THE: Evoluční teorie her Evolutionary Game Theory

Martin Hrubý

Brno University of Technology Brno Czech Republic

December 4, 2014

Úvod

Čerpáno z:

- ▶ John Maynard Smith, George R. Price: The logic of animal conflict. Nature 246:15-18.
- Nisan et al.: Algorithmic Game Theory
- Dugatkin, L.A., Reeve, H.K. (editors): Game Theory and Animal Behavior, Oxford, 1998
- Vincent, T.L., Brown, J.S.: Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge, 2005
- Magdaléna Hykšová: Přednášky z Teorie her, Fakulta dopravní, ČVUT

Evoluční teorie her

Počátky: John Maynard Smith, George R. Price: The logic of animal conflict. Nature 246:15-18.

- Aplikace THE na strategické interakce živočišných druhů.
- Zavedení Evolučně stabilní strategie (ESS)
- Ukázalo se, že principy chování rostlin a živočichů při vzájemných interakcích lze zatím nejlépe objasnit prostředky teorie her.

Dokonce se ukazuje (prý), že nejvhodnější aplikace THE jsou právě v biologii.

Evoluce a Teorie her

Velmi neformálně, bez nároků na odbornou věrnost:

- Kdysi na počátku vznikl organismus schopný replikace (množení). Vznikla populace jedinců.
- V rámci replikace může docházet k mutacím. Nevznikne klon jedince, ale modifikovaná verze – ta má příležitost ukázat, zda-li je schopnější v přežití.
- Boj o zdroje, území, ...
- Projevem evoluce tedy bylo vytvořit nástroje na přežití.
- Budeme muset identifikovat hráče, strategie a formu zisku.

Přes veškeré filosofické úvahy o smyslu bytí, lze předpokládat, že nejvíc nejdůležitějším cílem je přežít a rozmnožit se. Evoluční THE aspoň takto hodnotí kvalitu jedince.

Co očekáváme od spojení evoluce a Teorie her?

- Co očekává biolog? Co očekává sociolog? A co matematik?
- Biolog si odpoví otázky vývoje druhů a pochopí proč evoluce dopadla jak dopadla (ona tedy stále pokračuje...).
- Sociolog/psycholog/ekonom/prognostik si na modelech uvědomí podobnosti s chováním lidí.
- Zřejmě nikdo nechce predikovat chování … v situaci …
- Experimenty a korelace s realitou: Čím je druh jednodušší, tím jeho chování více odpovídá matematickému modelu – a to včetně smíšených strategií.
 - Severoamerická kutilka (druh vosy) klade vajíčka do díry v zemi společně s jejich budoucí potravou. Strategie: kopat vlastní díru, použít již existující. Pozorováním bylo zjištěno (na konkrétních jedincích) smíšené chování, které odpovídá racionálnímu modelu.
 - Obvyklejší je gen. polymorfismus určitá část populace provádí jednu strategii, jiná část populace jinou.

Hráč, strategie a zisk

Půjdeme na samotnou podstatu věci.

- Budeme řešit elementární interakce mezi jedinci. Neřešíme tudíž, proč si jedinec "Franta" koupí Fiat místo Renaulta. Všechno jsou to projevy "někoho v pozadí".
- Za vším stojí geny. Geny volí strategii jedince ve hře o přežití a reprodukci.
- Strategie behaviorální fenotyp (fenotyp soubor všech pozorovatelných vlastností a znaků organismu), tj. program udávající, jak bude jedinec konat v různých situacích.
- Jedinec má jednu strategii nebo je schopen pro danou situaci strategii zvolit.
- Výplatní funkce předpoklady pro reprodukci.

Myšlenka (R. Dawkins): Jedinci jsou geny. My jsme jejich nástroje (schránky) k přežití.

Lety vzájemných soubojů genů se geny učily a vyvíjely.

Zbraňové vybavení živočišného druhu

- Přežijí ti největší?
- nebo ti s největšími zuby a drápy?
- nebo ti nejagresivnější?
- nebo ti mírumilovní?

Technická výbava jedince a fenotyp jeho chování? Hodný drak nepotřebuje zuby a agresivní myš sotva někoho porazí.

R. Dawkins: Příběh předka, Academia, 2008

Evolučně stabilní strategie (ESS)

- J. M. Smith, G. R. Price (1973):
 - ESS je strategie taková, že pokud je přijata členy populace, pak je tato populace imunní vůči případnému mutantovi.
 - Je to zpřesnění (refinement) Nashova ekvilibria, tzn. pokud je přijato populací, pak stačí jednoduchá logika přirozeného výběru na to, aby se populace zabezpečila vůči případnému mutantovi.
 - ESS tedy tvoří strategický profil s nějakými vlastnostmi.
 - Může existovat ryzí nebo smíšená podoba ESS.
 - ESS tvoří refinement NE, tzn. ne všechna NE jsou ESS.

Demo ESS

Mějme nekonečně velkou (velikost je tedy dostatečná a není limitující) populaci jedinců, kteří se množí asexuálně. Jedinci se navzájem střetávají po dvojicích, tedy hrají nekooperativní hry dvou hráčů s výplatními funkcemi u_1, u_2 .

Strategie I je evolučně stabilní, pokud pro každou strategii $J \neq I$ platí:

$$u_1(I,I) > u_1(J,I)$$

 $u_1(I,I) = u_1(J,I) \wedge u_1(I,J) > u_1(J,J)$

Je-li I ESS, pak (I, I) je NE.

Jaký efekt má prohra?

Evolučně stabilní strategie

Definition

ESS je strategie taková, že pokud ji přijme většina populace, pak neexistuje mutantská strategie, která by byla reprodukčně úspěšnější.

(Smith and Price, 1973)

Pozn.: populace ji "nepřijme", ona ji reprezentuje.

Vývojový pohled: Vývoj stále probíhá – ESS je zjednodušující model a dává smysl při známé množině strategií. Neuvažujeme příchod zcela nové strategie (v tomto směru je pojem "mutant" možná nevhodný).

Mějme nekonečně velkou (velikost je tedy dostatečná a není limitující) populaci jedinců, kteří se množí asexuálně. Jedinci se navzájem střetávají po dvojicích, tedy hrají nekooperativní hry dvou hráčů (tzv. vnitřní hra).

Předpokládejme, že vnitřní hra $\Gamma = (\{A,B\};S_s;U)$ je symetrická, U(s|t) čteme užitek hráče hrajícího strategii s proti strategii t. Pojmem $\Delta(S_s)$ budeme rozumět smíšené rozšíření S_s .

Definition

Strategie $I \in S_s$ je evolučně stabilní, pokud pro každou strategii $J \in S_s, J \neq I$ platí:

$$U(I|I) > U(J|I)$$
 nebo
 $U(I|I) = U(J|I)$ \land $U(I|J) > U(J|J)$

Theorem

Je-li I ESS, pak (I, I) je NE.

K náznaku důkazu se dostaneme dále.

Poznámka: ESS je refinement NE, tzn. není to ekvivalent NE, tzn. existují NE, která nejsou složena z ESS.

Jiná definice (předpokládá výskyt mutanta s četností ϵ):

Definition

Strategie s je ESS pro dvouhráčovou symetrickou hru $\Gamma=(Q;S_s;U)$, jestliže pro každou $t\neq s$, existuje $\epsilon_t\in\langle 0,1\rangle$ takové, že pro každé ϵ , $0<\epsilon<\epsilon_t$, platí

$$(1-\epsilon)U(s|s) + \epsilon U(s|t) > (1-\epsilon)U(t|s) + \epsilon U(t|t)$$

Theorem

Strategie s je ESS pro dvouhráčovou symetrickou hru $\Gamma = (Q; S_s; U)$, jestliže (s, s) je NE v Γ a pro každou best-response t na s, $kde\ t \neq s$, plati U(s|t) > U(t|t).

Tvoří ESS Nashovo ekvilibrium?

Situace (Skinnerův chlívek): máme dvě prasata (dominantní a submisivní) zavřená ve chlívku vybavaném pákou a korytem. Když se stiskne páka, do koryta spadne žrádlo s energetickou hodnotou 10 jednotek. Cesta k páce a zpátky ke korytu spotřebuje 2 jednotky energie. Dominantní prase v souboji o koryto vždy vítězí.

ESS je: jsi-li dominantní prase, mačkej páku. Jsi-li submisivní, seď u koryta.

dominantní/submisivní	stiskni páku	seď u koryta
stiskni páku	8,-2	5,3
seď u koryta	10,-2	0,0

Klasický demopříklad: Jestřábi a hrdličky (Hawks and Doves)

- ▶ Jestřábem a hrdličkou nemyslíme konkrétní živočišné druhy !!!
- Je tím míněn charakter chování libovolného jedince (genetický fenotyp).
- Jestřáb vždy útočí a končí až při vážném zranění.
- Hrdlička hrozí pouze symbolicky, při přímém útoku prchá (nezraněna).
- ▶ Zisk z vítězství V, ztráta ze zranění C.

Která ze strategií (H,D) má větší šanci na přežití?

	Hawk	Dove
Hawk	$\frac{V-C}{2}, \frac{V-C}{2}$	<i>V</i> ,0
Dove	0, <i>V</i>	$\frac{V}{2}, \frac{V}{2}$

Hawks and Doves

	Hawk	Dove
Hawk	$\frac{V-C}{2}, \frac{V-C}{2}$	<i>V</i> ,0
Dove	0, <i>V</i>	$\frac{V}{2}, \frac{V}{2}$

- Strategie Dove není ESS, protože populaci hrdliček může napadnout jeden mutant (jestřáb), který pak v ní bude velmi dobře prosperovat. Navíc (D, D) není NE.
- ▶ Je-li V > C, pak je ESS být jestřábem.
- ▶ Příklad: rypouš sloní (V >> C), velmi ostré souboje.
- Je-li V < C, pak neexistuje ryzí NE, ale smíšené, kde se hraje H s pravděpodobností V/C

H-D jako nekonečně-krát opakovaná hra. Lze uvažovat kooperativní chování?

Hawks and Doves

Ukážeme, že H je ESS pro V>C: mějme smíšenou strategii t=(p,1-p), která s pravděpodobností $p\in\langle 0,1\rangle$ hraje H.

Víme, že
$$U(H|H) = \frac{V-C}{2}$$
.

Pak

$$U(t|H) = p \frac{V-C}{2} + (1-p)0 < \frac{V-C}{2}$$

tedy U(H|H) > U(t|H); $\forall t \neq H$, tzn. $\forall t \neq (1,0)$.

Demo: Včely

	Small	Large
Small	5,5	1,8
Large	8,1	3,3

Která strategie je ESS?

1) Předpokládejme, že je ESS být malá včela (Small). Pak je očekávaný užitek malé včely

$$5(1-x) + 1 \cdot x = 5 - 4x$$

a velké včely:

$$8(1-x) + 3 \cdot x = 8 - 5x$$

Lze ukázat, že pro dostatečně malé x je lepší být velká včela než malá, tzn. Small není ESS.

Demo: Včely

	Small	Large
Small	5,5	1,8
Large	8,1	3,3

Která strategie je ESS?

2) Předpokládejme, že je ESS být velká včela (Large). Pak je očekávaný užitek malé včely

$$(1-x)+5\cdot x=1+4x$$

a velké včely:

$$3(1-x) + 8 \cdot x = 3 + 5x$$

Lze ukázat, že pro dostatečně malé x je lepší být velká včela než malá, tzn. Large je ESS.

Smith, Price: The Logic of Animal Conflict, Nature, 1973

- Konflikty mezi jedinci v rámci jednoho druhu mohou vést ke zvýhodnění vítěze (teritorium, soupeření o samičku, potrava).
- Mohlo by se zdát, že evoluce vyvine schopnosti (a pudy) jedinců k totálnímu zlikvidování protivníka ("total war").
- Paradoxně evoluce vyvinula schopnosti slabé, obvykle se konflikt odehraje na úrovni rituálů ("limited war"). Je obava z vážného zranění, které jedinci v přírodě značně zkomplikuje život.
- Příklad limited wars: hadi se jenom "přetahují" bez použití zubů, rohy beranů jsou zakroucené, ...
- Proč se tedy protivníci nechtějí zlikvidovat? Proč jim to příroda komplikuje?

Ono by to totiž vedlo k zániku takového příliš bojovného druhu.

Smith, Price: case-study

Předpokládejme dvě základní strategie hráče (jedince):

- ► Conventional (C) není cílem vážně zranit soupeře.
- Dangerous (D) cílem je vážně zranit soupeře. K tomu může dojít, pokud bude uplatňována opakovaně.
- Příklad s hady: C je se přetahovat, D je kousnout.

U mnoha druhů je strategií C pouze předvádět hrozbu.

Předpoklady:

- Hráči se v tazích střídají (sekvenční situace, opakovaně). V každém tahu hráč může zvolit C, D nebo R (utéct).
- Pokud zvolí D, je tu konstantní pravděpodobnost, že protivníka vážně zraní (ten pak vždy volí R).
- ▶ Pokud hráč zvolí *R*, je konec boje a protihráč se stává vítězem.

Příklad souboje

kolo	1	2	3	4	5	6	7	8
tah (I)	С	С	С	D	С	С	С	D
tah (I) reakce (II)	C	C	C	D	C	C	C	R

- Hráči se 3 kola oťukávají
- pak ve 4. kole zahraje I strategii D a II odpoví D
- pár kol zase oťukávání
- v osmém kole I zahraje D a II uteče
- I je vítěz (a nikdo není zraněn)

Příklad souboje: výsledky

- Zahrát D nebo D v reakci na C se nazývá provokace (probe, provocation)
- Provokace v prvním tahu se nazývá eskalace konfliktu (má konflikt přenést z C do D)
- Hráč odpovídající D na provokaci je odvetník
- V našem příkladě: v osmém kole I zahraje D a II uteče. I je vítěz (a nikdo není zraněn)

Výsledkem souboje je nějaký zisk, který zohledňuje tři faktory do přínosu hráče v jeho reprodukčním procesu:

- Přínos z výsledku souboje, který porovnáváme se ztrátou v případě prohry.
- Ztráta z možného vážného zranění.
- Ztráta z investovaného času a energie v souboji.

Příklad: strategie

Za strategii budeme považovat koncept chování hráče v souboji (jakoby jeho "mentalitu"). Podobně jako u opakovaných her:

- ▶ Myš (mouse) nikdy nehraje D, na tah D reaguje R $(D \Rightarrow R)$. Jinak hraje C do konce.
- Jestřáb (hawk) vždy hraje D. Pokračuje v D, dokud není vážně zraněn on nebo protivník.
- Násilník (bully) pokud začíná, pak zahraje D. Jinak vždy C ⇒ D. Pokud protivník podruhé zahraje D, utíká (R).
- ▶ Odvetník (retaliator) začíná s C, pak vždy $C \Rightarrow C$ (pokud ovšem počet kol přesáhne mez, hraje R). Pokud soupeř hraje D, pak s vysokou pravděpodobností $D \Rightarrow^H D$.
- ▶ Provokatér-odvetník (prober-retaliator) pokud začíná nebo v reakci na C hraje: $C \Rightarrow^H C$ nebo $C \Rightarrow^L D$ (ovšem R, pokud se přesáhne mez počtu kol). Pokud zahraje D (provokace), pak v dalším kole hraje C, pokud protivník odpoví D. Jinak si troufne znova. Pokud protivník zahraje D, pak $D \Rightarrow^H D$.

Příklad: experiment

- ▶ Těchto 5 strategií dává 15 možných druhů zápasu $\binom{5}{2} + 5$.
- Autoři provedli 2000 experimentů pro každý druh zápasu.

Dále, nastavení klíčových pravděpodobností jevů:

- Vážné zranění hráče, pokud protihráč zahraje D: 0.10,
- Provokatér-odvetník zahraje D v prvním tahu nebo v reakci na C: 0.05.
- Provokatér nebo Provokatér-odvetník zahraje D (pokud nedošlo ke zranění) v reakci na D: 1.00.

Zisky:

- Vítězství: 60
- Vážné zranění: -100
- Malé zranění (po každém přijatém D, které nezpůsobilo vážné zranění – tzv. škrábnutí): -2
- Úspora času a energie při vyhnutí se zápasu: od 0 do 20 podle okamžiku R

Příklad: výsledky (Smith and Price, 1973)

Zisk je určen pro řádkového hráče (situace oponenta můžeme vidět transponovaně):

	Myš	Jestřáb	Násilník	Odvetník	Provokatér-o.
Myš	29.0	19.5	19.5	29.0	17.2
	80.0	-19.5	74.6	-18.1	-18.9
	80.0	4.9	41.5	11.9	11.2
	29.0	-22.3	57.1	29.0	23.1
Provokatér-o.	56.7	-20.1	59.4	26.9	21.9

Zkoumejme ESS na sloupcích tabulky: pro jestřábí populaci (sloupec jestřábů): je nejlepší odpovědí být jestřáb? Jestřábi, chovající se jako myši nebo násilníci, mají v populaci jestřábů lepší vyhlídky na přežití (být jestřáb není ESS).

Odvetník je ESS (myš je ovšem stejně dobrá).

Příklad: závěry

- Odvetník je nejstabilnější strategie.
- Provokatér-Odvetník využívá schopnosti "provokace" k převaze nad myší.
- Lze ukázat, že pokud je v populaci alespoň 7% myší, pak převládne provokátér-odvetník nad odvetníkem.
- Můžeme předpokládat určitou část populace s chováním myši (nemocné, staré, slabé), kteří se chovají jako myš z jiných důvodů, než genetických.
- Studie ukazuje lepší předpoklady pro přežití u "limited war" strategií (narozdíl od "total war" jestřába).
- Útěk nese užitek z možného přežití.

Příklad: závěry

- Výsledky jsou samozřejmě ovlivněny nastavenými pravděpodobnostmi, pokud bude pravděpodobnost vážného zranění 0.9 jako reakce na strategii D, pak pochopitelně jestřábi vítězí (udeří první).
- Situace je navíc jiná při změně zisku u strategie R pokud se bude zisk při útěku rovnat zisku při zranění (některé druhy mají pouze jednu příležitost k reprodukci), pak opět vítězí jestřábi.
- Naopak, pokud zisk z výhry je kladný, zisk z útěku nulový a zisk ze zranění značně záporný, pak dostaneme populaci velmi mírumilovných tvorů.

Reálná zvířata

- Zřejmě jsou reálné situace košatější než tento model.
- Obecně ovšem závěry modelu fungují: čím víc je druh bojově vybavenější, tím méně se dopouští D-strategií v konfliktech se svými soukmenovci (nebo je třeba mnoho provokací, aby se konflikt eskaloval).
- Jedinci mohou používat "testy" (zkoušení C a D) na zjištění, jakého typu je jejich protivník (C nebo D).
- ► Tím mohou jedinci dosáhnout informace o stavu protivníka a lépe se rozhodovat o akci R.
- Obvyklé jsou pak strategie Provokatér-odvetník a myš.

Provokatér-odvetník a Myš jsou zřejmě základem stabilní společnosti (jestřáb brzy narazí, násilník je zbabělec a odvetník je málo důrazný).

Reálná zvířata

- V situaci mnoha jestřábů (nebo naopak myší) lze předstírat jinou strategii než je mi vlastní.
- Máme opět problém hrozby (threat), která musí být důvěryhodná. Pak protivník ustoupí (Game of chicken) protivníkovi odhodlanému k sebedestrukci. Příkladem jsou periody "musth" u sloních samců, kdy jsou tito extrémně agresivní. Ostatní jim raději ustoupí a oni pak mají šanci oplodnit samici.
- Podobnou hrozbu najdeme např. v severské (vikingské) literatuře o bersercích – bojovnících, kteří se dostávali v boji do extatického stavu, kdy projevovali nadlidské fyzické schopnosti a všichni jim ustupovali

Konflikty mezi jedinci, kteří si nejsou schopni přivodit vážné zranění

Předpokládáme, že bojovně vybavení jedinci se v rámci svého druhu zraňovat nebudou.

- Druhy, které nejsou vybaveny "zbraněmi" také vstupují do konfliktu. Obvykle pak vítězí ten, který v konfliktu déle vydrží (neuteče).
- Předpokládáme dále, že jedinci si uvědomují délku konfliktu.
 Rozhodnutí o délce jejich vytrvání v konfliktu m_i je jejich strategií.
- ▶ Předpokládejme zisk pro vítěze v. Předpokládejme dva jedince, že $m_1 > m_2$.
- Pak je $u_1 = v m_2$, $u_2 = -m_2$.
- ▶ Je šance odhadnout moje m_i ? Existuje ESS?

...Existuje zde ryzí ESS?

Definujme U(I|J) jako očekávaný zisk při hraní I proti J (protihráč hraje J).

Z definice pak

$$U(I|I) > U(J|I)$$

$$U(I|I) = U(J|I) \land U(I|J) > U(J|J)$$

jinak by v populaci s převládající I příchozí mutant (J) způsobil přechod ke strategii J.

- Lze ukázat, že neexistuje ryzí ESS.
- Mutant s $I + \epsilon$ na tom bude vždy lépe. Dokonce, pokud m > v, pak mutant hrající $m_2 = 0$ bude taky lépe prosperující.
- ▶ Mutant s $I + \epsilon$ způsobí přerod společnosti v $I + \epsilon$. Tzn., délky soubojů by šly k nekonečnu.
- Zkusíme najít smíšenou ESS.

...Smíšená ESS

Strategie / jedince je dána:

- Předpokládejme, že jedinec vybírá svou m z intervalu $\langle x, x + \delta \rangle$ s pravděpodobností $p(x)\delta$.
- ▶ / je ESS, pokud:

$$p(x) = \frac{1}{v} exp\left(\frac{-x}{v}\right)$$

Nemůže existovat stabilní populace s konstantním chováním – musí mít prvky smíšenosti.

Dynamika v Evoluční teorii her

Předpokládejme populaci s dostatečně mnoha jedinci (není podstatné), kde se odehrávají konflikty na úrovni dvouhráčových nekooperativních her s nenulovým součtem.

- Nechť U(s|r) je očekávaný zisk hráče hrajícího s, kdy protihráč hraje r.
- ▶ Předpokládejme k strategií $s_1, s_2, ..., s_k$, které můžou členové populace hrát.
- Nechť x_i značí relativní zastoupení strategie s_i v populaci, $x = (x_1, ..., x_k)$.
- Nechť w_i(x) je fitness hráče hrajícího s_i v populaci s rozložením strategií x.
- ▶ Dále, $\overline{w}(x)$ je střední hodnota přes celou populaci.

Dynamika v Evoluční teorii her

Stav x' odvozený z x je dán diferenční rovnicí nazývanou diskrétní replikátorská rovnice s frekvenčně-závislou fitness funkcí:

$$x' = x_i \frac{w_i(x)}{\overline{w}(x)}; \forall i = 1, ..., k$$

Co je ta fitness?

$$w_i(x) = w_0 + \sum_{j=1}^k x_j U(s_i|s_j); \forall i = 1, ..., k$$

kde w_0 je základní očekávání populace, kdyby nemuseli hru hrát (nedocházelo by k interakcím).

Dynamika v Evoluční teorii her – příklady

Dynamika v Evoluční teorii her – příklady

Nashovo ekvilibrium

Jaký je vztah ESS a NE?

Pokud má být strategie s_1 ESS, pak by výskyt mutanta s_2 s frekvencí ϵ měl dát populaci stále pozitivní fitness $w_1(x) - w_2(x)$.

Předpokládejme, že $x_2=\epsilon$ je frekvence mutantí strategie s_2 , strategie s_1 má frekvenci $x_1=1-\epsilon$.

Pak obdržíme:

$$\begin{array}{l} w_1(x) - w_2(x) = \\ = (1 - \epsilon)U(s_1|s_1) + \epsilon U(s_1|s_2) - (1 - \epsilon)U(s_2|s_1) - \epsilon U(s_2|s_2) = \\ = (1 - \epsilon)[U(s_1|s_1) - U(s_2|s_1)] + \epsilon[U(s_1|s_2) - U(s_2|s_2)] \end{array}$$

Nashovo ekvilibrium

$$w_1(x) - w_2(x) = (1 - \epsilon)[U(s_1|s_1) - U(s_2|s_1)] + \epsilon[U(s_1|s_2) - U(s_2|s_2)]$$

Kdy je výraz kladný? Pro dostatečně malé ϵ (v ESS očekáváme mutantní výskyt dostatečně málo frekventovaný) je určující první člen výrazu, a ten je kladný pro $U(s_1|s_1) > U(s_2|s_1)$.

Plyne z toho, že s_1 musí být best-response na s_1 – a (s_1, s_1) je tudíž NE.

Pokud přesto připouštíme, že i s_2 může být best-response na s_1 , tedy, že $U(s_1|s_1)=U(s_2|s_1)$, pak je pro kladnost výrazu rozhodující druhý člen.

Pokud tedy $U(s_1|s_1) = U(s_2|s_1)$, pak musí platit $U(s_1|s_2) > U(s_2|s_2)$.

Evoluční dynamika aplikovaná na sobecké směrování (Selfish Routing)

- Máme síť danou grafem G = (V, E). Zkoumáme komunikaci mezi uzly $s, t \in V$ vedenou po všech možných cestách P.
- ▶ Jedinci populace jsou agenti směrující svou komunikaci s-t po různých cestách $p \in P$.
- Zkoumáme komunikační dobu na jednotlivých cestách (latence).
- Předpokládáme, že v každém kole se agenti potkávají v náhodných párech (a₁, a₂) a sdělují si zkušenosti s posledním kolem. Pokud agent a_i zjistí, že agent a_j komunikuje hůř, zůstává u své cesty, jinak se inspiruje a_j.
- Lze ukázat, že systém evolucí dojde do stavu rovnoměrného zatížení sítě přenosem přes všechny možné cesty (Nash flow).

Příště

- Aplikace THE v modelování energetických trhů.
- Závěrečné opakování které partie byly problematické?
- Steve Brams: Theory of Moves.