JPA06-046212 Which corresponds to USP5, 289,000

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application: 18.02.1994

(51)Int.CI.

H04N 1/04 G03B 27/50 G03B 27/72 H04N 1/00

(21)Application number : 04-195385

(22)Date of filing:

(71)Applicant:

22.07.1992

FUJI PHOTO FILM CO LTD

(72)Inventor:

TOYOFUKU TAKASHI

(54) PICTURE READ METHOD AND PICTURE READER

(57)Abstract:

PURPOSE: To attain high picture quality reading of a transparent original with a proper luminous quantity by aligning an optical axis of a transparent original reading light source just to an optical axis of a read scanning element of the reader main body so as to keep a prescribed relative position relation. CONSTITUTION: Either a transparent original read light source 102 or a read scanning element 31 is moved to an optional position from its home position, and the other scans a position in the vicinity of the moved position to obtain a distribution of a luminous quantity of a light for reading the transparent original during the scanning. Then a center of the distribution of the luminous quantity is detected, the center is used for a synchronization position at the optional position and at least two different synchronization positions are obtained. Thus, a precise distance or a pulse-distance conversion coefficient of the transparent original read light source 102 or the read scanning element 31 is recognized, the other pulse-distance conversion coefficient is precisely calculated. Thus, the moving speed of the transparent original read light source 102 or the read scanning element 31 is adjusted to be identical to each other, and the transparent original is read at a prescribed relative position when the optical axes are aligned in the subscanning direction.

LEGAL STATUS

[Date of request for examination]

10.03.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3188521

[Date of registration]

11.05.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

JPA06-046+12 which corresponds to USP5,+09,000

補正あり

(19)日本田特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(日)特許出職公開番号

特開平6-46212

(43)公開日 平成6年(1994)2月18日

(51)IntCL*		識別記号	厅内整理番号	FI	技術表示籍所
H04N	1/04	105	7251 —5 C		
G03B	27/50	A	9017-2K		
	27/72	Α	8507-2K		
H04N	1/00	G	7048-5C		

渉疫請求 未請求 請求項の数4(全 12 頁)

(21)出期番号

特膜平4-195385

(22)出願日

平成4年(1992)7月22日

(71)出題人 000005201

富士写真フィルム株式会社 神奈川県潮足柄市中沼210番型

(72)発明者 臺 福 貴 司

神公用県足柄上郡開成町宮台798番地 倉

士写真フィルム株式会社内

(74)代理人 弁理土 渡辺 望稔

(54) 【発明の名称】 | 調像読取方法および調像競取装置

(57)【要約】

【目的】透過原稿読み取り用の透過原稿読取光源と、読 取装置本体の読取走査子の光軸を一致して所定の相対位 置に保つことにより、適正な光量による高画質な透過原 稿の読み取りを可能とする、透過原稿読取光源と読取走 査子の走査速度の同期および走査初期位置合わせを行う 画像読取方法および画像読取装置を提供する。

【構成】透過原稿読取光源あるいは読取走査子のいずれ か一方を任意の位置に配置して他方がその近傍を走査す ることにより、この走査における光量分布より同期位置 を得る同期位置検出を異なる2点において行い、この検 出結果より両者の走査速度比を算出して走査速度の同期 を取り、また、同様の同期位置検出を任意の1点におい て行い、透過原稿読取光源および読取走査子の基点から 同期位置までの距離より基点の相対距離を求め、この相 対距離より透過原稿の読取走査における両者の走査開始 位置の同期を取ることにより、前記目的を達成する。

【特許請求の範囲】

【請求項1】一次元方向に延在する透過原稿読取光源を 前記一次元方向と略直交する副走査方向に移動して走査 することにより、原稿台上に載置される透過原稿を2次 元的に照射すると共に、前記原稿台の下面に配備される 前記一次元方向に延在する読取走査子を前記透過原稿読 取光源と同期して移動することにより、前記透過原稿の 画像を光電的に読み取る透過原稿の読み取りにおいて、 前記透過原稿読取光源あるいは読取走査子のいずれか一 方を任意の位置に配置し、他方がその近傍を走査するこ とにより、この走査における前記透過原稿読取光の光量 分布を得、この光量分布より前記任意の位置における同 期位置を求める同期位置検出を異なる少なくとも2点に おいて行い、各点の同期位置の検出結果から前記透過原 稿読取光源と読取走査子の前記同期位置までの移動にお けるパルスを計測して、これより前記透過原稿読取光源 と読取走査子の少なくとも一方のパルスー距離変換係数 を算出して、両者の走査速度の同期を取ることを特徴と する画像読取方法。

【請求項2】原稿を載置する原稿台、一次元方向に延在する読取光を前記原稿台に載置された原稿に照射する読取走査子、前記読取走査子を所定の走査速度で前記一次元方向と略直交する方向に移動する駆動手段、および前記原稿に反射された読取光を読み取る光電変換手段を有する画像読取装置本体と、

前記一次元方向に延在する透過原稿読取光源、前記透過 原稿読取光源を前記読取走査子の移動に同期して移動す る駆動手段を有し、前記原稿台上の所定の位置に若脱自 在に配置される透過原稿ユニットと、

前記透過原稿ユニットを前記画像読取装置本体の原稿台上に載置した際に、前記透過原稿読取光源か読取走査子のいずれか一方を任意の位置に移動し、他方によってその近傍を走査させることにより、この走査における前記透過原稿読取光の光量分布を作製し、この光量分布より前記任意の位置における同期位置を求める同期位置検出を、異なる少なくとも2点において行い、各点の同期位置の検出結果より前記透過原稿読取光源と読取走査子の前記同期位置までの移動におけるパルスを計測して、これより前記透過原稿読取光源と読取走査子の少なくとも一方のパルスー距離変換係数を算出して、両者の走査速度の同期を取る同期手段とを有することを特徴とする画像語取法需。

【請求項3】一次元方向に延在する透過原稿読取光源を前記一次元方向と略直交する副走査方向に移動して走査することにより、原稿台上に載置される透過原稿を2次元的に照射すると共に、前記原稿台の下面に配備される、前記一次元方向に延在する読取走査子を前記透過原稿読取光源と同期して移動することにより、前記透過原稿の画像を光電的に読み取る透過原稿の読み取りにおいて

透過原稿の読み取りに先立ち、前記透過原稿読取光源か 読取走査子のいずれか一方を所定位置に配置し、他方が その近傍を走査することにより、この走査における前記 透過原稿読取光の光量分布を得、この光量分布より前記 所定位置における同期位置を検出し、前記透過原稿読取 光源および読取走査子のそれぞれの基点からこの同期位 置までの距離より互いの基点の相対距離を求め、この相 対距離より透過原稿の読取走査における前記透過原稿読 取光源と読取走査子との走査開始位置合わせを行うこと を特徴とする画像読取方法。

【請求項4】原稿を載置する原稿台、一次元方向に延在する読取光を前記原稿台に載置された原稿に照射する読取走査子、前記読取走査子を所定の走査速度で前記一次元方向と略直交する方向に移動する駆動手段、および前記原稿に反射された読取光を読み取る光電変換手段を有する画像読取装置本体と、

前記一次元方向に延在する透過原稿読取光源、前記透過 原稿読取光源を前記読取走査子の移動に同期して移動す る駆動手段を有し、前記原稿台上の所定の位置に若脱自 在に配置される透過原稿ユニットと、

透過原稿の読み取りに先立ち、前記透過原稿読取光源か 読取走査子のいずれか一方を所定位置に移動し、他方に よって近傍を走査させることにより、この走査における 前記透過原稿読取光の光量分布を作製し、この光量分布 より前記所定位置における同期位置を検出し、前記透過 原稿読取光源および読取走査子のそれぞれの基点からこ の同期位置までの距離より互いの基点の相対距離を求 め、この相対距離より透過原稿の読取走査における前記 透過原稿読取光源と読取走査子との走査開始位置を一致 させる位置合わせ手段とを有することを特徴とする画像 読取装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、印刷製版装置、複写装置等に用いられる画像読取装置において、透過原稿読取光源で透過原稿を走査し、同時に画像読取装置の読取走査子を透過原稿読取光源に同期して走査することによって透過原稿の画像を読み取る際における、透過原稿読取光源と読取走査子との走査速度同期および走査開始位置合わせを行う画像読取方法、およびこの画像読取方法を用いた画像読取装置に関する。

[0002]

【従来の技術】近年、印刷製版装置、複写装置に用いられる画像読取装置には、写真や印刷物等の反射原稿のみならず、リバーサルフィルム、ネガフィルム等の透過原稿の画像読取も可能であることが要求されている。

【0003】従来、各種の画像読取装置における透過原稿の読み取りは、画像読取装置本体の原稿台上に載置されて透過原稿を照射する透過原稿ユニットを用い、この透過原稿ユニットより照射されて透過原稿を透過した透

過光を画像読取装置本体の読取光学系によって読み取る ことによって行われている。

【0004】このような透過原稿ユニットとしては、ハロゲンランブ等を光源として透過原稿の全面を照射することにより透過原稿の透過光を得るバックライト型、複数の棒状光源を用いて、やはり透過原稿の全面を照射するシャーカステン型、蛍光灯等の棒状光源で透過原稿を副走査方向に走査することにより透過原稿の全面を 2次元的に走査して透過原稿の透過光を得る光源走査型等が知られている。ここで、バックライト型やシャーカステン型の透過原稿ユニットは、機構が簡単であるという問題点があり、印刷製版等の高画質な画像読み取りを要求される用途では、光源走査型の透過原稿ユニットが好適に利用される。

【0005】光源走査型の透過原稿ユニットは、棒状光源等を用い、読取装置本体の読取走査子に配備される光源と同方向の一次元方向に延在する透過原稿の読取光を射出する透過原稿読取光源と、この透過原稿読取光源を前記一次元方向と略直交する方向、つまり副走査方向に移動する駆動源とを有する。このような光源走査型の透過原稿ユニットは、読取装置本体の原稿台上に配置され、透過原稿読取光源を副走査方向に移動することにより原稿台に載置された透過原稿を2次元的に照射する。ここで、透過原稿読取光源の移動に同期して読取装置本体の読取走査子を移動することにより、棒状光源より射出されて透過原稿を透過した透過光を読取装置本体の読取光等系によって光電的に読み取り、透過原稿を読み取る。

[0006]

【発明が解決しようとする課題】前述のように、光源走査型の透過原稿ユニットを用いた透過原稿の読み取りは、透過原稿ユニットの透過原稿読取光源と、読取装置本体の読取走査子とを同期して走査することによって透過原稿を読み取る。従って、適正な光量による高画質な画像読取を実現するためには、副走査方向で透過原稿読取光源と読取走査子との光軸とを一致させた、一定の相対位置を保持した状態で、両者を同期して走査移動する必要がある。

【0007】ところが、透過原稿ユニットは透過原稿の 読み取り時にのみ画像読取装置の所定位置に配置されて 使用されるものであり、透過原稿ユニットの透過原稿読 取光源と、読取装置本体の走査子とは互いに独立した駆 動源を有する。そのため、設計の段階で両者の走査速度 を一致させていても、駆動源であるモータやモータの駆 動力を読取走査子あるいは透過原稿読取光源に伝達する 伝達機構の個体差や機械的誤差等によって両者の間に走 査速度差がある場合があり、また、修理や読取装置およ び光源ユニットの移動等によって走査速度が狂ってしま う場合もあり、読取走査全体にわたって両者の相対位置 を一定に保つことができない場合がある。

【0008】また、両者の走査速度が一致していても、 読取走査を開始する初期位置において光軸が一致した所 定の相対位置とすることができなければ、やはり適正な 光量での高精度な透過原稿の読み取りを行うことができ ない。ここで、透過原稿ユニットは、通常の使用時は読 取装置本体上には配置されてはおらず、透過原稿の読み 取り時にユーザーが読取装置本体上(原稿台上)の所定 10 の位置に配備して使用するよう構成され、また、読み取 りに供される透過原稿の交換のための蓋体等を有し、透 過原稿の読み取りを行う度に開閉される。

【0009】そのため、透過原稿ユニットの着脱や蓋体の開閉によって、透過原稿読取光源と読取走査子との相対的な位置、特に両者の基点(ホームポジション)の相対的な位置が狂ってしまい、読取走査の開始位置で透過原稿読取光源と読取走査子の位置を副走査方向で一致させることができず、両者の光軸がずれてやはり適正な光量での透過原稿の読み取りを行うことができないという20 問題点もある。

【0010】本発明の目的は、前記従来技術の問題点を解決することにあり、透過原稿読み取り用の透過原稿読取光源と、読取装置本体の読取走査子の光軸とを一致して所定の相対位置に保つことにより、適正な光量による高画質な透過原稿の読み取りを可能とする、透過原稿読取光源と読取走査子の走査速度の同期、あるいは読取走査初期位置の位置合わせを好適に行った画像読取方法、およびこれらの画像読取方法を用いた画像読取装置を提供することにある。

【課題を解決するための手段】前記目的を達成するため

に、本発明の画像読取方法の第1の態様は、一次元方向

30 [0011]

に延在する透過原稿読取光源を前記一次元方向と略直交 する副走査方向に移動して走査することにより、原稿台 上に載置される透過原稿を2次元的に照射すると共に、 前記原稿台の下面に配備される前記一次元方向に延在す る読取走査子を前記透過原稿読取光源と同期して移動す ることにより、前記透過原稿の画像を光電的に読み取る 透過原稿の読み取りにおいて、前記透過原稿読取光源あ 40 るいは読取走査子のいずれか一方を任意の位置に配置 し、他方がその近傍を走査することにより、この走査に おける前記透過原稿読取光の光量分布を得、この光量分 布より前記任意の位置における同期位置を求める同期位 置検出を異なる少なくとも2点において行い、各点の同 期位置の検出結果から前記透過原稿読取光源と読取走査 子の前記同期位置までの移動におけるパルスを計測し て、これより前記透過原稿読取光源と読取走査子の少な くとも一方のパルスー距離変換係数を算出して、両者の 走査速度の同期を取ることを特徴とする画像読取方法を 50 提供する。

【0012】また、本発明の画像読取装置の第1の態様 は、原稿を載置する原稿台、一次元方向に延在する読取 光を前記原稿台に載置された原稿に照射する読取走査 子、前記読取走査子を所定の走査速度で前記一次元方向 と略直交する方向に移動する駆動手段、および前記原稿 に反射された読取光を読み取る光電変換手段を有する画 像読取装置本体と、前記一次元方向に延在する透過原稿 読取光源、前記透過原稿読取光源を前記読取走査子の移 動に同期して移動する駆動手段を有し、前記原稿台上の 所定の位置に若脱自在に配置される透過原稿ユニット と、前記透過原稿ユニットを前記画像読取装置本体の原 稿台上に載置した際に、前記透過原稿読取光源か読取走 査子のいずれか一方を任意の位置に移動し、他方によっ てその近傍を走査させることにより、この走査における 前記透過原稿読取光の光量分布を作製し、この光量分布 より前記任意の位置における同期位置を求める同期位置 検出を、異なる少なくとも2点において行い、各点の同 期位置の検出結果より前記透過原稿読取光源と読取走査 子の前記同期位置までの移動におけるパルスを計測し て、これより前記透過原稿読取光源と読取走査子の少な くとも一方のパルスー距離変換係数を算出して、両者の 走査速度の同期を取る同期手段とを有することを特徴と する画像読取装置を提供する。

【0013】さらに、本発明の画像読取方法の第2の態 様は、一次元方向に延在する透過原稿読取光源を前記一 次元方向と略直交する副走査方向に移動して走査するこ とにより、原稿台上に載置される透過原稿を2次元的に 照射すると共に、前記原稿台の下面に配備される、前記 一次元方向に延在する読取走査子を前記透過原稿読取光 源と同期して移動することにより、前記透過原稿の画像 を光電的に読み取る透過原稿の読み取りにおいて、透過 原稿の読み取りに先立ち、前記透過原稿読取光源か読取 走査子のいずれか一方を所定位置に配置し、他方がその 近傍を走査することにより、この走査における前記透過 原稿読取光の光量分布を得、この光量分布より前記所定 位置における同期位置を検出し、前記透過原稿読取光源 および読取走査子のそれぞれの基点からこの同期位置ま での距離より互いの基点の相対距離を求め、この相対距 離より透過原稿の読取走査における前記透過原稿読取光 源と読取走査子との走査開始位置合わせを行うことを特 徴とする画像読取方法を提供する。

【0014】また、本発明の画像記録装置の第2の態様は、原稿を載置する原稿台、一次元方向に延在する読取光を前記原稿台に載置された原稿に照射する読取走査子、前記読取走査子を所定の走査速度で前記一次元方向と略直交する方向に移動する駆動手段、および前記原稿に反射された読取光を読み取る光電変換手段を有する画像読取装置本体と、前記一次元方向に延在する透過原稿読取光源、前記透過原稿読取光源を前記読取走査子の移動に同期して移動する駆動手段を有し、前記原稿台上の

所定の位置に著脱自在に配置される透過原稿ユニットと、透過原稿の読み取りに先立ち、前記透過原稿読取光源か読取走査子のいずれか一方を所定位置に移動し、他方によって近傍を走査させることにより、この走査における前記透過原稿読取光の光量分布を作製し、この光量分布より前記所定位置における同期位置を検出し、前記透過原稿読取光源および読取走査子のそれぞれの基点からこの同期位置までの距離より互いの基点の相対距離を求め、この相対距離より透過原稿。の読取走査における前記透過原稿読取光源と読取走査子との走査開始位置を一致させる位置合わせ手段とを有することを特徴とする画像読取装置を提供する。

[0015]

【発明の作用】本発明は、一次元方向に延在する読取光を射出する読取走査子を、この一次元方向と略直交する副走査方向に移動することにより、原稿を2次元的に走査して光電的に読み取る画像読取装置と、同一次元方向に方向に延在する透過原稿読取光源を副走査方向に走査する透過光源ユニットとを用い、原稿台に載置した透過原稿を透過原稿読取光源で二次元的に走査しつつ、読取走査子を透過原稿読取光源に同期して移動することにより、画像読取装置の読取光学系によって透過原稿の読取光を読み取って透過原稿を読み取る透過原稿の読み取りに関するものであり、本発明の第1の態構は透過原稿読取光源と読取走査子との走査速度の同期を、一方、第2の態構は透過原稿読取光源と読取走査子との初期位置(走査開始位置)の位置合わせを行うものである。

【0016】本発明の第1の態様の画像読取方法(画像 読取装置)においては、透過原稿読取光源か読取走査子のいずれか一方をホームポジション(基点)から任意の位置に移動し、他方がその近傍を走査することにより、この走査における透過原稿読取光の光量分布(副走査方向)を得る。この光量分布において、予め設定しておいた閾値を超えた領域の中央を検出する等の方法によって、前記光量分布における中心部を検出し、この中央部

を任意の位置における同期位置とする。

【0017】このような同期位置を、少なくとも異なる 2点について求める。ここで、各点における透過原稿読 取光源および読取走査子の移動距離の差は、透過原稿読 取光源および読取走査子のホームポジションの相対距離 であるので、異なる2点におけるこの相対距離は等し い。従って、透過原稿読取光源あるいは読取走査子のい ずれか一方の正確な移動距離や、駆動源がバルスモータ であればバルスー距離変換係数が解れば、他方の正確な バルスー距離変換係数を算出することができ、これより 透過原稿読取光源および読取走査子の移動速度を調整し て同一とし、副走査方向で光軸があった状態の一定の相 対位置での透過原稿読取を行い、適切な光量での高画質 な透過原稿読取を行うことができる。

50 【0018】一方、本発明の第2の態様の画像読取方法

(画像読取装置) は、読取開始時点における透過原稿読取光源と読取走査子との同期を取って両者を所定の相対位置にするもので、前述の第1に態様と同様にして、任意に位置(1点)において同期位置を求める。これより透過原稿読取光源および読取走査子のそれぞれのホームポジションから同期位置までの距離(両者の移動距離の差)を求めることにより、両者のホームポジション間の正確な距離を求めることができる。従って、透過原稿読取光源および読取走査子の読取開始位置までの移動距離に、得られたホームポジション間の距離を加味することにより、読取開始位置における両者の位置を、副走査方向で光軸があった状態の所定の相対位置とすることができる。

【0019】従って、本発明の画像読取方法〈画像読取 装置〉によれば、透過原稿読み取りにおける透過原稿読 取光源と、読取装置本体の読取走査子の相対的な位置 を、光軸を一致した所定の位置とすることができ、適正 な光量による高画質な透過原稿の読み取りを行うことが できる。

[0020]

【実施例】以下、本発明の画像読取方法およびこれを用いた画像読取装置について、添付の図面に示される好適 実施例をもとに詳細に説明する。

【0021】図1は、本発明の画像読取方法を実施する 画像読取装置であって、印刷製版装置に用いられる画像 読取装置の模式図である。なお、以下の説明は印刷製版 装置に用いられる画像読取装置について行うが、本発明 はこれに限定はされず、複写装置やブリンタ等の各種の 画像形成装置に利用可能である。同図に示すように画像 読取装置10は、写真、印刷物等の通常の反射原稿のみ ならず、ネガ、リバーサルフィルム等の透過原稿Gの画 像も読み取ることのできるものであって、基本的に、読 取装置本体12と、画像処理装置14と、読取装置本体 12の上面に着脱自在な透過原稿ユニット16とからな

【0022】読取装置本体12は、基本的に、通常の反射原稿用の読取装置と同様の構成を有するものであり、透過原稿G(および反射原稿)を載置する透明ガラス板などからなる原稿台22と、反射原稿用の読取光源を構成する一次元方向(主走査方向)に延在する長尺の2本の蛍光灯26,26、透過原稿Gの透過光や反射原稿の反射光を所定スリット電および長さのスリット光として透過させるスリット28を有し、蛍光灯26,26を覆うケーシング29およびスリット28の直下に配置され、反射光の光路Lの光路を副走査方向 a に反射する第1ミラー30から構成される光源ユニット31と、光路Lを逆方向bに向ける第2ミラー32および第3ミラー34からなるミラーユニット35と、原稿画像を担持するスリット光を結像させる結像レンズ36と、前記反射光の結像位置に配置され、前記主走査方向1ラインの原

稿画像を1ブロックとして光電変換して画像濃度データ Saとしてアナログ電気信号化するCCD38とを有す る。また、透過原稿ユニット16を取り外した際のため の、図示しない原稿台カバーも有している。

【0023】ここで光源ユニット31は、本発明の走査 子を構成するが、この光源ユニット31が原稿台22の 下面を副走査方向 a または b に所定の副走査速度で走査 移動するとき、透過原稿Gからの反射光の光路LのCC D38までの光路長が等しくなるように、ミラーユニッ 10 ト 3 5は前記副走査速度の1/2の速度で同じ副走査方 向に移動する。図1に示す装置においては、走査子であ る光源ユニット31は原稿台22の左端側の所定の位置 をホームポジション(基点)とする。ここで光源ユニッ ト31は基点(走査開始点)から原稿台22の右端側の 走査絡了点まで矢印aで示す副走査方向に移動する時、 すなわち往路で予備走査(プレスキャン)を行う。そし て、走査子(光源ユニット31)は走査終了点で反転 し、基点に戻るまでの間の復路において、原稿または原 稿中の有効画像領域(以下、これを本走査範囲という) 20 の本走査(本スキャン)を行う。

【0024】また、読取装置本体12は、図2に示すように、走査子である光源ユニット31およびミラーユニット35をプレスキャンおよび本スキャン、さらには光源同期の際において駆動する駆動装置90を有する。駆動装置90は、駆動モータ92と、減速手段93と、ワイヤ駆動プーリ94と、ワイヤ95aおよび95bと、ミラーユニット35の両端に取り付けられる可動プーリ96aおよび96bと、複数のアイドラ97aおよび97bとを有する。

30 【0025】駆動装置90においては、パルスモータ (ステッピングモータ) などの駆動モータ92の回転を ベルト伝動手段などの減速手段93によって減速してワ イヤ駆動ブーリ94に伝達する。図2中二点鎖線で示す ワイヤ95 aはその一端が図中右側でワイヤ96 aにス ブリングを介して接続されるが、ここから、アイドラ9 7a、可動プーリ96a、アイドラ97(右側)、ワイ ヤ駆動プーリ94、アイドラ97(左側)、光源ユニッ ト31の固定端98a、可動プーリ96aに巻き掛けら れ、ワイヤ95aの他端はワイヤ固定端99aに固定さ 40 れる。同様に図2中一点鎖線で示すワイヤ95 bは、ワ イヤ95aの接続側からアイドラ97b(右側)、可動 ブーリ96b、アイドラ97b、アイドラ97(右 側)、ワイヤ駆動プーリ94、アイドラ97(左側)、 アイドラ97 b (左側)、光源ユニット31の固定端9 8 b、可動ブーリ96 bを経由してワイヤ固定端99 b に固定される。ここでワイヤ95a, 95bはいずれも ワイヤ駆動ブーリ94に少なくとも1周巻き掛けられ、 ワイヤ駆動ブーリ94の回転により、ワイヤ95a,9 5 bを巻き取りまたは巻き戻して光源ユニット31を所 50 定の移動速度、例えば走査速度で移動し、同時にミラー

ユニット35をその1/2の速度で移動する。ここで、プレスキャン、本スキャン時の光源ユニット31の移動 速度すなわち走査速度の変更は、モータ92自身の回転 速度を変えてもよいし、減速手段93によって回転速度 を変えてもよい。

【0026】CCD38は、主走査1ライン分の原稿画像を光電変換して主走査1ライン分のアナログ画像データ信号Saとして出力するラインセンサであり、これに限定されず種々のラインセンサを用いることができる。なお、CCD38によって読み取られる主走査方向1ライン分のアナログ画像データSaは、スリット28の主走査方向の長さ全域にわたる原稿台主走査方向有効範囲のアナログ画像データであり、透過原稿Gの主走査方向の長さがスリット28の長さより小さい場合には、原稿画像データ以外の画像データ、例えば原稿カバー24の裏面のデータをも画像データとして含んでいる。

【0027】画像処理装置14は、CCD38から主走 査1 ラインの画像データを読み取るタイミングを決める 主走査クロックφx を発生するクロック発生器 4 0 と、 主走査クロックφx に基づいてCCD38から読み込ま れたアナログ画像データ信号Saをゲイン補正などのア ナログ補正した後、デジタル信号としての画像データ信 号Sに変換するA/D変換器42と、この画像データ信 号Sを用いて、ブレスキャン時には本発明の画像読取方 法を実施するとともに、本スキャンではこの信号Sを画 像処理して最終的に網点画像信号として出力する画像処 理部44とからなる。ここで、画像処理部44ではクロ ック発生器 4 0からの主走査クロック信号 φx および副 走査クロック信号 oy に基づき前記画像信号Sに対して CCDのシェーディング補正や暗時補正などの補正を施 した後、ブレスキャン時には間引き処理して、種々の画 像処理、例えば原稿の端部検出を行い、あるいは自動濃 度測定を行う一方、本スキャン時には、対数変換処理、 階調変換処理、倍率変換処理、平滑化処理、鮮鋭化処 理、網掛処理等の画像処理などを施し、2値化された網 点画像信号Rとして画像記録装置等に出力する。

【0028】図3は、図1の画像処理部44の構成を示したものである。この場合、画像処理部44は、まず画像パスにより画像データが順次流れている補正処理部50、倍率変換回路52、変換処理回路54との間の画像パスからCPUパスに接続されるラインメモリ58と、CPUパスにより情報のやり取りを行っているCPU60、ROM62、RAM64とがあり、補正回路部50、倍率変換回路52、変換処理回路54および網点生成部56と、CPU60、ROM62およびRAM64とは、それぞれ接続されて種々の画像処理が行われる。

【0029】補正回路部50は、前処理回路およびCC D補正回路からなる。ここで前処理回路は、ラインセン サ、増幅器およびA/D変換器などのアナログ素子の温度ドリフトおよび電圧変動などのオフセット誤差の変動に伴う雑音成分を、暗時のマスク画像信号を用いて、補償するもので、例えば、暗時の画像信号レベルが複数の走査ラインにわたって変動する場合に1ライン毎にオフセット誤差を補償し、信号を安定にするものである。また、CCD補正回路は、固体撮像素子であるCCD38の各画素毎のばらつきによる受光光量のゆらぎを(照明光のゆらぎをも含めて)補正するシェーディング補正および各画素毎の(光が入射していない時にも存在する)ベースのゆらぎを補正する暗時補正などを行うもので、各画素の受光信号をベースのそろった均一なものとする、例えば同じ原稿画像濃度であれば同じ画像データ(画像信号)とするものである。

【0030】倍率変換回路52は、CCD38で読み取られた主走査方向1ライン分の画像データを所定の拡大倍率、縮小倍率などの画像形成倍率に応じた主走査方向の画素密度に対応する画像信号に変換する回路であり、前記主走査1ラインの画像データから所定の間引き率で画像データを間引いて、1ラインの画像データを所要量の画像データとすることのできる回路である。例えば、倍率変換回路52ではブレスキャンにおいては、1ラインの全入力画像データ7500画素を間引いて約1/30の250画素程度のデータ量としている。

【0031】ラインメモリ58は、必要に応じて実施される原稿やその有効画像領域などの本走査範囲の検出、自動濃度測定などのためにプレスキャンにおいて読み取った原稿台主走査方向有効範囲1ライン分の画像データを記憶するために必要なものであって、倍率変換回路52によって間引かれた1ライン分の画像データを記憶するためのメモリである。一旦、記憶された1ライン分の画像データはこのラインメモリ58からCPU60によって読み出され、画像処理のための種々の演算処理に供される。

【0032】変換処理回路54は、画像信号を対数変換する対数変換回路および階調特性(露光量-濃度特性)に対応する画像信号に変換する階調変換回路などからなるもので、画像記録のため信号に変換するものである。

【0033】網点生成部56は、図4に示すように平滑40 化処理回路66、鮮鋭化処理回路68および網点分解処理回路70からなる。平滑化処理回路66は、入力画像データと周辺画素データとを平均化して、当該入力画像データをアンシャーブ処理し、画像データ信号中のノイズ低減を図り、補正画像データを得るものである。鮮鋭化処理回路68は、画像の輪郭などのエッジを強調し、鮮鋭化(シャープネス)処理するもので、例えば、原画像データから平滑化された平滑化画像データの定数倍を引きアンシャープマスキングをして画像鮮鋭度を増し、エッジ強調を行うものである。網掛処理回路70は、画50 像濃度信号から網点画像信号を作成するもので、この網

నె.

点画像信号は、所要の角度および線数に応じて画像濃度 を面積変調するものである。この網点画像信号は、画像 記録装置等に出力される。

【0034】なお、図示例は網点画像を出力する印刷製 版装置に用いられる画像読取装置であるので、このよう な網点生成部56を有するものであるが、本発明を通常 のブリンタや複写装置に用いる場合には、網点生成部5 6は不要であり、出力画像に応じた処理部を有する。

【0035】CPU60は、ROM62に記憶されてい る制御シーケンスに従って、上述の補正処理回路部5 0、倍率変換回路52、変換処理回路54、網点生成部 54の平滑化処理回路66、鮮鋭化処理回路68、網掛 処理回路 7 0 などの各回路の制御、および予めRAM 6 4にメモリされている各種データおよびユーザが入力し たデータ、例えば主走査方向の有効画像領域データや画 像処理に必要な種々の制御、さらにブレスキャンにおい てラインメモリ58から主走査方向1ラインの画像デー **タを読み出して、本走査範囲の検出や自動濃度測定やそ** の他必要な画像処理データの測定などを行うものであ る。また、CPU60は、往路でのブレスキャンにおけ る読取装置本体12の走査子である光源ユニット31お よびミラーユニット35の移動の制御や、復路における 光源ユニット31およびミラーユニット35の移動パタ ーンならびに画像記録装置16の画像露光部46での感 光材料下への露光速度と露光倍率に応じて設定される原 稿画像の読取速度、すなわち前記露光速度と同期した本 走査速度を含む復路における走査子(光源ユニット3 1)の速度パターンの設定と制御をも行うものである。 また、CPU60は、印刷製版装置10の全体の作動を 制御するものであってもよい。RAM64は、メインメ モリであって、種々のCPU60が行う制御に必要なデ ータなどを格納するメモリである。

【0036】一方、透過原稿ユニット16は、このような読取装置本体12上で原稿台22を覆うようにして所定の位置に位置決めされて載置され、図示しない手段で読取装置本体12と接続される。このような透過原稿ユニット16は、ハウジング100と、このハウジング100内に配置される、透過原稿読取光源(以下、透過光源とする)102と、透過光源102の駆動手段104とから構成される。

【0037】透過光源102は、読取走査子である光源ユニット31と同方向に延在する棒状ハロゲンランプ、 蛍光灯等の棒状光源106と、棒状光源106から射出される読取光を副走査方向の幅を規定して所定幅のスリット光とするスリット108を有する、ケーシング110とより構成される。なお、棒状光源106は図示例の1本には限定はされない。透過光源102の駆動手段104は、透過光源102を固定するタイミングベルト112と、このタイミングベルト112を張架するブーリ114および116と、図示しない減速手段を介してブ ーリ116に係合するパルスモータ(ステップモータ) 等の透過読取駆動源118とより構成される。

【0038】このような透過原稿ユニット16は、棒状 光源106を点灯して、駆動手段104によって透過光 源102を矢印aあるいはb方向に移動することによっ て、透過光源102(棒状光源106)からの読取光に よって透過原稿Gを2次元的に走査する。

【0039】画像読取装置10には、透過原稿Gの読み取りに際して透過原稿ユニット16の透過光源102 2、読取装置本体12の光源ユニット31との走査速度の同期、および走査開始位置の位置合わせを行い、両者の相対的な位置を光軸が合った一定状態に保ち、所定の光量での透過原稿Gの読み取りを可能とするための、透過原稿ユニット16の透過読取駆動源118、および光源ユニット31の駆動源である駆動モータ92の位置および動作を制御する透過読取制御装置80を有する。この透過読取制御装置80の作用については後に詳述す

【0040】このような画像読取装置10によって透過 20 原稿Gを読み取る際には、透過原稿Gが原稿台22の上 の所定の位置に載置され、ついで、透過原稿ユニット1 6が読取装置本体12上の所定の位置に配置される。露 光スタートの信号が入力されると、透過原稿ユニット1 6の棒状光源106が点灯する。この透過原稿Gの読み 取りの際には光源ユニット31に配置される蛍光灯2 6,26は点灯しない。棒状光源106が点灯すると、 透過読取駆動源118が回転を開始して透過光源102 が矢印a方向に移動を開始して透過原稿Gを上面より照 射する。これと同期して図2に示すモータ92が回転を 30 開始し、光源ユニット31およびミラーユニット35が 所定のプレスキャン速度およびその1/2の速度で矢印 aで示される方向に移動を開始し、透過光源102と光 源ユニット31とは、副走査方向の位置を一致させた同 期した状態で移動して、原稿画像のブレスキャンが開始 される。

【0041】透過光源102より射出されて透過原稿Gを透過して、光源ユニット31のスリット28を通過したスリット状の光は、光源ユニット31の第1ミラー30によって所定の方向に反射され、次いで、光源ユニット31と同方向に1/2の速度で移動するミラーユニット35の第2ミラー32および第3ミラー34によって所定の方向に反射されて光路Lを進行する。光路Lを進行してきた主走査方向に延在するスリット状の光は、結像レンズ36によってCCD38上に結像し、CCDセンサ38は主走査方向のスリット光を光電変換して1ライン分のアナログ画像データ信号Saを画像処理装置1

【0042】画像処置装置14においては、アナログ画 像データ信号SaはA/D変換器42によってA/D変 類され、デジタル画像データ信号Sとして画像処理部4 4に送られる。画像処理部44では、この画像データ信号Sは補正処理回路部50で種々の補正が施され、倍率変換回路52において所定の間引き率に従って間引きされた後、所定データ量の主走査方向1ラインの画像データがラインメモリ58にメモリされる。この後CPU60は、ラインメモリ58にメモリされた画像データを用いて、種々の画像処理、例えば、画像濃度、後述する原稿の端部の検出などの本スキャン時に必要となるあらゆるデータの算出、処理を行う。

【0043】このようなブレスキャンが終了すると、次いで透過原稿Gの原稿画像を読み取るための本スキャンが開始される。本スキャンにおいては、上述したブレスキャン時と同様にして読取装置本体12によって主走査1ライン分の画像データが読み取られ、画像処理装置14によって画像処理され、ラインメモリ58にメモリされた後、再び読み出されて変換処理回路54によって階調変換などを施され、網点生成回路56によって網掛処理が施され、2値化網点画像信号Rとして画像記録装置等に出力される。

【0044】なお、透過原稿Gではなく写真、印刷物等の反射原稿を読み取る場合には、透過原稿ユニット16を取り外し、通常の画像読取装置と同様に、原稿台22上の所定の位置に原稿を載置して、図示しない原稿押さえで反射原稿を固定した後に、光源ユニット31の蛍光灯26,26を点灯して反射原稿を下面より照射し、反射原稿に反射された反射光を読み取ることにより反射原稿の原稿画像を読み取る。

【0045】画像読取装置10は、基本的にこのような構成を有するものであるが、透過原稿Gを適正な光量で読み取るためには、透過原稿読取走査時に透過光源102と光源ユニット31の光軸が一致した状態として、両者の相対位置をこの状態に保ったままで透過原稿Gの走査読取を行う必要がある。すなわち、図示例においては、透過光源102のスリット108と、光源ユニット31(ケーシング29)のスリット28との位置が副走査方向で一致した状態とし、透過光源102から射出されて透過原稿Gを透過したスリット光が、ケーシング29にカットされずにスリット28を通過できるよう、両者の相対位置をこの状態に保ったままで透過原稿Gの走査読取を行う必要がある。

【0046】ところが、従来の画像読取装置では、前述のように光源ユニット31の駆動源である駆動モータ92、透過光源102の駆動源である透過読取駆動源118等の個体差や、透過原稿ユニット16の若脱等の衝撃によってホームボジションが狂ってしまう等によって、透過光源102と光源ユニット31の相対位置が変化してしまい、適正光量での透過原稿読取ができない場合が多い。これに対し、本発明にかかる画像読取装置10は、以下に示す方法(透過読取制御装置80の作用)で透過光源102と光源ユニット31の走査速度の同期、

および走査開始位置合わせを行うことができ、両者の相 対位置を光軸を一致させた一定位置に保った状態で、適 正な読取光量での高画質な透過原稿読取を実施すること が実施することが可能である。

【0047】以下、図5等を参照して、透過光源102

と光源ユニット31の速度の同期(本発明の第1の態様)について説明する。図示例の画像読取装置10において、読取装置本体12上の所定の位置に透過原稿ユニット16が配置され、速度同期の指令が入力されると、透過読取制御装置80は透過読取駆動源118を駆動して、透過光源102を任意に定められた副走査方向の所定の位置x1に移動する。次いで、透過読取制御装置80は、図6に示されるように、光源ユニット31(図6においてはケーシング29のみを示す)によって位置x1の近傍を走査することにより、読取装置本体12の読取光学系によって透過光源102からの読取光の光量を測定し、図7に示されるような、位置x1の近傍における副走査方向の光量分布図を作製する。

【0048】より具体的には、この走査によって読み取られた読取光は、CCD38によって光電変換され、画像処理装置14によって処理される。ここでラインメモリ58に主走査1ライン分の光量データ(濃度データ)がメモリされた後、図3に示すCPU60は、ラインメモリ58から1ライン分の光量データを読み出し、予め設定された原稿台主走査方向有効範囲の画像データを平均して当該ラインの光量平均値を算出する。次いで、CPU60は、RAM64などのラインメモリに当該ラインの対応副走査位置と光量平均値Daとを記憶して、副走査方向の濃度平均値分布図にブロットする。この後、

30 同様にして次の1ラインの画像データをラインメモリ58に取り込み、CPU60は同様にして上述の濃度平均値分布図を完成してゆく。上述したルーチンを原稿台22下の光源ユニット31の位置x₁近傍走査の開始位置から終了位置まで繰り返して、CPU60は光量分布図を図7に示されるように完成する。

【0049】この光量分布図は、CPU60から透過読取制御装置80に転送される。透過読取制御装置80は、光量分布図より透過光源102の位置x1に対する光源ユニット31の同期位置を決定する。同期位置の決定方法としては、例えば、図7に示されるように各一定の閾値を定めておき、この閾値を超えた領域の副走査方向中央を同期位置とする方法や、光量分布図のピーク点を同期位置とする方法等が例示される。

【0050】次いで、このような同期位置の決定を任意の別の点x9において行う。

【0051】上記測定において、光源ユニット31の駆動モータ92および透過光源102の透過読取駆動源1 18が共にパルスモータ(エンコーダを有するもの)であれば、透過光源102のホームポジション(TRh

(0 p) から位置 $\mathbf{x_1}$ までの移動量はバルス \mathbf{P} $\mathbf{t_1}$ で与えら

れ、同様に x_2 までの移動量は Pt_2 で与えられる。他方、光源ユニット31のホームポジション(RFhp)から x_1 (同期位置)までの移動量はパルス Pr_1 で与えられる。【0052】パルスモータを用いた駆動系は、その系に特有のパルスー距離変換係数(1パルスあたりの移動距離)を有し、透過光源102や光源ユニット31の走査速度変化は、主に、このパルスー距離変換係数が変化することによって発生する。透過読取駆動源118のパルスー距離変換係数をKt、同駆動モータ92のパルスー距離変換係数Krとすると、透過光源102の移動距離はKt・Ptで、光源ユニット31の移動距離はKt・Ptで、光源ユニット31の移動距離はKr・Prで、それぞれ与えられる。

【0053】位置 x₁ および x₂ における透過光源 10

【0055】バルスモータを用いた系における透過光源 102や光源ユニット31の移動速度は、バルスモータ (透過読取駆動源118、駆動モータ92)の周波数と バルスー距離変換係数とによって決定される。従って、透過読取制御装置80は、得られたバルスー距離変換係数より、両者の走査速度が同じになるよう、透過読取駆動源118あるいは駆動モータ92の駆動の周波数を調整する。これにより、透過原稿Gの読取走査における透過光源102および光源ユニット31の速度同期をとることができる。

【0056】このような透過光源102および光源ユニット31の速度同期は、一回調整すれば容易に狂うことはない。従って、この調整は読取装置の設置時、故障による修理後、設置位置の大幅な移動等を行った際に行えばよく、透過原稿Gの読み取り毎に行う必要はない。そのため、調整は高精度で行うのが好ましく、光量分布図を作製する際の光源ユニット31(あるいは透過光源102)の走査速度を、可能な範囲で低速にするのが好ましい。

【0057】このようにして透過原稿読取光源である透過光源102と、走査子である光源ユニット31との速度の同期を正確に取ったとしても、透過原稿Gの読み取り開始時点で両者の相対位置を光軸を一致した所定の位置としなければ、所定光量による高精度な透過原稿読取を行うことはできない。本発明の第2の態様は、この読取走査の開始位置における透過光源102と光源ユニット31の位置を所定の相対位置にする(以下、原点合わせとする)ものである。以下、図8を参照して詳細に説明する。

【0058】透過原稿ユニット16が読取装置本体12上の所定の位置に載置され、原点合わせの信号が入力されると、透過読取制御装置80は透過読取駆動源118を駆動して、透過光源102を任意に定められた副走査方向の所定の位置x3に移動する。次いで、透過読取制御装置80は、光源ユニット31(図8においてはケー

2の移動距離の差は、透過光源102のホームポジションと光源ユニット31のホームポジションとの間隔Hofsであり、下記式で得られる。

 $Kr \cdot Pr_1 - Kt \cdot Pt_1 = Hofs [mm]$ $Kr \cdot Pr_2 - Kt \cdot Pt_2 = Hofs [mm]$

【0054】ここで、上記式におけるHofs は等しいはずであるので、速度センサ、位置センサ等を用いて、透過光源102あるいは光源ユニット31のいずれか一方の正確な速度、移動距離、バルス-距離変換係数が解れば、他方のバルス-距離変換係数を算出することができる。例えば、光源ユニット31のバルス-距離変換係数Krが正確に解っていれば、透過光源102のバルスー距離変換係数Ktは下記式で得られる。

$Kt = [(Pr_2 - Pr_1) / (Pt_2 - Pt_1)] \cdot Kr$

シング29のみを示す)を x_3 近傍の x_4 に移動して停止し、先の方法と同様にして x_3 近傍を走査することにより、位置 x_3 近傍における副走査方向の光量分布図を作製し、透過光源102と光源ユニット31との同期位 置を決定する。

【0059】ここで、透過光源102のホームポジション(TRhp)から x_3 までの距離をXt、光源ユニット31のホームポジション(RFhp)から x_4 までの距離をXt、 x_4 から光源ユニット31の同期位置までの距離をLcとすると、両者のホームポジションの正確な間隔Hofs は、下記式によってもとめることができる。

Hofs = (Xr + Lc) - Xt

【0060】従って、透過原稿読取開始時に、このHof s を加味して原点合わせを行うことにより、読取走査開始位置における両者の位置を光軸のあった所定の位置に正確合わせることができ、透過読取制御装置80は透過原稿の読み取りに際し、得られたHofs に応じて透過読取駆動源118および駆動モータ92を駆動して透過光源102と光源ユニット31の原点合わせを行った後、プレスキャンあるいは読取走査を行う。

【0061】Xr、Xt等の距離は、前述の速度同期で バルス-距離変換係数が解っていれば容易に算出でき、 また位置センサや速度センサ等を用いて計測してもよ

40 い。また以上の例では光源ユニット31を一旦位置 x4 に停止した後、xg 近傍の走査を行ったが、本発明はこれには限定されず、光源ユニット31をホームポジションから連続的に移動してxg 近傍の走査を行っても良い。

【0062】透過光源102と光源ユニット31とのホームポジションの間隔は、透過原稿ユニット16の若脱や、透過原稿ユニット16の若体の開閉等によって比較的容易に変化してしまう。従って、このような原点合わせは、透過原稿の読取走査毎、あるいは透過原稿ユニット16の配備ごとに行うのが好ましい。

【0063】以上説明した光源ユニットと読取光源との速度の同期、および走査開始位置合わせ(原点合わせ)においては、透過原稿102を任意の位置に停止した状態で、光源ユニットを走査して光量分布を測定したが、本発明はこの逆、つまり光源ユニットを固定した状態で読取光源102を走査して光量分布図を作製しても良い。

【0064】以上、本発明の画像読取方法および画像読取装置について詳細に説明したが、本発明は上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。

[0065]

【発明の効果】以上詳細に説明したように、本発明の画像読取方法および画像読取装置によれば、透過原稿読み取り用の透過原稿読取光源と、読取装置本体の読取走査子との走査速度を正確に同速度とし、また、透過原稿読取開始位置における両者の位置合わせを正確に行って、透過原稿読取における透過原稿読取光源と読取走査子との光軸を好適に一致させて、両者の相対位置を所定の位置に保った状態での透過原稿読み取りを行うことができるので、適正な光量による高画質な透過原稿の読み取りを行うことができる。

【図面の簡単な説明】

【図1】 本発明に係る画像読取方法を実施する印刷製版装置用の画像読取装置の一実施例の模式図である。

【図2】 図1に示す画像読取装置の画像読取装置の一 実施例の模式的上面図である。

【図3】 図1に示す画像読取装置の画像処理部の一実施例のブロック図である。

【図4】 図3に示す画像処理装置の網点生成部の一実施例のブロック図である。

【図5】 本発明の画像読取方法の第1の態様の作用を 説明するための概念図である。 【図 6】 本発明の画像読取方法における光量分布図作製のための操作の一例を示す模式図である。

【図 7】 本発明の画像読取方法における光量分布図の 一例を示すグラフである。

【図8】 本発明の画像読取方法の第2の態様の作用を 説明するための概念図である。

12 読取注署水体

【符号の説明】

10 画像禁取注册

	TO	四 体沉 权 表 直	12	沉似被直本体
	14	画像処理装置	16	透過原稿ユニット
10	22	原稿台	24	原稿台カバー
	26	蛍光灯	28,	108 スリット
	ЭΟ,	32,34 ミラー	31	光源ユニット(走査
	子)			
	35	ミラーユニット	36	結像レンズ
	38	CCD	44	画像処理部
	50	補正処理部	5 2	倍率変換回路
	5 4	変換処理回路	56	網点生成部
	58	ラインメモリ	60	CPU
	62	ROM	6 4	RAM
20	66	平滑化処理回路	68	鮮映化処理回路
	70	網掛処理回路	80	透過読取制御装置
*12	90	駆動装置	92	モータ
	93	減速手段	94	ワイヤ駆動ブーリ
	95	a, 95b ワイヤ	9 6 a	a, 96b 可動プー
	IJ			

97, 97a, 97b アイドラ

98a, 98b 固定端 99a, 99b ワイヤ固 定端

100 ハウジング102 透過原稿読取光源30 104 駆動装置106 棒状光源110 ケーシング112 タイミングベルト114,116 ブーリ118 透過読取駆動源a ブレスキャン方向b 本スキャン方向

G 原稿 F 感光材料

[图 4]

56 平滑化処理 - 鮮貌化処理 - 網掛処理 R 68 70 [図6]

[図1]

[図2]

[图8]

[図3]

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第3区分 【発行日】平成10年(1998)10月9日

【公開番号】特開平6-46212 【公開日】平成6年(1994)2月18日 【年通号数】公開特許公報6-463 【出願番号】特願平4-195385

【国際特許分類第6版】

H04N 1/04 105 G03B 27/50 27/72 H04N 1/00

[FI]

H04N 1/04 105 G03B 27/50 27/72 H04N 1/00

【手続補正書】

【提出日】平成9年3月10日 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】0046 【補正方法】変更 【補正内容】

【0046】ところが、従来の画像読取装置では、前述 のように光源ユニット31の駆動源である駆動モータ9 2、透過光源102の駆動源である透過読取駆動源11 8等の個体差や、透過原稿ユニット16の着脱等の衝撃

によってホームポジションが狂ってしまう等によって、 透過光源102と光源ユニット31の相対位置が変化し てしまい、適正光量での透過原稿読取ができない場合が 多い。これに対し、本発明にかかる画像読取装置10 は、以下に示す方法(透過読取制御装置80の作用)で 透過光源102と光源ユニット31の走査速度の同期、 および走査開始位置合わせを行うことができ、両者の相 対位置を光軸を一致させた一定位置に保った状態で、適 正な読取光量での高画質な透過原稿読取を実施すること 30 が可能である。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.