# Statistical Inference project Part 2

#### Overview

This report is for second part of the course project of the Coursera course "Statistical Inference" which is a part of specialization "Data Science". In this second part, we perform basic inferential analyses using the ToothGrowth data in the R datasets package.

### 1. Load the ToothGrowth data and perform some basic exploratory data analyses

```
#load the dataset
library(datasets)
data (ToothGrowth)
# check the dataset details
str(ToothGrowth)
## 'data.frame':
                  60 obs. of 3 variables:
   $ len: num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
# number of rows of dataset
nrow(ToothGrowth)
## [1] 60
# convert variable dose from numeric to factor
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
# look at the dataset variables after conversion
str(ToothGrowth)
                  60 obs. of 3 variables:
## 'data.frame':
   $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: Factor w/ 3 levels "0.5", "1", "2": 1 1 1 1 1 1 1 1 1 1 ...
```

#### 3. Provide a basic summary of the data

```
# summary statistics for all variables
summary(ToothGrowth)
##
        len
                   supp
                            dose
## Min. : 4.20
                   OJ:30
                           0.5:20
                   VC:30
## 1st Qu.:13.07
                           1 :20
## Median :19.25
                           2 :20
## Mean
         :18.81
## 3rd Qu.:25.27
## Max. :33.90
```

```
#cases per different doses and delivery methods
table(ToothGrowth$dose, ToothGrowth$supp)
```

# $\#loading\ ggplot2$

library(ggplot2)

ggplot(aes(x=dose, y=len), data=ToothGrowth) + geom\_boxplot(aes(fill=dose))



# visualization of tooth growth as function of supplement type
ggplot(aes(x=supp, y=len), data=ToothGrowth) + geom\_boxplot(aes(fill=supp))



# 3. Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.

```
t.test(len ~ supp, data = ToothGrowth)

##

## Welch Two Sample t-test

##

## data: len by supp

## t = 1.9153, df = 55.309, p-value = 0.06063

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.1710156 7.5710156

## sample estimates:

## mean in group OJ mean in group VC

## 20.66333 16.96333
```

The confidence interval contains zero which indicates that we can not reject the null hypothesis which states that the different supplement types have no effect on tooth length

```
# first create three sub-groups as per dose level pairs

ToothGrowth.doses_0.5_1.0 <- subset (ToothGrowth, dose %in% c(0.5, 1.0))

ToothGrowth.doses_0.5_2.0 <- subset (ToothGrowth, dose %in% c(0.5, 2.0))

ToothGrowth.doses_1.0_2.0 <- subset (ToothGrowth, dose %in% c(1.0, 2.0))
```

```
# Check for group differences due to different dose levels (0.5, 1.0)
# assuming unequal variances between the two groups
t.test(len ~ dose, data = ToothGrowth.doses_0.5_1.0)
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5
                       mean in group 1
              10.605
                                19.735
# Check for group differences due to different dose levels (0.5, 2.0)
t.test(len ~ dose, data = ToothGrowth.doses 0.5 2.0)
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean in group 0.5
                       mean in group 2
##
              10.605
                                26.100
# Check for group differences due to different dose levels (1.0, 2.0)
t.test(len ~ dose, data = ToothGrowth.doses_1.0_2.0)
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean in group 1 mean in group 2
##
            19.735
```

For all the 3 subsets, the confidence levels does not contain 0 and mean length increases with increase in dose. We can reject the null hypothesis and put forward that increasing the dose increases in tooth length

## 4. State your conclusions and the assumptions needed for your conclusions.

CONCLUSIONS: 1. supplement type has no impact on tooth growth 2. Dosage impacts tooth length, increase of which increases the tooth length

ASSUMPTIONS: 1. The sample size of guinea pigs is 60, which is used for conclusions 2. For the t-tests, the

variances are assumed to be different for the two groups being compared.