

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol (32 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	KOM III
Popis sady vzdělávacích materiálů:	Konstrukční měření III, 3. ročník.
Sada číslo:	J-05
Pořadové číslo vzdělávacího materiálu:	22
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_52_INOVACE_J-05-22
Název vzdělávacího materiálu:	Statická zkouška v tahu 2
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Statická zkouška v tahu

Diagram tahové zkoušky

Je to závislost prodloužení zkušební tyčinky na zatěžující síle $(\Delta l/F)$ nakreslený trhacím strojem.

Po přepočtení ($\sigma = \frac{F}{S_0}$; $\varepsilon = \frac{\Delta l}{l_0}$) dostaneme diagram závislosti relativního prodloužení na napětí

 $(\varepsilon \, / \, \sigma) \, .$ Z tohoto přepočteného diagramu je odvozeno základní mechanické chování materiálu.

Tento diagram nazýváme smluvní, protože napětí stále počítáme z původního průřezu tyče S_0 a neuvažujeme se zmenšením průřezu vlivem zaškrcování tyče před lomem – takzvané vytváření krčku.

Na následujícím obrázku je diagram pro měkkou uhlíkovou ocel.

Popis jednotlivých bodů diagramu:

U – mez úměrnosti - $\sigma_{_{II}}$

Do této hodnoty napětí platí, že deformace je úměrná zatěžující síle, diagram je přímkový. Tato přímka je popsaná Hookeůvým zákonem $\sigma = \varepsilon \cdot E$, kde E je modul pružnosti v tahu a udává sklon přímky diagramu. Pro ocel je $E \cong 2,1 \cdot 10^5 MPa$.

E – mez pružnosti (elasticity) - $\sigma_{\scriptscriptstyle E}$

Od této meze se začínají rozvíjet malé plastické, tedy trvalé deformace. Při napětí pod tuto mez jsou deformace pružné, tedy součást se po odlehčení vrátí zpět.

K - mez kluzu - Re

Od této hodnoty napětí se plastické deformace začínají rozvíjet velmi výrazně. U měkkých uhlíkových ocelí zde dochází k určitému zakmitnutí napětí a ke zlomu křivky diagramu. U těchto materiálů říkáme, že mají výraznou mez kluzu (to znamená, že je na křivce diagramu vidět nějaký zlom). Mez kluzu se udává v materiálových normách a počítáme z ní dovolené napětí a bezpečnost.

P – mez pevnosti – Rm

Při této hodnotě napětí se porušují materiály křehké (prasknou). Při dalším zatěžování materiálů houževnatých dojde k zaškrcování tyče, obvykle v místě nějaké drobné materiálové vady. Mez pevnosti se také udává v materiálových normách.

D

V tomto místě se porušují materiály houževnaté.

Legované oceli a jiné kovy obvykle nemají výraznou mez kluzu, často ani přímkovou část diagramu. Proto se zavádí takzvaná smluvní mez kluzu R_{PO2} .

Smluvní mez kluzu R_{PO2} – je to napětí, při kterém trvalá deformace dosáhne hodnoty 0,2%.

Hodnoty určované tahovou zkouškou:

- mez kluzu Re nebo smluvní mez kluzu R_{PO2};
- mez pevnosti Rm;
- tažnost $A = \frac{l l_0}{l_0} \cdot 100\%$;

 $\it l_{\rm 0}\,$ – vzdálenost rysek před zkouškou;

l – vzdálenost rysek po zkoušce;

• kontrakce
$$Z = \frac{S_0 - S}{S_0} \cdot 100\%$$
;

 S_0 – plocha průřezu tyčinky před zkouškou;

S – plocha průřezu tyčinky po zkoušce v místě krčku.

Tažnost a kontrakce je mírou houževnatosti materiálu, čím větší hodnoty, tím je materiál houževnatější. Tedy udává schopnost materiálu se deformovat. Tažnost rozlišujeme A_{10} změřenou na dlouhých tyčinkách a A_{5} na tyčinkách krátkých. Ocel má tažnost 20 - 30%, kontrakci cca 10%.

Závěr: Tahovou zkouškou určujeme Re, (nebo R_{PO2}), Rm, A, Z.

Seznam použité literatury

- MARTINÁK, M.: Kontrola a měření. Praha: SNTL, 1989. ISBN 80-03-00103-X.
- ŠULC, J.: Technologická a strojnická měření. Praha: SNTL, 1982. ISBN 04-214-82.