一、选择题

题号	1	2	3	4	5	6	7	8	9	10
答案	С	D	C	A	В	С	D	A	C	C

二、填空题

题号	答案	题号	答案		
11	qv, 竖直向下	12	0 , $2\pi mg/\omega$, $2\pi mg/\omega$		
13	$-\frac{2m}{m+M}\vec{v}, (2m/M)\vec{v}$	14	1 m/s, 0.5 m/s		
15	<i>mv₀</i> sin <i>θ</i> ,竖直向下	16	0.003 s, 0.6 N·s, 2 g		
17	140 N·s,24 m /s	18	6.14 cm/s, 35.5°		
19	12 rad/s	20	180 kg		

三、计算题

21. 解:如图所示,设在极短的时间 Δt 内落在传送带 B 上煤粉的质量为 m,即 $m=q_m\Delta t$,这些煤粉动量的增量为

$$\Delta(m\vec{v}) = m\vec{v}_2 - m\vec{v}_1$$

由勾股定理计算可得动量增量的大小为:

$$|\Delta(m\vec{v})| = m\sqrt{v_1^2 + v_2^2 - 2v_1v_2\cos 60^\circ} = 6q_m\Delta t \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$$

设传送带 B 作用在煤粉上的力为 \bar{F} ,根据动量定理有

$$\vec{F}\Delta t = \Delta(m\vec{v})$$

于是
$$|\vec{F}| = |\Delta(m\vec{v})|/\Delta t = 6q_m = 5 \text{ N}$$

方向:
$$\frac{\left|\Delta(m\overline{\mathbf{v}})\right|}{\sin 60^{\circ}} = \frac{\left|m\overline{\mathbf{v}}_{2}\right|}{\sin \theta} \qquad \frac{6q_{m}\Delta t}{\sin 60^{\circ}} = \frac{q_{m}\Delta t \cdot 6}{\sin \theta}, \quad \theta = 60^{\circ}$$

由牛顿第三定律,煤粉作用在传送带 B 上的(撞击)力与 \bar{F} 大小相等方向相反,即等于 5 N,偏离竖直方向 15° ,指向前下方.

$$v_0 = \sqrt{2gh}$$

设矿砂与传送带相互作用的Δt 时间内, 落于传送带上的矿

砂质量
$$\Delta m = q_m \Delta t$$

设传送带对矿砂的平均作用力为产,由动量定理可得:

$$\vec{F} \cdot \Delta t = \Delta m \vec{v} - \Delta m \overrightarrow{v_0}$$

建立如图所示的坐标系,写分量式:

$$F_{x} \cdot \Delta t = \Delta m v - 0$$

$$F_{y} \cdot \Delta t = 0 - (-\Delta m v_{0})$$

将 $\Delta m = q_m \Delta t$ 代入上面两个分量式可得:

$$F_{x} = q_{m}v \qquad F_{y} = q_{m}v_{0}$$

由牛顿第三定律可得矿砂对传送带的作用力F'=F=980N,方向与图中 \vec{F} 相反.

