Q11 * Mathematik * Aufgaben zum natürlichen Logarithmus

1. Bestimmen Sie zu den folgenden Funktionen den Definitionsbereich $\,D_{\rm f}\,$ und ermitteln Sie alle Nullstellen.

Berechnen Sie dann die Ableitung f'(x) und geben ermitteln Sie alle Hoch- bzw. Tiefpunkte des Graphen von f.

a)
$$f(x) = \ln(2x+3)$$

b)
$$f(x) = \ln(x^2 - 2x)$$

c)
$$f(x) = \ln(2 + 2x - x^2)$$

d)
$$f(x) = \ln(\frac{2x-3}{x^2+1})$$

e)
$$f(x) = \ln(\frac{2x}{x+1})$$

- 2. Das Bild zeigt den Graphen der Funktion f mit $f(x) = x - (x-1) \cdot \ln(x-1)$.
 - a) Bestimmen Sie den
 Definitionsbereich und berechnen
 Sie die Ableitung f '(x).
 - b) Zeigen Sie, dass G_f nur einen Extrempunkt, nämlich den Hochpunkt(2/2) besitzt.
 - c) Begründen Sie, dass f nur eine Nullstelle x_1 besitzt, und dass $4 < x_1 < 5$ gilt.

3. Das Bild zeigt den Graphen der Funktion f mit

$$f(x) = \ln\left(\frac{x}{x^2 + 4}\right).$$

- a) Bestimmen Sie den
 Definitionsbereich und berechnen
 Sie die Ableitung f '(x).
- b) Zeigen Sie, dass G_f nur einen Extrempunkt, nämlich den Hochpunkt (2/f(2)) besitzt.
- c) Begründen Sie, dass f keine Nullstelle besitzt.

4. Das Bild zeigt den Graphen der Funktion f mit

$$f(x) = \ln(\frac{\ln x}{x}).$$

Bestimmen Sie den Definitionsbereich von f und zeigen Sie, dass der Graph von f genau einen Hochpunkt besitzt. Bestimmen Sie die Koordinaten dieses Hochpunktes.

Q11 * Mathematik * Aufgaben zum natürlichen Logarithmus * Lösungen

- 1. a) $f(x) = \ln(2x+3)$; $D_f =]-1,5$; $\infty[$; NSt.: $f(x) = 0 \Leftrightarrow x_1 = -1$ $f'(x) = \frac{2}{2x + 3}$ und f'(x) > 0 für alle $x \in D_f$, also keine Hoch – bzw. Tiefpunkte
 - b) $f(x) = \ln(x^2 2x)$; $D_f = R \setminus [0; 2]$; NSt.: $f(x) = 0 \Leftrightarrow x_{1/2} = 1 \pm \sqrt{2}$ $f'(x) = \frac{2x-2}{x^2-2x}$ und f'(x) > 0 für $x \in]2; \infty[$ und f'(x) < 0 für $x \in]-\infty; 0[$,

also keine Hoch- bzw. Tiefpunkte

- c) $f(x) = \ln(2 + 2x x^2)$; ; $D_f = 1 \sqrt{3}$; $1 + \sqrt{3}$ [; NSt.: $f(x) = 0 \Leftrightarrow x_{1/2} = 1 \pm \sqrt{2}$ $f'(x) = \frac{2(x-1)}{x^2 - 2x - 2}$ und $f'(x) = 0 \Leftrightarrow x_1 = 1$; $HOP(1; \ln 3) \approx (1; 1, 1)$
- d) $f(x) = \ln(\frac{2x-3}{v^2 + 1})$; $D_f =]1,5$; ∞ [; NSt.: f(x) = 0 hat keine Lösung, also keine NSt.

$$f'(x) = \frac{x^2 + 1}{2x - 3} \cdot \frac{2 \cdot (x^2 + 1) - (2x - 3) \cdot 2x}{(x^2 + 1)^2} = \frac{2 \cdot (-x^2 + 3x + 1)}{(2x - 3) \cdot (x^2 + 1)} \; ; \; f'(x) = 0 \Leftrightarrow \; x_1 = \frac{3 + \sqrt{13}}{2}$$

$$HOP(x_1; f(x_1)) \approx (3, 3; -1, 2)$$

e) $f(x) = \ln(\frac{2x}{x+1})$; $D_f = R \setminus [-1; 0]$; NSt.: $f(x) = 0 \Leftrightarrow x_1 = 1$ $f'(x) = \frac{1}{x \cdot (x+1)}$ und f'(x) > 0 für $x \in]-\infty; -1[$ und f'(x) > 0 für $x \in]0; \infty[$,

also keine Hoch- bzw. Tiefpunkte

Bilder zu den Graphen:

2.
$$f(x) = x - (x-1) \cdot \ln(x-1)$$
.

a)
$$D_f =]1; \infty [$$
 und $f'(x) = -\ln(x-1)$

b)
$$f'(x) = 0 \Leftrightarrow -\ln(x-1) = 0 \Leftrightarrow x_1 = 2$$

 $f'(x) > 0$ für $1 < x < 2$ und
 $f'(x) < 0$ für $2 < x < \infty \Rightarrow HOP(2;2)$

c)
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} [x - (x - 1) \cdot \ln(x - 1)] = 1 - 0 = 1$$

also gibt es keine Nullstelle im Intervall] 1; 2].
f ist streng monoton fallend im Intervall [2; ∞ [

und $f(4) \approx 0.70 > 0$ und $f(5) \approx -0.55$, also gibt es nur eine Nullstelle im Intervall] 4; 5 [.

3.
$$f(x) = \ln(\frac{x}{x^2+4})$$
.

a)
$$D_f =]0; \infty [$$
 und $f'(x) = \frac{4-x^2}{x \cdot (x^2+4)}$

b)
$$f'(x) = 0 \Leftrightarrow 4 - x^2 = 0 \Leftrightarrow x_1 = 2$$

 $f'(x) > 0$ für $x \in]0;2[$ und
 $f'(x) < 0$ für $x \in]2;\infty[$ \Rightarrow
 $HOP(2;f(2)) \approx (2;-1,4)$

4.
$$f(x) = \ln(\frac{\ln x}{x});$$

$$D_f: \frac{\ln x}{x} > 0 \iff x > 1 \text{ also } D_f =]1; \infty[$$

$$f'(x) = \frac{x}{\ln x} \cdot \frac{x \cdot \frac{1}{x} - 1 \cdot \ln x}{x^2} = \frac{1 - \ln x}{x \cdot \ln x}$$

$$f'(x) = 0 \iff 1 - \ln x = 0 \iff x_1 = e \approx 2,718$$

$$f'(x) > 0$$
 für $x \in]1;e[$ und

$$f'(x) < 0$$
 für $x \in]e; \infty[\Rightarrow$

$$HOP(e; f(e)) = (e; -1)$$
, denn $f(e) = ln \frac{ln e}{e} = ln \frac{1}{e} = ln e^{-1} = -1$

