COST FUNCTION

Recall: Simple linear regression

- Linear regression solution was defined as minimizer of $L(\beta) := \|\tilde{\mathbf{y}} \tilde{\mathbf{X}}\beta\|^2$
- We have so far defined ridge regression only directly in terms of the estimator $\hat{\boldsymbol{\beta}}^{\text{ridge}} := (\tilde{\mathbf{X}}^t \tilde{\mathbf{X}} + \lambda \mathbb{I})^{-1} \tilde{\mathbf{X}}^t \mathbf{y}.$
- ► To analyze the method, it is helpful to understand it as an optimization problem.
- ▶ We ask: Which function L' does $\hat{\beta}^{\text{ridge}}$ minimize?

Ridge regression as an optimization problem

$$\hat{\boldsymbol{\beta}}^{\text{ridge}} = \arg\min_{\beta} \{ \|\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{2}^{2} \}$$

REGRESSION WITH PENALTIES

Penalty terms

Recall: $\|\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\beta}\|_2^2 = \sum_i L^{\text{se}}(y_i, f(\tilde{\mathbf{x}}_i; \boldsymbol{\beta}))$, so ridge regression is of the form

$$L'(\boldsymbol{\beta}) = \sum_{i} L^{\text{se}}(y_i, f(\tilde{\mathbf{x}}_i; \boldsymbol{\beta})) + \lambda ||\boldsymbol{\beta}||^2$$

The term $\|\boldsymbol{\beta}\|^2$ is called a **penalty term**.

Penalized fitting

The general structure of the optimization problem is

total cost = goodness-of-fit term + penalty term

Penalty terms make solutions we would like to discourage more expensive.

What kind of solutions does the choice $\|\boldsymbol{\beta}\|^2$ favor or discourage?

QUADRATIC PENALTIES

- ▶ A quadratic penalty implies that the reduction in cost we can achieve depends on the magnitude of β_j .
- Suppose we reduce β_j by a fixed amount $\Delta\beta$.
- Recall that the effect on the regression function is *linear*. The fitting cost (squared error) is quadratic, but in the *error*, not in β.
- ► Consequence: Optimization algorithm will favor vectors β whose entries all have similar size.

SPARSITY

Setting

- ▶ Regression problem with *n* data points $\tilde{\mathbf{x}}_i$ in \mathbb{R}^D .
- ightharpoonup D may be very large (much larger than n).
- ▶ Goal: Select a small subset of $d \ll D$ dimensions and discard the rest.
- ► In machine learning lingo: Feature selection for regression.

How do we switch off a dimension?

- ▶ In linear regression: Each entry of β corresponds to a dimension in data space.
- ▶ If $\beta_k = 0$, the prediction is

$$f(\mathbf{x},\boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \ldots + 0 \cdot x_k + \ldots + \beta_D x_D ,$$

so the prediction does not depend on dimension k.

- Feature selection: Find a solution β that (1) predicts well and (2) has only a small number of non-zero entries.
- ► A solution in which all but a few entries vanish is called a **sparse** solution.

SPARSITY AND PENALTIES

Penalization approach

Find a penalty term which discourages non-sparse solutions.

Can quadratic penalty help?

- ▶ Suppose β_k is large, all other β_i are small but non-zero.
- ▶ Sparsity: Penalty should keep β_k , discard others (i.e. push other β_j to zero)
- Quadratic penalty: Will favor entries β_j which all have similar size
 - \rightarrow pushes β_k towards small value.

Overall, a quadratic penalty favors many small, but non-zero values.

Solution

Sparsity can be achieved using *linear* penalty terms.

LASSO

Sparse regression

$$oldsymbol{eta}^{ ext{lasso}} := \arg\min_{oldsymbol{eta}} \{ \| ilde{\mathbf{y}} - ilde{\mathbf{X}} oldsymbol{eta} \|_2^2 + \lambda \| oldsymbol{eta} \|_1 \}$$

where

$$\|oldsymbol{eta}\|_1 := \sum_{j=1}^D |eta_j|$$

The regression method which determines β^{lasso} is also called the LASSO (for "Least Absolute Shrinkage and Selection Operator").

QUADRATIC PENALTIES

Quadratic penalty

Reducing a large value β_j by a fixed amount achieves a large cost reduction.

Linear penalty

Cost reduction does not depend on the magnitude of β_i .

RIDGE REGRESSION VS LASSO

▶ Red: Contours of $\|\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\|_2^2$

▶ Blue: Contours of $\|\boldsymbol{\beta}\|_1$ (left) and $\|\boldsymbol{\beta}\|_2$ (right)

ℓ_p REGRESSION

 ℓ_p -norms

$$\|oldsymbol{eta}\|_p := \Big(\sum_{j=1}^D |eta_j|^p\Big)^{rac{1}{p}} \qquad \qquad ext{for } 0$$

is called the ℓ_p -norm.

ℓ_p -regression

The penalized linear regression problem

$$\boldsymbol{\beta}^{\ell_p} := \arg\min_{\boldsymbol{\beta}} \{ \|\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_p^p \}$$

is also referred to as ℓ_p -regression. We have seen:

- ℓ_1 -regression = LASSO
- \blacktriangleright ℓ_2 -regression = ridge regression

ℓ_p Penalization Terms

p	Behavior of $\ .\ $	p
---	---------------------	---

- $p = \infty$ Norm measures largest absolute entry, $\|\boldsymbol{\beta}\|_{\infty} = \max_{j} \|\beta_{j}\|$ p > 2 Norm focusses on large entries p = 2 Large entries are expensive; encourages similar-size entries. p = 1 Encourages sparsity as for p = 1 (note "pointy" behavior on the axes)
- p < 1 Encourages sparsity as for p = 1 (note "pointy" behavior on the axes), but contour set not convex.
- $p \to 0$ Simply records whether an entry is non-zero, i.e. $\|\boldsymbol{\beta}\|_0 = \sum_j \mathbb{I}\{\beta_j \neq 0\}$

COMPUTING THE SOLUTION

Ridge regression

Recall: Solution can be computed directly as $\hat{\boldsymbol{\beta}}^{\text{ridge}} := (\tilde{\mathbf{X}}^t \tilde{\mathbf{X}} + \lambda \mathbb{I})^{-1} \tilde{\mathbf{X}}^t \mathbf{y}$. There is no similar formula for the ℓ_1 case.

Solution of ℓ_1 problem

By convex optimization.

ℓ_p Regression as an Optimization Problem

Recall: ℓ_p penalty

The optimization problem

$$\boldsymbol{\beta}^{\ell_p} := \arg\min_{\boldsymbol{\beta}} \{ \|\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_p^p \}$$

looks like a Lagrange version of:

$$\min_{\boldsymbol{\beta}} \quad \|\tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\|_{2}^{2}$$
s.t.
$$\|\boldsymbol{\beta}\|_{p}^{p} \leq 0$$

However, $\|\boldsymbol{\beta}\|_p^p \leq 0$ makes no sense, since the only solution is $\boldsymbol{\beta} = (0, \dots, 0)$.

Observation

Constant shifts do not affect minima, so

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|_p^p = \min_{\boldsymbol{\beta}} (\|\boldsymbol{\beta}\|_p^p - t)$$

for any $t \in \mathbb{R}$.

FORMULATION OF CONSTRAINTS

Constrained Version

$$oldsymbol{eta}^{\ell_p} = \arg\min_{oldsymbol{eta}} \|\tilde{\mathbf{y}} - \tilde{\mathbf{X}}oldsymbol{eta}\|_2^2$$
s.t. $\|oldsymbol{eta}\|_p^p \le t$

Choosing the constraint as $\|\boldsymbol{\beta}\|_1^1 \le t$ gives the Lasso, $\|\boldsymbol{\beta}\|_2^2 \le t$ is ridge regression.

Feasible sets

The boundary ∂G of the feasible set is the contour set $\|\boldsymbol{\beta}\|_p^p = t$.

Recall: *G* is convex only if $p \ge 1$.

SUMMARY: REGRESSION

Methods we have discussed

- ► Linear regression with least squares
- ▶ Ridge regression, Lasso, and other ℓ_p penalties

Note: All of these are linear. The solutions are hyperplanes. The different methods differ only in how they *place* the hyperplane.

Ridge regression

Suppose we obtain two training samples \mathcal{X}_1 and \mathcal{X}_2 from the same distribution.

- ▶ Ideally, the linear regression solutions on both should be (nearly) identical.
- Note With standard linear regression, the problem may not be solvable (if $\tilde{\mathbf{X}}^t\tilde{\mathbf{X}}$ not invertible).
- Even if it is solvable, if the matrices $\tilde{\mathbf{X}}^t \tilde{\mathbf{X}}$ are close to singular (small spectral condition $c(\tilde{\mathbf{X}}^t \tilde{\mathbf{X}})$), then the two solutions can differ significantly.
- ► Ridge regression stabilizes the inversion of $\tilde{\mathbf{X}}^t\tilde{\mathbf{X}}$. Consequences:
 - ▶ Regression solutions for \mathcal{X}_1 and \mathcal{X}_2 will be almost identical if λ sufficiently large.
 - The price we pay is a bias that grows with λ .

SUMMARY: REGRESSION

Lasso

- ▶ The ℓ_1 -costraint "switches off" dimensions; only some of the entries of the solution β^{lasso} are non-zero (sparse β^{lasso}).
- ▶ This variable selection also stabilizes $\tilde{\mathbf{X}}^t\tilde{\mathbf{X}}$, since we are effectively inverting only along those dimensions which provide sufficient information.
- ▶ No closed-form solution; use numerical optimization.

Formulation as optimization problem

Method	$f(oldsymbol{eta})$	$g(oldsymbol{eta})$	Solution method
Least squares Ridge regression Lasso	$\ \tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\ _2^2 $ $\ \tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\ _2^2$ $\ \tilde{\mathbf{y}} - \tilde{\mathbf{X}}\boldsymbol{\beta}\ _2^2$		Analytic solution exists if $\tilde{\mathbf{X}}^t \tilde{\mathbf{X}}$ invertible Analytic solution exists Numerical optimization

Model Bias and Variance

OVERVIEW

- ▶ We have already encountered the fact that we can trade off model flexibility against stability of estimates (e.g. shrinkage).
- ► To make this effect a bit more precise, we have to discuss the type of errors that we encounter in estimation problems.
- ► In this context, it is useful to interpret models as sets of probability distributions.

SPACE OF PROBABILITY DISTRIBUTIONS

The space of probability measure

We denote the set of probability distributions on X by M(X).

 $\delta_{\{c\}}$

Example: $\mathbf{X} = \{a, b, c\}$

• We write $\delta_{\{a\}}$ for the distribution with

$$\Pr\{X=a\}=1\;,$$

similarly for b and c.

• Every distribution $P \in \mathbf{M}(\mathbf{X})$ is of the form

$$P = c_a \delta_{\{a\}} + c_b \delta_{\{b\}} + c_c \delta_{\{c\}}$$

with $c_1 + c_2 + c_3 = 1$.

$$P = 0.6 \cdot \delta_{\{a\}} + 0.1 \cdot \delta_{\{b\}} + 0.3 \cdot \delta_{\{c\}}$$

POINT MASSES

Dirac distributions

A **Dirac distribution** δ_x is a probability distribution which concentrates all its mass at a single point x. A Dirac δ_x is also called a **point mass**.

Note: This means that there is no uncertainty in a random variable X with distribution δ_x : We know before we even sample that X = x with probability 1.

Working with a Dirac

The defining property of a Dirac is that

$$\int_{\mathbf{X}} f(x)\delta_{x_0}(dx) = f(x_0)$$

for every (integrable) function f.

VISUALIZATION OF $\mathbf{M}(\mathbf{X})$

M(**X**) for an infinite set **X**

- ▶ If **X** is infinite (e.g. $\mathbf{X} = \mathbb{R}^d$), the distributions $\delta_{\{a\}}$, $\delta_{\{b\}}$, $\delta_{\{c\}}$ above are replaced by Diracs $\delta_{\mathbf{x}}$ (one for each $\mathbf{x} \in \mathbf{X}$).
- ▶ The distributions δ_x still have the property that they cannot be represented as convex combinations.
- ▶ Hence: Each $\delta_{\mathbf{x}}$ is an extreme point of $\mathbf{M}(\mathbf{X})$.
- \blacktriangleright We need one additional dimension for each point $\mathbf{x} \in \mathbf{X}$.
- ▶ Roughly speaking, M(X) is the infinite-dimensional analogue of a triangle or tetraeder, with its extreme points labelled by the points in X.

Visualization

In the following, we will still visualize M(X) as a triangle, but keep in mind that *this is a cartoon*.

THE EMPIRICAL DISTRIBUTION

The empirical distribution

If $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ is a sample, its empirical distribution is

$$\mathbb{F}_n := \sum_{i=1}^n \frac{1}{n} \delta_{\mathbf{x}_i} .$$

The sample as a distribution

Using \mathbb{F}_n , we can regard the sample as an element of the space $\mathbf{M}(\mathbf{X})$.

For i.i.d. samples, the law of large numbers says that \mathbb{F}_n converges to the true distribution as $n \to \infty$.

