Truong, Steven

Solution We wish to show that given $a, b \in \mathbb{Z}[i]$ with $b \neq 0$, there exist $q, r \in \mathbb{Z}[i]$ so that a = bq + r and N(r) < N(b). Let $a, b \in \mathbb{Z}[i]$ with $b \neq 0$.

If a = qb for some $q \in \mathbb{Z}[i]$, then a = bq + 0, and since $N(b) \neq 0$, we have 0 = N(r) < N(b). Assume from now on that $b \nmid a$ so that $N(r) \neq 0$.

Consider the following set:

$$S = \{ N(n) \in \mathbb{Z}^+ \mid \exists q \in \mathbb{Z}[i] \text{ s.t. } n = a - bq \}.$$

This set is non-empty, indeed, given a, we can take q = 0 so that n = a, which means that $N(a) \in S$.

By well-ordering, S has a minimal element N(r) for some $r \in \mathbb{Z}[i]$. By definition, we can write a = bq + r for some $q \in \mathbb{Z}[i]$.

We claim that N(r) < N(b).

Consider q' = a/b, which is not a Gaussian integer because $b \nmid a$. If we write $q' = \alpha + i\beta$, then we round α and β to the closest integers α' and β' , respectively. Then

$$N\left(\frac{a}{b} - c\right) = (\alpha - \alpha')^2 + (\beta - \beta')^2 \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2} < 1.$$

Thus,

$$a = bc + s \implies s = a - bc \in S$$
.

Since r was the least element of S,

$$N(r) \le N(s) = N(bc - a) \le N(b)N\left(c - \frac{a}{b}\right) < N(b),$$

as desired.

2 Show that a gcd d of a, b exists and is a linear combination of a, b. *Hint*: Look for the $\mathbb{Z}[i]$ linear combination of a, b of the smallest norm.

Solution If a or b are 0, then there's nothing to prove, so assume that they are both non-zero from now on.

Consider the set $S = (N(na + mb) \in \mathbb{Z}^+ \mid n, m \in \mathbb{Z}[i] \text{ and } N(na + mb) > 0)$, which is clearly non-empty since a and b are non-empty.

By well-ordering, it contains a minimal element N(na+mb) for some $n, m \in \mathbb{Z}[i]$. We'll call this element d and show that it is a gcd of a and b.

Assume that $d \nmid b$. Then b = qd + r, for some $q \in \mathbb{Z}[i]$ and 0 < N(r) < N(d). Then

$$b = a(na + mb) + r \implies r = (1 - qm)b - qna \implies N(r) \in S.$$

Since N(d) was the minimal element, we have

$$N(r) \ge N(d)$$
,

which is a contradiction. Hence, r = 0 and $d \mid a$. By the same argument, $d \mid b$ also.

All that's left is to show that if we have $e \in \mathbb{Z}[i]$ with $e \mid a$ and $e \mid b$, then $e \mid d$.

$$e \mid a \implies a = \alpha e, e \mid b \implies b = \beta e,$$
 for some $\alpha, \beta \in \mathbb{Z}[i]$. Then

$$d = ma + nb = m\alpha e + n\beta e = (m\alpha + n\beta)e$$
,

so $e \mid d$.

3** Show that if d is irreducible and $d \mid ab$, then $d \mid a$ or $d \mid b$.

Solution We first prove a lemma: If e is a gcd of a, b with N(e) = 1, then 1, -1, i, and - i are also gcd's of a and b.

Note that if e = a + ib, then $N(e) = a^2 + b^2 = 1 \implies a^2 = 1$ and $b^2 = 0$, or $a^2 = 0$ and $b^2 = 1$. It is easy to see that this implies that a = 1, -1 or b = 1, -i. Altogether, we get that $e \in \{1, -1, i, -i\} \subseteq \mathbb{Z}[i]$.

Thus, since N(e) = 1, $e \in \{1, -1, i, -i\}$. We can rotate between all the different units by multiplying by powers of i. Hence, since e is a gcd of a and b, there exist $n, m \in \mathbb{Z}[i]$ such that

$$e = na + mb \implies ei^k = i^k na + i^k mb$$

for any $k \in \mathbb{Z}^+$.

Moreover, $i^k e \mid e$ since we can multiply by i's until we get e again. Thus, the lemma is proved.

Since $d \mid ab$, there exists $k \in \mathbb{Z}[i]$ such that ab = kd.

Assume without loss of generality that $d \nmid a$.

Because d is irreducible, e with |e| = 1 is a gcd of d and a. By the lemma, 1 is also a gcd of d and a, so

$$1 = nd + ma \implies b = ndm + mab \implies b = ndm + mkd = (nm + mk)d,$$

so $d \mid b$. In the other case, $d \mid a$, so we're done.

4 Suppose $p \in \mathbb{Z}$ is a prime. Show p is not irreducible in the Gaussian integers if and only if there are $a, b \in \mathbb{Z}$ so the $p = a^2 + b^2$.

Solution " \Longrightarrow "

Since p is not prime, there exist $a, b, \alpha, \beta \in \mathbb{Z}$ such that $p = (a + bi)(\alpha + \beta i)$.

By multiplicity of the norm,

$$p = N(p) = N(a + bi)N(\alpha + \beta i) = (a^2 + b^2)(\alpha^2 + \beta^2).$$

But N(a+bi) and $N(\alpha+\beta i)$ are integers and p is prime, so this implies that exactly one of the factors must be 1. Assume without loss of generality that $N(\alpha+\beta i)=1$. Then

$$p = N(a+bi) = a^2 + b^2.$$

as desired.

We can write p = (a + bi)(a - bi). If p = N(p) were prime, then this implies that either N(a + bi) = 1 or N(a - bi) = 1. Either way, it implies that $p = a^2 + b^2 = 1$, which is a contradiction, since 1 is not prime. Hence, p is not prime.

5** Define a relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$:

$$(a,b) \sim (c,d)$$

if

$$a+d=b+c$$
.

Show \sim is an equivalence relation and identify the equivalence classes with a familiar object.

Solution Let $(a, b), (c, d), (e, f) \in \mathbb{Z}^+ \times \mathbb{Z}^+$.

a+b=b+a, by commutativity of addition on \mathbb{Z}^+ , so $(a,b)\sim(a,b)$, which means reflexivity holds.

Assume $(a,b) \sim (c,d)$. Then $a+d=b+c \implies b+c=a+d$, by symmetry of =, so $(c,d) \sim (a,b)$, which means symmetry holds.

Assume $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. By definition,

$$(a,b) \sim (c,d) \iff a+d=b+c \implies a=b+c-d$$

 $(c,d) \sim (e,f) \iff c+f=d+e$

Then

$$a + f = (b + c - d) + f = b - d + (c + f) = b - d + d + e = b + e \iff (a, b) \sim (e, f),$$

which means transitivity holds.

Thus, \sim defines an equivalence relation.

Consider the map $(a, b) \mapsto a - b$, which we'll call f. We'll first show that f is well-defined.

Let (a,b),(a',b') such that $(a,b)\sim (a',b')$. Then by definition,

$$a+b'=b+a' \iff a-b=a'-b'.$$

Thus,

$$f((a,b)) = a - b$$

$$f((a',b')) = a' - b' = a - b = f((a,b)),$$

so f is well-defined.

Note that this is one-to-one, by definition of the equivalence relation. It is also onto; given $x \in \mathbb{R}$, $(x, 0) \mapsto x$, so this is a bijection. Hence, we can identify the set of equivalence classes with \mathbb{R} .

6 Let $\mathbb{R}[x]$ be the set of real-valued polynomials in one variable. Define an equivalence relation of $\mathbb{R}[x]$ by $P(x) \sim Q(x)$ if $x^2 + 1$ divides P(x) - Q(x). Show \sim is an equivalence relation. If [P(x)] is the equivalence class of P(x), show that the function

$$H([P(x)]) = P(i) \in \mathbb{C}$$

is well-defined, where $i^2 = -1$. Identify the equivalence classes of \sim with a familiar object. You can use the properties of polynomial division, e.g., the division algorithm for polynomials.

Solution Note that by the division algorithm, for any $P(x) \in \mathbb{R}[x]$, there exists $q(x), r(x) \in \mathbb{R}[x]$ such that $P(x) = q(x)(x^2 + 1) + r(x)$.

Let $P(x), Q(x), R(x) \in \mathbb{R}[x]$.

 $P(x) - P(x) = 0 = 0(x^2 + 1) \implies P(x) \sim P(x)$, so reflexivity holds.

Let $P(x) \sim Q(x)$. Then for some $r(x) \in \mathbb{R}[x]$, $P(x) - Q(x) = r(x)(x^2 + 1) \implies Q(x) - P(x) = -r(x)(x^2 + 1)$, so $(x^2 + 1) \mid Q(x) - P(x) \implies Q(x) \sim P(x)$, which means symmetry holds.

Let $P(x) \sim Q(x)$ and $Q(x) \sim R(x)$. By definition, there exists $r(x), s(x) \in \mathbb{R}[x]$ such that

$$P(x) - Q(x) = r(x)(x^{2} + 1)$$
$$Q(x) - R(x) = s(x)(x^{2} + 1).$$

Summing them, we get $P(x) - R(x) = (r(x) + s(x))(x^2 + 1)$, so $(x^2 + 1) \mid P(x) - R(x) \implies P(x)R(x)$, so transitivity holds.

Thus, \sim is an equivalence relation.

We'll now show that H is well-defined.

Let P(x), P'(x) be such that $P(x) \sim P'(x)$. Then

$$H(P(x)) - H(P'(x)) = P(i) - P'(i) = r(i)(i^2 + 1) = 0 \implies H(P(x)) = H(P'(x)),$$

so H is well-defined.

We can identify $R(x)/\sim$ with \mathbb{C} . Indeed, any polynomial in $\mathbb{R}[x]$ belongs to the equivalence class of a linear polynomial a+bx, since higher order terms will disappear. Moreover, if $a\neq a'$ or $b\neq b'$ the equivalence classes [a+bx] and [a'+b'x] are disjoint. Otherwise, $(a-a')+(b-b')x=r(x)(x^2+1)\equiv 0$, since the left-hand side contains no quadratic factors, which implies [a+bx]=[a'+b'x].

We can map the equivalence classes of $\mathbb{R}[x]/\sim$ with a+bi, by replacing x with i. This is obviously a bijection, so we can identify the equivalence classes with \mathbb{C} .

- **4.17.11**** Define $\sigma: \mathbb{Z}^+ \to \mathbb{Z}^+$ by $\sigma(n) = \sum_{d|n} d$, the sum of the (positive) divisors of n. Show
 - a. If m and n are relatively prime (positive) integers, then $\sigma(mn) = \sigma(m)\sigma(n)$.
 - b. If p is a (positive) prime integer and n an integer, then $\sigma(p^n) = (p^{n+1} 1)/(p-1)$.
- **Solution** a. Let m and n be relatively prime integers. Note that if $d_1 \mid m$ and $d_2 \mid n$, then $d_1d_2 \mid mn$. Indeed, we can write $m = d_1a$ and $n = d_2b$ so that $mn = (d_1d_2)ab$.

Consider the map

$$D := \{(d_1, d_2) \mid d_1 \mid m \text{ and } d_2 \mid n\} \mapsto d_1 d_2,$$

which we claim is one-to-one. This implies that the representation of factors of mn as a product of a factor of m and a factor of n is unique.

Since m and n are relatively prime, if $(d_1, d_2) \in D$, then $(d_2, d_1) \notin D$, unless $(d_1, d_2) = (d_2, d_1) \implies d_1 = d_2 = 1$. Moreover, non-trivial factors of d_1 cannot be factors of n, and non-trivial factors of d_2 cannot be factors of m. Thus, if $(e_1e_2, d_2) \in D$, then $(e_1, d_2e_2) \notin D$ (or any other permutations of e_1, e_2, d_2 . Thus, if $d_1d_2 = e_1e_2$, then $d_1 = e_1$ and $d_2 = e_2$.

We next show that any divisor of mn can be written as the product described.

Let $d \mid mn$, and reduce d to its prime factorization so that $d_1d_2 \cdots d_n \mid mn$. In particular, $d_i \mid mn$ for all i, which means that for each d_i , either $d_i \mid m$ or $d_i \mid n$. So, we can separate the d_i so that $d = (d_{i_1} \cdots d_{i_k})(d_{j_1} \cdots d_{j_\ell})$, where the d_i are factors of m and d_j are factors of n.

Hence, all factors of mn are products of factors of m and factors of n, and the product representation is unique.

Finally, this gives us that

$$\sigma(mn) = \sum_{d|mn} d = \sum_{d_1|m,d_2|n} d_1 d_2 = \sum_{d_1|m} \sum_{d_2|n} d_1 d_2 = \sum_{d_1|m} \left[d_1 \left(\sum_{d_2|n} d_2 \right) \right] = \left(\sum_{d_1|m} d_1 \right) \left(\sum_{d_2|m} d_2 \right) = \sigma(m)\sigma(n).$$

b. Let p be prime. Then the unique prime factorization of p^n is itself, so the only divisors of p^n are $1, p, p^2, \ldots, p^n$. No other prime divides p^n , so no other numbers divide p^n . Thus,

$$\sigma(p^n) = \sum_{k=0}^{n} p^k = \frac{1 - p^{n+1}}{1 - p} = \frac{p^{n+1} - 1}{p - 1},$$

by geometric series.