

IIC1253 — Matemáticas Discretas — 1'2019

#### **INTERROGACION 3**

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

#### Pregunta 1

Demuestre que para todo conjunto A (finito o infinito) se tiene que A no es equinumeroso con el conjunto potencia  $2^A$ .

### Pregunta 2

Para esta pregunta considere el siguiente algoritmo A:

```
Require: S = \{a_1, a_2, ..., a_n\}

if |S| es par then

for i \in \{1, 2, ..., |S|\} do

print a_i

end for

else

for i \in \{1, 2, ..., |S|\} do

for j \in \{1, 2, ..., |S|\} do

print a_i, a_j

end for

end for

end for
```

Para el análisis del algoritmo considere el tamaño del input como |S| = n. También considere que cada operación toma tiempo constante. En particular, la función **print** toma tiempo constante en imprimir un objeto  $a_i$  o  $a_i, a_j$ .

- 1. Encuentre una función f para el tiempo  $T_A$  del algoritmo tal que  $T_A \in \Theta(f)$ . Explique su respuesta.
- 2. Demuestre que para todo k se tiene que  $T_A \notin \Theta(n^k)$ .

# Pregunta 3

Dado un alfabeto finito  $\Sigma$ , una palabra infinita w sobre  $\Sigma$  es una secuencia de símbolos:  $w = s_0 s_1 s_2 \dots$  con  $s_i \in \Sigma$  para todo  $i \geq 0$ . Se define el conjunto de todas las palabras infinitas sobre el alfabeto  $\Sigma$  como  $\Sigma^{\omega}$ .

1. Demuestre que para todo alfabeto finito  $\Sigma$  con  $|\Sigma| \geq 2$  se tiene que  $\Sigma^{\omega}$  es equinumeroso con  $\{0,1\}^{\omega}$ .

2. Considere el conjunto  $\Sigma^{\omega\text{-reg}} \subseteq \Sigma^{\omega}$  de todas las secuencias "regulares" en  $\Sigma^{\omega}$  tal que  $s_0 s_1 s_2 \ldots \in \Sigma^{\omega\text{-reg}}$  si, y solo si, existen palabras  $u, v \in \Sigma^*$  (finitas) tal que:

$$s_0 s_1 s_2 \ldots = u \cdot v \cdot v \cdot v \ldots$$

Por ejemplo, la secuencia  $aaaabababab \dots \in \Sigma^{\omega\text{-reg}}$  dado que considerando u = aaa y v = ab se tiene que  $aaaabababab \dots = aaa \cdot ab \cdot ab \cdot ab \dots$  Demuestre que el conjunto  $\Sigma^{\omega\text{-reg}}$  es numerable.

## Pregunta 4

Para un conjunto finito  $D = \{a_1, \dots, a_n\} \subseteq \mathbb{N}$  con  $a_1 < \dots < a_n$  se define median(D) como la mediana del conjunto D tal que:

$$\operatorname{median}(D) = \frac{a_{\left\lceil \frac{n+1}{2} \right\rceil} + a_{\left\lfloor \frac{n+1}{2} \right\rfloor}}{2}$$

Esto es, la mediana de D es un valor tal que divide el conjunto D en dos conjuntos de igual tamaño. Por ejemplo, si  $D = \{1,4,8,11,15\}$  entonces median(D) = 8. En cambio, si  $D = \{1,4,8,11,15,20\}$  entonces median $(D) = \frac{8+11}{2} = 9,5$ .

Sea  $I=[a,b]=\{x\in\mathbb{R}\mid a\leq x\leq b\}$  un intervalo en los reales con  $a,b\in\mathbb{N}$ . Demuestre usando inducción fuerte que para todo conjunto finito D, si I contiene más de la mitad de los elementos de D, entonces la mediana de D esta en el intervalo I. Formalmente, demuestre que si  $|I\cap D|>\frac{|D|}{2}$ , entonces median $(D)\in I$ .