

Лекция 11

Жорданова нормальная форма

Содержание лекции:

Этой лекцией мы завершаем знакомство с линейными операторами. Здесь мы обсудим жорданову нормальную форму матрицы, а также покажем какие примущества она имеет для функционального исчисления матриц.

Ключевые слова:

Жорданова нормальная форма матрицы, алгебраическая кратность, полная кратность, спектральная кратность, функция от оператора.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА

11.1 Жорданова нормальная форма

Лемма 11.1. Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ и $\beta(X)$ - базис линейного пространства X, причем

$$\beta(X) = \{\beta(L_1), \beta(L_2), \dots, \beta(L_k)\}\$$

тогда матрица A оператора φ имеет в этом базисе блочно-диагональный вид:

$$A = diag\{A_1, A_2, \dots, A_k\}, \quad A_j = \lambda_j E_j + T_j.$$

Пусть $\beta(X)$ - базис X, тогда $\beta(X)=\left\{ \beta\left(L_{1}\right),\beta\left(L_{2}\right),\ldots,\beta\left(L_{k}\right)\right\}$ и

$$n_i = \dim L_i = \dim \ker (\varphi - \lambda \mathcal{I})^{m_i}.$$

Каждое подпространство L_i является ультраинвариантным, на котором действует компонента φ_i оператора φ , матрица которого как следствие имеет блочно диагональный вид:

$$\varphi \quad \leftrightarrow \quad A = diag\left\{A_1, A_2, \dots, A_k\right\}.$$

Nota bene В случае линейного оператора скалярного типа имеем:

$$\varphi x_i = \lambda_i x_i \Leftrightarrow \varphi_i = \lambda_i \mathcal{I}_i,$$

 $A_j = diag\{\lambda_j, \lambda_j, \dots, \lambda_j\}.$

Nota bene Пусть A_i - матрица компоненты оператора φ_i подпространстве L_i , тогда:

$$A_i = \lambda_i E_i + T_i : L_i \to L_i,$$

$$n_i = \dim L_i = \dim \ker (\varphi - \lambda_i \mathcal{I})^{m_i}.$$

Если в L_i выбран базис Жордана, тогда T_i представляет собой прямую сумму жордановых блоков.

$$T_i = diag\left\{T_{i,1}^{(m)}, T_{i,2}^{(m)}, T_{i,3}^{(m-1)}, T_{i,4}^{(m-1)}, \dots T_{i,k}^{(1)}, \dots T_{i,r_i}^{(1)} = 0\right\},$$

где r_i - число жордановых блоков, а n_i - размер жордановой клетки T_i .

Построенная таким образом форма матрицы линейного оператора называется **Жордановой нормальной формой**.

Nota bene Имеет место

◂

1.
$$\chi_{\varphi}(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{n_i}$$
.

2.
$$\sigma_{\omega} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}.$$

ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА

Характеристический полином компоненты φ_i имеет вид:

$$\chi_{\varphi_i}(\lambda) = \det(A_i - \lambda_i E_i) = \prod_{i=1}^{n_i} (\lambda_i - \lambda) = (\lambda_i - \lambda)^{n_i},$$

$$\chi_{\varphi}(\lambda) = \prod_{i=1}^k \chi_{\varphi_i}(\lambda) = \prod_{i=1}^k (\lambda_i - \lambda)^{n_i}.$$

Отсюда для спектра σ_{φ_i} имеем

$$\chi_{\varphi_i}(\lambda) = 0 \quad \Rightarrow \quad \lambda = \lambda_i, \quad \sigma_{\varphi_i} = \{\lambda_i\}$$

$$\chi_{\varphi}(\lambda) = 0 \quad \Rightarrow \quad \lambda = \lambda_1, \lambda_2, \dots, \lambda_k, \quad \sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}.$$

Пусть λ_i - собственное значение оператора $\varphi: X \to X$, тогда

- 1. m_i кратность корня λ_i в минимальном полиноме $p_{\varphi}(\lambda)$ алгебраическая кратность λ_i (максимальный размер жорданова блока);
- 2. n_i размерность ультраинвариантного подпространства L_i **полная крат- ность** λ_i (кратность корня характеристического полинома $\chi_{\varphi}(\lambda)$);
- 3. r_i размерность подпространства $(A_i \lambda_i E_i)$ спектральная кратность λ_i (число жордановых блоков в A_i).

Лемма 11.2. Алгебраическая и спектральная (геометрическая) кратности не превосходят полной:

$$1 < m_i < n_i, \quad 1 < r_i < m_i.$$

Nota bene Частные случаи:

- 1. $n_i = 1$ \Rightarrow $r_i = m_i = 1$ оператор с простым спектром;
- 2. $r_i = n_i \quad \Leftrightarrow \quad m_i = 1$ оператор скалярного типа;
- $3. \ r_i = 1 \quad \Leftrightarrow \quad m_i = n_i$ жорданов блок.

11.1.1 Функциональное исчисление для оператора общего вила

Пусть $\varphi \in \operatorname{End}_k(X)$ - линейный оператор над пространством X и $f: \mathbb{k} \to \mathbb{k}$ - функция, которая представима в виде степенного ряда:

$$f(x) = \sum_{m=0}^{\infty} c_m x^m.$$

Nota bene Значение $f(\varphi)$ функции f определяется следующим образом

$$f(\varphi) = \sum_{m=0}^{\infty} c_m A^m.$$

ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА

Пусть $\beta(X)$ - произвольный базис линейного пространства X и $\beta_J(X)$ - жорданов базис оператора φ . Если A - матрица оператора φ в базисе $\beta(X)$ и A_J - жорданова нормальная форма оператора матрицы оператора φ , тогда

$$A = TA_{J}T^{-1}, \quad f(A) = T(f(A_{J}))T^{-1} = T\left(\sum_{m=0}^{\infty} c_{m}A_{J}^{m}\right)T^{-1}$$

 $Nota\ bene$ Матрица оператора φ в жордановой нормальной форме имеет блочнодиагональный вид и значит:

$$A_J = diag\{A_1, A_2, \dots, A_k\}, \quad A_J^m = diag\{A_1^m, A_2^m, \dots, A_k^m\}.$$

Откуда следует, что достаточно уметь возводить в степень жорданову клетку.

Nota bene Пусть далее

$$A_j = \lambda_j I_j + \tau_j, \quad \tau_j^{m_j} = 0 \quad \Rightarrow \quad (\lambda_j I_j + \tau_j)^m = \sum_{r=1}^m C_m^r \tau_j^r \lambda^{m-r},$$

где C_m^r - биномиальные коэффициенты. С учетом свойств матрицы нильпотентного оператора, будем иметь:

$$diag A_{j} = \left\{ C_{m}^{0} \lambda^{m}, C_{m}^{0} \lambda^{m}, \dots, C_{m}^{0} \lambda^{m} \right\},$$

$$diag_{+1} A_{j} = \left\{ C_{m}^{1} \lambda^{m-1}, C_{m}^{1} \lambda^{m-1}, \dots, C_{m}^{1} \lambda^{m-1} \right\},$$

$$\dots,$$

$$diag_{+r} A_{j} = \left\{ C_{m}^{r} \lambda^{m-r}, C_{m}^{r} \lambda^{m-r}, \dots, C_{m}^{r} \lambda^{m-r} \right\},$$

$$\dots$$

и тогда

$$diag f(A_j) = \{f(\lambda), f(\lambda), \dots, f(\lambda)\},$$

$$diag_{+1}(A_j) = \left\{\frac{1}{1!}f'(\lambda), \frac{1}{1!}f'(\lambda), \dots, \frac{1}{1!}f'(\lambda)\right\},$$

$$\dots,$$

$$diag_{+r}(A_j) = \left\{\frac{1}{r!}f^{(r)}(\lambda), \frac{1}{r!}f^{(r)}(\lambda), \dots, \frac{1}{r!}f^{(r)}(\lambda)\right\},$$

$$\dots$$

Пример 11.1. Пусть $f(x) = \sin(x)$ и

$$A = \left(\begin{array}{cccc} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{array}\right),$$

тогда

$$\sin(A) = \begin{pmatrix} \sin \lambda & \cos \lambda & -\frac{1}{2}\sin \lambda & -\frac{1}{6}\cos \lambda \\ 0 & \sin \lambda & \cos \lambda & -\frac{1}{2}\sin \lambda \\ 0 & 0 & \sin \lambda & \cos \lambda \\ 0 & 0 & 0 & \sin \lambda \end{pmatrix},$$