Задачи к лекции 5

- **1.** Найдите наибольший общий делитель многочленов $f, g \in K[x]$, а также его линейное выражение через f и g в следующих случаях:
 - (a) $K = \mathbb{R}$, $f = x^4 + 2x^3 x^2 4x 2$, $g = x^4 + x^3 x^2 2x 2$;
 - (6) $K = \mathbb{R}, f = 3x^3 2x^2 + x + 2, g = x^2 x + 1;$
 - (B) $K = \mathbb{Z}_5$, $f = x^5 + 2x^4 + x^3 + 4x + 1$, $g = 3x^3 + 2x^2 + x + 3$;
 - (r) $K = \mathbb{Z}_3$, $f = x^4 + x^3 + 2x^2 + 1$, $g = x^3 + 2x^2 + 1$.
- 2. Опишите все неприводимые многочлены над полями $\mathbb C$ и $\mathbb R$.
- **3.** Разложите в произведение неприводимых над полем $\mathbb C$ и над полем $\mathbb R$ следующие многочлены: (a) $x^4 4$: (б) $x^4 + 4$.
- 4. Разложите в произведение неприводимых следующие многочлены:
 - (a) $x^4 + x^3 + x + 1$ в $\mathbb{Z}_2[x]$; (б) $x^4 + 2x^3 + x^2 + 2x + 2$ в $\mathbb{Z}_3[x]$.
- **5.** Перечислите все неприводимые многочлены степеней не выше 4 над полем \mathbb{Z}_2 и докажите, что существует ровно 6 неприводимых многочленов степени 5.
- **6.** Рассмотрим факторкольцо $F = \mathbb{Q}[z]/(z^3 z^2 + 1)$ и обозначим через α класс элемента z в нём. Докажите, что F является полем, и представьте элемент $\frac{3\alpha^2 2\alpha + 6}{\alpha^2 3\alpha + 1} \in F$ в виде $f(\alpha)$, где $f(z) \in \mathbb{Q}[z]$ и $\deg f \leqslant 2$.
- 7. Рассмотрим факторкольцо $F = \mathbb{Z}_3[x]/(x^4 + x + 2)$ и обозначим через α класс элемента x в нём. Докажите, что F является полем, и представьте элемент $\frac{\alpha^3+2}{2\alpha^3+\alpha^2+2} \in F$ в виде $f(\alpha)$, где $f(x) \in \mathbb{Z}_3[x]$ и $\deg f \leqslant 3$.
- 8. Пусть K поле и $h = a_n x^n + \ldots + a_1 x + a_0 \in K[x]$, где $n \geqslant 1$ и $a_n \neq 0$. Рассмотрим факторкольцо K[x]/(h) как векторное пространство над K и в нём линейный оператор $a \mapsto a\overline{x}$. Найдите матрицу этого оператора в базисе $(\overline{1}, \overline{x}, \ldots, \overline{x}^{n-1})$.
- **9.** Предположим, что многочлен с целыми коэффициентами имеет кратный комплексный корень. Может ли такой многочлен быть неприводимым над полем \mathbb{Q} ?
- **10.** Пусть $K \subseteq F$ два поля и $f, g, h \in K[x]$. Докажите, что если h является наибольшим общим делителем для f и g в K[x], то h является таковым и в F[x].

Домашнее задание

- **1.** Найдите наибольший общий делитель многочленов $f, g \in K[x]$, а также его линейное выражение через f и g в следующих случаях:
 - (a) $K = \mathbb{R}$, $f = x^5 + x^4 x^3 2x 1$, $g = 3x^4 2x^3 + x^2 2x 2$;
 - (6) $K = \mathbb{Z}_5$, $f = x^5 + 2x^4 + 4x^3 + 2x^2 + 4$, $g = 3x^3 + 4x^2 + 4x + 1$.
- **2.** Разложите многочлен f в произведение неприводимых в кольце K[x] в следующих случаях:
 - (a) $K \in \{\mathbb{R}, \mathbb{C}\}, f = x^5 + 2x^3 6x^2 12;$
 - (6) $K = \mathbb{Z}_5, f = x^5 + 3x^4 + x^3 + x^2 + 3.$
- **3.** Рассмотрим факторкольцо $F = \mathbb{Q}[z]/(z^3-z^2-1)$ и обозначим через α класс элемента z в нём. Докажите, что F является полем, и представьте элемент $\frac{3\alpha^2-12\alpha+7}{\alpha^2-3\alpha+1} \in F$ в виде $f(\alpha)$, где $f(z) \in \mathbb{Q}[z]$ и $\deg f \leqslant 2$.
- **4.** Пусть K поле и $h \in K[x]$ многочлен положительной степени. Докажите, что всякий ненулевой необратимый элемент факторкольца K[x]/(h) является делителем нуля.