Quantum Computing & Applications for Engineering

10/15/2024

Fault Tolerance & Applications

Announcements

- HW4 is up.
 - Covers up through today.
 - Project 2 groups and proposals.
- Course midterm survey is open.
 - Too hard/easy? Too fast/slow?
 - Balance of hardware, software, math, physics, and applications?
 - Should we have a textbook next time?
 - Should there be an "advanced topics" course?
- IBM Quantum Internships

Today's goals

- Paths towards fault tolerance
 - Physical vs. logical qubits
 - Qubit improvements
 - Error correction
- Application Overview
- HW3 Discussion

The Story So Far

- Quantum technologies are based on the control and readout of quantum states (qubits).
 - We apply gates to a statevector to perform computational operations.
 - In real systems this translates to shooting light or radio signals at quantum objects.
- Real systems suffer from noise and other complexities that require careful accounting.
 - We use the density matrix to account for where the information is going.
 - We use extra operators (Kraus operators) to model noise.
- We need to do benchmarking and error control to understand and make use of today's hardware.
 - Single qubit characterization T₁/T₂
 - Multi-qubit fidelity Randomized benchmarking, EPLG
 - Application-oriented benchmarks.
 - Error suppression and mitigation.

What do we want to do?

Computing

- Model and simulate complex materials.
- o Optimize schedules, routes, resources.
- Break RSA encryption. (We don't actually want to do this)

Sensing

- Find our way without GPS
- Map electrical activity in the brain
- Verify semiconductor circuits
- Detect single atoms of substances

Networking

- Link quantum computers and sensors together
- Securely communicate with quantum information

What can we do today?

Computing

- Proofs of concept of algorithms and subroutines
- Physics and physics-like experiments

Sensing

- Navigation & Timing
- Material and device characterizations
- Biomedical applications

Networking

- Simple key-distribution protocols
- Entanglement exchange and teleportation

At-sea testing of quantum gravitational navigation (Vector Atomic, 2022)

Evidence for the utility of quantun computing before fault tolerance (Nature, 2021)

How do we get there?

- Make better qubits and controls.
 - Increase coherence times.
 - o Improve control hardware and protocols.
- Develop better ways to correct errors using extra qubits.
 - Error correction preserves information even if logical qubits are disrupted.
- Develop ways to convert between qubits.
- Use different physics.
 - Majorana Fermions
 - Topological braiding

Fault Tolerance

Do anything with a quantum system as if there were no errors.

Improvements in Superconductors

- Most superconducting qubits are based on the *transmon* architecture.
 - Two superconductors separated by an insulator (Josephson Junction).
 - Coupled to a capacitor to smooth out charge sensitivity.
- Improving the engineering of the components leads to better performance.
 - Geometry & placement
 - Materials
 - Manufacturing precision & consistency

Josephson Junction

Insulator

Superconductor

Improvements in Controllers

- Lasers and RF Signal generators are all susceptible to phase noise.
 - Small jitters in the frequency
 - Limits how accurately you can apply gates.
- The control pulses themselves can be optimized.
 - Some paths are faster, others are more error-resistant.
 - Controllers are being coupled with reinforcement learning.

Topological Quantum Computing

- Certain quantum particles form braids in space-time.
 - Majorana Fermions
 - Nonabelian Anyons
- Braids are hard to untangle.
 - One you apply a gate, the system gets "stuck" that way.
 - Only the inverse gate will get it unstuck.
- So far nobody has successfully made a topological qubit.
 - Many claims & retractions.
 - Microsoft was pursuing this approach.
- If someone does make one, it could be "the winner."
 - Errors expected below 10⁻⁶
 - Logical qubits would be straightforward.

Braiding of qubits (Physics World)

The 1997 game Fringer was Microsoft's first application of braid theory.

Physical vs. Logical Qubits

- We are working with physical qubits.
 - Individual elements.
 - Influenced by external noise and imprecise controls.
- Our theories are based on logical qubits.
 - Perfect fidelity, perfect control.
 - Density matrix has no leakage to the classical channels.
- How do we reconcile the two?

Logical Qubits by Google

Encoding and Error Correction

- We can use *redundant* physical qubits to encode information about the state.
- If noise affects a single physical qubit, the others can detect the error and restore the state.
- This encoding enables us to create a true logical qubit.
- Extra qubits are called ancilla qubits.

Comments on Error-Correcting Codes

- The entire subject of quantum error correction would take up a graduate-level course.
- Better error-correction codes that reduce the physical overhead are an important research topic.
 - Even if qubits had infinite coherence times, they will still have gate and SPAM errors.
 - Robust error correction codes with the lowest overhead possible are needed.

The Threshold Theorem

- The extra qubits we're using to do error correction are themselves error-prone!
 - Can we even get ahead?
- If we can make qubits with a total error rate below a certain threshold, we can <u>provably</u> correct errors.
- If we can provably correct errors, then we can make logical qubits.
 - The challenge is in the engineering.
 - It can take a lot of physical qubit to make one logical qubit.

code	# physical	# stabilizers	typical error	arbitrary
(QB=qubit)	data qubits	(weight)	threshold range	Pauli error?
3-QB bit-flip	3	2 (2)	N/A	no
3-QB phase-flip	3	2 (2)	N/A	no
5-QB Laflamme	5	4 (4)	N/A	yes
7-QB Steane	7	6 (4)	10 ⁻⁴ to 10 ⁻⁶	yes
9-QB Shor	9	6 (2) & 2 (6)	10 ⁻⁴ to 10 ⁻⁶	yes
17-QB Surface	17	4 (4) & 4 (2)	10 ⁻² to 10 ⁻³	yes

Basic comparison of quantum error correction codes presented in this course. The stabilizers and weights provide an estimate on the number of ancilla qubits required to achieve fault-tolerance. The estimated error threshold is an indicative range, and depends on the architecture used. Thresholds are not provided (N/A) for the first three codes.

The Repetition Code

$$|\psi_L\rangle = \alpha|000\rangle + \beta|111\rangle$$

- A naive way to encode a logical qubit is simply to have duplicates.
- We implement a parity check to determine if any bits were flipped.
- If we detect a bit flip, we apply a corrective operation to flip the bit back to its original state.
- Can only correct flips in the X direction. Qubits have an extra degree of freedom!

The Shor Codes

- Peter Shor developed 5 and 9 qubit error-correcting codes that can correct bit flips and phase flips.
- These are the mathematical minimum size needed for error correction.
- More ancillas are needed in practice because the qubits themselves have errors.

Surface Codes

- Surface codes use a 2D lattice of qubits to encode logical qubits
 - Good fit for superconductors and other limited-connection architectures
- Can tolerate high single-qubit errors
 - 0.1-1% error is ok
- Potentially large quantum and classical overhead.
 - 100s to 1000s of physical qubits needed per logical qubit.
- This is what most superconducting vendors are looking at.

Recent Experiments

 In 2023, Quera and Harvard demonstrated 48 logical qubits in a 256 physical qubit neutral atom lattice.

 In April 2024, Quantinuum and Microsoft demonstrated 4 logical qubits in 30 trapped ions. (https://arxiv.org/pdf/2404.02280)

 In August 2024, Google demonstrated a single logical qubit in 101 superconducting qubits. (https://arxiv.org/pdf/2408.13687v1)

Fault-Tolerant Algorithms

- Between ~1985-2000 most of the foundational work was done on fault-tolerant quantum algorithms
- These have <u>provable</u> advantages over classical algorithms in all cases.
 - Quantum Phase Estimation
 - Grover's Search
- Full list Quantum Algorithm Zoo
 - https://guantumalgorithmzoo.org/

Asymptotic Scaling

- How much time or memory an algorithm takes as a function of the input size.
- Denoted with O-notation.
 - O(1) →Constant →Accessing a single item in a list. →N = ∞
 - $O(log N) \rightarrow Logarithmic \rightarrow Binary search of a tree-structure. \rightarrow N = Really Big$
 - $O(N) \rightarrow Linear \rightarrow Operating on all items in a list. <math>\rightarrow N = Really Big$
 - $O(N \log N) \rightarrow Polylog \rightarrow Sorting items in a list. \rightarrow N = Pretty Big$
 - $O(N^2)$ → Quadratic →Operating on all pairs of items in a list →N < 10^6
 - $O(2^N)$ → Exponential →Operating on all combinations of elements in a list →N < 40
 - O(N!) → Factorial →Operating on all permutations of items in a list →N < 12
- The goal is to use quantum hardware to reduce the asymptotic scaling of a problem.

Physics Simulations

- Like we've seen, quantum Hamiltonian simulations can scale as O(2^N).
- This assumes all-way entanglement.
 - Singles
 - Pairs
 - Triples
 - Triples with pairs
 - Pairs with singles
 - o ...
- In practice, this isn't always the case.
 - Entanglement in real systems tends to have more defined structure.
 - Quantum has asymptotic advantage where the structures still scale poorly.

Efficiently Representable Entanglement Structures

Factoring Integers

- The RSA cryptosystem is secured by the fact that it is very hard to factor an integer into its prime components. O(2^N)
- The factoring problem has hidden periodic structure that is quantumly easy to solve. O(N^k)
- Shor's algorithm exploits this structure.

Grover Search

- Searching an unstructured list of items is O(N)
 - Need to check every item in the worst-case.
- Grover search reduces this to O(√N)
 - Use quantum entanglement to amplify the probability amplitude of the target item.
 - Iterate multiple times, marking and amplifying until the probability is strongly peaked around the correct item.
- Any classical algorithm can be converted to a Grover search problem.
 - This is why we say quantum computing guarantees a quadratic speedup.
 - Ignores "constant factors"
 - It can take a lot of work to transform the problem, washing out any asymptotic advantages except for very big values of N.

Optimization

- Consider problems where we need to find the best combination of items, paths or arrangements in a system.
 - This is the entire field of logistics and operations research.
 - Is a substantial part of industrial engineering.
- In the worst case, these problems are O(N!)
- Quantum does not guarantee an exponential speedup.
 - o Can provide problem-specific advantages
- Some productive use is happening today.
 - o D-Wave superconducting quantum annealers
 - QAOA algorithm

Matrix Solving

- All of engineering calculations.
 - FEA
 - o CFD
 - Any system of partial differential equations
- Harrow-Hassidim-Lloyd (HHL) algorithm
 - Solves Ax=B in O(log N)!
 - Best for sparse matrices!
- The fine print:
 - It's O(N) just to write down the problem.
 - You don't get the solution field, only an expectation value.
 - Needs careful thought on how it's integrated.

Cellular Automata & Lattice Boltzmann Methods

- Cellular automata are grid worlds of cells.
 - They update their states according to their neighbors' states
 - Popularized by Stephen Wolfram (Mathematica, Wolfram Alpha, ...)
- A continuous value version called the Lattice Boltzmann Method is used in fluid simulations.
 - Massively parallelizable
 - Very promising for fluid-structure interactions
- Quantum versions give varying speedups
 - o Problem-dependent
 - CFD problems tend to scale with the Reynolds number
- 1D demos are possible on today's hardware.

Machine Learning

- Quantum machine learning has been demonstrated on small systems.
 - Typically train the parameters of a variational circuit like VQE
- Advantages in compactness.
 - Fewer parameters than classical models.
 - Fewer training iterations (in theory)
- Unlikely to look the same as classical ML
 - Small input data
 - Small output data

