矩阵 (8-9)

等价标准型、矩阵的迹与幂零矩阵

1.设 B_1, B_2 都是数域P上的 $s \times n$ 的列满秩矩阵,证明:存在数域P上的s级可逆矩阵C使得 $B_2 = CB_1$.

2.任意秩为r(r>0)的矩阵都可以分解成r个秩为1的矩阵之和.

3.已知A是一个秩为r的 $s \times n$ 矩阵,求矩阵方程AXA = A的通解.

4.已知A是一个n级实对称方阵,且 $A^2 = O$,则A = O.

5.相似的矩阵有相同的迹.
6 .已知 A 是数域 P 上的 n 级矩阵,则 A 是幂零矩阵的充要条件是对任意的正整数都有 $tr(A^k)=0$.
7.已知 $M_n(\mathbb{C})$ 表示所有 n 级复矩阵组成的线性空间, $\sigma:M_n(\mathbb{C})\to\mathbb{C}$ 是一个线性映射,并且满足对任意的 $A,B\in M_n(\mathbb{C})$,都有 $\sigma(AB)=\sigma(BA)$,证明存在 $\lambda\in\mathbb{C}$ 使得对任意的 $A\in M_n(\mathbb{C})$,都有 $\sigma(A)=\lambda tr(A)$.
$8.U$ 是 $P^{n\times n}$ 空间中所有形如 $AB-BA$ 的矩阵生成的子空间, W 是 $P^{n\times n}$ 中所有迹为零的矩阵生成的线性子空间,则 $U=W$.

9.已知数域 K 上的两个 n 级矩阵 A,B 满足 $AB-BA=A$,则 A 不可逆.
10 .已知数域 K 上的两个 n 级矩阵 A , B 满足 $AB-BA=A$,则对任意的正整数 k ,都有 $tr(A^k)=0$.
$11.$ 设 A,B,C 是数域 K 上的 n 级矩阵,满足 $AB-BA=C$,且 $AC=CA$,证明:对任意的正整数 k ,者 有 $tr(C^k)=0$.
12.已知数域 K 上的两个2级矩阵 A,B 满足 $AB-BA=A$,则 $A^2=O$.