

NIPS 2017 Paper

Dynamic Routing Between Capsules

by Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton

October 2017: https://arxiv.org/abs/1710.09829

Computer Graphics

Rectangle

x=20 y=30 angle=16°

Triangle

x=24 y=25 angle=-65°

Instantiation parameters

Rendering

Image

Inverse Graphics

Rectangle

x=20 y=30 angle=16°

Triangle

x=24 y=25 angle=-65°

Instantiation parameters

Inverse rendering

Image

Capsules

Capsules

Activation vector:

Length = estimated probability of presence **Orientation** = object's estimated pose parameters

Capsules

Convolutional Layers

+ Squash

Squash(u) =
$$\frac{||u||^2}{1 + ||u||^2} \frac{u}{||u||}$$

Equivariance

Equivariance

A hierarchy of parts

Boat

x=22

y=28

angle=16°

A hierarchy of parts

A hierarchy of parts

Primary Capsules

Compute Next Layer's Output

Routing by Agreement

Routing by Agreement

Routing Weights

Routing Weights

Compute Next Layer's Output

Compute Next Layer's Output

Compute Next Layer's Output

Compute Next Layer's Output

Compute Next Layer's Output

Compute Next Layer's Output

Compute Next Layer's Output

Handling Crowded Scenes

Handling Crowded Scenes

Handling Crowded Scenes

Thanks to routing by agreement, the ambiguity is quickly resolved (explaining away).

Classification CapsNet

Training

To allow multiple classes, minimize margin loss:

$$L_k = T_k \max(0, m^+ - ||\mathbf{v}_k||^2) + \lambda (1 - T_k) \max(0, ||\mathbf{v}_k||^2 - m)$$

 $T_k = 1$ iff class k is present

In the paper:

$$m = 0.1$$

 $m^+ = 0.9$
 $\lambda = 0.5$

Training

Translated to English:

"If an object of class *k* is present, then $||\mathbf{v}_{k}||^{2}$ should be no less than 0.9. If not, then $||\mathbf{v}_{k}||^{2}$ should be no more than 0.1."

To allow multiple classes, minimize margin loss:

$$\mathbf{L}_{k} = \mathbf{T}_{k} \max(0, m^{+} - ||\mathbf{v}_{k}||^{2})$$

$$+ \lambda (1 - \mathbf{T}_{k}) \max(0, ||\mathbf{v}_{k}||^{2} - m^{-})$$

$$T_k = 1$$
 iff class k is present

In the paper:

$$m = 0.1$$

 $m^+ = 0.9$
 $\lambda = 0.5$

Regularization by Reconstruction

Regularization by Reconstruction

A CapsNet for MNIST

(Figure 1 from the paper)

A CapsNet for MNIST - Decoder

(Figure 2 from the paper)

Interpretable Activation Vectors

Scale and thickness	000000000000000000000000000000000000000
Localized part	66666666666
Stroke thickness	555555555
Localized skew	99999994444
Width and translation	11133333333
Localized part	222222222

(Figure 4 from the paper)

Pros

- Reaches high accuracy on MNIST, and promising on CIFAR10
- Requires less training data
- Position and pose information are preserved (equivariance)
- This is promising for image segmentation and object detection
- Routing by agreement is great for overlapping objects (explaining away)
- Capsule activations nicely map the hierarchy of parts
- Offers robustness to affine transformations
- Activation vectors are easier to interpret (rotation, thickness, skew...)
- It's Hinton! ;-)

Cons

- Not state of the art on CIFAR10 (but it's a good start)
- Not tested yet on larger images (e.g., ImageNet): will it work well?
- Slow training, due to the inner loop (in the routing by agreement algorithm)
- A CapsNet cannot see two very close identical objects
 - This is called "crowding", and it has been observed as well in human vision

Implementations

- Keras w/ TensorFlow backend: https://github.com/XifengGuo/CapsNet-Keras
- TensorFlow: https://github.com/naturomics/CapsNet-Tensorflow
- PyTorch: https://github.com/gram-ai/capsule-networks

O'REILLY'

116 customer reviews

#1 Best Seller (in Computer Vision & Pattern Recognition

Amazon: https://goo.gl/IoWYKD Twitter: @aureliengeron github.com/ageron