Clustering Big Data

Violaine Antoine

ISIMA / LIMOS

January, 2019

Algorithms complexity

categories	algorithm	complexity
hierarchical	single-link	$O(n^2)$
	complete-ling	$O(n^2 \log n)$
	average-link	$O(n^2 \log n)$
partitional	dbscan	$O(n^2)$
	dbscan with spatial index	$O(n \log n)$
	k-means	O(ncp)
	FCM	O(n)
	Kernel k-means	$O(n^2c)$
grid-based	grid-based SOM	
	Ant	/

Clustering big data

Strategies can be mixed.

Sampling and Summarization

Preprocessing step to reduce the information (data dependent)

- create several samples for
 - parallel clustering
 - online clustering
- summarize data without loss of information

Sampling and Summarization : Scalable k-means

Incremental

online clustering

- one-pass strategies
 - reduce the number of scans of the data to only one sequential process
 - + enable to fit in memory
 - low accuracy \Rightarrow used as a first stage to obtain general information

One-pass strategy: the leader algorithm

- Assign first object \mathbf{x}_1 to ω_1 ,
- For each objects \mathbf{x}_i from 2 to n
 - **1** compute $d^2(\mathbf{x}_i, \omega_j) \ \forall \omega_j \in \Omega$
 - ② if $d^2(\mathbf{x}_i, \omega_j) > \theta \ \forall \omega_j \in \Omega$ then create a new cluster otherwise, put \mathbf{x}_i in the closest cluster and recompute the centroid.

Use of One-pass strategy: Scalable hierarchical clustering

Method I-Single Link (I-SL):

- ullet Apply a one-pass algorithm (ex : the leader algorithm with heta) : O(nc)
- ullet Apply modified hierarchical clustering with centroids obtained : $O(c^2)$
- Replace centroids by its instances to obtain clusters.

Method al-SL: variant of I-SL to obtain the same dendrogram as SL.

If n >> c, reduce the complexity $O(n^2)$ to O(nc)

B. Patra & al. A distance based clustering method for arbitrary shaped clusters in large datasets, 2011.

Use of One-pass strategy: Scalable hierarchical clustering

Dataset	Distance (h)	Method	Time (s)	Rand index (RI)
Pendigits	90.0	l-SL	0.46	0.999
_	90.0	al-SL	0.79	1.000
	90.0	SL	392.59	-
	70.0	l-SL	1.38	0.993
	70.0	al-SL	2.14	1.000
	70.0	SL	430.46	-
Shuttle	0.02	l-SL	9.13	0.999
	0.02	al-SL	19.38	-
	0.02	SL (40,000)	6929.77	
	0.01	<i>l</i> -SL	9.32	0.999
	0.01	al-SL	20.27	-
	0.01	SL (40,000)	6929.77	
GDS10	700	l-SL	0.50	0.999
	700	al-SL	1.15	1.000
	700	SL	4105.35	-
	900	l-SL	0.26	0.999
	900	al-SL	0.62	1.000
	900	SL	4105.35	-
			p	
	Pendigit	7494	16	

Pendigit 7494 16
Shuttle 58 000 9
GDS10 23 709 28

Distributed

- parallel clustering
- map reduce

M. Chen & al, Clustering in Big Data.

Distributed: Divide and conquer strategy: canopy

Method:

- lacktriangledown create overlapped subsets called canopies using distances d_{min} and d_{max}
- perform for each canopy a clustering algorithm
- merge subclustering results

Distributed: Divide and conquer strategy: canopy

Create canopies:

- **1** Set S_{min} , S_{max} the sets containing the data points
- 2 While S_{min} is not empty
 - Select at random a point in S_{min} considered as the center of the canopy c_i
 - Add in c_i all points closer than d_{max}
 - Remove from S_{max} all points closer than d_{min}
 - ullet Remove from \mathcal{S}_{min} all points closer than d_{max}

J. Béjar, Strategies and Algorithms for Clustering Large Datasets ; A Review, 2013,

Approximation (algorithm dependent)

Some computations are saved/approximated with reduced impact

- mainly related with the distances calculation
- ex : hierarchical clustering

Approximation : the Indexed k-means method

Store points cloud an centroids in a kd-tree to avoid distances computation

Computational cost for an iteration is $log(2^p k log(n))$

 \Rightarrow high dimension does not save time!