Install cantera-magma in titany

목차: local python3 설치, local python2 설치, cuda 설치, magma 설치, sundials 설치, sundials 설치, local scons 설치, cantera-sundials 설치, cantera-magma 설치, cantera ignition test

1. local python3 설치

(참고: https://danieleriksson.net/2017/02/08/how-to-install-latest-python-on-centos/)

< 주의사항 >

python3 설치 후 python2를 설치해야 한다. 2먼저 설치하면 3가 2를 덮어쓸 수 있다.

<python 설치 전 필요한 모듈 설치 >

\$ sudo apt install make build-essential libssl-dev zlib1g-dev

\$ sudo apt install libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm

\$ sudo apt install libncurses5-dev libncursesw5-dev xz-utils tk-dev

<python 설치 >

\$ wget http://python.org/ftp/python/3.6.5/Python-3.6.5tar.xz

(원하는 버전으로 바꿀 것)

\$ tar xvf Python-3.6.5.tar.xz

\$ cd Python-3.6.5

\$./configure --prefix=\$HOME/local/

\$ make && make altinstall

make install을 사용하면 system에 기본 설치된 python3(\$ sudo apt install python3 로 설치된)을 덮 어쓸 수 있다. make altinstall을 하면 python3와 python3.6으로 구별된다.

\$ export PATH=\$HOME/local/bin:\$PATH >> ~/.bashrc

\$ python3.6 (local python3)

```
kimms@titan:~$ python3.6

Python 3.6.5 (default, Jul 25 2018, 10:39:47)

[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>
```

(exit:ctrl+D)

cf) \$ python3 (system default python3)

```
kimms@titan:~$ python3
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

2. local python2 설치

```
$ wget http://python.org/ftp/python/2.7.14/Python-2.7.14.tar.xz
$ tar xf Python-2.7.14.tar.xz
$ cd Python-2.7.14
$ ./configure --prefix=$HOME/local/ --enable-unicode=ucs4
```

memory 낭비를 줄이고 호환성을 높이기 위해 unicode support 옵션을 준다.

```
$ make && make altinstall
$ export PATH=$HOME/local/bin:$PATH >> ~/.bashrc
```

3에서 PATH를 추가해 줬다면 필요 없는 작업이다.

\$ python2.7

```
kimms@titan:~$ python2.7
Python 2.7.15 (default, Jul 25 2018, 10:49:19)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> |
```

(exit:ctrl+D)

cf) system python

```
kimms@titan:~$ python

Python 2.7.12 (default, Dec 4 2017, 14:50:18)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> |
```

< cantera설치에 필요한 python모듈 설치 >

pip command

```
pip install [packagename]
pip install --upgrade [packagename]
pip uninstall [packagename]
pip uninstall [packagename]
pip install [packagename]== (설치 가능한 버전을 보여준다)
pip install [packagename]==1.2.1 (원하는 버전의 모듈 설치)
pip install --force-reinstall [packagename]==1.2.1 (원하는 버전의 모듈 재설치)
pip install --lv [packagename]==1.2.1 (다른 버전이 있어도 강제로 설치한다)
```

\$ pip3.6 install --upgrade pip

\$ pip3.6 install numpy

\$ pip3.6 install cython

\$ pip3.6 install 3to2

\$ wget https://bootstrap.pypa.io/get-pip.py

\$ python2.7 get-pip.py

\$ pip2.7 install --upgrade pip

\$ pip2.7 install numpy

\$ pip2.7 install 3to2

\$ pip2.7 install cython

python3는 pip이 기본으로 설치되고 python2는 기본 설치되지 않는다.

\$HOME/local/bin에 python3, pip3.6 등이 설치되고 \$HOME/local/lib/python3.6/site-packages에 각종 파이썬 모듈과 pip으로 설치한 패키지 등이 설치된다(setuptools, wheel, numpy 등).

< 설치 확인 >

\$ python3.6 -c 'import packagename'

ex)

\$ python3.6 -c 'import numpy'

<pi><pip, pip2, pip2.7 구별 >

pip: \$PATH에서 순서대로 python을 찾아 가장 먼저 나오는 python.

예를 들어 \$PATH=\$HOME/local/bin:/usr/local/bin 두 경로 다 python이 있으면 pip이 \$HOME/local/bin의 python 모듈을 설치한다

pip2: \$PATH에서 순서대로 python2를 찾아 가장 먼저 나오는 python2.

pip2.7: \$PATH에서 순서대로 python2.7을 찾아 가장 먼저 나오는 python2.7.

< 설치 중 발생할 수 있는 에러 >

zipimport.ZipImportError: can't decompress data; zlib not available
Makefile:1109: recipe for target 'altinstall' failed
make: *** [altinstall] Error 1

zlib이 없거나 버전이 이상한 것

\$ sudo apt-get zlib-dev (--update)

kimms@titan:~/usr/local/bin\$ python2.7 get-pip.py
pip is configured with locations that require TLS/SSL, however the ssl module in Pytho
n is not available.
Collecting pip
 Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after
 connection broken by 'SSLError("Can't connect to HTTPS URL because the SSL module is

ssl에 문제가 있는 것이다.

\$ sudo apt install libssl-dev (--update)

```
cimms@titan:~/local/python2.7/bin$ pip2.7 install 2to3
Collecting 2to3
   Could not find a version that satisfies the requirement 2to3 (from versions: )
Wo matching distribution found for 2to3
```

오타거나, 저런 이름의 모듈이 없거나, pip으로 설치 불가한 모듈이다.

3. cuda 설치

< CUDA 설치를 위한 준비단계 >

\$ sudo apt install linux-headers-\$(uname -r)

\$ sudo apt purge nvidia*

\$ sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa-dev libglfw3-dev libgles2-mesa-dev

< CUDA toolkit & driver 설치 >

\$ wget

https://developer.nvidia.com/compute/cuda/9.2/Prod/local_installers/cuda_9.2.88_396.26_linux

\$ chmod +x cuda 9.2.88 396.26 linux

\$ sudo service lightdm stop

\$ sudo sh ./cuda_9.2.88_396.26_linux

물어보는 것의 default 답이 있으면 그냥 enter로 하고, 질문에는 y로 답하면 된다.

(주의: Xconfig 바꿀거냐 default 가 no 이고, 그대로 no 해야 함)

\$ vi ~/.bashrc

(끝에 다음 2줄을 추가)

export PATH=\$PATH:/usr/local/cuda-9.2/bin

export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/cuda-9.2/lib64

CUDA 작동테스트:

\$./NVIDIA_CUDA_9.2_Samples/0_Simple/clock/clock

4. magma 설치

magma: GPU 버전의 선형대수라이브러리

\$ sudo apt install libopenblas-dev libopenmpi-dev

\$ wget http://icl.cs.utk.edu/projectsfiles/magma/downloads/magma-2.0.2.tar.gz

\$ tar xzvf magma-2.0.2.tar.gz

\$ cd magma-2.0.2

\$ cp make.inc.openblas make.inc

\$ export CUDADIR=/usr/local/cuda

\$ vi Makefile

comment out lines for compute_20 etc

#MIN_ARCH ?= 200

#NV_SM += -gencode arch=compute_20,code=sm_20

#NV_COMP := -gencode arch=compute_20,code=compute_20

\$ make -j 6

\$ cd testing

\$./testing_dgetrf

\$ export LD_LIBRARY_PATH=\$HOME/src/magma-2.0.2 >> ~/.bashrc

5. sundials 설치

버전마다 설치법이 조금씩 다르므로 유의할 것 (아래는 sundials-2.5.0. install note에 버전에 따른설치법이 나와있다)

\$ wget https://launchpad.net/ubuntu/+archive/primary/+sourcefiles/sundials/2.5.0-1/sundials_2.5.0.orig.tar.gz

\$ tar xvzf sundials 2.5.0.orig.tar.gz

\$./configure --prefix=\$HOME/local/sundials-2.5.0 --exec-prefix=\$HOME/local/sundials-2.5.0 --with-cflags=-fPIC --disable-mpi CC=gcc F77=gfortran

\$ make && make install

6. Sundials-MAGMA 설치

sundials의 CVODE와 CVODES solver가 GPU기반 LU factorization을 할 수 있도록 개조된 sundials이다(MAGMA 라이브러리를 참조한다). CUDA와 MAGMA가 설치되어 있어야 하며 설치법은 INSTALL_NOTES에 자세히 나와있다.

magma 함수의 역할 등이 궁금하면

\$ vi magma-2.0.2/docs/documentation.txt

에 자세히 나와있다.

```
$ git clone <a href="https://github.com/athlonshi/Sundials-MAGMA.git">https://github.com/athlonshi/Sundials-MAGMA.git</a> --recursive
$ cd Sundials-MAGMA
$ grep -r magmablas *
```

libmagmablas는 magma 구버전에 있던 library인데 지금은 libmagma로 통합되어서 삭제해야 한다.

```
$ vi src/cvode/cvode_gpu.c
$ vi src/cvodes/cvodes_gpu.c
```

delete -Imagmablas

CVodeInitGPU()에서 MAGMA_CUDA_INIT() 부분을 지우고 magma_init()으로 다음과 같이 바꾼다. (magma를 initialize하는 함수 이름이 바뀌었다)

```
if (type == 1) {
  cv_mem->GPU = TRUE;
  //MAGMA_CUDA_INIT();
  magma_init();
}
```

```
$ grep -r printout_devices
```

printout_devices()도 magma 구버전에 있던 함수인데 지금은 magma_print_environment()로 바뀌였다. 다음 두 방법 중 하나를 택하면 된다.

방법 1. printout_devices()가 있는 부분을 magma_print_environment()로 바꾼다.

```
$ vi include/cvode/cvode_gpu.h
$ vi include/cvodes/cvodes_gpu.h
```

```
$ vi src/cvode/cvode_gpu.c
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <cublas.h>
```

```
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <cublas.h>
```

headerfile 목록에 추가

```
-- Print the available GPU devices
void printout_devices( )
   int ndevices, idevice;
   cuDeviceGetCount( &ndevices );
   for( idevice = 0; idevice < ndevices; idevice++ )
       char name[200];
#if CUDA_VERSION > 3010
       size_t totalMem;
 #else
       unsigned int totalMem;
#endif
       int clock;
       CUdevice dev;
      cuDeviceGet( &dev, idevice );
      cuDeviceGetName( name, sizeof(name), dev );
       cuDeviceTotalMem( &totalMem, dev );
       cuDeviceGetAttribute( &clock,
                             CU DEVICE ATTRIBUTE CLOCK RATE, dev );
       printf( "device %d: %s, %.1f MHz clock, %.1f MB memory\n",
               idevice, name, clock/1000.f, totalMem/1024.f/1024.f);
}
```

\$ vi src/cvodes/cvodes_gpu.c

```
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <cublas.h>
-- Print the available GPU devices
 void printout_devices( )
{
  int ndevices, idevice;
  cuDeviceGetCount( &ndevices );
  for( idevice = 0; idevice < ndevices; idevice++ )
       char name[200];
 #if CUDA VERSION > 3010
       size_t totalMem;
 #else
       unsigned int totalMem;
 #endif
       int clock;
       CUdevice dev;
       cuDeviceGet( &dev, idevice );
       cuDeviceGetName( name, sizeof(name), dev );
       cuDeviceTotalMem( &totalMem, dev );
       cuDeviceGetAttribute( &clock,
                            CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev );
       printf( "device %d: %s, %.1f MHz clock, %.1f MB memory\n",
              idevice, name, clock/1000.f, totalMem/1024.f/1024.f);
}
앞서 했던 작업과 동일하다
```

```
DenseGETRFGPU(DIsMat A, long int *p) 내에서

printf("=======> Matrix size: %d %d\n", M, N); //추가 (gpu를 사용하는지 확인하는 용도)

//magma_dgetmatrix( M, N, d_A, Idda, A->data, Ida );

(comment out)

return(info); //추가
```

```
long int DenseGETRFGPU(DlsMat A, long int *p)
{
   int i;
   int M = A->M;
   int N = A->N;
   int lda = M;
   int ldda = ((M+31)/32)*32;
   int info;

/*Call MAGMA LU factorization solver*/
printf("======>> Matrix size: %d %d\n", M, N);
   magma_dsetmatrix( M, N, A->data, lda, d_A, ldda );
   magma_dgetrf_gpu( M, N, d_A, ldda, p, &info);
   //magma_dgetmatrix( M, N, d_A, ldda, A->data, lda );
   return(info);
}
```

DenseGETRSGPU(DIsMat A, long int *p, realtype *B) 내에서

//magma_dgetrs_gpu('N', M, NRHS, d_A, Idda, p, d_B, Iddb, &info); //NO transpose (comment out) magma_dgetrs_gpu(MagmaNoTrans, M, NRHS, d_A, Idda, p, d_B, Iddb, &info); //NO transpose //추가

return(info); //추가

```
long int DenseGETRSGPU(DlsMat A, long int *p, realtype *B)
{
   int i;
   int M = A->M;
   int N = A->N;
   int ldb = N;
   int lddb = ((M+31)/32)*32;
   int lddb = M;
   int NRHS = 1;
   int info;

/*Call MAGMA linear equation solver*/
   magma_dsetmatrix( M, NRHS, B, ldb, d_B, lddb );
   //magma_dgetrs_gpu( 'N', M, NRHS, d_A, ldda, p, d_B, lddb, &info );  //NO transpose
   magma_dgetrs_gpu( MagmaNoTrans, M, NRHS, d_A, ldda, p, d_B, lddb, &info );  //NO transpose
   magma_dgetmatrix( M, NRHS, d_B, lddb, B, ldb );

return(info);
}
```

```
$ vi include/cvode/cvode gpu.h
#define MAGMA DEVFREE(ptr)
                                                                            ١
        magma_free_internal( ptr, __func__, __FILE__, __LINE__)
    //magma free( ptr );
$ vi include/cvodes/cvodes_gpu.h
#define magma free( ptr ) \
        magma_free_internal( ptr, __func__, __FILE__, __LINE__)
#define magma free pinned( ptr ) \
        magma_free_pinned_internal( ptr, __func__, __FILE__, __LINE__)
//추가
#define magma free( ptr ) \
#define magma free pinned( ptr ) \
#define MAGMA DEVFREE(ptr)
                                                                            ١
        magma_free_internal( ptr, __func__, __FILE__, __LINE__)
    //magma free( ptr );
//바꿈
$ ./configure --cudainclude=/usr/local/cuda-9.2/include --cudalib=/usr/local/cuda-9.2/lib64 --
magmainclude=$HOME/src/magma-2.0.2/include --magmalib=$HOME /src/magma-2.0.2/lib --
prefix=$HOME/local/sundials-2.5.0-magma --exec-prefix=$HOME /local/sundials-2.5.0-magma --
with-cflags=-fPIC --disable-mpi CC=gcc F77=gfortran --enable-examples
$ make
< 제대로 작동하는지 확인>
$ cd examples/cvodes/serial/
$./cvsRoberts dns
```

```
kimm@titanv:~/src/Sundials-MAGMA/examples/cvodes/serial$ ./cvsRoberts dns
Call CPU LU Solver.
3-species kinetics problem
                      y = 9.899653e-01 3.470564e-05
At t = 2.6391e-01
                                                        1.000000e-02
   rootsfound[] =
                    0
                       1
At t = 4.0000e-01
                      y = 9.851641e-01
                                         3.386242e-05
                                                         1.480205e-02
At t = 4.0000e + 00
                                         2.240338e-05
                                                         9.446793e-02
                      y = 9.055097e-01
```

\$./cvsRoberts_dns gpu

```
kimm@titanv:~/src/Sundials-MAGMA/examples/cvodes/serial$ ./cvsRoberts_dns gpu
Call GPU LU Solver.
3-species kinetics problem
=======> Matrix size: 3 3
=======> Matrix size: 3 3
=======> Matrix size: 3 3
```

< 주의사항 >

configure option에 --enable-examples를 추가하면 에러가 발생하는데, sundials-magma와 magma버전이 맞지 않아 생기는 문제 같다. (sundials-magma는 magma-1.3.0을 기준으로 만들어졌다) 무시해도 되지만 예제로 테스트 하고 싶으면 약간의 수정이 필요하다.

\$ cd \$HOME/local/sundials-2.5.0-magma/examples/cvodes/serial \$ make

```
kimms@titan:~/local/sundials-magma/examples/cvodes/serial$ make

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsAdvDiff_ASAi_bnd.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsAdvDiff_FSA_non.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsDiurnal_kry_bp.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsFoodWeb_ASAp_kry.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsKrylovDemo_prec.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsDirectDemo_ls.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsDiurnal_kry.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsRoberts_ASAi_dns.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsRoberts_dns_uw.c

gcc -fPIC -I/home/kimms/local/sundials-magma/include -c cvsRoberts_dns_c

cvsRoberts_dns.c: In function 'main':

cvsRoberts_fSA_dns.c

make: *** No rule to make target 'cvsRoberts_dns.o', needed by 'all'. Stop.
```

위와 같은 error가 발생 수 있는데,

\$ vi Makefile

EXAMPLES = cvsAdvDiff_ASAi_bnd cvsAdvDiff_FSA_non cvsDiurnal_kry_bp cvsFoodWeb_ASAp_kry cvsKrylovDemo_prec cvsAdvDiff_bnd cvsDirectDemo_ls cvsDiurnal_kry cvsHessian_ASA_FSA cvsRoberts_ASAi_dns cvsRoberts_dns_uw cvsDiurnal_FSA_kry cvsFoodWeb_ASAi_kry cvsKrylovDemo_ls cvsRoberts_dns cvsRoberts_FSA_dns cvsRoberts_dnsL cvsAdvDiff bndL

위 목록에서 cvsRoverts_dnsL 앞에 # 추가하고,

LIBRARIES_BL 맨 앞에 -L/usr/local/cuda-9.2/lib64 -lcuda -lcublas -L/home/username/src/magma-2.0.2/lib -lmagma 를추가한다.

\$ make clean

\$ make

\$./cvsRoverts_dns (gpu)

7. local scons 설치

scons는 보통 시스템에 기본적으로 설치되어 있지만 cantera가 사용하는 python과 scons의 버전이 다르면 에러가 생기는 것을 발견했다. 따라서 scons를 local하게 설치하였다.

또한 scons는 script interpreter로 python2만 사용한다.

(참고: http://wiki.nmr-relax.com/Multiple Python versions)

\$ wget http://prdownloads.sourceforge.net/scons/scons-3.0.0.tar.gz

\$ tar xvzf scons-3.0.0.tar.gz

\$ cd scons-3.0.0/script

\$ vi scons

첫 줄의 /usr/bin/env python을 다음과 같이 수정한다.

#! /home/kimm/local/bin/python2.7
#
SCons - a Software Constructor

\$ python2.7 setup.py install -prefix=/home/kimms/local/scons-3.0.0

\$ export PATH=~/local/scons-3.0.0/bin:\$PATH >>~/.bashrc

아래와 같은 결과가 나오면 잘 설치된 것이다.

kimms@titan:~\$ which scons
/home/kimms/local/scons/bin/scons

#! /home/kimm/local/bin/python2.7
#
SCons - a Software Constructor

8. cantera-sundials 설치

(참고: https://www.cantera.org/docs/sphinx/html/index.html)

< prerequisites >

g++ python scons libboost-dev

(python2 module) cython python-dev python-numpy python-numpy-dev python-setuptools

(python3 module) cython python3 python3-dev python3-detuptools python3-numpy

앞에서 필요한 모듈은 거의 설치했고, libboost-dev와 gcc가 system에 없다면 설치해야 한다.

python setuptools는 python설치시 기본 설치된다.

\$ sudo apt install gcc libboost-dev

\$ git clone --recursive https://github.com/Cantera/cantera.git

\$ mv cantera cantera-sundials

\$ cd cantera-sundials

\$ scons build prefix=\$HOME/local/cantera-2.4.0-sundials

python2_cmd=\$HOME/local/bin/python2.7 python3_cmd=\$HOME/local/bin/python3.6 python2_package=full python3_package=full sundials_include=\$HOME/local/sundials-2.5.0/include/ sundials_libdir=\$HOME/local/sundials-2.5.0/lib/ CC=gcc CXX=g++FORTRAN=gfortran env vars=all –j 6

cantera는 sundials3.x버전과 호환되지 않으므로 2.x버전으로 빌드해야 한다.

\$ scons test

\$ scons install

만약 칸테라 버전을 바꿔서 설치하고 싶으면 다음과 같이 하면 된다.(기본은 2.4.0b1)

\$ git tag --list

\$ git checkout tags/v2.1.2

(나머지 동일. test 전에 아래와 같은 수정이 필요하다)

```
$ vi test/data/kineticsfromscratch.cti

species = """ h2o2: H2 H O O2 OH H2O HO2 H2O2 AR """
change it to
species = """ h2o2: AR O H2 H OH O2 H2O H2O2 HO2 """

< 설치 후 작업 >
```

\$ vi ~/local/cantera-2.4.0-sundials/bin/setup_cantera

```
if [ "/home/kimm/local/bin/python3.6" != `which python` ]; then
   alias ctpython=/home/kimm/local/bin/python3.6
```

만약 위와 같은 부분이 있다면 cantera interpreter가 python3.6이기 때문에 python2 example에 문제가 생긴다.

위와 같이 PYTHONPATH를 바꿔주는 부분을 comment out 하고 따로 sys.path를 수정해준다.

```
$ cd ~/local/lib/python2.7/site-packages
$ vi cantera-sundials.pth
```

이 디렉토리에 .pth 파일을 추가하면 sys.path에 추가가 된다

~/local/cantera-magma/lib/python2.7/site-packages

/home/kimm/local/cantera-2.4.0-sundials/lib/python2.7/site-packages

잘 되었는지 확인. import cantera에서 에러가 뜨지 않으면 잘 된 것이다.

```
$ source ~/local/cantera-2.4.0-sundials/bin/setup_cantera
$ python2.7
```

```
kimm@titanv:~/local/cantera-2.4.0-magma$ python2.7
Python 2.7.14 (default, Aug 15 2018, 21:35:22)
[GCC 7.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.path
['', '/home/kimm/local/lib/python27.zip', '/home/kimm/local/lib/python2.7', '/home/kimm/local/lib/python2.7/plat-linux2', '/home/kimm/local/lib/python2.7/lib-tk', '/home/kimm/local/lib/python2.7/lib-old', '/home/kimm/local/lib/python2.7/lib-dynload', '/home/kimm/local/lib/python2.7/site-packages', '/home/kimm/local/cantera-2.4.0-sundials/lib/python2.7/site-packages', '/home/kimm/local/cantera-2.4.0/lib/python2.7/site-packages']
>>> import cantera
>>> |
```

python3도 같은 방법으로 수정한다.

\$ cd ~/local/lib/python3.6/site-packages \$ vi cantera-sundials.pth

kimm@titanv: ~/local/lib/python3.6/site-packages

<1> kimm@titanv: ~/... <2> kimms@titan: ~/...

/home/kimm/local/cantera-2.4.0-sundials/lib/python3.6/site-packages

```
kimm@titanv:~/local/cantera-2.4.0-magma$ python3.6
Python 3.6.5 (default, Aug 15 2018, 21:27:01)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.path
['', '/home/kimm/local/lib/python36.zip', '/home/kimm/local/lib/python3.6', '/home/kimm/local/lib/python3.6/site-packages', '/home/kimm/local/cantera-2.4.0-magma/lib/python3.6/site-packages', '/home/kimm/local/cantera-2.4.0-sundials/lib/python3.6/site-packages', '/home/kimm/local/cantera-2.4.0/lib/python3.6/site-packages']
>>> import cantera
>>> |
```

< example 컴파일 >

\$ cd ~/local/cantera-2.4.0/sundials/share/cantera/samples
\$ cd rankine
\$ make
\$./rankine

```
300
                      101325 -1.58581e+07
                                                3913.17
          300.014
                      800000 -1.58574e+07
 2s
                                                3913.17
                                                            0
          300.126
                      800000 -1.58569e+07
                                                3914.73
                                                            0
 2
 3
                     800000 -1.32016e+07
                                                10182.9
                                                            1
          443.624
          373.177
                     101325
                              -1.3553e+07
                                                10182.9 0.89
          373.177
                     101325 -1.34827e+07
                                                10371.3 0.92
efficiency = 0.105873
```

```
$ cd ../../f77
$ vi Makefile
```

CPPFLAGS를 다음과 같이 수정

CPPFLAGS=\$(CANTERA_INCLUDES) -std=c++11

\$./isentropic

```
mms@titan:~/local/cantera-magma/share/cantera/samples/f77$ ./isentropic
                  0.41845E+01
                                                   0.49751E-02
  0.13047E+02
                                   0.27020E+03
  0.82256E+01
                  0.36786E+01
                                   0.32994E+03
                                                   0.99502E-02
  0.63008E+01
                  0.33959E+01
                                   0.37041E+03
                                                   0.14925E-01
  0.52263E+01
                  0.32002E+01
                                   0.40197E+03
                                                   0.19900E-01
```

9. cantera-magma 설치

```
$ git clone --recursive https://github.com/Cantera/cantera.git
$ mv cantera cantera-magma
$ cd cantera-magma
```

cantera-sundials와는 다르게 cantera-magma는 GPU를 사용하도록 script를 수정해야 한다.

\$ vi src/numerics/CVodesIntegrator.cpp

```
#include <cvodes/cvodes_gpu.h>
#include "cvodes/cvodes_dense.h"
#include "cvodes/cvodes_band.h"
위와 같이 헤더파일 추가한다. (if문 안에 넣으면 안 된다)
```

```
#include "sundials/sundials_types.h"
#include "sundials/sundials_math.h"
#include "sundials/sundials_nvector.h"
#include "nvector/nvector_serial.h"
#include "cvodes/cvodes.h"
#include <cvodes/cvodes_gpu.h>
#include "cvodes/cvodes_dense.h"
#include "cvodes/cvodes_band.h"
```

```
int flag = CVodeInit(m_cvode_mem, cvodes_rhs, m_to, m_y);
아래에 다음과 같이 추가
//GPU (magma) initialization
// CPU vs GPU switch hard-coded for now
int type = 1;
//int type = 0;
flag = CVodesInitGPU(m cvode mem, type);
int flag = CVodeInit(m cvode mem, cvodes rhs, m t0, m y);
 int type = 1;
 //int type = 0;
 flag = CVodesInitGPU(m cvode mem, type);
type이 1일 땐 GPU를 쓰고 0일 땐 CPU를 쓴다.
CVLapackBand를 다음과 같이 수정한다.
    //CVLapackBand(m_cvode_mem, N, nu, nl);
    CVBand(m_cvode_mem, N, nu, nl);
    CVBand(m cvode mem, N, nu, nl);
CVLapackDense를 다음과 같이 수정한다.
     CVDense(m cvode mem, N);
     CVDense(m cvode mem, N);
$ vi SConstruct
defaults.cxxFlags= '-l/usr/local/cuda-9.2/include -l/home/username/src/magma-2.0.2/include'
defaults.cxxFlags = '-I/usr/local/cuda-9.2/include -I/home/kimm/src/magma-2.0.2/include'
sundials libs에 다음과 같이 cuda, magma, cublas 추가한다.
```

env['sundials_libs'] = ['sundials_cvodes', 'sundials_ida', 'sundials_nvecserial','cuda','magma','cublas']
if env['use_lapack'] and LooseVersion(env['sundials_version']) >= LooseVersion('3.0'):

env['sundials_libs'].extend(('sundials_sunlinsollapackdense', 'sundials_sunlinsollapackband'))

env['system_sundials'] ==

if env.get('has_sundials_lapack'):

\$ scons build prefix=\$HOME/local/cantera-magma-test python2_cmd=\$HOME/local/bin/python2.7 python3_package=full python3_cmd=\$HOME/local/bin/python3.6 FORTRAN =gfortran sundials_include=\$HOME/local/sundials-2.5.0-magma/include/sundials_libdir=\$HOME/local/sundials-2.5.0-magma/lib/ env_vars=all extra_inc_dirs=\$HOME/src/magma-2.0.2/include/:/usr/local/cuda-9.2/include/extra_lib_dirs=\$HOME/src/magma-2.0.2/lib/:/usr/local/cuda-9.2/lib64/\$ scons install

< 설치 후 작업 >

cantera-sundials때와 동일하다.

\$ vi ~/local/cantera-2.4.0-magma/bin/setup_cantera

```
#if [ "/home/kimm/local/cantera-2.4.0-magma/lib/python3.6/site-packages" != "" ]; then
# if [ -z $PYTHONPATH ]; then
# PYTHONPATH=/home/kimm/local/cantera-2.4.0-magma/lib/python3.6/site-packages
# else
# PYTHONPATH=/home/kimm/local/cantera-2.4.0-magma/lib/python3.6/site-packages:$PY
THONPATH
# fi
#fi
```

위와 같이 comment out 해준다

\$ vi ~/local/lib/python2.7/site-packages/cantera-magma.pth

type

home/username/local/cantera-2.4.0-magma/lib/python2.7/site-mackages

\$ vi ~/local/lib/python3.6/site-packages/cantera-magma.pth

type

/home/username/local/cantera-2.4.0-magma/lib/python3.6/site-mackages

cantera를 사용하기 전에

\$ source ~/local/cantera-2.4.0-magma/bin/setup_cantera

혹은

\$ vi ~/.bashrc

```
#set alias
alias cantera_basic='source /home/kimms/local/cantera/bin/setup_cantera'
alias cantera_magma='source /home/kimms/local/cantera-magma/bin/setup_cantera'
alias cantera_sundials='source /home/kimms/local/cantera-sundials/bin/setup_cantera'
alias cantera_magma_cpu='source /home/kimms/local/cantera-magma-cpu/bin/setup_cantera'
```

```
위와 같이 별칭을 지정하고
$ cantera magma
```

후 사용해도 된다.

10. cantera ignition test

\$ vi cantera_ingnition_test/gpu/Make.small

```
include /home/kimm/local/cantera-2.4.0-magma/include/cantera/Cantera.mak
cc=gcc
CXX=g++
RM=rm -f
CCFLAGS=-g
CPPFLAGS=$(CANTERA_INCLUDES) -std=c++11
GPU LIBS=-lcuda -L/usr/local/cuda-9.2/lib64 -lmagma -L/home/kimm/src/magma-2.0.2/lib
LDLIBS=$(CANTERA LIBS) $(GPU LIBS)
SRCS=kin_small.cpp
OBJS=$(subst .cpp,.o,$(SRCS))
all: kin small
kin_small: $(OBJS)
        $(CXX) $(LDFLAGS) -o kin_small $(OBJS) $(LDLIBS)
clean:
        $(RM) $(OBJS)
dist-clean: clean
        $(RM) *~
```

위와 같은 Makefile을 만들고

Make.medium, Make.large는 small부분을 medium, large로 바꾸면 된다.

\$vi setup_cantera

source ~/local/cantera-2.4.0-magma/bin/setup_cantera

\$ vi run_small

```
source ~/src/cantera_ignition_test/gpu/setup_cantera
make -f Make.small
./kin_small > out.small
```

위와 같은 파일을 작성하고

\$ source run_small

결과가 out.small에 저장된다.