计 算 方 法

实验一 Lagrange 插值

姓名 郭茁宁

学号 <u>1183710109</u>

院系 计算机科学与技术学院

专业 软件工程

哈尔滨工业大学

实验报告一

1.题目(摘要)

利用拉格朗日插值多项式 $P_n(x)$ 求f(x)的近似值

输 入: n+1个数据点 $(x_k, f(x_k))$, $k=0,1,\cdots,n$;插值点x

输 出: f(x)在插值点x的近似值 $P_n(x)$

- 问题 1: 拉格朗日插值多项式的次数n越大越好吗?
- 问题 2: 插值区间越小越好吗?
- 问题 3:在区间[-1,1]考虑拉格朗日插值问题,为了使得插值误差较小,应如何选取插值节点?
- 问题 4: 考虑拉格朗日插值问题,内插比外推更可靠吗?

2.前言(目的和意义)

目的:利用拉格朗日插值多项式 $P_n(x)$ 求f(x)的近似值

意义:学习根据实际问题建立的数学模型,针对数学模型的特点确定适当的计算方法,编制出计算机能够执行的计算程序,输入计算机,进行调试,完成运算等数值计算的过程。不只会套用教科书中的标准程序进行数值计算,独立地将学过的数值算法编制成计算机程序,灵活应用已经掌握的算法求解综合性较大的课题。理解数值计算程序结构化的思想,提高编程能力,加深对"计算方法"课程内容的理解和掌握,进一步奠定从事数值计算工作的基础。具体可以利用所掌握的"高级语言"顺利地编制出计算机程序,上机实习,完成实验环节的教学要求。不简单地套用现成的标准程序完成实验题目,把重点放在对算法的理解、程序的优化设计、上机调试和计算结果分析上,达到实验课的目的。

3.数学原理

给定平面上n+1个不同的数据点 $(x_k,f(x_k))$, $k=0,1,\cdots,n$, $x_i\neq x_j$, $i\neq j$;则满足条件 $P_n(x_k)=f(x_k), \qquad k=0,1,\cdots,n$

的n次拉格朗日插值多项式

$$P_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$$

是存在唯一的。 若 $x_k \in [a,b], k=0,1,\cdots,n$,且函数f(x)充分光滑,则当 $x \in [a,b]$ 时,有误差估计式

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n), \qquad \xi \in [a, b]$$

4.程序设计流程

核心代码:

```
double x, y = 0.0;
scanf("%lf", &x);
double a[N + 1], b[N + 1];
int n = 0;
while (scanf("%lf%lf", &a[n], &b[n]) >= 2) n++;
n--;
for (int k = 0; k <= n; k++) {
    double l = 1.0;
    for (int j = 0; j <= n; j++) {
        if (j != k) l *= (x - a[j]) / (a[k] - a[j]);
    }
    y += l * b[k];
}
printf("x = %.3lf\ny = %.3lf", x, y);</pre>
```

测试框架 (批量分析):

```
#include <cmath>
#include <cstdio>
#define N1 3 // n amount
#define N2 4 // x amount
int Ns[N1] = \{5, 10, 20\};
double x[N2] = \{-0.95, -0.05, 0.05, 0.95\};
double l = -1.0;
double r = 1.0;
double X(int k, int n) {
    double h = (r - 1) / n;
double Y(double x) { return pow(2.718281828459, x); }
int main() {
    for (int i = 0; i < N2; i++) printf("\tx=%.21f", x[i]);</pre>
    printf("\n");
    for (int i = 0; i < N1; i++) {
        double a[N3 + 1], b[N3 + 1];
        int n = Ns[i];
        for (int k = 0; k \le n; k++) {
            a[k] = X(k, n); // x
            b[k] = Y(a[k]); // y
        printf("n=%d", n);
        for (int p = 0; p < N2; p++) {
            double y = 0.0;
            for (int k = 0; k <= n; k++) {
                double l = 1.0;
                for (int j = 0; j <= n; j++) {
                    if (j != k) 1 *= (x[p] - a[j]) / (a[k] - a[j]);
                y += 1 * b[k];
            printf("\t%.6lf", y);
        printf("\n");
    printf("Actual");
    for (int p = 0; p < N2; p++) printf("\t%.6lf", Y(x[p]));
    return 0;
```

5.实验结果、结论与讨论

问题1

● 拉格朗日插值多项式的次数n越大越好吗?

(1)设 $f(x) = \frac{1}{1+x^2}$, $x \in [-5,5]$, 考虑等距节点的拉格朗日插值多项式 $P_n(x)$, 即将区间[-5,5] 进行n等分,记 $h = \frac{10.0}{n}$, $x_k = -5.0 + k \cdot h$, $k = 0,1,\cdots,n$, 构造 $P_n(x)$, 利用拉格朗日插值多项式 $P_n(x)$ 作为f(x)的近似值。分别取n = 5, n = 10, n = 20, 同时计算 $P_n(x)$ 在x = 0.75,x = 1.75,x = 2.75,x = 3.75,x = 4.75处的函数值。

	x = 0.75	x = 1.75	x = 2.75	x = 3.75	x = 4.75
n = 5	0.528974	0.373325	0.153733	-0.025954	-0.015738
n = 10	0.678990	0.190580	0.215592	-0.231462	1.923631
n = 20	0.636755	0.238446	0.080660	-0.447052	-39.952449
Actual	0.640000	0.246154	0.116788	0.066390	0.042440

(2) 设 $f(x) = e^x$, $x \in [-1,1]$, 考虑等距节点的拉格朗日插值多项式 $P_n(x)$, 即将区间[-1,1]进行n等分,记 $h = \frac{2.0}{n}$, $x_k = -1.0 + k \cdot h$, $k = 0,1,\cdots,n$, 构造 $P_n(x)$, 利用拉格朗日插值多项式 $P_n(x)$ 作为f(x)的近似值。分别取n = 5, n = 10, n = 20,同时计算 $P_n(x)$ 在x = -0.95,x = -0.05,x = 0.05,x = 0.95处的函数值。

	x = -0.95	x = -0.05	x = 0.05	x = 0.95
n = 5	0.386798	0.951248	1.051290	2.585785
n = 10	0.386741	0.951229	1.051271	2.585710
n = 20	0.386741	0.951229	1.051271	2.585710
Actual	0.386741	0.951229	1.051271	2.585710

结论:

拉格朗日插值多项式的次数不是越多越好。在上述实验中n=5或n=10的匹配效果也不错。根据定义,插值点可以在节点处与实际函数匹配,但不能保证在节点之间逼近实际函数,插值次数越高,插值结果越偏离原函数的现象称为多项式摆动 Runge 现象。

问题 2

● 插值区间越小越好吗?

(1)设 $f(x) = \frac{1}{1+x^2}$, $x \in [-1,1]$, 考虑等距节点的拉格朗日插值多项式 $P_n(x)$, 即将区间[-1,1]进行n等分,记 $h = \frac{2.0}{n}$, $x_k = -1.0 + k \cdot h$, $k = 0,1,\cdots,n$, 构造 $P_n(x)$, 利用拉格朗日插值多项式 $P_n(x)$ 作为f(x)的近似值。分别取n = 5, n = 10, n = 20, 同时计算 $P_n(x)$ 在x = -0.95, x = -0.05, x = 0.05, x = 0.95处的函数值。

	x = -0.95	x = -0.05	x = 0.05	x = 0.95
n = 5	0.517147	0.992791	0.992791	0.517147
n = 10	0.526408	0.997507	0.997507	0.526408
n = 20	0.525620	0.997506	0.997506	0.525620
Actual	0.525624	0.997506	0.997506	0.525624

(2) 设 $f(x) = e^x$, $x \in [-5,5]$, 考虑等距节点的拉格朗日插值多项式 $P_n(x)$, 即将区间[-5,5] 进行n等分,记 $h = \frac{2.0}{n}$, $x_k = -1.0 + k \cdot h$, $k = 0,1,\cdots,n$, 构造 $P_n(x)$, 利用拉格朗日插值多项式 $P_n(x)$ 作为f(x)的近似值。分别取n = 5, n = 10, n = 20,同时计算 $P_n(x)$ 在x = -4.75,x = -0.25,x = 0.25,x = 4.75处的函数值。

	x = -4.75	x = -0.25	x = 0.25	x = 4.75
n = 5	1.147035	2.449187	4.290398	123.911405
n = 10	-0.001957	0.776730	2.060874	117.668234
n = 20	0.008652	0.787452	2.071478	117.655762
Actual	0.008652	0.778801	1.284025	115.584285

结论:

在分段段数相同的情况下,插值区间越大,误差越大,原因是在较大的区间里,相较于 更小的空间变化更大,因此越小的区间函数摆动较小、误差较小。

问题 3

● 在区间[-1,1]考虑拉格朗日插值问题,为了使得插值误差较小,应如何选取插值节点? (1)设 $f(x) = \frac{1}{1+x^2}$, $x \in [-1,1]$,考虑非等距节点的拉格朗日插值多项式 $P_n(x)$,记 $x_k = cos\frac{(2k+1)n}{2(n+1)}$,k = 0,1,…,n,构造 $P_n(x)$,利用拉格朗日插值多项式 $P_n(x)$ 作为f(x)的近似值。分别取n = 5,n = 10,n = 20,同时计算 $P_n(x)$ 在x = -0.95,x = -0.05,x = 0.05,x = 0.95处的函数值。

	x = -0.95	x = -0.05	x = 0.05	x = 0.95
n = 5	0.523881	0.987881	0.987881	0.523881
n = 10	0.525682	0.997509	0.997509	0.525682
n = 20	0.525624	0.997506	0.997506	0.525624
Actual	0.525624	0.997506	0.997506	0.525624

(2) 设 $f(x) = e^x$, $x \in [-1,1]$, 考虑非等距节点的拉格朗日插值多项式 $P_n(x)$, 记 $x_k = cos\frac{(2k+1)\pi}{2(n+1)}$, $k = 0,1,\cdots,n$, 构造 $P_n(x)$, 利用拉格朗日插值多项式 $P_n(x)$ 作为f(x)的近似值。分别取n = 5, n = 10, n = 20, 同时计算 $P_n(x)$ 在x = -0.95, x = -0.05, x = 0.05, x = 0.95处的函数值。

	x = -0.95	x = -0.05	x = 0.05	x = 0.95
n = 5	0.386754	0.951272	1.051314	2.585727
n = 10	0.386741	0.951229	1.051271	2.585710
n = 20	0.386741	0.951229	1.051271	2.585710
Actual	0.386741	0.951229	1.051271	2.585710

结论:

两个函数的插值效果都很好,以第一个函数为例。

$$f(x) = \frac{1}{1+x^2}$$
函数和 $x_k = \cos \frac{(2k+1)\pi}{2(n+1)}$ 函数图像如下:

可以看出在f(x)变化较快(斜率较大)的区间内, x_k 取值较多,因此插值效果较好。第二个函数同理。

问题 4

(1) 设 $f(x) = \sqrt{x}$,关于以 $x_0 = 1$, $x_1 = 4$, $x_2 = 9$ 为节点的拉格朗日插值多项式 $P_2(x)$,利用拉格朗日插值多项式 $P_2(x)$ 作为f(x)的近似值。同时计算 $P_2(x)$ 在x = 5,x = 50,x = 115,x = 185处的函数值。

	x = 5.00	x = 50.00	x = 115.00	x = 185.00
Estimate	2.253968	53.111111	892.642857	4159.253968
Actual	2.236068	7.071068	10.723805	13.601471

(2) 设 $f(x) = \sqrt{x}$,关于以 $x_0 = 36$, $x_1 = 49$, $x_2 = 64$ 为节点的拉格朗日插值多项式 $P_2(x)$,利用拉格朗日插值多项式 $P_2(x)$ 作为f(x)的近似值。同时计算 $P_2(x)$ 在x = 5,x = 50,x = 115,x = 185处的函数值。

	x = 5.00	x = 50.00	x = 115.00	x = 185.00
Estimate	2.898998	7.071267	10.883242	16.642857
Actual	2.236068	7.071068	10.723805	13.601471

(3)设 $f(x) = \sqrt{x}$,关于以 $x_0 = 100$, $x_1 = 121$, $x_2 = 144$ 为节点的拉格朗日插值多项式 $P_2(x)$,利用拉格朗日插值多项式 $P_2(x)$ 作为f(x)的近似值。同时计算 $P_2(x)$ 在x = 5,x = 50,x = 115,x = 185处的函数值。

	x = 5.00	x = 50.00	x = 115.00	x = 185.00
Estimate	3.958598	7.180281	10.723574	13.605634
Actual	2.236068	7.071068	10.723805	13.601471

(4)设 $f(x) = \sqrt{x}$,关于以 $x_0 = 169$, $x_1 = 196$, $x_2 = 225$ 为节点的拉格朗日插值多项式 $P_2(x)$,利用拉格朗日插值多项式 $P_2(x)$ 作为f(x)的近似值。同时计算 $P_2(x)$ 在x = 5,x = 50,x = 115,x = 185处的函数值。

	x = 5.00	x = 50.00	x = 115.00	x = 185.00
Estimate	4.821202	7.501888	10.753297	13.601311
Actual	2.236068	7.071068	10.723805	13.601471

结论:

由对比可知,内插时插值收敛于实际函数值,超出内插范围插值会发散,且距离插值区间越远外推误差越大,不同取值时外推的插值也差别巨大,说明外推具有极大不确定性。