Past Year JEE Questions

Questions

Quetion: 01

Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) be a given ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function,

$$\phi\left(t\right) = \frac{5}{12} + t - t^{2}$$
, then $a^{2} + b^{2}$ is equal to

A. 145

B. 126

C. 135

D. 116

Solutions

Solution: 01

Explanation

Given ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b)

Length of latus rectum = $\frac{2b^2}{a}$ = 10

$$\phi(t) = \frac{5}{12} + t - t^2$$

$$=\frac{8}{12}-(t-\frac{1}{2})^2$$

$$\therefore \phi(t)_{\text{max}} = \frac{8}{12} = \frac{2}{3}$$

$$\therefore$$
 eccentricity (e) = $\frac{2}{3}$

Also,
$$e^2 = 1 - \frac{b^2}{a^2}$$

$$\Rightarrow \frac{4}{9} = 1 - \frac{b^2}{a^2}$$

$$\Rightarrow \frac{b^2}{a^2} = \frac{5}{9}$$

$$\Rightarrow \frac{b^2}{a} \times \frac{1}{a} = \frac{5}{9}$$

$$\Rightarrow \frac{5}{a} = \frac{5}{9}$$

$$\Rightarrow a = 9$$

$$\therefore b^2 = 5 \times 9 = 45$$

$$\therefore a^2 + b^2 = 81 + 45 = 126$$