<u>Calculus – Differentiation</u>

1. Introduction

- For 2 triangles (or 2 figures) to be congruent, they must be identities
- For triangles, this means all 3 pairs of corresponding sides and angle must be equal

2. Rules

- a. Basic Rule
- b. Chain Rule
- c. Product Rule
- d. Quotient Rule
- e. Trigonometric Functions
- f. Exponential Functions
- g. Logarithmic Functions

Rule	Differentiation	Integration
1. Basic Rule	$\frac{d}{dx}ax^n = nax^{n-1}$	$\int ax^n dx = \frac{ax^{n+1}}{(n+1)} + C$
2. Chain Rule	$\frac{d}{dx}(ax+b)^n = an(ax+b)^{n-1}$	$\int ax^n dx = \frac{ax^{n+1}}{(n+1)} + C$ $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$
	$\frac{d}{dx}(f(x))^n = n(f(x))^{n-1}f'(x)$	
3. Product Rule	$\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$	
4. Quotient Rule	$\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$ $\frac{d}{dx}uv = u\frac{dv}{dx} + u\frac{dv}{dx}$ $\frac{d}{dx}uv = \frac{v\frac{du}{dx} + u\frac{dv}{dx}}{v^2}$	
5. Trigo.Functio	$\frac{d}{dx}\sin x = \cos x$	$\int \sin x dx = -\cos x + C$
	$\frac{d}{dx}\cos x = -\sin x$	$\int \cos x dx = \sin x + C$
	$\frac{d}{dx}\sin x = \cos x$ $\frac{d}{dx}\cos x = -\sin x$ $\frac{d}{dx}\tan x = \sec^2 x$	$\int \sec^2 dx = \tan x + C$
	$\frac{d}{dx}\sin(ax+b) = a\cos(ax+b)$	$\int \sin(ax+b) dx = -\frac{1}{a} \cos x + C$
	$\frac{d}{dx}\cos(ax+b) = -a\sin(ax+b)$	$\int \cos(ax+b) dx = \frac{1}{a} \sin x + C$
	$\frac{d}{dx}\tan(ax+b) = a\sec^2(ax+b)$	$\int \sec^2(ax+b) dx = \frac{1}{-}\tan(ax+b) + C$
	$\frac{d}{dx}\sin^n x = n\sin^{n-1}\cos x$	$\int \sin^2 x dx = \int \frac{1 - \cos 2x}{2} x dx$
		$= \int \frac{1}{2} - \frac{1}{2} \cos 2x dx$ $= \int \frac{1}{2} - \frac{1}{2} \cos 2x dx$ $= -x - \sin x + c$
	$\frac{d}{dx}\cos^{n}x = -n\cos^{n-1}\sin x$	$= \frac{1}{2}x - \frac{1}{2}\sin x + c$ $\int \cos^2 x dx = \int \frac{1}{2} + \frac{1}{2}\cos 2x dx$
		$=\frac{1}{2}x+\frac{1}{2}\sin x+c$
	$\frac{d}{dx}\tan^n x = n \tan^{n-1} \sec^2 x$	$\int \tan^2 x dx = \int \sec^2 x - 1 dx$
	$\frac{d}{dx}\tan^n x = n \tan^{n-1} \sec^2 x$	

Exponential Functions	$\frac{d}{dx}e^x = e^x$	$\int e^x dx = e^x + c$
	$\frac{d}{dx}e^{ax+b} = ae^{ax+b}$	$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + c$
	$\frac{d}{dx}e^{f(x)} = f'(x)e^x$	
Logarithmic Functions	$\frac{d}{dx}\ln x = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
	$\frac{d}{dx}\ln(ax+b) = \frac{a}{ax+b}$	$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln(ax+b) + c$
	$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$	