ANÁLISE MATEMÁTICA III

Elementos de Análise Complexa

Licenciatura em Engenharias

Universidade Eduardo Mondlane Faculdade de Ciências Departamento de Matemática e Informática

*** 7 de Março de 2022 ***

Contéudo

- Números complexos Introdução
- Funções de uma variável complexa Funções analíticas Funções harmônicas
- Integrais de contorno Propriedades principais do integral de contorno Teoremas fundamentais sobre integrais de contorno
- Séries de números complexos
 - Série de Taylor
 - Série de Laurent
 - Singularidades
 - Método de obtenção de singularidade removível ou pôlos
- Resíduos
 - Cálculo de resíduos
 - Cálculo de resíduos em integrais

Números Complexos

Resumo teórico

O conjunto de números complexos designa-se por $\mathbb C$ e representa a totalidde de todos os pares ordenados (x,y) de números reais x e y, para os quais são definidas as seguintes operações de adição e multiplicação:

Definição

Dados dois números complexos $z_1=(x_1,y_1)$ e $z_2=(x_2,y_2)$, tem-se:

$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \in \mathbb{C}$$

$$z_1 \cdot z_2 = (x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_2) \in \mathbb{C}$$

sendo, também definida a condição de igualdade de z_1 e z_2 :

$$z_1 = z_2$$
, ou seja $(x_1, y_1) = (x_2, y_2)$, sse $x_1 = x_2 \wedge y_1 = y_2$

Nota

Dado um número complexo z=(x,y) diz-se que x é sua parte real e y parte imaginária e escreve-se $x=\operatorname{Re} z,\ y=\operatorname{Im} z.$ Chama-se conjugado de um número complexo z=(x,y) ao número $\bar{z}=(x,-y),$ verifica-se então que $z\cdot\bar{z}=(x^2+y^2,0).$

Respresentação de números complexos

Forma algébrica

$$z=x+iy$$
 e $\bar{z}=x-iy$, sendo que $i^2=-1$.

Forma trigonométrica

$$z = r\left(\cos\varphi + i\sin\varphi\right),\,$$

com $r=|z|, \varphi=\arg z,$ sendo válida a fórmula de Moivre:

$$(\cos \varphi + i \sin \varphi)^p = \cos(p\varphi) + i \sin(p\varphi), p \in \mathbb{Z}$$

Forma exponencial

$$z = r \cdot e^{i\varphi}$$
,

com $r=|z|, \varphi=\arg z$, sendo válida a fórmula de Euler: $e^{i\varphi}=\cos \varphi+i\sin \varphi$.

onde $r=|z|=\sqrt{x^2+y^2}$ é módulo do número complexo dado, $\varphi=\arg z, \ -\pi<\varphi$ é argumento principal do número z.

Operações especiais de números complexos

Argumento principal de um número complexo

$$\varphi = \arg z = \left\{ \begin{array}{rll} \arctan \left(\frac{y}{x}\right) & \mathsf{caso} & x = \mathsf{Re}\,z > 0 \\ \pi + \arctan \left(\frac{y}{x}\right) & \mathsf{caso} & x = \mathsf{Re}\,z < 0 \land y = \mathsf{Im}\,z \geq 0 \\ -\pi + \arctan \left(\frac{y}{x}\right) & \mathsf{caso} & x = \mathsf{Re}\,z < 0 \land y = \mathsf{Im}\,z < 0 \\ \frac{\pi}{2} & \mathsf{caso} & x = \mathsf{Re}\,z = 0 \land y = \mathsf{Im}\,z > 0 \\ -\frac{\pi}{2} & \mathsf{caso} & x = \mathsf{Re}\,z = 0 \land y = \mathsf{Im}\,z < 0 \end{array} \right.$$

Extração de raízes de índice natural

$$\sqrt[n]{z} = \sqrt[n]{r} \left[\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right], n \in \mathbb{N}, k = 0, 1, 2, \dots, (n - 1)$$

Elevação a um expoente racional

$$\sqrt[n]{z^p} = \sqrt[n]{r^p} \left[\cos \frac{p \cdot \varphi + 2\pi k}{n} + i \sin \frac{p\varphi + 2\pi k}{n} \right], p \in \mathbb{Z}, n \in \mathbb{N}, k = 0, 1, 2, \dots, (n-1) \right]$$

LE (UEM-FC-DMI) Alex Marime

Operações gerais de números complexos

Sobre dois números complexos dados na forma algébrica, isto é, $z_1=x_1+iy_1$ e $z_2=x_2+iy_2$, efectuam-se as seguintes operações:

Adição

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

Multiplicação

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$$
$$z \cdot \bar{z} = x^2 + y^2$$

O Divisão

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \bar{z_2}}{z_2 \cdot \bar{z_2}} = \frac{z_1 \cdot \bar{z_2}}{x^2 + y^2}, \quad (x_2, y_2) \neq (0, 0)$$

Dado $\left(\frac{3-i}{1-2i}\right)^3$, efectue operações com números complexos e apresente a solução na forma algébrica.

Resolução: Fazendo o conjugado do denominador, da expressão dentro de parentesis, temos

$$\left(\frac{3-i}{1-2i}\right)^3 = \left[\frac{(3-i)\cdot(1+2i)}{(1-2i)\cdot(1+2i)}\right]^3$$
$$= \left(\frac{5+5i}{5}\right)^3$$
$$= (1+i)^3$$
$$= -2+2i$$

Ache os valores de raízes e potências de expoente racional de $\sqrt{2-2\sqrt{3}i}$.

Resolução:

Atendendo a que $|2-2\sqrt{3}i|=4$, $\arg\left(2-2\sqrt{3}i\right)=\arctan\left(\frac{(-2\sqrt{3})}{2}=-\frac{\pi}{3}$, obtemos $2-2\sqrt{3}i=4\left[\cos\left(-\frac{\pi}{2}\right)+i\sin\left(-\frac{\pi}{2}\right)\right].$

A seguir, achamos

$$z = \sqrt{2 - 2\sqrt{3}i} = \sqrt{4\left[\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right]}$$
$$= 2\left[\cos\left(\frac{-\frac{\pi}{3} + 2\pi k}{2}\right) + i\sin\left(\frac{-\frac{\pi}{3} + 2\pi k}{2}\right)\right], \quad k = 0, 1.$$

Para,

 $k=0\,$ obtemos a raíz

$$z_1 = 2\left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right] = \sqrt{3} - i$$

k=1 obtemos a raíz

$$z_2 = 2\left[\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right] = -\sqrt{3} + i$$

Resolver a equação $z^4 + 4 = 0$.

Resolução:

Da equação resulta que $z^4=-4$ ou $z=\sqrt[4]{-4}.$ Atendendo a que |-4|=4 e arg $(-4)=\pi,$ obteremos

$$z = \sqrt[4]{4\left[\cos\pi + i\sin\pi\right]} = \sqrt{2}\left[\cos\left(\frac{\pi + 2\pi k}{4}\right) + i\sin\left(\frac{\pi + 2\pi k}{4}\right)\right].$$

Em seguida, fazendo k=0,1,2,3, obtém-se todas raízes da equação dada:

$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = 1 + i, \qquad z_2 = \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right) = -1 + i$$

$$z_3 = \sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right) = -1 - i, \quad z_4 = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right) = 1 - i$$

Conjunto do plano complexo

Propriedades e definição

Qualquer conjunto \mathbf{D} do conjunto dos números complexos $\mathbb C$ representa por sua vez, um conjunto dos números complexos que pode ser interpretado graficamente sobre o plano complexo sob a forma de uma totalidade dos pontos de modo que entre em cada número complexo e a sua imagem geométrica exista uma correspondência biunívoca. Assim, falando de um conjunto \mathbf{D} dos números complexos, pode-se subentender o conjunto respectivo dos pontos sobre o plano complexo e vice-versa.

Exemplo

Identifique a linha determinada pela equação complexa $\sqrt{2} \cdot |z| = \operatorname{Re} z + 1$.

Resolução:

A equação da curva dada $|z|=\sqrt{x^2+y^2}$ e $\operatorname{Re} z=x,$ obteremos

$$\sqrt{2} \cdot \sqrt{x^2 + y^2} = x + 1$$
 ou $2(x^2 + y^2) = x^2 + 2x + 1, x \ge -1.$

Depois das transformações simples levaremos esta equação para a forma $\frac{(x-1)^2}{2} + \frac{y^2}{1} = 1, \text{ que representa uma elipse.}$

Funções de uma variável complexa

12 / 47

Funções de uma variável complexa

Consideremos uma função $f \colon \mathbf{D} \to \mathbb{C}$, onde \mathbf{D} é um subconjunto de \mathbb{C} . A função f diz-se uma função complexa de uma variável complexa.

Trata-se de uma correspondência que associa a cada elemento $z \in \mathbf{D}$ um único elemento w no plano complexo (designado por imagem de z por f ou valor de f em z):

$$w = f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

onde u(x,y) e v(x,y) são funções reais de duas variáveis reais x e y, designadas por parte real (u(x,y)) e parte imaginária (v(x,y)) de f(z), respectivamente. O conjunto $\mathbf{D}\subseteq\mathbb{C}$ é designado por domínio de f e o conjunto das imagens w é designado por contradomínio de f.

Determine a imagem da recta Re(z) = 1 sob a função $w = f(z) = z^2$.

Resolução:

Sabe-se que w=u+iv. Temos que $w=f(z)=(x+iy)^2=(x^2-y^2)+2xyi$. Para x=1 teremos que $u=1-y^2$ e v=2y, onde $y=\frac{v}{2}$. Deste modo, $u=1-\frac{v^2}{4}$. Significa que a recta $\mathrm{Re}(z)=1$ representa uma parábola sob o plano $w=f(z)=z^2$.

Funções analíticas

Definição

Suponha que a função f seja definida em alguma vizinhança de z_0 , excepto possivelmente no próprio z_0 . Então é dito possuir um limite em z_0 , isto é, $\lim_{z \to z_0} f(z) = L$ se, para cada $\varepsilon > 0$, existir um $\delta > 0$ tal que $|f(z) - L| < \varepsilon$ sempre que $0 < |z - z_0| < \delta$. Uma função f é contínua em um ponto z_0 se $\lim_{z \to z_0} f(z) = f(z_0)$.

Seja f(z) uma função, definida numa região **R** (conjunto aberto e conexo). Diz-se que f(z) é **derivável num ponto** $z\in\mathbb{R}$, se

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = f'(z).$$

Equações de Cauchy-Riemann

Definição

Diz-se que uma função f(z) é analítica numa região **R**, se ela é derivável em cada ponto de **R**. Diz-se que f(z) é analítica num ponto z_0 , se ela é analítica numa região contendo z_0 .

Para que uma função f(z)=u(x,y)+iv(x,y) seja analítica numa região ${\bf R}$ é necessário e suficiente que nessa região sejam deriváveis as funções $u(x,y) = \operatorname{Re} f(z)$, $v(x,y) = \operatorname{Im} f(z)$ e estejam satisfeitas em **R** as equações de Cauchy-Riemann:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Verifique se a função $f(z)=rac{x}{x^2+y^2}-irac{y}{x^2+y^2}$ é analítica.

Resolução:

Temos que

$$\frac{\partial u}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial v}{\partial y}$$

е

$$\frac{\partial u}{\partial y} = -\frac{2xy}{(x^2 + y^2)^2} = -\frac{\partial v}{\partial x}.$$

São satisfeitas as condições de Cauchy-Riemann, excepto no ponto onde $x^2+y^2=0,$ isto é, em z=0.

Funções harmônicas

Uma função f(z) analítica numa região **R** possui as derivadas de todas ordens em **R** e essas derivadas, por sua vez, são, também, analíticas em R. Neste caso as funções $u(x,y) = \operatorname{Re} f(z), v(x,y) = \operatorname{Im} f(z)$ possuem em R derivadas parciais contínuas de qualquer ordem, e representam funções harmónicas conjugadas, satisfazendo a equação de Laplace, isto é,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{e} \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

Esta propriedade permite recuperar uma função analítica através da sua parte real ou imaginária, a saber. Caso ser dada só a parte real u(x,y) de uma função analítica f(z) = u(x,y) + iv(x,y), a sua parte imaginária v(x,y) pode-se obter através de u(x,y)do modo seguinte:

$$v(x,y) = -\int_{x_0}^x u_y'(x,y_0)dx + \int_{y_0}^y u_x'(x,y)dy + C$$

Funções harmônicas

Uma função f(z) analítica numa região ${\bf R}$ possui as derivadas de todas ordens em ${\bf R}$ e essas derivadas, por sua vez, são, também, analíticas em ${\bf R}$. Neste caso as funções $u(x,y)={\bf Re}\,f(z),v(x,y)={\bf Im}\,f(z)$ possuem em ${\bf R}$ derivadas parciais contínuas de qualquer ordem, e representam funções harmónicas conjugadas, satisfazendo a equação de Laplace, isto é,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \mathrm{e} \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

Esta propriedade permite recuperar uma função analítica através da sua parte real ou imaginária, a saber. Caso ser dada só a parte real u(x,y) de uma função analítica f(z)=u(x,y)+iv(x,y), a sua parte imaginária v(x,y) pode-se obter através de u(x,y) do modo seguinte:

$$v(x,y) = -\int_{x_0}^x u_y'(x,y_0)dx + \int_{y_0}^y u_x'(x,y)dy + C$$

onde C é constante de integração, (x_0,y_0) é ponto inicial de integração no qual a função u(x,y) é derivável.

Analogamente, a parte real u(x,y) pode ser recuperada através da parte imaginária v(x,y) :

$$u(x,y) = \int_{x_0}^x v_y'(x,y_0) dx - \int_{y_0}^y v_x'(x,y) dy + C$$

LE (UEM-FC-DMI)

Provar que a função $v(x,y)=x-\arctan\frac{y}{x}, x>0$ é parte imaginária de uma função analítica f(z) = u(x, y) + iv(x, y) e obter esta função.

Resolução:

Temos que

$$\frac{\partial^2 v}{\partial x^2} = -\frac{2xy}{(x^2+y^2)^2} \quad \text{e} \quad \frac{\partial^2 v}{\partial y^2} = \frac{2xy}{(x^2+y^2)^2} \quad \Rightarrow \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

Logo, v(x,y) satisfaz a equação de Laplace e, então, é função harmónica o que prova que ela é parte imaginária de uma função analítica f(z) = u(x,y) + iv(x,y). Vamos encontrar a parte real de f(z), tomando um ponto arbitrário $(x_0, y_0) = (1, 0)$:

$$u(x,y) = \int_{1}^{x} v'_{y}(x,0)dx - \int_{0}^{y} v'_{x}(x,y)dy + C$$
$$= -\int_{1}^{x} \frac{1}{x}dx - \int_{0}^{y} \left(1 + \frac{y}{x^{2} + y^{2}}\right)dy + C$$
$$= -y - \ln\sqrt{x^{2} + y^{2}} + C.$$

Assim, a função analítica f(z) é dada da seguinte forma

$$f(z) = \left(-y - \ln\sqrt{x^2 + y^2} + C\right) + i\left(x - \arctan\frac{y}{x}\right), \quad x > 0.$$

LE (UEM-FC-DMI)

Integrais de Contorno

20 / 47

Integrais de contorno

Definição

Chama-se **arco contínuo** sobre o plano complexo a um conjunto de pontos Γ , definido na forma $z(t)=x(t)+iy(t), a\leq t\leq b,$ onde x(t),y(t) são funções de parâmetro real t contínuas num intervalo $[a,b]\subset\mathbb{R}.$ Os pontos z(a) e z(b) chamam-se extremidades do arco $\Gamma.$

Definição

Um arco $\Gamma\colon z=z(t)=x(t)+iy(t), a\leq t\leq b$ diz-se **arco regular,** se a derivada z'(t)=x'(t)+iy'(t) existe, é contínua e não se anula em [a,b].

Definição

Seja f(z)=u(x,y)+iv(x,y) uma função contínua sobre um contorno orientado $\Gamma^+\colon z=z(t)=x(t)+iy(t),\ a\leq t\leq b.$ Então, o integral da função f(z) ao longo do contorno Γ^+ calcula-se conforme a fórmula:

$$\int_{\Gamma^+} f(z)dz = \int_a^b f[z(t)]z'(t)dt.$$

Calcule o integral $\int \left(\operatorname{Re} z - i\overline{z} \right) dz$ considerando dois contornos diferentes que ligam os pontos $z_1=0$ e $z_2=-1+i$ e que são orientados no sentido de z_1 para z_2 sobre o segmento da recta y = -x.

Resolução: A equação paramétrica, que passa em dois pontos é dado por $\frac{z-z_1}{z_2-z_1}=t$, assim $[z_1, z_2]$ é z = z(t) = t(-1+i), 0 < t < 1, sendo $\text{Re } z = -t, \overline{z} = t(-1-i)$, dz = (-1+i)dt. Então

$$\begin{split} \int_{\Gamma} \left(\operatorname{Re} z - i \overline{z} \right) dz &= \int_{0}^{1} [-t - i t (-1 - t)] (-1 + i) dt \\ &= (-1 + i) (-2 + i) \int_{0}^{1} t dt \\ &= \frac{1}{2} (1 - 3i). \blacksquare \end{split}$$

Propriedades principais do integral de contorno

Propriedade de linearidade

$$\int_{\Gamma} [k_1 f(z) + k_2 g(z)] dz = k_1 \int_{\Gamma} f(z) dz + k_2 \int_{\Gamma} g(z) dz$$

onde k_1 e k_2 são constantes.

Propriedade de aditividade

$$\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(z)dz + \int_{\Gamma_2} f(z)dz$$

sendo $\Gamma = \Gamma_1 \cup \Gamma_2, \Gamma_1 \cap \Gamma_2 = \emptyset$.

Dependência do integral da orientação do contorno de integração

$$\int_{\Gamma^-} f(z)dz = -\int_{\Gamma^+} f(z)dz$$

Teoremas fundamentais sobre integrais de contorno

Teorema (Teorema 1)

Seja f(z) uma função analítica numa região simplesmente conexa ${\bf R}$ e seja Γ um contorno fechado simples, todo contido em ${\bf R}$. Então

$$\oint_{\Gamma} f(z)dz = 0.$$

Teorema (Teorema 2)

Seja f(z) uma função analítica numa região simplesmente conexa ${\bf R}$ e sejam z_1,z_2 dois pontos interiores de ${\bf R}$. Então, integral da função f(z) é independente do contorno de integração que em ${\bf R}$ une os pontos z_1 e z_2 , e calcula-se pela fórmula de Newton-Leibniz

$$\int_{z_1}^{z_2} f(z)dz = F(z)\Big|_{z_1}^{z_2} = F(z_2) - F(z_1),$$

onde F(z) é primitiva de f(z), isto é F'(z) = f(z).

←□ → ←部 → ← 差 → ← 差 → − 差

24 / 47

Teoremas fundamentais sobre integrais de contorno

Teorema (Teorema 3)

Seja f(z) uma função analítica numa região ${\bf R}$ e sejam $\Gamma, \gamma_1, \gamma_2, \ldots, \gamma_n$, contornos fechados simples, todos contidos em ${\bf R}$ de modo que os contornos $\gamma_1, \gamma_2, \ldots, \gamma_n$, sendo exteriores um a outro, se encontrem no interior de Γ . Então,

$$\oint_{\Gamma^+} f(z)dz = \oint_{\gamma_1} f(z)dz + \oint_{\gamma_2} f(z)dz + \dots + \oint_{\gamma_n} f(z)dz.$$

Teoremas fundamentais sobre integrais de contorno

Teorema (Fórmula Integral de Cauchy)

Suponha-se que f(z) uma função analítica em todos os pontos situados no interior e sobre um contorno fechado simples $\Gamma,$ e seja z_0 um ponto interior a $\Gamma.$ Enão, é válida a Fórmula Integral de Cauchy

$$f(z_0) = \frac{1}{2\pi i} \oint_{\Gamma^+} \frac{f(z)}{(z - z_0)} dz$$

Teorema (Teorema Integral de Cauchy Generalizado)

Se uma função f(z) é analítica em todos os pontos situados no interior e sobre um contorno fechado simples Γ , então f(z) possui derivadas de todas ordens em qualquer ponto z_0 no interior a Γ , dadas pela fórmula

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\Gamma^+} \frac{f(z)}{(z - z_0)^{n+1}} dz, \quad n = 1, 2, 3, \dots$$

26 / 47

Calcule o integral $\int_{\Gamma^-} \frac{z+i}{z-i} \, dz$, onde o contorno Γ^- representa a semi-circunferência |z-i|=1, $\operatorname{Im} z \geq 1$, orientada no sentido negativo.

Resolução: A semi-circunferência Γ^- , sendo orientada no sentido negativo, ou seja, percorrida no sentido horário, pode ser definida pela seguinte equação paramétrica

$$z = i + e^{i(\pi - \varphi)}$$
 ou $z = i - e^{-i\varphi}$, $0 \le \varphi \le \pi$.

Atendendo a que $dz = -ie^{-i\varphi}d\varphi$, achamos

$$\int_{\Gamma^{-}} \frac{z+i}{z-i} dz = \int_{0}^{\pi} \frac{2i - e^{-i\varphi}}{-e^{-i\varphi}} \cdot ie^{-i\varphi} d\varphi$$
$$= \int_{0}^{\pi} \left(2 + ie^{-\varphi}\right) d\varphi$$
$$= 2(\pi + 1) \blacksquare$$

LE (UEM-FC-DMI) Página 28

Calcule os integrais dados, utilizando a Fórmula Integral de

$${\it Cauchy} \oint_{\Gamma^+} \frac{\sin z}{(z+1)(z-i)} dz, \quad \Gamma\colon |z| = 2$$

Resolução: A função subintegral é analítica em todos os pontos, situados no interior e sobre o contorno Γ , excepto os pontos $z_1 = -1$ e $z_2 = i$.

$$\mathcal{I} = \oint_{\Gamma^{+}} \frac{\sin(z)dz}{(z+1)(z-i)} = \oint_{\Gamma^{+}_{1}} \frac{\sin(z)dz}{(z+1)(z-i)} + \oint_{\Gamma^{+}_{2}} \frac{\sin(z)dz}{(z+1)(z-i)}$$

$$= \oint_{\Gamma^{+}_{1}} \frac{\frac{\sin(z)}{z-i}}{z-(-1)} dz + \oint_{\Gamma^{+}_{2}} \frac{\frac{\sin(z)}{z+1}}{z-i} dz$$

$$= \oint_{\Gamma^{+}_{1}} \frac{f_{1}(z)}{z-z_{1}} dz + \oint_{\Gamma^{+}_{2}} \frac{f_{2}(z)}{z-z_{2}} dz$$

$$= \mathcal{I}_{1} + \mathcal{I}_{2}$$

onde os contornos fechados simples Γ_1,Γ_2 envolvem uma vez no sentido positivo respectivamente os pontos $z_1=-1$ e $z_2=i$, são exteriores um a outro e são todos contidos no interior do contorno Γ .

←□ → ←□ → ←□ → ←□ → →□

Continuação da resolução do exemplo anterior

Primeiro, vamos calcular \mathcal{I}_1 :

$$\mathcal{I}_1 = \oint_{\Gamma_1^+} \frac{f_1(z)dz}{z - (-1)},$$

onde $f_1(z)=rac{\sin(z)}{z-i}$ é função analítica no interior do contorno Γ_1 . Conforme a Fórmula Integral de Cauchy obtemos:

$$\mathcal{I}_1 = 2\pi i \cdot f_1(-1) = 2\pi i \frac{\sin(-1)}{-1 - i} = \pi(1 + i) \sin 1$$

De modo análogo, achamos para $f_2(z) = \frac{\sin(z)}{z-i}$

$$\mathcal{I}_{2} = \oint_{\Gamma_{2}^{+}} \frac{f_{2}(z)dz}{z+1} = 2\pi i \left(\frac{\sin z}{z+1}\right)\Big|_{z=i} = \pi(-1+i) \sinh 1$$

tendo em conta que $\overline{\sin(iz)=i\cdot \sin(z)}$. Logo,

$$\mathcal{I}_1 + \mathcal{I}_2 = \pi[(\sin 1 - \sin 1) + i(\sin 1 + \sin 1)].$$

LE (UEM-FC-DMI) Página 30 Alex Marime

$$\oint_{\Gamma^+} \frac{\cos 2z}{(z+i)^3} dz, \quad \Gamma \colon |z| = 3$$

 $oxed{{\bf Resolução:}}$ A função subintegral é analítica em todos pontos excepto no ponto z=-i. Portanto, segundo o Teorema 3.5

$$\oint_{\Gamma^{+}} \frac{\cos(2z)}{(z+i)^{3}} dz = \oint_{\Gamma^{+}} \frac{\cos(2z)}{[z-(-i)]^{2+1}} dz$$

$$= \frac{2\pi i}{2!} \cdot \frac{d^{2}}{dz^{2}} [(\cos 2z)] \Big]_{z=-i}$$

$$= \frac{2\pi i}{2!} \cdot (-4\cos 2z) \Big]_{z=-i}$$

tendo em conta que $\cos(iz) = \cosh(z)$. Assim,

$$\oint_{\Gamma^+} \frac{\cos 2z}{(z+i)^3} dz = -4\pi i \operatorname{ch} 2$$

LE (UEM-FC-DMI) Página 31 Alex Marime

SÉRIES DE NÚMEROS COMPLEXOS

Teorema (Teorema de Taylor)

Toda função f(z) analítica num disco $z\colon |z-z_0| < R,$ com $0 < R \le \infty,$ pode ser desenvolvida neste disco de um único modo em série de potências de $(z-z_0)$:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad |z - z_0| < R,$$
(1)

A série (1) chama-se Série de Taylor da função f(z) com centro no ponto z_0 . Caso particular $z_0=0$ obtem-se a série de Mac-Laurin:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n, \quad |z| < R.$$

Seja
$$f(z)=\frac{1}{1-z}$$
. A função f é analítica e $f^{(n)}(z)=\frac{n!}{(1-z)^{n+1}}$. Logo $f^{(n)}(0)=n!$. Então a série de Taylor é

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{\infty} z^n,$$
 (2)

para |z| < 1.

Desenvolvimentos notáveis, com $z_0 = 0$:

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C};$$
 (3)

$$\sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^{2n-1}}{(2n-1)!}, \quad z \in \mathbb{C};$$
 (4)

$$\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}, \quad z \in \mathbb{C};$$
 (5)

$$\operatorname{sh}(z) = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots = \sum_{n=1}^{\infty} \frac{z^{2n-1}}{(2n-1)!}, \quad z \in \mathbb{C};$$
 (6)

$$\operatorname{ch}(z) = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \quad z \in \mathbb{C};$$
 (7)

$$\ln(z+1) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n, \quad |z| < 1;$$
 (8)

$$\frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots = \sum_{n=1}^{\infty} (-1)^n z^n, \quad |z| < 1;$$
 (9)

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots = \sum_{n=1}^{\infty} z^n, \quad |z| < 1;$$

Teorema (Teorema de Laurent)

Toda função f(z) analítica no interior de uma coroa circular $z\colon r<|z-z_0|< R$ pode ser desenvolvida de um único modo em série de potências de $(z-z_0)$ da forma seguinte

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n, \quad r < |z - z_0| < R,$$
(11)

onde os coeficientes c_n calculam-se pelas fórmulas

$$c_n = \frac{1}{2\pi i} \oint_{\Gamma^+} \frac{f(\tau)d\tau}{(\tau - z_0)^{n+1}},$$

sendo Γ um contorno fechado simples todo contido na coroa circular e que envolve o ponto z_0 uma vez no sentido positivo.

A esta série (11) denomina-se Série de Laurent da função f(z) com centro no ponto z_0 .

LE (UEM-FC-DMI) Página 36 Alex Marime

A série de Laurent representa uma generalização da série de Taylor e pode ser escrita na forma da soma de uma série de potências de $(z-z_0)$ com expoentes positivos e de uma série de potências de $(z-z_0)$ com expoentes negativos, que são chamadas, respectivamente, **parte regular** 1 (ou analítica) e **parte singular** (ou principal) da série de Laurent, a saber:

$$\sum_{n=-\infty}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}$$
$$= \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n}$$

LE (UEM-FC-DMI) Pägina 37 Alex Marime

Exemplo de expanção da série de Laurent

Resolução:

(a) Podemos reescrever a função f(z) como $f(z)=-\frac{1}{z}\cdot\frac{1}{1-z}$, aplicando o desenvolvimento obtido em (2) temos, $f(z)=-\frac{1}{z}\left[1+z+z^2+z^3+\cdots\right]$. A série converge para |z|<1. Porém, após a multiplicação deste desenvolvimento por $\frac{1}{z}$, a série resultante é

$$f(z) = -\frac{1}{z} - 1 - z - z^2 - \cdots$$

converge para 0 < |z| < 1.

- (b) Seja 1<|z|, construindo a série que seja convergente para |1/z|<1. Assim reescrevemos a função, como $f(z)=\frac{1}{z^2}\cdot\frac{1}{1-\frac{1}{z}}$ usando a (2) substituíndo z por 1/z:
- $f(z)=\frac{1}{z^2}\left[1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}+\cdots\right]. \text{ A s\'erie converge para }\left|\frac{1}{z}\right|<1, \text{ ou de modo equivalente, para }1<|z|. \text{ Logo, a s\'erie de Laurent \'e}$

$$f(z) = \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \frac{1}{z^5} + \cdots$$

Exemplo de expanção da série de Laurent

Expanda $f(z)=rac{1}{z(z-1)}$ em séries de Laurent válida para (a) 0<|z|<1 e (b) 1<|z|.

Resolução:

(a) Podemos reescrever a função f(z) como $f(z)=-\frac{1}{z}\cdot\frac{1}{1-z}$, aplicando o desenvolvimento obtido em (2) temos, $f(z)=-\frac{1}{z}\left[1+z+z^2+z^3+\cdots\right]$. A série converge para |z|<1. Porém, após a multiplicação deste desenvolvimento por $\frac{1}{z}$, a série resultante é

$$f(z) = -\frac{1}{z} - 1 - z - z^2 - \cdots$$

converge para 0 < |z| < 1.

(b) Sēja 1<|z|, construindo a série que seja convergente para |1/z|<1. Assim reescrevemos a função, como $f(z)=\frac{1}{z^2}\cdot\frac{1}{1-\frac{1}{z}}$ usando a (2) substituíndo z por 1/z:

$$f(z)=\frac{1}{z^2}\left[1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}+\cdots\right]. \text{ A s\'erie converge para }\left|\frac{1}{z}\right|<1, \text{ ou de modo equivalente, para }1<|z|. \text{ Logo, a s\'erie de Laurent \'e}$$

$$f(z) = \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \frac{1}{z^5} + \cdots$$

Singularidades e classificação de singularidades

Definição

Seja f uma função complexa de variável complexa. Diz-se que z_0 é um ponto singular de f (ou que f tem no ponto z_0 uma singularidade) se f não é analítica em z_0 (podendo existir em qualquer vizinhança de z_0 pontos onde a função é analítica).

Se existe uma vizinhança de z_0 onde f é analítica, excepto no ponto z_0 , então o ponto singular z_0 diz-se um ponto singular isolado (ou uma singularidade isolada).

Exemplo

A função
$$f(z)=\frac{1}{z(z^2+4)}$$
 tem pontos singulares isolados em $z=0, z=2i$ e $z=-2i$.

1^0 método de classificar pontos singulares

 $lackbox{0}$ Se todos os coeficientes c_{-n} da parte singular são nulos, quer dizer, se a série de Laurent tem só a parte regular, então, o ponto z_0 diz-se sigularidade removível da função f(z). Neste caso tem-se:

$$\lim_{z \to z_0} f(z) = L \neq \infty.$$

 $oldsymbol{\circ}$ Se a parte singular da série de Laurent contém um número finito k de termos, então o ponto singular z_0 é denominado pôlo de ordem k da função f(z). A função f(z) neste caso pode ser apresentada na forma

$$f(z) = \frac{\varphi(z)}{(z-z_0)^k}$$
, sendo $\lim_{z \to z_0} \varphi(z) = L \neq 0$; ∞

e verifica a condição

$$\lim_{z \to z_0} (z - z_0)^k \cdot f(z) = L \neq 0; \infty.$$

Um pôlo de primeira ordem k=1 chama-se pôlo simples.

§ Se na parte singular da série de Laurent há número infinito de termos, então, diz-se que z_0 é singularidade essencial da função f(z).

2^0 método de classificar pontos singulares

Para identificar uma singularidade removível ou um pôlo de uma função f(z) pode se, também, utilizar o seguinte critério. Seja

$$f(z) = \frac{h(z)}{\varphi(z)}.$$

Suponha-se que um ponto z_0 representa "zero²" de ordem k do numerador h(z) e "zero" de ordem m do denominador $\varphi(z)$. Então,

- **1** Caso $k \ge m$ o ponto z_0 é uma singularidade removível de f(z);
- **2** Caso k < m o ponto z_0 é pôlo de ordem (m-k) de f(z).

Definição

Diz-se que um ponto z_0 é "zero" de ordem n de uma função f(z) se

$$f(z_0) = 0, f'(z_0) = 0, f''(z_0) = 0, \dots, f^{(n-1)}(z_0) = 0, \text{ mas } f^{(n)}(z_0) \neq 0.$$

²Zero da função

Exemplo

Ache os pontos singulares finitos de $f(z) = \frac{\ln(1+z)}{(z-i)z^4}$ e caracterize-os.

Resolução:

A função tem dois pontos singulares isolados $z_1 = i$ e $z_2 = 0$.

A singularidade $z_1=i$ é pôlo de primeira ordem, ou seja, pôlo simples de f(z), pois

$$\lim_{z \to z_1} (z - z_1) f(z) = \lim_{z \to i} (z - i) \frac{\ln(1 + z)}{(z - i)z^4} = \lim_{z \to i} \frac{\ln(1 + z)}{z^4} = \ln(1 + i) \neq 0; \infty.$$

E no ponto singular $z_2 = 0$ cumpre-se:

$$\lim_{z \to z_2} (z - z_2)^3 f(z) = \lim_{z \to 0} z^3 \frac{\ln(1+z)}{(z-i)z^4} = i \lim_{z \to 0} \frac{\ln(1+z)}{z} = i \neq 0; \infty.$$

Logo, o ponto $z_2 = 0$ é pôlo tripo de f(z).

Resíduos

Resíduos

Seja f(z) uma função analítica no interior de um disco $\mathcal D$ com o centro num ponto z_0 , excluindo o próprio z_0 . Suponhamos que z_0 seja um ponto singular isolado de f(z). Chama-se resíduo da função f(z) em z_0 ao número $\operatorname{Res} f(z_0)$ onde

$$\operatorname{Res} f(z_0) = \frac{1}{2\pi i} \oint_{\Gamma^+} f(z) dz,$$

onde Γ^+ é um contorno fechado simples todo contido em $\mathcal D$ e que envolve o ponto z_0 uma vez no sentido positivo.

Desta definição resulta que o resíduo de uma função f(z) num ponto singular isolado é igual ao coeficiente c_{-1} da série de Laurent de f(z) na vizinhança de z_0 , isto é,

$$\operatorname{Res} f(z_0) = c_{-1}.$$

O resíduo de uma função f(z) no ponto no infinito é dado por

$$\operatorname{Res} f(\infty) = \frac{1}{2\pi i} \oint_{\Gamma^{-}} f(z) dz,$$

onde Γ^- é um contorno fechado simples envolvendo todos os pontos singulares finitos de f(z) uma vez no sentido negativo.

Desta definição resulta que

$$\operatorname{Res} f(\infty) = -\frac{1}{2\pi i} \oint_{\Gamma^+} f(z) dz = -c_{-1},$$

sendo que c_{-1} é coeficiente da série de Laurent da função f(z) na vizinhança do ponto $z=\frac{1}{2}$

Exemplo de cálculo de resíduos

Classifique a sigularidade e calcule o resíduo no ponto singular encontrado $f(z)=\frac{\sin 2z}{z^4}.$ Resolução:

Cálculo de resíduos em integrais

- Suponhamos que z_0 seja singularidade removível de f(z). Então, Res $f(z_0) = 0$;
- 2 Seja z_0 pôlo simples de f(z). Então, o resíduo calcula-se pela fórmula:

Res
$$f(z_0) = \lim_{z \to z_0} [(z - z_0)f(z)];$$

Seja z_0 pôlo múltiplo de ordem k, então, o resíduo calcula-se pela fórmula:

$$\operatorname{Res} f(z_0) = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1}}{dz^{k-1}} \left[(z - z_0)^k f(z) \right];$$

a Suponhamos que z_0 seja uma singularidade essencial de f(z). Para achar **Res** $f(z_0)$ neste caso é preciso determinar o coeficiente c_{-1} no desenvolvimento da série de Laurent de f(z)na vizinhança do ponto z_0 . Então,

Res
$$f(z) = c_{-1}$$
;

6 Para encontrar o resíduo da função f(z) no ponto infinito é necessário desenvolver f(z) em série de Laurent na vizinhança do ponto $z=\infty$ e determinar o coeficiente c_{-1} . Então,

$$\operatorname{Res} f(\infty) = -c_{-1}.$$

Exemplo

Calcule o integral, aplicando o teorema sobre resíduos $\oint_{\Gamma^+} \frac{\cos(z)}{z^2(e^{iz}+1)} dz$, $\Gamma\colon |z-3|=4$.

Resolução: A função subintegral $f(z)=\frac{\cos(z)}{z^2(e^{iz}+1)}$ é analítica em todos pontos, situados no interior e sobre o contorno Γ , excepto em dois pontos singulares $z_1=0$ e $z_2=\pi$, logo

$$\mathcal{I} = \oint_{\Gamma^+} \frac{\cos(z)}{z^2(e^{iz}+1)} dz = 2\pi i \left[\operatorname{Res} f(0) + \operatorname{Res} f(\pi) \right]$$

As singularidades $z_1=0$ é pôlo duplo, enquanto que, $z_2=\pi$ é pôlo simples de f(z).

$$\begin{aligned} \operatorname{Res} f(0) &= \frac{1}{1!} \lim_{z \to 0} \frac{d}{dz} \left[(z^2 f(z)) \right] \\ &= \lim_{z \to 0} \frac{d}{dz} \left[\frac{\cos(z)}{e^{iz} + 1} \right] \\ &= \lim_{z \to 0} \frac{-\sin(z) \cdot (e^{iz} + 1) - i\cos(z) \cdot e^{iz}}{(e^{iz} + 1)^2} \\ &= -\frac{i}{4}; \end{aligned}$$

$$\begin{split} \operatorname{Res} f(\pi) &= \lim_{z \to \pi} \left[(z - \pi) f(z) \right] \\ &= \lim_{z \to \pi} \frac{(z - \pi) \cos(z)}{z^2 (e^{iz} + 1)} \\ &= -\frac{1}{\pi^2}; \end{split}$$

Assim,

$$\mathcal{I} = 2\pi i \left(-\frac{i}{4} - \frac{1}{\pi^2} \right) = \frac{\pi}{2} + \frac{2}{\pi} i$$

Muito Obrigado!!!

Previna-se da Covid-19.³

