7 martie 2020 Clasa a VII-a

Problema 2 wind 90 de puncte

Domnul Vânt a pus pe marginea unei șosele **N** centrale eoliene, dintre care unele produc energie electrică, iar altele, deocamdată, doar consumă energie. El a etichetat centralele cu numerele naturale distincte de la 1 la N, în ordinea poziționării lor pe șosea. Fiecare centrală eoliană are la bază un ecran pe care este afișat un număr întreg, reprezentând cantitatea de energie pe care o produce (dacă numărul este pozitiv) sau pe care o consumă (dacă numărul este negativ).

Pentru a construi corect k orase de-a lungul acestei sosele, un arhitect trebuie să aibă în vedere că:

- fiecărui oraș îi va fi atribuit câte un grup format din centrale eoliene vecine pe șosea, toate grupurile având acelasi număr de centrale;
- cantitatea de energie repartizată unui oraș este egală cu suma numerelor afișate pe ecranele centralelor eoliene din grupul atribuit; uneori este posibil ca, deocamdată, suma obținută să fie negativă;
- fiecare dintre cele **N** centrale eoliene trebuie să fie atribuită unui oras;
- factorul de dezechilibru, notat cu **P(k)**, este valoarea maximă a diferenței dintre energiile repartizate oricăror două orașe diferite, dintre cele **k**.

Cerintă

Scrieţi un program care citeşte numărul **N**, valorile afișate pe cele **N** ecrane ale centralelor eoliene și rezolvă următoarele două cerințe:

- 1. afișează numărul **M** de moduri în care se pot grupa cele **N** centrale pentru construcția corectă de orașe;
- 2. afișează numărul maxim X de orașe ce pot fi construite corect, dintre cele care au factorul de dezechilibru minim, precum și eticheta E a primei centrale eoliene atribuită orașului cu cea mai mare cantitate de energie repartizată, dintre cele X orașe; dacă sunt mai multe astfel de orașe, se ia în considerare cel care are atribuite centrale etichetate cu numere mai mari.

Date de intrare

Fișierul **wind.in** conține pe prima linie un număr natural **C** reprezentând cerința care trebuie rezolvată (1 sau 2). A doua linie a fișierului conține un număr natural **N**, cu semnificația din enunț. A treia linie din fișier conține **N** numere întregi, separate prin câte un spațiu, reprezentând valorile afișate pe cele **N** ecrane ale centralelor eoliene, în ordinea poziționării acestora pe șosea.

Date de ieșire

Fişierul wind.out va conţine pe prima linie:

- dacă C=1, numărul natural M, reprezentând răspunsul la cerința 1;
- dacă C=2, cele două numere naturale **X** și **E**, în această ordine, separate printr-un singur spațiu, reprezentând răspunsul la cerința **2**.

Restricţii

- $2 \le N \le 100000$, N număr natural;
- Numerele afișate pe ecranele centralelor sunt numere întregi formate din cel mult 9 cifre;
- Se vor construi minimum 2 orașe;
- Pentru rezolvarea cerinței 1 se acordă 20 de puncte, pentru rezolvarea cerinței 2 se acordă 70 de puncte
 (35 de puncte pentru X si 35 de puncte pentru E).

Exemple

wind.in	wind.out	Explicaţii
1	5	Cerinţa este 1.
12		Centralele eoliene se pot grupa câte 1, câte 2, câte 3, câte 4 sau
2 4 -5 12 3 5 -6 4 5 7 -8 2		câte 6.
wind.in	wind.out	Explicaţii
2	3 1	Cerința este 2. Posibilitățile de grupare: câte 1 centrală/oraș (sumele
12		sunt 2, 4,-5,,2; P(12)=20 =12-(-8)); câte 2 centrale/oraș (sumele sunt:
2 4 -5 12 3 5 -6 4 5 7 -8 2		6, 7, 8, -2, 12, -6; P(6)=18 =12-(-6)); câte 3 centrale/oraș (sumele
		sunt:1, 20, 3, 1; P(4)=19 =20-1); câte 4 centrale/oraș (sumele sunt:
		13, 6, 6; P(3)=7 =13-6);câte 6 centrale/oraș (sumele sunt: 21 si 4;
		P(2)=17 =21-4). Astfel, factorul de dezechilibru minim este P(3)=7, deci
		X=3. Pentru această grupare a centralelor, orașul cu cantitatea maximă
		de energie (13) corespunde primului grup, care începe cu centrala
		etichetată cu E =1.

Timp maxim de executare/test: 0.3 secunde

Total memorie totală 16 MB din care pentru stivă 16 MB

Dimensiunea maximă a sursei:10 KB

Sursa: wind.cpp, wind.c sau wind.pas va fi salvată în folderul care are drept nume ID-ul tău.