Parte 1

2	 Explica las estructuras de datos usadas y su justificación. En el caso que hayan usado heaps, tienen que explicitar que son la estructura de datos ideal para una cola de prioridad. • 1pt: Usar heaps u otra estructura que permita búsqueda, inserción, eliminación y actualización de forma eficiente (según las complejidades pedidas en el enunciado). • 1pt: Justificar que la estructura es adecuada ya que permite modelar una cola de prioridades.
2	Justifica cómo la estructura de datos usada le permite cumplir con las comple- jidades solicitadas en los eventos (no considerar MERGE). En el caso de que hayan utilizado heaps, deben explicitar que las operaciones sobre heaps (peek, pop, push y update) cumplen con la complejidad exigida en cada evento. En otro caso, deben justificar su implementación. • 0.5 pts: Por explicar cada operación asociado al contexto de la tarea, junto con su complejidad (explicada por su cuenta o citada de clases).
2	 Explica a grandes rasgos la implementación del evento MERGE y por qué cumple con la complejidad exigida. • 1pt: Explica las operaciones utilizadas para llegar al resultado (heapify o ir insertando cada elemento en un heap). • 1pt: Logra la complejidad exigida para construir una EDD con todos los agentes.

Parte 2

4	Explica el algoritmo correspondiente para cada evento, no es necesario calcular matemáticamente la complejidad:
	• Massive: Explica Quicksort o Heapsort correctamente. (1pt)
	• K-Massive: Explicar correctamente el algoritmo para ordenar arrays k- ordenados (Usar Heap de tamaño K+1 e ir ordenando de a uno, iterando hacia la derecha). (1pt)
	• Light: Insertionsort cumple con la complejidad. Explicar que es posible porque la cantidad de clones entrantes está acotada superiormente. (1pt)
	• Total-Order: Explica correctamente algoritmo que utiliza un heap con tamaño lugares (1pt)
	Por cada evento, en caso de errores menores, 0.5 pts. Cualquier error significativo (con implicancias en la complejidad) 0 pts. En caso de sugerir un algoritmo que no cumple con la complejidad 0 pts.
2	Se justifica que ya no se puede cumplir con la complejidad pedida ya que no sirve armar el heap con el primer elemento de cada array. Se propone Heapsort, Mergesort o Quicksort.
	• 2pts: Explicación correcta de que no se puede cumplir y el porqué.
	• 1pt: Se dice que no se puede mantener la complejidad, pero la explicación no es correcta. O se sugiere y explica correctamente un algoritmo que no se adapta tanto al caso, como Insertion sort o Selection sort
	• 0 pts: Dicen que sí se puede mantener la complejidad.

Importante: Corresponde puntaje completo en caso de haber utilizado un algoritmo distinto al indicado en la pauta, siempre y cuando cumpla con la complejidad temporal y espacial exigida.