Applications linéaires en dimension finie - Corrigé

Exercice 1 (Un automorphisme)

• Première méthode : f est évidemment un endomorphisme de \mathbb{R}^3 . Pour montrer que f est bijective, il est donc suffisant de montrer qu'elle est injective, c'est à dire que $Ker(f) = \{(0,0,0)\}$. Pour tout $(x,y,z) \in \mathbb{R}^3$,

$$(x,y,z) \in Ker(f) \iff f((x,y,z)) = (0,0,0) \iff \begin{cases} x+y+z &= 0 \\ -2x+y &= 0 \\ -x &+z &= 0 \end{cases} \iff \begin{cases} x+y+z &= 0 \\ 3y+2z &= 0 \\ y+2z &= 0 \end{cases}$$
$$\iff \begin{cases} x+y+z &= 0 \\ 3y+2z &= 0 \\ 4z &= 0 \end{cases} \iff (x,y,z) = (0,0,0).$$

Ainsi, f est injective et donc $f \in GL(\mathbb{R}^3)$ (automorphisme de \mathbb{R}^3).

• Deuxième méthode : calcul du rang de f.

$$\begin{split} rg(f) &= rg\Big(f(1,0,0), f(0,1,0), f(0,0,1)\Big) = rg\Big((1,-2,-1), (1,1,0), (1,0,1)\Big) = rg\Big((1,-2,-1), (0,3,1), (0,2,2)\Big) \\ &= rg\Big((1,-2,-1), (0,3,1), (0,1,1)\Big) = rg\Big((1,-2,-1), (0,1,1), (0,3,1)\Big) = rg\Big((1,-2,-1), (0,1,1), (0,0,-2)\Big) \\ &= 3 = \dim(\mathbb{R}^3). \end{split}$$

Ceci montre à la fois que f est injective et surjective : on a donc $f \in GL(\mathbb{R}^3)$.

Exercice 2 (Endomorphisme nilpotent)

1. Montrons que $Im(f) \subset Ker(f)$.

Soit $v \in Im(f)$, montrons que $v \in Ker(f)$. Puisque $v \in Im(f)$, il existe $u \in \mathbb{R}^3$ tel que v = f(u). Ainsi $f(v) = f(f(u)) = f^2(u) = 0_{\mathbb{R}^3}$ (car f^2 est l'application nulle) On a donc bien $v \in Ker(f)$.

2. Théorème du rang : $\dim(Im(f)) + \dim(Ker(f)) = \dim(\mathbb{R}^3)$, c'est à dire $rg(f) + \dim(Ker(f)) = 3$.

Or puisque $Im(f) \subset Ker(f)$ on a $\dim(Im(f)) \leq \dim(Ker(f))$ c'est à dire $rg(f) \leq \dim(Ker(f))$.

On en déduit que $rg(f) \le 3 - rg(f)$ c'est à dire $rg(f) \le \frac{3}{2} = 1, 5$. On a donc rg(f) = 0 ou 1.

Par hypothèse, on a $f \neq 0$, donc $rg(f) \neq 0$. Pour conclure, on a nécessairement rg(f) = 1.

Exercice 3 $(rg(f) = rg(f^2))$

1. (a) • Soit $v \in Im(f^2)$, montrons que $v \in Im(f)$.

Puisque $v \in Im(f^2)$, il existe $u \in E$ tel que $v = f^2(u) = f(f(u))$. On a donc bien $v \in Im(f)$. Ceci montre que $Im(f^2) \subset Im(f)$.

• Soit $v \in Ker(f)$, montrons que $v \in Ker(f^2)$.

Puisque $v \in Ker(f)$, on a $f(v) = 0_E$ et donc $f^2(v) = f(f(v)) = f(0_E) = 0_E$. On a donc bien $v \in Ker(f^2)$. Ceci montre que $Ker(f) \subset Ker(f^2)$.

(b) On sait que $\underline{Im(f^2)} \subset \underline{Im(f)}$ et de plus $rg(f^2) = rg(f)$, c'est à dire par définition $\underline{\dim(Im(f^2))} = \underline{\dim(Im(f))}$. On en déduit que $\underline{Im(f^2)} = \underline{Im(f)}$. (Si F est un sev de E et $\underline{\dim(F)} = \underline{\dim(E)}$, on a forcément F = E).

On sait que $Ker(f) \subset Ker(f^2)$ et de plus, $\dim(E) - rg(f) = \dim(E) - rg(f^2)$ c'est à dire, d'après le théorème du rang $\dim(Ker(f)) = \dim(Ker(f^2))$. De même, on en déduit que $Ker(f) = Ker(f^2)$.

2. On sait (toujours d'après le théorème du rang) que $\dim(Im(f)) + \dim(Ker(f)) = \dim(E)$.

Pour montrer que $Im(f) \oplus Ker(f) = E$, il suffit par exemple de vérifier que $Im(f) \cap Ker(f) = \{0_E\}$.

Soit $v \in Im(f) \cap Ker(f)$, montrons que $v = 0_E$.

Puisque $v \in Im(f)$, il existe $u \in E$ tel que v = f(u).

Puisque $v \in Ker(f)$, on a $f(v) = 0_E$ c'est à dire $f^2(u) = 0_E$.

On a ainsi $u \in Ker(f^2)$ et donc $u \in Ker(f)$ (puisqu'on a vu que $Ker(f^2) = Ker(f)$).

Ainsi $v = f(u) = 0_E$, d'où le résultat.

Exercice 4 (Polynôme annulateur #1)

1. Puisque $\dim(E) = n$, on sait que $\dim(\mathcal{L}(E)) = \dim(E)^2 = n^2$.

Ainsi $(f^0, f^1, \ldots, f^{n^2})$ est une famille de vecteur de $\mathcal{L}(E)$ de cardinal $n^2 + 1$: elle est donc nécessairement liée! Il existe donc des réels $\lambda_0, \lambda_1, \ldots, \lambda_{n^2} \in \mathbb{R}$, non tous nuls, tels que $\lambda_0 f^0 + \lambda_1 f^2 + \ldots + \lambda_{n^2} f^{n^2} = 0$.

Autrement dit,
$$\sum_{i=0}^{n^2} \lambda_i f^i = 0$$
. Ainsi, en posant $P(X) = \sum_{i=0}^{n^2} \lambda_i X^i$, on a $P(f) = 0$.

P est un polynôme annulateur de f (non nul car au moins l'un des coefficients λ_i est non nul par hypothèse).

2. Notons le polynôme P sous la forme $P(X) = \sum_{k=0}^{r} a_k X^k$.

On sait donc que $P(f) = \sum_{k=0}^{r} a_k f^k = 0$ (application nulle).

On sait qu'il existe un vecteur $v \in E \setminus \{0_E\}$ tel que $f(v) = \lambda v$.

En évaluant l'application précédente en v, on obtient : $\sum_{k=0}^{r} a_k f^k(v) = 0_E$.

On sait que $f^0(v) = Id_E(v) = v$, $f(v) = \lambda v$, $f^2(v) = f(f(v)) = f(\lambda v) = \lambda f(v) = \lambda \cdot \lambda v = \lambda^2 v$, etc...

Par récurrence immédiate, on a $\forall k \in \mathbb{N}, f^k(v) = \lambda^k v$. L'égalité précédente donne donc :

$$\sum_{k=0}^{r} a_k \lambda^k v = 0_E \Longleftrightarrow \left(\sum_{k=0}^{r} a_k \lambda^k\right) \cdot v = 0_E \Longleftrightarrow P(\lambda) \cdot v = 0_E.$$

Par hypothèse, on sait que $v \neq 0_E$. On en déduit donc que $P(\lambda) = 0 : \lambda \in \mathbb{R}$ est une racine de P!

Exercice 5 (Polynôme annulateur #2)

1. (Même technique que pour les matrices) On a :

$$u^2 - 2u + Id_E = 0 \iff Id_E = -u^2 + 2u \iff Id_E = u \circ (-u + 2Id_E).$$

On a ainsi $u \circ (-u + 2Id_E) = Id_E = (-u + 2Id_E) \circ u \quad (u \text{ commute avec tout polynôme en } u)$ Ceci montre que u est bijective, de réciproque $u^{-1} = -u + 2Id_E$.

2. On sait que $(X-1)^2 = X^2 - 2X + 1$ et donc $(u-Id_E)^2 = u^2 - 2u + Id_E = 0$ par hypothèse.

Montrons maintenant que $Im(u - Id_E) \subset Ker(u - Id_E)$.

Soit $x \in Im(u - Id_E)$, montrons que $x \in Ker(u - Id_E)$.

Puisque $x \in Im(u - Id_E)$, il existe $x' \in E$ tel que $x = (u - Id_E)(x')$.

On a ainsi $(u - Id_E)(x) = (u - Id_E)((u - Id_E)(x')) = (u - Id_E)^2(x') = 0_E$

 $(\operatorname{car} (u - Id_E)^2 \text{ est l'application nulle !})$ On a donc bien $x \in \operatorname{Ker}(u - Id_E)$.

3. On sait que $\dim(E) = n$. On applique le théorème du rang à l'endomorphisme $u - Id_E$:

$$\dim(Im(u-Id_E)) + \dim(Ker(u-Id_E)) = n.$$

Puisque $Im(u-Id_E) \subset Ker(u-Id_E)$, on a $\dim(Im(u-Id_E)) \leq \dim(Ker(u-Id_E))$.

Autrement dit : $n - \dim(Ker(u - Id_E)) \lesssim \dim(Ker(u - Id_E))$

et donc finalement $\dim(Ker(u-Id_E)) \geqslant \frac{n}{2}$.

Exercice 6 (Polynôme annulateur #3)

1. On cherche à factoriser le polynôme $X^2 - 3X + 2$.

Après une recherche rapide des racines, on obtient $X^2 - 3X + 2 = (X - 1)(X - 2)$.

Ceci nous apprend donc que $f^2 - 3f + 2Id_E = (f - Id_E) \circ (f - 2Id_E)$.

On a donc $(f - Id_E) \circ (f - 2Id_E) = 0$. (ce qu'on peut aussi écrire $(f - 2Id_E) \circ (f - Id_E) = 0$)

Montrons maintenant que $Im(f-2Id_E) \subset Ker(f-Id_E)$.

Soit $v \in Im(f - 2Id_E)$, montrons que $v \in Ker(f - Id_E)$.

Puisque $v \in Im(f - 2Id_E)$, il existe $x \in E$ tel que $v = (f - 2Id_E)(x)$.

Ainsi: $(f - Id_E)(v) = (f - Id_E)((f - 2Id_E)(x)) = (f - Id_E) \circ (f - 2Id_E)(x) = 0_E$.

On a donc bien $v \in Ker(f - Id_E)$, d'où le résultat.

2. Montrons que $Ker(f-Id_E) \cap Ker(f-2Id_E) = \{0_E\}$. (L'inclusion \supset est évidente)

Soit $v \in Ker(f - Id_E) \cap Ker(f - 2Id_E)$ et montrons que $v = 0_E$.

Puisque $v \in Ker(f - Id_E)$, on a $(f - Id_E)(v) = 0_E$ i.e $f(v) - v = 0_E$ i.e f(v) = v.

Puisque $v \in Ker(f-2Id_E)$, on a $(f-2Id_E)(v) = 0_E$ i.e $f(v) - 2v = 0_E$ i.e f(v) = 2v.

Ainsi, v = 2v et donc $v = 0_E$, d'où le résultat.

- 3. On a $Ker(f Id_E) \cap Ker(f 2Id_E) = \{0_E\}$ donc $Ker(f Id_E)$ et $Ker(f 2Id_E)$ sont en somme directe. Vérifions alors par exemple que $\dim(Ker(f Id_E)) + \dim(Ker(f 2Id_E)) = \dim(E)$.
- Déjà, puisque la somme est directe, on a :

$$\dim(Ker(f-Id_E)) + \dim(Ker(f-2Id_E)) = \dim\left(Ker(f-Id_E) \oplus Ker(f-2Id_E)\right)$$

et donc $\dim(Ker(f-Id_E)) + \dim(Ker(f-2Id_E)) \leq \dim(E)$ (puisque $Ker(f-Id_E) \oplus Ker(f-2Id_E) \subset E$)

• Ensuite, d'après la formule du rang, on a

$$\dim(Im(f-2Id_E)) + \dim(Ker(f-2Id_E)) = \dim(E).$$

De plus, puisque $Im(f-2Id_E) \subset Ker(f-Id_E)$, on a $\dim(Im(f-2Id_E)) \leq \dim(Ker(f-Id_E))$. Autrement dit : $\dim(E) - \dim(Ker(f-2Id_E)) \leq \dim(Ker(f-Id_E))$ ce qui nous apprend que $\dim(Ker(f-Id_E)) + \dim(Ker(f-2Id_E)) \geq \dim(E)$.

On a donc bien $\dim(Ker(f-Id_E)) + \dim(Ker(f-2Id_E)) = \dim(E)$.

On en déduit finalement que $E = Ker(f - Id_E) \oplus Ker(f - 2Id_E)$.

Exercice 7 (Noyau et d'image via la matrice)

- (a) Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- Calcul du noyau :

$$(x,y,z) \in Ker(f) \Longleftrightarrow f((x,y,z)) = (0,0,0) \Longleftrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow x+y+z=0$$

Ainsi $Ker(f) = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\} = \{(x, y, -x - y), x, y \in \mathbb{R}\} = Vect((1, 0, -1), (0, 1, -1))$. La famille ((1, 0, -1), (0, 1, -1)) est libre, donc c'est une base de Ker(f).

• Calcul de l'image (les vecteurs f(1,0,0), f(0,1,0), f(0,0,1) se lisent sur les colonnes de la matrice) :

$$Im(f) = Vect\Big(f(1,0,0), f(0,1,0), f(0,0,1)\Big) = Vect\Big((1,1,1), (1,1,1), (1,1,1)\Big) = Vect\Big((1,1,1), (1,1,1), (1,1,1), (1,1,1), (1,1,1), (1,1,1)\Big) = Vect\Big((1,1,1), (1$$

Une base de Im(f) est donc ((1,1,1)).

- Ainsi $rg(f) = \dim(Im(f)) = 1$.
- (b) Soit $g \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à la matrice $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
- Calcul du noyau :

$$(x,y,z) \in Ker(g) \Longleftrightarrow g((x,y,z)) = (0,0,0) \Longleftrightarrow \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{cases} y+z & = 0 \\ x & +z & = 0 \\ x+y & = 0 \end{cases}$$

Après résolution, on obtient $Ker(g) = \{(0,0,0)\}$. Ainsi, f est injective.

- Puisque g est un endomorphisme injectif, g est automatiquement bijectif! Ainsi $Im(g) = \mathbb{R}^3$.
- Ainsi $rg(f) = \dim(Im(g)) = 3$.

(c) Soit
$$h \in \mathcal{L}(\mathbb{R}^3)$$
 l'endomorphisme canoniquement associé à la matrice $C = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ -1 & 0 & -1 & 0 \end{pmatrix}$.

• Calcul du noyau :

$$(x,y,z,t) \in Ker(h) \Longleftrightarrow h((x,y,z,t)) = (0,0,0,0) \Longleftrightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ -1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{cases} x & +z & =0 \\ y & +t & =0 \end{cases}$$

Ainsi $Ker(h) = \{(x, y, -x, -y), x, y \in \mathbb{R}\} = Vect((1, 0, -1, 0), (0, 1, 0, -1)).$

La famille ((1,0,-1,0),(0,1,0,-1)) est libre, donc c'est une base de Ker(h).

• Calcul de l'image (les vecteurs se lisent sur les colonnes de la matrice) :

$$Im(h) = Vect\Big((1,0,0,-1),(0,1,-1,0),(1,0,0,-1),(0,1,-1,0)\Big) = Vect\Big((1,0,0,-1),(0,1,-1,0)\Big).$$

Une base de Im(h) est donc ((1,0,0,-1),(0,1,-1,0)).

• Ainsi $rg(h) = \dim(Im(h)) = 2$.

Exercice 8 (Deux matrices dans deux bases?)

1. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme admettant la matrice A dans la base canonique. Pour tout $(x, y, z) \in \mathbb{R}^3$, la matrice des coordonnées de f(x, y, z) dans la base canonique est

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + z \\ 2y + z \\ x + y + z \end{pmatrix}.$$

Ainsi, on a f(x, y, z) = (x + 2y + z, 2y + z, x + y + z).

2.
$$rg(A) = rg\begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} = rg\begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & -1 & 0 \end{pmatrix} = rg\begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} = 3$$
. Ainsi, A est inversible.

On a donc rg(f) = 3, f est donc bijective : c'est un automorphisme de \mathbb{R}^3 .

3.
$$rg(B) = rg\begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix} = rg\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = rg\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} = 2.$$

Si jamais il existait une base \mathcal{B} de \mathbb{R}^3 telle que $Mat_{\mathcal{B}}(f) = B$, on aurait rg(f) = rg(B).

C'est impossible puisque $rg(f) = 3 \neq 2$!

Ainsi, on ne peut pas trouver de base dans laquelle la matrice de f est B.

Exercice 9 (Un endomorphisme de $\mathcal{M}_2(\mathbb{R})$)

1. D'abord, on a évidemment $\varphi : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$. Vérifions rapidement que φ est linéaire. Pour tous $M, N \in \mathcal{M}_2(\mathbb{R})$ et $\lambda \in \mathbb{R}$,

$$\varphi(M + \lambda N) = A(M + \lambda N) = AM + \lambda AN = \varphi(M) + \lambda \varphi(N).$$

Ainsi, φ est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$. Montrons enfin que φ est bijectif : il suffit de vérifier que φ est injectif. Pour toute matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$,

$$M \in Ker(\varphi) \Longleftrightarrow \varphi(M) = 0 \Longleftrightarrow AM = 0 \Longleftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \iff \begin{pmatrix} c & d \\ a + 2c & b + 2d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

$$\iff a = b = c = d = 0 \iff M = 0.$$

Ansi φ est injectif, c'est donc un automorphisme de $\mathcal{M}_2(\mathbb{R})$.

2. Rappelons que la base canonique de $\mathcal{M}_2(\mathbb{R})$ est

$$\mathcal{B} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right).$$

Après calcul de l'image par φ de ces vecteurs, on constate que $Mat_{\mathcal{B}}(\varphi) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix}$.

On peut calculer facilement le rang de cette matrice :
$$rg\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix} = rg\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = 4.$$

Ainsi, on a $rg(\varphi) = 4 = \dim(\mathcal{M}_2(\mathbb{R})) : \varphi$ est donc bijective!

Exercice 10 (Un endomorphisme de $\mathbb{R}_4[X]$)

1. On calcule:

$$f(1) = 0$$

$$f(X) = 1$$

$$f(X^{2}) = 2X + 1$$

$$f(X^{3}) = 3X^{2} + 3X + 1$$

$$f(X^{4}) = 4X^{3} + 6X^{2} + 4X + 1$$

Ainsi, la matrice de f dans la base canonique est : $A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$. On en déduit :

$$rg(A) = rg \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = rg \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 4 \end{pmatrix} = 4.$$

2. D'après le théorème du rang, on a $\dim(Ker(f)) = \dim(\mathbb{R}_4[X]) - rg(f) = 5 - 4 = 1$. Le noyau Ker(f) est donc une droite vectorielle.

Puisqu'on a déjà vu que f(1) = 0, on a $1 \in Ker(f)$. Il en résulte que Ker(f) = Vect(1). Autrement dit, $Ker(f) = \mathbb{R}_0[X]$ (ensemble des polynômes constants).

Exercice 11 (Calcul de rangs de matrices)

Après calculs, on obtient : rg(A) = 3, rg(B) = 3, rg(C) = 2.

Exercice 12 (Matrice à paramètre)

$$rg\begin{pmatrix}1&1&-1&2\\\lambda&1&1&1\\1&-1&3&-3\\4&2&0&\lambda\end{pmatrix}=rg\begin{pmatrix}1&1&-1&2\\0&1-\lambda&1+\lambda&1-2\lambda\\0&-2&4&-5\\0&-2&4&\lambda-8\end{pmatrix}=rg\begin{pmatrix}1&1&-1&2\\0&1-\lambda&1+\lambda&1-2\lambda\\0&-2&4&-5\\0&0&0&\lambda-3\end{pmatrix}$$

On effectue l'opération $L_2 \leftarrow L_2 + \frac{1-\lambda}{2}L_3$:

$$= rg \begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & 3 - \lambda & \frac{\lambda - 3}{2} \\ 0 & -2 & 4 & -5 \\ 0 & 0 & 0 & \lambda - 3 \end{pmatrix} = rg \begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & -2 & 4 & -5 \\ 0 & 0 & 3 - \lambda & \frac{\lambda - 3}{2} \\ 0 & 0 & 0 & \lambda - 3 \end{pmatrix}.$$

- Si $\lambda \neq 3$, on constate que cette dernière matrice est inversible donc de rang 4.
- Si $\lambda = 3$, on est ramené à :

$$rg\begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & -2 & 4 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = rg\begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & -2 & 4 & -5 \end{pmatrix} = 2 \text{ (les deux lignes forment une famille libre)}$$

Exercice 13 (Réduction d'un endomorphisme nilpotent)

1. La famille $\mathcal{B} = (x, f(x), f^2(x))$ est de cardinal $3 = \dim(\mathbb{R}^3)$. Il suffit de montrer que c'est une famille libre pour que ce soit une base de \mathbb{R}^3 . Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que

$$\lambda_1 x + \lambda_2 f(x) + \lambda_3 f^2(x) = 0.$$

En composant par f^2 :

$$f^2\Big(\lambda_1x+\lambda_2f(x)+\lambda_3f^2(x)\Big)=f(0)\quad \text{c'est à dire}\quad \lambda_1\underbrace{f^2(x)}_{\neq 0}+\lambda_2\underbrace{f^3(x)}_{=0}+\lambda_3\underbrace{f^4(x)}_{=0}=0\quad \text{donc}\quad \lambda_1\underbrace{f^2(x)}_{\neq 0}=0.$$

On obtient donc $\lambda_1 = 0$. On a ainsi $\lambda_2 f(x) + \lambda_3 f^2(x) = 0$. En composant f:

$$f(\lambda_2 f(x) + \lambda_3 f^2(x)) = f(0)$$
 c'est à dire $\lambda_2 f^2(x) + \lambda_3 \underbrace{f^3(x)}_{=0} = 0$ donc $\lambda_2 \underbrace{f^2(x)}_{\neq 0} = 0$.

On obtient donc $\lambda_2 = 0$. On a ainsi $\lambda_3 \underbrace{f^3(x)}_{\neq 0} = 0$ et on déduit finalement $\lambda_3 = 0$.

La famille \mathcal{B} est donc libre : c'est une base de \mathbb{R}^3 .

2. On calcule l'image des vecteurs de la base $\mathcal{B} = (x, f(x), f^2(x))$:

$$f(x) = 0 \cdot x + 1 \cdot f(x) + 0 \cdot f^{2}(x), \qquad f(f(x)) = 0 \cdot x + 0 \cdot f(x) + 1 \cdot f^{2}(x), \qquad f(f^{2}(x)) = f^{3}(x) = 0.$$

La matrice de f dans la base \mathcal{B} est ainsi : $Mat_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

3. On en déduit
$$rg(f) = rg\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = rg\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = 2.$$

Exercice 14 (Réduction d'un projecteur)

1. Notons $p \in \mathcal{L}(\mathbb{R}^3)$ l'unique endomorphisme admettant la matrice A dans la base canonique. Pour montrer que p est un projecteur, il suffit de montrer que $p^2 = p$. Cela revient à vérifier que $A^2 = A$! Un calcul simple permet de s'assurer qu'effectivement $A^2 = A$.

- 2. Il s'agit de F = Im(p) et G = Ker(p). On peut lire l'image et le noyau de p sur la matrice A.
- $F = Im(p) = Vect\Big(p(1,0,0), p(0,1,0), p(0,0,1)\Big) = Vect\Big((1/2,0,-1/2), (1,1,1), (-1/2,0,1/2)\Big)$ donc $F = Vect\Big((1,0,-1), (1,1,1)\Big).$
- G = Ker(p) et pour tout $(x, y, z) \in \mathbb{R}^3$,

$$(x,y,z) \in Ker(p) \Longleftrightarrow p((x,y,z)) = (0,0,0) \Longleftrightarrow \begin{pmatrix} 1/2 & 1 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 1 & 1/2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{cases} \frac{x}{2} + y - \frac{z}{2} &= 0 \\ y &= 0 \end{cases}$$

$$\Longleftrightarrow \begin{cases} z &= x \\ y &= 0 \end{cases}$$

Ainsi $G = Ker(p) = \{(x, 0, x), x \in \mathbb{R}\} = Vect((1, 0, 1)).$

3. Une base de F est $\mathcal{B}_F = ((1,0,-1),(1,1,1))$, une base de G est $\mathcal{B}_G = ((1,0,1))$.

On sait que $F \oplus G = \mathbb{R}^3$, donc $\mathcal{B} = ((1,0,-1),(1,1,1),(1,0,1))$ est une base de \mathbb{R}^3 (ce qu'on peut aussi vérifier à la main)

Rappelons que p est le projecteur sur F parallèlement à G.

Puisque $(1,0,-1), (1,1,1) \in F$, on a p(1,0,-1) = (1,0,-1) et p(1,1,1) = (1,1,1).

Puisque $(1,0,1) \in G$, on a p(1,0,1) = (0,0,0).

Ainsi, la matrice de p dans la base \mathcal{B} est bien $Mat_{\mathcal{B}}(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

4. Le projecteur associé q satisfait $p+q=Id_{\mathbb{R}^3}$ donc $q=Id_{\mathbb{R}^3}-p$. Ainsi :

$$Mat_{\mathcal{B}}(q) = Mat_{\mathcal{B}}(Id_{\mathbb{R}^3}) - Mat_{\mathcal{B}}(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(C'est logique car si $v \in F$, q(v) = 0 et si $v \in G$, q(v) = v...)

5. Notons $n = \dim(E)$. Disons que p est le projecteur sur F parallèlement à G.

On introduit une base $\mathcal{B}_F = (e_1, \dots, e_p)$ de F (donc dim(F) = p)

et une base $\mathcal{B}_G = (e_{p+1}, \dots, e_n)$ de G (donc dim(G) = n - p).

Alors, puisque $F \oplus G = E$, on sait que $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E.

Pour tout $i \in [1, p]$, puisque $e_i \in F$, on a $p(e_i) = e_i$.

Pour tout $i \in [p+1, n]$, puisque $e_i \in G$, on a $p(e_i) = 0_E$.

Ainsi, la matrice de p dans cette base \mathcal{B} est la matrice diagonale $Diag(\underbrace{1,1,\ldots,1}_{p \text{ fois}},\underbrace{0,0,\ldots,0}_{n-p \text{ fois}})$

Exercice 15 (Isomorphismes et matrices classiques)

1. (a) Rappelons que la base canonique de $\mathbb{R}_n[X]$ est $\mathcal{B} = (1, X, X^2, \dots, X^n)$. On calcule :

$$f(1) = (1, 0, 0, \dots, 0), \quad f(X) = (a, 1, 0, \dots, 0), \quad f(X^2) = (a^2, 2a, 2, 0, \dots, 0) \quad f(X^3) = (a^3, 3a^2, 6a, 6, 0, \dots, 0)$$

 $\dots \quad f(X^n) = (a^n, na^{n-1}, n(n-1)a^{n-2}, \dots, n!)$

La matrice de f dans la base canonique est donc

$$Mat_{\mathcal{B}}(f) = \begin{pmatrix} 1 & a & a^2 & a^3 & \dots & a^n \\ 0 & 1 & 2a & 3a^2 & \dots & na^{n-1} \\ 0 & 0 & 2 & 6a & \dots & n(n-1)a^{n-2} \\ 0 & 0 & 0 & 6 & & \vdots \\ & & & \ddots & & n! & a \\ 0 & 0 & 0 & 0 & & & n! \end{pmatrix}.$$

- (b) Cette matrice est triangulaire supérieure avec des coefficients non nuls (les k! pour $k \in [0, n]$), donc elle est inversible! On en déduit que f est un isomorphisme.
- 2. (a) Soit $g \in \mathcal{L}(\mathbb{R}_{n-1}[X], \mathbb{R}^n)$ l'unique application linéaire admettant la matrice V dans les bases canoniques de $\mathbb{R}_{n-1}[X]$ et \mathbb{R}^n . On lit donc sur la matrice :

$$g(1) = (1, 1, 1, \dots, 1)$$

$$g(X) = (x_1, x_2, x_3, \dots, x_n)$$

$$g(X^2) = (x_1^2, x_2^2, x_3^2, \dots, x_n^2)$$

$$\vdots$$

$$g(X^{n-1}) = (x_1^{n-1}, x_2^{n-1}, x_3^{n-1}, \dots, x_n^{n-1}).$$

 $g: \begin{array}{ccc} \mathbb{R}_{n-1}[X] & \to & \mathbb{R}^n \\ P & \mapsto & (P(x_1), P(x_2), \dots, P(x_n)) \end{array}$ Autrement dit il s'agit de l'application :

(b) Puisque V est la matrice de q (dans les bases canoniques), on a les équivalences :

V est inversible $\iff g$ est bijective $\iff g$ est injective (puisque $\dim(\mathbb{R}_{n-1}[X]) = \dim(\mathbb{R}^n)$)

• Supposons que les réels x_1, \ldots, x_n sont deux à deux distincts.

Dans ce cas, vérifions que $Ker(g) = \{0\}.$

Soit $P \in Ker(g)$. On a donc $P \in \mathbb{R}_{n-1}[X]$ et $(P(x_1), P(x_2), \dots, P(x_n)) = (0, 0, \dots, 0)$.

Ainsi, $deg(P) \leq n-1$ et P admet n racines distinctes : il en résulte que P=0.

Dans ce cas, g est injective et donc V est inversible.

• Supposons que les réels $x_1, \ldots x_n$ ne sont pas tous distincts, disons par exemple $x_1 = x_2$.

Dans ce cas, V n'est clairement pas inversible, puisqu'elle a deux colonnes identiques! (et donc $rg(V) \leq n-1$)

Conclusion: V est inversible \iff Les réels x_1, \ldots, x_n sont deux à deux distincts.

3. (a) M est inversible car elle est triangulaire supérieure avec des coefficients diagonaux non-nuls (ces coefficients sont des 1 puisque $\forall k \in [0, n], \binom{k}{k} = 1$). On a donc $M \in GL_{n+1}(\mathbb{R})$.

(b) Soit $h \in \mathcal{L}(\mathbb{R}_n[X])$ l'unique endomorphisme admettant la matrice M dans la base canonique de $\mathbb{R}_n[X]$. Rappelons que cette base est $\mathcal{B} = (1, X, X^2, \dots, X^n)$.

On lit donc sur la matrice :

$$h(1) = \binom{0}{0} = 1$$

$$h(X) = \binom{1}{0} + \binom{1}{1}X = 1 + X$$

$$h(X^2) = \binom{2}{0} + \binom{2}{1}X + \binom{2}{2}X^2 = 1 + 2X + X^2 = (1 + X)^2$$

$$\vdots$$

$$h(X^n) = \binom{n}{0} + \binom{n}{1}X + \dots + \binom{n}{n}X^n = \sum_{k=0}^n \binom{n}{k}X^k = (1 + X)^n$$

Ainsi, pour tout $k \in [0, n]$, $h(X^k) = (X+1)^k$.

Par linéarité, on en déduit facilement que pour tout $P(X) \in \mathbb{R}_n[X]$, h(P(X)) = P(X+1).

Ainsi, il s'agit de l'endomorphisme : $h: \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P(X) & \mapsto & P(X+1) \end{array}$

(c) Il est facile de deviner que l'automorphisme réciproque est h^{-1} : $\begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ P(X) & \mapsto & P(X-1) \end{array}$.

Vérifions-le par le calcul!

Pour tout $P \in \mathbb{R}_n[X]$, le polynôme Q = h(P) est donné par Q(X) = P(X+1).

Ainsi, $h^{-1}(h(P)) = h^{-1}(Q) = Q(X - 1) = P((X - 1) + 1) = P(X) = P$.

Ceci montre que $h^{-1} \circ h = Id_{\mathbb{R}_n[X]}$. Un calcul similaire montre que $h \circ h^{-1} = Id_{\mathbb{R}_n[X]}$.

Puisque $M = Mat_{\mathcal{B}}(h)$, on a $M^{-1} = Mat_{\mathcal{B}}(h^{-1})$. Déterminons donc la matrice de h^{-1} dans la base canonique.

$$h^{-1}(1) = 1$$

 $h^{-1}(X) = X - 1 = -1 + X$
 $h^{-1}(X^2) = (X - 1)^2 = 1 - 2X + X^2$
.

•

$$h^{-1}(X^n) = (X-1)^n = \sum_{k=0}^n \binom{n}{k} X^k (-1)^{n-k} = (-1)^n \binom{n}{0} + (-1)^{n-1} \binom{n}{1} X + (-1)^{n-2} \binom{n}{2} X^2 + \ldots + \binom{n}{n} X^n$$

Ainsi, on constate que la matrice de h^{-1} dans la base $\mathcal{B} = (1, X, X^2, \dots, X^n)$ est :

$$M^{-1} = \begin{pmatrix} \binom{0}{0} & -\binom{1}{0} & \binom{2}{0} & \dots & (-1)^n \binom{n}{0} \\ 0 & \binom{1}{1} & -\binom{2}{1} & \dots & (-1)^{n-1} \binom{n}{1} \\ 0 & 0 & \binom{3}{0} & \dots & (-1)^{n-2} \binom{n}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \binom{n}{n} \end{pmatrix}.$$

Autrement dit, c'est la même matrice que M mais avec des "signes alternés" $M^{-1} = \left((-1)^{i+j} \binom{j}{i}\right)_{0 \le i,j \le n}$

Remarque : M est la matrice contenant le triangle de Pascal, M^{-1} s'interprète comme un "triangle de Pascal inverse". L'expression obtenue pour M^{-1} peut permettre de démontrer la formule d'inversion de Pascal :

Si
$$\forall p \in [0, n], \ b_p = \sum_{k=0}^p \binom{p}{k} a_k$$
 alors $\forall p \in [0, n], \ a_p = (-1)^p \sum_{k=0}^p (-1)^k \binom{p}{k} b_k$.

(A démontrer en exercice bonus)