## Supplementary Information: Tree height, microhabitat, and hydraulic traits shape drought responses in a temperate broadleaf forest

Ian McGregor, Ryan Helcoski, Norbert Kunert, Alan Tepley, Erika Gonzalez-Akre, Valentine Herrmann, Joseph Zailaa, Atticus Stovall, Norman Bourg?, William McShea?, Neil Pederson, Lawren Sack, Kristina Anderson-Teixeira

## **Supplementary Information**

Table S1: Species-specific bark thickness regression equations

| Species                 | Equations         | r.2   |
|-------------------------|-------------------|-------|
| Carya cordiformis       | -1.56+0.416*x     | 0.226 |
| Carya glabra            | -0.393+0.268*x    | 0.040 |
| Carya ovalis            | -2.18+0.651*x     | 0.389 |
| Carya tomentosa         | -0.477+0.301*x    | 0.297 |
| Fagus grandifolia       | 1*x               | NA    |
| Fraxinus americana      | 0.418 + 0.268 * x | 0.256 |
| Juglans nigra           | 0.346 + 0.279 *x  | 0.246 |
| Liriodendron tulipifera | -1.14+0.463*x     | 0.545 |
| Quercus alba            | -2.09+0.637*x     | 0.603 |
| Quercus prinus          | -1.31+0.528*x     | 0.577 |
| Quercus rubra           | -0.593+0.292*x    | 0.087 |

Table S2: Species-specific height regression equations

| Species                 | Equations         | r.2   |
|-------------------------|-------------------|-------|
| Carya cordiformis       | 0.391 + 0.805 *x  | 0.899 |
| Carya glabra            | 0.654 + 0.728 *x  | 0.890 |
| Carya ovalis            | 0.939 + 0.641 *x  | 0.922 |
| Carya tomentosa         | 0.851 + 0.682 * x | 0.890 |
| Fagus grandifolia       | 0.574 + 0.713 *x  | 0.887 |
| Liriodendron tulipifera | 1.21 + 0.559 *x   | 0.760 |
| Quercus alba            | 2.07+0.318*x      | 0.523 |
| Quercus prinus          | 0.594 + 0.713 *x  | 0.799 |
| Quercus rubra           | 1.42 + 0.473 *x   | 0.832 |
| all                     | 0.946 + 0.621 *x  | 0.868 |

Table S3: Palmer drought severity index (PDSI) by month for focal droughts and other years referenced in the manuscript

| year           | month                      | PDSI  | rank |
|----------------|----------------------------|-------|------|
| focal droughts |                            |       |      |
| 1966           | May                        | -2.98 | 2    |
| NA             | June                       | -3.40 | 2    |
| NA             | July                       | -4.08 | 2    |
| NA             | August                     | -4.82 | 1    |
|                |                            |       |      |
| 1977           | May                        | -2.96 | 3    |
| NA             | $\overline{\mathrm{June}}$ | -3.28 | 3    |
| NA             | July                       | -3.61 | 3    |
| NA             | August                     | -3.68 | 3    |
|                |                            |       |      |
| 1999           | May                        | -3.63 | 1    |
| NA             | $\overline{\mathrm{June}}$ | -4.21 | 1    |
| NA             | July                       | -4.53 | 1    |
| NA             | August                     | -4.64 | 2    |
| others         |                            |       |      |
| 1964           | May                        | -1.08 | 20   |
| NA             | $\overline{\mathrm{June}}$ | -1.97 | 11   |
| NA             | July                       | -2.46 | 8    |
| NA             | August                     | -2.98 | 5    |
|                |                            |       |      |
| 1991           | May                        | -1.79 | 10   |
| NA             | $\overline{\mathrm{June}}$ | -2.10 | 10   |
| NA             | July                       | -2.17 | 10   |
| NA             | August                     | -3.06 | 4    |
|                | -                          |       |      |
| 2007           | May                        | -1.37 | 16   |
| NA             | June                       | -1.59 | 16   |
| NA             | July                       | -2.40 | 9    |
| NA             | August                     | -2.55 | 11   |

Table S4: Candidate variables for best model

| prediction | variable        | variable_description  | top_model |
|------------|-----------------|-----------------------|-----------|
| 1.2        | position_all    | crown position with H | 1999      |
| 2.2        | height.ln.m     | $\ln[\mathrm{H}]$     | all       |
| 2.2        | height.ln.m     | $\ln[H]$              | 1966      |
| 2.3        | position_all    | crown position alone  | 1966      |
| 2.4        | TWI.ln          | $\ln[\mathrm{TWI}]$   | all       |
| 2.4        | TWI.ln          | $\ln[TWI]$            | 1977      |
| 2.4        | TWI.ln          | $\ln[\text{TWI}]$     | 1999      |
| 3.1        | rp              | ring porosity         | 1999      |
| 3.2        | PLA_dry_percent | PLA                   | all       |
| 3.2        | PLA_dry_percent | PLA                   | 1966      |
| 3.4        | mean TLP Mpa    | TLP                   | all       |
| 3.4        | mean_TLP_Mpa    | TLP                   | 1977      |

Table S4. Correlation of species' traits with tree height across all individuals in the ForestGEO plot

| variable      | model               | coefficient | p-value |
|---------------|---------------------|-------------|---------|
| WD            | WD~ln[H]            | -0.16       | 0       |
| LMA           | LMA~ln[H]           | 7.86        | 0       |
| ring porosity | ring porosity~ln[H] | 0.34        | 0       |
| PLA           | PLA~ln[H]           | 1.37        | 0       |
| TLP           | PLA~ln[H]           | 0.13        | 0       |



Figure S1: Map of ForestGEO plot showing TWI and location of cored trees