The Null is Always False

(except when it is true)

Null-hypothesis significance testing is widely used, but often criticized.

"The null hypothesis, taken literally, is always false in the real world."

"So if the null is always false, what's the big deal about rejecting it?"

(Cohen, 1990)

With large sample sizes (>5000), some effects are pretty darn close to zero.

Random Assignment

Vs.

Measured Variables

Anchoring Condition

Vs.

Gender

Anchoring: 1/10

Vs.

Gender: 7/10

"Crud Factor" (Systematic Noise)

Lykken, 1968, Meehl, 1990

All models are wrong; some models are useful

George Box

After randomization, the null can be a useful and true hypothesis.

Without randomization, the alternative is not a 'bold' prediction.

If the null is rarely true, refuting the null says very little about the truth of a theory.

Weak hypothesis: It will rain in April. Strong hypothesis: It will rain 7 mm on April 2nd

Meehl, 1978

NHST rejects the null compared to any alternative. Point predictions are rare.

Confirming strong hypotheses gives a theory greater verisimilitude.

What's the rule?

2, 4, 6,

Wason, 1960

Confirmation bias is a systematic error in inductive reasoning

Studies often reject the null; It's stronger to test two competing point predictions.

Strong Inference: Crucial experiments that exclude one alternative hypothesis

Platt, 1964

The Question: "But what experiment could disprove your hypothesis?"

Platt, 1964

Test hypotheses by making falsifiable strong predictions (if possible)