EDA, Titanic Dataset

Data Science Process

데이터 탐색하기 - EDA (Exploratory Data Analysis)

- EDA (탐색적 데이터 분석)는 본격적인 데이터 분석의 첫 번째 단계로, 데이터의 모양과 크기, 분포, 빈 값 등 데이터가 어떠한 형태인지 관찰하고 파악하는 단계입니다.
- 데이터로 실험을 하기 전, 데이터를 보다 잘 이해하기 위한 단계입니다.

목적

- ✓ 데이터의 오류가 없는지 확인합니다.
- ✓ 각 데이터의 용도나 설명, 의미를 파악합니다.
- ✓ 데이터의 개별 속성에 대해 파악합니다.

작업

- ✓ 값의 종류 파악하기 (숫자, 카테고리, 순서 등)
- ✓ 숫자 형 데이터 최소, 최대, 평균 살펴보기
- ✓ 이상치 (Outlier) 및 누락 유무 확인하기
- ✓ 변수간 관계 분석하기, 분포 그려보기
- ✓ 합치거나 쪼개서 유의미한지 확인하기

Do comedies get higher ratings than action movies?

Sample of 400 movies from IMDB

Kaggle 소개 "세계 최대의 데이터 과학자 커뮤니티"

https://www.kaggle.com/

kaggle

A platform for predictive modeling competitions.

"We're making data science into a sport."

#상금 #명예 #데이터 #실력

- Data Scientist를 위한 데이터 분석 및 예측 경진대회 플랫폼
- 기업 및 단체에서 데이터와 해결 과제를 등록하면, Kaggle의 Data Scientist들이 이 문제를 해결하는 데이터 분석 및 모델을 개발하고 경쟁합니다.

EDA Project #1 1912년 타이타닉 사고 데이터

■ 타이타닉 사고의 사망자, 생존자를 예측하는 Competition으로, 탑승객의 정보를 이용하여 예측

출처: https://www.kaggle.com/c/titanic/

- 데이터 다운로드: seaborn의 .load_dataset('titanic')을 이용하여 불러올 수 있습니다.
- 데이터 정보: https://www.kaggle.com/c/titanic/data 참고 (EDA 노트북에 해당 내용 포함)
 - 891명의 승객에 대한 데이터. 생존여부 / 좌석 등급 / 성별 / 나이 / 일행 / 자녀 / 운임 등의 feature 제공

■ EDA 목표

- 주어진 각 feature들의 분포 살펴보기, 생존자/사망자 별로 데이터 분리하여 살펴보기
- 어떤 정보를 통해 생존율을 예측할 수 있을 지, 가설을 세우고 실제 그래프로 검증해봅시다.

데이터 로드

라이브러리 임포트

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

plt.rcParams['font.family'] = 'Malgun Gothic' # (Windows 용) 한글 출력을 위한 글꼴 설정
#plt.rcParams['font.family'] = 'Apple Gothic' # (MAC, 리눅스 용)

plt.rcParams['axes.unicode_minus'] = False # 문자 - (마이너스) 정상 출력을 위한 코드
```

데이터 불러오기

```
titanic_df = sns.load_dataset('titanic')
```


데이터 설명

- 891명의 승객에 대한 데이터.
 - 생존여부 / 좌석 등급 / 성별 / 나이 / 일행 / 자녀 / 운임 등의 feature

Feature	Definition	Value
survived	생존 여부	0 = No, 1 = Yes
pclass	티켓 등급 (1등석, 2등석, 3등석)	1 = 1st, 2 = 2nd, 3 = 3rd
sex	성별	male 남성, female 여성
age	나이	((숫자))
sibsp	함께 탑승한 배우자, 형제자매의 수 합	((숫자))
parch	함께 탑승한 부모님, 자녀의 수 합	((숫자))
fare	운임 요금 (티켓 가격)	((숫자))
embarked	출항지 (한글자)	C = Cherbourg, Q = Queenstown, S = Southampton
class	티켓 등급 (단어로)	First, Second, Third
who	남성/여성/아이 구분	man, woman, child
adult_male	성인 남성인지의 여부	True, False
deck	선박에서 배정받은 좌석의 구역	A, B, C, D, E, F, G, 빈 값
embark_town	출항지 (풀네임)	((도시이름))
alive	생존 여부	yes, no
alone	혼자인지 여부	True, False

데이터 확인

titanic_df

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True	NaN	Southampton	no	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False	NaN	Southampton	no	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True	С	Cherbourg	yes	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True	NaN	Queenstown	no	True

891 rows x 15 columns

EDA level 1 - 데이터 기본 형태 및 값 확인하기

■ .info() 함수로 데이터 컬럼별 타입(자료형), 값이 있는 행(Non-Null)의 갯수 등을 알 수 있습니다.

```
titanic_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
     Column
                  Non-Null Count Dtype
                  891 non-null
    survived
                                   int64
     polass
                  891 non-null
                                  int64
                  891 non-null
                                  object
     sex
                  714 non-null
                                  float64
     age
     sibsp
                  891 non-null
                                   int64
                  891 non-null
                                   int64
     parch
     fare
                  891 non-null
                                  float64
     embarked
                  889 non-null
                                  object
     class
                  891 non-null
                                  category
     who
                  891 non-null
                                  object
     adult_male
                  891 non-null
                                  boot
     deck
                  203 non-null
                                  category
     embark_town 889 non-null
                                  object
                  891 non-null
    alive
                                  object
                  891 non-null
                                  bool
 14 alone
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.6+ KB
```

wanted

EDA level 1 - 데이터 기본 형태 및 값 확인하기

- 범주형 컬럼과, 수치형 컬럼으로 나누어서 리스트를 만듭니다.(추후 분석 시 반복되는 코드를 줄일 수 있어요)
 - 범주형 데이터은 값이 [1, 2, 3], ["내부", "외부"]와 같이 **몇 가지 분류로 한정되는 데이터** 입니다.
 - 수치형 데이터는 값이 1,2,3,5,..., 1.2, 4.51, 3.1415와 같이 **숫자 축으로 무한히 위치할 수 있는 데이터** 입니다.

```
category_cols = ["sex", "embarked", "class", "who", "adult_male", "deck", "embark_town", "alive", "alone"]
numerical_cols = ["age", "sibsp", "parch", "fare"]
```


EDA level 1 - 데이터 기본 형태 및 통계량 확인하기

.describe() 함수로 각 열에 대한 대략적인 통계 값들을 볼 수 있습니다.
 (평균, 상위 25/50/75% 값, 최대/최소 값 등)

titanic_df.describe()

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

EDA level 2 - 데이터의 값 및 분포 들여다보기

■ .value_counts()를 통해 각 컬럼별로 몇 개의 row가 있는지 셀 수 있습니다.

```
for col in category_cols:
     print(col + " 카운트::")
     print(titanic_df.loc[:, col].value_counts())
     print()
sex 카운트::
         577
male
female
         314
Name: sex, dtype: int64
embarked 카운트::
S
    644
    168
     77
Name: embarked, dtype: int64
class 카운트::
Third
         491
First
         216
         184
Second
Name: class, dtype: int64
who 카운트::
        537
        271
woman
child.
Name: who, dtype: int64
```

```
adult_male 카운트::
True
        537
        354
False
Name: adult_male, dtype: int64
deck 카운트::
     59
     13
Name: deck, dtype: int64
embark_town 카운트::
Southampton
              644
              168
Cherbourg
               77
Queenstown
Name: embark_town, dtype: int64
alive 카운트::
      549
ΠO
      342
yes
Name: alive, dtype: int64
alone 카운트::
        537
True
        354
False
Name: alone, dtype: int64
```


EDA level 2 – 데이터의 값 및 분포 들여다보기

- 수치형 컬럼들의 분포를 그려봅시다. 통계량은 boxplot으로 살펴보고, 분포는 histplot으로 그립니다.
 - 본격적으로 반복문을 사용해 볼까요? 이 코드에서는 반복문을 이용하여 여러 개의 차트를 그립니다.
 - plt.subplots를 통해 여러 개의 **도화지**를 생성합니다. (nrows × ncols)
 - for문 안에서는 각 도화지(ax)에 seaborn으로 차트를 그립니다. figure는 그림 전체를 의미합니다.
- 수치형 컬럼 (numerical_cols)의 boxplot 그래프 그려보기

```
figure, ax_list = plt.subplots(nrows=1, ncols=4)
figure.set_size_inches(12,5)

* for i in range(4):
    col = numerical_cols[i]
    sns.boxplot(data=titanic_df, y=col, showfliers=True, ax=ax_list[i])
    ax_list[i].set_title(f"distribution '{col}'")
```


EDA level 2 – 데이터의 값 및 분포 들여다보기

- 수치형 컬럼들의 분포를 그려봅시다. 통계량은 boxplot으로 살펴보고, 분포는 histplot으로 그립니다.
 - 본격적으로 반복문을 사용해 볼까요? 이 코드에서는 반복문을 이용하여 여러 개의 차트를 그립니다.
 - plt.subplots를 통해 여러 개의 **도화지**를 생성합니다. (nrows × ncols)
 - for문 안에서는 각 도화지(ax)에 seaborn으로 차트를 그립니다. figure는 그림 전체를 의미합니다.

EDA level 2 - 데이터의 값 및 분포 들여다보기

■ 수치형 컬럼 (numerical_cols)의 dist 그래프 그려보기

```
figure, ax_list = plt.subplots(nrows=1, ncols=4)
figure.set_size_inches(12,3)

v for i in range(4):
    sns.histplot(data=titanic_df.loc[:, numerical_cols[i]], ax=ax_list[i])
    ax_list[i].set_title(f"distribution '{numerical_cols[i]}'")
```


EDA level 2 – 데이터의 값 및 분포 들여다보기

- 범주형 컬럼들의 분포를 그려봅니다. 범주형이므로 countplot을 통해 각 범주별로 개수를 셀 수 있습니다.
 - 범주형 컬럼이 총 9개 이므로, 3x3 도화지 레이아웃으로 하나씩 그래프를 그려봅니다.
 - ax_list_list는 [[], []] 형태의 2차원 리스트 입니다. for 문으로 반복하기 위해 1차원 리스트로 풀어줍니다.
 - 1차원 리스트 ax_list가 9개의 도화지 (ax)를 갖도록 풀어서 할당하는데, .reshape() 라는 numpy 함수를 사용합니다.

```
figure, ax_list_list = plt.subplots(nrows=3, ncols=3);
figure.set_size_inches(10,10)

ax_list = ax_list_list.reshape(9) # 다차원 행렬의 차원을 원하는 모양으로 변경합니다.
print(ax_list_list.shape)
print(ax_list.shape)

* for i in range(len(category_cols)):
    col = category_cols[i]
    sns.countplot(data=titanic_df, x=col, ax=ax_list[i])
    ax_list[i].set_title(col)

plt.tight_layout()
plt.show()
```


EDA level 2 - 데이터의 값 및 분포 들여다보기

■ 범주형 컬럼들의 분포를 그려봅니다. 범주형이므로 countplot을 통해 각 범주별로 개수를 셀 수 있습니다.

■ 탑승객의 <u>'생존'에 어떤 것들이 영향을 미치는지</u> 궁금하시죠? 몇 가지 가설을 세우고 그래프를 그려 '생존'에 영향을 미치는 요인이 무엇인지 살펴봅시다.

titanic_df survived pclass sibsp parch fare embarked adult_male deck embark_town alive alone age class 7.2500 0 0 male 22.0 S Third NaN Southampton no False man True 1 female 38.0 0 71.2833 1 First woman False Cherbourg yes False 3 female 26.0 NaN 2 0 0 7.9250 Third Southampton yes True woman False 1 female 35.0 3 0 53.1000 False 1 First Southampton woman False 0 male 35.0 8.0500 Third NaN Southampton True 4 0 True man no 886 male 27.0 0 13.0000 S Second NaN Southampton 0 0 True True man 1 female 19.0 0 30,0000 887 1 0 First woman False Southampton yes True 888 0 3 female NaN 1 2 23.4500 Third False NaN Southampton False woman 889 male 26.0 0 30,0000 1 0 First man True Cherbourg True 0 7.7500 0 male 32.0 Third NaN True 890 0 Q True Queenstown man no

■ 성별과 생존 여부

sns.countplot(data=titanic_df, x='sex', hue='survived');

■ 좌석 등급과 생존 여부

sns.countplot(data=titanic_df, x='pclass', hue='survived');

■ 9개의 범주형 분류 (category_cols)에 대해, 생존 여부로 그래프 그리기

```
# hue 包环로 'survived' 置配置 요령, 각 분류형 데이터 별로 생존/사망 분리하여 살펴보기

figure, ax_list_list = plt.subplots(nrows=3, ncols=3);
figure.set_size_inches(10,10)

ax_list = ax_list_list.reshape(9)
print(ax_list_list.shape)
print(ax_list.shape)

for i in range(len(category_cols)):
    col = category_cols[i]
    sns.countplot(data=titanic_df, x=col, ax=ax_list[i], hue='survived')
    ax_list[i].set_title(col)

plt.tight_layout()
```


■ 9개의 범주형 분류 (category_cols)에 대해, 생존 여부로 그래프 그리기

- ✓ 남성보다 여성의 생존률이 더 높습니다 (남성 > 여성 > 아이)
- ✓ 탑승지(embarked)가 C인 경우 생존율이 높습니다
- ✓ 1등석 > 2등석 > 3등석 순으로 생존율이 높습니다
- ✓ B,D,E 덱 위치의 승객들이 생존율이 높습니다
- ✓ 나홀로 승객은 생존율이 낮습니다

■ 생존 여부별로 나이의 히스토그램 그려보기

sns.histplot(data=titanic_df, x='age', hue='survived', bins=100, alpha=0.5);

■ 성별과 좌석 등급에 따라, 나이의 boxplot 그려보기

sns.boxplot(data=titanic_df, x='sex', y='age', hue='pclass');

■ 배우자+형제자매의 수, 생존 여부 별 나이의 boxplot

sns.boxplot(data=titanic_df, x="sibsp", y="age", hue='survived');

■ (심화) 출항지, 좌석 등급, 생존 여부 별 운임의 boxplot

```
g = sns.FacetGrid(titanic_df, col='pclass', height=6, aspect=0.5)
g.map(sns.boxplot, 'alone', 'fare', 'survived', order=[True, False], hue_order=[0,1], showfliers=False);
g.add_legend();
```


- <연습문제 EDA-titanic-1>
 - 성별과 좌석 등급에 따라, 운임료의 boxplot을 그려보세요 (극단 이상치 제외)

- <연습문제 EDA-titanic-2>
 - 부모+자녀의 수, 생존 여부 별 나이의 boxplot을 그려보세요

sns.boxplot(data=titanic_df, x="parch", y="age", hue='survived');

- <연습문제 EDA-titanic-3>
 - (심화) 좌석 등급, 사람 구분, 생존 여부 별 나이의 boxplot을 그려보세요

```
g = sns.FacetGrid(titanic_df, col='pclass', height=6, aspect=0.5);
g.map(sns.boxplot, 'who', 'age', 'survived', order=['man','woman','child'], hue_order=[0,1], showfliers=False);
g.add_legend();
```


Q&A

THANK YOU:)

