Interprétation abstraite (suite)

November 29, 2021

Rappel des épisodes précédents

- Analyse de programmes avec approximations: interprétation abstraite.
- Trouver des invariants avec un algorithme de calcul de point-fixe.
- Un framework générique avec des résultats théoriques intéressants.
- Exemples de domaines non-relationels et à hauteur finie: Signes, Constantes, ...
- ▶ Pour l'instant, pas de domaine relationel, ni de treillis à hauteur infinie!

Credit: diagramme de P. Roux

()

Illustration du calcul du point-fixe (concret vs abstrait)

Le résultat principal: la sûreté

Sûreté de l'interprétation abstraite pour des domaines non-relationels de hauteur finie

Si le calcul se termine, alors le résultat est sur

$$R \subseteq \gamma\left(R^{\sharp}\right)$$

- Calcul d'invariants dans un treillis de hauteur infinie
 - Un exemple non-relationel: les intervalles
 - Les domaines relationels
- Stratégie d'itération, améliorations diverses

- Calcul d'invariants dans un treillis de hauteur infinie
 - Un exemple non-relationel: les intervalles
 - Les domaines relationels

Stratégie d'itération, améliorations diverses

Le domaines de intervalles, basé sur le treillis $(\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp})$

définir l'union abstraite.

 $]-\infty,+\infty[$

Interprétation abstraite (suite)

November 29, 2021

«- 7 / 29 -»

 $\gamma(\perp)$

 $=\emptyset$

Un exemple qui se termine

Itérations [0,0], [0,1], [0,2], [0,3],...

```
int x=0;
while (x<1000) {
    x=x+1;
}</pre>
```

Intervalle strictement croissant pendant 1000 itérations, puis stabilisation: [0, 1000] est un **invariant**.

Sûreté et terminaison

On a toujours la sûreté, mais:

Mauvaise nouvelle!

- En général, cela ne se termine pas! Parce que le treillis a des chaines ascendantes infinies (e.g., $(\llbracket 0, n \rrbracket)_{n \in \mathbb{N}}$).
- Et même lorsque cela se termine, c'est peut-être long...

Une solution: l'extrapolation!

```
int x=0;  
while (x<1000) {  
    x=x+1;  
}  
[0,0], [0,1], [0,2], [0,3] \rightarrow [0,+\infty)
```

▶ insérer entre chaque itération un **widening** qui empeche de suivre une chaine ascendante infinie, en "sautant" plus haut.

 $[0,\infty[$ est stable!

Le widening

Definition (widening)

Le widening ∇ est une opération binaire ($\nabla: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$) aux propriétés suivantes:

- $\bullet \ \forall x^{\sharp}, y^{\sharp}, \quad x^{\sharp} \sqcup^{\sharp} y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp} \nabla y^{\sharp};$
- pour toute séquence $\left(x_n^{\sharp}\right)_{n\in\mathbb{N}}$, la séquence croissante

$$\left\{ \begin{array}{lll} y_0^{\sharp} & = & x_0^{\sharp} \\ \\ y_{i+1}^{\sharp} & = & y_i^{\sharp} \nabla x_{i+1}^{\sharp} \end{array} \right.$$

est stationnaire.

Widening sur les intervalles

Idée : quand les bornes d'un intervalle sont stables, on les garde, sinon on les remplace par ∞ .

$$x^{\sharp} \triangledown y^{\sharp} = \begin{cases} \quad \llbracket a,b \rrbracket & \text{if } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d \leqslant b \\ \quad \llbracket a,+\infty \llbracket & \text{if } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c \geqslant a, d > b \\ \quad \rrbracket -\infty, b \rrbracket & \text{if } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d \leqslant b \\ \quad \rrbracket -\infty, +\infty \llbracket & \text{if } x^{\sharp} = \llbracket a,b \rrbracket, y^{\sharp} = \llbracket c,d \rrbracket, c < a, d > b \\ \quad y^{\sharp} & \text{if } x^{\sharp} = \bot \\ \quad x^{\sharp} & \text{if } y^{\sharp} = \bot \end{cases}$$

Exercice

Remarks:

• $[0,2] \nabla [0,1] = ???$

¬ n'est pas commutatif

• $[0,1] \nabla [0,2] = ???$

• $x \nabla y$ est souvent défini avec $x \sqsubseteq y$

()

Widening, Illustration

$$R^{\sharp} = F^{\sharp^{N}}(\bot) = \operatorname{lfp} F^{\sharp}$$

$$\vdots$$

$$R^{\sharp^{2}} = F^{\sharp}(R^{\sharp^{1}}) = F^{\sharp^{2}}(\bot)$$

$$\uparrow$$

$$R^{\sharp^{1}} = F^{\sharp}(R^{\sharp^{0}}) = F^{\sharp}(\bot)$$

$$\uparrow$$

$$R^{\sharp^{0}} = \bot$$

 F^{\sharp} stationnaire

$$R^{\sharp} = R^{\sharp} \nabla F^{\sharp} (R^{\sharp})$$

$$\left(\operatorname{lfp} F^{\sharp} \right)$$

$$\vdots$$

$$R^{\sharp^{2}} = R^{\sharp^{1}} \nabla F^{\sharp} (R^{\sharp^{1}})$$

$$R^{\sharp^{1}} = R^{\sharp^{0}} \nabla F^{\sharp} (R^{\sharp^{0}})$$

$$R^{\sharp^{0}} = \bot$$

 F^{\sharp} non stationnaire, widening

$$_{0}$$
X = 12;
while $_{1}$ (X > 0) {
 $_{2}$ X = X - 1;
}₃

$$\begin{split} R_0^{\sharp\,i+1} &= \top \\ R_1^{\sharp\,i+1} &= R_1^{\sharp\,i} \overset{!}{\nabla}_{\mathbf{nr}} \left(R_0^{\sharp\,i+1} \left[x \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \right. \\ & \left. R_2^{\sharp\,i} \left[x \mapsto R_2^{\sharp\,i}(x) - ^{\sharp} \left[1, 1 \right] \right] \right) \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[1, + \infty \right[\right] \right. \\ R_3^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[-\infty, 0 \right] \right] \end{split}$$

$$_{0}$$
X = 12;
while $_{1}$ (x > 0) {
 $_{2}$ X = X - 1;
}₃

$$\begin{split} R_0^{\sharp\,i+1} &= \top \\ R_1^{\sharp\,i+1} &= R_1^{\sharp\,i} \overset{1}{\triangledown}_{\mathbf{nr}} \left(R_0^{\sharp\,i+1} \left[x \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \right. \\ & \left. R_2^{\sharp\,i} \left[x \mapsto R_2^{\sharp\,i}(x) - ^{\sharp} \left[\llbracket 1, 1 \right] \right] \right) \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[1, + \infty \right[\right] \right. \\ R_3^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left. \llbracket -\infty, 0 \right] \right] \end{split}$$

$$_{0}$$
X = 12;
while $_{1}$ (X > 0) {
 $_{2}$ X = X - 1;
}₃

$$\begin{split} R_0^{\sharp\,i+1} &= \top \\ R_1^{\sharp\,i+1} &= R_1^{\sharp\,i} \overset{}{\triangledown}_{\mathbf{nr}} \left(R_0^{\sharp\,i+1} \left[x \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \right. \\ & \left. R_2^{\sharp\,i} \left[x \mapsto R_2^{\sharp\,i}(x) -^{\sharp} \left[\! \llbracket 1, 1 \right] \right] \right) \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[\! \llbracket 1, + \infty \right[\! \rrbracket \right] \right. \\ R_3^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[\! \rrbracket - \infty, 0 \right] \right] \end{split}$$

()

$$_{0}$$
X = 12;
while $_{1}$ (x > 0) {
 $_{2}$ X = X - 1;
}₃

$$\begin{split} R_0^{\sharp\,i+1} &= \top \\ R_1^{\sharp\,i+1} &= R_1^{\sharp\,i} \overset{\bullet}{\nabla}_{\mathbf{nr}} \left(R_0^{\sharp\,i+1} \left[x \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \right. \\ & \left. R_2^{\sharp\,i} \left[x \mapsto R_2^{\sharp\,i}(x) - ^{\sharp} \left[1, 1 \right] \right] \right) \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[1, + \infty \right] \right] \\ R_3^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[1, - \infty, 0 \right] \right] \end{split}$$

$$_{0}$$
X = 12;
while $_{1}$ (x > 0) {
 $_{2}$ X = X - 1;
}₃

$$\begin{split} R_0^{\sharp\,i+1} &= \top \\ R_1^{\sharp\,i+1} &= R_1^{\sharp\,i} \overset{\bullet}{\nabla}_{\mathbf{nr}} \left(R_0^{\sharp\,i+1} \left[x \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \right. \\ & \left. R_2^{\sharp\,i} \left[x \mapsto R_2^{\sharp\,i}(x) - ^{\sharp} \left[1, 1 \right] \right] \right) \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[1, + \infty \right] \right] \\ R_3^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[1, - \infty, 0 \right] \right] \end{split}$$

$$_{0}$$
x = 12;
while $_{1}$ (x > 0) {
 $_{2}$ x = x - 1;
}₃

$$\begin{split} R_0^{\sharp\,i+1} &= \top \\ R_1^{\sharp\,i+1} &= R_1^{\sharp\,i} \overset{\stackrel{\cdot}{\vee}_{\mathbf{nr}}}{\Big(} R_0^{\sharp\,i+1} \left[x \mapsto \llbracket 12, 12 \rrbracket \right] \sqcup_{\mathbf{nr}}^{\sharp} \\ &\qquad \qquad R_2^{\sharp\,i} \left[x \mapsto R_2^{\sharp\,i}(x) - ^{\sharp} \left[1, 1 \right] \right] \Big) \\ R_2^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[1, + \infty \right[\right] \\ R_3^{\sharp\,i+1} &= R_1^{\sharp\,i+1} \left[x \mapsto R_1^{\sharp\,i+1}(x) \ \sqcap^{\sharp} \left[-\infty, 0 \right] \right] \end{split}$$

Pourtant x = 0 à la fin!(des infos sur la précision plus tard...)

- Calcul d'invariants dans un treillis de hauteur infinie
 - Un exemple non-relationel: les intervalles
 - Les domaines relationels

Stratégie d'itération, améliorations diverses

Quand les intervalles ne sont pas suffisants

```
assume(x >= 0 \&\& x <= 1);
y = x;
z = x-y;
```

- L'humain (intelligent) voit que z = 0 (car y = x).
- Le domaine des intervalles ne prends pas en compte y=x et ne voit donc pas que z=0.

Rappels

Pour les valeurs numériques, on peut:

- (non relationel) abstraire $\mathcal{P}(\mathsf{Var} \to \mathbb{Z})$ en $\mathsf{Var} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en \mathcal{D}^\sharp
- relationel: abstraire $\mathcal{P}(\mathsf{Var} \to \mathbb{Z})$ directement en \mathcal{D}^{\sharp}
 - + plus précis
 - plus compliqué et coûteux
 - octagones, polyèdres, ...

Comment prendre en compte les relations

En utilisant de domaines relationels

Exemple: bornes sur les différences entre variables

- un intervalle pour chaque variable
- une information $x y \leqslant C$ pour chaque paire de variables .
- (on représente x = y par $x y \le 0$ et $y x \le 0$.)

Comment le calculer?

Bornes sur les différences: exemple

Supposons $x-y\leqslant 4$, on calcule z=x+3, on en déduit $z-y\leqslant 7$. Supposons $x-z\leqslant 20, \, x-y\leqslant 4$ et $y-z\leqslant 6$, on en déduit $x-z\leqslant 10$.

On sait comment calculer ces relations.

()

Pourquoi c'est utile?

Soit t(0..n) un tableau dans le programme.

Le programme écrit dans t(i).

On veut savoir si $0 \le i \le n$, autrement dit trouver des bornes sur i et $n - i \dots$

Est ce qu'on peut faire mieux?

Peut-on prendre en compte des relations telles que $2x + 3y \le 6$?

Associer un ensemble d'inégalités linéaires à chaque point du prgoramme.

Autrement dit, un polyèdre convexe.

Le domaine des polyèdres

Représentation par polyèdre convexe :

► Algorithmes efficaces (test d'inclusions, transformations ...) affine transformation ...)

Le domaine des polyèdres

- Intersection: union des contraintes
- Transformation affine : $a(P) = \{CX + D \mid X \in P\}.$
- Join: Enveloppe convexe (perte de précision)

Le domaine des polyèdres

Widening: $P\nabla Q$ II existe plusieurs versions du widening sur les polyèdres. Une version basique est la suivante:

Contraintes de $P\nabla Q$ = les contraintes de P, sans celles qui ne sont pas satisfaites par Q.

Astuce (!): $\{x = y = 0\} = \{0 \le y \le x \le 0\}$

Problemes et limitations

Sources de complexité :

- nombre de points de contrôle
- nombre de variables

Sources d'imprécision :

- Enveloppes convexes
- Widening

Complexity

(En general) Plus on est précis, plus c'est couteux:

- Intervalles: algorithmes en O(n), n est le nombre de variables.
- Differences $x y \leqslant C$: algorithmes en $O(n^3)$
- Octogones $\pm x \pm y \leqslant C$ (Miné) : algorithmes $O(n^3)$
- Polyèdres (Cousot / Halbwachs): algorithmes en $O(2^n)$.

- 1 Calcul d'invariants dans un treillis de hauteur infinie
- Stratégie d'itération, améliorations diverses

Boucles imbriquées

(Bourdoncle, 1992) Utiliser les composantes fortement connexes :

Les noeuds gris sont les noeuds de widening

Améliorer la précision après convergence

```
int x=0; // [0, 0]
while (x<1000) {// [0, +infty)
  x=x+1;
}</pre>
```

On a $[0, +\infty)$ au lieu de [0, 999]. On fait une itération de plus de la boucle : $\{0\} \sqcup [1, 1000] = [0, 1000]$. On voit que [0, 1000] est bien un invariant.

ightharpoonup Cette approche est appelée **narrowing** ou séquence descendante : on s'arrête lorsqu'on obtient un invariant, ou après k applications de la fonction de transition.

«- 28 / 29 -»

Widening retardé

Halbwachs 1993 / Goubault 2001 / Blanchet et al. 2003

Fixer *k* et calculer :

$$X_n = egin{cases} oxed{oxed{oxed}} & ext{si } n = 0 \ F(X_{n-1}) & ext{si } n < k \ X_{n-1}
abla F(X_{n-1}) & ext{sinon.} \end{cases}$$

▶ Similaire au déroulage de boucles. Couteux mais utile.