บทปฏิบัติการ: Try to Dock

(อ้างอิงจาก 2020 DOCK tutorial 1 with PDBID 3VJK

http://ringo.ams.stonybrook.edu/index.php/2020 DOCK tutorial 1 with PDBID 3VJK)

สำหรับบทปฏิบัติการนี้จะกล่าวถึงเทคนิคการทำนายการจับกันระหว่างโปรตีน-ลิแกนด์ (protein-ligand docking) โดยใช้วิธี โมเลกุล่าร์ ด็อกกิ้ง (molecular docking) เพื่อคำนวณค่าพลังงานระหว่างโครงสร้างสามมิติของโปรตีนและลิแกนด์ โดยใช้โปรแกรม DOCK 6 (เป็น Command line interface) ควบคู่กับ Chimera (เป็น Graphic User Interface) ซึ่งรองรับทั้งระบบปฏิบัติการ Windows Linux และ OS X สำหรับโปรแกรม DOCK เริ่มต้นการพัฒนาโดย Dr. Irwin Kuntz และทีมงาน จาก University of California San Francisco โดยการค้นหาการวางตัวของลิแกนด์ใช้ search algorithm เป็น anchor-and-grow

สำหรับชุดการสาธิตนี้ใช้โปรตีน 3C-like serine protease (3CLpro) ของไวรัส severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ที่มีลิแกนด์ N3 ในโครงสร้าง X-ray (PDB: 6LU7)

ขั้นตอน 1 – การจัดการแฟ้มงาน

ให้ผู้ใช้งานสร้างโฟลเดอร์ 6LU7 และ 001.structure 002.surface_spheres 003.gridbox 004.dock 005.virtual_screen 006.virtual screen mpi 007.cartesianmin 008.rescore ภายในโฟลเดอร์ 6LU7

\$ mkdir 6LU7

\$ cd 6LU7

\$ mkdir 001.structure 002.surface spheres 003.gridbox 004.energy min 005.dock 006.footprint 007.virtual screen

ขั้นตอน 2 – การปรับปรุงรีเซปเตอร์ (ตัวรับ)

ให้ผู้ใช้งานเปิดโปรแกรม Chimera จากนั้นไปที่

File > Open > ตำแหน่งไฟล์ที่เก็บไฟล์ 6lu7.pdb

ในกรณีที่มีสายโซ่ (chain) ที่ไม่เกี่ยวข้องกับการจับกันระหว่างตัวรับและลิแกนด์ ให้ทำการลบ แต่เนื่องไฟล์ 6lu7 นี้ ไม่มีสายโซ่ที่ ไม่เกี่ยวข้อง จึงไม่มีการลบสายโซใด ๆ ในโครงสร้าง แต่อย่างไรก็ตาม ลิแกนด์ต้องทำการลบ โดย

Select > Chain > C

Actions > Atoms/Bonds > Delete

จากนั้นให้ทำการบันทึกไฟล์ที่โฟลเดอร์ 001.structure เป็น mol2 โดย

File > Save Mol2 > "6lu7_rec_woH.mol2"

woH หมายถึง ยังไม่มีการเติมไฮโดรเจนในโครงสร้าง

จากนั้นให้การเติมอะตอมไฮโดรเจนและประจุ โดย

Tools > Structure Editing > Add H > ok

จากนั้นทำการเติม partial charge ลงไปในแต่ละอะตอมบนตัวรับ

Tools > Structure Editing -> Add Charge -> (AM1BCC charges should be selected) -> Ok

ทำการบันทึกเป็นไฟล์ mol2 ชื่อ 6lu7_rec_dockprep.mol2 ที่โฟลเดอร์ 001.structure

ขั้นตอน 3 – การปรับปรุงลิแกนด์

จากนั้นให้ผู้ใช้งานเข้าโปรแกรมใหม่อีกครั้ง และเปิดไฟล์ 6lu7 จากนั้น ให้ผู้ใช้ทำการเลือกเฉพาะลิแกนด์ โดย

Select > Chain > C

Select > Invert (selected model)

Actions->Atoms/Bonds->Delete

จากนั้นทำการบันทึกไฟล์ที่โฟลเดอร์ 001.structure ที่โฟลเดอร์ 001.structure

File > save as mol2 > 6lu7_ligand_noH.mol2

จากนั้นทำการเติมอะตอมไฮโดรเจนและประจุให้กับลิแกนด์ โดย

Tools > Structure Editing > Add H > ok

จากนั้นทำการเติม partial charge ลงไปในแต่ละอะตอมของลิแกนด์

Tools > Structure Editing -> Add Charge -> (AM1BCC charges should be selected) -> Ok

ทำการบันทึกเป็นไฟล์ mol2 ชื่อ 6lu7 ligand wH.mol2 ที่โฟลเดอร์ 001.structure

ขั้นตอน 4 – การสร้างพื้นผิวและขอบเขต

ในขั้นตอนนี้จะเป็นการสร้างพื้นผิวให้กับโปรตีน เพื่อใช้สำหรับเป็นพื้นที่ในการทำโมเลกุล่าร์ ด็อกกิ้ง โดยเป็นการสร้าง van der Waals surface ของโมเลกุล

ทำการเปิดไฟล์ 6LU7_rec_woH.mol2 จากนั้นไปที่

Actions > Surface > Show

Tools > Structure Editing -> Write DMS -> "6LU7 rec surface.dms" (บันทึกที่โฟลเดอร์ 002.surface spheres)

จากนั้นจะเป็นขั้นตอนการสร้างขอบเขตสำหรับการด็อกกิ้ง โดยขั้นตอนนี้จะเป็นการสร้างพื้นที่ว่างข้างในโปรตีน ซึ่งเป็นบริเวณที่ คาดว่าจะเกิดการจับกับลิแกนด์ สำหรับการสร้างนั้นจะใช้ sphgen ในการสร้าง ซึ่งเป็นแพ็คเกจในโปรแกรม DOCK 6 (อยู่ที่ตำแหน่ง dock6/bin/sphgen) แต่ก่อนอื่นให้ทำการสร้างสคริปเพื่อสร้างขอบเขตดังกล่าวก่อน โดยใช้ชื่อ INSPH

\$ cd 002.surface_spheres

\$ vi INSPH

ให้ทำการใส่ข้อมูลนี้

υ	
6LU7_rec_surface.dms	
R	
X	
0.0	
4.0	
1.4	
6LU7_receptor_woH.sph	

โดยแต่ละบรรทัดมีความหมาย ดังนี้

[your_receptor].dms - molecular surface file that we got from previous step

<flag> - sphere outside of surface (R) or inside surface (L)

<flag> - specifies subset of surface points to be used (X = all points)

<double> - prevents generation of large spheres with close surface contacts (default = 0.0)

<double> - maximum sphere radius in angstroms (default = 4.0 Angstroms)

<double> - minimum sphere radius in angstroms (default = radius of probe = 1.4 Angstroms = Size of a water molecule)

[your_receptor].sph - clustered spheres file that we want to generate

จากนั้นทำการสร้างขอบเขต โดยใช้คำสั่ง

\$ sphgen -i INSPH -o OUTSPH

-i is the flag that give sphgen the input file INSPH

INSPH is the file created above that gives sphgen instructions

-o is the flag to create the oputput file

OUTSPH is the output file with the information of the spheres generated from sphgen

จากนั้น สังเกตขอบเขตที่สร้างขึ้น โดยเปิดไฟล์ 6LU7_receptor_woH.sph ควบคู่กับ 6lu7_rec_woH.mol2

จากนั้น ทำการสร้างขอบเขตที่เป็นส่วนที่อยู่ของลิแกนด์ โดยใช้คำสั่ง sphere selector

sphere_selector 6LU7_receptor_woH.sph 6lu7_ligand_wH.mol2 10.0

จะสังเกตได้ว่ามีไฟล์ selected_spheres.sph สร้างเพิ่มขึ้นมา ให้ผู้ใช้ทำการเปิดไฟล์ดังกล่าว ควบคู่กับ 6lu7_rec_woH.mol2 โดยคำสั่งดังกล่าวผู้ใช้งานสามารถเปลี่ยนขอบเขตที่ถูกเลือกได้จาก 10 Angstroms เป็น 8 หรือ 6 Angstroms ที่สามารถครอบคลุม ขอบเขตที่เป็นที่อยู่ของลิแกนด์ ซึ่งในที่นี้ผู้ใช้งานเลือก 6 Angstroms

selected_spheres.sph 10 Angstroms

selected_spheres.sph 6 Angstroms

ขั้นตอน 5 – การสร้างกล่องและกริด

เนื่องจากการคำนวณค่าพลังงานเป็นการคำนวณที่มีราคาแพง เพื่อเป็นการลดราคาดังกล่าว DOCK 6 คำนวณค่าพลังงานโดยใช้ กริด ซึ่งจะไม่พิจารณาอันตรกิริยากับลิแกนด์ที่อยู่ไกล

\$ cd 003.gridbox

\$ vi showbox.in

ให้ทำการใส่ข้อมูลนี้

υ	
Υ	#generate box
8.0	#how many angstroms the box edges should be from the spheres
/002.surface_spheres/selected_spheres.sph	#the location of the selected spheres
1	# the cluster number in the selected_spheres.sph file
6LU7.box.pdb	#name of the output file

จากนั้นทำการรัน

\$ showbox < showbox.in

จากนั้นจะทำการสร้างกริด โดยให้ทำการสร้างไฟล์ grid.in

\$ vi grid.in

compute_grids	yes
grid_spacing	0.4
output_molecule	no
contact_score	no
energy_score	yes
energy_cutoff_distance	9999
atom_model	a
attractive_exponent	6
repulsive_exponent	9
distance_dielectric	yes
dielectric_factor	4
bump_filter	yes
bump_overlap	0.75
receptor_file	/001.structure/6lu7_rec_dockprep.mol2
box_file	6LU7.box.pdb
vdw_definition_file	/dock6/parameters/vdw_AMBER_parm99.defn
score_grid_prefix	grid

Line by line:

- 1. compute scoring grids (yes)
- 2. what is the distance between grid points along each axis (in Angstroms).
- 3. write up coordinates of the receptor into a new file
- 4. compute contact grid? default is no
- 5. compute energy score? yes we are using this method to compute force fields on probes
- 6. the max distance between atoms for the energy contribution to be computed
- 7. atom_model **u** means united atom model where atoms are attached to hydrogens, and **a** stands for allatom model, where hydrogens on carbons are treated separately
- 8. attractive component stands for exponent of the attractive LJ term in VDW potential
- 9. repulsive component stands for exponent in the repulsive LJ term in VDW potential
- 10. distance dielectric stands for the dielectric constant to be linearly dependent on distance
- 11. distance dielectric factor is the coefficient of the dielectric
- 12. bump filter flag determines if we want to screen orientation for clashes before scoring and minimization
- 13. bump_overlap stands for the fraction of allowed overlap where 1 corresponds to no allowed overlap and 0 corresponds to full overlap being permitted.
- 14. our receptor file
- 15. the box file we generated in the Box section
- 16. VDW parameters file
- 17. Prefix for the grid file name. All the extensions will be generated automatically.

จากนั้นทำการรัน

\$ grid -i grid.in -o gridinfo.out

เมื่อทำเสร็จสิ้น ผู้ใช้สามารถดูผลลัพธ์จากการประมวลผลได้จากไฟล์ gridinfo.out ซึ่งจะเห็นได้ว่า

Total charge on 6lu7.pdb : -4.000

Box center of mass : -10.265 15.071 67.562 Box dimensions : 28.131 33.636 33.602

Number of grid points per side [x y z] : 72 86 86

Total number of grid points : 532512

โดยในการคำนวณพลังงานสำหรับขั้นกริดนี้ สามารถคำนวณได้จากสมการ ดังต่อไปนี้

The energy scoring function:

$$E = \sum_{i=1}^{lig} \left[\sqrt{A_{ii}} \sum_{j=1}^{rec} \frac{\sqrt{A_{jj}}}{r_{ij}^a} - \sqrt{B_{ii}} \sum_{j=1}^{rec} \frac{\sqrt{B_{jj}}}{r_{ij}^b} + 332.0 * q_i \sum_{j=1}^{rec} \frac{q_j}{Dr_{ij}} \right]$$

ขั้นตอน 6 – การทำ Energy minimization

ขั้นตอนนี้จะเป็นการ minimize ของลิแกนด์ เนื่องจากลิแกนด์ยังไม่ได้อยู่ในสภาวะที่พลังงานน้อยที่สุด (พลังงานน้อยสุด นั่น หมายถึง สภาวะที่เสถียรที่สุด)

ขั้นแรกจะทำการสร้างพารามิเตอร์สำหรับการทำด็อกกิ้ง โดย

\$ cd 004.energy_min \$ vi min.in

· ·	
conformer_search_type	rigid
use_internal_energy	yes
internal_energy_rep_exp	12
internal_energy_cutoff	100.0
ligand_atom_file	/001.structure/6lu7_ligand_wH.mol2
limit_max_ligands	no
skip_molecule	no
read_mol_solvation	no
calculate_rmsd	yes
use_rmsd_reference_mol	yes
rmsd_reference_filename	/001.structure/6lu7_ligand_wH.mol2
use_database_filter	no
orient_ligand	no
bump_filter	no
score_molecules	yes
contact_score_primary	no
contact_score_secondary	no
grid_score_primary	yes
grid_score_secondary	no
grid_score_rep_rad_scale	1
grid_score_vdw_scale	1
grid_score_es_scale	1
grid_score_grid_prefix	/003.gridbox/grid
multigrid_score_secondary	no
dock3.5_score_secondary	no
continuous_score_secondary	no
footprint_similarity_score_secondary	no
pharmacophore_score_secondary	no
descriptor_score_secondary	no

gbsa_zou_score_secondary	no
gbsa_hawkins_score_secondary	no
SASA_score_secondary	no
amber_score_secondary	no
minimize_ligand	yes
simplex_max_iterations	1000
simplex_tors_premin_iterations	0
simplex_max_cycles	1
simplex_score_converge	0.1
simplex_cycle_converge	1.0
simplex_trans_step	1.0
simplex_rot_step	0.1
simplex_tors_step	10.0
simplex_random_seed	0
simplex_restraint_min	yes
simplex_coefficient_restraint	10.0
atom_model	all
vdw_defn_file	/dock6/parameters/vdw_AMBER_parm99.defn
flex_defn_file	/dock6/parameters/flex.defn
flex_drive_file	/dock6/parameters/flex_drive.tbl
ligand_outfile_prefix	6LU7.lig.min
write_orientations	no
num_scored_conformers	1
rank_ligands	no

\$ dock6 -i min.in -o min.out

ลิแกนด์ที่ไม่ได้ minimization (สีฟ้า) กับ ลิแกนด์ที่ minimization (สีน้ำตาล)

ขั้นตอน 7 - การทำด็อกกิ้งตัวเอง (Self-docking) แบบ Flexible docking

ในขั้นตอนนี้จะเป็นการทำโมเลกุล่าร์ ด็อกกิ้ง แบบ Flexible ซึ่งมีราคาการคำนวณที่สูง โดยในการคำนวณลิแกนด์จะมีองศาการ หมุนที่เป็นอิสระ

ขั้นแรกจะทำการสร้างพารามิเตอร์สำหรับการทำด็อกกิ้ง โดย

\$ cd 005.dock \$ vi flex.in

67171 111 13 661 0 C S 61 16	
conformer_search_type	flex
write_fragment_libraries	no
user_specified_anchor	no
limit_max_anchors	no
min_anchor_size	5
pruning_use_clustering	yes
pruning_max_orients	1000
pruning_clustering_cutoff	100
pruning_conformer_score_cutoff	100.0
pruning_conformer_score_scaling_factor	1.0
use_clash_overlap	no
write_growth_tree	no
use_internal_energy	yes
internal_energy_rep_exp	12
internal_energy_cutoff	100.0
ligand_atom_file	/004.energy_min/6LU7.lig.min_scored.mol2
limit_max_ligands	no
skip_molecule	no
read_mol_solvation	no
calculate_rmsd	yes
use_rmsd_reference_mol	yes
rmsd_reference_filename	/004.energy_min/6LU7.lig.min_scored.mol2
use_database_filter	no
orient_ligand	yes
automated_matching	yes
receptor_site_file	/002.surface_spheres/selected_spheres.sph
max_orientations	1000
critical_points	no
chemical_matching	no

use_ligand_spheres	no
bump_filter	no
score_molecules	yes
contact_score_primary	no
contact_score_secondary	no
grid_score_primary	yes
grid_score_secondary	no
grid_score_rep_rad_scale	1
grid_score_vdw_scale	1
grid_score_es_scale	1
grid_score_grid_prefix	/003.gridbox/grid
multigrid_score_secondary	no
dock3.5_score_secondary	no
continuous_score_secondary	no
footprint_similarity_score_secondary	no
pharmacophore_score_secondary	no
descriptor_score_secondary	no
gbsa_zou_score_secondary	no
gbsa_hawkins_score_secondary	no
SASA_score_secondary	no
amber_score_secondary	no
minimize_ligand	yes
minimize_anchor	yes
minimize_flexible_growth	yes
use_advanced_simplex_parameters	no
simplex_max_cycles	1
simplex_score_converge	0.1
simplex_cycle_converge	1.0
simplex_trans_step	1.0
simplex_rot_step	0.1
simplex_tors_step	10.0
simplex_anchor_max_iterations	500
simplex_grow_max_iterations	500
simplex_grow_tors_premin_iterations	0
simplex_random_seed	0
simplex_restraint_min	no
atom_model	all
vdw_defn_file	/dock6/parameters/vdw_AMBER_parm99.defn
flex_defn_file	/dock6/parameters/flex.defn
flex_drive_file	/dock6/parameters/flex_drive.tbl

ligand_outfile_prefix	flex.out
write_orientations	no
num_scored_conformers	1
rank_ligands	no

\$ dock6 -i flex.in -o flex.out

เมื่อทำการรันเสร็จสิ้น สามารถดูผลลัพธ์ผ่านโปรแกรม Chimera โดยใช้ ViewDock

File > Open > 6lu7_rec_dockprep.mol2

File > Open > 6lu7_ligand_wH.mol2

Tools > Surface/binding Analysis > ViewDock > Select the Flex Dock output file. (flex.out_scored.mol2)

In the loaded dialog box select Dock 4, 5 or 6

จากนั้นทำการปรับเปลี่ยนการแสดงผลเพื่อให้โชว์คอลัมภ์ gridscore และ HA RMSDs

Column > Show > Grid Score

Column > Show > HA_RMSDs

(1) Standard heavy-atom RMSD (HA_RMSDs): This is the standard pair-wise RMSD calculation between the non-hydrogen atoms of a reference conformation a and a pose conformation b for a ligand with N total heavy atoms of index i

$$HA_{RMSDs} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} ||a_i - b_i||^2}$$

(2) Minimum-distance heavy-atom RMSD (HA_RMSDm): This measure is based on the RMSD implementation used in Autodock Vina (Trott and Olson, *J. Comput. Chem.* 2010), which does not explicitly enforce one-to-one mapping. Rather, atom pairings between reference conformation *a* and pose conformation *b* are determined by the minimum distance to any atom of the same element type, and it may be an under-prediction of the true RMSD.

$$RMSD_{\min}(A, B) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\min_{j} \left\| a_{i} - b_{j} \right\| \right)^{2}}$$

$$HA_RMSDm = \max(RMSD_{\min}(A, B), RMSD_{\min}(B, A))$$

(3) Hungarian (symmetry-corrected) heavy-atom RMSD (HA_RMSDh): The final RMSD implementation is based on an $O(N^4)$ implementation of the Hungarian algorithm (Kuhn, Nav. Res. Logist. Q. 1955; Munkres, J. Soc. Indust. Appl. Math. 1957). The algorithm solves the optimal assignment between a set of reference ligand atoms a and a set of pose ligand atoms a of the same size. For all groups of atoms of the same Sybyl atom type, a cost matrix a is populated where each matrix element a is equal to the distance-squared between reference atom a and pose atom a is a to determine one-to-one assignments between reference and pose ligand atoms such that the total distance between atoms is minimized. The new assignments a into the standard

RMSD function in order to compute a symmetry-corrected RMSD. If the HA_RMSDh is "-1000.0", then there is an inconsistency in the number of atoms of at least one atom type between the reference and the docked conformer.

ลิแกนด์จากโครงสร้าง X-ray (สี่น้ำตาล) โครงสร้างจากการทำ Self-docking (สีชมพู)

ขั้นตอน 8 – การทำ Molecular Footprint

สำหรับขั้นตอนนี้จะเป็นการวิเคราะห์อันตรกิริยาที่เกิดขึ้นระหว่างตัวรับและลิแกนด์ โดยจะพิจารณาถึง electrostatic interactions and Van der Waals interactions ก่อนและหลังการทำ minimization

ขั้นแรกจะทำการสร้างพารามิเตอร์สำหรับการทำ molecular footprint โดย

\$ cd 006.footprint \$ vi footprint.in

conformer_search_type	rigid
use_internal_energy	no
ligand_atom_file	/004.energy_min/6LU7.lig.min_scored.mol2
limit_max_ligands	no
skip_molecule	no
read_mol_solvation	no
calculate_rmsd	no
use_database_filter	no
orient_ligand	no
bump_filter	no

score_molecules	yes
contact_score_primary	no
contact_score_secondary	no
grid_score_primary	no
grid_score_secondary	no
multigrid_score_primary	no
multigrid_score_secondary	no
dock3.5_score_primary	no
dock3.5_score_secondary	no
continuous_score_primary	no
continuous_score_secondary	no
footprint_similarity_score_primary	yes
footprint_similarity_score_secondary	no
fps_score_use_footprint_reference_mol2	yes
fps_score_footprint_reference_mol2_filename	/001.structure/6lu7_ligand_wH.mol2
fps_score_foot_compare_type	Euclidean
fps_score_normalize_foot	no
fps_score_foot_comp_all_residue	yes
fps_score_receptor_filename	/001.structure/6lu7_rec_dockprep.mol2
fps_score_vdw_att_exp	6
fps_score_vdw_rep_exp	12
fps_score_vdw_rep_rad_scale	1
fps_score_use_distance_dependent_dielectric	yes
fps_score_dielectric	4.0
fps_score_vdw_fp_scale	1
fps_score_es_fp_scale	1
fps_score_hb_fp_scale	0
pharmacophore_score_secondary	no
descriptor_score_secondary	no
gbsa_zou_score_secondary	no
gbsa_hawkins_score_secondary	no
SASA_score_secondary	no
amber_score_secondary	no
minimize_ligand	no
atom_model	all
vdw_defn_file	/dock6/parameters/vdw_AMBER_parm99.defn
flex_defn_file	/dock6/parameters/flex.defn
flex_drive_file	/dock6/parameters/flex_drive.tbl
ligand_outfile_prefix	6lu7_footprint_min_cryst
write_footprints	yes
· · · · · · · · · · · · · · · · · · ·	

write_hbonds	yes
write_orientations	no
num_scored_conformers	1
rank_ligands	no

\$ dock6 -i footprint.in

เมื่อรันเสร็จจะปรากฏไฟล์ผลลัพธ์จำนวน 3 ไฟล์ ได้แก่

- 1. 6lu7 footprint min cryst footprint scored.txt
- 2. 6lu7_footprint_min_cryst_hbond_scored.txt
- 3. 6lu7_footprint_min_cryst_scored.mol2

ซึ่งสามารถนำผลลัพธ์ดังกล่าวไปใช้ในการวิเคราะห์ Key residue ที่สำคัญต่อการจับระหว่างโปรตีนตัวรับกับลิแกนด์

ขั้นตอน 9 - การคัดกรองเสมือนจริง (Virtual Screening)

สำหรับการคัดกรองเสมือนจริง เราจะใช้ลิแกนด์ที่เตรียมได้จากการค้นหาผ่าน similarity จาก Google Colab ผ่านฐานข้อมูล ChEMBL (ไฟล์ cov compounds.mol2) ซึ่งมีลิแกนด์จำนวน 64 ลิแกนด์

โดยขั้นแรกให้ผู้ใช้นำไฟล์ cov_compounds.mol2 ไปไว้ที่โฟลเดอร์ 006.virtual_screen จากนั้นทำการสร้างพารามิเตอร์ สำหรับการทำด็อกกิ้ง

\$ cd 007.virtual_screen \$ vi virtual.in

conformer_search_type	flex
write_fragment_libraries	no
user_specified_anchor	no
limit_max_anchors	no
min_anchor_size	5
pruning_use_clustering	yes
pruning_max_orients	1000
pruning_clustering_cutoff	100
pruning_conformer_score_cutoff	100.0
pruning_conformer_score_scaling_factor	1.0
use_clash_overlap	no
write_growth_tree	no
use_internal_energy	yes

internal_energy_rep_exp	9
internal_energy_cutoff	100.0
ligand_atom_file	cov_compounds.mol2
limit_max_ligands	no
skip_molecule	no
read_mol_solvation	no
calculate_rmsd	no
use_database_filter	no
orient_ligand	yes
automated_matching	yes
receptor_site_file	/002.surface_spheres/selected_spheres.sph
max_orientations	1000
critical_points	no
chemical_matching	no
use_ligand_spheres	no
bump_filter	no
score_molecules	yes
contact_score_primary	no
contact_score_secondary	no
grid_score_primary	yes
grid_score_secondary	no
grid_score_rep_rad_scale	1
grid_score_vdw_scale	1
grid_score_es_scale	1
grid_score_grid_prefix	/003.gridbox/grid
multigrid_score_secondary	no
dock3.5_score_secondary	no
continuous_score_secondary	no
footprint_similarity_score_secondary	no
pharmacophore_score_secondary	no
descriptor_score_secondary	no
gbsa_zou_score_secondary	no
gbsa_hawkins_score_secondary	no
SASA_score_secondary	no
amber_score_secondary	no
minimize_ligand	yes
minimize_anchor	yes
minimize_flexible_growth	yes
use_advanced_simplex_parameters	no
simplex_max_cycles	1

simplex_score_converge	0.1
simplex_cycle_converge	1.0
simplex_trans_step	1.0
simplex_rot_step	0.1
simplex_tors_step	10.0
simplex_anchor_max_iterations	500
simplex_grow_max_iterations	500
simplex_grow_tors_premin_iterations	0
simplex_random_seed	0
simplex_restraint_min	no
atom_model	all
vdw_defn_file	/dock6/parameters/vdw_AMBER_parm99.defn
flex_defn_file	/dock6/parameters/flex.defn
flex_drive_file	/dock6/parameters/flex_drive.tbl
ligand_outfile_prefix	virtual.out
write_orientations	no
num_scored_conformers	1
rank_ligands	no

\$ dock6 -i virtual.in -o virtual.out