We proceed by induction. The base case k = 1 is trivial. For the induction step, from $(*_2)$, we have

$$P_k A_{k+1} = A P_k$$
.

Since $A_{k+1} = R_k Q_k = Q_{k+1} R_{k+1}$, we have

$$P_{k+1}\mathcal{R}_{k+1} = P_kQ_{k+1}R_{k+1}\mathcal{R}_k = P_kA_{k+1}\mathcal{R}_k = AP_k\mathcal{R}_k = AA^k = A^{k+1}$$

establishing the induction step.

Step 2. We will express the matrix P_k as $P_k = Q\widetilde{Q}_k D_k$, in terms of a diagonal matrix D_k with unit entries, with Q and \widetilde{Q}_k unitary.

Let P = QR, a QR-factorization of P (with R an upper triangular matrix with positive diagonal entries), and $P^{-1} = LU$, an LU-factorization of P^{-1} . Since $A = P\Lambda P^{-1}$, we have

$$A^{k} = P\Lambda^{k}P^{-1} = QR\Lambda^{k}LU = QR(\Lambda^{k}L\Lambda^{-k})\Lambda^{k}U. \tag{*4}$$

Here, Λ^{-k} is the diagonal matrix with entries λ_i^{-k} . The reason for introducing the matrix $\Lambda^k L \Lambda^{-k}$ is that its asymptotic behavior is easy to determine. Indeed, we have

$$(\Lambda^k L \Lambda^{-k})_{ij} = \begin{cases} 0 & \text{if } i < j \\ 1 & \text{if } i = j \\ \left(\frac{\lambda_i}{\lambda_j}\right)^k L_{ij} & \text{if } i > j. \end{cases}$$

The hypothesis that $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > 0$ implies that

$$\lim_{k \to \infty} \Lambda^k L \Lambda^{-k} = I. \tag{\dagger}$$

Note that it is to obtain this limit that we made the hypothesis on the moduli of the eigenvalues. We can write

$$\Lambda^k L \Lambda^{-k} = I + F_k$$
, with $\lim_{k \to \infty} F_k = 0$,

and consequently, since $R(\Lambda^k L \Lambda^{-k}) = R(I + F_k) = R + R F_k R^{-1} R = (I + R F_k R^{-1}) R$, we have

$$R(\Lambda^k L \Lambda^{-k}) = (I + RF_k R^{-1})R. \tag{*5}$$

By Proposition 9.11(1), since $\lim_{k\to\infty} F_k = 0$, and thus $\lim_{k\to\infty} RF_kR^{-1} = 0$, the matrices $I + RF_kR^{-1}$ are invertible for k large enough. Consequently for k large enough, we have a QR-factorization

$$I + RF_k R^{-1} = \widetilde{Q}_k \widetilde{R}_k, \tag{*6}$$

with $(\widetilde{R}_k)_{ii} > 0$ for i = 1, ..., n. Since the matrices \widetilde{Q}_k are unitary, we have $\|\widetilde{Q}_k\|_2 = 1$, so the sequence (\widetilde{Q}_k) is bounded. It follows that it has a convergent subsequence (\widetilde{Q}_ℓ) that converges to some matrix \widetilde{Q} , which is also unitary. Since

$$\widetilde{R}_{\ell} = (\widetilde{Q}_{\ell})^* (I + RF_{\ell}R^{-1}),$$