Congruence

Definition 1 (Segment Congruence). Let \mathcal{P} be an ordered geometry, and suppose we have an equivalence relation on pairs of points, denoted \cong_s . We call \cong_s a segment congruence if the following properties are satisfied.

- SC1. $(x,y) \cong_s (x,y)$ for all points x and y.
- SC2. If $(x,y) \cong_s (z,w)$ then $(z,w) \cong_s (x,y)$ for all points x, y, z, and w.
- SC3. If $(x,y) \cong_s (z,w)$ and $(z,w) \cong_s (u,v)$, then $(x,y) \cong_s (u,v)$ for all x, y, z, w, u, and v.
- SC4. $(x,x) \cong_s (y,y)$ for all points x and y.
- SC5. $(x,y) \cong_s (y,x)$ for all points x and y.
- SC6. If $z \in \overrightarrow{xy}$ such that $(x, z) \cong_s (x, y)$, then z = y.

In this case, \cong_s is and equivalence relation on the set of segments in \mathcal{P} , and we write $\overline{xy} \equiv \overline{ab}$ to mean $(x,y) \cong_s (a,b)$.

The first three properties ensure that \cong_s is an equivalence relation; the fourth handles the "trivial" case, the fifth makes \cong_s well-defined on segments, and the sixth ensures that \cong_s differentiates between segments on the same ray which share an endpoint.

Examples

 \mathbb{R}^2 Given points A, B, X, and Y in the Cartesian plane, we say that $\overline{AB} \equiv \overline{XY}$ if $(B-A)\cdot(B-A)=(Y-X)\cdot(Y-X)$, where \cdot is the usual dot product of vectors. It is straightforward to show that this is a segment congruence.

Angle Congruence

Definition 2 (Angle Congruence). Let \mathcal{P} be an ordered geometry, and suppose we have an equivalence relation on triples of points, denoted \cong_a . We call \cong_a an angle congruence if the following properties are satisfied.

- AC1. $(a, o, b) \cong_a (a, o, b)$ for all points a, o, and b.
- AC2. If $(a, o, b) \cong_a (x, p, y)$, then $(x, p, y) \cong_a (a, o, b)$ for all points a, o, b, x, p, and y.
- AC3. If $(a, o, b) \cong_a (x, p, y)$ and $(x, p, y) \cong_a (h, q, k)$, then $(a, o, b) \cong_a (h, q, k)$ for all points a, o, b, x, p, y, h, q, and k.
- AC4. If [xyz] and [abc], then $(x,y,z)\cong_a (a,b,c)$ and $(y,x,z)\cong_a (b,a,c)$, and $(x,y,z)\ncong_a (y,x,z)$.

- AC5. If $x \in \overrightarrow{oa}$ and $y \in \overrightarrow{ob}$ and x, y, and o are distinct, then $(a, o, b) \cong_a (x, o, y)$.
- AC6. $(a, o, b) \cong_a (b, o, a)$ and $(a, o, b) \cong_a (a, o, b)$ for all points a, o, and b.
- AC7. If a, b, and o are noncollinear points and x is on the b-side of \overrightarrow{ba} such that $(a, o, b) \cong_a (a, o, x)$, then $x \in \overrightarrow{ob}$.

In this case, \cong_a is an equivalence relation on the set of angles in \mathcal{P} , and we write $\angle aob \equiv \angle xpy$ to mean $(x, o, y) \cong_a (x, p, y)$.

Again, the first three properties make \cong_a an equivalence, the fourth handles the trivial case, the fifth and sixth make \cong_a well-defined on angles, and the seventh ensures that \cong_a differentiates between angles on one half-plane which share a vertex.

Definition 3 (Triangle Congruence). Let a, b, and c be distinct points, and let x, y, and z be distinct points. We say that $\triangle abc$ is congruent to $\triangle xyz$, denoted $\triangle abc \equiv \triangle xyz$, if

$$\overline{ab} \equiv \overline{xy}, \quad \overline{bc} \equiv \overline{yz}, \quad \text{and} \quad \overline{ca} \equiv \overline{zx}$$

and

$$\angle abc \equiv \angle xyz$$
, $\angle bca \equiv \angle yzx$, and $\angle cab \equiv \angle zxy$.

Proposition 1.

- 1. $\triangle abc \equiv \triangle abc$.
- 2. If $\triangle abc \equiv \triangle xyz$, then $\triangle xyz \equiv \triangle abc$.
- 3. If $\triangle abc \equiv \triangle xyz$ and $\triangle xyz \equiv \triangle hk\ell$, then $\triangle abc \equiv \triangle hk\ell$.
- 4. If $\triangle abc \equiv \triangle xyz$, then $\triangle bca \equiv \triangle yzx$.

Definition 4. Let a, b, and c be distinct points.

- We say that the triangle $\triangle abc$ is equilateral if $\overline{ab} \equiv \overline{bc} \equiv \overline{ca}$.
- We say that the triangle △abc is isoceles if two of its sides are congruent to each other.

Supplementary and Right Angles

Definition 5 (Supplementary Angles). We say that angles $\angle aob$ and $\angle xpy$ are supplementary if there is a linear pair, $\angle uqv$ and $\angle vqw$, such that $\angle aob \equiv \angle uqv$ and $\angle xpy \equiv \angle vqw$. In this case we say that $\angle xpy$ is a supplement of $\angle aob$.

Proposition 2. Let \mathcal{P} be an ordered geometry with an angle congruence.

- 1. If two angles form a linear pair, then they are supplementary.
- 2. Every angle has a supplement.

Definition 6. An angle is called right if it is supplementary to itself.