Guided Tour of Machine Learning in Finance

ML in Finance vs ML in Tech - part II

Igor Halperin

NYU Tandon School of Engineering, 2017

ML in Tech:

• Perception (image recognition, NLP tasks, etc.). Methods: SL/UL

ML in Tech:

- Perception (image recognition, NLP tasks, etc.). Methods: SL/UL
- Action (computational advertising, robotics, self-driving cars, etc.). Methods: SL/UI/RL

What are typical ML tasks in Finance?

Perception: Forecasting tasks

- Security price predictions (stocks, bonds, commodities etc.). Methods: SL/UL
- Corporate actors action prediction (dividends, mergers, defaults etc.). Methods: SL/UL/RL
- Individual actors action prediction (loan defaults, fraud, AML, etc.). Methods: SL/UL/RL

- **Perception: Valuation tasks**
- Asset valuation (stocks, futures, commodities, bonds, etc.). Related to forecasting. Methods: SL/UL
- Derivatives valuation. Methods: SL/UL/RL

Question: why can perception tasks in Finance involve RL?

5

Question: why may perception tasks in Finance involve **RL**?

Answer:

- In Finance, perception tasks are often about the future
- The future is partly driven by future actions of decision makers
- This brings RL into the game even for "perception" tasks in Finance!

Action: Trading and asset management

- Optimal execution for brokerage trading. Methods: SL/UL/RL
- Optimal strategies for day trading. Methods: SL/UL/RL
- Active portfolio management. Methods: SL/UL/RL

Action: Decision-making in banking

- Loan approvals. Methods: SL/UL/RL, Bayesian networks
- Credit and operational risk management. Methods: SL/UL/RL, Bayesian networks
- Decision-making in compliance analytics (fraud, AML, etc.).
 Methods: SL/UL/RL, Bayesian networks

- We saw that in Finance, perception tasks might involve elements of RL. This is unlike typical perception tasks for ML in Tech
- This happens because some perception tasks in Finance involve predicting future actions of rational (or semi-rational) actors, or own actions (like e.g. with American options)
- What about other differences of ML in Finance from ML in Tech?

Tasks	ML in Tech	ML in Finance
Big Data?	typically yes	typically no

Most of data for ML in finance are medium-size, except HFT

Tasks	ML in Tech	ML in Finance
Big Data?	typically yes	typically no
Stationary data?	typically yes	most often no

As most of financial data are non-stationary, collecting more data, even when possible, is not always helpful

Tasks	ML in Tech	ML in Finance
Big Data?	typically yes	typically no
Stationary data?	typically yes	most often no
Signal-to-noise ratio	typically low	typically high

Financial data are typically quite noisy, "true" signals are unobservable!

Tasks	ML in Tech	ML in Finance
Big Data?	typically yes	typically no
Stationary data?	typically yes	most often no
Signal-to-noise ratio	typically low	typically high
Action (RL) tasks	Low dimensional state- action space, low uncertainty	High-dimensional state- action space, high uncertainty

- ML in Tech: dimensionality of the state-action space is usually in hundreds. The action space is often discrete (except in robotics). Uncertainty is low to moderate (think self-driving cars!)
- ML in Finance: dimensionality of the state-action space is often in thousands. The action space is usually continuous. Uncertainty is high (think Brexit!)

Tasks	ML in Tech	ML in Finance
Big Data?	typically yes	typically no
Stationary data?	typically yes	most often no
Signal-to-noise ratio	typically low	typically high
Action (RL) tasks	Low dimensional state-action space, low uncertainty	High-dimensional state- action space, high uncertainty
Interpretability of results	typically, not important, or not the main focus	Typically, either desired or required

Interpretability of results is:

- <u>Desired</u> for trading
- Required for regulation (General Data Protection Regulation, 2018)