3 Elementary Functions

We've already considered polynomials, rational functions and, to some extent, n^{th} roots and the exponential. We now develop the logarithmic and trigonometric functions.

3.1 Exponential and Logarithmic Functions

The exponential function $\exp : \mathbb{C} \to \mathbb{C} : z \mapsto e^z$ was defined earlier using Euler's formula

$$\exp(z) = e^z := e^x \cos y + ie^x \sin y \tag{*}$$

For reference, we collect some basic properties: at least parts 1–4 should be familiar.

Lemma 3.1. Throughout let $z, w \in \mathbb{C}$.

- 1. The exponential function is entire and has derivative $\frac{d}{dz}e^z = e^z$
- 2. $e^z \neq 0$
- 3. $e^{z+w} = e^z e^w$ and $e^{z-w} = \frac{e^z}{e^w}$
- 4. For all $n \in \mathbb{Z}$, $(e^z)^n = e^{nz}$
- 5. e^z is periodic with period $2\pi i$. Moreover,

$$e^z = e^w \iff z - w = 2\pi in \text{ for some } n \in \mathbb{Z}$$

Sketch Proof. 1. We saw this earlier: check Cauchy–Riemann and compute $\frac{d}{dz}e^z = u_x + iv_x$.

- 2. This follows trivially from (*): $e^x > 0$, while $\cos y$ and $\sin y$ are never both zero.
- 3. Recall the multiple-angle formulæ for cosine and sine.
- 4. This requires an induction using part 3 with z = w.
- 5. Certainly $e^{w+2\pi in}=e^w$ by the periodicity of sine and cosine. Now suppose $e^z=e^w$ where z=x+iy and w=u+iv. By considering the modulus and argument, we see that

$$e^{x}e^{iy} = e^{u}e^{iv} \implies \begin{cases} e^{x} = e^{u} \\ y = v + 2\pi in \text{ for some } n \in \mathbb{Z} \end{cases}$$

We conclude that x = u and so $z - w = i(y - v) = 2\pi i n$.

Example 3.2. Find all $z \in \mathbb{C}$ such that $e^z = 5(-1+i)$.

Following the Lemma, write z = x + iy and take the polar form of 5(-1+i) to see that

$$e^{z} = 5(-1+i) \iff e^{x}e^{iy} = 5\sqrt{2}e^{\frac{3\pi i}{4}} \iff \begin{cases} x = \ln(5\sqrt{2}) \\ y = \frac{3\pi}{4} + 2\pi n & \text{for some } n \in \mathbb{Z} \end{cases}$$

 $\iff z = \ln(5\sqrt{2}) + \left(\frac{3\pi}{4} + 2\pi n\right)i & \text{for some } n \in \mathbb{Z}$

We see that there are *infinitely many* suitable *z*!

Duplicate Notation Warning! When $n \in \mathbb{N}$, the expression $e^{\frac{1}{n}}$ can now mean two things. For instance $e^{\frac{1}{3}}$ can mean:

- 1. The *set* of cube roots of *e*, namely $\{\sqrt[3]{e}, \sqrt[3]{e}e^{\frac{2\pi i}{3}}, \sqrt[3]{e}e^{-\frac{2\pi i}{3}}\}$;
- 2. The real value $\sqrt[3]{e} \in \mathbb{R}^+$.

Given that e^z is such a common function, in both real and complex analysis, we default to the second meaning: if you mean the set of n^{th} roots, say so! Remember that you can always write $\exp(z)$ for the function if you want to be unambiguous.

The periodicity of the exponential leads to the far more interesting notion of the complex *logarithm*.

Definition 3.3. Let $z = re^{i\theta}$ be a non-zero complex number with principal argument $\theta = \text{Arg } z$. The *principal logarithm* of z is the value

$$\text{Log } z := \ln r + i\theta = \ln |z| + i \operatorname{Arg} z$$

where ln is the usual natural logarithm. The *logarithm* of z is any (and all!) of the values¹

$$\log z = \ln |z| + i \arg z = \ln r + i(\theta + 2\pi n) : n \in \mathbb{Z}$$

Examples 3.4. 1. Since $-4 = 4e^{\pi i}$, we see that

$$Log(-4) = ln 4 + \pi i$$
 and $log(-4) = ln 4 + (1 + 2n)\pi i$

2. Again write in polar form to compute:

$$Log(\sqrt{3}-i) = Log(2e^{-\frac{\pi i}{6}}) = \ln 2 - \frac{\pi i}{6}$$
 and $log(\sqrt{3}-i) = \ln 2 - \frac{\pi i}{6} + 2\pi ni$

These examples involve solving equations of the form $e^w = z$: writing $z = re^{i\theta} = e^{\ln r + i\theta}$ as above, and appealing to part 5 of Lemma 3.1, we instantly see that

$$e^w = z \iff w = \log z$$

Read this carefully, remembering that the logarithm is multi-valued and the exponential periodic:

$$e^{\log z} = z$$
 and $\log e^w = w + 2\pi ni$ where $n \in \mathbb{Z}$

Before moving on, we clear up some of the basic properties of the principal logarithm function. All parts of this should be clear from Definition 3.3.

Lemma 3.5. Throughout, z and w are complex numbers with $z \neq 0$, and $n \in \mathbb{Z}$.

- Log : $\mathbb{C} \setminus \{0\} \to \{w \in \mathbb{C} : \text{Im } w \in (-\pi, \pi]\}$ is a bijection with inverse exp.
- Log $e^w = w + 2\pi ni$ where $n \in \mathbb{Z}$ is chosen such that $\operatorname{Im}(\operatorname{Log} e^w) = \operatorname{Im} w + 2\pi n \in (-\pi, \pi]$.
- If $z \in \mathbb{R}^+$, then $\log z = \ln z$ is the usual natural logarithm.

¹This is identical to how we use $\arg z$, which, depending on context, means either the $set~\{\operatorname{Arg} z + 2\pi ni\}$ or some particular value from this set. We'll more formally discuss such *multi-valued* functions in Section 3.2.

The Logarithm Laws Just as the standard rules for exponentiation (Lemma 3.1 parts 3 and 4) apply to the complex exponential, something similar works for the log laws. However, the multi-valued nature of the logarithm makes this a little more subtle.

Suppose non-zero z, w are given: since |zw| = |z| |w| and $\arg zw = \arg z + \arg w$, we conclude that

$$\log zw = \ln(|z||w|) + i(\arg z + \arg w) = \ln|z| + i\arg z + \ln|w| + i\arg w$$
$$= \log z + \log w$$

Be very careful with this expression; it is *not* an identity of *functions*. What it really means is the following:

1. We have *set equality*: in particular, the following sets are identical:

$$\log z + \log w = \left\{ \alpha + \beta : \alpha \in \log z, \beta \in \log w \right\}$$

$$= \left\{ |z| + i \operatorname{Arg} z + 2\pi ki + |w| + i \operatorname{Arg} w + 2\pi mi : k, m \in \mathbb{Z} \right\}$$

$$\log zw = \left\{ \ln |zw| + i \operatorname{Arg}(zw) + 2\pi ni : n \in \mathbb{Z} \right\}$$

2. There exist *particular choices* of the arguments of z, w and zw so that $\arg zw = \arg z + \arg w$.

Unless you are sure you won't make a mistake, it is therefore safer to write

$$\log zw = \log z + \log w + 2\pi ni$$
 for some $n \in \mathbb{Z}$

Given its restricted range, we can be more precise for the principal logarithm:

$$\text{Log } zw = \text{Log } z + \text{Log } w + 2\pi ni \text{ for some } n = 0, -1, 1$$

Example 3.6. Let
$$z = -\sqrt{3} + i = 2e^{\frac{5\pi i}{6}}$$
 and $w = \sqrt{2}(1+i) = 2e^{\frac{\pi i}{4}}$. Then

$$\log z = \ln 2 + \frac{5\pi i}{6} + 2\pi ki, \qquad \log w = \ln 2 + \frac{\pi i}{4} + 2\pi mi$$

$$\log zw = \log(4e^{\frac{5\pi i}{6} + \frac{\pi i}{4}}) = \log(4e^{\frac{13\pi i}{12}}) = \ln 4 + \frac{13\pi i}{12} + 2\pi ni = \log z + \log w \iff k + m = n$$

For principal logarithms, however, we need to make a different, explicit, choice:

$$\begin{split} & \text{Log } z = \ln 2 + \frac{5\pi i}{6}, \qquad \text{Log } w = \ln 2 + \frac{\pi i}{4} \\ & \text{Log } zw = \text{Log}(4e^{-\frac{11\pi}{12}}) = \text{Log}(4e^{-\frac{11\pi}{12}}) = \ln 4 - \frac{11\pi i}{12} = \text{Log } z + \text{Log } w - 2\pi i \end{split}$$

We can similarly demonstrate the other log law, with the same caveat:

$$\log \frac{z}{w} = \log z - \log w$$

You might assume that the final log law ($\log z^n = n \log z$ whenever $n \in \mathbb{N}$) also makes sense, but you'd be very wrong: an example should explain why you should ignore this law!

Example 3.7. Let $z = -\sqrt{3} + i = 2e^{\frac{5\pi i}{6}}$ and compute what would be meant by the set $2 \log z$:

$$2\log z = 2\left(\ln 2 + \frac{5\pi i}{6} + 2\pi mi\right) = \ln 4 + \frac{5\pi i}{3} + 4\pi mi$$

This is different from the set

$$\log z^2 = \log(4e^{\frac{10\pi i}{6}}) = \ln 4 + \frac{5\pi i}{3} + 2\pi ki$$

However, in the language of the previous exercise, there would be no problem if each copy of $\log z$ got its own multiples of $2\pi i$: It is therefore safer to state that $\log z^2 \neq 2 \log z$.

Since the principal logarithm is a function rather than a set, we can be more precise: for any $n \in \mathbb{N}$,

$$\text{Log } z^n = n \, \text{Log } z + 2\pi ki$$
 for some integer k with $|k| \le \frac{n}{2}$

Example 3.8. Let $z = e^{-\frac{13\pi i}{16}}$ and consider z^{16} . We see that

$$\log z^{16} = \log e^{-13\pi i} = \log e^{\pi i} = i\pi$$
, $16 \log z = -13\pi i \implies \log z^{16} = 16 \log z + 14\pi i$

Exercises 3.1 1. Compute the following:

(a)
$$\exp(3 - \frac{\pi}{2}i)$$

(c)
$$\log(3 - 4i)$$

(c)
$$\log(3-4i)$$
 (d) $\log[(-1+i)^2]$

- 2. (a) If e^z is real, show that $\text{Im } z = n\pi$ for some integer n.
 - (b) If e^z is imaginary, what restriction is placed on z?
- 3. Show in two ways that the function $f(z) = \exp(z^2)$ is entire, and find its derivative.
- 4. Prove, for any $z \in \mathbb{C}$, that $|\exp(z^2)| \leq \exp|z|^2$. What must z satisfy if this is to be *equality*?
- 5. Find Re $e^{\frac{1}{z}}$ in terms of x and y. Why is this function harmonic in every domain that does not contain the origin?
- 6. Show that $\text{Log } i^3 \neq 3 \text{ Log } i$.
- 7. Show that $\operatorname{Re}(\log(z-1)) = \frac{1}{2} \ln[(x-1)^2 + y^2]$ whenever $z \neq 1$.
- 8. Prove the above boxed formula for $\text{Log } z^n$.
- 9. The square roots of *i* are $\sqrt{i} = e^{\frac{\pi i}{4}}$ and $-\sqrt{i} = e^{-\frac{3\pi i}{4}}$.
 - (a) Compute Log \sqrt{i} and Log $(-\sqrt{i})$ and check that Log $\sqrt{i} = \frac{1}{2} \text{Log } i$.
 - (b) Show that the set of all logarithms of all square roots of i is

$$\log i^{\frac{1}{2}} = \left(n + \frac{1}{4}\right)\pi i \quad \text{where} \quad n \in \mathbb{Z}$$

and therefore deduce that $\log i^{\frac{1}{2}} = \frac{1}{2} \log i$ as sets.

3.2 Multi-valued Functions, Branch Cuts and the Power Function

Since each log *z* represents a *set* of complex numbers, the complex logarithm is often called a *multi- valued function*. We have already seen several of these beasts:

- The argument of a complex number is any of the values $\arg z = \operatorname{Arg} z + 2\pi n$ where $n \in \mathbb{Z}$. The logarithm is simply a modification of this: $\log z = \ln r + i \arg z$.
- The n^{th} root of z is the set of values $z^{\frac{1}{n}} = \{\sqrt[n]{z}\omega_n^k : k = 0, \dots, n-1\}$ where $\omega_n = e^{\frac{2\pi i}{n}}$ is an n^{th} root of unity and $\sqrt[n]{z}$ the principal root.

It is an abuse of language to refer to a multi-valued *function*, since a function should assign *exactly one* object to each element of a domain. While this problem can be fixed using equivalence classes, another approach is simpler to visualize.

Definition 3.9. A *branch* of a multi-valued function f is a single-valued function F on a domain D which is *holomorphic* on D and such that each F(z) is one of the values of f(z).

Let $D = \mathbb{C} \setminus \ell$ where ℓ is a line or curve in \mathbb{C} . If $F : D \to \mathbb{C}$ is a branch of f, we call ℓ a *branch cut*. A *branch point* is any point common to all branch cuts.

Branches of the Logarithm The *principal branch* of the logarithm is a slightly restricted version of the principal logarithm

Log
$$z = \ln r + i\theta$$
 where $\theta = \operatorname{Arg} z \in (-\pi, \pi)$

The branch cut in this case is the non-positive real axis. To check this, verify the Cauchy–Riemann equations (use polar form²):

$$ru_r = r\frac{\partial}{\partial r}\ln r = 1 = \frac{\partial}{\partial \theta}\theta = v_{\theta}, \qquad u_{\theta} = 0 = -rv_r$$

The partial derivatives are certainly continuous, whence $\log z$ is holomorphic with derivative

$$\frac{\mathrm{d}}{\mathrm{d}z}\log z = e^{-i\theta}(u_r + iv_r) = \frac{1}{r}e^{-i\theta} = \frac{1}{z}$$

More generally, for any angle α we could take the branch cut ℓ to be the line with argument α and define a branch of the logarithm by

$$\log z = \ln r + i\theta$$
 where $\theta \in (\alpha, \alpha + 2\pi)$

The principal branch corresponds to $\alpha = -\pi$. Note that choosing $\alpha = \pi$ produces the *same branch cut* as for Log *z*, but a *different branch*!

$$\log z = \ln r + i\theta$$
 where $\theta \in (\pi, 3\pi)$

α-Branch

²If you struggle to remember these, compute the partial derivatives of $z = re^{i\theta} = r\cos\theta + ir\sin\theta$!

More esoteric branch cuts are possible. The problem with the logarithm is that if we travel counter-clockwise around the origin, its value increases by $2\pi i$. It is therefore impossible for a branch to be *continuous* (let along *holomorphic*) on any domain D containing such an encircling path; to make $\log z$ single-valued, a branch cut must 'cut' any such path, and must therefore connect the two *branch points* 0 and ∞ .

Clarity is crucial here: when you write $\log z$, do you mean a *set*, a particular *element* of that set, or a *branch*? Certain expressions may be true or false depending on the meaning.

Example 3.10. Consider $z = \frac{1}{\sqrt{2}}(1+i) = e^{\frac{\pi i}{4}}$. For the principal branch, we have

$$\operatorname{Log} z^2 = \operatorname{Log} e^{\frac{\pi i}{2}} = \frac{\pi i}{2} = 2\operatorname{Log} z$$

For the branch with $\alpha = \frac{\pi}{3}$, we have

$$z^2 = e^{\frac{\pi i}{2}} = e^{-\frac{3\pi i}{2}} \implies \log z^2 = -\frac{3\pi i}{2} \neq 2\log z$$

Recall also (Example 3.7), that as sets, $\log z^2 \neq 2 \log z$.

For particular branches of the logarithm, specific versions of the logarithm laws are available. It is not worth trying to remember these; just take care and think out the possibilities!

General Exponential Functions The logarithm can be used to define exponential functions for any non-zero complex base c: choose a value $\log c$ and define

$$c^z := e^{z \log c}$$

Provided c is not a negative real number, the standard is to use the principal logarithm. Regardless of the choice, $\log c$ is constant and the exponential function is holomorphic everywhere:

$$\frac{\mathrm{d}}{\mathrm{d}z}c^z = c^z \log c$$

Example 3.11. Let $c = i = e^{\frac{\pi i}{2}}$ and use the principal logarithm to define

$$i^{z} := e^{z \log i} = \exp\left(\frac{\pi i z}{2}\right) = \exp\left(-\frac{\pi}{2}y + i\frac{\pi}{2}x\right) = e^{-\frac{\pi y}{2}}\left[\cos\frac{\pi}{2}x + i\sin\frac{\pi}{2}x\right]$$

It is simple to check the Cauchy–Riemann equations for this function and see that it is holomorphic on \mathbb{C} .

If we instead took the α -branch of the logarithm with $\alpha = \frac{\pi}{3}$, then $i = e^{-\frac{3\pi i}{2}}$ and so

$$i^{z} = \exp\left(\frac{-3\pi iz}{2}\right) = e^{\frac{3\pi y}{2}} \left[\cos\frac{3\pi}{2}x - i\sin\frac{3\pi}{2}x\right]$$

This is still entire, though it is a completely different function! Note that both definitions of i^z agree whenever z is an integer, but for $z = \frac{1}{2}$ these produce the two distinct square roots of i!

Power Functions Similarly to the general exponential function, for any non-zero z and complex number c, we define the (typically multi-valued) function

$$z^c := e^{c \log z}$$

In this case, restricting to the principal branch of the logarithm gives an unambiguous function.

Definition 3.12. The *principal value* of z^c is the function

P. V.
$$z^c := e^{c \operatorname{Log} z}$$

whose domain excludes the non-positive real axis.

Example 3.13. Using the principal branch of the logarithm ($\Theta = \operatorname{Arg} z$), we obtain

$$P. V. z^{\frac{1}{3}} = \exp\left(\frac{1}{3}(\ln r + i\Theta)\right) = \exp\left(\ln \sqrt[3]{r} + \frac{i\Theta}{3}\right) = \sqrt[3]{r}e^{\frac{i\Theta}{3}} = \sqrt[3]{z}$$

precisely the principal cube-root of *z* as defined previously.

If we instead choose an α -branch, then $\theta = \arg z \in (\alpha, \alpha + 2\pi)$, from which

$$e^{\frac{1}{3}\log z} = \exp\left(\frac{1}{3}(\ln r + i\theta)\right) = \sqrt[3]{r}\exp\left(\frac{i}{3}(\Theta + (\theta - \Theta))\right) = \sqrt[3]{z}e^{\frac{i(\theta - \Theta)}{3}}$$

Since, for any z, the difference in the arguments $\theta - \Theta = 2\pi n$ is a multiple of 2π , this expression really does return a cube-root of z.

Lemma 3.14. Choose a branch of the logarithm so that $z^c = e^{c \log z}$ is single-valued. Then z^c is holomorphic on the same domain as the logarithm; moreover $\frac{d}{dz}z^c = z^{c-1}$.

Proof. Since log *z* is holomorphic, simply use the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}z}z^c = \frac{\mathrm{d}}{\mathrm{d}z}e^{c\log z} = e^{c\log z}\frac{\mathrm{d}}{\mathrm{d}z}(c\log z) = e^{c\log z} \cdot \frac{c}{z} = ce^{c\log z}e^{-\log z} = ce^{(c-1)\log z} = cz^{c-1}$$

Example 3.15. If the principal branch of the logarithm is used, then

$$(zw)^c = \exp(c \operatorname{Log}(zw)) = \exp(c \operatorname{Log} z + c \operatorname{Log} w + 2\pi cni) = z^c w^c e^{2\pi cni}$$

for some $n \in \{0, \pm 1\}$. We do not therefore expect simple exponent rules such as $(ab)^c = a^c b^c$ to hold in complex analysis. Note, however, that this does work in the case where c is an integer.

As an example, again using the principal value, if $z=w=e^{\frac{3\pi i}{4}}$, then $zw=e^{\frac{3\pi i}{2}}=e^{-\frac{\pi i}{2}}$, whence

P. V.
$$(zw)^{5i} = \exp\left(-5i\frac{\pi i}{2}\right) = e^{\frac{5\pi}{2}}$$

 $z^{5i} = \exp\left(5i\frac{3\pi i}{4}\right) = e^{-\frac{15\pi}{4}} \implies z^{5i}w^{5i} = e^{-\frac{15\pi}{2}} = e^{\frac{5\pi}{2}}e^{2\pi \cdot 5i \cdot ni} \text{ with } n = 1$

- **Exercises 3.2** 1. (a) Show that the function f(z) = Log(z i) is holomorphic everywhere except on the portion $x \le 0$ of the line y = 1.
 - (b) Show that the function $f(z) = \frac{1}{z^2+i} \operatorname{Log}(z+4)$ is holomorphic everywhere except at the points $\pm \frac{1}{\sqrt{2}(1-i)}$ and on the portion $x \le -4$ of the real axis.
 - 2. Show that the set $z^{\frac{1}{4}}$ as defined earlier in the course coincides with the set $z^{\frac{1}{4}} := \exp\left(\frac{1}{4}\log z\right)$ as defined in this section.
 - 3. Show that $(1+i)^i = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left(i\frac{\ln 2}{2}\right)$ where $n \in \mathbb{Z}$.
 - 4. Find the principal values of the following:
 - (a) i^{2i} (b) $(1-i)^{3i}$ (c) $(-\sqrt{3}+i)^{1+4\pi i}$
 - 5. Suppose c, c_1 , c_2 and z are complex numbers where $z \neq 0$. If all the powers involved are principal values, show that,
 - (a) $z^{c_1}z^{c_2} = z^{c_1+c_2}$ (b) $(z^c)^n = z^{cn}$ for any $n \in \mathbb{N}$.
 - 6. The power function z^c is usually multi-valued. However, if c = m is an integer, prove that z^m is single-valued: i.e. it is independent of the branch of logarithm used in its definition.
 - 7. Check the claim at the bottom of Example 3.11: if $m \in \mathbb{Z}$, then i^m is the same value for the two definitions of i^z .
 - 8. Continuing the previous question, suppose $c \neq 0$ and define $c^z = e^{z \log c}$ where any choice of the branch of the logarithm is made.
 - (a) Let $m \in \mathbb{Z}$. Prove that c^m produces the same value, regardless of the branch of logarithm used to define $\log c$.
 - (b) If $z = \frac{1}{m}$, show that c^z really is an m^{th} root of c. If the principal branch of the logarithm is used, show that c^z is the principal m^{th} root of c. For every m^{th} root of c, show that there exists a branch of the logarithm for which c^z equals the given m^{th} root.

3.3 Trigonometric and Inverse Trigonometric Functions

It is straightforward to give a sensible definition of the basic trigonometric functions simply by modifying Euler's formula. For instance, if $y \in \mathbb{R}$, then

$$e^{iy} + e^{-iy} = \cos y + i \sin y + \cos y - i \sin y = 2 \cos y$$

This motivates the following.

Definition 3.16. For any $z \in \mathbb{C}$ we define

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

Example 3.17.
$$\cos(\frac{\pi}{4}+i) = \frac{1}{2}\left(e^{\frac{i\pi}{4}-1} + e^{\frac{-i\pi}{4}+1}\right) = \frac{1}{2}\left(\frac{e^{-1}}{\sqrt{2}}(1+i) + \frac{e}{\sqrt{2}}(1-i)\right) = \frac{e+e^{-1}}{2\sqrt{2}} - i\frac{e-e^{-1}}{2\sqrt{2}}$$

Theorem 3.18. *Sine and cosine are entire functions with derivatives*

$$\frac{d}{dz}\sin z = \cos z$$
 $\frac{d}{dz}\cos z = -\sin z$

Sine and cosine satisfy the same identities, including double and multiple-angle formulæ, as their real counterparts: for instance

$$\sin^2 z + \cos^2 z = 1$$
, $\cos(z+w) = \cos z \cos w - \sin z \sin w$, $\cos 2z = 2\cos^2 z - 1$, etc.

In particular, $\sin z = \cos(z - \frac{\pi}{2})$ and $\cos z = \sin(z + \frac{\pi}{2})$. Sine and cosine are also 2π -periodic and have exactly the same zeros as their real versions:

$$\sin z = 0 \iff z = n\pi, \quad \cos z = 0 \iff z = \frac{\pi}{2} + n\pi \quad \text{where} \quad n \in \mathbb{Z}$$

The upshot of the Theorem is that sine and cosine behave exactly as you'd expect.

The proofs are straightforward applications of properties of the exponential function. For instance;

$$\frac{d}{dz}\sin z = \frac{1}{2i}\frac{d}{dz}(e^{iz} - e^{-iz}) = \frac{1}{2i}(ie^{iz} + ie^{-iz}) = \cos z$$

and,

$$\sin z = 0 \iff e^{iz} = e^{-iz} \iff e^{2iz} = 1 \iff e^{-2y}(\cos 2x + i\sin 2x) = 1 \iff z = \pi n$$

The remaining trigonometric functions are defined in the expected way: for instance,

$$\tan z = \frac{\sin z}{\cos z} = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})}$$
 whenever $z \neq \frac{\pi}{2} + n\pi$

All trigonometric functions are holomorphic wherever defined and have the usual expressions for their derivatives: e.g.

$$\frac{\mathrm{d}}{\mathrm{d}z}\tan z = \frac{\cos^2 z + \sin^2 z}{\cos^2 z} = \sec^2 z$$

Aside: Hyperbolic Functions By considering real and imaginary parts,

$$\sin z = \frac{1}{2i} (e^{ix-y} - e^{-ix+y}) = \frac{1}{2i} (e^{-y} \cos x + ie^{-y} \sin x - e^y \cos x + ie^y \sin x)$$

$$= \frac{1}{2} (e^y + e^{-y}) \sin x + \frac{i}{2} (e^y - e^{-y}) \cos x = \sin x \cosh y + i \cos x \sinh y$$

$$\cos z = \cos x \cosh y - i \sin x \sinh y$$

where $\cosh y = \frac{1}{2}(e^y + e^{-y})$ and $\sinh y = \frac{1}{2}(e^y - e^{-y})$ are the usual (real) hyperbolic functions. We could have written Example 3.17 this way

$$\cos\left(\frac{\pi}{4} + i\right) = \frac{e + e^{-1}}{2\sqrt{2}} - i\frac{e - e^{-1}}{2\sqrt{2}} = \cos\frac{\pi}{4}\cosh 1 - i\sin\frac{\pi}{4}\sinh 1$$

Hyperbolic functions are a convenient short-cut, but never necessary; use or ignore as you like. All their properties can be derived from their relationship to exponential and trigonometric functions:

$$\cosh z = \frac{e^z + e^{-z}}{2} = \cos iz, \qquad \sinh z = \frac{e^z - e^{-z}}{2} = -i \sin iz$$

For instance

$$\frac{d}{dz}\sinh z = -i\frac{d}{dz}\sin iz = -i^2\cos iz = \cosh z, \text{ and } \frac{d}{dz}\cosh z = \sinh z$$
$$\cosh^2 z - \sinh^2 z = \cos^2(iz) + \sin^2(iz) = 1$$

Inverse Trigonometric Functions The standard trigonometric functions can also be inverted. As you might expect, this results in multi-valued functions.

Example 3.19. We find an expression for $\cos^{-1} z$ and compute its derivative.

$$w = \cos^{-1} z \iff z = \cos w \iff 2z = e^{iw} + e^{-iw} \iff (e^{iw})^2 - 2ze^{iw} + 1 = 0$$

which is a quadratic equation in e^{iw} . Applying the quadratic formula, we see that

$$e^{iw} = \frac{2z + (4z^2 - 4)^{\frac{1}{2}}}{2} = z + i(1 - z^2)^{\frac{1}{2}} \iff \cos^{-1} z = w = -i\log\left[z + i(1 - z^2)^{\frac{1}{2}}\right]$$

A branch of \cos^{-1} requires a choice of branches of both the square-root *and* the logarithm. Inverse cosine is holomorphic since it is a composition of holomorphic functions. By the chain rule,

$$\frac{d}{dz}\cos^{-1}z = \frac{-i}{z+i(1-z^2)^{\frac{1}{2}}}\frac{d}{dz}\left[z+i(1-z^2)^{\frac{1}{2}}\right] = \frac{-i}{z+i(1-z^2)^{\frac{1}{2}}}\left[1-\frac{iz}{(1-z^2)^{\frac{1}{2}}}\right]$$
$$= \frac{-i}{z+i(1-z^2)^{\frac{1}{2}}}\cdot\frac{(1-z^2)^{\frac{1}{2}}-iz}{(1-z^2)^{\frac{1}{2}}} = \frac{-1}{(1-z^2)^{\frac{1}{2}}}$$

If we fix a branch of the square-root (and logarithm) so that $\cos^{-1} z$ is single-valued, this is necessarily the same branch that appears in the expression for the derivative.

Expressions such as these are not worth memorizing; instead you should become comfortable *deriving* them when needed. Here is the complete list.

Theorem 3.20. The inverse sine, cosine and tangent functions are given by the expressions

$$\sin^{-1} z = -i \log \left[iz + (1 - z^2)^{1/2} \right] \qquad \cos^{-1} z = -i \log \left[z + i(1 - z^2)^{1/2} \right]$$
$$\tan^{-1} z = \frac{i}{2} \log \frac{i + z}{i - z}$$

Once branches of the square-root and logarithm are chosen, these are holomorphic on their domains and have familiar derivatives:

$$\frac{d}{dz}\sin^{-1}z = \frac{1}{(1-z^2)^{\frac{1}{2}}} \qquad \frac{d}{dz}\cos^{-1}z = \frac{-1}{(1-z^2)^{\frac{1}{2}}} \qquad \frac{d}{dz}\tan^{-1}z = \frac{1}{1+z^2}$$

The branches of the square-root for the derivatives of inverse sine and cosine are identical to those used in the definitions of the original functions.

Examples 3.21. 1. To evaluate $\sin^{-1} \frac{1}{\sqrt{2}}$ as a complex number, first observe that

$$\sin^{-1}\frac{1}{\sqrt{2}} = -i\log\left[\frac{i}{\sqrt{2}} \pm \sqrt{1 - \frac{1}{2}}\right] = -i\log\frac{1}{\sqrt{2}}(i \pm 1)$$

Now evaluate the logarithms separately:

$$-i\log\frac{1}{\sqrt{2}}(i+1) = -i\log e^{\frac{\pi i}{4}} = -i\left[\frac{\pi i}{4} + 2\pi ni\right] = \frac{\pi}{4} + 2\pi n$$
$$-i\log\frac{1}{\sqrt{2}}(i-1) = -i\log e^{\frac{3\pi i}{4}} = -i\left[\frac{3\pi i}{4} + 2\pi ni\right] = \frac{3\pi}{4} + 2\pi n$$

The set of values $\sin^{-1} \frac{1}{\sqrt{2}}$ generated by all branches of the square-root and logarithm is precisely the set we'd have found by computing entirely within \mathbb{R} !

2. Of course, we can also evaluate inverse sines that would have no meaning in \mathbb{R} . For instance,

$$\sin^{-1} 7 = -i \log[7i \pm \sqrt{-48}] = -i \log(7 \pm 4\sqrt{3})i = -i \log(7 \pm 4\sqrt{3})e^{\frac{\pi i}{2}}$$
$$= -i \left[\ln(7 \pm 4\sqrt{3}) + \frac{\pi i}{2} + 2\pi ni \right] = -i \ln(7 \pm 4\sqrt{3}) + \frac{\pi}{2} + 2\pi n$$

Note that $7 > 4\sqrt{3}$, so we are always taking natural log of a positive real number.

3. Compute $\tan^{-1}(i-2\sqrt{3})$. First compute the required fraction in polar form:

$$\frac{i + (i - 2\sqrt{3})}{i - (i - 2\sqrt{3})} = \frac{2i - 2\sqrt{3}}{2\sqrt{3}} = -1 + \frac{i}{\sqrt{3}} = \frac{2}{\sqrt{3}}e^{\frac{5\pi i}{6}}$$

It follows that

$$\tan^{-1}(i-2\sqrt{3}) = \frac{i}{2}\left(\ln\frac{2}{\sqrt{3}} + \frac{5\pi}{6}i - 2\pi ni\right) = -\frac{5\pi}{12} + \frac{i}{2}\ln\frac{2}{\sqrt{3}} + \pi n: \quad n \in \mathbb{Z}$$

Choosing the principal value of the logarithm yields $-\frac{5\pi}{12} + \frac{i}{2} \ln \frac{2}{\sqrt{3}}$.

Exercises 3.3 1. Find the real and imaginary parts of $\sin i$, $\cos(1+i)$ and $\tan(2i \ln 5 + \frac{\pi}{2})$.

- 2. As a sanity check, if $w = -i \log \left[z + (z^2 1)^{\frac{1}{2}} \right]$, compute $\cos w = \frac{1}{2} (e^{iw} + e^{-iw})$ directly and verify that you obtain z, *irrespective* of which branches are chosen.
- 3. Using the real and imaginary parts of sin *z*, directly verify that the Cauchy–Riemann equations are satisfied.
- 4. Prove the following double/multiple-angle formulæ using the definitions in this section:
 - (a) $\cos 2z = 2\cos^2 z 1$
 - (b) $\sin(z w) = \sin z \cos w \cos z \sin w$
 - (c) $\tan(z+w) = \frac{\tan z + \tan z}{1 \tan z \tan w}$
- 5. Find all the values of $tan^{-1}(1+i)$.
- 6. Solve the equation $\cos z = \sqrt{2}$ for z.
- 7. Recall Exercise 3: check explicitly that $\tan w = i 2\sqrt{3}$ when $w = -\frac{5\pi}{12} + \frac{i}{2} \ln \frac{2}{\sqrt{3}}$. (*Hint: use* $\tan w = \frac{e^{2iw} 1}{i(e^{2iw} + 1)}$. *Why...?*)
- 8. Suppose z > 1 is real. Prove that $\operatorname{Re} \sin^{-1} z = \frac{\pi}{2} + 2\pi n$ is independent of z. What is $\operatorname{Im} \sin^{-1} z$.
- 9. If the same branch of square-root is chosen in each case, prove that $\sin^{-1} z + \cos^{-1} z$ is constant.
- 10. Derive the expressions for $\tan^{-1} z$ and its derivative in Theorem 3.20.
- 11. (a) Given that $\cosh z = \cos(-iz)$, find an expression in terms of the complex logarithm for $\cosh^{-1} z$.
 - (b) Using your answer to part (a), or otherwise, find all solutions to the equation $\cosh z = \sqrt{3}$.
 - (c) Find an expression for the derivative of $\cosh^{-1} z$.