Fault Localization & Relevance Analysis

Numair Mansur, Christian Schilling, Matthias Heizmann University of Freiburg, Germany

June 11, 2017

Definition 1 (Execution). Let π be an error trace of length n. An execution of π is a sequence of states $s_0, s_1...s_n$ such that $s_i, s_{i+1} \models T$, where T is the transition formula of $\pi[i]$.

Let ϵ represent the set of all possible executions of the error trace.

Definition 2 (Blocking Execution). An execution of a trace π of size n is called a blocking execution if there exists a sequence of states $s_0, s_1...s_j$ where $i < j \leq n$ such that $s_i, s_{i+1} \models T[i]$, where T[i] is the transition formula of $\pi[i]$ and there exists an assume statement in the trace π at position j such that $s_j \not\Rightarrow guard(\pi[j])$.

Definition 3 (Relevancy of an assignment statement). Let β represent the set of all blocking executions of a trace π . Let there be an assignment statement of the form x := t at position i. Let π' represent the trace that we get after replacing $\pi[i]$ with a havoc statement of the form havoc(x) and let β' represent the set of all blocking executions for π' .

We say that the assignment statement $\pi[i]$ is relevant if the trace after the replacement has strictly more blocked executions than the trace before the replacement, i.e if $\beta \subseteq \beta'$.

Lemma 1. For a predicate Q and an assignment statement of the form x := t where x is a variable and t is an expression, we have:

$$WP(Q; havoc(x)) \subseteq WP(Q; x := t)$$

Theorem 1 (Relevancy of an assignment statement). Let π be an error trace of length n and $\pi[i]$ be an assignment statement at position i having the form x := t, where x is a variable and t is an expression. Let P and Q be two predicates where $P = \neg WP(False; \pi[i, n]) \cap SP(True; \pi[1, i-1])$ and $Q = \neg WP(False; \pi[i+1, n])$. The statement $\pi[i]$ is relevant iff:

$$P \not\Rightarrow WP(Q, havoc(x))$$

Proof. Let π' be the trace where the assignment statement $\pi[i]$ is replaced by a havoc statement. " \Rightarrow "

If the assignment statement $\pi[i]$ is relevant then:

$$P \not\Rightarrow WP(Q, havoc(x))$$

Note that here we can also write P as $WP(Q;x:=t)\cap SP(True;\pi[1,i-1]).$ Let Q':=SP(P;havoc(x)) and $P':=WP(Q;havoc(x))\cap SP(True;\pi[1,i-1]).$ Since from lemma $\ref{eq:spin}$, we know that

$$WP(Q; havoc(x)) \subseteq WP(Q; x := t)$$

and also.

$$WP(Q; havoc(x)) \cap SP(True; \pi[1, i-1]) \subseteq WP(Q; x := t) \cap SP(True; \pi[1, i-1])$$

therefore:

$$P' \subseteq P$$

For simplicity in the proof, lets ignore the term $SP(True; \pi[1, i-1])$ from P and P'. We simplify P and P' to be WP(Q; x := t) and WP(Q; havoc(x)) respectively.

$$\frac{\pi[1,i-1]}{\mathsf{P}}\,x \coloneqq t\,\frac{\pi[i+1,j-1]}{\mathsf{Q}}$$

$$\frac{\pi[1,i-1]}{\mathsf{P'}} \frac{\pi[i+1,j-1]}{\mathsf{Q'}} \frac{\pi[j+1,n]}{-1}$$

Q' = SP(P; havoc(x))

P' := WP(Q; havoc(x))

Relevancy of x := t implies that replacing it with havoc(x) gives us strictly more blocking executions then before. Therefore

$$Q \subsetneq Q'$$

Lets look at the following diagram to help us see the states a little better and come to the following conculsions:

$$SP(P; havoc(x)) = Q'$$

$$SP(P'; havoc(x)) = Q$$

and we know that $Q \subsetneq Q'$. This means that $\exists S \in P \setminus P'$, such that there is a transition from S to Q' if we execute havoc(x). The existence of the state S means:

$$P \not\Rightarrow P'$$

or

$$P \not\Rightarrow WP(Q; havoc(x))$$