

CS3232 Fundamental of Deep learning

Credits: Parts of the contents are based on material by Dr. Andrew Ng and other resources on the Internet

- LeNet-5 (60K parameters)
- AlexNet (60M parameters)
- VGG (VGG 16 has ~ 138M parameters)

ResNet (152 layers) - some tricks on how to train them effectively

AlexNet: Introduced ReLU, dropout, and data augmentation; won ILSVRC 2012.

ZF-Net: Improved on AlexNet with better visualization techniques; won ILSVRC 2013.

VGGNet: Emphasized depth with small filters; influential design; top performance in ILSVRC 2014.

GoogLeNet: Introduced Inception modules; reduced parameters; won ILSVRC 2014.

ResNet: Introduced residual connections; enabled very deep networks; won ILSVRC 2015.

Transfer Learning: Using pre-trained models to leverage learned features for new tasks.

Fine-Tuning: Adapting pre-trained models to specific tasks by continuing training on new data

VGG Net

VGG-16

The VGG-16 architecture is a deep convolutional neural network (CNN) designed for image classification tasks. It was introduced by the Visual Geometry Group at the University of Oxford. VGG-16 is characterized by its simplicity and uniform architecture, making it easy to understand and implement.

The VGG-16 configuration typically consists of 16 layers, including 13 convolutional layers and 3 fully connected layers. These layers are organized into blocks, with each block containing multiple convolutional layers followed by a max-pooling layer for downsampling.

VGG-16 vs. VGG-19

• Since VGG-16 almost does as well as VGG-19, it is used by many

Model	Year	Architecture	Key Features	Impact
AlexNet	1/()1/	connected)	allomentation won II SVRL.	Popularized deep learning in computer vision
ZF-Net	2013	modified filter sizes	Deconvolutional layers for visualization, improved on AlexNet	Highlighted importance of feature visualization
VGGNet	1/11/1/4	filters 2x2 max pooling	Emphasized depth, consistent filter sizes, achieved top results	Influenced many future network designs with its simplicity
GoogLeNet (Inception)	2014	combining multiple filters	Reduced parameters significantly, auxiliary classifiers	Efficient network design, won ILSVRC 2014
ResNet	2015	residual blocks	Residual connections, mitigated vanishing gradient problem	Enabled training of very deep networks, won ILSVRC 2015

Modern networks

- ResNet
- Inception network (GoogLeNet)
- MobileNet

ResNet

- Very deep networks (> 100 layers) are hard to train because of problems
 - Vanishing, exploding gradients etc.
- Skip connections
 - Take activation of one layer and feed it in another layer much deeper in the network
- Use of residual blocks help with training very deep networks

Residual Network

ResNet

Why do residual networks work?

ResNet

MobileNet

- Can be built and deployed even in low compute environments
 - Mobile phones, embedded vision applications
- Key idea
 - Normal vs. depth-wise separable convolutions

Normal Convolution

Depthwise Separable Convolution

Computations

Normal Convolution

Computational cost

=

#filter params

3×3

X

filter positions

4x 4

X

of filters

Depthwise Convolution

Depthwise Convolution

432

Pointwise Convolution

*

=

Pointwise Convolution

Pointwise Convolution

Cost

Cost of normal convolution 2160

Cost of depthwise separable convolution

Cost

Cost of normal convolution 2160

Cost of depthwise separable convolution

$$\frac{672}{2160} = 0.31$$

In general, ratio:

More generally:

Depthwise Separable Convolution

Depthwise Convolution

Pointwise Convolution

MobileNet v1 | Copyright | Co

