Вопрос по выбору (термодинамика) Моделирование двумерного одноатомного газа и сравнение экспериментальных данных с теоретическими

Матвеев Владислав Сергеевич Б01-203

Описание симуляции

Частички газа представляют из себя твёрдые абсолютно упругие шарики, радуса 6пикс единичной массы (1г). Газ заключён в квадратный сосуд с длиной стенки 1000пикс. Изначально все частицы имеют одинаковую по модулю, но случайную по направлению скорость, находятся в случайной точке сосуда (изначальное распределение можно менять). В ходе работы будет показано, что распределение скоростей приходит к Максвелловскому

Теоретические данные

Распределение Максвелла:

Вероятность, что проекция скорости примет скорость от v до $v + \mathrm{d}v$:

$$f_0(v)\,\mathrm{d}v = \sqrt{\frac{m}{2\pi kT}}e^{-\frac{mv^2}{2kT}}\,\mathrm{d}v$$

Вероятность, что модуль скорости примет значение от v до $v + \mathrm{d}v$ (в двумерном случае):

$$f(v) dv = \frac{m}{2\pi kT} e^{-\frac{mv^2}{2kT}} \cdot 2\pi v dv = \frac{m}{kT} e^{-\frac{mv^2}{2kT}} \cdot v dv$$

$$\varphi(v) = \int \frac{m}{2\pi kT} e^{-\frac{mv^2}{2kT}} \cdot 2\pi v \, dv = \int \frac{m}{2kT} e^{-\frac{mv^2}{2kT}} \, dv^2 = -\frac{m}{2kt} \cdot \frac{2kT}{m} \cdot e^{-\frac{mv^2}{2kT}} + c = -e^{-\frac{mv^2}{2kT}} + c$$

Примем $kT = \frac{mv_{\text{\tiny KB}}^2}{2}$ (по теореме о равнораспределении на каждую ось приходится энергия $\frac{kT}{2}$, всего оси 2)

По этой формуле построен график предсказания (серый) в экспериментальной части

Наиболее вероятная скорость

$$f(v)' = 0 \Rightarrow \frac{m}{kT}e^{-rac{mv^2}{2kT}} - rac{m}{kT}e^{-rac{mv^2}{2kT}} \cdot rac{m}{2kT} \cdot 2v^2 \Rightarrow v_{
m cpeq} = \sqrt{rac{kT}{m}} = \sqrt{rac{v_{
m kB}^2}{2}} = rac{v_{
m kB}}{\sqrt{2}}$$

Средняя скорость

$$v_{
m cpeg} = \int_0^\infty f(v) \cdot v \, {
m d}v = \int_0^\infty rac{2}{v_{
m kb}^2} e^{-rac{v^2}{v_{
m kb}^2}} v^2 \, {
m d}v = rac{\sqrt{\pi}}{2} v_{
m kb}$$

Длина свободного пробега

 s_0 = площадь, заметаемая частицей за время $t,\,d$ - диаметр частицы, $n=\frac{N}{S}$ - концентрация

$$2s_0 = 2d\lambda \cdot (2s_0 n) \Rightarrow \lambda = \frac{1}{2dn}$$

 $(2s_0n$ - число соударений (число частиц в площади, в которой может быть соударение))

Давление

$$S$$
 - площадь сосуда (10^6 пикс 2) $P=nkT=rac{nmv_{ ext{\tiny KB}}^2}{2}$

Число ударов о стенку в секунду

$$\nu = \int_0^\infty \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{nf(v)vl\cos(\varphi)}{2\pi} \,\mathrm{d}\varphi \,\mathrm{d}v = \int_0^\infty \frac{nf(v)vl}{\pi} \,\mathrm{d}v = \frac{nv_{\mathrm{cpeg}}l}{\pi}$$

Практическая часть

Рис. 1. Распределение по модулю скорости (300 частиц)

Рис. 2. Пример эксперимента

Сравнение результатов

Распределение

Из рисунка 1 видно, что распределение скоростей есть распределение Максвелла Из таблиц ниже видно, что теоретические и практически полученные величины совпадают в пределах погрешности, для уменьшения которой надо увеличивать время эксперимента. При выводе формула для длины свободного пробега были использованы приближения, в связи с этим расхождение больше

Наиболее вероятная скорость

Число частиц	Скорость (ср. кв.) (пикс / с)	Ожидаемое значение (пикс / c)	Реальное значение (пикс / c)
100	100	71	82
100	150	106	95
100	200	141	121
100	250	177	128
100	300	212	251
150	100	71	61
150	150	106	108
150	200	141	143
150	250	177	179
150	300	212	219
200	100	71	60
200	150	106	110
200	200	141	160
200	250	177	173
200	300	212	226
250	100	71	70
250	150	106	111
250	200	141	155
250	250	177	160
250	300	212	196
300	100	71	76
300	200	141	144
300	250	177	175
300	300	212	188

Средняя скорость

Число частиц	Скорость (ср. кв.) (пикс / с)	Ожидаемое значение (пикс / c)	Реальное значение (пикс / c)
100	100	89	89
100	150	133	133
100	200	177	177
100	250	222	222
100	300	266	267
150	100	89	89
150	150	133	133
150	200	177	177
150	250	222	222
150	300	266	266
200	100	89	89
200	150	133	133
200	200	177	177
200	250	222	222
200	300	266	266
250	100	89	89
250	150	133	133
250	200	177	177
250	250	222	222
250	300	266	266
300	100	89	89
300	200	177	177
300	250	222	222

300	300	266	266

Длина свободного пробега (без учёта стенок)

Число частиц	Скорость (ср. кв.) (пикс / с)	Ожидаемое значение (пикс)	Реальное значение (пикс)
100	100	833	881
100	150	833	889
100	200	833	892
100	250	833	888
100	300	833	894
150	100	555	596
150	150	555	590
150	200	555	591
150	250	555	588
150	300	555	588
200	100	416	441
200	150	416	439
200	200	416	441
200	250	416	441
200	300	416	442
250	100	333	350
250	150	333	354
250	200	333	351
250	250	333	352
250	300	333	353
300	100	277	292

300	200	277	293
300	250	277	292
300	300	277	293

Давление

Число частиц	Скорость (ср. кв.) (пикс / с)	Ожидаемое значение $(\frac{\mathbf{r}}{_{\mathrm{M}}} \cdot \mathbf{c}^2)$	Реальное значение $(\frac{\Gamma}{M} \cdot c^2)$
100	100	0.5	0.5
100	150	1.1	1.1
100	200	2.0	2.0
100	250	3.1	3.1
100	300	4.5	4.5
150	100	0.8	0.8
150	150	1.7	1.7
150	200	3.0	3.0
150	250	4.7	4.7
150	300	6.8	6.8
200	100	1.0	1.0
200	150	2.3	2.3
200	200	4.0	4.0
200	250	6.3	6.3
200	300	9.0	9.1
250	100	1.3	1.3
250	150	2.8	2.8
250	200	5.0	5.1
250	250	7.8	7.9

250	300	11.3	11.3
300	100	1.5	1.5
300	200	6.0	6.1
300	250	9.4	9.5
300	300	13.5	13.6

Число ударов о стенку за единицу времени

Число частиц	Скорость (ср. кв.) (пикс / с)	Ожидаемое значение)	Реальное значение
100	100	11.3	11.3
100	150	17.0	17.1
100	200	22.5	22.7
100	250	28.2	28.4
100	300	33.9	34.1
150	100	16.9	17.1
150	150	25.3	25.6
150	200	33.9	34.1
150	250	42.4	42.7
150	300	50.8	51.2
200	100	22.5	22.8
200	150	33.9	34.1
200	200	45.1	45.6
200	250	56.4	56.9
200	300	67.7	68.3
250	100	28.2	28.4
250	150	42.3	42.8

250	200	56.5	57.1
250	250	70.6	71.4
250	300	84.7	85.6
300	100	33.8	34.2
300	200	67.7	68.5
300	250	84.7	85.8
300	300	101.6	102.7