Predicción del nivel de pobreza en los hogares de Costa Rica.

Proyecto Final Aprendizaje de Máquina

Problemática

La pobreza en Costa Rica aumentó en 2018: 21% de los hogares se encuentra en estas condiciones:

Gobiernos e instituciones como el Inter-American Development Bank tiene programas de ayuda social.

Programas de ayuda social tienen dificultades para asegurarse de que las personas adecuadas reciban la ayuda necesaria.

Las personas más pobres no

pueden proporcionar los registros de ingresos y gastos necesarios para demostrar que califican.

Objetivo

Desarrollar un modelo de aprendizaje de máquina que pueda predecir el nivel de pobreza (nivel de necesidad) de los hogares utilizando las características tanto del hogar como de los individuos.

Datos

Se obtuvieron de la competencia de Kaggle "Costa Rican Household Poverty Level Prediction". Las **variables explicativas** proporcionadas se dividen en **2 categorías**:

Características del HOGAR

2. Características del INDIVIDUO

TRAIN SET

- 9557 filas (individuos) y 143 variables.
- Variable Target es la variable de interés. Es una variable categórica con 1 siendo la pobreza extrema y 4 sin riesgo.
- Se debe entrenar los modelos ÚNICAMENTE CON LOS JEFES DE FAMILIA.

TEST SET

- 23,856 filas (individuos) y 142 columnas.
- Se debe hacer 1 predicción por cada INDIVIDUO del conjunto de prueba.

Naturaleza del problema de clasificación

Nivel de pobreza	Conteo	Proporción	
1	755	0.07	
2	1597	0.16	
3	1209	0.12	
4	5996	0.62	

TOP 20 de variables predictivas

Educación

Edad

Calidad del hogar

Dependencia económica

Teléfono

Hijos

Macro F1 Score

$$F_1 = \frac{2}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

$$Macro F1 = \frac{F1 Class 1 + F1 Class 2 + F1 Class 3 + F1 Class 4}{4}$$

Resultados

Macro F-Score

0.4

XGBOOST

0.39

Logit

0.38

Random Forest

El ganador de la competencia en Kaggle alcanzó un 0.44

Conclusiones

• El XGBOOST es el algorítmo que puede alcanzar el mejor desempeño en este problema..

• El truco para subir más es score es en la ingeniería de características y construcción de variables.

 Para este tipo de problema los árboles y el xgboost pueden lidiar con el problema de datos faltantes y con el desbalance en las clases

iGracias!

Anexos

XGBoost

Table 16: Resultados del XGBoost

Entrena	Prueba	iteraciones	Eta	Lambda	Subsamples	Max_depth	Gamma	feature_subsample
0.9499116	0.400	2000	0.030	0.20	1.00	3	0.0	1.00
0.9900000	0.398	3000	0.030	0.20	0.20	3	0.0	1.00
0.8900000	0.398	3000	0.030	0.20	0.20	4	0.5	0.25
0.9500000	0.396	2000	0.030	0.20	0.20	3	0.0	1.00
1.0000000	0.396	3000	0.030	0.20	0.20	4	0.0	1.00
0.7900000	0.396	2500	0.030	0.20	0.20	4	0.5	0.05
0.7600000	0.396	2500	0.030	0.20	0.20	4	0.5	0.04
0.9900000	0.395	3000	0.030	0.20	0.20	4	0.5	1.00
0.9790000	0.394	2000	0.030	0.19	0.54	3	0.0	1.00
0.9500000	0.393	2000	0.030	0.19	1.00	3	0.0	1.00
0.9490000	0.392	2000	0.030	0.21	1.00	3	0.0	1.00
0.9383542	0.391	2000	0.030	0.00	1.00	3	0.0	1.00
0.7883000	0.389	1000	0.030	0.00	1.00	3	0.0	1.00
0.7800000	0.389	500	0.030	0.20	0.20	4	0.5	0.05
0.6699000	0.388	1000	0.030	0.20	0.20	4	0.5	0.05
0.9497000	0.386	2000	0.030	0.15	1.00	3	0.0	1.00
0.5700000	0.371	500	0.030	0.20	0.20	4	0.5	0.05
0.4849563	0.344	1000	0.003	0.00	1.00	3	0.0	1.00
0.4466259	0.337	200	0.003	0.00	1.00	3	0.0	1.00
0.4405086	0.331	100	0.003	0.00	1.00	3	0.0	1.00

20 modelos

Resultados Logit Multinomial

Table 14: Resultados de los 5 mejores modelos con Regresión Logística

n_variables	$F1_Score_Macro_CV$	F1_Score_Macro_Prueba
10	0.337	0.298
40	0.375	0.310
222	0.389	0.385

Random Forest

Table 15: Resultados de los 5 mejores modelos con random forest

ntree	mtry	cv	kaggle
128	128	0.416	0.376
500	128	0.416	0.373
32	4	0.416	0.347
1000	64	0.414	0.374
100	64	0.413	0.376

Desempeño de los 42 modelos.