量化子「非可算個存在して」を 持つ論理の完全性 Part II

後藤 達哉

2024年6月18日 算術と様相論理の研究・論文セミナー @ 神戸大学

- 1 復習
- ② サブ補題
- 3 メイン補題とその系の証明
- 4 完全性定理の証明
- 5 集合論への応用

- 1 復習
- 2 サブ補題
- ③ メイン補題とその系の証明
- 4 完全性定理の証明
- 5 集合論への応用

論理 L(Q) の証明論

L(Q) の公理は次の通り:

公理 0 L の公理図式すべて (等号公理も含める).

公理
$$1 \neg (Qx)(x = y \lor x = z)$$
.

公理 2
$$(\forall x)(\varphi \to \psi) \to ((Qx)\varphi \to (Qx)\psi)$$
.

公理 3 $(Qx)\varphi(x,...)\leftrightarrow (Qy)\varphi(y,...)$. (ただし $\varphi(x,...)$ は自由変数 x に y を代入可能な論理式)

公理 4 $(Qy)(\exists x)\varphi \rightarrow (\exists x)(Qy)\varphi \lor (Qx)(\exists y)\varphi$.

ここで φ,ψ は自由変数を含んで良い論理式で,x,y,z は互いに異なる変数である。L(Q) の推論規則は Modus Ponens と一般化である.

メイン定理

Keisler の完全性定理

T を L(Q) の文の集合とする. T が L(Q) で無矛盾ならば,T は標準モデルを持つ.

地図

弱完全性定理

弱完全性定理

T を L(Q) の文の集合とする. T が L(Q) で無矛盾ならば,T は弱モデルを持つ.

タイプの排除定理

定理 (タイプの排除)

T を L(Q) の無矛盾な文の集合とする.また各 $n \in \omega$ について $\Sigma_n(x_n)$ を L(Q) の論理式 (x_n) だけが自由変数) の集合とする.次を仮定する:各 $n \in \omega$ と L(Q) 論理式 $\varphi(x_n)$ について,もし $(\exists x_n)\varphi$ が T と無矛盾であれば, $\sigma \in \Sigma_n$ があり, $(\exists x_n)(\varphi \land \neg \sigma)$ も T と無矛盾である.このとき,T は可算弱モデル (A, q) を持ち,すべての Σ_n $(n \in \omega)$ を排除する.

初等鎖定理

定義 (初等鎖の和)

 $\langle \mathcal{A}_{lpha},q_{lpha}
angle_{lpha<\gamma}$ が初等鎖であるとき,その和とは (\mathcal{A},q) であって, $\mathcal{A}=igcup_{lpha<\gamma}\mathcal{A}_{lpha}$ かつ

$$q = \{S \subseteq A : (\exists \alpha < \gamma)(\forall \beta \in [\alpha, \gamma)) \ S \cap A_{\beta} \in q_{\beta}\}$$

なものを言う.

初等鎖定理

 $\langle \mathcal{A}_{\alpha},q_{\alpha} \rangle_{\alpha<\gamma}$ は初等鎖とし, (\mathcal{A},q) をその和とする.このときすべての $\alpha<\gamma$ について,

$$(\mathcal{A}_{\alpha},q_{\alpha})\prec (\mathcal{A},q).$$

メイン補題

メイン補題

(A,q) を可算弱構造で,L(Q) の公理すべてを満たすとする. L^* を L に A の元全てに対する定数記号を付与した言語,A を L^* 構造に拡大したものを A^* とする. $\varphi(x)$ を $L^*(Q)$ 論理式で $(A^*,q) \models (Qx)\varphi(x)$ となるものとする.このとき次を満たす可算初等拡大 $(\mathcal{B},r) \succ (A,q)$ が存在する:

- ② どんな $L^*(Q)$ 論理式 $\psi(y)$ で, $(\mathcal{A}^*,q) \models \neg(Qy)\psi(y)$ なものについても, $\{a \in B : (\mathcal{B}^*,r) \models \psi[a]\} \subseteq A.$

- 1 復習
- ② サブ補題
- ③ メイン補題とその系の証明
- 4 完全性定理の証明
- 5 集合論への応用

サブ補題1

サブ補題1

$$\vdash (Qx)(\varphi \lor \psi) \to (Qx)\varphi \lor (Qx)\psi.$$

結構難しい. 省略するか板書でやるかのどちらか.

記法

L(Q) 弱構造 (\mathcal{A},q) について,各元に対応する定数記号を足した言語の構造に拡大した弱構造を (\mathcal{A}^*,q) と書く.

サブ補題2

サブ補題2

(A,q) を L(Q) の弱モデルとし, L^* を A^* の言語とする.もし (A,q) が L(Q) のすべての公理を満たすのならば, (A^*,q) が $L^*(Q)$ のすべての公理を満たす.

証明・ φ を $L^*(Q)$ の公理の一つとする・ a_1,\ldots,a_n を φ に現れる $L^* \setminus L$ の定数 記号のすべてとする・ φ に現れない変数 v_1,\ldots,v_n を選んで各 a_i を v_i に置換した論理式 ψ を考える・ ψ は L(Q) の公理である・よって,

 $(\mathcal{A},q)\models (orall extbf{v}_1\dots extbf{v}_n)\psi$ であるので, $(\mathcal{A}^*,q)\models \psi[extbf{a}_1,\dots, extbf{a}_n].$

- 1 復習
- ② サブ補題
- 3 メイン補題とその系の証明
- 4 完全性定理の証明
- 5 集合論への応用

メイン補題

メイン補題

(A,q) を可算弱構造で,L(Q) の公理すべてを満たすとする. L^* を L に A の元全てに対する定数記号を付与した言語,A を L^* 構造に拡大したものを A^* とする. $\varphi(x)$ を $L^*(Q)$ 論理式で $(A^*,q) \models (Qx)\varphi(x)$ となるものとする.このとき次を満たす可算初等拡大 $(\mathcal{B},r) \succ (A,q)$ が存在する:

- **①** ある $b \in B \setminus A$ について $(\mathcal{B}^*, r) \models \varphi[b]$.
- ② どんな $L^*(Q)$ 論理式 $\psi(y)$ で, $(\mathcal{A}^*,q) \models \neg(Qy)\psi(y)$ なものについても, $\{a \in B : (\mathcal{B}^*,r) \models \psi[a]\} \subseteq A.$

板書で証明します!

メイン補題の系

メイン補題の系

(A,q) を可算弱構造で,L(Q) の公理すべてを満たすとする. L^* を L に A の元全てに対する定数記号を付与した言語,A を L^* 構造に拡大したものを A^* とする.このとき次を満たす可算初等拡大 $(B,r) \succ (A,q)$ が存在する:

• どんな $L^*(Q)$ 論理式 $\varphi(y)$ についても, $(\mathcal{A}^*,q) \models (Qy)\psi(y)$ なことと,ある $a \in B \setminus A$ について $(\mathcal{B}^*,r) \models \varphi[b]$ となることは同値・

証明:メイン補題を可算回繰り返して,長さ ω の初等鎖を作り,その和を取る.

- 1 復習
- ② サブ補題
- ③ メイン補題とその系の証明
- 4 完全性定理の証明
- ⑤ 集合論への応用

完全性定理

Keisler の完全性定理

T を L(Q) の文の集合とする. T が L(Q) で無矛盾ならば,T は標準モデルを持つ.

完全性定理の証明 (1/4)

適切に初等鎖 (A_{α}, q_{α}) の和 (A, q) を作り,q の代わりに A を標準構造として考えると A が目的のモデルとなる.

初等鎖の構成: (A_0, q_0) は T の可算弱モデルとする.後続ステージでは, $(A_{\alpha+1}, q_{\alpha+1})$ はメイン補題の系を (A_α, q_α) に適用して得られる可算弱モデルとする.極限ステージではそこまでの和をとる.

メイン補題の系より,この構成で次が成り立つ:任意の $\alpha<\omega_1$ と任意の論理 式 $\varphi(x)$ で言語は $(\mathcal{A}_{\alpha}^*,q_{\alpha})$ のものについて

$$(\mathcal{A}_{\alpha}^*, q_{\alpha}) \models (Qx)\varphi(x) \iff \text{for some } a \in \mathcal{A}_{\alpha+1} \setminus \mathcal{A}_{\alpha}, \ (\mathcal{A}_{\alpha+1}^*, q_{\alpha+1}) \models \varphi[a].$$

完全性定理の証明 (2/4)

次を示せば十分.

$$(\mathcal{A},q) \models \varphi[b_1,\ldots,b_n] \iff \mathcal{A} \models \varphi[b_1,\ldots,b_n].$$

これを示すため,論理式 φ に関する帰納法を行う. φ が原子論理式のときは明らか.また一番外側の記号が \neg , \wedge , \exists のときも明らか.そこで $\varphi \equiv (Qx_0)\psi$ のときを考える. $b_1,\ldots,b_n\in B$ とする.するとある $\alpha<\omega_1$ について $b_1,\ldots,b_n\in B_{\alpha}$ である.

完全性定理の証明 (3/4)

 $(A,q) \models ((Qx_0)\psi)[b_1,\ldots,b_n]$ と仮定する。すると,q の作り方と初等鎖の作り方により

$$S = \{a \in A : (A, q) \models \psi[a, b_1, \dots, b_n]\}$$

は非可算集合. また帰納法の仮定より,この集合 S は

$$S = \{a \in A : A \models \psi[a, b_1, \dots, b_n]\}$$
 でもある.したがって,

$$\mathcal{A} \models ((Qx_0)\psi)[b_1,\ldots,b_n].$$

完全性定理の証明 (4/4)

$$(A,q) \models (\neg(Qx_0)\psi)[b_1,\ldots,b_n]$$
 と仮定する.初等鎖の作り方より,

$$S = \{a \in A : (A, q) \models \psi[a, b_1, \dots, b_n]\} \subseteq A_{\alpha}$$

がわかる. A_{α} は可算なので S も可算. またもう一度 ψ に帰納法の仮定を使うと

$$\mathcal{A} \models (\neg(Qx_0)\psi)[b_1,\ldots,b_n]$$

となる.

- 1 復習
- ② サブ補題
- ③ メイン補題とその系の証明
- 4 完全性定理の証明
- 5 集合論への応用

集合論への応用

 $L^{\omega}(Q)$ は ω 論理と L(Q) の合体物であり、これについても完全性定理が証明されている.この事実を集合論に応用する.

集合論への応用

定義

 $\langle f_{\alpha}, A_{\alpha} : \omega \leqslant \alpha < \omega_1 \rangle$ が nontrivial coherent family であるとは

- ① A_{α} は自然数の無限集合で $f_{\alpha} \colon A_{\alpha} \to \alpha$.
- $\bullet \quad \alpha < \beta < \omega_1 \text{ LONT } f_{\alpha} \upharpoonright (A_{\alpha} \cap A_{\beta}) =^* f_{\beta} \upharpoonright (A_{\alpha} \cap A_{\beta})$
- **4** $\xi < \eta < \alpha$ と $n \in \omega$ について次の集合は有限:

$$\{\beta \in [\eta, \alpha) : f_{\beta}^{-1}(\{\xi\}) \cap f_{\alpha}^{-1}(\{\eta\}) \subseteq n\}$$

定理 (Farah)

nontrivial coherent family が存在する.

集合論への応用

定理 nontrivial coherent family が存在する.

略証.

- **①** うまく $L^{\omega}(Q)$ 理論 T を作って,T のモデルの存在と nontrivial coherent family の存在が同値になるようにする
- ❷ 強制法で宇宙 V を V[G] に広げて nontrivial coherent family を付け加える
- $oldsymbol{a}$ よって $L^{\omega}(Q)$ の完全性定理より,V で T のモデルが存在し,したがって ①より nontrivial coherent family が V でも存在する