Computer Vision

Spring 2006 15-385,-685

Instructor: S. Narasimhan

Wean 5403 T-R 3:00pm – 4:20pm

Image Resampling and Pyramids

Lecture #8

RECAP - Sampling Theorem

Continuous signal: f(x)

Shah function (Impulse train):

Sampled function:

$$f_s(x) = f(x)s(x) = f(x)\sum_{n=-\infty}^{\infty} \delta(x - nx_0)$$

RECAP - Sampling Theorem

Sampled function:

Sampling
$$\frac{1}{x_0}$$

$$F_S(u) = F(u) * S(u) = F(u) * \frac{1}{x_0} \sum_{n=-\infty}^{\infty} \delta(x - nx_0)$$
Sampling $\frac{1}{x_0}$

$$F_S(u) = F(u) * S(u) = F(u) * \frac{1}{x_0} \sum_{n=-\infty}^{\infty} \delta(u - \frac{n}{x_0})$$

$$F(u)$$

Only if
$$u_{\text{max}} \le \frac{1}{2x_0}$$

RECAP - Nyquist Theorem

When can we recover F(u) from $F_s(u)$?

Only if
$$u_{\text{max}} \le \frac{1}{2x_0}$$
 (Nyquist Frequency)

We can use $C(u) = \begin{cases} x_0 & |u| < \frac{1}{2}x_0 \\ 0 & \text{otherwise} \end{cases}$

Then $F(u) = F_s(u)C(u)$ and f(x) = IFT[F(u)]

Sampling frequency must be greater than $2u_{\text{max}}$

Aliasing

Image Scaling

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

Image Sub-Sampling

1/4

1/8

Sub-Sampling with Gaussian Pre-Filtering

G 1/4

Gaussian 1/2

- Solution: filter the image, then subsample
 - Filter size should double for each ½ size reduction. Why?

Sub-Sampling with Gaussian Pre-Filtering

Compare with...

Image Resampling

- What about arbitrary scale reduction?
- How can we increase the size of the image?

· Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image Resampling

- So what to do if we don't know f
 - Answer: guess an approximation \tilde{f}
 - Can be done in a principled way: filtering

- · Image reconstruction
 - Convert F to a continuous function $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise
 - Reconstruct by cross-correlation:

$$\tilde{f} = h \otimes f_F$$

Resampling filters

• What does the 2D version of this hat function look like?

- · Better filters give better resampled images
 - Bicubic is common choice

Bilinear interpolation

• A common method for resampling images

$$F(x,y) = (1-a)(1-b) F(i,j) +a(1-b) F(i+1,j) +ab F(i+1,j+1) +(1-a)b F(i,j+1)$$

Image Rotation

Multi-Resolution Image Representation

- Fourier domain tells us "what" (frequencies, sharpness, texture properties), but not "where".
- Spatial domain tells us "where" (pixel location) but not "what".
- We want a image representation that gives a local description of image "events" what is happening where.
- Naturally, think about representing images across varying scales.

Multi-resolution Image Pyramids Low resolution High resolution

Space Required for Pyramids

$$N^2 + \frac{1}{4}N^2 + \frac{1}{16} + N^2 + \dots = 1\frac{1}{3}N^2$$

Original Image Nearest Neighbor Bilinear Interpolation

The Gaussian Pyramid

- Smooth with Gaussians because
 - a Gaussian*Gaussian=another Gaussian
- Synthesis
 - smooth and downsample
- Gaussians are low pass filters, so repetition is redundant
- Kernel width doubles with each level

Smoothing as low-pass filtering

- High frequencies lead to trouble with sampling.
- Suppress high frequencies before sampling!
 - truncate high frequencies in FT
 - or convolve with a low-pass filter

- Common solution: use a Gaussian
 - multiplying FT by Gaussian is equivalent to convolving image with Gaussian.

Pyramids at Same Resolution

Difference of Gaussians (DoG)

 Laplacian of Gaussian can be approximated by the difference between two different Gaussians

Figure 2–16. The best engineering approximation to $\nabla^2 G$ (shown by the continuous line), obtained by using the difference of two Gaussians (DOG), occurs when the ratio of the inhibitory to excitatory space constraints is about 1:1.6. The DOG is shown here dotted. The two profiles are very similar. (Reprinted by permission from D. Marr and E. Hildreth, "Theory of edge detection," *Proc. R. Soc. Lond. B* 204, pp. 301–328.)

Applications of Image Pyramids

- Coarse-to-Fine strategies for computational efficiency.
- Search for correspondence
 - look at coarse scales, then refine with finer scales
- Edge tracking
 - a "good" edge at a fine scale has parents at a coarser scale
- · Control of detail and computational cost in matching
 - e.g. finding stripes
 - very important in texture representation
- Image Blending and Mosaicing
- Data compression (laplacian pyramid)

Edge Detection using Pyramids

Coarse-to-fine strategy:

- Do edge detection at higher level.
- Consider edges of finer scales only near the edges of higher scales.

Fast Template Matching

Template

Search Region

- For an m x n image...
- · For a p x q template...
- The complexity of the 2D pattern recognition task is O(mnpq) ⊗
- This gets even worse for a family of templates (e.g., to address scale and/or rotational effects)

Fast Template Matching

Template

H

Search Region

Original Image

Multi-resolution correlation

- Multi-resolution template matching
 - reduce resolution of both template and image by creating an image pyramid
 - match small template against small image
 - identify locations of strong matches
 - expand the image and template, and match higher resolution template selectively to higher resolution image
 - iterate on higher and higher resolution images
- Issue:
 - how to choose detection thresholds at each level
 - too low will lead to too much cost
 - too high will miss match

Level 3 Search

 At the lowest pyramid level, we search the entire image with the correlation template

Level 2 Search

 Subsequent searches are constrained to a neighborhood of only several pixels in the x and y directions

Level 1 Search

 Subsequent searches are constrained to a neighborhood of only several pixels in the x and y directions

Level 0 Search

• In the end, the total time (in Matlab) was reduced from \approx 31 seconds to \approx 0.5 seconds while obtaining the same template match

- Given two images A and B
- Construct Laplacian Pyramid L_a and L_b
- Create a third Laplacian Pyramid L_c where for each level l

$$L_c(i,j) = \begin{cases} L_a(i,j) & \text{if } i < width/2 \\ (L_a(i,j) + L_b(i,j))/2 & \text{if } i = width/2 \\ L_b(i,j) & \text{if } i > width/2 \end{cases}$$

Blending Apples and Oranges

Pyramid blending of Regions

- Given two images A and B, and a mask M
- Construct Laplacian Pyramids \mathcal{L}_a and \mathcal{L}_b
- Construct a Gaussian Pyramid G_m
- Create a third Laplacian Pyramid L_c where for each level l

$$L_c(i,j) = G_m(i,j)L_a(i,j) + (1 - G_m(i,j))L_b(i,j)$$

• Sum all levels L_c in to get the blended image

Horror Photo

© prof. dmartin

Image Compression

Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding. First, the original image g_0 (lower left) is used to generate Gaussian pyramid levels g_1, g_2, \ldots through repeated local averaging. Levels of the Laplacian pyramid L_0, L_1, \ldots are then computed as the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyramid code C_0, C_1, C_2, \ldots Finally, a reconstructed image r_0 is generated by summing levels of the code pyramid.

Next Class

• Hough Transform