# HUNTING KILONOVAE USING WENDELSTEIN AND HET

This is a collective effort!

#### **Gravitational Wave Sources**

- Stretches(Squeezes) in spacetime for gravity to comply with Special Relativity
- Major sources: CBCs(Compact Binary Coalescences)- BBH, BHNS, BNS

#### Optical Counterparts of Gravitational Waves



Metzger 2019

- When NS involved→ GW+EM Radiation
- BBH→ Flare in accretion disk
- Kilonovae(optical), short GRBs, radio, X-Ray(jet/afterglow)
- Focus: optical region(kilonovae)
- Formed from the radioactive decay of r-process elements
- Optical timescales: hrs-days

#### Log Image Log Image LIGO Data event ID: G478659 distance: 765±177 Mpc event ID: G478659 50% area: 61 deg<sup>2</sup> 90% area: 286 deg<sup>2</sup> Log Image w**||• GraceDB Public Alerts ▼** Latest Se<u>arch Docume</u> BBH >99% S240 S240428dr Terrestrial <1% Log Messages Full Event Log NSBH <1% BNS <1% - Submitted by LIGO/Virgo EM Follow-Up on April 29, FAR (yr-1) 2024 13:05:17 UTC Volume rendering of bayestar.multiorder.fits,2 - Submitted by LIGO/Virgo EM Follow-Up on April 29, Submitted ▼ 2024 13:05:40 UTC Links

#### GW170817





# ONLY DETECTION SO







Abbott+17

#### **Implications**

- R-process nucleosynthesis(Cowperthwaite+17)
- Standard siren measurements of H<sub>0</sub> (Palmese+23)
- X-Ray+GW→ Properties of ISM (Makhathini+21)
- Tests of GR(Abbott+17) and Modified Gravity
   Theories(Boran+17)
- Studying the Neutron Star EOS(Margalit & Metzger 17)

# Target Selection

Match DESI Data Catalogs to 99% credible region according to GW Localisation+Luminosity(for  $M_{\star}$ ) or H- $\beta$  line(for SMBH Mass)

#### **Scheduling**

Optimal scheduling algorithm to maximise total probability covered(3KK)

# Data Reduction and Difference Imaging

Reduce raw frames from Wendelstein, select template, subtract from the science image to get difference image(look for change in brightness)

# Light Curves and Spectra

Is the source brightening? AB? Rise/fall time? Colour? Kind of galaxy? Redshift?

# Archival Light Curves

Query past ZTF/ATLAS Data and veto sources with high variability

## S240615dg



```
RA, DEC, Z_TRUE, P_QSO, Z_FROM
   7.179459048264719, 45.91464565960424, 0.27156494312443247, 0.16411154769880884, 1
8 7.013216727505004,46.77107160396502,0.33728331327438354,0.11471919199047348,1
   8.962203023010018,46.52034135057316,0.3337754460867908,0.10113340453122312,1
   4.807895948753608,45.439252844594805,0.26218098402023315,0.07263620959745845,1
   4.6015190220769995, 45.48223697070823, 0.25780320167541504, 0.058420432031132334, 1
  7.1828391250351595,45.0305331589576,0.3342839181423187,0.051582283263895023,1
   7.069876271424079,43.65307807631715,0.2910935992686088,0.04660606328668852,1
14 6.172420785549909,46.138430839035216,0.4767281711101532,0.04425459420973769,1
   6.747933623239949,44.38260037219568,0.3512095510959625,0.034818282484867076,1
                             60
                             40
                             20
                          delta dec [arcmin]
                               0
                             -40
```

-40

-20

delta RA [arcmin]

60

80

# Read skymap: /pscratch/sd/j/jgassert/target\_selection\_data/ligo/S240615dgbayestar.multiorder.fits,2
# Used dataset from /pscratch/sd/j/jgassert/target\_selection\_data/desi/qsos\_merged\_20240409\_20240608.fits

# QSO selection for event S240615dg at 1718477904.1148193

# Search area is 17.769420144705176deg^2 large for 0.99 cut

-60 -80

# 71 objects in the target list

#### **Data Reduction**



#### **Swift-XRT Sources**

- 27 sources of Rank 3: "uncatalogued X-ray sources, however they are not brighter than previous upper limits, so do not stand out as likely counterparts to the GW trigger"
- Crossmatched SExtractor sources within 90% error region of X-Ray sources
- Rejected stars
- Crossmatched this list with the host galaxy candidates
- Found only one match with  $\delta$ =2.88" (pretty big!) and P\_QSO=0.05



# Difference Imaging

Science





Difference



- Extragalactic?
- ☐ Is it a bird, is it a plane?
- ☐ Is it a star?
- ☐ Is it nuclear?
- ☐ Is it an AGN?
- ☐ Is it at the correct redshift?

- Extragalactic?
- ☐ Is it a bird, is it a plane?

GAIA

- ☐ Is it a star?
- ☐ Is it nuclear?
- ☐ Is it an AGN?
- ☐ Is it at the correct redshift?

- Extragalactic?
- Is it a bird, is it a plane?

Is it at the correct redshift?

- Is it a star?
- Is it nuclear?
- Is it an AGN?

If photo-z, HET Data

NED,

#### The Most Promising Candidate

- ✓ Extragalactic? → Looked like a distant elliptical galaxy
- ✓ Is it a bird, is it a plane?
- ✓ Is it a star?
- ✓ Is it nuclear?
- Is it an AGN?
- Is it at the correct redshift?

No z data on NED Daniel's photo-z by eye→0.4 So used HET Data



## Difference Images



## **SExtractor Lightcurve**



#### **HET Spectra**







## **HET Spectra**





#### Spec-z

 $z=0.154 \Rightarrow Db/w 695.5-757 Mpc$ 

2.8  $\sigma$  discrepancy from Bilby's 1420  $\mp$  236 Mpc So excluded



#### ZTF24aapjmye

- SnIa event showed sinusoidal behaviour in the lightcurve initially
- Photo-z of the host galaxy was 0.144 ∓0.004
- Confirm using spec-z

## Spec-z from VIRUS (ZTF24aapjmye)



PanSTARRS sources within 1.5"

Normalise spectrum by continuum fit





## Templates of galaxy spectra(Blanton & Roweis 2007)

- Selection: 0<z<1.5 observed in UV, IR, optical
- 485 K-corrected galaxy spectra → "PCA" restricted to nonnegative templates
- Not model free (SPS Models, emission line models etc) and handles uncertainties











#### S240428dr

- BBH merger
- 1.3% SMBH Mass weighted probability
- z=0.2







#### LIGHT CURVES





g 464 nm i 806 nm J 1220 nm



B/w 14/06 and 28/06, g-J  $\downarrow$ 0.23(6.6 $\sigma$ ) g-i  $\downarrow$ 0.16(9.3 $\sigma$ )

#### The AGN has bluened!

Is the added flux from the flare getting the AGN bluer or is the flare itself getting bluer?





No evidence that the flare is getting bluer from differences in coadds

## Thank you!

Daniel, Arno, Malte, Julian, Ayan, Leo, Julius, Antonella

QUESTIONS???