

Date: 2022-03-31 Version: 2022-03-27 12:50

Tutorial 8 for COMP 526 – Applied Algorithmics, Spring 2021

Problem 1 (Move-to-front transform)

Let T = T[0..9) = ABBACBAAA be an input text over alphabet $\Sigma = \{\texttt{A}, \texttt{B}, \texttt{C}\}$. Apply the move-to-front transform to this input with initial queue content Q = [A, B, C] and trace the content of Q throughout the execution.

Problem 2 (Lempel-Ziv-Welch compression)

Given word w = ASNXASNASNA over the ASCII character set (relevant parts of ASCII are provided on the right). Construct, step by step, the Lempel-Ziv-Welch (LZW) factorization of w (i.e., the phrases encoded by one codeword)

Construct, step by step, the Lempel-Ziv-Welch (LZW) factorization of w (i.e., the phrases encoded by one codeword) and provide the compressed representation of w; it suffices to show the encoded text C using integer numbers (no need for binary encodings).

Code	Character
65	A
•••	
78	N
•••	
83	S
•••	
88	X

Problem 3 (No Free Lunch)

Prove the following no-free-lunch theorems for lossless compression.

1. Weak version: For every compression algorithm A and $n \in \mathbb{N}$ there is an input $w \in \Sigma^n$ for which $|A(w)| \geq |w|$, i. e. the "compression" result is no shorter than the input.

Hint: Try a proof by contradiction. There are different ways to prove this.

2. Strong version: For every compression algorithm A and $n \in \mathbb{N}$ it holds that

$$\left|\left\{w\in \Sigma^{\leq n}: |A(w)|<|w|\right\}\right| \ < \ \tfrac{1}{2}\cdot \left|\Sigma^{\leq n}\right|.$$

In words, less than half of all inputs of length at most n can be compressed below their original size.

Hint: Start by determining $|\Sigma^{\leq n}|$.

The theorems hold for every non-unary alphabet, but you can restrict yourself to the binary case, i.e., $\Sigma = \{0, 1\}$.

We denote by Σ^* the set of all (finite) strings over alphabet Σ and by $\Sigma^{\leq n}$ the set of all strings with size $\leq n$. As domain of (all) compression algorithms, we consider the set of (all) *injective* functions in $\Sigma^* \to \Sigma^*$, i.e., functions that map any input string to some output string (encoding), where no two strings map to the same output.