

International Union for the Scientific Study of Population

International Population Conference 2021

Machine Learning for malaria treatment scheme recommendation using routine surveillance data

Carlos Eduardo Beluzo linkedin.com/in/cbeluzo cbeluzo@gmail.com

Everton Silva | Natália Arruda | Vinícius Maia | Bianca Carlos | Tiago Carvalho | Luciana Alves

Author profile

- * Ph.D Candidate @ Demography Post Graduation Program University of Campinas UNICAMP
 - Supervisor: PhD Luciana Correia Alves
- * Research Project
 - * Data Science applied to epidemiological and demographic information as a strategy to simulation and malaria vigilance monitoring in the Brazilian Amazon (BMGF grant)

Intro

- * Malaria a worldwide public health problem
- * Factors, response actions to infected individuals, and treatment schema
- * SIVEP-Malaria
 - epidemiological, demographic and socioeconomic information
 - * more than 22 treatment schemes

* Proposal

- * Implement ML model to recommend/classify treatments schemes
- * 2 models were built, for most frequent treatment schemes
- * XGBoost algorithm

SIVEP-Malaria

- Malaria dataset for surveillance in BR
 - * For this study, data from 2007-2019
 - Data preprocessing: missing, inconsistent, incorrect filling

Table 1. SIVEP data description table - Adapted from WIEFELS et al. (2016)

Variável	Definição	Variável	Definição	Variável	Definição	Variável	Definição	
COD_NOTI	Notification number	DT_NASCI	Birth date	MUN_RESI	Municipality of	LOC_INFE	Locality of infection	
DT_NOTIF	Notification date	ID_PACIE	Patient age	LOC_RESI	residence Locality of residence	DT-EXAME	Examination date	
TIPO_LAM	Active/passive	,		First symptoms date	EXAME	Examination method		
UF_NOTIF	State of notification	SEXO	Sex	DT_TRATA	Date of treatmen	RES_EXAM	Examination results	
MUN_NOTI	Municipality of notification	GESTANTE	Pregnancy length	VIVAX	Patient is under Vivax treatment	QTD_CRUZ	Parasitaemia	
COD_UNIN	Health unit of notification	NIV_ESCO	Schooling level	FALCIPARUM	Falciparum treatment	QTD_PARA	Parasites by mm ³	
COD_AGEN	Health agent code	RACA	race/skin color of the patient	ID_LVC	Follow-up consultation	HEMOPARASI	Hemoparasites	
SEM_NOTI	Notification week	COD_OCUP	Employment	PAIS_INF	Country of infection	EXAMINADOR	Examiner code	
DT_DIGIT	Date of digitalization	PAIS_RES	Country of residence	UF_INFEC	State of infection	Treatment schedule	;	
DT_ENVLO	Data entering into	UF_RESID	State of residence	MUN_INFE	Municipality of	SINTOMAS	Symptoms	
	National database date				infection			
Administrative da	ıta	Patient data		Epidemiological and laboratorial data	1			

Input Features

Table 1: Variables from SIVEP-Malaria selected for the ML model.

Group	Feature	Description				
ADMISTRATIVE DATA	TIPO_LAM	Active/passive				
	ID_PACIE	Patient age				
	SEXO	Patient gender				
PATIENT DATA	GESTANTE	Gestation time				
PATIENT DATA	NIV_ESCO	School level				
	RACA	Skin color				
	COD_OCUP	Employment				
	VIVAX	Patient under P. vivax treatment				
	FALCIPARUM	Patient under P. falciparum treatment				
	EXAME	Exam method				
	RES_EXAME	Exam result				
EPIDEMIOLOGICAL /	QTD_CRUZ	Parasitaemia				
LABORIATORIAL DATA	HEMOPARASI	Examiner code treatment schedule				
2.12011111	SINTOMAS	Symptoms				
	ESQUEMA	Treatment scheme code				

Classification Models

- * **SCHEME 6**: Infections with P. vivax, or P. ovale with chloroquine in 3 days and primaquine in 7 days (short schedule)
- * **SCHEME 17**: Another scheme used (by doctor)

Model Evaluation

- * XGBoost
- Cross-validation approach (5 folds)

Figure 2. ROC curve for model predicting treatment schemes 6 and 17 respectively.

Model evaluation

 $Table\ 2-Model\ classification\ report$

	Treatment Schema 6				Treatment Schema 17			
	precision	recall	f1-score	support	precision	recall	f1-score	support
Negative class	0.84	0.75	0.79	505,965	0.98	0.89	0.93	2,520,826
Positive class	0.94	0.97	0.96	2,239,271	0.40	0.83	0.54	224,41
accuracy			0.93	2,745,236			0.89	2,745,236
macro avg	0.89	0.86	0.87	2,745,236	0.69	0.86	0.74	2,745,236
weighted avg	0.93	0.93	0.93	2,745,236	0.94	0.89	0.90	2,745,236

Table 3. Confusion Matrix

Treatment Scheme 6					Treatment Scheme 17				
		Predicted					Predicted		
		0	1				0	1	
Actual	0	379.367	126.598		Actual	0	2.244.691	276.135	
Actual	1	70.906	2.168.365			1	38.735	185.675	

Discussion

Acknowledgment

BILL & MELINDA GATES foundation

This work is supported by:

- Bill & Melinda Gates Foundation [ID INV 003970];
- Brazilian Ministry of Health, Brazilian National Council for Scientific and Technological Development [443048/2019-3];
- NVIDIA corporation for supporting our research with a TITAN Xp GPU donation;