$$t_{calc} = \frac{\bar{y}_1 - \bar{y}_2 - \Delta_0}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} = \frac{\hat{\beta}_1 - \beta_{10}}{\sqrt{\frac{MSE}{S_{xx}}}}$$

Note: $MSE=s_p^2, \hat{\beta}_1=\bar{y}_1-\bar{y}_2, \Delta_0=\beta_{10}$ (the hypothesized value frequently zero).

Example 6

$$\left(\frac{1}{n_1} + \frac{1}{n_2}\right) = \frac{1}{s_{xx}}$$

To investigate the maternal behavior of laboratory rats, we move the rat pup a fixed distance from the mother and record the time (in seconds) required for the mother to retrieve the pup to the nest. We run the study with 5- and 20-day old pups. Note: These are not the same pups being measured twice.

91	62	
5 Days	20 Days	
15	30	y = 17.1667
10	15	51
25	20	- 03
15	25	y2 = 22.1667
20	23	
18	20	N1=N2=6

Use regression techniques with a dummy variable to test if the retrieval time differs per group.

	Response (Y)	Covariate (x)	7
t	15	1	17160
2	10	1	17.16G
3	25	1	, ,
4	15	1	,
5	20	1	ľ
G	18	1	',
7	30	0	22.161
8	15	0	25.11/4 35.164
•	20	0	
	25	0	
	23	0	,
12	20	0	١ ,

$$X = \begin{cases} \begin{cases} 1 \\ 0 \end{cases} & 5 & 2ay \end{cases}$$

$$\hat{y} = \tilde{y}_{2} + (\tilde{y}_{1} - \tilde{y}_{2}) \cdot x$$

$$\hat{\beta}_{0} + \hat{\beta}_{1} \cdot x$$

$$= 22.1667 + (17.1617 - 22.1667) \cdot x$$

The R code follows:

The R output follows:

The R output follows:

Two Sample t-test

data: y1 and y2

sample estimates:

17.16667 22.16667

Coefficients:

Х

```
# two groups
                    y1 < -c(15, 10, 25, 15, 20, 18)
                    y2 \leftarrow c(30, 15, 20, 25, 23, 20)
                    # response
                    y < -c(y1, y2)
                                    Stack
                    # dummy variable
                    x < -c(rep(1,6), rep(0,6))
                    # multiple boxplot
                    boxplot (y~x)
                    # test
                    summary(lm(y~x))
                    t.test(y1, y2, var.equal = TRUE)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.167 2.088 10.615 9.18e-07 ***
              -5.000
                         2.953 (-1.693
Residual standard error: (5.115) on (10) degrees of freedom
Multiple R-squared: 0.2228, Adjusted R-squared: 0.145
F-statistic: 2.866 on 1 and 10 DF, p-value: 0.1213
t = -1.693, df = 10, p-value = 0.1213
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-11.580454 1.580454
mean of x mean of y
```

2.10 Prediction

In simple linear regression, there are two fundamental goals:

1. Test if there is a relationship between the response variable Y and covariate x. The first goal is accomplished by testing null hypothesis $H_0: \beta_1 = \beta_{10}$.

Dosign

2. Predict the response Y given a fixed value of x.

This section describes predictions and confidence intervals on predictions.

111

Inferences concerning $E[Y_h]$

The parameter of interest is: $\theta = E[Y_h]$

 μ_{ν}

PROPOSITION 2.10 Let

$$\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 x_h$$

where x_h is some fixed value of x. Then

$$E[\hat{Y}_h] = \beta_0 + \beta_1 x_h$$

and

$$\operatorname{Var}[\hat{Y}_h] = \sigma^2 \left[\frac{1}{n} + \frac{(x_h - \bar{x})^2}{S_{xx}} \right]$$

From the above proposition, the standardized score of \hat{Y}_h is

ion, the standardized score of
$$Y_h$$
 is
$$Z = \frac{\hat{\beta}_0 + \hat{\beta}_1 x_h - (\beta_0 + \beta_1 x_h)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{S_{xx}}\right)}}.$$

Since \hat{Y}_h is a linear combination or response variable Y_i , the random variable Z has a standard normal distribution. The studentized score of \hat{Y}_h is

$$T = \frac{\hat{\beta}_0 + \hat{\beta}_1 x_h - (\beta_0 + \beta_1 x_h)}{\sqrt{MSE\left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{S_{xx}}\right)}}.$$

The appropriate proposition (reference GR5204) implies T has a student's t-distribution with n-2 degrees of freedom. Consequently, the confidence interval of interest follows.

Confidence interval for $E[Y_h]$

The $100(1-\alpha)\%$ confidence interval for $E[Y_h]$ when $x=x_h$ is

$$(\hat{\beta}_0 + \hat{\beta}_1 x_h) \pm t_{\alpha/2, n-2} \sqrt{MSE\left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{S_{xx}}\right)}$$

Inferences concerning the prediction of future Y values $(Y_{h(new)})$

Goal: For fixed $x = x_h$, we want to find a C.I. for a *single future value* $Y_{h(new)}$ as compared to a C.I for the *true average* $E[Y_h]$.

The **prediction error** for a single future response value is

$$\bigvee = Y_{h(new)} - (\hat{\beta}_0 + \hat{\beta}_1 x_h) = Y_{h(new)} - Y_h \qquad (2.18)$$

PROPOSITION 2.11 The expected value and variance of the prediction error defined Equation (2.18) are respectively given by

$$E \mathcal{W} = E[Y_{h(new)} - (\hat{\beta}_0 + \hat{\beta}_1 x_h)] = 0$$

and

$$\operatorname{Vor}(\mathbf{W} = \operatorname{Var}[Y_{h(new)} - (\hat{\beta}_0 + \hat{\beta}_1 x_h)] = \sigma^2 \left[1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{S_{xx}} \right]$$

$$E[Y_{h(new)} - (\hat{\beta}_0 + \hat{\beta}_1 \times_h)] = E[Y_{h(new)} - E[\hat{\beta}_0 + \hat{\beta}_1 \times_h]$$

$$= \beta_0 + \beta_1 \times_h - (\beta_0 + \beta_1 \times_h)$$

$$= 0$$

$$Vor(Y_{h(new)} - (\hat{\beta}_0 + \hat{\beta}_1 \times_h)] = Vor(Y_{h(new)}) + Vor(\hat{\beta}_0 + \hat{\beta}_1 \times_h)$$

$$= 0$$

$$= 0^2 + o^2(\frac{1}{h} + \frac{(x_h - \overline{x})^2}{5 \times x})$$

$$= o^2 \left[1 + \frac{1}{h} + \frac{(x_h - \overline{x})^2}{5 \times x}\right]$$

In a similar manner as the confidence interval for $E[Y_h]$, the studentized score of prediction error (2.18) is given by

$$T = \frac{Y_{h(new)} - (\hat{\beta}_0 + \hat{\beta}_1 x_h) - 0}{\sqrt{MSE\left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{S_{xx}}\right)}}.$$

The appropriate proposition (reference GR5204) implies T has a student's t-distribution with n-2 degrees of freedom. Consequently, the interval of interest follows below.

Prediction interval for a single future value $Y_{h(new)}$

The $100(1-\alpha)\%$ prediction interval for a single future value of $Y_{h(new)}$ when $x=x_h$ is

$$(\hat{\beta}_{0} + \hat{\beta}_{1}x_{h}) \pm t_{\alpha/2, n-2} \sqrt{MSE\left(1 + \frac{1}{n} + \frac{(x_{h} - \bar{x})^{2}}{S_{xx}}\right)}$$

Example 2 continued

- i. Using the appropriate interval, estimate the **true average** energy expenditure for someone with a fat-free body mass of 65 [kg].
 - ii. Using the appropriate interval, estimate the energy expenditure for a **single respondent** having a fat-free body mass of 65 [kg].

Example 6 continued

i. Using the appropriate interval, estimate the **true average** retrieval time for both the five day and twenty day old pups.

Example 2 R code follows:

```
# data
x <- c(49.3,59.3,68.3,48.1,57.6,78.1,76.1)
y <- c(1894,2050,2353,1838,1948,2528,2568)
# model
model <- lm(y~x)
# dataframe
x_data <- data.frame(x=65)
# confidence interval
predict(model,newdata=x_data,interval="confidence")
# prediction interval
predict(model,newdata=x_data,interval="prediction")</pre>
```

Example 2 R output follows:

Example 6 R code follows:

```
# two groups
y1 <- c(15,10,25,15,20,18)
y2 <- c(30,15,20,25,23,20)
# response
y <- c(y1,y2)
# dummy variable
x <- c(rep(1,6),rep(0,6))
# prediction
x_data <- data.frame(x=c(1,0))
predict(lm(y~x),newdata=x_data,interval="confidence")</pre>
```

Example 6 R output follows:

Further Inspection on confidence intervals and prediction intervals

$$SE = \sqrt{MSE\left(\frac{1}{h} + \frac{(x_{h} - \overline{x})^{2}}{S_{xx}}\right)}$$

$$SE = \sqrt{MSE\left(1 + \frac{1}{h} + \frac{(x_{h} - \overline{x})^{2}}{S_{xx}}\right)}$$

2.11 Linear Correlation

Linear correlation and covariance are both measures of the linear relationship between variables X and Y.

Deviations

- $y_i \bar{y} =$ the **deviation** of each case y_i from the sample mean of the response variable \bar{y} .
- $x_i \bar{x} =$ the **deviation** of each case x_i from the sample mean of the predictor variable \bar{x} .
- $(x_i \bar{x})(y_i \bar{y}) =$ the product of the **deviations**.

Quadrant	$y_i - \bar{y}$	$x_i - \bar{x}$	$(x_i - \bar{x})(y_i - \bar{y})$
1	+	+	+
2	+	~	_
3	_	~	+
4	_	+	_
			21

Sample covarient
$$= \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})$$
59