Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчет по лабораторной работе №1 «ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДВИГАТЕЛЯ EV3» по дисциплине «Введение в профессиональную деятельность»

Преподаватель: Перегудин А. А., ассистент фак. СУиР

1. Цель работы

Познакомиться с оборудованием и программным обеспечением, которые понадобятся при изучении материала данного курса. Экспериментально проверить справедливость функций, описывающих работу ненагруженного двигателя постоянного тока, и определить значения входящих в них параметров ω_{nls} и T_m . Пользуясь результатами проделанных вычислений, проанализировать характер зависимостей $T_m(voltage)$ и $\omega_{nls}(voltage)$.

2. Материалы работы

2.1 Результаты необходимых расчетов и построений

Результаты аппроксимации экспериментальных данных соответствующей функцией от времени в виде значений величин T_m и ω_{nls} сведены в таблицу 1. В четвертом ее столбце указаны результаты расчета величины M_{st} по значениям величин T_m и ω_{nls} из двух предшествующих столбцов.

Voltage, %	ω _{nls} , рад/с	T _m , c	$\mathbf{M}_{\mathrm{st}},\mathbf{H}\cdot\mathbf{M}$
100	17	0.0817	0.477
80	13.1	0.0807	0.375
60	9.71	0.072	0.31
40	6.32	0.0708	0.205
20	2.91	0.0629	0.106
-20	-2.88	0.0668	-0.0992
-40	-6.15	0.0719	-0.197
-60	-9.46	0.0723	-0.301
-80	-12.8	0.0774	-0.379
-100	-16.4	0.0822	-0.458

Таблица 1. Результаты расчетов величин T_m , ω_{nls} и M_{st}

Рисунок 1. Графики зависимости угла поворота ротора от времени при voltage = 100%.

Рисунок 2. Графики зависимости угла поворота ротора от времени при voltage = 80%.

Рисунок 3. Графики зависимости угла поворота ротора от времени при voltage = 60%.

Рисунок 4. Графики зависимости угла поворота ротора от времени при voltage = 40%.

Рисунок 5. Графики зависимости угла поворота ротора от времени при voltage = 20%.

Рисунок 6. Графики зависимости угла поворота ротора от времени при voltage = -20%.

Рисунок 7. Графики зависимости угла поворота ротора от времени при voltage = -40%.

Рисунок 8. Графики зависимости угла поворота ротора от времени при voltage = -60%.

Рисунок 9. Графики зависимости угла поворота ротора от времени при voltage = -80%.

Рисунок 10. Графики зависимости угла поворота ротора от времени при voltage = -100%.

Рисунок 11. График зависимости $\omega_{\it nls}$ (voltage).

Рисунок 12. График зависимости $T_m(voltage)$.

Рисунок 13. Графики зависимости угла поворота ротора от времени при положительных значениях voltage.

Рисунок 14. Графики зависимости угла поворота ротора от времени при отрицательных значениях voltage.

2.2 Схема моделирования

Рисунок 15. Схема моделирования процесса разгона ненагруженного двигателя постоянного тока.

2.3 Код основной расчетной программы

```
J=0.0023
xtitle ("", "voltage,%", "Wlns,рад/с");
results=read('C:\logminus100.txt',-1,2);
qlines=size(results,1);
angle=results(:,1);
angle=angle*%pi/180;
time=results(:,2);
delta = results(2,1);
angle = (results(:, 1)-delta)*%pi/180;
angle(1)=0;
plot2d(time,angle,2);
aim=[time,angle];
aim=aim';
\underline{\text{deff}}(\text{'e=func}(k,z)',\text{'e=z}(2)-k(1)*(z(1)-k(2)*(1-\exp(-z(1)/k(2))))');
att=[15;0.06];
[koeffs,errs]=datafit(func,aim,att);
Wnls = koeffs(1);
Tm = koeffs(2);
model=Wnls*(time-Tm*(1-exp(-time/Tm)));
plot2d(time,model,3);
Mst=J*Wnls/Tm;
plot2d(A.time, A.values, 5);
\underline{legend}('Experiment', \$\t (t) = \{nls}T_m+ \{nls}T_m+ \{nls}T_m, exp\{ids\}T_m\})
\frac{t}{T_m} \stackrel{\ }{\ } ', 'Model', 3);
grap1=read('C:\Wlns.txt',-1,2);
strok=size(grap1,1);
volt=grap1(:,1);
Teme=grap1(:,2);
plot2d(volt,Teme,1);
```

2.4 Код программы для EV3

```
#!/usr/bin/env python3
from ev3dev.ev3 import *
import time
data = open('log.txt','w')
motorD = LargeMotor('outD')
timeStart = time.time()
motorD.position = 0
while True:
    timeNow = time.time() - timeStart
    motorD.run_direct(duty_cycle_sp = -100)
    data.write(str(motorD.position) + ' ' + str(timeNow) + '\n')
    if timeNow > 1:
        motorD.run_direct(duty_cycle_sp = 0)
        break
```

3. Выводы

- 1. В ходе выполнения лабораторной работы были достигнуты цели, поставленные ранее. Путем сбора и анализа экспериментальных данных и последующего построения графиков доказана справедливость функций, описывающих работу ненагруженного двигателя постоянного тока (данный вывод мы делаем из того, что кривые разгона двигателя (построенная по экспериментальным данным, построенная в соответствии с теоретически выведенным выражением и построенная по числовым значениям, полученным в результате моделирования соответствующей схемы в Xcos) практически совпадают), а также определены значения параметров T_m и ω_{nls} (результаты представлены в табл. 1).
- 2. Результатом выполнения лабораторной работы стали построенные графики Angle (time) (рис. 1-10), выражающие зависимость угла поворота от времени при разных значениях voltage (значения представлены в 1 столбце табл.1), а также графики 13-14, построенные для наглядности.
- 3. Были установлены зависимости $T_m(voltage)$ и $\omega_{nls}(voltage)$ (рис. 11-12). Зависимость $\omega_{nls}(voltage)$ имеет линейный характер, что следует из формулы для определения угловой скорости:

$$\omega_{\text{nls}} = \frac{U}{k_e}$$
, где U — напряжение.

График T_m (voltage) представлен в виде ломаной линии, характер изменения которой сложно установить.

- 4. Исходный код передавался на робота EV3 посредством использования wifi соединения и программы WinSCP. Стоит отметить, что ОС робота Linux. Следовательно, чтобы передать ему код, написанный на Windows, следует выполнить некоторые действия для корректного преобразования(к примеру, переход на новую строку в этих ОС имеет разных код).
- 5. Графики построены в Scilab. Программа оказалась достаточно удобной за одним исключением. Этим исключением является то, что при моделировании в Xcos существует несколько внешне одинаковых вариантов блоков. Это нужно учитывать и выбирать правильные блоки.

Также стоит отметить для чего в коде в Scilab используется строчка att=[15;0.06]. Этой строчкой мы создаём одностолбцовую матрицу, где мы размещаем предполагаемые параметры ω_{nls} и Tm. В целом, чтобы аппроксимация выполнилась, они могут быть любыми, но всё же несколько особенностей есть. 1) Очевидно, что Tm всегда нужно брать больше 0, т.к. Tm - время. 2)Знак параметра ω_{nls} зависит от направления вращения(в одну сторону «+», в другую –

«-»).