Final Project

Matthew Michael Collins

5/1/2022

Models Utilized

Data mining with Naiive Bayes

Naiive Bayes: Reading in Data

```
# Loading package
library(e1071)
library(caTools)
library(caret)

## Loading required package: ggplot2

## Loading required package: lattice

set.seed(100)
train<-read.csv(file = 'training_final.csv', header=TRUE)
test<-read.csv(file = 'test_final.csv', header=TRUE)

train[,13]<-as.factor(train[,13])
y_test<-as.factor(train[,13])
x_test<-test</pre>
```

Selection

I chose sig1, sig2, sig7 and sig8 because the data when plotted shows two kinds distribution: unifrom and right skewed.

Data preprocesing

This function removes all the NA rows from the dataset. This function also finds the outlying data and removes it from the set.

```
for (i in which(sapply(train, is.numeric))) {
    train[is.na(train[, i]), i] <- mean(train[, i], na.rm = TRUE)
}

#install.packages("outliers")
library(outliers)

outlier_tf = outlier(train$sig1,logical=TRUE)

#What were the outliers
find_outlier = which(outlier_tf==TRUE,arr.ind=TRUE)

sum(outlier_tf)

## [1] 83

train = train[-find_outlier,]
nrow(train)</pre>

## [1] 79963
```

Data Transformation

Generate a random sample of "data_set_size" indexes and then Assign the data to a new training set

Value Occurence sig1

Value Occurence sig2

Value Occurence sig7

Value Occurence sig8

Note that each of these values is uniform distribution or right skewed data.

Misclasification of the Train Data

```
fit<-naiveBayes(relevance~.,data=train)
answer<-predict(fit,train2)
sum(train[,13]!=answer)/length(train[,13])</pre>
```

[1] 0.4809599

Success Rate Train Data

```
mean(answer==train[,13])
```

[1] 0.5190401

Final Misclasification Against Test Data

```
answer2<-predict(fit,x_test)
sum(train[,13]!=answer2)/length(train[,13])</pre>
```

[1] 0.4465815

Final Success Rate Against Test Data

```
mean(answer2==train[,13])
```

[1] 0.5534185

4. Data Mining

I chose Naiive Bayes because it is a simple technique for constructing classifiers. Bayes classifiers also treat each value of a particular feature as independent of the value of any other feature.

Interpretation/Evaluation Misclassification Error on Training

Using sig2 through sig8 because they are both uniform distribution

```
fit2<-naiveBayes(relevance~.,data=train)
answer<-predict(fit2,train2[,2:4])
sum(train[,13]!=answer)/length(train[,13])</pre>
```

[1] 0.483186

Misclassification With sig1

```
fit3<-naiveBayes(relevance~.,data=train)
answer<-predict(fit3,train2[,1])
sum(train[,13]!=answer)/length(train[,13])</pre>
```

[1] 0.4371022

Final Thoughts

Using data with similar distribution results in better classification with the model.

Write to .txt

```
write(answer2, file="answer.txt",ncol=1)
```