# AMG Methods

Generated by Doxygen 1.8.11

# **Contents**

| 1 | Intro | eduction Control of the Control of t | 1 |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | 1.1   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 |
|   | 1.2   | Dependencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |
|   | 1.3   | Compile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 |
|   | 1.4   | Parameter configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 |
|   | 1.5   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |
|   | 1.6   | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 |
|   | 1.7   | Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 |
| 2 | Hiera | archical Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 |
|   | 2.1   | Class Hierarchy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 |
| 3 | Clas  | es Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 |
|   | 3.1   | Class List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 |
| 4 | File  | Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 |
|   | 4.1   | File List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 |

iv CONTENTS

| 5 | Clas | s Docu  | mentation  |                                                                                                                                                                                                                                  | 11 |
|---|------|---------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 5.1  | cycle C | Class Refe | rence                                                                                                                                                                                                                            | 11 |
|   |      | 5.1.1   | Detailed   | Description                                                                                                                                                                                                                      | 12 |
|   |      | 5.1.2   | Construc   | tor & Destructor Documentation                                                                                                                                                                                                   | 12 |
|   |      |         | 5.1.2.1    | cycle(const setup &S, const Vec &f, const parameter_cycle &p)                                                                                                                                                                    | 12 |
|   |      | 5.1.3   | Member     | Function Documentation                                                                                                                                                                                                           | 13 |
|   |      |         | 5.1.3.1    | get_S() const                                                                                                                                                                                                                    | 13 |
|   |      |         | 5.1.3.2    | get_u(const size_t &n)                                                                                                                                                                                                           | 13 |
|   |      |         | 5.1.3.3    | set_u(const size_t &n, const Vec &v)                                                                                                                                                                                             | 13 |
|   |      |         | 5.1.3.4    | get_f(const size_t &n)                                                                                                                                                                                                           | 13 |
|   |      |         | 5.1.3.5    | set_f(const size_t &n, const Vec &v)                                                                                                                                                                                             | 14 |
|   |      |         | 5.1.3.6    | Cycle(int lev)                                                                                                                                                                                                                   | 14 |
|   |      |         | 5.1.3.7    | GS(Vec &u, const Vec &f, const int &j, const int &maxit)                                                                                                                                                                         | 14 |
|   | 5.2  | GetPot  | Class Re   | ference                                                                                                                                                                                                                          | 14 |
|   |      | 5.2.1   | Detailed   | Description                                                                                                                                                                                                                      | 17 |
|   | 5.3  | method  | d Class Re | eference                                                                                                                                                                                                                         | 17 |
|   |      | 5.3.1   | Detailed   | Description                                                                                                                                                                                                                      | 19 |
|   |      | 5.3.2   | Construc   | tor & Destructor Documentation                                                                                                                                                                                                   | 19 |
|   |      |         | 5.3.2.1    | method(cycle &C, const parameter_method &p)                                                                                                                                                                                      | 19 |
|   |      | 5.3.3   | Member     | Function Documentation                                                                                                                                                                                                           | 19 |
|   |      |         | 5.3.3.1    | get_iter() const                                                                                                                                                                                                                 | 19 |
|   |      |         | 5.3.3.2    | get_flag() const                                                                                                                                                                                                                 | 20 |
|   |      |         | 5.3.3.3    | get_rho() const                                                                                                                                                                                                                  | 20 |
|   |      |         | 5.3.3.4    | get_solution() const                                                                                                                                                                                                             | 20 |
|   | 5.4  | output  | Class Ref  | erence                                                                                                                                                                                                                           | 20 |
|   |      | 5.4.1   | Detailed   | Description                                                                                                                                                                                                                      | 22 |
|   |      | 5.4.2   | Construc   | tor & Destructor Documentation                                                                                                                                                                                                   | 22 |
|   |      |         | 5.4.2.1    | output(const string &testname, const string &inputA, const string &inputf, const string &fem, const string &method, const int &iter, const Real ρ, const bool &flag, const parameter_setup &ps, const parameter_cycle &pc, const |    |
|   |      |         |            | parameter_method ±)                                                                                                                                                                                                              | 22 |
|   |      | 5.4.3   | Member     | Function Documentation                                                                                                                                                                                                           | 22 |

CONTENTS

|     |        | 5.4.3.1    | print_on_file(const string &directory) const                                    | 22 |
|-----|--------|------------|---------------------------------------------------------------------------------|----|
| 5.5 | param  | eter_cycle | Class Reference                                                                 | 23 |
|     | 5.5.1  | Detailed   | Description                                                                     | 23 |
|     | 5.5.2  | Construc   | ctor & Destructor Documentation                                                 | 23 |
|     |        | 5.5.2.1    | parameter_cycle(const int &nlevel, const int &nu1, const int &nu2, const int γ) | 23 |
|     | 5.5.3  | Member     | Function Documentation                                                          | 24 |
|     |        | 5.5.3.1    | get_nlevel() const                                                              | 24 |
|     |        | 5.5.3.2    | get_nu1() const                                                                 | 24 |
|     |        | 5.5.3.3    | get_nu2() const                                                                 | 24 |
|     |        | 5.5.3.4    | get_mu() const                                                                  | 24 |
| 5.6 | param  | eter_meth  | od Class Reference                                                              | 25 |
|     | 5.6.1  | Detailed   | Description                                                                     | 25 |
|     | 5.6.2  | Construc   | ctor & Destructor Documentation                                                 | 25 |
|     |        | 5.6.2.1    | parameter_method(const Real &tol, const int &maxiter)                           | 25 |
|     | 5.6.3  | Member     | Function Documentation                                                          | 26 |
|     |        | 5.6.3.1    | get_maxiter() const                                                             | 26 |
|     |        | 5.6.3.2    | get_tol() const                                                                 | 26 |
| 5.7 | param  | eter_setup | Class Reference                                                                 | 26 |
|     | 5.7.1  | Detailed   | Description                                                                     | 27 |
|     | 5.7.2  | Construc   | ctor & Destructor Documentation                                                 | 27 |
|     |        | 5.7.2.1    | parameter_setup(const int &nmatrix, const Real θ)                               | 27 |
|     | 5.7.3  | Member     | Function Documentation                                                          | 27 |
|     |        | 5.7.3.1    | get_nmatrix() const                                                             | 27 |
|     |        | 5.7.3.2    | get_theta() const                                                               | 28 |
| 5.8 | sets C | lass Refer | ence                                                                            | 28 |
|     | 5.8.1  | Detailed   | Description                                                                     | 29 |
|     | 5.8.2  | Construc   | ctor & Destructor Documentation                                                 | 29 |
|     |        | 5.8.2.1    | sets(const size_t &dim)                                                         | 29 |
|     |        | 5.8.2.2    | sets(const sets &A)                                                             | 30 |
|     | 5.8.3  | Member     | Function Documentation                                                          | 30 |

vi

|      |         | 5.8.3.1      | operator[](const size_t &n)                                                                                                                                                        | 30 |
|------|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      |         | 5.8.3.2      | operator[](const size_t &n) const                                                                                                                                                  | 30 |
|      |         | 5.8.3.3      | addElement(const int &s)                                                                                                                                                           | 30 |
|      |         | 5.8.3.4      | deleteElement(const int &s)                                                                                                                                                        | 31 |
|      |         | 5.8.3.5      | isMember(const int &s)                                                                                                                                                             | 31 |
|      |         | 5.8.3.6      | isEmpty()                                                                                                                                                                          | 31 |
|      |         | 5.8.3.7      | find_pos_set(const int &s)                                                                                                                                                         | 31 |
|      |         | 5.8.3.8      | union_set(sets &A, sets &B)                                                                                                                                                        | 31 |
|      |         | 5.8.3.9      | diff_set(sets &A, sets &B)                                                                                                                                                         | 32 |
|      |         | 5.8.3.10     | inter_set(sets &A, sets &B)                                                                                                                                                        | 32 |
| 5.9  | setup C | Class Refe   | rence                                                                                                                                                                              | 32 |
|      | 5.9.1   | Detailed I   | Description                                                                                                                                                                        | 34 |
|      | 5.9.2   | Construc     | tor & Destructor Documentation                                                                                                                                                     | 34 |
|      |         | 5.9.2.1      | setup(const SpMat &A, const parameter_setup &p)                                                                                                                                    | 34 |
|      | 5.9.3   | Member I     | Function Documentation                                                                                                                                                             | 35 |
|      |         | 5.9.3.1      | get_A(const size_t &n) const                                                                                                                                                       | 35 |
|      |         | 5.9.3.2      | get_I(const size_t &n) const                                                                                                                                                       | 35 |
|      |         | 5.9.3.3      | $strong\_influence\_dependence(const SpMat \&A, vector < sets > \&S, vector < sets > \&St, vector < sets > \&Dw) \\ \ldots \\ \ldots \\ \ldots$                                    | 35 |
|      |         | 5.9.3.4      | ${\tt colouring\_scheme} ({\tt vector} < {\tt sets} > {\tt \&S},  {\tt vector} < {\tt sets} > {\tt \&St},  {\tt sets}  {\tt \&C},  {\tt sets}  {\tt \&F})  .$                      | 35 |
|      |         | 5.9.3.5      | $\label{eq:coarse_strong_dependence} $$ coarse\_strong\_dependence(vector < sets > \&S, vector < sets > \&Ci, vector < sets > \&Ds, sets C)                                   $    | 36 |
|      |         | 5.9.3.6      | $\label{eq:check_modify}                                    $                                                                                                                      | 36 |
|      |         | 5.9.3.7      | $\label{eq:const_spmat} \begin{subarray}{ll} interpolation(const SpMat &A, SpMat &I, sets &C, const vector < sets > &Ci, const vector < sets > &Ds, const vector < sets > &Dw) & $ | 36 |
|      |         | 5.9.3.8      | element_set(const SpMat &A, sets &B, const int &c)                                                                                                                                 | 37 |
|      |         | 5.9.3.9      | minus_maxrow_maxcol(const SpMat &A, vector< Real > &maxrow, vector< Real > &maxcol)                                                                                                | 37 |
| 5.10 | setupD  | G Class R    | eference                                                                                                                                                                           | 37 |
|      | 5.10.1  | Detailed I   | Description                                                                                                                                                                        | 39 |
|      | 5.10.2  | Construc     | tor & Destructor Documentation                                                                                                                                                     | 39 |
|      |         | 5.10.2.1     | setupDG(const SpMat &A, const parameter_setup &p)                                                                                                                                  | 39 |
|      | 5.10.3  | Member I     | Function Documentation                                                                                                                                                             | 39 |
|      |         | 5.10.3.1     | $aggregation\_DG(vector < sets > \&B)  .  .  .  .  .  .  .  .  .  $                                                                                                                | 39 |
|      |         | 5.10.3.2     | $unsmoothed\_interpolation(SpMat \&I, vector < sets > \&B)  . \ . \ . \ . \ . \ . \ . \ .$                                                                                         | 40 |
|      |         | 5.10.3.3     | GS_orth_interpolation(SpMat &I)                                                                                                                                                    | 40 |
|      |         | 5.10.3.4     | smoothed_interpolation(SpMat &I)                                                                                                                                                   | 40 |
|      |         | 5.10.3.5     | $\label{eq:set_set_set} \mbox{find\_set(vector} < \mbox{sets} > \mbox{\&B, const int \&k)} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $                                                 | 40 |
|      |         | 5.10.3.6     | ${\sf maxrow\_pos}({\sf const}\ {\sf SpMat}\ {\sf \&A},\ {\sf vector}{<}\ {\sf int} > {\sf \&pos})\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$                                               | 41 |
| 5.11 | GetPot  | ::variable S | Struct Reference                                                                                                                                                                   | 41 |
|      | 5.11.1  | Detailed I   | Description                                                                                                                                                                        | 41 |

CONTENTS vii

| 6 | File | Documentation                                               | 43 |
|---|------|-------------------------------------------------------------|----|
|   | 6.1  | laura/AMG_Methods/include/common.h File Reference           | 43 |
|   |      | 6.1.1 Detailed Description                                  | 44 |
|   | 6.2  | laura/AMG_Methods/include/cycle.h File Reference            | 44 |
|   |      | 6.2.1 Detailed Description                                  | 45 |
|   | 6.3  | laura/AMG_Methods/include/GetPot.h File Reference           | 45 |
|   |      | 6.3.1 Detailed Description                                  | 47 |
|   |      | 6.3.2 Macro Definition Documentation                        | 47 |
|   |      | 6.3.2.1 victorate                                           | 47 |
|   | 6.4  | laura/AMG_Methods/include/method.h File Reference           | 47 |
|   |      | 6.4.1 Detailed Description                                  | 48 |
|   | 6.5  | laura/AMG_Methods/include/output.h File Reference           | 48 |
|   |      | 6.5.1 Detailed Description                                  | 49 |
|   | 6.6  | laura/AMG_Methods/include/parameter_cycle.h File Reference  | 49 |
|   |      | 6.6.1 Detailed Description                                  | 50 |
|   | 6.7  | laura/AMG_Methods/include/parameter_method.h File Reference | 50 |
|   |      | 6.7.1 Detailed Description                                  | 51 |
|   | 6.8  | laura/AMG_Methods/include/parameter_setup.h File Reference  | 51 |
|   |      | 6.8.1 Detailed Description                                  | 52 |
|   | 6.9  | laura/AMG_Methods/include/sets.h File Reference             | 52 |
|   |      | 6.9.1 Detailed Description                                  | 53 |
|   | 6.10 | laura/AMG_Methods/include/setup.h File Reference            | 53 |
|   |      | 6.10.1 Detailed Description                                 | 54 |
|   | 6.11 | laura/AMG_Methods/include/setupDG.h File Reference          | 55 |
|   |      | 6.11.1 Detailed Description                                 | 55 |
|   | 6.12 | laura/AMG_Methods/src/cycle.cpp File Reference              | 56 |
|   |      | 6.12.1 Detailed Description                                 | 56 |
|   | 6.13 | laura/AMG_Methods/src/method.cpp File Reference             | 56 |
|   |      | 6.13.1 Detailed Description                                 | 57 |
|   | 6.14 | laura/AMG_Methods/src/output.cpp File Reference             | 57 |

viii CONTENTS

| 6.20 | laura/AMG_Methods/src/setupDG.cpp File Reference         | 61       |
|------|----------------------------------------------------------|----------|
| 6.20 |                                                          |          |
| 0.19 | 6.19.1 Detailed Description                              | 61       |
| 6 19 | 6.18.1 Detailed Description                              | 60<br>60 |
| 6.18 | B laura/AMG_Methods/src/sets.cpp File Reference          | 60       |
| 6.17 | laura/AMG_Methods/src/parameter_setup.cpp File Reference | 59<br>59 |
| 6.16 | 6.16.1 Detailed Description                              | 58<br>59 |
| 6.15 | 6.15.1 Detailed Description                              | 58<br>58 |
|      | 6.14.1 Detailed Description                              | 57       |

# **Chapter 1**

# Introduction

# 1.1 Description

This program aim to solve linear systems arising from conforming and discontinuous finite element discretizions with algebraic multigrid methods.

All source and header files are written in C++11 language.

### 1.2 Dependencies

Software needs that on system must be installed the following dependencies :

- CMake (version 3.5.1 or above), cross-platform family of tools designed to build, test and package software;
- Make (version 4.1 or above), a tool which controls the generation of executables of a program from the program's source files;
- GCC (version 5.4.0 or above), GNU Compiler Collection;
- Eigen (version 3.3 or above), library for linear algebra: matrices, vectors, numerical solvers, and related algorithms;

We also use the following library, provided in folder include/:

• GetPot (v. 1.1.17), it is used for parsing comand line arguments and configuration files.

2 Introduction

# 1.3 Compile

To generate the executable it is provided file *CMakeLists.txt* (in top-level folder).

Create a compilation folder and open it with the following commands:

```
$ mkdir build
$ cd build
```

Now the system is ready for the configuration :

```
$ cmake ..
```

If the Eigen library folder is not installed in a system one then cmake will give an error message, therefore it is necessary to specify the folder where the library is installed with the following command:

```
$ cmake .. -DEIGEN3_INCLUDE_DIR=path_folder/name_folder
```

#### Finally:

\$ make

will create the executable main.

## 1.4 Parameter configuration

Note

By default, configuration file is saved in the same folder of CMakeLists.txt.

Before running the program configuration file must be set (default: *config.pot*). In configuration file it can be possible modify some problem parameters, in *config.pot* file all details of parameters are explained.

For example it can be possible decide type of mu-cycle, how to use AMG (stand-alone or preconditioner), and more others.

## 1.5 Run

In order to use predefined configuration file (config.pot), move into the executable folder (folder build/) and digit :

```
$ ./main
```

To specify a different configuration file run main program in the following ways:

```
$ ./main -f configuration_directory_filename
```

or:

```
$ ./main --file configuration_directory_filename
```

At the end of the program the results can be print on screen or they can be saved on files in the choosen output directory, specified in configuration file.

1.6 Examples 3

## 1.6 Examples

In folder *share/examples/* are given test files (matrices and associated right-hand side vectors have the same name of files except for "flag" A or f), this folder will be then copied in compilation folder *build/* with instruction in *CMake*— *Lists.txt*, i.e. the examples will be copied in folder *build/share/examples* and therefore the results will be saved (if not declared differently by the user) in folder *build/share/results*.

The name of test files give to the user some important information, therefore we detail the name of files.

The following text denotes the name of a matrix (initial "flag" A),

```
A_FEM_level_h_fem_Pp_TS.txt
```

whereas the following text denotes the name of the associated right-hand side vector with matrix A (initial "flag" f),

```
f_FEM_level_h_fem_Pp_TS.txt
```

The FEM "flag" denotes the type of finite element discretizations (CG: conforming Galerkin, DG: discontinuous Galerkin), the value h is a "flag" for the grid parameter (bigger h stands for finer refinement of the meshes) and the value p is the degree of approximate polynomials. Finally the flag TS denotes that the mesh is a structured simplicial triangular one.

#### 1.7 Documentation

If <code>Doxygen</code> and <code>GraphViz</code> are installed on system, the following instruction (runned in the top-level folder) will create the documentation in folder <code>doc/</code>

```
$ doxygen Doxyfile.in
```

then move into the folder doc/latex/ to create the pdf file with the following instructions

```
$ cd doc/latex/
```

<sup>\$</sup> make

4 Introduction

# Chapter 2

# **Hierarchical Index**

# 2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

| cycle            | <br> | <br>   |
|------------------|------|--------|
| GetPot           | <br> | <br>14 |
| method           | <br> | <br>17 |
| output           | <br> | <br>   |
| parameter_cycle  | <br> | <br>   |
| parameter_method | <br> | <br>25 |
| parameter_setup  | <br> | <br>   |
| sets             |      |        |
| setup            | <br> | <br>   |
| setupDG          | <br> | <br>37 |
| GetPot: variable |      | 41     |

6 Hierarchical Index

# **Chapter 3**

# **Class Index**

# 3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

| cycle     |                                                                                                    |    |
|-----------|----------------------------------------------------------------------------------------------------|----|
| CatDat    | This class defines one iteration of mu-cycle                                                       | 11 |
| GetPot    | This class read input values from files (library GetPot http://getpot.sourceforge.↔ net)           | 14 |
| method    | nec)                                                                                               |    |
|           | This class defines AMG methods: AMG stand-alone or PCG preconditioned conjugate gradient           | 17 |
| output    |                                                                                                    |    |
|           | This class contains the printing and saving tools                                                  | 20 |
| paramete  | er_cycle                                                                                           |    |
|           | This class contains cycle parameters                                                               | 23 |
| paramete  | er_method                                                                                          |    |
|           | This class contains method parameters                                                              | 25 |
| paramete  | er_setup                                                                                           |    |
|           | This class contains setup parameters                                                               | 26 |
| sets      |                                                                                                    |    |
|           | This class performs some properties and utilities of mathematical sets                             | 28 |
| setup     |                                                                                                    |    |
| •         | This class defines the construction of coarser matrices and interpolation operators, in particular |    |
|           | for matrices stemming from conforming Galerkin discretization                                      | 32 |
| setupDG   |                                                                                                    |    |
|           | Class inherited from setup. This class defines the construction of coarser matrices and interpo-   |    |
|           | lation operators for matrices stemming from discontinous Galerkin discretization extending the     |    |
|           | algorithm for conforming Galerkin matrices                                                         | 37 |
| GetPot::v | variable                                                                                           | 41 |

8 Class Index

# Chapter 4

# File Index

# 4.1 File List

Here is a list of all documented files with brief descriptions:

| laura/AMG_Methods/include/common.h                                                          |    |
|---------------------------------------------------------------------------------------------|----|
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 43 |
| laura/AMG_Methods/include/cycle.h                                                           |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 44 |
| laura/AMG_Methods/include/GetPot.h                                                          |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 45 |
| laura/AMG_Methods/include/method.h                                                          |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 47 |
| laura/AMG_Methods/include/output.h                                                          |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 48 |
| laura/AMG_Methods/include/parameter_cycle.h                                                 |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 49 |
| laura/AMG_Methods/include/parameter_method.h                                                |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 50 |
| laura/AMG_Methods/include/parameter_setup.h                                                 |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 51 |
| laura/AMG_Methods/include/sets.h                                                            |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 52 |
| laura/AMG_Methods/include/setup.h                                                           |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 53 |
| laura/AMG_Methods/include/setupDG.h                                                         |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 55 |
| laura/AMG_Methods/src/cycle.cpp                                                             |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | EG |

10 File Index

| laura/AMG_Methods/src/method.cpp                                                            |    |
|---------------------------------------------------------------------------------------------|----|
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 56 |
| laura/AMG_Methods/src/output.cpp                                                            |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 57 |
| laura/AMG_Methods/src/parameter_cycle.cpp                                                   |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 58 |
| laura/AMG_Methods/src/parameter_method.cpp                                                  |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 58 |
| laura/AMG_Methods/src/parameter_setup.cpp                                                   |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 59 |
| laura/AMG_Methods/src/sets.cpp                                                              |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 60 |
| laura/AMG_Methods/src/setup.cpp                                                             |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 60 |
| laura/AMG_Methods/src/setupDG.cpp                                                           |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 61 |
| laura/AMG_Methods/test/main.cpp                                                             |    |
| AMG methods for conforming and discontinuous Galerkin finite element discretizations of the |    |
| Poisson problem                                                                             | 62 |

# **Chapter 5**

# **Class Documentation**

# 5.1 cycle Class Reference

This class defines one iteration of mu-cycle.

#include <cycle.h>

Collaboration diagram for cycle:



### **Public Member Functions**

• cycle ()=default

Constructor (defaulted)

- cycle (const setup &S, const Vec &f, const parameter\_cycle &p)
- Constructor.
   ∼cycle ()

Destructor (defaulted)

```
const setup & get_S () const

Reading setup S.
const Vec & get_u (const size_t &n)

Reading vector u.
void set_u (const size_t &n, const Vec &v)

Writing vector u.
const Vec & get_f (const size_t &n)

Reading vector f.
void set_f (const size_t &n, const Vec &v)

Writing vector f.
```

• void Cycle (int lev)

Cycle iteration.

#### **Private Member Functions**

void GS (Vec &u, const Vec &f, const int &j, const int &maxit)
 Gauss-Seidel method.

#### **Private Attributes**

• setup \_S

setup containing coarser matrices and interpolation operators

vector< Vec > \_f

vector of right-hand side on all levels

vector< Vec > \_u

vector of solution on all levels

• parameter\_cycle \_pc

parameters of cycle

## 5.1.1 Detailed Description

This class defines one iteration of mu-cycle.

Definition at line 24 of file cycle.h.

#### 5.1.2 Constructor & Destructor Documentation

5.1.2.1 cycle (const setup & S, const Vec & f, const parameter\_cycle & p)

Constructor.

#### **Parameters**

| in | S | setup containing coarser matrices and interpolation operators |
|----|---|---------------------------------------------------------------|
| in | f | right-hand side on finest level                               |
| in | р | parameters of cycle                                           |

Definition at line 14 of file cycle.cpp.

#### 5.1.3 Member Function Documentation

5.1.3.1 const setup& get\_S() const [inline]

Reading setup S.

#### **Parameters**

|  | out | S | setup containing coarser matrices and interpolation operators |
|--|-----|---|---------------------------------------------------------------|
|--|-----|---|---------------------------------------------------------------|

Definition at line 58 of file cycle.h.

5.1.3.2 const Vec& get\_u ( const size\_t & n ) [inline]

Reading vector u.

#### **Parameters**

| in  | n    | current level of matrix/vector |
|-----|------|--------------------------------|
| out | u[n] | vector u at current level      |

Definition at line 70 of file cycle.h.

5.1.3.3 void set\_u ( const size\_t & n, const Vec & v ) [inline]

Writing vector u.

#### **Parameters**

| in  | n current level of matrix/vector |                                    |  |
|-----|----------------------------------|------------------------------------|--|
| in  | v vector to be copied            |                                    |  |
| out | u[n]                             | assigned vector u at current level |  |

Definition at line 87 of file cycle.h.

5.1.3.4 const Vec& get\_f ( const size\_t & n ) [inline]

Reading vector f.

#### **Parameters**

| in  | n    | current level of matrix/vector |
|-----|------|--------------------------------|
| out | f[n] | vector f at current level      |

Definition at line 103 of file cycle.h.

5.1.3.5 void set\_f ( const size\_t & n, const Vec & v ) [inline]

Writing vector f.

#### **Parameters**

| in  | n    | current level of matrix/vector     |  |
|-----|------|------------------------------------|--|
| in  | V    | vector to be copied                |  |
| out | f[n] | assigned vector f at current level |  |

Definition at line 120 of file cycle.h.

5.1.3.6 void Cycle ( int lev )

Cycle iteration.

#### **Parameters**

| i | n | lev | current level of coarser matrices, 0 is for finest level |
|---|---|-----|----------------------------------------------------------|
|---|---|-----|----------------------------------------------------------|

Definition at line 40 of file cycle.cpp.

5.1.3.7 void GS ( Vec & u, const Vec & f, const int & j, const int & maxit ) [private]

Gauss-Seidel method.

#### **Parameters**

| in                                          | и | initial solution guess                 |  |
|---------------------------------------------|---|----------------------------------------|--|
| in                                          | j | current level of matrix/vector         |  |
| in                                          | f | f right-hand side on j level           |  |
| in maxit maximum number of smoothing iterat |   | maximum number of smoothing iterations |  |

Definition at line 24 of file cycle.cpp.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/cycle.h
- laura/AMG\_Methods/src/cycle.cpp

## 5.2 GetPot Class Reference

This class read input values from files (library GetPot http://getpot.sourceforge.net).

#include <GetPot.h>

5.2 GetPot Class Reference 15

#### **Classes**

struct variable

#### **Public Member Functions**

- GetPot (const GetPot &)
- GetPot (const int argc\_, char \*\*argv\_, const char \*FieldSeparator=0x0)
- **GetPot** (const char \*FileName, const char \*CommentStart=0x0, const char \*CommentEnd=0x0, const char \*FieldSeparator=0x0)
- GetPot & operator= (const GetPot &)
- void absorb (const GetPot &That)
- void clear\_requests ()
- void disable\_request\_recording ()
- void enable\_request\_recording ()
- const std::string operator[] (unsigned ldx) const
- · int get (unsigned ldx, int Default) const
- · double get (unsigned ldx, const double &Default) const
- const std::string **get** (unsigned ldx, const char \*Default) const
- unsigned size () const
- · bool options\_contain (const char \*FlagList) const
- bool argument\_contains (unsigned ldx, const char \*FlagList) const
- int operator() (const char \*VarName, int Default) const
- double operator() (const char \*VarName, const double &Default) const
- const std::string operator() (const char \*VarName, const char \*Default) const
- int operator() (const char \*VarName, int Default, unsigned ldx) const
- double operator() (const char \*VarName, const double &Default, unsigned ldx) const
- const std::string operator() (const char \*VarName, const char \*Default, unsigned ldx) const
- void **set** (const char \*VarName, const char \*Value, const bool Requested=true)
- void set (const char \*VarName, const double &Value, const bool Requested=true)
- void set (const char \*VarName, const int Value, const bool Requested=true)
- unsigned vector\_variable\_size (const char \*VarName) const
- · STRING VECTOR get variable names () const
- · STRING VECTOR get\_section\_names () const
- void set\_prefix (const char \*Prefix)
- · bool search\_failed () const
- void disable\_loop ()
- void enable\_loop ()
- void reset\_cursor ()
- void init\_multiple\_occurrence ()
- bool **search** (const char \*option)
- bool search (unsigned No, const char \*P,...)
- int next (int Default)
- double **next** (const double &Default)
- const std::string next (const char \*Default)
- int **follow** (int Default, const char \*Option)
- double follow (const double &Default, const char \*Option)
- const std::string **follow** (const char \*Default, const char \*Option)
- int **follow** (int Default, unsigned No, const char \*Option,...)
- double follow (const double &Default, unsigned No, const char \*Option,...)
- const std::string follow (const char \*Default, unsigned No, const char \*Option,...)
- std::vector< std::string > nominus\_followers (const char \*Option)
- std::vector< std::string > nominus\_followers (unsigned No,...)
- int direct\_follow (int Default, const char \*Option)

- double direct\_follow (const double &Default, const char \*Option)
- const std::string direct\_follow (const char \*Default, const char \*Option)
- std::vector< std::string > string\_tails (const char \*StartString)
- std::vector< int > int\_tails (const char \*StartString, const int Default=1)
- std::vector< double > double tails (const char \*StartString, const double Default=1.0)
- STRING\_VECTOR nominus\_vector () const
- · unsigned nominus size () const
- std::string next\_nominus ()
- STRING VECTOR unidentified arguments (unsigned Number, const char \*Known,...) const
- STRING VECTOR unidentified arguments (const STRING VECTOR &Knowns) const
- STRING VECTOR unidentified arguments () const
- STRING VECTOR unidentified options (unsigned Number, const char \*Known,...) const
- STRING\_VECTOR unidentified\_options (const STRING\_VECTOR &Knowns) const
- · STRING VECTOR unidentified options () const
- std::string unidentified\_flags (const char \*Known, int ArgumentNumber) const
- STRING VECTOR unidentified variables (unsigned Number, const char \*Known,...) const
- STRING VECTOR unidentified variables (const STRING VECTOR &Knowns) const
- · STRING VECTOR unidentified variables () const
- STRING VECTOR unidentified sections (unsigned Number, const char \*Known,...) const
- STRING\_VECTOR unidentified\_sections (const STRING\_VECTOR &Knowns) const
- STRING\_VECTOR unidentified\_sections () const
- STRING VECTOR unidentified nominuses (unsigned Number, const char \*Known,...) const
- STRING VECTOR unidentified nominuses (const STRING VECTOR &Knowns) const
- STRING\_VECTOR unidentified\_nominuses () const
- int print () const

#### **Private Member Functions**

- void basic initialization ()
- void <u>\_\_record\_argument\_request</u> (const std::string &Arg)
- void <u>record variable request</u> (const std::string &Arg)
- void \_\_set\_variable (const char \*VarName, const char \*Value)
- void \_\_parse\_argument\_vector (const STRING\_VECTOR &ARGV)
- const variable \* \_\_find\_variable (const char \*) const
- const char \* \_\_match\_starting\_string (const char \*StartString)
- bool \_\_check\_flags (const std::string &Str, const char \*FlagList) const
- int \_\_convert\_to\_type (const std::string &String, int Default) const
- double \_\_convert\_to\_type (const std::string &String, double Default) const
- const std::string get remaining string (const std::string &String, const std::string &Start) const
- bool search string vector (const STRING VECTOR &Vec, const std::string &Str) const
- void <u>\_\_skip\_whitespace</u> (std::istream &istr)
- const std::string <u>get\_next\_token</u> (std::istream &istr)
- const std::string <u>get\_string</u> (std::istream &istr)
- const std::string <u>\_\_get\_until\_closing\_bracket</u> (std::istream &istr)
- STRING\_VECTOR \_\_read\_in\_stream (std::istream &istr)
- STRING VECTOR read in file (const char \*FileName)
- std::string \_\_process\_section\_label (const std::string &Section, STRING\_VECTOR &section\_stack)
- std::string \_\_DBE\_expand\_string (const std::string str)
- std::string \_\_DBE\_expand (const std::string str)
- const GetPot::variable \* DBE get variable (const std::string str)
- STRING\_VECTOR \_\_DBE\_get\_expr\_list (const std::string str, const unsigned ExpectedNumber)
- std::string \_\_double2string (const double &Value) const
- std::string \_\_int2string (const int &Value) const
- STRING\_VECTOR <u>get\_section\_tree</u> (const std::string &FullPath)

5.3 method Class Reference 17

#### **Private Attributes**

- · std::string prefix
- · std::string section
- STRING\_VECTOR section\_list
- STRING\_VECTOR argv
- unsigned cursor
- · bool search\_loop\_f
- bool search\_failed\_f
- int nominus\_cursor
- std::vector< unsigned > idx\_nominus
- std::vector< variable > variables
- std::string \_comment\_start
- std::string \_comment\_end
- std::string \_field\_separator
- $std::vector < char * > \underline{\quad internal\_string\_container}$
- STRING\_VECTOR \_requested\_arguments
- STRING\_VECTOR \_requested\_variables
- STRING\_VECTOR \_requested\_sections
- · bool \_\_request\_recording\_f

#### 5.2.1 Detailed Description

This class read input values from files (library GetPot http://getpot.sourceforge.net).

Definition at line 82 of file GetPot.h.

The documentation for this class was generated from the following file:

laura/AMG\_Methods/include/GetPot.h

#### 5.3 method Class Reference

This class defines AMG methods: AMG stand-alone or PCG preconditioned conjugate gradient.

#include <method.h>

#### Collaboration diagram for method:



#### **Public Member Functions**

• method ()=default

Constructor (defaulted)

method (cycle &C, const parameter\_method &p)

Constructor.

•  $\sim$ method ()

Destructor (defaulted)

• void AMGCycle ()

AMG stand-alone method.

• void PCGCycle ()

PCG method (AMG as preconditioner)

• const int & get\_iter () const

Reading number of iterations to achieve convergence.

• const bool & get\_flag () const

Reading flag.

• const Real & get\_rho () const

Reading convergence factor.

· const Vec & get\_solution () const

Reading solution vector.

#### **Private Attributes**

cycle \_C

definition of one iteration of mu-cycle

Vec \_solution

vector containing solution

• int \_iter

number of iterations to achieve convergence

· Real \_rho

convergence factor of method

• bool \_flag

flag associated with convergence of method (0 convergence, 1 otherwise)

parameter\_method \_pm

parameters of method

## 5.3.1 Detailed Description

This class defines AMG methods: AMG stand-alone or PCG preconditioned conjugate gradient.

Definition at line 24 of file method.h.

#### 5.3.2 Constructor & Destructor Documentation

#### 5.3.2.1 method (cycle & C, const parameter\_method & p)

Constructor.

#### **Parameters**

| in | С | definition of one iteration of mu-cycle |  |
|----|---|-----------------------------------------|--|
| in | р | parameters of method                    |  |

Definition at line 14 of file method.cpp.

#### 5.3.3 Member Function Documentation

5.3.3.1 const int& get\_iter( ) const [inline]

Reading number of iterations to achieve convergence.

#### **Parameters**

| ou | t | iter | number of iterations to achieve convergence |
|----|---|------|---------------------------------------------|
|----|---|------|---------------------------------------------|

Definition at line 71 of file method.h.

5.3.3.2 const bool& get\_flag ( ) const [inline]

Reading flag.

#### **Parameters**

| out | flag | flag associated with convergence of method (0 convergence, 1 otherwise) |
|-----|------|-------------------------------------------------------------------------|
|-----|------|-------------------------------------------------------------------------|

Definition at line 82 of file method.h.

```
5.3.3.3 const Real& get_rho() const [inline]
```

Reading convergence factor.

#### **Parameters**

|  | out | rho | convergence factor of method |
|--|-----|-----|------------------------------|
|--|-----|-----|------------------------------|

Definition at line 93 of file method.h.

```
5.3.3.4 const Vec& get_solution() const [inline]
```

Reading solution vector.

#### **Parameters**

| out | solution | vector containing solution |
|-----|----------|----------------------------|
|-----|----------|----------------------------|

Definition at line 104 of file method.h.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/method.h
- laura/AMG\_Methods/src/method.cpp

# 5.4 output Class Reference

This class contains the printing and saving tools.

#include <output.h>

Collaboration diagram for output:



#### **Public Member Functions**

• output ()=default

Constructor (defaulted)

output (const string &testname, const string &inputA, const string &inputf, const string &fem, const string &method, const int &iter, const Real &rho, const bool &flag, const parameter\_setup &ps, const parameter\_corpus cycle &pc, const parameter method &pm)

Constructor.

• ~output ()

Destructor (defaulted)

· void print\_on\_screen () const

Print results on screen.

• void print\_on\_file (const string &directory) const

Print results on file.

#### **Private Attributes**

· string \_testname

name of output file

• string \_inputA

name of input file for matrix

string \_inputf

name of input file for vector

• string \_fem

type of finite element discretization (CG conforming Galerkin, DG discontinuous Galerkin)

• string \_method

type of AMG method (AMG as stand-alone, PCG as preconditioner for conjugate gradient)

• int iter

number of iterations to achieve convergence

bool \_flag

flag associated with convergence (0 convergence, 1 otherwise)

Real \_rho

convergence factor

parameter\_setup \_ps

parameters of setup

parameter\_cycle \_pc

parameters of cycle

• parameter\_method \_pm

parameters of method

#### 5.4.1 Detailed Description

This class contains the printing and saving tools.

Definition at line 25 of file output.h.

#### 5.4.2 Constructor & Destructor Documentation

5.4.2.1 output ( const string & testname, const string & inputA, const string & inputf, const string & fem, const string & method, const int & iter, const Real & rho, const bool & flag, const parameter\_setup & ps, const parameter\_cycle & pc, const parameter\_method & pm)

Constructor.

#### **Parameters**

| in | testname         | name of output file                                                                       |  |
|----|------------------|-------------------------------------------------------------------------------------------|--|
| in | inputA           | name of input file for matrix                                                             |  |
| in | inputf           | name of input file for vector                                                             |  |
| in | fem              | type of finite element discretization (CG conforming Galerkin, DG discontinuous Galerkin) |  |
| in | method           | type of AMG method (AMG as stand-alone, PCG as preconditioner for conjugate gradient)     |  |
| in | iter             | number of iterations to achieve convergence                                               |  |
| in | rho              | convergence factor                                                                        |  |
| in | flag             | flag associated with convergence (0 convergence, 1 otherwise)                             |  |
| in | parameter_setup  | parameters of setup                                                                       |  |
| in | parameter_cycle  | parameters of cycle                                                                       |  |
| in | parameter_method | parameters of method                                                                      |  |

Definition at line 14 of file output.cpp.

#### 5.4.3 Member Function Documentation

5.4.3.1 void print\_on\_file ( const string & directory ) const

Print results on file.

#### **Parameters**

| in | directory | file location path |
|----|-----------|--------------------|

Definition at line 58 of file output.cpp.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/output.h
- laura/AMG\_Methods/src/output.cpp

## 5.5 parameter\_cycle Class Reference

This class contains cycle parameters.

```
#include <parameter_cycle.h>
```

#### **Public Member Functions**

• parameter\_cycle ()=default

Constructor (defaulted)

• parameter\_cycle (const int &nlevel, const int &nu1, const int &nu2, const int &gamma)

Constructor.

~parameter\_cycle ()

Destructor (defaulted)

• const int & get\_nlevel () const

Reading parameter nlevel.

• const int & get\_nu1 () const

Reading parameter nu1.

• const int & get\_nu2 () const

Reading parameter nu2.

• const int & get\_mu () const

Reading parameter mu.

#### **Private Attributes**

• int \_nlevel

number of coarser levels

• int \_nu1

number of pre-smoothing iterations

int \_nu2

number of post-smoothing iterations

• int \_mu

flag to decide type of cycle: mu=1 V-cycle, mu=2 W-cycle

### 5.5.1 Detailed Description

This class contains cycle parameters.

Definition at line 23 of file parameter\_cycle.h.

#### 5.5.2 Constructor & Destructor Documentation

5.5.2.1 parameter\_cycle ( const int & nlevel, const int & nu1, const int & nu2, const int & gamma )

Constructor.

#### **Parameters**

| in | nlevel | number of coarser levels                                 |  |
|----|--------|----------------------------------------------------------|--|
| in | nu1    | number of pre-smoothing iterations                       |  |
| in | nu2    | nu2 number of post-smoothing iterations                  |  |
| in | ти     | flag to decide type of cycle: mu=1 V-cycle, mu=2 W-cycle |  |

Definition at line 14 of file parameter\_cycle.cpp.

#### 5.5.3 Member Function Documentation

5.5.3.1 const int& get\_nlevel( ) const [inline]

Reading parameter nlevel.

#### **Parameters**

| out <i>nlevel</i> number of | of coarser levels |
|-----------------------------|-------------------|
|-----------------------------|-------------------|

Definition at line 58 of file parameter\_cycle.h.

5.5.3.2 const int& get\_nu1() const [inline]

Reading parameter nu1.

#### **Parameters**

| out | nu1 | number of pre-smoothing iterations |
|-----|-----|------------------------------------|
|-----|-----|------------------------------------|

Definition at line 69 of file parameter\_cycle.h.

5.5.3.3 const int& get\_nu2( ) const [inline]

Reading parameter nu2.

#### **Parameters**

| out | nu2 | number of post-smoothing iterations |
|-----|-----|-------------------------------------|
|-----|-----|-------------------------------------|

Definition at line 80 of file parameter\_cycle.h.

5.5.3.4 const int& get\_mu() const [inline]

Reading parameter mu.

#### **Parameters**

| out | mu | flag to decide type of cycle: mu=1 V-cycle, mu=2 W-cycle |
|-----|----|----------------------------------------------------------|
|-----|----|----------------------------------------------------------|

Definition at line 91 of file parameter cycle.h.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/parameter\_cycle.h
- laura/AMG\_Methods/src/parameter\_cycle.cpp

# 5.6 parameter\_method Class Reference

This class contains method parameters.

```
#include <parameter_method.h>
```

#### **Public Member Functions**

• parameter\_method ()=default

Constructor (defaulted)

• parameter\_method (const Real &tol, const int &maxiter)

Constructor.

~parameter\_method ()

Destructor (defaulted)

const int & get\_maxiter () const

Reading parameter maxiter.

const Real & get\_tol () const

Reading parameter tol.

## **Private Attributes**

· Real \_tol

tolerance

· int \_maxiter

number of maximum iterations

### 5.6.1 Detailed Description

This class contains method parameters.

Definition at line 23 of file parameter\_method.h.

#### 5.6.2 Constructor & Destructor Documentation

5.6.2.1 parameter\_method ( const Real & tol, const int & maxiter )

Constructor.

#### **Parameters**

| in | tol     | tolerance                    |  |
|----|---------|------------------------------|--|
| in | maxiter | number of maximum iterations |  |

Definition at line 14 of file parameter\_method.cpp.

#### 5.6.3 Member Function Documentation

5.6.3.1 const int& get\_maxiter( ) const [inline]

Reading parameter maxiter.

#### **Parameters**

| out | maxiter | number of maximum iterations |
|-----|---------|------------------------------|
|-----|---------|------------------------------|

Definition at line 56 of file parameter\_method.h.

5.6.3.2 const Real& get\_tol( ) const [inline]

Reading parameter tol.

#### **Parameters**

| out | tol | tolerance |
|-----|-----|-----------|

Definition at line 67 of file parameter\_method.h.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/parameter\_method.h
- laura/AMG\_Methods/src/parameter\_method.cpp

## 5.7 parameter\_setup Class Reference

This class contains setup parameters.

#include <parameter\_setup.h>

# **Public Member Functions**

• parameter\_setup ()=default

Constructor (defaulted)

• parameter\_setup (const int &nmatrix, const Real &theta)

Constructor

∼parameter\_setup ()

Destructor (defaulted)

• const int & get\_nmatrix () const

Reading parameter nmatrix.

• const Real & get\_theta () const

Reading parameter theta.

#### **Private Attributes**

• int \_nmatrix

number of coarser matrices

· Real \_theta

strong connection threshold

#### 5.7.1 Detailed Description

This class contains setup parameters.

Definition at line 23 of file parameter\_setup.h.

#### 5.7.2 Constructor & Destructor Documentation

5.7.2.1 parameter\_setup ( const int & nmatrix, const Real & theta )

Constructor.

#### **Parameters**

| in | nmatrix | number of coarser matrices  |
|----|---------|-----------------------------|
| in | theta   | strong connection threshold |

Definition at line 14 of file parameter\_setup.cpp.

#### 5.7.3 Member Function Documentation

5.7.3.1 const int& get\_nmatrix ( ) const [inline]

Reading parameter nmatrix.

#### **Parameters**

| out | nmatrix | number of coarser matrices |
|-----|---------|----------------------------|
|-----|---------|----------------------------|

Definition at line 56 of file parameter\_setup.h.

```
5.7.3.2 const Real& get_theta() const [inline]
```

Reading parameter theta.

#### **Parameters**

| out | theta | strong connection threshold |
|-----|-------|-----------------------------|
|-----|-------|-----------------------------|

Definition at line 67 of file parameter\_setup.h.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/parameter\_setup.h
- laura/AMG\_Methods/src/parameter\_setup.cpp

#### 5.8 sets Class Reference

This class performs some properties and utilities of mathematical sets.

```
#include <sets.h>
```

#### **Public Member Functions**

• sets ()=default

Constructor (defaulted)

• sets (const size\_t &dim)

Constructor.

• sets (const sets &A)

Copy constructor.

• ~sets ()

Destructor (defaulted)

int & operator[] (const size\_t &n)

Definition of operator [], writing version.

const int & operator[] (const size\_t &n) const

Definition of operator [], reading version.

void addElement (const int &s)

Add an element in the set.

void deleteElement (const int &s)

Delete an element in the set.

bool isMember (const int &s)

5.8 sets Class Reference 29

Check if an element is in the set.

• bool isEmpty ()

Check if a set is empty.

• int find\_pos\_set (const int &s)

Find the position of an element in the set.

• int cardinality ()

Cardinality of the set.

· void sort\_set ()

Reorder the set.

• void clear\_set ()

Delete all element of the set.

#### **Static Public Member Functions**

• static sets union\_set (sets &A, sets &B)

Union between two sets.

static sets diff\_set (sets &A, sets &B)

Difference between two sets.

• static sets inter\_set (sets &A, sets &B)

Intersection between two sets.

#### **Private Attributes**

vector< int > \_set
 definition of set

# 5.8.1 Detailed Description

This class performs some properties and utilities of mathematical sets.

Definition at line 23 of file sets.h.

#### 5.8.2 Constructor & Destructor Documentation

5.8.2.1 sets ( const size\_t & dim )

Constructor.

**Parameters** 

in dim cardinality of the set

Definition at line 14 of file sets.cpp.

30 Class Documentation

5.8.2.2 sets ( const sets & A )

Copy constructor.

#### **Parameters**

| in A | set to be copied |
|------|------------------|
|------|------------------|

Definition at line 16 of file sets.cpp.

# 5.8.3 Member Function Documentation

```
5.8.3.1 int& operator[]( const size_t & n ) [inline]
```

Definition of operator [], writing version.

#### **Parameters**

| in  | n      | access position to an element of the set         |
|-----|--------|--------------------------------------------------|
| out | set[n] | write element in the choosen position of the set |

Definition at line 64 of file sets.h.

5.8.3.2 const int& operator[]( const size\_t & n ) const [inline]

Definition of operator [], reading version.

### **Parameters**

| in  | n      | access position to an element of the set        |
|-----|--------|-------------------------------------------------|
| out | set[n] | read element in the choosen position of the set |

Definition at line 79 of file sets.h.

5.8.3.3 void addElement (const int & s)

Add an element in the set.

#### **Parameters**

| in | s | element to be added |
|----|---|---------------------|

Definition at line 28 of file sets.cpp.

5.8 sets Class Reference 31

# 5.8.3.4 void deleteElement ( const int & s )

Delete an element in the set.

#### **Parameters**

| in | s | element to be deleted |
|----|---|-----------------------|
|----|---|-----------------------|

Definition at line 40 of file sets.cpp.

5.8.3.5 bool isMember (const int & s)

Check if an element is in the set.

#### **Parameters**

| in  | s   | element to be found                 |
|-----|-----|-------------------------------------|
| out | 0,1 | : 1 if s is in the set, 0 otherwise |

Definition at line 18 of file sets.cpp.

5.8.3.6 bool isEmpty ( )

Check if a set is empty.

# **Parameters**

| out | 0,1 | : 1 if the set is empty, 0 otherwise |
|-----|-----|--------------------------------------|
|-----|-----|--------------------------------------|

Definition at line 80 of file sets.cpp.

5.8.3.7 int find\_pos\_set ( const int & s )

Find the position of an element in the set.

#### **Parameters**

| in  | s | element to be found       |
|-----|---|---------------------------|
| out | d | : position of the element |

Definition at line 33 of file sets.cpp.

5.8.3.8 sets union\_set ( sets & A, sets & B ) [static]

Union between two sets.

32 Class Documentation

#### **Parameters**

| out | U   | : union set between A and B |
|-----|-----|-----------------------------|
| in  | A,B | : two sets                  |

Definition at line 50 of file sets.cpp.

```
5.8.3.9 sets diff_set( sets & A, sets & B) [static]
```

Difference between two sets.

#### **Parameters**

| out | D   | : difference set between A and B (D=A-B) |
|-----|-----|------------------------------------------|
| in  | A,B | : two sets                               |

Definition at line 60 of file sets.cpp.

```
5.8.3.10 sets inter_set ( sets & A, sets & B ) [static]
```

Intersection between two sets.

#### **Parameters**

| out | 1   | : intersection set between A and B |
|-----|-----|------------------------------------|
| in  | A,B | : two sets                         |

Definition at line 70 of file sets.cpp.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/sets.h
- laura/AMG\_Methods/src/sets.cpp

# 5.9 setup Class Reference

This class defines the construction of coarser matrices and interpolation operators, in particular for matrices stemming from conforming Galerkin discretization.

#include <setup.h>

Inheritance diagram for setup:



### Collaboration diagram for setup:



### **Public Member Functions**

• setup ()=default

Constructor (defaulted)

• setup (const SpMat &A, const parameter\_setup &p)

Constructor.

• ~setup ()

Destructor (defaulted)

• const SpMat & get\_A (const size\_t &n) const

Reading matrix A.

• const SpMat & get\_I (const size\_t &n) const

Reading interpolation operator I.

### **Protected Member Functions**

• void strong\_influence\_dependence (const SpMat &A, vector < sets > &S, vector < sets > &St, vector < sets > &Dw)

Definition of strong connections.

34 Class Documentation

void colouring\_scheme (vector< sets > &S, vector< sets > &St, sets &C, sets &F)
 First step of coarsening strategy: C/F splitting.

• void coarse\_strong\_dependence (vector< sets > &S, vector< sets > &Ci, vector< sets > &Ds, sets C)

Definition of vectors of coarse-interpolatory sets and of strong non-interpolatory sets.

void check\_modify (sets &C, sets &F, vector< sets > &Ci, vector< sets > &Ds)

Second step of coarsening strategy: C/F splitting.

void interpolation (const SpMat &A, SpMat &I, sets &C, const vector < sets > &Ci, const vector < sets > &Ds, const vector < sets > &Dw)

Interpolation formula.

void CG\_setup ()

Construnction of coarser matrices and interpolation operators for matrix stemming from conforming Galerkin discretization

- vector< Real > element\_set (const SpMat &A, sets &B, const int &c)
- void minus\_maxrow\_maxcol (const SpMat &A, vector < Real > &maxrow, vector < Real > &maxcol)
   Utility:

#### **Protected Attributes**

vector< SpMat > \_A

vector containing coarser matrices

vector< SpMat > \_I

vector containing interpolation operators

parameter\_setup \_ps

parameters of setup

# 5.9.1 Detailed Description

This class defines the construction of coarser matrices and interpolation operators, in particular for matrices stemming from conforming Galerkin discretization.

Definition at line 24 of file setup.h.

#### 5.9.2 Constructor & Destructor Documentation

5.9.2.1 setup (const SpMat & A, const parameter\_setup & p)

Constructor.

#### **Parameters**

| in | Α | input matrix defined on finest level |
|----|---|--------------------------------------|
| in | р | parameters of setup                  |

Definition at line 15 of file setup.cpp.

#### 5.9.3 Member Function Documentation

5.9.3.1 const SpMat& get\_A ( const size\_t & n ) const [inline]

Reading matrix A.

#### **Parameters**

| in  | n    | current position of coarser matrix |
|-----|------|------------------------------------|
| out | A[n] | matrix A at current position       |

Definition at line 58 of file setup.h.

5.9.3.2 const SpMat& get\_I ( const size\_t & n ) const [inline]

Reading interpolation operator I.

#### **Parameters**

| in  | n    | current position of interpolation operator |
|-----|------|--------------------------------------------|
| out | I[n] | operator I at current position             |

Definition at line 73 of file setup.h.

5.9.3.3 void strong\_influence\_dependence ( const SpMat & A, vector < sets > & S, vector < sets > & St, vector < sets > & Dw ) [protected]

Definition of strong connections.

#### **Parameters**

| in | Α  | input matrix defined on finest level                                                                           |
|----|----|----------------------------------------------------------------------------------------------------------------|
| in | S  | initialization of vector of sets containing all strong dependence connections (it will be built in the method) |
| in | St | initialization of vector of sets containing all strong influence conncetions (it will be built in the method)  |
| in | Dw | initialization of vector of sets containing all weak connections (it will be built in the method)              |

Definition at line 42 of file setup.cpp.

5.9.3.4 void colouring\_scheme (vector < sets > & S, vector < sets > & St, sets & C, sets & F) [protected]

First step of coarsening strategy: C/F splitting.

36 Class Documentation

#### **Parameters**

| in | S  | vector of sets containing all strong dependence connections |  |
|----|----|-------------------------------------------------------------|--|
| in | St | vector of sets containing all strong influence conncetions  |  |
| in | С  | initialization of C-points (it will be built in the method) |  |
| in | F  | initialization of F-points (it will be built in the method) |  |

Definition at line 84 of file setup.cpp.

5.9.3.5 void coarse\_strong\_dependence ( vector< sets 
$$>$$
 & S, vector< sets  $>$  & Ci, vector< sets  $>$  & Ds, sets C ) [protected]

Definition of vectors of coarse-interpolatory sets and of strong non-interpolatory sets.

#### **Parameters**

| in | S  | vector of sets containing all strong dependence connections                                |  |
|----|----|--------------------------------------------------------------------------------------------|--|
| in | Ci | nitialization of vector of coarse interpolatory sets (it will be built in the method)      |  |
| in | Ds | initialization of vector of strong non-interpolatory sets (it will be built in the method) |  |
| in | С  | C-points of C/F-splitting                                                                  |  |

Definition at line 128 of file setup.cpp.

```
5.9.3.6 void check_modify ( sets & C, sets & F, vector< sets > & Ci, vector< sets > & Ds ) [protected]
```

Second step of coarsening strategy: C/F splitting.

#### **Parameters**

| in | С  | C-points of C/F-splitting               |
|----|----|-----------------------------------------|
| in | F  | F-points of C/F-splitting               |
| in | Ci | vector of coarse interpolatory sets     |
| in | Ds | vector of strong non-interpolatory sets |

Definition at line 145 of file setup.cpp.

5.9.3.7 void interpolation ( const SpMat & A, SpMat & I, sets & C, const vector < sets > & Ci, const vector < sets > & Dw ) [protected]

Interpolation formula.

#### **Parameters**

| in | Α | input matrix defined on finest level                                      |  |
|----|---|---------------------------------------------------------------------------|--|
| in | 1 | initialization of interpolation operator (it will be built in the method) |  |
| in | С | C-points of C/F-splitting                                                 |  |

#### **Parameters**

| in | Ci | vector of coarse interpolatory sets     |
|----|----|-----------------------------------------|
| in | Ds | vector of strong non-interpolatory sets |
| in | Dw | vector of weak non-interpolatory sets   |

Definition at line 179 of file setup.cpp.

5.9.3.8 vector< Real > element\_set ( const SpMat & A, sets & B, const int & c ) [protected]

#### Utility:

#### **Parameters**

| in  | Α     | input matrix defined on finest level   |
|-----|-------|----------------------------------------|
| in  | В     | indices set                            |
| in  | С     | index                                  |
| out | Aeval | vector containing all values of A(B,c) |

Definition at line 292 of file setup.cpp.

5.9.3.9 void minus\_maxrow\_maxcol ( const SpMat & A, vector< Real > & maxrow, vector< Real > & maxcol )

[protected]

#### Utility:

#### **Parameters**

| in | Α      | input matrix defined on finest level                                                                      |
|----|--------|-----------------------------------------------------------------------------------------------------------|
| in | maxrow | initialization of vector containing maximum values of all matrix rows (it will be built in the method)    |
| in | maxcol | initialization of vector containing maximum values of all matrix columns (it will be built in the method) |

Definition at line 69 of file setup.cpp.

The documentation for this class was generated from the following files:

- · laura/AMG Methods/include/setup.h
- laura/AMG Methods/src/setup.cpp

# 5.10 setupDG Class Reference

Class inherited from setup. This class defines the construction of coarser matrices and interpolation operators for matrices stemming from discontinous Galerkin discretization extending the algorithm for conforming Galerkin matrices.

38 Class Documentation

#include <setupDG.h>

Inheritance diagram for setupDG:



Collaboration diagram for setupDG:



# **Public Member Functions**

• setupDG ()=default

Constructor (defaulted)

• setupDG (const SpMat &A, const parameter\_setup &p)

Constructor.

• ∼setupDG ()

Destructor (defaulted)

#### **Private Member Functions**

void aggregation\_DG (vector < sets > &B)

Aggregation.

void unsmoothed\_interpolation (SpMat &I, vector < sets > &B)

Unsmoothed interpolation formula.

void GS\_orth\_interpolation (SpMat &I)

Gram-Schmidt orthonormalization applied to the interpolation formula.

void smoothed\_interpolation (SpMat &I)

Smoothing step applied to the interpolation formula.

• void DG\_setup ()

Construnction of coarser matrices and interpolation operators for matrix stemming from discontinuous Galerkin discretization.

int find\_set (vector < sets > &B, const int &k)

Find the aggregate set containing a given value.

void maxrow\_pos (const SpMat &A, vector< int > &pos)
 Utility:

•

#### **Additional Inherited Members**

# 5.10.1 Detailed Description

Class inherited from setup. This class defines the construction of coarser matrices and interpolation operators for matrices stemming from discontinous Galerkin discretization extending the algorithm for conforming Galerkin matrices.

Definition at line 25 of file setupDG.h.

#### 5.10.2 Constructor & Destructor Documentation

5.10.2.1 setupDG (const SpMat & A, const parameter\_setup & p)

Constructor.

#### **Parameters**

| in | Α | input matrix defined on finest level |
|----|---|--------------------------------------|
| in | р | parameters of setup                  |

Definition at line 14 of file setupDG.cpp.

#### 5.10.3 Member Function Documentation

**5.10.3.1** void aggregation\_DG ( vector < sets > & B ) [private]

Aggregation.

40 Class Documentation

#### **Parameters**

| in | В | initialization of vector of aggregate sets (it will be built in the method) |
|----|---|-----------------------------------------------------------------------------|
|----|---|-----------------------------------------------------------------------------|

Definition at line 50 of file setupDG.cpp.

5.10.3.2 void unsmoothed\_interpolation ( SpMat & I, vector < sets > & B ) [private]

Unsmoothed interpolation formula.

#### **Parameters**

| in | 1 | initialization of interpolation operator (it will be built in the method) |
|----|---|---------------------------------------------------------------------------|
| in | В | vector of aggregate sets                                                  |

Definition at line 125 of file setupDG.cpp.

5.10.3.3 void GS\_orth\_interpolation( SpMat & I) [private]

Gram-Schmidt orthonormalization applied to the interpolation formula.

#### **Parameters**

| in | 1 | interpolation operator |
|----|---|------------------------|
|    |   |                        |

Definition at line 137 of file setupDG.cpp.

5.10.3.4 void smoothed\_interpolation( SpMat & I) [private]

Smoothing step applied to the interpolation formula.

### **Parameters**

| in | 1 | interpolation operator |
|----|---|------------------------|
|    |   |                        |

Definition at line 146 of file setupDG.cpp.

5.10.3.5 int find\_set ( vector < sets > & B, const int & k ) [private]

Find the aggregate set containing a given value.

#### **Parameters**

|   | in    | В | vector of aggregate sets                                |  |
|---|-------|---|---------------------------------------------------------|--|
| ſ | in    | k | value to be found                                       |  |
|   | out   | i | index of set containing k, if it is not found then i=-1 |  |
| ŀ | _out_ |   | index of set containing k, if it is not found then i=-1 |  |

Definition at line 157 of file setupDG.cpp.

5.10.3.6 void maxrow\_pos ( const SpMat & A, vector < int > & pos ) [private]

Utility:

#### **Parameters**

| in | Α   | input matrix defined on finest level                                                                                                              |  |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| in | pos | initialization of vector containing position of all maximum values of all matrix rows except for diagonal values (it will be built in the method) |  |

Definition at line 169 of file setupDG.cpp.

The documentation for this class was generated from the following files:

- laura/AMG\_Methods/include/setupDG.h
- laura/AMG\_Methods/src/setupDG.cpp

#### 5.11 GetPot::variable Struct Reference

#### **Public Member Functions**

- variable (const variable &)
- variable (const char \*Name, const char \*Value, const char \*FieldSeparator)
- variable & operator= (const variable &That)
- void take (const char \*Value, const char \*FieldSeparator)
- const std::string \* get\_element (unsigned ldx) const

### **Public Attributes**

- · std::string name
- STRING\_VECTOR value
- · std::string original

#### 5.11.1 Detailed Description

Definition at line 212 of file GetPot.h.

The documentation for this struct was generated from the following file:

• laura/AMG\_Methods/include/GetPot.h

42 Class Documentation

# **Chapter 6**

# **File Documentation**

# 6.1 laura/AMG\_Methods/include/common.h File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include <Eigen/Sparse>
#include <Eigen/IterativeLinearSolvers>
#include <unsupported/Eigen/SparseExtra>
#include <iostream>
#include <fstream>
#include "stdlib.h"
#include <vector>
#include <algorithm>
#include <iterator>
#include <cmath>
```

Include dependency graph for common.h:



This graph shows which files directly or indirectly include this file:



# **Typedefs**

```
• using Real = double
```

Typedef for real numbers.

typedef SparseMatrix < Real > SpMat

Typedef for sparse real-valued matrices.

typedef SparseVector< Real > SpVec

Typedef for sparse real-valued vectors.

 $\bullet \ \ \mathsf{typedef} \ \mathsf{SparseVector} < \mathsf{int} > \mathsf{SpCount}$ 

Typedef for sparse int-valued vectors.

using Vec = Matrix < Real, Dynamic, 1 >

Typedef for real-valued vectors.

typedef Triplet< Real > Trip

Typedef for triplet, it is used to build sparse real-valued matrices.

### 6.1.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.2 laura/AMG\_Methods/include/cycle.h File Reference

```
#include "parameter_cycle.h"
#include "setup.h"
Include dependency graph for cycle.h:
```



This graph shows which files directly or indirectly include this file:



# Classes

· class cycle

This class defines one iteration of mu-cycle.

# 6.2.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.3 laura/AMG\_Methods/include/GetPot.h File Reference

```
#include <ctype.h>
#include <stdio.h>
#include <stdarg.h>
#include <assert.h>
#include <string.h>
#include <cmath>
#include <string>
#include <vector>
#include <algorithm>
#include <fstream>
#include <iostream>
```

Include dependency graph for GetPot.h:



This graph shows which files directly or indirectly include this file:



# Classes

· class GetPot

This class read input values from files (library GetPot http://getpot.sourceforge.net).

• struct GetPot::variable

# **Macros**

• #define victorate(TYPE, VARIABLE, ITERATOR)

# **Typedefs**

typedef std::vector< std::string > STRING\_VECTOR

# 6.3.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

#### 6.3.2 Macro Definition Documentation

```
6.3.2.1 #define victorate( TYPE, VARIABLE, ITERATOR )
```

#### Value:

```
std::vector<TYPE>::const_iterator ITERATOR = (VARIABLE).begin(); \
for(; (ITERATOR) != (VARIABLE).end(); (ITERATOR)++)
```

Definition at line 71 of file GetPot.h.

# 6.4 laura/AMG\_Methods/include/method.h File Reference

```
#include "cycle.h"
#include "parameter_method.h"
Include dependency graph for method.h:
```



This graph shows which files directly or indirectly include this file:



#### Classes

· class method

This class defines AMG methods: AMG stand-alone or PCG preconditioned conjugate gradient.

# 6.4.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.5 laura/AMG\_Methods/include/output.h File Reference

```
#include "parameter_setup.h"
#include "parameter_cycle.h"
#include "parameter_method.h"
Include dependency graph for output.h:
```



This graph shows which files directly or indirectly include this file:



#### Classes

· class output

This class contains the printing and saving tools.

# 6.5.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.6 laura/AMG\_Methods/include/parameter\_cycle.h File Reference

```
#include "common.h"
Include dependency graph for parameter_cycle.h:
```



This graph shows which files directly or indirectly include this file:



#### Classes

· class parameter\_cycle

This class contains cycle parameters.

# 6.6.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.7 laura/AMG\_Methods/include/parameter\_method.h File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "common.h"
```

Include dependency graph for parameter\_method.h:



This graph shows which files directly or indirectly include this file:



### **Classes**

· class parameter\_method

This class contains method parameters.

#### 6.7.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.8 laura/AMG\_Methods/include/parameter\_setup.h File Reference

```
#include "common.h"
Include dependency graph for parameter setup.h:
```



This graph shows which files directly or indirectly include this file:



#### Classes

· class parameter\_setup

This class contains setup parameters.

# 6.8.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.9 laura/AMG\_Methods/include/sets.h File Reference

```
#include "common.h"
Include dependency graph for sets.h:
```



This graph shows which files directly or indirectly include this file:



#### Classes

· class sets

This class performs some properties and utilities of mathematical sets.

# 6.9.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.10 laura/AMG\_Methods/include/setup.h File Reference

```
#include "sets.h"
#include "parameter_setup.h"
Include dependency graph for setup.h:
```



This graph shows which files directly or indirectly include this file:



### Classes

· class setup

This class defines the construction of coarser matrices and interpolation operators, in particular for matrices stemming from conforming Galerkin discretization.

# 6.10.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.11 laura/AMG\_Methods/include/setupDG.h File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "sets.h"
#include "setup.h"
#include "parameter_setup.h"
Include dependency graph for setupDG.h:
```



This graph shows which files directly or indirectly include this file:



#### **Classes**

class setupDG

Class inherited from setup. This class defines the construction of coarser matrices and interpolation operators for matrices stemming from discontinous Galerkin discretization extending the algorithm for conforming Galerkin matrices.

#### 6.11.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.12 laura/AMG\_Methods/src/cycle.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

#include "cycle.h"

Include dependency graph for cycle.cpp:



# 6.12.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.13 laura/AMG\_Methods/src/method.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "method.h"
```

Include dependency graph for method.cpp:



# 6.13.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.14 laura/AMG\_Methods/src/output.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "output.h"
Include dependency graph for output.cpp:
```



# 6.14.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.15 laura/AMG\_Methods/src/parameter\_cycle.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

#include "parameter\_cycle.h"
Include dependency graph for parameter\_cycle.cpp:



# 6.15.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.16 laura/AMG\_Methods/src/parameter\_method.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

#include "parameter\_method.h"
Include dependency graph for parameter\_method.cpp:



# 6.16.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.17 laura/AMG\_Methods/src/parameter\_setup.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "parameter_setup.h"
Include dependency graph for parameter_setup.cpp:
```



#### 6.17.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

**Author** 

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

#### laura/AMG\_Methods/src/sets.cpp File Reference 6.18

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "sets.h"
Include dependency graph for sets.cpp:
```



# 6.18.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

#### 6.19 laura/AMG\_Methods/src/setup.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "setup.h"
#include "sets.h"
```

Include dependency graph for setup.cpp:



# 6.19.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.20 laura/AMG\_Methods/src/setupDG.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "setupDG.h"
Include dependency graph for setupDG.cpp:
```



# 6.20.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

Author

```
Laura Melas laura.melas@mail.polimi.it
```

Date

2017

This file is part of project "AMG Methods".

# 6.21 laura/AMG\_Methods/test/main.cpp File Reference

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

```
#include "common.h"
#include "GetPot.h"
#include "parameter_setup.h"
#include "parameter_cycle.h"
#include "parameter_method.h"
#include "setup.h"
#include "setupDG.h"
#include "cycle.h"
#include "method.h"
#include "output.h"
Include dependency graph for main.cpp:
```



#### **Functions**

• int main (const int argc, char \*argv[])

The main function.

# 6.21.1 Detailed Description

AMG methods for conforming and discontinuous Galerkin finite element discretizations of the Poisson problem.

# Author

Laura Melas laura.melas@mail.polimi.it

Date

2017

This file is part of project "AMG Methods".

# 6.21.2 Function Documentation

Definition at line 27 of file main.cpp.

6.21.2.1 int main ( const int argc, char \* argv[] )

The main function.

Read input/output and files parameters.

Read setup parameters.

Read cycle parameters.

Read method parameters.

Instantiate setup.

Instantiate cycle.

Instantiate method.

Apply AMG.

Print output.

Save solution.

# Index

| addElement               | parameter_cycle, 24                              |
|--------------------------|--------------------------------------------------|
| sets, 30                 | get_nlevel                                       |
| aggregation_DG           | parameter_cycle, 24                              |
| setupDG, 39              | get_nmatrix                                      |
|                          | parameter_setup, 27                              |
| check_modify             | get_nu1                                          |
| setup, 36                | parameter_cycle, 24                              |
| coarse_strong_dependence | get_nu2                                          |
| setup, 36                | parameter cycle, 24                              |
| colouring_scheme         | get rho                                          |
| setup, 35                | method, 20                                       |
| Cycle                    | get_S                                            |
| cycle, 14                | cycle, 13                                        |
| cycle, 11                | get_solution                                     |
| Cycle, 14                | method, 20                                       |
| cycle, 12                | get_theta                                        |
| get_f, 13                | parameter setup, 28                              |
| get_S, 13                | get tol                                          |
| get_u, 13                |                                                  |
| GS, 14                   | parameter_method, 26                             |
| set_f, 14                | get_u                                            |
| set u, 13                | cycle, 13                                        |
| 00(_u, 10                | GetPot, 14                                       |
| deleteElement            | GetPot.h                                         |
| sets, 30                 | victorate, 47                                    |
| diff set                 | GetPot::variable, 41                             |
| sets, 32                 | GS                                               |
| 3613, 32                 | cycle, 14                                        |
| element_set              |                                                  |
| setup, 37                | inter_set                                        |
|                          | sets, 32                                         |
| find_pos_set             | interpolation                                    |
| sets, 31                 | setup, 36                                        |
| find set                 | isEmpty                                          |
| setupDG, 40              | sets, 31                                         |
| ,                        | isMember                                         |
| GS_orth_interpolation    | sets, 31                                         |
| setupDG, 40              |                                                  |
| get_A                    | laura/AMG_Methods/include/GetPot.h, 45           |
| setup, 35                | laura/AMG_Methods/include/common.h, 43           |
| get f                    | laura/AMG_Methods/include/cycle.h, 44            |
| cycle, 13                | laura/AMG_Methods/include/method.h, 47           |
| get_flag                 | laura/AMG_Methods/include/output.h, 48           |
| method, 19               | laura/AMG_Methods/include/parameter_cycle.h, 49  |
| get_l                    | laura/AMG_Methods/include/parameter_method.h, 50 |
| <del>-</del> —           | laura/AMG Methods/include/parameter setup.h, 51  |
| setup, 35                | laura/AMG Methods/include/sets.h, 52             |
| get_iter                 | <del>-</del>                                     |
| method, 19               | laura/AMG_Methods/include/setup.h, 53            |
| get_maxiter              | laura/AMG_Methods/include/setupDG.h, 55          |
| parameter_method, 26     | laura/AMG_Methods/src/cycle.cpp, 56              |
| get_mu                   | laura/AMG_Methods/src/method.cpp, 56             |

66 INDEX

| laura/AMG_Methods/src/output.cpp, 57           | operator[], 30                  |
|------------------------------------------------|---------------------------------|
| laura/AMG_Methods/src/parameter_cycle.cpp, 58  | sets, 29                        |
| laura/AMG_Methods/src/parameter_method.cpp, 58 | union_set, 31                   |
| laura/AMG_Methods/src/parameter_setup.cpp, 59  | setup, 32                       |
| laura/AMG Methods/src/sets.cpp, 60             | check_modify, 36                |
| laura/AMG_Methods/src/setup.cpp, 60            | coarse_strong_dependence, 36    |
| laura/AMG_Methods/src/setupDG.cpp, 61          | colouring_scheme, 35            |
| laura/AMG_Methods/test/main.cpp, 62            | element_set, 37                 |
| laura/Alvid_Methods/test/main.cpp, 62          | get_A, 35                       |
| main                                           | <del>-</del> -                  |
| main.cpp, 63                                   | get_I, 35                       |
|                                                | interpolation, 36               |
| main.cpp                                       | minus_maxrow_maxcol, 37         |
| main, 63                                       | setup, 34                       |
| maxrow_pos                                     | strong_influence_dependence, 35 |
| setupDG, 41                                    | setupDG, 37                     |
| method, 17                                     | aggregation_DG, 39              |
| get_flag, 19                                   | find_set, 40                    |
| get_iter, 19                                   | GS_orth_interpolation, 40       |
| get_rho, 20                                    | maxrow_pos, 41                  |
| get_solution, 20                               | setupDG, 39                     |
| method, 19                                     | smoothed_interpolation, 40      |
| minus_maxrow_maxcol                            | unsmoothed_interpolation, 40    |
| setup, 37                                      | smoothed_interpolation          |
|                                                | setupDG, 40                     |
| operator[]                                     | strong_influence_dependence     |
| sets, 30                                       | setup, 35                       |
| output, 20                                     | • •                             |
| output, 22                                     | union_set                       |
| print_on_file, 22                              | sets, 31                        |
|                                                | unsmoothed_interpolation        |
| parameter_cycle, 23                            | setupDG, 40                     |
| get_mu, 24                                     | •                               |
| get nlevel, 24                                 | victorate                       |
| get nu1, 24                                    | GetPot.h, 47                    |
| get_nu2, 24                                    |                                 |
| parameter_cycle, 23                            |                                 |
| parameter method, 25                           |                                 |
| get_maxiter, 26                                |                                 |
| get_tol, 26                                    |                                 |
| parameter_method, 25                           |                                 |
| parameter_setup, 26                            |                                 |
| get_nmatrix, 27                                |                                 |
| get_theta, 28                                  |                                 |
| parameter_setup, 27                            |                                 |
| print_on_file                                  |                                 |
| . – –                                          |                                 |
| output, 22                                     |                                 |
| set f                                          |                                 |
| cycle, 14                                      |                                 |
|                                                |                                 |
| set_u                                          |                                 |
| cycle, 13                                      |                                 |
| sets, 28                                       |                                 |
| addElement, 30                                 |                                 |
| deleteElement, 30                              |                                 |
| diff_set, 32                                   |                                 |
| find_pos_set, 31                               |                                 |
| inter_set, 32                                  |                                 |
| isEmpty, 31                                    |                                 |
| isMember, 31                                   |                                 |