The Felix Language

John Skaller

December 21, 2021

Contents

1 Introduction 2

Chapter 1

Introduction

The Felix programming language is based on algebra, in particular category theory.

The construction begins with a category \mathcal{M} which is a cartesian closed category of monomorphic types, including a set of primitive types p_i , primitive functions f_i and the usual type combinators for products, coproducts, function types, and recursion.

Our objective is to construct a category \mathcal{P} of polymorphic types. Initially, the objects of this category will be functors $\mathcal{P}^n \to \mathcal{P}$. Let $F: \mathcal{M}^m \to M$ and $G: \mathcal{M}^m \to M^n$ then application of the composite can be given by

$$F(G_1(t_1, t_2, ..t_m), G_2(t_1, ...t_m), ...G_n(t_1, ..t_m))$$

where G is split into component functors. in other words, compostion is just substitution, as is reduction of applications.

Let \mathcal{K} be the category with objects \mathcal{P}^i for finite natural numbers i, and arrows all the functors between them, then let \mathcal{P} be the category with objects these functors, and arrows the natural transformnations of \mathcal{K} . In other words, the objects are polymorphic data types, and the arrows polymorphic functions.