Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Lineare Algebra I

Blatt 4

Abgabe: 07.12.2020, 10 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

Sei $\mathbb{R}[T]$ der Polynomring mit Koeffizienten aus \mathbb{R} (siehe Appendix D im Skript). Beachte, dass $\mathbb{R}[T]$ insbesondere ein reeller Vektorraum ist.

- (a) Zeige, dass die Teilmenge U der Polynome vom Grad höchstens 2 ein Unterraum ist.
- (b) Sind die Elemente $\{1+T, 2+T, 1+2T+T^2\}$ aus U linear unabhängig?
- (c) Bilden diese Elemente eine Basis des Unterraumes U?

Aufgabe 2 (6 Punkte). Sei S die Kollektion aller endlichen Teilmengen von \mathbb{N} . Die Menge S ist partiell geordnet bezüglich Inklusion (siehe Appendix C im Skript).

- (a) Gibt es eine obere Schranke für $\Gamma = \{\emptyset, \{5\}, \{2, 5\}, \{1, 3\}\}$ in S? Gibt es eine einzige obere Schranke?
- (b) Zeige, dass die Kollektion $\Gamma = \{\{0, 1, ..., n\}\}_{n \in \mathbb{N}}$ linear geordnet ist. Besitzt Γ eine obere Schranke in S?
- (c) Gibt es maximale Elemente in S?

Aufgabe 3 (5 Punkte). Gegeben a < b in \mathbb{R} sei $\mathcal{F}(a,b)$ die Menge der Abbildungen $f:(a,b) \to \mathbb{R}$.

- (a) Zeige, dass die Menge $\mathcal{F}(a,b)$ zusammen mit der punktweisen Addition und Skalarmultiplikation ein \mathbb{R} -Vektorraum ist.
- (b) Für eine Abbildung f aus $\mathcal{F}(0,1)$ ist die Einschränkung auf das Teilintervall $(0,\frac{1}{2})$ die Abbildung $f_{\lceil (0,\frac{1}{2}) \rceil}:(0,\frac{1}{2}) \to \mathbb{R}$ mit $f_{\lceil (0,\frac{1}{2}) \rceil}(x) = f(x)$, für x aus $(0,\frac{1}{2})$.
 - Zeige, dass die Funktionen f_1, \ldots, f_n aus $\mathcal{F}(0,1)$ linear unabhängig sein müssen, wenn ihre Einschränkungen auf das Teilintervall $(0,\frac{1}{2})$ linear unabhängig sind.
- (c) Gilt die Rückrichtung?

Aufgabe 4 (3 Punkte).

Zeige, dass jedes maximale Element einer linear geordneten Menge (S, <) das größte Element sein muss. Insbesondere gibt es höchstens ein maximales Element in S. Muss jede linear geordnete Menge S ein maximales Element besitzen?

ABGABE IN ILIAS ALS EINE EINZIGE PDF-DATEI EINREICHEN.