# Writer Verification on Multi-Language Script using Deep Learning

#### **Project by**

Souporno Ghosh Soumya Nasipuri Rahul Roy Sharanya Saha

Under the Guidance of

Prof. Jaya Paul

# Next Presenter: Sharanya Saha

Motivation, Software Used, Hardware Used, Significance of Hardware

### Motivation

- Shortage of Research in Native Indian Language Recognition
- Authentication of Manuscripts
- Forensic Analysis and Law Enforcement
- Plagiarism Verification

### Software Used

- Python 3.8
- TensorFlow 2.0
- Keras
- NumPy
- Pandas
- Matplolib
- SeaBorn

#### Hardware Used

- HP Pavilion with 2.7GHz Quad-Core Intel i5, Integrated Graphics Card, 8GB RAM
- Dell G3 with 2.6GHz Hexa-Core Intel i7 Processor, Integrated Graphics Card, 8GB RAM
- Asus Vivobook 2GHz Quad-Core AMD Ryzen 5 Processor, Integrated Graphics Card, 8GB RAM

# Significance of the Hardware

- RAM and Processor for Processing Speed
- GPU Might Help!
- Cloud Platforms is a great alternative!

# Next Presenter: Rahul Roy

Background, Summary of Present Work, Our Contribution

# Background

#### Works on Image Recognition and CNN

- ImageNet classification with deep Convolutional Neural Networks [1]
- Very Deep Convolutional Networks for Large-Scale Image Recognition [2]

#### • Works on Character Recognition

- Automatic Visual Features for Writer Identification: A Deep Learning Approach [3]
- Handwritten Character Recognition of South Indian Scripts: A Review [4]
- A High Performance Domain Specific Ocr For Bangla Script [5]
- Bangla character recognition based on Mobilenet v1 and Inception v3 [6]
- CNN implementation based on Bangla numeral character recognition [7]

#### • Works on Writer Recognition

- Offline writer identification using convolutional neural network activation features [8]
- Writer identification using an HMM-based handwriting recognition system: To normalize the input or not [9]
- Offline Text-Independent Writer Identification Based on Scale Invariant Feature Transform [10]

## Summary of Related Work

• Lack of Work specific to Bangla

| Reference             | Year | Model                            | Type           | Dataset          | Result (%) |
|-----------------------|------|----------------------------------|----------------|------------------|------------|
| Adak et al. [11]      | 2019 | VGG16                            | Verification   | Self<br>Procured | 97.77      |
| Christlein et al. [8] | 2015 | CNN (Super<br>Vector<br>encoded) | Identification | Self<br>Procured | 88.60      |
| Schlapbach et al. [9] | 2006 | Hidden<br>Markov<br>Model        | Identification | Self<br>Procured | 63.12      |
| Wu et al. [10]        | 2014 | SDS + SOH                        | Identification | Multiple         | 99.2       |

Table 1. Type of Work

# Our Contribution through Present Work

- Writer verification
- Verification on Word Level Features
- Percentage of Similarities with the author
- Unique Dataset with 100+ volunteers

# Next Presenter: Souporno Ghosh

About Data Set, About VGG16

#### Collection of Data Set

- 100+ volunteers
- 2 Language: English, Bangla
- Handwritten Passage
- Passages scanned into images

## Preparation of Data Set

• Data Segmented into Word-Sized Images [12]

#### **Data Set Organisation**

- Each Dataset has 20 Subsets
- Every Subset has Data for one Writer; Another writer for verification
- Number of writers: 100 for Bangla, 101 for English
- 5 Sets of Data for Each Author
- 3 Training Sets and 2 Testing Sets
- Average 43 images per Set
- Tag Image File Format
- Format: <Writer Code>\_<Set Number>\_<Image Number>

# Example Data



Fig 1. 0000\_01\_0.tiff

## Organization of Extracted Feature Set

- Extracted features stored as CSV files
- <Language code> added to the stored feature matrix
  - Language Code for Bangla: 11
  - Language Code for English: 00
- CSV File Name Format: <Writer Code>\_<Language Code>\_<Set Number>

#### About VGG16 Model

- Proposed by Simonyan and Zisserman in 2014 [2]
- 92.7% accuracy with the ILSVRC subset of ImageNet Database
- 1st and 2nd place in ILSVRC 2014
- VGG = Visual Geometry Group
- 16 Neural Network Layers
  - 13 Convolutional Networks
  - 3 Dense Networks
- Takes 224 x 224 pixel Images with RGB as an Input

### Benefits of VGG16

- Very accurate
- Simple and Uniform
- Popular

# Challenges of VGG16

- Slow to Train
- Huge Weights

# Next Presenter: Soumya Nasipuri

Architecture of VGG16, Feature Extraction, What Comes Next

# Image Pre-processing



### Architecture of VGG16 Model

Input: 224 x 224 RGB Images 2 ConvNets with 64 filters and ReLU Activation Function; Output is MaxPooled 2 ConvNets with 128 filters and ReLU Activation Function; Output is MaxPooled 3 ConvNets with 256 filters and ReLU Activation Function; Output is MaxPooled

3 ConvNets with 512 filters and ReLU Activation Function; Output is MaxPooled 3 ConvNets with 512 filters and ReLU Activation Function; Output is MaxPooled

2 Dense Neural Nets with 4096 units and ReLU Activation Function 1 Dense Neural Net with 1000 units and SoftMax Activation Function

Output: Category (1000 in the ImageNet Database)

#### Feature Extraction

Input: RAW TIFF Images Image Preprocessi ng 2 ConvNets with 128 filters and ReLU Activation Function; Output is MaxPooled 3 ConvNets with 256 filters and ReLU Activation Function; Output is MaxPooled 3 ConvNets with 512 filters and ReLU Activation Function; Output is MaxPooled 3 ConvNets with 512 filters and ReLU Activation Function; Output is MaxPooled

2 Dense Neural Nets with 4096 units and ReLU Activation Function

1 Dense Neural Net with 1000 units and SoftMax Activation Function

Output: Feature Matrix

#### Extracted Features

- Dimensions: 4096 x 1 per image
- Consolidated Features for each Set of Images
- 5 sets of extracted features for each author
- Dimensions for Each Extracted Feature Matrix for a Set: 4096 x r
  - r = number of rows = number of images in each set
- Feature extraction time = 2 hours 14 minutes 17 seconds (approx.)

## Handwriting Verification:

- Updated the last layer of VGG16 Model
- Trained the model with every writer pair
- Distinguish between the handwriting of the primary writer pair and the other writer pairs.

# Last layer of VGG16

- Relu and softmax
- Adam optimizer is used
- Batch size is 32
- The model is stored as a .h5 file

### Additional Models

- ResNet
- AlexNet

In both the models, the output size were reduced to two from their original.

# Next Presenter: Sharanya Saha

Accuracy, Conclusion, References

# Accuracy

Final Accuracy: The average accuracy of the obtained accuracies

| Model   | Final Accuracy |
|---------|----------------|
| VGG 16  | 62.75%         |
| ResNet  | 72.09%         |
| AlexNet | 74.45%         |

Table 2. Comparing accuracies of different models

### VGG-16



Fig 2. Graph depicting accuracy, validation accuracy, loss and validation loss over multiple epochs

#### ResNet



Fig 3. Graph depicting accuracy, validation accuracy, loss and validation loss over multiple epochs

### AlexNet



Fig 4. Graph depicting accuracy, validation accuracy, loss and validation loss over multiple epochs

# Conclusion

|                      | Adak et al.  | Present Work |
|----------------------|--------------|--------------|
| Year                 | 2019         | 2021         |
| Model                | VGG16        | VGG16        |
| Type                 | Verification | Verification |
| Accuracy<br>achieved | 97.77%       | 62.75%       |

#### References

- [1] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet classification with deep Convolutional Neural Networks", *Communications of the ACM*, Vol. 60 Issue 6, pp. 84–90, May 2017, doi: 10.1145/3065386.
- [2] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", in *Proc. International Conference on Learning Representations (ICLR 2015)*, 2015 [Online], Available: <a href="http://arxiv.org/abs/1409.1556">http://arxiv.org/abs/1409.1556</a>.
- [3] A. Rehman, S. Naz, M. I. Razzak and I. A. Hameed, "Automatic Visual Features for Writer Identification: A Deep Learning Approach," *IEEE Access*, Vol. 7, 2019, pp. 17149-17157, Jan. 21, 2019, doi: 10.1109/ACCESS.2018.2890810.
- [4] J. John, Pramod K. V. and K. Balakrishnan, "Handwritten Character Recognition of South Indian Scripts: A Review", in *Proc. National Conference on Indian Language Computing*, Feb. 19-20, 2011.
- [5] M. A. Hasnat, S. M. Habib, M. Khan, Eds., "A High Performance Domain Specific Ocr For Bangla Script", *Novel Algorithms and Techniques In Telecommunications, Automation and Industrial Electronics*, Dordrecht: Springer, 2008, doi: 10.1007/978-1-4020-8737-0\_31.
- [6] J. Paul, A. Roy and A. Sarkar, "Bangla character recognition based on Mobilenet v1 and Inception v3", in *Proc. International Conference on Emerging Technologies for Sustainable Development (ICETSD '19)*, Mar. 5-6, 2019, pp. 511-514.

#### Reference

- [7] J. Paul, A. Dattachaudhuri and A. Sarkar, "CNN implementation based on Bangla numeral character recognition", in *Proc. International Conference on Emerging Technologies for Sustainable Development (ICETSD '19)*, Mar. 5-6, 2019, pp. 520-523.
- [8] V. Christlein, D. Bernecker, A. Maier, and E. Angelopoulou, "Offline writer identification using convolutional neural network activation features," In Proc. German Conf. Pattern Recognition, 2015, pp. 540–552. DOI:10.1007/978-3-319-24947-6\_45.
- [9] A. Schlapbach and H. Bunke, "Writer identification using an HMM-based handwriting recognition system: To normalize the input or not," in *Proc. Conf. IGS, 2005*, pp. 138–142.
- [10] X. Wu, Y. Tang and W. Bu, "Offline Text-Independent Writer Identification Based on Scale Invariant Feature Transform," in *IEEE Transactions on Information Forensics and Security*, vol. 9, no. 3, pp. 526-536, March 2014, DOI: 10.1109/TIFS.2014.2301274.
- [11] C. Adak, B. B. Chaudhuri and M. Blumenstein, "An Empirical Study on Writer Identification and Verification from Intra-Variable Individual Handwriting", *IEEE Access*, Vol. 7, 2021, pp. 24738-24758, Feb 18, 2019, doi: 10.1109/ACCESS.2019.2899908.
- [12] T. Mondal, S. A. Hossain, S. Mondal, R. Afroz and A. Hossain, "Preprocess the handwritten document image for preparing writer recognition", Government College of Engineering and Leather Technology, Kolkata, India, Project Report, June 2020.

#### References

- [13] R. Thakur, "Step by step VGG16 implementation in Keras for beginners", *towardsdatascience.com*, Aug. 6, 2019. [Online]. Available: <a href="https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c">https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c</a> [Accessed Mar. 3, 2021].
- [14] Kaggle, Inc., "Dogs vs. Cats: Create an algorithm to distinguish dogs from cats", Kaggle, Inc., Available: <a href="https://www.kaggle.com/c/dogs-vs-cats/data">https://www.kaggle.com/c/dogs-vs-cats/data</a>.
- [15] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition", in *Proc. IEEE conference on computer vision and pattern recognition 2016*, 2016, pp. 770-778, [Online], Available: <a href="https://arxiv.org/abs/1512.03385">https://arxiv.org/abs/1512.03385</a>
- [16] D. Gershgorn, "The data that transformed AI research—and possibly the world", *The Quartz*, para. 38, July 26, 2017, [Online], Available: <a href="https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world">https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world</a>, [Accessed June, 7, 2021].
- [17] Stanford Vision Lab, Stanford University, Princeton University, "Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)", *Stanford Vision Lab, Stanford University, Princeton University*, [Online], Available: https://image-net.org/challenges/LSVRC/2012/results.html

Thank You