

INFO 251: Applied Machine Learning

Welcome!

Good morning everyone! The first lecture will start at 940. Please sign the attendance sheet

Outline

- Quick Intros
- Course objectives
- Course content & schedule
- Course logistics

Quick Intros: Me

- Instructor: Please call me "Professor" or "Josh"
 - Office hours: Tuesdays, 930am-1030pm
- Background
 - Undergrad: Computer Science, Physics
 - Grad: Machine Learning, Development Economics
 - Other: Microsoft Research, Internet startups
- Research Focus
 - AI and international development
 - See http://jblumenstock.com

Quick Intros: Teaching team

- Suraj Nair (GSI)
 - Office hours: Wednesdays 1030-12pm, South Hall 107

Office hours: Thursdays 1245-145pm, South Hall 107

Today's objective

- To help you understand if you should take INFO251
- To answer general questions
- To answer specific enrollment questions after lecture
- (there won't be much substance today)

Outline

- Quick Intros
- Course objectives
- Course content & schedule
- Course logistics

Learning Objectives

- This course is designed to help you learn how to:
 - 1. Effectively design, execute, and critique experimental and non-experimental methods from machine learning, statistics, and econometrics.
 - 2. Understand the principles, advantages, and disadvantages of different algorithms for supervised and unsupervised machine learning.
 - Implement canonical algorithms on structured and unstructured data, and evaluate the performance of these algorithms on a variety of real-world datasets.

Not Learning Objectives

This course will not:

- 1. Teach you how to code in Python you're expected to know this already
- 2. Rely on "off the shelf" machine learning packages you'll be coding everything from scratch
- 3. Focus on proving theorems or deriving new estimators take CS289 or CS281 or CS288 for that
- 4. Spend much time dealing with working at scale (i.e., this is not a class on "big data")
- 5. Go super-deep into any specific topic; this is a "survey" course

Outline

- Quick Intros
- Course objectives
- Course content & schedule
- Course logistics

Course Content

INFO251 Venn diagram:

Course Content

- Causal Inference
 - Experimental methods (1 week)
 - Non-experimental methods (1 week)
- Machine Learning
 - Design of Machine Learning Experiments, instance-based learning (1 week)
 - Linear Models and Gradient Descent (1+ week)
 - Non-linear models, ensembles (2 weeks)
 - Fairness and bias in ML (1 week)
 - Neural networks, deep learning (3+ weeks)
 - ML Practicalities (1+ week)
 - Unsupervised Learning (1 week)
- Special topics
 - Machine learning for causal inference

Some key concepts

- Counterfactuals
- Double Difference Estimation
- Instrumental Variables
- Regression Discontinuity
- Cross-Validation
- Gradient descent
- Regularization
- Logistic regression
- Overfitting
- Model and feature selection
- Feature engineering
- Bootstrapping, Boosting and Bagging
- Naïve Bayes
- Fairness in ML

- Perceptrons and MLPs
- Regression trees and forests
- Ensemble learning
- Gradient boosting
- Support vector machines
- Neural networks, back-propagation
- Convolutional Neural Networks
- Long Short-Term Memory Networks
- RNN's
- Attention
- Transformers
- LLMs
- Cluster analysis
- Principal component analysis
- ML for causal inference

- Default response: "Yes"
 - After all, you're here!
- Why might be the answer be "No"?
 - Not a good fit
 - Review learning objectives carefully!
 - Don't have enough cycles to devote to class
 - This course has a significant workload
 - Underqualified / Overqualified (more on this...)

- Are you overqualified?
- You should answer "no" to most of the following:
 - Are you already comfortable with most of the "key concepts" on the last slide?
 - Have you taken a class that uses ISL, ESL, or similar?
 - If a different class in ML, show me the syllabus/book
 - Could you write a stochastic gradient descent optimizer?
 - Do you understand the math behind back-propagation?

- Are you underqualified?
- You should answer "yes" to all of the following:
 - Do you know how to interpret a regression table?
 - Do you know the differences between common probability distributions (normal, binomial, Bernoulli, etc.)?
 - Have you taken calculus?
 - Could you code a game of scrabble in Python (without CoPilot)?
 - Could you write a Python class that inherited methods and properties from other classes?

- Prerequisites
 - INFO206
 - Or an equivalent course in computer science
 - Data structures, OO-programming, algorithms, complexity
 - INFO271B
 - Or an equivalent course in statistical inference
 - Causal inference, hypothesis testing, regression
 - Python
 - (This is the last warning check Lab 00 to make sure nothing there is unfamiliar or new)

- Other options on campus
 - DATA100/200
 - IEOR 265, IEOR242
 - CS189/289, CS281, CS288
 - CS282A
 - STAT254
- Sort of related
 - STAT215A / ECON 142
 - ECON241/ARE213

Outline

- Quick Intros
- Course objectives
- Course content & schedule
- Course logistics

Course Logistics

- Lectures are conceptual
- Labs are practical (and required)
- The problem sets force you to implement
 - 1. Getting up to speed in Python (due Jan 28!)
 - Causal inference
 - 3. Basics of machine learning, and a few algorithms
 - 4. Gradient Descent and Regularization
 - 5. Fairness and Bias
 - 6. Neural Nets, Trees and Ensembles
 - 7. LLMs
 - These will take time, and get harder
 - Interpretation is as important as "getting it right"

Course Logistics: Lectures

- All lectures, labs, and office hours are in person
 - Attendance is required for lecture and labs

Course Logistics: Ed

- Learn to love Ed!
 - Access from bCourses, or directly at
 - https://edstem.org/us/courses/70056/
- Ed helps us be more efficient
 - Before emailing us a question, please consider posting it on Ed
 - Logistics/administrative concerns can be communicated in a private post on Ed that is only visible to course staff

Course Logistics: Grades

- Problem Sets: 70%
 - We drop the worst problem set grade
- 2 Quizzes: 26%
 - These are in-person, closed book quizzes (no notes, ChatGPT, phones, etc.)
- Participation and mini-assignments: 4%
- Note: We have a strict late assignment policy see syllabus for details
 - Moral of the story: don't turn in assignments late!
 - The real moral of the story: start your problem sets early!

Course Logistics: Collaboration

- Each student must submit independent work
 - You must type every character of your code with your own two hands
 - You must write all of your own responses and problem set interpretations
 - You may seek input from other students, but you should not share code
 - You may not reference material from past semesters
 - I take academic honesty very seriously when in doubt, ask!
- Academic integrity and student conduct:
 - http://teaching.berkeley.edu/statements-course-policies

Course Logistics: ChatGPT

- Allowed: using ChatGPT (+ Claude, Copilot, etc.) to clarify concepts, debug code, or generate small code snippets for study or practice
- Not allowed: submitting large blocks of code or text generated by ChatGPT. Not okay to use ChatGPT to complete entire problems
- You must be able to explain all submitted code; you may be asked to demonstrate your understanding in follow-up assessments
- If ChatGPT is used, you students must include a comment specifying the tool and prompt/question used
 - I used ChatGPT with the prompt, 'How to implement a bubble sort in Python?'

Course Logistics: Enrollment

- This course is currently oversubscribed
 - To prioritize committed students, auditors and S/U are given last priority
 - Priority: I School > other grad > undergrad > CE/exchange > auditors
- If you decide to drop, please do so officially (and quickly)!
- Will you get into this course?
 - Last I checked, there were 20 on waitlist and 3 open seats
 - Many people will drop; be patient, and encourage your friends to drop early
 - Make sure you do not have a conflicting class on your schedule; otherwise you cannot be added to the roster!

Up Next: Experiments

- Causal Inference and Research Design
 - Experimental methods
 - Non-experiment methods
- Machine Learning
 - Design of Machine Learning Experiments
 - Linear Models and Gradient Descent
 - Non-linear models
 - Fairness and Bias in ML
 - Neural models
 - Deep Learning
 - Practicalities
 - Unsupervised Learning
- Special topics

Preparing for next class

- Note: First lab meeting (Lab 01) is tomorrow
 - Take a look at Lab 00 on bCourses to make sure you're comfortable with all the programming basics there
 - Read through Section 3.1 (inclusive) of the "Stats Refresher" on bCourses
- Take the online "Background Survey" on bCourses
- Read about impact evaluation and randomized experiments
- Get started on the first problem set!