119148 – Prática de Circuitos Eletrônicos 1

Experimento 07: Circuitos com Diodo Semicondutor

1) Objetivos:

Nesta experiência, investigaremos os dois modos principais de operação do diodo semicondutor genérico (polarização direta e polarização reversa), analisando a ruptura e o modo de operação na qual ela ocorre em diodos semicondutores.

2) Estudo pré-laboratorial:

- 2.1) Pesquise e apresente as equações e gráficos dos seguintes modelos matemáticos para diodos semicondutores:
- a) Exponencial (ou "Equação do diodo")
- b) linear por partes
- c) linear simplificado (queda de tensão constante)
- d) linear ideal
- 2.2) Desenhe o gráfico da curva característica (V x I) dos diodos semicondutores reais, indicando as seguintes regiões e explicando resumidamente suas características:
- a) região de polarização direta
- b) região de polarização inversa
- c) região sem polarização
- d) região Zener
- e) meltdown
- 2.3) Pesquise os valores padrão para a tensão de polarização direta em diodos de:
- a) silício
- b) germânio
- c) carboneto de silício (Schottky)
- 2.4) Desenhe os símbolos para representar os seguintes componentes eletrônicos variantes do diodo:
- a) diodo normal
- b) diodo Zener
- c) diodo Schottky
- d) diodo emissor de luz
- e) fotodiodo

3) Experimento:

A atividade consiste em realizar práticas experimentais com diodos retificadore e de regulação (Zener). Assim, duas montagens são apresentadas a seguir:

Figura 3.1: Circuitos para montagem

3.1) Circuito com polarização direta

- a) Monte a configuração da Figura 3.1(a) e altere a tensão entre 0~ e 4,5V em passos de 500mV, registrando os valores de corrente e tensão no diodo na Tabela 3.1(a). Atenção: você irá utilizar um diodo retificado ou um diodo regulador? Justifique.
- b) Verifique os valores de tensão e corrente no diodo para tensões de alimentação negativas (varie entre 0 e -12,0V em passos de 1V), registrando os valores na Tabela 3.1(b).
- c) A partir dos dados das tabelas, identifique o valor aproximado da tensão de polarização direta V_D . Ajuste a fonte de alimentação até encontrar o valor correspondente de corrente i_D . Pondere sobre as diferenças entre o modelo real e ideal do diodo.
- d) Descreva os comportamentos das tensões e correntes sobre o diodo utilizado no procedimento 3.1 a partir de suas observações.

3.2) Circuito com polarização inversa

Monte a configuração da Figura 3.1(b) e altere a tensão entre 0 = -4, 5V em passos de -500 mV, registrando os valores de corrente e tensão no diodo na Tabela 3.2(a). Atenção: você irá utilizar um diodo retificador ou um diodo regulador? Justifique.

- b) Verifique os valores de tensão e corrente no diodo para tensões de alimentação positivas (varie entre 0 e 12,0V em passos de 1V), registrando os valores na Tabela 3.2(b).
- c) A partir dos dados das tabelas, identifique o valor aproximado da tensão de polarização direta V_D e a tensão de ruptura V_Z . Ajuste a fonte de alimentação até encontrar os valores correspondentes de corrente. Pondere sobre as diferenças entre o modelo real e o modelo ideal do diodo.
- d) Descreva os comportamentos das tensões e correntes sobre o diodo utilizado no procedimento 3.2 a partir de suas observações.

4. Relatório

4.1 - Análise e comparação com o modelo do diodo real

Em seu relatório, compare os resultados obtidos experimentalmente com os valores teóricos esperados de acordo com o **modelo do diodo real** e justifique eventuais discrepâncias observadas.

4.2 – Análise dos componentes e traçado de gráficos

No relatório também responda as seguintes questões:

- a) Quais foram os diodos escolhidos nos procedimentos 3.1 e 3.2, respectivamente? Justifique.
- b) Descreva os comportamentos das tensões e correntes nos diodos dos procedimentos 3.1 e 3.2.
- c) A partir dos dados obtidos experimentalmente, esboce os gráficos de corrente versus tensão para ambos diodos, indicando claramente as regiões de polarização direta, reversa e ruptura (quando observáveis). Compare os valores obtidos com os valores típicos de cada componente.

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma:	Data://
Aluno:	Matrícula:

Experimento 07: Circuitos com Diodo Semicondutor

Procedimento 3.1: Polarização direta

a) Tensões positivas:

Medidas	1	2	3	4	5	6	7	8	9	10
Tensão Fonte [V]	0,0	0,5	1,0	1,5	2,0	2, 5	3,0	3,5	4,0	4,5
Tensão Diodo [V]										
Corrente Diodo [A]										

b) Tensões negativas:

Medidas	1	2	3	4	5	6	7	8	9	10	11	12	13
Tensão Fonte [V]	0,0	-1,0	-2,0	-3, 0	-4,0	-5,0	-6, 0	-7,0	-8, 0	-9, 0	-10, 0	-11, 0	-12, 0
Tensão Diodo [V]													
Corrente Diodo [A]													

C)	Tensão	е	corrente	de	nola	ariza	cão	direta	a

$$V_D =$$
_____A

Procedimento 3.2: Polarização inversa

a) Tensões negativas:

Medidas	1	2	3	4	5	6	7	8	9	10
Tensão Fonte [V]	0,0	-0, 5	-1, 0	-1, 5	-2, 0	-2, 5	-3, 0	-3, 5	-4,0	-4, 5
Tensão Diodo [V]										
Corrente Diodo [A]										

b) Tensões positivas:

Medidas	1	2	3	4	5	6	7	8	9	10	11	12	13
Tensão Fonte [V]	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10, 0	11, 0	12, 0
Tensão Diodo [V]													
Corrente Diodo [A]													

c) Tensões e correntes de polarização direta (
--

$$V_D =$$
 V $i_D =$ V $i_Z =$ V $i_Z =$ V