Orbital Mechanics – Equations and Algorithms – By: Matt Rulli (Revision 1)

Orbital Mechanics – Equations and Algorithms – By: Matt Rulli (Revision 1)							
Kepler's Laws	body at one focus. $\mu_{earth} = 3.986 \times 10^{-10}$	$\mu_{sun} = 1.327 \times 10^{-5}$	$10^{11} \frac{km^3}{c^2}$ $AU = 1.495978 \times 10^8 km$ Where: $\vec{a} =$		Where: \vec{a}	$= a_x \cdot \hat{\boldsymbol{\iota}} + a_y \cdot \hat{\boldsymbol{\jmath}} + a_z \cdot \hat{\boldsymbol{k}} \text{ and } \vec{\boldsymbol{b}} = b_x \cdot \hat{\boldsymbol{\iota}} + b_y \cdot \hat{\boldsymbol{\jmath}} + b_z \cdot \hat{\boldsymbol{k}}$	
#1) Orbits are elliptical with the orbited #2) The radial vector sweeps out equal:	'	5		J I I = 66/43 × III · · · · · · · · · · · · · · · · ·			
#3) $T^2 \propto a^3$	mass _{earth} = 5.974	$\times 10^{24} kg \qquad mass_{sun} = 0.9$	Gm_1m_2				
<u> </u>	masseurin 5137 I					$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y) \cdot \mathbf{t} + (a_z b_x - a_x b_z) \cdot \mathbf{j} + (a_x b_y - a_y b_x) \cdot \mathbf{k}$	
Orbits	Circular (a 0) (a r) (a=)			Anneuvers and Transfers		Combined Holomore Transfer (with along shows)	
Elliptical $(0 < e < 1) (a^+) (\epsilon^-)$	Circular ($e = 0$) ($a = r$) (ε^-)	Energy and Velocity	Coplanar Hohmann Transfer Given r_i and r_f		<u>r_f</u>	Combined Hohmann Transfer (with plane change)	
$r = \frac{a(1 - e^2)}{1 + e \cdot cos(f)} = \frac{p}{1 + e \cdot cos(f)}$	$v = \sqrt{\frac{\mu}{r}} \qquad a = r_p = r_a$	$E = \frac{1}{2} \ \vec{v}\ ^2 - \frac{\mu}{\ \vec{r}\ } = -\frac{\mu}{2a}$	$\Delta v_1 = v_{trans,p} - v_i = \sqrt{2\mu \left(\frac{r_f}{r_i(r_i + r_f)}\right)} - \sqrt{\frac{\mu}{r_i}}$		$\sqrt{\frac{\mu}{r_i}}$	$\Delta v = \sqrt{v(t_k^-)^2 + v(t_k^+)^2 - 2v(t_k^-)v(t_k^+)\cos(\Delta\theta)}$	
$r_p = a(1-e) = \frac{p}{1+e} = \frac{h^2}{\mu(1+e)}$	Hyperbolic $(e>1)$ (a^-) (ε^+)	$(a^{-})(\varepsilon^{+})$ $v^{2} = \mu\left(\frac{2}{r} - \frac{1}{a}\right) \text{ for } v \leftrightarrow a$		$\Delta v_2 = v_f - v_{trans,a} = \sqrt{\frac{\mu}{r_f}} - \sqrt{2\mu \left(\frac{r_i}{r_f(r_i + r_f)}\right)}$		Plane Change on Initial Burn $v(t_k^-) = v_i = \sqrt{\frac{\mu}{r_i}} \qquad v(t_k^+) = v_{trans,p} = \sqrt{2\mu\left(\frac{r_f}{r_i(r_i + r_f)}\right)}$	
$r_a = a(1+e) = \frac{p}{1-e} = \frac{h^2}{\mu(1-e)}$	$\delta = \pi - 2\cos^{-1}\left(\frac{1}{e}\right)$	$v_p = \frac{(\mu p)^{\frac{1}{2}}}{r_p} = (\mu p)^{\frac{1}{2}} \left(\frac{1+e}{p}\right)$	For Transfer Orbit $a = \frac{r_i + r_f}{2} \qquad e = 1 - \frac{r_p}{a} = \frac{r_f - r_i}{r_f + r_i}$			Plane Change on Final Burn $v(t_k^-) = v_{trans,a} = \sqrt{2\mu \left(\frac{r_f}{r_i(r_i + r_f)}\right)} \qquad v(t_k^+) = v_f = \sqrt{\frac{\mu}{r_f}}$	
$r_p = \frac{h}{v_p} = \frac{(\mu p)^{\frac{1}{2}}}{v_p}$	$\delta = 2\sin^{-1}\left(\frac{1}{e}\right)$	$= 2\sin^{-1}\left(\frac{1}{e}\right) \qquad v_{excess} = \lim_{r \to \infty} v(r) = \sqrt{\frac{-\mu}{a}}$		$ heta_{FPA} = \pi - \sin^{-1}\left(\frac{v_f \sin(\Delta \theta)}{\Delta v_{2_{Pln Chng}}}\right)$		Combined Bielliptic Transfer (with plane change)	
$r_{parameter} = a(1 - e^2) \left[f = \frac{\pi}{2} \right]$	$\varepsilon = -\frac{\mu}{2a}$	$v_{escape} = \sqrt{\frac{2\mu}{r}}$	$\Delta t = \frac{T}{2} = \pi \sqrt{\frac{a^3}{\mu}} = \pi \sqrt{\frac{\left(r_i + r_f\right)^3}{8\mu}}$			$\Delta v = \sqrt{v(t_k^-)^2 + v(t_k^+)^2 - 2v(t_k^-)v(t_k^+)\cos(\Delta\theta)}$	
$a = \frac{r_p + r_a}{2} = \frac{p}{1 - e^2}$	$a = \frac{h^2}{\mu(1 - e^2)}$	$v_{circular} = \sqrt{\frac{\mu}{r_c}}$	Bielliptic Transfer Orbits			Plane Change 1st Burn $v(t_k^-) = v_i = \sqrt{\frac{\mu}{r_i}} \qquad v(t_k^+) = v_{t1,p} = \sqrt{2\mu\left(\frac{r_*}{r_i(r_i+r_*)}\right)}$	
$b = a(1 - e^2)^{\frac{1}{2}} = (r_p r_a)^{\frac{1}{2}}$	$r = \frac{h^2}{\mu(1 + e\cos f(t))} = \frac{a(e^2 - 1)}{1 + e\cos(f)}$	$v_p = \sqrt{\frac{\mu}{a} \left(\frac{1+e}{1-e}\right)}$	$a_{1} = \frac{r_{i} + r_{*}}{2} e_{1} = \frac{r_{*} - r_{i}}{r_{*} + r_{i}} , a_{2} = \frac{r_{f} + r_{*}}{2} e_{2} = \frac{r_{*} - r_{f}}{r_{*} + r_{f}}$ $\Delta v_{1} = v_{t1,p} - v_{i} = \sqrt{2\mu \left(\frac{r_{*}}{r_{i}(r_{i} + r_{*})}\right)} - \sqrt{\frac{\mu}{r_{i}}}$		$=\frac{r_*-r_f}{r_*+r_f}$	Plane Change 2 nd Burn $v(t_k^-) = v_{t1,a} = \sqrt{2\mu\left(\frac{r_*}{r_*(r_i+r_*)}\right)} \qquad v(t_k^+) = v_{t2,a} = \sqrt{2\mu\left(\frac{r_f}{r_*(r_f+r_*)}\right)}$	
$p = a(1 - e^2) = \frac{h^2}{\mu}$	$r_p = a(1-e) = \frac{p}{1+e} = \frac{h^2}{\mu(1+e)}$	$v_a = \sqrt{\frac{\mu}{a} \left(\frac{1-e}{1+e}\right)} \begin{cases} v, a \to e \end{cases}$			$\sqrt{\frac{\mu}{r_i}}$	Plane Change 3 rd Burn $v(t_k^-) = v_{t2,p} = \sqrt{2\mu \left(\frac{r_*}{r_f(r_f + r_*)}\right)} \qquad v(t_k^+) = v_f = \sqrt{\frac{\mu}{r_f}}$	
$M(t) = nt = \sqrt{\frac{\mu}{a^3}} \cdot t$	$M(t) = \sqrt{\frac{\mu}{-a^3}} \cdot t = e \cdot \sinh(H) - H$	Angular Momentum	$\Delta v_2 = v_{t2,a} - v_{t1,a} = \sqrt{2\mu \left(\frac{r_f}{r_*(r_f + r_*)}\right)} - \sqrt{2\mu \left(\frac{r_i}{r_*(r_i + r_*)}\right)}$		$\frac{r_i}{r_*(r_i+r_*)}$	Pure Inclination Change	
$\tan\left(\frac{E(t)}{2}\right) = \sqrt{\frac{1-e}{1+e}} \tan\left(\frac{f(t)}{2}\right)$	$\tanh\left(\frac{H(t)}{2}\right) = \sqrt{\frac{e-1}{e+1}} \tan\left(\frac{f(t)}{2}\right)$	$ec{h}=ec{r} imesec{v}$	$\Delta v_3 = v_f - v_{t2,p} = \sqrt{\frac{\mu}{r_f}} - \sqrt{2\mu \left(\frac{r_*}{r_f(r_f + r_*)}\right)}$		$\overline{\cdot \cdot $	$\Delta v = 2v \sin\left(\frac{\theta}{2}\right) \rightarrow For\ circular\ orbit$ Thrust direction $=\frac{\pi}{2} + \frac{\theta}{2} \rightarrow if\ \theta = \Delta i$	
$\tan\left(\frac{f(t)}{2}\right) = \sqrt{\frac{1+e}{1-e}}\tan\left(\frac{E(t)}{2}\right)$	$\tan\left(\frac{f(t)}{2}\right) = \sqrt{\frac{e+1}{e-1}} \tanh\left(\frac{H(t)}{2}\right)$	$h = [\mu a(1 - e^2)]^{\frac{1}{2}} $ (ellipse)	$\Delta t = \pi \sqrt{\frac{a_1^3}{\mu} + \pi \sqrt{\frac{a_2^3}{\mu}}} \rightarrow Longest Time, Lowest Energy$		Energy	$\Delta v = \frac{2\sin\left(\frac{\Delta i}{2}\right)\sqrt{1 - e^2}\cos(\omega + f)na}{1 + e\cos f} \to \textit{For generic inlination}$	
Parabolic $(e=1)$	Kepler's 3 rd Law	$h = r_p v_p = (\mu p)^{\frac{1}{2}}$		Hohmann Rendezvous Maneuver ive Phase Angle between vehicles	$at \ \Delta v_1$	Oberth Effect Most efficient to burn fuel at periapsis – Does NOT hold for inclination change	
$\varepsilon = -\frac{\mu}{2a}$, $v_{excess} = 0$, $\delta = 180^{\circ}$	$T = \frac{2\pi ab}{h} = 2\pi \sqrt{\left(\frac{a^3}{\mu}\right)}$	$h^2 = \mu(r + \vec{r} \cdot \vec{e})$	$\theta_0 = 1$	$\pi - 2\pi \left(\frac{T_{trans}}{T_{tgt}}\right) = \pi - 2\pi \left(\frac{a_{trans}^3}{r_{tgt}^3}\right)$	$\frac{1}{2}$	$\Delta KE = \frac{1}{2}\Delta v^2 + v \cdot \Delta v \qquad KE_{propellant} = \left(v_{space\ craft} - \Delta v_{exhaust}\right)^2$	
$r_p = \frac{h^2}{2\mu} = a(1 - e) = \frac{p}{2}$	$\frac{dA}{dt} = \frac{1}{2}r^2\frac{df}{dt} = \frac{h}{2} = constant$	$\vec{e} = \frac{1}{\mu} \left(\vec{v} \times \vec{h} - \mu \frac{\vec{r}}{\ \vec{r}\ } \right)$	Transit t	$ime = \Delta t_{int} = \pi \sqrt{\frac{a_{trans}^3}{\mu}} = \pi \sqrt{\frac{(r_i - r_i)^3}{8}}$	$+r_f)^3$ 8μ	$PE_{propellant} = -\sqrt{\frac{\mu}{r}}$	
Minimum Δv to Change Inclination							
Given: a, e, Ω, ω, i $Find r_p and r_a$: $r_a = a(1+e)$ $r_p = a(1-e)$ Find node furthest from perigee: $Node A: f_A(t) = 2\pi - \omega$ $Node B: f_B(t) = \pi - \omega$ $Find h: \sqrt{2\mu} \sqrt{\frac{r_a r_p}{(r_a + r_p)}}$	$ \begin{aligned} & \textit{Compute } r_{A} \textit{ and } r_{B} \colon \\ & r_{A} = \frac{h^{2}}{\mu} \frac{1}{1 + e \cos(f_{A})} \\ & r_{B} = \frac{h^{2}}{\mu} \frac{1}{1 + e \cos(f_{B})} \\ & \textit{Compute perpendicular velocities} \colon \\ & v_{\bot_{A}} = \frac{h}{r_{A}} \qquad v_{\bot_{B}} = \frac{h}{r_{B}} \end{aligned} $	Compute minimum Δv : If $v_{\perp_B} < v_{\perp_A}$: $\Delta v_{min} = 2v_{\perp_B} \sin\left(\frac{\Delta i}{2}\right)$ If $v_{\perp_A} < v_{\perp_B}$: $\Delta v_{min} = 2v_{\perp_A} \sin\left(\frac{\Delta i}{2}\right)$	$ heta_{FPA} = \pi - \sin heta$	$\ln^{-1} \left(\frac{v(t_k^+) \sin(\Delta \theta)}{\Delta v_{plane\ change}} \right)$			

A	lσ	n	ri	ŧ۱	h	m	•

Algorith							
Given	r _p ar	ıd T	Orbital Elements Given \vec{r}_1 and \vec{v}_1 :	Propagate Orbit in Time Given \vec{r}_1 , \vec{v}_1 , t, and elements:			
а	$T = 2\pi \left(\frac{a^3}{\mu}\right)^{\frac{1}{2}} \rightarrow$	$a = \left[\mu \left(\frac{T}{2\pi}\right)^2\right]^{\frac{1}{3}}$	$ r_1 = \sqrt{\vec{r}_{1_X}^2 + \vec{r}_{1_Y}^2 + \vec{r}_{1_Z}^2} or r_1 = \sqrt{\vec{r}_1 \cdot \vec{r}_1} $ $ v_1 = \sqrt{\vec{v}_{1_X}^2 + \vec{v}_{1_Y}^2 + \vec{v}_{1_Z}^2} or v_1 = \sqrt{\vec{v}_1 \cdot \vec{v}_1} $	$E(t) = 2 \tan^{-1} \left(\sqrt{\frac{1-e}{1+e}} \tan \left(\frac{f}{2} \right) \right)$	[HYPERBOLIC] $H(t) = 2 \tanh^{-1} \left(\sqrt{\frac{e-1}{e+1}} \tan \left(\frac{f(t)}{2} \right) \right)$		
r_a	$a = \frac{r_p + r_a}{2} \to r_a = 2a - r_p$		$v_r = \frac{\vec{v}_1 \cdot \vec{r}_1}{r}$ $v_r > 0 \ away \ from \ peri v_r < 0 \ towards \ peri$	$M(t) = E(t) - e\sin(E(t))$	$M(t) = e \sinh(H(t)) - H(t)$		
	r _p an	$d v_p$	$\vec{h} = \vec{r}_1 \times \vec{v}_1$ $h = \sqrt{\vec{h}_x^2 + \vec{h}_y^2 + \vec{h}_z^2} or h = \sqrt{\vec{h} \cdot \vec{h}}$	$t_1 = \frac{E(t) - e\sin(E(t))}{\frac{2\pi}{T}}$	$t_1 = \frac{e \sinh(H(t)) - H(t)}{\sqrt{\frac{\mu}{-a^3}}}$		
h	$r_p = \frac{h}{v_p}$ \rightarrow	$h=r_pv_p$	$i = \cos^{-1}\left(\frac{\vec{h}_z}{h}\right) \rightarrow if \ i > \frac{\pi}{2} \ Orbit \ retrograde$	$\Delta t = t_1 + t$ where $t = coast$ time $n_{rotation} = \frac{\Delta t}{T}$ $t_2 = T \cdot (n_{rotation} - round(n_{rotation}))$	$t_2 = t_1 + t$ where $t = coast time$	Earth-Centered Inertial	
p	<i>p</i> =	$\frac{h^2}{\mu}$	$\vec{N} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \times \vec{h}$ $N = \sqrt{\vec{N}_x^2 + \vec{N}_y^2 + \vec{N}_z^2} or N = \sqrt{\vec{N} \cdot \vec{N}}$	$M(t_2) = \sqrt{rac{\mu}{a^3}} \cdot t_2$ [MUST be between 0 and 2π]	$M(t_2) = \sqrt{\frac{\mu}{-a^3}} \cdot t_2$	$\widehat{x} \to \widehat{I} = FPOA$ $\widehat{y} \to \widehat{J} = RHR$	
e	$r_p = \frac{p}{1+e} -$	$ ightarrow e = \frac{p}{r_p} - 1$	$\Omega = \cos^{-1}\left(\frac{\vec{N}_x}{N}\right) \rightarrow if \ \vec{N}_y < 0 \ , \ \Omega = 2\pi - \Omega$	$E_{1} = M$ $E_{k+1} = E_{k} - \left(\frac{M - E_{k} + e\sin(E_{k})}{e\cos(E_{k}) - 1}\right)$	$H_1 = M$ $H_{k+1} = H_k + \frac{(M - e \cdot \sinh(H_k) + H_k)}{e \cdot \cosh(K_k) - 1}$	$\hat{\mathbf{z}} \rightarrow \hat{\mathbf{K}} = \mathbf{N}.\mathbf{Pole}$	
а	$p = a(1 - e^2)$	$\to a = \frac{p}{(1 - e^2)}$	$\vec{e} = \frac{1}{\mu} \left(\left(v^2 - \frac{\mu}{r} \right) \cdot \vec{r}_1 - r \cdot v_r \cdot \vec{v}_1 \right)$ $e = \sqrt{\vec{e}_x^2 + \vec{e}_y^2 + \vec{e}_z^2} or e = \sqrt{\vec{e} \cdot \vec{e}}$	Repeat while: $ M - E_k + e \sin(E_k) > desired error$	$\left \frac{Repeat \ while:}{M - e \cdot \sinh(H_k) + H_k} \right > desired \ error$	Perifocal Coordinates	
	Elliptical (0 < e < 1)	Hyperbolic (e > 1)	$\omega = \cos^{-1}\left(\frac{\vec{N} \cdot \vec{e}}{\vec{N} \cdot e}\right) \rightarrow if \ \vec{e}_z < 0 \ , \ \omega = 2\pi - \omega$	$f(t_2) = 2 \tan^{-1} \left(\sqrt{\frac{1+e}{1-e}} \tan \left(\frac{E_k}{2} \right) \right)$	$f(t_2) = 2 \tan^{-1} \left(\sqrt{\frac{e+1}{e-1}} \tanh \left(\frac{H_k}{2} \right) \right)$	$\widehat{x} o \widehat{P} = rac{\overrightarrow{e}}{e}$	
f(t)	$f(t) = \cos^{-1}\left(\left(\frac{1}{e}\right)\left[\frac{p}{r} - 1\right]\right)$	$f(t) = \cos^{-1}\left(\left(\frac{1}{e}\right)\left[\frac{p}{r} - 1\right]\right)$	$f = \cos^{-1}\left(\frac{\vec{e} \cdot \vec{r_1}}{e \cdot r}\right) \rightarrow if \ v_r < 0 \ , \ f = 2\pi - f$	$r_2 = \frac{a(1 - e^2)}{1 + e\cos(f(t_2))}$	$r_2 = \frac{a(e^2 - 1)}{1 + e\cos(f)}$	$\widehat{y} \to \widehat{Q} = RHR$	
E(t)	$E(t) = 2 \tan^{-1} \left(\sqrt{\frac{1 - e}{1 + e}} \tan\left(\frac{f}{2}\right) \right)$	$H(t) = 2 \tanh^{-1} \left(\sqrt{\frac{e-1}{e+1}} \tan \left(\frac{f}{2} \right) \right)$	$r_p = \frac{h^2}{\mu} \left(\frac{1}{1+e} \right)$ and $r_a = \frac{h^2}{\mu} \left(\frac{1}{1-e} \right)$	$v_2 = \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a}\right)}$	$v_2 = \sqrt{\mu \left(\frac{2}{r_2} - \frac{1}{a}\right)}$	$\widehat{z} o \widehat{W} = rac{h}{h}$	
M(t)	$M(t) = E(t) - e \cdot \sin(E(t))$	$M(t) = e \sinh(H(t)) - H(t)$	$\boldsymbol{a} = \frac{r_p + r_a}{2} = \left(\frac{2}{r} - \frac{v^2}{\mu}\right)^{-1}$	$\vec{r}_{2_{ECI}} = r_2(\sin(\Omega)\cos(\omega + f(t_2)) + \frac{1}{2}$	$-\sin(\Omega)\sin(\omega + f(t_2))\cos(i))$ $-\cos(\Omega)\sin(\omega + f(t_2))\cos(i))$ $+f(t_2))\sin(i))$	$\vec{r}_{2_{PQW}} = \begin{bmatrix} r_2 \cos(f(t_2)) \\ r_2 \sin(f(t_2)) \\ 0 \end{bmatrix}$	
t	$M(t) = \sqrt{\frac{\mu}{a^3}} \cdot t \rightarrow t = \frac{M(t)}{\sqrt{\frac{\mu}{a^3}}}$	$M(t) = \sqrt{\frac{\mu}{-a^3}} t \rightarrow t = \frac{M(t)}{\sqrt{\frac{\mu}{-a^3}}}$	$T = \left(\frac{2\pi}{\sqrt{\mu}}\right) a^{\frac{3}{2}}$	$\vec{v}_{2_{ECI}} = \begin{bmatrix} \left(-\frac{\mu}{\hbar}\right) \left(\cos(\Omega) \left(\sin(\omega + f(t_2)\right) + e\sin(\omega)\right) + \sin(\Omega) \left(\cos(\omega + f(t_2)\right) + e\cos(\omega)\right) \cos(i) \right) \\ \left(-\frac{\mu}{\hbar}\right) \left(\sin(\Omega) \left(\sin(\omega + f(t_2)\right) + e\sin(\omega)\right) - \cos(\Omega) \left(\cos(\omega + f(t_2)\right) + e\cos(\omega)\right) \cos(i) \right) \\ \left(\frac{\mu}{\hbar}\right) \left(\cos(\omega + f(t_2)\right) + e\cos(\omega)\right) \sin(i) \end{bmatrix}$		$\vec{v}_{2_{p_{QW}}} = \begin{bmatrix} -\sqrt{\frac{\mu}{p}}\sin(f(t_2)) \\ \sqrt{\frac{\mu}{p}}(e + \cos(f(t_2))) \\ 0 \end{bmatrix}$	

Lambert's Problem: Interception

Given $r_i(t_1)$, $v_i(t_1)$	Propagate target
and $r_t(t_1)$, $v_t(t_1)$	orbit to find
and TOF:	location of
Determine Orbital	interception point
Elements of	by iterating
interceptor and	Newton's
target orbits.	method.
(see procedure	(see procedure

Lambert's Problem: Parameters

$$c = |\vec{r}_{tgt}(t_2) - \vec{r}_{int}(t_1)|$$

$$s = \frac{c + r_{int}(t_1) + r_{tgt}(t_2)}{2}$$
eck minimum TOF!

Check minimum TOF!

Check minimum TOF!
$$TOF \ge \Delta t_p = \frac{\sqrt{2}}{3} \sqrt{\frac{s^3}{\mu}} \left(1 - \left(\frac{s - c}{s} \right)^{\frac{3}{2}} \right)$$

Set initial value for a:

$$a_{min} = \frac{s}{2}$$

$$a_{max} = ks \to (where \ k \ge 2 +)$$

$$a = \frac{a_{max} + a_{min}}{s}$$

Iterate g(a):

$$c = \left| \vec{r}_{tgt}(t_2) - \vec{r}_{int}(t_1) \right|$$

$$s = \frac{c + r_{int}(t_1) + r_{tgt}(t_2)}{2}$$

$$\text{eck minimum TOF!}$$

$$a_{min} = \frac{s}{2}$$

$$a_{max} = ks \rightarrow (\text{ where } k \ge 2 +)$$

$$\alpha = 2 \sin^{-1} \left(\sqrt{\frac{s}{2a}} \right), \ \beta = 2 \sin^{-1} \left(\sqrt{\frac{s - c}{2a}} \right)$$

$$\alpha = 2\sin^{-1}\left(\sqrt{\frac{s}{2a}}\right), \ \beta = 2\sin^{-1}\left(\sqrt{\frac{s-c}{2a}}\right)$$

 $If \ g(a) > TOF \ \rightarrow \ a_{min} = a$

If
$$g(a) < TOF \rightarrow a_{max}$$

Recalculate "a" with new min/max value and repeat previous step until desired tolerance is met.

Velocity vectors:

$$\begin{array}{ll} If \ g(a) > TOF \ \rightarrow \ a_{min} = a \\ \\ If \ g(a) < TOF \ \rightarrow \ a_{max} = a \\ \\ \text{Recalculate "a" with new} \\ \text{min/max value and repeat previous step until} \\ \\ \text{desired tolerance is met} \end{array} \qquad \begin{array}{ll} A = \sqrt{\frac{\mu}{4a}}\cot\left(\frac{\alpha}{2}\right) \ , \quad B = \sqrt{\frac{\mu}{4a}}\cot\left(\frac{\beta}{2}\right) \\ \hat{u}_i = \frac{\hat{r}_i(t_1)}{r_i(t_1)} \ , \quad \hat{u}_t = \frac{\hat{r}_t(t_2)}{r_t(t_2)} \ , \quad \hat{u}_c = \frac{\hat{r}_t(t_2) - \hat{r}_i(t_1)}{c} \\ \\ \hat{v}_{trans}(t_1) = (B+A)\,\hat{u}_c + (B-A)\,\hat{u}_i \\ \\ \hat{v}_{trans}(t_2) = (B+A)\,\hat{u}_c - (B-A)\,\hat{u}_t \\ \\ \Delta v_{int} = \hat{v}_{trans}(t_1) - \hat{v}_i(t_1) \end{array}$$

Lambert's Problem: Targeting

above)

Given: r_1 , r_2 , angle, and TOF	
$\to c = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\Delta f)}$	
Solve for semi-perimeter (s), and then find (a) using bisection	
method above.	

above)

Given: \vec{r}_1 , \vec{r}_2 , and v (magnitude) at one point, Find position magnitude at that point and solve for (a) $a = \left(\frac{2}{r} - \frac{v^2}{\mu}\right)^{-1} \rightarrow \alpha, \beta \rightarrow g(a) = \Delta t$