

whoami

Jannes Quer

- Arbeitet bei bei SRLabs
- 2 Jahre Postdoc im Bereich ML in der Bioinformatik und der Moleküldynamik
- Erfahrung als Data Scientist bei einer Big Four Beratung
- Promotion an der Freien Universität Berlin im Bereich Moleküldynamik
- Studium Angewandte Mathematik in Lübeck mit dem Schwerpunkt Bildgebung

jannes@srlabs.de

Durch den aktuellen Hype wird KI überschätzt

Buzzword

Alles muss jetzt KI haben. Sogar eine einfache Kaffeemaschine.

Komplexität

Interesse der Hersteller, Produkt als komplex darzustellen.

Bias

Wir sehen nur die beeindruckenden Beispiele auf Twitter

Sprache

"Es kann sprechen, es muss intelligent sein!"

Neuronale Netze versuchen das Gehirn durch angewandte Statistik zu imitieren

Künstliche Intelligenz (KI)

Computer imitieren menschliches Denken und Verhalten.

Machine Learning (ML)

Statistische Algorithmen ermöglichen Implementierung von KI durch Lernen aus Daten.

Deep Learning

Teilbereich des ML, der neuronale Netze verwendet.

Generative KI hat viel mehr Spielraum, um gute Antworten zu produzieren

Spezialisierte KI

Spezialisierte KI kann nur Klassifikations- oder Regressionsprobleme lösen. Sie wird für eine einzelne Aufgabe trainiert und kann auch nur diese lösen.

Klassifikation

Regression

Generative KI

Generative KI hat sehr viele Möglichkeiten ein gutes und überzeugendes Ergebnis zu erzielen.

Gute und überzeugende Antwort

Es gibt drei unterschiedliche Arten des Machine Learnings

Supervised learning

- Label sind bekannt
- Ziel ist das Mapping von Input zu Output zu lernen
- Beispiel: Klassifikation, Regression

Unsupervised learning

- Label sind unbekannt
- Ziel ist es Muster und Gemeinsamkeiten in Daten zu lernen
- Beispiel: Recommender Systems

Reinforcement learning

- Daten werden erzeugt
- Ziel ist es ein Verhalten in einer Umgebung zu lernen
- Beispiel: Alpha Go

Ziel des Lernens ist immer eine mathematische Funktion zu lernen, die von Input auf Output abbildet.

Lernen wird durch Modelloptimierung erreicht

Daten

- Es braucht eine große Menge an Daten
- Die Daten müssen gut gelabelt sein, da die Daten die Regeln enthalten
- Feature Engineering

Training

- Wahl der Architektur, der Lossfunktion und des Optimierungsalgorithmus
- Mathematische Optimierung, um die bestmöglichen Gewichte zu finden, die einen kleinen Trainingsfehler erreichen

Generalisierung

Identifizieren der Parameter, die

- 1. eine gute Anpassung an die Trainingsdaten und
- 2. eine **gute Verallgemeinerung** ermöglichen Die **Messung** der Generalisierung erfolgt mit **ungenutzten Trainingsdaten**

Lernen ist ein iterativer Algorithmus

Machine Learning lernt Regeln aus Daten

Daten Vorverarbeitung ist der essentielle Teil des Machine Learnings

Daten Vorverarbeitung

- Vorverarbeitung beinhaltet Cleaning und Feature Engineering
- Feature Engineering nutzt Domänenwissen um Charakteristika, Eigenschaften und Attribute aus den Rohdaten zu extrahieren
- Kategorische Daten müssen so umgewandelt werden, dass sie mathematisch transformierbar sind

Es gibt viele unterschiedliche Modelle, die jeweils ihre Vor- und Nachteile haben

Fun Facts

- Ein Modell ist eine **parametrische Repräsentation** einer mathematischen Funktion
- Die Wahl eines Modells führt immer implizit Annahmen mit ein
- Beispiel: Lineare Regression $f(\mathbf{x}, \mathbf{a}) = \sum_{i=1}^{N} a_i x_i$
- Logistische Regression, Entscheidungsbäume, Random Forest, Support Vector Machines, ...

Deep Learning ist das Lernen mit tiefen neuronalen Netzen

Layer

- Deep Learning heißt so, weil viele Layer hintereinander gesetzt werden
- Der Aufbau und die Verknüpfung der Layer heißt
 Architektur
- Layer transformieren die eingehenden Daten

Features

- Feature Engineering wird nicht mehr benötigt
- In jedem Layer iterative eine zunehmend aussagekräftigen Darstellung gelernt
- Es ist nicht möglich die gelernten Features zu verstehen

Ein Neuronales Netz lässt sich auch als mathematische Formel darstellen

Das Lernen ist eine stochastische Optimierung

1 Vorbereitung

- Festlegen von Modell und Architektur
- Vorinitialisieren der Gewichte

Lossfunktion (Bsp: Empirisches Risiko)

Auswahl ist abhängig vom Problem

$$J(x, y, \alpha) = \frac{1}{2} \sum_{i} (y_i - \varphi(x_i, \alpha))^2$$

Gradientenabstieg

- Gradient der Lossfunktion (Ableitung) ist einfach zu berechnen
- Gradient zeigt in Richtung der größten Veränderung

$$\alpha_{new} = \alpha_{old} - \varepsilon \nabla J(x, y, \alpha)$$

Das Lernen minimiert die Lossfunktion und maximiert die Genauigkeit

Unterschiedliche Trainingsmethoden können kombiniert werden

Mein Modell ist das allerbeste!!!1! Vielleicht!!1!!1

Güte eines Modells

- Das Training ist immer ein Trade-off zwischen Overfitting und Underfitting
- Ein Modell wird meistens nicht 100% korrekt sein
- Die Anwendung bestimmt darüber welcher Fehler akzeptierbar ist und welcher nicht
- Welches Modell das Beste ist, ist mathematisch nicht zu beweisen

Lasst uns mal ein Beispiel anschauen

Experiment

- Klassifikation von zwei Gruppen
- Daten haben 2 Feature [x1,x2,Label]
- N Datenpunkte
 - 90% Trainingdata
 - 10% Testdata
- 10000 Gradientenschritte

Ergebnisse

Trainingsdata	Accuracy
100	0.90
1000	0.98
10000	0.98

Das Beispiel verdeutlicht die Datenabhängigkeit

ML ist nur bei bestimmten Problemen überlegen

Machine Learning ist ein wilder Mix aus Mathe und Programmierung

Daten und Training

- Es gibt sehr viele Parameter, die ausgewählt werden müssen, ohne dass man genau weiß was sie tun
- Die Regeln sind in den Daten versteckt und es ist schwer zu verstehen, ob das "Richtige" gelernt worden ist

Anwendung

- Es braucht viel Zeit und Erfahrung eine Anwendung zu testen und Edge Cases zu erkennen
- Es braucht es eine konstante Überwachung des Algorithmus
- Es kann ziemlich schwierig sein einen Edge Case zu beheben

Machine Learning wird nicht mehr weg gehen und deshalb musst du dich damit auseinandersetzen.

Danke für die Aufmerksamkeit! Zeit für Fragen

Where to start

Workshop @ Camp

- Workshop @jugend hackt Machine Learning 101
 2023-08-19 14h
- Email: jannes@srlabs.de

Kaggle

https://www.kaggle.com/

Bücher

- Deep Learning with Python, F. Challet
- M. P. Deisenroth et al

https://mml-book.github.io/book/mml-book.pdf

■ I. Goodfellow et al.

https://www.deeplearningbook.org/

Quellen

- [1,7,22] Stable Diffusion
- [2] https://www.pinterest.com/pin/237916792788104970/
- [3] https://www.reddit.com/r/ich_iel/comments/xi8fs8/ichiel/
- [5] https://www.freecodecamp.org/news/chihuahua-or-muffin-my-search-for-the-best-computer-vision-apicbda4d6b425d/
- [6] https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/
- [3,8,10,12,15,17] Deep Learning with Python, Francois Challet
- [5,9] xkcd.com [2048, 1838]
- [11] <u>https://scikit-learn.org/</u>
- [13] https://www.heise.de/select/ix/2017/9/1504455013673842
- [14] shashank-ojha.github.io/ParallelGradientDescent
- [16] https://knowyourmeme.com/memes/shoggoth-with-smiley-face-artificial-intelligence
- [21] https://www.reddit.com/r/ProgrammerHumor