EE-421: Digital System Design

Multiplier on FPGA and It's Performance

Dr. Rehan Ahmed [rehan.ahmed@seecs.edu.pk]

Multiplication

Multiplication

Multiplying 1-bit numbers is an AND operation

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

Multiplication

Multiplying 1-bit x N-bit is AND operation

	A_3	A_2	A_1	A_0
X	B_3	B_2	B ₁	B_0

Consider 4-bit x 4-bit Multiplication

Sounds familiar, Right! : Multiplication by Hand

How to express this multiplication in Hardware?

Hardware Implementation: N-Bit x N-Bit (Unsigned) Multiplication

Hardware Implementation: N-Bit x N-Bit (Unsigned) Multiplication

Propagation Delay

Using Fast Adders as Discussed Previously

FPGA Implementation of a Combinational Multiplier

In Verilog:

$$P = A * B;$$

(make sure **P** has twice the number of bits of **A** and **B**)

 Synthesis tool will create a combinational multiplier if DSP Block inference is turned off.

F_{max} of a Combinational Multiplier

Measured on our Cyclone FPGA:

Multiplier Width (in bits)	F _{max} (MHz)
8 x 8	464
16 x 16	396
32 x 32	104
64 x 64	66

THANK YOU

