Fundamentele limbajelor de programare

C08

Denisa Diaconescu Traian Serbănută

Departamentul de Informatică, FMI, UB

Lambda calcul cu tipuri simple și

unificare (recap)

Ce problemă am rezolvat în cursul trecut?

Type Inference

Pentru un lambda termen M fără tipuri, am adnotat termenul M cu tipuri obținând \overline{M} și am rezolvat (parțial) problema

?
$$\vdash \overline{M}$$
:?

(am găsit un context și un tip, pentru a avea o judecată legală).

Type Inference

Fie *M* un lambda termen fără tipuri.

Construim un context Γ_M pentru M:

$$\Gamma_M = \{x : X \mid x \in FV(M)\}$$

(toate variabilele de tip X introduse mai sus sunt noi și distincte)

Adnotăm M cu tipuri pentru variabilele legate obținând \overline{M} prin inducție după structura lui M astfel:

- dacă M = x, atunci $\overline{M} = M$
- dacă $M=M_1~N_1$, atunci $\overline{M}=\overline{M_1}~\overline{N_1}$
- dacă M = \(\lambda x. \, N\), atunci \(\overline{M} = \lambda x : X. \overline{N}\), unde X este o variabilă de tip nouă

Sistemul $\lambda \rightarrow$ cu constrângeri

$$\Gamma \vdash M : \sigma \triangleright C$$

$$\overline{\Gamma \cup \{x : \tau\} \vdash x : \sigma \triangleright \{\sigma \stackrel{.}{=} \tau\}} \quad (var^*)$$

$$\Gamma, x : \sigma \vdash M : \tau' \triangleright C'$$

$$C = C' \cup \{\tau \stackrel{.}{=} \sigma \rightarrow \tau'\} \quad (\rightarrow_{I}^*)$$

$$\Gamma \vdash (\lambda x : \sigma . M) : \tau \triangleright C \quad (\rightarrow_{I}^*)$$

$$\Gamma \vdash M : \tau_1 \triangleright C_1 \quad \Gamma \vdash N : \tau_2 \triangleright C_2$$

$$C = C_1 \cup C_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \tau\} \quad (\rightarrow_{E}^*)$$

$$\Gamma \vdash M N : \tau \triangleright C \quad (\rightarrow_{E}^*)$$

$$\sigma, \tau, \tau', \tau_1, \tau_2 \text{ variabile de tip}$$

Sistemul $\lambda \rightarrow$ cu constrângeri

O judecată de forma $\Gamma \vdash M : \sigma \vdash C$ este legală dacă constrângerile din C au o "solutie".

Fie M un lambda termen fără tipuri. Dacă există o constrângere de tipuri C_M și o variabilă de tip nouă V astfel încât

$$\Gamma_M \vdash \overline{M} : V \triangleright C_M$$

este o judecată legală, atunci M este typable. (soluția o găsim prin C_M)

Type Inference - Exemplul 1

```
Fie M_1 = (\lambda z. \lambda u. z) (y x).
        Obtinem \Gamma_{M_1} = \{x : X, y : Y\} și \overline{M_1} = (\lambda z : Z. \lambda u : U. z) (y x).
      \Gamma_{M_1} \cup \{z: Z, u: U\} \vdash z: \delta \triangleright D
      C_1' = D \cup \{\tau_1' \stackrel{\cdot}{=} (U \rightarrow \delta)\}
  \overline{\Gamma_{M_1} \cup \{z : Z\} \vdash \lambda u \colon U.z \colon \tau_1' \triangleright C_*'} \ (\rightarrow_I^*)
                                                                                                                  \Gamma_{M_1} \vdash y : \sigma_1 \triangleright C'_2 \quad \Gamma_{M_1} \vdash x : \sigma_2 \triangleright C''_2
                                                                                                                 \frac{C_2 = C_2' \cup C_2'' \cup \{\sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2\}}{\Gamma_{M_1} \vdash y \times : \tau_2 \triangleright C_2} \ (\rightarrow_E^*)
  C_1 = C'_1 \cup \{\tau_1 \stackrel{\cdot}{=} (Z \rightarrow \tau'_1)\}
            \Gamma_{M_1} \vdash \lambda z : Z. \lambda u : U.z : \tau_1 \triangleright C_1 \qquad (\rightarrow_i^*)
   C_{M_1} = C_1 \cup C_2 \cup \{\tau_1 = (\tau_2 \to V)\}
                                                                          \Gamma_{M_1} \vdash (\lambda z : Z. \lambda u : U. z) (y x) : V \triangleright C_{M_1}
D = \{\delta = Z\}
                                                                                                                    C_2' = \{\sigma_1 \stackrel{\cdot}{=} Y\}
C'_1 = \{\delta = Z, \tau'_1 = (U \rightarrow \delta)\}\
                                                                                                                    C_2'' = \{\sigma_2 = X\}
C_1 = \{\delta = Z, \tau'_1 = (U \rightarrow \delta), \tau_1 = (Z \rightarrow \tau'_1)\}\
                                                                                                         C_2 = \{\sigma_1 = Y, \sigma_2 = X, \sigma_1 = \sigma_2 \rightarrow \tau_2\}
                              C_{M_1} = \{\delta = Z, \tau'_1 = (U \rightarrow \delta), \tau_1 = (Z \rightarrow \tau'_1), \sigma_1 = Y, \sigma_2 = X,
                                                                  \sigma_1 = \sigma_2 \rightarrow \tau_2, \tau_1 = (\tau_2 \rightarrow V)
```

Constrângerile C_{M_1} au "soluție". Ce înseamnă asta?

Type Inference - Exemplul 2

Fie
$$M_2 = x x$$
.
Obţinem $\Gamma_{M_2} = \{x : X\}$ şi $\overline{M_2} = M_2$.

$$\begin{array}{ll} \{x:X\} \vdash x:\tau_1 \triangleright C_1 & \{x:X\} \vdash x:\tau_2 \triangleright C_2 \\ \hline C_M = C_1 \cup C_2 \cup \{\tau_1 \stackrel{\cdot}{=} \tau_2 \rightarrow V\} \\ \hline \{x:X\} \vdash (x\,x): V \triangleright C_{M_2} \end{array} \ (\rightarrow_E^*)$$

$$C_1 = \{\tau_1 \stackrel{.}{=} X\}$$

$$C_2 = \{\tau_2 \stackrel{.}{=} X\}$$

$$C_{M_2} = \{\tau_1 \stackrel{.}{=} X, \tau_2 \stackrel{.}{=} X, \tau_1 \stackrel{.}{=} \tau_2 \rightarrow V\}$$

Constrângerile C_{M_2} nu au "soluție". Ce înseamnă asta?

Constrângerile au "soluție" dacă se pot unifica.

Termeni

Alfabet:

- F o mulțime de simboluri de funcții de aritate cunoscută
- ullet ${\mathcal V}$ o multime numărabilă de variabile
- ullet $\mathcal F$ și $\mathcal V$ sunt disjuncte

Termeni peste \mathcal{F} si \mathcal{V} :

$$t ::= x \mid f(t_1, \ldots, t_n)$$

- n ≥ 0
- x este o variabilă
- f este un simbol de funcție de aritate n

Termeni

Notații:

- constante: simboluri de functii de aritate 0
- x, y, z, ... pentru variabile
- a, b, c, ... pentru constante
- f, g, h, ... pentru simboluri de funcții arbitrare
- *s*, *t*, *u*, . . . pentru termeni
- var(t) mulțimea variabilelor care apar în t
- ullet ecuații s = t pentru o pereche de termeni
- ullet $\mathit{Trm}_{\mathcal{F},\mathcal{V}}$ mulțimea termenilor peste \mathcal{F} și \mathcal{V}

Legătura cu teoria tipurilor

Multimea tipurilor simple $\mathbb{T} = \mathbb{V} \mid \mathbb{T} \to \mathbb{T}$

În acest caz, avem alfabetul:

- $\mathcal{F} = \{\rightarrow\}$, iar aritatea lui \rightarrow este 2
- $\mathcal{V} = \mathbb{V}$

Dacă avem și alte tipuri, extindem $\mathcal F$ cu noi simboluri. De exemplu,

- Unit, Void cu aritate 0 (deci constante)
- Bool, Nat cu aritate 0 (deci constante)
- Maybe, List cu aritate 1
- x cu aritate 2
- ...

Substituții

O substituție Θ este o funcție (parțială) de la variabile la termeni,

$$\Theta: \mathcal{V} \to \mathsf{Trm}_{\mathcal{F},\mathcal{V}}$$

Aplicarea unei substituții Θ unui termen t:

$$\Theta(t) = \begin{cases} \Theta(x), \text{ dacă } t = x \\ f(\Theta(t_1), \dots, \Theta(t_n)), \text{ dacă } t = f(t_1, \dots, t_n) \end{cases}$$

Unificare

Doi termeni t_1 și t_2 se unifică dacă există o substituție Θ astfel încât

$$\Theta(t_1) = \Theta(t_2).$$

În acest caz, Θ se numește un unificator al termenilor t_1 și t_2 .

Un unificator Θ pentru t_1 și t_2 este cel mai general unificator (cmgu,mgu) dacă pentru orice alt unificator Θ' pentru t_1 și t_2 , există o substituție Δ astfel încât

$$\Theta' = \Theta; \Delta.$$

Unificatori

Exemplu:

- t = x + (y * y) = +(x, *(y, y))
- t' = x + (y * x) = +(x, *(y, x))
- $\Theta = \{x \mapsto y\}$
 - $\Theta(t) = y + (y * y)$
 - $\bullet \ \ \Theta(t') = y + (y * y)$
 - ⊖ este cmgu
- $\Theta' = \{x \mapsto 0, y \mapsto 0\}$
 - $\Theta'(t) = 0 + (0 * 0)$
 - $\Theta'(t') = 0 + (0 * 0)$
 - $\Theta' = \Theta$; $\{y \mapsto 0\}$
 - Θ' este unificator, dar nu este cmgu

- Pentru o mulțime finită de termeni {t₁,..., t_n}, n ≥ 2,
 algoritmul de unificare stabilește dacă există un cmgu.
- Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- Algoritmul lucrează cu două liste:
 - Lista solutie: S
 - Lista de rezolvat: R
- Initial:
 - Lista solutie: S = ∅
 - Lista de rezolvat: R = {t₁ = t₂,..., t_{n-1} = t_n}
 este un simbol nou care ne ajută să formăm perechi de termeni ("ecuații")

Algoritmul constă în aplicarea regulilor de mai jos:

- SCOATE
 - orice ecuatie de forma $t = t \operatorname{din} R$ este eliminată.
- DESCOMPUNE
 - orice ecuație de forma f(t₁,...,t_n) = f(t'₁,...,t'_n) din R este înlocuită cu ecuațiile t₁ = t'₁,...,t_n = t'_n.
- REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S.
 În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S conține cmgu.

Algoritmul este oprit cu concluzia inexistenței unui unificator dacă:

1. În R există o ecuație de forma

$$f(t_1,\ldots,t_n)\stackrel{\cdot}{=} g(t'_1,\ldots,t'_k)$$
 cu $f\neq g$.

2. În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	0	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$	
SCOATE	S	$R', t \stackrel{.}{=} t$	
	S	R'	
DESCOMPUNE	S	$R', f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$	
	S	$R', t_1 \stackrel{\cdot}{=} t'_1, \ldots t_n \stackrel{\cdot}{=} t'_n$	
REZOLVĂ	S	R', x = t sau $t = x, x$ nu apare în t	
	$x \stackrel{\cdot}{=} t$, $S[x/t]$	R'[x/t]	
Final	S	0	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Ecuatiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au cmgu?

Ecuatiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au cmgu?

S	R	
Ø	$g(y) = x, \ f(x, h(x), y) = f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), \ h(g(y)) \stackrel{\cdot}{=} w, \ y \stackrel{\cdot}{=} z$	REZOLVĂ
w = h(g(y)),	$g(y) \stackrel{\cdot}{=} g(z), \ y \stackrel{\cdot}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{.}{=} g(z)$	SCOATE
$w \stackrel{\cdot}{=} h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	0	
w = h(g(z))		

$$\Theta = \{y \mapsto z, \ x \mapsto g(z), \ w \mapsto h(g(z))\}$$
 este cmgu.

Ecuațiile $\{g(y) = x, f(x, h(y), y) = f(g(z), b, z)\}$ au cmgu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(y) \stackrel{.}{=} b, y \stackrel{.}{=} z$	- EȘEC -

- h și b sunt simboluri de funcții diferite!
- Nu există unificator pentru acești termeni.

Ecuatiile $\{g(y) = x, f(x, h(x), y) = f(y, w, z)\}$ au cmgu?

S	R	
Ø	$g(y) = x, \ f(x, h(x), y) = f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(y,w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} y$, $h(g(y)) \stackrel{\cdot}{=} w$, $y \stackrel{\cdot}{=} z$	- EȘEC -

- În ecuația g(y) = y, variabila y apare în termenul g(y).
- Nu există unificator pentru aceste ecuații.

Înapoi la constrângerea obținută când am vorbit de *type inference* pentru termenul $M_1 = (\lambda z. \lambda u. z) (y x)$.

Am obținut constrângerile

$$C_{M_1} = \{ \delta \stackrel{\cdot}{=} Z, \tau_1' \stackrel{\cdot}{=} (U \rightarrow \delta), \tau_1 \stackrel{\cdot}{=} (Z \rightarrow \tau_1'), \sigma_1 \stackrel{\cdot}{=} Y, \sigma_2 \stackrel{\cdot}{=} X, \\ \sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2, \tau_1 \stackrel{\cdot}{=} (\tau_2 \rightarrow V) \}$$

- → simbol de funcție de aritate 2
- $\delta, \tau_1, \tau'_1, \tau_2, \sigma_1, \sigma_2, X, Y, Z, U, V$ variabile

Exemplul 4 (cont.)

S	R	
Ø	$\delta \stackrel{.}{=} Z, \ \tau'_1 \stackrel{.}{=} (U \rightarrow \delta), \ \tau_1 \stackrel{.}{=} (Z \rightarrow \tau'_1), \ \sigma_1 \stackrel{.}{=} Y$	REZ.
	$\sigma_2 \stackrel{\cdot}{=} X, \ \sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2, \ \tau_1 \stackrel{\cdot}{=} (\tau_2 \rightarrow V)$	
$\delta \stackrel{\cdot}{=} Z$	$\tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z), \ \tau_1 \stackrel{\cdot}{=} (Z \rightarrow \tau'_1), \ \sigma_1 \stackrel{\cdot}{=} Y$	REZ.
	$\sigma_2 \stackrel{\cdot}{=} X, \ \sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2, \ \tau_1 \stackrel{\cdot}{=} (\tau_2 \rightarrow V)$	
$\delta \stackrel{\cdot}{=} Z, \ \tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z)$	$ au_1 \stackrel{\cdot}{=} (Z \rightarrow (U \rightarrow Z)), \ \sigma_1 \stackrel{\cdot}{=} \ Y$	REZ.
	$\sigma_2 \stackrel{\cdot}{=} X, \ \sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2, \ \tau_1 \stackrel{\cdot}{=} (\tau_2 \rightarrow V)$	
$\delta \stackrel{\cdot}{=} Z, \ \tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z),$	$\sigma_1 \stackrel{\cdot}{=} Y, \ \sigma_2 \stackrel{\cdot}{=} X, \ \sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2,$	DESC.
$\tau_1 \stackrel{\cdot}{=} (Z \to (U \to Z))$	$(Z \to (U \to Z)) \stackrel{\cdot}{=} (\tau_2 \to V)$	
$\delta \stackrel{\cdot}{=} Z, \ \tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z),$	$\sigma_1 \stackrel{\cdot}{=} Y, \ \sigma_2 \stackrel{\cdot}{=} X, \ \sigma_1 \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2,$	REZ.
$\tau_1 \stackrel{\cdot}{=} (Z \to (U \to Z))$	$Z \stackrel{\cdot}{=} \tau_2, \ U \rightarrow Z \stackrel{\cdot}{=} V$	
$\delta = Z, \ \tau'_1 = (U \rightarrow Z),$	$\sigma_2 \stackrel{\cdot}{=} X, \ Y \stackrel{\cdot}{=} \sigma_2 \rightarrow \tau_2,$	REZ.
$\tau_1 \stackrel{\cdot}{=} (Z \rightarrow (U \rightarrow Z)),$	$Z\stackrel{\cdot}{=} au_2,\ U ightarrow Z\stackrel{\cdot}{=} V$	
$\sigma_1 \stackrel{\cdot}{=} Y$		
$\delta \stackrel{\cdot}{=} Z, \ \tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z),$	$Y \stackrel{\cdot}{=} X \rightarrow \tau_2$,	REZ.
$ au_1 \stackrel{\cdot}{=} (Z \rightarrow (U \rightarrow Z)),$	$Z \stackrel{\cdot}{=} \tau_2, \ U \rightarrow Z \stackrel{\cdot}{=} V$	
$\sigma_1 \stackrel{\cdot}{=} Y, \sigma_2 \stackrel{\cdot}{=} X$		

Exemplul 4 (cont.)

0		
S	R	
$\delta \stackrel{\cdot}{=} Z, \ \tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z),$	$Y \stackrel{\cdot}{=} X \rightarrow Z, \ U \rightarrow Z \stackrel{\cdot}{=} V$	REZ.
$ au_1 \stackrel{\cdot}{=} (Z \rightarrow (U \rightarrow Z)),$		
$\sigma_1 \stackrel{\cdot}{=} Y, \sigma_2 \stackrel{\cdot}{=} X, \ \tau_2 \stackrel{\cdot}{=} Z$		
$\delta \stackrel{\cdot}{=} Z, \ \tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z),$	$U \rightarrow Z \stackrel{\cdot}{=} V$	REZ.
$ au_1 \stackrel{\cdot}{=} (Z \rightarrow (U \rightarrow Z)),$		
$\sigma_1 \stackrel{\cdot}{=} X \rightarrow Z, \sigma_2 \stackrel{\cdot}{=} X, \ \tau_2 \stackrel{\cdot}{=} Z$		
$Y \stackrel{\cdot}{=} X \rightarrow Z$		
$\delta \stackrel{\cdot}{=} Z, \ \tau'_1 \stackrel{\cdot}{=} (U \rightarrow Z),$		
$ au_1 \stackrel{\cdot}{=} (Z \rightarrow (U \rightarrow Z)),$		
$\sigma_1 \stackrel{\cdot}{=} X \rightarrow Z, \sigma_2 \stackrel{\cdot}{=} X, \ \tau_2 \stackrel{\cdot}{=} Z$		
$Y \stackrel{\cdot}{=} X \rightarrow Z, \ V \stackrel{\cdot}{=} U \rightarrow Z$		

Constrângerile se pot unifica!

Înapoi la constrângerea obținută când am vorbit de *type inference* pentru termenul $M_2 = x x$.

Am obtinut constrângerile

$$C_{M_2} = \{ \tau_1 \stackrel{\cdot}{=} X, \tau_2 \stackrel{\cdot}{=} X, \tau_1 \stackrel{\cdot}{=} \tau_2 \rightarrow V \}$$

- → simbol de funcție de aritate 2
- τ_1, τ_2, V variabile

Exemplul 5 (cont.)

S	R	
Ø	$\tau_1 \stackrel{\cdot}{=} X, \ \tau_2 \stackrel{\cdot}{=} X, \ \tau_1 \stackrel{\cdot}{=} \tau_2 \rightarrow V$	REZ.
$ au_1\stackrel{\cdot}{=} X$	$\tau_2 \stackrel{\cdot}{=} X, \ X \stackrel{\cdot}{=} \tau_2 \rightarrow V$	REZ.
$\tau_1 \stackrel{\cdot}{=} X, \ \tau_2 \stackrel{\cdot}{=} X$	$X \stackrel{\cdot}{=} X \rightarrow V$	- EȘEC -

- În ecuația $X \stackrel{\cdot}{=} X \rightarrow V$, variabila X apare în termenul $X \rightarrow V$.
- Nu există unificator pentru aceste ecuații.

Exerciții

Considerăm

- x, y, z, u, v variabile,
- a, b, c simboluri de constantă,
- h, g simboluri de funcție de aritate 1,
- f simbol de funcție de aritate 2,
- p simbol de funcție de aritate 3.

Aplicați algoritmul de unificare de mai sus pentru termenii:

- 1. p(a, x, h(g(y))) și p(z, h(z), h(u))
- 2. f(h(a), g(x)) și f(y, y)
- 3. p(a, x, g(x)) și p(a, y, y)
- 4. p(x, y, z) și p(u, f(v, v), u)

1.

S	R	
Ø	p(a,x,h(g(y))) = p(z,h(z),h(u))	DESCOMPUNE
0	a = z, x = h(z), h(g(y)) = h(u)	REZOLVĂ
$z \stackrel{\cdot}{=} a$	$x \stackrel{\cdot}{=} h(a), h(g(y)) \stackrel{\cdot}{=} h(u)$	REZOLVĂ
z = a, x = h(a)	$h(g(y)) \stackrel{\cdot}{=} h(u)$	DESCOMPUNE
z = a, x = h(a)	$g(y) \stackrel{.}{=} u$	REZOLVĂ
z = a, x = h(a), u = g(y)	0	

 $\Theta = \{z/a, x/h(a), u/g(y)\}$ este cmgu.

2.

S	R	
Ø	$f(h(a),g(x)) \stackrel{\cdot}{=} f(y,y)$	DESCOMPUNE
Ø	y = h(a), y = g(x)	REZOLVĂ
$y \stackrel{\cdot}{=} h(a)$	$g(x) \stackrel{\cdot}{=} h(a)$	EȘEC

Nu există unificator!

3.

S	R	
Ø	$p(a, x, g(x)) \stackrel{\cdot}{=} p(a, y, y)$	DESCOMPUNE
Ø	$a \stackrel{\cdot}{=} a, x \stackrel{\cdot}{=} y, y \stackrel{\cdot}{=} g(x)$	SCOATE
Ø	$x \stackrel{\cdot}{=} y, y \stackrel{\cdot}{=} g(x)$	REZOLVĂ
$x \stackrel{\cdot}{=} y$	$y \stackrel{\cdot}{=} g(y)$	EȘEC

Nu există unificator!

4.

S	R	
0	$p(x, y, z) \stackrel{\cdot}{=} p(u, f(v, v), u)$	DESCOMPUNE
0	$x \stackrel{\cdot}{=} u, y \stackrel{\cdot}{=} f(v, v), z \stackrel{\cdot}{=} u$	REZOLVĂ
$x \stackrel{\cdot}{=} u$	y = f(v, v), z = u	REZOLVĂ
$y \stackrel{\cdot}{=} f(v,v), x \stackrel{\cdot}{=} u$	$z \stackrel{\cdot}{=} u$	REZOLVĂ
z = u, y = f(v, v), x = u		

 $\Theta = \{z/u, y/f(v,v), x/u\}$ este cmgu.

Pe data viitoare!