${\tt logo_rennes1.pdf}$

Anneaux et arithmétique

Examen terminal - Session 1

Vous disposez de **2h** pour répondre aux questions des exercices suivants. Les documents et calculatrices sont interdits. Les téléphones portables doivent être éteints et rangés dans les sacs. **Toutes les réponses devront être dûment justifiées**.

Exercice 1

Énoncer le théorème de factorisation des morphismes d'anneaux unitaires.

Exercice 2

Répondre par « vrai » ou « faux » aux questions suivantes. Répondre « vrai » implique que vous donniez une preuve complète et valide de l'assertion; répondre « faux » implique que vous donniez un contre-exemple en le justifiant avec précision.

- 1. Il existe un anneau unitaire n'ayant qu'un nombre fini d'éléments nilpotents non triviaux
- 2. Soit A un anneau commutatif et unitaire, intègre, de caractéristique 0, qui n'est pas un corps. L'anneau A possède une infinité d'idéaux maximaux.
- 3. Soit k un corps fini de cardinal q. Alors, pour tout $x \in k$, $x^q = x$.
- 4. Le polynôme $P = X^4 + (Y^5 + Y)X^3 + 5Y^3X^2 + X + 1 \in \mathbf{Z}[X, Y]$ est irréductible dans $\mathbf{Z}[X, Y]$.
- 5. Soit A un anneau contenant au moins deux éléments. Supposons que tout élément de A soit idempotent, alors l'anneau A est commutatif. (Nous rappelons qu'un élément a d'un anneau est dit idempotent s'il vérifie $a^2 = a$.)

Exercice 3

Soit $A = \mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})$ l'ensemble des applications de classe C^{∞} de \mathbf{R} dans \mathbf{R} .

- 1. Montrer que A est un sous-anneau de l'anneau unitaire $\mathcal{F}(\mathbf{R}, \mathbf{R})$ des applications de \mathbf{R} dans \mathbf{R} . (Nous rappelons que, dans cet anneau, la multiplication est la multiplication ponctuelle.)
- 2. Montrer que l'ensemble \mathfrak{M} des applications s'annulant en 0 est un idéal maximal de A.
- 3. Montrer que l'ensemble $\mathfrak{P}:=\{f\in A, \forall k\in \mathbf{N}\ f^{(k)}(0)=0\}$ est un idéal premier de A.

Exercice 4

Soit k un corps. Soit $\mathcal C$ le sous-ensemble de k^3 défini par

$$C = \{(x, y, z) \in k^3, \exists t \in k \ x = t^2, y = t^3, z = t^5\}.$$

Considérons le morphisme de k-algèbres $\varphi\colon k[X,Y,Z]\to k[T]$ défini par $F(X,Y,Z)\to F(T^2,T^3,T^5)$. L'on désigne la k-algèbre $k[X,Y,Z]/(Z-XY,Y^2-X^3)$ par A.

- 1. Montrer que $Ker(\varphi) = (Z XY, Y^2 X^3)$.
- 2. Que peut-on dire de l'ensemble $\operatorname{Hom}_k(A,k)$? (Nous rappelons que la notation $\operatorname{Hom}_k(A,k)$ désigne l'ensemble des morphismes k-algèbres de A dans k.)
- 3. Montrer que l'anneau A est intègre. Calculer son corps des fractions.
- 4. L'anneau A est-il factoriel?

Exercice 5

Soient A un anneau commutatif unitaire. On appelle inverse ponctuel dans A de $a \in A$ tout élément $b \in A$ tel que $b^2a = b$ et $a^2b = a$.

- 1. Pour chacun des deux cas suivants, trouver (et le justifier) un exemple d'anneau B, commutatif et unitaire, dans lequel :
 - (a) tout élément possède un inverse ponctuel;
 - (b) tout élément $b \in B \setminus (\{0\} \cup B^{\times})$ n'a pas d'inverse ponctuel.
- 2. Soit $a, b \in A$. Supposons que l'élément a (resp. b) possède un inverse ponctuel a' (resp. b'). Vérifier les propriétés suivantes.
 - (a) Si l'élément a est inversible, alors $a' = a^{-1}$.
 - (b) L'élément aa' est idempotent dans A. Si $a \in A \setminus (\{0\} \cup A^{\times})$, l'anneau A peut-il être intègre?
 - (c) L'élément 1 aa' + a est inversible dans A.
 - (d) L'élément bb' est l'inverse ponctuel de aa' dans A.
- 3. Montrer que tout élément $a \in A$ possède au plus un inverse ponctuel.
- 4. Supposons que tout élément de l'anneau A possède un inverse ponctuel. Pour tout idéal premier \mathfrak{P} de A, montrer que l'anneau $A_{\mathfrak{P}}$ est un corps. (Nous rappelons que la notation $A_{\mathfrak{P}}$ désigne la localisation de A par rapport à $S := A \setminus \mathfrak{P}$.)
- 5. Montrer que les assertions suivantes sont équivalentes :
 - (a) l'élément $a \in A$ a un inverse ponctuel dans A;
 - (b) l'élément $a \in A$ appartient à l'idéal de A engendré par a^2 ;
 - (c) le morphisme d'anneaux unitaire $A \to (A/(a)) \times A_a$, défini par $f \mapsto (\bar{f}, f/1)$, est bijectif.