

Project - Bee Invaders

Tutorial 1: Fill A VGA Screen With One Colour

This Tutorial Is Specifically For The Digilent Basys 3 Board

Proposed Game

Instructions

Create a folder on your Windows Desktop called "BeeInvaders" and inside the folder create a folder called "Tutorials Basys 3"

Download from Xilinx website the free software "Vivado Design Suite: Self Extracting Web Installer / WebPack Edition" (version 2019.2 in this case). Disable any Antivirus software during installation. Run Vivado 2019.2 and you will see a screen similar to this;

12 Click "Create Project" and when the below screen appears click "Next"

Enter "WIP" in the "Project name: "box and change the path for the "Project location: "box to the "BeeInvaders/Tutorials Basys 3" folder you created in step 1. Tick the box entitled "Create project subdirectory" and click "Next"

Select "RTL Project" and click "Next"

05 Click "Next" at the screen below

06 Click "Next" at the screen below

07

When the below screen appears click the "Boards" tab

18 Select the "Basys3" board and click "Next" at the screen below

Og Click "Finish" at the screen below

10 You should now see a screen as shown below

11

Right click on "Design Sources" and left click on "Add Sources" as shown below

12 Select "Add or create design sources" and click "Next"

Select "+" and click on "Create File" or click on the "Create File" button

Make sure "Verilog" is the "File Type:", enter "Top" in the box entitled "File name:", ensure "Local to Project" is the "File location:" and click "OK"

Select "Finish" at the next screen

16 Select "OK" at the next screen

Double click on "Top (Top.v)" in the Sources (design) panel to open the "Top.v" module. You can click on the square button which will maximize the Top.v module

Remove all the code in the "Project Summary: Top.v" box and copy & paste the code from either the "Top.v" file you downloaded or from below, into the "Project Summary: Top.v" box

```
// Top Module
// Digilent Basys 3
// BeeInvaders Tutorial 1 : Onboard clock 100MHz
// VGA Resolution: 640x480 @ 60Hz
// Pixel Clock 25MHz
//----
 timescale 1ns / 1ps
// Setup Top Module
module Top(
    input wire CLK, // Onboard clock 100MHz : INPUT Pin W5
    input wire RESET, // Reset button : INPUT Pin U18
    output wire HSYNC, // VGA horizontal sync : OUTPUT Pin P19
    output wire VSYNC, // VGA vertical sync : OUTPUT Pin R19
    output reg [3:0] RED, // 4-bit VGA Red : OUTPUT Pin G19, Pin H19, Pin J19, Pin N19
    output reg [3:0] GREEN, // 4-bit VGA Green: OUTPUT Pin J17, Pin H17, Pin G17, Pin D17
    output reg [3:0] BLUE // 4-bit VGA Blue : OUTPUT Pin N18, Pin L18, Pin K18, Pin J18
    // Setup Reset button
    wire rst = RESET; // reset : active high (BTNC)
    // generate 25MHz pixel clock using a "Fractional Clock Divider"
    reg [15:0] counter1;
    reg pix clk;
    always @(posedge CLK)
        // divide 100MHz by 4 = 25MHz: (2^16)/4 = 16384 decimal or 4000 hex
        {pix clk, counter1} <= counter1 + 16'h4000;
    // instantiate vga640x480 code
    wire [9:0] x; // pixel x position: 10-bit value: 0-1023 : only need 800
    wire [9:0] y; // pixel y position: 10-bit value: 0-1023 : only need 525
    wire active; // high during active pixel drawing
    vga640x480 display (
        .i clk(CLK),
        .i pix clk(pix clk),
        .i rst(rst),
        .o hsync(HSYNC),
        .o vsync(VSYNC),
        .o x(x),
        .o y(y),
        .o active(active)
   // setup palette and RGB registers
    reg [7:0] palette [0:192]; // 8 bit values from the 192 hex entries in the colour palette
    reg [7:0] COL; // holds hex colour palette value to display on the screen
        [7:0] colourR; // 8 bit hex value for RED
        [7:0] colourG; // 8 bit hex value for GREEN
    reg [7:0] colourB; // 8 bit hex value for BLUE
```

```
// load colour palette
        $readmemh("pal24bit.mem", palette); // load 192 hex values into "palette"
    // fill the active area of the screen
    always @ (posedge CLK)
   begin
        COL <= 8'h19; // set colour to pink (decimal 25)
        if (active)
            begin
                colourR <= palette[(COL*3)]; // retrieve RED palette hex value</pre>
                colourG <= palette[(COL*3)+1]; // retrieve GREEN palette hex value</pre>
                colourB <= palette[(COL*3)+2]; // retrieve BLUE palette hex value</pre>
                RED <= colourR[7:4]; // output 4 left hand bits of the 8 bit RED value retrieved
                GREEN <= colourG[7:4]; // output 4 left hand bits of the 8 bit GREEN value retrieved
                BLUE <= colourB[7:4]; // output 4 left hand bits of the 8 bit BLUE value retrieved
            end
        else
            begin
                RED <= 0; // set RED, GREEN & BLUE
                GREEN \leftarrow 0; // to "0" when x,y outside of
                BLUE <= 0; // the active display area
endmodule
```

If you maximized the "Top.v" window you will now need to restore it by clicking on the "Restore" button

Repeat steps 11 to 18 as follows;

```
Step 11: Right click on "Design Sources" and left click on "Add Sources"
Step 12: Select "Add or create design sources" and click "Next"
Step 13: Select "+" and click on "Create File" or click on the "Create File" button
Step 14: Enter "vga640x480" in the box entitled "File name" and click "OK"
Step 15: Select "Finish"
Step 16: Select "OK"
Step 17: Select "Yes"
```

Step 18: Double click "vga640x480 (vga640x480.v)" in the Sources (design) panel to open the module (maximize the window if it helps to see it)

Remove all the code in "Project Summary: vga640x480.v" box (maximize it if it helps) and copy & paste the code from either the "vga640x480.v" file you downloaded or from below, into the "Project Summary: vga640x480.v" box

```
vga640x480 Module
// Digilent Basys 3
// BeeInvaders : Onboard clock 100MHz
// VGA Resolution: 640x480 @ 60Hz
// Pixel Clock 25MHz
 timescale 1ns / 1ps
// Setup vga640x480 Module
module vga640x480(
    input wire i clk, // 100MHz onboard clock
    input wire i pix clk, // 25MHz pixel clock
    input wire i rst, // reset
    output wire o hsync, // horizontal sync
    output wire o vsync, // vertical sync
   output wire o active, // high during active pixel drawing
    output wire [9:0] o_x, // current pixel x position
    output wire [9:0] o y // current pixel y position
```

```
// setup VGA timings
    // VGA 640x480 Horizontal Timing (line)
    localparam HSYNCSTART = 16; // horizontal sync start
   localparam HSYNCEND = 16 + 96; // horizontal sync end
    localparam HACTIVESTART = 16 + 96 + 48; // horizontal active start
    localparam HACTIVEEND = 16 + 96 + 48 + 640; // total line length in pixels
   reg [9:0] H SCAN; // line position
   // VGA 640x480 Vertical timing (frame)
   localparam VSYNCSTART = 10; // vertical sync start
   localparam VSYNCEND = 10 + 2; // vertical sync end
   localparam VACTIVESTART = 10 + 2 + 33; // vertical active start
   localparam VACTIVEEND = 10 + 2 + 33 + 480; // vertical active end
   reg [9:0] V SCAN; // screen position
    // set sync signals to low (active) or high (inactive)
   assign o hsync = ~((H SCAN >= HSYNCSTART) & (H SCAN < HSYNCEND));
   assign o vsync = ~((V SCAN >= VSYNCSTART) & (V_SCAN < VSYNCEND));
    // set x and y values
   assign o x = (H SCAN < HACTIVESTART) ? 0 : (H SCAN - HACTIVESTART);
   assign o y = (V SCAN < VACTIVESTART); 0 : (V SCAN - VACTIVESTART);
    // set active high during active area
   assign o active = ~((H SCAN < HACTIVESTART) | (V SCAN < VACTIVESTART));
    // check for reset / create frame loop
   always @ (posedge i clk)
        // check for reset button pressed
       if (i rst) // jump to start of a frame and reset registers
       begin
            H SCAN <= 0;
            V SCAN <= 0;
       end
        // loop through a full screen
       if (i pix clk)
       begin
            if (H SCAN == HACTIVEEND) // if at the end of a line update registers
           begin
               H SCAN <= 0;
                V SCAN <= V SCAN + 1;
           end
           else
                H SCAN <= H SCAN + 1; // else increment horizontal counter
            if (V SCAN == VACTIVEEND) // if at the end of a screen reset vertical counter
               V SCAN <= 0;
   end
endmodule
```

If you maximized the "vga640x480.v" window you will now need to restore it by clicking on the "Restore" button

Repeat steps 11 to 15 as follows;

```
Step 11: Right click on "Design Sources" and left click on "Add Sources"

Step 12: Select "Add or create constraints" and click "Next"

Step 13: Select "+" and click on "Create File" or click on the "Create File" button

Step 14: Enter "basys3.xdc" in the box entitled "File name:" ("File type:" will say "XDC") and click "OK"

Step 15: Select "Finish"
```

Double click on "basys3.xdc" in the Sources (constraints) panel to open the module

Copy & paste the code from either the "basys3.xdc" file you downloaded or from below, into the "Project Summary: basys3.xdc" box

```
## Constraints Module
## Digilent Basys 3
## BeeInvaders : Onboard clock 100MHz
## VGA Resolution: 640x480 @ 60Hz
## Pixel Clock 25MHz
## Clock
set property -dict {PACKAGE PIN W5 IOSTANDARD LVCMOS33} [get ports {CLK}];
create clock -add -name sys clk pin -period 10.00 \
    -waveform {0 5} [get ports {CLK}];
## Use BTNC as Reset Button (active high)
set property -dict {PACKAGE PIN U18 IOSTANDARD LVCMOS33} [qet ports {RESET}];
## VGA Connector
set property -dict {PACKAGE PIN G19 IOSTANDARD LVCMOS33} [get ports {RED[0]}];
set property -dict {PACKAGE PIN H19 IOSTANDARD LVCMOS33} [get ports {RED[1]}];
set property -dict {PACKAGE PIN J19 IOSTANDARD LVCMOS33} [get ports
set property -dict {PACKAGE PIN N19 IOSTANDARD LVCMOS33}
set property -dict {PACKAGE PIN N18 IOSTANDARD LVCMOS33}
set property -dict {PACKAGE PIN L18 IOSTANDARD LVCMOS33}
set property -dict {PACKAGE PIN K18 IOSTANDARD LVCMOS33}
set property -dict {PACKAGE PIN J18 IOSTANDARD LVCMOS33}
                                                         [get ports
set property -dict {PACKAGE PIN J17 IOSTANDARD LVCMOS33} [get ports
set property -dict {PACKAGE PIN H17 IOSTANDARD LVCMOS33}
```


The code loads a file called "Pal24bit.mem". This is a colour palette which will include the background colour we are going to use. How this data was created will be explained in another tutorial

Either copy and paste the following data into a "Notepad" file.

00 01 00 21 0F 20 3C 0B 40 25 1C 0D 16 26 12 45 1D 0A 39 25 36 32 2C 01 CA 00 06 28 30 31 26 3D 01 43 4A 48 51 4F 00 8C 34 93 B1 26 B7 34 5F 36 7E 4B 2A 70 4A 71 31 69 04 8E 4B 19 6B 53 3D 52 5B 44 F1 21 F0 72 6B 07 62 69 67 F2 52 87 E1 5E 3F CD 58 D1 7D 89 04 51 8B 8E 3C 9B 29 85 8B 85 4E A9 01 CC 7D 3D B9 8D 07 9A 9C 00 F0 80 1E A2 96 8C 84 A7 67 BE 99 6A C1 9D 43 AD 9C AD 83 AD 8A 1A E2 2A A7 AD A9 B2 B9 00 E4 A9 0D 6C D1 00 FA B8 10 FD BE 32 AF DC 00 FD C3 4B C7 CC C9 F9 CF 00 D3 CA CE 7B EF 8D DF DA 2B 7F EA F4 E0 E4 00 E6 E6 85 E1 E7 E5 FC FC 00 F4 EE F1 F6 F9 F6

Save this in the "WIP\WIP.srcs\sources_1\new" folder and call it "pal24bit.mem"

Or copy and paste the downloaded file "pal24bit.mem" into the "WIP\WIP.srcs\sources_1\new" folder

Right click on "Design Sources" and left click to select "Add Sources" (step 11)

Select "Add or create design sources" and click "Next" (step 12)

Select "Add File".

Ensure that the path is set to "WIP\WIP.srcs\sources_1\new" and select "pal24bit.mem" and "OK"

Select "Finish" and this will put the file under "Simulation Sources: Memory File"

24

Click on "Run Synthesis" (if a window pops up asking if you would like to save the project click "Save") and when the "Launch Runs" window appears click "OK"

25

At this point you wil see "Running Synth_design: Cancel"

26

When the window "Synthesis Completed" appears ensure "Run implementation" is selected and click

When the "Launch Runs" window appears click "OK"

28

When the "Implementation Completed" window appears select "Generate Bitstream" and click "OK"

29 When the "Launch Runs" window appears click "OK"

When the "Bitstream Generation Completed" window appears you will need to make sure that the Basys 3 board jumper JP2 is set to USB and JP1 is in the JTAG position, connect the Basys 3 board to your computer and your VGA screen (as shown below) and switch the board on

Now select "Open Hardware Manager" and click "OK"

Next click "Open Target" and select "Auto Connect"

When the "Program Device" box appears click "Program"

Lastly, change the screen fill colour to black by changing the line of code in the "Top.v" module which states COL <= 8'h19; to read COL <= 8'h0; Then Run Synthesis etc. / program the board to test it

The VGA Signal Explained

VGA is an analogue video standard using a 15-pin D-sub connector. It doesn't require high clock speeds or complex encoding, so is an excellent place to begin when learning about FPGA graphics

VGA has five main signal pins: one for each of red, green, and blue signals and two for sync. Horizontal sync separates a line and Vertical sync separates a screen, also known as a frame

VGA signals have two phases: drawing pixels and the blanking interval. The sync signals occur within blanking intervals; separated from pixel drawing by the front porch and back porch. When VGA was developed monitors were based on cathode ray tubes (CRTs): the blanking interval gave time for voltage levels to stabilise and for the electron gun to return to the start of a line or screen

The below diagram shows the horizontal and vertical timings for a VGA signal

Recommended Sync Pulse (SP), Back Porch (BP), Display Area and Front Porch (FP) for the vertical / horizontal timings for a $640 \times 480 \otimes 60 \text{ Hz VGA}$ video mode

General timing:	Horizontal refresh rate: Vertical refresh rate: Pixel clock:	e:	31.25 kHz or (1 / 32 µs) 59.5238095238095 Hz or (25 mHz	1 / 16.8 ms)
Horizontal:	Scanline part	Pixels	1 / 25 mHz Pixel Clock	Time (µs)
	Visible area	640	0.04 μs	25.6 µs
	Front porch	16	0.04 µs	0.64 μs
	Sync pulse	96	0.04 μs	3.84 µs
	Back porch	48	0.04 μs	1.92 μs/
	Whole line	800	0.04 µs	32 µs
Vertical:	Frame part	Lines	1 / 31.25 kHz	Time (ms)
	Visible area	480	0.032 ms	15.36 ms
	Front porch	10	0.032 ms	0.32 ms
	Sync pulse	2	0.032 ms	0.064 ms

0.032 ms

0.032 ms

1.056 ms

16.8 ms

Pixel Clock = 800 whole line pixels * 525 vertical lines * 59.5238095238095 Hz (Vertical refresh rate: 1 / 16.8 ms) = 25,000,000 or 25MHz

33

525

Back porch

Whole frame

Explanation Of The Code

1 Top.v module

```
// Top Module
// Digilent Basys 3
// BeeInvaders Tutorial 1 : Onboard clock 100MHz
// VGA Resolution: 640x480 @ 60Hz
// Pixel Clock 25MHz
 ′/-----
`timescale 1ns / 1ps
// Setup Top Module
module Top(
  input wire CLK,
                                             // Onboard clock 100MHz : INPUT Pin W5
  input wire RESET,
                                             // Reset button: INPUT Pin U18
                                             // VGA horizontal sync : OUTPUT Pin P19
  output wire HSYNC,
  output wire VSYNC,
                                            // VGA vertical sync : OUTPUT Pin R19
                                            // 4-bit VGA Red: OUTPUT Pin G19, Pin H19, Pin J19, Pin N19
  output reg [3:0] RED.
                                            // 4-bit VGA Green: OUTPUT Pin J17, Pin H17, Pin G17, Pin D17
  output reg [3:0] GREEN,
                                             // 4-bit VGA Blue: OUTPUT Pin N18, Pin L18, Pin K18, Pin J18
  output reg [3:0] BLUE
  // Setup Reset button
  wire rst = RESET;
                                             // reset : active high (BTNC)
```

This defines the Input / Output pins used in the module: It consists of defining the 100MHz clock (CLK wire input), the reset button (RESET wire input) and the 5 sections of the VGA on the Basys 3 board (HSYNC wire output, VSYNC wire output, RED 4 bit register output, GREEN 4 bit register output and BLUE 4 bit register output).

A wire connecting rst to RESET is defined and this is explained in the vga640x480 module

```
// generate 25MHz pixel clock using a "Fractional Clock Divider"
reg [15:0] counter1;
reg pix_clk;
always @(posedge CLK)
  // divide 100MHz by 4 = 25MHz : (2^16)/4 = 16384 decimal or 4000 hex
  {pix_clk, counter1} <= counter1 + 16'h4000;
```

The 16 bit register counter1 (incremented by 4000 hex each CLK pulse) is added to pix_clk each CLK pulse (see below). Step 5 and Step 9 show counter1 rolling over into bit 16 (setting pix_clk accordingly), this method {pix_clk, counter} is known as a Verilog concatenation operator

```
counter1 Bits
                       Bit
                             <15----to----00>
           pix clk = 0 + 000000000000000 plus 4000h =
Step 1
           pix_clk = 0 + 010000000000000 plus 4000h =
Step 2
          pix_clk = 0 + 100000000000000 plus 4000h = pix_clk = 0 + 11000000000000 plus 4000h = pix_clk = 1 + 00000000000000 plus 4000h =
Step 3
Step 4
Step 5
           pix clk = 1 + 010000000000000 plus 4000h =
Step 6
           pix_clk = 1 + 100000000000000 plus 4000h =
Step 7
Step 8  pix_clk = 1 + 110000000000000 plus 4000h =
Step 9  pix_clk = 0 + 0000000000000 plus 4000h =
```

To reduce 100MHz clock to 25MHz you would divide 100MHz by 4. Therefore, we divide our 16 bits (2^16 or 1 0000 0000 0000 0000 binary) by 4, this equals 4000 hex or 0100 0000 0000 0000 binary. For greater accuracy you could use more than 16 bit. Notice this method produces an equal duty cycle

The code for controlling pix_clk is explained in the vga640x480 module

```
// instantiate vga640x480 code
wire [9:0] x;
                                                // pixel x position: 10-bit value: 0-1023 : only need 800
                                                // pixel y position: 10-bit value: 0-1023 : only need 525
wire [9:0] y;
                                                // high during active pixel drawing
wire active;
vga640x480 display (
   .i_clk(CLK),
   .i_pix_clk(pix_clk),
   .i_rst(rst),
   .o_hsync(HSYNC),
   .o_vsync(VSYNC),
   .o_x(x)
   .o_y(y),
   .o_active(active)
```

This part of the code links the Top module to the vga640x480 module.

An explanation of this will be given under the vga640x480 module

```
// setup palette and RGB registers
reg [7:0] palette [0:192];
                                                // 8 bit values from the 192 hex entries in the colour palette
reg [7:0] COL;
                                                // holds hex colour palette value to display on the screen
                                                // 8 bit hex value for RED
reg [7:0] colourR;
reg [7:0] colourG;
                                                // 8 bit hex value for GREEN
                                                // 8 bit hex value for BLUE
reg [7:0] colourB;
// load colour palette
initial begin
  $readmemh("pal24bit.mem", palette);
                                                // load 192 hex values into "palette"
end
```

This sets up the following registers:

palette: holds all 192 \times 8 bit values from the colour palette file (64 colours each with a Red, Green and Blue hex value)

COL: holds an 8 bit hex value (0 to 3F) which points to the colour palette (for the screen fill)

colourR: holds an 8 bit hex value for colour RED

colourG: holds an 8 bit hex value for colour GREEN

colourB: holds an 8 bit hex value for colour BLUE

Load into palette the 192 x 8 bit hex RGB values from the "pal24bit.mem" file

```
// fill the active area of the screen
  always @ (posedge CLK)
  begin
     COL <= 8'h19:
                                                // set colour to pink (decimal 25)
    if (active)
       begin
          colourR <= palette[(COL*3)];</pre>
                                                // retrieve RED palette hex value
          colourG <= palette[(COL*3)+1];</pre>
                                                // retrieve GREEN palette hex value
          colourB <= palette[(COL*3)+2];</pre>
                                                // retrieve BLUE palette hex value
         RED <= colourR[7:4];
                                                // output 4 left hand bits of the 8 bit RED value retrieved
         GREEN <= colourG[7:4];
                                                // output 4 left hand bits of the 8 bit GREEN value retrieved
          BLUE <= colourB[7:4];
                                                // output 4 left hand bits of the 8 bit BLUE value retrieved
       end
     else
       begin
         RED <= 0;
                                                // set RED, GREEN & BLUE
                                                // to "0" when x,y outside of
          GREEN <= 0:
          BLUE <= 0;
                                                // the active display area
       end
  end
endmodule
```

Set COL to 19 hex (25 decimal) which points to the colour pink in the colour palette

When the x,y pixel positions are within the active area (640 \times 480);

Retrieve colour / colour / colour B values from palette register pointed to by COL
Put the 4 left bits of colour R / colour G / colour B into VGA wires Red / Green / Blue
(the reason being, RGB wires are only 4 bits long and our colour palette values are 8 bit long)

When the x,y pixel positions are outside of the active area set Red / Green / Blue = 0

```
//----
// vga640x480 Module
// Digilent Basys 3
// BeeInvaders : Onboard clock 100MHz
// VGA Resolution: 640x480 @ 60Hz
// Pixel Clock 25MHz
//----
timescale 1ns / 1ps
// Setup vga640x480 Module
module vga640x480(
  input wire i clk,
                                            // 100MHz onboard clock
                                           // 25MHz pixel clock
  input wire i pix clk,
  input wire i_rst,
                                            // reset
                                           // horizontal sync
  output wire o_hsync,
  output wire o_vsync,
                                           // vertical sync
                                           // high during active pixel drawing
  output wire o_active,
                                           // current pixel x position
  output wire [9:0] o_x,
                                           // current pixel y position
  output wire [9:0] o_y
```

This defines the Input / Output pins used in the module: It consists of defining the 100MHz clock (as i_clk a wire input), 25MHz pixel clock (as i_pix_clk a wire input), reset button (as i_rst a wire input), horizontal sync (as o_hsync a wire output), vertical sync (as o_vsync a wire output), active pixel area (as o_active a wire output), current x position (as o_x a wire output) and current y position (as o_y a wire output)

```
// setup VGA timings
// VGA 640x480 Horizontal Timing (line)
localparam HSYNCSTART = 16;
                                              // horizontal sync start
localparam HSYNCEND = 16 + 96;
                                              // horizontal sync end
localparam HACTIVESTART = 16 + 96 + 48;
                                              // horizontal active start
localparam HACTIVEEND = 16 + 96 + 48 + 640; // horizontal active end
reg [9:0] H_SCAN;
                                              // line position
// VGA 640x480 Vertical timing (frame)
localparam VSYNCSTART = 10;
                                              // vertical sync start
                                              // vertical sync end
localparam VSYNCEND = 10 + 2;
                                              // vertical active start
localparam VACTIVESTART = 10 + 2 + 33;
localparam VACTIVEEND = 10 + 2 + 33 + 480;
                                              // vertical active end
reg [9:0] V_SCAN;
                                              // screen position
```

This defines the Start and End of the horizontal sync, vertical sync and active area

Two registers H_SCAN and V_SCAN are also created in respect of the x,y positions

```
// set sync signals to low (active) or high (inactive)
assign o_hsync = ~((H_SCAN >= HSYNCSTART) & (H_SCAN < HSYNCEND));
assign o_vsync = ~((V_SCAN >= VSYNCSTART) & (V_SCAN < VSYNCEND));

// set x and y values
assign o_x = (H_SCAN < HACTIVESTART) ? 0 : (H_SCAN - HACTIVESTART);
assign o_y = (V_SCAN < VACTIVESTART) ? 0 : (V_SCAN - VACTIVESTART);

// set active high during active area
assign o_active = ~((H_SCAN < HACTIVESTART) | (V_SCAN < VACTIVESTART));
```

If H_SCAN falls within the horizontal sync period set output o_hsync = 0 (invert the logical result) If V_SCAN falls within the vertical sync period set output o_vsync = 0 (invert the logical result)

If H_SCAN falls outside of the active area set output o_x = 0

else H_SCAN falls within the active area and set output o_x = current active x position

If V_SCAN falls outside of the active area set output o_y = 0

else V_SCAN falls within the active area and set output o_y = current active y position

If H_SCAN or V_SCAN fall outside of the active area set output o_active = 0 (invert the logical result of 1). Therefore, if they fall inside the active area set output o_active = 1 (invert the logical result of 0)

```
// check for reset / create frame loop
always @ (posedge i_clk)
  begin
    // check for reset button pressed
                                               // jump to start of a frame and reset registers
    if (i rst)
     begin
       H SCAN <= 0;
       V SCAN <= 0:
     end
     // loop through a full screen
     if (i_pix_clk)
     begin
       if (H_SCAN == HACTIVEEND)
                                              // if at the end of a line update registers
       begin
         H SCAN \leftarrow 0:
         V SCAN <= V SCAN + 1;
       end
       else
         H SCAN <= H SCAN + 1;
                                               // else increment horizontal counter
       if (V SCAN == VACTIVEEND)
                                              // if at the end of a screen reset vertical counter
          V SCAN <= 0;
     end
  end
endmodule
```

Check if the Reset button has been pressed and if true jump to the start of a frame

```
Every 25MHz (i_pix_clk) check;

if H_SCAN has reached the end of a line (HACTIVEEND)

if it has reset H_SCAN to zero and increment V_SCAN

else increment H_SCAN

if V_SCAN has reached the end of a frame (VACTIVEEND) reset V_SCAN to zero
```

```
## Constraints Module
## Digilent Basys 3
## BeeInvaders : Onboard clock 100MHz
## VGA Resolution: 640x480 @ 60Hz
## Pixel Clock 25MHz
##-----
## Clock
set property -dict {PACKAGE PIN W5 IOSTANDARD LVCMOS33} [get ports {CLK}];
create_clock -add -name sys_clk_pin -period 10.00 \
  -waveform {0 5} [get_ports {CLK}];
## Use BTNC as Reset Button (active high)
set_property -dict {PACKAGE_PIN U18 IOSTANDARD LVCMOS33} [get_ports {RESET}];
## VGA Connector
set property -dict {PACKAGE PIN G19 IOSTANDARD LVCMOS33} [get ports {RED[0]}];
set_property -dict {PACKAGE_PIN H19 IOSTANDARD LVCMOS33} [get_ports {RED[1]}];
set_property -dict {PACKAGE_PIN J19 IOSTANDARD LVCMOS33} [get_ports {RED[2]}];
set_property -dict {PACKAGE_PIN N19 IOSTANDARD LVCMOS33} [get_ports {RED[3]}];
set property -dict {PACKAGE_PIN N18 IOSTANDARD LVCMOS33} [get_ports {BLUE[0]}];
set property -dict {PACKAGE PIN L18 IOSTANDARD LVCMOS33} [get ports {BLUE[1]}];
set_property -dict {PACKAGE_PIN K18 IOSTANDARD LVCMOS33} [get_ports {BLUE[2]}];
set_property -dict {PACKAGE_PIN J18 IOSTANDARD LVCMOS33} [get_ports {BLUE[3]}];
set_property -dict {PACKAGE_PIN J17 IOSTANDARD LVCMOS33} [get_ports {GREEN[0]}];
set_property -dict {PACKAGE_PIN H17 IOSTANDARD LVCMOS33} [get_ports {GREEN[1]}];
set_property -dict {PACKAGE_PIN G17 IOSTANDARD LVCMOS33} [get_ports {GREEN[2]}];
set property -dict {PACKAGE PIN D17 IOSTANDARD LVCMOS33} [get ports {GREEN[3]}];
set_property -dict {PACKAGE_PIN P19 IOSTANDARD LVCMOS33} [get_ports {HSYNC}];
set_property -dict {PACKAGE_PIN R19 IOSTANDARD LVCMOS33} [get_ports {VSYNC}];
## Configuration options, can be used for all designs
set property CONFIG VOLTAGE 3.3 [current design]
set_property CFGBVS VCCO [current_design]
```

The constraints file should set up all the Input/s and Output/s used in the code

Each type of input or output has a designated pin number and the name used in the code for each input or output is included in the constraints file

PIN	NAME	PIN NAME	DESCRIPTION
W5	CLK	IO_L12P_T1_MRCC_34	Onboard 100MHz clock
U18	RESET	IO_L18N_T2_A11_D27_14	Reset Button
P19	HSYNC	IO_L10P_T1_D14_14	VGA horizontal sync
R19	VSYNC	IO_L10N_T1_D15_14/	VGA vertical sync
<i>G</i> 19	RED[0]	IO_L4N_T0_D05_14	VGA Red Bit O
H19	RED[1]	IO_L4P_T0_D04_14	VGA Red Bit 1
J19	RED[2]	IO_L6N_TO_D08_VREF_14	VGA Red Bit 2
N19	RED[3]	IO_L9N_T1_DQS_D13_14	VGA Red Bit 3
J 17	GREEN[0]	IO_L7P_T1_D09_14	VGA Green Bit O
H17	GREEN[1]	IO_L5P_T0_D06_14	VGA Green Bit 1
<i>G</i> 17	GREEN[2]	IO_L5N_T0_D07_14	VGA Green Bit 2
D17/	GREEN[3]	IO_0_14	VGA Green Bit 3
N18	BLUE[0]	IO_L9P_T1_DQS_14	VGA Blue Bit O
L18	BLUE[1]	IO_L8P_V1_D11_14	VGA Blue Bit 1
K18	BLUE[2]	IO_L8N_T1_D12_14	VGA Blue Bit 2
J18	BLUE[3]	IO_L7N_T1_D10_14	VGA Blue Bit 3

The VGA section of the Basys 3 board consists of 4 bit Red, 4 bit Green and 4 bit Blue (12 bit or 4096 colours) as shown below

Suggestions

1. Code improvements

Any improvements in the code used are most welcome. Please provide details of this for consideration in using in this tutorial

2. Errors or Mistakes

Any errors or mistakes spotted are most welcome, including incorrect explanations

3. Testbenches

I would like to include Testbenches in the tutorial. It would be most helpful to receive details / explanations of the following (including steps taken to arrive at the results);

- a) 100MHz clock compared to 25MHz clock
- b) Loading of the palette file hex values

Tutorial 2

The next tutorial will include;

- 1. Using "Gimp" (a free image editor) to obtain the RAW image data / Palette data from a graphics image and how to convert these to hex data files
- 2. How to display the Bee character at the bottom of the screen
- 3. A Sprite sheet showing the images / characters used in the game, along with hex data values for each character which can be imported into Gimp
- 4. As in tutorial 1, suggestions will be welcome / considered, including suggestions on the graphics used

		Appendix		
	3 Board Pins			
PIN A1 A10	BASYS 3	PIN NAME GND MGTREFCLK1N_216		
A11 A12 A13 A14	JB[0]	DXP_0 VP_0 VREFN_0 IO_L6P_T0_16		
A15 A16 A17 A18	JB[4] JB[1] JB[5] RsTx	IO_L6N_T0_VREF_16 IO_L12P_T1_MRCC_16 IO_L12N_T1_MRCC_16 IO_L19N_T3_VREF_16		
A19 A2 A3 A4		GND MGTPTXN1_216 GND MGTPRXN0_216		
A5 A6 A7 A8		GND MGTPRXN1_216 GND MGTREFCLKON_216		
A9 B1 B10 B11		GND MGTAVTT MGTREFCLK1P_216 DXN_0		
B12 B13		VREFP_0 VN_0		

B14	1	GND		_//		_//	
B15	JB[2]	IO_L11N_T1_SRCC_16					
B16	\	IO_L13N_T2_MRCC_16					//
B17		IO_L14N_T2_SRCC_16)/==	$= \langle$
B18		/IO_L19P_T3_16					\\
B19		VCCO_16					\ <u>\</u>
B2		MGTPTXP1_216					// \\
В3		GND					//
B4		MGTPRXPO_216					$= \langle$
B5		GND					\\
B6		MGTPRXP1_216					\\//
B7		GND					
В8		MGTREFCLKOP_216					//
В9		GND					$= \langle$
C1/		MGTAVCC					\\\
C10		GND					\\//
C11		CCLK_0					//
C12		GNDADC_0					// \
C13		VCCADC_0				> <u></u>	$= \langle \langle$
C14		VCCO_16					\\\
C15	1	IO_L11P_T1_SRCC_16					\\//
C16	77	IO_L13P_T2_MRCC_16					//
C17		IO_L14P_T2_SRCC_16					// \
C18		VCCO_16					
C19		GND					
C2 C3		GND					\\ //
// ;;		GND GND					\rangle
C4 C5		MGTAVTT					// \\
C6		GND					//
		MGTRREF_216					
C7 C8		TCK_0					\\
C9		VCCBATT_0					\rangle
Ca		VCCB/(11_0)					//
	\\\ //		//		//	//	//

D1	
D18	
D19 QspiDB[1]	
D2 MGTPTXPO_216	
	\rightarrow
D3 GND	\gt
E1 MGTAVCC	
E17 GND	
E18 IO_L3P_T0_DQS_PUDC_B_14	
E19 led[1] IO_L3N_T0_DQS_EMCCLK_14	. /
E2 MGTAVTT	\//
E3 GND	/\
F1 GND	
F17 VCCO_14	
F18 QspiDB[3] IO_L2N_T0_D03_14	
F19	\ //
F2 GND	$\rangle = \langle \langle \rangle \rangle$
F3 MGTAVCC	
G1 GND	ì
G10 VCCINT	
G11	\ //
G12 VCCO_0	\rangle
G13 VCCO_16	
G17 vgaGreen[2] IO_L5N_T0_D07_14	`
G18 QspiDB[2] IO_L2P_T0_D02_14	
G19 vgaRed[0] IO_L4N_T0_D05_14	\ //
G2 JA[3] IO_L1N_T0_AD4N_35	\\
G3 JA[7] IO_L1P_T0_AD4P_35	//
G7 MGTAVTT	′
GND GND	
G9 MGTAVCC	. /
H1 JA[4] IO_L3P_T0_DQS_AD5P_35	\mathbb{N}
H10 VCCINT	//\
	/

<u> </u>	H11		GND				
	H12		GND				
	H13		VCCAUX				// \
	H17	vgaGreen[1]	IO_L5P_T0_D06_14				
	H18		GND				$\backslash\!\!\backslash$
<u> </u>	H19	vgaRed[1]	IO_L4P_T0_D04_14				\mathbb{V}
//	H2	JA[6]	IO_L2P_T0_AD12P_35				
	H3		\VCCO_35 //				// \
	H7 >		GND				
	H8		GND				$\backslash \backslash$
//	_H9		MGTAVCC				\\//
	J1	JA[0]	IO_L3N_T0_DQS_AD5N_35				//
	J10		VCCINT				// \
	J11)		GND				(
	J12		GND				$\backslash\!\!\!\backslash$
	J13		VCCAUX				\\ //
//	J17	vgaGreen[0]	IO_L7P_T1_D09_14				<i>></i> (
	J18	vgaBlue[3]	IO_L7N_T1_D10_14				// \
	J19	vgaRed[2]	IO_L6N_T0_D08_VREF_14			\rightarrow	
	J2/	JA[2]	TO_L2N_TO_AD12N_35				$\backslash\!\!\backslash$
//	J3	JXADC[0]	IO_L7P_T1_AD6P_35				\mathbb{N}
//	J7		VCCO_35				//
/	J8		GND				// \\
	J9 K1		GND VCCO 35				
	K1 K12		VCCO_35 VCCO_14				$\backslash\!\!\backslash$
//	K12 K13		VCCO_14				\\
//	K17	J <i>C</i> [0]	IO_L12N_T1_MRCC_14				//(
ľ	K18	vgaBlue[2]	IO_L8N_T1_D12_14				// \
	K19	QspiCSn	IO_L6P_T0_FCS_B_14				
	K2	JA[5]	IO_L5P_TO_AD13P_35				\\
	K3	JXADC[4]	IO_L7N_T1_AD6N_35				
	K7	//	VCCO_35	//\\			// \
/							//

	//	/	
\rangle	K8		GND >
	L1	led[15]	IO_L6N_T0_VREF_35
	L10		VCCINT
	L11/		GND
	L12		/VCCO_14
<u>></u>	_L13	\rangle	VCCO_14
	L17	JC[4]	IO_L12P_T1_MRCC_14
	L18	vgaBlue[1]	IO_L8P_T1_D11_14
	L19		GND
	L2	JA[1]	IO_L5N_T0_AD13N_35
	Ľ3	JXADC[1]	IO_L8P_T1_AD14P_35
	L7		VCCO_35
ľ	L8		GND
	L9 >>===		GND
	M1	JXADC[6]	IO_L9N_T1_DQS_AD7N_35
	M10		/ VCCINT
//	M11		VCCBRAM
	M12		VCCO_14
	M13		GND
	M17		VCCO_14
	M18	JC[1]	// IO_L11P_T1_SRCC_14
\rangle	M19	J <i>C</i> [5]	IO_L11N_T1_SRCC_14
	M2	JXADC[2]	IO_L9P_T1_DQS_AD7P_35
	M3	JXADC[5]	IO_L8N_T1_AD14N_35
	M7//		VCCO_35
	M8		/VCCO_34
\rightarrow	M9		GND
	N1	JXADC[7]	IO_L10N_T1_AD15N_35
	N10		VCCINT
	N11		VCCBRAM
	N12		GND
<u>}</u>	N13		GND \
	N17	JC[2]	IO_L13P_T2_MRCC_14
		//	

	//	\\	
<u> </u>	N18	vgaBlue[0]	IO_L9P_T1_DQ5_14
	N19	vgaRed[3]	IO_L9N_T1_DQS_D13_14
	N2	JXADC[3]	IO_L10P_T1_AD15P_35
	N3/	led[13]	IO_L12P_T1_MRCC_35
	N7		/VCCO_34
\rangle	N8	\rangle	VCCO_34
	N9		GND
	P1	led[14]	IO_L19N_T3_VREF_35
	P17	J <i>C</i> [6]	IO_L13N_T2_MRCC_14
\	P18	J <i>C</i> [3]	TO_L14P_T2_SRCC_14
<u> </u>	P19	Hsync	IO_L10P_T1_D14_14
	P2		GND
	P3	led[12]	IO_L12N_T1_MRCC_35
	R1)		VCCO_34
	R17		/VCCO_14
//	R18	JC[7]	IO_L14N_T2_SRCC_14
//	R19	Vsync	IO_L10N_T1_D15_14
	R2	sw[15]	IO_L1P_T0_34
	R3 \	sw[11]	TO_L2P_T0_34
	T1//	sw[14]	IO_L3P_T0_DQ5_34
	T17	btnR	IO_L17P_T2_A14_D30_14
//	T18	btnU	IO_L17N_T2_A13_D29_14
	T19		GND
	T2	sw[10]	TO_L1N_T0_34
	T3//	sw[9]	TO_L2N_T0_34
	U1	sw[13]	IO_L3N_T0_DQS_34
$\rangle \!\!\!\!/ \!\!\!\!/ =$	U10		M2_0
	U11		INIT_B_0
	U12		DONE_0
	U13		VCCO_14
	U14	led[6]	TO_25_14
	U15	led[5]	IO_L23P_T3_A03_D19_14
	U16	led[0]	IO_L23N_T3_A02_D18_14
		//	

	//	\\ /	
<u>}</u>	U17	btnD	IO_L18P_T2_A12_D28_14
	U18	btnC	IO_L18N_T2_A11_D27_14
			IO_L15P_T2_DQS_RDWR_B_1
	U19	led[2]	
	U2	an[0]	IO_L9N_T1_DQ5_34
<u>}</u>	_U3	led[11]/	IO_L9P_T1_DQS_34_/
	U4	an[1]	IO_L11P_T1_SRCC_34
	U5	seg[4]	IO_L16P_T2_34
	U6 >		GND
	U7	seg[6]	TO_L19P_T3_34
//	U8	seg[2]/	IO_L14P_T2_SRCC_34/
	U9		GND
ĺ	V1		VCCO_34 //
	V10		PROGRAM_B_0
	V11		CFGBVS_0
///	V13	led[8]	IO_L24P_T3_A01_D17_14
//	V14	led[7]	IO_L24N_T3_A00_D16_14
	V15	sw[5]	IO_L21P_T3_DQS_14
	V16	sw[1]	TO_L19P_T3_A10_D26_14
			IO_L19N_T3_A09_D25_VREF
	V17	sw[0]	/_14
//	V18		GND
			IO_L15N_T2_DQS_DOUT_CS
	V19	led[3]	O_B_14
	V2//	sw[8]	IO_L5P_T0_34
	V3	led[9]	IO_L6P_T0_34
\rangle	V4	an[2]	IO_L11N_T1_SRCC_34
	V5	seg[5]	IO_L16N_T2_34
	V6		VCCO_34
	V7//	dp	IO_L19N_T3_VREF_34
	V8	seg[3]	IO_L14N_T2_SRCC_34
\rangle	V9		VCCO_0
	W1		GND
		//	

W1 W1 W1 W1	1 2 3 sw[7]	TDI_0 M1_0 GND IO_L22P_T3_A05_D21_14		
W1 W1 W1 W1	5 sw[4] 6 sw[2] 7 sw[3]	IO_L22N_T3_A04_D20_14 IO_L21N_T3_DQ5_A06_D22_ 14 IO_L20P_T3_A08_D24_14 IO_L20N_T3_A07_D23_14		
W1 W1 W2 W3 W4	9 btnL sw[12] led[10] an[3]	IO_L16P_T2_CSI_B_14 IO_L16N_T2_A15_D31_14 IO_L5N_T0_34 IO_L6N_T0_VREF_34 IO_L12N_T1_MRCC_34		
WE WE WE WE	seg[1] seg[0]	IO_L12P_T1_MRCC_34 IO_L13N_T2_MRCC_34 IO_L13P_T2_MRCC_34 TDO_0 TMS_0		

Resolution	Dofnooh	Pixel Clock	Hor	rizontal (pixel clo	cks)		Vertica	(rows)		h //2 a	
(pixels)	Refresh Rate (Hz)	(MHz)	Display	Front Porch	Sync Pulse	Back Porch	Display	Front Porch	Sync Pulse	Back Porch	h_sync Polarity	v_sync Polarity
640×350	70	25.175	640	16	96	_/48	350	37	2/	60	p	n //
640×350	85	31.5	640	32	64	96	350	//32	3	60	p /	n
640×400	70	25.175	640	16//	96	48	400//	12	2	35	//n	p \\
640×400	85	31.5	640	32	64	96	400	1	3	41	≒ (n	p /
640×480	60	25.175	640	16	96	48	480	10	2//	33	n	n ///
640×480	73	31.5	640	24	40	= (128	480)	2	29	n) <u></u>	
640×480	75	31.5	640	16 //	64	120	480 /	/ 1	3	16	/p/	n \
640x480	85	36	640	56	56	80	480	1	3	25	_//n	n
640×480	// 100	43.16	640	40	64	104	480	1	3 //	25	n	p //
720x400	85	35.5	/720	36	72	108	400	1_	3//	42	n	p_///
768×576	60	34.96	768	24	80	104	576	//1	3	17	n/	p
768×576	72	42.93	768	32//	80	112	576//	1	3	21	//n	p \
768x576	// 75	45.51	768	40	80	120	576	1	3	22	n	p /
768×576	85	51.84	768	40	80	120	576	1	3//	25	n	p //
768×576	100	62.57	768	48	80	128	576)/1	3	31	n) —	
800×600	56	36	800	24 //	72	128	600	/ 1	2	22	/p	p \\\
800×600	60	40	800	40	128	88	600	1	4	23	= {⟨ p	p
800×600	// 75	49.5	800	16	80	160	600	1	3 //	21	P	p //
800×600	72	50	800	56	120	/64	600	37	6/	23	p_	p_//
800×600	85	56.25	800	32	64	152	600	// 1	3	27	p	p
800×600	100	68.18	800	48//	88	136	600//	1	3	32	//n	p
1024×768	43	44.9	1024	8	176	56	768	0	8	41	p	p /

1024×768	60	65	1024	24	136	160	768	3	6	29		n
1024×768	// 70	75	1024	24	136	144	768	3	6//	29	n	n
1024×768	75	78.8	1024	16	96	176	768	1_1_	3	28	p _	p_//
1024×768	85	94.5	1024	48 /	96	208	768	// 1	3	36	p	p
1024×768	100	113.31	1024	72/	112	184	768//	1	3	42	//n	р
1152×864	// 75	108	1152	64	128	256	864	1	3 /	32	\\ p	р
1152×864	85	119.65	/1152	72	128	200	864	1	3	39	n	р //
1152×864	100	143.47	1152	80	128	208	864	<u>}</u>	3	47	<u>"</u>)	p (
1152×864	60	81.62	1152	64//	120	184	864 /	1	3	27	//n	р
1280×1024	60	108	1280	48	112	248	1024	1	3	38	-{{ p	р
1280×1024	// 75	135	1280	16	144	248	1024	1	3 //	38	p	р
1280×1024	85	157.5	1280	64	160	224	1024	<u>_1</u> _	3	44	p _	p//
1280×1024	100	//190.96	1280	96 /	144	240	1024	// 1	3	57	'n	p
1280×800	60	83.46	1280	64	136	200	800//	1	3	24	_//n	р
1280×960	// 60	102.1	1280	80	136	216	960	1	3 /	30	\\n	р
1280×960	72	124.54	1280	88	136	224	960	1	3//	37	n	p //
1280×960	75	129.86	1280	88	136	224	960	//1	3	38	<u>"</u>	
1280×960	85	148.5	1280	64//	160	224	960 /	1	3	47	/ p	р
1280×960	100	178.99	1280	96	144	240	960	1	3	53	∹ {{ n	р
1368×768	// 60	85.86	1368	72	144	216	768	1	3//	23	n	p /
1400×1050	60	122.61	1400	88	152	240	1050	<u></u>	3	33	n	p(/
1400×1050	72	// 149.34	1400	96 /	152	248	1050	// 1	3	40	'n	p
1400×1050	75	155.85	1400	96/	152	248	1050	1	3	42	_//n	р
1400×1050	// 85	179.26	1400	104	152	256	1050	1	3 /	49	\\n	р
1400×1050	100	214.39	1400	112	152	264	1050	1	3//	58	n	р //
1440×900	60	106.47	1440	80	152	232	900	//1	3	28	ŋ	
1600×1200	60	// 162	1600	64//	192	304	1200/	1	3	46	/ p	р
1600×1200	65	175.5	1600	64	192	304	1200	1	3	46		p

1600×1200	70	189	1600	64	192	304	1200	1	3	46	((p	р
1600×1200	// 75	202.5	1600	64	192	304	1200	1	3//	46	p	р
1600×1200	85	229.5	1600	64	192	304	1200	<u>_1</u>	3	46	p _	p _//
1600×1200	100	// 280.64	1600	128 /	176	304	1200	// 1	3	67	'n	р \
1680×1050	60	147.14	1680	104	184	288	1050	1	3	33	//n	р
1792×1344	// 60	204.8	1792	128	200	328	1344	1	3 //	46	\\n	p
1792×1344	75	261	1792	96	216	352	1344	1	3//	69	n	р //
1856×1392	60	218.3	1856	96	224	352	1392	<u> </u>	3	43	<u>n</u>)=	
1856×1392	75	// 288	1856	128	224	352	1392/	1	3	104	// n	р
1920×1200	60	193.16	1920	128	208	336	1200	1	3	38	⟨⟨ n	p
1920×1440	// 60	234	1920	128	208	344	1440	1	3 //	56	n	p /
1920×1440	75	297	1920	144	224	352	1440	<u>\\</u> 1	3	56	n	p_ _//