

Ships Segmentation in Aerial Imagery Using Deep Neural Networks

Naama Alon & Avshalom Dayan Supervised by Ran Ben Izhak

Project Goals

Detect and segment ships in aerial imagery.

Kaggle Contest

- Contest presented by Airbus.
- Detect and segment ships in aerial images under different conditions: clouds, haze, clusters and at ports.
- Data given by Airbus, 205K images.
- Evaluation metrics:

$$F_{\beta} = (1 + \beta^{2}) \cdot \frac{precision \cdot recall}{(\beta^{2} \cdot precision) + recall}$$
 $IoU(A, B) = \frac{A \cap B}{A \cup B}$

Solutions Exploration

- Faster R-CNN + Grabcut
- U-Net (standard)
- U-Net with ResNet34 encoder
 (Our final architecture)

Model Architecture - U-Net with ResNet Encoder

- The encoder is a pre-trained classification network (ResNet).
- The <u>decoder</u> consists of up sampling (deconvolution) and concatenation features from encoder followed by regular convolution operations.

Results Examples

Results

Solution	IoU	Rank
U-Net (standard)	0.694	820/880
U-Net+ ResNet34	0.836	181/880
U-Net+ ResNet34 (Optimized)	0.840	127/880

* Winners achieved IoU of 0.85448

Conclusion

- Achieved excellent detection and good segmentation results.
- Some limitation due to the quality of the labeling.