Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: An Introduction to Applied Maths

Module Code: MATH40007

Date: 18/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	√
Q2	
Q3	
Q4	
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page Number	Question Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

$$x_2 = \frac{1}{2}$$
, $x_3 = \frac{3}{5}$, $x_5 = \frac{2}{5}$

(c) (From (b), we send have that it unit current enters note)

We have Ohm's Law: $w_i = -c_i(x_a - x_b) - current$ Howing

Through edge i connecting nodes a and b. Forther. 17150, we conow

That the current Hows from high voltage to low toothage.

We now draw the following diagram:

The arrows snow the direction of the How according to Chas Law.

f = -1. $(x_6 - x_3) = -1.$ $(\frac{1}{2} - \frac{3}{5}) = \frac{3}{5} - \frac{1}{2} = \frac{1}{10}$

current Hows from node 3 to node 6.

Current through node a: \(\frac{1}{2}\), node \(6:\frac{2}{5}=2\) \(\frac{1}{2}:\frac{2}{5}=\frac{9}{10}\). Scale

(b)

luing (8): Scale our answer as well:

=> \(\frac{10}{9} = \frac{1}{3} - \text{currend hrom node 3 to node 6.} \)

Y6 = \(\frac{x_3 \cdot x_5}{2} = \)

\(\frac{4}{3} \times \frac{x_5}{2} = \frac{4}{3} \times \frac{x_5}{2} = \frac{7}{2} \)

= $1 \times 5. \frac{7}{2} = \times 24 \frac{3 \times 9}{2} = 1 \times 5 = \frac{2 \times 2}{4} + \frac{3 \times 9}{4}$

 $4 \times 3 = \times 2 + \frac{2 \times 2}{7} + \frac{3 \times 3}{7} + \frac{3 \times 3}{7} + \frac{2 \times 2}{19} + \frac{2 \times 2}{19} + \frac{1}{19} = \frac{10}{7} \times 2 + \frac{7}{7} = \frac{46}{19} \times 3$

=) x3 = 70 x7 + 49

447 = 476 ×1 + 49 + 2×2 + 3. (70 ×2 + 49) +1

=> X2 = 1 , => x3 = 3 , x5 = 2 , x6 = 1