РАЗГОВОР О ДЕЦИБЕЛАХ

При измерениях чего-то (например, напряжения) мы обычно думаем в прямых единицах (в вольтах). Но иногда более предпочтительно использовать относительную шкалу. В этом случае, наиболее часто используемой единицой измерений является децибел (дБ) - мощный инструмент, приводящий в замешательство начинающих. При знании происхождения этого термина и одного простого правила, затруднения могут быть исключены, а значение величины, выраженной в децибелах, может быть понято.

Александр Грехэм Белл стал известен благодаря изобретению телефона. Менее известны его работы по определению порога слышимости. В 1890 году он основал Ассоциацию глухих и плохо слышащих, которая действует до сих пор. Он был первым ученым, который количественно определил чувство слуха и установил, что слуховая восприимчивость зависит не от реального уровня мощности звуковой волны, достигающей нашего уха, а от ее логарифма.

Белл обнаружил, что порог слышимости ребенка составляет около 10^{-12} Вт/м 2 , а уровень, при котором возникают болевые ощущения - около 10 Вт/м 2 . Таким образом, диапазон громкости, нормально воспринимаемой человеком, составляет 13 порядков!

Исходя из полученных значений, Белл определил шкалу звуковой мощности от 0 до 13. Единицы громкости этой шкалы называются белами (последнее "л" от его фамилии было отброшено). Уровень звука тихого шепота составляет около 3 белов, а нормальной речи - около 6 белов.

Поскольку ощущение громкости базируется на логарифмической шкале уровня мощности, то преобразование между мощностью и громкостью по шкале Белла выглядит следующим образом: громкость (в белах) = log(P1/P0), где P0 - порог слышимости звука.

Следовательно, уровень звука в 4 бела соответствует звуковой мощности, равной $10^4 \times P0$.

Бел стал фактически стандартной единицей измерения логарифма отношения двух энергетических уровней: отношение, выраженное в белах, есть log(P1/P0), т.е. увеличение на 3 бела соответствует увеличению в 1000 раз. Если новое значение убывает, то логарифм отношения становится отрицательным. Чтобы сделать

обратное преобразование необходимо 10 возвести в степень, равную белам.

Важнейшая особенность белов состоит в том, что они относятся только к отношению двух мощностей или двух энергий. Если же есть необходимость описания отношения двух амплитудных сигналов, например, напряжений, то возможно лишь опираться на отношение мощностей, ассоциированных с этими напряжениями. Мощность пропорциональна квадрату напряжения или тока: $P \sim V^2$ и $P \sim I^2$.

Отношение двух напряжений, выраженное в белах, связано с отношением их мощностей: log(P1/P0) = 2log(V1/V0). Следовательно, отношение напряжений равно $V1/V0 = 10^{(белы/2)}$.

Стало достаточно общим выражать отношение в десятых долях бела или в децибелах (дБ). Отношение двух мощностей в дБ равняется $10\log(P1/P0)$, а напряжений - $10\times2\log(V1/V0)$. Для получения отношения напряжений необходимо выполнить преобразование V1/V0 = $10^{(д5/20)}$.

Порой достаточно мудрено определить, что считать амплитудной величиной, а что энергетической. Напряжение. ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов считаются амплитудными величинами. Когда происходит измерение в децибелах, то вычисляется логарифм отношения квадратов этих величин. Энергия, мощность и интенсивность являются энергетическими величинами, и в отношении логарифма они используются непосредственно.

Например, 5% напряжения одной цепи передается в другую цепь. Отношение напряжений в этом случае равно 0,05. Для измерения в децибелах необходимо взять логарифм отношения напряжений, умножить его на 2, чтобы получить отношение в белах, а затем умножить на 10 для получения отношения в дБ: $20\log(0,05) = -26$ дБ связи между сигналами.

В таблице приведены некоторые, часто используемые значения в децибелах и отношения амплитуд и мощностей.

Отношение амплитуд	Отношение мощностей	Значение в дБ
0,7	0,5	-3
0,5	0,25	-6
0,3	0,1	-10
0,1	0,01	-20
0,05	0,003	-25
0,01	10 ⁻⁴	-40
0,001	10 ⁻⁶	-60