1-var Calculus

Integration by parts

$$\int u \, dv = uv - \int v \, du$$

Quotient rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{u}{v}\right) = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

Fundamental theorem

Suppose f is continuous on [a, b].

Part 1 $F(x) = \int_a^x f(t) dt$ is continuous on [a, b] and differentiable on (a, b), and its derivative is f(x).

$$F'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, dt = f(x)$$

Part 2 Let F be an antiderivative of f on [a, b]. Then

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

Mean value theorem

Suppose f is continuous on [a,b], and f is differentiable on (a,b). Then there exists a c such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Limit definition of derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

and letting z = x + h,

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

2-var Calculus

Local extrema

Critical point is an interior point of the domain of a function f(x, y) where $f_x = f_y = 0$ or where one or both of f_x and f_y do not exist.

Solve for local extrema Solve $f_x = 0$ and $f_y = 0$ simultaneously.

Second derivative test Suppose f and its first and second partial derivatives are continuous throughout a disk centered at (a,b) and that $f_x(a,b) = f_y(a,b) = 0$. Then,

- 1. Local max at (a, b) if $f_{xx} < 0$ and discriminant > 0.
- 2. Local min at (a, b) if $f_{xx} > 0$ and discriminant > 0.
- 3. Saddle point at (a, b) if discriminant < 0.
- 4. Inconclusive at (a, b) if discriminant = 0.

Discriminant is defined as $f_{xx}f_{yy} - f_{xy}^2$.

Fubini's theorem Let f(x,y) be continuous on a region R.

1. If R is defined by $a \leq x \leq b$, $g_1(x) \leq y \leq g_2(x)$, with g_1 and g_2 continuous on [a, b], then

$$\iint_{R} f(x,y) \ dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \ dydx$$

2. If R is defined by $c \leq y \leq d$, $h_1(y) \leq x \leq h_2(y)$, with h_1 and h_2 continuous on [c, d], then

$$\iint_{R} f(x,y) \ dA = \int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} f(x,y) \ dxdy$$

Series

Useful inequalities

$$n! < n^n \quad \sqrt{n} < n \quad \ln n < n^c$$

Cauchy-Schwarz inequality

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

Convergence of some series

- 1. $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ diverges using comparison test with harmonic series.
- 2. $\sum_{n=0}^{\infty} \frac{\ln n}{n^k}$, where k > 2, converges using comparison test with *p*-series. Start with $\ln n < n$.

Absolute and conditional convergence

Absolutely convergent $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges.

Conditionally convergent $\sum_{n=1}^{\infty} a_n$ is conditionally convergent if $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} |a_n|$ diverges.

Convergence tests

Geometric series $\sum ar^n$ converges if |r| < 1; otherwise it diverges.

 $p ext{-series}$ $\sum 1/n^p$ converges if p>1; otherwise it diverges.

n-th term test If $\lim_{n\to\infty} a_n$ does not exist or $\neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Alternating Series test If $a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$, then $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.

Absolute convergence If a series is absolutely convergent, then it is convergent.

Convergence tests for series with positive terms

 a_n and b_n are all positive.

Integral test Suppose f is continuous, positive, decreasing on $[1, \infty)$ such that $a_n = f(n)$ for all n. Then

$$\sum_{n=1}^{\infty} a_n \text{ convergent} \Leftrightarrow \int_1^{\infty} f(x) \ dx \text{ convergent}$$

and the biconditional holds for divergence as well.

Comparison test Suppose $a_n \leq b_n$ for all n.

- (i) $\sum b_n$ convergent $\Rightarrow \sum a_n$ convergent
- (ii) $\sum a_n$ divergent $\Rightarrow \sum b_n$ divergent

Limit Comparison test If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c > 0, then both series converge, or both series diverge.

Ratio test Let $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$.

- (i) $0 \le L < 1 \Rightarrow \sum a_n$ is absolutely convergent (and convergent).
- (ii) $L > 1 \Rightarrow \sum a_n$ is divergent.

Root test Let $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$.

- (i) $0 \le L < 1 \Rightarrow \sum a_n$ is absolutely convergent (and convergent).
- (ii) $L > 1 \Rightarrow \sum a_n$ is divergent.

Power series

Radius of convergence Given a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, exactly one of the following possibilities holds:

(a) The series converges at x = a only (R = 0)

- (b) The series converges for all x $(R = \infty)$
- (c) There is a positive R such that the series converges if |x-a| < R and diverges if |x-a| > R.

R is the radius of convergence. We can compute R by the following methods:

- (i) If $\lim_{n\to\infty} \sqrt[n]{|c_n|} = L$, then R = 1/L.
- (ii) If $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = L$, then R = 1/L.

Interval of convergence The interval of convergence is the interval that consists of all values of x for which the series converges. Usually, the interval of convergence is

$$(a-R,a+R)$$

but the series might converge at endpoints, which need to be tested separately.

Differentiation/Integration Let

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

such that the power series has radius of convergence R>0. Then f is differentiable on the interval |x-a|< R and

(i)
$$f'(x) = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(ii)
$$\int f(x) dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} + C$$

Taylor series The Taylor series generated by f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Maclaurin series The Maclaurin series generated by f is the Taylor series at x = 0.

2

Standard Taylor series

$$\frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n \qquad |x| < 1$$

$$\frac{1}{1+x} = 1 - x + x^2 - \dots = \sum_{n=0}^{\infty} (-1)^n x^n \qquad |x| < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

$$\cos x = x - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} \qquad -1 < x \le 1$$

$$\ln\frac{1+x}{1-x} = 2\tanh^{-1}x$$

$$= 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right) = 2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} \qquad |x| < 1$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \qquad |x| \le 1$$

Limits relating to e^x

$$L = \lim_{n \to \infty} \left(\frac{n+k}{n} \right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n$$

$$\ln L = \lim_{n \to \infty} \left(n \ln \left(1 + \frac{k}{n} \right) \right)$$

$$= \lim_{n \to \infty} \left(\ln \left(1 + \frac{k}{n} \right) \div \frac{1}{n} \right) \qquad \frac{0}{0}$$

$$= \lim_{n \to \infty} \left(\frac{-\frac{k}{n^2}}{1 + \frac{k}{n}} \div \frac{-1}{n^2} \right)$$

$$= \lim_{n \to \infty} \left(\frac{k}{1 + \frac{k}{n}} \right)$$

$$= k$$

$$L = e^k$$