

Introdução ao Cálculo Diferencial e Integral

Função Modular e Funções Polinomiais

Prof. Dani Prestini

Definição:

Chamamos de função modular a função f(x) = |x| definida por:

 $f(x) = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$

Observe, então, que a função modular é uma função definida por duas sentenças.

Notemos que o domínio da função é o conjunto \mathbb{R} e a imagem da função é o conjunto \mathbb{R}_+ .

Exemplo 1 - f(x) = |3x + 4|

$$f(x) = \begin{cases} 3x + 4 & \text{se } 3x + 4 \ge 0 \\ -(3x + 4) & \text{se } 3x + 4 < 0 \end{cases} \Rightarrow \begin{cases} 3x + 4 & \text{se } x \ge -\frac{4}{3} \\ -3x - 4 & \text{se } x < -\frac{4}{3} \end{cases}$$

$$D(x) = \mathbb{R} e Im(f) = \mathbb{R}_+.$$

Exemplo 2 - f(x) = |-x + 7|

$$f(x) = \begin{cases} -x + 7 & \text{se } -x + 7 \ge 0 \\ -(-x + 7) & \text{se } -x + 7 < 0 \end{cases} \Rightarrow \begin{cases} -x + 7 & \text{se } x \le 7 \\ x - 7 & \text{se } x > 7 \end{cases}$$

$$D(x) = \mathbb{R} e Im(f) = \mathbb{R}_+.$$

Exemplo 3 -
$$f(x) = |x^2 + 3x - 10|$$

$$f(x) = \begin{cases} x^2 + 3x - 10 & \text{se } x^2 + 3x - 10 \ge 0 \\ -(x^2 + 3x - 10) & \text{se } x^2 + 3x - 10 < 0 \end{cases}$$
$$\Rightarrow \begin{cases} x^2 + 3x - 10 & \text{se } x \le -5 \text{ ou } x \ge 2 \\ -x^2 - 3x + 10 & \text{se } -5 < x < 2 \end{cases}$$

$$D(x) = \mathbb{R} e Im(f) = \mathbb{R}_+.$$

Exemplo 4 - f(x) = |x - 3| + 2

$$f(x) = \begin{cases} (x-3) + 2 & \text{se } x - 3 \ge 0 \\ -(x-3) + 2 & \text{se } x - 3 < 0 \end{cases} \Rightarrow \begin{cases} x - 1 & \text{se } x \ge 3 \\ -x + 5 & \text{se } x < 3 \end{cases}$$

$$D(x) = \mathbb{R} \text{ e Im}(f) = [2, +\infty[$$

Exemplo 5 - f(x) = |x + 5| + x - 2

$$f(x) = \begin{cases} (x+5) + x - 2 & \text{se } x + 5 \ge 0 \\ -(x+5) + x - 2 & \text{se } x + 5 < 0 \end{cases} \Rightarrow \begin{cases} 2x + 3 & \text{se } x \ge -5 \\ -7 & \text{se } x < -5 \end{cases}$$

$$D(x) = \mathbb{R} \text{ e Im}(f) = [-7, +\infty[$$

Exemplo 5 -
$$f(x) = |2x - 4| + |x - 1|$$

1ª. Parte

$$f_1(x) = |2x - 4| = \begin{cases} 2x - 4 & se & 2x - 4 \ge 0 \\ -(2x - 4) & se & 2x - 4 < 0 \end{cases}$$
$$\Rightarrow \begin{cases} 2x - 4 & se & x \ge 2 \\ -2x + 4 & se & x < 2 \end{cases}$$

2ª. Parte

$$f_2(x) = |x - 1| = \begin{cases} x - 1 & se & x - 1 \ge 0 \\ -(x - 1) & se & x - 1 < 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 1 & se & x \ge 1 \\ -x + 1 & se & x < 1 \end{cases}$$

Exemplo 5 -
$$f(x) = |2x - 4| + |x - 1|$$

$$f(x) = |2x - 4| + |x - 1| = \begin{cases} -3x + 5 & \text{se } x < 1 \\ -x + 3 & \text{se } 1 \le x < 2 \\ 3x - 5 & \text{se } x \ge 2 \end{cases}$$

Exemplo 5 -
$$f(x) = |2x - 4| + |x - 1|$$

$$f(x) = |2x - 4| + |x - 1| = \begin{cases} -3x + 5 & \text{se } x < 1 \\ -x + 3 & \text{se } 1 \le x < 2 \\ 3x - 5 & \text{se } x \ge 2 \end{cases}$$

$$D(x) = \mathbb{R} \text{ e Im}(f) = [1, +\infty[$$

Definição:

DEFINIÇÃO Função polinomial

Seja n um número inteiro não negativo, e sejam a_0 , a_1 , a_2 , a_3 , ... a_{n-1} , a_n números reais com $a_n \neq 0$. A função dada por

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

é uma função polinomial de grau n, em que a_n , a_{n-1} , ... $+a_2$, a_1 , a_0 são os coeficientes. O coeficiente principal é a_n .

A função zero dada por f(x) = 0 é uma função polinomial que não tem grau nem coeficiente principal.

EXEMPLO 1 Transformações no gráfico das funções monomiais

Descreva como transformar o gráfico de uma função monomial $f(x) = a_n x^n$ em um gráfico das funções dadas abaixo. Esboce o gráfico transformado e verifique a resposta, se possível, em calculadora com esse recurso. Calcule a localização do intercepto, o valor por onde o gráfico passa no eixo vertical y, como forma de conferir o gráfico transformado.

(a)
$$g(x) = 4(x+1)^3$$

(b)
$$h(x) = -(x-2)^4 + 5$$

SOLUÇÃO

(a) Você pode obter o gráfico de $g(x) = 4(x + 1)^3$ deslocando o gráfico de $f(x) = 4x^3$ uma unidade para a esquerda, como mostrado na Figura 10.1(a). O intercepto do gráfico de g é $g(0) = 4(0 + 1)^3 = 4$, que coincide com o valor observado no gráfico transformado.

(b) Você pode obter o gráfico de $h(x) = -(x-2)^4 + 5$ deslocando o gráfico de $f(x) = -x^4$ duas unidades para a direita e cinco unidades para cima, como mostrado na Figura 10.1(b). O intercepto do gráfico de $h \notin h(0) = -(0-2)^4 + 5 = -16 + 5 = -11$, que coincide com o valor observado no gráfico transformado.

Teste do termo principal para comportamento das funções polinomiais nos extremos do domínio

Para qualquer função polinomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ os limites $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to +\infty} f(x)$ são determinados pelo grau n do polinômio e seu coeficiente principal a_n .

Teste do termo principal para comportamento das funções polinomiais nos extremos do domínio

Para qualquer função polinomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ os limites $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to +\infty} f(x)$ são determinados pelo grau n do polinômio e seu coeficiente principal a_n .

EXEMPLO 4 Análise das funções polinomiais nos extremos do domínio

Descreva o comportamento das funções polinomiais nos extremos do domínio:

(a)
$$f(x) = x^3 + 2x^2 - 11x - 12$$

(b)
$$g(x) = 2x^4 + 2x^3 - 22x^2 - 18x + 35$$

- (a) O gráfico de $f(x) = x^3 + 2x^2 11x 12$ é demonstrado na Figura 10.7(a). A função f tem dois extremos locais e três raízes, que é o número máximo possível para esse polinômio. Os limites são $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$ e $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = -\infty$.
- (b) O gráfico de $g(x) = 2x^4 + 2x^3 22x^2 18x + 35$ é demonstrado na Figura 10.7(b). A função g tem três extremos locais e quatro raízes, que é o número máximo possível para esse polinômio. Os limites são $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 2x^4 = +\infty$ e $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 2x^4 = +\infty$.

Raízes das Funções Polinomiais

EXEMPLO 5 Raízes de uma função polinomial

Encontre as raízes da função $f(x) = x^3 - x^2 - 6x$.

SOLUÇÃO

Solução algébrica

Resolvemos a equação f(x) = 0 fatorando:

$$x^{3} - x^{2} - 6x = 0$$

$$x(x^{2} - x - 6) = 0$$

$$x(x - 3)(x + 2) = 0$$

$$x = 0 \text{ ou } x - 3 = 0 \text{ ou } x + 2 = 0$$

$$x = 0 \text{ ou } x = 3 \text{ ou } x = -2$$

As raízes de f são 0, 3 e -2.

Raízes das Funções Polinomiais

$$[-5, 5]$$
 por $[-15, 15]$

Raízes das Funções Polinomiais

EXEMPLO 6 – Encontre as raízes da função $f(x) = (x-2)^3 \cdot (x+1)^2$

$$[-4, 4]$$
 por $[-10, 10]$

Divisão de Polinômios

Ao fatorar um polinômio, descobrimos suas raízes e as características da representação gráfica. Veremos uma maneira de fatorar um polinômio utilizando a divisão de polinômios, bastante semelhante à divisão de números inteiros. Observe os exemplos a seguir:

EXEMPLO 8 Uso da divisão longa com polinômios

Use a divisão longa para encontrar o quociente e o resto quando $2x^4 - x^3 - 2$ é dividido por $2x^2 + x + 1$. Escreva com a notação do algoritmo da divisão e na forma de fração.

SOLUÇÃO

Vamos considerar $2x^4 - x^3 - 2$ como $2x^4 - x^3 + 0x^2 + 0x - 2$.

O algoritmo da divisão produz a forma polinomial:

$$2x^4 - x^3 - 2 = (2x^2 + x + 1)(x^2 - x) + (x - 2).$$

Na forma de fração, temos:

$$\frac{2x^4 - x^3 - 2}{2x^2 + x + 1} = x^2 - x + \frac{x - 2}{2x^2 + x + 1}.$$

Teorema do Resto e Teorema de D'Alembert

TEOREMA Teorema do resto

Se um polinômio f(x) é dividido por x - k, então o resto é r = f(k).

TEOREMA Teorema de D'Alembert

O teorema de D'Alembert é uma consequência imediata do teorema do resto. Uma função polinomial f(x) tem um fator x - k se, e somente se, f(k) = 0, isto é, a divisão de f(x) por x - k é exata se, e somente se, f(k) = 0.

Teorema do Resto

EXEMPLO 9 Uso do teorema do resto

Encontre o resto quando $f(x) = 3x^2 + 7x - 20$ é dividido por:

(a)
$$x-2$$
 (b) $x+1$ (c) $x+4$

(b)
$$x + 1$$

(c)
$$x + 4$$

SOLUÇÃO

(a) Podemos encontrar o resto sem usar a divisão longa, e sim o teorema do resto com k = 2: $r = f(2) = 3 \cdot 2^2 + 7 \cdot 2 - 20 = 12 + 14 - 20 = 6$

(b)
$$r = f(-1) = 3 \cdot (-1)^2 + 7 \cdot (-1) - 20 = 3 - 7 - 20 = -24$$

(c)
$$r = f(-4) = 3 \cdot (-4)^2 + 7 \cdot (-4) - 20 = 48 - 28 - 20 = 0$$

INTERPRETAÇÃO DO CASO QUANDO O RESTO É ZERO

Como em (c) o resto é 0, concluímos que x + 4 divide $f(x) = 3x^2 + 7x - 20$. Dessa forma, x + 4é um fator de $f(x) = 3x^2 + 7x - 20$; logo -4 é uma solução de $3x^2 + 7x - 20 = 0$. Portanto, -4é um valor do eixo horizontal x por onde o gráfico de $y = 3x^2 + 7x - 20$ passa. Podemos chegar a essa conclusão sem dividir, fatorar ou esboçar o gráfico.

Divisão de Polinômios pelo método de Briot-Ruffini

Continuamos com um caso especial de divisão de polinômio, com o divisor x - k. O teorema do resto nos dá uma maneira de encontrar o resto sem a técnica da divisão longa. Esse método mais curto para a divisão de um polinômio pelo divisor x - k é chamado método de **Briot Ruffini.**

Divisão longa

Briot Ruffini

Teorema das Raízes Racionais

TEOREMA Teorema das raízes racionais

Seja f uma função polinomial de grau $n \ge 1$ da forma:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

com todos os coeficientes como números inteiros e $a_0 \ne 0$. Se $x = \frac{p}{q}$ é uma raiz racional de f, onde p e q são primos entre si, então:

- p é um fator inteiro do termo independente a₀;
- q é um fator inteiro do coeficiente principal a_n.

Teorema das Raízes Racionais

EXEMPLO 10 Análise das raízes da função

Encontre as raízes racionais de $f(x) = x^3 - 3x^2 + 1$.

SOLUÇÃO

Como o coeficiente principal e o termo independente são ambos iguais a 1, de acordo com o teorema das raízes racionais, as raízes que f pode ter são 1 e -1. Verificando se são raízes de f, obtemos:

$$f(1) = (1)^3 - 3(1)^2 + 1 = -1 \neq 0$$

$$f(-1) = (-1)^3 - 3(-1)^2 + 1 = -3 \neq 0$$

Logo, conclui-se que f não tem raízes racionais. Portanto, suas raízes, caso existam, são irracionais. A Figura mostra que existem três raízes, e a nossa conclusão é que elas são irracionais.

Teorema das Raízes Racionais

EXEMPLO 10 Análise das raízes da função

Encontre as raízes racionais de $f(x) = x^3 - 3x^2 + 1$.

$$[-4,7;4,7]$$
 por $[-3,1;3,1]$

Teorema das Raízes Racionais

EXEMPLO 11 Análise das raízes da função

Encontre as raízes racionais de $f(x) = 3x^3 + 4x^2 - 5x - 2$.

SOLUÇÃO

Como o coeficiente principal é 3 e o termo independente é -2, pelo teorema das raízes racionais temos vários candidatos para serem essas raízes.

As possibilidades são:

Fatores de
$$\frac{-2}{1}$$
: $\frac{\pm 1}{\pm 1}$: ± 1 , ± 2 , $\pm \frac{1}{3}$, $\pm \frac{2}{3}$

Testando os valores na função verifica-se que 1 é uma de suas raízes racionais.

Teorema das Raízes Racionais

Vejamos pelo método de Briot Ruffini se 1 é raiz de f.

	1	3	4	-5	-2	
83		3	7	2	0	T()

Como o último número na segunda linha é 0, então x - 1 é um fator de f(x), e 1 é uma raiz de f. Calculando as outras raízes pelo algoritmo da divisão e usando fatoração, temos:

$$f(x) = 3x^3 + 4x^2 - 5x - 2$$
$$= (x - 1)(3x^2 + 7x + 2)$$
$$= (x - 1)(3x + 1)(x + 2)$$

Assim, as raízes racionais de f são 1, $-\frac{1}{3}$ e -2.

Teorema das Raízes Racionais

Gráfico:

[-4,7;4,7] por [-10,10]

Exercícios

1) Livro Texto: página 133 – Exercícios do 9 ao 12

página 134 – Exercícios do 25 ao 38

página 135 – Exercícios do 50 ao 58

página 136 – Exercícios do 61 ao 86

página 137 – Exercícios do 93 ao 104

página 138 - Exercícios do 109 ao 118

Obrigado