Task1_Exploratory_Data_Analysis

- 1. Load the transaction dataset below into an analysis tool of your choice (Excel, R, SAS, Tableau, or similar)
- 2. Start by doing some basic checks are there any data issues? Does the data need to be cleaned?
- 3. Gather some interesting overall insights about the data. For example -- what is the average transaction amount? How many transactions do customers make each month, on average?
- 4. Segment the dataset by transaction date and time. Visualise transaction volume and spending over the course of an average day or week. Consider the effect of any outliers that may distort your analysis.
- 5. For a challenge what insights can you draw from the location information provided in the dataset?
- 6. Put together 2-3 slides summarising your most interesting findings to ANZ management.

In [1]: ▶

- import pandas as pd
 import matplotlib.pyplot as plt
- 3 import seaborn as sns
- 4 import numpy as np

In [2]: ▶

```
df = pd.read_excel("ANZ synthesised transaction dataset.xlsx")
df.head(10)
```

Out[2]:

merchant_suburb	merchant_state	extraction	amount	transactic
Ashmore	QLD	2018-08- 01T01:01:15.000+0000	16.25	a623070bfead4541a6b0fff8a09e
Sydney	NSW	2018-08- 01T01:13:45.000+0000	14.19	13270a2a902145da9db4c951e04b
Sydney	NSW	2018-08- 01T01:26:15.000+0000	6.42	feb79e7ecd7048a5a36ec889d1a9
Buderim	QLD	2018-08- 01T01:38:45.000+0000	40.90	2698170da3704fd981b15e64a006
Mermaid Beach	QLD	2018-08- 01T01:51:15.000+0000	3.25	329adf79878c4cf0aeb4188b4691
NaN	NaN	2018-08- 01T02:00:00.000+0000	163.00	1005b48a6eda4ffd85e9b649dc94
Kalkallo	VIC	2018-08- 01T02:23:04.000+0000	61.06	b79ca208099c4c28aa5dae966096
Melbourne	VIC	2018-08- 01T04:11:25.000+0000	15.61	e1c4a50d6a0549cbb3710a62a2fa
Yokine	WA	2018-08- 01T04:40:00.000+0000	19.25	799e39eb2c1b411185424b0f2cd1
NaN	NaN	2018-08- 01T06:00:00.000+0000	21.00	798a77869014441b840a7a8a2340
4				
•				

```
In [3]:
                                                                                              H
    df.shape
Out[3]:
(12043, 23)
In [4]:
                                                                                              H
   df.duplicated().sum()
Out[4]:
0
                                                                                              H
In [37]:
 1 | max(df['date']) - min(df['date'])
Out[37]:
Timedelta('91 days 00:00:00')
In [5]:
                                                                                              H
    df.isnull().sum()
Out[5]:
                          0
status
card_present_flag
                       4326
bpay_biller_code
                      11158
account
                          0
                          0
currency
long_lat
                          0
txn_description
                          0
merchant_id
                       4326
merchant code
                      11160
first_name
                          0
balance
                          0
                          0
date
gender
                          0
                          0
age
                       4326
merchant_suburb
                       4326
merchant state
extraction
                          0
                          0
amount
                          0
transaction_id
country
                          0
customer_id
                          0
merchant_long_lat
                       4326
movement
dtype: int64
```

In [6]:

1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12043 entries, 0 to 12042
Data columns (total 23 columns):
status
                     12043 non-null object
card_present_flag
                     7717 non-null float64
bpay_biller_code
                     885 non-null object
account
                     12043 non-null object
                     12043 non-null object
currency
                     12043 non-null object
long_lat
txn_description
                     12043 non-null object
                     7717 non-null object
merchant_id
merchant_code
                     883 non-null float64
first_name
                     12043 non-null object
                     12043 non-null float64
balance
date
                     12043 non-null datetime64[ns]
gender
                     12043 non-null object
                     12043 non-null int64
age
                     7717 non-null object
merchant_suburb
                     7717 non-null object
merchant_state
extraction
                     12043 non-null object
                     12043 non-null float64
amount
                     12043 non-null object
transaction_id
country
                     12043 non-null object
customer_id
                     12043 non-null object
merchant_long_lat
                     7717 non-null object
movement
                     12043 non-null object
dtypes: datetime64[ns](1), float64(4), int64(1), object(17)
memory usage: 2.1+ MB
```

In [7]: ▶

```
1 df.columns
```

Out[7]:

In [8]: ▶

```
df.bpay_biller_code[~df.bpay_biller_code.isnull()][0:10]
# bpay_biller_code column has more null values and remaining are zero
```

Out[8]:

Name: bpay_biller_code, dtype: object

```
In [9]: ▶
```

```
df = df.drop(["bpay_biller_code", "currency", "first_name", "transaction_id", "country
df.head()
```

Out[9]:

	status	card_present_flag	account	long_lat	txn_description	merchant_id	merchant
0	authorized	1.0	ACC- 1598451071	153.41 -27.95	POS	81c48296- 73be-44a7- befa- d053f48ce7cd	
1	authorized	0.0	ACC- 1598451071	153.41 -27.95	SALES-POS	830a451c- 316e-4a6a- bf25- e37caedca49e	
2	authorized	1.0	ACC- 1222300524	151.23 -33.94	POS	835c231d- 8cdf-4e96- 859d- e9d571760cf0	
3	authorized	1.0	ACC- 1037050564	153.10 -27.66	SALES-POS	48514682- c78a-4a88- b0da- 2d6302e64673	
4	authorized	1.0	ACC- 1598451071	153.41 -27.95	SALES-POS	b4e02c10- 0852-4273- b8fd- 7b3395e32eb0	
4							>

```
In [10]:
```

```
fn = df['customer_id'].value_counts()
fig, ax= plt.subplots(figsize=(25,10))
ax.plot(fn)
ax.set_title('customer id vs Number of transcations done')
ax.set_xticklabels(fn.index, rotation=90)
ax.set_xlabel('customer_id')
ax.set_ylabel('count')
plt.show()
plt.savefig('customer id vs Number of transcations done.png')
```



```
In [11]:

1  df.txn_description.value_counts()

Out[11]:
```

SALES-POS 3934
POS 3783
PAYMENT 2600
PAY/SALARY 883
INTER BANK 742
PHONE BANK 101
Name: txn_description, dtype: int64

In [12]:

```
df['year'] = [i.year for i in df['date']]
df['month'] = [i.month for i in df['date']]
df['day'] = [i.day_name() for i in df['date']]
```

In [13]: ▶

```
day_count = df['day'].value_counts()
plt.figure(figsize=(15,7))
sns.countplot(df['day'])
plt.xlabel('Week Day')
plt.ylabel('Number of customers Visited')
plt.title('Week day vs Count')
plt.show()
plt.savefig('Week day vs Count.png')
```



```
In [14]:
```

```
1 df['day'].value_counts()
```

Out[14]:

Friday 2073 Wednesday 2063 Thursday 1801 Saturday 1709 Sunday 1550 Tuesday 1487 Monday 1360

Name: day, dtype: int64

In [15]: ▶

```
df[['year','month','day']].head()
```

Out[15]:

	year	month	day
0	2018	8	Wednesday
1	2018	8	Wednesday
2	2018	8	Wednesday
3	2018	8	Wednesday
4	2018	8	Wednesday

In [16]:

									, .
<pre>1 df.groupby(['month', 'year','day']).mean().reset_index()</pre>									
6	8	2018	Wednesday	0.775982	0.0	9290.821519	29.776371	196.750858	•
7	9	2018	Friday	0.783981	0.0	14471.007666	30.704791	245.075703	
8	9	2018	Monday	0.773333	0.0	14740.961529	29.680000	359.325506	
9	9	2018	Saturday	0.777143	NaN	16535.612980	30.429652	58.732345	
10	9	2018	Sunday	0.810304	NaN	12888.302959	29.751701	53.028690	
11	9	2018	Thursday	0.819892	0.0	17647.908854	31.682488	194.770573	
12	9	2018	Tuesday	0.796491	0.0	13065.228354	31.306584	215.111749	
13	9	2018	Wednesday	0.833803	0.0	13182.370235	30.033613	211.295479	
14	10	2018	Friday	0.797980	0.0	17950.319168	31.527473	277.389309	
15	10	2018	Monday	0.784983	0.0	17995.263092	29.568702	383.109351	
16	10	2018	Saturday	0.795620	NaN	19359.085414	31.501880	52.575677	
17	10	2018	Sunday	0.785901	NaN	16683.689017	29.612717	63.819191	
18	10	2018	Thursdav	0.808989	0.0	19607.663670	31.612795	178.732744	•

In [17]: ▶

1 df.describe(include='all')

Out[17]:

	status	card_present_flag	account	long_lat	txn_description	merchant_id	merchant_code
count	12043	7717.000000	12043	12043	12043	7717	883.0
unique	2	NaN	100	100	6	5725	NaN
top	authorized	NaN	ACC- 1598451071	153.41 -27.95	SALES-POS	106e1272- 44ab-4dcb- a438- dd98e0071e51	NaN
freq	7717	NaN	578	578	3934	14	NaN
first	NaN	NaN	NaN	NaN	NaN	NaN	NaN
last	NaN	NaN	NaN	NaN	NaN	NaN	NaN •

In [18]: ▶

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12043 entries, 0 to 12042
Data columns (total 21 columns):

status 12043 non-null object 7717 non-null float64 card_present_flag account 12043 non-null object 12043 non-null object long_lat txn_description 12043 non-null object merchant_id 7717 non-null object 883 non-null float64 merchant_code balance 12043 non-null float64

date 12043 non-null datetime64[ns]

gender 12043 non-null object 12043 non-null int64 age ${\tt merchant_suburb}$ 7717 non-null object merchant state 7717 non-null object 12043 non-null object extraction amount 12043 non-null float64 customer_id 12043 non-null object merchant_long_lat 7717 non-null object movement 12043 non-null object 12043 non-null int64 year 12043 non-null int64 month day 12043 non-null object

dtypes: datetime64[ns](1), float64(4), int64(3), object(13)

memory usage: 1.9+ MB

```
H
In [19]:
 1
    df.shape
 2
Out[19]:
(12043, 21)
In [20]:
                                                                                            H
    df['status'].value_counts()
Out[20]:
authorized
              7717
              4326
posted
Name: status, dtype: int64
In [21]:
                                                                                            H
    plt.hist(df['amount'])
    plt.xlabel('Average trainsaction')
    plt.title('Original Transaction Amount')
    plt.xlabel('Transaction Amount')
    plt.ylabel('Frequency')
    plt.show()
                   Original Transaction Amount
```



```
H
In [22]:
    Q1 = df.quantile(0.25)
    Q3 = df.quantile(0.75)
 3
 4
    IQR = Q3 - Q1
 5
    print(IQR)
card_present_flag
                        0.000
                        0.000
merchant_code
balance
                     9307.360
                       16.000
age
                        37.655
amount
                        0.000
year
                        2.000
month
dtype: float64
In [23]:
                                                                                            M
    IQR.index
Out[23]:
Index(['card_present_flag', 'merchant_code', 'balance', 'age', 'amount',
       'year', 'month'],
      dtype='object')
                                                                                            H
In [24]:
    rdf = df[['card_present_flag', 'merchant_code', 'balance', 'age', 'amount', 'month', ']
    outliers_removed_data = rdf[~ ((rdf < (Q1 - 1.5 * IQR)) \</pre>
 2
 3
                                           (rdf > (Q3 + 1.5 * IQR))).any(axis=1)]
 4
 5
    outliers_removed_data.shape
Out[24]:
(7730, 8)
```

In [26]:

```
plt.hist(outliers_removed_data['amount'])
plt.title('Transaction Amount after removal of Outliers')
plt.xlabel('Transaction Amount')
plt.ylabel('Frequency')
plt.show()
```



```
In [35]:
```

```
outliers_removed_data.groupby(['day']).mean().reset_index().plot(kind = 'line',x = 'day
plt.title('Average Transaction Amount Week Day')
plt.xlabel('Week Day')
plt.ylabel('Average Transaction Amount')
plt.show()
plt.savefig('Average Transaction Amount Week Day.png')
```


In [27]: ▶

```
customer_locations = [loc.split() for loc in df['long_lat'].unique()]
customer_id = df['customer_id']
customer_locations[0], customer_id[0]
```

Out[27]:

```
(['153.41', '-27.95'], 'CUS-2487424745')
```

In [33]:

```
import folium
map_result = folium.Map(location=['-27.95', '153.41'], tiles='Stamen Terrain', zoom_state
for loc in range(len(customer_locations)):
    customer_locations[loc].reverse()
    folium.Marker(customer_locations[loc], popup = customer_id[loc]).add_to(map_result)
map_result
```

Out[33]:


```
In [34]: ▶
```

```
1 map_result.save('Module1_Customer_Locations.html')
```