第2节 常规的数列求和方法(★★★)

内容提要

求数列的前n项和是常考的题型,除了基本公式外,还需掌握以下几种求和方法.

- 1. 错位相减法: 适用于"等差×等比"这类数列求前 n 项和,详细求解过程请参考本节例 1.
- 2. 裂项相消法:将 a_n 拆分成 $b_n b_{n+1}$ 或 $b_n b_{n+2}$,相加时能抵消一些项,达到求和的目的.

①常规裂项:设
$$\{a_n\}$$
是公差为 $d(d \neq 0)$ 的等差数列,且 $a_n \neq 0$,则 $\frac{1}{a_n a_{n+1}}$ 可拆分成 $\frac{1}{d}(\frac{1}{a_n} - \frac{1}{a_{n+1}})$, $\frac{1}{a_n a_{n+2}}$ 可

拆 分 成
$$\frac{1}{2d}(\frac{1}{a_n} - \frac{1}{a_{n+2}})$$
 . 例 如 , $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, $\frac{1}{(2n-1)(2n+1)} = \frac{1}{2}(\frac{1}{2n-1} - \frac{1}{2n+1})$,

$$\frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$
 \(\frac{\Pi}{n}. \)

②非常规裂项:有的裂项更复杂,但本质仍是将 a_n 拆分成 $b_n - b_{n+1}$,这类问题完成裂项的关键是寻找原有

通项中局部的前后项关系. 例如,
$$\frac{2^n}{(2^n-1)(2^{n+1}-1)} = \frac{1}{2^n-1} - \frac{1}{2^{n+1}-1}, \quad \frac{n+2}{n(n+1)\cdot 2^{n+1}} = \frac{1}{n\cdot 2^n} - \frac{1}{(n+1)\cdot 2^{n+1}},$$

$$\frac{1}{\sqrt{n}+\sqrt{n+1}} = \sqrt{n+1} - \sqrt{n} \ \ \mathfrak{P}.$$

- 3. 分组求和法: 常见的分组求和方法有两类.
- ①分别求和再相加:设 $a_n = b_n \pm c_n$,数列 $\{b_n\}$, $\{c_n\}$ 的前 n 项和分别为 B_n 和 C_n ,则数列 $\{a_n\}$ 的前 n 项和 $A_n = B_n \pm C_n$.
- ②项数分组再相加:将 $\{a_n\}$ 中的项按一定的规则分组,有明显规律,则可按项数分组再求和.
- 4. 倒序相加法: 若发现关于中间对称的两项相加好算,则可倒序再写一遍和式,与原和式相加.

典型例题

类型 I: 错位相减法求前 n 项和

【例 1】(1)设 $a_n = n \cdot 2^n$,求数列 $\{a_n\}$ 的前n项和 S_n .

(2) 设 $b_n = \frac{n}{2^n}$, 求数列 $\{b_n\}$ 的前n项和 T_n .

解: (1) ($\{a_n\}$ 是由等差数列 $\{n\}$ 和等比数列 $\{2^n\}$ 相乘构成,可用错位相减法求和,先写出 S_n)

由题意,
$$S_n = 1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + (n-1) \cdot 2^{n-1} + n \cdot 2^n$$
 ①,

(接下来在式①的两端同乘以等比数列的公比 2, 达到错位的目的)

所以
$$2S_n = 1 \times 2^2 + 2 \times 2^3 + 3 \times 2^4 + \dots + (n-1) \cdot 2^n + n \cdot 2^{n+1}$$
 ②,

(为方便观察, 把①②写成错位形式,
$$\begin{cases} S_n = 1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + (n-1) \cdot 2^{n-1} + n \cdot 2^n \text{ ①} \\ 2S_n = 1 \times 2^2 + 2 \times 2^3 + 3 \times 2^4 + \dots + (n-1) \cdot 2^n + n \cdot 2^{n+1} \text{ ②} \end{cases},$$

这样接下来两式相减的结果就容易看出来了)

①
$$-$$
 ②得: $-S_n = 2^1 + 2^2 + 2^3 + \dots + 2^n - n \cdot 2^{n+1} = \frac{2(1-2^n)}{1-2} - n \cdot 2^{n+1} = 2^{n+1} - 2 - n \cdot 2^{n+1} = (1-n) \cdot 2^{n+1} - 2$,所以 $S_n = (n-1) \cdot 2^{n+1} + 2$.

(2) (本题可以把 $\frac{n}{2}$ 变形成 $n \cdot (\frac{1}{2})^n$,再两端乘以等比数列的公比 $\frac{1}{2}$ 来错位;但像 $\frac{n}{2}$ 这种分式结构,也可在和式两端同乘以分母 2"的公比 2 来错位,相减时计算量会稍小)

曲题意,
$$\begin{cases} T_n = \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n-1}{2^{n-1}} + \frac{n}{2^n} & \text{①} \\ 2T_n = 1 + \frac{2}{2^1} + \frac{3}{2^2} + \dots + \frac{n-1}{2^{n-2}} + \frac{n}{2^{n-1}} & \text{②} \end{cases}$$

② - ①可得:
$$T_n = 1 + \frac{1}{2^1} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} - \frac{n}{2^n} = \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} - \frac{n}{2^n} = 2 - \frac{2}{2^n} - \frac{n}{2^n} = 2 - \frac{n+2}{2^n}.$$

【反思】① "等差×等比"这类数列可用错位相减法求和,像 $\frac{n}{2^n}$ 这种分式结构,写出求和式子后,两端同乘以 $\frac{1}{2}$ 或 2 都能错位,但采用同乘以 2 来错位,计算量稍小一些;②错位相减计算量大,可代 n=1 来检验计算结果是否正确,例如本题第(1)问,算得的 S_n 必须满足 $S_1=a_1$,经检验, $S_1=2=a_1$,是满足的,检验的过程在草稿纸上完成即可,不作为正式作答的步骤.

【变式】(2021•天津卷(改))设 $a_n = \sqrt{\frac{4n^2-1}{2\times 4^n}}$,数列 $\{a_n\}$ 的前n项和为 S_n ,证明: $S_n < 2\sqrt{2}$.

证明: (数列 $\{a_n\}$ 无法直接求前n项和,故考虑放缩成能求和的结构,再证不等式,观察发现只需把根号内分子的-1丢掉,就可以开根号,凑成"等差×等比"的结构,用错位相减法求和)

因为
$$a_n = \sqrt{\frac{4n^2 - 1}{2 \times 4^n}} < \sqrt{\frac{4n^2}{2 \times 4^n}} = \frac{\sqrt{2}n}{2^n}$$
,所以 $S_n = a_1 + a_2 + \dots + a_n < \sqrt{2}(\frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n-1}{2^{n-1}} + \frac{n}{2^n})$ ①,

(式①的括号内即为 $\left\{\frac{n}{2^n}\right\}$ 的前n项和,这部分在例 1 第(2)问已经求过,故下面直接给出)

设
$$T_n = \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n-1}{2^{n-1}} + \frac{n}{2^n}$$
,则由例 1 第(2)问的结果知 $T_n = 2 - \frac{n+2}{2^n}$,

代入①得:
$$S_n < \sqrt{2}(2 - \frac{n+2}{2^n}) = 2\sqrt{2} - \frac{\sqrt{2}(n+2)}{2^n}$$
, 因为 $\frac{\sqrt{2}(n+2)}{2^n} > 0$, 所以 $S_n < 2\sqrt{2}$.

【总结】形如"等差数列×等比数列"的数列求和问题,用错位相减法求解;有的类似于"等差×等比"但无法求和的数列,可考虑通过放缩成严格的"等差×等比"结构,再用错位相减法求和.

类型II: 裂项相消法求前n项和

【例 2】在数列
$$\{a_n\}$$
中, $a_n = a_{n-1} + 2(n \ge 2)$, $a_1 = 1$,则数列 $\left\{\frac{2}{a_n a_{n+1}}\right\}$ 的前 n 项和 $S_n = _____$.

解析: $a_n = a_{n-1} + 2 \Rightarrow$ 数列 $\{a_n\}$ 是公差 d = 2 的等差数列,结合 $a_1 = 1$ 可得 $a_n = a_1 + (n-1)d = 2n-1$,

注意到 $\frac{2}{a_n a_{n+1}}$ 中的 a_n 和 a_{n+1} 是 $\{a_n\}$ 的相邻项,这种情况常用裂项求和,故将其拆成两项之差,

所以
$$\frac{2}{a_n a_{n+1}} = \frac{2}{(2n-1)(2n+1)} = \frac{1}{2n-1} - \frac{1}{2n+1}$$
,

答案: $\frac{2n}{2n+1}$

【变式】已知正项数列 $\{a_n\}$ 的通项公式为 $a_n=n$,令 $b_n=\frac{1}{a_na_{n+2}}$,数列 $\{b_n\}$ 的前n项和为 T_n ,证明: $\frac{1}{3} \le T_n < \frac{3}{4}$.

解: 由题意, $b_n = \frac{1}{a_n a_{n+2}} = \frac{1}{n(n+2)}$,(分母的n和n+2是隔项关系,这种情况也可用裂项相消法求和,可

先将其拆分成
$$\frac{1}{n} - \frac{1}{n+2}$$
,但此时通分可得 $\frac{1}{n} - \frac{1}{n+2} = \frac{2}{n(n+2)}$,乘以 $\frac{1}{2}$ 可调整为 $\frac{1}{n(n+2)}$)

所以
$$b_n = \frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$
, 故 $T_n = \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{n-1} - \frac{1}{n+1} + \frac{1}{n} - \frac{1}{n+2} \right)$,

(此时若看不出抵消后剩哪些项,可先将整个式子调整顺序,按符号进行分组)

$$T_n = \frac{1}{2}[(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}) - (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2})], \quad (\frac{n}{2})$$

所以
$$T_n = \frac{1}{2}(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}) = \frac{3}{4} - \frac{1}{2}(\frac{1}{n+1} + \frac{1}{n+2})$$
,因为 $\frac{1}{2}(\frac{1}{n+1} + \frac{1}{n+2}) > 0$,所以 $T_n < \frac{3}{4}$;

另一方面,
$$\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$$
 随着 n 的增大而减小,所以当 $n=1$ 时, $\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$ 最大, T_n 最小,

故
$$T_n \ge \frac{3}{4} - \frac{1}{2} \times (\frac{1}{2} + \frac{1}{3}) = \frac{1}{3}$$
; 所以 $\frac{1}{3} \le T_n < \frac{3}{4}$.

【反思】 裂项相消公式不用全部记住,使用时可以先尝试拆分为两项,再补系数.

【例 3】已知
$$a_n = \frac{2^{n+1}}{(2^n-1)(2^{n+1}-1)}$$
,则数列 $\{a_n\}$ 的前 n 项和 $S_n = _____.$

解析: 注意到分母的 2^n-1 和 $2^{n+1}-1$ 分别是数列 $\{2^n-1\}$ 的第 n 项和第 n+1 项,属前后项关系,故可考虑裂

项,先拆成
$$\frac{1}{2^n-1}-\frac{1}{2^{n+1}-1}$$
,此时通分会发现结果为 $\frac{2^n}{(2^n-1)(2^{n+1}-1)}$,乘以 2 即得 a_n ,

由题意,
$$a_n = \frac{2^{n+1}}{(2^n-1)(2^{n+1}-1)} = 2(\frac{1}{2^n-1} - \frac{1}{2^{n+1}-1})$$
,

所以

$$S_n = 2\left(\frac{1}{2^1 - 1} - \frac{1}{2^2 - 1} + \frac{1}{2^2 - 1} - \frac{1}{2^3 - 1} + \frac{1}{2^3 - 1} + \frac{1}{2^3 - 1} - \frac{1}{2^4 - 1} + \dots + \frac{1}{2^{n-1} - 1} - \frac{1}{2^n - 1} + \frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1}\right) = 2\left(1 - \frac{1}{2^{n+1} - 1}\right).$$

答案:
$$2(1-\frac{1}{2^{n+1}-1})$$

【反思】对于较复杂的裂项,关键是观察出通项中具有前后项关系的结构,如本题的2"-1和2"+-1.

【例 4】已知
$$a_n = \frac{1}{\sqrt{n+\sqrt{n+1}}}$$
,则数列 $\{a_n\}$ 的前 n 项和 $S_n = _____.$

解析: 分母的 \sqrt{n} 和 $\sqrt{n+1}$ 是 $\{\sqrt{n}\}$ 的第n项和第n+1项,故考虑裂项,分母有理化即可裂项,

曲题意,
$$a_n = \frac{1}{\sqrt{n+\sqrt{n+1}}} = \frac{\sqrt{n+1} - \sqrt{n}}{(\sqrt{n} + \sqrt{n+1})(\sqrt{n+1} - \sqrt{n})} = \sqrt{n+1} - \sqrt{n} = -\sqrt{n} + \sqrt{n+1}$$
,

所以
$$S_n = -\sqrt{1} + \sqrt{2} - \sqrt{2} + \sqrt{3} - \sqrt{3} + \sqrt{4} - \cdots - \sqrt{n-1} + \sqrt{n} - \sqrt{n} + \sqrt{n+1} = -\sqrt{1} + \sqrt{n+1} = \sqrt{n+1} - 1$$
.

答案: $\sqrt{n+1}-1$

【例 5】已知
$$a_n = \frac{n+2}{n(n+1)2^{n+1}}$$
,则数列 $\{a_n\}$ 的前 n 项和 $S_n = _____$.

解析: 分母的 n 和 n+1 属前后项,考虑裂项,但还有一个 2^{n+1} ,它可与 2^n 形成前后项的关系,于是分子 分母同乘以 2^n ,得到 $\frac{(n+2)\cdot 2^n}{n\cdot 2^n\cdot (n+1)\cdot 2^{n+1}}$,此时分母的 $n\cdot 2^n$ 和 $(n+1)\cdot 2^{n+1}$ 就是前后项的关系了,裂项即可,

由题意,
$$a_n = \frac{n+2}{n(n+1)2^{n+1}} = \frac{(n+2)\cdot 2^n}{n\cdot 2^n\cdot (n+1)\cdot 2^{n+1}} = \frac{1}{n\cdot 2^n} - \frac{1}{(n+1)\cdot 2^{n+1}}$$
,所以

$$S_n = \frac{1}{1 \times 2^1} - \frac{1}{2 \times 2^2} + \frac{1}{2 \times 2^2} - \frac{1}{3 \times 2^3} + \frac{1}{3 \times 2^3} - \dots + \frac{1}{(n-1) \cdot 2^{n-1}} - \frac{1}{n \cdot 2^n} + \frac{1}{n \cdot 2^n} - \frac{1}{(n+1) \cdot 2^{n+1}} = \frac{1}{2} - \frac{1}{(n+1) \cdot 2^{n+1}}.$$

答案:
$$\frac{1}{2} - \frac{1}{(n+1) \cdot 2^{n+1}}$$

【反思】对于没有前后项关系的部分,也可考虑从结构特征出发,通过配凑,产生前后项关系.

【总结】从例 2 到例 5 可以看出,裂项的本质是把通项 a_n 拆分成另一个数列 $\{b_n\}$ 的前后项之差 b_n-b_{n+1} 或隔项差 b_n-b_{n+2} ,进而求和时能相互抵消一部分. 考题中最常见的是例 2 的等差数列衍生型,其它裂项尽管形式更复杂,但本质和例 2 的相同.

类型III: 分组求和法求前 n 项和

【例 6】已知数列
$$\{a_n\}$$
 的通项公式为 $a_n = 2^n - \frac{1}{n(n+2)}$, 求 $\{a_n\}$ 的前 n 项和 S_n .

解: (由于 2^n 和 $\frac{1}{n(n+2)}$ 均能求和,故分别求和,再相减,即可得到 $\{a_n\}$ 的前 n 项和 S_n)

由题意,
$$a_n = 2^n - \frac{1}{n(n+2)} = 2^n - \frac{1}{2}(\frac{1}{n} - \frac{1}{n+2})$$
,

所以
$$S_n = 2^1 - \frac{1}{2} \times (1 - \frac{1}{3}) + 2^2 - \frac{1}{2} \times (\frac{1}{2} - \frac{1}{4}) + 2^3 - \frac{1}{2} \times (\frac{1}{3} - \frac{1}{5}) + \dots + 2^n - \frac{1}{2} \times (\frac{1}{n} - \frac{1}{n+2})$$

$$= (2^{1} + 2^{2} + 2^{3} + \dots + 2^{n}) - \frac{1}{2}(1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{n} - \frac{1}{n+2})$$

$$= \frac{2(1 - 2^{n})}{1 - 2} - \frac{1}{2}(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}) = 2^{n+1} - 2 - \frac{1}{2}[\frac{3}{2} - \frac{2n+3}{(n+1)(n+2)}] = 2^{n+1} - \frac{11}{4} + \frac{2n+3}{2(n+1)(n+2)}.$$

【例 7】设数列 $\{a_n\}$ 的通项公式为 $a_n = (-1)^n (2n-1) \cos \frac{n\pi}{2} - 1$,其前 n 项和为 S_n ,则 $S_{2024} = _____.$

解析: $a_n \oplus (-1)^n (2n-1) \cos \frac{n\pi}{2} \pi - 1$ 两部分组成,可分别求和再相加,

设 $b_n = (-1)^n (2n-1)\cos\frac{n\pi}{2}$,数列 $\{b_n\}$ 的前n项和为 T_n ,则 $a_n = b_n - 1$,

 $\text{ ff } \text{ \mathbb{Y} } S_{2024} = a_1 + a_2 + \cdots + a_{2024} = b_1 - 1 + b_2 - 1 + \cdots + b_{2024} - 1 = (b_1 + b_2 + \cdots + b_{2024}) - 2024 = T_{2024} - 2024$

直接求 T_{2024} 不易,可先列出 $\{b_n\}$ 的前几项找规律,依次为0, -3, 0, 7, 0, -11, 0, 15, …,猜想若按

四项一组来分组,则每组的和均为 4,可通过计算 $b_{4k-3} + b_{4k-2} + b_{4k-1} + b_{4k} (k \in \mathbb{N}^*)$ 来验证猜想,

设
$$c_k = b_{4k-3} + b_{4k-2} + b_{4k-1} + b_{4k} (k \in \mathbb{N}^*)$$
,注意到当 n 为奇数时, $\cos \frac{n\pi}{2} = 0$,所以 $b_{4k-3} = b_{4k-1} = 0$,

$$\overrightarrow{m} b_{4k-2} = (-1)^{4k-2} [2(4k-2)-1]\cos(2k-1)\pi = (8k-5)\cos(-\pi) = 5-8k$$

$$b_{4k} = (-1)^{4k} (2 \times 4k - 1) \cos 2k\pi = 8k - 1, \text{ MUL } c_k = b_{4k-3} + b_{4k-2} + b_{4k-1} + b_{4k} = 5 - 8k + 8k - 1 = 4,$$

故
$$T_{2024} = (b_1 + b_2 + b_3 + b_4) + (b_5 + b_6 + b_7 + b_8) + \dots + (b_{2021} + b_{2022} + b_{2023} + b_{2024})$$

= $c_1 + c_2 + \dots + c_{506} = 4 \times 506 = 2024$,代入式①可得 $S_{2024} = 0$.

答案: 0

【例 8】 S_n 为等差数列 $\{a_n\}$ 的前 n 项和,且 $a_1=1$, $S_7=28$,记 $b_n=[\lg a_n]$,其中 [x]表示不超过 x 的最大整数,如 [0.9]=0, $[\lg 99]=1$.

- (1) 求 b_1 , b_{11} , b_{101} ;
- (2) 求数列 $\{b_n\}$ 的前 1000 项和.

解: (1) 设 $\{a_n\}$ 的公差为d,由题意, $S_7 = 7a_1 + 21d = 28$,结合 $a_1 = 1$ 可得d = 1,

所以 $a_n = a_1 + (n-1)d = n$, 从而 $b_n = [\lg n]$, 故 $b_1 = [\lg 1] = 0$, $b_{11} = [\lg 11] = 1$, $b_{101} = [\lg 101] = 2$.

(2) 由 (1) 知 $b_n = [\lg a_n] = [\lg n]$, (要对 $\{b_n\}$ 求和, 先分析 b_n 的取值规律, 底数为 10, 可按 10^k 分组)

当 $1 \le n \le 9$ 时, $0 \le \lg n < 1$,所以 $b_n = 0$;当 $10 \le n \le 99$ 时, $1 \le \lg n < 2$,所以 $b_n = 1$;

当 $100 \le n \le 999$ 时, $2 \le \lg n < 3$,所以 $b_n = 2$;当n = 1000时, $\lg n = \lg 1000 = 3$,所以 $b_{1000} = 3$;

(将{b_n}中的项按取值的不同进行分组,可以求出前1000项和)

【总结】若 $a_n = b_n + c_n$,可对数列 $\{b_n\}$ 和 $\{c_n\}$ 分别求和再相加;若数列 $\{a_n\}$ 不易直接求和,但将它的项进行适当的分组,有明显的规律,则可按项数分组来求和,如例 7 和例 8.

类型Ⅳ: 倒序相加法求和

【例 9】已知函数
$$f(x) = x + 3\sin(x - \frac{1}{2}) + \frac{1}{2}$$
,数列 $\{a_n\}$ 满足 $a_n = \frac{n}{2024}$,则 $f(a_1) + f(a_2) + \cdots + f(a_{2023}) = ____.$

解析: 由题意,
$$f(a_1) + f(a_2) + \dots + f(a_{2023}) = f(\frac{1}{2024}) + f(\frac{2}{2024}) + \dots + f(\frac{2023}{2024})$$
 ①,

式①中每项都不易代入解析式计算,故应考虑组合计算,注意到 $\frac{1}{2024} + \frac{2023}{2024} = \frac{2}{2024} + \frac{2022}{2024} = \cdots = 1$,所以

不妨看看当两个自变量之和为1时,它们的函数值之和有无规律,于是先计算f(x) + f(1-x),

曲题意,
$$f(x) + f(1-x) = x + 3\sin(x - \frac{1}{2}) + \frac{1}{2} + (1-x) + 3\sin[(1-x) - \frac{1}{2}] + \frac{1}{2}$$

$$=2+3\sin(x-\frac{1}{2})+3\sin(\frac{1}{2}-x)=2+3\sin(x-\frac{1}{2})-3\sin(x-\frac{1}{2})=2$$

确实有规律,故求和时两两组合,把自变量凑成和为1的结构,为了便于观察,我们采用倒序相加法

$$\exists S = f(a_1) + f(a_2) + \dots + f(a_{2023})$$
 ②, $\exists S = f(a_{2023}) + f(a_{2022}) + \dots + f(a_1)$ ③,

②+③可得:
$$2S = [f(a_1) + f(a_{2023})] + [f(a_2) + f(a_{2022})] + \dots + [f(a_{2023}) + f(a_1)]$$
 ④,

由题意,
$$a_1 + a_{2023} = a_2 + a_{2022} = \cdots = a_{2023} + a_1 = 1$$
,所以

$$f(a_1) + f(a_{2023}) = f(a_2) + f(a_{2022}) = \dots = f(a_{2023}) + f(a_1) = 2$$

代入④可得 $2S = 2 \times 2023$,所以 S = 2023.

答案: 2023

【总结】在求和时,若需要将关于中间对称的两项组合,则可采用倒序相加法.

强化训练

类型 I: 错位相减与裂项相消

- 2. $(2023 \cdot 辽宁模拟 \cdot ★★)$ 已知等比数列 $\{a_n\}$ 的公比 $q \neq 1$,且 $a_1 = 2$, $2a_1 + a_3 = 3a_2$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设数列 $\{a_n\}$ 的前n项和为 S_n ,求数列 $\{\frac{n}{S_n+2}\}$ 的前n项和 T_n ,证明: $T_n < 1$.

- 3. (★★★)在各项均为正数的等差数列 $\{a_n\}$ 中, a_1 , a_2 , a_6 构成公比不为 1 的等比数列, S_n 是数列 $\left\{\frac{1}{a_n a_{n+1}}\right\}$ 的前n 项和.
 - (1) 若 $a_1 = \frac{1}{3}$, 设 $b_n = a_n + \frac{2}{3}$, 求数列 $\left\{ \frac{1}{b_n b_{n+1}} \right\}$ 的前 n 项和 T_n ;
 - (2) 若对任意的 $n \in \mathbb{N}^*$, $S_n > \frac{1}{a_1}$, 证明: $a_1 < \frac{1}{3}$.

- 4. (★★★) 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = \frac{a_n}{2a_n + 1} (n \in \mathbb{N}^*)$.
- (1) 证明 $\left\{\frac{1}{a_n}\right\}$ 是等差数列,并求 a_n ;

《一数•高考数学核心方法》

- 5. $(2023 \cdot 兰州模拟 \cdot ★★★)$ 已知等差数列 $\{a_n\}$ 为递增数列,其前n项和为 S_n , $S_6 = 36$,且 a_1 , a_2 , a_5 成等比数列.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 令 $b_n = \frac{1}{a_n a_{n+1}}$,若 T_n 为数列 $\{b_n\}$ 的前 n 项和,且存在 $n \in \mathbb{N}^*$,使得 $T_n \lambda a_{n+1} \ge 0$ 成立,求实数 λ 的取值范围.

6. $(2022 \cdot 山西模拟 \cdot \star \star \star)$ 已知正项数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_2 = 2$, $a_n a_{n+2} = 2a_{n+1}^2 (n \in \mathbb{N}^*)$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \log_2 a_{n+1}$, 数列 $\left\{\frac{1}{b_n}\right\}$ 的前n项和为 S_n , 求数列 $\left\{\lg S_n\right\}$ 的前 99 项和.

- 7. (2022 •深圳模拟 •★★★★)设首项为 $a_1 = \frac{1}{2}$ 的数列 $\{a_n\}$ 的前 n 项积为 T_n ,且满足 $a_n a_{n+1} = (n+1)a_n na_{n+1}$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设数列 $\left\{\frac{n}{T_n}\right\}$ 的前 n 项和为 S_n ,求证: $\frac{1}{S_1} + \frac{1}{S_2} + \dots + \frac{1}{S_n} < \frac{3}{4}$.

参考公式: $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

8. (★★★) 数列 1, 1, 2, 1, 2, 4, 1, 2, 4, 8, …, 1, 2, 4, …, 2^{n-1} , … 的前 60 项和 S_{60} =_____.

9. $(2023 \cdot 辽宁沈阳模拟 \cdot ★★★)$ 已知函数 $f(x+\frac{1}{2})$ 为奇函数,且 g(x)=f(x)+1,若 $a_n=g(\frac{n}{2023})$,则 数列 $\{a_n\}$ 的前 2022 项和为_____.

- 10. (2023 北京模拟 ★★★)已知数列 $\{a_n\}$ 满足 $a_n = n \cdot \sin \frac{n\pi}{2}$,数列 $\{b_n\}$ 满足 $b_n = a_n + a_{n+1}$,则数列 $\{b_n\}$ 的 前 2023 项和为()
- (A) -2025 (B) -2023 (C) -2

- (D) 0

- 11. $(\star \star \star \star)$ 已知数列 $\{a_n\}$ 满足 $a_1 = 2$, $a_{n+1} = a_n^2 (n \in \mathbb{N}^*)$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \log_2 a_n + \log_2(\log_2 a_n)$, 求数列 $\{b_n\}$ 的前n项和 S_n .
- 12. $(2022 \cdot \text{西安模拟改} \cdot \star \star \star \star)$ 高斯是德国著名的数学家,近代数学奠基者之一,享有"数学王子"的称号. 设 $x \in \mathbb{R}$,用[x]表示不超过x的最大整数,则f(x) = [x]称为高斯函数. 已知数列 $\{a_n\}$ 满足 $a_1 = 1$,且 $(n+1)a_{n+1} na_n = 2n+1$.
- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若 $b_n = [\lg a_n]$, 数列 $\{b_n\}$ 的前n项和为 T_n , 求 T_{2022} .

《一数•高考数学核心方法》