Homework set 1

There are two problems with 4 points each. The points you gain from the homework may substitute some problems in the final exam

1. Let S^n denote the vector space of $n \times n$ real symmetric matrices. Let $K := S^n_+$ (resp. S^n_{++}) denote the set of positive semidefinite matrices, i.e., the set of real symmetric matrices having nonnegative (resp. strictly positive) eigenvalues.

We equip the vector space S^n with the (trace) inner product $\langle A, B \rangle := \text{Tr}AB$, which induces a norm in S^n given by $||A|| := \sqrt{\langle A, A \rangle}$, and so a distance d(A, B) = ||A - B||.

Show that K is a closed convex cone in S^n with interior S^n_{++} and if $0 \neq A \in K$ implies that $-A \notin K$. Show also that $(K)^+ = K$ where

$$K^+ := \{ B \in S^n : \langle A, B \rangle \ge 0, \forall A \in K \}.$$

2. Show that

$$L = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : t \ge ||x||_2\}$$

is a convex cone, and the function $f(x,t) = -\log(t^2 - x^T x)$ is convex on this convex cone.