Class 16: Analyzing sequencing data in the cloud mini-project

2023-05-26

Downstream Analysis

First we need to install tximport:

```
# BiocManager::install("tximport")
  library(tximport)
  # setup the folder and filenames to read
  folders <- dir(pattern="SRR21568*")</pre>
  samples <- sub("_quant", "", folders)</pre>
  files <- file.path( folders, "abundance.h5" )</pre>
  names(files) <- samples</pre>
  txi.kallisto <- tximport(files, type="kallisto", txOut=TRUE)</pre>
1 2 3 4
  # quantifying the reads
  head(txi.kallisto$counts)
                SRR2156848 SRR2156849 SRR2156850 SRR2156851
ENST00000539570
                                    0.00000
                                          2.62037
                                                            0
ENST00000576455
                                    0.00000
ENST00000510508
                                1 1.00000
ENST00000474471
```

ENST00000381700	0	0	0.00000	0
ENST00000445946	0	0	0.00000	0

Transcripts for each sample:

```
colSums(txi.kallisto$counts)

SRR2156848 SRR2156849 SRR2156850 SRR2156851
2563611 2600800 2372309 2111474
```

How many transcripts are detected in at least one sample:

```
sum(rowSums(txi.kallisto$counts)>0)
```

[1] 94561

Now filtering the annotated transcripts with no reads and changes:

```
# no reads
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]

# no changes
keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

Principal Component Analysis

```
pca <- prcomp(t(x), scale=TRUE)
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	183.6379	177.3605	171.3020	1e+00
Proportion of Variance	0.3568	0.3328	0.3104	1e-05
Cumulative Proportion	0.3568	0.6895	1.0000	1e+00

Using the first two principal components to visualize the data:

Now PC1 vs PC3:

PC2 vs PC3:

Differential-Expression Analysis

DESeq2:

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

```
The following objects are masked from 'package:matrixStats':
```

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(sampleTable) <- colnames(txi.kallisto$counts)</pre>
```

```
dds <- DESeqDataSetFromTximport(txi.kallisto,</pre>
                                   sampleTable,
                                   ~condition)
using counts and average transcript lengths from tximport
  dds <- DESeq(dds)
estimating size factors
using 'avgTxLength' from assays(dds), correcting for library size
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
-- note: fitType='parametric', but the dispersion trend was not well captured by the
   function: y = a/x + b, and a local regression fit was automatically substituted.
   specify fitType='local' or 'mean' to avoid this message next time.
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
  head(res)
log2 fold change (MLE): condition treatment vs control
Wald test p-value: condition treatment vs control
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                              lfcSE
                                                         stat
                                                                 pvalue
                <numeric>
                               <numeric> <numeric> <numeric> <numeric>
```

NA

NA

3.155061 4.86052 0.6491203 0.516261

NA

NA

ENST00000539570 0.000000

ENST00000576455 0.761453

ENST00000510508	0.000000	NA	NA	NA	NA
ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846
ENST00000381700	0.000000	NA	NA	NA	NA
ENST00000445946	0.000000	NA	NA	NA	NA
	padj				
	<numeric></numeric>				
ENST00000539570	NA				
ENST00000576455	NA				
ENST00000510508	NA				
ENST00000474471	NA				
ENST00000381700	NA				
ENST00000445946	NA				

summary(res)

out of 87571 with nonzero total read count

adjusted p-value < 0.1

LFC > 0 (up) : 348, 0.4% LFC < 0 (down) : 355, 0.41% outliers [1] : 0, 0%

low counts [2] : 57836, 66%

(mean count < 6)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results