Simulation of Experimentation in Networks

Undergraduate Research Week

Shiyu Ma 23'
Math/Econ+Statistics
Mentored by Professor Moritz Meyer-ter-Vehn

How Innovations Diffuse?

- Innovations: key drivers of long-term economic growth
- Two ways of gathering information:
 - individual experimentation vs. social learning
- Individual only: time-consuming, slow development
- Social only: crowds out new information generation

Hope to find the best social network density for innovation diffusion!

Information Diffusion in Social Network:

- When social learning crowds out individual experimentation under different network density?
- Learning curve of individuals vs. network density
- Social welfare vs. network density
- Interpret Theory vs. Simulation

Model Setting

- Individuals can know their own and their neighbors' success
- Core-Periphery Network: K=core, L=periphery
- Define τ = individual's cutoff time to stop own experiment
 - optimal τ achieves equilibrium in individual's cost-benefit function
- If τ + 0.01, the effect on the cost-benefit function:
 - + expected benefit of a potential private success
 - expected benefit of future social learning
 - marginal effort cost c

Solving Cutoff Time across Network Density

- x=benefit of private success, discounted at rate r=2
- y=future benefit of success=(x-c)/r=1
- c=cost of private experiment=1
- I=number of individuals in network=1000
- K=number of individuals in core

• Indifference condition for core agents
$$k$$

$$\psi_{k,\tau_k} = P^{\emptyset}(I\tau_k) \left(x + y \left(1 - \left(1 - e^{-(r+L)(\tau_\ell - \tau_k)} \right) \frac{L}{r+L} \right) \right) - c \le 0$$

• In difference condition for peripheral agents ℓ

$$\psi_{\ell,\tau_{\ell}} := P^{\emptyset} \left(B_{\tau_{\ell}} + \tau_{\ell} \right) \left(x + ry \int_{\tau_{\ell}}^{\infty} e^{-r(t - \tau_{\ell}) - (B_{t} - B_{\tau_{\ell}})} dt \right) - c = 0.$$

K	1	2	5	10	15	20	25	30	40	70	100
τ_ k	0	0	0	0	0.00001	0.00002	0.00003	0.00004	0.00006	0.00010	0.00014
τ_Ι	0.20323	0.09393	0.02653	0.00885	0.00511	0.00404	0.00356	0.00328	0.00295	0.00250	0.00228

Learning Curve of Peripherials vs. Network Density

- As K increases:
 - No crowding out
 - Crowding out after a while
 - Crowding out immediately
- Core stops even earlier
- Total information
 generated in society
 drops as density rises

Social Welfare vs. Network Density

- Theorem:
 - Welfare V is a single-peaked function of network density. It strictly rises, attains the benchmark V* and then strictly falls
- Simulation:
 - V rises as K<20
 - V approaches V* as K=20
 - V drops as K>20
- Optimal Density: K=20 (for I=1000)

Next Step

- Compare results of different parameters, aligned with real-life settings
 - I increases: larger network
 - p_o decreases: worse prior for success
- Expand simulation to other network formations
 - Random network
 - Trees

Thank you