Le texte écrit en police Typewriter correspond au langage mathématica

Q-2 Tracer le cercle d'équation (dite implicite) : $x^2 + y^2 = 1$ en utilisant ContourPlot

Si ContourPlot ne marche pas, ouvrir le package Graphics en tapant << Graphics 'puis utiliser la commande ImplicitPlot

Soient F un point du plan \mathcal{P} , e un réel strictement positif et (\mathcal{D}) une droite du plan \mathcal{P} ne contenant pas F. On appelle conique de foyer F, d'excentricité e et de directrice (\mathcal{D}) , notée (\mathcal{C}) , l'ensemble des points M du plan \mathcal{P} tels que MF/MH = e où H est le projeté orthogonal du point M sur la droite (\mathcal{D}) , MH est donc la distance du point M à la droite (\mathcal{D})

On dit que (C) est : une ellipse si 0 < e < 1une parabole si e = 1une hyperbole si e > 1

Q-1 On suppose pour cette question que F = O et (\mathcal{D}) est la droite d'équation x = 1, si M(x, y) alors H(1, y) et :

$$MF = MO = OM = \sqrt{x^2 + y^2}$$

$$MH = \sqrt{(1-x)^2 + (y-y)^2} = |x-1|$$

Tracer la conique obtenue pour e=1/2, e=1 et $e=\sqrt{2}$, faire varier x de -3 à 5 et y de -3 à 3, faire apparaître les axes de coordonnées en rajoutant Axes -> True en option de ContourPlot. Dans un deuxième temps, faire apparaître la droite (\mathcal{D}) sur le schéma précédent en mettant deux équations dans ContourPlot en procédant comme suit : ContourPlot [{eq1,eq2},...

On admet dans la suite que :

 (\mathcal{E}) est une ellipse si et seulement s'il existe un repère orthonormé dans lequel (\mathcal{E}) a pour équation

$$(\mathcal{E}): \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

a et b étant deux réels vérifiant 0 < b < a

 (\mathcal{P}) est une parabole si et seulement s'il existe un repère orthonormé dans lequel

 (\mathcal{P}) a pour équation

$$(\mathcal{P}): y^2 = 2px$$

p étant un réel strictement positif

 (\mathcal{H}) est une hyperbole si et seulement s'il existe un repère orthonormé dans lequel

 (\mathcal{H}) a pour équation

$$(\mathcal{H}): \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

a et b étant deux réels strictement positifs