N	ect answe	MOS	/				(= =				
value	thate connect	isgns	1	(0		(I) - (I)	(1-) =				
rule	twitoup :	ssN.	\wedge	(7		3 -	B(r) = (r) y				
(a) Define $h(x) = \frac{f(x)}{\theta(x)}$ use the table to find the value for $h'(2)$.											
		Ţ	Z	z-	Ţ	3	7				
		0	Ţ	Ţ-	7	7					
		1-	7-	Ţ	3	Ţ					
		(x),6	(x) β	(x),f	(x) f	x					
	(6 marks)						r noiteauQ				
	otain full marks.	o oj gniking	equire wo	2 marks r	nore than	y y jion s	Note: All part questions				
	s directed to	ון לחבנום	rcher:	səT _		hos	Name: Menterna				
	genotes working genotes allowed ator Assumed so 7 Questions	One-pag	NIMPA Vianiadaous &								
	- 12 Methods TEST 1 Ebruary 2019 minutes working	Friday 22		OF.	Independent Public Schooling. Exceptional students. Proceptional schooling. Exceptional students.						
	loodəs naəboM di	həq	spoqį	9M soitsme	odisM St ne	ээХ	T 986 q				

ed consum.	(DILL)	^			0	8 - =						
titute correct values	15975	1		(1-) >	(r-)	× <u> </u>						
chain rule	Use	1		(1),8) × p[(1)	B)9 = (1)]						
(b) Define $I(x) = [g(x)]^5$, use the table to find the value for $I'(1)$.												
act answer	uos	1	\ ~ Z									
thate conect values	squs	1	$\frac{z^{(1)}}{(0)(z)-(1)(1-)}=$									
e quetient rule	3N	^	$V(z) = \frac{[g(z)]^2}{[g(z)]^2}$									
(a) Define $h(x) = \frac{\theta(x)}{\theta(x)}$ use the table to find the value for $h'(Z)$.												
	Ţ	7	z-	Ţ	3							
	0	I	Ţ-	7	7							
	Ţ-	7-	Ţ	3	Ţ							
	(x),6	(x) 6	(x),f	(x) f	x							

Question 2

(3 marks)

Find the equation of the line tangent to the function $y = (3x^2 - 2)^3$ at the point (2.2). Give your answer in the gradient-intercept form.

(2,1000)

$$\frac{dy}{dx} = 3(3x^2 - 2)^2 (6x)$$

$$x = 2, \frac{dy}{dx} = 3600$$
find $\frac{dy}{dx}$ at $x = 2$

$$x=2$$
, $\frac{dy}{dx}=3600$

 $y = 3600 \times + C$ 1000 = 7200 + C 1.c = -6200 Solve for constant

: y = 3600 x - 6200 V State equation of tangent

Question 3

(3 marks)

If $\frac{dy}{dx} = (5x + 3)^3$, and y = 50 when x = 1, determine the expression of y in terms of x.

$$\int (5x+3)^3 dx$$

$$\int (5x+3)^3 dx \qquad \qquad 50 = \frac{(5+3)^4}{300} + C$$

$$=\frac{(5\times+3)^4}{4\times5}+0$$

$$= \frac{(5x+3)^4}{4\times 5} + C \qquad i, C = -\frac{774}{5} \text{ or } -154.8$$

$$=\frac{(5x+3)^4}{20}+0$$

$$= \frac{(5x+3)^4}{20} + C \qquad \therefore y = \frac{(5x+3)^4}{20} - \frac{774}{5}$$

V. Find conti-derivative with or without constant

V solve for constant C

Page | 3

Perth Modern School

Year 12 Mathematics Methods

at the origin (x = 0).

Page | 6

(7 marks)

A company is purchasing a type of thin sheet metal required to make a closed cylindrical container with a capacity of 4000π cm³. Let the radius of the cylindrical base be $\,\nu$ and the height be h.

Show that the surface area of the cylinder can be expressed as $2\pi n^2 + \frac{5000}{1} + \frac{1}{1} +$

(b) Using calculus, determine the least area of metal required to make a closed cylindrical container from thin sheet metal in order that it will have a capacity of 4000π cm³.

ork to one decimal place)

15 0008 + 2452 = 8 20008 - 754 = 26 21 0008 + 2452 = 8 21 0008 + 2452 = 8

in board min derivative to determine hadron.

- 5 = 27 (12.60) 2+ 8000 T. (12.60) 75 = 2 ...

Question 7

The position of a train on a straight mono rail, x metres at time t seconds, is modelled by the following formula for the velocity, v in metres/second, $v = pt^2 - 12t + q$ where p & q are constants. The deceleration of the train is $8ms^{-2}$ when t = 1. The train has a position $x = \frac{4}{3}$ when t = 2 and is initially

a) Determine the values of the constants $p \, \& \, q$.

0 = 2pt - 12 0 = 2pt - 12 0 = 2pt - 12

6+721-270 = 1

x = 22 - 62 x + 9x + c V olekennine d'sphueunt x.

1x rat 0 = 2 (2) 3 - 6(2) 2 + 29

9 = 10 V Ditermine 9.

b) Defermine the position of the train when the acceleration is $12ms^{-2}$.

N= 42-12=12 1, 2= 65 V Jetumine 2 Wing acceleration

x = 3(6)3 + 10 × 6 = -12. V demme x.

Year 12 Mathematics Methods

Perth Modern School

(6 marks)

Question 5

A share portfolio, initially worth \$26 000, has a value of f dollars after t months, and begins with a negative rate of growth. The rate of growth remains negative until after 20 months (t = 20) when the value of the portfolio is momentarily stationary and then continues with negative growth for the life of the investment. The value of the portfolio, f(t) after t months can be modelled by the following model, $f(t) = -2t^3 + bt^2 + ct + d$, $0 \le t \le 37$ months where b, c & d are constants.

Determine the values of the constants $\,b,c\,\&\,d\,$.

$$\begin{cases} f(o) = 26000 \\ d = 26000 \end{cases} \qquad \forall \text{ determine } d.$$

$$f(t) = -2t^{3} + bt^{2} + ct + d$$

$$f'(t) = -6t^{2} + 2bt + C \qquad \forall \text{ determine } f'(t)$$

$$f''(t) = -12t + 2b \qquad \forall \text{ determine } f'(t)$$

$$f''(20) = f''(20) = 0 \qquad \forall \text{ Equate first and second denotions to 0}$$

$$Circlentify \text{ horizontal } P. O. I)$$

$$-12(20) + 2b = 0$$

$$i b = 120 \qquad \forall \text{ Solve for } b$$

$$-6(20)^{2} + 240(20) + (=0)$$

$$i C = -2400 \qquad \forall \text{ Solve for } C.$$

Page | 5 Year 12 Mathematics Methods Perth Modern School

Question 6 (8 marks)

The volume, V in cubic metres and radius R metres, of a spherical balloon are changing with time t seconds. $V=\frac{4\pi R^3}{3}$. The radius of the balloon at any time is given by $R=2t(t+3)^3$.

Determine the following:

a) The value of
$$\frac{dR}{dt}$$
 when $t=1$.

$$\frac{dR}{dt} = 2(t+3)^3 + 2t \times 3(t+3)^2$$

$$= 2(4)^3 + 6 \times (4)^2$$

$$= 224$$
(3 marks)

V like product rule

V determine exp for $\frac{dR}{dt}$

V obtain rate at $t=1$

b) The value of $\frac{dV}{dt}$ when t=1. $\frac{dW}{dt} = \frac{dW}{dk} \times \frac{dk}{dt}$ = 128. Voluterwise k at t=1 $= 4\pi R^2 \times (224) \text{ Use chain rule}$ $= 4\pi (128)^2 \times (224)$ $= 46118781.22 \text{ Obtain } \frac{dW}{dt} \text{ at } t=1$

Consider the volume of the balloon at t = 1.

accept any rounding

c) Use the incremental formula to estimate the change in volume 0.1 seconds later (i.e. t = 1.1) (2 marks)

$$8V \approx \frac{dV}{dt}$$
 8t
= 46118781.22 (0.1) / Use incremental formula
= 4611878.122 V obtain approximate change
(4611878 ± 0.2) in volume within accorded error limit ±0.