Analítica Computacional para la Toma de Decisiones

Modelos de datos en Python

Juan Fernando Pérez

Departamento de Ingeniería Industrial Universidad de los Andes

Agosto de 2024

<u>jf.perez33@uniandes.edu.co</u> juanfperez.com

Problemas de Aprendizaje de máquina

Predicción de una salida continua: valor de un inmueble

Regresión

Predicción de una salida discreta (categoría, binaria)

Clasificación

Predicción de una salida discreta (categoría, multiclase)

Clasificación

Aprendizaje supervisado – Ej. Regresión

Modelo de aprendizaje de máquina: familia de ecuaciones que permiten obtener una salida a partir de una entrada

$$\mathbf{y} = \mathbf{f}[\mathbf{x}]$$

f: Modelo de aprendizaje de máquina

x: entrada

y: salida

$$\mathbf{y} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$$

f: Modelo de aprendizaje de máquina

x: entrada

y: salida

φ: parámetros que definen el modelo

Entrenamiento

Determinar el mejor
valor de los parámetros
considerando un
conjunto de datos (de
entrenamiento)

$$\mathbf{y} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$$

Datos de entrenamiento: $\left\{\mathbf{x}_i,\mathbf{y}_i
ight\}$

Observaciones indexadas por i

x: entrada observada

y: salida observada (etiqueta)

Supervisado

Se requieren ejemplos pasados de parejas entrada-salida para entrenar el modelo

¿Cómo cuantificar qué tan bueno es un modelo $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$?

Función de pérdida (loss):
$$\mathbb{L}[\phi]$$

Valores **bajos** si con los parámetros el modelo captura **bien** la relación entre las entradas y salidas de los datos de entrenamiento

¿Cómo cuantificar qué tan bueno es un modelo $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$?

Función de pérdida (loss):
$$\mathbb{L}[\phi]$$

Mejor valor de los parámetros: $\hat{m{\phi}} = \mathop{\mathrm{argmin}}_{m{\phi}} \left[\mathbf{L} \left[m{\phi} \right] \right]$

*L $[\{\mathbf{x}_i,\mathbf{y}_i\},oldsymbol{\phi}]$: depende de los datos de entrenamiento

Aprendizaje supervisado: regresión

Modelo: $y = f[x, \phi] = \phi_0 + \phi_1 x$

Función de pérdida:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$

$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Entrenamiento, sobreajuste y subajuste

Entrenamiento con datos (de entrenamiento)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L \left[\boldsymbol{\phi} \right] \right]$$

Capacidad de **generalizar** a otros datos: **datos de prueba**

Datos

Entrenamiento con datos (de entrenamiento)

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L \left[\boldsymbol{\phi} \right] \right]$$

Capacidad de generalizar a otros datos: datos de prueba

Datos de entrenamiento

Datos de prueba

Sobreajuste vs subajuste

Crédito: AWS, 2024

Validación cruzada

Usar todos los datos para entrenamiento.

Validación cruzada en k grupos (k-fold cross validation).

Realizar k veces la separación, con subconjuntos diferentes.

Datos de entrenamiento

Datos de prueba

Validación cruzada

Usar todos los datos para entrenamiento.

Validación cruzada en k grupos (k-fold cross validation).

Realizar k veces la separación, con subconjuntos diferentes.

Datos de prueba

Datos de entrenamiento

Validación cruzada

Usar todos los datos para entrenamiento.

Validación cruzada en k grupos (k-fold cross validation).

Realizar k veces la separación, con subconjuntos diferentes.

Datos de entrenamiento

Datos de prueba

Datos de entrenamiento

Aprendizaje como Optimización

Medida de desempeño (loss): función objetivo

Espacio de búsqueda:

- Variables de decisión: parámetros del modelo
- Restricciones sobre los parámetros

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L \left[\boldsymbol{\phi} \right] \right]$$

Modelos de regresión en Python (Scikit Learn)

Regresión en Python – Scikit learn

https://scikit-learn.org/

Aprendizaje supervisado:

https://scikit-learn.org/stable/supervised learning.html

fit() + predict()

Regresión en Python – Scikit learn

Train test split:

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection

https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Regresión en Python – Scikit learn

Cross validation:

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection

https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#skl

earn.model selection.cross val score

Regresión en Python – Statsmodels

API para regresión con OLS:

https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html

Metodologías para Análisis Exploratorio de Datos

Análisis Exploratorio (EDA) en Ciencia de Datos

Crédito: sudeep.co

Pasos de EDA

Crédito: A. Gosh (2018) A comprehensive review of tools for exploratory analysis of tabular industrial datasets

Lectura

A. Gosh (2018)

A comprehensive review of tools for exploratory analysis of tabular industrial datasets.

Sección 3.

