RF TEST REPORT

Report No.: 16070893-FCC-R1 Supersede Report No.: N/A

Applicant	Bean Information Technology Co., Ltd			
Product Name	Core+ 10.1,Core+11.6			
Model No.	W1102			
Serial No.	W1001			
Test Standard	FCC Part 1	5.247: 2015, ANSI C63.10: 2	2013	
Test Date	August 05 to September 01&October 15&23, 2016			
Issue Date	October 24, 2016			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
Loven	LOVEN LUO David Huang			
Loren Luo Test Engineer		David Huang Checked By		

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report No.	16070893-FCC-R1
Page	2 of 66

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	16070893-FCC-R1
Page	3 of 66

This page has been left blank intentionally.

Test Report No.	16070893-FCC-R1
Page	4 of 66

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	
3.	TEST SITE INFORMATION	
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	ANTENNA REQUIREMENT	9
6.2	DTS (6 DB&20 DB) CHANNEL BANDWIDTH	10
6.3	MAXIMUM OUTPUT POWER	18
6.4	POWER SPECTRAL DENSITY	23
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS	28
6.6	AC POWER LINE CONDUCTED EMISSIONS	36
6.7	RADIATED SPURIOUS EMISSIONS & RESTRICTED BAND	42
ANI	NEX A. TEST INSTRUMENT	49
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	51
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	61
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	65
ΔΝΙ	NEX E DECLARATION OF SIMILARITY	66

Test Report No.	16070893-FCC-R1
Page	5 of 66

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070893-FCC-R1	NONE	Original	September 02, 2016
16070893-FCC-R1	V1	Added the channel 6/11/12 test data	October 17, 2016
16070893-FCC-R1	V2	Added the Band-Edge channel 11/12 test data	October 24, 2016

2. Customer information

Applicant Name	Bean Information Technology Co., Ltd	
Applicant Add	No. 810 of Software Building, Keji RD 1St., Science and Technology Park,	
	Nanshan District, Shenzhen City, Guangdong Province, China	
Manufacturer	Dongguan WeiHeng Digital Technology Co.,Ltd.	
Manufacturer Add Build 3, Fengquan Industry Area YaoShan, XieGang Town DongGuan		

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES		
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park		
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China		
	518108		
FCC Test Site No.	718246		
IC Test Site No.	4842E-1		
Test Software	Radiated Emission Program-To Shenzhen v2.0		

Test Report No.	16070893-FCC-R1
Page	6 of 66

4. Equipment under Test (EUT) Information

Description of EUT: Core+ 10.1,Core+11.6

Main Model: W1102

Serial Model: W1001

Date EUT received: August 04, 2016

Test Date(s): August 05 to September 01&October 15&23, 2016

Equipment Category: DTS

Antenna Gain: Bluetooth/ WIFI: 4.36dBi

Antenna Type: PIFA antenna

802.11b/g/n: DSSS, OFDM

Type of Modulation:

Bluetooth: GFSK, π /4DQPSK, 8DPSK

WIFI: 802.11b/g/n(20M): 2412-2472 MHz

RF Operating Frequency (ies):

Bluetooth: 2402-2480 MHz

802.11b: 14.77dBm

Max. Output Power: 802.11g:11.98dBm

802.11n(20M): 11.98dBm

WIFI:802.11b/g/n(20M): 13CH

Number of Channels: Bluetooth: 79CH

Test Report No.	16070893-FCC-R1
Page	7 of 66

Power Port, Earphone Port, USB Port, USB-C Port, HDMI Port, Port:

Docking Port, MIC Port

Adapter 1:

Model: PS12F050K2000UD

Input: AC100-240V~50/60Hz,0.35A

Output: DC 5.0V,2000mA

Adapter 2:

Input Power: Model: JK050200-S04USA

Input: AC100-240V~50/60Hz,0.5A

Output: DC 5.0V,2000mA

Battery:

Spec: 3.7V,3500mAh(31.45Wh)

Trade Name : BIT

FCC ID: 2AHWT-W1102

Test Report No.	16070893-FCC-R1
Page	8 of 66

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB&20 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Restricted Frequency Bands	Compliance
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands	Compliance

Measurement Uncertainty

Emissions		
Test Item	Uncertainty	
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

Test Report No.	16070893-FCC-R1
Page	9 of 66

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 1 antenna:

A permanently attached PIFA antenna for Bluetooth/ WIFI, the gain is 4.36dBi for Bluetooth/ WIFI.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report No.	16070893-FCC-R1
Page	10 of 66

6.2 DTS (6 dB&20 dB) Channel Bandwidth

Temperature	23°C
Relative Humidity	54%
Atmospheric Pressure	1030mbar
Test date :	August 30&October 15, 2016
Tested By :	Loren Luo

Spec	Item Requirement Application				
§ 15.247(a)(2)		a) 6dB BW≥ 500kHz; 20dB BW≥ 500kHz;			
RSS Gen(4.6.1)	b)				
1100 0011(4.0.1)	0)	99 % BVV. For Figure 10 or 10 control of 10 or 1			
Test Setup					
	55807	4 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth			
	6dB b	<u>andwidth</u>			
	a) Se	t RBW = 100 kHz.			
	b) Se	t the video bandwidth (VBW) ≥ 3 × RBW.			
	c) Detector = Peak.				
	d) Trace mode = max hold.				
	e) Sweep = auto couple.				
	f) Allow the trace to stabilize.				
	g) Measure the maximum width of the emission that is constrained by the freq				
Test Procedure	uencies associated with the two outermost amplitude points (upper and lower fr				
restriocedure	equencies) that are attenuated by 6 dB relative to the maximum level measure				
	d in the fundamental emission.				
	20dB bandwidth				
	C63.10 Occupied Bandwidth (OBW=20dB bandwidth)				
	1. Set RBW = 1%-5% OBW.				
	2. Set the video bandwidth (VBW) ≥ 3 x RBW.				
	3. Set the span range between 2 times and 5 times of the OBW.				
	4. Sweep time=Auto, Detector=PK, Trace=Max hold.				
	5. Once the reference level is established, the equipment is conditioned with t				
	ypical modulating signals to produce the worst-				

Test Report No.	16070893-FCC-R1
Page	11 of 66

	case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed
	wireless device, measure the bandwidth at the 20 dB levels with respect to the
	reference level.
Remark	
Result	Pass

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Measurement result

Test mode	СН	Freq (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
	CH1	2412	8.587	15.670	≥ 0.5
	CH6	2437	6.342	16.720	≥ 0.5
802.11b	CH11	2462	7.784	16.710	≥ 0.5
	CH12	2467	9.626	16.880	≥ 0.5
	CH13	2472	8.501	15.940	≥ 0.5
	CH1	2412	16.387	19.083	≥ 0.5
	CH6	2437	15.650	18.530	≥ 0.5
802.11g	CH11	2462	15.370	18.500	≥ 0.5
	CH12	2467	15.110	18.490	≥ 0.5
	CH13	2472	16.117	19.299	≥ 0.5
	CH1	2412	17.727	19.634	≥ 0.5
000 115	CH6	2437	15.120	19.410	≥ 0.5
802.11n	CH11	2462	15.390	19.250	≥ 0.5
(20M)	CH12	2467	15.380	19.310	≥ 0.5
	CH13	2472	16.769	19.543	≥ 0.5

Test Report No.	16070893-FCC-R1
Page	12 of 66

Test Plots

6dB Bandwidth measurement result

802.11b 6dB Bandwidth - CH1 2412

802.11b 6dB Bandwidth - CH6 2437

802.11b 6dB Bandwidth - CH11 2462

802.11b 6dB Bandwidth - CH12 2467

802.11g 6dB Bandwidth - CH1 2412

Test Report No.	16070893-FCC-R1
Page	13 of 66

802.11g 6dB Bandwidth - CH6 2437

09:23:57 AMI Radio Std: None Center Freq: 2.4
Trig: Free Run
#Atten: 10 dR Ref Offset 0.5 dB Ref 20.50 dBm Center 2.467 GHz #Res BW 100 kHz Span 40 MHz Sweep 5 ms #VBW 300 kHz Total Power 18.2 dBm 16.296 MHz 41.964 kHz Transmit Freq Error **OBW Power** 99.00 % 15.11 MHz -6.00 dB x dB

802.11g 6dB Bandwidth - CH12 2467

802.11g 6dB Bandwidth - CH13 2472

Test Report No.	16070893-FCC-R1
Page	14 of 66

802.11n20 6dB Bandwidth - CH1 2412

802.11n20 6dB Bandwidth - CH6 2437

802.11n20 6dB Bandwidth - CH11 2462

802.11n20 6dB Bandwidth - CH12 2467

Test Report No.	16070893-FCC-R1
Page	15 of 66

20 dB Bandwidth measurement result

802.11b 20dB Bandwidth - CH1 2412

802.11b 20dB Bandwidth – CH6 2437

802.11b 20dB Bandwidth - CH11 2462

802.11b 20dB Bandwidth - CH12 2467

802.11b 20dB Bandwidth - CH13 2472

802.11g 20dB Bandwidth - CH1 2412

Test Report No.	16070893-FCC-R1
Page	16 of 66

802.11g 20dB Bandwidth - CH6 2437

802.11g 20dB Bandwidth - CH11 2462

Agilent 17:05:10 Aug 30, 2016

802.11g 20dB Bandwidth - CH12 2467

802.11g 20dB Bandwidth - CH13 2472

Test Report No.	16070893-FCC-R1
Page	17 of 66

802.11n20 20dB Bandwidth - CH1 2412

802.11n20 20dB Bandwidth - CH6 2437

802.11n20 20dB Bandwidth - CH11 2462

802.11n20 20dB Bandwidth - CH12 2467

Test Report No.	16070893-FCC-R1
Page	18 of 66

6.3 Maximum Output Power

Temperature	23°C		
Relative Humidity	54%		
Atmospheric Pressure	1030mbar		
Test date :	August 30&October 15, 2016		
Tested By:	Loren Luo		

Requirement(s):

Requirement(s):	I	Б				
Spec	Ite	Requirement	Applicable			
	m					
	a)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt				
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt				
§15.247(b) (3),RSS210	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.				
(A8.4)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt				
(1011)	e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25 Watt				
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	>			
Test Setup						
	558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method					
	Maxim	Maximum output power measurement procedure				
	- a) Set span to at least 1.5 times the OBW.					
	b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.					
	- c) Set VBW ≥ 3 x RBW.					
Test	- d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing					
Procedure		≤ RBW/2, so that narrowband signals are not lost between frequen	ncy bins.)			
	- e) Sweep time = auto.					
	- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample					
	detector mode.					
	g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable					
		triggering only on full power pulses. The transmitter shall operate a	t maximum_			

Test Report No.	16070893-FCC-R1
Page	19 of 66

	power control level for the entire duration of every sweep. If the EUT transmits						
	continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each						
	transmission is entirely at the maximum power control level, then the trigger shall						
	be set to "free run".						
	- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.						
	- i) Compute power by integrating the spectrum across the OBW of the signal						
	using the instrument's band power measurement function, with band limits set						
	equal to the OBW band edges. If the instrument does not have a band power						
	function, sum the spectrum levels (in power units) at intervals equal to the RBW						
	extending across the entire OBW of the spectrum.						
Remark							
Result	Pass Fail						

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Output Power measurement result

Туре	Test mode	СН	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
		0114		,	,	D
		CH1	2412	14.77	30	Pass
		CH6	2437	14.53	30	Pass
	802.11b	CH11	2462	14.43	30	Pass
		CH12	2467	14.75	30	Pass
		CH13	2472	14.39	30	Pass
	802.11g	CH1	2412	11.16	30	Pass
Output		CH6	2437	11.19	30	Pass
Output		CH11	2462	11.19	30	Pass
power		CH12	2467	11.37	30	Pass
		CH13	2472	11.98	30	Pass
	802.11n (20M)	CH1	2412	11.62	30	Pass
		CH6	2437	11.44	30	Pass
		CH11	2462	11.98	30	Pass
		CH12	2467	11.78	30	Pass
		CH13	2472	11.25	30	Pass

Test Report No.	16070893-FCC-R1
Page	20 of 66

Test Plots

The Average Power

802.11b - AV Output power - CH1 2412

802.11b - AV Output power - CH6 2437

802.11b - AV Output power - CH11 2462

802.11b - AV Output power - CH12 2467

802.11b - AV Output power - CH13 2472

802.11g - AV Output power - CH1 2412

Test Report No.	16070893-FCC-R1
Page	21 of 66

802.11g - AV Output power - CH6 2437

802.11g - AV Output power - CH11 2462

802.11g - AV Output power - CH12 2467

802.11g - AV Output power - CH13 2472

Test Report No.	16070893-FCC-R1
Page	22 of 66

802.11n20 - AV Output power - CH1 2412

802.11n20 - AV Output power - CH6 2437

802.11n20 - AV Output power - CH11 2462

802.11n20 - AV Output power - CH12 2467

802.11n20 - AV Output power - CH13 2472

Test Report No.	16070893-FCC-R1
Page	23 of 66

6.4 Power Spectral Density

Temperature	23°C
Relative Humidity	54%
Atmospheric Pressure	1030mbar
Test date :	August 30&October 15, 2016
Tested By:	Loren Luo

Spec	Item	Requirement Applicable				
§15.247(e)	a)	a) The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.				
Test Setup						
Test Procedure	power s	A D01 DTS MEAS Guidance v03r03, 10.2 power spectral density measurement procedure a) Set analyzer center frequency to DTS channel center frequency b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ 3 × RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum and level within the RBW. j) If measured value exceeds limit, reduce RBW (no less than repeat.	uency.			
Remark						
Result	Pas	ss Fail				

Test Report No.	16070893-FCC-R1
Page	24 of 66

Test Data	Yes	$\square_{N/A}$
Test Plot	Yes (See below)	□ _{N/A}

Power Spectral Density measurement result

Туре	Test mode	СН	Freq (MHz)	PSD (dBm)	Limit (dBm)	Result
		CH1	2412	-9.123	8	Pass
		CH6	2437	-9.267	8	Pass
	802.11b	CH11	2462	-9.174	8	Pass
		CH12	2467	-8.257	8	Pass
		CH13	2472	-8.987	8	Pass
		CH1	2412	-12.22	8	Pass
		CH6	2437	-11.891	8	Pass
PSD	802.11g	CH11	2462	-11.068	8	Pass
		CH12	2467	-11.596	8	Pass
		CH13	2472	-12.63	8	Pass
		CH1	2412	-14.67	8	Pass
	802.11n (20M)	CH6	2437	-15.224	8	Pass
		CH11	2462	-13.776	8	Pass
		CH12	2467	-14.715	8	Pass
		CH13	2472	-14.19	8	Pass

Test Report No.	16070893-FCC-R1
Page	25 of 66

Test Plots

Power Spectral Density measurement result

PSD - CH1 2412 - 802.11b

PSD - CH11 2462 - 802.11b

PSD - CH12 2467 - 802.11b

PSD - CH13 2472 - 802.11b

PSD - CH1 2412 -802.11g

Test Report No.	16070893-FCC-R1
Page	26 of 66

PSD - CH6 2437 -802.11g

PSD - CH11 2462 - 802.11g

PSD - CH12 2467 - 802.11g

PSD - CH13 2472 - 802.11g

Test Report No.	16070893-FCC-R1
Page	27 of 66

PSD - CH1 2412 - 802.11n20

PSD - CH6 2437 - 802.11n20

PSD - CH11 2462 - 802.11n20

PSD - CH12 2467 - 802.11n20

PSD - CH13 2472 - 802.11n20

Test Report No.	16070893-FCC-R1
Page	28 of 66

6.5 Band-Edge & Unwanted Emissions into Restricted Frequency Bands

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	August 29&October 23, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable
§15.247(d)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	Ŋ
Test Setup	Ant. Tower Support Units Ground Plane Test Receiver		
Test Procedure	Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.		

Test Report No.	16070893-FCC-R1
Page	29 of 66

		- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
		convenient frequency span including 100kHz bandwidth from band edge,
		check the emission of EUT, if pass then set Spectrum Analyzer as below:
		a. The resolution bandwidth and video bandwidth of test receiver/spectrum
		analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
		b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and
		video bandwidth is 3MHz with Peak detection for Peak measurement at
		frequency above 1GHz.
		c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
		video bandwidth is 10Hz with Peak detection for Average Measurement as below
		at frequency above 1GHz.
		- 4. Measure the highest amplitude appearing on spectral display and set it as a
		reference level. Plot the graph with marking the highest point and edge
		frequency.
		- 5. Repeat above procedures until all measured frequencies were complete.
Remark		
Result		Pass Fail
	<u> </u>	
Test Data	V	es N/A
Test Plot	Y Y	es (See below)

Test Report No.	16070893-FCC-R1
Page	30 of 66

Test Plots Band Edge measurement result

Test Report No.	16070893-FCC-R1
Page	31 of 66

Test Report No.	16070893-FCC-R1
Page	32 of 66

Test Report No.	16070893-FCC-R1
Page	33 of 66

Test Report No.	16070893-FCC-R1
Page	34 of 66

Test Report No.	16070893-FCC-R1
Page	35 of 66

Test Report No.	16070893-FCC-R1
Page	36 of 66

6.6 AC Power Line Conducted Emissions

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	August 29, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement			Applicable	
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-freconnected to the public voltage that is conducted frequency or frequencies not exceed the limits in [mu] H/50 ohms line implower limit applies at the Frequency ranges (MHz) 0.15 ~ 0.5 0.5 ~ 5 5 ~ 30	e utility (AC) power line ed back onto the AC po es, within the band 150 the following table, as spedance stabilization r	the radio frequency ower line on any kHz to 30 MHz, shall measured using a 50 network (LISN). The ne frequencies ranges.		
Test Setup	Test Setup Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.					
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 					

Test Report No.	16070893-FCC-R1
Page	37 of 66

	coaxial cable.					
	4. All other supporting equipment were powered separately from another main supply.					
	5. The EUT was switched on and allowed to warm up to its normal operating condition.					
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)					
	over the required frequency range using an EMI test receiver.					
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the					
	selected frequencies and the necessary measurements made with a receiver bandwidth					
	setting of 10 kHz.					
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).					
Remark						
Result	Pass Fail					

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	16070893-FCC-R1
Page	38 of 66

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.1578	37.98	QP	10.03	48.01	65.58	-17.57
2	L1	0.1578	27.42	AVG	10.03	37.45	55.58	-18.13
3	L1	0.1968	33.53	QP	10.03	43.56	63.74	-20.18
4	L1	0.1968	20.45	AVG	10.03	30.48	53.74	-23.26
5	L1	0.4581	29.06	QP	10.03	39.09	56.73	-17.64
6	L1	0.4581	18.35	AVG	10.03	28.38	46.73	-18.35
7	L1	2.7747	26.14	QP	10.05	36.19	56.00	-19.81
8	L1	2.7747	15.64	AVG	10.05	25.69	46.00	-20.31
9	L1	4.5405	21.64	QP	10.07	31.71	56.00	-24.29
10	L1	4.5405	10.75	AVG	10.07	20.82	46.00	-25.18
11	L1	12.3171	18.86	QP	10.18	29.04	60.00	-30.96
12	L1	12.3171	9.10	AVG	10.18	19.28	50.00	-30.72

Test Report No.	16070893-FCC-R1
Page	39 of 66

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
110.	. ,_	(MHz)	(dBµV)	Dotooloi	(dB)	(dBµV)	(dBµV)	(dB)
1	N	0.1578	36.31	QP	10.02	46.33	65.58	-19.25
2	N	0.1578	22.41	AVG	10.02	32.43	55.58	-23.15
3	N	0.1929	30.28	QP	10.02	40.30	63.91	-23.61
4	N	0.1929	16.60	AVG	10.02	26.62	53.91	-27.29
5	N	0.4308	25.07	QP	10.02	35.09	57.24	-22.15
6	N	0.4308	12.29	AVG	10.02	22.31	47.24	-24.93
7	N	2.8605	24.96	QP	10.05	35.01	56.00	-20.99
8	N	2.8605	13.56	AVG	10.05	23.61	46.00	-22.39
9	N	4.5717	21.67	QP	10.07	31.74	56.00	-24.26
10	N	4.5717	10.06	AVG	10.07	20.13	46.00	-25.87
11	N	11.9973	14.20	QP	10.16	24.36	60.00	-35.64
12	N	11.9973	5.80	AVG	10.16	15.96	50.00	-34.04

Test Report No.	16070893-FCC-R1
Page	40 of 66

Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.1578	41.06	QP	10.03	51.09	65.58	-14.49
2	L1	0.1578	27.38	AVG	10.03	37.41	55.58	-18.17
3	L1	0.1968	39.05	QP	10.03	49.08	63.74	-14.66
4	L1	0.1968	24.73	AVG	10.03	34.76	53.74	-18.98
5	L1	0.2358	35.23	QP	10.03	45.26	62.24	-16.98
6	L1	0.2358	22.25	AVG	10.03	32.28	52.24	-19.96
7	L1	0.2709	30.39	QP	10.03	40.42	61.09	-20.67
8	L1	0.2709	17.62	AVG	10.03	27.65	51.09	-23.44
9	L1	2.9190	22.20	QP	10.05	32.25	56.00	-23.75
10	L1	2.9190	13.66	AVG	10.05	23.71	46.00	-22.29
11	L1	8.3352	18.87	QP	10.13	29.00	60.00	-31.00
12	L1	8.3352	6.53	AVG	10.13	16.66	50.00	-33.34

Test Report No.	16070893-FCC-R1
Page	41 of 66

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	N	0.1578	41.95	QP	10.02	51.97	65.58	-13.61
2	N	0.1578	33.02	AVG	10.02	43.04	55.58	-12.54
3	N	0.1968	40.62	QP	10.02	50.64	63.74	-13.10
4	N	0.1968	32.95	AVG	10.02	42.97	53.74	-10.77
5	N	0.4698	28.66	QP	10.02	38.68	56.52	-17.84
6	Ν	0.4698	18.65	AVG	10.02	28.67	46.52	-17.85
7	N	1.3746	28.30	QP	10.03	38.33	56.00	-17.67
8	N	1.3746	17.84	AVG	10.03	27.87	46.00	-18.13
9	Ν	2.9619	29.41	QP	10.05	39.46	56.00	-16.54
10	N	2.9619	19.57	AVG	10.05	29.62	46.00	-16.38
11	N	17.4456	19.25	QP	10.23	29.48	60.00	-30.52
12	N	17.4456	9.90	AVG	10.23	20.13	50.00	-29.87

Test Report No.	16070893-FCC-R1
Page	42 of 66

6.7 Radiated Spurious Emissions & Restricted Band

Temperature	22°C
Relative Humidity	53%
Atmospheric Pressure	1029mbar
Test date :	August 29&October 15, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable	
	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spet the level of any unwanted emission the fundamental emission. The tight edges	Y	
		Frequency range (MHz)	Field Strength (µV/m)	
		30 - 88	100	
		88 – 216	150	
47CFR§15.		216 960	200	
247(d), RSS210 (A8.5)		Above 960	500	
	b)	For non-restricted band, In any 100 frequency band in which the spread modulated intentional radiator is oppower that is produced by the intentional 20 dB or 30dB below that in the 10 band that contains the highest lever determined by the measurement mused. Attenuation below the general is not required	d spectrum or digitally perating, the radio frequency ational radiator shall be at least 0 kHz bandwidth within the desired power, sethod on output power to be	
	c)	or restricted band, emission must a	dB down also comply with the radiated	V
	''	emission limits specified in 15.209	-	

Test Report No.	16070893-FCC-R1
Page	43 of 66

Test Data	Yes	
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	16070893-FCC-R1
Page	44 of 66

(Below 1GHz)

Test Data

Vertical Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	Н	119.8556	30.77	peak	-7.33	23.44	43.50	-20.06	100	212
2	Н	239.9873	35.91	peak	-9.10	26.81	46.00	-19.19	100	261
3	Н	350.4768	33.55	peak	-5.45	28.10	46.00	-17.90	100	242
4	Н	533.8321	34.02	peak	-1.10	32.92	46.00	-13.08	100	0
5	Н	601.4265	32.43	peak	0.03	32.46	46.00	-13.54	100	89
6	Н	962.1623	31.64	peak	5.29	36.93	54.00	-17.07	100	269

Test Report No.	16070893-FCC-R1
Page	45 of 66

(Below 1GHz)

Test Data

Horizontal Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dΒμV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	٧	38.2120	33.89	peak	-6.28	27.61	40.00	-12.39	100	0
2	V	64.2075	38.83	peak	-14.03	24.80	40.00	-15.20	100	145
3	V	239.9873	32.85	peak	-9.10	23.75	46.00	-22.25	100	333
4	V	533.8321	38.04	peak	-1.10	36.94	46.00	-9.06	100	321
5	V	601.4265	38.91	peak	0.03	38.94	46.00	-7.06	100	44
6	V	962.1623	29.66	peak	5.29	34.95	54.00	-19.05	100	107

Test Report No.	16070893-FCC-R1
Page	46 of 66

Above 1GHz

Test Mode: Transmitting Mode	Test Mode:	Transmitting Mode
------------------------------	------------	-------------------

CH1: 2412MHz (b mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4824	39.18	AV	V	33.8	6.86	32.69	47.15	54	-6.85
4824	38.72	AV	Н	33.8	6.86	32.69	46.69	54	-7.31
4824	47.31	PK	V	33.8	6.86	32.69	55.28	74	-18.72
4824	47.46	PK	Н	33.8	6.86	32.69	55.43	74	-18.57
17863	23.67	AV	V	45.12	11.57	32.11	48.25	54	-5.75
17863	23.48	AV	Η	45.12	11.57	32.11	48.06	54	-5.94
17863	40.62	PK	V	45.12	11.57	32.11	65.2	74	-8.8
17863	40.11	PK	Н	45.12	11.57	32.11	64.69	74	-9.31

CH6: 2437MHz (b mode worst case)

	(4									
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
4874	39.21	AV	V	33.6	6.82	32.71	46.92	54	-7.08	
4874	38.89	AV	Н	33.6	6.82	32.71	46.6	54	-7.4	
4874	47.84	PK	V	33.6	6.82	32.71	55.55	74	-18.45	
4874	48.23	PK	Н	33.6	6.82	32.71	55.94	74	-18.06	
17894	23.59	AV	V	45.17	11.63	32.18	48.21	54	-5.79	
17894	23.32	AV	Η	45.17	11.63	32.18	47.94	54	-6.06	
17894	40.54	PK	V	45.17	11.63	32.18	65.16	74	-8.84	
17894	40.26	PK	Н	45.17	11.63	32.18	64.88	74	-9.12	

Test Report No.	16070893-FCC-R1
Page	47 of 66

CH11: 2462 MHz (b mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4924	38.95	AV	V	33.83	6.95	32.79	46.94	54	-7.06
4924	38.73	AV	Η	33.83	6.95	32.79	46.72	54	-7.28
4924	47.69	PK	V	33.83	6.95	32.79	55.68	74	-18.32
4924	47.78	PK	Н	33.83	6.95	32.79	55.77	74	-18.23
17847	23.51	AV	V	45.19	11.61	32.24	48.07	54	-5.93
17847	23.36	AV	Н	45.19	11.61	32.24	47.92	54	-6.08
17847	40.35	PK	V	45.19	11.61	32.24	64.91	74	-9.09
17847	40.03	PK	Н	45.19	11.61	32.24	64.59	74	-9.41

CH12: 2467 MHz (b mode worst case)

51112. 2101 titl 2 (5 111040 Wolds 0400)									
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4934	39.23	AV	V	33.75	6.92	32.73	47.17	54	-6.83
4934	38.97	AV	Н	33.75	6.92	32.73	46.91	54	-7.09
4934	47.72	PK	٧	33.75	6.92	32.73	55.66	74	-18.34
4934	47.83	PK	Н	33.75	6.92	32.73	55.77	74	-18.23
17852	23.48	AV	V	45.23	11.54	32.22	48.03	54	-5.97
17852	23.29	AV	Η	45.23	11.54	32.22	47.84	54	-6.16
17852	40.51	PK	V	45.23	11.54	32.22	65.06	74	-8.94
17852	40.12	PK	Н	45.23	11.54	32.22	64.67	74	-9.33

Test Report No.	16070893-FCC-R1
Page	48 of 66

CH13: 2472 MHz (b mode worst case)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4944	39.32	AV	V	33.68	6.85	32.75	47.1	54	-6.9
4944	39.02	AV	Н	33.68	6.85	32.75	46.8	54	-7.2
4944	47.86	PK	V	33.68	6.85	32.75	55.64	74	-18.36
4944	47.95	PK	Н	33.68	6.85	32.75	55.73	74	-18.27
17871	23.45	AV	V	45.16	11.59	32.16	48.04	54	-5.96
17871	23.16	AV	Н	45.16	11.59	32.16	47.75	54	-6.25
17871	40.42	PK	V	45.16	11.59	32.16	65.01	74	-8.99
17871	40.06	PK	Н	45.16	11.59	32.16	64.65	74	-9.35

Note:

- 1, The testing has been conformed to 10*2462MHz=24,620MHz 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report No.	16070893-FCC-R1
Page	49 of 66

Annex A. TEST INSTRUMENT

Instrument	Model	Serial#	Cal Date	Cal Due	In use
		3 3 1 4 1 1	Jul Duit		455
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	~
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	~
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	~
LISN	ISN T800	34373	09/25/2015	09/24/2016	~
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	>
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	~
Agilent ESA-E SERIES	E4407B	MY45108319	09/16/2016	09/15/2017	~
Power Splitter	1#	1#	09/01/2015	08/31/2016	~
Power Splitter	1#	1#	08/31/2016	08/30/2017	~
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	~
DC Power Supply	E3640A	MY40004013	09/16/2016	09/15/2017	~
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	~
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	•
Positioning Controller	UC3000	MF780208282	11/19/2015	11/18/2016	~
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	\
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	\
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	•
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V

Test Report No.	16070893-FCC-R1
Page	50 of 66

Universal Radio					_
Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V

Test Report No.	16070893-FCC-R1
Page	51 of 66

Annex B. EUT and Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Whole Package View 1

Whole Package View 2

Adapter 2- Front View

EUT - Front View

EUT - Rear View

Test Report No.	16070893-FCC-R1
Page	52 of 66

Test Report No.	16070893-FCC-R1
Page	53 of 66

Screen - Front View

Screen - Rear View

Screen - Top View

Screen - Bottom View

Screen - Right View

Test Report No.	16070893-FCC-R1
Page	54 of 66

Keyboard - Front View

Keyboard - Rear View

Keyboard - Top View

Keyboard - Bottom View

Keyboard - Left View

Keyboard - Right View

Test Report No.	16070893-FCC-R1
Page	55 of 66

Photograph: EUT Internal Photo Annex B.ii.

Cover Off - Top View 1

Cover Off - Top View 2

Key board Cover Off - Top View 1

Key board Cover Off - Top View 2

Battery - Front View

Battery - Rear View

Test Report No.	16070893-FCC-R1
Page	56 of 66

Mainboard with Shielding - Front View

Mainboard without Shielding - Front View

Mainboard - Rear View

Contact board - Front View

Contact board - Rear View

Audio board - Front View

Test Report No.	16070893-FCC-R1
Page	57 of 66

ERRORES ISH A SECOND OF SE

Audio board - Rear View

On/off board - Front View

On/off board - Rear View

Small board - Front View

Small board - Rear View

Keyboard board- Front View

Test Report No.	16070893-FCC-R1
Page	58 of 66

Keyboard board- Rear View

Small Keyboard board- Front View

Small Keyboard board- Rear View

LCD - Front View

LCD - Rear View

Connect board- Front View

Test Report No.	16070893-FCC-R1
Page	59 of 66

Connect board- Rear View

BT/WIFI Cricuit

WIFI/BT - Antenna View

Test Report No.	16070893-FCC-R1
Page	60 of 66

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

Radiated Spurious Emissions Test Setup Above 1GHz

Test Report No.	16070893-FCC-R1
Page	61 of 66

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	16070893-FCC-R1
Page	62 of 66

Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	16070893-FCC-R1
Page	63 of 66

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report No.	16070893-FCC-R1
Page	64 of 66

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Bean Information Technology Co., Ltd	Adapter	PS12F050K2000UD	P2016073

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	P2016073

Test Report No.	16070893-FCC-R1
Page	65 of 66

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Test Report No.	16070893-FCC-R1
Page	66 of 66

Annex E. DECLARATION OF SIMILARITY

Differences Declaration

To whom concern, We company **Bean Information Technology Co., Itd** hereby declares: The product models <u>W1001</u> is identical in the same PCB layout, interior structure and electrical circuits with the model <u>W1102</u> which tested in SIEMIC (Shenzhen-China) Laboratories, the only differences are the model name and appearance color for commercial purpose.

Authorized signature:

Position: PM

> Company stamp:

Date: 20160902