1.

(a)

$$\begin{split} H = &\hbar\omega b^{\dagger}b + \mathrm{i}\hbar\Lambda \left(b^{\dagger^2} + b^2 \right) \\ \frac{\mathrm{d}b}{\mathrm{d}t} = &\frac{\mathrm{i}}{\hbar}[H,b] + \frac{\partial b}{\partial t} \\ = &\left[\mathrm{i}\omega b^{\dagger}b - \Lambda b^{\dagger^2}, b \right] + \mathrm{i}\omega b \\ = &2\Lambda b^{\dagger} \\ \frac{\mathrm{d}b^{\dagger}}{\mathrm{d}t} = &2\Lambda b \end{split}$$

(b)

$$\begin{split} \vec{E} &= \mathrm{i} \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b \mathrm{e}^{\mathrm{i} (\vec{k} \cdot \vec{r} - \omega t)} - b^{\dagger} \mathrm{e}^{-\mathrm{i} (\vec{k} \cdot \vec{r} - \omega t)} \Big) \\ &= \mathrm{i} \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + \mathrm{i} b \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) - b^{\dagger} \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + \mathrm{i} b^{\dagger} \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(\frac{b - b^{\dagger}}{2 \mathrm{i}} \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + \frac{b + b^{\dagger}}{2} \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \\ &= -2 \mathcal{E}_{\omega} \vec{\varepsilon} \Big(b_Q \cos \Big(\vec{k} \cdot \vec{r} - \omega t \Big) + b_P \sin \Big(\vec{k} \cdot \vec{r} - \omega t \Big) \Big) \end{aligned}$$

Therefore

$$\begin{split} b_P = & \mathrm{e}^{2\Lambda t} b_{P0} \\ b_Q = & \mathrm{e}^{-2\Lambda t} b_{Q0} \\ b = & b_P + \mathrm{i} b_Q \\ = & \mathrm{e}^{2\Lambda t} b_{P0} + \mathrm{i} \mathrm{e}^{-2\Lambda t} b_{Q0} \\ = & b_0 \cosh 2\Lambda t + b_0^\dagger \sinh 2\Lambda t \\ b^\dagger = & b_0^\dagger \cosh 2\Lambda t + b_0 \sinh 2\Lambda t \end{split}$$

(c)

$$\langle N \rangle = \langle 0|b^{\dagger}b|0 \rangle$$

$$= \langle 0|\left(b_0^{\dagger}\cosh 2\Lambda t + b_0 \sinh 2\Lambda t\right)\left(b_0 \cosh 2\Lambda t + b_0^{\dagger}\sinh 2\Lambda t\right)|0 \rangle$$

$$= \sinh^2 2\Lambda t$$

$$\Delta b_P = e^{2\Lambda t}\Delta b_{P0}$$

$$= \frac{1}{2}e^{2\Lambda t}$$

$$\Delta b_Q = e^{-2\Lambda t}\Delta b_{Q0}$$

$$= \frac{1}{2}e^{-2\Lambda t}$$

The state is squeezed in Q direction while the product of the uncertainty in P and Q remains the same.

(d)

Under the transformation $U = e^{i\omega t a^{\dagger} a}$

$$\begin{split} UaU^\dagger &= \mathrm{e}^{\mathrm{i}\omega t a^\dagger a} a \mathrm{e}^{-\mathrm{i}\omega t a^\dagger a} \\ &= \sum_N \frac{\left(\mathrm{i}\omega t\right)^N}{N!} \left[a^\dagger a, a\right]_N \\ &= \mathrm{e}^{-\mathrm{i}\omega t} a \\ Ua^\dagger U^\dagger &= \mathrm{e}^{\mathrm{i}\omega t} a^\dagger \\ \frac{\mathrm{d}}{\mathrm{d}t} |\psi'\rangle &= \frac{\mathrm{d}}{\mathrm{d}t} U |\psi\rangle \\ &= \frac{\mathrm{d}U}{\mathrm{d}t} |\psi\rangle + U \frac{\mathrm{d}}{\mathrm{d}t} |\psi\rangle \\ &= \frac{\mathrm{d}\mathrm{e}^{\mathrm{i}\omega t a^\dagger a}}{\mathrm{d}t} |\psi\rangle + \frac{U}{\mathrm{i}\hbar} H |\psi\rangle \\ &= \mathrm{i}\omega a^\dagger a |\psi'\rangle + \frac{1}{\mathrm{i}\hbar} U H U^\dagger |\psi'\rangle \\ &= \Lambda U \left(a^{\dagger^2} \mathrm{e}^{-2\mathrm{i}\omega t} - a^2 \mathrm{e}^{2\mathrm{i}\omega t}\right) U^\dagger |\psi'\rangle \\ &= \Lambda \left(a^{\dagger^2} - a^2\right) |\psi'\rangle \end{split}$$

Therefore, the state $|\psi'\rangle$ is transforming as

$$e^{\Lambda t \left(a^{\dagger 2} - a^2\right)}$$

where

$$\varepsilon = -2\Lambda t$$

(e)

i.

ii.

 $\beta = i$

iii.

Weither a phase or number squeezed state is created depends on the initial state.

2.

(a)

$$\begin{split} \left\langle N^2 \right\rangle &= \langle 0|b^\dagger b b^\dagger b|0 \rangle \\ &= \langle 0| \left(b_0^\dagger \cosh \varepsilon + b_0 \sinh \varepsilon \right) \left(b_0 \cosh \varepsilon + b_0^\dagger \sinh \varepsilon \right) \\ & \left(b_0^\dagger \cosh \varepsilon + b_0 \sinh \varepsilon \right) \left(b_0 \cosh \varepsilon + b_0^\dagger \sinh \varepsilon \right) |0 \rangle \\ &= \sinh^2 \varepsilon \langle 0| \left(b_0^2 \cosh \varepsilon + b_0 b_0^\dagger \sinh \varepsilon \right) \left(b_0^{\dagger^2} \cosh \varepsilon + b_0 b_0^\dagger \sinh \varepsilon \right) |0 \rangle \\ &= \sinh^2 \varepsilon \left(\sinh^2 \varepsilon + 2 \cosh^2 \varepsilon \right) \\ \Delta N^2 &= 2 \sinh^2 \varepsilon \cosh^2 \varepsilon \\ &= 2 \left(\Delta b_P^2 - \Delta b_O^2 \right)^2 \end{split}$$

For large ε

$$N \approx e^{2\varepsilon}$$
$$\Delta N \approx \sqrt{2}e^{2\varepsilon}$$
$$= \sqrt{2}N$$

The fluctuation is larger than classical state which has $\Delta N \propto \sqrt{N}$

(b)

$$\begin{aligned} &10\log_{10}\left(4\Delta a_P^2\right)\\ =&20\varepsilon\log_{10}\left(\mathrm{e}\right) \end{aligned}$$

which scales linearly with ε

$$\begin{split} \Delta a_P'^2 &= \left\langle a_P'^2 \right\rangle - \left\langle a_P' \right\rangle^2 \\ &= \left\langle \left(t a_P + r a_{P0} \right)^2 \right\rangle - \left\langle \left(t a_P + r a_{P0} \right) \right\rangle^2 \\ &= \left\langle t^2 a_P^2 + r^2 a_{P0}^2 \right\rangle - \left\langle t a_P \right\rangle^2 \\ &= t^2 \Delta a_P^2 + r^2 \Delta a_{P0}^2 \end{split}$$

where a_P is the operator for the squeezed input state and a_{P0} is the operator for the vacuum input. In order to decrease it by 3dB

$$\begin{split} \Delta a_P'^2 &= \frac{1}{2} \Delta a_P^2 \\ \Delta a_P^2 &= 2 \bigg(T \Delta a_P^2 + \frac{1}{4} (1 - T) \bigg) \\ T &= \frac{2 \Delta a_P^2 - 1}{4 \Delta a_P^2 - 1} \end{split}$$

At the limit of strong squeezing, $T \to \frac{1}{2}$

(c)

i.

ii.

$$\langle N' \rangle = \langle \left(t a^{\dagger} + r b^{\dagger} \right) (t a + r b) \rangle$$

$$= \langle t^2 n_a + r^2 n_b \rangle$$

$$= T N_a + (1 - T) N_b$$

iii.

$$\begin{split} \Delta n'^2 &= \left\langle n'^2 \right\rangle - \left\langle n' \right\rangle^2 \\ &= \left\langle \left(\left(ta^\dagger + rb^\dagger \right) (ta + rb) \right)^2 \right\rangle - \left\langle \left(ta^\dagger + rb^\dagger \right) (ta + rb) \right\rangle^2 \\ &= \left\langle \left(t^2 n_a + r^2 n_b + tr \left(a^\dagger b + b^\dagger a \right) \right)^2 \right\rangle - \left(TN_a + RN_b \right)^2 \\ &= T^2 \Delta N_a^2 + R^2 \Delta N_b^2 + TR \left\langle \left(a^\dagger \beta + \beta^* a \right)^2 \right\rangle \end{split}$$

For large N_a and if the displacement is along the lower variant direction

$$\Delta n'^2 \approx T^2 \Delta N_a^2 + R^2 \Delta N_b^2$$

iv.

$$\Delta n'^2 \approx 2T^2 N_a^2 + R^2 N_b$$

In order to be smaller than $\langle N' \rangle$

$$N_b > \frac{(2TN_a - 1)N_a}{R}$$

And the squeezing should be strong enough that $2TN_a > 1$

3.

(a)

$$\begin{split} a_{out} = & \frac{a_2 - b_2}{\sqrt{2}} \\ = & \frac{a_1 \mathrm{e}^{\mathrm{i}\varphi} - b_1}{\sqrt{2}} \\ = & \frac{1}{2} \left((a - b) \mathrm{e}^{\mathrm{i}\varphi} - a - b \right) \\ = & \mathrm{e}^{\mathrm{i}\varphi/2} \left(\mathrm{i} a \sin \frac{\varphi}{2} - b \cos \frac{\varphi}{2} \right) \\ a_{out}^\dagger = & \mathrm{e}^{-\mathrm{i}\varphi/2} \left(-\mathrm{i} a^\dagger \sin \frac{\varphi}{2} - b^\dagger \cos \frac{\varphi}{2} \right) \end{split}$$

$$b_{out} = \frac{a_2 + b_2}{\sqrt{2}}$$

$$= \frac{a_1 e^{i\varphi} + b_1}{\sqrt{2}}$$

$$= \frac{1}{2} ((a - b)e^{i\varphi} + a + b)$$

$$= e^{i\varphi/2} \left(a \cos \frac{\varphi}{2} - ib \sin \frac{\varphi}{2} \right)$$

$$b_{out}^{\dagger} = e^{-i\varphi/2} \left(a^{\dagger} \cos \frac{\varphi}{2} + ib^{\dagger} \sin \frac{\varphi}{2} \right)$$

$$n_{out_a} = \left(-ia^{\dagger} \sin \frac{\varphi}{2} - b^{\dagger} \cos \frac{\varphi}{2}\right) \left(ia \sin \frac{\varphi}{2} - b \cos \frac{\varphi}{2}\right)$$
$$= n_a \sin^2 \frac{\varphi}{2} + n_b \cos^2 \frac{\varphi}{2} + i \sin \frac{\varphi}{2} \cos \frac{\varphi}{2} \left(a^{\dagger}b - ab^{\dagger}\right)$$

$$n_{out_b} = \left(a^{\dagger} \cos \frac{\varphi}{2} + ib^{\dagger} \sin \frac{\varphi}{2}\right) \left(a \cos \frac{\varphi}{2} - ib \sin \frac{\varphi}{2}\right)$$
$$= n_a \cos^2 \frac{\varphi}{2} + n_b \sin^2 \frac{\varphi}{2} + i \sin \frac{\varphi}{2} \cos \frac{\varphi}{2} \left(ab^{\dagger} - a^{\dagger}b\right)$$

$$b_{out}^{\dagger} b_{out} - a_{out}^{\dagger} a_{out}$$

= $n_a \cos \varphi - n_b \cos \varphi + i \sin \varphi (ab^{\dagger} - a^{\dagger}b)$

Average

$$\left\langle b_{out}^{\dagger} b_{out} - a_{out}^{\dagger} a_{out} \right\rangle$$
$$= \left\langle n_a \cos \varphi \right\rangle$$
$$= \left| \alpha \right|^2 \cos \varphi$$

Square

$$\begin{split} & \left\langle \left(b_{out}^{\dagger} b_{out} - a_{out}^{\dagger} a_{out} \right)^{2} \right\rangle \\ = & \left\langle \left(n_{a} \cos \varphi - n_{b} \cos \varphi + \mathrm{i} \sin \varphi \left(a b^{\dagger} - a^{\dagger} b \right) \right) \left(n_{a} \cos \varphi - n_{b} \cos \varphi + \mathrm{i} \sin \varphi \left(a b^{\dagger} - a^{\dagger} b \right) \right) \right\rangle \\ = & \left\langle \left(n_{a} \cos \varphi - \mathrm{i} \sin \varphi \alpha^{*} b \right) \left(n_{a} \cos \varphi + \mathrm{i} \sin \varphi \alpha b^{\dagger} \right) \right\rangle \\ = & \cos^{2} \varphi \langle n_{a} \rangle^{2} + |\alpha|^{2} \sin^{2} \varphi \end{split}$$

Fluctuation

$$\begin{split} \Delta \Big(b_{out}^{\dagger} b_{out} - a_{out}^{\dagger} a_{out} \Big)^2 \\ = \cos^2 \varphi \Delta n_a^2 + |\alpha|^2 \sin^2 \varphi \\ = |\alpha|^2 \\ SNR = \frac{|\alpha|^2 \cos \varphi}{|\alpha|} \\ = |\alpha| \cos \varphi \end{split}$$

(b)
$$\varphi' = \frac{\pi}{2} - \varphi$$

$$SNR \approx |\alpha|\varphi'$$

$$\varphi'_{min} = \frac{1}{|\alpha|}$$

(c)

Average

$$\begin{aligned} &b_{out}^{\dagger}b_{out}-a_{out}^{\dagger}a_{out}\\ &=n_{a}\cos\varphi-\big(t^{\dagger}\cosh\varepsilon-t\sinh\varepsilon\big)\big(t\cosh\varepsilon-t^{\dagger}\sinh\varepsilon\big)\cos\varphi\\ &+\mathrm{i}\sin\varphi\big(a\big(t^{\dagger}\cosh\varepsilon-t\sinh\varepsilon\big)-a^{\dagger}\big(t\cosh\varepsilon-t^{\dagger}\sinh\varepsilon\big)\big)\\ &=n_{a}\cos\varphi-\cos\varphi\big(\cosh2\varepsilon n_{t}+\sinh^{2}\varepsilon-\sinh\varepsilon\cosh\varepsilon\big(t^{\dagger^{2}}+t^{2}\big)\big)\\ &+\mathrm{i}\sin\varphi\big(a\big(t^{\dagger}\cosh\varepsilon-t\sinh\varepsilon\big)-a^{\dagger}\big(t\cosh\varepsilon-t^{\dagger}\sinh\varepsilon\big)\big)\\ &\Big\langle b_{out}^{\dagger}b_{out}-a_{out}^{\dagger}a_{out}\Big\rangle\\ &=\langle n_{a}\cos\varphi-\cos\varphi\big(\cosh2\varepsilon n_{t}+\sinh^{2}\varepsilon-\sinh\varepsilon\cosh\varepsilon\big(t^{\dagger^{2}}+t^{2}\big)\big)\\ &+\mathrm{i}\sin\varphi\big(a\big(t^{\dagger}\cosh\varepsilon-t\sinh\varepsilon\big)-a^{\dagger}\big(t\cosh\varepsilon-t^{\dagger}\sinh\varepsilon\big)\big)\rangle\\ &=|\alpha|^{2}\cos\varphi-\cos\varphi\sinh^{2}\varepsilon\end{aligned}$$

Square

$$\left\langle \left(b_{out}^{\dagger} b_{out} - a_{out}^{\dagger} a_{out} \right)^{2} \right\rangle$$

$$= \left\langle \left(n_{a} \cos \varphi - \cos \varphi \left(\cosh 2\varepsilon n_{t} + \sinh^{2} \varepsilon - \sinh \varepsilon \cosh \varepsilon \left(t^{\dagger^{2}} + t^{2} \right) \right) \right.$$

$$+ i \sin \varphi \left(a \left(t^{\dagger} \cosh \varepsilon - t \sinh \varepsilon \right) - a^{\dagger} \left(t \cosh \varepsilon - t^{\dagger} \sinh \varepsilon \right) \right) \right)$$

$$\left(n_{a} \cos \varphi - \cos \varphi \left(\cosh 2\varepsilon n_{t} + \sinh^{2} \varepsilon - \sinh \varepsilon \cosh \varepsilon \left(t^{\dagger^{2}} + t^{2} \right) \right) \right.$$

$$+ i \sin \varphi \left(a \left(t^{\dagger} \cosh \varepsilon - t \sinh \varepsilon \right) - a^{\dagger} \left(t \cosh \varepsilon - t^{\dagger} \sinh \varepsilon \right) \right) \right)$$

$$= \left\langle \left(n_{a} \cos \varphi - \cos \varphi \left(\sinh^{2} \varepsilon - \sinh \varepsilon \cosh \varepsilon t^{2} \right) - it \sin \varphi \left(a \sinh \varepsilon + a^{\dagger} \cosh \varepsilon \right) \right) \right.$$

$$\left(n_{a} \cos \varphi - \cos \varphi \left(\sinh^{2} \varepsilon - \sinh \varepsilon \cosh \varepsilon t^{2} \right) + i \sin \varphi t^{\dagger} \left(a \cosh \varepsilon + a^{\dagger} \sinh \varepsilon \right) \right) \right\rangle$$

$$= \left\langle \left(n_{a} \cos \varphi - \cos \varphi \sinh^{2} \varepsilon + \cos \varphi \sinh \varepsilon \cosh \varepsilon t^{2} - it \sin \varphi \left(a \sinh \varepsilon + \alpha^{*} \cosh \varepsilon \right) \right) \right.$$

$$\left(n_{a} \cos \varphi - \cos \varphi \sinh^{2} \varepsilon + \cos \varphi \sinh \varepsilon \cosh \varepsilon t^{2} - it \sin \varphi \left(a \sinh \varepsilon + \alpha^{*} \cosh \varepsilon \right) \right)$$

$$\left(n_{a} \cos \varphi - \cos \varphi \sinh^{2} \varepsilon + \cos \varphi \sinh \varepsilon \cosh \varepsilon t^{2} + it^{\dagger} \sin \varphi \left(\alpha \cosh \varepsilon + a^{\dagger} \sinh \varepsilon \right) \right) \right\rangle$$

$$= \left\langle \left(n_{a} \cos \varphi - \cos \varphi \sinh^{2} \varepsilon \right)^{2} \right\rangle + \left\langle \cos^{2} \varphi \sinh^{2} \varepsilon \cosh^{2} \varepsilon t t^{\dagger} t t^{\dagger} \right\rangle$$

$$+ \left\langle \left(\cos \varphi \sinh \varepsilon \cosh \varepsilon t - i \sin \varphi \left(a \sinh \varepsilon + \alpha^{*} \cosh \varepsilon \right) \right) \right.$$

$$\left(\cos \varphi \sinh \varepsilon \cosh \varepsilon t^{\dagger} + i \sin \varphi \left(\alpha \cosh \varepsilon + a^{\dagger} \sinh \varepsilon \right) \right) \right\rangle$$

$$= \left\langle \left(n_{a} \cos \varphi - \cos \varphi \sinh^{2} \varepsilon \right)^{2} \right\rangle + 2 \cos^{2} \varphi \sinh^{2} \varepsilon \cosh^{2} \varepsilon$$

$$+ \sin^{2} \varphi |\alpha \sinh \varepsilon + \alpha^{*} \cosh \varepsilon \right|^{2} + \sin^{2} \varphi \sinh^{2} \varepsilon \cosh^{2} \varepsilon$$

$$+ \sin^{2} \varphi |\alpha \sinh \varepsilon + \alpha^{*} \cosh \varepsilon \right|^{2} + \sin^{2} \varphi \sinh^{2} \varepsilon \right)$$

Fluctuation

$$\Delta \left(b_{out}^{\dagger} b_{out} - a_{out}^{\dagger} a_{out} \right)^{2}
= |\alpha|^{2} \cos^{2} \varphi + 2 \cos^{2} \varphi \sinh^{2} \varepsilon \cosh^{2} \varepsilon + \sin^{2} \varphi |\alpha \sinh \varepsilon + \alpha^{*} \cosh \varepsilon|^{2} + \sin^{2} \varphi \sinh^{2} \varepsilon
\approx |\alpha|^{2} \varphi'^{2} + 2 \varphi^{2} \sinh^{2} \varepsilon \cosh^{2} \varepsilon + (1 - \varphi^{2}) |\alpha \sinh \varepsilon + \alpha^{*} \cosh \varepsilon|^{2} + (1 - \varphi^{2}) \sinh^{2} \varepsilon$$

Minimum angle

$$\varphi'^2 \Big(|\alpha|^2 - \sinh^2 \varepsilon \Big)^2 = |\alpha|^2 \varphi'^2 + 2\varphi'^2 \sinh^2 \varepsilon \cosh^2 \varepsilon + \Big(1 - \varphi'^2\Big) |\alpha \sinh \varepsilon + \alpha^* \cosh \varepsilon|^2 + \Big(1 - \varphi'^2\Big) \sinh^2 \varepsilon$$

In high power limit

$$\varphi'^2 |\alpha|^4 = |\alpha \sinh \varepsilon + \alpha^* \cosh \varepsilon|^2$$

To get a factor of β in phase resolution

$$\frac{\alpha^2}{\beta^2} = \left| \alpha \sinh \varepsilon + \alpha^* \cosh \varepsilon \right|^2$$

With correct phase of α

$$\beta = e^{\varepsilon}$$
$$\varepsilon = \ln \beta$$

Squeezing changes the photon number because squeezed vacuum has non-zero photon number.

(d)

For coherent state

$$\alpha = \sqrt{\frac{PL\lambda}{\pi\hbar c^2}}$$

$$= 2.7 \cdot 10^7$$

$$\varphi_{min} = 3.7 \cdot 10^{-8}$$

$$l_{min} = 6.3 \cdot 10^{-15} m$$

$$\varepsilon_{min} = 1.6 \cdot 10^{-18}$$

With a 6dB squeezed vaccum, the sensitivity can go up by a factor of 4