$$\frac{\partial x (\partial y)}{\partial x} = \frac{\partial y}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{$$

Session 27: Approximation Function 225.1.11

for a function
$$w = f(x, y)$$
, the nature analogue is the tagent plane to the graph at point?

The tagent plane (i) must through $f(x, y)$, \Rightarrow

Where $w_0 = f(x_0, y_0)$

(i) cotain two tangent lines \Rightarrow has the slopes

in I ang 3 directions as the surface does

Мо	Tu	We	Th	Fr	Sa	Su		

Memo No.				
Date	1	1		

Date /	=
the plane: A(x-x=) + B(y-y.) + ((w-w) =0	*****
if plane is not vertical =) $c \neq 0$ $b = 13/6$ 13 $56 (w - w_2) = acx - x_2 + b(y - y_2)$, $a = B/C$	S
13) SO $(W-W_0) = \alpha(x-x_0) + b(y-y_0), \alpha = b/c$	•
what a?	*****
petting y-yo, w-wo = a. (x-xo) = x-w	
so a is the slope of graph in the 3 -direction $\alpha = (\frac{\partial w}{\partial x})_0$	tion
$\mathcal{L}_{\mathcal{L}}$	
Similarly: $b = (Jy)_0$ plane Therefore the equation of the tagent time: At $(Jw)_0$	••••
$- w(x_0, y_0) - y_0 = (\frac{\partial y_0}{\partial x})_0 (x_0 + (\frac{\partial y_0}{\partial y})_0 (x_0) + (\frac{\partial y_0}{\partial y})_0 (x_0)_0$	ן ארץ
	a+4*
The approximation for mula	****
the intutive idea is the graph of	
the tagent plane will be a good approximent	íη
to the graph of the function $w = f(x, y)$	
=) (s) f(x,y) = (w+ () (x-x) + () (y-) (y-)	41

helight of graph is height of tagent plane
is often called the linerization

图图图										
	Мо	Tu	We	Th	Fr	Sa	Su			

Memo No.			
Date	1	1	

If we put ΔX , ΔY , ΔW $(S7 =) (6) \quad f(X,Y/S) \quad \Delta W \Rightarrow (\frac{\partial W}{\partial X})_{o} \Delta X + (\frac{\partial W}{\partial Y})_{\Delta Y}$

more variables: (7) AW = (3x) AX + (3y) by + (3x) b cz +... Examples: 1 give a resenabe reasonable square, centered at (1,1), over which the value of w=x3y4 will not vary by more than II. Bat (1,1) $w_x = 3x^2y^4$ $w_y = 4x^3y^3$, $\Delta w = 3\Delta x + 4\Delta y$ because a square, $\Delta X = \Delta Y$ 70x = DW, /DW/ S/ = 1/2x/ = 7, 104/57 =0.7, take -0x=0x= 10x/50.01 (Dy) <0.01 => 1 DW/ <0.07 most the quest so the squares length is 0.02 [X-1] 60.1 , 1x-11 60.1 also can: | DX] = | DY | 5 0.014

[X-1] <0.014, 1y-11 < 3.014

η

1

图 图									
Мо	Tu	We	Th	Fr	Sa	Su			

Memo No.		
Date	1	/

Exz	, a	reet	angular	box ler	ng th	9, b, c	to be
1				ese med			
			•	esitive?			

V=abc

SO DU Si beiffaut. Dai(sa).

S Daibe + Abiae + De ab

= 600 + 306 + 20C

We can see If the Duis most sensitive to the volume

The Reading 2:

Smoothness hypothesis:

We say f(x,y) is smooth at (x_0, y_0) if (8) fx and fy are continuous in the some

rectangle centered at (Xo, Yo)

in general the normal way afunction tails to be smooth is that one or both partial derivatives tail to exist at (xo, ys)

\(\frac{1}{2}\)	7	7	R			
Мо	Tu	We	Th	Fr	Sa	Su

	1
8	60
_	36

Memo No.		
Date	1	1

Ex 3. W = Jx2+y2

$$W_X = \frac{X}{\sqrt{12}}, \quad \frac{\partial w}{\partial y} = \frac{y}{\sqrt{12}}$$

These are continuous at all points except (0,0),
where they are undefined. So the function is smooth
except at the origin, we can we approximation frauda

(b) a everywhere expect except at the origin

Examples:

a) Find the tangent plane $z=x^2+y^2$ at point (2,1,5)

$$\frac{\partial w}{\partial x} = 2x$$
, $\frac{\partial w}{\partial y} = 2y$

so plane: $2x \cdot (x-2) + 2y \cdot (y-1) = 2-5 \Rightarrow 4(x-2) + 2(y-1)$ $-2x^2 + 4x + 2y^2 - 2y = 2-5$ = (2-5)

b) give the tagent approximation for \geq near the point $(X_0, Y_0) = (2, 1)$.

AW 24 AX + LOY =) AZ 24AX+ LAY

日 图								
	Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	1	1	

Ъ	A			
Y.	ob	0	m	C
1 1	ואט	_	M	⋗.

$$z=xy^2$$
 at $(1,1,1)$

$$3x^{2} = y^{2}, 3x^{2} = 2xy$$

$$\Rightarrow z-1=y^2.(x-1)+2xy(y-1)=(x-1)+2ey-1)$$

$$\frac{2w}{5x} = e^{x} + 1, \quad \frac{2w}{5y} = 1 \quad w(0) = 1$$

f(x,y) & W & 1+2x +y