

二重积分的意义

曲顶柱体的体积: $V = \{(x, y, z) | (x, y) \in D, \ 0 \le z \le f(x, y) \}$

(1) 分割: 把 D 分成 n 个小闭区域 $\Delta \sigma_i (i=1,2,\cdots,n)$,

记以 $\Delta \sigma_i$ 为底的小曲顶柱体为 ΔV_i , 如图 .

(2) 近似: 取介点 $(\xi_i, \eta_i) \in \Delta \sigma_i$ $(i = 1, 2, 3, \dots, n)$, 则

$$\Delta V_i \approx f(\xi_i, \eta_i) \Delta \sigma_i$$

(3) 作和:曲顶柱体的体积: $V \approx \sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$

如果极限 $\lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$ 存在,则定义曲顶柱体体积为 $V = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$.

二重积分的定义

定义 设f(x,y) 是有界闭区域 D 上的有界函数 , 如果存在 $I \in \mathbb{R}$, 对于任意的 $\varepsilon > 0$, 总存在 $\delta > 0$, 使得对于任何满足 $\lambda \le \delta$ 的分割和任意选取的介点 (ξ_i,η_i) , 都成立 $\left|\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i - I\right| \le \varepsilon$, 则称 f(x,y) 在 D 上

可积, I 为 f(x,y) 在 D 上的二重积分, 记作

$$\iint_D f(x,y)d\sigma \quad \overrightarrow{\mathbb{D}} \quad \iint_D f(x,y)dxdy$$

其中 f(x,y) 称为被积函数 , $d\sigma = dxdy$ 称为面积元素 , x 和 y 称为积分 变量 , D 称为积分区域 , $\sum_{i=1}^{n} f(\xi_i,\eta_i) \Delta \sigma_i$ 称为积分和(或黎曼和).

二重积分的可积性

- ※二重积分可积性理论比定积分复杂,二重积分是否存在不仅与被积函数的性质有关,还与积分区域(特别是其"边界曲线")的性质有关。
- ※ 如果常值函数 f(x,y) = 1 在 D 上可积,则称 D 为可求面积的,其积分值 $\int_{0}^{1} dxdy$ 即为 D 的面积。

定理(二重积分可积的充分条件) 设f(x,y)是有界

闭区域 $D = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, \ \varphi_1(x) \le y \le \varphi_2(x) \}$ 上的连续函数,且 $\varphi_1(x), \ \varphi_2(x)$ 在 [a, b] 上连续,则 f(x, y) 在 D 上可积.

■ 二重积分的性质

- (1) 若f 和 g 在 D 上都可积 , α 和 β 为实数 , 则 $\alpha f + \beta g$ 在 D 上也可积 , 并且 $\iint (\alpha f(x, y) + \beta g(x, y)) dxdy = \alpha \iint f(x, y) dxdy + \beta \iint g(x, y) dxdy$.
- (2) 若 $D = D_1 \cup D_2$, 其中 D_1, D_2 是两个无公共内点的有界闭区域,则 $\iint_D f(x, y) dxdy = \iint_D f(x, y) dxdy + \iint_D f(x, y) dxdy.$
- (3) 若f 和 g 在 D 上都可积,如果在 D 成立 $f(x,y) \ge 0$,则 $\iint f(x,y) dx dy \ge 0$.

若在D上成立 $f(x,y) \ge g(x,y)$,则有 $\iint f(x,y) dx dy \ge \iint g(x,y) dx dy.$

$$\left| \iint\limits_{D} f(x,y) dx dy \right| \leq \iint\limits_{D} \left| f(x,y) \right| dx dy.$$

二重积分的性质

(4) **(二重积分中值定理)** 若 D 是可求面积的,其面积记为A(D) , f(x,y) 在 D 上连续,则存在 $(\xi,\eta) \in D$,使得 $\iint_D f(x,y) dx dy = f(\xi,\eta) A(D)$.

例 设 D 是可求面积的,证明 $f(x,y) = \begin{cases} 1, & x,y$ 皆为有理数 (0, x) 或 (0, x) 为无理数 (0, x) 本 (0, x) 本 (0, x) 为无理数

证: 对 D 的任一分割,设介点为(ξ_i, η_i), $i = 1, 2, \cdots, n$. 若取所有 ξ_i, η_i 为有理数(由有理数稠密性可得),则有 $\sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i = A(D)$. 同理,若取 ξ_i, η_i 至少有一个为无理数($i = 1, 2, \cdots, n$),则有 $\sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i = 0$. 两者不相等,由二重积分的定义知 f(x, y) 在 D 上不可积.

