Senha: MangoJata

<u>Você pode escolher 7 dos 8 problemas abaixo para resolver. Cada problema vale 1,43 e a soma será arredondada para cima. Ou seja, se acertar 2 problemas fica com 2.9</u>

Problema Quatro Provas) ©

Leia 4 vetores P1[30], P2[30], P3[30] e P4[30] **de reais**, <u>um vetor</u> por vez, ou seja, utilize 1 laço para ler cada um dos vetores. Cada um dos vetores contém as notas de uma das provas. Ou seja, os 4 vetores contém as 4 notas de uma turma com trinta alunos. Crie a seguir um vetor M[30] com a média das 4 provas, Sendo que a primeira das notas tem peso 2, a segunda peso 2 e a terceira peso 3 e a quarta tem peso 3. Mostre todo o vetor M, um valor por linha. Leia ainda um valor inteiro N e mostre o valor que está na posição N do vetor. Obs: Entradas e saídas têm 1 dígito após o ponto decimal.

Exemple):			_	
\boldsymbol{A}	7.1	6.0	4.0		
В	8.3	8.0	4.0		
\boldsymbol{C}	9.1	4.0	7.0		
				-	

M	8.2	5.8	5.2		

Problema Triplo Modulo ©

Faça um programa que leia um vetor X de 100 posições (X[100]). Preencha, em seguida, um vetor Y[100] com o triplo em módulo de cada valor respectivo de X (em módulo significa sem sinal, ou seja, se o número for negativo, deve ser multiplicado por -1). Mostre todo o vetor. Em seguida, leia um valor N (0 <=N <=99) que seria uma posição qualquer do vetor Y e mostre a posição do vetor solicitada. **Obs: apresente cada um dos valores com 1 casa após o ponto decimal.**

X	0.0	-2.1	-18.0	•••	0.0	-16.0	-4.0
	0	1	2		97	98	99
Y	0.0	6.3	54.0		0.0	48.0	12.0

Exemplo de entrada	Saída para o exemplo de entrada
0.0	Y[0]=0.0
-2.1	Y[1]=6.3
-18.0	Y[2]=54.0
99	Y[99]=12.0

Problema R100) 😑

Preencha um vetor R[100] com os primeiros 100 elementos da série abaixo : 1 casa após o ponto- Corrigir para duas Termos: 2/1, -4/4, 6/7, -8/10, 10/13, -12/16, ..., ?/?

Exemplo de como fica o vetor

Mostre-o então no final de **trás para frente**, iniciando na posição 99 e indo até a posição 0, apresentando apenas os valores, um por linha. **Obs: apresente cada um dos valores com 6 casas após o ponto decimal.**

Saída para o programa	
-0.67	
0.85 -1.00 2.00	

Problema Série R40) 🕮

Leia um valor real para \mathbf{x} e escreva um algoritmo que preencha um vetor R de 40 posições com os primeiros 40 termos da série abaixo (setprecision(1)):

Termos= $x^1/1$, $x^2/5$, $x^3/9$, $x^4/13$... $x^{40}/?$

Obs: apresente cada um dos valores com 6 casas após o ponto decimal.

Obs: utilize a bibliteca cmath, e a função pow (x, N) onde o N deve ser double

Exemplo de como fica o vetor caso for lido o valor 2 para x:

Mostre-o então no final de trás para frente, iniciando na posição 39 e indo até a posição 0.

Exemplo de entrada	Saída para o exemplo de entrada
2	R[39]=7003258775.6
	R[38]=3593175254.1
	R[3]=1.2
	R[2]=0.8
	R[1]=0.8
	R[0]=2.0

Problema ColunasMenosDiagonal)

Leia uma matriz M[20,20] de valores reais. Em seguida apresente a soma de todos os valores das **colunas** *pares* (0,2,4,6,...,18) (as colunas com //) com uma casa após o ponto decimal. OBS.: Os valore que estão exatamente na posição da diagonal principal devem ser ignorados (não devem ser somados).

	0	1	2	3	4	5	6	7	8	9 :	10 11	. 12	13	14 15	16 17	18 19
0			//		//		//		//		//		//	//	//	//
1	//		//		//		//		//		//		//	//	11	//
2	//				//		//		//		//		//	//	//	//
3	//		//		//		//		//		//		//	//	11	//
4	//		//				//		//		//		//	//	11	//
5	//		//		//		//		//		//		//	//	//	//
6	//		//		//				//		//		//	//	//	//
7	//		//		//		//		//		//		//	//	//	//
8	//		//		//		//				//		//	//	//	//
9	//		//		//		//		//		//		//	//	//	//
10	//		//		//		//		//				//	//	//	//
11	//		//		//		//		//		//		//	//	//	//
12	//		//		//		//		//		//			//	//	//
13	//		//		//		//		//		//		//	//	//	//
14	//		//		//		//		//		//		//		//	//
15	//		//		//		//		//		//		//	//	//	//
16	//		//		//		//		//		//		//	//		//
17	//		//		//		//		//		//		//	11	//	//
18	//		//		//		//		//		//		//	11	11	
19	//		//		//		//		//		//		//	//	//	//

Exemplo de entrada	Saída para o exemplo de entrada
1.1 2.1 3 4 5 6 7 8 9 10 11 -2.3 13 14 15 16 17 18 1.9 20	2316.2
1.412223 2.1 3.2 4 5 6 7 8 9 1 1.1 2 3.0 1 5 6 7 18 19 2.0	
•••	

Problema TodosMenosDiagonal)

Leia uma matriz M[20,20] de valores reais. Em seguida apresente a **soma** de todos os valores que estão na parte de **cima** e todos os valores que estão na parte de **baixo** da diagonal principal, ou seja, a soma de todos os valores exceto aqueles que estão na diagonal principal.

E	Exem	plo de	en	trad	a																Saída para o exemplo de entrada
1	.1	2.1	3	4	5	6	7	8	9	10	11	-2.3	13	14	15	16	17	18	1.9	20	8819130.6
•	• •																				

Problema Matriz N

Matriz_n) Leia uma matriz M[20,20] de valores reais. Em seguida apresente a **soma de todos os valores das colunas** pares, mas só dos elementos que estão na parte de cima da diagonal principal (0,2,4,6,...,18) (as colunas com //)

Obs: apresente este valor com 1 casa após o ponto decimal. (Dica: utilize um if na condição de soma que facilita...)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0			//		//		//		//		//		//		//		//		//	
1			//		//		//		//		//		//		//		//		//	
2					//		//		//		//		//		//		//		//	
3					//		//		//		//		//		//		//		//	
4							//		//		//		//		//		//		//	
5							//		//		//		//		//		//		//	
6									//		//		//		//		//		//	
7									//		//		//		//		//		//	
8											//		//		//		//		//	
9											//		//		//		//		//	
10													//		//		//		//	
11													//		//		//		//	П
12															//		//		//	
13															//		//		//	
14																	//		//	
15																	//		//	
16																			//	П
17																			//	
18																				
19																				

MatrizX

Faça um algoritmo que leia uma matriz M[10][10]. Calcule e mostre a média dos elementos que estão presentes nas 2 diagonais (porção abaixo que está hachurada). Obs: Valores reais e a média deve ser apresentada com 1 ponto decimal

