```
\Theta
```

Out[3]:

		age	sex	ср	trestbps	chol	fbs	restecg	thalach
	0	63	1	3	145	233	1	0	150
	1	37	1	2	130	250	0	1	187
	2	41	0	1	130	204	0	0	172
	3	56	1	1	120	236	0	1	178
	4	57	0	0	120	354	0	1	163
4									•

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype				
0	age	303 non-null	int64				
1	sex	303 non-null	int64				
2	ср	303 non-null	int64				
3	trestbps	303 non-null	int64				
4	chol	303 non-null	int64				
5	fbs	303 non-null	int64				
6	restecg	303 non-null	int64				
7	thalach	303 non-null	int64				
8	exang	303 non-null	int64				
9	oldpeak	303 non-null	float64				
10	slope	303 non-null	int64				
11	ca	303 non-null	int64				
12	thal	303 non-null	int64				
13	target	303 non-null	int64				
dtypes: float64(1), int64(13)							
memo	memory usage: 33.3 KB						

memory usage: אא אני

https://github.com/KARTHIK7981/Capstone-Project-ML-/blob/main/Predicting Heart Disease.ipynb

```
Out[5]: (303, 14)
         pd.set_option("display.float", "{:.2f}".forma
In [6]:
         data.describe()
Out[6]:
                                      trestbps
                                               chol
                                                       fbs
                age
                        sex
                               ср
                               303.00
          count | 303.00
                        303.00
                                      303.00
                                               303.00
                                                      303.0
                54.37
                               0.97
                                      131.62
                                                      0.15
                        0.68
                                               246.26
         mean
         std
                9.08
                        0.47
                               1.03
                                      17.54
                                               51.83
                                                       0.36
         min
                29.00
                        0.00
                               0.00
                                      94.00
                                               126.00
                                                      0.00
         25%
                47.50
                        0.00
                               0.00
                                      120.00
                                               211.00
                                                      0.00
          50%
                55.00
                        1.00
                               1.00
                                      130.00
                                               240.00 0.00
         75%
                61.00
                        1.00
                               2.00
                                      140.00
                                               274.50 0.00
         max
                77.00
                        1.00
                               3.00
                                      200.00
                                               564.00
                                                      1.00
In [7]:
         data.target.value counts()
Out[7]: 1
              165
              138
         Name: target, dtype: int64
In [8]:
         data.target.value counts().hvplot.bar(
             title="Heart Disease Count", xlabel='Hear
         t Disease', ylabel='Count',
             width=500, height=350
Out[8]:
         # Checking for missing values
In [9]:
         data.isna().sum()
Out[9]: age
                      0
                      0
         sex
         ср
                      0
         trestbps
         chol
         fbs
                      0
         restecg
         thalach
                      0
         exang
         oldpeak
         slope
                      0
         ca
         thal
         target
         dtype: int64
```

```
In [10]:
         categorical_val = []
```

```
continous vai = ||
         for column in data.columns:
             if len(data[column].unique()) <= 10:</pre>
                  categorical val.append(column)
             else:
                  continous_val.append(column)
In [11]:
         categorical_val
Out[11]: ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slo
         pe', 'ca', 'thal', 'target']
         have disease = data.loc[data['target']==1, 's
In [12]:
         ex'].value counts().hvplot.bar(alpha=0.4)
         no_disease = data.loc[data['target']==0, 'se
         x'].value_counts().hvplot.bar(alpha=0.4)
          (no_disease * have_disease).opts(
             title="Heart Disease by Sex", xlabel='Se
         x', ylabel='Count',
             width=500, height=450, legend cols=2, leg
         end_position='top_right'
Out[12]:
In [13]:
         have_disease = data.loc[data['target']==1, 'c
         p'].value counts().hvplot.bar(alpha=0.4)
         no disease = data.loc[data['target']==0, 'cp'
         ].value counts().hvplot.bar(alpha=0.4)
          (no disease * have disease).opts(
             title="Heart Disease by Chest Pain Type",
         xlabel='Chest Pain Type', ylabel='Count',
             width=500, height=450, legend cols=2, leg
         end position='top right'
Out[13]:
In [14]:
         have disease = data.loc[data['target']==1,
         bs'].value_counts().hvplot.bar(alpha=0.4)
         no disease = data.loc[data['target']==0, 'fb
         s'].value counts().hvplot.bar(alpha=0.4)
          (no disease * have disease).opts(
             title="Heart Disease by fasting blood sug
         ar", xlabel='fasting blood sugar > 120 mg/dl
           (1 = true; 0 = false)',
             ylabel='Count', width=500, height=450, le
         gend cols=2, legend position='top right'
Out[14]:
In [15]: have disease = data.loc[data['target']==1, 'r
         estecg'].value_counts().hvplot.bar(alpha=0.4)
```

Out[15]:

```
In [16]: plt.figure(figsize=(15, 15))

for i, column in enumerate(categorical_val, 1
):
    plt.subplot(3, 3, i)
    data[data["target"] == 0][column].hist(bi
ns=35, color='blue', label='Have Heart Diseas
e = NO', alpha=0.6)
    data[data["target"] == 1][column].hist(bi
ns=35, color='red', label='Have Heart Disease
= YES', alpha=0.6)
```

plt.legend()


```
In [17]: plt.figure(figsize=(15, 15))

for i, column in enumerate(continous_val, 1):
    plt.subplot(3, 2, i)
    data[data["target"] == 0][column].hist(bi
ns=35, color='blue', label='Have Heart Diseas
e = NO', alpha=0.6)
    data[data["target"] == 1][column].hist(bi
ns=35, color='red', label='Have Heart Disease
= YES', alpha=0.6)
```

nlt.legend()

plt.xlabel(column)


```
In [18]:
         # Create another figure
         plt.figure(figsize=(9, 7))
         # Scatter with postivie examples
         plt.scatter(data.age[data.target==1],
                      data.thalach[data.target==1],
                      c="salmon")
         # Scatter with negative examples
         plt.scatter(data.age[data.target==0],
                      data.thalach[data.target==0],
                      c="lightblue")
         # Add some helpful info
         plt.title("Heart Disease in function of Age a
         nd Max Heart Rate")
         plt.xlabel("Age")
         plt.ylabel("Max Heart Rate")
         plt.legend(["Disease", "No Disease"]);
```


Out[19]: (14.5, -0.5)

In [21]: dataset.head()

Out[21]:

	age	trestbps	chol	thalach	oldpeak	target	sex_
0	63	145	233	150	2.30	1	0
1	37	130	250	187	3.50	1	0
2	41	130	204	172	1.40	1	1
3	56	120	236	178	0.80	1	0
4	57	120	354	163	0.60	1	1

5 rows × 31 columns

In [22]. nrint(data columns)

```
print(dataset.columns)
```

In [23]: from sklearn.preprocessing import StandardSca ler

```
s_sc = StandardScaler()
col_to_scale = ['age', 'trestbps', 'chol', 't
halach', 'oldpeak']
dataset[col_to_scale] = s_sc.fit_transform(da
taset[col_to_scale])
```

In [24]: dataset.head()

Out[24]:

	age	trestbps	chol	thalach	oldpeak	target	se
0	0.95	0.76	-0.26	0.02	1.09	1	0
1	-1.92	-0.09	0.07	1.63	2.12	1	0
2	-1.47	-0.09	-0.82	0.98	0.31	1	1
3	0.18	-0.66	-0.20	1.24	-0.21	1	0
4	0.29	-0.66	2.08	0.58	-0.38	1	1

5 rows × 31 columns

4

```
def print_score(clf, X_train, y_train, X_test
, y_test, train=True):
    if train:
        pred = clf.predict(X_train)
        clf_report = pd.DataFrame(classificat
ion_report(y_train, pred, output_dict=True))
        print("Train Result:\n")
        print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%")
        print("")
        print(f"CLASSIFICATION REPORT:\n{clf
```

```
report}")
        print("")
        print(f"Confusion Matrix: \n {confusi
on_matrix(y_train, pred)}\n")
    elif train==False:
        pred = clf.predict(X_test)
        clf report = pd.DataFrame(classificat
ion report(y test, pred, output dict=True))
        print("Test Result:\n")
        print(f"Accuracy Score: {accuracy_sco
re(y_test, pred) * 100:.2f}%")
        print("")
        print(f"CLASSIFICATION REPORT:\n{clf_
report}")
        print("")
        print(f"Confusion Matrix: \n {confusi
on matrix(y test, pred)}\n")
```

```
In [26]: from sklearn.model_selection import train_tes
t_split

X = dataset.drop('target', axis=1)
y = dataset.target

X_train, X_test, y_train, y_test = train_test
_split(X, y, test_size=0.3, random_state=42)
```

1.Logistic Regression

```
In [27]: from sklearn.linear_model import LogisticRegr
ession

lr_clf = LogisticRegression(solver='liblinea
    r')
    lr_clf.fit(X_train, y_train)

print_score(lr_clf, X_train, y_train, X_test,
    y_test, train=True)
print_score(lr_clf, X_train, y_train, X_test,
    y_test, train=False)
```

Train Result:

Accuracy Score: 86.79%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg
weighted a	vg			
precision	0.88	0.86	0.87	0.87
0.87				
recall	0.82	0.90	0.87	0.86
0.87				
f1-score	0.85	0.88	0.87	0.87
0.87				

```
support 97.00 115.00 0.87 212.00 212.00

Confusion Matrix:
[[ 80 17]
[ 11 104]]
```

Test Result:

Accuracy Score: 86.81%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	W
eighted a	vg				
precision	0.87	0.87	0.87	0.87	
0.87					
recall	0.83	0.90	0.87	0.86	
0.87					
f1-score	0.85	0.88	0.87	0.87	
0.87					
support	41.00	50.00	0.87	91.00	
91.00					

Confusion Matrix:

[[34 7] [5 45]]

Out[28]:

0 Logistic Regression86.7986.81		Model	Training Accuracy %	Testing Accuracy %
	0	Logistic Regression	86.79	86.81

2.Random Forest

```
rf_clf.fit(X_train, y_train)
print_score(rf_clf, X_train, y_train, X_test,
y_test, train=True)
print_score(rf_clf, X_train, y_train, X_test,
y_test, train=False)
```

Train Result:

Accuracy Score: 100.00%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg
weighted a	avg			
precision	1.00	1.00	1.00	1.00
1.00				
recall	1.00	1.00	1.00	1.00
1.00				
f1-score	1.00	1.00	1.00	1.00
1.00				
support	97.00	115.00	1.00	212.00
212.00				

Confusion Matrix:

[[97 0] [0 115]]

Test Result:

Accuracy Score: 82.42%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	W
eighted a	vg				
precision	0.80	0.84	0.82	0.82	
0.82					
recall	0.80	0.84	0.82	0.82	
0.82					
f1-score	0.80	0.84	0.82	0.82	
0.82					
support	41.00	50.00	0.82	91.00	
91.00					

Confusion Matrix:

[[33 8] [8 42]]

```
u_co_a, .appcna(, coa_co_a,_e,
ignore index=True)
results df
```

Out[30]:

		Model	Training Accuracy %	Testing Accuracy %		
	0	Logistic Regression	86.79	86.81		
	1	Random Forest Classifier	100.00	82.42		

Accuracy of Logistic Regression

```
In [31]:
         test score = accuracy score(y test, lr clf.pr
         edict(X test)) * 100
         train_score = accuracy_score(y_train, lr_clf.
         predict(X train)) * 100
         tuning results df = pd.DataFrame(data=[["Tune
         d Logistic Regression", train score, test sco
         re]],
                                    columns=['Model',
          'Training Accuracy %', 'Testing Accuracy %'])
         tuning results df
```

Out[31]:

	Model	Training Accuracy %	Testing Accuracy %
0	Tuned Logistic Regression	86.79	86.81
4)

Accuracy of Random Forest

```
In [32]:
         test_score = accuracy_score(y_test, rf_clf.pr
         edict(X_test)) * 100
         train_score = accuracy_score(y_train, rf_clf.
         predict(X train)) * 100
         results df 2 = pd.DataFrame(data=[["Tuned Ran
         dom Forest Classifier", train_score, test_sco
         re]],
                                   columns=['Model',
         'Training Accuracy %', 'Testing Accuracy %'])
         tuning_results_df = tuning_results_df.append(
         results df 2, ignore index=True)
         tuning_results_df
Out[32]:
```

Training

Testing

	Model	Accuracy %	Accuracy %
0	Tuned Logistic Regression	86.79	86.81
1	Tuned Random Forest Classifier	100.00	82.42
4)

Random forest Feature

```
In [33]: def feature_imp(df, model):
    fi = pd.DataFrame()
    fi["feature"] = df.columns
    fi["importance"] = model.feature_importan
ces_
    return fi.sort_values(by="importance", as
cending=False)
```

Out[34]: <AxesSubplot:>

