Couche Liaison: Sous-Couche MAC

Sous-couche MAC

Medium Access Control ou Techniques d'accès aux supports

- Adapté aux LAN ET MAN (diffusion multipoint, tandis que les WAN sont des liaisons point à point
 - → Diamètre de la surface n'excède pas quelques kilomètres
 - → Débit binaire nominal > que quelques Mb/s

Contexte : un canal de communication partagé par plusieurs utilisateurs

Principe: attribuer l'accès au canal aux différents utilisateurs potentiels en évitant des éventuelles collisions

- Définition :
 - → Canal unique
 - → Possibilité de collisions
 - → Détection de porteuse
 - → Pas d'écoute préalable

Méthodes d'accès au support

Les méthodes statiques

- La méthode AMRF (Accès Multiple à Répartition de Fréquence):
 consiste à découper la bande passante du support en sous-bandes et à attribuer chacune d'elles à un seul utilisateur du réseau
- La méthode AMRT (Accès Multiple à Répartition dans le Temps) : consiste à affecter successivement et nominalement aux différentes stations du réseau un slot-time. A tour de rôle, chaque station dispose alors de l'intégralité de la bande passante du support.

Les méthodes dynamiques

- Méthode probabiliste
 - → La méthode ALOHA
 - → La méthode Slotted ALOHA
 - → La méthode CSMA et ses variantes
 - → La méthode CSMA/CD
- Méthode déterministe : Token Passing

Méthodes Statiques

Mode de transmission

- La transmission de bits peut se faire en mode asynchrone ou synchrone
 - → Mode asynchrone : indique qu'il n'y a pas de relations préétablies entre l'émetteur et le récepteur. Chaque caractère est précédé de bits START et terminé par des bits STOP. Le début de la transmission peut avoir lieu à n'importe quel instant.
 - → Mode synchrone : l'émetteur et le récepteur se mettent d'accord sur un intervalle de temps constant qui se répète sans arrêt dans le temps. Il y a synchronisation du signal émis avec celui sur une horloge.

Multiplexage

- Partage d'un même support physique de transmission entre plusieurs usagers :
 - → Optimisation de la bande passante
 - → Plusieurs communications sur le même support

Fonctionnalités

- → Machine statique (câblée)
- → Prise en compte du niveau physique
- → Transparent au protocole de communication
- → Faible coût
- → Division statique du support commun (HV)

Multiplexage: Caractéristiques

- Mélange des voies
 - → Différents codes
 - → Différentes vitesses
 - → Différents modes de transmission (synchrone/asynchrone)
- > Signalisation
 - → Hors bande : canal sémaphore
 - → Dans la bande : à la place des données
- Rapidité de transfert C de la voie HV : $C \le \sum_{i=1}^{n} C_i$

où Ci : débit de la voie BVi en car/s, N: nombre de voies BV

$$\geq \text{ Efficacit\'e: } e = \frac{\sum_{i=1}^{n} (C_i l_i)}{D}$$

où li : nombre de bits utiles contenu dans un caractère, D : débit binaire de la voie HV en bit/s

Méthodes de multiplexage

- Multiplexage en fréquence (Accès Multiple à Répartition de fréquence):
 - → Partage de la bande de fréquences disponibles en canaux (sousbandes affectés à chaque utilisateur)
- Multiplexage temporel (Accès Multiple à Répartition dans le Temps):
 - → Allocation de la totalité du débit disponible à chaque utilisateur à tour de rôle

Multiplexage en fréquence

En émission

- → Diviser la bande en sous-bandes de fréquences
- → Chaque sous-bande de fréquence est d'une largeur donnée et centrée autour d'une fréquence porteuse différente
- → Une sous-bande est appelée canal de données
- → Les sous-bandes sont isolées les unes des autres par des bandes de garde
- \rightarrow Le signal d'entrée de chaque BV_i est modulé autour de la fréquence porteuse de son canal :

$$d_{i}(t) = \begin{cases} 0 \rightarrow \sin(2\pi(f_{i} + \Delta f)t) \\ 1 \rightarrow \sin(2\pi(f_{i} - \Delta f)t) \end{cases}$$

→ Après multiplexage fréquentiel, le signal composite obtenue est analogique

Multiplexage en fréquence

En réception

- → Dispose de batterie de filtres passe-bande qui séparent les voies
- \rightarrow Dispose de discriminateurs qui restituent les signaux $d_i(t)$

Caractéristiques

- → Réalisation complexe
- → Efficacité faible (0.2 à O.3)
- → Transfert de voies complexe
- → Transmission signalisation coûteuse

Multiplexage en fréquence

> Exemples : Normes CCITT : BV 50 bauds

$$f_i = 420 + (i - 1) 120 Hz$$

$$\Delta f = 30Hz$$

$$i = 24 \text{ voies}$$

> *BV 100 bauds*

$$f_i = 480 + (i - 1) 240 Hz$$

$$\Delta f = 60 Hz$$

$$i = 12 \text{ voies}$$

Multiplexage temporel

Principe

- Diviser le temps en périodes appelées trames
- Chaque trame est divisée en intervalles de temps appelés IT :
 - → Soit un caractère : multiplexage orienté caractère (voies asynchrones)
 - → Soit un bit : multiplexage orienté bit (voies synchrones)

Fonctionnement du multiplexeur

- → Mémorisation des données de chaque BV_i dans un buffer
- → Un buffer contient exactement un IT
- → Les buffers sont ensuite examinés séquentiellement pour constituer la **trame multiplexée**

Principe

- Découpage du train binaire HV en trames
- Chaque trame est découpée en IT fixe
- Émission permanente de trame
- Bien adapté à des BV asynchrones
- Non transparent aux codes et aux vitesses

Principe

Débit liaison HV = D bit/S

Longueur trame = L bits

Longueur IT = λ_i bits

$$L = \sum \lambda_i$$
 bits

Fréquence des trames

$$F(trame) = D/L$$

Fréquence IT

$$F(IT) = L/D$$

Débit des sous-canaux i

les IT de même numéro constituent un circuit de données appelé canal i, $d_i = (\lambda_i D / L)$ bits/s

Multiplexage temporel caractère exploité en mode asynchrone

> On désire transmettre des mots l_i bits avec une capacité C_i car/s

Principe

- → supprimer les bits START et STOP des caractères des voies Bv_i
- $\rightarrow \lambda_i \geq l_i \ et \ D/L \geq C_i$
- \rightarrow Stockage en attente IT_i
- → À la réception, on régénère les bits START et STOP

Signalisation

La signalisation permet :

- → Dialogue entre multiplexeurs
- → Dialogue entre équipements connectés aux extrémités
- → Transmission d'informations de service de la voie HV

Deux types de signalisation

Signalisation dans la bande

Dans chaque IT, on utilise un bit supplémentaire indiquant le type de IT, donnée ou signalisation

$$\lambda_i = l_i + 1$$

> Signalisation hors bande : canal sémaphore

On utilise un IT supplémentaire

Verrouillage de trame

Premier IT de chaque trame contient une combinaison binaire particulière

- → Reconnaître le début de trame
- → Prise de synchronisation entre les deux multiplexeurs
- → Signal d'alarme

- Exemple
 - \rightarrow D = 4800 bits/s
 - → Lignes BV, toutes identiques
 - → Caractéristiques BV :

$$1 \operatorname{car} = l_i = 8 \operatorname{bits} \operatorname{et} C_i = 10 \operatorname{car/s}$$

- → Taille d'une IT : $\lambda i = li + 1 = 9$ bits
- → Taille d'une trame : $D/L \ge C_i = 10$

$$\rightarrow$$
 L \leq 480 = 53,33 * 9 \rightarrow L = 50 * 9 = 450

- \rightarrow Nombre d'IT = 50
- → Nombre de canaux 50 1 = 49 (verrouillage)
- \rightarrow Efficacité : e = (49 * 10 * 8) / 4800 = 0.81

Multiplexage temporel par bit

Principe

- longueur L en fonction du débit des voies BV
- Taille IT = 1 bit
- ler IT = synchronisation de la trame
- Plusieurs IT peuvent être affectés au même canal
- Dés qu'un bit est reçu d'une voie BV, il est stocké puis est émis dans le premier IT correspondant au canal

Verrouillage de la trame

- > 1er IT
- séquence de bits connue des 2 extrémités
- émise sur plusieurs trames de longueur L
- > si récepteur détecte une erreur dans la séquence :
 - → Envoie alarme
 - → Arrête transmission

Multiplexage temporel par bit

Signalisation

- Signalisation BV codée sur plusieurs bits
- Canal spécifique à la signalisation
- Train de signalisation permanent
- Transmis dans l'ordre croissant des BV

Exemple

```
D = 9600 \text{ bits/s}
```

Trame de longueur L = 16 bits

Définition des canaux

```
Bit 0 = \text{canal } 0 \text{ (verrouillage de trame)}
```

Bit 1 à
$$14 = \text{canaux } 1 \text{ à } 14 \text{ (voies BV)}$$

Bit
$$15 = \text{canal } 15 \text{ (signalisation)}$$

Les méthodes Dynamiques

L'ancêtre ALOHA

Mise en oeuvre pour un réseau radio de diffusion de paquets reliant les îles d'Hawaï

Principe

- Attendre un acquittement au maximum pendant une durée égale à 2 fois le temps de propagation
- > la paquet subit une erreur ou une collision : retransmission
- Au bout de n retransmissions successives du même paquet, la station émetteur abandonne

Inconvénients

- Plus il y a de transmissions (plus la charge augmente), plus il y a de collisions
- > Taux d'utilisation du canal : 18 %

L'ancêtre ALOHA

Emission

- → Accès au support pour émettre une trame
- → Attendre un acquittement au maximum pendant une durée égale à deux fois le temps de propagation (slot)
- → Si une réception d'acquittement est faite alors transmission OK
- → Sinon ré-émission de la trame selon un algorithme de reprise

Réception

- → Vérifier la trame reçue
- → Si vérification est positive alors émission d'un acquittement
- → Sinon rien (soit une collision s'est produite ou erreur de transmission

Aloha en tranches ou Slotted Aloha

Principe:

- le temps est discrétisé : découpé en tranches de temps appelé slot
 - → Les stations sont synchronisées
 - → Une station transmet un paquet au début d'un slot
- Amélioration par rapport à ALOHA simple
- Inconvénients
 - → Taux d'utilisation du canal : 36%
 - → Il y a une très mauvaise utilisation du canal

Les techniques Carrier Sense Multiple Access

Principe

- → Cette technique consiste à écouter le canal avant d'entreprendre un
- → émission. Si le communicateur détecte un signal sur le canal, il diffère son émission à un moment ultérieur

Problème : il peut toujours y avoir des collisions en cours d'émission

Les variantes de CSMA

- Selon le type de décision prise lorsque le canal est détecté occupé :
 - → CSMA non-persistant : lorsque la station détecte un signal, elle attend un délai aléatoire avant de ré-itérer la procédure (écoute de la porteuse, ...)
 - → CSMA persistant (variante retenue) : la station "persiste à écouter le canal jusqu'à ce que celui-ci devienne libre puis émet
 - → CSMA p-persistant : lorsque le canal devient libre, la station émet avec une probabilité p, et diffère son émission avec une probabilité (1 − p) ; ceci permet de diminuer la probabilité de collision par rapport au CSMA persistant

CSMA/Collision Detection

Principe

- A l'écoute préalable du signal, s'ajoute l'écoute pendant la transmission et en cas de collision, la ré-émission au bout d'un temps aléatoire
- Utilisé pour Ethernet, normalisée par l'ISO sous l'appellation 8802.3

Algorithme

- → les stations écoutent le canal
- → Si le canal est libre, elles commencent à émettre
- → Quand une collision est détectée :
 - La station envoie des signaux spéciaux appelés bits de bourrage (jam 32 bits) afin que toutes les stations soient prévenues de la collision
 - Elle attend un temps aléatoire après la collision et par la suite essai de retransmettre le paquet

Avantages

- → Gain d'efficacité
- → Détection précoce des collisions
- → Reprise après collision visant à diminuer la probabilité d'une nouvelle collision

CSMA/Collision Detection

- Algorithme de backoff
 - → Détermine l'instant de retransmission d'une trame qui a subie une collision
 - → Détermine une durée aléatoire avant retransmission
 - → Tirage d'une variable aléatoire entière M : M < 2^k où k = min (n, 10), n est le nombre total de collisions subies par la trame
 - → Délai d'attente, avant de tenter une nouvelle retransmission, est égale à M fois la fenêtre de collision; si n = 16, il y a abandon de la transmission

La technique CSMA/CD ne permet pas de garantir un délai maximum d'attente avant transmission

Ce n'est pas un protocole déterministe

Algorithme de backoff

```
Void Reprise_apres_collision (int cpt_tent, int *baxbackoff)
   // cpt tent : compteur de tentatives de transmission
   // maxbackoff : borne supérieure de l'intervalle de tirage
   slot-time := 51; //micro-seconds
   backoff limit := 10;
   int delay; // nombre de slots à attendre avant de
     retransmettre
   if (cpt tent == 1) maxbackoff := 2;
   else
          if (cpt_tent <= backoff_limit)</pre>
             maxbackoff := maxbackoff * 2;
          else maxbackoff := 2^{10};
   delay := int (random *maxbackoff);
   wait(delay*slot time);
```

Token passing

- Méthode déterministe : pour ces méthodes, de manière générale, une station désire transmettre une trame doit posséder le droit de l'effectuer. Celui-ci est affecté à la station de différentes manières
 - → Une station peut prendre en charge l'attribution du droit aux stations (principe du polling)
 - → Une trame spéciale, appelée jeton, symbolise le droit d'accès au support. Une station détenant cette trame peut ainsi émettre