T.D. – Algèbre 1

 $Hugo \ Salou$

11 novembre 2024

Table des matières

T	Rela	tions d'equivalence, quotients, premières propriétes					
	des groupes.						
	1.1	Exercice 1	3				
	1.2	Exercice 2. Parties génératrices	5				
	1.3	Exercice 3. Ordre des éléments d'un groupe	7				
	1.4	Exercice 4	7				
	1.5	Exercice 5	8				
	1.6	Exercice 6	8				
	1.7	Exercice 7	0				
	1.8	Exercice 8. Classes à gauche et classes à droite 1	0				
	1.9	Exercice 9. Normalisateur	1				
	1.10	Exercice 10. Construction de \mathbb{Q}	2				
		Exercice 11	5				
	1.12	Exercice 12	5				
	1.13	Exercice 13	5				
	1.14	Exercice 14	5				
	1.15	Exercice 15	6				
2	Thé	orèmes d'isomorphismes et actions de groupes. 1	7				
	2.1	Exercice 1. Groupes monogènes	7				
	2.2	Exercice 2	8				
	2.3	Exercice 3	9				
	2.4	Exercice 4	0				
	2.5	Exercice 5	0				
	2.6	Exercice 6. Troisième théorème d'isomorphisme 2	1				
	2.7	Exercice 7. Sous-groupe d'un quotient	1				
	2.8	Exercice 8. Combinatoire algébrique	2				
	2.9	Exercice 9. Formule de BURNSIDE	3				

1 Relations d'équivalence, quotients, premières propriétés des groupes.

Sommaire.

1.1	Exercice 1.	3
1.2	Exercice 2. Parties génératrices	5
1.3	Exercice 3. Ordre des éléments d'un groupe	7
1.4	Exercice 4.	7
1.5	Exercice 5.	8
1.6	Exercice 6.	8
1.7	Exercice 7.	10
1.8	Exercice 8. Classes à gauche et classes à	
	$droite \dots \dots \dots \dots \dots \dots$	10
1.9	Exercice 9. Normalisateur	11
1.10	Exercice 10. Construction de \mathbb{Q}	12
1.11	Exercice 11	15
1.12	Exercice 12	15
1.13	Exercice 13	15
1.14	Exercice 14	15
1.15	Exercice 15.	16

1.1 Exercice 1.

1. Donner un isomorphisme $f: \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$, où \mathbb{S}^1 est le cercle unité de \mathbb{R}^2 et \mathbb{R}/\mathbb{Z} est le groupe quotient de \mathbb{R} par son sous-groupe distingué \mathbb{Z} .

Soient E et F deux ensembles et soit $f: E \to F$ une application.

2. a) Montrer que la relation binaire sur E définie par

$$x \sim y \iff f(x) = f(y)$$

est une relation d'équivalence.

- **b)** On pose $X := E/\sim$. Soit $\pi : E \to X$ l'application canonique. Montrer qu'il existe une unique application $\bar{f} : X \to F$ telle que $f = \bar{f} \circ \pi$.
- c) Montrer que \bar{f} est une bijection sur son image.
- 1. On commence par considérer l'application

$$g: \mathbb{R}/\mathbb{Z} \longrightarrow u^{-1}(\mathbb{S}^1)$$

 $x\mathbb{Z} \longmapsto e^{2\pi i x},$

où $u:\mathbb{C}\to\mathbb{R}^2$ est l'isomorphisme canonique de \mathbb{R}^2 et $\mathbb{C}.$ Montrons trois propriétés.

- ▷ C'est bien défini. En effet, si $k \in \mathbb{Z}$, alors $e^{2i\pi(x+k)} = e^{2i\pi x}$ par a 2π -périodicité de cos et sin.
- ightharpoonup C'est bien un morphisme. En effet, si $x\mathbb{Z},y\mathbb{Z}\in\mathbb{R}/\mathbb{Z},$ alors on a

$$g(x\mathbb{Z} + y\mathbb{Z}) = g((x+y)\mathbb{Z}) = \exp(2i\pi(x+y))$$
$$= \exp(2i\pi x) \cdot \exp(2i\pi y)$$
$$= g(x\mathbb{Z}) \cdot g(y\mathbb{Z}).$$

 \triangleright C'est une bijection. En effet, l'application réciproque est l'application $u^{-1}(\mathbb{S}^1) \ni z \mapsto (\arg z)\mathbb{Z}$.

On en conclut en posant l'isomorphisme $f := u \circ g : \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$.

- 2. a) On a trois propriétés à vérifier.
 - \triangleright Comme f(x) = f(x), on a $x \sim x$ quel que soit $x \in E$.
 - \triangleright Si $x \sim y$, alors f(x) = f(y) et donc f(y) = f(x) et on en déduit $y \sim x$.

- \triangleright Si $x \sim y$ et $y \sim z$, alors f(x) = f(y) = f(z), et on a donc $x \sim z$.
- b) La fonction f est constante sur chaque classe d'équivalence de E par \sim . On procède par analyse synthèse.
 - ightharpoonup Analyse. Si $\bar{f}: X \to F$ existe, alors $\bar{f}(\bar{x}) = f(x)$ quel que soit $x \in E$, où \bar{x} est la classe d'équivalence de x. L'application \bar{f} est donc unique, car déterminée uniquement par les valeurs de f sur les classes d'équivalences de x.
 - \triangleright Synthèse. On pose $\bar{f}(\bar{x}) := f(x)$, qui est bien définie car f est constante sur les classes d'équivalences de \sim .
- c) Montrons que $\bar{f}: X \to \text{im } \bar{f}$ est injective et surjective.
 - \triangleright Soient \bar{x} et \bar{y} dans X tels que $\bar{f}(\bar{x}) = \bar{f}(\bar{y})$. Alors, on a f(x) = f(y) et donc $x \sim y$ d'où $\bar{x} = \bar{y}$.
 - \triangleright On a, par définition, im $\bar{f} = \bar{f}(X)$.

D'où, \bar{f} est une bijection sur son image.

1.2 Exercice 2. Parties génératrices

- 1. Soit X une partie non vide d'un groupe G. Montrer que $\langle X \rangle$, le sous-groupe de G engendré par X, est exactement l'ensemble des produits finis d'éléments de $X \cup X^{-1}$, où X^{-1} est l'ensemble défini par $X^{-1} := \{x^{-1} \mid x \in X\}$.
- **2.** Montrer que le groupe $(\mathbb{Q}, +)$ n'admet pas de partie génératrice finie.
- **3.** Montrer que $(\mathbb{Q}^{\times}, \times) = \langle -1, p \in \mathbb{P} \rangle$, où \mathbb{P} est l'ensemble des nombres premiers.
- 1. Soit H l'ensemble des produits finis d'éléments de $X \cup X^{-1}$.
 - ▷ L'ensemble H contient X. De plus, H est un groupe. En effet, on a $H \neq \emptyset$ car $e = xx^{-1} \in H$ où $x \in X$. Puis, pour deux produits $x = x_1 \cdots x_n \in H$ et $y = y_1 \cdots y_m \in H$ (où les x_i et les y_i sont des éléments de $X \cup X^{-1}$) on a

$$xy^{-1} = x_1 \cdots x_n y_m^{-1} \cdots y_1^{-1},$$

- $5/23$ -

qui est un produit fini d'éléments de $X \cup X^{-1}$, c'est donc un élément de H. On en conclut que H est un sous-groupe de G contenant H. D'où $H \ge \langle X \rangle$.

 \triangleright Soit K un sous-groupe de G contenant X. D'une part, on sait que $X \cup X^{-1} \subseteq K$. D'autre part, si $x = x_1 \cdots x_n$ où l'on a $x_i \in X \cup X^{-1} \subseteq K$, alors $x \in K$ car K est un groupe. On en déduit que $H \subseteq K$.

Ainsi, H est le plus petit sous-groupe de G contenant X, il est donc égal à $\langle X \rangle$.

2. Supposons, par l'absurde, que $(\mathbb{Q}, +) = \langle \frac{p_1}{q_1}, \frac{p_2}{q_2}, \dots, \frac{p_n}{q_n} \rangle$. On pose $Q := \prod_{i=1}^n q_i$, puis on considère $\frac{1}{Q+1} \in \mathbb{Q}$.

Montrons que l'on peut écrire tout élément de $\left\langle \frac{p_1}{q_1}, \dots, \frac{p_n}{q_n} \right\rangle$ sous la forme $\frac{p}{O}$. En effet, par la question 1, on considère

$$x := \sum_{i \in I} \varepsilon_i \frac{p_i}{q_i}$$
 avec $\varepsilon_i \in \{-1, 1\}$ et I fini,

un élément quelconque du sous-groupe engendré. Et, en mettant au même dénominateur, on obtient $p'/\prod_{i\in I}q_i=x$. On obtient donc bien

$$x = \frac{p' \times \prod_{i \notin I} p_i}{Q},$$

où le produit au numérateur contient un nombre fini de termes.

Or, $\frac{1}{Q+1} \in \mathbb{Q}$ ne peut pas être écrit sous la forme p/Q car Q+1 et Q sont premiers entre eux. C'est donc absurde! On en conclut que $(\mathbb{Q}, +)$ n'admet pas de partie génératrice finie.

3. Notons $E := \langle -1, p \in \mathbb{P} \rangle$. Soit $\frac{a}{b}$ un rationnel strictement positif. On suppose a et b positifs. On décompose a et b en produit de nombre premiers :

$$a = \prod_{i \in I} p_i$$
 et $b = \prod_{j \in J} p_j$.

On a donc $a \in E$ et $b \in E$. On en conclut que $\frac{a}{b} \in E$.

Si $\frac{a}{b} \in \mathbb{Q}^{\times}$ est un rationnel tel que a, b < 0, on a $\frac{a}{b} = \frac{|a|}{|b|} \in E$ d'après ce qui précède.

Si $\frac{a}{b} \in \mathbb{Q}^{\times}$ est un rationnel négatif, alors on a $\left|\frac{a}{b}\right| \in E$, mais on a donc également $\frac{a}{b} = (-1) \times \left|\frac{a}{b}\right| \in E$.

On en conclut que $\mathbb{Q}^{\times} \subseteq E$ et on a égalité car $E \subseteq \mathbb{Q}^{\times}$ par définition de E comme sous-groupe de \mathbb{Q}^{\times} .

1.3 Exercice 3. Ordre des éléments d'un groupe

Soient g et h deux éléments d'un groupe G.

- **1.** a) Montrer que g est d'ordre fini si et seulement s'il existe $n \in \mathbb{N}^*$ tel que $g^n = e$.
 - **b)** Montrer que si g est d'ordre fini, alors son ordre est le plus petit entier $n \in \mathbb{N}^*$ tel que $g^n = e$. Montrer, de plus, que pour $m \in \mathbb{Z}$, $g^m = e$ si et seulement si l'ordre de g divise m.
- **2.** Montrer que les éléments g, g^{-1} et hgh^{-1} ont même ordre.
- 3. Montrer que gh et hg ont même ordre.
- **4.** Soit $n \in \mathbb{N}$. Exprimer l'ordre de g^n en fonction de celui de g.
- **5.** On suppose que g et h commutent et sont d'ordre fini m et n respectivement.
 - a) Exprimer l'ordre de gh lorsque $\langle g \rangle \cap \langle h \rangle = \{e\}.$
 - b) Même question lorsque m et n sont premiers entre eux.
 - c) (Plus difficile) On prend m et n quelconques. Soient $a := \min\{\ell \in \mathbb{N}^* \mid g^{\ell} \in \langle h \rangle\}$ et $b \in \mathbb{N}$ tel que $g^a = h^b$. Démontrer que l'ordre de gh est an/pgcd(n, (a+b)).
- 6. En considérant

$$A := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad et \qquad B := \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix},$$

montrer que le produit de deux éléments d'ordre fini ne l'est pas forcément.

1.4 Exercice 4.

Soit G un groupe.

- 1. On suppose que tout élément g de G est d'ordre au plus 2. Montrer que G est commutatif.
- **2.** Montrer que G est commutatif si et seulement si l'application $g \mapsto g^{-1}$ est un morphisme de groupes.
- 1. Pour tout $g \in G$, on a $g^2 = e$. Ainsi, pour tout $g \in G$, on a g est son propre inverse. Ceci permet de calculer

$$gh = g^{-1}h = g^{-1}h^{-1} = (hg)^{-1} = hg,$$

d'où G est commutatif.

2. On note $\phi: g \mapsto g^{-1}$, et on procède par équivalence.

$$G$$
 est commutatif $\iff \forall g, h \in G, \quad gh = hg$
 $\iff \forall g, h \in G, \quad (gh)^{-1} = (hg)^{-1}$
 $\iff \forall g, h \in G, \quad (gh)^{-1} = g^{-1}h^{-1}$
 $\iff \forall g, h \in G, \quad \phi(gh) = \phi(g) \phi(h)$
 $\iff \phi \text{ est un morphisme.}$

1.5 Exercice 5.

Soit $\phi: G_1 \to G_2$ un morphisme de groupes, et soit $g \in G_1$ d'ordre fini. Montrer que $\phi(g)$ est d'ordre fini et que son ordre divise l'ordre de g.

On utilise habilement l'exercice 1.3 : pour tout $h \in G$, $h^m = e$ si et seulement si l'ordre de h divise m. Soit n l'ordre de g (qui est fini car G_1 d'ordre fini). Ainsi,

$$(\phi(g))^n = \phi(g^n) = \phi(e_1) = e_2.$$

On en déduit donc que $\phi(g)$ est d'ordre fini et qu'il divise $n = \operatorname{ord} g$.

1.6 Exercice 6.

Soient G_1 et G_2 des groupes, et $\phi: G_1 \to G_2$ un morphisme de groupes.

- 1. Soient H_1 (resp. H_2) un sous-groupe de G_1 (resp. G_2). Montrer que $\phi(H_1)$ (resp. $\phi^{-1}(H_2)$) est un sous-groupe de G_2 (resp. G_1).
- **2.** Montrer que H_2 est un sous-groupe distingué de G_2 , alors $\phi^{-1}(H_2)$ est un sous-groupe distingué de G_1 .
- 3. Montrer que si ϕ est surjective, l'image d'un sous-groupe distingué de G_1 par ϕ est un sous-groupe distingué de G_2 .
- **4.** Donner un exemple d'un morphisme de groupes $\phi: G_1 \to G_2$ et de sous-groupe distingué $H_1 \triangleleft G_1$ tel que $\phi(H_1)$ n'est pas distingué dans G_2 .
- 1. Remarquons que $e_2 \in \phi(H_1) \neq \emptyset$ et que $e_1 \in \phi^{-1}(H_2) \neq \emptyset$ car on a $\phi(e_1) = e_2$. Pour $a, b \in \phi(H_1)$, on sait qu'il existe $x, y \in H_1$ tels que $\phi(x) = a$ et $\phi(y) = b$. Alors,

$$ab^{-1} = \phi(x) \ \phi(y)^{-1} = \phi(\underbrace{xy^{-1}}_{\in H_1}) \in \phi(H_1),$$

d'où $\phi(H_1)$ est un sous-groupe de G_2 . Pour $a, b \in \phi^{-1}(H_2)$, on sait que $\phi(a), \phi(b) \in H_2$ Alors, on a

$$\phi(ab^{-1}) = \underbrace{\phi(a)}_{\in H_2} \underbrace{\phi(b)^{-1}}_{\in H_2} \in H_2,$$

d'où $ab^{-1} \in \phi^{-1}(H_2)$ et donc $\phi(H_1)$ est un sous-groupe de G_2 .

2. Supposons $H_2 \triangleleft G_2$ et montrons que $\phi^{-1}(H_2) \triangleleft G_2$. Soit un élément $g \in G_1$ quelconque, et soit $h \in \phi^{-1}(H_2)$. Alors,

$$\phi(ghg^{-1}) = \phi(g) \ \phi(h) \ \phi(g)^{-1} \in H_2,$$

car $\phi(h) \in H_2$ et que $H_2 \triangleleft G_2$. Ainsi, $ghg^{-1} \in \phi^{-1}(H_2)$. On a donc $g \phi^{-1}(H_2) g^{-1} \subseteq \phi^{-1}(H_2)$, quel que soit $g \in G_1$. On en déduit que $\phi^{-1}(H_2)$ est distingué dans G_1 .

3. Suppsons ϕ surjective, on a donc l'égalité $\phi(G_1) = G_2$. Supposons de plus que $H_1 \triangleleft G_1$. Montrons que $\phi(H_1)$ est un sous-groupe distingué de G_2 . Soit $g \in G_2 = \phi(G_1)$ quelconque, et soit un élément $h \in \phi(H_1)$. Il existe donc $x \in G_1$ et $y \in H_1$ deux éléments tels que $\phi(y) = h$ et $\phi(x) = g$. Ainsi

$$ghg^{-1} = \phi(x) \phi(y) \phi(x)^{-1} = \phi(xyx^{-1}) \in \phi(H_1)$$

car H_1 distingué dans G_1 et donc $xyx^{-1} \in H_1$. Ainsi $\phi(H_1) \triangleleft G_2$.

4. On considère le morphisme

$$f: (\mathbb{R}, +) \longrightarrow (\mathrm{GL}_2(\mathbb{R}), \cdot)$$

 $x \longmapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix},$

et le sous-groupe distingué $\mathbb{R} \triangleleft \mathbb{R}.$ On a

$$\forall x \in \mathbb{R} \setminus \{0\}, \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{M \in \mathrm{GL}_2(\mathbb{R})} \underbrace{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}}_{f(x)} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{M^{-1} \in \mathrm{GL}_2(\mathbb{R})} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \not\in f(\mathbb{R}).$$

Ainsi, $f(\mathbb{R}) \not\subset \operatorname{GL}_2(\mathbb{R})$.

1.7 **Exercice** 7.

Soit G un groupe et soient H, K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si on a $H \subseteq K$ ou $K \subseteq H$.

On procède par double implications.

- \triangleright « \Longrightarrow ». Supposons que $H \cup K$ soit un sous-groupe de G. Par l'absurde, supposons que $H \not\subseteq K$ et $K \not\subseteq H$. Il existe donc deux éléments $h \in H \setminus K$ et $k \in K \setminus H$. Considérons $hk \in H \cup K$.
 - Si $hk \in H$, alors $h^{-1}(hk) \in H$ et donc $k \in H$, absurde!
 - Si $hk \in K$, alors $(hk)k^{-1} \in K$ et donc $h \in K$, absurde!

On en déduit que $H \subseteq K$ ou $K \subseteq H$.

 \triangleright « \iff ». Sans perte de généralité, supposons $H\subseteq K$. Ainsi, on a $H\cup K=K$ qui est un sous-groupe de G.

1.8 Exercice 8. Classes à gauche et classes à droite

Soit H un sous-groupe d'un groupe G. Montrer que l'on a une bijection canonique $G/H \to H\backslash G$.

Hugo Salou – L3 ens lyon

On note $S^{-1} = \{s^{-1} \mid s \in S\}$ pour un sous-ensemble S de G. Alors nous avons l'égalité $(aH)^{-1} = Ha^{-1}$ et $(Ha)^{-1} = a^{-1}H$. En effet,

$$(aH)^{-1} = \{ah \mid h \in H\}^{-1} \qquad (Ha)^{-1} = \{ha \mid h \in H\}^{-1}$$

$$= \{(ah)^{-1} \mid h \in H\} \qquad = \{(ha)^{-1} \mid h \in H\}$$

$$= \{ha^{-1} \mid h \in H\} \qquad = \{a^{-1}h^{-1} \mid h \in H\}$$

$$= \{ha^{-1} \mid h \in H\} \qquad = \{a^{-1}h \mid h \in H\}$$

$$= Ha^{-1} \qquad = a^{-1}H.$$

Il existe donc une bijection canonique

$$f: G/H \longrightarrow H\backslash G$$

 $aH \longmapsto (aH)^{-1} = Ha^{-1}.$

1.9 Exercice 9. Normalisateur

Soit $H \leq G$ un sous-groupe d'un groupe G. On dit que x normalise si $xHx^{-1} = H$. On note $N_G(H)$ l'ensemble des éléments de G qui normalisent H. C'est le normalisateur de H dans G.

- 1. Montrer que $N_G(H)$ est le plus grand sous-groupe de G contenant H et dans lequel H est distingué.
- **2.** En déduire que H est distingué dans G si et seulement si on a l'égalité $G = N_G(H)$.
- 1. Commençons par montrer que $N_G(H)$ est un sous-groupe de G contenant H.
 - ightharpoonup L'élément neutre normalise H, car $eHe^{-1}=H$. D'où, le normalisateur de H est non vide.
 - \triangleright Soient x et y deux éléments qui normalisent H. Alors, xy normalise H:

$$(xy)H(xy)^{-1} = xyHy^{-1}x^{-1} = xHx^{-1} = H.$$

 \triangleright Soit $x \in G$ qui normalise H. Alors x^{-1} normalise H:

$$x^{-1}Hx = H \iff Hx = xH \iff H = xHx^{-1}$$

et cette dernière condition est vérifiée car x normalise H.

 \triangleright Soit $h \in H$. Alors h normalise H. En effet,

$$hHh^{-1} = Hh^{-1} = H,$$

 $\operatorname{car} h^{-1} \in H$ et puis $\operatorname{car} h \in H$.

On en conclut que $N_G(H)$ est un sous-groupe de G contenant H.

Par définition de $N_G(H)$, on a que $H \triangleleft N_G(H)$: quel que soit x qui normalise H, on a (par définition) $xHx^{-1} = H$.

Il ne reste plus qu'à montrer que tout sous-groupe $N \supseteq H$ tel que $H \triangleleft N$ vérifie $N \subseteq \mathcal{N}_G(H)$. Soit N un tel sous-groupe, et un élément $x \in N$. Ainsi $xHx^{-1} = H$, d'où x normalise H. On a donc bien l'inclusion $N \subseteq \mathcal{N}_G(H)$.

Ceci démontre bien que $N_G(H)$ est le plus grand sous-groupe de G contenant H et dans lequel H y est distingué.

2. D'une part, si H est distingué dans G, alors le plus grand sous-groupe de G contenant H et dans lequel H est distingué est G.

D'autre part, si $G = N_G(H)$, alors tout élément $x \in G$ vérifie l'égalité $xHx^{-1} = H$ et donc $H \triangleleft G$.

1.10 Exercice 10. Construction de Q

Soit $E := \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. On définit $\sim \sup E \ par \ (a,b) \sim (a',b')$ dès lors que ab' = a'b.

- **1.** Montrer que \sim est un relation d'équivalence sur E. Si $(a,b) \in E$, on note $\frac{a}{b}$ son image dans E/\sim .
- **2.** Munir E/\sim d'une structure de corps telle que \mathbb{Z} s'injecte dans le corps E/\sim .
- **3.** Similairement, pour un corps k, construire k(X) à partir de l'ensemble k[X].
- 4. Construire \mathbb{Z} à partir de \mathbb{N} .
- 1. On a trois propriétés à vérifier.
 - \triangleright Si $(a,b) \in E$, alors ab = ab donc $(a,b) \sim (a,b)$.
 - \triangleright Si $(a,b) \sim (a',b')$, alors ab' = a'b et donc $(a',b') \sim (a,b)$.

 \triangleright Si $(a,b) \sim (a',b')$ et $(a',b') \sim (a'',b'')$, alors

$$a'ab'b'' = a'a'bb'' = a'ba'b'' = a'ba''b',$$

et donc a'b'(ab'' - a''b) = 0. Par anneau intègre, on a une disjonction de cas :

- $\sin a' = 0$, alors a = a'' = 0;
- si b' = 0, alors **absurde** car $b' \in \mathbb{Z} \setminus \{0\}$;
- $\sin ab'' a''b = 0$, alors on a ab'' = a''b.

Dans les deux cas, on obtient bien $(a,b) \sim (a'',b'')$.

- 2. On munit E/\sim de deux opérations « \oplus » et « \otimes ».
 - \triangleright On pose l'opération $\frac{a}{b} \oplus \frac{c}{d} := \frac{ad+bc}{bd}$ qui est bien définie car, si l'on a $(a,b) \sim (a',b')$, alors

$$(ad + bc, bd) \sim (a'd + b'c, b'd) \iff (ad + bc)b'd = (a'd + b'c)bd$$

$$\iff ab'd^2 = a'bd^2,$$

ce qui est vrai car $(a,b) \sim (a',b')$. On peut procéder symétriquement pour $(c',d') \sim (c,d)$.

 \triangleright On pose l'opération $\frac{a}{b} \otimes \frac{c}{d} := \frac{ac}{bd}$ qui est bien définie car, si l'on a $(a,b) \sim (a',b')$, alors

$$(ac, bd) \sim (a'c, b'd) \iff acb'd = a'cbd,$$

ce qui est vrai car $(a,b) \sim (a',b')$. On peut procéder symétriquement pour $(c',d') \sim (c,d)$.

Montrons que $(E/\sim, \oplus, \otimes)$ est un corps.

 \triangleright La loi \oplus est associative : on a

$$\frac{a}{b} \oplus \left(\frac{c}{d} \oplus \frac{e}{f}\right) = \left(\frac{a}{b} \oplus \frac{c}{d}\right) \oplus \frac{e}{f} = \frac{adf + cbf + ebd}{bdf},$$

par associativité de +.

- ▶ La loi ⊕ est commutative par commutativité de +.
- \triangleright La loi \oplus possède un élément neutre $\frac{0}{1} \in E/\sim$.
- \triangleright Tout élément $\frac{a}{b}$ possède un symétrique $\left(\frac{-a}{b}\right)$ pour \oplus par rapport à $\frac{0}{1}.$

 \triangleright La loi \otimes est associative : on a

$$\frac{a}{b} \otimes \left(\frac{c}{d} \otimes \frac{e}{f}\right) = \left(\frac{a}{b} \otimes \frac{c}{d}\right) \otimes \frac{e}{f} = \frac{ace}{bdf},$$

par associativité de ×.

- \triangleright La loi \otimes est distributive par rapport à \oplus , par distributivité de \times par rapport à +.
- ▷ La loi \otimes possède un élément neutre $\frac{1}{1} \in E/\sim$ pour \otimes .
- \triangleright Tout élément non nul $\frac{a}{b}$ possède un inverse $\frac{b}{a}$ par rapport à $\frac{1}{1}.$

On en conclut que $(E/\sim, \oplus, \otimes)$ est un corps.

Finalement, on considère l'injection

$$f: \mathbb{Z} \hookrightarrow E/\sim$$

$$k \longmapsto \frac{k}{1}.$$

C'est bien une injection car, si $\frac{k}{1} = \frac{k'}{1}$, alors $k \times 1 = k' \times 1$ et donc k = k'. On a, de plus, que f est un morphisme de groupes $(\mathbb{Z}, +) \to (E/\sim, \oplus)$:

$$f(k) \oplus f(k') = \frac{k}{1} \oplus \frac{k'}{1} = \frac{k+k'}{1} = f(k+k').$$

3. On pose $F := \mathbb{k}[X] \times (\mathbb{k}[X] \setminus \{0_{\mathbb{k}[X]}\})$, et la relation

$$(P,Q) \sim (P',Q') \iff PQ' = P'Q.$$

Cette relation est une relation d'équivalences (comme pour la question précédente, et car \mathbbm{k} est un anneau intègre). On pose ensuite $\mathbbm{k}(X) := F/\sim$. Comme dans la question précédente, on peut donner une structure de corps avec les mêmes définitions (en replaçant les entiers par des polynômes de \mathbbm{k}). Les propriétés découlent toutes du fait que $(\mathbbm{k}, +, \times)$ est un corps.

4. On pose $Z:=\mathbb{N}^2/\sim$, où la relation d'équivalence \sim est définie par

$$(a,b) \sim (a',b') \iff a+b'=b+a'.$$

1.11 Exercice 11.

Soit $E:=\mathbb{C}[X]$ le \mathbb{C} -espace vectoriel des polynômes à coefficients dans \mathbb{C} et $P\in\mathbb{C}[X]$ un polynôme de degré $d\in\mathbb{N}^*$.

- **1.** Montrer que l'ensemble $(P) := \{QP \mid Q \in \mathbb{C}[X]\}$ est un sous- \mathbb{C} -espace vectoriel de $\mathbb{C}[X]$.
- **2.** Déterminer un isomorphisme entre $\mathbb{C}[X]/(P)$ et le \mathbb{C} -espace vectoriel $\mathbb{C}_{d-1}[X]$ des polynômes de degrés inférieurs à d-1 de $\mathbb{C}[X]$.
- **3.** Montrer que la multiplication dans $\mathbb{C}[X]$ induit une structure de \mathbb{C} -algèbre sur $\mathbb{C}[X]/(P)$.

1.12 Exercice 12.

Soit G un groupe et H un sous-groupe strict de G. Montrer que l'on a l'égalité $\langle G \setminus H \rangle = G$.

1.13 Exercice 13.

Soit G un groupe fini. Montrer que G contient un élément d'ordre 2 si et seulement si son cardinal est pair. Montrer de plus que, dans ce cas là, il en contient un nombre impair.

1.14 Exercice 14.

Soit G un groupe et \sim une relation d'équivalence sur G. On suppose que G/\sim est un groupe, et que la projection canonique $\pi:G\to G/\sim$ est un morphisme de groupes.

Montrer qu'il existe un sous-groupe distingué $H \triangleleft G$ tel que pour tous éléments $x, y \in G$, $x \sim y$ si et seulement si $xy^{-1} \in H$.

1.15 Exercice 15.

Soit G un groupe et S_G l'ensemble des sous-groupes de G.

- 1. Démontrer que si G est fini, alors S_G est fini.
- **2.** Supposons S_G fini. Démontrer que tous les éléments de G sont d'ordre fini, en déduire que G est fini.
- **3.** On ne suppose plus que S_G est fini. Si tous les éléments de G sont d'ordre fini, est-ce que G est fini?

2 Théorèmes d'isomorphismes et actions de groupes.

Sommaire.

2.1	Exercice 1. Groupes monogènes	17
2.2	Exercice 2.	18
2.3	Exercice 3.	19
2.4	Exercice 4.	20
2.5	Exercice 5.	20
2.6	Exercice 6. Troisième théorème d'isomorphisme	21
2.7	Exercice 7. Sous-groupe d'un quotient	21
2.8	Exercice 8. Combinatoire algébrique	22
2.9	Exercice 9. Formule de Burnside	23

2.1 Exercice 1. Groupes monogènes

Soit G un groupe monogène. Montrer que soit $G \cong \mathbb{Z}$, soit $G \cong \mathbb{Z}/n\mathbb{Z}$ pour un entier strictement positif n.

Soit $g \in G$ tel que $\langle g \rangle = G$. Considérons le morphisme

$$\phi: \mathbb{Z} \longrightarrow G$$
$$k \longmapsto q^k.$$

On a im $\phi = \langle g \rangle = G.$ De plus, par le premier théorème d'isomorphisme

$$\mathbb{Z}/\ker\phi\cong\operatorname{im}\phi=G.$$

$$-17/23-$$

- \triangleright Si ker ϕ est le sous-groupe trivial $\{0\}$, on a donc $G \cong \mathbb{Z}$.
- \triangleright Si ker ϕ est un sous-groupe non trivial de \mathbb{Z} , alors ker $\phi = n\mathbb{Z}$, et on a donc $G \cong \mathbb{Z}/n\mathbb{Z}$.

2.2 Exercice 2.

Soit n > 0 un entier.

- **1.** Montrer que $\mathbb{Z}/n\mathbb{Z}$ contient $\varphi(n)$ éléments d'ordre n, où $\varphi(n)$ désigne le nombre d'entiers $k \in [0, n-1]$ premiers à n.
- **2.** Montrer que pour tout d > 0 divisant n, $\mathbb{Z}/n\mathbb{Z}$ admet un unique sous-groupe d'ordre d formé des multiples de $\overline{n/d}$.
- **3.** En déduire que pour tout diviseur d > 0 de n, $\mathbb{Z}/n\mathbb{Z}$ contient $\varphi(d)$ éléments d'ordre d et que $\sum_{0 < d \mid n} \varphi(d) = n$.
- 1. Soit $k \in [0, n-1]$. Montrons que $\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}$ si et seulement si $\operatorname{pgcd}(k, n) = 1$.
 - \triangleright Si $\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}$ alors il existe $a \in \mathbb{Z}$ tel que

$$a\bar{k} = \underbrace{\bar{k} + \dots + \bar{k}}_{a \text{ fois}} = \bar{1}.$$

Ainsi, il existe $b \in \mathbb{Z}$ tel que ak-1=bn, soit ak+bn=1. On en conclut, par le théorème de Bézout, que k et n sont premiers entre-eux.

▷ Si pgcd(k, n) = 1 alors il existe $a, b \in \mathbb{Z}$ tels que ak + bn = 1 et donc $ak \equiv 1 \pmod{n}$. Ainsi, $k + \cdots + k \equiv 1 \pmod{n}$. Or, $\langle \bar{1} \rangle = \mathbb{Z}/n\mathbb{Z}$ et donc, comme $\langle \bar{1} \rangle \subseteq \langle \bar{k} \rangle$ on a que

$$\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}.$$

Par bijection, on a donc

$$\varphi(n) = \#\{k \in [0, n-1] \mid \operatorname{pgcd}(k, n) = 1\}$$

éléments d'ordre n.

- 2. On sait que $\langle \overline{n/d} \rangle$ est un groupe, et d $\overline{n/d} = \overline{n} = \overline{0}$. Ainsi, on a que $\#\langle \overline{n/d} \rangle = d$. Il ne reste qu'à montrer l'unicité. Soit un sousgroupe $H \leq \mathbb{Z}/n\mathbb{Z}$ d'ordre d. Soit $\overline{a} \in H$ tel que $d\overline{a} = 0$. Ainsi, il existe $b \in \mathbb{Z}$ tel que da = nb, d'où a = nb/d et donc $\overline{a} = b$ $\overline{n/d}$. On en déduit que $\overline{a} \in \langle \overline{n/d} \rangle$. On conclut que $H = \langle \overline{n/d} \rangle$ par inclusion et égalité des cardinaux.
- 3. Soit \bar{a} un élément d'ordre d, et donc $\#\langle \bar{a} \rangle = d$. Par la question 2 et l'exercice 2.1, on a $\langle \bar{a} \rangle = \langle \overline{n/d} \rangle \cong \mathbb{Z}/d\mathbb{Z}$. Or, par la question 1, il y a $\varphi(d)$ éléments d'ordre d dans $\mathbb{Z}/d\mathbb{Z}$. Ainsi, il y a $\varphi(d)$ éléments d'ordre d dans $\mathbb{Z}/n\mathbb{Z}$.

Posons $A_d := \{ \bar{a} \in \mathbb{Z}/n\mathbb{Z} \mid \#\langle \bar{a} \rangle = d \}$. Si $d \nmid n$ alors $A_d = \emptyset$ car l'ordre d'un élément divise n (théorème de LAGRANGE). Si $d \mid n$ alors $\#A_d = \varphi(d)$ (question 2). De plus,

$$\mathbb{Z}/n\mathbb{Z} = \bigsqcup_{d|n} A_d,$$

d'où

$$n = \sum_{d|n} \# A_d = \sum_{d|n} \varphi(d).$$

2.3 Exercice 3.

- 1. Montrer que le groupe $\mathbb{Z}/n\mathbb{Z}$ est simple si, et seulement si, n est premier.
- **2.** Soit G un groupe fini abélien. Montrer que G est simple si et seulement si $G \cong \mathbb{Z}/p\mathbb{Z}$ avec p un nombre premier.
- 1. Le groupe $\mathbb{Z}/n\mathbb{Z}$ est commutatif. Ainsi, tout sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ est distingué. On a donc que $\mathbb{Z}/n\mathbb{Z}$ est simple si, et seulement si, $\mathbb{Z}/n\mathbb{Z}$ ne possède pas de sous-groupes non triviaux. De plus, un entier n n'a que des diviseurs triviaux (1 ou n) si et seulement si n est premier. Et, avec le théorème de LAGRANGE, on sait que l'ordre de tout sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ divise n. D'où l'équivalence.

2. Le groupe G est commutatif. Ainsi, tout sous-groupe de G est distingué. On a donc que G est simple si, et seulement si, G ne possède pas de sous-groupes non triviaux. Ainsi, par le théorème de LAGRANGE, l'ordre du groupe G est premier.

2.4 Exercice 4.

Soit G un groupe et H un sous-groupe de G d'indice 2. Montrer que H est distingué dans G. Montrer que le résultat n'est pas vrai si on remplace 2 par 3.

Soit $g \in G \setminus H$. On a la partition $G = H \sqcup gH$. Ainsi gH est le complément de H dans G. Similairement, Hg est le complément de H dans G. Ainsi, on a gH = Hg.

Si $h \in H$, alors hH = H = Hh car H est un sous-groupe contenant les éléments h et h^{-1} .

On en conclut, dans les deux cas, que $H \triangleleft G$.

Pour montrer que le résultat est faux en remplaçant 2 par 3, on considère $G:=\mathfrak{S}_3$ et $H:=\{\mathrm{id},(1\ 2)\}$ un sous-groupe de G. Le sous-groupe H a pour indice $[G:H]=|\mathfrak{S}_3|/|H|=3$. Cependant, H n'est pas un sous-groupe distingué de G:

$$(1\ 2\ 3)(1\ 2)(1\ 2\ 3)^{-1} = (2\ 3) \not\in H.$$

2.5 Exercice 5.

Soit p un nombre premier.

- 1. Rappeler pourquoi le centre d'un p-groupe est non trivial.
- **2.** Montrer que tout groupe d'ordre p^2 est abélien, classifier ces groupes.
- **3.** Soit G un groupe d'ordre p^n . Montrer que G admet un sousgroupe distingué d'ordre p^k pour tout $k \in [0, n]$.

2.6 Exercice 6. Troisième théorème d'isomorphisme

Soit H un groupe et soient H et K des sous-groupes tels que $H \triangleleft G$ et $H \leq K$. On notera $\pi_H : G \to G/H$.

- 1. Montrer que le groupe $\pi_H(K)$ est distingué dans G/H si et seulement si K est distingué dans G.
- **2.** Justifier que H est distingué dans K et que l'on a un isomorphisme $\pi_H(K) \cong K/H$.
- **3.** On suppose K distingué dans G. On note $\pi_K: G \to G/K$ la projection canonique.
 - a) Montrer que π_K induit un unique morphisme de groupes $\bar{\pi}_K$: $G/H \to G/K$ tel que $\pi_K = \bar{\pi_K} \circ \pi_H$.
 - **b)** Montrer que le noyau de $\bar{\pi}_K$ est $\pi_H(K) \cong K/H$.
 - c) En déduire le troisième théorème d'isomorphisme.
- 1. Supposons K distingué dans G. Alors, $\pi_H(K)$ est distingué dans G/H car π_H est surjective (exercice 6 du TD 1). Réciproquement, si $\pi_H(K)$ est distingué dans G/H, alors

2.7 Exercice 7. Sous-groupe d'un quotient

Soit G un groupe, et H un sous-groupe distingué de G. On note la projection canonique $\pi_H: G \to G/H$.

- **1.** a) Soit K un sous-groupe de G. Montrer $\pi_H^{-1}(\pi_H(K)) = KH$.
 - b) En déduire que π_H induit une bijection croissante entre les sous-groupes de G/H et les sous-groupes de G contenant H.
- **2.** Montrer que les sous-groupes distingués de G/H sont en correspondance avec les sous-groupes distingués de G contenant H.
- **3.** Montrer que la correspondance précédente préserve l'indice : si K est un sous-groupe de G d'indice fini contenant H, alors on a $[G:K] = [G/H, \pi_H(K)]$.

2.8 Exercice 8. Combinatoire algébrique

Soit \mathbb{k} un corps fini à q éléments et $n \in \mathbb{N}^*$. On définit $\operatorname{PGL}_n(\mathbb{k})$ comme le quotient $\operatorname{GL}_n(\mathbb{k})/\mathbb{k}^{\times}$, où \mathbb{k}^{\times} correspond au sous-groupe distingué formé de la forme λI_n avec $\lambda \in \mathbb{k} \setminus \{0\}$. On considère l'action de $\operatorname{GL}_n(\mathbb{k})$ sur l'ensemble des droites vectorielles de \mathbb{k}^n .

- 1. Déterminer le cardinal des groupes finis $GL_n(\mathbb{k})$, $SL_n(\mathbb{k})$ et $PGL_n(\mathbb{k})$. Indication : compter les bases de \mathbb{k}^n .
- **2.** On prend désormais n=2.
 - a) Montrer que le nombre de droites vectorielles de \mathbb{k}^2 est égal à q+1.
 - b) En déduire qu'il existe un morphisme de groupes injectif

$$\operatorname{PGL}_2(\Bbbk) \hookrightarrow \mathfrak{S}_{q+1}.$$

- 3. Montrer que $GL_2(\mathbb{F}_2) = SL_2(\mathbb{F}_2) = PGL_2(\mathbb{F}_2) \cong \mathfrak{S}_3$.
- **4.** Montrer que $PGL_2(\mathbb{F}_3) \cong \mathfrak{S}_4$.
- 1. L'application

$$\operatorname{GL}_n(\mathbbm{k}) \longrightarrow \{ \text{bases de } \mathbbm{k}^n \}$$

 $(C_1 \quad C_2 \quad \cdots \quad C_n) \longmapsto (C_1, \ldots, C_n)$

est une bijection. Construisions une base de \mathbb{k}^n :

- (1) On choisit le premier vecteur C_1 dans $\mathbb{k}^n \setminus \{0\}$, on a donc $q^n 1$ choix.
- (2) On choisit le second vecteur C_2 dans $\mathbb{k}^n \setminus \text{vect}(C_1)$, on a donc $q^n q$ choix.
- (3) On choisit le troisième vecteur C_3 dans $\mathbb{k}^n \setminus \text{vect}(C_1, C_2)$, on a donc $q^n q^2$ choix.
- (4) Et cetera.

D'où,

$$\#\mathrm{GL}_n(\mathbb{k}) = \prod_{i=0}^{n-1} (q^n - q^i).$$

L'application det : $GL_n(\mathbb{k}) \to \mathbb{k}^{\times}$ est un morphisme de groupes surjectif. De plus, ker det = $SL_n(\mathbb{k})$. On a ainsi, par le premier théorème d'isomorphisme,

$$\operatorname{GL}_n(\mathbb{k})/\operatorname{SL}_n(\mathbb{k}) \cong \mathbb{k}^{\times}.$$

Ainsi,

$$\#SL_n(\mathbb{k}) = \frac{\#GL_n(\mathbb{k})}{\#\mathbb{k}^{\times}} = \frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q - 1}.$$

Finalement, on a $\operatorname{PGL}_n(\mathbb{k}) := \operatorname{GL}_n(\mathbb{k})/\mathbb{k}^{\times}$ d'où

$$\#PGL_n(\mathbb{k}) = \frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q-1}.$$

2. a)

2.9 Exercice 9. Formule de Burnside

Soit G un groupe fini agissant sur un ensemble fini X. On note N le nombre d'orbites de l'action.

- **1.** Soit $Y := \{(g, x) \in G \times X \mid g \cdot x = x\}$. Interpréter le cardinal de Y comme somme sur les éléments de X d'une part, et de G d'autre part.
- 2. En décomposant X en union d'orbites, montrer la formule de BURNSIDE :

$$N = \frac{1}{\#G} \sum_{g \in G} \# \operatorname{Fix}(G).$$

- **3.** Soit n un entier. Quel est le nombre moyen de points fixes des éléments de \mathfrak{S}_n pour l'action naturelle sur [1, n].
- **4.** On suppose que G agit transitivement sur X et que X contient au moins deux éléments. Montrer qu'il existe un $g \in G$ agissant sans point fixe.
- **5.** En déduire qu'un groupe fini n'est jamais l'union des conjugués d'un sous-groupe strict.