DeepL Proに登録すると、より大きなサイズの文書ファイルを翻訳できます。

詳しくは、www.DeepL.com/pro をご覧ください。

● / // CLCUIKUNIU3 LED 製 期間 御用 特殊 四路 TM 1638

1. はじめに

TM1638は,LED(発光ダイオードディスプレイ)駆動制御専用ICで,キーパッドスキャンインタフェースを搭載しています。MCUデジタルインタフェース、データラッチ、LED駆動、キーパッドスキャン回路を集積しています。この製品は、品質が信頼でき、性能が安定し、耐干渉性が強い。主に家電製品(スマート給湯器、電子レンジ、洗濯機、エアコン、電気コンロ)、セットトップボックス、電子体重計、スマートメーター、その他デジタルチューブやLED表示装置などに使用されます。

Ⅱ. 特徴

- CMOS技術
- •10セグメント×8ビット表示
- ・キーパッドスキャン(8×3ビット)
- ・輝度調整回路(デューティー比8段階調整可能)
- •シリアルインターフェース(CLK、STB、DIO)
- 発振モード: RC発振
- パワーオンリセット回路を内蔵
- •パッケージタイプです: SOP28

Ⅲ. ピンの定義:

K1	10		28	STB
K2	2		27	CLK
К3 🗀	3	()	26	DIO
VCC	4		25	GND
SEG1/KS1	5		24	GRID1
SEG2/KS2	6		23	GRID2
SEG3/KS3	7	TM1638	22	GRID3
SEG4/KS4	8	(TOP VIEW)	21	GRID4
SEG5/KS5	9		20	GRID5
SEG6/KS6	10		19	GRID6
SEG7/KS7	11		18	GND
SEG8/KS8	12		17	GRID7
SEG9	13		16	GRID8
SEG10	14		15	VDD
	1			

- 1-

Ⅳ. ピン機能です:

シンボ ル	端子名	ピンID	商品説明
ディー アイオ ー	データの 入力と出 力	26	クロックの立ち上がりエッジでシリアルデータを下位ビットから入力する。 クロックの立下りエッジで下位ビットから順にシリアルデータを出力します。出力中は,PMOSオープンドレイン出力となります。
CLK	クロック入 カ	27	立ち上がりエッジでシリアルデータ を読み出し、立ち下がりエッジ でデータを出力します。
エステ ィービ ー	チップ選択入 力	28	立下りエッジでシリアルインタフェースを初期化し、命令受信を待ちます。STBがLowになった後の最初のバイトが命令とみなされます。命令処理中は、他の処理を終了します。時 STBがHighの場合、CLKは無視されます。
K1 ~ K3	キーパッ ドスキャ ン 信号入力	1~3	この端子に入力されたデータは,表示サイクルの終了時にラッチされます。
SGE1/KS1 ~ SEG8/KS8	出力 (セグメン ト)	5~12	セグメント出力(キーパッド走査 出力としても使用される)。 PMOSオープンドレイン出力です 。
GRID1 ~ GRID8	出力 (ビッ ト)	24 ~ 19 17 ~ 16	ビット出力です。NMOSオ ープンドレイン出力で す。
SEG9 SEG10	出力 (セグメン ト)	13 ~ 14	セグメント出力です。PMOSオー プンドレイン出力です。
ブイデ ィーデ ィー	ロジックサ プライ	4,15	パワー+α
GND	ロジック GND	18,25	システムGND

注)DIOがデータを出力する場合、NMOSオープンドレイン出力となります。キーパッドを読

み出すには、1K-10K接続の外部プルアップ抵抗を用意する必要があります。当社では10Kのプ ルアップ抵抗を推奨しています。クロックの立下りエッジでDIOはNMOSの動作を制御し、その時点でク ロックの立上りエッジまで読み取りは不安定になります。

V. インストラクションの説明:

STBの立ち下がりエッジ以降にDIOから入力される最初のバイトを命令と見なす。デコード後,最上位 B7, B6ビットを取得し, 異なる命令を識別する。

B7	B6	インストラクション						
0	1	データコマンドの設定						
1	0	表示制御の設定 コマンド						
1	1	アドレスコマンドの設定						

命令またはデータ送信中にSTBをHighにすると、シリアル通信が初期化され、送信中の命令またはデー タは無効となります(ただし、前に送信した命令またはデータは有効です)。

5.1 データコマンドの設定

データの書き込み、読み出しを設定する命令です。B1、B0ビットは01、11に設定することはできませ ん。

最上位	とビッ しんしょく	\					最下值	ウビット	
В7	B6	B5	B4	В3	B2	B1	В0	機能	商品説明
0	1	関係ない 項目、記 - 入0				0	0	データ読み出 し・書き込み モードの設定	にデータを書き込 む。 ディスプレイレジ スタ
0	1					1	0		キースキャンを読 み取る データ
0	1				0			セットアドレ スのインクリ	オートインクリメ ント
0	1				1			メント モード	固定アドレス

5.2 アドレスコマンドの設定

	最上	位ビッ	/ <u> </u>					最丁	<u> 位ビット</u>
	B7	B6	B5	B4	В3	B2	B1	В0	ディスプレ イ 宛先
ľ	1	1			0	0	0	0	00H
Ì	1	1			0	0	0	1	01H
ľ	1	1			0	0	1	0	02H
I	1	1			0	0	1	1	03H
I	1	1			0	1	0	0	04H
	1	1			0	1	0	1	05H
I	1	1			0	1	1	0	06H
	1	1	関係	ない	0	1	1	1	07H
	1	1	項目	、記	1	0	0	0	08H
	1	1	入0		1	0	0	1	09H
L	1	1			1	0	1	0	0AH
	1	1			1	0	1	1	0BH
	1	1			1	1	0	0	0CH
	1	1			1	1	0	1	0DH
	1	1			1	1	1	0	0EH
ı	4	4				4			OF!!

表示レジスタのアドレスを設定する命令です。

アドレスが10H以上の場合、有効なアドレスが設定されるまで、データは無視されます。電源投入 時、アドレスはデフォルトで00Hに設定されています。

5.3 表示制御

最上位	カビッ	\					最下	位ビット						
В7	В6	B5	B4	В3	B2	B1	В0	機能	商品説明					
1	0				0	0	0		パルス幅を設定する 1/16					
1	0			0	0	1		パルス幅を設定する 2/16						
1	0				0	1	0		パルス幅を設定する 4/16					
1	0				0	1	1	消滅数を	パルス幅を設定する 10/16					
1	0	関係			1	0	0	設定する	パルス幅を設定する 11/16					
1	0	入0	、記		1	0	1		パルス幅を設定する 12/16					
1	0									1	1	0		パルス幅を設定する 13/16
1	0				1	1	1		パルス幅を設定する 14/16					
1	0			0				ディスプ	ディスプレイオフ					
1	0			1				レイの設定	ディスプレイON					

VI. 表示レジスタのアドレスです:

このレジスタは、外部機器からTM1638にシリアルインタフェースで送信されたデータ,または,以下 に割り当てるチップSEG端子とGRID端子に接続されたLEDに対応する00H~0FHの16バイトのアドレスを 格納する:

_E,	D表示	<u>:デー:</u>	<u>タは、</u>	表示	アドレ	<u>/スと</u>	<u>デーク</u>	メバイ	トのタ	乳順で	書き	<u>込まれ</u>	<u>にます</u>				_
	セグワン	セグ2	セグ3	セグ4	セグファ	セグ6	セグ7	セグエイ	セグナイ	SEG10	x	x	x	X	x	x	
))	kHL ([コーフ	′ォー	xx)	HU (/	ハイフ	オー	X	xHL ([コーフ	オ一)	XX	tHU (λ	ハイフ	オ一)	
	B0	B1	B2	В3	B4	B5	B6	B7	B0	B1	B2	В3	B4	B5	B6	B7	
		00	HL			00	HU			01	HL			01	IHU		グリッ ド1
		02	:HL			02	HU			03	HL			03	BHU		グリッ ドツー
	04HL			04HU				05	HL		05HU				グリッ ド3		
		06	HI			റദ	HU			07	HI			07	'HU		ゲリッ

0EHL	0EHU	0FHL	0FHU	グリッ ドエイ ト					
অ (০)									

凶(2)

注)チップの表示レジスタの電源を入れた瞬間、内部に格納されている値がランダムになることがありま すが、この時、お客様は直接、画面を点灯させるコマンドを送ることができます。 コードが乱れる可能性があります。そこで、電源投入時に、16バイトのメモリアドレス(00H-0FH)全て に0x00を書き込むことで、ディスプレイレジスタをクリアすることを推奨しています。

VII. ディスプレイ

1.コモンカソードLEDを駆動する:

図(7)

図7は、コモンカソードLEDの配線図である。LEDセグメント表示に0を表示させるには、00H (GRID1)のアドレスに下位ビットから0x3Fを書き込むだけでよく、その時点で00Hは下表のように SEG1~SEG8のデータに対応する。

_		<u> </u>	,,,,,,,,,,	•					
Ī	セグエ	セグ7	セグ6	セグ	セグ4	セグ3	セグ2	セグワ	
١	イト			ファ				ン	
١				イブ					
١	0	0	1	1	1	1	1	1	グリッド
١									1(00H)
	B7	B6	B5	B4	B3	B2	B1	В0	

図(8)

図8は、コモンアノードLEDの配線図である。LEDセグメント表示器に0を表示させるには、00H(GRID1)、02H(GRID2)、04H(GRID3)、06H(GRID4)、08H(GRID5)、0AH(GRID6)に01H 、0CH(GRID7)と0EH(GRID8)に00Hを書き込めばよい。SEG1~SEG8は、以下のデータテーブルに 対応しています。

セグ エイ ト	セグ7	セグ6	セグ ファ イブ	セグ4	セグ3	セグ2	セグ ワン	
0	0	0	0	0	0	0	1	グリッド 1(00H)

0	0	0	0	0	0	0	1	グリッド
								2(02H)
0	0	0	0	0	0	0	1	グリッド
								3(04H)
0	0	0	0	0	0	0	1	グリッド
								4(06H)
0	0	0	0	0	0	0	1	グリッド
								5(08H)

Ī	0	0	0	0	0	0	0	1	グリッド 6(0AH)
	0	0	0	0	0	0	n	0	グリッド
		O			O	J			7(0CH)
	0	0	0	0	0	0	0	0	グリッド
									8(0EH)
	B7	B6	B5	B4	В3	B2	B1	B0	

注)コモンカソードLEDまたはコモンアノードLEDを駆動する場合、SEGピンはLEDアノードに、GRIDは LEDカソードにのみ接続可能です。逆方向には接続しないでください。

VIII. キーパッドのスキャンとキーの組み合わせ:

キーパッドの走査マトリックスは、以下の図(3)に示すように、3×8bitです。

キーデータの格納アドレスは(4)に示す。キー読み取りコマンドにより、キーデータBYTE1~BYTE4の読 み取りを開始します。既に読み込んだデータは下位ビットから順に出力されます。チップK,KSのピンに対 応するキーが押されると、そのバイトに対応するBITが1になります。

В0	B1	B2	B3	B4	B5	B6	B7	
K 3	K2	K 1	X	K3	K2	K 1	Х	
KS1				K	S2		バイテ1	
	KS3				K	バイト2		
	KS	5			K	バイト3		
	ケ-				ケ	バイテ4		
	エス セブ				エ			
	セフ				<u> </u>			
	ン			DEL /	ľ	`		

図(4)

注)1、TM1638は4バイトまでしか読み取れません。

2. データは、BYTE1~BYTE4の順に、1バイトも飛ばさず読み込まれます。例えば、以下のような 場合です:ハードウェアでK2、KS8に対応するキーを押した場合、そのキーからのデータを4バイト目の

5BIT目まで読み込まない限り、データを知ることはできない。K1、KS8だけでなく、K2、KS8にそれぞれ 対応する2つのキーが同時に押された場合、B5、B6から読み出したデータはBYTE4で1である。

3. コンビネーションキーは、同じKSピンと異なるKピンにのみ形成することができます。同じKピ ンと異なるKSピンでコンビネーションキーを形成することは不可能です。

キーパッドスキャンとコンビネーションキー:

(1) キーパッドスキャン: キーパッドスキャンはTM1638によって自動的に行われ、ユーザーの制御は 不要です。ユーザーは、タイムシーケンスに従ってキーコードを読み取るだけでよい。キーパッドのスキャ ンにはディスプレイサイクルが必要で、ディスプレイサイクルは約T=4.7msかかる。この4.7msの間に、2つ の異なるキーが押された場合、両方の時間で読み取られたキーコードは、最初に押されたキーのものです。

(2) コンビネーションキー

コンビネーションキーの異常なトラブル:SEG1/KS1〜SEG8/KS8は、ディスプレイとキーパッドの スキャンを兼用するものです。図(12)を例にとると、D1をオン、D2をオフにするには、SEG1が "0"、 SEG2が "1 "の状態であることを確認する必要があります。S1とS2を同時に押すと、SEG1とSEG2が短絡 され、D1とD2がONになる。

ソリュー ションで

1. ハードウェア的には、図(13)のように、「同時は押されるキュを異なるK線に配置することが望ま

しい。

注:コンビネーションキーは、同じKSでも異なるKに形成することを推奨

します。

IX. シリアルデータの伝送形式:

クロックの立ち上がりでBITの読み出しと受信が行われます。

注)1.データ読み出しの場合、シリアルクロックCLKの8番目の立ち上がりエッジで命令を設定してか SCLKの立ち下がりエッジでデータを読み出すまで待ち時間Twait(最小2µS)を要します 。具体的なパラメータは、タイミング特性の表を参照してください。

ンリ*ア*ル データ送信アプリケーション **(1) アドレスインクリメントモード** X. シリアル

アドレスが自動的に1ずつ増加する場合、アドレス設定の本質は、送信されたデータストリームが格納さ れる開始アドレスを設定することである。スタートアドレスのコマンドワードを送信した後、すぐにデータ を送信するために "STB "をハイにする必要はなく、最大で16BYTEが与えられます。データ送信後にSTBを ハイにするのが望ましい。

CLK								
DIO	Command1	Command2	Data1	Data2	******	Data n	Command3	
STB		1						

コマンド1: データコマンドの 設定 コマンド2: ディスプレイア

設定 ドレスの

Data1~n: Command3アドレスと以下のアドレスに表示データを

送信します(最大16byte)

Command3:表示制御コマンドの設定

(2) 固定アドレスモード

固定アドレスモードの場合、アドレス設定の本質は、送信する1BYTEデータが格納されるアドレスを 設定することです。アドレス送信後、すぐに1BYTEデータを送信するために "STB "をHighにする必要はな い。データ送信後にSTBをHighにすることが望ましい。その際、2つ目のデータを格納するアドレスを設定 することができます。最大16BYTEまでのデータ送信後、"STB "を "H "にする。

CLK -							
DIO _	Command1	Command2	Data1	Command3	Data2	1111111	Command4
STB -							

コマンド1: データコマンドの設 定 コマンド2:表示アドレスの 設

定1

Data1:表示データ1をCommand3アドレスに

Command3:表示アドレス2の設定

Data2:表示データ2をCommand4アドレスに送信

Command4: 表示制御コマンドの設定

(3) キーリーディッグのタイト

CLK

DIO		?ンド1	データ1	データ2	データ3	データ	
	_						
STB							

Command1:キー読み取りコマンドの

設定 Data1~4:キーデー

タの読み取り

(4) アドレス1個単位で自動インクリメントするモードと固定アドレスのモードでプログラム設計する

場合のフローチャートです:アドレスが1ずつ増えていくモードでのプログラム設計のフローチャー トです:

- 14

固定アドレスモードでのプログラム設計のフローチャートです:

V1.3 - 15

XI. アプリケーション回路です:

- 16

- .プリント基板配線時、VDD-GND間のフィルタコンデンサをTM1638にできるだけ近づけて、 フィルタリング効果を強化すること が必要です。
- 2. DIO、CLK、STBの3つの通信ポートに接続された3つの100Pコンデンサは、通信ポートと の干渉を低減します。
- 3. 青色デジタルLEDディスプレイのターンオン電圧降下が約3Vであることを考慮すると、 TM1638の電源は5Vである必要があります。

XII 電気的パラメータ:

リミットパラメータ(Ta = 25℃、Vss = 0 V)

パラメータ	シンボ	スコープ	単
	ル		位
ロジック電源電圧	ブイデ	-0.5 ~ +7.0	V
	ィーデ		
	1-		
ロジック入力電圧	ブイワ	-0.5 ~ VDD + 0.5	V
	ン		
LEDセグドライブ出力 現在	にゅう	-50	mA
	しゅつ		
	りょく	4	
コロフト ショング 関 禁 三十	1		

通常動作範囲(Ta = -20 ~ + 70 ℃、Vss = 0 V)

パラメータ	シンボ ル	ミニマム	代表的なもの	最大	単 位	テスト 条件
ロジック電源電圧	ブイデ ィーデ ィー		5		٧	1
ハイレベル入力電圧	ブイア	0.7 VDD	-	ブイディ	٧	-

電気的特性 (Ta = -20 ~ + 70 $^{\circ}$ C, VDD = 4.5 ~ 5.5 V, Vss = 0 V)

パラメータ	シンボ	ミニマム	代表的なもの	最大	単位	テスト条件
	ル		なもの			
SEGドライ ブの消費電	アイオ ーワン	20	25	40	mA	SGE1 ~ SEG10 Vo = VDD-2V
が消費电流	イオウ2	20	30	50	mA	SGE1 ~ SEG10 Vo = VDD-3V
GRIDドライブの	マノナ	on	140		س ۸	GRID1-GRID8

©Titan Micro Electronics www.titanmec.com

V1.3

- 18

出力プルダウン てごたえ	RL		10		ΚΩ	K1 ~ K3
入力電流	II	-	-	±1	μΑ	VI = VDD / VSS
ハイレベル入力 電圧	ブイア	0.7 VDD	-		V	CLK, DI0, STB
	イエイ					
	チ					
ローレベル入力 電圧	ヴィル	-	1	0.3 VDD	>	CLK , DI0 , STB
遅延電圧	VH	-	0.35	ı	>	CLK , DI0 , STB
ダイナミックカ レント	アイデ	-	-	5	mA	無負荷、ディスプレ
ロス	ィーデ					イオフ
	ィーエ					
	ヌ					

ス<u>イッチング特性 (Ta = -20~+70 °C, VDD = 4.5 ~5.5 V)</u>

パラメータ	シンボ	ミニマム	代表的	最大	単位	テスト条件
	ル		なもの			
発振 周波	ホスク	-	500	-70	キロ ヘル	R = 16.5 KΩ
			4		ツ	•
	ティー	-	-	300	ナノ	CLK → DIO
送信遅延時間	ピーエ				秒	
	ルゼッ					CL = 15pF, RL = 10K Ω
	+					
	ティー	-	-	100	ナノ	
	ピーゼ				秒	
	ットエル					

パラメータ	シンボ	ミニマム	代表的	最大	単	テスト条件
	ル		なもの		位	
クロックパ ルス	PWCLK	400	1	-	ナ	-
幅					7	
					秒	
ストロビン グ	PWSTB	1	-	-	μs	-
パルス幅						
データ設定 時	ティー	100	-	-	ナ	-
	エステ				ノ	
	. 77				1/h	

Timing Waveforms

- 20

XIII.パッケージサイズ

シンボル			単位イン チ		
	ミニマム	最大	ミニマム	最大	
Α	2.350	2.65	0.093	0.104	
A1	0.10	0.3	0.004	0.012	
A2	2.290	2.5	0.090	0.098	
b	0.330	0.51	0.013	0.020	
С	0.204	0.33	0.008	0.013	
D	17.70	18.10	0.697	0.713	
Е	7.40	7.70	0.291	0.303	
E1	10.21	10.61	0.402	0.418	
е	1.270	(BSC)	0.050(BS	C)の場合	
L	0.4	1.27	0.016	0.050	
θ	0°	8°	0°	8°	

上記のスペックおよびアプリケーションは、予告なく変更されることがあります。