Practical usage of Zero-knowledge in different use-cases in blockchains

Lukáš Častven xcastven@stuba.sk

Introduction

Zero Knowledge Proofs (ZKPs) provide a unique way to prove information without actually revealing the information itself. This makes them ideal for enhancing anonymity and privacy in blockchain networks. This work explores the use of ZKPs to create stealth addresses on Ethereum blockchain.

ZKPs replace elliptic curve cryptography in stealth address schemas. This provides another method for proving ownership of a stealth address while protecting the recipient's identity.

Contributions

- 1. **Blockchain Privacy Advancement:** This work highlights the power of ZKPs in developing privacy-focused cryptocurrency solutions.
- 2. **ZKPs for Stealth Addresses:** Successful demonstration of using ZKPs in designing stealth address schema.
- 3. Trustless Ownership Proof: Proposed scheme enables trustless proof of stealth address ownership without compromising privacy.

1 Solution Design

Public blockchains expose transaction details, compromising privacy. stealth addresses enable anyone to send private transactions, while hiding recipient identities.

The core principle behind the solution is that both receiver and sender generate a random value. These two values can then be used to prove to a stealth address that whoever owns these values is the owner of the stealth address, and can control it.

Bob, as a receiver, publishes the hash of his random value to a public registry. With this hash he also publishes his public key, which corresponds to his private key. This tuple is Bob's meta stealth address, visualized in Figure 1.

Figure 1: Bob's Meta Stealth Address

When Alice wants to send funds to Bob, she finds his meta stealth address in the public registry, generates her own random value and hashes it together with Bob's hash to create a code. Then she deploys a new stealth wallet contract with this code in it, and amount of funds that she wanted to send to Bob. After that, she encrypts her random value with Bob's public key, this encrypted value is called ephemeral key. Alice publishes it to a public registry. This whole process is depicted in Figure 2.

Figure 2: Alice sends funds

Bob then scans the registry, tries to decrypt ephemeral keys. When the decryption is successful, Bob can save the decrypted Alice's secret value and the address of the corresponding stealth wallet.

Figure 3: Bob scans ephemeral keys

To use the funds, Bob must generate a ZK proof and submit it to the stealth wallet. This proof proves that Bob knows Alice's random value and his own random value, such that

 $code = hash(hash(Bob's\ value),\ Alice's\ value)$

where *code* is the one submitted by Alice into the stealth wallet contract.

Figure 4: Bob's interaction with wallet

pragma circom 2.0.0;

include "./circomlib/circuits/poseidon.circom";

template Ownership() {

```
signal input owner_secret;
    signal input sender_secret;
    signal input code;
    signal input withdrawee_address;
    signal input msg_sender;
    log("input owner_secret:", owner_secret);
    log("input sender secret:", sender_secret);
    log("input code:", code);
    log("input withdrawee_address:", withdrawee_address);
   log("input msg_sender:", msg_sender);
    component owner_secret_poseidon = Poseidon(1);
    owner_secret_poseidon.inputs <== [owner_secret];</pre>
    log("calculated owner_secret hash:", owner_secret_poseidon.out);
    component code_poseidon = Poseidon(2);
    code_poseidon.inputs <== [owner_secret_poseidon.out, sender_secret];</pre>
   log("calculated code:", code_poseidon.out);
    code === code_poseidon.out;
   msg_sender === withdrawee_address;
component main {public [code, msg_sender]} = Ownership();
```

2 Conclusions || Discussion

O manual do TeX [1] pode ser usado para aprendê-lo, e o livro do Lamport [3] para aprender o Lamport o Lamport ir a fundo tem que ver como o TeXquero

o os parágrafos em linhas [2].

Two typesLorem ipsum dolor sit amet, consectetur adipiscing elit, sed eiusmod tempor incididunt ut labore et dolore magna aliqua. Uore eu fug nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in cu qui officia deserunt mollit anim id est laborum.

- Pellentesque eget orci eros. Fusce ultricies, tellus et pellentesque fringiante massa luctus libero, quis tristique purus urna nec nibh.
- Vestibulum sem ante, hendrerit a gravida ac, blandit quis magna.

References

- [1] Donald E. Knuth. *The TeXbook*. Addison-Wesley Professional, 1986.
- [2] Donald E. Knuth and Michael F. Plass. Breaking paragraphs into line Software: Practice and Experience, 11(11):1119–1184, 1981.
- [3] Leslie Lamport. LaTeX: A Document Preparation System. Addiscussed Wesley Professional; 2nd Edition, 1994.