Rosetta Stone Physics — Volume 1

The Smart-Idiot Guide to Doing Real Physics with Fractions

Evan Wesley

with Octo White V1

August 23, 2025

Abstract

This booklet teaches a practical way to do real physics with basic fractions. Pick a single ruler (v), keep a small table of exact ratios (no messy units), and push everything through with ordinary arithmetic. We show the method and work through concrete examples: weak masses, a collider decay $(H \to \tau\tau)$, a quick sanity pass on $H \to b\bar{b}$, the hydrogen ground state, the custodial test, and Koide's relation. No code. Just fractions, calculators, and verifiable numbers.

Contents

1	The Registry (exact ratios at $\mu_0 = M_Z$)	1				
	The Registry (exact ratios at $\mu_0 = M_Z$) 1.1 Couplings and electroweak mass ratios	2				
	1.2 Fermion mass ratios m_f/v					
	1.3 CKM seed sines and phase over π	2				
2	The Translator: how to compute with fractions	2				
3 Worked examples (start to finish, no code)						
	3.1 Electroweak anchor	3				
	3.2 $H \to \tau^+ \tau^-$ from pure ratios	3				
	3.3 $H \rightarrow b\bar{b}$: a sanity check that teaches a lesson					
	3.4 Hydrogen ground state from $\alpha_{\rm em}$ and m_e/v					
	3.5 Custodial test: $(M_W/M_Z)^2$ vs $1 - \sin^2 \theta_W$					
	3.6 Koide's relation for charged leptons					
4	Beyond the SM (ratio playcards)	4				
5	Compression scoreboard					

How to read this

You need only three ideas. First, choose $v = 246.219\,652\,\text{GeV}$ as the ruler. Second, store physical inputs as exact ratios relative to v or as pure dimensionless numbers. Third, compute everything with those ratios; convert to GeV or eV at the very end. That is all.

1 The Registry (exact ratios at $\mu_0 = M_Z$)

This table is the Rosetta key. Each entry is an exact fraction p/q; the decimal is just for orientation.

1.1 Couplings and electroweak mass ratios

Symbol	Definition	Exact p/q	Approx
$\alpha_{\rm em} \ \alpha_s(M_Z) \ \sin^2 \theta_W$	electromagnetic at M_Z strong at M_Z weak mixing	2639/361638 9953/84419 7852/33959	$0.00729735 \\ 0.11790 \\ 0.23122$
M_W/v M_Z/v M_H/v	boson ratio boson ratio boson ratio	17807/54547 18749/50625 22034/43315	0.23122 0.32645 0.37035 0.50808

Table 1: Dimensionless seeds at the reference scale $\mu_0 = M_Z$.

1.2 Fermion mass ratios m_f/v

Field	Definition	Exact p/q	Approx
\overline{e}	m_e/v	43/20719113	2.075×10^{-6}
μ	m_{μ}/v	421/981072	4.291×10^{-4}
au	$m_{ au}/v$	2561/354878	1.040×10^{-2}
u	m_u/v	83/9461218	8.775×10^{-6}
d	m_d/v	111/5852330	1.897×10^{-5}
s	m_s/v	411/1088132	3.776×10^{-4}
c	m_c/v	1687/327065	5.158×10^{-3}
b	m_b/v	3268/192499	1.698×10^{-2}
t	m_t/v	24087/34343	7.015×10^{-1}

Table 2: Store masses as m_f/v . Multiply by v at the end if you need GeV.

1.3 CKM seed sines and phase over π

Symbol	Definition	Exact p/q	Approx
$\overline{s_{12}}$	$\sin \theta_{12}$	13482/60107	0.2243
s_{23}	$\sin \theta_{23}$	6419/152109	0.0422
s_{13}	$\sin \theta_{13}$	1913/485533	0.00394
δ/π	CP phase ratio	6869/17983	0.3818

Table 3: Flavor seeds as bare dimensionless numbers.

Two handy fingerprints

$$\frac{M_W}{M_Z} = \frac{17807/54547}{18749/50625}, \qquad \frac{m_\tau}{m_\mu} = \frac{2561/354878}{421/981072}.$$

We'll use these in quick checks later.

2 The Translator: how to compute with fractions

Everything flows from a tiny set of templates. Keep them in mind, and you can do most "expert" calculations with a four-function calculator.

Mass from ratio. If $m_f/v = p/q$, then $m_f = (p/q)v$. That's it.

Yukawa from mass. $y_f = \sqrt{2} m_f/v$. If you have m_f/v , just multiply by $\sqrt{2}$.

Two-body scalar decay to a Dirac fermion.

$$\Gamma(H \to f\bar{f}) = N_c \, \frac{M_H}{8\pi} \left(\frac{m_f}{v}\right)^2 \left(1 - \frac{4m_f^2}{M_H^2}\right)^{3/2},$$

with $N_c = 1$ for leptons, 3 for quarks. The β^3 factor is pure kinematics.

Branching ratio. BR = $\Gamma/\Gamma_{\rm tot}$. When $M_H \approx 125.25 \, {\rm GeV}$, a good reference total width is $\Gamma_{\rm tot} \approx 4.07 \, {\rm MeV}$.

Hydrogen ground state in natural units.

$$E_1 = -\frac{\alpha_{\rm em}^2}{2} m_e$$
, so in eV: $E_1[{\rm eV}] = -\frac{\alpha_{\rm em}^2}{2} m_e [{\rm GeV}] \times 10^9$.

Custodial check.

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1 \quad \Rightarrow \quad \left(\frac{M_W}{M_Z}\right)^2 \stackrel{?}{=} 1 - \sin^2 \theta_W.$$

3 Worked examples (start to finish, no code)

All numbers below are computed only from the registry plus $v = 246.219652 \,\text{GeV}$.

3.1 Electroweak anchor

 $M_W/v = 17807/54547$ and $M_W = 80.379\,\mathrm{GeV} \Rightarrow v = M_W/(M_W/v) = 246.219\,652\,\mathrm{GeV}$. Then $M_Z = (18749/50625)\,v = 91.1876\,\mathrm{GeV}$ and $M_H = (22034/43315)\,v = 125.2500\,\mathrm{GeV}$.

3.2 $H \rightarrow \tau^+ \tau^-$ from pure ratios

Use $m_{\tau}/v = 2561/354878$ and $M_H/v = 22034/43315$.

$$m_{\tau} = \frac{2561}{354878} v = 1.776\,860\,\text{GeV}, \quad M_H = \frac{22034}{43315} v = 125.250\,001\,\text{GeV}.$$

Kinematics $\beta = \sqrt{1 - 4m_{\tau}^2/M_H^2} = 0.999597405$. Width

$$\Gamma_{\tau\tau} = \frac{M_H}{8\pi} \left(\frac{m_{\tau}}{v}\right)^2 \beta^3 = 0.259\,223\,{\rm MeV}.$$

Branching ratio with $\Gamma_{\rm tot}$ =4.07 MeV:

$$BR(H \to \tau\tau) = \frac{0.259223}{4.07} = 0.06369 = 6.369\%.$$

That is a collider observable recovered directly from the fraction table.

3.3 $H \rightarrow b\bar{b}$: a sanity check that teaches a lesson

Take $m_b/v = 3268/192499 \Rightarrow m_b = 4.1800 \,\text{GeV}$. Naively at leading order,

$$\Gamma_{b\bar{b}}^{\mathrm{LO}} = 3 \cdot \frac{M_H}{8\pi} \left(\frac{m_b}{v}\right)^2 = 4.280 \,\mathrm{MeV} \ \Rightarrow \ \mathrm{BR} \approx 105\%.$$

That overshoots because quark Yukawas run with energy; at the Higgs scale the effective m_b is smaller. If you instead use a running mass near 3.0 GeV as a simple correction,

$$\Gamma_{b\bar{b}} \approx 2.212 \,\mathrm{MeV} \ \Rightarrow \ \mathrm{BR} \approx 54.3\%.$$

Moral: the fraction method is exact, but for quarks you should evaluate m_q at the relevant scale. The recipe stays the same; just pick the scale-appropriate ratio.

3.4 Hydrogen ground state from $\alpha_{\rm em}$ and m_e/v

From the registry, $\alpha_{\rm em}=2639/361638$ and $m_e/v=43/20719113$. Multiply once: $m_e=(43/20719113)\,v=0.000\,510\,999\,{\rm GeV}$. Then

$$E_1 = -\frac{\alpha_{\rm em}^2}{2} m_e = -13.6057 \text{ eV},$$

the classic number, recovered purely from the ratios.

3.5 Custodial test: $(M_W/M_Z)^2$ vs $1 - \sin^2 \theta_W$

Compute both sides with the registry:

$$\left(\frac{M_W}{M_Z}\right)^2 = 0.77698678, \qquad 1 - \sin^2 \theta_W = 0.76878000.$$

The small difference ($\approx 8.21 \times 10^{-3}$) is a snapshot effect of scheme and radiative corrections; the tree identity is visible in the numbers.

3.6 Koide's relation for charged leptons

Using m_e, m_μ, m_τ from the registry,

$$Q_{\ell} = \frac{m_e + m_{\mu} + m_{\tau}}{\left(\sqrt{m_e} + \sqrt{m_{\mu}} + \sqrt{m_{\tau}}\right)^2} = 0.6666605,$$

within 6×10^{-6} of 2/3. It is an empirical regularity reproduced by the same inputs.

4 Beyond the SM (ratio playcards)

These are *templates* you can use without software. The inputs remain fractions; the outputs are physical predictions.

Axion quicklook

Mass and photon coupling from a single scale f_a :

$$m_a \approx 5.7 \,\mu\text{eV}\left(\frac{10^{12} \text{ GeV}}{f_a}\right), \qquad g_{a\gamma\gamma} \approx C \frac{\alpha_{\text{em}}}{2\pi f_a}, \ C \sim 0.75.$$

Misalignment abundance:

$$\Omega_a h^2 \approx 0.12 \left(\frac{f_a}{5 \times 10^{11} \text{ GeV}} \right)^{7/6} \left(\frac{\theta_i}{\pi} \right)^2.$$

Choose f_a/E_P and θ_i/π as small fractions and evaluate.

Type-I seesaw

For one flavor,

$$m_{\nu} \simeq \frac{y_{\nu}^2 \, v^2}{M_R}.$$

Pick y_{ν} and M_R as rational handles (you can even tie M_R to a unification scale chosen as a fraction of E_P) and get m_{ν} directly.

Freeze-in sketch

For a feeble Yukawa y_{χ} ,

$$\Omega_{\chi} h^2 \propto y_{\chi}^2 \left(\frac{m_{\chi}}{100 \text{ keV}} \right).$$

Tiny fractions for y_{χ} (e.g. $1/10^{11}$) and m_{χ}/v yield back-of-envelope abundances without a single loop integral on paper.

5 Compression scoreboard

Count information in bits by adding the binary lengths of numerators and denominators across the registry. The 19 base fractions plus a few derived ones total roughly ~ 350 bits; the same numbers as 64-bit floats would be about ~ 1200 mantissa bits. You are not just simplifying aesthetics; you are compressing the universe's "source" while keeping it exact.

Glossary of symbols

v: Higgs vacuum modulus (246.219652 GeV). M_W, M_Z, M_H : weak boson and Higgs masses. $\alpha_{\rm em}, \alpha_s$: electromagnetic and strong couplings. $\sin^2 \theta_W$: weak mixing. $G_F = 1/(\sqrt{2} \, v^2)$: Fermi constant in this scheme. BR: branching ratio. N_c : color factor (1 leptons, 3 quarks).

What to do next

Take any observable you care about, rewrite its definition in terms of ratios from the registry, and run the arithmetic. If a quark is involved, remember the " $H \rightarrow b\bar{b}$ " lesson: evaluate its effective mass at the relevant scale. Everything else is just the same three moves: look up the fraction, multiply by v, and apply the template. Boom. You are a physicist now.