Modulhandbuch

Master of Science im Fach Mathematics in Data and Technology -HF (Prüfungsordnungsversion 2024)

Stand: 13.05.2024

Inhaltsverzeichnis

Prolog	3
Pflichtmodule	8
Basics in Applied Mathematics	8
Advanced Lecture in Numerics	13
Introduction to Theory and Numerics of Partial Differential Equations	15
Theory and Numerics of Partial Differential Equations – Nonlinear Problems	17
Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution	
Methods	19
Theory and Numerics of Partial Differential Equations – Mixed and Nonstandard Methods	s21
Advanced Lecture in Stochastics	23
Mathematical Statistics	26
Probabilistic Machine Learning	28
Probability Theory II	30
Probability Theory III	32
Electives in Data	34
Mathematical Seminar	35
Graduate Student Speaker Series	37
Master Thesis	39
Wahlpflichtmodule	41
Electives	41
Industrial Placement	42
Programming Project	44
Anhang	46
Verzeichnis der regelmäßig angebotenen und im Bereich "Electives in Data" verwendbaren	
Lehrveranstaltungen	46

Prolog

1. Kenndaten des Studiengangs

Fach	Mathematics in Data and Technology
Abschluss	Master of Science
Prüfungsordnungsversion	2024
Art des Studiengangs	konsekutiv
Studienform	Vollzeit
Regelstudienzeit	vier Semester
Sprache	englisch, einzelne Wahlveranstaltungen deutsch
Studienbeginn	Wintersemester
Hochschule	Albert-Ludwigs-Universität Freiburg
Fakultät	Fakultät für Mathematik und Physik
Institut	Mathematisches Institut
Homepage des Instituts	https://www.math.uni-freiburg.de/
Webseite des Studiengangs	https://www.math.uni-freiburg.de/lehre/studiengaenge/mscdata/mscdata.html

2. Profil und Ziele des Studiengangs

Der englisch-sprachige Masterstudiengang Mathematics in Data and Technology richtet sich an Absolventinnen/Absolventen von Bachelorstudiengängen der Fachrichtungen Mathematik und Informatik sowie aus dem ingenieur- oder naturwissenschaftlichen Bereich und vermittelt vertiefte Kenntnisse in Teilbereichen der Angewandten Mathematik und angrenzender wissenschaftlicher Disziplinen, die für die mathematische Datenanalyse in Anwendungsbereichen wie Künstliche Intelligenz, Maschinelles Lernen oder Simulation realer Vorgänge relevant sind. Aufbauend auf einem Einführungsmodul, das einen Überblick über die Gebiete Numerik, Stochastik und Optimierung vermittelt, sowie einem Vertiefungsmodul wahlweise aus der Numerik oder aus der Stochastik, bietet der Studiengang die Möglichkeit der individuellen Schwerpunktsetzung in Gebieten wie beispielsweise Deep Learning, Künstliche Intelligenz, Maschinelles Lernen, Optimierung, Statistik. Die Studierenden werden dazu befähigt, die mathematischen Methoden dieser Gebiete zu analysieren, zu beurteilen und weiterzuentwickeln. Der erfolgreiche Abschluss des Masterstudiums qualifiziert für Tätigkeiten in Berufsfeldern wie Datenanalyse, Digital Engineering, Anwendung und Methodenbildung im Bereich Deep Learning und Künstliche Intelligenz,

Risikomodellierung oder Softwareentwicklung. Überdurchschnittlich qualifizierten Absolventinnen/Absolventen steht zudem der Einstieg in eine akademische Laufbahn offen.

Fachliche Qualifikationsziele:

Absolventinnen und Absolventen des Studiengangs verfügen über vertieftes Wissen der mathematischen Grundlagen in dem von ihnen gewählten Spezialisierungsbereich sowie Erfahrung der Umsetzung der Verfahren in Bereichen der Naturwissenschaft, Technik und Medizin. Sie sind in der Lage, die darauf basierenden Methoden auf konkrete Fragestellungen anzuwenden und zu analysieren. Insbesondere können sie Verfahren entwickeln, die technische Umsetzung planen und darauf basierende Ergebnisse beurteilen. Darüber hinaus können sie sich eigenständig in neue wissenschaftliche Entwicklungen ihres Spezialisierungsbereichs einarbeiten und entsprechende Konzepte anderen Fachleuten vermitteln.

Überfachliche Qualifikationsziele:

Die Absolventinnen und Absolventen besitzen fortgeschrittene Analyse-, Problemlöse- und Entscheidungskompetenzen unter Berücksichtigung weitergehender fachlicher und gesellschaftlicher Aspekte und unter Bewertung und Reflexion der Grenzen mathematischer Modelle. Sie besitzen in vertieftem Maße die Fähigkeit, abstrakte Sachverhalte zu analysieren und damit verbundene komplexe Problemstellungen eigenständig, ausdauernd und umfassend zu lösen. Ihnen sind die besonderen Herausforderungen der Umsetzung mathematischer Methoden und Interpretation der Ergebnisse bei der Anwendung auf konkrete technische und gesellschaftliche Fragestellungen vertraut. Die Absolventinnen und Absolventen sind in der Lage, kritisch zu denken und wissenschaftlich zu reflektieren, und können ihre mündliche und schriftliche Kommunikation an ein Zielpublikum anpassen. Sie sind team- und kooperationserfahren und besitzen die Fähigkeit zum Zeitmanagement und zur Selbstorganisation.

3. Zulassungsbedingungen

Qualifizierter Bachelor-Abschluss in Mathematik oder Informatik oder einem natur- oder ingenieurwissenschaftlichem Studiengang mit

- mindestens 30 ECTS-Punkten an Fachwissenschaft Mathematik, darunter mindestens
 12 ECTS-Punkte in Analysis und Linearer Algebra,
- · Niveau B2 in Englisch.

4. Gliederung des Studiengangs

Modul / Lehrveranstaltung	Pflicht/ Wahl- pflicht/ Wahl	ECTS/ Art der LV	empfohlenes Fachsemester/ SWS	Studien-/Prü- fungsleistung
Basics in Applied Mathematics	P	12	1. FS	SL
Basics in Applied Mathematics: Vorlesung	Р	V	3	
Basics in Applied Mathematics: Übung	Р	Ü	2	SL: Übungen
Basics in Applied Mathematics: Praktische Übung	Р	PÜ	1	SL: Computer- übungen
Advanced Lecture in Numerics	WP	11	1. oder 2. FS	PL: mündliche Prüfung
Weiterführende Vorlesung aus der Numerik	Р	V+Ü	4+2	SL: Übungen
Advanced Lecture Stochastics	WP	11	1. oder 2. FS	PL: mündliche Prüfung
Weiterführende Vorlesung aus der Stochastik	Р	V+Ü	4+2	SL: Übungen
Electives in Data	WP	30–48	1. bis 3. FS	PL: Klausur, mündliche Prüfung oder mündliche Präsentation
Lehrveranstaltungen aus dem Bereich Data Science	WP	variabel	variabel	SL
Electives	WP	0–18	1. bis 3. FS	SL
Weitere Lehrveranstal- tungen innerhalb des M.Sc. Mathematics in Data and Technology oder des M.Sc. Mathematik	WP	variabel	variabel	SL

Mathematical Seminar	Р	6	2.–3. FS	PL: mündliche Präsentation
Seminar aus der Mathematik	WP	S	2	SL: regelmäßige Teilnahme
Industrial Placement	WP	9	2.–3. FS	SL
Firmen-/ Industriepraktikum	WP	Pr	mind. sechswöchig	SL: Absolvierung des Praktikums mit Zeugnis
Programming Project	WP	9	2.–3. FS	SL
Programmierprojekt	WP	Pr		SL: Erbringung der verlangten Mindestanforde- rungen
Graduate Student Speaker Series	Р	4	2.–4. FS	SL
Seminar zur Präsentation von Masterarbeiten innerhalb des Studiengangs	Р	S	2	SL: regelmäßige Teilnahme und Vortrag
Master Thesis	Р	30	4. FS	PL: Masterarbeit

5. Studienverlaufsplan

Ein Studienverlaufsplan befindet sich auf der Webseite: https://www.math.uni-freiburg.de/lehre/studiengaenge/mscdata/details.html

6. Lehr- und Lernformen

Die wesentlichen Veranstaltungsformen sind

- Vorlesungen mit begleitenden, in Tutoraten organisierten Übungen,
- · Seminare,
- · Computer- und Programmierübungen,
- sowie wahlweise ein Industriepraktikum oder größeres Programmierprojekt.

Für alle diese Lehrveranstaltungsarten gibt es in jedem Semester ein vielfältiges Angebot. Die Gruppengröße liegt für Vorlesungen je nach Niveau und Nachfrage zwischen 5 und

100, für Tutorate zu Übungen und Computerübungen bei maximal 25 und für Seminare bei maximal 15 im Winter- und 13 im Sommersemester. Master-Arbeiten und das Programmierprojekt werden stets individuell betreut.

Die Veranstaltungsart im Bereich der Wahlmodule ist nicht festgelegt, besteht jedoch in der Regel auch aus einer der o. g. Formen.

7. Prüfungssystem

Das einführende Pflichtmodul "Basics in Applied Mathematics" hat einen Umfang von 12 ECTS-Punkten, wobei nur Studienleistungen zu erbringen sind. In den Wahlpflichtmodulen "Advanced Lecture in Numerics" und "Advanced Lecture in Stochastics" wird die jeweils gewählte Vorlesung durch ein mündliches Prüfungsgespräch geprüft. Im Mathematical Seminar (6 ECTS-Punkte) besteht die Prüfungsleistung aus der mündlichen Präsentation (Seminarvortrag), dazu kommt die Master-Arbeit (30 ECTS-Punkte) als Prüfungsleistung. Die Prüfungsleistungen innerhalb der Wahlpflichtmodule "Electives in Data" sind veranstaltungsabhängig, Prüfungen von Vorlesungen erfolgen je nach Vorlesung schriftlich oder in Form eines mündlichen Prüfungsgesprächs. Es stehen ausreichend viele mit Klausuren geprüfte Vorlesungen, mündliche geprüfte Vorlesungen und Seminare zur Wahl, so dass die Studierenden nicht auf eine Prüfungsart festgelegt sind. Zusätzlich zu den Prüfungsleistungen sind in den vorgenannten Modulen in der Regel auch Studienleistungen zu erbringen, etwa in Form der erfolgreichen Bearbeitung von Übungsaufgaben.

Der Umfang der Wahlmodule ("Electives") ist nicht näher spezifiziert; diese schließen ausschließlich mit Studienleistungen ab.

Es gibt keine Zulassungsbedingungen zu den Prüfungen außer zur Master-Arbeit. Anwesenheitspflicht herrscht in den Seminaren, in denen Präsentation und Austausch wesentliche Elemente des Lernerfolgs sind.

Informationen zur Anmeldung von Prüfungen finden sich auf den <u>Informationsseiten des</u> Prüfungsamts

Name des Moduls	Nummer des Moduls
Basics in Applied Mathematics	[Modulnummer]
Verantwortliche	
Prof. Dr. Sören Bartels, Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	12
Arbeitsaufwand	ca. 360 Stunden
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	Jedes Wintersemester

Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Grundkenntnisse im Rahmen der Zugangsvoraussetzung des Studiengangs

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Basics in Applied Mathematics: Vorlesung	Vorlesung	Р		3,0	ca. 230 Std.
Basics in Applied Mathematics: Übung	Übung	Р		2,0	ca. 20 Std.
Basics in Applied Mathematics: Praktische Übung	Prakt. Übung	Р		1,0	ca. 110 Std.

Modulzusammensetzung

Das Modul beinhaltet eine Vorlesung mit begleitenden Übungen. Die vermittelten theoretischen Kenntnisse werden anhand ausgewählter Beispiele in der praktischen Übung am Computer programmiertechnisch umgesetzt und erprobt.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu

argumentieren.

- Sie können typische Fragestellungen aus den Bereichen der Numerik und Stochastik mit Hilfe der erlernten Konzepte analysieren, Lösungsstrategien entwicklen, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie wiederholen und vertiefen ihre grundlegenden Kenntnisse in numerischer Analysis und Optimierung und lernen wichtige Verfahren und Algorithmen hierzu kennen. Ferner erweitern und vertiefen sie ihre Grundkenntnisse in Stochastik auf maßtheoretischer Grundlage.
- Sie sind in der Lage, die in der Vorlesung erlernten Techniken und Algorithmen zu implementieren und an praxisrelevanten Beispielen zu erproben.

Zu erbringende Prüfungsleistung

Keine

Zu erbringende Studienleistung

Bestehen der Übungen sowie der Praktischen Übung: Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht. Für die Übungen sind dies in der Regel die regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte, für die Praktische Übung die regelmäßige Teilnahme an den Präsenzterminen sowie die erfolgreiche Bearbeitung von Programmieraufgaben.

Benotung

Keine

Voraussetzung für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studienleistungen

Lehrmethoden

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten,
- schriftliche Bearbeitung der zweiwöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur.
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten,
- Bearbeitung und besprechung von Programmieraufgaben innerhalb der Praktischen Übung

Verwendbarkeit des Moduls

Pflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Name des Moduls	Nummer des Moduls
Basics in Applied Mathematics	[Modulnummer]
Veranstaltung	
Basics in Applied Mathematics: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	[Veranstaltungsnummer]
Veranstalter	
Abteilungen für Angewandte Mathematik und Mathematische Stochastik	

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 230 Stunden
Präsenzstudium	ca. 50 Stunden
Selbststudium	ca. 180 Stunden
Semesterwochenstunden (SWS)	3,0
Mögliche Fachsemester	1
Angebotsfrequenz	Jedes Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	englisch

Inhalte

In der Vorlesung werden grundlegende Konzepte und Verfahren der Numerk und stochastischen Optimierung vermittelt, die für Fragestellungen der Datenanalyse und KI von besonderer Relevanz sind. Diese sollen anhand theoretischer sowie praktischer Aufgaben und Beispiele vertieft werden. Themenschwerpunkte sind dabei

- · Abstiegsverfahren, Matrix-Faktorisierung, Eigenwertprobleme und Optimalitätsbedingungen
- Markov-Ketten, stochastische Grenzwertsätze und stochastische Algorithmen

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls
Basics in Applied Mathematics	[Modulnummer]
Veranstaltung	
Basics in Applied Mathematics: Übung	
Veranstaltungsart	Nummer
Übung	[Veranstaltungsnummer]
Veranstalter	
Abteilungen für Angewandte Mathematik und Mathematische Stochastik	

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 20 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1
Angebotsfrequenz	Jedes Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	englisch

Inhalte
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Moduls	Nummer des Moduls	
Basics in Applied Mathematics	[Modulnummer]	
Veranstaltung		
Basics in Applied Mathematics: Praktische Übung		
Veranstaltungsart	Nummer	
Praktische Übung	[Veranstaltungsnummer]	
Veranstalter		
Abteilungen für Angewandte Mathematik und Mathematische Stochastik		

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 110 Stunden
Präsenzstudium	ca. 20 Stunden
Selbststudium	ca. 90 Stunden
Semesterwochenstunden (SWS)	1,0
Mögliche Fachsemester	1
Angebotsfrequenz	Jedes Wintersemester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Lehrsprache	englisch

Inhalte

Innerhalb der Praktischen Übung werden konkrete Beispiele zu einzelnen Themen der Vorlesung programmiertehnisch am Computer umgesetzt und berechnet. Parallel dazu sollen auch die Kenntnissse der Studierenden in den dazu benutzen Programmen und Programmiersprachen erweitert und vertieft werden. Verwendet werden können u.a. die Programme Matlab und R sowie die Sprachen C/C++ oder Python.

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Numerics	[Modulnummer]
Verantwortliche	
Prof. Dr. Sören Bartels	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	11
Arbeitsaufwand	ca. 330 Stunden
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1 oder 2
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	Jedes Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls ist eine fortgeschrittene vierstündige Vorlesung mit zweistündigen Übungen aus der Theorie und Numerik partieller Differntialgleichungen zu belegen.

Die hierfür als Wahlmöglichkeiten vorgesehenen und regelmäßig von der Abteilung für Angewandte Mathematik angebotenen Vorlesungen werden auf den folgenden Seiten genauer beschrieben.

Für die erste Vorlesung "Introduction to Theory and Numerics of Partial Differential Equations" werden Kenntnisse aus dem Modul "Basics in Applied Mathematics" (oder Vorkenntnisse aus anderen einführenden Numerik-Vorlesungen) erwartet, die übrigen drei Vorlesungen bauen jeweils auf der erstgenannten auf, können aber unabhängig voneinander gehört werden.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Advanced Lecture in Numerics: Vorlesung	Vorlesung	WP		4,0	ca. 300 Std.
Advanced Lecture in Numerics: Übung	Übung	WP		2,0	ca. 30 Std.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden kennen die Inhalte der Vorlesung insbesondere die vermittelten Problemstellungen, Konzepte, Begriffe, Definitionen, Sätze, Beweise, Beweistechniken und Berechnungsverfahren.
- Sie kennen und verstehen die verwendete mathematische Fach- und Formelsprache und können diese nutzen, um sich mündlich wie schriftlich mathematisch präzise und nachvollziehbar auszudrücken und korrekt zu argumentieren.
- Sie können typische Fragestellungen aus dem Bereich der Vorlesung mit Hilfe der erlernten Konzepte

- analysieren, Lösungsstrategien entwickeln, Vermutungen überprüfen, mathematisch exakte Beweise führen, vorgelegte Beweisideen auf Korrektheit prüfen und typische Übungsaufgaben selbständig lösen.
- Sie erkennen die Zusammenhänge mit anderen Vorlesungen aus der Mathematik wie z. B. zu Differentialgeometrie, Variationsrechnung und geometrischer Maßtheorie, partiellen Differentialgleichungen sowie zu den Grundlagen aus der Analysis.

Weitere Lern- und Qualifikationsziele in Abhängigkeit von der innerhalb des Moduls gewählten Vorlesung:

- Introduction to Theory and Numerics of Partial Differential Equations:
 - Die Studierenden sind in der Lage, prototypische partielle Differentialgleichungen zu diskretisieren, numerisch zu lösen und den Diskretisierungsfehler abzuschätzen. Sie beherrschen die Untersuchung der Interpolationseigenschaften von Finite-Elemente-Methoden. Kritische Aspekte wie die Konditionierung von Systemmatrizen können von ihnen eingeschätzt und für Modellbeispiele analysiert werden.
- Theory and Numerics of Partial Differential Equations Nonlinear Problems:
 Sie sind in der Lage, Diskretisierungen für Variationsprobleme und nichtlineare partielle Differentialgleichungen zu entwickeln, iterative Lösungsstrategien herzuleiten, die Konvergenz numerischer Approximationen sicherzustellen sowie sinnvolle Regularitätsanforderungen an Lösungen zu formulieren; der geeignete Einsatz von Regularisierungskonzepten zur Auswahl einer eindeutigen Lösung wird für Modellprobleme verstanden.
- Theory and Numerics of Partial Differential Equations Adaptivity and Iterative Solution Methods: Sie sind in der Lage, a-posteriori-Fehlerabschätzungen für bestimmte lineare partielle Differentialgleichungen herzuleiten, deren Zuverlässigkeit und Effizienz zu untersuchen, darauf basierende adaptive Netzverfeinerungsverfahren zu konstruieren und die Konvergenz adaptiver Verfahren nachzuweisen; sie sind ferner in der Lage, Vorkonditionierungsmatrizen zu entwickeln und diese in iterative Lösungsverfahren zu integrieren und die Qualität von Vorkonditionierern zu untersuchen, sowie Gebietszerlegungsmethoden für Modellprobleme zu entwickeln, zu analysieren und zu implementieren.

Zu erbringende Prüfungsleistung

Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.

Zu erbringende Studienleistung

Bestehen der Übungen. Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht. Für die Übungen sind dies in der Regel die regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotung

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 11/95 und höchstens 11/77 in die Gesamtnote ein.

Voraussetzung für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen

Lehrmethoden

Die Lehrmethoden hängen von der gewählten Veranstaltung ab. In der Regel:

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten,
- schriftliche Bearbeitung der zweiwöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur,
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten,
- erneute Nachbereitung der Veranstaltung im Gesamtzusammenhang bei der Vorbereitung der mündlichen Prüfung (Selbststudium mit der Möglichkeit, sich mit Fragen an Dozent/in bzw. Assistent/in zu wenden).

Verwendbarkeit des Moduls

Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Numerics	[Modulnummer]	
Veranstaltung		
Introduction to Theory and Numerics of Partial Differential Equations: Vorlesung		
Veranstaltungsart Nummer		
Vorlesung	07LE23V-5-PDE0a	
Veranstalter		
Abteilung für Angewandte Mathematik		

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte

- Modellierung, Klassifizierung von Differentialgleichungen 2. Ordnung, klassische Lösungen der Poisson-Gleichung
- Sobolev-Räume, Sobolevsche Einbettungssätze, Existenz und Regularität schwacher Lösungen
- Finite Elemente, Ritz-Galerkin-Verfahren, Implementierung, Interpolation und Fehlerabschätzung, Rand-Approximation, Kondition der Steifigkeitsmatrix

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

- S. Bartels: Numerical Approximation of Partial Differential Equations, Springer, 2016
- D. Braess: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer, 1992.
- S. C. Brenner, L. R. Scott: The mathematical theory of finite element methods, Springer, 1995.
- G. Dziuk: Theorie und Numerik partieller Differentialgleichungen, De Gruyter, 2010.

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Numerics	[Modulnummer]	
Veranstaltung		
Volumentality		
Introduction to Theory and Numerics of Partial Differential Equations: Übung		
Veranstaltungsart Nummer		
Übung	07LE23Ü-5-PDE0a	
Veranstalter		
Abteilung für Angewandte Mathematik		

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Numerics	[Modulnummer]	
Veranstaltung		
Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Vorlesung		
Veranstaltungsart Nummer		
Vorlesung	07LE23V-5-PDE1_Ba	
Veranstalter		
Abteilung für Angewandte Mathematik		

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte

- Variationsungleichungen, Phasenfeldmodelle, harmonische Abbildungen, Totalvariations-regularisierte Probleme
- Existenztheorien, Variationsrechnung, Eigenschaften von Lösungen
- Finite-Elemente-Diskretisierungen, iterative Lösungsverfahren, Fehlerabschätzungen

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

- S. Bartels: Numerical Methods for Nonlinear Partial Differential Equations, Springer, 2015
- H. Attouch, G. Buttazzo, G. Michaille: Variational Analysis in Sobolev and BV Spaces, SIAM 2014.
- L.C. Evans: Partial Differential Equations (Second edition), AMS, 2022.

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Numerics	[Modulnummer]
Veranstaltung	
Theory and Numerics of Partial Differential Equations – Nonlinear Problems: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü-5-PDE1_Ba
Veranstalter	
Abteilung für Angewandte Mathematik	

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Numerics	[Modulnummer]
Veranstaltung	
Theory and Numerics of Partial Differential Equations – Adaptivity and Ite Vorlesung	rative Solution Methods:
Veranstaltungsart	Nummer
Vorlesung	
Veranstalter	
Abteilung für Angewandte Mathematik	

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte

- A-posteriori Fehlerabschätzungen, Adaptivität, Vorkonditionierung, Mehrgitterverfahren
- Effizienz und Zuverlässigkeit, Konvergenztheorien, Entwicklung adaptiver Verfeinerungsmethoden
- Konstruktion von Vorkonditionierern, Methode der konjugierten Gradienten, Konvergenz von Mehrgitterzyklen und überlappender sowie nicht-überlappender Gebietszerlegungsmethode

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

- S. Bartels: Numerical Approximation of Partial Differential Equations, Springer, 2016
- H. Elman, D.J. Silvester, A.J. Wathen: *Finite elements and fast iterative solvers*, Oxford University Press, 2014.
- W. Hackbusch: *Iterative solution of large sparse systems of equations*, Springer, 1994.
- R. Verfürth: A posteriori error estimation techniques for finite element methods, Oxford University Press 2013.

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Numerics	[Modulnummer]
Veranstaltung	
Theory and Numerics of Partial Differential Equations – Adaptivity and Iterative Solution Methods: Übung	
Veranstaltungsart	Nummer
Übung	
Veranstalter	
Abteilung für Angewandte Mathematik	

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Numerics	[Modulnummer]
Veranstaltung	
Theory and Numerics of Partial Differential Equations – Mixed and Nonstandard Methods: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	
Veranstalter	
Abteilung für Angewandte Mathematik	

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Literatur
Teilnahmevoraussetzung laut Prüfungsordnung
Siehe Modulebene
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Numerics	[Modulnummer]	
Veranstaltung		
Theory and Numerics of Partial Differential Equations – Mixed and Nonstandard Methods: Übung		
Veranstaltungsart Nummer		
Übung		
Veranstalter		
Abteilung für Angewandte Mathematik		

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Stochastics	[Modulnummer]
Verantwortliche	
Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	11
Arbeitsaufwand	ca. 330 Stunden
Semesterwochenstunden (SWS)	6,0
Mögliche Fachsemester	1 oder 2
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	Jedes Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls ist eine fortgeschrittene vierstündige Vorlesung mit zweistündigen Übungen aus der Wahrscheinlichkeitstheorie oder Mathematischen Statistik zu belegen.

Die hierfür als Wahlmöglichkeiten vorgesehenen und regelmäßig von der Abteilung für Mathematische Stochastik angebotenen Vorlesungen werden auf den folgenden Seiten genauer beschrieben.

Für die Vorlesung Probabilistic Machine Learning werden Grundkenntnisse in Stochastik und Maßtheorie erwartet, für Mathematical Statistics sollte darüber hinaus das allgemeine Konzept bedingter Wahrscheinlichkeiten und Erwartungen bekannt sein und für Probability Theory II zusätzlich noch stochastische Konvergenzarten. Nützlich hierfür ist der vorherige Besuch der Vorlesung Probability Theory. Die Vorlesung Probability Theory III baut auf Probability Theory II auf.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Advanced Lecture in Stochastics: Vorlesung	Vorlesung	WP		4,0	ca. 300 Std.
Advanced Lecture in Stochastics Übung	Übung	WP		2,0	ca. 30 Std.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden kennen die Inhalte einer weiterführenden Vorlesung aus dem Bereich der Wahrscheinlichkeitstheorie, der mathematischen Statistik oder dem maschinellen Lernen. Sie sind mit den darin vermittelten Konzepten und Begriffen, Problemstellungen und Beweistechniken vertraut.
- Sie können typische Fragestellungen aus dem Bereich der gewählten Vorlesung analysieren und typische Aufgaben selbständig lösen; sie können die in der Vorlesung vorkommenden Definitionen, Sätze

Beweise und Methoden verstehen, nachvollziehen, erklären und anwenden; sie können eigenständig präzise Sachverhalte beweisen, vorgelegte Beweisideen auf Korrektheit prüfen und ihre Ergebnisse mündlich wie schriftlich korrekt und nachvollziehbar darlegen.

Sie sind mit grundlegenden stochastischen Modellen und wahrscheinlichkeitstheoretischen Fragestellungen auf maßtheoretischer Grundlage vertraut, kennen Herleitungen der klassischen Grenzwertaussagen in der Wahrscheinlichkeitstheorie und können mit den Grundbegriffen der Wahrscheinlichkeitstheorie umgehen. Damit können sie auch verschiedene darauf basierende Anwendungen verstehen und deren Umsetzung darstellen.

Weitere Lern- und Qualifikationsziele in Abhängigkeit von der innerhalb des Moduls gewählten Vorlesung:

Mathematical Statistics:

Die Studierenden sind mit der grundlegenden Formulierung statistischer Fragestellungen als Entscheidungsprobleme vertraut. Sie kennen deren wichtigste Eigenschaften und sind in der Lage, verschiedenen Entscheidungsverfahren wie Tests oder Schätzer anhand belannter Gütekriterien miteinander zu vergleichen. Sie kennen ferner wichtige Ordnungsprinzipien zur Reduktion der Komplexität der Modelle und können ihr Wissen zur Lösung realer, praktischer Probleme anwenden.

• Probabilistic Machine Learning:

Die Studierenden sind mit grundlegenden Modellen des maschinellen Lernens und deren Eigenschaften sowohl von theoretischer Seite als auch von praktischer Seite her vertraut, kennen die wichtigsten Theoreme wie etwa die universellen Approximationssätze und deren Beweise. Mit Hilfe der erlenrten Konzepte können sie typische Fragestellungen aus dem Bereich des maschinellen Lernens analysieren, Vermutungen überprüfen, Lösungsstrategien entwicklen und implementieren.

Probability Theory II:

Die Studierenden sind vertraut mit den wahrscheinlichkeitstheoretischen Konzepten zeitdiskreter sowie zeitstetiger stochastischer Prozesse sowie Stoppzeiten und kennen die zentralen Aussagen über diese. Sie sind insbesondere vertraut mit der Brownschen Bewegung und deren wichtigsten Eigenschaften und können reale Phänomene adäguat durch geeignete stochastische Prozesse modellieren.

• Probability Theory III:

Die Studierenden sind mit Konstruktion und Umgang stochastischer Integrale und Semimartingale sowie Lösungen stochastischer Differentialgleichungen vertraut und kennen deren wichtigste Eigenschaften. Sie sind in der Lage, ihre Kenntnisse auf Fragestellungen aus verschiedenen Anwendungsbereichen wie etwa der Finanzmathematik, chemischen Reaktionsnetzwerken und Populationsgenetik oder fortgeschrittene statistische Probleme anzuwenden.

Zu erbringende Prüfungsleistung

Mündliche Prüfung in Form eines ca. 30-minütigen Prüfungsgesprächs.

Zu erbringende Studienleistung

Bestehen der Übungen. Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht. Für die Übungen sind dies in der Regel die regelmäßige Teilnahme am wöchentlichen Tutorat und Erreichen von mindestens fünfzig Prozent der insgesamt für die Bearbeitung der Übungsblätter vergebenen Punkte.

Benotuna

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 11/95 und höchstens 11/77 in die Gesamtnote ein.

Voraussetzung für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen

Lehrmethoden

Die Lehrmethoden hängen von der gewählten Veranstaltung ab. In der Regel:

- Tafelvortrag des Dozenten/der Dozentin mit Vor- und Nachbereitung durch die Studierenden, teils in den begleitenden Tutoraten,
- schriftliche Bearbeitung der zweiwöchentlichen Übungsaufgaben durch die Studierenden und anschließende Korrektur,
- Besprechung der Aufgaben und Präsentation von Lösungen in den begleitenden Tutoraten,

 erneute Nachbereitung der Veranstaltung im Gesamtzusammenhang bei der Vorbereitung der mündlichen Prüfung (Selbststudium mit der Möglichkeit, sich mit Fragen an Dozent/in bzw. Assistent/in zu wenden).

Verwendbarkeit des Moduls

Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Name des Moduls	Nummer des Moduls
Advanced Lecture in Stochastics	[Modulnummer]
Veranstaltung	
Mathematical Statistics: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V-6-Statistik
Veranstalter	
Abteilung für Mathematische Stochastik	

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte

- Statistische Entscheidungstheorie: Formulierung statistische Fragestellungen als Entscheidungsprobleme, (randomisierte) Entscheidungsfunktionen, Optimalitätskriterien
- Suffizienz, Vollständigkeit und Verteilungsfreiheit sowie deren Anwendungen auf Schätz- und Testprobleme
- Grundlegende Begriffe der Testtheorie, Konstruktion optimaler Tests, unverfälschte, ähnliche, bedingte und invariante Tests mit Anwendungsbeispielen

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

- E. L. Lehman, J. P. Romano: Testing Statistical Hypotheses (Fourth Edition), Springer, 2022.
- L. Rüschendorf: Mathematische Statistik, Springer Spektrum, 2014.
- M. J. Schervish. Theory of Statistics, Springer, 1997.
- J. Shao: Mathematical Statistics, Springer, 2008.

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Stochastics	[Modulnummer]
Veranstaltung	
Mathematical Stochastics: Übung	
Veranstaltungsart	Nummer
Übung	07LE23Ü-6-Statistik
Veranstalter	
Abteilung für Mathematische Stochastik	

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Moduls	Nummer des Moduls
Advanced Lecture in Stochastics	[Modulnummer]
Veranstaltung	
Probabilistic Machine Learning: Vorlesung	
Veranstaltungsart	Nummer
Vorlesung	07LE23V-6-MLStoch
Veranstalter	
Abteilung für Mathematische Stochastik	

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte

Neuronale Netzwerke, Optimierungsverfahren, Universelle Approximationssätze, Statistisches Lernen, Random Forests, Markovketten und Reinforcement-Learning

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

- T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer, 2009.
- K. P. Murphy. Probabilistic Machine Learning, MIT Press, 2022.
- M. V. Wüthrich, M. Merz. Statistical Foundations of Actuarial Learning and its Applications, Springer Cham, 2023.

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Stochastics	[Modulnummer]	
Veranstaltung		
Probabilistic Machine Learning: Übung		
Veranstaltungsart	Nummer	
Übung	07LE23Ü-6-MLStoch	
Veranstalter		
Abteilung für Mathematische Stochastik		

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte	
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.	
Zu erbringende Prüfungsleistung	
Siehe Modulebene	
Zu erbringende Studienleistung	
Siehe Modulebene	
Teilnahmevoraussetzung laut Prüfungsordnung	
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.	
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung	
Siehe Modulebene	

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Stochastics	[Modulnummer]	
Veranstaltung		
Probability Theory II: Vorlesung		
Veranstaltungsart	Nummer	
Vorlesung	07LE23V-6-WT2	
Veranstalter		
Abteilung für Mathematische Stochastik		

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte

Filtrationen und Stoppzeiten, Martingale und Martingalkonvergenzsätze in diskreter und stetiger Zeit, Markov-Prozesse, Eigenschaften und Pfadeigenschaften der Brownschen Bewegung, Konvergenz stochastischer Prozesse, Sätze von Donsker und Skorokhod

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

- L. Breiman: Probability, Addison-Wesley, 1968.
- O. Kallenberg: Foundations of Modern Probability (Third Edition), Springer, 2021.
- A. Klenke: Probability Theory (Second Edition), Springer, 2014.
- D. Williams: Probability with Martingales, Cambridge University Press, 1991.

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Stochastics	[Modulnummer]	
Veranstaltung		
Probability Theory II: Übung		
Veranstaltungsart	Nummer	
Übung	07LE23Ü-6-WT2	
Veranstalter		
Abteilung für Mathematische Stochastik		

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Wintersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte	
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.	
Zu erbringende Prüfungsleistung	
Siehe Modulebene	
Zu erbringende Studienleistung	
Siehe Modulebene	
Teilnahmevoraussetzung laut Prüfungsordnung	
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.	
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung	
Siehe Modulebene	

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Stochastics	[Modulnummer]	
Veranstaltung		
Probability Theory III: Vorlesung		
Veranstaltungsart	Nummer	
Vorlesung	07LE23V-6-WT3	
Veranstalter		
Abteilung für Mathematische Stochastik		

ECTS-Punkte	siehe Modulebene
Arbeitsaufwand	ca. 300 Stunden
Präsenzstudium	ca. 60 Stunden
Selbststudium	ca. 240 Stunden
Semesterwochenstunden (SWS)	4,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte

Konstruktion des stochastischen Integrals bezüglich (lokaler) Martingale und Semimartingale und daraus abgeleitete Rechenregeln, quadratische Variation und Ito-Formel, stochastische Differentialgleichungen und stochastische Exponentiale, Girsanov-Theoreme, Martingal-Probleme, Grundlagen der Finanzmathematik und Fundamentalsätze des Asset Pricing

Zu erbringende Prüfungsleistung

Siehe Modulebene

Zu erbringende Studienleistung

Siehe Modulebene

Literatur

- F. Delbaen, W. Schachermayer: The Mathematics of Arbitrage, Springer, 2006.
- J. Jacod, A. N. Shiryaev: Limit Theorems for Stochastic Processes (Second Edition), Springer, 2002.
- O. Kallenberg: Foundations of Modern Probability (Third Edition), Springer, 2021.
- A. Klenke: Probability Theory (Second Edition), Springer, 2014.
- P. Protter: Stochastic Integration and Differential Equations (Second Edition, Version 2.1), Springer, 2005.

Teilnahmevoraussetzung laut Prüfungsordnung

Siehe Modulebene

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Siehe Modulebene

Name des Moduls	Nummer des Moduls	
Advanced Lecture in Stochastics	[Modulnummer]	
Veranstaltung		
Probability Theory III: Übung		
Veranstaltungsart	Nummer	
Übung	07LE23Ü-6-WT3	
Veranstalter		
Abteilung für Mathematische Stochastik		

ECTS-Punkte	siehe Modulebene
Präsenzstudium	ca. 30 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	1 oder 2
Angebotsfrequenz	Nur im Sommersemester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Lehrsprache	englisch

Inhalte
Die Übung begleitet die Vorlesung mit Übungsaufgaben zum Vorlesungsstoff.
Zu erbringende Prüfungsleistung
Siehe Modulebene
Zu erbringende Studienleistung
Siehe Modulebene
Teilnahmevoraussetzung laut Prüfungsordnung
Keine formale Voraussetzung, jedoch wird der parallele Besuch der gleichnamigen Vorlesung empfohlen.
Erwartete Vorkenntnisse und Hinweise zur Vorbereitung
Siehe Modulebene

Name des Kontos Nummer des Ko			
Electives in Data [Kontonummer]			
Verantwortliche			
Prof. Dr. Sören Bartels, Prof. Dr. Peter Pfaffelhuber			
Fachbereich / Fakultät			
Mathematisches Institut-VB, Institut für Informatik-VB, Institut für Mikrosystemtechnik-VB, Institut für Wirtschaftswissenschaften-VB, Institut für Biologie III-VB			

Kommentar

Im Bereich "Electives in Data" sind Module im Umfang von mindestens 30 ECTS und höchstens 48 ECTS zu absolvieren.

Dies können zwei- oder vierstündige Vorlesungen mit Übungen und evtl. zusätzlichen Programmierprojekten oder Seminare sein, die aus dem Veranstaltungsangebot der o. g. Institute stammen und als verwendbar für "Electives in Data" gekennzeichnet sind. Insbesondere können alle unter "Advanced Lecture in Numerics/Stochastics" aufgeführten Vorlesungen auch als "Elective in Data" gewählt werden. Die im Anhang beigefügte tabellarische Übersicht enthält eine Liste der regelmäßig an den jeweiligen Instituten angebotenen Lehrveranstaltungen, die als "Elective in Data" wählbar sind. Bitte beachten Sie dabei stets die jeweils notwendigen Vorkenntnisse!

Name des Moduls	Nummer des Moduls
Mathematical Seminar	[Modulnummer]
Verantwortliche	
Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	6
Arbeitsaufwand	ca. 180 Stunden
Semesterwochenstunden (SWS)	2,0
Mögliche Fachsemester	2 oder 3
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	Jedes Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

In den <u>Kommentaren</u> zu den Lehrveranstaltungen sind semesterweise die hierzu jeweils wählbaren Veranstaltungen angegeben. Dort werden auch die vom jeweiligen Seminar abhängenden vorausgesetzten Vorkenntnisse beschrieben.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Mathematical Seminar	Seminar	Р		2,0	ca. 180 Std.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden können sich in ein wissenschaftliches Thema der Mathematik durch Lektüre von Fachliteratur selbständig, aber unter fachlicher Begleitung einarbeiten.
- Die Studierenden können dieses Thema didaktisch aufbereiten und in freiem Vortrag anschaulich, verständlich und fachlich korrekt vortragen; sie können Fragen zum Vortragsthema beantworten und sich einer kritischen Diskussion stellen.
- Die Studierenden können fachliche Fragen zu Vorträgen formulieren und Vorträge konstruktivkritisch begleiten.

Zu erbringende Prüfungsleistung

Gestaltung einer ca. 90-minütigen Seminarsitzung mit Vortrag und Diskussion.

Zu erbringende Studienleistung

Die zu erbingenden Studienleistungen hängen vom gewählten Seminar ab. Die genauen Anforderungen dafür werden semesterweise in den <u>aktuellen Ergänzungen der Modulhandbücher Mathematik</u> veröffentlicht.

Benotung

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 6/95 und höchstens 6/77 in die Gesamtnote ein.

Voraussetzung für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studien- und Prüfungsleistungen

Lehrmethoden

- Gestaltung der Seminarsitzungen durch Studierende (mit Hilfe bei der Vorbereitung durch Dozent/in bzw. Assistent/in),
- · aktive Beteiligung aller Teilnehmenden durch Fragen und Diskussion.

Verwendbarkeit des Moduls

Pflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Name des Moduls	Nummer des Moduls
Graduate Student Speaker Series	[Modulnummer]
Verantwortliche	
Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	4
Arbeitsaufwand	ca. 120 Stunden
Mögliche Fachsemester	2 4
Moduldauer	1 Semester oder länger (abhängig von der Erbringung der SL)
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	Jedes Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

In diesem Seminar stellen die fortgeschrittenen Studierenden das Konzept ihrer Master-Arbeit vor, ergänzend werden weitere Vorträge von Dozentinnen und Dozenten, Doktorandinnen und Doktoranden über aktuelle Forschungsprojekte stattfinden sowie Präsentationen von Studierenden über ihre Programmierprojekte und Industriepraktika.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Graduate Student Speaker Series	Seminar	Р		2,0	ca. 120 Std.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden können selbst erarbeitete mathematische Ergebnisse didaktisch aufbereiten und in freiem Vortrag einem Fachpublikum verständlich und fachlich korrekt präsentieren.
- Die Studierenden k\u00f6nnen Fragen zu ihrer Master-Arbeit bzw. ihren Programmierprojekten oder Praktikumst\u00e4tigkeit beantworten, sich einer kritischen Diskussion stellen und ggf. sinnvolle Fragen zu den Master-Arbeiten von Kommilitonen stellen und deren Pr\u00e4sentationen konstruktiv-kritisch begleiten.

Zu erbringende Prüfungsleistung

Keine

Zu erbringende Studienleistung

Teilnahme an mindestens 10 Terminen sowie Halten eines Vortrags in Form der Gestaltung einer ganzen 90-minütigen Seminarsitzung.

Benotung

unbenotet

Voraussetzung für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studienleistungen

Lehrmethoden

- Selbständige Gestaltung der Seminarsitzungen durch Studierende,
- aktive Beteiligung aller Teilnehmenden durch Fragen und Diskussion.

Verwendbarkeit des Moduls

Pflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Name des Moduls	Nummer des Moduls
Master Thesis	[Modulnummer]
Verantwortliche	
Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	30
Arbeitsaufwand	ca. 900 Stunden
Mögliche Fachsemester	4
Moduldauer	Sechs Monate
Pflicht/Wahlpflicht (P/WP)	Pflicht
Angebotsfrequenz	Jedes Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Erfolgreiche Absolvierung von mindestens 60 ECTS-Punkten im M.Sc.-Studiengang Mathematics in Data and Technology.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Die inhaltlichen Voraussetzungen hängen vom Schwerpunktgebiet und dem Thema der Master-Arbeit ab.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden lernen, selbständig wissenschaftlich zu arbeiten und neue mathematische Ergebnisse zu finden und zu formulieren. Sie sind dazu in der Lage, ein tiefergehendes mathematisches Thema im Selbststudium unter Anleitung zu erarbeiten und die dazu nötige Fachliteratur zu verstehen.
- Abhängig vom Schwerpunktgebiet können die Studierenden können auch einen komplexen mathematischen Algorithmus entwerfen, implementieren und die Implementierung für Fachleute verständlich dokumentieren.

Zu erbringende Prüfungsleistung

Anfertigung einer Master-Arbeit

Zu erbringende Studienleistung

Keine

Benotung

Die Note der Prüfung geht (proportional zur Anzahl der ECTS-Punkte des Moduls und abhängig vom Umfang der als "Electives in Data" gewählten Veranstaltungen) mit mindestens 30/95 und höchstens 30/77 in die Gesamtnote ein.

Voraussetzung für die Vergabe von Leistungspunkten

Bestehen der Master-Arbeit

Lehrmethoden

Betreutes Selbststudium für die Anferigung der Master-Arbeit

Verwendbarkeit des Moduls

Pflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Name des Kontos	Nummer des Kontos
Electives	[Kontonummer]
Verantwortliche	
Prof. Dr. Sören Bartels, Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
----------------------------	-------------

Kommentar

Im Bereich "Electives" können in Ergänzung zu den "Electives in Data" weitere Module im Umfang von höchstens 18 ECTS absolviert werden, um die für beide Bereiche zusammen geforderte Summe von 48 ECTS zu erreichen.

Wählbar sind hierfür sämtliche Lehrveranstaltungen, die auch im M.Sc. Mathematik-Studiengang anrechenbar sind und *nicht* in den Bereich "Electives in Data" fallen. Dazu gehören insbesondere die einzelne Vorlesungen ergänzenden Praktischen Übungen sowie weitere dem Anforderungsniveau des Studiengangs entsprechende Lehrveranstaltungen.

Bitte beachten Sie dabei stets die jeweils notwendigen Vorkenntnisse!

Name des Moduls	Nummer des Moduls
Industrial Placement	[Modulnummer]
Verantwortliche	
Prof. Dr. Sören Bartels	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	9
Arbeitsaufwand	ca. 270 Stunden
Mögliche Fachsemester	2 oder 3
Moduldauer	Mindestens sechs Wochen
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	Jedes Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls absolvieren die Studierenden ein studiengangspezifisches Praktikum bei einem Industrie- oder Wirtschaftsunternehmen oder einer Forschungseinrichtung. Die Auswahl von letzteren erfolgt in Absprache mit dem Modulverantwortlichen.

Insofern ist eine rechtzeitige vorherige Abstimmung mit diesem sowie die Beachtung möglicher Bewerbungsfristen sowie sonstiger Anforderungen seitens der Praktikumsplätze vergebenden Unternehmen/Forschungseinrichtungen notwendig.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Industrial Placement	Industrieprakti- kum	WP	9		ca. 270 Std.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden können sich selbständig auf eine ihren Fähigkeiten und Interessen entsprechende Praktikumsstelle bewerben und entwickeln ihre Teamfähigkeiten weiter.
- Sie gewinnen Einblicke in einen später möglichen Berufsalltag und lernen, ihr zuvor erworbenes theoretisches Wissens in der Praxis anzuwenden. Dabei erkennen sie auch, welche Themen und Methoden aktuell aus Anwendersicht bzw. für aktuelle Forschungsprojekte relevant sind, und erhalten Anregungen für die weitere Planung ihres Studiums sowie für ihre Abschlussarbeit.

Zu erbringende Prüfungsleistung

Keine

Zu erbringende Studienleistung

Erfolgreiche Absolvierung eines mindestens sechswöchigen Industriepraktikums sowie anschließende Vorlage des entsprechenden Praktikumszeugnisses der jeweiligen Einrichtung und Erstellung eines aussagekräftigen Berichts.

Benotung

unbenotet

Voraussetzung für die Vergabe von Leistungspunkten

Bestehen aller vorgesehenen Studienleistungen

Lehrmethoden

Firmenspezifisch, abhängig vom für das Praktikum ausgewählten Unternehmen.

Verwendbarkeit des Moduls

Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Name des Moduls	Nummer des Moduls
Programming Project	[Modulnummer]
Verantwortliche	
Prof. Dr. Peter Pfaffelhuber	
Fachbereich / Fakultät	
Mathematisches Institut-VB	

ECTS-Punkte	9
Arbeitsaufwand	ca. 270 Stunden
Mögliche Fachsemester	2 oder 3
Moduldauer	1 Semester
Pflicht/Wahlpflicht (P/WP)	Wahlpflicht
Angebotsfrequenz	Jedes Semester

Teilnahmevoraussetzung laut Prüfungsordnung

Keine formale Voraussetzung.

Erwartete Vorkenntnisse und Hinweise zur Vorbereitung

Innerhalb dieses Moduls führen die Studierenden ein Programmierprojekt anhand eines konkreten, mit der jeweiligen Betreuerin/dem jeweiligen Betreuer zuvor vereinbarten Fallbeispiels durch.

Dazu sind neben der vorherigen Abstimmung mit der Betreuerin/dem Betreuer entsprechend fundierte Kenntnisse einer Programmiersprache bzw. einer Programmierumgebung notwendig.

Zugehörige Veranstaltungen					
Name	Art	P/WP	ECTS	SWS	Arbeits- aufwand
Programming Project	Programmier- projekt	WP	9		ca. 270 Std.

Lern- und Qualifikationsziele der Lehrveranstaltung

- Die Studierenden lernen, ein umfangreicheres Projekt strukturiert anzugehen, die zur Erreichung des Gesamtzieles notwendigen Aufgaben und Teilschritte zu identifizieren, festzulegen und systematisch abzuarbeiten.
- Neben tieferen Einblicken in gängige Programmiertechniken lernen sie zudem, ihren Code gut wartund erweiterbar zu gestalten, ihn zu optimieren sowie gut verständlich für andere zu dokumentieren.

Zu erbringende Prüfungsleistung

Keine

Zu erbringende Studienleistung

Erfolgreiche Absolvierung des Programmierprojekts. Dazu zählen neben der Abgabe des jeweiligen Codes auch eine ausführlichere Dokumentation desselben (Kommentarzeilen im Code sowie eine Auflistung der entwickelten Programme mit Funktionsbeschreibung sowie der Bedeutung ihrer jeweiligen Argumente).

Benotung
unbenotet
Voraussetzung für die Vergabe von Leistungspunkten
Bestehen aller vorgesehenen Studienleistungen
Lehrmethoden
Begleitete Einarbeitung in ein größeres Pojekt sowie eigenständige Programmierung.
Verwendbarkeit des Moduls
Wahlpflichtmodul im M.Sc. Mathematics in Data and Technology (PO 2024)

Verzeichnis der regelmäßig angebotenen und im Bereich "Electives in Data" verwendbaren Lehrveranstaltungen

Lehrveranstaltungen des Mathematischen Instituts

Vorlesungen:

Algorithmic Machine Learning

Introduction to the Theory and Numerics of Partial Differential Equations

Functional Analysis

Markov Chains

Mathematical Statistics

Mathematical Modeling

Neural Networks

Numerics for Differential Equations

Theory and Numerics of Partial Differential Equations – Nonlinear Partial Differential Equations

Theory and Numerics of Partial Differential Equations – Iterative Solvers and Adaptivity

Theory and numerics of Partial Differential Equations – Mixed and Non-Standard Methods

Probabilistic Machine Learning

Probability Theory

Probability Theory II - Stochastic Processes

Probability Theory III - Stochastic Analysis

Seminare:

Seminars in Numerics (Dept. of Applied Mathematics)

Seminars in Probability Theory (Dept. of Mathematical Stochastics)

Seminar "Medical Data Science"

Lehrveranstaltungen des Instituts für Informatik

Vorlesungen:

Automated Machine Learning

Computer Vision

Foundations of Artificial Intelligence

Foundations of Deep Learning

Image Processing and Computer Graphics

Introduction to Big Data Analysis in Bioinformatics

Machine Learning in Life Sciences

Reinforcement Learning

Statistical Pattern Recognition

Lehrveranstaltungen des Instituts für Mikrosystemtechnik

Vorlesungen:

Modeling and System Identification

Numerical Optimization (with optional project)

Numerical Optimal Control (with optional project)

Lehrveranstaltungen des Instituts für Wirtschaftswissenschaften

Vorlesungen:

Advanced Topics in Econometrics

Computational Economics

Credit Risk

Financial Econometrics

Futures and Options

Intermediate Econometrics

Portfolio Management

Time Series Analysis

Lehrveranstaltungen des Instituts für Biologie III

Vorlesungen:

Quantitative Methods and Statistics in Neuroscience