5/8/2021 OneNote

Section 5.2: Euler's Method

We want to solve the IVP y'= f(t,y) ODE to ← t ≤ tf Time domain y(to)= a initial condition.

* (1) Discretize over time.

If we sample
$$N$$

points then

 t_0
 t_0

(2) Discretize the equation

how can ve approximates y'(+)?

let's use forward difference! (841) 1 y'(+) = y(++++) - y(+)

Eulevis Method is given by

Consider IVP y'= y-e", [0=t=1, y(0)=2.

- of (1) Well posed?
- (1) Well posed? It: $\frac{t_1-t_2}{N}$ (2) Find exact so 1. $0.75 = \frac{1-0}{N}$
- * (3) Estimate soln using Eule's Meshod W/Dt=0.25. (N=4)
 - (1) well posed? You

- Upschitz cond.

(2) Exact 801?		For Stud	int
	neclearing	40	
(13) Euler's Method 4+=025	cetors) /	RHS= Y-e	-
y ₀ = 2.	1 5	approx y	exact y
y, = y0 + Δt(f(to, y0))	, 0	2	2.
_ /	0.25	2.25	2247
$= 2 + \frac{1}{4} [f(0,2)]$	0.5	2.4913	2.473
=2+4[2-e]=275	0.75	27022	2 6463
92 = 71+Vf 4 (f1,41)	1	28485	27183
=2.25+年[fl0.25, 2.75)]		
= 2.25+ 4[2.25-e ^{0.26}	57~2	2.4915	

y = 2.7022

u = 28485

As j increases, error increases (i.e., errors cacumulate out time)

"emor" is linear in 136.

Suppose $f \in C(b)$ satisfies Upschitz concl. on D. Moreover, suppose $\exists M > D$ such that $|g^{2}f_{\partial b^{2}}| \leq M$ for $M \in Cto, t_{o}T$ Then $|g(t_{i}) - g_{E}(t_{i})| \leq \Delta t M (e) L(t_{i}^{2} - t_{o}) = 1$

Q: Why does ever increase as time increases?

fird M
recall f(+,y)=y-e+

$$|\frac{\partial^2 f}{\partial t^2}| = -e^{t}$$

$$|\frac{\partial^2 f}{\partial t^2}| = |-e^{t}| \quad \text{when is this layest?}$$

$$= |e^{t}| \quad \text{when i$$

$$|y(0.25)-y_{\xi}(0.25)| \leq \frac{1}{4} \cdot \frac{e}{2\cdot 1} \left[e^{(0.25-0)} - 1 \right]$$

 $|y(0.25)-y_{\xi}(0.25)| \leq \frac{1}{4} \cdot \frac{e}{2} \left[e^{(0.25-0)} - 1 \right] \sim 0.2204$

Q: How could be improve?

A: Let's redenire Euler's method from Taylor Senes

Find 1st Taylor Polynomial of y at to evaluated at titat 7 Y(t;+At) = y(t;)+At y'(t;) + At y'(t) 180 late y(+s+)-y(+i) - y'(+i) = y'(x) 1+ -low can we improve our method? A. 110 Toulor Polynomial

Ytiti = Yti + At f(45, 48) Fz=+(1At

. Y(t;+ bt) = y(t;)+ 1/4 y (t;)

Recall TP of f about xo evaluated ax

f(x)=f(x)+f'(x)(x-x)+f'(x)(x-x) repay f by y. & by t , xoot to At

f(t+At) = y(t) + y(t) (trAt - t) + 4 = YK)+ Y'(+) S+ + Y"(+) (A)2

ty = to 13.

4=+0+24

+1+1=+1, V.