

I/O Interfaces

EECS388 Fall 2022

© Prof. Mohammad Alian

Context

- Recommended reading:
 - Si-five Programmer's Manual
 - Chapter 11 of "AVR Microcontroller and Embedded systems"
 - Wikipedia

_[Bass	Top	A ++ v	Description	Notes
	0×0000_0000	0x0000_0FFF	RWX A	Debug	Debug Address Space
	0x0000_1000	0x0000_1FFF	R XC	Mode Select	·
	0x0000_2000	0x0000_2FFF		Reserved	
	0x0000_3000	0x0000_3FFF	RWX A	Error Device	
	0x0000_4000	0x0000_FFFF		Reserved	On-Chip Non Volatile Mem-
	0x0001_0000	0x0001_1FFF	R XC	Mask ROM (8 KiB)	ory
	0x0001_2000	0x0001_FFFF		Reserved	
	0x0002_0000	0x0002_1FFF	R XC	OTP Memory Region	
	0x0002_2000	0x001F_FFFF		Reserved	
	0x0200_0000	0x0200_FFFF	RW A	CLINT	
	0x0201_0000	0x07FF_FFFF		Reserved	
	0x0800_0000	0x0800_1FFF	RWX A	E31 ITIM (8 KiB)	
	0x0800_2000	0x0BFF_FFFF		Reserved	
	0x0C00_0000	0x0FFF_FFFF	RW A	PLIC	
	0x1000_0000	0x1000_0FFF	RW A	AON	
	0x1000_1000	0x1000_7FFF		Reserved	
	0x1000_8000	0x1000_8FFF	RW A	PRCI	
	0x1000_9000	0x1000_FFFF		Reserved	
	0×1001_0000	0x1001_0FFF	RW A	OTP Control	
	0x1001_1000	0x1001_1FFF		Reserved	
	0x1001_2000	0x1001_2FFF	RW A	GPIO	On-Chip Peripherals
	0x1001_3000	0x1001_3FFF	RW A	UART 0	Dif-Chip Peripherais
	0x1001_4000	0x1001_4FFF	RW A	QSPI 0	
	0x1001_5000	0x1001_5FFF	RW A	PWM 0	
	0x1001_6000	0x1001_6FFF	RW A	I2C 0	
	0x1001_7000	0x1002_2FFF		Reserved	
	0x1002_3000	0x1002_3FFF	RW A	UART 1	
	0x1002_4000	0x1002_4FFF	RW A	SPI 1	
	0x1002_5000	0x1002_5FFF	RW A	PWM 1	
	0x1002_6000	0x1003_3FFF		Reserved	
	0x1003_4000	0x1003_4FFF	RW A	SPI 2	
Ц	0x1003_5000	0x1003_5FFF	RW A	PWM 2	
Į	0x1003_6000	0x1FFF_FFFF		Reserved	
	0x2000_0000	0x3FFF_FFFF	R XC	QSPI 0 Flash	Off-Chip Non-Volatile Mem-
				(512 MiB)	ory
	0×4000_0000	0x7FFF_FFFF		Reserved	
	0×8000_0000	0x8000_3FFF	RWX A	E31 DTIM (16 KiB)	On-Chip Volatile Memory
Į	0x8000_4000	0xFFFF_FFFF		Reserved	

Memory Map of SiFive FE310

Memory mapped I/O regions

Base	Тор	Attr.	Description	Notes
0x0000_0000	0x0000_0FFF	RWX A	Debug	Debug Address Space
0x0000_1000	0x0000_1FFF	R XC	Mode Select	
0x0000_2000	0x0000_2FFF		Reserved	1
0x0000_3000	0x0000_3FFF	RWX A	Error Device	1
0x0000_4000	0x0000_FFFF		Reserved	On-Chip Non Volatile Mem-
0x0001_0000	0x0001_1FFF	R XC	Mask ROM (8 KiB)	ory
0x0001_2000	0x0001_FFFF		Reserved	
0x0002_0000	0x0002_1FFF	R XC	OTP Memory Region	7
0x0002_2000	0x001F_FFFF		Reserved	
0x0200_0000	0x0200_FFFF	RW A	CLINT	
0x0201_0000	0x07FF_FFFF		Reserved	1
0x0800_0000	0x0800_1FFF	RWX A	E31 ITIM (8 KiB)	1
0x0800_2000	0x0BFF_FFFF		Reserved	
0x0C00_0000	0x0FFF_FFFF	RW A	PLIC	7
0x1000_0000	0x1000_0FFF	RW A	AON	7
0x1000_1000	0x1000_7FFF		Reserved	1
0x1000_8000	0x1000_8FFF	RW A	PRCI	1
0x1000_9000	0x1000_FFFF		Reserved	1
0x1001_0000	0x1001_0FFF	RW A	OTP Control	7
0×1001_1000	0×1001_1555		Recented	
0x1001_2000	0x1001_2FFF	RW A	GPIO	Chin Darinharala
0x1001_3000	0x1001_3FFF	RW A	UART 0	n-Chip Peripherals
0x1001_4000	0x1001_4FFF	RW A	QSPI 0	1
0x1001_5000	0x1001_5FFF	RW A	PWM 0	1
0x1001_6000	0x1001_6FFF	RW A	I2C 0	1
0×1001_7000	0x1002_2FFF		Reserved	
0x1002_3000	0x1002_3FFF	RW A	UART 1	1
0x1002_4000	0x1002_4FFF	RW A	SPI1	1
0x1002_5000	0x1002_5FFF	RW A	PWM 1	7
0x1002_6000	0x1003_3FFF		Reserved	
0x1003_4000	0x1003_4FFF	RW A	SPI 2	1
0x1003_5000	0x1003_5FFF	RW A	PWM 2	1
0×1003_6000	0x1FFF_FFFF		Reserved	
0×2000_0000	0x3FFF_FFFF	R XC	QSPI 0 Flash	Off Ohim Nam Valatila Mana
0 1 2 0 0 0 _ 0 0 0 0			(512 MiB)	Off-Chip Non-Volatile Mem-
0.0000_0000				d ory
0x4000_0000	0x7FFF_FFF		Reserved	
	0x7FFF_FFFF 0x8000_3FFF	RWX A	E31 DTIM (16 KiB)	On-Chip Volatile Memory

Memory Map of SiFive FE310

GPIO registers are mapped at 0x10012000 - 0x10012FFF

Offset	Name	Description
0×00	input_val	Pin value
0×04	input_en	Pin input enable*
0×08	output_en	Pin output enable*
0×0C	output_val	Output value
0×10	pue	Internal pull-up enable*
0×14	ds	Pin drive strength
0×18	rise_ie	Rise interrupt enable
0×1C	rise_ip	Rise interrupt pending
0×20	fall_ie	Fall interrupt enable
0×24	fall_ip	Fall interrupt pending
0x28	high_ie	High interrupt enable
0x2C	high_ip	High interrupt pending
0×30	low_ie	Low interrupt enable
0×34	low_ip	Low interrupt pending
0×40	out_xor	Output XOR (invert)

General Purpose I/O (GPIO)

- Programmable digital input/output pins
- Use voltage levels to represent digital signals
 - 3.3V = logic 1 (for 3.3V microcontrollers)
 - 0V = logic 0
- Can be configured as
 - Input or output
- Useful to interact with external devices

Example: Turn on an LED

- Assume VDD = 3.3, GPIO pin can draw up to 18mA, the LED's nominal voltage is 2.1V
- Ohm's law: $I \times R = V$
- What resistor is needed?

Example: Turn on an LED

- Assume VDD = 3.3, GPIO pin can draw up to 18mA, the LED's nominal voltage is 2.1V
- Ohm's law: $I \times R = V$
- What resistor is needed?

$$I = V / R = 1.2 / R < 18mA$$

R > 1.2 V/18mA

= 1200 mV / 18 mA

= 67 ohm

R should be greater than 67 ohm

Blinky LED on HiFive Board

```
memory map
#define GPIO CTRL ADDR
                           0x10012000 // GPIO controller base address
#define GPIO INPUT VAL
                           0x00
#define GPIO INPUT EN
                           0x04
#define GPIO OUTPUT EN
                           0x08
#define GPIO OUTPUT VAL
                           0x0C
#define GPIO OUTPUT XOR
                                       // output XOR (invert)
                            0x40
void gpio_write(int gpio, int state)
uint32 t val = *(volatile uint32_t *) (GPIO_CTRL_ADDR + GPIO_OUTPUT_VAL);
if (state == ON)
  val |= (1<<gpio);</pre>
 else
  val &= (~(1<<gpio));</pre>
 *(volatile uint32 t *) (GPIO_CTRL_ADDR + GPIO_OUTPUT_VAL) = val;
 return;
```

External I/O Interfaces

Serial vs. Parallel

Serial interfaces use a single line

10

Serial vs. Parallel

Parallel interfaces use multiple lines

Serial vs. Parallel Interfaces

- Serial interfaces
 - RS-232: serial communication standard
 - USB: universal serial bus
 - I²C: inter-integrated circuit
 - SPI: serial peripheral interface bus
 - SATA: serial ATA

•

USB

RS-232

Serial vs. Parallel Interfaces

- Parallel interfaces
 - Parallel ATA: advanced technology attachment
 - SCSI: small computer system interface
 - PCI: peripheral component interface (multi-lane)
 PCI x 1
 Sector

• ...

Serial Interfaces

- ✓ Use fewer pins and wires
- √ High scalability
- ✓ Low power consumption
- Lower bandwidth for the same clock speed

Parallel Interfaces

- More pins and wires
- Synchronization among lanes reduces scalability
- High power consumption
- √ Higher bandwidth
- Serial interfaces for external I/O (e.g., USB, SATA, PCIe)
- Parallel interfaces for on-chip interconnects and memory interfaces (e.g., AXI, TileLink, DDR)

Transfer Types

Synchronous vs. Asynchronous

Synchronous transmission

- - Requires a common shared clock
- Higher throughput communication
 - Low scalability

Asynchronous transmission

- No shared clock
- Asynchronous start/stop
- Self clocked, based on an agreement between the transmitter and receiver

Serial Communication Standard: RS-232

- First introduced in 1962 to connect teletypes to modems
- Electrical signals and connector types standard
- Because the standard was set long before the advent of the TTL logic family, its input and output voltage levels are not TTL v compatible
- A(1) is represented by -3 to -15 V
- A 0 is represented by +3 to +15 V

33 -

1095

RS-232

This Photo by Unknown Authoris licensed under CC BY-SA

RS-232 Frame Format

Example

 What is the data that the following RS-232 frame is transmitting? Is there any error in the frame?

Universal Asynchronous Receiver/Transmitter (UART)

Convert parallel content of an 8-bit register to a bit sequence ready to be transmitted over a serial port e.g., RS-232

UART Asynchronous Transmission

 First check if the TX FIFO is not full then transmit a byte

```
void ser_write(char c)
{
    uint32_t regval;
    /* busy-wait if tx FIFO is full */
    do {
        regval = *(volatile uint32_t *)(UART0_CTRL_ADDR + UART_TXDATA);
    } while (regval & 0x80000000);

    /* write the character */
    *(volatile uint32_t *)(UART0_CTRL_ADDR + UART_TXDATA) = c;
}
```

UART Speed (Baudrate)

Both sender and receiver must use agreed upon transmission speed (baudrate)

 When the start bit, the receiver samples 8 more bits before stop

Example

• Suppose you are sending data over a UART channel at a baud rate of 115200 bps. How long does it take to send a single 8-bit character over the channel?

Types of Networks

Point-to-point

• 1:1 communication

Bus

- Shared among multiple devices
- Need an arbitration mechanism
- Master
 - An entity who initiates the data transfer
- Slave
 - An entity who cooperates with the master

Types of Networks

- What is the advantage and disadvantage of a bus compared with a point to point interconnect?
 - Point to point is faster when there is a direct connection
 - Bus needs arbitration
 - Bus is more efficient (higher utilization)
 - Point to point is more scalable

I²C

Inter-Integrated Circuit protocol (I²C), by NXP

- Wires used: 2 (SCL: clock, SDA: data)
- Speed: (standard) 100Kbps, (ultra fast) 5Mbps
- Serial, synchronous bus
- 7 or 10 bits for slave IDs: 127 ~ 1008 devices

Synchronous, Serial Data Transfer in I²C

https://i2c.info/i2c-bus-specification

I²C Protocol

16 67

Start and stop conditions

SDA high to low while SCL is high

SDA low to high while SCL is high

SPI

Serial Peripheral Interface (SPI), by Motorola

- Synchronous, serial communication protocol
- Uses 4 lines, full-duplex, over 10Mbps
- Single master, multi-slave
- No start/stop bits
- Good for fast, short distance communication, e.g., connecting
 LCD to μController

SPI Protocol

- Master shifts out to MOSI (Master Out Slave In) and shifts in from MISO (Master In Slave Out)
- Slave shifts in from MOSI and shifts out to
 MISO

Universal Serial Bus (USB)

Point to point, synchronous serial communication

- One host, multiple devices, can form a tree
- Use two wires for single differential signal
 - Reduce noise caused by electromagnetic interference

I/O Considerations

- Serial vs. parallel
- Wired vs. wireless
- Speed (throughput, latency)
- Real-time/QoS guarantees
- Power/electrical requirements
- Reliability

Recap

I/O interfaces

- GPIO, UART, SPI, I2C, USB, ...
- Serial vs. parallel
- Asynchronous vs. synchronous