Sapienza Training Camp 2021

Building an Image Search Engine

2 - 4 September, 2021

Roadmap

Image from the photo collection

 I_k

Q Query: "person walking with a dog on the beach"

$$\sin(Q, T_1) > \sin(Q, T_2)$$

Define similarity function. Order images

according to similarity to the guery.

Highlights in Natural Language Processing (NLP)

- Google Translate
 - o <u>translate.google.com</u>
- BERT language model used in Google search
 - o Google uses AI to boost search engine ranking efficiency, FT.com, Oct. 2019
- OpenAl's GPT language model:
 - https://openai.com/blog/better-language-models

Recurrent neural networks

Image captioning model from:

https://colab.research.google.com/github/ten sorflow/docs/blob/master/site/en/tutorials/t ext/image_captioning.ipynb

Recap: dense and convolutional layers

Dense layer:

$$\mathbf{o} = g(W\mathbf{x} + w_0), \text{ where } \mathbf{x} \in \mathbb{R}^d$$

Recap: dense and convolutional layers

Dense layer:

$$\mathbf{o} = g(W\mathbf{x} + w_0), \text{ where } \mathbf{x} \in \mathbb{R}^d$$

Convolutional layer:

$$\mathbf{o}[m, n] = g(W\mathbf{x}^{(m,n)} + w_0), \text{ where } \mathbf{x}^{(m,n)} = \mathbf{x}[m: m+D, n: n+D]$$

Recap: dense and convolutional layers

Dense layer:

$$\mathbf{o} = g(W\mathbf{x} + w_0), \text{ where } \mathbf{x} \in \mathbb{R}^d$$

Convolutional layer:

$$\mathbf{o}[m, n] = g(W\mathbf{x}^{(m,n)} + w_0), \text{ where } \mathbf{x}^{(m,n)} = \mathbf{x}[m: m+D, n: n+D]$$

- weight sharing: same weights used for all local windows $\mathbf{x}^{(m,n)}$
- convolutional layer supports variable size input

Recurrent layer

- Recurrent layer
 - weight sharing across time steps
 - recurrent layer supports sequences of variable size

$$\mathbf{h}^{(t)} = g(W\mathbf{h}^{(t-1)} + U\mathbf{x}^{(t)} + w_0)$$
where $\mathbf{h}^{(t)} \in \mathbb{R}^K$

Recurrent layer configurations

Image description (our application!)

Recurrent layer configurations

Image description (our application!)

Text classification

Recurrent layer configurations

Image description (our application!)

Text classification

Machine translation

Image from

"https://www.deeplearningbook. org/slides/10_rnn.pdf"

Model training

Image from

"https://www.deeplearningbook. org/slides/10_rnn.pdf"

Model training

Image from

"https://www.deeplearningbook. org/slides/10_rnn.pdf"

Model training

More complex RNN units: LSTM and GRU

Take a quiz!