$$(2.1) | (sign f)g| \leq |g| \qquad (g \in E)$$

(2.2)
$$(\text{sign } f)g = 0$$
 if $\inf \{|f|, |g|\} = 0$

(2.2) (sign f)
$$g = 0$$
 if inf $\{|f|, |g|\} = 0$
(2.3) (sign \bar{f}) $f = |f|$ (where $\bar{f} := Ref - iImf$).

The operator (sign f) (which is non-linear in general) is defined by

(2.4)
$$(sign f)g = (sign f)g + (Id - P_{|f|})|g|$$

where for $h \in E_+$ we denote by P_h the band projection onto the band {h} dd generated by h .

If E is a real g-order complete Banach lattice, then

(2.5) sign
$$f = P_{(f^+)} - P_{(f^-)}$$
.

Example 2.2. Let $f \in E := L^p(X, \Sigma, \mu)$ (real or complex) where (X, Σ, μ) is a σ -finite measure space and $1 \le p \le \infty$. Define

$$m(x) = \begin{cases} f(x)/|f(x)| & \text{if } f(x) \neq 0 \\ 0 & \text{if } f(x) = 0 \end{cases}$$

Then sign f is the multiplication operator defined by m ; i.e.,

(sign f)
$$g = m \cdot g$$
 ($g \in E$),
Moreover,
(sign f) $g = m \cdot g + 1_{f(x)=0} |g|$ ($g \in E$).

The operator sign f is related to the Gateaux-derivative (B-II,Definition 3.2) of the modulus. We explain this by an example.

Example 2.3. Let E be the real or complex space $L^{p}(X,\Sigma,\mu)$ where (X,Σ,μ) is a σ -finite measure space and $1 \le p < \infty$. Let f,g $\in E$ and $x \in X$. Then by B-II, Lemma 2.4

$$\lim_{t \to 0} 1/t(|f(x)+tg(x)|-|f(x)|) = \begin{cases} Re(sign \overline{f(x)})g(x) & \text{if } f(x) \neq 0 \\ |g(x)| & \text{if } f(x) = 0. \end{cases}$$

If $\theta : E \rightarrow E_{+}$ denotes the modulus function given by $\theta(h) = |h|$, then it follows from the dominated convergence theorem that θ is right-sided Gateaux-differentiable and

(2.6)
$$D_{\mathbf{g}}\Theta(\mathbf{f}) = \operatorname{Re}(\operatorname{si\hat{g}n} \overline{\mathbf{f}}) \mathbf{g}.$$

Later we will see that (2.6) holds in every Banach lattice with order continuous norm.