Best Available Copy

AD

DEC 19 1986

NDL-TR-68

SCATTERED RADIATION (SKYSHINE) CONTRIBUTION
TO AN OPEN BASEMENT LOCATED IN A SIMULATED FALLOUT FIELD

FINAL REPORT

by

Michael J. Schumchyk Murray A. Schmoke Walter O. Egerland Ernest L. Schulman

For

Office of Civil Defanse
Office of the Secretary of the Army
Washington, D. C. 20310

OCD Work Order OCD-PS-64-91, Subtask 1111F

DECEMBER 1966

BEST AVAILABLE COPY

Distribution of this document is unlimited.

BEST AVAILABLE COPY

US ARMY
NUCLEAR DEFENSE LABORATORY
EDGEWOOD ARSENAL, MARYLAND

20040901162

Boot Avoilable Copy

Disposition

Destroy this report when no longer needed. Do not return it to the originator.

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position.

Trade Names

Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

NDL-TR-68

SCATTERED RADIATION (SKYSHINE) CONTRIBUTION TO AN OPEN BASEMENT LOCATED IN A SIMULATED FALLOUT FIELD

Final Report

bу

Michael J. Schumchyk Murray A. Schmoke Walter O. Egerland Ernest L. Schulman

for

Office of Civil Defense
Office of the Secretary of the Army
Washington, D.C. 20310

OCD Work Order OCD-PS-64-91, Subtask 1111F

December 1966

OCD REVIEW NOTICE

This report has been reviewed in the Office of Civil Defense and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

Distribution of this document is unlimited.

US ARMY
NUCLEAR DEFENSE LABORATORY
Edgewood Arsenal, Maryland

ABSTRACT

The objective of this work was to determine, experimentally, the shielding afforded by an open, concrete-walled basement located in a simulated fallout field and to compare these experimental results with theoretical results published in National Bureau of Standards (NBS) Monograph 42.

A cobalt-60 point-source circulation system was used to simulate a uniformly-contaminated residual gamma radiation area out to a radius of 600 feet. Experimental exposure-rate measurements were made in the free field and at various locations within the structure as a function of height above the basement floor. Ionization chamber dosimeters were used as radiation detectors. Experimental measurements were extrapolated to infinite-field conditions by use of analytical procedures and compared with other related experimental data and theoretical results.

The following conclusions were established:

- (1) Analysis of the position function $f(h, \omega)$ at various detector levels above the basement floor indicates the presence of radiation backscattering contribution that is dependent on height above the floor and solid-angle fraction and is not adequately estimated by a single correction factor (1.2 suggested in NBS Monograph 42).
- (2) Agreement within 21 percent was obtained between experimental reduction factors and theoretical reduction factors calculated by Equation 31.1 of NBS Monograph 42 for detector locations in the center or near the center of the basement (detector locations C and B).
- (3) Theoretical reduction factors underestimate experimental reduction factors at the off-center detector locations close to the basement walls (detector locations A, D, and E) by as much as 47 percent. The differences appear to be caused by radiation scattered from the walls and floor of the basement; this scattering is not completely accounted for in the theoretical calculations.
- (4) Extrapolation to the ground surface (ω = 1) of the experimentally measured reduction factors at the center detector location within the open concrete basement yields a skyshine exposure rate that is 7.9 percent of the infinite free-field exposure rate at the 3-foot height. This compares favorably with 8.8 percent calculated in the NBS Monograph 42.
- (5) The infinite-field exposure rate at the 3-foot height above a graded, rolled, and relatively smooth field was determined as 468 R/h at a source density of 1 Ci/ft² of cobalt-60 radiation simulated with a circulating point source.

FOREWORD

The work described herein was accomplished under OCD Work Order No. OCD-PS-64-91, Subtask No. 1111F, and DASA NWER Subtask No. 11.008.

The authors wish to express their appreciation to Mr. Charles Eisenhauer of the National Burrau of Standards for his technical comments and suggestions during the experimental phase of the project.

CONTENTS

																												1	Page
1.	INTR	Ob	ject	N . ive									•	•							•	•							9 9 9
2.	PROC. 2.1 2.2 2.3 2.4 2.5 2.6 2.7	Te So So In De Ex	st A urce urce stru scri peri	rea -Har s ment ptic ment	adli cati on o	ing ion of I	Fa Exp	cil	it,	y. nta		: :	·	·	i	• • • • • • • • • • • • • • • • • • •	•		•			•	•	•	•				10 10 12 12 14 14
3.	RESU 3.1 3.2 3.3	Fr Op	ee-F en-E	ield asem	l Ex ment	po:	sur Kpc	e F	let e	es Rat	tes		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	21 21
4.	DISC 4.1 4.2 4.3 4.4	Es Ex Re	tima peri duct	te of ment ion	of F al Fac	eto:	-Fi pos rs	eld ure	E	xpo ate	osu es •	ire ir	e F	Rat Bas	e sen	Ab ner	ov nt	ee •	gro	ur •	nd •	•	•	•	•	•	•	•	26 29 31
5.	CONC	LUS	10NS												•			•	•			•	•	•					41
LITE	ERATU	RE (CITE	D.						•							•		•										42
APP	ENDIX	A	EXF	ERIM	ENI	AL	DA	TA.		•	•			•							•	•	•	•	•		•		45
APP	XI ŒN E	В	sou	RCE	CAI	IBE	RAT	ION			•	•	•			•	•	•		•		•	•	•	•	•	•	•	55
APPI	ENDIX	С	US	E-FI ARMY PROI	NU	CL	CAR	DE	FE	NSE	L	AB	ÚF	L	OF	Ϋ́	ΑN	D	NT	ER		•		•	•	•		•	61

THIS DOCUMENT CONTAINED BLANK PAGES THAT HAVE BEEN DELETED

SCATTERED RADIATION (SKYSHINE) CONTRIBUTION TO AN OPEN BASEMENT LOCATED IN A SIMULATED FALLOUT FIELD

1. INTRODUCTION

This report, fourth in a series (References 1, 2, 3), presents further progress in the US Army Nuclear Defense Laboratory (USANDL) experimental shielding program to test the validity of theoretical calculations for predicting the protection afforded by structures against fallout radiation.

1.1 Objective.

The objective of this subtask was to determine, experimentally, the shielding provided by an open, concrete-walled basement located in a simulated fallout field, and to compare the results of this experiment with theoretical results of National Bureau of Standards (NBS) Monograph 42 (Reference 4).

1.2 Background.

L. V. Spencer of NBS developed a prediction method for determining the shielding effectiveness of structures located in actual or simulated fallout fields. This method described in Reference 4, became the basis for the engineering manual (Reference 5) published by the Office of Civil Defense (OCD). The manual is used by engineers, architects, and military commanders to predict the protection afforded by existing and proposed structures against fallout gamma radiation.

The information in NBS 42 has been obtained almost completely by machine calculations utilizing basic cross-section data. A number of sources of experimental data are mentioned, but detailed comparisons with such data are not included. This prediction method has been tested experimentally, first with simple structures and then with more complex structures. This Laboratory has conducted experiments with a simple concrete blockhouse, located in a simulated fallout field, to determine the effect of roof thickness and wall thickness on the attenuation of gamma radiation (References 2 and 3). Radiation-penetration measurements for the roof indicated agreement within 20 percent between experimental and theoretical reduction factors determined along the vertical center line of the structure. Experimental and theoretical reduction factors for the wall of the structure agreed within 15 percent at 3 feet and 6 feet above the center of the structure. However, little experimental work has been done on basement structures.

Some experimental work measuring "skyshine" radiation was done by Clifford (Reference 6), who measured the radiation penetration in a circular foxhole from a residual radiation area simulated with cesium-137 sources. Starbird and Batter also measured the radiation penetration in a circular foxhole, but used cobalt-60 sources to simulate the residual radiation area (Reference 7).

More recent work with the circular foxhole and cobalt-60 sources has been performed by Burson and Summers in the Nevada desert (Reference 8). Extensive measurements were made both in the open hole and in the covered hole with various materials.

The work reported here is concerned with measuring air-scattered (skyshine) radiation penetration into what might be considered a full-scale open basement. All experimental data are given in Appendix A.

2. PROCEDURES

2.1 Test Area.

The experiment was conducted at the USANDL Westwood test area comprising approximately 60 acres, of which 24 acres have been cleared. The surface of the simulated radiation area was a sandy clay that had been graded, rolled, and treated with a herbicide to prevent the growth of grass. The entire area was enclosed by a 6-foot-high fence equipped with a pressure-sensitive personnel alarm. A field office on the test site provided a place to charge and read dosimeters. The office was shielded from the radiation field by a 32-inch-thick concrete wall. This wall reduced the radiation sufficiently to allow test personnel to remain in the building during testing.

2.2 Cource-Handling Facility.

A point-source circulation system was used to simulate fallout radiation (Reference 9). The simulation system involved the placement of nylon tubing, 1/16-inch wall thickness and 3/8-inch diameter, in a uniform pattern on the ground around the structure. A radioactive point source was then propelled by water pressure through the tubing at a constant speed to simulate a uniform distribution of contamination over the area. Since the sources were calibrated within the tubing, no correction was made for energy degradation of the source due to the tubing.

Mylon tubing was placed in a 600-foot-radius semicircular array consisting of four semiannuli (Figure 2.1). The spacing between rows of tubing, inner and outer radial distances of each semiannulus, and area of each semiannulus, are shown in Table 2.1.

Figure 2.1 Semicircular array of nylon tubing.

TABLE 2.1 DESCRIPTION OF SEMICIRCULAR TUBING ARRAY

			·	
	Somiannulus	Tube Spacing	Inner and Outer Radial Distance	Semiannular Area
***************************************		ſt	ft	ft²
	1	1.67	0 to 60	5,499
	5	7.0	60 to 200	57,177
	3	25	200 to 450	255,255
	14	25	450 to 600	247,401

2.3 Sources.

Six cobalt-60 sources (18.5 curies, 53.4 curies, 94.5 curies, 185 curies, 382 curies, and 590 curies) were used in this experiment. Calibration date of these sources was 1 March 1962. The choice of a source for a particular test was based upon relative sensitivity of the radiation detectors, source-to-detector distance, and exposure time. All sources were calibrated against a source that had been calibrated in the free air at a height of 11 feet. Victoreen condenser-R-Chambers, calibrated by NBS, were used to obtain three measurements for each source exposure. All readings were within 2 percent of the average for a particular source. Recalibration of these sources was performed 1 September 1964 by the method described in Appendix B. Radioactive decay corrections were made on the experimental data.

Dimensional replicas of the radioactive sources (cobalt-60 pellets doubly encapsulated in stainless steel) are shown on the left side of Figure 2.2. The capsule was crimped to the end of a flexible stainless-steel cable. The leader, connected to the other end of the cable, held a 1/2-inch-diameter leather skirt. The leather skirt acted as a piston by providing a seal tetween the source assembly and the wall surface of the tubing to permit the projulsion of the source assembly by water pressure.

2.4 Instrumentation.

Radiation-dose measurements were made with the following Victoreen ionization chamber dosimeters: Model 208, 1 min Model 239, 10 mR; and Model 302, 200 mR. A Victoreen Model 207 charger-relater was used to charge and read dosimeters. Dosimeter selection was based upon the exposure time, the

Figure 2.2 Dimensional replicas of cobalt-60 radioactive sources with leaders.

section of the field being simulated, and the location of the dosimeters with respect to the contaminated area. The choice of dosimeters was such that the dose received was about mid-scale on the charger-reader. Experience with the dosimeters indicated that mid-scale deflections could be reproduced within ±2 percent. Each exposure was timed by a Precision Instrument Company electric timer.

The ionization-chamber dosimeters were calibrated against a Victoreen Model 130 R-Chamber (0.25R) and charged and read on a Victoreen Model 70-R meter. The R-meter and R-chamber were calibrated by NBS with a collimated beam of cobalt-60 gamma rays. The estimated accuracy of the NBS calibration was ± 3 percent.

2.5 Description of Experimental Structure.

The rectangular basement, with walls of reinforced concrete, is shown in perspective with tubing layout in Figure 2.3. The inside dimensions of the structure were 20 by 10 by 7 feet. The pured concrete walls were 20 inches thick and the floor was 3 inches thick.

The relatively thick concrete walls were built to serve as a foundation for aboveground walls for future experiments and to prevent any ground direct radiation (lip contribution) from reaching the detectors in the basement. Note the inset in Figure 2.1, an enlargement of semiannulus ladjacent to the basement, which shows that the first line of tubing is 10 inches from the concrete wall. In this position direct radiation must penetrate approximately 10 mean free paths of concrete to reach the nearest detector; therefore, it was concluded that the lip contribution was effectively eliminated by the walls.

2.6 Experimental Technique.

Exposure-rate reduction factors within the test structure were obtained by determining the ratio D/P_0 , where D is the exposure rate measured in the structure and P_0 is the exposure rate measured in the free field at 3 feet above the center of a contaminated infinite field.

Proe-field radiation exposure measurements were made at heights from 1 to 15 feet above ground at 1-foot intervals. Although only the 3-foot detector height data were required to calculate the experimental reduction factors for comparison with theoretical reduction factors, data for other heights were taken so that comparisons could be made with similar data taken by other investigators (Reference 10), and with the theoretical L(d) curve of Spencer. These comparisons allow some estimate to be made of the ground roughness effects on radiation intensity.

Free-field measurements were made with the detector stand mounted directly above the center of the basement for semiannuli 2, 3, and 4. Free-field measurements for semiannulus 1 (see inset Figure 2.1) were made over a

Figure 2.3 Basement structure showing tubing layout and masonite water deflector.

separate semiannulus with tubing laid out to cover the entire radius of the semiannulus, which was offset 300 feet from the basement over graded, level terrain. The total free-field measurements listed in Table 3.1 are for the entire field and not for an area with a portion of the contamination cleared away at the center.

The detector stand resembled a gibbet with a 2 1/2-foot long horizontal arm braced at the top of an 18-foot high vertical support (wooden four-by-four). The detector holders were paper cups taped to two parallel 1/16-inch diameter stainless steel wires attached at the end of the horizontal arm and anchored at the base of the gibbet by a 30-pound lead brick. The entire assembly was supported by three guy wires and adjusted so that the line of detectors was perpendicular to the center point of the diameter of the semiannulus. Ten source runs were made for each semiannular area and the exposure measurements were checked for reproducibility.

The detector layout inside the basement structure is shown in Figure 2.4, a cross-section view of the detector positions with respect to the floor, and in Figure 2.5, a plan view of the location of the detectors with respect to the walls of the building. Primary detectors (capital letters) and image detectors (small letters) were placed within the structure as shown in Figure 2.5. To obtain the total radiation exposure from the simulated fallout area for detector locations A, B, and E, the exposure rate at the primary positions A, B, and E were added to the exposure rate at the image positions a, b, and e, respectively. At each detector height for detector locations C and D, the exposures were doubled.

All exposure measurements were converted to milliroentgens per hour for a source density of 1 Ci/ft² by use of the following equation:

$$D = D_x A \frac{\rho \lambda C}{S} , \qquad (2.1)$$

where

D = the corrected exposure rate in $(mR/h)/(Ci/ft^2)$,

 D_x = the uncorrected exposure rate in (mR/h),

A =the area of the semiannulus in ft^2

p = the atmospheric correction factor at standard conditions (described below),

 λ = decay factor for cobalt 60 used to correct the exposure reading to a reference time,

C = the calibration factor of a given detector, and

S = the strength in curies.

Figure 2.4 Basement section showing elevation of detector locations.

Figure 2.5 Basement plan of primary and image detector locations.

2.7 Discussion of Errors.

To estimate the error in most laboratory-type experiments, a large number of experimental runs are usually made, from which the standard deviation, σ , is calculated. The reliability of the estimated error is dependent on the number of experimental runs, N. However, in a field-type experiment this is usually not possible nor practical. In this experiment, the time required to make a large number of runs on each semiannulus would have been excessive. To compensate for this, attempts were made to carefully control the factors that could produce experimental variation and to analyze the systematic errors which are inherent when different personnel charge and read the ionization chamber dosimeters.

A point-source circulation system, in which a source of cobalt 60 was propelled through plastic tubing at a constant rate, was used to simulate residual radiation. Since the system depends on the source remaining the same amount of time in a given area of the field, an error could result if there were lack of uniformity of movement of the source through the tubing. To minimize this possibility, a "dummy source," an exact replica of the actual source, was propelled through the tubing prior to the "hot" run. The movement of the dummy source was observed to determine whether any imperfections in the tubing or any variations in the pumping system were present to cause irregular flow of the source. Any delay in the flow would increase the total time of a run. Results of this pre-testing showed that the variation in the times for the experimental runs would never be greater than 0.5 percent for a given semiannulus. Since all measurements were normalized to milliroentgens per hour, the error in timing would be averaged out in the normalization.

Further experimental error could be caused by errors in source calibration. All sources were calibrated on the USANDL calibration range, as described in Appendix B. The calibration error, σ_1 , calculated from five repetitive measurements for each source was no greater than \pm 2 percent.

The ionization chamber dosimeters that were used to make the exposure measurements are the most sensitive to possible error. Error could result from variations in temperature, pressure, leakage, and reading. Since the ionization chambers were not hermetically sealed and the ionization of the air within the chambers is dependent to some extent on the air density, the chambers are sensitive to change in temperature and atmospheric pressure. This error was effectively eliminated by the use of an atmospheric correction factor, ρ , to correct the detector reading from experimental conditions to standard conditions of temperature and pressure. This was calculated as follows:

$$\rho = \frac{P_1 T_2}{T_1 P_2} , \qquad (2.2)$$

where

 $P_1 = 760$ mm of mercury, atmospheric pressure at standard conditions,

 $T_1 = 273^{\circ}$ Kelvin, temperature at standard conditions,

F₂ = pressure at experimental conditions in millimeters of mercury, and

T₂ = temperature at experimental conditions in degrees Kelvin.

Leakage of the charge from the ionization chambers will occur as a result of background radiation and, in some instances, because of dirt on the insulator. Normally this leakage is not large, and for exposures of 1 hour the effect will be approximately 1.4 percent of full scale for the 1-mR chambers and about 0.2 percent for the 10-mR chambers. Obviously, for exposure of several hours duration this effect could be significant, expecially with the 1-mR chambers. However, this effect was eliminated by establishing a leakage rate for each chamber. This leakage rate was rechecked weekly and detectors with excessive leakage rates were set aside for cleaning. The leakage value was subtracted from the detector reading in the data normalization process.

All belowground radiation measurements were made with either the 1-mR dosimeters or the 10-mR dosimeters and calibrated as described in Section 2.4. The estimated error, σ_2 , in the calibration of the 1-mR and 10-mR chambers against the secondary standard, was ± 3.6 percent.

To estimate the error, σ_3 , that may occur in the experiment as a result of different persons reading the charger reader, a test was conducted during which seventy measurements were read at various positions on the scale by nine receive. The resultant standard deviation indicated a maximum error of ± 1.4 recent.

Since the systematic errors of temperature, pressure, and leakage have been either eliminated or corrected, the remaining contributors to the errors of a single measurement are the source calibration error, the detector calibration error, and possible errors caused by different persons reading the minometer. The total error for a given measurement, $\sigma_{\rm s}$, is calculated as follows:

$$\sigma_{z} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2}} = 2^{2} + 3.6^{2} + 1.4^{2} = 4.4\%$$
 (2.3)

The total experimental measurement at a given detector position consisted of the sum of four separate semiannular measurements. Since rejetitive exposure-rate measurements were made for each semiannular area,

there was also a standard deviation from the mean of each semiannulus. In most cases the error was small (1 percent in semiannulus 1 for detector location C at the detector position 1 foot above the basement floor), although, in some instances for the same detector position, the standard deviation was as large as 7 percent, as in semiannulus 3. Since each semiannulus contributes only a certain percent to the total exposure, the effect of a large error in any single semiannulus would depend upon the percent contribution to the total exposure rate of that semiannulus. For example, the standard deviation for semiannulus 3 at detector position C-1 is 7 percent; however, the percent error for the sum of four semiannuli is 4.5 percent.

The total error of the measurements would be a total of the variance from systematic errors connected with the detector measurement, σ_a^2 , plus the variance due to difference in the total measurements, σ_a^2 or

$$\sigma \text{ total} = \sqrt{\sigma_n^2 + \sigma_\bullet^2}$$
 (2.4)

The maximum total error expected at any detector position would not exceed 6.3 percent.

3. RESULTS

3.1 Free-Field Exposure Rates.

Table 3.1 shows the results of the free-field measurements. The table shows the cumulative exposure rate as a function of radius of the field in 1-foot intervals for heights of 1 to 15 feet. The exposure rates listed in Table 3.1 have been converted from semiannular to annular by multiplying by a factor of two.

According to free-field experiments reported in NDL-TR-2 (Reference 1), the exposure measurements at 3 feet above the center of a simulated fallout field of 600-foot radius constituted approximately 95 percent of the infinite-field exposure rate. For calculations necessary to determine the shielding effectiveness of structures, however, the infinite-field exposure rate is required. Since it is clearly impractical to measure the exposure rates to infinity, the free-field contribution was estimated analytically as shown in Section 4.1. The cumulative free-field exposure rates for an infinite field are shown in the last column in Table 3.1.

3.2 Open-Basement Exposure Rates.

The exposure rates measured in the open basement are shown in Table 3.2. The exposure rates are listed according to detector location (A, B, C, etc.) and to height above the basement floor. The contribution

for each annulus is listed along with the far-field contribution and the total exposure rate at each dosimeter position. The method used to determine the far-field exposure rates is explained in Section 4.2.

TABLE 3.1 CUMULATIVE FREE-FIELD EXPOSURE RATES ABOVE A RADIATION AREA AS A FUNCTION OF RADIUS AND HEIGHT

Note: Data normalized to R/h at a source density of 1 Ci/ft2.

Detector Height Above	Exposu		Rates For A Radiation Area With a Radius of						
Ground	60 ft	200 ft	450 ft	600 ft	Exposure Rate				
ft		I	R/h		R/h				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	370 320 285 260 239 220 206 206 190 178 169 161 153 146	463 419 388 366 343 324 310 313 288 2763 268 244 244 235	496 464 438 417 397 365 369 343 331 324 316 308 300 292	502 472 447 428 409 387 377 382 357 344 330 322 313 306	548 500 468 444 424 403 397 369 357 349 341 333 325 318				

^{*}Far-field contribution beyond 600 feet was calculated - See Section 4.1.

TABLE 3.2 EXPOSURE RATES TO DETECTORS AT VARIOUS LOCATIONS IN AN OPEN CONCRETE BASEMENT LOCATED IN A RESIDUAL RADIATION AREA SIMULATED BY COBALT 60

Note: Exposure rates are in (mR/h)/(Ci/ft²). For detector locations, see Figure 2.5.

Detector Height	Expos	sure Rate	es for Ar	nnulus	Far-Field Exposure	Total Exposure
Above Floor (ft)	1	2	3	4	Rate	Ra te
	De	etector I	Location-	-A		
1 2 3 1 5 6	666 781 826 1010 1320 2340	1560 1650 2000 2410 3120 4750	2120 2320 2560 3090 4240 5850	842 995 1080 1280 1590 2270	1970 2330 2530 3000 3720 5310	7160 8080 9100 10800 14000 20500
	De	etector I	ocation-	·B	· ; · .	
1 2 3 4 5	880 1050 1240 1450 1960 3360	2000 2230 2790 3480 4490 6560	2670 2920 3390 4320 5450 8020	1020 * 1290 1510 1870 2320 3160	2350 3020 3530 4380 5430 7390	8960 10500 12500 15500 19700 28500
	De	tector L	ocation-	С		
1 2 3 4 5	950 1090 1320 1560 2000 3900	2060 2460 2920 3860 5140 6960	2860 3200 3560 4480 5680 8380	1210 1380 1640 1950 2500 3260	2830 3230 3840 4560 5850 7630	9910 11400 13300 16400 21200 30100

See footnote at end of table.

TABLE 3.2 CONTINUED

Detector Height	Expos	ure Rate	es for Ar	nulus	Far-Field	Total
Above Floor (ft)	1	2	3	4	Exposure Rate	Exposure Rate
	De	tector I	ocation-	.D		
1 2 3 4 5	754 920 992 1170 1700 2820	1720 1900 2240 2800 3740 5520	2400 2480 2940 3520 5120 6840	992 1130 1250 1550 1910 2680	2320 2640 2930 3630 4470 6270	8180 9070 10400 12700 16900 24100
	De	tector I	ocation-	·E		
1 2 3 4 5 6	864 976 1160 1310 1750 3700	1940 2160 2660 3270 4220 5520	2610 2850 3330 4030 5310 6480	1040 1250 1440 1700 2150 2780	2430 2930 3370 3980 5030 6510	8880 10200 12000 14300 18500 25000

^{*}Based on Estimated Value.

3.3 Reduction Factors, Experimental and Theoretical.

The reduction factor, R, is defined as the ratio of the shielded exposure rate, D, to the free-field exposure rate at a 3-foot height above an infinitely contaminated field, D_0 , i.e.,

$$R = D/D_o (3.1)$$

The experimentally determined value for the free-field exposure rate at the 3-foot height, D_{o} , is $468~(R/h)/(\text{Ci/ft}^2)$, Table 3.1. Therefore, the experimentally determined reduction factors, R_{E} , as shown in Table 3.3, were calculated by Equation 3.1 with the measured exposure rate at a given detector position and the experimentally determined D_{o} .

The theoretical reduction factors, R_i , were calculated by Spencer's method, as explained in Section 4.3.

TABLE 3.3 EXPERIMENTAL AND THEORETICAL REDUCTION FACTORS IN AN OPEN BASEMENT

Location E		610	0.015	970.0	0.019	0.084	740.0
Loca		910.0	0.00	370.0	0.020		0.053
Location D	1	0.010	0.012	910 0	0.020	0.028	0.045
Loca Exp.		0.017	0.019	660.0	0.027	0.036	0.051
Location C		0.018	0.022	0.028	0.038	0.051	0.072
Loca Exp.		0.021	0.024	0.028	0.035	0.047	190.0
Location B		5.015	0.019	0.024	0.032	440.0	990.0
Loca Exp.		0.019	0.022	0.027	0.033	0.042	0.061
tion A Theo.		0.0079	0.0092	0.011	0.014	0.019	0.032
Location Exp. Th		0.015	0.017	0.019	0.023	0.030	440.0
Detector Height Above Floor	ft	٦	٧	٣	1	5	9

4. DISCUSSION

4.1 Estimate of Far-Field Exposure Rate Aboveground.

The exposure rate at height h along the centerline of a uniformly contaminated annulus, Figure 4.1, is given by

$$D(h; \rho_1, \rho_0) = D_1 \int_0^{\rho_0} d\phi \Big|_{r_1}^{r_1} B(h, \rho) \frac{e^{-\mu \rho}}{\rho^2} r dr$$

$$= 2\pi D_1 \int_0^{\rho_0} B(h, \rho) \frac{e^{-\mu \rho}}{\rho} d\rho , \qquad (4.1)$$

where

D₁ = source strength expressed as exposure rate at unit distance from a unit area of source distributed at unit density. For cobalt 60, this value is 14.3 (R/h)/(Ci/ft²),

 $B(h,\rho)$ = buildup factor at detector height, h,

 $\rho_i = \sqrt{r_i^2 + h^2}$ slant radius from the detector to the inner circle of radius ϵ_i of the annulus,

 $\rho_{\bullet} = \sqrt{r_{\bullet}^2 + h^2}$ slant radius from the detector to the outer circle of radius r_{\bullet} of the annulus, and

 μ = total linear absorption coefficient of air for the source radiation.

It is assumed that $B(h,\rho)$ is independent of h and linear in ρ ; i.e.,

$$B(\rho) = \alpha + \beta \mu \rho , \qquad (4.2)$$

where α and β are constants. Then (4.1) becomes

$$D(h;\rho_{1},\mu_{c}) = 2\pi D_{1} \left\{ \alpha \left[E_{1}(\mu \rho_{c}) - E_{1}(\mu \rho_{c}) \right] + \beta \left[e^{-\mu \rho_{1}} - e^{-\mu \rho_{0}} \right] \right\}, \quad (4.3)$$

where $E_1(x)$ denotes the exponential integral,

Figure 4.1 Annulus - Detector Geometry.

$$E_{1}(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} at . \qquad (4.4)$$

If α , β , and μ are specified in (4.3), theoretical exposure rates for various detector positions and annuli can readily be calculated by means of tables.

The exposure rate, $D(h;\rho_1,\infty)$, is called the theoretical far-field contribution of the exposure rate at height h. The particular case h=3, i.e., the theoretical far-field contribution of the exposure rate for the standard position, is especially important. For every ρ_1

$$D(h;h,\infty) = D(h;h,\nu,) + D(h;\rho,\infty) . \tag{4.5}$$

In an experiment covering a slant range, ρ_1 , it is necessary to obtain an estimate for the experimental far-field contribution $D_m(h;\rho_1,\infty)$, the subscript m standing for measured.

In the experimental analogue of (4.5),

$$D_{\mathbf{n}}(\mathbf{h}; \mathbf{h}, \mathbf{x}) = D_{\mathbf{n}}(\mathbf{h}; \mathbf{h}, \mathbf{p}_{\mathbf{i}}) + D_{\mathbf{n}}(\mathbf{h}; \mathbf{p}_{\mathbf{i}}, \mathbf{x}) . \tag{4.6}$$

Only $D_m(h;h,o_i)$ is known and all respective quantities in (4.6) are smaller than in (4.5) because of such factors as ground roughness, deviation of the field from a smooth plane, etc. The fact that

$$D_{n}(h,\rho_{i}) < D_{n}(h,\infty) < D(h,\infty) , \qquad (4.7)$$

suggests to approximate D_m(h,∞) by a weighted mean

$$M = \frac{\lambda_1 D_{\pm}(h, \rho_1) + \lambda_2 D(h, \infty)}{\lambda_1 + \lambda_2} . \tag{4.8}$$

The weight of the experimental value $D_m(h,\rho_1)$ is favored over $D(h,\infty)$ because the computation of $D(h,\infty)$ assumes the validity of a buildup factor for unrestricted slant ranges. In (4.7) and (4.8) the first argument, h, denoting the detector position, has been omitted. Thus, $D_m(h,\rho_1) = D_m(h;h,\rho_1)$ and similarly for the other quantities.

If one chooses $\lambda_1 = D(h, \rho_i)$ and $\searrow = D_m(h, \rho_i)$, $D_m(h, \infty)$ is approximated by

$$D_{\mathbf{n}}^{\mathbf{a}}(h,\infty) = D_{\mathbf{n}}(h,\rho_{\mathbf{i}}) \frac{D(h,\rho_{\mathbf{i}}) + D(h,\infty)}{D(h,\rho_{\mathbf{i}}) + D_{\mathbf{n}}(h,\rho_{\mathbf{i}})} . \tag{4.9}$$

Then the relative error of $D_{\bullet}(h,\infty)$ is given by

$$\frac{\left|D_{\mathbf{n}}(\mathbf{h},\boldsymbol{\omega}) - D_{\mathbf{n}}^{\mathbf{a}}(\mathbf{h},\boldsymbol{\omega})\right|}{D_{\mathbf{n}}(\mathbf{h},\boldsymbol{\omega})} = \frac{1}{D_{\mathbf{n}}(\mathbf{h},\boldsymbol{\omega})} \left|L_{\mathbf{n}}(\mathbf{h},\rho_{\mathbf{i}}) \cdot \mathbf{y} - D_{\mathbf{n}}(\rho_{\mathbf{i}},\boldsymbol{\omega})\right|, \quad (4.10)$$

where

$$\gamma = \frac{\mathcal{D}(h, \infty) - \mathcal{D}_{\mathbf{x}}(h, \rho_{\mathbf{i}})}{\mathcal{D}(h, \rho_{\mathbf{i}}) + \mathcal{D}_{\mathbf{x}}(h, \rho_{\mathbf{i}})} . \tag{4.11}$$

Since 2 $D_m(h, \rho_i) > D_m(\rho_i, \infty)$,

$$\left| \frac{\Gamma_{n}(h, \infty) - \Gamma_{n}^{A}(h, \infty)}{D_{n}(h, \infty)} \right| < \gamma \quad , \quad \text{and}$$
 (4.12)

one obtains the following result: For experiments such that the measured contribution from the finite part of the field exceeds 50 percent of the far-field contribution, the total exposure rate $D_{\pi}(h,\infty)$ can be approximated by $D_{\pi}^{\bullet}(h,\infty)$ with a relative error considerably less than γ .

The mild condition stated is always satisfied in elaborate experiments. That the relative error is it fact considerably less than γ follows from the details of removing the unknowns $D_m(\rho_i,\infty)$ and $D_m(h,\infty)$ from the right side of (4.10). From Reference 1 the values $\alpha=1.11$, $\beta=0.529$ are used; i.e.,

$$B(\rho) = 1.11 + 0.529 \,\mu\rho$$
 . (4.13)

One obtains with $\mu = 2.24 \cdot 10^{-3}$ ft $^{-1}$, $\rho_i = 600$ ft, for the standard position h = 3 from (1, 3), (4.9), and (4.11),

$$D_{n}(3;3,\infty,\infty) \approx \mathbb{I}_{n}^{4}(3;3,\infty) = 468 \text{ R/h}$$
 (4.14)

with % Frror $\left[F_{m}(3;3,\infty)\right] < 5\%$. As shown in Feference 1, the buildup factor (4.13) is valid for slant ranges up to 800 feet. It is assumed that its use for unrestricted slant ranges introduces only negligible error. Similarly, it is expected that all constants in the partial equations do not change appreciably up to heights of 15 feet (Feference 10). Far-field corrections for other heights have accordingly been made, as shown above for the standard position.

4.2 Experimental Exposure Pates in Basement.

If in (4.1) β is replaced by (β -1), the exposure rate $D^{(*)}(h;\rho_1,\rho_0)$ $\neq D^{(*)}(\rho_1,\rho_0)$ due to skyshine only is obtained. $D^{(*)}(\rho_1,\rho_0)$ also represents the theoretical skyshine contribution in an open structure below ground.

From (4.3) it follows that

$$(2\pi D_1)^{-1}D^{(*)}(\rho_1,\rho_0) = (\alpha-1)\left[E_1(\mu\rho_1) - E_1(\mu\rho_0)\right] + \beta\left[e^{-\mu\rho_1} - e^{-\mu\rho_0}\right].$$
 (4.15)

With the method below, an estimate for the experimental far-field contribution $D_n^{(*)}(\rho_1,\infty)$ is obtained. Since

$$(2\pi D_{1})^{-1}D^{(*)}(h,\infty) = (\alpha-1)E_{1}(\mu h) + \beta e^{-\mu h},$$

$$(2\pi D_{1})^{-1}D^{(*)}(h,\rho_{0}) = (\alpha-1)\left[E_{1}(\mu h) - E_{1}(\mu\rho_{0})\right] + \beta\left[e^{-\mu h} - e^{-\mu\rho_{0}}\right], \text{ and}$$

$$(2\pi D_{1})^{-1}D^{(*)}(\rho_{0},\infty) = (\alpha-1)E_{1}(\mu\rho_{0}) + \beta e^{-\mu\rho_{0}},$$

$$D^{(*)}(h,\infty) = D^{(*)}(h,\rho_{0}) + C(\rho_{1},\rho_{0})D^{(*)}(\rho_{1},\rho_{0}),$$

$$(4.16)$$

where

$$C(\rho_{1},\rho_{0}) = \frac{(\alpha-1) E_{1} (\mu\rho_{0}) + \beta e^{-\mu\rho_{0}}}{(\alpha-1) \left[E_{1} (\mu\rho_{1}) - E_{1} (\mu\rho_{0})\right] + \beta \left[e^{-\mu\rho_{1}} - e^{-\mu\rho_{0}}\right]}.$$
 (4.17)

In (4.16) the theoretical far-field contribution is represented as the product of the ring contribution $D^{(*)}(\rho_i,\rho_o)$ and the correction factor $C(\rho_i,\rho_o)$. It is assumed now that the correction factor $C(\rho_i,\rho_o)$ can be applied to the experimental value $D^{(*)}_{2}(\rho_i,\rho_o)$; that for the experimental case

$$D_{\mathbf{a}}^{(s)}(h, \infty) \approx D_{\mathbf{a}}^{(s)}(h, \rho_c) + C(\rho_1, \rho_c) D_{\mathbf{a}}^{(s)}(\rho_1, \rho_c) ,$$
 (4.18)

where $D_{\mathbf{z}}^{(s)}(\mathbf{p_1},\mathbf{p_0})$, the contribution from the outermost annulus, is taken since it is expected that skyshine contributions from the far field and the last annulus behave similarly. Although the method is widely adopted, it is difficult to find an error estimate in terms of readily computed quantities. None has been offered so far. Because of the differences in the denominator of (4.17), the small value of μ , and the behavior of $E_1(x)$, the method should never be applied to small outer annuli. An attempt to adapt the method of (4.1) to the present skyshine case is not very promising. Since the far-field contribution can easily amount to 30 to 40 percent of the contribution from the finite part of the field even in elaborate experiments, it is difficult to find close lower and upper bounds for $D_{\underline{x}}^{(s)}(h, \infty)$ that allow a general error estimate of practical value.

The far-field exposure rates presented in Table 3.2 were obtained by the above method applied to the fourth annulus.

4.3 Reduction Factors.

The various detector positions in the basement at which measurements were taken, along with the solid angle fractions subtended at them by the rectangular opening of the basement, are listed in Table 4.1. A rectangular coordinate system centered at the middle of the basement floor with the positive x-direction CD, positive y-direction CE, and positive h-direction pointing towards the opening has been introduced. The w-values were calculated as outlined in Section 41 of NBS 42 (Reference 4).

TABLE 4.1 DETECTOR FOSITIONS WITH CORRESPONDING SOLID-ANGLE FRACTIONS

w h	1	2	3	14	5	6
A(9,4,h)	0.197	0.224	0.259	0.308	0.389	0.563
B(4.5,2,h)	0.326	0.386	0.461	0.556	0.677	0.828
C(0,0,h)	0.370	0.436	0.516	0.614	0.729	0.859
D(9,0,h)	0.243	0.284	0.337	0.409	0.511	0.679
E(0,4,h)	0.298	0.342	0.395	0.461	0.551	0.701

Theoretically, detector positions with equal w-values should yield similar exposure rates. A comparison of exposure rates measured at detector positions with nearly equal w-values shows that they are appreciably influenced by radiation backscattering from the floor and walls. It is not possible to dispose of the backscattering component with a flat percentage (20 percent or so). It would appear, therefore, that inaccuracies will result from using a single factor (1.2) to account for the backscattering component in a concrete basement. A clear separation of the skyshine component from the backscattering component calls for future experimentation, possibly with leaded and unleaded walls.

Ideally, theoretical reduction factors, R, should take the following form:

$$R = \frac{D}{D_o} = \frac{D}{D(3;3,\infty)} = f(h,\omega) S_a(d=0,\omega)$$
 (4.19)

where the function $S_a(d=0,\omega)$ is the geometry function defined by formula (27.13) of NBS 42, and $f(h,\omega)$ is the position function. The position function includes the skyshine detector response at ground level S(d=0) and the response to radiation backscattered from the side walls and floor, which is a function of height, h, above the basement floor and the solid-angle fraction, ω , subtended at the detector. However, the only theoretical formulation available for calculating reduction factors for a case which resembles closely the open-basement situation is the approximate skyshine response formula for a foxhole [formula (31.1), NBS 42]

$$\frac{D}{D_0} = 1.2 \text{ S(d = 0) } S_a (d = 0, \omega) .$$
 (4.20)

Reduction factors computed from (4.20) are listed in Table 3.3, along with those found experimentally at corresponding detector positions A through E. At positions along the centerline, relatively good agreement is observed. Note that the theoretical and experimental reduction factors are not directly comparable since the far-field correction factor $C(\rho_1,\rho_0)$ should be applied only to the skyshine contribution and not to the sum of the skyshine and backscattering component.

Figure 4.2 describes the nature of the experimental position function $f(h, \omega)$ for the open basement. This figure shows the experimental position function $f(h, \omega)$ plotted against the solid-angle fraction, ω , for detector height, h, where R is the experimental reduction factor. The detector location for each point of the height curves may be found by matching the points with the solid-angle fractions shown in Table 4.1. For comparison the corresponding theoretical representation (4.20) is included and is described by the line 1.2 S(d=0), parallel to the ω -axis.

Figure 4.2 shows that, in a concrete basement, detector response to skyshine radiation depends upon position in the basement and height above the floor. Indications are that in a rectangular basement the theoretical calculation as given in Equation (4.20) will only approximate the center or near-center detector locations but is not good for eccentric off-center detector locations. According to Equation (4.20) the quantity 1.2 S(d=0) should be constant for all solid angles. Figure 4.2 shows that this does not hold throughout the basement but varies according to horizontal and vertical positions. Since the function S(d=0), which describes the amount of skyshine radiation entering the basement at ground level, should not vary according to detector location, then the difference would be caused by the inaccurate estimation of the contribution due to backscattering from the side walls and the floor, or the 1.2 factor. For any detector position in the basement an approximate reduction factor can be interpolated by means of Figure 4.2.

Figure 4.2 Graph showing the experimental position function $f(h, \omega) = \frac{R}{S_{a}(d=0, \omega)} \text{ versus the solid-angle fraction,}$ ω , for various heights above the basement floor.

4.4 Comparison of Experimental and Theoretical Reduction Factors.

The difference between experimental and theoretical reduction factors at various detector locations and positions within a concrete basement are shown in Table 4.2 and plotted in Figures 4.3 through 4.7.

TABLE 4.2 COMPARISON OF EXPERIMENTAL AND THEORETICAL REDUCTION FACTORS

Detector	Percent Differences at Detector Locations								
Height - Above Floor	A	В	C	D	E				
ft		F	ercent						
1 ·	1+7	21	14	41	32				
2	46	14	8	37	27				
3	42	11	0	27	27				
4	39	3 ·	- 9	26	23				
5	37	- 5	-8.5	22	23				
6	· 27	-8	- 13	12	11				

^{*}Percent Difference = $\frac{\text{Experimental-Theoretical}}{\text{Experimental}} \times 100$

The largest range of differences is seen at all hights of detector location A, Figure 4.3. For all heights at this detector location, the experimental values ranged from 27 to 47 percent higher than the theoretical values. These rather large differences are due in part to the error caused by using a single correction for backscattered radiation and partly to the fact that the detector location A is in a highly eccentric position with respect to the overhead opening. The theoretical calculations are best suited for a detector location in the center of the basement. Spencer states that calculated results under highly eccentric geometries (i.e., the value of the length-to-width ratio, e, greater than 3) would greatly underestimate the experimental results (Reference 4).

Figure 4.3 Experimental and theoretical reduction factors versus height above an open basement floor, detector location A.

Figure 4.4 Experimental and theoretical reduction factors versus height above an open basement floor, detector location B.

Figure 4.5 Experimental and theoretical reduction factors versus height above an open basement floor, detector location C.

Figure 4.6 Experimental and theoretical reduction factors versus height above an open basement floor, detector location D.

Figure 4.7 Experimental and theoretical reduction factors versus height above an open basement floor, detector location E.

A similar explanation pertaining to eccentric detector geometries can be made for the differences in experiment and theory at detector location D, Figure 4.6, although the difference is not as large as that at detector location A. The reason for this was that detector location D was oriented along the centerline of the width of the basement and was less eccentric than detector location A.

Note that the larger percent differences (Table 4.2) between experiment and theory, probably due to backscattered radiation, occur at all detector positions next to the walls and floor, e.g., corner detector location A, and wall detector locations D and E. The radiation backscatter contribution is emphasized in comparing the percent differences for detector locations A, D, and E. Here, the percent differences between experiment and theory are largest for those detector positions that are next to the larger wall-surface areas.

Agreement between experimental and theoretical reduction factors was good at detector locations B and C, Figures 4.4 and 4.5. This would be expected at the C detectors located at the center of the basement. However, in view of the results from the other detector locations (A, D, and E), the close agreement at detector location B is somewhat surprising. Again, the explanation appears to be that detector location B, although off-center, was somewhat nearer the center than the other detector locations.

It was noted that, at all detector locations, the agreement between experiment and theory was best at the detector positions near the top of the basement. In Figures 4.3 through 4.7, the experimental data taken near the basement floor, curves upward, whereas the theoretical curve continues to fall off approximately exponentially. This again indicates that in a large open basement there may be the additional buildup of radiation due to back-scatter from the floor that is not accounted for with the 1.2 factor recommended in NBS Monograph 42.

Figure 4.5 shows the exposure rate plotted versus the height above the basement floor at the center detector location. The experimental curve was extrapolated to the 7-foot height (ground level) or $\omega=1$. The extrapolated value 0.0987, from Figure 4.5, times the free-field exposure rate, 468,000 (mR/h)/(Ci/ft²) at the 3-foot height, yields an exposure rate of 46,500 (mR/h)/(Ci/ft²) at ground level. This value, of course, would include any backscatter from the walls and the floor. If a backscatter of 20 percent is assumed and subtracted, then the total exposure rate due to shyshine at the surface of the basement would be 37,200 (mR/h)/(Ci/ft²). This is 7.9 percent of the infinite free-field exposure rate at the 3-foot height above ground. This compares favorably with 8.8 percent calculated by Spencer (Reference 4) and 10 percent measured by Burson and Summers (Reference 8).

5. CONCLUSIONS

Analysis of the position function $f(h, \omega)$ at various detector levels above the basement floor indicates the presence of a backscattering contribution that is dependent on height above the iloor and solid-angle fraction and is not adequately estimated by a single correction factor (1.2 suggested in NBS Monograph 42).

Agreement within 21 percent was obtained between experimental and theoretical reduction factors calculated by Formula (31.1) of NBS Monograph 42 for detector locations in the center or near the center of the basement (detector locations C and B).

Theoretical reduction factors underestimate experimental reduction factors at the off-center detector locations close to the basement wall (detector locations A, D, and E) by as much as 47 percent. The differences appear to be caused by radiation scattered from the walls and floor of the basement; this scattering is not completely accounted for in the theoretical calculations.

Extrapolation to the ground surface (w = 1) of the experimentally measured reduction factors at the center detector location within the open concrete basement yields an exposure rate that is 7.9 percent of the infinite free-field exposure rate at the 3-foot height. This compares favorably with 8.8 percent calculated in the NBS Monograph 42.

The infinite-field exposure rate at the 3-foot height above a graded, rolled, and relatively smooth field was measured as 468~R/h at a source density of 1 Ci/rt² of cobalt-60 radiation simulated with a circulating point source.

LITERATURE CITED

- 1. Rexroad, R. E. and Schmoke, M. A.; Scattered Radiation and Free-Field Dose Rates from Distributed Cobalt 60 and Cesium 137 Sources; NDL-TR-2, September 1960; US Army Chemical Corps Nuclear Defense Laboratory, Army Chemical Center, Maryland; Unclassified.
- 2. Schmoke, M. A., and Rexroad, R. E.; Attenuation of Simulated Fallout Radiation by the Roof of a Concrete Blockhouse; IDL-TR-6, August 1961; US Army Chemical Corps Nuclear Defense Laboratory, Army Chemical Center, Maryland; Unclassified.
- 3. Schmoke, M. A. and Rexroad, R. E.; Attenuation of Fallout Radiation as a Function of Concrete Blockhouse Wall Thickness; NDL-TR-43, October 1963; US Army Nuclear Defense Laboratory, Edgewood Arsenal, Maryland; Unclassified.
- 4. Spencer, L. V.; Structure Shielding Against Fallout Radiation from Nuclear Weapons; NBS Monograph 42, 1 June 1962; National Bureau of Standards, Washington, D.C.; Unclassified.
- 5. Office of Civil Defense; Design and Review of Structures for Protection from Fallout Gamma Radiation; OCP Professional Manual, Series PM-100-1, February 1965; Unclassified.
- 6. Clifford, C. E., Carruthers, J. A., and Cunningham, J. R.; Scattered Gamma Radiation from a Simulated Fallout Field Using Cesium-137; DRCL Report 296, January 1959; Defense Research Chemical Laboratories, Ottawa, Canada; Unclassified.
- 7. Starbird, A. W., and Batter, J. F.; Angular Distribution of Skyshine Radiation at the Surface of a Plane of Fallout Contamination; TO-B-63-40, March 1964; Technical Operations Research, Eurlington, Massachusetts; Unclassified.
- 8. Burson, Z. G. and Summers, R. L.; Barrier Attenuation of Air-Scattered Gamma Radiation; CEX-53.3, December 1964; US Atomic Energy Commission, Les Vegas, Nevada; Unclassified.
- 9. Rexroad, R. E., Schmoke, M. A., and Schumchyk, M. J.; A Point-Source Circulation System for Simulating Fallout Gamma Radiation; NDL-TM-15, December 1984; UD Army Nuclear Defense Laboratory, Edgewood Arsenal, Maryland; Unclassified.
- 10. McDonnell C., et.al.; Description, Experimental, Calibration and Analysis of the Radiation Test Facility at the Protective Structures Development Center; PSDC-TR-14, 1 September 1964; Protective Structures Development Center, Fort Belvoir, Virginia; Unclassified.

LITERATURE CITED (Continued)

- 11. Berger, M. J.; Calculation of Energy Dissipation by Gamma Radiation Near the Interface Between Two Media; Journal of Applied Physics, Volume 28, No. 12, 1502-1508; December 1957.
- 12. Clarke, E. T. and Batter, J.; Gamma-Ray Scattering by Nearby Surfaces, Transactions of American Nuclear Society, Volume 5, No. 1, 223; June 1962; Unclassified.
- 13. Eisenhauer, C.; Analysis of Experiments on Light Residual Structures with Distributed Cobalt 60 Sources; NBS 6539, October 1959; National Bureau of Standards, Washington, D.C.; Unclassified.
- 14. Huddleston, C. M., et.al.; Ground Roughness Effects on the Energy and Angular Distribution of Gamma Radiation from Fallout Radiation; CEX 62.81, July 1964; US Atomic Energy Commission, Las Vegas, Nevada; Unclassified.

APPENDIX A

EXPERIMENTAL DATA

Tables A.1 through A.8 contain the data for each detector position at the various locations within a concrete basement. The exposure-rate contributions are given for all four semiannuli of the radiation area with the sum of the four semiannuli shown in the column to the right.

To obtain the total exposure rate from the simulated fallout field for detectors at locations, A, B, and E, the exposure rate of the primary positions A, B, and E are added to the exposure rate of the image positions a, b, and e, respectively. At each height for detector locations C and D, the exposure rates are doubled.

TABLE A.1 EXPOSURE RATE CONTRIBUTION TO PRIMARY DETECTORS AT LOCATION (A) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in $(mR/h)/(Ci/ft^2)$

Detector Height Above	Co	Exposure ontribution Fr		lus	Σ
Floor (ft)	1	2	3	4	1 through 4
ו	262 261	600 696 532	777 79 ⁴	363 321 362 303	
Average	262	609	786	337	1990
2	302 283	627 618 597	971 975	426 400 381 381	
Average	293	614	973	3 51 388	2270
3	350 318	714 682 694	943 956	446 418 375 433 370	
Average	334	697	950	408	2390
Ц	380 362 370	851 862 865 813	1110 1170	460 442 468 453	
Average	371	8 <u>48</u>	1140	456	2 820
5	467 483 507	1050 962 1020 1110 999	1390 1460	535 522 528 537	
Average	486	1060 10 3 0	1430	531	3480
6	802 813	1650 1690 1760	2100 2170	352 859 866	
Average	308	1700	2140	859	5510

TABLE A.2 EXPOSURE RATE CONTRIBUTION TO IMAGE DETECTORS AT LOCATION (a) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in (mR/h)/(Ci/ft²)

Detector height Above	Cor	Exposur ntribution F		ılus	Σ
Floor (ft)	1	2	3	4	1 through 4
1	434 372	941 945 963	1450 1200	516 487 512 504	
Average	404	950	1330	505	3190
2	490 485	969 1110 1050	1360 1340	596 617	
Average	488	1040	1350	607	3490
3	500 483	1280 1300 1260	1639 1580	673 677 651	
Average	492	1360 1300	1610	667	4070
1 4	637 634	1590 1550 1520 1510 1610 1550 1590	2040 1860	852 801 814	
Average	6 3 6	1560	1950	822	4970
5	8 2 6 837	2070 2110 2100	2810	1030 1080	
Average	832	2090	2810	1060	6790
6	1530 1530	3080 3040 3 040	3710	1370 1440	
Average	1530	3050	3710	1410	9700

TABLE A.3 EXPOSURE RATE CONTRIBUTION TO PRIMARY DETECTORS AT LOCATION (B) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in $(mR/h)/(Ci/ft^2)$

Detector Height Above	Co	Exposur ntribution F	re Rate Trom Semiannu	lus	Σ
Floor (ft)	1	2	3	4	1 through 4
1	426 374	899 886 902	1110 1100		
Average	e 400	896	1110	390*	2800
2	484 4 ¹ .1	919 936	1260 1240	600 648 547 520 573 600	
Average	e 463	92 8	1250	581	3220
3	561 529	1220 1140 1180	1550 1500	597 698	
Average	545	1180	1530	648	3900
4	652 649	1500 1450 1430 1550 1560	1790 1860	772 806 866	
Average	651	1500	1830	815	4800
5	902 915 915	1910 1940 20 50	2340	989 1040	
Average		1970	2340	1010	6230
6	1710 1670 1740 1610	293 0 29 80	3680	1360 1480 1420	
Average		2960	3680	1420	9740

^{*}Graphically interpolated.

TABLE A.4 EXPOSURE RATE CONTRIBUTION TO IMAGE DETECTORS AT LOCATION (b) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in (mR/h)/(Ci/ft²)

Detec Height	Above	Co		re Rate From Semiannu	ılus	Σ
Floor (ft)		1	2	3	4	1 through 4
1		479	1090 1110 1090	1510 1600	623 666 617 669 590	
	Average	479	1100	1560	633	3770
2		601 567	1310 1280 1300	1710 1620	682 727 724	
	Average	584	1300	1670	711	4270
3		700 690	1660 1580 1520 1690	1860 ,	818 891 872	
	Average	695	1613	1860	360	5030
Ŀ		790 801 805	1910 1940 2060 2000	2490	1110 1000 1040	
	Average	799	1980	2490	1050	6320
5		1060 1020 1070	2450 2440 2590	3110	1310 1300	
	Average	1050	2520	3110	1310	7990
6		1630 1670 1730 1690	3620 3630 3560	4340	1740 1740	
1	Average	1630	3 600	1+3140	1740	11400

TABLE A.5 EXPOSURE RATE CONTRIBUTION TO DETECTORS AT LOCATION (C) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in (mR/h)/(Ci/ft²)

Detector Height Above	Co		re Rate From Semiannu	lus	Σ
Floor (ft)	1	2	3	4	1 through 4
1	470 481	1060 1010 1030	1530 1410 1340	601 609 625 594	
Average	475	1030	1430	607	3540
2	560 534	1240 1210 1230	1650 1610 1550	712 699 672 707 652	
Average	547	12 30	1600	688	4070
3	675 640	1450 1470	1800 1750	801 788 867	
Average	658	1460	1780	819	4720
4 Average	767 790 790 782	1880 1960 1940 1930	2310 2240 2180 2240	982 958 988 976	5930
5	995 1010 1000	2570 2580 2560	2840	1250 1220 1270	
Average	1000	2570	2840	1250	7660
6	1970 1930 1960 1930	3550 3410 3470	4190	1620 1650 1620	
Average	1950	3480	4190	1630	11300

TABLE A.6 EXPOSURE RATE CONTRIBUTION TO DETECTORS AT LOCATION (D) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in (mR/h)/(Ci/ft²)

Detector Height Above	Co		re Rate From Semiannu	ılus	Σ
Floor (ft)	1	2	3	4	1 through 4
1	380 372	876 849 854	1180 1220	511 522 459 506 481	
Average	376	860	1200	496	2930
2	437 483	944 949 958	1260 1210	577 600 562 560 537	
Average	460	950	1240	567	3220
3	496	1150 1090 1120	1480 1460	618 609 625 658	
Average	496	1120	1470	610 624	3710
1 4	581 589	1430 1380 1360 1380 1390 1460	1790 1730	767 783	
Average	535	1400	1760	775	4520
5 Average	850 850 850	1860 1870 1870	2560 2560	958 953 956	6240
6	1410 1410	2740 2770	3420	1300 1370	
Average	1410 1410	2760	3420	1340	8930

TABLE A.7 EXPOSURE RATE CONTRIBUTION TO PRIMARY DETECTORS AT LOCATION (E) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in $(mR/h)/(Ci/ft^2)$

Detector Height Above	Со	Exposu: ntribution I	re Rate From Semiannu	lus	Σ
Floor (ft)	1	2	3	4	1 through 4
1	348 314	714 779	1080 944 852	419 435 389 394	
Average	331	747	959	409	2450
	394 358	809 806 809	1090 1080 1020	494 456 486 485 468	
Average	376	808	1060	478	2720
3	424 428	933 933 948	1170 1220 1160	505 511 516 485 524	
Av erage	426	938	1180	508	3050
4	467 473 465	1050 1020 10 ¹ 10 1070	1360 1370	562 610 564	q
Average	468	1050	1370	579	3470
5	695 657 637	1390 1400 1410 1400	1810 1740 1680	767 730 769	
Average	663	1400	1740	755	4560
6	2190 2150 1710 2190	2010 1990 2080	2240	1020 1040	
Average	2060	2030	2240	1030	7360

TABLE A.8 EXPOSURE RATE CONTRIBUTION TO IMAGE DETECTORS AT LOCATION (e) FROM VARIOUS SEMIANNULI OF A SIMULATED FALLOUT FIELD

Note: Exposure rates are in $(mR/h)/(Ci/ft^2)$

Detector Height Above	Co		re Rate From Semiarn	ılus	Σ
Floor (ft)	1	2	3	4	1 through 4
1,	542 523	1170 1200 1210	1790 1500	659 633 610 630	•
Average	533	1190	1650	633	4010
2	618 582	1330 1360	1790 1780	784 783 745	
Average	600	1350	1790	771	4510
3	738 722	1690 1740 1720	2200 2100	909 959	
Average	730	1720	2150	934	5530
4	821 863	2230 2210 2210	2570 2750	1100 1130 1130	
Average	842	2220	2660	1120	6840 .
5	1080 1080 1110	2840 2810 2800	3560 3 570	1410 1340 1410	
Average	1090	2820	3570	1390	8870
6	1620 1650 1650	3470 3490 3520	4190 4280	1710 1740 1810	
Average	1640	3490	4240	1750	11100

APPENDIX B

SOURCE CALIBRATION

All circulating point sources used in the experiment were carefully calibrated to determine the radiation output (effective curie strength) of the source. In addition, to determine the validity of previous calibrations (Reference 1), all stationary point sources used in previous experimental work were recalibrated by a different geometrical arrangement.

The stationary point source and detector were supported at a height of 12.5 feet above ground. The source shield rested on a 10-focthigh platform and the detector was held in a holder fastened to a 12-foothigh ladder, Figure B.1. Exposure-rate measurements were made at horizontal source-to-detector distances of 2 feet, 4 feet, and 6.23 feet. At least 5 exposures were made at each separation distance with all measurements falling within 2 percent of the average.

To obtain an accurate estimate of the effective curie strength of the radiation source, a measurement must be made of the uncollided (narrow-beam) exposure rate at a known distance between the source and the detector. A direct measurement of this uncollided beam is complicated by the presence of air-scattered radiation and in some instances ground-scattered radiation. Therefore, the contribution from these two effects must be either eliminated or accurately estimated. The air-scattered component was estimated by using the infinite air-medium buildup factor $B(\mu r)$ of Berger (Reference 11) The air-ground interface buildup factor, as measured by Batter and Clark (Reference 12), was used to account for ground-scattered radiation.

The corrected exposure rate at 1 foot was obtained by the following formula:

$$D_1 = D_x \frac{x^2}{B(\mu x) K e^{-\mu x}}$$
, (B.1)

where

 D_1 = corrected exposure rate at 1 foot, R/h,

 $D_{\mathbf{x}}$ = measured exposure rate at standard atmospheric conditions, $P_{\mathbf{x}}/P_{\mathbf{x}}$,

x = distance from source to detector, feet,

B(ux) = infinite sir-medium buildup factor,

Figure B.1 Experimental set-up for calibration of stationary point sources.

- K = air-gr und interface buildup factor, and
- μ = linear absorption coefficient in air at standard atmospheric conditions, 2.24 x 10⁻³ ft⁻¹ for cobalt 60.

The effective curie strength of each source was determined by dividing the corrected exposure rate by the standard exposure rate for cobalt 60 (14.3 R/h per curie at a distance of 1 foot).

Table B.l shows the effective curie strengths of the sources used in earlier experimentation as determined by the new method (C_N) , along with the source strengths determined by the old method (C_0) , corrected for radioactive decay. The maximum difference between the two is 1.6 percent, which is well within the error of ± 3 percent inherent in the NBS callibrated standard.

Circulating point sources were calibrated similarly except that the plastic tubing was susperied above ground between two 12-foot-high step-ladders spaced 6 feet apart (Figure B.2). A positive source stop was placed in the tubing line in a position that would stop the source halfway between the ladders. Radiation measurements were made with calibrated R chambers and the exposure rates were corrected to 1 foot by use of Equation B.1.

TABLE B.1 COMPARISON OF STATIONARY POINT SOURCE CALIBRATION DATA

400							
DISCANCE Y	a	Q K	Dx b	م دع	Method	trod	Percent
				•	0 E	°0°	. Difference
f.			R/1.	R/h	j ti) ::3	
, C1	03.00	(E C	i		1)	
†7	1.0078	1.00 C	7.3 <i>(</i>	21.39	1.50	1.509	0.53
6.23	1.012	1.007	1.30 0.565	21.43	1.502	1.509	94.0
\.				•		FOX.+	0.33
c.23	1.012	1.007	0.0612	2.33	0.163	0.161	69 0
Q =	1.0039	1.0	662	2638	, 8, C	.02	
τ. 2 3	1.00 <i>7</i> 8 1.012	1.005	167 71),	2631	134	103 183	1.6 0.5
		-))	t • 1	<000>	185	183	α σ

Calibrated 1 September 1953. See Equation (B.1). Calibrated 1 September 1964.

Figure B.2 Experimental set-up for calibration of circulating point sources.

APPENDIX C

FREE-FIELD EXPOSURE RATES MEASURED BY US ARMY NUCLEAR DEFENSE LABORATORY AND BY PROTECTIVE STRUCTURES DEVELOPMENT CENTER

One of the problems attendant with simulating a fallout field is that theoretically the fallout field is considered smooth and infinite in extent, a condition that is impractical to simulate. Therefore, the simulation of the field will be at best an approximation of the actual situation. This involves experimental measurements for a finite distance plus an analytical extrapolation for the far-field contribution. Explien experiments measured the free-field exposure rates at the air-ground interface; cobalt-60 and cesium-137 sources were used to simulate the residual radiation (Reference 1). The site of these previous experiments was a relatively smooth, grassy field; however, the measurements were made with the source raised approximately 3-1/2 inches above the ground to ensure line-of-sight between source and detector and to reduce the effects of ground roughness in the measurements. These measurements were converted to ring-source data and the results were graphically integrated over the 800 feet covered by the measurements. An analytical estimate was made of the far-field contribution. The resultant infinite-field exposure rate at a 3-foot height was determined to be 497 R/h at a contamination density of 1 Ci/ft2.

The 497 R/h compares favorably to the theoretical infinite-field exposure rate, 500 R/h, calculated by Eisenhauer (Reference 13). However, it was higher than the experimental infinite-field exposure rate, 464 R/h, determined by McDonnell, et.al., at the Protective Structures Development Center (PSDC), (Reference 10). Possible contributors to the difference in the above experimental exposure rates are (1) the method used to determine effective curie strengths of the sources and (2) ground roughness effects.

For the experiment in Reference 1, the sources were calibrated at a height of 11 feet above ground and at a horizontal distance of 6 feet from the detector. Measurements were made with and without an 8-inch-thick lead shield between the source and detector; the shield was designed to eliminate the direct radiation and to measure only the scattered radiation. These measurements resulted in a 5.1 percent correction for radiation—scatter contribution from the air-ground intersace; this correction was applied in calculating the effective curie strengths of the sources. An objection to this method of source calibration was that the radiation scatter from the edges of the lead shield could be greater than the air-scattered radiation one is trying to measure. Bubsequent measurements at a similar geometry indicated that the correction for the radiation scatter at the air-ground interface could be about 4.5 percent too high.

To determine the validity of these source strengths, all the sources used in the previous experiment (Reference 1) were recalibrated under conditions closely approximating free-air conditions. Details of this recalibration are given in Appendix B. The recalibration indicated that the effective curie strengths of all sources were almost exactly as previously reported after corrections were made for decay.

Since the present measurements were being made with the pointsource circulation system, which presented a different source geometry, a
remeasurement of the free-field exposure rate was required. Because the
surface had been graded and rolled, for practical purposes the field was
considered a smooth, level plane. The free-field exposure rates at
various heights above the field are shown in Table 3.1 and are presented
graphically in Figure C.1. Curves showing the cumulative exposure rate
for each annulus are plotted. These curves indicate the relative contribution for each annulus with increasing distance from the center of the field.

To compare the free-field data reported in Reference 1 with the free-field data obtained with the point-source circulation system (in this report), the cumulative exposure rates at the 3-foot height were plotted versus the distance from the center of the field in Figure C.2. Also shown in Figure C.2 are data measured at the 15-foot height (this report) and deta at the 3-foot and 15-foot heights taken at PSDC (Reference 10). The curves at the 3-foot height show a definite difference between the previously taken NDL data (Reference 1) and the measured data in this report. The latter measurements were 5 percent lower than the previous measurements. The PSDC measurements were also lower (12 percent) at the 452-foot radius. The fact that the curves are very nearly parallel indicates that the difference in the exposure rates was probably due to differences in terrain (ground roughness) between the sites of the experiment. During the initial work (Reference 1), the source was exposed just above the surface of the field to decrease ground-roughness effects. However, the source was near enough to the ground to be considered at the air-ground interface without being extremely affected by the variations in the terrain. The circulating point source, on the other hand, travelled through plastic tubing that was laid directly on the ground. Although the surface had been graded and rolled, the field was only an approximation of a smooth field. That only an approximation of a smooth field can be achieved may be inferred from data obtained by Huddleston, et.al., (Reference 14) who, under somewhat similar conditions, made measurements of fallout radiation on a flat, dry lake bed at the Nevada Test Site. Angular distribution measurements 3 feet above ground resembled the theoretical curve at the 20-foot height above ground, or schematically as if the fallout on the ground has been covered with a mass thickness of material equivalent to 20 feet of air. This indicated that there are ground-roughness effects even on ground which appears to approach the ideal in smoothness in an infinite terrain.

Ordinarily it might be expected that the PSDC measurements in the free-field would be in closer agreement with the NDL measurements since similar systems were used to simulate the fallout areas. However, at the PSDC test site, washed gravel had produced a rolling terrain which introduced shadowing effects to the lower detectors; these were not present in the NDL measurements. This is substantiated in the close agreement of NDL and PSDC data at the 15-foot height.

The infinite-field exposure rate at a 3-foot height for this experiment was, 468 R/h at unit curie density. This is approximately 5 percent lower than the exposure rate measured previously (Reference 1), a difference believed to be due primarily to ground roughness.

The experimental infinite-field exposure rates at heights to 15 feet taken at NDL and at PSDC are plotted in Figure C.3, along with the theoretical curve. The theoretical curve was calculated from Spencer's L(d) curve and a value of 468 R/h was assumed as the infinite-field value for a relatively smooth plane. The L(d) function is the total detector response at a distance d(li air) from an infinite, plane, isotropic source, divided by the total detector response at 3 feet in air from the same source. In general, the experimental free-field measurements of NDL and of PSDC agree very well with Scencer's theoretical values. Good agreement exists between the NDL measurements and the theoretical values near the ground, and the measurements above 5 feet agree within 3.8 percent; however, the PSDC measurements were low at the 1-foot and 3-foot detector heights. If it is assumed that the difference between the measurements at these low detector heights is due to ground roughness, a correction factor may be calculated for each height by obtaining a ratio of the theoretical-to-experimental exposure rate. When these ratios are applied for ground roughness correction to the PSDC cumulative results shown in Figure C.2, the agreement between NDL measurements and PSDC measurements becomes quite good. This is shown by the 3-foot height data in Table C.1.

TABLE C.1 COMPARISON OF THE PSDC FREE-FIELD EXPOSURE RATES CORRECTED FOR GROUND ROUGHNESS WITH NDL FREE-FIELD EXPOSURE RATES MEASURED AT THE 3-FOOT HEIGHT ABOVE AN INFINITE RADIATION FIELD SIMULATED BY COBALT 60

Outer Radius	Cumala	ative Exposur	e Rates	_
of Radiation Area	Measured PSDC	Jorrected [®] PSDC	Measured ^b NDL	Difference ^c
ft		(R/h)/(Ci/ft ²))	pct
17.9	159.4	174.9	•	-
32	213.4	234.1	-	-
68	279.1	306.2	2 97	3.1
164	344.6	378 ·C	370	2.2
452	39 8.6	437.3	438	0.2
œ	429.3.	470.9	468	0.6

Ground roughness correction factor = 1.097.

Data at the indicated radii interpolated from Figure 4.2.

^{*}Percent Difference = Corrected Exp Rate (PSDC) - Measured Exp Rate (NDL)

Measured Exp Rate (NDL)

Figure C.1 Experimental exposure rates versus height above contaminated field.

Figure C.2 Cumulative exposure rates versus radius of contaminated field as measured by NDL and PSDC.

Figure C.3 Experimental and theoretical exposure rate versus height, d, above a radiation field.

UNCLASSIFIED

Security Classification

DOCUMENT CO	ONTROL DATA - R&I		the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author)			RT SECURITY CLASSIFICATION
US Army Nuclear Defense Laboratory		UNCI	ASSIFIED
Edgewood Arsenal, Maryland 21010		26. GROU	
	ATION (SKYSHINE) AN OPEN BASEMEN LATED FALLOUT FI		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
S. AUTHOR(5) (Last name, first name, initial)			
Schumchyk, Michael J.	Egerland, Wal	ter O.	
Schmoke, Murray A.	Schulman, Erne		~
6. REPORT DATE December 1966	70. TOTAL NO. OF PA	AGES	76. NO. OF REFS
Ba. CONTRACT OR GRANT NO.	Sa. ORIGINATOR'S RE	PORT NUM	BER(S)
& PROJECT NO. OCD Work Order No. OCD-PS-64-91	NDL-TR-68		
Subtask No. 1111F	96. OTHER REPORT N this report)	10(S) (Any	other numbers that may be easigned
10. AVAILABILITY/LIMITATION NOTICES		·	
Distribution of this document is unl	imited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILIT	TARY ACTI	VITY
	Office of Ci	lvil De	fense
13. ABSTRACT			

The objective of this work was to determine, experimentally, the shielding afforded by an open concrete-walled basement located in a simulated fallout field and to compare these experimental results with theoretical results published in National Bureau of Standards (IBS) Monograph 42.

A cobalt-60 point-source circulation system was used to simulate a uniformlycontaminated residual gamma radiation area out to a radius of 600 feet. Experimental exposure-rate measurements were made in the free field and at various locations within the structure as a function of height above the basement floor. Ionization chamber dosimeters were used as radiation detectors. Experimental measurements were extrapolated to infinite-field conditions by use of analytical procedures and compared with other related experimental data and theoretical

DD .5054. 1473

UNCLASSIFIED Security Classification

77

Security Classification

14 KEY WORDS	LIN	NK A	LIN	KB	LII	NK C
entropy of the control of the contro	POLE	WT	ROLE	wT	ROLE	WT
Fallout, Simulated		1				
Free-Fi li Expodure Rates		i			1	
Far-Field Exposure Rates						
Gamma Reliation						
Radiation, General						
Radiation, Scattered]	
Point-Course Circulation		1			1	
Cobalt-/					[
Skychine]			
Reduction Factors			1		1	
Besettent, Gren, Concrete			1 1			
, , , , , , , , , , , , , , , , , , , ,			1			
	ł		i i		!	

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (comporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Dira" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorated.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES. If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES. The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFFRENCES. Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was wrift in.
- 86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S). Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), case enter this number(s).

- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory aponsoring (paying for) the research and development. Include address.
- 13 ABSTRACT Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14 KEY WORDS. Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataliging the report. Key words must be selected so that no security classification is required. Identices, such as equipment model designation, trade name, military project code name, prographic location, may be used as key words but will be followed by an indication of technical context. The arsignment of links, rules, and weights is optional.

UIIC	LΑ	នេន	ΙF	E	1
Security	CI	ass	ıfi	cati	on