Estructures Algebraiques: Tema 1

December 11, 2017

Contents

1	TODO Grup	3											
2	TODO Interseccio, unio, producte i generacio												
3	3 TODO Ordre d'un element, grup ciclic												
4 TODO Morfismes de grups													
5	Classes laterals	3											
	5.1 Definicio	3 3 3											
	5.4 Teorema de Lagrange	3											
6	Subgrup normal, Grup quocient	4											
	6.1 Definicio: Subgrup Normal	4											
	6.2 Lema	4											
	6.3 Observacio	4											
	6.4 Observacio	4											
	6.6 Corol.lari	4											
7	Primer teorema d'isomorfisme 7.1 TODO Teorema:	4											
8	El grup multiplicatiu d'un cos finit	5											
	8.1 Definicio												
	8.2 Teorema												
	8.2.1 TODO demo	ļ											

9	Grup simples												5			
	9.1	Definicio														5
	9.2	Proposicio														5
		9.2.1 TODO Demo														6
	9.3	Teorema de Feit-Thompspn														6
	9.4	Teorema														6
		9.4.1 TODO Demo														6
	9.5	Proposicio														6
		9.5.1 TODO Demo														6
10	Gru	p resolubles														6
	10.1	Definicio torre normal														6
	10.2	Definicio Grup Resoluble														6
	10.3	Teorema: Segon Teorema d'isomorfisme														6
		10.3.1 TODO Demo														7
	10.4	Teorema: Jordan-Holder														7
		10.4.1 TODO Demo														7
	10.5	Proposicio														7
		1														
11	Acc	io d'un grup en un conjunt														7
	11.1	Definicio: Accio d'un grup en un conjunt														7
	11.2	Observacio														7
	11.3	Definicio: Orbita d'un element														7
		Definicio: L'estabilitzador/grup d'isotropia d' $x \in X$														7
		Lema:														7
		11.5.1 TODO DEMO														8
	11.6	Proposicio														8
		11.6.1 TODO DEMO														8
	11.7	Definicio: punt fix														8
		Definicio: Accio Transitiva														8
		Definicio: Accio Fidel														8
	11.5	11.9.1 Observacio:														8
	11 10	OAccio per translacio en X, quan $X = G \dots \dots$														8
		1 Teorema de Cayley														9
	11.1.	11.11.1 TODO Demo														9
	11 14	2Definicio: Accio per conjugacio de G en $X = G$														
	11.12	- v e														9
		11.12.1 Proposicio:														6
		11.12.2 Proposicio:														9
		3Definicio: Accio per translacio en les classes laterals														9
		4Definicio: Accio per conjugacio en els subgrups														9
	11.15	Teorema de Cauchy														10
		11.15.1 TODO Demo														10
10	Q - 1	d- C-1													-	. ^
12		grups de Sylow														10
		Definicio: p-grups: Subgrups de Sylow		•	•		٠	•	•		•	•	•	•		
	12.2	Teorema:													. '	10

- 1 TODO Grup
- 2 TODO Interseccio, unio, producte i generacio
- 3 TODO Ordre d'un element, grup ciclic
- 4 TODO Morfismes de grups
- 5 Classes laterals

5.1 Definicio

Sigui G un grup i H in subgrup de G. $a, b \in G$. Definim $a \sim b(esquerra) \iff a^{-1}b \in H$

5.2 Definicio de la classe d'equivalencia

$$\begin{split} \bar{a} &:= \{\ b \in G \mid a \sim b\} \\ aH &:= \{\ ax \mid x \in H\} \\ \text{Observem que aH} &= \bar{a} \\ \text{A més H i aH tenen el mateix cardinal.} \end{split}$$

5.3 Definicio Classe Lateral:

Anomenem $G/H = \{aH | a \in G\}$ el conjunt de les classes laterals per l'esquerra (conjunt quocient).

Diem també que l'índex de H en G es [G:H] = |G/H| = nombre d'elements de G modul H

5.3.1 Observacio:

- 1. El nombre de classes laterals per l'esquerra es el mateix que el nombre de classes laterals per la dreta.
- 2. L'índex és multiplicatiu. $K \subset H \subset G$. Llavors [G:K] = [G:H] * [H:K]

5.4 Teorema de Lagrange

Sigui G un grup i H un subgrup, G finit. Aleshores $|G|=|G/H|*|H|\iff |G/H|=\frac{|G|}{|H|},$ i a més |H| divideix |G|.

5.4.1 TODO Demo

6 Subgrup normal, Grup quocient

6.1 Definicio: Subgrup Normal

Sigui G un grup, H un subgrup de G. H és subgrup normal de G si $aH = Ha \ \forall \ a \in G$.

6.2 Lema

f: $G_1 \to G_2$ morfime de grups. Aleshores,

1. Si
$$H_1 \triangleleft G1 \implies f(H_1) \triangleleft f(G_1)$$
.

2. Si
$$H_2 \triangleleft G2 \implies f^{-1}(H_2) \triangleleft G_1$$
.

6.2.1 TODO Demo

6.3 Observacio

 $H \subseteq K \subseteq G$, H,K subgrups de G. Aleshores. Si $H \triangleleft G \implies H \triangleleft K$. El reciproc es fals.

6.4 Observacio

si $H \triangleleft G$, aleshores (aH)*(bH) = (ab)H

6.5 Definicio: Operacio interna

Sigui $H \triangleleft G$ i sigui $G/H = \{aH \mid a \in G\}$ el conjunt de classes laterals per l'esquerra modul H. En G/H definim l'operacio interna:

$$G/H \times G/H \rightarrow G/H$$

 $aH \times bH \mapsto (ab)H$

6.6 Corol.lari

G/H es un grup i s'anomena el grup quocient de G per H.

6.7 Exercici: La aplicacio quocient es un morfisme

7 Primer teorema d'isomorfisme

7.1 TODO Teorema:

Sigui $f:G_1\to G_2$ morfisme de grups, Sigui $H\vartriangleleft G_1,$ i sigui l'aplicació

$$\tilde{f}: G_1/H \to G_2$$

$$aH \mapsto \tilde{f}(aH) := f(a)$$

Figure 1: Primer teorema d'isomorfisme

8 El grup multiplicatiu d'un cos finit

8.1 Definicio

Sigui $\mathbb K$ un cos. El grup multiplicatiu de $\mathbb K$ és

$$\mathbb{K}^* = \mathbb{K} \setminus \{0\} = \{x \in \mathbb{K} \mid x \neq 0\}$$

8.2 Teorema

Sigui $\mathbb K$ un cos. Sigui $\mathbb G$ un subgrup finit de $\mathbb K^*$. Aleshores $\mathbb G$ és cíclic

8.2.1 **TODO** demo

9 Grup simples

9.1 Definicio

Sigui G un grup no trivial. Direm que G es simple si els unics subgrups normals de G son $\{1\}$ i G.

9.2 Proposicio

Sigui G un grup no trivial. Son equivalents

- 1. G es simple i abelia
- 2. |G| = p, on p es primer
- 3. $G \cong \mathbb{Z}/p\mathbb{Z}$

9.2.1 TODO Demo

9.3 Teorema de Feit-Thompspn

Sigui G grup simple, Suposem |G| es senar. Aleshores G es ciclic i $G \cong \mathbb{Z}/p\mathbb{Z}$.

9.4 Teorema

Sigui $n \geq 5$, Aleshores A_n es simple

9.4.1 TODO Demo

9.5 Proposicio

Sigui G un grup, $H \triangleleft G$. Aleshores, G/H es grup simple \iff H es un element maximal en el conjunt $\{K \mid K \triangleleft G, K \neq G\}$

9.5.1 TODO Demo

10 Grup resolubles

10.1 Definicio torre normal

Una torre normal de G es $G = G_0 \triangleright G_1 \triangleright G_2 \triangleright ... \triangleright G_n = \{1\}$ on G es un grup i $G_i \triangleleft G_{i+1}$. Anomenem n la longitud de la torre G_{i-1}/G_i s'anomenen els quocients de la torre

A mes definim:

- Torre normal abeliana: Torre normal amb quocients abelians.
- Torre normal simple/serie de composicio: Torre normal amb quocients abelians

10.2 Definicio Grup Resoluble

Direm que G es resoluble si te una torre normal abeliana.

10.3 Teorema: Segon Teorema d'isomorfisme

Sigui G grup i H,K dos subgrups de G. Suposem $H \triangleleft G$. Aleshores:

- 1. $H \cap K \triangleleft K$
- 2. $H \cdot K$ es subgrup de G
- 3. $H \triangleleft H \cdot K$
- 4. A mes a mes, $K/H \cap K \cong H \cdot K/H$

10.3.1 **TODO** Demo

10.4 Teorema: Jordan-Holder

Sigui G un grup i $\left\{ \begin{array}{l} G = G_0 \rhd G_1 \rhd G_2 \rhd \ldots \rhd G_n = \{1\} \\ G = H_0 \rhd H_1 \rhd H_2 \rhd \ldots \rhd H_m = \{1\} \end{array} \right\} \text{ Dues series de composicio de G}$

Aleshores n = m, i $\exists \sigma \in \mathcal{S}_n$ tal que $H_i/H_{i+1} \cong G_{\sigma(i)}/G_{\sigma(i)+1}$.

10.4.1 **TODO** Demo

10.5 Proposicio

Sigui G un grup, H un subgrup de G. Aleshores

- 1. Si G es resoluble \implies H es resoluble
- 2. Si $H \triangleleft G$ i G es resoluble $\implies G/H$ es resoluble
- 3. Si $H \lhd G$ i H i G/H son resolubles \implies G es resoluble

11 Accio d'un grup en un conjunt

11.1 Definicio: Accio d'un grup en un conjunt

Sigui G un grup. SIgui X un conjunt. Una accio de G en X es una aplicacio

$$\varphi:G\times X\to X$$

$$(a,x)\mapsto \varphi(a,x)=ax$$

tal que:

1.
$$a \cdot (b \cdot x) = (a \cdot b) \cdot x \quad \forall a, b \in G, \forall x \in X$$

$$2. \ 1 \cdot x = x \quad \forall x \in X$$

11.2 Observacio

Hi ha una bijeccio entre

$$\{\varphi:G\times X\to X\mid \varphi\text{ accio de G en X}\}\leftrightarrow \{\phi:G\to Perm(X)\mid \phi\text{ morfisme de grups}\}$$

11.3 Definicio: Orbita d'un element

L'orbita de $x \in X$ es el subconjunt $G \cdot x = \{ax \mid a \in G\} \subseteq X$

11.4 Definicio: L'estabilitzador/grup d'isotropia d' $x \in X$

 $\mathbf{G}\mathbf{x} := \{a \in G \mid ax = x\} \subseteq G,$ es un subgrup de G.

11.5 Lema:

Si x,y estan en la mateixa orbita, els seus estabilitzadors son conjugats.

Concretament, si y = ax
$$\implies G_y = aG_xa^{-1}$$

11.5.1 **TODO DEMO**

11.6 Proposicio

L'aplicacio

$$G \cdot x \to G/G_x$$
$$ax \mapsto a \cdot G_x$$

esta ben definida i es bijectiva. En particular,

- 1. $|G \cdot x| = |G/G_x| = [G : G_x]$
- 2. Si G es finit, $|G \cdot x|$ divideix |G|
- 3. Si X es finit, $|X| = \sum_{i=1}^{n} |G \cdot x_i| = \sum_{i=1}^{n} [G : G_{x_i}]$

11.6.1 TODO DEMO

11.7 Definicio: punt fix

 $x \in X$ es un punt fix per l'accio si ax = x $\forall a \in G$. En particular $G \cdot x = \{ax \mid a \in G\} = \{x\}, G_x = \{a \in G \mid ax = x\} = G$

11.8 Definicio: Accio Transitiva

 $G \times X \to X$ es accio transitiva si \forall x,y \in X, \exists a \in G tal que y = ax. En aquest cas. $G \cdot y = X \forall y \in X$.

11.9 Definicio: Accio Fidel

 $G \times X \to X$ es accio fidel si \forall a \neq b, a,b \in G. Aleshores $m_a \neq m_b$, on

$$m_a: X \to X$$

 $x \mapsto ax$

 $m_a \in Perm(x)$

11.9.1 Observacio:

Si be $G \times X \to X \cong m : G \to Perm(x)$ es morfisme de grups, si imposem que es fidel, el morfisme es injectiu. A mes si X es finit l'accio es isomorf a un subgrup del grup simetric.

11.10 Accio per translacio en X, quan X = G

Sigui G un grup, definim

$$G \times G \to G$$

$$a \quad x \mapsto a \cdot x = ax$$

I es efectivament una accio.

11.11 Teorema de Cayley

Sigui G un grup finit, n = |G|. Aleshores G es isomorf a un subgrup del grup simetric S_n

11.11.1 TODO Demo

11.12 Definicio: Accio per conjugacio de G en X = G

$$G \times G \to G$$

$$a \quad x \mapsto a \cdot x = axa^{-1}$$

11.12.1 Proposicio:

 $x \in G$ es punt fix $\iff a \cdot x = x \quad \forall a \in G \iff axa^{-1} = x \forall a \in G \iff ax = xa \quad \forall a \in G \iff x \in \mathcal{Z}(G) = \{x \in G \mid ax = xa \quad \forall a \in G\} = \text{centre de G. El centre de G es subgrup.}$

11.12.2 Proposicio:

L'estabilitzador de y \in G es $G_y = \{a \in G \mid a \cdot y = y\} = \{a \in G \mid aya^{-1} = y\} = \{a \in G \mid ay = ya\} = \mathcal{Z}_G(y)$, centralitzador de G. El centralitzador tambe es un subgrup de G.

11.13 Definicio: Accio per translacio en les classes laterals

Sigui G grup, H subgrup de G i $X = G/H = \{ aH \mid a \in G \}$

$$G \times G/H \to G/H$$

$$a \quad bH \mapsto abH$$

- Es una accio transitiva.
- si $aH \in X = G/H$: L'estabilitzador de aH es $G_{aH} = \{b \in G \mid b(aH) = aH\} = aHa^{-1}$

11.14 Definicio: Accio per conjugacio en els subgrups

Sigui G grup i $X = \{H \mid H \text{ subgrup de G}\}.$

$$G \times \{\text{sg. de yG}\} \to \{\text{sg. de G}\}, \text{ conjugat de H}$$

 $a \quad H \mapsto aHa^{-1}$

Si H es subgrup de G, l'orbita d'H es:

 $G\cdot H=\{a\cdot H\mid a\in G\}=\{aHa^{-1}\mid a\in G\}$: els conjugats de H

H es punt fix per l'accio si $a = H \iff aHa^{-1} = H \quad \forall a \in G \iff H$ es subgrup normal de G L'estabilitzador de H es: $G_H = \{a \in G \mid a \cdot H\} = \{a \in |aHa^{-1} = H\} = N_G(H)$: Normalitzador de H en G

Sabem que $|G \cdot H| = [G : G_H]$. Per tant.

 $H \triangleleft G \iff$ H es punt fix per l'accio \iff L'orbita de H te un sol punt \iff $|G \cdot H| = 1 \iff$ $[G:G_H] = 1 \iff$ $G_H = G \iff$ $N_G(H) = G$

11.15 Teorema de Cauchy

Sigui G un grup finit, |G|=n. Sigui p primer tal que p|n. ALeshores, $\exists \ x \in G$ tal que ord(x)=p

11.15.1 TODO Demo

12 Subgrups de Sylow

12.1 Definicio: p-grups: Subgrups de Sylow

Sigui G un grup i p un nombre primer. Aleshores, G es un p-grup \iff | G | = p^r per a algun $r \ge 0$.

12.2 Teorema:

Sigui G un p-grup. Aleshores, $|G|=p^r,\,r\geq 0,\,i$:

- 1. G no trivial $\iff \mathcal{Z}(G)$ no trivial.
- 2. G es resoluble
- 3. si G es simple, aleshores $G \cong \mathbb{Z}/p\mathbb{Z}$

13 Teoremas de Sylow