FSAB 1402: Informatique 2

Récursion sur les Entiers

Peter Van Roy

Département d'Ingénierie Informatique, UCL

pvr@info.ucl.ac.be

- Résumé du premier cours
- Récursion sur les entiers
- Introduction aux listes

Lecture pour le deuxième cours

- Chapitre 1 (sections 1.3-1.6)
 - Fonctions, listes, exactitude
- Chapitre 2 (section 2.1.1)
 - Syntaxe des langages
- Chapitre 2 (sections 2.3 et 2.4.1)
 - Le langage noyau du modèle déclaratif
 - Une introduction aux types de base
 - Procédures et références externes
- Chapitre 3 (sections 3.2, 3.3, 3.4.1)
 - Calcul itératif
 - Calcul récursif
 - Sauf section 3.3.2 qui sera vue plus tard avec la sémantique
 - Introduction aux listes et à la notation pour les types

Résumé du premier cours

- Souvenez-vous des deux mondes: le monde visible (du programmeur) et le monde invisible (à l'intérieur de l'ordinateur)
 - Un identificateur fait partie du monde visible: c'est un texte, fait pour le programmeur
 - Une variable (en mémoire) faite partie du monde invisible: c'est ce qu'utilise l'ordinateur pour faire ses calculs
 - Une variable n'est jamais vu directement par le programmeur, mais indirectement par l'intermédiaire d'un identificateur
 - Le rôle clé de l'environnement
 - Un même identificateur peut désigner des variables différentes à des endroits différents du programme
 - Des identificateurs différents peuvent désigner la même variable

Une question de portée...

```
local P Q in
  proc {P} {Browse 100} end
  proc {Q} {P} end
  local P in
    proc {P} {Browse 200} end
    {Q}
  end
end
```

- Qu'est-ce qui est affiché par ce petit programme?
- Utilisez la définition de portée lexicale: chaque occurrence d'un identificateur correspond à une déclaration précise!

Une question de portée...

```
local P Q in
  proc {P} {Browse 100} end
  proc {Q} {P} end
  local P in
    proc {P} {Browse 200} end
    {Q}
  end
end
```

- Quelle est la portée du P rouge?
- Alors, dans cette portée, où se trouve la définition de P?

Procédures et portée lexicale

```
local P Q in
  proc {P} {Browse 100} end
  proc {Q} {P} end
  local P in
    proc {P} {Browse 200} end
    {Q}
  end
end
```

- "Une procédure ou une fonction se souvient toujours de l'endroit de sa naissance"
- La définition de Q utilise la première définition de P
- La seconde définition de P, à côté de l'appel de Q, n'est pas utilisée!

- Souvenez-vous de la définition du modèle déclaratif
 - Un programme qui marche aujourd'hui marchera demain
 - Un programme est un ensemble de fonctions
 - Chaque fonction ne change jamais son comportement, tout comme chaque variable ne change jamais son affectation
- Donc, l'appel de Q donnera forcément toujours le même résultat
 - Q doit toujours utiliser la même variable pour P!
 - Comment cela est-il implémenté?
 - Avec l'environnement contextuel: un environnement qui fait partie de la définition de la procédure Q et qui mémorise l'identificateur P lors de la définition de Q

L'environnement contextuel (1)

- Voici la définition de la procédure Q: proc {Q} {P} end
- Quand Q est définie, un environnement E_c est créé qui contient P, et gardé avec la définition de Q
 - $E_c = \{P \rightarrow p\}$
- Alors, quand Q est appelée, E_c est utilisé pour trouver la variable p
 - Nous sommes sûrs de toujours trouver la même variable, même s'il y a une autre définition de P à côté de l'appel de Q
- Les identificateurs dans E_c sont les identificateurs dans la définition de Q qui ne sont pas déclarés dans cette définition
 - Ceux-ci s'appellent les identificateurs libres


```
local Add2 Two in
  Two=2
fun {Add2 N} N+Two end
local X in
  X={Add2 10}
  {Browse X}
end
end
```

- Quel est l'environnement contextuel de la fonction Add2?
- Il faut regarder la définition de Add2: les occurrences d'identificateurs qui sont définies en dehors de Add2?
 - Ce sont les identificateurs libres de Add2
- E_c= ... ?

L'environnement contextuel (3)


```
local Add2 Two in
 Two=2
 fun {Add2 N} N+Two end
 local X Two in
   Two=9999
   X={Add2 10}
   {Browse X}
 end
end
```

- Quel est le résultat du Browse maintenant?
- C'est toujours 12!
- Pourquoi?

Fonctions, procédures et le langage noyau

- Souvenez-vous: comment est-ce qu'on peut comprendre un langage riche, avec un grand nombre d'outils pour le programmeur?
 - On utilise un langage simple, le langage noyau
 - Le langage riche est traduit vers le langage noyau
- Exemple: dans notre langage noyau, il n'y a que des procédures, pas de fonctions
 - Une fonction est traduite vers une procédure avec un argument de plus
 - fun $\{lnc X\} X+1 end \Rightarrow proc \{lnc X Y\} Y=X+1 end \}$
 - $A=\{lnc\ 10\} \Rightarrow \{lnc\ 10\ A\}$

Le langage noyau du modèle déclaratif (en partie)

• <v> ::= <number> | < ...</pre>

Récursion sur les entiers

Récursion

- Idée: résoudre un grand problème en utilisant des solutions aux problèmes plus petits
- Il faut savoir ranger les solutions selon la taille du problème qu'ils résolvent
 - Pour aller de Barbe 91 à Louvain-la-Neuve au restaurant Hard Rock Café à Stockholm
 - Découpe en de problèmes de base solubles: voyage de Louvain-la-Neuve à Zaventem (train), voyage Bruxelles-Stockholm (avion), voyage aéroport Stockholm-centre ville (train), voyage au Hard Rock Café (métro)
- Il faut savoir résoudre les problèmes de base directement! (train, métro, avion, voiture)

Exemple: calcul de factorielle

```
declare
fun {Fact N}
  if N==0 then 1
  else N * {Fact N-1} end
end
```

Grand problème: {Fact N}

Problème plus petit: {Fact N-1}

Problème de base: {Fact 0} = 1

- A chaque fonction récursive, on peut associer une formule mathématique, l'invariant
 - L'invariant exprime la relation entre les arguments et le résultat de la fonction
- Par exemple, pour la fonction Fact
 - On met d'abord Fact en langage noyau: proc {Fact N R} ... end (comme ça le résultat R devient visible)
 - L'invariant est simplement n!=r
- Nous allons voir qu'il est très intéressant de raisonner avec les invariants
 - Pour l'exactitude et pour l'efficacité

Une autre factorielle (1)

- En utilisant un autre invariant on peut faire une autre définition de factorielle:
 - n! = i! * a
 - On commence avec i=n et a=1
 - On réduit *i* et on augmente *a*, tout en gardant vrai l'invariant
 - Principe des vases communicants: quand le niveau dans un vase descend, le niveau dans l'autre monte
 - Quand i=0 c'est fini et le résultat est a
- Exemple avec *n=4*:
 - 4! = 4! * 1
 - 4! = 3! * 4
 - 4! = 2! * 12
 - 4! = 1! * 24
 - 4! = 0! * 24


```
declare
fun {Fact2 | A}
  if | l==0 then A
  else {Fact2 | -1 | I*A} end
end
```

declare

```
F={Fact2 4 1}
{Browse F}
```

Quelques informations sur l'invariant

- Voici encore une fois l'invariant qu'on a utilisé:
 - n! = i! * a
- Un invariant est une formule logique qui est vraie à chaque appel récursif (par exemple, {Fact2 I A}) pour les arguments de cet appel (ici, I et A)
- L'invariant contient à la fois des informations globales (n) et locales (les arguments i et a)
 - Pour le programme, une information globale est une constante
- Si on traduit en langage noyau, le résultat R devient visible et on a proc {Fact2 I A R}
 - L'invariant complet est (n! = i! * a) ∧ (n! = r)

- Quand on regarde l'appel récursif dans les deux cas, on voit une différence:
 - Dans Fact: N*{Fact N-1}
 - Dans Fact2: {Fact2 I-1 I*A}
- Dans Fact, on fait la multiplication après l'appel récursif
 - On peut voir ceci plus clairement en traduisant Fact en langage noyau
- Dans Fact2, on fait la multiplication avant l'appel récursif
 - L'appel récursif ne revient pas
 - Exercice pour vous: mettre Fact2 en langage noyau pour vérifier que l'appel récursif est bien le dernier appel dans Fact2


```
declare
proc {Fact N R}
 if N==0 then R=1
 else
   local N1 R1 in
      N1 = N-1
      {Fact N1 R1} % Ce n'est pas le dernier appel
      R=N*R1 % On doit revenir! Pas de chance.
   end
 end
end
```

Les accumulateurs

- Dans Fact2, on "accumule" le résultat petit à petit dans A
- L'argument A de Fact2 est donc appelé un accumulateur
 - Quand on utilise un invariant pour faire un programme, cela fait apparaître des accumulateurs
- Dans la programmation déclarative, on utilise souvent des invariants et des accumulateurs
 - Les invariants sont les mêmes qu'on utilise dans les boucles des langages impératifs comme Java
- Une fonction récursive qui utilise un accumulateur est comme une boucle en langage impératif!
 - Une boucle en langage impératif = une fonction récursive avec accumulateur

L'importance des accumulateurs

- Quand on regarde l'appel récursif dans les deux cas, on voit une différence:
 - Dans Fact: N*{Fact N-1}
 - Dans Fact2: {Fact2 I-1 I*A}
- C'est une grande différence!
 - Pendant l'exécution, Fact doit garder en mémoire des informations sur tous les appels récursifs, jusqu'à la fin des appels récursifs
 - Fact2 ne doit garder en mémoire que l'appel récursif actuellement en cours, ce qui est une économie importante
- Pour l'efficacité, l'appel récursif doit être la dernière instruction!
 - Alors la taille de mémoire sera constante (comme une boucle)
 - C'est pourquoi les accumulateurs sont importants
 - (On rendra cette intuition plus exacte quand on verra la sémantique)

- On appelle récursion terminale quand la dernière instruction est l'appel récursif
- Parce qu'on ne doit pas revenir de l'appel récursif, la taille de la pile est constante
 - L'exécution est aussi efficace qu'une boucle en langage impératif
- C'est la règle principale à suivre dans le modèle déclaratif
- Attention: certains implémentations reviennent quand même de l'appel récursif, et ne gagnent donc rien de la récursion terminale
 - C'est le cas pour certaines implémentations de Java et de C++: il faut vérifier dans la documentation!
 - Tous les langages symboliques (Scheme, ML, Haskell, Oz, Prolog, ...) implémentent bien la récursion terminale

Racine carrée avec la méthode de Newton

La racine carrée avec la méthode itérative de Newton

- On va utiliser une méthode itérative, la méthode de Newton, pour calculer la racine carrée
- Cette méthode est basée sur l'observation que si g est une approximation de sqrt(x), alors la moyenne entre g et x/g est une meilleure approximation:
 - g' = (g + x/g)/2

Pourquoi la méthode de Newton marche

 Pour vérifier que l'approximation améliorée est vraiment meilleure, calculons l'erreur e:

$$e = g - \operatorname{sqrt}(x)$$

Alors:

$$e' = g' - \text{sqrt}(x) = (g + x/g)/2 - \text{sqrt}(x) = e^2/2g$$

• Si on suppose que $e^2/2g < e$ (l'erreur devient plus petite), on peut déduire la condition suivante:

$$g+\operatorname{sqrt}(x)>0$$

- Cette condition est toujours vraie (parce que g>0)
 - C'est donc toujours vrai que l'erreur diminue!

Nous allons utiliser un itérateur générique:

```
fun {Iterate Si}
  if {IsDone Si} then Si
  else local Sj in
     Sj={Transform Si}
     {Iterate Sj}
  end end
end
```

- Cet itérateur utilise un accumulateur Si
- Il faut remplir IsDone et Transform

L'amélioration d'une approximation (*Transform*)


```
fun {Transform Guess}
  (Guess + X/Guess) / 2.0
end
```

- Attention: X n'est pas un argument de Transform!
- X est un "identificateur libre" dans Transform qui doit être défini dans le contexte de Transform
 - Quel est l'environnement contextuel de Transform?
- (Petite remarque: X, Guess et 2.0 sont tous des nombres en virgule flottante. Pour garder l'exactitude des entiers, il n'y a aucune conversion automatique avec les entiers.)


```
fun {IsDone Guess}
    {Abs (X-Guess*Guess)}/X < 0.00001
end</pre>
```

- De nouveau, X est un identificateur libre dans IsDone
- La fonction Abs fait partie des modules de base de Mozart
- L'erreur relative 0.00001 est "câblée" dans la routine; on peut en faire un paramètre (exercice!)
- Attention: X doit être différent de 0.0!

Définition complète

```
fun {NewtonSqrt X}
   fun {Transform Guess}
       (Guess + X/Guess)/2.0
   end
   fun {IsDone Guess}
       {Abs X-Guess*Guess}/X < 0.00001
   end
   fun {Iterate Guess}
        if {IsDone Guess} then Guess
       else {Iterate {Transform Guess}} end
   end
in
   {Iterate 1.0}
end
```


- S={NewtonSqrt X} satisfait:
 - Les arguments S et X sont des nombres en virgule flottante; l'entrée X et la sortie S sont positifs (>0.0)
 - La relation entre eux est: |x-s*s|<0.00001
- Exercice: étendre la fonction pour satisfaire à une spécification où X=0.0 est permis

- Vous remarquez que Transform, IsDone et Iterate sont des fonctions locales à NewtonSqrt
 - Elles sont cachées de l'extérieur
- Transform et IsDone sont dans la portée de X, elles connaissent donc la valeur de X
- D'autres définitions sont possibles (voir le livre)!
 - Par exemple, vous pouvez mettre leurs définitions à l'extérieur de NewtonSqrt (exercice!)
 - Avec local ... end, vous pouvez quand même cacher ces définitions du reste du programme (comment?)

Calcul récursif de la puissance

Une récursion un peu plus compliquée: la puissance

- Nous allons définir une fonction {Pow X N} qui calcule X^N (N≥0) avec une méthode efficace
- Définition mathématique naïve de xⁿ:

$$x^0 = 1$$

 $x^n = x^*(x^{n-1}) \text{ si } n>0$

Cette définition donne la fonction suivante:

```
fun {Pow X N}
  if N==0 then 1
  else X*{Pow X N-1} end
end
```

 Cette définition est très inefficace en espace et en temps! Pourquoi?

Une autre définition de X^N

Voici une autre définition de xⁿ:

$$x^{0} = 1$$

 $x^{2n+1} = x * x^{2n}$
 $x^{2n} = y^{2} \text{ où } y=x^{n} (n>0)$

- Comme la première définition, nous pouvons programmer cette définition tout de suite!
- Les deux définitions sont aussi des spécifications
 - Ce sont des définitions purement mathématiques
 - La deuxième définition est plus élaborée que la première, mais c'est quand même une spécification

- La définition précédente n'utilise pas d'accumulateur
- Est-ce qu'on peut faire une autre définition avec un accumulateur?
- II faut d'abord un invariant!
 - Dans l'invariant, une partie "accumulera" le résultat et une autre partie tendra à disparaître
 - Qu'est-ce qui est "accumulé" dans Pow?

Pow avec un accumulateur

Voici un invariant:

$$x^n = y^i * a$$

- Cet invariant peut être représenté par un triplet (y,i,a)
- Initialement: (y,i,a) = (x,n,1)
- Il faut faire diminuer i, tout en gardant vrai l'invariant
- Il y a deux types d'itérations:
 - (y,i,a) devient (y*y,i/2,a) (si i est pair)
 - (y,i,a) devient (y,i-1,y*a) (si i est impair)
- Quand i=0 le résultat est a

Définition de {Pow X N} avec un accumulateur


```
fun {Pow2 X N}
  fun {PowLoop Y I A}
      if I==0 then A
      elseif | mod 2 == 0 then
           {PowLoop Y*Y (I div 2) A}
     else {PowLoop Y (I-1) Y*A} end
  end
in
  {PowLoop X N 1}
end
```

Introduction aux listes

Introduction aux listes

- Une liste est une structure composée avec une définition récursive:
 Une liste est une liste vide ou un élément suivi par une autre liste
- Voici une règle de grammaire en notation EBNF:

- <List T> représente une liste d'éléments de type T et T représente un élément de type T
- Attention à la différence entre | et '|'

- <Int> représente un entier; plus précisément l'ensemble de toutes les représentations syntaxiques de tous les entiers
- <List <Int>> représente l'ensemble de toutes les représentations syntaxiques des listes d'entiers
- T représente l'ensemble des représentations syntaxiques de tous les éléments de type T; nous disons que T est une variable de type

- Syntaxe simple (l'opérateur '| au milieu)
 - nil, 5|nil, 5|6|nil, 5|6|7|nil
 - nil, 5|nil, 5|(6|nil), 5|(6|(7|nil))
- Sucre syntaxique (la plus courte)
 - nil, [5], [5 6], [5 6 7]

- Syntaxe préfixe (l'opérateur '|' devant)
 - nil
 '|'(5 nil)
 '|'(5 '|'(6 nil))
 '|'(5 '|'(6 '|'(7 nil)))
- Syntaxe complète

```
nil,
'|'(1:5 2:nil)
'|'(1:5 2:'|'(1:6 2:nil))
'|'(1:5 2:'|'(1:6 2:'|'(1:7 2:nil)))
```


- Extraire le premier élément L.1
- Extraire le reste de la liste L.2
- Comparaison L==nil

Longueur d'une liste

- La longueur d'une liste est le nombre d'éléments dans la liste
- On peut la calculer avec une fonction récursive:

```
fun {Longueur L}
  if L==nil then 0
  else 1+{Longueur L.2} end
end
```

 Exercice: faire une version de Longueur avec accumulateur!

Résumé

- Récursion sur les entiers
- Spécification d'une fonction
 - La définition mathématique de la fonction; parfois inductive
 - A partir d'une spécification on peut faire une implémentation en langage de programmation
- Invariant d'une fonction
 - Une formule logique qui est toujours vraie pour les arguments et le résultat à chaque appel récursif de la fonction
- Boucle
 - Quand l'appel récursif est la dernière instruction (récursion terminale), la mémoire utilisée est constante. Dans ce cas, la fonction récursive est une boucle.
 - Attention: il existe des systèmes qui n'ont pas implémenté cette propriété (surtout parmi les implémentations des langages impératifs). Pour les systèmes qui ont ce défaut, la récursion est à utiliser avec modération.
- Accumulateur
 - Avec un accumulateur on est sûr d'avoir la récursion terminale
 - Un accumulateur est toujours lié à un invariant
- Liste et fonction récursive sur une liste