RECOMMENDATION SYSTEM WITH MINIMAL DENTIFIABLE FEATURES

Exploring the possible feature / stretch goal

Objective: Creates a random dataset for *n* students

- Generates random e-mails
 - Random characters
 - Random special characters
 - Random presence and position of special characters
 - Random domains
- One-way one-time PBKDF2-HMAC-SHA1 encryption of e-mails
- Generates random club interests
 - Random number of interested clubs
 - Random choice of clubs
- Generates random event interests [still under development]

populate_dataset.py

Objective: Finds similar clubs between all pairs of students

- Computes the intersection of a pair of club lists from two different students
- Generates club_similarity.csv for better interpretability of the recommendation system

Objective: Generates a .csv of club recommendations

- Finds similarity indices between a pair of different students (how many clubs are similar?)
 - Stored as clubs_similarity_index.csv
- Sorts these values for each student to find most similar students
 - Stored as similar_students.csv

- Computes importance of a similar user
 - Importance = similarity_index(this_user, other_similar_user)
- Importance-based scoring system
 - (Let) "student" be 1 student for whom we need recommended clubs
 - (Let) "other_students" be a list of other students ranked by similarity

For "each_student" in "other_students"

- 1) Find clubs that "student" is not a part of (np.setdiff1d of the club lists)
- 2) Update the "weight" for each club based on importance(each_student)
- Normalise the weights for each club
- Store them from highest weight to lowest weight (i.e. most recommended to least recommended)
- Generates club_recommendations.csv

Advantages

- Requires minimal personal student information (one-time oneway encryption of e-mail IDs or any other personally identifiable information)
- Highly interpretable and intuitive model: better for scalability and for adding new parameters/features in the future
- Importance-based scoring removes any advantage that may arise due to a happenstance order
- Recommendations takes all user interests into account, not just those that are most similar. (Can be treated as a hyperparameter to include n-most similar users).
- Generates a unique order of all clubs and not just a subset of recommended clubs. This can be used as a native club-view order for each student (each student sees all clubs but in a unique order, personalized to them)

Areas of improvement

- Women in engineering
- Indonesian students of Okanagan
- African Caribbean Students Club
- Asian Student Association
- Bible Discussion Club
- Personal data vs Personalized results trade-off
 - Example: biased results (Women in engineering)
 - Using "categories" data in AllUBCOClubs.json

What about new users?

- Initial run: no club interests for any student
- Three possible approaches:
 - 1. Recommend top clubs from each category
 - Some clubs are "uncategorized"
 - 2. [Currently more do-able] Use a questionnaire to select those categories that the student is interested in
 - Reluctance to answer a questionnaire (cannot assume that everyone will respond)
 - 3. (Best case but more high-effort)
 - Obtain the dataset of current students and what clubs they are a part of
 - Generate an average portfolio by faculty
 - Display this order

RECOMMENDATION SYSTEM WITH OPTIMAL DENTIFIABLE FEATURES

Exploring the possible feature / stretch goal

What if we had the following features?

1. Gender

- Women in Engineering
- Inclusive Men's Health Partnership

2. Ethnicity

- Asian Student Association
- African Caribbean Student Club
- Chinese Students and Scholars Association

3. Country

Hong Kong Student Club

4. Religion

- Bible Discussion Club
- Not including this would only affect 1 club (unless new religious clubs form in the future)

student_all_interests.csv

clubs_similarity.csv

recommend_clubs.py

Importance of a pair of students

- One dimensional linear equation: y = mx +c
- In this context:
 importance = similarity_coefficient * club_similarity + bias
- similarity_coefficient: how similar are 2 students based on their gender, ethnicity, country, and religion?
- club_similarity: how many clubs do these 2 students have in common?
- bias: function parameter, non-zero $x \in Z^{(++)}$
 - To ensure that even those with nothing in common get some unit importance, for completeness

15 10 -20 -10 10 20 30 40 50 60

Finding similar students

- Each regression line enlists similar students w.r.t. one particular student
- Each point can be seen as a unit vector with magnitude=importance
- Pop out similar users from highest importance to lowest importance
- Find unique clubs (algorithm similar to the previous one with minimal features)