Práctica 8

Pilas

Parte 2

Convertir expresiones Infijas a Postfijas

Tratamiento de Expresiones aritméticas

A + B	Infija
+ A B	Prefija
A B +	Postfija

- □ **A+B** = **Infija**: Esta notación es Infija porque el operador se encuentra entre los operadores.
- □ **AB**+ = **posfija**: Esta notación es Posfija porque el operador se encuentra después de los operadores.
- □ +AB = Prefija: Esta es una notación Prefija porque el operador se encuentra antes de los operadores.

Precedencia de operadores

OPERADOR	PRECEDENCIA	
()	Mayor	
^		
* / %		
+ -	↓	
=	Menor	

Algoritmo para convertir expresión infija a postfija

- ☐ Se crea un string resultado donde se almacena la expresión en postfijo.
 - 1. Los operandos se agregan directamente al resultado
 - 2. Un paréntesis izquierdo se mete a la pila y tiene prioridad o precedencia cero (0).
 - 3. Un paréntesis derecho saca los elementos de la pila y los agrega al resultado hasta sacar un paréntesis izquierdo.
 - 4. Los operadores se insertan en la pila si:
 - a) La pila está vacía.
 - b) El operador en el tope de la pila tiene menor precedencia.
 - c) Si el operador en el tope tiene mayor o igual precedencia se saca y agrega al resultado (repetir esta operación hasta encontrar un operador con menor precedencia o la pila este vacía).
 - 5. Cuando se termina de procesar la cadena que contiene la expresión infija, entonces se vacía la pila pasando los elementos al resultado.

En los pasos 1, 3 Y5 el símbolo analizado -un operandose agrega directamente a EPOS. Al analizar el operador +, paso 2, se verifica si en PILA hay operadores e mayor o igual prioridad.

En este caso, PILA está vacía; por tanto, se pone el símbolo en el tope de ella. Con el operador *, paso 4, sucede algo similar.

En PILA no existen operadores de mayor o igual prioridad -la suma tiene menor prioridad que la multiplicación-, por lo que se agrega el operador * a PILA.

En los dos últimos pasos, 6 y 7, se extraen de PILA sus elementos, agregándolos a EPOS.

Expresión infija: X + Z * W

Paso	EI	Símbolo analizado	Pila	EPOS
0	X + Z * W			
1	+Z*W	X		X
2	Z*W	+	+	X
3	* W	Z	+	XZ
4	W	*	+*	XZ
5		W	+*	XZW
6			+	XZW*
7				XZW * +

Los pasos que se consideran más relevantes son: en el paso 5, al analizar el paréntesis	Paso	EI	Símbolo analizado	Pila	EPOS
derecho se extraen repetidamente todos los elementos de PILA (en este caso sólo el	0	$(X+Z)*W/T^Y-V$			# Pod 2
operador +), agregándolos a EPOS hasta	1	$X+Z$)* $W/T \wedge Y-V$	((
encontrar un paréntesis izquierdo.	2	+ Z)* W / T ^ Y - V	X	(X
El paréntesis izquierdo se quita de PILA pero	3	Z)* W / T ^ Y - V	+	(+	X
El paréntesis izquierdo se quita de PILA pero no se incluye en EPOS -recuerde que las	4)* W / T ^ Y - V	Z	(+	XZ
expresiones en notación posfija no necesitan de paréntesis para indicar prioridades.	5	* W / T ^ Y - V)	(XZ+
)		XZ+
Cuando se trata el operador de división, paso 8, se quita de PILA el operador * y se agrega a	6	$W/T \wedge Y - V$	8	*	XZ+
EPOS, ya que la multiplicación tiene igual	7	/ T ^ Y - V	W	*	XZ + W
prioridad que la división.	8	$T \wedge Y - V$	1	1	XZ + W *
Al analizar el operador de resta, paso 12, se			1	1	XZ + W*
extraen de PILA y se incorporan a EPOS	9	^ Y - V	T	1	XZ + W * T
todos los operadores de mayor o igual prioridad, en este caso son todos los que están	10	Y - V	٨	/^	XZ + W * T
en ella –la potencia y la división-, agregando	11	-v	Y	11	XZ + W * TY
finalmente el símbolo en PILA.				1	$XZ + W * TY ^$
Luego de agregar a EPOS el último operando,	12	v	-		$XZ + W * TY ^ /$
y habiendo revisado toda la expresión inicial,			- 1	- 1	$XZ + W * TY^/$
se vacía PILA y se incorporan los operadores (en este caso el operador -) a la expresión	13		V	is obsubagie	$XZ + W * TY ^ / V$
postfija.	14	appeals an using	mo Si Signite	and and	$XZ + W * TY^/V -$

Práctica 8 – Parte 2.1

Conversión de expresiones infijas en postfijas

- A partir de una expresión en notación infija, verificar que los paréntesis están correctamente balanceados y posteriormente convertirla a su correspondiente notación postfija con ayuda de una **pila** y guardar el resultado en una **lista**.
- Utilice la implementación de las estructuras de datos **Lista** y **Pila** de manera **dinámica**.

$$5+((1+2)*4)-3$$
 Conversión
 $5 1 2 + 4 * + 3 -$

 Entrada
 Salida

 $3+10*2$
 Conversión
 $3 10 2 * +$

 Entrada
 Salida

Evaluación de una expresión aritmética en notación Postfija

Notación Polaca Inversa

Reverse Polish Notation (RPN)

Notación postfija

- Es un método algebraico alternativo de introducción de datos.
- Su principio es el de evaluar los datos directamente cuando se introducen y manejarlos dentro de una estructura de tipo Pila **LIFO** (Last In First Out), lo que optimiza los procesos a la hora de programar.
- En la **notación postfija** el operador va después de los operandos.

5 + 2	Infija
+ 5 2	Prefija
5 2 +	Postfija

Precedencia de operadores

OPERADOR	PRECEDENCIA
() * / % + - =	Mayor

Ejemplos Notación postfija

Infija	Postfija	Resultado
2 + 3 * 4	2 3 4 * +	14
(2 + 3) * 4	2 3 + 4 *	20
5+((1+2)*4)-3	512+4*+3-	14

Algoritmo de Notación Polaca Inversa (RPN)

- Si hay elementos en la expresión postfija:
 - Leer el primer elemento de la expresión posfija.
 - ♣Si el elemento es un operando.
 - Poner el operando en la pila.
 - ♣Si no, el elemento es un operador.
 - Se sabe que el operador toma 2 operandos.
 - Si hay menos de 2 operandos en la pila.
 - **(Error)** El usuario no ha introducido suficientes argumentos en la expresión.
 - Si no, tomar los últimos 2 operandos de la pila.
 - Evaluar la operación con respecto a los operandos.
 - Introducir el resultado en la pila.
- Si hay un solo elemento en la pila:
 - ♣El valor de ese elemento es el resultado del cálculo.
- Si hay más de un elemento en la pila:
 - **(Error)** El usuario ha introducido demasiados elementos.

La expresión algebraica 5+((1+2)*4)-3 se traduce a la notación polaca inversa como $\mathbf{5}$ $\mathbf{1}$ $\mathbf{2}$ + $\mathbf{4}$ * + $\mathbf{3}$ - y se evalúa de izquierda a derecha según se muestra en la siguiente tabla.

Entrada	Operación	Pila	Comentario
5	Introducir en la pila	5	
1	Introducir en la pila	5, 1	
2	Introducir en la pila	5, 1, 2	
+	Suma	5, 3	Tomar los dos últimos valores de la pila (1, 2), hacer 1 + 2 y sustituirlos por el resultado (3)
4	Introducir en la pila	5, 3, 4	
*	Multiplicación	5, 12	Tomar los dos últimos valores de la pila (3, 4), hacer 3 * 4 y sustituirlos por el resultado (12)
+	Suma	17	Tomar los dos últimos valores de la pila (5, 12), hacer 5 + 12 y sustituirlos por el resultado (17)
3	Introducir en la pila	17, 3	
-	Resta	14	Tomar los dos últimos valores de la pila (17, 3), hacer 17 - 3 y sustituirlos por el resultado (14)

Práctica 8 – Parte 2.2

Evaluación de expresión aritmética en notación postfija

- A partir de una expresión en notación postfija en una **lista**, evalúe el resultado de la misma con ayuda de una **pila**.
- Utilice la implementación de las estructuras de datos Lista y Pila de manera dinámica.

