

口 离散数学第四部分之三

环和域

:: 环的定义与性质

- □环的定义
- □环的运算性质
- □环的子代数和环同态

定义设<R,+,•>是代数系统,+和•是二元运算。

如果满足以下条件:

- (1) <R,+>构成交换群。
- (2) <**R**,•>构成半群。
- (3) -运算关于+运算适合分配律。

则称<R,+,•>是一个环(ring)。

通常称+运算为环中的加法, 域算为环中的乘法。

:: 环的实例

- (1)整数集、有理数集、实数集和复数集关于普通的加法和乘法构成环,分别称为整数环Z,有理数Q,实数环R和复数环C。
- (2) $n(n\geq 2)$ 阶实矩阵的集合 $M_n(R)$ 关于矩阵的加法和乘法构成环,称为n阶实矩阵环。
- (3)集合的幂集P(B)关于集合的对称差运算和交运算构成 环。
- (4)设 $Z_n = \{0,1,...,n-1\}$, Θ 和 \otimes 分别表示模n的加法和乘法,则<Z_n, Θ , \otimes >构成环,称为模n的整数环。

:: 环的运算约定

- □加法的单位元记作0。
- □乘法的单位元记作1(对于某些环中的乘法不存在单位元)。
- □ 对任何环中的元素x, 称x的加法逆元为负元,记作-x。
- □ 针对环中的加法,
 - -x-y表示x+(-y)。
 - -nx表示x+x+...+x(n个x相加),即x的n次加法幂。
 - -xy表示xy的负元。

:: 环的运算性质

定理 设<R,+,•>是环,则

- $(1) \forall a \in \mathbf{R}, \ a0 = 0a = 0$
- (2) $\forall a,b \in \mathbb{R}$, (-a)b = a(-b) = -ab
- (3) $\forall a,b,c \in \mathbb{R}$, a(b-c)=ab-ac, (b-c)a=ba-ca
- $(4) \ \forall a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_m \in \mathbb{R}(n, m \ge 2)$

$$(\sum_{i=1}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$$

 $(1) \forall a \in \mathbb{R}, \ a0 = 0a = 0$

$$a0 = a(0+0) = a0+a0$$

由环中加法的消去律得 a0=0。

同理可证 0a=0。

(2) $\forall a, b \in \mathbb{R}, (-a) b = a (-b) = -ab$

$$(-a)b+ab = (-a+a)b = 0b = 0$$

$$ab+(-a)b = (a+(-a))b = 0b = 0$$

因此(-a) b是ab的负元。

由负元的唯一性可知 (-a)b=-ab。

同理可证 a(-b) = -ab。

(3) $\forall a, b, c \in \mathbb{R}$, a(b-c) = ab-ac, (b-c)a = ba-ca

$$a(b-c) = a(b+(-c)) = ab+a(-c) = ab-ac$$

(4) $\forall a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_m \in \mathbb{R} (n, m \ge 2)$

$$(\sum_{i=1}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$$

先证明 $\forall a_1, a_2, \ldots, a_n$ 有 $(\sum_{i=1}^n a_i)b_i = \sum_{i=1}^n a_ib_i$ 对n进行归纳。

当n=2时,由环中乘法对加法的分配律,等式显然成立。

假设
$$(\sum_{i=1}^{n} a_i)b_j = \sum_{i=1}^{n} a_ib_j$$
 ,则有
$$(\sum_{i=1}^{n+1} a_i)b_j = (\sum_{i=1}^{n} a_i + a_{n+1})b_j = (\sum_{i=1}^{n} a_i)b_j + a_{n+1}b_j$$

$$= \sum_{i=1}^{n} a_ib_j + a_{n+1}b_j = \sum_{i=1}^{n+1} a_ib_j$$

由归纳法命题得证。

同理可证, $\forall b_1, b_2, \ldots, b_m$ 有

$$a_i(\sum_{j=1}^m b_j) = \sum_{j=1}^m a_i b_j$$

于是

$$(\sum_{i=1}^{n} a_i)(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} a_i(\sum_{j=1}^{m} b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$$

例 在环中计算 $(a+b)^3$, $(a-b)^2$

解答
$$(a+b)^3$$

$$=(a+b)(a+b)(a+b)$$

$$= (a^2+ba+ab+b^2)(a+b)$$

$$= a^3 + ba^2 + aba + b^2a + a^2b + bab + ab^2 + b^3$$

$$(a-b)^2$$

$$=(a-b)(a-b)$$

$$= a^2 - ba - ab + b^2$$

定义(补充)设R是环,S是R的非空子集。若S关于环R的加法和乘法也构成一个环,则称S为R的子环(subring)。若S是R的子环,且SCR,则称S是R的真子环。

举例:

整数环Z, 有理数环Q都是实数环R的真子环。

{0}和R也是实数环R的子环,称为平凡子环。

:: 子环判定定理

定理(补充)设R是环,S是R的非空子集,若

- $(1) \forall a,b \in S, a-b \in S$
- $(2) \forall a,b \in S, ab \in S$ 则S是R的子环。

证明: 由(1)S关于环R中的加法构成群。

由(2)S关于环R中的乘法构成半群。

显然R中关于加法的交换律以及乘法对加法的分配律在S中也是成立的。

因此,S是R的子环。

:: 例

(1)考虑整数环<Z,+,->,对于任意给定的自然数n, $nZ=\{nz|z\in Z\}$ 是Z的非空子集,且 $\forall nk_1,nk_2\in nZ$ 有

$$nk_1 - nk_2 = n(k_1 - k_2) \in nZ$$

 $nk_1 - nk_2 = n(k_1 - k_2) \in nZ$

根据判定定理,nZ是整数环的子环。

(2)考虑模6整数环< Z_{6} , \oplus , \otimes >,不难验证 $\{0\}$, $\{0,3\}$, $\{0,2,4\}$, Z_{6} 是它的子环。

其中{0}和Z6是平凡的,其余的都是非平凡的真子环。

:: 环的同态

定义(补充) 设 R_1 和 R_2 是环。 φ : $R_1 \rightarrow R_2$,若对于任意的 $x,y \in R_1$ 有

$$\varphi(x+y) = \varphi(x) + \varphi(y), \quad \varphi(xy) = \varphi(x)\varphi(y)$$

成立,则称 ϕ 是环 R_1 到 R_2 的同态映射,简称环同态。

说明 类似于群同态,可以定义环的单同态,满同态和同构等。

*: 例

设 $\mathbf{R}_1 = \langle \mathbf{Z}, +, \cdot \rangle$ 是整数环, $\mathbf{R}_2 = \langle \mathbf{Z}_n, \oplus, \otimes \rangle$ 是模n的整数环。

$$\diamondsuit$$
 φ : $\mathbb{Z} \to \mathbb{Z}_n$, $\varphi(x) = (x) \mod n$

则 $\forall x,y \in \mathbb{Z}$ 有

$$\varphi(x+y) = (x+y) \mod n$$

 $= \varphi(x) \mod n \oplus \varphi(y) \mod n$

$$= \varphi(x) \oplus \varphi(y)$$

$$\varphi(xy) = (xy) \mod n$$

 $= (x) \mod n \otimes (y) \mod n$

$$= \varphi(x) \otimes \varphi(y)$$

所以φ是R₁到R₂的同态,不难看出是满同态。

** 整环与域

定义 设<R,+,•>是环,

- (1) 若环中乘法·适合交换律,则称R是交换环。
- (2) 若环中乘法·存在单位元,则称R是含幺环。
- (3) 若 \forall a,b∈R, ab=0 \Rightarrow a=0 \forall b=0,则称R是无零因子环。
- (4) 若R既是交换环、含幺环,也是无零因子环,则称R是整环。

:: 实例

- (1)整数环Z,有理数环Q,实数环R,复数环C都是交换环、含 幺环、无零因子环和整环。
- (2)令2Z={2z|z∈Z},则2Z关于普通的加法和乘法构成交换环和无零因子环。但不是含幺环和整环,因为1∉2Z。
- (3)设n是大于或等于2的正整数,则n阶实矩阵的集合M_n(R)关于矩阵加法和乘法构成环,它是含幺环,但不是交换环和无零因子环,也不是整环。

:: 实例

(4)Z₆关于模6加法和乘法构成环,它是交换环、含幺环,但不是无零因子环和整环。

 $2\otimes 3=0$,但2和3都不是0。称2为 Z_6 中的左零因子,3为右零因子。类似地,又有3 $\otimes 2=0$,所以3也是左零因子,2也是右零因子,它们都是零因子。

一般说来,对于模n整数环 Z_n ,若n不是素数,则存在正整数 $s,t(s,t\geq 2)$,使得 $s\otimes t=n$ 。这样就得到st=0,s,t是 Z_n 中的零因子,因此 Z_n 不是整环。

反之,若Zn不是整环,则Zn一定不是无零因子环。

这就意味着存在a,b∈Z_n,使得a⊗b=0,但a≠0且b≠0。根据模n乘法定义得n整除ab,从而推出n不是素数。

若不然必有n整除a或n整除b,与 $a\neq 0$ 且 $b\neq 0$ 矛盾。通过上面的分析可以得到下面的结论: Z_n 是整环当且仅当n是素数。

:: 环是无零因子环的充分必要条件

定理(补充)设R是环,R是无零因子环当且仅当R中的乘法适合消去律,即 $\forall a,b,c \in R$, $a\neq 0$,有 $ab=ac \Rightarrow b=c$ 和 $ba=ca \Rightarrow b=c$

证明 充分性。 任取a, b∈R, ab=0且a≠0, 则由ab=0=a0和消去律得 b=0。 这就证明了R是无零因子环。

> 必要性。任取a, b, c∈R, a≠0, 由ab=ac得 a(b-c)=0, 由于R是无零因子环, a≠0, 必有b-c=0, 即 b=c。

这就证明了左消去律成立。

同理可证右消去律也成立。

** 环的直积

例 设 R_1,R_2 是环, $\forall < a,b>, < c,d> \in R_1 \times R_2, \diamondsuit$ < a,b> + < c,d> = < a+c,b+d> < a,b> + < c,d> = < ac,bd>

不难验证 $\mathbf{R}_1 \times \mathbf{R}_2$ 关于+和•运算构成一个环,称为环 \mathbf{R}_1 和 \mathbf{R}_2 的直积,记作 $\mathbf{R}_1 \times \mathbf{R}_2$ 。

可以证明,

若 R_1 和 R_2 是交换环和含幺环,则 R_1 × R_2 也是交换环和含幺环。若 R_1 和 R_2 是无零因子环,那么 R_1 × R_2 不一定是无零因子环。例如 Z_3 和 Z_2 是无零因子环,因为消去律在 Z_3 和 Z_2 中都是成立的。但是 Z_3 × Z_2 就不是无零因子环。

若不然, 由 <2,0>-<0,1>=<0,0>=<2,0>-<0,0> 和<2,0>≠<0,0>, 根据消去律就可得到<0,1>=<0,0>。错误。 因此我们可以说整环的直积不一定是整环。

:: 域的定义与实例

- 定义 设R是整环,且R中至少含有两个元素。若 $\forall a \in R^* = R$ -{0},都有 $a^{-1} \in R$,则称R是域。
- 例如:有理数集Q、实数集R、复数集C关于普通的加法和乘 法都构成域,分别称为有理数域、实数域和复数域。

整数环只能构成整环Z,而不是域,因为并不是对于任意的非零整数 $z \in Z$ 都有 $1/z \in Z$ 。

对于模n的整数环 Z_n ,若n是素数,可以证明 Z_n 是域。

*: 例

例 设p为素数,证明 Z_p 是域。

证明 p为素数, $p\geq 2$,所以 $|Z_p|\geq 2$ 。

易见 Z_p 关于模p乘法可交换,单位元是1,且对于任意的 $i,j \in Z_p$, $i \neq 0$ 有

i⊗j=0 ⇒ p整除ij ⇒ p|j ⇒ j=0

所以 Z_p 中无零因子, Z_p 为整环。

 Z_p 关于乘法 \otimes 构成有限半群,且 Z_p 关于 \otimes 适合消去律。

下面证明每个非零元素都有逆元。

任取 $i \in Z_p, i \neq 0$,令 $i \otimes Z_p = \{i \otimes j | j \in Z_p\} \text{则} i \otimes Z_p = Z_p$,

否则必存在 $j,k \in \mathbb{Z}_p$,使得 $i \otimes j = i \otimes k$,由消去律得j = k。这是矛盾的。

由于 $1 \in \mathbb{Z}_p$,这就推出,存在 $i' \in \mathbb{Z}_p$,使得 $i \otimes i' = 1$ 。由于 \otimes 运算的交换性可知i'就是i的逆元。从而证明了 \mathbb{Z}_p 是域。

*: 例

- 判断下述集合关于给定的运算是否构成环、整环和域,如果 不能构成,请说明理由。
- (1) $A = \{a+b\sqrt{2} \mid a,b \in Z\}$,关于数的加法和乘法。 是环和整环,但不是域,例如 $\sqrt{2} \in A$,但 $\sqrt{2}$ 没有逆元。
- (2) $A = \{a+b\sqrt{3} \mid a,b \in Q\}$,关于数的加法和乘法。 是环,整环和域。
- (3) $A = \{a+b\sqrt[3]{2} \mid a,b \in Z\}$,关于数的加法和乘法。 不是环,不是整环,也不是域。因为A关于数的乘法不封闭。
- (4) $A = \{a+bi \mid a, b \in \mathbb{Z} \land i^2 = -1\}$,关于复数的加法和乘法。 是环和整环,但不是域,例如 $2i \in A$,但2i没有逆元。

$$(5)A=\{\begin{pmatrix} a & b \\ b & a \end{pmatrix} | a,b \in Z \}$$
,关于矩阵的加法和乘法。

是环,但不是整环和域。

考虑矩阵
$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 和 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 。

它们都是A中的矩阵,且满足

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

因此
$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 是左零因子, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 是右零因子。

A不是无零因子环。也不是整环和域。

- □本章内容
 - □环、整环、无零因子环的定义
 - □能够判断是否是环和域