BRAC University

Department of Computer Science and Engineering

Final Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 30 minutes
Date: 15th Dec 2023

Semester: Fall 2023 Course Code: CSE460 Course Title: VLSI Design

Set A

Student ID:	Name:	Section:

[Answer both questions 1 and 2. You can answer any one question from questions 3 and 4. In total, you need to answer three questions out of four.]

[Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

1. (CO3)	(a)	Consider a CMOS compound gate that implements the following function: $Y = \overline{A + BC + D}$			
		(i)	(i) Draw the stick diagram of the given CMOS gate.		
		(ii) Find the total area of the stick diagram in (i) in terms of Lambda (λ).			
	(b) Observe Figure 1 and answer the following questions. Line A n+ P substrate Figure 1: Top view of a wafer after fabricating an n+ diffusion region (darks)			gion)	
		(i)	Briefly explain why n-well is required in CMOS fabrication.	3	
		(ii)	Draw the cross-sectional view of Figure 1 along 'Line A' and label the different regions.	2	
			•		

Consider the following truth tables for two logic gates (CO1) \mathbf{Y} \mathbf{A} В В \mathbf{Y} 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 Gate 1 Gate 2 **Identify** the logic gates and draw their CMOS circuit representation. 2 (a) **Determine** the individual transistor widths k_{nMOS} and k_{pMOS} for both of the 2 **(b)** gates to achieve the effective rise and fall resistances equal to that of a unit inverter, R, in the worst case. Draw the simplified RC circuit only for Gate 1 and determine the input 4+1 (c) capacitance of Gate 2 in terms of C (d) Consider Gate 1 is driving 12 identical Gate 2 circuits (only one of the inputs 6 of each). Now **derive** the expressions for t_{pdf} and t_{cdf} by **sketching** the corresponding RC networks from (c). For the 4 \times 4 maze below, the dark regions are obstacles or components. (CO4) T₁ S T₂ The total memory requirements for the maze is 4 bytes. Calculate the number of bits per cell (n) and the maximum value that a cell 2+1 (a)

can store (L) as per the memory requirements

(b)	State the sequence for wave propagation as per the memory requirements. Perform wave propagation to find the shortest path from source, S to both of the targets, T_1 and T_2	2+6
(c)	Show the shortest path for each of the targets.	4

4. (CO4) The graph below (nodes a-d) can be optimally partitioned using the **Kernighan-L**in algorithm. The dotted line represents the initial partitioning. Assume all the edges have the same weight.

(a)	Calculate the initial cut cost.	
(b)	Identify how many iterations are needed in a single pass?	
(c)	Perform the first pass of the algorithm and determine the new cut cost of the optimum output of the first pass.	
	$[\underline{Hint:} \ For the "i"th iteration of the first pass, until all the nodes are swapped and fixed, do the following: $	
(d)	Should you perform subsequent passes of the algorithm? Why or why not?	2