1. ¿Qué es una red? ¿Cuál es el principal objetivo para construir una red?

Una red es un conjunto de dispositivos interconectados (computadoras, servidores, routers, switches, etc.) que comparten recursos e información. Su principal objetivo es permitir la comunicación y el intercambio de datos entre los distintos dispositivos.

2. ¿Qué es Internet? Describa los principales componentes que permiten su funcionamiento.

Internet es una red de redes de alcance mundial que conecta millones de dispositivos usando protocolos estandarizados. Principales componentes: - Hosts o sistemas finales (PCs, celulares, servidores). - Red de acceso (ISP, WiFi, fibra, 4G/5G). - Red de núcleo o backbone (routers de alta velocidad e infraestructura de transporte). - Protocolos (principalmente TCP/IP). - Servidores DNS que permiten traducir nombres de dominio a direcciones IP.

3. ¿Qué son las RFCs?

Las RFC (Request for Comments) son documentos oficiales que describen estándares, protocolos, procedimientos y buenas prácticas para Internet. Son publicadas por la IETF y sirven como referencia técnica.

4. ¿Qué es un protocolo?

Es un conjunto de reglas y convenciones que definen cómo se comunican dos o más dispositivos en una red (ej: HTTP, TCP, IP).

5. ¿Por qué dos máquinas con distintos sistemas operativos pueden formar parte de una misma red?

Porque ambos sistemas implementan protocolos de red estandarizados (ejemplo: TCP/IP), que garantizan la comunicación independientemente del sistema operativo.

6. ¿Cuáles son las 2 categorías en las que pueden clasificarse a los sistemas finales o End Systems? Dé un ejemplo.

- Clientes → solicitan servicios (ejemplo: un navegador accediendo a una página web). - Servidores → proveen servicios (ejemplo: un servidor web que responde las solicitudes HTTP).

7. ¿Cuál es la diferencia entre una red conmutada de paquetes y una red conmutada de circuitos?

- Conmutada de circuitos: establece un canal dedicado para toda la comunicación (ej: telefonía tradicional). - Conmutada de paquetes: divide los datos en paquetes que viajan por distintas rutas y se reensamblan en destino (ej: Internet).

8. Analice qué tipo de red es una red de telefonía y qué tipo de red es Internet.

- Telefonía tradicional: red conmutada de circuitos. - Internet: red conmutada de paquetes.

9. Describa brevemente las distintas alternativas que conoce para acceder a Internet en su hogar.

- Fibra óptica. - ADSL o cable coaxial. - Conexión inalámbrica (WiFi de un ISP, 4G/5G). - Satelital.

10. ¿Qué ventajas tiene una implementación basada en capas o niveles?

- Simplifica el diseño. - Permite modificar una capa sin afectar a las demás. - Favorece la estandarización. - Facilita la interoperabilidad entre distintos sistemas.

11. ¿Cómo se llama la PDU de cada una de las siguientes capas: Aplicación, Transporte, Red y Enlace?

- Aplicación: Mensaje. - Transporte: Segmento (TCP) / Datagrama (UDP). - Red: Paquete. - Enlace: Trama.

12. ¿Qué es la encapsulación? ¿Qué capa del nodo receptor realizará el proceso inverso?

La encapsulación es el proceso en el cual cada capa añade su propia cabecera (y a veces cola) a los datos que recibe de la capa superior. En el receptor, cada capa realiza el proceso inverso (desencapsulación), eliminando su cabecera y entregando los datos a la capa superior.

13. Describa cuáles son las funciones de cada una de las capas del stack TCP/IP.

1. Aplicación: ofrece servicios al usuario (HTTP, SMTP, FTP, DNS). 2. Transporte: comunicación extremo a extremo (TCP, UDP). 3. Red: direccionamiento y enrutamiento (IP). 4. Enlace: transmisión física de datos en la red local (Ethernet, WiFi).

14. Compare el modelo OSI con la implementación TCP/IP.

- OSI: 7 capas (Aplicación, Presentación, Sesión, Transporte, Red, Enlace, Física). - TCP/IP: 4 capas (Aplicación, Transporte, Red, Enlace). TCP/IP es más práctico y se usa en la realidad; OSI es más teórico y sirve como referencia conceptual.