

Differential expression analysis

Olga Dethlefsen / Åsa Björklund NBIS

What is "differential expression analysis"

Common methods

intro to statistical inference

Performance

Things to think about

What is "differential expression analysis"?

What is "differential expression analysis"

What is "differential expression analysis"

gene	logFC (avg)	p-value
CD79A	2,82	4,73×10^-20
CD79B	2,23	4,07×10^-19
MS4A1	-2,44	4,67×10^-19
CD74	2,07	2,56×10^-17
HLA-DRB1	1,53	5,04×10^-17
IGHM	-3,7	6,00×10^-17
HLA-DPA1	1,45	1,11×10^-16
HLA-DQB1	1,73	2,35×10^-16

...

• • •

HLA-DQA1	1,83	3,01×10^-16
HLA-DRA	1,49	4,66×10^-16

Differential expression means:

- * taking read count data & performing statistical analysis to discover quantitative changes in expression levels between experimental groups (e.g. clusters)
- ❖ i.e. to decide whether, for a given gene, an observed difference in read counts is significant (greater than it would be expected just due to natural random variation)

Cluster 2

Cluster 1

"...most computational methods still stick with the old mentality of viewing differential expression as a simple "up or down" phenomenon. We advocate that we should fully embrace the features of single cell data, which allows us to observe binary (from Off to On) as well as continuous (the amount of expression) regulations."

Wu *et al.* (Bioinformatics 2017): Two phase differential expression

Cluster 1 Cluster 2 Cluster 4 **Cluster 3**

Differential expression is comparative. Common comparisons include:

pairwise cluster comparisons,e.g. c1 vs. c2, c2 vs. c3 etc.

Cluster 1 Cluster 2 Cluster 4 Cluster 3

Differential expression is comparative. Common comparisons include:

- pairwise cluster comparisons,
 e.g. c1 vs. c2, c2 vs. c3 etc.
- for a given cluster finding 'marker genes' that:
 - DE compared to all cells outside of the cluster
 - DE compared to at least one other cluster
 - DE compared to each of the other clusters
 - ❖ DE compare to "most" of the other clusters
 - DE and up-regulated (upregulated markers are somehow easier to interpret)

Differential expression is comparative. Common comparisons include:

- pairwise cluster comparisons,
 e.g. c1 vs. c2, c2 vs. c3 etc.
- for a given cluster finding 'marker genes' that:
 - DE compared to all cells outside of the cluster
 - DE compared to at least one other cluster
 - DE compared to each of the other clusters
 - DE compare to "most" of the other clusters
 - DE and up-regulated (upregulated markers are somehow easier to interpret)
 - cell-type comparisons (if cell type is known) (with and without clustering)

Context

Context

- Setting-up data
- ❖ Quality control and removal of "problematic " cells
- Classification of cell cycle phase
- Normalization
- Imputations
- Selection of highly variable genes
- ❖ Data integration
- ❖ K-means / HCL / graph based clustering

Context

Clustering

- Setting-up data
- ❖ Quality control and removal of "problematic " cells
- Classification of cell cycle phase
- Normalization
- Imputations
- Selection of highly variable genes
- ❖ Data integration
- K-means / HCL / graph based clustering

Functions

FindAllMarkers()

findMarkers()

scanpy.tl.rank_genes_groups()

FindAllMarkers

From Seurat v3.1.2 by Paul Hoffman

99.99th Percentile

Gene Expression Markers For All Identity Classes

Finds markers (differentially expressed genes) for each of the identity classes in a dataset

Usage

```
FindAllMarkers(
 object,
 assay = NULL,
 features = NULL,
 logfc.threshold = 0.25,
 test.use = "wilcox",
 slot = "data",
 min.pct = 0.1,
 min.diff.pct = -Inf,
 node = NULL,
 verbose = TRUE,
 only.pos = FALSE,
 max.cells.per.ident = Inf,
 random.seed = 1,
 latent.vars = NULL,
 min.cells.feature = 3,
 min.cells.group = 3,
 pseudocount.use = 1,
 return.thresh = 0.01,
```

test.use Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc": Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
- "t": Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom": Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR": Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

intro to statistical inference

❖ i.e. to decide whether, for a given gene, an observed difference in read counts is significant (greater than it would be expected just due to natural random variation)

intro to statistical inference

❖ i.e. to decide whether, for a given gene, an observed difference in read counts is significant (greater than it would be expected just due to natural random variation)

intro to statistical inference

❖ i.e. to decide whether, for a given gene, an observed difference in read counts is significant (greater than it would be expected just due to natural random variation)

- * we collect data on a <u>sample</u> from a much larger <u>population</u>
- summary statistics lets us to make inferences (conclusions) about the population from which samples was derived
- * as well as predict the outcome given a model fitted to the data

Is there a difference in height between students taking scRNA-seq course in 2019 and 2020?

Is there a difference in height between students taking scRNA-seq course in 2019 and 2020?

- H0: null hypothesis: there is no difference in height
- H1: alternative hypothesis: difference of means is not equal to 0

Is there a difference in height between students taking scRNA-seq course in 2020 and 2021?

- H0: null hypothesis: there is no difference in height
- H1: alternative hypothesis: difference of means is not equal to 0

Is there a difference in height between students taking scRNA-seq course in 2019 and 2020?

- H0: null hypothesis: there is no difference in height
- H1: alternative hypothesis: difference of means is not equal to 0

The observed value, here of mean difference, form basis of observed test statistics. A test statistics enables us to carry out a hypothesis test, which is a formal procedure to decide between the null and alternative hypotheses.

The better model fits to the data the better (more accurate) statistics

when we cannot fit a model to our data

when we cannot fit a model to our data

e.g. Wilcoxon rank-sum test, Kruskal-Wallis, Kolmogorov-Smirnov test

when we cannot fit a model to our data

e.g. Wilcoxon rank-sum test, Kruskal-Wallis, Kolmogorov-Smirnov test

- ✓ non-parametric test generally convert observed expression values to ranks
- ✓ they test whether the distribution of ranks for one group are significantly different from the distribution of ranks for the other group

when we cannot fit a model to our data

e.g. Wilcoxon rank-sum test, Kruskal-Wallis, Kolmogorov-Smirnov test

- non-parametric test generally convert observed expression values to ranks
- ✓ they test whether the distribution of ranks for one group are significantly different from the distribution of ranks for the other group

- may fail in presence of large number of tied values, such as the case of dropouts (zeros) in scRNA-seq
- if the conditions for a parametric test hold, then it will be typically more powerful that a non-parametric test

when we cannot fit a model to our data

e.g. Wilcoxon rank-sum test, Kruskal-Wallis, Kolmogorov-Smirnov test

- ✓ non-parametric test generally convert observed expression values to ranks
- ✓ they test whether the distribution of ranks for one group are significantly different from the distribution of ranks for the other group

- may fail in presence of large number of tied values, such as the case of dropouts (zeros) in scRNA-seq
- if the conditions for a parametric test hold, then it will be typically more powerful that a non-parametric test

Gene-wise null hypothesis:

it is equally like that a randomly selected cell from group 1 will have higher or lower expression of the gene than a randomly selected cell from group 2

test.use

Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc": Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.

- "t": Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom": Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR": Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which
 uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of
 genes based on average difference (or percent detection rate) between cell groups. However, genes may be prefiltered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install
 DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

test.use

Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc": Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
- "t": Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
 - "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
 - "LR": Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
 - "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
 - "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Why special distributions?

Why special distributions?

- high noise levels (technical and biological factors)
- low library sizes
- low amount of available mRNAs results in amplification biases and "dropout events"
- 3' bias, partial coverage, uneven depth
- stochastic nature of transcription
- multimodality in gene expression; presence of multiple possible cell states within a cell population

Binomial

Bi(n, θ)

discrete probability distribution of the number of success in a sequence of n independent experiments; θ - probability of success

Used to compare proportions of zeros.

Gene-wise null hypothesis: probability of being expressed is the same in group 1 and group 2

avail in scran

Negative binomial

NeBi
$$= (\mu, \delta^2)$$
 $\mu = mu$
 $\delta^2 = mu + mu^2/size$

 μ mean expression

 $^{2}_{\delta}$ dispersion, which is inversely related to the variance

NeBi fits bulk RNA-seq data very well and it is used for most statistical methods designed for such data. In addition, it has been show to fit the distribution of molecule counts obtained from data tagged by unique molecular identifiers (UMIs) quite well (Grun et al. 2014, Islam et al. 2011).

zero-inflated negative binomial

NeBi
$$=(\mu,\delta^2)$$

$$\mu=\textit{mu}*(1-\textit{d})$$
 $\delta^2=\mu*(1-\textit{d})*(1+\textit{d}*\mu+\mu/\textit{size})$

d, dropout rate.

The dropout of a gene is strongly correlated with the mean expression of the gene. Different zero-inflated negative binomial models use different relationships between mean expression and dropout rate.

Implemented in MAST, SCDE

Poisson

discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate, *lambda*, and independently of the time since the last event

Poisson-Beta

$$\mu = g * a/(a+b)$$
 $\delta^2 = g^2 * a * b/((a+b+1)*(a+b)^2)$

a: the rate of activation of transcription

b: the rate of inhibition of transcription

g: the rate of transcript production while transcription is active at the locus

implemented in BPSC

test.use

Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc": Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
- "t": Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom": Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR": Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

test.use

Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc": Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
- "t": Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom": Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR": Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- ?
- "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

MAST

- uses generalized linear hurdle model
- designed to account for stochastic dropouts and bimodal expression distribution in which expression is either strongly non-zero or non-detectable
- The rate of expression Z, and the level of expression Y, are modeled for each gene g, indicating whether gene g is expressed in cell i (i.e., Z_{ig} = 0 if y_{ig} = 0 and z_{ig} = 1 if y_{ig} > 0)
- A logistic regression model for the discrete variable Z and a Gaussian linear model for the continuous variable (Y|Z=1):

$$logit(P_r(Z_{ig}=1))=X_i\beta_g^D$$

 $P_r(Y_{ig}=Y|Z_{ig}=1)=N(X_i\beta_g^C,\sigma_g^2)$, where X_i is a design matrix

- Model parameters are fitted using an empirical Bayesian framework
- Allows for a joint estimate of nuisance and treatment effects
- DE is determined using the likelihood ratio test

So what's really important?

- Models can get quite complicated but in Seurat / Scran / Scanpy default methods are set to t-test and wilcox
- It's important to understand what are we trying to compare, e.g. mean expressions, or probability of being expressed
- It's important to understand the data
- It's important to assess and validate the results

What's important: assessing results

Why is it hard to say which method is best?

No ground truth data available

Known data:

using data we know something about to get "positive controls"

Simulated data:

null-data sets by re-sampling, modelling datasets based on various distributions

Compare:

comparing between numbers and ranks of DEs

Investigating results:

how does the expression and distributions of detected DEs look like?

DESeq2 without the built-in independent filtering DEsingle Alge Al					
D3E D3E D2Seq2 DESeq2 DESeq2 DESeq2 1.14.1 raw counts		Short name	Method	Software version	Input
DESeq2 DESeq2 DESeq2 DESeq2 DESeq2 1.14.1 raw counts		BPSC	BPSC	BPSC 0.99.0/1	CPM
DESeq2 betapFALSE DESeq2 without beta prior DESeq2 1.14.1 raw counts DESeq2 consist DESeq2 without the built-in independent filtering DESeq2 1.14.1 raw counts DESeq2 notited pendent filtering DESeq2 1.14.1 raw counts DESeq2 notited pendent filtering DESeq2 1.14.1 raw counts dependent filtering DESeq2 1.14.1 raw counts DESeq2 notited pendent filtering DESeq2 1.14.1 raw counts dependent filtering DESeq2 1.14.1 raw counts raw counts edgeRLRT edgeR 3.19.1 raw counts edgeRLRT edgeR 3.19.1 raw counts edgeRLRT despendent filtering edgeR 3.19.1 raw counts edgeRQLF edgeRQLF edgeR 3.19.1 raw counts edgeRQLF edgeRQLF edgeR 3.19.1 raw counts edgeRQLF edgeRQLF edgeR 3.19.1 raw counts in manual filtering despendent filtering raw counts edgeR 3.19.1 raw counts edgeRQLFDetRate edgeR 3.19.1 raw counts edgeRQLF edgeRQLF edgeR 3.19.1 raw counts in manual filtering despendent filtering filtering despendent filtering despendent filtering filtering filtering despendent filtering filtering despendent filtering filteri		D3E	D3E	D3E 1.0	raw counts
DESeq2census DESeq2 without the built-in independent filtering DESeq2nofilt DESeq2 without the built-in independent filtering DESingle DES		DESeq2	DESeq2	DESeq2 1.14.1	raw counts
DESeq2 without the built-in independent filtering DESingle Desige Taw counts Desard 1.10. Desard		DESeq2betapFALSE	DESeq2 without beta prior	DESeq2 1.14.1	raw counts
DESeq21.14.1 raw counts DESingle DEsingle DEsingle OLS ingle 0.1.0 raw counts edgeRLRT edgeR JRT edgeR 3.19.1 raw counts edgeRLRTdeconv edgeR/LRT with deconvolution normalization edgeRLRTdeconv edgeR/LRT with deconvolution normalization edgeRLRTrobust edgeR/LRT with robust dispersion estimation edgeRQLF edgeR/QLF edgeR 3.19.1 raw counts edgeRQLF edgeR/QLF edgeR 3.19.1 raw counts edgeRQLF edgeR/QLF with cellular detection rate as covariate limmatrend limmatrend limma 3.30.13 log2(CPM+1) MAST mastrum MAST MAST MAST MAST 1.0.5 log2(CPM+1) MAST with cellular detection rate as covariate MAST with cellular detection rate as covariate metagenomeSeq metagenomeSeq metagenomeSeq 1.16.0 raw counts monocleconsus monocle (Negative Binomial) monocle 2.2.0 TPM monoclecount monocle (Negative Binomial) monocle 2.2.0 raw counts NODES NODES NODES NODES NODES NODES ROTS ROTS 1.2.0 CPM ROTS 1.2.0 raw counts Seurat Bimodnofilt seural bittering Seurat Bimodnofilt seural bittering states (tobit test) Seurat 1.4.0.7 raw counts TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts TMM-normali TPM TMM-normali TMM-normali TPM TMM-normali TPM TMM-normali TMM-normali TMM-normali TPM TMM-normali TMM-normali TMM-normali TPM TMM-normali TMM-norm		DESeq2census	DESeq2	DESeq2 1.14.1	Census counts
■ edgeRLRT edgeR/LRT edgeR 3.19.1 raw counts ■ edgeRLRTcensus edgeR/LRT edgeR 3.19.1 Census counts ■ edgeRLRTdeconv edgeR/LRT with deconvolution normalization edgeR 3.19.1 raw counts ■ edgeRLRTrobust edgeR/LRT with robust dispersion estimation edgeR 3.19.1 raw counts ■ edgeRQLF edgeR/QLF edgeR 3.19.1 raw counts ■ edgeRQLFDetRate edgeR/QLF with cellular detection rate as covariate edgeR 3.19.1 raw counts ■ MASTepm MAST MAST MAST 1.0.5 log2(CPM) ■ MASTepm AST MAST with cellular detection rate as covariate MAST 1.0.5 log2(CPM+1) ■ MASTtpmDetRate MAST with cellular detection rate as covariate metagenomeSeq log2(TPM+1) ■ metagenomeSeq metagenomeSeq metagenomeSeq raw counts ■ monocle monocle (tobit) monocle 2.2.0 TPM ■ monoclecensus monocle (Negative Binomial) monocle 2.2.0 Traw counts ■ NODES NODES NODES NODES Census counts ■ ROTStpm <td< td=""><td></td><td></td><td>DESeq2 without the built-in in-</td><td>-</td><td>raw counts</td></td<>			DESeq2 without the built-in in-	-	raw counts
■ edgeRLRT edgeR/LRT edgeR 3.19.1 raw counts ■ edgeRLRTcensus edgeR/LRT edgeR 3.19.1 Census counts ■ edgeRLRTdeconv edgeR/LRT with deconvolution normalization edgeR 3.19.1 raw counts ■ edgeRLRTobust edgeR/LRT with robust dispersion estimation edgeR 3.19.1 raw counts ■ edgeRQLF edgeR/QLF edgeR 3.19.1 raw counts ■ edgeRQLFDetRate edgeR/QLF with cellular detection rate as covariate edgeR 3.19.1 raw counts ■ MASTepm MAST MAST MAST 1.0.5 log2(CPM) ■ MASTepm AST MAST with cellular detection rate as covariate MAST 1.0.5 log2(CPM+1) ■ MASTtpmDetRate MAST with cellular detection rate as covariate metagenomeSeq raw counts ■ metagenomeSeq metagenomeSeq metagenomeSeq raw counts ■ monocle metagenomeSeq nonocle (Negative Binomial) monocle 2.2.0 TPM ■ monoclecount monocle (Negative Binomial) monocle 2.2.0 raw counts ■ ROTScpm ROTS ROTS 1.2.0 CPM ■ ROTScpm		DEsingle	DEsingle	DEsingle 0.1.0	raw counts
edgeRLRTcensus edgeR/LRT with deconvolution normalization edgeR 3.19.1 raw counts edgeR QLF edgeR/LRT with robust dispersion estimation edgeR 3.19.1 raw counts edgeRQLF edgeR/QLF edgeR/QLF edgeR 3.19.1 raw counts edgeRQLFDetRate edgeR/QLF with cellular detection rate as covariate limma 3.30.13 log ₂ (CPM) MAST pm MAST with cellular detection rate as covariate MAST 1.0.5 log ₂ (CPM+1) MAST pm MAST with cellular detection rate as covariate metagenomeSeq metagenomeSeq metagenomeSeq metagenomeSeq monocle (tobit) monocle 2.2.0 TPM monocle 2.2.0 TPM monocle 2.2.0 TPM monocle 2.2.0 TPM monocle 2.2.0 raw counts monocle (Negative Binomial) monocle 2.2.0 raw counts monocle (Negative Binomial) monocle 2.2.0 TPM mono		edgeRLRT	edgeR/LRT	edgeR 3.19.1	raw counts
edgeRLRTdeconv normalization edgeR 3.19.1, scran 1.2.0 edgeR 3.19.1, scran 1.2.0 edgeR 3.19.1 raw counts edgeRQLF edgeR/QLF edgeR/QLF edgeR/QLF edgeR 3.19.1 raw counts edgeRQLFDetRate edgeR/QLF with cellular detection rate as covariate limma 3.30.13 log2(CPM) MAST MAST with cellular detection rate as covariate MAST 1.0.5 log2(CPM+1) MAST mass covariate MAST 1.0.5 log2(CPM+1) MAST mass covariate MAST 1.0.5 log2(CPM+1) MAST mass covariate metagenomeSeq metagenomeSeq metagenomeSeq 1.16.0 log2(TPM+1) monocle count monocle (Negative Binomial) monocle 2.2.0 TPM monocle count monocle (Negative Binomial) monocle 2.2.0 census counts monocle (Negative Binomial) monocle 2.2.0 raw counts noncle 3.2.0		edgeRLRTcensus			Census counts
■ edgeRLRTrobust edgeR/LRT with robust dispersion estimation edgeR 3.19.1 raw counts ■ edgeRQLF edgeR/QLF with cellular detection rate as covariate edgeR 3.19.1 raw counts ■ limmatrend limma 3.30.13 log₂(CPM) ■ MASTcpm MAST MAST with cellular detection rate as covariate MAST 1.0.5 log₂(CPM+1) ■ MASTtpm MAST MAST with cellular detection rate as covariate MAST 1.0.5 log₂(CPM+1) ■ MASTtpmDetRate MAST with cellular detection rate as covariate MAST 1.0.5 log₂(CPM+1) ■ MASTtpmDetRate MAST with cellular detection rate as covariate metagenomeSeq raw counts ■ monocle metagenomeSeq metagenomeSeq raw counts ■ monocle monocle (Negative Binomial) monocle 2.2.0 TPM ■ monoclecount monocle (Negative Binomial) monocle 2.2.0 Text counts ■ NODES NODES NODES NODES ■ ROTScpm ROTS ROTS 1.2.0 CPM ■ ROTScpm ROTS ROTS 1.2.0 TPM ■ ROTScpm ScDD scDD 1.0.0	•		edgeR/LRT with deconvolution	edgeR 3.19.1,	raw counts
edgeRQLFDetRate		${\it edgeRLRT} robust$,	edgeR 3.19.1	raw counts
immatrend limma-trend limma 3.30.13 log ₂ (CPM) MAST cpm MAST with cellular detection rate as covariate MAST treate as covariate MAST lo.5 log ₂ (CPM+1) MAST with cellular detection rate as covariate MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST with cellular detection MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST with cellular detection MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST vith cellular detection MAST lo.5 log ₂ (CPM+1) Indicate as covariate MAST vith cellular detection MAST vith c		edgeRQLF	edgeR/QLF	edgeR 3.19.1	raw counts
MASTcpm MAST with cellular detection rate as covariate MAST 1.0.5 log2(CPM+1) MASTtpmDetRate MAST with cellular detection rate as covariate MAST 1.0.5 log2(TPM+1) MAST pmDetRate MAST with cellular detection rate as covariate MAST 1.0.5 log2(TPM+1) MAST 1.0.5 log2(TM+1) MAST 1.0.6 log2(TM+1) MAST 1.0.5 log2(T	•	${\it edge} RQLFDetRate$	0 , 0	edgeR 3.19.1	raw counts
■ MASTcpmDetRate MAST with cellular detection rate as covariate MAST 1.0.5 log₂(CPM+1) ■ MASTtpm MAST MAST 1.0.5 log₂(CPM+1) ■ MASTtpmDetRate MAST with cellular detection rate as covariate MAST 1.0.5 log₂(TPM+1) ■ metagenomeSeq metagenomeSeq netagenomeSeq netageno		limmatrend	limma-trend	limma 3.30.13	$log_2(CPM)$
■ MASTcpmDetRate rate as covariate MAST 1.0.5 log₂(CPM+1) ■ MASTtpm MAST MAST MAST 1.0.5 log₂(TPM+1) ■ MASTtpmDetRate MAST with cellular detection rate as covariate mAST 1.0.5 log₂(TPM+1) ■ metagenomeSeq metagenomeSeq 1.16.0 raw counts ■ monocle monocle (tobit) monocle 2.2.0 TPM ■ monoclecensus monocle (Negative Binomial) monocle 2.2.0 Tensus counts ■ NODES NODES NODES raw counts ■ NODES NODES NODES raw counts ■ ROTScpm ROTS ROTS 1.2.0 CPM ■ ROTSvoom ROTS ROTS 1.2.0 TPM ■ ROTSvoom ROTS ROTS 1.2.0 raw counts ■ SAMseq samr 2.0 raw counts ■ SCDE ScDD scDD 1.0.0 raw counts ■ SCDE ScDE scde 2.2.0 raw counts ■ Seurat Bimodnofilt Seurat (bimod test) without the internal filtering Seurat 1.4.0.7 raw counts ■ Seurat Tobit Seurat (tobit test) Seurat 1.4.0.7 raw counts		MASTcpm	MAST	MAST 1.0.5	log ₂ (CPM+1)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•	MASTcpmDetRate		MAST 1.0.5	$log_2(CPM+1)$
MASTtpmDetRate rate as covariate MAST 1.0.5 log₂(TPM+1) ■ metagenomeSeq metagenomeSeq raw counts ■ monocle monocle (tobit) monocle 2.2.0 TPM ■ monoclecensus monocle (Negative Binomial) monocle 2.2.0 raw counts ■ NODES NODES nonocle 2.2.0 raw counts ■ NODES NODES nonocle 2.2.0 raw counts ■ ROTSepm ROTS ROTS 1.2.0 CPM ■ ROTStpm ROTS ROTS 1.2.0 TPM ■ ROTSvoom ROTS ROTS 1.2.0 raw counts ■ SAMseq samr 2.0 raw counts ■ SCDD scDD scDD 1.0.0 raw counts ■ SCDE SCDE scde 2.2.0 raw counts ■ SeuratBimod Seurat (bimod test) Seurat 1.4.0.7 raw counts ■ SeuratBimodIsExpr2 Seurat (bimod test) with internal expression threshold set to 2 Seurat 1.4.0.7 raw counts ■ SeuratTobit Seurat (tobit test) Seurat 1.4.0.7 TPM ■ ttest t-test stats (R v 3.3) TMM-normaliTPM ■ Voomlimma		MASTtpm	MAST	MAST 1.0.5	log ₂ (TPM+1)
metagenomeseq metagenomeseq 1.16.0 raw counts monocle monocle (tobit) monocle 2.2.0 TPM monoclecensus monocle (Negative Binomial) monocle 2.2.0 raw counts monoclecount monocle (Negative Binomial) monocle 2.2.0 raw counts NODES NODES NODES	•	MASTtpmDetRate		MAST 1.0.5	log ₂ (TPM+1)
monoclecensus monocle (Negative Binomial) monocle 2.2.0 Census counts monocle count monocle (Negative Binomial) monocle 2.2.0 raw counts NODES NODES NODES NODES nonocle (Negative Binomial) nonocle 2.2.0 raw counts NODES NODES nonocle (Negative Binomial) nonocle 2.2.0 raw counts NODES NODES nonocle (Negative Binomial) nonocle 2.2.0 raw counts NODES NODES nonocle (Negative Binomial) nonocle 2.2.0 raw counts NODES nonocle (Negative Binomial) nonocle 2.2.0 raw counts NODES nonocle (Negative Binomial) nonocle 2.2.0 counts NODES nonocle 2.2.0 CPM nonocle 2.2.0 raw counts NODES nonocle 2.2.0 raw counts NODES nonocle 2.2.0 raw counts SAMSeq SAMSeq samr 2.0 raw counts SCDE scDD scDD scDD 1.0.0 raw counts SCDE scde 2.2.0 raw counts Scurat Bimod Seurat (bimod test) without the internal filtering seurat 1.4.0.7 raw counts Scurat BimodIsExpr2 scurat (bimod test) with internal expression threshold set to 2 seurat 1.4.0.7 raw counts Scurat Tobit Scurat (tobit test) Seurat 1.4.0.7 TPM ttest t-test stats (R v 3.3) TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts	_	metagenomeSeq	metagenomeSeq		raw counts
Image: Node of the process of the p		monocle	monocle (tobit)	monocle 2.2.0	TPM
NODES nodes <t< td=""><td></td><td>monoclecensus</td><td>monocle (Negative Binomial)</td><td>monocle 2.2.0</td><td>Census counts</td></t<>		monoclecensus	monocle (Negative Binomial)	monocle 2.2.0	Census counts
ROTScpm ROTS ROTS 1.2.0 CPM ROTStpm ROTS ROTS 1.2.0 TPM ROTSvoom ROTS ROTS 1.2.0 raw counts SAMseq SAMseq samr 2.0 raw counts SCDD scDD scDD scDD 1.0.0 raw counts SCDE SCDE SCDE scde 2.2.0 raw counts Seurat Bimod Seurat (bimod test) without the internal filtering Seurat (bimod test) with internal expression threshold set to 2 Seurat 1.4.0.7 raw counts TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts		monoclecount	monocle (Negative Binomial)	monocle 2.2.0	raw counts
■ ROTStpm ROTS ROTS 1.2.0 TPM ■ ROTSvoom ROTS ROTS 1.2.0 voom-transformand voom-transforma	•	NODES	NODES		raw counts
ROTSvoom ROTS ROTS 1.2.0 RO		ROTScpm	ROTS	ROTS 1.2.0	CPM
ROTS voom ROTS ROTS 1.2.0 raw counts SAMseq SAMseq samr 2.0 raw counts scDD scDD scDD scDD 1.0.0 raw counts SCDE SCDE scde 2.2.0 raw counts Seurat Bimod Seurat (bimod test) Seurat 1.4.0.7 raw counts Seurat Bimodnofilt Seurat (bimod test) without the internal filtering Seurat 1.4.0.7 raw counts Seurat BimodIsExpr2 Seurat (bimod test) with internal expression threshold set to 2 Seurat 1.4.0.7 raw counts Seurat Tobit Seurat (tobit test) Seurat 1.4.0.7 raw counts ttest t-test stats (R v 3.3) TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts		ROTStpm	ROTS	ROTS 1.2.0	TPM
scDD scDD scDD scDD 1.0.0 raw counts SCDE SCDE scde 2.2.0 raw counts Seurat Bimod Seurat (bimod test) Seurat 1.4.0.7 raw counts Seurat Bimodnofilt Seurat (bimod test) without the internal filtering Seurat 1.4.0.7 raw counts Seurat BimodIsExpr2 Seurat (bimod test) with internal expression threshold set to 2 Seurat 1.4.0.7 raw counts Seurat Tobit Seurat (tobit test) Seurat 1.4.0.7 raw counts ttest t-test stats (R v 3.3) TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts	•	ROTSvoom	ROTS	ROTS 1.2.0	voom-transformed raw counts
SCDE SCDE scde 2.2.0 raw counts Seurat Bimod Seurat (bimod test) Seurat 1.4.0.7 raw counts Seurat Bimodnofilt Seurat (bimod test) without the internal filtering Seurat 1.4.0.7 raw counts Seurat BimodIsExpr2 Seurat (bimod test) with internal expression threshold set to 2 Seurat 1.4.0.7 raw counts Seurat Tobit Seurat (tobit test) Seurat 1.4.0.7 TPM ttest t-test stats (R v 3.3) TMM-normali TPM voomlimma limma 3.30.13 raw counts		_	SAMseq	samr 2.0	raw counts
■ Seurat Bimod Seurat (bimod test) Seurat 1.4.0.7 raw counts ■ Seurat Bimodnofilt Seurat (bimod test) without the internal filtering Seurat 1.4.0.7 raw counts ■ Seurat BimodIsExpr2 Seurat (bimod test) with internal expression threshold set to 2 Seurat 1.4.0.7 raw counts ■ Seurat Tobit Seurat (tobit test) Seurat 1.4.0.7 TPM ■ ttest t-test stats (R v 3.3) TMM-normali TPM ■ voomlimma limma 3.30.13 raw counts		scDD	scDD	scDD 1.0.0	raw counts
Seurat Bimodnofilt Seurat (bimod test) without the internal filtering Seurat 1.4.0.7 raw counts Seurat BimodIsExpr2 Seurat (bimod test) with internal expression threshold set to 2 Seurat 1.4.0.7 raw counts TMM-normali TPM TMM-normali TMM-normali TMM-normali TMM-normali TMM-normali TMM-normali TMM-normali TMM-normali		SCDE	SCDE	scde 2.2.0	raw counts
Seurat Bimodnohlt internal filtering Seurat 1.4.0.7 raw counts Seurat BimodIsExpr2 Seurat (bimod test) with internal expression threshold set to 2 seurat 1.4.0.7 raw counts Seurat Tobit Seurat (tobit test) Seurat 1.4.0.7 TPM ttest t-test stats (R v 3.3) TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts TMM-normali		SeuratBimod	Seurat (bimod test)	Seurat 1.4.0.7	raw counts
Seurat Bimod SExpr2 expression threshold set to 2 Seurat 1.4.0.7 raw counts Seurat Tobit Seurat (tobit test) Seurat 1.4.0.7 TPM ttest t-test stats (R v 3.3) TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts TMM-normali		SeuratBimodnofilt	` ′	Seurat 1.4.0.7	raw counts
ttest t-test stats (R v 3.3) TMM-normali TPM voomlimma voom-limma limma 3.30.13 raw counts TMM-normali			, , ,		raw counts
ttest t-test stats (R v 3.3) Normalization trest stats (R v 3.3) TPM voomlimma voom-limma limma 3.30.13 raw counts TMM-normali		Seurat Tobit	Seurat (tobit test)	Seurat 1.4.0.7	TPM
TMM-normali		ttest	t-test	stats (R v 3.3)	TMM-normalized TPM
TMM_normali		voomlimma	voom-limma	limma 3.30.13	raw counts
Wilcoxon Wilcoxon test stats (R v 3.3) TPM		Wilcoxon	Wilcoxon test	stats (R v 3.3)	TMM-normalized TPM

Bias, robustness and scalability in singlecell differential expression and analysis:

- 36 statistical approaches for DE analysis to compare the expression levels in the two groups of cells
- based on 9 data sets, with 11 21 separate instances (sample size effect)
- extensive evaluation of metrics incl. number of genes found, characteristics of the false positive detections, robustness of methods, similarities between methods

Soneson & Robinsons, Nature Methods, 2018

Some highlights:

Good

Poor

Intermediate

- t-test and Wilcoxon work well, given at least few dozens cells to compare
- bulk RNA-seq analysis methods do not generally perform worse than those specifically developed for scRNA-seq
- Filtering out lowly expressed genes in quite important for good performance of bulk methods (edgeR, DEseq2)

Finally

test.use

Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default)
- "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
- "roc": Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
- "t": Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom": Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets
- "LR": Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

- Balanced cluster sizes
- Highly similar clusters

- Balanced cluster sizes
- Highly similar clusters

Balanced cluster sizes:

- Cluster1 will domate all 1-vs-rest comparisons.
- Probably good idea to subsample
- Be aware the subsampling strategies in Seurat only does it per test.

Highly similar clusters:

 Will have most of their DEGs overlapping.

- Always go back to RNA assay (or similar) for doing differential expression.
- Depending on the method you chose use: counts, normalised counts or lognormalized counts.
- Normalization strategy has a big influence on the results in differential expression, size factors may help.
 - E.g comparing celltype with few expressed genes vs a cell type with many genes.

- Batch effects:
 - Always check if the DEGs you get are just unregulated in one of the batches.
 - OBS! Use a test that can control for batch effects.

latent.vars Variables to test, used only when test.use is one of 'LR', 'negbinom', 'poisson', or 'MAST'

- How many cells do you need to get reliable detection of differential expression?
 - Highly expressed genes probably 10-20 cells is enough
 - Lowly expressed genes, at least 20 cells, but probably 50 are needed
- Depends on the sensitivity of the lib. prep. method and how distinct the cell types you are comparing are.
 - E.g:
 - Macrophage vs T-cell (different)
 - CD8 T-cell vs CD4 T-cell (similar)

 A lot of what you get will be noise. Take two random set of cells and run DE and you probably with have a few significant genes with most of the commonly used tests.

Thank you for your attention!