Unit-I

Short Answer Questions

1. Find n^{th} differentiation of following functions:

(a)
$$\frac{x^2}{(x-1)^3(x-2)} = \frac{4}{x-2} - \frac{4}{x-1} -$$
 (b)
$$\frac{1}{1+x+x^2+x^3} = \frac{1}{2(x+1)} + \frac{3}{(x-1)^2} - \frac{1}{(x-1)^3}$$

2. Find n^{th} differentiation of following functions:

(a)
$$\frac{ax+b}{cx+d}$$

(e)
$$\frac{1}{x^2 + a^2}$$

(j)
$$e^{2x} + e^{-2x}$$

(k) $\cos^4 x$

(b)
$$\ln(ax + x^2)$$

(f)
$$\ln(x^2 + a^2)$$

(1)
$$\sin 2x \cos 3x$$

(c)
$$\ln(x^2 - a^2)$$

(g)
$$\tan^{-1}\left(\frac{x}{c}\right)$$

(h) $x \tan^{-1} x$

(m)
$$\exp(ax)\sin^2 x \sin 2x$$

(d)
$$\log \sqrt{\frac{2x+1}{x-2}}$$

(i)
$$\tan^{-1}\left(\frac{2x}{1-x^2}\right)$$

(n)
$$e^x \sin 4x \cos 6x$$

(o)
$$a^x \cos x$$

3. Find n^{th} derivative of

(a)
$$x^3 e^x$$

(b)
$$e^x \log x$$

(c)
$$x^2 \sin x$$
 at $x = 0$.

4. Expand a^x and e^x in powers of x.

5. Expand $\ln x$ in powers of (x-1) upto third degree term.

6. Examine if Rolle's theorem is applicable for $f(x) = \sec x$ in $[0, 2\pi]$.

7. Examine if mean value theorem (Lagrange's mean value theorem) is applicable for $f(x) = \frac{2x-1}{3x-4}$ in [1, 2].

Long Answer Questions

1. Expand e^x in powers of x + 2.

2. Expand $4x^2 + 7x + 5$ in powers of (x - 3)

3. Verify Rolle's theorem for following:

(a)
$$x^2 - 6x + 8$$
 in $[2, 4]$ (b) $e^x \sin x$ in $[0, \pi]$

(b)
$$e^x \sin x$$
 in $[0, \pi]$

4. Verify Lagrange's mean value theorem for following

IILM University, Greater Noida

(a)
$$\sqrt{x^2-4}$$
 in [2, 4]

(b)
$$\ln x \text{ in } [1, e]$$

5. If
$$y = x \ln \left(\frac{x-1}{x+1} \right)$$
, then show that $y_n = (-1)^{n-2} (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right]$.

6. If
$$y = (x^2 - 1)^n$$
 show that $(x^2 - 1) y_{n+2} + 2xy_{n+1} - n(n+1) y_n = 0$.

7. If
$$y = x^{n-1} \log x$$
, show that $y_n = \frac{(n-1)!}{x}$.

8. If
$$\cos^{-1}\frac{y}{b} = \log\left(\frac{x}{n}\right)^n$$
, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$.

9. If
$$y = a \cos \ln x + b \sin \ln x$$
, show that $x^2 y_{n+2} + (2n+1) x y_{n+1} + (n^2+1) y_n = 0$.

10. If
$$y = \sin(m\sin^{-1}x)$$
, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$.

11. If
$$y = \ln \left[x + \sqrt{1 + x^2} \right]$$
, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$.

12. If
$$y = \ln \left[x + \sqrt{1 + x^2} \right]^2$$
, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$.