Instituto Federal de Educação, Ciência e Tecnologia do Maranhão Campus São Luís - Monte Castelo Curso de Sistemas de Informação Disciplina Matemática Discreta - Prof. Gentil Cutrim Avaliação 3 - 28/12/2022

Aluno:

1) [1pt] Considere a seguinte base de conhecimento em Prolog:

```
item(arroz, 10, alimento).
item(feijao, 5, alimento).
item(sabao, 8, limpeza).
item(acucar, 7, alimento).
item(carne, 16, alimento).
item(tomate, 17, alimento).
item(esponja, 3, limpeza).
item(detergente, 4, limpeza).
item(mouse, 80, outros).
item(tomada, 25, outros).
item(panela, 40, utensílios).
```

Com o predicado item/3, escreva uma consulta para listar todos os produtos que não são de limpeza.

```
item(X,_,_), not(item(X,_,limpeza)).
```

- 2) [3pt] Em cada um dos argumentos abaixo, destaque as proposições simples que compõem as premissas e as conclusões. Construa uma tabela-verdade com base nas proposições simples e nas premissas, concluindo com a coluna (p1 \wedge p2 $\wedge \cdots \wedge$ pn) \Rightarrow c. Determine, então, a validade ou não do argumento.
 - a) Se o cachorro escapar, ele pegará o gato. Se o gato for pego, eu estarei em apuros. Portanto, se o cachorro escapar, eu estarei em apuros.

```
p: o cachorro escapaq: o cachorro pega o gator: estarei em apuros
```

```
Premissas:
                                        p\ q\ r\ \big|\ \big(\ \big(\ (\ p\ \rightarrow\ q\ \big)\ \Lambda\ \big(\ q\ \rightarrow\ r\ \big)\ \big)\ \rightarrow\ \big(\ p\ \rightarrow\ r\ \big)\ \big)
        p →q
                                                              V \quad V \quad V
                                        VVF
        q →r
                                        V F V
                                                                  F V V
Conclusão:
                                        V F F
                                                     V F F F F V F
        p →r
                                        FVV
                                                     F V V V V V V
                                        FVF
                                                     FVV F VFF
                                        FFV
                                                     FVF V FVV V FVV
                                        FFF
                                                     FVF V FVF V FVF
```

```
O argumento ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r) é válido
```

- b) Todas as pessoas inteligentes gostam de Matemática. Romeu é uma pessoa. Romeu não gosta de Matemática. Portanto, Romeu não é inteligente.
- p: Uma pessoa é inteligente
- q: Uma pessoa gosta de Matemática
- r: Romeu é uma pessoa

Premissas	pqr	(((p	→	q)	٨	(r /	٦ ،	q)) →	(r	٨	¬ p))
b → d	\vee \vee \vee	V	٧	٧	F	VF	F	٧	٧	V	F	F V	
r ∧ ~q	VVF	V	٧	٧	F	FF	F	٧	V	F	F	F V	
Conclusão	V F V	V	F	F	F	٧ ٧	/ V	F	٧	V	F	F V	
r ∧ ~p	VFF	V	F	F	F	FF	٧	F	٧	F	F	F V	
	FVV	F	٧	٧	F	VF	F	٧	V	V	٧	V F	
	FVF	F	٧	V	F	FF	F	٧	V	F	F	V F	
	FFV	F	٧	F	V	V١	/ V	F	V	V	٧	V F	
	FFF	F	٧	F	F	FF	٧	F	V	F	F	V F	

O argumento ((p
$$\rightarrow$$
 q) \land (r \land \sim q)) \rightarrow (r \land \sim p) é válido

- c) Se Alfredo comer lagosta, ele ficará feliz. Alfredo come lagosta. Podemos concluir que ele está feliz.
- p: Alfredo come lagosta
- q: Alfredo fica feliz

- O argumento $((p \rightarrow q) \land p) \rightarrow q$ é válido
- 3) [2pt] Considere a seguinte base de conhecimento composta do predicado progenitor/2:

```
progenitor(maria, jose).
progenitor(joao, jose).
progenitor(joao, ana).
progenitor(jose, julia).
progenitor(jose, iris).
```

```
progenitor(iris, jorge).
masculino(joao).
masculino(jose).
masculino(jorge).
feminino(maria).
feminino(julia).
feminino(ana).
feminino(iris).
```

Considere que o predicado progenitor (A, B) significa que A é progenitor (i.e., pai ou mãe) de B.

Escreva uma regra para o predicado **irmã(X,Y)**, que informa se X é irmã de Y.

```
irmã(X,Y) := progenitor(Z,X), progenitor(Z,Y), feminino(X), not(X=Y).
```

4) [2pt] Sabe-se que a sentença "Se a camisa é vermelha, então a meia não é preta ou o cinto não é preto" é FALSA.

É correto concluir que

- a) a camisa é vermelha, a meia não é preta, o cinto não é preto.
- b) a camisa é vermelha, a meia é preta, o cinto é preto.
- c) a camisa é vermelha, a meia é preta, o cinto não é preto
- d) a camisa não é vermelha, a meia não é preta, o cinto não é preto
- e) a camisa não é vermelha, a meia é preta, o cinto é preto

```
r: a camisa é vermelha
m: a meia é preta
c: o cinto é preto
Se r ⇒ (~m ∨ ~c) é F temos que ré V e (~m ∨ ~c) é F
Portanto ~(~m ∨ ~c) é V, ou seja, (m ∧ c) é V
Assim, é correto concluir que é verdade r ∧ m ∧ c
```

5) [2pt] Desenhe um circuito lógico com apenas quatro portas e que seja equivalente ao circuito lógico abaixo. Para isto, escreva a proposição correspondente e use as leis da lógica para simplificá-la.

pqr	(((¬p	V	¬ q) ^	٦	p) V ((¬ p	V	٦	q)) Λ r))
V V V	F V	F	F۷	F	F	٧	F	FV	/ F	F	٧	FV
VVF	F V	F	$F\ V$	F	F	٧	F	Fν	F	F	٧	FF
VFV	F V	V	V F	F	F	٧	V	Fν	/ V	٧	F	VV
V F F	F V	V	V F	F	F	٧	F	Fν	V	٧	F	FF
FVV	V F	٧	F V	V	٧	F	V	VF	V	F	٧	VV
FVF	V F	٧	$F\ V$	V	٧	F	V	VF	V	F	٧	FF
FFV	V F	٧	V F	V	٧	F	V	V F	V	٧	F	VV
$F \; F \; F$	V F	٧	V F	V	٧	F	V	V F	٧	٧	F	FF

 $\sim (p \land (q \lor \sim r))$

```
¬(p ∧ (q ∨ ¬ r))
VVF
    F V V
          VVVF
V F V V V F
           FFFV
V F F
    F VV FVVF
FVV
    V FF VVFV
FVF
       FF
           VVVF
FFVV
       FF
           FFFV
FFFV
      FF
           FVVF
```

Ou ainda

pqr	(¬p V (¬q ∧ r))
\vee \vee \vee	FVF FVFV
VVF	FVF FVFF
VFV	FVV VFVV
VFF	FVF VFFF
FVV	V F V F V F V
FVF	V F V F V F F
FFV	V F V V F V V
FFF	VFV VFFF

