CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

ANALYSIS OF CANONICAL SEQUENTIAL NETWORKS

State transition
$$Y_0 = x'y_1' + xy_0'$$

$$Y_1 = xy_0'y_1' + x'y_0'y_1 + xy_0y_1 + x'y_0y_1'$$
 Output
$$z_0 = y_1'$$

$$z_1 = y_0$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS:

PS	Inp		
$y_1 y_0$	x = 0	x = 1	
00	01	11	01
01	11	00	11
10	10	01	00
11	00	10	10
	Y_1	$z_{1}z_{0}$	
	N	S	Output

• CODES:

e
S
S_0
S_1
S_2
S_3

HIGH-LEVEL SPECIFICATION:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{c, d, e, f\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_2$

Functions: The state-transition and output functions

PS	x(t) = a	x(t) = b	
S_0	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
5	N	S	z(t)

State Diagram

PS	x(t) = a	x(t) = b	
S_0	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
	N	\overline{S}	z(t)

PROPAGATION DELAY x to z_0 :

For x changes $0 \rightarrow 1$ and z_0 changes $1 \rightarrow 0$

CLK

EXAMPLE: DESIGN

Input: $x(t) \in \{a, b, c\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{A, B, C, D\}$

Initial state: s(0) = A

Functions: The state-transition and output functions

PS		Input	
	x = a	x = b	x = c
\overline{A}	C,0	B,1	B,0
B	D, 0	B, 0	A,1
C	A,0	D,1	D,0
D	B, 0	A,0	D,1
		NS, z	

• CODING:

In	put	code		Sta	ate c	code
\boldsymbol{x}	x_1	x_0		s	y_1	y_0
\overline{a}	0	1	•	\overline{A}	0	0
b	1	0		B	1	0
\boldsymbol{c}	1	1		C	0	1
				D	1	1
			•			

STATE-TRANSITION AND OUTPUT FUNCTIONS

PS		Input	
	x = a	x = b	x = c
\overline{A}	C,0	B,1	B,0
B	D, 0	B, 0	A,1
C	A,0	D,1	D, 0
D	B , ${\sf 0}$	A,0	D,1
		NS, z	

x	x_1	x_0
\overline{a}	0	1
b	1	0
c	1	1

$$\begin{array}{c|cccc} \text{State code} \\ \hline s & y_1 & y_0 \\ \hline A & 0 & 0 \\ B & 1 & 0 \\ C & 0 & 1 \\ D & 1 & 1 \\ \hline \end{array}$$

$$\begin{array}{c|ccccc} PS & & x_1x_0 \\ y_1y_0 & 01 & 10 & 11 \\ \hline 00 & 01,0 & 10,1 & 10,0 \\ 10 & 11,0 & 10,0 & 00,1 \\ 01 & 00,0 & 11,1 & 11,0 \\ 11 & 10,0 & 00,0 & 11,1 \\ \hline & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & &$$

$$Y_1 = Y_0 = z =$$

Gate level design of the system:

SR FLIP-FLOP

Figure 8.20: SR FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	S(t)R(t)					
	00	01	10	11		
0	0	0	1	-		
1	1	0	1	-		
	NS	S =	Q(t)	+1)		

Q(t+1) = Q(t)R'(t) + S(t) restriction: $R(t) \cdot S(t) = 0$

JK FLIP-FLOP

Figure 8.21: JK FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)						
	00	01	10	11		
0	0	0	1	1		
1	1	0	1	0		
	NS	S =	$\overline{Q(t)}$	+1)		

$$Q(t+1) = Q(t)K'(t) + Q'(t)J(t)$$

T (Toggle) FLIP-FLOP

Figure 8.22: T FLIP-FLOP AND ITS STATE DIAGRAM.

PS = Q(t)	T(t)			
	0	1		
0	0	1		
1	1	0		
	NS =	=Q(t+1)		

$$Q(t+1) = Q(t) \oplus T(t)$$

Clicker Question

What does the whole circuit do?

- a) It works as a T FlipFlop
- b) It works as a D Flip Flop
- c) It works as a combinational invertor
- d) It is not a valid circuit
- e) It works as a combinational buffer

EXAMPLE: ANALYSIS

$$T_A = T_B = z(t) =$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

PS		Inp	out					
Q_AQ_B	x_1x_0				x_1	x_0		
	00	01	10	11	00	01	10	11
00	00	00	00	00	0	0	1	1
01	01	01	11	11	0	0	0	0
10	10	11	10	11	0	0	1	1
11	11	10	01	00	0	0	0	0
		Q_AQ_B				2	z	
		N	S			Out	put	

• CODING:

_	Q_B	l	-	$\overline{x_1}$	x_0	x
0	0	S_0	-	0	0	\overline{a}
0	0 1 0	S_1			1	
1	0	S_2		1	0	c
1	1	S_3		1	1	d

HIGH-LEVEL DESCRIPTION:

Input: $x(t) \in \{a, b, c, d\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS	x				S	\overline{c}		
	I	b						
S_0 S_1	S_0	S_0	S_0	S_0	0	0	1	1
S_1	S_1	S_1	S_3	S_3	0	0	0	0
S_2	S_2	S_3	S_2	S_3	0	0	1	1
S_3	S_3	S_2	S_1	S_0	0	0	0	0
	NS				2	2		

EXAMPLE: ANALYSIS

$$J_A = K_A = J_B = K_B =$$

z =

$$Q_A(t+1) =$$

$$Q_B(t+1) =$$

• STATE-TRANSITION AND OUTPUT FUNCTIONS

PS	NS		Output
	x = 0	x = 1	\overline{z}
Q_AQ_B	Q_AQ_B	Q_AQ_B	
00	10	00	1
01	00	01	0
10	11	11	1
11	01	01	1

• STATE CODING

$\overline{Q_A}$	Q_B	S
0	0	S_0
0	1	S_1
1	0	S_2
1	1	S_3

HIGH-LEVEL DESCRIPTION

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_0$

Functions: The state-transition and output functions

PS	Inp		
	x = 0	x = 1	
S_0	S_2	S_0	1
$S_0 \ S_1$	S_0	S_1	0
S_2	S_3	S_3	1
S_3	S_1	S_1	1
	NS		

State Diagram

EXAMPLE: DESIGN MODULO-5 COUNTER

USE T FLIP-FLOPS

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1, 2, 3, 4\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3, S_4\}$

Initial state: $s(0) = S_0$

Functions: Counts modulo-5, i.e.,

(0,1,2,3,4,0,1,2,3,4,0...),

State Diagram:

z	z_2	z_1	z_0
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0

PS	Input		Input	
$Q_2Q_1Q_0$	x = 0	x = 1	x = 0	x = 1
000	000	001	000	001
001	001	010	000	011
010	010	011	000	001
011	011	100	000	111
100	100	000	000	100
	NS		T_2T	T_1T_0

sm - STATE MAP

~

$$T_{2}: \frac{x}{0 \ 0 \ 0 \ 0}$$

$$Q_{2} = \frac{0 \ 0 \ 1 \ 0}{0 \ 1 \ - \ -}$$

$$Q_{0}$$

$$T_1: \frac{x}{0 \ 0 \ 1 \ 0} Q_1$$

$$Q_2 \ 0 \ 0 \ - \ - \ Q_0$$

$$T_2 = xQ_2 + xQ_1Q_0$$

$$T_1 = xQ_0$$

$$T_0 = xQ_2'$$

