Introduction to Pattern Recognition Assignment 4 Report

Andrés Ponce(彭思安)

0616110

June 1, 2020

1 Coding

2 Questions

2.1 Given a valid kernel $k_1(x,x')$, prove that 1) $k(x,x') = ck_1(x,x')$ and 2) $k(x,x') = f(x)k_1(x,x')f(x)$ are valid kernels, where c>0 is a positive constant and $f(\cdot)$ is any real-valued function.

A valid kernel function $k_1(x,x')$ has to have a positive semi-definite **Gram matrix** $\mathbf{K} = [k(\mathbf{x}_n,\mathbf{x}_m)]_{nm}$. A positive semi-definite matrix is one whose eigenvalues are all positive. We are given that $k_1(x,x')$ is a valid kernel, so at the start it meets this condition. We thus have to show that multiplying k_1 by a constant also produces a valid kernel, i.e. multiplying the kernel by a constant also produces a positive semi-definite Gram matrix.