

Προχωρημένες Τεχνικές Συστημάτων Αυτομάτου Ελέγχου

Άσκηση: Έλεγχος Drone

1. Εισαγωγή

Στην εργασία αυτή θα ασχοληθούμε με τον έλεγχο ενός drone με 4 έλικες (quadcopter). Για τη μοντελοποίηση και τον έλεγχο των drones υπάρχει εκτεταμένη βιβλιογραφία π.χ. [][].

Σχήμα 1: Πηγή [2]

1.1 Περιγραφή Περιστροφικής Κίνησης

Το drone έχει 4 έλικες. Οι δύο γυρνούν σύμφωνα με τη φορά των δεικτών του ρολογιού (οι έλικες από τον άξονα που περνάει ο x' άξονας) και οι άλλοι δύο αντίστροφα. Έτσι σε λειτουργία hovering, που μένει σταθερό σε ένα σημείο, η συνολική στροφορμή των ελίκων είναι 0. Η ώθηση που δίνει ο κάθε έλικας (i=1,2,3,4) είναι ανάλογη του τετραγώνου της γωνιακής ταχύτητάς του

$$f_i = b\Omega_i^2$$

Για να στύψει το drone γύρω από τον άξονα των x (κίνηση roll, αλλαγή της γωνίας φ) αρχικά ελαττώνεται η ταχύτητα έλικα 2 και αυξάνει του 4, κάτι που δημιουργεί μια ροπή γύρω από τον άξονα των x, η οποία στη συνέχεια δημιουργεί μια γωνιακή ταχύτητα (προφανώς για να σταματήσει αυτή η γωνιακή κίνηση θα χρειαστεί μια αντίθετη ροπή). Αντίστοιχα η στροφή γύρω από τον y άξονα επιτυγχάνεται με τη διαφορά των ταχυτήτων των ελίκων 1, 3. Η περιστροφή γύρω από τον z άξονα γίνεται μέσω της αύξησης της ταχύτητας δύο αντιδιαμετρικών ελίκων και την μείωση στο άλλο ζευγάρι (η ροπή επιτυγχάνεται μέσω της αντίστασης drag στην κίνηση των ελίκων).

1.2 Περιγραφή Μεταφορικής Κίνησης

Για να επιταχυνθεί το drone στον άξονα των z θα πρέπει η συνολική δύναμη στον άξονα αυτό

$$U_{1} = b\left(\Omega_{1}^{2} + \Omega_{2}^{2} + \Omega_{3}^{2} + \Omega_{4}^{2}\right)$$

να είναι μεγαλύτερη από το βάρος, όπου *b* είναι ο συντελεστής άνωσης.

Για να κινηθεί στον άξονα των x, πρώτα στρίβει γύρω από τον y άξονα (κάνει τη γωνία ϑ διάφορη του μηδενός), κάτι που κάνει τη συνολική δύναμη U_1 να έχει μια συνιστώσα στον x άξονα. Αντίστοιχα για να κινηθεί στον y άξονα στρίβει γύρω από τον x άξονα (κάνει τη γωνία φ διάφορη του μηδενός).

Η επιτάχυνση γύρω από τον άξονα x, ελέγχεται από τη μεταβλητή

$$U_2 = b\left(\Omega_4^2 - \Omega_2^2\right)$$

ενώ επιτάχυνση γύρω από τον άξονα y από τη μεταβλητή

$$U_3 = b\left(\Omega_3^2 - \Omega_1^2\right)$$

Τέλος η περιστροφή γύρω από το z άξονα ελέγχεται από τη μεταβλητή

$$U_4 = d\left(\Omega_1^2 + \Omega_3^2 - \Omega_2^2 + \Omega_4^2\right)$$

Σημειώστε ότι τα U_1,U_2,U_3 εξαρτώνται από το συντελεστή άνωσης b ενώ το U_4 από το συντελεστή αντίστασης d.

1.3 Μαθηματική Μοντελοποίηση

Θα περιγράψουμε τώρα ένα μαθηματικό μοντέλο για το σύστημα. Σε αυτό έχουν γίνει σημαντικές απλοποιήσεις και αρκετές υποθέσεις.

Οι μεταβλητές κατάστασης είναι οι γωνίες Euler φ, θ, ψ γύρω από τους άξονες x, y, z αντίστοιχα, οι αντίστοιχοι ρυθμοί μεταβολής των γωνιών $\dot{\varphi}, \dot{\theta}, \dot{\psi}$, οι συντεταγμένες της θέσης x, y, z, και οι αντίστοιχες ταχύτητες $\dot{x}, \dot{y}, \dot{z}$. Οι εξισώσεις του συστήματος είναι

$$\begin{split} \ddot{\varphi} &= \dot{\theta} \dot{\psi} \left[\frac{I_{yy} - I_{zz}}{I_{xx}} \right] + \frac{l}{I_{xx}} U_2 \\ \ddot{\theta} &= \dot{\phi} \dot{\psi} \left[\frac{I_{yy} - I_{xx}}{I_{yy}} \right] + \frac{l}{I_{yy}} U_3 \\ \ddot{\psi} &= \dot{\theta} \dot{\varphi} \left[\frac{I_{xx} - I_{yy}}{I_{zz}} \right] + \frac{1}{I_{zz}} U_4 \end{split}$$

όπου l η απόσταση του κέντρου του κάθε έλικα από το κέντρο μάζας και l_{xx} , l_{yy} , l_{zz} , είναι οι ροπές αδράνειας γύρω από τους άξονες x, y, z (έχουμε υποθέσει ότι ο πίνακας των ροπών αδράνεια είναι διαγώνιος).

Η κίνηση στους άξονες x, y, z, περιγράφεται από τις εξισώσεις

$$\ddot{x} = \left(c_{\varphi}s_{\theta}c_{\psi} + s_{\varphi}s_{\psi}\right) \frac{1}{m} U_{1}$$

$$\ddot{y} = \left(-c_{\varphi}s_{\theta}s_{\psi} + s_{\varphi}c_{\psi}\right) \frac{1}{m} U_{1}$$

$$\ddot{z} = -g + \left(c_{\theta}c_{\varphi}\right) \frac{1}{m} U_{1}$$

όπου $c_{\varphi}, s_{\varphi}, c_{\theta}, s_{\theta}, c_{\psi}, s_{\psi}$ είναι τα συνημίτονα και ημίτονα των γωνιών φ, θ, και ψ αντίστοιχα.

Έτσι το μοντέλο στο χώρο κατάστασης γίνεται

$$\begin{split} &\dot{x}_1 = x_2 \\ &\dot{x}_2 = p_1 x_4 x_6 + p_2 U_2 \\ &\dot{x}_3 = x_4 \\ &\dot{x}_4 = p_3 x_2 x_6 + p_4 U_3 \\ &\dot{x}_5 = x_6 \\ &\dot{x}_6 = p_5 x_2 x_4 + p_6 U_4 \\ &\dot{x}_7 = x_8 \\ &\dot{x}_8 = \left(c_\varphi s_\theta c_\psi + s_\varphi s_\psi \right) \frac{1}{m} U_1 \\ &\dot{x}_9 = x_{10} \\ &\dot{x}_{10} = \left(-c_\varphi s_\theta s_\psi + s_\varphi c_\psi \right) \frac{1}{m} U_1 \\ &\dot{x}_{11} = x_{12} \\ &\dot{x}_{12} = -g + \left(c_\theta c_\varphi \right) \frac{1}{m} U_1 \\ &\dot{\sigma} = \frac{I_{yy} - I_{zz}}{I_{zz}}, p_2 = \frac{I}{I_{zz}}, p_3 = \frac{I_{yy} - I_{xx}}{I_{zz}}, p_4 = \frac{I}{I_{zz}}, p_5 = \frac{I_{xx} - I_{yy}}{I_{zz}}, p_6 = \frac{1}{I_{zz}}. \end{split}$$

Οι τιμές των παραμέτρων δίνονται από (δείτε το [2]).

 $\textbf{Table I.} \ \ \text{Physical parameters of the quadrotor system}.$

Total weight of the vehicle	m	0.800 kg
Gravitational acceleration	g	9.81 kg/m ²
Arm length of the vehicle	Ī	0.3 m
Moment of inertia along x-axis	I_{xx}	$15.67 \times 10^{-3} \text{ kgm}^2$
Moment of inertia along y-axis	I _{yy}	$15.67 \times 10^{-3} \text{ kgm}^2$
Moment of inertia along z-axis	l _{zz}	$28.34 \times 10^{-3} \text{ kgm}^2$
Thrust factor	Ь	$192.32 \times 10^{-7} \text{ Ns}^2$
Drag factor	d	$4.003 \times 10^{-7} \text{ Nms}^2$

Θα θεωρήσουμε σαν μεταβλητές ελέγχου τις U_1 , U_2 , U_3 , U_4 . Υπάρχει όμως μια μέγιστη ταχύτητα Ω_i^2 για τον κάθε έλικα που αντιστοιχεί σε 15.000 στροφές το λεπτό.

2. Cascaded PID Έλεγχος

Ερώτηση 1. Υλοποιήστε PID Ελεγκτές που να κάνουν τις γωνιακές θέσεις φ , ϑ ίσες με μηδέν και το ύψος να έχει μια τιμή αναφοράς. Υποθέσετε ότι όλες οι αρχικές συνθήκες είναι πολύ κοντά στο 0.

Ερώτηση 2. Υλοποιήστε cascaded PID Ελεγκτές που να κάνουν τις θέσεις x, y, z ίσες με μια επιθυμητή τιμή.

Ερώτηση 3 (προαιρετική) Υλοποιήστε cascaded PID Ελεγκτές που να κάνουν τις θέσεις x,y,z καθώς και τον προσανατολισμό ψ να έχουν επιθυμητές τιμές.

3. Έλεγχος στο Χώρο Κατάστασης

Ερώτηση 4. Υπολογίστε τα σημεία ισορροπίας του συστήματος.

Ερώτηση 5. Γραμμικοποιήστε γύρω από κάποιο σημείο ισορροπίας (μπορείτε να διαλέξετε ένα με $\psi = 0$).

Ερώτηση 6. Υπολογίστε τον πίνακα μεταφοράς από τις εισόδους στις εξόδους. Θεωρήστε ως εξόδους τις μεταβλητές x, y, z, ψ .

Ερώτηση 7. Σχεδιάστε έναν ελεγκτή στο χώρο κατάστασης με LQ έλεγχο και πειραματιστείτε με τιμές των πινάκων Q,R.

Ερώτηση 8. Μπορεί το σύστημά σας να ακολουθήσει το παρακάτω σχήμα;

Σας δίνονται τα αρχεία Drone_Model_Initial.mdl και Parameters.m.

Βιβλιογραφία

[1] Nikola Zlatanov "Multirotor Aircraft Dynamics, Simulation and Control" https://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf

[2] Özbek, Necdet Sinan, Mert Önkol, and Mehmet Önder Efe. "Feedback control strategies for quadrotor-type aerial robots: a survey." *Transactions of the Institute of Measurement and Control* 38.5 (2016): 529-554. Feedback control strategies for quadrotor-type aerial robots: a survey