Лабораторная работа 3.6.1 Спектральный анализ электрических сигналов

Цель работы: изучение спектрального состава переодических элекстрических сигналов.

Оборудование: анализатор спектра, генератор прямоугльных импульсов, генератор сигналов, осциллограф.

Теория

А. Переодическая последовательность прямоугольных импульсов

Коэффициенты при косинусных составляющих в разложении в ряд Фурье прямоугольных импульсов с амплитудой V_0 , длительностью τ , частотой повторения Ω_1 = $2\frac{\pi}{T}$ равны

$$a_n = 2V_0 \frac{\tau}{T} \frac{\sin(n \cdot \Omega_1 \tau \div 2)}{n \cdot \Omega_1 \tau \div 2}$$

Коэффициенты при синусах равны нулю в силу четности. Отсюда следуют соотношения неопределенности

$$\Delta\omega \cdot \tau \approx 2\pi$$
 или $\Delta\nu \cdot \tau \approx 1$

И спектр будет выглядеть так:

Рис. 6.3. Спектр периодическо последовательности прямоугольных импульсов

Б. Переодическая последовательность цугов

Аналогичное выражение для цугов будет

$$a_n = V_0 \frac{\tau}{T} \left(\frac{\sin \left[\left(\omega_0 - n\Omega_1 \right) \frac{\tau}{2} \right]}{\left(\omega_0 - n\Omega_1 \right) \frac{\tau}{2}} + \frac{\sin \left[\left(\omega_0 + n\Omega_1 \right) \frac{\tau}{2} \right]}{\left(\omega_0 + n\Omega_1 \right) \frac{\tau}{2}} \right)$$

Тогда, спектр цугов аналогичен спектру прямоугольных импульсов, но сдвинут по частоте, потому соотношения неопределенностей сохраняются.

В. Амплитудно-модулированные колебания.

Пусть гармонические колебания описываются формулой

$$f(t) = A_0 [1 + m \cdot \cos(\Omega \cdot t)] \cdot \cos(\omega_0 t)$$

причем $\Omega \ll \omega_0$. m - глубина модуляции. Легко видеть, что

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}$$

А спектр колебаний

$$f(t) = A_0 \cdot \cos(\omega_0 t) + \frac{A_0 \cdot m}{2} \cdot \cos((\omega_0 + \Omega)t) + \frac{A_0 \cdot m}{2} \cdot \cos((\omega_0 - \Omega)t)$$

И потому будет выглядеть следующим образом:

Рис. 6. 7. Спектр колебаний, модулированных по амплитуде

Ход работы

А. Исследование спектра переодической последовательности прямоугольных импульсов

Соберем следующую схему

Рис. 2 Схема для исследования спектра периодической последовательности прямоугольных импульсов

Получим на экране анализатора спектр импульсов с параметрами:

Проверка соотношения неопределенностей

Снимем зависимость $\Delta v(\tau)$ при $f_{\text{повт}} = 1 \, \text{к} \Gamma$ ц и построим график.

Б. Исследование спектра переодической последовательности цугов гармонических колебаний

Соберем установку как на схеме

Рис. 3. Схема для исследования спектра периодической последовательности цугов высокочастотных колебаний

Получим на экране анализатора спектр цугов с параметрами

Проверка соотношения неопределенностей

Снимем зависимость $\delta v(f_{\text{повт}})$ и построим график

В. Исследование спектра гармонических сигналов, модулированных по амплитуде

Соберем следующую установку:

Снимем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии от глубины модуляции и построим график.

