MASTER'S THEOREM

If
$$f(n) \in \theta(nd)$$
 on $f(n) = c^*n^d$, where $d \ge 0$ in securgence $T(n) = \alpha T(n/b) + f(n)$ then,

T(n)
$$\in$$
 { $O(nd)$, if $(a < b^d)$
 $O(nd/ogn)$, if $(a = b^d)$
 $O(nd/ogn)$, if $(a > b^d)$

1)
$$T(n) = 8T(n/2) + 1000n^2$$

 $a = 8, b = 2, f(n) = 1000n^2 = c*nd$
 $\therefore d = 2$

$$b^{d} = 2^{2} = 4$$
.
Hence $a > b^{d}$
 $T(n) \in O(n^{\log b^{\alpha}})$

$$T(n) \in O(n^3)$$
.

2.)
$$T(n) = 2T(u/2) + n^2$$

 $a=2$, $b=2$, $d=2$
 $b^d = 2^2 = 4$
Hence $a < b^d$

$$T(n) \in \Theta(nd)$$

 $\Rightarrow T(n) \in \Theta(n^2)$.

3.)
$$T(n) = 2T(n/2) + 10n$$

 $a=2, b=2, d=1$

$$b^{\alpha} = 2^{1} = \frac{2}{3}$$
.
Hence $\alpha = b^{\alpha}$

$$a = b^{od}$$

$$\Rightarrow$$
 $T(n) \in O(n \log n)$