Definition: Binary Representation & Binary Intervals

Definition: Standard binary representation

The standard binary representation of a real number $r \in [0,1)$ is a (possibly infinite) string of bits $c_1c_2\cdots$ such that

$$r = \sum_i c_i \cdot 2^{-i},$$

where by convention, 0 is represented by the string 0.

Not all reals in [0,1) have a finite representation, but any interval [a,b) with $0 \le a < b \le 1$ contains at least one number with a finite binary representation.

Example

The following table lists some numbers $r \in [0,1)$ and their standard binary representation.

r	binary representation of r
1/2	1
1/3	$01010101\cdots$
1/4	01
3/4	11
3/4 $13/16$ $13/32$	1101
13/32	01101

Note that 1101 is also the binary form of the natural number 13. Adding a 0 on the left divides the represented value by 2.

Definition: Binary interval

A binary interval is an interval of the form

$$\left[rac{s}{2^\ell},rac{s+1}{2^\ell}
ight)$$

with $s,\ell\in\mathbb{N}$ and $0\leq s<2^\ell$.

created: 2019-10-21

Definition: Binary Representation & Binary Intervals | Information Theory

The **name** of the interval is the binary representation of s (as a natural number) padded with zeroes on the left to reach length ℓ . The name can also be interpreted as the path to follow from the root in order to reach the interval as follows:

[Images by Mathias Madsen, thanks a lot!]

created: 2019-10-21