คณิตศาสตร์ดีสครีตสำหรับการเขียนโปรแกรม (Discrete Mathematics for Programming)

Phaphontee Yamchote

Contents

I	Basi	c Programming by Python	1
1	Fund	amental of Problem Solving	3
	1.1	Problem Solving คืออะไร	3
	1.2	การแก้ปัญหาเชิงการคำนวณ	5
		1.2.1 การแบ่งย่อยปัญหา (decomposition)	5
		1.2.2 การเข้าใจรูปแบบ (pattern recognition)	6
2	Basio	e Python Syntax	7
II	Bas	ic Mathematical Reasoning and Proving	9
3	Math	ematics as a Language	11
4	Basio	c Objects in Mathematics	15
5	Logic	c, Reasoning and Proof	17
	5.1	ตรรกศาสตร์คืออะไร	18
	5.2	การให้เหตุผลทางคณิตศาสตร์ และการพิสูจน์	18
	5.3	การเขียนพิสูจน์	18
6	Recu	rsion and Mathematical Induction	19

ii CONTENTS

Ш	Dis	crete Ma	athematics with Programming	21
7	Set T	heory: wit	th more implementation	23
8	Numl	ber Theory	у	25
	8.1	การหารเ	ลงตัว	26
	8.2	ขั้นตอนว็	วิธีการหาร: Division Algorithm	29
	8.3	•	Exercise	32
	8.4	program	nming: การหารลงตัวที่เขียนกันเองด้วยนิยาม	33
		8.4.1	วิธีเบื้องตัน	34
		8.4.2	พิจารณาแค่จำนวนบวกก็พอ	35
		8.4.3	เปลี่ยนจากปัญหาการคูณเป็นปัญหาการบวก	36
		8.4.4	เขียนแบบฟังก์ชันเวียนเกิด	37
	8.5	program	nming: ตรวจสอบการเป็นจำนวนเฉพาะ	39
		8.5.1	วิธีเบื้องตัน	39
		8.5.2	วิธีที่ไม่ใช้ลิสต์ หรือการจำตัวประกอบทั้งหมดของ n	41
		8.5.3	ลดจำนวนครั้งการคำนวณได้มากกว่านี้อีก	42
	8.6	program	nming: แยกตัวประกอบในรูปผลคูณจำนวนเฉพาะ	43
		8.6.1	วิธีวนซ้ำตามจำนวนเฉพาะ	43
		8.6.2	วิธีเวียนเกิด	46
	8.7	program	nming: ขั้นตอนวิธีการหารหาเศษและผลหาร	47
	8.8	Program	nming Exercise	48
9	Coml	binations		49
	9.1	หลักการ	ขวกและหลักการคูณ	49
		9.1.1	หลักการบวก	49
		9.1.2	หลักการคูณ	51
	9.2	การเรียง	าสับเปลี่ยน	55
		9.2.1	การเรียงสับเปลี่ยนเชิงเส้นแบบของไม่ซ้ำ	55
		9.2.2	การเรียงสับเปลี่ยนแบบวงกลม	57
		9.2.3	การเรียงสับเปลี่ยนเชิงเส้นแบบของซ้ำ	59
	9.3	การจัดก	ត្នុង	59
	9.4	สัมประสิ	ั เทธิ์ทวินาม	61

CONTENTS	iii	

		0.4.1	94 D 1 D 194 9 D 1 D 1	62
		9.4.1	ทฤษฎีบททวินาม	
		9.4.2	การใช้ทฤษฎีบททวินามในการพิสูจน์เอกลักษณ์เชิงการจัด	62
		9.4.3	โจทย์ปัญหาเพิ่มเติมเกี่ยวกับการจััดกลุ่ม	62
	9.5	หลักการนำ	าเข้า-ตัดออก	63
	9.6	Programm	ning about Combinatorics	64
10	Recurr	rence Rela	tion	65
11	Recurs	sive Algori	thm - an approach to functional programming	67
12	Graph	Theory		69

iv CONTENTS

Part I

Basic Programming by Python

Fundamental of Problem Solving

เราจะเริ่มบทแรกของหนังสือเล่มนี้ด้วยทักษะที่สำคัญที่สุดไม่ว่าจะในการเรียนคณิตศาสตร์ หรือจะคอมพิวเตอร์ ก็ตาม นั่นคือทักษะการแก้ปัญหา (problem solving) เพราะแก่นแท้ของตัววิชาเหล่านี้นั้นคือการนำความ รู้ไปใช้ในการแก้ปัญหาต่าง ๆ ไม่ว่าจะปัญหาในตัววิชาเองในรูปแบบปัญหาเชิงการคำนวณ (computational problem) หรือปัญหาในโลกจริง กล่าวคือ ปัญหาคือสิ่งที่เราจะต้องพบเจอเป็นเรื่องปกติในการเรียน วิชานี้

ในบทนี้เราจะเริ่มจากมาดูกันก่อนว่าปัญหาคืออะไร และการแก้ปัญหาคืออะไร เพราะก่อนจะลงมือแก้ ปัญหา เราก็ต้องเข้าใจก่อนว่าสิ่งเหล่านี้คืออะไร หลังจากที่เข้าใจเกี่ยวกับสิ่งที่เรียกว่าปัญหาแล้ว เราจะ มาต่อกันว่าทักษะหรือแนวคิดอะไรบ้างที่สำคัญในการแก้ปัญหา โดยจะไม่กล่าวถึงรายละเอียดปลีกย่อย ของเทคนิคการแก้ปัญหา เพราะในแต่ละรูปแบบปัญหาที่ต่างกัน ก็จะมีรายละเอียดในเรื่องวิธีการแก้ปัญหา หรือเทคนิคการแก้ปัญหาที่แตกต่างกันออกไป เหมือนการทำโจทย์คณิตศาสตร์ที่รูปแบบโจทย์ที่แตกต่าง กันก็อาจจะมีเทคนิคที่แตกต่างกัน แต่ว่าสิ่งที่จะทำให้เรารู้ว่าต้องใช้เทคนิคหรือวิธีการอะไรในการแก้ปัญหาที่ต้องการแก้ก็คือประสบการณ์ที่เราจะได้ฝึกกันในแต่ละบท ๆ ต่อจากนี้นั่นเอง

1.1 Problem Solving คืออะไร

ก่อนจะถามว่าการแก้ปัญหาคืออะไร ก็คงไม่เสียเวลาอะไรนักถ้าเราจะมาพูดคุยตกลงกันให้เข้าใจก่อนว่า อะไรคือ**ปัญหา** ซึ่งถ้าเราเปิดดูความหมายตามราชบัณฑิต คำนี้จะมีความหมายว่า

น. ข้อสงสัย, ข้อขัดข้อง, เช่น ทำได้โดยไม่มีปัญหา, คำถาม, ข้อที่ควรถาม, เช่น ตอบปัญหา, ข้อที่ต้อง
 พิจารณาแก้ไข เช่น ปัญหาเฉพาะหน้า ปัญหาทางการเมือง.

ซึ่งบางความหมาย อาจจะรู้สึกว่าปัญหาก็คืออะไรที่รู้สึกว่าไม่ดี เพราะจะทำให้สิ่งต่าง ๆ ดำเนินไปไม่เป็น

ไปตามที่ควรจะเป็น เช่นข้อขัดข้อง หรือข้อที่ต้องพิจารณาแก้ไข ทว่ายังมีความหมายอีกกลุ่มหนึ่งที่ดูน่า สนใจคือ ข้อสงสัย ข้อควรถาม ที่เรามักพูดกันว่า "ตอบปัญหา"

ในหนังสือเล่มนี้ (และในคณิตศาสตร์ รวมไปถึงการเขียนโปรแกรมคอมพิวเตอร์) เราจะให้ความหมาย ของ **ปัญหา** คือ โจทย์ที่ถามหรือกล่าวขึ้นมาพื่อต้องการคำตอบโดยอาจจะมีเงื่อนไขบางอย่างหรือไม่มี ก็ได้ โดยจะเป็นการกล่าวถึงสถานการณ์ที่มีสิ่งตั้งต้นอะไรสักอย่าง แล้วสุดท้าย(หลังจากผ่านกระบวนการ อะไรสักอย่าง)จะได้สิ่งที่ต้องการออกมา

ตัวอย่างเช่น "บริษัทจัดสรรแม่บ้านทำความสะอาดตามสั่งแห่งหนึ่งได้รับการจองคิวใช้บริการแม่บ้าน เข้ามาจำนวนหนึ่งจากลูกค้าหลายราย โดยที่ลูกค้าแต่ละคนก็มีจำนวนวันที่ต้องการใช้บริการแม่บ้านไม่เหมือน กัน ทางบริษัทเลยอยากรู้ว่าต้องเตรียมแม่บ้านไว้กี่คน" ซึ่งเราจะพบว่าปัญหานี้เราต้องการรู้ว่าต้องเตรียม แม่บ้านไว้กี่คน โดยเรามีรายการการจองคิวเป็นตัวตั้งของการตอบปัญหานี้

จากตัวอย่างที่กล่าวมา จะเรียกสิ่งตั้งตัน (เช่นรายการการจองคิวที่บริษัทได้รับ) ว่าข้อมูลขาเข้า (input) และเราจะเรียกสิ่งที่ได้ออกมา (เช่นจำนวนแม่บ้านที่ต้องเตรียมไว้) ว่าข้อมูลขาออก (output) ดัง นั้น เราอาจจะกล่าวได้อีกแบบหนึ่งว่าปัญหาก็คือการมีข้อมูลขาเข้า และข้อมูลขาออกที่ต้องการ และสิ่งที่ เราต้องลงแรงหาก็คือ วิธีการที่จะแปลเปลี่ยนข้อมูลขาเข้าดังกล่าวให้ได้ข้อมูลขาออกตามที่ต้องการ ซึ่ง เราจะเรียกกระบวนการการหาวิธีการดังกล่าวว่าการแก้ปัญหา (problem solving) และจะเห็นว่าสิ่งสำคัญ อันดับแรกสุดไม่ว่าเราจะแก้ปัญหาอะไรก็ตามคือการทำความเข้าใจภาพรวมของโจทย์ (problem statement) ว่าตัวปัญหาคืออะไร และระบุให้ได้ว่าอะไรคือข้อมูลขาเข้า และข้อมูลขาออก โดยถ้าเทียบกับตัวอย่าง บริษัทแม่บ้านทำความสะอาดก่อนหน้า จะมีรายละเอียดดังนี้

- โจทย์: หาวิธีการในการคำนวณจำนวนแม่บ้านที่ต้องเตรียมไว้เมื่อได้รับรายการการจองคิวใช้บริการ จากลูกค้า
- ข้อมูลขาเข้า: รายการการจองคิวใช้บริการ
- ข้อมูลขาออก: จำนวนแม่บ้านที่ต้องเตรียมไว้

ทั้งนี้ ตัวปัญหาเองก็อาจจะถูกแบ่งกลุ่มออกเป็นประเภทต่าง ๆ ได้หลายประเภท แต่ปัญหาที่เราจะ สนใจกันในหนังสือเล่มนี้นั้นจะเป็นปัญหาในกลุ่มปัญหาเชิงการคำนวณ (computational problem) หรือ หนังสือบางเล่มจะเรียกว่าปัญหาเชิงการประมวลผล ซึ่งคำว่าคำนวณในที่นี่ไม่ได้หมายถึงเพียงแค่การบวก ลบ คูณ หาร หรือการทำโจทย์คณิตศาสตร์ (calculation) แต่ยังรวมไปถึงการวางแผนเชิงกระบวนการ เชิงตรรกะ เชิงเหตุผล หรือรวมไปถึงการคิดเชิงสัญลักษณ์เองก็ด้วย ไม่จำเป็นว่าจะต้องเป็นปัญหาที่เกี่ยว กับตัวเลขเพียงเท่านั้น ซึ่งกระบวนการการแก้ปัญหาเชิงการคำนวณถือว่าเป็นทักษะที่สำคัญที่สุดในการ เขียนโปรแกรม รวมไปถึงการศึกษาคณิตศาสตร์ และวิทยาการคอมพิวเตอร์ โดยเราจะได้กล่าวถึงรายละเอียด ของกระบวนการดังกล่าวในหัวข้อถัดไป

1.2 การแก้ปัญหาเชิงการคำนวณ

จากหัวข้อที่แล้ว เราอาจกล่าวโดยสรุปได้ว่าปัญหาเชิงการคำนวณก็คือปัญหาที่จะสามารถแก้ได้ด้วยคอมพิวเตอร์ โดยการออกแบบอัลกอริทึมที่เหมาะสม และในการแก้ปัญหาเชิงการคำนวณนั้น จะมีทักษะที่สำคัญที่จะ ช่วยให้เราแก้ปัญหาเชิงการคำนวณได้อย่างมีประสิทธิภาพอยู่ 4 ทักษะได้แก่

- 1. การแบ่งย่อยปัญหา (decomposition)
- 2. การเข้าใจรูปแบบ (pattern recognition)
- 3. การคิดเชิงนามธรรม (abstraction)
- 4. การออกแบบขั้นตอนวิธี (algorithm design)

1.2.1 การแบ่งย่อยปัญหา (decomposition)

ในการแก้ปัญหาหนึ่งที่เราได้รับมานั้น อาจเป็นการยากถ้าเราจะหาวิธีที่แปลงข้อมูลขาเข้าให้กลายเป็นข้อมูล ขาออกได้ภายในขั้นเดียว อาจจะเนื่องมาจากการแก้ปัญหาดังกล่าวต้องการขั้นตอนย่อย ๆ หรือเครื่องมือ ย่อย ๆ ในการแก้ปัญหานั้น ดังนั้นเราจึงควรย่อยปัญหาใหญ่ให้ออกเป็นปัญหาย่อย ๆ ที่จะสามารถแก้ได้ ง่าย ๆ ไม่ชับซ้อนก่อน

ตัวอย่างเช่นเราอยากจะต่อจิกซอว์สักรูปหนึ่ง คงเป็นการยากถ้าเราจะเทจิกซอว์ทั้งหมดลงมาในแผ่น เดียวแล้วต่อขึ้นมาด้วยการมองภาพทั้งภาพในเวลาเดียวกัน แต่คงจะดีขึ้นถ้าเรารู้ว่าในภาพมืองค์ประกอบ ย่อย ๆ ที่เห็นความแตกต่างเรื่องสือย่างชัดเจน เช่นมีบริเวณหนึ่งที่มีแต่สีแดง และมีอีกบริเวณหนึ่งที่มี แต่สีเขียว หรืออีกบริเวณหนึ่งเป็นลายผ้าสีเหลืองลายจุดสีสัม เราก็เลยจะแบ่งปัญหาการต่อจิกซอว์ทั้งผืน เป็นปัญหาการต่อจิกซอว์กลุ่มย่อย ๆ ที่เป็นสีแดง, ปัญหาการต่อจิกซอว์กลุ่มย่อย ๆ ที่เป็นสีเขียว และ ปัญหาการต่อจิกซอว์กลุ่มย่อย ๆ ที่เป็นสีเหลืองลายจุดสีสัม ซึ่งจะทำให้เกิดปัญหาที่เล็กลงและอาจจะซับ ซ้อนน้อยลงเพราะเรากำจัดตัวเลือกจิกซอว์ที่ไม่เกี่ยวข้องกับบริเวณดังกล่าวออกไปได้เยอะ

ขออีกสักตัวอย่างที่ดูเป็นปัญหาเชิงการคิดเลขมากขึ้น เช่นปัญหาการแก้สมการจำนวนเต็ม x+y+12z=30 โดยที่ x,y และ z เป็นจำนวนเต็มบวกสามจำนวนที่ต่างกัน โดยโจทย์ต้องการว่ามีผลเฉลย (x,y,z) ดังกล่าวทั้งหมดกี่ครูปแบบ ซึ่งแน่นอนว่าถ้าเราไล่ไปเรื่อย ๆ ก็อาจจะเสร็จได้ไม่ได้ยากมาก เพราะ เลขเราต้องการผลบอกแค่ 30 ถ้าต้องไล่ 0 ถึง 30 ก็มีอยู่ไม่เกิน $31\times31\times31=29791$ รูปแบบ ซึ่งถ้า ให้คอมพิวเตอร์ช่วยรันให้ก็คงใช้เวลาไม่นาน แต่ถ้าใช้คนก็อาจจะเหนื่อยก่อนและมีคิดผิดบ้างได้ แต่เรา จะเห็นว่าการเพิ่มขึ้นของค่า z นั้นกลับมีประโยชน์อย่างมาก เพราะเพิ่มขึ้น 1 ค่าในด้านซ้ายจะเพิ่มขึ้น ไปถึง 12 ดังนั้นเราจึงอาจจะสังเกตได้ไม่ยากว่าแยกพิจารณาตามค่า z ไปเลยก็ได้ โดยที่ z=0,1,2 (เพราะถ้ามากกว่านี้ ผลบวกจะเกิน 30) กล่าวคือ เราจะแยกปัญหาหลักเราออกเป็นปัญหาย่อย 3 ปัญ หาย่อยคือ

- 1. เมื่อ z = 0: แก้สมการ x + y = 30
- **2**. เมื่อ z=1: แก๊สมการ x+y=18
- 3. เมื่อ z=2: แก้สมการ x+y=6

ซึ่งแต่ละปัญหาย่อย จะสามารถแก้ได้ด้วยการนับง่าย ๆ

ในการแยกปัญหาย่อยนั้น อาจจะได้ปัญหาย่อยมาในรูปแบบที่แยกกันทำ ต่างคนต่างอิสระจากกัน ทำ เสร็จแล้วค่อยนำคำตอบของแต่ละปัญหามาผนวกรวมร่างกันให้กลายเป็นปัญหาใหญ่ เช่นตัวอย่างสมการ ข้างต้นที่เราสามารถแก้ปัญหาไหนก่อนก็ได้ไม่มีผลต่อกัน หรือเราอาจจะได้ปัญหาย่อยที่มาในรูปแบบที่ต้อง ทำงานต่อเนื่องกันโดยที่เมื่อทำปัญหาย่อยที่ 1 เสร็จให้นำผลของปัญหาย่อยที่ 1 ไปใช้ต่อเป็นข้อมูลขา เข้าของปัญหาย่อยที่ 2 ก็ได้ ทั้งนี้ ไม่มีกฎตายตัวในการตั้งปัญหาย่อย ขึ้นอยู่กับมุมมองต่อปัญหาตรง หน้าของเรา ณ เวลานั้น

1.2.2 การเข้าใจรูปแบบ (pattern recognition)

ใน

Basic Python Syntax

Part II

Basic Mathematical Reasoning and Proving

Mathematics as a Language

บทนี้จะเป็นบทสั้น ๆ เน้นที่การเล่าให้เห็นภาพรวมของคณิตศาสตร์ในรูปแบบการเรียนเพื่อหาเหตุผล เป้า หมายของบทนี้เพียงเพื่อต้องการเปลี่ยนทัศนคติของผู้อ่านบางท่านเกี่ยวกับคณิตศาสตร์ ก่อนที่เราจะลง ลึกไปสู่คณิตศาสตร์จริง ๆ ในบทถัด ๆ ไป อย่างน้อยก็อยากให้หลังจากที่อ่านบทนี้จบ ผู้อ่านจะมองว่า คณิตศาสตร์คือวิชาของการอธิบายสิ่งต่าง ๆ ในโลก และการให้เหตุผลของความเป็นไปในสิ่งต่าง ๆ ไม่ใช่ แค่การคิดเลข

หลายท่าน (รวมถึงเด็ก ๆ จากประสบการณ์การสอนพิเศษมาหลายปีของผู้เขียน) อาจจะจำความรู้สึก มาจากตอนเรียนระดับมัธยมต้นว่าวิชาคณิตศาสตร์เป็นวิชาที่เกี่ยวกับการคิดเลข จำสูตรไปแทนค่าหาคำ ตอบ ขอแค่จำสูตรได้เยอะ ๆ อ่านโจทย์แล้วรู้ว่าใช้สูตรไหน คิดเลขให้ไว ๆ ก็น่าจะทำข้อสอบได้คะแนนดี กันแล้ว และบอกคนอื่นได้ว่าเราเรียนคณิตศาสตร์รู้เรื่อง แต่ทว่า พอขึ้นมาเรียนในระดับมัธยมปลาย กลับ พบว่าคณิตศาสตร์เปลี่ยนไปอย่างมาก เราได้เรียนเรื่องเซต เรื่องตรรกศาสตร์ ความสัมพันธ์และฟังก์ชัน ในระดับชั้นมัธยมศึกษาปีที่ 4 กันเป็นเรื่องแรก ๆ ที่ตัวเนื้อหาตามหนังสือเรียนนั้น แทบไม่ใช่การคิดเลข เลย แต่เป็นเรื่องของการเรียนรู้การใช้สัญลักษณ์ เรียนรู้การให้เหตุผล เพื่อใช้สื่อสารกันในโลกของคณิตศาสตร์ ซึ่งอาจจะต้องโทษวิธีการสอนของครูมัธยมไทยหลาย ๆ ท่านที่ทำให้เนื้อหาพวกนี้หนีไม่พันสอนการคิด เลขเหมือนเดิม เช่นจัดรูปอย่างง่ายของประพจน์ หาผลยูเนียน หาผลอินเตอร์เซคชัน หรือแม้กระทั่งหา ผลค่าความจริงในวิชาตรรกศาสตร์

ในบทนี้จะขอยกบทเรียนที่เป็นตัวละครสำคัญที่ทำให้เรามองคณิตศาสตร์เป็นเรื่องของภาษา แทนที่จะ มองว่าเป็นเครื่องมือในการคิดเลขได้แก่ (1) เซต (2) ตรรกศาสตร์ (3) ความสัมพันธ์ และ (4) ฟังก์ชัน

เซต อย่างเช่นเรื่องเซต เป้าหมายของบทนี้คือการต้องการใช้คณิตศาสตร์อธิบายความเป็นกลุ่ม ความ เป็นสมาชิกของสิ่งใดสิ่งหนึ่ง เช่นเราบอกว่านาย "a เป็นนักเรียน" เราก็จะมองในรูปแบบคณิตศาสตร์ว่า เรามีเซตของนักเรียน ในที่นี้สมมติให้เป็น S ที่ใครก็ตามที่อยู่ในเซต S จะเป็นนักเรียน และนาย a ก็เป็น สมาชิกในเซตนักเรียน จึงเขียนเป็นสัญลักษณ์แทนประโยคดังกล่าวได้ว่า $\mathbf{a} \in S$

หรือในทำนองเดียวกัน ถ้าเรากล่าวว่านักเรียนก็เป็นบุคลากรของโรงเรียน ก็เปรียบเสมือนเรามีเซต ที่เป็นกลุ่มของบุคลากรของโรงเรียน สมมติให้เป็น X และมีเซตของนักเรียนเป็นกลุ่มย่อยในนั้น หรือกล่าว ว่า เซตของนักเรียนเป็นเซตย่อยของเซตบุคลากร โดยเขียนเป็นสัญลักษณ์ว่า $S\subseteq X$ อีกทั้ง ถ้าเรานำนิยามทางคณิตศาสตร์ของการเป็นเซตย่อยมาจับกับประโยคทั้งสอง

นิยาม 3.0.1: เซตย่อย

ให้ A และ B เป็นเซต เราจะกล่าวว่า A เป็นเซตย่อยของ B หรือเขียนว่า $A\subseteq B$ ก็ต่อเมื่อ สำหรับทุก x ถ้า $x\in A$ แล้ว $x\in B$

ซึ่งเรามีประโยค (1) a $\in S$ และ (2) $S\subseteq X$ จากนิยามของเซตย่อย 3.0.1 เราจะเห็นความสอดคล้อง ระหว่างสิ่งที่เรามีกับเครื่องมือที่เรารู้ดังนี้

- ullet S เปรียบเสมือน A ในนิยาม และ X เปรียบเสมือน B ในนิยาม
- ullet a $\in S$ สอดคล้องกับประโยค $x \in A$
- ullet $S\subseteq X$ สอดคล้องกับประโยค $A\subseteq B$

จากนิยามดังกล่าวทำให้เราสรุปได้ว่า $x\in B$ (ในนิยาม) ซึ่งสอดคล้องกับประโยค $\mathbf{a}\in X$ หรือกล่าวคือ \mathbf{a} เป็นบุคลากรของโรงเรียนเช่นกัน

ซึ่งเราจะเห็นว่าคำศัพท์ต่าง ๆ ที่เกี่ยวกับเซตนั้น ก็เกิดมาเพื่อใช้ในการอธิบายปรากฏการณ์ที่เกี่ยวข้อง กับการเป็นสมาชิกในกลุ่มนั่นเอง ทว่าสิ่งที่อธิบายในเรื่องของวิธีการสรุปผลในข้างต้นนั้นก็ไม่ใช่บทบาท หน้าที่ของเรื่องเซต เพราะเซตเป็นเพียงการบอกว่ามีใครเป็นสมาชิกบ้าง แต่การสรุปผลต่างๆ เป็นบทบาท หน้าที่ของสิ่งที่เรียกว่า "ตรรกศาสตร์"

ดรรกศาสตร์ หรืออย่างในเรื่องตรรกศาสตร์เอง ก็เป็นการเรียนรู้โครงสร้างประโยคในภาษาคณิตศาสตร์ รวมไปถึงการเชื่อมโยงระดับประโยค พร้อมทั้งมีการพิจารณาความเป็นจริงหรือไม่จริงหรือที่เรียกกันว่า ค่าความจริง¹ เป็นเบื้องหลังของการนิยามอยู่ เพราะตรรกศาสตร์ก็เกิดมาเพื่อต้องการใช้คณิตศาสตร์ใน การทำความเข้าใจระบบความคิดของมนุษย์ในรูปแบบที่มาตรฐานขึ้น เลยถูกสร้างเลียนแบบการสื่อสาร ของมนุษย์ นำภาษามนุษย์มาทำให้เป็นรูปแบบเชิงสัญลักษณ์ พร้อมกับมีการนำไปใช้เพื่อวิเคราะห์ความ เป็นเหตุเป็นผลเชิงค่าความจริง

ไม่เพียงแค่พิจารณาค่าความจริงของตัวประโยคเท่านั้น การศึกษาเชิงตรรกศาสตร์เองก็ยังรวมไปถึง การสร้างประโยคเพื่ออธิบายความเป็นตัวตนของสิ่งของในคณิตศาสตร์เช่นกัน เช่น ประโยค "x เป็นนักเรียน"

¹จริง ๆ แล้วยังมีการศึกษาตรรกศาสตร์ในรูปแบบที่เราไม่สนใจเรื่องค่าความจริงด้วย แต่จะสนใจในเรื่องของความถูกต้อง ของรูปแบบโครงสร้างการเขียน และสรุปผลด้วยโครงสร้างของประโยค ซึ่งเรียกว่าตรรกศาสตร์เชิงวากยสัมพันธ์

(สมมติแทนด้วยสัญลักษณ์ P(x)) จะถูกใช้เพื่อการอธิบายการเป็นนักเรียนของสิ่งของที่เราสนใจอยู่ 2 ซึ่ง แน่นอนว่าเราไม่สามารถที่จะบอกค่าความจริงของตัวประโยคนี้ด้วยตัวมันเองได้ เพราะเราไม่รู้ว่าเราหมาย ถึง x คนไหน (หรืออาจจะไม่ใช่คนตั้งแต่แรกเสียด้วยซ้ำ)

Basic Objects in Mathematics

Logic, Reasoning and Proof

หลังจากที่ผู้เขียนได้เกริ่นนำบทบาทหน้าที่ของตรรกศาสตร์ในแง่ของเครื่องมือในการสร้างประโยคและการ ให้เหตุผลไปในบทที่ 3 แบบคร่าว ๆ ไปแล้ว คราวนี้ ถึงเวลาที่ผู้อ่านจะได้ลงสู่รายละเอียดของตรรกศาสตร์ กันบ้าง ตามชื่อบท ผู้อ่านจะพบว่ามีคำ 3 อยู่ในชื่อบท ได้แก่ (1) Logic (ตรรกศาสตร์) (2) Reasoning (การให้เหตุผล) (3) Proof (การเขียนพิสูจน์) ซึ่งจะเป็น 3 ส่วนหลักที่จะอธิบายในบทนี้ ซึ่ง 3 สิ่งนี้เป็นสิ่ง ที่แยกขาดออกจากกันไม่ได้ เพราะเมื่อเราอยากจะเขียนพิสูจน์อะไรสักอย่าง (เหมือนเขียนรายงานเพื่อ โน้มน้าวผู้อ่าน) เราก็ต้องผ่านขั้นตอนการหาเหตุผลเพื่อสรุปผลในสิ่งที่อยากพิสูจน์ ซึ่งเหตุผลที่ใช้ก็ต้อง เป็นเหตุผลที่ถูกต้องตามหลักคณิตศาสตร์ และใช้ตรรกศาสตร์เป็นความรู้พื้นฐานประกอบการให้เหตุผล ให้สมเหตุสมผลในเชิงคณิตศาสตร์นั่นเอง

จากที่กล่าวไป จะเห็นว่าตรรกศาสตร์เปรียบเสมือนเป็นชุดความรู้ (knowledge) เพื่อนำมาฝึกทักษะ (skill) การให้เหตุผล และเมื่อให้เหตุผลแล้ว เราต้องมีระเบียบวิธีขั้นตอน (methodology) ที่จะสามารถ สื่อสารกระบวนการดังกล่าวให้ผู้อื่นเข้าใจด้วยการเขียนพิสูจน์นั่นเอง

ทั้งนี้ สำหรับผู้อ่านท่านใดที่เคยผ่านวิชาที่เกี่ยวกับการเขียนพิสูจน์มาแล้ว อาจจะข้ามบทนี้ไปก็ได้ เพราะ บทนี้เป็นการปูพื้นฐานการให้เหตุผลเชิงคณิตศาสตร์สำหรับผู้ที่ยังไม่เคยเรียนคณิตศาสตร์แนวนี้มาก่อน แต่สำหรับผู้อ่านที่ยังไม่มีประสบการณ์ในการให้เหตุผลเชิงคณิตศาสตร์ ขอให้อยู่กับบทนี้มากพอก่อนที่จะ เริ่มบทถัดไป เพราะเป้าหมายหลักของหนังสือนี้คือฝึกทักษะการให้เหตุผลเชิงคณิตศาสตร์และพิสูจน์เชิง คณิตศาสตร์ ไม่ใช่หนังสือเตรียมสอบวิชาคณิตศาสตร์ และไม่ใช่หนังสือที่รวมเอาเนื้อหาของแต่ละบทมา นำเสนอให้ท่องจำ (เช่นอ่านบทตรรกศาสตร์ของหนังสือเล่มนี้เข้าใจก็ไม่ได้หมายความว่าจะทำข้อสอบบท ตรรกศาสตร์ของวิชา ม.4 ได้¹) แต่เป็นหนังสือที่จะพาผู้อ่านคิดไปด้วยกันทีละขั้นตอน ว่ากำลังจะเกิดอะไร ขึ้น แล้วเกิดอะไรขึ้นมาแล้ว จะไปต่อยังไง และควรไปทางไหนต่อดี

¹ผู้เขียนยังทำข้อสอบเรื่องตรรกศาสตร์ในข้อสอบสอบเข้ามหาวิทยาลัยไม่ค่อยได้เช่นกันครับ

5.1 ตรรกศาสตร์คืออะไร

ตรรกศาสตร์ ถ้าแปลตามตัวคำจะแปลว่า ศาสตร์แห่งการศึกษาตรรกะ กล่าวคือ การศึกษาเกี่ยวกับข้อความ ค่าความจริง และการให้เหตุผล

- 5.2 การให้เหตุผลทางคณิตศาสตร์ และการพิสูจน์
- 5.3 การเขียนพิสูจน์

Recursion and Mathematical Induction

Part III

Discrete Mathematics with Programming

Set Theory: with more implementation

Number Theory

THEORY PART

ทฤษฎีจำนวนเป็นหัวข้อที่จะได้ศึกษาเกี่ยวกับคุณสมบัติของจำนวนเต็มที่เกี่ยวข้องกับการหารลงตัวและ ตัวประกอบ โดยจะเริ่มศึกษาจากการหารลงตัวก่อน แล้วจึงนำไปนิยามจำนวนประกอบและจำนวนเฉพาะ และนำไปสู่ทฤษฎีสำคัญที่เรียกว่า Fundamental Theorem of Arithmetic ซึ่งพูดถึงการแยกตัวประกอบ ของจำนวนประกอบด้วยจำนวนเฉพาะซึ่งเป็นทฤษฎีสำคัญที่ทำให้เราสามารถศึกษาคุณสมบัติต่าง ๆ ของ จำนวนประกอบได้ เช่นจำนวนของตัวประกอบ และการตรวจสอบการเป็นจำนวนเฉพาะ

และหลังจากที่ศึกษาเกี่ยวกับคุณสมบัติของจำนวน เราจะพูดถึงความสัมพันธ์ของสองจำนวน โดยเริ่ม ที่การนิยามการหารของจำนวนเต็ม แล้วนำไปสู่เรื่องตัวหารร่วมมากและตัวคูณร่วมน้อยเพื่อศึกษาการมี ตัวประกอบร่วมกันของจำนวนตั้งแต่สองจำนวนเป็นต้นไป และจบด้วยเรื่องการสมภาคที่เกี่ยวข้องกับระบบ ของเศษเหลือ รวมไปถึงการนำไปประยุกต์ใช้ในวิทยาการการเข้ารหัส (cryptography)

โดยทั่วไปแล้ว หัวข้อนี้มักจะถูกใช้เป็นหัวข้อเพื่อฝึกเขียนพิสูจน์ทางคณิตศาสตร์ในรายวิชาที่เรียนเกี่ยว กับพื้นฐานการเขียนพิสูจน์หรือการให้เหตุผลทางคณิตศาสตร์ เพราะเป็นหัวข้อที่ทำความเข้าใจนิยามหรือ คุณสมบัติได้ง่าย อีกทั้งเป็นสิ่งที่ผู้เรียนคุ้นเคยกันมาตั้งแต่สมัยเด็ก (อย่างน้อยทุกคนที่เปิดอ่านหนังสือเล่ม นี้น่าจะเคยเรียนวิธีการตั้งหารยาวเพื่อหาผลหารและเศษมาก่อน) เลยทำให้ผู้เรียนสามารถมุ่งความสนใจ ไปที่วิธีการให้เหตุผลทางคณิตศาสตร์ได้มากกว่า แทนที่จะต้องมาทั้งทำความเข้าใจนิยามที่บางครั้งก็ซับ ซ้อน และต้องฝึกให้เหตุผลไปพร้อมกัน จึงเป็นการดีที่ผู้อ่านที่ยังไม่คุ้นเคยการให้เหตุผลทางคณิตศาสตร์ จะใช้บทนี้เป็นแบบฝึกหัดในการเขียนพิสูจน์

¹เช่นเด็กหลักสูตรคณิตศาสตร์จะมีเรียนวิชา Principle of Mathematics หรือเด็กหลักสูตรวิทยาการคอมพิวเตอร์ก็จะมีวิชา Discrete Mathematics เป็นรายวิชาดังกล่าว

8.1 การหารลงตัว

เราจะเริ่มจากแนวคิดพื้นฐานที่สุดของทฤษฎีจำนวนซึ่งคือ **การหารลงตัว** ซึ่งถ้าย้อนกลับไปในวัยเด็ก เรา จะเริ่มจากการเรียนรู้การหารจำนวนเต็มโดยจดจำวิธีการตั้งหารทั้งวิธีหารสั้นและหารยาวเพื่อให้เราหาผล หารและเศษการหารกันได้เป็น โดยที่เราไม่ได้สนใจว่าจริง ๆ แล้วการหารคืออะไรกันแน่ เพียงแต่มองใน มุมมองเชิงการคำนวณว่าคือการแบ่งของ

ทั้งนี้ ถ้าจะต้องการศึกษาเกี่ยวกับการหารลงตัวในรูปแบบทางคณิตศาสตร์ ก็คงไม่สะดวกนักถ้าจะบอก ว่าเราหารลงตัวถ้าตั้งหารยาวหรือหารสั้นออกมาแล้วได้เศษเป็น 0 เราจึงจำเป็นที่จะต้องนิยามการหารลงตัว ในรูปแบบที่สามารถนำไปใช้พิสูจน์คุณสมบัติต่าง ๆ ต่อได้ง่าย โดยเราจะเห็นว่าเพียงแค่มองมุมกลับกัน จากการถามว่ามีสัม 10 ผล แบ่งให้คน 5 คนจะได้คนละกี่ผล (มองแบบการหาร) เป็นการมองว่า ถ้าเรา มีคน 5 คน และแต่ละคนได้รับสัมไป x ผล แล้วต้องใช้สัม 10 ผล ซึ่งเราเปลี่ยนรูปแบบประโยคได้เป็น 5x=10 ซึ่งถ้ามีจำนวนสัม x ผลดังกล่าวที่ทำให้เราสามารถแบ่งสัมกันได้ลงตัวพอดี เราก็จะกล่าวว่า 10 หารด้วย 5 ลงตัวนั่นเอง ทั้งนี้ จะพบว่าหลักสำคัญของการพิจารณาการหารลงตัวก็คือการหา x ดังกล่าว นั่นเอง

ในทำนองเดียวกัน เพียงแต่พิจารณาในกรณีทั่วไป เราจะนิยามการหารลงตัวได้ดังนี้

นิยาม 8.1.1: Divisibility

กำหนดให้ m และ n เป็นจำนวนเต็ม เราจะกล่าวว่า m หารด้วย n ลงตัวก็ต่อเมื่อมีจำนวนเต็ม k ที่ทำให้ m=nk และเขียนแทนด้วยสัญลักษณ์ n|m

จากตัวอย่างด้านบน เราจะกล่าวได้ว่า 5|10 เพราะเราสามารถให้สัมคนละ 2 ผลได้ เพื่อแบ่งสัม 10 ผลให้ 5 คนได้พอดี นั่นคือ k=2 นั่นเองที่ทำให้ $10=5\times 2$

8.1. การหารลงตัว

คำเตือน

ในครั้งนี้จะยังคงขอเตือนเรื่องตัวบ่งปริมาณการมีอีกสักรอบ ว่าการที่เราทราบว่า n|m นั้น เรา เพียงแค่ทราบว่าเรามี k สักตัวหนึ่งที่ทำให้สมการ m=nk เป็นจริง เพียงแต่ในการเขียนพิสูจน์ ที่หลาย ๆ อย่างเป็นตัวแปรไม่ทราบค่า เราจะไม่สามารถระบุค่าของตัวแปร k ที่เกิดขึ้นมาจาก การอ้างเหตุผลของการหารลงตัวได้ เราทราบเพียงแค่ว่า m=nk (หรือทดไว้ในหัวเท่านั้นว่าจริง ๆ มันก็คือ $\frac{m}{n}$ แต่เขียนไม่ได้ในทฤษฎีจำนวน) แล้วนำค่า k นี้ไปใช้งานต่อในส่วนอื่น ๆ ของบท พิสูจน์

ในทางกลับกัน แต่ถ้าจะต้องการให้เหตุผลเพื่อสรุปการหารลงตัว สิ่งที่เราต้องทำคือการทดหา จำนวนเต็มสักตัวหนึ่ง (อาจจะเป็นตัวเลขหรือกลุ่มของตัวแปรก็ได้) ที่เมื่อนำมาแทนที่ไว้ใน ตำแหน่งของ k เพื่อคูณกับ n แล้วได้ผลคูณออกมาเป็น m

Example 8.1.2. จงพิสูจน์ว่า 25|300

Solution. จากนิยาม จะเห็นว่าสิ่งที่เราต้องการคือจำนวนเต็มสักจำนวนหนึ่งที่เมื่อนำไปคูณกับ 25 แล้ว ได้ 300 ซึ่งสามารถคำนวณได้โดยง่ายด้วยการทดเลขแบบเด็ก ๆ 300/25=12 นั่นคือเราทราบแล้วว่า จำนวนดังกล่าวคือ 25 จะเหลือเพียงแค่นำไปเขียนพิสูจน์ บทพิสูจน์. เพราะ $300=25\times12$ จึงได้ว่า 25|300 \square

Example 8.1.3. จงพิสูจน์ว่า $25 \nmid 310$

Solution. ในทำนองเดียวกัน เราต้องหาจำนวนเต็มสักจำนวนหนึ่งที่เมื่อนำไปคูณกับ 25 แล้วได้ 310 ซึ่งถ้าลองทดเลขคำนวณดูจะพบว่า 310/25=12.4 ซึ่งไม่ใช่จำนวนนับ ดังนั้นเราก็พอจะเดาได้(ถึงแม้จะ ชัด)ว่าควรที่จะหารไม่ลงตัว ทว่าเหตุผลการหารแล้วไม่เป็นจำนวนเต็มนี้ใช้ในการเขียนพิสูจน์ไม่ได้ เพราะ การเขียนพิสูจน์ว่าหารไม่ลงตัว ต้องแสดงว่าไม่ว่าหยิบจำนวนเต็มใดมาคูณกับตัวหารจะไม่ได้ตัวตั้ง บทพิสูจน์. สมมติให้มีจำนวนเต็ม n ที่ทำให้ 310=25n (เรากำลังจะพิสูจน์ด้วยการหาข้อขัดแย้ง) ซึ่งเราจะเห็นว่า $310=25\times12+10$ ดังนั้นจึงได้ว่า

$$25n = 25 \times 12 + 10$$
$$25n - 25 \times 12 = 10$$
$$25(n - 12) = 10$$

จากข้อสังเกตว่าถ้า x เป็นจำนวนเต็มที่ $0 \le 25x < 25$ จะได้ว่า x=0 และเพราะ $0 \le 10 = 25(n-12) < 25$ จึงได้ว่า n-12=0 ดังนั้น จะได้ว่า $10 = 25(n-12) = 25 \times 0 = 0$ ซึ่งเป็นข้อขัดแย้ง จึงได้ข้อสรุปว่า ไม่มีจำนวนเต็ม n ที่ทำให้ 310 = 25n \square

หลังจากที่เรานิยามการหารลงตัวให้สามารถนำไปใช้ในการให้เหตุผลและเขียนพิสูจน์ได้แล้วนั้น(แทนที่จะ บอกวิธีการหาผลหารและเศษแบบตั้งหารแล้วดูว่าเศษเป็นศูนย์หรือไม่) เราจะมาเริ่มศึกษาคุณสมบัติต่าง ๆ ของการหารลงตัวกันบ้าง ซึ่งการหารลงตัวเป็นความสัมพันธ์บนจำนวนเต็ม ดังนั้นเราจะเริ่มจากพิจารณา กันก่อนว่าคุณสมบัติใดของความสัมพันธ์ที่ความสัมพันธ์การหารลงตัวสอดคล้องบ้าง

Exercise 8.1.4. จงเขียนประโยคที่กล่าวถึงคุณสมบัติเชิงความสัมพันธ์ของการหารลงตัวตารางนี้ และ พิจารณาว่าจริงหรือไม่ ถ้าจริงจงพิสูจน์ (ดูเฉลยได้ใน Proof Part) แต่ถ้าไม่จริงจงยกตัวอย่างค้าน

คุณสมบัติ	นิยาม	เขียนโดยใช้การหารลงตัว	จริง	ไม่จริง
สะท้อน	$\forall x, xRx$			
ถ่ายทอด	$\forall x \forall y \forall z, xRy \land yRz \rightarrow xRz$			
สมมาตร	$\forall x \forall y, xRy \rightarrow yRx$			
อสมมาตร	$\forall x \forall y, xRy \to \neg yRx$			
ปฏิสมมาตร	$\forall x \forall y, xRy \land yRx \rightarrow x = y$			

Solution. ...

นอกจากนั้น เรายังได้คุณสมบัติต่าง ๆ ดังต่อไปนี้

คุณสมบัติ 8.1.5: คุณสมบัติการหารลงตัว

กำหนดให้ m,n,p เป็นจำนวนเต็มใด ๆ จะได้ว่า

- 1. 1|m และ m|m
- 2. ถ้า $m \neq 0$ แล้ว m|0
- 3. ถ้า m|n แล้ว m|np
- 4. ถ้า $p \neq 0$ และ m|n แล้ว pm|pn
- 5. ถ้า m|n และ m|p แล้ว m|(n+p)
- 6. ถ้า m|n และ m|p แล้ว m|(xn+yp) สำหรับทุก ๆ จำนวนเต็ม x,y
- 7. ถ้า m|n แล้ว $|m| \leq |n|$

แหวคิดของทฤษฎีและแหวคิดการเขียนพิสูจห์:

- 1. ในข้อนี้ค่อนข้างตรงไปตรงมาเหมือนที่เคยท่องกันตอนเด็ก ๆ ว่า 1 หารทุกจำนวนลงตัว เพราะ 1 คูณอะไรก็ได้ตัวมันเอง กล่าวแบบรัดกุมคือ $1\cdot n=n$ สำหรับทุก ๆ จำนวนเต็ม n
- 2. และในทำนองเดียวกัน เมื่อเราใช้ 0 เป็นตัวตั้ง เราน่าจะตอบกันได้ทันทีว่า 0 คูณอะไรก็ได้ 0
- 3. ในข้อนี้นั้น แนวคิดตั้งต้นมาจากการที่เปรียบเสมือนเรามีเศษส่วนที่ตัดกันได้หมดอยู่แล้ว ($\frac{n}{m}$ ตัด กันได้หมด) ต่อให้เราคูณตัวตั้งเพิ่มเข้าไปด้วยอะไร (p) ก็ตาม เราก็ควรที่จะยังคงตัดได้ $\frac{np}{m}$ ลงตัว เช่นเดิมด้วยการตัดคู่เดิม ซึ่งถ้าเรามองในแง่การเขียนพิสูจน์ เปรียบเสมือนเรามีจำนวนหนึ่งที่คูณ ตัวหารได้ตัวตั้งอยู่แล้ว ถ้าสนใจกับตัวตั้งที่เพิ่มขึ้น p เท่า ผลหารก็ควรจะเพิ่มขึ้น p เท่าเช่นกัน ซึ่ง เรากล่าวในอีกนัยหนึ่งได้ว่าการหารลงตัวถูกรักษาไว้ภายใต้การคูณตัวตั้ง (divisibility is preserved under numerator multiplication)
- 4. เหมือนการคูณทั้งเศษและส่วนของเศษส่วนที่ยังคงให้ค่าผลหารเท่าเดิมอยู่ $\frac{n}{m}=\frac{pn}{pm}$
- 5. เปรียบเสมือน $\frac{n+p}{m}=\frac{n}{m}+\frac{p}{m}$ โดยความหมายของคุณสมบัตินี้คือการหารลงตัวยังคงถูกรักษาไว้ ภายใต้การบวกของตัวตั้ง
- 6. เราเรียกพจน์ xn+yp ว่าผลรวมเชิงเส้น (linear combination) ซึ่งเป็นผลขยายมาจากข้อ 3 และ ข้อ 5

สิ่งที่อธิบายในแต่ละข้อ เป็นเพียงแนวคิดเชิงที่มา(การตั้งข้อสังเกต) และแนวคิดเชิงการให้เหตุผล(แนวทาง การเขียนพิสูจน์) ไม่ใช่การเขียนพิสูจน์ โดยประเด็นสำคัญที่สุดคือในการเขียนพิสูจน์เราไม่สามารถใช้เศษส่วน ในแง่การคำนวณได้ (เช่น $\frac{n}{m}=\frac{pn}{pm}$ เป็นต้น)

8.2 ขั้นตอนวิธีการหาร: Division Algorithm

หัวข้อที่แล้ว เราได้ศึกษาเกี่ยวกับการหารลงตัว หรือการเป็นตัวประกอบของจำนวนเต็มไป แต่ก็จะพบ ว่าในบางครั้งเราอยากจะอธิบายการหารได้กับทุกคู่ของจำนวนเต็ม กล่าวคือ เราอยากขยายไอเดียการหาร ให้ทั่วไปมากขึ้น ไม่ได้สนใจเพียงแค่การหารลงตัวหรือไม่ลงตัวที่เป็นคุณสมบัติที่ขึ้นกับจำนวนเต็มที่เป็น ตัวตั้งเท่านั้น

และถ้านึกย้อนไปในวัยเด็ก (อีกครั้ง) หลายคนน่าจะจำกันได้ดีว่าพวกเราเริ่มเรียนการหารกันด้วยการ ตอบผลหารและเศษเหลือจากการหาร แต่สิ่งที่พวกเราได้เรียนกันในวัยเด็ก เป็นเพียงแค่วิธีการเขียนเพื่อ ให้เราในวัยเด็กที่ยังไม่มีแนวคิดแบบนามธรรมสามารถทำตามได้ กล่าวคือเราถูกคาดหวังเพียงแค่หาคำ ตอบที่ถูกต้องให้ได้ก่อน แต่ไม่ได้เรียนว่าทำไมทำแบบนั้นถึงทำได้ หรืออะไรคือที่มาของแนวคิด

²ไม่ใช่การเขียนพิสูจน์ เป็นแค่แนวคิด

นอกจากนั้น จะสังเกตว่าวิธีการที่พวกเราได้เรียนโดนจำกัดอยู่แค่จำนวนเต็มบวก กล่าวคือ ถ้าตัวตั้ง หรือตัวหารเป็นจำนวนเต็มลบ เราจะยังคำนวณหาผลหารและเศษกันไม่เป็นอยู่ดี (ตัวอย่างเช่นจงหาผล หารของ -21 หารด้วย 5) ในครั้งนี้ เราจึงจะนำแนวคิดเรื่องผลหารและเศษเหลือที่คำนวณกันได้เก่งมาก กับจำนวนบวก มาเขียนนิยามกันในรูปแบบคณิตศาสตร์ เพื่อให้เราสามารถศึกษาประเด็นที่เกี่ยวกับผล หารและเศษเหลือได้ทั่วไปและเป็นคณิตศาสตร์มากขึ้น

แต่โชคดี! ที่อย่างน้อย พวกเราก็ได้เรียนสิ่งที่เรียกว่าการตรวจสอบผลหารด้วยวิธีการ

ตัวตั้ง
$$=$$
 ตัวหาร $imes$ ผลหาร $+$ เศษ

ซึ่งจริง ๆ แล้ว สิ่งนี้ก็คือนิยามของการหารที่ทำให้พวกเราสามารถนิยามการหารของจำนวนเต็มได้ ทั่วไปมากขึ้นด้วยการหาผลหาร และเศษเหลือมาเติมในสมการ แต่ทั้งนี้ ก่อนนิยามสิ่งใด ๆ ก็ตามในคณิตศาสตร์ (เช่นในที่นี้เรากำลังจะนิยามสิ่งที่เรียกว่า ผลหาร และเศษเหลือ) สิ่งหนึ่งที่เราต้องพิจารณากันก่อนก็คือ การมีค่าได้จริง (ไม่ใช่พูดได้บ้างไม่ได้บ้าง) กับการมีเพียงหนึ่งเดียว (เพราะกำลังจะตั้งชื่อ: well-defined)

บทตั้ง 8.2.1: การมีผลหารและเศษเหลือ

กำหนดให้ m และ n เป็นจำนวนเต็มใด ๆ โดยที่ $n \neq 0$ จะมีจำนวนเต็ม q และ r เพียงคู่เดียว เท่านั้นที่ทำให้ m = nq + r โดยที่ $0 \leq r < |n|$

นิยาม 8.2.2: Division Algorithm

กำหนดให้ m และ n เป็นจำนวนเต็มใด ๆ โดยที่ $n \neq 0$ แล้ว q และ r จากบทตั้ง 8.2.1 ว่าผล หาร (quotient) และเศษเหลือ (remainder) ตามลำดับ

PROOF PART

บทพิสูจน์ของ Exercise 8.1.4
บทพิสูจน์. content 🗆
_
บทพิสูจน์ของคุณสมบัติ 8.1.5
บทพิสจห์. content 🗆

บทพิสูจน์ของบทตั้ง 8.2.1

บทพิสูจห์. เราจะพิสูจน์การมี q และ r ด้วยการทำอุปนัยบนตั้วแปรจำนวนเต็ม $m \geq 0$ และ n > 0 (ทำไม?:แบบฝึกหัด 1) และหลังจากที่พิสูจน์การมีแล้ว เราจะพิสูจน์การมีหนึ่งเดียวในลำดับต่อไป

พิสูจน์การมี เมื่อกำหนดให้ m=0 (ขั้นฐานของ m) ซึ่งกรณีนี้เป็นกรณีที่ง่ายสำหรับทุก ๆ n เพราะ $0=n\times 0+0$ นั่นคือเราสามารถพิสูจน์ขั้นฐานของ m ได้แล้ว ต่อไปเราจะพิสูจน์ขั้นอุปนัยของ m กัน

พิจารณากรณีที่ m>0 สมมติให้สิ่งที่เราพิจารณากันอยู่ เป็นจริงสำหรับ m กล่าวคือสำหรับทุก ๆ n>0 จะมีจำนวนเต็ม q และ r โดยที่ $0\leq r< n$ ที่ทำให้ m=nq+r และเรากำลังจะพิสูจน์สำหรับ กรณี m+1 โดยที่เราจะแยกพิจารณาตามเศษการหารเป็น 2 กรณี 3 ดังนี้ (1) ถ้า $0\leq r\leq n-2$ และ (2) ถ้า r=n-1

กรณีที่ 1) $0 \le r \le n-2$: จะได้ว่า m+1=nq+r+1=nq+(r+1) โดยที่ $0 < 0+1 \le r+1 \le n-2+1=n-1$ กล่าวคือ มีผลหาร q เดิม และมี r+1 เป็นเศษการหาร

กรณีที่ 2) r=n-1: จะได้ว่า m+1=nq+r+1=nq+n-1+1=nq+n=n(q+1)+0 กล่าวคือ มี q+1 เป็นผลหาร และเหลือเศษการหารเป็น 0 ซึ่งสอดคล้องเงื่อนไขการหารแน่นอน

โดยอุปนัยเชิงคณิตศาสตร์ จึงสรุปได้ว่าสำหรับจำนวนนับ m ใด ๆ และสำหรับจำนวนเต็มบวก n ใด ๆ จะมี q และ r ที่ทำให้ m=nq+r โดยที่ $0\leq r< n$ และในลำดับถัดไป เราจะพิสูจน์การมีหนึ่ง เดียวกัน

พิสูจห์การมีเพียงหนึ่งเดียว กำหนดให้มีจำนวนเต็ม q' และ r' อีกชุดที่ทำให้ m=nq'+r' โดยที่ $0\leq r'< n$ กล่าวคือ nq+r=nq'+r' ซึ่งจะได้ว่า n(q-q')=r'-r แต่เนื่องจาก $r,r'\in\{0,1,\ldots,n-1\}$ จะได้ว่า $0\leq |r'-r|< n$ ทำให้ได้ว่า $0\leq n|q'-q|< n$ จึงสรุปได้ว่า |q'-q|=0 กล่าวคือ q=q' และ ยังทำให้ได้ตามมาว่า $r'-r=n(q-q')=n\times 0=0$ จึงได้ว่า r=r'

 $^{^3}$ เพราะการบวก 1 เพิ่มให้ m กลายเป็น m+1 จะกระทบกับเศษ n-1 ที่จะกลายเป็น n ซึ่งเป็นเศษการหารของตัวหาร nไม่ได้

8.3 Theory Exercise

- 1. (คำถามต่อเนื่องจากพิสูจน์ของบทตั้ง 8.2.1) สำหรับจำนวนเต็ม $m\geq 0$ และ n>0 ซึ่ง m=nq+r โดยที่ $0\leq r<|n|$ จงพิสูจน์ว่าจะมีจำนวนเต็ม q' และ r' โดยที่ $0\leq r'<|n|$ ที่ทำให้ -m=nq'+r' (และพิสูจน์ในทำนองเดียวกันกับ m=(-n)q'+r' และ -m=(-n)q'+r')
- 2. จงพิสูจน์บทตั้ง 8.2.1 ส่วนการมีโดยใช้หลักการการจัดอันดับดี

33

PROGRAMMING PART

8.4 programming: การหารลงตัวที่เขียนกันเองด้วยนิยาม

Figure 8.1: ภาพใหญ่ของปัญหาซึ่ง input คือจำนวนนับ m,n และ output คือบอกว่าหารลงตัวหรือไม่

เราจะเริ่มจากนิยามแรกสุดของทฤษฎีจำนวน นั่นคือการหารลงตัวของจำนวนเต็ม ซึ่งจริง ๆ แล้วนั้น เราสามารถตรวจสอบว่าจำนวน 2 จำนวนเช่น m และ n ที่ให้มานั้นหารลงตัวกันหรือไม่ได้โดยง่ายผ่าน ตัวดำเนินการ "%" ซึ่งเป็นตัวดำเนินการ built-in ของ Python เพื่อหาเศษเหลือจากการหาร โดยตรวจ สอบว่าเศษเหลือเป็น 0 หรือไม่ด้วย code ดังนี้

```
m\%n == 0
```

โดยที่ code ดังกล่าวจะคืนค่า True ถ้าหารลงตัว และคืนค่า False ถ้าหารไม่ลงตัว

แต่ในที่นี้เราจะเริ่มเขียนฟังก์ชันเพื่อตรวจสอบการหารลงตัวกันด้วยตัวเองก่อนโดยอาศัยนิยามในการ ออกแบบ โดยสมมติว่าเราจะให้พารามิเตอร์แรกเป็นตัวตั้งและพารามิเตอร์ตัวที่สองเป็นตัวหาร และชื่อฟังก์ชัน คือ isDivisible แต่ก่อนจะเริ่มลงมือเขียน code เราจะมาทบทวนนิยามของการหารลงตัวกันอีกรอบ

ทบทวนนิยามการหารลงตัว

ให้ m และ n เป็นจำนวนเต็ม เราจะกล่าวว่า m หารด้วย n ลงตัว ถ้ามีจำนวนเต็ม k ที่ทำให้ m=nk

จากนิยาม จะเห็นว่าเป้าหมายหลักของฟังก์ชันหลังจากที่รับ m และ n เข้ามาแล้วคือต้องหาว่ามีจำนวนเต็ม k ที่เป็นผลหารดังกล่าวหรือไม่ โดยถ้าดูตามนิยามแล้วจะดูเหมือนว่าเราต้องตรวจสอบหาผลหาร k ไป เรื่อย ๆ จนกว่าจะพบ k ที่ทำให้ m=nk ดังนี้

Not complete divisibility checking

```
k = 1
while m != n*k:
k += 1
```

```
# after exiting from while-loop, k should be an integer such that m = nk, # i.e. n is a factor of m
```

ทว่า วิธีดังกล่าวจะทำงานไม่รู้จบถ้าค่าที่ได้รับเข้ามาเป็นคู่ที่หารกันไม่ลงตัว เพราะเหตุผลของการหารไม่ ลงตัวคือ

$$m \nmid n \Longleftrightarrow$$
 ทุก $k \in \mathbb{Z}$ จะได้ว่า $m \neq nk$

กล่าวคือ เราต้องตรวจสอบทุกจำนวนเต็ม k ซึ่งเป็นไปไม่ได้ในการเขียนโปรแกรม อีกทั้ง ถึงแม้ว่าจะหาร ลงตัวก็ตาม ก็ยังคงมีคำถามว่าแล้วเราจะเริ่มหา k จากไหนและไปทางไหน เพราะถ้าหาผิดทางอาจจะ ทำงานไม่รู้จบได้เหมือนกัน ตัวอย่างเช่นเราอยากตรวจสอบว่า -10 หารด้วย 5 หรือไม่ ถ้าเราใช้ loop เริ่มจาก k=1 และบวก 1 ไปเรื่อย ๆ ดังตัวอย่างข้างบน จะพบว่าโปรแกรมจะทำงานไม่รู้จบเพราะ k ตัวที่ต้องการคือ k=-2 ซึ่งไม่อยู่นี้ขอบเขตการหาที่กำหนดไว้

แต่ว่าเรามีคุณสมบัติหนึ่งที่เกี่ยวกับการหารลงตัวที่สามารถจำกัดขอบเขตการหาผลหาร k ได้ ซึ่งกล่าว ว่า

คุณสมบัติเพื่อจำกัดขอบเขตของการหารลงตัว

ให้ m และ n เป็นจำนวนเต็ม ถ้า m|n แล้ว $|n| \leq |m|$

ซึ่งในทำนองเดียวกัน เราสามารถมองผลหารเป็นตัวประกอบอีกตัวหนึ่งของ m ได้เช่นเดียวกัน จึงได้ว่า $|k| \leq |m|$ กล่าวคือถ้าจะมีผลหารของการหารลงตัวได้นั้น ผลหารดังกล่าวก็จะอยู่ได้แค่ในกลุ่ม $k \in \{-m, -m+1, \dots, -1, 0, 1, \dots, m-1, m\}$ เพราะฉะนั้น เราจึงจำกัดขอบเขตการหาผลหาร k ได้ไม่ว่าจะหารลงตัว หรือหารไม่ลงตัวก็ตาม กล่าวคือ

$$m|n \Longleftrightarrow$$
มี $k \in \{-m, -m+1, \ldots, m-1, m\}$ ที่ทำให้ $m=nk$

8.4.1 วิธีเบื้องต้น

จากนิยามที่ได้กล่าวมานั้น เราสามารถเขียนโปรแกรมเพื่อตรวจสอบการหารลงตัวได้ด้วยการตรวจสอบ ว่าเจอผลหารหรือไม่ด้วยโปรแกรมดังนี้

Check divisibility

```
def isDivisible_ver1(m,n):
    qoutList = range(-m,m+1)
    for k in qoutList:
        if m = n*k:
            return True
    return False
```

ซึ่งโปรแกรมดังกล่าวจะรันลูปไปเรื่อย ๆ และเมื่อไหร่ก็ตามที่เจอผลหาร ฟังก์ชัน isDivisible จะคืน ค่า True มาให้ แต่ถ้ารันจนครบลูปแล้วแต่ไม่เจอผลหาร จะคืนค่า False มาให้ เพราะไม่มีตัวประกอบ

ลองทำดู

ออกแบบให้จำนวนครั้งการค้นหาลดลงได้หรือไม่ ถ้าทำได้แล้วความซับซ้อนของจำนวนครั้งการ ค้นหาลดลงหรือไม่

8.4.2 พิจารณาแค่จำนวนบวกก็พอ

ถ้าลองสังเกตนิยามการหารลงตัวดี ๆ จะพบว่าการเป็นจำนวนเต็มบวกหรือจำนวนเต็มลบของตัวตั้งและ ตัวหารไม่ส่งผลต่อการคิด เพราะเราสามารถเปลี่ยนรูปแบบปัญหาให้พิจารณาแค่กรณีที่ทั้งตัวตั้งและตัว หารเป็นจำนวนเต็มบวกอย่างเดียวได้ เนื่องจากถ้า m=nk แล้วจะได้ว่า

$$(-m) = nk \iff m = n(-k)$$

 $m = (-n)k \iff m = n(-k)$
 $(-m) = (-n)k \iff m = nk$

กล่าวคือ เราทราบการเป็นบวกหรือลบของผลหาร k ได้โดยพิจารณาก่อนว่าตัวตั้งและตัวหารมีเครื่องเหมือน กันหรือแตกต่างกัน และใช้การตรวจสอบการหารลงตัวโดยอาศัยแค่ค่าบวกของ m และ n ที่เป็นตัวตั้ง และตัวหาร

แต่เนื่องจากเราต้องการผลลัพธ์ในแง่การหารลงตัวว่าหารลงตัวหรือไม่ ไม่ได้ต้องการค่าผลหาร จึงไม่ จำเป็นต้องแบ่งกรณีการคำนวณของโปรแกรมออกตามความเหมือนหรือความต่างของเครื่องหมายของตัว ตั้งและตัวหาร กล่าวคือเราสามารถพิจารณาแค่ค่าบวกของทั้งคู่และตัดขอบเขตการหาผลลัพธ์การหารเป็น แค่ $k \in \{1, 2, \dots, m-1, m\}$ ซึ่งจะได้โปรแกรมดังนี้

Check divisibility by positive

```
def isDivisible_ver2(m,n):
    if m < 0:
        m = -m
    if n < 0:
        n = -n
    qoutList = range(1,m+1)
    for k in qoutList:
        if m = n*k:
            return True
    return False</pre>
```

และโปรแกรมสำหรับการตรวจสอบการหารลงตัวที่จะพัฒนาต่อจากนี้จะขอสมมติว่าเรารับแค่จำนวนเต็ม บวกมาตรวจสอบ ซึ่งถ้าจะทำให้รับจำนวนเต็มใด ๆ สามารถทำได้ในทำนองเดียวกันกับ isDivisible_ver2

8.4.3 เปลี่ยนจากปัญหาการคูณเป็นปัญหาการบวก

จากนิยามการคูณที่กล่าวว่า $k \cdot n := n + n + \dots + n$ (k พจน์) จะพบว่าเราสามารถเปลี่ยนจากปัญหาการ หาผลหาร k เป็นการลองลูปเพื่อเพิ่มพจน์การบวก n ไปเรื่อย ๆ จนกว่าจะมากกว่าหรือเท่ากับ m โดย ถ้าสามารถเท่ากับ m ได้จะได้ว่าหารลงตัว แต่ถ้าเกิน m เมื่อไหร่จะได้ว่าหารไม่ลงตัว

Check divisibility addition version

```
def isDivisible_ver3(m,n):
    product = 0
    while product < m:
        product += n
    if product == m:
        return True
    else:
        return False</pre>
```

เราสามารถทำได้ในทางกลับกันคือการลบตัวหารออกด้วย n ไปเรื่อย ๆ จนกว่าจะได้เศษการหาร (ซึ่ง นำไปประยุกต์ใช้ในการหาเศษการหารได้ด้วย)

Check divisibility subtraction version

```
def isDivisible_ver4(m,n):
    while m >= n:
        m -= n
    if m == 0:
        return True
    else:
        return False
```

8.4.4 เขียนแบบฟังก์ชันเวียนเกิด

จาก $isDivisible_ver4$ จะเห็นแนวคิดของการทำปัญหาเดิมซ้ำกัน โดยถ้าเริ่มจากตัวตั้ง m และตัว หาร n เมื่อทำเสร็จไป 1 รอบของลูป จะได้ว่าตัวตั้งจะเปลี่ยนกลายเป็น m-n โดยที่ตัวหารยังคง n เหมือนเดิม ซึ่งจะเห็นว่าแนวคิดดังกล่าวสามารถเขียนเป็นฟังก์ชันเวียนเกิดเป็น

```
isDivisible_recur(m,n) = isDivisible_recur(m - n,n)
```

และตามรูปแบบการเขียนอัลกอริทึมเวียนเกิด สิ่งสำคัญคือต้องเขียนขั้นฐานของการคำนวณ ซึ่งคือขั้นที่ เราสามารถกำหนดการคำนวณได้ง่าย ๆ โดยจะพบว่า ขั้นฐานของการคำนวณคือขั้นตอนหลังจากหลุด ออกจาก while-loop ของ $isDivisible_ver4$ กล่าวคือ เมื่อตัวตั้ง m ไม่ค่าน้อยกว่าตัวหาร n โดยที่ถ้า ตัวตั้งมีค่าเท่ากับ 0 จะหมายความว่าเราสามารถลดค่าตัวตั้งมาเรื่อย ๆ จนหมดได้พอดี หรือก็คือมีเศษ เหลือเป็น 0 นั่นคือการหารลงตัว ในทางกลับกัน ถ้าตัวตั้งมีค่ามากกว่า 0 จะหมายถึงการหารไม่ลงตัว ซึ่ง สามารถเขียนเป็นเงื่อนไขขั้นฐานได้ดังนี้

$$\texttt{isDivisible_recur(m,n)} = \begin{cases} \texttt{True} & \text{ if } m = 0 \\ \\ \texttt{False} & \text{ if } 0 < m < n \end{cases}$$

ซึ่งสามารถเขียนเป็นโปรแกรมได้ดังนี้

Check divisibility recursion

```
def isDivisible_recur(m,n):
    if m < n:
        if m == 0:</pre>
```

return True

else:

return False

else:

return isDivisible_recur(m-n,n)

39

8.5 programming: ตรวจสอบการเป็นจำนวนเฉพาะ

8.5.1 วิธีเบื้องต้น

ในหัวข้อที่แล้ว เราได้เขียนฟังก์ชันเพื่อตรวจสอบการหารลงตัวไป ในหัวข้อนี้เราจะใช้ประโยชน์จากฟังก์ชัน ดังกล่าวนำมาตรวจสอบการเป็นจำนวนเฉพาะกันบ้าง โดยลักษณะของปัญหายังคงตรงไปตรงมาคือรับจำนวนนับ n เข้ามาแล้วคืนค่าว่าเป็นจำนวนเฉพาะหรือไม่ดังแผนภาพใน Figure ??

Figure 8.2: ภาพใหญ่ของปัญหาซึ่ง input คือจำนวนนับ n และ output คือบอกว่าเป็นจำนวนเฉพาะ หรือไม่

เริ่มจากทุบทวนนิยามของจำนวนเฉพาะ ซึ่งคือ

ทบทวนนิยามจำนวนเฉพาะ

จำนวนนับ n จะเป็นจำนวนเฉพาะ ถ้ามีเพียงแค่ 1 และ n เท่านั้นที่หาร n ลงตัว

ซึ่งจากนิยามจะพบว่าเราสามารถตรวจสอบการเป็นจำนวนเฉพาะได้จากการตรวจสอบการหารลงตัวว่าใน ช่วงตั้งแต่ 1 ถึงจำนวนดังกล่าวมีเพียงแค่ 1 และตัวมันเองเท่านั้นที่หารจำนวนดังกล่าวลงตัว กล่าวคือถ้า เราหาตัวประกอบทั้งหมดของ n ได้ แล้วทำการตรวจสอบว่าเป็นจำนวนเฉพาะหรือไม่ก็จะสามารถตรวจ สอบการเป็นจำนวนเฉพาะของ n ได้ทันทีตามแผนภาพใน Figure ?? ซึ่งถ้าเรามีลิสต์ของตัวประกอบ

_

ของ n แล้วเราจะสามารถเขียนโค้ดเพื่อตรวจสอบการเป็นจำนวนเฉพาะได้ดังนี้

Check if it is prime

```
# assume we have a list `factorList` which is a list of all factors of n factorList == [1,n]
```

ซึ่งโค้ดดังกล่าวจะให้ค่า True ออกมาถ้า n มีตัวประกอบเพียงแค่ 2 ตัวคือ 1 และ n กล่าวคือ n เป็นจำนวนเฉพาะ แต่ในทางกลับกัน ถ้ามีตัวประกอบอื่นหลงอยู่ในลิสต์ดังกล่าวซึ่งก็คือ n ไม่เป็นจำนวน เฉพาะนั้น จะได้ False ออกมาเป็นผลลัพธ์

Figure 8.4: text

ในตอนนี้เราจะเหลือเพียงแค่ปัญหาของการสร้างลิสต์ของตัวประกอบของ n ซึ่งทำได้โดยง่าย (ใน Python) โดยการรันลูปตั้งแต่ 1 ถึง n และตรวจสอบการเป็นตัวประกอบของ n เพื่อนำไปเก็บใน factorList ที่ ละตัว ซึ่งทำได้ดังนี้

```
Create factorList
factorList = []
for m in range(1,n+1):
    if isDivisible(n,m):
        factorList.append(m)
```

เมื่อนำโค้ดทั้งสองส่วนมารวมกันและเขียนเป็นฟังก์ชันของ n จะได้

```
Check prime

def isPrime(n):

    factorList = []
    for m in range(1,n+1):
        if isDivisible(n,m):
            factorList.append(m)

    prime = (factorList == [1,n])
    return prime
```

ทั้งนี้ ยังคงมีคำถามชวนคิดเกี่ยวกับโปรแกรมเช็คจำนวนเฉพาะที่เขียนขึ้นมาว่า

```
คำถาม
```

เพราะเหตุใดเราจึงเขียนลูปแค่บน 1 ถึง n ก็เพียงพอที่จะเช็คการเป็นจำนวนเฉพาะของ n ได้

จากโปรแกรมที่เขียนมา จะเห็นว่าเราใช้พลังของการมี memory กล่าวคือเราเก็บไว้ก่อนว่ามีใครบ้าง

เป็นตัวประกอบ แล้วสุดท้ายนำมาตรวจสอบอีกที่ว่ามีแค่ 1 และตัวมันเองเท่านั้นที่เป็นตัวประกอบ ซึ่ง เราทำการเก็บตัวประกอบไว้ในลิสต์ ซึ่งเป็นเรื่องที่โชคดีที่ลิสต์เป็น built-in data structure ของ Python จึงทำให้เราสามารถ implement วิธีนี้ได้โดยง่าย ทว่า ในบางภาษานั้นกลับไม่มีลิสต์ให้ใช้ และการตรวจ สอบเรื่องการมีใครเป็นสมาชิกบ้างก็ไม่ใช่เรื่องง่ายกับ array ที่เป็นโครงสร้างข้อมูลพื้นฐานในหลาย ๆ ภาษา ดังนั้น จะแก้ปัญหาอย่างไรถ้าเราอยาก implement โจทย์นี้ในภาษาอื่น ๆ หรือแม้กระทั่งในวิชา Python เองแต่ยังเรียนไม่ถึงการใช้ลิสต์

8.5.2 วิธีที่ไม่ใช้ลิสต์ หรือการจำตัวประกอบทั้งหมดของ n

ก่อนอื่น เราจะต้องเปลี่ยนรูปแบบปัญหาให้เป็นปัญหาทางตรรกศาสตร์กันก่อน โดยเริ่มจากนิยามกัน

```
n>1 เป็นจำนวนเฉพาะ \Longleftrightarrow มีเพียงแค่ 1 และ n ที่เป็นตัวประกอบของ n \Longleftrightarrow ถ้า k\notin\{1,n\} แล้ว k จะไม่เป็นตัวประกอบของ n \Longleftrightarrow ทุก k=2,...,n-1 จะได้ว่า k ไม่เป็นตัวประกอบของ n
```

หรือในทำนองเดียวกัน เพียงแต่ใช้ความสมมูลเชิงนิเสธ จะได้ว่า

```
n>1 ไม่เป็นจำนวนเฉพาะ \Longleftrightarrow มี k=2,...,n-1 ที่ k เป็นตัวประกอบของ n
```

กล่าวคือ ถ้าเราจะตรวจสอบว่า n ไม่เป็นจำนวนเฉพาะ เราสามารถทำได้ โดยลูปตั้งแต่ 2 ถึง n-1 และเมื่อใดก็ตามที่เจอตัวประกอบเพียงสักตัว เราก็จะสามารถหยุดลูปและบอกได้ทันทีว่า n ไม่เป็นจำนวน เฉพาะ (มาจากการให้เหตุผลว่าประพจน์ $\exists x, P(x)$ เป็นจริง) ซึ่งทำให้เราสามารถเขียนโค้ดได้ดังนี้

```
แบบฝึกหัดเพิ่ม
ลองเขียน isPrime_ver3 โดยใช้ while-loop
```

8.5.3 ลดจำนวนครั้งการคำนวณได้มากกว่านี้อีก

จากโปรแกรมที่ได้ทำมาแล้วนั้น เราจะพบว่า isPrime มีความซับซ้อนเชิงคำนวณอยู่ที่ O(n) และ $isPrime_ver2$ มีความซับซ้อนเชิงการคำนวณไม่เกิน O(n) ซึ่งกรณีแย่ที่สุดคือ n ที่เป็นจำนวนเฉพาะ เพราะต้องตรวจ สอบทุกจำนวนตั้งแต่ 2 ถึง n-1 ว่าเป็นตัวประกอบหรือไม่

ทว่า เราสามารถอาศัยทฤษฎีบทเกี่ยวกับจำนวนเฉพาะที่กล่าวว่า

การตรวจสอบการเป็นจำนวนเฉพาะโดยตรวจสอบไม่เกิน \sqrt{n} ครั้ง

ให้ n เป็นจำนวนนับ ถ้า p ไม่เป็นตัวประกอบของ n สำหรับทุก ๆ จำนวนเฉพาะ $p \leq \sqrt{n}$ แล้ว n จะเป็นจำนวนเฉพาะ

ถึงแม้ทฤษฎีบทจะบอกว่าเพียงพอที่จะตรวจสอบแค่ตัวประกอบที่เป็นจำนวนเฉพาะที่มีค่าไม่เกิน \sqrt{n} แต่ ว่าในการพิจารณากับแค่จำนวน n เพียงจำนวนเดียว เราจะยังคงไม่มีข้อมูลเก่าว่าจำนวนใดบ้างที่เป็นจำนวน เฉพาะ ดังนั้นวิธีที่ง่ายที่สุดคือตรวจสอบกับทุกจำนวนตั้งแต่ 2 ถึง $\lfloor \sqrt{n} \rfloor$ ว่ามีใครบ้างที่เป็นตัวประกอบ ของ n ซึ่งทำให้เราสามารถแก้โค้ด isPrime ver2 ให้ตรวจสอบน้อยลงได้ดังนี้

Check prime version2.1

43

8.6 programming: แยกตัวประกอบในรูปผลคูณจำนวนเฉพาะ

หนึ่งในทฤษฎีบทสำคัญของการแยกตัวประกอบของจำนวนเต็มคือ Fundamental Theorem of Arithmetic ซึ่งกล่าวว่า

Fundamental Theorem of Arithmetic

ทุก ๆ จำนวนเต็ม n จะมีจำนวนเฉพาะ $p_1 < p_2 < \dots < p_n$ และจำนวนเต็มบวก a_1, a_2, \dots, a_n เพียงชุดเดียวเท่านั้นที่ทำให้

$$n = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$

ซึ่งเราได้ศึกษาและพิสูจน์ไปแล้วในหัวข้อ ??

ในหัวข้อนี้ เราจะเขียนโปรแกรมเพื่อหารูปแบบนี้กัน โดยสมมติว่าเราอยากให้โปรแกรมคืนค่าออกมา เป็น dictionary ที่มี keys ระบุจำนวนเฉพาะ และ values ระบุเลขชี้กำลัง ตัวอย่างเช่น $1400=2^3\times 5^2\times 7$ จะให้ผลลัพธ์ออกมาเป็น $\{2:3,\ 5:2,\ 7:1\}$

Figure 8.5: ภาพใหญ่ของปัญหาซึ่ง input คือจำนวนนับ n และ output คือการแยกตัวประกอบจำนวน เฉพาะที่คืนค่าออกมาเป็น dictionary

8.6.1 วิธีวนซ้ำตามจำนวนเฉพาะ

ขั้นตอนทำความเข้าใจปัญหา

จากรูปแบบปัญหา จะเห็นได้โดยง่ายว่าวิธีที่พื้นฐานที่สุดที่ทำได้คือการวนซ้ำไปตามตัวประกอบจำนวน เฉพาะเพื่อหาว่าจะสามารถแยกตัวประกอบจำนวนเฉพาะนั้นออกมาได้กี่รอบ กล่าวคือเราสามารถแยกย่อย ปัญหาดังกล่าวออกมาเป็นปัญหาย่อยของทีละจำนวนเฉพาะที่เป็นตัวประกอบ โดยเป็นโจทย์ย่อยว่า

กำหนดจำนวนนับ n และจำนวนเฉพาะ p เขียนโปรแกรมเพื่อหาว่าสามารถแยกตัวประกอบ p นั้นออกมาได้กี่ตัว พูดอีกนัยหนึ่งคือ จงหาจำนวนนับ k ที่ทำให้ $n=p^k\cdot A$ โดยที่ $p\nmid A$

และเขียนแผนภาพการแก้ปัญหาได้แบบแแผนภาพ 8.6

ทว่า จะพบว่ายังเหลือปัญหาย่อยที่ว่ามีจำนวนเฉพาะใดบ้างที่เป็นตัวประกอบของ n เพื่อที่จะระบุขอบเขต การแก้ปัญหาย่อย p_1,\dots,p_n ดังนั้นก่อนที่จะแก้ปัญหาย่อยการแยกตัวประกอบจำนวนเฉพาะที่กำหนด ตัวประกอบจำนวนเฉพาะมาแล้วนั้น เราจะต้องแก้ปัญหาการหาตัวประกอบที่เป็นจำนวนเฉพาะทั้งหมด ของ n ก่อน จึงได้แผนภาพการแก้ปัญหาดังแผนภาพ 8.7

ซึ่งปัญหาย่อยของการแยกตัวประกอบของแต่ละตัวประกอบเฉพาะนั้น เราสามารถใช้ for-loop เพื่อลู ปการแก้ปัญหาตามตัวประกอบเฉพาะทั้งหมดที่หามาได้และเก็บผลลัพธ์มาสะสมไว้ ซึ่งจะได้ดังแผนภาพ 8.8

Figure 8.8: ...

ทั้งนี้ โจทย์ปัญหาของการหาตัวประกอบที่เป็นจำนวนเฉพาะทั้งหมดของ n จะทิ้งไว้ให้ผู้อ่านทำเป็น แบบฝึกหัดในแบบฝึกหัด 6 แต่เราจะมาแก้ปัญหาเรื่องจำนวนครั้งการเป็นตัวประกอบของตัวประกอบเฉพาะ ที่กำหนดมาให้กัน

แก้ปัญหาย่อยจำนวนครั้งการหารลงตัว

ก่อนลงรายละเอียด จะขอทบทวนปัญหาอีกสักครั้ง

กำหนดจำนวนนับ n และจำนวนเฉพาะ p เขียนโปรแกรมเพื่อหาว่าสามารถแยกตัวประกอบ p นั้นออกมาได้กี่ตัว พูดอีกนัยหนึ่งคือ จงหาจำนวนนับ k ที่ทำให้ $n=p^k\cdot A$ โดยที่ $p\nmid A$

Figure 8.9: ภาพใหญ่ของปัญหาย่อยซึ่ง input คือจำนวนนับ n และจำนวนเฉพาะ p และ output คือ จำนวนครั้งการหาร n ลงตัวของ p

ปัญหานี้เป็นปัญหาที่ค่อนข้างง่าย เราสามารถทำได้ด้วยการวนลูปหารซ้ำไปเรื่อย ๆ ด้วยเงื่อนไขว่า "ตราบ ใดที่ยังหารลงตัวอยู่ (n%p == 0) ให้หารต่อ" และทุกครั้งการหารเราจะมีตัวแปรเพื่อเก็บจำนวนครั้งการ หารไว้ (counter += 1) และอัพเดตตัวตั้งการหารเป็นผลหารล่าสุด n = n//p ซึ่งสามารถเขียนเป็นโค้ด ได้ดังนี้

```
factorization of given prime \boldsymbol{p}
```

```
def countFactor(n,p):
    count = 0
    while n%p == 0:
        count += 1
```

```
n = n//p
return count
```

รวบรวมวิธีแก้ปัญหาย่อยเพื่อแก้ปัญหาหลัก

ตอนนี้เรามีฟังก์ชัน countFactor เพื่อช่วยในการนับจำนวนตัวประกอบเฉพาะ p ของ n และ(สมมติ)มี ฟังก์ชัน findAllPrimeFactor เพื่อช่วยในการหาตัวประกอบเฉพาะทั้งหมดของ n หรือพูดอีกนัยหนึ่ง คือ เราสามารถหาได้แล้วว่าเมื่อทำการแยกตัวประกอบเฉพาะของ n จะมีจำนวนเฉพาะใดคูณกันอยู่บ้าง และแต่ละจำนวนเฉพาะดังกล่าวมีเลขชี้กำลังเป็นอะไร ตอนนี้เหลือเพียงแค่นำ 2 ฟังก์ชันดังกล่าวมาทำงาน ร่วมกันตามแผนที่วางไว้ในแผนภาพ 8.8 ซึ่งเราจะสามารถเขียนโค้ดได้ดังนี้

```
Prime Factorization

def primeFactorize(n):
    primeList = findAllPrimeFactor(n)
    resultDict = {}
    for p in primeList:
        resultDict[p] = countFactor(n,p)
    return resultDict
```

8.6.2 วิธีเวียนเกิด

ถ้าลองสังเกตวิธีคำนวณของฟังก์ชัน countFactor ดี ๆ จะพบว่ามีแนวคิดของการเรียกฟังก์ชันแบบเวียน เกิดที่สำคัญอยู่อย่างหนึ่ง ซึ่งคือการที่เราไม่ได้พิจารณาตัวตั้งของการหารว่ามีค่า n ที่รับมาตลอดเวลา แต่ n ในการพิจารณารอบถัดไปก็เกิดจากการที่เราตัดทอนตัวประกอบที่หาพบมาแล้วหนึ่งตัว (n/p) ซึ่งถึง แม้ว่าในฟังก์ชันดังกล่าวจะทำอยู่กับแค่ p ตัวเดียว แต่เราก็สามารถขยายแนวคิดนี้มาสู่กรณีใด ๆ ที่ไม่ ได้กำหนดตัวประกอบเฉพาะตายตัวไว้ได้เช่นกัน

จากประเด็นดังกล่าว จึงนำมาสู่แนวคิดการออกแบบในรูปแบบเวียนเกิดว่า เราให้ฟังก์ชันนั้นหยิบตัวประกอบ เฉพาะที่เล็กที่สุดออกมาก่อนหนึ่งตัว (p_1) แล้วปล่อยให้ฟังก์ชันเดิมคำนวณกับกรณี n/p_1 จนกว่าจะได้ ว่าหารแล้วเหลือแค่ 1 ซึ่งมาจากแนวคิด

$$n = \underbrace{p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}}_{\text{algor(n)}} = p_1 \times \underbrace{(p_1^{a_1-1} p_2^{a_2} \cdots p_n^{a_n})}_{\text{algor(n/p_1)}} = p_1 \times (n/p_1)$$

ทว่า สิ่งที่เราต้องการทำคือการเก็บจำนวนครั้งการหารลงตัวไว้ใน dictionary ดังนั้นเราจึงต้องให้อัล

กอริทึมที่เรากำลังจะสร้างคืนค่าเป็น dictionary ของจำนวนครั้งการหารลงตัวของ n/p_1 และทำการอัพเดต p_1 เพิ่มเข้าไปอีก 1 ครั้ง ซึ่งสามารถทำได้ง่ายผ่านคำสั่ง dict[key] = dict.get(key,0) + 1 (ถ้า ไม่มี key นั้นให้คืนค่า 0 แล้วเพิ่มไป 1 จึงได้ 1 แต่ถ้ามี key นั้นอยู่แล้วให้คืนค่าเดิมออกมาก่อนแล้ว บวกเพิ่มไปอีก 1 แล้วบันทึกกับลงไปใน key เดิม)

นอกจากนั้น ยังพบว่าเครื่องมืออีกชิ้นที่สำคัญของแนวคิดนี้คือการหาตัวประกอบเฉพาะที่มีค่าน้อยที่สุด ก่อน ซึ่งสามารถปรับปรุงจากฟังก์ชันที่เขียนเป็นแบบฝึกหัดข้อ 6 โดยให้คำนวณจากน้อยไปมาก และ เมื่อเจอตัวประกอบเฉพาะตัวแรกก็ให้คืนค่าทันที โดยในที่นี้ขอสมมติชื่อฟังก์ชันเป็น minPrimeFactor สุดท้าย จะสามารถเขียนโค้ดได้ดังนี้

```
Recursive Prime Factorization

def primeFactorize_recur(n):
    if n == 1:
        return {}
    else:
        min_p = minPrimeFactor(n)
        result_dic_recur = primeFactorize_recur(n//min_p)
        result_dic_recur[min_p] = result_dic_recur.get(min_p,0) + 1
        return result_dic_recur
```

8.7 programming: ขั้นตอนวิธีการหารหาเศษและผลหาร

8.8 Programming Exercise

- 1. จงวิเคราะห์ความซับซ้อนของอัลกอริทึมต่าง ๆ ในการตรวจสอบการหารลงตัว ทั้งรูปแบบเชิงทฤษฎี และเชิงการทดลองเพื่อเปรียบเทียบ โดยที่สมมติว่าทุก operation (บวก ลบ คูณ การเปรียบเทียบ) มีต้นทุนเท่ากับ 1 หน่วย
- 2. โปรแกรม isDivisible_recur ที่ให้เป็นตัวอย่างในหัวข้อ 8.4.4 ยังคงอยู่ภายใต้เงื่อนไขว่าใส่ได้
 แค่จำนวนเต็มบวก จงพิจารณาว่าเราสามารถแก้ไขให้รับกับจำนวนเต็มใด ๆ ด้วยวิธีเดียวกับ isDivisible_ver2
 ได้หรือไม่เพราะเหตุใด ถ้าไม่ได้จงหาวิธีแก้ไขวิธีอื่น
- 3. จงเขียนโปรแกรมเพื่อหาผลหารและเศษเหลือจากขั้นตอนวิธีการหาร
- 4. จงเขียนโปรแกรมตรวจสอบการเป็นจำนวนเฉพาะโดยใช้รูปแบบเวียนเกิด
- 5. จงเขียนโปรแกรมที่รับจำนวนนับ n และคืนค่าลิสต์ของทุกจำนวนเฉพาะตั้งแต่ 1 ถึง n โดยที่แย่ ที่สุดไม่เกิน $O(n^{\frac{3}{2}})$ (เราสามารถทำได้ง่ายที่สุดคือ $O(n^2)$ ด้วยการตรวจสอบทีละจำนวนว่าเป็นจำนวนเฉพาะหรือไม่ด้วย วิธี ver2 และ print เมื่อเป็นจำนวนเฉพาะ)
- 6. จงเขียนโปรแกรมที่รับจำนวนนับ n และคืนค่าเป็นลิสต์ของจำนวนเฉพาะที่เป็นตัวประกอบของ n
- 7. จงเขียนฟังก์ชันนับจำนวนครั้งการหาร n ด้วย p ลงตัว (ฟังก์ชัน countFactor) แบบเวียนเกิด
- 8. จงเขียนโปรแกรมที่รับจำนวนนับ n และคืนค่าจำนวนของตัวประกอบที่เป็นบวกทั้งหมดของ n
- 9. จงเขียนฟังก์ชันที่รับจำนวนนับ n และคืนค่าออกมาเป็น dictionary ของการแยกตัวประกอบเฉพาะ ของ n! (caution: จะพบว่าเราสามารถแก้ปัญหาโดยอาศัยฟังก์ชัน primeFactorize ในหัวข้อ 8.6 ได้โดยง่าย แต่ว่าจะมีปัญหาเมื่อ n มีค่าใหญ่ ๆ จนทำให้การเก็บ n! ใช้หน่วยความจำเกิน)
- 10. อาศัยฟังก์ชันที่เขียนขึ้นมาในแบบฝึกหัดข้อ 9 เพื่อเขียนฟังก์ชันที่รับจำนวนนับ n แล้วคืนค่าเป็น จำนวนของเลข 0 ที่ลงท้ายของผลลัพธ์ของ n!

Chapter 9

Combinations

THEORY PART

ในบทนี้จะกล่าวถึงเทคนิคต่าง ๆ เกี่ยวกับการนับจำนวนเหตุการณ์ โดยเริ่มจากเทคนิคเบื้องต้นที่สุด ซึ่งคือหลักการบวกและหลักการคูณที่เป็นพื้นฐานของสูตรการนับอื่น ๆ ที่จะกล่าวถึงต่อไปในบทนี้ กล่าว คือถึงแม้เราจะไม่รู้สูตรในการคำนวณการนับแบบยาก ๆ แต่ถ้าเราใช้ทักษะด้านการวางแผนช่วยในการ นับ ทุกปัญหาจะสามารถถูกแก้ปัญหาได้โดยใช้เพียงแค่หลักการบวกและหลักการคูณได้ หลังจากทำความ คุ้นเคยกับการวางแผนการนับเหตุการณ์เบื้องต้นด้วยหลักการบวกและหลักการคูณแล้ว จะเริ่มกล่าวถึงสูตร ของรูปแบบการนับต่าง ๆ ที่เฉพาะเจาะจงมากขึ้น ได้แก่ การเรียงสับเปลี่ยน และการจัดกลุ่ม ทั้งในรูป แบบไม่มีของซ้ำกันและมีของซ้ำกันหรือเลือกซ้ำได้

9.1 หลักการบวกและหลักการคูณ

อย่างที่ได้กล่าวไปตอนต้นว่าทุกสูตรที่จะถูกกล่าวถึงในบทนี้นั้นมีแนวคิดตั้งต้นมาจากหลักการบวก และหลักการคูณทั้งสิ้น เพียงแต่ต้องอาศัยทักษะในการวางแผนการนับให้เป็นขั้นเป็นตอน ดังนั้นจุดประสงค์ ของหัวข้อนี้คือการทำความคุ้นเคยกับการวางแผนการนับผ่านโจทย์ที่อยู่ในระดับง่ายถึงปานกลาง โดยที่ เครื่องมือการนับในเวลานี้มีเพียงแค่หลักการบวกและหลักการคูณ

9.1.1 หลักการบวก

หลักการบวก

ในการทำงานอย่างหนึ่งมีทางเลือกการทำอยู่ 2 ทางเลือก โดยที่ทางเลือกแรกมีวิธีทำได้ p วิธี แตกต่างกัน และทางเลือกที่สองมีวิธีทำได้ q วิธีแตกต่างกัน โดยที่ทางเลือกทั้งสองไม่มีวิธีการทำ ร่วมกัน และเลือกทำได้แค่ทางเลือกใดทางเลือกหนึ่งเท่านั้น ถ้าต้องการเลือกวิธีการทำงานชิ้นนี้จะ สามารถเลือกทำได้ p+q วิธีที่แตกต่างกัน

สิ่งแรกที่ต้องนึกถึงเมื่อจะเลือกใช้หลักการบวกคือกระบวนการนับของเราเป็นการแยกกรณี กล่าวคือ เป็นทางเลือกให้ทำเพียงอย่างใดอย่างหนึ่ง โดยที่ไม่ว่าจะเลือกทำทางไหนก็ถือว่าจบกระบวนการทำงาน ชิ้นนั้น และอย่างที่สองที่ต้องระวังคือทางเลือกที่แยกออกไปต้องไม่มีวิธีการที่ซ้ำกัน กล่าวคือไม่มีการนับ ซ้ำเกิดขึ้นในกระบวนการนับ

ในส่วนของโจทย์ด้านล่างนั้น ผู้อ่านคงทราบดีว่าเราต้องใช้หลักการบวกในการนับเพราะเป็นโจทย์ใน หัวข้อหลักการบวก แต่สิ่งที่ผมอยากให้ผู้อ่านนึกหลังจากอ่านโจทย์เสร็จคืออะไรเป็นคีย์เวิร์ดสำคัญที่บอก เราว่าขั้นตอนนี้ต้องใช้หลักการบวก

Example 9.1.1. มหาวิทยาลัยแห่งหนึ่งมีนิสิตวิชาเอกคณิตศาสตร์ 33 คน และมีนิสิตวิชาเอกวิทยาการ คอมพิวเตอร์ 40 คน ถ้าต้องการเลือกนักศึกษาหนึ่งคนเพื่อเป็นคณะกรรมการของสโมสรนิสิต จะมีวิธีเลือก นิสิตจังกล่าวได้แตกต่างกันกี่วิธี

Solution. ...

Example 9.1.2. ให้เซต $A=\{a,b,c,d\}$ และ $B=\{\alpha,\beta,\gamma\}$ ถ้าต้องการเลือกตัวอักษรหนึ่งตัวจากเซต A หรือเซต B จะมีวิธีเลือกได้กี่วิธี

Solution. ...

นอกจากที่เรากล่าวถึงหลักการบวกในแง่เปรียบเทียบกับการเลือกวิธีการทำงานในรูปแบบภาษามนุษย์ แล้วนั้น จากตัวอย่างที่ 9.1.2 เราจะพบว่าเราสามารถนิยามหลักการบวกได้โดยใช้เซตเข้ามาช่วยในการ พูดให้เป็นภาษาคณิตศาสตร์มากขึ้นได้ดังนี้

หลักการบวกแบบภาษาเซต

กำหนดให้ A และ B เป็นเซตที่มีสมาชิกแตกต่างกัน กล่าวคือ $A\cap B=\emptyset$ จะได้ว่า

$$|A \cup B| = |A| + |B|$$

และนอกจากที่เรานิยามหลักการบวกโดยใช้แค่ 2 ทางเลือก เรายังสามารถขยายแนวคิดออกไปให้มี มากกว่า 2 ทางเลือกได้ในทำนองเดียวกันคือ

หลักการบวกกรณีทั่วไป

ถ้ามีทางเลือก m ทางเลือก ซึ่งไม่มีทางเลือกใดที่มีวิธีการซ้ำกับทางเลือกอื่น ๆ สมมติว่าทางเลือก ที่หนึ่งมีวิธีทำได้ r_1 วิธี ทางเลือกที่สองมีวิธีทำได้ r_2 วิธี ... และทางเลือกที่ m มีวิธีทำได้ r_m วิธี ดังนั้นจะมีวิธีเลือกทำงานชิ้นนี้เพียงอย่างใดอย่างหนึ่งได้แตกต่างกัน $r_1+r_2+\cdots+r_m$ วิธี หรือกล่าวแบบภาษาเซตคือ ถ้า A_1,\ldots,A_m เป็นเซตที่ไม่มีสองเซตใด ๆ ที่มีสมาชิกร่วมกัน กล่าวคือ $A_i\cap A_j=\emptyset$ สำหรับทุก ๆ $i\neq j$ จะได้ว่า

$$|A_1 \cup \dots \cup A_m| = |A_1| + \dots + |A_m|$$

Example 9.1.3. จงหา
$$\left|\left\{(x,y)\in\mathbb{Z}\times\mathbb{Z}\colon x^2+y^2\leq 4\right\}\right|$$

Solution. ...

9.1.2 หลักการคูณ

หลักการคูณ

กระบวนการทำงานอย่างหนึ่งประกอบด้วยขั้นตอนย่อย ๆ สองขั้นตอน โดยขั้นตอนแรกมีวิธีทำได้ แตกต่างกัน p วิธี และไม่ว่าจะเลือกวิธีใดก็ตามในขั้นตอนแรกจะสามารถทำขั้นตอนที่สองได้แตก ต่างกัน q วิธี และขั้นตอนทั้งสองนี้ไม่สามารถทำงานร่วมกันได้ ดังนั้นจะมีวิธีทำงานชิ้นนี้ได้แตก ต่างกัน pq วิธี

ประเด็นสำคัญของหลักการคูณคือการที่งานชิ้นนั้นมีความเป็นขั้นตอนทำอย่างต่อเนื่องกัน และต้องทำ ทุกขั้นตอนถึงจะเสร็จงานชิ้นนั้น ถ้าในการวางแผนการนับมีการแบ่งการนับออกเป็นขั้นและมั่นใจว่าเมื่อ ทำจบทุกขั้นแล้วจะได้ผลลัพธ์ของการจัดเรียงออกมาตามที่เราต้องการก็เป็นการยืนยันได้ในระดับหนึ่งว่า เราจะต้องใช้หลักการคูณเข้ามานับ นอกจากนั้น ข้อระวังของกฏการคูณที่ต้องพึงระวังไว้เสมอคือจำนวน วิธีการเลือกทำในขั้นตอนถัดไปจะต้องเท่ากันทั้งหมดไม่ว่าจะเลือกทำวิธีการใดในขั้นตอนปัจจุบันก็ตาม กล่าว เทียบกับนิยามด้านบนคือ ไม่ว่าเราจะเลือกวิธีใดใน p วิธีของขั้นตอนที่หนึ่ง เราจะต้องสามารถทำขั้นตอน ที่สองได้ q วิธีทั้งหมด

คำถาม

จริง ๆ แล้วเราสามารถมองหลักการคูณจากมุมมองของหลักการบวกได้ ซึ่งจะพบเหตุผลว่าทำไม เงื่อนไขของการที่จำนวนวิธีที่เลือกทำได้ในขั้นตอนถัดไปต้องเท่ากันไม่ว่าเลือกทำวิธีใดมาเป็น เงื่อนไขที่สำคัญ จงพิจารณาหลักการคูณโดยใช้การอธิบายในรูปแบบของหลักการบวก

Example 9.1.4. มหาวิทยาลัยแห่งหนึ่งมีนิสิตวิชาเอกคณิตศาสตร์ 33 คน และมีนิสิตวิชาเอกวิทยาการ คอมพิวเตอร์ 40 คน ถ้าต้องการเลือกนักศึกษาสองคนจากวิชาเอกละหนึ่งคนเพื่อเป็นคณะกรรมการของ สโมสรนักศึกษา จะมีวิธีเลือกนักศึกษาได้แตกต่างกันกี่วิธี

Solution. ...

Example 9.1.5. ให้เซต $A=\{a,b,c,d\}$ และ $B=\{\alpha,\beta,\gamma\}$ ถ้าต้องการเลือกตัวอักษร 2 ตัวจากเซต A และเซต B เซตละหนึ่งตัว จะมีวิธีเลือกที่แตกต่างกันกี่วิธี

53

Solution. ..

ในทำนองเดียวกัน หลักการคูณก็สามารถเขียนได้ในรูปแบบของเซตดังนี้

หลักการคูณแบบภาษาเซต

กำหนดให้ A และ B เป็นเซต และ $A \times B = \{(a,b) \colon a \in A, b \in B\}$ แล้วจะได้ว่า

$$|A \times B| = |A| \times |B|$$

Example 9.1.6. จำนวนเต็มคี่ที่อยู่ระหว่าง 1000 และ 10000 ซึ่งมีเลขในแต่ละหลักแตกต่างกันมีทั้งหมด กี่จำนวน

Solution. ...

หลักการคูณกรณีทั่วไป

ถ้างานชิ้นหนึ่งประกอบด้วย m ขั้นตอน สมมติว่าขั้นตอนที่หนึ่งมีวิธีทำได้ r_1 วิธี ขั้นตอนที่สองมี วิธีทำได้ r_2 วิธีไม่ว่าจะเลือกวิธีการใดในขั้นตอนที่หนึ่งก็ตาม ... และขั้นตอนที่ m มีวิธีทำได้ r_m วิธีไม่ว่าจะเลือกวิธีการใดในขั้นตอนก่อนหน้าก็ตาม ดังนั้นจะมีวิธีเลือกทำงานชิ้นนี้ได้แตกต่างกัน $r_1 \times r_2 \times \cdots \times r_m$ วิธี

หรือกล่าวแบบภาษาเซตคือ ถ้า A_1,\ldots,A_m เป็นเซตใด ๆ แล้วจะได้ว่า

$$|A_1 \times \cdots \times A_m| = |A_1| \times \cdots \times |A_m|$$

Example 9.1.7. จำนวนเต็มคู่ที่อยู่ระหว่าง 1000 และ 10000 ซึ่งมีเลขในแต่ละหลักแตกต่างกันมีทั้งหมด กี่จำนวน

Solution. ...

Example 9.1.8. จงแสดงว่าเซตที่มีสมาชิก n ตัวมีเซตย่อย 2^n เซต

Solution. ...

Example 9.1.9. มีคู่สามีภรรยา 15 คู่ในงานปาร์ตีแห่งหนึ่ง จงหาจำนวนวิธีการเลือกผู้หญิงหนึ่งคนและ ผู้ชายอีกหนึ่งคนโดยที่ (1) ต้องเป็นคู่สามีภรรยากัน (2) ต้องไม่เป็นคู่สามีภรรยากัน

Solution. ...

Example 9.1.10. พาสเวิร์ดของระบบความปลอดภัยแห่งหนึ่งเป็นตัวอักษรภาษาอังกฤษยาว 3 หรือ 4 ตำแหน่ง จงหา (1) จำนวนของพาสเวิร์ดที่เป็นไปได้ทั้งหมด (2) จำนวนของพาสเวิร์ดที่เป็นไปได้ทั้งหมด ที่ใช้ตัวอักษรไม่ซ้ำกัน

Solution. ...

Example 9.1.11. จงหาจำนวนของตัวประกอบที่เป็นจำนวนเต็มบวกของ $441,000 (= 2^3 \times 3^2 \times 5^3 \times 7^2)$

Solution. ...

Example 9.1.12. จงหาจำนวนวิธีในการเขียน 441,000 ในรูปผลคูณของจำนวนเต็มบวก 2 จำนวนที่ เป็นจำนวนเฉพาะสัมพัทธ์กัน (เช่น $1 \times 441,000$ หรือ 441×1000)

Solution. ...

Example 9.1.13. กำหนดให้ $X = \{1, 2, 3, \dots, 10\}$ และ $S = \{(a, b, c) \colon a, b, c \in X, a < b$ และ $a < c\}$ จงหาจำนวนสมาชิกทั้งหมดของ S

Solution. ...

9.2. การเรียงสับเปลี่ยน 55

9.2 การเรียงสับเปลี่ยน

9.2.1 การเรียงสับเปลี่ยนเชิงเส้นแบบของไม่ซ้ำ

กำหนดให้ $A=\{a_1,a_2,\ldots,a_n\}$ เป็นเซตของ n สิ่งของที่แตกต่างกัน และให้ $0\leq r\leq n$ แล้ว **การเรียง สับเปลี่ยน** r **ชิ้น**ของเซต A (r-permutation) คือรูปแบบในการจัดเรียงลำดับเป็นแถวตรงของสมาชิก r ตัวใด ๆ จากเซต A และเขียนแทนจำนวนของรูปแบบดังกล่าวที่เป็นไปได้ทั้งหมดด้วย P(n,r)

Example 9.2.1. ให้ $A=\{a,b,c,d\}$ จงเขียนรูปแบบการเรียงสับเปลี่ยนของ 3 ชิ้นจากเซต A ทั้งหมด

Solution. ...

ในกรณีที่ n มีค่าน้อย ๆ ก็เป็นการง่ายที่จะไล่ทุกรูปแบบเพื่อนับ แต่ในกรณีที่ n มีค่ามาก ๆ คงไม่เป็น เรื่องง่ายที่จะเขียนไล่ให้ครบแน่ ๆ จึงต้องมาพิจารณากันว่าแล้วเราจะคำนวณหาค่า P(n,r) กันอย่างไร อย่างที่ได้กล่าวไปหลายรอบแล้วว่าเบื้องหลังของสูตรการนับต่าง ๆ นั้นมีพื้นฐานมาจากหลักการบวก และหลักการคูณทั้งสิ้น เพียงแค่ต้องวางแผนขั้นตอนการนับให้ถูกต้อง ดังนั้น สิ่งแรกที่ต้องทำคือวางแผน ว่าเราจะวางขั้นตอนของการเรียงสับเปลี่ยน r ซิ้นจากของ n ชิ้นอย่างไร

แนวคิดหนึ่งที่น่าจะเป็นแนวคิดที่ผู้อ่านทุกคนคิดถึงเป็นอย่างแรกคือ **เลือกของจากกองตัวเลือกที่** มีมาใส่ทีละตำแหน่งไล่ไปตั้งแต่ตำแหน่งแรกจนถึงตำแหน่งสุดท้าย

จำนวนวิธีในการเรียงสับเปลี่ยน

P(n,r) คือจำนวนสมาชิกของเซต

 $\Big\{(x_1,x_2,\ldots,x_r)|x_i\in\{a_1,\ldots,a_n\}$ และ $x_i\neq x_j$ สำหรับทุกๆ $i\neq j\Big\}$ และจะได้ ว่า

$$P(n,r) = \frac{n!}{(n-r)!}$$

Note

$$P(n,0)=1$$
 และ $P(n,1)=n$ และ $P(n,n)=n!$

คำเตือน

การเรียงสับเปลี่ยนเป็นเพียงแค่เครื่องมือหนึ่งในการนับ ไม่ใช่รูปแบบของโจทย์ อาจมีการใช้พร้อม กับหลักการบวก และหลักการคูณ และการเรียงสับเปลี่ยนอาจเป็นเพียงการนับในขั้นตอนใดขั้น ตอนหนึ่งของหลักการคูณก็ได้

Example 9.2.2. จงหาจำนวนคำซึ่งมีความยาว 4 ตัวอักษร โดยที่ตัวอักษรทั้ง 4 ตัวมาจากเซต $\{a,b,c,d,e\}$

Solution. ...

Example 9.2.3. จัดคน 6 คนเข้านั่งเรียงในแนวเส้นตรงได้กี่วิธี

Solution. ...

Example 9.2.4. จัดสามีภรรยา 3 คู่เข้านั่งเรียงแถวได้กี่วิธีถ้า (1) หัวแถวและท้ายแถวต้องเป็นผู้ชาย (2) ภรรยาต้องนั่งติดกับสามี

Solution. ...

Example 9.2.5. จงหาจำนวนของจำนวนเต็มซึ่งมีความยาว 7 หลัก แต่ละหลักแตกต่างกันและไม่เป็น 0 โดยที่เลข 5 และเลข 6 ต้องไม่ปรากฏในตำแหน่งติดกัน

Solution. ...

Example 9.2.6. จงอธิบายเหตุผลเชิงการจัดเรียงว่า

$$P(n,n) = P(n,k) \times P(n-k,n-k)$$

9.2. การเรียงสับเปลี่ยน 57

Solution. ...

Note

เรียกการพิสูจน์แบบตัวอย่างที่ 9.2.6 ว่า combinatorial proof หรือเรียกว่า เทคนิค double counting

Example 9.2.7. จำนวนเต็มคู่ที่อยู่ระหว่าง 20000 และ 70000 ซึ่งมีเลขในแต่ละหลักแตกต่างกันทั้งหมด มีกี่จำนวน

Solution. ...

Example 9.2.8. กำหนดให้ S เป็นเซตของจำนวนนับที่สร้างมาจากเลขโดด $\{1,3,5,7\}$ ที่เลขในแต่ละ หลักแตกต่างกันทั้งหมด จงหา

- 1. |*S*|
- 2. $\sum_{n \in S} n$

Solution. ...

9.2.2 การเรียงสับเปลี่ยนแบบวงกลม

- มีข้อแตกต่างจากการเรียงสับเปลี่ยนเชิงเส้นอย่างไร (มองว่าสองรูปแบบการจัดเรียงแตกต่างกันอย่างไร)
- ออกแบบกระบวนการนับอย่างไร

Example 9.2.9. จงเขียนรูปแบบการจัดเรียงเชิงเส้น 4 สิ่งจากเซต $A = \{a,b,c,d\}$ ซึ่งมี 4! = 24 แบบ และจงเขียนแยกว่าแบบใดบ้างที่เมื่อนำมาเรียงสับเปลี่ยนเป็นวงกลมจะได้รูปแบบเดียวกัน (และสังเกตรูป แบบเพื่อนับ)

Solution. ...

การเรียงสับเปลี่ยนแบบวงกลม

การเรียงสับเปลี่ยนแบบวงกลม คือ รูปแบบการจัดเรียงที่นำรูปแบบการจัดเรียงเชิงเส้นมาล้อม เป็นวงกลม ซึ่งจะได้ว่าสองรูปแบบการจัดเรียงเชิงเส้นที่ต่างกันที่เมื่อนำมาล้อมเป็นวงกลมแล้วจะ มองว่าเป็นรูปแบบเดียวกันเกิดจาก

และจะได้ว่าจำนวนวิธีการจัดเรียงสับเปลี่ยนแบบวงกลมของสิ่งของ n สิ่งทั้งหมดเท่ากับ

Example 9.2.10. นำเด็กผู้ชาย 5 คนและเด็กผู้หญิง 3 คนมานั่งล้อมโต๊ะกลม จะนั่งได้กี่วิธีถ้า

- 1. ไม่มีเงื่อนไขเพิ่มเติม
- 2. เด็กชาย B_1 และเด็กหญิง G_1 ไม่นั่งติดกัน
- 3. ไม่มีเด็กผู้หญิงสองคนใด ๆ นั่งติดกัน

Solution. ...

Example 9.2.11. จงหาจำนวนวิธีการนั่งที่แตกต่างกันของคู่สามีภรรยา n คู่รอบโต๊ะวงกลม โดยที่

- 1. ผู้ชายและผู้หญิงนั่งสลับกัน
- 2. คู่สามีภรรยาต้องนั่งติดกัน

Solution. ...

Example 9.2.12. จากตัวอย่างที่ 9.3.1 ที่เราได้เขียนรูปแบบการจัดเรียงเชิงเส้น 3 สิ่งจากเซต $A=\{a,b,c,d\}$ ซึ่งมี P(4,3)=24 แบบ จงเขียนแยกว่าแบบใดบ้างที่เมื่อนำมาเรียงสับเปลี่ยนเป็นวงกลม จะได้รูปแบบเดียวกัน (และสังเกตรูปแบบเพื่อนับ)

9.3. การจัดกลุ่ม

Solution. ...

การเรียงสับเปลี่ยนแบบวงกลมแบบทั่วไป

ถ้ามีของ n สิ่งแตกต่างกัน จะนำมาจัดเรียงเป็นวงกลม r สิ่งได้แตกต่างกัน Q(n,r) วิธี โดยที่

$$Q(n,r) = \frac{P(n,r)}{r}$$

9.2.3 การเรียงสับเปลี่ยนเชิงเส้นแบบของซ้ำ

การเรียงสับเปลี่ยนเชิงเส้นแบบของซ้ำ

ถ้ามีของ n สิ่ง ซึ่งแบ่งออกเป็น k ประเภท โดยของในประเภทเดียวกันจะมองเป็นสิ่งเดียวกัน โดยที่มีของประเภทที่หนึ่งอยู่ n_1 ชิ้น ของประเภทที่สองมีอยู่ n_2 ชิ้น ... ของประเภทที่ k มีอยู่ n_k ชิ้น โดยที่ $n_1+n_2+\cdots+n_k=n$ แล้วจะได้ว่าจำนวนวิธีการจัดเรียงสับเปลี่ยนเชิงเส้นของ สิ่งของ n สิ่งนี้เท่ากับ

$$P(n; n_1, n_2, \dots, n_k) =$$

Example 9.2.13. จงหาจำนวนวิธีการจัดเรียงคำว่า MISSISSIPPI ที่แตกต่างกันทั้งหมด

Solution. ...

9.3 การจัดกลุ่ม

กำหนดให้ $A=\{a_1,a_2,\ldots,a_n\}$ เป็นเซตของ n สิ่งของที่แตกต่างกัน และให้ $0\leq r\leq n$ แล้ว **การ** จ**ัดกลุ่ม** r ชิ้นของเซต A (r-combination) คือรูปแบบในการจัดสมาชิก r ตัวใด g จากเซต A เข้ากลุ่ม

เดียวกัน โดยที่ในกลุ่มเราไม่สนใจลำดับของสมาชิก แต่สนใจเพียงแค่มีใครอยู่บ้าง และเขียนแทนจำนวน ของรูปแบบดังกล่าวที่เป็นไปได้ทั้งหมดด้วย C(n,r) หรือ $\binom{n}{r}$

Example 9.3.1. ให้ $A=\{a,b,c,d\}$ จงเขียนรูปแบบการเรียงจัดกลุ่มของ 3 ชิ้นจากเซต A ทั้งหมด

Solution. ...

จำนวนวิธีในการจัดกลุ่ม

 $\overline{C(n,r)}$ คือจำนวนเซตย่อยที่มีสมาชิก r ตัวของเซตที่มีสมาชิก n ตัว กล่าวคือ

$$C(n,r)=\Big\{\{x_1,x_2,\ldots,x_r\}|x_i\in\{a_1,\ldots,a_n\}$$
 และ $x_i
eq x_j$ สำหรับทุกๆ $i
eq j\Big\}$

และจะได้ว่า

$$C(n,r) =$$

Example 9.3.2. จงหาจำนวนทั้งหมดของบิตสตริงโดยมีความยาวเท่ากับ 9 ซึ่งมีเลขโดด 1 อยู่สี่ตำแหน่ ง

Solution. ...

Example 9.3.3. จงหาจำนวนวิธีการจัดเรียงคำว่า MISSISSIPPI ที่แตกต่างกันทั้งหมด (โจทย์เดิม แต่ ใช้เทคนิคการจัดกลุ่มมาช่วยนับ)

Solution. ...

Example 9.3.4. จงหาจำนวนวิธีทั้งหมดในการจัดแบ่งนักเรียน 7 คน ออกเป็นสามกลุ่ม โดยให้มีกลุ่ม ละ สามคน 1 กลุ่ม และกลุ่มละสองคน 2 กลุ่ม

Solution. ...

9.4. สัมประสิทธิ์ทวินาม 61

Example 9.3.5. จงหาจำนวนวิธีทั้งหมดในการที่สุขใจเชิญเพื่อนเพียง 6 คนจากเพื่อนสนิททั้งหมด 10 คนมารับประทานอาหารเย็นด้วยกัน ซึ่งใน 10 คนนี้มี 2 คนเป็นพี่น้องกัน ถ้าจะเชิญมาต้องเชิญทั้ง พี่และ น้องมาด้วย

Solution. ...

Example 9.3.6. จงใช้เหตุผลเชิงการนับเพื่อพิสูจน์ว่า

$$\binom{n}{r} = \binom{n}{n-r}$$

Solution. ...

Example 9.3.7. จงใช้เหตุผลเชิงการนับเพื่อพิสูจน์ว่า

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

Solution. ...

9.4 สัมประสิทธิ์ทวินาม

ในหัวข้อที่ผ่านมานั้น เราได้นิยามจำนวน $\binom{n}{r}$ หรือ C(n,r) ไปแล้วด้วยปัญหาของการสร้างเซตย่อยขนาด r สมาชิกจากเซตที่มี n สมาชิก แต่ทั้งนี้ เรายังสามารถนิยามเพิ่มเติมในกรณีของ r<0 หรือกรณี r>n ได้เป็น

$$\binom{n}{r} = \begin{cases} \frac{n!}{r!(n-r)!} & \text{ ถ้า } 0 \leq r \leq n \\ 0 & \text{ ถ้า } r > n \text{ หรือ } r < 0 \end{cases}$$

และเรายังสามารถพิสูจน์เอกลักษณ์ต่างๆ ของค่าเชิงการจัดกลุ่มได้โดยใช้หลักการนับเข้ามาช่วย

แต่ว่าเรายังสามารถนิยามค่าของสัญลักษณ์ $\binom{n}{r}$ ได้ในอีกรูปแบบหนึ่งผ่านการพิจารณารูปแบบการกระจายของพหหุนามทวินาม $(x+y)^n$ โดยเราจะพบว่าค่าเชิงการจัดกลุ่ม $\binom{n}{r}$ นั้นจะเป็นส่วนของค่าสัมประสิทธ์ของพหุนามที่ได้มาจากการกระจายพหุนามทวินามดังกล่าว ทำให้บ่อยครั้งสัญลักษณ์เชิงการจัดกลุ่มดังกล่าวอาจจะถูกเรียกว่า **สัมประสิทธิ์ทวินาม** (binomial coefficient)

9.4.1 ทฤษฎีบททวินาม

ทฤษฎีบททวินาม

สำหรับจำนวนเต็มบวก n ใดๆ จะได้ว่า

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n$$

พิสูจน์โดยใช้หลักการนับ!

Example 9.4.1. (easy exercise)

- 1. จงหาสัมประสิทธิ์ของ x^2y^6 ที่ได้จากการกระจาย $(2x+y^2)^5$
- 2. จงใช้ทฤษฎีบททวินามหา $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}$

Solution. ...

9.4.2 การใช้ทฤษฎีบททวินามในการพิสูจน์เอกลักษณ์เชิงการจัด

Example 9.4.2. จงแสดงว่า

1.
$$\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$$

2.
$$\binom{n}{0} + \binom{n}{2} + \cdots + \binom{n}{2k} + \cdots = \binom{n}{1} + \binom{n}{3} + \cdots + \binom{n}{2k+1} + \cdots = 2^{n-1}$$

3.
$$\sum_{r=1}^{n} r\binom{n}{r} = n \cdot 2^{n-1}$$

4. ***
$$\sum_{i=0}^{r} {m \choose i} {n \choose r-i} = {m+n \choose r}$$

Solution. ...

9.4.3 โจทย์ปัญหาเพิ่มเติมเกี่ยวกับการจัดกลุ่ม

Example 9.4.3. 1. มีกี่วิธีในการเดินตามจุดพิกัดจำนวนเต็มจากจุด (0,0) ไปจุด (11,5) ใดๆ โดยที่ เดินได้แค่ทิศที้นและทางขวาเท่านั้น

- 2. จากโจทย์ข้อที่ 1 ถ้าเพิ่มเงื่อนไขว่าต้องผ่านจุด (4,3) ก่อน จะเดินได้กี่วิธี
- 3. จากโจทย์ข้อที่ 1 ถ้าเพิ่มเงื่อนไขว่าต้องผ่านเส้นที่เชื่อมระหว่างจุด (2,3) และ (3,3) ก่อน จะเดิน ได้กี่วิธี

Solution. ...

9.5 หลักการนำเข้า-ตัดออก

PROGRAMMING PART

9.6 Programming about Combinatorics

Chapter 10

Recurrence Relation

Chapter 11

Recursive Algorithm - an approach to functional programming

68CHAPTER 11. RECURSIVE ALGORITHM - AN APPROACH TO FUNCTIONAL PROGRAMMING

Chapter 12

Graph Theory

Index

additive rule, 50

binomial coefficient, 61

combination, 59

multiplicative rule, 52

permutation, 55

การจัดกลุ่ม, 59 การเรียงสับเปลี่ยน, 55 จัดกลุ่ม, 59 สัมประสิทธิ์ทวินาม, 61 หลักการคูณ, 52 หลักการบวก, 50 เรียงสับเปลี่ยน, 55