PRACTICA3

- 1.-) Utilice una tabla para expresar los valores de cada una de estas funciones booleanas. a.-) $F(x, y, z) = x\overline{y} + \overline{xyz}$, b.-) $F(x, y, z) = x(yz + \overline{yz})$
- 2.-) Probar que $x\overline{y} + y\overline{z} + \overline{x}z = \overline{x}y + \overline{y}z + x\overline{z}$
- 3.-) El operador booleano \oplus , llamado operador XOR, está definido por: $1 \oplus 1 = 0$, $1 \oplus 0 = 1$, $0 \oplus 1 = 1$ y $0 \oplus 0 = 0$,
- 4.-) Muestra que estas identidades se cumple: a.-) $x \oplus y = (x+y)\overline{(xy)}$; b.-) $x \oplus y = (x\overline{y}) + (\overline{x}y)$
- 5.-) Construya circuitos a partir de inversores, puertas AND y OR ara producir la salida $\overline{(\overline{x}+z)(y+\overline{z})}$
- 6.-) Use un mapa K para encontrar una expansión mínima como una suma booleana de productos booleanos de cada una de estas funciones en las variables x, y y z, a.-) $xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}yz + \overline{x}yz$; b.-) $xyz + x\overline{y}z + x\overline{y}z + \overline{x}yz + \overline{x}y\overline{z} + \overline{x}y\overline{z}$, c.-) $wxyz + wxy\overline{z} + wx\overline{y}z + w\overline{x}yz + w\overline{x}yz + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z$