Clustering of the Self Organizing Map Roland Halbig 14. Januar 2014 Pattern Recognition Lab (CS 5)

Self Organizing Maps

Definition: SOM

Let $\mathcal{I} \subset \mathbb{N}$ be a finite index set. A Self Organizing Map (SOM) is defined as a set

$$SOM_{\mathcal{I}} = \{ (N_{\lambda}, r_{\lambda}) \in R^{m} \times \mathbb{R}^{d} \mid \lambda \in \mathcal{I} \}$$

of prototype vectors $N_{\lambda} \in \mathbb{R}^{m}$ and their position $r_{\lambda} \in \mathbb{R}^{d}$ in a grid.

Example: XOR

Example: XOR

1. Initialize the prototype vectors N_{λ} of the SOM, set the counter t=0

- 1. Initialize the prototype vectors N_{λ} of the SOM, set the counter t=0
- 2. Iterate steps 2-6 while t < tmax

- 1. Initialize the prototype vectors N_{λ} of the SOM, set the counter t=0
- 2. Iterate steps 2-6 while t < tmax
- 3. Choose a sample $X_s \in \mathbb{R}^m$

- 1. Initialize the prototype vectors N_{λ} of the SOM, set the counter t=0
- 2. Iterate steps 2-6 while t < tmax
- 3. Choose a sample $X_s \in \mathbb{R}^m$
- 4. Calculate the **Best Matching Unit** N_b with

$$b = \operatorname*{arg\,min}_{\lambda \in \mathcal{I}} \left\{ \left\| X_{\mathcal{S}} - N_{\lambda}
ight\|_{L^{2}(\mathbb{R}^{m})}
ight\}$$

- 1. Initialize the prototype vectors N_{λ} of the SOM, set the counter t=0
- 2. Iterate steps 2-6 while t < tmax
- 3. Choose a sample $X_s \in \mathbb{R}^m$
- 4. Calculate the **Best Matching Unit** N_b with

$$b = \operatorname*{arg\,min}_{\lambda \in \mathcal{I}} \left\{ \left\| X_{\mathcal{S}} - N_{\lambda}
ight\|_{L^{2}(\mathbb{R}^{m})}
ight\}$$

5. Adjust all nodes N_{λ} in the proximity of N_b :

$$N_{\lambda}^{t+1} = N_{\lambda}^{t} + h_{b,\lambda}(t) \left(X_{s} - N_{\lambda}^{t} \right)$$

- 1. Initialize the prototype vectors N_{λ} of the SOM, set the counter t=0
- 2. Iterate steps 2-6 while t < tmax
- 3. Choose a sample $X_s \in \mathbb{R}^m$
- 4. Calculate the **Best Matching Unit** N_b with

$$b = \operatorname*{arg\,min}_{\lambda \in \mathcal{I}} \left\{ \left\| X_{\mathcal{S}} - N_{\lambda}
ight\|_{L^{2}(\mathbb{R}^{m})}
ight\}$$

5. Adjust all nodes N_{λ} in the proximity of N_b :

$$N_{\lambda}^{t+1} = N_{\lambda}^{t} + h_{b,\lambda}(t) \left(X_{s} - N_{\lambda}^{t} \right)$$

6. Set t = t + 1 and adjust the **kernel radius** σ

The Neighbourhood Kernel Function

Kernel Function:

$$h_{b,\lambda}(t) = \exp\left[-rac{\|r_b - r_\lambda\|_{L^2(\mathbb{R}^m)}}{2\sigma^2(t)}
ight]$$

The Neighbourhood Kernel Function

Kernel Function:

$$h_{b,\lambda}(t) = \exp\left[-rac{\|r_b - r_\lambda\|_{L^2(\mathbb{R}^m)}}{2\sigma^2(t)}
ight]$$

Adaption of kernel radius σ :

$$\sigma(t+1) = \sigma_0 \exp\left[-\frac{t}{t_{max}}\log\left(\sigma(t)+1\right)\right]$$

Clustering Of The SOM

Two-Level-Approach

Visualization - Unified Similarity Matrix

$$U_{i,j} = d(N_{i,j}, N_{i+1,j}) + d(N_{i,j}, N_{i-1,j}) + d(N_{i,j}, N_{i,j+1}) + d(N_{i,j}, N_{i,j-1})$$

Visualization - Unified Similarity Matrix

$$U_{i,j} = d(N_{i,j}, N_{i+1,j}) + d(N_{i,j}, N_{i-1,j}) + d(N_{i,j}, N_{i,j+1}) + d(N_{i,j}, N_{i,j-1})$$

Agglomerative and Partitive Clustering

Agglomerative

- 1. Initialize
- 2. Compute inter-cluster distance
- 3. Merge two clusters that are closest
- 4. Return to step 2 until one cluster is left

Agglomerative and Partitive Clustering

Agglomerative

- 1. Initialize
- 2. Compute inter-cluster distance
- 3. Merge two clusters that are closest 2. Compute partitioning of the data
- 4. Return to step 2 until one cluster is left

Partitive

- 1. Determine number of clusters and initialize cluster centers
- 3. Update the cluster centers
- 4. Return to step 2 until partitioning is unchanged

Visualizing the Clustering

Thank You For Your Attention!

Sources

Clustering of the Self Organizing Map by Juha Vesanto and Esa Alhoniemi Self-Organizing Map and social networks: Unfolding online social popularity by Couronne Thomas, Beuscard Jean-Samuel and Chamayou Cedric

code: https://github.com/wedgeCountry