Devoir maison n°8

Corrigé

* * *

Théorème de Chomsky-Schützenberger

1 Langage de Dyck

Question 1

Question 2 On note $L = \{u \in \Sigma_1 \mid \forall v \in \text{Pref}(u), |v|_{a_1} \geqslant |v|_{\overline{a_1}}\}$ et on montre par double inclusion que $L = D_1$.

- $-L \subseteq D_1$: soit $u = a_1 a_2 \dots a_n \in L$. Montrons par récurrence sur n que $u \in D_1$:
 - * si n = 0, alors $S \Rightarrow u$ est une dérivation de u, donc $u \in D_1$;
 - * supposons le résultat établi pour $|u| < n, n \in \mathbb{N}^*$ fixé. Comme $u \in L$, $a_1 = a$, sinon $v = a_1$ est un préfixe de u tel que $|v|_a < |v|_{\overline{a}}$. Notons i le plus petit indice > 1 tel que $|a_1 \dots a_i|_a = |a_1 \dots a_i|_{\overline{a}}$. Un tel i existe par définition de L, et de plus, $a_i = \overline{a}$, sinon $|a_1 \dots a_{i-1}|_a < |a_1 \dots a_{i-1}|_{\overline{a}}$. Posons $v = a_2 \dots a_{i-1}$ et $w = a_{i+1} \dots a_n$. Montrons que $v \in L$ et $w \in L$. En effet :
 - $|v|_a = |a_1...a_{i-1}|_a 1 = |a_1...a_{i-1}|_{\overline{a}} 1 = |v|_{\overline{a}}$. De plus, par minimalité de i, pour 0 < j < i, $|a_1...a_j|_a > |a_1...a_j|_{\overline{a}}$.
 - $|w|_a = |u|_a |v|_a 1 = |u|_{\overline{a}} |v|_{\overline{a}} 1 = |w|_{\overline{a}}$. De plus, si w' est un préfixe de w, alors $av\overline{a}w'$ est un préfixe de u, d'où l'inégalité voulue.

Dès lors, par hypothèse de récurrence, $S \Rightarrow^* v$ et $S \Rightarrow^* w$. On en déduit que $S \Rightarrow aS\overline{a}S \Rightarrow^* av\overline{a}w = u$, donc $u \in D_1$.

On conclut par récurrence.

- $D_1 \subseteq L$: montrons par récurrence sur n que si $S \Rightarrow_g^n \alpha$, alors $|\alpha|_a = |\alpha|_{\overline{a}}$ et pour tout préfixe β de α , $|\beta|_a \geqslant |\beta|_{\overline{a}}$:
 - * pour n = 0, $\alpha = S$ et toutes ces quantités sont nulles ;
 - * supposons le résultat établi pour α , et soit $S \Rightarrow_g^n \alpha \Rightarrow_g \alpha'$ une dérivation de α' . Alors α' s'obtient en remplaçant le S le plus à gauche de α par $aS\overline{a}S$ ou par ε . Comme ces deux mots sont dans L, on en déduit que α' vérifie bien les propriétés voulues.

On conclut par récurrence.

Question 3 Supposons par l'absurde que D_1 est rationnel et soit n sa longueur de pompage. On pose $u = a^n \overline{a}^n$. Par le lemme de pompage, il existe une décomposition u = xyz telle que :

```
-|xy| \le n;
-|y| > 0;
- pour k \in \mathbb{N}, xy^k z \in D_1.
```

Mais avec les deux premières hypothèses, on a $y=a^i$ pour un certain $i \in [1, n]$. Dès lors, $xz=a^{n-i}\overline{a}^n \notin D_1$. On conclut par l'absurde que D_1 n'est pas rationnel.

Question 4 Ce résultat est faux. En effet, $u = a_1 a_2 \overline{a_1 a_2}$ est un mot du langage décrit, mais il n'est pas dans D_2 . En effet, en raisonnant sur le nombre de symboles terminaux, une dérivation d'un tel mot u serait de taille 5, et dans une telle dérivation, 3 dérivations immédiates serait une règle $S \to \varepsilon$, une serait $S \to a_1 S \overline{a_1} S$ et une serait $S \to a_2 S \overline{a_2} S$. Aucun des arrangements possibles ne peut cependant donner le mot u.

Question 5 On utilise une pile initialement vide et on lit le mot lettre à lettre selon le principe suivant :

- si on lit un a_i , on l'empile dans la pile;
- si on lit un $\overline{a_i}$, on dépile l'élément du haut de la pile. Si c'est a_i , on continue, sinon on renvoie faux.

Lorsqu'on arrive à la fin du mot, on vérifie que la pile est vide.

2 Propriétés sur les langages algébriques

Question 6 On remarque que ε est l'unique mot u qui vérifie $u=u^2$. Dès lors, $\varphi(\varepsilon)=\varphi(\varepsilon\varepsilon)=\varphi(\varepsilon)\varphi(\varepsilon)$, donc $\varphi(\varepsilon)=\varepsilon$.

Question 7 Soit $G = (\Sigma, V, P, S)$ une grammaire qui engendre L. On pose $G' = (\Sigma', V', P', S)$ où :

- $-V' = V \cup \{X_a \mid a \in \Sigma\};$
- On définit $\psi: \Sigma \cup V \to V'$ un morphisme de mot par $\psi(X) = X$ si $X \in V$ et $\psi(a) = X_a$ si $a \in \Sigma$. Dès lors, P' contient les règles de production :
 - * $X \to \psi(\alpha)$ si $X \to \alpha \in P$;
 - * $X_a \to \varphi(a)$ pour tout $a \in \Sigma$.

Montrons que $L(G') = \varphi(L(G))$.

- Soit $u = a_1 ... a_n \in L(G)$. On peut montrer par induction que si $S \Rightarrow_G^* u$, alors $S \Rightarrow_{G'}^* \psi(u)$. De plus, l'existence des règles $X_a \to \varphi(a)$ garantit que $\psi(u) \Rightarrow_{G'}^* \varphi(a_1)\varphi(a_2)...\varphi(a_n) = \varphi(u)$. On conclut que $\varphi(u) \in L(G')$.
- Soit $v = b_1 \dots b_n \in L(G')$ et A un arbre de dérivation de v dans G'. Comme les règles $X_a \to \varphi(a)$ sont les seules qui peuvent faire apparaître une lettre de Σ' , on en déduit que chaque feuille $\neq \varepsilon$ a pour père une variable X_a . De plus, les variables X_a n'apparaissant pas du côté gauche d'une règle ailleurs que dans une règle $X_a \to \varphi(a)$, on en déduit que l'arbre A' obtenu en remplaçant un nœud $N(X_a, F(\varphi(a)))$ par F(a) est un arbre de dérivation d'un mot $u \in L(G)$. Par construction, $v = \varphi(u)$.

Question 8 Le langage engendré est $\{a^nb^n \mid n \in \mathbb{N}^*\}$. En effet, on peut remplacer les règles $S \to AX$ et $X \to SB$ par $S \to ASB$. On reconnaît une grammaire déjà étudiée.

Question 9 Soit $G = (\Sigma, V, P, S)$ une grammaire hors-contexte en forme normale de Chomsky et $A = (Q, \Sigma, \delta, q_0, F)$ un AFD tels que $L \setminus \{\varepsilon\} = L(G)$ et R = L(A).

On fait en sorte que (p, X, q) génère tous les mots $u \in \Sigma^*$ tels que $\delta^*(p, u) = q$ et $X \Rightarrow^* u$ (dans G). Pour cela, on pose P' contenant les règles :

- pour $q \in F, S' \to (q_0, S, q)$;
- pour $X \to a \in P$ et $q \in Q$, $(q, X, \delta(q, a)) \to a$;
- pour $X \to YZ \in P$ et $q_1, q_2, q_3 \in Q$, $(q_1, X, q_3) \to (q_1, Y, q_2)(q_2, Z, q_3)$.

Montrons que $L(G') = L(G) \cap L(A)$.

- soit $u \in L(G) \cap L(A)$. Alors $\delta^*(q_0, u) \in F$ et $S \Rightarrow^* u$. On en déduit que $(q_0, S, \delta^*(q_0, u)) \Rightarrow^* u$, donc $u \in L(G')$, car $S' \to (q_0, S, \delta^*(q_0, u))$ est une règle de production.
- soit $u \in L(G')$. Si $u = \varepsilon$, alors $q_0 \in F$ et $S \to \varepsilon \in P$, donc $u \in L \cap R$. Sinon, $S' \Rightarrow (q_0, S, q) \Rightarrow^* u$ est une dérivation de u dans G', avec $q \in F$. Cela implique que $S \Rightarrow^* u$ est une dérivation de u dans G et $\delta^*(q_0, u) = q$. Soit finalement $u \in L \cap R$.

Dès lors, si $\varepsilon \in L \cap R$, il suffit de rajouter une règle $S' \to \varepsilon$ pour obtenir la grammaire voulue.

Question 10 On pose $L = \{a^ib^ic^j \mid i, j \in \mathbb{N}\}$ et $L' = \{a^ib^jc^j \mid i, j \in \mathbb{N}\}$. Ces deux langages sont algébriques, par exemple L peut être engendré par la grammaire :

- $-S \rightarrow XC$;
- $-X \rightarrow aXb \mid \varepsilon;$
- $-C \rightarrow cC \mid \varepsilon$.

Pourtant, $L \cap L' = \{a^i b^i c^i \mid i \in \mathbb{N}\}$ n'est pas un langage algébrique.

3 Théorème de Chomsky-Schützenberger

Question 11 On suppose que $L = \varphi(D_n \cap R)$ pour $n \in \mathbb{N}^*$ et $R \in \text{Rat}(\Sigma)$. Par la question 9, $D_n \cap R$ est algébrique. Par la question 7, $L = \varphi(D_n \cap R)$ est algébrique.

Question 12 On obtient la grammaire :

- $-S \rightarrow a_1b_1A\overline{b_1}c_1X\overline{c_1a_1} \mid a_2b_2A\overline{b_2}c_2B\overline{c_2a_2};$
- $-X \rightarrow a_3b_3S\overline{b_3}c_3B\overline{c_3}a_3$;
- $-A \rightarrow a\overline{a}$;
- $-B \rightarrow b\bar{b}$.

Question 13 Avec les notations de l'énoncé, on pose $n = 3k + |\Sigma|$ et $\Sigma_n = \Sigma'$. Montrons un résultat plus fort, c'est-à-dire que pour $X \in V$, si $X \Rightarrow^{\ell} u$ avec $u \in \Sigma'^*$, alors $u \in D_n$, par récurrence sur la taille des dérivations ℓ :

- si $\ell = 1$, alors la dérivation est de la forme $X \to a\overline{a}$, avec $a \in \Sigma$. Dès lors, $S_n \Rightarrow aS_n\overline{a}S_n \Rightarrow a\overline{a}S_n \Rightarrow a\overline{a}$ est une dérivation de u dans G_n (on a renommé le symbole de départ en S_n pour ne pas confondre avec S);
- si on suppose le résultat vrai pour toute dérivation de taille $<\ell$, avec $\ell>1$ fixé, alors la première dérivation immédiate est de la forme : $X\Rightarrow a_ib_iY\overline{b_i}c_iZ\overline{c_ia_i}$. De plus, il existe v et w tels que $u=a_ib_iv\overline{b_i}c_iw\overline{c_ia_i}$ et $Y\Rightarrow^*v$, $Z\Rightarrow^*w$. Par hypothèse de récurrence, v et w sont dans D_n . Dès lors, $S_n\Rightarrow a_iS_n\overline{a_i}S_n\Rightarrow^*a_ib_iS_n\overline{b_i}S_n\overline{a_i}c_iS_n\overline{c_i}S_n\overline{a_i}S_n\Rightarrow^*a_ib_iv\overline{b_i}\overline{a_i}c_iw\overline{c_ia_i}=u$.

On conclut par récurrence.

Question 14 On remarque que pour toute règle $X \to \alpha \in P'$, alors $X \to \varphi(\alpha) \in P$. Un raisonnement par récurrence et la définition des morphismes de mots permet donc de conclure que $\varphi(L(G')) \subseteq L(G)$. Réciproquement, pour toute règle $X \to \alpha \in P$, il existe β tel que $X \to \beta \in P'$ et $\alpha = \varphi(\beta)$. De la même manière, cela donne l'inclusion réciproque.

Question 15 P(L(G')) et N(L(G')) sont rationnels car finis. Comme la concaténation et le complémentaire préservent la rationalité, $R \in \text{Rat}(\Sigma')$.

Question 16 Montrons que $L(G') = D_n \cap R$, où D_n est le langage défini à la question 13 et R le langage défini à la question précédente. On a déjà montré $L(G') \subseteq D_n$. De plus, $L(G') \subseteq R$, car tout mot de L(G') commence par une première lettre d'un mot de L(G') et ne contient aucun facteur de taille 2 de N(L(G')). Cela montre la première inclusion.

Pour $X \in V$, si on note L(G',X) le langage engendré par (Σ',V,P',X) et $R_X = P(L(G',X))\Sigma'^* \setminus \Sigma'^*N(L(G',X))\Sigma'^*$, alors on peut montrer par récurrence sur la taille des mots que $D_n \cap R_X \subseteq L(G',X)$. Dès lors, $D_n \cap R = D_n \cap R_S \subseteq L(G',S) = L(G')$.

Finalement, par la question 14, $L(G) = \varphi(L(G')) = \varphi(D_n \cap R)$.

Pour conclure complètement, on remarque que si L est un langage algébrique, alors il existe G une grammaire en forme normale de Chomsky telle que $L \setminus \{\varepsilon\} = L(G)$. Dès lors quitte à considérer $R \cup \{\varepsilon\}$ si $\varepsilon \in L$, on obtient le résultat voulu.
