Types of Imaging

Fluorescence Imaging Modes in Live-Cell Microscopy

http://zeiss-campus.magnet.fsu.edu/articles/livecellimaging/techniques.html

Frigault M M et al. J Cell Sci 2009;122:753-767

©2009 by The Company of Biologists Ltd

Transmitted Light Techniques in Live-Cell Imaging

http://zeiss-campus.magnet.fsu.edu/articles/livecellimaging/techniques.html

TIRF (Total Internal Reflection Microscopy)

http://en.wikipedia.org/wiki/File:Tirfm.svg

- Works based on the generation of a evanescent wave of excitation that is limited to ~100 nm above the cover slip
- Good for monitoring events on the plasma membrane
- 1. Specimen
- Evanescent wave range
- 3. Cover slip
- 4. Immersion oil
- 5. Objective
- 6. Emission beam (signal)
- 7. Excitation beam

Laser Scanning Confocal

http://upload.wikimedia.org/wikipedia/commons/4/4b/Minsky_Confocal_Reflection_Microscope.png

- Illumination of only one spot at a time
 - Therefore to get a whole image one has to "raster" the illumination
- Only emission light from a selected plane is allowed to pass through to the detector—pinhole
- Leads to large losses of emission light so applicability for live-cell imaging can be limited
 - Photobleaching, phototoxicity, need very bright samples

Spinning Disc Confocal

Yokogawa Spinning Disk Unit Optical Configuration

http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html

- An array of many pinholes arranged in spiral shapes on a disc that spins
 - Allows multiple points of illumination that quickly scan over the specimen
- Quicker and more light efficient than laser scanning
 - Therefore generally regarded as better for live cell imaging
- However the tradeoff is generally reduced optical sectioning due to pinhole bleedthrough from out of plane light

Live-Cell Imaging: Acquisition

- Ideal live-cell image acquisition system
 - sensitive enough to acquire superior images from weakly fluorescent specimens
 - Photobleaching, phototoxicity
 - fast enough to record all dynamic processes
 - sufficient resolution to capture fine specimen detail
 - Subcellular process or a reporter that uses the whole cell volume?
 - dynamic range capable of measuring relevant differences in intensity within and across cells
 - Keeps focal plane (autofocus) for multiple positions (motorized stage)
 - Looking at multiple cells over a time course
- Cameras and photomultipliers
 - Large body of knowledge on these, will not cover it in this course