Name: _____

_____/ 40

Assessment 3 Instructions:

- The AS-3 is 10 problems and is worth 40 points.
- You will have 1 hour to complete AS-3.
- The AS-3 is closed book and closed notes.
- Calculators are not allowed on the AS-3.
- Show all your work for full credit and box your final answer.
- 1. [4 points] Graph the function

$$f(x) = -\sqrt{x+5} - 2$$

by making the appropriate transformations of a basic curve. State the basic function, the transformations and find all intercepts that exist.

2. [4 points] Graph the function

$$g(x) = 2|x-4| + 3$$

by making the appropriate transformations of a basic curve. State the basic function, the transformations and find all intercepts that exist.

3. [4 points] Graph the function

$$h(x) = \begin{cases} x^2, & -1 \le x \le 1, \\ x+1, & x < -1 \text{ or } x > 1 \end{cases}$$

State all intercept points that exist.

4. [4 points]

a. Determine if the following relation $F(x) = (x-1)^2 - 2$ is a function. *Hint: sketch a graph and use a Vertical Line Test.*

b. If the above relation is a function, then find the open intervals of monotonicity where the function is increasing, decreasing, or constant.

5. [4 points] Using the graph of the function below determine:

a. the locations and types of the local extrema (local min and max)

b. the values of the local extrema

6. [4 points] For the given function determine:

$$f(x) = \frac{3}{x+4}$$

- **a**. domain of f
- **b**. f(0) =
- $\mathbf{c.} \ \frac{f(x+1)-f(x)}{x} =$

7. [4 points] For the given functions

$$g(x) = x^2 - 1$$
, and $h(x) = \sqrt[3]{x}$

a. find the **formula** (g+h)(x) and **domain** for f+g

b. find the **formula** $(g \cdot h)(x) =$

c. find the **formula** $(h \circ g)(x) =$

8. [4 points] For the given relation

$$R = \{(4,2), (3,-1), (-2,-1), (2,4)\}$$

- **a.** find the inverse R^{-1} of the given relation
- **b**. find the domain of the inverse relation R^{-1}
- **c**. find the range of the inverse relation R^{-1}
- **9. [4 points]** Determine if the function $s(x) = \frac{1}{x^2}$ has an inverse function $s^{-1}(x)$.

Hint: sketch a graph and use a Horizontal Line Test or use a one-to-one function definition.

10. [4 points] Find a formula for the inverse of the following function

$$f(x) = \sqrt[3]{3x - 1}$$
.

11. [Extra Credit, 4 points points]

Write a formula for the function described below:

Use the function g(x) = |x|. Move the function 7 units to the left, reflect across the *x*-axis, and reflect across the *y*-axis.