Analysis of bigrams from learners' written work at the Pitt English Language Institute (ELI)

> Ben Naismith Dec 2nd, 2017

Overview of the ELI dataset

- Data collected from 2005 to 2012
- Data collected from speaking, writing, reading, and grammar assignments
- Primarily three levels of proficiency
- Due to length of project, data has taken many forms

Classes Offered

- Reading, Writing,Speaking, Listening,Grammar
- Levels:
- 2. Pre-Intermediate
- 3. Low-Intermediate
- 4. Intermediate
- 5. Advanced

Slide: Brianna Hill, 2017

Native Languages

Semesters Spent at the ELI

- Min: 1 semester
- Max: 8 semesters
- Average: 2 semesters

Come and visit

https://igx.4sqi.net/img/general/600x600/94064991_tBlvyAxENiwGw0Su0i2G07DJhYWFYBeKcTDILZ0NTqc.jpg

PROJECT OVERVIEW

- familiarize myself with ELI data and help clean/sanitize existing CSV files
- create sub-corpus of written essays for analysis and add statistical information about bigrams
- continue work related to lexical development (cf. Juffs 2015; Juffs 2017), but focusing on the metric of Mutual Information (MI), i.e.
 - Do bigrams with certain MI scores have noticeable common characteristics?
 - Is MI predictive of learner proficiency?

DATA CLEANING

A big task that the whole ELI Data Mining group was/is working on (some more successfully than others)

Lots of big CSV files!

0 4 1 6		
■ INDEX.class.csv	separate directories prepared for data stages	2 months ago
INDEX.file_type.csv	separate directories prepared for data stages	2 months ago
INDEX.grammar_point.csv	separate directories prepared for data stages	2 months ago
■ INDEX.level.csv	separate directories prepared for data stages	2 months ago
INDEX.question_category.csv	separate directories prepared for data stages	2 months ago
INDEX.question_type.csv	separate directories prepared for data stages	2 months ago
answer.csv	separate directories prepared for data stages	2 months ago
i course.csv	separate directories prepared for data stages	2 months ago
document.csv	separate directories prepared for data stages	2 months ago
feedback.csv	separate directories prepared for data stages	2 months ago
file_information.csv	separate directories prepared for data stages	2 months ago
grammar_question_pool.csv	separate directories prepared for data stages	2 months ago
a question.csv	separate directories prepared for data stages	2 months ago
resource_file.csv	separate directories prepared for data stages	2 months ago
student_information.csv	separate directories prepared for data stages	2 months ago
student_surveys.csv	separate directories prepared for data stages	2 months ago
student_test_scores.csv	separate directories prepared for data stages	2 months ago
i user.csv i user.csv	user.csv file (CONTAINS PRIVATE INFO!!) added.	6 days ago
user_file_internal.csv	separate directories prepared for data stages	2 months ago
user_file_wavtxt.csv	separate directories prepared for data stages	2 months ago

DATA CLEANING (CONT.)

Fun stuff like...

- anonymizing data / removing names
- eliminating fake users
- normalizing codes
- dealing NaN, null, empty strings, etc.
- figuring out how files are linked

DATA ANALYSIS: Big picture

10,956 texts

- 28% level 3
- 39% level 4
- 33% level 5

	unigram_toks	unigram_types	bigram_toks	bigram_types
Level 3	288294	11993	288293	82411
Level 4	1196274	23313	1196273	237014
Level 5	1064445	23753	1064444	237605
Total	2549012	39272	2549011	432880

DATA ANALYSIS: combo_df

	question_id	user_file_id	anon_id	level_id	course_id	text	toks	bigrams	bigram_len	bigrams_lower	MI_sum	avg_bigram_MI
answer_id												
3	12	7507	dk5	4	115	In my country we usually don't use tea bags. F	[In, my, country, we, usually, do, n't, use, t	[(in, my), (my, country), (country, we), (we,	67	[(in, my), (my, country), (country, we), (we,	181.28	2.71
5	12	7508	ad1	4	115	First, prepare a port, loose tea, and cup.\r\r	[First, ,, prepare, a, port, ,, loose, tea, ,,	[(First, ,), (,, prepare), (prepare, a), (a, p	73	[(first, ,), (,, prepare), (prepare, a), (a, p	228.84	3.13
7	12	7509	eg5	4	115	First, prepare your cup, loose tea or bag tea,	[First, ,, prepare, your, cup, ,, loose, tea,	[(First, ,), (,, prepare), (prepare, your), (y	49	[(first, ,), (,, prepare), (prepare, your), (y	120.11	2.45
8	13	7509	eg5	4	115	I organized the instructions by time, beacause	[I, organized, the, instructions, by, time, ,,	[(l, organized), (organized, the), (the, instr	38	[(i, organized), (organized, the), (the, instr	102.94	2.71
11	12	7511	fv6	4	115	To make tea, nothing is easier, even if someti	[To, make, tea, ,, nothing, is, easier, ,, eve	[(To, make), (make, tea), (tea, ,), (,, nothin	98	[(to, make), (make, tea), (tea, ,), (,, nothin	269.31	2.75

Mutual Information (MI)

- Strength of the association between words, i.e. the two-way likelihood of them co-occurring (Simpson-Vlach & Ellis, 2010)
- Statistical measure which corresponds most closely to native speaker judgements of the salience of formulaic sequences (Paquot & Granger, 2012)
- Let's get interactive
- What about a general corpus?

DATA ANALYSIS: bigram_df

DATA ANALYSIS - <u>Top 20 Tables</u>'

- Bigram tokens
- High MI
- 'Medium' MI
- Bigram tokens per level
- Bigrams indicative of level

MACHINE LEARNING!

(my arch-nemesis)

- Predict level based on words used
- Predict level based on average MI of every bigram in a text

see Visualizations.ipynb

MACHINE LEARNING (CONT.)

Predict level based on words used:

Pretty good accuracy at 69% although this may have to do with the lexical sets of the prompts.

MACHINE LEARNING (CONT.)

Predict level based on average MI of every bigram in a text

No significant difference between average overall MI and level

IMPLICATIONS

- Overall average MI of a text is not predictive perhaps due to even increase of grammatical words and meaningful collocations as level increases (hypothesis needs to be tested)
- Bigrams with very low MI (uncommon/grammatical) and very high MI (compound nouns, proper names) are not as useful for learners/teachers – what is the 'sweet spot'?

WHAT I'VE LEARNT

- Challenges of working with real, i.e. messy data
- Benefits of working with others in corpus research
- Possibilities of corpus research without resorting to GUIs
- Many new ideas for future research

POSSIBLE FUTURE RESEARCH

- Finding which range (if any) of MI in lexical items predicts usefulness (judged by humans) and level (machine learning)
- Comparative studies with general, non-learner corpora
- Comparison of these findings with spoken texts
- Investigating any differences between L1s

REFERENCES

Juffs, A. (Forthcoming). Lexical Development In The Writing Of Intensive English Program Students. In R.M. DeKeyser & G. Preito Botana (Eds.), *Reconciling methodological demands with pedagogic applicability*. Amsterdam: John Benjamins.

Juffs, A. 2017. The longitudinal development of lexical bundles in the written output of Arabic-speaking ESL learners. Unpublished manuscript.

Paquot, M., & S. Granger. (2012). Formulaic language in learner corpora. *Annual Review of Applied Linguistics, 32*:130-149. doi:10.1017/S0267190512000098

Simpson-Vlach, R. & N.C. Ellis. (2010). An Academic Formulas List: New Methods in Phraseology Research. *Applied Linguistics, 31*(4): 487–512. doi:10.1093/applin/amp058

THANK YOU!

Any questions?

You can contact me at: @bennaismithelt bnaismith@pitt.edu

