

Chapter 6

Polynomial Regression Models

<u>Overview</u>

Second order model with one predictor variable, x

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

Inference for second order polynomial with one predictor variable model

• Second order model with two predictor variables, x_1 and x_2

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon$$

Inference for second order polynomial with two predictor variables model

6.1 Introduction

- Relationships between variables are not always linear.
- Sometimes we have nonlinear relationships between variables.
- For example,

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon,$$

where
$$\beta_0 = y$$
-intercept;

$$\beta_1$$
 = linear effect of x in y;

$$\beta_2$$
 = quadratic effect of x in y and

$$\epsilon$$
 = random effect in *y*.

Introduction (Continued)

 The above model is called a second-order model with one predictor variable.

 Note: The above model can be treated as a multiple regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$
 where $x_1 = x$, $x_2 = x^2$.

Introduction (Continued)

• A *p*-th order (or *p* th-degree polynomial) model with one predictor variable is given by

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j x_i^j + \epsilon_i$$

or
$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_p x_i^p + \epsilon_i$$

• Since a polynomial model can be considered as a multiple regression model, hence we can use the techniques in the multiple regression analysis to draw statistical inference for the polynomial model.

6.2 Second Order Model in One Predictor

 Let us consider a 2nd-order model in one predictor variable.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i, \qquad i = 1, ..., n,$$
 where $\epsilon_i \sim N(0, \sigma^2)$ independently

• It can be represented in a matrix form as follows $y = X\beta + \underline{\epsilon}$

where

$$\underline{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, X = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}, \underline{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} \text{ and } \underline{\epsilon} = (\epsilon_1 \quad \cdots \quad \epsilon_n)'$$

Second Order Model in One Predictor (Continued)

• Hence $\underline{\hat{\beta}} = (X'X)^{-1}X'\underline{y}$ and the fitted regression equation is given by

$$y = \underline{x}' \underline{\beta}$$
where $\underline{x}' = (1 \quad x \quad x^2)$

- Is there any significant relationship between y and x? $(y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon \text{ versus } y = \beta_0 + \epsilon)$
- Is there any significant difference between the 2nd order model ($y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$) and the 1st order model ($y = \beta_0 + \beta_1 x + \epsilon$)?

6.2.1 Inferences for Second Order Polynomial

• We want to determine whether there is a significant relationship between *y* and *x*.

• i.e. Test H_0 : $\beta_1 = \beta_2 = 0$ (or $y = \beta_0 + \epsilon$) (There is no relationship between x and y.) against H_1 : $\beta_1 \neq 0$ or $\beta_2 \neq 0$ or both $\beta_1 \neq 0$ and $\beta_2 \neq 0$. (or $y = \beta_0 + \beta_2 x^2 + \epsilon$, or $y = \beta_0 + \beta_1 x + \epsilon$, or $y = \beta_0 + \beta_1 x + \epsilon$, or $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$)

(There is a relationship between x and y.)

6.2.2 Testing for relationship between y and x

$$SSE = \underline{y}'\underline{y} - \underline{\hat{\beta}}'X'\underline{y} \text{ with } n - (2 + 1) \text{ d.f.}$$

$$SSR = \underline{\hat{\beta}}'X'\underline{y} - n\overline{y}^2 \text{ with } 2 \text{ d.f.}$$

Let

$$F = \frac{SSR/2}{SSE/(n-3)}$$

• Reject H_0 at a significance level α if

$$F_{\rm obs} > F_{\alpha}(2, n-3).$$

6.2.3 Testing for Quadratic Term

- Test H_0 : $\beta_2 = 0$ (i.e. $y = \beta_0 + \beta_1 x + \epsilon$) (The 2nd-order model does not improve over the 1st-order model.)
 - against H_1 : $\beta_2 \neq 0$ (i.e. $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$) (The 2nd-order model is a better fit than the 1st-order model.)
- $SSR(x^2|x) = SSR(x, x^2) SSR(x)$ with 1 d.f.
- Let

$$F = SSR(x^2|x)/[SSE/(n-3)]$$

• Reject H_0 at a significance level α if

$$F_{\rm obs} > F_{\alpha}(1, n-3).$$

Testing for Quadratic Term (Continued)

Alternatively, we may use the t-test, where

$$t = \frac{\hat{\beta}_2}{s.e.(\hat{\beta}_2)}$$

• Reject H_0 at a significance level α if

$$t_{\rm obs} > t_{\alpha/2}(n-3)$$
.

6.2.4 Testing for Linear Term

- H_0 : $\beta_1 = 0$ (i.e. $y = \beta_0 + \beta_2 x^2 + \varepsilon$) (Including the linear effect term does not improve the quadratic effect model) against
- H_1 : $\beta_1 \neq 0$ (i.e. $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$) (Including the linear effect term improves the quadratic effect model.)
- $SSR(x|x^2) = SSR(x, x^2) SSR(x^2)$ with 1 d.f.
- Let $F = SSR(x|x^2)/[SSE/(n-3)]$
- Reject H_0 at a sig level α if $F_{obs} > F_{\alpha}(1, n-3)$.
- We may also use the *t*-test, where $t = \frac{\beta_1}{s.e.(\widehat{\beta}_1)}$

<u>6.3 Example 1</u>

 The cloud point of a liquid is a measure of the degree of crystallization in a stock that can be measured by the refractive index.

 It has been suggested that the percentage of I-8 in the base stock is an excellent predictor of cloud point using the 2nd-order model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

 The following data were collected on stocks with known percentage of I-8.

I-8, x	0	1	2	3	4	5	6	7	8	0
Cloud point, y	22.1	24.5	26.0	26.8	28.2	28.9	30	30.4	31.4	21.9
I-8, x	2	4	6	8	10	0	3	6	9	•
Cloud point, y	26.1	28.5	30.3	31.5	33.1	22.8	27.3	29.8	31.8	•

- By using statistical software, we obtain the following results.
- The fitted regression equation is given by

$$\hat{y} = 22.5612 + 1.6680x - 0.6796x^2$$

ANOVA Table

Source	SS	df	MS	F	p-value
Regression	201.9944	2	100.9972	649.87	< 0.0001
Error	2.4866	16	0.1554		
Total	204.4811	18			

• Since $F_{\text{obs}} = 649.87 > F_{0.05}(2, 16) = 3.63$ (or p-value < 0.05), therefore we reject the null hypothesis that there is no significant model at the 5% level of significance. (i.e. We reject H_0 : $\beta_1 = \beta_2 = 0$ at the 5% significance level.)

Note:

$$R^{2} \left(= r_{y \cdot \{x, x^{2}\}}^{2} \right) = \frac{SSR}{SST} = 0.9878$$

 Thus 98.8% of the variation in cloud point can be explained by the 2nd-degree polynomial relationship between percentage of I-8 and the cloud point.

Next, we want to test

or
$$H_0: \beta_2 = 0$$
 against $H_1: \beta_2 \neq 0$.
 $H_0: y = \beta_0 + \beta_1 x + \varepsilon$ against $H_1: y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$

- We have $SSR(x^2 \mid x) = 6.7516$ with 1 d.f.
- $F = SSR(x^2 \mid x)/MSE = 6.7516/0.1554 = 43.44$.
- Since $F_{\rm obs}$ = 43.44 > $F_{0.05}(1, 16)$ = 4.49 (or p-value = 6.2088(10)⁻⁶ < 0.05), we reject H_0 and conclude that the 2nd-order model is significantly better than the 1st-order model.

We may also consider to test

or
$$H_0: \beta_1 = 0 \text{ against } H_1: \beta_1 \neq 0$$

$$H_0: y = \beta_0 + \beta_2 x^2 + \epsilon \text{ against}$$

$$H_1: y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

- We have $SSR(x|x^2) = 44.1607$ with 1 d.f.
- $F = SSR(x|x^2)/MSE = 44.1607/.01554 = 284.17.$
- Since $F_{\text{obs}} = 284.17 > F_{0.05}(1, 16) = 4.49$ (or p-value = $1.3112(10)^{-11} < 0.05$), we reject H_0 and conclude that the polynomial model $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$ is a significantly better fit than the one which includes only quadratic effect $(y = \beta_0 + \beta_2 x^2 + \epsilon)$.

 Since there were <u>repeat measurements for some of</u> <u>the predictor values</u>, we may like to perform a lack of fit test.

H₀: There is no lack of fit against

H₁: There is lack of fit

X	Y	$\sum_{k=1}^{n_j} (y_{jk} - \bar{y}_j)^2$	d.f.
0	22.1, 21.9,22.8	0.44667	2
2	26.0, 26.1	0.005	1
3	26.8, 27.3	0.125	1
4	28.2, 28.5	0.045	1
6	30.0, 03.3, 29.8	0.12667	2
8	31.4, 31.5	0.005	1
	SSPE =	0.75334	8

• SSLF = SSE - SSPE = 1.733325 with 8 d.f.

- $F_L = (SSLF/8)/(SSPE/8) = 2.30$.
- Since $F_L = 2.30 < F_{0.05}(8, 8) = 3.44$ (or p-value = 0.1300 > 0.05), hence we do not reject the hypothesis that there is no lack of fit and conclude that the quadratic model is sufficient for the predictive purpose.

6.4 Second Order Model in Two Predictors

Consider the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon$$

- This model contains two linear effect terms, $\beta_1 x_1$ and $\beta_2 x_2$; two quadratic effect terms $\beta_{11} x_1^2$ and $\beta_{22} x_2^2$ and an interaction effect term $\beta_{12} x_1 x_1$.
- Note: The model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$ is a 2nd-order polynomial with $\beta_{11} = \beta_{22} = 0$.

6.4.1 Interpretation of the Interaction Effect

- If y varies in a similar way with respect to x_1 regardless of the levels of x_2 , i.e. the relationship between y and x_1 does not in any way depend on x_2 , then we say that there is **no interaction** between x_1 and x_2 , (and $\beta_{12} = 0$).
- This does not mean that y and x_2 are uncorrelated, but that the relationship between y and x_1 does not vary as a function of x_2 .

6.4.1 Interpretation of the Interaction Effect

• In general, if x_1 does not interact with x_2 , the regression equations E(y) against x_1 are 'parallel' for different values of x_2 .

6.4.1 Interpretation of the Interaction Effect

• If x_1 interacts with x_2 , the regression equations E(y) against x_1 are not 'parallel' for different values of x_2 .

6.5 Example 2

 A chemical engineer is investigating the influence of two variables, reaction time and temperature, on process yield.

- Twenty-four observations were collected.
- A second order polynomial model is used to fit the data.

• Let y = yield, $x_1 = reaction time and <math>x_2 = temperature$.

У	50.95	47.35	50.99	44.96	41.89	41.44	51.79	50.78
X ₁	76.0	80.5	78.0	89.0	93.0	92.1	77.8	84.0
X ₂	170	165	182	185	180	172	170	180

У	42.48	49.80	48.74	46.20	50.49	52.78	49.71	52.75
X ₁	87.3	75.0	85.0	90.0	85.0	79.2	83.0	82.0
X ₂	165	172	185	176	178	174	168	179

У	39.41	43.63	38.19	50.92	46.55	44.28	48.72	49.13
X ₁	94.0	91.4	95.0	81.1	88.88	91.0	87.0	86.0
X ₂	181	184	173	169	183	178	175	175

The following results are obtained using either SAS or R.

The programs are shown at the end of this chapter.

The regression equation is given by

$$\hat{y} = 1317.6309 + 7.2660x_1 + 12.2765x_2 - 0.0597x_1^2 - 0.0377x_2^2 + 0.0126x_1x_2$$

ANOVA table

Source	SS	df	MS	F	p-value
Regression	416.3111	5	83.2622	206.29	< 0.0001
Error	7.2654	18	0.4036		
Total	423.5765	23			

• Since $F_{\text{obs}} = 206.29 > F_{0.05}(5, 18) = 2.77$ (or p-value < 0.05), therefore we reject the null hypothesis that there is no significant model at the 5% level of significance (i.e. we reject H_0 : $\beta_1 = \beta_2 = \beta_{11} = \beta_{22} = \beta_{12} = 0$.) and conclude that there is a significant relationship between yield and the 2 predictors, reaction time and temperature.

• Note:

$$R^{2} \left(= r_{y \cdot \{1,2,11,22,12\}}^{2}\right) = \frac{SSR}{SST} = 0.9828$$

 Thus 98.3% of the variation in yield can be explained by the 2nd-order polynomial model with reaction time and temperature.

• Test the contribution of the quadratic terms to the model.

• Test H_0 : $\beta_{11} = \beta_{22} = \beta_{12} = 0$ (i.e. the 2nd-order model does not improve over the 1st order model.) against H_1 : at least one $\beta_{jk} \neq 0$.

Under H₀, the reduced model is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- From the computer printout of fitting the above reduced model, we have
- $SSE_{\rm H} = 90.4884$ with 21 d.f.
- $F_1 = [(SSE_H SSE)/3]/MSE$ = $[(90.4884 - 7.2654)/3]/0.4036 \approx 68.73$.
- Since $F_{1, \text{obs}} = 68.73 > F_{0.05}(3, 18) = 3.16$ (or p-value $\approx 4.7(10)^{-10} < 0.05$), we reject H_0 and conclude that at least one of the quadratic terms is necessary.

• Note: $SSE_H = SSE(x_1, x_2)$

- Test for the interaction effect.
- Test H_0 : $\beta_{12} = 0$ (no interaction effect.) against H_1 : $\beta_{12} \neq 0$.
- Using the partial *F*-test:

$$F_{2} = \frac{SSR(x_{1}x_{2}|x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2})}{MSE}$$

$$= \frac{SSR(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1}x_{2}) - SSR(x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2})}{MSE}$$

$$= \frac{416.3111 - 413.9780}{0.4036} \approx 5.78$$

• Since $F_{2, \text{obs}} = 5.78 > F_{0.05}(1, 18) = 4.41$ (or p-value $\approx 0.0272 < 0.05$), we reject H_0 at the 5% significance level and conclude that there is a significant interaction effect between reaction time and temperature.

Note:

$$SSR(x_1, x_2, x_1^2, x_2^2, x_1 x_2) - SSR(x_1, x_2, x_1^2, x_2^2)$$

= $SSE_H - SSE$

6.5 Programs

6.5.1 SAS Program

```
data ch6ex2;
  infile "d:\ST3131\Lecture\ch6ex2.txt" firstobs=2;
  input y x1 x2;
  x3=x1**2; x4=x2**2; x5=x1*x2;
proc glm data=ch6ex2;
  model y = x1 x2 x3 x4 x5;
/* model y = x1 x2 x1*x1 x2*x2 x1*x2; */
run;
proc glm data=ch6ex2;
  model y = x1 x2; /* Fit the reduced model */
run;
proc reg data=ch6ex2;
  model y = x1 x2 x3 x4 x5;
  hypo 1: test x3=0, x4=0, x5=0;
run;
```


Partial SAS Output

Source Model Error Corrected Total	DF 5 18 23	Sum of Squares 416.3111251 7.2653707 423.5764958	Mean Square 83.2622250 0.4036317	206.28	Pr > F <.0001
R-Square 0.982848		Coeff Var 1.344676	Root MSE 0.635320	у 1 47.2	Mean 4708
Source x1 x2 x1*x1 x2*x2 x1*x2 SSR(X ₁) SSR(X	2 . 1	Type I SS → 312.00718 —21.0808622 49.0279411 31.8626357 2.3324982) SSR(X ₁ ² X X ₁ X ₂ X ₁ , X ₂ , X ₁ ² ,	312.007188 21.0808622 49.0279411 31.8626357 2.3324982 (1, X ₂) SSR(X	F Value 773.00 52.23 121.47 78.94 5.78	Pr > F <.0001 <.0001 <.0001 <.0001 0.0272

Partial SAS Output (Continued)

Source	DF Type III SS	Mean Square	F Value	Pr > F
x1	22.01233071	-	54.54	<.0001
x2	1 32.78318758	4 32.78318758	81.22	<.0001
x1*x1	1 69.20633577	69.20633577	171.46	<.0001
x2*x2	1 34.06268226	<u>4 34.06268226</u>	84.39	<.0001
x1*x2	1 2.33249815	2.33249815	5.78	0.0272
	\square SSR($X_1X_2 \mid X_1, X_2 \mid X_2$	X_2, X_1^2, X_2^2		
		Standard		
Parameter	Estimate	Error t	. Value	Pr > t
Intercept	-1317.630871	33.8001455	-9.85	<.0001
x1	7.265961	0.9839040	7.38	<.0001
x2	12.276522	1.3622047	9.01	<.0001
x1*x1	-0.059653	0.0045557	-13.09	<.0001
x2*x2	-0.037676	0.0041012	-9.19	<.0001
x1*x2	0.012577	0.0052319	2.40	0.0272
SSR(X ₁ X ₂ , X	X_1^2, X_2^2, X_1^2	SSF	$(X_2 X_1,X_1^2)$	$X_{2}^{2}, X_{1}X_{2}$
SSR(X ₁ ²	2 X ₁ , X ₂ , X ₂ ² , X ₁ X ₂)	SSR(X ₂ ² X ₁ ,)	X_2, X_1^2, X_1^2)

ST3131 Regression Analysis

CYM

Partial SAS Output (Continued)

Reduced Model:

			Sur	n of		Mean				
Source		DF	Squa	ares	Sq	uare	F	Value	Pr > 1	F
Model		2	333.08	3805	66.5	4403		38.65	<.000	1
Error		21	90.48	3845	4.3	0897				
Corrected	Total	23	423.57	7650						
Courgo	בות ה	Ф. т.	. T CC	M		276	T.	value	Pr > 1	T-7
Source	DF		e I SS	ME	ean Squ		Г	varue	PL > .	Г
x1	1	312	.00719		312.00	719		72.41	<.000	1
x2	1	21	.08086		21.08	086		4.89	0.03	8
Source	DF T	ype :	III SS	Ме	ean Squ	are	F	value	Pr > 1	F
x1	1	28	.05010		328.05	010		76.13	<.000	1
x 2	1	21	.08086		21.08	086		4.89	0.038	2
				Star	ndard					
Parameter	E	stima	ate	E	rror	t Va	lue	e Pr	> t	
Intercept	7	6.56	114	12.5	9687	6	5.08	3	<.0001	
x1	_	0.68	984	0.0	7906	- 8	3.73	3	<.0001	
x2		0.16	863	0.0	7624	2	2.2	1	0.0382	
ST3131 Regres	sion Analy	sis		(CYM					

6-38

Partial SAS Output (Continued)

Output from "Proc reg" for testing $\beta_3 = \beta_4 = \beta_5 = 0$ (SAS statement "Hypo 1: test x3=0, x4=0, x5=0;")

6.5.2 R Program

```
> ch6ex2=read.table("d:/ST3131/ch6ex2.txt",header=T)
> attach(ch6ex2)
> #Full model y = x1 + x2 + x1^2 + x2^2 + x1*x2
> x11=x1^2; x22=x2^2; x12=x1*x2
> model1=lm(y~x1+x2+x11+x22+x12)
> summary(model1)
Coefficients:
                                              Pr(>|t|)
              Estimate Std. Error
                                     t value
                                                        * * *
(Intercept) -1.318e+03 1.338e+02
                                      -9.848
                                             1.13e-08
                                                        * * *
           7.266e+00 9.839e-01
                                       7.385 7.51e-07
\times 1
             1.228e+01 1.362e+00
                                                        * * *
\times 2
                                       9.012
                                              4.32e-08
                                                        * * *
                                             1.22e-10
\times 11
           -5.965e-02 4.556e-03 -13.094
                                                        * * *
\times 2.2
            -3.768e-02 4.101e-03 -9.186 3.24e-08
             1.258e-02 5.232e-03 2.404 0.0272 *
\times 12
Signif. codes: 0 \*** 0.001 \** 0.01 \*' 0.05 \.' 0.1
```


R Program (continued)

Residual standard error: 0.6353 on 18 degrees of freedom Multiple R-squared: 0.9828, Adjusted R-squared: 0.9781 F-statistic: 206.3 on 5 and 18 DF, p-value: 3.097e-15

> anova(model1)

Analysis of Variance Table

```
Response: y
                         Mean Sq F value
          Df
                Sum Sq
                                                 Pr(>F)
                         312.007 772.9997
                                              3.066e-16 ***
x1
               312.007
                                                        * * *
\times 2
                21.081 21.081 52.2280
                                              1.010e-06
                                                        * * *
           1
                49.028 49.028
                                   121,4670
                                              1.960e-09
x11
\times 2.2
                                              5.333e-08 ***
                31.863 31.863
                                    78.9399
\times 12
                  2.332
                           2.332
                                     5.7788
                                                0.02721 *
Residuals 18
                  7.265
                           0.404
                                   SSE
Signif. codes:
                  \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
```


R Program (continued)

```
> #Reduced model y = x1 + x2
> model2=lm(y\sim x1+x2)
> anova(model2,model1)
Analysis of Variance Table
                            - SSE_{H0}
Model 1: y \sim x1 + x2
Model 2: y \sim x1 + x2 + x11 + x22 + x12
 Res. Df RSS Df Sum of Sq F
                                               Pr(>F)
 21 90.488 ←
2 18 7.265 3 83.223 68.729 4.707e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                  SSE<sub>HO</sub> - SSE
                SSE
```


R Program (continued)

```
> #Reduced model y = x1 + x2 + x1^2 + x2^2
> model3=lm(y~x1+x2+x11+x22)
> anova(model3,model1)
Analysis of Variance Table
Model 1: y \sim x1 + x2 + x11 + x22
Model 2: y \sim x1 + x2 + x11 + x22 + x12
    Res.Df RSS Df Sum of Sq F Pr(>F)
        19 9.5979
1
2.
        18 7.2654 1 2.3325 5.7788 0.02721 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Recap

Second order model with one predictor variable, x.

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$$

- Inference for second order polynomial model
 - Test H_0 : $\beta_1 = \beta_2 = 0$ (Overall significance)
 - Full model: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
 - Reduced model: $y = \beta_0 + \epsilon$
 - Test H_0 : $\beta_2 = 0$
 - Full model: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
 - Reduced model: $y = \beta_0 + \beta_1 x + \epsilon$
 - Test H_0 : $\beta_1 = 0$
 - Full model: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
 - Reduced model: $y = \beta_0 + \beta_2 x^2 + \epsilon$

Recap (Continued)

• Second order model with two predictor variables, x_1 and x_2 . Full model is given by:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon$$

- Inference for second order polynomial model
 - Test H_0 : $\beta_1 = \beta_2 = \beta_{11} = \beta_{22} = \beta_{12} = 0$ (Overall significance)
 - Reduced model under H_0 : $y = \beta_0 + \epsilon$
 - Test H_0 : $\beta_{11} = \beta_{22} = \beta_{12} = 0$
 - Reduced model under H_0 : $y = \beta_0 + \beta_1 x + \beta_2 x_2 + \epsilon$
 - Test H_0 : β_{12} = 0
 - Reduced model under H_0 : $y = \beta_0 + \beta_1 x + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \epsilon$