

GIET UNIVERSITY, GUNUPUR DEPARTMENT OF CSE SCHOOL OF ENGINEERING AND TECHNOLOGY DBMS UNIT WISE QUESTION BANK

UNIT-01

1. Objective question

S. No	Question	CO	PO	Marks
1	Data about data is called	CO1	PO1	1
	a) Data b) meta data c) database d) instance			_
2	Collection of related data is called	CO1	PO1	1
	a) Database b) data c) metadata d) instance			
3	Storing the data at particular moment of time is	CO1	PO1	1
	a) Data b) instance c) database d) schema			
4	Design of a database is called	CO1	PO1	1
	a) Database b) metadata c) schema d) instance			
5	DBMS stands for	CO1	PO1	1
	a) Database Master system			_
	b) Database Management System			
	c) Database Management Structure			
	d) Database Master Structure			
6	DBA Stands for	CO1	PO1	1
	a) Database Administrator			
	b) Data Business Analyst			
	c) Data Business Administrator			
	d) Data Business Accountant			
7	Before use of DBMS information was stored using	CO1	PO1	1
	a) Cloud Storage			
	b) Data System			
	c) File Management System			
	d) none of the above			
8	An advantage of the database management approach is	CO1	PO1	1
	a) data is dependent on programs.			
	b) data redundancy increases.			
	c) data is integrated and can be accessed by multiple			
	programs.			
	d) None of the above			

	A11	CO1	DO1	
9	A subschema expresses	CO1	PO1	1
	a) the logical view.			
	b) the physical view.c) the external view.			
	d) all of the above.			
10	A DBMS query language is designed to	CO1	PO1	1
10		COI	FOI	1
	b) Support in the development of complex applications software			
	c) Specify the structure of a database.			
	d) All of the above			
1.1	In the relational modes, cardinality is termed as:	CO1	PO1	1
11	a) Number of tuples.	COI	101	1
	b) Number of attributes.			
	c) Number of tables.			
	d) Number of constraints.			
12	The view of total database content is	CO1	PO1	1
1 4	a) Conceptual view.			1
	b) Internal view.			
	c) External view.			
	d) Physical View.			
13	DML is provided for	CO1	PO1	1
13	a) Description of logical structure of database.			1
	b) Addition of new structures in the database system.			
	c) Manipulation & processing of database.			
İ	d) Definition of physical structure of database system.			
14	Architecture of the database can be viewedas	CO1	PO1	1
	a) Two levels			_
	b) Four levels			
	c) Three levels			
	d) One levels			
15	The database schema is writtenin	CO1	PO1	1
	a) DML			
	b) DDL			
	c) DCL			
	d) TCL			
16	To delete a particular column in a relation the command usedis:	CO1	PO1	1
	a) UPDATE			
	b) DROP			
	c) ALTER			
	d) DELETE			
17	Consider a database table R with attributes A and B. Which of	CO1	PO2	1
	the following SQL queries is illegal?	1		
	a) SELECT A FROM R;			
	b) SELECT A, COUNT(*) FROM R;			
	c) SELECT A, COUNT(*) FROM R GROUP BY A;			
	d) SELECT A, B, COUNT(*) FROM R GROUP BY A, B;			
4.0		001	PO2	1
18	Consider a "CUSTOMERS" database table having a column	CO1	PO2	
18	"CITY" filled with all the names of Indian cities (in capital	COI	PO2	1

	somewhere in its name is: a) Select *from customers where city='%GAR%';			
	b) Select *from customers where city='\$GAR\$';			
	c) Select *from customers where city like '%GAR%';			
	d) Select *from customers where city as '%GAR';			
19	Manager's salary details are to be hidden from Employee Table.	CO1	PO1	1
	This Technique is called as			
	a) Conceptual level Data hiding			
	b) Physical level Data hiding			
	c) External level Data hiding			
	d) Logical level Data hiding			
20	Which level of Abstraction describes what data are stored in the	CO1	PO1	1
	Database?			
	a) Physical level			
	b) View level			
	c) Abstraction level			
	d) Logical level			

1	In a relational model, relations are termedas	CO2	PO1	1
1	a) Tuples.	CO2	101	l I
	b) Attributes			
	c) Tables.			
	1			
	d) Rows.		7.01	
2	An entity set that does not have sufficient attributes to form a	CO2	PO1	1
	primary key isa			
	a) strongentityset.			
	b) weak entityset.			
	c) simpleentityset.			
	d) primary entityset.			
3	In an E-R diagram attributes are representedby	CO2	PO1	1
	a) rectangle.			
	b) square.			
	c) ellipse.			
	d) triangle.			
4	Third normal form is based on the concept of	CO2	PO1	1
	a) Closure Dependency			
	b) Normal Dependency			
	c) Transitive Dependency			
	d) Functional Dependency			
5	In E-R Diagram derived attribute are representedby	CO2	PO1	1
	a) Ellipse			
	b) Dashedellipse			
	c) Rectangle			
	d) Triangle			
6	Cross Product isa:	CO2	PO1	1
	a) UnaryOperator			
	b) TernaryOperator			
	c) BinaryOperator			
	d) Not anoperator			

7	An instance of relational schema R (A, B, C) has distinct values of A including NULL values. Which one of the following is true? a) A is acandidatekey b) A is not a candidatekey c) A is aprimaryKey d) Both a and c	CO2	PO1	1
8	A table joined with itself iscalled a) Join b) Self-Join c) Outer-Join d) Equi-Join	CO2	PO1	1
9	Consider the following schemas Branch = (Branch-name, Assets, Branch-city) Customer = (Customer-name, Bank name, Customer-city) Borrow = (Branch-name, Ioannumber, customer account-number) Deposit = (Branch-name, Accountnumber, Customer-name, Balance) Using relational Algebra, the Query that finds customers who have balance more than 10,000 is a) πcustomer-name (σbalance > 1000(Deposit)) b) σcustomer-name (σbalance > 1000(Borrow)) c) πcustomer-name (σbalance > 1000(Borrow)) d) σcustomer-name (σbalance > 1000(Borrow))	CO2	PO2	1
10	The natural join is equal to: a) CartesianProduct b) Combination of Union and Cartesianproduct c) Combination of selection and Cartesianproduct d) Combination of projection and Cartesianproduct 	CO2	PO1	1
11	Consider the following ER diagram. The minimum number of tables required to represent M, N, P, R1, R2 is M1 M2 M3 P1 P2 N1 N2 A2 A3 A3 A3 A3 A3 A3 A4 A3 A4 A5 A5 A5 A5 A6 A6 A6 A7 A7 A7 A8 A8 A8 A8 A8 A8 A8	CO2	PO2	1
12	Match the following:	CO2	PO1	1

	(i) One to one relationship (b) R (iii) Relationship (c) R (iii) Many to many relationship (iv) Many to one relationship Codes: (a) (b) (c) (d) a) (iii) (iv) (ii) (i) b) (iv) (iii) (ii) (i) c) (ii) (iii) (iv) (i) d) (iii) (iv) (i) (ii)		DO1	
13	Relational calculus isa a) Procedurallanguage. b) Non- Procedurallanguage. c) Datadefinitionlanguage. d) High levellanguage.	CO2	PO1	1
14	In a relational model, relations are termedas a) Tuples b) Attributes c) Tables d) Rows	CO2	PO1	1
15	Relational Algebrais a) Data Definition Language b) MetaLanguage c) Procedural queryLanguage d) None of theabove	CO2	PO1	1
16	3.A command that lets you change one or more fields in a record is: A Insert B Modify C Look-up D All of the above	CO2	PO1	1
17	Which of the following is an aggregate function in SQL? A Union B Like C Group By D Max	CO2	PO2	1

18	Which command is used to add a column to an existing table? A Create B Update C Alter D None of these	CO2	PO1	1
19	. Language used by programmers to communicate with database is : A DML B DDL C QL D None of these	CO2	PO1	1
20	The command to remove rows from a table 'CUSTOMER' is: A. REMOVE FROM CUSTOMER	CO2	PO2	1
	B. DROP FROM CUSTOMER			
	C. DELETE FROM CUSTOMER WHERE			
	D. UPDATE FROM CUSTOMER			
21	3.The SQL WHERE clause:	CO2	PO2	1
	A. limits the column data that are returned.			
	B. limits the row data are returned.			
	C. Both A and B are correct.			
	D. Neither A nor B are correct.			
22	A sub query in an SQL SELECT statement is enclosed in: A. Braces {}.	CO2	PO2	1
	B. CAPITAL LETTERS.			
	C. Parenthesis ().			
	D. Brackets [].			
23	The SQL keyword BETWEEN is used:	CO2	DO2	1
	A. for ranges.	CO2	PO2	1
	B. to limit the columns displayed.			
	C. as a wildcard.			
	D. None of the above is correct.			

24	Which one of the following sorts rows in SQL?	CO2	PO2	1
	A. SORT BY			
	B. ALIGN BY			
	C. ORDER BY			
	D. GROUP BY			

2. Short answer type

S. No	Question	CO	PO	Marks
1	Define data, database, and relational database schema with suitable example	CO1	PO1	2
2	Illustrate any four applications of database in real life.	CO1	PO2	2
3	Write the characteristics of database approach.	CO1	PO1	2
4	Define data models with an example.	CO1	PO2	2
5	Draw the block diagram of a database environment.	CO1	PO1	2
6	Define the following terms: i. meta-data ii. View of data	CO1	PO1	2
7	List the difference between schema and instances.	CO1	PO1	2
8	List and Define the different types of data independency.	CO1	PO1	2
9	Define mapping in 3-schema architecture with example.	CO1	PO1	2
10	Illustrate how the redundancy is controlled by the database approach	CO1	PO1	2
11	Explain DBMS	CO1	PO1	2
12	Outline View in a database.	CO1	PO1	2
13	Who is a DBA? What are the responsibilities of a DBA?	CO1	PO1	2
14	Describe the three levels of data abstraction?	CO1	PO1	2
15	Narrate the disadvantages of File Processing System?	CO1	PO1	2
16	Define and discuss data constraints	CO1	PO1	2
17	What is a data dictionary?	CO1	PO1	2
18	List the advantages of DBMS.	CO1	PO1	2
19	What are the features of Database language?	CO1	PO1	2
20	Define DDL and DML.	CO1	PO1	2
21	What is SQL stands for and explain features	CO1	PO1	2
22	List the differences between DROP and DELETE	CO1	PO1	2
23	Write the syntax to ADD a column to the existing table	CO1	PO1	2

24	Create a table for Student with following attributes Sid Number,	CO1	PO2	2
	Sname Varchar2, Marks Number and Average Number(3,2).			
25	Describe the components of DBMS	CO1	PO1	2
	Module 2			
1	How Relational Calculus is different from Relational Algebra?	CO2	PO1	2
2	In which layer E_R Model is used?	CO2	PO1	2
3	Define Division operation with Relational Algebra.	CO2	PO2	2
4	Name and briefly describe the five SQL built-in functions.	CO2	PO1	2
5	Explain the relationship between entity, entity class, and entity	CO2	PO1	2
	instance?			
6	Enlist the various relationships of database with suitable	CO2	PO1	2
	example?			
7	Define Aggregate functions?	CO2	PO1	2
8	What is an SQL sub query?	CO2	PO1	2
9	Explain Entity-Relationship model	CO2	PO1	2
10	What do you mean by Specialization and Generalization	CO2	PO1	2
11	What do you meant by integrity constraint	CO2	PO1	2

3. Long questions

S. No	Question	CO	PO	Marks
1	Discuss the various disadvantages of file system and explain	CO1	PO1	5
	how it can be overcome in DBMS			
2	Explain three different groups of data models with examples	CO1	PO1	5
3	With neat diagram, explain the structure of DBMS	CO1	PO1	5
4	What do you mean by data abstraction and explain different	CO1	PO1	5
	levels			
5	Define database language? Write its types?	CO1	PO1	5
6	Explain the database architecture with different layers	CO1	PO1	5
7	What is database life cycle? Discuss in details	CO1	PO1	5
8	Discuss different data models of Database	CO1	PO1	5
9	Define Data independence. Compare between physical and	CO1	PO1	5
	logical data independence.			
10	Who is a DBA? explain responsibilities of a DBA?	CO1	PO1	5
11	Discuss about 3- level database architecture with diagram?	CO1	PO1	5
12	What is data integrity? Explain the types of integrity constraints	CO1	PO2	5
13	What you mean as mapping cardinalities and explain?	CO1	PO2	5
14	Define DBMS?List the various applications of DBMS	CO1	PO1	5
15	Explain about Data abstraction with its levels?	CO1	PO1	5

1	What is ER Modelling? Draw an ER Diagram for University	CO2	PO2	5
	Registration System			
2	Compare between relational Algebra and relational calculus	CO2	PO1	5
	with examples			
3	Define Cartesian product and division operator and compare	CO2	PO1	5
	between them			
4	What are aggregate functions? And list the aggregate functions	CO2	PO1	5
	supported by SQL?			

5	Consider the following relation: EMP (ENO, NAME, DATE_OF_BIRTH, SEX, DATE_OF_JOINING, BASIC_PAY, DEPT) Develop an SQL query that will find and display the average BASIC_PAY in each DEPT.	CO2	PO3	5
6	What is aggregation in an ER model? Develop an ER diagram using aggregation	CO2	PO1	5
7	With relevant examples discuss the various operations in Relational Algebras.	CO2	PO1	5
8	Write short notes on the following Transaction Control Statements (TCS),Data Control Language (DCL)	CO2	PO1	5
9	What you mean as enhanced ER Model and discuss about Generalization and specialization	CO2	PO2	5
10	Explain about relational query languages?	CO2	PO1	5
11	Define RDBMS and explain about redundancy and Anomaly?	CO2	PO1	5

4.