$12n_{0522} \ (K12n_{0522})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5889u^{16} - 7060u^{15} + \dots + 12589b + 19445, \ 32189u^{16} + 36655u^{15} + \dots + 75534a - 90802, \\ &u^{17} + 2u^{16} + \dots - 5u - 3 \rangle \\ I_2^u &= \langle b + 1, \ a - 1, \ u^2 - u - 1 \rangle \\ I_3^u &= \langle b - 1, \ a^2 + 2a + 2u + 5, \ u^2 + u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -5889u^{16} - 7060u^{15} + \dots + 12589b + 19445, \ 32189u^{16} + 36655u^{15} + \dots + 75534a - 90802, \ u^{17} + 2u^{16} + \dots - 5u - 3 \rangle$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.426152u^{16} - 0.485278u^{15} + \dots + 2.12912u + 1.20213 \\ 0.467789u^{16} + 0.560807u^{15} + \dots - 0.689253u - 1.54460 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^2 + 1 \\ u^4 - 2u^2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0416369u^{16} + 0.0755289u^{15} + \dots + 1.43987u - 0.342468 \\ 0.467789u^{16} + 0.560807u^{15} + \dots - 0.689253u - 1.54460 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^5 + 2u^3 + u \\ u^5 - 3u^3 + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.103278u^{16} - 0.225501u^{15} + \dots + 1.46060u + 0.772526 \\ 0.345063u^{16} + 0.406545u^{15} + \dots - 0.432520u - 1.18063 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.147841u^{16} - 0.400932u^{15} + \dots + 1.50334u + 0.606627 \\ 0.232187u^{16} + 0.332949u^{15} + \dots + 0.0411470u - 0.962706 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.258864u^{16} - 0.155586u^{15} + \dots - 0.170347u + 0.00406439 \\ -0.0189451u^{16} + 0.0363810u^{15} + \dots + 0.256136u - 0.309834 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{11735}{12589}u^{16} - \frac{15443}{12589}u^{15} + \dots + \frac{246832}{12589}u + \frac{106629}{12589}u^{16}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 27u^{16} + \dots + 4064u + 121$
c_2,c_5	$u^{17} + 3u^{16} + \dots - 40u + 11$
c_3,c_4,c_8 c_9	$u^{17} - u^{16} + \dots - 8u + 4$
c_6, c_7, c_{10} c_{11}	$u^{17} + 2u^{16} + \dots - 5u - 3$
c_{12}	$u^{17} - 2u^{16} + \dots + 7u + 63$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} - 67y^{16} + \dots + 9958380y - 14641$
c_{2}, c_{5}	$y^{17} - 27y^{16} + \dots + 4064y - 121$
c_3, c_4, c_8 c_9	$y^{17} + 27y^{16} + \dots + 128y - 16$
c_6, c_7, c_{10} c_{11}	$y^{17} - 18y^{16} + \dots + 43y - 9$
c_{12}	$y^{17} + 54y^{16} + \dots + 28903y - 3969$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.15416		
a = 0.769400	0.566399	8.58110
b = -1.41340		
u = 0.629765 + 0.993192I		
a = 0.607738 - 0.970566I	18.5230 + 3.2436I	1.66321 - 2.07655I
b = -2.02831 + 0.15469I		
u = 0.629765 - 0.993192I		
a = 0.607738 + 0.970566I	18.5230 - 3.2436I	1.66321 + 2.07655I
b = -2.02831 - 0.15469I		
u = -0.119587 + 0.703609I		
a = 0.666875 + 0.456265I	-7.95189 - 0.77655I	-0.292399 + 0.937296I
b = 1.40522 - 0.37226I		
u = -0.119587 - 0.703609I		
a = 0.666875 - 0.456265I	-7.95189 + 0.77655I	-0.292399 - 0.937296I
b = 1.40522 + 0.37226I		
u = -1.259020 + 0.292419I		
a = -0.62819 - 2.15227I	-4.39263 - 2.75657I	5.16569 + 3.00882I
b = 0.889145 + 0.880924I		
u = -1.259020 - 0.292419I		
a = -0.62819 + 2.15227I	-4.39263 + 2.75657I	5.16569 - 3.00882I
b = 0.889145 - 0.880924I		
u = 1.38400 + 0.32880I		
a = -1.062080 + 0.704755I	-3.11311 + 4.57021I	4.59157 - 3.56675I
b = 1.66229 - 0.01674I		
u = 1.38400 - 0.32880I		
a = -1.062080 - 0.704755I	-3.11311 - 4.57021I	4.59157 + 3.56675I
b = 1.66229 + 0.01674I		
u = 1.48295 + 0.02809I		
a = 0.461098 - 1.264320I	4.78510 + 2.25631I	7.06459 - 4.01035I
b = -0.624675 + 0.638127I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.48295 - 0.02809I		
a = 0.461098 + 1.264320I	4.78510 - 2.25631I	7.06459 + 4.01035I
b = -0.624675 - 0.638127I		
u = -0.341751 + 0.353385I		
a = -0.109209 + 1.262730I	-1.24584 - 1.09242I	0.17632 + 5.11244I
b = -0.680413 - 0.329909I		
u = -0.341751 - 0.353385I		
a = -0.109209 - 1.262730I	-1.24584 + 1.09242I	0.17632 - 5.11244I
b = -0.680413 + 0.329909I		
u = 0.460304		
a = 0.456311	0.651323	15.8300
b = 0.195899		
u = -1.58318		
a = -0.387801	7.81790	16.8850
b = 0.650314		
u = -1.63784 + 0.36660I		
a = 1.47814 + 1.42375I	-13.5898 - 8.3565I	3.98308 + 3.14605I
b = -1.83966 - 0.39328I		
u = -1.63784 - 0.36660I		
a = 1.47814 - 1.42375I	-13.5898 + 8.3565I	3.98308 - 3.14605I
b = -1.83966 + 0.39328I		

II.
$$I_2^u = \langle b+1, \ a-1, \ u^2-u-1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 2

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_4, c_8 c_9	u^2
<i>C</i> ₅	$(u+1)^2$
c_6, c_7	$u^2 - u - 1$
c_{10}, c_{11}, c_{12}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_8 c_9	y^2
c_6, c_7, c_{10} c_{11}, c_{12}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 1.00000	-0.657974	2.00000
b = -1.00000		
u = 1.61803		
a = 1.00000	7.23771	2.00000
b = -1.00000		

III.
$$I_3^u = \langle b-1, \ a^2+2a+2u+5, \ u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a + 1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -au - u + 1 \\ au - a + u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} au + 2u + 2 \\ -au \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_8 c_9	$(u^2+2)^2$
c_6, c_7, c_{12}	$(u^2+u-1)^2$
c_{10}, c_{11}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4, c_8 c_9	$(y+2)^4$
c_6, c_7, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -1.00000 + 2.28825I	-5.59278	4.00000
b = 1.00000		
u = 0.618034		
a = -1.00000 - 2.28825I	-5.59278	4.00000
b = 1.00000		
u = -1.61803		
a = -1.000000 + 0.874032I	2.30291	4.00000
b = 1.00000		
u = -1.61803		
a = -1.000000 - 0.874032I	2.30291	4.00000
b = 1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{17} + 27u^{16} + \dots + 4064u + 121)$
c_2	$((u-1)^2)(u+1)^4(u^{17}+3u^{16}+\cdots-40u+11)$
$c_3,c_4,c_8 \ c_9$	$u^{2}(u^{2}+2)^{2}(u^{17}-u^{16}+\cdots-8u+4)$
<i>C</i> ₅	$((u-1)^4)(u+1)^2(u^{17}+3u^{16}+\cdots-40u+11)$
c_6, c_7	$(u^{2} - u - 1)(u^{2} + u - 1)^{2}(u^{17} + 2u^{16} + \dots - 5u - 3)$
c_{10}, c_{11}	$((u^{2}-u-1)^{2})(u^{2}+u-1)(u^{17}+2u^{16}+\cdots-5u-3)$
c_{12}	$((u^2 + u - 1)^3)(u^{17} - 2u^{16} + \dots + 7u + 63)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{17} - 67y^{16} + \dots + 9958380y - 14641)$
c_{2}, c_{5}	$((y-1)^6)(y^{17}-27y^{16}+\cdots+4064y-121)$
c_3, c_4, c_8 c_9	$y^{2}(y+2)^{4}(y^{17}+27y^{16}+\cdots+128y-16)$
c_6, c_7, c_{10} c_{11}	$((y^2 - 3y + 1)^3)(y^{17} - 18y^{16} + \dots + 43y - 9)$
c_{12}	$((y^2 - 3y + 1)^3)(y^{17} + 54y^{16} + \dots + 28903y - 3969)$