

LOJÍK DEVRELERÍ 1. YILÍÇÍ SINAVI ÇÖZÜMLERÍ

1) a)
$$ab + a'c + bc = (?) ab + a'c$$

 $ab + a'c + bc = ab + a'c + bc(a+a')$
 $= ab + a'c + bca + bca'$
 $= a(b+bc) + a'(c+bc)$
 $= ab + a'c$

b)
$$(a+b)(a'+c)(b+c) = (?) (a+b)(a'+c)$$
 DUAL
 $(a+b)(a'+c)((b+c)+a\cdot a') = (a+b)(a'+c)(b+c+a)(b+c+a')$
 $= (a+b)(a'+c)$ $(a'+c)(b+c)$ $(a'+c)(b+c)$

2) Doğruluk tablosu kullanarak, Karnaugh diyagramı yardımıyla ya da cebirsel olarak bulunabilir. Hatırlatma: 1. kanonik açılım minterimlerin toplamlarından oluşur. Her minterim sadece bir doğru noktaya (kombinezon) karşı gelir ve minterimlerde tüm değişkenler bulunur.

Karnaugh Diyagramı yardımıyla:

1. Kanonik açılım

Aynı ifadenin cebirsel olarak bulunması: Önce çarpım yapılır, ardından her monomdaki eksik değişkeni tamamlamak için ifadeye Bool cebrine uygun eklemeler yapılır.

Örneğin abc monomunda d değişkeni eksiktir. Bu nedenle abc yerine ona eşit olan abcd + abcd' yazılır.

$$f = (a+b')(a'b+bc+a'd+cd) = abc+ acd + a'b'd + b'cd$$

 $f = abcd + abcd' + ab'cd + a'b'cd + a'b'c'd$ 1. Kanonik açılım

Sadelesme sonucu:

$$f = a'b'd + abc + acd$$
 (1)
$$f = a'b'd + abc + b'cd$$
 (2)

$$f = a'b'd + abc + b'cd$$

(1) ifadenin çizimi

3)
$$f(a,b,c,d) = ad' + bc' + a'b'$$
 ise $f'(a,b,c,d) = (a'+d)(b'+c)(a+b)$

Bulduğumuz tümleyen ifadenin doğru olduğunu kanıtlamak için hem $f \cdot f' = 0$ olduğunu hem de f + f' = 1 olduğunu göstermek gerekir. Sadece bir tanesini göstermek yeterli değildir. Çünkü;

- a. E ve F iki lojik ifade olmak üzere F=E' ise E·F=0 olur. Ancak tersi doğru değildir, yani E·F=0 olması F = E' olduğunu göstermez. Örnek: E=ab, F=a'b olsun E·F=0'dır, ancak F=E' değildir.
- b. E ve F iki lojik ifade olmak üzere F=E' ise E+F=1 olur. Ancak tersi doğru değildir, yani E+F=1 olması F = E' olduğunu göstermez. Örnek: E=a, F=a'+b olsun E+F=1'dir, ancak F=E' değildir.

Buna göre kanıt iki kısımdan oluşacaktır:

$$f \cdot f' = (?) \ 0$$

 $f'(a,b,c,d) = (a'+d)(b'+c)(a+b) = a'bc + ab'd + acd + bcd$
 $f \cdot f' = (ad' + bc' + a'b')(a'bc + ab'd + acd + bcd) = 0$ çünkü bir parantezdeki terim diğer parantezlerdeki tüm terimler ile çarpılacaktır. Her çarpımda bir değişkenin kendisi ve tümleyeni birlikte yer aldığından tüm çarpımların sonucu lojik 0 olacaktır.

$$f + f' = (?) 1$$

 $f + f' = ad' + bc' + a'b' + a'bc + ab'd + acd + bcd$
Konsansüsler eklenir:
 $= ad' + bc' + a'b' + a'bc + ab'd + acd + bcd + a'b + b'd + bd + d$
 $= ad' + bc' + a'b' + a'b + d + a' + d'$
 $= 1$

Kanıtın bu kısmı değişik yollardan gidilerek da yapılabilir.

4) a) Tüm temel içeren tabanı:

İfadeler: cd, c'd', ac, ad' Simgeler: A B C D Maliyetler: 4 6 4 5

b)																
		0	3	4	7	8		10	1	1	1	2	14	1	5	M
1	A		(X)		(X)				2	K				Σ	(4
1	В	(X)		(X)		7	ζ				Σ	(6
	C							X	2	K			X	Σ	(4
	D			•		7	ζ	X			Σ		X			5

	10	14	M
C	X	X	4
Ъ	37	37	_
ע	Λ	Λ	2

A ve B gerekli temel içerenlerdir. C D'yi örter ve maliyeti daha düşüktür. Bu durumda D slinir.

Buna göre en ucuz yeterli taban: f = A+B+C = cd + c'd' + ac Toplam Maliyet = 14 birim.

