## Research Design

04: a bit more probability review; sampling; statistical tests



#### An aside on graphics, the non-data-ink



#### Coding graphic elements, example in R/GGplot2

```
# load grammar of graphics
library(ggplot2)
p <-
  # functions for data ink
  ggplot(data = <data>,
         mapping = aes(<aesthetic> = <variable>,
                       <aesthetic> = <variable>,
                       <...> = <...>) +
  geom_<type>(<...>) +
 scale_<mapping>_<type>(<...>) +
  coord_<type>(<...>) +
  facet_<type>(<...>) +
  <...> +
                                          element_blank()
  # functions for non-data ink
                                          element_line(<...> = <...>)
                                          element_rect(<...> = <...>)
  labs(<...>) +
  theme(<...> = <...>) +
                                          element_text(<...> = <...>)
  annotate(<...>) +
  <...>
```



### law of large numbers, as $n \to \infty$ , $\bar{x} \longrightarrow \mu$

```
set.seed(29914)

n     <- seq(1, 10000, by = 25)
mu     <- 0
sigma <- 1
x_bar <- sapply(n, FUN = function(n) {mean( rnorm(n, mu, sigma) )} )</pre>
```

```
library(ggplot2); library(ggthemes); library(latex2exp)
theme_set( theme_tufte(base_family = "sans") )

ggplot() +
    scale_x_continuous(labels = scales::comma) +
    geom_hline(yintercept = mu, color = "pink", lwd = 2) +
    geom_point(aes(n, x_bar), size = 0.5, color = "dodgerblue") +
    geom_line(aes(n, x_bar), alpha = 0.2, color = "dodgerblue") +
    annotate("text", 0, mu, hjust = 1, size = 16/.pt, label = TeX("$\\mu$") ) +
    labs(x = "sample size, n", y = TeX("sample mean, $\\bar{x}\$"))
```

Experiment with different values of n,  $\mu$ , and  $\sigma$  to see how  $\bar{x}$  compares with  $\mu$ .

Experiment with different seed values and compare results. How would you describe the uncertainty of  $\bar{x}$ ?



central limit theorem, standard deviation 
$$s$$
 of  $\bar{x} = \frac{\sigma}{\sqrt{n}}$ 

```
sample_mean <- function() {
   sapply(n, FUN = function(n) {mean( rnorm(n, mu, sigma) )} )
   }

x_bar <- replicate(1000, sample_mean() )
s <- apply(x_bar, 1, sd)

ggplot() +
   geom_point(aes(n, s), color = "dodgerblue") +
   geom_line(aes(n, sigma / sqrt(n) ), color = "pink")</pre>
```



Experiment with different values of  $\sigma$  and  $\mu$  and replications to check the relationships empirically.

#### probability, probability density functions v. continuous distribution functions — e.g., the standard normal $\Phi$



#### probability, probability density functions v. continuous distribution functions — e.g., the standard normal $\Phi$





sampling, a few of many approaches

simple random

convenience

interval

cluster

quota

stratified

quasi-experimental



#### Example, recall our random sample of heights in NYC

Sample mean for both groups,

| =     | x_bar    |  |  |
|-------|----------|--|--|
| :     | :        |  |  |
| FALSE | 163.8453 |  |  |
| TRUE  | 179.3198 |  |  |



How do we decide whether to reject  $H_0$  in favor of  $H_A$ ?

$$H_0$$
:  $\overline{\text{height}}_{\text{men}} = \overline{\text{height}}_{\text{women}}$ 

$$H_A: \overline{\mathsf{height}}_{\mathsf{men}} \neq \overline{\mathsf{height}}_{\mathsf{women}}$$

We need some kind of test!

### A general procedure for a statistical test

Assume an appropriate probability model to describe the behavior of the random variable under investigation.

Define a *null* hypothesis and an *alternative* hypothesis that permits meaningful conclusions.

Specify a test statistic.

Choose a *level of significance*  $\alpha$  for the test.

Determine a *distribution* and *critical region* of the test statistic.

Calculate a value of the test statistic from a random sample of data.

Accept of reject  $H_0$  by comparing the calculated value of the test statistic with the values defining the critical region.

#### Generic normal distribution, distance to zero, at a 95 percent confidence interval and 80 percent power



statistical tests, comparing sample mean to normal distribution with known  $\mu$  and  $\sigma$  — z-statistic

$$H_0: \mu = 2.7, H_A: \mu < 2.7$$

```
set.seed(92)

n <- 30
mu <- lambda <- 2.7
sigma <- sqrt(lambda)
x <- rpois(n, lambda)</pre>
```

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}, \ p = F_{\Phi}(z)$$

```
x_bar <- mean(x)

z <- ( x_bar - mu ) / ( sigma / sqrt(n) )
p <- pnorm(z)</pre>
```

Given the null hypothesis, about 19 percent of experiments have  $\bar{x} \le 2.4\bar{3}$ 



```
ggplot() +
 stat_function(fun = dnorm,
                args = list(mean = mu, sd = sigma / sqrt(n)),
                geom = "density",
               fill = "white",
               xlim = c(mu - 4 * sigma / sqrt(n),
                        mu + 4 * sigma / sqrt(n)) ) +
 stat_function(fun = dnorm,
                args = list(mean = mu, sd = sigma / sqrt(n)),
                geom = "density",
               fill = "lightblue",
               xlim = c(mu - 4 * sigma / sqrt(n), x_bar)) +
  annotate("segment", x = x_bar, x = x_bar,
          y = 0, yend = dnorm(x_bar, mu, sigma / sqrt(n))) +
  annotate("text", x = x_{bar} - 0.1, y = 0.1, hjust = 1,
          label = format(p, digits = 3)) +
  scale_x_continuous(breaks = seq(-1.5, 4, by = 0.5)) +
  labs(y = "Normal Density")
```

#### statistical tests, comparing sample mean to normal distribution with simulation

$$H_0: \mu = 2.7, H_A: \mu < 2.7$$

```
X <- rnorm(1e6, mu, sigma / sqrt(n) )
d <- data.frame( density(X)[1:2] )</pre>
```

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}, \ p = F_{\Phi}(z)$$

# Simulation gives us the same answer: given the null hypothesis, about 19 percent of experiments have $\bar{x} \le 2.4\bar{3}$



statistical tests, if unknown  $\sigma$ , can use sample standard deviation s and student's t distribution — t-statistic

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}, \ p = F_{\Phi}(z)$$
  $t = \frac{\bar{x} - \mu}{s / \sqrt{n}}, \ p = F_T(t)$ 

Of note: as  $s \to \sigma \mid n \to \infty$ ,  $t \to z$  and student's t distribution converges towards the normal distribution.

For ease of specifying student-t distribution parameters, here are functions for its four functions, just wrapping the base R versions:

```
dstudent_t <-</pre>
  function(x, df, mu = 0, sigma = 1, log = FALSE) {
  if (log) {
    dt((x - mu) / sigma, df = df, log = TRUE) - log(sigma)
  } else {
    dt((x - mu) / sigma, df = df) / sigma
pstudent_t <-</pre>
  function(q, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) {
  pt( (q - mu) / sigma, df = df, lower.tail = lower.tail, log.p = log.p )
qstudent_t <-</pre>
  function(p, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) {
  qt(p, df = df, lower.tail = lower.tail, log.p = log.p ) * sigma + mu
rstudent_t =
  function(n, df, mu = 0, sigma = 1) \{
  rt( n, df = df ) * sigma + mu
```

statistical tests, if unknown  $\sigma$ , can use sample standard deviation s and student's t distribution — t-statistic

$$H_0: \mu = 2.7, H_A: \mu < 2.7$$

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}, \ p = F_T(t)$$



Given the null hypothesis, about 17 percent of experiments have  $\bar{x} \le 2.4\bar{3}$ 



```
ggplot() +
 stat_function(fun = dstudent_t,
                args = list(df = n - 1, mu = mu, sigma = s / sqrt(n)),
                geom = "density",
                fill = "white",
                xlim = c(mu - 4 * s / sqrt(n),
                        mu + 4 * s / sqrt(n)) +
 stat_function(fun = dstudent_t,
                args = list(df = n - 1, mu = mu, sigma = s / sqrt(n)),
                geom = "density",
                fill = "lightblue",
                xlim = c(mu - 4 * s / sqrt(n), x_bar)) +
 annotate("segment", x = x_{bar}, xend = x_{bar},
          y = 0, yend = dstudent_t(x_bar, n - 1, mu, s / sqrt(n))) +
 annotate("text", x = x_{bar} - 0.1, y = 0.1, hjust = 1,
          label = format(p, digits = 3)) +
 labs(y = "Student-t Density")
```

statistical tests, (mis)interpreting test statistics, dichotomous tests, and a warning

Firstly,

$$P(D|H) \neq P(H|D)$$

$$P(H \mid D) = \frac{P(D \mid H)P(H)}{P(D \mid H)P(H) + P(D \mid \neg H)P(\neg H)}$$

#### Secondly,

Dichotomous tests are common in the literature. We typically read comparisons that ask whether the probability of obtaining a value more "extreme" than the sample mean from the null hypothesis, and compare this to an *arbitrary* p value of 0.05 (conventionally denoted  $\alpha$ ), rejecting the null hypothesis if this z or t value of smaller, not rejecting otherwise.

But — again — this threshold test is *arbitrary*. Consider that a difference between probabilities 0.049 and 0.051, for example, is not itself typically significant.

At least report the probability of obtaining the sample value given the selected null probability distribution, *not* just the result of some dichotomous test, and consider the probability of obtaining the sample value if the hypothesis is *not* true. That's a future topic.



#### References

Blitzstein, Joseph K., and Jessica Hwang. Introduction to Probability. Second edition. Boca Raton: Taylor & Francis, 2019.

Gelman, Andrew, Jennifer Hill, and Aki Ventari. Regression and Other Stories. S.l.: Cambridge University Press, 2020.

Gelman, Andrew. "The Problems With P-Values Are Not Just With P-Values." The American Statistician, April 2016, 1–2.

McShane, Blakeley B., David Gal, Andrew Gelman, Christian Robert, and Jennifer L. Tackett. "Abandon Statistical Significance." The American Statistician 73, no. sup1 (March 29, 2019): 235–45.