Emulating Future HPC SoC Architectures Using RISC-V

Farzad Fatollahi-Fard, Dave Donofrio, John Shalf Lawrence Berkeley National Lab

RISC-V Workshop January 5, 2016 – Redwood City, CA

Should HPC Take Inspiration from the Embedded Market?

- Have most of the IP and experience with for low-power technology
 - Have sophisticated tools for rapid turn-around of designs
- Vibrant commodity market in IP components
 - Change your notion of "commodity"!
 - It's commodity IP on the chip (not the chip itself!)
- Design validation / verification dominate cost
 - Another benefit of COTS IP

Building an SoC for HPC

Is this a good idea?

Consumer market dominates PC and server market

- Smartphone and tablets are in control
- Huge investments in IP, design practices, etc.

HPC is power limited (delivered performance/watt)

- Need better computational efficiency and lower power with greater parallelism
- Embedded has always been driven by max performance/watt (max battery life) and minimizing cost

HPC and embedded requirements are now aligned

- ...and now we have a very large commodity ecosystem
- Why not leverage technologies for the embedded and consumer for HPC?

Looking back...

A previous HPC system design based on semicustom SoCs

Green Wave

2009-2012

- Seismic imaging used extensively by oil and gas industry
 - Dominant method is RTM (Reverse Time Migration)
- RTM models acoustic wave propagation through rock strata using explicit PDE solve for elastic equation in 3D
 - High order (8th or more) stencils
 - High computational intensity

Green Wave Design Study Seismic Imaging

Embedded SoC Efficiency Competitive with cutting-edge designs

Green Wave Chip Block Diagram

Courtesy Marty Deneroff, Green Wave, Inc.

- 12 x 12 2D on-chip torus network
- 676 Compute cores (500 in compute clusters, 176 in peripheral clusters)
- 33 Supervisory cores
- 1 PCI express interface
- 8 Hybrid Memory Cube (HMC) interfaces
- 1 Flash controller
- 1 1000BaseT Ethernet controller
- It is not anticipated that all cores will be utilized – some are spares for yield enhancement.

Actual network connections form folded torus, not open mesh Torus connection not shown.

- Compute cluster (5 FLIX cores + DMA) Supervisory Cluster (4 FLIX cores + DMA + 1 TLB Core)
- HMC Cluster (4 FLIX Cores + DMA + HMC) Enet Cluster (4 FLIX Cores + DMA + Enet)
- PCIexpress Cluster (4 FLIX Cores + DMA + PCIe)
- Flash Cluster (4 FLIX Cores + DMA + Flash)

Building an SoC from IP Logic Blocks

It's Legos with a some extra integration and verification cost

Processor Core (ARM, Tensilica, RISC-V) With extra "options" like DP FPU, ECC OpenSoC Fabric (on-chip network) (currently proprietary ARM or Arteris) Mem Control **DDR** memory controller Mem **DRAM** (Denali/Cadence, SiCreations) Control + Phy & Programmable PLL IB or GigE **DRAM** PCIe Gen3 Root complex Integrated FLASH Controller

10GigE or IB DDR 4x Channel

Hierarchical Power Costs

Data Movement is the Dominant Power Cost

Other Parameters Impact Performance

For Example, Topology...

An analysis of on-chip interconnection networks for large-scale chip multiprocessors ACM Transactions on computer architecture and code optimization (TACO), April 2010

 Network topology can greatly influence application performance

Our SoC for HPC System

A Point Design on an FPGA

- Z-Scale processors connected in a Concentrated Mesh
- 4 Z-scale processors
- 2x2 Concentrated mesh with 2 virtual channels
- ► Designed for Area Efficiency on the FPGA

Z-Scale

Tiny 32-bit RISC-V System

- A tiny 32-bit 3-stage **RISC-V** core generator suited for microcontrollers and embedded systems
- Z-scale is designed to talk to AHB-Lite buses
- Z-scale generator also generates the interconnect between core and devices
 - Includes buses, slave muxes, and crossbars

Top-Level Z-Scale Configuration

OpenSoC Fabric

An Open-Source, Flexible, Parameterized, NoC Generator

- Written in Chisel
- Dimensions, topology, VCs all configurable
- AHB Endpoints available now
 - AXI in development
- **Fast functional C++ model for** functional validation
- Verilog based description for **FPGA or ASIC**
 - Synthesis path enables accurate power / energy modeling

Top Level Diagram

Functional Hierarchy

Top Level Modules

Topology

- Stiches routers together
- Assigns routers individual ID
- Assigns Routing Function to routers
- Connections Injection and Ejection Queues for network endpoints

OpenSoC Top Level Modules

Router

- Created and connected by Topology module
- Instantiates and connects:
 - Routing Function
 - Allocators
 - Switch

Pipelined

- 3 stage pipeline for Wormhole
- 4 stage pipeline for VCs
- Includes state storage for each sub-module
- Connects to Injection / Ejection Queues

OpenSoC Top Level Modules

VC Router

Configuration options

A few of the current run time configuration parameters

Network Parameters

- Dimension
- Routers per dimension
- Concentration
- Virtual Channels
- Topology
- Queue depths
- Routing Function

Packet / Flit Parameters

- Flit widths
- Packet types / lengths

Testing Parameters

- Pattern
 - Neighbor, random, tornado, etc
- Injection Rate

Demo Setup

HPC SoC Design Versus Commodity HPC Design

Demo Results

Exchanging of Cache Lines Versus Message Passing

More Information

http://www.codexhpc.org

http://opensocfabric.org

