

ECE/CS 6524 Introduction to Reinforcement Learning

Jason J. Xuan, Ph.D.

Department of Electrical & Computer Engineering
Virginia Tech

Outline

- About Reinforcement Learning
- The Reinforcement Learning Problem
- Inside An RL Agent
- Problems within Reinforcement Learning

Resources

An Introduction to Reinforcement Learning, Sutton and Barto, 1998

MIT Press, 1998

Available free online!

http://incompleteideas.net/book/the-book-2nd.html

Algorithms for Reinforcement Learning, Szepesvari Morgan and Claypool, 2010

Available free online! https://sites.ualberta.ca/~szepesva/rlbook.html

WirginiaTech

Man

Many Faces of Reinforcement Learning

Branches of Machine Learning

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

Examples of Reinforcement Learning

- Fly stunt manoeuvres in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play many different Atari games better than humans

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximization of expected cumulative reward

Do you agree with this statement?

Examples of Rewards

- Fly stunt manoeuvres in a helicopter
 - +ve reward for following desired trajectory
 - -ve reward for crashing
- Defeat the world champion at Backgammon
 - +/-ve reward for winning/losing a game
- Manage an investment portfolio
 - +ve reward for each \$ in bank
- Control a power station
 - +ve reward for producing power
 - ve reward for exceeding safety thresholds
- Make a humanoid robot walk
 - +ve reward for forward motion
 - -ve reward for falling over
- Play many different Atari games better than humans
 - +/-ve reward for increasing/decreasing score

Sequential Decision Making

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refuelling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

Agent and Environment

action

Agent and Environment

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

History and State

■ The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, ..., A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment State

- The environment state S_t is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S^e_t is visible, it may contain irrelevant information

Agent State

- The agent state S^a_t is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_t^a = f(H_t)$$

Information State

An information state (a.k.a. Markov state) contains all useful information from the history.

Definition

A state S_t is Markov if and only if

$$P[S_{t+1} | S_t] = P[S_{t+1} | S_1, ..., S_t]$$

"The future is independent of the past given the present"

$$H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

Rat Example

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells and levers?
- What if agent state = complete sequence?

Fully Observable Environments

Full observability: agent directly observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environmentstate = information state
- Formally, this is a Markov decision process (MDP)

Partially Observable Environments

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state != environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S_t^a , e.g.
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (P[S_t^e = s^1], ..., P[S_t^e = s^n])$
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

Major Components of an RL Agent

An RL agent may include one or more of these components:

Policy: agent's behaviour function

Value function: how good is each state and/or action

Model: agent's representation of the environment

Policy

A policy is the agent's behavior

- It is a map from state to action,
 e.g.
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = P[A_t = a|S_t = s]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions,
 e.g.
 - $v_{\pi}(s) = E_{\pi} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... | S_t = s]$

Model

A model predicts what the environment will do next

P predicts the next state

R predicts the next (immediate) reward

$$P_{ss'}^{a} = P[S_{t+1} = s' | S_t = s, A_t = a]$$

 $R_s^{a} = E[R_{t+1} | S_t = s, A_t = a]$

Maze Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example: Policy

Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

Numbers represent value $v_{\pi}(s)$ of each state s

Maze Example: Model

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- The model may be imperfect
- Grid layout represents transition model P $_{ss}^{a}$
- Numbers represent immediate reward R $_s^a$ from each state $_s$ (same for all $_a$)

Categorizing RL Agents

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

Model Free

- Policy and/or Value Function
- No Model
- Model Based
 - Policy and/or Value Function
 - Model

RL Agent Taxonomy

Learning and Planning

Two fundamental problems in sequential decision making

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Atari Example: Reinforcement Learning

Rules of the game are unknown

Learn directly from interactive game-play

Pick actions on joystick, see pixels and scores

Atari Example: Planning

- Rules of the game are known
- Can query emulator
 - perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy
 - e.g. tree search

Exploration and Exploitation

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way

- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
- It is usually important to explore as well as exploit

Examples

- Restaurant Selection
 Exploitation Go to your favourite restaurant
 Exploration Try a new restaurant
- Online Banner Advertisements
 Exploitation Show the most successful advert
 Exploration Show a different advert
- Oil Drilling
 Exploitation Drill at the best known location
 Exploration Drill at a new location
- Game Playing
 Exploitation Play the move you believe is best
 Exploration Play an experimental move

Prediction and Control

- Prediction: evaluate the future
 - Given a policy

Control: optimize the future

Find the best policy

Gridworld Example: Prediction

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0
(b)				

What is the value function for the uniform random policy?

Gridworld Example: Control

a) gridworld

b) V

c) 1

What is the optimal value function over all possible policies? What is the optimal policy?

Reinforcement Learning Contents

- Fundamentals of Reinforcement Learning
 - 1 Markov Decision Processes
 - 2 Planning by Dynamic Programming
 - 3 Model-Free Prediction
 - 4 Model-Free Control

Question

Comments are more than welcome!