NIST 표준 형태 보존 암호에 대한 딥러닝 기반의 신경망 구별자

김덕영*, 김현지*, 장경배*, 윤세영*, 서화정 **
* 한성대학교 대학원 융합보안학과

서 론

- 차분 분석이란 암호의 분석기법 중 하나로, 입력 차분에 따라 출력 차분을 분석하여 키를 유추할 수 있다면, 암호 알고리즘이 안전하지 않다고 볼 수 있다.
- 차분 특성을 활용하여 인공 신경망 기반의 구별자를 사용하면 랜덤 데이터로 암호 데이터를 구별 할 수 있으며, 차분 공격 시 데이터 복잡도가 줄어든다는 이점이 있다.
- 신경망 구별자 관련 연구는 현재도 활발하게 진행되고 있으며, 본 논문에서는 형태보존암호인 FF1,FF3-1 32/128에 대해 차분 특성을 고려하여 최초의 신경망 구별자를 제안하였다.

모델의 데이터 셋, 모델 구성

- 임의의 랜덤 평문 P0, P1을 생성 후 입력차분을 만족하는 평문 쌍을 생성하기 위해 P0에 입력차분을 XOR하여 평문 P2를 구한다.
- 각 평문 P0, P1, P2를 암호화하여 암호문 C0, C1, C2를 구하고 이때, C0와 C1은 차분 관계가 아닌 랜덤 평문을 암호화한 결과이므로 두 값을 연접한 결과를 0으로 라벨링 한다.
- 이때 C0와 C2는 입력차분을 만족하는 평문의 암호문으로 특정 확률로 출력 차분을 만족하는 암호 데이터이므로 연접한 값을 1로 라벨링 한다.
- 암호화 과정에서 사용되는 평문 및 암호문은 숫자 (0 ~ 9) 또는 소문자 (a ~ z) 도메인에서 선택되고, 실제 데이터셋에는 C0, C1, C2의 비트 값이 저장된다.
- 모델의 구성은 랜덤 또는 차분 암호문 쌍의 각 비트는 입력 레이어의 각 뉴런에 할당되어 그후 히든 레이어를 거치고 출력 레이어에서 sigmoid 활성화 함수를 거쳐 0 ~ 1 사이의 값을 도출하여 해당 값과 실제 정답의 손실을 계산한다.

실험 결과

< FF1, FF3-1의 하이퍼파라미터>

< FF1의 정확도 표>

< FF3-1의 정확도 표>

Number (10-round) Lowercase (2-round) Number (8-round) Lowercase (2-round)

Format-Preserving Encryption	EF1	EF3		
Epoch	20	15		
	5 hidden	4 hidden		
Hidden layers	layers with	layers with		
	64 units	128 units		
parameters	173,956	74,497		
Batch size	32			
Activation	ReLu (Hidde (Out	n). Sigmoid put)		
Optimizer (Learning rate)	Adam(lr = 0.0001~0.001)			
Loss function	binary_crossentropy			

	Tr	Val	Ts	Rel	Tr	Val	Ts	Rel
01	0.73	0.74	0.73	0.23	0.50	0.50	0.50	0.00
02	0.74	0.75	0.74	0.24	0.51	0.51	0.51	0.01
03	0.71	0.71	0.71	0.21	0.52	0.51	0.52	0.02
04	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
05	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
06	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
07	0.75	0.75	0.75	0.25	0.51	0.51	0.51	0.01
08	0.80	0.80	0.80	0.30	0.51	0.50	0.51	0.01
09	0.84	0.83	0.84	0.34	0.52	0.52	0.52	0.02
0A	0.84	0.84	0.84	0.34	0.50	0.50	0.50	0.00
0B	0.82	0.82	0.82	0.32	0.51	0.51	0.51	0.01
0C	0.85	0.84	0.85	0.35	0.5	0.5	0.5	0.00
0D	0.78	0.78	0.78	0.28	0.51	0.51	0.51	0.01
0E	0.81	0.81	0.81	0.31	0.52	0.52	0.52	0.02
0F	0.85	0.85	0.85	0.35	0.52	0.52	0.52	0.02

٦		- 0	Tr	Val	Ts	Rel	Tr	Val	Ts	Rel
٦	(01	0.62	0.62	0.62	0.12	0.54	0.54	0.54	0.04
٦	(02	0.82	0.82	0.82	0.32	0.55	0.54	0.54	0.04
	(03	0.78	0.76	0.77	0.27	0.52	0.51	0.51	0.01
]	(04	0.76	0.75	0.75	0.25	0.52	0.52	0.51	0.01
٦	(05	0.77	0.75	0.74	0.24	0.53	0.53	0.53	0.03
٦	(06	0.75	0.74	0.75	0.25	0.52	0.51	0.52	0.02
7	(07	0.75	0.73	0.74	0.24	0.53	0.52	0.52	0.02
7	(80	0.98	0.97	0.97	0.47	0.55	0.55	0.55	0.05
1	(09	0.96	0.94	0.94	0.44	0.54	0.54	0.54	0.04
7	(0A	0.96	0.95	0.95	0.45	0.53	0.53	0.53	0.03
7	(ЭВ	0.97	0.96	0.96	0.46	0.53	0.52	0.52	0.02
٦	(C	0.97	0.95	0.95	0.45	0.53	0.53	0.53	0.03
٦	(ЭD	0.96	0.96	0.96	0.46	0.53	0.52	0.51	0.01
1	(DE.	0.96	0.96	0.96	0.46	0.54	0.54	0.55	0.05
٦		OF.	0.96	0.93	0.94	0.44	0.52	0.52	0.52	0.02

● 본 논문에서 FF1, FF3-1에 대한 최초의 딥러닝 신경망 구별자를 제안하였다. 우리는 단일 차분 모델에 대한 실험을 진행하였으며 모델에서 FF1일 때 10라운드와 0F 차분을 사용하였을 때 숫자 및 소문자 도메인 모두에서 가장 높은 정확도를 보였으며, FF3-1에서는 8라운드와 08차분에서 숫자 및 소문자 도메인 모두에서 가장 높은 정확도를 보였다. 본 실험을 통해 FF1에서는 0F 차분일때 정확도 및 신뢰도가 높고, FF1에서는 08차분을 사용하였을 때 정확도 및 신뢰도가 높다는 것을 확인하였다. 이처럼 각 암호마다 그에 맞는 좋은 차분이 있다는 것을 확인하였다.