Deliverable Item No: PD-7-2-001/#7

Functional Description of Inventory Replenishment Model for the Regional Hazardous MaterialManagement System (RHMMS)

29 December 95

Prime Contractor: John J. McMullen Associates, Inc. 2341 Jefferson Davis Highway Century Building, Suite 715 Arlington, Virginia 22202-3887

Subcontractor: A. F. Meyer and Associates, Inc. 1364 Beverly Road, Suite 201 McLean, Virginia 22101-3627

Contract No: N00024-95-D-0290

Subcontract No: 0290-03

Delivery Order No: 0007

Project Officer: Robin L. Johnson, Code 4241C U. S. Navy Naval Supply Systems Command 1931 Jefferson Davis Highway Arlington, Virginia 22241-5360

DITC QUALITY IMPROVED 1

REPORT DOCUMENTATION PAGE 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 29 December 1995 Final Report - 06/01/95 to 12/31/95 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Functional Description of Inventory Replenishment Model for the Regional Hazardous Material Management System (RHMMS) 6. AUTHOR(S) Gregory F. Berry 8. PERFORMING ORGANIZATION REPORT NUMBER 7. PERFORMING RGANIZATION NAME(S) AND ADDRESS(ES) A. F. Meyer and Associates, Inc. DIN: PD-7-2-001/#7 1364 Beverly Road, Suite 201 McLean, Virginia 22101-3627 9. SPONSORING: MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SEONSORING, MONITORING AGENCY REPORT NUMBER U.S. Navy Naval Supply Systems Com-A & E Contract No.: 1931 Jefferson Davis Highwa N00024-95-D-0290 Arlington, Virginia 22241-5360 11. SUPPLEMENTARY NOTES 129. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Makeness stand to percentage Describunce Unumurad 13. ABSTRACT (Maximum 200 words) This technical report describes the development of an Inventory Replenishment Model for use in Hazardous Material Management. The Replenishment Model includes a Forecasting Model, Date Management Methods and Reports for use by Inventory Managers. It is designed for implementation as part of a software application for Regional Inventory Management of Hazardous Materials. Appendices contain detailed information supporting development of the Forecasting and Replenishment Models. **№ 96-00454** 14, SUBJECT TELLIS IS, NUMBER OF PAGES

Inventory Management, Inventory Forecasting,
Replemshment, Hazardous Materials

17. SUCURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified Unclassified

554, 7540 05 237 550)

Standara Form 2, 98 (Rev. 2, 89)

DITC QUALITY INSPECTED I

FUNCTIONAL DESCRIPTION OF INVENTORY REPLENISHMENT MODEL FOR THE REGIONAL HAZARDOUS MATERIAL MANAGEMENT SYSTEM (RHMMS)

TASK 7-2- 91

TABLE OF CONTENTS

Table of Contentsi
Introduction1
Section I: Summary of Results
Forecasting 2
Replenishment2
Conclusions
Section II: Detailed Description of Methods Used in Model Development 8
Development of the Forecasting Model8
Development of the Replenishment Model 1
Figures and Tables
Figure 1. Basic Screen for the Replenishment Model5
Figure 2. Frequency of Issue vs. Number of Inventory Items
Figure 3. Sample Forecast and Mad Tables from Appendix C
Table 1. Fields in the Replenishment Model
Table 2. Comparison of Demand Forecasting Methods9
Table 3. Aggregate Demand Data - FISC, Norfol., and FISC, San Diego1
Table 4. Mad Indexes
Table 5. Average MAD Indexes 1
Table 6. Items Selected for Data Analysis and Simulation
<u>Enclosures</u>
Enclosure (1) - RHMMS Replenishment Model Graphics
<u>Appendices</u>
Appendix A: Data Used to Develop Forecasting and Replenishment Models Under
the RHMMS Concept Annual dis References of Region Data from EISC, Norfolk and EISC, San Disco.
Appendix B: Frequency of Issue Data from FISC, Norfolk and FISC, San Diego
Appendix C: Charts and Graphs from Forecasting Model Simulations
Appendix D: Data from Analysis of Demand for CA Material
Appendix E: Comparison of the Magnitude of Actual Demand vs. Forecasted Demand
Appendix F: Charts and Graphs from Replenishment Model Simulations

FUNCTIONAL DESCRIPTION OF INVENTORY REPLENISHMENT MODEL FOR THE REGIONAL HAZARDOUS MATERIAL MANAGEMENT SYSTEM (RHMMS)

Introduction

Under Project Description (PD) 7-2-001, AFMA was tasked to create a mathematical inventory model to be used for replenishment of HAZMIN Centers under the Regional Hazardous Material Management System (RHMMS). AFMA has developed a functional description of the mathematical inventory replenishment model based on forecasted requirements, repetitive demand, lead times, excess material available in the region for redistribution, and the cost of disposal. This functional description includes graphical layouts depicting the data to be used by the Regional Inventory Manager (RIM) and reports to be generated for use by the RIM.

Forecasting

Pursuant to creating the replenishment model, AFMA focused on demand forecasting as the most fundamental aspect of a successful inventory management system.

The demand forecasting model was developed using the following methodology:

- 1. Investigation and selection of a potential demand forecasting model(s) Several methods of demand forecasting were researched and a candidate selected for testing and evaluation using historic demand data. The candidate model selected was an exponential smoothing method.
- 2. Collection of historic demand data Site visits to operating HAZMIN Centers at FISC, Norfolk; FISC, San Diego; and FISC, Puge Sound were used to collect background information and historic demand data.
- 3. Data Reduction Erroneous or otherwise unusable data were eliminated.
- 4. Data Analysis Statistics regarding demand for Hazardous Material (HM) were compiled and the potential forecasting model(s) were tested, simulated, and evaluated.
- 5. Selection The most appropriate forecasting model was selected and parameters defining its usefulness were quantified.

Replenishment

The forecasting model became the basis for the inventory replenishment model. Other factors considered in development of the replenishment model include:

- 1. A lead time factor, tied to the material source, to prevent stock outs while material is on order.
- 2. The need for a High Limit (HL) and a Low Limit (LL) on inventory levels.
- 3. Methods of determining the Reorder Quantity (ROQ).
- 4. Suggestions and recommendations from FISC personnel. (i.e., several people recommended that the replenishment model include a feature for remarks by the RIM
- 5. Methods of managing materials that have low frequency of issue.
- 6. Use of data derived from the HICS database. Implicit in this assumption is that such data represents the combined totals for all HAZMIN Centers in the region.
- 7. The need to minimize the amount of data supplied by the RIM, consistent with proper functioning of the Replenishment Model.

Section I: Summary of Results Forecasting

A forecasting model called "exponential smoothing" was chosen as the best method of forecasting demand for Hazardous Materials. In simulation and testing of the exponential smoothing model, demand for items with a high frequency of issue was forecasted with reasonable accuracy. Several variations of the exponential smoothing model were tested and simulated. The variation between actual demand and forecasted demand was measured to determine the best version of the model. The resultant model is represented by the following equation:

Next Period Demand = 0.1*Previous Actual Demand + 0.9*Previous Forecast

The equation shown above forecasts demand with reasonable accuracy for items that are issued 24 or more times per year. The first iteration of this model requires an initial value for the first "previous forecast". An arithmetic average of previous annual demand is recommended for the initial value, if enough data is available. Otherwise, the first value for the "previous forecast" must be selected by the RIM based on his/her knowledge of demand for the item.

It is important to note that this forecasting method is only viable for items with high levels of demand and high frequency of issue. Such items represent the vast majority of transactions at HAZMIN Centers; however, they are only a small percentage of the number of inventory items. Therefore, the following basic inventory management practices are recommended to minimize the number of low demand items:

- 1. Periodic review and update of Authorized Use Lists to eliminate items from the inventory that are no longer in use.
- 2. Elimination of low demand items from the inventory whenever possible, particularly items that are not mission critical. Items that are required for planned activities are good candidates because they can be ordered when required, rather than provided "off the shelf".

Despite efforts to eliminate them, items with low frequency of issue and/or low demand need to be managed as part of the inventory. Demand for these items must be determined from the inventory manager's knowledge of the customer's needs.

Replenishment

With the capabilities and limitations of demand forecasting in mind, a Replenishment Model for regional hazardous material management was created. It utilizes an Optional Replenishment (OR) inventory system combined with Selective Inventory Control (SIC). The integration of these two systems, combined with the ability to forecast demand for HM, provide the inventory manager with powerful tools to ensure that no stock outs occur and that no excess material is sent to disposal. A discussion of the five primary elements of the replenishment model follows.

1. Optional Replenishment Inventory System:

The OR system is one of two fundamental elements of inventory management in the replenishment model. It is similar to many classical inventory management models and contains the following basic elements:

- · a fixed review period
- a High Limit on inventory levels,
- a Low Limit, also called the Reorder Point (ROP), on inventory levels,
- replenishment when inventory levels fall below the low limit, and
- a Reorder Quantity (ROQ) based on the HL and inventory position at the time the order is placed.

Typically, High and Low limits in the OR system are chosen arbitrarily by the inventory manager.

The RHMMS Replenishment Model includes the following modifications to the OR system to satisfy the unique requirements of HM management, especially the excessive cost of surplus inventory:

- calculating the HL and LL for each inventory item based on demand forecasting (for items conducive to demand forecasting),
- providing a means for the regional inventory manager to identify trends in demand for inventory items,
- providing tools for the inventory manager to identify (via reports) items that are above the HL, below the LL, or otherwise in need of attention, and
- a method of sorting and organizing inventory information rapidly and accurately.

2. Selective Inventory Management:

Selective inventory management, sometimes called ABC analysis, is a common inventory management technique and the second fundamental element in the replenishment model. It involves dividing inventory items into three classes (Class A, Class B and Class C), based on dollar volume. The class division allows the inventory manager to concentrate on the class or classes of materials that require more intense management. The selective inventory management approach, in conjunction with OR, allows inventory managers to concentrate on HM posing particular problems with respect to forecasting, availability, or mission readiness. The replenishment model contains a field used by the inventory manager to assign a class to each HM in the inventory. The classes are designated 'I, II, III and IV' rather than 'A, B, C...' to avoid confusion with the designations 'A' condition and 'CA' material currently used in RHMMS.

3. Material Classification in the Replenishment Model:

In the Replenishment Model, the class determines the specific forecasting technique applied to the inventory item. The following classes are included in the replenishment model:

Class 1 - Materials with a high frequency of issue (24 or more issues per year). These materials have moderate to high turnover, demand that can be forecasted with reasonable accuracy, and represent the bulk of HAZMIN Center issues. They require minimal attention from the inventory manager.

Demand for items in this class is forecasted using the forecasting model discussed above. The High Limits and Low Limits for these items are based on the forecasted demand and a lead time factor. Replenishment is initiated when the inventory level drops below the low limit. The reorder quantity for replenishments is simply the high limit minus the current inventory level.

- Class II Materials with a low frequency of issue (less than 24 issues per year). These are materials with low turnover, fairly constant demand and no unusual inventory considerations (e.g. restricted supply, extremely short shelf life). The items in this class are expected to require moderate time and management effort because they do not have high turnover or do not respond well to demand forecasting. High limits and low limits are set by the inventory manager based on knowledge of customer requirements or historic demand patterns. Replenishment is initiated when the inventory level drops below the low limit. The reorder quantity for replenishments is calculated in the same manner as Class I materials.
- Class III These are materials which exhibit unpredictable demand fluctuations or other unique complications (e.g. can only be ordered once each year, extremely critical to the customers mission) requiring more frequent review and attention by the inventory manager. High Limits and Low Limits are set by the inventory manager based on knowledge of customer requirements or historic demand patterns. Replenishment is initiated when the inventory level drops below the low limit. The reorder quantity for replenishments is calculated the same as Class I materials.
- Class IV Reserved for items of particular interest to the inventory manager either on a temporary or permanent basis. For example, Class IV may be used for discontinued items that will be consumed, but not replenished.

4. Data Management:

A database management system is required for implementation of the inventory management system discussed above. It offers several features needed to ensure the replenishment medel succeeds including 1) the ability to manipulate large quantities of data associated with inventory management, and 2) maximum flexibility for the Regional Inventory Manager to make informed decisions regarding replenishment. Enclosure (1) is a collection of graphics developed by AFMA illustrating the type of system envisioned. It contains graphical layouts of recommended functions, screens, and reporting capability for an inventory management system. The basic screen for the Replenishment Module is shown in Figure 1 on the following page.

The Replenishment Module, as illustrated in enclosure (1), provides the inventory manager with the ability to sort and organize inventory data rapidly and accurately using the **Sort**, Search, and **Browse**, functions. It also allows the inventory manager to execute various replenishment options via the **Replenish** function; and the ability to generate standard or custom reports using the **Reports** function. A **Remarks** window allows the inventory manager to recall comments for each inventory item. A second window for **Trends** graphically displays historic demand and inventory data. The inventory data is organized in a database window called **Inventory and Demand Data**.

DIN: PD 7-7-001/47 12/29 95

Figure 1. Basic Screen for the Replenishment Medel

The inventory manager can edit any field, other than those derived from HICS, at his or her discretion using the **Edit** function. The fields contained in the database and the source of the data for each field is summarized in Table 1.

Table 1. Fields in the Replenishment Model

Field	Description	Source of Data
Mark	Used to select items	N/A
Class	Identifies Mat I Class	RIM
NSN	National Stock Number	HICS
Nomen	Item's common name	HICS
UI	Unit of Issue	HICS
Total	Total Qty of item in stock	HICS
A	Qty of A cond mat'l in stock	HICS
CA	Qty of CA mat'l in stock	HICS
Surplus	Qty of mat'l in excess of HL	Calculated by Replen. Model
Short	Difference between LL and Total	Calculated by Replen, Model
Forecast	Estimated Demand	Calculated by Replen, Model
HI.	Maximum Recommended	Class Land II: Replen Model
	Inventory Level	Class III and IV: RIM
LI.	Minimum Recommended	Class Land II; Replen Model
	Inventory Level	Class III and IV: RIM
RQQ	Reorder Quantity	Calculated by Replen, Model

Table 1. Fields in the Replenishment Model (Cont'd)

Field	Description	Source of Data
Lead Time	Time required to order & receive	RIM
	material	
Date Order	When the order was placed	RIM
On Order	Qty of material ordered	RIM
ETA	Expected arrival date of mat'l	RīM

The Replenishment Model also contains provisions for standard and custom reports that can be output to the screen or to a printer. All of the standard reports contain the 18 fields from Table 1. The report categories are:

- 1. Inventory and Demand Data A report containing all items in the inventory.
- 2. Surplus Material A report containing only those inventory items in which the inventory level exceeds the High Limit.
- 3. Low Stock A report containing only those inventory items for which the inventory level is below the low limit.
- 4. Mat'l On Order A report of those inventory items with pending orders.
- 5. Custom Reports that can be generated for any of the standard report categories or for selected items. Custom reporting also allows the inventory manager to select the fields that will be included in the report.

5. Replenishment Model Variables:

The key inventory variables in the Replenishment model are the forecast, the high limit, the low limit, and the reorder quantity. The Replenishment Model calculates forecasts, reorder quantities, High Limits and Low Limits for items with high demand only (Class I items). The inventory manager may edit or change the values calculated by the model at any time. The Replenishment Model variables are shown below:

Forecast = 0.1*Last Period Demand + 0.9*Previous Forecast

Low Limit = 2.5*Forecast + Lead Time Factor

High Limit = 6.5*Forecast + Lead Time Factor

Reorder Quantity = High Limit - Current Inventory Level

If the forecast falls below 5 units per month, the High Limit defaults to 40 and the low limit defaults to 20 units. Section II contains a detailed description of the development of these replenishment equations.

Conclusions

The information provided herein comprises a functional description of a Replenishment Model for regional inventory management under the RHMMS concept. It was developed using data from operating HAZMIN Centers and information and recommendations from NAVSUP HM inventory managers.

This model is designed to meet all regional requirements for hazardous materials managed using RHMMS without sending any excess HM to disposal. It differs from classical replenishment models because it does not rely on Economic Order Quantities (EOQs) to optimize costs. Rather, it focuses on minimizing materials held in the inventory to avoid the costs associated with disposal of excess HM.

The model presented above can be used to manage materials with any level of demand. However, it provides the most benefit for items that experience consistent, significant, levels of demand. This is consistent with the policy of stocking only high turnover items at HAZMIN Centers. Despite this policy, HAZMIN Centers must stock certain slow moving items that are extremely critical or difficult to obtain. Therefore, a need exists for dealing with slow moving items. Just-in-Time (JIT) delivery and lead time minimization methods present viable options for dealing with this issue. Integration of such methods into the replenishment model would enhance its effectiveness for dealing with slow moving items.

Based on AFMA's research and development of the replenishment model, several recommendations for optimizing its performance have been compiled. They are:

- Class I items should be limited to items with moderate to high levels of demand and high frequency of issue (approx. 24 issues or more per year).
- Periodic review and update of Authorized Use Lists is necessary to avoid stocking items that are no longer used. This also avoids loading the database with unnecessary information.
- FIAZMIN Centers should eliminate slow moving items from the inventory whenever possible. Demand for such items is difficult to predict and time consuming for the inventory manager.
- NAVSUP and FISCs should develop strategies to minimize lead times as much as possible to reduce the amount of material required to satisfy demand while orders are pending.
- 11 ZMIN Centers should pursue a strict policy of First-in, First-out (FIFO) with regard to HM inventories. This means issuing materials with the shortest remaining shelf-life first. This policy is required to ensure that shelf-life expiration does not occur.

Section II: Detailed Description of Methods Used in Model Development

The forecasting and replenishment models resulted from research, historic demand data from operating HAZMIN Centers, site visits, and interviews with FISC inventory managers. The development of the forecasting model was based entirely on analytic methods. However, the replenishment model was created using subjective as well as analytic methods. These methods, the resultant findings and conclusions are discussed in detail below.

Development of the Forecasting Model

Development of the forecasting model followed a standard engineering methodology comprised of five basic steps:

- 1 Research.
- 2. Data Collection.
- 3. Data Analysis,
- 4. Simulation and Testing,
- 5. Evaluation of Results.

i. Research

Creation of the forecasting model began with research into existing candidate models. This research was limited to two basic reference documents cited in the Project Description for this task:

- Principles of Inventory and Materials Management, 4th Edition, Richard J Tersine, and
- Development of Inventory Models in Support of the Hazardows Material Minimization Concept at FISC, Puget Sound, Naval Post Graduate School Thesis, Pilourn and Smith

The above references cover several independent demand forecasting models potentially adaptable to inventory management under the RHMMS concept. After analyzing the advantages and disadvantages of each model, a candidate model called 'exponential smoothing' was selected for simulation and testing. This model has the greatest potential for accurate demand forecasting with minimal data storage requirements. It is more complex than other models; however, the complexity is not a detriment since implementation will be via software. The only drawback remains the inability to forecast items with low frequency of issue, a difficulty common to all independent, deterministic models. A brief description of the principal forecasting methods and their advantages and disadvantages is summarized in Table 2 on the next page.

The exponential smoothing model forecasts demand using the most recent forecast plus an adjustment for the error between the previous forecast and previous actual demand. It effectively predicts the constant component of demand and eliminates random fluctuations. If necessary, the model can be modified to adjust for trend, seasonal and/or cyclical demand fluctuations. The basic formula for this forecasting method is:

Forecast = Previous Forecast ± a*(Previous Actual Demand - Previous Forecast) where 'a' is the exponential smoothing constant (adjustment factor) ranging from 0 to 1.

Table	2. Comparison of Demand Foreca	sting Methods	
Method	Description	Advantages	Disadvantages
I ast Period Demand	Next period demand is simply equal to the actual demand for the previous time period.	 Simple concept. Easy to Implement. Requires very little historic demand information 	 Large fluctuations in forecasts. Forecasts reflect random demand rather than constant demand elements. Ignores all factors that indicate future changes in demand. Not accurate for items with low frequency of issue.
Arithmetic Average	Demand is equal to the average demand for all past time periods.	Simple to use. Easy to implement.	 Responds very slowly to changes in demand. Requires retention of large quantities of data. Weights all prior demand periods equally. Not accurate for items with low frequency of issue.
Moving Average	This method computes demand as an average of demand for the last 'n' time periods. The number of periods, n, is selected by analyzing historic demand data.	 Simple to use. Easy to implement. Responds to trends (with a delay). Gives greater weight to recent demand periods than arithmetic averaging. 	 Requires retention of significant quantities of historic demand data. Does not correct for errors in prior forecasts. Not accurate for items with low frequency of issue.
Exponential Smoothing	Similar to moving average, but provides for a correction factor based on error in the previous periods forecast.	 Responds to trends. Predicts constant components of demand. Reduces random demand fluctuations. Gives greater weight to more recent demand periods. Responds to errors in previous forecasts. Requires retention of minimal historic demand data. 	1. More complex than other meth. is. 2. Requires more effort to implement. 3. Not accurate for items with low frequency of issue.

The basic exponential smoothing formula given on the previous page reduces algebraically to this form;

Forecast = a*(Previous Actual Demand) + (1-a)*(Previous Forecast)

The value for 'a' in the exponential smoothing model lies between 0 and 1 and is chosen by analysis of historic demand data. As the value of 'a' approaches 0, this model exhibits minimal response to previous actual demand. Conversely, as the value of 'a' approaches 1, this model responds almost exclusively to previous actual demand (In fact, it approximates a last period demand model). In practice, selecting the appropriate value for 'a' requires real, historic demand data for use in forecasting simulations. Data collection for testing of the exponential smoothing model in the context of the RHMMS concept is discussed below.

2. Data Collection

After choosing the exponential smoothing method as the best candidate for forecasting under the RHMMS concept, data collection began. The data collection effort included these goals:

- Obtaining historic demand data representative of typical items stocked in operating HAZMIN Centers. This information is required to select an appropriate value for 'a' in the exponential smoothing model. It can also help identify trend, cyclical and/or seasonal components of demand that may need to be added to the exponential smoothing model.
- Obtaining statistics, or raw data from which to derive statistics, that
 characterize the nature of demand for items stocked in operating HAZMIN
 Centers. These statistics are used to identify any limitations that may affect use
 of the forecasting model. They also identify factors that might preclude the
 use of the forecasting model.

The necessary data were obtained from FISC, Norfolk and FISC, San Diego, during site visits by AFMA personnel. The data were provided in the form of copies of the HICS databases from operating HAZMIN Centers at each FISC. It includes transactions from several HAZMIN Centers over the course of one year (July 1994 through July 1995) and copies of HAZMIN Centers' AULs.

The HICS databases contain a number of fields not relevant to the demand forecasting model. These fields were culled from the data using a relational database management program. The resultant database is comprised of fields with the following information:

- National Stock Number
- Date of each transaction (material issue)
- Unit of Issue
- Material Type ('A' Condition or CA)
- Product Nomenclature

In addition, data for items other than 'A' Condition and 'CA' materials were discarded. Appendix A contains a copy of the data remaining after the reductions described above. It is provided in electronic format (Microsoft Access TM) due to its large size (approx. 500 pages).

3. Data Analysis

The data collected were analyzed to quantify aggregate regional demand and to determine the annual frequency of issue for HM. Aggregate demand information was derived from analysis of the data in Appendix A. Table 3 shows the results of this analysis.

Table 3. Aggregate Demand Data - FISC, Norfolk and FISC, San Diego

	FISC, Norfelk	FISC, San Diego
Total HM Issues	27,778	18,101
'A' Condition HM Issues	8,834	12,064
Number of Items Stocked	1,039	568
Number of Items on AULs	4,494	650

A number of observations were made regarding aggregate demand based on the information in Table 3. First, a large number of HM transactions are processed via HAZMIN Centers under the purview of each FISC. Second, issues of 'A' condition materials represent a significant fraction of the issues at FISC, Norfolk; and, comprise the bulk of HM issues at FISC, San Diego. Third, the number of items authorized for issue exceeds the number of inventory items actually issued at both FISCs.

The data in Appendix A were sorted to determine the annual frequency of issue for each item. This information was later used as an index of forecast accuracy (see remarks on this subject in the *Research* section above). Appendix B lists the inventory items and the frequency of issue for each.

The data in Appendix B were grouped by frequency of issue to determine the percentage of inventory items exhibiting the same or similar frequency of issue. The results of this exercise are shown graphically in Figure 2, for FISC, Norfolk and FISC, San Diego. These graphs indicate that items with relatively low frequency of issue comprise a significant fraction of the items stocked at each FISC.

Figure 2. Frequency of Issue vs. Number of Inventory Items

4. Simulation and Testing

Following the data analysis, simulation and testing of the exponential smoothing model commenced. The simulation and testing was performed to provide a basis for evaluating:

- the suitability of the e Fonential smoothing model for use in the replenishment model,
- the appropriate value for the exponential smoothing constant 'a', and
- minimum frequency of issue for accurate forecasting (if one exists).
- cyclical, seasonal, or other demand components not included in the basic exponential smoothing model, and
- the effect of CA items in the inventory on demand

Simulation and testing were performed on a random sample of inventory items selected from both FISC, Norfolk and FISC, San Diego HAZMIN Center inventories. The simulation proceeded using thirty-two inventory items with frequency of issue ranging from 6 to 366 issues, over a one year period. Historic demand data on these items were used to simulate real time forecasts calculated by the exponential smoothing model. This simulation was repeated four times for each inventory item. In each repetition, the value of 'a' in the exponential smoothing model changed while all other factors were held constant. Four values of 'a' were used: 0.1, 0.3, 0.6 and 0.9.

To perform the simulations, individual transactions from Appendix A were utilized to determine the monthly demand for each item. Then, the exponential smoothing model was used to simulate monthly forecasts. Because the first forecast in each repetition required an initial value for the 'previous forecast', the first month's actual demand datum was used for the initial 'previous forecast'. The resultant forecasts (one for each value of 'a') were charted, along with the actual monthly demand for analysis and interpretation of the results.

In order to assess the results of the simulations, the variance between the actual demand for each monthly forecast in each repetition was calculated. The variance was defined as the Mean Absolute Deviation (MAD) between the forecasted demand and the actual demand for each month. The MAD represents the magnitude of the difference between the forecasted demand and actual demand for each month. The lower the MAD (variance), the more accurate the forecast. Algebraically MAD is given by:

MAD = ABS(forecasted demand - actual demand)

In addition to calculating the MAD for each monthly forecast, MAD values were averaged for each forecast repetition. An example of the data derived from one inventory item is shown in figure 3 on the following page. Appendix C contains similar information for each of the 32 inventory items included in the forecasting simulations.

In order to compare the variation in forecast simulations among several different inventory items, the average MAD was indexed to the average monthly issue quantity for the item under study. The resulting MAD Index is expressed as a percentage

Figure 3. Sample Forecast and MAD Tables from Appendix ${f C}$

		Mea	n Ahadute [y) coreva	/ACI				Fcrecaste	d Darrend	
Date	Actual Demand	æû1	a=0.3	Cab /Cuta Co.	Actual Demend	a≕0:i	a≕0.3	a=06	a=09		
7/94	14	n/a	rła	r/a	ıya	7/94	14	r/a	ďа	n/a	n/a
8/94	11	3	3	3	3	8/94	11	14	14	14	14
994	24	10	11	12	10	994	24	14	13	12	14
10/94	18	3_	2	1	6	10/94	18	15	10	19	12
11/94	15	0	2	4	4-4	11/94	15	15	17	19	19
12/94	90	75	74	74	71	12/94	9	15	16	16	19
1/96_	24		14	37		1/95	24	23	38	61	17
2/96 3/96	156 233	133 217	122 182	117	100 213	295	156	23	34	39	56
4/96	109	51	16	86-	7	3/95	253	36	71	109	40
5/95	197	134	77	53	11	4/96	109	:8	125	196	102
695	121	45	22	55	27	5/95	197	63	120	144	186
AVG	136	ଖ	48	53	42	6/95	121	76	143	176	148

representing an average range of forecasting accuracy. A MAD Index of 31% indicates that the forecast, on average, lies within 31% (above or below) the average issue quantity for a given item

MAD Indexes were calculated for all of the forecast simulations and consolidated into a single table along with frequency of issue and average issue quantity data, for comparison purposes. Ext, seven items were eliminated because the MAD values were extremely high and the frequency of issue very low, indicating that the forecasting model is not suitable for these items. Four additional items were eliminated because they were not stocked by the HAZMIN Centers for the entire duration of the simulation. The remaining MAD Indexes and related information are presented in Table 4.

Table 4. Mad Indexes

			Mad Index%	Mad Index%	Mad Index%	Mad Index%
Item NSN	AlQ	FOI	(a=0.1)	(a=0.3)	(a=0.6)	(a=0.9)
7930011770795	214	366	43	33	28	2.3
6850012350872	77	350	19	16	18	18
8010013540963	78	275	27	32	36	38
8030005468637	114	211	28	26	26	28
8010012002637	52	193	48	46	40	33
8010013316107	57	184	37	35	33	35
8010012930789	79	160	41	29	28	29
9150002500926	15	122	4 7	53	60	73
9150001497432	270	120	46	39	38	37
9150012602534	3.5	106	49	57	66	77
6840006877904	136	92	45	35	39	31
8040001178510	20	62	50	60	70	70
6850012340219	Υ.	43	57	71	71	86
9150002319071	9	51	78	67	78	89
8010001817568	7	49	43	43	46	46
915000985709	291	48	97	93	86	80
8040003152246	4	37	50	50	50	75
8030010668156	10	30	5()	50	60	70
6810002499354	16	25	69	75	75	75
9150002316676	8	2:	63	75	88	100

An example of a MAD Index calculation, using the forecasting data from figure 3 is shown below:

Given:

Exponential Smoothing Forecast with 'a'= 0.1,

Average Monthly Issue Quantity = 136,

Average MAD = 61,

then:

Mad Index = Average MAD / Average Monthly Issue Qty = 61/136

= 31%

The average of the MAD Indexes for each value of 'a' in Table 4 are of particular interest in evaluating the results of the simulation. Therefore, they are shown in Table 5:

Table 5. Average MAD Indexes

Exponential Smoothing Factor	Average of MAD Indexes from Table 3
a = 0.1	49%
a = 0.3	49%
a = 0.6	52%
a = 0.9	56%

5. Evaluation of Results

Evaluation of the results of the simulations took place after calculation of the MAD Indexes. The feasibility of using the exponential smoothing model for demand forecasting under the RHMMS concept was examined first. An examination of Tables 4 and 5 indicated that the model is feasible for certain inventory items based on the accuracy of the forecasts. In general, average MAD values of 75% were considered acceptable in this determination.

Next, the appropriate value of 'a' was selected based on the average of the MAD values for each value of 'a', and examination of the forecast charts in Appendix C. The lowest average MAD Index value normally indicates the best value for 'a'. Table 4 shows that two values of 'a'. 0.1 and 0.3 tied for the lowest value (49%). Because lower values of 'a' produce a more consistent forecast (see graphical results of forecasting simulations in Appendix C), they are preferred when a single value cannot be selected based on the MAD. Therefore, 0.1 was chosen as the most appropriate value for 'a' in the exponential smoothing model. The basic forecasting model was then determined to be.

Next Period Demand = 0.1*Previous Actual Demand + 0.9*Previous Forecast

Following identification of the basic forecasting model above, limitations and capabilities of the model were investigated in greater detail. The minimum frequency of issue was established at 24 issues per year. This is based on the fact that below a frequency of issue of 24 issues, the average MAD is consistently greater than 75%, regardless of the value of 'a'. While evaluating frequency of issue, a negative correlation

between average monthly issue quantity and forecasting accuracy was observed. This means that the forecasting model may not provide accurate results when the monthly demand is low (generally less than 5 units per month). However, in most cases, low issue quantities can be ignored because they are typically associated with low frequency of issue. This issue is addressed further in following sections dealing with the replenishment model.

The data, charts and graphs developed during forecasting simulations were also used to find examples of trend, seasonal, cyclical and other components and demand. This was accomplished by visually inspecting each graph in Appendix C for actual demand fluctuations consistent with trend, seasonal, cyclical or other components of demand. Seasonal, and Cyclical demand patterns were not found, in part, because of insufficient data (a minimum of two years historic data is necessary to fully quantify such patterns). However, trends were evident in several cases. It is not possible to determine whether these trends are seasonal, cyclical, or driven by independent factors. Therefore, no modifications were made to the forecasting model to compensate for trends. However, this does not preclude provisions in the Replenish Model to handle trends.

The effect of CA materials on demand was investigated following the forecasting model simulations. The result of this investigation was indeterminate. No evidence was found linking the amount of CA material in the inventory and the demand (or lack thereof) for inventory items. The data, charts and graphs used in this investigation are included as Appendix D of this report. Despite the lack of information on this subject, the forecasting model has proven effective within acceptable parameters; therefore, the subject was not pursued further.

The ultimate result of the forecasting model development is a simple, accurate exponential smoothing model that operates with reasonable limits on frequency of issue.

Development of the Replenishment Model

The Replenishment model was developed based on the capabilities of the forecasting model as described previously. The basis of the design was:

- 1. A review of potential aggregate inventory management models available.
- 2. Selection of the appropriate models for adaptation to HM management.
- 3. Identification of appropriate **data management methods** consistent with the needs of the RIM.
- 4. **Data Analysis and Simulation of the model** to determine the appropriate values for variables in the Replenishment Model and to verify its effectiveness.
- 5. Evaluation of Simulation Results

1. Aggregate Inventory Management Models

Several aggregate inventory models were considered for use in the replenishment model. In addition, a management method potentially applicable to any inventory model, called 'ABC Analysis', was examined. The models and 'ABC Analysis' are described briefly below:

 Perpetual Inventory System - This system keeps a running total of the inventory quantity that is checked every time an item is issued. If the issue causes the inventory position to fall below the ROP, an order is placed. Safety Stock is used to prevent stock outs. Order size is determined by Economic Order Quantity (EOQ) calculations. The two variables that define this system are the ROP and the EOQ.

- Two-Bin Inventory System This system also relies on ROP and EOQ calculations, however; the inventory is not monitored continuously. A secondary inventory (bin) is maintained to cover demand while materials are on order.
- Periodic Invento: System This system relies on a fixed order time period with High Limits on inventory. At the time of review, an order is placed for a quantity equal to the High Limit minus the current inventory position for the item. Safety Stocks are used to prevent stock outs.
- Optional Replenishment Inventory System This system combines elements of
 the perpetual and periodic inventory systems. It uses both a High Limit and
 Low Limit on inventory items with a fixed period of review. If the inventory
 level is at or below the Low Limit, an order is placed. Order size is determined
 by subtracting the current inventory position from the High Limit. Safety
 Stocks are used to prevent stock outs.
- Selective Inventory Control (also called ABC Analysis) This management technique divides inventories into three classes based on dollar volume sold.
 The purpose is to allow the inventory manager to focus resources on the class or classes of materials that need more intensive management.

2. Selection of an Aggregate Inventory Model

Based on the capabilities and limitations of demand forecasting for HM inventories, an appropriate aggregate inventory model was selected. The Optional Replenishment (OR) model was selected, along with Selective Inventory Control (SIC). These methods were selected because they are compatible with demand forecasting and do not rely on Beonemic Order Quantities to determine the appropriate amount of material for replenishment. Economic Order Quantities were rejected because they tend to increase replenishment quantities in order to achieve discounts on orders. Such methods are incompatible with HM management where inventories are minimized to avoid disposal costs associated with shelf-life items. The OR model and Selective Inventory Control measures selected are discussed in detail in Section I of this report. The details regarding exact values for high and low limits are discussed below in the section on simulation.

The methods selected for use in the Replenishment Model were modified from their theoretical origins to accommodate the unique requirements of HM management. First, SIC was modified to contain four classes of materials, without regard to dollar volume:

- Class I for items that can be forecast with reasonable accuracy
- Class II for items with low frequency of issue (DIPC has indicated that they have developed a method of setting high and low limits for these items).
- Class III for items that do not fit into Class I or II
- Class IV for items of particular interest to the RIM

This modification was necessary to distinguish between items for which demand can be forecast and those for which it cannot. Moreover, it provides a means for isolating items of unique interest to the RIM, such as items extremely critical to a customer's mission.

Second, the High and Low Limits on inventory (for Class I items) were fied directly to the demand forecast. In practice, High and Low Limits are often set arbitrarily. Tying these values to the forecast ensures that they respond to demand and, therefore, prevent stock outs or shelf life expiration without the need for adjustment by the RIM. The high and low limits were validated via simulations as discussed in sections 4 and 5 below.

3. Data Management Methods

Due to the vast quantities of data handled by each Region under the RHMMS concept, data management methods were a major concern in development of the replenishment model. As discussed in Section 1, a database management system was chosen as the primary means of data management. A database management system was selected for several reasons:

- 1. Database management systems have the ability to handle and manipulate large quantities of data.
- 2. Two of the FISCs visited during the development of the Replenishment Model currently employ commercial database management systems to monitor their inventory levels. FISC personnel are familiar with this type of software and are likely to be amenable to a system employing similar methods.
- 3. Development of the Replenishment Model required the use of database management systems in a manner similar to that expected of RIMs using the Replenishment Model. Database management software proved to be the simplest, easiest way to perform replenishment and related operations.

The details of the database management system envisioned for the RHMMS replenishment model (see Section I) were created based primarily on suggestions proposed by FISC HM managers integrated with the data requirements required for replenishment calculations.

4. Data Analysis and Simulation

Data Analysis and Simulation were used to determine the High and Low Limits for Class I items and to determine the effectiveness of the Replenishment Model. Low Limits were quantified first, using historic demand data for several items used in derivation of the forecasting model. These items are shown in Table 6 on the following page.

For the items listed in Table 5, each month's demand was compared to the forecast for the same month to identify the maximum amount by which actual demand can exceed forecasted demand in any one month. The results of this comparison are illustrated in Appendix E. Appendix E shows that actual demand can exceed forecasted demand by as much as 800%. However, in only 6 cases out of 165, does actual demand in any one month exceed forecasted demand by more than 250%. Therefore, the Low Limit was set at 2.5 times the forecasted demand. For simulation purposes, a lead time factor of 1.5 (one and one-half months) was added to the Low Limit, resulting in a low limit of four times the monthly forecast. In practice, lead times will vary, but for simulation purposes a

lead time factor of 1.5 was used in all simulations since this value is consistent with actual lead times observed for items obtained via the Navy Supply System.

Table 6. Items Selected for Data Analysis and Simulation

Item N3N
9150002316676
6810002499354
8030010668156
8040005152246
6850012340219
8010001817568
9150002319071
8040001178510
9150012602534
9150002500926
8010013316107
8030005468637
8010013540963
6850012350872

A High Limit was arbitrarily set at five times the forecast (plus a lead time factor of 1.5), but this value tended to produce numerous stock outs during simulation. Therefore, the High Limit was gradually increased to a level where stock outs were not observed. The resulting High Limit was 6.5 times the forecast, plus a lead time factor of 1.5.

After establishing the High and Low Limits, a basic set of assumptions were required to ensure consistency in the simulations. The following assumptions were used for the simulations:

- 1. The initial inventory position is slightly above the low limit for each item. This ensures that the simulation includes at least one cycle of replenishment.
- 2. No orders are pending at the start of the simulation. This condition is also designed to force at least one replenishment cycle during the simulation.
- 3. The first forecast in each simulation is an arithmetic average of the previous three months' actual demand. This is designed to increase the accuracy of the forecast and, subsequently, the replenishment model. The arithmetic average provides a more accurate first forecast than the last period demand method used in development of the forecasting model.
- 4. All orders are placed at the end of the month and have a lead time of 45 days.
- All incoming orders arrive at or near the middle of the month in which they are received.
- An incoming order can be used to satisfy demand incurred prior to arrival of the order, but only if the demand occurs in the same month in which the order is received.
- 7. The inventory position shown for any month is the position at the end of the last day of that month.

Using the assumptions listed above, a first round of simulations were conducted. These first simulations resulted in numerous stockouts for items that have a monthly issue quantity less than five units. Therefore, a floor was established for the High and Low Limits equivalent to a forecasted demand of five units. This means that a minimum values were established for the High and Low Limits of 40 and 20 units, respectively. Anytime the forecasted demand dropped below five units, the minimums took effect. A second, final round of simulations followed. The results of the final round of simulations are illustrated graphically in Appendix F.

5. Evaluation of Results of Simulation

The final round of simulations showed excellent results. The simulation covered a 14 items over a nine month period in which one stock out occurred, lasting less than one month. In addition, three items experienced minor inventory surpluses as a result of decreasing demand. The surpluses were low in magnitude; therefore, it is not likely that they would necessitate redistribution. Further, because the High and Low Limits decreased over time, with the forecast, new orders (that would exacerbate the situation) were prevented. Items with forecasted demand of less than five units responded extremely well to the floor values set for the high and low limits. The results obtained from the simulations validated the selection of replenishment model variables first discussed in Section I of this report:

Forecast = 0.1*Last Period Demand + 0.9*Previous Forecast

Low Limit = 2.5*Forecast + Lead Time Factor

High Limit = 6.5*Forecast + Lead Time Factor

Reorder Quantity = High Limit - Current Inventory Level

ENCLOSURE (1): RHMMS REPLENISHMENT MODEL GRAPHICS

DISCPD 7.2 001 u7

Graphic #1 - This is the first screen seen on entering the replenishment module.

Graphic #2 - Scrolling to the right to view the remaining fields in the "Inventory and Demand Data" window.

	، نینینینی ۱۱	M KKNI	I t A I	361	_		-	NVIN	ORY				-			-	К	\neg
HK	11:34	ULASS	196.1	шы		10 AL	IA	CA	Summer.	134 (141	11 14(-(A 1. 1	111	11	H- X	LEA	O IM	ij
			:			:				1					}	ļ		
							1			:	-				1	į		
		1			1		1								1			1
					1 1	,		i	1	!	}			1	1			-
		1	,			:	•		1					1		į		1
		f	:		•		:	i	ì	i			i	1	1	.!		1
- 1									1		Ì			1	1	:		1
:		, f			1 :	:	:		İ	1	1		İ	1	}	1		
							1	1		;	}		:	1	ł.			
		1					i i			1	,			1	!	1		
:		1			;	, , , , , , , , , , , , , , , , , , , ,	•		l	l	,		i	l.,	ĺ.,			
: 	Nickmerks			l resurb	; ;	: 1:1	Z.		l	ļ				l	İ			
. []	Name of the Contract of the Co	1				998-80V604	3935.5	ONO								 M .		
	Kantherlen	1			YHRY	e and	DKAI										•	-
		1		****		e end	DKAI	нм		(() ()	Į DA	77	JR I				▼]	
. []			iNi	****		e end	DKAI	нм	101	<u>.</u> <u> </u>	L TA	77 -	(R)		1		▼	
. []		1	iNi	****		e end	DKAI	нм	101	<u>5451</u>	In A	77 -	, i			1	▼]	2
. []		1	iNi	****		e end	DKAI	нм	101	<u> </u>	Tr.A	77 -	JR (▼	
. []		1 11	iNi	****		e end	DKAI	нм	101	<u> </u>	DA	77 -	J R I	\			¥] ¥ }	
. []		1.	iNi	****		e end	DKAI	нм	101	<u> </u>	TO A	77 -	JRI	<u> </u>			→]	
. []			iNi	****		e end	DKAI	нм	101	<u> </u>	TO A	77 -	J.R.T.	T 13.2			▼]	
. []		1	iNi	****		e end	DKAI	нм	101	<u>, 451</u>	TO A	17) (N /)	T 1-2			I	
		1	iNi	****		e end	DKAI	нм	101	<u> </u>	DA	77 -) H (-	112			V 3	
-		1 11	iNi	****		e end	DKAI	нм	101	<u> </u>	TO A	77 -	7 H (-	11.7			¥ 3	

DIS 4D 12 001 97

Graphic #3 - Options for sorting data

Graphic #4 - Searching for specific inventory information.

DPG PD 72 001 #7

2

Graphic #5 - Using the "Browse" function to move through the database.

Graphic #6 - Replenishment.

DIN PD-7-2 001 #7

Graphic #7 - Reports

Graphic #8 - Custom Report Options.

APPENDIX A: DATA USED TO DEVELOP FORECASTING AND REPLENISHMENT MODELS UNDER THE RHMMS CONCEPT

DATA: The basic inventory and demand data used to develop the forecasting and replenishment models presented in this report is contained in the 3.5", 1.44 Mb floppy disc in the envelope below. The data is contained in a Microsoft (YM) Access Database. The file has been compressed due to its size (5Mb) using PKZIP. To view the data, decompress the file using PKUNZIP and open the database using a database management program such as Access.

APPENDIX B: FREQUENCY OF ISSUE DATA FROM FISC, NORFOLK AND FISC, SAN DIEGO

Frequency of Issue - FISC, Norfolk

Item NSN	Frequency of Issue		
3439009148390	í	3439LLL205987	1
4210010560883	1	5350001931349	1
5610009264562	1	5610HZ0000280	1
5610HZ0000281	1	5970002959298	1
6135008357210	1	6140012034694	1
6505002998095	1	6570001478973	1
6640LLL204580	1	6640LLL204581	1
6640LLL204582	1	6640LLL204583	1
6640LLL204584	1	6640LLL204585	1
6640LLL204586	1	6640LLL204587	1
6640LLL204588	1	6640LLL204589	1
6640LLL204590	i	6640LLL204591	1
6640LLL204592	1	6640LLL204593	1
o640LLL204594	1	6640LLL204595	1
6650001795142	1	6750007271063	1
6750009586549	1	6750009654846	ı
6750LLL148242	1	6810000064205	ı
6810002372954	1	6810002411203	i
6810002703254	1	6810002709978	1
6810002709988	1	6810002812686	1
6810002863783	1	6810002929625	1
6810005272476	1	6810005844070	1
6810007822686	1	6310008179929	1
6810008238004	1	6810009306311	1
681000B160024	t	681000NU48799	1
6810010652410	1	6810HZ0000062	1
6810HZ0000063	1	6810HZ0000306	ĺ
6810HZMIN0013	1	6810HZMIN0014	1
6810LLL100051	1	6810LLL106524	1
6810LLL115110	1	6810LLL188086	1
6810LLL188289	1	6810LLL195255	1
6810LLL200040	1	6830001061656	1
6830LLL209309	1	6840010334481	1
6840010653662	1	6840012781336	1
6840013599208	1	6840HZM1N0003	1
6840HZM1N0008	1	6840HZMIN0010	1
6840HZM1N0012	1	6850000632842	1
6850001094362	1	6850001452255	1
6850001806165	1	6850001817933	1
6850002645771	1	6850002649038	1
6850005505565	1	6850005637514	1
6850005709360	1	6850005856426	1
6850005923283	1	6850006649067	1
6850009059098	1	6850009279461	1
685000N000348	1	685000N001126	1
685000N041511	1	685000N041765	i
6850010260107	1	6850011589378	1
6850011630277	1	6850012770595	1
6850013722968	i	6850013779360	i
6850013779368	1	6850HZ0000232	í
			•

6850LLL106203	
6850LLL126786	,
6850LLL188173	1
6850LLL205872	i
7930001325265	1
7930002298541	1
7930008804454	1
793000F008288	1
7930013425316	1
7930013980992	1
7930HZ0000077	1
7930HZ0000311	1
7930HZMIN0008	1
7930LLL118423	1
7930LLL200899	1
8010000822450	1
8010001605789	1
8010001711509	l I
8010002345176	1
8010002812071	1
8010004108460	1
8010005160021	ı,
8010005272507	1
8010005308371	1
8010005843148	1
8010005987267	1
8010006167486	I I
8010006410426	1
8010007219747	1
3010008357215	1
8010009172256	i
8010009356608	i
8010009901542	i
801000F030884	i
201000LOC0100	i
801000LQC1007	1
801000LOC1009	1
801000N011325	i
801000N018495	i
801000N047141	1
8010011189981	j
8010012833672	1
8010012853038	1
8010012853044	1
8010012853355	1
8010012933797	1
8010013137292	1
80 ! 00 1 5 î 460 7 [1
8010013186668	1
8010013316111	i
8010013360529	1
8010013445311	1
3010013446693	1
8010013470916	í

6850LLL115898	
6850LLL142527	
6850LLL195265	
7220002050389	
7930002247901	
7930003577386	
7930009856906	
7930010522868	
7930013980990	
7930HZ0000076	
7930HZ0000204	
7930HZMIN0006	
7930HZM1N0009	
7930LLL127688	
8010000643415	
8010001412451	
8010001656111	
8010001817791	
8010002801751	
8010002921813	:
8010004184667	1
8010005272053	1
8010005305559	1
8010005774739	,
8010005977844	1
8010006160009	1
8010006167816	1
8010007219742	1
8010007219749	
8010009018038	i
8010009269129	1
8010009357085	Ţ
8010009982845	1
801000J982845	I
801000LOC1006	1
	1
801000LOCI008	1
801000LOC7048	1
801000N017527	1
801000N023090	1
8010010532647	1
3010011816275	1
8010012853035	i
8010012853043	1
8010012853046	1
8010012931365	ι
8010014064934	i
8010013142524	1
8010013163038	t
8010013296304	1
8010013339450	1
8010013365061	1
8010013445312	1
8010013446703	1
8010013502073	1
	-

DIN: PD 7/2/001.#7 29 December 1995

8010013536550	1
3010013539055	í
8010013801703	1
8010GLOSSBLAC	1
8010HZ0000002	
80101120000002	1
801011Z0000021	i
8010HZ0000060	1
8010HZ0000085	1
8010HZ0000122	1
	l l
8010HZ0000280	1
8010HZMIN0002	1
8010HZMIN0024	1
8010HZMIN0027	t
8010HZM1N0049	1
8010HZMIN0053	ı
8010HZMIN0073	1
8010HZMIN0079	í
8010HZMIN0101	1
8010HZMIN0108	1
8010HZMIN0111	1
8010HZMIN0125	1
8010LLL144803	1
8010LLL148253	1
8010LLL154745	1
8010LLL195016	1
8010LLL195021	1
8010LLL200732	1
8010LL1.200748	1
8010LLL200885	1
8010LLL200888	1
8010LLL205883	i
8010LLL205990	1
8010LLL209591	1
8030000812325	i
8030001112762	1
8030001806315	i
8030002921102	i
8030006523562	i
8030006644019	i
8030007535004	1
2050007614010	1
8030009656704	1
803000L0C1008	
803000N034088	1
8030010663971	1
8030011376964	1
8030011586070	1
8030013568690	1
8030HZMIN0017	1
8030[1],[184]]	1
8030LLL130815	1
8030LLL/148449	1
8030LLL195297	1
00 MLL1.195297	l

The state of the s

8010013536551	
8010013582900	
8010CATYELLOW	
8010HAZMIN064	
8010HZ0000004	
8010HZ0000019	
8010HZ0000032	
8010HZ0000072	
8010HZ0000102	
8010HZ0000276	
8010HZ0000285	
8010HZMIN0017	
8010HZMIN0025	
8010HZMIN0047	į
8010HZMIN0051	
8010HZMIN0059	
8010HZMIN0074	1
8010HZMIN0088	
8010HZMIN0105	
8010HZMIN0109	
8010HZMIN0112	
8010HZMIN0126	1
8010LLL148066	1
8010LLL148262	1
8010LLL188114	1
8010LLL195018	1
8010L1.1.200082	1
8010LLL200747	1
8010LLL200749	1
8010LLL200887	1
8010LLL200927	1
8010LLL205947	1
8010LLL205991	1
8030000087207	1
8030000812337	1
8030001450300	1
8030002758114	1
8030005261455	1
8030006561426	i
8030007235345	
60/3000/23/1345	1
8030008893535	1
803000L0C1006	1
803000N029758	1
	1
8030010462947	ı
8030011191901	1
8030011522275	1
8030011633483	1
8030HZMIN0001	1
8030HXMIN0018	1
8030LLL126918	1
8030LLL135272	ĺ
8030LLL195242	1
8030LLL209320	1

DIN, PD-7-7, 001/97 29 December 1995

8040000538452	1	******	
8040001164337	i	8040000838403	
8040001267798	i	8040001181046	
8040002512312	i	\$040001449657	
8040002738708		8040002629011	
8040004334065	1	8040003443580	
8040005304820	1	8040004907637	
8040005985164	i .	8040005731502	
8040007770631	I .	8040007534962	
8040008449707	1	8040008430802	
804000LOC0505	1	8040008942269	
8040010340401	l	8040010041031	
8040010465054	ì	8040010398132	
8040011022098	1	8040011013866	
8040012601939	1	8040011555729	
8040013254869	1	8040012885856	
8040HZ0000282	1	8040HZ0000249	
8040LLL110281	1	8040HZMIN0015	
8040[1,1,138138	1	8040LLI.130815	
8040[.].[.].[48]92	i	8040LLL139772	
80401.1.1.188106	1	86401.1.7.148223	
8040LLL197650	!	8040LLL195091	
8040L1.1.200083	1	8640L1.1.200035	
8040LLL205995	1	8040LL1.200804	
	1	2520HZMIN0002	
8520HZMIN0005 871000LOC2507	1	8520HZMIN0008	i
9150001110210	1	8720HZ0000256	1
9150001416770	i	9150001376343	1
9150001866709	ī	9150001450161	1
9150002234004	í	9150001866783	i
	1	9150002316699	i
9150002359062	1	9150002618295	1
9150002704057 9150003972855	1	9150003499290	1
9150005421430	1	9150004857233	ī
9150007542595	ı	9150007534686	1
9150009354017	1	9150008238047	i
3120003323800	1	9150009354018	i
	i	9150009547422	3
9150009649228	i	9150009857233	1
9150009857236	1	9150609857255	ī
9150009857316	\$	9150009936621	1
915000N011942	l .	915000N035520	1
9156210 v. 4304	í	9150010809652	í
9150011328871	ı	9180011762234	t
9150011977690	1	9150011977671	ì
9150012092684	1	9150012096868	î
9150012280077	1	9150012377980	1
9150013119771	1	9150013186008	1
915001332517	1	915011Z0000001	,
9150HZ0000065	l	9150PZ0000075	1
9150HZ0000232	1	9150HZ0000271	;
9150HZMIN0007	1	9130HZM9N0011	1
9150HZMIN0012	l	9150L(4,079788	1
9150LL1.109579	1	9150LLL/13260	i
F150LLL.148049	1	91501.1.2.188181	1

9150LLL188303	1
123/121231234	
5610000361095	1
6810001071510	7
6810002756010	1
6810002813021	2
6810002554936	2
681000D002915	
6810010825415	2
6810HZMIN0011	2
6810LL106803	
6840013599207	2
6850006061221	2
6850008411347	2
685000N003791	2
6850010150834	2
6850011728376	2
6850013718048	2
6850LLL120658	2
7910HZMIN0002	2
7930002667128	2
7930013300187	2
	3
7930013795743	2
7930HZM1N0001	2
7930LLL148427	2
8010001412952	2
8010001654422	2
8010001658628 8010002812077	2
	2.
8010002867725 8010005985733	2
8910009269174	2
8010004269174	2
	2
801000LOC2028	2
801000N010453	2
8010010171512 8010012137898	2
	Ž
8010013444703	2
8010013445119	2
8010013743336	2
8610HZ0000001	2
8010HZ0000026	2
80 (011Z0000043 80 1014Z0000098	2.
	2
8010HZ0000231	2
8010HZMIN0042	2,
SU10HZMP(0102	2
8010HZMIN0124	2
8010[11.11495]	2
80101.1.148201	2
8010[].[.]4843]	2
8010111.195063	2
80101.1.200740	2
2010LLL 2002 to	

8010LLL.200742

8010LLL200746	
8030000078.034	
8030000878630	
8030001817603	
8030005261454	
8030009343570	
8030010556126	
8030012182806	
8030HZM8N0014	
8040000922816	
8040001393674	
8040005152246	
8040010108758	
8040010913748	
8040011633481	
8040HZMIN0014	
804011.1.2000.40	
9150001806382	
9150002732388	
9150006878339	•
9150009857232	
9150011582881	
9150012101938	
9150012377467	
9160013367174	3
5350005761689	•
6750010664189	
6780011444232	
6810002648955	,
6810002812039	•
6810005434012	ي .
6810HZMIN0012	al c
6840006646610	3
6840HZMIN0001	
6840HZMIN0016	
6850000338851	d
6850004854697	j,
6850009262275	
6850012597155	3
6850913840618	
7930002856893	
7930013268110	3
8010002854913	
8010005272043	3
8010005843149	
8010007219748	3
8010012659153	3
8010013346118	3
8010013973985	
8010013973983	.3
8010HZMIN0048	
8010[],[],[42334	3
80101.1.7.1423.54	.3
8030005183439	.3
91 1811 DANE	.3

8010111.1.200883	2
8030000812327	2
8030001635792	2
8930002133279	2
8030006826422	2
8030010246995	
8030011250055	2
8030HZMIN0009	2
8030LLL108976	2
8040001236954	2
	2
8040001449774	2
8040005432858	2
8040010421422	2
8040011266271	2
8040HZ0000069	2
8040LLL126720	2
9150001288032	2
9150001806383	2
9150002738663	2
9150007218581	2
915000N035511	2
9150011977692	2
9150012283389	2
9150013188007	2
9330001806162	2
655000N038426	3
6750011365152	3
6810002270410	3
6810002708177	3
6810002862285	3
6810012209907	3
6840006425411	3
6840012709766	
6840HZMIN0002	3
6850000035295	3
6850002444893	3
6850007542672	3
	3
6850011583928	3
6850013313349	3
7930005599481	.3
7930011839562	.3
8010002516503	.3
8010005151568	3
8010005272050	3
8010005978226	3
8010010401059	3
8010013163034	3
8010013431395	.3
3010FORDRED01	3
3010HZ0000046	.3
3010HZMIN0078	3
K010L1.1.1880[3	3
3010LLL200786	3
8030006848790	3

DIN: PD 7-2 001 #7 29 December 1995

8030013242646	3
8030LLL100213	3
8040001817201	
	3
8040007856706	3
8040010080966	3
8520002280598	3
9150001900932	3
9150002385203	
9150002929689	3
	3
9150009652303	3
9150011977693	3
9150LLL079780	3
9160001389799	3
5350001931348	
0810002365670	4
	-4
6810009838551	4
68101.1.1188114	4
6830005843041	4
6850008237861	4
6850HZMIN0002	
793000N039939	4
	4
7930013633573	4
8010001429273	4
8010002867731	4
8010005843077	4
8010011322976	1
8010013138711	
8010013339820	4
	.4
80 U0HZM1N0006	-4
8010L1.1.106848	4
8010LLL200819	4
8010LLL200879	.1
8030000625866	4
8030LLL200796	
8040002904301	4
- · · · · ·	.4
8040010974518	-1
872000F025290	4
9150002234134	.4
9150009355851	.4
9150009857246	4
9150HZMIN0009	
6810002365665	
6810006169188	5
	5
6810[.1.1.079757	5
6840011800167	5
6850012340219	5
7510010202806	5
8010001412951	
8010009457086	
30101.1.1.200739	5
	5
11030007535009	5
803000N011533	5
3030011470940	5
8040000618303	5
	• •

8030HZ0000286	3
8030LLL148484	3
8040002091286	
8040008226430	j
8040013334824	3
	3
9150001889858	3
9150001912772	3
9150002575360	3
9150006631770	.3
9150010796124	3
9150HZM1N0004	,
9150LLL148164	3
3439002554566	4
5350005761687	4
6810007534993	4
6810LLL142522	4
6810LLL188288	4
6840008152799	
6850012350872	4
6850LLL079271	4
	4
7930013623208	4
8010001314385	4
8010002426318	4
8010002869072	4
8010006647651	4
8016013138695	4
8010013316119	4
801011Z0000024	4
8010HZMIN0098	4
8010LLL1119926	4
80101.1.1.200820	4
8010LLL200880	4
80301111148485	4
8040002660824	
804000LOC1007	4
8040HZ0000064	4
9150001889862	.‡
915000263:490	4
9150009652003	4
	4
9150HZMIN0005	4
6135009857845	5
6810005515231	5
5810007534780	5
65101JJJJ22883	5
6850005592836	5
6850HZMIN0004	5
8010000793764	5
8010008529033	5
80 !0HZMIN00 9	5
8030001806439	5
8030008113723	5
8030010350083	5
8030111.194939	5
8040005824596	5 5
	э

**** **** * * * * * * * * * * * * * * *			
8040011989826	5	8520000822146	:
9150006815999	5	9150009618995	:
9150010484591	5	6810002232737	
6810002388119	6	6830001061659	(
684006N035516	6	6850001053084	
6850001428840	6	6850003069596	
7930001131913	6	7939008999534	
7930009353794	6	7930009907391	
8010001429279	6	8910001688810	
8010005587026	6	801000LOC1016	ì
8010013023608	6	8010013445322	
8010HZMIN0001	6	8010LL1.148482	(
8030009030931	0	8030009363940	,
8030010668156	6	8040007542685	ć
9150000686268	()	9150002316689	
9150005306814	6	9150005842560	(1
9160013040885	6	6810002643939	7
681000476.4613	7	6810005437415	7
6840002466438	7	6850009739091	
7930006 (39849	7	7930HZ0000078	7
8010009080362	7	8010010606461	7
8010HZMIN0064	7	8030001806201	7
8030010432295	7	8040001450450	
8040002738717	7	8040009381535	7
8040013334820	7	9150001450268	7
9150001806381	ĵ		7
9150009429343	7	9150002316676	7
915001+198149	7	9150009857248	7
6840011089578	8	6840005705299	8
6850009640838	8	6850001817940	8
685000N028445	8	6850009845853	8
7930012368941	8	6850012360128	8
8010013446700	8	8010000793756	8
8010HZM1N0050	8	8010HZ0000036	8
80101.1.1.122403	8	8010LL1.121951	8
8030002512312	8	8010LLL188323	8
8040001817761	8	8030010251692	8
9150010355392	8	8520002258563	8
685000N052103	9	6810LLL079758	9
7939013425315	9	79.3000.282.9699	9
8010002422089	9	8010001661700	9
8010013090327	ý	8010005273198	9
8030002513980	9	8030000087196	9
8010000582399	9	8030004198438	9
3040008 (39563		8040001 334394	9
9150008237860	9	9150001759154	9
7920008239813	9	9150011029455	9
8010006644761	10	8010001412950	19
8010013445321	10	8010012659154	10
8010HZMINe040	10	8010HZMIN0020	10
8040001818380	10	8030006644954	10
9150009448953	10	9150001491593	10
6850010886398	10	6850009494397	11
7930012368942	11	6850012513289	11
1300017 N08342	11	8010002426315	- 11

DIN: PD 7-2 001.#1 29 December 1993

8010005152487	11	8010008529034	
8010011671139	11	8010012703637	[1
80101.1.1.122405	11	8010LLL148481	11
9150002355555	11	9150005825480	11
6850010457929	12	6850012377482	11
6850LLL106805	12	8010008377969	12
8010013504727	12	8010LLL188079	12
8040001658614	i2	8040009023871	12
9150001497431	12	9150002618318	12
6840007216055	13	6850001817594	12
6850008807616	13	6850010438511	13
8010008152692	13	8010009261489	13
8010013365062	13	8010013504741	13
8030005468637	13		13
8040011680077	13	8040010098002	13
9150009857237	1.3	9150002732389	13
9160LLL115869	1.3	9150010355395	13
8010007219743	14	8010004093811	14
9150001818229	14	8520002700258	14
7930012941115	15	6850006211820	15
8010001412958	15	7930013808493	15
8010013445309	15	8010012659140	15
8040002254548	15	8010LL1.122003	15
8040010091562	15	8040007019546	15
9150002526380	15	9150001866668	15
6850011174487	16	9150LLL079784	15
8010006169144	16	7930006646910	16
8010013563980	16	8010009003648	16
8040010246988	16	8040004637042	16
9150009857214	16	9150001178791	16
6850000055305	17	6810001844796	17
7930005152477	17	6850001487161	17
8010007219746	17	7930011838585	17
8010013138701	17	8010013121169	17
8030007628807	17	8010013316117	17
8040001450020	17	8030008718489	17
793000N040341	18	9150002500926	17
8010005843150		8010005825382	18
8010013316106	18 18	8010012933010	18
8010013504742		8010013316116	18
80101.1.1.12200.5	18	8010LLL122000	18
8040001178510	18	8030002865453	18
9150001110209	18	9150000019395	18
8010CHRYSBLUE	18	6810002812002	19
9150001806290	19	8030001429899	19
5850002858011	19	6810002979540	20
7930011775119	20	7930000456912	20
8630002523391	20	8010001605787	20
8010000675434	20	793001152707 !	21
8010013314110	21	8010012659152	21
9150002359 0 63	۷1	9150001900905	21
9150010355393	21	8010009357064	2.2
	2.2	6810008431640	2.3
8010013316122 8010007219750	23	8040009386860	23
merana (13120)	2.4	8010013316114	2.4

DIN PD 7-2 001#/7 29 December 1995

B.9

8030007535006	24	8910007219751	25
7930001849423	26	7930009265280	26
8010013138700	26	8010HZMIN0065	26
8010LLL188168	26	8030009381947	26
9150001866681	26	9150002617899	26
8010002906983	28	8010013055551	30
6810002646618	31	8030001429272	31
8010013138119	32	8010013443218	32
9150001866699	32	6850012536781	33
9150006981382	33	9150011172928	33
8030010411596	34	8010001594519	35
6850006641409	38	8030008238039	39
8010007219744	40	9150002319071	41
6810002812785	42	6810005987316	42
6850001104498	42	6810002239069	43
9150012309748	45	8010LLL130888	
8010PRIMER001	45	7930000456923	44
6810002499354	47	9150009857099	46
7510004397910	49	8030011032868	48
9150006574959	49	8010012121704	49
8010012659151	50	8520009652109	50 53
8010010486539	53	6850001817929	52
8010002906984	56	8040001429193	56
8010006410427	57	9150010546453	56
6810008556160	61	8010006169181	59
8010001818079	62	8010013316105	61
6850002745421	63	8010009357079	ύ2
8010012659143	63	1/150004580075	63
8010013316115	64	9150001896729	63
8010013316109	67	9150002618317	66
7930011843905	68	6810002812762	67
8010013316108	83	8010002812762	82
6840006877904	92	9150012602534	85
91500014974. 2	120	8010013316107	92
5010012933011	147		125
8010012930789	160	6810002865435	150
8010013090329	178	8010001818080	163
8010012002637	193	8010013682632	186
		7930011770795	366

Frequency of Issue - FISC, San Diego

Frequency

NSN

1430012056877	ĺ	907000702027
3439000512834	i	8030007029367
3439000695815	i	8030007646658
3439009148390	i	8030008416851
4220005436693	1	8030010182838
4220010778773	i	8030010251692
6750001657133	ì	8030010366936
6810002056786	i	8030010595478
6810002229643	i	8030011250055
6810002709988	i	8030012905136
6810006640388	j	8040001334394
6810006826867	i	8040001450153
6810010809589	1	8040002003251
6820000014192	i	8040002254548
6830002865434	i	8040011327679
6830002904377	i	8040011991232
6830005774228	1	9150001416770
6840005705299	1	9150001450161
6850002858012	i.	9150001594882
6850003333609	1	9150001900907
6850003929751	ĺ	9150002319054
6850009750712	i	9150002355555
6850009845853	1	9150002575360
685000N033784	i	9150002698246
6850011574348	i	9150005297518
6850012608055	i	9150005437220
6850013444060	i İ	9150006640047
6850013648329	i I	9150009429343
6850013780401	i	9150009857231
7510001610813	1	9150010074384
7930009856911	ì	9150010355394
7930013424145	i	9150011025020
7930013632819	1	3439002554571
8010002869072	i	3439007528728
8010005271508	ì	3439010699176
8010011292031	i	5970010297961
8010011930520	•	5970010937139
8010012616067	i	6505006640441
8010013055549	i	6750000925054
8010013445321	i	6810006640387
8010013763700	j	6820009268887
8030001429128	i	6830006600027
8030001818372	i	6830013355741
8030002441296	i	6850002271887
8010002869035	1	6850002645771
8030005261605	1	6850007024297
8030005608756	1	6850008826690
8030006561426		6850009279461
8030006644984	1	6850009739091
	•	6850010532789
DIN, PD 7/2/001/47 29 December 1995		B-11
* COCCUMING 1333		

6850011174487	2	8010013138700	
6850012616064	2	8010013146071	
7930005319715	2	8010013163034	
8010005587026	2	8010013363978	
8010012931369	2	8010013445119	
8010012933013	2	8030000087196	
8010012933015	2	8030000812333	
8010013360529).	8030000812335	•
8010013365058	2	8030000812337	
8010013505255	2	8030000822508	-
8010013533695	2	8030001556444	
8010013540967	2	8030006020107	
8010013540982	2	8030007232746	
8010013574754	2	8040000538452	
8010013763706	2	8040001450019	
8030000812325	2	8040002091286	
8030000812341	2	8040002918625	
8030001520062	2	8040007542685	3
8030001806150	2	8040007769605	
8030001817598	2	8040008658991	.3
8030002441297	2	804000033991	.3
8030002523391	2	8040010091562	.3
8030003126128	2	8520006341594	.3
8930005854900	2		.3
8030006644019	2	9150001199291	.3
8030013965731	2	9150001806382	3
8040001450530	2	9150001900932	.3
8040001817761	2	9150002526174	3
8040001818380	2	9150002526380	3
8040002904301	2	9150002526383	3
8040008430802	2	9150002929657	3
8040012337507	2	9150009857234	.3
8040010570092	2	9150009857237	3
9150000650115	2	9150010355395	3
9150000825636	2	9150010661823	3
9150001889862	2	4210010568343	-4
9150002929687	2	422/0008058383	4
9150009354019	2	5970001108234	4
9150009857085	2	6810002900048	ţ
9150009857232	2	6810005987316	.1
9150010355392	2	6830002904375	4
9150011977690	2	6840008114601	4
5835008853818	3	6850001775094	-‡
5970001617422	,, }	6850001817929	4
5970007878319		6850006211819	.4
5970009623335	.}	6850008874451	-4
5970012726041	3	7930001849423	.4
6810001844796		7930002829699	.‡
6810005437415	3	8010012938259	-4
5810008507787	,	8010013026838	-1
6850001450255	\	8010013138695	4
6850002450447	{	8010013323735	+
6850002900042	,	8010013540980	.4
6850004059385	;	8010013754555	1
	3	8030000812330	-4

8030010265562	.4	9150001806381	6
8030011291141	-4	9150002698255	6
8040000678990	-4	9150002929689	6
8040005397798	4	9150005068497	6
8040007019546		9150006646518	6
8040008779872	4	9150008238024	6
8040013330941	.4	9150010564883	6
9150002234134	4	3439002203827	7
9150002633490	4	4940008036444	7
9150009857236	4	6665013034937	7
9150009857244	4	6810002411143	7
9150010796124	4	6810004765612	7
9150011313324	4	6840005843129	7
6810001071510	5	6850001817940	7
6810002232739	5	6850002811985	7
6810002905574	5	7930001775243	7
6850000338851	5	8010013723960	7
6850002444893	5	8030000592761	7
7920008239818	5	8030000812326	7
8010008835329	5	8030001429738	7
8010012187354	5	8030006850915	7
8010013323743	5	8030007535008	7
8010013540962	5	8030011570988	7
8010013583426	5	8040012086003	
8030000812336	5	9150001818229	7 7
8030002133279	5	9150001818229	
8030005997753	5	9150002319062	7
8030008812618	3	9150009547422	7
8030013470970	5	9150009547422	7 7
8040005261910	5		
8040011266271	5	6810009954804	8
9150001866681	5	6850006649067	8
9150002234004	5	6850009359793	8
9150002234129	5	8010013408714	8
9150002500933	5	8030002433285	8
9150007534799	5	8030009369940	8
3439002554566		8040002667429	8
6505001336000	6	8040006644318	8
0665013034938	()	9150002359061	8
6810002646535	6	9150002618317	8
6850006802233	()	9150002738663	8
6850013813930	0	9150005306814	8
8010007219751		9150009857245	8
8010008998825	6	6810002646715	9
8010012933019	()	8030000861506	9
8010013540973	6	8030000878630	9
8010013682632	()	8030001050270	9
8030001429133	(1	8030002472525	9
8030002865453	()	8030008376557	9
8030002921102	0	8040001817548	9
8030006802039	()	9150001491593	9
8010003907959	0	9150002704057	9
8040007769601	()	6810002646525	10
8040009023871	(1	6810008938138	10
**************************************	G	68500078 <u>22</u> 740	10

7930003577386 7930011843905 8010000792750 8010013408716	10 10	9150002732388	1.9
8010000792750	10		
		9150005421430	14
8010011109716	10	9150010536688	14
	10	6505002617256	[4
8010013540974	10	6850002649038	15
8030000625866	10	6850003190834	15
8030005975367	10	6850012350873	15
8030007838886	10	6850012854741	15
8030012447179	10	8010001417842	15
9150001889858	10	8010013407061	15
9150007218581	10	8040001182695	15
9150011172928	10	8040007386429	15
6810009306311	11	8010012180858	15
6830002708216	11	8010013763702	16
6850008411347	11	8040001236954	16
7930009265280	11	9150001866668	16
8040010682423	11	8010012002637	16
8520002700065	11	8010013316118	17
9150002738807	11	8030010445034	17
9150003499290	11	8030011633483	17
9150009857316	11	8040013477598	17
6850006061221	12	9150001817724	17
6850010851423	12	9150010872234	17
8010006410426	12		17
8010013144703	12	6830001690779 8010013316122	18
8010013316119	12	8010013340975	18
8010013363981	12	7510004697910	18
8030013294826	12	8030002627358	19
804000 386860	1.2	8030013965738	19
8520007823509	12	5610LLLM8000	19
9150001497431	1.2	G810002979540	20
9150001896729	12		20
9150002732489	12	8010006410427 8010012933011	20
9150006640111	12	8010013365061	20
9150010355393	12		20
6505002998095	13	8010013540976	20
99000.010509	}	8030007235343	20
6810011902538	13	9150002319045	20
6850001428840	13	9150011198149	20
8010002422089	13	9150012623358	20
8010013763711	13	6850011967568	21
8030000812439	13	8010007219750	21
8030008238639	13	8010013316111	21
8040000618303	13	8040007282887	21
9150007822627	13	6830006826841	2.2
6 -05007534773	14	8010013363980	22
6810008556160	14	8040001429913	22
6850011965472	1.4	8040002629011	22
7930011838585	14	9150001178791	22
8010001654782	14	9150004780055	2.2
8010012936188	11	9150009355851	22
80100133650 6 2	11	6850009059098	24
8010013763709	14	7930006646940	23
9150001110209	1.4	8010009080362	23
	, ,	9150010097709	23

6830001690805	2.4	9150006815999	37
6850012329164	24	8010013316106	38
8040004637042	24	8030007535007	
8520000822146	24	8030004853237	40
9150002316676	24	8030010432295	40
9150008431636	24	8030011432702	40
6810000521371	25	, 8040011680077	40
6810002499354	25	8040009591854	40
8030000095023	25	9150009857248	42
8040001393674	25	6850012340219	43
9150002617899	25	8010011930519	4.5 4.1
6830007826512	26	9150011045227	44
8030007535005	26	8010001429273	
8030011549252	26	8010013540960	46
9150006574959	26	8030010454780	46
2090003726064	27	8030000801549	46
8010012180856	27	6850010457929	47
8010013316117	27	8010001817568	49
8010013316110	28	8040011633481	49
6850012378004	29	8010013540965	49
9150006982382	29	8040010340401	50
8030003487888	30	8010001818079	50
8030010668156	30	8030001429272	51
8040002738716	30	8030007429272	51
9150008237860	30	9150002319071	51
5610LLLM8000	31	9150004089635	51
6850013705244	3 1	9150009354017	51
8030000087207	31	6850013780402	5.3
8040011936717	31	8040002738717	54
9150002316689	₹ [8040001450450	54
9150007542595	3]	8030009030931	57
9150009857247	31	9150010546453	58
6850000035295	12	6850013780425	58
8010013540979	1.2	6850009640838	59
8930007235345	32	8040001178510	61
9150001806290	32	9150012092684	62
9150006631770	4 >	9150009448953	63
9150009857246	5.2		64
6810009838551	4.4	8010013316109	66
6850008807616	13	\$040000168662 \$010017318414	68
7930000(56923	1 1	8010013316114	71
8010013540959	 	8010013505254	71
8010013540977	13	8040000922816	71
8010013540981	 	6850001053084	73
8010013682633	33	8010012930789	74
8040001449774	33	8010013316115	75
8040002003793	14	6810007534993	81
7930013068369	35	6850006211820	83
8010013316121	35	7930009353794	83
8030013420972	35	803000087198	84
9150008368641	15	9150012101938	86
8030002513980	36	8010009357085	88
8030007534599	3.7	8010013316105	9()
8040005152246	37	6810002388119	91
	• (8010001817791	96

9150001450268	99
6850013705245	101
8040001658614	101
9150012602534	106
8030007535004	112
8010009357075	117
8030011840330	117
9150002500926	122
8010013540966	147
9160013367174	156
8030006020045	177
8010013316108	182
6850012377482	183
8010013316107	184
8040001429193	187
8030010411596	192
9150009354018	194
6850001487161	.200
6850001104498	207
8030005468637	244
8010009357064	229
8010013540961	231
8030007535006	2.00
8030009381947	272
6810002865435	2.75
8010009356609	275
8010013540963	2.75
8010013540964	319
8040001450020	320
8010009357079	326
6850000055305	335
6850002745421	335
6850012350872	350
8010006169181	118
8010001818080	477
9150004580075	746
9150009857099	963
9150001497432	1056

Į

APPENDIX C: CHARTS AND GRAPHS FROM FORECASTING MODEL SIMULATIONS

DPs (PD 2.2 00) 92 (1.29 05)

		Forecasted Demand				
Date	Actual Demand	a≕0.1	a∺0.3	a 0.6	ล⊭0.9	
7/94	7	n/a	n/a	n/a	n/a	
8/94	3	1	1	1	1	
9/94	G	1	2	2	3	
10/94	10	1	1	1	Ō	
11/94	10	2	4	G	9	
12/94	O O	3	G	9	10	
1/95	0	2	4	3	1	
2/95	0	2	3	1	0	
3/95	0	2	2	1	0 -	
4/95	0	2	1	0	0	
5/95	0	2	1	0	0	
6/95	10	1	1	0	o	
7/95	O	2	3	\mathfrak{b}	9	

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a=0.1	ล≃0.3	a=0,6	a- 0.9	
7/94	7	n/a	n/a	n/a	n/a	
8/94	3	2	2.	2	2	
9/94	Ū	1	2	2 "	3	
10/94	10	9	9	9	10	
11/94	10	8	G	4	1	
12/94	0	3	G	9	10	
1/95	U U	2.	4	3	1	
2/95	υ	2	3	1	0	
3/95	o o	2	2	1	. 0	
4/95	C	2	1 1	0	Ü	
5/95	0	2		0	ָט [.]	
6/95	10	9	9	10	10	
7/95	U	2	3	6	()	
۸VG	3	4	4	4	4	

100 (190) - 001 ° 1 : -000

		Forecasted Demand				
Date	Actual Demand	a≕0,1	ล≕0.3	ละ0.6	a≠0.9	
7/94	1 .	n/a	n/a	n/a	n/a	
8/94	2	1	1	1	1	
9/94	0	1	1	2	2	
10/94	0	1	1	1	0	
11/94	1	1	1	0	υ	
12/94	0	1	1	1	1	
1/95	0	1	1	0	O	
2/95	2	1	0	0	0	
3/95	0	1	1	1	2	
4/95	0	1	1	0	0	
5/95		1	0	Ō	0	
6/95	0	1	1 1	1	1	
7/95	1	1	0	0	0	

	Mean Absolute Deviation (MAD)				
Date	Actual Demand	a 0.1	a∺0.3	ล:-0.6	н≕0.9
7/94	1	n/a	n/a	n/a	n/a
8/94	2	1	1 1	1	1
9/94	Ü	1	1	2	2
10/94	0	" 1	1	1	0
11/94	1 1	0	0	1	1
12/94	0	1	1 1	1	1
1/95	0	1	1	0	0
2/95	2	1	2	2	2
3/95	Ö	î i	<u> </u>	1	2
4/95	0	1	1 ""	O	0
5/95	1	0	1 1	1	1
6/95	0	1	1	1	7 7 7
7/95	1	Ü	1	1	1
AVG	İ		1	1	1

Actual and Forecasted Demand vs. Time

a 0.1 a 0.1 a 0.1 a 0.0 a 0.0 a 0.0 a 0.0

	1	Forecasted Demand				
Date	Actual Demand	a=0.1	a::0,3	a=0.6	a=0.9	
7/94	1	n/a	n/a	n/a	n/a	
8/94	Ö	1	1	1	1	
9/94	0	1]	1	0	0	
10/94	3	1	0	0	0	
11/94	0	1	1	2	3	
12/94	0	1	1	1	0	
1/95	1 1 1	1	1	0	0	
2/95	3	1	1	1	1	
3/95	0	1 1	1	2	3	
4/95	4	1	1	1	Ü	
5/95	0	1	2	3	4	
6/95	0	1	1	11	0	
7/95	5	1	1	Ü	0	

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a=0,1	a-0.3	a≔0.6	a≂0,9	
7/94	1	n/a	n/a	n/a	n/a	
8/94	0 1	1 "	1 1	1	1	
9/94	O	1	1	υ	Ö	
10/94	3	2	3	3	3	
11/94	0	1	1	2	3	
12/94	O I	1	1	1	0	
1795	1 1	Ü	0 '	1	1	
2/95	3	2	2	2	2	
3/95	0	1	1 1	2	3	
4/95	4	3	3	3	4	
5/95		1	2	3	4	
6/95	O T	1	1	1	0	
7/95	5	4	4	5	- 5	
AVG	1	2	2	2	2	

9 14 16

		Forecasted Demand				
Date	Actual Demand	a≃0.1	α∺0.3	a¤0.6	a∺0.9	
7/94	8	n/a	n/a	n/a	n/a	
8/94	0		1	1	1	
9/94	0	1	1	0	Ō	
10/94	3	1	0	0	0	
11/94	2	1	1	2	3	
12/94	0 7	1	1	2	2	
1/95	14	1	1	1	0	
2/95	0	2	5	9	13	
3/95	/	2	3	3	1	
4/95	0	3	5	6	6	
5/95	2	2	3	2	1	
6/95	0	2	3	2	2	
7/95	0	2	2	1	O	

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a-⁼0.1	a=0,3	a=0.6	a≔0,9	
7/94	8	n/a	n/a	n/a	n/a	
8/94	O	1	1	1	1	
9/94	0	1	1	0	0	
10/94	3	2	3	3	3	
11/94	2	1	1	0	1	
12/94	0	1	1	2	2	
1/95	14	13	13	13	14	
2/95	0	2	5	9	13	
3/95	7	5	4	4	6	
4/95	n in in	3	5	6	6	
5/95	2	0	1 1	0	1	
6/95	0	2	3	2	2	
7/95	0	2	2	1	0	
AVG	2	3	3	3	-4	

DF, PD 12 001 2 12 29 95

		Forecasted Demand				
Date	Actual Demand	a~0.1	a::03	a- 0 .6	a 10.9	
7/94	0	n/a	n/a	n/a	n/a	
8/94	0	()	i)	0	0	
9/94	0	0	()	O	0	
10/94	12	()	Ü	U	0	
1 1/94	4	1	4	1	11	
12/94	3	1	4	5	5	
1/95	Ü	2	4	4	3	
2/95	O	1	2	2	0	
3/95	2	1	2	ı	0	
4/95	Ö	1	2	1	?	
5/95	1	1	1	1	Ü	
6/95	8	1	1	1	1	
7/95	10	2	3	5	7	

,		Mean Absolute Deviation (MAD)					
Date	Actual Demand	a 0.1	4 0,3	a40,6	a-0.9		
7/94	0	n/a	n/a	n/a	n/a		
8/94	()	()	()	0	()		
9/94	0	U	0	Ü	0		
10/94	12	12	12	12	12		
(1/94	4	3	0	3	1		
12/94	3	2	1	2	2		
1/95	0	2	4	4	3		
7795	0	1	2	2	U		
3/95	2	1	0	1	2		
4/95	Ü	1	2	1	7		
5/95	1	()	0	()	1		
6/95	8	1	/	7	7		
7/95	10	8	7	5	3		
ΛVG	3	3	3	3	3		

Fig. PDS - mile 2

		Forecasted Demand				
Date	Actual Demand	a=0.1	a=0.3	a≈0,6	a∺0.9	
7/94	5	n/a	r./a	n/a	n/a	
8/94	10	5	5		5	
9/94	6	6	7	8	10	
10/94	0	6	6	7	- 6	
11/94	3	5	4	3		
1.2/94	Ú	5	4	3	3	
1/95	3	4	3	1	0	
2/95	3	4	3	2	3	
3/95	U	4	3	3	3	
4/95	1	4	2	1	Ŋ	
5/95	0	3	2	1	1	
6/95	1 1	3	1	0	0	
7/95	0	3	1	1	1	

	!	Mea	n Absolute	Deviation (N	лAD)
Date	Actual Demand	ส≃0.1	a≍0.3	a=0.6	a≍0.9
7/94	5	n/a	n/a	n/a	n/a
8/94	10	5	5	5	5
9/94	6	1	1	2	4
10/94	0	G	6	7	6
11/94	3	2	1	0	2
12/94	0	5	4	3	3
1/95	3	1	0	2	3
2/95	3	1	0	1	0
3/95	0	4	3	3	3
4/95	1	3	1	0	1
5/95	0	3	2	1	1
6/95	1	2	0	1	1
7/95	0	3	1	1	1
AVG	2	3	2	2	2.

Actual and Forecasted Demand vs. Time

		Forecasted Demand			
Date	Actual Demand	a≂0.1	a=0.3	a=0.6	a=0.9
7/94	4	n/a	n/a	n/a	n/a
8/94	1	4	4	4	4
9/94	8	4	3	2	1
10/94	2	4	5	6	7
11/94	2	4	4	3	3
12/94	4	4	3	3	2
1/95	12	4	3	3	4
2/95	O	5	6	9	11
3/95	4	4	4	3	_ 1
4/95	0	4	4	4	4
5/95	0	4	3	2	0
6/95	2	3	2	1	0
7/95	0	3	2	1	2

		Mean Absolute Deviation (MAD)			
Date	Actual Demand	a=0.1	a=0.3	ล≍0.6	a=0.9
7/94	4	n/a	n/a	n/a	n/a
8/94	1	3	3	3	3
9/94	8	4	5	6	7
10/94	2	2	3	4	5
11/94	2	2	2	1	1
12/94	4	0	1	1	_2
1/95	12	8	9	9	8
2/95	O	5	6	9	11_
3/95	4	0	0	1	3
4/95	0	4	4	4	4
5/95	0	4	3	2	0
6/95	2	1	0	1	2
7/95	0	3	2	1	2
AVG	3	3	3	3	4

a 0.1 - a 0.3 - a 0.6 - a 0.6

	1		Forecasted Demand			
Date	Actual Demand	a=0.1	a=0.3	a=0.6	a=0.9	
7/94	1182	n/a	n/a	n/a	n/a	
8/94	0	4	4	4	4	
9/94	1182	4	3	2	0	
10/94	1379	121	357	710	1064	
11/94	788	247	663	1111	1347	
12/94	985	301	701	917	844	
1/95	985	370	786	958	971	
2/95	0	431	846	974	984	
3/95	1970	338	592	390	98	
4/95	985	546	1005	1338	1783	
5/95	118 :	590	599	1126	1065	
6/95	4137	649	1054	1160	1170	
7/95	985	998	1979	2946	3840	

	Ī	Mea	Mean Absolute Deviation (MAD)				
Date	Actual Demand	a=0.1	a=0.3	a=0,6	a=0.9		
7/94	1182	n/a	n/a	n/a	n/a		
8/94	0	1182	1182	1182	1182		
9/94	1182	1178	1179	1180	1182		
10/94	1379	1258	1022	669	315		
11/94	788	541	125	323	559		
12/94	985	684	284	68	141		
1/95	985	615	199	27	14		
2/95	0	431	846	974	984		
3/95	1970	1582	1378	1580	1872		
4/95	985	439	20	353	798		
5/95	1182	592	183	56	117		
6/95	4137	3488	3083	2977	2967		
7/95	985	13	994	1961	2855		
AVG	1215	1000	875	946	1082		

 $1.3 \pm 1.0 \pm 2.001 \pm 2$

		Forecasted Demand			
Date	Actual Demand	a=0.1	a=0.3	a=0.6	a∺0.9
7/94	6	n/a	n/a	n/a	n/a
8/94	24	19	19	19	19
9/94	53	20	21	22	24
10/94	26	23	30	41	50
11/94	0	23	29	32	28
12/94	12	21	20	13	3
1/95	61	20	18	12	11
2/95	4	24	31	42	56
3/95	1	22	23	19	9
4/95	0	21	18	12	7
5/95	34	18	13	5	1
6/95	3	20	19	22	31
7/95	0	18	14	11	6

		Mea	Mean Absolute Deviation (MAD)				
Date	Actual Demand	a≓0.1	a=0,3	a≂0.6	a∺0.9		
7/94	6	ıv/a	n/a	n/a	n/a		
8/94	24	5	5	5	5		
9/94	53	34	33	31	30		
10/94	26	3	4	15	24		
11/94	0	23	29	32	28		
12/94	12	9	8	1	9		
1/95	61	41	43	49	50		
2/95	4	20	27	38	52		
3/95	7	15	16	12	2		
4/95	0	21	18	12	7		
5/95	34	16	21	29	33		
6/95	3	17	16	19	28		
7/95	T 0	18	14	11	6		
AVG	19	18	20	21	23		

Actual and Forecasted Demand vs. Time

THE TANK SET IN THE TANK OF TH

		Forecasted Demand			
Date	Actual Demand	ล=0.1	a≔0,3	a≍0.6	a≃0.9
7/94	4	n/a	n/a	n/a	n/a
8/94	35	4	4	4	4
9/94	10	7	13	23	32
10/94	8	7	12	15	12
11/94	8	7	11	11	8
12/94	4	8	10	9	8
1/95	0	7	8	6	4
2/95	8	6	6	2	0
3/95	5	7	6	6	7
4/95	2	6	6	5	5
5/95	10	6	5	3	2
6/95	8	6	6	7	9
7/95	0	7	7	8	8

		Mea	Mean Absolute Deviation (MAD)				
Date	Actual Demand	a≃0,1	a=0.3	a=0.6	d=0.9		
7/94	4	n/a	n/a	n/a	n/a		
8/94	35	31	31	31	31		
9/94	10	3	3	13	22		
10/94	8	1	4	7	4		
11/94	ષ્ઠ	1	3	3	0		
12/94	4	4	6	5	4		
1/95	U	7	8	6	4		
2/95	8	2	2	6	8		
3/95	5	2.	1	1	2		
4/95	2	4	4	3	3		
5/95	10	4	5	7	8		
6/95	8	2	2	1	1		
7/95	0	7	7	8	11		
AVG	8	5	б	7	8		

Actual and Forecasted Demand vs. Time

			Forecasted Demand			
Date	Actual Demand	a=0,1	ล=0.3	a =0,6	a=0.9	
7/94	8	n/a	n/a	n/a	n/a	
8/94	16	8	8	8	8	
9/94	17	9	10	13	15	
10/94	6	10	12	15	17	
11/94	0	9	10	10	ï	
12/94	9	8	7	4	f	
1/95	15	8	8	7	8	
2/95	6	9	10	12	14	
3/95	28	9	9	8	7	
4/95	26	1 i	15	20	26	
5/95	4.5	12	18	24	26	
6/95	16	15	26	36	43	
7/95	4	16	23	24	19	

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a≌0.1	a:-0.3	a~0.6	ਰੂਪ0.9	
7/94	8	n/a	n/a	n/a	n/a	
8/94	16	16	16	16	16	
9/94	17	ષ્ટ	7	4	2	
10/94	6	4	6	Э	11	
11/94	ō	9	10	10	7	
12/94	9	1	2	5	8	
1/95	15	7	7	8	7	
2/95	6	3	4	6	В	
3/95	28	19	19	20	21	
4/95	26	15	11	6	υ	
5/95	45	33	27	21	19	
6/95	16	1	10	20	2/	
7/95	4	12	19	20	15	
AVG	16	11	12.	12	12	

		Forecasted Demand				
Date	Actual Demand	a≂0.1_	a=0.3	a≂0.6	a=0.9	
7/94	4	n/a	n/a	n/a	n/a	
8/94	23	3	8	8	ઇ	
9/94	19	10	13	17	22	
10/94	12	10	14	18	19	
11/94	0	11	14	14	13	
12/94	17	10	10	6	1	
1/95	1	10	12	13	15	
2/35	7	9	9	6	2	
3/95	11	9	8	6	7	
4/95	12	9	9	9	11	
5/95	2	10	10	11	12	
6/95	5	9	8	G	3	
7/95	7	8	7	5	5	

		Mea	n Absolute	Deviation (N	IAD)
Date	Actual Demand	a⁻÷0.1	a=0,3	a≃0.6	a=0.9
7/94	4	n/a	n/a	n/a	n/a
8/94	23	4	4	4	4
9/94	19	10	7	2	3
10/94	12	2	2	6	7
1 1/94	0	11	14	14	13
12/94	17	7	7	11	16
1/95	1	9	11	12	14
2/95	7	2	2	1	5
3/95	11	2	3	5	4
4/95	12	3	3	3	1
5/95	2	8	8	8	10
6/95	5	4	3	1	2
7/95	7	1	0	2	2
AVG	10	5	5	6	7

Actual and Forecasted Demand vs. Time

			Forecasted Demand				
Date	Actual Demand	a=0.1	a=0.3	a=0.5	a=0.9		
7/94	0	n/a	n/a	n/a	n/a		
8/94	2	n/a	n/a	n/a	n/a		
9/94	2	2	2	2	2		
10/94	5	2	2	2	2		
11/94	4	2	3	4	5		
12/94	2	2	3	4	4		
1/95	5	2	3	3	2		
2/95	1	3	4	4	5		
3/95	7	3	3	2	1		
4/95	5	3	4	5	6		
5/95	8	3	4	5	5		
6/95	1	4	5	7	8		
7/95	5	3	4	3	2		

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a0.1	a÷0.3	a:-0,6	ar 0.9	
7/94	0	n/a	n/a	n/a	n/a	
8/94	2	n/a	n/a	n/a	n/a	
9/94	2	0	0	0	0	
10/94	5	3	3	3	3	
11/94	4	2	1	Ü	Ť	
12/94	2	0	1	2	2	
1/95	5	3	2	2	3	
2795	[2	3	3	4	
3/95	7	4	4	5	6	
4/95	5	2	1	0	1	
5/95	8	5	4	3	3	
6/95	1 1	3	4	6	1	
7/95	5	2	1 1	2	- 3	
AVG	4	2	2	2	3	

Actual and Forecasted Demand vs. Time

19 : P107 - 96; #2

		Forecasted Demand			
Date	Actual Demand	a: 0.1	a-03	a- 0 6	a- 0.9
7734	()	n/a	fu'd	n/a	n/a
8/94	0	n/a	n/a	n/a	11/8
9/94	0	n/a	n/a	n/a	n/a
10/94	50	n/a	:1/a	n/a	n/a
11/94	11	50	50	50	50
12/94	124	46	38	2/	15
1/95	142	54	64	85	113
2/95	125	6.3	67	119	139
3/05	211	69	99	123	126
4/95	168	8.3	132	176	203
5/95	166	92	143	171	171
0/95	397	99	150	168	167
7/95	/2	129	224	305	374

		Меаг	Absolute I	eviation (1	MAD)
Date	Actual Demand	a 0.1	a 0.3	a 0.6	a 0.9
7/94	()	n/a	n/a	n/a	n/a
8/94	0	n/a	n/a	n/a	11/3
9/94	0	n/a	n/a	n/a	n/a
10/94	50	ก/ล	n/a	n/a	n/a
11/94	11	39	39	39	39
12/94	124	/8	86	97	109
1/95	142	88	78	67	29
2/95	1 7490,000	62	38	6	14
5795	211	142	112	88	- 85
4/95	168	85	36	8	35
5/95	166	74	23 7	5	5
6/95	39/ " "	298	247	229	230
<u> 7795 </u>	17	57	152	233	302
AVG	157	ı03	9(1	85	94

			Forecasted Demand				
Date	Actual Demand	a :0.1	a-0.3	a≕0.6	a 0.9		
7/94	0	n/a	n/a	n/a	n/a		
8/94	Ö	n/a	n/a	n/a	n/a		
9/94	0	n/a	n/a	n/a	n/a		
10/94	0	n/a	n/a	n/a	n/a		
11/94	0	n/a	n/a	n/a	itad		
12/94	11	il	11	11	11		
1795	0	11	11	11	11		
2/95	18	10	8	4	1		
3/95	114	11	11	13	16		
4/95	42	<u> 2</u> 1	42	73	104		
5/95	120	23	42	55	48		
6/95	180	33	65	94	113		
7/95	184	48	100	146	173		

		Mean Absolute Deviation (MAD)				
Date	<u>Actual Demand</u>	-1 0.1	a -0,3	it 0,6	a 0.9	
7/94	0	n/a	n/a	n/a	n/a	
8/94	0	n/a	n/a	iva	n/a	
9/94	0	n/a	h/a	n/a	n/a	
10/94	0	n/a	n/a	n/a	n/a	
11/94	U	n/a	n/a	n/a	n/a	
12/94	11	0	0	0	O O	
1/95	0	11	11	11	11	
2/95	18	8	10	14	17	
3/95	114 🕯	103	103	101	98	
4/95	42	21	0	31	62	
5/95	12'0	97	78	65	72	
6/95	180	147	115	8G	67	
7/95	184	136	84 "	38	_11	
AVG	84	65	50	43	42	

<u> </u>		Forecasted Demand				
Date	Actual Demand	a-0.1	ar-0.3	a- 0.6	а 0.9	
7/94	2	n/a	η/n	n/a	n/a	
8/94	18	2	2	2	2	
9/94	2	4	7	12	16	
10/94	8	3	5	6	3	
11/94	11	4	6	7	8	
12/94	19	5	ું ક	9	11	
1/95	7	6	11	15	18	
2/95	5	6	10	10	8	
3/95	6	6	8	7	5	
4/95	3	6	8	6	6	
5/95	12	["] 6	6	4	3	
6795	5	6	8	9	11	
7/95	3 3	- 6	7	7	6	

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a 0.1	a 0.3	a 0.6	3 0 9	
7794	2.	n/a	11/7	n/a	n/a	
8/94	18	n/a	n/a	n/a	n/a	
9/94	2	2	5	10	14	
10/94	8	5	3	2	5	
11/94	H [7	5	4	3	
12/94	19	14	11	10	8	
1795	7	1	4	8	[11	
2/95	5	1	5	5	3	
3/95	6 "	υ	2	1 1	1 1	
4/95	3	3	5	3	3	
5/95	12	ti	6	- 8	9	
5/95	5	1	3	4	6	
7/95	3	3	4	4	,	
AVG	7	4	5	5	ti –	

Actual and Forecasted Demand vs. Time:

	! (Forecasted Demand				
_ Date	Actual Demand	9 0.1	a-0.3	a-0.6	a- 0.9	
7794	0	a/a	n/a	n/a	n/a	
8/94	0	n/a	n/a	n/a	n/a	
9/94	0	n/a	ñ/a	n/a	n/a	
10/94	66	n/a	n/a	n/a	n/a	
11/94	54	66	66	66	66	
1.2/94	68	65	62	59	55	
1/95	116	65	64	64 95	67	
2/95	8	70	80	95	111	
3/95	87	64	58	43	18	
4/95	32	GG	67	69	80	
5/95	50	63	56	47	37	
6/95	56	62	54	49	49	

	1	Mean Absolute Deviation (MAD)				
Date	Actual Demand	a 0.1	a 0.3	a: 0.6	a -0,9	
7/94	0	n/a	n/a	n/a	n/a	
8/94	0	n/a	n/a	n/a	n/a	
9/94	0	n/a	0/4	n/a	n/a	
10/94	- 66	n/a	n/a	n/a	n/a	
14/94	54	n/a	n/a	n/a	n/a	
12/94	68	3	6	9	13	
1/95	116	51	52	52	49	
2795	8	62	72.	87	103	
3/95	87"	23	29	44	69	
4/95	32	34	35	37	48	
5/95	50	13	-6	3	13	
_6/95	56	6	2	1	1	
AVG	60	27	29	34	43	

Actual and Forecasted Demand vs. Time

			d Demand		
Date	Actual Demand	a∺0.1	a=0.3	a0.6	สะเป.ย
7/94	1	n/a	n√a	n/a	n/a
8794	3	n/a	n/a	n/a	n/a
9/94	3	3	3	3	3
10/94	12	3	3	3	3
11/94	1 4 1	4	6	8	11
12/94	9	4	5	6	5
1/95	11	4	<u> </u>	δ	9
2/95	6	5	8	10	Π
3/95	9	5	7		6
4/95	12	6	8	8	9
5/95	4	6	9	11	12
6/95	<i>i</i> 7	6	8	7	5
7/95	1 4 1	6	7	7	7 "

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a 0.1	ii- 0.3	a -0.6	a 0,9	
7/94	1	Π^{I} a	n/a	n/a	n/a	
8/94	3 1 1	n/a	n/a	n/a	n/a	
9/94	j 3	0	0	0	0	
10/94	12	g	9	9	9	
11/94	4	υ	[2]	4	7	
12/94	ÿ	5	4	3	4	
1/95	11	7	5	3	2	
2/95	6	1	1.2	4	5	
3/95	9	4	2^{7}	2	3	
4/95	12 17	G	4	-4	3	
5/95	4	2	5	/	-8	
6/95	1 7	1	1	0	2 "	
7/95	4	· 2	3	3	3	
AVG	7	3	3	4	4	

		Forecasted Demand				
Date	Actual Demand	ล∺0,1	a=0.3	a=0,6	ત∹0.9	
7/94	4	n/a	n/a	n/a	n/a	
8/94	12	4	4	4	4	
9/94	1	5	6	9	11	
10/94	20	5	7	8	7	
1 1/94	Ö	7	11	15	19	
12/94	9	6	7	6	2	
1/95	11	6	8	8	8	
2/95	[14]	7	9	1 C	11	
3/95	15	7	10	12	14	
4/95	3	8	12	14	15	
5/95	2	8	9	7	4	
G/95	14	7	7	4	2	
7/95	2	8	9	10	13	

		Mean Absolute Deviation (MAD)					
Date	Actual Demand	a 0.1	a 0.3	ત ઃ0.6	a 0.9		
7/94	4	n/a	n/a	n/a	n/a		
8/94	12	8	8	8	8		
9/94	/ /	2	1	2	4		
10/94	20	15	13	12	13		
11/94	0	7	H.	15	¹¹ 19		
12/94	9	3	?	3	7		
1/95	11 1	5	3	} }	3		
2/95	14	7	5	4	3		
3/95	15	8	5	3	1		
4/95	3	5	9	11	12		
5/95] ?]	6	7	5	Ź .		
6/95	14	, ,	1	16	12		
7795	1 - 2 - 1	G	7	8	11		
AVG	9	7	6	i	- 8		

Actual and Forecasted Demand vs. Time

		Forecasted Demand				
Date	Actual Demand,	a=0.1	ત≂0.3	a≔0.6	a÷0.9	
7/94	0	n/a	n/a	n/a	n/a	
8/94	Ō	n/a	n/a	n/a	n/a	
9/94	0	n/a	n/a	n/a	n/a	
10/94	18	n/a	n/a	n/a	n/a	
11/94	30	18	18	18	18	
12/94	9	19	22	25	29	
1/95	30	18	18	15	11	
2/95	41	19	21	24	28	
3/95	13	22	27	34	40	
4/95	7 1	21	23	22	16	
5/95	19	26	37	51	65	
6/95	47	25	32	32	24	

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a=0.1	a=0.3	a~0.6	ււ≔0.9	
7/94	0	n/a	n/a	n/a	n/a	
8/94	0	n/a	n/a	n/a	n/a	
9/94	U	n/a	n/a	n/a	n/a	
10/94	18	11/a	n/a	n/a	n/a	
11/94	30 j	12	12	12	12	
12/94	9	10	13	16	20	
1/95	30	12	12	15	19	
2795	41	22	20	17	13	
3/95	13	9	14	21	27	
4/95	71	50	48	49	55	
5/95	19	7	18	32	46	
6/95	47	22	15	15	. 23	
AVG	33	18	19	22	27	

Actual and Forecasted Demand vs. Time

Addition to the Comment

		: orecasted Demand				
Date	Actual Demand	a=0.1	a=0.3	a=0.6	a=0.9	
7/94	17	n/a	n/a	n/a	n/a	
8/94	8	17	17	17	17	
9/94	25	16	14	12	9	
10/94	11	17	18	20	23	
11/94	8	16	16	14	12	
12/9∓	38	16	13	11	8	
1/95	56	18	21	27	35	
2/95	19	22	31	44	54	
3/95	19	21	28	29	22	
4/95	14	21	25	23	19	
5/95	6	20	22	18	15	
6/95	. 2	19	17	11	7	
7/95	16	19	19	17	20	

	1	Mean Absolute Deviation (MAD)				
Date	Actual Demand	a=0.1	a=0.3	a=0.6	a=0.9	
7/94	17	n/a	เพ่ย	h/a	n/a	
8/94	8	9	Ü	9	9	
9/94	25	ō	11	13	16	
10/94	11	6	7	9	12	
11/94	8	8	8	6	4	
12/94	38	24	25	21	30	
1/95	56	38	35	29	21	
2/95	19	3	12	25	35	
3/95	19	2	9	10	3	
4/95	14	7	11	9	5	
5/95	6	14	16	12	9	
6/95	22.	3	5	11	15	
7/95	16	3	3		4	
AVG	20	10	12	14	14	

		Forecasted Demand				
Date	Actual Demand	a≃0.1	a=0.3	a=0.6_	a=0.9	
7/94	14	n/a	n/a	n/a	n/a	
8/94	11	14	14	14	14	
9/94	24	14	13	12	14	
10/94	18	15	16	19	12	
11/9-;	15	15	17	19	19	
12/94	90	15	16	16	19	
1/95	24	23	38	61	17	
2/95	156	23	34	39	56	
3/95	253	36	71	109	40	
4/95	109	58	125	195	102	
5/95	197	63	120	144	186	
6/95	121	76	143	176	148	

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a=0,1	`_a።0.3_	a≃0.6	a=0.9	
7/94	14	n/a	n/a	n/a	n/a	
8/94	11	3	3	3	3	
9/94	24	10	11	12	.0	
10/94	18	3	2	1	6	
11/94	15	0	2	4	4	
12/94	90	75	74	74	71	
1/95	24	1	14	37	7	
2/95	156	133	122	117	100	
3/95	253	217	182	144	2.3	
4/95	109	51	16	86	,	
5/95	197	134	77	53	11	
6/95	121	45	22	55 "	27	
AVG	136	61	48	53	42	

Actual and Forecasted Demand vs. Time

		Forecasted Demand				
Date	Accual Demand	a∺0.1	a=0.3	a=0.6	a≃0.9	
7/94	31	n/a	n/a	n/a	n/a	
8/94	25	31	31	31	31	
9/94	36	30	29	27	26	
10/94	21	31	31	33	35	
11/94	104	30	28	26	22	
12/94	34	37	51	73	96	
1/95	10	37	46	49	40	
2/95	33	34	35	26	13	
3/95	50	34	34	30	31	
4/95	32	36	39	42	48	
5795	51	35	37	36	34	
6/95	8	37	41	45	49	
7/95	20	34	31	23	12	

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	a~0.1	a-03	a+0.6	a 0.9	
7/94	31	n/a	n/a	n/a	n/a	
8/94	25	6	6	6	6	
9/94	36	6	7	9	10	
10/94	21	10	10	12	14	
11/94	104	74	76	78	82	
12/94	34	3	17	39	62	
1/95	10	27	36	39	30	
2/95	33	1	2	7	20	
3795	50	16	16	20	19	
4/95	3.2	4	1	10	16	
5/95	51	16	14	15	17	
6/95	8	29	33	37	41	
7/95	20	14	11	3	В	
AVG	35	17	20	23	27	

			Forecasted Demand				
Date	Actual Demand.	a=0.1	a∹0.3	a≈0.6	a=0 9		
7/94	1	n/a	n/a	n/a	n/a		
8/94	86	n/a	n/a	n/a	n/a		
9/94	33	86	86	86	86		
10/94	20	81	70	54	38		
i 1/94	6	75	55	34	22		
12/94	19	68	40	17	8		
1/95	231	63	34	18	18		
2/95	149	80	93	146	210		
3/95	66	87	110	148	155		
4/95	43	85	97	99	75		
5/95	484	80	81	65	46		
6/95	406	121	202	317	440		
7/95	270	152	272	388	436		

		Мевп Absolute Deviation (MAD)			
Date	Actual Demand	a 0.1	a 0.3	ત=0.6	а0 9
7/94	1	n/a	n/a	n/a	n/a
8/94	86	n/a	îv/a	n/a	in/a
9/94	33	53	53	53	53
10/94	20	61	50	34	18
1 1/94	6	69	49	28	16
12/94	19	49	21	2	11
1 95	231	168	197	213	213
.2795	149	69	56	3	61
1/95	66	21	44	82	89
4/95	43	42	54	56	32
5/95	484	404	403	419	438
6/95	436	315	234	119	4
7/95	270	118	2	118	166
AVG	270	124	106	102	100

			Forecasted Demand				
Date	Actual Demand	a=0.1	a=0.3	a≕0.6	a=0.9		
7/94	15	n/a	n/a	n/a	n/a		
8/94	11	15	15	15	15		
9/94	40	15	14	13	11		
10/94	20	17	22	29	37		
11/94	10	17	21	24	22		
12/94	5	17	18	15	i 1		
1/95	11	16	14	9	6		
2/95	12	15	13	10	10		
3/95	17	15	13	11	12		
4/95	4	15	14	15	16		
5/95	24	14	11	8	5		
6/95	9	15	15	13	22		
7/95	16	14	13	12	10		

		Mea	in Absolute	Deviation (N	(dan
Date	<u>Actual</u> Demand	ส-0.1	a≕0.3	a -0.6	9=0.0
7/94	15	n/a	n/a	n/a	n/a
8/94	11	4	4	4	4
9/94	40	25	26	27	29
10/94	20	3	2	9	17
11/94	10	7	11	14	12
12/94	5	12	13	10	в
1/95	11	5	3	2.	5
2/95	12	3	1	2	2
3/95	17	2	4	6	5
4/95	4	11	10	11	12
5/95	24	10	13	16	19
6/95	9	6	6	9	13
7/95	16	2	3	4	6
AVG	(5	7	8	9	11

Actual and Forecasted Demand vs. Time

and the trees of

	1				
Date	Actual Demand	a=0.1	а≃0,3	a 0,6	ત -0 છ
7/94	()	n/a	n/a	11/4	n/a
8/94	33	n/a	n/a	n/a	n/a
9/94	55	33	33	33	33
10/94	43	35	40	46	53
11/94	อูห	36	41	44	44
12/94	91	42	58	77	93
1/95	76	47	68	85	91
2/95	51	50	70	80	78
3/95	85	50	64	62	54
4/95	117	54	71	76	82
5/95	98	60	85	101	113
6/95	78	64	89	99	100

		Меа	n Absolute	Deviation (N	(AD)
<u>Date</u>	Actual Demand:	a=0.1	a≂0.3	a≃0.6	a0.9
7/94	0	n/a	n/a	n/a	n/a
8/94	33	n/a	n/a	n/a	n/a
9/94	1 55 1	22	22	22	22
10/94	43	8	3	3	10
11/94	98	62	57	54	54
12/94	91	49	33	14	2
1/95	76	29	8	9	15
2/95	51	1	19	29	27
3/95	85	35	21	23	31
4/95	117	G3	46	41	35
5/95	98	38	13	3	15
6/95	78	14	11	Ž1	22
AVG	79	32	2.3	22	23

Actual and Forecasted Demand vs. Time

Actual Demano

a 9.1

a 0.3

a 0.4

a 0.4

	T	Forecasted Demand				
Date	Actual Demand	a=0.1	T:0,3	a:-0.6	a÷0.9	
7/94	2	n/a	n/a	n/a	n/a	
3/04	48	n/a	n/a	n/a	n/a	
9/94	23	48	48	48	48	
10/94	39	46	41	33	26	
11/94	72	45	40	37	38	
12/94	41	48	50	58	69	
1/95	37	47	47	48	44	
2/95	34	46	44	41	38	
3/95	61	45	41	37	34	
4/95	53	46	47	51	58	
5/95	54	47		52	54	
6/95	96	48	4 <u>9</u> 50	53	54	
7/95	122	53	64	79	92	

		Mean Absolute Deviation (MAD)				
Date	Actual Deman⊈	a 0.1	a~0.3	a -(),6	a⊶0.9	
7/94	2	h/a	n/a	n/a	n/a	
8/94	48	n/a	n/a	ก/ส	n/a	
9/94	23	25	25	25	25	
10/94	39	į į –	1 1	6	14	
11/94	72	27	32	35	34	
1.794	41	7	9	17	28	
1795	37	10	10	11	7	
2/95	34	12	10	7	4	
3/95	61	16	20	24	27	
4/95	53	7	6	2	5	
5/95	54	7	5	?	0	
6/95	96	48	46	4.3	42	
7/95	122	69	58	43	30	
AVG	57	21	20	19	20	

Actual and Forecasted Demand vs. 1 me

		Forecasted Demand			
Date	Actual Demand	a=0.1	a=0.3	a=0.6	a 0.9
7194	54	n/a	n/a	n/a	n/a
8/94	71	54	54	54	54
9/94	92	56	59	64	69
10/94	24	59	69	81	90
11/94	27	56	55	47	31
12/94	25	53	47	35	27
1/95	21	50	47 40	29	25
2/95	34	41	35	24	21
3/95	50	46	34	30	33
4/95	69	46	39	42	48
5/95	7.8	49	48	58	67
6/95	85	52	57	70	77

		Mean Absolute Deviation (MAD)				
Date	Actual Demand	ਰ∹0.1	a=0.3	ત-0.6	a:-() 9	
7/94	54	n/a	n/a	n/a	n/a	
8/94	71	17	17	17	17	
9/94	92	36	33	28	23	
10/94	24	35	45	57	66	
11/94	27	29	28	20	$\frac{4}{2}$.	
12/94	25	28	22	10	?	
1/95	21	29	19	8	4	
2/95	34	13	1	10	13	
3/95	50	4	[6]	20	17	
4/95	69	23	30	27	21	
5/95	78	29	30	20	11	
6/95	85	33	28	15	8	
AVĞ	52	25	2.4	21	17	

Actual and Forecasted Demand vs. Time

			Forecasted Demand				
Date	Actual Demand	a 0.1	a-:0-3	a 0.6	a- 0.9		
7/94	137	n/a	n/a	n/a	n/a		
8/94	146	137	137	137	137		
9/94	89	138	140	142	145		
10/94	139	133	124	110	95		
11/94	110	134	129	128	135		
12/94	101 T	131	123	117	112		
1/95	148	128	117	107	102		
2/95	181	130	126	132	143		
3/95	109	135	142	161	177		
4/95	80	133	132	¨ 1 30	113		
5/95	103	127	117	100	84		
6/95	89	125	113	102	101		
7/95	69	121	106	94	90		

		Меа	Mean Absolute Deviation (MAD)				
Date	Actual Demand	a -0.1	u -0 3	a- 0.6	а 0.9		
7/94	137	n/a	n/a	n/a	n/a		
8/94	146	9	9	9	9		
9/94	89	49	51	53	56		
10/94	139	6	15	29	44		
11/94	110	24	19	13	44 25		
12/94	101	30	722	16	11		
1/95	148	20	31	41	46		
2/95	181	51	55	49	38		
3/95	109	26	33	52	68		
4/95	80	53	52	50	36		
5/95	103	24	14	3	19		
6/95	89	36	24	13	12		
7/95	69	52	37	25	21		
AVG	114	32	30	30	32		

Actual and Forecasted Demand vs. Time

			Forecasted Demand				
Date	Actual Demand	1.0.1	a 0.3	a 0.6_	a 0.9		
7/94	72	n/a	n/a	n/a	n/a		
8/94	57	72	72	72	12		
9/94	76	71	68	63	59		
10794	11	71	70	71	/4		
11/94	61	72	/2	75	$-\frac{77}{63}$		
12/94	62	71	69	66	63		
1/95	84	70	67	64	62		
.2/95	194	/1	12	76	82		
3/95	53	83	109	147	183		
4/95	49	80	92	91	66		
5/95	78	17	79	66	51		
6/95	/4	17	79	73	75		
7/95	71	11	17	74	74		

		Mea	n Absolute	Deviation (N	(AD)
Date	Actual Demand	a 0.1	a -0 3	a 0.6	a 0.9
7/94	72	n/a	n/a	n/a	n/a
8/94	57	15	15	15	15
9/94	76	6	9	13	18
10/94	17	6	7	6	3
11/94	61	11	11	14	16
12/94	62	9	<i>i</i>	4	1
1/95	94	14	17	20	22,
2795	194	123	122	118	112
3/95	53	30	56	94	130
4/95	49	31	43	42	17
5/95	78	1	1	12	27
6/95	/4	3	5	1	1
7/95	7/1	6	6	3	3
ΛVG	/8	21	25	28	30

Actual and Forecasted Demand vs. Time

	1		Forecaste	d Demand	
Date	Actual Demand	a :0,1	a-0.3	a 0.6	a-09
7/94	57	n/a	n/a	n/a	n/a
8/94	86	57	57	57	57
9/94	85	60	66	74	83
10/94	93	62	71	81	85
11/94	76	65	78	88	92
12/94	i 63 i	67	78 77	81	/8
1795	17	60	73	70	64
2/95	80	67	74	74	76
3/95	74	69	76	78	80
4795	49	69	75	75	75
5/95	67	GŽ	67	60	52
6/95	66	6Ž	67	64	65
7/95	102	67	67	65	66

		Mea	n Absolute I	Deviation (N	/AD)
Date	Actual Demand	a 01	a 0.3	a 06	a 09
7/94	57	n/a	n/a	h/a	n/a
8794	86	29	29	;'9	29
9/94	85	(24)	19	11	2
10/94	93	31	22	12	- 8
11/94	76	11	`2	12	16
12794	63	4	- 2 - 14	18	15
1/95	17	11	4 1	7	13
.7/95	80	13	6 2 26	6	4
3795	[/4]	15	2	4	- 6
4/95	49	2'0	26	ួរថ	26
5/95	67	0	0	7	15
6/95	66	1	1	2	1
7795	102	.35	35	37	36
AVG	17	15	13	14	14

Actual and Forecasted Demand vs. Time

			Forecasted	d Demand	
Date	Actual Demand	a :0,1	a: 0,3	a0.6	a=0.9
7/94	91	n/a	n/a	n/a	n/a
8/94	170	91	91	91	91
9/94	157	99	115	138	162
10/94	159	105	127	150	158
11/94	110	110	137	155	159
12/94	108	110	129	128	115
1/95	250	110	123	116	109
2795	244	124	161	196	236
3/95	254	136	186	225	243
4/95	184	148	206	242	253
5/95	370	151	200	207	191
6/95	350	1/3	251	305	352

		Меа	n Absolute l	Deviation (N	1AD)
Date	Actual Demand	a=0.1	a~0.3	а 0.6	a 0.9
7/94	91	n/a	π/a	n/a	n'a
8/94	170	79	79	79	79
9/94	157	58	42	19	')
10/94	159	54	32	9	1
11/94	110	0	27	45	49
1,494	108	2	21	טי,	7
1/95	250	140	127	134	141
.795	.144	120	83	48	8
3/95	2964	118	68	29	- 11
4795	184	36	22	58	69
5/95	370	219	170	163	179
6/95	350	177	99	4.5	,
AVG	214	91	70	59	50

Actual and Forecasted Demand vs. Time

APPENDIX D: DATA FROM ANALYSIS OF DEMAND FOR CA MATERIAL

917, PD 11mq 15 11,995

				ı)			
)	1 1		י ני	1 000 0	เลนตร	
, (v)	0f SSu€	1.5tg.	•1	1 ○	Cr Tta	.1, 1, 1,	Comenciature
132000040	ψ	2.	33	ല	3.2	;; ;;	[2] O T X D I
		77	23	25	: :: ::	1303	10)
	()	- *	14)	.2	12.7	24372	VEREV
		Ç	<u>.</u>	ij,	23:5	25 20 1	
	7.5	32	23	(J)	28%	: :58:0	SAD ABAWA AXOGE L'
\cdot	ű,	33	32	,		225	CREASE A ROBART
0) [[0) 0)	ιo ·	3.3.	, 5383 1	\Box	ő	5; 3:	100kg
C)	23	13.	4.3	38,	55	37.63	THE SECTION OF THE
0,00000,0000,0	24	-03	 G	\Box	:5	ä	0 7 1 7 O 00
7000077	(d	38	d) ep	<u>-</u> 24	S 77	 (D	Samilya GOA
(O)	() (c)	,2C	22,	\odot	ö	330	
304000452548	37	4.	C4	45	3:98 6:00	2253%	R POLYOT CROPER
00 00 00 00 00 00 00 00 00 00 00 00 00			i C	5	33.55	445	0W00 0.374
0 C C C C C C C C C C C C C C C C C C C	ហ	38	€7	22	4800	388	MOVIE MINOVIE
() () () () () () ()	,	Θ.,	7 .	.,	39%	(2)	TO TO TO TO THE TAX TO TO THE
	55	259	592	\circ	956	S	
4,927,222,834	0	455	e) (-)	35,	345	460	
(c) (d) (c) (c) (d) (d)	77,	₹Ĉ.	8	, , , ,	59-5	72813	115
3,50	787	882	940	27	မို့မ		AOX.
(1) (1) (1)	3	, CC.	, ,	367,	3:55 5	13545%	OORROS ON P
9,40,89,6	2_2	i) () ()	(i)	8	- - - - - - - - - - - - - - - - - - -	24%	(1 (0. (*)

; ()

3459002203820

NOMENS ATCRES

П	ર્લ ()	·-	O	Ö	O	-	0	0	,	Ω	C	ပ	0	0	က
ศาลกส	¥	ഗ	(,)	\circ	5	رن	()	O	Ö	0	0	O	<u>ှ</u>	0	38
)e	Total		(1)	()	Ç	ć)	O	O	\ ·-	O	(.)	O	0	0	
	Date.	†6.	8 94	78 8	⊅ 3.€¢	च () ()	12.84	88 E	E 0.7	မှာ တ	명) 전	38 88	8:38	7.95	Totals

Soldering Flux, NSN: 3439002203827 'CA' and 'A' Condition Material Issues vs. Time

	56Z
	96/9
	93%
	96 1
	96′€
	96 č (s
	Time (months)
	म् ८०
	rsu
	16:01
	†60
	1938
	r6.Z
Quantity Issued	

₩ C ₩ C

2-5

3. Fr. 163. 10

.S., 604.009023871

NOMENCLATURE SILICONE SEALANT

_				_										
Ş	Ö	Ø	Θ	Ö	O	O	C)	O	r)	()	0	Ö	\odot	C₹
\Box	1	(ጎ)	Ġ	O	Ç	\odot	()	C	Ö	O	Õ	O	O.	20
2 2	۲۰۰-	n	O	ပ္	Ċ		J	رى 	(°)	C)	O	O	ပ	40
ם פט	당 () ()	0) 40)	75 5	±0.94	₹. 65 ₹.	(A)	က က	2.05	မာ ဗ	й В	မှာ မာ	8:35	7,95	70t8 S
1		0 I -	(- m	(1- m o	 - -		ိုုမက္ခဲ့တ (၂-၈၀၀၌၀	ိုုမတ္တို့ မေ	 	ု မေဝဝခုိ - ၁ဝဝ	ု မေလပ်ခဲ့ ပတ္လလ ျမမ္မေတြ ခိုလ္တလလ	ု မေလပ်ခွဲ . ကလလပ ျ⊢မက္လဉ်တစ္တတ္စ	ုက္စပ္ခဲ့ ကေတတ္တလုတ္ ကြက္လည္ခ်က္ကလုတ္လုတ္	1

	□ □	
		967
	the state of the s	56/9
Silicone Sealant, NSN: 8040099023871 'CA' and 'A' Condition Material Issues vs. Time		90.9
02387 IS VS.		<u>664-</u>
90000 Ssue		96°E :
i: 304 erial		Superior (Superior)
NSN n Mat		G SS SS Time (months)
alant, Iditio		1001 F
Silicone Sealant, NSN: 8040009023871 and 'A' Condition Material Issues vs. T		i tet ti
ilicon nd 'A		16.01
S CA'a		\$15 f)
-	A	(4. =
	alline make to the control of the co	1967
	$(1,2,\ldots, 1)$. The second of the second of	0

garautik Jasaca

() ()

VSN 8635330625866

5 Corrosion Prevention Compound, NSN: 8030000625866

NOWENDLATURE CORROSION PREVIOUND

S	O	O	O	(°)	O	O	٠.	(')	0	O	C	O	5	7.5
₹		O	O	0	O	Ö	Ö	၁	Ö	4	O	O	C)	2
Total	٠.	(3	c, o	(1)	(,)	ر،	,	(1)	()	4	()	\odot	J.	
Cate	10 0 11 0 1	# (3) (3)	43.5	3 3 3 3 3 3	73	7.2.34	(1) (3)	2 3 3 3	10 00 00	4 95	မာ မာ	3 6	7.95	7013.5
	Date Total A CA	ste Total A (9.99 9.00 1.00 1.00 1.00 1.00	994 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.4 - 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	8.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9	8.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 4 4 4 4 4 4 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	8	8	C - w & C -

		₩ Q ₩ Q								
		, ki		3000	,				967	
'CA' and 'A' Condition Material Issues vs. Time									959	
									90%	
sans			······································				 ·		J 954	
al Is									¥3%.	
ateri									U6.2	iths)
₩ u									984	Tirre (months)
ditio									. 1% &1	Tirt
Can									193.11	
ά, Ά,									10501	
i an									\$95.6	
Š									5573	
				,				**************************************	\$67	
	. <i>1</i> 3	.1	u) e)	e)	11) 1.4	14	•	10 ()	$\dot{\circ}$	
				pans	ւրլ Հերկ	teuQ				

Paint, Blue, Laquer. I SN: 8010013316119 CA' and 'A' Condition M Iterial Issues vs. Tine ンのXmンの Alicam のように LACOCOER BICE 16:

		рə	ուհել Հկկա	סוו			
. 1		61 ·	4,1	4	.,		
						167	
						to B	
						3 % Fj	
						10.01	
						F6 11	
					4: 14	\$671	Tin
						96 I	Time imo iths)
						963	ths
						વાદ	
						4145	
					ı	969	
						46.9	
			·			257	
	± 0 ₹	:					

i O

187 8010012180888

	NUESCO
III Or	0 I
in the of	サスの配置
VOY E	17.40

2000年,有2000年,董·西亚西西州东西 不利亚的西亚西州东西 在2000年,1900年,1900年

80 %								969	
1808 Tine								964	
10012 IS VS.								165%	
V: 80' Issue								938	
NSI eria)								 1 477	(su)
Paint, Epoxy, Primer, Gree 1, NSN: 8010012180858 'CA' and 'A' Condition Muterial Issues vs. Time							Ľ_	 1964	Tirne (months)
er, G dit.or								port.	Ę
Prim								 1 150 13	
ooxy,								tnigt	
nt, Ep								 1000	
Pa								 39. 4	
					-	1		1007	
	1.3 (*)	an I	4.1	17.5	-1			r >	
			batt.	ક્કા સ્ટ્રાવળ	onu				
	27 UI UI 02								

967

40 40 40 41

i i

THE TAXABLE PROPERTY OF THE PR

ř

ASY. 8-1724

SOME OLEGORES OR A RORANT

'CA' and 'A' Condition Material Issues vs. Time Grease, Aircraft, NSN: 9150001817724

40 d **2 d**

() ()

'CA' and 'A' Condition Material Issues				
	8	공 구	(2) (1) (2)	(1)

о д Д Д

	O 4		()		()	0	O	(-)	;)	()	$\langle \cdot \rangle$	()	(J	(,)	\Box
puette	+1 (28.7	Ü	4.0 0.0 0.0	() () ()	(1) (1) 1	က ဆ ဇာ	0 0 0		CI CD	요) ()	(4 0) 1	10.7	ട ന ന	1878°
ń	٦ : ع	1182	Θ	1.82	(h (c) (c)	(i) (i) (:	ന ക	388	()	0	(D)	. 82	10,4		1
	a) a) a) a)	73 -		1) (1) (1)	100	8.7	75.84	9) 1) •	2.35	က ဟ ဟ	4	(;) (D)	ယ က ထ	φ 33 2	2 8 E

boursky Vithuroo

3

8

ż

. ()

Time (months)

	(1) (1')
	() -1
3	(r'
<u>ان</u>	1

Lube Oil, Aircraft Turbine NSN: 9150002316676 'CA' and 'A' Condition Material Issues vs. Time

	96'9
	\$63%
	G64·
	3,955
	968
	964
	1674
	1594
	te5/01
	t-0.6
	to B
	367
State of the part	63 (7)

96/2

Time (months)

φ0 **10 10**

	ٽ 5	Ĵ	()	()	()	()	()	()		O	O	O	\circ	ı)	Ü
::ar	٠ť,	7,	다 인	()	٠٠,	u)	7.1	(_)	63	()	(4	$\dot{\cdot}$	υ,	O	300
(I)	To:6.	7	14) (*1	;)	(1)	•••	٠,		(1)	(1)	CΛ	\mathcal{O}	0)	Q	7.
	() (a) (b)	76 z	1) ())	700	75.0	40	400	(D)	9 9 9	υ) Οι	4 85	un Di	மு ம்	다 다 [C:4 S

() ()

() () 76 Z 969 10A' and 'A' Condition Material Issues vs. Time Battery Acid, NSN: 6310062499354 3 き き い こう Time (months) 115,44 15.01 1.3 1. 1 17 թառել <mark>Հայաս</mark>տ

ω c σ ψ φ σ 1 : φ α

Compound, Sealing, Blue, NSN: 8030010668156 'CA' and 'A' Condition Material Issues vs. Time 103 C 4 NOTEVOLATURE

(1) (1)

111
2
íίί
(r
O.
()
n.
()
14
Ť
()
1
()
Ω
111
(I)
Ш
1
()
- 1

Adhesive, Polychloprene, NSN: 8040005152246 'CA' and 'A' Condition Material Issues vs. Time

5 at

TO TO

Ţ)	40	2	())	O		Ö	Ç	()	C/I	'n	(•)	ſΥ	ďγ	(*)	:6
mar	۲	2	133	Ü	1 -	; -	ψ	1 -	(*)	Э	C)	0	t.)	O	C - 1
) Se	T0.8	CA	3)	Ø	(1)	;	çn	- 1	u)	(D)	(1)	ί,	w	(1)	, ĵ.
	0.8te	9 8 _	ช (ก)	7 3 5	7000 0000 10000	: (5)	편8 (건.	8	88	(n) (n) (n)	4 98	98 9	ന ന	ις (C) (C)	

Time (months) #6/14 1/6/7 Ç.I . Danaal Yhheed

ij	D	, -	(1)	Ø	ζ,	(7	æ	ιŢι	()	`	٠,-	(1)	()	7	7-
B	Ţ	\odot	()	ر،	()	Ø	(1)	c/I	(C)	o)	;	`	T	(·)	€₹
Пe	∵ี่ เรล.		(•)	(*)	(3)	-1	(I)	;	ųρ	0)	Ü	*1	1 -	4	35
	_a:e	95	₹3 ()	oi oi	₹B 0 .	ਹੈ। ਹੈ।	35 23	10	38.7	(1) (1) (2)	u) (i)	(1) (1)	(f) (D)	u) di	2 i 2

<u>4</u>004410100

60 b cd cd

् (• व **व छ**

NOTES OF USE OF STATE OF OTHER STATE OTHER STATE OF OTHER STATE OT

D - 16

CA CA 96/L Adhesive, Silicone Rubber, NSN: 8040001178510 'CA' and 'A' Condition Material Issues vs. Time 96/9 96/9 **96/**₩ 96/E 12/94 1/95 Time (months) **⊅**6/11 **⊳**6/0↓ **₽6/6 \$6/8** Þ6/L 8 10 ---} 路 ន \$ ଞ Quantity Issued

NSN: 8040001178510

NOMENCLATURE: ADHESIVE, SILICONE RUBBER,

q	CA	0	0	0	0	0	0	0	0	0	0	0	0	0	C
eman	Ą	17	ထ	25		ဆ	33	59	<u>ئ</u>	9	4	Θ	22	16	259
ď	Total	17	ω	25	-	∞	38	26	1 9	13	14	9	22	16	259
	Date	7/94	8/94	9/84	10/94	11/94	12/94	1/95	2/95	3,95	4/95	5/95	6/95	7/95	Totals

DIN: PD-7-2-001/#7 12/29/95

NSN: 9150012602534

NOMENCLATURE: LUBE, SO'JD FILM

Demand	Total A CA	31 23 8	ω	36 38 0	17		34	10 10 0	23	49	23	51	8 4 4	20 1 19	
	Date	7/94	8/94	9/94	10/94	11/94	12/94	1/95	2/95	3/95	4/95	26/5	6/95	7/95	

	CA CA		un establishment e e e	Je	- +			
							9 6/4	
шe							\$ 6/9	
534 s. Ti			į		, distribution of the		96/9	
`150012602534 .al Issues vs. T							96/b	Ì
001) Issu						*****	3/95	1
15 la							56/7	iths)
الا الدر الا الا الدر					ì	23833	96/1	Time (months)
Lube, Solid Film, NST (50012602534 'CA' and 'A' Condition Maccual Issues vs. Time				188			15/64	Time
d Fil		والزط		16 Pr 18			11/64	Ì
Solic A' Co					288	33.55	t/6/01	
rbe, nd '				1000			⊅ 6/6	
ال کار:						88888	₽6/8	
				. 1			b6/∠	
120 ₊	8	8	8	4	20	C	•	
		p	antity Issue	nЪ				

D-17

DIN: PD-7-2-00; =7 12:29 95

(**)**

NSN: 9150002500926

NOMENCLATURE: PETROLATUM: TECHNICAL

		_		_											
pu	CA	15	-	32	ဆ	9	Ø	N	(D	0	ന	б	4	11	109
emand	٧	0	O	œ	12	4	7	တ	7	17	Ψ.	15	5	5	85
Ğ	Total	15	÷	40	20	5	ųγ	11	12	17	4	24	6	16	194
	Date	7/94	8/64	9/84	10/94	11/94	12/94	1/95	2/95	3/82	4/95	5/85	6/95	7/95	Totals
	`					_				_					

DIN: PD-7-2-C01 #7 12:29.95

NSN: 8010013316107

NOMENCLATURE: PAINT, LACQUER, BLACK, 17

_									_	_					
٥	ςĄ	0	C	+-	O	16	2	9	2	-	2	7	ထ	τ-	42
emand	٧	2	4. 85	22	39	56	36	31	29	9	51	52	90	121	640
ă	Total	7	48	23	33	72	4.	37	34	9	53	54	96	122	682
	Date	7/94	8/94	8/84	10/94	11/94	12/94	1/95	2/95	3/95	4/95	5/95	6/95	7/95	Totals
			•							-			-		

D-19

DIN: FD-7-2-001 47 12:29:95

NSN: 8030005468637

NOMENCLATURE: COMPOUND, CORROSION PREV.

пd	CA	137	146	83	139	108	92	148	181	109	80	103	89	69	1490
Эетапс	Ą	0	0	0	O	7	o,	Ö	0	0	0	0	0	0	11
ä	Total	137	146	83	139	110	101	148	181	109	80	103	88	69	1501
	Date	7/94	8,94	9/94	10/94	11/94	12/94	1/95	2/65	3/85	4/95	5/95	6/95	7/95	Totals

D CA Compound, Corrosion Prevention, NSN: 8030005468637 \$6/2 200 - 'CA' and 'A' Condition Material Issues vs. Time 9/82 96/9 96/Þ 96/€ Time (months) 5/62 96/1 15/64 16/11 ₽6/01 56/6 ₽6/8 V6/L 180 + 165 + 8 8 8 4. + 64. 128 8 + 34 8 Ó Quantity Issued

D-20

DIN: PD-7-2-761 =7 12 29 95

DZ -

(3

Č

\$

PAINT, S/P, TOPCOAT, GRAY,

	>: 0
	RE:
NSN: 8010013540963	NOMENCLATURE:
NSN: 801001	NOME

T:	CA	23	27	0	14	က	ξΩ	*-	~	₹	$\ddot{3}$	ဖ	64	9	193
mano	۲	46	30	76	63	58	47	73	193	52	27	72	5	65	815
ជ័	oral	72	57	76	77	6	62	84	194	53	43	78	74	71	1038
	Date	7.94	8/64	9/84	10,94	11/94	12/94	1/95	56/7	3/9.5	4/95	2/82	6/95	7/95	Totals

A A A	
	96 / <i>L</i>
## ##################################	9 6/9
.s. ⊤	96/9
030C	\$6/ b
	95/E
Compound, Corrosion Prev., NSN: 8030005468637 'CA' and 'A' Condition Material Issues vs. Time	296/S (\$t)
Mat	1/95 Time (months)
tion tion	12/94
ondi	1 6/11
9. V	. 1 6/01
pun pun	⊅ 6/6
SA's	₩ 6/8
8	₽6/L
8 3 8 4 8 8 8 8 8 8 9 8 8 9 9 9 9 9 9 9 9 9	,
bausal yitinsus	

DIN: PD-7-2-001 =7 12:29:95

D-21

NSN: 7930006646910

NOMENCLATURE: GLASS CLEANER

	d	CA	9	24	24	26	0	12	42	4	۲.	()	34	ო	0	182
	mai	٧	0	0	29	0	0	0	9	0	0	0	O	0	0	48
	De	Total	9	24	53	26	0	12	25	4	۲-	0	34	ო	0	230
		Date	7/94	8/94	9/84	10/94	11/94	12/84	·	2/85	3/95	4/95	5/65	6/95	7/95	Totals
•										_						

Glass Cleaner NSN: 790006646910 'CA' and 'A' Condition Material Issues vs. Time

D - 22

DIN: PD-7-1-041.=7 12 29 95

APPENDIX E: COMPARISON OF THE MAGNITUDE OF ACTUAL DEMAND VS. THE MAGNITUDE OF FORECASTED DEMAND

			%Variance	Actual	Forecast	
NSN	AFOI	Date	From Forecast	Demand	Demand	Nomenclature
6850012350872	350	7/94	n/a	57	n/a	COMPOUND, CLEANING, MA102
6850012350872	350	8/94	51%	86	57	COMPOUND, CLEANING, MA102
6850012350872	350	9/94	42%	ช5	60	COMPOUND, CLEANING, MA102
6850012350872	350	10/94	49%	93	62	COMPOUND, CLEANING, MA102
6850012350872	350	11/94	16%	76	65	COMPOUND, CLEANING, MA102
6850012350872	350	12/94	-5%	63	67	COMPOUND, CLEANING, MA102
6850012350872	350	1/95	16%	77	66	COMPOUND, CLEANING, MA102
6850012350872	350	2/95	19%	80	67	COMPOUND, CLEANING, MA102
6850012350872	350	3/95	8%	74	69	COMPOUND, CLEANING, MA102
6850012350872	350	4/95	-29%	49	69	COMPOUND, CLEANING, MA102
6850012350872	350	5/95	0%	67	67	COMPOUND, CLEANING, MA102
6850012350872	350	6/95	-2%	66	67	COMPOUND, CLEANING, MA102
6850012350872	350	7/95	52%	102	67	COMPOUND, CLEANING, MA102
8010013540963	275	7/94	n/a	72	n/a	PAINT,S/P,TOPCOAT, GRAY,
8010013540963	275	8/94	-21%	57	72	PAINT, S/P, TOPCOAT, GRAY,
8010013540963	275	9/94	8%	76	71	PAINT,S/P,TOPCOAT, GRAY,
8010013540963	275	10/94	8%	77	71	PAINT, S/P, TOPCOAT, GRAY,
8010013540963	275	11/94	-15%	61	72	PAINT,S/P,TOPCOAT, GRAY,
8010013540963	275	12/94	-12%	62	71	PAINT, S/P, TOPCOAT, GRAY,
8010013540963	275	1/95	20%	84	70	PAINT, S/P, TOPCOAT, GRAY,
8010013540963	275	2/95	173%	194	71	PAINT,S/P,TOPCOAT, GRAY,
8010013540963	275	3/95	-36%	53	83	PAINT, S/P, TOPCOAT, GRAY,
8010013540963	275	4/95	-39%	49	80	PAINT,S/P,TOFCOAT, GRAY,
8010013540963	275	5/95	1%	78	77	PAINT,S/P,TOPCOAT, GRAY,
8010013540963	275	6/95	-4%	74	77	PAINT, S/P, TOPCOAT, GRAY,
8010013540963	275	7/95	-8%	71	77	PAINT,S/P,TOPCOAT, GRAY,
8030005468637	211	7/94	n/a	137	n/a	COMPOUND, CORROSION PREVE
8030005468637	211	8/94	7%	146	137	COMPOUND, CORROSION PREVE
8030005468637	211	9/94	-35%	89	138	COMPOUND, CORROSION PREVE
8030005468637	211	10/94	5%	139	133	COMPOUND, CORROSION PREVE
8030005468637	211	11/94	-18%	110	134	COMPOUND, CORROSION PREVE
8030005468637	211	12/94	-23%	101	131	COMPOUND, CORROSION PREVE
8030005468637	211	1/95	15%	148	128	COMPOUND, CORROSION PREVE
8030005468637	211	2/95	39%	181	130	COMPOUND, CORROSION PREVE
8030005468637	211	3/95	-19%	109	135	COMPOUND, CORROSION PREVE
8030005468637	211	4/95	40%	80	133	COMPOUND, CORROSION PREVE
8030005468637	211	5/95	-19%	103	127	COMPOUND, CORROSION PREVE
8030005468637	211	6/95	-29%	89	125	COMPOUND, CORROSION PREVE
8030005468637	211	7/95	-43%	69	121	COMPOUND, CORROSION PREVE
8010013316107	184	7/94	n/a	2	n/a	PAINT, LACQUER, BLACK, 17
8010013316107	184	8/94	n/a	48	n/a	PAINT, LACQUER, BLACK, 17
8010013316107	184	9/94	-52%	23	48	PAINT, LACQUER, BLACK, 17
8010013316107	184	10/94	-14%	39	46	PAINT, LACQUER, BLACK, 17
8010013316107	184	11/94	61%	72	45	PAINT, LACQUER, BLACK, 17
8010013316107	184	12/94	-14%	41	48	PAINT, LACQUER, BLACK, 17
8010013316107	184	1/95	-21%	37	47	PAINT, LACQUER, BLACK, 17
8010013316107	184	2/95	-26%	34	46	PAINT, LACQUER, BLACK, 17
8010013316107	184	3/95	36%	61	45	PAINT, LACQUER, BLACK, 17
8010013316107		4/95	14%	53	46	PAINT, LACQUER, BLACK, 17
	J ' ' '	ı	L		·	1 - TAMAT, ENCOGOETY, DESCON, 11

			%Variance	Actual	Forecast	
NSN	AFOI	Date	From Forecast			Nomenclature
8010013316107	184	5/95	15%	54	47	PAINT, LACQUER, BLACK, 17
8010013316107	184	6/95	101%	96	48	PAINT, LACQUER, BLACK, 17
8010013316107	184	7/95	132%	122	53	PAINT, LACQUER, BLACK, 17
9150002500926	122	7/94	n/a	15	n/a	PETROLATUM, TECHNICAL
9150002500926	122	8/94	-27%	11	15	PETRCLATUM, TECHNICAL
9150002500926	122	9/94	174%	40	15	PETROLATUM, TECHNICAL
9150002500926	122	10/94	17%	20	17	PETROLATUM, TECHNICAL
9150002500926	122	11/94	-43%	10	17	PETROLATUM, TECHNICAL
9150002500926	122	12/94	-70%	5	17	PETROLATUM, TECHNICAL
9150002500926	122	1/95	-29%	11	16	PETROLATUM, TECHNICAL
9150002500926	122	2/95	-20%	12	15	PETROLATUM, TECHNICAL
9150002500926	122	3/95	15%	17	15	PETROLATUM, TECHNICAL
9150002500926	122	4/95	-73%	4	15	PETROLATUM, TECHNICAL
9150002500926	122	5/95	73%	24	14	PETROLATUM, TECHNICAL
9150002500926	122	6/95	-40%	9	15	PETROLATUM, TECHNICAL
9150002500926	122	7/95	12%	16	14	PETROLATUM, TECHNICAL
9150012602534	106	7/94	n/a	31	n/a	LUBE, SOLID FILM
9150012602534	106	8/94	-19%	25	31	LUBE, SOLID FILM
9150012602534	106	9/94	18%	36	30	LUBE, SOLID FILM
9150012602534		10/94	-32%	21	31	LUBE, SOLID FILM
9150012602534		11/94	247%	104	30	LUBE, SOLID FILM
9150012602534	106	12/94	-9%	34	37	LUBE, SOLID FILM
9150012602534	106	1/95	-73%	10	37	LUBE, SOLID FILM
9150012602534	106	2/95	-4%	33	34	LUBE, SOLID FILM
9150012602534		3/95	46%	50	34	LUBE, SOLID FILM
9150012602534	106	4/95	-11%	32	36	LUBE, SOLID FILM
9150012602534	106	5/95	44%	51	35	LUBE, SOLID FILM
9150012602534	106	6/95	-78%	8	37	LUBE, SOLID FILM
9150012602534	106	7/95	41%	20	34	LUBE, SOLID FILM
8040001178510	62	7/94	n/a	17	n/a	ADHESIVE, SILICONE RUBBER,
8040001178510	62	8/94	-53%	8	17	ADHESIVE, SILICONE RUBBER,
8040001178510	62	9/94	55%	25	16	ADHESIVE, SILICONE RUBBER,
8040001178510	62	10/94	-35%	11	17	ADHESIVE, SILICONE RUBBER,
8040001178510	62	11/94	-51%	8	16	ADHESIVE, SILICONE RUBBER,
8040001178510	62	12/94	144%	38	16	ADHESIVE, SILICONE RUBBER,
8040001178510	62	1/95	215%	56	18	ADHESIVE, SILICONE RUBBER,
8040001178510	62	2/95	-12%	19	22	ADHESIVE, SILICONE RUBBER,
8040001178510	62	3/95	-11%	19	21	ADHESIVE, SILICONE RUBBER,
8040001178510	62	4/95	-34%	14	21	ADHESIVE, SILICONE RUBBER,
8040001178510	62	5/95	-71%	6	20	ADHESIVE, SILICON : RUBBER,
8040001178510	62	6/95	16%	22	19	ADHESIVE, SILICONE RUBBER,
8040001178510	62	7/95	-17%	16	19	ADHESIVE, SILICONE RUBBER,
9150002319071	51	7/94	n/a	4	n/a	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	8/94	200%	12	4	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	9/94	46%	7	5	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	10/94	298%	20	5	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	11/94	-100%	- 20	7	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	12/94	53%	9	6	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	1/95	78%	11	6	FLUID, BRAKE, AUTOMOTIVE
2100002010071	1	L ''	1070	<u> </u>	<u></u>	1 LOID, DIVANE, AUTOMOTIVE

			%Variance	Actual	Forecast	
NSN	AFOI	Date	From Forecast	Demand	Demand	Nomenclature
9150002319071	51	2/95	110%	14	7	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	3/95	103%	15	7	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	4/95	-63%	3	8	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51 (5/95	-74%	2	8	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	6/95	98%	14	7	FLUID, BRAKE, AUTOMOTIVE
9150002319071	51	7/95	-74%	2	8	FLUID, BRAKE, AUTOMOTIVE
8010001817568	49	7/94	n/a	1	n/a	REMOVER, PAINT
8010001817568	49	8/94	เปล	3	n/a	REMOVER, PAINT
8010001817568	49	9/94	0%	3	3	REMOVER, PAINT
8010001817568	49	10/94	300%	12	3	REMOVER, PAINT
8010001817568	49	11/94	3%	4	4	REMOVER, PAINT
8010001817568	49	12/94	130%	9	4	REMOVER, PAINT
8010001817568	49	1/95	149%	11	4	REMOVER, PAINT
8010001817568	49	2/95	18%	6	5	REMOVER, PAINT
8010001817568	49	3/95	74%	9	5	REMOVER, PAINT
8010001817568	49	4/95	116%	12	6	REMOVER, PAINT
8010001817568	49	5/95	-35%	4	6	REMOVER, PAINT
8010001817568	49	6/95	17%	7	6	REMOVER, PAINT
8010001817568	49	7/95	-34%	4	6	REMOVER, PAINT
6850012340219	43	7/94	n/a	2	n/a	CLEANING COMP
6850012340219	43	8/94	800%	18	2	CLEANING COMP
6850012340219	43	9/94	-44%	2	4	CLEANING COMP
6850012340219	43	10/94	133%	8	3	CLEANING COMP
6850012340219	43	11/94	182%	11	4	CLEANING COMP
6850012340219	43	12/94	312%	19	5	CLEANING COMP
6850012340219	43	1/95	16%	7	6	CLEANING COMP
6850012340219		2/95	-19%	5	6	CLEANING COMP
6850012340219		3/95	0%	6	6	CLEANING COMP
6850012340219		4/95	-50%	3	6	CLEANING COMP
6850012340219		5/95	110%	12	6	CLEANING COMP
6850012340219		6/95	-21%	5	6	CLEANING COMP
6850012340219		7/95	-52%	3	6	CLEANING COMP
8040005152246		7/94	n/a	0	n/a	ADHESIVE, POLYCHLOROPRENE
8040005152246		8/94	n/a	2.	n/a	ADHESIVE, POLYCHLOROPRENE
8040005152246		9/94	0%	2	2	ADHESIVE, POLYCHLOROPRENE
8040005152246	4	10/94	150%	5	2	ADHESIVE, POLYCHLOROPRENE
8040005152246		11/94	74%	4	2	ADHESIVE, POLYCHLOROFRENE
8040005152246		12/94	-19%	2	2	ADHESIVE, POLYCHLOROPRENE
8040005152246	37	1/95	106%	5	2	ADHESIVE, POLYCHLOROPRENE
8040005152246	37	2/95	-63%	1	3	ADHESIVE, POLYCHLOROPRENE
8040005152246	37	3/95	179%	7	3	ADHESIVE, POLYCHLOROPRENE
8040005152246	·	4/95	69%	5	3	ADHESIVE, POLYCHLOROPRENE
8040005152246	·	5/95	153%	8	3	ADHESIVE, POLYCHLOROPRENE
8040005152246	37	6/95	-73%	1	4	ADHESIVE, POLYCHLOROPRENE
8040005152246	37	7/95	48%	5	3	ADHESIVE, POLYCHLOROPRENE
8030010668156	30	//94	n/a	4	n/a	COMPOUND, SEALING-BLUE
8030010668156	30	8/94	188%	23	8	COMPOUND, SEALING-BLUE
8030010668156	4	9/94	100%	19	10	COMPOUND, SEALING-BLUE
8030010668156	30	10/94	15%	12	10	COMPOUND, SEALING-BLUE

			%Variance	Actual	Forecast	
NSN	AFOI	Date	From Forecast	Demand	Demand	Nomenciature
8030010668156	30	11/94	-100%	0	11	COMPOUND, SEALING BLUE
8030010668156	30	12/94	78%	17	10	COMPOUND, SEALING BLUE
8030010668156	30	1/95	-90%	1	10	COMPOUND, SEALING BLUE
3030010668156	30	2/95	-25%	7	9	COMPOUND SEALING BLUE
8030010668156	30	3/95	21%	11	9	COMPOUND, SEALING BLUE
8030010668156	30	4/95	29%	12	9	COMPOUND, SEALING-BLUE
8030010668156	30	5/95	-79%	2	10	COMPOUND, SEALING BLUE
8030010668156	30	6/95	-43%	5	9	COMPOUND, SEALING BLUE
8030010668156		7/95	-17%	7	8_	COMPOUND, SEALING-BLUE
6810002499354	25	7/94	n/a	8	n/a	ACID, BATTERY
6810002499354	25	8/94	100%	16	8	ACID, BATTERY
6810002499354		9/94	93%	17	9	ACID, BATTERY
6810002499354	25	10/94	-38%	6	10	ACID, BATTERY
6810002499354	25	11/94	-100%	0	9	ACID, BATTERY
6810002499354		12/94	8%	9	88	ACID, BATTERY
6810002499354	25	1/95	79%	15	8	ACID BATTERY
6810002499354	25	2/95	-34%	6	9	ACID, BATTERY
6810002499354	25	3/95	220%	28	9	ACID, BATTERY
6810002499354	2.5	4/95	143%	26	11	ACID, BATTERY
6810002499354		5/95	269%	45	12	ACID. BATTERY
6810002499354		6/95	3%	16	15	ACID. BATTERY
6810002499354	25	7/95	-74%	4	16	ACID, BATTERY
9150002316676	24	7/94	n/a	41	n/a	OIL, LUBRICATING, A/C TURB
9150002316676	24	8/94	775%	35	44	OIL, LUBRICATING, A/C TURB
9150002316676		9/94	41%	10	7	OIL, LUBRICATING, A/C TURB
9150002316676		10/94	8%	8	7	OIL, LUBRICATING, A/C TURB
9150002316676	24	11/94	_7%	8	7	OIL, LUBRICATING A.C TURB
9150002316676	24	12/94	-47%	4	8	OIL LUBRICATING A/C TURB
915. J2316676	24	1/95	-100%	0	7	OIL LUBRICATING, A/C TUPB
9150002316676	24	2/95	24%	8	6	OIL, LUBRICATING, A/C TURB
9150002316676		3/95	-24%	5	7	OIL, LUBRICATING, A/C TURB
9150002316676		4/95	-69%	2	6	OIL_LUBRICATING_A/C TURB
9150002316676		5/95	67%	10	6	OIL LUBRICATING A/C TURB
9150002316676		6/95	25%	8	5	OIL, LUBRICATING A/C TURB
9150002316676	24	7/95	-100%	0	7	OIL, LUBRICATING A/C TURB

APPENDIX F: CHARTS AND GRAPHS FROM REPLENISHMENT MODEL SIMULATIONS

DIN: PD-7-2-001 #7 12/29/95

		Inventory Parameters					
Date	Actual Demand	Forecast	Inventory	HL	ĹĹ	On Order	
7/94	4	n/a	n/a	n/a	n/a	n/a	
8/94	35	n/a	n/a	n/a	n/a	n/a	
9/94	10	n/a	70	n/a	n/a	n/a	
10/94	8	16	62	128	64	66	
11/94	8	15	54	122	61	66	
12/94	4	14	116	116	58	. 0	
1/95	0	13	116	107	54	0	
2/95	8	12	108	97	48	0	
3/95	5	12	103	93	47	0	
4/95	2	11	101	88	44	0	
5/95	10	10	91	Ri	40	0_	
6/95	8	10	83	81	40	0	
7/95	0	10	83	79	40	0	

			Inver	itory Param	eters	
Date	Actual Demand	Forecast	Inventory	HL	LL	On Order
7/94	8	n/a	n/a	n/a	n/a	n/a
8/94	16	n/a	n/a	n/a	n/a	n/a
9/94	17	n/a	58	n/a	n/a	n/a
10/94	6	14	52	112	56	60
11/94	0	13	52	106	53	60
12/94	9	12	103	95	48	0
1/95	15	12	88	93	46	0
2/95	6	12	82	95	48	0
3/95	28	11	54	91	45	0
4/95	26	13	28	104	52	76
5/95	45	14	0	114	57	76
6/95	16	17	43	139	69	96
7/95	4	17	80	138	69	96

		Inventory Parameters					
Date	Actual Demand.	Forecast	Inventury	H	LL	On Order	
7/94	4	n/a	n/a	n/a	n/a	rı/a	
8/94	23	n/a	n/a	n/a	n/a	n/a	
9/94	19	n/a	62	n/a	n/a	n/a	
10/94	12	15	50	120	60	70	
11/94	0	15	50	118	59	70	
12/94	17	13	103	106	53	0	
1/95	1	14	102	109	54	0	
2/95	7	12	95	99	49	0	
3/95	11	12	84	94	47	U	
4/95	12	12	72	94	47	28	
5/95	2	12	70	94	47	28	
6/95	5	11	65	86	43	0	
7/95	7	10	58	82	41	0	

			Inver	itory Param	ieters	
Date	Actual Demand	Forecast	Inventory	HL	LĹ	On Order
7/94	0	n/a	n/a	n/a	n/a	n/a
8/94	2	ri/a	n/a	n/a	n/a	n/a
9/94	2	n/a	22	n/a	n/a	n/a
10/94	5	2	17	40	20	23
11/94	4	2	13	40	20	23
12/94	2	2	34	40	20	0
1/95	5	2	29	40	20	0
2/95	1	3	28	40	20	0
3/95	7	3	21	40	20	0
4/95	5	3	16	40	20	24
5/95	8	3	8	40	20	24
6/95	1	4	31	40	20	. 0
7/95	5	3	26	40	20	0

DIN: 140-7-2-001 #7 12:29-95

			Inver	tory Param	eters	
Date	Actual Demand	Forecast	Inventory	HL	LL.	On Order
7/94	2	n/a	n/a	n/a	n/a	n/a
8/94	18	n/a	n/a	n/a	n/a	n/a
9/94	2	n/a	42	n/a	n/a	n/a
10/94	8	8	34	64	32	Û
11/94	11	8	23	64	32	41
12/94	19	8	34	66	33	41
1/95	7	9	27	75	37	48
2/95	5	9	22	73	37	48
3/95	6	9	35	70	35	0
4/95	3	8	32	68	34	36
5/95	12	8	20	63	32	36
6/95	5	8	51	67	33	21
7/95	3	8	48	64	32	21

		Inventory Parameters						
Date	Actual Demand	Forecast	Inventory	HL	LL	On Order		
7/94	1	n/a	n/a	n/a	n/a	n/ə		
8/94	3	n/a	n/a	n/a	n/a	n/a		
9/94	3	n/a	22	n/a	n/a	n/a		
10/94	12	2	10	40	20	30		
11/94	4	3	6	40	20	30		
12/94	9	3	27	40	20	0		
1/95	11	4	16	40	20	24		
2/95	6	4	10	40	20	24		
3/95	9	5	25	40	20	0		
4/95	12	5	13	40	20	27		
5/95	4	6	9	40	20	27		
6/95	7	G	29	40	20	0		
7/95	4	G	25	40	20	0		

DIN PD 7.2 001 #7 12:29:95

		Inventory Parameters					
Date	Actual Demand	Forecast	Inventory	HL	LL	On Order	
7/94	4	n/a	n/a	n/a	n/a	n/a	
8/94	12	n/a	n/a	n/a	n/a	n/a	
9/94	7	n/a	33	n/a	n/a	n/a	
10/9	20	8	13	64	32	51	
11/94	0	9	13	74	37	51	
12/94	9	8	55	66	33	0	
1/95	11	ರಿ	44	67	33	0	
2/95	14	9	30	69	34	39	
3/95	15	9	15	73	37	39	
4/95	3	10	51	78	39	0	
5/95	2	9	49	73	36	0	
6/95	14	8	35	67	33	U	
7/95	2	9	33	71	36	38	

DIN PD 7/2/001/#7 47/29/95

			Inver	tory Param	eters	
Date_	Actual Demand	Forecast	Inventory	HL	LL	On Order
7/94	17	n/a	n/a	n/a	n/a	n/a
8/94	8	n/a	n/a	n/a	n/a	n/a
9/94	25	n/a	70	n/a	n/a	n/a
10/94	11	17	59	136	68	77
11/94	8	16	51	131	66	77
12/94	38	16	90	124	62	0
1/95	56	18	34	142	71	108
2/95	19	22	15	173	86	108
3/95	19	21	104	171	85	0
4/95	14	21	90	169	85	0
5/95	ಟ	20	84	163	82	79
6/95	22	19	62	152	76	79
7/95	16	19	125	154	. 77	0

DIN PD 7.7 001 #7 12 29 95

			Inven	itory Param	eters	
Date	Actual Demand	Forecast	Inventory	HL	LL	On Order
7/94	31	n/a	n/a	n/a	n/a	n/a
8/94	25	n/a	n/a	n/a	n/a	n/a
9/94	36	n/a	126	n/a	n/a	n/a
10/94	21	31	105	248	124	143
11/94	104	30	1	240	120	143
12/94	34	37	110	299	150	189
1/95	10	37	100	296	148	189
2/95	33	34	256	275	137	0
3/95	50	34	206	274	137	0
4/95	32	36	174	286	143	0
5/95	51	35	123	283	142	160
6/95	8	37	115	296	148	160
7/95	20	34	255	273	136	0

		Inventory Parameters					
Pate	Actual Demand	Forecast	Inventory	HL	LL	On Order	
//94	15	n/a	n/a	n/a	n/a	n/a	
8/94	11	ıı/a	n/a	n/a	n/a	n/a	
9/94	40	n/a	140	n/a	n/a	n/a	
10/94	20	33	120	264	132	144	
11/94	10	32	110	254	127	144	
12/94	5	30	249	236	118	0	
1/95	11	27	238	217	108	0	
2/95	12	25	226	204	102	0	
3/95	17	24	209	193	96	0	
4/95	4	23	205	187	94	Ú	
5/95	24	21	181	172	86	0	
6/95	9	2.2	172	174	87	0	
7/95	16	20	156	164	82	0	

		Inventory Parameters					
Date	Actual Demand	Forecast	Inventory	HL	LL	On Order	
7/94	2	n/a	n/a	n/a	n/a	n/a	
8/9/1	48	n/a	n/a	n/a	. n/a	n/a	
9/94	23	n/a	150	n/a	n/a	n/a	
10/94	39	36	111	288	144	177	
11/94	72	36	39	290	145	177	
12/94	41	40	175	319	159	0	
1/95	37	40	138	320	160	182	
2/95	34	40	104	317	159	182	
3/95	61	39	225	313	156	0	
4/95	53	41	172	330	165	0	
5/95	54	42	118	340	170	222	
6/95	96	44	2.2	349	175	222	
7/95	122	49	322	391	195	145	

ji,

			inver	itory Param	eters	
Pate	Actual Demand	Forecast	Inventory	HL	LL	On Order
7/94	137	n/a	n/a	n/a	n/a	rı/a
8/94	146	n/a	n/a	n/a	n/a	n/a
9/94	89	n/a	500	n/a	n/a	n/a
10/94	139	124	361	992	496	631
11/94	110	126	251	1004	502	631
12/94	101	124	781	992	496	0
1/95	148	122	633	973	487	0
2/95	181	124	452	994	497	542
3/95	109	130	343	1040	520	542
4/95	80	128	805	1023	511	0
5/95	103	123	702	985	492	0
6/95	89	121	613	969	484	0
7/95	69	118	544	943	471	0

		Inventory Parameters						
Date	Actual Demand	Forecast	Inventory	HL	LL	On Order		
7/94	72	n/a	n/a	n/a	n/a	n/a		
8/94	57	n/a	n/a	n/a	n/a	n/a		
9/94	76	n/a	280	n/a	n/a	n/a		
10/94	77	68	203	544	272	341		
11/94	61	69	142	551	276	341		
12/94	62	68	421	545	272	0		
1/95	84	67	337	540	270	0		
2/95	194	69	143	553	277	410		
3/95	53	82	90	653	327	410		
4/95	49	79	451	630	315	Ü		
5/95	78	76	373	606	30 3	0		
6/95	74	76	299	608	304	309		
7/95	71	76	228	607	30 3	309		

Actual and Forecasted Demand vs. Time

		Inventory Parameters					
Date	Actual Demand	Forecast	Inventory	HL	LL	On Order	
7/94	57	n/a	n/a	n/a	n/a	n/a	
8/94	86	n/a	n/a	ก/a	n/a	n/a	
9/94	85	n/a	310	n/a	n/a	n/a	
10/94	93	76	203	608	304	405	
11/94	76	78	127	622	311	405	
12/94	63	78	469	620	310	0	
1/95	77	76	392	609	304	0	
2/95	80	76	312	609	305	0	
3/95	74	77	238	612	306	374	
4/95	49	76	189	610	305	374	
5/95	67	74	496	589	294	0	
6/95	66	73	430	583	292	0	
7/95	102	72	328	578	289	0	

