

ATMION®

Aktives Weitbereichsvakuummeter Standard und Compact Version

Bedienungsanleitung 09/2004

0. Inhaltsverzeichnis

0.	Inhaltsverzeichnis	1
0.1	Abbildungsverzeichnis	3
0.2	Tabellenverzeichnis	3
1.	Sicherheit	4
1.1	Grundlegende Sicherheitshinweise	4
1.2	Zeichenerklärung	4
1.3	Allgemeine Bestimmungen und Garantie	4
2.	Gerätebeschreibung	5
2.1	Allgemeines	5
2.2	Messprinzip	6
2.3 2.3.1 2.3.2	Korrekturfaktoren und Kurven für verschiedene Gase Korrekturfaktoren für das Ionisationsvakuummeter Korrekturkurven für das Pirani-Messsystem	8 8 8
2.4	Aufbau der Messelektronik	9
2.5 2.5.1 2.5.2 2.5.2.1 2.5.2.2 2.5.2.3 2.5.3 2.5.3.1 2.5.3.2	Serielle Schnittstelle RS 232 Parameter Befehle Druckausgabe über den Befehl 'RV' Definition für Steuerbits – SC Definition für Statusbits – RS Service-Programm Anschlusseinstellungen Benutzung des Programms	12 12 12 13 14 15 15
3.	Montage und Bedienung	17
3.1	Sichtkontrolle	17
3.2	Montage	17
3.3	Schaltpunkte	17
3.4	Reinigung der Messzelle	18
3.5	Ausheizen der Messzelle	19
3.6	Filamente des Ionisationsvakuummeters	19
3.7	Austausch der Filamente der Standard-Version	20
3.8	Austausch der Messzelle	21

0. Inhaltsverzeichnis

3.9 3.9.1 3.9.2 3.9.3	Abgleich des ATMION®-Messsystems Abgleich über das ATMION®-Anzeigegerät Abgleich über Schnittstelle RS 232 oder Profibus Abgleich über die externen Steuereingänge	22 22 22 23
4.	Technische Daten, Zubehör	25
4.1	Technische Daten der Standard Version	25
4.2	Technische Daten der Compact Version	27
4.3	Analogsignal	29
4.4	Anschlussbelegung der Messzelle	29
4.5	Zubehör	30
4.6	Weiterführende Anleitungen	30
Anhang 1	Sicherheitsinformationen für die Rücksendung von kontaminierten Vakuumgeräten und -komponenten Erklärung über Kontaminierung von Vakuumgeräten und -komponenten (Formular für Rücksendung) Konformitätserklärung	31
Anhang 2	Konformitätserklärung	

0. Inhaltsverzeichnis

0.1	Abbildungsverzeichnis
U. I	Abbilduligaverzeicillila

Abbildung 1	Korrekturkurven für Wärmeleitungsvakuummeter nach Pirani	8
Abbildung 2	Ansicht der Frontseite der Messelektronik	9
Abbildung 3	Ansicht der Rückseite der Messelektronik bei entfernter Rückplatte	9
Abbildung 4	Anschlussbelegung für 15-poligen Sub-D-Stecker "Power supply/Signal"	10
Abbildung 5	Darstellung der Funktion von Control 1 und Control 2	10
Abbildung 6	Jumper für Einstellung der Betriebsparameter bei entfernter Rückplatte	11
Abbildung 7	COM-Anschluss-Einstellungen	15
Abbildung 8	Programmfenster "Service-Monitor für ATMION®"	16
Abbildung 9	Systematische Darstellung des Abgleichvorgangs	
	über die externen Steuereingänge	24
Abbildung 10	Gerätezeichnung der Standard Version (Abmessungen in mm)	26
Abbildung 11	Schematischer Geräteaufbau der Standard Version	26
Abbildung 12	2 Gerätezeichnung der Compact Version (Abmessungen in mm)	28
Abbildung 13	Schematischer Geräteaufbau der Compact Version	28
Abbildung 14	l Analogausgangssignal	29
Abbildung 15	Anschlussbelegung der Messzelle	29
0.2	Tabellenverzeichnis	
U. <u>Z</u>	Tabelletiverzeichnis	
Tabelle 1	Korrekturfaktoren für das Ionisationsvakuummeter	8
Tabelle 2	Wahrheitstabelle für Control 1 und Control 2	10
Tabelle 3	Erläuterung zum Ausgang Status Schaltpunkt	11
Tabelle 4	Jumperbelegungen für Betriebszustände	11
Tabelle 5	Wichtige Lese- und Steuerbefehle	12
Tabelle 6	Datenformat für Steuerbits für Steuerung ATMION®	13
Tabelle 7	Datenformat für Statusbits für Steuerung ATMION®	14
Tabelle 8	Beispielwerte für Schaltpunktberechnung	18

1.1 Grundlegende Sicherheitshinweise

- Beachten Sie bei Installations-, Wartungs- und Reparaturmaßnahmen die angegebenen Schutzvorschriften.
- Spannungen über 30 VAC bzw. 60 V DC gelten nach EN 61010 als berührungsgefährlich. Beachten Sie die angegebenen Schutzvorschriften.

1.2 Zeichenerklärung

Fachpersonal

Diese Arbeiten dürfen nur durch Personen, die eine geeignete technische Ausbildung besitzen und über die notwendigen Erfahrungen verfügen, ausgeführt werden.

Gefahr

Angaben zur Verhütung von Personenschäden jeglicher Art oder umfangreicher Sachschäden.

Elektrische Gefahr

Angaben zur Verhütung von Personenschäden oder umfangreicher Sachschäden durch elektrische Einwirkung.

1.3 Allgemeine Bestimmungen und Garantie

Für die einwandfreie Funktion des Gerätes übernehmen wir eine Gewährleistung von einem Jahr. Während dieser Zeit werden Material- und Herstellungsfehler kostenlos beseitigt. Normaler Verschleiß sowie Fehlfunktionen durch unsachgemäßen Gebrauch (z.B. auch Kontamination der Messzelle) fallen nicht unter die Gewährleistung. Der Hersteller übernimmt keine Garantie, falls durch den Anwender oder Drittpersonen am Gerät Änderungen vorgenommen werden, welche über die in der dazugehörigen Bedienungsanleitung aufgeführten Arbeiten hinausgehen. Die Rücksendung erfolgt zu Lasten des Kunden in der Originalverpackung. Wir behalten uns die Entscheidung über Ersatz oder Nachbesserung nach Prüfung in unserem Haus vor.

Voraussetzung für Garantieansprüche ist die Rücksendung des Gerätes in der Originalverpackung des Herstellers!

Fügen Sie bei einer Rücksendung das ausgefüllte Formular für die Kontaminierungserklärung bei (Anlage 2)!

2.1 Allgemeines

Das Vakuummessgerät ATMION® erlaubt die Druckmessung im Bereich von 1 x 10^3 bis 1 x 10^{-10} mbar (bzw. 1 x 10^5 bis 1 x 10^{-8} Pa oder 760 bis 7,6 x 10^{-11} Torr) durch die Kombination eines Wärmeleitungsvakuummeters nach dem Piraniprinzip mit einem Bayard-Alpert-Ionisationsvakuummeter. Das Gerät ist als Standard Version und als Compact Version erhältlich.

Diese Versionen unterscheiden sich hauptsächlich in folgenden Punkten:

- Vakuumanschluss der Messzelle
- Aufbau des Sensors
- Emissionsstromwerte des Bayard-Alpert-Messsystems
- Abmessungen und Gewicht

Weitere technische Eigenschaften der beiden Versionen sind dem Abschnitt **Technische Daten** zu entnehmen.

Beide Versionen sind optional mit dem Bussystem Profibus-DP verfügbar.

Die Messzelle beinhaltet einen Tubus. Der Tubus selbst und ein darin befindliches Schutzgitter bieten folgende Vorteile:

- mechanischer Schutz des Sensors
- konstantes elektrisches Umgebungspotential, d. h. definierte Empfindlichkeit
- hohe Messgenauigkeit und Reproduzierbarkeit der Messergebnisse
- Schutz gegen elektromagnetische Felder

Die Umschaltung vom Pirani- auf das Bayard-Alpert-Messprinzip erfolgt bei einem Druck von 1 x 10^{-2} mbar. Die Umschaltung vom Bayard-Alpert- auf das Pirani-Messprinzip erfolgt bei einem Druck von 1 x 10^{-1} mbar. Das ist beim Einsatz zur Prozessregelung zu beachten.

Die direkt an der Messzelle montierte Versorgungs- und Auswerteelektronik liefert ein analoges Ausgangssignal zwischen 0 und 10 V, welches dem Logarithmus des Druckes mit 0,625 V pro Dekade proportional ist. Die Versorgung der Auswerteelektronik erfolgt mit 24 V DC / 1,5 A. Die Druckausgabe des ATMION®-Messsystems ist für Stickstoff kalibriert und muss wegen der Gasartabhängigkeit der Messprinzipien für andere Gase mit einem Kalibrierfaktor versehen werden.

Der Sensor ist nicht für explosive Gasgemische geeignet, da er mit einer Glühkathode arbeitet (Explosionsgefahr)!

Im ATMION®-Messgerät werden Spannungen bis 400 V bei 20 mA erzeugt.

2.2 Messprinzip

Die ATMION®-Messzelle vereint ein Wärmeleitungsvakuummeter nach dem Piraniprinzip mit einem Bayard-Alpert-Ionisationsvakuummeter.

Das **Piranimesssystem** beruht auf der druck- und gasartabhängigen Wärmeabgabe eines stromdurchflossenen dünnen Drahtes. Die Wärmeabgabe erfolgt durch vier Prozesse:

- a) Wärmeleitung durch das Gas
- b) Konvektion des Gases
- c) Wärmestrahlung
- d) Wärmeleitung in die Anschlussdrähte

Dabei sind c) und d) Störgrößen, die den Messbereich des Pirani-Messzweiges zu niedrigen Drücken hin begrenzen. Um diese möglichst klein und konstant zu halten, wird ein sehr dünner Draht als Sensor verwendet und bei konstanter Temperatur des Drahtes gearbeitet. Dazu wird der Widerstand des Drahtes in einer Wheatstone-Brücke gemessen und über eine Regelung konstant gehalten. Gemessen wird die dem Draht zugeführte Leistung. Die Druckabhängigkeit der Wärmeleitung durch das Gas überwiegt unterhalb von 10 mbar, oberhalb von 100 mbar findet im wesentlichen Konvektion statt. Verfälschungen des Messergebnisses treten im wesentlichen durch Schmutzablagerungen auf dem Piranidraht und durch Erhöhung der Umgebungstemperatur auf, da sich die abgegebene Wärmemenge dadurch ändert. Erschütterungen und mechanische Schwingungen führen zu einer erhöhten Wärmeabgabe des Piranidrahtes und damit zur Anzeige eines scheinbar höheren Druckes.

Das **Bayard-Alpert-Messsystem** nutzt die Ionisation der Gasatome bzw. -moleküle durch Elektronen aus. Diese werden aus einer geheizten Kathode emittiert, zum Gitter beschleunigt und ionisieren das Gas. Die innerhalb des Gitters erzeugten Ionen werden zum Kollektor hin beschleunigt und produzieren den Messstrom. Der Kollektorstrom ist über einen weiten Bereich dem Gasdruck proportional, wobei er zusätzlich von der Ionisierungswahrscheinlichkeit des Gases abhängt. Zu niedrigen Drücken hin wird die Grenze des Messbereiches hauptsächlich durch die Sensorgeometrie bestimmt und liegt beim ATMION® im Bereich von 10⁻¹¹ mbar. Zu höheren Drücken hin liegt die Messgrenze bei 10⁻¹ mbar, hier erfolgt die Umschaltung auf das Piraniprinzip. Bedingt durch die Messzellenerwärmung infolge der Kathodenheizung weicht der Messwert des Pirani-Messzweiges bis zur Einstellung des thermischen Gleichgewichtes für kurze Zeit von der Spezifikation ab.

Nach dem Umschalten auf Pirani-Messbetrieb durch Erhöhung des Druckes und anschließendem Verringern des Druckes wird das Ionisationsvakuummeter erst nach einer Sperrzeit von 5 s wieder aktiviert. Diese Sperrzeit dient dem Schutz des Ionisationsvakuummeters.

2. Gerätebeschreibung

ErhöhungundSchwankungenderDruckanzeigedesBayard-Alpert-Ionisationsvakuummeters treten durch Verschmutzungen auf (verstärkte Gasabgabe des Sensors). Dann empfiehlt es sich, durch Entgasen bei einem Druck ≤ 10-4 mbar den Sensor mittels Elektronenbeschuss aufzuheizen und damit zu säubern. Die Druckanzeige während des Entgasens dient der Orientierung über den Reinigungsvorgang, liegt aber außerhalb der Genauigkeitsspezifikation des ATMION®. Durch das Entgasen des Sensors werden Verschmutzungen wieder weitgehend beseitigt. Gelangen Elektronen bzw. Ionen, die von anderen Vakuumprozessen erzeugt werden, auf den Ionenkollektor oder erzeugen sie ihrerseits wieder Ionen, so können erhebliche Verfälschungen des Messwertes eintreten. Dieser Effekt wird durch den Einsatz eines Schutzadapters (Baffle) verringert. Starke Magnetfelder z.B. von Ionengetterpumpen führen zu einer Beugung der Elektronenbahnen und damit unter Umständen zu Messfehlern. Eine Vergrößerung des Abstandes zwischen dem ATMION® und dem Magneten ist dann sinnvoll.

2.3 Korrekturfaktoren und Kurven für verschiedene Gase

Die für das ATMION®-Messsystem verwendeten Messprinzipien sind gasartabhängig.

2.3.1 Korrekturfaktoren für das Ionisationsvakuummeter

Im Bereich des Ionisationsvakuummeters kann bei bekannter Gaszusammensetzung der tatsächliche Druck durch Multiplikation des angezeigten Druckwertes mit einem Korrekturfaktor ermittelt werden. Für das ATMION®-Messsystem wurden für zwei häufig verwendete Gase - Helium und Argon - die entsprechenden Korrekturfaktoren aufgenommen (Tabelle 1). Falls Sie für andere Gasarten Korrekturfaktoren benötigen, setzen Sie sich bitte mit der Firma VACOM in Verbindung.

Gasart	Korrekturfaktor
Helium (He)	5,0
Argon (Ar)	0,7
Stickstoff (N ₂)	1,0
Luft	1,0

Tabelle 1: Korrekturfaktoren für das Ionisationsvakuummeter

2.3.2 Korrekturkurven für das Pirani-Messsystem

Da bei Wärmeleitungsvakuummetern nach dem Piraniprinzip auf Grund der physikalischen Eigenschaften bezüglich der Wärmeleitfähigkeit kein einheitlicher Korrekturfaktor ermittelt werden kann, wird die Korrektur an Hand einer Korrekturkurve (Abbildung 1) vorgenommen.

Abbildung 1: Korrekturkurven für Wärmeleitungsvakuummeter nach Pirani

2.4 Aufbau der Messelektronik

Die Steuer- und Auswerteelektronik ist für den Gebrauch in trockenen Räumen bestimmt (Gehäuse mit Schutzgrad IP 40). Die Messelektronik (Abbildung 2 /Abbildung 3) wird mittels Stecksystem und Überwurfmutter mit der Messzelle verbunden.

Abbildung 2: Ansicht der Frontseite der Messelektronik

- (1) Steckverbinder für Messzelle
- (2) 2 Bohrungen für Führungsstifte der Messzelle
- (3) 10 Kontaktbuchsen für Kontaktstifte der Messzelle

Abbildung 3: Ansicht der Rückseite der Messelektronik bei entfernter Rückplatte

- 1. Anschluss für Profibus (optional)
- 2. Anschluss für Betriebsspannung, Signalausgang und Schnittstelle RS 232
- 3. Schalter für Einstellung der Profibusadresse (optional)
- 4. Jumper für Einstellung der Betriebsparameter
- 5. Schalter für Empfindlichkeitseinstellung
- 6. Kontroll-LED (grün) für Profibus (optional)
- 7. Kontroll-LED (rot, grün, grün-orange blinkend, grün blinkend, rot blinkend) für Betriebs- und Fehlerzustände

2. Gerätebeschreibung

An der Rückseite der Messelektronik (Abbildung 3) befinden sich ein 15-poliger Sub-D-Steckverbinder (Abbildung 4) und eine Leuchtdiode zur Signalisierung der Betriebszustände. Der Stecker dient sowohl der Stromversorgung als auch der Datenübertragung und Steuerung des Messgerätes.

		=	PIN 1	Eingang	Freigabe extern für Anlagensteuerung (bei High-Pegel Bedienung über externe Steuereingänge PIN 4, 5 und 6)
	8 🔾	=	PIN 2	Ausgang	Senden TxD/RS232
15〇		=	PIN 3	Eingang	Empfangen RxD/RS232
	70	=	PIN 4	Eingang	Control 1 (in Kombination mit Control 2 für Abgleich des Pirani-Messzweiges), (Tabelle 2)
140	60	=	PIN 5	Eingang	Control 2 (in Kombination mit Control 1 für Abgleich des Pirani-Messzweiges), (Tabelle 2)
130		=	PIN 6	Eingang	Entgasen (Starten des Ausheizvorganges bei High-Pegel 24 V DC)
	50	=	PIN 7	Eingang	Betriebsspannung 24 V DC
120		=	PIN 8	Eingang	Betriebsspannung 24 V DC
	40	=	PIN 9	Ausgang	Status Schaltpunkt oder Entgasen (Tabelle 3)
110	40	=	PIN 10	Ausgang	gewähltes Filament (High-Pegel 24 V DC über externe Last = Filament 1, Low-Pegel 0 V DC = Filament 2)
	3 🔾	=	PIN 11	Eingang	Masse
10〇		=	PIN 12	Eingang	Masse
100	\circ	=	PIN 13	Ausgang	nicht verfügbar
	20	=	PIN 14	Ausgang	Analogausgang logarithmisch (Ausgabe des dem
9 🔾					Druckwert entsprechenden analogen Spannungswertes)
	10	=	PIN 15	Ausgang	Analogmasse
	\ \ \ \ \	l			

Abbildung 4: Anschlussbelegung für 15-poligen Sub-D-Stecker "Power supply/Signal" (male)

Freigabe ext	Control 1	Control 2	Funktion
1	1	0	nur Pirani
1	0	0	AutoMode
1	1	1	Abgleich Pirani Atmosphäre
1	0	1	Abgleich Pirani Vakuum

Tabelle 2: Wahrheitstabelle für Control 1 und Control 2

Abbildung 5: Darstellung der Funktion von Control 1 und Control 2

2. Gerätebeschreibung

Funktion	Schaltpunkt normal	Schaltpunkt invertiert
Ein (On)	1	0
Aus (Off)	0	1

Tabelle 3: Erläuterung zum Ausgang Status Schaltpunkt

Die Leuchtdiode "Mode" signalisiert die Betriebsart des ATMION® durch folgende Funktion:

rot leuchtend
 grün leuchtend
 grün orange blinkend
 Sicherheitsabschaltung des lonisationsvakuummeters ist erfolgt; nur noch Betrieb des Pirani-Messsystems

■ rot blinkend Piranidraht defekt

■ grün blinkend (Frequenz 2 Hz) Degas aktiv

Für die Einstellung bestimmter Betriebsparameter (Tabelle 4) existieren Jumper (Abbildung 6) in der Messelektronik. Zum Umstecken der Jumper muss die Spannungsversorgung zum Messgerät ausgeschaltet werden. Eine Änderung der Jumperstellung wird nur beim Wiedereinschalten der Versorgungsspannung wirksam.

Abbildung 6: Jumper für Einstellung der Betriebsparameter bei entfernter Rückplatte

Jumper	Funktion	OFF (offen)	ON (gesteckt)
J1	Transistorausgang für Schaltpunkt oder Entgasen	Entgasen (Werkseinstellung)	Schaltpunkt
J2	Transistorausgang für invertierten Schaltpunkt	Schaltpunkt normal (Werkseinstellung)	Schaltpunkt invertiert
J3	Emissionsstrom- umschaltung	automatische Umschaltung in den höheren Emissionsstrombereich von 2 mA im Druckbereich < 10 - 5 mbar (Werkseinstellung)	nur kleiner Emissionsstrom von 20 µA; keine automatische Umschaltung in den höheren Emissionsstrombereich (nur für Messungen in Druckbereichen > 10-6 mbar empfehlenswert)
J4	Baudrate	19200 Baud (Werkseinstellung)	38400 Baud

Tabelle 4: Jumperbelegungen für Betriebszustände

2.5 Serielle Schnittstelle RS 232

Die serielle Schnittstelle ist als RS 232 verfügbar und in den 15-poligen Sub-D-Steckverbinder (Abbildung 4) integriert. Sollte ein separater Ausgang erforderlich sein, ist ein entsprechender Adapter als Zubehör erhältlich. Die Schnittstelle kann mit jedem schnittstellenfähigen Rechner verwendet werden.

2.5.1 Parameter

■ String: 8 Datenbits; 1 Stopbit; keine Parität; kein Protokoll

Baud-Rate: 19200 oder 38400 BaudString-Ende gekennzeichnet durch <CR>

2.5.2 Befehle

Wichtige und häufig vorkommende Funktionen des Messgerätes können direkt als Befehl über die serielle Schnittstelle RS 232 ausgegeben werden.

Befehl	Funktion
RV	Lesen des Druckwertes
RS	Lesen der Statusbits
RP	Schaltpunktwert für SP Ein und SP Aus lesen – Ausgabewert in Hexadezimalschreibweise (für Eingabe in Berechnungsformel in Dezimalwert umwandeln), (Tabelle 8) Berechnungsvorschrift für Druckwert in mbar: $p = 10^{(Ausgabewert/4096-12)}$
RA	Jumperbelegung lesen
RT	Lesen der Betriebsdauer für Filament 1 und 2 in Stunden (Ausgabe 00000 00000)
RB	Statusbits SPC 3 (Profibusmodul) lesen
SD	Entgasen für 2 min starten (automatische Abschaltung nach 2 min)
SC****	Steuerbits setzen
SP**** ****	Schaltpunktwert für SP Ein und SP Aus setzen – Eingabeformat in Hexadezimalschreibweise (Eingabewert aus Berechnungsvorschrift in Hexadezimalwert umwandeln), (Tabelle 8) Berechnungsvorschrift für Eingabewert aus Druckwert in mbar: Eingabewert = 49152 + 4096 * LOG (Druckwert)
SA****	Jumperbelegung überschreiben (alle vier Jumper müssen als 0 oder 1 gesetzt werden, dabei sind aber nur Jumper J1 – J3 veränderbar, Jumper J4 ist in seiner Funktion nicht veränderbar)
SX1	Start automatisches Senden von Druck- und Servicewerten im Zeitraster von 500 ms
SX0	Stop automatisches Senden von Druck- und Servicewerten

Tabelle 5: Wichtige Lese- und Steuerbefehle

2.5.2.1 Druckausgabe über den Befehl 'RV'

Der aktuelle Druckwert kann über den Befehl 'RV' <CR> ausgelesen werden. Der Ausgabestring beinhaltet die folgenden Informationen:

- Status: P = Pirani; I1 bzw. I2 = Filament 1 bzw. 2 des Ionisationsvakuummeters;
 D = Entgasen; E = Fehler
- Messwert: 0.00E±00 = Druckwert in mbar (Mantisse und Exponent)

Beispielstring: **I2_8.21E-06** (im Ionisationsmessbereich) oder **P 5.3E+01** (im Piranimessbereich)

Definition für Steuerbits - SC 2.5.2.2

Bit	aktiv	Name	Beschreibung
0	1	AUTORANGE	Umschaltung zwischen den Messzweigen erfolgt automatisch nach fest hinterlegten Kriterien
1	1	PIRANI	Bei AUTORANGE = 0 wird Pirani-Messzweig fest angewählt. Eine Umschaltung auf IG erfolgt nicht
2	1	IG	Bei AUTORANGE = 0 wird Messzweig IG fest angewählt. Eine Umschaltung auf den Pirani-Messzweig erfolgt nur aufgrund einer Sicherheitsabschaltung
3	1	AUTOFIL	Umschaltung zwischen Filament 1 und Filament 2 erfolgt automatisch nach fest hinterlegten Kriterien
4	1	FIL1	Bei AUTOFIL = 0 wird Filament 1 fest angewählt. Eine Umschaltung auf Filament 2 erfolgt nicht
5	1	FIL2	Bei AUTOFIL = 0 wird Filament 2 fest angewählt. Eine Umschaltung auf Filament 1 erfolgt nicht
6	1	DEGAS	Entgasen einschalten
7	1	E_STROM	Kleinen Emissionsstrombereich setzen
8	1	SP_MAN	Schaltpunkt unabhängig vom Druckwert schalten
9	1	SP_OUT	Bei SP_MAN = 1 kann SP-Ausgang gesetzt bzw. rückgesetzt werden
10	1	SP_AUTO	Schaltpunkt abhängig vom Druckwert schalten
11	1	EXT_ENABLE	Freigabe externer Steuereingänge für Anlagensteuerung
12	1	R_ERROR	Rücksetzen der Fehlerbits für IG bei PIRANI = 1 (AUTORANGE = 0)
13	1	VAK	Abgleich Nullpunkt Pirani-Messzweig bei Vakuumdruck
14	1	ATM	Abgleich Endwert Pirani-Messzweig bei Atmosphärendruck
15	1	n.a.	

Tabelle 6

Datenformat für Steuerbits für Steuerung ATMION®

Beispiele

Auswahl Modus Autorange und Autofil `SC_0009`<CR>

Starten des Entgasungsvorgangs `SC_0049`<CR>

Auswahl Filament 2 im Modus Autorange `SC_0021`<CR>

AUTORANGE	Bit 0	1		AUTO RANGE	Bit 0	1
PIRANI	Bit 1	0	9	PIRANI	Bit 1	0
IG	Bit 2	0	9	IG	Bit 2	0
AUTOFIL	Bit 3	1		AUTOFIL	Bit 3	1
FIL1	Bit 4	0		FIL1	Bit 4	0
FIL2	Bit 5	0	0	FIL2	Bit 5	0
DEGAS	Bit 6	0	0	DEGAS	Bit 6	1
E_STROM	Bit 7	0		E_STROM	Bit 7	0
SP_MAN	Bit 8	0		SP_MAN	Bit 8	0
SP_OUT	Bit 9	0	0	SP_OUT	Bit 9	0
SP_AUTO	Bit 10	0	0	SP_AUTO	Bit 10	0
EXT_ENABLE	Bit 11	0		EXT_ENABLE	Bit 11	0
R_ERROR	Bit 12	0		R_ERROR	Bit 12	0
VAK	Bit 13	0	0	VAK	Bit 13	0
ATM	Bit 14	0	U	ATM	Bit 14	0
n. a.	Bit 15	0		n. a.	Bit 15	0

AUTORANGE	DIL U	ı	
PIRANI	Bit 1	0	9
IG	Bit 2	0	9
AUTOFIL	Bit 3	1	
FIL1	Bit 4	0	
FIL2	Bit 5	0	4
DEGAS	Bit 6	1	4
E_STROM	Bit 7	0	
SP_MAN	Bit 8	0	
SP_OUT	Bit 9	0	0
SP_AUTO	Bit 10	0	U
EXT_ENABLE	Bit 11	0	
R_ERROR	Bit 12	0	
VAK	Bit 13	0	0
ATM	Bit 14	0	U
n. a.	Bit 15	0	

AUTO RANGE	Bit 0	1	
PIRANI	Bit 1	0	1
IG	Bit 2	0	'
AUTOFIL	Bit 3	0	
FIL1	Bit 4	0	
FIL2	Bit 5	1	2
DEGAS	Bit 6	0	2
E_STROM	Bit 7	0	
SP_MAN	Bit 8	0	
SP_OUT	Bit 9	0	0
SP_AUTO	Bit 10	0	U
EXT_ENABLE	Bit 11	0	
R_ERROR	Bit 12	0	
VAK	Bit 13	0	0
ATM	Bit 14	0	U
n. a.	Bit 15	0	

2.5.2.3 Definition für Statusbits – RS

Bit	aktiv	Name	Beschreibung		
0	1	AUTORANGE	Modus AUTORANGE aktiv		
1	1	PIRANI	Pirani-Messzweig aktiv, Messwert wird ausgegeben		
2	1	IG	Messzweig IG aktiv, Messwert wird ausgegeben		
3	1	AUTOFIL	Modus AUTOFIL aktiv		
4	1	FIL1	Filament 1 aktiv		
5	1	FIL2	Filament 2 aktiv		
6	1	DEGAS	Entgasen aktiv		
7	1	E_STROM	kleiner Emissionsstrombereich ist angewählt		
8	1	SP_MAN	Modus Schaltpunkt extern steuern aktiv		
9	1	SP_OUT	Zustand SP-Ausgang		
10	1	SP_AUTO	Modus Schaltpunktfunktion aktiv		
11	1	EXT_ENABLE	Freigabe externer Eingänge für Anlagenssteuerung aktiviert		
12	1 R ERROR	Rücksetzen der Fehlerbits für IG bei PIRANI=1			
	Z I K_EKKOK		(AUTORANGE=0) erfolgt		
13	1	VAK	Abgleich Nullpunkt Pirani-Messzweig aktiviert		
14	1	ATM	Abgleich Endwert Pirani-Messzweig aktiviert		
15	1	LEBENSBIT	Lebensbit ATMION® (500ms Periode)		

Tabelle 7: Datenformat für Statusbits für Steuerung ATMION®

Beispiel

Anfrage über Eingabe des Befehls `RS`<CR>
Autorange, Messzweig IG, automatische Filamentwahl und Filament 1 sind aktiv.
Daraus ergibt sich die Antwort: "001D".

2.5.3 Service-Programm

Das Service-Programm ist ein Programm zu einfachen Test- und Servicezwecken mit Hilfe der Schnittstelle RS 232. Mit diesem Programm können alle unter dem Kapitel 2.5 aufgeführten Befehle ausgeführt werden. Das Programm steht zum kostenlosen Download im Internet unter den Seiten http://www.vacom.de zur Verfügung. Voraussetzung zur Nutzung des Programms mit dem ATMION®-Messsystem ist das Verbinden der RS 232 des Messgerätes mit dem Rechner über ein Modem-Kabel.

2.5.3.1 Anschlusseinstellungen

Nachdem das Programm auf dem jeweiligen Rechner installiert ist, erscheint beim Öffnen des Programms über "atmion-4.exe" ein Fenster für die Anschlusseinstellungen der Schnittstelle (Abbildung 7). Hier werden die zur Verfügung stehende Schnittstelle des Rechners, z.B. Com1, und die Baudrate (2.5.1) eingegeben und mit "OK" bestätigt. Mit der Bestätigung wird das Programmfenster ATMION®-Monitor (Abbildung 8) geöffnet.

Abbildung 7: COM-Anschluss-Einstellungen

2.5.3.2 Benutzung des Programms

Im Programmfenster werden alle eingegebenen Steuerworte und Befehle sowie alle Statusmitteilungen und Empfangsdaten dargestellt. Das Fenster wird in fünf Teilfenster unterteilt, die hier kurz beschrieben werden sollen.

Steuern ATMION®

In diesem Teilfenster sind 13 wichtige Steuerbits (Tabelle 6) dargestellt, die durch Anklicken der weißen Kästchen aktiviert werden können. Mit dem Anklicken der Schaltfläche "Steuerwort senden" wird der mit dem Setzen der Bits verbundene Befehl an das Messsystem gesendet. Die Eingabe von nicht möglichen Kombinationen wird durch die Software teilweise verhindert.

Status ATMION®

Hier werden die 16 Statusbits (Tabelle 7) dargestellt. Sie sind im deaktivierten Zustand grau dargestellt und werden im aktivierten Zustand mit schwarzer Schrift angezeigt. Die Anzeige für das Lebensbit blinkt grün, wenn eine Datenübertragung zwischen Rechner und Messsystem stattfindet.

Befehl

In diesem Teilfenster besteht die Möglichkeit, die wichtigsten Lese- und Steuerbefehle (Tabelle 5) im weißen Textfeld einzugeben und über das Anklicken der Schaltfläche "Senden" an das Messsystem zu senden.

Monitor Senden

Hier werden alle gesendeten Befehle und Steuerworte angezeigt.

Monitor Empfang

In diesem Fenster werden die vom Messsystem zurückgesendeten Daten dargestellt. Klickt man auf die Schaltfläche "Start", so erscheinen im 500 ms-Takt Mess- und Servicewerte vom Messsystem. Diese Daten werden in der Datei atmionlog.txt im Verzeichnis C:\ abgelegt und stehen zur Auswertung über gängige Textverarbeitungs- und Tabellenkalkulationsprogramme zur Verfügung. Die Ausgabe und Speicherung der Werte wird durch das Anklicken der Schaltfläche "Stop" angehalten.

Statusfeld

Dieses Feld befindet sich am unteren Rand des Programmfensters und gibt die gewählte Schnittstelle, deren eingestellte Parameter, den Speicherort der aufgezeichneten Daten sowie die Versionsnummer der Service-Software an.

Abbildung 8 Programmfester "Service-Monitor für ATMION®"

Durch das Anklicken der Schaltfläche "Schnittstelle" gelangt man in das Fenster für die Anschlusseinstellungen der Schnittstelle (2.5.3.1).

3.1 Sichtkontrolle

Die ATMION®-Messzelle ist werkseitig in einem Schutzadapter (Tubus) montiert. Trotzdem muss sie nach dem Auspacken mit Sorgfalt behandelt werden. Vermeiden Sie das Berühren sämtlicher im Vakuumbereich liegenden Teile. Alle Messzellen werden im Werk einzeln geprüft und sorgfältig verpackt. Sollten mechanische Beschädigungen, die auf den Transport zurückzuführen sind, sichtbar sein, setzen Sie sich bitte umgehend mit der Firma VACOM in Verbindung. Reklamationen von Transportschäden nach der Inbetriebnahme bzw. später als fünf Arbeitstage nach der Auslieferung der Ware können nicht anerkannt werden.

3.2 Montage

Die Montage des ATMION®-Messgerätes an der Vakuumkammer ist in beliebiger Einbaulage möglich. Ein Einbau in unmittelbarer Nähe zum Belüftungsventil sollte vermieden werden, da trotz automatischer Kathodenabschaltung die Kathode beim Belüften zerstört werden kann. Im Regelfall sind Messzelle und Steuerelektronik bei Auslieferung bereits miteinander verbunden und können direkt an den Rezipienten montiert werden. Andernfalls wird die Messzelle an den Rezipienten montiert. Anschließend steckt man die Steuerelektronik auf die Messzelle und sie fest mit Hilfe der Überwurfmutter.

Das ATMION®-Messsystem wird wahlweise betrieben über:

- optional erhältliche Anzeigeeinheit ATMION®-Display Unit bzw. Nachfolgegerät MVC3-A
- PC und beliebige Gleichspannungsquelle 24 V DC / 1,5 A (Dazu sind ein Adapter für die serielle Schnittstelle RS 232 (9-polige Sub-D-Buchse) und ein separates Netzgerät optional erhältlich
- Anlagensteuerung (24 V DC) und beliebige Gleichspannungsguelle 24 V DC / 1,5 A

3.3 Schaltpunkte

Über das Messgerät selbst steht ein interner Schaltpunkt zur Verfügung, den man je nach Einstellung über die serielle Schnittstelle (2.5) und die entsprechenden Jumper in der Messelektronik (Abbildung 6) als normalen oder invertierten Schaltpunkt nutzen kann. Bis zu vier weitere Schaltpunkte stehen über das ATMION®-Anzeigegerät (Bedienungsanleitung ATMION®-Display Unit) zur Verfügung. Um die interne Schaltpunktfunktion zu nutzen, muss zunächst der Jumper J1 in der Messelektronik (Abbildung 6) so gesteckt werden, daß der Schaltpunkt aktiviert ist. Des Weiteren muss über den Jumper J2 die Funktion des Schaltpunktes (Öffner oder Schließer) angewählt werden. Die Einstellung der Druckwerte für den Schaltpunkt erfolgt über die Schnittstelle RS 232 (Tabelle 5). Die Druckwerte werden logarithmiert und in hexadezimaler Schreibweise eingegeben und ausgelesen (Tabelle 8).

3. Montage und Bedienung

Druckwert [mbar]	Eingabewert in Dezimalschreibweise: Eingabewert = 49152 + 4096 * log (Druckwert)	Eingabewert in Hexadezimalschreibweise
1,00E+03	61440	F000
5,00E+02	60207	EB2F
1,00E+02	57344	E000
5,00E+01	56111	DB2F
1,00E+01	53248	D000
5,00E+00	52015	CB2F
1,00E+00	49152	C000
5,00E-01	47919	BB2F
1,00E-01	45056	B000
5,00E-02	43823	AB2F
1,00E-02	40960	A000
5,00E-03	39727	9B2F
1,00E-03	36864	9000
5,00E-04	35631	8B2F
1,00E-04	32768	8000
5,00E-05	31535	7B2F
1,00E-05	28672	7000
5,00E-06	27439	6B2F
1,00E-06	24576	6000
5,00E-07	23343	5B2F
1,00E-07	20480	5000
5,00E-08	19247	4B2F
1,00E-08	16384	4000
5,00E-09	15151	3B2F
1,00E-09	12288	3000

Tabelle 8: Beispielwerte für Schaltpunktberechnung

3.4 Reinigung der Messzelle

Ablagerungen auf dem Sensoraufbau des Ionisationsvakuummeters können zur Verfälschung des Messergebnisses führen. In diesem Fall wird ein Reinigen des Sensors durch Entgasen empfohlen, welches im Fall des ATMION®-Messsystems mittels Elektronenbeschuss bei Drücken ≤10-⁴ mbar geschieht. Die Häufigkeit des Entgasens hängt von der Stärke der Verschmutzung im Prozess und der Dauer des Einsatzes ab. Eine regelmäßige Entgasung in Abständen von 1 bis 4 Wochen wird vorgeschlagen.

Der Entgasungsprozess wird gestartet durch:

- Externe Steuerung über den 15-poligen Sub-D-Steckverbinder (Abbildung 4)
- "DEGAS" über das Anzeigegerät (Bedienungsanleitung ATMION®-Display Unit)
- Funktion "**Degas**" oder Eingabe des Befehls "SD" mittels Service-Programm (2.5.3)
- Eingabe des Befehls "SD" über die serielle Schnittstelle (Tabelle 5)

Der Entgasungsprozess dauert zwei Minuten und endet automatisch nach Ablauf dieser Zeit bzw. bei zu hohem Druck. Ist die Zeit nicht ausreichend, kann der Prozess erneut gestartet werden.

3.5 Ausheizen der Messzelle

Der Betrieb von Vakuumanlagen macht auch ein eventuelles Ausheizen notwendig. Die ATMION®-Messgeräte sind je nach Ausführung für verschiedene Ausheiztemperaturen ausgelegt. Der Einsatz eines geeigneten Dichtungsmaterials durch den Kunden wird vorausgesetzt. Folgende Temperaturen sind für den Bereich am Anschlussflansch zulässig:

- Messgerät mit Standard-Messzelle max. 250 °C am Anschlussflansch
- Messgerät mit Compact-Messzelle max. 180 °C am Anschlussflansch

Achtung! Die Steuerelektronik sowie der Steckadapter der Standard-Messröhre enthalten elektronische Bauteile, die nur bis 60 °C erwärmt werden dürfen!

Sollte die Notwendigkeit bestehen, die Steuerelektronik für den Ausheizvorgang von der Messröhre zu trennen, geht man dazu folgendermaßen vor (Abbildung 11 bzw. 13):

- Lösen der Überwurfmutter in Richtung Vakuumanschluss
- Herausziehen der Messröhre aus der Messelektronik

Achtung! Die Messzelle darf beim Herausziehen nicht gedreht werden. Beim Verdrehen besteht die Gefahr der Zerstörung der Kontaktstifte!

Bei der Standard-Messzelle: Trennen des Messkopfes vom Steckadapter durch Lösen der drei Madenschrauben am Verbindungsstück

Die Montage nach dem Ausheizen erfolgt in entgegengesetzter Reihenfolge.

3.6 Filamente des Ionisationsvakuummeters

Die ATMION®-Messzelle besitzt zwei Filamente für den Betrieb des Ionisationsvakuummeters. Dadurch wird eine längere Lebensdauer der Messtelle gewährleistet. Im normalen Messbetrieb (Automatik) wird immer zuerst Filament 1 verwendet. Sollte Filament 1 durchbrennen, schaltet die Elektronik automatisch auf Filament 2 um. Werden die Filamente über die Schnittstelle, das Bussystem oder die externen Eingänge des 15-poligen Sub-D-Steckverbinders gewählt, besteht zusätzlich zum Automatikbetrieb die Möglichkeit, Filament 1 oder Filament 2 einzeln und unabhängig von der Reihenfolge 1...2 anzuwählen. Wird diese Möglichkeit der direkten Auswahl genutzt, kommt es beim Durchbrennen des angewählten Filamentes nicht zum automatischen Umschalten auf das jeweilige andere Filament. In diesem Fall muss das andere Filament wiederum direkt angesteuert werden.

3. Montage und Bedienung

Das jeweilig in Betrieb befindliche Filament wird angezeigt durch:

- "FIL 1" oder "FIL 2" am Anzeigegerät (Bedienungsanleitung ATMION®-Display Unit)
- "Filament 1" oder "Filament 2" bzw. "I1" oder "I2" über das Service-Programm (2.5.3)
- Signalausgabe an PIN 10 des 15-poligen Sub-D-Steckers (Abbildung 4)

Bei Standard-Messzellen besteht die Möglichkeit, die Filamente auszutauschen. Für Compact Messzellen ist nach dem Durchbrennen beider Filamente ein Messzellenwechsel notwendig.

Achtung! Zum Zeitpunkt des Durchbrennens eines der Filamente sollten Sie für Ersatz sorgen!

3.7 Austausch der Filamente bei Standard-Messzellen

Nach dem Durchbrennen beider Filamente besteht bei Standard-Messzellen die Möglichkeit, diese selber zu ersetzen oder das gesamte Messgerät zum Austausch der Filamente beim Hersteller einzuschicken.

Achtung! Für den Fall des selbständigen Austausches der Filamente können wir nicht mehr die angegebene Genauigkeit garantieren. Sollten Sie die angegebene Genauigkeit auch weiterhin beanspruchen, lassen Sie den Filamentwechsel beim Hersteller durchführen oder fordern Sie eine entsprechende Ersatzmesstelle an.

Der Austausch der Messröhre ist im Kapitel 3.8 beschrieben. Der Austausch der Filamente geschieht

nach folgenden Schritten (Abbildung 11):

- Demontage des Messgerätes von der Vakuumkammer
- Lösen der Überwurfmutter in Richtung Vakuumanschluss
- Herausziehen der Messzelle mit Steckadapter aus der Messelektronik

Achtung! Die Messzelle darf beim Herausziehen nicht gedreht werden. Beim Verdrehen besteht die Gefahr der Zerstörung der Kontaktstifte!

- Trennen der Messzelle vom Steckadapter durch Lösen der drei Madenschrauben
- Stellen Sie die Messzelle so auf einen ebenen Untergrund, daß die elektrischen Anschlüsse nach oben zeigen!
- Lösen der Verbindungsschrauben (M6) zum Adapter (Tubus)
- Vorsichtiges Herausziehen des Sensors nach oben aus dem Adapter (Tubus)

Beim Herausziehen des Sensors aus dem Adapter (Tubus) ist darauf zu achten, dass der Sensoraufbau, insbesondere der Piranidraht, nicht beschädigt wird.

20

3. Montage und Bedienung

- Sensor so drehen, daß man ihn auf die elektrischen Anschlüsse stellen kann
- Die Filamente des Sensors sind mit 3 Madenschrauben über ein Verbindungsstück am Sockel befestigt. Lockern der Schrauben mit dem den Ersatzfilamenten beigelegten Schlüssel und vorsichtiges Herausziehen der Filamente
- Neue Filamente mit einer Pinzette an der Mittelhalterung aus der Verpackung herausnehmen und vorsichtig Stifte der Filamente in die Halterungen einschieben, mit den neuen, mitgelieferten Madenschrauben wieder fest anziehen und Verbindungssteg abtrennen (Seitenschneider)
- Sensor wieder in den Adapter einführen und beide Teile mit den entsprechenden Schrauben und Muttern (M6) verbinden (neuen Cu-Dichtring nicht vergessen)
- Steckadapter aufstecken und mit den entsprechenden Schrauben befestigen
- Einschieben der Messzelle mit Steckadapter in die Messelektronik (Markierung beachten!)
- Aufschrauben der Überwurfmutter
- Montage des Messgerätes an der Vakuumkammer

3.8 Austausch der Messzelle

Nach dem Durchbrennen beider Filamente ist es bei Compact-Messzellen notwendig, die Messzelle auszutauschen. Das geschieht nach folgenden Schritten, die auch für den Austausch einer Standard-Messzelle gültig sind:

- Demontage des Messgerätes von der Vakuumkammer
- Lösen der Überwurfmutter in Richtung Vakuumanschluss
- Herausziehen der Messzelle aus der Messelektronik

Achtung! Die Messzelle darf beim Herausziehen nicht gedreht werden. Beim Verdrehen besteht die Gefahr der Zerstörung der Kontaktstifte!

- Öffnen des Gehäusedeckels der Rückseite der Messelektronik
- Einstellen des Korrekturwertes für die Empfindlichkeit des Ionisationsmesszweiges am Schalter für die Empfindlichkeit (Abbildung 3). Der einzustellende Korrekturwert ist auf der Messzelle gekennzeichnet.
- Verschließen der Messelektronik
- Einschieben der neuen Messzelle in die Messelektronik (Markierung beachten!)
- Aufschrauben der Überwurfmutter
- Montage des Messgerätes an der Vakuumkammer

Der Pirani-Messzweig der Messzellen wird bereits vom Hersteller abgeglichen. Sollte durch den Transport ein Neuabgleich erforderlich werden, führen Sie diesen bitte nach einer der angegeben Methoden durch (3.9)!

3.9 Abgleich des ATMION®-Messsystems

Die Messzelle befindet sich zum Zeitpunkt der Auslieferung im abgeglichenen Zustand. Jedoch kann durch Transporteinflüsse, nach längerem Betrieb oder nach einem Wechsel der Messzelle kann ein Neuabgleich des Pirani-Messzweiges erforderlich sein. Dabei erfolgt der Abgleich prinzipiell in zwei Schritten. Die Einstellung des Endwertes des Pirani-Messzweiges wird unter Atmosphärendruck durchgeführt, die Einstellung des Nullpunktes bei einem Druck ≤10-⁴ mbar. Für die Durchführung des Abgleichs gibt es verschiedene Möglichkeiten, die in den folgenden Abschnitten beschrieben werden.

3.9.1 Abgleich über das ATMION®-Anzeigegerät

Arbeiten Sie beim Abgleich nach folgenden Abläufen:

Einstellen des Endpunktes des Pirani-Messzweiges bei einem Druck von 1000 mbar

- Das Anzeigegerät ist eingeschaltet und befindet sich im Messmodus. Betätigen Sie die Taste **OK** für 2 sec. Der angezeigte Druckwert beginnt zu blinken.
- Betätigen Sie die Cursortaste NACH OBEN. Der Endwert des Pirani-Messzweiges wird automatisch korrigiert. Dabei erscheint für ca. 5 Sekunden in der Anzeige n n n. Nach diesem Vorgang befinden sich das Messsystem und das Anzeigegerät wieder im normalen Anzeigemodus.

Einstellen des Nullpunktes des Pirani-Messzweiges bei einem Druck p < 10⁴ mbar

- Das Anzeigegerät ist eingeschaltet und befindet sich im Messmodus. Betätigen Sie die Taste **OK** für 2 sec. Der angezeigte Druckwert beginnt zu blinken.
- Betätigen Sie die Cursortaste NACH UNTEN. Der Nullpunkt des Pirani-Messzweiges wird automatisch korrigiert. Dabei erscheint für ca. 5 Sekunden in der Anzeige u u u. Nach diesem Vorgang befinden sich das Messsystem und das Anzeigegerät wieder im normalen Anzeigemodus.

Der Endwert-Abgleich des Pirani-Messzweiges erfolgt bei Atmosphärendruck (1000 mbar), der Nullpunkt-Abgleich bei einem Druck von p < 10⁻⁴ mbar. Der Abgleich des Endwertes und des Nullpunktes sind voneinander unabhängig. Deshalb können beide Abläufe zu verschiedenen Zeitpunkten durchgeführt werden.

3.9.2 Abgleich über Schnittstelle RS 232 oder Profibus

Der Abgleich über die serielle Schnittstelle RS 232 bzw. den Profibus erfolgt durch Eingabe der entsprechenden Befehle oder Steuerbits (Tabelle 6, Bedienungsanleitung ATMION® Profibus). Die angegebenen Steuerbits für die Eingabe über die serielle Schnittstelle RS 232 entsprechen dem 3. Ausgangswort (aus der Sicht des Masters) beim Profibus. Arbeiten Sie nach folgenden Schritten:

Einstellen des Endwertes des Pirani-Messzweiges bei 1000 mbar (Atmosphärendruck)

- Rezipient belüftet (1000 mbar)
- Eingabe `SC_0002`
 das Messsystem arbeitet nur mit dem Pirani-Messzweig und überprüft den momentanen Endwert des Pirani-Messzweiges
- Eingabe `SC_4002` es erfolgt automatisch die Korrektur des Endwertes des Pirani-Messzweiges
- Eingabe `SC_0002`
 das Messsystem arbeitet nur mit dem Pirani-Messzweig und speichert den Endwert ab

Einstellen des Nullpunktes des Pirani unterhalb 10⁴mbar

- Abpumpen des Rezipienten bis unterhalb 10⁻⁴ mbar
- Eingabe `SC_0002`
 das Messsystem arbeitet nur mit dem Pirani-Messzweig und überprüft den momentane Wert für den Nullpunkt des Pirani-Messzweiges
- Eingabe `SC_2002`
 es erfolgt automatisch die Korrektur des Nullpunktes des Pirani-Messzweiges
- Eingabe `SC_0002` das Messsystem arbeitet nur mit dem Pirani-Messzweig und speichert den Wert für den Nullpunkt ab
- Eingabe `SC_0009` das Messsystem schaltet automatisch auf den Ionisations-Messzweig um (Modus AUTORANGE und AUTOFIL)

3.9.3 Abgleich über die externen Steuereingänge

Beim Abgleich über die externen Steuereingänge werden die Eingänge an PIN 4 (Control 1) und PIN 5 (Control 2) genutzt. Um mit diesen Steuereingängen zu arbeiten, müssen sie freigegeben werden, indem PIN 1 (Freigabe extern) auf einen High-Pegel von 24 V DC gesetzt wird. Arbeiten Sie nun nach folgenden Schritten, die auch in Abbildung 9 noch einmal systematisch dargestellt sind:

Einstellen des Endwertes des Pirani-Messzweiges bei 1000 mbar (Atmosphärendruck)

- Rezipient belüftet (1000 mbar)
- PIN 1 (Freigabe extern) mit PIN 7 oder 8 (Betriebspannung 24 V DC) verbinden die externen Steuereingänge werden freigegeben
- PIN 4 (Control 1) mit PIN 7 oder 8 (Betriebspannung 24 V DC) verbinden das Messsystem arbeitet nur mit dem Pirani-Messzweig und überprüft den momentanen Endwert des Pirani-Messzweiges
- Zusätzlich zu PIN 4 (Control 1) auch PIN 5 (Control 2) mit PIN 7 oder 8 (Betriebspannung 24 V DC) verbinden es erfolgt automatisch die Korrektur des Endwertes des Pirani-Messzweiges

- PIN 5 (Control 2) von PIN 7 oder 8 (Betriebspannung 24 V DC) trennen das Messsystem arbeitet nur mit dem Pirani-Messzweig und speichert den Endwert ab
- PIN 4 (Control 1) bleibt mit PIN 7 oder 8 (Betriebspannung 24 V DC) verbunden

Einstellen des Nullpunktes des Pirani-Messzweiges unterhalb 10⁻⁴ mbar

- Abpumpen des Rezipienten bis unterhalb 10⁻⁴ mbar
- PIN 4 (Control 1) ist noch mit PIN 7 oder 8 (Betriebspannung 24 V DC) verbunden das Messsystem arbeitet nur mit dem Pirani-Messzweig und überprüft den momentanen Wert für den Nullpunkt des Pirani-Messzweiges
- PIN 4 (Control 1) von PIN 7 oder 8 (Betriebspannung 24 V DC) trennen und PIN 5 (Control 2) mit PIN 7 oder 8 (Betriebspannung 24 V DC) verbinden es erfolgt automatisch die Korrektur des Nullpunktes des Pirani-Messzweiges
- PIN 5 (Control 2) von PIN 7 oder 8 (Betriebspannung 24 V DC) trennen und PIN 4 (Control 1) mit PIN 7 oder 8 (Betriebspannung 24 V DC) verbinden das Messsystem arbeitet nur mit dem Pirani-Messzweig und speichert den Wert für den Nullpunkt ab
- PIN 4 (Control 1) von PIN 7 oder 8 (Betriebspannung 24 V DC) trennen das Messsystem schaltet automatisch auf den Ionisations-Messzweig um
- PIN 1 (Freigabe extern) von PIN 7 oder 8 (Betriebspannung 24 V DC) trennen die externen Steuereingänge sind gesperrt

Abbildung 9: Systematische Darstellung des Abgleichvorgangs über die externen Steuereingänge

4.1 Technische Daten der Standard Version

Betriebsspannung: 24 V DC ±10 %

Leistungsaufnahme: Normalbetrieb: max. 10 W (beim Einschalten des

Ionisationsmesszweiges max. 15 W)

Entgasen: max. 36 W

Stromaufnahme: Normalbetrieb: max. 0,4 A (beim Einschalten des

Ionisationsmesszweiges max. 0,6 A)

Entgasen: max. 0,9 A

Schnittstelle: Serielle Schnittstelle RS 232

Profibus-Schnittstelle (optional)

Analogsteuerung: Eingang / Ausgang 24 V DC

Ausgangssignal: 0...10 V logarithmisch linear mit 0,625 V pro Dekade

Berechnungsformel: U = $0.625 \cdot lg (p / 10^{-12} mbar)$

Schaltpunkt: ein Schaltpunkt in der Elektronik frei einstellbar

(Transistorausgang, max. 24 V DC, max. 0,2 A)

Umgebungstemperatur: 40 °C

Kathodenmaterial: Iridium mit Beschichtung aus Yttriumoxid

Emissionsstrom: Messprozess: 2 µA (low), 2 mA (high); Entgasen: 20 mA

Schwellenwerte für die automatische Umschaltung im Messprozess: low -> high: $p = 5 \cdot 10^{-6}$ mbar

high -> low: p = $1 \cdot 10^{-5}$ mbar

Vakuumanschlüsse: DN 40 CF

Messbereich: 1000...10⁻¹⁰ mbar

Messgenauigkeit: $\pm 25 \% (10...10^{-2} \text{ mbar})$

±10 % (10⁻²...10⁻⁸ mbar)

Ausheiztemperaturen: max. 250 °C am Anschlussflansch

Gewicht: max. 1,6 kg

Abmessungen: Breite: 105 mm (IP40) 113 mm (IP65)

Höhe: 70 mm (IP40) 76 mm (IP65) Tiefe: 191 mm (IP40) 194 mm (IP65)

Abbildung 10: Gerätezeichnung der Standard Version (Abmessungen in mm)

Abbildung 11: Schematischer Geräteaufbau der Standard Version

- A Schutzadapter (Tubus) mit Flanschverbindung DN 40 CF zur Vakuumkammer
- B Flanschverbindung mit Kupferdichtring und sechs Schrauben und Muttern M6
- C Kupferdichtring
- D Sensorflansch mit drei Madenschrauben M2 zur Befestigung des Steckadapters
- E Steckverbindung zwischen Messzelle und Steckadapter
- F Steckadapter mit Abgleichleiterplatte und Überwurfmutter zur Messelektronik
- G Steckverbindung zwischen Steckadapter und Messelektronik
- H Messelektronik

4. Technische Daten, Zubehör

4.2 Technische Daten der Compact Version

Betriebsspannung: 24 V DC ±10 %

Leistungsaufnahme: Normalbetrieb: max. 10 W (beim Einschalten des

Ionisationsmesszweiges max. 15 W)

Entgasen: max. 36 W

Stromaufnahme: Normalbetrieb: max. 0,4 A (beim Einschalten des

Ionisationsmesszweiges max. 0,6 A)

Entgasen: max. 0,9 A

Schnittstelle: Serielle Schnittstelle RS 232

Profibus-Schnittstelle (optional)

Analogsteuerung: Eingang / Ausgang 24 V DC

Ausgangssignal: 0...10 V logarithmisch linear mit 0,625 V pro Dekade

Berechnungsformel: U = $0.625 \cdot lg (p / 10^{-12} mbar)$

Schaltpunkt: ein Schaltpunkt in der Elektronik frei einstellbar

(Transistorausgang, max. 24 V DC, max. 0,2 A)

Umgebungstemperatur: 40 °C

Kathodenmaterial: Iridium mit Beschichtung aus Yttriumoxid

Emissionsstrom: Messprozess: 2 µA (low), 2 mA (high); Entgasen: 20 mA

Schwellenwerte für die automatische Umschaltung im Messprozess: low -> high: $p = 5 \cdot 10^{-6}$ mbar

high -> low: $p = 1 \cdot 10^{-5}$ mbar

Vakuumanschlüsse: DN25KF, DN40CF

Messbereich: 1000...10⁻¹⁰ mbar

Messgenauigkeit: $\pm 25 \%$ (10...10⁻² mbar)

±10 % (10-2...10⁻⁸ mbar)

Ausheiztemperaturen: max. 180 °C am Anschlussflansch

Gewicht: max. 1,0 kg

Abmessungen: Breite: 105 mm (IP40) 113 mm (IP65)

Höhe: 70 mm (IP40) 76 mm (IP65) Tiefe: 147 mm (IP40) 150 mm (IP65) 45

147 (IP40) 150 (IP65)

Abbildung 12: Gerätezeichnung der Compact Version (Abmessungen in mm)

Abbildung 13: Schematischer Geräteaufbau der Compact Version

- A Messzelle mit Flanschverbindung DN25KF bzw. DN40CF zur Vakuumkammer sowie Abgleichleiterplatte
- B Überwurfmutter zur Verbindung mit der Messelektronik
- C Steckverbindung der Messzelle mit der Messelektronik
- D Messelektronik

4.3 Analogsignal

Abbildung 14: Analogausgangssignal

4.4 Anschlussbelegung der Messzelle

Abbildung 15: Anschlussbelegung

PIN 1 Anschluss Piranidraht

PIN 2 Anschluss Piranidraht

PIN 3 Anodengitter

PIN 4 Kollektor

PIN 5 Anodengitter

PIN 6 Pirani-Eingang

PIN 7 Pirani-Ausgang

PIN 8 Filament 1

PIN 9 Filament Com

PIN 10 Filament 2

4.5 Zubehör

Artikelnummer	Bezeichnung
ATD1 / ATD2 *	Anzeige- und Steuergerät für ein ATMION®-Messgerät (115 V AC / 230 V AC)
ATDP1 / ATDP2 *	Anzeige- und Steuergerät für ein ATMION®-Messgerät und einen zusätzlichen Vorvakuumsensor(115 V AC / 230 V AC)
AG *	Anzeigegerät für ein ATMION®-Messgerät (24 V DC)
AGPC *	Anzeigegerät für ein ATMION®-Messgerät mit zusätzlicher Option für eine PC-Steuerung des Messgerätes (24 V DC)
MVC3-A0	Anzeige- und Steuergerät für ein ATMION-Messgerät (100-240 V AC)
MVC3-AM	Anzeige- und Steuergerät für ein ATMION-Messgerät und zwei zusätzliche Vorvakuumsensoren (100-240 V AC)
ATPC	Adapter für Anschluss der RS 232-Schnittstelle an einen PC
AT24E	Netzteil 24 V DC
ATL3 / 5 / 10 / 15	Verbindungskabel zwischen Messgerät und Anzeigegerät, Länge 3 / 5 / 10 / 15 m
ATLPC3 / 5	Modemkabel für Anschluss an einen PC, Länge 3 / 5 m

^{*} nicht mehr lieferbar

4.6 Weiterführende Anleitungen

- Zusatzanleitung Profibus-DP für ATMION®-Messgeräte der Standard Version und Compact Version mit Profibus-DP
- Bedienungsanleitung für ATMION®-Anzeigegeräte der Tischversion und Rackversion

Sicherheitsinformationen für die Rücksendung von Vakuumgeräten und -komponenten

Allgemeine Information

Der Unternehmer (Betreiber) trägt die Verantwortung für die Gesundheit und Sicherheit seiner Arbeitnehmer.

Diese erstreckt sich auch auf das Personal, das bei Reparatur und/oder Wartung von Vakuumgeräten und -komponenten beim Betreiber oder Hersteller mit diesen in Berührung kommt. Die Kontaminierung der Vakuumgeräte und -komponenten muss kenntlich gemacht werden und die Erklärung über Kontaminierung ist auszufüllen.

Erklärung über Kontaminierung

Das Personal, das die Reparatur und/oder die Wartung durchführt, muss vor Aufnahme der Arbeiten über den Zustand der Vakuumgeräte und -komponenten informiert werden. Dazu dient die "Erklärung über Kontaminierung von Vakuumgeräten und -komponenten".

Diese Erklärung ist dem Hersteller oder der von ihm beauftragten Firma direkt zuzusenden. Ein zweites Exemplar muss den Begleitpapieren **außerhalb (Versandtasche)** der Sendung beigefügt werden.

Warensendungen, denen keine Kontaminationserklärung beiliegt, werden nicht bearbeitet und an den Absender zurückgewiesen!

Versand

Bei Versand von Vakuumgeräten und -komponenten sind die in der Betriebsanleitung angegebenen Versandvorschriften zu beachten, so zum Beispiel:

- Wenn nötig: Versand als Gefahrenstoff mit entsprechender Kennzeichnung,
- Betriebsmittel/Pumpenöl ablassen,
- Pumpe durch Spülen mit Gas neutralisieren,
- Filtereinsätze entfernen,
- alle Öffnungen luftdicht verschließen,
- einschweißen in geeignete Schutzfolie,
- Versand in geeigneten Transportcontainern.

Dekontamination

Sollten Sie selbst keine Möglichkeit zur vorschriftsmäßigen Dekontamination haben, vermitteln wir Ihnen gern einen entsprechenden Partner. Bitte sprechen Sie uns an.

Erklärung über Kontaminierung von Vakuumgeräten und -komponenten

Die Reparatur und/oder die Wartung von Vakuumgeräten und -komponenten wird nur durchgeführt, wenn eine korrekt und vollständig ausgefüllte Erklärung vorliegt und diese den Begleitpapieren der Sendung begefügt ist (Versandtasche außen am Paket). Ist das nicht der Fall, kommt es zu Verzögerungen der Arbeiten. Wenn die Reparatur/Wartung im Herstellerwerk und nicht am Ort ihres Einsatzes erfolgen soll, wird die Sendung gegebenenfalls zurückgewiesen.

Diese Erklärung darf nur von autorisiertem Fachpersonal ausgefüllt werden. Sie muss rechtsverbindlich unterschrieben werden und im Original vorliegen.

_	•	enutzt ı	and origina			
. Zustand der Vakuumge	•	enutzt ι	ınd origina			
_			and Origine	•	a veiter s. 5.)	Nein (weiter s. 3
3. Zustand der Vakuumgeräte und –komponenten Waren die Vakuumgeräte und –komponenten in Betrieb? Ja		4. Einsatzbedingte Kontaminier und –komponenten Bei Nichtbestätigung einer Gefagend ein Sicherheitsdatenblatt stoffes beizulegen. - toxisch *) - ätzend *) - mikrobiologisch *) - explosiv *) - radioaktiv *) - Zink - Zinn - Blei - Indium - sonstige Schwermetalle - sonstige Schadstoffe		Gefahrstofffrei att des betreff Ja Ja Ja Ja Ja Ja Ja Ja	heit ist zwin- fenden Gefah Nein N	
landelsname Che	mische Bezeichnung . auch Formel)	Gefal		Maßnahme bei Frei- werden der Schadstoffe		e bei Unfällen
Hiermit versichere/n ich/ Der Versand der Vakuun	wir, dass die Angaben	in diese enten er	m Vordruck			ımungen.
Straße			PLZ, Or	t		
Telefon		_	Telefax			
		_				
Name		_	Firmens	tempel		
Datum		_				
Rechtsverbindliche Ur	nterschrift					

Datum: 08.04.2013

Druckexemplar gültig ab dem 02.06.2013

Seite 2 von 2

Datum: 02.09.2011

VACOM Vakuum Komponenten & Messtechnik GmbH

Gabelsbergerstraße 9 07749 Jena • Germany Tel. +49 3641 4275-0 • Fax -55 info@vacom.de • www.vacom.de

EG-Konformitätserklärung

CE-Konformitätserklärung für ATMION® - Wide Range Manometer (CE-Declaration of Conformity for ATMION® - Wide Range Manometer)

1. Hersteller des Vakuummeßgerätes **ATMION**® - Wide Range Manometer ist die Firma (Producer of the vacuum measuring system **ATMION**® - Wide Range Manometer is the firm)

VACOM

Vakuum Komponenten & Messtechnik GmbH Gabelsbergerstraße 9 07749 Jena Germany

- 2. Bei dem mit **ATMION**® Wide Range Manometer bezeichneten Gerät handelt es sich um ein Vakuummeßgerät. Das Gerät erfüllt die Anforderungen folgender EU-Richtlinien: (The **ATMION**® Wide Range Manometer is a vacuum measuring system. The system meets the demands of the following EU-Directives:)
 - 93/68/EWG Kennzeichnungsrichtlinie (Registration Directive)
 - 73/23/EWG Niederspannungsrichtlinie (Low Voltage Directive)
 - 89/336/EWG EMV-Richtlinie (*Electromagnetic Compatibility Directive*)

Jena, 16.01.2012

Geschäftsführer

VACOM Vakuum Komponenten & Messtechnik GmbH

Banken Commerzbank Jena Merkur Bank Jena Sparkasse Jena Commerzbank Jena Commerzbank Jena Konto-Nr.

EUR 002 583 177
EUR 006 603 688
EUR 000 030 040
GBP 002 583 177
USD 348 050 100

IBAN
DE27 8204 0000 0258 3177 00
DE24 7013 0800 0006 6036 88
DE84 8305 3030 0000 0300 40
DE27 8204 0000 0258 3177 00
DE46 8208 0000 0348 0501 00

BIC COBA DEFFXXX GENODEF1 M06 HELA DEF1 JEN COBA DEFFXXX COBA DEFFXXX Geschäftsführer
Dr. Ute Bergner, Jens Bergner
Sitz der Gesellschaft: Jena
Handelsregister Jena HRB 203 602
St.-Nr.: 161/121/03299
USt.-ID: DE 150 538 086

VACOM Vakuum Komponenten & Messtechnik GmbH