Ray Tracing and Texturing (2)

Texture mapping & Code skeleton

2D Texture Mapping

- Make our surfaces more life-like
 - Retrieve Texture: scanned from the world, generate
 - Texture stored in a 2D image
- Mapping
 - For each texture image, we have horizontal and vertical axes (u, v), where u and v vary from 0 to 1.
 - We need a mapping from points on the surface to (u, v) on the image.

Review Texturing

How to Find the Mapping

- Parameterized geometries
 - Sphere: $(\phi, \theta) = (2\pi u, \pi v), \phi$ is azimuth, θ is zenith
 - Cylinder: $(h, \theta) = (u, 2\pi v)$, h is height, θ is azimuth

How to Find the Mapping

- Meshes
 - Specify uv coordinates for each triangle vertex.
 - For each point inside the triangle, compute uv as the interpolation of vertices' uvs according to its barycentric coordinate.

Retrieve Values of UV Mapping

- The uv space is a continuous manifold. However, textures are discretized pixel arrays.
- Retrieval strategies (Texture filtering)
 - Nearest neighbor, Bilinear, Bicubic
- Mipmap/Ripmap
 - Generate multi-scale textures using image filters
 - Handle texturing for delicate objects
- Please refer to Lecture 08.

Texture Wrapping

- Strategies for handling boundaries of textures
 - Repeat: Sawtooth wave
 - Mirror: Triangle wave
 - Clamp to edge / Clamp to a fixed color

HW3 Code Skeleton