BCNotes.org

Jim Durant

2013-10-01 Tue

Contents

1	Wee	Week 1 Notes								
	1.1	Hypothesis Tests								
		1.1.1	Standard Normal R Code	2						
		1.1.2	General Rules of Hypothesis Tests	2						
		1.1.3	Connections with confidence intervals and P Values	5						
	1.2 POWER									
		1.2.1	What is it	6						
		1.2.2	How to calculate it	7						
		1.2.3	T-test	8						
		1.2.4	Using Monte Carlo to do Power	9						
	1.3 Hypothesis Testing for comparing 2 means									
		1.3.1	Matched Data	9						
	1.4									
		1.4.1	Matched Data	10						
		1.4.2	Regression to the mean	11						
		1.4.3	Two Independent groups	12						
2	Week 2 Notes									
	2.1	.1 Basic two by two table								
	2.2 Score statistics (Score and Wald)									
		2.2.1	Confidence Interval (Wald Interval)	14						
		2.2.2	Confidence Interval (Score test)	15						

1 Week 1 Notes

1.1 Hypothesis Tests

1.1.1 Standard Normal R Code

```
qnorm(.95)

xval <- seq(-3.2, 3.2, length = 1000)
yval<- dnorm(xval)

plot(xval, yval, type = "l", axes = TRUE, frame = FALSE, lwd = 3, xlab = "", ylab = ""
x <- seq(qnorm(.95), 3.2, length = 100)
polygon(c(x, rev(x)),c(dnorm(x), rep(0, length(x))), col = "salmon")
text(mean(x), mean(dnorm(x))+.02, "5%", cex = 2)

text(qnorm(.95), .01, "1.645", cex = 2)

plot(xval, yval, type = "l", axes = TRUE, frame = FALSE, lwd = 3, xlab = "", ylab = ""
x <- seq(qnorm(.975), 3.2, length = 100)
polygon(c(x, rev(x)),c(dnorm(x), rep(0, length(x))), col = "salmon")
text(mean(x), mean(dnorm(x))+.02, "2.5%", cex = 2)
text(qnorm(.975), .01, "1.96", cex = 2)
x <- seq(-3.2, qnorm(.025),length = 100)</pre>
```

1.1.2 General Rules of Hypothesis Tests

text(qnorm(.025), .01, "-1.96", cex = 2) text(0, dnorm(0) / 5, "95%", cex = 2)

text(mean(x), mean(dnorm(x))+.02, "2.5%", cex = 2)

$$\frac{32 - 30}{10\sqrt{100}} \ge 1.645$$

polygon(c(x, rev(x)),c(dnorm(x), rep(0, length(x))), col = "salmon")

- The Z test for $H_0:/mu=/mu_0$ versus
- H_1 : $\mu < \mu_0$
- H_2 : $\mu \neq \mu_0$
- H_3 : $\mu > \mu_0$

- Test statistic $TS = \frac{\bar{X} \mu_0}{S/\sqrt{n}}$
- Reject the null hypothesis when
- $H_1: TS \leq -Z_{1-\alpha}$
- $H_2: |TS| \ge Z_{1-\alpha/2}$
- $H_3: TS \geq Z_{1-\alpha}$

We want an α percent chance of rejecting the null hypothesis falsely. We look at $\alpha/2$ because we want an overall rate of 5%.

```
xval <- seq(-4, 4, length = 1000)
yval<- dt(xval, 15)
plot(xval, yval, type = "l", axes = TRUE, frame = FALSE, lwd = 3, xlab = "", ylab = ""
x <- seq(qt(.975, 15), 4, length = 100)
polygon(c(x, rev(x)),c(dt(x, 15), rep(0, length(x))), col = "salmon")
text(mean(x), mean(dt(x, 15))+.02, "2.5%", cex = 2)
text(qt(.975, 15), .01, "2.13", cex = 2)
x <- seq(-4, qt(.025, 15),length = 100)
polygon(c(x, rev(x)),c(dt(x, 15), rep(0, length(x))), col = "salmon")
text(mean(x), mean(dt(x, 15))+.02, "2.5%", cex = 2)
text(qt(.025, 15), .01, "-2.13", cex = 2)
text(0, dt(0, 15) / 5, "95%", cex = 2)</pre>
```

Looking for greater than or less than critical values (overall rate is 5%)

We have forced the type I error rate to be small. We have not fixed anything to do with the type II error. We say failed to reject H_0 rather than accepting H_0 . Small sample size can lead to variability in the mean - we did not get enough data to reject. Classic phrase: absence of evidence is not evidence of absence. Statistical significance is not scientific significance. A big sample size may lead to rejection of the null hypothesis - but the overall difference is meaningless.

- The region of TS values for which you would reject the null is called the rejection region.
 - *** Two sides tests
- Z test required assumption of CLT
- If n is small then a Gosset T test is performed

- Power is used a lot to calculate sample sizes using guesses of standard errors and level of effect. This is done prior to experiment.
- Consider example n=16 then:

Consider our example again. Suppose that n=16 (rather than 100). Then consider that

$$.05 = P\left(\frac{\bar{X} - 30}{s/\sqrt{16}} \ge t_{1-\alpha,15} \mid \mu = 30\right)$$

- s=10
- n = 16
- $\bar{X}=32$ So that our test statistic is now $\sqrt{16}(32-30)/10=0.8$, while the critical value is $t_{1-\alpha,15}=1.75$. We now fail to reject.

we went from 100 to 16 and the t-value went up so we are not surprised we did not reject.

- Suppose we want to test if $\mu \neq 30$ (does not make sense as we proposed the problem).
- Then

$$\alpha = P\left(\left|\frac{\bar{X} - 30}{s/\sqrt{16}}\right| > t_{1-\alpha/2,15} \mid \mu = 30\right)$$

• we fail to reject (0.8 < 2.13).

add source code for t-tests.

```
pt(.8, 15, lower.tail=FALSE)
xval <- seq(-4, 4, length = 1000)
yval<- dt(xval, 15)
plot(xval, yval, type = "l", axes = TRUE, frame = FALSE, lwd = 3, xlab = "", ylab = ""
x <- seq(.8, 4, length = 100)
polygon(c(x, rev(x)),c(dt(x, 15), rep(0, length(x))), col = "salmon")
text(mean(x), mean(dt(x, 15))+.02, "22%", cex = 2)
text(0.8, .01, "0.8", cex = 2)</pre>
```

1.1.3 Connections with confidence intervals and P Values

- test H_0 : $\mu = \mu_0$ versus H_a : $\mu \neq 0$
- range of possible values that we do not reject H_0 is confidence interval
- consider do not reject H_0

$$\left| \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \right| \le t_{1 - \alpha/2, n - 1}$$

impying

$$|\bar{X} - \mu_0| \le t_{1-\alpha/2, n-1} s / \sqrt{n}$$

implying

$$\bar{X} - t_{1-\alpha/2,n-1} s / \sqrt{n} < \mu_0 < \bar{X} + t_{1-\alpha/2,n-1} s / \sqrt{n}$$

 μ_0 lies inside the confidence interval. Several uses:

- 1. Conveys more information than hypothesis tests
- 2. Conveys the range of values that are supported by the data

when can report confidence interval

- P-values
- the smallest α for which you still reject the null hypothesis is the attained significance level.
- P-Value is the probability under the null hypothesis is the probability that the value or more extreme under the null hypothesis.
- Some level people claim it is measure of evidence. If P-value is small than either the null is true and we have observed something that is rare, or the null hypothesis is <u>FALSE</u>.

```
pt(.8, 15, lower.tail=FALSE)
xval <- seq(-4, 4, length = 1000)
yval<- dt(xval, 15)
plot(xval, yval, type = "l", axes = TRUE, frame = FALSE, lwd = 3, xlab = "", ylab = ""
x <- seq(.8, 4, length = 100)</pre>
```

```
polygon(c(x, rev(x)),c(dt(x, 15), rep(0, length(x))), col = "salmon") text(mean(x), mean(dt(x, 15))+.02, "22%", cex = 2) text(0.8, .01, "0.8", cex = 2) pt(0.8, 15, lower.tail=FALSE)
```

- By reporting P-value the reader can perform hypothesis tests he or she choses.
- 2-sided hypothesis is to double smaller of 2-sided P-values
- Don't just report P-values give confidence intervals
- P-Values Limitations
 - P-Values only consider significane unlike CIs
 - P-values only measure evidence for NULL not the Alternative
 - Frequently misinterpretted. /Prob. of attaining the value or more extreme in favor of the alternative hypothesis when the calculation is done under the NULL hypothesis./

1.2 POWER

1.2.1 What is it

- Probability of rejecting NULL when it is false labeled β
- 1- B is Power
- Consider RDI example

$$P\left(\frac{\bar{X} - 30}{s/\sqrt{n}} > t_{1-\alpha, n-1} \mid \mu = \mu_a\right)$$

- note the function is specific to μ_a
- NOTE as μ_a approaches 30, the power approaches α .
- YOU have to know the value under the alternative you want to plug in

1.2.2 How to calculate it

- Assume that n is large and the we know α
- notice s is replaced by σ
- no longer a z-statistic because we are considering an alternative hypothesis.
- Adding and subtracting the mean under the alternative converts it to z-statistic.

$$1 - \beta =$$

$$P\left(\frac{\bar{X} - 30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_a\right)$$

$$= P\left(\frac{\bar{X} - \mu_a + \mu_a - 30}{\sigma/\sqrt{n}} > z_{1-\alpha} \mid \mu = \mu_a\right)$$

$$= P\left(\frac{\bar{X} - \mu_a}{\sigma/\sqrt{n}} > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_a\right)$$

$$= P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_a\right)$$

- Suppose we want to detect increase of 2 events per hour above 30. Assume normality and the sample will have $\sigma = 4$. Sample size is 16:
- $Z_{1-\alpha} = 1.645$ and

$$\frac{\mu_a - 30}{\sigma/\sqrt{n}} = 2/(4/\sqrt{16}) = 2$$

- P(Z > 1.645 2) = P(Z > -0.355) = 64%
- only gets better as difference gets better than 2.
- Given Power what sample size?
 - Suppose we want power of 0.8

$$0.80 = P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} \mid \mu = \mu_a\right)$$

- set $z_{1-\alpha} - \frac{\mu_a - 30}{\sigma/\sqrt{n}} = z_{0.20}$ and solve for n

- done at phase of study design
- The calculation is similar when $\mu < \mu_0$
- when $\mu \neq \backslash m_0$
- pick 1-sided but use $\alpha/2$ it is *right enough* it omits some of the probability (that is small enough to be irrelivant).
- Power goes up as α gets larger under court of law example the odds of convicting an innocent person goes up as the probability of convicting a guilty person goes up.
- difference between NULL and ALTERNATE gets big power goes up
- sample size goes up, your power goes up

1.2.3 T-test

- Power for T-test is more complicated.
- the power is:

$$P\left(\frac{\bar{X} - 30}{S/\sqrt{n}} > t_{1-\alpha, n-1} \mid \mu = \mu_a\right)$$

• Notice that this is equal to:

$$= P\left(\sqrt{n}(\bar{X} - 30) > t_{1-\alpha, n-1}S \mid \mu = \mu_a\right)$$

$$= P\left(\frac{\sqrt{n}(\bar{X} - 30)}{\sigma} > t_{1-\alpha, n-1} \frac{S}{\sigma} \mid \mu = \mu_a\right)$$

• Continued - how can do with tools we have:

$$P\left(\frac{\sqrt{n}(\bar{X} - \mu_a)}{\sigma} + \frac{\sqrt{n}(\mu_a - 30)}{\sigma} > \frac{t_{1-\alpha, n-1}}{\sqrt{n-1}} \times \sqrt{\frac{(n-1)S^2}{\sigma^2}}\right)$$

• which equal to:

$$P\left(Z + \frac{\sqrt{n}(\mu_a - 30)}{\sigma} > \frac{t_{1-\alpha, n-1}}{\sqrt{n-1}} \sqrt{\chi_{n-1}^2}\right)$$

where Z and X^2_{n-1} are independent standard normal and chi-squared random variables

• Easy to solve using Monte Carlo

1.2.4 Using Monte Carlo to do Power

• Simulate pairs of Z and X^2 and check which is bigger. If %1's would be approximate probability.

```
nosim <- 100000
n <- 16
sigma <- 4
mu0 <- 30
mua <- 32
z <- rnorm(nosim)</pre>
xsq <- rchisq(nosim, df=15)</pre>
t < -qt(0.95,15)
mean(z+sqrt(n) * (mua - mu0)/sigma >
t/sqrt(n-1) * sqrt(xsq))
Returns a vector of 1 (TRUE) and 0 (FALSE). 1 every time left is big-
ger than right side of equation. Mean is the proportion (60%) accuracy:
1/\text{sqrt}(100000)
 0.60762
x <- power.t.test(n=16, delta=2, sd=4, type="one.sample", alt="one.sided")
print(unlist(x))
```

• Notice that in both cases we gave a TRUE mean and standard deviation - but we only needed to provided the delta (difference in the means divided by the standard deviation).

1.3 Hypothesis Testing for comparing 2 means

1.3.1 Matched Data

```
diff <- test2 - test1
n <- sum(!is.na(diff)) #49
mean(diff) #2.88
sd(diff) #7.61
testStat <- sqrt(n) * mean(diff) / sd(diff) #2.65
# below works out to be 0.01
2 * pt(abs(testStat), n -1, lower.tail = FALSE)
##uses the R function
t.test(diff)</pre>
```

- Discussion of matched data
- Regression to the mean (or mediocrity)

1.4 Two Sample Tests

1.4.1 Matched Data

- comparing 2 groups determine if data are paired.
- observations on same subject
- compare when match case to control
- when paired take the difference of the observations.
- NULL difference is 0
- Alternative is not 0
- Test statistic:

$$\frac{\bar{X} - \mu d0}{S_d / \sqrt{n_d}}$$

- $\mu_d 0$ is the value under the NULL (typically 0)
- statistic is a $\$t_{n_d-1}$ or z statistic
- n_d is the number of pairs of observations
- $\$SS_d$ is the standard deviation of difference of the pairs
- Example from 2 exams (on same students) and testing if there is a difference between the means of the other exams?
- plot the variables (test1 and test2)
- mean difference plot (Bland and Altman)

```
diff <- test1 - test2
n <- sum(!is.na(diff))
mean(diff)
sd(diff)
testStat <- sqrt(n) * mean(diff)/sd(diff)
2 * pt(abs(testStat), n-1, lower.tail=FALSE)</pre>
```

#or

t.test(diff)

p = 0.01 so reject NULL

- Comments
 - Ratios more relevant than pair-wise differences?
 - if yes, then do the test on the log-observations
 - when doing plot of var1 and var2 and mean difference plot (Bland and Altman plot)

1.4.2 Regression to the mean

- Francis Galton saw that for matched data high initial observations tend to lead to low second observations.
- sons of tall dads, tend to be a little shorts
- dads of tall sons tend to be a little shorter
- RTM in detail normalize both scales (so that their means are both 0 and the sd is 1)
- The best fitting line is through average and has slope:

$$Cor(Test1, Test2) \frac{SD(Test2)}{SD(Test1)}$$

and passes through the point where x = mean(Test1)y = mean(Test2).

- It also (because we normalized) passes though the origin (0,0) and has a slope equal to the Cor(Test1, Test2)
- Cor(Test1, Test2) <1 in general
- This will be shrunk towards a horizontal line, our expected normalized test score for Test2 can be calculated by mutliplying Test 1 (normalized) times the Cor(Test1, Test2).
 - Line adjusts for the the regression to the mean for Test 2 (conditioned on Test 1).

- for Test 1 conditioned on Test 2 we need to multiply Test 2 by \$\Cor(\text{Test1}, \text{Test2})^-1 the first case the line is shrunk toward shorizontal line, the these cond case the line is shrunk toward shorizontal line.
- Ideal examiner would have little difference between id. line and fitted regression
- More unrelated the exam scores are more pronounced regression to the mean

1.4.3 Two Independent groups

- the extention to 2 independent groups
- $H_0: \mu_1 = \mu_2 vs H_a \mu_1 \neq \mu_2$ or other alternatives (> or <)
- Assuming common variance

 $\bar{X} - \bar{Y}_{S_p\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} this follows at_{n_x + n_y - 2}$ distribution under the null hypothesis with the t-assumptions

• If assuming common variance is questionable

$$\frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}}}$$

follows normal distribution for large values of n_x and n_y . Follows (approx) Student's T if the X_i and Y_i are normally distributed.

• Appropriate degrees of freedom are

$$\frac{(S_x^2/n_x + S_y^2/n_y)^2}{(S_x^2/n_x)^2/(n_x - 1) + (S_y^2/n_y)^2/(n_y - 1)}$$

- fairly accurate
- not a lot of intuition as to why it works this way.
- ok not an integer

Final Comments

• connection between hypothesis test and confidence interval holds

- don't test for equality of means by comparing confidence intervals (definately will reject if they do not overlap, but sometimes overlapping CIs will have rejected means)
- abuse of paired data
- in general not as powerful
- Example calculation
 - randomly assign students to two teaching modules
 - same test

Group	Ν	Mean Exam Score	SD Exam Score
Module1	50	86.9	6.07
Module2	50	89.8	6.06

- pooled SD 6.065 (sqrt of average variances!)
- test statistic:

$$\frac{89.8 - 86.8}{6.065\sqrt{\frac{1}{50} + \frac{1}{50}}}$$

- look over review notes on formal tests of equality of variances
- CAFO IS NOT A FAN
- ASSUME NORMALITY IN F-distributions
- Bootstrap resampling (not F-distribution) for ratio of CI for the ratio between variances
- if not assume not-equality of variances
- Suppose you have equal numbers of obs. for 2 groups
- if data are matched (truley), then

$$\sqrt{\frac{\sigma_y^2}{n} + \frac{\sigma_x^2}{n} - 2\frac{Cov(X,Y)}{n}}$$

if you ignore matching...

$$\sqrt{\frac{\sigma_y^2}{n} + \frac{\sigma_x^2}{n}}$$

- in many cases by ignoring correlation you are inflating standard error. In a way you are ignoring information.
- why not pair all experiments? Sometimes things don't lend themselves to paired design learning effects on tests etc.
- crossover designs (some take exam1 then exam2 and some exam2 then exam1)

2 Week 2 Notes

2.1 Basic two by two table

Drug	No Side Effects	Side Effects	Total
Drug A	11	9	20
Drug B	5	15	20
Total	16	24	40

This is a random trial of 2 drugs with 40 subjects, with half randomly assigned to Drug A and half to Drug B. Each drug had same active ingredient but different delivery methods. We would like to know about the rates of side effects and if there is a difference in the side effect rates between Drug A and Drug B.

2.2 Score statistics (Score and Wald)

- NULL hypothesis $H_0: p = p_0$
- test statistic

$$\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}$$

- \bullet follows a Z distribution at large values of n
- Performs better than Wald test

$$\frac{\hat{p} - p_0}{\sqrt{\hat{p}(1-\hat{p})/n}}$$

2.2.1 Confidence Interval (Wald Interval)

• Wald Interval is used for confidence

$$\hat{p} \pm Z_{1-\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$

2.2.2 Confidence Interval (Score test)

$$\hat{p}\left(\frac{n}{n+Z_{1-\alpha/2}^2}\right) + \frac{1}{2}\left(\frac{Z_{1-\alpha/2}^2}{n+Z_{1-\alpha/2}^2}\right) \pm Z_{1-\alpha/2}\sqrt{\frac{1}{n+Z_{1-\alpha/2}^2}\left[\hat{p}(1-\hat{p})\left(\frac{n}{n+Z_{1-\alpha/2}^2}\right) + \frac{1}{4}\left(\frac{Z_{1-\alpha/2}^2}{n+Z_{1-\alpha/2}^2}\right)\right]}$$