COMBINING LATENT TOPICS WITH DOCUMENT ATTRIBUTES IN TEXT ANALYSIS

Nelson Auner Advisors: Prof. Matt Taddy & Prof. Stephen Stigler

University of Chicago

May 13, 2014

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- 2 Cluster Model
 - Algorithm
 - Cluster Initialization
- 3 Application
 - Congressional Speech Data
 - Restaurant Review Data
- Extensions

• A document is a collection of phrases.

- A document is a collection of phrases.
- Our datasets are collections of documents

- A document is a collection of phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

- A document is a collection of phrases.
- Our datasets are collections of documents

Table: What did homework consist of?

Document	Content
1	Some computation and formula proving, a lot of R code
2	Problems, computation using R
3	Some computations and writing R code
4	Proofs, problems, and programming work

 If order doesn't matter, then we can treat each document as a "bag of words".

- If order doesn't matter, then we can treat each document as a "bag of words".
- The number of words can be modeled as a multinomial

- If order doesn't matter, then we can treat each document as a "bag of words".
- The number of words can be modeled as a multinomial

Table: Creating a word-count matrix from text

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
1	1	1	1	1	1	1	0	0	0	0	0
2	0	1	0	0	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0	0	1	0	0
4	0	0	0	1	0	0	0	1	0	1	1

- If order doesn't matter, then we can treat each document as a "bag of words".
- The number of words can be modeled as a multinomial

Table: Creating a word-count matrix from text

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
1	1	1	1	1	1	1	0	0	0	0	0
2	0	1	0	0	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0	0	1	0	0
4	0	0	0	1	0	0	0	1	0	1	1

 We would like to add structure to the model for inference or prediction

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

- We would like to add structure to the model for inference or prediction
- Metadata is data that accompanies a document

Table: What did homework consist of?

Grade	Content
A+	Some computation and formula proving, a lot of R code
В	Problems, computation using R
В	Some computations and writing R code
C+	Proofs, problems, and programming work

Metadata and Computation

- *n* documents with metadata that takes *m* discrete values:
- Normally, n >> m
- ullet \Rightarrow Collapse observations by outcome variables.
- Model as m observations, instead of n

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
A+	1	1	1	1	1	1	0	0	0	0	0
В	1	2	0	0	2	0	1	1	1	0	0
C	0	0	0	1	0	0	0	1	0	1	1

Metadata and Computation

- *n* documents with metadata that takes *m* discrete values:
- Normally, n >> m
- \Rightarrow Collapse observations by outcome variables.
- Model as m observations, instead of n

Document	Some	comp	formula	prov	R	code	use	problem	writ	program	work
A+	1	1	1	1	1	1	0	0	0	0	0
В	1	2	0	0	2	0	1	1	1	0	0
C	0	0	0	1	0	0	0	1	0	1	1

Reality: There are thousands of course reviews

In a topic model, documents are the realizations of mixtures of topics.

A topic is a distribution of words.

- A book about triathalon training $\sim heta_1$ Running $+ heta_2$ Biking $+ heta_3$ Swimming
- Problem: We can no longer collapse observations, must use all n observations

In a topic model, documents are the realizations of mixtures of topics.

A topic is a distribution of words.

Running Topic

Stride, Pacing, Stretch

- A book about triathalon training $\sim \theta_1$ Running + θ_2 Biking + θ_3 Swimming
- Problem: We can no longer collapse observations, must use all n observations

In a topic model, documents are the realizations of mixtures of topics.

A topic is a distribution of words.

Running Topic Stride, Pacing, Stretch

```
Bike Topic
Pedal, Helmet,
Gears
```

- A book about triathalon training $\sim heta_1$ Running $+ heta_2$ Biking $+ heta_3$ Swimming
- Problem: We can no longer collapse observations, must use all n observations

In a topic model, documents are the realizations of mixtures of topics.

A topic is a distribution of words.

Running Topic

Stride, Pacing, Stretch

Bike Topic

Pedal, Helmet, Gears

Swimming

Stroke, Air, Water

- A book about triathalon training $\sim heta_1$ Running $+ heta_2$ Biking $+ heta_3$ Swimming
- Problem: We can no longer collapse observations, must use all n observations

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- 2 Cluster Model
 - Algorithm
 - Cluster Initialization
- Application
 - Congressional Speech Data
 - Restaurant Review Data
- 4 Extensions

Cluster Model

Goal

- Want to use the Topic Model but incorporate Metadata
- Also want computational ease

Approach

- Restrict each document to only one topic ⇒ "cluster"
- Can collapse observations over unique (metadata, cluster) combination
- $\bullet \ x_i \sim MN(q_{ij}, m_{ij}); \quad q_{ij} = \frac{\exp(\alpha_j + y_i \phi_j + u_i \Gamma_{kj})}{\sum_{l=1}^p \exp(\alpha_l + y_i \phi_l + u_i \Gamma_{kl})}$

Algorithm for Cluster Membership Model with Gamma Lasso Penalty

- Initialize u_i for i = 1, ..., n
- ② Determine parameters α, ϕ, Γ by fitting a multinomial regression on $y_i|x_i, u_i$ with a gamma lasso penalty (Taddy 2013)
- **3** For each document i, determine new cluster u_i membership as $argmax_{k=1,...,K} [\ell(u_i|\alpha,\phi,\Gamma)]$
- **①** Check if current cluster assignment is different from previous cluster assignment , $(\mathbf{u}^{(t)} = \mathbf{u}^{(t-1)})$. If so, return to step 2. If not, end algorithm.

How do we initialize the clusters?

We test three different approaches:

- Randomly assign each observation to a cluster
- Group documents by k-means, then assign clusters
- Regress metadata on text, then group residual's by k-means to clusters

We'll look at the efficacy of each apprach.

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- 2 Cluster Model
 - Algorithm
 - Cluster Initialization
- 3 Application
 - Congressional Speech Data
 - Restaurant Review Data
- 4 Extensions

Congressional Speech and Restaurant Reviews

- We apply the algorithm to two datasets:
 - Congressional Speech records (Moskowitz and Shapiro, 2010)
 - A corpus of restaurant reviews called we8there.
- Questions:
 - Can this simple model capture the variation explained by a topic model?
 - How does choice of cluster initialization affect the fit?

An Example Cluster

	term	loading
1	nation.oil.food	20.09
2	united.nation.oil	12.09
3	liberty.pursuit.happiness	8.11
4	life.liberty.pursuit	8.11
5	minority.women.owned	6.73
6	universal.health	6.67
7	white.care.act	6.64
8	ryan.white.care	6.6
9	universal.health.care	5.99
10	growth.job.creation	5.39
11	drilling.arctic.national	5.3
12	tax.relief.package	5.29
13	judge.john.robert	5.26
14	fre.enterprise	5.07
15	arctic.refuge	4.93

Comparison with the Topic Model

Good news: We are able to recover similar topics with our model:

Table: Comparison of top word loadings on a stem-cell topic

Cluster Membership	Topic Model (LDA)*				
umbilic.cord.blood	pluripotent.stem.cel				
cord.blood.stem	national.ad.campaign				
blood.stem.cel	cel.stem.cel				
adult.stem.cel	stem.cel.line				

^{*}Results reported in Taddy (2012)

Incorporating metadata: Congressional Speech

Example Topic from Restaurant Review

-	term	loading
1	deep dish	7.76
2	italian beef	7.07
3	pizza like	6.85
4	style food	6.69
5	au jus	6.33
6	cut fri	6.16
7	just ok	6.01
8	great pizza	5.96
9	south side	5.94
10	pizza great	5.82
11	just over	5.75
12	took seat	5.72
13	golden brown	5.61
14	behind counter	5.58
15	got littl	5.52

Incorporating metadata: Restaurant Review

Evaluating Cluster Initialization

Outline

- Text as Data
 - Multinomial Models
 - Metadata and Computation
 - Topic Models
- Cluster Model
 - Algorithm
 - Cluster Initialization
- Application
 - Congressional Speech Data
 - Restaurant Review Data
- 4 Extensions

- Relationship Between Clusters and Metadata
- Peature Allocations: Allow an obervation to be a member of multiple clusters
- Prediction and Cross Validation