សត្ថតាសិទ្ធនេះ ១៩ ស្នួសា ៣០១៩ ត្រថាទមុយាតម្លៃគនានៃម្ខុងបាន់អ្នកាន់ខ្ល	លេទឧសិត្ ឈាលត្រនាំ១លេទដំ
ទិញ្ញាស: ដល់ដទ្ធនា (ស្វាដុខ្លួន)	ញ្ចោះខេដិនទ ·····
៖មេ:ពេល: ១៥០ ខានី	សង្គលេខាមេគ្គ៩ន
ରିନ୍ମୁ: ୨២៥ ୧୯୯୭ର:	
I. គណនាលីមីតនៃអនុគមន៍ខាងក្រោម ៖	
7. $\lim_{x \to 0} \frac{\sin x + \sin 3x}{\sin 4x + \sin 5x}$ 2. $\lim_{x \to 0} \frac{e^x - \sin x - 1}{1 - \sqrt{x + 1}}$	$\widehat{\mathbf{h}}. \lim_{x \to 0} \frac{(2e^x - 2)(1 - \cos 2x)}{x^3}$
II. \ddot{n} . ដោះស្រាយសមីការ $\mathbf{Z}^2 - 2\sqrt{2}\mathbf{Z} + 4 = 0$ ក្នុងសំណុំចំនួនកុំផ្លិច។ រកម៉ូឌុល	និងអាគុយម៉ង់នៃឬសនីមួយៗរបស់សមីការនេះ។
$oldsymbol{2}$. សរសេរ $\mathrm{W}=\left(rac{\sqrt{2}+\mathrm{i}\sqrt{2}}{\sqrt{2}-\mathrm{i}\sqrt{2}} ight)^2$ ជាទម្រង់ត្រីកោណមាត្រ ។	
III. ក. គណនាអាំងតេក្រាល $I = \int_0^2 \left(6x^2 - 3x - 1\right) dx$ និង $J = \int_0^{\frac{\pi}{2}} \left(1 - 2\sin^2\theta\right) dx$	x) dx 1
2. គេមាន f កំណត់លើ \mathbb{R}^* ដោយ $f(x)=-2\left(rac{x+1}{x^2} ight)$ ។ បង្ហាញថា $f(x)=$	$=-\frac{2}{x}-\frac{2}{x^2}$ 4
គណនា $K = \int_1^e f(x) dx$ ។ $\ln e = 1$	
IV. ក្នុងផង់មួយមានប៊ូល 15 ដែលចែកជាប៊ូលពណ៌បៃតងចំនួន 7 និងគេសរសេរលើ ខៀវចំនួន 5 និងគេសរសេរលើប៊ូលទាំង 5 នេះតាមរៀងពី 1 ដល់ 5 ចុងក្រោយប៊ូរ ទាំង 3 តាមលេខរៀងពីលេខ 1 ដល់ 3 ។ គេចាប់យកប៊ូលមួយចេញពីក្នុងផង់ដេ	លពណ៌ក្រហមចំនួន 3 និងគេសរសេរលេខលើប៊ូល
ក. A : ប៊ូលដែលចាប់បានមានពណ៌បៃតង	
ខ. B : ប៊ូលដែលចាប់បានមានលេខសេស	
គ. C : ប៊ូលដែលចាប់បានមានពណ៌បៃតង និងលេខសេស	
$ m V.~1.~$ គេមានសមីការ $18 x^2 + 10 y^2 = 90~$ ។	
ក. បង្ហាញថាសមីការនេះជាសមីការអេលីប ។ រកប្រវែងអ័ក្សធំ ប្រវែងអ័ក្សរ	ភូច និងកូអរដោនេនៃកំពូលទាំងពីរ។
ខ. សង់អេលីបនេះ ។	
2. នៅក្នុងតម្រុយអរតូណម៉ាល់ (O,វី,វ៉, kី) គេមានចំណុច M (2,3,4) , N (3,5	,6),P(4,6,7),Q(3,4,5) ⁴
ក. រកវ៉ិចទ័រ $\overrightarrow{ ext{MN}}, \overrightarrow{ ext{QP}}$	
ខ. ទាញបង្ហាញថាចតុកោណ MNPQ ជាប្រលេឡូក្រាម រួចគណនាផ្ទៃក្រទុ	្នានៃចតុកោណកែងនេះ ។
VI. កំ. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល $(E): y'' + 2y' - 3y = 0$	
ខ. រកចម្លើយពិសេសមួយនៃសមីការឌីផេរ៉ង់ស្យែល $({ m E})$ ដែល ${ m y}(0)=1,{ m y}'(1)$	l) = e ។ (e ជាចំនួនពិតដែល $\ln e = 1$)
VII. គេមានអនុគមន៍ f កំណត់លើ \mathbb{R} ដោយ $f(x) = x + 2 - \frac{4e^x}{e^x + 3}$ ។ គេតាងក្រាបរបស់វាក្នុងប្លង់ប្រដាប់ដោយតម្រុយអរតូណរម៉ាល់ $\left(O, \vec{i}, \vec{j}\right)$	
1. ក. គណនាលីមីតនៃ f ត្រង់ –∞ និង +∞	

2. សិក្សាទីតាំងនៃក្រាប C ធៀបនឹងបន្ទាត់ d_1 ដែលមានសមីការ y=x+2 ។

	2. ដោយសន្មត់ថាចំណុច I ជាផ្ចិតឆ្លុះនៃក្រាប C និងក្នុងតម្លៃប្រហែលនៃ $\ln 3 = 1.09$ ចូរសង់ក្រាប C, d_1, d_2, d_3 នៅក្នុង តម្រុយតែមួយ $\left(O, \vec{i}, \vec{j}\right)$ ដោយកំណត់យក 1 ឯកតាស្មើ $2\mathrm{cm}$ ។
4.	ក. បង្ហាញថាបន្ទាត់ប៉ះ d_3 ទៅនឹងក្រាប $\mathrm C$ ត្រង់ចំណុចដែលមានអាប់ស៊ីស 0 មានសមីការ $\mathrm y = rac{1}{4} \mathrm x + 1$
	ខ. សិក្សាទីតាំងនៃក្រាប ${ m C}$ ធៀបនឹងបន្ទាត់ ${ m d_2}$ ។
3.	ក. តើគេអាចថាយ៉ាងណាចំពោះបន្ទាត់ប៉ះ $ m d_2$ ទៅនឹងក្រាប $ m C$ ត្រង់ចំណុច $ m I$ ដែលមានអាប់ស៊ីស $ m ln3$ ។
	2. សិក្សាអថេរភាពនៃ f លើ R និងសង់តារាងអថេរភាពនៃ f ។
2.	ក. ស្រាយបញ្ហាក់ថាចំពោះគ្រប់ចំនួនពិត \mathbf{x} , $\mathbf{f}(\mathbf{x}) = \left(\frac{\mathrm{e}^{\mathbf{x}} - 3}{\mathrm{e}^{\mathbf{x}} + 3}\right)^2$ ។

ಕಣ್ಣಿಟ	

${f I}$. គេមានចំនួនកុំផ្លិច ${f Z}_1=-1+{ m i}\sqrt{3}$ និង ${f z}_2=1-{ m i}\sqrt{3}$ ។	
ក. គណនា $z_1+z_2, z_1-z_2, z_1 imes z_2$ និង $\frac{z_1}{z_2}$ ។	
ខ. សរសេរជាទម្រង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច $\mathrm{z}_1-\mathrm{z}_2,\mathrm{z}_1 imes\mathrm{z}_2$ និង $rac{\mathrm{z}_1}{\mathrm{z}_2}$ ។	
គ. គណនា $\mathrm{z}_1^{2018}+\mathrm{z}_2^{2018}$ រួចទាញការសន្និដ្ឋាន។	
II. គណនាលីមីត	
$ \text{ fi.} \lim_{x \to 2} \frac{x^3 - 8}{\sqrt{x + 2} - 2} $	$\frac{-5\sin 5x}{8x}$
III. ក្នុងស្បោងមួយមានប៊ូលពណ៌ស 3 ពណ៌ខៀវ 3 និងក្រហម 2។គេចាប់យកប៊ូលម្ដង 3 ក្នុងពេលតែមួយចេញពីសេ ដន្យ។ គេសន្និដ្ឋានថាប្រូបាបដែលចាប់បានប៊ូលមួយៗជាសមប្រូបាប។ គណនាប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖	្បាងដោយចែ
ក. A : «យ៉ាងតិចមានប៊ូល 2 ពណ៌ខៀវ»។	
ខ. B : «ប៊ូលទាំង 3 មានពណ៌ខុសៗគ្នា»។	
គ. C : «ប៊ូល 1 គត់មានពណ៌ក្រហម»។	
IV. ក. គណនាអាំងតេក្រាល $I = \int_1^2 \left(\frac{x^2}{3} - \frac{x}{2} + 3 \right) dx$ និង $J = \int_0^{\frac{\pi}{2}} (\sin 4x + \cos 2x) dx$ ។	
2. គេមានអនុគមន៍ $f(x) = -\frac{2-x}{\left(x-1\right)^2}$ បង្ហាញថា $f(x) = -\frac{1}{\left(x-1\right)^2} + \frac{1}{x-1}$ ។ គណនា $K = \int_{-1}^0 f(x) dx$ ។	
\mathbf{V} . 1. គេមានវ៉ិចទ័រ $\vec{\mathrm{u}}=\vec{\mathrm{i}}-\vec{\mathrm{j}}+2\vec{\mathrm{k}},\vec{\mathrm{v}}=-\vec{\mathrm{i}}+2\vec{\mathrm{j}}+2\vec{\mathrm{k}},\vec{\mathrm{w}}=\vec{\mathrm{i}}+\vec{\mathrm{j}}-2\vec{\mathrm{k}}$ ។ រកវ៉ិចទ័រ	
	$\vec{v} \times \vec{u}$
2. រកសមីការស្តង់ដានៃអេលីប ដែលមានកំណុំមួយមានកូអរដោនេ (–1,0) និងចំណុចកំពូលពីរមានកូអរដោនេ (–3,0 សង់អេលីបនេះ ។) និង (3,0) ។
$ extbf{VI.}$ គេមានសមីការឌីផេរ៉ង់ស្យែល $ ext{(E)}: ext{y}' + 2 ext{y} = 2rac{ ext{e}^{- ext{x}}}{1+2 ext{e}^{ ext{x}}}$ ។	
ក. ផ្ទៀងផ្ទាត់ថាអនុគមន៍ ${ m f}$ ដែល ${ m f}({ m x})={ m e}^{-2{ m x}}\ln{(1+2{ m e}^{ m x})}$ ជាចម្លើយនៃ ${ m (E)}$ ។	
ខ. បង្ហាញថាអនុគមន៍ ψ ជាចម្លើយនៃ $({ m E})$ លុះត្រាតែ $(\psi-{ m f})$ ជាចម្លើយនៃសមីការ $({ m E}'):{ m y}'+2{ m y}=0$ ។	
VII. A គេមានអនុគមន៍ g កំណត់លើ $(0,+\infty)$ ដោយ $\mathrm{g}(\mathrm{x})=\mathrm{x}^2+\ln\mathrm{x}$ ។	
 ក. បង្ហាញថា g ជាអនុគមន៍កើនដាច់ខាតលើ (0,+∞) ។ 	
$oldsymbol{2}$. គណនា $\mathrm{g}(1)$ ។	
2. ក. ទាញលទ្ធផលពីសំនួរទី១ បញ្ជាក់ថា បើ $x \ge 1$ នោះ $x^2 + \ln x \ge 1$ និងបើ $0 < x \le 1$ នោះ $x^2 + \ln x \le 1$	1 1
ខ. កំណត់សញ្ញានៃកន្សោម $\mathbf{x}^2 + \ln \mathbf{x} - 1$ កាលណា \mathbf{x} នៅចន្លោះ $(0, +\infty)$ ។	

លេខមន្ទមឈខតុ

ឈ្មោះមេដិន្តខ

សង្គលេខាមេដ្ទខន

ត្រថរិចមណីរតម្លៃឧឌនៃមក្អរប់មន្ត្

ទ្ធិញ្ញាសៈ ងហ្វូងខ្លួន (ស្វាងខ្លួន) នេះ

សត្ថតានិត្ត ១៩ ស្នួសា pose

រយ:ពេល: <u>១៥០</u> នានី

ពិឆ្ន: ១២៥

ត្រថាទទាញាត្នានានានានាងមួយមន្ទិ	ឧស៊ីរប្រិស្សិច
សន្តណាស្រន់ខែៈ ១៩ ស្នួសា po១៩	លេខមឆ្ងម់លេខតុ
ទិញ្ញាសា: ដលិតទិន្យា (ថ្នាក់ទិន្យាសាស្ត្រ)	ಯ್ತಾಣಕ್ಷಿಕ್ತ
୧ ୫::ଗେଷ: ୨୯୯ ଛାଛି	សង្គលេខាមេធ្ង៩ន
ති _{තු} : <mark>ඉසරි</mark>	
ម្រឆាន:	
មេខាននឹ	on-

I. គណនាលីមីត

$$\hat{n}. \lim_{x \to 1} \frac{1 - x^3}{x^3 - x^2 + x - 1}$$

2.
$$\lim_{x\to 0} \frac{\sin 3x}{-x}$$

$$\lim_{x\to 0} \frac{3-3\cos 4x}{\sin^2 x}$$

- II. ក្នុងថ្នាក់រៀនមួយមានសិស្សពូកែ 10 នាក់ ដែលក្នុងនោះ 4 នាក់ជាសិស្សស្រី និង 6 ជាសិស្សប្រុស។ គេរៀបចំសិស្សជាក្រុមក្នុងមួយ ក្រុមមានសិស្ស 4 នាក់ដោយចៃដន្យ យកទៅប្រកួតជាមួយក្រុមសិស្សដ៏ទៃ។ រកប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោម៖
 - ក. A : «ក្រុមសិស្សដែលជ្រើសរើសបានសុទ្ធតែស្រី»។
 - 2. B : «ក្រុមសិស្សដែលជ្រើសរើសបានសុទ្ធតែប្រុស»។
 - គ. C : «ក្រុមសិស្សដែលជ្រើសរើសបាន 50% ជាសិស្សប្រុស»។
- III. គេមានចំនួនកុំផ្លិច $z_1=1+\sqrt{3}i$ និង $z_2=6\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$ ។
 - $\overline{\mathsf{n}}$. សរសេរ z_1 ជាទម្រង់ត្រីកោណមាត្រ។
 - 2. រកម៉ូឌុល និងអាគុយម៉ង់នៃ z_1^3 ។
 - គ. សរសេរផលគុណ $\mathbf{z}_1 \times \mathbf{z}_2$ ជាទម្រង់ពីជគណិត។
- IV. 1. ក្នុងលំហប្រដាប់ដោយតម្រុយ $(O, \vec{i}, \vec{j}, \vec{k})$ គេមានចំណុច A(-2, 1, 0), B(0, 1, 1), C(1, 2, 2) និង D(0, 3, -4) ។
 - ក. រកវ៉ិចទ័រ \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BC} , \overrightarrow{CD} ។
 - 2. គណនាប្រវែង AB, AC, AD, BC, CD។ ទាញបញ្ជាក់ថាត្រីកោណ ABC និង ACD កែងត្រង់ A។ រួចទាញរកផ្ទៃក្រឡានៃត្រីកោណទាំងពីរនេះ ។
 - 2. គេមានសមីការ $9y^2 16x^2 = 144$ ។ បង្ហាញថាសមីការនេះជាសមីការអ៊ីពែបូល។ រកកូអរដោនេកំពូលទាំងពីរ និងកុំណុំទាំងពីរ នៃអ៊ីពែបូល ។ រកសមីការអាស៊ីមតូតរបស់អ៊ីពែបូល និងសង់អ៊ីពែបូលនេះ ។
- V. 1. គណនាអាំងតេក្រាល $I = \int_{1}^{3} (x-2+3x^3) dx$ និង $J = \int_{0}^{\frac{\pi}{4}} (\sin 2x \cos x) dx$ ។
 - 2. គេមានអនុគមន៍ $K = \int_0^1 \frac{x^3 + (x+1)^2}{x^2 + 1} dx$ កំណត់លើ \mathbb{R} ។ ដើម្បីគណនា K យើងត្រូវបង្ហាញថា $\frac{x^3 + (x+1)^2}{x^2 + 1} = x + 1 + \frac{x}{x^2 + 1}$ ។
- VI. ក. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E) : y'' 3y' + 2y = 0 ។
 - 2. រកចម្លើយពិសេសមួយនៃសមីការឌីផេរ៉ង់ស្យែល (E) ដែល y(0)=1 និង $y'(1)=e^2$ ។
- VII. គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x)=x+rac{1-3e^x}{1+e^x}$ គេតាងដោយ C ក្រាបរបស់វានៅក្នុងប្លង់ប្រដាប់ដោយតម្រុយអរតូ ណរម៉ាល់ (O,i,j) ។
 - 1. បង្ហាញថា $f(x)=x+1-rac{4e^x}{1+e^x}$ និងគណនាលីមីតនៃ f ត្រង់ $-\infty$ ។ ស្រាយបំភ្លឺថាបន្ទាត់ d_1 ដែលមានសមីការ y=x+1អាស៊ីមតូតទៅនឹងក្រាប ${
 m C}$ ត្រង់ $-\infty$ ។ សិក្សាទីតាំងនៃក្រាប ${
 m C}$ ធៀបនឹងបន្ទាត់ ${
 m d}_1$ ។

2. គណនាលីមីតនៃ f ត្រង់ $+\infty$ ។ ស្រាយបំភ្លឺថាបន្ទាត់ d_2 ដែលមានសមីការ $y=x-3$
អាស៊ីមតូតទៅនឹងក្រាប ${ m C}$ ត្រង់ $+\infty$ ។ សិក្សាទីតាំងនៃក្រាប ${ m C}$ ធៀបនឹងបន្ទាត់ ${ m d}_2$ ។

3. ក. គណនាដេរីវេ f'(x) និងបង្ហាញថាគ្រប់ចំនួនពិត $x,f(x)=\left(rac{e^x-1}{e^x+1}
ight)^2$ ។

ខ. សិក្សាអថេរភាពនៃ ${
m f}$ រួចសង់តារាងអថេរភាពនៃ ${
m f}$ ។ សង់ក្រាប ${
m C}$ និងបន្ទាត់ ${
m d}_1, {
m d}_2$ របស់វាក្នុងតម្រុយតែមួយ ។

కుట్ట్ కు

ត្រខាំខែមញ្ញាតម្លៃតនាំតម្លូងប៉ិន់មួលដំនូ	ឧស៊ីរសន្និមិន
សម័យប្រឡច: ១៩ សីមា ២០១៩ ទិញ្ញាស: គលិតទិន្យា (ថ្នាត់ទិន្យាសស្ត្រ)	សេខមន្ទមសេខគុ
រយៈពេល: ១៥០ ខានី	មាត្តលេខាមេត្តបិន
ස්ක්රිත් වන්න සම්බන්ධ වෙන්න සම්බන්ධ සම	
ម្រធាន: 	
I. (១៥ ពិន្ទុ) គណនាលីមីត៖	
$\hat{\mathbf{n}}. \lim_{x \to 1} \frac{x^2 - 4x + 3}{1 - x^2} \qquad \qquad 2. \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{\sqrt{2} - \sqrt{1 + \sin x}} \qquad \hat{\mathbf{n}}.$	$\lim_{x \to 0} \frac{1 - \cos^3 2x}{x \sin 3x}$ Uf. $\lim_{x \to 1} \frac{6x - 6}{x^2 + 3x - 4}$
II. (១៥ ពិន្ទុ) គេមានចំនួនកុំផ្លិច $z=1+i\sqrt{3}$ និង $w=\sqrt{2}\left(\cos{\frac{\pi}{12}}+\right)$	$i\sin\frac{\pi}{12}$) ³
ក. ចូរផ្ទៀងផ្ទាត់ថា ${ m z}$ ជាប្ញសនៃសមីការ ${ m z}^2-2{ m z}+4=0$ រួចទាញរក្ស	ប្ញសមួយទៀតនៃសមីការនេះ ។
ខ. ចូរសរសេរឬសទាំងពីរនៃសមីការ ${ m z}^2$ – $2{ m z}$ + $4=0$ និង ${ m w}$ ជាចំនួរ	នកុំផ្លិចទម្រង់ត្រីកោណមាត្រ ។
គ. ចូរសរសេរ w ជាចំនួនកុំផ្លិចទម្រង់ពីជគណិត រួចស្រាយបញ្ជាក់ថា	$\frac{z}{w} = \frac{\sqrt{3}+1}{2} + i \frac{\sqrt{3}-1}{2}$ 4
III. (១៥ ពិន្ទុ) ក្នុងប្រអប់មួយមានប៊ូល ៥ ដោយក្នុងនោះមានប៊ូលពណ៌េ ត្រូវបានគេចុះលេខពី ១ ដល់ ២ ។ គេចាប់យកប៊ូល ២ ព្រមគ្នាក្នុងពេល បាបនៃព្រឹត្តិការណ៍ដូចខាងក្រោម៖	ខ្មា ៣ ត្រូវបានគេចុះលេខពី ១ ដល់ ៣ និងប៊ូលពណ៌ស ២
ក. A : "គេចាប់បានប៊ូលមានពណ៌ដូចគ្នា"	
ខ. B : "គេចាប់បានប៊ូលដែលមានផលបូកលេខស្មើ ៣"	
គ. C : "គេចាប់បានប៊ូលដែលមានផលបូកលេខស្មើ ៣ ដោយដឹងថាវ	ាមានពណ៌ដូចគ្នា"
IV. 1. (១០ ពិន្ទុ) គណនាអាំងតេក្រាល៖ $I = \int_1^2 \left(\frac{x^2}{2} + x - 3\right) dx$ និ	
2. (៥ ពិន្ទុ) គេមានអនុគមន៍ $f(x) = -\frac{4-x}{{(x-3)}^2}$ កំណត់ចំពោះគ្រប់ x គណនា $K = \int_0^2 f(x) \mathrm{d} x$ ។	$\neq 3$ បង្ហាញថា $f(x) = \frac{1}{x-3} - \frac{1}{(x-3)^2}$ ។
\mathbf{V} . កិ. (៥ ពិន្ទុ) គេមានសមីការឌីផេរ៉ង់ស្យែល $(\mathrm{E}):\mathrm{y}''-3\mathrm{y}'+2\mathrm{y}=0$	0 9
ខ. (៥ ពិន្ទុ) រកចម្លើយពិសេសមួយនៃ (E) ដោយដឹងថាក្រាបនៃចម្លេ	្ស៊ីយរបស់វាប៉ះទៅនឹងបន្ទាត់ដេក $\mathrm{y}=1$ ត្រង់ $\mathrm{x}=0$ ។
VI. 1. (១០ ពិន្ទុ) ក.គេឲ្យខ្សែកោង $(E): \frac{(x-4)^2}{25} + \frac{y^2}{9} = 1$ ។ បញ្ជាក់ ខ. កំណត់កូអរដោនេ ផ្ចិត កំពូល កំណុំ ប្រវែងអ័ក្សធំ និងប្រវែងអ័ក្	
2. (១០ ពិន្ទុ) នៅក្នុងតម្រុយអរតូណរម៉ាល់មានទិសទៅវិជ្ជមាន (O, វិ,	(\vec{j},\vec{k}) គេមានចំណុចបី $\mathrm{A}(1,2,1),\mathrm{B}(4,2,4),\mathrm{C}(5,3,0)$ ។
ក. រកប្រវែង AB, AC, BC រួចធ្វើការសន្និដ្ឋាននៃប្រភេទត្រីកោណ	ABC 9
ខ. គណនាផលគុណ $\overrightarrow{\mathrm{AB}} imes \overrightarrow{\mathrm{AC}}$ រួចគណនាផ្ទៃក្រឡានៃត្រីកោណ	ABC ។
VII. (៣៥ ពិន្ទុ) ផ្នែក A គេមានអនុគមន៍ g កំណត់លើ $(0,+\infty)$ ដោយ $g($	$(x) = -x^2 + 1 - 2 \ln x$ \mathcal{I}
ក. ចូរគណនាដេរីវេ $\mathbf{g}'(\mathbf{x})$ រួចទាញថាអនុគមន៍ \mathbf{g} ជាអនុកមន៍ចុះជានិ	ម្ងៃលើចន្លោះ (0,+∞) ។

2. ចូរគណនាតម្លៃ $\mathrm{g}(1)$ ។ ចូរបញ្ជាក់សញ្ញានៃ $\mathrm{g}(\mathrm{x})$ លើ $(0,+\infty)$ ។

ផ្នែក B គេឲ្យអនុគមន៍ f កំណត់លើចន្លោះ $(0,+\infty)$ ដោយ $\mathrm{f}(\mathrm{x})=\dfrac{9\mathrm{x}^2+6\ln\mathrm{x}-1}{2\mathrm{x}^3}$ មានក្រាបតាង C ។
ក. ចូររកលីមីតនៃ ${ m f}$ ត្រង់ ${ m 0}$ និង ${ m +}\infty$ ។ ទាញរកសមីការអាស៊ីមតូតឈរ និងជេកនៃក្រាប ${ m C}$ ។
2. ចូរស្រាយបញ្ហាក់ថាចំពោះគ្រប់ x > 0 គេបាន f'(x) = kg(x) ដែល k ជាចំនួនពិតត្រូវកំណត់ ។ គូសតារាងអថេរភាពនៃ f ដោយប្រើលទ្ធផលផ្នែក A ។
គ. ចូរគណនា $\mathrm{f}\left(rac{1}{2} ight)$ រួចទាញថា $\mathrm{f}(\mathrm{x})=0$ មានឬសតែមួយគត់ស្ថិតនៅចន្លោះ $\left[rac{1}{2},1 ight]$
ឃ. កំណត់សមីការបន្ទាត់ T ប៉ះទៅនឹងក្រាប C ត្រង់អាប់ស៊ីស 1 ។
ង. គណនា ${ m f}(2)$ រួចសង់ក្រាប ${ m C}$ និងបន្ទាត់ ${ m T}$ ក្នុងតម្រុយអរតូណរម៉ាល់ $({ m O}, ec{{ m i}}, ec{{ m j}})$ ។
ಕಣ್ಣೆಟ್ ಕಣ್ಣೆಟ್ ಕಣ್ಣೆಟ್
ີ້ ຄົວ

ស្រ នាំទ មឈ្លាតម្លៃគនាិនម្ចងរប់ន់ម្ចាតា	នស្នាលទ្រនទេ
សន្ត្រាស់ខេរៈ ១៩ ស្នួសា ៣០១៩	សេខមន្ទមសេខ ដុ
ទិញ្ញាសា:	ಯ್ತಾಃಚಕ್ಷಲಿನ
:ଞେ:ពេଊ: <mark>୨ଝ</mark> ୦ ଚାଛି	ಕಾಕ್ಷಣ ಲಾ ಚಕ್ಕಲಿನ
සුප් මක්ද	
ទ្រសាន:	

រួមឆាននី០៥

 ក្នុងថង់មួយមានឃ្លីពណ៌សចំនួន 2 ឃ្លីពណ៌ក្រហមចំនួន 4 និងឃ្លីពណ៌ខៀវចំនួន 4។ គេចាប់យកឃ្លី 3ព្រមគ្នាដោយចៃដន្យ។ រកប្រូបាបនៃព្រឹត្តិការណ៍:

A: ឃ្លីទាំង 3មានពណ៌ក្រហម; B: យ៉ាងតិចមានឃ្លី 2 មានពណ៌ខៀវ; C: ឃ្លីទាំង 3 មានពណ៌ខុសៗគ្នា។

II. គណនាលីមីត

$$\text{ îi. } \lim_{x \to 1} \frac{x^2 (x-2) + x^2 + x - 1}{1 - x} \qquad \text{ 2. } \lim_{x \to 0} \frac{-2x}{\sin 3x}$$

$$2. \lim_{x \to 0} \frac{-2x}{\sin 3x}$$

$$\mathbf{\tilde{h}}. \lim_{x \to \frac{\pi}{3}} \frac{\sin x - \sqrt{3}\cos x}{2(\pi - 3x)}$$

III. គេមានចំនួនកុំផ្លិច $z_1=3+3\mathrm{i}\sqrt{3}$ និង $z_2=\sqrt{3}+\mathrm{i}$ ។

ក. គណនា
$$\mathbf{z}_1 \times \mathbf{z}_2$$
 និង $\frac{\mathbf{z}_1}{\mathbf{z}_2}$

គ. សរសេរ
$$\left(\frac{\mathrm{z}_1}{\mathrm{z}_2}\right)^3$$
 ជាទម្រង់ពីជគណិត។

ខ. សរសេរ $\mathbf{z}_1 \times \mathbf{z}_2$ និង $\left(\frac{\mathbf{z}_1}{\mathbf{z}_2}\right)^2$ ជាទម្រង់ត្រីកោណមាត្រ

m V. 1. ក្នុងលំហប្រដាប់ដោយតម្រួយអរតូណរម៉ាល់ $m (o, \vec{i}, \vec{j}, \vec{k})$ គេមានចំណុច m A (1; 2; 3) , m B (3; 0; 1) , m C (-1; 0; 1) និង m D (2; 1; 2) ។

- a. រកវ៉ិចទ័រ \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BC} ។
- b. បង្ហាញថាចំណុច A,B និង C មិននៅលើបន្ទាត់តែមួយ។
- c. បង្ហាញថាវ៉ិចទ័រ n (0;1;-1) ជាវ៉ិចទ័រណរម៉ាល់ទៅនឹងប្លង់ (ABC) ។
- 2. គេមានសមីការ $(2x + 3y)^2 = 12(xy + 3)$ ។ បង្ហាញថាសមីការនេះជាសមីការអេលីប។ រកប្រវែងអ័ក្សតូច អ័ក្សធំ កូអរដោនេនៃកំពូលទាំងពីរ និងសង់អេលីបនេះ។

VI. a. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល: (E): y'' + 4y' = 5y ។

b. រកចម្លើយពិសេសមួយនៃសមីការឌីផេរ៉ង់ស្យែល (E) បើគេដឹងថាក្រាប (C) នៃអនុគមន៍ចម្លើយនេះកាត់តាមចំណុច (0;3) ហើយបន្ទាត់ប៉ះទៅនឹងក្រាប (C) ត្រង់ចំណុចនេះមានមេគុណប្រាប់ទិសស្នើ –3។

VII. គេមានអនុគន៍ f កំណត់លើ $(1;+\infty)$ ដោយ $f(x)=-x+4+\ln\left(\frac{x+1}{x-1}\right)$ ។ គេតាងដោយ (C) ក្រាបរបស់វានៅក្នុងប្លង់ ប្រដាប់ដោយតម្រុយអរតូណរម៉ាល់ (o; វ៉; វ៉្)។

- 1. គណនាលីមីតនៃ f ត្រង់ 1 និងត្រង់ +∞។
- 2. ស្រាយបំភ្លឺថានៅលើ $(1; +\infty)$ គេបានដេរីវេនៃអនុគមន៍ f គឺ $f'(x) = \frac{-(x^2+1)}{(x+1)(x-1)}$ ។ សិក្សាអថេរភាពនៃអនុគមន៍ f និងសង់ តារាងអថេរភាពនៃ f លើ $(1; +\infty)$ ។
- 3. a. បង្ហាញថាបន្ទាត់ d_1 ដែលមានសមីការ y = -x + 4 ជាអាស៊ីមតូតទៅនឹងក្រាប (C) ត្រង់ $+\infty$ ។
 - b. បង្ហាញថាចំពោះគ្រប់ \mathbf{x} លើ $(1;+\infty)$ $\frac{\mathbf{x}+1}{\mathbf{x}-1}>1$ និងទាញយកការប្រៀបធៀបទីតាំងនៃ (\mathbf{C}) ធៀបនឹង \mathbf{d}_1 ។

4. កំណត់កូអរដោនេនៃចំណុចនៅលើ (C) ដែលបន្ទាត់ប៉ះ ${ m d_2}$ ទៅនឹងក្រាប (C) ត្រង់ចំណុចនេះមានមេគុណប្រាប់ទិស $-{5\over 3}$ និង សរសេរសមីការបន្ទាត់ប៉ះ ${ m d_2}$ នេះ។
5. សង់ក្រាប (C) អាស៊ីមតូត d_1 និងបន្ទាត់ប៉ះ d_2 ។ ប្រើតម្លៃប្រហែល $\ln 3 = 1.1$ និងក្រាប (C) កាត់អ័ក្សអាប់ស៊ីសត្រង់ចំណុច $(4.5;0)$ ។
ಕಾರ್ಟ್ಫ್ ಕ್ಷಾಪ್ತ್ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ್ ಕ್ಷಾಪ್ತ ಕ್ಷಾಪ್ತ್ ಕ್ಷಾಪ್ತ್ ಕ್ಷಾಪ್ತ್ ಕ್ಷಾಪ್ತ್ ಕ್ಷಾಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಾಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ರ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ರ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ಟ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ರ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ರ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ಟ ಕ್ಷಿಪ್ರ ಕ್ಷಿಪ್ತ ಕ್ಷಿಪ್ಟ
ຍ

ត្រទាំ១មយ៉ាតែមែននាំឧទ្ធរប់ថង្ងតាដំនូ	uocoumoro.
	ឧស៊ីហណ្ឌមខេត្ត
සස්සා§සේව: වළ භූහා බටව ළ	សេខមន្ទមឈខតុ
ទិញ្ញាស: ដលិដទិន្សា (ខ្លាក់ទិន្យាស្យុស្ត្រ)	ឈ្មោះមេឌ្ឌಲಿ
ଞ୍ଞୋଗେ ଷ: 9៥ 0 ଛାଛି	ಕಾಕ್ಷಣ ಲಾ ಚಕ್ಕಕಿ
බි _{ණු:} වස්ද්	
ម្រធាន:	

I. (១៥ ពិទ្ឋា) គេឲ្យចំនួនកុំផ្លិច
$$z=(1+i)^{10}\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)^{20}$$
 ។

- II. (១៥ តិន្ទុ) គណនាលីមីតនៃអនុគមន៍ខាងក្រោម:

$$\hat{n}. \lim_{x \to 1} \frac{x + 2\sqrt{x} - 3}{x - 5\sqrt{x} + 4}$$

2.
$$\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{3} \cos x - \sin x}{6x - 2\pi}$$

- III. (១៥ ចិន្ត្) ក្នុងថង់មួយមានប៊ិចបាល់ពណ៍ស 5 ដើម កូនប៊ិចពណ៍ខៀវ 3 ដើម និងកូនប៊ិចពណ៍ក្រហម 4 ដើម។ គេចាប់យកប៊ិច 3 ចេញព្រមគ្នាដោយចៃដន្យ។ រកប្រូបាបនៃព្រឹត្តិការណ៍ខាងក្រោមៈ
 - ក. A : "ចាប់បានប៊ិចទាំង 3 មានពណ៍ដូចគ្នា"
- គ. C : "ចាប់បានប៊ិចទាំង 3 មានពណ៍ខុសគ្នា"។

- 2. B : "ចាប់បានប៊ិចពណ៌ខៀវ 2 គត់"
- IV. (១៥ ពិន្ទុ) គណនាអាំងតេក្រាលនៃអនុគមន៍ខាងក្រោម:

9.
$$\int_0^{\frac{\pi}{4}} \frac{1 + \sin 2x}{\sin x + \cos x} dx$$
 2. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1 + \cos 2x}{1 - \cos^2 2x} dx$

$$2. \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1 + \cos 2x}{1 - \cos^2 2x} dx$$

គី.
$$\int_0^{\frac{\pi}{2}} (x^2 + 1) \sin 2x dx$$

 $oldsymbol{ol}}}}}}}}}}}}}}}}}}$

កំណត់ចំនួនពិត a និង b ដើម្បីឲ្យ $f(x)=rac{a}{x-1}+rac{b}{(x-1)^2}$ ចំពោះ $x \neq 1$ រួចគណនា $K=\int_0^2 f(x) dx$ ។

- V. (១៥ ពិន្ទុ) គេឲ្យសមីការឌីផេរ៉ង់ស្យែល (E) : $y' 2y = 4\cos x$ ។
 - ក. កំណត់ចម្លើយទូទៅនៃសមីការឌីផេរ៉ង់ស្យែល $({
 m F}):{
 m y}'-2{
 m y}=0$ ដែលផ្ទៀងផ្ទាត់ ${
 m y}(0)=1$ ។
 - $m{2}$. កំណត់ចំនួនពិត a និង b ដែលអនុគមន៍ g កំណត់លើ $m{\mathbb{R}}$ ដោយ $g(x) = a\cos x + b\sin x$ ផ្ទៀងផ្ទាត់ (E) ។
 - គ. ទាញរកចម្លើយទូទៅនៃសមីការឌីផេរ៉ង់ស្យែល (E) ។
- VI. 9. (90 ចិន្ត្) គេឲ្យសមីការនៃកោនិច (P) : $(1-2x)^2-8(y+1)+7+4x=0$ ។ បង្ហាញថា (P) ជាប៉ារ៉ាបូល។ កំណត់កូអរដោនេកំពូល កំណុំ បន្ទាត់ប្រាប់ទិស និងសង់ក្រាបវា។
 - $oldsymbol{f ext{to}}$. ($oldsymbol{f 90}$ ពិន្ទុ) ក្នុងតម្រុយអរតូណរម៉ាល់ប្រដាប់ដោយទិសដៅវិជ្ជមាន $\left({
 m o}, {
 m i}, {
 m j}, {
 m k}
 ight)$ គេមានចំណុច ${
 m A}$ (-1;2;1) , ${
 m B}$ (-1;2;3) និង $\overrightarrow{\mathrm{BC}} = 3\overrightarrow{\mathrm{i}} + \overrightarrow{\mathrm{j}} + \overrightarrow{\mathrm{k}}$ 1
 - ក. កំណត់កូអរដោនេនៃចំណុច C ។ គណនាផលគុណស្គាលែ $\overline{\mathrm{BC}} \cdot \overline{\mathrm{BA}}$ និងទាញរកកូស៊ីនុសនៃមុំ B ។
 - f 2. គណនាផលគុណវ៉ិចទ័រ f BC imes f BA និងកំណត់សមីការប្លង់កាត់តាម f A; B; C ។
- VII. (៣៥ ពិស្ហូ) ថ្ងៃភេ A: អនុគមន៍ g កំណត់លើ $\mathbb R$ ដោយ $g(x)=(2-x)\,\mathrm{e}^{-x}-2$ ។
 - ក. គណនា $\lim_{x \to -\infty} g(x)$ និង $\lim_{x \to +\infty} g(x)$ ។
 - ខ. គណនាដេរីវ៉េ ${
 m g}'({
 m x})$, ${
 m g}(0)$ រួចគូសតារាងអថេរភាពនៃ ${
 m g}({
 m x})$ ។ ទាញរកសញ្ញានៃ ${
 m g}$ ទៅតាមតម្លៃនៃ ${
 m x}$ ។

ខ្មែក B : អនុគមន៍ f(x) =	$\frac{2e^{x}+1}{(x-3)e^{x}}$	មានក្រាប	C ក្នុងតម្រុ	យអរតូណរមេ	(o, \vec{i}, \vec{j}) ។
\$ ()	$(x-3) e^{x}$		~ 4 (J	· · · · · · · · · · · · · · · · · ·	(-/-/3)

- ក. រកដែនកំណត់ \mathbb{D}_f នៃអនុគមន៍ f រួចគណនាលីមីតនៃ f ត្រង់ចុងដែនកំណត់ ។ ទាញរកសមីការអាស៊ីមតូតទាំងអស់នៃក្រាប \mathbf{C} ។
- 2. ចំពោះគ្រប់ $\mathbf{x} \in \mathbb{D}_{\mathbf{f}}$ គេបាន $\mathbf{f}'(\mathbf{x}) = \frac{(2-\mathbf{x})\,\mathrm{e}^{-\mathbf{x}} 2}{\left(\mathbf{x} 3\right)^2\mathrm{e}^{2\mathbf{x}}}$ ។ រួចបង្ហាញថា $\mathbf{f}'(\mathbf{x})$ មានសញ្ញាដូច $\mathbf{g}(\mathbf{x})$ ។
- គ. គូសតារាងអថេរភាពនៃ f និងសង់ក្រាប C ។

សូមសំណាងល្អ!

ಮತು ಪ್ರಾಥಾಣ ಕಾಡ್ಗಳ ಕಾಡಿಕೆ ಕಾಡಿಕೆ ಹಾಗೆ ಹಾಗೆ ಹಾಗೆ ಹಾಗೆ ಹಾಗೆ ಹಾಗೆ ಹಾಗೆ ಹಾಗ	នឃ្នាលទ្រនទ្រ
භෘෂ୍ භෘෂිත: විදු භූණා බටවද	ಚಾತಕ್ಷಣೆಚಾತಕ್ಕೆ
ទិញ្ញាស: គលិតទិន្សា (ថ្នាក់ទិន្យាស្យស្ត)	ಯ್ತಾಃಅಕ್ಷಲಿನ
ଞେ:ଗେଊ: <mark>୭୯</mark> ୦ ଛାଛି	ಲಾಕ್ಷ:ಙಲಾ:೮ಕ್ಷ್ಮ
ନିନ୍ _{୍ର ପ} ୍ରଥି	
ម្ងួននេះ	

______ ජූකෙනම් 0

- I. (១៥ ពីខ្នុ) គណនាលីមីត: $A = \lim_{x \to 0} \left(\frac{3x^2 2x + 1}{x} \frac{1}{x} \right)$, $B = \lim_{x \to 0} \frac{2x^2 \sin 3x}{\sin^2 x + 4x}$, $C = \lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x \cos x}{\frac{\pi}{6} x}$
- $\text{II. } (\textbf{9៥ öឺខ្ន)} \text{ គណនាអាំងតេក្រាល: } I = \int \left(\frac{4x-5x^2+6x^3}{x^3}\right) dx, \quad J = \int_0^1 \left(\frac{1}{x^2-4x+4}\right) dx, \quad K = \int_0^{\frac{\pi}{2}} \left(\sin x \sqrt{1-\cos x}\right) dx$
- - 2.សរសេរស $z_1 \times z_2$ និង $\frac{z_1}{z_2}$ ជាទម្រង់ត្រីកោណមាត្រ។ $\frac{1}{2}$ គ.បង្ហាញថា $z = \left(\frac{9i}{4}\right)^{1008} \left(\frac{z_1}{z_2}\right)^{20\overline{16}}$ ជាចំនួនពិត។
- IV. (១០ ចិន្ត្) ក. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E): y'' + 3y' = 4y ។ ខ.រកចម្លើយពិសេសមួយនៃសមីការឌីផេរ៉ង់ស្យែល (E) ដោយដឹងថាក្រាបតាងអនុគមន៍ចម្លើយប៉ះទៅនឹងបន្ទាត់ T ដែលមាន សមីការ y + 4x = 0 ត្រង់ចំណុច A(0,6) ។
- v. (១០ ជិទ្ចុ) ក្នុងថង់មួយមានឃ្លីក្រហមចំនួន 3 ឃ្លីសចំនួន 2 និងឃ្លីខ្មៅចំនួន 4។ គេចាប់យកឃ្លីម្តងមួយៗចំនួន 3 ចេញមិនដាក់ ចូលវិញដោយចៃដន្យ។ គណនាប្រូបាបនៃព្រឹត្តិការណ៍ដែលចាប់បានៈ
 - A:ឃ្លីទាំង 3 ជាឃ្លីពណ៌ដូចគ្នា, B:ឃ្លីទី 1 និង 2 ជាឃ្លីពណ៌ស, C:ឃ្លីទាំង 3 ជាឃ្លីពណ៌ខុសគ្នា
- $\text{VI. } (\textbf{n\& n}_{\mathbf{q}} \mathbf{\hat{n}}_{\mathbf{q}} \mathbf{\hat{p}}) \text{ } \ _{\mathbf{q}}^{\mathbf{q}} \text{ } \ _{\mathbf{q}}^{\mathbf{q}} \mathbf{\hat{p}} \text{ } \ _{\mathbf{q}}^{\mathbf{q}$
 - **១**. អនុគមន៍ g កំណត់ $x\in (-1,+\infty)$ ដោយ $g(x)=\left(1+x\right)^2-1+\ln\left(1+x\right)$ ។
 - ក. សិក្សាអថេរភាពនៃអនុគមន៍ $\mathrm{g}(\mathrm{x})$ ។ គណនា $\mathrm{g}(0)$ ។
 - 2. សង់តារាងអថេរភាពនៃអនុគមន៍ ${
 m g}$ ដោយមិនចាំបាច់គណនាលីមីត រួចសិក្សាសញ្ញា ${
 m g}({
 m x}), {
 m x} \in (-1, +\infty)$ ។
 - **២**. ក. គណនាលីមីតចុងដែនកំណត់នៃអនុគមន៍ f ដោយប្រើ $\lim_{x\to 0^+} \frac{\ln x}{x} = -\infty$ និង $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$ ។ រួចទាញបញ្ហាក់សមីការអាស៊ីមតូតនៃក្រាប (C) ។
 - 2. ផ្ទៀងផ្ទាត់ថា $f'(x) = \frac{g(x)}{(1+x)^2}$, $x \in (-1, +\infty)$ រួចសិក្សាសញ្ញា f'(x)។ សង់តារាងអថេរភាពនៃអនុគមន៍ f'(x)
 - គ. បង្ហាញថាបន្ទាត់ L មានសមីការ y=x ជាសមីការអាស៊ីមតូតទ្រេតនៃក្រាប (C) ខាង $+\infty$ រួចសិក្សាទីតាំងធៀប។
 - ឃ. សង់ក្រាប (C) និង L ក្នុងតម្រុយតែមួយ។
 គណនាផ្ទៃក្រឡាផ្នែកនៃប្លង់ខណ្ឌដោយក្រាប (C) និង L បន្ទាត់ឈរ x=1 និង x=3។
- VII. (២៥ ពិទ្ឌុ) ១. ក្នុងតម្រុយអរតូណម៉ាល់ $\left(0,\vec{i},\vec{j},\vec{k}\right)$ គេមានចំណុច A (1,3,-1) , B (3,0,1) , C (2,1,-3) និងបន្ទាត់ L ដែល មានសមីការ x=2-t , y=2t និង z=1-t , $t\in\mathbb{R}$ ។
 - ក. បង្ហាញថាចំណុច A,B និង C កំណត់បានប្លង់ ABC មួយ រួចកំណត់សមីការប្លង់ ABC។
 - 2. គណនាផ្ទៃក្រឡាត្រីកោណ ABC។ រកកូអរដោនេចំណុច M ប្រសព្វរវាងប្លង់ ABC និងបន្ទាត់ L។
 - ២. បញ្ជាក់សមីការ $(E):4x^2-100=25y^2$ ជាអ៊ីពែបូល។ រកកូអរដោនេផ្ចិត កំពូល កំណុំ និងសមីការអាស៊ីមតូត រួចសង់។

សូមសំណាងល្អ!

e e e	
ត្រ ថាិទ មញ្ញាតម្លៃតនាំនទ្ធងបិរចំនួតាន់នួ	ឧស៊ីអារត្តនាំ១
សត្ថសារាធ្វេស <mark>១៩ ស្នួសា ៣០១៩</mark>	លេខមឆ្លមឈខតុ
ទិញ្ញាស: ឌលិឌទិន្សា (ថ្លាក់ទិន្យាស្យុស្ត្រ)	ឈ្មោះមេឌិសន
ଞ୍ଞୋଗେଷ: <mark>୨୯</mark> ୦ ଚାଛି	សត្តលេខមេ ទ្ទ ៩ន
බි _{හු:} ව <u>ූප</u> ්	
ម្រីធាន:	
	_ = _ 4

______ පුණයම් ර

- I. (១០ ពិទ្ឋុ) គេមានចំនួនកុំផ្លិច $z_1=-\sqrt{2}\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$ និង $z_2=1+i$ ។
 - ក. សរសេរចំនួនកុំផ្លិច z_1 និង z_2 ជាទម្រង់ត្រីកោណមាត្រ។ z_1 រកម៉ូឌុល និងអាគុយម៉ុងនៃចំនួនកុំផ្លិច z_2 ។
- II. (១៥ ពីខ្លួ) គណនាលីមីត: $A = \lim_{x \to 1} \frac{4 \sqrt{x + 15}}{x^2 1}$; $B = \lim_{x \to 0} \frac{1 \cos 6x}{\sin^2 5x}$; $C = \lim_{x \to +\infty} \left[\ln \left(x^2 5x + 6 \right) \ln x \right]$
- III. (១៥ ចិន្ត្) ១. គណនាអាំងតេក្រាលៈ $I=\int_1^2 \left(1-3x+2x^2\right) \mathrm{d}x$; $J=\int_0^{\frac{\pi}{4}} \frac{1-\cos 2x}{1+\cos 2x} \mathrm{d}x$
 - - 2. គណនាអាំងតេក្រាល $K = \int \frac{3x^2 + 6x + 7}{(x+2)(x+3)}$ ។
- IV. (១០ ចិន្ត្) ក. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E): y'' + 4y' + 4y = 0 ។
 - 2. រកចម្លើយពិសេសមួយនៃ (E) បើគេដឹងថាខ្សែកោង (H) តាងអនុគមន៍ចម្លើយនេះកាត់តាមចំណុច M(-1;1) ហើយបន្ទាត់ប៉ះ ត្រង់ចំណុចនេះស្របនឹងបន្ទាត់ដែលមានសមីការ y=2x+3 ។
- V. (១៥ កិន្ត្) ក្នុងថង់មួយមានប៊ិចពណ៌ខៀវ 5 ដើម ប៊ិចពណ៌ក្រហម 4 ដើម និងប៊ិចពណ៌ខ្មៅ 3 ដើម។ គេចាប់យកប៊ិច 4 ដើមព្រមគ្នាចេញពីថង់ដោយចៃដន្យ។ គណនាប្រូបាបនៃព្រឹត្តិការណ៍ៈ
 - ក. A : ប៊ិចពណ៌ខៀវទាំង 4 ដើម ខ. B : ប៊ិចទាំង 4 ដើមមានពណ៌ដូចគ្នា គ. C : យ៉ាងតិចមានប៊ិច 3 ដើមពណ៌ដូចគ្នា ។
- VI. (២៥ កិទ្ឋុ) ១. គេមានសមីការ 4(5y-2x)(2x+5y)=-400។ បង្ហាញថាសមីការនេះជាសមីការអ៊ីពែបូល។ រកកូអរដោនេផ្ចិត កំពូល កំណុំ និងសមីការអាស៊ីមតូតទាំងពីរ រួចសង់អ៊ីពែបូលនេះ។
 - ២. ក្នុងតម្រុយអរតូណម៉ាល់មានទិសដៅវិជ្ជមាន $\left(\mathbf{o}; \hat{\mathbf{i}}; \hat{\mathbf{j}}; \hat{\mathbf{k}}\right)$ គេមាន A $\left(3; 2; -1\right)$, B $\left(-6; 1; 1\right)$; C $\left(4; -3; 3\right)$, D $\left(-1; -5; -1\right)$ និង H $\left(1; -1; 3\right)$ ។
 - ក. គណនាប្រវែង AH។ សរសេរសមីការប្លង់ (P) ដែលកាត់តាមចំណុច H ហើយកែងនឹងបន្ទាត់ (AH)។
 - 2. បង្ហាញថា B; C; D ស្ថិតនៅលើប្លង់ (P) ។
 - គ. គណនាកូអរដោនេនៃវ៉ិចទ័រ $\overline{\mathrm{BC}} imes \overline{\mathrm{BD}}$ រួចគណនាផ្ទៃក្រឡាត្រីកោណ $\mathrm{BCD}\, \mathtt{Y}$
- VII. (៣៥ តិន្ទុ) គេឲ្យអនុគមន៍ f កំណត់លើ $I=(4;+\infty)$ ដោយ $f(x)=-2x+5+3\ln\left(\frac{x+1}{x-4}\right)$ និង(C) ជាក្រាបតំណាង អនុគមន៍ f ក្នុងតម្រុយអរតូណរមេ $\left(0;\vec{i};\vec{j}\right)$ ដែលមានឯកតាលើអ័ក្ស $1\mathrm{cm}$ ។
 - $oldsymbol{9}$. គណនាលីមីតនៃអនុគមន៍ f ត្រង់ f និង f
 - **២**. បង្ហាញថាចំពោះគ្រប់ $\mathbf{x} \in \mathbf{I}$ គេបាន $\mathbf{f}'(\mathbf{x}) = \frac{-2\mathbf{x}^2 + 6\mathbf{x} 7}{(\mathbf{x} + 1) (\mathbf{x} 4)}$ ។សិក្សាសញ្ញា $\mathbf{f}'(\mathbf{x})$ ចំពោះគ្រប់ $\mathbf{x} \in \mathbf{I}$ ។ សង់តារាងអថេរភាពនៃអនុគមន៍ \mathbf{f} ។
 - **៣**. ក. បង្ហាញថាបន្ទាត់ (D) ដែលមានសមីការ y=-2x+5 ជាអាស៊ីមតូតនៃ (C) ។
 - 2. ចំពោះគ្រប់ x > 4 ចូរបង្ហាញថា $\frac{x+1}{x-4} > 1$ រួចសិក្សាទីតាំងធៀបរវាង (C) និង (D) ។
 - គ. កំណត់កូអរដោនេនៃចំណុចស្ថិតនៅលើខ្សែកោង (C) ដែលបន្ទាត់ (Δ) ប៉ះខ្សែកោង (C)

ត្រង់ចំណុចនោះមានមេគុណប្រាប់ទិសស្មើនឹង $-\frac{9}{2}$ រួចសរសេរសមីការបន្ទាត់ប៉ះ (Δ) ។ ឃ. សង់ក្រាប (C) និងបន្ទាត់ (D), (Δ) នៅក្នុងតម្រុយតែមួយ។ (គេឲ្យ $\ln 6 = 1.8$)

សូមអានប្រធានលំហាត់ឲ្យបានច្បាស់មុនធ្វើលំហាត់!

សូមសំណាងល្អ!

		១៩ទូ៩ រះមេត្ត៩ន
5: 66	ମଊ∶ 9໕0 ଚାଛି ସେଝ୍	irsaithes
រឆ្លុ: ទូធាន	ම: මෙස්	
រ៉េ	១៥ តិន្ទុ) ក្នុងកាបូបមួយមានប៊ិច 4 ដើម ខ្មៅដែ 3 ដើម និងបន្ទាត់ 2 ដើម។ សិស្យ ដាយចៃដន្យ។ គណនាប្រូបាបនៃព្រឹត្តិការណ៍ៈ ត. A : ចាប់បានប៊ិចទាំង 3 ដើម។ ខ. B : ចាប់បានបន្ទាត់មួយដើមយ៉ាងតិច។	·
II. ($m{90}$ ពិន្ទុ) ក. សរសេរចំនួនកុំផ្លិច $\mathbf{z}_1=\sqrt{3}+\mathbf{i}$ និង $\mathbf{z}_2=-1+\mathbf{i}\sqrt{3}$ ជាទម្រង់ត្រីកេខ. គណនា $\mathbf{z}_1^6+\mathbf{z}_2^6$ ។	•
III. (9៥ ពិស្ត្) គណនាលីមីត:	$\lim_{c \to -\infty} \left(e^{-x+1} - e^{1-2x} \right)$
IV. (១៥ ពិន្ទុ) ១. ចូរគណនាអាំងតេក្រាលៈ $I = \int_1^2 \frac{(x-1)^2}{x^2} dx$ និង $J = \int_0^{\frac{\pi}{2}} \frac{2}{(\sin x^2)^2} dx$	$\frac{2-2\sin 2x}{(\cos x)^2} dx $ \mathfrak{I}
	D. ក. កំណត់ចំនួនពិត A;B និង C ដើម្បីឲ្យ $\frac{3x^2}{x^3-1}=rac{A}{x-1}+rac{Bx+C}{x^2+x+1}, x eq 1$	1 ខ. គណនាអាំងតេក្រាល $ ext{K} = \int rac{3 ext{x}^2}{ ext{x}^3-1} ext{dx}$
ព្រ	១០ ពិន្ទុ) ១. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល (E) : y'' – 3y' – 4y = 0។ ២. រកចម្លើយពិសេសមួយនៃ (E) បើគេជឹងថាខ្សែកោងតាងអនុគមន៍ចម្លើយកាត់តា ចំណុចនេះមានមេគុណប្រាប់ទិសស្មើនឹង 9។	មចំណុច (0;1) ហើយប៉ះទៅនឹងបន្ទាត់ត្រង់
S	២៥ កិន្ទុ) ១. ក. រកកូអរដោនេនៃកំពូល កំណុំ និងសមីការបន្ទាត់ប្រាប់ទិសនៃប៉ារ់ ខ. រកកូអរដោនេនៃចំណុចប្រសព្វរវាងប៉ារ៉ាបូល P និងបន្ទាត់មានសមីការ x = –2 រួច ១. គេមានកូអរដោនេនៃចំណុច M (2,1,0) ; N (1,–2,2) និង P (0,–2,1) ។	
	ក. បង្ហាញថាចំណុច M,N និង P ជាកំពូលទាំងបីនៃត្រីកោណសមបាត។	
	2. សរសេរសមីការប្លង់ (α) ដែលកាត់តាមចំណុច M,N និង P។	
	គ. រកសមីការទូទៅស្វ៊ែរ ${ m (S)}$ មួយដែលមានផ្ចិត A ${ m (1,2,-3)}$ ហើយប៉ះទៅនឹងប្លង់ ${ m (}$	α) Ί
VII. (៣៥ កិស្ត្) ឡែអា A គេឲ្យអនុគមន៍ ${ m g}$ កំណត់លើ $(0;+\infty)$ ដោយ ${ m g}({ m x})=4{ m x}^2+1$	1 – ln x H
	ក. គណនាដេរីវេ $g'(x)$ និងសិក្សាសញ្ញានៃដេរីវេ $g'(x)$ លើចន្លោះ $(0; +\infty)$ ។	
	ខ. សិក្សាអថេរភាពនៃអនុគមន៍ ${f g}({f x})$ (ដោយមិនចាំបាច់គណនាលីមីតត្រង់ ${f 0}$ និង ${f +}$	_
	${rac{{f g}}{{f S}}}{f B}$ គេមានអនុគមន៍ ${ m f}({ m x})=4{ m x}-4+rac{\ln { m x}}{{ m x}}$ ហើយមានខ្សែកោង ${ m (C)}$ ក្នុងតម្រុយដលមានឯកតាលើអ័ក្សស្មើនឹង $2{ m cm}$ ។	រអរតូណមេ (o; iំ; jំ)
	ក. រកលីមីត $\lim_{{ m x} o 0^+} { m f}({ m x})$ និង $\lim_{{ m x} o + \infty} { m f}({ m x})$ រួចទាញរកអាស៊ីមតូតនៃក្រាប $({ m C})$ ។	
	2. គណនាដេរីវេ $f'(x)$ និងបញ្ជាក់ថា $f'(x)$ មានសញ្ញាដូច $g(x)$ លើចន្លោះ $(0; +\infty)$) ។ គូសតារាងអថេរភាពនៃ f(x) ។
	គ. បង្ហាញថាបន្ទាត់ $\Delta: y = 4x-4$ ជាអាស៊ីមតូតទ្រេតនៃ (C) រួចសិក្សាទីតាំងធៀ	រនៃក្រាប (C) និងបន្ទាត់ ∆។
ใ	${f w}$. សង់ក្រាប ${ m (C)}$ និងបន្ទាត់ ${ m \Delta}$ ក្នុងតម្រុយអរតូណរមេ ${ m (O; ec i; ec j)}$ ។	

ង. គណនាផ្ទៃក្រឡាផ្នែកប្លង់ដែលខណ្ឌដោយខ្សែកោង អ័ក្សអាប់ស៊ីស និងបន្ទាត់ឈរ x=1 និង x=e។ (គេឲ្យ: $\ln 2=0.7$)

សូមសំណាងល្អ!
a w

85 85 85 85	នានៈ នានៈ	សង់លេសពេងិត្តស ឃើះពេងិត្តម លេសន់ពុំ
9 .	(១៥ កិន្ត) គណនាលីមីត: $A = \lim_{x \to 1} \frac{x(x-1)^2 - 2x + 2}{1 - x^2}, B = \lim_{x \to 0} \frac{-9 \mathrm{s}}{\sqrt{1 + x^2}}$	$\frac{\sin 3x}{-\sqrt{1-x}}, C = \lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{1 - \sqrt{2}\cos x}$
ສ.	$($ ១៥ កិស្ត្) គេមានចំនួនកុំផ្លឹច $z_1=\left(\sqrt{3}+1\right)+\mathrm{i}\left(\sqrt{3}-1\right)$ និង $z_2=\sqrt{2}+\mathrm{i}$	√2 Ч
	ក. គណនា $\mathbf{z} = \mathbf{z}_1 imes \mathbf{z}_2$ ជាទម្រង់ពីជគណិត។	
	ខ. សរសេរ $_{ m Z}$ និង $_{ m Z_2}$ ជាទម្រង់ត្រីកោណមាត្រ។ ទាញរកទម្រង់ត្រីកោណមាត្រ $_{ m C}$	s _{z1} 4
ണ.	(១០ ពិទ្ទុ) ក្នុងថង់មួយមានប៊ូលទាំងអស់ 12 ដែលក្នុងនោះមានប៊ូលក្រហម 3 ថ្ គេចាប់យកប៊ូលម្តងមួយៗចំនួន 3 ចេញដោយមិនដាក់ចូលវិញដោយចៃដន្យ។ គ ក. A : ប៊ូលទាំង 3 មានពណ៌ដូចគ្នា។ ខ. B : ប៊ូលពីរដំបូងមានពណ៌ដូចគ្នា។	ណនាប្រូបាបនៃព្រឹត្តិការណ៍ដែលចាប់បានៈ
ઢ .	$($ ១៥ ចិន្ត្) ក. គណនាអាំងតេក្រាល $I=\int_1^2\left(6x^2+4x-rac{1}{x}+4 ight)\mathrm{d}x$ និង J	$= \int_{0}^{\frac{\pi}{4}} (2\cos 2x - 4\sin 2x) dx $ 1
	2. គេឲ្យ $f(x) = \frac{3x-1}{(x-2)^2}$ កំណត់ចំពោះគ្រប់ $x \neq 2$ ។ បង្ហាញថា $f(x) = \frac{3}{x-2}$ -	$+\frac{50}{(x-2)^2}$, $x \neq 2$ ។ ទាញរត $K = \int_1^4 f(x) dx$ ។
હ .	(១០ កិន្ត្) ក. ដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល $(E):y''-y=2(y-y')$ ។ ខ. រកចម្លើយពិសេសមួយនៃ (E) ដោយក្រាបនៃចម្លើយរបស់វាប៉ះទៅនឹងបន្ទាត់ (E)	(L) : 2y – 4x – 1 = 0 ត្រង់ចំណុច P (0,6) ។
්	(២៥ ពិទ្ឋុ) ១. គេមានសមីការ 2 $(6y-3x)$ $(3x+6y)=-648$ ។ បង្ហាញថាសារកកូអរដោនេផ្ចិត កំពូល កំណុំ និងសមីការអាស៊ីមតូតទាំងពីរ រួចសង់អ៊ីពែបូលនេះ ២. ក្នុងតម្រុយអរតូណម៉ាល់មានទិសដៅវិជ្ជមាន $\left(0;\vec{i};\vec{j};\vec{k}\right)$ គេមានចំណុច $A\left(0;\vec{i};\vec{j};\vec{k}\right)$	39

ក. ចូរស្រាយបញ្ជាក់ថា ABCD ជាប្រលេឡូក្រាម។

1. $\overline{\mathsf{n}}$. គណនាលីមីតនៃ f ត្រង់ $-\infty$ និង $+\infty$

ខ. គណនាផលគុណវ៉ិចទ័រ $\overline{
m AB} imes \overline{
m BC}$ ។ រួចទាញរកផ្ទៃក្រឡានៃប្រលេឡូក្រាម m ABCD។

ខ. សិក្សាទីតាំងនៃក្រាប C ធៀបនឹងបន្ទាត់ (Δ) ដែលមានសមីការ y=x+2 ។

2. ក. ស្រាយបញ្ហាក់ថាចំពោះគ្រប់ចំនួនពិត \mathbf{x} , $\mathbf{f}'(\mathbf{x}) = \left(\frac{\mathrm{e}^{\mathbf{x}} - 1}{\mathrm{e}^{\mathbf{x}} + 1}\right)^2$ ។

2. សិក្សាអថេរភាពនៃ f លើ R និងសង់តារាងអថេរភាពនៃ f ។

ខ. សិក្សាទីតាំងនៃក្រាប ${
m C}$ ធៀបនឹងអាស៊ីមតូតទាំងពីរ $({
m d}_1)$ និង $({
m d}_2)$ ។

4. ក. គណនា f(-x) + f(x) ។ ទាញថាចំណុច I(0,2) ជាផ្ចិតឆ្លុះនៃក្រាប (C) ។

 \mathbf{c} . (\mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}) គេឲ្យអនុគមន៍ \mathbf{f} កំណត់លើ \mathbf{R} ដោយ $\mathbf{f}(\mathbf{x}) = \mathbf{x} + 2 - \frac{2 \, (\mathbf{e}^{\mathbf{x}} - 1)}{\mathbf{e}^{\mathbf{x}} + 1}$ មានក្រាបតាង (C) ។

3. ក. ស្រាយបញ្ហាក់ថាចំពោះគ្រប់ចំនួនពិត \mathbf{x} , $\mathbf{f}(\mathbf{x})$ អាចសរសេរជាពីរទម្រង់គឺ $\mathbf{f}(\mathbf{x}) = \mathbf{x} + \frac{4}{\mathrm{e}^{\mathbf{x}} + 1}$ និង $\mathbf{f}(\mathbf{x}) = \mathbf{x} + 4 - \frac{4\mathrm{e}^{\mathbf{x}}}{\mathrm{e}^{\mathbf{x}} + 1}$ ។

ទាញបញ្ជាក់ថា (C) មានអាស៊ីមតូតទ្រេតគឺ: $(d_1):y=x$ ខាង $+\infty$ និង $(d_2):y=x+4$ ខាង $-\infty$ ។

ខ. គណនា f(1) និង f(2) ។ រួចសង់ក្រាប (C) , (Δ) , (d_1) និង (d_2) ។ បើ $\frac{e-1}{e+1} = 0.5$, $\frac{e^2-1}{e^2+1} = 0.8$

សូមសំណាងល្អ!
a w