Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación \mathcal{T} iempo: 2 horas 20 minutos \mathcal{P} untaje \mathcal{T} otal: 35 puntos \mathcal{I} \mathcal{S} emestre 2010

\mathcal{I} Examen \mathcal{P} arcial

Instrucciones: Esta es una prueba de desarrollo; por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

1. Sea Aalguna matriz de orden n; se dice que A es nilpotente si, y sólo si, $\exists k \in \mathbb{N},$ tal que $A^k = \mathcal{O}_n$

Demuestre que si $\alpha \neq 0$, entonces la matriz $A = \begin{pmatrix} 1 & \alpha \\ \frac{-1}{\alpha} & -1 \end{pmatrix}$ es nilpotente. (3 pts)

Observación: \mathcal{O}_n representa la matriz nula de orden n

- 2. Considere las matrices $A ext{ y } B$, tales que $A \in \mathcal{M}_{p \times w}(\mathbb{R})$, $B \in \mathcal{M}_{w \times d}(\mathbb{R})$; demuestre que, entrada por entrada, $(AB)^t = B^t A^t$ (4 pts)
- 3. Considere las matrices siguientes:

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \\ 3 & 0 \end{pmatrix} \text{ y } C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Utilizando únicamente operaciones con matrices determine, de manera explícita, la matriz X que satisface la ecuación matricial siguiente: (6 pts)

$$XAB^t = AB^t + XC^2$$

4. Sean $A, B, C \in \mathcal{M}_3(\mathbb{R})$ Si se sabe que $2AC = \mathcal{I}_3 + BC$ y $\left| 2A - B \right| = 2$, calcule: $\left| (6A - 3B)^{-1} C^t \right|$

Observación: \mathcal{I}_3 representa la matriz identidad de orden 3

- 5. Sean $A, Q \in \mathcal{M}_n(\mathbb{R})$ y $B = Q^{-1}AQ$
 - (a) Demuestre, utilizando inducción matemática, que: (4 pts)

$$\forall k \in \mathbb{N}, B^k = Q^{-1}A^kQ$$

(b) Considere las matrices siguientes: (3 pts)

$$P = \begin{pmatrix} 1 & 4 \\ 1 & 5 \end{pmatrix}, P^{-1} = \begin{pmatrix} 5 & -4 \\ -1 & 1 \end{pmatrix} \quad y \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Si $D = P^{-1}CP$ utilice el resultado del inciso (a) y determine, de manera explícita, la matriz D^7

6. Calcule |A| si se tiene que: (4 pts)

$$A = \left(\begin{array}{ccc} 1 & a & b+c \\ 1 & b & a+c \\ 1 & c & b+a \end{array}\right)$$

7. Sea $a \in \mathbb{R}$. Considere el sistema de ecuaciones lineales siguiente: (7 pts)

$$\begin{cases} x + y + az = 1 \\ x + ay + z = 1 \\ ax + y + z = 1 \end{cases}$$

Determine el valor o los valores (en caso de existir) que debe tomar la constante real a para que el sistema de ecuaciones anterior:

- (a) Tenga solución única (halle el conjunto solución).
- (b) Posea infinito número de soluciones (enuncie una solución particular).
- (c) No tenga solución.