Regression analysis with linked data

Rachel Anderson*

This Version: October 2, 2019

Abstract

This paper studies what happens when the goal is to estimate a parametric model using observations (x, y), but x and y are observed in distinct datasets with imperfect identifiers. This setup requires that the researcher must attempt to identify which observations in the x- and y-datafiles refer to the same individual, prior to performing inference about the joint or conditional distributions of x and y. At a minimum, random errors in the matching step introduce measurement error that must be accounted for in subsequent inference; however, additional concerns about sample selection arise when these errors are correlated with unobservables that affect x or y.

1 Introduction

Consider estimating β in a linear regression model,

$$y_i = x_i'\beta + \varepsilon_i, \ E[\varepsilon|x_i] = 0, \ E[\epsilon_i^2] = \sigma^2$$
 (1)

but, instead of observing (x, y) pairs directly, x and y are recorded in separate datasets. Additionally, both datasets contain a set of common variables w, that can be used to learn about the joint distribution of (x, y).

^{*}Mailing Address: Department of Economics, Julis Romo Rabinowitz Building, Princeton, NJ 08544. Email: rachelsa@Princeton.edu. This project received funding from the NIH (Grant 1 R01 HD077227-01).

Perhaps the most straightforward way to estimate β in this setting involves first identifying which (x, y) pairs refer to the same underlying units, and then applying standard methods to estimate (1) using the matched pairs. Formally, for data $\{x_i, w_i\}_{i=1}^{N_x}$ and $\{y_j, w_j\}_{j=1}^{N_y}$, the matching step consists of estimating a function,

$$\varphi: \{1, \dots, N_x\} \to \{1, \dots, N_y\} \cup \emptyset \tag{2}$$

where $\varphi(i) = j$ if individual i in the x-datafile and individual j in the y-datafile refer to the same entity, and $\varphi(i) = \emptyset$ if i does not have a match in y-datafile. Note that if w identifies individuals uniquely and without error, then $\varphi(i) = j$ if and only if $w_i = w_j$, and $\varphi(i) = \emptyset$ otherwise. However, if w is not unique or recorded with error, then φ needs to be estimated, and inference about β may need to be adjusted accordingly.

To fix ideas, suppose that the goal is to estimate the effect of providing cash transfers to single mothers on the life expectancy of their children. Mathematically, the parameter of interest can be represented as β_1 in the regression model,

$$y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}'\beta_2 + \varepsilon_i \tag{3}$$

where x_{1i} is a binary variable equal to 1 if person i's mother received a cash transfer, and x_{2i} includes all other demographic variables that are recorded on the welfare program applications (the x-datafile). The outcome y_i is person i's age at death, as reported in a universal database of death records (the y-datafile). The two data sources additionally contain a common set of variables w, including first and last name, and year of birth. Since no combination of these variables is necessarily unique, estimating φ in this setting would likely require distinguishing among multiple observations with identical w.

Although the previous example is motivated by a specific research question in Aizer et al. (2016), the "imperfect identifier problem" is by no means unique. In statistics, the task of

recovering φ is known as record linkage, but this problem also appears frequently in computer science, operations research, and epidemiology, under names such as data linkage, entity resolution, instance identication, de-duplication, merge/purge processing, and reconciliation. In economics, a strong interest in record linkage has emerged as the result of newly available, large administrative datasets; and, a number of recent papers compare the performance of popular matching techniques used in economic history on the representativeness and accuracy of the datasets that they produce (Abramitzky et al., 2019, 2018; Bailey et al., 2017).

These reviews illustrate how each step of the record linkage process introduces the possibility that a true match is overlooked (Type II error), or that a false match is designated as correct (Type I error); and, generally, there is a tradeoff between reducing either one of the two (Abramitzky et al., 2019; Doidge and Harron, 2018). However, the impact of data pre-processing choices on estimation is still not well understood. Furthermore, inference using linked data requires joint assumptions for the matching and estimation steps.

In particular, whether to allow for multiple matches? When using multiple matches, authors have generated a "composite match" equal to the average of the linked observations (Bleakley and Ferrie, 2016), constructed bounds on the parameter of interest using different configurations of matched data (Nix and Qian, 2015), or used methods that allow for multiple, equally likely outcomes by Anderson et al. (2019). This example also shows how the outputs of the matching process determine which estimation tools are available. Had the authors used probabilistic record linkage methods to link the data, they could have used the robust OLS estimators from Lahiri and Larsen (2005), or prior-informed imputation for missing records proposed by Goldstein et al. (2012).

This paper adds to this literature by comparing how different *combinations* of matching and estimation techniques affect parameter estimates and their confidence intervals in standard econometric models. It also makes practical suggestions for choosing which methods best suit a given setting. In order to illustrate the techniques studied in this paper, Section

2 introduces a numerical example that is used to demonstrate the matching and estimation techniques described in Sections 3 and 4. Section 5 provides details about the implementation of the methods and data generating processes. Section 6 contains the results, and Section 7 concludes.

2 Empirical Example

The purpose of this section is to introduce a synthetic dataset that will be referenced throughout this paper. The benefits of using a synthetic dataset are twofold: first, I can control which variables in (1) are correlated with errors in the identifiers w; and second, I can compare the performance of the matching algorithms and estimation techniques to a "ground truth" dataset containing all of the true matches. To make the data as real as possible, the identifiers and their transcription error rates are chosen to mimic those of the 1940 Census data, as reported in Abramitzky et al. (2019).

The "ground truth" dataset consists of 1000 observations of $(x_{1i}, x_{2i}, y_i, w_i)$, where x_{1i} and x_{2i} are mutually independent, $x_{1i} \stackrel{i.i.d}{\sim} \text{Bernoulli}(0.5)$, and $x_{2i} \stackrel{i.i.d}{\sim} \mathcal{N}(0, 2)$. The y_i values are generated according to the linear relationship,

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i, \quad \varepsilon_i \mid x_{1i}, x_{2i} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$

$$\tag{4}$$

with $(\beta_0, \beta_1, \beta_2, \sigma^2) = (2, 0.5, 1, 2)$, so that estimating the correctly specified linear regression model yields an R^2 value of approximately 0.50. Each observation is also assigned the identifiers, w_i , which include include a first and last name drawn at random from a list of first and last names¹, and a random birthday between January 1, 1900, and December 31, 1925. The resulting dataset looks like the observations in the top panel of Figure 1.

¹The first and last name lists contain 41 and 24 names, respectively, and can be found in the replication files. Note that the number of possible names is smaller than the number of observations to ensure that there are multiple observations with the same name.

Figure 1: Creation of Synthetic Datasets

ID	y	x_1	x_2	First Name	Last Name	Birthday
1	y_1	$x_{1,1}$	$x_{2,1}$	Tyler	Ashenfelter	1915-05-13
2	y_2	$x_{1,2}$	$x_{2,2}$	Brandon	Christensen	1904-06-27
				: :		
195	y_{195}	$x_{1,195}$	$x_{2,195}$	Samantha	Andersen	1914-08-18
196	y_{196}	$x_{1,196}$	$x_{2,196}$	Victoria	Andersen	1918-11-25
				:		
1000	y_{500}	$x_{1,500}$	$x_{2,500}$	Vicky	Anderson	1915-04-14
				1		_

ID	x	Name	Birthday		
2	$(x_{1,2}, x_{2,2})$	Branden Christenson	1905-06-27		
195 198	$(x_{1,195}, x_{2,195})$ $(x_{1,198}, x_{2,198})$	Samantha Anderson Jon Smyth	1914-08-21 1918-12-20		

1000

 $(x_{1,1000}, x_{2,1000})$

Vic Andersn

r-Datafile

y-Datafile					
ID	y	Name	Birthday		
1	y_1	Tyler Ashenfelter	1915-05-13		
2	y_2	Brandon Christensen	1904-06-27		
195	$y_{1,195}$	Samantha Anderson	1914-08-18		
1000	y_{1000}	Vicky Anderson	1915-04-14		

Next, I split the ground truth dataset into an x- and y-datafile, which contain (x_1, x_2, w) and (y, w) values respectively. To construct the x-datafile, I select 400 observations at random from the ground truth dataset, and introduce random errors in their corresponding identifiers. These errors include deleting characters (e.g., "Anderson" becomes "Andersn"), exchanging vowels (e.g., "Rachel" becomes "Rachal"), and swapping English phonetic equivalents (e.g. "Ellie" becomes "Elie"). I also add normally distributed errors to the birth day, month, and year. The probabilities of introducing an error are set to match the transcription error rates reported in the 1940 Census by Abramitzky et al. (2019); for example, 7% of observations have misreported first names and 17% of observations have misreported last names. The bottom panel of Figure 1 illustrates how the x- and y-datafiles are split visually.

1915-04-14

The y-datafile includes all 1,000 values from the ground truth data, and does not contain any errors in the identifiers w. As a result, it will be likely that some x will be matched to

multiple y. In later sections, I will consider versions of this synthetic dataset, where errors in w are correlated with x_1 or y.

3 Record Linkage Methods

A standard record linkage procedure consists of a set of decisions about (i) selecting and standardizing observations w_i and w_j , (ii) choosing which (x, y) pairs to consider as potential matches², (iii) defining which patterns of (w_i, w_j) constitute (partial) agreements, and (iv) designating (x, y) pairs as matches. For example, the following steps constitute a (deterministic) record linkage procedure for the setting above:

- (i) Use a phonetic algorithm to standardize the first and last names in both datasets;
- (ii) Consider as potential matches all (x, y) pairs whose phonetically standardized names begin with the same letter, and whose birth years are within ± 2 years;
- (iii) Measure the distance between any two names using Jaro-Winkler string distance, and the distance between any two birth dates as a difference in months;
- (iv) Designate as matches all (x, y) pairs with Jaro-Winkler scores exceeding a pre-determined cut-off; and, if a record x has multiple possible matches that exceed the cut-off, then choose the corresponding y with the highest score (or pick one match at random if there is a tie).

Another record linkage procedure could be defined using the same rules for steps (i)(iii), but replacing (iv) with a probabilistic matching rule that does not enforce one-to-one
matching, such as

(iv*) Use the Expectation-Maximization algorithm to compute "match weights" for each (x, y) pair; then, designate as matches all pairs with match weights exceeding a thresh-

²This is primarily to reduce computation when $N_x \times N_y$ is large

old that is set to reflect specific tolerances for Type I and Type II error.

Except in rare cases, the estimated matching functions obtained by using (iv) and (iv*) will differ, if only because the former matches each x with at most one y, while the latter potentially matches the same x with multiple y. The second method also produces estimates of the probability that each of the associated y values refers to the true match, which can be combined with estimation techniques such as those in Lahiri and Larsen (2005).

Some introduction about record linkage here.

Record linkage techniques are broadly categorized as deterministic or probabilistic³; however, every deterministic linkage method has an equivalent probabilistic version (Doidge and Harron, 2018). Furthermore, the first three steps of the record linkage task described above are identical for all procedures. I begin by discussing these steps, then introduce the PRL framework, and show how it can be used to express deterministic linking rules.

As observed by Bailey et al. (2017), record linkage procedures differ by the set of assumptions that motivate their use. However, all of the procedures discussed in this paper will be studied under the following, common set of assumptions (with some departures later on):

- 1. (De-duplication) Within a given dataset, each observation refers to a distinct entity.

 That is, if two observations share the same identifier, they represent two different individuals.
- 2. (No unobserved sample selection) The observed x_i and y_j are random samples conditional on w_i and w_j , respectively. This means that all individuals with the same identifying information have equal probability of appearing in the sample.
- 3. There exists a unique β_0 that satisfies the relationship in (1), that can be consistently estimated using standard econometric techniques if φ_0 is known.

³define them here

In total, I implement two record linkage techniques, each of which I implement while allowing multiple or enforcing single matches. Here I provide an overview of those techniques.

3.1 Deterministic

The deterministic matching algorithm described herein is based upon Abramitzky et al. (2012). It consists of the following steps

- 1. Clean names in x and y datafiles to remove any non-alphabetic characters and account for common mis-spellings and nicknames (e.g., so that Ben and Benjamin would be considered the same name). This step usually involves the use of phonetic algorithms, such as NYSIIS or SOUNDEX.
- 2. Restrict the sample to people in the x datafile with unique first name, last name, and birth date combinations
- 3. For each record in the x-datafile, look for records in the y-datafile that match on first name, last name, place of birth, and exact birth year. At this point there are three possibilities
 - (a) If there is a *unique* match, this pair of observations is considered a match.
 - (b) If there are multiple potential matches in the y-datafile with the same year of birth, the observation is discarded.
 - (c) If there are no matches by exact year of birth, the algorithm searches for matches within ± 1 year of reported birth year, and if this is unsuccessful, it looks for matches within ± 2 years. In each of these steps, only unique matches are accepted. If none of these attempts produces a unique match, the observation is discarded.
- 4. Step 3 is repeated for each record in the y-datafile, after which the intersection of the

two matched samples is taken.

An interesting quirk of this algorithm is that one person could have a unique exact year match, but then multiple matches with birth years off by 1; this person is included when a unique match is desired. But if the unique match with zero year difference were not present, then the observation would be dropped.

3.2 Probabilistic Record Linkage

The probabilistic record linkage technique implemented in this paper are based on seminal work by Fellegi and Sunter (1969), which views record linkage as a classification problem. As before, let $\{x_i, w_i\}$, $i = 1, ..., N_x$ denote the observations in a dataset X; and $\{y_j, w_j\}$, $j = 1, ..., N_y$, denote the observations in a dataset Y. The space of record pairs $X \times Y$ can be divided into two disjoint sets, matches (M) and non-matches (U), defined as

$$M = \{(i, j) \in X \times Y : j \in \varphi(i)\}\$$

$$U = \{(i, j) \in X \times Y : j \notin \varphi(i)\}\$$

To determine whether a record pair belongs to M or U, the pair is evaluated according to K different comparison criteria, which result from comparing w_i and w_j . These comparisons are represented in a *comparison vector*,

$$\boldsymbol{\gamma_{ij}} = (\gamma_{ij}^1, \dots, \gamma_{ij}^k, \dots, \gamma_{ij}^K)$$

where each comparison field γ_{ij}^k may be binary-valued, as in "i and j have the same birthday" and "i and j have the same last name," or use ordinal values to indicate partial agreement between strings.

The probability of observing a particular configuration of γ_{ij} can be modeled as arising

from the mixture distribution:

$$P(\gamma_{ij}) = P(\gamma_{ij}|M)p_M + P(\gamma_{ij}|U)p_U$$
(5)

where $P(\gamma_{ij}|M)$ and $P(\gamma_{ij}|U)$ are the probabilities of observing the pattern γ_{ij} conditional on the record pair (i,j) belonging to M or U, respectively. The proportions p_M and $p_U = 1 - p_M$ are the marginal probabilities of observing a matched or unmatched pair. Applying Bayes' Rule, we obtain the probability of $(i,j) \in M$ conditional on observing γ_{ij} ,

$$P(M|\gamma_{ij}) = \frac{p_M P(\gamma_{ij}|M)}{P(\gamma_{ij})}$$
(6)

Thus, if we can estimate p_M , $P(\gamma_{ij}|M)$ and $P(\gamma_{ij}|U)$, then we can estimate the probability that any two records refer to the same entity using (6). These probabilities can then be used to designate pairs as matches, or to estimate the false positive rate associated with a particular match configuration using the formulas in Fellegi and Sunter (1969).

Note that when X or Y is large, constructing comparison vectors for all $N_x \times N_y$ possible pairs can be computationally intensive. In practice, researchers solve this problem by partitioning $X \times Y$ into "blocks," such that comparison vectors are only constructed for records within the same block, and records in different blocks are assumed to be non-matches. Importantly, the blocking variables should be recorded with minimal error, otherwise blocking may adversely affect the Type II error rate.

Example 1 (cont'd). This paper assumes that no blocking is used; or, alternatively, that records are already divided into blocks that can be analyzed independently using the methods outlined below.

Another difficulty arises from the fact that there are at least $2^K - 1$ possible configura-

tions of γ_{ij} . While in principle we could model $P(\gamma_{ij}|M)$ and $P(\gamma_{ij}|U)$ as

$$(\gamma_{ij}^1, \dots, \gamma_{ij}^K) \mid M \sim \text{Dirichlet}(\boldsymbol{\delta}_{\mathbf{M}})$$

$$(\gamma_{ij}^1, \dots, \gamma_{ij}^K) \mid U \sim \text{Dirichlet}(\boldsymbol{\delta}_{\mathbf{U}})$$

but the parameters $\delta_{\mathbf{M}}$ and $\delta_{\mathbf{U}}$ may be high-dimensional. However, if the comparison fields γ_{ij}^k are independent across k conditional on match status, then the number of parameters used to describe each mixture class can be reduced to K by factoring:

$$P(\gamma_{ij}|C) = \prod_{k=1}^{K} P(\gamma_{ij}^{k}|C)^{\gamma_{ij}^{k}} (1 - Pr(\gamma_{ij}^{k}|C))^{1-\gamma_{ij}^{k}} \qquad C \in \{M, U\}$$
 (7)

Alternatively, dependence between fields can be modeled using log-linear models; however, I assume conditional independence to ease computation.

Example 1 (cont'd). Errors are constructed to satisfy this assumption

4 Estimation Methods

This section provides an overview of the estimation methods I compare for analyzing the matched datasets.

4.1 OLS Bias Correction

Scheuren and Winkler (1993) and Lahiri and Larsen (2005) propose techniques for correcting the bias from mismatched pairs in linear regression. They assume that the matching procedure produces n pairs (x_i, z_i) , where z_i may or may not correspond to y_i , yet the true

 y_i is included among the matches. Hence,

$$z_i = \begin{cases} y_i & \text{with probability } q_{ii} \\ y_j & \text{with probability } q_{ij} \text{ for } j \neq i, \ j = 1, \dots, n \end{cases}$$

and $\sum_{j=1}^{n} q_{ij} = 1$, i = 1, ..., n. Estimating (1) using z_i as the dependent variable yields the naive least squares estimator,

$$\hat{\beta}_N = (X'X)^{-1}X'z \tag{8}$$

which is biased. Denoting $q_i = (q_{i1}, \dots, q_{in})'$ and $Q = (q_1, \dots, q_n)'$, we can write the bias of $\hat{\beta}_N$ as

$$\operatorname{bias}(\hat{\beta}_N) = [(X'X)^{-1}X'QX - I]\beta$$

since $E[z_i] = E[q_i'y] = q_i'X\beta = \sum_{j=1}^n q_{ij}x_j'\beta$.

To reduce the bias of $\hat{\beta}_N$, Scheuren and Winkler (1993) observed that

$$\operatorname{bias}(\hat{\beta}_N|y) = E[(\hat{\beta}_N - \beta)|y] = (X'X)^{-1}X'B \tag{9}$$

where $B = (B_1, \ldots, B_n)'$ and $B_i = (q_{ii} - 1)y_i + \sum_{j \neq i} q_{ij}y_j = q'_i y - y_i$, which is the difference between a weighted average of responses from all observations and the actual response y_i . The authors suggest estimating (9) using the first and second highest elements of the vector q_i , so that $\hat{B}_i^{TR} = (q_{ij_1} - 1)z_{j_1} + q_{ij_2}z_{j_2}$, and

$$\hat{\beta}_{SW} = \hat{\beta}_N - (X'X)^{-1}X'\hat{B}^{TR} \tag{10}$$

The estimator can incorporate any number of elements of q_i , but, if the probability is high that the best candidate link is the true link, then the truncation results in a very small bias.

Alternatively, Lahiri and Larsen (2005) use the fact that $E(z_i) = w_i'\beta$, where $w_i = q_i'X_i\beta$,

to construct the unbiased estimator:

$$\hat{\beta}_U = (W'W)^{-1}W'z$$

where $W = (w_1, ..., w_N)'$. To construct $\hat{\beta}_U$ in practice, they also recommend using a truncated version of W, with $w_i^{TR} = q_{ij_1}x_{j_1} + q_{ij_2}x_{j_2}$.

For both methods, the values q_{ij} are typically calculated using (6) and parameter values $\psi = \{p_M, P(\gamma_{ij}|M), \text{ and } P(\gamma_{ij}|U)\}$. Thus, we can write the estimators $\hat{\beta}_{SW} = \hat{\beta}_{SW}(\psi)$ and $\hat{\beta}_U = \hat{\beta}_U(\psi)$. In practice, ψ is unknown, and a reasonable estimator $\hat{\psi}$ must be used. Details on how to estimate $\hat{\psi}$ are provided in the next section. Importantly, $\hat{\beta}_U(\hat{\psi})$ is unbiased whenever $\hat{\psi}$ is independent of z, which occurs if errors in the matching variables (which determine the distribution of $\hat{\psi}$ are independent of the response variable y. Unfortunately, this assumption is unlikely to hold in many economic applications, such as Nix and Qian (2015), where y indicates whether a person's recorded ethnicity changes between survey years, but data quality significantly differs for individuals with different values of y.

4.2 Multiple match WLS

Anderson et al. (2019) propose a GMM estimator that uses data where each observation x_i is linked to L_i equally likely, potential outcomes, denoted $\{y_{i\ell}\}_{\ell=1}^{L_i}$. Importantly, their methods require that (i) the true outcome is included among the set of possible matches, (ii) each of the possible matches is equally likely to be the true match, and (iii) that the observations x_i and $\{y_{i\ell}\}_{\ell=1}^{L_i}$ are random samples from their marginal distributions conditional on (w_i, L_i) .

Under these assumptions, the authors show how to construct an unbiased and consistent

estimator $\hat{\beta}$ by considering the smoothed regression:

$$\sum_{\ell=1}^{L_i} y_{i\ell} - (L_i - 1)g(w_i, L_i) = x_i'\beta + u_i$$
(11)

where $g(w_i, L_i) = E[y_{i\ell}|w_i, L_i], u_i = \varepsilon_i + \sum_{\ell=1}^{L_i} \nu_{i\ell}, \text{ and } \nu_{i\ell} = y_{i\ell} - E[y_{i\ell}|w_i, L_i].$

If, additionally, $E[\varepsilon_i^2|w_i, L_i] = \sigma_\varepsilon^2$ and $E[\nu_{i\ell}|z_i, L_i] = \sigma_\nu^2$ then $\hat{\beta}$ can be estimated efficiently using weighted least squares, with $\sigma(X_i) = \sigma_\varepsilon^2 + (L_i - 1)\sigma_\nu^2$, and

$$\hat{\beta}^{WLS} = \left(\sum_{i=1}^{N} \frac{x_i x_i'}{\sigma(X_i)}\right)^{-1} \left(\sum_{i=1}^{N} \frac{x_i}{\sigma(X_i)} \left(\sum_{\ell=1}^{L_i} y_{i\ell} - (L_i - 1)g(w_i, L_i)\right)\right)$$
(12)

which can be estimated in two-steps, where the first step involves estimating $\hat{g}(\cdot)$ and $\hat{\sigma}(X_i)$. The resulting estimator is consistent and asymptotically normal under the regularity conditions described in Anderson et al. (2019).

Assumption (iii) rules out the possibility of unobserved sample selection, in the sense that all individuals with the same identifying information have equal probability of appearing in the sample. This assumption would be violated if, for example, higher income individuals have a greater probability of appearing in the sample (unless w_i includes income). However, unlike the OLS bias correction estimators, the methods here explicitly correct for any dependence between the outcome variable and the matching variables w_i and the parameters of the matching procedure, insofar as they are captured by L_i .

[This suggests that the AHL (2019) estimator may be more robust when L_i is correlated with x_i ...]

5 Implementation

5.1 Matching Algorithms

Implementation Notes

When applying the algorithm with the synthetic data, I make the following alterations:

- 1. I standardize the names by using the nysiis function in R. I do not need to correct for nicknames, because of how I have generated the names.
- 2. I restrict the all observations with unique first name, last name, date of birth, and (x_1, x_2) combinations.
- 3. I only perform two-way matches that is I repeat the process for all observations in the y datafile and take the intersection of the matches). Does this change my results (check)?
- 4. When allowing for multiple matches, I count as matches all record pairs with the same name, and the difference in recorded birth years is within two (or five) years. That is, I designate all potential matches that arise in Step 3 as matches.

Example 1 (cont'd). Here are the differences that arise with two-way vs. not, nysiis vs. not, etc.

PRL

Since membership to M or U is not actually observed, a convenient way of simultaneously estimating p_M, p_U and classifying record pairs as matches or non-matches is via mixture modeling, with mixture distributions $P(\gamma_{ij}|M)$ and $P(\gamma_{ij}|U)$.

For convenience, denote $p_{M\ell} = P(\gamma_{ij}^{\ell}|M)$ and $p_{U\ell} = P(\gamma_{ij}^{\ell}|U)$. Assuming conditional

independence across ℓ (and global parameters that do not vary by block, if using blocked records), a convenient prior distribution is the product of independent Beta distributions,

$$p_{M} \sim \text{Beta}(\alpha_{M}, \beta_{M})$$

$$p_{M\ell} \sim \text{Beta}(\alpha_{M\ell}, \beta_{M\ell}), \ \ell = 1, \dots, L$$

$$p_{U\ell} \sim \text{Beta}(\alpha_{U\ell}, \beta_{U\ell}), \ \ell = 1, \dots, L$$

For $i = 1, ..., n_1 \in X_1$, $j = 1, ..., n_2 \in X_2$ define the parameter of interest as,

$$I_{ij} = \begin{cases} 1, & \text{if records } i \in X_1 \text{ and } j \in X_2 \text{ refer to the same entity;} \\ 0, & \text{otherwise} \end{cases}$$

If $(p_M, p_{M\ell}, p_{U\ell})$ are known, then $P(I_{ij} = 1 | \gamma_{ij}(p_M, p_{M\ell}, p_{U\ell}))$ is distributed as in (6). Alternately, if the match indicators \mathbf{I} were known, the posterior distributions of $(p_M, \mathbf{p}_{M\ell}, \mathbf{p}_{U\ell})$ would be:

$$p_M|I \sim \text{Beta}\left(\alpha_M + \sum_{(i,j)} I_{ij}, \ \beta_M + \sum_{(i,j)} (1 - I_{ij})\right)$$
 (13)

$$p_{M\ell}|I \sim \text{Beta}\left(\alpha_{M\ell} + \sum_{(i,j)} I_{ij}\gamma_{ij}^{\ell}, \ \beta_{M\ell} + \sum_{(i,j)} I_{ij}(1 - \gamma_{ij}^{\ell})\right), \quad \ell = 1, \dots, L$$
 (14)

$$p_{U\ell}|I \sim \text{Beta}\left(\alpha_{U\ell} + \sum_{(i,j)} (1 - I_{ij})\gamma_{ij}^{\ell}, \ \beta_{U\ell} + \sum_{(i,j)} (1 - I_{ij})(1 - \gamma_{ij}^{\ell})\right), \quad \ell = 1, \dots, L \quad (15)$$

Based on these ideas, ? proposed a Bayesian version of record linkage for the mixture

model approach, that uses a Gibbs Sampling scheme⁴ for simulating the posterior distribution of $I, (p_M, p_{M\ell}, p_{U\ell})$.

5.2 Estimation Algorithms

For LL, z requires single matches. So I pick at random one of the highest posterior matches and call that z.

Standard errors for $\hat{\beta}_{SW}$ are calculated using the formula. Standard errors for $\hat{\beta}_{LL}$ are calculated via the parametric bootstrap described in Lahiri and Larsen (2005).

For AHL (2019), I use nearest neighbors applied to the datasets $\{x_i, \{y_{i\ell}\}_{\ell}, w_i\}$ that are outputted by the matching algorithms above. That means, I implement the method as if the researcher only observes the matched dataset.

6 Results

In total, I test three DGPs. The first was described above. The second allows for correlation between x_1 and the probability of an error. The third will allow for correlation between y and the probability of an error.

The y are generated according to the same DGP described above; that is the true $\beta_0 = (2, 0.5, 1)$. I compare my results to an oracle linkage method ("first best"), which would successfully link all 400 x observations to their correct y. This produces $\hat{\beta}_{FB}$, which is shown in the table below:

Table 1: Match rate for matching algorithms

method	nMatches	pCorrect	nUniqueX
ABE (Single)	327	0.95	327
ABE (Multi)	454	0.78	360
PRL (Single)	311	0.85	311
PRL (Multi)	373	0.79	311

Figure 2: Distribution of number of matches produced by multi-matching algorithms

Figure 3: default

Figure 4: (x, y) pairs produced by different matching algorithms

Table 2: Naive OLS for all of the matchings

	Dependent variable:				
	y DDI (GL. L.) DDI (GL. L.) DDI (ALL)				
	First Best	ABE (Single)	ABE (Multi)	PRL (Single)	PRL (Multi)
β_0	2.079***	2.106***	2.100***	1.932***	2.091***
	(0.102)	(0.125)	(0.109)	(0.131)	(0.122)
β_1	0.408***	0.413**	0.369**	0.587***	0.357**
	(0.143)	(0.172)	(0.153)	(0.180)	(0.168)
eta_2	1.096***	1.010***	0.905***	0.975***	0.930***
	(0.052)	(0.062)	(0.056)	(0.065)	(0.062)
Observations	400	327	454	311	373
\mathbb{R}^2	0.534	0.455	0.367	0.429	0.384

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 3:

	method	nMatches	pCorrect	nUniqueX
1	abe_single	338	0.96	338
2	abe_multi	479	0.77	375
3	prl_single	335	0.87	335
4	prl_multi	397	0.79	335

6.1 Matching step

6.2 Estimation Results

7 Conclusion

Borrow from the Bayesian Record Linkage.

⁴See Appendix ??

References

- Abramitzky, Ran, Leah Boustan, Katherine Eriksson, James Feigenbaum, and Santiago Perez, "Automated Linking of Historical Data," NBER Working Paper, 2019.
- _ , Leah Platt Boustan, and Katherine Eriksson, "Europe's Tired, Poor, Huddled Masses: Self-Selection and Economic Outcomes in the Age of Mass Migration," *American Economic Review*, May 2012, 102 (5), 1832–56.
- _ , Roy Mill, and Santiago Perez, "Linking Individuals Across Historical Sources: a Fully Automated Approach," Working Paper 24324, National Bureau of Economic Research February 2018.
- Aizer, Anna, Shari Eli, Joseph Ferrie, and Adriana Lleras-Muney, "The Long-Run Impact of Cash Transfers to Poor Families," *American Economic Review*, April 2016, 106 (4), 935–71.
- Anderson, Rachel, Bo Honore, and Adriana Lleras-Muney, "Estimation and inference using imperfectly matched data," *Working paper*, August 2019.
- Bailey, Martha, Connor Cole, Morgan Henderson, and Catherine Massey, "How Well Do Automated Linking Methods Perform? Lessons from U.S. Historical Data," Working Paper 24019, National Bureau of Economic Research November 2017.
- Bleakley, Hoyt and Joseph Ferrie, "Shocking Behavior: Random Wealth in Antebellum Georgia and Human Capital Across Generations," *The Quarterly Journal of Economics*, 2016, 131 (3), 1455–1495.
- **Doidge, James and Katie Harron**, "Demystifying probabilistic linkage," *International Journal for Population Data Science*, 01 2018, 3.
- Fellegi, I. P. and A. B. Sunter, "A Theory for Record Linkage," *Journal of the American Statistical Association*, 1969, 64, 1183–1210.
- Goldstein, Harvey, Katie L Harron, and Angela Mills Wade, "The analysis of record-linked data using multiple imputation with data value priors.," *Statistics in medicine*, 2012, 31 28, 3481–93.
- Harron, Katie, Angie Wade, Ruth Gilbert, Berit Muller-Pebody, and Harvey Goldstein, "Evaluating bias due to data linkage error in electronic healthcare records," *BMC medical research methodology*, 03 2014, 14, 36.
- **Lahiri, P. and Michael D. Larsen**, "Regression Analysis with Linked Data," *Journal of the American Statistical Association*, 2005, 100 (469), 222–230.

- Nix, Emily and Nancy Qian, "The Fluidity of Race: Passing in the United States, 1880-1940," Working Paper 20828, National Bureau of Economic Research January 2015.
- Ridder, Geert and Robert Moffitt, "The Econometrics of Data Combination," in J.J. Heckman and E.E. Leamer, eds., *Handbook of Econometrics*, Vol. 6 of *Handbook of Econometrics*, Elsevier, January 2007, chapter 75.
- **Scheuren, Fritz and William Winkler**, "Regression analysis of data files that are computer matched," *Survey Methodology*, 01 1993, 19.