CS202

Homework5

11911827 张皓淇

5.3

5.3.1

cache block size: $2^5 bytes = 32 bytes = 8 words$

5.3.2

entries: $2^5 = 32$

5.3.3

For a block:

valid bit + tag = 23 bits

data storage = 32 bits

$$ratio = \frac{(23+32*8)}{8*32} = \frac{279}{256} \approx 1.0898$$

5.3.4

Address	Index	State
0	00000	miss
4	00000	hit
16	00000	hit
132	00100	miss
232	00111	miss
160	00101	miss
1024	00000	replace
30	00000	replace
140	00100	hit
3100	00000	replace
180	00101	hit
2180	00100	replace

So there are two blocks replaced, block 1 and block 4.

```
hit ratio= 4/12=\frac{1}{3}\approx 33.3\%
```

5.3.6

```
<index, tag, data>
<00100, 10, 32 bytes data from 2176>
<00101, 00, 32 bytes data from 160>
<00000, 11, 32 bytes data from 3072>
<00111, 00, 32 bytes data from 224>
```

5.6

5.6.1

P1: 1s/0.66ns = 1.5GHz

P2: 1s/0.90ns = 1.11GHz

5.6.2

P1: Average Memory Access Time=0.66+0.08*70=6.26ns

P2: Average Memory Access Time=0.90+0.06*70=5.10ns

5.6.3

P1: CPI=
$$1+8\%*36\%*rac{70ns}{0.66ns}+8\%*rac{70ns}{0.66ns}=12.539$$

P2: CPI=
$$1+6\%*36\%*rac{70ns}{0.90ns}+6\%*rac{70ns}{0.90ns}=7.347$$

P1: Instructions per second=1.5GHz/12.539 = 119626765

P2: Instructions per second=1.11GHz/7.347 = 151082074

So P2 is faster.

5.6.4

AMAT for P1 with the addition of an L2 cache= 0.66+0.08*5.62+0.08*0.95*70=6.4296ns>6.26ns

So the AMAT is worse with the L2 cache.

5.6.5

CPI for P1 with the addition of an L2 cache= $1+8\%*36\%*\frac{5.62ns}{0.66ns}+8\%*36\%*\frac{70ns}{0.66ns}+8\%*\frac{70ns}{0.66ns}+8\%*\frac{70ns}{0.66ns}=12.632$

5.6.6

P1 with the addition of an L2 cache: Instructions per second= 1.5GHz/12.632=118746042

So P2 is faster.

In order to match P2's performance, P1's CPI=1.5GHz/151082074=9.93

P1: CPI=
$$1+x*36\%*rac{5.62ns}{0.66ns}+x*36\%*95\%*rac{70ns}{0.66ns}+x*rac{70ns}{0.66ns}=9.93$$

$$x = 6.78\%$$

So in order to match P2's performance, the miss rate in P1's L1 cache should be 6.78%.