1 Задача 1

Пусть для определенности исходный массив — a. Заведем 2 массива — dp и last длины n и будем считать результат на префиксе, тогда ответ будет лежать в dp[n]. Пусть last[a[1]] = 1 и dp[1] = 1, так как последовательность на префиксе длины 1 всего одна. Будем пересчитывать значения так:

Идем от i=2 до n, в массиве last[k] будем хранить последнее вхождение числа k на префиксе.

Есть 2 случая:

- 1. Число a[i] мы встретили впервые. Тогда количество подпоследовательностей на префиксе будет $-2\cdot dp[i-1]+1$, так как мы можем либо взять подпоследовательности из dp[i-1] без изменения, либо дописать к ним в конец a[i], либо взять само a[i] как подпоследовательность.
- 2. У нас уже были вхождения числа a[i]. Тогда число a[i] как подпоследовательность мы брать не должны, так как оно уже было посчитано. Присвоим dp[i] значение $2 \cdot dp[i-1]$, в нем некоторые подпоследовательности будут посчитаны дважды: а именно подпоследовательности dp[last[a[i]]-1], так как приписывая им в конец a[last[a[i]]] или a[i] мы получаем одинаковые подпоследовательности, так как a[i] = a[last[a[i]]]. Тогда функция для dp[i] такая:

$$dp[i] = \begin{cases} 2 \cdot dp[i-1] + 1, \ last[a[i]] = -1 \\ 2 \cdot dp[i-1] - dp[last[a[i]] - 1], \ last[a[i]] \neq -1 \end{cases}$$

Ответом будем dp[n].

2 Задача 2

Докажем в обе стороны:

- Длина максимального подпалиндрома не меньше НОП: Предположим обратное: пусть длина максимального подпалиндрома меньше НОП. Пусть ind_c — массив индексов НОП в текущем массиве, ind_r — массив индексов НОП элементов развернутого массива в исходном, т — длинна НОП. Тогда рассмотрим 3 случая:
 - (а) Все элементы ind_r находятся правее ind_c , тогда элементы исходного массива с индексами $ind_c[1]...ind_c[m], ind_r[1]...ind_r[m]$ подпалиндром длины 2m.
 - (b) Все элементы ind_r находятся левее ind_c , аналогично элементы исходного массива с индексами $ind_r[1]...ind_r[m], ind_c[1]...ind_c[m]$ подпалиндром длины 2m.
 - (c) Массивы ind_c и ind_r пересекаются. Тогда, если $ind_r[1]$ находится правее первой половины ind_c , то мы сможем составить подпалиндром длины m из элементов $ind_c[1]...ind_c[\frac{m}{2}], ind_r[\frac{m}{2}+1]...ind_r[m]$, если же он не правее первой половины, то в ind_r будем идти до $\frac{m}{2}$ и искать элемент который правее первой половины и аналогично строить подпалиндром.

Если дошли до $\frac{m}{2}$ элемента массива и он все еще стоит не правее половины элементов массива, то мы может построить подпалиндром длины m так — берем элементы исходного массива

$$ind_r[1]...ind_r[\frac{m}{2}], ind_c[\frac{m}{2}+1]...ind_c[m].$$

Таким образом доказали, что длина максимального подпалиндрома не меньше длины $HO\Pi$.

2. Длина максимального подпалиндрома не больше НОП: Предположим обратное: пусть длина максимального подпалиндрома больше нашей НОП, но в силу того, что палиндром равен самому себе развернутому, тогда он будет как в a, так и в a^r , а значит будем общей подпоследовательностью обоих массивов большей данной нам НОП — противоречие.

Доказали, что длина максимального подпалиндрома не больше m и не меньше $m \implies$ длина максимального подпалиндрома равна m.

3 Задача 3

Пусть для определенности исходный массив — a. Заведем массивы $dp_1,\ dp_2,\ ind_1$ и ind_2 длины n. Будем считать НВП в dp_1 и в $ind_1[i]$ записывать индекс куда в dp_1 был записан элемент исходного массива на своей итерации. Посчитаем в dp_2 наибольшую убывающую подпоследовательность в перевернутом исходном массиве, и аналогично посчитаем ind_2 , в индексах исходного массива, то есть на итерации i будем писать в $ind_2[n-i+1]$. Создадим массив res[1...n] и заполним его нулями. Будем идти от i=1 до n, если $ind_1[i]+ind_2[i]-1$ равно длине НВП исходного массива, то a[i] содержится в одной из НВП, так как у a[i]есть $ind_1[i]-1$ отсортированных элементов слева, и $ind_2[i]-1$ отсортированных элементов справа. Тогда элементы у которых $ind_1[i] + ind_2[i] - 1$ не равно длине НВП — не содержатся ни в одной НВП, если у элемента выполняется данное равенство запишем $res[ind_1[i]] + +$. Повторно пройдем по массиву и для элементов у которых выполняется равенство будем смотерть на значение $res[ind_1[i]]$, если оно равно 1, то на $ind_1[i]$ месте в НВП

может стоять только этот элемент, а значит — он входит во все ${\rm HB\Pi},$ если же $res[ind_1[i]]>1,$ то элемент будет входить хотя бы в одну ${\rm HB\Pi}.$