lianxh.cn

. lianxh ARDL // 相关资料

ARDL: 自相关分布滞后模型

政策长期效应估计

arlionn@163.com

连享会 | lianxh.cn | Bilibili 1/76

个人所得税变动对 创新 行为的长期影响

- x: $t t_0$
- *y*:

$$e = rac{\Delta ln(Pat)}{\Delta ln(Tax)}$$

Source: Akcigit, et al. (2022, PDF) QJE

公司所得税

提纲

- ARDL 模型简介
- 长期效应 v.s. 短期效应
- ARDL 的理论基础
 - 部分调整模型
 - 理性预期模型
- 考虑共同相关因素的 ARDL 模型
- 应用实例

连享会 | lianxh.cn | Bilibili 4/76

简介

- 微观
 - 消费: 持有收入假说
 - 投资: R&D, M&A
 - 资本结构: 权衡理论 + 调整成本
- 宏观
 - 货币政策、房地产刺激政策
 - 目标通胀率 / 目标失业率 → 部分调整 + 粘性
- 估计长期效应
- 挑战:
 - 模型设定的理论基础?
 - 空间相关、共同因素 (common factor)

连享会 | lianxh.cn | Bilibili 5/76

ARDL 的应用

6/76

模型设定

- DL 模型
- ARDL 模型
- Panel ARDL 模型
- 异质性共同相关Panel ARDL 模型

连享会 | lianxh.cn | Bilibili 7/76

DL 模型:分布滞后模型 (distributed lag model)

$$y_t = \alpha + x_t' eta_0 + x_{t-1}' eta_1 + x_{t-2}' eta_2 + \dots + x_{t-q}' eta_q + e_t.$$

- 假设:某些解释变量的多期滞后项都对被解释变量有影响。
- 例如,投资行为
 - $\circ x_t$: 第 t 期的新增投资, y_t : 公司价值。
 - DL 原因:有些投资项目需要 3-5 年甚至更长的时间才能完成 (如并购后整合、新药研发) → x 对 y 的影响具有**滞后性和累积性**。

DL 模型:分布滞后模型 (distributed lag model)

$$y_t = \alpha + x_t' \beta_0 + x_{t-1}' \beta_1 + x_{t-2}' \beta_2 + \dots + x_{t-q}' \beta_q + e_t$$
 (1)

系数的含义有两种解释:

- 短期影响: 如 β_1 反应的是 x_{t-1} 对 y_t 的影响(控制其他因素)
- 长期影响 (长期乘数): $LM = \beta_0 + \cdots + \beta_q$
 - \circ 反映了 x 对 y 的**累积影响**

ARDL 模型 (AutoRegressive Distributed Lag model)

$$y_t = \alpha + \lambda_1 y_{t-1} + \dots + \lambda_p y_{t-p} + x'_{t-1} \beta_1 + \dots + x'_{t-q} \beta_q + e_t$$
 (2)

- 文献中应用更为普遍。 findit ardl
- 在模型 (1) 中加人 y_{t-s} , 以反映 y_t 的自回归特征 (即, y_t 具有一定的延续性, 会受到其滞后项的影响

 $ARDL(p, q, \ldots, q)$

$$y_t = c_0 + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{i=0}^q eta_i' \mathbf{x}_{t-i} + u_t,$$

- $p \ge 1, q \ge 0$
- 此处假设所有解释变量都具有相同的滞后期数
- 更一般化的设定中,每个解释变量可以有不同的滞后期数

10/76

Panel ARDL

在面板数据中,可以进一步加人固定效应。例如, Panel-ARDL (1,1) 模型设定为:

$$y_{i,t} = \frac{\alpha_i}{\alpha_i} + \lambda y_{i,t-1} + \beta_0 x_{i,t} + \beta_1 x_{i,t-1} + u_{i,t}$$

也可以加人:

- 时间固定效应 λ_t ,以及 λ_t 与其他变量的交乘项
- 时间趋势项 $Trend_t$, 以及 $Trend_t$ 与其他变量的交乘项
- 其他控制变量 (\mathbf{w}_{it}) ,以及它们高阶滞后项。

Panel ARDL: 实例 1

Dell, Jones, and Olken (2012, PDF, AEJ) 在研究气候变化与经济增长关系时,设定了如下模型 (参见 Appendix II, A1.5 式):

$$\Delta y_{it} = a_i + \sum_{\ell=1}^p \lambda_\ell \Delta y_{i,t-\ell} + \sum_{\ell=0}^{p+1} eta_\ell T_{it-\ell} + arepsilon_{it}.$$

- Δy_{it} 是国家 i 在 t 时点的实际人均 GDP 的对数,
- a_i 是国家层面的固定效应,
- T_{it} 是国家 i 在 t 时点的人口加权平均气温。

连享会 | lianxh.cn | Bilibili 12/76

Panel ARDL: 实例 2

- Burke et al. (2015, PDF), Kalkuhl and Wenz (2020) 等都对此模型进行了扩展。
- Kahn et al. (2021, PDF) 的设定如下:

$$\Delta y_{it} = a_i + \sum_{\ell=1}^p \lambda_\ell \Delta y_{i,t-\ell} + \sum_{\ell=0}^p oldsymbol{eta}'_\ell \Delta \mathbf{x}_{i,t-\ell} + \sum_{\ell=0}^p oldsymbol{ heta}'_\ell \Delta \mathbf{x}_{i,t-\ell} imes \mathbb{I}(oldsymbol{\cdot}) + arepsilon_{it}$$

- \circ $\Delta \mathbf{x}_{i,t}$ 表示气候变化,
- I(·) 是各类反应国家特征的虚拟变量,如低收入、处于热带地区等。

13/76

异质性共同相关Panel ARDL 模型

- 变化 1: 允许异质性系数: $\lambda \to \lambda_i, \beta \to \beta_i$
- 变化 2: 引人共同因子 (common factors): $\mathbf{f}_t = [f_{1t}, f_{2t}, \cdots, f_{mt}]$

例如, Stata 中的 xtdcce2 命令,见 Ditzen (2021, PDF),对应的模型设定为:

$$egin{align} y_{i,t} &= lpha_i + \lambda_i y_{i,t-1} + eta_{0,i} x_{i,t} + eta_{1,i} x_{i,t-1} + u_{i,t} \ u_{i,t} &= \sum_{l=1}^m
ho_{y,i,l} f_{t,l} + e_{i,t} \ x_{i,t} &= \sum_{l=1}^m
ho_{x,i,l} f_{t,l} + \xi_{i,t} \ \end{pmatrix}$$

其中, $i=1,\ldots,N, t=1,\ldots,T_i$ 。

长期效应与短期效应

- 在 ARDL 模型中, 变量之间存在很强的动态关系:
 - \circ x 的当期值和滞后项,以及 y 的滞后项都会对 y_t 产生影响。
- 这些影响可以归结为「**短期效应**」 和「**长期效应**」两类
 - \circ **长期效应** 反映了 x 和 y 之间的长期均衡关系。

15/76

短期效应

这里, 先以最简单的 ARDL(1,1) 模型为例进行说明:

$$y_t = \alpha + \lambda y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + u_t$$

短期效应 定义为:

$$rac{\partial y_t}{\partial x_t} = eta_0, \quad rac{\partial y_t}{\partial x_{t-1}} = eta_1$$

• 以 β_1 为例, 短期关系反映的是在控制其他因素 (如与 x_{t-1} 有较强相关性的 x_t , 以及 y_{t-1})的情况下, x_{t-1} 对 y_t 的条件边际影响。

长期效应: ARDL(1,1) 模型

长期效应反映的是 x 和 y 的**长期均衡值之间的关系**。

$$y_t = lpha + \lambda y_{t-1} + eta_0 x_t + eta_1 x_{t-1} + u_t$$

把式 中 x 和 y 的当期值和滞后项统一替换为 \tilde{x} 和 \tilde{y} (二者的长期均衡值), 即

$$\tilde{y}(1-\lambda) = \alpha + (eta_0 + eta_1)\tilde{x}$$

求解 \tilde{y} 可得:

$$ilde{y} = rac{lpha}{1-\lambda} + rac{eta_0 + eta_1}{1-\lambda} ilde{x}$$

因此, x 单位变化对 y 的**长期影响**由下式给出

$$rac{\partial ilde{y}}{\partial ilde{x}} = rac{eta_0 + eta_1}{1-\lambda}$$

长期效应: ARDL(p,q) 模型

$$y_t = lpha + \sum_{\ell=1}^p \lambda_\ell y_{t-\ell} + \sum_{\ell=0}^q eta_\ell x_{t-\ell} + arepsilon_t.$$

长期乘数 long-run multiplier (LM) 定义为:

$$ext{LM} = rac{eta_0 + \dots + eta_q}{1 - \lambda_1 - \dots - \lambda_p}$$

- LM 是模型参数的非线性函数
- 对于面板数据模型而言, LM 的定义和计算方法并没有本质差别
- 如果选择的滞后阶 p 和 q 足够大, ARDL 模型的误差项可以近似为白噪声, 此时, 模型可以解释变量之间的动态均衡关系, 亦可用传统方法计算标准误。

时间趋势

连享会 | lianxh.cn | Bilibili 19/76

时间趋势: 简介

许多经济时间序列的均值都是随时间变化的。我们可以使用如下模型 刻画这一特征:

$$y_t = \operatorname{Trend}_t + u_t$$

这里, y_t 包含两个部分: 时间趋势项 Trend_t 和随机扰动项 u_t 。后者可以设定为线性过程或自回归过程:

$$\alpha(\mathrm{L})u_t = e_t$$

时间趋势项则常被设定为时间变量 (t) 的线性模型:

Trend_t =
$$\beta_0 + \beta_1 t$$

或二次函数形式 (以反映时间趋势的非线性特征):

Trend
$$t = \beta_0 + \beta_1 t + \beta_2 t^2$$
.

时间趋势项

在 ARDL (p,q) 模型中加入时间趋势项是文献中惯用的做法:

$$y_t = lpha_0 + lpha_1 y_{t-1} + \cdots + lpha_p y_{t-p} + x'_{t-1} eta_1 + \cdots + x'_{t-q} eta_q + rac{m{\gamma}t}{t} + e_t$$

- 无论把时间趋势项设定成何种形式,本质上都是一种近似。
- 可以通过各种灵活的设定,让其尽可能反映数据本身的特征。比如,
 - 加入高阶项 t^3, t^4, \cdots ,
 - \circ 或允许 β_1 和 β_2 具有异质性,如随个体发生变化,即 β_{1i} , β_{2i} 。

时间趋势项:实例1

• Burke et al. (2015, PDF),气候变化 (T_{it}) 与经济增长 (Δy_{it}):

$$\Delta y_{it} = lpha_i + \delta_t + lpha T_{it} + eta T_{it}^2 + \gamma_i t + \phi_i t^2 + arepsilon_{it}$$

- y_{it} 表示国家 i 在第 t 年的人均 GDP,
- T_{it} 表示气温,
- α_i 为国家层面的固定效应,
- δ_t 为时间效应。
- $\gamma_i t$ 和 $\phi_i t^2$ 分别是线性时间趋势一次和二次项。

注意,这里采用了非常灵活的设定,允许每个国家有不同的时间趋势,因为参数 γ_i 和 ϕ_i 都可以随国家而变化。

22/76

时间趋势项:实例2

• Kalkuhl and Wenz (2020, PDF) 在 Burke et al. (2015, PDF) 的设定中进一步增加了两项: ΔT_{it} 及交乘项 $T_{it} \times \Delta T_{it}$,以便捕捉短期气温变化产生的影响:

$$\Delta y_{it} = a_i + \delta_t + \lambda \Delta T_{it} + \psi T_{it} imes \Delta T_{it} + lpha T_{it} + eta T_{it}^2 + \gamma_i t + \phi_i t^2 + arepsilon_{it}$$

● Note: 时间趋势项可以作为 ARDL 模型设定中的控制变量,有些时候,它本身就是研究的重点。

23/76

ARDL 模型的理论基础

ARDL 模型是「简约式」而非「结构式」模型设定, 但其背后有很强的经济含义。 比如, 可以从经济学中由来已久的两个重要模型推导出 ARDL 的设定形式:

- 部分调整模型
- 理性预期模型

连享会 | lianxh.cn | Bilibili 24/76

部分调整模型 (Partial adjustment model)

令 y_t^* 为决策变量 y_t 的预期值 (如, 目标体重、目标负债率、目标汇 率、目标通胀率等), 并假设 y_t^* 与 x_t 存在如下关系:

$$y_t^* = \alpha + \beta x_t + u_t$$

假设 y_t 基于如下一阶「**部分调整过程**」向其预期水平调整:

$$y_t - y_{t-1} = \lambda \, (y_t^* - y_{t-1}),$$

其中, λ 为调整系数:

- 如果 $\lambda = 0$, 则不会进行调整
- 如果 $\lambda = 1$, 则调整 可以瞬时完成
- 通常而言, 0 < λ < 1

部分调整模型 — ARDL

$$y_t^* = \alpha + \beta x_t + u_t \tag{1}$$

假设 y_t 基于如下一阶「部分调整过程」向其预期水平调整:

$$y_t - y_{t-1} = \lambda (y_t^* - y_{t-1})$$
 (2)

用 (1) 代替 y_t^* , 可得

$$y_t = \lambda \alpha + (1 - \lambda)y_{t-1} + \lambda \beta x_t + \lambda u_t = \alpha_0 + \theta y_{t-1} + \gamma x_t + v_t$$
 (3)

显然, 这是一个 ARDL(1,0) 模型。

部分调整模型: 扩展

目标值的设定:

$$y_t^* = \alpha + \beta x_t + u_t \tag{1}$$

• **隐含假设:** 公司基于当期的 x_t 信息来确定 y_t^*

扩展 1: 考虑信息获取的滞后性,则将 y_t^* 设定成如下形式或许更为合理:

$$y_t^* = \alpha + \beta_1 x_{t-1}$$

此时, (3) 式将转变为一个 ARDL(1,1) 模型。

扩展 2: 当然, 也可以假设公司会同时结合第 t 期和 t-1 期的信息确定 y_t^* :

$$y_t^* = \alpha + \beta_0 x_t + \beta_1 x_{t-1}$$

此时, (3) 将转变为如下形式:

$$y_t = \alpha_0 + \theta y_{t-1} + \gamma_0 x_t + \gamma_1 x_{t-1} + v_t$$

部分调整模型:应用

部分调整模型经常应用于

- 资本结构调整、现金持有行为 (Venkiteshwaran, V. (2011, PDF)),
 - Flannery and Rangan (2006, PDF) 采用了 (1) 的设定方式来研究公司的资本结构调整速度。
- 银行资本充足率 (Baik et al. (2022, PDF)),汇率调整等问题的研究。
- Flannery and Hankins (2013, PDF) 对此类模型及其估计方法进行了系统的评述。

此外,我们也可以把部分调整模型与理性预期模型结合起来。

连享会 | lianxh.cn | Bilibili 28/76

理性预期模型

$$y_t = lpha + eta \left({_t}x_{t+1}^e
ight) + u_t \quad (1)$$

根据理性预期假设 (见 Pesaran (1987c)), x_{t+1}^e 定义如下:

$$_{t}x_{t+1}^{e}=E\left(x_{t+1}\mid \Omega _{t}
ight) \qquad (2)$$

其中, Ω_t 表示在 t 时点上可以获得的所有信息的集合, 简称「信息集」。

 $_{t}x_{t+1}^{e}$ 的含义: 基于第 t 时点上的信息集 Ω_{t} 形成的对变量 x 在第t+1 时点的预期值。

29/76

假设: $\Omega_t=\{x_t,x_{t-1},\ldots,y_t,y_{t-1},\ldots\}$ 。 同时, 假设 x_t 服从 AR(2) 过程: $x_t=\mu_1x_{t-1}+\mu_2x_{t-2}+arepsilon_t$

则

$$_{t}x_{t+1}^{e}=\mu_{1}x_{t}+\mu_{2}x_{t-1}$$
 (3)

将 (3) 代人 (1), 可得:

$$y_t = \alpha + \beta (\mu_1 x_t + \mu_2 x_{t-1}) + u_t$$

或

$$y_t = lpha + heta_1 x_t + heta_2 x_{t-1} + u_t$$

其中, $heta_1=eta\mu_1, heta_2=eta\mu_2$ 。

理性预期模型:扩展1

$$y_t = lpha + eta \left({_t}x_{t+1}^e
ight) + u_t \quad (1)$$

其一, 可以在 (1) 式进一步加人其他变量的预期值, 如 $_tz_{t+1}^e$

• 例如,若 y_t 表示工资, x_t 和 z_t 可以分别表示失业率 (ue_t) 和通胀率 (π_t) , 则 (1-21) 式可表示为:

$$y_t = lpha + eta_1 \left({_t ue_{t+1}^e }
ight) + eta_2 \left({_t \pi _{t+1}^e }
ight) + u_t$$

• 又如, 设 $z_{t+1}^e = {}_t x_{t+2}^e$, 则

$$y_t = lpha + eta_1 \left({_t x_{t+1}^e }
ight) + eta_2 \left({_t x_{t+2}^e }
ight) + u_t$$

在利率期限结构理论中, 预期理论便认为当前的利率水平决定于投资者对 末来不同期限的债券的收益率的预期。

理性预期模型:扩展2

$$_{t}x_{t+1}^{e}=E\left(x_{t+1}\mid \Omega _{t}
ight) \qquad (2)$$

$$_{t}x_{t+1}^{e} = \mu_{1}x_{t} + \mu_{2}x_{t-1}$$
 (3)

其二, 我们可以将 (3) 式设定为更一般化的 AR(p) 形式。

- 例如, 对 于季度数据, 可以设定 p = 4;
- 或对于序列相关较为强烈的变量 (如财政支 出、研发支出等), 即便是年度数据, 我们依然可以将 p 设定为 3 或更大的数值。

理性预期模型:扩展 3 - 包含内生变量当期预期值的模型

有些情况下, y_t 的预期值是影响 y_t 的一个重要因素,

$$egin{aligned} y_t &= lpha + eta(_{t-1}y_t^e) + \gamma x_t + u_t, & eta
eq 1, \ &= lpha + eta E\left(y_t \mid \Omega_{t-1}
ight) + \gamma x_t + u_t. \end{aligned}$$

经过一些简单推导,可得:

$$egin{aligned} y_t &= rac{lpha}{1-eta} + rac{\gammaeta}{1-eta} (\mu_1 x_{t-1} + \mu_2 x_{t-2}) + \gamma x_t + u_t \ &= heta_0 + heta_1 x_{t-1} + heta_2 x_{t-2} + \gamma x_t + u_t \end{aligned}$$

显然,这是一个典型的 ARDL(1,2) 模型。

More: Pesaran, M. H. Time series and panel data econometrics[M]. Oxford University Press, 2015. Link, Chp 6.

面板 ARDL 模型

• Ditzen, J. **2021**. Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2 . **Stata Journal**, 21 (3): 687-707.

Link, PDF1. PDF2, -Slides-

- 有关面板 ARDL 的多数文献都在这篇文章中列出了
- 中文解读:面板数据模型-xtdcce2:动态共同相关和截面相关

连享会 | lianxh.cn | Bilibili 34/

共同相关估计量 (CCE)

考虑如下变系数模型 (Pesaran 2006),

$$y_{it} = lpha_i + oldsymbol{eta}_i' \mathbf{x}_{it} + u_{it} \ u_{it} = oldsymbol{\gamma}_i' \mathbf{f}_t + e_{it}$$
 (1)

- \mathbf{f}_t 是不可观测的共同因子 (common factor),
- γ_i 为异质性因子载荷 (factor loading), α_i 是个体固定效应。
- e_{it} 随机扰动项, 满足独立同分布 (IID) 假设。

进一步假设异质性系数围绕共同均值随机波动,设定如下:

$$oldsymbol{eta}_i = oldsymbol{eta} + \mathbf{v}_i, \quad \mathbf{v}_i \sim \mathrm{iid}\left(\mathbf{0}, oldsymbol{\Omega}_v
ight)$$

共同相关估计量(CCE): MG 估计 (Mean Group)

$$y_{it} = lpha_i + oldsymbol{eta}_i' \mathbf{x}_{it} + u_{it} \ u_{it} = oldsymbol{\gamma}_i' \mathbf{f}_t + e_{it}$$
 (1)

- CCE 估计量 (Common Correlated Estimator):
 - \circ 假设 \mathbf{x}_{it} 严格外生,用其截面均值 $\overline{\mathbf{x}}_{t}$ 近似表示不可观测的共同因子 \mathbf{f}_{t}

$$y_{it} = \alpha_i + \boldsymbol{\beta}_i' \mathbf{x}_{it} + \boldsymbol{\theta}_i' \mathbf{\bar{x}}_i + u_{it}$$
 (2)

- 则 (2) OLS 估计是一致的 (仅适用于静态模型)
- 基本思想: 当横截面维度接近无穷大时,可以用横截面 平均值逐渐消除不可观测的共同因子产生的影响 (Pesaran 2006, p.969)。
- Stata 实现: Eberhardt (2012) 编写的 xtmg , Ditzen (2018, 2021) 编写的 xtdcce2 命令。

动态 CC 模型

$$egin{aligned} y_{it} &= lpha_i + \pmb{\lambda}_i \pmb{y}_{i,t-1} + \pmb{eta}_i' \mathbf{x}_{it} + u_{it} \ u_{it} &= \gamma_i' \mathbf{f}_t + e_{it} \end{aligned}$$

- 其中, 干扰项 u_{it} 存在截面弱相关, $E(\lambda_i) = \lambda$ 。
- 此时, 被解释变量的一阶滞后项 $y_{i,t-1}$ 不再是外生的。
- Chudik and Pesaran (2015b) 提出, 如果把滞后因变量和外生变量的截面均值的 p_T 阶滞后项加人模型,则可以获得一致估计量。其中, 滞后阶数 $p_T = \lfloor \sqrt[3]{T} \rfloor$, 表示对 $\sqrt[3]{T}$ 取整后的数值, 如 $\lfloor \sqrt[3]{100} \rfloor \simeq \lfloor 4.64 \rfloor = 4$ 。待估方程为

$$y_{it} = lpha_i + \lambda_i y_{i,t-1} + oldsymbol{eta}_i' \mathbf{x}_{it} + \sum_{l=0}^{p_T} oldsymbol{\delta}_{il}' \overline{\mathbf{z}}_{t-l} + e_{it}$$

其中, $\bar{\mathbf{z}}_t = (\bar{y}_{t-1}, \bar{\mathbf{x}}_t)$,它可以视为不可观测的共同因子 \mathbf{f}_t 的代理变量。

动态 CC 模型: MG 估计量

$$oldsymbol{eta}_i = oldsymbol{eta} + \mathbf{v}_i, \quad \mathbf{v}_i \sim \mathrm{iid}\left(\mathbf{0}, oldsymbol{\Omega}_v
ight)$$

若把 λ_i 和 $\boldsymbol{\beta}_i$ 堆叠放置为 $\boldsymbol{\pi}_i = (\lambda_i, \boldsymbol{\beta}_i)$,则 MG 估计量为:

$$\widehat{m{\pi}}_{ ext{MG}} = rac{1}{N} \sum_{i=1}^{N} \widehat{m{\pi}}_i$$

- Stata 实现命令: Ditzen (2018, 2021) 编写的 xtdcce2 命令。
- 中文解读: 面板数据模型-xtdcce2: 动态共同相关和截面相关

动态 CC 模型: ECM 表示

$$egin{aligned} y_{it} &= lpha_i + \pmb{\lambda}_i \pmb{y}_{i,t-1} + \pmb{eta}_i' \mathbf{x}_{it} + u_{it} \ u_{it} &= \gamma_i' \mathbf{f}_t + e_{it} \end{aligned}$$

上式可以表示为 误差修正模型 (ECM) 的形式:

$$\Delta y_{it} = \phi_i \left(y_{it-1} - oldsymbol{ heta}_i' \mathbf{x}_{it}
ight) + lpha_i + oldsymbol{eta}_i' \Delta \mathbf{x}_{it} + u_{it}$$

- $\phi_i = (1 \lambda_i)$: 误差修正的**调整速度**,预期为负值
- $(y_{i,t-1} \boldsymbol{\theta}_i' \mathbf{x}_{it})$: 误差修正项 (error-correction term)
- $\theta_i = \beta_i/\phi_i$: 长期系数 (long-run coefficient),此处假设具有同质性
- β_i : 短期动态调整关系,异质

CS-ARDL: 扩展 $ARDL(p_y, p_x)$ 模型

回顾: ARDL (1,1) 模型

$$y_{it} = lpha_i + \lambda_i y_{i,t-1} + oldsymbol{eta}_i' \mathbf{x}_{it} + u_{it} \ u_{it} = \gamma_i' \mathbf{f}_t + e_{it}$$
 (1)

模型 (1) 可以扩展为 $ARDL(p_y, p_x)$ 模型:

$$y_{i,t} = \mu_i + \sum_{l=1}^{p_y} \lambda_{l,i} y_{i,t-l} + \sum_{l=0}^{p_x} eta_{l,i} x_{i,t-l} + \sum_{l=0}^p \gamma_{i,l}' \overline{\mathbf{z}}_{t-l} + e_{i,t}$$

个体的 长期系数 为:

$$\hat{ heta}_{ ext{CS-ARDL},i} = rac{\sum_{l=0}^{p_x} \widehat{eta}_{l,i}}{1 - \sum_{l=1}^{p_y} \widehat{\lambda}_{l,i}}$$

动态异质性模型

 $\mathrm{ARDL}(p, \underline{q, q, \ldots, q})$ model

$$y_{it} = lpha_i + \sum_{j=1}^p \lambda_{ij} y_{i,t-j} + \sum_{j=0}^q \delta'_{ij} \mathbf{x}_{i,t-j} + u_{it},$$

表示为 误差修正模型:

$$\Delta y_{it} = lpha_i + oldsymbol{\phi}_i y_{i,t-1} + oldsymbol{eta}_i^{\prime} \mathbf{x}_{it} + \sum_{j=1}^{p-1} \lambda_{ij}^* \Delta y_{i,t-j} + \sum_{j=0}^{q-1} \delta_{ij}^{*\prime} \Delta \mathbf{x}_{i,t-j} + u_{it},$$

$$\Delta y_{it} = lpha_i + oldsymbol{\phi}_i y_{i,t-1} + oldsymbol{eta}_i^\prime \mathbf{x}_{it} + \sum_{j=1}^{p-1} \lambda_{ij}^* \Delta y_{i,t-j} + \sum_{j=0}^{q-1} \delta_{ij}^{*\prime} \Delta \mathbf{x}_{i,t-j} + u_{it},$$

其中,

$$egin{align} \phi_i &= -\left(1-\sum_{j=1}^p \lambda_{ij}
ight), \quad oldsymbol{eta}_i &= \sum_{j=0}^q \delta_{ij}, \ \lambda_{ij}^* &= -\sum_{m=j+1}^p \lambda_{im}, j=1,2,\ldots,p-1, \ \delta_{ij}^* &= -\sum_{m=j+1}^q \delta_{im}, j=1,2,\ldots,q-1. \end{align}$$

应用: 文献解读

应用文献 - 1: 税收对创新行为的长期影响

Akcigit, U., J. Grigsby, T. Nicholas, S. Stantcheva, 2022, Taxation and innovation in the twentieth century, Quarterly Journal of Economics, 137 (1): 329-385.

-Link-, -PDF-, -Appendix-, -cited-, -Replication-

连享会 | lianxh.cn | Bilibili 44/7

问题背景

₩ 模型设定 (TWFE)

$$Y_{st} = \alpha + \beta_p \ln (1 - MTR90_{st-3}) + \beta_c \ln (1 - \text{Corp. MTR}_{st-3}) + \gamma \mathbb{X}_{st} + \delta_t + \delta_s + \varepsilon_{st}$$
 (3)

- Y_{st} : s 州在 t 时期的创新产出:专利数、引用数、发明人人数等
- *MTR*90_{st-3}: 滞后 3 年期的个人所得税率
- *Corp. MTR_{st-3}*: 滞后 3 年期作为公司所得税
- δ_t 和 δ_s : 时间和州固定效应,以捕获不可观测的个体和时间趋势效应
- X_{st} 代表随时间变化的州层级的变量,包括: (滞后 3 期) 的人口密度 (城市化程度)、人均收入 (经济发 展)、研发支出抵免(税收激励)

为了估计税收对创新的长期影响,作者设定了如下分布滞后 (DL) 模型:

$$Y_{st} - Y_{st-1} = \delta_t + \sum_{l=-5}^{20} eta_l \left[\ln \left(1 - T_{st-l}
ight) - \ln \left(1 - T_{st-l-1}
ight)
ight] + \Delta X'_{st-1} v + \epsilon_{st} \quad (10)$$

- Y_{st} : s 州在 t 时期的创新产出: 专利数等; T_{st} 为个人 和/或 公司所得税税率
- δ_t 是时间固定效应,X 是控制变量。

作者使用公式 (11) 估计 **Figure 4** 中的 **累积处理效应**,并且将累积效应在 t-1 时期进行了中心化处理,目的是使得在 t=0 时的累积效应等于 0。

$$\mathcal{B}_{l} = \underbrace{\left[\sum_{\tau=-5}^{l} \beta_{l}\right]}_{\text{Effect from } t-5} - \underbrace{\left[\sum_{\tau=-5}^{-1} \beta_{l}\right]}_{\text{Renormalizing to be}}$$
through $t+l$ relative to year $t-1$ (11)

$$Y_{st} - Y_{st-1} = \delta_t + \sum_{l=-5}^{20} \beta_l \left[\ln \left(1 - T_{st-l} \right) - \ln \left(1 - T_{st-l-1} \right) \right] + \Delta X'_{st-1} v + \epsilon_{st} \quad (10)$$

```
use "$D/Akcigit2022 state.dta", clear
global controls "LD.(real_gdp_pc population_density rd_credit)"
gen x = D.mtr90 // 将解释变量简记为 x
 reghdfe D.lnpat
         F( 1/5).x L(0/20).x ///
        LD.top_corp $controls ///
         [aw=pop1940], ///
         absorb(year) ///
        vce(cluster statenum)
*-滞后 0-3 期的累积效应
lincom L3.x + L2.x + L1.x + L0.x
```

连享会 | lianxh.cn | Bilibili 47/7

短期效应: 全都不显著

```
. reghdfe D.lnpat F( 1/5).x L(0/20).x LD.top_corp $controls ///
        [aw=pop1940], absorb(year) vce(cluster statenum)

. esttab, nogap r2 ar2 stat(F)
. coefplot, keep(*.x) xline(0,lp(dash) lc(gray%60))
```


长期累积效应:

以 $t \in [-3,0]$ 为例

其它各点:可以使用循环语句计算 $\hat{\theta}$ 和 $se(\hat{\theta})$,继而计算 90% 置信区间,绘图。

连享会 | lianxh.cn | Bilibili 49/76

Figures 4 (a)

结果解读:

- 整体来看,在 (-5,-1) 时期不存在显著的趋势效应 (预期效应),说明不存在所得税以外的其他因素对创新产生影响,因而我们所得到的显著效果是由所得税变动引致的结果。
- **个税:** 如果在 t=0 时期将个人所得税净税率 (1-MTR90) 提高 1%,则 20 年的累积效应使得 **专利申请数** (Panel A) 和 **定居该州的发明人数量** (Panel B) 显著增加大约 2%: 弹性系数约为 2。
- **公司税:** 如果在 t=0 将公司所得税净税率 (1-Corp.TAX) 提高 1%,则 20 年的累计效应使得 **专利申请数** (Panel C) 和**定居该州的发明人数量** (Panel D) 显著增加大约 3%-4%:弹性系数约为 3-4。

Source: Akcigit, et al. (2022, PDF), Tab 5. 虚线表示 90% CI

个税: 个人所得税净税率 (1 - MTR90) 提高 1%,则 20 年的累积效应会使得 **专利申请数** (Panel A)

和 定居该州的发明人数量 (Panel B) 显著增加大约 2%。

Source: Akcigit, et al. (2022, PDF), Tab 5. 虚线表示 90% CI

公司税: 公司所得税净税率 (1-Corp.TAX) 提高 1%,则 20 年的累计效应使得 **专利申请数** (Panel

C) 和**定居该州的发明人数量** (Panel D) 显著增加约 3%-4%。

扩展: 动态模型 Panel-ARDL(1, p)

考虑到创新行为具有时序相关性,可以基于部分调整模型或理性预期模型,将 (10) 式设定为动态 Panel ARDL 模型:

$$y_{st} = \delta_t + oldsymbol{
ho y_{st-1}} + \sum_{l=0}^p eta_l Tax_{it-l} + \Delta X'_{st-1}v + \epsilon_{st} \quad (10a)$$

其中,
$$y_{st}=Y_{st}-Y_{st-1}$$
, $Tax_{it}=\ln\left(1-T_{st-l}
ight)-\ln\left(1-T_{st-l-1}
ight)$

长期效应定义为:

$$\hat{ heta}_l = rac{\sum_{l=0}^p \widehat{eta}_l}{1-
ho}$$

简化代码

```
use "$D/Akcigit2022 state temp.dta", clear
global controls "LD.(real_gdp_pc population_density rd_credit)"
gen y = D.lnpat
global maxlags = 20
#d ;
gen beta =.; gen se =.; gen upper CI95 =.; gen lower CI95 =.;
gen time = n in 1/$maxlags;
#d cr
forvalues lag=0/$maxlags{;
 reghdfe y L.y L(0/${maxlags}).x LD.top corp $controls ///
         [aw=pop1940], absorb(year) vce(cluster statenum)
  local betax " b[L0.x]"
  forvalues p=1/`lag'{
      local betax `betax' + b[L`p'.x]
  qui replace beta = r(b)[1,1] if time== `lag'
  qui replace se = sqrt(r(V)[1,1]) if time== lag'
  qui replace upper CI95 = beta + 1.96*se if time== `lag'
  qui replace lower CI95 = beta - 1.96*se if time== `lag'
```

连享会 | lianxh.cn | Bilibili 55/70


```
tw (connect beta time) ///
  (line upper_CI95 time) ///
  (line lower_CI95 time)
```

其它扩展

- 使用 FD-GMM / SYS-GMM (xtabond / xtdpdsys) 估计 Panel-ARDL (1, p) 模型
- 考虑 Common Factors 导致的空间相关性,采用 MG 估计量,或 CS-DL 估计量进行估计。
 - xtmg , xtpmg , xtdcce2
- 参见:
 - Eberhardt, M., 2022, Democracy, growth, heterogeneity, and robustness,
 European Economic Review, 147: 104173. -Link-, -PDF-, Replication
 - Ditzen, J. **2021**. Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2 . **Stata Journal**, 21 (3): 687-707. Link, PDF1. PDF2, -Slides-.

连享会 | lianxh.cn | Bilibili 57/76

应用文献 - 2: 民主与长期经济增长

Eberhardt, M., 2022,

Democracy, growth, heterogeneity, and robustness,

European Economic Review, 147: 104173.

-Link-, -PDF1-, -PDF2-, Replication

连享会 | lianxh.cn | Bilibili 58/76

概要

- 实证研究了各国民主化 (Dem) 对长期增长 (y) 的 异质性 影响。
- 虽然现有文献认识可能存在异质性,但现有研究都是在同质性假设下进行的。
- 本文基于 Panel ARDL 模型,在动态异质性设定下估计了 Dem 和 y 的长期关系
- 结果表明,长期来看,民主对人均收入有正向显著影响,约为 10% (约为近期文献估计值的一半)。
- 作者还分析了各国异质性 "民主红利" 的模式。

连享会 | lianxh.cn | Bilibili 59/76

主要方法

- xtmg (MG) + xtabond + ivreg2 + regife
- MG + DID + Interactive Fixed Effects
- MG + quantile regression
- MG + IV
- 稳健性检验: 删样本、改变估计方法
 - 4.1. Sample reduction by minimum observation count
 - 4.2. Sample reduction by sample end year

Why MG estimator?忽略异质性政策效应会导致 2SLS 失效

- An important aside on pooled 2SLS regressions.
- heterogeneity misspecification: modelling a heterogeneous relationship with a pooled (homogeneous) model, violates the basic assumptions of 2SLS estimators (Pesaran and Smith, 1995):
- If the true coefficient on the variable of interest x_{it} is β_i , yet the implementation imposes β , the error term ε by construction contains $(\beta_i \beta)x_{it}$. It is now easy to see that due to the presence of $(\beta_i \beta)x_{it}$ in the error no potential instrument z can both be relevant, $E[z_{it}x_{it}] \neq 0$, and valid, $E[z_{it}\varepsilon_{it}] = 0$.
- This econometric argument highlights the serious implications for any claims of 'causal inference'
 when heterogeneity is ignored.

模型设定: 静态 - _MG

对于经历过政权更迭的国家 (从民主←→专制),本文设定了如下静态回归模型

$$y_{it} = lpha_i + heta_i \operatorname{Dem}_{it} + oldsymbol{eta}_i' oldsymbol{X}_{it} + \delta_i^y ar{y}_t + oldsymbol{\delta}_i^{X'} \overline{oldsymbol{X}}_t + arepsilon_{it} \quad (4)$$

- y is per capita GDP (in logs and multiplied by 100),
- *Dem* is the democracy dummy, and
- ullet $oldsymbol{X}$ is a set of controls (gross investment share of GDP and trade openness).
- \bar{y} and X 是控制组 (从未经历过政权更迭的国家) 的截面均值 (年度均值)
- **Pesaran (2006)**, **Westerlund and Urbain (2015)**: the use of cross-section averages is very simple yet powerful in capturing a **common factor structure**.

Stata 实操:

文中 Table 1 - Panel (a) - Col (1) 16.624

$$y_{it} = lpha_i + heta_i \operatorname{Dem}_{it} + oldsymbol{eta}_i' oldsymbol{X}_{it} + \delta_i^y ar{y}_t + oldsymbol{\delta}_i^{X'} \overline{oldsymbol{X}}_t + arepsilon_{it} \quad (4)$$

xtmg y dem l0ddem l1ddem l2ddem ///
 if dem_sample==1 & c==1, robust

模型设定: 动态 (CS-DL) - C&K MG

The dynamic variant of Eq. (4) is: Chan and Kwok (2022)

$$egin{aligned} y_{it} = & lpha_i + oldsymbol{ heta_i^*} \operatorname{Dem}_{it} + oldsymbol{eta_i^{*'}} oldsymbol{X}_{it} + \sum_{\ell=0}^{p-1} \omega_{i\ell}^D \Delta \operatorname{Dem}_{i,t-\ell} + \sum_{\ell=0}^{p-1} \omega_{i\ell}^{X'} \Delta oldsymbol{X}_{i,t-\ell} \ + \sum_{\ell=0}^{p_{ar{y}}} \delta_{i\ell}^{*y} ar{y}_{t-\ell} + \sum_{\ell=0}^{p_{ar{X}}} \delta_{i\ell}^{*X'} oldsymbol{\overline{X}}_{t-\ell} + arepsilon_{it}, \end{aligned}$$

- 短期效应: the two terms involving sums in $\Delta \mathrm{Dem}_{i,t-\ell}$ and $\Delta X_{i,t-\ell}$ capture the **short-run** effects
- 长期效应: θ_i^* and $\beta_i^{*'}$ represent the **long-run** coefficients for the effects of democracy and additional controls on income per capita, respectively I use stars to indicate that the interpretation

模型设定及解释

- The use of this 'CS-DL' version of the Chan and Kwok (2022) approach is convenient since the long-run democracy coefficient, θ_i^* , can be estimated in a single step rather than two as in an error-correction specification or the ANRR ARDL implementations.
- Following suggestions in Chudik et al. (2016) I adopt $p_{\bar{y}}=0$ and $p=p_{\bar{X}}=\mathrm{int}\left(T^{1/3}\right)=3$, where T is the time dimension of the panel. My presentation below

连享会 | lianxh.cn | Bilibili 65/76

Table 1
Main results—Dynamic specification (long-run estimates).

	Plain vanilla		With covariates	
Implementation Parameters estimated	(1) MG 5 × N	(2) C&K MG 14 × N	(3) MG 13 × N	(4) C&K MG 22 × N
(a) Democracy (ANRR)	16.624 (4.630)***	7.692 (2.854)***	7.712 (3.647)**	10.074 (3.651)***
Observations	2443	2443	2443	2443
Countries (N)	61	61	61	61
Democratisations	78	78	78	78
Reversals	42	42	42	42
Avg Years in Dem	19.6	19.6	19.6	19.6
RMSE	18.861	7.942	8.515	4.115

- 1. 该表 另外 三栏 采用其它方式式定义「民主」,结果没有发生实质性变化。The four alternative democracy dummies are by Acemoglu et al. (2019) ANRR, Boix et al. (2013) BMR, Cheibub et al. (2010) CGV, and Papaioannou and Siourounis (2008).
- 2. (1) and (3) simple Mean Group estimator, (2) and (4) Chan and Kwok (C&K) DID Mean Group

稳健性检验 - 1

Eberhardt, M. (2022, PDF) Fig. 2 (a)

使用最小二乘法(reg),中位数回归(qreg)和稳健回归(rreg)比较了「大众」民主化和「偏向精英」民主化两组样本的LR系数。

Stata Codes

应用文献 - 3

- Aslan, A., E. Dogan, B. Altinoz. 2019, Chapter 4 single-country versus multiple-country studies[C], in B. Özcan, I. Öztürk eds, Environmental kuznets curve (ekc), Academic Press, 25-36. -Link-, -PDF1-
 - 介绍了环境经济学领域应用 ARDL 模型的文献
- ardl 命令
 - Kripfganz, S., and D. C. Schneider (2022). and : Estimating autoregressive distributed lag and equilibrium correction models. Manuscript under review by the Stata Journal. -PDF-, -Slides-, Discussion at Statalist
 - o net install ardl, from(http://www.kripfganz.de/stata/)

连享会 | lianxh.cn | Bilibili 68/76

应用文献 - 4

- Eberhardt, M., C. Helmers, H. Strauss, **2013**, Do spillovers matter when estimating private returns to r&d?, **Review of Economics and Statistics**, 95 (2): 436-448. -Link-, -PDF-, WP version, Appendix, Replication, -cited-
- Goldberg, J. 2016. "Kwacha gonna do? Experimental evidence about labor supply in rural malawi".
 American Economic Journal: Applied Economics, 8 (1): 129-149. Link, Link, PDF, Replication
 - OLS 估计工资弹性,简单使用了 ARDL 模型,主要是解释变量的滞后项
- Ahmed, W. M. A., 2020, Stock market reactions to domestic sentiment: Panel cs-ardl evidence,
 Research in International Business and Finance, 54: 101240. -Link-, -PDF-, Replication

连享会 | lianxh.cn | Bilibili 69/76

参考文献

连享会 | lianxh.cn | Bilibili 70/76

- Hansen B E . 2021. Econometrics. Princeton University Press. Data and Contents, PDF, Sec 14.41-43.
 - 介绍了 ARDL 的基本设定和长期效应的估算公式。
- Pesaran, M. H. Time series and panel data econometrics[M]. Oxford University Press, 2015. Link.
 - 该书第 6 章提供了此类模型的理论基础,也讲解了部分调整模型、各类理性预期模型与 ARDL 之间的关系。
- Ghysels, E., M. Marcellino, 2018, Applied economic forecasting using time series methods, Oxford University Press. -Link-, PDF, -Codes-R-Eviews, -Replication-

连享会 | lianxh.cn | Bilibili 71/

- Levendis, J. D. Time series econometrics: Learning through replication[M]. Springer, 2019. -Link-, -PDF1-, PDF2
- Levendis, J.D. (2018). Cointegration and VECMs. In: Time Series Econometrics. Springer Texts in Business and Economics. Springer, Cham. Link, PDF.
 - 本章介绍了误差修正模型的经济含义和推导过程,是理解 ARDL 模型中长期和短期关系的基础。
- Kahn, M. E., K. Mohaddes, R. N. C. Ng, M. H. Pesaran, M. Raissi, J.-C. Yang, 2021, Long-term macroeconomic effects of climate change: A cross-country analysis, Energy Economics, 104: 105624. Link-, -PDF1-, -PDF2-, -Replication-, Cited.
 - 这是 Panel-ARDL 模型目前最主流的用法。
- Stata 命令: ardl, dynardl, xtdcce2, reghdfe

连享会 | lianxh.cn | Bilibili 72/

- Ditzen, J. **2021**. Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2 . **Stata Journal**, 21 (3): 687-707. Link, PDF1. PDF2, -Slides-. PPT 中主要模型的 Stata 实现
- 共同相关效应: Pesaran M H. Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure[J]. Econometrica, 2006, 74(4):967-1012. -PDF-
- 动态共同相关效应: Chudik A, Pesaran M H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors[J]. Journal of Econometrics, 2015, 188(2): 393-420. -PDF-
- 截面相关检验 CD 检验: Pesaran M H. Testing Weak Cross-Sectional Dependence in Large Panels[J]. Econometric Reviews, 2015, 34(6-10): 1089–1117. -PDF-

连享会 | lianxh.cn | Bilibili 73/

- 截面相关检验 BPK 检验: Bailey N G, Kapetanios M H, Pesaran M H. Exponent of cross-sectional dependence: estimation and inference[J]. Journal of Applied Econometrics, 2016, 31: 929-960. -PDF-
- Stata 命令 xtdcce2: Jan Ditzen. Estimating Dynamic Common-Correlated Effects in Stata[J]. Stata Journal, 2018, 18(3): 585–617. -PDF-
- **学习指南**:如果想要更加深入学习动态共同相关效应的具体用法,一方面可以阅读上述所列的论文,另一方面可以查看 xtdcce2 应用 文献 1 和 文献 2,及 中文解读:面板数据模型-xtdcce2:动态共同相关和截面相关。
- 此外, xtdcce2 命令语法和功能处于持续更新状态中,如果要使用 xtdcce2 , 请认真查阅最新版的 help 文档。

连享会 | lianxh.cn | Bilibili 74/76

- Jordan, S. and A.Q. Philips. 2018. "Cointegration testing and dynamic simulations of autoregressive distributed lag models." Stata Journal 18(4): 902-923. -PDF-, -Appli-, Stata, -github-, dynard1
 - Khan, M.K., J.Z. Teng and M.I. Khan. 2019. "Effect of energy consumption and economic growth on carbon dioxide emissions in Pakistan with dynamic ARDL simulations approach."
 Environmental Science and Pollution Research: 1-11.

连享会 | lianxh.cn | Bilibili 75/

Thanks

lianxh.cn