Heckman Selection Model: SW 683

This example is taken from http://www.gseis.ucla.edu/courses/ed231c/notes3/selection.html

Consider a model, in which, we try to predict women's wages from their education and age. We have an artificially constructed example of a sample of 2,000 women but we only have wage data for 1,343 of them. The remaining 657 women were not working and so did not receive wages. We will start off with a simple-minded model in which we estimate the regression model using only the observations that have wage data.

First Try

use	http://www	gseis.	ucla.ed	ı/courses	/data/wages

_		_				Q	uantiles	
- Variable Max	n	Mean	S.D).	Min	.25	Mdn	.75
wage education age	1343 2000 2000	23.69 13.08 36.21	6.31 3.05 8.29	5.88 10.00 20.00	19.31 10.00 30.00	23.51 12.00 36.00	28.05 16.00 42.00	45.81 20.00 59.00

regress wage education age

univar wage education age

Source	SS	df	MS		Number of obs	=	1343
+-					F(2, 1340)	=	227.49
Model	13524.0337	2	6762.01687		Prob > F	=	0.0000
Residual	39830.8609	1340	29.7245231		R-squared	=	0.2535
+-					Adj R-squared	=	0.2524
Total	53354.8946	1342	39.7577456		Root MSE	=	5.452
wage	Coef.	Std. E	rr. t	P> t	[95% Conf.	In	terval]
+-							
education	.8965829	.04980	61 18.00	0.000	.7988765		9942893
age	.1465739	.01871	35 7.83	0.000	.109863		1832848
cons	6.084875	.88961	82 6.84	0.000	4.339679	7	.830071

predict pwage

This analysis would be fine if, in fact, the missing wage data were missing completely at random. However, the decision to work or not work was made by the individual woman. Thus, those who were not working constitute a self-selected sample and not a random sample. It is likely some of the women that would earn low wages choose not to work and this would account for much of the missing wage data. Thus, it is likely that we will over estimate the wages of the women in the population. So, somehow, we need to account for information that we have on the non-working women. Maybe, we could replace the missing values with zeros. The variable **wage0** does the trick.

Second Try

univar wage0

Variable	n	Mean	S.D.	Min	.25	Mdn	.75	Max
wage0	2000	15.91	12.27	0.00	0.00	19.39	25.77	45.81

regress wage0 education age

Source	SS	df	MS		Number of obs F(2, 1997)		2000
Model	51956.6949 249038.262	2 25 1997 :	5978.3475 124.70619		Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 0.1726 0.1718 11.167
٠ .	Coef.		r. t		[95% Conf.	Int	terval]
education age _cons	1.064572 .3907662 -12.16843	.0844208	8 12.61 8 12.59	0.000	.8990101 .3299101 -14.91041	• 4	.230134 4516223 .426456

predict pwage0

This analysis is also troubling. Its true that we are using data from all 2,000 women but using zero is not a fair estimate of what the women would have earned if they had chose to work. It is likely that this model will under estimate the wages of women in the population. The solution to our quandary is to use the Heckman selection model (Gronau 1974, Lewis 1974, Heckman 1976).

The Heckman selection model is a two equation model. First, there is the regression model,

$$\mathbf{v} = \mathbf{v}\mathbf{\beta} + \mathbf{u}_1$$

And second, there is the selection model,

$$z\gamma + u_2 > 0$$

Where the following holds,

$$\begin{aligned} &u_1 \sim N(0,\sigma)\\ &u_2 \sim N(0,\,1)\\ &corr(u_1,\,u_2) = \rho \end{aligned}$$

When $\rho = 0$ OLS regression provides unbiased estimates, when $\rho \sim 0$ the OLS estimates are biased. The Heckman selection model allows us to use information from non-working women to improve the estimates of the parameters in the regression model. The Heckman selection model provides consistent, asymptotically efficient estimates for all parameters in the model.

In our example, we have one model predicting wages and one model predicting whether a women will be working. We will use **married**, **children**, **education** and **age** to predict selection. Checkout this probit example.

generate s=wage~=.

tab s

s	Freq.	Percent	Cum.
0 1	657 1343	32.85 67.15	32.85 100.00
Total	2000	100.00	_

probit s married children education age

Probit estimate Log likelihood		LR ch Prob	Number of obs = LR chi2(4) = Prob > chi2 = Pseudo R2 =			
s	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
married children education age _cons	.4308575 .4473249 .0583645 .0347211 -2.467365	.074208 .0287417 .0109742 .0042293 .1925635	5.81 15.56 5.32 8.21 -12.81	0.000 0.000 0.000 0.000	.2854125 .3909922 .0368555 .0264318 -2.844782	.5763025 .5036576 .0798735 .0430105 -2.089948

Now we are ready to try the full Heckman selection model.

Third Time's a Charm

heckman wage education age, select(married children education age) /* can also be written as heckman wage education age, select(s=married children education age) */ Number of obs = Censored obs = Uncensored obs = 2000 Heckman selection model (regression model with sample selection) 657 Wald chi2(2) = 508.44 Log likelihood = -5178.304Prob > chi2 0.0000 ______ Coef. Std. Err. z P>|z| [95% Conf. Interval] 1 wage education | .9899537 .0532565 18.59 0.000 .8855729 age | .2131294 .0206031 10.34 0.000 .1727481 _cons | .4857752 1.077037 0.45 0.652 -1.625179 1.094334 .2535108

married children education age _cons	.4451721 .4387068 .0557318 .0365098 -2.491015	.0673954 .0277828 .0107349 .0041533 .1893402	6.61 15.79 5.19 8.79 -13.16	0.000 0.000 0.000 0.000	.3130794 .3842534 .0346917 .0283694 -2.862115	.5772647 .4931601 .0767718 .0446502 -2.119915
/athrho /lnsigma	.8742086 1.792559	.1014225	8.62 64.95	0.000	.6754241 1.738468	1.072993
rho sigma lambda	.7035061 6.004797 4.224412	.0512264 .1657202 .3992265			.5885365 5.68862 3.441942	.7905862 6.338548 5.006881
LR test of inc	lep. eqns. (rl	no = 0):	chi2(1) =	61.20	Prob > ch	i2 = 0.0000

predict pheckman

In addition to the two equations, **heckman** estimates rho (actually the inverse hyperbolic tangent of rho) the correlation of the residuals in the two equations and sigma (actually the log of sigma) the standard error of the residuals of the wage equation. Lambda is rho*sigma. The output also includes a likelihood ratio test of rho = 0.

Recall that it was stated at the beginning that this dataset was constructed. As it turns out, we do have full wage information on all 2,000 women. The variable **wagefull** has the complete wage data. We can therefore run a regression using the full wage information to use as a comarison.

regress wagefull education age

Source	SS	df	MS	3		Number of obs		2000
Model Residual	28053.371 70234.8124	2 1997	14026.6 35.1701			F(2, 1997) Prob > F R-squared Adj R-squared	= = =	398.82 0.0000 0.2854 0.2847
Total	98288.1834	1999	49.168	8676		Root MSE	=	5.9304
wagefull	Coef.	Std. E	Err.	t	P> t	[95% Conf.	Int	terval]
education age _cons	1.004456 .1874822 1.381099	.04483	792 1	22.40 1.38 1.86	0.000 0.000 0.063	.9165328 .155164 0750544	• 2	.092379 2198004 .837253

predict pfull

If we compare (see below) the predicted wages from the first model (omit missing), the second model (substitute zero for missing) and the heckman model to the complete wage and predicted full wage values, we note the following:

- 1) The first model tends to over predict wages;
- 2) the second model tends to way underestimate wages;
- 3) the heckman model does the best job in predicting wages.
 univar pwage pwage0 pheckman wagefull pfull

						Quantile	s	
Variable	n	Mean	S.D.	Min	.25	Mdn	.75	Max
pwage	2000	23.12	3.24	17.98	20.36	22.56	25.71	32.66
pwage0	2000	15.91	5.10	6.29	11.76	15.95	19.36	32.18
pheckman	2000	21.16	3.84	14.65	18.06	20.83	24.00	32.86
wagefull	2000	21.31	7.01	-1.68	16.46	21.18	26.14	45.81
pfull	2000	21.31	3.75	15.18	18.18	20.77	24.20	32.53

Probit with Selection

Stata also includes another selection model the **heckprob** which works in a manner very similar to **heckman** except that the response variable is binary. **heckprob** stands for heckman probit estimation. We can illustrate **heckprob** using a dataset schvote that we also used in a bivariate probit example. This time we will predict going to private school (**priv**) with selection determined on whether the individual voted to increase property taxes (**vote**). Admittedly, this example is more than a bit contrived.

use http://www.gseis.ucla.edu/courses/data/schvote

tab1 priv vote

-> tabulation of priv

private school	 Freq.	Percent	Cum.
0 1	70 10	87.50 12.50	87.50 100.00
Total	80	100.00	

-> tabulation of vote

voted for tax	ĺ		
increase	Freq. +	Percent	Cum.
0	29	36.25	36.25
1	51	63.75	100.00
Total	80	100.00	

univar years inc ptax

						Quantiles		
Variable	n	Mean	S.D.	Min	.25	Mdn	.75	Max
years inc ptax	80 80 80	8.78 9.97 6.94	9.91 0.42 0.33	1.00 8.29 5.99	3.00 9.77 6.75	5.00 10.02 7.05	11.00 10.22 7.05	49.00 10.82 7.50

heckprob priv years ptax, select(vote=years inc ptax)

Probit model with sample selection				Censored obs =		= 80 = 29 = 51
Log likelihood = -60.49573						= 1.10 = 0.5771
	Coef.	Std. Err.	. Z	P> z	[95% Conf	. Interval]
priv	 					
years			-0.94	0.347	4648774	
ptax					-2.156356	
_cons	-2.127264	8.3273	-0.26	0.798	-18.44847	14.19394
vote	+ 					
years	0082359	.0159395	-0.52	0.605	0394767	.023005
inc	1.572097	.5672177	2.77	0.006	.4603703	2.683823
ptax	-2.019357	.7200663	-2.80	0.005	-3.430661	6080533
_cons	-1.203783	4.465327	-0.27	0.787	-9.955663	7.548096
/athrho	4722769	1.254446	-0.38	0.707	-2.930946	1.986392
rho	4400372	1.011544			9943244	.9630535
LR test of inc	dep. eqns. (rl	no = 0):	chi2(1) =	0.11	Prob > ch	i2 = 0.7392

The **heckprob** command shares a number of features with **biprobit** models. Both involve two equations, both of which are probit models. Both have correlated residuals from the two equations. Here is a similar **biprobit** model using **priv** and **vote** as response variables looks like.

biprobit priv vote years ptax inc

Bivariate probit regression					er of obs = chi2(6) =	80
Log likelihood = -74.171253					chi2(6) = > chi2 =	11.91 0.0640
	Coef.	Std. Err.	Z 	P> z	[95% Conf.	Interval]
priv						
years	0146627	.0264275	-0.55	0.579	0664596	.0371342
ptax	0923143	.6922562	-0.13	0.894	-1.449112	1.264483
inc	.3644544	.5588324	0.65	0.514	7308371	1.459746
_cons	-4.040363	4.872994	-0.83	0.407	-13.59126	5.510529
vote						
years	008866	.0159739	-0.56	0.579	0401742	.0224422
ptax	-2.054462	.7310168	-2.81	0.005	-3.487229	6216959
inc	1.574388	.5638432	2.79	0.005	.469276	2.679501
_cons	9732729	4.487075	-0.22	0.828	-9.767779	7.821233
/athrho	3425239	.2536544	-1.35	0.177	8396774	.1546297
rho	3297287	.2260769			6856382	.1534089

Likelihood ratio test of rho=0: chi2(1) = 1.95532 Prob > chi2 = 0.1620

http://www.gseis.ucla.edu/courses/ed231c/notes3/selection.html