0.1 2006 午後

$$1$$
 2006 午後
$$\begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & n-1 \\ 0 & \cdots & \cdots & 0 & 1 \end{bmatrix}$$
である. $(2)y'(t) = (n-1)t^{n-2}e^t + t^{n-1}e^t, y''(t) = (n-1)(n-2)t^{n-3}e^t + (n-1)t^{n-2}e^t + (n-1)t^{n-2}e^t + n-1$

 $(2)y'(t) = (n-1)t^{n-2}e^t + t^{n-1}e^t, y''(t) = (n-1)(n-2)t^{n-3}e^t + t^{n-1}e^t$ $(n-1)(n-2)t^{n-3}e^t + 2(n-1)t^{n-2}e^t + t^{n-1}e^t$ $rac{t}{2}$.

 $D^k y = (n-1)(n-2)\cdots(n-k)t^{n-k-1}e^t + a_{k,n-k}t^{n-k}e^t + \cdots + t^{n-1}e^t$ \succeq t

$$(a_{k,n-k},a_{k,n-k+1},\cdots,a_{k,n-1}=1\in\mathbb{R})$$
. すなわち $\mathcal B$ による表示は $egin{pmatrix} 0&\cdots&0&(n-1)!\ 0&\cdots&(n-1)!/1&*\ dots&dots&dots&dots\ 1&*&\cdots&* \end{pmatrix}$

となる行列式は $1 \cdot (n-1) \cdot \cdots \cdot (n-1)! \neq 0$ より C は V の基底である.

(3) $(D-I)^n(y(t)) = (n-1)(D-I)^{n-1}(t^{n-2}e^t) = \cdots = (n-1)!(D-I)(e^t) = 0$

$$(3) (D-I)^{n}(y(t)) = (n-1)(D-I)^{n-1}(t^{n-2}e^{t}) = \cdots = (n-1)!(D-I)(e^{t}) = 0$$

$$(4)Dy^{(k)}(t) = y^{(k+1)}(t) \quad (k = 0, 1, \cdots, n-2) \text{ で あ } \mathcal{D}, \quad Dy^{(n-1)}(t) = D^{(n)}(t) = (D-I)^{(n)}(t) - \sum_{k=0}^{n-1} \binom{n}{k} D^{(k)}(-1)^{n-k}y(t) = \sum_{k=0}^{n-1} (-1)^{n-k+1} \binom{n}{k} D^{k}y(t) \text{ で あ } \mathcal{S}. \quad \mathcal{L} \text{ っ } \mathcal{C} \text{ に 関 す る 表 現 行 列 は }$$

$$\begin{pmatrix} 0 & \cdots & 0 & (-1)^{n-0+1} \binom{n}{0} \\ 1 & \cdots & 0 & (-1)^{n-1+1} \binom{n}{1} \\ \vdots & \ddots & \vdots & * \\ 0 & \cdots & 1 & \binom{n}{n-1} \end{pmatrix} \text{ である. } \text{ ただし} (k, n-1) \text{ 成分は } (-1)^{n-k+1} \binom{n}{k} \text{ である.}$$

意にとる. $\varphi=\varphi(e_1)\varphi_1+\cdots\varphi(e_n)\varphi_n$ と表せる. すなわち V^* を生成する. $\sum c_i\varphi_i=0$ とする. $(\sum c_i \varphi_i)(e_i) = c_i = 0$ (e_i) = 0. これが任意の j で成り立つから $c_i = 0$ $(j = 1, \dots n)$ である. よっ て一次独立. すなわち基底.

 $(2)f,g\in W^\circ,k\in\mathbb{R}$ について、(f+g)(w)=f(w)+g(w)=0,(kf)(w)=kf(w)=0 より W° はベクトル 空間. W の基底 $\{w_1,\cdots,w_m\}$ をとり、V の基底 $\{w_1,\cdots,w_m,w_{m+1},\cdots,w_n\}$ へと延長する. (1) の手法で $\psi_k(w_i) = \delta_{k,i}$ を定める. δ はクロネッカーのデルタ.

 $\{\psi_{m+1},\cdots,\psi_n\}$ は W° の基底である. これは $f\in W^\circ$ は $f=\sum\limits_{i=1}^n f(w_i)\psi_i=\sum\limits_{i=m+1}^n f(w_i)\psi_i$ より分かる. よって $\dim W^{\circ} = n - \dim W$ である.

 $(3)f \in (W_1 + W_2)^\circ$ とする. 任意の $w_1 \in W_1, w_2 \in W_2$ について $f(w_1 + w_2) = 0$ であるから、特に $w_1 = 0$ のとき $f(w_2) = 0$, $w_2 = 0$ のとき $f(w_1) = 0$ である. したがって $f \in W_1^{\circ} \cap W_2^{\circ}$ より $(W_1 + W_2)^{\circ} \subset W_1^{\circ} \cap W_2^{\circ}$ である.

逆に $f \in W_1^\circ \cap W_2^\circ$ をとると、任意の $w_1 \in W_1, w_2 \in W_2$ について $f(w_1 + w_2) = f(w_1) + f(w_2) = 0$ である から、 $f \in (W_1 + W_2)^{\circ}$ である. よって $(W_1 + W_2)^{\circ} = W_1^{\circ} \cap W_2^{\circ}$ である.

3 (1)f は 1 位の極 z=c を除いて \mathbb{C} 上で正則である. $\mathrm{Res}(f,c)=e^{i\xi c}$ である. $\mathrm{Im}\,c>0$ のとき、f の特異

点は
$$\gamma_R^+$$
 の内部にあり、 $\operatorname{Im} c < 0$ のとき、 f の特異点は γ_R^- の内部にある。したがって γ_R^- が時計回りである ことに注意すれば $\int_{\gamma_R^+} f(z) dz = \begin{cases} 2\pi i e^{i\xi c} & (\operatorname{Im} c > 0) \\ 0 & (\operatorname{Im} c < 0) \end{cases}$ 、 $\int_{\gamma_R^-} f(z) dz = \begin{cases} 0 & (\operatorname{Im} c > 0) \\ -2\pi i e^{i\xi c} & (\operatorname{Im} c < 0) \end{cases}$ である。

 $(2)\xi > 0$ のとき、 γ_{R^+} 上の積分を考える。 $[0,\frac{\pi}{2}]$ 上で $\frac{2}{\pi}\theta \leq \sin\theta$ であるから、

$$\left| \int_{C_R^+} f(z) dz \right| = \left| \int_0^\pi \frac{\exp\left(i\xi R e^{i\theta}\right)}{R e^{i\theta} - c} R i e^{i\theta} d\theta \right| \le \int_0^\pi \left| \frac{e^{-\xi R \sin \theta}}{R e^{i\theta} - c} R \right| d\theta \le \frac{R}{R - |c|} \int_0^\pi e^{-\xi R \sin \theta} d\theta = \frac{2R}{R - |c|} \int_0^{\pi/2} e^{-\xi R \sin \theta} d\theta$$

$$\int_0^{\pi/2} e^{-\xi R \sin \theta} d\theta \le \int_0^{\frac{\pi}{2}} e^{-\xi R \frac{2}{\pi} \theta} d\theta = \left[\frac{\pi}{-\xi R 2} e^{-\xi R \frac{2}{\pi} \theta} \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2R \xi} (1 - e^{-R \xi})$$

$$\left| \int_{C_R^+} f(z) dz \right| \le \frac{2R}{R - |c|} \frac{\pi}{2R \xi} (e^{-R \xi} - 1) \to 0 \quad (R \to \infty)$$

である. したがって
$$\lim_{R \to \infty} \int_{-R}^R f(z) dz = \lim_{R \to \infty} \int_{\gamma_R^+}^+ f(z) dz - \int_{C_R^+}^+ f(z) dz = \begin{cases} 2\pi i e^{i\xi c} & (\operatorname{Im} c > 0, \xi > 0) \\ 0 & (\operatorname{Im} c < 0, \xi > 0) \end{cases}$$
 である.

 $\xi < 0$ のときは、 γ_R^- 上の積分を考える.

$$\left| \int_{C_R^-} f(z) dz \right| = \left| \int_0^{-\pi} \frac{\exp\left(i\xi Re^{i\theta}\right)}{Re^{i\theta} - c} Rie^{i\theta} d\theta \right| \le \int_0^{-\pi} \left| \frac{e^{-\xi R\sin\theta}}{Re^{i\theta} - c} R \right| d\theta \le \frac{R}{R - |c|} \int_0^{-\pi} e^{-\xi R\sin\theta} d\theta = \frac{2R}{R - |c|} \int_0^{\pi/2} e^{\xi R\sin\theta} d\theta$$

$$\int_0^{\pi/2} e^{\xi R\sin\theta} d\theta \le \int_0^{\frac{\pi}{2}} e^{\xi R\frac{2}{\pi}\theta} d\theta = \left[\frac{\pi}{\xi R2} e^{\xi R\frac{2}{\pi}\theta} \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2R\xi} (e^{R\xi} - 1)$$

$$\left| \int_{C_+^+} f(z) dz \right| \le \frac{2R}{R - |c|} \frac{\pi}{2R\xi} (e^{R\xi} - 1) \to 0 \quad (R \to \infty)$$

である. したがって
$$\lim_{R \to \infty} \int_{-R}^R f(z) dz = \lim_{R \to \infty} \int_{\gamma_R^-} f(z) dz + \int_{C_R^-} f(z) dz = \begin{cases} 0 & (\operatorname{Im} c > 0, \xi < 0) \\ -2\pi i e^{i\xi c} & (\operatorname{Im} c < 0, \xi < 0) \end{cases}$$
 である.

 $\boxed{4}$ (1)U が開集合であるとは、任意の点 $x \in U$ についてある $\varepsilon > 0$ が存在して、 $B_{\varepsilon}(x) \subset U$ となることである.

 $(2)(\Rightarrow)$ $x \in f^{-1}(U)$ について $f(x) \in U$ よりある $\varepsilon > 0$ が存在して $B_{\varepsilon}(f(x)) \subset U$ である.このときある $\delta > 0$ が存在して $f(B_{\delta}(x)) \subset U$ である.よって $B_{\delta}(x) \subset f^{-1}(B_{\delta}(x)) \subset f^{-1}(U)$ より $f^{-1}(U)$ は開集合である.

(秦) 任意の $x \in \mathbb{R}^n$ と任意の $\varepsilon > 0$ について, $B_{\varepsilon}(f(x))$ は開集合であるから, $f^{-1}(B_{\varepsilon}(f(x)))$ は開集合. したがってある $\delta > 0$ が存在して $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$ が成り立つ.よって $f(B_{\delta}(x)) \subset f(f^{-1}(B_{\varepsilon}(f(x)))) \subset B_{\varepsilon}(f(x))$ である.

 $(3)f(A) \subset U \cup V, U \cap V \cap A = \emptyset$ なる開集合 U, V を任意にとる. $A \subset f^{-1}(f(A)) \subset f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V), f^{-1}(U) \cap f^{-1}(V) \cap A \subset f^{-1}(U \cap V \cap f(A)) = \emptyset$ である. したがって $f^{-1}(U) \cap A = \emptyset$ または $f^{-1}(V) \cap A = \emptyset$ が成り立つ. $f^{-1}(U) \cap A = \emptyset$ のとき. $y \in f(A) \cap U$ とすると、ある $x \in A$ について f(x) = y である. この x について $f(x) \in U$ より $x \in f^{-1}(U)$ であるが、これは $f^{-1}(U) \cap A$ に矛盾. よって $f(A) \cap U = \emptyset$ である. $f^{-1}(V) \cap A = \emptyset$ のときも同様. よって f(A) は連結.