二、计算题(本题满分9分、共1题,每题9分)

本题得分

本题得分

假设目标出现在射程之内(射程之外无法命中目标)的概率为0.7,

这时射击的命中率为 0.6, 试求两次独立射击至少有一次命中目标的概率。

设A = "目标出现在射程之内",B = "命中目标",

2分

由題意 P(A) = 0.7, P(B|A) = 0.7, 且 $B \subseteq A$

3分

于是

 $P(B) = P(AB) = P(A)P(B|A) = 0.7 \times 0.6 = 0.42$

2分

则所求的概率为

$$p = 1 - P_2(0) = 1 - C_2^0(0.42)^0(1 - 0.42)^2 = 0.6636$$
 2 %

三、计算题(本题满分9分,共3题,每题3分)

设(X, Y) 服从 N(1, 0, 32, 42, -0.5) 分布, Z=X/3+Y/2

- 1) 求 2 的期望与方差;
- 2) 求 X 与 Z 的相关系数;
- 3)问 X 与 Z 是否相互独立? 为什么?

1

$$E(Z) = \frac{1}{3}E(X) + \frac{1}{2}E(Y) = \frac{1}{3}$$

2

$$D(Z) = \frac{1}{9}D(X) + \frac{1}{4}D(Y) + 2 \times \frac{1}{3} \times \frac{1}{2}\rho_{XY}\sqrt{D(X)D(Y)} = 3$$

$$Cov(X,Z) = Cov(X, \frac{X}{3} + \frac{Y}{2}) = \frac{DX}{3} + \frac{Cov(X,Y)}{2} = 3 - \frac{0.5 \times 3 \times 4}{2} = 0$$

 $\therefore \rho_{XZ} = 0$

2

2

(3) 因 Z 为 X、Y 线性组合, 故 Z 为正态分布, 对正态分布而言, 不相关即独立。故 X 与 Z 独立.

2

四. 计算题(本题满分11分, 共3题, 第1题3分, 第二题4分, 第三题4分)

本题得分

设随机变量X的概率密度函数为

$$f(x) = \begin{cases} Ae^{-3x}, x > 0\\ 0, 其它 \end{cases}$$

- (1) 确定常数 A;
- (2) 求 $Y=e^{4}$ 的概率密度函数;
- (3) 计算 E(Y) 和 D(-3Y-1)

解: (1) 由密度函数的性质,有

$$1 = \int_{-\infty}^{+\infty} f(x) dx = A \int_{-\infty}^{+\infty} e^x dx = A \left(-\frac{1}{3} e^{-3x} \right) \Big|_{0}^{+\infty} = \frac{A}{3}$$

所以, A = 3。

3 分

(2)
$$y = e x$$
, $x = \ln y$, $x \in (0, +\infty)$ if, $y = e^x \in (1, +\infty)$

$$\frac{dx}{dy} = \frac{1}{y} \quad ,$$

1分

所以

$$f_{Y}(y) = \begin{cases} 3e^{-3\ln y} \left| \frac{1}{y} \right|, y > 1 \\ 0, y \le 1 \end{cases} = \begin{cases} \frac{3}{y^{4}}, y > 1 \\ 0, y \le 1 \end{cases}$$

3 分(未写<=1情况扣1分)

(3)
$$E(Y) = E(e^{x}) = \int_{0}^{+\infty} e^{x} \cdot 3e^{-3x} dx = \frac{3}{2}$$

1分

$$E(Y^2) = E(e^{2X}) = \int_0^{+\infty} e^{2x} \cdot 3e^{-3x} = 3$$

1分

$$D(Y) = E(Y^2) - E^2(Y) = 3 - (\frac{3}{2})^2 = \frac{3}{4}$$

1分

$$D(-3Y-1) = 9D(Y) = \frac{27}{4}$$

1分

总分

南京大学 电子科学与工程学院 全日制统招本科生

《概率论与随机过程》期末考试试卷 闭卷

		1170	十七一	170 1107	_1工// 对	1/1/5 M	MACE	141.F		
	任	课教师	姓名:	都思丹	上_于耀	2 -0	-			
¥	考试日	期:	2015	/6/24	_ 考	试时长:	2_	_小时	分	肿
考生年纪	级	考:	生专业	*	5生学号		考生姓	名		-
题号	_	=	三	四	五	六	七	八	九	
得分										
一. 填 1. 设际 P(AB) 2. 从 个数字	[空题(直机事。 + P(AI 1, 2, ·	本题满。 件 A、I 子 ··, 10 与	分 10 分, 3, P(A) 0. 5 失十个数与 件的概率等	D:	每题 2 分 0. 9, P 个,然后 。	(AB) = (i放回,为 $\frac{P_{10}^{s}}{10^{s}}$	七后取出	5 个数字	' ,则所í	导 5
则 常 ¾		$= \frac{2}{(4+x^2)}$;	,	X 的i	力际 密	度 函 数	为 f _x (x)) =
表示_B. (A)		_。 击中;		5中 i 发 (B) (D)		一发击中		事 件 A =	$=A_1 \cup A_2$	U <i>A</i> ₃

5. 设随机变量 X 与Y 相互独立,且D(X)=3,D(Y)=1,则Z=3X-2Y 的方差为_A____

(A) 31; (B) 23; (C) 11; (D) 7

六, 计算题 (本题满分 14 分, 共 1 题, 每题 14 分)

把数字 1、2、3...n 任意的排成一列,如果数字 k 恰好出现在第 k

本题得分

个位置,则视为一次巧合,求巧合次数 X 的数学期望,方差。

$$\partial X = \sum X_i$$

X为总次数、总个数等等总体情况

$$X_i = \{0, 1\}$$
 为第 i 分次、第 i 人等单位情况

这里设X,表示第i个数正好在第i个位置

则
$$P{X_i = 0} = \frac{n-1}{n}, P{X_i = 1} = \frac{1}{n}$$

$$EX_i = \frac{1}{n}$$

$$DX_i = EX_i^2 - (EX_i)^2 = \frac{1}{n} - \frac{1}{n^2}$$

$$EX = \sum EX_i = n * \frac{1}{n} = 1$$

$$DX = \sum DX_{i} + 2C_{n}^{2} E((X_{i} - \frac{1}{n})(X_{j} - \frac{1}{n}))$$

$$\sum DX_{i} = n(\frac{1}{n} - \frac{1}{n^{2}}) = 1 - \frac{1}{n}$$

注意这里X,与X,不独立,不能直接分开

$$E((X_i - \frac{1}{n})(X_j - \frac{1}{n})) = E(X_i X_j) - \frac{1}{n} EX_i - \frac{1}{n} EX_j + \frac{1}{n^2} = E(X_i X_j) - \frac{1}{n^2}$$

$$P\{X_i = 1, X_i = 1\} = P\{X_i = 1\}P\{X_j = 1 \mid X_i = 1\} = \frac{1}{n}(\frac{1}{n-1})$$

$$E(X_i X_j) = 0 * ? + 1 * \frac{1}{n} (\frac{1}{n-1}) = \frac{1}{n} (\frac{1}{n-1})$$

五. 计算题(本题满分11分,共3题,第1题5分,第二、三题3

本題得分

分)

资料表明,一种载重汽车的轮胎,报废前的公路行驶里程数服从正态分布,其平均行驶公里数为6万公里,标准差为0.8万公里。现有一辆该载重汽车,新装上了12个这样的轮胎试求

- 1、任意观察一个轮胎,其报废前行驶的里程数超过4万公里的概率
- 2、任意观察一个轮胎,其报废前行驶的里程数在4到7万公里之间的概率
- 3、观察所有轮胎,最多有两个轮胎行驶的里程数不超过6万公里的概率

3、设每个轮胎行驶里程数不超过6公里概率为p,则有p={X ≤ 6} =0.5 $\mathbb{I}_{\mathbb{I}_{2}}$ 则k个轮胎不超过6公里概率为 \mathbb{I}_{12}^{k} $\mathbb{I$

九. 计算题(本题满分14分, 共3题, 第1题5分, 第2题3分, 第3题6分)

本题得分

设一个坛子中装有 4 个球,它们或是红色的,或是黑色的。从坛子中随机地取出一个球,并换入一个另一种颜色的球,经过n次取球置换,令X(n), $n \ge 1$ 表示第n次取球后坛中的黑球数。

- (1) $\{X(n), n \ge 1\}$ 是否构成马氏链, 是否为齐次的, 为什么?
- (2) 试写出其状态空间与一步转移概率矩阵。
- (3) 讨论经过足够多次取球后, 坛中球的颜色分布情况。

解: $X(n), n \ge 1$ 的参数集为 $T = \{1, 2, 3, \cdots, n, \cdots\}$,状态集为 $E = \{0, 1, 2, 3, 4\}$,当 X(n) 的取值确定时,X(n+1) 的取值完全由 X(n) 确定,故 $X(n), n \ge 1$ 为马氏链,2 分

$$P_{ij}(n) = P(X(n+1) = j \, \big| \, X(n) = i)$$

$$= \begin{cases} 1 & j = 1, i = 0 & 蚁 j = 3, i = 4 \\ \frac{i}{4} & j = i - 1, 1 \le i \le 3 \\ 1 - \frac{i}{4} & j = i + 1, 1 \le i \le 3 \\ 0 & 埃它 \end{cases}$$

与 n 无关, 故为齐次马氏链。

1分

1分

2分

18 14-10-19-19-1

八. 计算题(本题满分11分,共1题,每题11分)

本题得分

某校共有 4900 个学生,已知每天晚上每个学生到阅览室去学习的概率为 0.1,问阅览室 要准备多少个座位,才能以 99%的概率保证每个去阅览室的学生都有座位.

解:设去阅览室学习的人数为^专,要准备k个座位.

$$\xi \sim b(n, p), n = 4900, p = 0.1$$

$$np = 4900 \times 0.1 = 490$$

$$\sqrt{npq} = \sqrt{4900 \times 0.1 \times 0.9} = \sqrt{441} = 21.$$

$$P\{0 \le \xi \le k\} \approx \varPhi\left(\frac{k - np}{\sqrt{npq}}\right) - \varPhi\left(\frac{0 - np}{\sqrt{npq}}\right) = \varPhi\left(\frac{k - 490}{21}\right) - \varPhi\left(\frac{0 - 490}{21}\right)$$
$$= \varPhi\left(\frac{k - 490}{21}\right) - \varPhi(-23.23) \approx \varPhi\left(\frac{k - 490}{21}\right) = 0.99.$$

要准备 539 个座位,才能以 99%的概率保证每个去阅览室学习的学生都有座位。

七. 计算题(本题满分11分, 共1题, 每题11分) 随机变量 X₁ X₂ X₃ X₄ 相互独立, 且他们的分布都为:

1. 00: 201 /	
本题得分一	

X_{ϵ}]	1	
p_{i}	0.7	0.3	

求行列式 $|X, X_3|$ $|X, X_4|$ 的分布。

$$\begin{vmatrix} X_1 & X_3 \\ X_2 & X_4 \end{vmatrix} = X_1 X_4 - X_2 X_3$$

 X_1, X_4 独立,由已知有

X_1X_4	1	1	-1
X_2X_3			
p,		0. 7*0. 7+0. 3*0. 3=0. 58	0. 7*0. 3*2=0. 42

因此

$X_1X_4 - X_2X_3$	-2	0	2
р,	0. 58*0. 42=0. 2436	0. 58*0. 58+0. 42*0. 42=0. 5128	0. 58*0. 42=0. 2436