PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number:

PCT/US98/06956

(22) International Filing Date:

10 April 1998 (10.04.98)

(30) Priority Data:

08/837,312

10 April 1997 (10.04.97)

US

(71) Applicant: GENETICS INSTITUTE, INC. [US/US]; 87 CambridgePark Drive, Cambridge, MA 02140 (US).

(72) Inventors: JACOBS, Kenneth; 151 Beaumont Avenue, Newton, MA 02160 (US). MCCOY, John, M.; 56 Howard Street, Reading, MA 01867 (US). LAVALLIE, Edward, R.; 113 Ann Lee Road, Harvard, MA 01451 (US). RACIE, Lisa, A.; 124 School Street, Acton, MA 01720 (US). MERBERG, David; 2 Orchard Drive, Acton, MA 01720 (US). TREACY, Maurice; 93 Walcott Road, Chestnut Hill, MA 02167 (US). SPAULDING, Vikki; 11 Meadowbank Road, Billerica, MA 01821 (US). AGOSTINO, Michael, J.; 26 Wolcott Avenue, Andover, MA 01810 (US).

(74) Agent: SPRUNGER, Suzanne, A.; Genetics Institute, Inc., 87 CambridgePark Drive, Cambridge, MA 02140 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BI, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SECRETED EXPRESSED SEQUENCE TAGS (SESTS)

(57) Abstract

Secreted expressed sequence tags (sESTs) isolated from a variety of human tissue sources are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	M	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Itały	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KB	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
α	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Pederation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SR	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
1					•		

SECRETED EXPRESSED SEQUENCE TAGS (sESTs)

FIELD OF THE INVENTION

5

10

15

20

25

35

The present invention provides novel polynucleotides which are expressed sequence tags (ESTs) for secreted proteins.

BACKGROUND OF THE INVENTION

Gargantuan efforts have been employed by various investigational projects to randomly sequence portions of naturally-occurring cDNAs. The rationale behind this approach to identification and sequencing genes is founded in two basic principles: (1) that transcribed cDNAs represent the product of the most important genes, namely those that are actually expressed *in vivo*, and (2) that efforts to sequence genes and other portions of the genome of target organisms which are not actually expressed wastes substantial effort on areas not likely to yield genetic information of therapeutic importance. Thus, the high-throughput sequencing efforts focus on only those portions of the genome which are expressed. The randomly produced cDNA sequences represent "expressed sequence tags" or "ESTs", which identify and can be used as probes for the longer, full-length cDNA or genomic sequence from which they were transcribed.

Although this "shortcut" approach to genomic sequencing presents savings of effort compared to sequencing of the complete genome, it still produced a vast array of ESTs which may not be directly useful as protein therapeutics. To date, the majority of protein-related drug discovery has focused on the use of secreted proteins to produce a desired therapeutic effect. Since the EST approach theoretically identifies all expressed proteins, it produces an EST library which contains a mixture of secreted proteins (such as hormones, cytokines and receptors) and non-secreted proteins (such as, for example, metabolic enzymes and cellular structural proteins), without identifying which ESTs correspond to proteins falling into either category. As a result, these methods are not optimally tailored to the needs of investigators searching for secreted proteins because they must separate the secreted "wheat" from the non-secreted "chaff", wasting effort and resources in the process.

Co-assigned U.S. Patent No. 5,536,637, which is incorporated herein by reference, provides methods for focusing genomic sequencing efforts on sequences encoding the secreted proteins which are of most interest for identification of protein therapeutics. The '637 patent discloses a "signal sequence trap" which selectively identifies ESTs for secreted

5

proteins, namely "secreted expressed sequence tags" or "sESTs". It is to these sESTs that the present invention is directed.

SUMMARY OF THE INVENTION

The present invention provides for sESTs isolated from a variety of human RNA/cDNA sources.

In preferred embodiments, the present invention provides an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of:

SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID 10 NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ 15 ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ 20 ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ 25 ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, 30 SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, 5

10

15

20

25

30

SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280,

5

10

15

20

25

30

SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288. SEQ ID NO:289, SEO ID NO:290, SEO ID NO:291, SEO ID NO:292, SEO ID NO:293, SEO ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEO ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEO ID NO:326, SEO ID NO:327, SEO ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEO ID NO:331, SEO ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEO ID NO:349, SEO ID NO:350, SEQ ID NO:351, SEQ ID NO:352, SEO ID NO:353, SEO ID NO:354, SEO ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEO ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEO ID NO:380, SEO ID NO:381, SEO ID NO:382, SEO ID NO:383, SEO ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEO ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEO ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:410, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:420, SEO ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEO ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, WO 98/45437

5

10

15

20

25

30

SEO ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEO ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEO ID NO:479, SEO ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEO ID NO:488, SEO ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEO ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEO ID NO:506, SEO ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510. SEO ID NO:511. SEO ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEO ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586,

5

10

15

20

25

30

SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEO ID NO:596, SEO ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEO ID NO:605, SEO ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEO ID NO:622. SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEO ID NO:650, SEO ID NO:651, SEO ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEO ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEO ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEO ID NO:682, SEO ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694. SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEO ID NO:700, SEO ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEO ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, 5

10

15

20

25

30

SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEO ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEO ID NO:803, SEO ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEO ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEO ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, 5

10

15

20

25

30

SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEO ID NO:929, SEO ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEO ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEO ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005, SEQ ID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID NO:1009, SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012, SEQ ID NO:1013, SEQ ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID NO:1017, SEQ ID NO:1018, SEQ ID NO:1019, SEQ ID NO:1020, SEQ ID NO:1021, SEQ ID NO:1022, SEQ ID NO:1023, SEQ ID NO:1024, SEQ ID NO:1025, SEQ ID NO:1026, SEQ ID NO:1027, SEQ ID NO:1028, SEQ ID NO:1029, SEQ ID NO:1030, SEQ ID NO:1031, SEQ ID NO:1032, SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035, SEQ ID NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID NO:1039, SEQ ID NO:1040, SEQ ID

```
NO:1041, SEO ID NO:1042, SEO ID NO:1043, SEQ ID NO:1044, SEQ ID
           NO:1045, SEQ ID NO:1046, SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID
           NO:1049, SEQ ID NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID
           NO:1053, SEQ ID NO:1054, SEQ ID NO:1055, SEQ ID NO:1056, SEQ ID
           NO:1057, SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1060, SEQ ID
 5
           NO:1061, SEQ ID NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEQ ID
           NO:1065, SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ ID
           NO:1069, SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:1072, SEQ ID
           NO:1073, SEQ ID NO:1074, SEQ ID NO:1075, SEQ ID NO:1076, SEQ ID
           NO:1077, SEQ ID NO:1078, SEQ ID NO:1079. SEQ ID NO:1080, SEQ ID
10
           NO:1081, SEQ ID NO:1082, SEQ ID NO:1083, SEQ ID NO:1084, SEQ ID
           NO:1085, SEQ ID NO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID
           NO:1089, SEQ ID NO:1090, SEQ ID NO:1091, SEQ ID NO:1092, SEQ ID
           NO:1093, SEQ ID NO:1094, SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID
           NO:1097, SEQ ID NO:1098, SEQ ID NO:1099, SEQ ID NO:1100, SEQ ID
15
           NO:1101, SEO ID NO:1102, SEQ ID NO:1103, SEQ ID NO:1104, SEQ ID
           NO:1105, SEQ ID NO:1106, SEQ ID NO:1107, SEQ ID NO:1108, SEQ ID
           NO:1109, SEQ ID NO:1110, SEQ ID NO:1111, SEQ ID NO:1112, SEQ ID
           NO:1113, SEQ ID NO:1114, SEQ ID NO:1115, SEQ ID NO:1116, SEQ ID
           NO:1117, SEQ ID NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEQ ID
20
           NO:1121, SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ ID
           NO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:1128, SEQ ID
           NO:1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132, SEQ ID
           NO:1133, SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID NO:1136, SEQ ID
           NO:1137, SEQ ID NO:1138, SEQ ID NO:1139, SEQ ID NO:1140, SEQ ID
25
           NO:1141, SEQ ID NO:1142, SEQ ID NO:1143, SEQ ID NO:1144, SEQ ID
           NO:1145, SEQ ID NO:1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID
           NO:1149, SEQ ID NO:1150, SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID
           NO:1153, SEQ ID NO:1154, SEQ ID NO:1155, SEQ ID NO:1156, SEQ ID
           NO:1157, SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQ ID
30
           NO:1161, SEQ ID NO:1162, SEQ ID NO:1163, SEQ ID NO:1164, SEQ ID
           NO:1165, SEO ID NO:1166, SEO ID NO:1167, SEQ ID NO:1168, SEQ ID
           NO:1169, SEQ ID NO:1170, SEQ ID NO:1171, SEQ ID NO:1172, SEQ ID
           NO:1173, SEQ ID NO:1174, SEQ ID NO:1175, SEQ ID NO:1176, SEQ ID
```

```
NO:1177, SEQ ID NO:1178, SEQ ID NO:1179, SEQ ID NO:1180, SEQ ID
           NO:1181, SEQ ID NO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID
           NO:1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188, SEQ ID
           NO:1189, SEQ ID NO:1190, SEQ ID NO:1191, SEQ ID NO:1192, SEQ ID
           NO:1193, SEQ ID NO:1194, SEQ ID NO:1195, SEQ ID NO:1196, SEQ ID
 5
           NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ ID NO:1200, SEQ ID
           NO:1201, SEQ ID NO:1202, SEQ ID NO:1203, SEQ ID NO:1204, SEQ ID
           NO:1205, SEQ ID NO:1206, SEQ ID NO:1207, SEQ ID NO:1208, SEQ ID
           NO:1209, SEQ ID NO:1210, SEQ ID NO:1211, SEQ ID NO:1212, SEQ ID
           NO:1213, SEQ ID NO:1214, SEQ ID NO:1215, SEQ ID NO:1216, SEQ ID
10
           NO:1217, SEQ ID NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID
           NO:1221, SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID
           NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228, SEQ ID
           NO:1229, SEQ ID NO:1230, SEQ ID NO:1231, SEQ ID NO:1232, SEQ ID
           NO:1233, SEQ ID NO:1234, SEQ ID NO:1235, SEQ ID NO:1236, SEQ ID
15
           NO:1237, SEQ ID NO:1238, SEQ ID NO:1239, SEQ ID NO:1240, SEQ ID
           NO:1241, SEQ ID NO:1242, SEQ ID NO:1243, SEQ ID NO:1244, SEQ ID
           NO:1245, SEQ ID NO:1246, SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID
           NO:1249, SEQ ID NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID
20
           NO:1253, SEQ ID NO:1254, SEQ ID NO:1255, SEQ ID NO:1256, SEQ ID
           NO:1257, SEQ ID NO:1258, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID
           NO:1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264, SEQ ID
           NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID NO:1268, SEQ ID
           NO:1269, SEQ ID NO:1270, SEQ ID NO:1271, SEQ ID NO:1272, SEQ ID
           NO:1273, SEQ ID NO:1274, SEQ ID NO:1275, SEQ ID NO:1276, SEQ ID
25
           NO:1277, SEQ ID NO:1278, SEQ ID NO:1279, SEQ ID NO:1280, SEQ ID
           NO:1281, SEQ ID NO:1282, SEQ ID NO:1283, SEQ ID NO:1284, SEQ ID
           NO:1285, SEQ ID NO:1286, SEQ ID NO:1287, SEQ ID NO:1288, SEQ ID
           NO:1289, SEQ ID NO:1290, SEQ ID NO:1291, SEQ ID NO:1292, SEQ ID
           NO:1293, SEQ ID NO:1294, SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID
30
           NO:1297, SEQ ID NO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID
           NO:1301, SEQ ID NO:1302, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID
           NO:1305, SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID
           NO:1309, SEQ ID NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID
```

```
NO:1313, SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ ID
          NO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:1320, SEQ ID
          NO:1321, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324, SEQ ID
           NO:1325, SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID NO:1328, SEQ ID
          NO:1329, SEQ ID NO:1330, SEQ ID NO:1331, SEQ ID NO:1332, SEQ ID
 5
          NO:1333, SEQ ID NO:1334, SEQ ID NO:1335, SEQ ID NO:1336, SEQ ID
           NO:1337, SEQ ID NO:1338, SEQ ID NO:1339, SEQ ID NO:1340, SEQ ID
           NO:1341, SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID NO:1344, SEQ ID
           NO:1345, SEQ ID NO:1346, SEQ ID NO:1347, SEQ ID NO:1348, SEQ ID
           NO:1349, SEQ ID NO:1350, SEQ ID NO:1351, SEQ ID NO:1352, SEQ ID
10
           NO:1353, SEQ ID NO:1354, SEQ ID NO:1355, SEQ ID NO:1356, SEQ ID
           NO:1357, SEQ ID NO:1358, SEQ ID NO:1359, SEQ ID NO:1360, SEQ ID
           NO:1361, SEQ ID NO:1362, SEQ ID NO:1363, SEQ ID NO:1364, SEQ ID
           NO:1365, SEQ ID NO:1366, SEQ ID NO:1367, SEQ ID NO:1368, SEQ ID
           NO:1369, SEQ ID NO:1370, SEQ ID NO:1371, SEQ ID NO:1372, SEQ ID
15
           NO:1373, SEQ ID NO:1374, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID
           NO:1377, SEQ ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1380, SEQ ID
          NO:1381, SEQ ID NO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID
           NO:1385, SEQ ID NO:1386, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID
           NO:1389, SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID
20
           NO:1393, SEQ ID NO:1394, SEQ ID NO:1395, SEQ ID NO:1396, SEQ ID
           NO:1397, SEQ ID NO:1398, SEQ ID NO:1399, SEQ ID NO:1400, SEQ ID
           NO:1401, SEQ ID NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID
           NO:1405, SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1408, SEQ ID
           NO:1409, SEQ ID NO:1410, SEQ ID NO:1411, SEQ ID NO:1412, SEQ ID
25
           NO:1413, SEQ ID NO:1414, SEQ ID NO:1415, SEQ ID NO:1416, SEQ ID
           NO:1417, SEQ ID NO:1418, SEQ ID NO:1419, SEQ ID NO:1420, SEQ ID
           NO:1421, SEQ ID NO:1422, SEQ ID NO:1423, SEQ ID NO:1424, SEQ ID
           NO:1425, SEQ ID NO:1426, SEQ ID NO:1427, SEQ ID NO:1428, SEQ ID
           NO:1429, SEQ ID NO:1430, SEQ ID NO:1431, SEQ ID NO:1432, SEQ ID
30
           NO:1433, SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1436, SEQ ID
           NO:1437, SEQ ID NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID
           NO:1441, SEQ ID NO:1442, SEQ ID NO:1443, SEQ ID NO:1444, SEQ ID
           NO:1445, SEQ ID NO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID
```

NO:1449, SEQ ID NO:1450, SEQ ID NO:1451, SEQ ID NO:1452. SEQ ID NO:1453, SEQ ID NO:1454, SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID NO:1457, SEQ ID NO:1458, SEQ ID NO:1459, SEQ ID NO:1460, SEQ ID NO:1461, SEQ ID NO:1462, SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID NO:1465, SEQ ID NO:1466, SEQ ID NO:1467, SEQ ID NO:1468, SEQ ID 5 NO:1469, SEQ ID NO:1470, SEQ ID NO:1471, SEQ ID NO:1472, SEQ ID NO:1473, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID NO:1476, SEQ ID NO:1477, SEQ ID NO:1478, SEQ ID NO:1479, SEQ ID NO:1480, SEQ ID NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484, SEQ ID NO:1485, SEQ ID NO:1486, SEQ ID NO:1487, SEQ ID NO:1488, SEQ ID 10 NO:1489, SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ ID NO:1493, SEQ ID NO:1494, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:1497, SEQ ID NO:1498, SEQ ID NO:1499, SEQ ID NO:1500, SEQ ID NO:1501, SEQ ID NO:1502, SEQ ID NO:1503, SEQ ID NO:1504, SEQ ID NO:1505, SEQ ID NO:1506, SEQ ID NO:1507, SEQ ID NO:1508, SEQ ID 15 NO:1509, SEO ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1512, SEQ ID NO:1513, SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1516, SEQ ID NO:1517, SEQ ID NO:1518, and SEQ ID NO:1519;

or a complement of said sequence.

20

25

30

In other embodiments, the present invention provides an isolated polynucleotide consisting of a nucleotide sequence selected from the group consisting of:

SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:66, SEQ ID NO:6

5

10

15

20

25

30

ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEO ID NO:115, SEO ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEO ID NO:119, SEO ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEO ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEO ID NO:146, SEO ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID 5

10

15

20

25

30

NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226. SEO ID NO:227, SEO ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEO ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEO ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEO ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEO ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEO ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID

5

10

15

20

25

30

NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEO ID NO:380, SEO ID NO:381, SEO ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:410, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:420, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEO ID NO:452, SEO ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEO ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEO ID NO:493, SEO ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEO ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEO ID NO:515, SEO ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID

5

10

15

20

25

30

NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544. SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEO ID NO:551, SEO ID NO:552, SEO ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEO ID NO:569, SEO ID NO:570, SEO ID NO:571, SEO ID NO:572, SEO ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEO ID NO:578, SEO ID NO:579, SEO ID NO:580, SEO ID NO:581, SEO ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEO ID NO:596, SEO ID NO:597, SEO ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEO ID NO:601, SEO ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEO ID NO:668, SEO ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEO ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID

5

10

15

20

25

30

NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEO ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEO ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEO ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEO ID NO:727, SEO ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEO ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEO ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID

5

10

15

20

25

30

NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEO ID NO:839, SEO ID NO:840, SEO ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855. SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEO ID NO:884, SEO ID NO:885, SEO ID NO:886, SEO ID NO:887, SEO ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEO ID NO:920, SEO ID NO:921, SEO ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEO ID NO:943, SEO ID NO:944, SEO ID NO:945, SEO ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID

5

10

15

20

25

30

NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEO ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEO ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005, SEQ ID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID NO:1009, SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012, SEQ ID NO:1013. SEO ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID NO:1017, SEQ ID NO:1018, SEQ ID NO:1019, SEQ ID NO:1020, SEQ ID NO:1021, SEQ ID NO:1022, SEQ ID NO:1023, SEQ ID NO:1024, SEQ ID NO:1025, SEQ ID NO:1026, SEQ ID NO:1027, SEQ ID NO:1028, SEQ ID NO:1029, SEO ID NO:1030, SEQ ID NO:1031, SEQ ID NO:1032, SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035, SEQ ID NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID NO:1039, SEQ ID NO:1040, SEQ ID NO:1041, SEQ ID NO:1042, SEQ ID NO:1043, SEQ ID NO:1044, SEQ ID NO:1045, SEQ ID NO:1046, SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID NO:1049, SEQ ID NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID NO:1053, SEQ ID NO:1054, SEQ ID NO:1055, SEQ ID NO:1056, SEQ ID NO:1057, SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1060, SEQ ID NO:1061, SEQ ID NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEQ ID NO:1065, SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ ID NO:1069, SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:1072, SEQ ID NO:1073, SEQ ID NO:1074, SEQ ID NO:1075, SEQ ID NO:1076, SEQ ID NO:1077, SEQ ID NO:1078, SEQ ID NO:1079, SEQ ID NO:1080, SEQ ID NO:1081, SEQ ID NO:1082, SEQ ID NO:1083, SEQ ID NO:1084, SEQ ID NO:1085, SEQ ID NO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID NO:1089, SEQ ID NO:1090, SEQ ID NO:1091, SEQ ID NO:1092, SEQ ID NO:1093, SEQ ID NO:1094, SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID NO:1097, SEQ ID NO:1098, SEQ ID NO:1099, SEQ ID NO:1100, SEQ ID NO:1101, SEQ ID NO:1102, SEQ ID NO:1103, SEQ ID NO:1104, SEQ ID NO:1105, SEQ ID NO:1106, SEQ ID NO:1107, SEQ ID NO:1108, SEQ ID NO:1109, SEQ ID NO:1110, SEQ ID NO:1111, SEQ ID NO:1112, SEQ ID NO:1113, SEQ ID NO:1114, SEQ ID NO:1115, SEQ ID NO:1116, SEQ ID NO:1117, SEQ ID NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEQ ID NO:1121, SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ ID

```
NO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:1128, SEQ ID
           NO:1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132, SEQ ID
           NO:1133, SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID NO:1136, SEQ ID
           NO:1137, SEQ ID NO:1138, SEQ ID NO:1139, SEQ ID NO:1140, SEQ ID
           NO:1141, SEQ ID NO:1142, SEQ ID NO:1143, SEQ ID NO:1144, SEQ ID
 5
           NO:1145, SEQ ID NO:1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID
           NO:1149, SEQ ID NO:1150, SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID
           NO:1153, SEQ ID NO:1154, SEQ ID NO:1155, SEQ ID NO:1156, SEQ ID
           NO:1157, SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQ ID
           NO:1161, SEQ ID NO:1162, SEQ ID NO:1163, SEQ ID NO:1164, SEQ ID
10
           NO:1165, SEQ ID NO:1166, SEQ ID NO:1167, SEQ ID NO:1168, SEQ ID
           NO:1169, SEQ ID NO:1170, SEQ ID NO:1171, SEQ ID NO:1172, SEQ ID
           NO:1173, SEQ ID NO:1174, SEQ ID NO:1175, SEQ ID NO:1176, SEQ ID
           NO:1177, SEQ ID NO:1178, SEQ ID NO:1179, SEQ ID NO:1180, SEQ ID
15
           NO:1181, SEQ ID NO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID
           NO:1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188, SEQ ID
           NO:1189, SEQ ID NO:1190, SEQ ID NO:1191, SEQ ID NO:1192, SEQ ID
           NO:1193, SEQ ID NO:1194, SEQ ID NO:1195, SEQ ID NO:1196, SEQ ID
           NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ ID NO:1200, SEQ ID
           NO:1201, SEQ ID NO:1202, SEQ ID NO:1203, SEQ ID NO:1204, SEQ ID
20
           NO:1205, SEQ ID NO:1206, SEQ ID NO:1207, SEQ ID NO:1208, SEQ ID
           NO:1209, SEQ ID NO:1210, SEQ ID NO:1211, SEQ ID NO:1212, SEQ ID
           NO:1213, SEQ ID NO:1214, SEQ ID NO:1215, SEQ ID NO:1216, SEQ ID
           NO:1217, SEQ ID NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID
25
           NO:1221, SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID
           NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228, SEQ ID
           NO:1229, SEQ ID NO:1230, SEQ ID NO:1231, SEQ ID NO:1232, SEQ ID
           NO:1233, SEQ ID NO:1234, SEQ ID NO:1235, SEQ ID NO:1236, SEQ ID
           NO:1237, SEQ ID NO:1238, SEQ ID NO:1239, SEQ ID NO:1240, SEQ ID
           NO:1241, SEQ ID NO:1242, SEQ ID NO:1243, SEQ ID NO:1244, SEQ ID
30
           NO:1245, SEQ ID NO:1246, SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID
           NO:1249, SEQ ID NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID
           NO:1253, SEQ ID NO:1254, SEQ ID NO:1255, SEQ ID NO:1256, SEQ ID
           NO:1257, SEQ ID NO:1258, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID
```

```
NO:1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264, SEQ ID
           NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID NO:1268, SEQ ID
           NO:1269, SEQ ID NO:1270, SEQ ID NO:1271, SEQ ID NO:1272, SEQ ID
           NO:1273, SEQ ID NO:1274, SEQ ID NO:1275, SEQ ID NO:1276, SEQ ID
 5
           NO:1277, SEQ ID NO:1278, SEQ ID NO:1279, SEQ ID NO:1280, SEQ ID
           NO:1281, SEQ ID NO:1282, SEQ ID NO:1283, SEQ ID NO:1284, SEQ ID
           NO:1285, SEQ ID NO:1286, SEQ ID NO:1287, SEQ ID NO:1288, SEQ ID
           NO:1289, SEQ ID NO:1290, SEQ ID NO:1291, SEQ ID NO:1292, SEQ ID
           NO:1293, SEQ ID NO:1294, SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID
           NO:1297, SEQ ID NO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID
10
           NO:1301, SEQ ID NO:1302, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID
           NO:1305, SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID
           NO:1309, SEQ ID NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID
           NO:1313, SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ ID
           NO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:1320, SEQ ID
15
           NO:1321, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324, SEQ ID
           NO:1325, SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID NO:1328, SEQ ID
           NO:1329, SEQ ID NO:1330, SEQ ID NO:1331, SEQ ID NO:1332, SEQ ID
           NO:1333, SEQ ID NO:1334, SEQ ID NO:1335, SEQ ID NO:1336, SEQ ID
20
           NO:1337, SEQ ID NO:1338, SEQ ID NO:1339, SEQ ID NO:1340, SEQ ID
           NO:1341, SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID NO:1344, SEQ ID
           NO:1345, SEQ ID NO:1346, SEQ ID NO:1347, SEQ ID NO:1348, SEQ ID
           NO:1349, SEQ ID NO:1350, SEQ ID NO:1351, SEQ ID NO:1352, SEQ ID
           NO:1353, SEQ ID NO:1354, SEQ ID NO:1355, SEQ ID NO:1356, SEQ ID
           NO:1357, SEQ ID NO:1358, SEQ ID NO:1359, SEQ ID NO:1360, SEQ ID
25
           NO:1361, SEQ ID NO:1362, SEQ ID NO:1363, SEQ ID NO:1364, SEQ ID
           NO:1365, SEQ ID NO:1366, SEQ ID NO:1367, SEQ ID NO:1368, SEQ ID
           NO:1369, SEQ ID NO:1370, SEQ ID NO:1371, SEQ ID NO:1372, SEQ ID
           NO:1373, SEQ ID NO:1374, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID
30
           NO:1377, SEQ ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1380, SEQ ID
           NO:1381, SEQ ID NO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID
           NO:1385, SEQ ID NO:1386, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID
           NO:1389, SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID
           NO:1393, SEQ ID NO:1394, SEQ ID NO:1395, SEQ ID NO:1396, SEQ ID
```

```
NO:1397, SEQ ID NO:1398, SEQ ID NO:1399, SEQ ID NO:1400, SEQ ID
           NO:1401, SEQ ID NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID
           NO:1405, SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1408, SEQ ID
           NO:1409, SEQ ID NO:1410, SEQ ID NO:1411, SEQ ID NO:1412, SEQ ID
           NO:1413, SEQ ID NO:1414, SEQ ID NO:1415, SEQ ID NO:1416, SEQ ID
 5
           NO:1417, SEQ ID NO:1418, SEQ ID NO:1419, SEQ ID NO:1420, SEQ ID
           NO:1421, SEQ ID NO:1422, SEQ ID NO:1423, SEQ ID NO:1424, SEQ ID
           NO:1425, SEQ ID NO:1426, SEQ ID NO:1427, SEQ ID NO:1428, SEQ ID
           NO:1429, SEO ID NO:1430, SEO ID NO:1431, SEO ID NO:1432, SEO ID
           NO:1433, SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1436, SEQ ID
10
           NO:1437, SEQ ID NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID
           NO:1441, SEQ ID NO:1442, SEQ ID NO:1443, SEQ ID NO:1444, SEQ ID
           NO:1445, SEQ ID NO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID
           NO:1449, SEQ ID NO:1450, SEQ ID NO:1451, SEQ ID NO:1452, SEQ ID
           NO:1453, SEQ ID NO:1454, SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID
15
           NO:1457, SEQ ID NO:1458, SEQ ID NO:1459, SEQ ID NO:1460, SEQ ID
           NO:1461, SEQ ID NO:1462, SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID
           NO:1465, SEQ ID NO:1466, SEQ ID NO:1467, SEQ ID NO:1468, SEQ ID
           NO:1469, SEQ ID NO:1470, SEQ ID NO:1471, SEQ ID NO:1472, SEQ ID
           NO:1473, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID NO:1476, SEQ ID
20
           NO:1477, SEQ ID NO:1478, SEQ ID NO:1479, SEQ ID NO:1480, SEQ ID
           NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484, SEQ ID
           NO:1485, SEQ ID NO:1486, SEQ ID NO:1487, SEQ ID NO:1488, SEQ ID
           NO:1489, SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ ID
25
           NO:1493, SEQ ID NO:1494, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID
           NO:1497, SEQ ID NO:1498, SEQ ID NO:1499, SEQ ID NO:1500, SEQ ID
           NO:1501, SEQ ID NO:1502, SEQ ID NO:1503, SEQ ID NO:1504, SEQ ID
           NO:1505, SEQ ID NO:1506, SEQ ID NO:1507, SEQ ID NO:1508, SEQ ID
           NO:1509, SEQ ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1512, SEQ ID
           NO:1513, SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1516, SEQ ID
30
           NO:1517, SEQ ID NO:1518, and SEQ ID NO:1519;
```

or a complement of said sequence.

In further embodiments, the present invention provides an isolated polynucleotide consisting essentially of a nucleotide sequence selected from the group consisting of:

5

10

15

20

25

30

SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEO ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEO ID NO:42, SEO ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEO ID NO:57, SEO ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEO ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEO ID NO:77, SEO ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEO ID NO:82, SEO ID NO:83, SEO ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEO ID NO:101, SEO ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEO ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEO ID NO:128, SEO ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEO ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163,

5

10

15

20

25

30

SEO ID NO:164, SEO ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172. SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEO ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEO ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEO ID NO:191, SEO ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEO ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEO ID NO:209, SEO ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEO ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEO ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEO ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEO ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEO ID NO:299, SEO ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, 5

10

15

20

25

30

SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEO ID NO:389, SEO ID NO:390, SEO ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:410, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:420, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEO ID NO:466, SEO ID NO:467, SEQ ID NO:468, SEQ ID NO:469,

5

10

15

20

25

30

SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEO ID NO:515, SEO ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, 5

10

15

20

25

30

SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEO ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEO ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775,

5

10

15

20

25

30

SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEO ID NO:785, SEO ID NO:786, SEO ID NO:787, SEO ID NO:788, SEO ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEO ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEO ID NO:826, SEO ID NO:827, SEO ID NO:828, SEO ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEO ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEO ID NO:857, SEO ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEO ID NO:902, SEO ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928,

5

10

15

20

25

30

SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEO ID NO:943, SEO ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEO ID NO:961, SEO ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEO ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEO ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEO ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEO ID NO:997, SEO ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005, SEQ ID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID NO:1009, SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012, SEQ ID NO:1013, SEQ ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID NO:1017, SEQ ID NO:1018, SEQ ID NO:1019, SEQ ID NO:1020, SEQ ID NO:1021, SEQ ID NO:1022, SEQ ID NO:1023, SEQ ID NO:1024, SEQ ID NO:1025, SEQ ID NO:1026, SEQ ID NO:1027, SEQ ID NO:1028, SEQ ID NO:1029, SEQ ID NO:1030, SEQ ID NO:1031, SEQ ID NO:1032, SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035, SEQ ID NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID NO:1039, SEQ ID NO:1040, SEQ ID NO:1041, SEQ ID NO:1042, SEQ ID NO:1043, SEQ ID NO:1044, SEQ ID NO:1045, SEQ ID NO:1046, SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID NO:1049, SEQ ID NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID NO:1053, SEQ ID NO:1054, SEQ ID NO:1055, SEQ ID NO:1056, SEQ ID NO:1057, SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1060, SEQ ID NO:1061, SEQ ID NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEQ ID NO:1065, SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ ID NO:1069, SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:1072, SEQ ID

```
NO:1073, SEQ ID NO:1074, SEQ ID NO:1075, SEQ ID NO:1076, SEQ ID
           NO:1077, SEQ ID NO:1078, SEQ ID NO:1079, SEQ ID NO:1080, SEQ ID
           NO:1081, SEQ ID NO:1082, SEQ ID NO:1083, SEQ ID NO:1084, SEQ ID
           NO:1085, SEQ ID NO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID
           NO:1089, SEQ ID NO:1090, SEQ ID NO:1091, SEQ ID NO:1092, SEQ ID
 5
           NO:1093, SEQ ID NO:1094, SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID
           NO:1097, SEQ ID NO:1098, SEQ ID NO:1099, SEQ ID NO:1100, SEQ ID
           NO:1101, SEQ ID NO:1102, SEQ ID NO:1103, SEQ ID NO:1104, SEQ ID
           NO:1105, SEQ ID NO:1106, SEQ ID NO:1107, SEQ ID NO:1108, SEQ ID
           NO:1109, SEQ ID NO:1110, SEQ ID NO:1111, SEQ ID NO:1112, SEQ ID
10
           NO:1113, SEQ ID NO:1114, SEQ ID NO:1115, SEQ ID NO:1116, SEQ ID
           NO:1117, SEQ ID NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEQ ID
           NO:1121, SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ ID
           NO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:1128, SEQ ID
           NO:1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132, SEQ ID
15
           NO:1133, SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID NO:1136, SEQ ID
           NO:1137, SEQ ID NO:1138, SEQ ID NO:1139, SEQ ID NO:1140, SEQ ID
           NO:1141, SEQ ID NO:1142, SEQ ID NO:1143, SEQ ID NO:1144, SEQ ID
           NO:1145, SEQ ID NO:1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID
           NO:1149, SEQ ID NO:1150, SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID
20
           NO:1153, SEQ ID NO:1154, SEQ ID NO:1155, SEQ ID NO:1156, SEQ ID
           NO:1157, SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQ ID
           NO:1161, SEQ ID NO:1162, SEQ ID NO:1163, SEQ ID NO:1164, SEQ ID
           NO:1165, SEQ ID NO:1166, SEQ ID NO:1167, SEQ ID NO:1168, SEQ ID
           NO:1169, SEQ ID NO:1170, SEQ ID NO:1171, SEQ ID NO:1172, SEQ ID
25
           NO:1173, SEQ ID NO:1174, SEQ ID NO:1175, SEQ ID NO:1176, SEQ ID
           NO:1177, SEQ ID NO:1178, SEQ ID NO:1179, SEQ ID NO:1180, SEQ ID
           NO:1181, SEQ ID NO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID
           NO:1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188, SEQ ID
           NO:1189, SEQ ID NO:1190, SEQ ID NO:1191, SEQ ID NO:1192, SEQ ID
30
           NO:1193, SEQ ID NO:1194, SEQ ID NO:1195, SEQ ID NO:1196, SEQ ID
           NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ ID NO:1200, SEQ ID
           NO:1201, SEQ ID NO:1202, SEQ ID NO:1203, SEQ ID NO:1204, SEQ ID
           NO:1205, SEQ ID NO:1206, SEQ ID NO:1207, SEQ ID NO:1208, SEQ ID
```

```
NO:1209, SEQ ID NO:1210, SEQ ID NO:1211, SEQ ID NO:1212, SEQ ID
           NO:1213, SEQ ID NO:1214, SEQ ID NO:1215, SEQ ID NO:1216, SEQ ID
           NO:1217, SEQ ID NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID
           NO:1221, SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID
           NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228, SEQ ID
 5
           NO:1229, SEQ ID NO:1230, SEQ ID NO:1231, SEQ ID NO:1232, SEQ ID
           NO:1233, SEQ ID NO:1234, SEQ ID NO:1235, SEQ ID NO:1236, SEQ ID
           NO:1237, SEQ ID NO:1238, SEQ ID NO:1239, SEQ ID NO:1240, SEQ ID
           NO:1241, SEQ ID NO:1242, SEQ ID NO:1243, SEQ ID NO:1244, SEQ ID
           NO:1245, SEQ ID NO:1246, SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID
10
           NO:1249, SEQ ID NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID
           NO:1253, SEQ ID NO:1254, SEQ ID NO:1255, SEQ ID NO:1256, SEQ ID
           NO:1257, SEQ ID NO:1258, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID
           NO:1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264, SEQ ID
15
           NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID NO:1268, SEQ ID
           NO:1269, SEQ ID NO:1270, SEQ ID NO:1271, SEQ ID NO:1272, SEQ ID
           NO:1273, SEQ ID NO:1274, SEQ ID NO:1275, SEQ ID NO:1276, SEQ ID
           NO:1277, SEQ ID NO:1278, SEQ ID NO:1279, SEQ ID NO:1280, SEQ ID
           NO:1281, SEQ ID NO:1282, SEQ ID NO:1283, SEQ ID NO:1284, SEQ ID
           NO:1285, SEQ ID NO:1286, SEQ ID NO:1287, SEQ ID NO:1288, SEQ ID
20
           NO:1289, SEQ ID NO:1290, SEQ ID NO:1291, SEQ ID NO:1292, SEQ ID
           NO:1293, SEQ ID NO:1294, SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID
           NO:1297, SEO ID NO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID
           NO:1301, SEQ ID NO:1302, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID
           NO:1305, SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID
25
           NO:1309, SEQ ID NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID
           NO:1313, SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ ID
           NO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:1320, SEQ ID
           NO:1321, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324, SEQ ID
30
           NO:1325, SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID NO:1328, SEQ ID
           NO:1329, SEQ ID NO:1330, SEQ ID NO:1331, SEQ ID NO:1332, SEQ ID
           NO:1333, SEQ ID NO:1334, SEQ ID NO:1335, SEQ ID NO:1336, SEQ ID
           NO:1337, SEQ ID NO:1338, SEQ ID NO:1339, SEQ ID NO:1340, SEQ ID
           NO:1341, SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID NO:1344, SEQ ID
```

```
NO:1345, SEQ ID NO:1346, SEQ ID NO:1347, SEQ ID NO:1348, SEQ ID
           NO:1349, SEQ ID NO:1350, SEQ ID NO:1351, SEQ ID NO:1352, SEQ ID
           NO:1353, SEQ ID NO:1354, SEQ ID NO:1355, SEQ ID NO:1356, SEQ ID
           NO:1357, SEQ ID NO:1358, SEQ ID NO:1359, SEQ ID NO:1360, SEQ ID
           NO:1361, SEQ ID NO:1362, SEQ ID NO:1363, SEQ ID NO:1364, SEQ ID
 5
           NO:1365, SEQ ID NO:1366, SEQ ID NO:1367, SEQ ID NO:1368, SEQ ID
           NO:1369, SEQ ID NO:1370, SEQ ID NO:1371, SEQ ID NO:1372, SEQ ID
           NO:1373, SEQ ID NO:1374, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID
           NO:1377, SEQ ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1380, SEQ ID
           NO:1381, SEQ ID NO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID
10
           NO:1385, SEQ ID NO:1386, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID
           NO:1389, SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID
           NO:1393, SEQ ID NO:1394, SEQ ID NO:1395, SEQ ID NO:1396, SEQ ID
           NO:1397, SEQ ID NO:1398, SEQ ID NO:1399, SEQ ID NO:1400, SEQ ID
           NO:1401, SEQ ID NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID
15
           NO:1405, SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1408, SEQ ID
           NO:1409, SEQ ID NO:1410, SEQ ID NO:1411, SEQ ID NO:1412, SEQ ID
           NO:1413, SEQ ID NO:1414, SEQ ID NO:1415, SEQ ID NO:1416, SEQ ID
           NO:1417, SEQ ID NO:1418, SEQ ID NO:1419, SEQ ID NO:1420, SEQ ID
           NO:1421, SEQ ID NO:1422, SEQ ID NO:1423, SEQ ID NO:1424, SEQ ID
20
           NO:1425, SEQ ID NO:1426, SEQ ID NO:1427, SEQ ID NO:1428, SEQ ID
           NO:1429, SEQ ID NO:1430, SEQ ID NO:1431, SEQ ID NO:1432, SEQ ID
           NO:1433, SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1436, SEQ ID
           NO:1437, SEQ ID NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID
           NO:1441, SEQ ID NO:1442, SEQ ID NO:1443, SEQ ID NO:1444, SEQ ID
25
           NO:1445, SEQ ID NO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID
           NO:1449, SEQ ID NO:1450, SEQ ID NO:1451, SEQ ID NO:1452, SEQ ID
           NO:1453, SEQ ID NO:1454, SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID
           NO:1457, SEQ ID NO:1458, SEQ ID NO:1459, SEQ ID NO:1460, SEQ ID
           NO:1461, SEQ ID NO:1462, SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID
30
           NO:1465, SEQ ID NO:1466, SEQ ID NO:1467, SEQ ID NO:1468, SEQ ID
           NO:1469, SEQ ID NO:1470, SEQ ID NO:1471, SEQ ID NO:1472, SEQ ID
           NO:1473, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID NO:1476, SEQ ID
           NO:1477, SEQ ID NO:1478, SEQ ID NO:1479, SEQ ID NO:1480, SEQ ID
```

NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484, SEQ ID NO:1485, SEQ ID NO:1486, SEQ ID NO:1487, SEQ ID NO:1488, SEQ ID NO:1489, SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ ID NO:1493, SEQ ID NO:1494, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:1497, SEQ ID NO:1498, SEQ ID NO:1499, SEQ ID NO:1500, SEQ ID NO:1501, SEQ ID NO:1502, SEQ ID NO:1503, SEQ ID NO:1504, SEQ ID NO:1505, SEQ ID NO:1506, SEQ ID NO:1507, SEQ ID NO:1508, SEQ ID NO:1509, SEQ ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1512, SEQ ID NO:1513, SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1516, SEQ ID NO:1517, SEQ ID NO:1518, and SEQ ID NO:1519;

or a complement of said sequence.

5

10

15

20

25

30

In yet other embodiments, the present invention provides an isolated polynucleotide comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of:

SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEO ID NO:7, SEO ID NO:8, SEO ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEO ID NO:47, SEO ID NO:48, SEO ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100,

5

10

15

20

25

30

SEO ID NO:101, SEO ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEO ID NO:182, SEO ID NO:183, SEO ID NO:184, SEO ID NO:185, SEO ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253,

5

10

15

20

25

30

SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEO ID NO:286, SEO ID NO:287, SEO ID NO:288, SEO ID NO:289, SEO ID NO:290, SEO ID NO:291, SEO ID NO:292, SEO ID NO:293, SEO ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEO ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:365, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406,

5

10

15

20

25

30

SEO ID NO:407, SEO ID NO:408, SEO ID NO:409, SEQ ID NO:410, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:420, SEO ID NO:421, SEO ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEO ID NO:439, SEO ID NO:440, SEO ID NO:441, SEQ ID NO:442, SEO ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEO ID NO:497, SEO ID NO:498, SEO ID NO:499, SEO ID NO:500, SEO ID NO:501, SEQ ID NO:502, SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEO ID NO:515, SEO ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEO ID NO:520, SEO ID NO:521, SEO ID NO:522, SEQ ID NO:523, SEO ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEO ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEO ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559,

5

10

15

20

25

30

SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEO ID NO:596, SEO ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712,

5

10

15

20

25

30

SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEO ID NO:808, SEO ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEO ID NO:853, SEO ID NO:854, SEO ID NO:855, SEQ ID NO:856, SEO ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865,

5

10

15

20

25

30

SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEO ID NO:956, SEO ID NO:957, SEO ID NO:958, SEO ID NO:959, SEO ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005, SEQ ID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID NO:1009, SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012, SEQ ID NO:1013, SEQ ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID

```
NO:1017, SEQ ID NO:1018, SEQ ID NO:1019, SEQ ID NO:1020, SEQ ID
           NO:1021, SEQ ID NO:1022, SEQ ID NO:1023, SEQ ID NO:1024, SEQ ID
           NO:1025, SEQ ID NO:1026, SEQ ID NO:1027, SEQ ID NO:1028, SEQ ID
           NO:1029, SEQ ID NO:1030, SEQ ID NO:1031, SEQ ID NO:1032, SEQ ID
           NO:1033, SEQ ID NO:1034, SEQ ID NO:1035, SEQ ID NO:1036, SEQ ID
 5
           NO:1037, SEQ ID NO:1038, SEQ ID NO:1039, SEQ ID NO:1040, SEQ ID
           NO:1041, SEQ ID NO:1042, SEQ ID NO:1043, SEQ ID NO:1044, SEQ ID
           NO:1045, SEO ID NO:1046, SEO ID NO:1047, SEQ ID NO:1048, SEQ ID
           NO:1049, SEQ ID NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID
10
           NO:1053, CEQ ID NO:1054, SEQ ID NO:1055, SEQ ID NO:1056, SEQ ID
           NO:1057, SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1060, SEQ ID
           NO:1061, SEQ ID NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEQ ID
           NO:1065, SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ ID
           NO:1069, SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:1072, SEQ ID
           NO:1073, SEQ ID NO:1074, SEQ ID NO:1075, SEQ ID NO:1076, SEQ ID
15
           NO:1077, SEQ ID NO:1078, SEQ ID NO:1079, SEQ ID NO:1080, SEQ ID
           NO:1081, SEQ ID NO:1082, SEQ ID NO:1083, SEQ ID NO:1084, SEQ ID
           NO:1085, SEQ ID NO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID
           NO:1089, SEQ ID NO:1090, SEQ ID NO:1091, SEQ ID NO:1092, SEQ ID
           NO:1093, SEQ ID NO:1094, SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID
20
           NO:1097, SEQ ID NO:1098, SEQ ID NO:1099, SEQ ID NO:1100, SEQ ID
           NO:1101, SEQ ID NO:1102, SEQ ID NO:1103, SEQ ID NO:1104, SEQ ID
           NO:1105, SEQ ID NO:1106, SEQ ID NO:1107, SEQ ID NO:1108, SEQ ID
           NO:1109, SEQ ID NO:1110, SEQ ID NO:1111, SEQ ID NO:1112, SEQ ID
           NO:1113, SEQ ID NO:1114, SEQ ID NO:1115, SEQ ID NO:1116, SEQ ID
25
           NO:1117, SEQ ID NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEQ ID
           NO:1121, SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ ID
           NO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:1128, SEQ ID
           NO:1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132, SEQ ID
30
           NO:1133, SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID NO:1136, SEQ ID
           NO:1137, SEQ ID NO:1138, SEQ ID NO:1139, SEQ ID NO:1140, SEQ ID
           NO:1141, SEQ ID NO:1142, SEQ ID NO:1143, SEQ ID NO:1144, SEQ ID
           NO:1145, SEQ ID NO:1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID
           NO:1149, SEQ ID NO:1150, SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID
```

```
NO:1153, SEQ ID NO:1154, SEQ ID NO:1155, SEQ ID NO:1156, SEQ ID
           NO:1157, SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQ ID
           NO:1161, SEQ ID NO:1162, SEQ ID NO:1163, SEQ ID NO:1164, SEQ ID
           NO:1165, SEQ ID NO:1166, SEQ ID NO:1167, SEQ ID NO:1168, SEQ ID
           NO:1169, SEQ ID NO:1170, SEQ ID NO:1171, SEQ ID NO:1172, SEQ ID
 5
           NO:1173, SEQ ID NO:1174, SEQ ID NO:1175, SEQ ID NO:1176, SEQ ID
           NO:1177, SEQ ID NO:1178, SEQ ID NO:1179, SEQ ID NO:1180, SEQ ID
           NO:1181, SEQ ID NO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID
           NO:1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188, SEQ ID
           NO:1189, SEQ ID NO:1190, SEQ ID NO:1191, SEQ ID NO:1192, SEQ ID
10
           NO:1193, SEQ ID NO:1194, SEQ ID NO:1195, SEQ ID NO:1196, SEQ ID
           NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ ID NO:1200, SEQ ID
           NO:1201, SEQ ID NO:1202, SEQ ID NO:1203, SEQ ID NO:1204, SEQ ID
           NO:1205, SEQ ID NO:1206, SEQ ID NO:1207, SEQ ID NO:1208, SEQ ID
           NO:1209, SEQ ID NO:1210, SEQ ID NO:1211, SEQ ID NO:1212, SEQ ID
15
           NO:1213. SEO ID NO:1214. SEO ID NO:1215, SEQ ID NO:1216, SEQ ID
           NO:1217, SEQ ID NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID
           NO:1221, SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID
           NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228, SEQ ID
           NO:1229, SEQ ID NO:1230, SEQ ID NO:1231, SEQ ID NO:1232, SEQ ID
20
           NO:1233, SEQ ID NO:1234, SEQ ID NO:1235, SEQ ID NO:1236, SEQ ID
           NO:1237, SEQ ID NO:1238, SEQ ID NO:1239, SEQ ID NO:1240, SEQ ID
           NO:1241, SEQ ID NO:1242, SEQ ID NO:1243, SEQ ID NO:1244, SEQ ID
           NO:1245, SEQ ID NO:1246, SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID
           NO:1249, SEQ ID NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID
25
           NO:1253, SEQ ID NO:1254, SEQ ID NO:1255, SEQ ID NO:1256, SEQ ID
           NO:1257, SEQ ID NO:1258, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID
           NO:1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264, SEQ ID
           NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID NO:1268, SEQ ID
           NO:1269, SEQ ID NO:1270, SEQ ID NO:1271, SEQ ID NO:1272, SEQ ID
30
           NO:1273, SEQ ID NO:1274, SEQ ID NO:1275, SEQ ID NO:1276, SEQ ID
           NO:1277, SEO ID NO:1278, SEO ID NO:1279, SEQ ID NO:1280, SEQ ID
           NO:1281, SEQ ID NO:1282, SEQ ID NO:1283, SEQ ID NO:1284, SEQ ID
           NO:1285, SEQ ID NO:1286, SEQ ID NO:1287, SEQ ID NO:1288, SEQ ID
```

```
NO:1289, SEQ ID NO:1290, SEQ ID NO:1291, SEQ ID NO:1292, SEQ ID
          NO:1293, SEQ ID NO:1294, SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID
           NO:1297, SEQ ID NO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID
           NO:1301, SEQ ID NO:1302, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID
           NO:1305, SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID
 5
           NO:1309, SEQ ID NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID
           NO:1313, SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ ID
           NO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:1320, SEQ ID
           NO:1321, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324, SEQ ID
           NO:1325, SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID NO:1328, SEQ ID
10
           NO:1329, SEQ ID NO:1330, SEQ ID NO:1331, SEQ ID NO:1332, SEQ ID
           NO:1333, SEQ ID NO:1334, SEQ ID NO:1335, SEQ ID NO:1336, SEQ ID
           NO:1337, SEQ ID NO:1338, SEQ ID NO:1339, SEQ ID NO:1340, SEQ ID
           NO:1341, SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID NO:1344, SEQ ID
           NO:1345, SEQ ID NO:1346, SEQ ID NO:1347, SEQ ID NO:1348, SEQ ID
15
           NO:1349, SEQ ID NO:1350, SEQ ID NO:1351, SEQ ID NO:1352, SEQ ID
           NO:1353, SEQ ID NO:1354, SEQ ID NO:1355, SEQ ID NO:1356, SEQ ID
           NO:1357, SEQ ID NO:1358, SEQ ID NO:1359, SEQ ID NO:1360, SEQ ID
           NO:1361, SEQ ID NO:1362, SEQ ID NO:1363, SEQ ID NO:1364, SEQ ID
           NO:1365, SEQ ID NO:1366, SEQ ID NO:1367, SEQ ID NO:1368, SEQ ID
20
           NO:1369, SEQ ID NO:1370, SEQ ID NO:1371, SEQ ID NO:1372, SEQ ID
           NO:1373, SEQ ID NO:1374, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID
           NO:1377, SEO ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1380, SEQ ID
           NO:1381, SEQ ID NO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID
25
           NO:1385, SEQ ID NO:1386, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID
           NO:1389, SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID
           NO:1393, SEQ ID NO:1394, SEQ ID NO:1395, SEQ ID NO:1396, SEQ ID
           NO:1397, SEQ ID NO:1398, SEQ ID NO:1399, SEQ ID NO:1400, SEQ ID
           NO:1401, SEQ ID NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID
           NO:1405, SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1408, SEQ ID
30
           NO:1409, SEQ ID NO:1410, SEQ ID NO:1411, SEQ ID NO:1412, SEQ ID
           NO:1413, SEQ ID NO:1414, SEQ ID NO:1415, SEQ ID NO:1416, SEQ ID
           NO:1417, SEQ ID NO:1418, SEQ ID NO:1419, SEQ ID NO:1420, SEQ ID
           NO:1421, SEQ ID NO:1422, SEQ ID NO:1423, SEQ ID NO:1424, SEQ ID
```

NO:1425, SEQ ID NO:1426, SEQ ID NO:1427, SEQ ID NO:1428, SEQ ID NO:1429, SEQ ID NO:1430, SEQ ID NO:1431, SEQ ID NO:1432, SEQ ID NO:1433, SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1436, SEQ ID NO:1437, SEQ ID NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID NO:1441, SEQ ID NO:1442, SEQ ID NO:1443, SEQ ID NO:1444, SEQ ID 5 NO:1445, SEQ ID NO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID NO:1449, SEQ ID NO:1450, SEQ ID NO:1451, SEQ ID NO:1452, SEQ ID NO:1453, SEQ ID NO:1454, SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID NO:1457, SEO ID NO:1458, SEO ID NO:1459, SEQ ID NO:1460, SEQ ID 10 NO:1461, SEQ ID NO:1462, SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID NO:1465, SEQ ID NO:1466, SEQ ID NO:1467, SEQ ID NO:1468, SEQ ID NO:1469, SEQ ID NO:1470, SEQ ID NO:1471, SEQ ID NO:1472, SEQ ID NO:1473, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID NO:1476, SEQ ID NO:1477, SEQ ID NO:1478, SEQ ID NO:1479, SEQ ID NO:1480, SEQ ID NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484, SEQ ID 15 NO:1485, SEQ ID NO:1486, SEQ ID NO:1487, SEQ ID NO:1488, SEQ ID NO:1489, SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ ID NO:1493, SEQ ID NO:1494, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:1497, SEQ ID NO:1498, SEQ ID NO:1499, SEQ ID NO:1500, SEQ ID NO:1501, SEQ ID NO:1502, SEQ ID NO:1503, SEQ ID NO:1504, SEQ ID 20 NO:1505, SEQ ID NO:1506, SEQ ID NO:1507, SEQ ID NO:1508, SEQ ID NO:1509, SEQ ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1512, SEQ ID NO:1513, SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1516, SEQ ID NO:1517, SEQ ID NO:1518, and SEQ ID NO:1519;

or to a complement of said sequence.

The invention also provides for proteins encoded by the above-described polynucleotides.

DETAILED DESCRIPTION

The nucleotide sequences of the sESTs of the present invention are reported in the Sequence Listing below. Table 2 lists the "Clone ID Nos." assigned by applicants to each SEQ ID NO: in the Sequence Listing.

Table 2

Each pair of entries in this table consists of the SEQ ID NO (e.g., 1, 2, etc.) followed by the Clone ID No. for such sequence (e.g., B11, B18, etc.).

	1	BK8	32		62	DY307	93	DY611
5	2	BV216	DW10	01	63	DY643	94	EC259
	3	BV274	33	DW831	64	DY656	95	DY711
	4	BV48	34	DW859	65	DY675	96	EC248
	5	DN351	35	DW875	66	DY988	97	EC32
	6	DN381	36	DW888	67	DY992	98	DO703
10	7	DN405	37	DW901	68	DY225	99	DO713
	8	DU651	38	DW902	69	DY236	100	DR294
	9 .	DU660	39	DW904	70	DY242	101	DYI
	10	DU675	40	DW905	71	DY254	102	DY10
	11	DU684	41	DW906	72	DY914	103	DY106
15	12	DD364	42	DW929	73	DY946	104	DY117
	13	DD379	43	DW981	74	DY955	105	DY148
	14	DD389	44	DX191	75	DY959	106	DY167
	15	DD401	45	DX219	76	DY961	107	DY17
	16	DD413	46	DX245	77	DY981	108	DY174
20	17	DD426	47	DX256	78	DY357	109	DY175
	18	DD428	48	DX267	79	DY358	110	DY178
	19	DN293	49	DX66	80	DY381	111	DY23
	20	DD454	50	DX81	81	DY413	112	DY27
	21	DD472	51	DY780	82	DY414	113	DY41
25	22	DD475	52	DY803	83	DY415	114	DY42
	23	DT306	53	DY809	84	DY431	115	DY8
	24	DW282	54	DY814	85	DY433	116	DY93
	25	DW300	55	DY261	86	DY436	117	EB107
	26	DW303	56	DY264	87	DY543	118	EB113
30	27	DW323	57	DY266	88	DY565	119	EB163
	28	DT258	58	DY271	89	DY585	120	EB25
	29	DW246	59	DY287	90	DY331	121	EB77
	30	DW324	60	DY297	91	DY586	122	EC172
	31	DW333	61	DY306	92	DY696	123	EC302

	124	EC317	158	EJ90	192	EJ224	226	EP378
	125	EC328	159	EM270	193	EJ240	227	EP38
	126	EC341	160	EM278	194	EJ254	228	EO109
	127	EC349	161	EN186	195	EJ258	229	EO120
5	128	ED105	162	EN215	196	EJ265	230	EQ166
	129	ED21	163	EN217	197	EJ280	231	EQ187
	130	ED23	164	EN234	198	EJ285	232	EQ188
	131	ED30	165	EN239	199	EJ307	233	EQ190
	132	ED43	166	EN256	200	EJ38	234	EQ194
10	133	ED54	167	EN260	201	DO235	235	EQ207
	134	EE177	168	EN264	202	DO238	236	EQ208
	135	EE65	169	EN266	203	DO263	237	EQ214
	136	DQ365	170	EN271	204	DO319	238	EQ215
	137	DK393	171	EN274	205	EJ324	239	EQ218
15	138	DK399	172	EN287	206	EN470	240	EQ219
	139	DO1128	173	EN310	207	EN477	241	EQ220
	140	DO1150	174	EN342	208	EN539	242	EQ221
	141	DZ34	175	EN363	209	EP451	243	EQ226
	142	DZ42	176	EN423	210	EO10	244	EQ229
20	143	EE116	177	EH106	211	EO14	245	EQ230
	144	EE93	178	EH145	212	EO48	246	EQ231
	145	DJ387	179	EH166	213	EO58	247	EQ233
	146	DJ402	180	EH167	214	EO60	248	EQ237
	147	DN551	181	EH178	215	EO62	249	EQ261
25	148	DN559	182	EH180	216	EO68	250	EQ272
	149	DN603	183	EH186	217	EO89	251	ER104
	150	DN629	184	EH188	218	EO90	252	ER106
	151	DN631	185	EH189	219	EO92	253	ER128
	152	DO11	186	EH190	220	EO97	254	ER134
30	153	DO118	187	EH203	221	EP108	255	ER174
	154	DO15	188	EH206	222	EP165	256	ER201
	155	DO157	189	EH95	223	EP219	257	ER77
	156	DO19	190	EJ148	224	EP234	258	ER80
	157	EJ53	191	EJ179	225	EP277	259	ER97

	260	ES136	294	ER399	328	FB264	362	FG208
	261	ES306	295	ER408	329	FB38	363	FG265
	262	ES35	296	ER418	330	FB71	364	FG274
	263	ES37	297	ER430	331	FB78	365	FG278
5	264	ES206	298	ER471	332	FC12	366	FG281
	265	ET13	299	ER476	333	FB349	367	FG291
	266	ET22	300	ER493	334	FC136	368	FG294
	267	ET39	301	ER496	335	FC170	369	FG340
	268	ET84	302	ER498	336	FD152	370	FG363
10	269	EF121	303	ER524	337	FE141	371	FG372
	270	EF129	304	EW13	338	FE5	372	FG380
	271	EF45	305	EX25	339	FD131	373	FG401
	272	EF48	306	EX53	340	EC425	374	FG99
	273	EF5	307	EY165	341	EC428	375	FI203
15	274	EF88	308	EY29	342	ED204	376	FE311
	275	EG194	309	EZ35	343	ED205	377	FE315
	276	EG251	310	EZ4	344	ED210	378	FE322
	277	EH12	311	EZ88	345	ED223	379	FE329
	278	EH213	312	EZ93	346	DI301	380	FE341
20	279	EH22	313	FA8	347	DI303	381	FE366
	280	EH221	314	EV234	348	DI310	382	FE375
	281	EH248	315	EW101	349	DI39	383	FE412
	282	EH29	316	EW109	350	DJ90	384	FE415
	283	EH61	317	EW150	351	DM290	385	FE442
25	284	EH68	318	EY197	352	DM304	386	FE472
	285	EH78	319	EY206	353	DN618	387	FE557
	286	EH80	320	EY215	354	DN896	388	FE568
	287	ER311	321	EZ209	355	DN904	389	FE619
	288	ER329	322	FA139	356	FG119	390	FE676
30	289	ER343	323	FA171	357	FG126	391	FE682
	290	ER366	324	FA252	358	FG140	392	FF150
	291	ER369	325	FA28	359	FG193	393	FF153
	292	ER381	326	FA316	360	FG197	394	FF168
	293	ER395	327	FA95	361	FG198	395	FF175

	396	FF181	430	FH17	464	FN203	498	FO201
	397	FF46	431	FH170	465	FN228	499	FO209
	398	FF49	432	FH24	466	FN229	500	FO211
	399	FF97	433	FH3	467	FN251	501	FO215
5	400	FG41	434	FH39	468	FN254	502	FO253
	401	FG437	435	FH56	469	FP134	503	FO254
	402	FG441	436	FH6	470	FP14	504	FO261
	403	FG448	437	FH66	471	FP163	505	FO267
	404	FG45	438	FM109	472	FP172	506	FO275
10	405	FG492	439	FM13 ·	473	FP71	507	FO290
	406	FG504	440	FM15	474	FP87	508	FO292
	407	FG565	441	FM150	475	E1118	509	FO316
	408	FG567	442	FM170	476	EI16	510	FO324
	409	FG57	443	FM28	477	EI187	511	FO327
15	410	FG577	444	FM3	478	E1203	512	FO348
	411	FG615	445	FM32	479	EI228	513	FO36
	412	FG625	446	FM36	480	El231	514	FO38
	413	FG630	447	FM60	481	E1236	515	FO40
	414	FG659	448	FM86	482	EI239	516	FO66
20	415	FG708	449	FM95	483	EI243	517	FO75
	416	FG91	450	FM98	484	EI250	518	FP185
	417	FG884	451	FM99	485	EI255	519	FP193
	418	FG891	452	FN172	486	E1264	520	FP233
	419	FG909	453	FN19	487	E1273	521	FP239
25	420	FG912	454	FN29	488	FO11	522	FP246
	421	FG949	455	FN53	489	FO125	523	FP262
	422	FG952	456	FK199	490	FO128	524	FP268
	423	FG965	457	FK217	491	FO133	525	FP271
	424	FH10	458	FK23	492	FO135	526	FP273
30	425	FH116	459	FK32	493	FO147	527	FQ505
	426	FH123	460	FK59	494	FO152	528	DN647
	427	FH13	461	FK78	495	FO160	529	DN650
	428	FH136	462	FN189	496	FO173	530	DN676
	429	FH149	463	FN191	497	FO182	531	DO94

	532	FR292	566	DN827	600	FY201	634	DU4
	533	FR436	567	DN833	601	FY202	635	DU75
	534	FR451	568	DN834	602	FY243	636	FY386
	535	FR473	569	DN850	603	FY265	637	FY388
5	536	FS10	570	DO913	604	FY316	638	FY398
	537	FS106	571	DO923	605	FY318	639	FY414
	538	FS107	572	DO935	606	FY321	640	GA48
	539	FS143	573	DO938	607	FY354	641	GA63
	540	FS173	574	DO944	608	FY356	642	GA64
10	541	FS28	575	DO949	609	FY421	643	DT382
	542	FS31	576	DO952	610	FY430	644	DT385
	543	FS40	577	DQ12	611	FY455	645	DT388
	544	FV35	578	DT2	612	FY484	646	DT464
	545	FV49	579	DT44	613	FY524	647	DT470
15	546	FV68	580	DT53	614	FY530	648	DT478
	547	FW13	581	DT8	615	FY628	649	DT482
	548	FW64	582	FQ661	616	DQ242	650	DU114
	549	FY127	583	FQ672	617	DQ262	651	DU118
	550	FY136	584	FQ696	618	DQ276	652	DU123
20	551	FY60	585	FR1087	619	DQ285	653	DU133
	552	FY65	586	FR927	620	DQ304	654	DU156
	553	FY72	587	FR938	621	DQ313	655	DU157
	554	DN1112	588	FR980	622	DQ51	656	FZ5
	555	DN1118	589	FV122	623	DQ54	657	FZ87
25	556	DN1122	590	FV131	624	DR628	658	DW181
	557	DN782	591	FV132	625	GU215	659	DW309
	558	DN793	592	FV84	626	FM481	660	DXI
	559	DN795	593	FV85	627	DT117	661	DX15
	560	DN806	594	FV95	628	DT133	662	DX19
30	561	DN809	595	FX115	629	DT139	663	DX22
	562	DN810	596	FX127	630	DT164	664	DX29
	563	DN814	597	FX154	631	DU160	665	DX3
	564	DN815	598	FY187	632	DU164	666	DX4
	565	DN823	599	FY199	633	DU166	667	FZ428

	668	FZ163	702	FZ209	736	GE89	770	GF151
	669	DY474	703	FZ254	737	DY516	771	GF179
	670	FZ139	704	FZ346	738	DY529	772	GF99
	671	FX76	705	GA82	739	DY530	773	GB261
5	672	FX65	706	GA85	740	DY538	774	GC499
	673	FX55	707	GA91	741	DY830	775	GD177
	674	DU536	708	DX299	742	DY857	776	GD7
	675	FZ534	709	DX304	743	EA17	777	GE300
	676	DU515	710	DX309	744	EA36	778	DX179
10	677	DU475	711	DX316	745	GG73	779	DY757
	678	DU462	712	DX328	746	DU544	780	EC392
	679	DU353	713	DX336	747	DU560	781	EE15
	680	DU341	714	DX354	748	DZ109	782	DU408
	681	DU306	715	DX357	749	EA105	78 3	DU410
15	682	DU278	716	DX359	750	EA106	784	DU416
	683	DU244	717	DX363	751	EA110	785	DU447
	684	DU238	718	DX364	752	EA123	786	DXIII
	685	DU236	719	DY478	753	EA46	787	DX112
	686	DU231	720	DY497	754	EA58	788	DX123
20	687	FZ639	721	DY508	755	EA7	789	DX138
	688	GC456	722	EA89	756	EA82	790	DX146
	689	GG126	723	EA9	757	GE361	791	DX153
	690	GG129	724	EA90	758	FZ510	792	DX157
	691	GG152	725	GC52	759	GE387	793	EE4
25	692	GG170	726	GC57	760	GE410	794	FZ676
	693	GG182	727	GC585	761	GE463	795	FZ683
	694	GG217	728	GC74	762	GE466	796	GD309
	695	GG440	729	GE28	763	GE468	797	GD358
	696	GG619	730	GE41	764	GE471	798	GG543
30	697	DX279	731	GE51	765	GE524	799	FX516
	698	DX288	732	GE60	766	GE539	800	FX536
	699	DX290	733	GE68	767	GE548	801	FZ1032
	700	DX295	734	·GE80	768	GE549	802	FZ1041
	701	DX298	735	GE82	769	GE99	803	FZ1072

	804	FZ781	838	DD12	872	GP304	906	EM40
	805	GA147	839	DD127	873	GP329	907	EM42
	806	GA284	840	DD177	874	GP338	908	EM58
	807	DY723	841	DD204	87 5	GP340	909	GF185
5	808	DY737	842	DD207	876	GQ13	910	GF187
	809	DY739	843	DD211	877	GQ18	911	GF196
	810	EC399	844	DD217	878	GQ22	912	GF197
	811	EM254	845	DD504	879	GQ38	913	GF207
	812	FX194	846	DD509	880	GQ40	914	GF209
10	813	FX234	847	DD518	881	GQ56	915	GF212
	814	FX281	848	DD537	882	GQ6	916	GF218
	815	FX317	849	DD541	883	DD312	917	GF221
	816	FX353	850	DD71	884	DD352	918	GF222
	817	FX395	851	DH941	885	EK145	919	GF250
15	818	GA293	852	DQ194	886	EK208	920	GF255
	819	GA321	853	DQ204	887	EK223	921	GF256
	820	GA327	854	DQ215	888	EK234	922	GI28
	821	GB160	855	DQ216	889	EK480	923	GI3
	822	GA132	856	EK423	890	EK491	924	GI30
20	823	GA135	857	EK424	891	EK499	925	GI51
	824	GA205	858	EK450	892	EK571	926	G163
	825	GB814	859	EL15	893	EK578	927	GI7
	826	GF87	860	DD285	894	EK581	928	G174
	827	GG687	861	EK598	895	EK591	929	GI88
25	828	GG692	862	EK622	896	DD215	930	GI9
	829	GG694	863	EK626	897	EK634	931	DY874
	830	GG702	864	EK649	898	EL358	932	DY886
	831	GG705	865	GO653	899	EL360	933	DY900
	832	GP23	866	GP107	900	EL387	934	EM358
30	833	GP56	867	GP123	901	EL391	935	EM381
	834	GP61	868	GP168	902	EM111	936	EM386
	835	GP65	869	GP232	903	EM112	937	EM388
	836	DD115	870	GP274	904	EM12	938	EM396
	837	DD119	871	GP297	905	EM125	939	EM397

	940	EM401	974	GT43	1008	HU212	1042	EY290
	941	EM406	975	GT6	1009	HU141	1043	EY304
	942	EM408	976	HR712	1010	HS555	1044	EY313
•	943	EM409	977	HR704	1011	HR95	1045	FK295
5	944	EM423	978	HR693	1012	HR906	1046	FK301
	945	EM424	979	HR628	1013	HR76	1047	FK317
	946	FE196	980	HR605	1014	HR753	1048	FK328
	947	FE204	981	EK341	1015	HR731	1049	FK349
	948	FE205	982	EK390	1016	EN116	1050	FK350
10	949	FE207	983	EN108	1017	EM341	1051	FK354
	950	FE215	984	FK235	1018	FJ283	1052	FK365
	951	FE222	985	GK428	1019	FJ307	1053	FQ105
	952	FE227	986	GT56	1020	FJ70	1054	FQ239
	953	FE228	987	FQ562	1021	FM176	1055	FQ360
15	954	FE248	988	FQ605	1022	FM197	1056	FQ45
	955	FE263	989	FQ608	1023	FM205	1057	GU353
	956	FE271	990	FQ609	1024	FM208	1058	GX167
	957	GF296	991	FQ612	1025	FM229	1059	GX183
	958	GN38	992	FS49	1026	FQ419	1060	GX208
20	959	GN45	993	FS87	1027	GX48	1061	GX210
	960	GN60	994	GM101	1028	GX5	1062	FM369
	961	GN68	995	GM103	1029	GX92	1063	FM375
	962	GN82	996	GM114	1030	FM289	1064	FM389
	963	GR286	997	GM129	1031	FM290	1065	FM432
25	964	EN10	998	GM153	1032	FM296	1066	FM459
	965	EN37	999	GM158	1033	FM300	1067	FM462
	966	FK127	1000	GM196	1034	FM312	1068	FM479
	967	FK151	1001	GM243	1035	GU512	1069	GX301
	968	GS26	1002	GM259	1036	GU534	1070	GX336
30	969	GS4	1003	GM266	1037	GU608	1071	GX354
	970	EV391	1004	HV38	1038	GX159	1072	GX361
	971	FG535	1005	HV23	1039	GX97	1073	GX403
	972	FG852	1006	HV199	1040	EW304	1074	GX408
	973	GT28	1007	HV181	1041	EY281	1075	,GX418

	1076	GU830	1110	GG3	1144	GN97	1178	HE91
	1077	GU925	1111	HA510	1145	HB443	1179	HF289
	1078	GU940	1112	HA422	1146	HC324	1180	HG444
	1079	GX1031	1113	HA382	1147	HC327	1181	HF137
5	1080	GX496	1114	HA360	1148	HC505	1182	HD706
•	1081	GX504	1115	HA249	1149	HC724	1183	HG710
	1082	GX509	1116	HA199	1150	HA1054	1184	HG733
	1083	GX536	1117	HA192	1151	HB1041	1185	HG775
	1084	GX540	1118	GZ568	1152	HB746	1186	HI222
10	1085	GX645	1119	GY520	1153	HB752	1187	HI39
	1086	GX700	1120	GY515	1154	HB975	1188	HH215
	1087	GX730	1121	GY330	1155	HC705	1189	HH357
	1088	GX750	1122	GY307	1156	HA791	1190	HH372
	1089	GX753	1123	HA81	1157	HC1002	1191	HH378
15	1090	GX760	1124	HA73	1158	HC1071	1192	HH390
	1091	GX814	1125	HA29	1159	HC1089	1193	HH396
	1092	GX851	1126	HA24	1160	HC831	1194	HH404
	1093	GX909	1127	HA18	1161	HC986	1195	HH433
	1094	GY102	1128	GZ78	1162	GY72	1196	HI2
20	1095	GY105	1129	GZ70	1163	HG159	1197	HH544
	1096	GY138	1130	GZ7	1164	HG620	1198	HH608
	1097	GY211	1131	GZ496	1165	HD161	1199	HH612
	1098	GX1082	1132	GZ495	1166	HD353	1200	HH625
	1099	GX1108	1133	GZ485	1167	HD378	1201	HH640
25	1100	GX1140	1134	GZ436	1168	HD417	1202	HH648
	1101	GX1165	1135	GZ420	1169	HD427	1203	HH691
	1102	GX576	1136	GZ378	1170	HD434	1204	HJ120
	1103	GX595	1137	GZ37	1171	HD499	1205	НЈ140
	1104	GX606	1138	GY558	1172	HD569	1206	НЈ181
30	1105	GX619	1139	GG894	1173	HD627	1207	НЈ184
	1106	GG874	1140	GG907	1174	HD648	1208	HJ22
	1107	GG858	1141	GN114	1175	HE111	1209	HJ253
	1108	GG836	1142	GN115	1176	HE142	1210	НJ265
	1109	GG8	1143	GN145	1177	HE178	1211	НJ362

	1212	НЈ395	1246	HM372	1280	HO722	1314	HT166
	1213	HJ411	1247	HM380	1281	HO799	1315	HT176
	1214	HJ444	1248	HM422	1282	HO801	1316	HT193
	1215	НJ65	1249	HM444	1283	HO817	1317	HT43
5	1216	НJ674	1250	HM497	1284	HO82	1318	HT81
	1217	НJ705	1251	HM544	1285	HK719	1319	HW149
	1218	HJ81	1252	HM643	1286	HO1077	1320	HW152
	1219	HJ862	1253	HN72	1287	HO1080	1321	HW190
	1220	НJ949	1254	HN78	1288	HO1087	1322	HW204
10	1221	HK10	1255	HO107	1289	HO1143	1323	HW221
	1222	HK26	1256	HO237	1290	HO1176	1324	HW243
	1223	HK60	1257	HO266	1291	HO1183	1325	HW261
	1224	НЈ1037	1258	HO277	1292	HO1216	1326	HW368
	1225	НJ968	1259	HO283	1293	HO1271	1327	HW74
15	1226	HJ981	1260	HO292	1294	HO1329	1328	HX10
	1227	НЈ994	1261	HO294	1295	HO1434	1329	HX102
	1228	НJ995	1262	HO305	1296	HO1441	1330	HX110
	1229	HK189	1263	HO315	1297	HO1453	1331	HX113
	1230	HK234	1264	HO332	1298	HO854	1332	HX155
20	1231	HK650	1265	HO358	1299	HO868	1333	HX188
	1232	HK658	1266	HO476	1300	HP262	1334	HX29
	1233	HK669	1267	HO481	1301	HQ36	1335	HX50
	1234	HK713	1268	HO502	1302	HQ72	1336	HY13
	1235	HK899	1269	HO54	1303	GM16	1337	HY3
25	1236	HE187	1270	HO60	1304	GM286	1338	HY55
	1237	HK162	1271	HO600	1305	GM295	1339	HY57
	1238	HL25	1272	HO617	1306	GM335	1340	HZ15
	1239	HL380	1273	HO640	1307	GM365	1341	HZ8
	1240	HL73	1274	HO663	1308	HR397	1342	IAl
30	1241	HM50	1275	HO688	1309	HR560	1343	IA21
	1242	HM54	1276	HO692	1310	HR593	1344	IA32
	1243	HM91	1277	HO693	1311	HR598	1345	IA36
	1244	HM236	1278	HO703	1312	HT13	1346	IB2
	1245	HM280	1279	HO717	1313	HT137	1347	IC2

	1348	IC9	1382	IA167	1413	HW786	1447	1E362
	1349	HY229	1383	IA183	1414	HW810	1448	1H32
	1350	HY244	1384	[A188	1415	HW846	1449	11113
	1351	HY344	1385	1A200	1416	HW849	1450	IJ101
5	1352	HY370	1386	IA220	1417	IB15	1451	IJ163
	1353	HY374	1387	IA64	1418	IB19	1452	IJ167
	1354	HY404	1388	IA69	1419	IB22	1453	IF28
	1355	HY419	1389	1A86	1420	IB28	1454	IF376
	1356	HY435	1390	HW936	1421	IB36	1455	IF456
10	1357	HZ103	1391		1422	IB49	1456	IF87
	1358	HZ109	HW10	17	1423	IC103	1457	IJ1201
	1359	HZ111	1392		1424	IC126	1458	IJ1220
	1360	HZ115	HW10	44	1425	IC132	1459	IJ1237
	1361	HZ71	1393		1426	IC142	1460	IJ1240
15	1362	HZ76	HW10	59	1427	IC155	1461	IJ1247
	1363	HZ88	1394	HW430	1428	IC54	1462	IJ1287
	1364	HW115	1395	HW432	1429	IC87	1463	IJ1292
	1365	HW128	1396	HW440	1430	IC92	1464	IJ1299
	1366	HW477	1397	HW456	1431	IE146	1465	IJ583
20.	1367	HW483	1398	HW518	1432	IE147	1466	1J592
	1368	HW491	1399	HW591	1433	IE149	1467	IJ597
	1369	HW499	1400	HW598	1434	IE169	1468	IJ 629
	1370	HW507	1401	HW627	1435	IZ6	1469	1J638
	1371	HZ116	1402	H W646	1436	JE33	1470	IJ640
25	1372	HZ162	1403	HW649	1437	JE44	1471	IJ642
	1373	HZ185	1404	HW693	1438	JE52		IJ686
	1374	HZ201	1405	HW695	1439	IE10	1473	IG25
	1375	HZ224	1406	HW697	1440	IE47	1474	IG35
	1376	HZ262	1407	HW711	1441	IE73	1475	IH40
30	1377	1A106	1408	HW715	1442	JA37	1476	IH54
	1378	IA110	1409	HW730	1443	JA78	1477	[J288
	1379	IA114	1410	H W7 32	1444	JB12	1478	IJ76
	1380	IA153	1411	H W7 41	1445	JB23	1479	IF292
	1381	IA157	1412	HW750	1446	1E352	1480	IF513

	1481	IF548	1515	IQ58
	1482	IJ1043	1516	15488
	1483	IJ1048	1517	IS564
	1484	IJ1054	1518	IT23
5	1485	IJ1088	1519	IT44
	1486	13777		
	1487	1J887		
	1488	1J907		
	1489	IJ928		
10	1490	1J942		
	1491	ILI		
	1492	IL100		
	1493	IL112		
	1494	IL28		
15	1495	IKII		
	1496	IK14		
	1497	IK20		
	1498	IK203		
	1499	IK209		
20	1500	IK212		
	1501	IK343		
	1502	IK73		
	1503	10134		
	1504	IO138		
25	1505	10151		
	1506	IO202		
	1507	10209		
	1508	IO31		
	1509	10356		
30	1510	IO420		
	1511	1062		
	1512	IQ15		
	1513	IQ45		
	1514	IQ55		

The "Clone ID No." for a particular clone consists of one or two letters followed by a number. The letters designate the tissue source from which the sEST was isolated. Table 3 below lists the various sources which were run through applicants' signal sequence trap. Thus, the tissue source for a particular sEST sequence can be identified in Table 3 by the one and two letter designations used in the relevant "Clone ID No.". For example, a clone designated as "BA312" would have been isolated from a human placenta (26 yrs.) library (i.e., selection "BA") as indicated in Table 3.

As used herein, "polynucleotide" includes single- and double-stranded RNAs, DNAs and RNA:DNA hybrids.

10

15

20

25

30

As used herein a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplpasmic reticulum.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H.U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R.S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites. For example, fragments of the protein may be fused through "linker" sequences to the Fc portion of an immunoglobulin. For a bivalent form of the protein, such a fusion could be to the Fc portion of an IgG molecule. Other immunoglobulin isotypes may also be used to generate such fusions. For example, a protein - IgM fusion would generate a decayalent form of the protein of the invention.

The present invention also provides both full-length and mature forms of the disclosed proteins. The full-length form of the such proteins is identified in the sequence listing by translation of the nucleotide sequence of each disclosed clone. The mature form of such protein may be obtained by expression of the disclosed full-length polynucleotide (preferably those deposited with ATCC) in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein may also be determinable from the amino acid sequence of the full-length form.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corr sponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials.

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

10

15

20

25

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides disclosed herein.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing, preferably under reduced stringency conditions, more preferably under stringent conditions, most preferably under highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in Table 1 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 1

	Stringenc y Condition	Polynucleotide Hybrid	Hybrid Length (bp) [‡]	Hybridization Temperature and Buffer [†]	Wash Temperature and Buffer
5	A	DNA:DNA	≥ 50	65°C; 1xSSC -or- 42°C; 1xSSC, 50% formamide	65°C; 0.3xSSC
	В	DNA:DNA	< 50	T _B *; 1xSSC	T _B *; 1xSSC
	С	DNA:RNA	≥ 50	67°C; 1xSSC -or- 45°C; 1xSSC, 50% formamide	67°C; 0.3xSSC
	D	DNA:RNA	< 50	T _D *; 1xSSC	T _D *; 1xSSC
	E	RNA:RNA	≥ 50	70°C; 1xSSC -or- 50°C; 1xSSC, 50% formamide	70°C; 0.3xSSC
10	F	RNA:RNA	< 50	T _F *; 1xSSC	T _F *; 1xSSC
	G	DNA:DNA	≥ 50	65°C; 4xSSC -or- 42°C; 4xSSC, 50% formamide	65°C; 1xSSC
	н	DNA:DNA	<50	T _H *; 4xSSC	T _H *; 4xSSC
	I	DNA:RNA	≥ 50	67°C; 4xSSC -or- 45°C; 4xSSC, 50% formamide	67°C; 1xSSC
	J	DNA:RNA	< 50	T,*; 4xSSC	T,*; 4xSSC
15	K	RNA:RNA	≥ 50	70°C; 4xSSC -or- 50°C; 4xSSC, 50% formamide	67°C; 1xSSC
	L	RNA:RNA	< 50	T _L *; 2xSSC	T _L *; 2xSSC
	М	DNA:DNA	≥ 50	50°C; 4xSSC -or- 40°C; 6xSSC, 50% formamide	50°C; 2xSSC
	N	DNA:DNA	< 50	T _N *; 6xSSC	T _N *; 6xSSC
	0	DNA:RNA	≥ 50	55°C; 4xSSC -or- 42°C; 6xSSC, 50% formamidc	55°C; 2xSSC
20	P	DNA:RNA	< 50	T _p *; 6xSSC	T _P *; 6xSSC
	Q	RNA:RNA	≥ 50	60°C; 4xSSC -or- 45°C; 6xSSC, 50% formamide	60°C; 2xSSC
	R	RNA:RNA	< 50	T _R *; 4xSSC	T _R *; 4xSSC

58

5

10

15

25

30

⁵: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

*: SSPE (1xSSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH 7.4) can be substituted for SSC (1xSSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

* T_B - T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C) = 2(# of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C) = 81.5 + 16.6(log [Na⁺]) + 0.41(%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1xSSC = 0.165 M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and *Current Protocols in Molecular Biology*, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, such hybridizing polynucleotides have at least 70% sequence identity (more preferably, at least 80% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which they hybridize, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps. The solved polynucleotide encoding the protein of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control

5

1.0

15

20

25

30

sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California, U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl or Cibacrom blue 3GA

10

15

20

25

30

Sepharose; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, MA), Pharmacia (Piscataway, NJ) and InVitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("Flag") is commercially available from Kodak (New Haven, CT).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The protein may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those skilled in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques. Modifications

of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Patent No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are believed to be encompassed by the present invention.

USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

10

15

20

25

30

The polynucleotides provided by the present invention can be used by the research community for various purposes. The primary use of polynucleotides of the invention which are sESTs is as porbes for the identification and isolation of full-length cDNAs and genomic DNA molecules which correspond (i.e., is a longer polynucleotide sequence of which substantially the entire sEST is a fragment in the case of a full-length cDNA, or which encodes the sEST in the case of a genomic DNA molecule) to such sESTs. Techniques for use of such sequences as probes for larger cDNAs or genomic molecules are well known in the art.

The polynucleotides can also be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise antiprotein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify

polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligand... Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

10

15

20

25

30

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

10

15

20

25

30

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6 - Nordan, R. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley

and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

10

15

20

25

30

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre

5

10

15

20

25

30

syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-

blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins *in vivo* as described in Lenschow *et al.*, Science 257:789-792 (1992) and Turka *et al.*, Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function *in vivo* on the development of that disease.

10

15

20

25

30

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral

infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells *in vitro* with viral antigenpulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the *in vitro* activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells *in vivo*.

10

15

20

25

30

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I

or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

15

20

25

30

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: *In vitro* antibody production, Mond, J.J. and Brunswick, M. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-

3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991: Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

10

15

20

25

30

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for

5

10

15

20

25

30

example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemo:herapy,either *in-vivo* or *ex-vivo* (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hernatopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., N w York, NY. 1994; Long term culture initiating cell assay, Sutherland,

H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

10

15

20

25

30

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. *De novo* bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-liketissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-liketissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic

10

15

20

25

30

plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, *i.e.* for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, <u>Epidermal Wound Healing</u>, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

10

15

20

25

30

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale

et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

30

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

15 Receptor/Ligand Activity

10

20

25

30

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med.

169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusioninjury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

20 <u>Tumor Inhibition Activity</u>

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

30

5

10

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting

(suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

20

10

15

ADMINISTRATION AND DOSING

10

15

20

25

30

A protein of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or compliment its activity or Such additional factors and/or agents may be included in the use in treatment. pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects. Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent.

A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that

5

10

15

20

25

30

can directly signal T cells. Alternatively antibodies able to bind surface immunolgobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent No. 4,235,871; U.S. Patent No. 4,501,728; U.S. Patent No. 4,837,028; and U.S. Patent No. 4,737,323, all of which are incorporated herein by reference.

As used herein, the term "therapeutically effective amount" means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a mammal having a condition to be treated. Protein of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

5

10

15

20

25

30

Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably from about 25 to 90% protein of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein of the present invention, and preferably from about 1 to 50% protein of the present invention.

When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art.

The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with

10

15

20

25

30

which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about $0.01~\mu g$ to about 100~mg (preferably about 0.1~ng to about 10~mg, more preferably about $0.1~\mu g$ to about 1~mg) of protein of the present invention per kg body weight.

The duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the protein of the present invention will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.

Protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art, for example, as in R.P. Merrifield, J. Amer.Chem. Soc. 85, 2149-2154 (1963); J.L. Krstenansky, et al., FEBS Lett. 211, 10 (1987). Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein.

For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a

10

15

20

25

30

pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.

Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses(including hydroxyalkylcelluloses),including methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate,

poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt%, preferably 1-10 wt% based on total formulation weight, which represents the amount necessary to prevent desorbtion of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells.

In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), and insulin-like growth factor (IGF).

10

15

20

30

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins of the present invention.

The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either *in vivo* or *ex vivo* into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA).

Cells may also be cultured *ex vivo* in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced *in vivo* for therapeutic purposes.

Patent and literature references cited herein are incorporated by reference as if fully set forth.

Table 3

Sel.	Species	Tissue	Cell Type
AA	Human	Kidney	19-23wks., M/F pool of 5
AB	Human	Fetal Lung	Fetal Lung
AC	Human	Placenta	26yrs., 1 specimen
AD	Murine	Embryo	Fetal ES cells
AE	Murine	Spleen	Adult spleen
AF	Murine	Fetal Brain	Fetal Brain
AG	Murine	Fetal Brain	Fetal Brain
AH	Murine	Fetal Thymus	Fetal Thymus
AI	Human	Blood	Adult PBMC/TH1or2
AJ	Human	Testes	10-61yrs., pool of 11
AK	Human	Kidney	19-23wks., M/F pool of 5
AL	Human	Neural	Adult Glioblastoma line TG-1
AM	Human	Kidney	19-23wks., M/F pool of 5
AN	Murine	Bone Marrow	Adult Stromal cell line FCM-4
AO	Murine	Thymus	Adult Subtr. Adult Thymus
AP	Human	Placenta	26yrs., 1 specimen
AQ	Human	Ovary	PA-1 Teratocarcinoma
AR	Human	Retina	16-75yrs., pool of 76
AS	Human	Brain	19-23wks., M/F pool of 5
AT	Human	Blood	Adult lymphocytes+dend. cells
AU	Human	Testes	10-61 yrs., pool of 11
AV	Murine	Spleen	Adult spleen
AW	Human	Ovary	PA-1 Teratocarcinoma
AX	Human	Testes	10-61 yrs., pool of 11
AY	Human	Retina	16-75yrs., pool of 76
AZ	Human	Colon	Caco-2 Adenocarcinoma
В	Human	Blood	PeripheralBloodMononuclearCell
BA	Human	Placenta	26yrs., 1 specimen
BB	Human	Blood	Adult PBMC/TH1or2
BC	Murine	Embryo	Fetal ES cells
BD	Human	Kidney	19-23wks., M/F pool of 5
BE	Human	Blood	Adult PBMC/TH1or2
BF	Human	Brain	19-23wks., M/F pool of 5
BG	Human	Brain	N/A
BH	Human	Ovary	PA-1 Teratocarcinoma
BI	Human	Kidney	19-23wks., M/F pool of 5
BJ	Human	Ovary	PA-1 Teratocarcinoma
BK	Human	Retina	16-75yrs., pool of 76
BL	Human	Testes	10-61 yrs., pool of 11
BM	Human	Muscle	N/A
BN	Human	Placenta	26yrs., 1 specimen
ВО	Human	Retina	16-75yrs., pool of 76
BP	Human	Kidney	19-23wks., M/F pool of 5
BQ	Human	Colon	Caco-2 Adenocarcinoma Caco2

		77' 1	10.00: 1 34/51-45
BR	Human	Kidney	19-23wks., M/F pool of 5
BS	Human	Pituitary	Adult Pituitary
BT	Human	Blood	Adult PBMC
BU	Human	Placenta	26yrs., 1 specimen
BV	Human	Brain	N/A
BW	Human	Blood	Adult PBMC
BX	Human	Ovary	PA-1 Teratocarcinoma
BY	Human	Blood	Adult PBMC/TH1or2
BZ	Human	Kidney	19-23wks., M/F pool of 5
C	Human	Blood	PeripheralBloodMononuclearCell
=			Fetal ES cell embryoid bodies
CA	Murine	Embryo	•
СВ	Human	Brain	19-23wks., M/F pool of 5
CC T	Human	Brain	N/A
CD	Human	Brain	19-23wks., M/F pool of 5
CE	Human	Blood	Adult lymphocytes+dend. cells
CF	Human	Placenta	26yrs., 1 specimen
CG	Human	Testes	10-61yrs., pool of 11
CH	Human	Kidney	19-23wks., M/F pool of 5
CI	Human	Brain	N/A
CJ	Human	Brain	19-23wks., M/F pool of 5
CK	Human	Testes	10-61yrs., pool of 11
CL	Human	Retina	16-75yrs., pool of 76
CM	Human	Adult Lung	Adult Lung
CN	Human	Brain	19-23wks., M/F pool of 5
CO	Human	Brain	N/A
	Human		N/A
CP		SalivaryGland	
CQ	Human	Heart	13-73yrs., pool of 3
CR	Human	Testes	10-61yrs., pool of 11
CS	Human	Brain	19-23wks., M/F pool of 5
CT	Human	Brain	N/A
CU	Human	Pineal Gland	N/A
CV	Human	Mammary	Adult Human Mammary
CW	Human	Brain	19-23wks., M/F pool of 5
CY	Human	Pineal Gland	N/A
CZ	Human	Testes	10-61yrs., pool of 11
D	Human	Blood	PeripheralBloodMononuclearCell
DA	Human	Placenta	26yrs., 1 specimen
DB	Human	Prostate	Adult Prostate
DC	Human	Pineal Gland	Adult Pineal Gland
DD	Human	Testes	10-61yrs., pool of 11
DE	Human	Testes	Adult NCCIT TeratoCA
DF	Human	Brain	N/A
DG	Human	Placenta	26yrs., 1 specimen
		Brain	· · · · · · · · · · · · · · · · · · ·
DH	Human		19-23wks., M/F pool of 5
DI	Human	Testes	10-61yrs., pool of 11
DJ	Human	Placenta	26yrs., 1 specimen
DK	Human	Fetal Kidney2	Fetal Kidney

DL ·	Human	Brain	N/A
DM	Human	Brain	N/A
DN	Human	Brain	19-23wks., M/F pool of 5
DO	Human	Testes	10-61yrs., pool of 11
DP	Murine	Embryo	Fetal ES cell embryoid bodies
DQ	Human	Placenta	26yrs., 1 specimen
DR	Human	SalivaryGland	N/A
DT	Human	Brain	N/A
DU	Human	Brain	19-23wks., M/F pool of 5
DV	Human	Pineal Gland	Adult Pineal Gland
DW	Human	Brain	N/A
DX	Human	Testes	10-61yrs., pool of 11
DY	Human	Brain	N/A
DZ	Human	Testes	Adult NCCIT TeratoCA
E	Human	Blood	PeripheralBloodMononuclearCell
EA	Human	Brain	19-23wks., M/F pool of 5
EB	Human	Melanoma	Adult Melanoma
EC	Human	Brain	N/A
ED	Human	Placenta	26yrs., 1 specimen
EE	Human	Testes	10-61yrs., pool of 11
EF	Human	Liver	Adult Liver
EG	Human	Pancreas	Adult HPC-3 Ductal AdenoCA
EH	Human	Blood	
		Brain	PeripheralBloodMononuclearCell
EI	Human		19-23wks., M/F pool of 5
EJ	Human	Placenta	26yrs., 1 specimen
EK	Human	Brain	19-23wks., M/F pool of 5
EL	Human	Testes	10-61yrs., pool of 11
EM	Human	Fetal Kidney2	Fetal Kidney
EN	Human	Brain	19-23wks., M/F pool of 5
EO	Human	Adrenal Gland	Adult Adrenal Gland
EP	Human	Placenta	26yrs., 1 specimen
EQ	Human	Testes	10-61yrs., pool of 11
ER	Human	Brain	19-23wks., M/F pool of 5
ES	Human	Placenta	26yrs., 1 specimen
ET	Human	Testes	10-61yrs., pool of 11
EU	Human	Kidney	Adult Kidney
EV	Human	Stomach	Adult Stomach
EW	Human	Placenta	26yrs., 1 specimen
EX	Human	Testes	10-61 yrs., pool of 11
EY	Human	Brain	19-23wks., M/F pool of 5
EZ	Human	Fetal Kidney2	Fetal Kidney
FA	Human	Brain	19-23wks., M/F pool of 5
FB	Human	Placenta	26yrs., 1 specimen
FC	Human	Testes	10-61yrs., pool of 11
FD	Human	SalivaryGland	N/A
FE	Human	Brain	N/A
FF	Human	Testes	Adult NCCIT TeratoCA

FG	Human	Brain	N/A
FH	Human	Brain	19-23wks., M/F pool of 5
FI	Human	Small Intest	Adult Small Intestine
FJ	Human	Lung CA	Adult Lung CA
FK	Human	Kidney	Adult Kidney
FM	Human	Brain	N/A
FN	Human	Brain	19-23wks., M/F pool of 5
FO	Human	Brain	N/A
FP	Human	Placenta	26yrs., 1 specimen
FQ	Human	Testes	10-61yrs., pool of 11
FR	Human	Placenta	26yrs., 1 specimen
FS	Human	Testes	10-61yrs., pool of 11
FT	Chicken	Fetal Lung	Fetal Lung
FU	Chicken	Limb Bud	Fetal St. 23 Limb Bud
FV	Human	Testes	Adult NCCIT TeratoCA
FW	Human	Testes	Adult NCCIT TeratoCA
FX	Human	Brain	19-23wks., M/F pool of 5
FY	Human	Placenta	26yrs., 1 specimen
FZ	Human	Placenta	26yrs., 1 specimen
G	Human	Blood	PeripheralBloodMononuclearCell
GA	Human	Testes	10-61yrs., pool of 11
GB	Human	Placenta	26yrs., 1 specimen
GC	Human	Testes	10-61yrs., pool of 11
GD	Human	Placenta	26yrs., 1 specimen
GE	Human	Brain	N/A
GF	Human	Brain	19-23wks., M/F pool of 5
GG	Human	Fetal Kidney2	Fetal Kidney
GH	Human	Placenta	26yrs., 1 specimen
GI	Human	Retinoblastoma	Adult Retinoblastoma Y79
GJ	Murine	Spleen	Adult Spleen
GK	Human	Fetal Kidney2	Fetal Kidney
GL	Murine	Lymph Node	Adult Lymph Node
GM	Human	Uterus	N/A
GN	Human	Blood	PeripheralBloodMononuclearCell Adult Adrenal Gland
GO CD	Human	Adrenal Gland	PA-1 Teratocarcinoma
GP GO	Human	Ovary Pineal Gland	N/A
GQ GB	Human		Adult HPC-3 Ductal AdenoCA
GR GS	Human	Pancreas Retina	16-75yrs., pool of 76
GT	Human	Brain	N/A
GU	Human		Fetal Kidney
GV	Human Rat	Fetal Kidney2 Retina	Newborn Retina
GW	Chicken	Limb Bud	Fetal St.26 Limb Bud
GX	Human	Brain	N/A
GY	Human	Testes	10-61yrs., pool of 11
GZ	Human	Brain	19-23wks., M/F pool of 5
H	Human	Blood	PeripheralBloodMononuclearCell
11	TIMILIAN	Dioxi	i cripherandicomatonomicical Cen

TY A	**	T	A deals NICCET Transact A
HA	Human	Testes	Adult NCCIT TeratoCA
HB	Human	Fetal Kidney2	Fetal Kidney
HC	Human	Brain	19-23wks., M/F pool of 5
HD	Human	Brain _	N/A
HE	Human	Testes	10-61yrs., pool of 11
HF	Human	Brain	19-23wks., M/F pool of 5
HG	Human	Fetal Kidney2	Fetal Kidney
HH	Human	Brain	N/A
НІ	Human	Testes	10-61yrs., pool of 11
НJ	Human	Brain	N/A
HK	Human	Brain	19-23wks., M/F pool of 5
HL	Human	Fetal Kidney2	Fetal Kidney
НМ	Human	Testes	Adult NCCIT TeratoCA
HN	Human	Fetal Kidney2	Fetal Kidney
НО	Human	Brain	N/A
HP	Human	Brain	19-23wks., M/F pool of 5
HQ	Human	Testes	10-61yrs., pool of 11
HR	Human	Brain	N/A
HS	Human	Brain	N/A
HT	Human	Brain	19-23wks., M/F pool of 5
HU	Human	Fetal Kidney2	Fetal Kidney
HV	Human	Testes	10-61yrs., pool of 11
HW	Human	Brain	N/A
HX	Human	Brain Hippoca Trachea	Adult Brain Hippocampus Adult Trachea
HY	Human	Brain Thalamus	Adult Brain Thalamus
HZ	Human		
I	Human	Blood	PeripheralBloodMononuclearCell
IA To	Human	Thyroid	Adult Thyroid
IB	Human	Embryonal CA	Fetal NT2-D1
IC	Human	WER1-Rb1 line	Adult Retinoblastoma
ID	Human	Muscle	N/A
Œ	Human	Brain	19-23wks., M/F pool of 5
IF	Human	Uterus	N/A
IG	Human	Testes	10-61yrs., pool of 11
IH	Human	Muscle	N/A
П	Human	Brain	N/A
IJ	Human	Blood	PeripheralBloodMononuclearCell
IK	Human	Retinoblastoma	Adult Retinoblastoma Y79
IL	Human	Retina	16-75yrs., pool of 76
IM	Human	Various	Various
IN	Human	Prostate	Adult Prostate
IO	Human	Brain	19-23wks., M/F pool of 5
IP	Human	Fetal Kidney2	Fetal Kidney
IQ	Human	Prostate	Adult Prostate
ĪR	Human	Brain Hippoca	Adult Brain Hippocampus
IS	Human	Trachea	Adult Trachea
IT	Human	Brain Thalamu	Adult Brain Thalamus
- -			

SEQUENCE LISTING

(i) APPLICANT: Jacobs, Kenneth
McCoy, John
LaVallie, Edward
Racie, Lisa
Merberg, David
Treacy, Maurice

Spaulding, Vikki Agostino, Michael

- (ii) TITLE OF INVENTION: SECRETED, EXPRESSED SEQUENCE TAGS
- (iii) NUMBER OF SEQUENCES: 1519
- (iv) CORRESPONDENCE ADDRESS
 - (A) ADDRESSE: Genetics Institute, Inc.
 - (B) STREET: 87 CambridgePark Drive
 - (C) CITY: Cambridge
 - (D) STATE: Massachusetts
 - (E) COUNTRY: U.S.A
 - (F) ZIP: 02140
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy Disk
 - (B) COMPUTER: IBM PC Compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Brown, Scott A.
 - (B) REGISTRATION NUMBER: 32,724
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (617) 498-8224
 - (B) TELEFAX: (617) 876-5851
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

G	GAGATGTTG	AGGTGGCTGC	TGACCTTGGG	TCTCATCTCC	TTGATTTTCT	TTATCTTCTT	60
C	ATTGCCGTC	CTCTCTAGGC	TGTCTTTGGC	GAGGAGGCC	CCTGCGGAAT	CGTGGTCTAT	120
P	TCCCCGATA	CATATTCTGC	CTCACTGGTC	TACCTTGTTC	TCCTGCACCC	TGGTTGTCAG	180
C	ACCCTCCAT	CACTTCTCCC	TGCACAGGAG	GGTTGGAATA	CTGTGGTCGA	CGCCCATAGG	240

GTCTCCGCAT GTAGTAAGGT GGGAACCTTC GCCTGCGGTA GGGCCGGCGT TGTTGGGCCT

300

GGCCTTCGGG AGCACTCTCC GATCCCTCGT TCTTTTCCCC ACTCTCACTA TTCTGGTA TTTGCTGGTA ATTGCGTGGA GGAGAACAGG TAGACTCGAG	AT 360 400
(2) INFORMATION FOR SEQ ID NO:2:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 165 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
GAATTAGTTG CCAGCACTTT AAAAATTGGT ATAGTTCACA TAAATATTCT GAATTCAG TTTTGGAAAA GTTGTGGACC CAAGAATACT AGGCCCGCAT TTTCTTACGT CAACATTC TCCAGGATGA TGAATGGACT GTTCTCTTTG GCCCCCTATC TCGAG	
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 299 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GAATTCTAGA CCTTCCTCTC CTACTCCCTT CCTTAGGCTC CTGAACTCGT TTGCTCCTATCTTGTTAA TTCTTTTTCT CTGGATTTTG GTTTCTTTTTG GCTTTCCCTT GCCTTCCCTTCTCTCTC	CCT 120 TC 180 CCC 240
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GCGATTGAAT TCTAGACCTG CCTGGATTGC CTTCTGTTGT GGTAGACAAA TCACCAT ATGACTAAGT TTCACTGTTT TATGTGTTAA TGATCCTTAA TAACAAAAAG TTTTAAAA TTAATTTCGT AAGATTATGT AAAGGTTAAG AAAGAAATTT TAAGTGAAAA TGATAAA AAGCAAATGT TTATTAGTTC AATTGTTTTT CTTTTTATCT TGCAGCAACG CACATCT G	GTC 120 ACC 180
(2) INFORMATION FOR SEQ ID NO:5:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 368 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GAATTCGGCC	TTCATGGCCT	AGGAAATGAC	TTTATTGTGG	TTGAATTAGT	TAAAGGGTAC	60
TTACATTACG	TGTTTGATTT	GGGAAATGGT	GCTAACCTCA	TCAAAGGAAG	CTCAAATAAA	120
		GCACAACGTG				180
		AATCACAACG				240
		AGGAGGAGTA				300
		CTTTCAAGGC				360
CTCTCGAG						368

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 430 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCGGCC TT	TCATGGCCT	ATAAAATTTA	AAAATGCTAA	GGATCTGGCC	CCACAGGCCC	60
CAAAGCTTTC AG	CAGAGCTCC	TCTTAGACAT	GAAGATGCCC	ATTGGCCTCC	TAGGTCCCAG	120
GAGGTGTGGG CI						180
TGAAAGTATG TA						240
GGTGGAGTCT G						300
GCTCTAAAGG G						360
GCAGGACTCA G						420
CTGTCTCGAG	0000	0100011010				430
CIGICICIANG						

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 391 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGGTGGCTCA TGCC	TGTAAT CCCGGCACTT	GGGTAGGCCA	GGGCAGCAGG	ATCGCTTGAG	60
CCCGGGAGTT CGAG	ACAGCC TGGGCAACAT	GGTGAGACCC	TGTCTCCATA	ATTTTTTAAA	120
	GTGGTC GTGTGTGCCT				180
	TGCAGT GAGCCATGAC				240
	TATAAA AAAAAAAAGC				300
	ATATGGA GATAAATAAA				360
	AGTTGGC AAGGTCTCGA				391

(2) INFORMATION FOR SEQ ID NO:8:

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 351 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GCTTTTGGAG	CTGCTAAAAT	GCCGGATTAC	CTCGGTGCCG	ATCAGCGGAA	GACCAAAGAG	60
GATGAGAAGG	ACGACAAGCC	CATCCGAGCT	CTGGATGAGG	GGGATATTGC	CTTGTTGAAA	120
ACTTATGGTC	AGAGCACTTA	CTCTAGGCAG	ATCAAGCAAG	TTGAAGATGA	CATTCAGCAA	180
CTTCTCAAGA	AAATTAATGA	GCTCACTGGT	ATTAAAGAAT	CTGACACTGG	CCTGGCCCCA	240
CCAGCACTCT	GGGATTTGGC	TGCAGATAAG	CAGACACTCC	AGAGTGAACA	GCCTTTACAG	300
GTTGCCAGGT	GTACAAAGAT	AATCAATGCT	GATTCGGAGG	ACCCACTCGA	G	351

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 354 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GTGATGTGTC	ACCCCAAGTG	CTCCACGTGC	TTGCCAGCCA	CCTGCGGCTT	GCCTGCTGAA	60
TATGCCACAC	ACTTCACCGA	GCCCTTCTGC	CGTGACAAAA	TGAACTCCCC	AGGTCTCCAG	120
ACCAAGGAGC	CCAGCAGCAG	CTTGCACCTG	GAAGGGTGGA	TGAAGGTGCC	CAGGAATAAC	180
	AGCAAGGCTG					240
ATTTATGACA	ATGAAGCCAG	AGAAGCTGGA	CAGAGGCCGG	TGGAAGAATT	TGAGCTGTGC	300
	GGGATGTATC					354

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GAATTCGGCC	TTCATGGNCT	AGGAGGAGGA	AGAGGAGTAC	GAGGATGACG	AGGGAGGAGG	60
GGGAAGACGA	GGAGGAGGAG	GAGGCTGCGG	CAGAGGCTGC	CGCGGGGGCC	AAACATGACG	120
ATGCCCACGC	CGAGATGCCT	GATGACGCCA	AGAAGTAAGG	GGGGCAGAGA	TGGATGAAGA	180
GAAAGCCCAC	GAAGAAAAA	GCCTGGTTTT	GTTTTTCCCA	GAATATCGAT	GGACTTAAAA	240
AGGCTCAGGT	TTTTGACCAA	AATACAATGT	GAATTTATTC	TGACATTCCT	AAAATAGATT	300
AAATTAAAGC	AATTAGATCC	TGGCCAGCTC	GATTCAAATT	TGACTTTCAT	TTTGAACATA	360
ATAAATATAT	CAAAAGGTGT	TAAAGAAAAC	TGAATTAAAC	CCAAAATTAT	GTTTTCATGG	420
TCTCTCCTCG	AG					432

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 687 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CTATTTTACA	TGCCCACCAG	CATTGTATGG	GGCTTCTCAC	TTGTCCACAT	GCTTGCCTGT	60
GTCATATTTG	ACTTAAAGCT	TATTTTGACG	GGAAACCAAT	TTGTCCTTTT	TTTGGAAAGG	120
GATGGCACCA	CAGATGTGAC	GCGGACAATG	CATTTTGGGA	CCCCTACAGC	CTACGAGAAG	180
GAATGCTTCA	CATATGTCCT	CAAGGGCCAC	ATAGCTGTGA	GTGCAGCCGT	TTTCCCGACT	240
GGAACCAAAG	GTCACCTTCT	TGACTCCTTT	GCCCGTTCAG	CTTTATGGGA	TTCAGGCCTA	300
GATTACTTGC	ACGGGACTGG	ACATGGTGTT	GGGTCTTTTT	TGAATGTCCA	TGAAGGTCCT	360
TGCGGCATCA	GTTACAAAC	ATTCTCTGAT	GAGCCCTTGG	AGGCAGGCAT	GATTGTCACT	420
GATGAGCCCG	GGTACTATGA	AGATGGGGCT	TTTGGAATTC	GCATTGAGAA	TGTTGTCCTT	480
GTGGTTCCTG	TGAAGACCAA	GTATAATTTT	AATAACCGGG	GAAGCCTGAC	CTTTGAACCT	540
CTAACATTGG	TTCCAATTCA	GACCAAAATG	ATAGATGTGG	ATTCTCTTAC	AGACAAAGAG	600
TGCGACTGGC	TCAACAATTA	CCACCTGACC	TGCAGGGATG	TGATTGGGAA	GGAATTGCAG	660
AAACAGGGCC	GCCAGGAAGC	TCTCGAG				687

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 420 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GAATTCGGCC TTCATGGCC	T AGTCGGTGGG	TGCCTGTAGT	CCCAGCTACT	TGGGAGGCTG	60
AGGGAGGAGA ACTGCTTGA	A CCCGGGAGGC	AGAGGTTGCA	GTGAGCCGAG	ATTGTGCCAC	120
TGTACTCCAG CCTGGGCCA	C AAAGCAAGAA	TCTGTCTCAA	ААААААААА	AAGAAAAGAA	180
AAGAATAAAT TTCTTTTCC	C CTTGAAGAAG	TTGATTTAGG	CACAGACTCT	GGACTCTGGA	240
TTTCCCACAA TGTCTTATC	T AGTCAACTCA	AGTATCTGGA	CTACAATITT	CTTGAAAGCA	300
AAGCCCATAT ATTAATAAT	C TTTACTTGTA	TATAAATATT	CAATAAATCA	TTAAGTAAAT	360
GTGTAGAAGA ATTTTATGO	T CAATAAGATC	CACCCGATCA	TGCATTTGAA	AATTCTCGAG	420

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 379 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAATTCGGCC	TTCATGGCCT	AGCACATACT	CTGCTTTTCT	GTCAACATCC	CATTTTGGGG	60
AAAGGAAAAG	TCATATTTAT	TCCTGCACCC	CAGTTTTTTA	ACTTGTTCTC	CCAGTTGTCC	120
CCCTCTTCTC	TGGGTGTAAG	AAGGGAAATT	GGAAAAAAA	TTATATATAT	ATTCTCCTTT	180
The RECORDOR	COCOTTA CITCO	ACACCACACA	CACCAACTCC	ACCCTAACTT	GTTACACAGC	240

•		
NO:14:		
RISTICS: 8 base pairs eic acid SS: double linear	·	
DNA		
TION: SEQ ID NO:14	i:	
	NTAGA TCTTTTAATT G' NO:14: RISTICS: B base pairs eic acid SS: double linear	RISTICS: B base pairs eic acid SS: double linear

GTTCATGGCC TACGGAAAGT CAGCATGGAT AACAGACTGA TGGAACTCTT TCCTGCCAAT AAGCAAAGTG TTGAACACTT CACAAAATAT TTTACTGAGG CAGGCTTGAA AGAGCTTTCA 120 GAATATGTTC GGAATCAGCA AACCATCGGA GCTCGTAAGG AGCTCCAGAA AGAACTTCAA 180 GAACAGATGT CCCGTGGTGA TCCATTTAAG GATATAATTT TATATGTCTA GGAGGAGATG 240 AAAAAAAAA ACATCCCAGA GCCAGTTGTC ATCGGAATAG TCTGGTCAAG TGTAATGAGC 300 ACTGTGGAAT GGAACAAAAA AGAGGAGCTT GTAGCAGAGC AAGCCATCAA GCACTTGAAG 360 CAATACAGCC CTCTACTTGC TGCCTTTACT ACTCAAGGTC AGTCTGAGCT GACTCTGTTA 420 CTGAAGATTC AGGAGTATTG CTATGACAAC ATTCATTTCA TGAAAGCCTT CCAGAAAATA 480 528 GTGGTGCTTT TTTATAAAGC TGAAGTCCTG AGCGAGGATG CCCTCGAG

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 466 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCC	TTCATGGCCT	AGCCCAGGCC	ACGCTACACT	CTGCCCACAC	TGGTGAGCAG	60
GAGGTCTTCC	CACGCCCTGT	CATTAGGCTG	CATTTACTCT	TGCTAAATAA	AAGTGGGAGT	120
GGGGCGTGCG	CGTTATCCAT	GTATTGCCTT	TCAGCTCTAG	ATCCCCCTCC	CCTGCCTGCT	180
CTGCAGTCGT	GGGTGGGGCC	CGTGCGCCGT	TTCTCCTTGG	TAGCGTGCAC	GGTGTTGAAC	240
TGGGACACTG	GGGAGAAAGG	GGCTTTCATG	TCGTTTCCTT	CCTGCTCCTG	CTGCACAGCT	300
GCCAGGAGTG	CTCTGCCTGG	AGTCTGCAGA	CCTCAGAGAG	GTCCCAGCAC	TGGCTGTGGC	360
CTTTCAGGTG	TAGGCAGGTG	GGCTCTGCTT	CCCGATTCCC	TGTGAGCGCC	CACCCTCTCG	420
AAAGAATTTT	CTGCTTGCCC	TGTGACTGTG	CAGACTCTGG	CTCGAG		466

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 288 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GAATTCGGCC	TTCATGGCCT	AGCGTGATCC	TGGAACGTGC	TCTAGTTCGA	GAGAGTGAGG	60
GCTTTGAGGA	GCATGTACCA	TCTGATAACT	CTTGAAGATA	CAGAGAGAAA	TCCATCTTTT	120
CCCAGGTCTC	CTTCACTGAA	AACAAAAATC	TACTTACATA	CACTGTCACC	TTAGCATCAG	180
AGTCGGATTA	ATGAACTGCG	GAACAAGAGG	TTGTGAGAAT	CTAAGATGGA	ACCTTTCTTT	240
CTTTCTTTCT	TTTTTTTTAA	ATTTTGTATT	TTCCATCCAA	CACTCGAG		288

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 484 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAATTCGGCC TT	CATGGCCT AGGG	CTCTGC TTATAA!	CTT CAAAGTTACA	CTGAAGGATA	60
CGGTAAAAAC AC	CAGTTTAG TAAC	CATTTT TATGATT	TGG AATACCATGA	TGGGAACATC	120
TATACTAAGC AT	TCCTTGGG GCAT	AAAACA GGCTGGA	ATTT ACTACTGGAA	TGTGTGTCAT	180
CATACTGATG GG	CCITTTAA CACT	TTATTG CTGCTAC	AGA GTAGTGAAAT	CACGGACTAT	240
GATGTTTTCA TT	GGATACCA CTAC	CTGGGA ATATCC	GAT GTCTGCAGAC	ATTATTTCGG	300
CTCCTTTGGG CA	GTGGTCGA GTCT	CCTCTT CTCCTTC	GTG TCTCTCATTG	GAGCAATGAT	360
AGTTTATTGG GT	GCTTATGT CAAA	TTTTCT TTTTAAT	CACT GGAAAGTTTA	TTTTTAATTT	420
TATTCATCAC AT	TAATGACA CAGA	CACTAT ACTGAG	PACC AATAATAGCA	ACCCTGGTCT	480
CGAG					484

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 519 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATTGGCCT TCATGGCC	TA GGAGATATAC	CTAATGCTAG	ATGATGAGTT	AGTGGGTGCA	60
GCGCACCAGC GTGGCACA	G TATACATATG	TAACTAACCT	GCACAATGTG	CACATGTACC	120
CTAAAACTTA AAGTATAT	AAAAAAAA TA	GACNTCGCTA	GTGAGCACGC	TGTATACGAC	180
ATCGCTAATG AGGACACC	AT ACAAGGCATC	GCTAACGATG	ACGCTGTACA	CAACATCACT	240
AATGATGACA CCGTATAA	SA CATCGCTAAT	TATGACGCTG	TATACGACAT	CGCTAATGAC	300
ACCGTACGAG GCACGCTA	AC AAGGATGCTG	TACACAACAT	CGCTAATGAG	GACAGTGTAC	360
AAGCCATCGC TAATGAGG	AC ACTGTATATG	ACATTGCTAA	CGAGGACACT	GTACAAGGCA	420
TTGCTAACGA GGACGCTG	TA CACAACATCG	CTAATGACAC	CATATAAGAC	ATCACCAATG	480
AGGATGCTGT ATATGACA	IC GCTAATAACA	CCGCTCGAG			519

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 342 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

120
180
240
300
342

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GAATTCGGCC TTCATGGC	T AGAGCAGCTC	TGAGGTAGAA	ATTACAACGA	TGAAAAGAGC	60
ACAACGTACA AAACCAAG	AA AGAGTCTGTT	GTGTGAAGGG	TCATTCGATG	AAGAAGCTTC	120
TGCACAGTCC TTTCAGGA	AG TGTTAAGTCA	ATGGAGAACC	GGAAATCATG	ATGACAACAA	180
GAAACAGAAT TTACATGC	AG CAGTAAAAGA	CTCATTGGAA	GAATGCGAAG	TACAGACTAA	240
TCTGAAAATT TGGAGAGA	AC CACTTAATAT	TGAACTTAAA	GAAGACATTC	TATCCTATAT	300
GGAAAAATTA TGGCTTAA	AA AACACAGGAG	AACTCCACAA	GAGCAACTTT	TTAAAATGCT	360
ACCAGATACG TTCCCACA	C CACATGAAAC	CACTGGTGAT	GCACAGTGTT	CTCAAAATGA	420
AAACGATGAA GATAGTGA	TG GTGAGGAGAC	CAAAGTACAA	CACACAGCTC	TTTTATTGCC	480
AGTAGAAACA TTAAACAT	AG AGAGACCTGA	ACCATCTCTA	AAGATAGTCG	AACTGGATGA	540
TACTTATGAA GAGGAATT	rg aagaagcaga	ACATCTCGAG			580

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 301 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GAATTCGGCC TTCATGGCCT	AGAAAGATCT	AATTATCATG	GACCTGCGAC	AGTTTCTTAT	60
GTGCCTGTCC CTGTGCACAG	CCTTTGCCTT	GAGCAAACCC	ACAGAAAAGA	AGGACCGTGT	120
ACATCATGAG CCTCAGCTCA	GTGACAAGGT	TCACAATGAT	GCTCAGAGTT	TTGATTATGA	180
CCATGATGCC TTCTTGGGTG	CTGAAGAAGC	AAAGACCTTT	GATCAGTTGA	CACCAGAAGA	240
GAGCAAGGAA AGGTTTGGAA	AGATTGTAAG	TAAAATAGAT	GGCGACAAGG	ATCGGCTCGA	300
G					301

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GAATTCGGCC	TTCATGGCCT	AAAAAAAGGA	TGGTGTGTTG	AGACCAGAAG	CAGCAGCAGT	60
CCTCGACATC	AACTACAACT	TTCCTTCGCA	CAGTGCATAC	CCTCTGATAT	ACTGAACCCA	120
ACGCCTATCC	TCCAGCCCCC	TAAGAACTAG	AGAGGGAGCC	TCACAACATT	CCAATTTAAT	180
CCTTCAGAAA	ATTCATTACT	CTTCAAAGTT	GTCTGTGGTT	TTGTGACAAC	GATATGACTA	240
GGTGCAAAAT	GGCTTGCAAC	TAATTAACAA	ACATAGAAGC	ATCCAACAAA	CATATACGTG	300
CACAATCTGA	GGATTTAGGG	ATGAAGCTCG	AG			332

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 239 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GAATTCGGCC TTCA	ATGGCCT ACCAGCCTGG	GCGACAGAGC	AAGACTCAGT	CTCAAAACAA	60
AACAAAACAA AACA	AAAAAGA GAAGGCTATT	ATTAACATTC	GAGATAATGT	GCCAGACTGC	120
TTCCATGTAT TTTC	CATTATT CTGTCCCAAA	TCTGGTGAAG	TGGGTATCTG	CACAGCTTTC	180
TCTAGATTGA ACAA	ACTAGTA AGGGGGCTGG	CCCTGGAGAA	AGTTACCTCC	TGCCTCGAG	239

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GAATTCGGCC	TTCATGGCCT	ACTITIATAT	TGTTATTTTT	GTAAAGCATC	TTTTCTTCAA	60
TTCTTGTTGG	CATTCTGGGC	CAAAATATTT	CAGGTTGGTT	CGGTGTGGAG	TTAAGAAAAG	120
CAGGCGTTTT	AGTGGAGAAA	TGGGGAACAG	CATCAAGAAA	GGCTTTTTTC	CTTTTTTCTT	180
TTTTTTTGG	AGACAGAGTC	TTGCCCTGTC	ACCCAGGCTG	GAGTGCAATG	GTCTCGAG	238

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 231 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GAATTCGGCC TTCATGGCCT AGATGGATTT CTTAATTGAA GTACTTTTAT AATCACAGTG

60

ACTGAACAAA ATATTTCAA AGACATTTGT CATTCCTTAA AGCCAAGATT TTAAAGACTA ATGTCCTTCC TGAGGGTTAC TTTACTATAC TGTGTATGGT GTATAGCCAC AGAAAGTCAG TCTGATAAAT TTTCAATGTG TAAGTGTGAT GCATTCAACC CAGATCTCGA G	120 180 231
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 307 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
GAATTCGGCC TICATGGCCT ACACAGAGTA TATTTATAGC TATCTCAGGG TCCTTGTCCA ATTGTCTGTG TCATTTCTC ATCTGCTTCT ACTGATTTT TCTGCTTCTG TTTACTCTTC ATTTTGGACC TATTTTCCCT TATTTGGTGC TTTGCATACA ATTTGTTGGG ACTGGATCTT TGCTAGTCCT TTAAATGTTT TTAAGCTTTG TTTTGGGATG CAGTTAGGTG ACTCAGAAAC AATCAGAAAC AATTTGATCC TTTTATGTCT CTTAAGCTTT GTTATAGGCA GGACCAGAGC TCTCGAG	60 120 180 240 300 307
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 253 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GAATTCGGCC TTCATGGCCT ACAATAATAG CCTCCCACCT GGTCTTCCTT CTTCAGTCTC TTCAGTCTTT CCCAAAGCTC TTGAATCCTA CATGAACCCA TGCCTCGGTC AAAATATTAC AGGCTGCAGC CAATCTTCAA GTGGCATACA GGCCAAACAT CCATTTATAA TATGGTTGGA ATTCCTAACA CATTTTATCA TAGATCTAAT GCCATACAAT AGGTGGAGGT TAGATCCTCA CGCAACTCTC GAG	60 120 180 240 253
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GAATTCGGCC TTCATGGCCT ACAGAGAACT TGTGTTCCGG TTTATTGAAG TTCAGACACT TCTCCTCGCT CCATTCTGTC CACATTTGTG TGAGCACATC TGGACACTCC TGGGAAAGCC TGACTCAATT ATGAATGCTT CATGGCCTGT GGCAGGTCCT GTTAATGAAG TTTTAATACA CTCCTCACAG TATCTTATGG AAGTAACACA TGACCTTAGA CTACGACTCA AGAACTATAT GATGCCAGCT CGAG	60 120 180 240 254

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 211 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GAATTCGGCC TTCATGGCCT ACGA	BAAGGA GTGGAAGAGT	AAGCAGACTA	GGAAAATACA	60
GTACAACCAT CAGGCAGCAT TACAA				120
GGTTTTTTT CTGGCCATGC TCAG	TTACAT AGGGGCAAGT	GCAAAAAAA	CCCCAGAGTT	180
TGTTTTAACT AGAGCTCTGG TTTT	GCCAAA C			211

- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 521 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

GAATTCGGCC	TTCATGGCCT	AGGATCAGGT	TCGTCCTTTA	GTGTTGTGTA	TGGTTATCAT	60
TTGTTTTGAG						120
ATATTTGGAG	GTGGGGATCA	ATATAGGGGG	AAATAGAATG	ATCAGTACTG	CGGCGGGTAG	180
GCCTAGGATT	GTGGGGGCAA	TGAATGAAGC	GAACAGATTT	TCGTTCATTT	TGGTTCTCAG	240
GGTTTGTTAT	TATTTTTAA	TTTTATGGGC	TTTGGTGAGG	GAAGTAGGTG	GTGGAGCACA	300
GGCACTGCAG	GTCAATGGAG	GTGGAGTACA	GGGACTACAG	GTCAATGGAG	GTGGAGCACA	360
GGGACTAAAG	GTCAATGGAG	GTGGGGCACA	GGGACTACAC	GTCAGTGGAG	GTGGAGTCAC	420
AGGGACTACA	GGTCACTGGA	GGTGGAGCAC	AGAGACTACA	GGTCAGTGGA	GGTGGGGCAC	480
AGAGACTACA	GGTCAGTGGA	GGTGGAGCAC	AGAGACCACA	G		521

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GAATTCGGCC TTCATGGCCT	AAAATTTCCT	CTAAGTACTG	ATTTAGCTGC	ATTGTATAAG	60
TATATGCTTC CATTTTCATT	CATTTCCAAA	TATTTTCTAA	TTTCCTTTGC	AATTTTTTTT	120
TCAGGAATTC GGGCCTTGCT	GTGTTGCCCA	GGCTGGAGAG	CAGTGCCACT	ATCACAGCTC	180
ACTATAAACT CAAACTCCTG	GGCTCAAGCA	ACCCTCCCAC	CTCCCAACTC	CCCTCGAC	238

- (2) INFORMATION FOR SEQ ID NO:32:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 257 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
GGTTTCTTAA AAAAAAAAA AAAAGGAATT TGATCCAGAG CAATTTTCT CAATTAAAAT TTGTGATTAC ATTTCTGAGT TTCCATGGCA GAGTTGTGAG TGGGGCTGTG ATATAATTTA ACTTCTCCTA AATTGCTGAC ACCGATAACC CTATAAATTA ACAGATGGCG GAGGGAAATC TCCTGGCTTC TTCCTGGCTA GTTTTTTTTA ATGGTCTGAT TTTTGTAATA GGGGTTTTGA GTCCCAGCCG ACTCGAG	60 120 180 240 257
(2) INFORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
GAATTCGGCC TTCATGGCCT AAAGACTTAC GTTATATTT CATATACTCC TTCCCACTCT TAGTGTGTTG TCAATATACA TTTTGTTTTA CATGTAAAAA CACCACAGTA TATTGTTCTT AATTTTGCTT TTAATAGTAA ACTGTCTTAT AACAAATTAT GAAAATGGAA AAAAACATGT CTTTCTTATT TGCCCTCATA TTTATCCATT TAGGCACTCT TCCTTTTTCC CTTTCATTCC AGGTTCTCGA G	120 180 240 25:
(2) INFORMATION FOR SEQ ID NO:34:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 245 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
GAATTCGGCC TTCATGGCCT ACTAACATTT ATGAAAATTA TTTGTAAATA AAATAAGAGG CATTGAGATT AAAATTGGAG ATAAAGTTGC TGATGTGTTG TTTTCCTGAA GTATTTTTT TCTTAATTCT GATCTTTGTT TCCCAATACA ATCACACTCA CACCCTTGCA GTTCAGTTTC CTGACGACTC TCTAGTGTGC CAGATCTGTG TTTCTATGTC AGTGATCTGT TCCCCATCTC TCGAG	6 12 18 24 24
(2) INFORMATION FOR SEQ ID NO:35:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 383 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(ii)	MOLECULE	TYPE:	CDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GAATTCGCTT CATGGCCTAC	CGAGAAATGG	GTGTGATTGC	TGCCATGAGA	GATGGTTTTG	60
GTTTCATCAA GTGTGTGGAT	CGTGATGTTC	GTATGTTCTT	CCACTTCAGT	GAAATTCTGG	120
ATGGGAACCA GCTCCATATT	GCAGATGAAG	TAGAGTTTAC	TGTGGTTCCT	GATATGCTCT	180
CTGCTCAAAG AAATCATGCT	ATTAGGATTA	AAAAACTTCC	CAAGGGCACG	GTTTCATTTC	240
ATTCCCATTC AGATCACCGT	TTTCTGGGCA	CGGTAGAAAA	AGAAGCCACT	TTTTCCAATC	300
CTAAAACCAC TAGCCCAAAT	AAAGGCAAAG	AGAAGGAGGC	TGAGGATGGC	ATTATTGCTT	360
ATGATGACTG TGGGGGTCTC	GAG				383

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 base pairs
 - (B) T'PE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GAATTCGGCC	TTCATGGCCT	ACTGCCGCTC	CTGGTGCTGC	TTGTGTGCTC	GTTTGGTGCG	60
GACCTGGTAC	CTCTTTTGTG	AAGCGGCAGC	TGAGGAGACT	CCGGCGCTCG	CCATGGCCGA	120
CGAAAAGCTC	GAG					133

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GAATTCGGCC TTC	ATGGCCT AAGGTAGTC	AGGCTCATCT	TCATGAGGGA	ACTGAGGTCT	60
TGGGGGGTGG GGGT	ITACCCA AATAGGTTC	A CAGAAGAACC	AGAAATAAAA	CCTGCCTTTC	120
TAGACTGTAA GTCT	TTGTGAT TGTCATCTA	ATGGTTGTCT	CTATACAGCA	ACTCATCTCT	180
AGAACTGAAA ATAA	AGTTTAA ATCCCTCCT	CATCCCCAAT	AATTCAAGCT	GCATTTCAGA	240
GAAAACCAGG ACT	TTGGAAT CAGACAGCA	A CTCGAG			276

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 336 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TTATCAAGGA CACATCATGA CCTGAAAACG CCCCTGCCAC	TCTTAGAGTA GGAGTTGGAA CTATAGGACT TGAAGGCAAG AGCAGGTATC TCTACTCACT CAGTTTCCCT AAAGCTCTCT CTCCAGATCG GATTCAACCG CAGATGTTCC GGCTACATTT ACCCAGGCTG AGTGTAATGG GGATAAACCA GTCAACAAAC AATCACTAAA ATCAGTGAGG AATTGACTGA TGTGGACAGC ACTACAGGGT AGAACCCAGT CTGGAAGGTG CACTCACCAA AGGAAGTCAG GAAAATTACA AGGGAACAGA CTCGAG	60 120 180 240 300 336
(2) INFORM	ATION FOR SEQ ID NO:39:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 385 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GCAGGATGTT TAGGAAGGTC TGAGGGGGTT TGGTGATCTA TGGACGGTGC	TTCATGGCCT AGTCGGAGAA GGACATCCAG GATCTGAAGT TTGGGTCGA GATATGGTGT TTGCGTCATT CATCCGCAAG GCATCTGATG TCCATGAAGT CTGGGAGAGA AGGGAAAGAA CATCAAGATT ATCAGCAAAA TCCAGAATCA CGGAGGTTTG ATGAAATCCT GGAGGCCAGT GATGGGATCA TGGTGGCTCG GGCATTGAGA TTCCTGCAGA GAAGGTCTTC CTTGCTCAGA AGATGATGAT AACCGAGCTG GGAAGCCTGT CATCTGTGCT ACTCAGATGC TGGAGAGCAT CCCCGCCCCA CTCGA	60 120 180 240 300 360 385
(2) INFORM	ATION FOR SEQ ID NO:40:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 245 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:40:	
GGTTTTCTTA AAATGAGTGA	TTGCTAAAAA AAAAAAAAAA GAGGCAAGTA ATGTAATATC CCCCACCTTT TCTATAAATA CTGATTAAAA AAAAAAGTAC ACTGTCTGCC TTATAAGCTA ATACAGGCAA AATGCCTTAC ATTTTACTTT ACATTTACTA AGCACCCAGA TATGATGACA ATTATGATGA TGATGATATT GATATTTTCA AGGAGGGCGC	60 120 180 240 245
(2) INFORM	NATION FOR SEQ ID NO:41:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 247 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	

60

120

GAATTCGGCC TTCATGGCCT AAATAAAGAT GATTTTTGTG CTTAGCAGTT TAAGGTATAT

GGCTGCATAT GCAAAACTCT TTCCCAATTC AGTCGCTACT TTTACTTCTG CCCTTTCTAT

CCATCGTCTT CATTTTGTGT GTACAGTGCT GTGTGTAAGC TTATCAGTGT GTTTTTTAT
TTGTATCAGT CATGAAAGTC CTGTTAGGTA TCCAGAGTTC TATTTATCTA GCTGTACAGA

240

TCTCGAG	247
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 106 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GGATATGGTA ACTGAGAACC ATTTTCTAGT TGAGATAACT CATGTACAGG GGGGGTCACA TGACTCAACA ACACACAGAG CACAGAAGAG AACCAACAAT CTCGAG	60 106
(2) INFORMATION FOR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 237 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
GCGTATTTCC AAGTGTATGT ATTTCTAAAG ATAGATTTTT TAAAAACAAA AAATCTTAAT TTAGATGATA AGCGATTTTT ACCTTTTTTT TTTTTTCAAA GCAACTTGAT CCTGTAAGTT TTGGCATCTT AAGTGGAAAT GTTCATGCAG TTTTGCTGGA TCTTCGCTAT GGCAGTAAAA TGCAATACAG CACTGTGGTT AAGAGTGCAG AACGGAGTCA GTCAGCCTGA ACTCGAG	60 120 180 237
(2) INFORMATION FOR SEQ ID NO:44:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 476 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
GAATTCGGCC TTCATGGCCT ATAGGCCATG AAGGCCGGCC TTCATGGCCT AGGGAGTNGG	60
TGTGTCTGTG CATTTATTTG GATCATGGAA GGTTGTAGAT GTGTATTTCT AACTGTAGAT	120
AATGGAGGAC ACATATTGG GGAGTTTTGA GAGGATGTGT ATGTGTGTGT	180
TGGTATTTCT CTATGTTTTG GTGGGTGGGG TATGTATCCA TCAAAATATC TCAGATTATC	240
TGATGTAAGA AAATAATTCT GCATCTCAGT GACTTCCAAC AAGGTAGGTT TCTCATGTAT	300
GTTATGTGTC CTCCATTGGT TGGCTTTGAT CAGTTACTGG TCCTGTGCCT TGGATCCAGA	360
TGGATGAAGC GGCCTCATTT GGGACAGGAC TAGAAGGACT TCTTCTGCTC AGAGTCATAC	420
ATGGCATTTC TGATCACATT TCATTTGCCA TAACAAGTCA TGTGGCCATA CTCGAG	476
(2) INDODMATION FOR SEC ID NO.45.	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 358 base pairs -
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GAATTCGGCC TTCA	TGGCCT AGGCAAACT	TGCTGGACTT	AACTTCATCA	ATGTAGTGGG	60
CTCTGTTTGT GGGG	CCCAGG CTTTGATGAC	TGGTTCAAAC	CCCATGCTGG	GCTGTAACAC	120
TGGTGCCATA ACTO	CTGCAG GAATAAACCT	GAGCGGCCTT	CTACCCTCAG	GAGGTCTGCT	180
ACCAAATGCA CTGC	CCAGTG CAATGCAGG	AGCTTCTCAA	GCAGGTGTTC	CATTTGGTTT	240
AAAAAATACT TCAA	AGTOTCA GGCCCTTAA	TCTACTCCAG	CTTCCAGGTG	GTTCACTTAT	300
TTTTAACACT CTGC	CAGCAGC AGCAACAGC	GCTCTCCCAG	TTTACACCAC	AACTCGAG	358

- (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 353 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

GAATTCGGCC	TTCATGGCCT	AATCATTTTG	ACTITCAGTG	CTTTCAATGA	CCAGTGGCCT	60
CCAGGGATAA	AGCAACTGCT	TGGTTTGCAG	GGCGTCCTCT	GCGCTGCTGA	GCCATCAGCC	120
					CATAGGGTTC	180
		ATTTCCCTCT				240
		AGCGTGCTCA				300
		ATCTTGGGGT				353

- (2) INFORMATION FOR SEQ ID NO:47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 456 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

GAATTCGGCC TTCATGG	CCT AGGGAGCTAC	CAGATGCTGA	AGAAAGGGCC	CTGGCAGACT	60
GGGTTCAAAC TCAGCCA					120
GCCTCAGTTT TCTCAAT	AGT AAGAGGGGAT	AACACACTTA	CCTCTCATAG	CTGTGGACAT	180
GGAGGTGAAA GTGCCGC	ATA CACTGTAAAG	TGTTATATAC	GTGTAAGAGA	AAAAATCGGG	240
CCAGAGGCTG GGCTTGT	GTT AATTGATTCA	GGAAATTCAC	CAGAGGCCCC	CTAGATGCAA	300
CGTCCTTTGG GTGTCTG	GCA GTGGGCACAA	AGATGAACAA	AACAGTGCCC	CACCCTCACC	360
CCGTCAACCG TCAGTGC					420
AGGGGTCCCT GCCCTCA	AAG GAGGACGATA	CTCGAG			456

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 509 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

GAATTCGGCC	TTCATGGCCT	AGCTGCCCCG	CAGCACTTAC	CGGAGCGACC	ATGAGGGTGA	60
CGATTTGAAG	CACACACAGG	CTTCCCGCCA	CCTCCTTTAA	ACCGCCGCTG	GCTTGCCAGG	120
GACAGACGGC	GCGGTTGGCT	CCCCAAAATT	CCGACTGATA	CGCGCCTCGG	CGAGCGAAAG	180
CAAACGCGGG	ATACTCTCGC	GTTCCTGATT	GGCTGCAGTT	GGAATTGATC	ACACCTTTTC	240
AGTTGTACTT	CAATCCTGAA	TTAATCTTTA	AACACTTTCA	AATATGGAGA	TTAATCACCA	300
ACTTCTTATT	TTTTGGGCCA	GTTGGATTCA	ATTTTTTATT	TAACATGATT	TTTCTATATC	360
GTTACTGTCG	AATGCTAGAA	GAAGGCTCTT	TCCGAGGTCG	GACAGCAGAC	TTTGTATTTA	420
TGTTCCTTTT	TGGTGGATTC	TTAATGACCC	TTTTTGGTCT	GTTTGTGAGC	TTAGTTTTCT	480
TGGGCCAGGC	CTTTACAATA	ATGCTCGAG				509

- (2) INFORMATION FOR SEQ ID NO:49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 467 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

GAATTCGGCC	TTCATGGCCT	AAAGCAAGTG	ATTTTCTTTT	TTTTAAAGAC	AGGGTCTCAC	60
TTGGTCACCC	AGGCTGGAGT	ACAGTGACAT	CATCACGGCT	CACTGCAACC	TTCGCCTCTT	120
GGGCTCAAGT	GATTCCCCCA	TCCCCCACCC	CCCTTCTCAC	CCCCAGATTG	GACTATAGGC	180
GTGTACCACC	ACGCCTGGCA	GAGACCGGGT	TTTGCCGTTG	CCCAAGCTGA	TCTCGAACTC	240
CTGAGCTCAA	GCGATCTGCC	CGTCTCAGCC	TCCCCTAAGC	AAGCATTTTT	AAGTTTCTAT	300
GCTGTTTAAT	TTTTTTTAAC	TGATTAATTT	ATTTGCATTG	TGTGGTCATG	GAATATGTTT	360
TTATGATATT	GGTTGTTTGA	GATTTGGTGA	GTCTTTCTTT	GTAACCTAGT	TAAACCATTC	420
CATATCTTTT	TAAAAGGATG	TATATTCCTT	ATCTGTTAGG	GCTCGAG		467

- (2) INFORMATION FOR SEQ ID NO:50:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 168 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GAATTCGGCC	TTCATGGCAG	AGTGGAAGGG	GTTGTAAATA	TTAGGAGAGA	GATAATTCTT	60
AGTGCATTTC	TCTGAGGATG	AAGCATGAGA	TGAATCCATG	GCACGAATGG	AACAGCTGGG	120
GAAAGCAGGT	CAGAATGGAT	ATGGATATAA	ATACTGTGAG	TTCTCGAG		168

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 228 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
GAAGTAAATT ATTACGATTT CCTTAGGTGG TTAATAAATT ACCATTATTT TCTCTATTTT ACAGATCACG AAATGATAAG TAACTTACCG AAAGTTACAT TATTTAAGTT AATCAAATGT TTATTGATTG CCAGACTTTT TTCTAGGCTT AAGCAAATGT TGGAAAATAC TTCTCTGAGC TTTCAAAAAAT GTTATTTCTA CTTGTCAGTG CTGCAGGAGT CTCTCGAG	60 120 180 228
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 247 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
GCAGAGTCAA TAGATACTTT AAATTGAAGT AAAGAATTAA AAAAGGAAGT GGATAGTTTG GGTATTAGTT TAGCTAGAAA TACAAAGAAA CTTGACTTCT AGGGCAGTAC AAATTCAAGC CTTCCACAAA CAAACAGTTG AGAGTATGTT TATCTTCTTA AAATGTGTGG GTGCCTTCCC ACCACTTCAC CTGCTCCTCA CTGGTGCTTT GTCCCCTCCC TACTACCATT CCTGTCCCGG TCTCGAG	60 120 180 240 247
(2) INFORMATION FOR SEQ ID NO:53:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 235 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
GGCCAAAACA AAGCTTATAA AGGTTCCTGC TCCCAACGTA ATTACCTCCA ATCGGCATTT AAAGACATCC GCATTGCTTA CAGCACATCC TAGCCTCATG CTTGCCCAAG GATGGACTCG AAATGAACTA TTTCCAGAGC GACTTATTCA GGCATTCTGT GGAGCCTCCG TTGCCCTGTC CATCACCGGA GCTTTTGTAA TTGCAGCTAT GCCATTGGCC TCCGGCAACC TCGAG	60 120 180 235
(2) INFORMATION FOR SEQ ID NO:54:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 231 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GAATTCGCCT	TCGTGGCCTA	AAAAGAAAAA	ATCTAAGGTA	GATTGTGCCT	TTTGTGCCTT	60
TCCTCTGCTC	AAGACCTTTC	AGTGGCTTCC	CACTTCACTC	AGTAAAAGGC	AAAAAGTCCT	120
TTTAATAACC	TACAAGGCAT	TATGTTACCC	ACATTGTCCC	TGCTCCCCTA	CATTGTACTC	180
AAGTCTATGA	TCTTTTTACC	ATTCCTTGTA	CAAAGGATTT	TCACTGGCTG	G	231

- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 330 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

GAATTCGGCC TTCATGGCCT	AGAAATATTT	TCCTACAAGA	GTACTGAATT	TCAGGAAATG	60
GGATAGAGCT TCTAACCAGT	GTATTCCGTC	AAGTAAGATA	ATAACAGCTG	ACCTGCCAAC	120
AGCATTACAG GGAGATTCTT	TGCTCAGCTA	ACACATTTCT	GTTTTTCAAA	ATTGATGCTT	180
AATTGTAGCT GTTATTCTAA					240
AGCAAAACTC AGAACAGGTT	ATGTAAAAAT	ATAGTCTGGC	TTTAGAATTT	GTTAATTCAC	300
CTGCTTTGCC ACAGAAAATG					330

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 230 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

GAATTCTAGA CCTGCCTCGA C	GATCTGAACT	ATAATCTTTT	CCATTCTATC	TAGCTCCCAT	60
CCTAAGTCCT CTCCTCCTAA	CGTGGAACTC	TCCTAAAATC	TTCTCCTTAT	ACTAGGGTTC	120
GAGACATGAG GCTGTCTTTT	TGGGCCTTTT	GCGTTGTCAC	AGTCCCAGAC	CACGGAACAT	180
TCTCTCTTCC CCAGGACAGG A	ACATTCTCTC	TTCCCCAGCG	CTCCCTCGAG		230

- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 416 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

GAATTCGGCC T	TCATGGCCT	AAAGGGAAAG	TGGGAATATA	CACAATGCAN	ACACTAGCCA	60
CATGCAATCA T	rgggagaaca	GAGCCTACTT	AAAAATCANA	CCCAAGCTTT	GCTTCAGAAA	120
TAAGTGGAGT	rgaacccatt	CGATCATTTA	CGCATGACTT	TGCAAAGGTT	CTCTGGAGGG	180

PCT/US98/06956 WO 98/45437

GGAAGAGGAT CAACCTTCTC TCATACCGCA CAGCAAGGGA ACCAAAGTAA TATAAATCAC	240
TCTTAAAAAT GTCATGTTAC TTTAAGAATA AGCCATACTG CTGGCACCTA GAATATTTTT	300
GTGGGTCCCC ATCTCTGGCT TTTCTTGTTC AAATGGCCCC CAGGCTAAGA GGCAGCTGCT	360
CACATCCCTG CAACAAACAT GTTCTTTCCT TTCTGCATAG CCTTCCATTT CTCGAG	416
(2) INFORMATION FOR SEQ ID NO:58:	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 289 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(2)	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
GAATTCGGCT TCATGGCCTA CTAGACCTGC TCAGTCGTTC CTAATGAATA AAAATCAAGT	60
GCCAAAGCTT CAGCCCCAGA TAACTATGAT TCCTCCTAGT GCACAACCAC CACGCACTCA AACACCACCT CTGGGACAGA CACCTCAGCT TGGTCTCAAA ACTAATCCAC CACTTATCCA	120 180
GGAAAAGCCT GCCAAGACCA GCAAAAAGCC ACCACCGTCA AAGGAAGAAC TCCTTAAACT	240
AACTGAAACT GTTGTGACTG AATATCTAAA TAGTGGAAAG TCACTCGAG	289
(2) INFORMATION FOR SEQ ID NO:59:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 382 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(b) Toronosi: Timeat	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
GAATTCGGCC TTCATGGCCT AATTTGAGGC CTGGGTGGAA CTGACAGGTG GAGTTTGAAG	60
GCACATCTGC TAGCTCACAT AGGAAACAGA ATCTCCCAGG GAAAAGACAT AGGACCTCTG	120
ACTCTAACTG AGGTTCTGGA TTATTATGAG AGATTTTCAG AAATGGTCTA ATGGTGTTGG	180 240
CTTGCTCCAT ACCATAGATT TTAAGAGACA GTAGAGCTTC TGCGATGAGA TTCCCCCATA AAATAATTAT GGATCTGCAC TGGCAAGCTG GTCTTGGCTC CAAAGACCAA GAGTTGGTTT	300
GTGGTGCTGA TTCTGAACCC TTGCGATGCA ACTGTCTGGT AGTAAAATGG CTTTGTATGG	360
TAAGAAAGCT TTAATCCTCG AG	382
(2) INFORMATION FOR SEQ ID NO:60:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 196 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(b) lorologi: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
AAAAAAAAC CAAACCCTAT TATTTCATTG ACAGATTGTC TTAGAGTTGA TAGCATTTAA	60 120
TAATTGAGTA AGTACAGTCC TTCCTTGTTC CCAACGTGCC CTATTTTTTC TTTCTTCTT ACTTTTGCAT ATGCATTTTC CCTCTTTCTT GTTTCTTGGT GAATTCCTAA ACCTTTTTTT	180
TCAAAATCAC CTCGAG	196

TCAAAATCAC CTCGAG

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 281 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

GAATTCGGCC TTCATGGCCT AACCACATTT TTCTAAT	TTAG TGTTCTAGAC TGGCTAGATA 60
AATCAACAAT GAATCAACAG TCTTTAAGCA CATATAC	CAGG TATGATAACT CTGTAGTTAA 120
CTCAAATCCT TGTGCTATGT ATTATTTTGC TGCGTAF	ACTC AGAATTCAGG AAGCTACCCA 180
CCCAATCAGT CTTTAGCTGT TTTATTTCAG TAACAAG	STTT ATGCAGAACC TTCCATATCT 240
CTCATAAAAC CAGAGCATTC ATAGAACCAG AAACTCT	CGA G 281

- (2) INFORMATION FOR SEQ ID NO:62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

GAATTCGGCC 1	TCATGGCCT	AAAAGATTTG	AGCATTTCAA	AATTTTAAAC	ATAAAAGCAT	60
AAACGTAGAT A	AAAATGAAGG	TGTACTATGA	TATCTTCAGT	TTTATCAGAA	ATGATGTAAA	120
AATTACAACC T	AAAAATTTOT	GTAGTGTTAA	TCATTAAGTT	AGAAAATATA	TAGCTGGGCA	180
TGGTGGCAGA T	IGCCIGTAAT	CCCAGCTACA	TGGGAAGGTG	AGGTGGGAGA	ATCGCTTGAA	240
CCCAGGCAGT C	GAGGATGCA	GTGAGCCAAG	ATCATGCCAC	TGCACCCCAG	CCTGGGTGAC	300
AGAACAAGAC T	ICCATNTCAA	GGAAAAAA A	AAAGAAAAAT	ATATATATGA	ACTTCAGAAT	360
CTGAGGTCAT A	ATATAGACAG	GTCTTCCCCC	CCTCCTCGAG			400

- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 297 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

GAAACCATAG	TGGCAGATTT	GTAGCAAAAA	GAATCTTTGT	AACCTTCCCT	TTAGATGTCC	60
TGTGTTATGG	CTTGGTTTTT	CTCAAAGATC	ATAGATTGCA	GTGTTTATCT	CAACTCAGTA	120
TTTCCTTTGA	AAATTGAACT	TTTCTCTATA	TTTTCCTTTC	CCCCATGCAA	ACTITITGAT	180
TGTTTTTCTG	AAATCATAAT	TCATTTGACT	TACCAGTTAA	TATTGATACA	GGTCTTGCAT	240
GTTATGAAGT	GCATTGTGTA	CATTATCTTG	TTTAATTTTC	ACAACACTCT	TCTCGAG	297

- (2) INFORMATION FOR SEQ ID NO:64:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 361 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

GGTCGCAGAA	GAGTGTCAGA	ACAATCAGTT	AAAGAAGCTC	AAAGAAATCT	GTGAGAAAGA	60
		AAATGGATAA				120
ATCCAAAGAC	AAAAGTCAGA	TGGAAGAGGA	GAAGACAGAG	ATGATCCGGT	CATATATCCA	180
GGAAGTGGTG	CAGTATATCA	AGAGGCTAGA	AGAAGCGCAA	AGTAAACGGC	AAGAAAAACT	240
CGTAGAGAAA	CACAAGGAAA	TACGTCAGCA	GATCCTGGAT	GAAAAGCCCA	AGGGGGAAGG	300
TTCCTCCTCA	TTCTTGTCGG	AAACTTGCCA	TGAGGATCCC	TCTGTTTCCC	CCAAACTCGA	360
G						361

- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 393 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

GAATTCGGCC TTCATGGCCT A	ACTGGGGGAA	GAAGGCTGCT	TTATGTTTAT	TTTTCAAGAC	60
TITAAAATA TITITTGGTT					120
TTTCTTTCCC TATACAAAAT A					180
AGGGCTGAGG AAAAGAAATA (GGTCTCTGGA	GGTGGAACTA	AAACTGTGCA	GCTGCCTCTT	240
CCTGGCGGTG GATGCTGCTT	TGGGAGGCC	AGGGAGGCTG	CAGGGGGACA	GTGTTGGGAT	300
TGTCAAGGAA AAAGGGGTAG	GAAGGAAGGT	GGAGGGATTG	ATCTAGTACC	AGGGAGAATA	360
TTCCACTGAA CTGTGATTCT	ATGCGGCCTC	GAG			393

- (2) INFORMATION FOR SEQ ID NO:66:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 335 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

GAATTCGGCC TTCATGGCCT AATTTGTTAT TGCTAGAAAA TACACAGTTT TGAGATTTTT 60
GGGCATAATT GGCCTTAGTG TGTCACTTCT GCATTAAAAT ATAGGTTAAT AATCAGATGA 120
AAGCAGCCAA TAACCTATGG CTTCTGTACT TTCTGGTGAA AGTTTTGTTA ATGTTTTTAA 180
TTTGTATTTT TCTGCTTATA AATTTGTCCT TAAATCACTC CCCTCCTTCC CGCCCCCCCG 240
ACTCCTTCTC CCTCCTTCCC GCCCCCCAA CTCCTTCTCC CTCCTTCCCG CCCCCGCGAC 300
TCCTTCTCCC TCCTTCCCGC CCCCCGATCC TCGAG 335

- (2) INFORMATION FOR SEQ ID NO:67:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 235 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:67:	
GGTGACATAT	TTATTGCTTC TGTTTTCCAA CTACATCACT TCAACTAGAA GTAAAGCTAT ACTTCACATA GGAGGCAAAT TTAGAGAAAG TTGTAAAGAT TTCTATGTTT	60 120
GATTITCCIG	TTTTCCCTTT TTTTTTTTAA GAGTATAAGG TTTACACAAT CATTCTCATA	180
ATGTGACGCA	AGCCAGCAAG GCCAAAAATG CTAGAGAAAA TAACGGGATC TCGAG	235
(2) INFORM	ATION FOR SEQ ID NO:68:	
(i)	SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 257 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:68:	
GAATTCGGCC	TTCATGGCCT ACCACAATCT GTTTGCTTTT CCTCTTTAGA TTCCAAAAAT	60
AACACCCCAA	AGGCTACCTT TTCAAATATT CTACAACATC TGCAAAAATC TTTAGTACTC	120
TGTCCTTGGA	GTCAGTCAAG AAATTCCACC CCAGAAGTGT AAAAACCAAT CAATAATATA	180 240
	TITCTCTAAA TTATTATTTT TCTTATGGTT GAGTCTCCTG CCAACTTTAT	257
GTTTCCCAAT	CGCTCG	
(2) INFORM	ATION FOR SEQ ID NO:69:	
(i)	SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 261 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
AGGTGGGGGG AAACATAAAC AAAGGTGAAC	TTCATGGCCT AGCTGGGCAT GGTGATGCAC GCCTGTAATT CTAGCTACTC TTAAAGGTGA GGCAAGGTCA GCGGTGAAGT GCAGCTCAGA GGGAGGGGTC CAGAACTTAT AGGTCTAGAG GTAAAATGGG ATTCATGGGG GGCAGAGGTC CAGAAGTCAG GGGTGAAGGA AGGTCTGCAA AGTTAAAGGT GCGGTTTCCA GGGTGCTCGA G	6 12 18 24 26
(2) INFORM	MATION FOR SEQ ID NO:70:	
123	SEQUENCE CHARACTERISTICS:	
(1)	(A) LENGTH: 279 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
/: 4) MOLECULE TYPE: CDNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

(X1) SEQUENCE DESCRIPTION: SEQ ID NO. 70.	
GAATTCGGCC TTCATGGCCT AGATTGAATT TTTAACACAG TCCTCTCAGA AACTGACTAA AACAGGTTTT AAAATTAGCA AATATTAAGA ACATACGAGT AAAAGTCAGT TTATTTTAGA TAAGTAGGGA TTTAAATTCA ACAAAAATAA ACACATTTTA AACTCCTATA ATACATTTAT TTAAAATAAA TATATTTTTG CCAAAAGAAG TGTAAGTTCA AAGAGTTAAC ATACAGATTA TATCCTATGA GATATAATAA TATTAGAAAC TGGCTCGAG	60 120 180 240 279
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 255 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
GAATTCGGCC TTCATGGCCT AGTTACATTT ATAATCAGTG AGGAAAATAT AAACTATACA ATAAATGAAA GGGTCATTGG CCAATTGTTT GGAGGGAAAA AATACACCAT GTTCTAAAAT AAATTCTAG TGATTTATTG TGACTTTCAT GCATTTGGAT GATTTTAAAG ATTTTATATA AAAATGAAAC CATAGCCTTA CGAGAAGAAA ATATAAAGAA AAACTTGTAT AGTCTTGGGA GGGGGGATTC TCGAG	60 120 180 240 255
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 138 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
GCGATTGAAT TCTAGACCTG CCTCGAGATC GTCTTTTCTA CCTGGATGAG AGCTCTACCA CTTCTTTCCT TTTGCACACT CATCTCATTC TATGCACTCT TGGGCTGTAA CTGTCATTTC TTTTCCTGTA CACTCGAG	60 120 138
(2) INFORMATION FOR SEQ ID NO:73:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 208 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
GAATTCGGCC TTCATGGCCT ATCACATTGC ATTAAATCTG TAGATTACAT TGAGCATTAT GGACATCTTC AAAATATTTC AAATTTTGAA CAGGAGCATG CTGAAGAGTG TGTTGTTTAA TTTCTATGTA TTTGTACATT TTTTTTCTCT ATCTTATACT GCCGAGACCA GCTCAGTCGG	60 120 180

GGAGACCCTA ACCCAACGGC AGCTCGAG

208

(2) INFORMATION FOR SEQ ID NO:74:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 268 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
GAATTCGGCC TTCATGGCCT ACATGAAACT GTTAGTCACT TCATTTCTGT TTCTTCCCTG	60
TTGCAACAGC CCATCTTCGT GGGAAGAACC AAGCTTTAGG CTTGGCTCTG AACAGCCACA	120
AAGTGACTTG GCTGAGGTCC TGCCATTTCG CTCATGCTCA GCAGGGGGCA GCAGACCAGG	180
GCAGTTCAGA GTATGGGGTC AAACCCAGGT CCCTGTCCCC ACTCCACCTG TGGATTTACC	240
CTGGATTGGG CAAGCCCCAT TACTCGAG	268
(2) INFORMATION FOR SEQ ID NO:75:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 286 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
1-7	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
GAATTCGGCC TTCATGGCCT ACGTGAACAA GACCCTCCCA AACCTTCAGG TAGTCAACCA	60
CCAGCAAGGC CCCCACCACA GACACATCCT GAAGCTGCTG CCGTCCATGG AGGCCACTGG	120
GGGCGAGAAG TCCAGCACGC CCATCAAGGG CCCCAAGAGG GGACATCCTA GACAGAACCT	180
ACACAAGCAT TITGACATCA ATGAGCATTT GCCCTGGATG ATTGTGCTTT TCCTGCTGCT	240
GGTGCTTGTG GTGATTGTGG TGTGCAGTAT CCGGGAAAAG CTCGAG	286
(2) INFORMATION FOR SEQ ID NO:76:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 199 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
GAATTCTAGA CCTGCCTCGA AAATACACTG TTACTATCTT AATCTCAAGA GTGTCATTAC	60
AGTGAGAATC TCATTTAAAA GCATACCAGT GAAATTAATA GCAGTGCTTA TCAAAGAACA	120
CTGAAATCTG TGAGAATCTT TCTAGGAGCA TTCTTTTCTT	180
GTAGGCCATG AAGGTCGAG	199
·	
(2) INFORMATION FOR SEQ ID NO:77:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 233 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

GATTGAATTC	TAGACCTGCC	TCGAGTTCCA	CGTCCATGGC	CATCCTGAGC	ATGCTGCAGG	60
ACATGAATTT	CATCAACAAC	TACAAAATTG	ACTGCCCGAC	CCTGGCCCGG	TTCTGTTTGA	120
TGGTGAAGAA	GGGCTACCGG	GATCCCCCCT	ACCACAACTG	GATGCACGCC	TTTTCTGTCT	180
CCCACTTCTG	CTACCTGCTC	TATAAGAACC	TGGAGCTCAC	CAACTACCTC	GAG	233

- (2) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

GAATTCGGCC	TTCATGGCCT	AAGAATAGAG	AAAACGTTTT	CAGCAGGCTT	CACAGAGAAA	60
CCAAACAATA	TTTAGAATAT	GACAGCATAT	GAAGAGTCTG	CTACTCTCCC	AGTGACCCAT	120
ACTTTCTCTT	CCATCTCTGC	TGGTTCTCTC	TACTACCGAT	TCTTTCTTGC	TGTTCTCCTT	180
CTCCATCACC	GTGACTTCTA	TTGCCTTACT	CTAATGTCTT	GTCTTCTGTG	TTACCCTTCT	240
GTGTGTTTTG	CATTCAGAAC	TCCCCCTCCG	CTCGAG			276

- (2) INFORMATION FOR SEQ ID NO:79:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 273 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

GAATTCGGCC TTCATGGCCT	ААААААААА	AAAAATCCCT	GGCTGAGAAC	TATTGGATTA	60
GGGCCTCCNG TACCTATCTT					120
AGGAATGCCT TTTAGTATAG	TTATTTCACT	TACTATTTTA	TAGCATATTT	TAATTGTATA	180
GTAAGCATTG TGTCTGTTTT	ATGGTAAGGA	AACTAAAATT	GAGAGATTAG	GCTGCTCGTG	240
GTGGCTTATA CCTTGTAATC	CCAAGCACTC	GAG			273

- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

GAATTCGGCC TTCATGGCCT AGCGAAATGA CGAAATCTAG CCCTTTGAAA ATAACATTGT	60
TTTTAGAAGA GGACAAATCC TTAAAAGTAA CATCAGACCC AAAGGTTGAG CAGAAAATTG	120
AAGTGATACG TGAAATTGAG ATGAGTGTGG ATGATGATGA TATCAATAGT TCGAAAGTAA	180
TTAATGACCT CTTCAGTGAT GTCCTAGAGG AAGGTGAACT AGATATGGAG AAGAGCCAAG	240
AGGAGATGGA TCAAGCATTA GCAGAAAGCA GCGAAGGGCT CGAG	284
NOONON TOURS OF THE CONTROL OF THE C	
(2) INFORMATION FOR SEQ ID NO:81:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 284 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
100 mg	60
GGGAACTGGA GGAAAACCAT CACAAGATGG AGTGCCAGCA AAAACTGATC AAGGAGCTGG	60
AGGGCCAGAG GGAAACCCAG AGAGTGGCTT TGACCCACCT TACGCTGGAC CTAGAAGAAA	120
GGAGCCAGGA GCTGCAGGCA CAAAGCAGCC AGATCCATGA CCTGGAGAGC CACAGCACCG	180
TTCTGGCAAG AGAGCTGCAG GAGAGGGACC AGGAGGTGAA GTCTCAGCGA GAACAGATCG	240
AGGAGCTGCA GAGGCAGAAA GAGCATCTGA CTCAGGATCT CGAG	284
(2) INFORMATION FOR SEQ ID NO:82:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 311 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
GAATTCGGCC TTCATGGCCT ACTGTGTTGA CTTGGTGGCT TGCTTGATAA GAAGGTTTTA	60
TGAAGCACAG CAGATATCTC AGCTGCTAAT CCTGTAAGCC CTTTACCCAT TCTCGCTTTT	120
CTCTGCTCTT GCCACATCAT GAATAGATTG GTATACTATT GTGGGATACT TCTAGTTTTA	180
GCACATGATA TAGGTTATGG TTAATGTTCC TTTCCATCTT CCTGGTTACT GATAATGTTC	240
CTTTTCTGTA GATGGGTCTA TTCGATGGAA GAGTTTCAGC TTTGTTCGTG TTATTTCCCT	300
GGGACCTCGA G	311
(2) INFORMATION FOR SEQ ID NO:83:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 329 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
GAATTAATCG TAAGAGAACC TCAGCATTGT GCACGATAAG AGAATGTGTC AGTATTTCAG	60
GGTTCTACAT TITATCTGTA AAATGTGACT TTTTTTTTTT TTTATCACAA CAGAAGTAAA	120
ATGTTGCTTT GTACCTGGTG TCTTTTATTA AGAATTTACT CCCCCCATTT CTCACAGAGA	180
ATAACAGTCG GGAGTCATTG TCACAATATA ATAGAAATGT TAGCAACCAG ATTCATGTAA	240

CTCTCTGTAG TTTGCTGGGT ATTCTCGAG

GGACTAAGTG GTCCTCATGA ATTGCATTAA GACTCTGTAC TGCTCATATT ACACTCCATC

300 329

(2) INFORMATION FOR SEQ ID NO:84:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 312 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
GTCATAAGTT GACCTTTATG TGCTTTCTGA ATTGGAACTT AAAATAATCT TTAATTCATT ATTTTTCTA CTTCTAGGCC AGTTTTGAGT TTAATATTTA TAAAAGGTTA GATAGTTATA GATAGGATTA TTTTGCAGTT TTGAAACAAC ATACAAATTG TTATAGATTT CAGAGTAGGG CTAATCACAG GAAAGACAAA AGTCAGAATG CTTNAGGTAA GCCCCTTCTC ATTATATAAG	60 120 180 240 300
(2) INFORMATION FOR SEQ ID NO:85:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 304 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
TGGTGGTTTA AAACACACAT ATAGATGGCT CTGGGACCAT CAAAATAGCA GCAGCAAAGA GCCACTCCAC CAGCCTCCCC TCCACTCCCC CAGGCCCCAC ACAGCAGAAG GCTCCAGCCA CTTTTTGGAA GCCTGTAGCC TGGCTCCATC TTGCCCTGTG CCACAAATGC CCATGGCCCT	60 120 180 240 300 304
(2) INFORMATION FOR SEQ ID NO:86:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
ACANTGATT CTGCTATAGA TTTCATAATG GGGATTCAGA GAAGTAGAGT TATGGTGCTG GTTCACTGCA TTGATTGGAT CAGGCGCTGG AAACTCTCCC TGATAGATTT TATTCTCACC	60 120 180 240 291

121	INFORMATION	FOR	SEO	TD	NO:87:
121	THEORITATION	LOK	354	7.17	110.01.

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 423 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

GAATTCGGCC	TTCATGGCCT	AGCTAGAAAA	AAAAAAAAA	AAGCCCTTTT	CAGTTTGTGC	60
			ATTTTCTGAA			120
AGATCATACC	GGTAAAGCAG	GAATGACAAA	GCTTGCTTTT	CTGGTATGTT	CTAGGTGTAT	180
			TATAAGTAAA			240
			AGCCACCCCA			300
			AAGCACATAA			360
TAGGAGCACT	ACCATCTGTT	TTCAACATGA	AATGCCACAC	ACATAGAACT	CCAACATCTC	420
GAG						423

- (2) INFORMATION FOR SEQ ID NO:88:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 172 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

GCGATTGAAT TCTAGACCTG	CCTCGAGCTT	GGGGGGATTA	CAGTTCAACA	AGAGATTCAG	60
GCAGAGACAA ATATTCCAAA					
CTTTGAGTCA ACCCATATGA	GAGTGAATTC	TCCGATCCTG	TACATACTCG	AG	172

- (2) INFORMATION FOR SEQ ID NO:89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 260 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

GAATTCGGCC TTCATGGCCT ACCCGTG	TTG TCCAGTATAC CTTATAACAC TTAGCCACTT	60
CTCCCCACCC TCCAGAAGGG GTCCACG	FTG AATTCTGAAT CATCTTGAAA ATAAGATTCC 1:	20
AACCACAAAA AAAATTTAGC CATTTCT	TTA CTAAAAAAA CCAAAAAACA AATCTGTTTT 1	80
ATAATCACAG ATTTTTAGAC AAATTTC	TTG TATCAGGAAG AAATACAAAT TTTGTCATGT 2	40
TTCTCAAGCA GTGTCTCGAG		60

- (2) INFORMATION FOR SEQ ID NO:90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 250 base pairs

PCT/US98/06956 WO 98/45437

- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90: GAATTCGGCC TTCATGGCCT AAACTAAGAT AAAAATAAAC AGATAGGAGA GCTGAATTCC 60 ATTTCAAGTC CTCATGTATA TGCTTACAAA GTTCCAAATT AAGCTTGGGA CTGGTTCTTA 120 CATGGCAGGT AATCCAAACC TTTTCTATTT ACTGAAGATT TTCAGCTCTC TTACAGAAAT 180 ACACAGGCTA CCATTAAAAT TGTAGGGATA AATTTTAAAT TGAATTTGAA AATAAGAGCA 240 (2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 260 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91: 60 GAATTGAAAC ACAGAGTTGT TCTGCTGATA GTTTTGGGGA TACGTCCATC TTTTTAAGGG 120 ATTGCTTTCA TCTAATTCTG GCAGGACCTC ACCAAAAGAT CCAGCCTCAT ACCTACATCA GACAAAATAT CGCCGTTGTT CCTTCTGTAC TAAAGTATTG TGTTTTGCTT TGGAAACACC 180 240 CACTCACTTT GCAATAGCCG TGCAAGATGA ATGCAGATTA CACTGATCTT ATGTGTTACA 260 AAATTGGAGA AAGTCTCGAG (2) INFORMATION FOR SEQ ID NO:92: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 354 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

AGTACTCGAG

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

GAATTCGGCC	TTCATGGCCT	AATTTCATCT	TTTTTTCCTG	GTGCTGCATA	AACATATATT	60
AAATGTTGTT	ACTGATCCCT	AGTACTGTTG	ATTTGTGACC	CTTCTCCTGA	GGGAGACTAA	120
AGCTGCTTGA	GCTAAAGGCT	TTTGAGACAT	CCCATACGGT	TCCCTGAACA	AAGTTTTCTC	180
TCCTGACCTC	AGTTCTCTTG	ATGACCTTGG	CAAGTGGGCC	CGACTAGTTG	GACACTAATG	240
		CCCATCCTGT				300
AGTGTTGTGT	CTTCCTAGTG	GGCATGAAGA	CGGCTTTAAA	ACCATCCACT	CGAG	354

- (2) INFORMATION FOR SEQ ID NO:93:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 493 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

GCTGAAAATG	CAAAACATGA	AGAAAGTGAT	TGAGGCAATT	CGAGTGGAGC	TGGTTCAGTA	60
				TTTGCCCCTT		120
GGACTACACA	GAAAGTCTGC	TCCAGCTCCA	CGATGCTGAG	ATTGTGCGGT	TAAAAAACTA	180
CTATGAAGTT	CACAAGGAAC	TCTTTGAAGG	TGTCCAGAAG	TGGGAAGAAA	CCTGGAGGCT	240
TTTCTTAGAG	TTTGAGAGAA	AAGCTTCAGA	TCCAAATCGA	TTTACAAACC	GAGGAGGAAA	300
TCTTCTAAAA	GAAGAAAAAC	AACGAGCCAA	GCTCCAGAAA	ATGTTGCCCA	AGCTGGAAGA	360
AGAGTTGAAG	GCACGAATTG	AATTGTGGGA	ACAGGAACAT	TCAAAGGCAT	TTATGGTGAA	420
TGGGCAGAAA	TTCATGGAGT	ATGTGGCAGA	ACAATGGGAG	ATGCATCGAT	TGGAGAAAGA	.480
GAGACTCCTC	GAG					493

- (2) INFORMATION FOR SEQ ID NO:94:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 293 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

GAATTCGGCC	TTCATGGCCT	ACACACGGCC	AAATTTGAGG	GCATTCTCAC	ATGTGTTCTT	60
CTCTCAAAAC	CACTGGGGTT	GACAGATCCA	GGAGGCTAAA	AAAAAGTGAC	CTCTATAATT	120
CTTTAAAGGT	GCTATTTTTA	GAANATTGTA	TAATTTATTC	ACAGTATATC	TAAAACAGAA	180
				CTAGTCACAT		240
				GATTGAACTC		293

- (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 280 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

GAATTCGGCC	TTCATGGCCT	AAAAAGACAG	GAAAATAAGT	CTCTTTGTAT	CCTTATTAAT	60
CATTTGAAAT	TATGCTATAA	TATTTTTTAA	AACTCACCTG	TTTGGTTCTG	GGTGAAGCAG	120
	AGTGTTTTGT					180
GTAAGTTTGG	GAAATAGTGG	GTTAGACAAA	GTTGAGTTAC	TGTTGGCCTT	TCAGACCTTT	240
	TGTGCATTTT					280

- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 279 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GAATTCTCCA	GCCTGGGTGA	CAGAGTAAGA	CTCCATCTCA	AAAACAAAAA	AACCCAACAG	60
GATAAAATTT	AATAGGAGTA	AATATAAAGT	TCTACGTTTT	GATTTTAAAA	ATCTAGGTAC	120
TGTATAGTGT	GTATTAGTTG	GGGTTCCTTT	TTTGAAACTT	AATCTTGCCT	ATAAAACACA	180
AAAGAGTTTA	AGATGATATT	GAGACTCCTC	CTGTCCTCAT	TCCTTTTCCT	TCCTAATAGC	240
TCAGTCCTGA	AGCTCTTAGG	TGAGGCAGAA	CAACTCGAG			279

- (2) INFORMATION FOR SEQ ID NO:97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 307 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

GAATTCGGCC	TTCATGGCCT	AGGATACCTT	CATTTCAAGG	AGCCTCTTTA	CAGTAACTGG	60
GCTAAACATT	TTGTTGTCGT	CCGTCGGCCT	TATGTCTTCA	TCTATAACAG	TGACAAAGAC	120
CCTGTGGAGC	GTGGAATCAT	TAACCTGTCC	ACAGCACAGG	TGGAGTACAG	TGAGGACCAG	180
CAGGCCATGG	TGAAGACACC	AAACACCTTT	GCTGTCTGCA	CAAAGCACCG	TGGGGTCCTT	240
TTGCAGGCCC	TCAATGACAA	AGACATGAAC	GACTGGTTGT	ATGCCTTCAA	CCCACTTCTA	300
GCTCGAG						307

- (2) INFORMATION FOR SEQ ID NO:98:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 292 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GAGCTGTGTC AGCATCGATC	AGGGGTCTGT	AGACAAAAAT	TCCCAAAGAT	TTGAGACTTT	60
ATTGGGGGAA ACAGATCACT	GGCGGGGAAT	AAGCCACAGG	CCAAAGGAGG	AAATGCTGGG	120
ACCAGAAGTC CCGCTTGCCG	CCTTTTGCTA	AAAGTTCCGC	ACGCCTGCTC	GGCGTGGGCG	180
CAAGCATAGT GTCGTCGGGG	CTCTGCGACG	TCTGATTGGC	TCTCTGCAGT	GCACCGTCGA	240
GGTAGAAGGC TCAGCTCCTA	GTCGCTCCCA	AATTACTTTG	TTGGTGCTCG	AG	292

- (2) INFORMATION FOR SEQ ID NO:99:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 397 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

60

GCCTCTCTGT	TCTGGTTCTC	TCATTTTATA	AAGTGCCTTC	TTCCTTTCTG	CATTTATAAG	120
TAAACATGAG	AAAAATCTGA	AAAGACTTCT	TCAGGATGTT	TAAGGAAACA	AATGTTGCTT	180
TCCTTGGGTT	GGGTCGTTTC	ATAAGAGTGA	TGTTTGCCAT	AAAACTGGAG	CCTCATAGAC	240
GATCCTGCAG	GGAGGAAGCT	TTCCTTGGTC	ACCTGACTCA	TGTGTTTATA	TATAGTATAG	300
AGGAGAGGTA	TTCCAAAAGA	CCCGTCGCTT	TTCCTGTGTC	CCACAGCTGC	CTGTAGAGTT	360
GTGGCACCAT	AAACTTTAGC	AGCTGGAAAT	CCTCGAG			397

- (2) INFORMATION FOR SEQ ID NO:100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 370 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

GAATTCGGCC	AAAGAGGCCT	ATTAATTTAA	TAAAGCCATA	TCATACCTCT	CTTTAACATT	60
GTTAAAAGGA	AACTGTGTGT	GTGTATTTGT	GTTAATGTTA	ANTTCTCTTC	ATTTTTGTGC	120
TTGGGGGGCT	GTTTATTTGA	GGATGGTCGG	GGGGCGGGTG	GGTCAGACCC	ATCCATCCCC	180
CATGGAAGAC	CAGACCCATC	CATCCCCCAT	GGAAGACCAT	TCCCGTGTGT	TCAGACTGGC	240
AGGGTACTTC	CATAGACAGG	AACATTCTGG	ATGCTCTGAT	GCTGAACACT	ACCAGAATCG	300
GCCATGGATT	TGCTTTGAGC	AAACACCCCG	CAGTCAGGAC	TTACTCCTGG	AAAAAGGACA	360
TCTTCTCGAG						370

- (2) INFORMATION FOR SEQ ID NO:101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 340 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GAAAAAAATA GACAAAACTA	TGATGTAAAA	ATGCTTAAAA	ACAATTATTC	CTCTCTGCTA	60
ATTITAATGC AAAATAAATG	ATGCTAGCAT	TTAATATGTT	TATATGATCT	TGTTTTTAGG	120
ATTGAAATTT TAATACAATG	GCCTTTTGTA	ACTATTTTTA	CTATTATAGC	TCAGGTGTTT	180
GAATTCTCTC TACCCCACCT	ATCACCCCTA	TCCCCTAACA	AAGAGTCTGG	CTTCATAAAT	240
ACTGTTGAAT GAAAATTGGT	TCTCTAAATG	GTTAACAAGA	TGAATCCACA	TAAATCATAA	300
TTCAGTACTG AGGAACCGAA	TTTATACCCA	GCGTCTCGAG			340

- (2) INFORMATION FOR SEQ ID NO:102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 370 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

GAATTCGGCC TTCATGGCCT AGATTGAATT CTAGACCTGA TGTGAGAATG ATGGGCTTGG

AGTGTTCTGG AAATAGCTGG GAGGCCTGTG TGTTTAGGAG CGCCTTAAAC AGTAGGATAT

120

AAGGGCAGAG AAGTAGCTGG GAACTGAGAA GAACTTTGGC TGTTATTCTA GTAAGACTGA AAATTTCAGG TGGGATTTGA ACAGAGATGT GTGGTGATCT GACTTGGTTC ATTCTGCTGT GGTGAAGAGA CTGGAGGTGC GGGGCAAGTA TGGAAGCATG GAGACCATTA ATTTATGGGG GCAATGGTAG AGGGAAGAGA AACAATGCTA TTAACTGGAG TAGGAGCACA CAGAGAACAA GCCACTCGAG	180 240 300 360 370
(2) INFORMATION FOR SEQ ID NO:103:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 270 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
GCGATTGAAT TCTAGACCTG CCTTGAGATC ACCGAGTGCT TCATCTCTGA CAGTTCCTCT GACCAGATGA CCACAGGCAC CAACGAGAAC GCCGACAGCA TGACATCCAT GAGCACACCC TCAGAGCCTG GCATCTGCCG CTTTACCGCC TCACCACCCA AGCCCCAGGA TGCGGACCGG GGCAAAAACG TGGCTGTGCC CATCCCTCAC CGGGCCAACA AGAGTGAGTG CTCAGACCAC CTCCCAGGCA GTGCCCCCCC GACTCTCGAG	60 120 180 240 270
(2) INFORMATION FOR SEQ ID NO:104:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 286 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
GAATTCGCCT TCATGGCCTA ATATGCTTAT GAATATGATG TTGATGGACA GCTCCAAACA GTTTACCTCA ATGAAAAGAT AATGTGGCGG TACAACTACG ATCTGAATGG AAACCTCCAT TTACTGAACC CAAGTAACAG TGCGCGTCTG ACACCCCTTC GCTATGACCT GCGAGACAGA ATCACTCGAC TGGGTGATGT TCAATATCGG TTGGATGAAG ATGGTTTCCT ACGTCAAAGG GGCACGGAAA TCTTTGAATA TAGCTCCAAG GGGCTTCTAA CTCGAG	60 120 180 240 286
(2) INFORMATION FOR SEQ ID NO:105:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 291 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
GAATTCGGCC TTCATGGCCT ACTTAAATCT TAGATGCTAA TGGGAGAAAC TGATTTTTTA AAAAACAGGG AAACTAATTA ACATTTTATC AGATATGCTA TGAAGTAAAC AGTTGAAGAC TGACAGTCCA GTGGATACCG AGGAGTTCCT TTAGATACCC TGGTGAGGTA AGGACACAGG CAAGGGGAGA GCTGAGACCT GAATATGAGG AGAAGCCAGG CGAGCACACA ATAGGGCAGA	60 120 180 240

AAGGAGCAGT AGGTCAAAGC CTGAGGCAGG AGAGAGCTTG ACTGACTCGA G

(2) INFORMATION FOR SEQ ID NO:106:

291

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106: GAATTCGGCC TTCATGGCCT AGAAATGGTT CTGAAAGCGA CAGTAGAGAG ATGCAGTTGT GATGATTTCA ACAACCTGGA TGTTTTCTTT CTCCTCTTTG CTTCCATTCA TCTCTGTTGG 120 CTGCTGTTGA TGGAGTCAGA CAGTAAACAC GTGGCTTGGA TAACACCCAT CATCCTATGA 180 AGAATATAGG GAGTACTTGT TCTCTGTTGA TTCAACTTTT ATGTCTCCAG TAACATTGCG 240 300 CTTATGAAGG TACCTGTATT TGTATGGACT CTGAATAAAG AAGAATTCAT TTGTTTAGCA 339 AGTATTAGTT CAGCAACCAC TGAGAAACAA GCACTCGAG (2) INFORMATION FOR SEQ ID NO:107: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 439 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107: GAATTCGGCC TTCATGGCCT ACATCATGTC AAAGAGTACT ACATACAGTT TGGAATCTCC 60 TAAAGACCCG GTACTACCAG CTCGTTTCTT CACTCAACCT GACAAGAATT TCAGTAACAC 120 CAAAAATTAT CTGCCTCCTG AAATGAAATC ATTTTTCACT CCTGGAAAAC CTAAAACAAC 180 240 CAATGTTCTA GGAGCTGTTA ACAAGCCACT TTCATCAGCA GGCAAGCAAT CTCAGACCAA ATCATCACGA ATGGAAACTG TAAGCAATGC AAGCAGCAGC TCAAATCCAA GCTCTCCTGG 300 AAGAATAAAG GGGAGGCTTG ATAGTTCTGA AATGGATCAC AGTGAAAATG AAGATTACAC 360 AATGTCTTCA CCTTTGCCGG GGAAAAAAAG TGACAAGAGA GACGACTCTG ATCTTGTAAG 420 439 GTCTGAATCG GAGCTCGAG (2) INFORMATION FOR SEQ ID NO:108: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 298 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108: GAATTCGGCC TTCATGGCCT AATTGAATTC TAGACCTGCC TCGAGAGGCA GGTCTAGAAT TCCAAATGTA AAATTTACTA AGGCTTTTCA TGTGGAAGTA GAATGCATAT ATCTTTCTTG 120 ATATAACAAA TGAATTTGGT TGTAGCTAAC GTGTTGTACT AGTAAAGGTC CACCTGCTAA 180 ACTITITCIT TITTGTTGAG GTATAGACAG TAGAGTGATA CCGATACATG AGGAAAATGA 240 GAACTGGAAT GCAGGCCAAA AGCTGGTCCT TTCCAGATGA ATGTAACCAA GACTCGAG 298 126

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 355 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

GAATTCGGCC TTCAT	GGCCT ACACTCTCAA	ATATGTGGCC	TTTAACGGGA	CCAAAGTAGG	60
AAAGCAGATA GTGGA					120
CCCCGTGTCA CGCTA					180
CGTCACAGAG GAGTC					240
CGCCACCCAG GGCTG					300
GCTCATCGTC TGTTT					355

- (2) INFORMATION FOR SEQ ID NO:110:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 407 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

GAAAAAACTG	GGTCAAAGAA	TTACGGAAAA	TGTTGGGAAA	TGAAATCIGI	TIAIGIAIAG	80
TTGGTAATAA	AATAGACTTG	GAAAAGGAGA	GACATGTTTC	CATTCAAGAA	GCAGAGTCGT	120
	TGTGGGAGCA					180
AGGAACTCTT	TCTTGACCTT	TGTAAAAGGA	TGATAGAAAC	AGCACAAGTG	GATGAGAGAG	240
	TGGCTCTAGT					30C
	AGCCCAGACC					360
	AAAAGACAGA					407

- (2) INFORMATION FOR SEQ ID NO:111:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 395 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

GAATTCGGCC	TTCATGGCCT	AAAAGAAAGT	ACATTAAAGC	AACTTGCATC	TCAAAACAAT	. 60
ACATTTCTCT	GGTTGAAGTT	TTAGTGAAAA	TCGATTTATT	CCTCCTCTGA	GTTTTACCCA	120
ATGGGTAAAG						180
CCCATGTTTC						240
AGCCTTCTCT						300
CAGAAAAGGT						360
TGGAGAGAAT						395

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 301 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

GAATTCTAGA AACTACAGTA GTGGGACACA TAACATAGAA GTAATCGTCC AGGATTCTGC	60
TGGAAGAAGT AAGAGTGTTC ACCACATATT TTCTGTTCAA GAGAATAATC ATCTCAGTTT	120
TGATCCCCTG GCATCATTTA TTCTCCGTAC TGATCACTAC ATCATGGCCC GGGTCCTTTT	180
TGTGCTGATT GTGCTGAGCC AGCTCACCAT TCTCATTATT TTTAGATATC GAGGATACCC	240
AGAGCTTAAA GAACCTTCAG GGTTTATAAA TCTGACCTCA TTTTCTCTTC AATGTCTCGA	300
G	301

- (2) INFORMATION FOR SEQ ID NO:113:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 268 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

G	AATTCGGCC	TTCATGGCCT	AAGCATGCTG	TCTTGTGATG	GTGATTTCAT	GTGTTTTCTG	60
C	ATGGGATTA	TTAACGGCAT	CCATTTTCTT	GGGCGTCAAG	TTGTTGCAGG	TGTCCACCAT	120
T	GCGATGCAG	CAGCAAGAAA	AACTCATCCA	ACAAGAGAGG	GCACTGCTAA	ACTTTACAGA	180
A'	TGGAAGAGA	AGCTGTGCCC	TTCAGATGAA	ATATTGCCAA	GCCTTCATGC	AAAACTCATT	240
A	AGTTCAGCC	CATAACAGCA	GTCTCGAG				268

- (2) INFORMATION FOR SEQ ID NO:114:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 260 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

GAATTCGGCC	TTCATGGCCT	ACCCGCATCC	CAGCTCTATT	TAAAAAAATA	AAGAAGAAGA	60
TAATTCATT	CCTTAAGCTG	CCCTTACACT	ATTAGTCAGG	AATGTTTGTG	TTCACTTCCA	120
CTACATACCT	TACGATCTCT	TTTGCTTTGC	TTTTTTTCAG	TCAAGTCTCT	ATTTATGAGG	180
TGGACAAGC	AGATTGTCGC	AAATTTTGCA	CTACTGGCAT	CGATGGAGCC	ATGACAATTT	240
GGGATTTCA	GACCCTCGAG					260

- (2) INFORMATION FOR SEQ ID NO:115:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 259 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GAATTCGGCC TTCATGGCCT A	AAACATTTTC	TGAAAAACGT	GATAGAAAGA	AGGAGGAGCT	60
GTTTCTAGGA GGGAAATAAA T	TAATTTGGCA	GGAGACTTTT	TGAACTAGAT	ATCTATTGAA	120
TAACAAAGTG ACAATGTTCC	CCATCCTCTC	ATTTCCATTC	CCAATTTTAC	TTCTCGTCCC	180
AATTCAAATC ATTCTTACTT A	ATGATCGGCG	CTATGTCAGT	GCCTCTCAGC	TGGTCTTCCC	240
AGACCCAGTC ACCCTCGAG					259

- (2) INFORMATION FOR SEQ ID NO:116:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 238 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

GAATTCGGCC TTCAT	IGGCCT AATTACATIT	ATGCAACCAA	GCTATCAAAA	GGACTGGCTG	60
TCCTTGGGAA TGAA	ACGTAA CAAAATCGTC	AATAGAGTAT	TATTGGAAAA	GATTGTTTTC	120
AGTCATGAAC TAGC	CATTTA AATGAGAAAA	CAAATGTAAT	GATGCTTTCT	GTCATGATTT	180
TATAAATAAA TGTC	AATTGT AGGAAATTGG	TAAAATAAAAT	GAAAAAGAAA	AACTCGAG	238

- (2) INFORMATION FOR SEQ ID NO:117:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 279 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

GAATTCGGCC AAAGAGGCCT F	ACCCTAGACC	TGTTTTCTGT	TCTCTACTCT	TGAAATGCTA	60
ATGACCTTCA TGACCAGAGT	CCGCTATTGC	AGTTTGTGGT	TGACAGGCAT	CTCTCACTCA	120
CTGTGCTGCA ACTCAACTCT 1	TTATCTTCAA	CCAAACAGGG	CCTCCCCGCA	GCTTTCCCAC	180
TGCCACTCAG TGGCACTCCA T	TCCAGGGTTT	CCAAAGTGTA	AGACCCCGGA	ATTTATCTTT	240
CACACTTCCA TCTCCCTCCA (CCCCTCATCC	AATTCATCA			279

- (2) INFORMATION FOR SEQ ID NO:118:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 656 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

GAATTCGGCC	AAAGAGGCCT	AGTTATAATG	ATGGAAGAAG	TGGAAAAACT	TTGTGATCGG	60
CTTGAACTGG	CAAGCTTACA	GTGCTTGAAT	GAAACACTCA	CATCATGCAC	AAAAGAATAG	120
GAAAGGCTGC	TTTGGAAAAA	CAGATAGAAG	AAATAAATGA	GCAAATCAGA	AAAGAGAAAG	180
AGGAAGCTGA	GGCTCGTATG	CGACAAGCAT	CTAAGAACAC	AGAGAAATCA	ACTGGTGGAG	240
GTGGAAATGG	AAGTAAAAAT	TGGTCAGAAG	ATGATCTACA	ATTACTAATT	AAAGCTGTGA	300
ATCTGTTCCC	TGCTGGAACA	AATTCAAGAT	GGGAAGTTAT	TGCTAATTAC	ATGAACATAC	360
ATTCTTCCTC	TGGAGTCAAA	AGAACTGCCA	AAGATGTTNT	TGGCAAAGCA	AAGAGTCTCC	420
AAAAACTTGA	CCCTCATCAA	ANAGATGACA	TAAATATAAA	GGCATTTGAT	AAGTTCAANA	480
AAGAACATGG	AGTGGTACCT	CAAGCAGACA	ACGCAACGCC	TTCAGAACGA	TTTGAAGGTC	540
CATATACAGA	CTTCACCCCT	TGGACAACAG	AAGAACAGAA	GCTTTTGGAA	CAAGNTTTGA	600
AAACATACCC	AGTAAATACA	CCTGAAAGNT	GGGAAAANAT	AGCAGAAAGT	CTCGAG	656

(2) INFORMATION FOR SEQ ID NO:119:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 523 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

GAATTCGGCC	AAAGAGGCCT	AGAGACAAAT	AGGTGATACT	GAATTTTATA	CTGTTTTCTA	60
CTTTTCCATT	AAAACATTGG	CACCTCAATG	ATAAAGAAAT	TTAAGGTATA	AAATTAAATG	120
TAAAAATTAA	TTTCAGCTTC	ATTTCGTATT	TCGAANCAAT	CTANACTGTT	GTGATGAGTG	180
TATGTCTGAA	CCTGTAATTC	TTAAAANACT	TCTTAATCTT	CTAGAAGAAA	AATCTCCGAA	240
GAGCTCTCTC	TAGAAGTCCA	AAATGGCTAG	CCATTATGCT	TCTTTGAAAG	GACATGATAA	300
TGGGACCAGG	ATGGTTTTTT	GGAGTACCAA	GCAAGGGGAA	TGGAGCACTT	TAAGGGCGCC	360
TGTTAGTAAC	ATGAATTGGA	AATCTGTGTC	GAGTACCTCT	GATCTAAACG	GTAAAACAAG	420
CTGCCTGGAG	AGCAGCTGTA	CCTAACAATA	CTGTAATGTA	CATTAACATT	ACAGCCTCTC	480
AATTTCAGGC	AGGTGTAACA	GTTCCTTTCC	ACCAGATCTC	GAG		523

- (2) INFORMATION FOR SEQ ID NO:120:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 111 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

GAATTCGGCC AAAGAGGCCT AATTTCTTCC TGTGATATGA GAATTTCTTT TCTTTCAGCA
GCTTTACCTG CATTTGGCTT TGGCTTTTGC AATCGGCCCC TCATTCTCGA G 111

- (2) INFORMATION FOR SEQ ID NO:121:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 579 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

GAATTCGGCC	AAAGAGGCCT	AACCGCGGCC	GCTACTTCGG	CCTCTTTGGA	AAAAAAAAG	60
TGAAAGAAAA	NATCACAATA	CAGGGAAAAG	TGAGCTAAAA	ATCCCGGCAT	TAAAAAGCCC	120
TTGATGTGGT	CCTGAATCGG	CTATTTCTAT	CTGTTCCCTG	AGCCTAACCT	CAGCGCTGGC	180
CTCTCTAAAC	CTCTTTTCAG	TCCTCTCATT	TTGAAAACAG	GGCCCATTAC	ACATTCTCTG	240
AAAGCTTGCT	GAGTGATTTA	ACCACATAGT	CTAGGGGAGG	CACTCATCAA	ACATAAGGCC	300
				GGCTGGTGAA		360
TGGAAGGAAA	GTGGGAAGGA	TACACTGAAA	TAGGACATAG	ACGTAGAGGG	GAGTCGATGG	420
TCATCTGGCT	TGATAGGGAA	AGTTAGAGAG	CTCTCCTGAA	CCACAGTTAC	AGAGCTTGGG	480
				CATATTTCCT		540
GGCTCTGGCA	CCTTAATTGG	TCAAAAGGCA	GCACTCGAG			579

- (2) INFORMATION FOR SEQ ID NO:122:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 257 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

GAATTCTAGG AATGGGTCGG	GAAGTTGAGA	ATCTTATATT	AGAAAATACA	CAACTGTTGG	60
AAACCAAAAA TGCTTTGAAC	ATAGTGAAGA	ATGATTTGAT	AGCAAAAGTG	GATGAACTGA	120
CCTGTGAGAA AGATGTGCTG	CAAGGGGAAT	TGGAGGCTGT	GAAGCAAGCC	AAACTGAAAC	180
TAGAGGAAAA GAACAGAGAA	TTGGAGGAAG	AGCTTAGGAA	AGCTCGGGCA	GAAGCTGAAG	240
ATGCAAGGCA ACTCGAG					257

- (2) INFORMATION FOR SEQ ID NO:123:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 421 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

GAATTCCTGT AACTCGGAAA AGATATCAGA GGA	ATGTTCG TGGCATCAGA GAGAAAGATG 60
AGAGCTCACC AGGTGCTCAC CTTCCTCCTG CTC	
AAACGCCAGC ACATCCCGAG GCTGTGGGCT GGA	ACCTCCTC CCTCAGTACG TGTCCCTGTG 180
CGACCTGGAC GCCATCTGGG GCATTGTGGT GGA	
CACACTGCTC CTGATGCTCA TCCTCCTGGT GCC	GCTGCCC TTCATCAAGG AGAAGGAGAA 300
GAAGAGCCCT GTGGGCCTCC ACTTTCTGTT CCT	CCTGGGG ACCCTGGGCC TCTTTGGGCT 360
GACGTTTGCC TTCATCATCC AGGAGGACGA GAC	CCATCTGC TCTGTCCGCC GGTCACTCGA 420
G	421

- (2) INFORMATION FOR SEQ ID NO:124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

GAATTCTAGA	CCTGCCTCGA	GAAAATGAAA	GTCTTTTCTC	AAAAAACTTC	TTCCCAGGTC	60
TGTGAAGCAG	CACAGTGGCC	CCTTCTGGCT	CTCACCTTGT	ACCTCGTCCT	TGTTTGCCTC	120
GAG						123

- (2) INFORMATION FOR SEQ ID NO:125:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 303 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

GAATTCGGCC TTCATGGCCT	AAGATGGCGT	CTCACAAATC	ATATGCCAAT	TACTGAAATT	60
GGAGGTGAAA ATATTCTAGA	TTTATTGTGG	GATATATATA	TTTTATGGTG	TATGGCTCCC	120
AACACCACAT GCCACTGAAC	TATATAAAAC	TTTATGTCAG	AACACTTACT	TGTGTCATAT	180
GTAACCCTCT TGCAAATAAT	ATTCCCTTAC	TACAGATCTG	TCCCACTGTT	CTCAGAAAAT	240
AAAACATGGG AACGTTGGAA	TGTCTCCTTG	CTATAAGATA	TTGAATTCTA	GACCTGCCTC	300
GAG					303

- (2) INFORMATION FOR SEQ ID NO:126:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 508 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - •
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

GAATTCGGCC	TTCATGGCCT	ATGAAGACAA	AGCTAACTTA	CAAAAGCAGC	TGGTTGAAGC	60
AATGAATACG	CAATTAGAAC	TTTCAGAACA	ACTTAAATTT	CAGAACAACT	CTGAAGATAA	120
TGTTAAAAAA	CTACAAGAAG	AGATTGAGAA	AATTAGGCCA	GGCTTTGAGG	AGCAAATTTT	180
ATATCTGCAA	AAGCAATTAG	ACGCTACCAC	TGATGAAAAG	AAGGAAACAG	TTACTCAACT	240
CCAAAATATC	ATTGAGGCTA	ATTCTCAGCA	TTACCAAAAA	AATATTAATA	GTTTGCAGGA	300
AGAGCTTTTA	CAGTTGAAAG	CTATACACCA	AGAAGAGGTG	AAAGAGTTGA	TGTGCCAGAT	360
TGAAGCATCA	GCTAAGGAAC	ATGAAGCAGA	GATAAATAAG	TTGAACGAGC	TAAAAGAGAA	420
CTTAGTAAAA	CAATGTGAGG	CAAGTGAAAA	GAACATCCAG	AAGAAATATG	AATGTGAGTT	480
AGAAAATTTA	AGGAAAGCCA	CCCTCGAG				508

- (2) INFORMATION FOR SEQ ID NO:127:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 713 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

PCT/US98/06956

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

GAATTCGGCC	TTCATGGCCT	AGCGGCAGTC	CAGATCACGG	TTACTGTGAC	CTGACTGGAG	60
AAAAATTATG	TGTCTGCAAT	GATAGTTGGC	AAGGTCCTGA	TTGTTCTTTG	AATGTTCCCT	120
CTACTGAGTC	TTACTGGATT	CTGCCAAACG	TTAAACCCTT	CAGTCCTTCT	GTAGGTCGGG	180
CTTCACATAA	AGCAGTTTTA	CACGGGAAAT	TTATGTGGGT	GATTGGTGGA	TATACTTTTA	240
ACTACAGTTC	TTTTCAAATG	GTCCTAAATT	ACAATTTAGA	AAGCAGTATA	TGGAATGTAG	300
GAACTCCATC	AAGGGGACCT	CTCCAGAGAT	ATGGACACTC	TCTTGCTTTA	TATCAGGAAA	360
ACATCTTTAT	GTATGGAGGC	GCCCCAAGGC	CCGACCCCTC	CCCCAAAGGG	GCAGTCCCCT	420
TCTTGCAGGT	CTCAGCTTGC	GGGGTGGGGG	GAGTCATGCC	CAGGGGAGGA	GACTTTTTAT	480
CTGGAGGGGA	GAGAAGGATT	CTAGGGGTGT	GGAGTTGGAG	AAAGAGGCTT	CCTTGAGCCA	540
CCCTTCCCAC	CCCAGCCCTT	GNTGGTCCCT	AGGCCAAGCC	ACCAAGTGAA	ACCTTCCAGG	600
ATACTAGCCC	GCCAGCTGTG	GGCCCCAGAA	AGCCAGCCTG	CCTTTTAGCA	CTTGGATACA	660
CACAGACCCA	CGGAGCTCTC	TGTGTTTGGC	CTCTCACACA	CACACAACTC	GAG	713

- (2) INFORMATION FOR SEQ ID NO:128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

GAATTCGGCC AAAGAGGCCT AA	GAGATTCA GGACCTGCAG A	GTCGCCAGA AGCATGAAAT	60
TGAATCTTTG TATACTAAAC TG	GGCAAGGT TCCCCCTGCT G	TCATTATTC CCCCAGCTGC	120
TCCTCTGTCG GGGAGAAGAA GG	AGACCCAC TAAAAGCAAA G	GCAGCAAGT CTAGTCGCAG	180
CAGCTCATTG GGCAATAAAA GC			
TTCAGTCTTA CACCCCCAAC AG	ACCTCCAC AGTCGAG		277

- (2) INFORMATION FOR SEQ ID NO:129:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 670 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

GAATTCGGCC	TTCATGGCCT	AAGGCTACCG	ATATTGGAGA	AGCTAACTAT	GGGTTTTACC	60
ACACGTAACA	GCTTTTTGGT	GAAATCAGTT	GTTATACTAA	TAAGCTTTCC	TCTAATTGAT	120
TTGAGTTTTG	GTTTTTGTGT	TTGTATTTGC	GGGTTTTGTC	TCTTTTGTTT	TCTTGTTTTT	180
AGTAAATTGG	TTTTTCTTCA	ATGTATTTTC	TTAAAGTAGT	CTAGCTTTAC	CCAGTTTCCT	240
TGGCAAATTG	AAATTTAGGC	CATGAAGGCC	GAATTCGGCC	TTCATGGCCT	ACTCAGCCTC	300
CCCAAGTAGC	TGGGACTACA	GGCGTGTGCC	ACTATTCTCA	GCTGATTTTT	GTATTTTTAG	360
TGGAGACGGG	TTTTTGCCAT	GTTAGTTGGC	CAGGATGGTC	TCTCTCTCGA	CGTCGTGATC	420
CGCCCGCCTC	GGCCTCCCAA	ATTGCTGTGA	TGACAGGCGT	GAGCCACCCC	GCNTGGCNTG	480
TCCTACCTCT	TTTTTAAGAC	CTCTTCCTGT	AAGCACTGGA	TAATCTACTT	CTAGTAATGT	540
GAAACTGACT	ATATNTTGAA	TTCATATGTT	TTCAATCAAC	CTGTTGCAGT	TTATATTTCA	600
CACCCTGCTC	CCTTTTGACA	GTTTAAGTAC	AGATAGTCTC	AGCAGTTCTG	GAGACCATGT	660
AAAGCTCGAG						670

- (2) INFORMATION FOR SEQ ID NO:130:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 462 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

GAATTCGGCC TTCATGGCCT A	CGACTCTGC	TCTATTTACC	ACTATCAGGC	CAATCCTCCT	60
GACATGCTGT TAATATTTAG A					120
TGGATGCGAC TAAGATTCTT A	AGTCTGGTT	TCTAAGAGCT	TCTTCAATGT	CTCCAACTAT	180
CTTTTCAGGC TCATGTTTGA G	ACCTTCCTT	TCAAGAATAA	TTTGCTTGTG	ATCTGGTTCA	. 240
AGCTGAACAG AGATTTTCAG A	TGACTCCCA	AACTATCTGC	AACACATCAG	CCCTATTAAC	300
TCTTCTCAGA ATGCTCATAC A	GAAGCCATG	CCAGTGCACA	AAAGCCACTT	CTGACACCTG	360
GCCCTGTCTG ACTCATGGAT T	TCTTCCAGG	ATTGCTCTTT	CTATCTGCTT	TAAACCTCCT	420
TGTCAATTGA CTTTCCTTGG C	TCCCAACCC	ACTTTACTCG	AG		462

- (2) INFORMATION FOR SEQ ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 535 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

CAATTCGGCC	TTCGTGGCCT	ANATATTCTA	AGCATTCAAT	TTGTCAGTTT	CTGAGATTTT	60
	TAGTTTTTTA					120
	ACGTAAGTTT					180
	AAATAGCATA					240
						300
	TCATTTGTAG					360
	TATATTACTC					420
	GTTTAGTGAT					
	TTCATGAAAA					480
AGGAAGTTCA	AGGTAGGGAA	AACAAGCTAA	AAATCCCAAC	TTATTTCATC	TCGAG	535

- (2) INFORMATION FOR SEQ ID NO:132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

GAATTCGGCC	TTCATGGCCT	AAGGGGATCA	TCAAAGATGT	TGGACACCTT	GTGTTCAAAT	60
CTTGGTTCAG	GTGCGGCCTG	TGCAGATCGG	CTTTTTGGTT	TGGTTGTCTT	GGCCTGGATA	120
					CACTTTCTTT	180
TTGGACTTTT	CTTTTGGTTT	TACAGTTAAG	TCAGCAAAGA	TATCAATGTT	ATCATCAAAT	240

AAATTAGATT	CCAATGTTTT	CTCCTTCTCT	CTGGTTTTCT	GAGAGGGTTT	AATTGCTTCC	300
GTAGCAAATA	TATCATCCTC	AAAAATATCT	TGTGTTGTTA	ATATGACATC	CTGCTGACTA	360
CTGGATTTTG	TCTCATTCTT	CTTGACTTTC	TGATCCTCGA	G		401

- (2) INFORMATION FOR SEQ ID NO:133:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 497 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

GAATTCGGCC	TTCATGGCCT	AGTAGATGAA	CTAGAAGATG	GATAAACGAA	GATAGATAAA	60
ATGAAGAAAA	ACAAAAGTCA	AGGAGAACTC	AGGCGTCCAA	GAGTGTGTAA	ACAACTTCTG	120
GTGTGAGACG	CGCTACATTG	CGCTAAATGG	CCTGTGCGCT	TCTGGTTTTT	CCCTTCCTCT	180
GTTGATTTTT	TATAGTTGTC	TTTTATTTTA	AACACGCCTC	CCCCCCCCT	TTTTAAACTG	240
ATTTTACCAT	CACTCTCTCT	AGCCCTGCCT	CCCTAGAATT	AGCTGCTTCT	TACCTCCCTT	300
GGATCTGGAA	CTTAAATATT	AACGTGTATA	TAAGTTAATA	GTAAGTAGAC	CGTGAATTTA	360
GAAGAGTAAA	ACAGAATCAT	GAGTACGTAG	TCACTGTGGC	CCCTTTTTTG	CTGGATTTCA	420
AGTTCGTAAG	CATTTTTGGA	AGAGAGTCGA	AGGGGAAGGG	GTGGCTTGCC	AGTCAGTTGA	480
GTGATGCATG	GCTCGAG					497

- (2) INFORMATION FOR SEQ ID NO:134:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

GAATTCGGCC	TTCATGGCCT	AGGCTGGTCA	TTGAGAGTGT	TGGTGCAGTC	AAACTGGAAC	60
ACGATGTGAT	TGGTAAACAT	GTGCTTGATA	CATCGAACAA	AATATTCTGT	CTCTGCTTCT	120
GTAAGTTGAA	CAGGCTCAGA	AGACTTGAAC	AAGGGTCCTA	TATTCAGAAA	CTCAGGAATG	180
GCAGCCAATT	GTTCTTGGGG	ATATATTTCT	AATGAAGTGC	TAGACTATCC	AATTACTTAA	240
TTTCTTATAC	CTTTAGATAA	TCAGTATGAA	AAGTTCCCAT	TTATAATGGA	AATGAAAATT	300
CTTAACTAAA	CTATACATGT	AATATGTATT	TCTAGAAGAG	AATAAAAACC	CAAGTCCTCG	360
AG						362

- (2) INFORMATION FOR SEQ ID NO:135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 377 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

FC1/0576/00750	
CATCTTCTGT CACTGCTGGA GTTGCCAGTT CACTCTCAGA AAAAATAGCC GACAGCATTG GAAATAACCG GCAAAATGCA CCATTGACTT CCATTCAAAT TCGTTTTATT CAGAACATGA TACAGGAAAC GTTGGATGAC TTTAGAGAAG CATGCCATAG GGACATTGTG AATTTGCAAG TGGAGATGAT TAAACAGTTT CATATGCAAC TGAATGAAAT GCATTCTTTG CTGGAAAGAT ACTCAGTGAA TGAAGGTTTA GTGGCTGAAA TTGAAAGACT ACGAGAAGAA AACAAAAGAT TATGGGCCCA CCTCGAG	120 180 240 300 360 377
(2) INFORMATION FOR SEQ ID NO:136:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 333 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
GAATTCGGCC TTCATGGCCT AAGCAAACTT CATGCAGCTG GTGGAACTAG ATGTGTCTCG AAATGAGATT CCTGAAATTC CAGAAAGCAT TTCATTCTGT AAAGCACTGC AGGTAGCTGA CTTCAGCGGA AACCCACTGA CTAGGTTGCC AGAAAGCTTT CCTGAATTAC AGAATTTAAC ATGTCTTTCT GTAAATGACA TCTCACTACA GTCTCTACCT GAAAATATTG GCAATCTTTA TAACCTGGCT TCACTGGAAC TGAGAGAGAA TCTTCTTACA TATCTTCCTG ACTCTCTTAC CCAGCTGCGA AGACTAGAAG AACTTGACTC GAG	60 120 180 240 300 333
(2) INFORMATION FOR SEQ ID NO:137:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 309 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
GAATTCGGCC AATGAAGCCT ACTTTAGTAT TTTGGCACTT CCTAATTGAC ACCTTGGGAG ACTGCAGGAA GGGAACGAGA ATCATTNNTA GGNTATTGT GTGTGTGTG GGTTTTTTTT TTTTTTTGGA AGACAGAGTC TCACACTTTT GCCCAGGCTG GAGTGCAGTG GCGTGATCTC GGCTCACTGC AACCTCTGCC TCCAGGGTTC AAGCGATTCT CTTGCCTCAG CTTCCCGAGT AGCTGGGATT ACAGGCACAC GCCACAACGC CTGGCTAATT TTTATATTTT TAGTAGAGAC AGTCTCGAG	60 120 180 240 300 309
(2) INFORMATION FOR SEQ ID NO:138:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 599 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:	

GAATTCGGCC AAAGAGGCCT AAACTCAGAA TGGTGCTACT TGAAGACTCT GGATCTGCTG ACTTCAGAAG ACATTTTGTC AACCTGAGTC CCTTCACCAT TACTGTGGTC TTACTTCTCA 60

120

GTGCCTGTTT	TGTCACCAGT	TCTCTTGGAG	GAACAGACAA	GGAGCTGAGG	CTAGTGGATG	180
GTGAAAACAA	GTGTAGCGGG	AGAGTGGAAG	TGAAAGTCCA	GGAGGAGTGG	GGAACGGTGT	240
GTAATAATGG	CTGGAGCATG	GAAGCGGTCT	CTGTGATTTG	TAACCAGCTG	GGATGTCCAA	300
CTGCTATCAA	AGCCCCTGGA	TGGGCTAATT	CCAGTGCAGG	TTCTGGACGC	ATTTGGATGG	360
ATCATGTTTC	TTGTCGTGGG	AATGAGTCAG	CTCTTTGGGA	TTGCAAACAT	GATGGATGGG	420
GAAAGCATTA	TTGCAATCAC	AATGAAGATG	CTGGCGTGAC	ATGTTCTGAT	GGATCAGATC	480
TGGAGCTAAG	ACTTAGAGGT	GGAGGCAGCC	GCTGTGCTGG	GACAGTTGAG	GTGGAGATTC	540
AGAGACTGTT	AGGGAAGGTG	TGTGACAGAG	GCTGGGGACT	GAAAGAAGCT	GAACTCGAG	599

- (2) INFORMATION FOR SEQ ID NO:139:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 541 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

GAATTCGGCC	TTCATGGCCT	AACCTTCCTG	AATATCTGCC	GTTTGTCCTG	CAAGAAATAA	60
CTAGTCAACC	CAAAAGGCAG	TATCTTTTAC	TTCATTCCTT	GAAGGAAATT	ATTAGCTCTG	120
CATCAGTGGT	GGGCCTTAAA	CCATATGTTG	AAAACATCTG	GGCCTTATTA	CTAAAGCACT	180
GTGAGTGTGC	AGAGGAAGGA	ACCAGAAATG	TTGTTGCTGA	ATGTCTAGGA	AAACTCACTC	240
TAATTGATCC	AGAAACTCTC	CTTCCACGGC	TTAAGGGGTA	CTTGATATCA	GGCTCATCAT	300
ATGCCCGAAG	CTCAGTGGTT	ACGGCTGTGA	AATTTACAAT	TTCTGACCAT	CCACAACCTA	360
TTGATCCACT	GTTAAAGAAC	TGCATAGGTG	ATTTCCTAAA	AACTTTGGAA	GACCCAGATT	420
TGAATGTGAG	AAGAGTAGCC	TTGGTCACAT	TTAATTCAGC	AGCACATAAC	AAGCCATCAT	480
TAATAAGGGA	TCTATTGGAT	ACTGTTCTTC	CACATCTTTA	CAATGAAACA	AAAGTCTCGA	540
G						541

- (2) INFORMATION FOR SEQ ID NO:140:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 403 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

CTTCATGGCC TAGTGGTTCT	TCTGAAATCG	GCCTTCAGAC	ACCTGTCTTT	GGTAGTACCA	60
ATATCTAAGA AGTGGTTTCA	GTTCAATTTT	GTTTTCCTCC	ATGCCAGAGA	GAAGCCACAG	120
TTTCCTAAGC TGGGGAGGAC	GTATATCCTT	CAAGAGATCG	GCTTGTTAGA	ATAGACCACT	180
TAACACCATA TGAAAAAGCA	ACAGACTGAA	ACATGGATGT	CCTCAAGAAG	GGCTGCTGAC	240
ACCTATGATT TGGCAAGGAC	ATAAATAACA	GAATGTGCAA	AGGGTCATAA	GAGTGCAGAC	300
ACCCTAATGT CTGTTGGCTC	GAAGGTCAGA	GCAGTTCACC	AGTGAAAATG	GGTACGCCAT	360
GAAGGCCGGC CTTCATGGCC	TATAGGCCAT	GAAGGCCGAA	TTC		403

- (2) INFORMATION FOR SEQ ID NO:141:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 439 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

GAATTCGGCC TTCATGGCCT	AGTCCTCATC	TGCTGGCATT	TTGTGGGGTG	TTAGTGCCAA	60
ACTTGAATAG GGGCTGGGGT	GCTGTCTTCC	ACTGACACCC	AAATCCAGAA	TCCCTGGTCT	120
TGAGTCCCCA GAACTTTGCC	TCTTGACTGT	CCCTTCTCTT	CCTACCTCCA	TCCATGGAAA	180
ATTAGTTATT TTCTGATCCT	TTCCCCTGCC	TGGTCTAGCT	CCTCTCCAAA	CAGCCATGCC	240
CTCCAAATGC TAGAGACCTG	GGCCCTGAAC	CCTGTAGACA	GATGCCCTCA	GAATTGGGGC	300
ATGGGAGGG GGCTGGGGGA	CCCCATGATT	CAGCCACGGA	CTCCAATGCC	CAGCTCCTCT	360
CCCCAAAACA ATCCCGACAA	TCCCTTATCC	CTACCCCAAC	CCTTTGCGGC	TCTGTACACA	420
TTTTTAAACC TGGCTCGAG					439

- (2) INFORMATION FOR SEQ ID NO:142:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 292 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

GCGATTGAAT	TCTAGACCTG	TGTGTCTAGC	TGTGATGGAA	TCTGAAATGA	AGTTTGACAA	60
GGACCATGAT	GGACTCATTG	AAAATGGAGG	CTATGCAGAC	CAGACCTATG	ATGGATGGGT	120
GACCACAGGC	CCCAGTGCTT	ACTGTGGAGG	GCTGTGGCTG	GCAGCTGTGG	CTGTGATGGT	180
CCAGATGGCT	GCTCTGTGTG	GGGCACAGGA	CATCCAGGAT	AAGTTTTCTT	CTATCCTCAG	240
CCGGGGCCAA	GAAGCCTATG	AGAGACTGCT	GTGGAATGGC	CGCTTACTCG	AG	292

- (2) INFORMATION FOR SEQ ID NO:143:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 457 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

GAATTCGGCC	TTCATGGCCT	AGGGAGGCTG	AGGTGGGAGG	CTCACTGGAG	GCCAGGAGTT	60
CGGAACCAGC	CTGAGCAACA	TAGGGAGACC	TCAGCTCTAC	AACTGAAAAA	AAGATAGCCA	120
GGTGTGTTCA	TGGTGGCACC	TGTCTGTATT	CCAGCCGCTT	GGGAGGCTGA	GGCAGGAGGT	180
TTGCTTGAGT	CCAGGAGTTT	GAGGTTGCGG	TGAGCTACAC	AATGAGCTAT	GGTGGCACTA	240
CTACACTCCA	GCCTGGGCCA	TAGAGTAAGG	CCCTGTCTCT	AACTGGAAGT	CCAAAGAGGG	300
ATCTACTTCC	TAGACTATTA	ATTTAATAGA	TCAATAAATT	AATCAAGAAT	ATGATTTTTT	360
TCTCATCTTT	CTCTGTAGTC	ATATTTTATA	CAGACTTTTT	GTTTAAGTAA	TCTCTCTTTA	420
TGGGCAGACA	ATGATTTCAG	AAACACCCTG	CCTCGAG			457

- (2) INFORMATION FOR SEQ ID NO:144:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 388 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

GAATTCGGCC TTCATGGCCT	AGTCAGCCGT	GACTGCACCA	CCATACTCCA	GCCTGGGTGA	60
CAGAGCGAGA TCTTGTCTTA	AAACAAAACA	AAACAAAACC	CAGACTTCCT	ATAATTCCTA	120
AAAATAAATG TGGGTTTGAG	AGGCCTACCT	TGAAATGTAC	AAGATCCTGG	CCAGACTTCA	180
CCTATCTAAC AATATGCTAG					240
GCCTCAGAAA GCAAGGCAGA	GAACAGGTCC	CTGAAATTTA	CTAGCTTGCA	CCAAACCATC	300
AGATAAAGAT AGGTTAATAT	TTGACAGAAA	AAACTCTTCA	AAAAGAGACA	GTGAAATACT	360
CTTGAGATGA ATCCAGGCGG	CTCTCGAG				388

- (2) INFORMATION FOR SEQ ID NO:145:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 303 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

GAATTCGGCC	TTCATGGCCT	AGGCAGTGGA	GGCCTCTGTA	ATTCTAGCAT	ACAGGTGGCA	60
AGTTATTACA	TTATTTCTTT	CCTCCTGTCT	ACCTGCAGTT	GGTTTTATGT	GGGGCGTTAG	120
TACACTTCCC	AAAGGGCTTG	CCCGCAGGTG	AGAGGTGCAC	ATTGAACTCC	CTCACCAGGC	180
AGATGGGAAG	TGTGGCCATG	AGAGAGAGCT	TCAGGGGCCC	TGGGTTTATG	ACATCGCTGG	240
GCCAGGAATG	AGGTTAATAT	TTTTAATGGC	GAAGGGTGAG	CCCCGTTATT	ACCCGAGCTC	300
GAG						303

- (2) INFORMATION FOR SEQ ID NO:146:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

GAATTCGGCC TTCATC	GCCT ACTGGATGGC	ATCTACTTCG	TATGACTATT	GCAGAGTGCC	60
CATGGAAGAC GGGGAT	TAAGC GCTGTAAGCT	TCTGCTGGGG	ATAGGAATTC	TGGTGCTCCT	120
GATCATCGTG ATTCTC	GGGG TGCCCTTGAT	TATCTTCACC	ATCAAGGCCA	ACAGCGAGGC	180
CTGCCGGGAC GGCCT	CCGC CAGTGATCGA	GTGTCGCAAT	GTCACCCATC	TCCTGCAACA	240
AGAGCTGACC GAGGCO	CAGA AGGGCTTTCA	GGATGTGGAG	GCCCAGGCCG	CCACCTGCAA	300
CCACACTGTG ATGGC	CCTAA TGGCTTCCCT	GGATGCAGAG	AAGGCCCAAG	GACAAAAGAA	360
AGTGGAACAA CTCGAC	3				376

- (2) INFORMATION FOR SEQ ID NO:147:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

GAATTCGGCC	TTCATGGCCT	AATGGAAAGG	ACAAGGAAAA	GGGAGAAGGG	GTGAGAGTCT	60
GTCCTAGGGG	CCAACGAGAA	CAGTGAGCTG	TTTCAGGGGA	GCCATTTCCT	TGTCCATGCT	120
CACAAGCCTG	TGGATTCTTC	CCCCTCTGCA	GGAAATTACC	TGATGTTCCA	AACCCCCTCC	180
AGATCCTGTA	TATCCGCAGC	ATCTCCCCTT	TCCCTGAGCT	GGAACAGTTT	CTACAGGACA	240
CTATCAAGAG	GTACTAGGGG	CCTGGAGGTT	TGGGCTCCAA	GAGAAGCTTG	ACAGAGCCCA	300
CGCCCGACCC	CTACTTCTGT	TTCTTCCTAA	GGTATAATCT	GCAGATGTTG	GAAGCTGAGG	360
GCAGCATGAA	GCAGGCCCTG	GGTGAACTGC	AGGCACAGCA	GCCCCCTCG	AG	412

- (2) INFORMATION FOR SEQ ID NO:148:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 335 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

GCCTGGCCAT	CCGGAGAGCT	AAGAACCTCA	GGCGGCTGCT	GTACGTNTCA	TGCAACCCCC	60
GGGCAGCCAT	GGGCAACTTT	GTGGACCTCT	GCAGAGCCCC	ATCTAACCGG	GTGAAGGGCA	120
TTCCCTTCCG	GCCGGTCAAG	GCTGTGGCAG	TGGACCTGTT	CCCGCAGACC	CCTTCTTTTT	180
TCATACTTAT	ATGAAAGACT	ACATACTTAA	AATACTGGTG	ATTATATTA	GGACCTGAAA	240
TCATAAGATT	GTGGTCTTGC	TTTTTACTTA	TTTTTGTATC	TTAGCGATGT	CTAGAGTTAA	300
TAAGTGTTGC	TTTTCTAATC	ACAGCAAATC	TCGAG			335

- (2) INFORMATION FOR SEQ ID NO:149:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

GGATTCGGCC :	TTCATGGCCT	AGTGGGGCAC	TAGGATCATC	ATTTGGGTGA	GAGCCCTCGG	60
CAATGGTGGA (GAGGGAGAAG	TTATCATTGT	GGAGCTCAGA	TGGGGTCCGG	AATTTGTTGG	120
TCCTACGCAG (CTTGGTATTC	TCCGTCTTGA	GCAGGTAGAG	CTTCTTGGCA	AAGAACACCG	180
TCATCATGAA	GAGCAGGAGC	AGGACGAGGG	CAGCCGAGCC	CACGGCCACG	CACATCACCT	240
GGAAGTCGGT (GATGATGGAC	TCGCAGCGCA	TCCCCTTGTG	CCAGATGTAG	TCCTGCGTGT	300
TGCACCTGCA (GAAGGCCCCT	ATGTTCTCCA	CCAGGTAGCA	CTGGCCGCCA	TTGTGACAGT	360
AACTTGGGAA	GAGGTCGCAC	ACTGACCGGC	AGGAGCCGTT	ATGCCGCACA	AAGCCACTGC	420
GGCACTCAGT (GCCATTTTCA	CTGGAGGCCA	AGTCCCTGCC	TGGCTCTCCT	TAGGCCATGA	480
AG						482

- (2) INFORMATION FOR SEQ ID NO:150:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

GTTCCTTACT	AACTTTAATG	GCCACAACAT	TTAGGCGAAA	GGGGGCAAT	CATTGGTGGT	60
TTGGCATTCG	CAGAGACTTC	TGTCAGTTTC	TGCTTGAAAT	TTTCCCATTT	TTAAGAGAAT	120
ATGGGAACAT	TTCATATGAT	CTCCATCACG	AAGATAGTGA	AGATGCTGAA	GAAACATCAG	180
TTCCAGAAGC	TCCGAAAATT	GCTCCAATAT	TTGGAAAGAA	GGCCAGAGTA	GTTATAACCC	240
AGAGCCCTGG	GAAATACGTT	CCCCCCTCT	CCTCGAG			277

- (2) INFORMATION FOR SEQ ID NO:151:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 272 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

GCTCGCCCAC	TTTATGAAGA	GCGATTTCAC	GGCTGCTTGA	ACCATTCGAA	TTTGGATTTG	60
TGTTCAGCAC	TTTAAAAGGT	TCAACTTTTT	GCTTCTACCC	AGATTGGTCT	CAGGTCTGTC	120
TTCTCCAGAT	GACCGGTGGT	TTCCTGAGCT	GCATCTTGGG	CTTGGTGCTG	CCCCTGGCCT	180
ATGGCTTCCA	GCCTGACCTG	GTGCTGGTGG	CGCTGGGGCC	TGGCCATGGC	CTGCAGGGCC	240
CCCACGCTGC	ACTOCTGGCT	ACANTACTCG	AG ·			272

- (2) INFORMATION FOR SEQ ID NO:152:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 308 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

GAATTCGGCC	TTCATGGCCT	AGGGGCGGTG	AAACGTCCTG	AAGAGCGTCC	AGCTCGTGGC	60
CGAGAGGACT	CGGGCGCTCC	CCACGCTGGA	GGCCGTGGAC	CGCTCCCTTT	AAAAGTTGAA	120
ACGGCCGCCG	TTCGGGACGG	CCTGGCGGGA	GGAGGGCCCG	ACGAGGGGAG	GCTTCAGGGA	180
CAACTGGGGC	TTCTCGACGT	CCACCCTTTT	CAGGGCGCGG	CCCCGGTAGC	CCTCGGGCCG	240
GCCCAGGTAC	AGGAGGTGCT	TCCCGGGACC	CCCGGAGTAC	CTGGAGGGAC	CTCCCGAGGG	300
CACTCCAC						308

- (2) INFORMATION FOR SEQ ID NO:153:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 438 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

GAATTCGGCC TTCATGGCCT	ACAATCCCAA	ATGTAGGATC	ATGCCCATTG	CCCTAAGCCC	60
AGGCATGAGA GTCGACATCT	CTCCTCTTAT	ATACAGATCC	AGTCCACAGG	TGAAGTGGGA	120
ACTCTCCAAC CAGGATTCAG	CACACCATTG	ATGTTGCGAC	TCCTCTACTG	GAACACAGCT	180
TGGAGAAGGG ATTGGGGCTC	TCATGGCAGG	ATGCAATCCA	CTGTTGAGAT	TGTGACTCAT	240
GCACTTGAAC CTAAGTCTCA	GGAGTTGTTG	ACTCTTACAC	CCAGCACCCA	GGTGATAGGA	300
CTCTCATGTC TGGTTCCTGC	CCACAGGTGA	AATTGTGACA	TATACATGGT	CACAGCTCAC	360
AGGTGAGGTG ATAACTCACA	TACCTGGATC	CAGCTAAGAG	AACAGATTTT	GACTCTGATA	420
TCTTAGGCCA TGAAGGCC					438

(2) INFORMATION FOR SEQ ID NO:154:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 297 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

GAATTCGGCT	TCATGGCCTA	CAAGATGACT	AAAGTCTTCA	CTCACCAAGG	AAAAGTGGCT	60
CTGTATGGCA	AGCTGGTGCA	GTCAGCTCAG	AATGAGAGGG	AGAAACTTCA	AATAAAGATA	120
GATGAGATGG	ATAAAATACT	TAAGAAGATC	GATAACTGCC	TCACTGAGAT	GGAAACAGAA	180
ACTAAGAATT	TGGAGGATGA	AGAGAAAAAC	AATCCTGTGG	AAGAATGGGA	TTCTGAAATG	240
AGAGCTGCAG	AAAAAGAATT	GGAACAGCTG	AAAACTGAAG	AGGAGGATGC	TCTCGAG	297

- (2) INFORMATION FOR SEQ ID NO:155:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 395 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

GAATTCGGCC TTCATGGCCT AAATTTAGGA	AGGTCAAACG TGA	AATCTCCA 1	ITTGACAAAC	60
GTCCAACTGC AGCAGAGATT AAAGTGGAAC	CCACCACTGA GTO	CATTGGAC A	AAAGAGGGCA	120
AAGGTGAAAT TAGAAGCCTA GTGGAGCCAC	TCAGTATGAT CC	AATTTGAT C	GATACTGCTG	180
AGCCACAGAA AGGAAAAATA AAAGGAAAGA	AACACCATAT CTO	CTTCAGGA A	ACTATCACAA	240
GCAAAGAAGA AAAAACTGAA GAGAAGGAAG	AGTTGACCAN AC	AAGTCAAG 1	ICTCATCAAC	300
TTGTTAAATC ACTCTCAAGA GTGGCTAAAG	AGACTTCAGA ATO	CTACCAGA C	GTTCTAGAAA	360
GTCCAGATGG CAAAAGTGAA CAGCGTAACC	TCGAG			395

- (2) INFORMATION FOR SEQ ID NO:156:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 422 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

GAATTCGGCC TTCATGGCCT	ACAGAGTACT	GAGTGGAACA	TACGATGATA	GATTTACAAA	60
TAATGTAGCA TACTTCTACT	TCATTGTATC	TTAAGTTTCT	TGAAATATTG	CTACTGGAGA	120
TTGGAAAGAA ATCTTAATGT	TATGGGGTAT	TGTCTAAGAA	${\tt GCTTTATTTT}$	AAAACCATCT	180
CATTAAATTT TGTTGCATTT	TAGATAATCG	TCCCCAGATG	CCATGTTACC	CTAGTGCAGA	240
GTTTGGGGCT GGATAAGTTT	TTGTTGTAGG	TGGCTATCCT	GTGTTTTGTA	GGGTATTTAG	300
CAGCATCCTG GCCTTAAAAC	AAAAATGTTT	TCAGACATTG	CCAAATGTCC	CCCGAGCGGT	360
AAAGTCACCC CCAAGTTGAG	AACCGCTCTA	TACAAAGAGC	TGTTATTAGA	GCCAGACTCG	420
AG					422

- (2) INFORMATION FOR SEQ ID NO:157:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 492 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

GAATTCGGCC	TTCATGGCCT	AGATTGCTTG	AGGCCAGAAG	TTCAAGACAG	GCTGCCCAAC	60
ATAGTGAGAC	CCCCTTCTCT	ACCAAAATTT	TAAAAATGAG	CATGCATCTG	TAGTCCTAGC	120
TATTGGGAAG	GCTGAGGCAG	GAGGATCATC	TGAGCCCAGG	AGTTTGAGGC	TGCAGTGAGC	180
TAAGAAGGTG	CCACTGCACT	GCTGTTGTCT	CTCAGCAGAT	CATTTTCAGC	TTTCTTTGGA	240
GAGTAGCCAT	TAGCAATGCA	AATGTGAAGT	TTGATAGCAC	AATAAATAAA	ACACTGAAAA	300
CTGTAGATGT	TACTTATAAA	ACACTGGCAC	TCAGATAAAT	TGGGTTTGGT	CAAGAAGACA	360
GTGAAGCATA	TCCCTGTTGG	GCCAGAGGCT	GTTATCGTTT	TGCTCTGAAT	TCAAAACCTG	420
ATATGTCTCC	AAATTTGCTT	AGGGTTGTTA	TCCTGGAAAA	TAGAATCTGA	TAGAAGGTGG	480
GCACATCTCG	AG					492
ocacai ci co	<i>n</i> 0					

- (2) INFORMATION FOR SEQ ID NO:158:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 505 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

GAATTCGGCC TTCA	TGGCCT ACTGCTTTCG	TGAAGACAAG	ATGAAGTTCA	CAATTGTCTT	60
TGCTGGACTT CTTG	GAGTCT TTCTAGCTCC	TGCCCTAGCT	AACTATAATA	TCAACGTCAA	120
TGATGACAAC AACA	ATGCTG GAAGTGGGCA	GCAGTCAGTG	AGTGTCAACA	ATGAACACAA	180
TGTGGCCAAT GTTG	SACAATA ACAACGGATG	GGACTCCTGG	AATTCCATCT	GGGATTATGG	240
AAATGGCTTT GCTG	CAACCA GACTCTTTCA	AAAGAAGACA	TGCATTGTGC	ACAAAATGAA	300
CAAGGAAGTC ATGC	CCTCCA TTCAATCCCT	TGATGCACTG	GTCAAGGAAA	AGAAGCTTCA	360
GGGTAAGGGA CCAG	GAGGAC CACCTCCCAA	GGGCCTGATG	TACTCAGTCA	ACCCAAACAA	420
AGTCGATGAC CTGA	AGCAAGT TCGGAAAAAA	CATTGCAAAC	ATGTGTCGTG	GGATTCCAAC	480
ATACATGGCT CAGG	SAGATGC TCGAG				505

- (2) INFORMATION FOR SEQ ID NO:159:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 373 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

GAATTCGGCC	AAAGAGGCCT	AGCCGGAGCA	GCTGTCTGGG	AGTCAAGGCT	GCAGTAGCGT	60
TTCTTCATGG	GGTGCTCCAG	GGGGTGCCAC	AGACCGACAG	GCAGCCCAAG	GGCCTGGACA	120
CCCCTCCCCA	GGCAGGTGCT	GCCCCAGGAG	GACTGTCCTC	GGGAATGAAC	CTCCCGCGGG	180
CTTTGGACTG	AGGTCCCTGT	GGCCTCGGTC	TCCTCCCCAT	GAAGTGGGAG	CGAGGCTCCC	240
CAATGGTGCT	TTTGGCTTTA	GTGTACGATG	TTTGCTGTGC	TTCCCGCCGT	GGAGGGCAGA	300
GCCACCCCAC	ATCAGGATCG	GACGTGCTAC	CCCTCCCGGT	CCCGGCCCTG	GCCCAGCCAG	360
CCCAGCCCTC	GAG					373

- (2) INFORMATION FOR SEQ ID NO:160:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

GAATTCGGCA AAGAGGCCTA	ATGAATTCTC	TGATCACAAA	ACAGACCCAG	GAAAGCATTC	60
AGCATTTTGA GCGACAGGCA	GGGCTGAGAG	ATGCTGGCTA	CACACCCCAC	AAGGGCCTCA	120
CCACCGAGGA GACCAAGTAC	CTTCGAGTGG	CCGAAGCACT	CCACAAACTA	AAGTTACAGA	180
GTGGAGAGGT AACAAAGAA	GAGAGGCAGC	CTGCATCAGC	CCAGTCCACC	CCAAGCACCA	240
CTCCGCACTC TTCACCTAAG	CAGAGGCCCA	GGGGCTGGTT	CACTTCTGGT	TCTTCCACAG	300
CCTTACCTGG CCCAAATCCT	AGCACCATGG	ACTCTGGAAG	TGGGGATAAG	GACGGGCTCG	360
AG					362

- (2) INFORMATION FOR SEQ ID NO:161:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 419 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

GAATTCGGCC AAAGAGGCCT	AGTTTTACAA	AACGCGATTT	GTAATATAAA	CTAGTTAGAT	60
AACTCAGAGG GTTTTATTGG	CCATATTTTT	GTTTATGCTT	TGTCACAGGC	TTTAGTCATT	120
GCTTCCATGT GTTTTCATCC	TTCAGGATAT	CTTCAAGAAG	CCTACTTATG	GACCAAACAA	180
GTTCTGACCA TCATGGAGAA	ATCTCTGGTC	TTGCTCAGGG	AGGTGACGGA	TGGCTCCCTC	240
TATGAAGGAG TTGCGTATGG	CAGCTACACC	ACTAGATCAC	TCTTCCAATA	CATGTTTCTC	300
GTCCAGAGGC ACTTCAACAT	CAACCACTTT	GGCCATCCGT	GGCTTAAACA	ACACTTTGCA	360
TTTATGTATA GAACCATCCT	GCCAGGTATA	GTGAGGAGTC	AGAAGTGTGA	AAACTCGAG	419

- (2) INFORMATION FOR SEQ ID NO:162:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 261 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	
GAATTCGGCC AAAGAGGCCT ACAGGTAGTA TCTTTATAGC GGTATAAAAA CAGACTAATA CAAACAGGTA GCTCTAAATT GTGAGTTTTT CTTAACTCCT TTGATCTTCT GTGATAGCGA TTTTTCACAT TTCACACTTC CCTAATGCCA AAAATCCACC TCCAGCAGCT GTTTTGCCTC TTTCTTATCC TGCCCCTTGG AAGAATGTCA TCATTATTGC TGCCACAGCA CTGTGTTCTT TTTCAGAAGT TACAGCTCGA G	60 120 180 240 261
(2) INFORMATION FOR SEQ ID NO:163:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 108 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
GAATTCGGCC AAAGAGGCCT AGTGGTCTGG GGCAAAATTT AGTAAGACCT GGAAAGCATA GGTAATCAAA GCAGAAACTG ACAAATGAGA TGGTATCAAG CTAAAAAG (2) INFORMATION FOR SEQ ID NO:164:	60 108
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 292 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	
GAATTCGGCC AAAGAGGCCT AGTTTAACCT CATCAGACAT TATTGCAGCC AGCTGTCAGC CAAGCTCAGT AACCTTCCAA CGCTCATTTC CATGAGGCTA GAGTTCCIGA GAATCCTCTG TAGCCATGAG CATTACCTCA ATCTGAACCT TTTTTTTATG AATGCTGATA CTGCTCCAAC ATCTCCTTGT CCTTCCATAT CTTCCCAGAA CTCAAGCTCC TGCTCCAGCT TCCAGGACCA GAAGATCGCC AGCATGTTCG ATCTGACTTC CGAGTACCGC CAGCCCCTCG AG	60 120 180 240 292
(2) INFORMATION FOR SEQ ID NO:165:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 135 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:	
145	

GAATTCGGCC	AAAGAGGCCT	AGCAAAAACT	GTTCAAAAGA	GTTGTTGATT	ACTTTCATTT	60
CCACTTTCTC	ACCCCCATTC	TCCCCTCAAT	TAACTCTCCT	TCATCCCCAT	GATGCCATTA	120
TGTGGATTCC	TCGAG					135

- (2) INFORMATION FOR SEQ ID NO:166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 449 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

GAATTCGGCC AAAGAGGCCT	AGAAAAAGTA	GCACAGTGGA	GTCTGAAATA	GCAAGCGAAG	60
AGAAAAGCAG AGCTGCTGAG	AGGAAAAGGA	TTATTATTAA	GATGGAGCCA	GAAGATATTC	120
CTACAGATGA ACTGAAAGAC	TTTAACATTA	TTAAAGTTAC	TGATAAAGAC	TGTAATGAAT	180
CCACTGACAA TGATGAATTA	GAAGATGAAC	CTGAAGAGCC	ATTTTATAGA	TACTATGTTG	240
AAGAAGATGT CAGCATAAAA	AAAAGTGGTA	GGAAAACTCT	AAAACCTCGA	ATGTCAGTAA	300
GTGCTGATGA AAGAGGTGGT	TTAGAGAATA	TGAGGCCCCC	TAACAACAGC	AGTCCAGTAC	360
AAGAGGATGC TGAAAATGCA	TCTTGTGAGC	TGTGTGGACT	TACAATAACC	GAGGAGGACC	420
TGTCATCTCA TTACTTAGCC	AAACTCGAG				449

- (2) INFORMATION FOR SEQ ID NO:167:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 565 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

GAATTCGGCC	AAAGAGGCCT	AAAAGGAAAC	TTGGACAAGT	AGAAAGTGGA	TGACCCAGGC	60
TCCGTTACAT	ATACTTGGAT	TCCAGCTGGG	ACCTAGATTT	GCTGAGGACG	GAAGCCAAGG	120
AGACAGGAAC	ATGTGGCTGC	TCCCAGCTCT	ACTCCTTCTC	TGCCTCTCAG	GCTGTTTGTC	180
TCTGAACGGC	CCCGGCTCTG	TGACTGGCAC	TGCGGGGGAC	TCTCTGACAG	TGTGGTGTCA	240
GTATGAGAGC	ATGTACAAGG	GATATAACAA	GTACTGGTGC	CGAGGACAGT	ACGACACGTC	300
ATGTGAGAGC	ATTGTGGAGA	CCAAGGGAGA	AGAGAAGGTG	GAGAGGAATG	GCCGCGTGTC	360
CATCAGAGAC	CACCCGGAGG	CTCTCGCCTT	CACTGTGACC	ATGCAGAACC	TCAATGAAGA	420
TGATGCTGGA	TCTTACTGGT	GCAAAATTCA	GACAGTGTGG	GTCCTGGATT	CATGGTCACG	480
CGATCCCTCG	GACCTGGTTA	GGGTGTATGT	TTCCCCAGCA	ATTACAACCC	CAAGGAGGAC	540
CACACATCCA	GCCACCCCGC	TCGAG				565

- (2) INFORMATION FOR SEQ ID NO:168:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 158 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

GAATTCGGCC AAAGAGGCCT AGTTTCCTTT ATATGTTTGC ACTTAATTTG ATTCCATCCT	60
TCATGCTGTT TTCATTATTC TTAGTTCATC TACACCACAT AAATTATCAC CTTTGTTTTC	120
AGTTCCCCAA TTTCCATGTG CCACAAACAA ATCTCGAG	158
(2) INFORMATION FOR SEQ ID NO:169:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 383 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:	
GAATTCGGCC AAAGAGGCCT AGTCTCACCA TCTATTCTAA ACCTTATATT ATCAATCCTA	60
TTCCCTCTCA CCAAAAGAAT CCCTTTATAC AAGTAATTAT CCTGTCTATG TCTTTCAACT	120
CTAGTTTCCC CACTGCAACT CTTCCCTTAA TATATGTACC TGCTCTGTTA TCCCTCTCCA	180
GCTACTTCCC TATTTTCTGT TCCCCTTTAC AGGAAAACTT TTCTCCAGCA TTTCCCAATG	240
CCATTGTCTT ACTTCCTCAC ATTCTATTTT CTTCTCAAAC CATTTTTATT AGGCTTCTTT	300
CCCCAATGGC TATTGTCAAG CTTCACTTAA TGCCGTGCAA ATCACCCTAT TCTCCAGGTC	360
TTCTTTCTTC CCAGTCTCTC GAG	383
(2) INFORMATION FOR SEQ ID NO:170:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 282 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
GAATTCGGCC AAAGAGGCCT AAATATTGTC TGAAAAAAAT ATATGAGACC CATTACTCAG	60
TCTCTCCTCC TGCCATTTAT ACTGCAGGTA TTCCCCAAGT TTCTCTTCTC	120
TCCTTTTCCC TGCTTGCTCC CTTAGTTTTC TCCTCTGGGT GGATGACTCC CAAATCTAGC	180
ACTGACCTGT TTGTCCACAT CCTTGAGTAT CCCACCACCA TTTCACACCC AGCATATCCA	240
GATGGAGCTC TTATCAGTTG TAACAGCACT GCTCAATTCG AG	282
GAIGGAGGIC TIAICAGIIG TAACAGCACI GCICAATICG AG	201
(2) INFORMATION FOR SEQ ID NO:171:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 350 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(-,	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:	
GAATTCGGCC AAAGAGGCCT AGTGGAAGAG AAGAATGTTT CTGTCTCTTC CTACGTTGAC	60
TGTTCTTATT CCACTGGTTT CTTTAGCAGG ACTGTTCTAC TCAGCCTCTG TGGAAGAAAA	120
CTTCCCACAG GGCTGCACTA GCACAGCCAG CCTTTGCTTT TACAGCCTGC TCTTGCCTAT	180
TACCATACCA GTGTATGTAT TCTTCCACCT TTGGACTTGG ATGGGTATTA AACTCTTCAG	240

GCATAATTGA TGCAACTAGA GTCAATATGC TGTATATATT AATGATAGCT CTTGGGCATC

300

GATCTCTGAA AGCTCAAATG GATGGAATTT AGTTTGCGGG AACTCTCGAG	350
(2) INFORMATION FOR SEQ ID NO:172:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 140 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:	
GAATTCGGCC AAAGAGGCCT AGGGGTGTAC ATTTTATTGG AAACCTTAAA TACTGTTCAG AAAGAATATA TCTTCAATCA AGGCTCTTGT GCAGCCTACA CAGAAAAATG AAGCTTTTTG GGTTAGGTGC AACGCTCGAG	60 120 140
(2) INFORMATION FOR SEQ ID NO:173:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 304 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:	
GTGGTCTCTC CTCCCCTGCC ACTCCCCTCT TCTTTTTTTT CCAACATGGC CTTGCTCCGC GTACATCGCC ACCCAGGGAC CGCTGCCCGC CACCGTGGCT GACTTTTGGC AGATGGTGTG GGAGAGCGGC TGCGTGGTGA TCGTCATGCT GACACCCCTC GCGGAGAACG GCGTCCGGCA GTGCTACCAC TACTGGCCGG ATGAAGGCTC CAATCTCTAC CACATCTATG AGGTGAACCT GGTCTCCGAG CACATCTGGT GTGAGGACTT CCTGGTGAGG AGCTTCTATC TGAAGAACCT CGAG	60 120 180 240 300 304
(2) INFORMATION FOR SEQ ID NO:174:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 188 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:	
GCGATTGAAT TCTAGACCTG CCTCTCTTAT ACCTCGGTGT GGCCGAAAGG AAATAAGCAG AGGCGCTATT GGCAGGACCT AGAAACTTTC CTTGTAACAT AGCTAGTATG TTCCCTCTGC CCCTTCTTCA TCTTTTCCTC ACACTTGCTG GAGCTGGAGC AGCTATCCTG ACCGCAGGTG CACTCGAG	60 120 180 188
(2) INFORMATION FOR SEQ ID NO:175:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 274 base pairs	

- (B) TYPE: nucleic acid(C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GAATTCGGCC	TTCATGGCCT	ACTATCTGCC	TTGCGCTCCC	ACTGCCCTGA	CCTGTGCCCT	60
CTCACAGGCC	CCCGTGATGG	CTCGCTGGCC	TCCCTTCGGC	CTCTGCCTCC	TCCTGCTGCT	120
GCTGTCCCCA	CCGCCACTGC	CCTTGACAGG	GGCCCATCGC	TTCTCCGCAC	CTAATACCAC	180
TCTCAACCAC	TTGGCACTGG	CACCTGGCCG	AGGCACACTC	TATGTCGGCG	CAGTGAACCG	240
CCTCTTCCAG	CTCAGCCCCG	AGCTGCAGCT	CGAG			274

- (2) INFORMATION FOR SEQ ID NO:176:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 327 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

GGTCAGCCGA GCATGATAGG AGACAT	CATC AACCTCGGCC	TGAAAGGGAG	GGAGGGGAGA	60
GCAAAGGTCG TCAACGTGGA GATCGT	GGAG GAGCCCGTGA	GTTATGTCAG	CGGGGAGAAG	120
CCGGAGGAGT TTTCCGTCCC ATTCA	AGTG GAGGAGGTCG	AAGATGTGTC	GCCAGGCCCC	180
TGGGGGTTGG TTAAGGAGGA GGAAGG	TTAT GGAGAAAGCG	ATGTCACATT	CTCAGTTAAT	240
CAGCATCGAA GGACCAAGCA GCCTC	GGAG AACACGACTC	ACGTGGAAGA	AGTGACAGAG	300
GCAGGTGATT CAGTGGGCGA GCTCGA	vG			327

- (2) INFORMATION FOR SEQ ID NO:177:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 408 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

GAATTCGGCC AAAGAGGCCT AAGCAATGTC TCCACCACTC	CTGCTGCTAC CCTTGCTGCT 60
GCTGCTGCCT CTGCTGAATG TGGAGCCTGC TGGGGCCACA	A CTGATCCGGA TCCCTCTTCG 120
TCAAGTCCAC CCTGGACGCA GGACCCTGAA CTACTGAGGC	G GATGGGGAAA ACCAGCAGAG 180
CTCCCCAAGT TGGGGGCCCC ATCCCCTGGG GACAAGCCTC	G CCTCGGTACC TCTCTCCAAA 240
TTCCTGGATG CCCAGTATTT TGGGGAAATT GGGCTGGGAI	A CGCCTCCACA AAACTTCACT 300
GTTGCCTTTG ACACTGGCTC CTCCAATCTC TGGGTCCCG	r ccaggagatg ccacttcttc 360
AGTGTGCCCT GCTGGTTCCA CCACCGCTTC AATCCCAATC	G TCCTCGAG 408

- (2) INFORMATION FOR SEQ ID NO:178:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 305 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

GAATTCGGCC	AAAGAGGCCT	AGGAGGAATT	TCCATCTTGC	TCTCAAAGTG	AGTCTGAATG	60
TGCTCGGTGG	TGTCACCCCC	GCCGAGCTGC	CAGTGCAGAA	GGCCACTATT	GAACTCCTGC	120
ACACGCCCCA	ACTTGTCAGA	TCGGTCAACA	ACAAACAGGT	TGTTCTTTTT	GACTATCTTT	180
ATTGGCAGCT	TGTCGAACTT	ACTGGCTTGC	TTGGGCTTCT	CCTTTGGGTC	TGCAGCGGCG	240
TCCGGGGCAG	TCAGAGCGAT	GCTGCTCTTT	TCATCGCTTT	CTGTCTTCTC	GCTGTCTACC	300
TCGAG						305

- (2) INFORMATION FOR SEQ ID NO:179:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 247 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

GAATTCGGCC AAAGAGGCCT	AGTGCAGCAA	TTTAGAGAGT	GTCTCAGGAG	TGTGGCTCAC	60
TGGCAGCTGC AGCTATGTTA	GTGCTTCTTT	CTGCCTCAAG	TTCAGAAACA	AGCTGGACTA	120
TCTCAGGGTG ATTGAATTTT	CCTGCTGTGG	AATCATAGAA	GTCTTGCAGT	CTCCCAGGTT	180
TGTGTTCAAG GTCTTCATAT	TCAGATGCTT	GAAGAATCAT	TTCACATTGG	TCTAGCATTC	240
AATCGAG					247

- (2) INFORMATION FOR SEQ ID NO:180:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 315 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

GAATTCGGCC	AAAGAGGCCT	AGTCAAGTTC	ATTTCCCAGA	GTCTTAAGAC	TAAGTTCTGC	60
CTCCTCATTG	CAGGTGTGCC	GAGAGTTTTT	TTTGAACAAC	AAAAATTACT	AAGGAACCTC	120
ACTACCTTTG	GCGGTAGAAT	TAGAAAACAG	ATTCAGCAGT	CACCTACTCC	CCTTCAGTAA	180
TTCGAGACAA	TTATTTTTCT	CCTGACACAA	CATCAGGTCC	CATGAAAAAT	GACACCGTGC	240
CTGGTGTTTT	TGGGTTCTTT	AATGCTTCTT	TTAGAGCCAC	ATTITTCTTT	TCAAACCGAG	300
TTCCCATCGC	TCGAG					315

- (2) INFORMATION FOR SEQ ID NO:181:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 328 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

GAATTCGGCC AAAGAGGCCT AATTTTCTT CACGTTCTTT ATCACCACCA TGGTTATGTT GGCTGCCCTG GCTCACCATT TGTTTTACTG GGATGTTTGG TTTATATATA ATGTGTGTTT AGCTAAGGTA AAAGGCTACA GGTCTCTTTC CACATCCCAA ACTTTCTATG ATGCTTACAT TTCTTATGAC ACCAAAGATG CCTCTGTTAC TGACTGGGTG ATAAATGAGC TGCGCTACCA	60 120 180 240
CCTTGAAGAG AGCCGAGACA AAAACGTTCT CCTTTGTCTA GAGGAGAGGG ATTGGGACCC	300
	328
GGGATTGGCC ATCATCGACA ACCTCGAG	320
(2) INFORMATION FOR SEQ ID NO:182:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 123 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:	
GAATTCGGCC AAAGAGGCCT AGTTGTGGAA AAGAAAGACT GTGAGGGTAG GCACAAGAGC ACTCAAATGT CCCAGGTAGA GAAAACAACA TGTATGATGG CCCAGAAGGA GGCAAGTCTC GAG	60 120 123
(2) INFORMATION FOR SEQ ID NO:183:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 311 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:	
GAATTCGGCC AAAGAGGCCT ACTTGGACAA GTAGAAAGTG GATGACCCAG GCTCCGTTAC	60
ATATACTTGG ATTCCAGCTG GGACCTAGAT TTGCTGAGGA CGGAAGCCAA GGACACAGGA	120
ACATGTGGCT GCTCCCAGCT CTACTCCTTC TCTGCCTCTC AGGCTGTTTG TCTCTGAAGG	180
GCCCCGGCTC TGTGACTGGC ACTGCGGGGG ACTCTCTGAC AGTGTGGTGT CAGTATGAGA	240
GCATGTACAA GGGATATAAC AAGTACTGGT GCCGAGGACA GTACGACACG TCATGTGAGA	300
GCTCACTCGA G	311

- (2) INFORMATION FOR SEQ ID NO:184:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 130 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

GAATTCGGCC AAAGAGGCCT AGTTCAATCT GTAACAAGCC TTCTTCAATT TCCTCTCCAC 60
ATACCCTGCA TAGACTTTAA GATTCCTCTG CTCGATGCTA ATAAGAAGAC ACACACCCCT 120

CGTTCTCGAG 130

- (2) INFORMATION FOR SEQ ID NO:185:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 416 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

GAATTCGGCC AAAGAGGCCT	AGGAGGGGA	AGAGAGTCCG	TTTTGCAGAA	GATGAAGAAA	60
AGAGTGAAAA TTCCTCGGAG	GACGGTGACA	TAACGGATAA	GAGTCTTTGT	GGAAGTGGTG	120
AAAAGTACAT CCCACCTCAT	GTGAGGCAAG	CTGAGGAGAC	AGTGGACTTC	AAGAAAAAGG	180
AAGAACTAGA AAGCTTGAAG	AAACATGTAA	AAGGTCTACT	TAACAGGTTG	AGTGAACCCA	240
ACATGGCTTC CATCAGTGGG	CAGCTGGAGG	AACTGTACAT	GGCCCACAGC	AGAAAGGACA	300
TGAATGACAC CCTGACCTCC	GCTCTCATGG	GTGCCTGCGT	CACTGCCTCG	GCCATGCCCA	360
GCAGACTGAT GATGGAGCAT	GTTCTCTTAG	TCAGCATCCT	TCACCACTTA	CTCGAG	416

- (2) INFORMATION FOR SEQ ID NO:186:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 344 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

GAATTCGGCC AAAGAGGCCT A	ACTACATTTT	TACCTAAATT	TATAGAAAAT	CAATTCGGAT	60
TGACATCCAG CTTCGCAGCT	ACTCTTGGAG	GGGCTGTTTT	AATTCCTGGA	GCTGCTCTCG	120
GTCAAATTTT AGGTGGCTTC	CTTGTTTCAA	AATTCAGAAT	GACATGTAAA	AACACAATGA	180
AGTTTGCACT GTTCACATCT	GGAGTTGCAC	TTACGCTGAG	TTTTGTATTT	ATGTATGCCA	240
AATGTGAAAA TGAGCCATTT	GCTGGTGTAT	CTGAATCATA	TAATGGGACT	GGAGAATTGG	300
GAAACTTGAT AGCCCCTTGT	AATGCCAATT	GTAACGTACT	CGAG		344

- (2) INFORMATION FOR SEQ ID NO:187:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 488 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

GAATTCGGCA AGAGCCTAAA ATCTACAAGC ACCAGGAAGT CAAGATGCAA GCAC	CAGCCT 60
TCAGGGACAA GAAACAGGGG GTCTCAGCCA AGAATCAAGG TGCCCATGAC CCAG	ACTATG 120
AGAATATCAC CTTGGCCTTC AAAAATCAGG ACCATGCAAA GGGTGGTCAT TCAC	GACCCA 180
CGAGCCAAGT CCCAGCCCAG TGCAGGCCGC CCTCAGACTC CACCCAGGTC CCCT	GCTGGT 240
TGTACAGAGC CATCCTGAGC CTGTACATCC TCCTGGCCCT GGCCTTTGTC CTCT	
TCCTGTCAGC CTTCATCATG GTGAAGAATG CTGAGATGTC CAAGGAGCTG CTGG	

AAAGGGAGCT TTGGAATGTC TCAAACTCCG TACAAGCATG CGAAGAGAGA CAGAAGAGAG GCTGGGATTC CGTTCAGCAG AGCATCACCA TGGTCAGGAG CAAGATTGAT AGATTAGAGC GACTCGAG	480 488
(2) INFORMATION FOR SEQ ID NO:188:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 163 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:	
GAATTCGGCC AAAGAGGCCT AGGTCAGATG CATTAAAACA TATCAAAATG TTACAAAAAT GTATGGCTCC CTTGCTGAGG CCCTGTCAGA TTATGTTAGA TGAGTAAACG CATCAGTGTG TAAGTTCAGA ACCAAACGTT GAATCAAGTC ATGTACTCTC GAG	60 120 163
(2) INFORMATION FOR SEQ ID NO:189:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 310 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:	
GAATTCGGCC AAAGAGGCCT ACCTGCTCAT ACCTGTGGCC AAAAGCATGA TGCCCCAGGC TCTGCCTCCA ATTCTACCAT CTTCTTCCAT CTTTCTCTTT TATCAGGTCT CTGCCCTCCT GTACTTTGTA CTTAGATTCT CCTCTGCCAA GCCCATTCAG ACTGTGACTG GTAGGAGTGC TGTGCTCAGC TTTCCACTTG AGTGTTTATC CAAGAAGTTG GATAACCCTC TCAAGTTATG GCCTCCATTC CAGTGCGCCT CAGTCTATGG GGATGCATTC CACTCACCCT TGGGCCTAGG GCAGGTCGAG	60 120 180 240 300 310
(2) INFORMATION FOR SEQ ID NO:190:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 516 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:	
GAATTCGGCC TTCATGGCCT AGGGCCTCAG TCTTTTACT TTTGCGGCTG TGTTTCTCTG AAGGCTTGGC ATTAGTAGAT TGAAAAGAAT AACCATCTAG GGAAATGTGA ATTCAGTTTC TTTCTGACAT TCTGCTCTCT ACAAGGGGAT ATTATGTACA CATAAACCTA CTTCCAAAAT AATGAAGTGA GGCCTAATTC CTTACTCTTC AGAGAGGCCCA CTGTGGAAGT GTCACTGACC TTGTGTATGG GCTGCCCTTC ATGGCTCTGG GAGTCATTAT AAAGGGCAGC ATTTGGCGTG GTGCGTCCTA AGCCAGTGTT TCTCGGCTCT GTTCCTTAAA CATGTGTTAG TGTTAATAGA	60 120 180 240 300 360
TGTTCTTGGA AAAAAAAAA AAAAAACAGC ATTCTGAGGT CAAACATGCT CAGAAAGCTT	420

VO 98/45437	PCT/US98/06956	
	TACAGAGCCC TGTCTAATAT TGCCACAGCC CTCGAG	516
	(2) INFORMATION FOR SEQ ID NO:191:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 319 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:	
	GAATTCGGCC TTCATGGCCT ACTTGCTAGA TAGACAGATT AAGAATGTTG AAGACATGGT CCAGTTTATT AATAACATTT TGGATGGCAC AGTAGAAGCC CAAGGAGGTG ATAGCATTTT GCAGAGAGTTG AAAAGAATAG TATTTGATGC CAAATCTACT ATTGTGTCTA TATTCAAGAG CTCACCACTG ATGGGCTGCT TTCTCTTTGG CCTGCCACTG GGTGTCATCA GTATCATGTG CTATGGAATC TACACAGCCG ACACAGATGG AGGTTATATA GAAGAACGAT ATGAAGTGTC TAAAAGTGAA AATCTCGAG	60 120 180 240 300 319
	(2) INFORMATION FOR SEQ ID NO:192:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 382 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:	
	GAATTCGGCC TTCATGGCCT AAGCAGAAGG ACATATTAGA GAAGGATTGT ATAGTTTTCT GGTAAAAGAT GACAGTGAAT TGTATGGCG ATGGATTAGC CGTGGAAGGT GTTGAGTATA AGTGGTCTCC AGCCAAACTC TATGGTTACT GGAATAAGAG AGTAGGAACC TTCTCAGGCT TTATCTTTAT CTATTCTTGT CAACAGTATG TACATGTGTC CCCCAGCCCC AAATAACTGT ACAGTTTAAT GATGTTCACT CTATACAGTT CCCAGAATCC ATTGGAAATT GCTGTAACAG CATATCCTCA ATGCCCATCA ATTCTCCACG TCCAACTTCT CCATGGCCTC CTCTGCCTCT GCTGATCTGT GAACTTCTCG AG	60 120 180 240 300 360 382
	(2) INFORMATION FOR SEQ ID NO:193:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 474 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:	
	GAATTCGGCC TTCATGGCCT AATATTTTTA AAGCGAAAGC TAACTTCTAA TTTTGAAAAT	60

CAGGCAGGCT TAAGAGACAG GAAACATTTA GCATGTTGGT AAACCACTTT AGCACATCAG CAAAAGCATA TAAACAGCTT TAGGATTGGA AATTATTGCC AGGGGGGACT CGAG	420 474
(2) INFORMATION FOR SEQ ID NO:194:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 499 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:	
GAATTCGGCC TTCATGGCCT ACGTNNCTAT GTCTTCAAGC ACAGAGGTGT CCAGGTGTAT TGCACATCTT CATCGCACTG AGCTGCATGG ACAGCTGATT TCTGTGGAAA AAGTATAAGG TGATCCCTCT CAGAAAGAAA TGAAGAAAGA AAATGATGAA AAGAGTAGTT CAAGAAGATC TGGAGATAAA AAAAATACGA GTGATAGAAG TAGCAAGACA CAAGCCTCTG TCAAAAAAAGA AGGAGAAAAGA TCGTCTGAGA AATCTGAAAA AAAAGAAAGC AAGGATACTA AGAAAATAGA AGGTAAAGAT GAGAAGAATG ATAATGGAGC AAGTGGCCAA ACATCAGAAT CGATTAAAAA AAGTGAAGAA AAGAAGGGAA TAAGTTCCAA GAGTCCAGGA CATATGGTAA TACTAGACCA AACTAAAGGA GATCATTGTA GACCATCAAG AAGAGGAAGA TATGAGAAAA TTCATGGAAG AAGTAAGCAA ATGCTCGAG	60 120 180 240 300 360 420 480 499
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 337 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:	
GAATTCGGCC TTCATGGCCT AAGCAAAAGA GCATTAAGAA GTGTCTGTTT TTGTTATTGC CATTTCATAA ATATTTTAGT AGGTGTTCAA TTTCATTGGA TATTCTTTTT TTTTAATTGT CTTTGTACCT ATGATTGAAA ACAGTAGTTG GTCTATGACT TTTGAGGAGA GGGAGAACCG AAGATTACAG GAGGCCAGCA TGAGGTTGGA ACAAGAGAAT GATGACCTTG CCCATGAACT AGTAACAAGC AAAATTGCTC TACGGAATGA CTTCGATCAG GCAGAAGACA AGGCAGATGT GTTGAATAAA GAGCTCCTTT TGACCAAAAC CCTCGAG	60 120 180 240 300 337
(2) INFORMATION FOR SEQ ID NO:196:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 386 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:	
GAATTCGGCT TCATGGCCTA AAGGAAACTG ACAAATTATC CCCAGCTGCC AGAAGAAGAA ATCCTCACTG GACGGCTTCC TGTTTCCTGT GGTTCATTAT CTGATTGGCT GCAGGGATGA AAGTTTTTAA GTTCATAGGA CTGATGATCC TCCTCACCTC TGCGTTTTCA GCCGGTTCAG	60 120 180

WO 98/45437

PCT/US98/06956	
GACAAAGTCC AATGACTGTG CTGTGCTCCA TAGACTGGTT CATGGTCACA GTGCACCCCT TCATGCTAAA CAACGATGTG TGTGTACACT TTCATGAACT ACACTTGGGC CTGGGTTGCC CCCCAAACCA TGTTCAGCCA CACGCCTACC AGTTCACCTA CCGTGTTACT GAATGTGGCA TCAGGGCCAA AGCTGTCATC CTCGAG	240 300 360 386
(2) INFORMATION FOR SEQ ID NO:197:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 429 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:	
GAATTCGGCC TTCATGGCCT AGTTTTGTC TTTTTTCTT TTTTGGTATT ATTTTGTTTG CCACTTATTC CTAAAATTCA TATTGCTATT AACCGTACAC ATCTTTCCAT GTTCTTATAA TAATCTACAA ACATCTCTCC CTTTCTGTAG CTCTCTCTGT CACACACACA CACATGCACA CACACACACA CACACGCTGT GCACTCTCT GAAGCATGTG TGTACATACA TACATATGTG AGGGGTTTTA TGACTGTTTT ACCAAATTGT GTTCTTAATA TATACAATGT TGGCTTCTTT TTAGCCATTC AGAAGTTATT TCAGTCATGG AATGATCTCT AGCCATATAA CTGAAAACAG GTAAGTTTCT TTCTTGGGGA AGAAGGGCGA ATGGTGATAG AGAAAATGGA GAGCTCGAG	60 120 180 240 300 360 420 429
(2) INFORMATION FOR SEQ ID NO:198:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 349 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:	
GAATTCGGCC TTCATGGCCT ACCAAGCTAT GCAGGAACAG TTGTCTAAGA ACAAAGAACT GACACAGAAA CTCCAGGTAG CCTCTGAGAG TGAGGAAGAG GAGGGAGGCA CAGAAGATGT GGAAGAACTC CTTGTCCCTG ATGTAGTGAA TGAAGTGCAG ATGAATGCAG ATGGGCCGAA TCCCTGGATG CTCAGGAGCT GCACCAGTGA CACCAAAGAG GCTGCAACCC AGGAGGACCC TGAGCAACTG CCAGAGCTTG AGGCCCATGG AGTTTCTGAA AGTGAGGGAG AAGAAAGACC AGTGGCAGAA GAAGAAATTT TGTTGAGAGA ATTTGAAGAA AGGCTCGAG	60 120 180 240 300 349
(2) INFORMATION FOR SEQ ID NO:199:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 312 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	

GAATTCGGCC TTCATGGCCT AGGGAAAGCT CCAACTTGCT TTACCTTTCT AAGATATCCC ATTTTCTCTA TACCATTGT TGACTAATAT ATCTCTTGCC CACTGGTTTG TAACAGTGCC 60 120

DCT/IIC08/06056 WO 98/45437

PCT/US98/00950	
TTAATTAGTT TTTGTGTTTG AAGTTCCAGA ATCTCTTCCT GGCCTATGTA TTGTGTTCCG TTGATGGATC TTTCCATCCC ATGGTACCCT TTACTATTAT TGTCTTCATT TTTATTACTA TTGTTATGCC CTTTTCTCTC TCCGTGCACA TCTTCATGTT TGAACTCTAA AAACACACCG CCAACGCTCG AG	180 240 300 312
(2) INFORMATION FOR SEQ ID NO:200:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 385 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:	
GAATTCGGCC TTCATGGCCT AATATATCCA AGTAATAGCA TGTACAGTTT GGTAAGCAAT ATAATAGAGA GATATTCACA GTGAAATAGG AAAGAGCAGT ATAGGTGCAA AGACAAAAAG CATGACACAG CTAGATACAG GGCAGCTGTT ATTGGTTTTG TATGGAGAAA ACCTGGAGAA ATGGTGAGAG AAGGGGCAGA AGATGAGAGG GGCCAGATCA TGGAGTACCT GTTTGTGGCG CTCAGGAGTT TAGATGTTAT CATGCAGATA ACTAGGAGCC ATTTGAGGAA CTTAAATACA GGAGTGATAC CAGATTTATA TGTTTTTAAA ATGATTACTT GGTGGTAATT AAAGAAAAGA	60 120 180 240 300 360 385
(2) INFORMATION FOR SEQ ID NO:201:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 204 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:	
AATTCGGCCT TCATGGCCTA CGTTTTTTTA AATTTTTTTA ACTACATATT TGATACGATC TTTTCCTTCT TGCCTTCTTT TTGATTACTT ACTTTCTACC ATTCTATGTT TTTCGTCACT AGTTTGAAAA TTGTATACTT TGTTTTTATT CTTTCAGTGG TTACCCTAGA AATTACAACA AACAAAAATT GCAACAACCT CGAG	60 120 180 204
(2) INFORMATION FOR SEQ ID NO:202:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 450 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
GAATTCGGCC TTCATGGCCT AAAATCATCA TGCATATTTA TTTCTCCAAA GCACCTTTGA CAAGCATGAT TTGGATAGAG ACTGTGCTTT GTCACCTGAT GAGCTTAAAG ATTTATTTAA AGTTTTCCCT TACATACCTT GGGGGCCAGA TGTGAATAAC ACAGTTTGTA CCAATGAAAG AGGCTGGATA ACCTACCAGG GATTCCTTTC CCAGTGGACG CTCACGACTT ATTTAGATGT ACAGCGGTGC CTGGAATATT TGGGCTATCT AGGCTATTCA ATATTGACTG AGCAAGAGTC	60 120 180 240 300

TCAAGCTTCA	GCTGTTACAG	TGACAAGAGA	TAAAAAGATA	GACCTGCAGA	AAAAACAAAC	360
TCAAAGAAAT	GTGTTCAGAT	GTAATGTAAT	TGGAGTGAAA	AACTGTGGGA	AAAGTGGAGT	420
TCTTCAGGCT	CTTCTTGGAG	AAGACTCGAG				450

- (2) INFORMATION FOR SEQ ID NO:203:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 558 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

GAATTCGGCC TTCATGGCC	T AACTGGTTTC	TGGCTCGTGG	ANTCTGTTTC	AAGATCATAT	60
AAGCCGTTGC CATTCCCAA	G NAGCGCTGGG	ATATGCTCCT	TCTCAGATGC	TGCTATTTCA	120
GTGAAGGTAT TTAATGCTT	G TTCAACATTA	GATTTCTGTT	TGGTAGCCAT	TAAGCAATAG	180
TTTTCCATTA TGCGAANCT	TACGTGACCC	TGAACAGTCT	GAGGTTTTAG	TTCCTTAANA	240
AGTTTTTCTG CTGTTCTT	AC TGCCAGTTGC	ACAGATTCTT	GCTTCTCAGT	TGAATAACCC	300
AGGTCTCCAT CCAGGTTT	C AAATACTTCA	CCTCCAACAG	TTTCATTATC	TGGATTCAAA	360
CAGATCTCTA TCATATTA	TA AAGGGCATTT	TGGCCCCAGT	CACGATCTTT	CCGAGCTTTA	420
TTAAAATGTC GAAGGGCA	C ATTTGGTTCT	CCAGTGTACC	AAAGATACAG	TCCTTTACAA	480
TACTGAAATC CTGGTTCC	AA TTTTGCTCTG	GAGNNACGTT	TCTCAGCCAT	TGAGAAAAAT	540
CTTGGGACAT CCCTCGAG					558

- (2) INFORMATION FOR SEQ ID NO:204:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 348 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

GAATTCGGCC TTCATGGCCT ACAAGTAGGG ACT	GACTICI CIAGGITCCI ACAAAGCICI 60
TCAACCACAC TCATTTCAAG CTCTGTCAGA ACA	GCATCTG AATTAGGAGG ACTTTGGGAT 120
TCTGGGATAC AGGAAGTATC CAGAGCTTTG GAT	ATAAAAA ACCCTGGGAC AGATATTTTG 180
CAGCCTGAAG AGACCTATAT AGACCCTACT ATG	ATACAAT CTTTAACTTT TCCTTTGGCC 240
CTTCATAATC AAAGCTCCGA TAAGACAGCT AAC	ATTGTGG AAAACCCATG TCCTGAGATT 300
CTAGGAGTGG ATGTAATATC TAAAGAGACA ACT	AGGAGGA AGCTCGAG 348

- (2) INFORMATION FOR SEQ ID NO:205:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 292 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

60

CGCTTGGGTC CAGATCTGTA TTCCCAGGGC TCATAGAGAT ATTGGCAAAC TGACAGATTT	120
CATGGCTCAA GAAACCTAAA GACACCTACT TGAATTCCTT TGGTTGGCAG TCAAATGTTA	180
ACTAGTGTGT TTTCAAGCTT CTATTCTTAG GCATGTTACT TCCTTTTGGA AGTCAAAACC	240
AACCATCTTT TAAGTAAGAG GGCTAACCAA ATATGTGCCA CACTAACTCG AG	292
(2) INFORMATION FOR SEQ ID NO:206:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 220 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
('') NOT DOTT B. MINDDNA	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:	
(XI) DEGOMED BECKETITON DEG 12 NO. 120	
GAATTCGGCC TTCATGGCCT AAAATATTAA AATCTTTGAA GAAGAAGAAG TTGAATTTAT	60
CAGTGTGCCT GTCCCAGAGT TTGCAGATAG TGATCCTGCC AACATTGTTC ATGACTTTAA	120
CAAGAAACTT ACAGCCTATT TAGATCTTAA CCTGGATAAG TGCTATGTGA TCCCTCTGAA	180
CACTTCCATT GTTATGCCAC CCATCTCGAG GCAGGTCTAG	220
(2) INFORMATION FOR SEQ ID NO:207:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 333 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(2) 10103001. 1110012	
(ii) MOLECULE TYPE: cDNA	
() CONTROL DESCRIPTION OF TO VO. 207.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:	
GAAAAAATGG CCAAGGCTAC TGGGAAACTA AAGCCAACTT CTAAAGATCA GGTATTGGCC	60
ATGCTAGAGA AAGCCAAAGT TAACATGCCA GCCAAGCCTG CTCCACCCAC TAAAGCAACT	120
TCTAAACCAA TGGGAGGGTC CGCTCCAGCC AAATTCCAGC CTGCATCAGC ACCTGCTGAA	180
GATTGTATTT CCAGCAGTAC AGAACCCAAA CCTGATCCAA AAAAGGCCAA AGCTCCAGGA	240
TTATCCTCTA AAGCAAAGAG TGCACAAGGG AAGAAGATGC CAAGCAAAAC CAGCTTAAAG	300
GAGGATGAAG ACAAATCCGG GCCTATACTC GAG	333
(2) INFORMATION FOR SEQ ID NO:208:	
(1) apartman aris as amen contac.	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 316 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(b) Toroboot. Timedi	
(ii) MOLECULE TYPE: cDNA	
·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:	
GGAGACAAGT TCTCCTCAGT GAACTGGCAG TACCAGTGTG GGCTTACCTG TGAGCACAAG	60
GCGACCTTC TCCCTATCAG TGCATCCGTC CAGTTTATTA AAATTCCTGC ACAGTTACCC	120
CACCCCTGA CAAGATTCCA GATCAATTAT ACAGAGTATG ACTGCAACAG AAATGAGGTG	180
TGTTGGCCGC AGCTTCTATA TCCATGGACT CAGTATTATC AAGGGGAGCT GCATTCTCAG	240
The second secon	
TGTGTTGCTA AGGGCTTACT GTTGCTGTTG TTCCTCACAT TGGCCTTGTT CCTCAGCAAC	300

- (2) INFORMATION FOR SEQ ID NO:209:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 517 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

GAATTCGGCC AAAGAGGCCT ATGT	CCCTGT CCATCTTAGA	GGCTGACCAA	GCCCAGCCAT	60
GGGTGGTCCA AATTGCTTAG GTGG	TCCCAA TTGCTTGGCT	GGCCCAAGAG	ATGTCTGGTT	120
CTTAACAATA CAAGAGCCTA TAGA	AATTGC TAAAGGGATT	TCAGCCACAA	CTGAAGCTCA	180
CCAAGAATGA GTTTTCTGGA ACTG	GTTAAA GTGTCACAGT	AGGGAGTAAG	GAAATAAGAA	240
TCCCCACCAA ACATAAGAGA ACAG	GAATGAT AATAGTCCCT	ACTAGTCCAT	GACAAGGCTG	300
CCAATTAGGC ATT.AAAGCT ATCA	AAGATG ATGCTGTGAG	GGACCTGGCA	ACTTTTGTAA	360
TAGTCTGACT TTAAATGTTT TATT	TAATGGC CAAGCAGCAA	ATATTTTAGG	ATTTGTAGGC	420
TATATGGTCT CTGTCCCAAT TACI	CCATTC TGCTACTGTA	GCATAAAAGC	AGCGATACAT	480
CCTAAACCCG TCGATTGAAT TCTA	AGACCTG CCTCGAG			517

- (2) INFORMATION FOR SEQ ID NO:210:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 829 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

GAATTCGGCC	AAAGAGGCCT	AAGAACATGA	AACATCTGTG	GTTCTTCCTT	CTCCTGGTGG	60
CAGCTCCCCG	ATGGGTCCTG	TCCCAGGTGC	AGCTGCAGGA	GTCGGGCCCA	GGACTGGTGA	120
AGCCTTCGGA	GACCCTGTCC	CTCACCTGCA	CTGTCTCTGG	TGATTCCATC	AGTCATTACT	180
ACTGGACCTG	GATCCGGCAG	CCCCCAGGGC	AGGGACTGGA	GTGGATTGGA	TATTTCTATT	240
CACCCGGGAA	CTCCAACTAC	AATCCCTCCC	TCAAGAGTCG	AGTCACCATG	TCAGTCGACA	300
CGTCCACGAA	CCAGTTCTCC	CTAAAACTCA	NTTCTGTGAC	CACTGCGGAC	ACGGCCGTCT	360
ATTACTGTGC	GAGAGACCTA	TATTGCCGTG	GGGGAACCTG	CTACCCCGCG	AGACTTGACC	420
GCTGGGGCCA	GGGAACCCGG	GTCATCGTCT	CGTCAGCCTC	CACCAAGGGC	CCATCGGTCT	480
TCCCCCTGGC	ACCCTCCTCC	AAGAGCACCT	CTGGGGCACA	GCGGCCCTGG	GCTGCCTGGT	540
CAAGGACTAC	TTCCCCGAAC	CGGTGACGGT	GTCGTGGAAT	TCAGGCGCCC	TGACCAGCGG	600
CGTGCACACC	TTCCCGGCTG	TCCTACAGTC	CTCAGGACTC	TACTCCCTCA	GCAGCGTGGT	660
GACCGTGCCC	TCCAGCAGCT	TGGGCACCCA	GACCTACATC	TGCAACGTGA	ATCACAAGCC	720
CAGCAACACC	AAGGTGGACA	AGAAAGTTGA	GCCCAAATCT	TGTGACAAAA	CTCACACATG	780
CCCACCGTGC	CCAGCACCTG	AACTCCTGGG	GGGACCGTCA	GTCTTCCTC		829

- (2) INFORMATION FOR SEQ ID NO:211:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 142 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:

PCT/US98/06956 WO 98/45437

GAATTCGGCC AAAGAGGCCT AGTTAATCTG ATAAATTCAC CATCAATTTG GTAAGCTTTA ATATAACTAC CCTGTTTTTT GAATACAGAT AATGCAAAAG AAAACCATTT TATACTCGGC TATATACCTT CCACCACTCG AG	60 120 142
(2) INFORMATION FOR SEQ ID NO:212:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 555 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:	
GAAATTCGGC CAAAGAGGCC TAGTGGAATC ATTCTGCCAC ACCATTTCCT ACTCAAATAG GTACAAACAT ACCACAGACA CTCCCATATA CACATGCTCC TCTATCCGCC AACTCTGGAA CCAAAACTAA ATTGGTCTTC AAGAGAGATG ATGGCTTTAA GAACAAAAAT AGCCTTATCC TCTATTTTAC TTGCTGTACT GTTGTACTGT TTATTTAAGA AACAAGCTGG TGGTTGATGT CCAGGAAAAA TTATCTTTTC AAAATGAGGG AAGAGGAGGT TCACCATGTG GATATGGTGT GCCTTTCAAC ATCCTTAAGG ATTGTTGATA TCATTATTGT TAATCAATTG TTGTCAGCAC AGTGGCTGCC CAAGCTGTGC AAATGAAACA GCCAATCAGC AGGAGAAAGT GATGAAATTA AATGACCTCT TTCCTTAACC ACTCATCCGT AAGCCTTGTT ATTTTTCATA CAAACCTCGA GCCGGGGGAG GAGGGGCGGC GGCGAATGCT GGGAGAGTCA GGTCTAGAAT TCAATCGTAG GCCTCTTTGG CCGAA	60 120 180 240 300 360 420 480 540 555
(2) INFORMATION FOR SEQ ID NO:213:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 97 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:	
GAATTCGGCC AAAGAGGCCT ACGAGAAGGG CGGTGTGTAC AAAGGGCAGG GACTTAATCA ACGCAAGCTT ATGACCCGCA CTTACTGGGA ATTCCTC	60 97
(2) INFORMATION FOR SEQ ID NO:214:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 487 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:	
GAATTCGGCC AAAGAGGCCT AAGAAGAAT TGGTAGATTG CGAGAAGAGA TAGAAGAATT AAAACGTAAT CAGGAACTTT TACAAAGCCA GCTGACTGAA AAGGACTCTA TGATTGAAAA TATGAAATCT TCCCAAACAT CTGGCACAAA TGAACAGTCT TCAGCAATAG TTTCAGCTAG AGATTCTGAA CAAGTTGCAG AATTAAAACA GGAACTGGCA ACTTTAAAGT CTCAGTTAAA	60 120 180 240

CTCACAATCT	GTGGAGATCA	CCAAACTACA	GACAGAAAAG	CAGGAACTGT	TACAGAAAAC	300
					TAGCCACCAA	360
AACTACTGAT	GTAGAAGGAA	GACTGTCAGC	ATTATTACAA	GAGACCAAAG	AGTTAAAGAA	420
					ATTCATCTAA	480
TAGTACC						487

- (2) INFORMATION FOR SEQ ID NO:215:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 584 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

GAATTCGGCC	AAAGAGGCCT	ACTGGGCCTT	TCAGCACCTG	CTCCAGCTTC	ACCTTGGTGA	60
ACATCAGGTT	GAAGTTCTCA	GGGTGCTCGG	TGATGGCCAT	GTTGACAACA	TCCAGGGCAT	120
GCTGGTGGTG	CTTCTGGGCA	GAGAAGAGCA	GTGCCAGCAG	GTGGAGGGCG	TGGGCATCAT	180
CCTTGCGTAC	CTTCAGGGCC	TCCTGCAGCT	GCTCCATGGC	ACTGGAGATC	TGTCGGACGA	240
GGGCCAGCTG	CAGCGAGACA	TAGAGGATGA	CCTGGGGGTC	ACTGGGCGCC	AGCTGCTGAG	300
CCCTCTCCAG	CGTCTGCAGT	GCCTTCCGGT	GCAATTCATC	TTGCTTGGAC	TTCAGGGTGG	360
CGTCGGTGGC	CTGCAGGCTA	TAGGTGAGAC	CCAGAGCCAG	GTAGCCCTTG	GGGAGGAACT	420
				GTGCTCTGCT		480
AGCGAAGGGA	CCCGATGCAG	ACCTTCGCGG	CCATCAGGGG	CACGGTGGGG	TCCGAGGGCC	540
	ACACTCCCGC					584

- (2) INFORMATION FOR SEQ ID NO:216:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 532 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

GAATTCGGCC	AAAGAGGCCT	AGACCTGCCC	TAAAGATAGA	GTCTTGATGC	ACCGTCTACC	60
	CCAAGAGTGA					120
TTTTTAATGG	ACGAGCAGGG	CAGGAAAGAA	AAAAAAAACC	CAAACCCCAT	CACTCTGCCA	180
GCCCCTGTGA	CCAAAGCAGC	CCAAATCAGT	TACCTTGACA	ACTCTCATGC	ACAGACTGCA	240
CCAGCCTGTG	TTGCAAACAT	CACTGCCCCG	CTTCTAACAG	GAAGAGATAC	TCTTTTGGGG	300
GTCTTGCAGG	GCCCAGGACC	AGAGCCCCTT	CTACCCAGGG	CCCTTCCAAA	GGCAAAGCAC	360
AGAGTCACAT	TTGGGCGTGG	CATGAGAGGG	AAATAAAGAG	ATTTGGCTGT	AGTGGGAGGG	420
AGGTTTCAGT	GCTTTTTCTG	GGGACATTGG	TGCCTATCTC	TATTCTGAGA	GTTGTTCTCC	480
TCATAGGACA	CCATAAATCG	CATCCAGGAC	CTGCTGGCTG	AGGGTACTCG	AG	532

- (2) INFORMATION FOR SEQ ID NO:217:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:

GAATTCGGCC AAAGAGGCCT	ACTOTOTOTO	CCTCTTATAC	********	CACTGAATGA	60
AGGAATAAAT ATTTATTGAA	TGGAAAATCA	GCAAAGGAAA	AAATTGTATA	ATTGTCAATG	120
ACAATGGGAA GCACATAGTG	AGGCTATGAG	TGATTTGGAA	ATCATGAGCG	TGCAGTGTTT	180
TGTTCACGCA TTTCGGTTGT					240
		AGIANCIACA	neriment.		
ATTGCTGGTT GTAAGCAAAA	AGGCTCGAG				269

(2) INFORMATION FOR SEQ ID NO:218:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 675 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

GAATTCGGCC	AAAGAGGCCT	AATTCTTTTT	CTTTTTAATT	TGAAGAAAA	TCATCAGTCT	60
TGGAATACAG	AAGAGAAACT	AGAAATATAC	GTATTTTGTT	TCACATTTGA	ACAGTCATTC	120
TTGAGGAATA	CTCCATACCT	GAGTAGACAG	CCATGTGGCC	ATCGCAGCTA	CTAATTTTCA	180
TGATGCTCTT	AGCTCCAATA	ATTCATGCTT	TCAGCCGTGC	CCCAATTCCA	ATGGCTGTGG	240
TCCGCAGAGA	GCTATCCTGT	GAGAGCTATC	CTATAGAGCT	TCGCTGTCCA	GGAACAGACG	300
TCATCATGAT	AGAAAGTGCC	AACTATGGCA	GGACTGATGA	CAAAATTTGT	GACTCTGACC	360 -
CTGCTCAGAT	GGAGAATATC	CGATGTTATC	TGCCAGATGC	CTATAAGATT	ATGTCTCAAA	420
GATGCAATAA	CAGAACCCAG	TGTGCAGTGG	TGGCAGGTCC	TGATGTTTTT	CCAGACCCGT	480
GTCCAGGAAC	CTATAAATAC	CTTGAAGTGC	AGTATGAATG	TGTCCCTTAC	ATTTTTCTTT	540
GTCCTGGACT	ACTAAAAGGA	GTATACCAGA	GTGAACATTT	GTTTGAGTCC	GACCACCAAT	600
CTGGGGCGTG	GTGCAAAGAC	CCTCTGCAGG	CATCTGACAA	GATTTATTAT	ATGCCCTGGA	660
CTCCCTACAG	AACTG					675

(2) INFORMATION FOR SEQ ID NO:219:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 414 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

GAATTCGGCC	AAAGAGGCCT	ACTCCCTGTT	TTGAACAAGT	TTTTTTGAGA	ATTCTTAGTT	60
TTAGTTTTTG	TTTAGCTTAC	ACACTGAAAA	TTTTGAGAAG	CATCTAAAAA	AATCCACAAT	120
TAGTGCAAAA	AGAGGGGACA	ATACTTTAAG	TCATTCCTTC	TATAAAAAGA	ATTAAGGTTA	180
CTAAATGCCA	ATTTTTAAGC	AAATATATAG	TTTCCTATTT	GCCTTCTGAA	AGACAGCAGA	240
TATAAAAATA	GTTCAATATT	AGGTTTAACA	AGGTTTGAAC	AACACATGTA	CTATCAGCTT	300
TATTTTACCT	GCAAAAATAT	TTTAGCTACA	CTTGGAAAAA	AATAAACTTG	AGAATATAAC	360
TTCACATTTC	TAAGGCCAGA	TGCAAGAATA	CTTATTTAGG	CCTCTTTGGC	CGAA	414

(2) INFORMATION FOR SEQ ID NO:220:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 120 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

GACCGTCGAT TGAATTCTAG ACCTGCCTCG AGATTGGAGA CAGAAGGTCC CGGGAGCAGA
AAGCCAAACA GGAGCGGGAG AAAGAACTCG CAAAAGTCAC TATCAAGAAG GAAACTCGAG
120

- (2) INFORMATION FOR SEQ ID NO:221:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 333 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

GAATTCGGCC	AAAGAGGCCT	AAGCAGCAGC	TGCTTATATG	CATGTGAACA	GCTGGGGAAT	60
TAATTTGGTA	TGCATTCTCA	GGAGCCACTC	ATCTGCTGGC	AGAGGTAGCA	GAAGAATGCC	120
CTTAGTGTAA	GTCCTCTACA	ACCATACACC	AAATGTGCTC	CCTGCATTTC	AAATTCCATT	180
GTAGAAAGTC	TCTGATAATC	TCACTTATAC	CATGAGCCAT	TCCTCAGTAT	CTGTCCTCTT	240
CCTGTTAGTG	TTCTACAATT	CCTTTCTCCT	TAATTTTTCT	CCGCTTTACA	AAATGTCACA	300
CAGACAAGTG	CATAATACTT	AAACAAGCTC	GAG			333

- (2) INFORMATION FOR SEQ ID NO:222:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

GAATTCGGCC	AAAGAGGCCT	AAGAAAAGCA	CCCTTATTAA	GAATTGCAGC	AAGTAAGCCA	60
ACAAGGTCTT	TTCAGGATGA	TTTTCTTATA	TCAAGTGGTA	CATTTCATTT	TATTTACTTC	120
AGTTTCTGGT	GAATGTGTGA	CTCAGTTGTT	GAAGGACACC	TGCTTTGAAG	GAGGGGACAT	. 180
TACTACGGTC	TTCACACCAA	GCGCCAAGTA	CTGCCAGGTA	GTCTGCACTT	ACCACCCAAG	240
ATGTTTACTC	TTCACTTTCA	CGGCGGAATC	ACCATCTGAG	GATCCCACCC	GATGGTTTAC	300
TTGTGTCCTG	AAAGACAGTG	TTACAGAAAC	ACTGCCAAGA	GTGAATAGGA	CAGCAGCGAT	360
TTCTGGGTAT	TCTTTCAAGC	AATGCTCACA	CCAAATAAGC	GCTTGCAACA	AAGACATTTA	420
TGTGGACCTA	GACATGAAGG	GCATAAACTA	TAACAGCTCA	GTTGCCAAGA	GTGCTCAAGA	480
ATGCCAAGAA	AGATGCACGG	ATGACGTCCA	CTGCCACTTT	TTCACGTACG	CCACAAGGCA	540
GTTTCCCAGC	CTGGAGCATC	GAAATCTTTG	TCTCCTTAAA	ACATCTGAGA	GTGGATTGCC	600
CAGTACACGC	ATTAAAAAGA	GCAAAGCTCT	TTCTGGTTTC	AGTCTACAAA	GCTGCAGGCA	660
CAGCATCCCA	GTGTTCTGCC	ATTCTTCATT	TTACCATGAC	ACTGATTTCT	TGGGAGAAGA	720
ACTGGATATT	GTTGCTGCAA	AAAGTCACGA	GGCCTGCCAG	AAACTGTGCA	CCAATGCCGT	780
CCGCTGCCAG	TTTTTTACCT	ATACCCCAAC	GCTCGAG			817

- (2) INFORMATION FOR SEQ ID NO:223:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 587 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

GAATTCGGCC	AAAGAGGCCT	AGGAGATACA	TCATCATATC	ACGGAAAGAG	ATGCAGATAG	60
ATCTTTGACC	ATACTTGATG	AACAGTTATA	CTCATTTGCG	TTTTCCACCG	TGCACATTAC	120
GAAGAAAAGA	AATGGAGGTG	GGAGTTTAAA	TAACTATTCC	TCCTCCATTC	CATTGACTCC	180
CAGCACCAGC	CAGGAGGACC	TTTATTTCAG	TGTTCCTCCC	ACTGCCAACA	CACCCACGCC	240
CGTTTGCAAG	CAGTCCATGG	GCTGGTCCAA	CCTGTTTACA	TCTGAGAAAG	GGAGTGACCC	300
AGACAAAGGG	AGGAAAGCCC	TGGAGAGTCA	CGCTGACACC	ATCGGGAGCG	GCAGAGCCAT	360
CCCCATTAAA	CAGGGCATGC	TCTTAAAGCG	AAGTGGGAAA	TGGCTGAAGA	CGTGGAAAAA	420
GAAATATGTC	ACCCTGTGTT	CCAATGGCGT	GCTCACCTAT	TATTCAAGCT	TAGGTGATTA	480
TATGAAGAAT	ATTCATAAAA	AAGAGATTGA	CCTTCGGACA	TCTACCATCA	AAGTCCCAGG	540
AAAGTGGCCA	TCCCTAGCCA	CATCGGCCTG	CGCACCCATC	TCTCGAG		5 87

- (2) INFORMATION FOR SEQ ID NO:224:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 534 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:

GAATTCGGCC	AAAGAGCCTA	AGTAGTTGCT	GCCTTTCTTC	AGATCAGGTT	ACCACAATGC	60
CTCCCCGCTG	CTGACGCTTC	ATCCCCCACA	CCTCCAGCCC	CAGTTACCTG	GAGCTTCTCA	120
GAACCCACTT	TGCCGGTGCT	AAAACACAAG	AGGGGGTGAA	AGTGGCTGCC	AGTAATGGCC	180
AGAAACCAAC	CACCAGAGGC	CAGGCTGAAA	GACAAGCTCC	GGGTGTCCAG	GGGCTGACGG	240
GCCAACCATG	TGGCAGGTCC	CAGGCCCCAC	CCACTGCGCC	ATCCGTCTCT	GAGCTCCACA	300
GTGGTCCCAC	TAATGGGAAC	CTCCTCTAGG	GAGAGTGATA	CTGCACCTTC	ACCCGTAGGA	360
CTCATATTTA	TAACAATGTG	TAATGGCTGT	AGCAAAAAGC	CCTTGTTTCT	AGATGTAAAT	420
GGTCAAAGAA	ACAAGCGCTC	TATTGTTTTG	AATAAAATAG	TTCAAATGAG	TCCTGTATCA	480
TTGTATCTCC	TATTCTGGAT	TAGTGCCTTT	TGGACAGTAG	ACTGTAACCT	CGAG	534

- (2) INFORMATION FOR SEQ ID NO:225:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 118 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

GCTCCACTCT CTCCCTATCC ATTTGTAAGA ACAGGCTCCC CTCGCCGAAT ACAGTTGTCT
CAAAATCATC CTGTCTACAT TTCCCCACAT AAAAATGAAA CAATGCTTC TCCTCGAG

118

- (2) INFORMATION FOR SEQ ID NO:226:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 582 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

GAATTCGGCC	AAAGAGGCCT	AAATTTTAGT	AGAGATGGAA	TTTCACCATA	TTGGCCAGGC	60
CGGTCTCAAA	CTCTTGACCT	CAAGTGATCT	GCCCGCCTCG	GCCTCCCAAA	ATGTTGAGAT	120
TACAGGCGTG	AGCCACCATG	CCTCTCTTAC	ATTCTTTTCT	TCTGTTCACT	ACAGCCGTGG	180
AGAGCTCCGG	GTTGTCCTGC	ACATGTGCAC	TGCCCTCTCT	TTTATGGACC	TTTTAGGCTG	240
GCTGCACCCT	CCGTCTGTGT	CACCCTCCTG	CTCCTCCTCC	ACCTGGCTAG	TTCCTGTTGG	300
CCACTTTTGG	AAATTCATGC	CAGTCCAGTC	CACCCTGAGT	ACATCCTCTT	TCTGTGTCAC	360
TGAGCTCACT	ATGCTGGGTT	TTATCTATGT	CTCCCTCGCA	ACTAGATCAT	TCACGTCTTG	420
AAGTTAGGCA	TCATGCGTTC	TTCATTTCTG	TACCTCCCAA	CTCAATGCTT	AGCACCCAGC	480
AGGGGCTCAA	GACTGTGTGT	GGAATGAAGG	ATTCGTGTGA	AAATGCAGGG	AGATGGAAGG	540
CTGAGCGTTT	CTGTTCCTTG	ACCATTCCCG	GGTTGGCTCG	AG		582

*

- (2) INFORMATION FOR SEQ ID NO:227:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 461 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

GAATTCGGCC AAAGAGGCCT	AAAAACTTAT	AAATAAGTGA	GACTACTGCC	CCCTAGCCTA	60
AAATTCATTC CCTGCGCTCA	CTCAACATCA	TAGTTCTTTA	GGAAGACAAG	TTGTTCTATA	120
GCATAAAGAT ACAACCTATT	TAGATAGTCT	AAAGATTCTC	CTCTGTTTCT	CAAATACAGT	. 180
CAGTTATGCA GCTCAAAATG	CCTCTCATTT	TCCTGCTTTT	TTTTCTTCTA	CTATTGTTGC	240
CTCCAGGCTT TGCAGAAACA	CATGTTATTC	TCCCCCTAAA	ATCTGTTCCT	CTTCTAGTTT	300
TCTCTCTGCC AGCAATGGCA	CCACACAGTC	TTTTGGTTTT	GCACCAGAGA	ATTAGAGATG	360
AACCCCTCAT CTCTAATCTA	TCACAAGTTT	CCTCAGATTT	AAACTCTCAA	ATCAAGATGT	420
TTCTCACCAT TTCCATTACT	ATTGTCCCCA	GCTTTCTCGA	G		461

- (2) INFORMATION FOR SEQ ID NO:228:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 133 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:

GCCTAAACCG	TCGATTGAAT	TCTAGACCTA	TCTCGAGAAA	GAGTTGTTCT	GGAAAGAAAT	60
GAAGAAAAGA	GCAGAACCAA	TCTCAAGCAG	CCAAGTGGTG	AAGTTGGATG	TATGTGACCC	120
TACGTCTCTC	GAG					133

(2) INFORMATION FOR SEQ ID NO:229:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 482 base pairs(B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:

GAAAGGGATC AAAAAGAAAA	AGTGATCGAA	TGGAATCTAC	TGATACCAAA	CGACAAAAGC	60
CTTCTGTCCA TTCAAGACAA	CTGGTTTCTA	AGCCACTGAG	CTCATCTGTT	AGCAATAACA	120
AAAGAATAGT TAGTACAAAA	GGAAAGTCAG	CCACAGAGTA	TAAAAATGAG	GAATATCAAA	180
GATCTGAAAG AAACAAGCGT	CTAGATGCTG	ATCGGAAAAT	TCGTCTATCA	AGTAGTGCCT	240
CCAGAGAACC TTATAAGAAT	CAACCTGAAA	AAACCTGTGT	CCGGAAAAGG	GATCCTGAAA	300
GGAGGGCCAA ATCTCCTACG	CCAGATGGTT	CTGAGAGAAT	TGGGCTTGAA	GTGGATAGAC	360
GTGCAAGCAG ATCCAGCCAG	TCTTCTAAGG	AAGAAGTGAA	CTCTGAAGAA	TATGGCTCTG	420
ACCATGAGAC TGGCAGCAGT	GGTTCTTCTG	ATGAGCAAGG	GAACAACACT	GAAAATCTCG	480
AG					482

- (2) INFORMATION FOR SEQ ID NO:230:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 501 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

GAATTCGGCC TTCATGGC	CT AGGGGATAAA	TGTAAGCTTG	TTAAAGTAAG	CACCACACCA	60
TGTTTCTGTC TCCCCAGC	AC CCAGCACAGT	GCTGTGAACC	TTGGCAGATG	CTAGATAAAT	120
GTGTGTTGAA TGAATGTG	CC TATGAAGCCA	CAAAGATGCC	ACATGTTAGT	ATATCAGTGA	180
GAGGTGACTC CACAGTGC	TC TCTGGAGAAG	CAATATGAGT	GACTGAAGAG	TGGGGCCTTT	240
TGCTTTTGCC TGGATATA	GG GGTGCTCTTC	TACTGTAATT	GGGTGTGGAA	AAACTCTGGC	300
TTTATGGTAT TCCATTAG	GT TCTTTTCATT	TAAAGTAGTC	TTAAAATCAA	AGTATCCAAT	360
ATTITAAAGC CACAAAGT	AG ATTACATAAT	TAGCAGAGAT	TTTAGTCAGT	AAAATGTTAG	420
AAATCAAACT ATAAGAAA	AT TCAAGTCCTT	TATTTTGTGT	CTTGGGTATA	TGTCATTATT	480
TTAAATTCCA CAGCTCTC	GA G				501

- (2) INFORMATION FOR SEQ ID NO:231:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 326 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:231:

GAATTCGGCT	TCGATTGAAT	TCTAGGACTT	GACAGAATTC	GAGTTATCCT	TCTCAGAACA	60
TGTGCAGAGT	CTCTTTTTGC	CTCACCATGT	GGTCCTGTGC	TCTTTCAGGT	GGGAGTTTTG	120
GGGCCTCCAG	GGCAGCAGGC	ACCACCTCCA	TATCCCGGCC	CACATCCAGC	TGGACCCCCT	180
GTCATACAGC	AGCCAACAAC	ACCCATGTTT	GTAGCTCCCC	CCCAAAGACC	CAGCGGCTTC	240
ተተ ሮልሮፕሮልርል	GGCCTACCTG	AAATACATTG	AAGGACTCAG	TGCGGAGTCC	AACAGCATTA	300

326

GCAAGTGGGA TCAGAGCAAT CTCGAG

- (2) INFORMATION FOR SEQ ID NO:232:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 367 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

GAATTCGGCC TTCATGGCCT AA	TCAGAAGC TTTTCAAAAT	TCCGTCTTCA	AGAAGAAACA	60
CCCGTGGAGG AAGAAGACAT TA	TACAAAAC AAATTTAGAA	ACTGGGATCA	TGAGTGGAAA	120
AACAAAGGCA AGAAGGGCTG CC	ATGITTIT TAGACGITGC	TCTGAAGACG	CCAGCGGTAG	180
CGCCAGTGGC AATJCTTTGT TA	TCAGAGGA CGAAAATCCT	${\tt GATGCGAATG}$	GGGTAACTCG	240
ATCATGGAAG ATTATTCTAA GT	ACAATGCT TACACTGACT	TTTCTTCTTG	TAGGACTCCT	300
AAATCATCAG TGGCTTAAAG AA	ACAGATGT TCCTCAGAAA	TCCAGACAAT	TATATGCCAT	360
GCTCGAG				367

- (2) INFORMATION FOR SEQ ID NO:233:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 320 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:

GAATTCGGCC	TTCATGGCCT	AAAGAAGAAT	TGACACCTCT	TGGAGTCCAC	TTGGCACGAT	60
TACCCGTTGA	GCCACATATT	GGAAAAATGA	TTCTTTTTGG	AGCACTGTTC	TGCTGCTTAG	120
ACCCAGTACT	CACTATTGCT	GCTAGTCTCA	GTTTCAAAGA	TCCATTTGTC	ATTCCACTGG	180
GAAAAGAAAA	GATTGCAGAT	GCAAGAAGAA	AGGAATTGGC	AAAGGATACT	AGAAGTGATC	240
ACTTAACAGT	TGTGAATGCG	TTTGAGGGCT	GGGAAGAGGC	TAGGCGACGT	GGTTTCAGAT	300
ACGAAAAGGA	CACACTCGAG					320

- (2) INFORMATION FOR SEQ ID NO:234:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 358 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:

GAATTCGGCT	TCATGGCCTA	CGATGAGGCT	GCTGTCATTT	GTGGTGTTGG	CTCTATTTGC	60
TGTCACTCAA	GCAGAGGAAG	GAGCCAGGCT	TTTGGCTTCC	AAATCACTGC	TGAACAGATA	120
CGCCGTGGAG	GGACGAGACC	TGACCTTGCA	GTACAACATC	TACAATGTTG	GCTCAAGTGC	180
TGCATTAGAC	GTGGAACTAT	CTGATGATTC	CTTCCCTCCA	GAAGACTTTG	GCATTGTGTC	240
TGGAATGCTC	AATGTCAAAT	GGGACCGGAT	TGCCCCTGCT	AGCAATGTCT	CCCACACTGT	300
GGTCCTGCGC	CCTCTCAAGG	CTGGTTATTT	CAACTTCACC	TCGGCAACAA	TCCTCGAG	358

- (2) INFORMATION FOR SEQ ID NO:235:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:

GAATTCGGCT TCATGGCCTA	GTTGTACGTA	ATGTATTTAT	ATGTTAATTT	GTTATGTATA	60
TAGATGTGCA AGTCTTGTCA	GAATTGGCCT	CAGTGTAGTT	AAAGGGCAGA	AGGGGAAGAT	120
ACTGACTAGT CATAGAAATA	CCTCATTCGC	CTGTGGGAAG	AGAAGGGAAG	CCTCTTCAGG	180
GTGAGTGAAT GGCAAAGCGG	TTGCTTCTGG	CTCCTCCTTC	CCCTGTGGTC	TTGGAAGTGT	240
GTGGAAGGCA GGGACAGAGA	TGGAGGCCGA	GCCAATAGAC	TGAAGAGACC	ACAGCAATTG	300
GCTCCTCCAT CTAGAGATTT	TCTTGGCAGT	ATTCCATGGG	ATGTTAAGCA	AAGGAAACCA	360
AAGGAATCGT TTCAAATGGA	CTCATGGCTT	AGAAATCTTT	ATTCTTAGGG	CAGTCAGTAG	420
TATTCTAAAG CTTTCTGACA	AGATAAAGGA	AGTCACCAAA	ATTTCTTTTT	TTAAATTGTA	480
TCTAATCCTC AACAACAAAC	CAAAACTCTC	GAG			513

- (2) INFORMATION FOR SEQ ID NO:236:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:

GAATTCGGCC	TTCATGGCCT	ACTTGGAAAT	GTTTGATGCT	ACTCTGAAAG	ATCGAGAACT	60
GAGCTTTCAG	TCGGCTCCAG	GTACTACCAT	GTTTCTGCAT	TGGCTAGTGG	GAATGGTATA	120
TGTCTTCTAC	TTTGCCTCCT	TCATTCTACT	ACTGAGAGAG	GTACTTCGAC	CTGGTGTCCT	180
GTGGTTTCTA	AGGAATTTGA	ATGATCCAGA	TTTCAATCCA	GTACAGGAAA	TGATCCATTT	240
GCCAATATAT	AGGCATCTCC	GAAGATTTAT	TTTGTCAGTG	ATTGTCTTTG	GCTCCATTGT	300
CCTCCTGATG	CTTTGGCTTC	CTATACGTAT	AATTAAGAGT	GTGCTGCCTA	ATTITCTTCC	360
ATACAATGTC	ATGCTCTACA	GTGATGCTCC	AGTGAGTGAA	CTGTCCCTCG	AG	412

- (2) INFORMATION FOR SEQ ID NO:237:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 337 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

TTCATGGCCT	AGAGATATGC	TTCTTTGTAC	CAATATGGAA	AATCTAAAAG	AAAAAACCCA	60
CACTCAGCAC	TATGAATGTT	ATAGGTACCA	AAAACTGCAG	AAAATGGGCT	TTACAGATGT	120
GGGTCCAAAC	AACCAGCCAG	TTAGTTTTCA	AGAAATCTTT	GAAGCCAAAA	GACAAGAGTT	180
CTATGATCAA	TGTCAGAGGG	AAGAAGAAGA	GTTGAAACAG	AGATTTATGC	AGCGAGTCAA	240
GGAGAAAGAA	GCAACATTTA	AAGAAGCTGA	AAAAGAGCTG	CAGGACAAGT	TCGAGCATCT	300