Contents

1	Clas	sses		2
	1.1	poly.ri	ng – <mark>多項</mark>	<mark>式環</mark>
		1.1.1	Polynom	ialRing – <mark>多項式環</mark>
			1.1.1.1	getInstance – クラスメソッド 4
			1.1.1.2	getCoefficientRing
			1.1.1.3	getQuotientField 4
			1.1.1.4	issubring
			1.1.1.5	issuperring
			1.1.1.6	getCharacteristic
			1.1.1.7	createElement
			1.1.1.8	gcd
			1.1.1.9	isdomain
			1.1.1.10	iseuclidean
			1.1.1.11	isnoetherian
			1.1.1.12	ispid
			1.1.1.13	isufd
		1.1.2	Rational	FunctionField – 有理関数体
			1.1.2.1	getInstance – クラスメソッド 6
			1.1.2.2	createElement 6
			1.1.2.3	getQuotientField 6
			1.1.2.4	issubring 6
			1.1.2.5	issuperring 6
			1.1.2.6	<u>unnest</u>
			1.1.2.7	gcd
			1.1.2.8	isdomain
			1.1.2.9	iseuclidean
			1.1.2.10	isnoetherian 7
			1.1.2.11	ispid
			1.1.2.12	isufd
		1.1.3	Polynom	ialIdeal – 多項式環 <mark>のイデアル</mark>
			1.1.3.1	reduce
			1.1.3.2	<u>issubset</u>
			1122	iccuparcet

Chapter 1

Classes

- 1.1 poly.ring 多項式環
 - Classes
 - PolynomialRing
 - $\ {\bf Rational Function Field}$
 - PolynomialIdeal

1.1.1 PolynomialRing – 多項式環

uni-/multivariate polynomial rings のためのクラス. CommutativeRing のためのサブクラス.

Initialize (Constructor)

 $\begin{aligned} & \textbf{PolynomialRing} (\texttt{coeffring:} \ \textit{CommutativeRing}, \ \texttt{number_of_variables:} \\ & \textit{integer}{=}1) \end{aligned}$

 $\rightarrow PolynomialRing$

coeffring は係数環. number_of_variables は変数の数. もしその値が 1 より大きければ、その環は多変数多項式に対するものです.

Attributes

zero:

環上の 0.

one :

環上の 1.

Methods

1.1.1.1 getInstance - クラスメソッド

 ${\tt getInstance} ({\tt coeffring:}\ Commutative Ring, \ {\tt number_of_variables:}\ integer)$

 $\rightarrow PolynomialRing$

係数環 coeffring と変数の数 number_of_variables を持つ多項式環のインスタンスを返す.

1.1.1.2 getCoefficientRing

 $getCoefficientRing() \rightarrow CommutativeRing$

1.1.1.3 getQuotientField

 $getQuotientField() \rightarrow Field$

1.1.1.4 issubring

issubring(other: Ring) o bool

1.1.1.5 issuperring

issuperring(other: Ring) o bool

1.1.1.6 getCharacteristic

 $getCharacteristic() \rightarrow integer$

1.1.1.7 createElement

 $createElement(seed) \rightarrow polynomial$

多項式を返す。seed 多項式、係数環の要素、または uni-/multi-variate 多項式の最初の独立変数に対する何か他のデータに適合する。

1.1.1.8 gcd

 $\gcd(\mathtt{a},\ \mathtt{b}) o \mathit{polynomial}$

(可能ならば)与えられた多項式の最大公約数を返す。多項式は多項式環に入っていなければならない。もし係数環が体ならば、その結果はモニック多項式です。

- 1.1.1.9 isdomain
- 1.1.1.10 iseuclidean
- 1.1.1.11 isnoetherian
- 1.1.1.12 ispid
- 1.1.1.13 isufd

CommutativeRing から継承された.

1.1.2 RationalFunctionField - 有理関数体

Initialize (Constructor)

 $\begin{aligned} \textbf{RationalFunctionField}(\texttt{field:} \textit{Field}, \texttt{number_of_variables:} \textit{integer}) \\ \rightarrow \textit{RationalFunctionField} \end{aligned}$

有利関数体に関するクラス. QuotientField のサブクラスです.

field は Field のオブジェクトであるべき係数体です. number_of_variables は変数の数.

Attributes

zero :

体上の 0.

one:

体上の 1.

Methods

1.1.2.1 getInstance – クラスメソッド

```
{f getInstance}({f coefffield:}\ Field, {f number\_of\_variables:}\ integer) \ 
ightarrow RationalFunctionField
```

係数体 coefffield と変数の数 number_of_variables を持つ RationalFunctionField のインスタンスを返す.

1.1.2.2 createElement

```
{\tt createElement(*seedarg: \it list, **}{\tt seedkwd: \it dict)} 
ightarrow {\tt \it RationalFunction}
```

1.1.2.3 getQuotientField

```
\operatorname{getQuotientField}() 	o 	extit{Field}
```

1.1.2.4 issubring

```
issubring(other: Ring) 	o bool
```

1.1.2.5 issuperring

```
issuperring(other: Ring) \rightarrow bool
```

1.1.2.6 unnest

```
unnest() \rightarrow \textit{RationalFunctionField}
```

もし self が RationalFunctionField にネストされていたら, すなわちその係数体もまた RationalFunctionField なら, メソッドはワンレベルアンネストされた RationalFunctionField を返す.

例えば:

Examples

```
>>> RationalFunctionField(RationalFunctionField(Q, 1), 1).unnest() RationalFunctionField(Q, 2)
```

1.1.2.7 gcd

```
\gcd(a: RationalFunction, b: RationalFunction) 
ightarrow RationalFunction
```

Field から継承される.

- 1.1.2.8 isdomain
- 1.1.2.9 iseuclidean
- 1.1.2.10 isnoetherian
- 1.1.2.11 ispid
- 1.1.2.12 isufd

CommutativeRing から継承される.

1.1.3 PolynomialIdeal – 多項式環のイデアル

多項式環のイデアルを表す Ideal のサブクラス.

Initialize (Constructor)

 $\begin{array}{l} \textbf{PolynomialIdeal(generators: } \textit{list}, \, \texttt{polyring: } \textit{PolynomialRing}) \\ \rightarrow \textit{PolynomialIdeal} \end{array}$

generators によって生み出される多項式環 polyring のイデアルを表す新しいオブジェクトを作成する.

Operations

operator	explanation
in	メンバであるかのテスト
==	同じイデアルか?
!=	異なるイデアルか?
+	和
*	積

Methods

1.1.3.1 reduce

```
	ext{reduce(element: } polynomial) 
ightarrow polynomial
```

イデアルによるモジュロ element.

1.1.3.2 issubset

 ${ t issubset}({ t other:}\;set)
ightarrow bool$

1.1.3.3 issuperset

 $issuperset(other: \mathit{set}) o \mathit{bool}$