日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 9月29日

出願番号

Application Number:

特願2000-301411

出 願 人
Applicant(s):

ソニー株式会社

2001年 8月10日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

0000804001

【提出日】

平成12年 9月29日

【あて先】

特許庁長官殿

【国際特許分類】

H01M 8/00

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

山浦 潔

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

今里 峰久

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

佐藤 信昭

【特許出願人】

【識別番号】

000002185

【氏名又は名称】

ソニー株式会社

【代表者】

出井 伸之

【代理人】

【識別番号】

100067736

【弁理士】

【氏名又は名称】 小池 晃

【選任した代理人】

【識別番号】

100086335

【弁理士】

【氏名又は名称】 田村 榮一

【選任した代理人】

【識別番号】

100096677

【弁理士】

【氏名又は名称】

伊賀 誠司

【手数料の表示】

【予納台帳番号】

019530

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9707387

【プルーフの要否】

更

【書類名】 明細書

【発明の名称】 燃料電池

【特許請求の範囲】

【請求項1】 燃料電極と酸素電極を備え、これら燃料電極と酸素電極がプロトン伝導体を介して互いに対向配置されてなる燃料電池において、

上記燃料電極及び/又は酸素電極は、カーボンナノチューブを含む集電体を有することを特徴とする燃料電池。

【請求項2】 上記燃料電極及び/又は酸素電極は、触媒金属を担持している ことを特徴とする請求項1記載の燃料電池。

【請求項3】 上記触媒金属は、白金又はその合金であることを特徴とする請求項2記載の燃料電池。

【請求項4】 上記プロトン伝導体は、炭素を主成分とする炭素質材料を母体とし、プロトン解離性の基を導入したものを含むことを特徴とする請求項1記載の燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、燃料(例えば水素)と酸素の反応により起電力を得る燃料電池に関するものである。

[0002]

【従来の技術】

近年、石油等の化石燃料に代り得る代替クリーンエネルギー源の必要性が叫ば れており、例えば水素(ガス)燃料が注目されている。

[0003]

水素は、単位質量あたりに含まれる化学エネルギー量が大きく、また使用に際 して有害物質や地球温暖化ガスなどを放出しない等の理由から、クリーンでかつ 無尽蔵な理想的なエネルギー源であると言える。

[0004]

そして、特に最近では、水素エネルギーから電気エネルギーを取り出すことが

できる燃料電池の開発が盛んに行われており、大規模発電からオンサイトな自家 発電、更には電気自動車用の電源等としての応用などが期待されている。

[0005]

【発明が解決しようとする課題】

燃料電池は、プロトン伝導体を挟んで燃料電極(例えば水素電極)と酸素電極を配置し、これら電極に燃料(水素)や酸素を供給することで電池反応を起こし、起電力を得るものであり、その製造に際しては、通常、プロトン伝導体膜、燃料電極、酸素電極を別々に成形し、これらを貼り合わせている。

[0006]

しかしながら、上記燃料電極や酸素電極を個々に形成する場合、その取り扱いが難しく、様々な不都合が生じている。

[0007]

例えば、燃料電極や酸素電極の強度を考えた場合、ある程度の厚さ(例えば100μm以上)が必要になるが、電極の厚さを厚くすると、電池反応の効率が低下し、電池性能が低下する。

[0008]

これを回避するために、電極の厚さを薄くすると、自立膜として取り扱うことができず、製造歩留まりが大幅に低下する。

[0009]

本発明は、このような従来の実情に鑑みて提案されたものであり、製造が容易で電池性能に優れた燃料電池を提供することを目的とする。

[0010]

【課題を解決するための手段】

本発明者は、上述の目的を達成せんものと、種々の検討を重ねてきた。その結果、カーボンナノチューブを含むシートは、高強度で、且つ高密度に形成することができ、集電性に優れた材料であり、これを集電体として利用することで高性能な燃料電池を構築することが可能であることがわかった。

[0011]

本発明は、このような実験結果に基づいて案出されたものである。すなわち、

本発明の燃料電池は、燃料電極と酸素電極を備え、これら燃料電極と酸素電極が プロトン伝導体を介して互いに対向配置されてなる燃料電池において、上記燃料 電極及び/又は酸素電極は、カーボンナノチューブを含む集電体を有することを 特徴とするものである。

[0012]

カーボンナノチューブを含む集電体は、高強度で、且つ密度も高い。また、カーボンナノチューブ自体が有する良好な電子伝導性とも相俟って、集電体として優れた機能を発揮する。

[0013]

また、カーボンナノチューブを含む集電体を用いることにより、燃料電極や酸素電極の機械的強度を考慮する必要がなくなり、したがって、これら電極の厚さを薄くすることができ、その結果、作製される燃料電池においては、電池反応が効率的に行われ、電池性能が向上する。

[0014]

【発明の実施の形態】

以下、本発明を適用した燃料電池について、図面を参照しながら詳細に説明する。

[0015]

燃料電池の構成は、図1に示すようなものであり、基本的には、プロトン伝導性を有するプロトン伝導体1の両面に、それぞれ燃料電極2,酸素電極3が形成されている。

[0016]

そして、上記燃料電極2に例えば水素を供給し、酸素電極3に酸素を供給する と、電池反応が起こり、起電力が生ずる。ここで、燃料電極2には、いわゆるダ イレクトメタノール方式の場合、水素源としてメタノールを供給することも可能 である。

[0017]

本発明においては、上記燃料電極 2 , 酸素電極 3 の集電体として、カーボンナ ノチューブを含むシートを用いる。 [0018]

上記カーボンナノチューブは、直径1 n m程度、長さ1~10 μ m程度の細長 い繊維状の形状を呈しており、シート状に成形すると、互いに絡み合って、薄く ても強度の大きな状態とすることができる。

[0019]

しかも、カーボンナノチューブ自体、電子伝導性が非常に大きく、上記シートは集電体として優れた性能を発揮する。例えば、電気抵抗は、通常のカーボンシートの1/2以下であり、したがって、これを燃料電池の電極集電体として用いることにより、出力電圧を高くすることができ、電池エネルギーを有効に活用することができる。

[0020]

さらに、上記カーボンナノチューブは、軽量で酸に強く、製造コストの点で有利である等、種々の利点を有する。

[0021]

図 2 は、カーボンナノチューブを含む炭素質材料を製造するためのアーク放電装置の一例を示すものである。この装置においては、真空チャンバと呼ばれる反応室 1 1 内にいずれもグラファイト等の炭素棒からなる陰極 1 2 と陽極 1 3 とが間隙 G を介して対向配置され、陽極 1 3 の後端は直線運動導入機構 1 4 に連絡され、各極はそれぞれ電流導入端子 1 5 a、 1 5 b に接続されている。

[0022]

このような構成において、反応室11内を脱気したのち、ヘリウム等の希ガスで充満させ、各電極に直流を通電すると、陰極12と陽極13との間にアーク放電が生じ、反応室11の内面、すなわち、側壁面、天井面、底面及び陰極12上にスス状の炭素質材料が堆積する。なお、側壁面等に予め小容器を取付けておけば、その中にも炭素質材料が堆積する。

[0023]

反応室11から回収されたスス状の炭素質材料には、図3(A)に示すようなカーボンナノチューブ、図3(B)に示すC60フラーレン、及び図示はしないがC70フラーレン、それに図3(C)に示す炭素スス等が含有されている。この炭

素ススは、フラーレン分子やカーボンナノチューブに成長し切れなかった曲率を 有するススである。なお、このスス状の炭素質材料の典型的な組成を挙げると、 C60、C70等フラーレンが10~20%、カーボンナノチューブが数%、その外 に多量の炭素スス等が含まれる。

[0024]

なお、上記燃料電極2や酸素電極3においては、その少なくとも表面に対し、 水素分子を水素原子へ、更にはプロトンと電子へと分離できる触媒能を有する金 属を公知の方法で10重量%以下、担持させることが好ましい。触媒能を有する 金属としては、例えば白金、若しくは白金合金等を挙げることができる。このよ うな金属を担持させると、それを担持させない場合に比べ、電池反応の効率を高 めることができる。

[0025]

一方、上記プロトン伝導体1は、イオン伝導性を有するものであれば、任意の ものを使用することができる。例えば、セパレータにプロトン伝導性を有する材 料を塗布し、担持させたもの等も使用可能である。

[0026]

具体的に、このプロトン伝導体1として使用可能な材料としては、先ず、パー フルオロスルホン酸樹脂 [例えばデュポン社製、商品名 Nafion(R) 等] のよう なプロトン(水素イオン)伝導性の高分子材料を挙げることができる。

[0027]

また、比較的新しいプロトン伝導体として、 H_3 Mo $_{12}$ PO $_{40}$ ・29 H_2 OやS $^{\mathrm{b}}2^{\mathrm{O}}5$ ・5. $^{\mathrm{4}}$ $^{\mathrm{H}}2^{\mathrm{O}}$ 等、多くの水和水を持つポリモリブデン酸類や酸化物も使 用可能である。

[0028]

これらの高分子材料や水和化合物は、湿潤状態に置かれると、常温付近で高い プロトン伝導性を示す。

[0029]

即ち、パーフルオロスルホン酸樹脂を例にとると、そのスルホン酸基より電離 したプロトンは、高分子マトリックス中に大量に取込まれている水分と結合(水

素結合)してプロトン化した水、つまりオキソニウムイオン(H₃O⁺)を生成し、このオキソニウムイオンの形態をとってプロトンが高分子マトリックス内をスムーズに移動することができるので、この種のマトリックス材料は常温下でもかなり高いプロトン伝導効果を発揮できる。

[0030]

あるいは、これらの材料とは伝導機構の全く異なるプロトン伝導体も使用可能 である。

[0031]

即ち、YbをドープしたSrCeO3等のペロブスカイト構造を有する複合金属酸化物等である。この種のペロブスカイト構造を有する複合金属酸化物は、水分を移動媒体としなくても、プロトン伝導性を有することが見出されている。この複合金属酸化物においては、プロトンはペロブスカイト構造の骨格を形成している酸素イオン間を単独でチャネリングして伝導されると考えられている。

[0032]

さらには、上記プロトン伝導体1を構成するプロトン伝導性の材料として、炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなるプロトン伝導体も使用可能である。ここで、「プロトン解離性の基」とは、電離によりプロトン(H⁺)が離れ得る官能基のことを意味する。

[0033]

具体的には、プロトン解離性の基として、-OH、 $-OSO_3H$ 、 $-SO_3H$ 、-COOH、 $-OP(OH)_2$ 等を挙げることができる。

[0034]

このプロトン伝導体においては、プロトン解離性の基を介してプロトンが移動 し、イオン伝導性が発現される。

[0035]

母体となる炭素質材料には、炭素を主成分とするものであれば任意の材料を使用することができるが、プロトン解離性の基を導入した後に、イオン伝導性が電子伝導性よりも大であることが必要である。

[0036]

具体的には、炭素原子の集合体である炭素クラスターや、チューブ状炭素質 (いわゆるカーボンナノチューブ)を含む炭素質材料等を挙げることができる。

[0037]

上記炭素クラスターには、種々のものがあり、フラーレンや、フラーレン構造 の少なくとも一部に開放端を持つもの、ダイヤモンド構造を持つもの等が好適で ある。

[0038]

以下、この炭素クラスターについてさらに詳細に説明する。

[0039]

上記クラスターとは通常は、数個から数百個の原子が結合又は凝集して形成されている集合体のことであり、この原子が炭素である場合、この凝集(集合)体によってプロトン伝導性が向上すると同時に、化学的性質を保持して膜強度が十分となり、層を形成し易い。また、「炭素を主成分とするクラスター」とは、炭素原子が、炭素一炭素間結合の種類は問わず数個から数百個結合して形成されている集合体のことである。ただし、必ずしも100%炭素のみで構成されているとは限らず、他原子の混在もあり得る。このような場合も含めて、炭素原子が多数を占める集合体を炭素クラスターと呼ぶこととする。この集合体を図面で説明すると(但し、プロトン解離性の基は図示省略)、図4~図7に示す通りであり、プロトン伝導体の原料としての選択の幅が広いものである。

[0040]

ここで、図4に示すものは、炭素原子が多数個集合してなる、球体又は長球、又はこれらに類似する閉じた面構造を有する種々の炭素クラスターである(但し、分子状のフラーレンも併せて示す)。それに対して、それらの球構造の一部が欠損した炭素クラスターを図5に種々示す。この場合は、構造中に開放端を有する点が特徴的であり、このような構造体は、アーク放電によるフラーレンの製造過程で副生成物として数多く見られるものである。炭素クラスターの大部分の炭素原子がSP³ 結合していると、図6に示すようなダイヤモンドの構造を持つ種々のクラスターとなる。

[0041]

図7は、クラスター同士が結合した場合を種々示すものであり、このような構造体でも、本発明に適用できる。

[0042]

上記プロトンと結合し得る基を有する炭素質材料を主成分として含有するプロトン伝導体は、乾燥状態でもプロトンが前記基から解離し易く、しかもこのプロトンは常温を含む広い温度域(少なくとも約160℃~-40℃の範囲)にわたって高伝導性を発揮することが可能である。なお、前述のようにこのプロトン伝導体は、乾燥状態でも十分なプロトン伝導性を示すが、水分が存在していても差支えない(この水分は外部から浸入したものでもよい)。

[0043]

図8は、上記電極やプロトン伝導体が組み込まれる燃料電池の具体的な構成例を示すものである。

[0044]

この燃料電池は、触媒27a及び27bをそれぞれ密着又は分散させた互いに対向する負極(燃料極又は水素極)28及び正極(酸素極)29を有し、これらの両極間にプロトン伝導体部30が挟持されている。これら負極28、正極29からは、それぞれ端子28a、29aが引き出されており、外部回路と接続するような構造とされている。

[0045]

この燃料電池では、使用時には、負極28側では導入口31から水素が供給され、排出口32(これは設けないこともある。)から排出される。燃料(H₂)33が流路34を通過する間にプロトンを発生し、このプロトンはプロトン伝導体部30で発生したプロトンと共に正極29側へ移動し、そこで導入口35から流路36に供給されて排気口37へ向かう酸素(空気)38と反応し、これにより所望の起電力が取り出される。

[0046]

以上の構成において、水素供給源39には、水素吸蔵合金や水素吸蔵用炭素質 材料が収納されている。なお、予めこの材料に水素を吸蔵させておき、水素供給 源89に収納してもよい。 [0047]

【発明の効果】

以上の説明からも明らかなように、本発明によれば、強度や電子伝導性に優れたカーボンナノチューブシートを集電体として使用しているので、電池性能を大幅に向上することが可能である。

[0048]

また、燃料電極や酸素電極の強度を確保することができるので、その取り扱いが容易であり、製造上も有利である。

【図面の簡単な説明】

【図1】

燃料電池の基本構成を示す概略断面図である。

【図2】

カーボンナノチューブを作成するためのアーク放電装置の一例を示す模式図で ある。

【図3】

アーク放電により作製される炭素ススに含まれる各種炭素質材料を示す模式図 である。

【図4】

カーボンクラスターの種々の例を示す模式図である。

【図5】

カーボンクラスターの他の例(部分フラーレン構造)を示す模式図である。

【図6】

カーボンクラスターの他の例(ダイヤモンド構造)を示す模式図である。

【図7】

カーボンクラスターの更に他の例 (クラスター同士が結合しているもの) を示す模式図である。

【図8】

燃料電池の具体的構成例を示す模式図である。

【符号の説明】

1 プロトン伝導体、2 燃料電極、3 酸素電極

【書類名】 図面 【図1】

【図3】

(A)

(B)

(C)

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 製造が容易で電池性能に優れた燃料電池を提供する。

【解決手段】 燃料電極と酸素電極を備え、これら燃料電極と酸素電極がプロトン伝導体を介して互いに対向配置されてなる燃料電池である。燃料電極や酸素電極は、カーボンナノチューブを含む集電体を有する。カーボンナノチューブを含む集電体は、高強度で、且つ密度も高い。また、カーボンナノチューブ自体が有する良好な電子伝導性とも相俟って、集電体として優れた機能を発揮する。さらに、カーボンナノチューブを含む集電体を用いることにより、燃料電極や酸素電極の機械的強度を考慮する必要がなくなり、したがって、これら電極の厚さを薄くすることができる。

【選択図】 図1

出願人履歴情報

識別番号

[000002185]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都品川区北品川6丁目7番35号

氏 名 ソニー株式会社