Indoor Locationing
Predictions
using WiFi
Fingerprinting

IOT Analytics: For Internal Use Only

Jennifer Brosnahan, MPH



## Background

- Our client is developing a system to help people navigate a complex, unfamiliar interior space on a college campus.
- O They would like us to investigate the feasibility of using wifi-fingerprinting to determine a person's indoor location.
- O If a model meets or exceeds minimum specifications, it will be incorporated into a smart phone app for indoor locationing on a college campus.



# **Business Objectives (Goals)**

Build multiple different models to predict a person's location in indoor college campus spaces using Wifi signals 2

Answer the business question, "Can a model be built that predicts indoor location on a college campus that meets the Client's minimum specifications?"

3

If a model can be built meeting minimum specifications, deploy algorithm into smart phone indoor locationing app.

## Client Minimum Specifications

- Indoor location must be as precise as predicting within 10-15 feet of the indoor room, also defined as 'SpaceID' within source data. Relative position, or whether individual is outside or inside of room, is unnecessary.
- Performance metrics ideal for deployment:
  - O Accuracy scores on test data reaches 80% or higher
  - Precision (accuracy of minority class) on test data reaches 80% or higher
  - Recall (coverage of minority class) on test data is 80% or higher
  - F1 Score for multi-class problem achieves 80% or higher

### Data Description

- O Data was collected by 20 individuals using mobile phone devices on a college campus in Velencia, Spain
- The data source is the UJIIndoorLoc WLAN database
  - 19937 observations of 529 variables
  - 520 of the variables (98% of dataset) are homogenous wifi-access points providing numeric values representing signal strength
  - 9 remaining variables are Longitude, Latitude, Floor, BuildingID, SpaceID, Relative Position, UserID, PhoneID, and Time
  - Contains no missing values

## Data Management Methodologies

#### Feature Engineering

- A unique dependent variable ('location') was engineered in order to pinpoint room location on campus by concatenating 3 features from out-of-box (OOB) dataset:
  - 'BuildingID' (3 buildings, values = 0, 1, 2)
  - 'Floor' (5 floors, values = 0, 1, 2, 3, 4)
  - 'Space ID' (125 total space IDs)
  - O Results in 735 total unique 'location' classes

### Data Management Methodologies

#### Feature Selection

- As this problem requires predicting location using Wifi Access Points (WAPs), all non-WAP variables were removed
- Removing zero variance variables is utilized as a strategy to help reduce dimensionality from datasets during model training

Four primary datasets were developed from raw source data and utilized in model training process (outlined on following slide)

- Out-of-box (OOB) dataset (contains all campus locations to predict)
- Decause OOB dataset is extremely large, smaller datasets filtered by building were created for model training as a strategy to see if models trained by individual building will have enhanced performance over a model trained on all campus location data.

### **Dataset Descriptions**

#### Dataset 1: Out-of-box (OOB)

- 19,937 observations and 521 variables
- 520 WAP variables retained as independent variables, 'location' as dependent variable

#### Dataset 2: Building 0

- 5249 row observations and 201 variables after zero variance variable removed
- O 200 WAP independent variables, 'location' as dependent variable

#### Dataset 3: Building 1

- 5196 row observations and 208 variables retained after zero variance variable removed
- 207 WAP independent variables, 'location' as dependent variable

#### Dataset 4: Building 2

- 9492 row observations and 204 variables retained after zero variance variable removed
- 203 WAP independent variables, 'location' as dependent variable

## Algorithms

Four classification algorithms were chosen as follows:

- Decision Tree automatically prunes ineffective nodes and branches, useful in high dimensional datasets
- Random Forest handles large and high dimensional datasets well and performs automatic dimensionality reduction
- KNN trains much quicker than tree-based models and new data can be added easily
- Support Vector Machines can be effective in high dimensional spaces and when number of observations is greater than the number of features to train



# Resampling Techniques

#### Resampling methods

- Each dataset was split into training and testing data at 75% and 25%, respectively.
- K-fold cross validation was utilized to minimize likelihood of overfitting model. Data was split into 3 k-fold subsets.



### Cross Validation Results

- 3 K-fold subsets used to minimize likelihood of overfitting
- Random Forest consistently performed best in cross validation comparisons, followed by SVC.
- Both deemed worthy of further investigation through hyperparameter tuning and post-resampling.

| Algorithm             | oob2   | Building 0 | Building 1 | Building 2 |
|-----------------------|--------|------------|------------|------------|
| Decision Tree         | .45323 | .43574     | .61586     | .39475     |
| Random<br>Forest      | .67418 | .67903     | .78868     | .61410     |
| Support<br>Vector RBF | .51297 | .45574     | .62721     | .50390     |
| K Nearest<br>Neighbor | .47455 | .43422     | .59199     | .43605     |

### Post-resample Performance Comparison of All Models

Random Forest algorithm is top performer across all post-resampling dataset results

|                         | RF<br>oob2 | RF<br>Building 0 | RF<br>Building 1 | RF<br>Building 2 | SVC<br>oob2 | SVC<br>Building 0 | SVC<br>Building 1 | SVC<br>Building 2 |
|-------------------------|------------|------------------|------------------|------------------|-------------|-------------------|-------------------|-------------------|
| Accuracy                | 0.81384    | 0.76770          | 0.87914          | 0.82385          | 0.69067     | 0.61538           | 0.74288           | 0.72524           |
| Precision<br>(weighted) | 0.85869    | 0.81528          | 0.89504          | 0.89055          | 0.74650     | 0.67022           | 0.76627           | 0.80129           |
| Recall<br>(weighted)    | 0.81926    | 0.76771          | 0.88527          | 0.82455          | 0.69527     | 0.62106           | 0.74748           | 0.72585           |
| F1<br>(weighted)        | 0.81616    | 0.76631          | 0.87668          | 0.83257          | 0.69356     | 0.61416           | 0.73967           | 0.73484           |

# Recall comparison of Random Forest

- All Random Forest algorithms meet the minimum specification for 80% accuracy except Building 0, which is slightly less.
- Whether to choose the algorithm trained on the full dataset (oob2) or algorithms trained by individual buildings is hard to decide based on average model metrics.
- Recall helps gauge how many spaces the models correctly classify (True Positives) out of all Actual Positives within each class. There is a high cost associated with a False Negative (incorrect room prediction) when considered for a smart phone app.

**Recommendation:** Compare recall metrics by quartile (absolute count for location) for all models in order to make a more informed decision on model recommendation.

## Recall comparison of Random Forest

- Higher recall is better
- Total locations in 75-100% recall ranges:
  - Oob2: 456
  - O Buildings 0, 1, 2: 483
- 27 more locations in high recall range for individual buildings versus full dataset

| Recall quartiles | RF oob2 | RF<br>Building 0 | RF<br>Building 1 | RF<br>Building 2 | Total Ind<br>Buildings |
|------------------|---------|------------------|------------------|------------------|------------------------|
| 0 – 25%          | 20      | 5                | 4                | 9                | 18                     |
| 25 – 50%         | 88      | 40               | 13               | 36               | 89                     |
| 50 – 75%         | 166     | 70               | 18               | 53               | 141                    |
| 75 – 100%        | 456     | 141              | 125              | 217              | 483                    |

### **Model Recommendation**

Recommend deploying **Random Forest algorithms trained on individual buildings** for smart phone app

- O All metrics for Buildings 1 and 2 well surpass 80% minimum goal and are higher than model trained on full dataset. Metrics for Building 0 are slightly below 80% goal, however, this is offset by greater accuracy on Buildings 1 and 2.
- Models trained on individual buildings predicted more overall room locations with high recall, True Positives out of Actual Positives (483 total) versus model trained on full dataset (456 total).
- O Higher recall on 17 more locations to predict is important when considering for smart phone app deployment.

# Alternative Solutions to Wi-Fi Fingerprinting

- Acuity Brands provides LED integrated indoor positioning light fixtures which send flickering patterns readable by phone receivers and link to indoor locationing maps. <a href="www.bytelight.com">www.bytelight.com</a>
- IndoorAtlas uses a variety of technologies for indoor locationing, including geomagnetic positioning, Wi-Fi signals, and Barometric pressure (vertical movement), all of which are read be a cell phone's sensors. <a href="https://www.indooratlas.com/positioning-technology">www.indooratlas.com/positioning-technology</a>
- iBeacon transmitters, or Bluetooth Low Energy (BLE) devices, project signals to nearby electronic devices which can be used to determine device's physical location. developer.apple.com/ibeacon
- Infrared (IR) systems use infrared light pulses to locate IR receiver signals installed in each room of a building. IR tag pulses emitted by receivers can be read by IR receiver device.
- Real-time fingerprinting apps rely on user collaboration to "check-in" and label fingerprints on their devices, which are then stored in a repository and pass through an algorithm that defines their current location. www.foursquare.com



- Random Forest algorithms overall met or exceeded client minimum specification metrics for predicting WiFi locations on a college campus.
- Recall for location predictions on individual building datasets was higher than OOB dataset.
- Recommend deploying Random Forest algorithms by individual buildings for Indoor Locationing smart phone app