Worksheet: If IEEE 754 had a 12-bit standard ...

A model floating point system \mathbb{F} is in Lecture 13 of the textbook (L. Trefethen and D. Bau, *Numerical Linear Algebra*, SIAM Press 1997). Practical systems are implemented in bits and in hardware. The actual IEEE 754 standards for 32-bit single precision and 64-bit double precision representations are cumbersome, so for convenience we pretend here that the standard has a 12-bit version. It might look like this:

These 12 bits are organized as follows to represent a *nonzero* number:

$$x = (-1)^s (1.b_1b_2b_3b_4b_5b_6b_7)_2 2^{(e_1e_2e_3e_4)_2 - (0111)_2}$$

Note that $(1.b_1b_2b_3b_4b_5b_6b_7)_2$ is called the *mantissa*. The power on the 2 is the *exponent*. The special offset $(0111)_2$, equal to 7 in base ten, is called the *exponent bias*. We also define some exceptional cases:

- exponent bits $(0000)_2$ are used for the number zero or subnormal numbers
- exponent bits $(1111)_2$ are used for the other exceptions: $\pm \infty$ and NaN

(No further details of the $(1111)_2$ exceptions will be considered here.) *Normal* numbers have exponents in this range: $1_{10} = (0001)_2 \le (e_1e_2e_3e_4)_2 \le (1110)_2 = 6_{10}$.

(a) What is the largest real number that this system can represent? Show the bits.

ſ								
- 1								
- 1								1
- 1								1
- 1								1
- 1								1
- 1		1		1	1	l	1	1

(b) What is the smallest positive number that this system can represent? (*I.e.* what is the first normal number to the right of zero?) Show the bits.

(c) If we define $\epsilon_{\text{machine}}$ as the gap between 1 and the next representable number greater than 1, what is the value of $\epsilon_{\text{machine}}$ in this system?

(d)	What is the	repr	esen	tatio	on of	zer	o? Sl	how	the	bits.				
														J
(e)	What is the i	repre	esen	tatic	n of	4? 5	Show	the	bits	S.				
							I							J
(f)	What is the l	arge	st re	pres	senta	able	num	ber	whi	ch is	sma	aller	thar	n 8? Show the bits.
														J
(g)	In the interv	al [4	,8),	how	ma	ny n	umb	ers	can l	be re	epre	sente	ed?	
Ü		L	, ,-			J					1			
(h)														n be represented in
			subn	ıorm	al nı	ımbe	ers, a	nd es	xclua	le ex	cepti	ions	using	g exponent $(1111)_2$,
e.g. =	$\pm\infty$ and NaN.))												
(i)	Show the bit	s of	one	cuh	Orm	nal n	uml	or						
(1)	JIOW THE DIE	3 OI (orie	Jubl	OIII	ıaı 11	ullik	,c1.						1