The scientific method

- 1. Ask a question or pose a problem
- 2. Collect the existing relevant information
- 3. Based on information obtained in step 2, design an investigation or experiment to address the question posed in step 1
- 4. Carry out the investigation or experiment
- 5. Use the evidence from step 4 to update the previously known information, then draw conclusions.
- 6. Repeat steps 3-5 as necessary.

Where does statistics fit in?

- Central to steps 2, 3, and 5
 - Experimental design, survey sampling
 - Statistical inference
- <u>Bayesian statistics</u> is particularly well suited for step 2 and step 5
 - Step 2: prior information
 - Step 5: prior information → posterior information

A bit history

- Thomas Bayes
 - Born:1702 in London, England
 - Died: 1761 in Kent, England
 - Elected a fellow of the Royal Society in 1742 despite he had no published work on mathematics at that time.
- Essay towards solving a problem in the doctrine of chances
 - Set out Bayes' theory of probability
 - Published in Philosophical Transactions of the Royal Society of London in 1764
 - The paper was sent by a friend of Bayes

Applications of Bayesian statistics

Economics

Figure 5: Econometrica Containing "Bayes" or "Bayesian"

Applications of Bayesian Statistics

- Marketing
- Social science
- Education
- Medical research
- Genomics
- Weather

Quantification of uncertainty

- Classical
- Frequentist
- Bayesian

An example of Bayes' theorem

- Enzyme-Linked Immuno Sobert Assay (ELISA)
 - A diagnosis tool for HIV
 - Low cost, about \$20 each
 - Less accurate compared to some more expensive tools
- Let A = {the patient is HIV positive}. Is it proper to use Pr(A)?
- How should we update the uncertainty after a test?

An example of Bayes' theorem (cont)

- Data: test result (positive/negative)
- Update the uncertainty using Bayes' theorem

$$P(A|+) = P(+|A)P(A)/[P(+|A)P(A)+P(+|not A)P(not A)]$$

- Sensitivity: P(+|A) = 0.95
- Specificity: P(-|not A) = 1-P(+|not A) = 0.98
- Population prevalence: P(A) = 0.01

An example of Bayes' theorem (cont)

- P(A|+) = 0.32
- False positive rate: P(not A|+) = 1 P(A|+) = 0.68
- False negative rate: P(A|-) = 0.00052, about 1 in 1941.

The example in the Bayesian language

- Prior: P(A) = 0.01
- Posterior: P(A|+) = 0.32
- Another formulation of Bayes' theorem
 - $-P(A|+)/P(-|+) = [P(A)/P(not A)] \times [P(+|A)/P(+|not A)]$
 - Posterior odds = prior odds x BF

General form of Bayes' theorem

- Model: $y|\theta \sim f(y|\theta)$
 - y: data
 - $-\theta$: parameter
- Bayes' theorem
 - $f(\theta|y) = f(\theta,y)/f(y) = f(y|\theta)f(\theta)/f(y) \propto f(y|\theta)f(\theta)$
 - Posterior ∞ likelihood x prior

Key issues in Bayesian statistics

- How to specify prior distributions?
- How to compute the posterior $f(\theta | y)$?
 - In general, we need to know the <u>marginal distribution</u> $f(y) = \int f(y|\theta)f(\theta) d\theta$
 - Direct computation of this integral is difficult especially when θ is high-dimensional
 - Simulation is the general solution
- How to summarize the posterior?
 - Posterior mean, median or mode
 - Credible interval

Comparison of Bayesian and frequentist methods

- Interval estimation
 - Frequentist: confidence interval
 - The experiment should be repeatable
 - Not conditional on the data
 - Bayesian: credible interval
- Hypothesis testing
 - Consider testing H0: θ =0.5 versus H1: θ >0.5
 - Frequentist (Neyman-Pearson):
 - pvalue can only be computed when the parameter value is given under the null
 - If we switch the role of two hypotheses, frequentists can not compute the pvalue
 - Bayesian: no trouble

Summary: frequentist v.s. Bayesian

- Disadvantages of Bayesian
 - Subjective choice of prior
 - Computation of posterior can be difficult
- Advantages of Bayesian
 - Can easily incorporate prior information
 - Inference are conditional on the actual data
 - Results are more easily interpretable
 - Inference are based on the posterior, which is conceptually simple
 - In principle, all problems can be solved

Some facts on Bayesian computation

• Posterior is proportional to (likelihood x prior)

• Making inference using sufficient statistics is equivalent to using the original data

- Prediction
 - Predictive distribution

$$f(y_{n+1} | y_1,...,y_n) = \int f(y_{n+1} | \theta) f(\theta | y_1,...,y_n) d\theta$$

Some often used basic facts in probability

- E(X)=E[E(X|Y)]
- Var(X) = E[Var(X|Y)] + Var[E(X|Y)]
 - On average, posterior variance is smaller than prior variance
- Computing the distribution of a random variable after transformation
 - Change-of-variable formula

Some basic models

- Normal-normal model
 - Model: $y_1, ..., y_n \mid \theta \sim N(\theta, \sigma^2)$ with known σ^2 , i.i.d.
 - Prior: $\theta \sim N(\mu, \tau^2)$
- Posterior $\theta | y_1, ..., y_n \sim N(?, ?)$
- Interpretation of the posterior mean
- Prediction

Some basic models (cont)

- Beta-binomial model
 - $-y|\theta \sim binomial(n,\theta)$
 - $-\theta \sim beta(a, b)$
- Posterior: beta(?,?)
- Interpretation of posterior mean
- prediction

Some other one-parameter models

- Normal with known mean but unknown variance
 - $-y_1,...,y_n \mid \sigma^2 \sim N(\theta, \sigma^2)$
 - Prior: Inverse gamma
- Poisson model
 - $-y_1,...,y_n \mid \theta \sim Poisson(\theta)$
 - Prior: gamma
 - Marginal model: negative-binomial
- Exponential model
 - $-y_1,...,y_n \mid \theta \sim Exp(\theta)$
 - Prior: gamma

Conjugate prior

For exponential family

Mixture of conjugate prior → mixture of 'conjugate' posterior

Prior specification

- Elicited (informative) prior
 - Histogram
 - Determining parameters in priors using moments or quantiles
 - Two different distributions can have the same set of quantiles or moments
 - Interactive computer programs
 - Using a hierarchical structure is often helpful
- Conjugate prior
 - Computationally convenient
- Noninformative prior
- Empirical Bayes

Noninformative prior

- Flat (uniform)
 - Improper when the support is not finite
 - Improper prior can still lead to proper posterior
 - Usually not flat after transformation
- Jeffrey's prior
 - Invariant under one-to-one transformation
- Location invariant prior for location family
- Scale invariant prior for scale family

Thank you for evaluating AnyBizSoft PDF Splitter.

A watermark is added at the end of each output PDF file.

To remove the watermark, you need to purchase the software from

http://www.anypdftools.com/buy/buy-pdf-splitter.html