FURTHER ADVENTURES IN UNCERTAINTY QUANTIFICATION: CONFORMAL PREDICTIONS

Viviana Acquaviva CUNY/Columbia University

Holy Grail of Uncertainty Quantification:

Generate predictions that are calibrated for every example

e.g., guarantee that true value is within quoted "90%" interval 90% of the time for any input value

Conformal predictions

Goal: starting from predictions for any model, generate calibrated sets (classification) or intervals (regression).

- distribution-free: the only assumption is that data points are exchangeable (no time series).
- model-agnostic: conformal predictions can be applied to any predictive model.
- marginal coverage guarantee: the resulting prediction sets (intervals) come with guarantees of covering the true outcome with at least desired probability on a set with the same statistical properties

Process

Divide data in train / calibration / validation (test) set

Build model on train set; generate predictions on calibration set

Use calibration set to build non-conformity (or conformal) scores

Can be defined in many ways (important: good model \Leftrightarrow low scores)

In practice, they measure how "off" model predictions are by looking at some statistical property of the scores' distribution

Use non-conformity scores to generate new prediction sets/intervals C that satisfy coverage guarantee for any chosen probability $1 - \alpha$:

$$P(Y_{val}) \in C(X_{val}) \ge (1 - \alpha)$$

Classification example

- Let's say the true class of object i is y_i
- Start from any model that predicts probabilities $f(x_i)$ for each class (for example, $f(x_i)$ could be 0.2, 0.7, 0.1 in a three-class model)
- On calibration set, compute scores $s_i = 1 f(x_i)[y_i]$, i.e.
 - 1 (probability assigned to correct class).
 - s_i are a simple example of conformal scores (low = good)
- Sort from certain (low s_i) to uncertain
- Select probability threshold of interest q (e.g. 80%)
- Find "q" quantile of s_{i} , multiply by finite sample size correction ($\hat{q} = q$ *(n+1)/n
- Prediction output is the set of all classes that had a probability score > $1 - \hat{q}$
- Marginal coverage: on statistically equivalent (i.i.d.) data, sets contain the true class 80% of the time

	p(y ₁)	p(y ₂)	p(y ₃)
#1	0.2	0.7	0.1
#2	0.4	0.4	0.2
#3	0.9	.05	.05
#4	0.1	0.1	0.8
#5	0.2	0.6	0.2

Si	S _{i (sorted)}	
0.3	0.1	a = 0.6
0.6	0.2	q = 0.6
0.1	0.3	$\hat{q} = 0.72$
0.2	0.6	
0.8	0.8	

pred sets		
2		
1,2		
1		
3		
2		

How can we get a coverage guarantee no matter the quality of the estimator?

Good Classifier

conformal scores

 \hat{q} (value corresponding to say 80% quantile of conformal scores) is low

only classes predicted with high probability $(1-\hat{q})$ are included in prediction sets

Bad Classifier

conformal scores

 \hat{q} (value corresponding to say 80% quantile of conformal scores) is high

even classes predicted with low probability $(1-\hat{q})$ are included in prediction sets

Devil is in the detail

■ Marginal coverage guarantee doesn't make single predictions particularly useful

Marginal means "on average": given a new set of examples that is statistically equivalent to the calibration set, the predictions sets contain the true value "x"% of the time

■ What we really want is conditional coverage: conditional on any split of the data, i.e. for every example

Figure from Angelopolous and Bates 2021

Devil is in the detail

Marginal coverage guarantee doesn't make single predictions particularly useful

Marginal means "on average": given a new set of examples that is statistically equivalent to the calibration set, the predictions sets contain the true value "x"% of the time

■ What we really want is conditional coverage: conditional on any split of the data, i.e. for every example

Unfortunately, this is relatively easy to obtain on classes, but impossible to achieve in general

- A trivial solution to enforcing "including x% of the true classes" is to include all. Obviously useless
- Empirically, we look for small (not including too many) and adaptive (can recognize easy vs difficult examples; proxy for conditional coverage) prediction sets ⇒ look at size and spread in size of sets/intervals as diagnostics

Algorithms: APS, RAPS (Adaptive Pred Sets, Regularized Adaptive Pred Sets)

Regression

main difference is in the scores

Simplest version:

- Train regression model that outputs point predictions \hat{y}
- Pick desired coverage level α (e.g., 80%)
- Build conformal scores on calibration set (low = good) what could work?
- e.g., absolute residuals $|y \hat{y}|$
- Find quantile of residuals q corresponding to desired coverage, times finite sample correction $(n+1)/n \Rightarrow \hat{q}$
- Build intervals by adding this number to/subtracting from point prediction: $[\hat{y} \hat{q}, \hat{y} + \hat{q}]$
- Marginal coverage still holds!

Let's say that we are interested in 80% coverage; alpha = 0.2. We find the corresponding 80% quantile of the absolute residuals, with the usual finite sample size correction:

```
alpha = 0.2
```

```
qhat = np.quantile(np.abs(y_calib_pred - y_calib), np.ceil((n+1)*(1-alpha))/n)
```

qhat

0.7055971501774867

We can now generate intervals by adding this quantity on either side of the point predictions:

```
intervals = np.hstack([(y_calib_pred - qhat).reshape(-1,1), (y_calib_pred + qhat).reshape(-1,1)])
```

To check calibration, we ask how often the true value is found in the intervals:

```
#whether true value is in interval
inint = np.array([intervals[i][0] < y_calib[i] < intervals[i][1] for i in range(len(y_calib))], dtype = int)</pre>
```

```
inint.mean() #Success! (Coverage is as expected)
```

0.806060606060606

We should also check that the coverage holds on the validation set:

```
y_val_pred = model.predict(X_val)
intervals_val = np.hstack([(y_val_pred - qhat).reshape(-1,1), (y_val_pred + qhat).reshape(-1,1)])
inint_val = np.array([intervals_val[i][0] < y_val[i] < intervals_val[i][1] for i in range(len(y_val))], dtype = int)
inint_val = np.array([intervals_val[i][0] < y_val[i] < intervals_val[i][1] for i in range(len(y_val))], dtype = int)
inint_val.mean() #Not bad! Should also marginalize over effect of split of data etc.</pre>
```

0.8363636363636363

Conformalized quantile regression

- Start from model that outputs quantiles
 (e.g., GradientBoostingRegressor w quantile loss)
- Pick desired coverage (e.g., 80%)
- Define up/low quantiles, e.g. $\widehat{GBRq}_{low} = 0.1$; $\widehat{GBRq}_{up} = 0.9$
- On calibration set, compute conformal scores

$$s(x, y) = max(\widehat{GBRq}_{low} - y, y - \widehat{GBRq}_{up})$$

- Median of s indicates typical correction needed by the intervals (negative = intervals were too wide; positive = too narrow)
- Find quantile q of scores s, with usual correction $\Rightarrow \widehat{q}$
- \hat{q} is added to both sides of the intervals for each example
- Adaptivity is achieved only through the original quantiles

Figure by Christoph Molnar

References

- For the code relative to examples here: https://github.com/vacquaviva/IntroConformalPredictions
- A paper comparing different UQ methods (including CP) for SED fitting: https://www.mdpi.com/2674-0346/3/1/2
- Angelopoulos, Anastasios N., and Stephen Bates. "Conformal prediction: A gentle introduction." Foundations and Trends® in Machine Learning 16.4 (2023): 494-591.
 https://github.com/aangelopoulos/conformal-prediction
- Christoph Molnar has a series of (free) great blog posts and a book: https://christophmolnar.com/books/conformal-prediction/
- Conversation starter:

https://statmodeling.stat.columbia.edu/2024/02/20/when-do-we-expect-conformal-prediction-sets-to-be-helpful/

Python Implementation:
Model Agnostic Prediction Interval Estimator: https://mapie.readthedocs.io/en/latest/

Summary: Uncertainty quantification methods

- Calibrating the uncertainties is always tricky. You can only do it if you have all sources of uncertainty under control. No free lunch.
- It is also necessary. Just like lunch.
- Conformal Predictions is a very active area of development (related: conformal risk control)
 - Methods that are proxies for conditional coverage are the most useful in practice Question to ask: What is useful? What do you know about the data? Is it important to be conservative? Is adaptivity very important?
- Bayesian methods vs Conformal Predictions:
 - Do a different thing (produce calibrated sets/intervals vs produce posteriors)
 - Bayesian methods require assumptions about data distribution + priors
 - Conformal Prediction Sets are always not always useful, even with guarantees
- ¿Por qué no los dos?