COMPUTER SYSTEMS FUNDAMENTALS (4COSCO04W)

Lecture: Week 2. Part 2 of 2

In this video we will cover:

- Ranges of values
 - Positive Integers
 - Decimal
 - Binary
 - Hex
 - Why use Binary?
 - Why use Hexadecimal?

RANGE OF VALUES

Positive Integers

By the end of this unit, you will:

- Be able to work out the range of values of Positive (Unsigned) Integers in
 - Decimal
 - Binary
 - Hexadecimal
- Appreciate what we use Binary for
 - and why
- Appreciate what we use Hexadecimal for
 - and why

Denary	Binary			У	Hexadecimal
0				0	0
1				1	1
2			1	0	2
3			1	1	3
4		1	0	0	4
5		1	0	1	5
6		1	1	0	6
7		1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	Α
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	Е
15	1	1	1	1	F

Denary	E	3in	ar	y	Hexadecimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	Α
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	Е
15	1	1	1	1	F

Denary - Base 10

- 1 digit
 - Values: 0 → 9
 - $0 \to (10^1 1)$
 - 10^1 values
- 2 digits
 - Values: 0 → 99
 - $0 \rightarrow (10^2 1)$
 - -10^2 values
- n digits
 - Values: $0 \rightarrow (10^n 1)$
 - 10^n values

Binary - Base 2

- 1 Bit
 - Values: 0 → 1
 - $0 \to (2^1 1)$
 - 2^1 values
- 2 Bits
 - Values: $0 \rightarrow 3$
 - $0 \rightarrow (2^2 1)$
 - 2^2 values
- *n* Bits
 - Values: $0 \rightarrow (2^n 1)$
 - 2^n values

Hexadecimal - Base 16

- 1 Hexadecimal digit
 - Values: $0 \rightarrow 15$ (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
 - $0 \rightarrow (16^1 1)$
 - 16¹ values
 - Nibble
- 2 Hexadecimal digit
 - Values: $0 \rightarrow 255$
 - $0 \rightarrow (16^2 1)$
 - -16^2 values
- *n* Hexadecimal digit
 - Values: $0 \rightarrow (16^n 1)$
 - 16ⁿ values

Why binary?

- Computers use Boolean Logic
- Boolean logic gates are based on a two-state system
- Transistors hold one of two states
- Many millions of transistors on each chip
- Can be read and set quickly
- But not very human readable
- Large numbers have lots of bits of data

Number System Triangle:

Number System Triangle:

Why Hexadecimal?

- More efficient than Decimal for large numbers
- Quick conversion to / from Binary
 - Nibble
 - 16 is 2^4
- Byte
 - 8 Bits
 - 2 Nibbles
 - 2 Hex digits

	2 A			В				3							
0	0	1	0	1	0	1	0	1	0	1	1	0	0	1	1

E	3in	ar	y	Hexadecimal					
			0	0					
			1	1					
		1	0	2					
		1	1	3					
	1	0	0	4					
	1	0	1	5					
	1	1	0	6					
	1	1	1	7					
1	0	0	0	8					
1	0	0	1	9					
1	0	1	0	Α					
1	0	1	1	В					
1	1	0	0	С					
1	1	0	1	D					
1	1	1	0	Е					
1	1	1	1	F					

4096 table		256	S table	16 table	
1	4096	1	256	1	16
2	8192	2	512	2	32
3	12288	3	768	3	48
4	16384	4	1024	4	64
5	20480	5	1280	5	80
6	24576	6	1536	6	96
7	28672	7	1792	7	112
8	32768	8	2048	8	128
9	36864	9	2304	9	144
10	40960	10	2560	10	160
11	45056	11	2816	11	176
12	49152	12	3072	12	192
13	53248	13	3328	13	208
14	57344	14	3584	14	224
15	61440	15	3840	15	240

In this video we looked at:

- Ranges of values
 - Positive Integers
 - Decimal
 - Binary
 - Hex
 - Why use Binary?
 - Why use Hexadecimal?

© The University of Westminster (2020) The right of Noam Weingarten to be identified as author of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988