IMPROVED PARALLEL GAUSSIAN ELIMINATION FOR GRÖBNER BASIS COMPUTATIONS IN FINITE FIELDS

Brice Boyer, Christian Eder, Jean-Charles Faugère, Sylvian Lachartre and Fayssal Martani

October 01, 2015

University of Kaiserslautern

TABLE OF CONTENTS

- 1. Linear Algebra for Gröbner basis computations
- 2. Features of GBLA
- 3. Some benchmarks
- 4. Outlook

LINEAR ALGEBRA FOR GRÖBNER BASIS

COMPUTATIONS

• Algorithms like Faugère's **F4** compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.

- Algorithms like Faugère's **F4** compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.

- Algorithms like Faugère's **F4** compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a *subset of S-pairs* a **symbolic preprocessing** is performed.
- Out of this data a matrix M is generated: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.

- Algorithms like Faugère's **F4** compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a matrix M is generated: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.
- Performing Gaussian Elimination on M corresponds to reducing the chosen subset of S-pairs at once.

- Algorithms like Faugère's **F4** compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a matrix M is generated: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.
- Performing Gaussian Elimination on M corresponds to reducing the chosen subset of S-pairs at once.
- New data for the Gröbner basis can then be read off the reduced matrix: Restore corresponding rows as polynomials.

Specialize Linear Algebra for reduction steps in GB computations.

Specialize Linear Algebra for reduction steps in GB computations.

```
1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 1 0 0 0 7 0
0 0 0 0 1 3 1
```

Specialize Linear Algebra for reduction steps in GB computations.

```
1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 1 0 0 0 7 0
0 0 0 0 1 3 1
```

Specialize Linear Algebra for reduction steps in GB computations.

Specialize Linear Algebra for reduction steps in GB computations.

```
S-pair  \left\{ \begin{array}{c} 1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5 \end{array} \right. 
S-pair  \left\{ \begin{array}{c} 0 & 1 & 6 & 0 & 8 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 7 & 0 \end{array} \right. 
reducer  \leftarrow \quad \left( \begin{array}{c} 0 & 0 & 0 & 0 & 1 & 3 & 1 \end{array} \right)
```

Specialize Linear Algebra for reduction steps in GB computations.

```
S-pair  \left\{ \begin{array}{c} 1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5 \end{array} \right. 
S-pair  \left\{ \begin{array}{c} 0 & 1 & 6 & 0 & 8 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 7 & 0 \end{array} \right. 
reducer  \leftarrow \quad \left( \begin{array}{c} 0 & 0 & 0 & 0 & 1 & 3 & 1 \end{array} \right)
```

Specialize Linear Algebra for reduction steps in GB computations.

S-pair
$$\begin{cases} 1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5 \end{cases}$$
S-pair
$$\begin{cases} 0 & 1 & 6 & 0 & 8 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 7 & 0 \end{cases}$$
reducer
$$\leftarrow 0 & 0 & 0 & 0 & 1 & 3 & 1$$

Try to exploit underlying GB structure.

Main idea

Do a static reordering before the Gaussian Elimination to achieve a better initial shape. Invert the reordering afterwards.

```
1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 1 0 0 0 7 0
0 0 0 1 3 1
```

```
1 3 0 0 / 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 1 0 0 0 7 0
0 0 0 0 1 3 1
```

```
1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 1 0 0 0 7 0
0 0 0 0 1 3 1
```



```
1 3 7 0 0 1 0
1 0 0 4 1 0 5
0 1 8 6 0 0 9
0 1 0 0 7 0
0 0 1 0 0 3 1
```


3rd step: Reduce lower left part to zero

3rd step: Reduce lower left part to zero

4th step: Reduce lower right part

4th step: Reduce lower right part

4th step: Reduce lower right part

5th step: Remap columns and get new polynomials for GB out of lower right part.

SO, WHAT DO "REAL WORLD" MATRICES FROM GB

COMPUTATIONS LOOK LIKE?

Some data about the matrix:

• F4 computation of homogeneous KATSURA-12, degree 6 matrix

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- · Size 55MB

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- · Size 55MB
- 24,006,869 nonzero elements (density: 5%)

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- · Size 55MB
- 24,006,869 nonzero elements (density: 5%)
- · Dimensions:

full matrix: 21,182 × 22,207

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- · Size 55MB
- 24,006,869 nonzero elements (density: 5%)
- · Dimensions:

```
full matrix: 21,182 \times 22,207

upper-left: 17,915 \times 17,915 known pivots
lower-left: 3,267 \times 17,915

upper-right: 17,915 \times 4,292
lower-right: 3,267 \times 4,292
new information
```


HYBRID MATRIX MULTIPLICATION A-1B

HYBRID MATRIX MULTIPLICATION A-1B

REDUCE C TO ZERO

GAUSSIAN ELIMINATION ON D

NEW INFORMATION

FEATURES OF GBLA

• Open source library written in plain C.

- · Open source library written in plain C.
- · Specialized linear algebra for GB computations.

- · Open source library written in plain C.
- · Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.

- · Open source library written in plain C.
- · Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- · Works over finite fields for 16-bit primes (at the moment).

- · Open source library written in plain C.
- · Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- · Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.

- · Open source library written in plain C.
- · Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- · Works over finite fields for 16-bit primes (at the moment).
- · Several strategies for splicing and reduction.
- Includes converter from and to our dedicated matrix format.

- · Open source library written in plain C.
- · Specialized linear algebra for GB computations.
- · Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- · Works over finite fields for 16-bit primes (at the moment).
- · Several strategies for splicing and reduction.
- Includes **converter** from and to our dedicated matrix format.
- Access to huge matrix database: > 500 matrices, > 280GB of data.

- · Open source library written in plain C.
- · Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- · Works over finite fields for 16-bit primes (at the moment).
- · Several strategies for splicing and reduction.
- Includes **converter** from and to our dedicated matrix format.
- Access to huge matrix database: > 500 matrices, > 280GB of data.

http://hpac.imag.fr/gbla

Matrices from GB computations have **nonzero entries** often **grouped in blocks**.

Horizontal Pattern If $m_{i,j} \neq 0$ then often $m_{i,j+1} \neq 0$.

Matrices from GB computations have **nonzero entries** often **grouped in blocks**.

Horizontal Pattern If $m_{i,j} \neq 0$ then often $m_{i,j+1} \neq 0$. Vertical Pattern If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

Matrices from GB computations have **nonzero entries** often **grouped** in blocks.

Horizontal Pattern If
$$m_{i,j} \neq 0$$
 then often $m_{i,j+1} \neq 0$.
Vertical Pattern If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

 Can be used to optimize AXPY and TRSM operations in FL reduction.

Matrices from GB computations have **nonzero entries** often **grouped in blocks**.

Horizontal Pattern If
$$m_{i,j} \neq 0$$
 then often $m_{i,j+1} \neq 0$.
Vertical Pattern If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

- Can be used to optimize AXPY and TRSM operations in FL reduction.
- · Horizontal pattern taken care of canonically.

Matrices from GB computations have **nonzero entries** often **grouped in blocks**.

Horizontal Pattern If
$$m_{i,j} \neq 0$$
 then often $m_{i,j+1} \neq 0$.
Vertical Pattern If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

- Can be used to optimize AXPY and TRSM operations in FL reduction.
- · Horizontal pattern taken care of canonically.
- · Need to take care of vertical pattern.

MULTILINE TRSM STEP

Exploiting horizontal and vertical patterns in the TRSM step.

Consider the following two rows:

$$r1 = [2 3 0 1 4 0 5],$$

 $r2 = [1 7 0 0 3 1 2].$

Consider the following two rows:

$$r1 = [2301405],$$

 $r2 = [1700031405],$

A sparse vector representation of the two rows would be given by

Consider the following two rows:

$$r1 = [2301405],$$

 $r2 = [1700031405],$

A sparse vector representation of the two rows would be given by

A multiline vector representation of r1 and r2 is given by

$$ml.val = [2 1 3 7 1 0 4 3 0 1 5 2], \\ ml.pos = [0 1 3 4 5 6].$$

Consider the following two rows:

$$r1 = [2301405],$$

 $r2 = [1700031405],$

A sparse vector representation of the two rows would be given by

A multiline vector representation of r1 and r2 is given by

$$ml.val = [2 1 3 7 1 0 4 3 0 1 5 2],$$

 $ml.pos = [0 1 3 4 5 6].$

• Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in *D* resp. rank of *M*?

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in *D* resp. rank of *M*?

Change order of operations.

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in *D* resp. rank of *M*?

Change order of operations.

1. Reduce C directly with A (store corresponding data in C).

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in *D* resp. rank of *M*?

Change order of operations.

- 1. Reduce C directly with A (store corresponding data in C).
- 2. Carry out corresponding operations from B to D using updated C.

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in *D* resp. rank of *M*?

Change order of operations.

- 1. Reduce C directly with A (store corresponding data in C).
- 2. Carry out corresponding operations from B to D using updated C.
- 3. Reduce D.

GBLA MATRIX FORMATS

· Matrices are pretty sparse, but structured.

- · Matrices are pretty sparse, but structured.
- GBLA supports two matrix formats, both use binary format.

- · Matrices are pretty sparse, but structured.
- · GBLA supports two matrix formats, both use binary format.
- GBLA includes a converter between the two supported formats and can also dump to Magma matrix format.

- Matrices are pretty sparse, but structured.
- · GBLA supports two matrix formats, both use binary format.
- GBLA includes a converter between the two supported formats and can also dump to Magma matrix format.

Table 1: Old matrix format (legacy version)

Size	Length	Data	Description
uint32_t	1	b	version number
uint32_t	1	m	# rows
uint32_t	1	n	# columns
uint32_t	1	р	prime / field characteristic
uint64_t	1	nnz	# nonzero entries
uint16_t	nnz	data	# entries in matrix
uint32_t	nnz	cols	column index of entry
uint32_t	m	rows	length of rows

Table 2: New matrix format (compressing data and cols)

Size	Length	Data	Description
uint32_t	1	b	version number + information for data type of pdata
uint32_t	1	m	# rows
uint32_t	1	n	# columns
uint32_t	1	р	prime / field characteristic
uint64_t	1	nnz	# nonzero entries
uint16_t	nnz	data	several rows are of type $x_i f_i$
uint32_t	nnz	cols	can be compressed for consecutive elements
uint32_t	m	rows	length of rows
uint32_t	m	pmap	maps rows to pdata
uint64_t	1	k	size of compressed colid
uint64_t	k	colid	compression of columns:
			Single column entry masked via (1 << 31);
			s consecutive entries starting at column c are stored as "c s"
uint32_t	1	pnb	# polynomials
uint64_t	1	pnnz	# nonzero coefficients in polynomials
uint32_t	pnb	prow	length of polynomial / row representation
_xinty_t	pnnz	pdata	coefficients of polynomials

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9		0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9		0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

New format vs. Old format

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9		0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

New format vs. Old format

• 1/3rd of memory usage.

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9		0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

New format vs. Old format

- 1/3rd of memory usage.
- \cdot 1/4th of memory usage when compressed with gzip.

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9		0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

New format vs. Old format

- · 1/3rd of memory usage.
- \cdot 1/4th of memory usage when compressed with gzip.
- Compression 4-5 times faster.

GBLA VS. FAUGÈRE-LACHARTRE

All timings in seconds.

Implementation	FL Imp	lement	GBLA v0.1			GBLA v0.2			
Matrix/Threads:	1	16	32	1	16	32	1	16	32
F5-kat13-mat5 F5-kat13-mat6	16.7 27.3	2.7 4.15	2.3 4.0	14.5 23.9		1.87 2.65	14.5 25.9	1.73 3.03	1.61 2.28
F5-kat14-mat7 F5-kat14-mat8	139 181	17.4 24.95	16.6 23.1	142 177		10.6 12.7	122 158	11.2 14.7	8.64 10.5
F5-kat15-mat7	629	61.8	55.6	633	55.1	38.2	553	46.3	30.7
F5-kat16-mat6	1,203	110	83.3	1,147	98.7	69.9	988	73.9	49.0
F5-mr-9-10-7-mat3	591	70.8	71.3	733	57.3	37.9	747	52.8	33.2
F5-cyclic-10-mat20 F5-cyclic-10-sym-mat17				2,589 2,463	274 465	209 405	2,074 2,391	171 275	152 245

GBLA VS. MAGMA V2.20-10

All timings in seconds.

Implementation	Magma	G	BLA v0.1	1	G	BLA v0.2	2
Matrix/Threads:	1	1	16	32	1	16	32
F4-kat12-mat9	11.2	11.4	1.46	1.60	11.3	1.40	1.40
F4-kat13-mat2 F4-kat13-mat3 F4-kat13-mat9	0.94 9.33 168	1.18 11.0 165	0.38 1.70 16.0	0.61 3.10 11.8	1.11 8.51 114	0.26 1.07 9.74	0.33 1.13 6.83
F4-kat14-mat8	2,747	2,545	207	165	1,338	104	65.8
F4-kat15-mat7 F4-kat15-mat8 F4-kat15-mat9	10,345 13,936 24,393	9,514 12,547 22,247	742 961 1,709	537 604 1,256	4,198 6,508 10,923	298 470 779	195 283 450
F4-rand16-d2-2-mat6 F4-rand16-d2-3-mat8 F4-rand16-d2-3-mat9 F4-rand16-d2-3-mat10 ¹		4,902 48,430	375 3,473 6,956 9,691	219 2,119 4,470 6,223	3,054 26,533	224 1,782 3,214 3,820	133 1,027 1,776 1,972

Note that Magma generates slightly bigger matrices for the given examples.

 $^{^{1}}$ Reconstruction fails due to memory consumption

OUTLOOK

• Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- · Connect GBLA to Singular to get a tentative F4.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- · Connect GBLA to Singular to get a tentative F4.
- · Creation of a new open source plain C library GBTOOLS.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- · Connect GBLA to Singular to get a tentative F4.
- · Creation of a new open source plain C library GBTOOLS.
- Deeper investigation on parallelization on networks.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- · Connect GBLA to Singular to get a tentative F4.
- · Creation of a new open source plain C library GBTOOLS.
- · Deeper investigation on parallelization on networks.
- First steps exploiting **heterogeneous CPU/GPU platforms** for GBLA.

REFERENCES

Buchberger, B.

Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, 1965.

PhD thesis. Universtiv of Innsbruck, Austria

Buchberger, B.

A criterion for detecting unnecessary reductions in the construction of Gröbner bases, 1979.

EUROSAM '79, An International Symposium on Symbolic and Algebraic Manipulation

Buchberger, B.

Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, 1985.

Multidimensional Systems Theory, D. Reidel Publication Company

Eder, C. and Faugère, J.-C.

A survey on signature-based Groebner basis algorithms, 2014. http://arxiv.org/abs/1404.1774

Faugère, J.-C.

A new efficient algorithm for computing Gröbner bases (F4), 1999.

Faugère, J.-C.

A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), 2002.

Proceedings of the 2002 international symposium on Symbolic and algebraic computation

Faugère, J.-C. and Lachartre, S.

Parallel Gaussian Elimination for Gröbner bases computations in finite fields, 2010.

Proceedings of the 4th International Workshop on Parallel and

Gebauer, R. and Möller, H. M.

On an installation of Buchberger's algorithm, 1988.

Journal of Symbolic Computation

