Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017780

International filing date: 30 November 2004 (30.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-405452

Filing date: 04 December 2003 (04.12.2003)

Date of receipt at the International Bureau: 04 February 2005 (04.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

03.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 4日

出 願 番 号 Application Number:

特願2003-405452

[ST. 10/C]:

[JP2003-405452]

出 願 人
Applicant(s):

太陽化学株式会社

2005年 1月20日

1)1

17

【書類名】 【整理番号】 【提出日】 【あて先】 【発明者】 【住所又は居所】 【氏名】 【発明者】 【住所又は居所】 【氏名】 【特許出願人】 【識別番号】 【住所又は居所】 【氏名又は名称】 【代表者】 【電話番号】 【手数料の表示】

特許願 P031204-03 平成15年12月 4日 特許庁長官殿

> 三重県四日市市赤堀新町9番5号 太陽化学株式会社内 伊藤 俊宏

000204181 三重県四日市市赤堀新町 9番 5号 太陽化学株式会社 山崎 長宏 0593(47)5413

【予納台帳番号】 055594 【納付金額】 21,000円 【提出物件の目録】

【物件名】特許請求の範囲 1【物件名】明細書 1【物件名】要約書 1

【書類名】特許請求の範囲

【請求項1】

カラギナンを含有することを特徴とする抗血栓剤。

【請求項2】

カラギナンが、 λ - カラギナンであることを特徴とする請求項1記載の抗血栓剤。

【請求項3】

請求項1又は2記載の抗血栓剤を含有することを特徴とする飲食品。

【書類名】明細書

【発明の名称】抗血栓剤

【技術分野】

[0001]

本発明は、カラギナンを含有する抗血栓剤及びそれを含有する飲食品に関する。

【背景技術】

[0002]

血栓は、フィブリノーゲンというタンパク質が活性化され、フィブリンに転換されながら、血小板、白血球等と共に、不溶性の重合体となって血管の内壁に固まってできる。身体が正常なときには、この血栓のもととなるフィブリンを溶かす働きをする線溶酵素が血栓予防をして、線溶酵素が不足するとフィブリンを溶解できなくなり、血栓ができるようになる。

形成された血栓は血管に沈着し、血管の断面積を減少させ、血液の循環を阻害し、その結果、血液が細胞及び組職で栄養分と酸素を正常に供給することができず、また、細胞及び組織の老廃物を排出できなくなり、毒性が蓄積される等の問題点が発生するようになる

血管の中で、血栓といわれる血液の固まりが引き起こす症状を広義の血栓症(以下、単に「血栓症」と記載した場合は、広義の血栓症をいう)と呼び、血栓が原因になって起こる病態は狭義の血栓症と塞栓症に分けられる。狭義の血栓症は血栓が形成個所で血流を部分的にあるいは完全に閉塞することによる症状で、塞栓症は血栓が形成個所から剥がれて血流によって移動し、他の個所で血流を部分的にあるいは完全に閉塞することによって起こる病態のことを指す。

このような血栓症は血栓が生じた血管の部位によって多様な疾病を誘発するようになる。その中でも特に脳血管や心臓血管に生じた場合には脳卒中、脳出血、脳梗塞、心不全症、心筋梗塞、心臓麻痺等深刻な症状が発生し、半身不随を引き起こし、ひどい場合には死亡することもある。

[0003]

現在、血栓症を解決するために、血栓の生成を抑制する抗血栓剤及び血栓形成予防剤と 、生成された血栓を溶解させる血栓溶解剤の研究開発が主に行われている。

抗血栓剤又は血栓形成予防剤としては、血管壁への血小板の付着を阻害することで血液の凝固を阻害するアスピリンと、体内の内因性血液凝固経路を遮断するヘパリン(Heparin)、クマリン(Coumarin)等が現在臨床で使われている。また最近はエイコサペンタエン酸(EPA)、プロスタサイクリン(Prostacycline; PG12)誘導体等が商品化されている。しかし、これら薬剤は特異性がないため、生体内においては血栓以外の部分にも影響を及ぼし、生体内に残存した場合、出血等を引き起こす可能性がある。その他に、ヒルジン(hirudin)、合成抗トロンビン(synthetacycline antithrombin)、チクロピジン(Ticlopidin)等の抗血栓活性についても報告されているが、まだ実用化には至っていない。

血栓溶解剤としては、ストレプトキナーゼ(streptokinase)、ウロキナーゼ(urokinase)のようなプラスミノゲンアクチベーター(plasminogen activator)を血栓が生成された患者に静脈注射して、体内の血栓溶解系を活性化する治療法が一般的に使われている。これらが血栓を溶解させる効果は、幾多の臨床実験で立証されたが、抗血栓剤又は血栓形成予防剤と同様、血栓に対する特異性が無く、血栓を治療する間に全身出血する等の副作用がある。また組職型プラスミノゲンアクチベーター(tissue-type plasminogen activator,tPA)は血栓に対する選択性が高く、理想的な血栓溶解剤と考えられたが、実際に臨床治療に適用した結果、程度の差はあるが相変らず全身出血等の副作用があった。また血液内での半減期が非常に短く、薬効の持続時間が短いため、体内で薬効を維持するためには投与量が多くなければならず、そのため治療費用が従来の血栓溶解剤に比べ非常に高いという問題点がある。

このような医薬品が血栓の生成予防に使用されてはいるものの、血栓除去にあまり著しい効果を現わすことが無く、深刻な副作用を誘発するため、最近では、医薬品による治療よりは食生活を通じて病気を予防し、体質を調節又は活性化させる機能を持った成分又は食品成分に対する研究も注目されるようになってきている。

食品成分としては、ナットウキナーゼや多価不飽和脂肪酸、グルコサミン、タマネギの 薄皮(例えば、特許文献 1 参照。)等の素材が知られているが、風味や性状等に問題があ り、幅広く食品に応用できなかった。

また、最近では、キウイフルーツ抽出物(例えば、特許文献2参照。)についての特許が公開されたが、中性域での活性が弱いという欠点がある。

[0005]

【特許文献1】特開2002-171934号公報(第2頁)

【特許文献2】特開2003-171294号公報(第2-5頁)

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の課題は、幅広い飲食品に使用可能な抗血栓剤及びそれを含有する飲食品を提供することにある。

【課題を解決するための手段】

[0007]

本発明者らは様々な天然の食品成分を利用して抗血栓成分を捜す目的で、多角的に研究検討した結果、カラギナンに優れた抗血栓効果があることを見出し、本発明を完成させた

【発明の効果】

[0008]

本発明で得られたカラギナンを含有する抗血栓剤は、活性化部分トロンボプラスチン時間 (Activated Partial Thromboplastin Time; APTT) を測定した結果から、内因性経路に関与する因子を不活性化して、フィブリン形成を阻害し、血管内の血栓生成を抑制する効果が高いことがわかった。

特にカラギナンは、昔から人間が日常食生活に使用してきた天然海藻由来なので、従来使用していた薬剤とは違い、体内で出血を起こす副作用が無く安全である。

本発明はカラギナンを含有する抗血栓剤を各種飲食品及び医薬品等に利用して、血栓の 生成を抑制することで脳出血、脳梗塞、心筋梗塞、動脈硬化及び冠状動脈症のような心血 関係疾患を予防することができる。

【発明を実施するための最良の形態】

[0009]

本願発明に用いるカラギナンとは、イバラノリ、キリンサイ、ギンナンソウ、スギノリ又はツノマタ等の海藻から抽出、精製される天然高分子物質で分子量100,000~500,000がラクトース、3,6アンヒドロガラクトースを主成分とする多糖類である。

市販のカラギナンが使用可能であり、好ましくは、一度水又は熱水に溶解後、濾過し、 不溶性成分を取り除いたものである。

カラギナンの種類としては、 ι -カラギナン、 κ -カラギナン、 λ -カラギナンのいずれでも良く、また、複数の組合せでも良い。効果の点より、 ι -カラギナン又は λ -カラギナンの1種又は複数の組合せが好ましく、 λ -カラギナンが更に好ましい。

[0010]

本願発明における抗血栓とは、特に限定されるものではないが、好ましくは、血栓の生成を抑制する作用(抗凝固作用)のことである。

本願発明において抗血栓効果は、例えば、内因性血液凝固システムに対する、抗凝固活性を測定する方法である、活性化部分トロンボプラスチン時間(APTT)を測定するこ

[0011]

本願発明の抗血栓剤は、飲食品、医薬品、飼料等に応用でき、好ましくは、人が手軽に 摂食できる飲食品が好ましい。

本願発明における飲食品とは溶液、懸濁物、粉末、固体成形物等経口摂取可能な形態であれば良く特に限定するものではない。より具体的には、即席麺、レトルト食品、缶詰、電子レンジ食品、即席スープ・みそ汁類、フリーズドライ食品等の即席食品類、清涼飲料、果汁飲料、野菜飲料、豆乳飲料、コーヒー飲料、茶飲料、粉末飲料、濃縮飲料、栄養飲料、アルコール飲料等の飲料類、パン、パスタ、麺、ケーキミックス、から揚げ粉、パン粉等の小麦粉製品、飴、キャラメル、チューイングガム、チョコレート、クッキー、ビスケット、ケーキ、パイ、スナック、クラッカー、和菓子、デザート菓子等の菓子類、ソース、トマト加工調味料、風味調味料、調理ミックス、たれ類、ドレッシング類、つゆ類、カレー・シチューの素類等の調味料、加工油脂、バター、マーガリン、マヨネーズ等の油脂類、乳飲料、ヨーグルト類、乳酸菌飲料、アイスクリーム類、クリーム類等の乳製品、冷凍食品、魚肉ハム・ソーセージ、水産練り製品等の水産加工品、畜肉ハム・ソーセージ等の畜産加工品、農産缶詰、ジャム・マーマレード類、漬け物、煮豆、シリアル等の農産加工品、栄養食品、錠剤、カプセル等が例示される。

[0012]

本願発明において、抗血栓剤又は、飲食品等に加工する際に、各種栄養成分を強化することができる。

強化できる栄養成分としては、ビタミンA、ビタミンB₁、ビタミンB₂、ビタミンB 6、ビタミンB₁2、ビタミンC、ビタミンD、ビタミンE、ナイアシン(ニコチン酸)、パントテン酸、葉酸等のビタミン類、リジン、スレオニン、トリプトファン等の必須アミノ酸類や、カルシウム、マグネシウム、鉄、亜鉛、銅等のミネラル類及び、例えば、 α ーリノレン酸、EPA、DHA、月見草油、オクタコサノール、カゼインホスホペプチド(CPP)、カゼインカルシウムペプチド(CCP)、水溶性食物繊維、不溶性食物繊維、オリゴ糖等の人の健康に寄与する物質類、その他の食品や食品添加物として認可されている有用物質の1種又は2種以上が使用できる。

$[0\ 0\ 1\ 3]$

以下本発明を、実施例にて詳細に説明するが、次の実施例は、本発明の範囲を限定する ものではない。

【実施例】

[0014]

(実施例1) 抗血栓剤の調製1

市販の ι - カラギナン(サンカラNo. 208;太陽化学株式会社製)10gを、80 \mathbb{C} の熱水1リットルに溶解後、濾過し、減圧濃縮後、凍結乾燥して本願発明の抗血栓剤A を得た。

同様にして、 κ -カラギナン(サンカラNo. 1572;太陽化学株式会社製)、 λ - カラギナン(サンカラNo. 1057;太陽化学株式会社製)を使用して、本願発明の抗血栓剤B, Cを得た。

[0015]

(試験例1) 抗血栓効果の確認

本願発明の抗血栓剤の抗凝固活性を、人間の血液から分離した乏血小板血漿 (Platelet Poor Plasma, PPP) を利用して凝固計 (Coagulometer) で測定した。

反応キュベットに、試料10マイクロリットル、APTT試薬25マイクロリットル、10%セファリン25マイクロリットルを入れて、37%で3分間反応させた後、PPP50マイクロリットルを入れて、2分間反応させた。最後に、25ミリモル塩化カルシウム50マイクロリットルを入れて、凝固させて、血漿が凝固されるまでの時間を測定し、APTTとした。

この時、対照に水を入れ、同じ方法でAPTTを測定した。測定された試料のAPTTから、下記の数式によって、対照に対する抗凝固活性(%)を計算した。

抗凝固活性(%)=((試料のAPTT-対照のAPTT)/対照のAPTT)×10

本願発明の抗血栓剤の濃度と、抗凝固活性との関係を確認するために、固形分濃度として、0(コントロール)、1、3、5 m g/mlの本願発明の抗血栓剤を使用して、その活性を測定した。その結果を、下記表1 に示す。

[0016]

表 1

試料	濃度	APTT (sec)	抗凝固活性(%)
	0 mg/ml	45	0
抗血栓組成物A	0.5 mg/ml	162	260
(ι ーカラギナン)	2.5 mg/ml	600以上	1200以上
	5.0 mg/ml	600以上	1200以上
抗血栓組成物B	0.5 mg/ml	99	120
(κ -カラギナン)	2.5 mg/ml	491	991
	5.0 mg/ml	600以上	1200以上
抗血栓組成物C	0.5 mg/ml	398	784
(λ ーカラギナン)	2.5 mg/ml	600以上	1200以上
	5.0 mg/ml	600以上	1200以上

[0017] ·

上記表1の結果により、本願発明の抗血栓剤が高い抗凝固活性を示すことが確認できた。また抽出物の濃度を増加させることによって比例的に抗凝固活性も増加することが確認できた。

[0018]

(実施例3) 抗血栓剤含有食品(錠菓)の調製

実施例 1 で得られた抗血栓剤 C 3 0 g、乳糖 5 0 g、D H A 含有粉末油脂(サンコート D Y - 5 ; 太陽化学株式会社製) 1 2 g、ショ糖脂肪酸エステル 4 g、ヨーグルト香料 4 gを混合し、1 錠が 3 0 0 m g になるように打錠して、本願発明の抗血栓剤含有飲食品(錠菓)を得た。

[0019]

(実施例4) 抗血栓剤含有飲料(野菜果汁混合飲料)の調製

実施例1で得られた抗血栓剤C 0.2g及び、グアーガム分解物(サンファイバーR ;太陽化学株式会社製)3gを市販の野菜果汁混合飲料100mlに添加混合溶解して、 本願発明の抗血栓剤含有飲食品(野菜果汁混合飲料)を得た。

[0020]

本発明の実施態様ならびに目的生成物を挙げれば以下の通りである。

- (1) カラギナンを含有することを特徴とする抗血栓剤。
- (2) カラギナンが、 ι カラギナン及び/又は λ カラギナンであることを特徴とする前記(1)記載の抗血栓剤。
- (3) カラギナンが、 λ カラギナンであることを特徴とする前記(1)又は(2)記載の抗血栓剤。
- (4) 前記(1)~(3)いずれか記載の抗血栓剤を含有することを特徴とする飲食品

- (5) 前記 (1) \sim (3) いずれか記載の抗血栓剤を含有することを特徴とする医薬品
- (6) 前記 (1) \sim (3) いずれか記載の抗血栓剤を含有することを特徴とする飼料。 【産業上の利用可能性】

[0021]

本発明で得られたカラギナンを含有する抗血栓剤は、血液凝固体系の内因性経路に関与する、多くの酵素と最終段階であるフィブリンを形成するトロンビンの活性を阻害し、血栓の生成を抑制する抗血栓効果が高く、各種飲食品及び医薬品等に利用して、血栓の生成を抑制することで脳出血、脳梗塞、心筋梗塞、動脈硬化及び冠状動脈症のような心血関係疾患を予防することができる。

【要約】

【課題】 現在、血栓症を解決するために、血栓の生成を抑制する抗血栓剤及び血栓形成 予防剤と、生成された血栓を溶解させる血栓溶解剤の研究開発が主に行われているが、特 異性がないため、生体内においては血栓以外の部分にも影響を及ぼし、生体内に残存した 場合、出血等を引き起こす可能性がある。そこで最近では、医薬品による治療よりは食生 活を通じて病気を予防し、体質を調節又は活性化させる機能を持った成分又は食品成分に 対する研究も注目されているが、風味や性状等に問題があるために幅広い飲食品に使用で きなかったり、実用域の活性が弱いなどの問題があった。本発明は、幅広い飲食品に使用 可能な抗血栓剤及びそれを含有する飲食品を提供することを目的とする。

【解決手段】 カラギナンを含有することにより上記課題を解決する。

【選択図】 なし

特願2003-405452

出願人履歴情報

識別番号

[000204181]

変更年月日
 変更理由]

· 住 所 氏 名 1990年 8月22日

新規登録

三重県四日市市赤堀新町9番5号

太陽化学株式会社