EMAp – 2024 Probabilidade 1^a Lista de Exercícios Devolver até 22/3

- 1. Qual é a probabilidade de que o número total de caras em 3 lançamentos de uma moeda honesta seja ímpar? Em 4 lançamentos? Em 5 lançamentos? A resposta em cada caso é ½. Mostre que a probabilidade de um número ímpar de caras em qualquer número de lançamentos é ½ (Sugestão: indução).
- 2. BJ, Capítulo 1, exercício 9.
- 3. BJ, Capítulo 1, exercício 2 (Sugestão: use a propriedade P6 de BJ (continuidade de probabilidade))
- 4. Sejam A e B eventos aleatórios do mesmo espaço de probabilidade. Mostre que $P(A) + P(B) 1 \le P(A \cap B) \le P(B)$. Utilize esta desigualdade para resolver o problema 5, da página 28, de BJ.
- 5. Sejam A, B e C eventos em um mesmo espaço de probabilidade tais que P(A) = 0.6, P(B) = 0.7 e P(C) = 0.8.
 - a) Entre que valores pode variar $P(A \cap B)$?
 - b) Entre que valores pode variar $P(A \cap B \cap C)$?
- 6. Considere um espaço de probabilidade ([0,1], $\mathcal{B}_{[0,1]}$, P). Considere a seguinte afirmativa: se (a_n) e (b_n) são sequências tais que $\lim a_n = a$ e $\lim b_n = b$, então $\lim P([a_n, b_n]) = P([a, b])$.
 - a) Verifique que a afirmativa é verdadeira se P é tal que P([a, b]) = b a.
 - b) Dê um exemplo de medida de probabilidade para a qual a afirmativa não é válida. [Sugestão: considere uma medida com massa de probabilidade positiva em algum ponto de [0, 1].)
 - c) Mostre que a afirmativa é verdadeira para qualquer P, se exigirmos que (a_n) seja não decrescente e (b_n) seja não crescente.