

## MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

| Gettaber 3, 2010                  |                                          |                                                  |                                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |  |  |  |  |  |  |  |
|-----------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Name:                             |                                          |                                                  |                                                                                          |                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |  |  |  |  |  |  |  |
| Bra                               | ndo                                      | <b>n</b>                                         | S                                                                                        | tat                                                                                                          | 上王                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                       |  |  |  |  |  |  |  |
| Pe                                | rsor                                     | ı Nı                                             | umb                                                                                      | er:                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Instructions:                                                                                                                                           |  |  |  |  |  |  |  |
| D                                 | 2                                        | 2                                                | 8                                                                                        | 5                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Textbooks, calculators and any other electronic devices are not permitted.                                                                              |  |  |  |  |  |  |  |
|                                   | 0                                        | <u>()</u>                                        | (i)                                                                                      | 0                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | You may use one sheet of notes.  • For full credit solve each probler                                                                                   |  |  |  |  |  |  |  |
| 2                                 |                                          |                                                  | 2                                                                                        | 2                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fully, showing all relevant work.                                                                                                                       |  |  |  |  |  |  |  |
| <ul><li>(3)</li><li>(4)</li></ul> | <ul><li>(3)</li><li>(4)</li></ul>        | <ul><li>(3)</li><li>(4)</li></ul>                | <ul><li>3</li><li>4</li></ul>                                                            | <ul><li>3</li><li>4</li></ul>                                                                                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |  |  |  |  |  |  |  |
| <b>(5)</b>                        | (5)                                      | <b>(5)</b>                                       | (5)                                                                                      | <b>(5)</b>                                                                                                   | (5)                                                                                                                                                                                                                                                                                                                                | <b>(5)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         |  |  |  |  |  |  |  |
| 7                                 | 7                                        | 7                                                | 7                                                                                        | 7                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |  |  |  |  |  |  |  |
| <ul><li>(8)</li><li>(9)</li></ul> | <ul><li>(8)</li><li>(9)</li></ul>        | <ul><li>(8)</li><li>(9)</li></ul>                | <ul><li>9</li></ul>                                                                      | 8                                                                                                            | <ul><li>(8)</li><li>(9)</li></ul>                                                                                                                                                                                                                                                                                                  | <ul><li>(8)</li><li>(9)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |  |  |  |  |  |  |  |
|                                   | Pe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Persor  D 2  0 0 1 1 2 0 3 3 4 4 6 6 6 6 7 7 8 8 | Brandon  Person No  D 2 2  0 0 0  1 1 1  2 0 0  3 3 3  4 4 4  5 5 6  6 6 6  7 7 7  8 8 8 | Brandon S  Person Numb  D 2 2 8  0 0 0 0  1 1 1 1  2 0 2  3 3 3 3  4 4 4 4  5 5 5 5  6 6 6 6  7 7 7 7  8 8 8 | Person Number:       0     2     2     8     5       0     0     0     0     0       1     1     1     1     1       2     0     0     0     0       3     3     3     3     3       4     4     4     4     4       5     5     6     6     6       6     6     6     6     6       7     7     7     7       8     8     8     8 | Person Number:  D Z Z 8 5 6  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O | Person Number:  D 2 2 8 5 6 7  0 0 0 0 0 0 0 0  1 1 1 1 1 1 1  2 2 2 2 2  3 3 3 3 3 3 3 3  4 4 4 4 4 4 4  5 5 6 6 6 6 6 6  7 7 7 7 7 7 0  8 8 8 8 8 8 8 |  |  |  |  |  |  |  |

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | TOTAL | GRADE |
|---|---|---|---|---|---|---|-------|-------|
|   |   |   |   | , |   |   |       |       |
|   |   |   |   |   |   |   |       |       |



1. (20 points) Consider the following vectors in  $\mathbb{R}^3$ :

$$\mathbf{v}_1 = \left[ \begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[ \begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[ \begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[ \begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that  $w \in \text{Span}(v_1, v_2, v_3)$ .
- b) Is the set  $\{v_1,v_2,v_3\}$  linearly independent? Justify your answer.

(a) 
$$\chi_1 V_1 + \chi_2 V_2 + \chi_3 V_3 = W$$

$$b = -6$$

$$\begin{bmatrix}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 6+6
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 \\
2 & -3 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 \\
0 & -1 & -7 & 0 & 0 & 0
\end{bmatrix}$$

Since the homogeneous equation



## 2. (10 points) Consider the following matrix:

$$A = \left[ \begin{array}{rrr} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{array} \right]$$

Compute  $A^{-1}$ .

$$\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 & | & (-1) & | & (-1) & | & (-1) & | & (-1) & | & (-1) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) & | & (-2) &$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$



3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that  $A^TC = B$  (where  $A^T$  is the transpose of A).

$$A^{T} = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T} C = B$$

$$C = B(A^{T})^{-1} = (A^{-1})^{T} = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} -2+6-3 & 1-2+3 & 2-4+3 \\ -8+15-4 & 4-5+4 & 8-10+4 \\ -6+6-1 & 3-2+1 & 6-4+1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$



4. (20 points) Let  $T: \mathbb{R}^2 \to \mathbb{R}^3$  be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying  $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$ .

(a) 
$$A = \begin{bmatrix} T(e_1) & T(e_2) \end{bmatrix}$$

$$T(e_1) = T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 - 0 \\ 1 + 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$T(e_2) = T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 0 - 2 \\ 0 + 1 \\ 0 - 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix} \quad \checkmark$$

(b) 
$$T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$$

(b) 
$$T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$$
  $Au = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$   $\begin{bmatrix} 1 & -2 & | & 1 \\ 1 & 1 & | & 10 \\ 1 & -3 & | & -2 \end{bmatrix}$   $\begin{bmatrix} 1 & -2 & | & 1 \\ 0 & 4 & | & 12 \\ 1 & -3 & | & -2 \end{bmatrix}$ 

$$\begin{bmatrix} 1 & 0 & | & 7 \\ 0 & 1 & | & 3 \\ 0 & 1 & | & 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 & | & 1 \\ 0 & 1 & | & 3 \\ 0 & 1 & | & 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 & | & 1 \\ 0 & 1 & | & 3 \\ 0 & -1 & | & -3 \end{bmatrix} = \begin{bmatrix} -2 & | & 1 \\ 0 & 1 & | & 3 \\ 1 & -3 & | & -2 \end{bmatrix}$$

$$u_1 = 7$$
 $u_2 = 3$ 

$$u_1=7$$
 $u_2=3$ 

$$u = \begin{bmatrix} 7\\ 3 \end{bmatrix}$$





5. (20 points) For each matrix A given below determine if the matrix transformation  $T_A : \mathbb{R}^3 \to \mathbb{R}^3$  given by  $T_A(\mathbf{v}) = A\mathbf{v}$  is one-to one or not. If  $T_A$  is not one-to-one, find two vectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  such that  $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$ .

$$\mathbf{A} \hat{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

**b)** 
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & 4 & 4 \end{bmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ (-1) \\ (-1) \end{pmatrix}$$

$$\sqrt{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}} \leftarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ \frac{1}{2} & 0 & 0 \end{bmatrix} \begin{pmatrix} 5 & 1 \\ (-1) & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ (-1) & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ (-1) & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ (-1) & 0 \\ (-1) & 0 \end{pmatrix}$$

TA is not one-to-one because

Nul(A) 7 {0}.

$$T_A(v_1) = T_A(v_2)$$

$$T_A(v_1) - T_A(v_2) = 0$$

$$T_A(v_1) - T_A(v_2) = T_A(x)$$

$$T_A(v, -v_2) = T_A(x)$$

$$V_1 - V_2 = X$$

$$V_1 - V_2 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

$$V_1 = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \qquad V_2 = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$$



$$\begin{bmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$x_1 = 2x_3$$

$$x_2 = -2x_3$$

$$x_3 = x_3$$

$$\chi = \begin{bmatrix} z \\ -z \\ \end{bmatrix} \chi_3$$

Let 
$$n_3 = 1$$

$$\chi = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$



- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in  $\mathbb{R}^3$  such that  $w + u \in \text{Span}(u, v)$  then  $w \in \text{Span}(u, v)$ .

$$w + w = \chi_1 u + \chi_2 V$$

$$-u - u$$



b) If u,v,w are vectors in  $\mathbb{R}^3$  such that the set  $\{u,v,w\}$  is linearly independent then the set  $\{u, v\}$  must be linearly independent.

True

$$X_1 \omega + Y_2 V + X_3 \omega = 0$$

Linear independence states that x=0, x=0, x=0

Let u, v, and w be standard boxis vectors.

C, W+CzV = 0 Good idea, but a specific example is not a proof.

$$\begin{bmatrix} C_1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} C_2 & 0 \\ 0 & 0 \end{bmatrix} = 0$$
 also only has the trivial solution  $C_1 = 0$ ,  $C_2 = 0$ .

Therefore, the set Eu, v3 must also be linearly independent.



- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a  $2 \times 2$  matrix and u, v are vectors in  $\mathbb{R}^2$  such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False 
$$Au = T_{A}(u)$$
  $Av = T_{A}(v)$   
 $x_{1} T_{A}(u) + x_{2} T_{A}(v) = 0$   
 $T_{A}(x_{1}u + x_{2}v) = 0$   
 $50$ ?

b) If  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is a linear transformation and  $u, v, w \in \mathbb{R}^2$  are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True
$$u \in Span(v,w)$$

$$u = X,V + X_2W$$

$$T(u) = T(X,V + X_2W)$$

$$T(u) = T(x,v) + T(x_2w)$$

$$T(u) = X,T(v) + X_2T(w)$$

$$T(u) \in Span(T(v),T(w))$$