

- 1. Let X(t) be a modified version of the random telegraph process. The process switches between the two states X(t) = 1 and X(t) = -1, with the time between switches following exponential distributions $f_T(s) = \lambda \exp(-\lambda)u(s)$. Also, the starting state is determined by flipping a biased coin so that $\Pr(X(0) = 1) = p$ and $\Pr(X(0) = -1) = 1 p$.
 - (a) Find Pr(X(t) = 1) and Pr(X(t) = -1)
 - (b) Find the mean function, $\mu_X(t)$
 - (c) Find the autocorrelation function, $R_{X,X}(t_1,t_2)$
- 2. Let W_n be an IID sequence of zero-mean Gaussian random variables with variance σ_W^2 . Define a discrete time random process $X[n] = pX[n-1] + W_n$, $n = 1, 2, 3, \dots$, where $X[0] = W_0$ and p is a constant.
 - (a) Find the mean function, $\mu_X(n)$
 - (b) Find the autocorrelation function, $R_{X,X}(n_1, n_2)$
- 3. Prove that the family of differential equations

$$\frac{d}{dt}P_X(0;t) + \lambda P_X(0;t) = 0 \frac{d}{dt}P_X(i;t) + \lambda P_X(i;t) = \lambda P_X(i-1;t), \quad i = 1, 2, 3, \dots$$

leads to the Poisson distribution

$$P_X(i;t) = \frac{(\lambda t)^i}{i!} e^{-\lambda t}$$

- 4. Consider a Poisson counting process with arrival rate λ .
 - (a) Suppose it is observed that there is exactly one arrival in the time interval $[0, t_0)$. Find the PDF of that arrival time.
 - (b) Now suppose there were exactly two arrivals in the time interval $[0, t_0)$. Find the joint PDF of those two arrival times.
- 5. Let X(t) be a Poisson counting process with arrival rate λ . Find $\Pr(N(t) = k | N(t+\tau) = m)$, where $\tau > 0$ and $m \ge k$.
- 6. Let $X_i(t), i = 1, 2, \dots, n$ be a sequence of independent Poisson counting processes with arrival rates λ_i . Show that the sum of all of these Poisson processes,

$$X(t) = \sum_{i=1}^{n} X_i(t)$$

is itself a Poisson process. What is the arrival rate of the sum process?

- 7. A workstation is used until it fails and is then sent out for repair. The time between failures, or the length of time the workstation functions until it needs repair, is a random variable T. Assume the times between failures, $T_1, T_2, \dots T_n$, of the workstations available are independent random variables that are identically distributed. For t > 0, let the number of workstations that have failed be N(t).
 - (a) If the time between failures of each workstation has an exponential PDF, then what type of process is N(t)?
 - (b) Assume that you have just purchased 10 new workstations and that each has a 90-day warranty. If the mean time between failures (MTBF) is 250 days, what is the probability that at least one workstation will fail before the end of the warranty period?
- 8. Suppose the arrival of calls at a switchboard is modeled as a Poisson process with the rate of calls per minute being $\lambda_a=0.1$.
 - (a) What is the probability that the number of calls arriving in a 10-minute interval is less than 10?
 - (b) What is the probability that the number of calls arriving in a 10-minute interval is less than 10 if $\lambda_a = 10$?
 - (c) Assuming $\lambda_a = 0.1$, what is the probability that one call arrives during the first 10-minute interval and two calls arrive during the second 10-minute interval?
- 9. Model lightning strikes to a power line during a thunderstorm as a Poisson impulse process. Suppose the number of lightning strikes in time interval t has a mean rate of arrival given by s, which is one strike per 3 minutes.
 - (a) What is the expected number of lightning strikes in 1 minute? in 10 minutes?
 - (b) What is the average time between lightning strikes?
- 10. Suppose the power line in the previous problem has an impulse response that may be approximated by $h(t) = te^{-at}u(t)$, where $a = 10 \text{ sec}^{-1}$.
 - (a) Find the mean function of the shot noise process.
 - (b) Find the auto-correlation function of the shot noise process.