Wave Function 1

$$\Psi_p = e^{i(2\pi x/\lambda - 2\pi t/T)}$$

$$= e^{i(kx - \omega t)}$$

$$= e^{\frac{i}{\hbar}(px - Et)}$$

$$\label{eq:psi_p} \begin{split} \breve{p}\Psi_p &= p\Psi_p = \hbar k \Psi_p \\ \boxed{\breve{p} &= \frac{\hbar}{i} \frac{\partial}{\partial x} \end{split}} \qquad \qquad \breve{E}\Psi_p = E\Psi_p = \hbar \omega \Psi_p \\ \boxed{\breve{E} &= -\frac{\hbar}{i} \frac{\partial}{\partial t} \end{split}}$$

•
$$|\mathbf{f}\rangle \equiv \int f(x) |x\rangle dx$$

1.
$$\langle x|\hat{x}|f\rangle = xf(x)$$

 $|\check{x}\langle x|f\rangle \equiv x\langle x|f\rangle$

• $\langle \boldsymbol{x} | \hat{\boldsymbol{x}} | \boldsymbol{x'} \rangle \equiv x \langle x | x' \rangle$

2.
$$\langle \boldsymbol{x} | \hat{\boldsymbol{p}} | \boldsymbol{x'} \rangle \equiv \frac{\hbar}{i} \delta'(x - x')$$

= $\frac{\hbar}{i} \frac{\partial}{\partial x'} \langle x | x' \rangle$

2.
$$\langle \boldsymbol{x} | \hat{\boldsymbol{p}} | \boldsymbol{x'} \rangle \equiv \frac{\hbar}{i} \delta'(x - x')$$

= $\frac{\hbar}{i} \frac{\partial}{\partial x} \langle x | x' \rangle$

•
$$|f\rangle \equiv \int f(x)|x\rangle dx$$

• $\langle \boldsymbol{x}|\boldsymbol{x}'\rangle \equiv \delta(x-x')$

• $\langle \boldsymbol{x}|\hat{\boldsymbol{x}}'|\boldsymbol{x}'\rangle \equiv x\langle x|x'\rangle$

1. $\langle x|\hat{x}|f\rangle = xf(x)$

$$|\breve{x}\langle x|f\rangle \equiv x\langle x|f\rangle$$
2. $\langle \boldsymbol{x}|\hat{\boldsymbol{p}}|\boldsymbol{x}'\rangle \equiv \frac{\hbar}{i}\delta'(x-x')$

$$|\breve{p}\langle x|f\rangle \equiv \frac{\hbar}{i}\frac{\partial}{\partial x}\langle x|f\rangle$$

1.1 Schrodinger Ψ

$$\begin{split} & \left[\breve{E} |\Psi\rangle = \widehat{H} |\Psi\rangle \right] = (\widehat{T} + \widehat{V}) |\Psi\rangle \\ & i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \left[\frac{\widehat{p}^2}{2m} + V(\widehat{x},t) \right] |\Psi\rangle \\ & \left[-\breve{E} \langle \Psi | = \langle \Psi | \hat{H} \right] \end{split} \qquad \begin{aligned} & \left[\breve{E} \langle x | \Psi \rangle = \breve{H} \Psi \right] = (\breve{T} + \breve{V}) \Psi = \left[\frac{\widecheck{p}^2}{2m} + V(\overrightarrow{\mathbf{r}},t) \right] \Psi \\ & \left[i\hbar \frac{\partial}{\partial t} \Psi(\overrightarrow{\mathbf{r}},t) = \left[\frac{-\hbar^2}{2m} \nabla^2 + V(\widecheck{\mathbf{r}},t) \right] \Psi(\overrightarrow{\mathbf{r}},t) \right] \\ & \left[-\breve{E} \langle \Psi | x \rangle = \breve{H} \Psi^* \right] \end{aligned}$$

If
$$V = V(x)$$

$$\Psi(x,t) = \psi(x)\phi(t) \Rightarrow$$

•
$$E_n \phi_n(t) = i\hbar \frac{\partial}{\partial t} \phi_n(t) \Rightarrow \boxed{\phi_n(t) = e^{-\frac{i}{\hbar}E_n t}}$$

•
$$E_n \psi_n(x) = \left(\frac{-\hbar^2}{2m} \partial_x^2 + V(x)\right) \psi_n(x)$$

 $-\psi$ can be lin. sum of real or complex, so choose real ψ

• Linear:
$$\begin{aligned} \Psi(x,t) &= \sum_{n} \psi_{n}(x) e^{-\frac{i}{\hbar} E_{n} t} c_{n} \\ &= \sum_{n} \langle x | n \rangle e^{-\frac{i}{\hbar} E_{n} t} \langle n | \Psi \rangle \\ &= \int_{x'} \langle x | \left[\sum_{n} | n \rangle e^{-\frac{i}{\hbar} E_{n} t} \langle n | \right] | x' \rangle \Psi(x') \, dx' \\ &= \int_{x'} U(x,t;x',0) \Psi(x') \, dx' \end{aligned}$$

• $\sigma_H^2 = \langle H^2 \rangle - \langle H \rangle^2 = 0 \implies$ measuring stationary state, Ψ_n , returns one E_n (determinate state)

1.2 Usage

•
$$\langle f|g\rangle = \int_{-\infty}^{\infty} f(x)^* g(x) \ dx$$

•
$$|f\rangle = \int f(x')|x'\rangle dx' \sim f(x) \equiv \langle x|f\rangle$$
 • $\langle f| = \int f(x)^*[...] dx$

•
$$\langle f|f\rangle = \int_a^b |f|^2 dx < \infty \implies f \in L_{2(a,b)} \qquad \left(\int_a^b |f|^p dx < \infty \implies f \in L_{p(a,b)}\right)$$

$$\left(\int_a^b |f|^p \, dx < \infty \implies f \in L_p(a,b)\right)$$

• $\langle f|g\rangle_{ab} = \int_{ab}^{b} f(x)^*g(x) \ dx$

$$\langle x|\Psi\rangle = \Psi = \begin{cases} \sum_{n} c_{n} f_{n} & \langle f_{m}|f_{n}\rangle = \begin{cases} \delta_{mn} & \text{(see Born int.)} \\ \delta_{(m-n)} & \\ \end{cases}, & \Rightarrow \boxed{c_{n} = \langle f_{n}|\Psi\rangle}, & |c_{n}|^{2} = \begin{cases} P(n) \\ \text{PDF}_{(n)} \end{cases}$$

 $\forall \{f_n\} \in L_2$:

$$|\Psi\rangle = \begin{cases} \sum_{n} c_{n} |f_{n}\rangle &= \sum_{n} \langle f_{n} | \Psi \rangle |f_{n}\rangle &= \left(\sum_{n} |f_{n}\rangle \langle f_{n}|\right) |\Psi\rangle &= |\Psi\rangle \\ \int_{n} c_{n} |f_{n}\rangle |dn| &= \int_{n} \langle f_{n} |\Psi\rangle |f_{n}\rangle |dn| &= \left(\int_{n} |f_{n}\rangle \langle f_{n}| |dn|\right) |\Psi\rangle &= |\Psi\rangle \end{cases}$$

$$\ddot{x}\Psi_{y} = x\Psi_{y} = y\Psi_{y}
\Rightarrow \boxed{\Psi_{y} = \delta(x-y) = \langle x|y\rangle}$$

$$\begin{vmatrix}
\langle x|p\rangle = \frac{\hbar}{i} \frac{\partial}{\partial x} \langle x|p\rangle \\
\langle x|\hat{p}|p\rangle = \breve{p}\Psi_{p} = p\Psi_{p}
\end{vmatrix}$$

$$\langle x|\hat{p}|p\rangle = \int \langle x|\hat{p}|x'\rangle \langle x'|p\rangle dx'$$

$$p\langle x|p\rangle = \frac{\hbar}{i} \frac{\partial}{\partial x} \langle x|p\rangle$$

$$\langle x|\hat{p}|p\rangle = \breve{p}\Psi_p = p\Psi_p$$

$$\Rightarrow \boxed{\Psi_p = Ae^{\frac{i}{\hbar}px} = \langle x|p\rangle}$$

$$\langle x|\hat{H}|n\rangle = E_n\langle x|n\rangle$$
 $\check{H}\Psi_n = E_n\Psi_n$
(See Potential Examples)

$$\Psi(x,t) = \int_{-\infty}^{\infty} \Psi_y c_y(t) \ dy$$
$$= \int_{-\infty}^{\infty} \delta(x-y) \Psi(y,t) \ dy$$

$$\Psi(x,t) = \int_{-\infty}^{\infty} \Psi_y C_y(t) \ dy$$

$$= \int_{-\infty}^{\infty} \delta(x-y) \Psi(y,t) \ dy$$

$$= \int_{-\infty}^{\infty} \frac{e^{\frac{i}{\hbar}px}}{\sqrt{2\pi\hbar}} e^{-\frac{i}{\hbar}\frac{p^2}{2m}t} \Phi_{(p,0)} \ dp$$

$$= \int_{-\infty}^{\infty} \Psi_n \phi(E_n,t) C_n$$

$$= \int_{-\infty}^{\infty} \Psi_n e^{\frac{-i}{\hbar}E_n t} c_n \ dn$$

$$\Psi(x,t) = \int_{-\infty}^{\infty} \Psi_y c_y(t) \ dy \qquad \qquad \Psi(x,t) = \int_{-\infty}^{\infty} \Psi_p \phi(E_p,t) c_p \ dp \qquad \qquad \Psi(x,t) = \int_{-\infty}^{\infty} \Psi_n \phi(E_n,t) c_n \ dn$$

$$= \int_{-\infty}^{\infty} \delta(x-y) \Psi(y,t) \ dy \qquad \qquad = \int_{-\infty}^{\infty} \frac{e^{\frac{i}{\hbar}px}}{\sqrt{2\pi\hbar}} e^{-\frac{i}{\hbar}\frac{p^2}{2m}t} \Phi_{(p,0)} \ dp \qquad \qquad = \int_{-\infty}^{\infty} \Psi_n e^{\frac{-i}{\hbar}E_n t} c_n \ dn$$

$$c_x(t) = \langle \Psi_x | \Psi(x,t) \rangle = \langle x | \Psi \rangle$$

$$\Psi(x,t) = \int_{-\infty}^{\infty} \delta(x-y) \Psi(y,t) \, dy$$

$$c_{x}(t) = \langle \Psi_{x} | \Psi_{(x,t)} \rangle = \langle x | \Psi \rangle$$

$$c_{p}(t) = \langle \Psi_{p} | \Psi_{(x,t)} \rangle = \langle p | \Psi \rangle$$

$$c_{p}(t) = \langle \Psi_{p} | \Psi_{(x,t)} \rangle = \langle p | \Psi \rangle$$

$$\Phi_{(p,t)} = \int_{-\infty}^{\infty} \delta(x-y)\Psi_{(y,t)} dy$$

$$c_{p}(t) = \langle \Psi_{p} | \Psi_{(x,t)} \rangle = \langle p | \Psi \rangle$$

$$c_{p}(t) = \langle \Psi_{p} | \Psi_{(x,t)} \rangle = \langle p | \Psi \rangle$$

$$\Phi_{(p,t)} = \int_{-\infty}^{\infty} \frac{e^{\frac{-i}{\hbar}px}}{\sqrt{2\pi\hbar}} \Psi_{(x,t)} dx$$

$$\Psi_{(n,t)} = \int_{-\infty}^{\infty} \Psi_{n}^{*} \Psi_{(x,t)} dx$$

$$c_n(t) = \langle \Psi_n | \Psi_{(x,t)} \rangle = \langle n | \Psi \rangle$$

$$\Psi_{(n,t)} = \int_{-\infty}^{\infty} \Psi_n^* \Psi_{(x,t)} dx$$

Born Interpretation: $PDF(x) = |\Psi(x)|^2 = \Psi^*\Psi$

 $P_{(a < x < b)} = \int_a^b |\Psi|^2 dx \equiv \langle \Psi | \Psi \rangle_{ab}$

$$\boxed{\langle\Psi|\Psi\rangle=1}$$
 (physical, bound states only)

- $\Psi(\pm\infty) = 0$
- $Min(V) \leq E_{\Psi} \in \mathbb{R}$
- $\langle \Psi_n | \Psi_n \rangle \to \infty \Rightarrow \Psi_n \text{ not PHYSICAL}$ sol. but $\Psi = \int c_n \Psi_n$ can if $\langle \Psi | \Psi \rangle = 1$

Boundary Conditions:

- $\Psi(x)$ isn't always cont. (see extra)
- $\frac{\partial \Psi(x)}{\partial x}$ is cont. except at $V = \infty$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} E \Psi dx = \int_{-\epsilon}^{\epsilon} \widehat{H} \Psi dx \implies$$

$$\lim_{\epsilon \to 0} \frac{\hbar^2}{2m} \Delta(\frac{d\Psi}{dx}) = \int_{-\epsilon}^{\epsilon} V \Psi dx$$

- $E[f(x)] = \int_{-\infty}^{\infty} f(x) \ \mathrm{PDF}(x) \ dx = \int_{-\infty}^{\infty} f(x) \ |\Psi(x)|^2 \ dx = \int_{-\infty}^{\infty} \Psi(x)^* f(x) \Psi(x) \ dx = \boxed{\langle \Psi | f \Psi \rangle \equiv \langle f(x) \rangle}$
- $\bullet \int_{\mathbb{R}} \Psi^* \Psi \ dx = \int_{\mathbb{R}} \left(\int_{n} c_n^*(t) \Psi_n^*(x) \ dn \right) \left(\int_{n'} c_{n'}(t) \Psi_{n'}(x) \ dn' \right) \ dx$

$$= \int_{n} c_{n}^{*}(t) \int_{n'} c_{n'}(t) \, \delta(n-n') \, dn' \, dn = \int_{n} |c_{n}(t)|^{2} \, dn \implies \boxed{\text{PDF}(n) = |c_{n}|^{2} = c_{n}^{*} c_{n}}$$

 $\underline{\text{Adjoint (herm. adj./herm. conj.): } \left\{ A^{\dagger} : \langle f | Af \rangle = \langle A^{\dagger} f | f \rangle \right\}} \quad \Rightarrow \quad \langle h | \hat{A}g \rangle = \langle \hat{A}^{\dagger} h | g \rangle \qquad \text{(let } f = h + g, \ f = h + ig)$

Hermitian Operator: $\{A : \hat{A}^{\dagger} = \hat{A}\}$

- $\exists \{\Psi_n\}: \hat{A}\Psi_n(x) = a_n\Psi_n(x)$ (spectral theorem) $\langle a \rangle = a \in \mathbb{R} \Rightarrow \hat{A}$ can be an observable

 $\bullet \ \ \ \, |\langle \Psi_m | \Psi_n \rangle \in \{\delta_{mn}, \ \delta_{(m-n)}\}$

• Axiom: $\{\Psi_n\}$ for \hat{A} are complete

 $(m \neq n), (a_m \neq a_n) \Rightarrow \langle \Psi_m | \Psi_n \rangle \in \{\delta_{mn}, \delta_{(m-n)}\}$

 $(m \neq n), (a_m = a_n), (\Psi_m \neq \Psi_n), \langle \Psi_m | \Psi_n \rangle \neq 0 \Rightarrow \text{Use Gram-Schmidt}$ Degenerate: to find orthogonal $\langle \Psi_m' | \Psi_n' \rangle = \langle a \Psi_m + b \Psi_n | c \Psi_m + d \Psi_n \rangle = 0$

Expectation: E[A(x,p)]

•
$$\int_{-\infty}^{\infty} \hat{A}(x,p)^* \ \Psi^* \Psi \ dx = \langle \hat{A}\Psi | \Psi \rangle = \boxed{\langle \Psi | \hat{A}\Psi \rangle \equiv \langle \hat{A}(x,p) \rangle}$$
 (won't work if $\int A \ |\Psi|^2 \ dx$)

$$\begin{split} \langle \Psi | \hat{A} \Psi \rangle &= \int_{-\infty}^{\infty} \Psi^* \hat{A} \Psi \ dx = \int_{-\infty}^{\infty} \left(\int_n \ c_n^* \Psi_n^* \ dn \right) \left(\int_{n'} \ c_{n'} \hat{A} \Psi_{n'} \ dn' \right) \ dx \\ &= \int_n a_n |c_n|^2 \ dn = E[a] \equiv \langle a \rangle \qquad c_n = \text{PDF}(n) \quad \text{(see above and Momentum Space)} \end{split}$$

$$\boxed{\langle a \rangle = \langle \Psi | \hat{A} \Psi \rangle = \langle \Psi | \hat{A} | \Psi \rangle = \langle A \rangle}$$

•
$$\left| \langle \sigma_a^2 \rangle = \langle a^2 \rangle - \langle a \rangle^2 \right| \Rightarrow \sigma_A^2 = 0$$
 for Ψ_n (determinate state)

Matrix Operators:

Given complete $\{e_n\}$: $\langle e_m|e_n\rangle = \delta_{mn}$

1.)
$$Q_{mn}^{(e)} \equiv \langle e_m | \widehat{Q}_{(x,p)} | e_n \rangle$$

$$|\beta\rangle = \widehat{Q}|\alpha\rangle = \sum_{m} |e_{m}\rangle \begin{bmatrix} \langle e_{m}|\beta\rangle = \langle e_{m}|\widehat{Q}|\alpha\rangle \\ \sum_{n} b_{n}\langle e_{m}|e_{n}\rangle = \sum_{n} a_{n} \boxed{\langle e_{m}|\widehat{Q}|e_{n}\rangle} \\ b_{m} = \sum_{n} \left(Q_{m}^{(e)}\right)_{n} a_{n} \end{bmatrix} = \sum_{m} b_{m}|e_{m}\rangle = \sum_{n,m} \langle e_{n}|\alpha\rangle Q_{mn}^{(e)}|e_{m}\rangle \langle e_{n}|\alpha\rangle \\ \Rightarrow \widehat{Q} = \sum_{m,m} Q_{mn}^{(e)}|e_{m}\rangle \langle e_{n}|\alpha\rangle$$

2.) Find \widehat{Q} as a matrix

$$|f\rangle = \sum_{n} c_{n}^{(e)}[f] |e_{n}\rangle$$

$$\downarrow \qquad \qquad = \begin{pmatrix} \vdots \\ c_{n}[f] \\ \vdots \end{pmatrix}^{(e)} \cdot \begin{pmatrix} \vdots \\ e_{n}(x) \\ \vdots \end{pmatrix} \equiv \begin{bmatrix} \vec{c}^{(e)}[f] \cdot \vec{e}(x) \\ \int_{n} c^{(e)}[f](n) \cdot e(n,x) |dn \end{pmatrix} , \quad \begin{bmatrix} c_{n}^{(e)}[f] = \langle e_{n}|f \rangle \\ \vdots \end{pmatrix}$$

$$\begin{aligned} \widehat{Q}|f\rangle \\ &= \left(\sum_{m,n'} Q_{mn'}^{(e)} |e_m\rangle \langle e_{n'}|\right) \sum_n c_n^{(e)} |e_n\rangle \\ &= \sum_{m,n} \left(\sum_{n'} Q_{mn'}^{(e)} c_n^{(e)} \langle e_{n'}|e_n\rangle\right) |e_m\rangle \\ &= \sum_m \left(\sum_n \left(Q_m^{(e)}\right)_n c_n^{(e)}\right) |e_m\rangle \end{aligned}$$

$$\widehat{Q} \begin{bmatrix} \begin{pmatrix} | \\ c \\ | \end{pmatrix}^{(e)} \cdot \begin{pmatrix} | \\ e \\ | \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} \vdots \\ -Q_m \\ \vdots \end{pmatrix}^{(e)} \begin{pmatrix} | \\ c \\ | \end{pmatrix}^{(e)} \end{bmatrix} \cdot \begin{pmatrix} | \\ e \\ | \end{pmatrix}$$

$$\widehat{Q} |f\rangle = [\widehat{Q} [\vec{c}^{(e)}[f] \cdot \vec{e}] = [\overline{Q}^{(e)} \vec{c}^{(e)}[f]] \cdot \vec{e}$$

$$\langle x|\widehat{Q}|f\rangle = \int_m [\overline{Q}^{(\delta)}f]_{(m)} \cdot \delta_{(x-m)} dm$$
e.g.
$$= \int_m [\int_n Q_m^{(\delta)}(n) \cdot f_{(n)} dn] \delta_{(x-m)} dm = \widehat{Q}f_{(x)}$$

3.) Terms

Hermitian Operator ~ Hermitian Matrix Diagonalizable: $A \equiv PDP^{-1}$ (if inf. size then must be in Hilbert Space) Conj. Transpose, \dagger : $A^{\dagger} \equiv A^{T*} = A^{*T}$ (draw it out) $H = H^{\dagger}$ $\to (\overline{Q}x)^{*T} \cdot y_m | e_m \rangle = y_m x^{*T} \cdot (\overline{Q}_m^*)$ Hermitian, H: $H = UDU^{-1} = UDU^{\dagger}$ $= x^{*T} \cdot \overline{Q}^{*T} u_m |e_m\rangle$ (spectral theorem) $= x^{*T} \cdot \overline{Q} y_m |e_m\rangle$ $U \cdot UU^{\dagger} = U^{\dagger}U = 1$ Unitary, U: $\rightarrow \ \overline{Q}^{\dagger} \equiv \overline{Q}^{*T} = \overline{Q}$ $\exists H:\ U=e^{iH}=(U')e^{iD}(U')^{\dagger}$

4.) Eigenvalue Equation

General Case:

$$\widehat{Q}|q_i\rangle = q_i|q_i\rangle$$

$$|q_i\rangle = \sum_{n} c_n^{(e)}[q_i]|e_n\rangle$$

$$\overline{Q}^{(e)} = UDU^{\dagger} \qquad \text{(Spectral Theorem)}$$

$$= \begin{pmatrix} \begin{vmatrix} & & & \\ \vec{c}_{[q_0]} & \vec{c}_{[q_1]} & \dots \end{pmatrix}^{(e)} \begin{pmatrix} q_0 & 0 & \dots \\ 0 & q_1 & \dots \\ \vdots & \vdots & \end{pmatrix} \begin{pmatrix} -\vec{c}_{[q_0]} & -\vec{c}_{[q_1]} & -\vec{c}_{[q_1]}$$

$$\begin{aligned} q_{i}|q_{i}\rangle &=& \widehat{Q}|q_{i}\rangle \\ \left[q_{i} \ \vec{c}^{\ (e)}_{[q_{i}]}\right] \cdot \vec{e}(x) &=& \left[\ \overline{Q}^{(e)} \ \vec{c}^{\ (e)}_{[q_{i}]} \right] \cdot \vec{e}(x) \end{aligned} \qquad \qquad \begin{tabular}{l} *\forall_{n} & (qc)_{n} \mid e_{n}(x)\rangle = (Qc)_{n} \mid e_{n}(x)\rangle \\ \langle e_{n}(x) \mid (qc)_{n} \mid e_{n}(x)\rangle = \langle e_{n}(x) \mid (Qc)_{n} \mid e_{n}(x)\rangle \end{aligned} \\ \psi^{*} & (qc)_{n} &= (Qc)_{n} \end{aligned}$$

$$q_{i} \ \vec{c}^{\ (e)}_{[q_{i}]} &=& \overline{Q}^{(e)} \ \vec{c}^{\ (e)}_{[q_{i}]} \end{aligned} \qquad \qquad \begin{tabular}{l} *\forall_{n} & (qc)_{n} \mid e_{n}(x)\rangle = \langle e_{n}(x) \mid (Qc)_{n} \mid e_{n}(x)\rangle \\ \langle e_{n}(x) \mid (qc)_{n} \mid e_{n}(x)\rangle = \langle e_{n}(x) \mid (Qc)_{n} \mid e_{n}(x)\rangle \end{aligned}$$

$$q_{i} \ \vec{c}^{\ (e)}_{[q_{i}]} &=& \left(\ \vec{c}^{\ (e)}_{[q_{i}]} : \ \vec{c}^{\ (e)}$$

Special Case:

$$|q_n\rangle = |e_n\rangle \\ \widehat{Q}|e_n\rangle = q_n|e_n\rangle$$

$$|\widehat{Q}|a\rangle = \sum_n \widehat{Q}|e_n\rangle\langle e_n|a\rangle \\ = \left(\sum_n q_n|e_n\rangle\langle e_n|\right)|a\rangle$$

$$\Rightarrow \boxed{\widehat{Q} = \sum_n q_n|e_n\rangle\langle e_n| \\ Q_{mn}^{(e)} = q_n\delta_{mn}} \Rightarrow \boxed{\overline{Q}^{(e)} = \begin{pmatrix} q_0 & 0 & \dots \\ 0 & q_1 & \dots \\ \vdots & \vdots & q_i \end{pmatrix} }$$

$$\overline{Q}^{(e)} = \begin{pmatrix} q_0 & 0 & \dots \\ 0 & q_1 & \dots \\ \vdots & \vdots & \dots \end{pmatrix}^{(e)} = \begin{pmatrix} 1 & 0 & \dots \\ 0 & 1 & \dots \\ \vdots & \vdots & \dots \end{pmatrix}^{(e)} \begin{pmatrix} q_0 & 0 & \dots \\ 0 & q_1 & \dots \\ \vdots & \vdots & \dots \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots \\ 0 & 1 & \dots \\ \vdots & \vdots & \dots \end{pmatrix}^{(e)}$$

$$\overline{\vec{C}^{(e)}[q_i]} = \begin{pmatrix} \dots & 0 & 0 & 1_{(i)} & 0 & 0 & \dots \\ 0 & 1 & \dots & \dots \\ \vdots & \vdots & \dots & \dots \end{pmatrix}^{(e)}$$

5. Unitary Transformation and Trace

•
$$|b_i\rangle = U|a_i\rangle \Leftrightarrow U = \sum |b_n\rangle\langle a_n|$$

$$\bullet \ \overline{U}_{ij} = \langle a_i | U | a_j \rangle = \langle a_i | b_j \rangle$$

•
$$(A)|a_i\rangle = a_i|a_i\rangle$$
$$(UAU^{\dagger})|b_i\rangle = a_i|b_i\rangle$$

•
$$\operatorname{Tr}(Q) = \sum \langle a_i | Q | a_i \rangle = \sum \langle b_i | Q | b_i \rangle$$

•
$$\operatorname{Tr}(QP) = \operatorname{Tr}(PQ)$$

•
$$\operatorname{Tr}(U^{\dagger}QU) = \operatorname{Tr}(Q)$$

•
$$\operatorname{Tr}(|a_i\rangle\langle a_j|) = \delta_{ij}$$

•
$$\operatorname{Tr}(|b_i\rangle\langle a_i|) = \langle a_i|b_i\rangle$$

$\Phi(p,t)$ - Momentum Space (generalizable Born Interpretation):

$$\begin{split} \int_x \Psi^* \Psi dx &= \int_x \int_p c_p^*(t) \Psi_p^*(x) dp \int_{p'} c_{p'}(t) \Psi_{p'}(x) dp' \ dx \\ &= \int_p c_p^*(t) \int_{p'} c_{p'}(t) \int_x \Psi_p^*(x) \Psi_{p'}(x) dx \ dp' dp \\ &= \int_p \Phi^* \int_{p'} \Phi' \ \delta(p - p') dp' dp \\ &= \int_p \Phi^* \Phi \ dp \ \Rightarrow \boxed{\text{PDF}(p) = |\Phi|^2 = \Phi^* \Phi} \\ \hline \left\langle \Psi | \Psi \right\rangle &= \left\langle \Phi | \Phi \right\rangle \end{split}$$

Anything in x-space can be done in p-space (or generalize to any transform, c_n)

Heisenberg Uncertainty Proof:

$$\langle f|g\rangle \equiv \left\langle \left(\widehat{A} - \langle a\rangle\right) \Psi \middle| \left(\widehat{B} - \langle b\rangle\right) \Psi \right\rangle$$

$$= \left\langle \Psi \middle| \left(\widehat{A} - \langle a\rangle\right) \middle| \left(\widehat{B} - \langle b\rangle\right) \Psi \right\rangle$$

$$= \left\langle \Psi \middle| \widehat{A} (\widehat{B} \Psi) \right\rangle - \left\langle a \right\rangle \left\langle b \right\rangle = \left\langle \widehat{A} \widehat{B} \right\rangle - \left\langle a \right\rangle \left\langle b \right\rangle$$

$$\sigma_A^2 \sigma_B^2 = \left\| \left(\widehat{A} - \langle a\rangle\right) \Psi \right\|^2 \left\| \left(\widehat{B} - \langle b\rangle\right) \Psi \right\|^2$$

$$\equiv \left\langle f \middle| f \right\rangle \left\langle g \middle| g \right\rangle \geq \left\| \left\langle f \middle| g \right\rangle \right\|^2 \qquad \text{(see Schwarz Ineq.)}$$

$$\geq \left[\operatorname{Im} \left(\left\langle f \middle| g \right\rangle \right) \right]^2 = \left(\frac{1}{2i} \left[\left\langle f \middle| g \right\rangle - \left\langle f \middle| g \right\rangle^* \right] \right)^2$$

$$= \left(\frac{1}{2i} \left\langle \widehat{A} \widehat{B} - \widehat{B} \widehat{A} \right\rangle \right)^2 \equiv \left[\left(\frac{1}{2i} \left\langle \left[\widehat{A}, \widehat{B}\right] \right\rangle \right)^2 \right]$$

Commutator of Hermitian \widehat{A}, \widehat{B}

•
$$[A, B]^{\dagger} = -[A, B]$$

• $\exists \Psi_n$ s.t. $(\widehat{A}\Psi_n = a\Psi_n)$, $(\widehat{B}\Psi_n = b\Psi_n)$
 $\Leftrightarrow [\widehat{A}, \widehat{B}] = 0$
 $\Rightarrow \sigma_A \sigma_B \geq 0$ (Both can be measured concurrently)
 $AB = BA$

$$x\Phi = xe^{-\frac{i}{\hbar}px} = -\frac{\hbar}{i}\frac{\partial}{\partial p}\Phi = \frac{\hbar}{i}\frac{\partial}{\partial (-p)}\Phi$$

•
$$\langle p|\hat{p}|p'\rangle \equiv p\langle p|p'\rangle \equiv p\delta(p-p')$$

1.
$$\langle p|\hat{p}|f\rangle = pf(p) = p\langle p|f\rangle \equiv p\langle p|f\rangle$$

2.
$$\langle p|\hat{x}|p'\rangle = \iint \langle p|x\rangle \langle x|\hat{x}|x'\rangle \langle x'|p'\rangle dxdx'$$

$$= \frac{1}{2\pi\hbar} \int x e^{\frac{i}{\hbar}x(p'-p)} dx$$

$$= -\frac{\hbar}{i} \delta'(p-p') = -\frac{\hbar}{i} \frac{\partial}{\partial p} \langle p|p'\rangle$$

3.
$$\langle p|\hat{x}|f\rangle = \int \langle p|\hat{x}|p'\rangle\langle p'|f\rangle \ dp'$$

= $\left[-\frac{\hbar}{i}\frac{\partial}{\partial p}\langle p|f\rangle \equiv \check{x}\langle p|f\rangle\right]$

$$\Rightarrow A(x, \hat{p}_x) \to A(\hat{x}_p, p)$$
$$\Rightarrow \left[\langle a \rangle = \left\langle \Phi \middle| A(\hat{x}_p, p) \middle| \Phi \right\rangle \right]$$

Commutator

•
$$[\widehat{A}, \widehat{B}]f \equiv \widehat{A}(\widehat{B}f) - \widehat{B}(\widehat{A}f)$$

•
$$[A, BC] = [A, B]C + B[A, C]$$

•
$$[AB, C] = A[B, C] + [A, C]B$$

•
$$[x,\hat{p}] = i\hbar$$

$$\bullet \quad \left| \sigma_A \sigma_B \geq \left\| \frac{1}{2i} \left\langle \left[\widehat{A}, \widehat{B} \right] \right\rangle \right\|$$

$$\Rightarrow \Delta x \Delta p \geq \hbar/2$$

Anti-Hermitian Operators: $A^{\dagger} = -A$

$$\bullet \ \langle A \rangle = ai, \quad a \in \mathbb{R}$$

$$\bullet \ [A,B]^{\dagger} = -[A,B]$$

Operator Evolution (Heisenberg Equation)

$$\frac{d}{dt} \Big\langle \Psi(x,t) \Big| Q \Big| \Psi(x,t) \Big\rangle = \Big\langle \frac{\partial \Psi}{\partial t} \Big| Q \Big| \Psi \Big\rangle + \Big\langle \Psi \Big| \frac{\partial Q}{\partial t} \Big| \Psi \Big\rangle + \Big\langle \Psi \Big| Q \Big| \frac{\partial \Psi}{\partial t} \Big\rangle$$

$$\frac{\frac{d}{dt}\langle Q\rangle = \frac{1}{i\hbar} \left\langle \left[\widehat{Q}, \widehat{H} \right] \right\rangle + \left\langle \frac{\partial \widehat{Q}}{\partial t} \right\rangle}{i\hbar \frac{d}{dt} \langle Q\rangle = \left\langle \left[\widehat{Q}, \widehat{H} \right] \right\rangle + i\hbar \left\langle \frac{\partial \widehat{Q}}{\partial t} \right\rangle}$$
 (Q is conserved when this equals 0)

• Conservations:
$$\frac{d\langle\Psi|\Psi\rangle}{dt} = 0, \ \frac{d\langle H\rangle}{dt} = 0$$

• Ehrenfest's Theorem:
$$m\frac{d\langle x\rangle}{dt} = \langle p\rangle, \ \frac{d\langle p\rangle}{dt} = -\left\langle \frac{\partial V}{\partial x}\right\rangle \Rightarrow \text{ other classical eq.}$$

• Virial Theorem:
$$\frac{d}{dt}\langle xp\rangle = \frac{i}{\hbar}\left\langle \left[H,x\right]p + x\left[H,p\right]\right\rangle = \left\langle \left[\frac{p^2}{2m},x\right]p + x\left[V,p\right]\right\rangle$$
$$= \frac{i}{\hbar}\left\langle \frac{1}{2m}p\left[p,x\right]p - \frac{1}{2m}\left[p,x\right]p^2 - x\left[p,V\right]\right\rangle$$
$$\left[\frac{d\langle xp\rangle}{dt} = 2\langle T\rangle - \left\langle x\frac{\partial V}{\partial x}\right\rangle\right] \to 0 = \frac{d}{dt}\left\langle \Psi_n(x)\Big|Q_{(x,p)}\Big|\Psi_n(x)\right\rangle \quad \text{(for stationary states)}$$

• Energy-Time Uncertainty: $(Q = Q(x, \hat{p}) \neq Q(x, \hat{p}, t)) \Rightarrow \sigma_H \sigma_Q \geq \frac{\hbar}{2} \left| \frac{d\langle Q \rangle}{dt} \right|$

$$\sigma_Q \equiv \frac{d\langle Q \rangle}{dt} \Delta t \approx \Delta \langle Q \rangle$$

$$\Rightarrow \sigma_H \left(\frac{\sigma_Q}{|d\langle Q \rangle/dt|} \right) \geq \frac{\hbar}{2}$$

$$\Delta t \text{ is the amount of time it would}$$

$$\text{take } \langle Q \rangle \text{ to change "appreciably"},$$
or one std. dev. at the constant rate $\frac{d}{dt} \langle Q \rangle$

Mass Lifetime:

$$\Delta(mc^2)\Delta t \geq \frac{\hbar}{2} \quad \square$$

Orthogonal Time Example:

$$\begin{split} &\Psi(x,\tau) = \frac{\sqrt{2}}{2} (\Psi_1 e^{-\frac{i}{\hbar}E_1\tau} + \Psi_2 e^{-\frac{i}{\hbar}E_2\tau}) \\ &\left\langle \Psi(x,0) \middle| \Psi(x,\tau) \right\rangle = 0 = \frac{1}{2} (e^{-\frac{i}{\hbar}E_1\tau} + e^{-\frac{i}{\hbar}E_2\tau}) \\ &\Rightarrow \tau \ \frac{E_2 - E_1}{2} = \frac{\pi}{2} \ \hbar \ (\frac{1}{2} + n) \ge \frac{\hbar}{2} \ \checkmark \end{split}$$

Translation Operator

$$f(x + \Delta x) \approx f(x) + \frac{df}{dx} \Delta x$$

$$= f(x) + f'(x) \Delta x + \frac{f''(x)}{2!} (\Delta x)^2 + \dots = \begin{cases} f(x') = \sum_{n} \frac{f^{(n)}(a)}{n!} (x' - a)^n \\ (x' = x + \Delta x), \ (a = x) \end{cases}$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (\Delta x)^n = \sum_{n=0}^{\infty} \frac{(\Delta x \nabla)^n}{n!} f(x)$$

$$f(x + \Delta x) = e^{\frac{i}{\hbar}(\Delta x)\check{p}} f(x) \iff f(x) = e^{\frac{i}{\hbar}x\check{p}} f(0) \implies \langle x | e^{\frac{i}{\hbar}x\hat{p}} | x' \rangle = e^{\frac{i}{\hbar}x\check{p}} \langle x | x' \rangle *$$

Time Translation:
$$f(t + \Delta t) = \underline{f(t) + f'(t)\Delta t} + \dots = \sum_{n} \frac{(\Delta t)^{n}}{n!} \left(\frac{\partial}{\partial t}\right)^{n} f(t)$$

$$\langle x_{N} | \hat{U}_{(t)} | x_{0} \rangle$$

$$= \check{U}_{(x_{N}, t; x_{0}, 0)}$$

$$\langle x | \hat{U}_{(t)} | \Psi \rangle$$

$$= \Psi_{(x, t)}$$

$$\frac{\partial f}{\partial t} = \left[\frac{-i\check{H}}{\hbar}\right] f \Rightarrow \begin{cases} f(t_{0} + \Delta t) \approx e^{\frac{-i\Delta t}{\hbar}\check{H}(t_{0})} f(t_{0}) & \text{(1st order)} \end{cases}$$

$$f(t + \Delta t) = \underbrace{\int_{n}^{\infty} \frac{(\Delta t)^{n}}{\hbar} \check{H}(t_{0})}_{n} f(t) + \underbrace{\int_{n}^{\infty} \frac{\partial^{n} f}{\hbar} f(t_{0})}_{n} f(t) + \underbrace{\int_{n}^{\infty} \frac{\partial^{n} f}{\hbar} f(t_{0})}_{n}$$

Pictures: $\langle Q \rangle_{(t)} = \langle \Psi_{(x,t)} | Q_{(x,p,t)} | \Psi_{(x,t)} \rangle$

• Schrodinger Picture:
$$\langle Q \rangle_{(t)} = \left\langle e^{\frac{-i}{\hbar}t\widehat{H}} \Psi_{(t=0)} \middle| Q_{(x,p,t)} \middle| e^{\frac{-i}{\hbar}t\widehat{H}} \Psi_{(t=0)} \rangle$$

$$Q = Q(x,p) \ \Rightarrow \ \left\langle Q \right\rangle(t) = \left\langle \sum e^{\frac{-i}{\hbar}E_nt} c_n \Psi_n(x) \right| \ Q \ \left| \sum e^{\frac{-i}{\hbar}E_nt} c_n \Psi_n(x) \right\rangle \qquad \text{(nice for stationary states)}$$

• Heisenberg Picture:
$$\langle Q \rangle_{(t)} = \left\langle \Psi_{(t=0)} \middle| e^{\frac{i}{\hbar}t\widehat{H}} Q e^{\frac{-i}{\hbar}t\widehat{H}} \middle| \Psi_{(t=0)} \right\rangle$$

• Dirac Picture:
$$\langle Q \rangle_{(t)} = \left\langle e^{\frac{-i}{\hbar} \int \widehat{H}_1(t)dt} \Psi_{(t=0)} \left| e^{\frac{i}{\hbar}t\widehat{H}_0} Q e^{\frac{-i}{\hbar}t\widehat{H}_0} \right| e^{\frac{-i}{\hbar} \int \widehat{H}_1(t)dt} \Psi_{(t=0)} \right\rangle$$

$$\langle Q \rangle_{(t+\Delta t)} = \langle Q \rangle_{(t)} + \frac{d\langle Q \rangle}{dt} \Delta t + \dots \Rightarrow \begin{cases} A \text{ 1st order approximation of } \langle Q \rangle_{(t+\Delta t)} \\ \text{should yield } \frac{d\langle Q \rangle}{dt} = \frac{1}{i\hbar} \langle \left[Q, H\right] \rangle + \frac{\partial Q}{\partial t} \end{cases}$$

Schrodinger Picture

1.)
$$i\hbar \frac{\partial}{\partial t} \langle Q_S \rangle = \langle [Q_S, H_S] \rangle$$

4.)
$$|\Psi_S(t)\rangle = U_S(t,t_0)|\Psi_S(t_0)\rangle$$

$$\Rightarrow i\hbar \frac{\partial}{\partial t} |\Psi_S\rangle = H_S \Psi_S = [H_S^0 + H_S^1(t)] |\Psi_S\rangle$$

$$= \sum_i E_n |n_S^0\rangle e^{-\frac{i}{\hbar} E_n t} \langle n_S^1(t) | \Psi(0)\rangle$$

$$+ \sum_i |n_S^0\rangle e^{-\frac{i}{\hbar} E_n t} \cdot i\hbar \frac{\partial}{\partial t} \langle n_S^1(t) | \Psi(0)\rangle$$

$$\Rightarrow i\hbar \frac{\partial}{\partial t} U_S^0(t, t_0) = H_S^0 U_S^0(t, t_0)$$
$$\Rightarrow U_S^0(t, t_0) = e^{-\frac{i}{\hbar} H_S^0(t - t_0)}$$

Heisenberg Picture

1.)
$$Q_H(t) \equiv U_S^{\dagger} Q_S U_S$$
 $H_S \neq H_S(t)$
 $\Rightarrow i\hbar \frac{\partial}{\partial t} Q_H = [Q_H, H_H]$ $H_H = H_S$

2.)
$$U_H \equiv U_S^{\dagger}(t,t_0)U_S(t,t_0) = \mathbb{I}$$

3.)
$$|q_H(t)\rangle \equiv U_S^{\dagger}(t,t_0)|q_S\rangle$$

 $\Rightarrow Q_H|q_H(t)\rangle = q|q_H(t)\rangle$
 $\Rightarrow i\hbar \frac{\partial}{\partial t}|q_H(t)\rangle = -H_S|q_H(t)\rangle$

4.)
$$|\Psi_H\rangle \equiv U_S^{\dagger}(t,t_0)|\Psi_S(t)\rangle = |\Psi_S(t_0)\rangle$$

 $= U_H(t,t_0)|\Psi_H(t_0)\rangle$
 $\Rightarrow i\hbar \frac{\partial}{\partial t}|\Psi_H\rangle = 0$

Dirac/Interaction Picture (see transition amplitude)

1.)
$$Q_I(t) \equiv U_S^{0\dagger} Q_S U_S^0$$

 $\Rightarrow i\hbar \frac{\partial}{\partial t} Q_I = \left[Q_I, H_I^0 \right] \quad (H_S^0 = H_I^0 \text{ see Heis. pic.})$

$$2. \big) \ U_I(t,t_0) \ \equiv \ {U_S^0}^{\dagger}(t,t_0) U_S(t,t_0)$$

3.)
$$|q_I(t)\rangle \equiv U_S^{0\dagger}(t,t_0)|q_S\rangle$$

 $\Rightarrow Q_I|q_I(t)\rangle = q|q_I(t)\rangle$
 $\Rightarrow i\hbar \frac{\partial}{\partial t}|q_I(t)\rangle = -H_S^0|q_I(t)\rangle$

$$\begin{aligned} 4. \big) & |\Psi_{I}(t)\rangle & \equiv & U_{S}^{0\dagger}(t,t_{0}) |\Psi_{S}(t)\rangle \\ & = & U_{I}(t,t_{0}) |\Psi_{I}(t_{0})\rangle \quad \text{(since } |\Psi_{I}(t_{0})\rangle = |\Psi_{S}(t_{0})\rangle) \\ & \Rightarrow & i\hbar \frac{\partial}{\partial t} |\Psi_{I}\rangle = U_{S}^{0\dagger} H_{S}^{1}(t) U_{S}^{0} |\Psi_{I}\rangle = H_{I}^{1} |\Psi_{I}\rangle \\ & \Rightarrow & i\hbar \frac{\partial}{\partial t} U_{I}(t,t_{0}) = H_{I}^{1}(t) U_{I}(t,t_{0}) \\ & \Rightarrow & U_{I}(t,t_{0}) = \mathbb{I} + \frac{1}{i\hbar} \int_{t_{0}}^{t} H_{I}^{1}(t') U_{I}(t',t_{0}) dt' \end{aligned}$$

•
$$U_{I}(t,t_{0}) = \mathbb{I} + \frac{1}{i\hbar} \int_{t_{0}}^{t} H_{I}^{1}(t') U_{I}(t',t_{0}) dt'$$

$$= \mathbb{I} + \mathcal{O}(H_{I}^{1})$$

$$= \mathbb{I} + \frac{1}{i\hbar} \int_{t_{0}}^{t} H_{I}^{1}(t') dt' + \mathcal{O}([H_{I}^{1}]^{2})$$

$$= \mathbb{I} + \frac{1}{i\hbar} \int_{t_{0}}^{t} H_{I}^{1}(t') dt'$$

$$+ \left(\frac{1}{i\hbar}\right)^{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t'} H_{I}^{1}(t') H_{I}^{1}(t'') dt'' dt' + \dots$$

$$\bullet U_{S}(t,t_{0}) = U_{S}^{0} + \frac{1}{i\hbar} \int_{t_{0}}^{t} U_{S}^{0} H_{I}^{1}(t') dt' + \left(\frac{1}{i\hbar}\right)^{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t'} U_{S}^{0} H_{I}^{1}(t') H_{I}^{1}(t'') dt'' dt' + \dots$$

$$= U^{0}(t,t_{0})$$

$$+ \frac{1}{i\hbar} \int_{t_{0}}^{t} U^{0}(t,t_{0}) U^{0\dagger}(t',t_{0}) H^{1} U^{0}(t',t_{0}) dt'$$

$$+ \left(\frac{1}{i\hbar}\right)^{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t'} U^{0}(t,t_{0}) U^{0\dagger}(t',t_{0}) H^{1} U^{0}(t',t_{0}) U^{0\dagger}(t'',t_{0}) H^{1} U^{0}(t'',t_{0}) H^{1} U^{0}(t'',t_{0}) dt'' dt' + \dots$$

Infinitismal t Path Integral

$$S[x(t)] = \int_0^t \mathcal{L}(x, \dot{x}) dt \rightarrow \mathcal{L} \delta t = \left[\frac{1}{2} m \left(\frac{x_1 - x_0}{\delta t} \right)^2 - V \left(\frac{x_1 + x_0}{2}, t_0 + \frac{\delta t}{2} \right) \right] \delta t$$

$$\langle x|\hat{U}(\epsilon)|\Psi\rangle = \int \langle x|\hat{U}(\epsilon)|x'\rangle\langle x'|\Psi(x,t)\rangle dx' = \int \check{U}(x,t+\epsilon;x',t)\Psi(x',t)dx' = \Psi(x,t+\epsilon)$$

$$\bullet \quad \check{U}(x_{1},\epsilon; x_{0},0) = Ae^{\frac{i}{\hbar}S} = Ae^{\frac{i}{\hbar}\mathcal{L}\epsilon}
= A \exp\left\{\frac{i}{\hbar} \left[\frac{1}{2}m\frac{(x_{1}-x_{0})^{2}}{\epsilon} - \epsilon V\left(\frac{x_{1}+x_{0}}{2},0+\frac{\epsilon}{2}\right)\right]\right\}
(\eta = x_{0} - x_{1}) = A \exp\left\{\frac{i}{\hbar} \left[\frac{1}{2}m\frac{\eta^{2}}{\epsilon}\right]\right\} \exp\left\{-\frac{i}{\hbar}\epsilon V\left(x_{1} + \frac{\eta}{2},0+\frac{\epsilon}{2}\right)\right\}
\approx A \exp\left\{\frac{i}{\hbar} \left[\frac{1}{2}m\frac{\eta^{2}}{\epsilon}\right]\right\} \exp\left\{-\frac{i}{\hbar}\epsilon V(x_{1},0)\right\}
\approx A \exp\left\{\frac{i}{\hbar} \left[\frac{1}{2}m\frac{\eta^{2}}{\epsilon}\right]\right\} \left[1 - \frac{i}{\hbar}\epsilon V(x_{1},0)\right]$$

$$\frac{\eta^2}{\epsilon} \lesssim \pi$$
 Explanation

The integral involving \check{U} is over all η . The phase of the complex exponential will vary/oscillate too wildly and destructively interfere if η^2/ϵ were to grow too big, so $\eta^2 \sim \epsilon$ is all that matters. This means the integral is over $\sqrt{\epsilon}$, not ϵ . Because of this (somehow, Bibl. given), using a finite difference formula for derivatives is legitimate in this case, though not in general.

$$\begin{split} \Psi(x,\epsilon) &= \int_{-\infty}^{\infty} \check{U}(x,\epsilon;x',0) \Psi(x',0) dx' \\ &= A \int_{-\infty}^{\infty} e^{\frac{i}{\hbar}S} \Psi(x',0) dx' \\ &= A \int_{-\infty}^{\infty} \exp\left\{\frac{i}{\hbar} \left[\frac{1}{2} m \frac{(x-x')^2}{\epsilon} - \epsilon V\left(\frac{x+x'}{2},0 + \frac{\epsilon}{2}\right)\right]\right\} \Psi(x',0) dx' \\ &= A \int_{-\infty}^{\infty} \exp\left\{\frac{i}{\hbar} \left[\frac{1}{2} m \frac{\eta^2}{\epsilon} - \epsilon V\left(\frac{x+\eta/2}{2},0 + \frac{\epsilon}{2}\right)\right]\right\} \Psi(x+\eta,0) d\eta \\ &\approx A \int_{-\infty}^{\infty} e^{\frac{i}{\hbar} \left[\frac{1}{2} m \frac{\eta^2}{\epsilon}\right]} \left[1 - \frac{i}{\hbar} \epsilon V(x,0)\right] \left[\Psi(x,0) + \eta \Psi'(x,0) + \frac{\eta^2}{2} \Psi''(x,0)\right] d\eta \\ &\approx A \int_{-\infty}^{\infty} e^{\frac{i}{\hbar} \left[\frac{1}{2} m \frac{\eta^2}{\epsilon}\right]} \left[\left(1 - \frac{i}{\hbar} \epsilon V(x,0)\right) \Psi(x,0) + \eta \Psi'(x,0) + \frac{\eta^2}{2} \Psi''(x,0)\right] d\eta \\ &= A \sqrt{\frac{2\hbar\epsilon\pi}{-im}} \left[\left(1 - \frac{i}{\hbar} \epsilon V(x,0)\right) + \frac{1}{2} \cdot \frac{2\hbar\epsilon}{-im} \cdot \frac{1}{2} \frac{\partial^2}{\partial x^2}\right] \Psi(x,0) \\ &= \Psi(x,0) - \frac{i}{\hbar} \epsilon \check{H} \Psi(x,0) \end{split}$$

$$i\hbar \frac{\Psi(x,\epsilon) - \Psi(x,0)}{\epsilon - 0} = \breve{H}\Psi(x,0)$$

Finite t, Free Particle Propagator

$$\begin{split} S[x(t)] &= \int_{0}^{t} \mathcal{L}(x,\dot{x}) \, dt = \lim_{N \to \infty} \sum_{n=0}^{N-1} \left[\frac{1}{2} m \left(\frac{x_{n+1} - x_n}{\delta t} \right)^2 \right] \, \delta t \\ &\langle x_N | \hat{U}(t) | \Psi(0) \rangle = \int \langle x_N | \hat{U}(t) | x_0 \rangle \, \Psi(x_0,0) \, dx_0 = \int \tilde{U}(x_N,t;x_0,0) \Psi(x_0,0) \, dx_0 = \Psi(x_N,t) \\ &\Rightarrow \langle x_N | \hat{U}(t) | x_0 \rangle = \langle x_N | e^{-\frac{1}{h}Ht} e^{\frac{1}{h}Ht_0} | x_0 \rangle = \langle x_N,t_N | x_0,t_0 \rangle \\ &\langle x_N | \hat{U}(t) | x_0 \rangle = \lim_{N \to \infty} \langle x_N | \hat{U}^N(t) | x_0 \rangle = \lim_{N \to \infty} \langle x_N | \hat{U}(t) | x_0 \rangle \\ &= \lim_{N \to \infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \langle x_N | \hat{U}(t) | x_{N-1} \rangle \ldots \langle x_2 | \hat{U}(t) | x_1 \rangle \langle x_1 | \hat{U}(t) | x_0 \rangle \, dx_1 \, dx_2 \ldots dx_{N-1} \\ &\check{U}(x_N,t;x_0,0) = \int_{x_0}^{x_N} A e^{\frac{1}{h}S} \, \mathcal{D}[x(t)] \\ &= \lim_{N \to \infty} A \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{\frac{1}{h} \left[\frac{1}{2} m \frac{(x_1 - x_0)^2}{\epsilon} + \frac{1}{2} m \frac{(x_2 - x_1)^2}{\epsilon} + \frac{1}{2} m \frac{(x_3 - x_2)^2}{\epsilon} + \cdots \right]} dx_1 \, dx_2 \ldots dx_{N-1} \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \int_{-\infty}^{\infty} e^{-\frac{(y_1 - y_0)^2}{\epsilon}} - \frac{(y_2 - y_1)^2}{\epsilon} \, dy_1 \, e^{\left[-\frac{(y_3 - y_2)^2}{\epsilon} + \cdots \right]} \, dy_2 \ldots \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{\epsilon} \left[\frac{2}{\epsilon} \left[y_1^2 - y_1 (y_0 + y_2) + \frac{(y_0 + y_2)^2}{4} \right]} - \frac{(y_2 + y_0)^2}{2} + y_2^2 + y_0^2} + y_2^2 + y_0^2}{2} \, dy_1 \ldots \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \int_{-\infty}^{\infty} e^{-\frac{2}{\epsilon} \left[y_1 - \frac{y_2 + y_0}{2} \right]^2} \, dy_1 \, e^{-\frac{(y_3 - y_2)^2}{2}} \, dy_2 \, e^{\frac{(y_3 - y_2)^2}{2}} \cdots dy_2 \, e^{\frac{(y_3 - y_2)^2}{\epsilon}} \cdots dy_2 \, e^{\frac{(y_3 - y_2)^2}{\epsilon}} \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \sqrt{\frac{\pi i}{m}} \int \cdots \sqrt{\frac{\pi i}{2}} \int_{-\infty}^{\infty} e^{-\frac{(y_3 - y_0)^2}{3}} \, e^{-\frac{(y_3 - y_0)^2}{\epsilon}} \, dy_3 \dots \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \sqrt{\frac{\pi i}{m}} \int \cdots \sqrt{\frac{\pi i}{2}} \int_{-\infty}^{\infty} e^{-\frac{(y_3 - y_0)^2}{3}} \, e^{-\frac{(y_3 - y_0)^2}{\epsilon}} \, dy_3 \dots \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \sqrt{\frac{\pi i}{m}} \int \frac{e^{\frac{i\pi}{m}} \frac{(x_N - x_0)^2}{2}}{2\pi} \, e^{-\frac{(y_3 - y_0)^2}{\epsilon}}} \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \sqrt{\frac{\pi i}{m}} \int \frac{e^{\frac{i\pi}{m}} \frac{(x_1 - x_0)^2}{2}}{2\pi} \, e^{-\frac{(y_3 - y_0)^2}{\epsilon}}} \, dy_3 \dots \\ &= \lim_{N \to \infty} A \sqrt{\frac{2h\epsilon}{m}} \int \cdots \sqrt{\frac{\pi i}{m}} \int \frac{e^{\frac{i\pi}{m}} \frac{(x_1 - x_0)^2}{2}}{2\pi} \, e^{-\frac{(y_3 - y_0)^2}{\epsilon}}} \, e^{-\frac{(y_3 -$$

$$\int_{x_0}^{x_N} \mathcal{D}[x(t)] = \lim_{N \to \infty} \sqrt{\frac{-im}{2\hbar\epsilon\pi}} \int_{-\infty}^{\infty} \sqrt{\frac{-im}{2\hbar\epsilon\pi}} \, dx_1 \cdots \int_{-\infty}^{\infty} \sqrt{\frac{-im}{2\hbar\epsilon\pi}} \, dx_{N-1}$$

All Paths Explanation

$$S[x] = S[x_{cl}] + S'[x_{cl}]\eta + \mathcal{O}(\eta^2)$$

1st order variation of S from x_{cl} equals 0. This means propagator integrand for paths near x_{cl} will have about the same phase, and will add constructively. Paths very different from x_{cl} (like those with faster than light motion) will vary in action, and because \hbar is so small their phases will vary wildly, meaning the sum will destructively interfere. The result is that only paths near the classical path will be important, with $S[x]/\hbar \lesssim \pi$.

Action-Energy Relationship

$$S(x_{cl} + \Delta x_{cl}, \dot{x} + \Delta \dot{x}_{cl}, \tau + \Delta \tau) = S_{cl} + \Delta S_{cl}$$

$$= \int_{0}^{\tau + \Delta \tau} \mathcal{L}(x_{cl} + \Delta x_{cl}, \dot{x}_{cl} + \Delta \dot{x}_{cl}, t) dt$$

$$dS = \frac{\partial S}{\partial \tau} d\tau + \left[\frac{\partial S}{\partial x} dx + \frac{\partial S}{\partial \dot{x}} d\dot{x} = \int (dL) dt \right] \qquad (\eta = dx, \eta(0) = 0)$$

$$\Delta S_{cl} = \mathcal{L}(\tau) \Delta \tau + \int_{0}^{\tau} \frac{\partial \mathcal{L}}{\partial x} \Big|_{cl} \eta + \frac{\partial \mathcal{L}}{\partial \dot{x}} \Big|_{cl} \dot{\eta} dt$$

$$= \mathcal{L}(\tau) \Delta \tau + \int_{0}^{\tau} \underbrace{\left[\frac{\partial \mathcal{L}}{\partial x} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}} \right]_{cl} \eta}_{cl} \eta + \frac{d}{dt} \underbrace{\left[\frac{\partial \mathcal{L}}{\partial \dot{x}_{cl}} \eta \right]}_{cl} dt$$

$$= \left[\mathcal{L} + \frac{\partial \mathcal{L}}{\partial \dot{x}} \dot{x} \right]_{cl,\tau} \Delta \tau$$

$$\Delta S_{cl} = -H(t_f) \Delta t_f$$

(Time-Independent) Hamiltonian-Lagrangian Propagator Relationship / Finite Path Integral

$$\check{U}(x_{N},t;x_{0},0) = \langle x_{N}|e^{-\frac{i}{\hbar}Ht}|x_{0}\rangle = \langle x_{N}|[e^{-\frac{i}{\hbar}H\frac{t}{N}}]^{N}|x_{0}\rangle = \lim_{N\to\infty} \langle x_{N}|[e^{-\frac{i}{\hbar}\frac{\hat{p}^{2}}{2m}\epsilon}e^{-\frac{i}{\hbar}V(\hat{x})\epsilon}]^{N}|x_{0}\rangle \quad \text{(not trivial)}$$

$$= \lim_{N\to\infty} \int_{x...} \langle x_{N}|e^{-\frac{i}{\hbar}\frac{\hat{p}^{2}}{2m}\epsilon}e^{-\frac{i}{\hbar}V(\hat{x})\epsilon}|x_{N-1}\rangle \dots \langle x_{1}|e^{-\frac{i}{\hbar}\frac{\hat{p}^{2}}{2m}\epsilon}e^{-\frac{i}{\hbar}V(\hat{x})\epsilon}|x_{0}\rangle dx \dots$$

$$= \lim_{N\to\infty} \int_{x...} \dots \left[\int \langle x_{1}|e^{-\frac{i}{\hbar}\frac{\hat{p}^{2}}{2m}\epsilon}|p\rangle\langle p|x_{0}\rangle dp e^{-\frac{i}{\hbar}V(x_{0})\epsilon}\right] dx \dots$$

$$1. = \lim_{N\to\infty} \int_{x...} \dots \left[\int \frac{e^{\frac{i}{\hbar}p(x_{1}-x_{0})}}{2\pi\hbar}e^{-\frac{i}{\hbar}\frac{p^{2}}{2m}\epsilon}e^{-\frac{i}{\hbar}V(x_{0})\epsilon}dp\right] dx \dots = \left[\int e^{\frac{i}{\hbar}\int p\dot{x}-H(x,p)dt}\left[\mathcal{D}x\mathcal{D}p\right] \quad \text{(Phase Space)}\right]$$

$$2. = \lim_{N\to\infty} \int_{x...} \dots \left[\sqrt{\frac{-im}{2\pi\hbar\epsilon}}e^{\frac{im(x_{1}-x_{0})^{2}}{\epsilon}}e^{-\frac{i}{\hbar}V(x_{0})\epsilon}\right] dx \dots = \lim_{N\to\infty} \int_{x...} \dots \sqrt{\frac{-im}{2\pi\hbar\epsilon}}e^{\frac{i}{\hbar}\mathcal{L}\epsilon} dx_{1} \dots$$

$$= \int_{x_{0}}^{x_{N}} e^{\frac{i}{\hbar}S}\left[\mathcal{D}x\right] = \int_{x_{0}}^{x_{N}} e^{\frac{i}{\hbar}\int \mathcal{L}dt}\left[\mathcal{D}x\right] \quad \text{(Configuration Space)} \quad \text{(above is only integrable if } p \text{ is quadratic in } H)$$

Trace of Propagator

$$G(t) = \int \langle x | e^{-\frac{i}{\hbar}Ht} | x \rangle d^3x$$

$$= \sum_{n} \int \langle x | n \rangle e^{-\frac{i}{\hbar}E_n t} \langle n | x \rangle dx$$

$$G(t) = \sum_{n} e^{-\frac{i}{\hbar}E_n t} \sim \sum_{n} e^{-\beta E_n} = Z(\beta)$$

1.3 Extra

 $L_2 \subset \text{Hilbert Space} = \text{complete inner product space}$

$$\rho(x,t) \equiv \|\Psi\|^2$$
, $P_a^b(t) = \int_a^b \rho \, dx$, $P(t) = P_{-\infty}^{\infty}(t)$, $\Psi = \sqrt{\rho} e^{\frac{i}{\hbar}S}$ e.g., $e^{\frac{i}{\hbar}(p \cdot x - Et)}$

$$\begin{split} \bullet \quad & \breve{E}\rho = \breve{E}(\Psi^*\Psi) = \Psi^*(\breve{E}\Psi) + \Psi(\breve{E}\Psi^*) \\ & = \Psi^*(\breve{H}\Psi) - \Psi(\breve{H}\Psi^*) \\ & = \Psi^*(\frac{p^2}{2m} + V)\Psi - \Psi(\frac{p^2}{2m} + V)\Psi^* \\ & - \frac{\hbar}{i}\frac{\partial\rho}{\partial t} = \frac{\hbar}{i}\nabla \cdot \left(\Psi^*\frac{p}{2m}\Psi - \Psi\frac{p}{2m}\Psi^*\right) \\ & \left[\frac{d}{dt}P_a^b = J_{(a,t)} - J_{(b,t)}\right], \ \left[\int J dV = \langle\Psi|\frac{p}{m}|\Psi\rangle = \frac{\langle p\rangle}{m}\right] \end{split}$$

•
$$(V \in \mathbb{R})$$
 $\Rightarrow \frac{d}{dt}P = 0$ $\Rightarrow P(t) \equiv 1$ $(V = V_0 - i\Gamma)$ $\Rightarrow \frac{d}{dt}P = \frac{-2\Gamma}{\hbar}P$ $\Rightarrow P(t) = e^{-2(\Gamma/\hbar)t}$

•
$$\langle \Psi_n | \Psi_n \rangle$$
, $\langle \Psi_m | \Psi_m \rangle = 1 \Rightarrow \frac{d}{dt} \langle \Psi_n | \Psi_m \rangle = 0$

Schwarz Inequality: $\left\| \int_{a}^{b} f^{*}g \ dx \right\|^{2} \leq \left\| \int_{a}^{b} f^{*}f \ dx \right\| \left\| \int_{a}^{b} g^{*}g \ dx \right\|$ $\left\| \langle f|g \rangle_{ab} \right\|^{2} \leq \left\| \langle f|f \rangle_{ab} \right\| \left\| \langle g|g \rangle_{ab} \right\|$

$$\Big[V(x) = V(-x)\Big] \ \Rightarrow \ \Big[\Psi(x) \Rightarrow \Psi(-x)\Big] \ \Rightarrow \ \Big[\Psi(-x) = \Psi(x)\Big] \ \cup \ \Big[\Psi(-x) = -\Psi(x)\Big]$$

Discontinuity in Ψ means the possiblity of $\sigma_p \to \infty$

Prob 3.29:
$$\Psi(x,0) = \begin{cases} \frac{1}{\sqrt{2n\lambda}} e^{2\pi i x/\lambda}, & -n\lambda < x < n\lambda \\ 0 & \text{else} \end{cases}$$

 $\sigma_p \to \infty$ because the integral of $\delta^2(x)$ is infinite

$$\int_{-\infty}^{\infty} f(x)D_1(x)dx = \int_{-\infty}^{\infty} f(x)D_2(x)dx \implies \delta(cx) = \frac{1}{|c|}\delta(x)$$

$$\delta(x - x') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x - x')} dx' \implies F[\delta(x)] = \frac{1}{2\pi}$$

$$\delta'(x-x') = \frac{1}{2\pi} \int_{-\infty}^{\infty} ike^{ik(x-x')} dx' \implies \int \delta'(x-x') f(x') dx' = f'(x)$$

Poisson Brackets

$$\{f,g\} = \sum_{i} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial g}{\partial q_{i}} \frac{\partial f}{\partial p_{i}}$$

$$\{\omega(q,p,t),H\} = \sum_{i} \frac{\partial \omega}{\partial q_{i}} \dot{q} + \dot{p} \frac{\partial \omega}{\partial p_{i}} = \dot{\omega} - \frac{\partial \omega}{\partial t}$$

Hamilton Eq. : $\dot{q} = \{q, H\}, \ \dot{p} = \{p, H\}$

Canonical Transforms

$$\{f,g\} = \sum_{i} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial g}{\partial q_{i}} \frac{\partial f}{\partial p_{i}} \qquad q \to \bar{q}(q,p) \\ p \to \bar{p}(q,p) \qquad \text{s.t.} \quad \begin{cases} \bar{q}_{i}, \bar{q}_{j} \rbrace = 0 = \{\bar{p}_{i}, \bar{p}_{j} \rbrace \\ \{\bar{q}_{i}, \bar{p}_{j} \rbrace = \delta_{ij} \end{cases} \quad \begin{pmatrix} \text{Point Transforms} \\ \bar{q}(q) \text{ are canonical.} \end{pmatrix}$$

$$\{\omega_{(q,p,t)}, H\} = \sum_{i} \frac{\partial \omega}{\partial q_{i}} \dot{q} + \dot{p} \frac{\partial \omega}{\partial p_{i}} = \dot{\omega} - \frac{\partial \omega}{\partial t} \qquad \Rightarrow \begin{array}{c} \dot{q} = \frac{\partial H}{\partial \bar{p}} \\ \dot{p} = -\frac{\partial H}{\partial \bar{q}} \end{array}, \quad \{f, g\}_{q,p} = \{f, g\}_{\bar{q}, \bar{p}}$$

Generator of Transformation

1.
$$\delta H = 0$$

$$2. \ \bar{q}_{i} = q_{i} + \delta q_{i} , \ \bar{p}_{i} = p_{i} + \delta p_{i}$$

$$\equiv q_{i} + \epsilon_{\lambda} \frac{\partial g}{\partial p_{i}} \equiv p_{i} - \epsilon_{\lambda} \frac{\partial g}{\partial q_{i}}$$

$$= q_{i} + \epsilon_{\lambda} \{q_{i}, g\} = p_{i} + \epsilon_{\lambda} \{p_{i}, g\}$$

$$(e.g. \ g = p \text{ or } g = l_{z})$$

$$(e.g. \ g = p \text{ or } g = l_{z})$$

$$\frac{\partial x}{\partial \theta} = -y$$

$$\frac{\partial x}{\partial \theta} = -y$$

3.
$$\Rightarrow \delta f = \epsilon_{\lambda} \{f, g\} \rightarrow \frac{\partial f}{\partial \lambda} = \{f, g\}$$

$\delta H = \epsilon_{\lambda} \{H, q\}$

$$\Rightarrow \left[\frac{\partial H}{\partial \lambda} = 0 = \frac{dg}{dt} \right]$$
(e.g. $g = p$ or $g = l_z$)

(e.g.
$$g = p$$
 or $g = l_z$)

$$g = l_z$$

$$\Rightarrow \frac{\delta x = -\epsilon y = -(\delta \theta)}{\delta y = \epsilon x = (\delta \theta)x}$$

$$\Rightarrow \begin{bmatrix} \frac{\partial x}{\partial \theta} = -y\\ \frac{\partial y}{\partial \theta} = x \end{bmatrix}$$

Tensors and Tensor Operators

rank-2 Tensor :
$$|t^{(2)}\rangle = \sum_{i=1}^{3} \sum_{j=1}^{3} t_{ij} |i\rangle |j\rangle = \sum_{i=1}^{3} \sum_{j=1}^{3} |ij\rangle \langle ij| t^{(2)}\rangle$$

rank-2 Carte. Tens. Oper., T_{ij} : Set of $3^{n=2}$ Operators

rank-k Spher. Tens. Oper., T_k^q : Set of 2k+1 Operators s.t. $U[R]T_k^qU^{\dagger}[R] = \sum_{q'=-k}^k D_{q'q}^k T_k^{q'}$

$$\Rightarrow U T_k^q U^{\dagger} U | jm \rangle = \sum_{q'} \sum_{m'} D_{q'q}^k D_{m'm}^j T_{q'}^k | jm' \rangle$$
$$\sim U |kq\rangle |jm\rangle = \sum_{q'} \sum_{m'} D_{q'q}^k D_{m'm}^j |kq'\rangle |jm'\rangle$$

$$T_1^{\pm 1} = \mp \frac{V_x \pm iV_y}{\sqrt{2}}$$
$$T_1^0 = V_z$$

(CG coeff.)

Wigner-Eckhart: $\langle \alpha_2 j_2 m_2 | T_k^q | \alpha_1 j_1 m_1 \rangle = \langle \alpha_2 j_2 | T_k | \alpha_1 j_1 \rangle \cdot \langle j_2 m_2 | kq, j_1 m_1 \rangle$

$$0 = \left[\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta}\right) + l(l+1) - \frac{m^2}{\sin^2\theta}\right] P_l^m = \left[\frac{d}{dx} \left([1-x^2] \frac{d}{dx}\right) + l(l+1) - \frac{m^2}{1-x^2}\right] P_l^m (x = \cos\theta)$$

$$= \left[\frac{d}{d\xi} \left(\xi[1-\xi] \frac{d}{d\xi}\right) + l(l+1) - \frac{m^2}{1-x^2}\right] P_l^m (\xi = \frac{1}{2}[1-x])$$

Legendre Polynomial

 $(m = 0 \leftrightarrow Azimuthal Symmetry)$

$$P_{l(x)} = \frac{1}{2^{l} l!} \left(\frac{d}{dx}\right)^{l} (x^{2} - l)^{l}$$
$$\delta_{l'l} = \frac{2l+1}{2} \int_{-1}^{1} P_{l}(x) P_{l'}(x) dx$$

Associated Legendre Function

(not a polynomial if m is odd)

$$P_{l}(x) = \frac{1}{2^{l}l!} \left(\frac{d}{dx}\right)^{l} (x^{2} - l)^{l}$$
 $P_{l}^{m}(x) = \sqrt{1 - x^{2}}^{|m|} \left(\frac{d}{dx}\right)^{|m|} P_{l}(x)$

$$\delta_{l'l} = \frac{2l+1}{2} \int_{-1}^{1} P_l(x) P_{l'}(x) dx \qquad \delta_{l'l} = \frac{(l-m)!}{(l+m)!} \frac{2l+1}{2} \int_{-1}^{1} P_l^m(x) P_{l'}^m(x) dx$$

Spherical Harmonics

$$Y_{lm}(\theta,\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi} \times (-1)^m Y_{l,-m}^* \sqrt{\frac{(l-m)!}{(l+m)!}} \frac{2l+1}{2} P_l^m(\cos\theta)$$

$$\delta_{l'l}\,\delta_{m'm} = \iint Y_{m'l'}^* Y_{ml}\,d\Omega$$

$$\bullet \quad \boxed{P_l(\cos\theta) = P_l^0(\cos\theta) = \sqrt{\frac{4\pi}{2l+1}} Y_{l0}(\theta,\phi)} \quad \bullet \quad f(0,\phi) = \sum_l \sum_{m} \langle x|Y_{l0}\rangle \langle Y_{l0}^*|f\rangle = \sum_{l=0}^\infty \sqrt{\frac{2l+1}{4\pi}} P_l(1) \underbrace{\int \sqrt{\frac{2l+1}{4\pi}} P_l(\cos\theta) f(\theta,\phi) d\Omega}_{q}$$

$$\bullet \boxed{ 0 = \left[\nabla^2 + \frac{l(l+1)}{r^2} - \frac{m^2}{r^2 \sin^2 \theta} \right] P_l^m(\cos \theta) } = \left[\frac{1}{r^2 \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) + \frac{l(l+1)}{r^2} - \frac{m^2}{r^2 \sin^2 \theta} \right] P_l^m(\cos \theta)$$

$$= \left[\nabla^2 + \frac{l(l+1)}{r^2} + \frac{\nabla^2 e^{im\phi}}{e^{im\phi}} \right] P_l^m(\cos \theta) = \frac{1}{e^{im\phi}} \left[\nabla^2 + \frac{l(l+1)}{r^2} \right] \left[e^{im\phi} P_l^m(\cos \theta) \right] = \left[\frac{\nabla^2 + \frac{l(l+1)}{r^2}}{(\nabla^2 = \nabla'^2)} \right] \frac{Y_{lm}(\theta, \phi), P_l(\cos \theta)}{Y_{lm'}(\gamma, \beta), P_l(\cos \gamma)}$$

$$\rightarrow g_{(0,\beta)} = Y_{lm}^{*}[\theta' + 0, \phi(0,\beta)] = \sum_{l'=0}^{\infty} \sum_{m'=-N}^{l'} Y_{l'0}(\gamma,\beta) A_{l'0}[m] \quad (m'=0) \Big|_{\gamma=0} = \sum_{l'} \sqrt{\frac{2l+1}{4\pi}} \int Y_{l0}^{*}(\gamma,\beta) Y_{lm}^{*}(\theta' + \gamma,\phi) d\Omega$$

$$Y_{lm}^{*}(\theta',\phi') = \left[Y_{lm}^{*}(\theta,\phi) = \sum_{l'}^{\infty} \sum_{l'} Y_{l'm'}(\gamma,\beta) A_{lm'}[m] \quad (l'=l) \right]_{\gamma=0} = \frac{\sum_{l'} \sqrt{\frac{2l+1}{4\pi}} \int Y_{l0}^{*}(\gamma,\beta) Y_{lm}^{*}(\theta' + \gamma,\phi) d\Omega }{\frac{2l+1}{4\pi} \int P_{l}(\cos\gamma) Y_{lm}^{*}(\theta,\phi) d\Omega }$$

$$\Rightarrow P_l(\cos\gamma) = \sum_{m=-l}^l Y_{lm}(\theta,\phi) \left[A_{lm}(\theta',\phi') = \underline{\int P_l(\cos\gamma) Y_{lm}^*(\theta,\phi) d\Omega} \right] = \boxed{ \frac{4\pi}{2l+1} \sum_{m=-l}^l Y_{lm}(\theta,\phi) Y_{lm}^*(\theta',\phi') }$$

$$0 = \left[\frac{1}{\rho^{2-1}} \frac{d}{d\rho} \left(\rho^{2-1} \frac{d}{d\rho}\right) + k^2 - \frac{m^2}{\rho^2}\right] R(\rho) = \left[\frac{d^2}{d\rho^2} + \frac{2-1}{\rho} \frac{d}{d\rho} + k^2 - \frac{m^2}{\rho^2}\right] R(\rho)$$

$$= \left[\frac{d^2}{dx^2} + \frac{2-1}{x} \frac{d}{dx} + 1 - \frac{m^2}{x^2}\right] R(x = k\rho)$$
(a = radius of cylinder)

Bessel/Neumann Function $(m \in \mathbb{R})$

$$\begin{split} J_m(x) &= \left(\frac{x}{2}\right)^m \sum_{j=0}^{\infty} \left(\frac{x}{2}\right)^{2j} \frac{(-1)^j}{j!} \frac{1}{\Gamma(j+m+1)} \\ N_m(x) &= \frac{\cos m\pi \cdot J_m(x) - J_{-m}}{\sin m\pi} \quad \left(N(0) \to \infty\right) \end{split}$$

$$\begin{split} R_m(\rho) &= \sum_{n=1}^{\infty} A_n J_m(\frac{x_{mn}}{a} \rho = k_{mn} \rho) \qquad \left(J_m(x_{mn}) = 0 \right) \\ &= \sum_{n=1}^{\infty} B_n J_m(\frac{y_{mn}}{a} \rho = k_{mn} \rho) \qquad \left(J'_m(y_{mn}) = 0 \right) \end{split}$$

$$\delta_{n'n} = \frac{2}{a^2} \frac{1}{J_{m+1}^2(x_{mn}\frac{\rho}{a})} \int_0^a \rho J_m(x_{mn'}\frac{\rho}{a}) J_m(x_{mn}\frac{\rho}{a}) d\rho$$

3rd Kind (Hankel) Modified Bessel $(k^2 \rightarrow -k^2)$

$$H_m^{(1)}(x) = J_m + iN_m \qquad I_m(x) = i^{-m}J_m(ix)$$

$$H_m^{(2)}(x) = J_m - iN_m \qquad K_m(x) = \frac{\pi}{2}i^{m+1}H_m^{(1)}(ix)$$

Spherical Bessel:
$$j_l = \sqrt{\frac{2\pi}{z}} J_{l+1/2}$$

$$\delta(k-k') = \frac{2k^2}{\pi} \int_0^\infty r^2 j_l(k'r) j_l(kr) dr$$

"Cylindrical Series" (?)
$$0 \le \rho \le a$$
 $a \to \infty, \int dk$

$$\Psi(\vec{r}) = \sum_{m,n} \frac{1}{\sqrt{2\pi}} e^{im\phi} \times \left[A_{mn} e^{k_{mn}z} + B_{mn} e^{-k_{mn}z} \right] \times \left[C_{mn} J_m(k_{mn}\rho) + D_{mn} N_m(k_{mn}\rho) \right]$$

Associated Laguerre Polynomials: $L \equiv$

Laguerre Polynomials: L_{\equiv}

2 Simple 1D Potentials

Infinite Square Well (1-D) 2.1

$$V(x) = egin{cases} 0 & 0 < x < a \ \infty & ext{otherwise} \end{cases}$$

$$\Psi_n(x) = \sqrt{\frac{2}{a}} \sin k_n x$$

$$k_n = \frac{2\pi}{\lambda} = \frac{2\pi}{2a/n} = \frac{n\pi}{a} \qquad \forall n = 1, 2, 3, \dots \qquad \boxed{ !! \; \hat{p}\Psi_n \neq p\Psi_n \; !! } \qquad \text{wave isn't infinite}$$

$$\forall n = 1, 2, 3, \dots$$

$$!! \hat{p}\Psi_n \neq p\Psi_n !!$$

$$E_n = \frac{p^2}{2m} = \frac{\hbar^2 k_n^2}{2m}$$

3-D Rectangular Box

$$\Psi_{n_x n_y n_z}(x, y, z) = \Psi_{n_x}(x)\Psi_{n_y}(y)\Psi_{n_z}(z) = \sqrt{\frac{8}{a_x a_y a_z}} (\sin k_{n_x} x)(\sin k_{n_y} y)(\sin k_{n_z} z)$$

$$k_{n_i} = \frac{n_i \pi}{a_i} \qquad \forall n_x, n_y, n_z = 1, 2, 3, \dots$$

$$E_{n_x n_y n_z} = \frac{\hbar^2}{2m} (k_{n_x}^2 + k_{n_y}^2 + k_{n_z}^2)$$

Harmonic Oscillator (1-D): $V(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2x^2$ 2.2

$$\frac{\frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 = \frac{1}{2m}\left(p^2 + m^2\omega^2 x^2\right)}{= \frac{1}{2m}\left(-ip + m\omega x\right)\left(ip + m\omega x\right) \sim E \sim \hbar\omega} \Rightarrow \boxed{a = a_- = \frac{1}{\sqrt{2m}}\frac{1}{\sqrt{\hbar\omega}}\left(i\hat{p} + m\omega x\right)}$$

$$\begin{bmatrix} aa^{\dagger} = \frac{H}{\hbar\omega} + \frac{1}{2} \\ aa^{\dagger}|n\rangle = (\frac{E_n}{\hbar\omega} + \frac{1}{2})|n\rangle \end{bmatrix}, \begin{bmatrix} a^{\dagger}a = \frac{H}{\hbar\omega} - \frac{1}{2} \\ a^{\dagger}a|n\rangle = (\frac{E_n}{\hbar\omega} - \frac{1}{2})|n\rangle \end{bmatrix} \rightarrow \begin{bmatrix} [a,a^{\dagger}] = 1 \\ \text{or } [H,a_{\pm}] = (\pm\hbar\omega)a_{\pm} \end{bmatrix} \leftarrow \begin{bmatrix} H = \hbar\omega(a^{\dagger}a + \frac{1}{2}) \\ = \hbar\omega(aa^{\dagger} - \frac{1}{2}) \end{bmatrix}$$

$$(aa^{\dagger})a\Psi_{n} = a(a^{\dagger}a)\Psi_{n}$$

$$(a^{\dagger}a)a^{\dagger}|n\rangle = a^{\dagger}(aa^{\dagger})|n\rangle$$

$$(\frac{H}{\hbar\omega} + \frac{1}{2})a\Psi_{n} = a\left(\frac{H}{\hbar\omega} - \frac{1}{2}\right)\Psi_{n}$$

$$(\frac{E_{an}}{\hbar\omega} + \frac{1}{2})a\Psi_{n} = \left(\frac{E_{n}}{\hbar\omega} - \frac{1}{2}\right)a\Psi_{n}$$

$$(\frac{E_{an}}{\hbar\omega} + \frac{1}{2})a\Psi_{n} = (E_{n} - \hbar\omega)(a\Psi_{n})$$

$$(\frac{E_{an}}{\hbar\omega} - \frac{1}{2})\alpha|n\rangle = (E_{n} + \frac{1}{2})\alpha|n\rangle$$

$$(\frac{E_{n}}{\hbar\omega} - \frac{1}{2})\alpha|n\rangle = (E_{n} + \frac{1}{2})\alpha|n\rangle$$

$$(\frac{E_{n}}{\hbar$$

(Why ladders): (use induction)
$$\frac{\left[\frac{H}{\hbar\omega}, a_{\pm}\right] = (\pm 1)a_{\pm}}{\left[\frac{H}{\hbar\omega}, a_{\pm}^{m}\right] = (\pm 1)ma_{\pm}} \Rightarrow \frac{H}{\hbar\omega}a_{\pm}^{m}|n\rangle = (\pm 1)ma_{\pm}$$

$$\frac{H}{\hbar\omega}|n\rangle = \frac{E_{n}}{\hbar\omega}|n\rangle = c_{n}|n\rangle \Rightarrow \frac{H}{\hbar\omega}a_{\pm}^{m}|n\rangle = (\pm 1 \cdot m + c_{n})|n\rangle$$

$$Ha_{\pm}^{m}|n\rangle = \hbar\omega(c_{n} \pm m)a_{\pm}^{m}|n\rangle *$$

$$* Ha_{\pm}^{n}|0\rangle = \hbar\omega(c_{0} \pm n)a_{\pm}^{n}|0\rangle *$$

$$= E_{n0} \cdot a_{\pm}^{n}|0\rangle$$

$$E_n \ge \operatorname{Min}(V) \implies a\Psi_0 = 0$$
 (else is un-normalizable)

$$0 = (ip + m\omega x)\Psi_0$$

$$\hbar \frac{d}{dx}\Psi_0 = -m\omega x\Psi_0$$

$$\Psi_0 = Ae^{-\frac{m\omega}{\hbar}\frac{x^2}{2}}$$

$$A = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}$$

$$\frac{1}{\sigma^2} = \frac{m\omega}{\hbar}$$

$$a^{\dagger}a|0\rangle = \left(\frac{E_0}{\hbar\omega} - \frac{1}{2}\right)|0\rangle = 0$$

 $E_0|0\rangle = \frac{1}{2}\hbar\omega|0\rangle \qquad (c_0 = \frac{1}{2})$

$$Ha_{\pm}^{m}|n\rangle = \hbar\omega(c_{n} \pm m)a_{\pm}^{m}|n\rangle$$

$$* Ha_{\pm}^{n}|0\rangle = \hbar\omega(c_{0} \pm n)a_{\pm}^{n}|0\rangle *$$

$$= E_{n0} \cdot a_{\pm}^{n}|0\rangle$$

$$aa^{\dagger}|a_{+}^{n}(0)\rangle = \left(\frac{\hbar\omega(n+1/2)}{\hbar\omega} + \frac{1}{2}\right)|a_{+}^{n}(0)\rangle$$
$$aa^{\dagger}|a_{+}^{n}(0)\rangle = (n+1)|a_{+}^{n}(0)\rangle$$

$$\bullet \langle a_+^n(0)|aa^\dagger|a_+^n(0)\rangle = n+1$$

•
$$\langle a_{+}^{n}(0)|aa^{\dagger}|a_{+}^{n}(0)\rangle = n+1$$

• $a^{\dagger}|a_{+}^{n}(0)\rangle = \sqrt{n+1} |a_{+}^{n+1}(0)\rangle$

•
$$a|a_{+}^{n+1}(0)\rangle = \sqrt{n+1}|a_{+}^{n}(0)\rangle * *$$

$$a^{\dagger}a|n,0\rangle = \left(\frac{\hbar\omega(n+1/2)}{\hbar\omega} - \frac{1}{2}\right)|n,0\rangle$$
$$a^{\dagger}a|a_{+}^{n}(0)\rangle = n|a_{+}^{n}(0)\rangle$$

$$\frac{H}{\hbar\omega}|a_{+}^{n}(0)\rangle = \frac{\left(\frac{1}{2} + n\right)|a_{+}^{n}(0)\rangle}{\left(\frac{1}{2} + n \pm m\right)a_{+}^{m}|a_{+}^{n}(0)\rangle} \qquad c_{n} = \frac{1}{2} + n$$

$$\frac{H}{\hbar\omega}|a_{+}^{n}(0)\rangle = \frac{\left(\frac{1}{2} + n \pm m\right)a_{+}^{m}|a_{+}^{n}(0)\rangle}{\left(\frac{1}{2} + n \pm m\right)a_{+}^{m}|a_{+}^{n}(0)\rangle} \qquad \rightarrow \qquad a_{+}^{n}(0) = n \qquad \rightarrow \qquad a_$$

2.2.1Position/Momentum Operators

$$x = \frac{1}{2} \frac{\sqrt{2m}\sqrt{\hbar\omega}}{m\omega} (a + a^{\dagger})$$

$$x = \frac{1}{2} \frac{\sqrt{2m}\sqrt{\hbar\omega}}{m\omega} (a + a^{\dagger}) \qquad \qquad \hat{p} = \frac{1}{2} \frac{\sqrt{2m}\sqrt{\hbar\omega}}{i} (a - a^{\dagger})$$

Show Virial Theorem Works

$$2\langle T
angle = N\langle V
angle$$

$$E_{n} = 2\langle V \rangle_{n}$$

$$= 2\langle \Psi_{n} | V | \Psi_{n} \rangle$$

$$= 2 \left\langle \Psi_{n} \left| \frac{1}{2} m w^{2} \frac{2m\hbar\omega}{(2m\omega)^{2}} (a + a^{\dagger})^{2} \right| \Psi_{n} \right\rangle$$

$$= \frac{2m^{2}\hbar\omega^{3}}{(2m\omega)^{2}} \left(0 + \left\langle \Psi_{n} \left| (aa^{\dagger} + a^{\dagger}a) \right| \Psi_{n} \right\rangle + 0 \right)$$

$$E_n = (n+1/2)\hbar\omega$$
 \square

Heisenberg Picture

$$\frac{da_{\pm}}{dt} = \mp i\omega a_{\pm}$$

$$\Rightarrow a_{\pm}(t) = a_{\pm}(0)e^{\mp i\omega t}$$

$$x(t) \pm \frac{ip(t)}{m\omega} = x(0)e^{\mp i\omega t} \pm \frac{ip(0)}{m\omega}e^{\mp i\omega t}$$

$$x(t) = x(0)\cos\omega t + \frac{p(0)}{m\omega}\sin\omega t$$

$$\frac{p(t)}{m\omega} = -x(0)\sin\omega t + \frac{p(0)}{m\omega}\cos\omega t$$

Test the Uncertainty Principle

$$\sigma_x \sigma_p \ge \frac{1}{2} \left| \left\langle \left[x, p \right] \right\rangle \right|$$

$$xp - px = \frac{2m\hbar\omega}{4m\omega i} \begin{pmatrix} a^2 - aa^{\dagger} + a^{\dagger}a - (a^{\dagger})^2 \\ -a^2 + a^{\dagger}a - aa^{\dagger} + (a^{\dagger})^2 \end{pmatrix}$$

$$= \frac{\hbar}{i} (a^{\dagger}a - aa^{\dagger}) = i\hbar(n+1-n)$$

$$\Rightarrow \sigma_x \sigma_p \ge \frac{\hbar}{2} \quad \square$$

$$\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2 \qquad \sigma_p^2 = \langle p^2 \rangle - \langle p \rangle^2$$

$$= \frac{2m\hbar\omega}{4m^2\omega^2} \begin{bmatrix} \langle (a+a^\dagger)^2 \rangle \\ -\langle a+a^\dagger \rangle^2 \end{bmatrix} \qquad = \frac{2m\hbar\omega}{-4} \begin{bmatrix} \langle (a-a^\dagger)^2 \rangle \\ -\langle a-a^\dagger \rangle^2 \end{bmatrix}$$

$$= \frac{\hbar}{2m\omega} \langle aa^\dagger + a^\dagger a \rangle \qquad = \frac{\hbar m\omega}{2} \langle aa^\dagger + a^\dagger a \rangle$$

$$= \frac{\hbar}{m\omega} (n + \frac{1}{2}) \qquad = \hbar m\omega (n + \frac{1}{2})$$

$$\Rightarrow \sigma_x \sigma_p = \hbar (n + \frac{1}{2}) \geq \frac{\hbar}{2} \quad \square$$

2.2.2Analytic Method

$$\Psi_n = A rac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2}$$

$$A = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}$$

$$\xi = \sqrt{\frac{m\omega}{\hbar}}x$$

$$H_n(x) = (-1)^n e^{-x^2} \left(\frac{d}{dx}\right)^n e^{x^2}$$

Hermite Polynomials:

$$e^{-z^2+2zx} = \sum_{n=0}^{\infty} \frac{z^n}{n!} H_n(x)$$

2.2.3 Coherent States

$$a|\alpha\rangle = \alpha|\alpha\rangle$$

$$\sigma_x \sigma_p = \frac{\hbar}{2}$$

$$\langle \alpha | \alpha \rangle = \langle \alpha | \begin{pmatrix} \sum_{n=0}^{\infty} \langle \Psi_n | \alpha \rangle & | \Psi_n \rangle = \\ \sum_{n=0}^{\infty} \langle \frac{(a^{\dagger})^n}{\sqrt{n!}} \Psi_0 | \alpha \rangle & | \Psi_n \rangle = \\ \sum_{n=0}^{\infty} \langle \frac{(a^{\dagger})^n}{\sqrt{n!}} \Psi_0 | \alpha \rangle & | \Psi_n \rangle = \\ \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \langle \Psi_0 | \alpha \rangle & | \Psi_n \rangle \\ = \langle \Psi_0 | \alpha \rangle^2 \sum_{n=0}^{\infty} \frac{(\alpha^2)^n}{n!} \langle \Psi_n | \Psi_n \rangle \\ = \langle \Psi_0 | \alpha \rangle^2 e^{\alpha^2} = 1 \end{pmatrix} \Rightarrow \begin{vmatrix} |\alpha \rangle = e^{-\alpha^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} e^{\frac{-i}{\hbar} E_n t} a | \Psi_n \rangle \\ = e^{-\frac{\alpha^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} e^{\frac{-i}{\hbar} \hbar \omega (\frac{1}{2} + n)t} \sqrt{n} | \Psi_{n-1} \rangle \\ = (\alpha e^{\frac{-i}{\hbar} \hbar \omega t}) e^{-\frac{\alpha^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} e^{\frac{-i}{\hbar} \hbar \omega (\frac{1}{2} + n)t} | \Psi_n \rangle \\ = \langle \Psi_0 | \alpha \rangle^2 e^{\alpha^2} = 1$$

 $|\alpha\rangle$ are obviously not orthogonal. They are an overcomplete basis.

2.2.4 3-D Harmonic Potential

$$V(r)=rac{1}{2}kr^2$$

(Isotropic)
$$E_{n_x n_y n_z} = \hbar \omega \left(n_x + n_y + n_z + \frac{3}{2} \right) = \hbar \omega \left(n + \frac{3}{2} \right) \quad l = n - 2k \in \{n, n - 2, \dots, 0\}$$

2.3 Free Particle (1-D)

$$V(x) = 0$$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \Phi(x,0) e^{\frac{i}{\hbar}[px - E(p)t]} dp \qquad \langle x|U(t)|\Psi\rangle = \iint \langle x|p\rangle e^{-\frac{i}{\hbar}\frac{p^2}{2m}t} \langle p|x'\rangle dp \langle x'|\Psi\rangle dx'$$

$$= \int \langle x|p\rangle e^{-\frac{i}{\hbar}E(p)t} \langle p|\Psi\rangle dp \qquad = \iint_{-\infty}^{\infty} \frac{1}{2\pi\hbar} e^{-\frac{i}{\hbar}\left[\frac{p^2t}{2m} - p(x - x')\right]} dp \Psi(x',0) dx'$$

$$\Phi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \Psi(x,0) e^{\frac{-i}{\hbar}[px + E(p)t]} dx \qquad = \int \sqrt{\frac{-im}{2\pi\hbar}} e^{\frac{im(x - x')^2}{2\hbar t}} \Psi(x',0) dx'$$

 $(E < 0 \rightarrow \Psi = e^{\pm kx}$ is possible and also not normalizable, but solution above is already a complete set)

$$E(p) = \frac{p^2}{2m}$$
 Heisenberg Pic. Free Particle
$$v_{\text{wave}} = \boxed{v_{\text{phase}} = \frac{\omega(k)}{k}} = \frac{E}{p} = \frac{v_{\text{classical}}}{2}$$

$$[x_H(t) = x_H(0) + \frac{p_H(0)}{m}t$$

$$[x_H(0), x_H(t)] = \left[x_H(0), \frac{p_H(0)}{m}t\right] = \frac{i\hbar t}{m}$$

$$v_{\text{particle}} \approx \boxed{v_{\text{group}} = \frac{d\omega(k)}{dk}} = 2v_{\text{wave}}$$

$$\boxed{\sigma_{x_t}\sigma_{x_0} \geq \frac{\hbar t}{2m}}$$

2.4 Delta Potential (1-D)

Potential Well:
$$V(x) = -\alpha \delta(x)$$
 (\$\alpha \to -\alpha\$ for potential wall)

Bound State
$$(E < 0)$$
 [only for Well]:

$$\Psi = \sqrt{k}e^{k|x|} = \begin{cases} \sqrt{k}e^{kx} & x \le 0\\ \sqrt{k}e^{-kx} & x \ge 0 \end{cases}$$

$$k = \frac{m\alpha}{\hbar^2}$$
$$E = -\frac{(\hbar k)^2}{2m}$$

Scattering State (E > 0) [for both]:

$$\Psi = \begin{cases} Ae^{iKx} + Be^{-iKx} & x < 0 \\ Fe^{iKx} & x > 0 \end{cases}$$

$$E = \frac{(\hbar K)^2}{2m} \; , \qquad \qquad \beta \equiv \frac{k}{K} = \frac{m\alpha/\hbar^2}{K}$$

$$B = \frac{i\beta}{1 - i\beta} A \; , \qquad \qquad F = \frac{1}{1 - i\beta} A \label{eq:fitting}$$

$$R = \frac{|B|^2}{|A|^2} = \frac{\beta^2}{1+\beta^2} , \qquad T = \frac{|F|^2}{|A|^2} = \frac{1}{1+\beta^2}$$

Can't normalize. All free particles have ranges of p and thus E, so R and T are approx. in the vicinity of E.

2.5 Finite Square Potential (1-D)

$$V(x) = egin{cases} -V_0 & -a < x < a \ 0 & ext{otherwise} \end{cases}$$

 $(V_0
ightarrow -V_0$ for wall and do cases for $E > V_0, E = V_0, E < V_0$, and change to sinh, cosh if needed)

$$k ; K : \qquad E = \frac{-(\hbar k)^2}{2m} = \frac{(\hbar K)^2}{2m}$$

$$l: E + V_0 = \frac{(\hbar l)^2}{2m}$$

$$v: V_0 = \frac{\hbar^2 v^2}{2m} = \frac{\hbar^2 (l^2 + k^2)}{2m} = \frac{\hbar^2 (l^2 - K^2)}{2m}$$

$$\frac{k_a}{l_a} \equiv \sqrt{\frac{(ka)^2}{(la)^2}} = \sqrt{\frac{(la)^2 + (ka)^2}{(la)^2} - 1}$$

$$k ; K : E = \frac{-(\hbar k)^2}{2m} = \frac{(\hbar K)^2}{2m}$$

$$l : E + V_0 = \frac{(\hbar l)^2}{2m}$$

$$v : V_0 = \frac{\hbar^2 v^2}{2m} = \frac{\hbar^2 (l^2 + k^2)}{2m} = \frac{\hbar^2 (l^2 - K^2)}{2m}$$

$$\frac{k_a}{l_a} \equiv \sqrt{\frac{(ka)^2}{(la)^2}} = \sqrt{\frac{(la)^2 + (ka)^2}{(la)^2}} - 1$$

$$\frac{k_a}{l_a} \equiv \sqrt{\frac{v_a}{(la)^2}} = \sqrt{\frac{(la)^2 + (ka)^2}{(la)^2}} - 1$$

$$\frac{k_a}{l_a} \equiv \sqrt{\frac{v_a}{(la)^2}} = \sqrt{\frac{(la)^2 + (ka)^2}{(la)^2}} - 1$$

$$\frac{k_a}{(la)^2} = \sqrt{\frac{(la)^2 + (ka)^2}{(la)^2}} - 1$$

$$\frac{k_a}{(la)^2} = \sqrt{\frac{(la)^2 + (ka)^2}{(la)^2}} - 1$$

$$\frac{k_a}{(la)^2} = \sqrt{\frac{(la)^2 + (ka)^2}{(la)^2}} - 1$$

Bound State $(E_n < 0)$ [only for well]:

$$\Psi_{\text{even}}(x) = \begin{cases} \Psi(-x) & x < 0 \\ D\cos(lx) & 0 < x < a \end{cases}$$
$$Fe^{-kx} \quad a < x$$

$$\Psi_{\text{odd}}(x) = \begin{cases} -\Psi(-x) & x < 0 \\ C\sin(lx) & 0 < x < a \end{cases}$$
$$Fe^{-kx} \quad a < x$$

•
$$F = D\cos(la)e^{ka}$$

•
$$\frac{-(\partial_x \Psi)(a)}{\Psi(a)} = k = l \tan(la) \Rightarrow$$

$$\tan(l_a) = \sqrt{(v_a/l_a)^2 - 1}$$

big
$$v_a \rightarrow l \approx \frac{n\pi}{2a} \rightarrow E_n + V_0 = \frac{\hbar^2 l^2}{2m}$$
; n odd

$$\bullet \quad \boxed{n_{\max} = \left\lfloor \frac{v_a}{\pi} \right\rfloor + 1}$$

•
$$F = D\sin(la)e^{ka}$$

•
$$\frac{-(\partial_x \Psi)(a)}{\Psi(a)} = k = -l \cot(la) \Rightarrow$$

$$-\cot(l_a) = \sqrt{(v_a/l_a)^2 - 1}$$

big
$$v_a \to l \approx \frac{n\pi}{2a} \to E_n + V_0 = \frac{\hbar^2 l^2}{2m}$$
; \underline{n} even

$$\bullet \quad \boxed{n_{\max} = \left\lfloor \frac{v_a + \frac{\pi}{2}}{\pi} \right\rfloor}$$

Scattering State (E > 0) [for both]:

$$\Psi = \begin{cases} Ae^{iKx} + Be^{-iKx} & x < -a \\ C\sin lx + D\cos lx & -a < x < a \\ Fe^{iKx} & a < x \end{cases}$$

$$B = i\sin(2l_a) \left(\frac{l_a^2 - K_a^2}{2K_a l_a}\right) F$$

$$F = \frac{e^{-2iK_a}}{\cos(2l_a) - i\left(\frac{l_a^2 + K_a^2}{2K_a l_a}\right)\sin(2l_a)} A$$

(Can't normalize. See delta potential.)

$$\Psi = \begin{cases} Ae^{iKx} + Be^{-iKx} & x < -a \\ C\sin lx + D\cos lx & -a < x < a \\ Fe^{iKx} & a < x \end{cases} \qquad \frac{d\Psi}{dx} = \begin{cases} iKAe^{iKx} - iKBe^{-iKx} & x < -a \\ lC\cos lx - lD\sin lx & -a < x < a \\ iKFe^{iKx} & a < x \end{cases}$$

$$T^{-1} = 1 + \left(\frac{l_a^2 - K_a^2}{2K_a l_a}\right)^2 \sin^2(2l_a)$$
$$= 1 + \frac{V_0^2}{4E(E + V_0)} \sin^2\left(2a\sqrt{\frac{E + V_0}{\hbar^2/2m}}\right)$$

(full transmission at inf. sqr. well $E_n + V_0 = \frac{\hbar^2 l^2}{2m}$; $l = \frac{n\pi}{2a}$)

2D and 3D Schrodinger Equation 3

General dimensions, D

$$\frac{1}{r^{D-1}} \frac{\partial}{\partial r} \left(r^{D-1} \frac{\partial}{\partial r} \right) R(r) = \left[\frac{\partial^2}{\partial r^2} + \frac{D-1}{r} \frac{\partial}{\partial r} \right] R(r)$$

$$= \left[\frac{\partial^2}{\partial r^2} + \frac{D-1}{r} \frac{\partial}{\partial r} \right] r^n u(r)$$

$$= \left[\frac{\partial^2}{\partial r^2} + \frac{D-1+2n}{r} \frac{\partial}{\partial r} + \frac{2n(2D-4+2n)}{4r^2} \right] u$$

$$= \left[\frac{\partial^2}{\partial r^2} - \frac{(D-1)(D-3)}{4r^2} \right] u \qquad (n = \frac{1-D}{2}, 0, 2 - D)$$

$$R(r) = u(r)/\sqrt{r}^{D-1} \sim e^{\frac{i}{\hbar}p_r r}/\sqrt{r}^{D-1}$$

$$L^2 \sim \hbar^2 , \quad \hat{p}_r = \frac{\hbar}{i} \left(\frac{\partial}{\partial r} + \frac{D-1}{2r} \right) , \quad \hat{p'}_r = \frac{\hbar}{i} \frac{\partial}{\partial r}$$

$$ER(r) = \left[\frac{\hat{p}_r^2}{2M} + V(r) + \frac{L^2 - \hbar^2 (D-1)^2/4}{2(Mr^2)} \right] R(r)$$

$$Eu(r) = \left[\frac{\hat{p'}_r^2}{2M} + V(r) + \frac{L^2 - \hbar^2 (D-1)(D-3)/4}{2(Mr^2)} \right] u(r)$$

3.1 2D Schrodinger

$$\underline{\text{If } V = V(\rho)}$$

$$\Psi(\vec{\mathbf{r}}) = R_m(\rho)\Phi_m(\phi) \Rightarrow$$

$$ER = \left[\frac{-\hbar^2}{2M} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + V(\rho) + \frac{\hbar^2 m^2}{2M \rho^2} \right] R$$

$$ER = \left[\frac{-\hbar^2}{2M} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho}\right) + V(\rho) + \frac{\hbar^2 m^2}{2M\rho^2}\right] R$$

$$Eu = \frac{-\hbar^2}{2M} \frac{\partial^2 u}{\partial \rho^2} + \left[V(\rho) + \frac{\hbar^2 (m^2 + 1/4)}{2M\rho^2}\right] u$$

$$\bullet R_m(\rho) = u_m(\rho) / \sqrt{\rho} \qquad \left(\int \Psi r dr d\phi = 1\right)$$

$$\bullet L_z = (\vec{r} \times \vec{p})_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}$$

$$Eu\Phi = \left[\frac{\hat{p'}_{\rho}^{2}}{2M} + V(\rho) + \frac{\hat{L}_{z}^{2} + \hbar^{2}/4}{2(M\rho^{2})}\right]u\Phi$$

•
$$R_m(\rho) = u_m(\rho)/\sqrt{\rho}$$
 $\left(\int \Psi r dr d\phi = 1\right)$

•
$$\Phi_m(\phi) = e^{im\phi}$$

•
$$L_z = (\vec{r} \times \vec{p})_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}$$

3.23D Schrodinger

If
$$V = V(r)$$

$$\Psi(\vec{\mathbf{r}}) = R_l(r)Y_l^m(\theta, \phi) = R_l(r)\Theta_l^m(\theta)\Phi_m(\phi) \Rightarrow$$

$$\begin{split} ER &= \left[\frac{-\hbar^2}{2M}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + V(r) + \frac{\hbar^2l(l+1)}{2Mr^2}\right]R\\ &\left[Eu &= \frac{-\hbar^2}{2M}\frac{\partial^2 u}{\partial r^2} + \left[V(r) + \frac{\hbar^2l(l+1)}{2Mr^2}\right]u\right]\\ &Eu\Theta &= \left[\frac{\hat{p'}_r^2}{2M} + V(r) + \frac{\hat{L}^2}{2(Mr^2)}\right]u\Theta \end{split}$$

$$\langle u|\nabla_r^2 u\rangle = \langle \nabla_r^2 u|u\rangle \Rightarrow \left[u^* \frac{\partial u}{\partial r} - u \frac{\partial u^*}{\partial r}\right]_0^{\infty} \stackrel{(-1.)}{\leftarrow 2..} = 0$$

1.)
$$\int_0^\infty u^2 dr = 1 \implies u(\infty) = 0 \text{ or } e^{ir}$$

1.)
$$\int_{0}^{a} u^{2} dr = 1 \Rightarrow u(\infty) = 0 \text{ or } e^{ir}$$
2.)
$$u(0) = c = 0 \quad \left\{ c \neq 0 \to \frac{\Psi_{l=0}(r) \sim \frac{c}{r}}{\nabla^{2}(\frac{1}{r}) \sim \delta^{3}(r)} \to \inf_{if} V(r) \neq \delta^{3}(r) \right\} \quad V \sim r^{-1 \leq a}, E > 0 : u \gtrsim re^{\pm ikr}$$
Sim for $E < 0 : u \sim e^{\pm kr}$ o

•
$$R_l(r) = u_l(r)/r$$
 $\left(\int \Psi r^2 \sin\theta \, dr d\theta d\phi = 1\right)$

•
$$\Phi_m(\phi) = e^{im\phi}$$

•
$$\Theta_l^m(\theta) = AP_l^m(\cos\theta)$$

$$-A = \epsilon \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}}, \quad \epsilon = \begin{cases} {}^{(-1)^m} & {}^{(m\geq 0)} \\ {}^{1} & {}^{(m\leq 0)} \end{cases}$$

$$-P_l^m(x)=$$
 Assoc. Legendre Func. (see extra)

•
$$l \in \mathbb{N}_0, m \in \{-l, ..., -1, 0, 1, ..., l\}$$

•
$$\widehat{L}_i = (\vec{r} \times \vec{p})_i$$

$$V \sim r^{-2 < a}, \ l \neq 0 : \lim_{r \to 0} u'' \sim \frac{l(l+1)}{r^2} u, \ u \sim r^{l+1}$$

$$V \sim r^{-2 < a < -1}$$
, $E > 0$: $\lim_{r \to \infty} p_r^2 u \sim E u$, $u \sim e^{\pm ikr}$

$$V \sim r^{-1 \le a}, E > 0$$
: $u \gtrsim re^{\pm ikr}$

Sim for
$$E < 0$$
: $u \sim e^{\pm kr}$ or $re^{\pm kr}$ etc.

3.2.13D Free Particle, V=0

$$\frac{\hbar^2}{2M} \left[-\frac{\partial^2}{\partial r^2} + \frac{l(l+1)}{r^2} \right] u = \frac{\hbar^2 k^2}{2M} u \quad \Rightarrow \quad \left[-\frac{\partial^2}{\partial \rho^2} + \frac{l(l+1)}{\rho^2} \right] |l\rangle = |l\rangle = \begin{cases} A \rho^{l+1} & \text{or (?) } \dots \\ B \rho^{-l} & \text{or (?) } \dots \end{cases}$$

$$a_l \equiv \frac{\partial}{\partial \rho} + \frac{l+1}{\rho}$$
 $a_l^{\dagger} = -\frac{\partial}{\partial \rho} + \frac{l+1}{\rho}$

$$a_{l}a_{l}^{\dagger}|l\rangle = |l\rangle \qquad a_{l}^{\dagger}a_{l}|l\rangle = a_{l+1}a_{l+1}^{\dagger}|l\rangle$$
$$a_{l}^{\dagger}|l\rangle = e^{i\theta_{l}}|a_{l}^{\dagger}(l)\rangle$$

$$a_{l}^{\dagger} \left(a_{l} a_{l}^{\dagger} \right) | l \rangle = \underline{a_{l}^{\dagger} | l \rangle}$$

$$\left(a_{l}^{\dagger} a_{l} \right) \underline{a_{l}^{\dagger} | l \rangle} = \left(a_{l+1} a_{l+1}^{\dagger} \right) \underline{a_{l}^{\dagger} | l \rangle}$$

$$a_{l}^{\dagger} | l \rangle = e^{i\theta_{l}} | l + 1 \rangle$$

Spherical :
$$r\underline{R_0^B} = u_0^B \sim \sin(\rho) = \sin(kr)$$

Spherical Neumann:
$$r\underline{R_0^N} = u_0^N \sim -\cos(\rho)$$

$$e^{i\theta_{l}^{\prime}} \frac{\rho}{k} R_{l+1} = a_{l}^{\dagger} \left(\frac{\rho}{k} R_{l}\right) = \left(-\frac{\partial}{\partial \rho} + \frac{l+1}{\rho}\right) \left(\frac{\rho}{k} R_{l}\right)$$

$$R_{l+1} = \left(-\frac{\partial}{\partial \rho} + \frac{l}{\rho}\right) R_{l} = -\rho^{l} \frac{\partial}{\partial \rho} \left(\rho^{-l} R_{l}\right)$$

$$\frac{R_{l}}{\rho^{l}} = -\frac{1}{\rho} \frac{\partial}{\partial \rho} \frac{R_{l-1}}{\rho^{l-1}} = \left(-\frac{1}{\rho} \frac{\partial}{\partial \rho}\right)^{l} R_{0}$$

$$R_{l} = C_{l} (-\rho)^{l} \left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\right)^{l} R_{0}$$

$$\underline{\text{Infinite Spherical Well:}} \quad V(r) = \begin{cases} 0 & r \leq a \\ \infty & r > a \end{cases}, \quad E_n = \frac{\hbar^2 k_n^2}{2m}$$

$$\underline{\text{Bessel}}: \begin{array}{c} R_l^B(\rho) = C_l(-\rho)^l \left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\right)^l R_0^B(\rho) \\ R_0^B(\rho) \sim k_n \sin{(\rho)}/\rho = \sin{(k_n r)}/r \end{array} \Rightarrow \begin{array}{c} \beta_l^n \equiv k_n a: \ R_l^B(\beta_l^n) = 0 \\ \beta_0^n = \frac{n\pi}{a} \cdot a \end{array}$$

Hydrogen Atom, $V = -\frac{ke^2}{r}$

$$Eu = \left(\frac{\hat{p}_r^2}{2m} + V(r) + \frac{\hat{L}^2}{2(mr^2)}\right)u \qquad u(r) = rR(r)$$

$$Eu = \frac{-\hbar^2}{2m} \frac{\partial^2}{\partial r^2} u + \left[-\frac{ke^2}{r} + \frac{\hbar^2 l(l+1)}{2mr^2} \right] u$$

$\overline{\Psi_{nlm}(\vec{\mathbf{r}}) = R_{nl}(r) \ Y_l^m(\theta, \phi) = R_{nl}(r) \ \Theta_l^m(\theta) \ \Phi_m(\phi)}$

•
$$\Phi_m(\phi) = e^{im\phi}$$

•
$$\Theta_l^m(\theta) = AP_l^m(\cos\theta)$$

$$-A = \epsilon \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}}, \quad \epsilon = \begin{cases} (-1)^m & (m \ge 0) \\ 1 & (m \le 0) \end{cases}$$

$$-\nu(\rho) = L_{n-l-1}^{2l+1}(2\rho) \quad \text{Assoc. Laguerre Pol. (see extra)}$$

$$-P_l^m(x) \quad \text{Assoc. Legendre Func. (see extra)}$$

$$-B = \sqrt{2k_n \frac{(n-l-1)!}{2n[(n+l)!]^3}} \ 2^{l+1}$$

-
$$P_l^m(x)$$
 Assoc. Legendre Func. (see extra)

•
$$R_{nl}(r) = \frac{B}{r}\rho^{l+1}e^{-\rho}\nu(\rho)$$

-
$$ho = k_n r$$
 , $k_n = rac{1}{a_0 n}$ (fine structure below)

-
$$\nu(
ho) = L_{n-l-1}^{2l+1}(2
ho)$$
 Assoc. Laguerre Pol. (see extra

$$-B = \sqrt{2k_n \frac{(n-l-1)!}{2n[(n+l)!]^3}} 2^{l+1}$$

$$\alpha \equiv \frac{kqq}{\hbar c} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{\hbar c} \approx \frac{1}{137} \qquad a_0 \equiv \frac{\hbar^2}{m(kqq)} = \frac{4\pi\epsilon_0 \hbar^2}{me^2}$$

$$a_0 \equiv \frac{\hbar^2}{m(kqq)} = \frac{4\pi\epsilon_0\hbar^2}{me^2}$$

$$E_n = -\frac{\hbar^2 k_n^2}{2m} = -\frac{\hbar^2}{2ma_0^2} \frac{1}{n^2} = -\frac{1}{2}\alpha^2 \left(mc^2\right) \frac{1}{n^2} \approx -13.6 \frac{1}{n^2} \text{ [eV]}$$

$$\frac{1}{\lambda} = \frac{\alpha^2 (mc^2)}{2hc} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) , \quad R = 1.097 \text{ E7 [m}^{-1}]$$

Quantum Numbers - n, l, m:

•
$$(n \in \{1, 2, 3, ...\}), (l \in \{0, 1, 2, ..., n - 1\}), (m \in \{-l, ..., -1, 0, 1, ..., l\})$$

- Degeneracy is n^2

(outdated) Bohr Model:

•
$$L = (\bar{r})(\bar{p}) = (a_0 n^2)(\hbar k_n) = n\hbar$$
 (not correct!!)

- Electrons don't radiate about the nucleus
- Energy diff. follows Rydberg formula

Spin and L4

4.1 Hydrogen Atom

Angular Momentum:

$$\widehat{L}_i \equiv (\vec{r} \times \vec{p})_i \ , \ \overline{L_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}} \$$

$$\widehat{L}_{\pm} \equiv \widehat{L}_x \pm i\widehat{L}_y$$

$$\widehat{L}^2 \equiv L_x^2 + L_y^2 + L_z^2$$

$$L_{\pm}L_{\mp} = \widehat{L}^2 - L_z^2 \pm \hbar L_z$$

Commutation Relations:

$$\left[\left[\hat{x}, L_y \right] = i\hbar \hat{z} \right], \left[\left[p_x, L_y \right] = i\hbar p_z \right], \left[\left[L_x, L_y \right] = i\hbar L_z \right]$$

$$\boxed{\left[L^2,L_i\right]=\left[H,L_i\right]=\left[H,L^2\right]=0}$$
 (can measure concurrently)

$$\rightarrow \frac{\boxed{L_z Y_{m'} = \hbar m' Y_{m'}}}{\boxed{L^2 Y_{m'} = \hbar^2 \lambda_{m'} Y_{m'}}} \Rightarrow \frac{\langle L^2 - L_z^2 \rangle = \langle L_x^2 + L_y^2 \rangle \ge 0}{\bullet \sqrt{\lambda_{m'}} \ge m' \ge -\sqrt{\lambda_{m'}}}$$

Let $(L_{\pm})^n Y_{\mu} \equiv |m\rangle$ (see harm. osc. for why ladders)

$$\begin{bmatrix}
\frac{L_z}{\hbar}, L_{\pm} \end{bmatrix} = (\pm 1)L_{\pm}$$

$$\Rightarrow \begin{bmatrix}
\frac{L_z}{\hbar}, (L_{\pm})^n \end{bmatrix} = \pm n(L_{\pm})^n$$

$$\Rightarrow L_z[(L_{\pm})^n Y_{\mu}] = (\mu \pm n)\hbar[(L_{\pm})^n Y_{\mu}]$$

$$\bullet L_z|m\rangle = (\mu \pm n)\hbar|m\rangle$$

$$\begin{bmatrix}
L^2, L_{\pm} \end{bmatrix} = 0$$

$$\Rightarrow [L^2, (L_{\pm})^n] = 0$$

$$\Rightarrow L^2[(L_{\pm})^n Y_{\mu}] = \lambda_{\mu}[(L_{\pm})^n Y_{\mu}]$$

$$\bullet L^2|m\rangle = \lambda_{\mu}|m\rangle$$

Then
$$\left(\sqrt{\lambda_{\mu}} \geq (\mu \pm n) \geq -\sqrt{\lambda_{\mu}}\right) \Rightarrow \mathbf{Let}$$
 (else un-normalizable solution)

$$\frac{L_+|m_t\rangle = 0}{L^2|m_t\rangle = \lambda \hbar^2} , \quad L_z|m_t\rangle = \hbar l ,$$

$$L^2|m_t\rangle = \lambda \hbar^2 , \quad L^2 = L_-L_+ + L_z^2 + \hbar L_z$$

•
$$L^2|m_t\rangle = \hbar^2 l(l+1)|m_t\rangle = \lambda \hbar^2 |m_t\rangle$$

$$\frac{L_{+}|m_{t}\rangle = 0}{L^{2}|m_{t}\rangle = \lambda\hbar^{2}}, \quad L_{z}|m_{t}\rangle = \hbar l, \qquad \frac{L_{-}|m_{b}\rangle = 0}{L^{2}|m_{b}\rangle = \lambda\hbar^{2}}, \quad L^{2} = L_{-}L_{+} + L_{z}^{2} + \hbar L_{z}$$

$$\frac{L_{-}|m_{b}\rangle = 0}{L^{2}|m_{b}\rangle = \lambda\hbar^{2}}, \quad L^{2} = L_{+}L_{-} + L_{z}^{2} - \hbar L_{z}$$

•
$$L^2|m_t\rangle = \hbar^2 l(l+1)|m_t\rangle = \lambda \hbar^2 |m_t\rangle$$
 • $L^2|m_b\rangle = \hbar^2 l'(l'-1)|m_b\rangle = \lambda \hbar^2 |m_b\rangle$

$$\left[\lambda = l'(l'-1) = l(l+1) \right] \ \Rightarrow \ \left[l' = -l \right] \ \Rightarrow \ \left[L_z | m_t \rangle = \hbar l \, | m_t \rangle \atop L_z | m_b \rangle = -\hbar l \, | m_b \rangle \right]$$
 (Spherical Harmonics do not allow half-integer l)

Schrodinger
$$Y_l^m$$
:
$$\begin{aligned}
l &\in \{0, 1, 2, \dots\} \\
m &\in \{-l, -l+1, \dots, l-1, l\}
\end{aligned}
\qquad
\begin{aligned}
L_z \middle| Y_l^m \middle\rangle &= \hbar m \middle| Y_l^m \middle\rangle &= \frac{\hbar}{i} \frac{\partial}{\partial \phi} \middle| Y_l^m \middle\rangle \\
L^2 \middle| Y_l^m \middle\rangle &= \hbar^2 l(l+1) \middle| Y_l^m \middle\rangle \\
L_{\pm} \middle| Y_l^m \middle\rangle &= \hbar \sqrt{l(l+1) - m(m\pm 1)} \middle| Y_l^m \middle\rangle
\end{aligned}$$

4.2 Generalized

Angular Momentum:

$$\widehat{J}_i \equiv ??? \qquad \boxed{J^2 \equiv J_x^2 + J_y^2 + J_z^2}$$

$$\boxed{J_{\pm} \equiv J_x \pm iJ_y} \boxed{J_{\pm}J_{\mp} = J^2 - J_z^2 \pm \hbar J_z}$$

Commutation Relations:

$$\boxed{ \begin{bmatrix} J_i, J_j \end{bmatrix} = i\hbar J_k \ \epsilon_{ij}} \Leftrightarrow \boxed{J \times J = i\hbar J}$$

$$\boxed{\left[J^2,J_z\right]=0}=\left[H,J_z\right]$$
 (if spher. symm.)

General:

$$j \in \left\{0, \frac{1}{2}, 1, \frac{3}{2}, \dots\right\}$$

$$m \in \left\{-j, -j+1, \dots, j-1, j\right\}$$

$$J_z | jm \rangle = \hbar m | jm \rangle$$

$$J^2 | jm \rangle = \hbar^2 j(j+1) | jm \rangle$$

$$J_{\pm} | jm \rangle = \hbar \sqrt{j(j+1) - m(m\pm 1)} | jm \rangle$$

$$J_x | jm \rangle = \frac{J_{+} + J_{-}}{2} | jm \rangle$$

Generator of Rotations:

$$U[R(\theta)] = e^{-\frac{i}{\hbar}\theta \,\hat{\theta} \cdot L} = \lim_{N \to \infty} \left[\mathbb{1} - \frac{i}{\hbar} \frac{\theta}{N} \,\hat{\theta} \cdot L \right]^N \iff \left[U[R(\epsilon_z \,\hat{z})] = \mathbb{1} - \frac{i}{\hbar} \epsilon_z L_z \right]$$

1.)
$$U[R(\epsilon_z \hat{z})]|x,y\rangle \equiv |x - \epsilon_z y, \epsilon_z x + y\rangle$$

$$\Rightarrow \langle x, y | U[R(\epsilon_z \hat{z})] | \Psi \rangle = \Psi(x + \epsilon_z y, \epsilon_z x - y)$$

$$\Rightarrow \langle x, y | L_z | \Psi \rangle = (X P_y - Y P_x) \Psi(x, y)$$

or 2.)
$$U^{\dagger}XU \equiv X - \epsilon_z Y \Rightarrow [X, L_z] = -i\hbar Y$$

 $U^{\dagger}P_yU \equiv \epsilon_z P_x + P_y \Rightarrow [P_y, L_z] = i\hbar P_x$
 $U^{\dagger}YU, U^{\dagger}P_xU, \Rightarrow \dots$
 $\Rightarrow L_z = XP_y - YP_x$

Consistency Check:
$$U[R(-\epsilon_z \hat{z})]T(-\epsilon_x \hat{x} - \epsilon_y \hat{y})U[R(\epsilon_z \hat{z})]T(\epsilon_x \hat{x} + \epsilon_y \hat{y}) = T(-\epsilon_y \epsilon_z \hat{x} + \epsilon_x \epsilon_z \hat{y})$$

$$?U[R(-\epsilon_y \hat{y})]U[R(-\epsilon_x \hat{x})]U[R(\epsilon_y \hat{y})]U[R(\epsilon_x \hat{x})] = 1 + \frac{i}{\hbar} \epsilon_x \epsilon_y L_z = U[R(-\epsilon_x \epsilon_y \hat{z})]$$

$$(L_z = xp_y - yp_x)$$

Tensors and Tensor Operators

rank-2 Tensor:

$$|t^{(2)}\rangle = \sum_{i=1}^{3} \sum_{j=1}^{3} t_{ij} |i\rangle |j\rangle$$
$$= \sum_{i=1}^{3} \sum_{j=1}^{3} |ij\rangle \langle ij| t^{(2)}\rangle$$

 $\mathit{rank}\text{-}\mathit{k}$ Spherical Tensor Operator, $T_{\mathit{k}}^{\mathit{q}}$:

Set of 2k + 1 Operators s.t.

$$U[R]T_k^q U^{\dagger}[R] = \sum_{q'=-k}^k D_{q'q}^k T_k^{q'} \qquad \bullet \quad T_1^{\pm 1} = \mp \frac{V_x \pm i V_y}{\sqrt{2}}$$

$$= \sum_{i=1}^3 \sum_{j=1}^3 |ij\rangle\langle ij|t^{(2)}\rangle \qquad \downarrow \qquad \qquad U[R]T_k^q U^{\dagger}[R] = \sum_{q'=-k}^k D_{q'q}^k T_k^{q'} \qquad \bullet \quad T_1^{\pm 1} = \mp \frac{V_x \pm i V_y}{\sqrt{2}}$$

$$T_1^0 = V_z$$

$$UT_k^q U^{\dagger}U|jm\rangle = \sum_{q'} \sum_{m'} D_{q'q}^k D_{m'm}^j T_{q'}^k |jm'\rangle \qquad \sim \quad U|kq\rangle|jm\rangle = \sum_{q'} \sum_{m'} D_{q'q}^k D_{m'm}^j |kq'\rangle|jm'\rangle$$

Wigner-Eckhart: $\langle \alpha_2 j_2 m_2 | T_k^q | \alpha_1 j_1 m_1 \rangle = \langle \alpha_2 j_2 | T_k | \alpha_1 j_1 \rangle \cdot \langle j_2 m_2 | kq; j_1 m_1 \rangle$ (CG coeff.)

4.3 1 Particle w/ Spin, $s = \frac{1}{2}$

*Find the Eigenvectors, e_i , of S_z and S^2 in the form of $|\chi\rangle = \begin{pmatrix} \cos\frac{\theta}{2}e^{i\phi_1} \\ \sin\frac{\theta}{2}e^{i\phi_2} \end{pmatrix} = e^{i\gamma}\begin{pmatrix} \cos\frac{\theta}{2}e^{-i\frac{\phi}{2}} \\ \sin\frac{\theta}{2}e^{i\frac{\phi}{2}} \end{pmatrix}$ $\gamma = \frac{\phi_1 + \phi_2}{2}$ $\phi = \phi_2 - \phi_1$

*
$$e_i \in \left\{ |\frac{1}{2} \frac{1}{2}\rangle \equiv |\uparrow\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix} = \frac{1}{2}(1+\sigma_z) , |\frac{1}{2} \frac{-1}{2}\rangle \equiv |\downarrow\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix} = \frac{\sigma_x}{2}(1+\sigma_z) \right\}$$

$$S^{2}|\uparrow\rangle = \frac{3\hbar^{2}}{4}|\uparrow\rangle$$

$$S^{2}|\downarrow\rangle = \frac{3\hbar^{2}}{4}|\downarrow\rangle$$

$$\Rightarrow S^{2} = \frac{3\hbar^{2}}{4}\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix} = \frac{3\hbar^{2}}{4}\sigma_{0} = *\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\begin{pmatrix}\frac{3\hbar^{2}}{4} & 0 \\ 0 & \frac{3\hbar^{2}}{4}\end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}^{T*}$$

$$= \underbrace{\text{Casimir Op: } -(g_{yz})^{2} - (g_{zx})^{2} - (g_{xy})^{2}}_{=(g_{xy})^{2}} = \frac{3\hbar^{2}}{4}\mathbb{1} \qquad \text{(only for } s = 1/2 \text{ systems)}$$

$$\begin{array}{c}
S_{-}|\uparrow\rangle = \hbar|\downarrow\rangle \\
S_{+}|\downarrow\rangle = \hbar|\uparrow\rangle \\
S_{+}|\uparrow\rangle = S_{-}|\downarrow\rangle = 0
\end{array}
\Rightarrow
\begin{array}{c}
S_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & S_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} & \text{Lad. Op. (see harm.)} \\
(\frac{\text{can't}}{\text{measure}}) & [S_{+}, S_{-}] = (2\hbar)S_{z} \\
[S_{z}, S_{\pm}] = (\pm\hbar)S_{+}
\end{array}$$

$$S_{z}|\uparrow\rangle = \frac{\hbar}{2}|\uparrow\rangle$$

$$S_{z}|\downarrow\rangle = -\frac{\hbar}{2}|\downarrow\rangle$$

$$\Rightarrow S_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{\hbar}{2}\sigma_{z} = *\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\hbar}{2} & 0 \\ 0 & -\frac{\hbar}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{T*}$$

$$= \frac{\hbar}{2}|\uparrow\rangle\langle\uparrow| - \frac{\hbar}{2}|\downarrow\rangle\langle\downarrow|$$

$$S_{x} = \frac{1}{2}(S_{+} + S_{-})$$

$$S_{y} = \frac{1}{2i}(S_{+} - S_{-})$$

$$\Rightarrow S_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\hbar}{2} \sigma_{x} \qquad S_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \frac{\hbar}{2} \sigma_{y}$$

$$\begin{cases} S_{x}, S_{y} \} = \frac{\hbar^{2}}{2} \delta_{ij} \end{cases} \quad \text{(only for } s = 1/2 \text{ systems} \text{)}$$

Properties of Pauli Matrices, σ_i

$$\bullet \ \sigma_i = \sigma_i^{\dagger} = \sigma_i^{-1}$$

$$* \sigma_i^2 = 1 = (\hat{n} \cdot \sigma)^2 \leftrightarrow \frac{(\hat{n} \cdot \sigma + \mathbb{1})(\hat{n} \cdot \sigma - \mathbb{1}) = 0}{(\hat{n} \cdot S + \frac{\hbar}{2})(\hat{n} \cdot S - \frac{\hbar}{2}) = (S_z + \frac{\hbar}{2})(S_z - \frac{\hbar}{2})}$$

•
$$\sigma_i \sigma_j = -\sigma_j \sigma_i = i\sigma_k = (\sigma_j \sigma_i)^{\dagger} \Rightarrow \left[\frac{\sigma_i}{2i}, \frac{\sigma_j}{2i}\right] = \frac{\sigma_k}{2i}$$

$$* \ (A \cdot \sigma)(B \cdot \sigma) = A \cdot B + i(A \times B) \cdot \sigma \qquad \Big(\text{if } [A_i, \sigma_i] = 0 = [B_i, \sigma_i] \Big)$$

$$* (\sigma_i \sigma_j)^2 = -1$$

$$* (\sigma_i \sigma_i \sigma_k)^2 = -1 = i^2$$

• Tr
$$\sigma_i = 0 \implies \text{Tr}(\sigma_{\alpha}\sigma_{\beta}) = 2\delta_{\alpha\beta} \quad \alpha \in (0, x, y, z)$$

*
$$\sum c_{\alpha}\sigma_{\alpha} = 0 \rightarrow c_{\alpha} = 0 \Rightarrow M_{2\times 2} = \sum \frac{1}{2} \text{Tr}(M\sigma_{\alpha}) \sigma_{\alpha}$$

•
$$\det(\sigma_i) = -1$$

Gamma Matrices, γ_{α}

•
$$\gamma_i = \begin{bmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{bmatrix}$$
, $\gamma_t = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ or $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

*
$$\gamma_t^2 = 1$$
: $e^{j\phi} = \cosh \phi + \gamma_t \sinh \phi$

$$* \gamma_x^2 = \gamma_y^2 = \gamma_z^2 = -1$$

•
$$-\gamma_i = \gamma_i^{\dagger} = \gamma_i^{-1}$$
, $\gamma_t = \gamma_t^{\dagger} = \gamma_t^{-1}$

$$\bullet \ \gamma_{\alpha}\gamma_{\beta} = -\gamma_{\beta}\gamma_{\alpha}$$

*
$$(\gamma_i \gamma_j)^{\dagger} = \gamma_j \gamma_i , (\gamma_t \gamma_i)^{\dagger} = -\gamma_i \gamma_t$$

$$* (\gamma_i \gamma_j)^2 = -1, (\gamma_t \gamma_i)^2 = 1$$

*
$$(\gamma_i \gamma_i \gamma_k)^2 = 1$$
, $(\gamma_t \gamma_i \gamma_k)^2 = -1$

$$* (\gamma_t \gamma_x \gamma_y \gamma_z)^2 = -1 = i^2$$

General Direction, \hat{n} , on Bloch Sphere $(1, \theta, \phi) \Leftrightarrow \text{Pauli Vector}$, V (see Properties of σ_i)

$$\hat{n}\cdot\vec{S} = \cos\phi\sin\theta S_x + \sin\phi\sin\theta S_y + \cos\theta S_z = \begin{bmatrix} \frac{\hbar}{2} \begin{bmatrix} n_z & n_x - in_y \\ n_x + in_y & -n_z \end{bmatrix} = \frac{\hbar}{2} \begin{bmatrix} \cos\theta & \sin\theta e^{-i\phi} \\ \sin\theta e^{i\phi} & -\cos\theta \end{bmatrix} = V_{\hat{n}}$$

•
$$V_{\vec{n}}^2 = ||\vec{n}||^2 I$$
 • $\det(V_{\vec{n}}) = -||\vec{n}||^2$ • $V = V^{\dagger}$ • $\operatorname{Tr}(V) = 0$ • Reflect $V = -RVR^{-1}$

$$\bullet \quad \underset{xy\text{-plane by }\psi}{\text{Rotate V in}} : -\left[\cos\frac{\psi}{2}\sigma_x + \sin\frac{\psi}{2}\sigma_y\right]\left[-\sigma_xV\sigma_x\right]\left[..\right] = \left[\cos\frac{\psi}{2}\mathbb{1} - \sin\frac{\psi}{2}\sigma_x\sigma_y\right]V\left[..\right]^{-\frac{1}{2}} = \left[(\pm)UV(\pm)U^{\dagger}\right] \quad \left(U \in SU(2)\right)^{\frac{1}{2}} = \left[(\pm)UV(\pm$$

•
$$i\vec{n} \cdot \sigma = in_x\sigma_x + in_y\sigma_y + in_z\sigma_z = n_x\sigma_y\sigma_z + n_y\sigma_z\sigma_x + n_z\sigma_x\sigma_y$$

$$* \hat{n} \cdot \vec{S} | \chi_{\pm} \rangle = \pm \frac{\hbar}{2} | \chi_{\pm} \rangle \implies \boxed{ | \chi_{+} \rangle = e^{i\gamma} \begin{bmatrix} \cos \frac{\theta}{2} e^{-i\phi/2} \\ \sin \frac{\theta}{2} e^{i\phi/2} \end{bmatrix} = \begin{bmatrix} 1 \\ \tan \frac{\theta}{2} e^{i\phi} \end{bmatrix}, | \chi_{-} \rangle = e^{i\gamma} \begin{bmatrix} -\sin \frac{\theta}{2} e^{-i\phi/2} \\ \cos \frac{\theta}{2} e^{i\phi/2} \end{bmatrix} = \begin{bmatrix} 1 \\ -\cot \frac{\theta}{2} e^{i\phi} \end{bmatrix}}$$

* Riemann Sphere
$$\to \mathbb{C}P^1$$
: $|\chi\rangle = \begin{bmatrix} 1 \\ f(\theta,\phi) \end{bmatrix} \to \begin{cases} f(\theta,\phi) \in (-\infty,\infty) : & 0 \le \theta < \pi \\ f(\theta,\phi) \in (-\infty,\infty) : & \pi \le \theta < 2\pi \end{cases}$ (double cover)

Projectors and Nilpotents:

$$P_{U}^{\pm} = \frac{1}{2}(1 \pm U) \\ (U^{2} = 1)$$

$$|\xi\rangle = \begin{bmatrix} a + bi & 0 \\ c + di & 0 \end{bmatrix} = \underbrace{\begin{bmatrix} (aP_{z}^{+} + b\sigma_{x}\sigma_{y}P_{z}^{+}) + (c\sigma_{x}P_{z}^{+} + d\sigma_{y}P_{z}^{+}) \\ (c\sigma_{x}P_{z}^{+} + d\sigma_{y}P_{z}^{+}) \end{bmatrix}}_{\text{det}(|\xi\rangle\langle\chi|) = 0}, \epsilon = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$P_{z}^{\pm} = \frac{\aleph_{z}}{2}(1 \pm \sigma_{z})^{\frac{1}{2}} \aleph_{z}$$

$$= |\pm\rangle = |z^{\pm}\rangle$$

$$P_{z}^{\pm} = \frac{\gamma_{z} \aleph_{z}}{2}(1 \pm \gamma_{t}\gamma_{z})\gamma_{t}\gamma_{z}$$

$$P_{z}^{\pm} = \frac{\gamma_{z} \aleph_{z}}{2}(1 \pm \gamma_{t}\gamma_{z})\gamma_{t}\gamma_{z}$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{y} + z\sigma_{z} = \left(\xi^{1}|z^{+}\rangle + \xi^{2}\sigma_{x}|z^{+}\rangle\right)\left(-\xi^{2}\langle z^{+}|^{*} + \xi^{1}\sigma_{x}\langle z^{+}|^{*}\right)$$

$$= x\sigma_{x} + y\sigma_{x} + z\sigma_{x} + z\sigma_{x}$$

$$\frac{R \in SO(3) \sim \mathbb{R}P^{3}}{R(0) = \mathbb{1}} : \begin{array}{c} R(\theta) = e^{\theta g} \\ R(0) = \mathbb{1} \end{array} \Rightarrow \begin{array}{c} \frac{dR}{d\theta} \Big|_{\theta=0} = \boxed{g[R] \in \mathfrak{so}(3)} \\ \mathfrak{su}(2) \end{array}$$

$$\bullet \det (R = e^{\theta g}) = 1 = e^{\theta \operatorname{Tr}(g)} \Rightarrow \boxed{\operatorname{Tr}(g) = 0}$$

$$\bullet \begin{bmatrix} v^{T}[R^{T}R]v = v^{T}\mathbb{1}v \\ R^{T} = R^{-1} \end{bmatrix} \Rightarrow g^{T} + g = 0 \leftrightarrow \boxed{g^{T} = -g}$$

$$[g_{yz}, g_{zx}] = g_{xy} \equiv g_{z} = [g_{x}, g_{y}]$$

$$[g_{zx}, g_{xy}] = g_{yz} \equiv g_{x} = [g_{y}, g_{z}]$$

$$[g_{xy}, g_{yz}] = g_{zx} \equiv g_{y} = [g_{z}, g_{x}]$$

$$U \in SU(2) = 2 \times SO(3) = Spin(3)$$

$$= \frac{2n \text{ grade,}}{\|\pm U_i\|^2 = 1} \in Cl(3,0) \sim S_{phere}^3 : \begin{bmatrix} \alpha - \beta^* \\ \beta \alpha^* \end{bmatrix} = e^{-i\frac{\psi}{2}\hat{n}\cdot\sigma} = \cos\frac{\psi}{2}\mathbb{1} - \sin\frac{\psi}{2}\hat{n}\cdot\sigma$$

$$\approx e^{-\frac{\psi}{2}\sigma_i\sigma_j} = \cos\frac{\psi}{2}\mathbb{1} - \sin\frac{\psi}{2}\sigma_i\sigma_j$$

$$\approx e^{-\frac{\psi}{2}\sigma_i\sigma_j} = \cos\frac{\psi}{2}\mathbb{1} - \sin\frac{\psi}{2}\sigma_i\sigma_j$$

$$\approx e^{-\frac{\psi}{2}\sigma_i\sigma_j} = \cos\frac{\psi}{2}\mathbb{1} - \sin\frac{\psi}{2}\sigma_i\sigma_j$$

• Rotate
$$\hat{k}$$
 to \hat{k}' by angle θ

$$\hat{\theta} = (-\sin\phi, \cos\phi, 0) = \hat{k} \times \hat{k}'$$

$$U[R(\theta)] = \cos\frac{\theta}{2}\mathbb{1} - \sin\frac{\theta}{2}i(\hat{\theta} \cdot \sigma) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2}e^{-i\phi} \\ \sin\frac{\theta}{2}e^{i\phi} & \cos\frac{\theta}{2} \end{bmatrix}$$

$$\bullet \quad \text{Rotate about } \hat{\psi} \text{ by angle } \psi \\ \hat{\psi} = \hat{n} = (n^x, n^y, n^z) \qquad \qquad \underline{U[R(\psi)] = \cos\frac{\psi}{2}\mathbbm{1} - \sin\frac{\psi}{2}i\big(\hat{\psi} \cdot \sigma\big)} = \begin{bmatrix} \cos\frac{\psi}{2} - in^z\sin\frac{\psi}{2} & (-in^x - n^y)\sin\frac{\psi}{2} \\ (-in^x + n^y)\sin\frac{\psi}{2} & \cos\frac{\psi}{2} + in^z\sin\frac{\psi}{2} \end{bmatrix}$$

•
$$\det(U) = \alpha^* \alpha + \beta^* \beta = 1 \implies \boxed{\text{Tr}(g) = 0}$$

$$\bullet \begin{bmatrix} \xi^{\dagger}[U^{\dagger}U]\chi = \xi^{\dagger}\mathbb{1}\chi \\ U^{\dagger} = U^{-1} \end{bmatrix} \Rightarrow g^{\dagger} + g = 0 \leftrightarrow \boxed{g^{\dagger} = -g}$$

•
$$V' = (\pm)UV(\pm)U^{\dagger} = U[vv^T\epsilon]U^{-1}$$
, $\epsilon = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (det $vv^T = 0$)

$$\begin{array}{c} \bullet \ \det(U) = \alpha \ \alpha + \beta \ \beta = 1 \ \Rightarrow \ \prod(g) = 0 \\ \\ \bullet \ \begin{bmatrix} \xi^{\dagger}[U^{\dagger}U]\chi = \xi^{\dagger}\mathbb{1}\chi \\ U^{\dagger} = U^{-1} \end{bmatrix} \Rightarrow g^{\dagger} + g = 0 \ \leftrightarrow \ \begin{bmatrix} g^{\dagger} = -g \\ -\frac{1}{2}\sigma_{x}\sigma_{y} = g_{xy} = [g_{yz}, g_{zx}] = -\frac{\mathrm{i}}{2}\sigma_{z} = \frac{1}{2}\hat{i} \\ -\frac{1}{2}\sigma_{y}\sigma_{z} = g_{yz} = [g_{zx}, g_{xy}] = -\frac{\mathrm{i}}{2}\sigma_{x} = \frac{1}{2}\hat{j} \\ -\frac{1}{2}\sigma_{z}\sigma_{x} = g_{zx} = [g_{xy}, g_{yz}] = -\frac{\mathrm{i}}{2}\sigma_{y} = \frac{1}{2}\hat{k} \end{aligned}$$

$$\underline{\Lambda \in SO^+(1,3)}: \begin{array}{c} \Lambda(\theta) = e^{\theta g} \\ \Lambda(0) = \mathbb{1} \end{array} \Rightarrow \begin{array}{c} \underline{d\Lambda} \\ \underline{d\theta} \Big|_{\theta = 0} = \boxed{g[\Lambda] \in \mathbf{\mathfrak{so}}^+(1,3)} \end{array}$$

$$\bullet \quad \boxed{v^T[\eta]v = v^T[\Lambda^T\eta\Lambda]v = v^T\eta\Lambda^{-1}\cdot\Lambda v} \quad \Rightarrow \quad \boxed{g^T = -\eta g\eta} \ , \ \eta = (+,-,-,-)$$

• Rotation,
$$J_{ij}: \left[\Lambda_{ij}^T = \Lambda_{ij}^{-1} \right] \Rightarrow \left[\operatorname{Tr}(J) = 0, J^T = -J \right]$$

• Boost,
$$K_{ti}: \left[\Lambda_{ti}^T = \Lambda_{ti} \right] \Rightarrow \left[\operatorname{Tr}(K) = 0, K^T = K \right]$$

$$\begin{bmatrix}
J_{yz}, J_{zx} & J_{xy} \\
[K_{tx}, K_{ty}] & J_{xy} & J_{xy} \\
[J_{yz}, K_{ty}] & J_{xy} & J_{xy} \\
[J_{yz}, K_{tz}] & J_{xy} & J_{xy}
\end{bmatrix} \times 3$$

$$L \in SL(2, \mathbb{C}) = 2 \times SO^{+}(1, 3) = \underbrace{Spin(1, 3) = \subset Cl(3, 0) = \subset Cl(1, 3)}_{\text{prin}(1, 3) = \subset Cl(3, 0) = Cl(1, 3)} : \begin{bmatrix} e^{\theta J_{ij}} = \frac{\cos\frac{\psi}{2}\mathbb{1} - \sin\frac{\psi}{2}\sigma_{i}\sigma_{j}}{\cos\frac{\psi}{2}\mathbb{1} + \sin\frac{\psi}{2}\gamma_{i}\sigma_{j}} \\ e^{\theta K_{ti}} = \frac{\cosh\frac{\psi}{2}\mathbb{1} - \sinh\frac{\psi}{2}\sigma_{i}}{\cosh\frac{\psi}{2}\mathbb{1} + \sinh\frac{\psi}{2}\gamma_{i}} \\ e^{\theta K_{ti}} = \frac{\cosh\frac{\psi}{2}\mathbb{1} - \sinh\frac{\psi}{2}\sigma_{i}}{\cosh\frac{\psi}{2}\mathbb{1} + \sinh\frac{\psi}{2}\gamma_{i}} \Rightarrow \begin{bmatrix} \mathfrak{sl}(2, \mathbb{C}) = \mathfrak{so}^{+}(1, 3) \\ g[L] \in \mathfrak{su}(2) \oplus (\mp^{l}_{r}i)\mathfrak{su}(2) \\ \mathfrak{su}(2)\mathbb{C} \end{bmatrix}$$

$$e^{\theta J_{ij}} = \frac{\cos \frac{\psi}{2} \mathbb{1} - \sin \frac{\psi}{2} \sigma_i \sigma_j}{\cos \frac{\psi}{2} \mathbb{1} + \sin \frac{\psi}{2} \gamma_i \gamma_j} \sim e^{\theta K_{ti}} = \frac{\cosh \frac{\psi}{2} \mathbb{1} - \sinh \frac{\psi}{2} \sigma_i}{\cosh \frac{\psi}{2} \mathbb{1} + \sinh \frac{\psi}{2} \gamma_i}$$

$$\Rightarrow \begin{bmatrix} \mathfrak{sl}(2,\mathbb{C}) = \mathfrak{so}^+(1,3) \\ g[L] \in \mathfrak{su}(2) \oplus (\mp_r^l i) \mathfrak{su}(2) \\ \mathfrak{su}(2)_{\mathbb{C}} \end{bmatrix}$$

$$\bullet \begin{bmatrix} \psi^T[\epsilon]\phi = \psi^T[L^T\epsilon L]\phi = \psi^T\epsilon L^{-1} \cdot L\phi \\ = -\phi^T\epsilon \psi = 0 \text{ if } \psi = \phi \end{bmatrix} \Rightarrow \begin{bmatrix} g^T\epsilon = -\epsilon g \end{bmatrix}, \quad \epsilon = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} J_{yz}, J_{zx} \end{bmatrix} = J_{xy} = -\frac{1}{2}\sigma_x\sigma_y \to \frac{1}{2}\gamma_x\gamma_y \end{bmatrix}$$

• Rotation,
$$J_{ij}: \begin{bmatrix} L_{ij}^{\dagger} = L_{ij}^{-1} \end{bmatrix} \Rightarrow \begin{bmatrix} \operatorname{Tr}(J) = 0, \ J^T = -J \end{bmatrix}$$

• Boost,
$$K_{ti}: L_{ti}^{\dagger} = L_{ti} \Rightarrow \operatorname{Tr}(K) = 0, K^{T} = K$$

• Rotation,
$$J_{ij}$$
: $\begin{bmatrix} L_{ij}^{\dagger} = L_{ij}^{-1} \end{bmatrix} \Rightarrow \begin{bmatrix} g^{T} \epsilon = -\epsilon g \end{bmatrix}$, $\epsilon = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} J_{yz}, J_{zx} \end{bmatrix} = J_{xy} = -\frac{1}{2} \sigma_{x} \sigma_{y} \rightarrow \frac{1}{2} \gamma_{x} \gamma_{y}$
• Rotation, J_{ij} : $\begin{bmatrix} L_{ij}^{\dagger} = L_{ij}^{-1} \end{bmatrix} \Rightarrow \begin{bmatrix} \text{Tr}(J) = 0, \ J^{T} = -J \end{bmatrix} \begin{bmatrix} [J_{yz}, J_{zx}] = J_{xy} = -\frac{1}{2} \sigma_{x} \sigma_{y} \rightarrow \frac{1}{2} \gamma_{x} \gamma_{y} \\ [K_{tx}, K_{ty}] = -J_{xy} \end{bmatrix} \begin{bmatrix} [K_{tx}, K_{ty}] = -J_{xy} \\ [J_{yz}, K_{ty}] = K_{tz} = \mp_{r}^{l} \frac{1}{2} \sigma_{z} \rightarrow \pm_{r}^{l} \frac{1}{2} \gamma_{t} \gamma_{z} \\ [J_{yz}, K_{tz}] = -K_{ty} \end{bmatrix}$

$$\bullet \text{ Left/Left Dual :} \begin{array}{c} w_{ld} \cdot w_l : \psi^T \epsilon \cdot \phi = \psi^T \epsilon L^{-1} \cdot L \phi \\ w_{ld}^T : -\epsilon \psi \rightarrow [L^T]^{-1} [-\epsilon \psi] \end{array} \\ \bullet \text{ Right Dual/Right :} \begin{array}{c} w_r \cdot w_{rd} : \psi^\dagger \epsilon \cdot \phi^* = \psi^\dagger \epsilon [L^*]^{-1} \cdot L^* \phi^* \\ w_r^T : -\epsilon \psi^* \rightarrow [L^\dagger]^{-1} [-\epsilon \psi^*] \end{array}$$

$$\bullet \quad W' = (\pm)LW(\pm)L^{\dagger} = L[w_l w_l^{\dagger}][(L^{\dagger})^{-1}]^{-1} = L_{ij}[w_l w_{rd}]L_{ij}^{-1} \quad \text{or} \quad L_{ti}[w_l w_{rd}][L_{ti}^{-1}]^{-1}$$
 (det $w_l w_l^{\dagger} = 0$)

$$\bullet \ \ \underline{\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)}: \ \ \begin{bmatrix} L & 0 \\ 0 & [L^{\dagger}]^{-1} \end{bmatrix} \begin{bmatrix} w_l \\ w_r^T \end{bmatrix}$$

$$\bullet \quad \underline{(\frac{1}{2},0)\otimes(0,\frac{1}{2})=(\frac{1}{2},\frac{1}{2})} \ : \quad \begin{bmatrix} c\tilde{t} \\ \tilde{r} \end{bmatrix} \ = \ [A^{-1}L\otimes[L^{\dagger}]^{-1}A] \begin{bmatrix} ct \\ \vec{r} \end{bmatrix} = [SO(3)] \begin{bmatrix} ct \\ \vec{r} \end{bmatrix}$$

•
$$\mathfrak{sl}(2,\mathbb{C})_{\mathbb{C}} = \mathfrak{su}(2)_{\mathbb{C}} \oplus \mathfrak{su}(2)_{\mathbb{C}}$$
:

$$A_i^{\pm} = \frac{1}{2} (J_{jk} \pm K_{ti})$$
$$[A_i^{\pm}, A_j^{\pm}] = A_k^{\pm} , [A^+, A^-] = 0$$

su(2) Representations for Generators (Raising/Lowering)

$$g_{+} = ig_{yz} - g_{zx} \qquad g_{z} = ig_{xy} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \frac{1}{2} \sigma_{z} \qquad [g_{+}, g_{-}] = 2g_{z}$$

$$= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \frac{1}{2} \sigma_{x} + \frac{i}{2} \sigma_{y} \qquad [g_{z}, g_{\pm}] = \pm g_{\pm}$$

$$g_{-} = ig_{yz} + g_{zx} \qquad g^{2} = -\left(g_{yz}^{2} + g_{zx}^{2} + g_{xy}^{2}\right) \qquad \Rightarrow \qquad [g_{ij}, g^{2}] = 0$$

$$= \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \frac{1}{2} \sigma_{x} - \frac{i}{2} \sigma_{y} \qquad \begin{pmatrix} \text{Casimir Op. in} \\ \text{Universal Env. Alg.} \end{pmatrix} \qquad g_{\pm}^{\dagger} g_{\pm} = g^{2} - g_{z}^{2} \mp g_{z}^{2}$$

$$g_{z}|m\rangle = m|m\rangle$$

$$\Rightarrow g_{z} \cdot g_{\pm}|m\rangle = (m \pm 1)g_{\pm}|m\rangle \Rightarrow g_{\pm}^{\dagger}g_{\pm}|j,m\rangle = \left[j(j+1) - m(m \pm 1)\right]|j,m\rangle$$

$$g^{2}|j,m\rangle = j(j+1)|j,m\rangle$$

$$g_{\pm}|j,m\rangle = \sqrt{j(j+1) - m(m \pm 1)}|j,m\rangle$$

$$\mathbb{1}_{3} = \begin{bmatrix} | & | & | & | \\ |1\rangle & |0\rangle & |-1\rangle \\ | & | & | \end{bmatrix}, \quad \mathbb{1}_{4} = \begin{bmatrix} | & | & | & | \\ |\frac{3}{2}\rangle & |\frac{1}{2}\rangle & |\frac{-1}{2}\rangle & |\frac{-3}{2}\rangle \\ | & | & | & | & | \end{bmatrix}, \quad \dots \qquad \underbrace{(\overline{g_{\pm}})_{ij} = \langle i|g_{\pm}|j\rangle}_{(\overline{g_{z}})_{ij} = \langle i|g_{z}|j\rangle} \Rightarrow \begin{bmatrix} \overline{g_{yz}} = \frac{1}{2i}(\overline{g_{-}} + \overline{g_{+}}) \\ \overline{g_{zx}} = \frac{1}{2i}(\overline{g_{-}} - \overline{g_{+}}) \\ \overline{g_{yz}} = -i\overline{g_{z}} \end{bmatrix}$$

2 Objects w/Spin Objects could be orbital momentum, another particle spin, etc. 4.4

4.4.1 2 Objects w/ **Spin**
$$\frac{1}{2}$$
: $\begin{array}{c} \mathbf{Dim}: \ 2 \otimes 2 = 3 \oplus 1 \\ \mathbf{Spin}: \ \frac{1}{2} \otimes \frac{1}{2} = 1 \oplus 0 \end{array} \Rightarrow (2s_1 + 1)(2s_2 + 1) = \sum_{s=|s_1 - s_2|}^{s_1 + s_2} 2s + 1$

*Find Eigenvectors, e_i , of $(S^{(1,2)})_z$ and $(S^{(1,2)})^2$ in the form of $|\chi_i\chi_j\rangle$ (using $(S^{(1,2)})_\pm$)

$$\chi_i \chi_j \to |\chi_i \chi_j\rangle \equiv |\chi_i\rangle |\chi_j\rangle \equiv |\chi_i\rangle \otimes |\chi_j\rangle$$

Choose $|\chi_i\rangle \equiv S_z$ -Eigenvector w/ Spin $\frac{1}{2}$ (e.g., $|\frac{1}{2}\frac{-1}{2}\rangle = (\frac{0}{1})$, as opposed to $(\frac{.6}{.8})$

$$S^{(i)} \equiv \begin{pmatrix} S_x^{(i)} \\ S_y^{(i)} \\ S_z^{(i)} \end{pmatrix}$$

•
$$S_z^{(2)} S_x^{(1)} \left(|\chi_1\rangle \otimes |\chi_2\rangle \right) = \left(S_x^{(1)} |\chi_1\rangle \right) \otimes \left(S_z^{(2)} |\chi_2\rangle \right)$$
 • $\left(S^{(1,2)} \right)^2 = \left(S^{(1)} + S^{(2)} \right) \cdot \left(S^{(1)} + S^{(2)} \right)$

$$\bullet \ S^{(i)} \cdot S^{(j)} \equiv \underline{S_x^{(i)} S_x^{(j)} + S_y^{(i)} S_y^{(j)}} + S_z^{(i)} S_z^{(j)}$$

$$= S_z^{(i)} S_z^{(j)} + \underline{\frac{1}{2} S_+^{(i)} S_-^{(j)} + \underline{\frac{1}{2} S_-^{(i)} S_+^{(j)}}$$

$$(S^{(i)})^2 \equiv S^{(i)} \cdot S^{(i)}$$

$$S^{(1,2)} \equiv \left(S^{(1)} + S^{(2)}\right) \equiv \begin{pmatrix} S_x^{(1)} + S_x^{(2)} \\ S_y^{(1)} + S_y^{(2)} \\ S_z^{(1)} + S_z^{(2)} \end{pmatrix}$$

•
$$(S^{(1,2)})^2 = (S^{(1)} + S^{(2)}) \cdot (S^{(1)} + S^{(2)})$$

1.
$$(S^{(1,2)})_z$$

$$(S^{(1,2)})_z \chi_1 \chi_2 = \left(S_z^{(1)} + S_z^{(2)} \right) |\chi_1 \rangle |\chi_2 \rangle$$

$$= S_z^{(1)} |\chi_1 \rangle \otimes |\chi_2 \rangle + |\chi_1 \rangle \otimes S_z^{(2)} |\chi_2 \rangle$$

$$|\uparrow \uparrow \rangle = |\frac{1}{2} \frac{1}{2} \rangle \otimes |\frac{1}{2} \frac{1}{2} \rangle$$

$$|\downarrow \uparrow \rangle = |\frac{1}{2} \frac{1}{2} \rangle \otimes |\frac{1}{2} \frac{1}{2} \rangle$$

$$|\downarrow \uparrow \rangle = |\frac{1}{2} \frac{1}{2} \rangle \otimes |\frac{1}{2} \frac{1}{2} \rangle$$

$$\Rightarrow e_i = a_i |\uparrow \uparrow \rangle + b_i |\uparrow \downarrow \rangle + c_i |\downarrow \uparrow \rangle + d_i |\downarrow \downarrow \rangle$$

$$|\downarrow \downarrow \rangle = |\frac{1}{2} \frac{-1}{2} \rangle \otimes |\frac{1}{2} \frac{-1}{2} \rangle$$

2. Use $(S^{(1,2)})_{\pm}$ on $|\uparrow\rangle\otimes|\uparrow\rangle$ to GUESS e_i from "nice" bevalues

$$S_{-} | \uparrow \uparrow \rangle \qquad = \frac{\sqrt{2}}{2} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \qquad \text{Guess for } \{e_i\}:$$

$$S_{-} \left[\frac{\sqrt{2}}{2} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)\right] = |\downarrow\downarrow\downarrow\rangle \qquad \qquad |1 \ 1\rangle \equiv |\frac{1}{2} \frac{1}{2} \rangle |\frac{1}{2} \frac{1}{2} \rangle \qquad = |\uparrow\uparrow\uparrow\rangle \rangle$$

$$S_{+} \text{ works too} \qquad |1 \ 0\rangle \equiv \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\right) = \frac{\sqrt{2}}{2} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \qquad \qquad |1 \ -1\rangle \equiv |\frac{1}{2} \frac{-1}{2} \rangle |\frac{1}{2} \frac{-1}{2} \rangle \qquad = |\downarrow\downarrow\downarrow\rangle \rangle$$

$$\text{If } \frac{\sqrt{2}}{2} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \text{ then maybe } \frac{\sqrt{2}}{2} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \text{ works (try } S_{\pm} \text{ on it)}.$$

$$|0 \ 0\rangle \equiv \frac{1}{\sqrt{2}} \left(|\frac{1}{2} \frac{1}{2} \rangle |\frac{1}{2} \frac{-1}{2} \rangle - |\frac{1}{2} \frac{-1}{2} \rangle |\frac{1}{2} \frac{1}{2} \rangle \right) = \frac{\sqrt{2}}{2} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

3. Check if the guesses are eigenvectors of $(S^{(1,2)})^2$ [and do $(S^{(1,2)})_z$ to see eigenvalues] (work has been skipped, do it yourself, check answer below)

$$S^{2}|1 \ 1\rangle = \hbar^{2}(1)(1+1)|1 \ 1\rangle \qquad (s=1) \qquad S_{z}|1 \ 1\rangle = \hbar(1)|1 \ 1\rangle \qquad (m=1)$$

$$S^{2}|1 \ 0\rangle = \hbar^{2}(1)(1+1)|1 \ 0\rangle \qquad (s=1) \qquad S_{z}|1 \ 0\rangle = \hbar(0)|1 \ 0\rangle \qquad (m=0)$$

$$S^{2}|1 \ -1\rangle = \hbar^{2}(1)(1+1)|1 \ -1\rangle \qquad (s=1) \qquad S_{z}|1 \ -1\rangle = \hbar(-1)|1 \ -1\rangle \qquad (m=-1)$$

$$S^{2}|0 \ 0\rangle = \hbar^{2}(0)(0+1)|0 \ 0\rangle \qquad (s=0) \qquad S_{z}|0 \ 0\rangle = \hbar(0)|0 \ 0\rangle \qquad (m=0) \qquad \square$$

$$* \begin{bmatrix} |1 \ 1\rangle &= & 1 \leftarrow e^{i\phi} \ |\frac{1}{2}\frac{1}{2}\rangle |\frac{1}{2}\frac{1}{2}\rangle &= & |\uparrow\uparrow\uparrow\rangle \\ |1 \ 0\rangle &= & \frac{1}{\sqrt{2}} \Big(|\frac{1}{2}\frac{1}{2}\rangle |\frac{1}{2}\frac{-1}{2}\rangle + |\frac{1}{2}\frac{-1}{2}\rangle |\frac{1}{2}\frac{1}{2}\rangle \Big) &= & \frac{\sqrt{2}}{2} \Big(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \Big) \\ |1 \ -1\rangle &= & |\frac{1}{2}\frac{-1}{2}\rangle |\frac{1}{2}\frac{-1}{2}\rangle &= & |\downarrow\downarrow\downarrow\rangle \end{bmatrix}$$
 Triplet: $s = 1$
$$|1 \ -1\rangle = |\frac{1}{2}\frac{-1}{2}\rangle |\frac{1}{2}\frac{-1}{2}\rangle = |1 \ -1\rangle |\frac{1}{2}\frac{-1}{2}\rangle |\frac{1}{2}\frac{1}{2}\rangle = |1 \ -1\rangle |\frac{1}{2}\frac{-1}{2}\rangle |\frac$$

4.4.2 2 Objects w/ Any Spin: $j_1 \otimes j_2 = (j_1 + j_2) \oplus |j_1 - j_2| \implies (2j_1 + 1)(2j_2 + 1) = \sum_{j=|j_1 - j_2|}^{j_1 + j_2} 2j + 1$

- $|\chi_1\rangle$ has spin, j_1 ; and $|\chi_2\rangle$ has spin, j_2
- $j_{\text{max}} = j_2 + j_1$ and $j_{\text{min}} = |j_2 j_1|$
- Possible total $|j m\rangle$ must satisfy
 - 1.) $j_{\min} \le j \le j_{\max}$, 2.) $-j \le m \le j$,
 - 3.) have integer differences

If j_1 and j_2 are known from the start,

$$|j \ m\rangle = \sum_{m_1, m_2} |j_1 \ m_1\rangle \otimes |j_2 \ m_2\rangle \langle j_1 \ m_1| \otimes \langle j_2 \ m_2| |j \ m\rangle$$
$$= \sum_{m_1, m_2} |j_1 \ m_1\rangle \otimes |j_2 \ m_2\rangle \ C_{m_1 m_2 m}^{j_1 j_2 j}$$

where the sum is over all poss. int. diff. values that satisfy

$$m_1 + m_2 = m$$
, $-j_1 \le m_1 \le j_1$, $-j_2 \le m_2 \le j_2$,

and C are the corresponding Clebsh-Gordan coefficients, whose squared value is the probability of measuring the $\chi_1 \otimes \chi_2$ state represented by that term.

If the top state in a j-set (see box above) is known, applying the J_{-} lowering operator (and normalizing) provides the coefficients for the rest of the set of varying m. The coefficients for each top state of a set are (by convention) positive, real, and normalized to 1. This makes all of the coefficients real. For the top state of the initial j_{max} -set, $|j_{\text{max}}| j_{\text{max}}|$, there is only one product-ket in the sum; its coefficient is thus set to 1. For an arbitrary set below the first, the top state has product-ket coefficients such that the state is orthogonal to all other previously determined states that have the same m. To reduce some work to solve for them, use

$$C_{m_1 m_2 m}^{j_1 j_2 j} = (-1)^{j_1 + j_2 - j} \cdot C_{-m_1 - m_2 - m}^{j_1 j_2 j}$$

$$\langle j_1 \ m_1 | \langle j_2 \ m_2 | j \ m \rangle = (-1)^{j_1 + j_2 - j} \cdot \langle j_1 \ - m_1 | \langle j_2 \ - m_2 | j \ - m \rangle$$

If m_1 and m_2 are also known from the start, then $m = m_1 + m_2$, and

$$|j_1 \ m_1\rangle \otimes |j_2 \ m_2\rangle = \sum_j C^{j_1 j_2 j}_{m_1 m_2 m} |j \ (m_1 + m_2)\rangle$$

where the sum is only over all possible s as satisfied above - 1.), 2.) and 3.). In this case, the total z-component, m, is known. The only unknown is the total spin, s, whose probability to be measured is C^2 .

Tensor Product Representation

$$\overline{A} \oplus \overline{B} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}, \ \vec{v} \oplus \vec{w} = \begin{bmatrix} v \\ w \end{bmatrix} \Rightarrow \boxed{(A \oplus B)(v \oplus w) = Av \oplus Bw}$$

$$A \otimes B = \begin{bmatrix} A_i[B] & A_j[B] \\ A_k[B] & \dots \end{bmatrix}, \ v \otimes w = \begin{bmatrix} v_i[w] \\ v_j[w] \end{bmatrix} \Rightarrow \boxed{(A \otimes B)(v \otimes w) = Av \otimes Bw}$$

$$A(t) \otimes B(t) = e^{at} \otimes e^{bt} = e^{g_{A \otimes B}t} \Rightarrow g_{A \otimes B} = \frac{d}{dt} (A \otimes B) \Big|_0 = \boxed{a \otimes \mathbb{1}_n + \mathbb{1}_m \otimes b} = M_{mn \times mn}$$

$$\text{Lie Algebra}: \ g^{(1,2)} = g \otimes \mathbb{1} + \mathbb{1} \otimes g \Rightarrow \boxed{g(v \otimes w) = gv \otimes w + v \otimes gw} \quad (g_z | \uparrow \uparrow \uparrow) = 1 | \uparrow \uparrow \uparrow \uparrow)$$

$$\text{Not Lie}: \ (g^2)^{(1,2)} = (g_+^{\dagger})^{(1,2)}(g_+)^{(1,2)} + [g_z^{(1,2)}]^2 + g_z^{(1,2)}$$

$$= \boxed{g^2 \otimes \mathbb{1} + \mathbb{1} \otimes g^2 + 2(g_z \otimes g_z) + g_- \otimes g_+ + g_+ \otimes g_-}$$

$$\frac{[i \otimes y \otimes y]}{[i \otimes y \otimes y]} = \frac$$

4.5 Electron in Magnetic Field

$$\mu_{\text{clas.}} = IA = \frac{q}{2\pi r} v(\pi r^2) = \frac{q}{2\pi r} \frac{L}{mr} (\pi r^2) = \left(\frac{q}{2m}\right) L \rightarrow \frac{e\hbar}{2m} \cdot n \qquad \text{(Bohr magneton)}$$

$$\mu_{\text{quan.}} = \left(\frac{g_e q}{2m}\right) S = \left(\frac{q}{m}\right) S = \gamma S$$

$$\tau_{\mu} = \mu \times B \qquad H = -\mu \cdot B$$

$$F_{\mu} = \nabla(\mu \cdot B) \qquad = -\gamma S \cdot B$$

Larmor Precession

$$\chi(t) = \cos(\alpha/2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-\frac{i}{\hbar}E_{1}t} + \sin(\alpha/2) \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-\frac{i}{\hbar}E_{2}t}$$

$$B = B_{0}\hat{k}$$

$$H = -\gamma B_{0}S_{z}$$

$$= -\gamma B_{0} \begin{pmatrix} \frac{\hbar}{2} & 0 \\ 0 & -\frac{\hbar}{2} \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \langle S_{x} \rangle \\ \langle S_{y} \rangle \\ \langle S_{z} \rangle \end{pmatrix} = \begin{pmatrix} \frac{\hbar}{2}\sin(\alpha)\cos(\gamma B_{0}t) \\ -\frac{\hbar}{2}\sin(\alpha)\sin(\gamma B_{0}t) \\ \frac{\hbar}{2}\cos(\alpha) \end{pmatrix}$$
(torque from B with S leads to precession)

Stern-Gerlach

5 Bosons and Fermions

Distinguishable Particles: $\psi(r_1, r_2) \equiv \psi_a(r_1)\psi_b(r_2)$

Indistinguishable Particles:

$$P_x f(x_1, x_2; y_1, y_2; \dots) = \pm f(x_2, x_1; y_1, y_2; \dots) , \quad \iint |\Psi(x_1, x_2)|^2 dx_1 dx_2 = \iint \Pr(x_1, x_2) \frac{dx_1 dx_2}{2}$$

Boson: $(s \in \{0, 1, 2, \ldots\})$ $\psi_{+}(r_1, r_2) \equiv \frac{1}{\sqrt{2}} \Big[\psi_a(r_1) \psi_b(r_2) + \psi_a(r_2) \psi_b(r_1) \Big]$ $[\psi(r_1, r_2) = \psi(r_2, r_1)] \rightarrow P_i \Psi = \Psi$ (symmetric)

Fermion: $\left(s \in \left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right\}\right) \qquad \psi_{-}(r_1, r_2) \equiv \frac{1}{\sqrt{2}} \left[\psi_a(r_1)\psi_b(r_2) - \psi_a(r_2)\psi_b(r_1)\right]$ $\qquad \qquad \boxed{\psi(r_1, r_2) = -\psi(r_2, r_1)} \qquad \rightarrow \qquad \boxed{P_i\Psi = -\Psi} \qquad \text{(antisymmetric expression)}$

5.1 Exchange Forces: $\langle (x_1 - x_2)^2 \rangle = \langle x_1^2 \rangle + \langle x_2^2 \rangle - 2 \langle x_1 x_2 \rangle$

Dist. Part. : $\langle (\Delta x)^2 \rangle = \langle (\Delta x)^2 \rangle_d = \langle x^2 \rangle_a + \langle x^2 \rangle_b - 2 \langle x \rangle_a \langle x \rangle_b$ Symmetric: $\langle (\Delta x)^2 \rangle = \langle (\Delta x)^2 \rangle_d - 2 \| \langle \psi_b | x | \psi_a \rangle \|^2$ (attractive if overlap) Antisymmetric: $\langle (\Delta x)^2 \rangle = \langle (\Delta x)^2 \rangle_d + 2 \| \langle \psi_b | x | \psi_a \rangle \|^2$ (repulsive if overlap)

$$\bullet \langle x_1 x_2 \rangle = \frac{1}{2} \int \left[\psi_a(r_1)^* \psi_b(r_2)^* \pm \psi_b(r_1)^* \psi_a(r_2)^* \right] x_1 x_2 \left[\psi_a(r_1) \psi_b(r_2) \pm \psi_b(r_1) \psi_a(r_2) \right] dx_1 dx_2$$

$$= \frac{1}{2} \langle x \rangle_a \langle x \rangle_b + \frac{1}{2} \langle x \rangle_b \langle x \rangle_a$$

$$\pm \frac{1}{2} \left\langle \psi_b(r_1) \middle| x_1 \middle| \psi_a(r_1) \right\rangle \left\langle \psi_a(r_2) \middle| x_2 \middle| \psi_b(r_2) \right\rangle \pm \frac{1}{2} \left\langle \psi_a(r_1) \middle| x_1 \middle| \psi_b(r_1) \right\rangle \left\langle \psi_b(r_2) \middle| x_2 \middle| \psi_a(r_2) \right\rangle$$

$$= \langle x \rangle_a \langle x \rangle_b \pm \left\| \langle \psi_b \middle| x \middle| \psi_a \rangle \right\|^2$$

Two Electrons:

$$\psi(r_1, r_2) \chi(m_1, m_2) = \begin{cases} \text{(singlet)} & \Rightarrow & \chi \text{ is antisymmetric so} \\ -\psi(r_1, r_2) \chi(m_2, m_1) & \Rightarrow & \psi \text{ is symmetric} \end{cases} \Rightarrow \begin{cases} \text{Attractive (ground state)} \\ \text{(triplet)} \\ -\psi(r_2, r_1) \chi(m_1, m_2) & \Rightarrow & \psi \text{ is antisymmetric so} \\ \psi \text{ is antisymmetric} & \Rightarrow \end{cases} \Rightarrow \begin{cases} \text{Repulsive} \end{cases}$$

5.2 Statistics

$$\log(z!) \approx z \log(z) - z \qquad z \gg 1 \text{ or } z = 0$$
 Sterling's Approx:
$$\frac{d}{dz} \log(z!) \approx \log(z)$$

$$G(X, \alpha, \beta) = \log(Q(X)) + \alpha f_1(X) + \beta f_2(X)$$

$$\frac{d}{dz} \log(z!) \approx \log(z)$$

$$G(X, \alpha, \beta) = \log(Q(x)) + \alpha f_1(X) + \beta f_2(X)$$
 Lagrange Multiplier:
$$\frac{\partial G}{\partial \alpha}[Q_{\max}] = 0, \quad \frac{\partial G}{\partial \beta}[Q_{\max}] = 0, \quad \frac{\partial G}{\partial N_n}[Q_{\max}] = 0$$

$$\sum_{n} N_n = N$$

$$\sum_{n} N_n E_n = E$$

$$f_1(X) = N - \sum_{n} N_n = 0$$

$$f_2(X) = E - \sum_{n} N_n E_n = 0$$

Let there be N_n particles in the E_n energy level having d_n degeneracies, and $Q(N_1, N_2, ...)$ be the number of possible configurations for such a state given $X = (N_1, N_2, ..., N_n)$.

Dist.
$$\begin{cases} \mathbf{1.)} \ Q(X) = \prod_{n} \binom{N - N_1 - \dots - N_{n-1}}{N_n} d_n^{N_n} \\ = N! \prod_{n} \frac{d_n^{N_n}}{N_n!} \end{cases} \qquad \mathbf{3.)} \ \frac{\partial G}{\partial N_n} \approx \frac{\log(d_n) - \log(N_n)}{-\alpha - \beta E_n} = 0$$

$$\mathbf{2.)} \ \log(Q) = \log(N!) + \sum_{n} N_n \log(d_n) \\ - \log(N_n!) \end{cases} \qquad \mathbf{4.)} \ N_n = \frac{d_n}{e^{\beta E_n + \alpha}}$$

Fermion
$$\begin{cases} \mathbf{1.)} \ Q(X) = \prod_{n} \binom{d_n}{N_n} \\ \mathbf{2.)} \ \log(Q) = \sum_{n} \log(d_n!) - \log(N_n!) \\ -\log[(d_n - N_n)!] \end{cases}$$

$$\mathbf{3.)} \ \frac{\partial G}{\partial N_n} \approx \frac{-\log(N_n) + \log(d_n - N_n)}{-\alpha - \beta E_n} = 0$$

$$\mathbf{4.)} \ N_n = \frac{d_n}{e^{\beta E_n + \alpha} + 1}$$

Boson
$$\begin{cases} \textbf{1.)} \ Q(X) = \prod_{n} \binom{N_n + d_n - 1}{N_n} \\ \textbf{2.)} \ \log(Q) = \sum_{n} \log[(N_n + d_n - 1)!] \\ -\log(N_n!) \\ -\log[(d_n - 1)!] \end{cases} \qquad \textbf{3.)} \ \frac{\partial G}{\partial N_n} \approx \frac{\log(N_n + d_n - 1) - \log(N_n)}{-\alpha - \beta E_n} = 0$$

Given some substance in thermal equilibrium,

$$\beta = \frac{1}{k_b T} \qquad \mu(T) \equiv -\frac{\alpha}{k_b T}$$

where μ depends on the situation.

$$\frac{N_n}{d_n}: \quad n(\epsilon) = \begin{cases} \frac{1}{e^{(\epsilon-\mu)/k_bT}} & \text{Maxwell-Boltzmann} \\ \frac{1}{e^{(\epsilon-\mu)/k_bT}+1} & \text{Fermi-Dirac} \\ \frac{1}{e^{(\epsilon-\mu)/k_bT}-1} & \text{Bose-Einstein} \end{cases}$$

6 Perturbation Theory

$$H^{(0)}\psi_{n} = E_{n}\psi_{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

6.1 Non-Degenerate Theory

$$\underline{E_n^{(1)}, \ \psi_n^{(1)}} : E_n \psi_n^{(1)} + E_n^{(1)} \psi_n = H^{(0)} \psi_n^{(1)} + H^{(1)} \psi_n
\langle \psi_m | (-H^{(1)} + E_n^{(1)}) | \psi_n \rangle = \langle \psi_m | (H^{(0)} - E_n) | \psi_n^{(1)} \rangle = \sum_i c_i^{(1)} (E_i - E_n) \langle \psi_m | \psi_i \rangle
-\langle \psi_m | H^{(1)} | \psi_n \rangle + E_n^{(1)} \langle \psi_m | \psi_n \rangle = c_m^{(1)} (E_m - E_n)
\boxed{E_n^{(1)} = \langle \psi_n | H^{(1)} | \psi_n \rangle} \qquad \boxed{\psi_n^{(1)} = \sum_{m \neq n} \frac{\langle \psi_m | H^{(1)} | \psi_n \rangle}{E_n - E_m} \psi_m + (0) \psi_n}$$

$$\frac{E_n^{(2)}, |n^{(2)}\rangle :}{+E_n^{(2)}\langle m^{(0)}|n^{(1)}\rangle} = \langle m^{(0)}|H^{(1)}|n^{(1)}\rangle + E_n^{(1)}\langle m^{(0)}|n^{(1)}\rangle \\ + E_n^{(2)}\langle m^{(0)}|n^{(0)}\rangle = c_m^{(2)}(E_m - E_n)$$

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left|\langle m|H^{(1)}|n\rangle\right|^2}{E_n - E_m} = \langle n|H^{(1)}|n^{(1)}\rangle , \quad \left|n^{(2)}\rangle = \sum_{m \neq n} \frac{\langle m|H^{(1)} - E_n^{(1)}|n^{(1)}\rangle}{E_n - E_m} \cdot |m\rangle$$

$$\frac{E_n^{(i+1)}, |n^{(i+1)}\rangle :}{E_n^{(i+1)}} = \langle n|H^{(1)}|n^{(i)}\rangle$$

$$|n^{(i+1)}\rangle = \sum_{m \neq n} \frac{\langle m|H^{(1)}|n^{(i)}\rangle - \sum_{j=0}^{i} E_n^{(j+1)}\langle m|n^{(i-j)}\rangle}{E_n - E_m} \cdot |m\rangle$$

6.2 Degenerate Perturbation Theory (see Matrix Operators)

$$\begin{split} \Psi &= \sum_i \left(c_i^{(\psi)} [\Psi] \right) \psi_i \\ &\equiv \sum_i c_i^{(\psi)} \psi_i \\ &= c_0^{(\psi)} \psi_0 + c_1^{(\psi)} \psi_1 + \dots \end{split} \qquad \begin{array}{l} \bullet \ H^{(0)} \psi_i = E_n \psi_i \\ \bullet \ \langle \psi_i | \psi_j \rangle = \delta_{ij} \\ \bullet \ \langle \psi_i | \hat{Q} | \psi_j \rangle \equiv Q_{ij} \end{split}$$

$$E_n \Psi^{(1)} + E^{(1)} \Psi = H^{(0)} \Psi^{(1)} + H^{(1)} \Psi$$
 (first order)

$$\underline{E}_{n}\langle\psi_{i}|\Psi^{(1)}\rangle + E^{(1)}\langle\psi_{i}|\Psi\rangle = \underline{\langle H^{(0)}\psi_{i}|\Psi^{(1)}\rangle} + \langle\psi_{i}|H^{(1)}|\Psi\rangle$$

$$= \langle\psi_{i}|H^{(1)}|c_{0}\psi_{0} + c_{1}\psi_{1} + ...\rangle$$

$$c_{i}E^{(1)} = c_{0}\langle\psi_{i}|H^{(1)}|\psi_{0}\rangle + c_{1}\langle\psi_{i}|H^{(1)}|\psi_{1}\rangle + ...$$

$$E^{(1)} \begin{pmatrix} c_{0}[\Psi] \\ c_{1}[\Psi] \\ \vdots \end{pmatrix}^{(\psi)} = \begin{pmatrix} H_{00}^{(1)} & H_{01}^{(1)} & \dots \\ H_{10}^{(1)} & H_{11}^{(1)} & \dots \\ \vdots & \vdots & \dots \end{pmatrix}^{(\psi)} \begin{pmatrix} c_{0}[\Psi] \\ c_{1}[\Psi] \\ \vdots \end{pmatrix}^{(\psi)} \Rightarrow \begin{pmatrix} (\text{solve for } E^{(1)}, \vec{c}^{(\psi)}[\Psi]) \\ H_{aa}^{(1)} - E^{(1)} & H_{ab}^{(1)} & \dots \\ H_{ba}^{(1)} & H_{bb}^{(1)} - E^{(1)} & \dots \\ \vdots & \vdots & \vdots \end{pmatrix} = 0$$

In general,

$$E_i^{(1)} \vec{c}^{\ (\psi)} [\Psi_i] \quad = \quad \overline{H^{(1)}}^{\ (\psi)} \ \vec{c}^{\ (\psi)} [\Psi_i] \qquad \qquad (i \text{th eigen-})$$

$$E_{i}^{(1)} \begin{pmatrix} | \\ \vec{c}_{[\Psi_{i}]} \end{pmatrix}^{(\psi)} = \begin{pmatrix} | & | \\ \vec{c}_{[\Psi_{i}]} & \vec{c}_{[\Psi_{i}]} & \dots \end{pmatrix}^{(\psi)} \begin{pmatrix} E_{0}^{(1)} & 0 & \dots \\ 0 & E_{1}^{(1)} & \dots \\ \vdots & \vdots & \dots \end{pmatrix} \begin{pmatrix} - & \vec{c}_{[\Psi_{i}]} & - \\ - & \vec{c}_{[\Psi_{i}]} & - \\ \vdots & \vdots & \dots \end{pmatrix}^{(\psi)} \begin{pmatrix} | \\ \vec{c}_{[\Psi_{i}]} \end{pmatrix}^{(\psi)}$$

Instead of solving the characteristic polynomial, it would be wise to choose a basis $\{\psi\}$ such that $\vec{c}^{(\psi)}[\Psi_i] = (...0 \ 0 \ 1_{(i)} \ 0 \ 0 \ ...)^T \Leftrightarrow \Psi_i = \psi_i$, making $\overline{H^{(1)}}^{(\psi)}$ diagonal with eigenvalue entries. These are the energy eigenvalues, $E_i^{(1)} = (H^{(1)})_{ii}^{(\psi)} = \langle \psi_i | H^{(1)} | \psi_i \rangle$, which is just like first-order non-Perturbation energy. This also means $|\psi_i\rangle$ are eigenfunctions of $H^{(1)}$ (see Matrix Operators).

It is best to find a hermitian operator, \hat{A} , that commutes with $H^{(0)}$ and $H^{(1)}$, whose eigenvalues within the degenerate basis are unique. The corresponding eigenfunctions will be a basis that makes $H^{(1)}$ diagonal. This will also make them eigenfunctions of $H^{(1)}$.

1.
$$A = A^{\dagger}$$

2.
$$[A, H^{(0)}] = 0 \rightarrow \{ \exists \{\Psi\} \mid (A\Psi_n = a_n \Psi_n), (H^{(0)} \Psi_n = E_n \Psi_n) \}$$

3.
$$\{\psi\} \subset \{\Psi\}$$
 s.t $\forall \psi_i$:
$$\begin{cases} \left(H^{(0)}\psi_i = E_n\psi_i\right), & \leftarrow \text{degenerate} \\ \left(A\psi_i = a_i\psi_i\right), & \left(\forall (i \neq j) \ a_i \neq a_j\right) \end{cases}$$

4.
$$[A, H^{(1)}] = 0 \implies 0 = \langle A\psi_i | H^{(1)} | \psi_j \rangle - \langle \psi_i | H^{(1)} | A\psi_j \rangle$$

$$0 = (a_i - a_j) H_{ij}^{(1)}$$

$$0 = H_{ij}^{(1)} \quad \nabla$$

6.3 Hydrogen Energy Corrections

6.3.1 Fine Structure - $\alpha^4 mc^2$

The Dirac Equation can derive the total fine structure correction with a α^4 order approx.

1. Relativistic, \hat{p}^4

$$\begin{split} T &= \sqrt{p^2c^2 + m^2c^4} - mc^2 = mc^2\sqrt{1 + \frac{p^2}{m^2c^2}} - mc^2 \\ &= mc^2\left[\frac{\left(\frac{1}{2}\right)}{1!}\left(\frac{p^2}{m^2c^2}\right) + \frac{\left(\frac{1}{2}\right)(1 - \frac{1}{2})}{2!}\left(\frac{p^2}{m^2c^2}\right)^2 + \ldots\right] \\ &= \frac{p^2}{2m} - \frac{p^4}{8m^3c^2} + \ldots \\ \downarrow \\ H_r^{(1)} &= -\frac{p^4}{8m^3c^2} \qquad & \text{(For some reason } \hat{p}^4 \text{ needs to be hermitian to use perturbation theory.} \\ \text{It only isn't when } l &= 0 \text{, while } \hat{p}^2 \text{ always is hermitian. See Prob. 6.15)} \end{split}$$

 L^2 and L_z should commute with p^4 because the perturbation is spherically symmetric, meaning l and m_l should be conserved (see Operator Evolution). Their eigenvalues are also distinct (taking the eigenfunctions of nlm_l together) within each set of n^2 degeneracies, so their eigenvectors and eigenvalues can be used. n, l and m_l the "good" numbers.

$$\langle \psi_{nlm_l} | H_r^{(1)} | \psi_{nlm_l} \rangle = \frac{-1}{8m^3c^2} \langle \psi_{nlm_l} | p^4 | \psi_{nlm_l} \rangle$$

$$= \frac{-1}{8m^3c^2} \langle p^2 \psi_{nlm_l} | p^2 | \psi_{nlm_l} \rangle$$

$$= \frac{-1}{8m^3c^2} \langle \left[2m(E_n - V) \right]^2 \rangle$$

$$= \frac{-4m^2}{8m^3c^2} \langle E_n^2 - 2E_nV + V^2 \rangle$$

$$= -\frac{E_n^2}{2mc^2} \left[\frac{4n}{l+1/2} - 3 \right]$$

2. Spin-Orbit Coupling, $S_e \cdot L_e$

In the electron's frame of reference, the proton is spinning around it, creating a B-field affecting its magnetic dipole moment. The non-inertial reference frame requires multiplying by the Thomas procession correction, which in this case is $C_T = g_e - 1 = 1/2$. In the lab frame, the moving electron's magnetic dipole moment creates an electric dipole moment, which is affected by the proton charge. The latter is much harder to calculate.

$$\begin{split} H_{so}^{(1)} &= -C_T \ \mu_e \cdot B(L_e) \qquad \text{(See Electron in Magnetic Field)} \\ &= \frac{1}{2} \frac{qS}{m} \cdot \frac{k_\mu}{r^3} \int I d\vec{l} \times \vec{r} \qquad \bigg(\sim \frac{1}{2} \frac{qS}{m} \cdot \frac{k_\mu}{r^3} \int \frac{mqd\vec{v} \times \vec{r}}{m} \bigg) \\ &= \frac{1}{2} \frac{qS}{m} \cdot \frac{k_\epsilon}{c^2} \frac{2\pi}{r} I = \frac{1}{2} \frac{qS}{m} \cdot \frac{k_\epsilon}{c^2} \frac{2\pi}{r} \frac{q(L/mr)}{2\pi r} \\ &= \frac{kqq}{2m} \frac{1}{mc^2} \frac{S \cdot L}{r^3} = \frac{e^2}{8\pi \epsilon_0 m^2 c^2} \frac{S \cdot L}{r^3} \end{split}$$

 $S \cdot L$ does not commute with L or S (meaning m_l and m_s are bad), but $[S \cdot L, S^2] = [S \cdot L, L^2] = 0$. The sum of the two, $J \equiv L + S$, and J^2 also commute with the perturbation. They are all conserved, and their unique eigenvalues per set of degeneracies - l, s=1/2, j, m_j - are the "good" numbers (along with n).

$$S \cdot L = \frac{1}{2} \left(J^2 - L^2 - S^2 \right)$$

$$\langle r^{-3} \rangle = \frac{1}{l(l+1/2)(l+1)n^3 a_0^3}$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

$$\langle note: \text{ divergent at } l = 0 \rangle$$

3. Darwin Term (correction for $H_{so}^{(1)}$ when l=0) skipped

4. Total Correction

$$E_{fs}^{(1)} = E_r^{(1)} + E_{so}^{(1)}$$

$$= -\frac{E_n^2}{2mc^2} \left[\frac{4n}{l + \frac{1}{2}} - 3 \right] + \frac{E_n^2}{mc^2} \left\{ \frac{n \left[j(j+1) - l(l+1) - 3/4 \right]}{l(l+1/2)(l+1)} \right\}$$

$$= \frac{E_n^2}{2mc^2} \left(3 - \frac{4n}{j+1/2} \right) \qquad (j=l\pm 1/2)$$

$$\downarrow \qquad \qquad \qquad \text{Fine structure solution of the energy of the energy$$

Fine structure splits the l energy degeneracies. However, since $j=l\pm 1/2$, there are still two j degeneracies if n>2. Overall, the good numbers to use for stationary state solutions to the hydrogen atom w/ fine structure correction are $n, l, s=1/2, j, m_j$. Note, J^2, L^2 , and S^2 always commute(?)

6.3.2 Zeeman Effect (Ext. B-Field)

$$\begin{split} H_B^{(1)} &= -(\mu_s + \mu_l) \cdot B_{\rm ext} & \text{(see Electron in Magnetic Field)} \\ &= -\left(\frac{g_e q}{2m} S + \frac{q}{2m} L\right) \cdot B_{\rm ext} \\ &= \frac{e}{2m} \left(2S + L\right) \cdot B_{\rm ext} \end{split}$$

Weak Zeeman $(B_{\rm ext} \ll B_{\rm int})$

$$H_{WZ}^{(1)} = \frac{e}{2m} B_{\text{ext}} \cdot (2S + L)$$
$$= \frac{e}{2m} B_{\text{ext}} \cdot (J + S)$$

Fine structure perturbation dominate the Zeeman perturbation, so the fine structure numbers are the good ones: n, l, s=1/2, j, and m_j . m_l and m_s can't be used for $\langle L \rangle$ or $\langle S \rangle$, so instead use the fact that the "vector" J = L + S is conserved, so a **time-averaged** S-component to the J "vector" can be defined as $S_{\text{ave}} = \frac{S \cdot J}{J^2} J$, where $S \cdot J = \frac{1}{2} (J^2 + S^2 - L^2)$.

$$\begin{split} E_{\text{WZ}}^{(1)} &= \frac{e}{2m} B_{\text{ext}} \cdot \left\langle n l j m_j \middle| J + S_{\text{ave}} \middle| n l j m_j \right\rangle \\ &= \frac{e}{2m} B_{\text{ext}} \cdot \left\langle J \left(1 + \frac{S \cdot J}{J^2} \right) \right\rangle \\ &= \frac{e}{2m} B_{\text{ext}} \cdot \left\langle J \right\rangle \left(1 + \frac{j(j+1) - l(l+1) + 3/4}{2j(j+1)} \right) \\ &= \frac{e\hbar}{2m} B_{\text{ext}} m_j \left(1 + \frac{j(j+1) - l(l+1) + 3/4}{2j(j+1)} \right) & \text{(let B_{ext} be parallel to the z-axis)} \\ &= \mu_B B_{\text{ext}} m_j g_j & \mu_B = \text{Bohr magneton} = 5.788 \times 10^{-5} \text{ ev/T} \\ &g_j = \text{Lande g-factor} \end{split}$$

Strong Zeeman $(B_{\text{ext}} \gg B_{\text{int}})$

For a strong magnetic field parallel to the z-axis, m_l and m_s are stuck in the same place, making them and l conserved. The external torque, however, means that the total angular momentums, j and m_j are not. Though unneeded, obviously s=1/2.

$$E_{SZ}^{(1)} = \frac{e}{2m} B_{\text{ext}} \langle 2S_z + L_z \rangle$$
$$= \mu_B B_{\text{ext}} (2m_s + m_l)$$

The spin-orbit correction must be changed with respect to the new good numbers, m_l and m_s . The relativistic correction uses the same numbers, so it stays the same.

$$\begin{split} E_{\text{so}}^{(1)} &= \frac{e^2}{8\pi\epsilon_0 m^2 c^2} \left\langle \frac{S_x L_x + S_y L_z + S_z L_z}{r^3} \right\rangle & E_{\text{fs}}^{(1)} &= E_{\text{so}}^{(1)} + E_{\text{r}}^{(1)} \\ &= \frac{e^2}{8\pi\epsilon_0 m^2 c^2} \frac{0 + 0 + \hbar^2 m_s m_l}{l(l + 1/2)(l + 1)n^3 a_0^3} & \rightarrow & = \frac{E_n^2}{2mc^2} \frac{4n m_s m_l}{l(l + 1/2)(l + 1)} + \frac{E_n^2}{2mc^2} \left[3 - \frac{4n}{l + 1/2} \right] \\ &= \frac{kqq}{2m^2 c^2} \frac{\hbar^2}{(\hbar/\alpha mc)^3 n^3} \frac{m_s m_l}{l(l + 1/2)(l + 1)} & \Rightarrow & = \frac{4n E_n^2}{2mc^2} \left[\frac{m_s m_l}{l(l + 1/2)(l + 1)} + \frac{3}{4n} - \frac{1}{l + 1/2} \right] \\ &= \frac{kqq}{2\hbar c} \frac{\alpha^3 m^2 c^4}{4mc^2 n^4} \frac{4n m_s m_l}{l(l + 1/2)(l + 1)} & \Rightarrow & E_{nlm_l m_s} = E_n + E_{\text{SZ}}^{(1)} + E_{\text{fs}}^{(1)} \\ &= \frac{E_n^2}{2mc^2} \frac{4n m_s m_l}{l(l + 1/2)(l + 1)} \end{split}$$

Intermediate Zeeman $(B_{\rm ext} \sim B_{\rm int})$

There are no good numbers here (see Degenerate Perturbation Theory). The basis is chosen to be $|j \ m_j\rangle = \sum_i C_i |l \ m_l\rangle \otimes |s \ m_s\rangle$ (see 2 Objects w/ Any Spin), as it makes $\overline{H^{(1)}}^{(e)}$ easier (instead of using l, m_l, m_s).

1.)
$$\psi_i = |j \ m_j\rangle_i$$
 2.) $\left(\langle l \ m_l | \langle s \ m_s | \right)_x \left(|l \ m_l\rangle | s \ m_s\rangle\right)_y = \delta_{xy}$
3.) $Q_{rc}^{(\psi)} = \langle \psi_r | \hat{Q} | \psi_c \rangle$ 4.) ψ_i s.t.
$$\begin{cases} 0 \le l < n \\ j_{(l\pm)} = l \pm 1/2, \\ 2l^2 < i \le 2(l+1)^2 \end{cases}$$

$$\langle jm_{j}|H_{fs}^{(1)}|jm_{j}\rangle = \frac{E_{n}^{2}}{2mc^{2}}\left(3 - \frac{4n}{j+1/2}\right)$$

$$\equiv \gamma_{n}\left(3 - \frac{4n}{j+1/2}\right)$$

$$\langle jm_{j}|H_{IZ}^{(1)}|jm_{j}\rangle = \langle jm_{j}|H_{IZ}^{(1)}\left(C_{i}|lm_{l}\rangle\otimes|sm_{s}\rangle\right)$$

$$= \mu_{B}B_{\text{ext}}(2m_{s} + m_{l})C_{i}^{2}$$

$$\equiv \beta(2m_{s} + m_{l})C_{i}^{2}$$
See Griffith Prob. 6.25 for example with $n=2$

6.3.3 Stark Effect (Small Ext. E-Field)

•
$$H^{(1)} = -p \cdot E = eE \cdot r$$
 (small r

•
$$n = 1 \rightarrow H^{(1)} = 0$$

•
$$n=2$$
 \rightarrow
$$\begin{cases} H^{(1)}=0 & m=\pm 1 \\ H^{(1)}=ke|E|a_0 & m=0 \end{cases}$$
 (k is some constant)

6.3.4 Lamb Shift (quantitized E-field) - $\alpha^5 mc^2$ (skipped)

6.3.5 Hyperfine (Spin-Spin), $S_p \cdot S_e - m/m_p \alpha^4 mc^2$

(Coupling between the electron magnetic moment and the magnetic field from the proton magnetic moment)

$$\mu_{e} = -\frac{g_{e}e}{2m_{e}}S_{e} = -\frac{e}{m_{e}}S_{e}, \qquad \mu_{p} = \frac{g_{p}e}{2m_{p}}S_{p}$$

$$= \dots$$

$$\downarrow$$

$$B(\mu_{p}) = \frac{\mu_{0}}{4\pi r^{3}}[3(\vec{\mu_{p}} \cdot \hat{r})\hat{r} - \vec{\mu_{p}}] + \frac{2\mu_{0}}{3}\vec{\mu_{p}}\delta^{3}(r)$$

$$E_{hf}^{(1)} = -\mu_{e} \cdot B(\mu_{p})$$

$$= \dots$$

$$\downarrow$$

$$E_{hf}^{(1)} = \left(\frac{e}{m_{e}}\right)\left(\frac{2\mu_{0}}{3}\frac{g_{p}e}{2m_{p}}\right)\langle S_{e} \cdot S_{p}\rangle |\psi_{nlm}(0)|^{2}$$

In the ground state, $|\psi_{100}(0)|^2 = 1/(\pi a_0^3)$. S_e^2, S_p^2 , and the sum $S = S_e + S_p$ commute with $S_e \cdot S_p$, so s_e, s_p, m_s, s^2 are the good numbers. S_e and S_p do not, so m_{se} and m_{sp} are not good numbers.

$$\begin{split} E_{hf}^{(1)} &= \left(\frac{e}{m_e}\right) \left(\frac{2}{3\epsilon_0 c^2} \frac{g_p e}{2m_p}\right) \frac{1}{2\pi a_0^3} \langle S^2 - S_e^2 - S_p^2 \rangle \\ &= \frac{g_p e^2}{4\pi \epsilon_0 c^2 m_p m_e} \frac{4\alpha^3 m_e^3 c^3 \hbar^2}{3\hbar^3} \left[\frac{s(s+1)}{2} - 3/4\right] \\ &= \frac{4}{3} g_p \frac{m_e}{m_p} \alpha^4 m_e c^2 \left[\frac{s(s+1)}{2} - 3/4\right] \\ &= \frac{4}{3} g_p \frac{m_e}{m_p} \alpha^4 m_e c^2 \cdot \begin{cases} \frac{1}{4} & s = 1 \text{ (triplet)} \\ \frac{-3}{4} & s = 0 \text{ (singlet)} \end{cases} \rightarrow \frac{\Delta E = 5.88 \times 10^{-6} \text{ eV}}{\lambda = 21 \text{ cm}, \quad \nu = 1420 \text{ MHz}} \end{split}$$

Transition Amplitude (See Pictures)

$$d_n(t) = d_n(0) + \int_0^t \dot{d_n} \, dt'$$
:

- $d_n(0) = \delta_{ni}$ (if $|d_{n\neq i}(t)| \ll 1$) $d_f(t) \approx \frac{1}{i\hbar} \langle f^0 | H^1(t) | i^0 \rangle e^{i\omega_{fi}t}$

•
$$d_{n(t)} \approx \delta_{ni} + \frac{1}{i\hbar} \int_{0}^{t} \langle n^{0} | H^{1}(t') | i^{0} \rangle e^{i\omega_{ni}t'} dt' \Big|_{\text{order}}^{1^{\text{st}}}$$

•
$$\dot{d}_{f}(t) \approx \frac{1}{i\hbar} \overline{H_{fi}^{1}}(t) e^{i\omega_{fi}t} + \left(\frac{1}{i\hbar}\right)^{2} \int_{t_{0}}^{t} \sum_{n} \overline{H_{fn}^{1}}(t) e^{i\omega_{fn}t} \overline{H_{ni}^{1}}(t') e^{i\omega_{ni}t'} dt'$$

Interactive Picture Method:

$$U_{I}(t,t_{0}) = \mathbb{I} + \frac{1}{i\hbar} \int_{t_{0}}^{t} H_{I}^{1}(t') dt' + \left(\frac{1}{i\hbar}\right)^{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t'} H_{I}^{1}(t') H_{I}^{1}(t'') dt'' dt' + \dots$$

$$\bullet \langle f^{0}|U_{I}(t,t_{0})|i^{0}\rangle = \langle f^{0}|e^{\frac{i}{\hbar}E_{f}^{0}(t-t_{0})}U(t,t_{0})|i^{0}\rangle
\equiv d_{f}(t) = \delta_{fi} + \frac{1}{i\hbar}\int_{t_{0}}^{t}\langle f^{0}|H^{1}(t')|i^{0}\rangle e^{i\omega_{fi}(t'-t_{0})}dt' \qquad (1^{\text{st order}})
+ \left(\frac{1}{i\hbar}\right)^{2}\int_{t_{0}}^{t}\int_{t_{0}}^{t'}\sum \langle f^{0}|H^{1}(t')|n^{0}\rangle e^{i\omega_{fn}(t'-t_{0})}\langle n^{0}|H^{1}(t'')|i^{0}\rangle e^{i\omega_{ni}(t''-t_{0})}dt''dt' + \dots$$

Normal Schrodinger Propagator:

$$U_{S}(t,t_{0}) = U^{0}(t,t_{0}) + \frac{1}{i\hbar} \int_{t_{0}}^{t} U^{0}(t,t_{0}) U^{0\dagger}(t',t_{0}) H^{1}(t') U^{0}(t',t_{0}) dt'$$

$$+ \left(\frac{1}{i\hbar}\right)^{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t'} U^{0}(t,t_{0}) U^{0\dagger}(t',t_{0}) H^{1}(t') U^{0}(t',t_{0}) U^{0\dagger}(t'',t_{0}) H^{1}(t'') U^{0}(t'',t_{0}) dt'' dt' + \dots$$

$$\begin{split}
\bullet & \langle f^{0}|U(t,t_{0})|i^{0}\rangle = \left[\delta_{fi}e^{-\frac{i}{\hbar}E_{f}^{0}(t-t_{0})} + \frac{1}{i\hbar}\int_{t_{0}}^{t}e^{-\frac{i}{\hbar}E_{f}^{0}(t-t')}\langle f^{0}|H^{1}(t')|i^{0}\rangle e^{-\frac{i}{\hbar}E_{i}^{0}(t'-t_{0})}dt'\right] \\
& + \left(\frac{1}{i\hbar}\right)^{2}\int_{t_{0}}^{t}\int_{t_{0}}^{t'}\sum_{n}e^{-\frac{i}{\hbar}E_{f}^{0}(t-t')}\langle f^{0}|H^{1}(t')|n^{0}\rangle e^{-\frac{i}{\hbar}E_{n}^{0}(t'-t'')}\langle n^{0}|H^{1}(t'')|i^{0}\rangle e^{-\frac{i}{\hbar}E_{i}^{0}(t''-t_{0})}dt''dt' + \dots
\end{split}$$

6.5 Variation Principle - Approx. Ground State Energy

$$\psi = \sum c_n \psi_n \to E(\psi) > E_0 = E(\psi_0)$$

$$\psi \equiv f(b, x), \quad \langle H \rangle = \langle T \rangle + \langle V \rangle$$

$$\Rightarrow b_{\min} : \frac{d}{db} \langle H \rangle = 0$$

$$E_0 \approx \left\langle f(b_{\min}, x) \middle| H \middle| f(b_{\min}, x) \right\rangle$$

6.6 Selection Rules - Orbital Transitions

Electric Dipole Approximation ONLY: $\lambda_{\gamma} \gg$ atom length $\rightarrow E, B$ feels homogenously oscillating to the atom

 $\psi_{nlm} \to \psi_{n'l'm'}$:

•
$$\Delta m \in \{-1, \emptyset, 1\}$$

 $s(\gamma) = 1 \rightarrow m_s(\gamma) \in \{-\hbar, \emptyset, \hbar\}$
 $E = E\hat{z} \rightarrow \Delta m = 0$

Exception: $(2s \rightarrow 1s)$ through two-photon emission

•
$$\Delta j \in \{-1, 0, 1\}$$

Exception: $(j = 0 \rightarrow j = 0)$ not allowed

7 Blackbody Radiation

• Power Spectrum :
$$I'(\omega) = \frac{\hbar^3 \omega^3}{h^2 c^2} \frac{1}{e^{\hbar \omega/k_b T} - 1} \left[\frac{I}{\Omega \cdot f} \right]$$
 $(\mu = 0 \text{ for photons since photon number isnt conserved})$

• Wien's Displacement Law :
$$\lambda_{\text{max}} = \frac{2.9 \times 10^{-3}}{T} \text{ [m]}$$
 (mode of spectrum)

8 Adiabatic Theorem - Slow Changing of Potential

$$t = 0 \rightarrow H_{(t=0)} = H^{(0)}$$

$$H(t=0) = H^{(0)}$$

$$H(t=0) = H^{(0)}(t)$$

$$H(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Dynamic Phase:
$$\theta_n(t) = -\frac{1}{\hbar} \int_0^t E_n(t') dt'$$

$$|\Psi_m(t)\rangle \equiv \sum_n |n(t)\rangle e^{i\theta_n(t)} \langle n(t)|m(0)\rangle$$

$$\approx |m(t)\rangle e^{i\theta_m(t)} e^{i\gamma_m(t)}$$

$$= |m(t)\rangle e^{i\theta_m(t)} e^{\frac{i}{\hbar} \int A^m \cdot dR}$$

Dynamic Phase:
$$\theta_{n}(t) = -\frac{1}{\hbar} \int_{0}^{t} E_{n}(t') dt'$$

$$|\Psi_{m}(t)\rangle \equiv \sum_{n} |n(t)\rangle e^{i\theta_{n}(t)} \langle n(t)|m(0)\rangle$$

$$\approx |m(t)\rangle e^{i\theta_{m}(t)} e^{i\eta_{m}(t)}$$

$$|\Phi_{m}(t)\rangle e^{i\theta_{m}(t)} e^{i\theta_{m}(t)} e^{i\eta_{m}(t)}$$

$$|\Phi_{m}(t)\rangle e^{i\theta_{m}(t)} e^{i\theta_{m}(t)} e^{i\eta_{m}(t)}$$

$$|\Phi_{m}(t)\rangle e^{i\theta_{m}(t)} e^{i\theta_{m}(t)} e^{i\eta_{m}(t)}$$

$$|\Phi_{m}(t)\rangle e^{i\theta_{m}(t)} e^{i\theta$$

$$C_n(t) \approx \delta_{nm} e^{i\gamma_m(t)}$$
 Berry Phase: $\gamma_m(t) = i \int_0^t \langle m(t') | \dot{m}(t') \rangle dt' \in \mathbb{R}$

Berry/Geometric Phase

$$\begin{split} \gamma_{m}(t) &= i \int_{0}^{t} \langle m(t') | \dot{m}(t') \rangle \, dt' = \boxed{\frac{1}{\hbar} \int_{R_{i}}^{R_{f}} i \hbar \langle m | \nabla_{R} m \rangle \cdot dR} \\ &\Rightarrow \frac{1}{\hbar} \oint i \hbar \langle m | \nabla_{R} m \rangle \cdot dR = \frac{1}{\hbar} \iint \nabla_{R} \times i \hbar \langle m | \nabla_{R} m \rangle \cdot da \\ &\sim \boxed{\frac{1}{\hbar} \oint A^{m} \cdot dR} = \frac{1}{\hbar} \iint \nabla_{R} \times i \hbar \langle m | \nabla_{R} m \rangle \cdot da \\ &= \frac{1}{\hbar} \iint \nabla_{R} \times A^{m} \cdot da = \frac{1}{\hbar} \Phi_{B}^{m} \end{split}$$

$$\vec{A} = \frac{\Phi_{B}}{2\pi r} \hat{\phi} \Rightarrow \Delta g_{\text{closed}} = \frac{q}{\hbar} \oint \frac{\Phi_{B}}{2\pi r} \hat{\phi} \cdot r \, d\hat{\phi} \\ &= \frac{q\Phi_{B}}{\hbar} = \gamma_{m} \end{split}$$

Aharanov-Bohm Effect:

$$\begin{split} i\hbar \frac{\partial \Psi}{\partial t} &= \left[\frac{(p - qA)^2}{2m} + V + \varphi \phi \right] \Psi \\ \Rightarrow \Psi &= e^{\frac{i}{\hbar} \int_{\mathcal{O}}^{r} qA \cdot dr'} \psi , \quad \breve{E}\psi = \breve{H}\psi \\ &= \boxed{e^{ig} \psi} \\ \vec{A} &= \frac{\Phi_B}{2\pi r} \hat{\phi} \Rightarrow \Delta g_{\text{closed}} = \frac{q}{\hbar} \oint \frac{\Phi_B}{2\pi r} \hat{\phi} \cdot r \, d\hat{\phi} \\ &= \frac{q\Phi_B}{\hbar} = \gamma_m \end{split}$$

Infinitismal Path Integral

R: Slow degree of freedom (nucleus) r: Fast degree of freedom (electron)

$$\mathbb{I} = \int dR \sum_{n} |R, n(R)\rangle \langle R, n(R)|$$

$$\approx \int dR |R, n(R)\rangle \langle R, n(R)|$$

$$\langle \chi(\epsilon) | e^{-\frac{i}{\hbar}H\epsilon} | \chi(0) \rangle = \langle R(\epsilon) | e^{-\frac{i}{\hbar}H_f\epsilon} | R(0) \rangle \langle n(R(\epsilon)) | e^{-\frac{i}{\hbar}H_s\epsilon} | n(R(0)) \rangle$$

$$\breve{U}(R_1, \epsilon; R_0, 0) = \sqrt{\frac{-im}{2\pi\hbar\epsilon}} e^{\frac{i}{\hbar}\mathcal{L}_s\epsilon} e^{-\frac{i}{\hbar}E_n(R_0)\epsilon} \langle n(R_1) | n(R_0) \rangle$$

$$\begin{split} &\Psi(R_1,\epsilon) = \left\langle \chi(\epsilon) \middle| \hat{U}(\epsilon) \middle| \Psi(R_0,0) \right\rangle \approx \sqrt{\frac{-im}{2\pi\hbar\epsilon}} \int e^{\frac{i}{\hbar}\mathcal{L}_s\epsilon} e^{-\frac{i}{\hbar}E_n(R_1+\eta)\epsilon} \left\langle n(R_1) \middle| n(R_1+\eta) \right\rangle \Psi(R_1+\eta,0) \, d\eta \qquad (\eta = R_0 - R_1) \\ &\approx \sqrt{\frac{-im}{2\pi\hbar\epsilon}} \int e^{\frac{i}{\hbar}\frac{m}{2}\frac{\eta^2}{\epsilon}} \left[1 - \frac{i}{\hbar}\epsilon (V_s + E_n) \right] \left\langle n(R_1) \middle| \left[|n(R_1)\rangle + \eta \middle| \partial n(R_1) \right\rangle + \frac{\eta^2}{2} \middle| \partial^2 n(R_1) \right\rangle \right] \left[1 + \eta \frac{d}{dR} + \frac{\eta^2}{2} \frac{d^2}{dR^2} \right] \Psi(R_1,0) \, d\eta \\ &\approx \sqrt{\frac{-im}{2\pi\hbar\epsilon}} \int e^{\frac{i}{\hbar}\frac{m}{2}\frac{\eta^2}{\epsilon}} \left[1 - \frac{i}{\hbar}\epsilon V(R_1,0) + \eta \left\langle \mathcal{M} \right\rangle + \frac{\eta^2}{2} \frac{d^2}{dR^2} + \eta^2 \left\langle n \middle| \partial n \right\rangle \frac{d}{dR} + \frac{\eta^2}{2} \left\langle n \middle| \partial^2 n \right\rangle \right] \Psi(R_1,0) \, d\eta \end{split}$$

$$\begin{split} & \breve{E}|\Psi\rangle = \hat{H}|\Psi\rangle : \, \hat{H} = \frac{P_s^2}{2m} + V_s + \hat{H}_f \\ & \breve{E}\Psi = \breve{H}\Psi \quad : \, \breve{H} = \frac{(P_s - A^n)^2}{2m} + V + \Phi^n \end{split} \quad \boxed{ \begin{bmatrix} A^n = i\hbar \langle n|\partial n\rangle \\ \Phi^n = \frac{\hbar^2}{2m} \left[\langle \partial n|\partial n\rangle - \langle \partial n|n\rangle \langle n|\partial n\rangle \right] \end{bmatrix} \quad \begin{pmatrix} \langle n|\partial n\rangle + \langle \partial n|n\rangle = 0 \\ A^n \text{ is added/subtracted in} \end{pmatrix}$$

Integral Form 9

$$\psi(r) = \psi_0(r) + \int g(r - r_0)V(r_0)\psi(r_0) d^3r \qquad g(r) = -\frac{m}{2\pi\hbar^2} \frac{e^{ikr}}{r}$$

$$= \psi_0 + \int gV\psi_{(r_0)}$$

$$= \psi_0 + \int gV\psi_0 + \int \int gVgV\psi_{(r_0)}$$

$$= \psi_0 + \int gV\psi_0 + \int \int gVgV\psi_0 + \int \int gVgVgV\psi_0 + \dots$$

Klein-Gordon Equation (Spinless Free Particle) 10

$$(p^{2}c^{2} + m^{2}c^{4})\psi = E^{2}\psi$$

$$(-E^{2} + p^{2}c^{2} + m^{2}c^{4})\psi = 0$$

$$[-(E/c)^{2} + p^{2} + (mc)^{2}]\psi = 0$$

$$\frac{[-(E/c)^{2} + p^{2} + (mc)^{2}]}{\hbar^{2}}\psi = 0$$

$$\left[\frac{1}{c^{2}}\frac{\partial}{\partial t}^{2} - \nabla^{2} + \left(\frac{mc}{\hbar}\right)^{2}\right]\psi = 0$$

$$(-\Box^{2} + \mu^{2})\psi = 0$$

$$\mathcal{L} = \mathcal{T} - \mathcal{U} = \frac{1}{2c^2} \left(\frac{\partial \phi}{\partial t} \right)^2 - \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 - \frac{1}{2} \kappa^2 \phi^2$$

$$= \left[-\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} \kappa^2 \phi^2 \right]$$

$$d\mathcal{L} = \frac{1}{c^2} \frac{\partial \phi}{\partial t} \frac{\partial \epsilon}{\partial t} - \frac{\partial \phi}{\partial x} \frac{\partial \epsilon}{\partial x} - \kappa^2 \phi \epsilon \qquad (\epsilon = d\phi)$$

$$S[\phi] = \int dt \int dx \mathcal{L} \left(\phi, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial t} \right)$$

$$dS[\phi] = 0 = \int dt \int dx d\mathcal{L}$$

$$= \int dt \int dx \left[\frac{1}{c^2} \frac{\partial \phi}{\partial t} \frac{\partial \epsilon}{\partial t} - \frac{\partial \phi}{\partial x} \frac{\partial \epsilon}{\partial x} - \kappa^2 \phi \epsilon \right]$$

$$= \int dt \int dx \left[-\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} + \frac{\partial^2 \phi}{\partial x^2} - \kappa^2 \phi \right] \epsilon + 0 + \dots$$

$$\Box^2 \phi = \kappa^2 \phi$$

11 Dirac Equation

$$\mu^{2} = \Box^{2}$$

$$E^{2} = p^{2}c^{2} + m^{2}c^{4} = H^{2}$$

$$m = \sqrt{\nabla^{2} - \partial_{t}^{2}} \qquad \sqrt{p^{2} + m^{2}} = \alpha \cdot p + \beta m$$

$$= A\partial_{x} + B\partial_{y} + C\partial_{z} + iD\partial_{t} \qquad = \alpha_{1}p_{x} + \alpha_{2}p_{y} + \alpha_{3}p_{z} + \beta m$$

$$= i\gamma^{\mu}\partial_{\mu}$$

$$\partial_{x}^{2} + \partial_{y}^{2} + \partial_{z}^{2} - \frac{\partial}{\partial t}^{2} = (A\partial_{x} + B\partial_{y} + C\partial_{z} + iD\partial_{t})^{2}$$

$$= A^{2}\partial_{x}^{2} + B^{2}\partial_{y}^{2} + C^{2}\partial_{z}^{2} - D^{2}\partial_{t}^{2}$$

$$+ [AB + BA]\partial_{x}\partial_{y} + [AC + CA]\partial_{x}\partial_{z} + [BC + CB]\partial_{y}\partial_{z}$$

$$+ [AD + DA]i\partial_{x}\partial_{t} + [BD + DB]i\partial_{y}\partial_{t} + [CD + DC]i\partial_{z}\partial_{t}$$

$$D = \gamma^{0}, \quad A = i\gamma^{1} = i\beta\alpha_{1}, \quad B = i\gamma^{2} = i\beta\alpha_{2}, \quad C = i\gamma^{3} = i\beta\alpha_{3}$$

$$D = \gamma^{0}, \qquad A = i\gamma^{1} = i\beta\alpha_{1}, \qquad B = i\gamma^{2} = i\beta\alpha_{2}, \qquad C = i\gamma^{3} = i\beta\alpha_{3}$$

$$\beta = \begin{pmatrix} I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix}, \qquad \alpha_{i} = \begin{pmatrix} 0 & \sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix}$$

$$\gamma^{\mu} = \begin{bmatrix} \begin{pmatrix} I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix}, \begin{pmatrix} 0 & \sigma_{x} \\ -\sigma_{x} & 0 \end{pmatrix}, \begin{pmatrix} 0 & \sigma_{y} \\ -\sigma_{y} & 0 \end{pmatrix}, \begin{pmatrix} 0 & \sigma_{z} \\ -\sigma_{z} & 0 \end{pmatrix} \end{bmatrix} \quad \gamma^{5} = \begin{pmatrix} 0 & I_{2} \\ I_{2} & 0 \end{pmatrix}$$

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi = 0$$

$$(i\partial \!\!\!/ - m)\psi = 0 \qquad \text{(natural units)}$$

$$\begin{bmatrix}
i\hbar \frac{\partial}{\partial t} \psi = (c\alpha \cdot p + \beta mc^2)\psi \\
i\hbar \frac{\partial}{\partial t} \psi = (c\alpha \cdot (p - qA) + \beta mc^2 + q\phi)\psi
\end{bmatrix}$$

$$i\hbar \frac{\partial}{\partial t} \psi = (c\alpha \cdot (p - qA) + \beta mc^{2} + q\phi)\psi$$

$$= (c\alpha \cdot \pi + \beta mc^{2} + q\phi)\psi$$

$$\psi(t) = \psi(p)e^{i(p \cdot r - Et)} \Rightarrow E\psi = (\alpha \cdot \pi + \beta m)\psi$$

$$\phi = 0 \Rightarrow E\psi = (\alpha \cdot \pi + \beta m)\psi$$

$$[E - m - \sigma \cdot \pi] \begin{bmatrix} \psi_{+} \\ -\sigma \cdot \pi & E + m \end{bmatrix} \begin{bmatrix} \psi_{+} \\ \psi_{-} \end{bmatrix} = 0 \Rightarrow (E - m)\psi_{+} = (\sigma \cdot \pi)\psi_{-}$$

$$(E - m)\psi_{\pm} = \frac{(\sigma \cdot \pi)(\sigma \cdot \pi)}{(E + m)\psi_{-}} = (\sigma \cdot \pi)\psi_{+}$$

$$(E - m)\psi_{\pm} = \frac{(\sigma \cdot \pi)(\sigma \cdot \pi)}{E + m}\psi_{\pm}$$

$$E_{s}\psi_{\pm} \approx \frac{(\sigma \cdot \pi)^{2}}{2m}\psi_{\pm} \qquad \text{(Pauli's Eq.)}$$

$$(\sim \text{ to Schrodinger)}$$

$$[\pi \cdot A\sigma \cdot B = A \cdot B + i\sigma \cdot (A \times B)] = \frac{\sigma \cdot \pi \sigma \cdot \pi}{2m}\psi_{\pm} = \frac{\pi \cdot \pi + i\sigma \cdot (\pi \times \pi)}{2m}\psi_{\pm}$$

$$= \left[\frac{\pi^{2}}{2m} - \frac{q\hbar}{2m}\sigma \cdot B\right]\psi_{\pm}$$

 $\boxed{(g_e = 2)} = \left[\frac{\pi^2}{2m} - \frac{g_e q}{2m} S \cdot B\right] \psi_{\pm}$

$$i\hbar \frac{\partial}{\partial t}\psi = (c\alpha \cdot p + \beta mc^{2})\psi$$

$$\psi(t) = \psi(p)e^{i(p \cdot r - Et)} \Rightarrow E\psi = (\alpha \cdot p + \beta m)\psi$$

$$\begin{bmatrix} E - m & -\sigma \cdot p \\ -\sigma \cdot p & E + m \end{bmatrix} \begin{bmatrix} \psi_{+} \\ \psi_{-} \end{bmatrix} = 0 \Leftrightarrow \begin{cases} (E - m)\psi_{+} = (\sigma \cdot p)\psi_{-} \\ (E + m)\psi_{-} = (\sigma \cdot p)\psi_{+} \end{cases}$$

$$p = 0 \Rightarrow \begin{cases} \psi = \begin{bmatrix} \psi_{+} \\ 0 \end{bmatrix}, & E = m \\ \psi = \begin{bmatrix} 0 \\ \psi_{-} \end{bmatrix}, & E = -m \end{cases}$$

$$\psi_{\pm} = \frac{(\sigma \cdot p)^{2}}{E^{2} - m^{2}}\psi_{\pm} = \frac{p^{2}}{E^{2} - m^{2}}\psi_{\pm} \Rightarrow E_{\pm} = \pm \sqrt{p^{2} + m^{2}}$$

$$\int ||\psi_{+}||^{2} + ||\psi_{-}||^{2}d^{3}r = 1$$

Hydrogen Fine Structure

$$E\psi = H\psi$$

$$E\psi = (\alpha \cdot p + \beta m + q\phi)\psi \Rightarrow (E - m - V)\psi_{+} = (\sigma \cdot p)\psi_{-}$$

$$(E + m - V)\psi_{-} = (\sigma \cdot p)\psi_{+}$$

$$(E - m - V)\psi_{+} = (\sigma \cdot p) \left(\frac{1}{E + m - V}\right) (\sigma \cdot p)\psi_{+}$$

$$(E_{s} - V)\psi_{+} = \frac{1}{2m}(\sigma \cdot p) \left(1 + \frac{E_{S} - V}{2m}\right)^{-1} (\sigma \cdot p)\psi_{+}$$

$$\approx \frac{p^{2}}{2m}\psi_{+} \qquad (1^{\text{st}} \text{ order}, v^{2})$$

$$\approx \frac{p^{2}}{2m}\psi_{+} - \frac{\sigma \cdot p}{(2m)^{2}} (E_{S} - V) (\sigma \cdot p)\psi_{+} \qquad (2^{\text{nd}} \text{ order}, v^{4})$$

$$= \frac{p^{2}}{2m}\psi_{+} - \frac{\sigma \cdot p}{(2m)^{2}} \left[(\sigma \cdot p) (E_{S} - V)\psi_{+} + [E_{S} - V, \sigma \cdot p] \psi_{+} \right]$$

$$\approx \left[\frac{p^{2}}{2m} - \frac{p^{2}}{(2m)^{2}} \frac{p^{2}}{2m} - \frac{(\sigma \cdot p)(\sigma \cdot [p, V])}{(2m)^{2}} \right] \psi_{+}$$

$$E_{S}\psi_{+} = \left[\frac{p^{2}}{2m} + V - \frac{p^{4}}{8m^{3}} - \frac{i\sigma \cdot (p \times [p, V])}{4m^{2}} - \frac{p[p, V]}{4m^{2}} \right] \psi_{+} = H\psi_{+}$$

$$1 = \int \|\psi_{+}\|^{2} + \|\psi_{-}\|^{2} d^{3}r$$

$$= \int \|\psi_{+}\|^{2} + \|\frac{\sigma \cdot p}{E+m-V}\psi_{+}\|^{2} d^{3}r$$

$$\approx \int \|\psi_{+}\|^{2} + \|\frac{\sigma \cdot p}{2m}\psi_{+}\|^{2} d^{3}r$$

$$= \int \psi_{+}^{\dagger} (1 + \frac{p^{2}}{4m^{2}})\psi_{+} d^{3}r$$

$$\approx \left\langle (1 + \frac{p^{2}}{8m^{2}})\psi_{+} \middle| (1 + \frac{p^{2}}{8m^{2}})\psi_{+} \right\rangle$$

$$\equiv \left\langle \psi_{S} \middle| \psi_{S} \right\rangle$$

$$E_{S}\left(1+\frac{p^{2}}{8m^{2}}\right)^{-1}\psi_{S} = H\left(1+\frac{p^{2}}{8m^{2}}\right)^{-1}\psi_{S}$$

$$E_{S}\psi_{S} = \left(1+\frac{p^{2}}{8m^{2}}\right)H\left(1+\frac{p^{2}}{8m^{2}}\right)^{-1}\psi_{S}$$

$$= \left(H+\frac{p^{2}H}{8m^{2}}\right)\left(1-\frac{p^{2}}{8m^{2}}+\mathcal{O}(p^{4})\right)\psi_{S}$$

$$\approx \left(H+\left[\frac{p^{2}}{8m^{2}},H\right]\right)\psi_{S} \approx \left(H+\left[\frac{p^{2}}{8m^{2}},V\right]\right)\psi_{S} \qquad (2^{\text{nd order}},v^{4})$$

$$E_{S}\psi_{S} = \left(\frac{p^{2}}{2m}+V-\frac{p^{4}}{8m^{3}}-\frac{i\sigma\cdot(p\times[p,V])}{4m^{2}}-\frac{p[p,V]}{4m^{2}}+\frac{[p,V]p+p[p,V]}{8m^{2}}\right)\psi_{S}$$

$$= \left(\frac{p^{2}}{2m}+V-\frac{p^{4}}{8m^{3}}-\frac{i\sigma\cdot(p\times[p,V])}{4m^{2}}-\frac{[p,[p,V]]}{8m^{2}}\right)\psi_{S}$$

$$= \left(\frac{p^{2}}{2m} + V - \frac{p^{4}}{8m^{3}} - \frac{i\sigma \cdot (p \times [p,V])}{4m^{2}} - \frac{[p,p,V]}{8m^{2}}\right) \psi_{S}$$

$$= \left(H_{S} + H_{\text{rel.}} + H_{\text{so}} + H_{\text{darwin}}\right) \psi_{S}$$

$$= \left(\frac{p^{2}}{2m} + V - \frac{p^{4}}{8m^{3}} - \frac{1}{4m^{2}}\sigma \cdot (p \times \nabla V) + \frac{1}{8m^{2}}\nabla^{2}V\right) \psi_{S}$$

$$= \left(\frac{p^{2}}{2m} + V - \frac{p^{4}}{8m^{3}} - \frac{1}{2m^{2}}S \cdot [\vec{p} \times \frac{qq\vec{r}}{4\pi r^{3}}] + \frac{1}{8m^{2}}[qq\delta^{3}(r)]\right) \psi_{S}$$

$$= \left(\frac{p^{2}}{2m} + V - \frac{p^{4}}{8m^{3}} + \underbrace{\frac{e^{2}}{8m^{2}}\frac{S \cdot L}{r^{3}}}_{l \neq 0} + \underbrace{\frac{e^{2}}{8m^{2}}\delta^{3}(r)}_{l = 0}\right) \psi_{S}$$

$$\begin{split} \overline{V(r)} &= V(r) + \sum_{i} \overline{\frac{\partial V}{\partial r_{i}}} \delta \widehat{r_{i}} \\ &+ \frac{1}{2!} \sum_{ij} \overline{\frac{\partial^{2} V}{\partial r_{i} \partial r_{j}}} \delta r_{i} \delta r_{j} \\ &+ \mathcal{O}(\delta r^{3}) \\ &= V(r) + \frac{1}{2} \left(\delta r\right)^{2} \overline{\nabla^{2} V} + \dots \\ &(\delta r \sim \frac{\hbar}{mc}) \end{split}$$

Exact Energy Eigenvalues:
$$E_{nj} = mc^2 \left[1 + \left(\frac{\alpha}{n - (j+1/2) + \sqrt{(j+1/2)^2 - \alpha^2}} \right)^2 \right]^{-1/2}$$