浙江工业大学 2011 - 2012 学年第二学期 概率论与数理统计试卷

一. 填空题(每空 2 分,共 28 分) 1. 设 $P(A) = 0.6$, $P(AB) = 0.2$, $P(B A \cup B) = 0.5$,则 $P(B) = $ 2. 设连续型随机变量 X 的分布函数为 $ \begin{cases} 0, & x < -\pi \\ A \sin \frac{\pi}{6} + B, & -\pi \le x \le \pi \\ 1, & x > \pi \end{cases} $ 则 $A = $ 则 $A = $ 则 $A = $ 。 3. 设随机变量 $X \sim B(2,p)$, $Y \sim B(3,p)$,若 $P(X \ge 1) = \frac{5}{9}$, $P(Y \ge 1) = $ 。 4. 设随机变量 X 的密度函数为 $f(x) = e^{-\frac{1}{4}(x^2 - 2x + c)}$, $-\infty < x < \infty$, X 的期望 $EX = $, $5E$ Y	
1. 设 $P(A) = 0.6$, $P(AB) = 0.2$, $P(B A \cup B) = 0.5$, 则 $P(B) = $	
2. 设连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < -\pi \\ A \sin \frac{x}{6} + B, & -\pi \leq x \leq \pi \\ 1, & x > \pi \end{cases}$ 则 $A = $, $B = $ 。 3. 设随机变量 $X \sim B(2,p), \ Y \sim B(3,p), \ \\ # P(X \geq 1) = $ 。 4. 设随机变量 X 的密度函数为 $f(x) = e^{-\frac{1}{4}(x^2 - 2x + c)}, \ -\infty < x < \infty, X$ 的期望 $EX = $, $ \\ # 方差 Var(X) = $ 。 5. $ # X, Y $ 相互独立,且 $ P(X \geq 0) = \frac{1}{2}, \ P(Y \geq 0) = \frac{1}{3}, \ \\ # 0) = $ 。 6. 设 $ X \sim P(2), \ Y \sim N(2, 2^2), \ X, Y $ 的相关系数 $ \\ # \rho(X, Y) = -0.5, Var(X + Y - 2) = $ 。 7. 设某一年龄段女童的平均身高为 130 厘米,标准差是 8 厘米。现代年龄段女童中随机选取一名,则由切比雪夫不等式,其身高 X 在	
$F(x) = \begin{cases} 0, & x < -\pi \\ A \sin \frac{x}{6} + B, & -\pi \leq x \leq \pi \\ 1, & x > \pi \end{cases}$ 则 $A = $	_°
则 $A = $, $B = $ 。 3. 设随机变量 $X \sim B(2,p)$, $Y \sim B(3,p)$,若 $P(X \geq 1) = \frac{5}{9}$, $P(Y \geq 1) = $ 。 4. 设随机变量 X 的密度函数为 $f(x) = e^{-\frac{1}{4}(x^2 - 2x + c)}$, $-\infty < x < \infty$, X 的期望 $EX = $,方差 $Var(X) = $ 。 5. 若 X,Y 相互独立,且 $P(X \geq 0) = \frac{1}{2}$, $P(Y \geq 0) = \frac{1}{3}$,则 $P(\max\{2,0) = $ 。 6. 设 $X \sim P(2)$, $Y \sim N(2,2^2)$, X,Y 的相关系数 $\rho(X,Y) = -0.5$, $Var(X + Y - 2) = $ 。 7. 设某一年龄段女童的平均身高为 130 厘米,标准差是 8 厘米。现代年龄段女童中随机选取一名,则由切比雪夫不等式,其身高 X 在	
则 $A = $, $B = $ 。 3. 设随机变量 $X \sim B(2,p)$, $Y \sim B(3,p)$,若 $P(X \geq 1) = \frac{5}{9}$, $P(Y \geq 1) = $ 。 4. 设随机变量 X 的密度函数为 $f(x) = e^{-\frac{1}{4}(x^2 - 2x + c)}$, $-\infty < x < \infty$, X 的期望 $EX = $,方差 $Var(X) = $ 。 5. 若 X,Y 相互独立,且 $P(X \geq 0) = \frac{1}{2}$, $P(Y \geq 0) = \frac{1}{3}$,则 $P(\max\{2,0) = $ 。 6. 设 $X \sim P(2)$, $Y \sim N(2,2^2)$, X,Y 的相关系数 $\rho(X,Y) = -0.5$, $Var(X + Y - 2) = $ 。 7. 设某一年龄段女童的平均身高为 130 厘米,标准差是 8 厘米。现代年龄段女童中随机选取一名,则由切比雪夫不等式,其身高 X 在	
$P(Y \ge 1) =$ 。 4. 设随机变量 X 的密度函数为 $f(x) = e^{-\frac{1}{4}(x^2 - 2x + c)}$, $-\infty < x < \infty$, X 的期望 $EX =$, $方差 \ Var(X) =$ 。 5. 若 X, Y 相互独立,且 $P(X \ge 0) = \frac{1}{2}$, $P(Y \ge 0) = \frac{1}{3}$, 则 $P(\max\{X, Y, Y,$	
5. 若 X,Y 相互独立,且 $P(X \ge 0) = \frac{1}{2}$, $P(Y \ge 0) = \frac{1}{3}$,则 $P(\max\{X = 0) = 0) = 0$ 6. 设 $X \sim P(2)$, $Y \sim N(2,2^2)$, X,Y 的相关系数 $\rho(X,Y) = -0.5$, $Var(X + Y - 2) = 0$ 7. 设某一年龄段女童的平均身高为 130 厘米,标准差是 8 厘米。现在, 年龄段女童中随机选取一名,则由切比雪夫不等式,其身高 X 在	则
 0) =。 6. 设 X ~ P(2), Y ~ N(2, 2²), X, Y 的相关系数 ρ(X, Y) = -0.5, Var(X + Y - 2) =。 7. 设某一年龄段女童的平均身高为 130 厘米,标准差是 8 厘米。现在,	则
Var(X+Y-2) =。 7. 设某一年龄段女童的平均身高为 130 厘米,标准差是 8 厘米。现分年龄段女童中随机选取一名,则由切比雪夫不等式,其身高 X 在	$\{X,Y\}$
年龄段女童中随机选取一名,则由切比雪夫不等式,其身高 X 在	则
8. 将一枚均匀的骰子独立地投掷 180 次,利用中心极限定理,估计数为 6 的次数在 25 到35 之间的概率为。(已知 $\Phi(1)=0.8$ $\Phi(2)=0.9772$)	

 \geq

9. 设 X_1, X_2, \cdots, X_6 相互独立,服从共同的分布 $N(1, \sigma^2)$,令

$$U = \frac{A(X_1 - X_2)}{\sqrt{(X_3 - X_4)^2 + (X_5 + X_6 - c)^2}}$$

则当 A =____,c =____ 时,U 服从 t-分布,自由度为 ____。

10. 设一批零件的长度 $X \sim N(\mu, 1^2)$, 从中随机抽取 16 个零件, 测得长度 的平均值为 40 厘米,则 μ 的置信度为 0.95 的置信区间为。 $(\Phi(1.96) = 0.975, \Phi(1.645) = 0.95)$

二. 选择题 (每题 3 分, 共 12 分)

1. 设二维离散型随机变量的联合分布律为:

X	1	2	4
-1	0.1	0.3	b
1	a	0	0.2

 \overline{H} \overline{H}

- A) X,Y 独立
- B) X,Y 不相关
- C) cov(X, Y) > 0 D) cov(X, Y) < 0
- 2. 设 $X_1, X_2, \dots, X_n, \dots$ 是相互独立的随机变量序列,服从共同的分布 U(-1,5),则下列结论正确的是()。
 - A) 对任意 $\epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1 + \dots + X_n) 2| < \epsilon) = 0$;
 - B) 对任意 $\epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1^2 + \dots + X_n^2) 7| < \epsilon) = 1$;
 - C) 对任意 $\epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1^2 + \dots + X_n^2) 4| > \epsilon) = 1$;
 - D) 对任意 $\epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1 + \dots + X_n) 3| > \epsilon) = 0$
- 3. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $X \sim N(\mu, \sigma^2)$ 的简单样本, μ, σ^2 均未知,则下列 () 为 σ^2 的无偏估计量。

 - A) $\frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$ B) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \mu)^2$ C) $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ D) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$

A)
$$\begin{cases} x+y, & 0 \le x, y \le 1 \\ 0, & 其它 \end{cases}$$

B)
$$\begin{cases} 4xy, & 0 \le x, y \le \\ 0, & 其它 \end{cases}$$

A)
$$\begin{cases} x + y, & 0 \le x, y \le 1 \\ 0, & \text{其它} \end{cases}$$
 B)
$$\begin{cases} 4xy, & 0 \le x, y \le 1 \\ 0, & \text{其它} \end{cases}$$
 C)
$$\begin{cases} 2(x + y), & 0 \le x < y \le 1 \\ 0, & \text{其它} \end{cases}$$
 D)
$$\begin{cases} 8xy, & 0 \le x < y \le 1 \\ 0, & \text{其它} \end{cases}$$

三. 解答题 (共60分)

- 1. (8分)设书架上共有10本书,其中有3本语文书、4本数学书、3本物理书,试求下列随机事件的概率:
 - 1)3本语文书放在一起的概率?
 - 2) 4本数学书放在一起并且3本物理书没有放在一起的概率?

- 2. (10分)根据保险公司的统计资料,将被保险人分为甲、乙两类,其中甲类占30%,已知甲类人在一年内发生事故的概率为0.4,乙类人在一年内发生事故的概率为0.2。
 - 1) 现随机抽取一个被保险人,他在一年内发生事故的概率是多少?
 - 2) 若该被保险人在一年内发生了事故,则他是甲类人的概率是多少?

3.(10分) 设连续型随机变量 X 的密度函数为

$$f(x) = \begin{cases} 2xe^{-\frac{x^2}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

- 1) 求 *X* 的分布函数;
- 2) 求 $Y = X^2$ 的密度函数。

4.(12分)设两维随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} Ax, & 0 < x < y < 1 \\ 0, & \not\exists \, \dot{\Xi} \end{cases}$$

- 1) 验证常数 A = 6;
- 2) 计算 X,Y 的边缘密度;
- 3) 计算 X,Y 的相关系数。

5. (10分)设总体 X 的密度函数为

$$f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

求 $\lambda > 0$ 的矩估计和极大似然估计。

6. $(10 \, \mathcal{H})$ 正常人的脉搏平均为 $72 \, (\, \mathcal{H}/\mathcal{H})$, 现从铅中毒的患者中抽取 $10 \, \mathcal{H}$, 测得其脉搏为: 54, 67, 68, 78, 70, 66, 67, 70, 65, 69 $(\, \mathcal{H}/\mathcal{H})$)。 假设脉搏服从正态分布 $N(\mu, \sigma^2)$, 取显著水平 $\alpha = 0.05$, 铅中毒患者与正常人的脉搏是否有显著性差异? $(t_9(0.05) = 1.8331$, $t_9(0.025) = 2.2622$, $t_{10}(0.05) = 1.8125$, $t_{10}(0.025) = 2.2281$)