- 1. Find three examples of adjoint functors not mentioned above. Do the same for initial and terminal objects.
 - (a) Let $\mathbb E$ be a field extension of another field $\mathbb F$. Let G be the Galois group $G = \operatorname{Gal}(\mathbb E : \mathbb F)$ and take the category $\mathcal E$, with objects being intermediate field extensions between $\mathbb E$ and $\mathbb F$, and morphisms as inclusions. Take $\mathcal G$, with objects being subgroups, and morphisms $\operatorname{Hom}(H,H')=\{\leq |H\leq H'\}$.

Then, for $\mathbb{k} \in \mathcal{E}$, we define the map:

$$\phi: \mathcal{E} \to \mathcal{G}^{op}$$
, $\phi(\mathbb{k}) = \operatorname{Gal}(\mathbb{E}: \mathbb{k})$.

And for $H \in \mathcal{G}$, define:

$$\phi: \mathcal{G}^{op} \to \mathcal{E}, \quad \psi(H) = \{x \in \mathbb{E} : \alpha(x) = x \forall \alpha \in H\}.$$

(Recalling that elements of H are automorphisms of \mathbb{E}). A study of Galois theory tells us that these maps produce a bijective correspondence of field extensions and subgroups, we see that they are functors which are both adjoint to each other.

- (b) In the category of fields of characteristic p, for some fixed p, the field \mathbb{F}_p is initial. (c)
- 2. 2.1.14 (may be hard)
- 3. Let *G* be a group.
 - (a) What interesting functors are there (in either direction) between Set and the category [G, Set] of left G-sets? Which of those functors are adjoint to which?

Solution: Consider F, the forgetful functor from $[G, Set] \rightarrow Set$, which takes an action and maps it to the set it acts on.

Then take $L: Set \to [G, Set]$, which takes a set X in Set and maps it to an action $G \times X$, defined by h(g, x) = (hg, x). For a functor in Set, we map L(f(x)) = (g, f(x)) No take $R: Set \to [G, Set]$ defined by $R(X) = Map(G, X) = \{f: G \to X\}$. We equip Map(G, X) with an action, $g\phi(h) = \phi(gh)$. For a functor g in Set, we map R(g) = Finally we claim that these are adjoint:

$$[G, Set]$$

$$L \mid A \mid F \mid A \mid R$$
Set

- 4. Let $f:A\to B$ and $g:B\to A$ be order-preserving operations between ordered sets. Prove TFAE:
 - (a) For any $a \in A, b \in B$,

$$f(a) \le b \iff a \le f(b)$$
.

- (b) $a \le g(f(a))$ for any $a \in A$ and $f(g(b)) \le b$ for any $b \in B$
- 5. Show that for any adjunction, the right adjoint is full and faithful if and only if the counit is an isomorphism