Klassifikation mit Naive Bayes

Florian Fink (Vielen Dank an Helmut Schmid und Ben Roth für Teile der Folien)

> Centrum für Informations- und Sprachverarbeitung Ludwig-Maximilian-Universität München finkf@cis.uni-muenchen.de

Naive Bayes Classifier

Aufgabenstellung

Gegeben ein Traininscorpus:

Entscheide ob neue (ungesehene) Emails der Kategorie HAM oder SPAM zugeordnet werden soll:

Entscheidungskriterium

► Gegeben der Inhalt der Email, welche Kategorie ist wahrscheinlicher, SPAM oder HAM?

Warum ist das Entscheidungskriterium nicht:

Bayes-Regel

$$P(HAM|text) = \frac{P(text|HAM) * P(HAM)}{P(text)}$$

- ► P(text|HAM): bedingte BOW-Wahrscheinlichkeit
- P(HAM): Prior-Wahrscheinlichkeit, dass eine Email der Kategorie HAM zugeordnet wird (wenn der Inhalt der Email nicht bekannt ist). Schätzung:

$$\tilde{p}(HAM) = \frac{Anzahl\ HAM-Mails}{Anzahl\ alle\ Mails}$$

P(text): BOW-Wahrscheinlichkeit des Inhalts der Email, ohne dass die Kategorie bekannt ist

Entscheidungskriterium

Email ist HAM
$$\Leftrightarrow$$

$$P(HAM|text) > P(SPAM|text)$$

$$\Leftrightarrow$$

$$\frac{P(HAM|text)}{P(SPAM|text)} > 1$$

$$\Leftrightarrow$$

Entscheidungskriterium

Email ist HAM
$$\Leftrightarrow P(HAM|text) > P(SPAM|text)$$

$$\Leftrightarrow \frac{P(HAM|text)}{P(SPAM|text)} > 1$$

$$\Leftrightarrow \frac{\frac{1}{P(text)}P(text|HAM) * P(HAM)}{\frac{1}{P(text)}P(text|SPAM) * P(SPAM)} > 1$$

Was ist Entscheidungsregel für mehr als zwei Kategorien?

Beispiel (Vorläufig)

reminder deadline meet thanks

hot stock tip

thanks

meet hot single

thanks for tip

thanks

- $\tilde{p}(HAM) = \frac{3}{5}$
- $\tilde{p}(SPAM) = \frac{2}{5}$
- p(hot stock for | HAM)

$$= \tilde{p}(\mathsf{hot}|HAM)\tilde{p}(\mathsf{stock}|HAM)\tilde{p}(\mathsf{for}|HAM) = ...$$

p(hot stock for|SPAM)

$$= \tilde{p}(\mathsf{hot}|\mathit{SPAM})\tilde{p}(\mathsf{stock}|\mathit{SPAM})\tilde{p}(\mathsf{for}|\mathit{SPAM}) = ...$$

....

Beispiel (Vorläufig)

hot stock tip

thanks for tip

meet

hot single deadline approaching

- $\tilde{p}(HAM) = \frac{3}{5}$
- $\tilde{p}(SPAM) = \frac{2}{5}$
- ▶ p(hot stock for HAM)

$$= \tilde{p}(\mathsf{hot}|\mathsf{HAM})\tilde{p}(\mathsf{stock}|\mathsf{HAM})\tilde{p}(\mathsf{for}|\mathsf{HAM}) = \frac{0\cdot 0\cdot 1}{9\cdot 9\cdot 9} = 0$$

▶ p(hot stock for|SPAM)

$$= \tilde{p}(\mathsf{hot}|SPAM)p(\mathsf{stock}|SPAM)\tilde{p}(\mathsf{for}|SPAM) = \frac{2 \cdot 1 \cdot 0}{6 \cdot 6 \cdot 6} = 0$$

▶ Problem: Entscheidungskriterium ist nicht definiert $(\frac{0}{0})$

Addiere-1 Glättung

Addiere-1 Glättung (Laplace-Glättung)

$$\widetilde{p}(w) = \frac{n(w) + 1}{N + V}$$

(V = Anzahl der möglichen Wörter; N = Zahl der Tokens)

- ... ist optimal falls die uniforme Verteilung am wahrscheinlichsten ist, was in bei Textcorpora selten der Fall ist \Rightarrow Zipf'sche Verteilung
- ... überschätzt daher die Wahrscheinlichkeit ungesehener Wörter.

Addiere- λ Glättung

reduziert das Ausmaß der Glättung

Addiere- λ Glättung

$$\tilde{p}(w) = \frac{n(w) + \lambda}{N + V\lambda}$$

Addiere- λ Glättung für bedingte Wahrscheinlichkeiten

$$\tilde{p}(w|y) = \frac{n(w,y) + \lambda}{n_y + V\lambda}$$

Beispiel (mit Addiere-1 Glättung)

reminder deadline meet thanks stock tip thanks single thanks single thanks single thanks thanks for tip deadline approaching thanks to thanks for tip tip thanks to thanks for t

- $ightharpoonup ilde{p}(HAM) = rac{3}{5}, \ ilde{p}(SPAM) = rac{2}{5}$
- ightharpoonup Vokabular enthält V=10 unterschiedliche Wörter
- $ightharpoonup p(ext{hot stock for}|HAM) = \tilde{p}(ext{hot}|HAM) \tilde{p}(ext{stock}|HAM) \tilde{p}(ext{for}|HAM)$

$$=\frac{(0+1)\cdot(0+1)\cdot(1+1)}{(9+10)\cdot(9+10)\cdot(9+10)}\approx 0.00029$$

 $p(\text{hot stock for}|SPAM) = \\ \tilde{p}(\text{hot}|SPAM)\tilde{p}(\text{stock}|SPAM)\tilde{p}(\text{for}|SPAM)$

$$=\frac{(2+1)\cdot(1+1)\cdot(0+1)}{(6+10)\cdot(6+10)\cdot(6+10)}\approx 0.00146$$

 $\frac{P(\text{text}|\text{HAM})*P(\text{HAM})}{P(\text{text}|\text{SPAM})*P(\text{SPAM})} = \frac{0.00029 \cdot 0.6}{0.00146 \cdot 0.4} \approx 0.298 \Rightarrow \text{Kategorie?}$

Beispiel (mit Addiere-1 Glättung)

hot stock tip reminder deadline meet thanks meet hot stock stock tip deadline approaching

- Vokabular enthält V = 10 unterschiedliche Wörter
- $ightharpoonup p(ext{hot stock for}|HAM) = \tilde{p}(ext{hot}|HAM) \tilde{p}(ext{stock}|HAM) \tilde{p}(ext{for}|HAM)$

$$=\frac{(0+1)\cdot(0+1)\cdot(1+1)}{(9+10)\cdot(9+10)\cdot(9+10)}\approx 0.00029$$

 $p(\text{hot stock for}|SPAM) = \\ \tilde{p}(\text{hot}|SPAM)\tilde{p}(\text{stock}|SPAM)\tilde{p}(\text{for}|SPAM)$

$$=\frac{(2+1)\cdot(1+1)\cdot(0+1)}{(6+10)\cdot(6+10)\cdot(6+10)}\approx 0.00146$$

Rechnen mit Logarithmen

- ▶ Bei der Multiplikation vieler kleiner Wahrscheinlichkeiten (z.B. aller Worte in einem langen Text) kann sich das Ergebnis schnell dem Wert 0 annähern, und u.U. nicht mehr korrekt repräsentiert werden.
- Deswegen vermeidet man möglichst immer die Multiplikation von Wahrscheinlichkeiten.
- Man verwendet stattdessen die Summe der logarithmierten Wahrscheinlichkeiten.
- Beispiel:

Rechnen mit Logarithmen

- ▶ Bei der Multiplikation vieler kleiner Wahrscheinlichkeiten (z.B. aller Worte in einem langen Text) kann sich das Ergebnis schnell dem Wert 0 annähern, und u.U. nicht mehr korrekt repräsentiert werden.
- Deswegen vermeidet man möglichst immer die Multiplikation von Wahrscheinlichkeiten.
- Man verwendet stattdessen die Summe der logarithmierten Wahrscheinlichkeiten.
- Beispiel:

 $ightharpoonup \log(\frac{a}{b}) = ?$

$$P(HAM|text) > P(SPAM|text) \Leftrightarrow$$

 $\log P(HAM|text) > \log P(SPAM|text) \Leftrightarrow$

$$P(HAM|text) > P(SPAM|text) \Leftrightarrow$$
 $\log P(HAM|text) > \log P(SPAM|text) \Leftrightarrow$
 $\log P(HAM|text) - \log P(SPAM|text) > 0 \Leftrightarrow$

$$P(HAM|text) > P(SPAM|text) \Leftrightarrow$$
 $\log P(HAM|text) > \log P(SPAM|text) \Leftrightarrow$
 $\log P(HAM|text) - \log P(SPAM|text) > 0 \Leftrightarrow$
 $\log P(text|HAM) + \log P(HAM) - \log P(text) - (\log P(text|SPAM) + \log P(SPAM) - \log P(text)) > 0 \Leftrightarrow$

$$P(HAM|text) > P(SPAM|text) \Leftrightarrow$$
 $\log P(HAM|text) > \log P(SPAM|text) \Leftrightarrow$
 $\log P(HAM|text) - \log P(SPAM|text) > 0 \Leftrightarrow$
 $\log P(text|HAM) + \log P(HAM) - \log P(text) (\log P(text|SPAM) + \log P(SPAM) - \log P(text)) > 0 \Leftrightarrow$
 $\log P(text|HAM) + \log P(HAM) - \log P(text) \log P(text|SPAM) - \log P(SPAM) + \log P(text) \log P(text|SPAM) - \log P(SPAM) + \log P(text) > 0 \Leftrightarrow$

$$P(HAM|text) > P(SPAM|text) \Leftrightarrow$$

$$\log P(HAM|text) > \log P(SPAM|text) \Leftrightarrow$$

$$\log P(HAM|text) - \log P(SPAM|text) > 0 \Leftrightarrow$$

$$\log P(text|HAM) + \log P(HAM) - \log P(text) -$$

$$(\log P(text|SPAM) + \log P(SPAM) - \log P(text)) > 0 \Leftrightarrow$$

$$\log P(text|HAM) + \log P(HAM) - \log P(text) -$$

$$\log P(text|SPAM) - \log P(SPAM) + \log P(text) > 0 \Leftrightarrow$$

$$\log P(text|SPAM) - \log P(SPAM) + \log P(text) > 0 \Leftrightarrow$$

$$\log P(text|HAM) + \log P(HAM) - \log P(text|SPAM) - \log P(SPAM) > 0$$

Odds und Log-Odds

Den Quotienten der Wahrscheinlichkeiten zweier komplementärer Ereignisse nennt man auch Odds:

$$\frac{P(HAM|text)}{P(SPAM|text)}$$

▶ Den Logarithmus dieses Quotienten nennt man **Log-Odds**:

$$\log \frac{P(HAM|text)}{P(SPAM|text)} = \log P(HAM|text) - \log P(SPAM|text)$$

Unbekannte Wörter in den Test-Daten

- Es kann sein, dass Wörter in den Testdaten vorkommen, die in den Trainingsdaten nicht vorgekommen sind.
- Die möglichen Werte der Zufallsvariable wurden aber Anhand der Trainingsdaten gewählt, d.h. die Wahrscheinlichkeit der neuen Wörter ist nicht definiert.
- Zwei häufig verwendete Lösungen:
 - Wörter, die nicht in den Trainingsdaten vorkommen werden ignoriert (⇒ Testdokumente werden kürzer)
 - ▶ Wörter, die in den Trainigsdaten nur selten (z.B. 1-2-Mal) bzw. nicht vorkommen, werden (in Training und Test) durch einen Platzhalter <UNK> ersetzt.

Implementierung

Trainings- oder Test-Instanz

In unserem Fall:

- ► Features = Wörter (Tokens)
- Label
 - Binäre Klassifikation: HAM (True) vs SPAM (False)
 - Multi-Klassen Klassifikation (Übungsblatt): String für Kategorie ("work", "social", "promotions", "spam", ...)

```
class DataInstance:
```

```
def __init__(self, feature_counts, label):
    self.feature_counts = feature_counts
    self.label = label
```

#...

Trainings- oder Test-Set

Menge der möglichen Merkmalsausprägungen ist z.B. für Glättung wichtig.

```
class Dataset:
    def __init__(self, instance_list, feature_set):
        self.instance_list = instance_list
        self.feature_set = feature_set
```

Klassifikator

Welche Informationen benötigen wir, um das Naive-Bayes Modell zu erstellen?

....

Klassifikator

Welche Informationen benötigen wir, um das Naive-Bayes Modell zu erstellen?

- Für die Schätzung von P(w|HAM) bzw. P(w|SPAM)
 - n(w, HAM) bzw. n(w, SPAM): Je ein Dictionary, welches jedes Wort auf seine Häufigkeit in der jeweiligen Kategorie abbildet.
 - n_{HAM} bzw. n_{SPAM}:
 Die Anzahl aller Wortvorkommen pro Kategorie
 (kann aus den Values der Dictionaries aufsummiert werden)
 - lacktriangle Für die Glättung: Parameter λ und Größe des Vokabulars V
- Für die Schätzung von P(HAM) bzw. P(SPAM)
 - Jeweils die Anzahl der Trainingsemails pro Kategorie.

Klassifikator: Konstruktor

```
def __init__(self, positive_word_to_count, negative_word_to_count, \)
        positive_counts, negative_counts, vocabsize, smoothing):
    # n(word, HAM) and n(word, SPAM)
    self.positive_word_to_count = positive_word_to_count
    self.negative_word_to_count = negative_word_to_count
    # n HAM and n SPAM
    self.positive_total_wordcount = \
        sum(positive_word_to_count.values())
    self.negative_total_wordcount = \
        sum(negative_word_to_count.values())
    self.vocabsize = vocabsize
    # P(HAM) and P(SPAM)
    self.positive_prior = \
        positive_counts / (positive_counts + negative_counts)
    self.negative_prior = \
        negative_counts / (positive_counts + negative_counts)
    self.smoothing = smoothing
```

Klassifikator: Übersicht

```
class NaiveBayesWithLaplaceClassifier:
    def log_probability(self, word, is_positive_label):
        # ...
    def log_odds(self, feature_counts):
        # ...
    def prediction(self, feature_counts):
        # ...
    def prediction_accuracy(self, dataset):
        # ...
    def log_odds_for_word(self, word):
        # ...
    def features_for_class(self, is_positive_class, topn=10
        # . . .
```

Berechnung von P(w|HAM) bzw P(w|SPAM)

Wahrscheinlichkeitsschätzung ...

- ... geglättet
- ... wird logarithmiert zurückgegeben

```
def log_probability(self, word, is_positive_label):
    if is_positive_label:
        wordcount = self.positive_word_to_count.get(word, 0)
        total = self.positive_total_wordcount
    else:
        wordcount = self.negative_word_to_count.get(word, 0)
        total = self.negative_total_wordcount
    return math.log(wordcount + self.smoothing) \
        - math.log(total + self.smoothing * self.vocabsize)
```

Berechnung der Log-Odds

▶ Was wird in den zwei Summen jeweils berechnet?

Anwenden des Klassifikators, Test-Accuracy

- Vorhersage
 - Anwenden des Modells auf die Feature-Counts einer Test-Instanz
 - ► Vorhersage einer Kategorie (HAM/True oder SPAM/False) gemäß der Entscheidungsregel

```
def prediction(self, feature_counts):
    # ...
```

- ► Berechnung der Test-Accuracy
 - Zunächst Vorhersage für alle Instanzen des Dataset
 - ▶ Dann Vergleich mit dem richtigen Kategorien-Label

```
def prediction_accuracy(self, dataset):
    # ...
```

Multi-Klassen Klassifikation

Multi-Klassen Klassifikation

- Erweiterung: Klassifikator unterscheidet n verschiedene Kategorien $(n \ge 2)$
- ▶ ⇒ Übungsblatt
- ► Entscheidungsregel: wähle Kategorie c^* , die die Wahrscheinlichkeit $p(c^*|text)$ maximiert.

$$c^* = \arg\max_{c} p(c|text)$$

▶ $arg max_x f(x)$ wählt einen Wert x (aus der Definitionsmenge) aus, für den der Funktionswert f(x) maximal ist.

Entscheidungsregel bei der Multi-Klassen Klassifikation

- Wir wählen aus den Klassen c_1, c_2, \ldots, c_n die Klasse c^* mit maximaler Odds (bzw. Log-Odds) aus
- ▶ Odds der Klassen c_1, c_2, \ldots, c_n :

$$\frac{p(c_1|text)}{1-p(c_1|text)}, \frac{p(c_2|text)}{1-p(c_2|text)}, \dots, \frac{p(c_n|text)}{1-p(c_n|text)}$$

Entscheidungsregel bei der Multi-Klassen Klassifikation

$$\frac{p(c_1|text)}{1 - p(c_1|text)} = \frac{\frac{1}{p(text)}p(text|c_1)p(c_1)}{1 - \frac{1}{p(text)}p(text|c_1)p(c_1)} = \frac{\frac{1}{p(text)}p(text|c_1)p(c_1)}{\frac{1}{p(text)}(p(text) - p(text|c_1)p(c_1))} = \frac{p(text|c_1)p(c_1)}{p(text) - p(text|c_1)p(c_1)}$$

▶ Da nach der maximalen Odds-Wahrscheinlichkeit gesucht wird, müssen wir nur die Zähler berücksichtigen:

$$c^* = \arg\max_{c} p(c)p(text|c)$$

Durch Anwendung der Rechenregeln, die bedingte Unabhängigkeitsannahme, und unsere Schätzmethode (Laplace) gilt:

$$c^* \arg \max_{c} \log[p(c)] + \sum_{w \in text} \log[\tilde{p}(w|c)]$$

Multi-Klassen Klassifikation

► Entscheidungsregel: wähle Kategorie c^* , die die Wahrscheinlichkeit $p(c^*|text)$ maximiert.

$$c^* = \arg\max_{c} p(c|text)$$

Gilt die folgende Implikation?

$$c^* = \arg\max_{c} p(c|text) \Rightarrow \frac{p(c^*|text)}{1 - p(c^*|text)} \ge 1$$

Gilt die folgende Implikation?

$$\frac{p(c'|text)}{1 - p(c'|text)} > 1 \Rightarrow c' = \arg\max_{c} p(c|text)$$

Multi-Klassen Klassifikation

► Gilt die folgende Implikation?

$$c^* = rg \max_{c} p(c|text) \Rightarrow rac{p(c^*|text)}{1 - p(c^*|text)} \geq 1$$

Nein. Bei 3 oder mehr Kategorien kann es sein, dass die wahrscheinlichste Kategorie eine WK $p(c^*|\text{text}) < 0.5$ hat, und die Odds < 1 sind.

Gilt die folgende Implikation?

$$rac{p(c'|text)}{1-p(c'|text)} > 1 \Rightarrow c' = rg \max_{c} p(c|text)$$

Ja. Wenn die wahrscheinlichste Kategorie Odds > 1 hat, ist die WK $p(c^*|text) > 0.5$, und alle anderen Kategorien müssen eine kleinere WK haben.

Multi-Klassen Naive Bayes: Implementierung

- ▶ Um die Werte $\tilde{p}(w|c)$ zu berechnen, benötigen wir die Worthäufigkeiten pro Klasse n(w,c) Lösung: Dictionary $(str,str) \rightarrow int$
- Für die priors p(c) brauchen wir die Anzahl der Instanzen pro Klasse:

 $\mathsf{str} \to \mathsf{int}$

...

 Außerdem noch die Vokabulargröße und den Glättungsparameter

```
class NaiveBayesClassifier:
    def __init__(self, word_and_category_to_count, \
        category_to_num_instances, vocabsize, smoothing):
```

Log-Odds pro Wort

\Rightarrow Übungsblatt

- ▶ Die Log-Odds für eine Kategorie c können auch nur für ein Wort (anstelle eines ganzen Dokuments) berechnet werden.
- ▶ Beginne mit $\log \frac{p(c|w)}{1-p(c|w)}$ und wende die Rechenregeln an

$$\log \frac{p(c|w)}{1 - p(c|w)} = \dots$$

$$= \log[\tilde{p}(w|c)] + \log[p(c)] - \log[\sum_{c' \neq c} \tilde{p}(w|c')p(c')]$$

- Die Log-Odds pro Wort zeigen an, wie stark ein Wort auf die jeweilige Kategorie hinweist
- Man kann dann alle Wörter anhand ihrer Log-Odds sortieren, und einen Eindruck bekommen, was das Modell gelernt hat (d.h. was für das Modell wichtig ist)

Trainieren und Evaluieren eines Klassifikators

Um einen Klasifikator trainieren und evaluieren zu können, brauchen wir 3 Datensets:

- Trainingsdaten: Auf diesen Daten schätzt das Modell seine Parameter automatisch. (Z.B. Wortwahrscheinlichkeiten und Kategorien-Priors)
- Entwicklungsdaten: Auf diesen Daten können verschiedene Model-Architekturen und Hyper-Parameter¹ verglichen werden.

Was z.B. in unserem Fall?

 Testdaten: Auf diesen Daten kann, nachdem durch die Entwicklungsdaten eine Modelarchitektur endgültig bestimmt wurde, ein Schätzwert gewonnen werden, wie gut das Modell auf weiteren ungesehenen Daten funktioniert.

¹Parameter, die nicht automatisch gelernt werden. ←□ → ←② → ←② → ←② → →② → ○② ←◎

Zusammenfassung

- Wahrscheinlichkeitsrechung
 - Satz von Bayes
 - Bedingte Unabhängigkeit
- Naive Bayes Klassifikator
 - Entscheidungsregel, und "umdrehen" der Formel durch Satz von Bayes
 - Glättung der Wahrscheinlichkeiten
 - Log-Odds
- ► Fragen?