

APS 4: PROJETO DE SOFTWARE PARA ANÁLISE DE TRELIÇAS PLANAS

OBJETIVO GERAL

O objetivo da atividade é desenvolver um software para análise de treliças planas.

CRONOGRAMA

- 17/11 Apresentação e cronograma. Técnicas numéricas para solução de sistemas de equações.
- 21/11 Estúdio.
- 24/11 Estúdio.

RUBRICA: DESENVOLVIMENTO DO SOFTWARE

- 1. O código deverá ser desenvolvido em *Python* de modo que os dados de entrada possam ser facilmente alterados a partir de uma planilha como descrito no Anexo 1.
- 2. O código deverá aplicar técnicas numéricas para solução de sistemas de equações (Método de Jacobi e/ou Gauss-Seidel).
- 3. O código deverá gerar um arquivo de saída com o pós-processamento dos dados de acordo com modelo descrito no Anexo 1.
- 4. O código deverá ser desenvolvido para aplicação geral em treliças 2D. Para isso, o grupo deverá validar os dados de saída, **usando a estrutura indicada no Anexo 2**.

IMPORTANTE: As funções para leitura do arquivo .xlsx, criação do gráfico para visualização da treliça e do arquivo de saída serão fornecidas. Todos os grupos deverão utilizar o mesmo modelo padrão fornecido. Procure reduzir o uso de laços de repetição ou recursão usando as ferramentas do pacote *Numpy* para vetorização das operações com matrizes.

2

RUBRICA DE AVALIAÇÃO

Cada grupo deverá preparar e enviar um vídeo (mp4) de até 10 minutos, até as 23hs59 do dia **28/11** pelo Blackboard. Todos os estudantes do grupo devem participar do vídeo apresentando os seguintes tópicos:

- 1. [10%] Introdução: Apresente uma breve discussão sobre o tema proposto.
- 2. [10%] Estrutura do software: Apresente uma descrição da arquitetura do software.
- 3. [40%] Validação do código desenvolvido: Demostre o funcionamento do software. Apresente gráficos, tabelas, imagens... para validar o resultado obtido com o código desenvolvido pelo grupo. Para validar os resultados obtidos com o software desenvolvido, compare os resultados usando um outro software (Exemplo: Lisa). Justifique e comente os resultados. A validação deve ser feita usando a estrutura indicada no Anexo 2. NÃO utilize o exemplo do ANEXO 1 como validação.
- 4. [10%] **Conclusão:** Apresente uma conclusão objetiva indicando os principais resultados do trabalho. Indique possibilidade futuras de melhorias e limitações do programa.

Cada item será avaliado de acordo com a proficiência apresentada com base na rubrica de avaliação.

ANEXO 1: EXEMPLO

A seguir apresentamos um modelo de arquivo de entrada para análise da treliça ilustrada na Fig. 1.

Figura 1 – Treliça com três elementos de barra.

Nesse exemplo, cada barra possui uma área de seção transversal $A=2\cdot 10^{-4} m^2$, E=210 GPa. A carga pontual aplicada ao nó três na direção y é $P_y=-100 N$. Na direção x a carga pontual aplicada é igual a $P_x=150 N$. A tensão última a tração e compressão são iguais a $\sigma_{tracão}=\sigma_{compressão}=1570\cdot 10^6 Pa$.

3

Arquivo de entrada:

Coor	Coordenadas dos nós:				
4	Α	В	С		
1	x [m]	y [m]			

1	x [m]	y [m]	Número de nós
2	0	0	3
3	0	0.4	
4	0.3	0.4	

Incidência e materiais:

4	A	В	С	D	E	F
1	nó 1	nó 2	E [Pa]	A [m²]		Número de membros
2	1	2	2.10E+11	2.00E-04		3
3	2	3	2.10E+11	2.00E-04		
4	3	1	2.10E+11	2.00E-04		
5						

Carregamento:

	А	В	С	D	E
1	nó	1 = x 2 = y	Carga [N]		Número de cargas
2	3	1	150		2
3	3	2	-100		

Restrições:

4	Α	В	С	D
1	nó	1 = x 2 = y		Número de apoios
2	1	1		3
3	2	1		
4	2	2		

Arquivo de saída:

Após a análise, o programa deverá escrever um arquivo de saída como o indicado abaixo para o exemplo da treliça ilustrada na Fig. 1.

Engenharia Transferência de calor e Mecânica dos Sólidos

4

```
Reacoes de apoio [N]
[[ 75.]
[-225.]
[ 100.]]
Deslocamentos [m]
[[ 0.0000000e+00]
[ -9.52380952e-07]
[ 0.00000000e+00]
 [ 0.0000000e+00]
[ 1.60714286e-06]
[ -4.01785714e-06]]
Deformacoes []
[[ 2.38095238e-06]
[ 5.35723254e-06]
[ -2.97617094e-06]]
Forcas internas [N]
[[ 100. ]
[ 225.00376672]
[-124.99917969]]
Tensoes internas [Pa]
[[ 499999.9999911]
[ 1125018.83359206]
[ -624995.89843168]]
```


Figura 2 - A figura ilustra o pós-processamento para a análise da treliça plana com três elementos. (Esquerda)

Treliça antes da aplicação das forças. (Direita) Treliça após a aplicação das forças.

ANEXO 2:

Considere a estrutura ilustrada na Fig 3. para validação do software desenvolvido. Adote a numeração indicada para os nós e elementos.

Figura 3 – Estrutura para validação

Descrição do Modelo;

- Estrutura bidimensional e conectada por juntas do tipo rótula (Treliça).
- Estrutura pinada na esquerda, e apoiada na extremidade direita

Engenharia Transferência de calor e Mecânica dos Sólidos

6

- Material: AISI_310_SS, E = 193140000kPa
- $A = 5,25 \text{ } mm^2$.
- Coordenadas dos nós:

Nó	x[mm]	Y [mm]
1	0	0
2	144	72
3	192	0
4	288	144
5	384	0
6	432	72
7	576	0

BIBLIOGRAFIA:

- ✓ BITTENCOURT, M.L. COMPUTATIONAL SOLID MECHANICS: VARIATIONAL FORMULATION AND HIGH ORDER APPROXIMATION, 6A EDIÇÃO, CRC PRESS, 2014.
- ✓ CHAPRA, STEVEN C.; CANALE, RAYMOND P. NUMERICAL METHODS FOR ENGINEERS. 6TH ED. NEW YORK: MCGRAW-HILL HIGHER EDUCATION, C2010. 968 P. ISBN 9780073401065 (ENC.)
- ✓ NOTAS DE AULA E TEXTOS FORNECIDOS AO LONGO DO SEMESTRE.