Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_0^{\#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 ik\sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#_{1}\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} = 0$	$-\bar{\iota} \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{x} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{x} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon} \partial_{\delta} -$	
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\gamma} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{ \gamma} -$	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_1^{\#_2^2}$	$\tau_{1}^{\#1}_{+\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1^-\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_1^{\#1} + \alpha \beta$		$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	0	0	0	0
$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\frac{1}{\sqrt{2} \; (k^2 + k^4) \; (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\tau_{1}^{\#1} + \alpha \beta$	$-\frac{i}{\sqrt{2}\;(k\!+\!k^3)(2r_1\!+\!r_5)}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#_1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$

1						L,	$1+2\kappa^{-1}$	7+12)	$(t_1 + 2k^-t_1)^-$			L L ₂)	$(t_1 + 2k^-t_1)^2$	1
									σ_0^{\sharp}	$ au_{\mathrm{C}}^{\#}$	$ au_{ m C}^{\#}$	$\sigma_{\scriptscriptstyle m C}^{\scriptscriptstyle \#}$		
Quadra	Quadratic (free) action								^{#1} †	^{#2} †	^{#1} †	^{#1} †		
S == [$S == \iiint (rac{1}{3} \left(3 t_1 \mathcal{A}^{lpha \prime} \mathcal{A} \right)$	$_{\alpha}^{\prime}\mathcal{A}_{,\theta}^{\theta}+3f^{\alpha\beta}$	$\tau_{\alpha eta}$	$+3 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha}$	$-6t_1 \beta$	$f_{\alpha}^{\theta} \theta$	$\theta \partial_{i}f^{\alpha i} +$		($-\frac{i^{-1}}{(1+2)}$	- (1+2	σ	
		6 t ₁	$\partial'f^{\alpha} - \partial'f^{\alpha} + \partial'g^{\alpha} + \partial'g^$	$3t_1\partial_i f^{\circ}_{\theta}\partial^i f^{u}$	$lpha$ - 3 t_1 $\partial_i f^{\alpha'}$ $\partial_\theta f_{lpha}$ + $\epsilon^{lpha i}$ - 2 t_1 $\partial_\alpha f_{lpha}$ $d_\alpha f_{lpha i}$ - $d_\alpha f_{lpha i}$	f ^{сс.} дө, f	$f_{\alpha}^{\prime}+$))	$\frac{\sqrt{2} k}{(k^2)^2 t_1}$	$\frac{1}{(k^2)^2 t_1}$	#1)+	
	, (X	$t_1 \partial_{\alpha} f_{\theta_I}$	$\theta^{\theta}f^{\alpha\prime}$	$2t_1\partial_{\alpha}f_{\theta_1}\partial^{\theta}f^{\alpha\prime} + t_1\partial_{\beta}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + 2t_1\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$	$2t_1\partial_{\theta}$	$f_{\alpha'} \partial^{\theta}$, f ^{α,} +		0	0	$-\frac{2k}{(1+2k)}$	$\frac{i\sqrt{2}}{(1+2k^2)}$	$ au_0^{\#}$	
	ţ	$_{1}\partial_{ heta}f_{_{I}lpha}\partial^{\epsilon}$	$f^{\alpha\prime} + t_1$	$t_1 \partial_{\theta} f_{ \prime lpha} \partial^{ heta} f^{lpha \prime} + t_1 \mathcal{A}_{lpha \prime heta} (\mathcal{A}^{lpha \prime heta} + 2 \partial^{ heta} f^{lpha \prime}) +$	$2 \partial_{\theta} f^{\alpha}$	+ (,			ı			$(\frac{2}{2})^{2} \frac{k}{t_{1}}$	1	
	ţ	$_{1}\mathcal{A}_{lpha heta_{\prime}}$ ($\mathcal{A}^{\alpha l \theta}$ +	$t_1\mathcal{A}_{lpha heta_l}(\mathcal{A}^{lpha l}+4\partial^ heta f^{lpha l})$ - $4r_1\partial_eta\mathcal{A}_{lpha l}\partial^ heta\mathcal{A}_{lpha l}$ +	${}_{3}\mathcal{H}_{\alpha l}{}_{\theta}{}_{\hat{O}}$	$^{ heta}\mathcal{F}^{lphaeta}$	+		0	0	0	0	$\tau_{0}^{\#2}$	
		$2r_1\partial_{eta}\mathcal{H}_{lpha}$	$^{0}\mathcal{R}^{\theta}\mathcal{G}_{1\theta}$	$2r_1\partial_{eta}\mathcal{A}_{lpha heta_l}\partial^{ heta}\mathcal{A}^{lphaeta_l}$ - $8r_1\partial_{eta}\mathcal{A}_{l heta_lpha}\partial^{ heta}\mathcal{A}^{lphaeta_l}$ -	$^{ heta}$ $\mathcal{A}^{a\beta}$				0	0	0	0	$\sigma_0^{\#1}$	
	7 (7 M	$[\Gamma_1\partial_i\mathcal{H}_{lpha}]$ $[\Gamma_1\partial_b\mathcal{H}_{lpha}]$ $[\Gamma_1\partial_b\mathcal{H}_{lpha}]$	89 09 99 09 09 09 09 09 09 09 09 09 09 09	$2r_1\partial_i\mathcal{R}_{lphaeta heta}\partial^i\mathcal{R}^{lphar}+2r_1\partial_ heta\mathcal{R}_{lphaeta_i}\partial^i\mathcal{R}^{lphar}+2r_1\partial_ heta\mathcal{R}_{lphaeta_i}\partial^i\mathcal{R}_{lphaeta_i}+2r_5\partial_i\mathcal{R}_{eta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	30 A A W.	+ ' _σ +			$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	$\tau_{2}^{#1} \dagger^{\alpha\beta}$	$\sigma_{2+}^{\sharp 1} \dagger^{\alpha\beta}$	#1 . αβ		
	9 0	5	20 KM	$6r_5 \partial^{\theta} \mathcal{A}^{\alpha \prime}_{\alpha} \partial_{\kappa} \mathcal{A}^{\kappa}_{\beta} + 3r_5 \partial_{\alpha} \mathcal{A}^{\alpha \prime \theta} \partial_{\kappa} \mathcal{A}^{\kappa}_{\beta}, -$ $6r_5 \partial^{\theta} \mathcal{A}^{\alpha \prime}_{\alpha} \partial_{\kappa} \mathcal{A}^{\kappa}_{\theta},) [t, x, y, z] dz dy dx dt$	0,430 8 12 dly dl	' - ' x dit			0	(= : =) 1	_	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	#1	
	${\mathscr A}_{1^+\alpha\beta}^{*1}$	${\mathcal A}_{1}^{\#2}_{+lphaeta}f_{1}^{\#1}_{lphaeta}$	$f_{1}^{\#1}$ $\alpha \beta$	${\mathcal A}_{1^-\alpha}^{\#1}$	$\mathcal{A}_{1^{-}\alpha}^{\#2}$,	$f_{1^-}^{\#1} \alpha$	$f_{1^-}^{\#2}$		0	$\frac{4k^2}{(1+2k^2)^2}$	$(1+2k^2)$	$\tau_{2}^{\#1}_{\alpha_{i}}$	#1	
$\mathcal{A}_1^{\#1} + ^{lphaeta}$	$k^2 (2 r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$-\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0		2	² t ₁	$^{2}t_{1}$			
$\mathcal{A}_{1}^{\#2} + \alpha \beta$. L.	ikt1 3	0	0	0	0		$\frac{2}{2k^2r_1+t_1}$	0	0	$\sigma_2^{\#1}_{\alpha\beta\chi}$	<i>#</i> 1	
$f_1^{\#1} + ^{lphaeta}$	$\frac{ikt_1}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}kt_1$	$\frac{k^2t_1}{3}$	0	0	0	0		F #1		f#1	f#2	2 #1	<u>,</u>
$\mathcal{A}_{1^{\bar{-}}}^{\#1} t^{\alpha}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$i k t_1$	$\mathcal{A}^{\#1}_{0^+}+$	-t ₁		$\bar{l}\sqrt{2}kt_1$			
$\mathcal{A}_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	$f_0^{\#1}$ \dagger	$-i\sqrt{2}kt_1$		$-2k^2t_1$	1 0	0	
$f_{1}^{*1} \dagger^{\alpha}$	0	0	0	0	0	0	0	$f_0^{#2} +$	0		0	0	0	
$f_1^{#2} + \alpha$	0	0	0	$-ikt_1$	0	0	0	$\mathcal{A}_{0}^{\#1}$ \dagger	0		0	0	0	

0

Massive and massless spectra

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$