Piano uniformemente illuminato

Si consideri una superficie piana illuminata in modo isotropo (cioè con luce proveniente da tutte le direzioni e di pari intensità), con intensità totale I. Si dimostri che la pressione di radiazione vale $P_a = \frac{I}{3c}$, nel caso di assorbimento completo della radiazione, e $P_r = \frac{2I}{3c}$, nel caso di perfetta riflessione.

Il contributo all'intensità totale dovuto alla radiazione che proviene dall'angolo solido infinitesimo d Ω è dI. Per l'ipotesi di isotropia:

$$\theta$$
 Ω

 $\mathrm{d}I = \alpha \, \mathrm{d}\Omega$

con α costante.

L'intensità totale si ottiene integrando su mezzo angolo solido (il semispazio superiore) e vale, per ipotesi, I:

$$I = \int dI = \int \alpha d\Omega = \alpha \int d\varphi \sin\theta d\theta = 2\pi\alpha$$

quindi $\alpha = \frac{I}{2\pi}$, cioè d $I = \frac{I}{2\pi}$ d Ω .

La radiazione d*I* esercita una pressione d $P = \frac{a}{c} dI \cos^2 \theta$ (a = 1 per la superficie assorbente, a = 2 per quella riflettente). La pressione totale si ottiene integrando sugli angoli.