Introducción a la programación con MatLAB Módulo 01 Archivos en matlab

Fernando E. Pose

Marzo 2019

Importación de datos

Los datos se almacenan en muchos formatos diferentes. Algunos ejemplos podrían ser :

- Sonido : se almacena en un archivo .wav
- Imagen : archivos .jpg
- Tablas de excel : .xls

Para conocer los formatos admitidos por MATLAB escribir **doc fileformats** en la ventana de comandos. Aunque para nuevas opciones se recomienda recurrir a la web de **Mathworks**.

Tipos de archivo soportados por Matlab

Tipo de archivo	Extensión	Observación	
	.mat	Area de trabajo matlab	
Texto	.dat	Datos ASCII	
	.txt	Datos ASCII	
Formatos comunes	.cdf	Datos comunes	
de datos científicos	.fits	Transporte de imágenes	
de datos científicos	.hdf	Datos jerárquicos	
	.xls	Hoja de cálculo Excel	
Datos de hoja de cálculo	.wk1	Lotus 123	
	.tiff	Archivo de imagen etiquetado	
	.bmp	Mapa de bits	
Datos de imágen	.jpeg o jpg	Grupo experto fotográfico unido	
	.gif	Formato de intercambio gráfico	
	.au	Audio	
Datos de audio	.wav	Archivo wave Microsoft	
	.flac	Free Lossless Audio Codec	
Película	.avi	Archivo intercalado audio/video	

IEEE Sección Argentina

Archivos disponibles

Utilidad

Puedo conocer los archivos del directorio desde un script.

```
dir;
script=dir('*.m')
texto=dir('*.txt')
```


Archivos disponibles

pero... ¿cómo accedo a esa información?

Importación de datos

Conociendo el tipo de formato a importar puede utilizar una función de importación. Por ejemplo :

```
[data,fs] = audioread('ArrozConLeche.wav');
```

Lee la canción ArrozConLeche

para esta función

audioread soporta archivos :WAVE (.wav), OGG (.ogg), FLAC (.flac), AU (.au), AIFF (.aiff, .aif), AIFC (.aifc) y en versiones recientes incluye MP3.

Cargar datos desde un archivo ASCII

- Un archivo ASCII contiene datos como texto
- Todas las filas contienen el mismo número de datos.

Un ejemplo de archivo text.txt puede ser :

texto.txt			
2.5	7	-3.2	4
5	2.1	3.7	12
-2	-0.3	37	-19
4	3.2	-1	0

Comando

Ver comando : load()

Para cargar el archivo texto.txt se escribe :

Función textread

- Lee string y datos numéricos desde un archivo utilizando especificadores de conversión.
- Los especificadores de conversión son por ejemplo formato de datos.
- La función es útil cuando el archivo tiene un formato uniforme.

Un ejemplo de archivo text.txt puede ser :

texto.txt			
2.5	7	-3.2	4
5	2.1	3.7	12
-2	-0.3	37	-19
4	3.2	-1	0

Comando

```
variable = textread('texto.txt');
```

Sección Argentina

archivo de texto

Comando

escribir el siguiente archivo y leerlo : Hola, soy un txt.

Función textread

Para leer un archivo .dat. Por ejemplo :

personas.dat			
Manuel	Hombre	20	Mayor
Camila	Mujer	19	Mayor
Juan	Hombre	33	Mayor
Florencia	Mujer	14	Menor

Formato

[A,B,C, ...] = textread('archivo','formato',N)

N es el número de filas que se deseen leer. El valor -1 permite leer todo el archivo.

Para cargar el archivo personas.dat se escribe :

[nom, tipo, edad, est]=textread('personas.dat', '%s %s %f %s',-1)

IEEE Sección Argentina

Función dImread

Comando

Ver comando : dimread()

La función **dimread** permite leer una lista de valores desde un archivo separado por delimitadores.

Ej. Leer la siguiente tabla de datos separados por;

```
signal.dat
4; 3; 2.4; 7
-3; 0.33; 20; 12
1; 1.7; 9; 12.4
0.33; 9.3; -2; 3.3
```

datos=dImreard('signal.dat', ';');

Función xlsread

Comando

Ver comando : xlsread()

- xIsread lee una hoja de cálculo de formato excel (xls)
- Las celdas vacías o de texto serán retornadas como NaN en el dato

Ej. Leer la siguiente tabla de datos

datos xls

4	3	2.4	7
-3	0.33	20	12
1	1.7	9	12.4
0.33	9.3	-2	3.3

datos=xlsread('datos.xls');

Función xlsread

Ej. Leer la siguiente tabla de datos

datos.xls

Canal 1	Canal 2	Canal 3	Canal 4
4	3	2.4	7
-3	0.33	20	12
1	1.7	9	12.4
0.33	9.3	-2	3.3

[datos, canales, todo] = xIsread('datos.xIs');
% devuelve numeros, texto y los datos sin procesar

sobre los archivos xls

Microsoft no es copado

El uso de las funciones dedicadas depende de la aplicación Microsoft Excel

Exportación de datos

Se verán tres formas de exportar datos :

- save Salva el espacio de trabajo (workspace)
- dlmwrite Guarda un arreglo utilizando delimitadores
- xlswrite Guarda un arreglo en una hoja de excel
- audiowrite Crea un archivo de audio

Función save

Comando

Ver comando: save y load

La función **save** guarda el espacio de trabajo (workspace) en forma binaria creando un archivo .mat

La función load carga el archivo .mat recuperando el workspace salvado.

Tener en cuenta

Para guardar el workspace con un determinado nombre se escribe :

```
save('mi_workspace.mat');
% genera el archivo y guarda
```


Función save

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

```
save('mi_workspace.mat');
clear
load('mi_workspace.mat');
```


Función dlmwrite

Comando

Ver comando: dlmwrite

La función dimwrite escribe el arreglo en un archivo delimitado por ASCII

Comando

Ver comando : type

La función type visualiza el archivo .txt

Función dlmwrite

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

```
Matriz = magic(3);
dlmwrite('Archivo.txt', Matriz,'&');
type('archivo.txt');
% posteriormente

Matriz = magic(3);
dlmwrite('Archivo.dat', Matriz,'&');
load('archivo.txt');
```


Función xlswrite

Comando

Ver comando: xlswrite

La función **xIswrite** Guarda arreglo numérico o matriz en una hoja de Excel. Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

```
Archivo = 'PrimeraTabla';

Matriz = [1 2 3 4 ; 5 6 7 8 ; 9 10 11 12];

xIswrite (Archivo, Matriz);
```


Función audioread

Comando

Ver comando: audiowrite

Ej. Ejecutar las siguientes líneas. Obtener conclusiones.

```
fs=8000;
tiempo=3;
f=440;

T = 1/fs;
t = (0:fs*tiempo)*T;
w=2*pi*f;
signal=sin(w.*t);

sound(signal,fs)
audiowrite('tono.wav',signal,fs);
% f de muestreo
t iempo en segundos
frecuencia del tono
% periodo de muestreo
t = (0:fs*tiempo)*T;
Tiempo en ms
w=2*pi*f;
signal=sin(w.*t);
```


