

PISKa: Parallel Implementation of Spatial Kappa

A.Bernardin, I. Fuenzalida, A. Martin, T. Perez-Acle Jan X 2016

Kappa Language

- Modelling language based on rules-agents and rates
 - Agents:
 - AgentName(site~state1~state2)
 - ► Ex: A(a~S~I)

Kappa Language

- Modelling language based on rules-agents and rates
 - Rules:
 - "bind / unbind"

"create / remove"

"change state"

KaSim Software

- Simulation tool for kappa models.
- Performs adapted Gillespie.
- Open Source.

Motivation agent/rule based

Motivation PISKa

SSA Volume

Cell Network

The cell

Stochastic Simulation Algorithm

- Stochastic Simulation Algorithm (SSA)
 - Proposed by Gillespie in 1976.
 - As a method to describe the behavior of particle-based systems along time.
 - SSA average trajectory approximate the solution of the implicit diferential equation system.
 - SSA is a <u>state algorithm</u> that works only in <u>well-mixed</u> systems.
 - KaSim algorithm adapts SSA to agent-rule models

Stochastic Simulation Algorithm

Get final state and trajectory of the system

Rule-Based Model

- Initial State (S₀)
- Rules (R)

$$p(t) = \alpha e^{-\alpha t}$$

Where alpha is the total reactivity of R

$$p(r \in R) = \frac{reactivity(r)}{\alpha}$$

PISKa: Algorithm

- Simple predator-prey behavior
- Logistic growth, predation
- Extinction is prone on simple volumes.

- Based on a real experiment⁽²⁾
 - Isolated bottles drive to extinction
 - Interconnected bottles avoid extinction
- (2) Holyoak et al. (1996). Persistence of an extinction-prone predator-prey interaction through metapopulation dynamics. Ecology, 77(6):1867-1879.

Results with isolated bottles:

Predator-Prey 3x3 Disconnected Bottles

Results with connected bottles:

PISKa Features

Pros

- Language statements allow declaration of compartments explicitly.
- Improved execution time performance on similar models.
- The distributed paradigm increases available resources.

Cons

- PISKa is not a good option for all spatial simulations.
- Speed-Up is strongly restricted by the model.
- Until now, there is no way to estimate or limit the error.

Acknowledgments

- DLab members
- Universidad de Valparaiso
- Fundación Ciencia & Vida (PFB 16)
- Centro Interdisciplinario de Neurociencias de Valparaiso (CINV)
- Access to supercomputing time from NLHPC ECM-02

Results Ebola approach

New syntax:

%compartment: 'Bottles'[3][3] 1.0 #Only Constants

```
%link: 'tubes' 'Bottles'[x][y] <->'Bottles'[x+1][y] $0.0
```

%link: 'tubes' 'Bottles'[x][y] <->'Bottles'[x][y+1] \$0.0

%transport: 'tubes' Predator() @ 1.0

%init: 100 Prey()

%use: 'Bottle'[0][0]

%init: 5 Predator()

Kappa Syntax Extensions

Common declarations New declarations

- Agents
- Rules
- **Initializations**
- Perturbations
- Variables and Observables

- Compartments
- Links
- **Transports**
- Compartment context

Code example

```
%compartment: 'cityA' 1 # compartments declaration
%compartment: 'cityB' 2
%link: 'highway' 'cityA' <-> 'cityB' $1 # links between compartments
%transport: 'highway' person() @ 0.01 # delay time between compartments, agents
                                       # allowed to travel.
%agent: person(s~S~I) #agents of the simulation, with its sites and states.
#Rules
'contact1' person(s\simS), person(s\simI) \rightarrow person(s\simI), person(s\simI) @ 0.001
%use: 'cityA'
                      #initialization of first compartment
%init: 1000 person(s~S)
%init: 1 person(s~I)
%use: 'cityB' #initialization of second compartment
%init: 1500 person(s~S)
%use:
                      #output
%obs: 'person S' person(s~S)
%obs: 'person I' person(s~I)
```


Results: Validity

Model	Synch. Step	R	au	MIC
Mammalian	0.5	0.39	0.15	0.49
Circadian	0.1	0.48	0.42	0.73
Clock (2)	0.02	0.93	0.90	0.99
Mammalian	0.5	0.53	0.16	0.32
Circadian	0.1	0.50	0.46	0.75
Clock(3x3x3)	0.02	0.98	0.94	0.99
Predator /	1.0	0.48	0.23	0.71
, , , , , , , , , , , , , , , , , , ,	0.2	0.75	0.76	0.96
Prey	0.05	0.91	0.89	0.99

Where R is Pearson coefficient, r is Kendall coefficient and MIC is the Maximal Information Coefficient⁽³⁾

⁽³⁾ Reshef, David N. et al - Detecting Novel Associations in Large Data Sets