

Lecture 7

Cauchy-Goursat Theorem

(i.e. Cauchy's integral theorem コーシーの積分定理)

What you will learn in Lecture 7

7.1 Cauchy-Goursat Theorem

7.1.1 Simply and Multiply Connected Domains

7.1.2 Cauchy-Goursat Theorem

7.1.3 Cauchy-Goursat Theorem for Multiply Connected Domains

*7.2 Independence of Path for Contour Integral

7.1 Cauchy-Goursat Theorem

(i.e. Cauchy's integral theorem コーシーの積分定理)

In this 7.1, we shall concentrate on contour integrals, where the contour *C* is a <u>simple closed curve</u> with <u>a positive</u> (counterclockwise) orientation.

7.1.1 Simply Connected (単連結) Domains

and

Multiply Connected (多重連結) Domains

7.1.1 Simply and Multiply Connected Domains

Simply Connected (単連結) Domains

We say that a domain D is simply connected if every simple closed contour C lying entirely in D can be shrunk to a point (ポイントに縮小する) without leaving D. (See Figure 5.26.)

In other words, a simply connected domain has no "holes" in it.

Multiply Connected (多重連結) Domains

A domain that is not simply connected is called a multiply connected domain. (See Figure 5.27.)

In other words, a multiply connected domain has "holes" in it.

For example, (1)the open disk (開円板) defined by |z| < 2 is a simply connected domain; (2)the open circular annulus (開円環) defined by 1 < |z| < 2 is a doubly (i.e. multiply) connected domain.

Figure 5.26 Simply connected domain *D*

Figure 5.27 Multiply connected domain *D*

7.1.2 Cauchy-Goursat Theorem

(i.e. Cauchy's integral theorem コーシーの積分定理)

Theorem 5.4 Cauchy-Goursat Theorem (i.e. Cauchy's integral theorem コーシーの積分定理)

Suppose that a function f is **analytic** (解析的) in a **simply connected** (单連結) **domain** D. Then for every simple closed contour C in D, we have

$$\oint_C f(z)dz = 0$$

Because the interior (内部) of a simple closed contour is a **simply connected domain**, the **Theorem 5.4** can be **rewritten** in the slightly more practical manner:

If f is analytic at all points within and on a simple closed contour C, then $\oint_C f(z)dz = 0 \tag{5.3.4}$

EXAMPLE (例題) 5.3.1 Applying the Cauchy-Goursat Theorem

Evaluate $\oint_C e^z dz$, where the contour C is shown in Figure 5.28.

Solution (解答):

The function $f(z) = e^z$ is entire (整函数) and consequently is analytic at all points within and on the simple closed contour C.

Then from the Cauchy-Goursat Theorem given in (5.3.4) that

$$\oint_C e^z dz = 0$$

Figure 5.28 Contour for Example 5.3.1

Indeed, from Example 5.3.1, it follows that **for any simple closed contour** *C* **and any entire** function (整函数) *f*, such as

$$f(z) = \sin z$$
,
 $f(z) = \cos z$,
 $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, $n = 0, 1, 2, \dots$

we have

$$\oint_{C} \sin z \, dz = 0,$$

$$\oint_{C} \cos z \, dz = 0,$$

$$\oint_{C} p(z) dz = 0$$

and so on.

EXAMPLE (例題) 5.3.2 Applying the Cauchy-Goursat Theorem

Evaluate $\oint_C \frac{1}{z^2} dz$, where the contour C is the ellipse (楕円)

$$(x-2)^2 + (y-5)^2 = 1.$$

Solution (解答):

The rational function $\oint_C \frac{1}{z^2} dz$ is analytic everywhere except at z = 0.

But z = 0 is not interior to or on the simple closed elliptical contour C.

Thus, from the Cauchy-Goursat Theorem given in (5.3.4) we have that

$$\oint_C \frac{1}{z^2} dz = 0$$

7.1.3 Cauchy-Goursat Theorem for

Multiply Connected Domains

The above result is sometimes called the principle of deformation (変形) of contours because we can think of the contour C_1 as a continuous deformation (連続変形) of the contour C_2 .

In other words, (5.3.5) allows us to evaluate an integral (積分) over a complicated (複雑な) simple closed contour C by replacing C with a contour C_1 that is more convenient (便利な).

Continuous deformation (連続変形) of a contour

EXAMPLE (例題) 5.3.3 Applying Deformation of Contours

Evaluate $\oint_C \frac{1}{z-i} dz$, where the contour C is shown in black color in Figure 5.30. (Notice that there is a point "hole" at (1,1).)

Solution (解答):

From (5.3.5), we choose the more convenient circular contour C_1 drawn in blue color in the Figure 5.30.

By taking the radius (半径) of the circle to be r=1, we are guaranteed (保証される) that C_1 lies within C. In other words, C_1 is the circle |z-i|=1, which from (2.2.10) of Section 2.2 can be parametrized by $z=i+e^{it}$, $0 \le t \le 2\pi$. Thus $z-i=e^{it}$ and $dz=ie^{it}dt$, we obtain

$$\oint_C \frac{1}{z-i} dz = \oint_{C_1} \frac{1}{z-i} dz = \int_0^{2\pi} \frac{ie^{it}}{e^{it}} dt = i \int_0^{2\pi} dt = 2\pi i$$

Figure 5.30 We use the simpler contour C_1 in Example 5.3.3.

Additional Point: Common Parametric Curves in the Complex Plane

Line

A parametrization of the line containing the points z_0 and z_1 is:

$$z(t) = z_0(1-t) + z_1t, \qquad -\infty \le t \le \infty.$$

$$-\infty \le t \le \infty$$
.

Figure 2.4 Parametrization of a line

Circle

A parametrization of the circle centered at z_0 with radius r is:

$$z(t) = z_0 + r(\cos t + i \sin t), \qquad 0 \le t \le 2\pi.$$
 (2.2.9)

In exponential notation, this parametrization is:

$$z(t) = z_0 + re^{it}, \qquad 0 \le t \le 2\pi.$$
 (2.2.10)

The result obtained in Example 5.3.3 can be generalized.

By using the principle of deformation of contours (5.3.5), it can be shown that if z_0 is any constant complex number interior to any simple closed contour C, then for an integer n we have

$$\oint_C \frac{1}{(z-z_0)^n} dz = \begin{cases} 2\pi i, & n=1\\ 0, & n\neq 1 \end{cases}$$
(5.3.6)

EXAMPLE (例題) 5.3.4 Applying Formula (5.3.6)

Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where the contour C is the circle |z-2|=2.

Solution (解答):

Because the denominator factors as $z^2 + 2z - 3 = (z - 1)(z + 3)$ the integrand fails to be analytic at z = 1 and z = -3. Of these two points, only z = 1 lies within the contour C, which is a circle centered at z = 2 of radius r = 2. Now by partial fractions

$$\frac{5z+7}{z^2+2z-3} = \frac{5z+7}{(z-1)(z+3)} = \frac{3(z+3)}{(z-1)(z+3)} + \frac{2(z-1)}{(z-1)(z+3)} = \frac{3}{z-1} + \frac{2}{z+3}$$

$$\oint_C \frac{5z+7}{z^2+2z-3} dz = \oint_C \frac{3}{z-1} dz + \oint_C \frac{2}{z+3} dz$$
(5.3.7)

By (5.3.6), the first integral in (5.3.7) has the value $2\pi i$, whereas the value of the second integral is 0 by the Cauchy-Goursat theorem.

Hence, (5.3.7) becomes

$$\oint_C \frac{5z+7}{z^2+2z-3} dz = 3 \cdot (2\pi i) + 2 \cdot (0) = 6\pi i$$

Theorem 5.5 Cauchy-Goursat Theorem for Multiply Connected Domains

Suppose C, C_1 ,..., C_n are simple closed curves with a positive orientation such that C_1 , C_2 ,..., C_n are interior to C but the regions interior to each C_k , k = 1, 2, ..., n, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the C_k , k = 1, 2, ..., n, then

$$\oint_{\mathcal{C}} f(z)dz = \sum_{k=1}^{n} \oint_{\mathcal{C}_{k}} f(z)dz \tag{5.3.8}$$

EXAMPLE (例題) 5.3.5 Applying Theorem 5.5

Evaluate $\oint_C \frac{1}{z^2+1} dz$, where the contour C is the circle |z|=3.

Consequently, the integrand $1/(z^2 + 1)$ is not analytic at z = i and at z = -i. Both of these points lie within the contour C.

By using partial fraction decomposition (部分分数
$$\frac{1}{(z+i)(z-i)} = \frac{\frac{1}{2i}(z+i)}{(z+i)(z-i)} - \frac{\frac{1}{2i}(z-i)}{(z+i)(z-i)} = \frac{1}{2i}\frac{1}{z-i} - \frac{1}{2i}\frac{1}{z+i}$$

$$\oint_C \frac{1}{z^2+1} dz = \oint_C \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right] dz$$

We now choose to surround the points z = i and z = -i by circular contours C_1 and C_2 , respectively, that lie entirely within C. Specifically, the choice $|z-i|=\frac{1}{2}$ for C_1 and $|z+i|=\frac{1}{2}$ for C_2 will suffice (十分であ る). See Figure 5.32. From Theorem 5.5 we can write:

Figure 5.32 Contour for Example 5.3.5

Solution (解答)(cont.):

$$\oint_{C} \frac{1}{z^{2}+1} dz = \oint_{C} \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right] dz = \oint_{C_{1}} \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right] dz + \oint_{C_{2}} \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right] dz$$

$$= \frac{1}{2i} \oint_{C_{1}} \frac{1}{z-i} dz - \frac{1}{2i} \oint_{C_{1}} \frac{1}{z+i} dz + \frac{1}{2i} \oint_{C_{2}} \frac{1}{z-i} dz - \frac{1}{2i} \oint_{C_{2}} \frac{1}{z+i} dz \qquad (5.3.9)$$

Because 1/(z+i) is analytic on C_1 and at each point in its interior and because 1/(z-i) is analytic on C_2 and at each point in its interior, it follows from (5.3.4) that the second and third integrals in (5.3.9) are zero. Moreover, it follows from (5.3.6), with n=1, that

$$\oint_{C} \frac{1}{z^{2} + 1} dz = \frac{1}{2i} \oint_{C_{1}} \frac{1}{z - i} dz - 0 + 0 - \frac{1}{2i} \oint_{C_{2}} \frac{1}{z + i} dz$$

$$\oint_{C_{1}} \frac{1}{z - i} dz = 2\pi i \quad \text{and} \quad \oint_{C_{2}} \frac{1}{z + i} dz = 2\pi i$$

$$\oint_{C} \frac{1}{z^{2} + 1} dz = \frac{1}{2i} \oint_{C_{1}} \frac{1}{z - i} dz - \frac{1}{2i} \oint_{C_{2}} \frac{1}{z + i} dz = \frac{2\pi i}{2i} - \frac{2\pi i}{2i} = 0$$

2019/1/4

*7.2 Independence (独立) of Path (経路)

for Contour Integral

There exist Real line integrals (実·線積分) $\int_C Pdx + Qdy$ whose value depends only on the initial point (始点) A and terminal point (終点) B of the curve C, and not on C itself.

In this case we say that the line integral is independent of the path.

For example, $\int_C ydx + xdy$ is independent of the path.

- (1) Can a contour integral $\int_C f(z)dz$ be independent of the path?
- (2) Is there a complex version of the fundamental theorem of calculus?

we will see that the answer to both of these questions is YES.

Definition 5.4 Independence of the Path for Contour Integral

Let z_0 and z_1 be points in a domain D. A contour integral $\int_C f(z)dz$ is said to be independent of the path if its value is the same for all contours C in D with initial point z_0 and terminal point z_1 .

Now suppose, as shown in Figure 5.38, that C and C_1 are two contours lying entirely in a simply connected domain D and both with initial point z_0 and terminal point z_1 .

Thus, if f is analytic in D, it follows from the Cauchy-Goursat theorem that

$$\int_{C} f(z)dz + \int_{-C_{1}} f(z)dz = 0$$

$$\Rightarrow \int_C f(z)dz = \int_{C_1} f(z)dz$$

Figure 5.38 If f is analytic in D, integrals on C and C_1 are equal.

Theorem 5.6 Analyticity Implies Path Independence

Suppose that a function f is **analytic** in a **simply connected** domain D and C is any contour in D. Then $\int_C f(z)dz$ is independent of the path C.

EXAMPLE (例題) 5.4.1 Choosing a Different Path

Evaluate $\int_C 2z dz$, where the contour C is shown in blue color in Figure 5.39.

Solution (解答):

Because the function f(z) = 2z is entire, by Theorem 5.6,

we can replace the piecewise smooth path C by any

convenient contour C_1 joining $z_0 = -1$ and $z_1 = -1 + i$.

Specifically, if we choose the contour C_1 to be the vertical

line segment (線分) $x = -1, 0 \le y \le 1$, shown in black color

in Figure 5.39, then z = -1 + iy, dz = idy. Therefore,

$$\int_{C} 2zdz = \int_{C_{1}}^{1} 2zdz = \int_{0}^{1} 2(-1+iy)idy = -2\int_{0}^{1} ydy - 2i\int_{0}^{1} dy = -1-2i$$
 Figure 5.39 Contour for Example 5.4.1

Definition 5.5 Antiderivative

Suppose that a function f is continuous on a domain D. If there exists a function F such that F'(z) = f(z) for each z in D, then F is called an antiderivative of f.

For example, the function $F(z) = -\cos z$ is an antiderivative of $f(z) = \sin z$ because $F'(z) = \sin z$.

Theorem 5.7 Fundamental Theorem for Contour Integrals

Suppose that a function f is continuous on a domain D and F is an antiderivative of f in D. Then for any contour C in D with initial point (始点) z_0 and terminal point (終点) z_1 ,

$$\int_{C} f(z)dz = F(z_{1}) - F(z_{0})$$
 (5.4.4)

EXAMPLE (例題) 5.4.2 Applying Theorem 5.7

Evaluate $\int_{C} 2zdz$, where the contour C is shown in color in Figure 5.39.

Solution (解答):

In Example 5.4.1 we know that $\int_C 2zdz$, where C is shown in Figure

5.39, is independent of the path.

Here because the f(z) = 2z is an entire function, it is continuous.

Moreover, $F(z) = z^2$ is an antiderivative of f since F'(z) = 2z = f(z).

Hence, by (5.4.4) of Theorem 5.7 we have

$$\int_{-1}^{-1+i} 2zdz = z^2 \Big|_{-1}^{-1+i} = (-1+i)^2 - (-1)^2 = -1 - 2i$$

 $\begin{array}{c|c}
-1+i \\
C_1 \\
\hline
-1
\end{array}$

Figure 5.39 Contour for Example 5.4.1

EXAMPLE (例題) 5.4.3 Applying Theorem 5.7

Evaluate $\int_C \cos z \, dz$, where C is any contour with initial point $z_0 = 0$ and terminal point $z_1 = 2 + i$.

Solution (解答):

 $F(z) = \sin z$ is an antiderivative of $f(z) = \cos z$ since $F(z) = \cos z = f(z)$.

Therefore, from (5.4.4) we have

$$\int_C \cos z \, dz = \int_0^{2+i} \cos z \, dz = \sin z \Big|_0^{2+i} = \sin(2+i) - \sin 0 = \sin(2+i)$$

Review for Lecture 7

- Simply and Multiply Connected Domains
- Cauchy-Goursat Theorem
- Cauchy-Goursat Theorem for Multiply Connected Domains
- *Independence of Path for Contour Integral
- *Fundamental Theorem for Contour Integrals

Assignment

Please Check https://github.com/uoaworks/ComplexAnalysisAY2018

Reading Materials: Section 5.3, 5.4, Textbook

References

[1] A first course in Complex Analysis with application, Dennis G. Zill and Patrick D. Shanahan, Jones and Bartlett Publishers, Inc. 2003

[2] Wikipedia