Chapitre 6: Lois de conservation Partie A

Introduction

- 1. Quantité de mouvement
- 2. Théorème de l'énergie cinétique
- 3. Energie mécanique

1. Quantité de mouvement

Soit un corps de masse m qui se déplace à la vitesse \vec{v} . Par définition la quantité de mouvement est

$$\vec{p} \equiv m\vec{v}$$

Dimensions ? $[p] = MLT^{-1}$ Unités ? $kg.m.s^{-1}$

Pourquoi définir p ? Une grandeur plus naturelle pour exprimer le principe fondamental de la dynamique :

$$m\vec{a} = m\frac{d\vec{v}}{dt} = \frac{d(m\vec{v})}{dt} = \frac{d\vec{p}}{dt}$$

Donc
$$\frac{d\vec{p}}{dt} = \sum_{i} \vec{F}_{i}$$

En particulier, pour un système isolé (=aucune force appliquée) ou pseudo isolé (=somme des forces appliquées est nulle) :

$$\frac{d\vec{p}}{dt} = \vec{0}$$

$$\rightarrow \vec{p} = \vec{cte}$$

Conservation de la quantité de mouvement pour un système isolé ou pseudo isolé

Système composé (ou « sous systèmes »)

Soit i corps en interaction, de masse et vitesse respectives m_i , $\overrightarrow{v_i}$ et donc de quantité de mouvement $\overrightarrow{p_i} = m_i \overrightarrow{v_i}$.

La quantité de mouvement totale est $\overrightarrow{p_{total}} = \sum_i \overrightarrow{p_i} = \sum_i \overrightarrow{p_i} = \sum_i m_i \overrightarrow{v_i}$

On a déjà montré (voir chap. 3 PFD section 3) que

$$\frac{d\overrightarrow{p_{total}}}{dt} = \sum_{i} \overrightarrow{F_i^{ext}}$$

→ Dans le PFD seules les forces extérieures au système sont à prendre en compte.

Exemple. Étude de la rotation du système {Terre, Lune} autour du soleil : on ne prend pas en compte les forces entre la Terre et la Lune

Notion de centre de masse

Remarque. Notion différente de celle de centre de gravité, mais en général les deux coïncident

Définition : le centre de masse G d'un système de 3 masses mi positionnées en Mi est donné par

$$\overrightarrow{OG} = \frac{\overrightarrow{m_1}\overrightarrow{OM_1} + \overrightarrow{m_2}\overrightarrow{OM_2} + \overrightarrow{m_3}\overrightarrow{OM_3}}{\overrightarrow{m_1} + \overrightarrow{m_2} + \overrightarrow{m_3}}$$

$$\overrightarrow{OG} = \frac{m_1\overrightarrow{OM_1} + m_2\overrightarrow{OM_2} + m_3\overrightarrow{OM_3}}{m_1 + m_2 + m_3}$$

Notion de centre de masse - 2

En réécrivant cette définition, on trouve une propriété intéressante.

$$(m_1 + m_2 + m_3)\overrightarrow{OG} = m_1\overrightarrow{OM_1} + m_2\overrightarrow{OM_2} + m_3\overrightarrow{OM_3}$$

En dérivant en fonction du temps on obtient

$$m_{tot}\overrightarrow{v_G} \equiv \overrightarrow{p_G} = \overrightarrow{p_1} + \overrightarrow{p_2} + \overrightarrow{p_3}$$

 $\overrightarrow{p_G}$ est la quantité de mouvement de G si on avait ramené toute la masse au point G.

Donc
$$\overrightarrow{p_G} = \overrightarrow{p_{total}}$$
 \rightarrow $\frac{d\overrightarrow{p_G}}{dt} = \sum_i \overrightarrow{F_i^{ext}}$

→ Dans le PFD, la quantité de mouvement à considérer est la quantité de mouvement du centre de masse

$$\overrightarrow{OG} = \frac{m_1\overrightarrow{OM_1} + m_2\overrightarrow{OM_2} + m_3\overrightarrow{OM_3}}{m_1 + m_2 + m_3}$$

Application. Soit les points M1, M2 et M3 suivants, avec les masses indiquées. Où se situe le centre de masse ?

$$\mathbf{z} \quad m_1 = \mathbf{z} \quad m_2 \quad \mathbf{m}_2 \quad \mathbf{m}_2$$

$$\mathbf{y} \quad \mathbf{m}_3 = \mathbf{m}_2$$

$$\overrightarrow{OG} = \frac{2m_2\overrightarrow{OM_1} + m_2\overrightarrow{OM_2} + m_2\overrightarrow{OM_3}}{4 m_2} = \frac{1}{2}\overrightarrow{OM_1} + \frac{1}{4}\overrightarrow{OM_2} + \frac{1}{4}\overrightarrow{OM_3}$$

Application. Soit les points M1, M2 et M3 suivants, avec les masses indiquées. Où se situe le centre de masse ?

Détermination de la position de G par construction géométrique

$$\overrightarrow{OG} = \frac{1}{2}\overrightarrow{OM_1} + \frac{1}{4}\overrightarrow{OM_2} + \frac{1}{4}\overrightarrow{OM_3}$$

Quantité de mouvement – pour résumer

$$\vec{p} \equiv m\vec{v} \qquad \qquad \frac{d\vec{p}}{dt} = \sum_{i} \vec{F}_{i}$$

Conservation de la quantité de mouvement pour un système isolé ou pseudo isolé

$$\frac{d\vec{p}}{dt} = \vec{0}$$

Système composé :
$$\frac{d\overline{p_{total}}}{dt} = \sum_{i} \overrightarrow{F_{i}^{ext}}$$

Et
$$\overrightarrow{p_{total}} = \overrightarrow{p_G}$$

Avec G le centre de masse

2. Théorème de l'énergie cinétique

Remarques préalables

- 1. L'objectif n'est pas de prouver que l'énergie cinétique est ½ mv² (on le sait déjà) mais de comprendre pourquoi cette grandeur est importante
- On va faire la démonstration (qui est un peu bizarre mais intéressante) pour voir comment le théorème de l'énergie cinétique dérive du PFD et repérer les astuces de calcul.

PFD.
$$m\frac{d\vec{v}}{dt} = \vec{F}$$

On multiplie par \vec{v} (produit scalaire, donc)

$$m\frac{d\vec{v}}{dt}.\vec{v} = \vec{F}.\vec{v} \quad (1)$$

Par ailleurs, on calcule la quantité $\frac{d}{dt}(\vec{v}.\vec{v})$

Calcul de la dérivée d'un produit scalaire : on fait comme pour un produit (u'v+v'u)

$$\frac{d}{dt}(\vec{v}.\vec{v}) = \frac{d\vec{v}}{dt}.\vec{v} + \vec{v}.\frac{d\vec{v}}{dt} = 2\frac{d\vec{v}}{dt}.\vec{v} \qquad (\vec{a}.\vec{b} = \vec{b}.\vec{a})$$
Donc
$$\frac{d\vec{v}}{dt}.\vec{v} = \frac{1}{2}\frac{d}{dt}(\vec{v}.\vec{v})$$

Cette expression est aussi reliée à la norme $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$ souvent écrit v^2

On obtient

$$\frac{d\vec{v}}{dt}.\vec{v} = \frac{1}{2}\frac{dv^2}{dt} \tag{2}$$

Remarque

Ne pas confondre
$$\frac{dv^2}{dt} = \frac{d(v^2)}{dt}$$

Et
$$\frac{d^2v}{dt^2}$$
 la dérivée seconde

ou
$$\left(\frac{dv}{dt}\right)^2$$
 la dérivée première au carré

$$m\frac{d\vec{v}}{dt}.\vec{v} = \vec{F}.\vec{v} \quad (1)$$
$$\frac{d\vec{v}}{dt}.\vec{v} = \frac{1}{2}\frac{dv^2}{dt} \quad (2)$$

$$\frac{d\vec{v}}{dt} \cdot \vec{v} = \frac{1}{2} \frac{dv^2}{dt} \tag{2}$$

On injecte (2) dans (1):

$$\frac{1}{2}m\frac{dv^2}{dt} = \vec{F}.\vec{v}$$

Qu'on peut réécrire (puisque 1/2m est constant)

$$\frac{d}{dt} \left(\frac{1}{2} m v^2 \right) = \vec{F} \cdot \vec{v}$$

En intégrant en fonction du temps : $\left[\frac{1}{2}mv^2\right]_A^B = \int_A^B \vec{F} \cdot \vec{v} \, dt$

Or $\vec{v} dt = \overrightarrow{d\ell}$ avec $\overrightarrow{d\ell}$ la distance parcourue en un temps dt

On obtient :
$$\left[\frac{1}{2}mv^2\right]_A^B = \int_A^B \vec{F}.\overrightarrow{d\ell}$$

On obtient :
$$\left[\frac{1}{2}mv^2\right]_A^B = \int_A^B \vec{F}. \, \overrightarrow{d\ell}$$

On retrouve l'expression du travail de la force \vec{F} entre A et B.

 $\int_A^B \vec{F} \cdot \overrightarrow{d\ell}$ est la somme des $\vec{F} \cdot \overrightarrow{d\ell}$ sur tous les intervalles $\overrightarrow{d\ell}$ entre A et B.

Si
$$\vec{F}$$
 est constante $\int_A^B \vec{F} \cdot \overrightarrow{d\ell} = \vec{F} \cdot \int_A^B \overrightarrow{d\ell} = \vec{F} \cdot \overrightarrow{AB}$ (expression simplifiée de W)

On obtient:

$$\Delta_{AB}E_C=W_{A\to B}$$
 Théorème de l'énergie cinétique

La variation de l'énergie cinétique entre A et B égale au travail entre A et B

Remarque. Ce théorème ce révèle très utile dans de nombreux problèmes (voir TD). A noter tout de suite que lorsqu'on a une force perpendiculaire au déplacement, W est nul et Ec est conservé.

$$\Delta_{AB}E_C=W_{A\to B}$$

une force perpendiculaire au déplacement, W est nul et Ec est conservé.

Théorème de l'énergie cinétique – pour résumer

La variation de l'énergie cinétique d'un solide de masse m en translation dans un référentiel galiléen entre deux points A et B est égale à la somme des travaux des forces extérieures qui s'appliquent sur le système lors de son déplacement de A à B :

$$\Delta_{AB}E_C=E_C(B)-E_C(A)=\sum W_{AB}(\stackrel{
ightarrow}{F_{ext}})$$

Cas particulier : si la force est perpendiculaire au déplacement, W=0 et E_C est conservée

3. Energie mécanique

Considérons le cas simple d'un système soumis uniquement à son poids.

$$\vec{F} = m\vec{g}$$

$$W_{AB}(\vec{F}) = m\vec{g}.\vec{AB}$$

$$W_{AB}(\vec{F}) = \begin{pmatrix} 0 \\ 0 \\ -mg \end{pmatrix} \cdot \begin{pmatrix} x_B - x_A = \Delta x \\ y_B - y_A = \Delta y \\ z_B - z_A = \Delta z \end{pmatrix}$$

$$W_{AB}(\vec{F}) = -mg \Delta z$$

$$W_{AB}(\vec{F}) = -mg \Delta z$$

D'après le théorème de l'énergie cinétique (TEC) $\Delta E_C = -mg \ \Delta z$

$$\Delta E_C + mg \Delta z = 0$$

$$\Delta(E_C + mgz) = 0$$

 \rightarrow La variation de la quantité $E_c + mgz$ est nulle

 $(E_c + mgz)$ est donc une grandeur remarquable, on lui donne donc un nom : l'énergie mécanique.

Et (mgz) est aussi une grandeur remarquable, qu'on appelle énergie potentielle (ici de pesanteur) Ep.

Remarque. Pourquoi l'appeler « potentielle » ?
Car cette énergie constitue un réservoir d'énergie cinétique du système / permet potentiellement d'augmenter (diminuer)
l'énergie cinétique E_c.

On peut montrer dans le cas général que

$$\Delta E_m = \Delta (E_C + E_P) = \sum W(\vec{F}_{non\ conservatives})$$

Les variations d'énergie mécanique sont dûes aux travaux des forces non conservatives.

Notion de force conservative/non conservative : notion qui découle directement de l'énergie mécanique : force qui permet de conserver ou non l'énergie mécanque

Ce qu'il faut retenir – force conservative :

- Le travail ne dépend pas du chemin parcouru
- Force qui dérive d'une énergie potentielle $\vec{F} = -\vec{\nabla} E_P$
- En pratique : toutes les forces usuelles sont conservatives sauf les forces de frottements et la force de Lorentz

Ce qu'il faut retenir – force conservative :

- Le travail ne dépend pas du chemin parcouru
- Force qui dérive d'une énergie potentielle $\vec{F} = -\vec{\nabla} E_P$
- En pratique : toutes les forces usuelles sont conservatives sauf les forces de frottements et la force de Lorentz

Ex. Quelle est la dimension de W? Unités

Calcul à partir de [W]=[F] [dℓ] ou à partir de la relation W=ΔEm

→ W homogène à une énergie

 $[W]=ML^2T^{-2}$

Unités S.I.: Joules (=kg.m².s⁻²)

Application

On étudie un système de masse m en chute libre. Quelle est la vitesse quand le système touche le sol?

On a déjà traité ce problème en appliquant le PFD et en intégrant. Avec le TEC c'est beaucoup plus rapide.

$$E_C^i + E_P^i = E_C^f + E_P^f$$
$$0 + mgh = \frac{1}{2}mv^2 + 0$$
$$v = \sqrt{2gh}$$

Le calcul est plus rapide, par contre on n'a aucune info sur le temps : on ne peut pas savoir la durée de la chute

Energie mécanique – pour résumer

Energie mécanique = Energie cinétique + Energie potentielle

Force conservative:

- Le travail ne dépend pas du chemin parcouru
- Force qui dérive d'une énergie potentielle $\vec{F} = -\vec{\nabla} E_P$
- En pratique : toutes les forces usuelles sont conservatives sauf les forces de frottements et la force de Lorentz

Théorème de l'énergie mécanique :

$$\Delta E_m = \sum W(\vec{F}_{non\ conservatives})$$