NOM: Janvier 2023

PRÉNOM :

BLOC:

Examen de Mathématiques 1 :

1^{ère} année Bachelier en Informatique de Gestion

BINV1090 - Mathématiques 1

Date: 17 janvier 2023

Durée de l'examen : 2 heures

Nombre de questions : 5

- 1. Sauf avis contraire, toute réponse doit être justifiée.
- 2. Si vous n'écrivez pas proprement et lisiblement, votre réponse recevra un zéro.
- 3. Écrire au crayon est autorisé si le point 2 ci-dessus est respecté.
- 4. Vous pouvez avoir à votre disposition 10 feuilles recto/verso respectant les conditions suivantes : vos nom et prénom doivent être indiqués, les feuilles doivent être manuscrites, reliées sur toute la longueur de manière à ne pas pouvoir en détacher sans l'arracher et le contenu ne fait pas l'objet de miniaturisation.
- 5. Pour les questions sur machine, vous devez travailler **sur le U**: . En effet, si vous travaillez ailleurs vos fichiers seront perdus.
- 6. Les points communiqués en regard des questions sont indicatifs. Des lacunes graves entraîneront l'échec au présent examen.
- 7. Mettez vos noms et prénoms au début de chaque question!

Question 1	/10
Question 2	/10
Question 3	/10
Question 4	/10
Question 5	/10
TOTAL	/50

Question 1 (10 pts)

- a) Dans l'univers des habitations unifamiliales, on dispose des prédicats suivants :
 - *jardin(x)* : *x* possède un jardin ;
 - $m \hat{e} m e Rue(x,y) : x$ et y sont dans la même rue.

À l'aide de ceux-ci, traduisez la phrase suivante sous forme d'une expression mathématique :

« Il existe au minimum trois habitations avec jardin qui sont dans des rues différentes les unes des autres. »

 $\exists x \exists y \exists z [jardin(x) \land jardin(y) \land jardin(z) \land \neg m \hat{e} meRue(x,y) \land \neg m \hat{e} meRue(x,z) \land \neg m \hat{e} meRue(y,z)]$

b) Corriger la table de vérité ci-dessous pour qu'elle soit complète, correcte et cohérente. Vous devez indiquer les corrections directement dans le tableau ci-dessous (barrer chaque valeur fausse et indiquer la valeur correcte)!

p	q	r	$p \lor q$	$p \wedge r$	$\neg \big((p \lor q) \land (p \land r) \big)$	$(r \Rightarrow (q \lor p)) \land q$
0	0	0	0	0	1	0
0	1	Ø. 1 ▲	1	0	1	1
1	1	0	1	₹ 0	1	1
1	0	1 L,	1 un ou l'autr	e 1	0	0
1	0	0	1	0	b . 1	0
1	1	1	0. 1	1	0	1
0	0	1	0	0	1	0
0	1	b. 1	1	0	1	b . 1

Question 2 (10 pts)

Démontrez par récurrence que

$$4 + 7 + 10 + \dots + (3n + 1) = \frac{3n^2 + 5n}{2}$$

pour tout naturel n > 0.

1) Pas Initial :
$$n = 1$$
 : $\begin{cases} 3 \cdot 1 + 1 = 4 \\ \frac{3 \cdot 1^2 + 5 \cdot 1}{2} = \frac{3 + 5}{2} = \frac{8}{2} = 4 \end{cases}$ OK

2) Pas de récurrence :

a. Hypothèse : Pour
$$oldsymbol{n}=oldsymbol{k}$$
 fixé : $oldsymbol{4}+oldsymbol{7}+oldsymbol{10}+\cdots+(oldsymbol{3k+1})=rac{3k^2+5k^2}{2}$

a. Hypothèse : Pour
$$n=k$$
 fixé : $4+7+10+\cdots+(3k+1)=\frac{3k^2+5k}{2}$ b. Thèse : Pour $n=k+1$ fixé : $4+7+10+\cdots+(3(k+1)+1)=\frac{3(k+1)^2+5(k+1)}{2}$

c. Démonstration:

$$4+7+10+\cdots+(3(k+1)+1)=^{?}\frac{3(k+1)^{2}+5(k+1)}{2}$$

$$4+7+10+\cdots+(3k+1)+(3(k+1)+1)=^{?}\frac{3(k^{2}+2k+1)+5k+5}{2}$$

$$\frac{3k^{2}+5k}{2}+(3(k+1)+1)=^{?}\frac{3k^{2}+6k+3+5k+5}{2}$$

$$\frac{3k^{2}+5k}{2}+3k+3+1=^{?}\frac{3k^{2}+11k+8}{2}$$

$$\frac{3k^{2}+5k}{2}+3k+4=^{?}\frac{3k^{2}+11k+8}{2}$$

$$\frac{3k^{2}+5k+6k+8}{2}=^{?}\frac{3k^{2}+11k+8}{2}$$

$$\frac{3k^{2}+11k+8}{2}=\frac{3k^{2}+11k+8}{2}$$
OK

Question 3 (10 pts)

- 1) Soient les ensembles $A = \{4, \{2,1\}, 2, \{3,2\} \oplus \{1,2,4\}\}\$ et $B = \{1, \{2,4\}, \{1,2\}\} \cap P(\{1,4,2\})$
 - a) Que vaut |A|?

$$|A| = 4$$

b) Donnez B et $B \cup A$ en extension

$$B = \{\{2,4\}, \{1,2\}\}$$

$$B \cup A = \{4, \{2,1\}, 2, \{3,1,4\}, \{2,4\}\}$$

c) Donnez un ensemble C tel que $C \cap A = C$ et $C \in B$

$$C = \{2, 4\}$$

2) Soient A, B, C des sous-ensembles d'un Univers E. Sur le diagramme de Venn ci-contre, les minuscules a, b, c, ..., h désignent les cardinaux des zones correspondantes. Pour chaque affirmation ci -dessous, commencez par hachurer la zone correspondante des ensembles de mandés sur le diagramme de Venn et, ensuite, dites ce qu'on peut dire à propos des cardinaux a, b, c, ..., h si l'affirmation est vraie.

 \boldsymbol{E}

a)
$$|(C \cup A) - B| < |\overline{A \oplus B} \oplus C|$$

Sur le diagramme de Venn ci-dessous, hachurez la zone correspondante à $(C \cup A) - B$

Interprétation de l'affirmation en terme des cardinaux :

Sur le diagramme de Venn ci-dessous, hachurez la zone correspondante à $\overline{A \oplus B} \oplus C$

 $a+f+c < d+f+e+h \Rightarrow a+c < d+e+h$

4/12

b)
$$(A \oplus \overline{B}) \cap C = (\overline{B \cup A}) \cup (C - A)$$

Sur le diagramme de Venn ci-dessous, hachurez la zone correspondante à $(A \oplus \overline{B}) \cap C$

Sur le diagramme de Venn ci-dessous, hachurez la zone correspondante à $(\overline{B \cup A}) \cup (C - A)$

Interprétation de l'affirmation en terme des cardinaux :

$$g = 0$$
 et $h = 0$ et $e = 0$

Question 4 (10 pts)

On vous demande d'utiliser la méthode de la bissection pour trouver une approximation avec 4 décimales exactes de la racine du polynôme $f(x) = -4x^3 - 6x^2 + 1$ se trouvant dans l'intervalle [-1.5, -1.3]. Pour ce faire vous devez utiliser le fichier MethNum.xlsx.

Dans celui-ci vous devez

- 1. Calculez le nombre d'étapes nécessaires pour atteindre le nombre de décimales exactes demandés.
- 2. Complétez le tableau déjà présent.

Remarques:

- Vos formules doivent être les plus générique possible (elles doivent fonctionner si on change l'intervalle et/ou le nombre de décimales exactes)
- Dans le tableau, E_n est la borne sur l'erreur absolue à l'étape n.
- Le nombre de lignes du tableau dépend du nombre d'étapes nécessaires pour atteindre le nombre de décimales exactes demandé. Il est donc possible que vous deviez en ajouter ou en supprimer.
- Pour toute éventuelle colonne ajoutée, n'oubliez pas de lui donner un titre.
- Toute valeur éventuelle provenant d'un calcul isolé doit aussi être décrite.

Question 5 (10 pts)

On vous demande de compléter une méthode de la classe Suite, « héritant » de la classe SuiteDeBase. Pour ce faire

- 1) Ouvrez IntelliJ
- 2) Créez, sur le U:, un projet NOM_PRENOM (avec vos nom et prénom!)
- 3) Les classes données se trouvent dans le répertoire « Classes Java ». Faites un copier-coller de cellesci dans le répertoire « src » de votre projet IntelliJ. Voici ce que vous devriez obtenir :

On vous demande de programmer la méthode ci-dessous en utilisant la technique récursive.

Vous pouvez utiliser toutes les méthodes qui apparaissent dans le document joint "Memento_Suite_Java.pdf". Si vous utilisez d'autres méthodes, vous devez donner leur code.

Vous pouvez tester vos solutions grâce à la classe TestSuite.

Attention! Il est interdit d'introduire d'autres méthodes, exceptée les méthodes privées <u>ayant les</u> <u>mêmes paramètres</u> que les méthodes publiques, dans le cas d'une version récursive où il y a des exceptions à gérer.

Méthode:jamaisApres(Elt x, Elt y)

```
/* Renvoie true si l'Elt x n'est jamais juste après l'Elt y dans la suite
               courante
          false sinon
 * Exemples :
 * this = (1,2,2)
                   alors jamaisApres(null,3)
                                                --> IllegalArgumentException
 * this = (1,2,2) alors jamaisApres(3,null)
                                                --> IllegalArgumentException
 * this = (3,6,4,3,6) alors jamaisApres(3,4)
                                                 --> false
 * this = (3,9,3,4,5,7) alors jamaisApres(3,4)
                                                --> true
 * this = ()
                        alors jamaisApres(3,4)
                                                --> true
 * this = (7,8,4,6,10)
                        alors jamaisApres(3,4)
                                                --> true
 * this = (8,3,6,3,7,3) alors jamaisApres(3,4)
                                                 --> true
 * this = (8,3,6,3,7,3) alors jamaisApres(3,3)
                                                --> true
 * this = (8,3,3,7,3)
                        alors jamaisApres(3,3)
                                                --> false
 * this = (8, 9, 12, 4, 3) alors jamaisApres(3, 4)
                                                --> false
 * this = (3)
                        alors jamaisApres(3,4)
                                                 --> true
 * @param Elt x
 * @param Elt y
 * @return true si l'Elt x n'est jamais après l'Elt y dans la suite courante
          false sinon
```

* @throw IllegalArgumentException en cas de paramètre invalide $^{\star}/$