Problem-3 - Report

I read the document available at http://oceantrackingnetwork.org/about/#oceanmonitoring and wrote the report on what are the different datasets and attributes I discovered.

Ocean Tracking Network is a global platform that monitors aquatic species through international expertise, data warehousing and technological innovation. It provides sustainable management of aquatic animals by providing knowledge on their movements, habitats, and survival in the face of changing global environments.

1. <u>Datasets:</u>

- 2. Detection
- 3. Manmade Platform
- 4. Project
- 5. Receivers
- 6. Recover offload
- 7. Tag releases
- 8. Animal
- 9. Animal Scientific name
- 10. Datacentre
- 11. Transmitter

1. Attributes:

Datasets	Attributes
1. Detection	Detection_id, time(UTC),
	latitude(degrees_north),
	longitude(degrees_east), tracker_reference,
	detection_reference_id,
	detection_reference_type, transmitter_id,
	detection_serial_number, sensor_data,
	sensor_data_units, deployment_id,
	detection_quality, position_data_source,
	uncertainty_in_latitude,
	uncertainty_in_longitude,
	detection_project_reference,
	datacentre_reference, transmitter_id,
	transmitter_codespace,
	detection_transmittername,
2. Manmade Platform:	Platform_reference,
	platform_project_reference, platform_type,
	platform_depth, latitude(degree_north),
	longitude(degree_east), datacentre_reference

3. Project:	project_reference, project_name,
	project_abstract, project_citation, project_pi,
	project_pi_organization, project_pi_contact,
	project_infourl, project_keywords,
	project_keywords_vocabulary,
	project_license, project_datum,
	project_geospatial_lon_min(degrees_east),
	project_geospatial_lon_max(degrees_east),
	project_geospatial_lat_min(degrees_north),
	<pre>project_geospatial_lat_max(degrees_north),</pre>
	geospatial_vertical_min,
	geospatial_vertical_max,
	datacenter_reference
4. Receivers:	deployment_id, receiver_reference_type,
	receiver_manufacturer, latitude
	(degrees_north),
	longitude (degrees_east), time(UTC),
	recovery_datetime_utc (UTC), bottom_depth
	(m), depth (m), deployment_comments,
	receiver_model, receiver_reference_id,
	datacenter_reference
5. Recover offload:	recovery_id, recovery_latitude,
	recovery_longitude, recovery_datetime_utc,
	recovery_outcome, data_offloaded,
	offload_datetime_utc, log_filenames,
	recovery_comments,
	recovery_project_reference,
	datacenter_reference
6. Tag releases:	release_reference_id,
	release_reference_type,
	latitude (degrees_north), longitude
	(degrees_east), time (UTC),
	expected_enddate (UTC), manufacturer,
	tag_model, tag_serial_number,
	tag_coding_system, transmitted_id,
	transmittername, transmittername,
	tag_device_id, datacenter_reference
7. animals	Vernacularname, scientificname, aphiaid, tsn
8. datacentre	datacenter_reference, datacenter_name,
	datacenter_abstract, datacenter_citation,
	datacenter_pi, datacenter_pi_organization,
	datacenter_pi_contact, datacenter_keywords,
	datacenter_keywords_vocabulary,
	datacentre_doi, datacentre_licence,
	datacentre_distribution_statement,
	datacentre_date_modified,

	datacentre_geospatial_ion_min, datacentre_geospatial_ion_max, datacentre_geospatial_lat_min, datacentre_geospatial_lat_max.
9. Transmitter	

2. Cleaning and Spreadsheet Filteration:

Table-1: otnunit aat animals 8dc3 4d15 c278:

- Deleted Taxorank column because it was blank.
- Added "UNKNOWN" value at some places where the column was blank. We add
 "UNKNOWN" because we don't know its exact value and the value can be NULL
 too.
- In Stock column, there were already "UNKNOWN" values but there was also a blank. So I added "UNKNOWN" values in the blank column. We add "UNKNOWN" because we don't know its exact value and the value can be NULL too.
- In length_avg column, there were blanks, so instead of blank values I took the average of the entire column and added the average value in the blank places. The average value for length_avg column = 0.201.
 - (We are taking the average values because consistency in the data is maintained).
- In weight_avg column, there were blanks, so instead of blank values I took the average of the entire column and added the average value in the blank places. The average value for weight avg column = 0.345.
 - (We are taking the average values because consistency in the data is maintained).
- In life_stage column, there were blanks. So I added "UNKNOWN" values in the blank column. We add "UNKNOWN" because we don't know its exact value and the value can be NULL too.
- In age column, there were "NaN" values, so instead of those values I took the average of the entire column i.e. average of age column and added the average value instead of "NaN". The average value for weight_avg column = 5.33.
 - (We are taking the average values because consistency in the data is maintained).
- In sex column, there were blanks. So I added "UNKNOWN" values in the blank column. We add "UNKNOWN" because we don't know its exact value and the value can be NULL too.

Table-2: otnunit aat datacenter attributes 8a94 cefd f8a3:

- Removed first row because it was empty.
- Deleted column time_converge_start because it contained no data.
- Deleted column time_converge_end because it contained no data.
- In datacenter_geospatial_ion_min column, there were "NaN" values, so instead of those values I took the average of the entire column and added the average value instead of "NaN". The average value for datacenter_geospatial_ion_min = -89.803. (We are taking the average values because consistency in the data is maintained).
- In datacenter_geospatial_ion_max column, there were "NaN" values, so instead of those values I took the average of the entire column and added the average value instead of "NaN". The average value for datacenter_geospatial_ion_max= 43.076. (We are taking the average values because consistency in the data is maintained).
- In datacenter_geospatial_lat_min column, there were "NaN" values, so instead of those values I took the average of the entire column and added the average value instead of "NaN". The average value for datacenter_geospatial_lat_min= -26.872. I took the average of latitude because the location can be nearby the other values. (We are taking the average values because consistency in the data is maintained).
- In datacenter_geospatial_lat_max column, there were "NaN" values, so instead of those values I took the average of the entire column and added the average value instead of "NaN". The average value for datacenter_geospatial_lat_max= 37.005. I took the average of latitude because the location can be nearby the other values. (We are taking the average values because consistency in the data is maintained).

Table-3: (otnunit_aat_detections_9062_5923_1394)

- Metadata mentioned in the column.
- In sensor column, took average of the value and replaced instead of the NULL values. The average value = 11.71
- In sensor data units, added "UNKNOWN" values instead of blank spaces.
- In detection quality, added "UNKNOWN" values instead of blank spaces.
- In depth column, I added value depth "-1" instead of "NaN".(Took record of approx 30000 record)
- In Uncertainity_in_latitude, added "UNKNOWN" values instead of blank spaces.
- In Uncertainity in longitude, added "UNKNOWN" values instead of blank spaces.
- In depth_data_source_column, Uncertainity_in_depth, other_position_data, dataset_quality,the column was empty so deleted it.

Table-4: (otnunit_aat_manmade_platform_0735_7c9f_329c)

- Meta data is present for latitude and longitude so added along with column name
- Null values in latitude is replaced with 43.03

• Null values in longitude is replaced with -66.36

Table-5: otnunit aat project attributes f29c fb21 23a3

- Metadata is written in brackets.
- Project_pi Column had some blank values which I replaced it to "UNKNOWN" values because value can be anything.
- In project_citation column had some blank values which I replaced it to "UNKNOWN" values because value can be anything.
- In Project_infourl column, I replaced null, blanks, NA with "UNKNOWN" values because value can be anything.
- Project_references, project_doi, project_distribution, project_date_modified, project_linestring was blank so I deleted the column to avoid data redundancy.
- In Geospatial_vertical_max, I wrote down the average value of the whole column instead of blank value. The average value = 95.479.
- In Geospatial_vertical_positive, time_coverage_start, time_coverage_end, the values was blank so I deleted the column.

Table-6: otnunit_aat_receivers_c595_05f4_68b2:

- For receiver manufacturer, I added "UNKNOWN" values in place of null values
- For frequencies_monitored and receiver_coding_scheme, entire column is empty so deleted the column.
- recovery_datetime_utc contains null values so I added max date Range i.e. 9999-12-31T23:59:59Z instead of those values.
- In receiver_reference_id, null value is replaced by UNKNOWN.
- In bottom depth values, null value replaced with 123.8 which is the average value.
- In depth column, replace null values with 74.7 which is the average value.
- In deployment_columns, null values replaced by 9.65 which is the average value.
- In deployed column, removed as it contains null values throughout the column.
- In expected_receiver_life column, removed the entire column as it contains NaN.

Table-7: otnunit_aat_recover_offload_details_4b23_f002_f89a

- In log_files, the UNKNOWN values are replaced by Blanks.
- In recovery_comments, the UNKNOWN values are replaced by Blanks.
- In clock_Synchronized, the whole column was deleted because there were null values.
- In recovered_by, the whole column was deleted because there were null values.

Table-8: otnunit_aat_tag_releases_b793_03e7_a230

- In meta tags were there for latitude, longitude, time, expected_enddate so combined with column name.
- In remove tag_frequency column, as it contains null value in entire column

• In columns such as transmitter_type and tag_programming_id, I removed as it is of no use to avoid data redundancy.

3. Normalization:

In the clean spreadsheets/CSVs I created, there is a possibility of further decomposing of the files, or columns in the files (without losing information. So here are the steps for normalizing.

Animal table:

In the table, vernacular name, scientific name attribute were partially dependant on the aphiaid, so we created new animal scientific table.

In animal table,

aphiaid = Foreign Key, animal_reference_id= Primary Key, datacenter_reference = Foreign Key

· :	× √ f _x	aphiaid											
А	В	С	D	Е	F	G	Н	1	J	K	L	М	N
aphiaid	animal_origin	stock	length	length_type	weight	life_stage	age	sex	animal_reference_id	animal_project_re	f datacenter_re	eference	
127188	W	UNK	0.561	FORK	2.35	UNKNOWN	5.33	U	FRO-T14	FRO	OTN-Global		
127188	W	UNK	0.576	FORK	2.53	UNKNOWN	5.33	U	FRO-T2	FRO	OTN-Global		
127188	W	UNK	0.57	FORK	2.41	UNKNOWN	5.33	U	FRO-T25	FRO	OTN-Global		
127188	W	UNK	0.6	FORK	2.8	UNKNOWN	5.33	U	FRO-T26	FRO	OTN-Global		
127188	W	UNK	0.55	FORK	2.17	UNKNOWN	5.33	U	FRO-T27	FRO	OTN-Global		
127188	W	UNK	0.49	FORK	1.55	UNKNOWN	5.33	U	FRO-T28	FRO	OTN-Global		
127188	W	UNK	0.45	FORK	1.24	UNKNOWN	5.33	U	FRO-T29	FRO	OTN-Global		
127188	W	UNK	0.521	FORK	1.89	UNKNOWN	5.33	U	FRO-T5	FRO	OTN-Global		
127188	W	UNK	0.556	FORK	2.29	UNKNOWN	5.33	U	FRO-T1	FRO	OTN-Global		
127188	W	UNK	0.54	FORK	2.15	UNKNOWN	5.33	U	FRO-T41	FRO	OTN-Global		
127188	W	UNK	0.588	FORK	2.69	UNKNOWN	5.33	U	FRO-T8	FRO	OTN-Global		
127188	W	UNK	0.64	FORK	3.44	UNKNOWN	5.33	U	FRO-T7	FRO	OTN-Global		
127188	W	UNK	0.54	FORK	2.1	UNKNOWN	5.33	U	FRO-T4	FRO	OTN-Global		
127188	W	UNK	0.612	FORK	3.02	UNKNOWN	5.33	U	FRO-T6	FRO	OTN-Global		
127188	W	UNK	0.6	FORK	2.85	UNKNOWN	5.33	U	FRO-T9	FRO	OTN-Global		
127188	W	UNK	0.544	FORK	2.15	UNKNOWN	5.33	U	FRO-T10	FRO	OTN-Global		
127188	W	UNK	0.586	FORK	2.66	UNKNOWN	5.33	U	FRO-T13	FRO	OTN-Global		
127188	W	UNK	0.596	FORK	2.8	UNKNOWN	5.33	U	FRO-T11	FRO	OTN-Global		
127188	W	UNK	0.54	FORK	2.1	UNKNOWN	5.33	U	FRO-T12	FRO	OTN-Global		
127188	W	UNK	0.53	FORK	1.97	UNKNOWN	5.33	U	FRO-T33	FRO	OTN-Global		

In animal_scientific_name table:

Aphiaid = Primary key

4	А	В	С	D	Е
	vernacularname	scientificname	aphiaid	tsn	
	Arctic char	Salvelinus alpinus	127188	162001	
	Atlantic salmon	Salmo salar	127186	161996	
	blue shark	Prionace glauca	105801	160424	
	leervis	Lichia amia	126810	168769	
	spotted grunter	Pomadasys commerso	218563	630243	
	white shark	Carcharodon carcharia	105838	159903	
	smooth hound shark	Mustelus mustelus	105822	160242	
	sevengill shark	Notorynchus cepedian	217628	159829	
0	Zambezi shark	Carcharhinus leucas	105792	160275	
1	tiger shark	Galeocerdo cuvier	105799	160189	
2	Chinook salmon	Oncorhynchus tshawyt	158075	161980	
3	Dungeness crab	Cancer magister	452271	98675	
4	English sole	Parophrys vetulus	254393	172921	
5	Steelhead salmon	Oncorhynchus mykiss	127185	161989	
5	sockeye, kokanee	Oncorhynchus nerka	254569	161979	
7	Coho salmon	Oncorhynchus kisutch	127184	161977	
3					
9					

In datacenter table:

Initially, when I got the dataset, I noticed that all the tables had the datacenter attribute. So every table of the dataset was pointing towards the table datacenter.

Datacenter_reference = Primary key

4	н	1	J	Κ	L
1	datacenter_infourl	datacenter_keywords	datacente	datacenter_doi	datacenter_license
2	https://members.oceantrack.org	ACADEMIC > DALHOUSIE/BIOLOGY, EARTH SCIENCE > BIOLOGICAL CL	GCMD	10.1428	By accessing or using OTN Data you agree to: Â
3	https://members.oceantrack.org	ACADEMIC > DALHOUSIE/BIOLOGY, EARTH SCIENCE > BIOLOGICAL CL	GCMD	10.1428	By accessing or using OTN Data you agree to: a) give p
4	https://members.oceantrack.org	ACADEMIC > DALHOUSIE/BIOLOGY, EARTH SCIENCE > BIOLOGICAL CL	GCMD	10.1428	By accessing or using OTN Data you agree to:Â
5	https://members.oceantrack.org	ACADEMIC > DALHOUSIE/BIOLOGY, EARTH SCIENCE > BIOLOGICAL CL	GCMD	10.1428	By accessing or using OTN Data you agree to: Â
6					
7					
8					
9					

K		L	M	N	0	Р	Q
datacenter_doi		datacenter_license	datacenter_distribution_statement	datacenter_date_modified	datacenter_geospatial_lo	datacente	datacent
	10.1428	By accessing or using OTN Data you agree to: Â	a) give proper attribution to all Da	ata Providers and to OTN by using the prefor	-89.8	43.07	-26.87
	10.1428	By accessing or using OTN Data you agree to: a) give	proper attribution to all Data Providers and	to OTN by using the preformed citations con	-108.511	148.83	-50.9809
	10.1428	By accessing or using OTN Data you agree to:Â	a) give proper attribution to all Da	ta Providers and to OTN by using the preform	16	36	-34.6304
	10.1428	By accessing or using OTN Data you agree to: Â	a) give proper attribution to all Da	ata Providers and to OTN by using the prefor	-176.9	-55.6	4.9932

M	N	0	P	Q	R
datacenter_distribution_statement	datacenter_date_modified	datacenter_geospatial_lon_mi	datacenter_geosp	datacenter_geospa	datacenter_geospatial_lat_max
a) give proper attribution to all Da	ata Providers and to OTN by using the preforr	-89.8	43.07	-26.87	37
roper attribution to all Data Providers and	to OTN by using the preformed citations con-	-108.511	148.83	-50.9809115	74.75011
a) give proper attribution to all Da	ata Providers and to OTN by using the preforn	16	36	-34.63038	-24.5
a) give proper attribution to all Da	ata Providers and to OTN by using the preforr	-176.9	-55.6	4.9932	60.7663
1					

In detection table,

<u>Detection_id = Primary key, Transmitter_id = Foreign Key, Datacentre_reference = Foreign Key</u>

Α	В	С	D	E	F	G	н	1	1	К	
detection id	time(UTC)		longitude(degrees_eas		detection reference			detection serial	concor data	sensor da	donlow
					_		_				
	E 2008-05-20T10:14:1				WRS-10563	ANIMAL	10563	1136		UNKNOW	
	£2008-05-20T07:39:3				WRS-10563	ANIMAL	10563	1136		UNKNOW	
A69-1303-10563-	£2008-05-20T07:38:4	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-20T14:38:4	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-20T04:42:2	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-20T04:41:3	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-20T08:51:0	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	8 2008-05-20T08:53:0	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	8 2008-05-20T08:52:1	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	8 2008-05-20T17:58:2	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-19T03:07:4	44.92408	-62.5425	WRS	WRS-10563	ANIMAL	10563	1085	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-19T04:06:3	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	E 2008-05-19T05:16:0	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	E 2008-05-19T06:17:0	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-20T08:51:3	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	E 2008-05-20T10:30:0	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-20T14:36:2	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-19T05:50:3	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	E 2008-05-20T12:00:5	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S
A69-1303-10563-	£ 2008-05-19T04:06:0	44.91786	-62.53628	WRS	WRS-10563	ANIMAL	10563	1136	11.71	UNKNOW	WRSH-S

G	Н	1	J	K	L	M	N	0	P	Q	R
detection_reference	transmitter_id	detection_serial_	sensor_data	sensor_data_	deployment_id	detection_qua	position_data_source	uncertainty_in_l	uncertainty_	detection	datacenter_reference
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1085	11.71	UNKNOWN	WRSH-SW1-VR2-1085-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global
ANIMAL	10563	1136	11.71	UNKNOWN	WRSH-SW2-VR2-1136-1	UNKNOWN	Receiver Metadata	UNKNOWN	UNKNOWN	WRS	OTN-Global

In transmitter table,

Initially, in the unnormalized table, the transmitter_id, transmitter_codespace, detection_transmittername were have a single responsibility so they were separated and created a new table called transmitter table.

Transmitter_id = Primary key

In manmade table,

I just rearranged the datacentre_reference

Datacentre_reference = Foreign Key, platform_reference_id = Primary Key

platform_reference_	platform_project_ref	platform_type	platform_depth	latitude(degree_nort	longitude(degree_ea	datacenter_reference
SAF-MB002	SAF	Underwater mooring	21	-34.08662	22.19435	OTN-Global
SAF-MB013	SAF	Underwater mooring	48	-34.15786	22.24009	OTN-Global
SAF-FB001	SAF	Underwater mooring	41	-34.36798	18.81178	OTN-Global
SAF-MB014	SAF	Underwater mooring	50	-34.16428	22.24424	OTN-Global
SAF-AB001	SAF	Underwater mooring	20	-33.77729	26.31278	OTN-Global
SAF-AB002	SAF	Underwater mooring	20	-33.78536	26.31389	OTN-Global
SAF-AB003	SAF	Underwater mooring	28	-33.79325	26.3152	OTN-Global
SAF-AB004	SAF	Underwater mooring	28	-33.8017	26.31621	OTN-Global
SAF-AB005	SAF	Underwater mooring	30	-33.80968	26.31628	OTN-Global
SAF-AB006	SAF	Underwater mooring	31	-33.81786	26.31632	OTN-Global
SAF-AB007	SAF	Underwater mooring	29	-33.82578	26.31655	OTN-Global
SAF-MB001	SAF	Underwater mooring	15	-34.08061	22.1905	OTN-Global
SAF-HB005	SAF	Underwater mooring	82	-34.04391	18.27266	OTN-Global
SAF-MB003	SAF	Underwater mooring	27	-34.09309	22.1985	OTN-Global
SAF-MB004	SAF	Underwater mooring	31	-34.0996	22.20267	OTN-Global
SAF-MB005	SAF	Underwater mooring	35	-34.10602	22.20682	OTN-Global
KM001	SAF	Underwater mooring	30.8	-32.704722	28.384833	OTN-Global

In Project Table,

Datacenter_reference = Foreign key, Project_reference_id = Primary key

C1	L 7 : >	✓ f _* project_abst	ract
4	А	В	С
1	project_reference	project_name	project_abstract
2	SAIAB	SAIAB fish tracking	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Tracking
3	DEASBT	Aliwal Shoal shark tracking	Aliwal Shoal shark tracking
4	CBT	Movements of Brown Trout	Originating from Europe, Brown Trout, Salmo trutta, were introduced to New Brunswick's waters in 1921, in the Loch Lomond watershed. Brown Trout were stc
5	V2LMOZ	Mitigating the risk of shark a	Twelve fatal bull shark (Carcharhinus leucas) attacks have occurred in the Inhambane estuary in the last two years. In response, a shark cull was implemented in 2C
6	DICTWS	Gansbaai white shark tracking	The unique environmental characteristics of Gansbaai make it the ideal site to test hypotheses regarding the influence of physical oceanography, prey species dist
7	GEFT	Goukou Estuary fish tracking	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Trackin
8	TZWS	Thresher, zambezi, and whit	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Trackin
9	TOA	Raggedtooth shark (Carchari	Two Oceans Aquarium has tagged over 30 raggedtooth sharks (Carcharias taurus) and are their movement behaviour is currently being tracked by ATAP receivers a
10	ORI	ORI	Initial hypotheses suggest that because catches of giant guitarfish (Rhynchobatus djiddensis) are very seasonal (mainly caught in summer) and display nomadic mo
11	SASC	SASC	Due to its low biological productivity (reproductive periodicity of three years) and longevity (>60 years), combined with inadequate fishery management measure
12	MRMR	Mozambique reef manta ray	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Trackin
13	SPI	Shippagan, NB: Cod tagging	The objectives of this project are first to study the seasonal migration of the Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence and secondly to example the Atlantic Cod (Gadus morhua) in the southern Gulf of St. Lawrence and secondly to example the Atlantic Cod (Gadus morhua) in the southern Gulf of St. Lawrence and secondly to example the Atlantic Cod (Gadus morhua) in the southern Gulf of St. Lawrence and secondly to example the Atlantic Cod (Gadus morhua) in the southern Gulf of St. Lawrence and secondly to example the Atlantic Cod (Gadus morhua) in the southern Gulf of St. Lawrence and secondly to example the Atlantic Cod (Gadus morhua) in the St. Lawrence and St. Lawrence
14	KZNSB	KZNSB fish tracking	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Tracking
15	SSST	Shark Spotters shark tracking	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Trackin
16	BOONSW	Buoys of Opportunity - NOA.	Increasingly, passive acoustic monitoring systems (PAMs) including moored buoys are being deployed to document the presence of whales and other species that
17	ABRS	Algoa Bay raggedtooth shark	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Trackin
18	BRFT	Breede River fish tracking	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Tracking
19	DCDK	Dwesa Cwebe dusky kob tra	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Trackinį
20	BOOABS	Buoys of Opportunity - Arcti	Canada〙s Department of Fisheries and Oceans deploys moorings with scientific monitoring equipment for biological and oceanographic reasons strategically in
21	IWP	IWP fish tracking	South Africa's Institute for Aquatic Biodiversity (SAIAB), located on the campus of Rhodes University in Grahamstown, South Africa, maintains the Acoustic Tracking

4	D	D E F			G			Н				1		J	1	
pro	project_citation project_pi		project pi organization		project_pi_contact			project infourl			proje	ct keywords		projec	t keproje	
2 Co	Cowley, P., Childs, A., Murra Paul Cowley		SAIAB					http://	http://www.saiab.ac.za/			JSTIC TRANSMIT	TERS; ; E	AR GCMD	By ac	
			DEA		danders@environment.gov.za			https://www.environment.gov.za/								
	0 1 1111		UNB-F								TH SCIENCE > BI					
	urie, C., Dicken, M., Oliver		MMF			nurie@gn	nail com	1					TH SCIENCE > BI			
	wner A., Smale M. 2015. G	*	DICT			owner@g					_		JSTIC TRANSMIT			
	mberth, S., Du Plessis, J., C		DAFF			nl@daff.g							JSTIC TRANSMIT			
	cken, M. yyyy. Thresher, za		NMMU					Frworld co			_		JSTIC TRANSMIT			
	ukes, T. 2010. Raggedtootl		TOA			eukes@a				//www.aquari			TH SCIENCE > BI			
			ORI					1.CO.Za		/www.aquari /www.seawor						
	ann, B., Cowley, P. 2016. Tr					ori.org.za					_		JSTIC TRANSMIT			
	Cord, M. 2017. Movement	-	SASC		_	sharkcon	servano	y.org					TH SCIENCE > BI			
	arshall, A. yyyy. Mozambiq		MMF		UNKNO								TH SCIENCE > BI			
	rain, D., Comeau, L., Bowe		DFO-GFC			wain@dfo		c.ca					ISTIC TRANSMIT			
	ff, G. yyyy. KwaZulu-Natal		KZNSB			hark.co.za				/www.shark.o			JSTIC TRANSMIT			By ac
	ck, A., Barnett, A. yyyy. Sh		Shark Spotters			kock@gm				/sharkspotters			ISTIC TRANSMIT			
	horiskey, F. 2016. Buoys of		NOAA-NMFS-NEFSC			key@dal							TH SCIENCE > BI			
	nale, M. yyyy. Alboa Bay ra		Bayworld		msmale	e@baywo	orld.co.z	â€∢a					JSTIC TRANSMIT			
	Cord, M., Lamberth, S. Kei		SASC			sharkcon		y.org					JSTIC TRANSMIT			
9 Ve	nter, J. yyyy. Dwesa Cweb	Jan Venter	ECPT		jannie.	ven@gma	ail.com		http://	/members.oce	eantrack.org/d	ata ACOL	JSTIC TRANSMIT	TERS; ; E	AR GCMD	By ac
0 Bai	rtholette, J., Richards, C., \	Fred Whoriskey	DFO-BIO		fwhoris	key@dal	.ca		http://	members.oce	eantrack.org/d	ata; EAR	TH SCIENCE > BI	OLOGICA	L C GCMD	By ac
1 Flo	oros, C. yyyy. iSimangaliso	Camilla Floros	ORI		cfloros(@ori.org.	za		http://	/members.oce	eantrack.org/d	ata ACOL	JSTIC TRANSMIT	TERS; ; E	AR GCMD	By ac
4	1		l j	к		1			M	1			N		0	р
Inro	oject keywords		project keywords			project	datum	project geo			rees project	rensnatia	I lon max(deg	rees ea		nroject (
	OUSTIC TRANSMITTERS: : E	EARTH SCIENCE > BIOLO		By accessing or u	sing OTN		uutuiii	project_get	ospatiai_	18.45		cospanie		2.94051	-26.7436	-34.4094
	OUSTIC TRANSMITTERS; ;			By accessing or u						30.8				0.82757	-30.244	-30.24
	ARTH SCIENCE > BIOLOGICA			By accessing or u	_					30.0.	-67			-65.5	47.4016	45
	ARTH SCIENCE > BIOLOGIC			By accessing or u							34.5			36	-23.5	-24.5
	OUSTIC TRANSMITTERS; ;			By accessing or u						19.3			11	9.37508	-34.6304	-34.6304
	OUSTIC TRANSMITTERS; ; E			By accessing or u							.429		1:	21.429	-34.381	-34.381
				, ,							.801					
	OUSTIC TRANSMITTERS; ; E			By accessing or u						25				32.9	-26.84	-33.834
	ARTH SCIENCE > BIOLOGIC			By accessing or u							16			34	-26	-3!
	COUSTIC TRANSMITTERS; ;			By accessing or u	_					30.84				.169909	-29.7018	-30.0218
	ARTH SCIENCE > BIOLOGICA			By accessing or u	_					19.196				761111	-34.3775	-34.4575
	ARTH SCIENCE > BIOLOGICA			By accessing or u	_					35.36			35.	.364267	-23.8562	-23.8562
	OUSTIC TRANSMITTERS; ; E			By accessing or u							4.83			-63.55	48.36	47.54
	OUSTIC TRANSMITTERS; ; E			By accessing or u						26.28				29.57	-31.62	-33.8343
	OUSTIC TRANSMITTERS; ; E			By accessing or u	ising OTN	WGS84				18.51	8072			.518072	-34.3496	-34.3496
	ARTH SCIENCE > BIOLOGICA			By accessing or u						-70.687			-69.9	285511	42.08232	
7 AC	OUSTIC TRANSMITTERS; ; E	EARTH SCIENCE > BIOLO	GCMD	By accessing or u	ising OTN	WGS84				18.63	2165			25.83	-33.7874	-34.785
8 AC	OUSTIC TRANSMITTERS; ; E	EARTH SCIENCE > BIOLO	GCMD	By accessing or u	ising OTN	WGS84				2	0.97			20.97	-34.45	-34.45
9 AC	OUSTIC TRANSMITTERS; ; E	EARTH SCIENCE > BIOLO	GCMD	By accessing or u	ising OTN	WGS84				28	.895			28.91	-32.25	-32.26
0 ; E/	ARTH SCIENCE > BIOLOGICA	AL CLASSIFICATION > AN	GCMD	By accessing or u	ising OTN	WGS84				-97.816	0075		-97.7	7839927	74.38634	74.38033
1 AC	OUSTIC TRANSMITTERS; ;	EARTH SCIENCE > BIOLO	GCMD	By accessing or u	ising OTN	WGS84				31.01	5365			32.8653	-27.0469	-29.933
	N		0			Р			Q		R		S		Т	
projec	ct_geospatial_lon_max(de	0 - 1 / -0			ospatial_	_lat_max			patial_v		ospatial_verti			eference	<u> </u>	
		32.94051		7436				40943		0			OTN-Global			
		30.82757	-30.2	4398			-30.	24398		0		95.479	SAF			
		-65.5	47.401	5978				45		0		95.479	OTN-Global			
		36		-23.5				-24.5		0		95.479	SAF			
		19.37508	-34.6	3038			-34.	63038		0		95.479	SAF			
		21.429	-34	1.381			-3	34.381		0		95.479	OTN-Global			
		32.9	-2	26.84			-33.	83425		0		95.479	OTN-Global			
		34		-26				-35		0		95.479	SAF			

95.479 SAF 31.169909 -29.701825 -30.021825 19.2761111 -34.3775 -34.4575 95.479 SAF 95.479 OTN-Global 35.364267 -23.856172 -23.856172 47.54 -33.834252 95.479 OTN-Global 95.479 OTN-Global 95.479 OTN-Global 48.36 -31.62 -63.55 29.57 18.518072 -34.349615 -34.349615 -69.9285511 42.0823174 41.5149887 95.479 OTN-Global 25.83 -33.78743 -34.78497 95.479 OTN-Global 20.97 -34.45 -34.45 95.479 OTN-Global 28.91 -32.25 -32.26 95.479 OTN-Global -97.7839927 32.8653 74.380329 -29.933734 74.3863364 95.479 OTN-Global -27.0469 95.479 OTN-Global

In receiver Table,

Deployment_id = Primary key, datacenter_reference = Foreign Key

In recover table,

Recovery_id = Primary key, datacenter_reference = Foreign Key

A A	В	С	D	E	F	G	Н	1	J	K	L
recovery_id	recovery_latitud	recovery_longitud	recovery_datetime_utc		recovery_	offload_datetime_utc	log_filenames	recovery_comn	recovery_project_	datacenter	reference
ABO-Nar05-0	67.2495	-60.38247	2017-09-22T23:18:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
ABO-Nar04-0	67.474117	-58.220567	2017-09-21T20:11:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
ABO-Baff01-0	71.97833	-71.44208	2017-10-01T15:46:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
ABO-Baff01-0	72.00928	-71.34455	2017-10-01T15:09:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
ABO-Baff01-0	72.04222	-71.24047	2017-10-01T14:27:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
ABO-Baff03-0	70.68323	-66.8139	2017-09-29T23:15:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
ABO-Baff03-0	70.68698	-66.76618	2017-09-29T23:42:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
ABO-Baff03-0	70.6934	-66.68692	2017-09-30T00:15:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
) ABO-Baff04-0	68.9778	-64.08512	2017-10-07T20:20:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
ABO-Baff04-0	68.97877	-64.18338	2017-10-07T21:11:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
2 ABO-Baff06-0	67.68628	-62.37112	2017-09-25T18:43:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
3 ABO-Baff06-0	67.7546	-62.30852	2017-09-25T18:47:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
ABO-Baff07-0	66.83978	-59.43223	2017-09-24T21:31:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
ABO-Baff07-0	66.71638	-59.69172	2017-09-24T19:18:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
ABO-Baff07-0	66.59733	-59.96162	2017-09-24T17:10:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
7 ABO-Nar01-0	68.1608	-59.7771	2017-09-20T21:01:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
3 ABO-Nar01-0	68.1608	-59.7771	2017-09-20T21:01:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
) ABO-Nar01-0	68.16305	-59.74157	2017-09-20T21:34:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
) ABO-Nar01-0	68.16463	-59.71915	2017-09-20T22:04:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/Re	ABO	OTN-Global	
I ABO-Nar01-0	68.16967	-59.62118	2017-09-20T22:43:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	
2 ABO-Nar01-0	68.16967	-59.62118	2017-09-20T22:43:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	Deployment/R	ABO	OTN-Global	
3 ABO-Nar02-0	67.84975	-59.36618	2017-09-21T01:02:00Z	RECOVERD	N	9999-12-31T23:59:59Z	UNKNOWN	UNKNOWN	ABO	OTN-Global	

In tag_release table,

Tag_release_reference = primary key, datacenter_reference = Foreign key

Α	В	С	D	E	F	G	Н	1	J	K	L	М
release_reference	release_reference	latitude (degrees_n	longitude (degree	time (UTC)	expected_end	manufacturer	tag_mode	tag_serial	tag_coding_system	transmitted_id	transmitte	release_
GR-ST02	STATION	44.43351	-64.20316	2010-04-21T18:20:43Z	2010-06-22T18:	VEMCO	V9-2X	1091885	A69-1303	48123	A69-1303-	WRS
SMR-ST01	STATION	45.12417	-61.97775	2010-05-04T01:51:40Z	2010-06-23T22:	VEMCO	V9-2X	1092157	A69-1303	48056	A69-1303-	WRS
SMR-ST02	STATION	45.10567	-61.96656	2010-05-04T02:15:55Z	2010-06-23T21:	VEMCO	V9-2X	1092158	A69-1303	48057	A69-1303-	WRS
LR-ST01	STATION	44.36644	-64.48	2010-04-24T21:59:08Z	2010-06-15T22:	VEMCO	V9-2X	1092159	A69-1303	48058	A69-1303-	WRS
LR-ST02	STATION	44.24113	-64.30659	2010-04-23T18:29:18Z	2010-06-19T17:	VEMCO	V9-2X	1092160	A69-1303	48059	A69-1303-	WRS
WRSH-ST01	STATION	44.90864	-62.51151	2010-04-16T17:52:41Z	2010-06-17T20:	VEMCO	V9-2X	1092554	A69-1303	48012	A69-1303-	WRS
WRSH-ST02	STATION	44.86397	-62.48551	2010-04-29T22:53:38Z	2010-06-17T17:	VEMCO	V9-2X	1092555	A69-1303	48013	A69-1303-	WRS
WRS-10569	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050442	A69-1303	10569	A69-1303-	WRS
WRS-10568	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050441	A69-1303	10568	A69-1303-	WRS
WRS-10567	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050440	A69-1303	10567	A69-1303-	WRS
WRS-10566	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050439	A69-1303	10566	A69-1303-	WRS
WRS-10565	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050438	A69-1303	10565	A69-1303-	WRS
WRS-10564	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050437	A69-1303	10564	A69-1303-	WRS
WRS-10563	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050436	A69-1303	10563	A69-1303-	WRS
WRS-10562	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050435	A69-1303	10562	A69-1303-	WRS
WRS-10561	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050434	A69-1303	10561	A69-1303-	WRS
WRS-10560	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050433	A69-1303	10560	A69-1303-	WRS
WRS-10559	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050432	A69-1303	10559	A69-1303-	WRS
WRS-10558	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050431	A69-1303	10558	A69-1303-	WRS
WRS-10557	ANIMAL	44.95838	-62.61541	2008-05-17T06:40:00Z	2008-10-21T06:	VEMCO	V9-1L	1050430	A69-1303	10557	A69-1303-	WRS

Therefore, the table is in normalized form.

- 4. I Populate the database with the transformed dataset in mySQL workbench.
- 5. I allotted the foreign key and primary key for each table as mentioned above.
- 6. After that, I reversed engineer to get the possible ERD with added cardinalities which is as follows:

7. Reference:

https://oceantrackingnetwork.org/about/#oceanmonitoringhttps://dal.brightspace.com/d2l/le/content/221749/Home

8. SQL Dump of Table structure and values are attached.