

Proposta

Análise Probabilística Integrada de Ameaça Sísmica no Brasil

Prepared for: Escola de Matemática Aplicada, FGV, Dissertação.

Prepared by: Marlon Pirchiner, Aluno

March 6, 2013

Proposal number: 123-4567

Objetivo

Construir um mapa de ameaça sísmica para o Brasil, usando as técnicas clássicas de PSHA (Probabilistic Seismic Hazard Analysis).

Motivação

Servir de base para uma revisão mais realista da Norma Sísmica Brasileira (Norma Brasileira NBR15421 de 2006) elaborada provavelmente com base no estudo global preliminar (GSHAP) de Shedlock & Tanner, 1999.

Fig. 1a. PGA for rock sites (NBR-15421/2006)

Fig. 1b. GSHAP PGA for 10%/50years

Conhecida a sismicidade brasileira (fig. 2) e usando as técnicas de análise probabilística de ameaça sísmica, procura-se melhorar a estimativa de que o movimento do chão exceda certo valor num determinado período de tempo, necessária para o cálculo seguro das estruturas de grandes obras de engenharia.

BOLETIM SISMICO BRASILEIRO (1767 a 2011, magnitudes > 2.8)

Metodologia

A metodologia clássica de PSHA pode ser descrita como sendo constituída pelas seguintes etapas: (1) tratamento e uniformização do catálogo de eventos; (2) definição das zonas/fontes sísmicas segundo critérios tectônicos, geológicos, entre outros; (3) determinação para cada uma das zonas sísmicas de suas respectivas taxas sismicidade; (4) modelagem da atenuação do movimento do chão; (5) resolução da integral de ameaça e determinação da curva de ameaça com a taxa da expectativa de excedência pela quantidade de movimento do chão para cada lugar.

1 - Tratamento e Uniformização do Catálogo de Eventos

Por ser considerado um processo de Poisson, cuja premissa é da independência dos eventos, o catálogo de eventos sísmicos precisa ser depurado, eliminando-se os pré e pós abalos. Também é necessário remover artefatos como explosões de pedreiras ou outros eventos de origem não sismológica.

As técnicas empregadas serão as sugeridas pelo grupo CORSSA (Community Online Resource for Statistical Seismicity Analysis)

2 - Definição de Zonas Sísmicas

A definição de zonas sísmicas pode seguir muitos critérios distintos, e geralmente especialistas diferentes adotam critérios diferentes. Uns com maior enfoque nas relações tectônicas, outros seguindo parâmetros estatísticos, ou simplesmente conheçendo-se especificamente o comportamentos das falhas geológicas.

A modelagem pode ser feita por área, linha, falhas simples (plano inclinado) ou complexas (mais de um plano) nas zonas de subducção. Como o Brasil se situa numa região intra-placa, de baixa sismicidade e com nenhuma falha geológica tectonicamente ativa, o tratamento será feito por áreas.

A caracterização das áreas mais sismogênicas no Brasil será feita segundo critérios numéricos de agrupamento dos eventos. A técnica utilizada será a mesma adotada por Chan & Grünthal.

3 - Determinação da taxa de sismicidade (parâmetro b)

Essa etapa consiste em determinar a taxa de atividade sísmica para cada região identificada anteriormente, segundo a lei de Gutemberg-Richter, que descreve a distribuição de frequência de ocorrencia dos sismos segundo suas magnitudes como sendo exponencial.

Gutenberg and Richter (1954):
$$Log_{10}(N_{M\pm\Delta M/2}) = a - b \cdot M$$

$$N_{M \pm \Delta M/2} = 10^{a-b \cdot M} = 10^{a} 10^{-b \cdot M} = \alpha \cdot e^{-\beta \cdot M}$$
 with $\begin{cases} \alpha = 10^{a} \\ \beta = \ln(10) \cdot b \end{cases}$

4 - Modelagem da Equação Preditiva do Movimento do Chão (Atenuação)

Outro elemento necessário ao cálculo da ameaça sísmica é a determinação de uma equação que consiga estimar o movimento do chão em determinado lugar, dado um sismo de determinada magnitude ocorrido a uma certa distancia.

De certo modo ela descreve como a energia de um dado terremoto é atenuada segundo a distancia e outros fatores, como o tipo de solo ou o tipo de falha. Em sua forma típica ela pode ser modelada como segue:

Probabilistic model

Data a escassez de dados instrumentais do registro das acelerações de pico (PGA) em grande quantidade sismos de magnitudes diferentes ocorridos no brasil e registrados em várias distâncias, não será possível calcular uma equação com boa precisão para o Brasil. Quando isso ocorre, o comum é utilizar modelos de outros lugares assumindo que a atenuação possa ser a mesma, com certas variações.

median

O que pretende-se executar é uma avaliação desses modelos com os poucos dados brasileiros, eliminando-se os piores modelos. Para os modelos razoáveis restantes, espera-se determinar um novo modelo através das técnicas de 'mixture', como o executado para o Chile, por Händal (2012).

5 - Cálculo das Curvas de Ameaça

A ameaça sísmica é dada pela expectativa de que durante certo período de tempo, determinado lugar possa sofrer uma aceleracão maior que determinado valor. E isso é feito calculando-se:

Esses cálculos deverão ser feitos com o OpenQuake engine, subprojeto do Global Earthquake Modeling (GEM). O OpenQuake como plataforma, assim como o GEM, estão em pleno desenvolvimento. Estão integrando o que há de mais moderno na análise de risco (ameaça, exposição e vulnerabilidade) para a sismologia, sendo capaz de levar em conta os trabalhos independentes de vários especialistas através de uma árvore lógica com pesos para as possíveis variações de parâmetros.

Referências

Baker, 2008. Introduction to PSHA theory

 $\label{lem:http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&ved=0CDkQFjAC&url=http%3A\\ \underline{\%2F\%2Fwww.stanford.edu\%2F~bakerjw\%2FPublications}$

Chan & Grünthal, (YYYY). Hybrid zoneless probabilistic seismic hazard assessment: Test and first application to Europe and the Mediterranean.

http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CC4QFjAA&url=http%3A %2F%2Fwww.neries-eu.org%2Fmain.php%2FJRA2_D8.pdf%3Ffileitem%3D2261013&ei=ezE6UdOWK4vm8QTT-oDYCw&usq=AFQiCNELLAGOLqiw4ZCXnuFs1BraSBBOEw&bvm=bv.43287494.d.eWU

Händel et al, (2012). Generation of a mixture model ground-motion prediction equation for Northern Chile

http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDAQFjAA&url=http%3A%2F%2Ffallmeeting.agu.org%2F2012%2Feposters%2Feposter%2Fnh31c-1621%2F&ei=zUE6Ufv1LJPk9gT6t4C4CQ&usg=AFQjCNHwWALfcl8o7jc5scrlhWrhsfxMrQ&bvm=bv.

OpenQuake Book:

43287494,d.eWU

https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDAQFjAA&url=http%3A%2F%2Fopenquake.org%2Fwp-content%2Fuploads%2F2011%2F10%2F0penQuake-Book_Version0.1.pdf&ei=W0k6UY3hKJK88wSbn4HwBA&usg=AFQjCNFXAalWzT-hTx_lHiGaMX8iJkqZ8A&sig2=fS0S9tE3dgaLQ_w9lM8bAQ

GEM: http://www.globalquakemodel.org/

OpenQuake: http://www.globalquakemodel.org/openquake