# Partial Differential Equations: Lecture 1

#### Pinaki Pal

Department of Mathematics National Institute of Technology Durgapur West Bengal, India

pinaki.pal@maths.nitdgp.ac.in





Science is a differential equation. Religion is a boundary condition.

— Alan Turing —

AZ QUOTES

https://www.azquotes.com/quotes/topics/differential-equations.html

#### Introduction

#### **Definition**

An equation involving partial derivative(s) of one or more dependent variables with respect to one or more independent variables is called a partial differential equation (PDE). The dependent variable (s) should be function (s) of at least two independent variables.

### Vibrating String

## Governing Equations

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \text{ (Wave equation)}$$
  
BCs:  $u(0,t) = u(L,t) = 0$ ,

BCs: 
$$u(0, t) = u(L, t) = 0$$
,

ICs: 
$$u(x,0) = f(x), \frac{\partial u}{\partial t}(x,0) = g(x).$$

https://en.wikipedia.org/wiki/String\_vibration



#### Heating of a rod



### Governing Equations

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \text{ (Heat equation)}$$

$$BCs: T(0,t) = 0, \frac{\partial T}{\partial x}(L,t) = H_0,$$

<ロ > < 回 > < 回 > < 巨 > くき > しき > り < @

ICs: T(x,0) = 0.

### More examples

Laplace's Equation : 
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$
Burger equation : 
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2}$$
Navier – Stokes equation : 
$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\nabla p + \nu \nabla^2 \vec{v} + \vec{F}$$
Two dimensional wave equation : 
$$\frac{\partial^2 u}{\partial t^2} = c^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right)$$
Equation of continuity : 
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

## Formation of partial differential equations

### Elimination of arbitrary constants

Consider the function given by

$$f(x, y, z, c_1, c_2) = 0,$$
 (1)

where x, y are independent variables, z is dependent variable,  $c_1$  and  $c_2$  are arbitrary constants.

Differential equation (1) with respect to x and y we get

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} = 0,$$

$$\frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} = 0.$$
(2)

$$\frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} = 0.$$
 (3)

Now eliminating  $c_1$  and  $c_2$  from the equations (1), (2) and (3) we get the first order partial equation given by

$$g(x, y, z, p, q) = 0, \tag{4}$$

where  $p = \frac{\partial z}{\partial x}$  and  $q = \frac{\partial z}{\partial y}$ .

### Examples

Form the partial differential equations by eliminating the arbitrary constants  $c_1$  and  $c_2$  from the equations

(i) 
$$z = (x + c_1)(y + c_2)$$

(ii) 
$$z = c_1(x + y) + c_2(x - y) + c_1c_2t$$

## Solution (i)

Differentiating with respect to x and y we get

$$\frac{\partial z}{\partial x} = y + c_2 \implies c_2 = p - y, \tag{5}$$

$$\frac{\partial x}{\partial y} = x + c_1 \implies c_1 = q - x. \tag{6}$$

Eliminating  $c_1$  and  $c_2$  from the equations (5), (6) and the given equation we get

$$z = pq$$
,

which is the required partial differential equation.

### Solution (ii)

Given equation is  $z = c_1(x + y) + c_2(x - y) + c_1c_2t$ . Differentiating with respect to x, y and t respectively we get

$$\frac{\partial z}{\partial x} = c_1 + c_2, \ \frac{\partial z}{\partial y} = c_1 - c_2 \ \mathrm{and} \ \frac{\partial z}{\partial t} = c_1 c_2.$$

Eliminating the arbitrary constants we get

$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = 4\frac{\partial z}{\partial t},$$

which is the required PDE.

#### Exercise

Form the partial differential equations by eliminating the arbitrary constants from the following equations

(i) 
$$z = c_1 x + c_1^2 y^2 + c^2$$

(ii) 
$$z = c_1 x e^y + \frac{1}{2} c_1^2 e^{2y} + c_2$$

(iii) 
$$\frac{x^2}{c_1^2} + \frac{y^2}{c_2^2} + \frac{z^2}{c_3^2} = 1$$
  $\mathbf{X}$ 

(iv) 
$$z = ax + by + a^2 + b^2$$

(v) 
$$z = (x - a)^2 + (y - b)^2$$

(vi) 
$$z = (x^2 + a^2)(y^2 + b^2)$$

### Elimination of arbitrary functions

Consider the relation

$$f(u,v)=0, (7)$$

where u and v are unknown functions of x, y and z and f is an arbitrary function.

Differentiating the equation (7) with respect to x, y respectively we get

$$\frac{\partial f}{\partial u} \left[ \frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z} \right] + \frac{\partial f}{\partial v} \left[ \frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z} \right] = 0$$
 (8)

and 
$$\frac{\partial f}{\partial u} \left[ \frac{\partial u}{\partial y} + q \frac{\partial u}{\partial z} \right] + \frac{\partial f}{\partial v} \left[ \frac{\partial v}{\partial y} + q \frac{\partial v}{\partial z} \right] = 0,$$
 (9)

where  $p = \frac{\partial z}{\partial x}$  and  $q = \frac{\partial z}{\partial y}$ .



Eliminating  $\frac{\partial f}{\partial u}$  and  $\frac{\partial f}{\partial v}$  from the equations (8) and (9) we get

$$\left| \begin{array}{cc} \frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z} & \frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z} \\ \frac{\partial u}{\partial y} + q \frac{\partial u}{\partial z} & \frac{\partial v}{\partial y} + q \frac{\partial v}{\partial z} \end{array} \right| = 0.$$

Simplifying we can write it in the form

$$Pp + Qq = R, (10)$$

where

$$P = \frac{\partial u}{\partial y} \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial y} = \frac{\partial (u, v)}{\partial (y, z)},$$

$$Q = \frac{\partial u}{\partial z} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial x} \frac{\partial v}{\partial z} = \frac{\partial (u, v)}{\partial (z, x)},$$

$$R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} = \frac{\partial (u, v)}{\partial (x, y)}.$$

The equation (10) is known as Legrange's equation.

#### **Examples**

Obtain the partial differential equation by eliminating arbitrary function f and g

(i) 
$$z = (x + y)f(x^2 - y^2)$$

(ii) 
$$ax + by + cz = f(x^2 + y^2 + z^2)$$
, (iii)  $y = f(x - at) + g(x + at)$ 

## Solution (i)

$$\frac{\partial^{2}z}{\partial x} = (x+y)f(x^{2}-y^{2})$$

$$\Rightarrow \frac{\partial^{2}z}{\partial x} = (x+y)f'(x^{2}-y^{2})\times 2x + f(x^{2}-y^{2}) - 0$$

$$\frac{\partial^{2}z}{\partial y} = (x+y)f'(x^{2}-y^{2})\times 2y + f(x^{2}-y^{2}) - 0$$

$$0xy + 0xx \Rightarrow$$

$$y\frac{\partial^{2}z}{\partial x} + x\frac{\partial^{2}z}{\partial y} = yf'(x^{2}-y^{2})$$

$$+ xf(x^{2}-y^{2})$$

$$= (x+y)f(x^{2}-y^{2})$$

## Solution (ii)

ax+by+(z=f(x²+y²+z²) —(1)

Differentiating w.r.t. x,y respectively we get

a+c
$$\frac{\partial z}{\partial x}$$
 = f(x²+y²+z²).(2x+2z $\frac{\partial z}{\partial x}$ ) —(2)

b+c $\frac{\partial z}{\partial y}$  = f'(x²+y²+z²).(2y+2z $\frac{\partial z}{\partial y}$ ) —(3)

(2)+(3) =>

 $\frac{a+c\rho}{b+cq}$  =  $\frac{x+z\rho}{y+zq}$ ,  $\rho = \frac{\partial z}{\partial x}$  and  $\rho = \frac{\partial z}{\partial y}$ 

4 D > 4 D > 4 D > 4 D > 

## Solution (iii)

4D > 4A > 4B > 4B > B 990

#### Exercise

Form the PDEs by eliminating the arbitrary functions from the following relations:

$$(xy + z^2, x + y + z) = 0.$$