CAPÍTULO 5 PROBLEMAS (ANTIGO CAP.6)

5.1 Ar a 1 atm e 20 °C escoa-se num túnel de vento com uma velocidade de 10 m s⁻¹. Qual será a força de arrasto sobre um cilindro de 0,1 m de diâmetro, seguro nesse escoamento?

Se o fluido fosse água a 20 °C, qual seria a força correspondente?

$$\mu_{ar} = 1.8 \text{ x } 10^{-5} \text{ N s m}^{-2}; \ \mu_{água} = 10^{-3} \text{ N s m}^{-2}.$$

5.2 Por integração da equação (6.15) ($\overline{v}_x/\mu^* = 1/k \ln y + C$), demonstre que a relação entre a velocidade média, \overline{v} , e a velocidade máxima, $\overline{v}_x Max$, no escoamento turbulento numa conduta é dada por:

$$\overline{v} = \overline{v}_{x \, \text{max}} - \frac{3}{2} \frac{u_*}{k}$$

- **5.3** Ar a 20 °C escoa-se através de um tubo de 14 cm de diâmetro em condições de escoamento completamente desenvolvido. A velocidade no centro do tubo é $v_0 = 5 \text{ m s}^{-1}$. Aplicando a lei logarítmica (equação 6.20) e considerando ln $\beta = 5,5$ calcular:
- a) A velocidade tangencial, u.;
- b) A tensão tangencial na parede, τ_0 ;
- c) A velocidade média, $\overline{v} = Q/A$.
- **5.4** Num tubo com 5 cm de diâmetro, escoa-se água, sendo a perda de carga de 1 600 N m⁻², por unidade de comprimento ($\mu = 10^{-3}$ N s m⁻² e $\rho = 10^{3}$ kg m⁻³).

Aplicando o perfil universal de velocidades e utilizando a sugestão de von Kármán e Nikuradse, calcular, para os pontos situados a 30 μ m e 1 mm da parede e no centro do tubo:

- a) a velocidade média e a viscosidade turbulenta:
- b) o comprimento de mistura de Prandtl.