BNPlib: A Nonparametric C++ Library (part 3)

Bruno Guindani Elena Zazzetti

February 19th, 2020

https://github.com/poliprojects/BNPlib

Model

DP and DPM models

Having observed the iid sample $\{y_i\}_i$, $i=1,\ldots,n$:

• Dirichlet process model (discrete):

$$y_i|G \stackrel{\mathsf{iid}}{\sim} G$$

$$G \sim DP(MG_0)$$

Dirichlet process mixture (DPM) model (continuous):

$$y_i|G \stackrel{\text{iid}}{\sim} f_G(\cdot) = \int_{\Theta} f(\cdot|\boldsymbol{\vartheta}) G(d\boldsymbol{\vartheta})$$

 $G \sim DP(MG_0)$

Equivalent formulations (1)

• (DPM) is equivalent to:

$$y_i | \boldsymbol{\vartheta}_i \overset{\text{ind}}{\sim} f(\cdot | \boldsymbol{\vartheta}_i), \quad i = 1, \dots, n$$

 $\boldsymbol{\vartheta}_i | G \overset{\text{iid}}{\sim} G, \quad i = 1, \dots, n$
 $G \sim DP(MG_0)$

• State $\forall i$: ϑ_i latent variables (discrete)

Equivalent formulations (2)

• (DPM) is also equivalent to:

$$y_i|c_i, \phi_1, \dots, \phi_k \stackrel{\mathsf{ind}}{\sim} f(\cdot|\phi_{c_i}), \quad i = 1, \dots, n$$

$$c_i|\mathbf{p} \stackrel{\mathsf{iid}}{\sim} \sum_{j=1}^K p_j \delta_j(\cdot), \quad i = 1, \dots, n$$

$$\phi_c \stackrel{\mathsf{iid}}{\sim} G_0, \quad c = 1, \dots, k$$

$$\mathbf{p} \sim \mathrm{Dir}(M/K, \dots, M/K)$$

$$K \to +\infty$$

- State $\forall i$: c_i allocations to clusters
- State $\forall i$: ϕ_{c_i} unique values for each cluster
- ullet Only the finitely many ϕ_c used are kept track of

Case study

• (DPM) with a Normal Normal-InverseGamma (NNIG) hierarchy:

$$egin{aligned} y_i|m{artheta}_i & \stackrel{\mathsf{ind}}{\sim} f(\cdot|m{artheta}_i), \quad i=1,\dots,n \ m{artheta}_i|G & \stackrel{\mathsf{iid}}{\sim} G, \quad i=1,\dots,n \ G \sim DP(MG_0) \ f(y|m{artheta}) &= N(y|\mu,\sigma^2) \end{aligned}$$
 $G_0(m{artheta}|\mu_0,\lambda_0,lpha_0,eta_0) = N\left(\mu|\mu_0,rac{\sigma^2}{\lambda_0}
ight) imes \mathsf{Inv-Gamma}(\sigma^2|lpha_0,eta_0)$

- Latent variables: $\boldsymbol{\vartheta} = (\mu, \sigma)$
- ullet State orall i: c_i , $oldsymbol{\phi}_{c_i}$

Algorithms

General structure

```
template <template <class> class Hierarchy,
        class Hypers, class Mixture> class Algorithm
        void step(){
            sample_allocations();
            sample_unique_values();
        void run(){
            initialize();
            unsigned int iter = 0;
            while(iter < maxiter){</pre>
                 step();
                 if(iter >= burnin){
                     save_iteration(iter);
            iter++;
```

8 / 23

Auxiliary classes

- Specific common interface
- ullet Mixture ightarrow SimpleMixture
- ullet Hypers o HypersFixedNNIG
- ullet Hierarchy<Hypers> o HierarchyNNIG<Hypers>

Neal8

- ullet Has a vector of m aux_unique_values
- initialize()
- sample_allocations(): for all observations $i=1,\ldots,n$
 - compute card[c] = $n_{-i,c}$ for all clusters $c=1,\ldots,k$
 - lacktriangle if c_i is a singleton, move $oldsymbol{\phi}_{c_i}$ to aux_unique_values[0]
 - lacktriangle draw all (other) aux_unique_values iid from G_0
 - draw a new value c for c_i according to:

$$\mathbb{P}(c_i = c | \boldsymbol{c}_{-i}, y_i, \boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_h) \propto \begin{cases} \frac{n_{-i,c}}{n-1+M} f(y_i | \boldsymbol{\phi}_c), & \text{for } 1 \leq c \leq k^-\\ \frac{M/m}{n-1+M} f(y_i | \boldsymbol{\phi}_c), & \text{for } k^-+1 < c \leq h \end{cases}$$

with k^- unique values excluding c_i and $h = k^- + m$

- update card and allocations (4 cases)
- sample_unique_values(): for all clusters $c=1,\ldots,k$
 - build curr_data that contains all observations in cluster c
 - draw ϕ_c from its posterior distribution given curr_data

10/23

Neal2

- For conjugate models only, e.g. (DPM)+(NNIG)
- initialize()
- sample_allocations(): for all observations $i=1,\ldots,n$
 - compute card[c] = $n_{-i,c}$ for all clusters $c=1,\ldots,k$
 - draw a new value c for c_i according to:

If
$$c=c_j$$
 for some j : $\mathbb{P}(c_i=c|\mathbf{c}_{-i},y_i,\phi) \propto \frac{n_{-i,c}}{n-1+M}f(y_i|\phi_c)$
$$\mathbb{P}(c_i\neq c_j \text{ for all } j|\mathbf{c}_{-i},y_i,\phi) \propto \frac{M}{n-1+M}\int_{\Theta}f(y_i|\boldsymbol{\vartheta})\,G_0(\mathrm{d}\boldsymbol{\vartheta})$$

- lacktriangle if the latter, draw a new $oldsymbol{\phi}_c$ from its posterior given y_i
- update card and allocations (4 cases)
- sample_unique_values(): for all clusters $c=1,\ldots,k$
 - ightharpoonup build curr data that contains all observations in cluster c
 - lacktriangle draw ϕ_c from its posterior distribution given curr_data

Applications

Setup

- n = 100 observations:
 - \triangleright 50 $\stackrel{\mathsf{iid}}{\sim} \mathcal{N}(4,1)$
 - ▶ $50 \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(7,1)$
- Prior parameters for the Normal-NIG model:
 - $\mu_0 = 5$
 - ▶ $\lambda_0 = 1$
 - $\alpha_0 = 2$
 - $\beta_0 = 2$
- Neal8
 - m = 3
 - ▶ iter= 20000
 - ▶ burn-in= 5000

Cluster estimation

unsigned int cluster_estimate();

$$\hat{k} = \arg\min_{k} \|D^{(k)} - \bar{D}\|_{F}^{2} = \arg\min_{k} \sum_{i,j} (D_{ij}^{(k)} - \bar{D}_{ij})^{2}$$

- ullet $D^{(k)}$: dissimilarity matrix at iteration ${\bf k}$
- $\bar{D} = \frac{1}{K} \sum_k D^{(k)}$: mean over K iterations

Guindani, Zazzetti (PoliMi)

Density estimation

void eval_density(const std::vector<double> grid);

$$\hat{f}^{(k)}(x) = \sum_{j} \frac{n_{j}^{(k)}}{M+n} f\left(x|\phi_{j}^{(k)}\right) + \frac{M}{M+n} m(x)$$

$$\hat{m}(x) = \frac{1}{m} \sum_{h=0}^{m-1} f\left(x|\phi_{h}\right)$$

$$\Longrightarrow \hat{f}(x) = \frac{1}{K} \sum_{h} \hat{f}^{(k)}(x)$$

Results

Oscillations

Iterations 100,200,...,15000

Total mass

18 / 23

Auxiliary parameters

Density components

Clustering

Neal2 vs Neal8

Bibliography

- 🦫 Muller, Quintana, Bayesian Nonparametric Data Analysis
- Neal (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models
- 医 Ishwaran, James (2001), Gibbs Sampling Methods for Stick-Breaking Priors
- Nurphy (2007), Conjugate Bayesian analysis of the Gaussian distribution
- Protocol Buffers: https: //developers.google.com/protocol-buffers/docs/cpptutorial
- Stan: http://mc-stan.org/math
- Eigen: https://eigen.tuxfamily.org/dox
- GitHub codes of Mario Beraha and Riccardo Corradin for similar projects
- Course material for Bayesian Statistics: https://beep.metid.polimi.it/web/2019-20-bayesian-statistics-alessandra-guglielmi-/