Lightweight Vision-Language Modeling for Fine-Grained Bird Species Reasoning

by Treehouse: Shufan He (she68), Yitong Liu (yliu336), Yunjia Zhao (yzhao291)

Introduction

We developed a lightweight Vision-Language Model (VLM) for fine-grained Visual Question Answering (VQA) on bird species. Our model combines a compact ViT-based vision encoder—trained from scratch on a bird-specific dataset—with a pretrained language model using a simple linear projection.

Figure 1. Bird Images from CUB-200-2011

Data

CUB-200-2011: Contains 11,788 images across 200 bird species with species labels. Used to train the vision encoder for classification

Bird VQA Dataset (via Hugging Face): Extends CUB with 10 natural language descriptions per image and species labels. Supports multimodal training for captioning and VQA, enabling alignment of visual features with rich textual data.

Methodology

Vision Encoder: A ViT-Tiny architecture trained from scratch on the CUB-200-2011 dataset with strong regularization to learn domain-specific features for bird classification.

Language Model Integration: Image embeddings from the frozen ViT encoder are projected into the space of a pretrained language model using a two-layer MLP. The language model is then fine-tuned on VQA-style question-answer pairs generated from bird attribute annotations to enable answering questions about bird classification and feature descriptions.

Figure 2. Model Architecture

Results

Parameter	Configuration Options	Best Value	Val accuracy
Learning Rate	1e-3,1e-4,1e-5	1e-3	11.32%
Batch Size	16,32,64	64	8.13%
pooling	cls,weighted pooling	weighted pooling	13.5%
Weight Decay	0.1, 0.001	0.1	7.85%
Augmentation	minimal,standard	standard	6.35%

Model	Accuracy in Classification	Accuracy in Question Answering (keyword matching)
ViT	8.8%	NA
ViT + weighted pooling	13.5%	NA
Pre-trained ViT	73.2%	NA

Discussion

The primary challenge we faced was **severe overfitting** when training the ViT-Tiny model from scratch. Despite achieving perfect training accuracy (100%) after 100 epochs, the validation accuracy remained extremely low (\sim 10%), indicating the model was failing to generalize. Early attempts at regularization and model tuning only modestly improved validation accuracy by \sim 3%. However, when we switched to a pretrained ViT, validation accuracy dramatically increased to \sim 70%, highlighting the importance of leveraging pretrained representations in low-data regimes.

Despite the challenges, our project revealed several useful lessons. Our modular design enabled us to easily swap between a vision encoder trained from scratch and one initialized with pretrained weights, which proved critical. We also find pretraining to be essential: the pretrained ViT backbone significantly outperformed the scratch-trained version, highlighting the value of strong visual representations in low-data regimes.