

數據分析方法 Data Analytics Methods

時間序列處理 Time Series Processing

Python 時間資料型態

- time, calendar
- datetime
 - datetime.date: (year, month, day)
 - datetime.time: (hour, minute, second, microsecond)
 - datetime.datetime: (year, month, day, hour, minute, second, microsecond)
 - datetime.timedelta: (days, seconds, microseconds)
- Documents: https://docs.python.org/3/library/datetime.html

String & Datetime 轉換

- string to datetime: datetime.strptime(str, format)
- datetime to string: datetime.strftime(datetime, format)

Directive	Meaning	Example
%a	Weekday as locale's abbreviated name.	So, Mo,, Sa (de_DE)
%A	Weekday as locale's full name.	Sonntag, Montag,, Samstag (de_DE)
%W	Weekday as a decimal number, where 0 is Sunday and 6 is Saturday.	0, 1,, 6
%d	Day of the month as a zero-padded decimal number.	01, 02,, 31
%b	Month as locale's abbreviated name.	Jan, Feb,, Dez (de_DE)
%B	Month as locale's full name.	Januar, Februar,, Dezember (de_DE)
%m	Month as a zero-padded decimal number.	01, 02,, 12
%Y	Year with century as a decimal number.	0001, 0002,, 2013, 2014,, 9999
%H	Hour (24-hour clock) as a zero-padded decimal number.	00, 01,, 23
%I	Hour (12-hour clock) as a zero-padded decimal number.	01, 02,, 12
%p	Locale's equivalent of either AM or PM.	am, pm (de_DE)
%M	Minute as a zero-padded decimal number.	00, 01,, 59
%S	Second as a zero-padded decimal number.	00, 01,, 59
%f	Microsecond as a decimal number, zero-padded on the left.	000000, 000001,, 999999

• 節錄自:https://docs.python.org/3/library/datetime.html

Pandas DatetimeIndex

- 把DataFrame的index轉為DatetimeIndex型態
 - e.g df.index = pd.to_datetime(df.index,format='%Y-%m-%d')
- DatetimeIndex 時間分割/聚合

- e.g. DataFrame.groupby([columns]).agg_func()
- e.g. DataFrame.resample('M').agg_func()
- e.g. DataFrame.resample('Q-NOV').agg_func() #Q-EndMonth
- Document (DatetimeIndex的attributes `methods): http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DatetimeIndex.html

統計分析 Statistical Analysis

描述性統計 (Descriptive Statistics)

- 或稱「敘述性統計」
- 集中量數:呈現資料集中的情形,如:(算術)平均、中位數、眾數等
- 變異量數:呈現資料分散的情形,如:全距(最大值-最小值)、標
 - 準差、四分位數等
 - DataFrame.describe()

	A	В	С	D
count	6.000000	6.000000	6.000000	6.000000
mean	0.473862	0.615370	0.568419	0.622193
std	0.252262	0.312380	0.164988	0.329959
min	0.080301	0.202910	0.317583	0.047279
25%	0.361322	0.365285	0.462811	0.507737
50%	0.474192	0.685850	0.660573	0.725291
75%	0.684415	0.851957	0.677213	0.809227
max	0.736302	0.951857	0.692137	0.962875

幾何平均數 (Geometric Mean)

• 適用於計算比率數據的變化率

$$G=\sqrt[n]{\prod_{i=1}^n x_i}=\sqrt[n]{x_1\cdot x_2\cdots x_n}$$

- ▶ e.g. 營業額成長:12%, 15%, -4%, -10%, 6%
- \rightarrow scipy.stats.gmean([1.12, 1.15, 0.96, 0.9, 1.06]) => 1.04 (4%)

調和平均數 (Harmonic Mean)

• 數值倒數的算術平均數的倒數,又稱為「倒數平均數」。

$$H = rac{n}{rac{1}{x_1} + rac{1}{x_2} + \ldots + rac{1}{x_n}}$$

- ▶ e.g. 台北到高雄坐高鐵平均時速300公里、高雄到台北坐台鐵普悠瑪號平均時速150公里,全程平均時速是多少?
- scipy.stats.hmean([300, 150]) => 200

截尾平均數(Trimmed Mean)

- 平均數容易受到極端值影響
- 截尾平均數會將極端值去除後再取算術平均
 - ▶ 自訂上下限: scipy.stats.tmean(array-like data, (lower limit, upper limit))
 - ▶ 截尾後的標準差(tstd)、變異數(tvar)、最大值(tmax)、最小值(tmin)
 - ▶ 依比例去除:scipy.stats.trim_mean(array-like data, proportiontocut)

四分位数 (Quartile)

- 將數據從小到大排列
 - · 第一四分位數(Q1):在1/4位置的數,又稱「較小四分位數」
 - 第二四分位數(Q2):在1/2位置的數,又稱「中位數」
 - · 第三四分位數(Q₃):在_{3/4}位置的數,又稱「較大四分位數」
 - 四分位距 (IQR) = Q3 Q1
 - e.g. 1, 2, 3, 4, 5, 6, 7, 8
 - 內插法:Q1 = 2.75 \ Q2 = 4.5 \ Q3 = 6.25

Notes

▶四分位數的計算方法爭議

四分位數確切的數值計算方法仍具爭議 Scipy和Pandas計算出的值有少許誤差。

Python for Predictive Analytics in Finance

基本統計函式表

統計函式		Pandas DataFrame	Scipy.stats	Numpy
敘述統計		DataFrame.describe()	describe(data)	X
算術		DataFrame.mean()	${f X}$	mean(data)
幾何	平均數	X	gmean(data)	${f X}$
調和		X	hmean(<i>data</i>)	X
截尾		X	trim_mean(data, proportiontocut) tmean(data, (lower limit, upper limit))	X
加權		X	${f X}$	average(data, weights)
	最大值	X	tmax(data, (lower limit, upper limit))	X
截尾	最小值	\mathbf{X}	tmin(data, (lower limit, upper limit))	X
	標準差	X	tstd(data, (lower limit, upper limit))	\mathbf{X}
	變異數	X	tvar(data, (lower limit, upper limit))	${f X}$
最大值		DataFrame.max()	X	$\max(data)$
最小值		DataFrame.min()	${f X}$	min(data)
中位數		DataFrame.median()	X	median(data)
標準差		DataFrame.std()	X	std(data)
變異數		DataFrame.var()	${f X}$	var(data)
四分位數		DataFrame.quantile(quantile)	mstats.mquantiles(data)	\mathbf{X}
眾數		DataFrame.mode() (0.19.1版)	mode(<i>data</i>) ¹² (0.18.1版)	x (1.11版)

機率分佈

- 連續機率分佈(Continuous Distributions)
 - ▶ 伽瑪分佈(Gamma Distribution)
 - ▶ 指數分佈 (Exponential Distribution)
 - ▶ 常態分佈 (Normal Distribution)
 - ▶ 均勻分佈(Uniform Distribution)
 - ▶ 卡方分佈 (Chi-square Distribution)
- 間斷機率分佈(Discrete Distributions):
 - ▶ 白努力分佈(Bernoulli Distribution)
 - ▶ 二項式分佈 (Binomial Distribution)
 - ▶ 負二項式分佈(Negative Binomial Distribution)
 - ▶ 波式分佈 (Poisson Distribution)
 - ▶ 超幾何分佈(Hypergeometric Distribution)

• Scipy 統計函式:https://docs.scipy.org/doc/scipy/reference/stats.html

Continuous distributions

alpha	An alpha continuous random variable
alpha	An alpha continuous random variable.
anglit	An anglit continuous random variable.
arcsine	An arcsine continuous random variable.
beta	A beta continuous random variable.
betaprime	A beta prime continuous random variable.
bradford	A Bradford continuous random variable.
burr	A Burr (Type III) continuous random variable.
burr12	A Burr (Type XII) continuous random variable.
cauchy	A Cauchy continuous random variable.
chi	A chi continuous random variable.
chi2	A chi-squared continuous random variable.
cosine	A cosine continuous random variable.
dgamma	A double gamma continuous random variable.
dweibull	A double Weibull continuous random variable.
erlang	An Erlang continuous random variable.
expon	An exponential continuous random variable.

Discrete distributions

bernoulli	A Bernoulli discrete random variable.
binom	A binomial discrete random variable.
boltzmann	A Boltzmann (Truncated Discrete Exponential) random variable.
dlaplace	A Laplacian discrete random variable.
geom	A geometric discrete random variable.
hypergeom	A hypergeometric discrete random variable.
logser	A Logarithmic (Log-Series, Series) discrete random variable.
nbinom	A negative binomial discrete random variable.
planck	A Planck discrete exponential random variable.
poisson	A Poisson discrete random variable.
randint	A uniform discrete random variable.
skellam	A Skellam discrete random variable.
zipf	A Zipf discrete random variable.

其他常用統計函式

- One-way ANOVA
- F value
- T-test
- 相關性 (Correlation)
- 峰度 (kurtosis)
- 偏態 (skewness)
- · 共變數 (Covariance)

•

References

- Numpy 統計函式: https://docs.scipy.org/doc/numpy/reference/routines.statistics.html
- Scipy 統計函式:https://docs.scipy.org/doc/scipy/reference/stats.html
- Pandas DataFrame 統計函式: http://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-stats

異常值偵測 Anomaly Detection

異常值偵測(1) - 四分位數與箱形圖

plt.boxplot(x, showfliers=True)

• 四分位間距(InterQuartile Range, IQR)

• 最大值: Q3 + 1.5 * IQR

• 最小值:Q1 - 1.5 * IQR

• 異常值:高於最大值、低於最小值

異常值偵測(2) - 常態分佈與標準差

- 平均 (mean) 、標準差 (std, σ)
- 上限: mean + 3 * σ (sigma)
- 下限: mean 3 * σ (sigma)
- 異常值:高於上限、低於下限

Python for Predictive Analytics in Finance

IQR $Q1 - 1.5 \times IQR$ $Q3 + 1.5 \times IQR$ Median -1σ -3σ 0σ 1σ 3σ -2.698σ -0.6745σ 2.698σ 0.6745σ 24.65% 50% 24.65%

比較

- · 若資料型態傾向常態分佈(例如:身高、體重、 成績),適合使用標準差的判定方式
- 若異常值過大或過小,容易過度影響標準差, 則建議使用四分位數和箱型圖,因為大於Q3和 小於Q1的值不論離多遠都不會影響四分位數的 值,所以在判定異常值效果好

相關性分析 Correlation Analysis

Pearson 相關係數

• 最常用的相關係數 (-1~+1)

$$ho_{X,Y} = rac{ ext{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$$
標準差

$$r = rac{\sum\limits_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum\limits_{i=1}^n (X_i - \overline{X})^2} \sqrt{\sum\limits_{i=1}^n (Y_i - \overline{Y})^2}}$$

(Pearson, 1917)

相關程度

- 相關程度
 - ▶ +1:完全正相關
 - ▶ -1:完全負相關
 - ▶ o.3至 -o.3:低度(正/負)相關
 - ▶ (+-) o.3至o.6:中度(正/負)相關
 - ▶ (+-) o.6至o.9:高度 (正/負)相關
 - DataFrame.corr()

(http://tylervigen.com/)

主次因素分析 Pareto Analysis

80/20 法則

- · 又稱為「Pareto 法則」
- · 義大利經濟學家Pareto(1906) 觀察到,當時義大利
- · 80% (多數) 的結果來自於20% (少數) 的原因
 - ▶ e.g. 80%的收益來自20%的產品
- · Pareto Chart (柏拉圖、主次因素分析)

長尾理論 (Long-tail)

- Chris Anderson (2004) : 非熱門的商品(80%)加起來的: 品(20%)
- 網路上的情況(如電子商務)更為明顯
- · 改變8o/2o法則的思維
 - ▶ e.g. Amazon 57%的銷售來自非熱門商品

43% of Amazon's Sales

Books carried by traditional stores

> 57% of Amazon's Sales Books only carried by Amazon

- Chris A. (October, 2004) The Long Tail. Wired. Retrieved from: https://www.wired.com/2004/10/tail/
- Chris A. The Long Tail, in a nutshell. Retrieved from: http://www.thelongtail.com/about.html
- Neil, P. (2015, December 22). 7 Brilliant Examples of Brands Driving Long-Tail Organic Traffic. Retrieved from: http://neilpatel.com/2015/12/22/7-brilliant-examples-of-brands-driving-long-tail-organic-traffic/