

Deep RL Course Instructor: S. A. Emami TA: M. H. Narimani Fall 2024, SUT

Problem statement:

Consider the following discrete state space and discrete action space:

Recharge Position			Goal
x = 0	1	2	3
r = 1	0	0	5

The transition probablility is given by

which is elaborated on the following table:

(x, u)	$P^u_{x,0}$	$P^u_{x,1}$	$P^u_{x,2}$	$P^u_{x,3}$
(0, -1)	1	0	0	0
(1, -1)	0.7	0.2	0.1	0
(2, -1)	0	0.7	0.2	0.1
(3, -1)	0	0	0	1
(0, 1)	1	0	0	0
(1, 1)	0.1	0.2	0.7	0
(2, 1)	0	0.1	0.2	0.7
(3, 1)	0	0	0	1

Find $V^*(i)$, i = 0, 1, 2, 3. Assume $\gamma = 0.9$.

$$V^*(x) = \max_{u \in A} \sum_{x' \in S} P_{xx'}^u \left[R(x, u) + \gamma V^*(x') \right]$$

$$Q^*(x, u) = \sum_{x' \in S} P_{xx'}^u \left[R(x, u) + \gamma \max_{u' \in A} Q^*(x', u') \right]$$

$$V^*(x) = \max_{u} Q^*(x, u)$$