ThetaMonitorNetwork

Overview

Devices

Overview

NRF24L01

gpio_socket : GPIOSocket_nRF24

□ spi_socket : Spi_socket

NRF24L01()

NRF24L01(Spi_socket* spi_socket, GPIOSocket_nRF24* gpio_socket)

~NRF24L01()

ReadPayload(uint8_t* pBuf, uint8_t* length): int

TransmitPacket(uint8_t* pBuf, uint8_t length): int

txResultToStr(nRF24_TXResult ErrorCode): std::string

Check(): uint8_t

GetIRQFlags(): uint8_t GetRXSource(): uint8_t

GetRetransmitCounters(): uint8_t

GetStatus(): uint8_t

GetStatus_RXFIFO(): uint8_t GetStatus_TXFIFO(): uint8_t

LL_RW(uint8_t data) : uint8_t ReadReg(uint8_t reg): uint8_t

CE_H(): void

CE_L(): void

CSN_H(): void

CSN_L(): void

ClearIRQFlags(): void

ClosePipe(uint8_t pipe): void

DisableAA(uint8_t pipe): void

DumpConfig(): void

EnableAA(uint8_t pipe) : void

FlushRX(): void

FlushTX(): void

Init(): void

ReadMBReg(uint8_t reg, uint8_t* pBuf, uint8_t count): void

ResetPLOS(): void

SetAddr(uint8_t pipe, const uint8_t* addr): void

SetAddrWidth(uint8_t addr_width): void

SetAutoRetr(uint8_t ard, uint8_t arc): void

SetCRCScheme(uint8_t scheme): void SetDataRate(uint8_t data_rate) : void

SetOperationalMode(uint8_t mode) : void

SetPowerMode(uint8_t mode) : void

SetRFChannel(uint8_t channel): void

SetRXPipe(uint8_t pipe, uint8_t aa_state, uint8_t payload_len) : void

SetTXPower(uint8_t tx_pwr) : void

WriteMBReg(uint8_t reg, uint8_t* pBuf, uint8_t count): void

WritePayload(uint8_t* pBuf, uint8_t length): void

WriteReg(uint8_t reg, uint8_t value) : void

(E) empty

nRF24_ARD_1000us nRF24_ARD_1250us nRF24_ARD_1500us nRF24_ARD_1750us nRF24_ARD_2000us nRF24_ARD_2250us nRF24_ARD_2500us nRF24_ARD_250us nRF24_ARD_2750us nRF24_ARD_3000us nRF24_ARD_3250us nRF24_ARD_3500us nRF24_ARD_3750us nRF24_ARD_4000us nRF24_ARD_500us nRF24_ARD_750us nRF24_ARD_NONE nRF24_DR_1Mbps nRF24_DR_250kbps nRF24_DR_2Mbps nRF24_TXPWR_0dBm nRF24_TXPWR_12dBm nRF24_TXPWR_18dBm nRF24_TXPWR_6dBm nRF24 CRC 1byte nRF24_CRC_2byte nRF24_CRC_off nRF24 PWR DOWN nRF24_PWR_UP nRF24_MODE_RX nRF24_MODE_TX nRF24_PIPE0 nRF24 PIPE1 nRF24_PIPE2 nRF24_PIPE3 nRF24_PIPE4 nRF24_PIPE5 nRF24_PIPETX nRF24_AA_OFF nRF24_AA_ON nRF24_STATUS_RXFIFO_DATA nRF24_STATUS_RXFIFO_EMPTY nRF24_STATUS_RXFIFO_ERROR nRF24_STATUS_RXFIFO_FULL nRF24_STATUS_TXFIFO_DATA nRF24_STATUS_TXFIFO_EMPTY

nRF24_STATUS_TXFIFO_ERROR nRF24_STATUS_TXFIFO_FULL

E nRF24_RXResult

nRF24_RX_EMPTY nRF24_RX_PIPE0 nRF24_RX_PIPE1 nRF24_RX_PIPE2 nRF24_RX_PIPE3 nRF24_RX_PIPE4 nRF24_RX_PIPE5

E NRF24L01::nRF24_TXResult

nRF24_CHANNEL_SCAN_ACTIVE nRF24_NOP nRF24_TX_ERROR nRF24_TX_IS_ONGOING nRF24_TX_MAXRT nRF24_TX_SUCCESS nRF24_TX_TIMEOUT

System

Overview

Application

Overview

Application / Nokia_LCD

LCD 80x48 (w x 1) FONT_5x8: 16 chars, 6 lines

0123456789012345				0123456789012345		
0	InnenTmp	-12.5	0	Station FF	1234FF	
1	InnenHum	63.5	1	lastUpdt	2123.4	
2	InnenPrs	1024	2	lostPkgs	25	
3	LagerTmp	-12.5	3	rx0verFlow	ıs 25	
4	LagerHum	63.5	4	valSensors	28	
5	LagerPrs	1024	5	relayState	2	

ButtonPress cycles screen, longPress switches between statistics and measurement.

Application / RadioLink

■ printDS1820Channel(oneWire::DS18B20 ds18Channel): void ■ storeDS1820ToMeasureArray(oneWire::DS18B20 ds18Channel): void

snsrs C SensorTypeE2 shortname : char o sensorIdHash: uint32_t o checkSum : uint8_t o maxVal : uint8_t o minVal : uint8_t o relayNr : uint8_t sensType : uint8_t NonVolatileData ID_TABLE_LEN : static constexpr uint16_t □ ID_TABLE_START : static constexpr uint16_t NUM_OF_ID_ENTRIES : static constexpr uint16_t □ STAT_ID_START : static constexpr uint16_t EMPTY_SENSOR_HASH: static constexpr uint32_t _currAddress : uint16_t _oldAddress : uint16_t _statIdBuffered : uint32_t NonVolatileData() ~NonVolatileData() getConversion(SensorIdTable::SensorType sensType) : Convert clrIdTableData(): ErrorCode writeIdTableData(SensorIdTable::SensorIdType sensVals): ErrorCode writeStatId(uint32_t stationId): ErrorCode e2ToPhys(SensorTypeE2 e2Data) : SensorIdTable::SensorIdType getIdTableData(uint32_t sensorIdHash): SensorIdTable::SensorIdType getStationType() : SensorIdTable::StationType iter(): SensorTypeE2 physToE2(SensorIdTable::SensorIdType idSensValue) : SensorTypeE2 compareIdTableDatum(SensorTypeE2 tableIDLeft, SensorTypeE2 tableIDRight) : bool dataIsEmpty(SensorTypeE2 idE2Data): bool getStationId(): uint32_t calcChkSum(SensorTypeE2 idTableDatum) : uint8_t findSensIdHashOrEmpty(uint32_t sensorIdHash): void printIdTableRaw(): void startIter() : void

initBme280(): void
initHardware(): void
initTwoChannelDS1820(): void

Application / RadioGateway

Application / MasterSerial

