Chapter 1

向量空间

定义 1.1 <u>向量空间</u>: 交换群 (V,+) 和域 F, 数乘映射 $\alpha: F \times V \to V$, 若满足 $\alpha(r,u+v) = \alpha(r,u) + \alpha(r,v)$ (可简写为 r(u+v) = ru + rv)

- (2) $\alpha(r+t,u) = \alpha(r,u) + \alpha(t,u)$ (可简写为 (r+t)u = ru + tu)
- (3) $\alpha(r \cdot t, u) = \alpha(r, \alpha(t, u))$ (可简写为 $(r \cdot t) \cdot u = r(tu)$)
- (4) **有单位元**: $\exists 1 \in F$, s.t. $\alpha(1, u) = u$ (可简写为 1u = u)

则称 V 是 F 上的向量空间.

例 1.1 <u>直角坐标系</u>: $(\mathbb{R},+,\cdot)$ 为域, $(\mathbb{R}^2 \equiv \{(x,y) \mid x,y \in \mathbb{R}\},+)$ 为交换群, 满足

$$(1) \ r((x_1, y_1) + (x_2, y_2)) = r(x_1 + x_2, y_1 + y_2) = (rx_1 + rx_2, ry_1 + ry_2) = (rx_1, ry_1) + (rx_2, ry_2) = r(x_1, y_1) + r(x_2, y_2)$$

(2)
$$(r+t)(x,y) = ((r+t)x,(r+t)y) = (rx+tx,ry+ty) = (rx,ry)+(tx,ty) = r(x,y)+t(x,y)$$

(3)
$$(r \cdot t)(x, y) = (rtx, rty) = r(tx, ty) = r(t(x, y))$$

(4) 1(x,y) = (x,y)

故 \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

0v = 0. (注意两个 0 的区别, 等号左边的 0 为域 F 中的零元, 等号右边的 0 为 V 中的零向量.)

$$i\mathbf{E}: 0v = (0+0)v = 0v + 0v \Longrightarrow 0v = 0.$$

 $r \in F, \ 0 \in V, \ \text{M} \ r0 = 0.$

$$\mathbf{i}\mathbf{E} : r0 = r(0+0) = r0 + r0 \Longrightarrow r0 = 0.$$

-1v = -v.

$$\mathbf{\tilde{u}}$$
: $-1v = -(1v) = -v$.

例 1.2: \mathbb{R}^2 为 \mathbb{R} 上的向量空间.

 \mathbb{R}^2 为 \mathbb{O} 上的向量空间.

:: 对 $c \in \mathbb{C}, v \in \mathbb{R}^2, cv \notin \mathbb{R}^2, :: \mathbb{R}^2$ 不是 \mathbb{C} 上的向量空间.

例 1.3: $F^n \equiv \{(r_1, \dots, r_n) \mid r_i \in F\}$, 满足 $(r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n)$, $r(r_1, \dots, r_n) = (rr_1, \dots, rr_n)$. F^n 为 F 上的向量空间.

证: $r((r_1, \dots, r_n) + (l_1, \dots, l_n)) = r(r_1 + l_1, \dots, r_n + l_n) = (rr_1 + rl_1, \dots, rr_n + rl_n) = (rr_1, \dots, rr_n) + (rl_1, \dots, rl_n) = r(r_1, \dots, r_n) + r(l_1, \dots, l_n),$

 $\exists (r+t)(r_1, \dots, r_n) = ((r+t)r_1, \dots, (r+t)r_n) = (rr_1 + tr_1, \dots, rr_n + tr_n) = (rr_1, \dots, rr_n) + (tr_1, \dots, tr_n) = (rr_1, \dots, rr_n) + t(r_1, \dots, rr_n),$

 $\therefore F^n$ 为 F 上的向量空间.

定义 1.2 <u>子空间</u>: $\emptyset \neq S \subseteq V$, 若 S 为 V 的子群, 且在相同的数乘下构成 F 上的向量空间, 则称 S 是 V 的子空间.

定理 1.1 <u>子空间的判定(课本定理1.1)</u>: S 为 V 的子空间 $\iff \forall a,b \in S, r,t \in F, ra+tb \in S$ (即线性运算封闭).

证: " \Longrightarrow ": $ra \in S$, $-tb \in S$, 又 :: S 为 V 的子群, $ra - (-tb) \in S$.

" \Longrightarrow ": \diamondsuit r = 1, t = -1, f $a - b \in S \Longrightarrow S < V$.

令 t = 0, 有 $ra \in S$, 故 S 为 V 的子空间.

综上, 得证.

子空间的交是子空间.

证: 设 S_1, \dots, S_n 为 V 的子空间, 则 S_1, \dots, S_n 为 V 的子群 $\Longrightarrow \bigcap_{i=1}^n S_i$ 为 V 的子群.

 $\forall u, v \in \cap_{i=1}^n S_i, \forall k, u, v \in S_k \Longrightarrow u, v$ 满足与 F 中向量相同的数乘映射.

综上, 得证.

S,T 是 V 的子空间, $S+V \equiv \{u+v \mid u \in S, v \in T\}$ 为 V 的子空间.

 $i \mathbb{E}: \forall w_1, w_2 \in S + T, r, t \in F,$

 $w_1 \in S + T \Longrightarrow w_1 = u_1 + v_1, u_1 \in S, v_1 \in T,$

 $w_2 \in S + T \Longrightarrow w_2 = u_2 + v_2, u_2 \in S, v_2 \in T.$

 $rw_1 + tw_2 = r(u_1 + v_1) + t(u_2 + v_2) = (ru_1 + tu_2) + (rv_1 + tv_2),$ 其中 $ru_1 + tu_2 \in S, rv_1 + tv_2 \in T \Longrightarrow rw_1 + tw_2 \in S + T,$ 故 S + T 为 V 的子空间.

定义 1.3 <u>生成子空间</u>: $\emptyset \neq S \subseteq V$, $\langle S \rangle \equiv$ 包含 S 的最小子空间 = $\{\sum_{i=1}^n r_i u_i \mid r_i \in F, u_i \in S, n \in \mathbb{N}\}$, 其中称 S 为生成集.

例 1.4: 向量空间 ℝ²,

 $S_x = \langle \{(1,0)\} \rangle = \{(x,0) \mid x \in \mathbb{R}\} = x \ \text{in},$

 $S_y = \langle \{(0,1)\} \rangle = \{(0,y) \mid y \in \mathbb{R}\} = y \text{ in},$

 $\langle \{(1,0),(0,1)\} \rangle = \langle \{(1,1),(1,-1)\} \rangle = \mathbb{R}^2$, 故对同一生成子空间, 生成集不唯一.

定义 1.4 <u>线性无关</u>: 非零元 u_1, \dots, u_m , 若 $r_1u_1 + \dots + r_mu_m = 0 \Longrightarrow r_1 = \dots = r_m = 0$, 则称 u_1, \dots, u_m 线性无关. 若 S 中任意有限个元素线性无关, 则称 S 线性无关.

例 1.5: (1,0) 与 (0,1) 线性无关.

i.e.: $r_1(1,0) + r_2(0,1) = (r_1, r_2) = 0 = (0,0) \Longrightarrow r_1 = 0, r_2 = 0.$

例 1.6: \mathbb{R}^2 上线性无关, 即两非零元夹角非零.

单个非零元 v 线性无关.

证: rv = 0 且 $v \neq 0 \Longrightarrow r = 0$, 故 v 线性无关.

定义 1.5 <u>线性相关</u>: u_1, \dots, u_m , 若 \exists 不全为零的 r_1, \dots, r_m , s.t. $r_1u_1 + \dots + r_mu_m = 0$, 则称 u_1, \dots, u_m 线性相关.

若 u, v 线性相关, 则两者共线.

证: $\exists r, t$ 不全为零, s.t. ru + tv = 0, 无妨设 $0 \neq r \in F$, 则 $ru = -tv \Longrightarrow r^{-1}ru = -r^{-1}tv \Longrightarrow u = -\frac{u}{r}v$

定义 1.6 线性表示: v 可由 u_1, \dots, u_n 线性表示 $\iff \exists r_1, \dots, r_n \in F$, s.t. $v = \sum_{i=1}^n r_i u_i$.

定理 1.2 (课本定理1.6): S 线性无关 \iff $\langle S \rangle$ 中的每个向量可由 S 中元素唯一地线性表示 \iff S 中任一向量不能由 S 中其余向量线性表示.

证: 设 $S = \{u_1, \dots, u_m\}.$

第一个 "⇒": $v \in \langle S \rangle$, 则 v 可由 S 中的元素线性表示,即 $\exists r_1, \dots, r_m$, s.t. $v = r_1u_1 + \dots + r_mu_m$. 要证这种线性表示是唯一的,假设 v 的另一种线性表示为 $v = r'_1u_1 + \dots + r'_mu_m$. $v - v = (r_1 - r'_1)u_1 + \dots + (r_m - r'_n)u_m = 0$ 又 : S 线性无关,即 $u_1 \dots u_m$ 线性无关, $: r'_1 = r_1, r'_2 = r_m$

第一个 " \longleftarrow ": $0 \in \langle S \rangle$, 由于 $0u_1 + \cdots + 0u_m =$ 是且是 0 唯一的线性表示, 故 S 线性无关.

第二个 " \Longrightarrow ": 不妨假设 u_1 可由 u_2, \dots, u_m 线性表示, 即 $u_1 = t_2 u_2 + \dots + t_m u_m$.

若 $r_1u_1 + \cdots + r_mu_m = 0$, 则 $r_1 = \cdots = r_m = 0$ 或 $r_1 \neq 0$, $r_2 = -r_1t_2$, \cdots , $r_m = -r_mt_m$, 从而 S 线性相关, 故假设错误, u_1 不可由 u_2, \cdots, u_m 线性表示.

第二个 "←": 假设 S 线性相关,则 \exists 非零 r_1, \dots, r_m , s.t. $r_1u_1 + \dots + r_mu_m = 0$,不妨设 r_1 非零,则 $u_1 = -\frac{r_2}{r_1}u_2 - \dots - \frac{r_m}{r_1}u_m$,即 u_1 可由 S 中其余向量线性表示,矛盾,故假设错误,S 线性无关.

定理 **1.3** (课本定理1.7): $\emptyset \neq S \subseteq V$, 下列等价:

- (1) S 线性无关, 且 $V = \langle S \rangle$
- (2) ∀ $v \in V$, 可用 S 中元素唯一地线性表示
- (3) $S \in V$ 的极小生成集 (即 S 去除任意元素都无法生成 V, 或 S 的任意真子集都无法生成 V)

(4) $S \in V$ 的极大线性无关集 (即 S 增加任意元素都线性相关, $\forall u \in V$ 且 $u \notin S$, $S \cup \{u\}$ 线性相关)

证: 由定理 1.2 证得 (1)(2) 等价.

设 $S = \{u_1, \cdots, u_m\}.$

- (1) ⇒ (3): 假设 $\exists S' \subsetneq S$, s.t. $V = \langle S' \rangle$, 则 $\forall v \in S S' \subseteq V$, $v = \sum_{i=1}^{m} r_i u_i$, 其中 $r_i \in F$, $u_i \in S'$, $m \in \mathbb{N}$, 即 v 可由 S 中的部分向量线性表示, 与 S 线性无关矛盾, 故假设错误, S 是 V 的极小生成集.
 - $(3)\Longrightarrow(1)$: S 为 V 的生成集, 即 $V=\langle S\rangle$.

假设 S 线性相关, 即 $\exists r_1, \dots, r_m$ 不全为零, s.t. $\sum_{i=1}^m r_i u_i = 0$, 不妨设 $r_1 \neq 0$, 则 $u_1 = -\frac{r_2}{r_1} u_2 + \dots + \frac{r_m}{r_1} u_m$, 则 $S - \{u_1\}$ 仍可以生成 V, 矛盾, 故假设错误, S 线性无关.

(1)⇒(4): 假设 S 不是极大线性无关集, 则 $\exists v \in V - S$, s.t. $S \cup \{v\}$ 线性无关.

又 :: $V = \langle S \rangle$, :: $v = \sum_{i=1}^{m} r_i u_i$, 其中 $r_i \in F$, $u_i \in S$, $m \in \mathbb{N}$, 即线性无关集 $S \cup \{v\}$ 中的向量 v 可由其中的部分向量线性表示, 与 $S \supset$ 线性无关矛盾, 故假设错误, S 是极大线性无关集.

 $(4)\Longrightarrow(1)$: $:S \in V$ 的极大线性无关集, :S 线性无关.

假设 $V \neq \langle S \rangle$, $\exists v \in V - S$, s.t. v 无法由 S 中的元素线性表示 $\Longrightarrow S \cup \{v\}$ 为线性无关集, 与 S 为最大线性无关集矛盾, 故假设错误, $V = \langle S \rangle$.

综上, 得证.

定义 1.7 基: 任何生成向量空间 V 的线性无关集. 基的阶数称为 V 的维数, 记作 $\dim V$.

定理 1.4 (课本定理1.12): 向量空间的任何基都有相同的阶, 即 $\dim V$ 不依赖于基的选取.

例 1.7:
$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$
 为 F^n 的一组基.

证: $r_1e_1 + \cdots + r_ne_n = (r_1, \cdots, r_n) = 0 \Longrightarrow r_1 = \cdots = r_n = 0$, 故 e_1, \cdots, e_n 线性无关.

又
$$\langle \{e_1, \dots, e_n\} \rangle = \{r_1e_1 + \dots + r_ne_n = (r_1, \dots, r_n) \mid r_i \in F, \ \forall i = 1, \dots, n\} = F,$$
故得证.

找基的方法:

- (1) 若 $0 \neq u_1 \in V$, 则 $\{u_1\}$ 线性无关.
- (2) 若 $u_2 \in V \langle u_1 \rangle$ 且 u_2 与 u_1 线性无关,则 $\{u_1, u_2\}$ 线性无关.
- (3) 重复以上操作, 直至无法找到新的线性无关元素, 即得到极大线性无关集, 此即向量空间的基.

定理 1.5 (课本定理1.9): 线性无关集 $I \subseteq V$, $S \subseteq V$ 是 V 的生成集, 且 $I \subseteq S$, 则 $\exists V$ 的基 \mathcal{B} , s.t. $I \subseteq \mathcal{B} \subseteq S$.

定义 1.8 直和: (1) **外直和**: 若 V_1, \dots, V_n 是 F 上的向量空间, $V_1 \oplus \dots \oplus V_n \equiv \{(v_1, \dots, v_n) \mid v_i \in V_i\}$, 满足

$$-(v_1, \dots, v_n) + (u_1, \dots, u_n) = (v_1 + u_1, \dots, v_n + u_n)$$

$$-r(v_1,\cdots,v_n)=(rv_1,\cdots,rv_n)$$

则 $V_1 \oplus \cdots \oplus V_n$ 为 F 的向量空间, $V_1 \oplus \cdots \oplus V_n$ 为 V_1, \cdots, V_n 的外直和.

(2) **内直和**: $V \in F$ 上的向量空间, $V_1, \dots, V_n \in V$ 的子空间, 若 $V = \sum_{i=1}^n V_i$, 其中 $v_i \in V_i$ 且 $V_i \cap (\bigcup_{j \neq i} V_j) = V_i$

 $\{0\}$, 则称 V 为 V_1, \dots, V_m 的内直和, 记作 $V = \bigoplus_{i=1}^n V_i$, 称 V_i 为直和项.

内/外直和的关系: $V = V_1 \oplus \cdots \oplus V_n$, $V_1' = \{(v_1, 0, \cdots, 0) \mid v_i \in V_i\}$, \cdots , $V_m' = \{(0, 0, \cdots, v_m) \mid v_m \in V_m\}$ 是 V 的子空间, 则 $V = \bigoplus_{i=1}^n V_i$ 且 $V_i' \cap (\cup_{j \neq i} V_j) = \{0\} \Longrightarrow V_i = \bigoplus_{i=1}^m V_i'$, 故内/外直和是等价的, 以下我们不明确区分内/外直和, 均用内直和.

例 1.8: $\mathbb{R}^2 = S_x \oplus S_y$.

定理 1.6 (课本定理1.5): $\{v_i \mid i \in J\}$ 是 V 的子空间集合, $V = \sum_{i \in J} V_i$, 则下列等价:

- (1) $V = \bigoplus_{i \in J} V_i$
- (2) $V_i \cap (\sum_{j \neq i} V_j) \neq \{0\}$
- (3) $0 = 0 + \cdots + 0$ 是 0 的唯一分解式
- (4) V 中任一向量 v 具有唯一分解式 $v=v_1+\cdots+v_n$,分解式中的有限个非零元 $v_i\in V_i$ 组成的集合成为支集

 $\overline{\mathbf{u}}$: (1) \iff (2): 由直积的定义即得证.

(2) ⇒ (3): 假设 $0 = s_{i1} + \dots + s_{in}$ 且 s_{ij} 不全为零,不妨设 $s_{i1} \neq 0$,则 $V_{i1} \ni s_{i1} = -s_{i2} - \dots - s_{ij} \in \sum_{j=2}^{n} V_{ij}$ ⇒ $s_{i_1} \in V_{i_1} \cap (\bigcup_{j=2}^{n} V_{i_j})$, $s_{i_1} \neq 0$ 与 $V_{i_1} \cap (\bigcup_{j=2}^{n} V_{i_j}) = \{0\}$ 矛盾,故假设错误, $0 = 0 + \dots + 0$ 是 0 的唯一分解式. (3) ⇒ (4): $\forall v \in V$, $v = u_1 + \dots + u_n$, 其中 $u_i \in V_i$.

假设 $v = w_1 + \cdots + w_m$, 其中 $w_i \in V_i$.

 $0 = v - v = u_1 + \dots + u_n - w_1 - \dots - w_n$,将属于相同子空间的元素合并到一起,得 $0 = (u_{t_1} - w_{t_1}) + \dots + (u_{t_k} - w_{t_k}) + u_{t_{k+1}} + \dots + u_{t_n} - w_{t_{k+1}} - w_{t_m}$,由 (2) 知 k = n = m 且 $v_{t_i} = u_{t_i}$,故 v 具有唯一分解式 $v = v_1 + \dots + v_n$. (4) \Longrightarrow (2): 假设 $V_i \cap (\sum_{j \neq i} V_j) \neq \{0\}$,则 $V_i \cap (\sum_{j \neq i} V_j) \supsetneq \{0\}$,即 $\exists 0 \neq u \in V_i \cap (\bigcup_{j \neq i} V_j)$,

不妨设 $u \in V_1$ 且 $u \in V_2$, 则 $v = v_1 + \dots + v_n = (v_1 + u) + (v_2 - u) + \dots + v_n$, 其中 $v_i \in V_i$ 且 $v_1 + u \in V_1, v_2 - u \in V_2$, v 的分解式不唯一,矛盾,故假设错误, $V_i \cap (\sum_{i \neq i} V_i) = \{0\}$.

综上, 得证.

定理 1.7 (课本定理1.8): $\mathcal{B} = \{v_1, \dots, v_n\}$ 是向量空间 V 的基 $\iff V = \langle v_1 \rangle \oplus \dots \oplus \langle v_n \rangle$.

证: "⇒": $:: \mathcal{B} \$ 为 V 的基, $:: V = \langle \mathcal{B} \rangle = \langle v_1, \cdots, v_n \rangle = \{\sum_{i=1}^n r_i v_i \mid r_i \in F\} = \langle v_1 \rangle + \cdots + \langle v_n \rangle.$

 $: \mathcal{B}$ 为 V 的基, $: v_1, \cdots, v_n$ 线性无关 $\Longrightarrow \forall 0 \neq u \in \langle v_i \rangle$, $u = r_i v_i$ 且无法由 $\{v_j \mid j \neq i\}$ 线性表示 $\Longrightarrow u \notin V_i \cap (\cup_{j \neq i} V_j)$,

 $\Longrightarrow V_i \cap (\cup_{j \neq i} V_j) = \{0\}.$

故 $V = \langle v_1 \rangle \oplus \cdots \oplus \langle v_n \rangle$.

"=": 一方面, $V = \langle v_1 \rangle + \cdots + \langle v_n \rangle = \langle \mathcal{B} \rangle;$

另一方面, (线性无关的证明存疑), $\Longrightarrow v_1, \cdots, v_n$ 线性无关.

故 $\mathcal{B} = \{v_1, \cdots, v_n\}$ 是 V 的基.

定理 1.8 (课本定理1.4): $S \to V$ 的子空间, 则 $\exists V$ 的子空间 S^c , s.t. $V = S \oplus S^c$, 称 $S^c \to S$ 的补空间.

证: \mathcal{B}_1 为 S 的基, 则 \mathcal{B}_1 为 V 中的线性无关集,

 \mathcal{B}_1 总可以扩张为 (即添加一些元素) 成 V 的基, 即 $\exists \mathcal{B}_2$, s.t. $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关且 $V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle \Longrightarrow V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$, 故 $S^c = \langle \mathcal{B} \rangle$.

例 1.9: $\mathbb{R}^2 = S_x \oplus S_y = S_l \oplus S_{l'}$, 其中 S_l 和 $S_{l'}$ 分别为过原点直线 l 和 l' 对应的子空间, l 与 l' 不共线. 补空间总存在, 但不唯一.

定理 1.9 (课本定理1.13): (1) $\mathcal{B} \in V$ 的基, 若 $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \perp \mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, 则 $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

- (2) $V = S \oplus T$, 若 \mathcal{B}_1 是 S 的基, \mathcal{B}_2 是 T 的基, 则 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, $\mathcal{B}_1 \cup \mathcal{B}_2$ 是 V 的基.
- 证: (1) $:: \mathcal{B} \not\equiv V$ 的基, $:: \forall u \in V, u = \sum_{i=1}^{k} r_i v_i,$ 其中 $r_i \in F, v_i \in \mathcal{B}, k \in \mathbb{N}.$ $\langle \mathcal{B}_1 \rangle = \{ \sum_{i=1}^{n} r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_1, n \in \mathbb{N} \}, \ \langle \mathcal{B}_2 \rangle = \{ \sum_{i=1}^{n} r_i v_i \mid r_i \in F, v_i \in \mathcal{B}_2, n \in \mathbb{N} \}.$ $u = \sum_{i=1}^{t} r_i v_i + \sum_{i=1}^{t} i = t + 1^k r_i v_i,$ 其中 $v_1, \dots, v_k \in \mathcal{B}_1, v_{k+1}, \dots, v_k \in \mathcal{B}_2 \Longrightarrow V = \langle \mathcal{B}_1 \rangle + \langle \mathcal{B}_2 \rangle.$

 $\forall u \in \langle \mathcal{B}_1 \rangle \cap \langle \mathcal{B}_2 \rangle, u \in \langle \mathcal{B}_1 \rangle \Longrightarrow u = \sum_{i=1}^n r_i v_i, \ \not\exists \ r_i \in F, \ v_i \in \mathcal{B}_1,$

且 $u \in \langle \mathcal{B}_2 \rangle \Longrightarrow u = \sum_{i=1}^n l_i w_i$, 其中 $l_i \in F$, $w_i \in \mathcal{B}_2$

 $\implies 0 = u - u = \sum r_i v_i - \sum l_i w_i,$

又 :: \mathcal{B} 为基, $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ 且 $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$, :: r_i, w_i 线性无关 $\Longrightarrow r_i = l_i = 0$, $\forall i \Longrightarrow u = 0$.

综上, $V = \langle \mathcal{B}_1 \rangle \oplus \langle \mathcal{B}_2 \rangle$.

(2) $V = S \oplus T \iff V = S + T \perp S \cap T = \{0\}.$

假设 $v \in \mathcal{B}_1 \cap \mathcal{B}_2$, 则 $v \neq 0$, $\langle v \rangle = S \cap T$, 与 $S \cap T = \{0\}$ 矛盾, 故假设错误, $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset$.

 $\therefore V = S + T, \ \forall u \in V, \ u = u_1 + u_2, \ \not\exists \ v \in S, \ u_2 \in T,$

 $\therefore \mathcal{B}_1$ 是 S 的基, \mathcal{B}_2 是 T 的基, $\therefore u_1 = \sum_{i=1}^k r_i v_i$, $u_2 = \sum_{i=k+1}^n$, 其中 $r_i \in F$, 对 $i = 1, \dots, k, v_i \in \mathcal{B}_1$, 对 $i = k+1, \dots, n, v_i \in \mathcal{B}_2$

 $\Longrightarrow u = \sum_{i=1}^m r_i v_i, \not \exists \vdash r_i \in F, v_i \in \mathcal{B}_1 \cap \mathcal{B}_2, \not \exists \vdash V = \langle \mathcal{B}_1 \cup \mathcal{B}_2 \rangle.$

假设 $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性相关,则 $\exists r_i \in F$ 不全为零, $\sum_{i=1}^n r_i v_i = \sum_{i=1}^k r_i v_i + \sum_{i=k+1}^n r_i v_i = 0$, 其中 $r_i \in F$, 对 $i = 1, \dots, k, v_i \in \mathcal{B}_1$, 对 $i = k+1, \dots, n, v_i \in \mathcal{B}_2$,

 $:: \mathcal{B}_1$ 和 \mathcal{B}_2 为基, $:: \mathcal{B}_1$ 和 \mathcal{B}_2 线性无关 $\Longrightarrow \sum_{i=1}^k r_i v_i \neq 0$, $\sum_{i=k+1}^n r_i v_i \neq 0$, 与 $0 = 0 + \cdots + 0$ 是 0 的唯一分解式矛盾, 故假设错误, $\mathcal{B}_1 \cup \mathcal{B}_2$ 线性无关 $\Longrightarrow \mathcal{B}_1 \cup \mathcal{B}_2$ 是 V 的基.

定理 1.10 (课本定理1.14): $S, T \in V$ 的子空间, $\dim S + \dim T = \dim(S \cap T) + \dim(S + T)$. 特别地, 若 $T \in S$ 的补空间, 则 $\dim S + \dim T = \dim(S \oplus T)$.

证: 设 $S \cap T$ 的基为 A,

- $:: S \cap T \to S$ 的子空间, :: 可将 A 扩张成 S 的基 $A \cup B$,
- $:: S \cap T$ 为 T 的子空间, :: 可将 A 扩张成 T 的基 $A \cup C$.

接下来需要用到这样一个事实: $A \cup B \cup C$ 是 S + T 的基. 所以先来证明它:

证: $\forall w \in S + T, \ w = u + v, \ \mbox{其中} \ u \in S, \ v \in T \Longrightarrow u \in \langle \mathcal{A} \cup \mathcal{B} \rangle, \ v \in \langle \mathcal{A} + \mathcal{C} \rangle, \ \mbox{故} \ \langle \mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \rangle = S + T.$ 不妨设 $\sum_{i=1}^n r_i v_i = 0, \ \mbox{其中} \ v_i \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}.$

设 $v_1, \dots, v_k \in A$, 则 $\sum_{i=1}^k r_i v_i + \sum_{i=k+1}^n r_i v_i = 0$,

1. 向量空间

 $\diamondsuit \ x = \sum_{i=1}^k r_i v_i, \ \mathbb{M} \ x = \sum_{i=1}^k r_i v_i \in \langle \mathcal{A} \rangle \ \mathbb{H} \ x = -\sum_{i=k+1}^n r_i v_i \in \langle \mathcal{B} \cup \mathcal{C} \rangle \Longrightarrow x \in \langle \mathcal{A} \rangle \cap \langle \mathcal{B} \cup \mathcal{C} \rangle = (S-T) \cap T = \emptyset.$ 又 :: A 和 $\mathcal{B} \cup \mathcal{C}$ 线性独立, 故 $\forall i, r_i = 0 \Longrightarrow \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$ 线性无关.

综上,
$$A \cup B \cup C$$
 是 $S + T$ 的基.

故

$$\dim S + \dim T = |\mathcal{A} \cup \mathcal{B}| + |\mathcal{B} \cup \mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{B}| + |\mathcal{C}| = |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + \dim(S \cap T) = \dim(S + T) + \dim(S \cap T).$$

7 / 15

Chapter 2

线性变换

2.1 线性变换

定义 2.1 <u>线性变换</u>: 向量空间之间的映射. F 为域, V,W 为 F 上的向量空间, 映射 $\tau:V\to W$, 若 $\tau(ru+tv)=r\tau(u)+t\tau(v)$, $r,t\in F$, $u,v\in V$, 则称 τ 为 V 到 W 的线性变换.

(类似于同态)

取 r = 1, t = 1, 则 $\tau(u + v) = \tau(u) + \tau(v)$, 故 $\tau \in V$ 到 W 的群同态, 从而 $\tau(0) = 0$, $\tau(-v) = -\tau(v)$. $\mathcal{L}(V, W) \equiv \{V$ 到 W 的线性变换 $\}$, $\mathcal{L}(V) = \mathcal{L}(V, V) = \{V$ 到 V 的线性变换 $\} = \{V$ 上的线性算 $\}$.

定义 2.2 单线性变换: 单射的线性变换.

定义 2.3 满线性变换: 满射的线性变换.

定义 2.4 同构: 双射的线性变换.

取 $\tau, \sigma \in \mathcal{L}(V, W), v \stackrel{\tau}{\mapsto} \tau(v), v \stackrel{\sigma}{\mapsto} \sigma(v) \Longrightarrow v \stackrel{\tau+\sigma}{\mapsto} \tau(v) + \sigma(v)$ 也是线性变换, 且 $\tau + \sigma \in \mathcal{L}(V, W)$.

证: 由映射的像的唯一性, $\because v \stackrel{\tau}{\mapsto} \tau(v)$ 是唯一的, $v \stackrel{\sigma}{\mapsto} \sigma(v)$ 是唯一的, $\therefore v \stackrel{\tau+\sigma}{\mapsto} \tau(v) + \sigma(v)$ 是唯一的, 故 $\tau + \sigma$ 是映射.

$$(\tau + \sigma)(ru + tv) = \tau(ru + tv) + \sigma(ru + tv) = r\tau(u) + t\tau(v) + r\sigma(u) + t\sigma(v) = r[\tau(u) + \sigma(u)] + t[\tau(v) + \sigma(v)] = r[(\tau + \sigma)(u)] + t[(\tau + \sigma)(v)],$$
 故 $\tau + \sigma$ 为 V 到 W 的线性变换.

由此定义了线性变换之间的加法.

 $(\mathcal{L}(V,W),+)$ 为交换群.

证: (*L*(*V*, *W*), +) 满足

- (1) 结合律: $\forall v \in V$, $[(\tau + \sigma) + \delta](v) = (\tau + \sigma)(v) + \delta(v) = \tau(v) + \sigma(v) + \delta(v) = \tau(v) + (\sigma(v) + \delta(v)) = \tau(v) + (\sigma + \delta)(v) = [\tau + (\sigma + \delta)](v) \Longrightarrow [(\tau + \sigma) + \delta] = [\tau + (\sigma + \delta)].$
- (2) 有单位元 0: 零映射 0(v) = 0, $\forall \tau \in \mathcal{L}(V, W)$, $(0 + \tau)(v) = 0(v) + \tau(v) = 0 + \tau(v) = \tau(v) + 0 = \tau(v) + 0(v) = (\tau + 0)(v)$.

2. 线性变换 2.1. 线性变换

(3) 有逆元: $\forall \tau \in \mathcal{L}(V, W), \exists -\tau, \text{ s.t. } (-\tau)(v) = -\tau(v) \Longrightarrow [\tau + (-\tau)](v) = \tau(v) - \tau(v) = 0 = 0(v).$

(4) 交換律: $\forall v \in V$, $(\tau + \sigma)(v) = \tau(v) + \sigma(v) = \sigma(v) + \tau(v) = [\sigma + \tau](v)$.

故 $\mathcal{L}(V,W)$ 为交换群.

 $\forall r \in F, v \in \mathcal{L}(V, W), v \stackrel{\tau}{\mapsto} \tau(v) \Longrightarrow v \stackrel{r\tau}{\mapsto} r\tau(v)$ 是线性变换, 且 $r\tau \in \mathcal{L}(V, W)$.

证: 由映射的像的唯一性, $\because v \stackrel{\tau}{\mapsto} \tau(v)$ 是唯一的, $\therefore v \stackrel{\tau\tau}{\mapsto} r\tau(v)$ 是唯一的, 故 $r\tau$ 是映射.

$$(r\tau)(v) = r\tau(v) = r[\tau(v)]$$
, 故 $r\tau$ 为 V 到 W 的线性变换.

 $\mathcal{L}(V,W)$ 是 F 上的向量空间.

证: 前面已证, $(\mathcal{L}(V,W),+)$ 为交换群, 且其满足

- (1) $\forall v \in V$, $[(r+t)\tau](v) = (r+t)\tau(v) = r\tau(v) + t\tau(v) = (r\tau + t\tau)(v) \Longrightarrow (r+t)\tau = r\tau + t\tau$
- (2) $\forall v \in V$, $[(rt)\tau](v) = (rt)\tau(v) = r[t\tau(v)] = [r(t\tau)](v) \Longrightarrow (rt)\tau = r(t\tau)$
- $(3) \ \forall v \in V, \ [r(\tau + \sigma)](v) = r(\tau + \sigma)(v) = r[\tau(v) + \sigma(v)] = r\tau(v) + r\sigma(v) = (r\tau + r\sigma)(v) \Longrightarrow r(\tau + \sigma) = r\tau + r\sigma(v) = r\tau(v) + r\sigma(v) = r\tau(v)$
- (4) 恒等映射 $1: \mathcal{L}(V, W) \to \mathcal{L}(V, W), \tau \stackrel{1}{\mapsto}, \forall v \in V, (1\tau)(v) = 1[\tau(v)] = \tau(v) \Longrightarrow 1\tau = \tau$

故得证. □

定理 2.1 (课本定理2.1): (1) $\mathcal{L}(V,W)$ 是 F 上的向量空间.

- (2) $t \in \mathcal{L}(V, W), \ \sigma \in \mathcal{L}(W, U), \ \bigcup \ \sigma \circ \tau \in \mathcal{L}(V, U).$
- (3) τ 是 V 到 W 的同构, 则 $\tau^{-1} \in \mathcal{L}(W, V)$.
- (4) $\mathcal{L}(V)$ 既是向量空间, 也是环, 且两者的加法运算是一样的, 故 $\mathcal{L}(V)$ 是**代数**.

 $\mathcal{L}(V)$ 是环.

证: 前面已证, $(\mathcal{L}(V), +)$ 为交换群, 且满足

- (1) **结合律**: \cdot 映射的复合有结合律, \cdot $\mathcal{L}(V)$ 中元素的复合有结合律
- (2) 左右分配律: $\forall v \in V$, $[(\sigma + \tau)\delta](v) = (\sigma + \tau)[\delta(v)] = \sigma[\delta(v)] + \tau[\delta(v)] = (\sigma\delta)(v) + (\tau\delta)(v) \Longrightarrow (\sigma + \tau)\delta = \sigma\delta + \tau\delta$ $[\sigma(\tau + \delta)](v) = \sigma[(\tau + \delta)(v)] = \sigma[\tau(v) + \delta(v)] = \sigma[\tau(v)] + \sigma[\delta(v)] = \sigma\tau(v) + \sigma\delta(v) \Longrightarrow \sigma(\tau + \delta) = \sigma\tau + \sigma\delta$

故得证. □

定义 2.5 核空间: $\operatorname{Ker} \tau \equiv \{v \mid \tau(v) = 0\} \subseteq V$.

定义 2.6 像空间: $\operatorname{Im} \tau \equiv \{ \tau(v) \mid v \in V \}.$

2. 线性变换 2.1. 线性变换

定理 2.2 (课本定理2.3): (1) τ 满线性变换 \iff Im $\tau = W$.

(2) τ 单线性变换 \iff Ker $\tau = \{0\}$.

定理 2.3 (课本定理2.2): \mathcal{B} 是 V 的基, $\tau \in \mathcal{L}(V, W)$, 则 τ 可由 τ 在 \mathcal{B} 上的像唯一确定.

证: 若已知 $\tau(b_i) \forall b_i \in \mathcal{B}$, 则 $\forall v \in V$, $v = \sum_{i=1}^n r_i b_i$, $r_i \in F$, $b_i \in \mathcal{B}$, $n \in \mathbb{Z}^+$ $\Longrightarrow \tau(v) = \tau(\sum_{i=1}^n r_i b_i) = \sum_{i=1}^n r_i \tau(b_i)$.

同构的向量空间有很多性质可以相互传递,下面我们就来讨论这件事.

定理 2.4 (课本定理2.4): $\tau \in \mathcal{L}(V, W)$ 同构, $S \in V$ 真子集, 则

- (1) $V = \langle S \rangle \iff W = \langle \tau(S) \rangle$.
- (2) S 线性无关 $\iff \tau(S)$ 线性无关.
- (3) $S \neq V$ 的基 $\iff \tau(S) \neq V$ 的基.
- **iII:** (1) " \Longrightarrow ": $V = \langle S \rangle$, $\forall v \in V$, $v = \sum_i r_i s_i$,

又 :: τ 同构, :: $\forall w \in W$, $\exists v \in V$, s.t. $w = \tau(v) \Longrightarrow \tau(v) = \tau(\sum_i r_i s_i) = \sum_i r_i \tau(s_i)$.

" \Leftarrow ": $W = \langle \tau(S) \rangle$, $w \in W$, $w = \sum_{i} r_i \tau(s_i)$,

又 :: τ 同构, :: $\forall v \in W$, $\exists w \in W$, s.t. $v = \tau^{-1}(w) = \tau^{-1}(\sum_i r_i \tau(s_i)) = \sum_i r_i \tau^{-1}(\tau(s_i)) = \sum_i r_i \tau(s_i)$.

综上, (1) 得证.

(2) " \Longrightarrow ": 假设 $\sum_i r_i \tau(s_i) = 0$, 则 $\tau(\sum_i r_i s_i) = 0$,

 \mathbb{Z} :: τ 同构, :: Ker $\tau = \{0\} \Longrightarrow \sum_i r_i s_i = 0$,

又: S 线性无关, $: r_i = 0 \forall i \Longrightarrow \tau(S)$ 线性无关.

"一":假设 $\sum_i r_i s_i = 0$,则 $\tau(\sum_i r_i s_i) = \sum_i r_i \tau(s_i) = 0$,

 $\mathbb{Z} : \tau(S)$ 线性无关, $:: r_i = 0 \forall i \Longrightarrow S$ 线性无关.

综上, (2) 得证.

 $(3) (1), (2) \Longrightarrow (3).$

定理 2.5 (课本定理2.6): $V \approx W \iff \dim V = \dim W$.

定理 2.6 (课本定理2.7): 若 dim V = n, 则 $V \approx F^n$.

定理 2.7 (课本定理2.8): $\tau \in (L)(V, W)$,

(1) $(\operatorname{Ker} \tau)^c \approx \operatorname{Im} \tau$.

10 / 15

(2) $\dim V = \dim \operatorname{Ker} \tau + \dim \operatorname{Im} \tau \equiv \operatorname{null} \tau + \operatorname{rk} \tau$, 其中称 $\operatorname{null} \tau \equiv \dim \operatorname{Ker} \tau$ 为 τ 的零度, $\operatorname{rk} \tau \equiv \dim \operatorname{Im} \tau$ 为 τ 的秩.

证: (1) 设映射 τ^c : Ker $(\tau)^c \to \operatorname{Im} \tau$, $u \mapsto \tau(u)$.

先证 τ^c 是单射: $\operatorname{Ker}(\tau^c) = \operatorname{Ker}(\tau) \cap \operatorname{Ker}(\tau)^c$ (即 $\operatorname{Ker}(\tau^c)$ 中的元素同时满足 $\operatorname{Ker}(\tau)$ 的条件, 且在定义域 $\operatorname{Ker}(\tau)^c$ 中),

又 :: $V = \operatorname{Ker}(\tau) \oplus \operatorname{Ker}(\tau)^c$, :: $\operatorname{Ker}(\tau) \cap \operatorname{Ker}(\tau)^c = \{0\} \Longrightarrow \operatorname{Ker}(\tau^c) = \{0\}$, 故 τ^c 单射.

再证 τ^c 是满射: 一方面, $\operatorname{Im}(\tau^c) \subset \operatorname{Im}(\tau)$;

另一方面, $\forall \tau(v), v = u + w$, 其中 $u \in \text{Ker}(\tau), w \in \text{Ker}(\tau)^c \Longrightarrow \tau(v) = \tau(u + w) = \tau(u) + \tau(w) = 0 + \tau(w) = \tau(w) \in \text{Im}(\tau^c) \Longrightarrow \text{Im}(\tau) \subseteq \text{Im}(\tau^c).$

故 $\operatorname{Im}(\tau^c) = \operatorname{Im}(\tau)$, 即 τ^c 满射.

综上, (1) 得证.

(2) $\dim V = \dim \operatorname{Ker}(\tau) + \dim \operatorname{Ker}(\tau)^c = \dim \operatorname{Ker}(\tau) + \dim \operatorname{Im}(\tau)$.

x 为 n 维向量, dim $\{x \mid Ax = 0\} = n - \operatorname{rk} A$, 故 dim $\{x \mid Ax = 0\} = \operatorname{null} A$.

2.2 表示

"表示"其实就是用已知的东西展现未知的东西,在这里,我们用已知的矩阵乘法展现未知的线性变换,这就是线性变换的表示.

F 为域, $F^n = \{(r_1, \dots, r_n) \mid r_i \in F\}$, 满足 $(r_1, \dots, r_n) + (l_1, \dots, l_n) = (r_1 + l_1, \dots, r_n + l_n)$ 及 $r(r_1, \dots, r_n) = (rr_1, \dots, rr_n)$, dim $F^n = n$, F^n 的标准基为 $\{e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)\}$; $F^m = \{(r_1, \dots, r_m) \mid r_i \in F\}$, dim F = m, 标准基为 $\{f_1 = (1, 0, \dots, 0), f_2 = (0, 1, \dots, 0), \dots, f_m = (0, 0, \dots, 1)\}$. 如何确定/展现 F^n 到 F^m 的线性变换?

根据定理 2.4, 我们只需确定一组基在线性变换下的表现, 就可以确定这一线性变换,

证: $\{b_1, \dots, b_n\}$ 为 V 的基, 线性变换 $\tau \in \mathcal{L}(V, W)$, 若已知 $\tau(b_i) \forall i$, 则 $\forall v \in V$, $v = \sum_{i=1}^n r_i b_i \Longrightarrow \tau(v) = \tau(\sum_{i=1}^n r_i b_i) = \sum_{i=1}^n r_i \tau(b_i)$ 可以确定, 由此 τ 可以确定.

因此, $\forall \tau \in \mathcal{L}(F^n, F^m)$, 若 $\tau(e_i) = (a_{1i}, \dots, a_{mi}) = \sum_{j=1}^m a_{ji} f_j$. $\forall (r_1, \dots, r_n) \in F^n$,

$$\tau((r_{1}, \cdots, r_{n})) = \tau\left(\sum_{i=1}^{n} r_{i}e_{i}\right) = \sum_{i=1}^{n} r_{i}\tau(e_{i}) = \sum_{i=1}^{n} r_{i}\left(\sum_{j=1}^{m} a_{ji}f_{j}\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} r_{i}a_{ji}\right)f_{j} = \left(\sum_{i=1}^{n} r_{i}a_{1i}, \cdots, \sum_{i=1}^{n} r_{i}a_{mi}\right)$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix} = \left(\tau(e_{1}) & \tau(e_{2}) & \cdots & \tau(e_{n})\right) \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix} = M_{\tau} \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{pmatrix},$$

其中 $M_{\tau} = \begin{pmatrix} \tau(e_1) & \tau(e_2) & \cdots & \tau(e_n) \end{pmatrix}$. 故 $\forall \vec{r} \in F^n, \ \tau(\vec{r}) = M_{\tau}\vec{r}$.

综上:

$$\mathcal{L}(F^n, F^m) \approx M_{m \times n}(F), \quad \tau \mapsto M_{\tau} = \begin{pmatrix} \tau(e_1) & \cdots & \tau(e_2) \end{pmatrix}$$

11 / 15

 $f: \mathcal{L}(F^n, F^m) \to M_{m \times n}(F), \tau \mapsto M_{\tau}$ 是线性变换.

证: 由上述的 M_{τ} 构造过程知, $f(\tau) = M_{\tau}$ 是唯一的, 故 f 是映射.

$$f(r\tau + t\sigma) = M_{r\tau + t\sigma} = \left((r\tau + t\sigma)(e_1) \quad \cdots \quad (r\tau + t\sigma)(e_n) \right) = \left(r\tau(e_1) + t\sigma(e_n) \quad \cdots \quad r\tau + t\sigma(e_n) \right)$$
$$= r\left(\tau(e_1) \quad \cdots \quad \tau(e_n) \right) + t\left(\sigma(e_1) \quad \cdots \quad \sigma(e_n) \right) = rM_{\tau} + tM_{\sigma} = rf(\tau) + tf(\sigma).$$

故 f 是线性的.

综上,
$$f: \mathcal{L}(F^n) \to M_{m \times n}(F)$$
, $\tau \mapsto M_{\tau}$ 是线性变换.
f 单射.

i. Ker $f \equiv \{ \tau \mid f(\tau) = 0 \} = \{ \tau \mid M_{\tau} = 0 \}.$

 $\forall \tau \in \operatorname{Ker} f, \, \forall \vec{r} \in F^n, \, \tau(\vec{r}) = M_{\tau}\vec{r} = \vec{0} \Longrightarrow M_{\tau} = 0_{m \times n} \Longrightarrow \tau = 0.$

故 $\operatorname{Ker} f = \{0\}$ (这里的"0"代表的是零变换) $\iff f$ 单射.

f 满射.

取 V 的基 $\mathcal{B} = \{b_1, \dots, b_n\}, \forall v \in V, v = \sum_i r_i b_i.$

当
$$\mathcal{B}$$
 定序, $\phi_{\mathcal{B}}: V \to F^n, v \mapsto \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \equiv [v]_{\mathcal{B}}$ 是一个映射.

证: 由于 \mathcal{B} 是 V 的基, 展开式 $v = \sum_i r_i b_i$ 唯一确定, 又 \mathcal{D} 定序, 从而映射 $v \mapsto \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$ 唯一确定, 故 $\phi_{\mathcal{B}}$ 为映射.

$$\forall u, v \in V, \ u = \sum_{i=1}^{n} w_i b_i, \ v = \sum_{i=1}^{n} r_i b_i,$$

$$\phi_{\mathcal{B}}(r\vec{u}+t\vec{v}) = \phi_{\mathcal{B}}\left(r\left(\sum_{i=1}^{n} w_{i}b_{i}\right) + t\left(\sum_{i=1}^{n} r_{i}b_{i}\right)\right) = \phi_{\mathcal{B}}\left(\sum_{i=1}^{n} (rw_{i} + tr_{i})b_{i}\right) = \begin{pmatrix} rw_{1} + tr_{1} \\ \vdots \\ rw_{n} + tr_{n} \end{pmatrix}$$

$$= r\begin{pmatrix} w_{1} \\ \vdots \\ w_{n} \end{pmatrix} + t\begin{pmatrix} r_{1} \\ \vdots \\ r_{n} \end{pmatrix} = r\phi_{\mathcal{B}}(u) + t\phi_{\mathcal{B}}(v),$$

故 ϕ_B 为 V 到 F^n 的线性变换.

 $\phi_{\mathcal{B}}$ 单射.

证: Ker
$$\phi_{\mathcal{B}} = \{ v \mid \phi_{\mathcal{B}}(v) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \}.$$

$$\phi_{\mathcal{B}}(v) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow v = \sum_{i=1}^{n} 0b_i = 0.$$

故 $\operatorname{Ker} \phi_{\mathcal{B}} = \{0\} \iff \phi_{\mathcal{B}} \ \text{单射}.$

 $\phi_{\mathcal{B}}$ 满射.

证:
$$\forall \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \in F^n, \exists v \in V, \text{ s.t. } \sum_{i=1}^n r_i b_i \in V, \text{ 故 } \phi_{\mathcal{B}} \text{ 满射.}$$

综上, $\phi_{\mathcal{B}}$ 同构.

取 V 的一组定序基 $\mathcal{B} = \{b_1, \dots, b_n\}$,另一组定序基 $\mathcal{C} = \{c_1, \dots, c_n\}$,v 在 \mathcal{B} 下的表象为 $[v]_{\mathcal{B}}$,在 \mathcal{C} 下的表象为 $[v]_{\mathcal{C}}$,映射关系见如下的交换图. 如何联系 v 在不同基下的表象, $[v]_{\mathcal{B}}$ 和 $[v]_{\mathcal{C}}$,从而得到 τ ?

$$[v]_{\mathcal{C}} = \tau([v]_{\mathcal{B}}) = M_{\tau}[v]_{\mathcal{B}}, \ \, \sharp \, \mapsto M_{\tau} = \Big(\tau(e_1) \quad \cdots \quad \tau(e_n)\Big).$$

$$\tau : F^n \to F^n, \quad e_i \mapsto \tau(e_i) = \phi_{\mathcal{C}}(\phi_{\mathcal{B}}^{-1}(e_i)) = \phi_{\mathcal{C}}(b_i),$$

$$M_{\tau} = \Big([b_1]_{\mathcal{C}} \quad \cdots \quad [b_n]_{\mathcal{C}}\Big) \equiv M_{\mathcal{BC}}.$$

定理 2.8 (课本定理2.12):

$$v_{\mathcal{C}} = M_{\mathcal{B}\mathcal{C}}[v]_{\mathcal{B}}$$

其中 $[v]_{\mathcal{B}}$ 和 $[v]_{\mathcal{C}}$ 分别是向量 v 在基 \mathcal{B} 和 \mathcal{C} 表象下的坐标表示, $M_{\mathcal{BC}}$ 是在两种坐标表示之间线性变换对应的矩阵.

$$M_{\tau_A} = \left(\tau_A(e_1) \quad \cdots \quad \tau(e_n)\right) = \left(\phi_{\mathcal{C}} \circ \tau \circ \phi_{\mathcal{B}}^{-1}(e_1) \quad \cdots \quad \phi_{\mathcal{C}} \circ \tau \circ \phi_{\mathcal{B}}^{-1}(e_n)\right) = \left(\phi_{\mathcal{C}} \circ \tau(b_1) \quad \cdots \quad \phi_{\mathcal{C}} \circ \tau(b_n)\right)$$
$$= \left([\tau(b_1)]_{\mathcal{C}} \quad \cdots \quad [\tau(b_n)]_{\mathcal{C}}\right) \equiv [\tau]_{\mathcal{BC}}.$$

定理 2.9 (课本定理2.14):

$$[\tau(v)]_{\mathcal{C}} = [\tau(v)]_{\mathcal{BC}}[v]_{\mathcal{B}}$$

其中 $[\tau(v)]_{\mathcal{C}}$ 是 $\tau(v)$ 在基 \mathcal{C} 的表象下的坐标表示, $[\tau(v)]_{\mathcal{B}\mathcal{C}}$ 是从基 \mathcal{B} 的表象到基 \mathcal{C} 的表象的线性变换的矩阵表示, $[v]_{\mathcal{B}}$ 是 v 在基 \mathcal{B} 的表象下的坐标表示.

定理 2.10 (课本定理2.15): $\mathcal{L}(V,W) \to \mathcal{L}(F^n,F^m) \approx M_{m \times n}(F), \ \tau \mapsto \tau_A \mapsto [\tau]_{\mathcal{BC}}.$

若我们改变 V 和 W 的基,那么映射所联系的向量的坐标会如何?

 $\tau_A' = \phi_{\mathcal{C}}' \phi_{\mathcal{C}}^{-1} \tau_A \phi_{\mathcal{B}} \phi_{\mathcal{B}}'^{-1}.$

定理 2.11 (课本定理2.16):

$$[\tau]_{\mathcal{B}'\mathcal{C}'} = M_{CC'}[\tau]_{\mathcal{B}\mathcal{C}} M_{\mathcal{B}'\mathcal{B}}$$

其中 $[\tau]_{\mathcal{B}C}$ 和 $[\tau]_{\mathcal{B}'\mathcal{C}'}$ 分别是线性变换 τ 在基 $(\mathcal{B},\mathcal{C})$ 和 $(\mathcal{B}',\mathcal{C}')$ 下的表示, 矩阵 $M_{\mathcal{B}'\mathcal{B}}$ 和 $M_{\mathcal{C}C'}$ 分别对应了从基 \mathcal{B} 到基 \mathcal{B}' 和从基 \mathcal{C} 到基 \mathcal{C}' 的变换矩阵.

 $M_{\mathcal{B}\mathcal{B}'}$ 可逆.

证: 设
$$\phi_{\mathcal{B}}: V \to F^n, \ v = \sum_{i=1}^n r_i b_i \mapsto [v]_{\mathcal{B}} = \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}, \ \phi_{\mathcal{B}'}: V \to F^n, \ v = \sum_{i=1}^n r_i' b_i' \mapsto [v]_{\mathcal{B}'} \begin{pmatrix} r_1' \\ \vdots \\ r_n' \end{pmatrix}, \ \mathbb{D}$$

 $M_{\mathcal{B}\mathcal{B}'} = M_{\tau} = ([b_1]_{\mathcal{B}'} \cdots [b_n]_{\mathcal{B}'}), \text{ s.t. } [v]_{\mathcal{B}'} = M_{\mathcal{B}\mathcal{B}'}[v]_{\mathcal{B}}.$

同理可以构造 $M_{\mathcal{B}\mathcal{B}'} = ([b'_1]_{\mathcal{B}} \cdots [b'_n]_{\mathcal{B}})$, s.t. $[v]_{\mathcal{B}} = M_{\mathcal{B}'\mathcal{B}}[v]_{\mathcal{B}'}$.

 $\forall [v]_{\mathcal{B}} \in F^n, M_{\mathcal{B}\mathcal{B}'}M_{\mathcal{B}'\mathcal{B}}[v]_{\mathcal{B}} = M_{\mathcal{B}\mathcal{B}'}[v]_{\mathcal{B}'} \stackrel{'}{=} [v]_{\mathcal{B}} \Longrightarrow M_{\mathcal{B}\mathcal{B}'}M_{\mathcal{B}'\mathcal{B}} = n \times n$ 维的单位矩阵, 即 $M_{\mathcal{B}'\mathcal{B}}$ 是 $M_{\mathcal{B}\mathcal{B}'}$ 的逆, 故 $M_{\mathcal{B}\mathcal{B}'}$ 可逆.

定理 2.12 (课本定理2.18): B = PAQ, 其中 P 和 Q 可逆, 则 B 与 A 等价.

(因为 B 和 A 是同一线性变换在两组不同的基下的表示.)

定理 2.13 (课本定理2.19): $B = PAP^{-1}$, 其中 P 可逆, 则 B 与 A 相似.

(因为 B 和 A 是同一线性算子在两组不同的基下的表示.)