Homework Chapter 2

- 1. On the probability space of Example 1.10, define the random variable $X(\omega) := \omega$.
 - (a) Find all the outcomes ω that belong to the event $\{\omega : X(\omega) \le 4\}$.
 - (b) Find all the outcomes ω that belong to the event $\{\omega : X(\omega) > 4\}$.
 - (c) Compute $P(X \le 4)$ and P(X > 4).
- Consider the sample space Ω := {-2,-1,0,1,2,3,4}. For an event A ⊂ Ω, suppose that P(A) = |A|/|Ω|. Define the random variable X(ω) := ω². Find the probability mass function of X.
- Let X ~ Poisson(λ). Evaluate P(X > 1); your answer should be in terms of λ. Then compute the numerical value of P(X > 1) when λ = 2
- 12. A class consists of 15 students. Each student has probability p = 0.2 of getting an "A" in the course. Find the probability that exactly one student receives an "A." Assume the students' grades are independent.
- 16. Show that the geometric₀(p) pmf $p_X(k) = (1-p)p^k$, k = 0, 1, ... sums to one. Repeat for the geometric₁(p) pmf $p_X(k) = (1-p)p^{k-1}$, k = 1, 2, ... *Hint:* Use the geometric series formula from Problem 27 in Chapter 1.
- 18. Suppose that $X_1, ..., X_n$ are independent, geometric₁(p) random variables. Evaluate $P(\min(X_1, ..., X_n) > \ell)$ and $P(\max(X_1, ..., X_n) \leq \ell)$.
- Let X ~ geometric₁(p).
 - (a) Show that $P(X > n) = p^n$.
 - (b) Compute P(X > n+k | X > n). Hint: If $A \subset B$, then $A \cap B = A$.

Remark. Your answer to (b) should not depend on n. For this reason, the geometric random variable is said to have the **memoryless property**. For example, let X model the number of the toss on which the first heads occurs in a sequence of coin tosses. Then given a heads has not occurred up to and including time n, the conditional probability that a heads does not occur in the next k tosses does not depend on n. In other words, given that no heads occurs on tosses $1, \ldots, n$ has no effect on the conditional probability of heads occurring in the future. Future tosses do not remember the past.

25. Let X and Y be jointly discrete, integer-valued random variables with joint pmf

$$p_{XY}(i,j) = \begin{cases} \frac{3^{j-1}e^{-3}}{j!}, & i = 1, j \ge 0, \\ 4\frac{6^{j-1}e^{-6}}{j!}, & i = 2, j \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Find the marginal pmfs $p_X(i)$ and $p_Y(j)$, and determine whether or not X and Y are independent.

- 33. If $X \sim \text{geometric}_0(1/2)$, compute $E[I_{(2,6)}(X)]$.
- 34. If *X* is Poisson(λ), compute E[1/(*X* + 1)].
- 37. Compute $E[(X+Y)^3]$ if $X \sim Bernoulli(p)$ and $Y \sim Bernoulli(q)$ are independent.
- 38. Let *X* be a random variable with mean *m* and variance σ^2 . Find the constant *c* that best approximates the random variable *X* in the sense that *c* minimizes the **mean-squared** error $E[(X-c)^2]$.
- 41. Let $X \sim \text{Poisson}(3/5)$. Compute both sides of the Chebyshev inequality,

$$\mathsf{P}(X \ge 2) \ \le \ \frac{\mathsf{E}[X^2]}{4}.$$

44. Show by counterexample that being uncorrelated does not imply independence. *Hint:* Let $P(X = \pm 1) = P(X = \pm 2) = 1/4$, and put Y := |X|. Show that E[XY] = E[X]E[Y], but $P(X = 1, Y = 1) \neq P(X = 1) P(Y = 1)$.