COMPRESSED SENSING, OR HOW TO

Irena Stoyanoska (Bojarovska)

Technische Universität Berlin Airberlin

Algorithms & Data Chalenges Berlin
11 July 2016
Berlin

The key idea of compressed sensing

Source: IBM; 2008

"Measure what can be measured."

Galileo Galilei (1564 - 1642)

The key idea of compressed sensing

Source: IBM; 2008

"Measure what should be measured."

Thomas Strohmer, 2012

Why Compressed sensing?

Being sparse is natural!

Can we directly acquire just the useful part of the signal?

Why is this important?

- Hardware design: MRI, astronomy, imaging, radar and sonar signal processing
- ► Processing non-conventional signals: high-dimensional data, graph-based data, structured data

Morphological component analysis

Source: Starck, Donoho, Candès; 2002

6 times faster MRI

Source: Donoho, Lustig, Pauly; 2007

 $x \in \mathbb{R}^n$ — is the signal we are interested in, $A \in \mathbb{R}^{m \times n} = \{a_i\}_{i=1}^m$ is the measurement matrix, $y \in \mathbb{R}^m$ — are the observations we make, $y_i = \langle a_i, x \rangle$.

 $x \in \mathbb{R}^n$ — is the signal we are interested in, $A \in \mathbb{R}^{m \times n} = \{a_i\}_{i=1}^m$ is the measurement matrix.

 $A \in \mathbb{R}^{m \times n} = \{a_i\}_{i=1}^m$ is the measurement matrix, $y \in \mathbb{R}^m$ — are the observations we make, $y_i = \langle a_i, x \rangle$.

Conventional Linear Algebra vs. Compressed Sensing

▶ $m \ge n$ in order to have a determined system.

 $x \in \mathbb{R}^n$ — is the signal we are interested in, $A \in \mathbb{R}^{m \times n} = \{a_i\}_{i=1}^m$ is the measurement matrix,

$$A \in \mathbb{R}^{m-1} = \{a_i\}_{i=1}^m$$
 is the measurement matrix, $y \in \mathbb{R}^m$ — are the observations we make, $y_i = \langle a_i, x \rangle$.

Conventional Linear Algebra vs. Compressed Sensing

- $ightharpoonup m \geq n$ in order to have a determined system.
- ▶ $m \ge k \log n$ for exact recovery via convex linear programming if x is sparse, i.e. has k < m non-zero entries.

 $x \in \mathbb{R}^n$ — is the signal we are interested in, $A \in \mathbb{R}^{m \times n} = \{a_i\}_{i=1}^m$ is the measurement matrix,

 $y \in \mathbb{R}^m$ are the observations we make, $y_i = \langle a_i, x \rangle$.

Conventional Linear Algebra vs. Compressed Sensing

- $ightharpoonup m \ge n$ in order to have a determined system.
- ▶ $m \ge k \log n$ for exact recovery via convex linear programming if x is sparse, i.e. has k < m non-zero entries.

Sparsity is the crucial assumption!

"Strong" sparsity

 $x \in \mathbb{R}^n$ is called *k*-sparse, if

$$||x||_0 := |supp(x)| = |\{i : x_i \neq 0\}| = k.$$

From Compressed Sensing to Machine Learning

ℓ_0- minimization $\min \|x\|_0 \quad \text{subject to} \quad Ax=y. \tag{P_0}$

From Compressed Sensing to Machine Learning

ℓ_0 — minimization

$$\min \|x\|_0 \quad \text{subject to} \quad Ax = y. \tag{P_0}$$

This problem is NP-hard. We can relax this problem and take

$$\ell_1$$
 minimization

If we allow some error in the measurement process, we get to:

LASSO Regression!

$$\min \lambda ||x||_1 + ||Ax - y||_2^2$$
.

 $\min \|x\|_1$ subject to Ax = y.

Does this work?

Definition

Let $A \in \mathbb{R}^{m \times n}$. Then A has the restricted isometry property (RIP) of order k, if there exists a $\delta_k \in (0,1)$ such that

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$
 for all k-sparse $x \in \mathbb{R}^n$

Does this work?

Definition

Let $A \in \mathbb{R}^{m \times n}$. Then A has the restricted isometry property (RIP) of order k, if there exists a $\delta_k \in (0,1)$ such that

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$
 for all k-sparse $x \in \mathbb{R}^n$

Theorem (Cohen, Dahmen, DeVore; 2008, Candes; 2008)

Let $A \in \mathbb{R}^{m \times n}$ satisfies the RIP of order 2k with $\delta_{2k} < \sqrt{2} - 1$. Let $x \in \mathbb{R}^n$, and let x^* be a solution of the associated ℓ_1 problem (P_1) . Then

$$||x-x^*||_2 \leq C \cdot \frac{\sigma_k(x)_1}{\sqrt{k}},$$

for some constant C dependent on δ_{2k} .

Here $\sigma_k(x)_1 := \min_{\tilde{x} \in \Sigma_k} \|x - \tilde{x}\|_1$ is the error of the best k term approximation.

Research directions

Are there matrices that satisfy the RIP property and allow us to recover x with as few as possible measurements?

- ▶ Gaussian entries are independent realization of $\mathcal{N}(0, \frac{1}{m})$.
- ▶ Block $m \times 2m$ matrix with blocks Fourier and Dirac bases

Research directions

Are there matrices that satisfy the RIP property and allow us to recover x with as few as possible measurements?

- ▶ Gaussian entries are independent realization of $\mathcal{N}(0, \frac{1}{m})$.
- ▶ Block $m \times 2m$ matrix with blocks Fourier and Dirac bases

Are there efficient algorithm for solving the minimization problems (P_1) and $(P_{1,2})$?

- Basis pursuit (Lasso regression)
- Greedy algorithms (Orthogonal matching pursuit, thresholding-based methods)

Research directions

Are there matrices that satisfy the RIP property and allow us to recover x with as few as possible measurements?

- ▶ Gaussian entries are independent realization of $\mathcal{N}(0, \frac{1}{m})$.
- ▶ Block $m \times 2m$ matrix with blocks Fourier and Dirac bases

Are there efficient algorithm for solving the minimization problems (P_1) and $(P_{1,2})$?

- Basis pursuit (Lasso regression)
- Greedy algorithms (Orthogonal matching pursuit, thresholding-based methods)

What to do if my signal/data is not really sparse?

- ► Find (learn) a sparse representation (in a dictionary)
- Discover some some structure (geometric sparsity, block sparsity)
- ► Go for extensions in higher dimensions: sparse (low rank) matrices [the Netflix problem]

Applications of Compressed Sensing: Data Separation

Morphological Component Analysis: image decomposition method which uses sparse representations of the components and the compressed sensing idea.

$$\min_{c_1,c_2} \|c_1\|_1 + \|c_2\|_1 \text{ subject to } x = \begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Applications of Compressed Sensing: Data Separation

Morphological Component Analysis: image decomposition method which uses sparse representations of the components and the compressed sensing idea.

$$\min_{c_1,c_2} \|c_1\|_1 + \|c_2\|_1 \text{ subject to } x = \begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Example: Detection of characteristics of Alzheimer: separation of spines and dendrites

Confocal laser scanning microscopy

Kutyniok, Lim; 2010

Summary and take away

- ► "More from less" is possible Compressed sensing allows to recover the sparse signal from a small set of (linear) non-adaptive measurements in an efficient manner
- Sparsity is all around search for it in your models.
 Many signals from various application fields are sparse or admit sparse representation.
- ► It is worth to learn the language of compressed sensing and sparse representations
 - Many well-known machine learning problems can be seen from a different light and new ideas can be found.

THANK YOU!

► Nuit Blanche - great informative blog on compressed sensing A blog about Compressive Sensing, Computational Imaging, Machine Learning. Using priors to avoid the curse of dimensionality arising in Big Data. http://nuit-blanche.blogspot.com

▶ My contributions

- Bojarovska I., Flinth A., Phase Retrieval from Gabor Measurements, J. Fourier. Anal. Appl. (2015)
- Bojarovska I., Paternostro V., Gabor Fusion Frames Generated by Difference Sets, SPIE Proc., Wavelets and Sparsity XVI (2015)
 - Bojarovska I. Geometric Compressed Sensing and Structured Sparsity, PhD Thesis (TU Berlin, 2015)