Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему «Изучение библиотек обработки данных.»

Выполнил: студент группы ИУ5-23М Богомолов Д.Н.

1 pip install pyreadline

Collecting pyreadline

Downloading https://files.pythonhosted.org/packages/bc/7c/d724ef1ec3ab2125f38a1d532

112kB 3.4MB/s

Building wheels for collected packages: pyreadline

Building wheel for pyreadline (setup.py) ... done

Created wheel for pyreadline: filename=pyreadline-2.1-cp36-none-any.whl size=93834 Stored in directory: /root/.cache/pip/wheels/70/66/59/590265c96902c7616243300c8f0d8

Successfully built pyreadline

Installing collected packages: pyreadline
Successfully installed pyreadline-2.1

- 1 import numpy as np
- 2 import pandas as pd
- 3 import seaborn as sns
- 4 import matplotlib.pyplot as plt
- 5 %matplotlib inline
- 6 sns.set(style="ticks")

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnin import pandas.util.testing as tm

- data = pd.read_csv("/content/drive/My Drive/survey.csv")
- 2 data.head()

	Timestamp	Age	Gender	Country	state	self_employed	<pre>family_history</pre>	treatment
0	2014-08- 27 11:29:31	37	Female	United States	IL	NaN	No	Yes
1	2014-08- 27 11:29:37	44	М	United States	IN	NaN	No	No
2	2014-08- 27 11:29:44	32	Male	Canada	NaN	NaN	No	No
3	2014-08- 27 11:29:46	31	Male	United Kingdom	NaN	NaN	Yes	Yes
4	2014-08- 27 11:30:22	31	Male	United States	TX	NaN	No	No

¹ data.shape # мы увидим информацию о размерности нашего датафрейма

² data.info() # покажет информацию о размерности данных

^{3 #} описание индекса, количество not-a-number элементов

⁴ data.describe() # показывает статистики count, mean, std, min, 25%-50%-75% percentile,

⁵ data.nunique() # количество уникальных значений для каждого столбца

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1259 entries, 0 to 1258
Data columns (total 27 columns):

#	Column (total 27 columns)	Non-Null Count	Dtype
0	Timestamp	1259 non-null	object
1	Age	1259 non-null	int64
2	Gender	1259 non-null	object
3	Country	1259 non-null	object
4	state	744 non-null	object
5	self_employed	1241 non-null	object
6	family_history	1259 non-null	object
7	treatment	1259 non-null	object
8	work_interfere	995 non-null	object
9	no_employees	1259 non-null	object
10	remote_work	1259 non-null	object
11	tech_company	1259 non-null	object
12	benefits	1259 non-null	object
13	care_options	1259 non-null	object
14	wellness_program	1259 non-null	object
15	seek_help	1259 non-null	object
16	anonymity	1259 non-null	object
17	leave	1259 non-null	object
18	mental_health_consequence	1259 non-null	object
19	phys_health_consequence	1259 non-null	object
20	coworkers	1259 non-null	object
21	supervisor	1259 non-null	object
22	mental_health_interview	1259 non-null	object
23	phys_health_interview	1259 non-null	object
24	mental_vs_physical	1259 non-null	object
25	obs_consequence	1259 non-null	object
26	<pre>comments es: int64(1), object(26)</pre>	164 non-null	object
	ry usage: 265.7+ KB		
	-	246	
Age	5 cump 12	53	
Gend	on.	49	
Coun		48	
state		45	
	_employed	2	
-	ly_history	2	
	tment	2	
	_interfere	4	
_	mployees	6	
_	te_work	2	
	_company	2	
bene [.]		3	
care	_options	3	
_	ness_program	3	
	_help	3	
anon	ymity	3	
leav	e	5	
ment	al_health_consequence	3	
	_health_consequence	3	
COWO	rkers	3	
supe	rvisor	3	
	al_health_interview	3	
phys.	_health_interview	3	

```
for column in feature_names:
print (column)
print (data[column].value_counts(dropna=False))
```

```
Timestamp
2014-08-27 12:31:41
2014-08-27 12:37:50
2014-08-27 12:44:51
                       2
2014-08-27 15:23:51 2
2014-08-27 12:43:28 2
                      . .
2014-08-27 13:26:35
                    1
2014-09-04 08:35:49
2014-08-27 12:48:37
                       1
2014-08-27 15:59:47
                       1
2014-08-27 14:57:46
                      1
Name: Timestamp, Length: 1246, dtype: int64
Age
 29
                85
 32
                82
 26
                75
 27
                71
 33
               70
 28
               68
 31
               67
 34
               65
 30
               63
 25
               61
               55
 35
 23
                51
 24
               46
 37
               43
               39
 38
 36
               37
 39
               33
40
               33
 43
                28
 41
               21
 22
               21
 42
               20
 21
               16
 45
               12
 46
               12
 44
                11
 19
                9
                7
 18
 20
                 6
 48
                 6
 50
                 6
 51
                 5
 56
                 4
 49
                 4
 57
                 3
 54
                 3
 55
                 3
 47
                 2
                 2
 60
 11
                 1
 8
                 1
 5
                 1
 9999999999
                 1
-1726
                 1
```

```
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data_new_1.shape)
  ((1259, 27), (1259, 23))

# Удаление строк, содержащих пустые значения
data_new_2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)
  ((1259, 27), (86, 27))

# Заполнение всех пропущенных значений нулями
# В данном случае это некорректно, так как нулями заполняются в том числе категориаль data_new_3 = data.fillna(0)
data_new_3.head()
```

	Timestamp	Age	Gender	Country	state	self_employed	family_history	treatment
0	2014-08- 27 11:29:31	37	Female	United States	IL	0	No	Yes
1	2014-08- 27 11:29:37	44	М	Unite _d State ^s	IN	0	No	No
2	2014-08- 27 11:29:44	32	Male	Canada	0	0	No	No
3	2014-08- 27 11:29:46	31	Male	Unite _d Kingdo ^m	0	0	Yes	Yes
4	2014-08- 27 11:30:22	31	Male	Unite _d States	TX	0	No	No

```
# Выберем числовые колонки с пропущенными значениями
 1
 2
    # Цикл по колонкам датасета
 3
    num cols = []
 4
    for col in data.columns:
        # Количество пустых значений
 5
        temp_null_count = data[data[col].isnull()].shape[0]
 6
 7
         dt = str(data[col].dtype)
 8
         if temp_null_count>0 and (dt=='float64' or dt=='int64'):
 9
             num_cols.append(col)
             temp_perc = round((temp_null_count / total_count) * 100.0, 2)
10
11
             print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format
```

Разделим данные на 3 категории: мужчина, женщина и другие (сюда вошли те категории, к предыдущих двух, для примера - трансгендер).

```
male_terms = ["male", "m", "mal", "msle", "malr", "mail", "make", "cis male", "man",
 1
    female_terms = ["female", "f", "woman", "femake", "femaile", "femake", "cis female",
 2
 3
 4
    def clean_gender(response):
         if response.lower().rstrip() in male_terms:
 5
             return "Male"
 6
 7
         elif response.lower().rstrip() in female_terms:
             return "Female"
 8
9
         else:
             return "Other"
10
11
12
    data['Gender'] = data["Gender"].apply(lambda x: clean_gender(x))
13
    data.head()
```

	Timestamp	Age	Gender	Country	state	self_employed	family_history	treatment
0	2014-08- 27 11:29:31	37	Female	United States	IL	NaN	No	Yes
1	2014-08- 27 11:29:37	44	Male	United States	IN	NaN	No	No
2	2014-08- 27 11:29:44	32	Male	Canada	NaN	NaN	No	No
3	2014-08- 27 11:29:46	31	Male	United Kingdom	NaN	NaN	Yes	Yes
4	2014-08- 27 11:30:22	31	Male	United States	TX	NaN	No	No

Возьмем эвристическую оценку, в каком возрасте могут работать люди: от 14 до 100 лет. И диапазон, преобразуем в формат Not-a-Number.

Double-click (or enter) to edit

```
data.Age.loc [(data.Age <14) | (data.Age> 100)] = np.nan
feature_names = data.columns.tolist()
for column in feature_names:
    print (column)
print (data[column].value_counts(dropna=False) )
```

```
Timestamp
2014-08-27 12:31:41
                        2
2014-08-27 12:37:50
                        2
2014-08-27 12:44:51
                        2
2014-08-27 15:23:51
                        2
2014-08-27 12:43:28
                        2
                       . .
2014-08-27 13:26:35
                        1
2014-09-04 08:35:49
                        1
2014-08-27 12:48:37
                        1
2014-08-27 15:59:47
                        1
2014-08-27 14:57:46
                        1
Name: Timestamp, Length: 1246, dtype: int64
Age
29.0
        85
32.0
        82
26.0
        75
27.0
        71
        70
33.0
28.0
        68
31.0
        67
34.0
        65
30.0
        63
25.0
        61
35.0
        55
23.0
        51
24.0
        46
37.0
        43
38.0
        39
36.0
        37
39.0
        33
40.0
        33
43.0
        28
22.0
        21
41.0
        21
42.0
        20
21.0
        16
45.0
        12
46.0
        12
44.0
        11
19.0
         9
NaN
         8
18.0
         7
20.0
         6
50.0
         6
48.0
         6
51.0
         5
56.0
         4
49.0
         4
57.0
         3
55.0
         3
         3
54.0
         2
60.0
47.0
         2
62.0
         1
58.0
         1
53.0
         1
61.0
         1
```

Эти нулевые значения затем могут быть обработаны с использованием описанного выше диапазона для работающего человека, визуализируем распределение возраста, присутств

```
1 %matplotlib inline
2 import seaborn as sns
3 sns.set(color_codes=True)
4 plot = sns.distplot(data.Age.dropna())
5 plot.figure.set_size_inches(6,6)
```



```
1
    # Выберем числовые колонки с пропущенными значениями
 2
    # Цикл по колонкам датасета
 3
    total_count = data.shape[0]
4
5
    print('Bcero ctpok: {}'.format(total_count))
    num_cols = []
6
7
    for col in data.columns:
8
        # Количество пустых значений
9
        temp_null_count = data[data[col].isnull()].shape[0]
10
        dt = str(data[col].dtype)
        if temp_null_count>0 and (dt=='float64' or dt=='int64'):
11
             num_cols.append(col)
12
             temp_perc = round((temp_null_count / total_count) * 100.0, 2)
13
14
             print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format
    Всего строк: 1259
    Колонка Age. Тип данных float64. Количество пустых значений 8, 0.64%.
1
    # Фильтр по колонкам с пропущенными значениями
    data_num = data[num_cols]
 2
 3
    data_num
```

```
Age
 0
      37.0
 1
      44.0
 2
      32.0
 3
      31.0
 4
      31.0
1254
      26.0
1255 32.0
1256 34.0
1257 46.0
1258 25.0
```

1259 rows × 1 columns

```
1 # Гистограмма по признакам
2 for col in data_num:
3 plt.hist(data[col], 50)
4 plt.xlabel(col)
5 plt.show()
```

/usr/local/lib/python3.6/dist-packages/numpy/lib/histograms.py:839: RuntimeWarning: i
 keep = (tmp_a >= first_edge)
/usr/local/lib/python3.6/dist-packages/numpy/lib/histograms.py:840: RuntimeWarning: i
 keep &= (tmp_a <= last_edge)</pre>

- 1 # Запоминаем индексы строк с пустыми значениями 2 flt_index = data[data['Age'].isnull()].index
- 3 flt_index

THE CATHERINE (EAA) 304 300 745 734 000 4000 44071 HELLE LEVECALL

1 # Проверяем что выводятся нужные строки

2 data[data.index.isin(flt_index)]

	Timestamp	Age	Gender	Country	state	self_employed	family_history	treatm
143	2014-08- 27 12:39:14	NaN	Male	United States	MN	No	No	
364	2014-08- 27 15:05:21	NaN	Male	United States	ОН	No	No	
390	2014-08- 27 15:24:47	NaN	Other	Zimbabwe	NaN	Yes	Yes	
715	2014-08- 28 10:07:53	NaN	Male	United Kingdom	NaN	No	No	
734	2014-08- 28 10:35:55	NaN	Male	United States	ОН	No	No	
989	2014-08- 29 09:10:58	NaN	Other	Bahamas, The	IL	Yes	Yes	
1090	2014-08- 29 17:26:15	NaN	Male	United States	ОН	Yes	No	
1127	2014-08- 30 20:55:11	NaN	Other	United States	AL	Yes	Yes	

² data_num[data_num.index.isin(flt_index)]['Age']

143	NaN
364	NaN
390	NaN
715	NaN
734	NaN
989	NaN
1090	NaN
1127	NaN

Name: Age, dtype: float64

^{1 #} фильтр по колонке

data_num_MasVnrArea = data_num[['Age']]

² data_num_MasVnrArea.head()

```
Age
    0 37.0
    1 44.0
    2 32.0
    3 31.0
    4 31.0
   from sklearn.impute import SimpleImputer
   from sklearn.impute import MissingIndicator
1
   # Фильтр для проверки заполнения пустых значений
2
   indicator = MissingIndicator()
   mask_missing_values_only = indicator.fit_transform(data_num_MasVnrArea)
   mask_missing_values only
   array([[False],
           [False],
           [False],
           . . . ,
           [False],
           [False],
           [False]])
   strategies=['mean', 'median', 'most_frequent']
1
   def test_num_impute(strategy_param):
2
        imp_num = SimpleImputer(strategy=strategy_param)
3
        data_num_imp = imp_num.fit_transform(data_num_MasVnrArea)
4
        return data num imp[mask missing values only]
   strategies[0], test_num_impute(strategies[0])
1
    ('mean',
    array([32.07673861, 32.07673861, 32.07673861, 32.07673861, 32.07673861,
            32.07673861, 32.07673861, 32.07673861]))
   strategies[1], test_num_impute(strategies[1])
    ('median', array([31., 31., 31., 31., 31., 31., 31., 31.]))
   strategies[2], test num impute(strategies[2])
    ('most_frequent', array([29., 29., 29., 29., 29., 29., 29., 29.]))
   # Более сложная функция, которая позволяет задавать колонку и вид импьютации
1
2
   def test_num_impute_col(dataset, column, strategy_param):
3
        temp_data = dataset[[column]]
4
```

```
5
         indicator = MissingIndicator()
 6
         mask_missing_values_only = indicator.fit_transform(temp_data)
 7
 8
         imp num = SimpleImputer(strategy=strategy param)
 9
         data_num_imp = imp_num.fit_transform(temp_data)
10
11
         filled_data = data_num_imp[mask_missing_values_only]
12
13
         return column, strategy_param, filled_data.size, filled_data[0], filled_data[fill
 1
         data[['Age']].describe()
```

Age count 1251.000000 32.076739 mean std 7.288272 min 18.000000 25% 27.000000 50% 31.000000 75% 36.000000 72.000000 max

```
1 test_num_impute_col(data, 'Age', strategies[0])
    ('Age', 'mean', 8, 32.07673860911271, 32.07673860911271)
1 test_num_impute_col(data, 'Age', strategies[1])
    ('Age', 'median', 8, 31.0, 31.0)
1 test_num_impute_col(data, 'Age', strategies[2])
    ('Age', 'most_frequent', 8, 29.0, 29.0)
```

Часть 2.

- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Withou
- fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9t Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married

- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex : Female, Male.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Port Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Peru, Hong, Holand-Netherlands.
- salary: >50K,<=50K
- 1 import numpy as np
- 2 import pandas as pd
- 3 pd.set_option('display.max.columns', 100)
- 4 # to draw pictures in jupyter notebook
- 5 %matplotlib inline
- 6 import matplotlib.pyplot as plt
- 7 import seaborn as sns
- 1 df = pd.read_csv('/content/adult.data.csv', sep=',')
- 2 df.head()

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife

1. How many men and women (sex feature) are represented in this dataset?

```
1 df.sex.value_counts()
```

Male 21790 Female 10771

Name: sex, dtype: int64

2. What is the average age (age feature) of women?

```
1 df[df.sex == 'Female'].age.mean()
36.85823043357163
```

3. What is the percentage of German citizens (native-country feature)?

```
df['native-country'].value_counts(normalize=True)['Germany']*100
0.42074874850281013
```

*4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (50K per year?**

```
1 df.salary.value_counts()
```

<=50K 24720 >50K 7841

Name: salary, dtype: int64

1 df.groupby(by='salary').agg({'age':['mean','std']})

age

mean std

salary

```
<=50K 36.783738 14.020088 >50K 44.249841 10.519028
```

6. Is it true that people who earn more than 50K have at least high school education? (education Assoc-voc, Masters or Doctorate feature)

```
1 df[df.salary=='>50K'].education.value_counts()
```

Bachelors	2221	
HS-grad	1675	
Some-college	1387	
Masters	959	
Prof-school	423	
Assoc-voc	361	
Doctorate	306	
Assoc-acdm	265	
10th	62	
11th	60	
7th-8th	40	
12th	33	
9th	27	
5th-6th	16	
1st-4th	6	
Name		• + 6

Name: education, dtype: int64

No

7. Display age statistics for each race (race feature) and each gender (sex feature). Use groupby(men of Amer-Indian-Eskimo race.

1 df.groupby(by=['race', 'sex']).age.describe()

		count	mean	std	min	25%	50%	75%	max
race	sex								
Amer-Indian-Eskimo	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0
	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0
Asian-Pac-Islander	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0
White	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0
	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0

```
1 df1 = df.groupby(by=['race', 'sex']).age.describe()
```

82.0

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (those who have a *marital-status* starting with *Married* (Married-civ-spouse, Married-spouse-abs

² df1.loc['Amer-Indian-Eskimo', 'Male']['max']

considered bachelors.

```
df[df.salary=='>50K'].groupby(by='marital-status').age.count()
marital-status
Divorced
                          463
Married-AF-spouse
                           10
Married-civ-spouse
                         6692
Married-spouse-absent
                         34
                          491
Never-married
Separated
                           66
Widowed
                           85
Name: age, dtype: int64
```

answer = among married

9. What is the maximum number of hours a person works per week (hours-per-week feature)? Ho hours, and what is the percentage of those who earn a lot (>50K) among them?

```
#df.sort_values(by='hours-per-week', ascending=False)
1
2
   mx = df['hours-per-week'].max()
3
   mx
   99
   df[df['hours-per-week'] == mx].count()
                      85
   age
   workclass
                      85
                      85
   fnlwgt
                     85
   education
   education-num
                     85
   marital-status
                     85
   occupation
                      85
                     85
   relationship
   race
                      85
                      85
   sex
   capital-gain
                     85
   capital-loss
                     85
   hours-per-week
                     85
   native-country
                      85
   salary
                      85
   dtype: int64
  df[df['hours-per-week'] == mx].salary.value_counts(normalize=True)
   <=50K
            0.705882
            0.294118
   >50K
   Name: salary, dtype: float64
```

10. Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) these be for Japan?

```
# You code here
1
  df.columns
   Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
           'marital-status', 'occupation', 'relationship', 'race', 'sex',
           'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
           'salary'],
         dtype='object')
   df_hpw = df.groupby(by=['native-country', 'salary']).agg({'hours-per-week':'mean'})
1
  df_hpw.loc['Japan']
            hours-per-week
    salary
     <=50K
                  41.000000
     >50K
                  47.958333
1 df1 = df.iloc[0:4]
2 	 df2 = df.iloc[50:53]
```

▼ Получим из таблицы с исходными данными топ3 людей, чей возраст ме

```
1 !pip install pandasql
2 !pip install pandas
3
```

Requirement already satisfied: pandasql in /usr/local/lib/python3.6/dist-packages (0. Requirement already satisfied: sqlalchemy in /usr/local/lib/python3.6/dist-packages (Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-package Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-package Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from Requirement already

- 1 import pandasql as ps
- 2 import pandas as pd

```
simple_query = '''
 2
         SELECT
 3
             age,
 4
             workclass,
 5
             fnlwgt,
 6
             education
 7
         FROM df
         WHERE age < 40
 8
 9
         ORDER BY age desc
10
         LIMIT 3
11
         1.1.1
12
13
     %time df_ps = ps.sqldf(simple_query, locals())
14
     df_ps
     CPU times: user 563 ms, sys: 41.9 ms, total: 605 ms
     Wall time: 610 ms
         age workclass fnlwgt
                                    education
               State-gov
      0
          39
                          77516
                                     Bachelors
      1
          39
                  Private
                         367260
                                      HS-grad
      2
          39
                  Private 365739 Some-college
 1
     columns = ['age', 'workclass', 'fnlwgt', 'education']
     %time df_pd = df.loc[df.age < 40, columns].sort_values(by='age', ascending=False).hea</pre>
 2
     df_pd
 3
     CPU times: user 9.93 ms, sys: 986 μs, total: 10.9 ms
     Wall time: 13.3 ms
             age workclass fnlwgt education
        0
              39
                   State-gov
                              77516
                                       Bachelors
      12603
              39
                      Private 185053
                                        HS-grad
      1608
              39
                      Private 379350
                                            10th
 1
     def example2_pandasql(data):
 2
         aggr_query = '''
 3
             SELECT
 4
                 count(age) as count,
 5
                 avg(age) as mean,
 6
                 min(age)
                             as mean
 7
             FROM data
 8
             GROUP BY race
             111
 9
         return ps.sqldf(aggr_query, locals()).set_index('age')
10
     df.groupby(by=['race', 'sex']).age.describe()
 1
```

1

		count	mean	std	min	25%	50%	75%	max
race	sex								
Amer-Indian-Eskimo	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0
	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0
Asian-Pac-Islander	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0
White	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0
	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0

1 %time pd.concat([df1, df2])

CPU times: user 5.93 ms, sys: 255 $\mu s,$ total: 6.19 ms

Wall time: 6.84 ms

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband
50	25	Private	32275	Some- college	10	Married- civ- spouse	Exec- managerial	Wife
51	18	Private	226956	HS-grad	9	Never- married	Other- service	Own-child
52	47	Private	51835	Prof- school	15	Married- civ- spouse	Prof- specialty	Wife

Список литературы

- [1] Гапанюк Ю. Е. Лабораторная работа «Разведочный анализ данных. Исследование и визуализация данных» [Электронный ресурс] // GitHub. 2019. Режим доступа: https://github.com/ugapanyuk/ml_course/wiki/LAB_EDA_VISUALIZATION (дата обращения: 15.02.2020).
- [2] Scikit-learn. Boston house-prices dataset [Electronic resource] // Scikit-learn. 2018. Access mode: https://scikit-learn.org/0.20/modules/generated/sklearn.datasets.load_boston.html (online; accessed: 18.02.2020).
- [3] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/ stable/ (online; accessed: 20.02.2020).
- [4] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/(online; accessed: 20.02.2020).
- [5] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/(online; accessed: 20.02.2020).