: 装

订

线

华南农业大学期末考试试卷(A卷)

2015-2016 学年第 2 学期 考试科目: <u>计算机组成原理</u> 考试类型: (闭卷) 考试 考试时间: **120** 分钟

学号姓名年级专业班级

题号	_	1.1	111	四	总分
得分					
评阅人					

注意事项:

- (1) 本试题分为试卷与答卷 2 部分。试卷有四大题, 共 8 页;
- (2) 所有解答必须写在答卷上,写在试卷上不得分;
- (3) 考试过程中不得使用计算器;
- (4) 考试结束后只交答卷。

- 一、选择题(本大题共15小题,每小题2分,共30分)
- 1. 下列说法不正确的是。
 - A. 存储程序是冯·诺伊曼的思想
 - B. 机器语言程序是计算机能够直接执行的程序
 - C. 一般机器级主要是实施指令系统的功能, 因此属于软件级
 - D. 计算机系统是一个由硬件、软件组成的多级层次结构,由下至上各层级分别为微程 序级、一般机器级、操作系统级、汇编语言级和高级语言级
- 2. 冯•诺伊曼型计算机中,存储器主要用来。
 - A. 存放程序 B. 存放数据 C. 存放微程序 D. 存放程序和数据
- 3. 设寄存器内容为80H,若它对应的真值是-127,则该机器数是____。
 - A. 原码 B. 补码
- **C**. 反码
- D. 核码。
- 4. 已知 y 的二进制补码为 01011101,则[-y]*和[y]*分别为_____。
 - A. 00100011, 11011101
- B. 10100011, 11011101
- C. 00100011, 00100011
- D. 10100011, 00100011
- 5. 现有若干 7 位补码进行下列 4 组加减运算,其中可能会有溢出发生的

	① (0······) + (0······)	② (0·····) + (1)	
	③ (1······) - (0······)	④ (1·····) - (1)	
	A. ①② B.	23	C. ①③	D. 34
6.	下列叙述中正确的是	o		
	A. 某计算机的字长为 16	位,则可以存放的	最小定点整数补码为2	-16
	B. 设有两浮点数进行对	阶和尾数加法操作员	后,得到变形补码表示	的尾数 10.01100
	(00),则将该尾数进行	亍左规后得到 11.00	110 (00)	
	C. 设某二进制真值为-001	0,那么其在8位与	字长的计算机中的补码	形式为 10001110
	D. 设两真值数 x = +76 和	y= - 83,均用双符	号9位补码表示,则x	x-y 的双符号为 01
7.	用 16K×8 位的 DRAM 芯	片构成 64K×32 位Ⅰ	的内存条,每个 16K×	8 位的芯片组织成
	128×128 的存储阵列。若	采用分散式刷新(ほ	『每一行的刷新插入到』	E常的读/写周期之
	中),且存储器读/写周期分	内 0.5μs,单元刷新	间隔不超过 2ms,则其	平均行刷新时间间
	隔为 μs。			
	A. 15.5 B.	16	C. 8	D. 7.5
8.	主存和 CPU 之间增加高速	缓冲存储器的目的	是。	
	A. 解决 CPU 和主存之间	的速度匹配问题		
	B. 扩大主存容量			
	C. 既扩大主存容量, 又抗	是高了存取速度		
	D. 扩大辅存容量			
9.	在微程序控制器中,一条机	几器指令的功能通常	指 由。	
	A. 一条微指令实现		B. 一段微程序实现	
	C. 一个指令码实现	D. 一个	条件码实现	
10.	关于 RISC 和 CISC,下列	说法正确的是	o	
	A. Pentium 系列采用的是	RISC 技术		
	B. RISC 寻址方式比 CISC	1多		
	C. RISC 指令功能简单,打	空制器多采用硬布约	 发方式	
	D. 流水 CPU 一定采用 RI	SC 技术		
11.			确的是	_ 0
	A. R3->X 与 R2->Y 是互			
	B. +、-和 M 是相容性的征	溦操作		

- C. 当采用微程序设计时,LDR1、LDR2和LDR3可以在同一条微指令中都置为1
- D. BUS->主存与 BUS->R1 不能同时进行

- 12. 假设某系统总线在一个总线周期中并行传输 32 位的信息,一个总线周期占用 2 个总线时钟周期,总线时钟频率为 10MHz,则总线带宽是 MB/s。
 - A. 20
- B. 32
- C. 16
- D. 10
- 13. 在单总线结构的 CPU 中,连接在总线上的多个部件。
 - A. 某一时刻只有一个可以向总线发送数据,并且只有一个可以从总线接收数据
 - B. 某一时刻只有一个可以向总线发送数据,但可以有多个同时从总线接收数据
 - C. 可以有多个同时向总线发送数据,并且可以有多个同时从总线接收数据
 - D. 可以有多个同时向总线发送数据,但可以有一个同时从总线接收数据。
- 14. 在多级中断中,对某一级设备的中断请求不响应的硬件是。
 - A. 准备就绪的标志(RD)

B. 允许中断触发器(EI)

C. 中断请求触发器(IR)

- D. 中断屏蔽触发器(IM)
- 15. 关于程序中断,下列叙述中是错误的。
 - A. 中断在当前指令执行完毕进入公操作时才进行
 - B. 为了保证中断服务子程序能够正确返回,必须要保存现场
 - C. 在关闭中断并找到中断源,随后在中断服务子程序结束时开中断
 - D. 中断屏蔽寄存器 IM 为 1 时,表明可以受理 CPU 外部的中断源

_,	填空 题 (本大题共9小题20空,每空1分,共20分)							
1.	计算机的硬件是由有形的电子器件构成,它包括运算							
	器、、适配器、输入输出设备。							
2.	数的真值变成机器码时有四种表示方法,分别是原码、反码、补码、。							
3.	设有补码为1.0010,则它所表示的定点纯小数真值为。							
4.	某指令格式结构如下所示,操作码 OP 可指定条指令,计算机最多有							
	多少个通用寄存器。							
	15 10 9 8 7 4 3 0							
	OP - 目标寄存器 源寄存器							
5.	设寄存器 R1 和 R3 的内容分别为 1250H 和 2000H。某时刻 CPU 取到的指令为 LOAD R3,							
J.	(R1), 它的功能为 R3<一Mem[(R1)], 则控制器在译码后将							
	总线传给 DRAM, 并发出							
	CPU 在数据总线上获得所需要的数据。							
6.	某 CPU 微程序控制器控存容量为 512×32 位,分别根据 OP 字段、SF 条件码和 CF 条							
	件码进行分支转移。采用水平型微指令,则 P 字段和操作控制字段分别为							
	和位。							
7.	菊花链式查询方式的主要缺点是,离中央仲裁器越近的设备,获得总线控制权的几率							
	就越。与此方式不同,方式中,							
8.	某显示器分辨率为 1024×1024, 颜色为 32 位, 刷新频率为 60Hz, 则显存容量和带宽							
	分别为 MB 和 MB/s。							
9.	某 16 位计算机主存按字节编址。存取单位为 16 位;采用 16 位定长指令格式; CPU							
	采用单总线结构, 主要部分如图 2 所示。图中 R0~R3 为通用寄存器; T 为暂存器;							
	SR 为移位寄存器,可实现直送(mov)、左移一位(left)、右移一位(right)共 3 种操作,							
	控制信号为 SRop, SR 的输出受信号 SRout 控制; ALU 可实现直送 A(mova)、A 加							
	B(add)、A 减 B(sub)、A 与 B(and)、A 或 B(or)、非 A(not)、A 加 1(inc)、A 减 1(dec)							
	等 8 种操作,控制信号为 ALUop; MUXop 为 0 时,常数 2 送入 ALU 的 B 端,否则							
	将来自于 CPU 内部总线的数据送入 ALU 的 B 端。现有指令 add R0,R2,(R1),功能为							
	R0←Mem[(R1)] + R2,该指令在图 2 所示的 CPU 上执行,指令周期取指和执行的流程							
	图如图 3 所示,填写空格<1>-<6>的内容。							

图 2 某 16 位计算机 CPU 模型图

图 3 add R0,R2,(R1)的指令周期流程图

三、计算题(本大题共3小题,每题9分,共27分)

- 1. (9分)设浮点寄存器 FR1 和 FR2 中分别存放着两个按 32 位 IEEE 754 格式编码的浮点数 (42658000)₁₆和(C1890000)₁₆,那么(C1890000)₁₆的十进制真值是多少?现对这两个浮点数做加法运算,则浮点运算器进行对阶运算后,阶码应等于多少?
- 2. (9 分)某指令流水线有取指 (IF)、译码 (ID)、执行 (EX)、访存 (Mem)和写回寄存器堆 (WB) 共 5 个过程段,各功能段完成各自任务所需的时间分别为 120ns、80ns、100ns、120ns 和 80ns。现假定该流水线的各段都将受到统一时钟的控制,当有 81 条指令流过此流水线时,回答下列问题:
 - (1) 流水线的时钟周期最少应是多少?
 - (2) 该流水线的实际吞吐率(单位时间里执行完毕的指令数)是多少?(保留一位小数。)
 - (3) 相对于未受到统一时钟控制的顺序执行(即每个流水段按实际所需时间进行计算), 该流水线能获得多大的加速比? (保留一位小数。)
- 3. (9分)假设某温彻斯特硬盘,内有6个盘片,采用现代工艺后最上和最下的两个盘面均可使用。磁盘转速为7200转/分,找道时磁头每横越百条磁道花费1ms。盘面有效记录区域的外直径为30cm,内直径为14cm,内层位密度为600位/cm,磁道密度为100道/cm,盘面分为50个扇区,每个扇区有512个字节。试求:
 - (1) 平均找道时间是多少?
 - (2) 平均等待时间是多少?
 - (3) 设磁盘为已格式化的磁盘,则读取一个扇区的数据传送时间是多少?

四、分析题(本大题共2小题,共23分)

得分

1. (13 分)设 CPU、高速缓存(Cache)和主存间的组织结构图如图 4 所示。其中,Cache 用高速 SRAM 构成,容量为 64KB,采用 4-路组相联映射方式;内存容量为 256M×32 位,由 64M×8 位的 DRAM 芯片 DRAM 构成,每个 DRAM 芯片组织成 8192×8192(即 2¹³×2¹³)存储矩阵,且每个芯片都有 CS 和WE 信号引脚用于片选和读/写控制,内存按 字节编址。Cache 和内存均进行分块,每块的大小均为 8 个字节。CPU 通过 R/W 信号

线 : 对 Cache 或内存进行读/写,但为简便记该信号并未在图 4 中给出。根据图 4,回答下列问题:

- (1) 构造该内存条时,总共需要多少片 64M×8 位的 DRAM 芯片? (3分)
- (2)设内存采用顺序方式组织存储单元,且称组成一64M×32位的若干存储芯片

称为一组。当 CPU 给出的内存地址为(04006001)₁₆时,请问内存如何进行寻址? (4分)

即选中哪个组内的哪个存储芯片的哪行和哪列?假定片内地址的低位为行地

址,高位为列地址,且组号、组内芯片号、行号、列号均从0开始。

标记(tag),请问该的tag是什么?(注:结果可用十六进制数表示。)

- (3)请问 Cache 可以分成多少块?总共有多少组?
- (4) 设 Cache 分块后,用 L0、L1……进行编号;内存分块后,用 B0、B1……等进行分块。对于包含内存地址(04006001)₁₆在内的内存块,若调进 Cache 后,映射到 Cache 的哪一块中?调进 Cache 后,需要在相联存储表的对应行中记录

(2分)

图 4 CPU、高速缓存(Cache)与内存条组织结构图

2. (10 分)基址寄存器 R_b 的内容为(3000) $_{16}$,变址寄存器 R_x 的内容为(32B0) $_{16}$,指令的地址码为(002B) $_{16}$,程序计数器(存放当前正在执行的指令的地址)的内容为(4500) $_{16}$,且存储器内存放的内容如下:

地址 内容 (002B)₁₆ (3500)₁₆ (302B)₁₆ (3000)₁₆ $\begin{array}{lll} (32B0)_{16} & (5600)_{16} \\ (32DB)_{16} & (2800)_{16} \\ (3500)_{16} & (2600)_{16} \\ (452B)_{16} & (2500)_{16} \end{array}$

试回答下列问题,并说明理由。

(1) 若采用基址寻址方式,则取出的操作数是什么? (2分)

(2) 若采用变址寻址方式,取出的操作数是什么? (2分)

(3) 若采用立即寻址方式,取出的操作数是什么? (2分)

(4) 现有取数指令 LAD R_1 , (002B)₁₆, 它的功能是 $R1 < -Mem[(002B)_{16}]$, 则该指令采用何

种寻址方式?指令执行后,通用寄存器 R₁的值为多少? (4分)