§ 7.3 空间直线、平面平行的判定定理和性质定理

7.3.1 相关概念

学习目标

- 1、掌握空间中直线与直线、直线与平面、平面与平面平行的判断定理和性质定理,
- 2、能熟练运用上述定理解答相关的立体几何问题。

一、相关定理

1. 直线与平面平行

判定定理:平面外一条直线与平面内一条直线平行,那么这条直线和这个平面平行.("线线平行,则线面平行")

性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行("线面平行,则线线平行")

2.平面与平面平行

判定定理:如果一个平面内的两条相交直线都和另一个平面平行,那么这两个平面平行.("线面平行,则面面平行")

性质定理:两个平行平面同时和第三个平面相交,则其交线平行.("面面平行,则线线平行")

二、直线与平面平行的判定定理与性质定理符号表示

	文字语言	图形表示	符号表示
判定定理	平面 <u>外一条直线</u> 与平面 <u>内</u>	a	$a \not\subset \alpha, b \subset \alpha, a//b$
	<u>一条直线</u> 平行,则这条直		$\Rightarrow a//\alpha$
	线与这个平面平行	_α	
性质定理	条直线和一个平面平行,	/a	$a//\alpha, a \subset \beta, \alpha \cap \beta = b$
	经过这条直线的平面与这	β,,	$\Rightarrow a//b$
	个平面相交,则这条直线	α b	
	与 <u>交线</u> 平行		

三、平面与平面平行的判定定理与性质定理的符号表示

文字语言	图形表示	符号表示
------	------	------

判定定理	一个平面内的两条 <u>相交直线</u> 与 另一个平面平行,则这两个平 面平行	$\frac{\sqrt{\alpha} b}{\sqrt{\beta}}$	$a \subset \alpha, b \subset \alpha$, $a \cap b = P$, $a / / \beta$, $b / / \beta$,则 $\alpha / / \beta$
性质定理	两平面平行,则其中一个平面 内的任意一条直线都 <u>平行于另</u> 一个平面	β	$lpha//eta$, a \subset $lpha$ 则 $a//eta$
	如果两个平行平面同时和第三 个平面相交,那么它们的 <u>交缘</u> 平行	$\frac{\gamma}{a}$ α	$\alpha //\beta$, $\alpha \cap \gamma = a$, $\beta \cap \gamma = b$,则 $a //b$

【注意】平行关系中的三个重要结论

- (1)垂直于同一条直线的两个平面平行,即若 $a \perp \alpha, a \perp \beta$,则 $\alpha //\beta$ 。
- (2)平行于同一平面的两个平面平行,即若 $\alpha //\beta, \beta //\gamma$,则 $\alpha //\gamma$ 。
- (3)垂直于同一个平面的两条直线平行,即若 $a \perp \alpha$, $b \perp \alpha$,则a / / b.

7.3.2 典型例题

例 1.下列命题中正确的是()

A.若 a,b 是两条直线,且 a//b ,那么 a 平行于经过 b 的任何平面

- B.若直线a和平面 β 满足 $a//\beta$,那么a与 β 内的任何直线平行
- C.平行于同一条直线的两个平面平行
- D.若直线a,b和平面 β 满足a//b, $a//\beta$, $b \not\subset \beta$, 则 $b//\beta$ 。

【解析】A: 明显错, a,b确定的平面就是反例。

B: 明显错。参考右图。

C: 两平面相交,在空间中找一条与交线平行,但不在两个平面内的直线,就构成反例。参考 右图。

D: 令a,b确定的平面为 γ ,如果 $\gamma//\beta$,则自然有 $b//\beta$;若 γ 与 β 相交,令交线为l,因 $a//\beta$,故a//l,又因a//b,故b//l,进而 $b//\beta$ 。综上,选 D。

例 2.判断正误(在括号内打" $\sqrt{"}$ 或" $\times"$)

- (1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()
- (2)若直线a || 平面 α , $P \in \alpha$, 则过点 P且平行于直线a 的直线有无数条.()
- (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()
- (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()

【解析】(1) 这条直线可能在平面内,故(1)错误.

- (2) 过点P且平行于a的直线只有一条,故(2)错误.
- (3) 应该是:一个平面内的两条相交直线平行于另一个平面,则这两个平面平行,故(3)错误.
- (4) 明显正确(因为这样的两条直线显然不可能重合或相交,只能是平行或异面了).

例 3. 设 θ , β 是两个不同的平面,m是直线且 $m \subset \theta$,则. " $m//\beta$ " 是 " $\theta//\beta$ " 的()

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件

【解析】必要性显然成立。两平面平行,则一个平面内的任意一条直线都平行于另一个平面; 充分性显然不成立。如图,取 θ =平面ABCD,m=AD, β =平面 BCC_1B_1 ,显然 $m\subset\theta$, $m//\beta$,但 β , θ 相交。

综上,选B。

例 4. 下列说法正确的个数是_____

- (1)若直线l上有两点到平面 θ 的距离相等,则l // 平面 θ ;
- (2)若直线l与平面 θ 平行,则l与平面 θ 内的任意一条直线平行;
- (3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行.

【解析】: 直线l 与平面 θ 相交时,直线l 上也有两个点到平面 θ 的距离相等,故(1)不正确;若直线l 与平面 θ 平行,则l 与平面 θ 内的直线可能平行也可能异面,故(2)不正确;
(3)明显错.

答案: 0个

例 5.如图所示,在四面体 ABCD中,M,N 分别是 $\triangle ACD$, $\triangle BCD$ 的重心,则四面体的四个面中与 MN 平行的是______.

【解析】:设E为CD的中点,连接AE,BE。由于三角形的重心是三角形三条中线的交点,

因此N在BE上,M在AE上,且由 $\frac{EM}{MA} = \frac{EN}{NB} = \frac{1}{2}$,故MN//AB.

因此, MN//平面 ABC, MN//平面 ABD.

答案: 平面 ABC、平面 ABD。

例 6. 如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线 AB 与平面 MNQ 不平行的是()

【解析】对于选项 B,如图(1)所示,连接 CD,因为 AB//CD, M , Q 分别是所在棱的中点,所以 MQ//CD ,所以 AB//MQ ,又 AB ⊄ 平面 MNQ , MQ ⊂ 平面 MNQ , 所以 AB # 平面 MNQ 。

同理可证选项 C,D 中均有 AB // 平面 MNQ 。因此 A 项中直线 AB 与平面 MNQ 不平行.选 A。

对于选项 A,其中O为 BC的中点(如图(2)所示),连接OQ,则OQ //AB,因为OQ 与平面 MNQ 有交点,所以AB 与平面 MNQ 有交点,即AB 与平面 MNQ 不平行.选 A。

 $extbf{M}$ 7.如图是长方体被一平面所截得的几何体,四边形 $extbf{EFGH}$ 为截面,则四边形 $extbf{EFGH}$ 的形状为__

【解析】两平面平行,同时和第三个平面相交,则交线平行,故EF//GH,EH//GF,因此,四边形EFGH为平行四边形。

- **例 8.** 在棱长为 10 的正方体 $ABCD-A_lB_lC_lD_l$ 中,P 为左侧面 ADD_lA_l 上一点,且P 到 A_lD_l 的距离为 3,到 AA_l 的距离为 2,则过P 且与 A_lC 平行的直线相交的面是()
 - A. ABCD
- B. BB_1C_1C
- C. CC_1D_1D
- D. AA_1B_1B

【解析】: 不妨设 $PE \perp AA_1 \mp E$,显然, $\tan \angle EA_1P = \frac{2}{3} < 1$,故 A_1P 的延长线必与 AD 相交,令交点为 F ,则满足要求的直线必在 A_1FC 平面上,即,满足要求的直线必与平面 ABCD 相交,选 A.

例 9.如图,正方体 $ABCD-A_1B_1C_1D_1$ 中,E 为 DD_1 的中点,则 BD_1 与平面 AEC 的位置关系为___.

【解析】连接BD,设 $BD \cap AC = O$,连接EO,

在 $\triangle BDD_1$ 中, O 为 BD 的中点, E 为 DD_1 的中点, 所以 EO 为 $\triangle BDD_1$ 的中位线, 则 $BD_1 / /EO$,而 BD_1 平面 AEC, EO 平面 AEC, 所以平面 AEC 。

例 10 (全国 I) 平面 α 过正方体 $ABCD-A_1B_1C_1D_1$ 的顶点A, α //平面 CB_1D_1 , α \cap 平面 ABCD = m, $\alpha \cap \text{平面 } ABB_1A_1 = n$,则m,n所成角的正弦值为

$$(A) \frac{\sqrt{3}}{2}$$

(B)
$$\frac{\sqrt{2}}{2}$$
 (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{1}{3}$

(C)
$$\frac{\sqrt{3}}{3}$$

(D)
$$\frac{1}{3}$$

【解析】如图,根据**平行特性的传递性**,可将平面 A_lBD 视为 α ,从而 $n=A_lB$, m=BD , 其夹角为60°,选A。

例 11 (多选) 如图,直四棱柱 $ABCD - A_1B_1C_1D_1$ 的底面是梯形, $AB//CD,AD \perp DC$, BC = CD = 4, $DD_1 = AB = 2$, $P 为 CC_1$ 的中点, Q 是棱 C_1D_1 上一动点 (不包含端点), 则 ()

- A. AC与平面 BPQ 有可能平行
- B. B_1D_1 与平面 BPQ 有可能平行
- C. $\triangle BPQ$ 周长的最小值为 $\sqrt{17} + \sqrt{29}$ D. 三棱锥 A BPQ 的体积为定值

【解析】对于 A,当 Q 为 C_1D_1 的中点时,易知平面 ACD_1 // 平面 BPQ ,故 AC // 平面 BPQ ,A 正确;

对于 B, $B_1D_1//BD$,又 $D \notin$ 平面 BPQ , BD 与平面 BPQ 只能相交,所以 B_1D_1 与平面 BPQ 只能相交,故 B 错;

对于 C, $BP = \sqrt{17}$,把 ABC_1D_1 沿 C_1D_1 展开,与 CDD_1C_1 在同一平面(如图),则当 B', P, Q 共线时, BQ + PQ 有最小值 B'P ,由 $AD_1 = 4$ 可得 $B'P = \sqrt{2^2 + 5^2} = \sqrt{29}$,所以 $\triangle BPQ$ 周长的最小值为 $\sqrt{17} + \sqrt{29}$,故 C 正确;

对于 D, $V_{A-BPQ}=V_{Q-ABP}$,因 $S_{\triangle ABP}$ 为定值,又 C_1D_1 // AB ,故 C_1D_1 // 平面 ABP ,故 Q 到平面 ABP 的距离为定值,所以 V_{A-BPQ} 为定值;

综上,选ACD。

例 12 (全国 I) 已知正方体的棱长为 1,每条棱所在直线与平面 α 所成的角相等,则 α 截此 正方体所得截面面积的最大值为

A.
$$\frac{3\sqrt{3}}{4}$$

A.
$$\frac{3\sqrt{3}}{4}$$
 B. $\frac{2\sqrt{3}}{3}$ C. $\frac{3\sqrt{2}}{4}$ D. $\frac{\sqrt{3}}{2}$

C.
$$\frac{3\sqrt{2}}{4}$$

D.
$$\frac{\sqrt{3}}{2}$$

【解析】: 如图一,易知D-ABC为正三棱锥,平面ABC与PA,PB,PC所成的角都相 等,进而与正方体的 12 条棱所成角均相等,但此时的截面为 $\triangle ABC$,其面积未必最大,

参考图二,将 $\triangle ABC$ 所在平面沿DE方向平移,使其与BE之交点为BE的中点时,平面与 正方体的其他相关的棱也必交于该棱的中点,此时,截面多边形为边长为 $\frac{\sqrt{2}}{2}$ 的正六边形

LMNOPQ ,易知其面积为
$$S = 6 \times \frac{\sqrt{3}}{4}a^2 = 6 \times \frac{\sqrt{3}}{4} \times (\frac{\sqrt{2}}{2})^2 = \frac{3}{4}\sqrt{3}$$
 ,选 A。

例 13.如图,在正方体 $ABCD - A_lB_lC_lD_l$ 中,M,N,E,F 分别为棱 $A_lB_l,A_lD_l,B_lC_l,C_lD_l$ 的 中点, 求证: 平面 AMN // 平面 DBEF。

【证明】: 如图,连接MF, B_1D_1 ,

易知: $EF //B_1D_1$, $MN //B_1D_1$, 所以 MN //EF,

所以, MN // 平面 DBEF

易知: $MF//A_1D_1$, $AD//A_1D_1$, 故MF//AD, 故四边形MFDA为平行四边形,故MA//FD,

所以, MA//平面 DBEF (2)

又因为 $MA \setminus MN \subset \text{平面} AMN$, $MA \cap MN = M$,

结合(1),(2)知: 平面 AMN / / 平面 DBEF。

例 14.如图, $\alpha \cap \beta = CD$, $\alpha \cap \gamma = EF$, $\beta \cap \gamma = AB$, $AB / / \alpha$,求证: CD / / EF 。

【证明】: 因为 $AB//\alpha$, $AB \subset \beta$, $\alpha \cap \beta = CD$, 所以AB//CD,

同理可证: AB / /EF,

所以, CD//EF。

【注意】定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行("线面平行,则线线平行")

例 15.如图,直线 AA', BB', CC' 相交于点O, AO = A'O, BO = B'O, CO = C'O,求证: 平面 ABC // 平面 A'B'C' 。

【证明】: 由题意知: A,B,A',B',O 共面,且由题意知 $\triangle AOB \cong \triangle A'OB'$,故 $\angle ABO = \angle A'B'O$,故 A'B'/AB

又因AB \subset 平面ABC, A'B' $\not\subset$ 平面ABC, 故A'B'/平面ABC,

同理可证: A'C'/平面 ABC,

又, $A'C' \cap A'B' = A'$, A'C'、 $A'B' \subset 平面 A'B'C'$,

故平面 ABC / / 平面 A'B'C'。

例 16.一木板如图所示,点P在平面 $V\!AC$ 内,过P将木板锯开,使截面平行于直线 $V\!B$ 和 $A\!C$,在木板表面应该怎样画线。

【解析】: 在平面VAC内,过P作直线PE//AC,交VA于E;在平面VAB内,过E作直线EF//VB,交BA于F。

由作法知:VB和AC均平行于平面PEF,所以,沿PE,EF 画线即可。

例 17.如图, $\alpha//\beta//\gamma$,直线 a 和直线 b 分别交 α,β,γ 于点 A,B,C 和点 D,E,F ,

求证:
$$\frac{AB}{BC} = \frac{DE}{EF}$$
。

【证明】:参看图二,过D作直线DH//a,交平面 β , γ 分别于G,H,连接AD,BG,CH,GE,HF,记平面ADHC为 λ 。

故, AD//BG//CH, 从而四边形 ADGB、BGHC 均为平行四边形,

故DG = AB, GH = BC。

又 β // γ , 平面 $DHF \cap \beta = GE$, 平面 $DHF \cap \gamma = HF$,

故
$$GE//HF$$
,因此 $\frac{DG}{GH} = \frac{DE}{EF}$ 。

结合
$$DG = AB$$
, $GH = BC$ 得 $\frac{AB}{BC} = \frac{DE}{EF}$ 。

例 18.如图所示: $ABC - A_1B_1C_1$ 中,平面 ABC//平面 $A_1B_1C_1$,若 D 是棱 CC_1 的中点,在棱 AB 上是否存在一点 E ,使 DE// 平面 AB_1C_1 ? 证明你的结论

【解析】: AB 的中点 E 满足要求,证明如下:

如图,取 BB_1 的中点F,连EF,FD,DE,

- :: E, F 分别为 AB, BB_1 的中点, $:: EF / / AB_1$,
- $\therefore AB_1$ ⊂ 平面 AB_1C_1 , EF ⊄ 平面 AB_1C_1 , $\therefore EF$ // 平面 AB_1C_1 .

又因平面 ABC // 平面 AB_1C_1 , BC = 平面 ABC \cap 平面 BB_1C_1C , B_1C_1 =平面 $A_1B_1C_1$ \cap 平面 BB_1C_1C

所以, BC//B₁C₁.

又因为D,F分别是 CC_1,BB_1 的中点,因此 $FD//B_1C_1$

- $:: B_1C_1$ ⊂ 平面 AB_1C_1 , FD ⊄ 平面 AB_1C_1 , :: FD / / 平面 AB_1C_1 .
- $:: EF \cap FD = F, EF, FD \subset \text{PERIFOP}$, ∴ PERIFOR ∴ PERIFO
- $∴ DE \subset$ 平面 EFD . ∴ DE / / 平面 AB_1C_1 .

例 19.如图,在直三棱柱 $ABC-A_1B_1C_1$ 中,D 是棱 CC_1 上的一点,P 是 AD 的延长线与 A_1C_1 的延长线的交点,且 PB_1 // 平面 BDA_1 。求证: $CD=C_1D$ 。

证明:如图,连接 AB_1 ,设 AB_1 与 BA_1 交于点O,连接OD.

 $:: PB_1 //$ 平面 BDA_1 , $PB_1 \subset$ 平面 AB_1P , 平面 $AB_1P \cap$ 平面 $BDA_1 = OD$, $:: OD //PB_1$ 。 又 $AO = B_1O$, :: AD = PD 。

 $\mathbb{Z}AC//C_1P$, $\therefore \angle CAD = \angle DPC_1$

又因为 $\angle ADC = \angle PDC_1$, $\therefore \triangle ADC \cong \triangle PDC_1$, $\therefore CD = C_1D$.

例 20. 如图,在直四棱柱 $ABCD-A_1B_1C_1D_1$ 中,底面 ABCD 为等腰梯形, $AB//CD,AB=2CD,E,E_1$ 分别是棱 AD,AA_1 的中点,设 F 是棱 AB 的中点,证明:直线 EE_1 // 平面 FCC_1 .

证明:如图,取 A_1B_1 的中点为 F_1 ,连接 FF_1 , C_1F_1 ,

 $:: FF_1//BB_1//CC_1$, $:: C_1, C, F, F_1$ 四点共面,

连接 A_1D,F_1C ,

 $:: A_1F_1//D_1C_1//DC$, $:: A_1DCF_1$ 为平行四边形, $:: A_1D//F_1C$.

又 $EE_1//A_1D$,得 $EE_1//F_1C$

而 EE_1 平面 FCC_1 , F_1C 平面 FCC_1 。 故 EE_1 / / 平面 FCC_1 。