

Designs and variants	6
Basic design bearings	6
Sealed bearings	-
Cages	-
Customized bearings	4
Bearing data	8
Loads	11
Temperature limits	12
Permissible speed	12
Design considerations	12 12 14
Offset mounting	14
Bearings on sleeves	14
Appropriate bearing housings	14
Mounting Mounting bearings with a tapered bore	1 5
Designation system	17
Product tables	
CARB toroidal roller bearings	18
2 CARB toroidal roller bearings on an adapter sleeve	30
CARR toroidal roller hearings on a withdrawal sleeve	3/

For additional information, refer to Rolling bearings, PUB BU/P1 17000/1 EN. To download a PDF document of this catalogue and for information about important updates, go to $\underline{\mathsf{skf.com/go/17000}}$. Please note that the product data in this printed catalogue was accurate on the day of printing. The latest and most accurate product data is always available on $\underline{\mathsf{skf.com}}$.

A torus, with outer ring of CARB bearing at its centre

Fig. 2

CARB toroidal roller bearings (**fig. 1**) have one row of long, slightly barrel-shaped symmetrical rollers and torus-shaped raceway profiles (**fig. 2**). They are non-locating bearings and accommodate exclusively radial loads. CARB bearings are often used to replace the non-locating spherical roller bearing in a locating/non-locating bearing arrangement.

Bearing features

- Accommodate misalignment
 CARB bearings are self-aligning like spherical roller bearings or self-aligning ball bearings (fig. 3).
- Accommodate axial displacement CARB bearings compensate for thermal expansion of the shaft like cylindrical or needle roller bearings (fig. 4).

• Wide assortment of dimension series CARB bearings are available with the same boundary dimensions as corresponding spherical roller bearings, self-aligning ball bearings, cylindrical roller bearings and needle roller bearings (fig. 5).

• Long service life

The special roller profile prevents stress peaks at the roller ends (fig. 6).

Low friction

Self-guiding rollers keep friction and frictional heat at low levels (fig. 7).

• Improved wear resistance

All CARB bearings are upgraded SKF Explorer bearings (page 7).

Low noise

CARB bearings can reduce noise and vibration levels, for example, in paper machines and fans.

5KF:

Long bearing system life

CARB bearings provide benefits in self-aligning bearing arrangements (**fig. 8**). With a CARB bearing in the non-locating position, there are no internally induced axial forces, which results in multiple benefits:

- Less load extends the service life.
- The bearings run cooler, the lubricant lasts longer and maintenance intervals can be extended.
- Noise and vibration levels can be reduced.

Designs and variants

SKF standard assortment

The SKF standard assortment of CARB toroidal roller bearings matches the assortment of spherical roller bearings. It also includes bearings with a low cross-sectional height to meet requirements for minimum radial space. All CARB bearings are upgraded SKF Explorer bearings and are shown coloured blue in the product tables. The standard assortment includes:

- basic design bearings with cylindrical or tapered bore
 - taper 1:12 (designation suffix K)
 - taper 1:30 (designation suffix K30)
- sealed bearings

For sizes and variants not listed in the product tables, contact SKF.

Basic design bearings

Depending on their series and size the following basic design CARB toroidal roller bearings are available as standard (fig. 9):

- bearings with a roller centred cage
- bearings with an inner ring centred cage
- full complement bearings with a retaining ring

The load carrying capacity of full complement CARB bearings is considerably higher than that of same-sized bearings with a cage.

Sealed bearings

- are available, as standard, as small and medium-size full complement bearings with a cylindrical bore
- are typically used for low speeds and very heavy loads
- are suitable for both inner or outer ring rotation
- are fitted with a double-lip contact seal on one or both sides in a recess on the outer ring, sealing against the inner ring raceway
- are available with two different seal materials / designs (fig. 10):
 - sheet steel reinforced HNBR (designation suffix CS5)
 - sheet steel reinforced NBR (designation suffix NS) with enhanced sealing effectiveness – mainly intended for oscillating or very low speed applications

Bearings sealed on both sides are lubricated for the life of the bearing and are virtually maintenance-free. They are filled with one of the following greases (table 1):

- bearings with HNBR seals → SKF LGHB 2 grease as standard
- bearings with NBR seals → SKF LGEP 2 grease as standard
- other SKF greases on request

For additional information about greases, refer to *Selecting a suitable SKF grease*, page 116, in *Rolling bearings*, PUB BU/P1 17000/1 EN.

Cages

CARB bearings, if not a full complement of rollers, are fitted with one of the following cages:

- glass fibre reinforced PA46 cage, window-type, roller centred (designation suffix TN9)
- stamped steel cage, window-type, roller centred (no designation suffix)
- machined brass cage, window-type, roller centred (designation suffix M)
- machined brass cage, inner ring centred (designation suffix MB)

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187, in *Rolling bearings*, PUB BU/P1 17000/1 EN.

Customized bearings

SKF can customize bearings to meet the needs of applications where the bearings are subjected to unique operating conditions. For example, bearings for:

- paper mills or coaters in high precision execution
- very arduous operating conditions, e.g. continuous casters
- high temperature applications

For additional information about application-specific CARB bearings, contact the SKF application engineering service.

Bearing data

Dimension standards	Boundary dimensions: ISO 15
Tolerances	Normal
For additional information → page 35 in Rolling bearings, PUB BU/P1 17000/1 EN.	 d ≤ 300 mm width tolerance at least 50% tighter than ISO standard (table 2) P5 geometrical tolerances d > 300 mm P5 geometrical tolerances on request (designation suffix CO8) Values: ISO 492 (table 2, page 38, to table 4, page 40 in <i>Rolling bearings</i>, PUB BU/P1 17000/1 EN).
Internal clearance	Normal Check availability of C2, C3, C4 or C5 clearance classes
For additional information → page 182 in Rolling bearings, PUB BU/P1 17000/1 EN.	 Values: ISO 5753-1 cylindrical bore (table 3) tapered bore (table 4, page 10) Values are valid for unmounted bearings under zero measuring load, with no misalignment, no axial displacement between the inner and outer rings, and the rollers centred. Axial displacement of one bearing ring relative to the other reduces the radial internal clearance. Typical clearance window ⇒ diagram 1, page 12.
Permissible misalignment	0.5° For misalignment > 0.5°, contact the SKF application engineering service.
Permissible axial displacement (fig. 11, page 12)	S _{1 max} , S _{2 max} (product table , page 18) The actual internal clearance can limit the possible axial displacement. Misalignment reduces the possible axial displacement. For details, refer to <i>Verification of axial displacement</i> , page 12 . Free space must be provided on both sides of the bearing (<i>Free space on both sides of the bearing</i> , page 14).

			Table 2
Width	tolerances	for CARB	bearings
	diameter		h tolerances
d >	≤	t _{∆Bs} U	L
mm		μm	
18 50 80 250	50 80 250 300	0 0 0	-40 -60 -80 -100

Table 3

Radial internal clearance of CARB bearings with a cylindrical bore

Bore di	ameter		nternal clear								
d >	≤	C2 min.	max.	Normal min.	max.	C3 min.	max.	C4 min.	max.	C5 min.	max.
mm		μm									
18	24	15	30	25	40	35	55	50	65	65	85
24	30	15	35	30	50	45	60	60	80	75	95
30	40	20	40	35	55	55	75	70	95	90	120
40	50	25	45	45	65	65	85	85	110	105	140
50	65	30	55	50	80	75	105	100	140	135	175
65	80	40	70	65	100	95	125	120	165	160	210
80	100	50	85	80	120	120	160	155	210	205	260
100	120	60	100	100	145	140	190	185	245	240	310
120	140	75	120	115	170	165	215	215	280	280	350
140	160	85	140	135	195	195	250	250	325	320	400
160	180	95	155	150	220	215	280	280	365	360	450
180	200	105	175	170	240	235	310	305	395	390	495
200	225	115	190	185	265	260	340	335	435	430	545
225	250	125	205	200	285	280	370	365	480	475	605
250	280	135	225	220	310	305	410	405	520	515	655
280	315	150	240	235	330	330	435	430	570	570	715
315	355	160	260	255	360	360	485	480	620	620	790
355	400	175	280	280	395	395	530	525	675	675	850
400	450	190	310	305	435	435	580	575	745	745	930
450	500	205	335	335	475	475	635	630	815	810	1 015
500	560	220	360	360	520	510	690	680	890	890	1 110
560	630	240	400	390	570	560	760	750	980	970	1 220
630	710	260	440	430	620	610	840	830	1 080	1 070	1 340
710	800	300	500	490	680	680	920	920	1 200	1 200	1 480
800	900	320	540	530	760	750	1 020	1 010	1 330	1 320	1 660
900	1 000	370	600	590	830	830	1 120	1 120	1 460	1 460	1 830
1 000	1 120	410	660	660	930	930	1 260	1 260	1 640	1 640	2 040
1 120	1 250	450	720	720	1 020	1 020	1 380	1 380	1 800	1 800	2 240
1 250	1 400	490	800	800	1 130	1 130	1 510	1 510	1 970	1 970	2 460
1 400	1 600	570	890	890	1 250	1 250	1 680	1 680	2 200	2 200	2 740
1 600	1 800	650	1 010	1 010	1390	1390	1870	1870	2 430	2 430	3 000

Radial internal clearance of CARB bearings with a tapered bore

Bore dia	ımeter		nternal clear								
d >	≤	C2 min.	max.	Normal min.	max.	C3 min.	max.	C4 min.	max.	C5 min.	max.
mm		μm									
18	24	15	35	30	45	40	55	55	70	65	85
24	30	20	40	35	55	50	65	65	85	80	100
30	40	25	50	45	65	60	80	80	100	100	125
40	50	30	55	50	75	70	95	90	120	115	145
50	65	40	65	60	90	85	115	110	150	145	185
65	80	50	80	75	110	105	140	135	180	175	220
80	100	60	100	95	135	130	175	170	220	215	275
100	120	75	115	115	155	155	205	200	255	255	325
120	140	90	135	135	180	180	235	230	295	290	365
140	160	100	155	155	215	210	270	265	340	335	415
160	180	115	175	170	240	235	305	300	385	380	470
180	200	130	195	190	260	260	330	325	420	415	520
200	225	140	215	210	290	285	365	360	460	460	575
225	250	160	235	235	315	315	405	400	515	510	635
250	280	170	260	255	345	340	445	440	560	555	695
280	315	195	285	280	380	375	485	480	620	615	765
315	355	220	320	315	420	415	545	540	680	675	850
355	400	250	350	350	475	470	600	595	755	755	920
400	450	280	385	380	525	525	655	650	835	835	1 005
450	500	305	435	435	575	575	735	730	915	910	1 115
500	560	330	480	470	640	630	810	800	1 010	1 000	1 230
560	630	380	530	530	710	700	890	880	1 110	1 110	1 350
630	710	420	590	590	780	770	990	980	1 230	1 230	1 490
710	800	480	680	670	860	860	1 100	1 100	1 380	1 380	1 660
800	900	520	740	730	960	950	1 220	1 210	1 530	1 520	1 860
900	1 000	580	820	810	1 040	1 040	1 340	1 340	1 670	1 670	2 050
1 000	1 120	640	900	890	1 170	1 160	1 500	1 490	1 880	1 870	2 280
1 120	1 250	700	980	970	1 280	1 270	1 640	1 630	2 060	2 050	2 500
1 250	1 400	770	1 080	1 080	1 410	1 410	1 790	1 780	2 250	2 250	2 740
1 400	1 600	870	1 200	1 200	1 550	1 550	1 990	1 990	2 500	2 500	3 050
1 600	1 800	950	1 320	1320	1 690	1 690	2 180	2 180	2 730	2 730	3 310

10 **SKF**:

Loads

Loads		1
	Bearings with a cage	Full complement bearings
Minimum load	$F_{rm} = 0.007 C_0$	F _{rm} = 0.01 C ₀
	Oil lubricated bearings:	
	$n/n_r \le 0.3$ \rightarrow $F_{rm} = 0.002 C_0$	
For additional information → page 106 in Rolling bearings,	$0.3 < n/n_r \le 2 \rightarrow F_{rm} = 0.002 C_0 (1 + 2 \sqrt{\frac{n}{n_r} - 0.3})$	
PUB BU/P1 17000/1 EN.	When starting up at low temperatures or when the lubricant is highly vinc Frm = $0.007 C_0$ and $0.01 C_0$, respectively, may be required.	scous, greater minimum loads than
Equivalent dynamic bearing load	P = F _r	
For additional information → page 91 in Rolling bearings, PUB BU/P1 17000/1 EN.		
Equivalent static bearing load For additional information → page 105 in Rolling bearings, PUB BU/P1 17000/1 EN.	$P_0 = F_r$	
	Symbols C ₀ basic static load rating [kN] (product table, page 18) F _r radial load [kN] F _{rm} minimum radial load [kN] P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN] n rotational speed [r/min] n _r reference speed [r/min] (product table)	

Temperature limits

The permissible operating temperature for CARB bearings can be limited by:

- the dimensional stability of the bearing rings
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings

The rings of CARB bearings are heat stabilized up to 200 °C (390 °F).

Cages

Steel or brass cages can be used at the same operating temperatures as the bearing rings. For temperature limits of polymer cages, refer to *Polymer cages*, page 188 in *Rolling bearings*, PUB BU/P1 17000/1 EN.

Seals

The permissible operating temperature for seals depends on the seal material:

- HNBR: -40 to +150 °C (-40 to +300 °F)
- NBR: -40 to +90 °C (-40 to +195 °F)
 Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.

Typically, temperature peaks are at the seal lip.

Permissible axial displacement Open bearing with a cage Open full complement bearing Sealed full complement bearing

Lubricants

Temperature limits for greases used in sealed CARB bearings are provided in **table 1**, **page 7**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, see page 116 in *Rolling bearings*. PUB BU/P1 17000/1 EN.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept, see page 117 in *Rolling bearings*, PUB BU/P1 17000/1 EN.

Permissible speed

The speed ratings in the **product table** indicate:

- the **reference speed**, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, see page 130 in *Rolling bearings*, PUB BU/P1 17000/1 EN.

Design considerations

Verification of axial displacement

The actual internal clearance can limit the possible axial displacement. Misalignment reduces the possible axial displacement. Therefore, the actual axial displacement should be verified.

1 Determine the required axial displacement

- Thermal expansion of the shaft can be estimated using
- $s_{req} = \alpha L \Delta T$
- Where additional effects need to be considered, advanced simulation or tests may be required.

2 Determine the maximum misalignment

- Estimate the misalignment β of the housing seats based on specified tolerances.
- Where additional effects need to be considered, advanced simulation or tests may be required.

3 Check the permissible axial displacement

Check the permissible axial displacement in both directions, depending on the bearing used (fig. 11):

- open bearing with a cage
- full complement bearing with a retaining ring
- sealed bearing

$$s_{req} < s_1 - \beta k_1 B$$

or

$$s_{req} < s_2 - \beta k_1 B$$

Where s_{req} is too large, consider *Offset mounting*, page 14.

4 Check the internal clearance

 Determine the clearance reduction caused by axial displacement.

$$C_{red} = \frac{k_2 s_{req}^2}{B}$$

 Determine the amount of clearance reduction from other effects and evaluate the residual clearance (Selecting initial internal clearance, see page 183 in Rolling bearings, PUB BU/P1 17000/1 EN.

Symbols

B bearing width [mm]

C_{red} reduction of radial clearance as a result of an axial displacement from a centred position [mm]

k₁ misalignment factor (**product table**, **page 18**)

- L shaft length between the bearings [mm]
- s₁ axial displacement limit in bearings with a cage or in full complement bearings when displacing away from the retaining ring [mm] (fig. 11)
- s₂ axial displacement limit in sealed and full complement bearings when displacing toward the seal or retaining ring respectively [mm] (fig. 11)

s_{req} required axial displacement from a centred position [mm]

- α thermal coefficient of expansion [°C-1] = 12×10^{-6} for steel
- β misalignment [°]
- ΔT temperature difference [°C]

Calculation example

Application (fig. 12)

- Bearing C 3040
 - d = 200 mm
 - D = 310 mm
 - B = 82 mm
 - Normal clearance: min. 170 μm
 - $s_1 = 15.2 \, \text{mm}$
 - $-k_1 = 0.123$
 - $k_2 = 0.095$
- Shaft length L = 3 000 mm
- Temperature range for the shaft: 20 to 90 °C (70 to 195 °F)
- Max. misalignment: 0.46°

Verification of axial displacement:

- 1 Required axial displacement $s_{req} = \alpha L \Delta T$ $s_{req} = 12 \times 10^{-6} \times 3000 \times (90 - 20)$ = 2.5 mm
- 2 Max. misalignment Input provided: 0.46°
- 3 Checking the permissible axial displacement $s_{req} < s_1 \beta \ k_1 \ B$ $2.5 < 15.2 0.46 \times 0.123 \times 82 \approx 10.5$ \rightarrow okay
- 4 Checking the internal clearance

$$C_{\text{red}} = \frac{k_2 \, s_{\text{req}}^2}{B}$$

$$C_{\text{red}} = \frac{0.095 \times 2.5^2}{82} \approx 0.007$$

Min. internal clearance when the bearing is displaced:

$$170 - 7 = 163 \, \mu m$$

Determine the clearance reduction caused by other effects (e.g. interference fit, temperature difference between inner and outer rings) and evaluate the residual clearance (Selecting initial internal clearance, see page 183 in Rolling bearings, PUB BU/P1 17000/1 EN).

Free space on both sides of the bearing

To enable axial displacement of the shaft relative to the housing, free space must be provided on both sides of the bearing as indicated in **fig. 13**. The value for the width of this free space is based on:

- the value C_a (product table, page 18)
- the expected axial displacement of the bearing rings from the central position during operation
- the displacement of the rings caused by misalignment

Calculating the free space required on both sides of the bearing

$$C_{areg} = C_a + 0.5 (s + \beta k_1 B)$$

where

B = bearing width [mm]

C_a = minimum width of space required on both sides of the bearing [mm] (product table)

 C_{areq} = width of space required on both sides of the bearing [mm]

k₁ = misalignment factor (**product table**)

= relative axial displacement of rings, e.g. thermal shaft expansion [mm]

β = misaligment [°]

Offset mounting

Where considerable thermal changes in shaft length are a possibility, the inner ring can be mounted offset, relative to the outer ring, up to the axial displacement limit \mathbf{s}_1 or \mathbf{s}_2 (fig. 11, page 12) in the direction opposite to the expected axial displacement (fig. 14). The extended permissible axial displacement is used, for example, in the self-aligning bearing arrangements of drying cylinders in paper machines.

Bearings on sleeves

CARB bearings with a tapered bore can be mounted with:

- an adapter sleeve on plain or stepped shafts (fig. 15):
 - Adapter sleeves are supplied complete with a locking device.
 - Use appropriate SKF adapter sleeve assemblies to prevent the locking device from interfering with the cage (product table, page 30).
- a withdrawal sleeve on stepped shafts (fig. 16)

Check axial displacement carefully, as it could be that s₁ (**product table**, **page 18**) cannot be fully realized.

For additional information about sleeves, refer to *Adapter sleeves*, page 1065, and *Withdrawal sleeves*, page 1087 in *Rolling bearings*, PUB BU/P1 17000/1 EN.

Appropriate bearing housings

SKF standard bearing housings are available for most CARB bearings in the C 30, C 31, C 22 and C 23 series.

The two common arrangements when using standard housings are:

- CARB bearings with a tapered bore on an adapter sleeve and a plain shaft
- CARB bearings with a cylindrical bore on a stepped shaft

The comprehensive assortment of SKF bearing housings is provided online at skf.com/housings.

14 SKF

Mounting

During handling, the rings and roller complement of CARB toroidal roller bearings may be axially displaced from their normal position. This is especially likely where CARB bearings are mounted with the shaft or housing in the vertical position:

- **1** The roller complement, together with the inner or outer ring, will move downward and result in no more clearance.
- 2 When the bearing rings expand or contract as a result of an interference fit, preload is likely to result.

Therefore, wherever possible:

- Mount CARB bearings with the shaft or housing in the horizontal position.
- Rotate the inner or outer ring to align the rollers during mounting.

Where this is not feasible, use a bearing handling tool or other device to keep the bearing components arranged centrally.

Mounting bearings with a tapered bore

Bearings with a tapered bore are mounted with an interference fit, by using one of the following methods:

- 1 Measuring the clearance reduction (table 5, page 16)
- 2 Measuring the lock nut tightening angle (table 5)
- 3 Measuring the axial drive-up (table 5)
- 4 Applying the SKF Drive-up Method
 For bearings with d > 100 mm, SKF recommends using the SKF Drive-up
 Method. This is a fast, reliable and safe method to achieve the appropriate interference fit. Additional information is available online at skf.com/drive-up.
- **5** Measuring the inner ring expansion Additional information is available online at skf.com/sensormount.

For additional information about these mounting methods, refer to *Mounting* bearings with a tapered bore, page 203 in *Rolling bearings*, PUB BU/P117000/1 EN or the *SKF bearing maintenance handbook*.

Drive-up data for CARB bearings with a tapered bore

Bore dia	ameter		on of radial clearance		rive-up ¹⁾²⁾			Lock nut	t tightening angle ²⁾
d >	≤	min.	max.	s Taper 1: min.	:12 max.	Taper 1 min.	:30 max.	α Taper 1:1	12
mm		mm		mm				0	
24 30 40	30 40 50	0.01 0.015 0.02	0.015 0.02 0.025	0.25 0.3 0.37	0.29 0.35 0.44	- 0.75 0.95	- 0.9 1.1	100 115 130	
50 65 80	65 80 100	0.025 0.035 0.04	0.035 0.04 0.05	0.45 0.55 0.66	0.54 0.65 0.79	1.15 1.4 1.65	1.35 1.65 2	115 130 150	
100 120 140	120 140 160	0.05 0.06 0.07	0.06 0.075 0.085	0.79 0.93 1.05	0.95 1.1 1.3	2 2.3 2.65	2.35 2.8 3.2		
160 180 200	180 200 225	0.08 0.09 0.1	0.095 0.105 0.12	1.2 1.3 1.45	1.45 1.6 1.8	3 3.3 3.7	3.6 4 4.45		Applying the recommended values prevents the inner ring from creeping. but does not ensure cor-
225 250 280	250 280 315	0.11 0.12 0.135	0.13 0.15 0.165	1.6 1.8 2	1.95 2.15 2.4	4 4.5 4.95	4.85 5.4 6		rect radial internal clearance in operation. Additional influences from the bearing housing fit and temperature differences between
315 355 400	355 400 450	0.15 0.17 0.195	0.18 0.21 0.235	2.15 2.5 2.8	2.65 3 3.4	5.4 6.2 7	6.6 7.6 8.5		the inner and outer rings must be considered carefully when selecting the bearing radial internal clearance class (Selecting initial
450 500 560	500 560 630	0.215 0.245 0.275	0.265 0.3 0.34	3.1 3.4 3.8	3.8 4.1 4.65	7.8 8.4 9.5	9.5 10.3 11.6		internal clearance see page 183 in Rolling bearings, PUB BU/P1 17000/1 EN).
630 710 800	710 800 900	0.31 0.35 0.395	0.38 0.425 0.48	4.25 4.75 5.4	5.2 5.8 6.6	10.6 11.9 13.5	13 14.5 16.4		
900 1 000 1 120	1 000 1 120 1 250	0.44 0.49 0.55	0.535 0.6 0.67	6 6.4 7.1	7.3 7.8 8.7	15 16 17.8	18.3 19.5 21.7		
1 250 1 400 1 600	1 400 1 600 1 800	0.61 0.7 0.79	0.75 0.85 0.96	8 9.1 10.2	9.7 11.1 12.5	19.9 22.7 25.6	24.3 27.7 31.2		

¹⁾ Not valid for the SKF Drive-up Method.
2) The listed values are valid only for solid steel shafts and general applications. They are to be used as guideline values only, as it is difficult to establish an exact starting position. Also, the axial drive-up, s, differs slightly between the different bearings series.

d **30 – 70** mm

Princi	pal dime	ensions		oad ratings ic static	Fatique load limit	Speed rain Reference speed	tings E Limiting speed	Mass		Designations Bearing with cylindrical bore	taparad have
d	D	В	С	C_0	P_{u}	Speed	speeu			cyllilarical bore	tapered bore
mm			kN		kN	r/min		kg		_	
30	55 62 62	45 20 20	134 69.5 76.5	180 62 71	21.2 7.2 8.3	- 11 000 -	3 200 15 000 6 000	0.49 0.28 0.29		C 6006 V C 2206 TN9 C 2206 V	_ C 2206 KTN9 _
35	72 72	23 23	83 95	80 96	9.3 11.2	9 500 -	13 000 5 300	0.44 0.46	٠	C 2207 TN9 C 2207 V	C 2207 KTN9
0	62 80 80	22 23 23	76.5 90 102	100 86.5 104	11.8 10.2 12.2	- 8 000 -	4 300 11 000 4 500	0.25 0.51 0.53	•	C 4908 V C 2208 TN9 C 2208 V	_ C 2208 KTN9 _
5	68 85 85	40 23 23	132 93 106	200 93 110	23.6 10.8 12.9	- 7 500 -	2 600 11 000 4 300	0.53 0.56 0.58	٠	C 6909 V C 2209 TN9 C 2209 V	_ ► C 2209 KTN9 —
0	72 72 80	22 40 30	86.5 140 116	125 224 140	14.6 26 16.3	- - 5 600	3 600 2 400 7 500	0.29 0.54 0.55		C 4910 V C 6910 V C 4010 TN9	- - -
	80 90 90	30 23 23	137 98 114	176 100 122	20.8 11.8 14.3	- 7 000 -	3 000 9 500 3 800	0.58 0.6 0.63	٠	C 4010 V C 2210 TN9 C 2210 V	_ ► C 2210 KTN9
5	80 100 100	45 25 25	180 116 132	300 114 134	35.5 13.4 15.6	- 6 300 -	2 200 9 000 3 400	0.78 0.8 0.82		C 6911 V C 2211 TN9 C 2211 V	_ ► C 2211 KTN9 C 2211 KV
0	85 85 110	45 45 28	190 190 143	335 335 156	39 39 18.3	- - 5 600	- 1 900 7 500	0.83 0.83 1.1	•	C 6912-2NSV C 6912 V C 2212 TN9	- - ► C 2212 KTN9
	110	28	166	190	22.4	-	2 800	1.15		C 2212 V	C 2212 KV
55	90 100 120 120	34 35 31 31	156 102 180 204	260 173 180 216	30.5 20.4 21.2 25.5	- - 5 300 -	2 200 150 7 500 2 400	0.68 1.05 1.45 1.5	٠	C 5913 V C 4013-2CS5V/GEM9 C 2213 TN9 C 2213 V	- - C 2213 KTN9 C 2213 KV
0	125 125 150	31 31 51	186 212 405	196 228 430	22.8 26.5 49	5 000 - 3 800	7 000 2 400 5 000	1.5 1.55 4.3		C 2214 TN9 C 2214 V C 2314	C 2214 KTN9 - C 2314 K

SKF Explorer bearing

Popular item

Dimension	ıs					Abutm	ent and fi	llet dimer	nsions			Calculation factors	
d	d ₂ ≈	D ₁ ≈	r _{1.2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂
mm						mm						_	
30	38.5	47.3	1	7.9	4.9	34.6	43	-	50.4	_	1	0.102	0.096
	37.4	53.1	1	4.5	-	35.6	37.4	50.6	56.4	0.3	1	0.101	0.111
	37.4	53.1	1	4.5	1.5	35.6	49	-	56.4	_	1	0.101	0.111
35	44.8 44.8	60.7 60.7	1.1 1.1	5.7 5.7	- 2.7	42 42	44.8 57	58.5 -	65 65	0.1	1	0.094 0.094	0.121 0.121
40	46.1	55.3	0.6	4.7	1.7	43.2	52	-	58.8	-	0.6	0.099	0.114
	52.4	69.9	1.1	7.1	-	47	52.4	67.1	73	0.3	1	0.093	0.128
	52.4	69.9	1.1	7.1	4.1	47	66	-	73	-	1	0.093	0.128
45	52	59.5	0.6	9.4	6.4	48.2	55	-	64.8	-	0.6	0.091	0.113
	55.6	73.1	1.1	7.1	-	52	55.6	70.4	78	0.3	1	0.095	0.128
	55.6	73.1	1.1	7.1	4.1	52	69	-	78	-	1	0.095	0.128
50	56.9	66.1	0.6	4.7	1.7	53.2	62	-	68.8	-	0.6	0.103	0.114
	57.5	65	0.6	9.4	6.4	53.2	61	-	68.8	-	0.6	0.093	0.113
	57.6	70.8	1	6	-	54.6	57.6	69.7	75.4	0.1	1	0.103	0.107
	57.6	70.8	1	6	3	54.6	67	-	75.4	-	1	0.103	0.107
	61.9	79.4	1.1	7.1	-	57	61.9	76.7	83	-0.8	1	0.097	0.128
	61.9	79.4	1.1	7.1	3.9	57	73	-	83	-	1	0.097	0.128
55	62.7	71.5	1	7.9	4.9	59.6	67	-	75.4	-	1	0.107	0.096
	65.8	86.7	1.5	8.6	-	64	65.8	83.1	91	0.3	1.5	0.094	0.133
	65.8	86.7	1.5	8.6	5.4	64	80	-	91	-	1.5	0.094	0.133
60	68.7	77.5	1	-	0.5	64.6	68.7	-	80.4	-	1	0.108	0.096
	68.7	77.5	1	7.9	4.7	64.6	72	-	80.4	-	1	0.108	0.096
	77.1	97.9	1.5	8.5	-	69	77.1	94.7	101	0.3	1.5	0.1	0.123
	77.1	97.9	1.5	8.5	5.3	69	91	-	101	-	1.5	0.1	0.123
65	72.8	82.7	1	6.0	2.8	69.6	76	-	85.4	-	1	0.113	0.097
	78.6	87.5	1.1	-	5.9	71	78.6	-	94	-	1	0.071	0.181
	79	106	1.5	9.6	-	74	79	102	111	0.2	1.5	0.097	0.127
	79	106	1.5	9.6	5.3	74	97	-	111	-	1.5	0.097	0.127
70	83.7	111	1.5	9.6	-	79	83.7	107	116	0.4	1.5	0.098	0.127
	83.7	111	1.5	9.6	5.3	79	102	-	116	-	1.5	0.098	0.127
	91.4	130	2.1	9.1	-	82	106	119	138	2.2	2	0.11	0.099

^{1) →} Verification of axial displacement, page 12 2) → Free space on both sides of the bearing, page 14, negative values used only for calculation

d **75 – 110** mm

Princi	pal dime	nsions	Basic lo	oad ratings c static	Fatique load limit	Speed rat Reference speed		Mass		Designations Bearing with cylindrical bore	tanored here
l	D	В	С	C_0	P_{u}	speeu	speeu			cyllilarical bore	tapered bore
nm			kN		kN	r/min		kg		_	
75	105 105 105	40 40 54	166 204 204	232 325 325	30 38 37.5	- - -	130 1 900 140	3.9 1.1 1.4		C 5915-2CS5V/GEM9 C 5915 V C 6915-2CS5V/GEM9	- - -
	105 115 130	54 40 31	204 208 196	325 345 208	37.5 40.5 24	- - 4 800	1 900 2 000 6 700	1.4 1.6 1.6	•	C 6915 V/VE240 C 4015 V C 2215	- - ► C 2215 K
	130 160	31 55	220 425	240 465	28 52	- 3 600	2 200 4 800	1.65 5.3	•	C 2215 V C 2315	C 2215 KV C 2315 K
30	140 140 170	33 33 58	220 255 510	250 305 550	28.5 34.5 60	4 300 - 3 400	6 000 2 000 4 500	2.05 2.15 6.3		C 2216 C 2216 V C 2316	► C 2216 K C 2216 KV ► C 2316 K
85	150 180	36 60	275 540	320 600	35.5 64	4 000 3 200	5 600 4 300	2.65 7.4		C 2217 C 2317	► C 2217 K ► C 2317 K
90	125 125 125	46 46 46	193 224 224	325 400 400	37.5 44 45.5	2 600 - -	4 000 110 1 600	1.75 1.75 1.75	•	C 5918 MB C 5918-2CS5V/GEM9 C 5918 V	- - -
	160 190	40 64	325 610	380 695	41.5 73.5	3 800 2 800	5 300 4 000	3.3 8.65		C 2218 C 2318	► C 2218 K C 2318 K
95	200	67	610	695	73.5	2 800	4 000	10		C 2319	C 2319 K
100	150 150 165	50 67 52	355 510 475	530 865 655	58.5 95 71	- - -	1 400 1 100 1 300	3.05 4.3 4.45	•	C 4020 V C 5020 V C 3120 V	- -
	165 165 180	65 65 46	475 475 415	655 655 465	69.5 71 49	- - 3 600	90 1 300 4 800	5.2 5.3 4.95	•	C 4120-2CS5V/GEM9 C 4120 V/VE240 C 2220	- - ► C 2220 K
	215	73	800	880	90	2 600	3 600	12.5	٠	C 2320	► C 2320 K
110	170 170 170	60 60 60	415 430 500	585 655 800	63 69.5 85	- 2 600 -	85 3 400 1 200	4.6 5.3 5.2		C 4022-2CS5V/GEM9 C 4022 MB C 4022 V	- - -
	180 180 200	69 69 53	500 670 530	710 1 000 620	75 104 64	- - 3 200	80 900 4 300	6.6 7.1 7		C 4122-2CS5V/GEM9 C 4122 V C 2222	- - ► C 2222 K

SKF Explorer bearing

Popular item

Dimension	ns					Abutm	ent and f	llet dime	nsions			Calcula	Calculation factors	
d	d ₂ ≈	D ₁ ≈	r _{1.2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂	
mm						mm						-		
75	82.9	96.1	1	-	5	79.6	84.1	-	100	_	1	0.083	0.142	
	83.6	95.5	1	9.4	6.2	79.6	89	-	100	_	1	0.098	0.114	
	83.6	95.5	1	-	7.1	79.6	83	-	100	_	1	0.073	0.154	
	83.6	95.5	1	9.2	9.2	79.6	88	-	100	-	1	0.073	0.154	
	88.7	101	1.1	9.4	5.1	81	94	-	109	-	1	0.099	0.114	
	88.5	116	1.5	9.6	-	84	98.3	106	121	1.2	1.5	0.099	0.127	
	88.5	116	1.5	9.6	5.3	84	107	-	121	-	1.5	0.099	0.127	
	98.5	137	2.1	13.1	-	87	113	126	148	2.2	2	0.103	0.107	
80	98.1	125	2	9.1	-	91	107	116	129	1.2	2	0.104	0.121	
	98.1	125	2	9.1	4.8	91	116	-	129	-	2	0.104	0.121	
	102	146	2.1	10.1	-	92	119	133	158	2.4	2	0.107	0.101	
85	103 110	133 153	2	7.1 12.1	- -	96 99	114 126	123 141	139 166	1.3 2.4	2 2.5	0.114 0.105	0.105 0.105	
90	100	113	1.1	2.9	-	96	99	113	119	-0.9	1	0	0.131	
	102	113	1.1	-	4.5	96	101	-	119	-	1	0.089	0.131	
	102	113	1.1	15.4	11.1	96	106	-	119	-	1	0.089	0.131	
	111 119	144 166	2	9.5 9.6	- -	101 104	124 138	133 154	149 176	1.4 2	2 2.5	0.104 0.108	0.117 0.101	
95	119	166	3	12.6	_	109	138	154	186	2.1	2.5	0.103	0.106	
100	113	135	1.5	14	9.7	107	126	-	143	-	1.5	0.098	0.118	
	114	136	1.5	9.3	5	107	127	-	143	-	1.5	0.112	0.094	
	119	150	2	10.1	4.7	111	136	-	154	-	2	0.112	0.1	
	120	148	2	-	7.3	111	119	-	154	-	2	0.09	0.125	
	120	148	2	17.7	17.7	111	135	-	154	-	2	0.09	0.125	
	118	157	2.1	10.1	-	112	134	146	168	0.9	2	0.108	0.11	
	126	185	3	11	-	114	150	168	201	3.2	2.5	0.113	0.096	
110	128	155	2	-	7.9	119	127	-	161	-	2	0.142	0.083	
	126	150	2	4.8	-	120	125	146	160	1.3	2	0	0.103	
	126	150	2	12	6.6	120	136	-	160	-	2	0.107	0.103	
	130	161	2	-	8.2	121	130	-	169	-	2	0.086	0.133	
	132	163	2	11.4	4.6	121	149	-	169	-	2	0.111	0.097	
	132	176	2.1	11.1	–	122	150	161	188	1.9	2	0.113	0.103	

^{1) →} Verification of axial displacement, page 12 2) → Free space on both sides of the bearing, page 14, negative values used only for calculation

d **120 – 170** mm

Princi	pal dime	nsions	Basic loa dynamic	ad ratings static	Fatique load limit	Speed ra Reference speed	tings Limiting speed	Mass	Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	P_{u}	speeu	speeu		cylinarical bore	тарегец поге
mm			kN		kN	r/min		kg	_	
120	180 180 180	46 60 60	430 430 430	640 640 640	65.5 67 65.5	- - -	1 400 80 1 400	4.1 5.1 5.05	C 3024 V C 4024-2CS5V/GEM9 C 4024 V/VE240	- - C 4024 K30V/VE240
	180 200 215	60 80 76	530 780 750	880 1 120 980	91.5 114 98	- - 2 400	1 100 750 3 200	5.55 10 12	► C 4024 V C 4124 V ► C 3224	C 4024 K30V - ► C 3224 K
130	200 200 200	69 69 69	550 620 720	830 930 1 120	85 93 112	- 2 200 -	70 2 800 850	7.5 7.85 8.15	C 4026-2CS5V/GEM9 ► C 4026 ► C 4026 V	_ C 4026 K30 C 4026 K30V
	210 230 280	80 64 93	750 735 980	1 100 930 1 220	108 91.5 114	- 2 800 2 400	70 3 800 3 200	10.5 11.5 27	C 4126-2CS5V/GEM9 ► C 2226 C 2326 K/VE240	- ► C 2226 K -
140	210 225 225	69 85 85	750 780 780	1 220 1 200 1 200	120 116 116	- - -	800 63 800	8.6 12.5 12.5	► C 4028 V C 4128-2C55V/GEM9 C 4128 V/VE240	C 4028 K30V - -
	250	68	830	1 060	102	2 400	3 200	14	► C 2228	► C 2228 K
150	225 225 225	56 56 75	540 585 585	850 960 965	81.5 93 93	2 400 - -	3 200 1 000 63	8.45 8 10	C 3030 MB C 3030 V C 4030-2CS5V/GEM9	C 3030 KV
	225 250 250	75 80 100	780 880 1 220	1 320 1 290 1 860	127 122 176	_ 2 000 _	750 2 800 450	10.5 15.5 20	► C 4030 V C 3130 ► C 4130 V	C 4030 K30V C 3130 K
	270	73	980	1 220	114	2 400	3 200	18	► C 2230	C 2230 K
160	240 240 240	80 80 80	765 830 915	1 160 1 290 1 460	110 122 140	1 700 - -	2 400 60 600	12.5 12.5 13	► C 4032 C 4032-2CS5V/GEM9 ► C 4032 V	C 4032 K30 C 4032 K30V
	270 290	86 104	1 000 1 370	1 400 1 830	129 170	1 900 1 800	2 600 2 400	21.5 29.5	C 3132 C 3232	C 3132 K C 3232 K
170	260 260 310	67 90 86	750 1 140 1 270	1 080 1 860 1 630	100 173 146	2 200 - 1 900	2 800 500 2 600	12.5 17.5 28	C 3034 M C 4034 V C 2234	_ C 4034 K30V C 2234 K

SKF Explorer bearing

Popular item

Dimensio	ns					Abutm	ent and f	llet dime	nsions			Calcula	tion factors
d	d ₂ ≈	D ₁ ≈	r _{1.2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂
mm						mm						_	
120	138	166	2	10.6	3.8	130	154	-	170	-	2	0.111	0.109
	140	164	2	-	7.5	129	139	-	171	-	2	0.085	0.142
	139	164	2	17.8	17.8	130	152	-	170	-	2	0.085	0.142
	140	164	2	12	5.2	130	152	-	170	-	2	0.109	0.103
	140	176	2	18	11.2	131	160	-	189	-	2	0.104	0.103
	149	190	2.1	17.1	-	132	162	179	203	2.4	2	0.103	0.108
130	152	182	2	-	8.2	139	151	-	191	-	2	0.089	0.133
	149	181	2	11.4	-	140	157	174	190	1.9	2	0.113	0.097
	149	181	2	11.4	4.6	140	167	-	190	-	2	0.113	0.097
	153	190	2	-	7.5	141	152	-	199	-	2	0.09	0.126
	152	199	3	9.6	-	144	171	185	216	1.1	2.5	0.113	0.101
	179	234	4	31.2	-	-	-	216	263	-7.5	3	0.093	0.122
140	161	193	2	11.4	5.9	150	177	-	200	-	2	0.115	0.097
	167	204	2.1	-	8.9	152	166	-	213	-	2	0.086	0.134
	166	204	2.1	9.7	9.7	152	189	-	213	-	2	0.086	0.134
	173	223	3	13.7	_	154	191	207	236	2.3	2.5	0.109	0.108
150	173	204	2.1	8.7	-	161	172	198	214	1.3	2	0	0.108
	174	204	2.1	14.1	7.3	161	190	-	214	-	2	0.113	0.108
	175	204	2.1	-	10.8	161	174	-	214	-	2	0.084	0.144
	173	204	2.1	17.4	10.6	161	189	-	214	-	2	0.107	0.106
	182	226	2.1	13.9	-	162	196	214	238	2.3	2	0.12	0.092
	179	222	2.1	20	10.1	162	204	-	238	-	2	0.105	0.103
	177	236	3	11.2	_	164	202	215	256	2.5	2.5	0.119	0.096
160	181	217	2.1	18.1	-	171	190	209	229	2.2	2	0.109	0.103
	180	218	2.1	-	7.7	171	180	-	229	-	2	0.093	0.126
	181	217	2.1	18.1	8.2	171	199	-	229	-	2	0.109	0.103
	191 194	240 256	2.1 3	10.3 19.3		172 174	208 218	229 242	258 276	2.4 2.6	2 2.5	0.112 0.112	0.099 0.096
170	195	236	2.1	19	-	181	210	226	249	1.2	2	0.105	0.117
	195	236	2.1	17.1	7.2	181	218	-	249	-	2	0.108	0.103
	209	274	4	16.4	-	187	233	254	293	3	3	0.114	0.1

 [→] Verification of axial displacement, page 12
 → Free space on both sides of the bearing, page 14, negative values used only for calculation

d **180 – 360** mm

Princi	pal dime	nsions	Basic lo dynamic	ad ratings static	Fatique load limit	Speed ra	e Limiting	Mass	Designations Bearing with	how J b .
l	D	В	С	C_0	P_{u}	speed	speed		cylindrical bore	tapered bore
nm			kN		kN	r/min		kg	_	
.80	280	74	880	1 340	122	2 000	2 600	17	C 3036	C 3036 K
	280	100	1 320	2 120	196	-	430	23.5	C 4036 V	-
	300	96	1 250	1 730	156	1 700	2 400	26.5	► C 3136	► C 3136 K
	300	118	1 760	2 700	240	-	220	34.5	C 4136 V	–
	320	112	1 530	2 200	193	1 500	2 000	38	C 3236	C 3236 K
.90	290	75	930	1 460	132	1 800	2 400	17.5	C 3038	C 3038 K
	320	104	1 700	2 550	224	-	190	34	C 3138 V	C 3138 KV
	340	92	1 370	1 730	153	1 800	2 400	34.5	► C 2238	C 2238 K
200	310 310 340	82 109 112	1 120 1 630 1 600	1 730 2 650 2 320	153 236 200	1 700 - 1 500	2 400 260 2 000	22.5 30.5 41	► C 3040 C 4040 V ► C 3140	C 3040 K ► C 3140 K
20	340	90	1 320	2 040	176	1 600	2 200	29.5	► C 3044	► C 3044 K
	340	118	1 930	3 250	280	-	200	40	C 4044 V	C 4044 K30V
	370	120	1 900	2 900	245	1 400	1 800	52	► C 3144	► C 3144 K
	400	108	2 000	2 500	208	1 500	2 000	57.5	C 2244	C 2244 K
40	360	92	1 340	2 160	183	1 500	2 000	32	C 3048	C 3048 K
	400	128	2 320	3 450	285	1 300	1 700	64	► C 3148	► C 3148 K
60	400	104	1 760	2 850	232	1 300	1 800	47	C 3052	C 3052 K
	440	144	2 650	4 050	325	1 100	1 500	88	► C 3152	► C 3152 K
80	420	106	1 860	3 100	250	1 200	1 600	50.5	C 3056	C 3056 K
	460	146	2 850	4 500	355	1 100	1 400	94.5	C 3156	C 3156 K
00	460	118	2 160	3 750	290	1 100	1 500	72	C 3060 M	C 3060 KM
	460	160	2 900	4 900	390	900	1 200	95.5	C 4060 M	C 4060 K30M
	500	160	3 250	5 200	400	950	1 300	125	C 3160	C 3160 K
20	480 540	121 176	2 280 4 150	4 000 6 300	305 480	1 000 900	1 400 1 300	78 164	C 3064 M C 3164 M	C 3064 KM C 3164 KM
40	520 580 580	133 190 243	2 900 4 900 5 600	5 000 7 500 9 150	375 560 680	950 850 670	1 300 1 100 900	100 205 271	C 3068 M C 3168 M C 4168 K30MB	C 3068 KM C 3168 KM
60	480	90	1 760	3 250	245	1 000	1 400	45	C 3972 M	C 3972 KM
	540	134	2 900	5 000	375	900	1 300	106	C 3072 M	C 3072 KM
	600	192	5 000	8 000	585	800	1 100	220	C 3172 M	C 3172 KM

SKF Explorer bearing

Popular item

Dimension	ns					Abutm	ent and f	illet dime	nsions			Calcula	tion factors
d	d ₂ ≈	D ₁ ≈	r _{1.2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂
mm						mm						_	
180	209	251	2.1	15.1	-	191	223	239	269	2	2	0.112	0.105
	203	247	2.1	20.1	10.2	191	229	-	269	-	2	0.107	0.103
	210	266	3	23.2	-	194	231	252	286	2.2	2.5	0.102	0.111
	211 228	265 289	3 4	20 27.3	10.1	194 197	223 249	- 271	286 303	- 3.2	2.5 3	0.1 0.107	0.108 0.104
190	225	266	2.1	16.1	-	201	238	254	279	1.9	2	0.113	0.107
	228	289	3	19	9.1	204	267	-	306	-	2.5	0.115	0.096
	224	296	4	22.5	-	207	254	275	323	1.6	3	0.108	0.108
200	235	285	2.1	15.2	-	211	250	272	299	2.9	2	0.123	0.095
	228	280	2.1	21	11.1	211	263	-	299	-	2	0.11	0.101
	244	305	3	27.3	-	214	264	288	326	-0.6	2.5	0.108	0.104
220	257	310	3	17.2	-	233	274	295	327	3.1	2.5	0.114	0.104
	251	306	3	20	10.1	233	284	-	327	-	2.5	0.115	0.095
	268	333	4	22.3	-	237	290	315	353	3.5	3	0.114	0.097
	259	350	4	20.5	-	237	298	321	383	1.7	3	0.113	0.101
240	276 281	329 357	3 4	19.2 20.4	_	253 257	293 309	312 334	347 383	1.3 3.7	2.5 3	0.113 0.116	0.106 0.095
260	305 314	367 394	4 4	19.3 26.4	- -	275 277	326 341	349 371	385 423	3.4 4.1	3	0.122 0.115	0.096 0.096
280	328	389	4	21.3	-	295	352	373	405	1.8	3	0.121	0.098
	336	416	5	28.4	-	300	363	392	440	4.1	4	0.115	0.097
300	351	417	4	20	-	315	376	402	445	1.7	3	0.123	0.095
	338	410	4	30.4	-	315	362	396	445	2.8	3	0.105	0.106
	362	448	5	30.5	-	320	392	422	480	4.9	4	0.106	0.106
320	375	441	4	23.3	-	335	398	426	465	1.8	3	0.121	0.098
	371	477	5	26.7	-	340	411	452	520	4.2	4	0.114	0.096
340	394	475	5	25	-	358	430	454	502	2.1	4	0.12	0.099
	402	517	5	25.9	-	360	446	489	560	4.2	4	0.118	0.093
	403	514	5	20.2	-	-	-	487	560	10.7	4	0	0.096
360	394	450	3	17.2	-	373	409	435	467	1.6	2.5	0.127	0.104
	416	497	5	26.4	-	378	448	476	522	2	4	0.12	0.099
	423	537	5	27.9	-	380	464	507	580	3.9	4	0.117	0.094

 [→] Verification of axial displacement, page 12
 → Free space on both sides of the bearing, page 14, negative values used only for calculation

d **380 – 630** mm

Cylindrical bore

Tapered bore

Princi	pal dimer	nsions	Basic loa dynamic	n d ratings static	Fatique load limit	Speed rati Reference speed		Mass	Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	P_{u}	Specu	Speed		cymanearbore	tapered bore
mm			kN		kN	r/min		kg	-	
380	560	135	3 000	5 200	380	900	1 200	110	C 3076 M	C 3076 KM
	620	194	4 400	7 200	520	750	1 000	243	C 3176 MB	C 3176 KMB
400	540 600 650	106 148 200	2 120 3 650 4 800	4 000 6 200 8 300	290 450 585	900 800 700	1 300 1 100 950	66.5 145 258	C 3980 KM C 3080 M C 3180 M	_ C 3080 KM C 3180 KM
420	560	106	2 160	4 250	310	850	1 200	72	C 3984 M	C 3984 KM
	620	150	3 800	6 400	455	800	1 100	150	C 3084 M	C 3084 KM
	700	224	6 000	10 400	720	670	900	355	C 3184 M	C 3184 KM
440	650	157	3 750	6 400	450	750	1 000	190	C 3088 MB	C 3088 KMB
	720	226	6 700	11 400	780	630	850	385	C 3188 MB	C 3188 KMB
	720	280	7 500	12 900	900	500	670	471	C 4188 MB	C 4188 K30MB
460	680	163	4 000	7 500	520	700	950	205	C 3092 M	C 3092 KM
	760	240	6 800	12 000	815	600	800	435	C 3192 M	C 3192 KM
	760	300	8 650	15 000	1 020	480	630	571	C 4192 MB	C 4192 K30MB
	830	296	9 300	15 000	1 000	530	750	735	C 3292 MB	C 3292 KMB
480	650	128	3 100	6 100	425	750	1 000	120	C 3996 M	_
	700	165	4 050	7 800	530	670	900	215	C 3096 M	C 3096 KM
	790	248	6 950	12 500	830	560	750	523	C 3196 MB	C 3196 KMB
500	670	128	3 150	6 300	430	700	950	125	C 39/500 M	C 39/500 KM
	720	167	4 250	8 300	560	630	900	225	C 30/500 M	-
	830	264	7 500	12 700	850	530	750	560	C 31/500 M	C 31/500 KM
	830	325	9 800	17 600	1 160	430	560	710	C 41/500 M	C 41/500 K30M
530	780	185	5 100	9 500	630	600	800	300	C 30/530 M	► C 30/530 KM
	870	272	8 800	15 600	1 020	500	670	636	C 31/530 M	C 31/530 KM
560	750	140	3 600	7 350	490	600	850	175	C 39/560 M	C 39/560 KM
	820	195	5 600	11 000	720	530	750	350	C 30/560 M	C 30/560 KM
	920	355	10 400	19 600	1 270	380	500	989	C 41/560 K30MB	-
600	870	200	6 300	12 200	780	500	700	395	C 30/600 M	C 30/600 KM
	980	300	10 200	18 000	1 140	430	600	929	C 31/600 MB	C 31/600 KMB
	980	375	12 900	23 200	1 460	340	450	1 150	C 41/600 MB	C 41/600 K30ME
630	850 920 1 030	165 212 315	4 650 6 800 11 800	10 000 12 900 20 800	640 815 1 290	530 480 400	700 670 560	275 470 1 090	C 39/630 M C 30/630 M C 31/630 MB	C 39/630 KM C 30/630 KM C 31/630 KMB

SKF Explorer bearing

Popular item

Dimensio	ns					Abutm	ent and fi	llet dime	nsions			Calcula	tion factors
d	d ₂ ≈	D ₁ ≈	r _{1.2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂
mm						mm						_	
380	431 446	512 551	5 5	27 25.4	- -	398 400	462 445	491 526	542 600	2 7.3	4	0.12 0	0.1 0.106
400	439	501	4	21	-	-	-	487	525	1.8	3	0.13	0.098
	457	554	5	30.6	-	418	486	523	582	2.1	4	0.121	0.099
	488	589	6	50.7	-	426	525	566	624	4	5	0.106	0.109
420	461	523	4	21.3	-	435	484	510	545	1.8	3	0.132	0.098
	475	571	5	32.6	-	438	513	544	602	2.2	4	0.12	0.1
	507	618	6	34.8	-	446	544	592	674	3.8	5	0.113	0.098
440	490	587	6	24.6	-	463	489	563	627	1.7	5	0	0.105
	522	647	6	16	-	466	521	613	694	7.5	5	0	0.099
	510	637	6	27.8	-	466	509	606	694	7.3	5	0	0.1
460	539	624	6	33.5	-	483	570	604	657	2.3	5	0.114	0.108
	559	679	7.5	51	-	492	603	651	728	4.2	6	0.108	0.105
	537	671	7.5	23.3	-	477	536	638	728	12.6	6	0	0.097
	555	720	7.5	32.4	-	492	554	676	798	11	6	0	0.106
480	528	604	5	20.4	-	498	552	585	632	2	4	0.133	0.095
	555	640	6	35.5	-	503	586	620	677	2.3	5	0.113	0.11
	578	701	7.5	35.1	-	512	577	673	758	8.7	6	0	0.109
500	555	632	5	20.4	-	518	580	614	652	2	4	0.135	0.095
	571	656	6	37.5	-	523	600	637	697	2.3	5	0.113	0.111
	605	738	7.5	75.3	-	532	654	706	798	-11.7	6	0.099	0.116
	600	740	7.5	46.3	-	532	637	721	798	5.9	6	0.115	0.093
530	601	705	6	35.7	_	553	638	681	757	2.5	5	0.12	0.101
	635	781	7.5	44.4	_	562	685	745	838	5.4	6	0.115	0.097
560	621	701	5	32.4	-	578	648	682	732	2.3	4	0.128	0.104
	659	761	6	45.7	-	583	696	736	797	2.7	5	0.116	0.106
	664	802	7.5	23	-	-	-	770	888	13.8	6	0	0.101
600	692	805	6	35.9	-	623	728	776	847	2.7	5	0.125	0.098
	705	871	7.5	26.1	-	632	704	827	948	5.1	6	0	0.107
	697	869	7.5	24.6	-	632	696	823	948	5.5	6	0	0.097
630	699	785	6	35.5	_	653	723	766	827	2.4	5	0.121	0.11
	716	840	7.5	48.1	_	658	759	807	892	2.9	6	0.118	0.104
	741	916	7.5	23.8	_	662	740	868	998	5.7	6	0	0.102

 [→] Verification of axial displacement, page 12
 → Free space on both sides of the bearing, page 14, negative values used only for calculation

d **670 – 1 700** mm

Cylindrical bore

Tapered bore

Princip	al dimer	sions	Basic loa dynamic	ad ratings static	Fatique load limit	Speed rat Reference speed	Limiting	Mass	Designations Bearing with cylindrical bore	topograd have
t	D	В	С	C_0	P_u	speed	speed		cylinurical bore	tapered bore
nm			kN		kN	r/min		kg	-	
570	980 1 090 1 090	230 336 412	8 150 11 800 16 000	16 300 21 200 29 000	1 000 1 290 1 760	430 380 300	600 500 400	590 1 300 1 570	C 30/670 M C 31/670 MB C 41/670 MB	C 30/670 KM C 31/670 KMB C 41/670 K30MB
710	950 1 030 1 030	180 236 315	6 000 8 800 10 600	12 500 17 300 21 600	780 1 060 1 320	450 400 320	630 560 430	360 655 865	C 39/710 M C 30/710 M C 40/710 M	C 39/710 KM C 30/710 KM C 40/710 K30M
	1150	345	13 400	25 500	1 530	340	480	1 470	C 31/710 MB	C 31/710 KMB
' 50	1 000 1 090 1 220	185 250 365	6 100 9 500 16 000	13 400 19 300 30 500	815 1 160 1 800	430 380 320	560 530 450	410 838 1 800	C 39/750 M C 30/750 MB C 31/750 MB	C 39/750 KM C 30/750 KMB C 31/750 KMB
300	1 060 1 150	195 258	6 400 9 300	14 600 19 300	880 1 140	380 360	530 480	480 941	C 39/800 M C 30/800 MB	_ C 30/800 KMB
350	1 120 1 220	200 272	7 350 11 600	16 300 24 500	960 1 430	360 320	480 450	540 1 110	C 39/850 M C 30/850 MB	C 39/850 KM C 30/850 KMB
900	1 280	280	12 700	26 500	1 530	300	400	1 200	C 30/900 MB	C 30/900 KMB
50	1 360	300	13 200	28 500	1 600	280	380	1 480	C 30/950 MB	-
L 000	1 420 1 580	308 462	13 700 20 400	30 500 45 500	1 700 2 500	260 220	360 300	1 680 3 800	C 30/1000 MB C 31/1000 MB	_ C 31/1000 KMB
L 060	1 400	250	11 000	26 000	1 430	260	360	1 120	C 39/1060 MB	C 39/1060 KMB
120	1 460	335	13 200	31 500	1 700	200	260	1 630	C 49/1120 MB1	-
180	1 540	272	13 400	33 500	1 800	220	300	1 400	► C 39/1180 MB	-
L 500	1 950	335	19 600	48 000	2 400	140	200	2 710	► C 39/1500 MB	-
700	2 180	355	24 000	62 000	3 000	110	150	3 510	C 39/1700 MB	-

SKF Explorer bearing

Popular item

Dimensions	5					Abutmo	ent and fil	llet dimen	sions			Calcula	tion factors
d	d ₂ ≈	D ₁ ≈	r _{1.2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂
mm						mm						_	
670	775 792 779	905 964 967	7.5 7.5 7.5	41.1 41 37.2	_ _ _	698 702 702	820 791 778	874 922 920	952 1 058 1 058	2.9 11.4 16.7	6 6 6	0.121 0 0	0.101 0.109 0.097
710	772 806 803	877 946 935	6 7.5 7.5	30.7 47.3 51.2	- - -	733 738 738	797 853 843	847 908 911	927 1 002 1 002	2.7 3.2 4.4	5 6 6	0.131 0.119 0.113	0.098 0.104 0.101
	842	1 013	9.5	47.8	_	750	841	973	1 110	11.1	8	0	0.111
750	830 854 884	934 993 1 077	6 7.5 9.5	35.7 28.6 33	- - -	773 778 790	856 852 883	908 961 1 025	977 1 062 1 180	2.7 7.4 9.3	5 6 8	0.131 0 0	0.101 0.11 0.094
800	888 908	990 1 048	6 7.5	45.7 45.9	-	823 828	917 905	967 1 020	1 037 1 122	2.9 7.2	5 6	0.126 0	0.106 0.114
850	940 964	1 053 1 113	6 7.5	35.9 24	-	873 878	963 963	1 025 1 077	1 097 1 192	2.9 7.7	5 6	0.135 0	0.098 0.097
900	1 005	1 173	7.5	24.8	_	928	1 003	1 126	1 252	9	6	0	0.1
950	1 075	1 241	7.5	37.8	-	978	1 073	1 204	1 332	8.7	6	0	0.107
1000	1 130 1 191	1 295 1 372	7.5 12	44.9 70.1	- -	1 028 1 048	1 128 1 189	1 260 1 338	1 392 1 532	8.5 15	6 10	0	0.11 0.108
1 060	1168	1 308	7.5	38.4	-	1 088	1 164	1 282	1 372	6	6	0	0.11
1 120	1 225	1362	7.5	76.1	-	1 148	1 220	1 344	1 432	47.6	6	0	0.12
1 180	1 291	1 439	7.5	19.6	-	1 208	1 289	1 405	1 512	6.2	6	0	0.097
1 500	1 636	1 831	9.5	35	-	1 534	1 633	1 788	1 916	9.3	8	0	0.096
1700	1841	2 053	9.5	40.6		1 734	1 837	2 008	2 146	8.4	8	0	0.103

 [→] Verification of axial displacement, page 12
 → Free space on both sides of the bearing, page 14, negative values used only for calculation

CARB toroidal roller bearings on an adapter sleeve

d₁ **25 – 410** mm

Princip	al dimens	sions	Abutme	nt and fill	et dimensions	Mass	Designations	CL 2
d_1	D	В	d _a max.	d _b min.	B _a min.	Bearing + sleeve	Bearing ¹⁾	Sleeve ²⁾
mm			mm			kg	_	
25	62	20	37.4	33	5	0.37	C 2206 KTN9	H 306 E
30	72	23	44.8	39	5	0.59	C 2207 KTN9	H 307 E
35	80	23	52.4	44	5	0.69	C 2208 KTN9	H 308 E
40	85	23	55.6	50	7	0.76	► C 2209 KTN9	H 309 E
45	90	23	61.9	55	9	0.85	► C 2210 KTN9	H 310 E
50	100 100	25 25	65.8 80	60 60	10 10	1.1 1.15	► C 2211 KTN9 C 2211 KV	H 311 E H 311 E
55	110 110	28 28	77.1 91	65 65	9 9	1.45 1.5	► C 2212 KTN9 C 2212 KV	H 312 E H 312
60	120 120 125	31 31 31	79 97 83.7	70 70 75	8 8 9	1.8 1.9 2.1	C 2213 KTN9 C 2213 KV C 2214 KTN9	H 313 E H 313 H 314 E
	150	51	106	76	6	5.1	C 2314 K	H 2314
65	130 130 160	31 31 55	98.3 107 113	80 80 82	12 12 6	2.3 2.4 6.2	► C 2215 K C 2215 KV ► C 2315 K	H 315 E H 315 H 2315
70	140 140 170	33 33 58	107 116 119	85 85 88	12 12 6	2.9 3 7.4	► C 2216 K C 2216 KV ► C 2316 K	H 316 E H 316 H 2316
75	150 180	36 60	114 126	91 94	12 7	3.7 8.5	► C 2217 K ► C 2317 K	H 317 E H 2317
80	160 190	40 64	124 138	96 100	10 7	4.5 10	► C 2218 K C 2318 K	H 318 E H 2318
85	200	67	138	105	7	11.5	C 2319 K	H 2319
90	180 215	46 73	134 150	108 110	8 7	6.3 14.5	► C 2220 K ► C 2320 K	H 320 E H 2320
100	200	53	150	118	6	8.8	► C 2222 K	H 322 E
110	215	76	162	131	17	14	► C 3224 K	H 2324 L

SKF Explorer bearing

► Popular item

1. For additional bearing data → product table, page 18

2. For additional adapter sleeve data → product table, page 1072 in Rolling bearings, PUB BU/P1 17000/1 EN.

Princip	al dimens	sions	Abutme	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	d _a max.	d _b min.	B _a min.	Siceve		
mm			mm			kg	_	
115	230 280	64 93	171 201	138 142	8	14 31.5	C 2226 K C 2326 K/VE240	H 3126 L H 2326
125	250	68	191	149	8	17.5	► C 2228 K	H 3128 L
135	225	56	190	158	8	11.5	C 3030 KV	H 3030
	250	80	196	160	8	20	C 3130 K	H 3130 L
	270	73	202	160	15	23	C 2230 K	H 3130 L
140	270	86	208	170	8	27	C 3132 K	H 3132 L
	290	104	218	174	18	36.5	C 3232 K	H 2332 L
150	310	86	233	180	10	35	C 2234 K	H 3134 L
160	280	74	223	189	9	23	C 3036 K	H 3036
	300	96	231	191	8	34	C 3136 K	H 3136 L
	320	112	249	195	22	47	C 3236 K	H 2336
170	290	75	238	199	10	24	C 3038 K	H 3038
	320	104	267	202	9	45	C 3138 KV	H 3138
	340	92	254	202	21	43	C 2238 K	H 3138
180	310	82	250	210	10	30	C 3040 K	H 3040
	340	112	264	212	9	50.5	► C 3140 K	H 3140
200	340	90	274	231	10	37	C 3044 K	OH 3044 H
	370	120	290	233	10	64	C 3144 K	OH 3144 HTL
	400	108	298	233	22	69	C 2244 K	OH 3144 H
220	360	92	293	251	11	42.5	C 3048 K	OH 3048 H
	400	128	309	254	11	77	C 3148 K	OH 3148 HTL
240	400	104	326	272	11	59	C 3052 K	OH 3052 H
	440	144	341	276	11	105	► C 3152 K	OH 3152 HTL
260	420	106	352	292	12	65	C 3056 K	OH 3056 H
	460	146	363	296	12	115	C 3156 K	OH 3156 HTL
280	460	118	376	313	12	91	C 3060 KM	OH 3060 H
	500	160	392	318	12	150	C 3160 K	OH 3160 H
300	480	121	398	334	13	95	C 3064 KM	OH 3064 H
	540	176	411	338	13	190	C 3164 KM	OH 3164 H
320	520	133	425	355	14	125	C 3068 KM	OH 3068 H
	580	190	446	360	14	235	C 3168 KM	OH 3168 H
340	480	90	409	372	14	73	C 3972 KM	ОН 3972 НЕ
	540	134	448	375	14	135	C 3072 KM	ОН 3072 Н
	600	192	464	380	14	250	C 3172 KM	ОН 3172 Н
360	560	135	462	396	15	145	C 3076 KM	OH 3076 H
	620	194	445	401	15	290	C 3176 KMB	OH 3176 HE
380	540	106	461	413	15	105	C 3980 KM	OH 3980 HE
	600	148	486	417	15	175	C 3080 KM	OH 3080 H
	650	200	525	421	15	345	C 3180 KM	OH 3180 H
400	560	106	484	433	15	106	C 3984 KM	ОН 3984 НЕ
	620	150	513	437	16	180	C 3084 KM	ОН 3084 Н
	700	224	544	443	16	395	C 3184 KM	ОН 3184 Н
410	650	157	489	458	17	250	C 3088 KMB	OH 3088 HE
	720	226	521	463	17	475	C 3188 KMB	OH 3188 HE

SKF Explorer bearing

➤ Popular item

1) For additional bearing data → product table, page 18
2) For additional adapter sleeve data → product table, page 1072 in Rolling bearings, PUB BU/P1 17000/1 EN.

CARB toroidal roller bearings on an adapter sleeve

d₁ **430 – 1 000** mm

Bearing on an OH .. H sleeve

Bearing on an OH .. HE sleeve

Princip	al dimensi	ons	Abutme	ent and fille	t dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	d _a max.	d _b min.	B _a min.	Siceve		
mm			mm			kg	_	
430	680	163	570	478	17	270	C 3092 KM	ОН 3092 Н
	760	240	603	484	17	540	C 3192 KM	ОН 3192 Н
450	700	165	586	499	18	275	C 3096 KM	OH 3096 H
	790	248	577	505	18	620	C 3196 KMB	OH 3196 HE
470	670	128	580	516	18	195	C 39/500 KM	OH 39/500 HE
	830	264	654	527	18	690	C 31/500 KM	OH 31/500 H
500	780	185	638	551	20	390	C 30/530 KM	ОН 30/530 Н
	870	272	685	558	20	770	C 31/530 KM	ОН 31/530 Н
530	750	140	648	577	20	260	C 39/560 KM	OH 39/560 HE
	820	195	696	582	20	440	C 30/560 KM	OH 30/560 H
	980	300	704	629	22	1 100	C 31/600 KMB	OH 31/600 HE
560	870	200	728	623	22	520	C 30/600 KM	OH 30/600 H
600	850	165	723	650	22	420	C 39/630 KM	OH 39/630 HE
	920	212	759	654	22	635	C 30/630 KM	OH 30/630 H
	1 030	315	740	663	22	1 280	C 31/630 KMB	OH 31/630 HE
630	980	230	820	696	22	750	C 30/670 KM	ОН 30/670 Н
	1 090	336	791	705	22	1 550	C 31/670 KMB	ОН 31/670 НЕ
670	950	180	797	732	26	520	C 39/710 KM	OH 39/710 HE
	1 030	236	853	736	26	865	C 30/710 KM	OH 30/710 H
	1 150	345	841	745	26	1 800	C 31/710 KMB	OH 31/710 HE
710	1 000	185	856	772	26	590	C 39/750 KM	OH 39/750 HE
	1 090	250	852	778	26	1 000	C 30/750 KMB	OH 30/750 HE
	1 220	365	883	787	26	2 150	C 31/750 KMB	OH 31/750 HE
750	1150	258	905	829	28	1 150	C 30/800 KMB	OH 30/800 HE
800	1 120	200	963	872	28	785	C 39/850 KM	OH 39/850 HE
	1 220	272	963	880	28	1 050	C 30/850 KMB	OH 30/850 HE
850	1 280	280	1 003	931	30	1 520	C 30/900 KMB	0H 30/900 HE
950	1 580	462	1189	1 047	33	4 300	C 31/1000 KMB	OH 31/1000 HE
1 000	1 400	250	1164	1 087	33	1 610	C 39/1060 KMB	OH 39/1060 HE

SKF Explorer bearing

1) For additional bearing data → product table, page 18

2) For additional adapter sleeve data → product table, page 1072 in Rolling bearings, PUB BU/P1 17000/1 EN.

CARB toroidal roller bearings on a withdrawal sleeve

d₁ **35 – 340** mm

Bearing on an AH sleeve

Bearing on an AOH sleeve

Princip	al dimensi	ons		Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ 3) ≈	sleeve	2009	3,007.0
mm				kg	_	
35	80	23	32	0.59	C 2208 KTN9	AH 308
40	85	23	34	0.67	► C 2209 KTN9	AH 309
45	90	23	38	0.72	► C 2210 KTN9	AHX 310
50	100	25	40	0.95	► C 2211 KTN9	AHX 311
	100	25	40	0.97	C 2211 KV	AHX 311
55	110	28	43	1.3	► C 2212 KTN9	AHX 312
	110	28	43	1.35	C 2212 KV	AHX 312
60	120	31	45	1.6	► C 2213 KTN9	AH 313 G
	120	31	45	1.7	C 2213 KV	AH 313 G
65	125	31	47	1.7	C 2214 KTN9	AH 314 G
	150	51	68	4.65	C 2314 K	AHX 2314 G
70	130	31	49	1.9	► C 2215 K	AH 315 G
	130	31	49	1.95	C 2215 KV	AH 315 G
	160	55	72	5.65	► C 2315 K	AHX 2315 G
75	140	33	52	2.35	► C 2216 K	AH 316
	140	33	52	2.45	C 2216 KV	AH 316
	170	58	75	6.75	► C 2316 K	AHX 2316
80	150	36	56	3	► C 2217 K	AHX 317
	180	60	78	7.9	► C 2317 K	AHX 2317
85	160	40	57	3.75	► C 2218 K	AHX 318
	190	64	83	9	C 2318 K	AHX 2318
90	200	67	89	11	C 2319 K	AHX 2319
95	180	46	63	5.3	► C 2220 K	AHX 320
	215	73	94	13.5	► C 2320 K	AHX 2320
105	200	53	72	7.65	► C 2222 K	AHX 3122
115	180	60	82	5.65	C 4024 K30V/VE240	AH 24024
	180	60	82	6.2	C 4024 K30V	AH 24024
	215	76	94	13	► C 3224 K	AHX 3224 G

SKF Explorer bearing

➤ Popular item

1) For additional bearing data → product table, page 18

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the Dearing bore

Principal dimensions				Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾	
d_1	D	В	B ₂ ³⁾ ≈	sleeve			
mm				kg	_		
125	200 200 230	69 69 64	93 93 82	8.7 8.9 12	C 4026 K30 C 4026 K30V ► C 2226 K	AH 24026 AH 24026 AHX 3126	
	280	93	119	29	C 2326 K/VE240	AHX 2326 G	
135	210 250	69 68	93 88	9.5 15.5	C 4028 K30V ► C 2228 K	AH 24028 AHX 3128	
145	225 225 250	56 75 80	77 101 101	8.9 11.5 16.5	C 3030 KV C 4030 K30V C 3130 K	AHX 3030 AH 24030 AHX 3130 G	
	270	73	101	19	C 2230 K	AHX 3130 G	
150	240 240 270	80 80 86	106 106 108	14.5 15 23	C 4032 K30 C 4032 K30V C 3132 K	AH 24032 AH 24032 AH 3132 G	
	290	104	130	31	C 3232 K	AH 3232 G	
160	260 310	90 86	117 109	20 31	C 4034 K30V C 2234 K	AH 24034 AH 3134 G	
170	280 300 320	74 96 112	98 122 146	19 30 41.5	C 3036 K C 3136 K C 3236 K	AH 3036 AH 3136 G AH 3236 G	
180	290 320 340	75 104 92	102 131 117	20.5 39 38	C 3038 K C 3138 KV C 2238 K	AH 3038 G AH 3138 G AH 2238 G	
190	310 340	82 112	108 140	25.5 45.5	C 3040 K ► C 3140 K	AH 3040 G AH 3140	
200	340 340 370	90 118 120	117 152 151	36 48 60	► C 3044 K C 4044 K30V ► C 3144 K	AOH 3044 G AOH 24044 AOH 3144	
	400	108	136	65.5	C 2244 K	A0H 2244	
220	360 400	92 128	123 161	39.5 75	C 3048 K ► C 3148 K	AOH 3048 AOH 3148	
240	400 440	104 144	135 179	55.5 102	C 3052 K ► C 3152 K	AOH 3052 AOH 3152 G	
260	420 460	106 146	139 183	61 110	C 3056 K C 3156 K	AOH 3056 AOH 3156 G	
280	460 460 500	118 160 160	153 202 200	84 110 140	C 3060 KM C 4060 K30M C 3160 K	AOH 3060 AOH 24060 G AOH 3160 G	
300	480 540	121 176	157 217	93 185	C 3064 KM C 3164 KM	AOH 3064 G AOH 3164 G	
320	520 580	133 190	171 234	120 230	C 3068 KM C 3168 KM	AOH 3068 G AOH 3168 G	
340	540 600	134 192	176 238	125 245	C 3072 KM C 3172 KM	AOH 3072 G AOH 3172 G	

SKF Explorer bearing

▶ Popular item

1) For additional bearing data → product table, page 18

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

CARB toroidal roller bearings on a withdrawal sleeve

d₁ **360 – 950** mm

Principal dimensions				Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ 3) ≈	sleeve		
mm				kg	-	
360	560	135	180	130	C 3076 KM	AOH 3076 G
	620	194	242	260	C 3176 KMB	AOH 3176 G
380	600	148	193	165	C 3080 KM	AOH 3080 G
	650	200	250	310	C 3180 KM	AOH 3180 G
400	620	150	196	175	C 3084 KM	AOH 3084 G
	700	224	276	380	C 3184 KM	AOH 3184 G
420	650	157	205	215	C 3088 KMB	AOHX 3088 G
	720	226	281	405	C 3188 KMB	AOHX 3188 G
	720	280	332	510	C 4188 K30MB	AOH 24188
440	680	163	213	230	C 3092 KM	AOHX 3092 G
	760	240	296	480	C 3192 KM	AOHX 3192 G
	760	300	355	621	C 4192 K30MB	AOH 24192
460	700	165	217	245	C 3096 KM	A0HX 3096 G
	790	248	307	545	C 3196 KMB	A0HX 3196 G
480	830	264	325	615	C 31/500 KM	A0HX 31/500 G
500	780	185	242	355	C 30/530 KM	AOH 30/530
	870	272	337	720	C 31/530 KM	AOH 31/530
530	820	195	252	415	C 30/560 KM	AOHX 30/560
	920	355	417	989	C 41/560 K30MB	AOH 241/560 G
570	870	200	259	460	C 30/600 KM	AOHX 30/600
	980	300	369	990	C 31/600 KMB	AOHX 31/600
	980	375	439	1 270	C 41/600 K30MB	AOHX 241/600
600	920	212	272	555	C 30/630 KM	AOH 30/630
	1 030	315	389	1 180	C 31/630 KMB	AOH 31/630
630	980	230	294	705	C 30/670 KM	AOH 30/670
	1 090	336	409	1 410	C 31/670 KMB	AOHX 31/670
670	1 030	236	302	780	C 30/710 KM	AOHX 30/710
	1 030	315	386	1 010	C 40/710 K30M	AOH 240/710 G
	1 150	345	421	1 600	C 31/710 KMB	AOHX 31/710
710	1 090	250	316	920	C 30/750 KMB	AOH 30/750
	1 220	365	441	1 930	C 31/750 KMB	AOH 31/750

SKF Explorer bearing

1) For additional bearing data → product table, page 18
2) For additional withdrawal sleeve data → skf.com/go/17000-24-1
3) Width before the sleeve is driven into the bearing bore

Principal dimensions				Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ ³⁾ ≈	sleeve		
mm				kg	_	
750	1 150	258	326	1 060	C 30/800 KMB	A0H 30/800
800	1 220	272	343	1 280	C 30/850 KMB	A0H 30/850
850	1 280	280	355	1 400	C 30/900 KMB	A0H 30/900
950	1 580	462	547	3 950	C 31/1000 KMB	A0H 31/1000

SKF Explorer bearing

1) For additional bearing data → product table, page 18

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

Skf.com SKF, CARB and SKF EXPLORER are registered trademarks of the SKF Group. SKF Group 2022 The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein. PUB BU/P2 19400 EN · August 2022