Contents

Preface			xiii
Part I: Fundamentals of Bayesian Inference			
1	Probability and inference		
	1.1	The three steps of Bayesian data analysis	3
	1.2	General notation for statistical inference	4
	1.3	Bayesian inference	6
	1.4	Discrete examples: genetics and spell checking	8
	1.5	Probability as a measure of uncertainty	11
	1.6	Example: probabilities from football point spreads	13
	1.7	Example: calibration for record linkage	16
	1.8	Some useful results from probability theory	19
	1.9	Computation and software	22
	1.10	Bayesian inference in applied statistics	24
	1.11	Bibliographic note	25
	1.12	Exercises	27
2	Single-parameter models		29
	2.1	Estimating a probability from binomial data	29
	2.2	Posterior as compromise between data and prior information	32
	2.3	Summarizing posterior inference	32
	2.4	Informative prior distributions	34
	2.5	Normal distribution with known variance	39
	2.6	Other standard single-parameter models	42
	2.7	Example: informative prior distribution for cancer rates	46
	2.8	Noninformative prior distributions	51
	2.9	Weakly informative prior distributions	55
	2.10	Bibliographic note	56
	2.11	Exercises	57
3	Introduction to multiparameter models		63
	3.1	Averaging over 'nuisance parameters'	63
	3.2	Normal data with a noninformative prior distribution	64
	3.3	Normal data with a conjugate prior distribution	67
	3.4	Multinomial model for categorical data	69
	3.5	Multivariate normal model with known variance	70
	3.6	Multivariate normal with unknown mean and variance	72
	3.7	Example: analysis of a bioassay experiment	74
	3.8	Summary of elementary modeling and computation	78
	3.9	Bibliographic note	78
	3.10	Exercises	79

vii	ii	CONTENTS
4	Asymptotics and connections to non-Bayesian approaches 4.1 Normal approximations to the posterior distribution 4.2 Large-sample theory 4.3 Counterexamples to the theorems 4.4 Frequency evaluations of Bayesian inferences 4.5 Bayesian interpretations of other statistical methods 4.6 Bibliographic note 4.7 Exercises	83 83 87 89 91 92 97
5	Hierarchical models 5.1 Constructing a parameterized prior distribution 5.2 Exchangeability and hierarchical models 5.3 Bayesian analysis of conjugate hierarchical models 5.4 Normal model with exchangeable parameters 5.5 Example: parallel experiments in eight schools 5.6 Hierarchical modeling applied to a meta-analysis 5.7 Weakly informative priors for variance parameters 5.8 Bibliographic note 5.9 Exercises	101 102 104 108 113 119 124 128 132
Pa	art II: Fundamentals of Bayesian Data Analysis	139
6	 Model checking 6.1 The place of model checking in applied Bayesian statistics 6.2 Do the inferences from the model make sense? 6.3 Posterior predictive checking 6.4 Graphical posterior predictive checks 6.5 Model checking for the educational testing example 6.6 Bibliographic note 6.7 Exercises 	141 141 142 143 153 159 161 163
7	Evaluating, comparing, and expanding models 7.1 Measures of predictive accuracy 7.2 Information criteria and cross-validation 7.3 Model comparison based on predictive performance 7.4 Model comparison using Bayes factors 7.5 Continuous model expansion 7.6 Implicit assumptions and model expansion: an example 7.7 Bibliographic note 7.8 Exercises	165 166 169 178 182 184 187 192
8	Modeling accounting for data collection 8.1 Bayesian inference requires a model for data collection 8.2 Data-collection models and ignorability 8.3 Sample surveys 8.4 Designed experiments 8.5 Sensitivity and the role of randomization 8.6 Observational studies 8.7 Censoring and truncation 8.8 Discussion 8.9 Bibliographic note 8.10 Exercises	197 197 199 205 214 218 220 224 229 229

CONTENTS		
9 Dec	cision analysis	237
9.1	Bayesian decision theory in different contexts	237
9.2	Using regression predictions: survey incentives	239
9.3	Multistage decision making: medical screening	245
9.4	Hierarchical decision analysis for home radon	246
9.5	Personal vs. institutional decision analysis	256
9.6	Bibliographic note	257
9.7	Exercises	257
Part I	259	
10 Int	roduction to Bayesian computation	261
10.1	Numerical integration	261
10.2	Distributional approximations	262
10.3	Direct simulation and rejection sampling	263
10.4	Importance sampling	265
10.5	How many simulation draws are needed?	267
	Computing environments	268
	Debugging Bayesian computing	270
10.8	Bibliographic note	271
10.9	Exercises	272
11 Bas	sics of Markov chain simulation	275
11.1	Gibbs sampler	276
11.2	Metropolis and Metropolis-Hastings algorithms	278
11.3	Using Gibbs and Metropolis as building blocks	280
11.4	Inference and assessing convergence	281
11.5	Effective number of simulation draws	286
11.6	Example: hierarchical normal model	288
11.7	Bibliographic note	291
11.8	8 Exercises	291
12 Co	mputationally efficient Markov chain simulation	293
12.1	Efficient Gibbs samplers	293
12.2	Efficient Metropolis jumping rules	295
12.3	Further extensions to Gibbs and Metropolis	297
12.4	Hamiltonian Monte Carlo	300
12.5	Hamiltonian Monte Carlo for a hierarchical model	305
12.6	Stan: developing a computing environment	307
	Bibliographic note	308
12.8	8 Exercises	309
	dal and distributional approximations	311
13.1	Finding posterior modes	311
	Boundary-avoiding priors for modal summaries	313
	Normal and related mixture approximations	318
	Finding marginal posterior modes using EM	320
13.5	Conditional and marginal posterior approximations	325
	Example: hierarchical normal model (continued)	326
13.7	Variational inference	331
13.8	Expectation propagation	338
13 (Other approximations	345

X	CONTENTS
13.10 Unknown normalizing factors	345
13.11 Bibliographic note	348
13.12 Exercises	349
Part IV: Regression Models	351
14 Introduction to regression models	353
14.1 Conditional modeling	353
14.2 Bayesian analysis of classical regression	354
14.3 Regression for causal inference: incumbency and voting	358
14.4 Goals of regression analysis	364
14.5 Assembling the matrix of explanatory variables	365
14.6 Regularization and dimension reduction	367
14.7 Unequal variances and correlations	369
14.8 Including numerical prior information	376
14.9 Bibliographic note	378
14.10 Exercises	378
15 Hierarchical linear models	381
15.1 Regression coefficients exchangeable in batches	382
15.2 Example: forecasting U.S. presidential elections	383
15.3 Interpreting a normal prior distribution as extra data	388
15.4 Varying intercepts and slopes	390
15.5 Computation: batching and transformation	392
15.6 Analysis of variance and the batching of coefficients	395
15.7 Hierarchical models for batches of variance components	398
15.8 Bibliographic note	400
15.9 Exercises	402
16 Generalized linear models	405
16.1 Standard generalized linear model likelihoods	406
16.2 Working with generalized linear models	407
16.3 Weakly informative priors for logistic regression	412
16.4 Overdispersed Poisson regression for police stops	420
16.5 State-level opinons from national polls	422
16.6 Models for multivariate and multinomial responses	423
16.7 Loglinear models for multivariate discrete data	428
16.8 Bibliographic note	431
16.9 Exercises	432
17 Models for robust inference	435
17.1 Aspects of robustness	435
17.2 Overdispersed versions of standard models	437
17.3 Posterior inference and computation	439
17.4 Robust inference for the eight schools	441
17.5 Robust regression using t -distributed errors	444
17.6 Bibliographic note	445
17.7 Exercises	446

CONTENTS	
18 Models for missing data	449
18.1 Notation	449
18.2 Multiple imputation	451
18.3 Missing data in the multivariate normal and t models	454
18.4 Example: multiple imputation for a series of polls	456
18.5 Missing values with counted data	462
18.6 Example: an opinion poll in Slovenia	463
18.7 Bibliographic note	466
18.8 Exercises	467
Part V: Nonlinear and Nonparametric Models	469
19 Parametric nonlinear models	471
19.1 Example: serial dilution assay	471
19.2 Example: population toxicokinetics	477
19.3 Bibliographic note	485
19.4 Exercises	486
20 Basis function models	487
20.1 Splines and weighted sums of basis functions	487
20.2 Basis selection and shrinkage of coefficients	490
20.3 Non-normal models and regression surfaces	494
20.4 Bibliographic note	498
20.5 Exercises	498
21 Gaussian process models	501
21.1 Gaussian process regression	501
21.2 Example: birthdays and birthdates	505
21.3 Latent Gaussian process models	510
21.4 Functional data analysis	512
21.5 Density estimation and regression	513
21.6 Bibliographic note	516
21.7 Exercises	516
22 Finite mixture models	519
22.1 Setting up and interpreting mixture models	519
22.2 Example: reaction times and schizophrenia	524
22.3 Label switching and posterior computation	533
22.4 Unspecified number of mixture components	536
22.5 Mixture models for classification and regression	539
22.6 Bibliographic note	542
22.7 Exercises	543
23 Dirichlet process models	545
23.1 Bayesian histograms	545
23.2 Dirichlet process prior distributions	546
23.3 Dirichlet process mixtures	549
23.4 Beyond density estimation	557
23.5 Hierarchical dependence	560
23.6 Density regression	568
23.7 Bibliographic note 23.8 Exercises	571
(A) A REVERTISES	5/3

xii		CONTENTS
Apj	575	
AS	Standard probability distributions	577
1	A.1 Continuous distributions	577
4	A.2 Discrete distributions	585
4	A.3 Bibliographic note	586
В	Outline of proofs of limit theorems	587
]	B.1 Bibliographic note	590
\mathbf{C}	Computation in R and Stan	591
(C.1 Getting started with R and Stan	591
(C.2 Fitting a hierarchical model in Stan	592
(C.3 Direct simulation, Gibbs, and Metropolis in R	596
(C.4 Programming Hamiltonian Monte Carlo in R	603
(C.5 Further comments on computation	607
(C.6 Bibliographic note	608
Ref	ferences	609
Aut	thor Index	643
Sub	bject Index	654