МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Организация ЭВМ и систем»

Тема: Организация связи Ассемблера с ЯВУ на примере программы построения частотного распределение попаданий псевдослучайных целых чисел в заданные интервалы.

Студент гр. 0382	 Ильин Д.А.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2021

Цель работы.

Изучить основные концепции связи между языком Ассемблера и ЯВУ(язык высокого уровня). Создать свою программу, которая создает числовое распределение (обязанность кода реализованном на С++) и считает количество попаданий этих чисел в заданные интервалы ((обязанность кода реализованном на МАSM).

Задание.

Вариант 7

На языке С программируется ввод с клавиатуры и контроль исходных данных, а также генерируется массив псевдослучайных целых чисел, изменяющихся в заданном диапазоне и имеющих заданный закон распределения. Необходимые датчики псевдослучайных чисел находятся в каталоге RAND_GEN (при его отсутствии получить у преподавателя). Следует привести числа к целому виду с учетом диапазона изменения.

Далее должны вызываться 1 или 2 ассемблерных процедуры для формирования распределения количества попаданий псевдослучайных целых чисел в заданные интервалы. Ассемблерные процедуры должны вызываться как независимо скомпилированные модули. Передача параметров в процедуру должна выполняться через кадр стека.

Результирующий массив частотного распределения чисел по интервалам, сфор-мированный на ассемблерном уровне, возвращается в программу, реализованную на ЯВУ, и затем сохраняется в файле и выводится на экран средствами ЯВУ.

Исходные данные:

- 1. Длина массива псевдослучайных целых чисел NumRanDat (<= 16K)
- 2. Диапазон изменения массива псевдослучайных целых чисел [Xmin, Xmax] (м.б. биполярный, например, [-100, 100])
- 3. Массив псевдослучайных целых чисел {Xi}.
- 4. Количество интервалов, на которые разбивается диапазон

изменения массива псевдослучайных целых чисел - NInt (<=24)

5. Массив левых границ интервалов разбиения LGrInt .

В общем случае интервалы разбиения диапазона изменения псевдослучайных чисел могут иметь различную длину, левые границы могут задаваться в произвольном порядке и иметь произвольные значения. Если Xmin < LGrInt(1), то часть данных не будет участвовать в формировании распределения. Каждый интервал, кроме последнего, следует интерпретировать как [LGrInt(i), LGrInt(i+1)). Если у последнего интервала правая граница меньше Xmax, то часть данных не будет участвовать в формировании распределения.

Результаты:

Текстовая таблица, строка которой содержит:

- номер интервала,
- левую границу интервала,
- количество псевдослучайных чисел, попавших в интервал.

Количество строк должно быть равно числу интервалов разбиения.

Таблица должна выводиться на экран и сохраняться в файле.

Задание на разработку программы выбирается из таблицы 1 в зависимости от номера студента в группе.

Выполнение работы.

Вариант 7.

Nint >= Dx, Lg1 > Xmin, ΠΓποςπ <= Xmax

В ходе работы данной лабораторной работы были реализованы три модуля программы, два из которых на языке Ассемблер и другой на языке C++. На языке C++ организован сбор необходимых данных от пользователя и передача этих данных в нужные функцию, реализованные на языке ассемблер.

Также здесь записывается в консоль и в файл вывод интерпретированных данных. На ассемблере модуль first распределяет числа по единичным отрезкам. Здесь циклически происходит запись в новый массив количество каждого числа. Второй модуль second распределяет числа по заданным интервалам с помощью нескольких циклов loop, которые проходятся по массиву result с ограничениями в качестве интервалом, которые вычисляются разностью следующей и предыдущей левых границ.

Тестирование. Результаты тестирования

	Г	Γ	Ι
№	Входные данные	Выходные данные	Комментарии
п/п			
1.	Кол-во чисел = 10	Результат:	Верно
	min = 0 max = 10	Граница Количество чисел	
	Кол-во границ = 10	1 0	
	Сами границы	2 1	
	12345678910	3 0	
		4 0	
		5 2	
		6 2	
		7 2	
		8 1	
		9 1	
		10 1	
2.	Кол-во чисел = 5	Результат:	Верно
	min = -10 max = -5	Граница Количество чисел	
	Кол-во границ = 5	-9 0	
	Сами границы	-8 2	
		-7 2	
	-9 -8 -7 -5 -4	-5 1	
		I .	l .

		-5	0	
3.	Кол-во чисел = 24	Гран	ница Количество чисел	Верно
	min = -12 max = 12	-11	0	
	Кол-во границ = 24	-10	1	
	Сами границы	-9	1	
	-1 -6 5 11 -8 9 -12 -4	-8	1	
	-9 8 -6 7 0 -10 5 -4 6	-7		
	-12 -4 -2 9 -4 -1 -12	-6	2	
		-5	0	
		-4	4	
		-3	0	
		-2	1	
		-1	2	
		0	1	
		1	0	
		2	0	
		3	0	
		4	0	
		5	2	
		6	1	
		7	1	
		8	1	
		9	2	
		10	0	
		11	1	
		12	0	

Программа работает коректно.

Выводы.

В ходе данной лабораторной работы была создана программа, которая распределяет полученные на основе входных данных пользователя числа по интервалам и выводит результат. Была изучена работа организации связи ассемблера с ЯВУ