Score Matching Based Generative Model and Diffusion Model

김기웅

kwkim02@g.skku.edu

Computer Vision Core

2024/10/01

Contents

Score-Based Generative Model(NCSN)

Diffusion Model(DDPM)

Score-Based Generative Model through SDE

Contents

Score-Based Generative Model(NCSN)

Diffusion Model(DDPM)

Score-Based Generative Model through SDE

Generative Modeling by Estimating Gradients of the Data Distribution

Yang Song Stanford University yangsong@cs.stanford.edu Stefano Ermon Stanford University ermon@cs.stanford.edu

SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS

Yang Song*Jascha Sohl-DicksteinDiederik P. KingmaStanford UniversityGoogle BrainGoogle Brainyangsong@cs.stanford.edujaschasd@google.comdurk@google.com

Abhishek Kumar Stefano Ermon Ben Poole
Google Brain Stanford University Google Brain
abhishk@google.com ermon@cs.stanford.edu pooleb@google.com

Likelihood-Based Method • Specialized architecture • Surrogate loss(ELBO) GAN • Unstable training (Adversarial) • Unsuitable for high-dimensional data

Introduction Generative Model Likelihood-Based Method GAN Specialized architecture Unstable training (Adversarial) Surrogate loss(ELBO) Unsuitable for high-dimensional data **Score-Based Model** Adversarial training **MCMC** sampling Special architecture.

Overview

Score = Gradient of log(pdf) $=\nabla_x log p(x)$

$$\{\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N\} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x})$$

Scores

$$\mathbf{s}_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$$

New samples

Score-Matching

- Score Network $s_{\theta}(\cdot): R^D \to R^D$
 - -U-Net in paper
- Training objective:
 MSE between network output and score
 - -Network estimates score

Score Network $s_{\theta}(\cdot)$

Training objective

 $\mathsf{MSE}(\,s_\theta(x),\,\,\nabla_x\log\bigl(p(x)\bigr))$

Score-Matching

Training objective

 $\mathsf{MSE}(\,s_\theta(x),\,\,\nabla_x\log\bigl(p(x)\bigr))$

Score-Matching

Training objective

$$\mathsf{MSE}(s_{\theta}(x), \nabla_{x} \log(p(x)))$$

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

Score-Matching

Training objective

$$MSE(s_{\theta}(x), \nabla_x \log(p(x)))$$

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

Score-Matching

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\text{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right]$$

Using score matching, we can directly train a score network $\mathbf{s}_{\theta}(\mathbf{x})$ to estimate $\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$ training a model to estimate $p_{\text{data}}(\mathbf{x})$ first.

Score-Matching

Training objective

$$MSE(s_{\theta}(x), \nabla_x \log(p(x)))$$

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

Score-Matching

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\text{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})\|_{2}^{2} \right]$$

Jacobian Matrix(d*d)

Complex computation in high-dimension

Score-Matching

Training objective

$$\mathsf{MSE}(s_{\theta}(x), \ \nabla_{x} \log(p(x)))$$

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

Score-Matching

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\text{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right]$$

$$\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p_{\text{data}}(\mathbf{x})} [\|\mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})\|_{2}^{2}]$$

Sliced score matching

$$\mathbb{E}_{p_{\mathbf{v}}} \mathbb{E}_{p_{\text{data}}} \left[\mathbf{v}^{\intercal} \nabla_{\mathbf{x}} \mathbf{s}_{\theta}(\mathbf{x}) \mathbf{v} + \frac{1}{2} \left\| \mathbf{s}_{\theta}(\mathbf{x}) \right\|_{2}^{2} \right]$$

Score-Matching

Training objective

$$\mathsf{MSE}(s_{\theta}(x), \ \nabla_{x} \log(p(x)))$$

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$

Score-Matching

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\operatorname{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right]$$

Denoising Score Matching

$$\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p_{\text{data}}(\mathbf{x})} [\|\mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})\|_{2}^{2}]$$

Sliced score matching

$$\mathbb{E}_{p_{\mathbf{v}}} \mathbb{E}_{p_{\text{data}}} \left[\mathbf{v}^{\mathsf{T}} \nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \mathbf{v} + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right]$$

Langevin dynamics

- Using only score function
- Trained score network : $\mathbf{s}_{ heta}(\mathbf{x}) pprox
 abla_{\mathbf{x}} \log p(\mathbf{x})$
- ϵ : fixed step size
- z_t : noise $\sim N(0, I)$
- x_0 = random noise
- Some error is negligible when ϵ is sufficiently small and T is sufficiently large

$$\tilde{\mathbf{x}}_t = \tilde{\mathbf{x}}_{t-1} + \frac{\epsilon}{2} \nabla_{\mathbf{x}} \log p(\tilde{\mathbf{x}}_{t-1}) + \sqrt{\epsilon} \, \mathbf{z}_t, \quad t = 0, 1, \cdots, T$$

Challenges of Score-Based Generative Model

Manifold Hypothesis

The manifold hypothesis states that data in the real world tend to concentrate on low dimensional manifolds embedded in a high dimensional space (a.k.a., the ambient space).

Difficulty

- 1. Since the score $\nabla_x \log(p(x))$ is a gradient taken in the ambient space, it is undefined when x is confined to a low dimensional manifold.
- The score matching objective provides a consistent score estimator only when the support of the data distribution is the whole space.

Challenges of Score-Based Generative Model

Manifold Hypothesis

The manifold hypothesis states that data in the real world tend to concentrate on low dimensional manifolds embedded in a high dimensional space (a.k.a., the ambient space).

Difficulty

- 1. Since the score $\nabla_x \log(p(x))$ is a gradient taken in the ambient space, it is undefined when x is confined to a low dimensional manifold.
- The score matching objective provides a consistent score estimator only when the support of the data distribution is the whole space.

Challenges of Score-Based Generative Model

Low data density regions

Difficulty

Due to lack of data samples

- 1. Inaccurate score estimation with score matching lack of data samples
- 2. Slow mixing of Langevin dynamics

$$p_{data} = \frac{1}{5}N((-5, -5), I) + \frac{4}{5}N((5, 5), I)$$

Problem-Solving

Adding multiple-level gaussian noise

- Global Distributing data to whole space
- Large Filling low density regions
- Multiple level improving mixing rate

Denoising score-matching

- $q_{\sigma}(\tilde{x}|x)$: Gaussian noise
- \tilde{x} : data added noise (perturbing data)
- $q_{\sigma}(\tilde{\mathbf{x}}) \triangleq \int q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) p_{\text{data}}(\mathbf{x}) d\mathbf{x}$: perturbed data distribution
- Small noise $\to \mathbf{s}_{\theta^*}(\mathbf{x}) = \nabla_{\mathbf{x}} \log q_{\sigma}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})$

Perturbing an image with multiple scales of Gaussian noise

Denoising score-matching

Multiple-level gaussian noise

- Large \rightarrow small (like Fine-tunning) $\sigma_1 \qquad \sigma_L$
- $q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}} \mid \mathbf{x}, \sigma^2 I)$

Noise Conditional Score Network (NCSN)

$$\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p_{\text{data}}(\mathbf{x})} [\|\mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})\|_{2}^{2}]$$

$$\frac{1}{2} \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{\tilde{\mathbf{x}} \sim \mathcal{N}(\mathbf{x}, \sigma^2 I)} \left[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}, \underline{\sigma}) + \frac{\tilde{\mathbf{x}} - \mathbf{x}}{\underline{\sigma^2}} \right\|_2^2 \right]$$

Annealed Langevin dynamics

$$\tilde{\mathbf{x}}_t = \tilde{\mathbf{x}}_{t-1} + \frac{\epsilon}{2} \nabla_{\mathbf{x}} \log p(\tilde{\mathbf{x}}_{t-1}) + \sqrt{\epsilon} \, \mathbf{z}_t$$

$$\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\theta}(\tilde{\mathbf{x}}_{t-1}, \underline{\sigma}_i) + \sqrt{\alpha_i} \, \mathbf{z}_t$$

Algorithm 1 Annealed Langevin dynamics.

```
Require: \{\sigma_i\}_{i=1}^L, \epsilon, T.

1: Initialize \tilde{\mathbf{x}}_0

2: for i \leftarrow 1 to L do

3: \alpha_i \leftarrow \epsilon \cdot \sigma_i^2/\sigma_L^2 \Rightarrow \alpha_i is the step size.

4: for t \leftarrow 1 to T do

5: Draw \mathbf{z}_t \sim \mathcal{N}(0, I)

6: \tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \ \mathbf{z}_t

7: end for

8: \tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T

9: end for return \tilde{\mathbf{x}}_T
```


Annealed Langevin dynamics

Experiment

Model	Inception	FID
CIFAR-10 Unconditional		
PixelCNN [59]	4.60	65.93
PixelIQN [42]	5.29	49.46
EBM [12]	6.02	40.58
WGAN-GP [18]	$7.86 \pm .07$	36.4
MoLM [45]	$7.90 \pm .10$	18.9
SNGAN [36]	$8.22 \pm .05$	21.7
ProgressiveGAN [25]	$8.80 \pm .05$	-
NCSN (Ours)	$8.87 \pm .12$	25.32
CIFAR-10 Conditional		
EBM [12]	8.30	37.9
SNGAN [36]	$8.60 \pm .08$	25.5
BigGAN 6	9.22	14.73

Table 1: Inception and FID scores for CIFAR-10

Figure 4: Intermediate samples of annealed Langevin dynamics.

Experiment

Figure 5: Uncurated samples on MNIST, CelebA, and CIFAR-10 datasets.

Experiment

Figure 6: Image inpainting on CelebA (**left**) and CIFAR-10 (**right**). The leftmost column of each figure shows the occluded images, while the rightmost column shows the original images.

Denoising Diffusion Probability Model(DDPM)

Figure 2: The directed graphical model considered in this work.

NCSN & DDPM

• Similar training objective

NCSN & DDPM

Similar new sampling

$$\tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\boldsymbol{\theta}} (\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \, \mathbf{z}_t$$

Figure 4: Intermediate samples of annealed Langevin dynamics.

NCSN

DDPM

Score-Based Generative Modeling Through SDEs

SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS

Yang Song*
Stanford University
yangsong@cs.stanford.edu

Jascha Sohl-Dickstein Google Brain jaschasd@google.com Diederik P. Kingma Google Brain durk@google.com

Abhishek Kumar Google Brain abhishk@google.com

Stefano Ermon Stanford University ermon@cs.stanford.edu Ben Poole
Google Brain
pooleb@google.com

Score-Based Generative Modeling Through SDEs

Figure 1: Solving a reversetime SDE yields a score-based generative model. Transforming data to a simple noise distribution can be accomplished with a continuous-time SDE. This SDE can be reversed if we know the score of the distribution at each intermediate time step, $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$.

Score-Based Generative Modeling Through SDEs

Perturbing data to noise with a continuous-time stochastic process.

Generate data from noise by reversing the perturbation procedure.

Reference

- song, Y. (2021, May 21). *Generative Modeling by Estimating Gradients of the Data Distribution*. Yang-Song.Net. https://yang-song.net/blog/2021/score/
- Cho, H. (202, February 27). [Open DMQA Seminar] Score-Based Generative Models and Diffusion Models. Youtube. https://www.youtube.com/watch?v=d x92vpIWFM&t=721s2
- Jang, Y. (2024, March 24). Https://Process-Mining.Tistory.Com/211. Tstory. https://process-mining.tistory.com/211

