Classification of Retinal OCT Images Based on Deep Learning

Shiruo

Background

• Optical Coherence Tomography (OCT) technology is widely applied in ophthalmology to view the morphology of retina.

Common eye diseases:

choroidal neovascularization (CNV)

Diabetic macular edema (DME)

Multiple drusen present in early AMD (DRUSEN)

• Traditional ophthalmic diagnosing process is manual and lengthy. The process can be simplified and accelerated if patients' eye conditions can be told from the medical images by computer.

3x3 conv. 64 3x3 conv, 64 pool/2 3x3 conv., 128 3x3 conv., 128 pool/2 3x3 conv. 256 3x3 conv., 256 3x3 conv., 256 pool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv. 512 pool/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 pool/2 Flatten fc 4096 fc 4096

Model design, implementation and training

Dataset

	CNV	DME	DRUSEN	NORMAL	total
Training	31190	10888	7776	26048	75902
Validation	125	125	125	125	500
Test	125	125	125	125	500

According to the data provider, images with more noise and lower quality were included in the training set to help generalization.

- Training with pure
 VGG16 structure
- → Unsatisfactory outcomes

VGG16 structure with Batch Normalization layers inserted

Batch Normalization (BN) was proposed in 2015 to reduce internal covariate shift during training and accelerate training process.

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad // \text{ mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad // \text{ mini-batch variance}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad // \text{ normalize}$$

$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i}) \qquad // \text{ scale and shift}$$

Recent researches found that BN has a smoothening effect on the loss (it makes gradients of the loss more Lipschitz).

This enable us to use learning rates of boarder range and make the training process less sensitive to hyperparameter choices.

Does the location of BN matters?

	a	b	С	d		
Val_acc (max)	0.9900	0.9920	0.9920	0.9900		
Val_loss	0.0388	0.0360	0.0401	0.0340		
Test_acc	0.9880 😊	0.9800	0.9700	0.9840		
Test_loss	0.0394	0.0744	0.0890	0.0351		

Normal Convolution vs. Depthwise Separable Convolution

Normal Convolution process (with zero padding)

$$N1 = y^2k^2mn$$

Depthwise Separable Convolution process (with zero padding)

$$N2 = y^2k^2n + y^2mn$$

In deep learning, N2 ≪ N1

Flatten

fc 4096

fc 4096

Make the model lighter!

- If the features extracted by the first few blocks is enough for classification?
- If dropouts can be diminished or removed?
- Replace the Normal Convolutions into Depthwise Separable Convolutions.
- Previous model (VGG16 with BNs before MaxPooling layers) a.
- b. Last conv block removed (default: dropout rate of 0.5)
- Last conv block removed + dropout rate of 0.2
- Last conv block removed + no dropout d.
- Last conv block removed + dropout rate of 0.2 + separable convolution e.
- Last conv block removed + no dropout + separable convolution

	a	b	С	d	е	f
Val_acc (max)	0.9900	0.9960	0.9920	0.9920	0.9900	0.9940
Val_loss	0.0388	0.0322	0.0304	0.0363	0.0183	0.0306
Test_acc	0.9880	0.9840	0.9880	0.9720	0.9840	0.9880 😊
Test_loss	0.0394	0.0621	0.0562	0.0775	0.0575	0.0460

fc 4096

Analyses and Comparisons

- 1. Model trained in BNSepVGG structure
- 2. Model trained in VGG16 structure
- 3. Model trained in AlexNet structure
- 4. ImageNet pre-trained DenseNet201 model
- 5. ImageNet pre-trained ResNet50 model
- 6. ImageNet pre-trained InceptionV3 model
- 7. ImageNet pre-trained Xception model

	1	2	3	4	5	6	7	
Val_acc (max)	0.9940	0.7141	0.8640	0.9420	0.6540	0.6760	0.8980	
Val_loss	0.0306	0.6156	0.3495	0.1801	0.8296	0.8400	0.2457	
Test_acc	0.9880	0.7120	0.8320	0.8160	0.6420	0.6760	0.8120	
Test_loss	0.0460	0.6508	0.4465	0.5719	0.8517	0.8656	0.4662	

		1		2			3				4				5				6				7					
124	1	0	0	124	1	0	0	124	1	0	0	105	18	1	1	1	12	13	0	0	108	16	0	1	120	4	0	1
0	125	0	0	13	89	4	19	4	116	3	2	1	120	0	4		13	95	0	17	17	100	0	8	10	106	0	9
5	0	120	0	36	11	19	59	52	4	68	1	26	28	59	12		43	22	2	58	48	40	16	21	44	8	56	17
0	0	0	125	0	1	0	124	0	11	6	108	0	1	0	124		0	11	2	112	1	10	0	114	0	1	0	124

$precision = PPV = \frac{True \ Positive}{True \ Positive + False \ Positive}$

Precision-Recall (PR) Curve

$$recall = sensitivity = TPR = \frac{True Positive}{True Positive + False Nagative}$$

$$f_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

- 1. Model trained in BNSepVGG structure
- Model trained in VGG16 structure
- Model trained in AlexNet structure
- ImageNet pre-trained DenseNet201 model
- ImageNet pre-trained ResNet50 model
- 5. ImageNet pre-trained InceptionV3 model
- 7. ImageNet pre-trained Xception model

In real-life medical practice,

	1	2	3	4	5	6	7
sensitivity	1	0.908	0.98	0.976	0.932	0.964	0.96
specificity	0.98	0.808	0.732	0.78	0.696	0.604	0.788

- 1. Model trained in BNSepVGG structure
- 2. Model trained in VGG16 structure
- 3. Model trained in AlexNet structure
- 4. ImageNet pre-trained DenseNet201 model
- 5. ImageNet pre-trained ResNet50 model
- 6. ImageNet pre-trained InceptionV3 model
- 7. ImageNet pre-trained Xception model

$$FPR = 1 - specificity = \frac{False\ Positive}{True\ Negative + False\ Positive}$$

$$TPR = sensitivity = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

ROC curve

(Receiver Operating Characteristic)

Grad-CAM Heatmaps

how intensely the input image activates the class

CAM generated by BNSepVGG model Marked examples

Thanks for your attention

--Shiruo