3-10 Traversability

(Part I: Eulerian Graphs)

Hengfeng Wei

hfwei@nju.edu.cn

December 03, 2018

Leonhard Euler (1707 – 1783)

Leonhard Euler (1707 - 1783)

Graph Theory Topology

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

" \Leftarrow " (Carl Hierholzer 1873);

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"←" (Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

$$v = u$$

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step: m = k + 1

$$v = u \implies C = u \sim u$$

A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

"

(Carl Hierholzer 1873); (Proofs on PPT from Tao & on CZ).

By strong mathematical induction on the number m of edges of G.

Inductive Step:
$$m = k + 1$$

$$v = u \implies C = u \sim u$$

$$H = G - E(C) = \bigcup H_i$$

$$H = G - E(C) = \bigcup H_i$$

$$H = G - E(C) = \bigcup H_i$$

- (I) $\forall v \in H : \deg(v)$ is even
- (II) $\forall i : \left| E(H_i) \right| < m$

$$H = G - E(C) = \bigcup H_i$$

- (I) $\forall v \in H : \deg(v)$ is even
- (II) $\forall i : \left| E(H_i) \right| < m$

By I.H., each H_i has an Eulerian circuit C_i .

$$H = G - E(C) = \bigcup H_i$$

- (I) $\forall v \in H : \deg(v)$ is even
- (II) $\forall i : \left| E(H_i) \right| < m$

By I.H., each H_i has an Eulerian circuit C_i .

$$\forall i: V(H_i) \cap V(C) \neq \emptyset$$

$$H = G - E(C) = \bigcup H_i$$

- (I) $\forall v \in H : \deg(v)$ is even
- $(II) \ \forall i : \left| E(H_i) \right| < m$

By I.H., each H_i has an Eulerian circuit C_i .

$$\forall i: V(H_i) \cap V(C) \neq \emptyset$$

Glue together each C_i with C to get an Eulerian circuit of G.

- $u \in V(G)$
- 3: $C \leftarrow \text{ any circuit } u \sim u \text{ in } G$
- 4: while $\exists v \in C : \deg(v) > 0$ do
- 5: $H \leftarrow G E(C)$
- 6: $v \leftarrow \text{ any vertex in } V(C) \text{ such that } \deg(v) > 0$
- 7: $C' \leftarrow \text{ any circuit } v \sim v \text{ in } H$
- 8: $C \leftarrow C \otimes C'$ \triangleright Glue $C' = v \sim v$ with C via v
- 9: $\mathbf{return} \ C$

- $2: u \in V(G)$
- 3: $C \leftarrow \text{ any circuit } u \sim u \text{ in } G$
- 4: while $\exists v \in C : \deg(v) > 0$ do
- 5: $H \leftarrow G E(C)$
- 6: $v \leftarrow \text{ any vertex in } V(C) \text{ such that } \deg(v) > 0$
- 7: $C' \leftarrow \text{ any circuit } v \sim v \text{ in } H$
- 8: $C \leftarrow C \otimes C'$ \triangleright Glue $C' = v \sim v$ with C via v
- 9: return C

Q: Time Complexity?

- $u \in V(G)$
- 3: $C \leftarrow \text{ any circuit } u \sim u \text{ in } G$
- 4: while $\exists v \in C : \deg(v) > 0$ do
- 5: $H \leftarrow G E(C)$
- 6: $v \leftarrow \text{ any vertex in } V(C) \text{ such that } \deg(v) > 0$
- 7: $C' \leftarrow \text{ any circuit } v \sim v \text{ in } H$
- 8: $C \leftarrow C \otimes C'$ \Rightarrow Glue $C' = v \sim v$ with C via v
- 9: $\mathbf{return} \ C$

Q: Time Complexity?

Q: Data Structures?

- $u \in V(G)$
- 3: $C \leftarrow \text{ any circuit } u \sim u \text{ in } G$
- 4: while $\exists v \in C : \deg(v) > 0$ do
- 5: $H \leftarrow G E(C)$
- 6: $v \leftarrow \text{ any vertex in } V(C) \text{ such that } \deg(v) > 0$
- 7: $C' \leftarrow \text{ any circuit } v \sim v \text{ in } H$
- 8: $C \leftarrow C \otimes C'$ \triangleright Glue $C' = v \sim v$ with C via v
- 9: $\mathbf{return} \ C$

Q: Time Complexity?

Q: Data Structures?

O(m): Using doubly linked list

- (I) $v_0 \in V(G)$; $P_0 = v_0$
- (II) Suppose $C_i = v_0 e_1 v_1 e_2 \cdots e_i v_i$.

Choose e_{i+1} from $E(G) - \{e_1, e_2, \cdots, e_i\}$ as follows:

- (a) e_{i+1} is incident with v_i
- (b) Unless there is no alternative, e_{i+1} is not a bridge of $G \{e_1, e_2, \dots, e_i\}$
- (III) Stop when step (II) can no longer be implemented

- (I) $v_0 \in V(G)$; $P_0 = v_0$
- (II) Suppose $C_i = v_0 e_1 v_1 e_2 \cdots e_i v_i$.

Choose e_{i+1} from $E(G) - \{e_1, e_2, \cdots, e_i\}$ as follows:

- (a) e_{i+1} is incident with v_i
- (b) Unless there is no alternative, e_{i+1} is not a bridge of $G \{e_1, e_2, \dots, e_i\}$
- (III) Stop when step (II) can no longer be implemented

- (I) $v_0 \in V(G)$; $P_0 = v_0$
- (II) Suppose $C_i = v_0 e_1 v_1 e_2 \cdots e_i v_i$.

Choose e_{i+1} from $E(G) - \{e_1, e_2, \dots, e_i\}$ as follows:

- (a) e_{i+1} is incident with v_i
- (b) Unless there is no alternative, e_{i+1} is not a bridge of $G \{e_1, e_2, \dots, e_i\}$
- (III) Stop when step (II) can no longer be implemented

- (I) $v_0 \in V(G)$; $P_0 = v_0$
- (II) Suppose $C_i = v_0 e_1 v_1 e_2 \cdots e_i v_i$.

Choose e_{i+1} from $E(G) - \{e_1, e_2, \cdots, e_i\}$ as follows:

- (a) e_{i+1} is incident with v_i
- (b) Unless there is no alternative, e_{i+1} is not a bridge of $G \{e_1, e_2, \dots, e_i\}$
- (III) Stop when step (II) can no longer be implemented

- (I) $v_0 \in V(G)$; $P_0 = v_0$
- (II) Suppose $C_i = v_0 e_1 v_1 e_2 \cdots e_i v_i$.

Choose e_{i+1} from $E(G) - \{e_1, e_2, \cdots, e_i\}$ as follows:

- (a) e_{i+1} is incident with v_i
- (b) Unless there is no alternative, e_{i+1} is not a bridge of $G \{e_1, e_2, \dots, e_i\}$
- (III) Stop when step (II) can no longer be implemented

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \dots, e_i\}$.

By Contradiction.

Suppose that v_i is incident with ≥ 2 bridges in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

By Contradiction.

Suppose that v_i is incident with ≥ 2 bridges in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

By Contradiction.

Suppose that v_i is incident with ≥ 2 bridges in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

 $\exists x' \in C_x : \deg(x) \text{ is odd}$

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

By Contradiction.

Suppose that v_i is incident with ≥ 2 bridges in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

 $\exists x' \in C_x : \deg(x) \text{ is odd}$ $\exists y' \in C_y : \deg(y) \text{ is odd}$

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

By Contradiction.

Suppose that v_i is incident with ≥ 2 bridges in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

 $\exists x' \in C_x : \deg(x) \text{ is odd}$ $\exists y' \in C_y : \deg(y) \text{ is odd}$

We have found 2 odd vertices.

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

By Contradiction.

Suppose that v_i is incident with ≥ 2 bridges in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

 $\exists x' \in C_x : \deg(x) \text{ is odd}$ $\exists y' \in C_y : \deg(y) \text{ is odd}$

We have found 2 odd vertices.

Q: What is the contradiction?

At any stage, v_i is incident with ≤ 1 bridge in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

By Contradiction.

Suppose that v_i is incident with ≥ 2 bridges in $E(G) - \{e_1, e_2, \cdots, e_i\}$.

 $\exists x' \in C_x : \deg(x) \text{ is odd}$ $\exists y' \in C_y : \deg(y) \text{ is odd}$

We have found 2 odd vertices.

Q: What is the contradiction?

Is $deg(v_i)$ odd or even?

1: **procedure** FLEURY(G)

2: $v_0 \in V(G)$

 $C \leftarrow v_0$

4: $i \leftarrow 0, \ V_0 \leftarrow V(G), \ E_0 \leftarrow E(G)$

 \triangleright Choose any starting vertex

 ${\,\vartriangleright\,}$ Keep track of the circuit

1: **procedure** FLEURY(G)

2: $v_0 \in V(G)$

3: $C \leftarrow v_0$

4: $i \leftarrow 0, \ V_0 \leftarrow V(G), \ E_0 \leftarrow E(G)$

5: while $deg(v_i) > 0$ in E_i do

 \triangleright Choose any starting vertex

▶ Keep track of the circuit

▶ Stop otherwise

15: $\mathbf{return} \ C$

```
1: procedure FLEURY(G)
```

 $2: v_0 \in V(G)$

Choose any starting vertexKeep track of the circuit

 $C \leftarrow v_0$

- 4: $i \leftarrow 0, \ V_0 \leftarrow V(G), \ E_0 \leftarrow E(G)$
- 5: while $deg(v_i) > 0$ in E_i do

- > Stop otherwise
- if $deg(v_i) = 1$ in E_i then
- ▶ No alternative: go the bridge

- $e_{i+1} \triangleq v_i v_{i+1}$
- \triangleright Delete the isolated vertex v_i \triangleright Have alternatives: don't go the bridge

9: **else**

6:

7:

8:

10: 11:

- Choose $e_{i+1} \triangleq v_i v_{i+1}$ that is not a bridge of (V_i, E_i)
- Choose

▶ No isolated vertex produced

15: $\mathbf{return} \ C$

1: **procedure** FLEURY(G)

2: $v_0 \in V(G)$

▶ Choose any starting vertex

 $C \leftarrow v_0$

- ▶ Keep track of the circuit
- 4: $i \leftarrow 0, \ V_0 \leftarrow V(G), \ E_0 \leftarrow E(G)$
- 5: while $deg(v_i) > 0$ in E_i do
- ▷ Stop otherwise▷ No alternative: go the bridge
- if $deg(v_i) = 1$ in E_i then
 - $e_{i+1} \triangleq v_i v_{i+1}$
- \triangleright Delete the isolated vertex v_i \triangleright Have alternatives: don't go the bridge

9: **else**

6:

7:

8:

- Choose $e_{i+1} \triangleq v_i v_{i+1}$ that is not a bridge of (V_i, E_i)
- 10: Choose $e_{i+1} \stackrel{\triangle}{=} v_i v_{i-1}$ 11:

▶ No isolated vertex produced

- 12: $C \leftarrow Ce_{i+1}v_{i+1}$
- 13: $E_{i+1} \leftarrow E_i \{e_{i+1}\}$
- 14: $i \leftarrow i + 1$
- 15: $\mathbf{return} \ C$

```
1: procedure FLEURY(G)
         v_0 \in V(G)
 2:
                                                         ▶ Choose any starting vertex
       C \leftarrow v_0
                                                            ▶ Keep track of the circuit
 3:
         i \leftarrow 0, \ V_0 \leftarrow V(G), \ E_0 \leftarrow E(G)
 4:
         while deg(v_i) > 0 in E_i do
                                                                         ▶ Stop otherwise
 5:
              if deg(v_i) = 1 in E_i then
                                                      ▶ No alternative: go the bridge
 6:
                  e_{i+1} \triangleq v_i v_{i+1}
 7:
                  V_{i+1} \leftarrow V_i - \{v_i\}
                                                       \triangleright Delete the isolated vertex v_i
 8:
              else
                                          ▶ Have alternatives: don't go the bridge
 9:
                  Choose e_{i+1} \triangleq v_i v_{i+1} that is not a bridge of (V_i, E_i)
10:
                  V_{i\perp 1} \leftarrow V_i
                                                       ▶ No isolated vertex produced
11:
             C \leftarrow Ce_{i+1}v_{i+1}
12:
              E_{i+1} \leftarrow E_i - \{e_{i+1}\}
13:
              i \leftarrow i + 1
14:
```

return C

15:

complexity

Office 302

Mailbox: H016

hfwei@nju.edu.cn