Open CV와 Dlib를 활용한 이미지 판별 모델 정확도 분석

강다빈*, 조우현*, 송준용*, 박경훈*, 최정열*

*성결대학교

db021129@naver.com

> Lee Soon Shin, Kim Yoo Shin* Chosun Univ., *Shilla Univ.

> > 요 약

본	는	문	은	:					•								•					•					•		•	•	•	•	•	•	•	•	•		•					•	•	•		•		•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
																																																			귱	<u> </u>	įĽ	ł

I. 서 론

졸음운전 교통사고에 대한 사회적 우려와 관심이 많아짐에 따라 인공지능을 이용하여 운전자의 졸음을 감지 및 경고하는 장치에 대한 연구들이 선행되어 왔다. 선행 연구들은 OpenCV나 Dlib를 활용해 face detection으로 졸음을 판별하였지만 각 라이브러리에 따른 정확도는 분석된 바가 없었다. 효율적인 졸음 경고 모델을 만들기 위해 라이브러리에 따른 정확도 분석이 필요하다. 이에 본 논문은 OpenCV와 Dlib를 활용하여 라이브러리에 따른 졸음 예상 이미지 판별 정확도의 상관관계를 비교하고자 한다. 동일한 데이터셋을 OpenCV의 Haarcascade와 Dlib의 HOG를 통해 각각 전처리한 후 학습을 하여 모델을 만든다. 눈과 입을 감지하여 눈의 감김 여부(open / closed)와 입의 열림 여부(yawn/no_yawn)를 판단함으로써 어떤 모델이 졸음 경고 이미지를 판별하는데 더 높은 정확도를 보이는지 비교하고자 한다

Ⅱ. 본론

2.1 데이터 세트

연구자 3명의 사진과 AI Hub의 졸음운전 예방을 위한 운전자 상태 정보 영상 사진, 크롤링한 인터넷 사진으로 총 6,000장 구성되어 있다. 눈 뜸 (open), 눈 감음(closed), 하품(yawn), 입 단음(no_yawn)을 기준으로 labeling되었으며 졸음이 예상되는 상태는 눈 감음(closed), 하품(yawn)으로 설정하였다.

2.2 전처리 방법

OpenCV는 Haar Cascade를 이용하여 하품(yawn), 입 닫음(no_yawn) 데이터셋을 흑백으로 변환하여 입 부분의 좌표를 추출하였다. 이후 원본이미지에서 추출된 좌표만큼 잘라내어 사진 정보와 라벨링 정보(하품:0, 입 닫음:1)를 pickle파일에 저장하였다. 눈 뜸(open), 눈 감음(closed) 데이터셋도 흑백으로 변환하여 눈 부분의 좌표를 추출하였다. 이후 원본 이미

지에서 추출된 좌표만큼 잘라내어 사진 정보와 라벨링 정보(눈 뜸:0, 눈 감음:1)를 pickle파일에 저장하였다.

Dlib은 HOG와 Linear SVM을 합친 방식의 이미지 감지를 이용하여 사람의 얼굴 주요 부분에 68개의 랜드마크를 표시하였다. 하품(yawn), 입 닫음(no_yawn) 데이터셋에서 입의 랜드마크 좌표를 추출하여 사진을 잘라낸 후 사진 정보와 라벨링 정보(하품:0, 입 닫음:1)를 pickle파일에 저장하였다. 눈 뜸(open), 눈 감음(closed) 데이터셋에서는 눈의 랜드마크 좌표를 추출하여 사진을 잘라낸 후 사진 정보와 라벨링 정보(눈 뜸:0, 눈 감음:1)를 pickle파일에 저장하였다

2.3 모델 학습

Layer Name	Layer Size	Activation
Conv2D, MaxPooling2D	256	relu
Conv2D, MaxPooling2D	128	relu
Conv2D, MaxPooling2D	64	relu
Conv2D, MaxPooling2D	32	relu
Flatten, Dropout(0.5)	_	_
Dense	64	relu
Dense	1	sigmoid

[Table 1] 모델 학습 방법

본 실험에서는 yawn, no_yawn 데이터셋을 OpenCV로 전처리하여 (OpenCV)yawn_no_yawn모델의 학습 데이터로 사용하였고 Dlib으로 전처리하여 (Dlib)yawn_no_yawn모델의 학습 데이터로 사용하였다. 또한 open, closed 데이터셋을 OpenCV로 전처리하여 (OpenCV)open_closed 모델의 학습 데이터로 사용하였고 Dlib으로 전처리하여 (Dlib)open_closed 모델의 학습 데이터로 사용하였다.

4가지 모델의 학습 방법은 [Table 1]과 동일하며 batch size 16으로 100 epoch만큼 학습을 진행하였다.

2.4 실험 결과

(1) vawn no vawn 모델 비교

(OpenCV)yawn_no_yawn모델과 (Dlib)yawn_no_yawn모델의 학습 및 검증 데이터셋의 정확도를 비교하였다. [Fig 1]을 보면 (OpenCV)yawn_no_yawn모델의 validation accuracy는 74% 도출되었으 며 (Dlib)yawn_no_yawn모델의 validation accuracy는 93% 도출되었다.

[Fig 1] (OpenCV)yawn_no_yawn모델과 (Dlib)yawn_no_yawn모델의 accuracy

(OpenCV)yawn_no_yawn모델과 (Dlib)yawn_no_yawn모델의 yawn이지만 no_yawn으로 판별하는 오차(yawn error)와 no_yawn이지만 yawn으로 판별하는 오차(no_yawn error)를 비교하였다. 이때 사용한 Testset은 Trainingset과 다른 두 사람의 200장 사진으로 구성하였다. [Fig 2]를 보면 OpenCV의 yawn error는 86% 도출되었으며 no_yawn error는 6% 도출되었다. Dlib의 yawn error는 0% 도출되었으며 no_yawn error는 5% 도출되었다.

	yawn error	no_yawn error
OpenCV	86%	6%
Dlib	0%	5%

[Fig 2] (OpenCV)yawn no yawn모델과 (Dlib)yawn no yawn모델의 yawn error, no yawn error

(2) open_closed 모델 비교

(OpenCV)open_closed모델과 (Dlib)open_closed모델의 학습 및 검증 데 이터셋의 정확도를 비교하였다. [Fig 3]을 보면 (OpenCV)open_closed모델의 validation accuracy는 82% 도출되었으며 (Dlib)open_closed모델의 validation accuracy는 90% 도출되었다.

[Fig 3] (OpenCV)open_closed모델과 (Dlib)open_closed모델의 accuracy

(OpenCV)open_closed모델과 (Dlib)open_closed모델의 open이지만 closed로 판별하는 오차(open error)와 closed이지만 open으로 판별하는 오차(closed error)를 비교하였다. 이때 사용한 Testset은 Trainingset과 다른 두 사람의 200장 사진으로 구성하였다. [Fig 4]를 보면 OpenCV의 open error는 A% 도출되었으며 closed error는 A% 도출되었다. Dlib의 open error는 A% 도출되었으며 closed error는 A% 도출되었다.

	open error	closed error
OpenCV	A%	A%
Dlib	A%	A%

[Fig 4] (OpenCV)open_closed모델과 (Dlib)open_closed모델의 open error, closed error

Ⅲ. 결론

OpenCV을 활용해 전처리한 데이터셋을 학습한 모델과 Dlib를 활용해 전처리한 데이터셋을 학습한 모델 결과를 비교하였다. 이러한 비교를 통해 Dlib을 활용한 모델이 OpenCV를 활용한 모델보다 하품 감지와 눈 깜박임 감지에 더 높은 validation accuracy를 나타내는 것을 확인할 수 있다. 또한 yawn error와 closed error에서 더 낮은 수치를 나타낸 것을 확인할 수 있다. 이로 인해 Dlib을 활용할 경우 더 높은 정확도로 졸음을 경고할 수 있으며 졸음이 경고되는 상황을 인식하지 못하는 오류는 적어질 것이다. 따라서 졸음 운전 감지를 위한 인공지능 모델을 구축하고 학습시키는 데 있어 Dlib을 활용한다면 더 정확한 모델을 도출하며 우수한 성능을 발휘할 것으로 판단된다.

ACKNOWLEDGMENT

Put sponsor acknowledgments.

참고문헌

- [1] Davies R. W." The Data Encryption standard in perspective,"Computer Security and the Data Encryption Standard, pp. 129–132.
- [2] Miles E. Smid, "From DES to AES," 2000, (http://www.nist.gov/aes).
- [3] Shamir, A. "On the security of DES," Advances in Cryptology, Proc.Crypto '85, pp. 280-285, Aug. 1985.
- [4] NIST, "Announcing the Advanced Encryption Standard(AES),"FIPS PUB ZZZ, 2001, (http://www.nist.gov/aes).
- [5] Daemen, J., and Rijmen, V. "AES Proposal: Rijndael, Version2.," Submission to NIST, March 1999.