Ben Langmead

Department of Computer Science

You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email me (ben.langmead@gmail.com) and tell me briefly how you're using them. For original Keynote files, email me.

Sequence models

Can we use Markov chains to pick out CpG islands from the rest of the genome?

Markov chain assigns a score to a string; doesn't naturally give a "running" score across a long sequence

Probability of being in island

We could use a *sliding window*

- (a) Pick window size w, (b) score every w-mer using Markov chains,
- (c) use a cutoff to find islands

Smoothing before (c) might also be a good idea

Sequence models

Choosing w involves an assumption about how long the islands are

If w is too large, we'll miss small islands

If w is too small, we'll get many small islands where perhaps we should see fewer larger ones

In a sense, we want to switch between Markov chains when entering or exiting a CpG island

Sequence models

Something like this:

 $p = \{p_1, p_2, ..., p_n\}$ is a sequence of *states* (AKA a *path*). Each p_i takes a value from set Q. We **do not** observe p.

 $x = \{x_1, x_2, ..., x_n\}$ is a sequence of *emissions*. Each x_i takes a value from set Σ . We **do** observe x.

Like for Markov chains, edges capture conditional independence:

 X_2 is conditionally independent of everything else given p_2

 p_4 is conditionally independent of everything else given p_3

Probability of being in a particular state at step i is known once we know what state we were in at step i-1. Probability of seeing a particular emission at step i is known once we know what state we were in at step i.

Example: occasionally dishonest casino

Dealer repeatedly flips a coin. Sometimes the coin is *fair*, with P(heads) = 0.5, sometimes it's *loaded*, with P(heads) = 0.8. Dealer occasionally switches coins, invisibly to you.

How does this map to an HMM?

Example: occasionally dishonest casino

Dealer repeatedly flips a coin. Sometimes the coin is *fair*, with P(heads) = 0.5, sometimes it's *loaded*, with P(heads) = 0.8. Dealer occasionally switches coins, invisibly to you.

How does this map to an HMM?

Emissions encode flip outcomes (observed), states encode loadedness (hidden)

States encode which coin is used

 $\mathbf{F} = \text{fair}$

 $\mathbf{L} = loaded$

Emissions encode flip outcomes

 $\mathbf{H} = \text{heads}$

T = tails

Example with six coin flips:

$$P(p_1, p_2, ..., p_n, x_1, x_2, ..., x_n) = \prod_{k=1}^n P(x_k | p_k) \prod_{k=2}^n P(p_k | p_{k-1}) P(p_1)$$

 $|Q| \times |\Sigma|$ emission matrix E encodes $P(x_i | p_i)$ s $E[p_i, x_i] = P(x_i | p_i)$

 $|Q| \times |Q|$ transition matrix A encodes $P(p_i | p_{i-1})$ s $A[p_{i-1}, p_i] = P(p_i | p_{i-1})$

|Q| array I encodes initial probabilities of each state $I[p_i] = P(p_1)$

Dealer repeatedly flips a coin. Coin is sometimes fair, with P(heads) = 0.5, sometimes *loaded*, with P(heads) = 0.8. Dealer occasionally switches coins, invisibly to you.

After each flip, dealer switches coins with probability 0.4

		F	L
A :	F	0.6	0.4
	L	0.4	0.6

$$|Q| \times |\Sigma|$$
 emission matrix *E* encodes P($x_i | p_i$)s

$$E[p_i, x_i] = P(x_i | p_i)$$

$$|Q| \times |Q|$$
 transition matrix A encodes $P(p_i | p_{i-1})$ s $A[p_{i-1}, p_i] = P(p_i | p_{i-1})$

$$A[p_{i-1}, p_i] = P(p_i | p_{i-1})$$

Given A & E (right), what is the joint probability of p & x?

A	F	Ш
F	0.6	0.4
L	0.4	0.6

E	Н	Т
F	0.5	0.5
L	0.8	0.2

p	F	F	F	L	L	L	F	F	F	F	F
X	Т	Н	T	Н	Н	Н	Т	Н	Т	T	Н
P(x _i p _i)	0.5	0.5	0.5	0.8	0.8	0.8	0.5	0.5	0.5	0.5	0.5
P(p _i p _{i-1})	-	0.6	0.6	0.4	0.6	0.6	0.4	0.6	0.6	0.6	0.6

If P($p_1 = F$) = 0.5, then joint probability = 0.59 0.83 0.68 0.42 = 0.0000026874

Given flips, can we say when the dealer was using the loaded coin?

We want to find p^* , the most likely path given the emissions.

$$p^* = \underset{p}{\operatorname{argmax}} P(p \mid x) = \underset{p}{\operatorname{argmax}} P(p, x)$$

This is decoding. Viterbi is a common decoding algorithm.

Bottom-up dynamic programming

 $S_{k,i}$ = score of the most likely path up to step i with p_i = k

Start at step 1, calculate successively longer **S**_k, i's

Given transition matrix *A* and emission matrix *E* (right), what is the most probable path *p* for the following *x*?

Initial probabilities of F/L are 0.5

A	F	L
F	0.6	0.4
L	0.4	0.6

E	Н	Т
F	0.5	0.5
L	0.8	0.2

p	?	••	? •	? •	?	?	?	?	?	?	?
X	Т	Н	Т	Н	Н	Н	Т	Н	Т	Т	Н
S Fair, i	0.25	?	?	?	?	?	?	?	?	?	?
S Loaded, i	0.1	?	?	?	?	?	?	?	?	?	?

Viterbi fills in all the question marks

Pick state in step *n* with highest score; *backtrace* for most likely path

Backtrace according to which state *k* "won" the max in:

How much work did we do, given Q is the set of states and n is the length of the sequence?

$S_{k,i}$ values to calculate = $n \cdot |Q|$, each involves max over |Q| products $O(n \cdot |Q|^2)$

Matrix A has $|Q|^2$ elements, E has $|Q||\Sigma|$ elements, I has |Q| elements

Hidden Markov Model: Implementation

```
def viterbi(self, x):
    ''' Given sequence of emissions, return the most probable path
                                                                          mat holds the Sk,i's
       along with its joint probability. '''
                                                                          matTb holds traceback info
   x = map(self.smap.get, x) # turn emission characters into ids
   nrow, ncol = len(self.Q), len(x)
         = numpy.zeros(shape=(nrow, ncol), dtype=float) # prob
                                                                          self. E holds emission probs
   matTb = numpy.zeros(shape=(nrow, ncol), dtype=int)
                                                         # backtrace
   # Fill in first column
                                                                          self. A holds transition probs
   for i in xrange(0, nrow):
       mat[i, 0] = self.E[i, x[0]] * self.I[i]
                                                                          self. I holds initial probs
   # Fill in rest of prob and Tb tables
   for j in xrange(1, ncol):
       for i in xrange(0, nrow):
           ep = self.E[i, x[j]]
                                                            Calculate Ski's
           mx, mxi = mat[0, j-1] * self.A[0, i] * ep, 0
           for i2 in xrange(1, nrow):
                pr = mat[i2, j-1] * self.A[i2, i] * ep
                if pr > mx:
                   mx, mxi = pr, i2
           mat[i, j], matTb[i, j] = mx, mxi
   # Find final state with maximal probability
   omx, omxi = mat[0, ncol-1], 0
   for i in xrange(1, nrow):
                                                            Find maximal Sk,n
       if mat[i, ncol-1] > omx:
           omx, omxi = mat[i, ncol-1], i
   # Backtrace
   i, p = omxi, [omxi]
   for j in xrange(ncol-1, 0, -1):
       i = matTb[i, j]
                                                            Backtrace
       p.append(i)
   p = ''.join(map(lambda x: self.Q[x], p[::-1]))
   return omx, p # Return probability and path
```

```
>>> hmm = HMM({"FF":0.6, "FL":0.4, "LF":0.4, "LL":0.6},
              {"FH":0.5, "FT":0.5, "LH":0.8, "LT":0.2},
                                                                dishonest
              {"F":0.5, "L":0.5})
                                                                casino setup
>>> prob, _ = hmm.viterbi("THTHHHTHTTH")
>>> print prob
2.86654464e-06
>>> prob, = hmm.viterbi("THTHHHTHTTH" * 100) Repeat string
>>> print prob
0.0
```

Occasionally

What happened? Underflow!

When multiplying many numbers in (0, 1], we quickly approach the smallest number representable in a machine word. Past that we have *underflow* and processor rounds down to 0.

Switch to log space. Multiplies become adds.

Hidden Markov Model: Implementation

```
def viterbiL(self, x):
    ''' Given sequence of emissions, return the most probable path
        along with log2 of its joint probability. '''
    x = map(self.smap.get, x) # turn emission characters into ids
    nrow, ncol = len(self.Q), len(x)
          = numpy.zeros(shape=(nrow, ncol), dtype=float) # prob
    matTb = numpy.zeros(shape=(nrow, ncol), dtype=int) # backtrace
    # Fill in first column
    for i in xrange(0, nrow):
        mat[i, 0] = self.Elog[i, x[0]] + self.Ilog[i]
    # Fill in rest of log prob and Tb tables
    for j in xrange(1, ncol):
        for i in xrange(0, nrow):
            ep = self.Elog[i, x[j]]
            mx, mxi = mat[0, j-1] + self.Alog[0, i] + ep, 0
            for i2 in xrange(1, nrow):
                pr = mat[i2, j-1] + self.Alog[i2, i] + ep
                if pr > mx:
                    mx, mxi = pr, i2
            mat[i, j], matTb[i, j] = mx, mxi
    # Find final state with maximal log probability
    omx, omxi = mat[0, ncol-1], 0
    for i in xrange(1, nrow):
        if mat[i, ncol-1] > omx:
            omx, omxi = mat[i, ncol-1], i
    # Backtrace
    i, p = omxi, [omxi]
    for j in xrange(ncol-1, 0, -1):
        i = matTb[i, j]
        p.append(i)
    p = ''.join(map(lambda x: self.Q[x], p[::-1]))
    return omx, p # Return log probability and path
```

log-space version

Task: design an HMM for finding CpG islands?

Idea 1: Q = { inside, outside }, Σ = { A, C, G, T }

Idea 1: Q = { inside, outside }, Σ = { A, C, G, T }

Example 1 using HMM idea 1:

A	I	0
	0.8	0.2
0	0.2	0.8

E	Α	C	G	Т
I	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

x: ATATATACGCGCGCGCGCGCGATATATATATA

(from Viterbi)

Example 2 using HMM idea 1:

A		0
	0.8	0.2
0	0.2	0.8

E	Α	C	G	Т
I	0.1	0.4	0.4	0.1
0	0.25	0.25	0.25	0.25

x: ATATCGCGCGCGATATATCGCGCGCGATATATAT

p: 0000111111100000011111111000000000

(from Viterbi)

Example 3 using HMM idea 1:

A	I	0
	0.8	0.2
0	0.2	0.8

E	Α	C	G	Т	
I	0.1	0.4	0.4	0.1	
0	0.25	0.25	0.25	0.25	

x: ATATATACCCCCCCCCCCCCCATATATATATA

(from Viterbi)

Oops - not a CpG island!

Idea 2: Q = { A_i , C_i , G_i , T_i , A_o , C_o , G_o , T_o }, Σ = { A, C, G, T }

Idea 2: Q = { A_i, C_i, G_i, T_i, A_o, C_o, G_o, T_o }, Σ = { A, C, G, T }

All inside-outside edges

Idea 2: Q = { A_i, C_i, G_i, T_i, A_o, C_o, G_o, T_o }, Σ = { A, C, G, T }

A	Ai	Ci	Gi	T _i	Ao	Co	Go	To
Ai								
Ci								
Gi								
Ti		•	ſī	stim	ata Di	C IT) ac	-
Ao			Estimate P(C _i T _i) as fraction of all					
Co				dinucleotides where first is an inside T,				
Go			second is an inside C					
To								

E	A	U	G	Т
Ai	1	0	0	0
Ci	0	1	0	0
Gi	0	0	1	0
Ti	0	0	0	1
Ao	1	0	0	0
Co	0	1	0	0
Go	0	0	1	0
To	0	0	0	1

Actual trained transition matrix A:

A:				
[[1.85152516e-01	2.75974026e-01	4.00289017e-01	1.37026750e-01
	3.19045117e-04	3.19045117e-04	6.38090233e-04	2.81510397e-04]
[1.89303979e-01	3.58523577e-01	2.52868527e-01	1.97836007e-01
	4.28792308e-04	5.72766368e-04	3.75584503e-05	4.28792308e-04]
[1.72369088e-01	3.29501650e-01	3.55446538e-01	1.40829292e-01
	3.39848138e-04	4.94038497e-04	7.64658311e-04	2.54886104e-04]
[9.38783432e-02	3.40823149e-01	3.75970400e-01	1.86949063e-01
	2.56686367e-04	5.57197235e-04	1.05804868e-03	5.07112091e-04]
[0.00000000e+00	3.78291020e-05	0.00000000e+00	0.00000000e+00
	2.94813496e-01	1.94641138e-01	2.86962055e-01	2.23545482e-01]
[0.00000000e+00	7.57154865e-05	0.00000000e+00	0.00000000e+00
	3.26811872e-01	2.94079570e-01	6.17258712e-02	3.17306971e-01]
[0.00000000e+00	5.73810399e-05	0.00000000e+00	0.00000000e+00
	2.57133507e-01	2.33483327e-01	2.94234944e-01	2.15090841e-01]
[0.00000000e+00	3.11417347e-05	0.00000000e+00	0.00000000e+00
	1.79565378e-01	2.32469115e-01	2.94623408e-01	2.93310958e-01]]

Actual trained transition matrix A: Red & orange: low probability

Yellow: high probability

White: probability = 0

Viterbi result; lowercase = *outside*, uppercase = *inside*:

Viterbi result; lowercase = *outside*, uppercase = *inside*:

Many of the Markov chains and HMMs we've discussed are *first order*, but we can also design models of higher orders

First-order Markov chain:

Second-order Markov chain:

For higher-order HMMs, Viterbi $S_{k,i}$ no longer depends on just the previous state assignment

Can sidestep the issue by expanding the state space...

Now *one* state encodes the last *two* "loadedness"es of the coin

After expanding, usual Viterbi works fine.

We also expanded the state space here:

$$Q = \{ I, O \}$$
 $Q = \{ I, O \} \times \{ A, C, G, T \}$

