Learning Rates and Weight Initialization

Foundations of Effective Neural Network Training

Outline

- Learning Rate Fundamentals
- Learning Rate Impact
- Weight Initialization Basics
- Common Initialization Strategies
- Vanishing Gradient Problem
- Exploding Gradient Problem
- Initialization Techniques

Learning Rate Fundamentals

- Learning Rate (η) is a critical hyperparameter in optimization
 - It matters how you approach the local minima
 - Small Learning Rate
 - Slow Convergence
 - Can get stuck in minimas like saddle points
 - Large Learning Rate
 - Fast Convergence, but might overshoot the desired minimum
 - Can cause Loss function to oscillate/diverge
 - Optimal Learning Rate
 - Balances the speed and stability

Learning Rate Fundamentals

Challenges

- Choosing the right value
- Dynamic Adjustments
 - Learning Rate schedules(i.e, step decay, exponential decay)
- Sensitivity to scale
 - Different features or layers may need different learning rates
 - Feature Scaling
- Impact of loss surface
 - A highly non-convex loss surface with multiple local minima and saddle points complicates the choice of learning rate.

Weight Initialization Basics

 Should we initialize the weights randomly?!

Weight Initialization Basics

- Process of assigning initial values to weights
 - It matters where we start from
- Proper Initialization is crucial
 - Ensure Effective Signal Propagation
 - Improve convergence speed
 - Prevent symmetry

Weight Initialization Basics

- When Randomly initialize the weights
 - There is a chance to have bad start points
 - Vanishing Gradients
 - Exploding Gradients
 - Symmetry Breaking
 - Unstable Learning Dynamics

Impact of Weight initialization

- Training Speed
- Model Accuracy
- Prevention of Overfitting

Common Initialization Strategies

Random Initialization

$$\omega \sim Uniform(-\epsilon, \epsilon)$$

Xavier/Glorot Initialization

$$\omega \sim Uniform(-\sqrt{\frac{1}{n}}, \sqrt{\frac{1}{n}})$$

He Initialization

$$\omega \sim \mathcal{N}(0, \sqrt{\frac{2}{n}}) \text{ or } \omega \sim U(-\sqrt{\frac{6}{n}}, \sqrt{\frac{6}{n}})$$

- Zero Initialization
 - Should be avoided for weights but can be used for bias initialization

Vanishing Gradient Problem

- It happens when gradients become extremely small during backpropagation
- Root Causes
 - Activation Functions
 - Saturating functions like sigmoid and Tanh
 - In case of Sigmoid: f'(x) = f(x)(1 f(x)), becomes very small if f(x) is close to 0 or 1
 - Weight Initialization
 - Deep Networks
 - Loss Function
 - Functions with small derivatives like the ones used in classification tasks

Vanishing Gradient Problem

- Impacts on Deep Network
 - Slow Learning in early layers
 - Poor model performance
 - Optimization difficulties
 - Bias toward output layers

How To Identify Vanishing Gradient

Gradient Magnitude Inspection

- Measure the magnitude of gradients at different layers during training
 - The early layers will have near-zero gradient values

Training Behavior

Slow Convergence

Activation Distribution

Saturation near min/max of the activation range, suggests potential gradient vanishing

Weight Updates

Small changes in weights of earlier layers during training

How To Mitigate Vanishing Gradient

- Use NonSaturating Functions like ReLU
- Weight Initialization Techniques
- Batch Normalization
- Residual Networks?!

Exploding Gradient Problem

- It happens when gradients grow uncontrollably large during backpropagation
- Root Causes
 - Deep Networks
 - If gradients in different layers are larger than 1, then the repeated multiplication of them would be huge
 - Recurrent Neural Networks (RNNs)
 - Gradients are propagated through time and long sequences amplify the effect
 - Improper weight Initialization
 - Activation Functions with unbounded outputs

How To Identify Exploding Gradient

Gradient Magnitude Inspection

Measure the magnitude of gradients at different layers during training

Training Behavior

- Observe instabilities, Diverging loss values, NaN values
- Activation Distribution
- Log Gradient Values
 - Visualize gradients using **TensorBoard.** Even a sudden spike is a sign.

How To Mitigate Vanishing Gradient

Gradient Clipping

$$|If \|\nabla L\| > \tau, \ \nabla L \leftarrow \tau. \frac{\nabla L}{\|\nabla L\|}$$

- Weight Regularization
 - L2 regularization penalizes the large weights
- Proper Weight Initialization
 - Xavier/Glorot or He initialization ensure the weights are scaled properly
- Optimizers with adaptive learning
 - Adam or RMSProp, dynamically adjut the learning rate for each parameter
- Batch Normalization
- Architectural Adjustments
 - For RNNs, you might use LSTMs or GRUs which include gating mechanisms to control the gradient flow

Initialization Techniques

Zero Initialization

- Pros: Simple, and works for biases
- Cons: All neurons in a layer learn the same features because their gradients are identical

Random Initialization

- Pros: Breaking Symmetry and Enables effective learning
- Cons: Randomly chosen values can result in vanishing/exploding gradients

He Initialization

- Pros: Prevents exploding/vanishing gradients
- Cons: Might not be optimal for activations other than ReLU, and a slightly more computation overhead

Initialization Techniques

Method	Pros	Cons	Best for
Zero Initialization	Simple	Symmetry	Bias Initialization
Random Initialization	Breaks Symmetry	May cause vanishing/ exploding gradients	Shallow networks
He Initialization	Prevents gradient issues	Slight computational overhead	Deep networks with ReLU

