Vorlesungsaufgaben

LOOP-Implementierung

- (a) Geben Sie eine LOOP-Implementierung für
 - (i) $add(x_i, x_j)$

```
x_0 := x_i;

LOOP x_j DO

x 0 := succ(x_0);

END
```

(ii) $mult(x_i, x_j)$

```
x_0 := x_i;
L00P x_j D0
x0 := add(x_0, x_i);
END
```

(iii) $power(x_i, x_j)$

```
x_0 := succ(0);
LOOP x_j D0
x0 := mult(x_0, x_i);
END
```

(iv) $hyper(x_i, x_i)$

```
1  x_0 := succ(0);
2  LOOP x_j DO
3  x_0 := power(x_i, x_0);
4  END
```

(v) 2^{x_i}

```
Mit power

x_0 := power(2, x_i);

Mit mult

x_0 := 1;

x_2 := 2;

LOOP x_i DO

x0 := mult(x_0, x_2);

END
```

an.

(b) Beweisen Sie, dass der größte gemeinsame Teiler zweier natürlicher Zahlen LOOP-berechenbar ist.

```
ggT(x_1, x_2)

x_3 := MAX(x_1, x_2);

x_4 := MIN(x_1, x_2);

LOOP x_4 DO

x_5 := x_3 - x_4;

x_3 := MAX(x_4, x_5);

x_4 := MIN(x_4, x_5);

END

x_0 := x_3;
```

WHILE-Programm

Gebe ein WHILE-Programm an, dass

 -2^{x_i} $-ggt(x_i,x_j)$

berechnet.

Turing-berechenbar

- (a) Zeige, dass es nur abzählbar viele Turingmaschinen gibt.
- (b) Turing-berechenbar
 - (i) Definiere eine berechenbare Funktion $f:N\to N$ mit entscheidbarem
 - (ii) Definitionsbereich und unentscheidbarem Wertebereich. Untersuche folgende Aussagen
 - i. Jede berechenbare Funktion $h:N\to N$ mit endlichem Wertebereich besitzt einen entscheidbaren Definitionsbereich.
 - ii. Jede berechenbare Funktion $g:N\to N$ mit endlichem Definitionsbereich besitzt einen entscheidbaren Wertebereich.