

Instituição: Universidade Federal de Minas Gerais

Disciplina: Análise Numérica Professora: Fabrício Murai Aluna: Lorena Mendes Peixoto

Matrícula: 2017015002

Quinta Lista de Exercícios

Questão 1) Marque V ou F e justifique:

1	V	Se os pontos são colineares, então só poderá ser uma única reta.
2	F	Ela só vai superestimar o valor da integral no caso de a função ter sua concavidade para cima.
3	F	Deve-se usar uma quantidade múltipla de 3 de intervalos. Com 7 pontos, tem-se 6 intervalos, o que mostra que a afirmação é falsa.
4	F	O exemplo 5.11 da 1ª edição do livro adotado mostra que, para o mesmo número de subintervalos, E2 apresenta um menor erro.
5	F	O erro, no caso do $\frac{1}{3}$ de Simpson, seria 2.25 vezes maior que no caso do $\frac{3}{6}$ de Simpson (basta substituir os valores nas fórmulas).
6	F	Ele fica 4 vezes menor, já que o m, na equação, é elevado ao quadrado.
7	٧	
8	٧	
9	F	Elas são os pesos na equação, e não as raízes.

Questão 2)

Questão 2) o) h= x1 - x	0 = 6	II= (h/2) (yo+yi)	Regna do
(x2dx	X0=1 40=	1	11 = (6/2) (1+49)	Trapesso
	X1 = 7 41 =		1, = 3 (50) = 150	
6) Regra do	X.o = 1	$I_z = (h/3)$) (yo + 4y1 + y2)	$\int_{-\infty}^{7} x^2 dx$
1/3 de Simpson	X1 = 4]2 = (3/3	(1 + 4.16 + 49)	,
h=(x2-x0)/2	X2=7	J2= 64-	+50 = 114	
h = 612 = 3				

0) Reo	no do	Trap	e'zio	In = (h12) \(\sum_{1=0}^{m} \) ciyi h=(b-a)/m				
Comp	osta	a po	nta de	h= (7-1) 16 = 1				
_m=6	repr	ntuval	.05	In= (112) & cryi				
i	x:	IJ;	ci	$I_{1} = (1/2)(1+2(4+9+16+25+36)+49)$				
0	1	1	1	$I_1 = (1/2)(1 + 180 + 49)$				
1	2	4	2	In = (1/2) (230)				
2	3	9	2	I, = (15				
3	4	16	2					
4	5	25	2	$\int_{0}^{\frac{\pi}{2}} x^{2} dx$				
5	6	36	2	,				
6	7	49	1					

11/21 0					
d) 1/3 de Simpson	i	Xi	yi	Ci	I2 = (1/8) (1+4(4+16+36)+
composta com	0	1	1	1	+ 2 (3 +25) + 49)
m=6.	1	2	4	4	J2= (1/3) (1+224+68+49)
I2 = (h/3) \(\sum_{i=0} \) ciyi	2	3	9	2	Ja = (1/3) (342)
h= (b-a) 1m=1	3	4	16	4	J2 = 414
Co = Cm = 1	A	5	25	2	$\int_{-\pi}^{\pi} (x^2 dx)$
ci = 4 se i por Empar	5	6	36	A	1
ci = 2 se i por par.	6	7	49	1	
,					k*110

		Simps		$T_3 = (3h/8) \sum_{i=0}^{m} c_{i}y_i \qquad h=(b-a)/m = 1$
Com	posta	com		
m=	6.			and the state of t
i	xi	yi	ci]3 = (3/8) (1+3(4+9+25+36)+2(16)+49)
0	1	7	1	I3 = (3/8) (1+222+32+43)
1	٥	4	3	I ₃ = (3/8) (304)
2	3	9	3	I3 = 114
3	4	16	2	
4	5	25	3	(x^2) dx
5	6	36	3	
6	7	49	i	

Questão 3)

```
Questão 3) a)

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b-a)^{3} \int_{0}^{\pi} (\theta), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b-a)^{3} \int_{0}^{\pi} (\theta), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b-a)^{3} \int_{0}^{\pi} (\theta), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b-a)^{3} \int_{0}^{\pi} (\theta), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b-a)^{3} \int_{0}^{\pi} (\theta), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{2} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{3} + 4x^{3} + e^{x}) dx \quad E_{1} = -(b^{3} - e^{3}), \quad a < \theta < b

\int (3x^{3} + 4x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3} = -(a)^{3} \int (3x^{3} + e^{x}) dx \quad e^{3
```

Questão 4)

Questão 5)

```
Question s) as

ds = -\beta sx \quad \text{Nado que } s + x + n = 1, \quad x = 1 - s - n
dt \quad ds = -\beta sx \quad (1 - s - x) = -\beta s + \beta s^2 + \beta sx
dt \quad dt
dt \quad dt
dt \quad dt
dt \quad dt
ds = x \times \rightarrow dx = x \quad (1 - s - x) = x - xs - xst
ds = x \times ds = x \times
```

Questão 6)

import numpy as numpy

```
def function(Y,R,S0,B):
   return Y * (1 - R - S0 * numpy.exp(R * - B / Y))
def Heun(h):
    Y, B, r0, x0 = 0.4, 0.8, 0, 0.1
    X = x0
    R = r0
    Fxy = function(Y, R + (h / 2) * function(Y, R, 0.8, B), 0.8 + (h / 2), B) i = 1;
    for j in range(0, 3):
    while X < 40 * (j + 1):
        X = x0 + h * i
        R += h * Fxy
        Fxy = function(Y, R + (h / 2) * function(Y, R, 0.8, B), 0.8 + (h / 2), B)
        i += 1</pre>
         print(40 = (j + 1))
         print(R)
         S = 0.8 * numpy.exp(R * - B / Y)
         print(S)
         X = 1 - R - S
         print(X)
    print("\n")
def Euler(h):
    Y, B, r0, x0 = 0.4, 0.8, 0, 0.1
    X = x0
R = r0
    Fxy = function(Y, R, 0.8, B)

i = 1;

for j in range(0,3):

while X < 40 * (j + 1):

    X = x0 + h * i

    R += h * Fxy
             Fxy = function(Y, R, 0.8, B)
i \leftarrow 1
         print(40 * (j + 1))
         print(R)
         S = 0.8 numpy.exp(R - B / Y)
         print(S)
        print(X)
    print("\n")
    a) Euler(0,1)
                             b) Heun(0,1)
                                                       c) Euler(0,05)
                                                                                 d) Heun(0,05)
 0.8554134862104567
                          0.8420869374814836
                                                                              0.8489029291514812
                                                    0.8554121275071418
0.1445730267386013
                           0.1484781564343317
                                                    0.14457341960283643
                                                                              0.14646783812384434
 1.348705094203484e-05
                          0.009434906084184735
                                                    1.4452890021776632e-05
                                                                              0.004629232724674415
 80
                          80
                                                                              80
 0.8554324589058794
                          0.8421252326407163
                                                    0.8554324588754445
                                                                              0.8489315058345083
 0.14456754096267665
                          0.14846678488052623
                                                    0.14456754097147645
                                                                              0.14645946723309147
 1.314439668220757e-10
                          0.009407982478757515
                                                    1.5307904943639983e-10
                                                                              0.004609026932400256
                                                    120
0.8554324590907846
                           0.8421252333141385
                                                    0.8554324590907827
                                                                              0.8489315062388381
 0.14456754090921406
                          0.1484667846805646
                                                    0.14456754090921461
                                                                              0.14645946711465563
 1.3600232051658168e-15
                          0.009407982005296939
                                                    2.6922908347160046e-15
                                                                             0.004609026646506309
```