PCT

国際事務局

特許協力条約に基づいて公開された国際出願

(11) 国際公開番号 (51) 国際特許分類 5 WO 92/12535 H01L 21/312, 21/316, 21/90 A1 (43) 国際公開日 1992年7月23日(23.07.1992) (21)国際出題番号 PCT/JP91/01739 (81) 指定国 (22) 国際出願日 1991年12月19日(19.12.91) DE(欧州特許), FR(欧州特許), GB(欧州特許), JP, KR, US. (30) 優先権データ 添付公開書類 国際調査報告 JΡ 特顯平3/734 1991年1月8日(08.01.91) 特願平3/62133 1991年3月26日(26.03.91) JΡ (71) 出願人(米国を除くすべての指定国について) 富士通株式会社(FUJITSU LIMITED)[JP/JP] 〒211 神奈川県川崎市中原区上小田中1015番地 Kanagawa, (JP) 富士通ヴィエルエスアイ株式会社 (FUJITSU VLSI LIMITED)[JP/JP] 〒487 愛知県春日井市高蔵寺町二丁目1844番2 Aichi, (JP) (72) 発明者;および (75) 発明者/出願人(米国についてのみ) 筑根数弘(TSUKUNE, Atsuhiro)[JP/JP] 古村雄二(FURUMURA, Yuji)[JP/JP] 岛中正信(HATANAKA, Masanobu)[JP/JP] 〒211 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 Kanagawa, (JP) (74) 代理人 弁理士 肯木 朗,外(AOKI, Akira et al.) 〒105 東京都港区虎ノ門一丁目8番10号 静光虎ノ門ビル 青和特許法律事務所 Tokyo。(JP)

(54) Title: PROCESS FOR FORMING SILICON OXIDE FILM

(54) 発明の名称 シリコン酸化膜の形成方法

a ... this invention
b ... Si(OR)4, Si(R)4, etc.,
organosilane
c ... excitation (continuous or pulse-mode)
d ... hydrolysis, oxidation, polymerisation
e ... low-molecular-weight polymer
f ... deposition
g ... adsorption (heating or cooling)
h ... on a wafer
i ... filmy gel
j ... heating
k ... filmy 8102

(57) Abstract

A process for forming a silicon oxide film comprising the step of depositing a thin film of a silanol, a polymer thereof or a siloxane polymer, each containing an organic group, on a substrate by exciting a gas containing an organosilane or organosiloxane gas and a gas containing H and OH on a substrate in a reactin chamber to cause a reaction in a gas phase or on the substrate and the step of removing the organic group from the thin film by plasma treatment. Preferably the thin film is formed by repeating the depositing step and the removing step in the same chamber and is heat treated at a temperature of 450 °C or below. This process provides a good insulation film having a flatness comparable to that f an SOG film.

& 本発明

反応室内の基板上で、有機シラン又は有機シロキサンガスとH及びOH含有ガスとを含むガスを、励起させて気相中又は基板上で反応させることにより、基板上に有機基を含有するシラノール、シラノール重合体又はシロキサン結合重合体の薄膜を堆積させる工程と、その後、薄膜から有機基を除去してシリコン酸化膜を得る工程とを含むシリコン酸化膜の形成方法。好ましくは、同一反応室内で上記堆積工程とプラズマ処理による有機基除去工程を繰り返しながら成膜し、さらに450℃以下の温度で熱処理する。これによって、SOG膜並みの平坦性を有する良好な絶縁膜が得られる。

情報としての用途のみ

PCTに基づいて公開される国際出版のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

AT オーストリア AU オーストリア BB パルギート BE パルギャーア BG ツルガリ BJ パルギャーア BG フルガリ BA カナンジル CA カナナンジル CA カナヤアフリカ CG コンイト・シン CH ココート・シン CM カェンマール CM カエー CM カエー CM カエー CM カナ・ツール CM カナ・ツール DE ドインツーク

MLVマリン・ サリン・ サリン・ サーフ・ サーフ・ サーフ・ サーフ・ サーフ・ サーフ・ サーフ・ サーフ・ サーフ・ アート RU ロススセッチ・ SE スセッチ・ SE スセッチ・ SE スセッチ・ TO SU US #4

1

明 細 書

シリコン酸化膜の形成方法

技 術 分 野

本発明はシリコン酸化膜の形成方法に関わり、特に半導体装置の多層配線間のSiOz等の層間絶縁膜の形成方法に関する。

背景技術

近年の半導体デバイスでは、微細化の進展及び配線の多層 化に伴いアスペクト比が増大し、パターン表面の凹凸がデバ イスの信頼性に重大な影響を及ぼすようになっている。

そのため、素子や配線を保護、絶縁する絶縁膜を平坦化させることができる半導体装置の製造方法が要求されている。

A1配線間の層間絶縁膜の平坦化技術としては、従来より SOG (Spin-On-Glass)法が広く利用されて いる。しかし問題点も多く、コンフォーマル形状や流動形状 を持つ新しいCVD法の開発が盛んに行われている。

SOCには、無機SOCと有機SOCとがある。無機SOCは、膜収縮が大きいため厚膜化が難しく、300nm程度の膜厚を得るためにも多層塗りが必要となる。一方、有機SOCは、厚膜化は可能であるが膜中に残存する有機基がOェプラズマや高温でのO2雰囲気で急激な酸化分解を引き起こす。一般にSOC膜は、他のCVD酸化膜などに比べ吸湿性が非

常に大きく、大気に晒されることで水分の吸着源となる。このような水分の吸着による脱ガス、あるいはキュア不良による膜中からの生成水などの発生は信頼性を低下させる原因となる。このため、SOG膜がスルーホール側壁に露出しないようにエッチバックを併用することがSOGを用いたプロセスでは必要である。

発明の開示

本発明の目的は、所望の厚さで信頼性の高い平坦化された 絶縁膜の形成方法を提供する。

本発明によれば、上記目的を達成するために、反応室内の基板上で、有機シラン又は有機シロキサンガスとH及びOH合有ガスとを含むガスを、励起させて気相中又は基板上で反応させることにより、基板上に有機基を含有するシラノール、シラノール重合体又はシロキサン結合重合体の薄膜を堆積させる工程と、その後、薄膜から有機基を除去してシリコン酸化膜を得る工程を有するシリコン酸化膜の形成方法が提供される。

好ましい態様によれば、有機基除去をプラズマ処理で行ない、特に同一反応室内で堆積工程とプラズマ処理工程とを交互に繰り返して行って、基板上に所望の膜厚を持つシリコン酸化膜を得る。

また、前記励起はパルス的に行なうことが好ましく、その 際有機シラン又は有機シロキサンガス又はその反応生成物が 基板に到達するとき未だ有機基を含むことができる程度に短 い励起時間にするとよい。

1つの好ましい実施態様では、前記堆積を平行平板型プラズマCVD装置で行い、圧力が $5\sim15$ Torr、温度が室温以上250 Cまで、電極間距離が $6\sim25$ mm、ガス流量が10 $0\sim1800$ cm/min 、放電電力が $100\sim500$ W、かつ放電オン時間が $D \leq \frac{300}{P}$ $\{140-(140/310)$ T} (式中、Dは、ガスがプラズマ領域に導入されてから基板に到達するまでの時間を100 として放電オン時間の長さを%で表したもので100 %が上限であり、P はR F パワー、

図面の簡単な説明

Tは基板温度である)を満たす時間とする。

図1A-1Cは従来例の一例の製造方法を説明する図である。

図2A-2Bは従来例の課題を説明する図である。

図3A-3Bは従来例の課題を説明する図である。

図4A-4Fは従来例の他の一例の製造方法を説明する図である。

図5A-5Bは本発明の原理説明図である。

図 6 A - 6 B は本発明を説明するためのTEOSとH2Oの反応生成物を示す図である。

図7は本発明を説明するための重合体の蒸気圧と吸着分子 数に対する分子量分布を示す図である。

図8は本発明の第1の実施例に則したプラズマCVD装置

を示す概略図である。

図9A-9Dは圧力依存で見たシリコン酸化物薄膜の堆積 形状を示す図である。

図10は圧力10Torrで低温(-30℃)にした場合のシリコン酸化物薄膜の堆積形状を示す図である。

図11は流量比依存とパルス依存におけるシリコン酸化物 薄膜の状態を説明する図である。

図12はTEOS流量に対するシリコン酸化物薄膜の成長 レートを示す図である。

図13は本発明の第2の実施例に則したプラズマCVD装置を示す概略図である。

図14A-14Bは本発明の第2の実施例に則したプラズマCVD装置を用いて堆積した場合のシリコン酸化物薄膜の堆積形状を示す図である。

図15A-15Bは本発明の第3の実施例に則した堆積後 N_2 ガス雰囲気でアニール処理した場合のシリコン酸化物薄膜を説明する図である。

図16A-16Bは本発明に適用できるマイクロ波励起を 用いる場合のCVD装置を示す概略図である。

図17A-17Bは本発明の第5の実施例の成膜とプラズマ処理を繰り返す場合のシリコン酸化物薄膜を説明する図である。

図18A-18Fは第6の実施例の成膜により得られるシリコン酸化物薄膜の顕微鏡写真とそのモデル図である。

図19は第6の実施例の成膜における基板温度及びパルス

励起デューティーと膜の平坦化との関係を示す図である。

図20は第6の実施例で得た膜の熱分析結果を示す図である。

図21は第6の実施例で得た膜の分子量分布を示す図である。

図22A-22Bはプラズマ処理なしで成膜した膜の熱収縮率とエッチング速度を示す図である。

図23A-23Bは第7の実施例で堆積後プラズマ処理するプロセスの工程図とこれによって得た膜のエッチング速度を示す図である。

図24は堆積後、H2Oプラズマ処理後、及び熱処理後の 膜の赤外吸収データを示す図である。

図25は第7の実施例で堆積とH2Oプラズマ処理を繰り返しながらシリコン酸化物薄膜を成膜するプロセスを示す工程図である。

図26は図25の繰り返し法で得たシリコン酸化膜の断面顕微鏡写真である。

図27は本発明に適用できる平行平板型のRF放電を利用する成膜装置を示す概略図である。

図28は本発明に適用できるμ波ダウンフロー型のプラズマを利用する成膜装置を示す概略図である。

図29は本発明に適用できる成膜(枚葉処理)装置とアニール処理(バッチ処理)装置を示す概略図である。

図30A-30Bは本発明に適用できる成膜方法における 高周波電力と低周波電力の印加方法を説明する図である。 図31は本発明に適用できる図30Bに示す印加方法における合成ボックスを示す図である。

発明を実施するための最良の形態

本発明を具体的に説明する前に、参考のために、従来技術について図面を用いてより詳しく説明を加える。

図1A-1 Cは従来の半導体装置の製造方法の一例を説明する図である。図1A-1 Cにおいて、81はSi等からなる整縁膜、83はA1等からなる配線層、84aはSiOz膜、84bはSOG膜、84cはSiOz膜、84はSiOz膜84a、SOG膜84b及びSiOz膜84cからなる層間絶縁膜、85はレジストパターン、86はレジストパターン85に形成された開口部、87はレジストパターン85に形成されたスルーホールとなるコンタクトホール、88はA1等からなる配線層である。

次に、その製造方法について説明する。

まず、図1Aに示すように、例えばCVD法により基板8 1上にSiO₂を堆積して絶縁膜82を形成し、例えばスパッタ法により絶縁膜82上にA1を堆積してA1膜を形成し、例えばRIEによりA1膜をパターニングして配線層83を 形成した後、例えばCVD法により配線層83を覆うように SiO₂膜84aを形成する。この時、SiO₂膜84aま 面に段差が生じる。次いで、SiO₂膜84a上にスピン塗 布法により表面が平坦になるようにSOGを塗布してSOG 膜84bを形成し、例えばCVD法によりSOG膜84b上にSiOzを堆積してSiOz膜84cを形成した後、SiOz膜84c上に開口部86を有するレジストパターン85を形成する。

次に、図1 Bに示すように、レジストパターン85をマスクとして層間絶縁膜34をエッチングして配線層83が露出されたコンタクトホール87を形成する。

そして、例えばスパッタ法によりコンタクトホール87を 介して配線層88とコンタクトを取るようにA1を堆積して 配線層88を形成することにより、図1cに示すような配線 構造を得ることができる。

しかしながら、上記した従来の半導体装置の製造方法では SOG法により形成するシリカガラス膜の材料として無機系 SOG剤(キュア後膜中にCH。基等有機基を含まないもの) を用いた場合に膜厚を厚くすると、SOG膜84bにクラッ クが発生し易いため厚膜化(特に300m以上でクラックが 発生し易い)することができず十分な平坦化を実現できない。

一方、有機系SOG材(キュア後膜中にCH。基等有機基を含むもの)では、膜厚化が可能(500~600nm程度の形成も可能)であるが、SOG膜84b中にCH。基等有機基が存在するため、図2A及び2Bに示すように、その後の工程で〇2プラズマや高温で酸素雰囲気に晒されると膜中の有機基が酸化分解し、急激に膜が収縮するためSOG膜84bにクラックやハガレ89が発生したり、吸湿性が異常に増加するという問題がある。

また、有機系SOG材を用いる場合では、図3A及び3B に示すように、SOG膜84b中から脱ガスが発生してコン タクト不良90が生じることもあった。

このため、有機系SOG材を用いる場合は図4A-4Fに示すように、SOG膜84bをエッチバックし、コンタクトホール87(スルーホール)形成後にSOG膜84bがコンタクトホール87側壁に露出しないようにしている。

しかしながら、この有機系SOG材を用いる場合では、エッチバックという工程数が増えるとともに、エッチバック後の平坦度が図 4 B に示す θ 1 < θ 2 の如く塗布形状に対して低下し、エッチングの選択比の問題から良好な平坦性が得られず低下するという問題がある。

次に、上記したSOG法以外の表面平坦化を行う従来の手段としては、TEOSとO。を用いた常圧CVD法により、コンフォーマルな形状やリフロー形状のSiO₂膜やPSG膜等を形成することによって、半導体素子表面の段差を低減する方法が挙げられ一般に知られている。

しかしながら、この場合膜厚が500nm以上では、その後の工程の熱処理等によりクラックが発生し、500nm以下の膜厚ではSOG並みの平坦形状がこの方法のみでは得られないという問題がある。この方法でSOG並みの平坦度を実現するには、1 m以上形成し、エッチバックを行う必要がある(エッチバックという工程増加)。

また、シリコンアルコラート (テトラエトキシシラン)を原料ガスとして、0.05~5%の水蒸気と5~90%の水

素との混合ガスを用いてプラズマCVD法を用いて1段階でSiOz膜を形成する方法が提案されている(日本特開平2-285636号)。この方法は、水素プラズマで原料シリコンアルコラートを完全にSiOz化することを目的とするものであるが、少量の水蒸気プラズマを混在させてSi(OH)4成分を生成せしめて膜成長面でのSiOz成分の移動を容易にして膜質をち密化することを記録している。

しかしながら、この方法はH2プラズマCVDにより直接に無機SiO2膜を堆積する方法であるため、膜の平坦化は実現されず、膜厚が大きくなるとクラックが発生する問題は解決されていない。

一方、A1配線より下の比較的高温プロセスの許されるポリシリコン配線等の層間絶縁膜においては、従来技術として、SiH゚ とO₂(あるいはN₂ O) にPH3 を添加してPSGを得る方法、同様にB2 H。を添加してBSGを得る方法、同様にPH3とB2 H。を同時に添加してBPSGを得る方法が知られている。この場合、これらを900℃以上の高温でアニール(リフロー)処理をすることによって平坦性を向上させている。

しかしながら、この高温アニール処理によって平坦性を向上させる方法では、900℃以上の高温で行うため、拡散層(特にPch側ソースードレイン)の再分布が発生してしまい、パンチスルー等でトランジスタのソースードレイン耐圧が低下してしまうという問題がある。

図5A-5Bは本発明の原理説明図である。図5Bで本発明によるシリコン酸化物薄膜の形成方法を示しており、比較のために、図5Aで従来技術のSOG法を示している。

図5Aに示す従来のSOG法は、ゾルーゲル法の1つである化学重合法を利用したもので、シリコンアルコキシド(Si(OR)4等、Oは酸素原子、Rはアルキル基)とH2Oをブチルセロソルブやプロピレングリコールモノプロピルエーテル等の溶剤に混合し、加水分解反応及び脱水縮合反応を制御するため、これに適度のHNO。やHC1、H2SO4等酸触媒を混合したものである。

一方、本発明では、この酸触媒の代わりとして、有機シラン(又は有機シロキサン)及びH2 Oを励起させる。励起の方法としては、プラズマ励起(RF放電、μ波放電、低周波放電、直流グロー放電等)、光励起(IR, UV, SOR、レーザー、X線等)、熱励起等を用いることができ、また、これらの励起を時間的にON-OFFさせるパルス的な励起も必要に応じて用いることができる。

本発明でも、SOG法同様に、有機基を含有する低分子量重合体からなる膜状ゲルが基板上に堆積されるため、この膜状ゲルは流動性を有し、SOG塗布直後と同等に膜が平坦化されることができ、その後平坦化した膜から不所望な有機基は除去されるが、本発明の方法では励起エネルギー(パワー、パルス周期、デューティー等)、圧力、温度、流量等のパラメータを変更することにより、反応と堆積のプロセスを広範に制御することができ、かつこの堆積プロセスにプラズマ処

理及び熱処理を同時に組込むことが可能であるため、平坦性 と良好な膜質を保ちながら膜厚を厚くすることが可能にされ る。

SOC法と最も近い態様では、有機基含有シリコン酸化膜を堆積した後、熱処理して有機基を除去してシリコン酸化膜に変換できる。この態様では、SOC法と比べて、膜厚制御が容易であるので薄く形成してベークやキュアができる。熱野中に含れて、皮に厚く形成して、クラと、膜であるが、できなどの形成となってができ、からにより、応力の発生を小さくができ、からにより、応力の発生をから、形成とができるなどの形成と熱処理を繰り返すことができ、上述したような繰り返し処理が容易になる。

第2の態様として、最初から基板加熱しながら堆積させることにより、堆積させながら併行してベークあるいはキュアを行なうことができ、しかも基板温度等を調整してベーク又はキュアの程度を制御し平坦化を維持することができる。

第3の態様として、第2の態様を変形して、ガスの励起を パルス的に行なうことにより、より高温での有機基含有シリ コン酸化物の堆積が可能にされる。これにより、有機基含有 シリコン酸化物の堆積、流動、及びベーク又はキュアをパル ス時間のオーダーの短時間の間隔で制御した成膜プロセスが 可能である。 第4の態様として、ベーク又はキュアをプラズマ処理で行ない、かつ堆積とプラズマ処理を同一反応室で真空を破ることなく交互に繰り返して行なうことにより、平坦でかつ無機化した良質のSiO₂膜を所望の膜厚まで形成することが可能にされる。従来のCVD法、プラズマCVD法による無機系SiO₂膜形成では、堆積膜に流動性がないため、平坦化されず、従ってこの態様の有用性はきわめて大きい。

なお、第2~第4の態様では、基板加熱温度との関係で、 必要に応じて、その後さらに高温熱処理してより緻密な膜と し、あるいは残存する有機基を除去するようにする。また、 この熱処理をリフローに利用することもできる。

本発明の方法で使用する原料ガスは有機シラン又は有機シロキサンとH及びOH含有化合物である。

有機シラン又は有機シロキサンは、基本原子又は基本骨格がSi又はSi-Oからなり、側基がすべて有機基(メタン、エタン等のアルキル基、またメトキシ基、エトキシ基等のアルコキシル基、アセトキシル基、アリール基、など)などである化合物、例えば、テトラエトキシシラン、テトラメチルシラン、テトラメチルシラン、テトラメチルシウロテトラシロキサン、オクトメチルシクロテトラシロキサン、有機基の1部が置換されていてもよい。置換基としてはハロゲン、水素原子、水酸基、NH4(アンモニア)基、NO3基などが挙げられる。

有機シラン又は有機シロキサンは、50~5000、より好ましくは100~1000範囲内の分子量を有し、含まれるシリコン原子の数の50倍以下、より好ましくは20倍以下の炭素原子数を有し、またすべて又は殆んどのSi結合基がアルコキシル基であることが好ましい。

本発明では、シリコン酸化物の薄膜中にリン(P)、ボロン(B)、砒素(As)等の不純物をドープさせ、PSG、BSG、AsSG、あるいはBPSG等を形成させることができる。Pのソースガスとしては、P(OCH3)3、PO(OCH3)3、等リンアルコキシドを同時に添加し、Bのソースガスとしては、B(OC2 H5)3等ボロンアルコキシドを同時に添加し、Asのソースガスとしては、As(OCH3)3等では、As(OCH3)3等でように添加させる。反応の基本的な考え方は、TEOSと同様のアルコキシドと全く同じであるため、膜中に効果的に、P、B及びAsをドープすることができる。

H及びOH含有化合物は励起されてH及びOHラジカルあるいはH及びOHイオンを発生する化合物であるが、H及びOH以外には発生しない化合物が好ましく、従ってH2O, H2O2(過酸化水素)が好ましい化合物である。しかし、H及びOH以外のラジカルあるいはイオンが発生することが排除されるわけではない。

本発明では、N(窒素)を含むガス(NH。等)を同時に用い、Nを効果的に薄膜中にドープし、シリコン窒化酸化物の薄膜を形成してもよい。このように薄膜をシリコン窒化酸

化物することにより、シリコン酸化物に比べ薄膜の耐湿性及 び透水性を向上させ、信頼性の高い薄膜を得ることができる。

本発明では、O₂ガス(酸素)ガスを同時に用い、上記したように、低分子量の重合体内や形成した薄膜中に残存する有機基を効果的に酸化分解により除去し、信頼性の高いシリコン酸化物の薄膜を得ることができる。O₂ガスの導入方法は連続的または間欠的に行えばよく、間欠的に導入すれば分子量制御ができ好ましい。

そのほか、キャリアガスとして不活性ガス(Ne、Ar等) 等反応に寄与し難いガスを適当に混合することにより、有機 シランガスとH2 O等のH及びOH含有化合物ガスとの反応 を制御することができ、重合される低分子量の重合体の分子 量を制御することができる。これによりウエハ上に平坦社に 優れた薄膜を形成することができる。

本発明では、有機シラン又は有機シロキサンガスの流量に 対する H 2 O ガスの流量により、反応により形成される重合 体の分子量及びウエハ上に形成されるシリコン酸化物の薄膜 の状態が変化する。

有機シラン又は有機シロキサンガスの流量に対するH2O ガスの流量は、その有機シラン又は有機シロキサン材料をH2Oを用いて加水分解反応あるいは酸化反応する場合の化学量 論的モル比(例えば、TEOSとH2Oの場合であれば、TEOS1モルに対してH2O4モルとなる。また、HMDSとH2Oの場合であればHMDS1モルに対してH2O6モルとなる。) に対してそのモル比の1/10倍以上50倍以 下にすると、表面の平坦性に優れた信頼性の高い有機基合有シリコン酸化物の薄膜を得ることができ好ましい。より好ましくは1/2倍以上2倍以下の範囲、最も好ましくは1倍すなわち化学量論的比の程度である。

有機シラン又は有機シロキサンとH2O等のH及びOH含 有化合物ガスを反応させてその重合体を形成するため励起方とのが必要条件となる。その励起方とが必要条件となる。その励起方法、高周波の電力を供給する方法、かられるでは、高周なインを供給する方法、がらられるが多いは、高周なインを供給する方法、があられるのがあるがある。 を増幅させる触媒を用いる方法で、有機シラクを関連を開いる方法では外部からエネルギーを与えての日合有化ででで、の日とは外部の日本の日及びOH含有化で表に、原子のおいはの子のあるがは、原子のよび分子であるが形成された状態にすることである。 性化することを意味する。たとえばH2Oであれば、日イオン、電子などが形成された状態にすることである。

有機シラン又は有機シロキサンとH及びOH含有化合物との反応をテトラエトキシシランSi(OEt)₄と水(H₂〇)を例に説明する。テトラエトキシシランと水との反応は化学量論的には下記式で表わされる。

Si(OEt)₄+4H₂O → Si(OH)₄+4EtOH
(加水分解反応)

S i (O H)₄ → → S i O₂ + 2 H₂ O (脱水縮合反応) しかしながら、完全に上記反応が進行すると無機系S i O₂ 膜の堆積であり、堆積した膜に流動性がなく、平坦化されない。

そこで、本発明では、Si(OEt)4の加水分解、及びその加水分解で得られる生成物の脱水縮合反応が、完全に進行しない条件下でSi(OEt)4とH2Oとを反応させるようにする。その様子を示すために、簡単化した反応例を示すと、

$$\begin{array}{c}
O E t \\
E t O - S i - O E t \\
O E t
\end{array} \xrightarrow{\begin{array}{c}
O H \\
1 & O E
\end{array}} E t O - S i - O H$$

$$\begin{array}{c}
O H \\
O E t
\end{array}$$

$$\begin{array}{c}
S \text{ i } (O E t)_4 \\
\hline
S \text{ i } O E t
\end{array}$$

$$E t O - S \text{ i } O - S \text{ i } O E t$$

$$O E t O E t$$

$$\begin{array}{c}
2 \text{ Hz O, Si (OEt)}_{4} \\
\hline
& \text{OH OEt OEt}_{1} \\
& \text{OEt OH OEt}_{2}
\end{array}$$

$$\begin{array}{c}
0 \text{ H OEt OEt}_{1} \\
0 \text{ Et OH OEt}_{2}
\end{array}$$

の如くオリゴマー(低分子量重合体)化するが、側基〇E t はすべてが〇H基に変換されるのではなく、生成物中に実質 的に残存し、反応を続ける。この様にして得られる生成物は一様な化合物ではなく、様々な程度に重合及び加水分解した 化合物の集合体であると考えられ、一概に表わすことができないが、例を示せば、図 6 A に示す如くである。

したがって、この低分子量の重合体は、シロキサン結合 (-Si-O-Si-)を有するシリコン酸化物の低重合体 と言えるが、その内部には未反応の有機基(TEOSの場合、 エトキシ基(OC2 H₅)等)がまだ残存していると同時に、 その低重合体の末端の結合手はOHだけではなく有機基(TEOSの場合、エトキシ基(OC2H₅)等)によりキャッピングされていると考えられる。

一方、図6Bに示す化合物のようにすべての基がOH基で置換されたシラノールが生成すると、容易に脱水縮重合する傾向があるため、このような化合物が基板上に到達すると、すでに基板上に形成されている薄膜に直ちに架橋され、流動性(マイグレーション)が著しく低下する。

このように、図6Bに示す化合物のようにすべての基が 〇H基で置換されたシラノール重合体あるいは、大部分が 〇H基で置換された重合体を生成しようとする場合には、流動性を実現するためには基板上での架橋反応を遅くする必要があり、ウエハ基板温度を低温にすることにより、ウェハ基板上の架橋反応速度が低下するためである。この場合ウエハ基板温度の好しい範囲は少なくとも100℃以下より好ましくは室温(25℃)以下である。

また図 6 A に示す化合物のように有機基が存在すると室温 以上、たとえば 1 0 0 ℃以上でも、平坦形状の薄膜の堆積が 実現できる。

したがって、この低分子量の重合体がウェハに吸着した場合、シリコン酸化物表面での流動性と架橋反応には、その低重合体の分子量だけでなく結合状態も大きな影響を及ぼす。

こうして、本発明により基板上に堆積されるシリコン酸化

膜は少なくとも有機基を有し、また適当な分子量を有することによって薄膜の平坦化を可能にするものであるが、有機基の含量、分子量は一概ではないが、要するに、少なくとも形成される薄膜の表面が基板の段差部でも不連続面を形成しない程度の平坦性を有することが必要である。

このような平坦性を持つシリコン酸化物薄膜に含有される有機基は、平坦化可能な(平坦形状が実現できる)限り少述したが、この膜中に残存する有機基の量は、上間を実現する意味で、ウエハ基を温温とと相場を形成しようと要温以上で膜を形成しようと好ました。 一般的に、特に100℃以上ではより好ました。 を選出があり、特に100℃以上ではより好ました。 を選出があり、20~60重量%の有機基を堆積時に残存しまる。 また、一般的にを形成しようとする場合は、 また、一般的に変温以上でしては、20~60重量%の有機基を増積する。 また、一般的に変温以上で機基を増積時に残存量を制御する。

ウエハに吸着した低分子量の重合体は、ウエハ温度の増加とともに、ウエハからの熱を受け重合(架橋)反応が促進される。前記の如く、Si-〇H結合は脱水縮合反応により架橋反応をしてシロキサン結合(-Si-〇-Si-)を有するシリコン酸化物へと変化する。

しかし、上記したように低重合体内部や表面には有機基が 残存している。この有機基と結合している結合手も、温度に よりその架橋反応の頻度が変化する。それは、例えばSi‐ 〇-C₂ H₅ という結合の場合、この有機基の分解が温度領 域として250度~300℃程度以上で起こる。これはSi-O-等の未結合の結合手(ダングリングボンド)が形成され、架橋反応を促進するためである。

さらに、本発明における薄膜からの有機基の除去工程は、 前記のプラズマ処理、酸化還元処理に限定されず、例えば単 純に熱処理によってもよい。

有機基除去のための熱処理温度としては、一般に100℃以上、より好ましくは250℃以上であるが、本発明によれば450℃以下の低い温度で有機基を除去しシリコン酸化物の薄膜を得ることができるので、アルミ配線に悪影響を与えず好ましい。しかしながら、比较的低温の熱処理で有機基を除去したシリコン酸化物の薄膜はエッチングレートが比較的大きく、これはシリコン酸化物のネットワーク化(三次元化)が十分でなくダングリングボンドが多いためと考えられるので、600℃以上、好ましくは850℃以下の温度で熱処理してネットワーク化を図ってもよい。

又、前記のプラズマ処理によれば450℃以下の温度、例えば室温でも薄膜のネットワーク化が可能である。しかし、前記の如く、堆積とプラズマ処理を同一反応室内で繰りましまり、増春を採用する場合には、堆積時の平坦化のために好ましい。温度として250℃以下、プラズマ処理の効果から100℃以上の温度範囲が好ましい。従って、100~250℃でプラズマ処理することにより、さらに好ましくはその後でであることにより、シリコン酸化膜のネットワーク化、緻密化を図ることが好ましい。

さらに、必要に応じて高温熱処理でリフローさせてより平 坦な膜を得てもよい。この場合、P,B,As等を膜中にド ープしてリフロー温度を低下させることができる。本発明に よれば本来リフローは必須でないので、リフロー温度は85 0℃以下、さらに800℃以下で十分な効果を達成できる。

したがって、上記した方法により表面の平坦性に優れた信頼性の高いシリコン酸化物の薄膜を得る場合、ウエハ温度は、低分子量の重合体をウエハに吸着させるという点、低重合体をウエハ上で流動させるという点、架橋反応を促進させるという点で非常に重要なファクタであり、ウエハ温度はそれらを加味して決定されるものである。

特に、本発明の好ましい態様として、有機基含有シリコン

酸化物の薄膜の堆積と薄膜からの有機基の除去のためのプラズマ処理とを組み合せ、これらを同じ反応室内で繰り返す場合、基板温度をプラズマ処理(有機基除去)に必要な温度に一致させることが望ましい。この場合、例えば、100~250℃に加熱下で堆積を行なうと、他のプロセス条件を制御して所望の流動性(平坦化能)を持つ薄膜を得る必要があるが、励起をパルス的に行なうことが特に有効である。する薄膜の堆積が可能にされる。

こうして、高温下でなおかつ平坦な表面を持つ有機基合有シリコン酸化膜を薄く形成した後、同じ温度でプラズマ処理を行なって、高温下でなができる。プラズマ処理は、原料といる有機をである。プラズマ処理は、原料といる有機シラン又は有機シロキサンガスの供給を停止してのある。でき、有機を有いるのない。でき、有機を含有シリコン酸化関の形成が可能である。従って、空間を繰り返すことにより、大きい収縮によるクラで、できる。できる。

一般的にはプラズマ処理が及ぶ深さの上限である100nm 以下、好ましくは収縮を考慮して薄膜を10nm以下の厚さで 堆積した後プラズマに5~60秒、好ましくは20~30秒 ほどさらす操作を繰り返す。

上記では、有機基含有シリコン酸化膜の堆積とプラズマ処理を同一の反応室内で交互に繰り返したが、本発明はこれに限定されるわけではなく、有機基含有シリコン酸化膜の堆積後、有機基の除去のためプラズマ処理、酸化還元処理は一般的に使用可能であり、反応室、温度等は同一である必要はない。

次に、本発明では、有機シラン又は有機シロキサンとH₂ 〇等のH及びOH含有化合物ガスを励起し反応させて低分子 量の重合体を形成し、その低重合体をウエハに吸着させてシ リコン酸化物の薄膜を得る場合、上記したように、ウエハ上 に平坦性を持ち合わせた有機基含有シリコン酸化物の薄膜を 得るためには、励起により形成される重合体の分子量が非常に大きな意味を持ち、これを制御する方法が重要である。その制御方法として、このガスの励起をパルス的に行うことが有効である。

励起エネルギーあるいは励起を促すものの与え方を間欠的なパルスにすることにより、反応により形成される重合体の分子量を制御してもよい。この方法によれば、低分子量の重合体を形成することができ、これをウェハ上に吸着させることにより、平坦性に優れた有機基含有シリコン酸化物の薄膜を得ることができる。

次に、本発明では、励起させるガスとしては、有機シラン 又は有機シロキサンを含むガスのみの場合、H2 O等のH及 びOH含有化合物ガスのみの場合、あるいはこれらを含む混 合ガスの場合がある。これらの選択は、反応により気相中あ るいはウエハ表面で形成される重合体の分子量の制御性や装 置の容易性あるいはプロセスの容易性等から適宜決定するこ とができる。

次に、本発明では、ウエハ上に形成される有機基合有シリコン酸化物の薄膜の状態は、重合体を吸着させるウェハの温度により変化する。上記したように、重合体の蒸気圧力はその重合体の分子量の減少とともに大きくなるが、当然、その重合体の蒸気圧はその重合体の置かれた温度によっても変化し温度の増加とともに蒸気圧は増加する。

したがって、一定圧力下では、ウエハ温度によりウェハに 吸着する重合体の吸着確率が重合体の分子量で変化し、ウエ ハ温度の増加とともに低分子量の重合体程蒸気圧が高くなる。 これは低分子量の重合体程ウエハへの吸着確率が低下するこ とによるものである(図 6 A参照)。

そして、ウエハ上に吸着した低重合体は、ウエハ上に形成されている有機基合有シリコン酸化物の薄膜の表面を流動 (マイグレーション) すると同時に、有機基合有シリコン酸 化物表面の未反応の結合手と架橋しながら有機基合有シリコン酸化物の薄膜へと変化していく。このように形成された有機基合有シリコン酸化物の薄膜の平坦性は、この低重合体の表面での流動性がもたらすものである。

ウェハ温度が低い程、上記したように低分子量の重合体の ウェハへの吸着確率が増加するため、形成される有機基合有 シリコン酸化物の薄膜の平坦形状は向上する。しかし、逆に 有機基合有シリコン酸化物表面での架橋頻度は低下する。

本発明の1つの実施態様として平行平板型プラズマCVD 装置を用いる場合の好ましい処理条件の例を示すと下記の如 くである。

温度:室温~250℃

圧力: 5~15 Torr、特に10 Torr

電極間距離:6~25皿、特に10皿

ガス流量:100~18000cml/min

放電電力:500W以下、特に100~400W

RF (放電) 周波数:13.56 MHz

パルス周波数(周期):平行平板の電極間を反応ガスが通過する時間(たとえば図13では電極間到達時間1/70sec)の100倍以下、好ましくは10倍以下の時間

放電デューティー: $D \le \{140-(140/310)T\}$ $\frac{300}{P}$ (式中、Dはデューティー(%)、Tは基板温度、PはRFのパワー (W・ワット)、但しDの値は100%以上のときは100%とする。)

上記において、放電デューティーとはパルス周期に対するオン タイムの割合をいう。

次に、本発明では、有機シラン又は有機シロキサンとして、例えばTEOS(Si(OC₂ H₅)₄)に対してSiX(OC₂ H₅)3 あるいはHMDS((CH₃)₃ SiOSi(CH₃)3)に対してX(CH₃)2 SiOSiX(CH₃))のように、有機基(この場合エトキシ基(OC₂ H₅)とメチル基(CH₃))を他の元素(X)で置換した有機シランを用いる場合も置換していない場合と同様に考えることができる。

この置換元素(X)としては、H(水素)あるいはCI (塩素)あるいはF(フッ素)等種々なものが考えられる。 その場合、励起させた状態におけるSiと置換させた元素 (この場合X)との結合力が大きな意味を持ち、H及びOH

含有化合物ガス (例えば H 2 O ガス) 中での励起反応でもそ

の元素(この場合 X)が反応しない場合、この元素はウエハ上に形成したシリコン酸化物の薄膜中にも当然取り込まれる。この結果、当然シリコン酸化物の薄膜中に残存するアルコキシル基やアルキル基等の有機基も減少するため、この元素(X)がその後のアニール処理やプラズマ処理等の工程においても安定であれば、耐クラック性等膜質を向上させることができ、この条件を加味した元素あるいは基が好ましい。

次に、本発明では、成膜装置のチャンパー及び電極等反応 ガスに晒される部分にも、ウエハ上と同様その温度により低 重合体の吸着が生じる。ウエハ上のシリコン酸化物の成長レートの変化を抑え、しかもチャンパー及び電極等の付着物に よる汚れやパーティクルを防止する上でも、ウエハ及びウエハの設置されるステージ以外のチャンパー及び電極等の反応 ガスに晒される部分の温度を一定に保ち、しかも吸着確率を 抑えるために少なくとも室温以上の温度に一定に保つのが好ましい。

次に、本発明では、成膜条件によっては、成膜した膜中にはまだ有機成分が含まれており、これに伴いチャンバーや電極等に形成された膜中にも有機成分が含まれる。チャンバークリーニングにおいてNF3等クリーニングガスにO2ガスでチャンバークリーニングすることにより、クリーニング時間を短縮することができるとともに、有機物等の付着物を残さずクリーニングすることができる。

次に、本発明では、このシリコン酸化物の薄膜を形成した

ウェハを同一装置内の雰囲気及び圧力及び温度を制御したチャンパー内に保管し、一定枚数に達したところで、同一装置 内の雰囲気及び圧力及び温度を制御したチャンパー内でアニ ール処理を行うようにしてもよい。

次に、本発明では、シリコン酸化物の薄膜を形成した後、同一装置内の同一チャンバーあるいは同一装置内の他のチャンバー内でエッチバックを行うようにしてもよく、この場合のエッチバックを行う反応ガスとして、CF4, CHF3, NF3 等Fを含むガスを必要に応じてO2 を添加して行えばよい。

次に、本発明では、平行平板型プラズマCVD装置において、低周波電力(1MHz以下)のみでは、10Torr前後の高い圧力中では安定したプラズマ放電を得ることは難しいが、高周波電力(13.56MHz)と同時に印加することにより、安定したプラズマ放電が得られるとともに、低周波放電を利用することにより、イオンボンバードメント効果が得られ、ウエハ上に形成するシリコン酸化物の薄膜の膜質を向上させることができる。

次に、本発明では、気相中あるいはウエハ表面で重合される重合体の分子量は、その他の条件が同じであればパルス条件(周期、デューティー等)によってその重合体の分子量分布を変化させることができる。基本的には励起エネルギーを多く与えるパルス条件程分子量を高分子側へと変化させることができ、そして高分子量の分子程ウエハに吸着した場合、その後のアニール等の熱処理において重量変化も小さく、ま

た膜厚の収縮量も小さくすることができ、クラック耐性等信頼性の面で向上させることができる。しかしながら、高分子量の分子程平坦性は低下し、狭い溝やホール等への埋め込み能力が低下する。したがって、プロセス中(成膜中)で、適当にこのパルス条件を変化させることによって、平坦性に優れクラック耐性等信頼性の面でも優れたシリコン酸化物の薄膜を形成することができる。

実 施 例

(第1の実施例)

図8は本発明の実施例を実施する装置を模式的に表したもので、平行平板型(アノードカップル)のプラズマCVD装置である。

ガスの励起方法としては、電極1,2間に高周波(RF) 放電を用い、RF周波数を13.56MHzとする。

TEOS及びH2O共ソースタンク、配管等を加熱し、気体状態(Vapor)にしてチャンバーに導入する。また、キャリアガスとしてN2を用いる。

上部カソード側の電極1は、これらのガスのチャンバーへの導入口を兼ねており、シャワー状になっている。また、下部アノード側の電極は、内部に温度コントロール用のヒーター線及び冷却チラー用の配管を有しており、温度を-50℃ ~+500℃まで変化させることができる。

まず、圧力依存、温度依存について調べてみた。

そこで、TEOS流量を 4 sccm、Hz O流量を 6 0 0 sccm

(流量比1:150)とし、RF周波数を13.56MHzとし、RFパワーを100Wで連続発振させ励起させる。なお、電極間隔を18㎜にする。そして、ウエハ温度を室温状態にし、堆積を開始させる(堆積と同時にRF電力によりウエハ温度は上昇するがその分は無視する)。

この時の、チャンバーの圧力依存で見たシリコン酸化物薄膜の堆積形状を図9A-9Dに示す。同図中、5はシリコン基板、6は熱酸化膜(50nm厚)、7はポリシリコンパターン、8はCVD-SiOz膜(50nm厚)、9は(有機基含有)シリコン酸化物薄膜である。

図9Aに示す10Torrで形成させたものは、タコ壺状ではあるが形状はリフロー状である。これに対して、チャンバー圧力をより減圧にすると図9B-9Dに示すように変化し、段差のエッジ部でCVD膜特有の不連続面11がはっきり見られるようになり(図9B)、更に減圧するとクラック12が発生する(図9C及び9D)。

この結果は、チャンバーの圧力により、ウェハに吸着する 重合体の分子量が変化していることを表している。これは、 低分子量の重合体ほど液状で流動性をより示すためである。 このように、チャンバーの圧力で形状が変化する要因として、 流動性を現すのに適当な低分子量の重合体が、10Torr程度 の高い圧力下のプラズマで効果的に得られることが推察できる。また圧力の高い(10Torr)状態では、圧力の低い(1 Torr以下)状態よりも蒸気圧の高い低分子量の重合体のウ ウェハに吸着させることができ、その低分子量の重合体のウ エハ上での流動効果によりリフロー状の形状を得ることができることも要因として推察できる。

次に、上記同一条件で、ウエハ温度のみを室温から-30 ℃の低温にすると、図10に示す如く形状はより平坦形状へ と変化する。図10に示したものは、チャンバー圧力10To rrの場合のものである。図9Aに示したものよりも更に平坦 形状になるのは、ウエハが冷却されることによって、低分子 量の重合体のウエハへの吸着確率が増加するためと推定できる。

次に、流量依存、パルス依存について調べてみた。

そこで、チャンバー圧力を10Torr、RFを13.56MHz、RFパワーを300W、電極間隔を10㎜、パルス周波数を75Hz、デューティーを30%とする。但し、実際のRFパワーはパルス発振しているため300W×30%である。そして、トータル流量を375sccm、H2 〇の流量を300sccmで一定にし、TEOS流量を20sccmから75sccmまで変化させる。なお、残りはN2ガスでトータル流量を一定にする。ウエハ基板温度(デポジション温度)は37℃である。

この時、薄膜の状態についてまとめたものが図11で、T EOS流量に対して成長レートを見たものが図12である。

なお、図11中、TEOS/ H_2 O流量比1:2のデータは、TEOS 30sccm、 H_2 O 60sccm、トータル流量550sccmで測定したものである。

図11から判るように、流量比(TEOS/H2O)を大きくすると、薄膜の状態は明らかに固相から液相へと変化し

ている。また、図12から判るように、成長レートは、 TEOS流量の増加とともに大きくなるが、TEOS流量が 50sccm以上になると逆に低下している。この時、ウェハ上 のシリコン酸化物薄膜の状態も固体状から液体状となってお り、TEOS流量の増加(TEOS/H2〇流量比の増加) とともに、プラズマ励起による反応によって形成される重合 体の分子量が小さくなっており、あるいは、重合体の架橋反 応が不十分になっているとも言えることが推測される。

その結果、ウェハに吸着される重合体の分子量が、その蒸 気圧とチャンバー圧力(10Torr)およびウェハ基板温度 (37℃)との相関により選択されるためと考えられ、ウェ ハに吸着できない分子量の小さい重合体が形成されるため、 実質的にウェハ状に形成されるシリコン酸化物薄膜の成長レ ートが小さくなると考えられる。

同様の条件で、RF電力をパルス的に発振させたときの結果が図11に示したものである。連続発振させたときと比べ、ウエハ上のシリコン酸化物の状態が明らかに異なる。

この結果、RFパルス発振することにより、励起反応により形成される重合体の分子量を効率よく制御することができる。

(第2の実施例)

図13は本発明の第2の実施例に則したプラズマCVD装置を示す概略図である。図13中、15は上部電極、16は下部電極、17は供給ガス管、18はウエハ(基板)、19

はヒータである。

TEOS流量を30sccm、H2O流量を120sccm、N2 流量を200sccm、RF周波数を13.56MHz、RFパワー300Wとする。但し、実際のパワーはパルス発振しているため300W×20%で60Wとなる。そして、パルス周波数を100Hz、デューティー(ON TIME)を20%、電極間隔しを10mm、チャンバー内圧力を10Torrとする。

この条件で、ウエハ温度を変えてウエハに有機基含有シリコン酸化物の薄膜を1 mm 堆積させた時の形状は、図14A,14Bに示したものとなり(図14Aは120℃、図14Bは150℃である)、TEOS-O。で形成した酸化膜以上の平坦性を実現している。また、図14Aに示す120℃で堆積した場合はアスペクト比10でも有機基含有シリコン酸化物を埋め込むことができる。図14A,14B中、22はシリコン基板、23は熱酸化膜、24はポリシリコンパターン、25はプラズマCVD-SiOz膜、26は有機物含有シリコン酸化物薄膜である。

図13に示す装置のシャワーのチャンバー内へのガス導入口(上部電極15の孔)の面積を8cm程度にし、導入するガスの温度を80℃程度(TEOS及びH2Oとも液体ソースであるため気体にしている)にすると、シャワーの噴き出し口におけるガス20の流速は約70cm/秒となり、電極間の到達時間が14.3m秒となる。そこで、キャリアガスであるN2の流量を倍の400sccmにすると、この場合の流速は約110cm/秒となり、電極間の到達時間が約9m秒となり、

パルスの1周期の時間が10m秒であるため、1m秒の時間だけベーク(あるいはキュア)する時間となる。この条件ではRFプラズマによる励起が無い場合、ウエハ上では(少なくともプロセス的に実用可能な時間において)薄膜を形成することができないことを確認している。

したがって、薄膜の堆積と架橋反応(ベークあるいはキュア)をm秒のオーダーで制御していることとなり、形成させる(有機基含有)シリコン酸化物の薄膜の膜質を格段に向上させることができる。また、励起をパルス的に行う効果として、重合体の分子量制御だけでなく、上記したようなプロセス的な効果も実現することができる。

(第3の実施例)

図13に示すプラズマCVD装置を用い、チャンバー内の圧力を10Torrとし、TEOS流量を30sccm、H2O流量を120sccm、N2流量を400sccm、RF周波数を13.56MHz、RFパワーを300W、パルス周波数を50Hz(パルス周期20m秒)、デューティーを15%(ON TIME:3m秒)、ウエハ温度を120℃としてウエハに有機基含有シリコン酸化物の薄膜を堆積する。そして、450℃、N2ガス雰囲気、30分の条件で常圧横型炉で有機基合有シリコン酸化物薄膜をアニール処理する。

この条件で得られたシリコン酸化物薄膜は図15Aに示すように、平坦性を実現することができる他、上記アニール処理によりクラックを発生させることなく有機成分を除去させ

ることができ信頼性の高い膜を得ることができる。

このクラック発生について、上記アニール処理を加えた本実施例は、図15Bに示す幅0.5 mのスペース部分で溜り部の膜厚aが0.6 mまでクラックの発生は見られなかったのに対し、上記アニール処理を加えた従来の無機系SOG材の場合では有機成分は除去されていたが、上記0.6 mではクラックが発生していて実用上好ましくなかった。図15B中、ポリシリコン24は高さ1m、プラズマCVD-SiO₂膜25は厚さ300nmである。なお、有機成分除去の確認についてはFTIR(フーリエ変換赤外分析)等で確認した。

(第4の実施例)

図13に示すプラズマCVD装置を用い、チャンバー内の 圧力を10Torr、ウエハ基板温度120℃とし、TEOS流量を30sccm、H2O流量を120sccm、N2流量を400 sccm、RF周波数を13.56MHz、RFパワーを300W、パルス周波数を100Hz(10m秒)、デューティーを20%(ON TIME:2m秒)とし、更にO2流量を10sccmとしてウエハ上にシリコン酸化物薄膜を形成する。

この条件で得られたシリコン酸化物薄膜は、白濁がなく表面モホロジーが良く高密度な膜を得ることができた。なお、O2 流量を30sccmとすると白濁が生じていたが、ウエハ上に微粒のSiO2 粉末が堆積しており、これからO2 には反応を促進させる触媒的な効果があることが判った。

従って、Oz流量を適宜コントロールすることにより、高

密度なシリコン酸化物薄膜を得ることができた。

しかし、O2を添加し、高密度なシリコン酸化物の薄膜とした場合、配線間隔 0.5 m以下でアスペクト比 1 ~ 2 の配線スペースに対しては、埋め込み形状は得られず、配線間のシリコン酸化物中にボイド(空孔)が形成された。

このことは、O₂の添加は、高密度な膜を形成することにおいては効果があるが、SOG並みの平坦形状とO.5 m以下の配線スペースの埋め込みを実現することにおいては、低下させる(意味のない)ものとなる。

同様のことはH₂ ガスについても言える。上記のプロセス条件において、O₂ ガスの導入を中止し、N₂ + H₂ ガス流量を400sccm一定として、H₂ 流量を0sccm(N₂ 流量400sccm) 50sccm(N₂ 流量350sccm)、100sccm(N₂ 流量300sccm) 150sccm(N₂ 流量250sccm)、200sccm(N₂ 流量200sccm)と変化させた(他のプロセス条件は、上記プロセス条件と一致させた)。また、配線段差(高さ)1 mm、配線幅1 mmのライン・アンド・スペース・パターン(line & space pattern)で、配線間隔を1.0 mm,0.75 mm,0.5 mm,0.2 mmと変えて、H₂ ガス流量とシリコン酸化膜の埋め込み特性との関係を調べた。

結果を下記表に示す。表中、〇はボイド(空孔)なしで埋め込みができたもの、×はボイド(空孔)が発生した場合を示す。

配線間隔	1. 0 μ m	0. 7 5 µ m	0.5 μm	0. 2 μm
0 sccm	0	0	0	0
5 0 sccm	0	×	×	×
1 0 0 sccm	×	×	×	×

ただし、H2流量150sccm及び200sccmにおいては、ウエハ上に微粒のSiO2粉末が堆積し、白濁が生じたので示していない。H2を添加することにより、高密度な膜が形成されることは推察されるが、上記表からわかるように、H2の添加は、O2の添加と同様平坦化形状の実現という意味では、効果がないことがみとめられる。H2OにH2を添加する場合にも、温度に依存するが、H2O+H2の合計量に対してH2を高々20Vol%以下、さらには10Vol%以下が好ましいといえる。

なお、本発明においては、図16A及び16Bに示すようなμ波電力あるいはRF電力を用いたダウンフロー形式による励起を用いたCVD装置によって行ってもよく、この場合、ソースガスの励起を各々個別に行うことができ、プロセスの制御性をより向上させることができる。これらの図中、30は有機シラン導入口、31はH2O,N2などの導入口、32は石英管、33はμ波管である。

(第5の実施例)

図13に示す平行平板型(アノードカップル)のプラズマCVD装置を用い、ガスの励起方法としては、電極間の高周波(RF)放電を用い、RF周波数は13.56MHzを用いる。TEOS及びH2O共ソースタンク、配管等を加熱し、気体状態(Vapor)にしてチャンバーに導入する。また、キャリアガスとしてN2を用いる。上部カソード側の電極は、キャリアガスとしてN2を用いる。上部カソード側の電極は、これらのガスのチャンバーへの導入口を兼ねており、シャワー状になっている。また、下部アノード側の電極は、内部に温度コントロール用にヒーター線を有しておりウェハ温度をコントロールすることができる。

成膜条件としては、TEOS流量を30sccm、 H_2 O流量を120sccm(流量比1:4)とし、キャリアガスとして N_2 を400sccm同時に流す。そして、RF周波数を13.56MHz、RFパワーを300Wでパルス発振で励起させ、パルス条件を周期を10m秒、デューティーを20%(ON TIME:2m秒)、電極間隔を10m、反応室内の圧力を10Torr、ウエハ温度を120Cとする。

次に、プラズマ処理条件としては、Oz 流量を 8 0 sccm、Nz 流量を 4 0 0 sccm、RF周波数を 1 3. 5 6 MHz、RF パワーを 3 0 0 Wで連続発振で励起させ、電極間隔を 1 0 m、反応室内の圧力を 1. 5 Torr、ウエハ温度を 1 2 0 ℃とする。

上記の条件で、成膜とプラズマ処理を同一のチャンバ内で 交互に繰り返し、上記の成膜条件でウエハ上に約100nm程 度有機基含有シリコン酸化物の薄膜35を形成した後に、上 記のプラズマ条件でこのウエハをプラズマ中に30秒間晒したところ、クラックの発生もなくシリコン酸化物の薄膜35中の有機成分は取り除かれ(FTIRにより確認)、膜厚は破線36で示す様に減少した(図17A)。

このように、薄く成膜してその後プラズマ処理を行うという操作を繰り返すことにより(図17Bでは6回の繰り返し)、平坦形状を有する無機系のシリコン酸化物の薄膜37を厚く(1000nm以上)形成することができる(図17B)。

(第6の実施例)

図13に示すCVD装置で、TEOS流量を30sccm、H₂Oを流量120sccm、N₂流量を400sccm、圧力を10Tor、RF周波数を13.56MHz、RFパワーを300W、電極間隔を10mmとし、基板温度と発振条件の依存性を調べた。

図18Aの如く、シリコン基板41上にBPSG膜(膜厚600nm)42を形成し、その上にアルミニウム配線パターン(高さ500nm)43を形成した後、全面にプラズマCVD法で薄くSiOz膜(膜厚300nm)44を形成したものを下地とし、これにTEOS-HzOプラズマCVD法で有機基含有シリコン酸化物膜45を堆積した。

結果を図18B-18Fに示す。図18Bに見られる様に基板温度65℃では連続発振で十分に平坦な膜が得られている。しかし、基板温度を150℃に上昇させると、図18℃に見られる様に、連続発振では連続膜こそ得られているが、

平坦性がかなり低下している。そこで、基板温度を150℃で一定に保ち、パルス周波数100Hz (パルス周期10ms)でパルス発振とし、デューティー(ON Time)を50%、40%、30%と低くしてゆくと、図18D、図18E、18Fに見られる様に、デューティーの減少につれて膜の平坦性が増大している。このように、本発明ではパルス発振のデューティーを低くすることにより、より高温で平坦な膜を堆積できることが示された。

図19は、上記と同様の条件で、実用性を基準として良好な平坦化膜が得られるか否かを基板温度とデューテーの関数として表わしたものである。ここで、実用性とは配線間隔 0.5 mアスペクト比1~2程度のパターンの埋め込みが可能か否かによった。

図20に、堆積直後の膜の熱分析結果を示す。加熱重量減少測定(TG)と示差熱分析(DTA)で、実線は基板温度60℃で連続発振、破線は基板温度150℃で連続発振、鎖線は基板温度150℃でデューティー30%のパルス発振(パルス周波数100Hz)で得た膜で、いずれも250℃付近で酸化分解が開始されているので、膜中の有機分の殆んどはエトキシ基と推定される。

図20中、DTAの結果は60℃で連続発振させた膜についてのものを示している。

図21に基板温度室温(25℃)、パルスデューティー30%(パルス周波数100Hz)で得た膜の分子量分布を、有機SOC法で得た膜の分子量分布と共に示す。実線が有機

SOG法、破線が本発明法であり、Mu は重量平均分子量、Mu は数平均分子量を表わす。

(第7の実施例)

図22A、22Bに第6の実施例の如く得た膜の熱収縮率及びエッチング速度を示す。膜はそれぞれ60℃,120℃,150℃で連続発振して形成したものである。膜の熱収縮率は常圧横型炉を用いてN。雰囲気中250℃と400℃の熱処理をそれぞれ1時間施して測定した。また、エッチング速度は常圧横型炉、N。雰囲気で250℃で1時間、400℃で1時間熱処理後、0.5%HF浸漬して測定した。

収縮率は50%、エッチング速度は1500nm/分以上と、 無機SOG膜と比べて大きい。例えば、N2雰囲気中450 で、30分の熱処理をした無機SOG膜の収縮率は23.1 %、エッチング速度は120nm/min である。

そこで、エッチングレートを向上させる手段として、H2Oプラズマによる改質を試みた。実験は、図23Aの如く、TEOS流量30sccm, H2O流量120sccm, N2流量400sccm, 13.56MHz, 300Wで連続発振、圧力は10Torr、温度は60℃で成膜した膜をホットプレート上(150℃、N2雰囲気)で2分間ベークし、H2Oプラズマ処理を成膜と同一のチャンバー内で行った後、250℃と400℃で各2分間の減圧アニール処理(1Torr, H2O分圧100%)を施した。H2Oプラズマ処理条件は、150℃、1Torr, H2O分圧100%, 13.56MHz, 100Wと

し処理時間を変化させた。 H₂ Oプラズマ処理を行った膜のエッチングレートを図23Bに示す。結果より、 H₂ Oプラズマ処理を行っていない対照に比べ各条件ともエッチングレートが遅くなっているとともに、膜表面の50~70nm領域においてより大きな改質効果があることが分かる。

図24は、150℃,10TorrでTEOS流量30sccm、H2O流量120sccm、N2流量400sccm、で、13.56MHz、300Wでパルス発振し、パルス条件は周波数100Hzデューティー30%(ON Time 3ms)として、5秒間堆積後、上記のH2Oプラズマ処理を1分間ほどこし、さらに250℃及び400℃で熱処理した場合における膜の赤外吸収スペクトルである。H2Oプラズマ処理で膜中の有機成分が減少し、殆んど無くなっていることが認められる。すなわち、H2Oプラズマ処理が膜中の有機基除去に有効であること、特に堆積時間が短い場合にはプラズマ処理される単位膜厚が薄いために、改質効果が大きいことを示している。

次に、薄く膜を堆積させてH₂ Oプラズマ処理をする単位プロセスを繰り返すこと(Repeat Process)を試みた。図25に、Repeat Processのシーケンスを示す。150℃,10Torr,13.56MHz,300W、パルス周波数100Hz、デューティー30%で堆積した膜に、同じ150℃で、1Torr,H₂ O分圧100%,13.56MHz,100WのH₂ Oプラズマ処理を行った。単位堆積時間を5~30秒の間で変化させ、各堆積毎にプラズマ処理を1分施し、全堆積時間が3分になるように成膜した。

その後、250℃と400℃で各5分間の減圧アニール(1 Torr, H2O分圧100%)を行った。この条件で形成した 膜のエッチングレートと収縮率を下記表に示す。なお、表中 には、比較のため、無機SOG膜を450℃, N2 雰囲気中 30分のアニール処理したもののデータも併せて示した。

741 3 Pri	単位堆積時間	単位堆積 膜厚	エッチング	収縮率
膜条件	時間 (秒)	脵厚 (nm)	速度 (nm/min)	(%)
無機SOO	3		120	23.1
	5	23.3	140	4.2
Repeat	10	46.7	170	12.9
Process	15	70	210	25.3
	30	140	550	17.9
プラズマ処理な	よし、熱処理	のみ(対照)	1300以上	51.4

Repeat Processでは単位堆積時間が短くなるほどエッチングレートが小さくなり膜質が向上している。単位堆積時間が5 秒の膜では、無機SOG と同レベルのエッチングレートであり、膜表面から膜内部までほぼ同じレートでエッチングされる。また収縮率は、5 秒の場合には4 0 0 でのアニール後で4. 2 %と、無機SOG (但し、4 5 0 でアニール、3 0 分)に比べ1 / 5 以下になっている。

図26に、図25の堆積とブラズマ処理とのRepeat Processで得た膜の断面写真を示す。成膜条件は、上記表の単位堆積時間5秒で形成したものと同じである。この膜は図24に示されるように無機化し、エッチング速度も無 機SOG膜と同レベルであり、膜の平坦化が実現されている ことをよく示している。

本実施例では、 H_2 Oプラズマ処理条件を150 °C, 1 To rr, H_2 O分圧100 %, 13. 56 MHz, 100 W としたが、処理圧力は、0. 1 Torr \sim 15 Torrの間の適当な圧力を選ぶことができる。特に、同一チャンバー内で連続して堆積とプラズマ処理を行うRepeat Processを行うとき、プロセス的なスループット(処理時間)を考慮した場合、 H_2 Oプラズマ処理の処理圧力は、堆積圧力に合わせることが好ましい。その場合、本実施例では、 H_2 Oプラズマ処理の処理圧力は、I O Torrでも同様の効果が得られるのは明らかである。

またH2Oプラズマ処理において、H2O分圧を100%としたが、N2あるいはHe, Ar等の不活性ガスをキャリアガスとして適当に混合させることも当然考えられる。特にN2をH2Oガスと同時に用いた場合には、このプラズマ処理により、有機基合有シリコン酸化物の薄膜の表面に薄くいことが腫を増積しプラズマ処理を含む層が形成されることが一般的に考えられ、RepeatProcesのように薄く膜を堆積しプラズマ処理を行う操作を繰り返すことにより、膜全体をシリコン酸化度(SiON)にすることも可能となることが推察できないりにような、SiON膜にすることが推察できることが限により、Nを含まないりにような、SiON膜にすることが推察できる。

また、 H_2 Oプラズマ処理においてRF (高周波) 周波数を 1.3.56 MHzとしたが、 H_2 Oプラズマの発生する条件であれば、他の周波数帯域でもかまわない。

本実施例では、13.56 MHz, 100 Wのプラズマ条件 を用いた。本実施例のRepeat Processの条件 で、単位堆積時間を15秒とし、13.56 MHz, 100 W の H₂ O プラズマ処理と 1 3 . 5 6 M H₂ 、 3 0 0 W の H₂ O プラズマ処理を、他の条件はすべて同一として比較した。1 3. 5 6 MHz, 1 0 0 WのH₂ Oプラズマ処理を行った膜の 場合、上記表に示したエッチング速度と膜収縮率の結果が得 られた。これに対して、13.56 MHz, 300 WのH2 O プラズマ処理を行った膜は、250℃と400℃のアニール 処理時にクラックが発生した。これは、大きなRFバリー (大きな励起エネルギー)でH2 Oプラズマ処理を行うと、 膜表面のみが急速に改質され、膜内部の有機基がH2Oプラ ズマ処理で分解・除去される前に、緻密なシリコン酸化膜が 膜表面に形成されてしまうためと推察できる。したがって、 この場合は、単位堆積時間をもっと小さくする、つまり単位 堆積膜厚をもっと小さくすることが必要となる。

また、 H_2 Oプラズマ処理条件を、150 °C, 10 Torr, H_2 O分圧100 %, 13.56 MHz, 300 Wに変更し、単位堆積時間を10 秒として、本実施例と他の条件は同一としてRepeat Processを行った結果、上記表の単位堆積時間 10 秒の場合と同程度のエッチング速度と膜収縮率が得られている。このことは、処理圧力やRFパワー等

を適当に設定することにより、他の条件でも、同様の効果が 十分に得られることを示している。

(第8の実施例)

次に、本発明においては、図27に示す如く平行平板型のRF放電を利用する成膜装置を用いてもよい。図中、51はウエハ、52はガス導入口、53は排気口、54はプラズマ領域である。また、図28に示す如くμ波がウンフロー型のプラズマを利用する成膜装置を用いてもよい。図28中、61はガス導入部(H2O、N2等)、62はガス導入口(TEOS、N2等)、63は石英部、64はμ波導波管、65はプラズマ領域、66はリング状石英シャワー、67はウェハ、68は排気口である。プラズマに晒される。また、ガスの流れによってはプラズマに晒されていない部分でも膜が形成される。

したがって、励起反応により形成される重合体の吸着を抑える意味で、これらのウェハ以外の部分も少なくとも室温以上に加熱することは非常に効果がある。特に、図27に不を設置のような平行平板型CVD装置の場合、ウェハを設置する電極の温度(ウェハを設置する電極はウェハを設置するでである。図28に示すが、ウェールするため当然制御されている。図28に示す成膜装置のように、対向電極が高周波電力の印加側である、複換とロターで加熱制御するのが難しいため、媒体

を通した加熱制御が考えられる。

次に、本発明においては、図29に示すように、ロードロック室71を介する成膜(枚葉処理)装置72とアニール処理(バッチ処理)装置73を用い、このシリコン酸化物の薄膜を形成したウエハを同一装置内の雰囲気及び圧力及び温度を制御したチャンバー内に保管し、一定枚数に達したところで、同一装置内の雰囲気及び圧力及び温度を制御したチャンバー内でアニール処理を行うようにしてもよい。図29中、74はウエハ保管部、75はウエハ支持部(キャリヤ)、76はゲート、77は排気口である。

次に、本発明においては、上記成膜方法を実現する平行平板型プラズマCVD装置を用いて高周波電力と低周波電力を同時に、連続的あるいはパルス的に電極に印加するようにして行ってもよく、この場合の高周波電力としては13.56MHzのRF電源を用い、低周波電力としては1MHz以下の低周波電力と低周波電力の電極に引からには、図30Bに示すように、対向する2つの電極に別々に同時に印加する場合がある。なお、図29に図28Bに示す合成ボックスの一例を示す。

産業上の利用分野

本発明によれば、SOG法により形成されるシリカガラス 並みの平坦性を持ち、かつ耐プラズマ性等に優れた信頼性の 高い絶縁膜が、所望の膜厚で得られ、半導体装置の層間絶縁

47

膜等に有用である。

48

請求の範囲

1. 下記の工程を含む、シリコン酸化膜の形成方法。

反応室内の基板上で、有機シラン又は有機シロキサンガスとH及びOH含有ガスとを含むガスを、励起させて気相中又は基板上で反応させることにより、基板上に有機基を含有するシラノール、シラノール重合体又はシロキサン結合重合体の薄膜を堆積させる工程と、その後、

該薄膜から有機基を除去してシリコン酸化膜を得る工程。

- 2. 前記有機シラン又は有機シロキサンガスが、テトラエトキシシラン、テトラメトキシシラン、テトラメチルシラン、テトラメチルシクロテトラシロキサン、オクトメチルシクロテトラシロキサン、ジアセトキシジターシャリブトキシシラン、ヘキサメチルジシロキサン、及びこれらの置換化合物からなる群から選ばれた少なくとも1種である請求の範囲第1項記載の方法。
- 3. 前記 H 及び O H 含有ガスが水蒸気又は過酸化水素である請求の範囲第 1 項記載の方法。
- 4. 前記熱処理前に前記薄膜が90重量%以下の範囲内の 有機基を含む請求の範囲第1項記載の方法。
- 5. 前記熱処理前に前記薄膜が20~60重量%の範囲内の有機基を含む請求の範囲第4項記載の方法。
- 6. 前記熱処理前に前記薄膜が30重量%以下の範囲内の 有機基を含む請求の範囲第4項記載の方法。
 - 7. 前記励起をパルス的に行う請求の範囲第1項記載の方。

法。

- 8. 前記励起時間が、前記有機シラン又は有機シロキサンガス又はその反応生成物が基板に到達するとき未だ有機基を含むことができる程度に短い請求の範囲第6項記載の方法。
- 9. 前記堆積工程を-50℃以上450℃以下の温度で行う請求の範囲第1項記載の方法。
- 10. 前記有機基除去工程を250℃以上850℃以下の温度の熱処理で行う請求の範囲第1項記載の方法。
- 11. 前記堆積工程を室温から250℃の温度で実施し、前記有機基除去工程を250℃~450℃の熱処理で行う請求の範囲第9項記載の方法。
- 12. 前記堆積工程と前記有機基除去工程とを真空を破ることなく連続処理で行う請求の範囲第1項記載の方法。
- 13. 前記熱処理と同時又はその後連続して前記薄膜に対して紫外線照射を行う請求の範囲第11項記載の方法。
- 14. 前記有機シラン又は有機シロキサンガスの流量に対する前記H及びOH含有ガスの流量の比が、前記有機シラン又は有機シロキサンを前記H及びOH含有で完全に加水分解又は酸化するのに必要な化学量論的モル比の1/10~50の範囲内である請求の範囲第1項記載の方法。
- 15. 前記有機基除去工程が、前記薄膜にプラズマ処理を施す工程である請求の範囲第1項記載の方法。
- 16. 前記プラズマ処理を室温から450℃以下の温度で行う請求の範囲第15項記載の方法。
 - 17. 同一反応室内で前記堆積工程と前記プラズマ処理工

程とを交互に繰り返して行って、基板上に所望の膜厚を持つシリコン酸化膜を得る請求の範囲第16項記載の方法。

- 18. 前記プラズマ処理を酸素、水素又は水プラズマで行い、かつ基板温度100℃以上250℃以下とする請求の範囲第16項記載の方法。
- 19. 前記堆積及びプラズマ処理工程の後、250℃~450℃の温度で熱処理を行う請求の範囲第18項記載の方法。
- 20. 前記反応室内への前記有機シラン又は有機シロキサンガスの供給を間歇的に停止することにより、前記堆積工程と前記プラズマ処理とを交互に行う請求の範囲第17項記載の方法。
- 21. 前記励起をパルス的に行う請求の範囲第17項記載の方法。
- 22. 前記有機シラン又は有機シロキサンガス及び前記日 及びOH含有ガスと共にリン源、ボロン源及びヒ素源の少な くとも一種を導入して、堆積される前記薄膜中にリン、ボロ ン及びヒ素の少なくとも一種を含有させる請求の範囲第1項 記載の方法。
- 23. 前記有機シラン又は有機シロキサンガス及び前記 H 及び O H 含有ガスと共に窒素含有ガスを導入して、前記薄膜 中に窒素を含有させる請求の範囲第1項記載の方法。
- 24. 前記有機シラン又は有機シロキサンガス及び前記 H 及び O H 含有ガスに更に酸素ガスを連続的又は間歇的に導入 する請求の範囲第 1 項記載の方法。
 - 25. 前記堆積を平行平板型プラズマCVD装置で行い、

圧力が 5 ~ 1 5 Torr、温度が室温以上 2 5 0 ℃まで、電極間 距離が 6 ~ 2 5 mm、ガス流量が 1 0 0 ~ 1 8 0 0 0 cm²/min 、 RF(放電)周波数が 1 3. 5 6 M Hz、パスル周期は平行平 板の電極間を反応ガスが通過する時間の 1 0 0 倍以下の時間、 放電電力が 1 0 0 ~ 5 0 0 W、かつ放電オン時間が

 $D \le \frac{300}{P} \{140-(140/310) T\}$ (式中、Dは、

ガスがプラズマ領域に導入されてから基板に到達するまでの時間を100として放電オン時間の長さを%で表したもので100%を上限とし、PはRFパワー、Tは基板温度である)を満たす時間である請求の範囲第1項記載の方法。

26. 前記シリコン酸化膜が半導体装置の多層配線の層間 絶縁膜である請求の範囲第1項記載の方法。

Fig. 2A

Fig. 2B

Fig. 3A

Fig. 3B

Fig. 4A

Fig. 4B

Fig. 4C

5/36

Fig. 4D

Fig. 4E

Fig. 4F

6/36

Fig. 6A

[Si(OC2H5)a(OH)bOo.5(4-a-b)]n

Fig. 6B

(Si(OH)aOo,5(4-a))n

8/36

Fig. 7

※ ウエハ温度は①>②>③である。

9/36

Fig. 8

Fig. 9B

5 Torr

Fig. 9C

1 Torr

Fig. 9D

O.2 Torr

Fig. 10

12/36

F/g. 11

<プロセス条件>

積:10Torr RF:13.56MHz パルス:13.35msec(75Hz) デューティ:30% RF Power:300W (Pulse:300W ×30%) 電 極 間 隔:10mm Total流量:375sccm

温度	R. T. (37℃)				
RF 流量・流量比	Cnstant Wave	Pulse Wave (duty:30%)			
TEOS/H ₂ O =20sccm/300sccm (1:15)	G. R.:約4000Å/min 屈折率:1.365 コメント:固相デポ 白濁大	G. R.: 約7000Å/min 屈折率:1.444 コメント:固相デボ 白濁無し			
TEOS/H ₂ O =30sccm/300sccm (1:10)	G. R.:約12000Å/min 屈折率:1.409 コメント:固相デボ 白濁中	G. R.:約11000Å/min 屈折率:1.400 コメント:液相デポ 白濁無し			
TEOS/H≥O =50sccm/300sccm (1:6)	G. R.:約23000Å/min 屈折率:1.442 コメント:液相デポ	G. R.:約17000Å/min 屈折率:1.498 コメント:液相デボ			
TEOS/H ₂ O =75sccm/300sccm (1:4)	G. R.:約22000Å/min 屈折率:1.432 コメント:液相デポ	G. R.:約8500Å/min 屈折率:1.444 コメント:液相デボ			
TEOS/H ₂ O * =30sccm/300sccm (1:2)					
	: 液相デポ	・液相デポ			

*プロセス条件は他と異なる

Fig. 12

Fig. 13

Fig. 14A

Fig. 14B

Fig. 15A

Fig. 15B

Fig.16B

Fig. 17A

Fig. 17B

Fig. 18A

Fig. 18B

Fig. 18C

Fig. 18D

Fig. 18E

Fig. 18F

Fig. 19

Fig. 20

Fig. 21

25/₃₆

Fig. 22A

Fig. 22B

Fig. 23A

Fig. 23 B

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig.29

Fig. 30A

Fig. 30B

Fig. 31

参照符号の説明

- 1,2…電極
- 5 … S i 基板
- 6 … 熱酸化膜
- 7 … ポリシリコンパターン
- 8 ··· C V D S i O z 膜
- 9 … シリコン酸化物薄膜
- 11…不連続面
- 12 ... クラック
- 15…上部電極
- 16…下部電極
- 17…供給ガス管
- 18…ウエハ基板
- 19…ヒータ
- 22…シリコン基板
- 23…熱酸化膜
- 24…ポリシリコンパターン
- 25…プラズマCVD-SiOz膜
- 26…有機物含有シリコン酸化物薄膜
- 3 0 … 有機シラン導入口
- 3 1 ··· H 2 O, N 2 などの導入口
- 3 2 … 石英管
- 33…μ波管
- 35…有機物含有シリコン酸化物薄膜

į,

- 4 2 ··· B P S G 膜
- 4 3 … A 1 配線パターン
- 4 4 ··· S i O 2 膜
- 5 1 … ウエハ
- 5 2 … ガス導入口
- 5 3 … 排気口
- 5 4 …プラズマ領域
- 6 1 ···ガス導入口(H₂ O, N₂ , etc)
- 62 mガス導入口(TEOS, Nz, etc)
- 6 3 … 石英部
- 6 4 … μ 波導波管
- 65…プラズマ領域
- 66…リング状石英シャワー
- 67…ウェハ
- 6 8 … 排気口
- 71…ロードロック室
- 72…成膜装置
- 73…アニール処理装置
- 7 4 … ウェハ保管部
- 75 … ウェハ支持部
- 76…ゲート
- 77…排気口
- 8 1 …基板
- 8 2 … 絶縁膜
- 8 3 …配線層

- 8 4 ··· S i O z 膜
- 85 …レジストパターン
- 8 6 … 開口部
- 87…コンタクトホール
- 8 8 … 配線層
- 89…バガレ
- 90…コンタクト不良

INTERNATIONAL SEARCH REPORT

Classification of Subject Matter (if several classification symbols apply, indicate all)	1739				
Int. Cl ³ H01L21/312, 21/316, 21/90 Minimum Documentation Searched Classification Symbols Classification Symbols					
Minimum Documentation Searched ' Classification System Classification Symbols IPC H01L21/312, 21/316, 21/90 Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched ' Jitsuyo Shinan Koho 1926 - 1991 III. DOCUMENTS CONSIDERED TO BE RELEVANT' Dategory' Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation of Document, " with indication, where appropriate, of the relevant passages !" Relevant to Citation, of the relevant passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of the relevant passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Document, " in the passages !" Relevant to Citation of Docum					
Classification System Classification Symbols TPC					
Classification Symbols IPC H01L21/312, 21/316, 21/90 Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched.* Jitsuyo Shinan Koho 1926 - 1991 III. DOCUMENTS CONSIDERED TO BE RELEVANT* Sategory* Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Cl A JP, A, 2-262336 (Toshiba Corp.), October 25, 1990 (25. 10. 90), Page 2 (Family: none) A JP, A, 2-78225 (Enirichielhe S.p.A.), March 19, 1990 (19. 03. 90), Page 2 (Family: none) A JP, A, 54-94878 (Hitachi, Ltd.), July 26, 1979 (26. 07. 79), Page 1 (Family: none) A JP, A, 1-307247 (Fuji Xerox Co., Ltd.), December 12, 1989 (12. 12. 89), Page 1 (Family: none)					
Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched * Jitsuyo Shinan Koho					
Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched. Jitsuyo Shinan Koho 1926 - 1991 Kokai Jitsuyo Shinan Koho 1971 - 1991 III. DOCUMENTS CONSIDERED TO BE RELEVANT? Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " Relevant to Citation of Document, " with Indication, where appropriate, of the relevant passages " and " appropriate, of the relevant passages " appropriate, of the rele					
Documents Searched					
Kokai Jitsuyo Shinan Koho 1971 - 1991					
A JP, A, 2-78225 (Enirichielhe S.p.A.), March 19, 1990 (19. 03. 90), Page 2 (Family: none) A JP, A, 54-94878 (Hitachi, Ltd.), July 26, 1979 (26. 07. 79), Page 1 (Family: none) A JP, A, 1-307247 (Fuji Xerox Co., Ltd.), December 12, 1989 (12. 12. 89), Page 1 (Family: none)					
Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Cit					
A JP, A, 2-262336 (Toshiba Corp.), October 25, 1990 (25. 10. 90), Page 2 (Family: none) A JP, A, 2-78225 (Enirichielhe S.p.A.), March 19, 1990 (19. 03. 90), Page 2 (Family: none) A JP, A, 54-94878 (Hitachi, Ltd.), July 26, 1979 (26. 07. 79), Page 1 (Family: none) A JP, A, 1-307247 (Fuji Xerox Co., Ltd.), December 12, 1989 (12. 12. 89), Page 1 (Family: none)	alm No. 13				
March 19, 1990 (19. 03. 90), Page 2 (Family: none) A JP, A, 54-94878 (Hitachi, Ltd.), July 26, 1979 (26. 07. 79), Page 1 (Family: none) A JP, A, 1-307247 (Fuji Xerox Co., Ltd.), December 12, 1989 (12. 12. 89), Page 1 (Family: none)					
Page 1 (Family: none) A JP, A, 1-307247 (Fuji Xerox Co., Ltd.), December 12, 1989 (12. 12. 89), Page 1 (Family: none)	25				
Page 1 (Family: none)	11				
*Special categories of cited documents: 10	, 26				
* Special categories of cited documents: 10 "T" later document published after the international fill					
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority ctaim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" CERTIFICATION	out cited to vention lon cannot involve an ion cannot document				
ate of the Actual Completion of the International Search Date of Mailing of this International Search Report					
March 18, 1992 (18. 03. 92) March 31, 1992 (31. 03. 92					
ernational Searching Authority Signature of Authorized Officer					
Japanese Patent Office					

					/JI 9	1/01/39
	ê明の口する					
国際特別	許分類(IPC	int. CL ⁵				
	•		0.0 (0.0			
		HO1L21/312,	21/316,2	1/90)	
11 (50	原閲査を行	- + ΔΙΕ				
1	M M E 2 11	## ** J. /-				
4) 2	重体 系		た。最小限	登 科		
77.7	A 17 A		分類記号			
I.	PC	H01L21/312,	21/316,2	1/90		
		设小限資料以外の	資料で閲覧を行った	: 60		
82	阿 典图本	MI20 19	26-10012 5			W W
82	四个图之	空用污染公司 19	71 — 10 a 16=			-
			O Y — N A A N GE			
		関する文献				
引足文はの カテゴリー ※	引用文	(献名 及び一部の箇所が関連す	るときは、その関迎す	る箇所の裏	表示	前求の范囲のひ号
A	JP. A	。2-262386(数5	tak mir			9 9 4 4 7
	25. 1	OA. 1990(25. 1			ļ	1,2,9,25
	#2 II	(ファミリーなし)	· · · · · · · · · · · · · · · · · · ·			
		-				
A	JP, A	2-78225 (x=)	ダエルへ。エセ。	ピッア)		1,25
į	119. 3A. 1990 (19. 03. 90).					2,20
	#2 II ((ファミリーなし)	-		-	
.						:
A	JP, A,	54-94878(欲致	会社 日立領作	厥)。	j	10,11
1	20. 7	7. 1979 (26. 07	, 79),			
	湖111(ファミリーなし)			İ	
A	Triffs A					
. Zra.	1 2 1 4 A	1-307247(11+	ゼロックス公式会	验盐) 。	1	15,18,26
	य द _े य १	2月。1989(12。1 ファミリーなし)	2. 59),			
į.	M # M	ノアミリーなし)			ı	
※引用文章	試のカテゴリ	_	[T] Manager	E to to		
「A」特定即	迎のある文章	ぱではなく、一 役的技術水 草を示すもの	T」国際出願日又は ある大口をと願	似先日の似 のではなく	に公裂され - 夢明の!	れた文献であって出 原理又は理論の理算
「LIの弁が	て以ではあるか 7主選を経行さ	、国際出願日以後に公安されたもの 提起する文献又は他の文献の発行日	りのために引用す	るもの		
若しく	は他の特別な	:理由を砼立するために引用する文献	「X」特に関迎のある。 規性又は遊歩性	文獻であっ	て、当該ス	文献のみで発明の所
(理由	まを付す)		「Y」特に関迎のある	マはいと考り 文はであっ	へりれるで て、当放で	と飲と他の1以上の
「B」国際出版日本、 は用、 版小学に 呂及する又献 文献との、当資者にとって自明である組合せによって説						
日の役	に公安された	- 4.ルル・ユカンな蛇となる出腺の :文献	歩性がないと考。 「&」同一パテントフ			
IV. 12					~HA	
際調査を完						
		03 92	国際調査報告の発送日			
31.03.92						92
原調查句閱			樹限のある 蔵員			D. 7 . 5
日本国特許庁 (ISA/JP)						M 8 5 1 8
படி	· 幽 "对。简" /	(ISA/JP)	特許庁審査官	小	**	9 •
					••	
さまらて ノ	ISA /210/4	77 - 31) (1001 7710 77)				

模式PCT/ISA/210(第2ページ) (1981年10月)

