Package 'DOEM'

October 12, 2022

October 12, 2022
Title The Distributed Online Expectation Maximization Algorithms to Solve Parameters of Poisson Mixture Models
Version 0.0.0.1
Description The distributed online expectation maximization algorithms are used to solve parameters of Poisson mixture models. The philosophy of the package is described in Guo, G. (2022) <doi:10.1080 02664763.2022.2053949="">.</doi:10.1080>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Imports stats
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Qian Wang [aut, cre], Guangbao Guo [aut], Guoqi Qian [aut]
Maintainer Qian Wang <waqian0715@163.com></waqian0715@163.com>
Depends R (>= $3.5.0$)
Repository CRAN
Date/Publication 2022-03-30 07:20:13 UTC
R topics documented:
DE_OEM 2 DMOEM 3 DM_OEM 4 E_OEM 6 M_OEM 7 PeMSD3 8 PeMSD7 9

DE_OEM

	_		
Index		1	14
DE_OE	М	The DE-OEM algorithm replaces E-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.	_

Description

The DE-OEM algorithm replaces E-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.

Usage

```
DE_OEM(y, M, K, seed, alpha0, lambda0, a, b)
```

Arguments

У	is a vector
М	is the number of subsets
K	is the number of Poisson distribution
seed	is the recommended way to specify seeds
alpha0	is the initial value of the mixing weight
lambda0	is the initial value of the mean
а	represents the power of the reciprocal of the step size
b	indicates that the M-step is not implemented for the first b data points

Value

 $DE_OEM time, DE_OEM alpha, DE_OEM lambda$

```
library(stats)
set.seed(637351)
K=5
alpha1=c(rep(1/K,K))
lambda1=c(1,2,3,4,5)
n=300
U=sample(c(1:n),n,replace=FALSE)
y= c(rep(0,n))
for(i in 1:n){
if(U[i]<=0.2*n){
y[i] = rpois(1,lambda1[1])}
else if(U[i]>0.2*n & U[i]<=0.4*n){</pre>
```

DMOEM 3

```
y[i] = rpois(1, lambda1[2])
else if(U[i]>0.4*n & U[i]<=0.6*n){
y[i] = rpois(1,lambda1[3])}
else if(U[i]>0.6*n & U[i]<=0.8*n){
y[i] = rpois(1,lambda1[4])}
else if(U[i]>0.8*n){
y[i] = rpois(1, lambda1[5])
M=5
seed=637351
set.seed(123)
e=sample(c(1:n),K)
alpha0=e/sum(e)
lambda0=c(1.5,2.5,3.5,4.5,5.5)
a=1
b=5
DE_OEM(y,M,K,seed,alpha0,lambda0,a,b)
```

DMOEM

The DMOEM is an overrelaxation algorithm in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.

Description

The DMOEM is an overrelaxation algorithm in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.

Usage

```
DMOEM(
y,
M,
K,
seed,
alpha0,
lambda0,
MOEMalpha0,
MOEMlambda0,
omega,
T,
epsilon
)
```

Arguments

```
y is a data matrix

M is the number of subsets
```

4 DMOEM

K is the number of Poisson distribution seed is the recommended way to specify seeds

alpha0 is the initial value of the mixing weight under the EM algorithm

lambda0 is the initial value of the mean under the EM algorithm

MOEMalpha0 is the initial value of the mixing weight under the monotonically overrelaxed

EM algorithm

MOEMlambda0 is the initial value of the mean under the monotonically overrelaxed EM algo-

rithm

omega is the overrelaxation factor

T is the number of iterations
epsilon is the threshold value

Value

DMOEMtime, DMOEMalpha, DMOEMlambda

```
library(stats)
set.seed(637351)
K=5
alpha1=c(rep(1/K,K))
lambda1=c(1,2,3,4,5)
n=300
U=sample(c(1:n),n,replace=FALSE)
y=c(rep(0,n))
for(i in 1:n){
if(U[i] \le 0.2*n){
y[i] = rpois(1,lambda1[1])}
else if(U[i]>0.2*n & U[i]<=0.4*n){
y[i] = rpois(1, lambda1[2])
else if(U[i]>0.4*n & U[i]<=0.6*n){
y[i] = rpois(1, lambda1[3])
else if(U[i] > 0.6*n & U[i] <= 0.8*n){
y[i] = rpois(1,lambda1[4])}
else if(U[i]>0.8*n){
y[i] = rpois(1,lambda1[5])}
M=5
seed=637351
set.seed(123)
e=sample(c(1:n),K)
alpha0= MOEMalpha0=e/sum(e)
lambda0= MOEMlambda0=c(1.5,2.5,3.5,4.5,5.5)
omega=0.8
T=10
epsilon=0.005
DMOEM(y,M,K,seed,alpha0,lambda0,MOEMalpha0,MOEMlambda0,omega,T,epsilon)
```

DM_OEM 5

DM_OEM	The DM-OEM algorithm replaces M-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.

Description

The DM-OEM algorithm replaces M-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.

Usage

```
DM_OEM(y, M, K, seed, alpha0, lambda0, a, b)
```

Arguments

У	is a vector
М	is the number of subsets
K	is the number of Poisson distribution
seed	is the recommended way to specify seeds
alpha0	is the initial value of the mixing weight
lambda0	is the initial value of the mean
а	represents the power of the reciprocal of the step size
b	indicates that the M-step is not implemented for the first b data points

Value

DM_OEMtime,DM_OEMalpha,DM_OEMlambda

```
library(stats)
set.seed(637351)
K=5
alpha1=c(rep(1/K,K))
lambda1=c(1,2,3,4,5)
n=300
U=sample(c(1:n),n,replace=FALSE)
y= c(rep(0,n))
for(i in 1:n){
   if(U[i]<=0.2*n){
    y[i] = rpois(1,lambda1[1])}
   else if(U[i]>0.2*n & U[i]<=0.4*n){
    y[i] = rpois(1,lambda1[2])}
   else if(U[i]>0.4*n & U[i]<=0.6*n){
    y[i] = rpois(1,lambda1[3])}
   else if(U[i]>0.6*n & U[i]<=0.8*n){</pre>
```

6 E_OEM

```
y[i] = rpois(1, lambda1[4])
else if(U[i]>0.8*n){
y[i] = rpois(1,lambda1[5])
M=5
seed=637351
set.seed(123)
e=sample(c(1:n),K)
alpha0=e/sum(e)
lambda0=c(1.5,2.5,3.5,4.5,5.5)
a=1
b=5
DM_OEM(y,M,K,seed,alpha0,lambda0,a,b)
```

E_OEM

The E-OEM algorithm replaces E-step with stochastic step, which is used to solve the parameter estimation of Poisson mixture model.

Description

The E-OEM algorithm replaces E-step with stochastic step, which is used to solve the parameter estimation of Poisson mixture model.

Usage

```
E_OEM(y, K, alpha0, lambda0, a, b)
```

is a data vector

Arguments

У Κ is the number of Poisson distribution alpha0 is the initial value of the mixing weight lambda0 is the initial value of the mean represents the power of the reciprocal of the step size а

indicates that the M-step is not implemented for the first b data points b

Value

 $E_OEMtime, E_OEMalpha, E_OEMlambda$

```
library(stats)
set.seed(637351)
alpha1=c(rep(1/K,K))
lambda1=c(1,2,3,4,5)
n=300
```

 $M_{-}OEM$

```
U=sample(c(1:n),n,replace=FALSE)
y= c(rep(0,n))
for(i in 1:n){
if(U[i]<=0.2*n){
y[i] = rpois(1,lambda1[1])}
else if(U[i]>0.2*n & U[i]<=0.4*n){
y[i] = rpois(1, lambda1[2])
else if(U[i]>0.4*n & U[i]<=0.6*n){
y[i] = rpois(1,lambda1[3])}
else if(U[i] > 0.6*n & U[i] <= 0.8*n){
y[i] = rpois(1,lambda1[4])}
else if(U[i]>0.8*n){
y[i] = rpois(1, lambda1[5])
M=5
seed=637351
set.seed(123)
e=sample(c(1:n),K)
alpha0=e/sum(e)
lambda0=c(1.5,2.5,3.5,4.5,5.5)
a=0.75
b=5
E_OEM(y,K,alpha0,lambda0,a,b)
```

M_OEM

The M-OEM algorithm replaces M-step with stochastic step, which is used to solve the parameter estimation of Poisson mixture model.

Description

The M-OEM algorithm replaces M-step with stochastic step, which is used to solve the parameter estimation of Poisson mixture model.

Usage

```
M_OEM(y, K, alpha0, lambda0, a, b)
```

Arguments

y is a data vector

K is the number of Poisson distribution alpha0 is the initial value of the mixing weight

lambda0 is the initial value of the mean

a represents the power of the reciprocal of the step size

b indicates that the M-step is not implemented for the first b data points

Value

 $M_OEMtime, M_OEMalpha, M_OEMlambda$

8 PeMSD3

Examples

```
library(stats)
set.seed(637351)
K=5
alpha1=c(rep(1/K,K))
lambda1=c(1,2,3,4,5)
n=300
U=sample(c(1:n),n,replace=FALSE)
y=c(rep(0,n))
for(i in 1:n){
if(U[i] \le 0.2*n){
y[i] = rpois(1,lambda1[1])}
else if(U[i]>0.2*n & U[i]<=0.4*n){
y[i] = rpois(1,lambda1[2])}
else if(U[i]>0.4*n & U[i]<=0.6*n){
y[i] = rpois(1,lambda1[3])}
else if(U[i] > 0.6*n & U[i] <= 0.8*n){
y[i] = rpois(1,lambda1[4])}
else if(U[i]>0.8*n){
y[i] = rpois(1,lambda1[5])}
M=5
seed=637351
set.seed(123)
e=sample(c(1:n),K)
alpha0=e/sum(e)
lambda0=c(1.5,2.5,3.5,4.5,5.5)
a=0.75
b=5
M_OEM(y,K,alpha0,lambda0,a,b)
```

PeMSD3

PeMSD3

Description

The PeMSD3 data

Usage

```
data("PeMSD3")
```

Format

A data frame with 26208 observations on the following 12 variables.

```
X315836 a numeric vector
X315837 a numeric vector
X315838 a numeric vector
```

PeMSD7

```
X315841 a numeric vector
X315842 a numeric vector
X315839 a numeric vector
X315843 a numeric vector
X315846 a numeric vector
X315847 a numeric vector
X317895 a numeric vector
X315849 a numeric vector
X315850 a numeric vector
```

Details

It is the traffic data of Sacramento in California, the United States.

Source

Song, C., Lin, Y., Guo, S., Wan, H. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 34(1), 914-921.

References

Song, C., Lin, Y., Guo, S., Wan, H. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 34(1), 914-921.

Examples

```
data(PeMSD3)
## maybe str(PeMSD3); plot(PeMSD3) ...
```

PeMSD7

PeMSD7

Description

The PeMSD7 data

Usage

```
data("PeMSD7")
```

10 PeMSD7

Format

A data frame with 17568 observations on the following 20 variables.

```
X773656 a numeric vector
X760074 a numeric vector
X760080 a numeric vector
X716414 a numeric vector
X760101 a numeric vector
X760112 a numeric vector
X716419 a numeric vector
X716421 a numeric vector
X716424 a numeric vector
X765476 a numeric vector
X760167 a numeric vector
X716427 a numeric vector
X716431 a numeric vector
X716433 a numeric vector
X760187 a numeric vector
X760196 a numeric vector
X716440 a numeric vector
X760226 a numeric vector
X760236 a numeric vector
X716449 a numeric vector
```

Details

It is the traffic data of Los Angeles in California, the United States.

Source

Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H. Ge-gan: a novel deep learning framework for road traffic state estimation[J]. Transportation Research Part C Emerging Technologies, 2020, 117, 102635.

References

Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H. Ge-gan: a novel deep learning framework for road traffic state estimation[J]. Transportation Research Part C Emerging Technologies, 2020, 117, 102635.

```
data(PeMSD7)
## maybe str(PeMSD7); plot(PeMSD7) ...
```

PeMSD7_weekend

PeMSD7_weekend

PeMSD7 on weekend

Description

The weekend data in PeMSD7

Usage

```
data("PeMSD7_weekend")
```

Format

A data frame with 5184 observations on the following 20 variables.

```
X773656 a numeric vector
X760074 a numeric vector
X760080 a numeric vector
X716414 a numeric vector
X760101 a numeric vector
X760112 a numeric vector
X716419 a numeric vector
X716421 a numeric vector
X716424 a numeric vector
X765476 a numeric vector
X760167 a numeric vector
X716427 a numeric vector
X716431 a numeric vector
X716433 a numeric vector
X760187 a numeric vector
X760196 a numeric vector
X716440 a numeric vector
X760226 a numeric vector
X760236 a numeric vector
X716449 a numeric vector
```

Details

The weekend data set only records traffic flow data on weekends.

12 PeMSD7_workday

Source

Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H. Ge-gan: a novel deep learning framework for road traffic state estimation[J]. Transportation Research Part C Emerging Technologies, 2020, 117, 102635.

References

Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H. Ge-gan: a novel deep learning framework for road traffic state estimation[J]. Transportation Research Part C Emerging Technologies, 2020, 117, 102635.

Examples

```
data(PeMSD7_weekend)
## maybe str(PeMSD7_weekend); plot(PeMSD7_weekend) ...
```

PeMSD7_workday

PeMSD7 on workday

Description

The workday data in PeMSD7

Usage

```
data("PeMSD7_workday")
```

Format

A data frame with 12384 observations on the following 20 variables.

X773656 a numeric vector
X760074 a numeric vector
X760080 a numeric vector
X716414 a numeric vector
X760101 a numeric vector
X760112 a numeric vector
X716419 a numeric vector
X716421 a numeric vector
X716424 a numeric vector
X765476 a numeric vector
X760167 a numeric vector

X716427 a numeric vector X716431 a numeric vector X716433 a numeric vector PeMSD7_workday 13

```
X760187 a numeric vector
X760196 a numeric vector
X716440 a numeric vector
X760226 a numeric vector
X760236 a numeric vector
X716449 a numeric vector
```

Details

The workday data set only records traffic flow data on workdays.

Source

Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H. Ge-gan: a novel deep learning framework for road traffic state estimation[J]. Transportation Research Part C Emerging Technologies, 2020, 117, 102635.

References

Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H. Ge-gan: a novel deep learning framework for road traffic state estimation[J]. Transportation Research Part C Emerging Technologies, 2020, 117, 102635.

```
data(PeMSD7_workday)
## maybe str(PeMSD7_workday) ; plot(PeMSD7_workday) ...
```

Index

```
* datasets
PeMSD3, 8
PeMSD7, 9
PeMSD7_weekend, 11
PeMSD7_workday, 12

DE_OEM, 2
DM_OEM, 5
DMOEM, 3

E_OEM, 6

M_OEM, 7

PeMSD3, 8
PeMSD7, 9
PeMSD7_weekend, 11
PeMSD7_workday, 12
```