

Fall Semester 2015

Line following robot

Group 2

2. Semester IT-Technology

Group members: Benjamin Nielsen - Henrik Jensen - Martin Nonboe - Nikolaj Bilgrau

Supervisor: Jesper Kristensen - Steffen Vutborg

IT-technology Sofiendalsvej 60 9200 Aalborg SW http://www.ucn.dk/

Title:

SICK PEW PEW robot

Project Period:

3. Semester | Spring semester 2016

Projectgroup:

Group 2

Group participants:

Benjamin Nielsen Henrik Jensen Martin Nonboe

Nikolaj Bilgrau

Supervisors:

Jesper Kristensen Steffen Vutborg

Pages:

Appendices:

Completed:

Preamble

This project was written by group 2, for the seducation at university college Nordjylland, Somake a line following robot.	
Benjamin Nielsen	Henrik Jensen
Martin Nonboe	Nikolaj Bilgrau

Table of Contents

1	Introduction	1
2	Analysis 2.1 Problem statement	
3	Requirements specification	3
4	Hardware section	4
	4.1 Hardware diagram	
	4.2 Analog-to-digital converter	
	4.3 The chipKIT Uno32 board	
	4.4 The motor shield - PKA03	
	4.5 The Bluetooth tranceiver	. 4
5	Software section	5
	5.1 Analog to digital conversion	
	5.2 PID controller	
	5.3 Pulse-width modulation	
	5.4 The interface	. 5
6	Test	6
	6.1 Unit Testing	. 8
	6.2 Integration Testing	. 8
	6.3 System Testing	. 8
	6.4 Acceptance Testing	. 8
7	Conclusion	9
8	Appendices	10
	8.1 Group collaboration agreement	. 10
9	List of references	11
Li	t of Figures	12
Li	t of Tables	13
10	Software appendix	14
_0	10.1 C code	. 14
	10.2 C# code - interface	
Bi	oliography	17

Glossary

3D print 3-Dimensional printing

Introduction

Analysis 2

Indledning til afsnittet af analyse

2.1 Problem statement

The problem presented to the group is how to make a robot move from point A to point B, with the help of different sensors, including ultrasound and infrared, and to make use of autonomous algorithms to avoid obstacles.

Problem statement:

- Bot should be able to move from A to B
- Should be able to stop at a predetermined point
- Manoeuvre around obstacles

2.2 Problem analysis

2.2.1 Mobility from A to B

Motorer, som bliver styret af H-bro vha. PWM Line-following-principper.

2.2.2 Predetermined end point

2.2.3 Obstacles avoidance

Requirements specification

Beskriv section [1]

Hardware section 4

Beskrivelse af afsnit

4.1 Hardware diagram

Beskrivelse af hardware diagram

- 4.1.1 Sensor choice
- 4.1.2 Another sensor choice?
- 4.2 Analog-to-digital converter

ADC diagram

This products usage of ADC

- 4.3 The chipKIT Uno32 board
- 4.4 The motor shield PKA03
- 4.4.1 The H bridge
- 4.5 The Bluetooth tranceiver

Software section 5

Beskriv Software section

- 5.0.1 Software diagram
- 5.1 Analog to digital conversion
- 5.2 PID controller
- 5.2.1 Proportional control(P)
- 5.2.2 Integral control(I)
- 5.2.3 Derivative control(D)
- 5.2.4 Loop tuning
- 5.2.5 Steady-state error
- 5.2.6 Stability

Table manual explained

- 5.2.7 PID Implementation
- 5.3 Pulse-width modulation
- 5.3.1 Duty cycles
- 5.4 The interface

Test 6

Beskriv test section

6.1 Unit Testing

6.1.1 Sensor

Setup

Results

6.1.2 DC Motors

Setup

Results

6.1.3 H-Bridge

Equipment

Setup

Results

6.1.4 PWM

Equipment

Setup

Results

6.1.5 ADC

Equipment

Setup

Results

6.2 Integration Testing

6.2.1 PWM motor control

Equipment

Setup

Results

6.2.2 Robot to Interface communication

Equipment

Setup

Results

6.3 System Testing

Equipment

Setup

_ .

Conclusion 7

Skriv en fucking Conclusion!!

Appendices 8

8.1 Group collaboration agreement

8.1.1 Contact Information

Table 8.1: Contacts

Benjamin Nielsen	Tlf: 30427645	@: yipiyuk5@gmail.com
Henrik Jensen	Tlf: 28568934	@: henrik_kort@hotmail.com
Martin Nonboe	Tlf: 23827566	@: nonsens_4@hotmail.com
Nikolaj Bilgrau	Tlf: 29802715	@: nikolajbilgrau@gmail.com

8.1.2 Workflow

8.1.3 Deadline

8.1.4 Milestones and goals

Gerne en kalender der viser dage arbejdet!

List of references

List of Figures

Page

List of Tables

3.1	Contacts	 	 	 •	•	 •		•	•		•	•					•			10
																		F	a	ge

Software appendix

10.1 C code

main.c:

10.1. C CODE 15

ADC.c:

10.2 C# code - interface

Bibliography

[1] placeholderAuthor. placeholderTitle. 2016. URL: http://www.ucn.dk.