

行人重识别——(全局特征和)局部特征

罗浩 浙江大学

基于深度学习的行人重识别

全局特征(Global features)

全局特征是指每一张行人图片的全局信息进行一个特征抽取,这个全局特征没有任何的空间信息

基于深度学习的行人重识别

全局特征(Global features)

全局特征是指每一张行人图片的全局信息进行一个特征抽取,这个全局特征没有任何的空间信息

基于深度学习的行人重识别

局部特征(Global features)

- ★★★・ 切片 (Stride)
- ★★★・ 姿态 (Pose)
 - ★★ 分割 (Segmentation)

姿态

分割

网格

局部特征是指对图像中的某一个区域进行特征提取,最后将多个局部特征融合起来作为最终特征

一些概念——姿态

- 通常一个行人会定义14个姿态点 (pose/keypoint)
- · 两个相邻的姿态点相连形成骨架 (skeleton)
- 常用的姿态点估计模型包括: Hourglass、 OpenPose、CPM、AlphaPose

一些概念——Part&Attention

- Part: 是指通过一定规则 (例如姿态 点信息) 手工设置的一些矩形框区域
- Attention: 是指(在一定的约束条件下)网络自动学习出的比较重要的任意形状区域

原图

Part

Attention

一些概念——水平池化

水平池化是指对于将feature maps进行水平等分,然后再池化得到分块的局部特征

一些概念——网格特征

网格特征是指,将H×W×C尺寸的feature map中每个像素的C维特征作为一个网格特征, 最终共有H×W个网格特征向量,每个向量的维度为通道数C

代表算法

- Gate Siamese
- AlignedReID
- PCB
- ICNN
- SCPNet

Gate Siamese

- 每一块图像经过CNN网络得到 特征,局部特征按顺序输入到 LSTM网络,自动表达为图像 最终的特征
- 利用对比损失训练网络
- 水平切块比较早期的工作,目前已经很少使用

- [1] Qiqi Xiao, Kelei Cao, Haonan Chen, Fangyue Peng, Chi Zhang. Cross domain knowledge transfer for person reidentification[J]. arXiv preprint arXiv:1611.06026, 2016.
- [2] Rahul Rama Varior, Bing Shuai, Jiwen Lu, Dong Xu, Gang Wang. A siamese long short-term memory architecture for human re-identification[C]//European Conference on Computer Vision. Springer, 2016:135–153.

水平切块的不对齐

怎么解决姿态不对齐的问题?

AlignedReID

- AlignedReID是旷视科技提出的ReID算法
- 首次在ReID任务上"超越"了人类准确度
- 主要解决姿态不对齐的问题
- 论文中骨架网络为ResNet50
- 在实战教学环节将会实现AlignedReID算法

[1] Zhang X*, Luo H*, Fan X, et al. Alignedreid: Surpassing human-level performance in person re-identification[J]. arXiv preprint arXiv:1711.08184, 2017. (* stands for equal contribution)

[2] Luo H, Jiang W, Zhang, et al. Alignedreid + +: Dynamically Matching Local Information for Person Re-Identification. (Under review on Pattern Recognition)

Dynamically Matching Local Information (DMLI)

- 加入输入图像为256×128,输出的特征图尺寸为8×4×2048
- 利用水平池化得到8个局部特征,并计算得到一个8×8的距离方阵
- 对齐局部信息不能有跳连 (从上到下)
- 利用shortest path 来找到最有的动态连接 (Dynamic Time Warping)

结果示例

(a) Positive pair

(b) Negative pair

DMLI 可以修正一些检索结果

Framework

- 联合全局分支和局部分支一起训练
- 全局分支是一个正常的ReID网络
- 局部分支引入DMLI对齐思想

$$d_{i,j} = rac{e^{||l_A^i - l_B^j||_2} - 1}{e^{||l_A^i - l_B^j||_2} + 1}$$
 $i, j \in 1, 2, 3..., H$ \Longrightarrow $d_{ij} \propto x$ • 计算局部特征两两之间的距离,并归一化

$$\frac{\partial d_{ij}}{\partial x} = \frac{2}{e^x + \frac{1}{e^x} + 2} \qquad e^x \in [1, e^{\max(x)}] \implies \frac{\partial d_{ij}}{\partial x} \frac{1}{\infty} x$$

• 使得网络更加关注相似的区域

最短路径距离

$$S_{i,j} = \begin{cases} d_{i,j} & i = 1, j = 1 \\ S_{i-1,j} + d_{i,j} & i \neq 1, j = 1 \\ S_{i,j-1} + d_{i,j} & i = 1, j \neq 1 \\ min(S_{i-1,j}, S_{i,j-1}) + d_{i,j} & i \neq 1, j \neq 1, \end{cases}$$

```
for i in range(m):
 for j in range(n):
   if (i == 0) and (j == 0):
    dist[i][j] = dist mat[i, j]
   elif (i == 0) and (j > 0):
    dist[i][j] = dist[i][j - 1] + dist mat[i, j]
   elif (i > 0) and (j == 0):
    dist[i][j] = dist[i - 1][j] + dist_mat[i, j]
   else:
    dist = dist[-1][-1]
```


难样本挖掘

- 全局分支计算一个表征学习损失 (ID损失) 和一个度量学习损失 (TriHard损失)
- 局部分支计算一个度量学习损失 (TriHard损失)

难样本挖掘

- 局部分支和全局分支各自得到一个N×N的距离方阵
- 利用全局分支的距离方阵进行难样本挖掘:速度快、梯度方向一致

- 联合训练使得局部分支会将一部分知识传递给全局分支
- 测试阶段丢弃局部分支,只使用全局特征,不增加额外的计算量
- 测试阶段联合局部分支还能取得进一步的性能提升

结果

		Market1501		DukeMTMC		CUHK03		MSMT17	
Method		mAP	r = 1	mAP	r = 1	mAP	r=1	mAP	r=1
SVD[38]	ICCV17	62.1	82.3	56.8	76.7	37.3	41.5	-	-
PDC[6]	ICCV17	63.4	84.1	-	-	-	-	29.7	58.0
PCE&ECN[4]	CVPR18	69.0	87.0	62.0	79.8	27.3	30.2	-	-
GLAD[5]	ACMMM17	73.9	89.9	-	-	-	-	34.0	61.4
MGCAM[39]	CVPR18	74.3	83.8	-	-	46.9	46.7	-	-
AWTL[12]	CVPR18	75.7	89.5	63.4	79.8	-	-	-	-
$MLFN_{40}$	CVPR18	74.3	90.0	62.8	81.0	47.8	52.8	-	-
HA-CNN[41]	CVPR18	75.7	91.2	63.8	80.5	38.3	41.7	-	-
Baseline		70.9	86.4	61.0	76.9	56.2	57.3	37.3	61.5
AlignedReID++		77.6	91.0	68.0	80.7	59.7	60.9	40.6	66.3
AlignedReID++(LS)		79.1	91.8	69.7	82.1	59.6	61.5	43.7	69.8
CamStyle(RK)[42]	CVPR18	71.5	89.5	57.6	78.3	-	-	-	-
DaRe(RK)[43]	CVPR18	82.0	88.3	74.5	80.4	63.6	62.8	-	-
AlignedReID++(RK)		88.5	92.0	81.2	85.2	70.7	67.6	-	-
${\bf AlignedReID++(LS,RK)}$		89.4	92.8	82.8	86.2	70.7	67.9	-	-

水平切块——PCB

Framework

- 输入图像384×192,分成6块;
- 利用ResNet50提取特征,最后24×8的feature map
- 每一行提取一个局部特征,连接一个ReID loss
- 使用的时候把6个局部特征concatenate起来

[1] Sun Y, Zheng L, Yang Y, et al. Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline). ECCV, 2018

水平切块——PCB

结果

Models	Feature	dim	Market-1501		DukeMTMC-reID		CUHK03	
Wodels			R-1	mAP	R-1	mAP	R-1	mAP
IDE	pool5	2048	85.3	68.5	73.2	52.8	43.8	38.9
IDE	FC	256	83.8	67.7	72.4	51.6	43.3	38.3
Variant 1	\mathcal{G}	12288	86.7	69.4	73.9	53.2	43.6	38.8
Variant 1	\mathcal{H}	1536	85.6	68.3	72.8	52.5	44.1	39.1
Variant 2	\mathcal{G}	12288	91.2	75.0	80.2	62.8	52.6	45.8
Variant 2	\mathcal{H}	1536	91.0	75.3	80.0	62.6	54.0	47.2
PCB	\mathcal{G}	12288	92.3	77.4	81.7	66.1	59.7	53.2
PCB	\mathcal{H}	1536	92.4	77.3	81.9	65.3	61.3	54.2
PCB+RPP	\mathcal{G}	12288	93.8	81.6	83.3	69.2	62.8	56.7
PCB+RPP	\mathcal{H}	1536	93.1	81.0	82.9	68.5	63.7	57.5

- · Variant 1 平均所有局部特征, 算一个ID loss
- Variant 2 共享FC层参数, 算6个ID loss

水平切块——ICNN

Framework

➤ ICNN ≈ PCB + global branch with triplet loss

[1] Zhang Z, Si T, Liu S. Integration Convolutional Neural Network for Person Re-Identification in Camera Networks[J]. IEEE Access, 2018, 6: 36887-36896.

水平切块——ICNN

Framework

• 最后融合global和local特征,最后一个stride=1

[1] Zhang Z, Si T, Liu S. Integration Convolutional Neural Network for Person Re-Identification in Camera Networks[J]. IEEE Access, 2018, 6: 36887-36896.

水平切块——ICNN

结果

TABLE 2. Comparison of the proposed ICNN with global features, local features and triplet batch hard loss (TBH). Rank-1 (%) and mAP (%) are listed.

Methods	Market1501	CUHK03	DukeMTMC-reID		
	rank-1 mAP	rank-1 mAP	rank-1 mAP		
Global features	80.73 63.63	52.36 47.85	75.32 60.78		
Local features	89.40 72.06	49.57 45.36	81.51 65.99		
TBH	90.78 76.53	60.49 54.79	83.45 70.12		
ICNN	92.13 79.01	61.36 55.78	85.32 71.20		

[1] Zhang Z, Si T, Liu S. Integration Convolutional Neural Network for Person Re-Identification in Camera Networks[J]. IEEE Access, 2018, 6: 36887-36896.

水平切块——SCPNet

• 利用spatial part特征连监督channel group特征,将local feature传给global feature

[1] Fan X, Luo H, Jiang W, et al. SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial Person Re-Identification. ACCV, 2018

水平切块——SCPNet

SCPNet

Settings		Results (r=1), $R = 4, \lambda = 10$							
Model	Branch	Market-1501	DukeMTMC-reID	CUHK03	CUHK-SYSU	Partial ReID	Partial-iLIDs		
Baseline	Local	90.7	77.5	90.3	94.5	61.0	83.2		
	Global	92.0	80.2	89.6	93.1	60.0	78.2		
	Concate	92.8	81.7	92.7	93.6	61.0	84.9		
SCPNet		94.1	84.8	93.3	94.6	68.3	84.9		

• 在全身和半身的ReID数据集上均取得了提高

[1] Fan X, Luo H, Jiang W, et al. SCPNet: Spatial-Channel Parallelism Network for Joint Holistic and Partial Person Re-Identification. ACCV, 2018

总结

- 将图像进行水平方向的等分,每一个水平切块通过水平池化提取一个特征
- Gate Siamese和AlignedReID通过设计规则融合所有的局部特征计算距离
- PCB、ICNN、SCPNet对每一个局部特征计算一个ReID损失,直接将局部特征拼接起来
- 联合局部特征和全局特征往往能够得到更好的结果

代表算法

- PIE
- Spindle Net
- PDC
- GLAD
- PABP

PIE

- 融合原图和仿射图的特征
- 采用ID损失训练网络

Liang Zheng, Yujia Huang, Huchuan Lu, Yi Yang. Pose invariant embedding for deep person reidentification[J]. arXiv preprint arXiv:1701.07732, 2017.

Spindle Net

- 利用姿态点估计模型得到14个姿态点
- · 分成七个part:
 - 头, 上身, 下身;
 - 左手,右手,左腿,右腿

Haiyu Zhao, Maoqing Tian, Shuyang Sun, Jing Shao, Junjie Yan, Shuai Yi, Xiaogang Wang, Xiaoou Tang. Spindle net: Person re-identification with human body region guided feature decomposition and fusion[C]. CVPR, 2017.

Spindle Net

• FEN网络提取特征, FFN网络层次性地融合特征

• 利用姿态点信息分割为六个part

改进STN网络为PTN网络,学习仿射变换 参数得到modified part image

$$\begin{pmatrix} x^s \\ y^s \end{pmatrix} = A_\theta \begin{pmatrix} x^t \\ y^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \\ \theta_4 & \theta_5 & \theta_6 \end{bmatrix} \begin{pmatrix} x^t \\ y^t \\ 1 \end{pmatrix}$$

Su C, Li J, Zhang S, et al. Pose-driven deep convolutional model for person re-identification[C]//Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017: 3980-3989.

PDC

• 融合全局特征和局部特征

$$F_{fusion} = [F_{global}, tanh(F_{part} \odot W + B)]$$

- 计算三个ReID损失
- 浅层网络共享, 高层网络独立

Su C, Li J, Zhang S, et al. Pose-driven deep convolutional model for person re-identification[C]//Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017: 3980-3989.

GLAD

- 分为头,上身,下身三个part
- 融合全局特征和三个part的特征

$$\mathbf{f}^{GLAD} = [\mathbf{f}^G; \mathbf{f}^h; \mathbf{f}^{ub}; \mathbf{f}^{lb}],$$

Longhui Wei, Shiliang Zhang, Hantao Yao, Wen Gao, Qi Tian. Glad: Global-local-alignment descriptor for pedestrian retrieval[J]. arXiv preprint arXiv:1709.04329, 2017.

姿态信息

PABP

- 利用ReID网络提取feature map A
- 利用openpose提取feature map P
- A和P每个对应像素位置的向量进行外积,并向量化

$$\mathbf{f} = \text{pooling}_{xy} \{ \mathbf{f}_{xy} \} = \frac{1}{S} \sum_{xy} \mathbf{f}_{xy},$$

$$\mathbf{f}_{xy} = \text{vec}(\mathbf{a}_{xy} \otimes \mathbf{p}_{xy}),$$

$$\text{vec}(\mathbf{a} \otimes \mathbf{p}) = [(p_1 \mathbf{a})^\top (p_2 \mathbf{a})^\top \dots (p_{c_P} \mathbf{a})^\top]^\top.$$

会激活对应位置的外观特征

Suh Y, Wang J, Tang S, et al. Part-Aligned Bilinear Representations for Person Re-identification. ECCV, 2018.

姿态信息

总结

- 利用一个姿态估计模型得到行人的(14个)关键姿态点
- 根据姿态点得到具有语义信息的part区域
- 对于每个part区域提取局部特征
- 联合局部特征和全局特征往往能够得到更好的结果

行人分割

粗粒度的分割

数据集:

- COCO
- LIP

• 分割算法:

- FCN
- PSPNet
- DeepLabV2
- Mask RCNN

前背景提取

Ma L, Sun Q, Georgoulis S, et al. Disentangled person image generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 99-108.

SPReID

- 一个ReID分支和一个语义分割分支
- 语义分割分支:在LIP数据集上训练

- 一个全局region和四个局部part
- 将语义分割结果作为attention相乘

Kalayeh M M, Basaran E, Gökmen M, et al. Human Semantic Parsing for Person Re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1062-1071.

总结

- 图像语义分割是一种极精细的像素级别part信息
- 图像分割分为粗粒度的行人前景分割和细粒度的肢体语义分割
- 分割结果通常作为图像预处理的Mask或者feature map中的attention相乘
- 目前基于分割的方法没有取得特别广泛的应用

代表算法

- IDLA
- PersonNet
- DSR

IDLA

Tied Conv.

Max Pooling

- 骨干网络为Siamese网络
- 计算两幅图5×5网格特征差值

$$K_i(x, y) = f_i(x, y) \mathbb{1}(5, 5) - \mathcal{N}[g_i(x, y)]$$

where

 $\mathbb{1}(5,5) \in \mathbb{R}^{5 \times 5}$ is a 5×5 matrix of 1s, $\mathcal{N}[g_i(x,y)] \in \mathbb{R}^{5 \times 5}$ is the 5×5 neighborhood of g_i centered at (x,y).

- 交换"主客"分别计算K和K'
- 计算二分类验证损失

Ahmed E, Jones M, Marks T K. An improved deep learning architecture for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3908-3916.

PersonNet

Wu L, Shen C, Hengel A. Personnet: Person re-identification with deep convolutional neural networks[J]. arXiv preprint arXiv:1601.07255, 2016.

DSR

- 将一副图像的所有网格特征作为一个特征集合
- 对两个特征集合进行稀疏重建得到集合距离

He L, Liang J, Li H, et al. Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7073-7082.

总结

- 网格特征是比较细粒度的物理区域特征
- 早期工作将网格特征扩展为part特征计算两幅图像的特征图差
- 近期利用网格特征解决partial ReID工作
- 总体而言网格特征并不常用

课后思考

1. 切块类和姿态类ReID方法各自有什么优缺点?

2. 以上大量方法中,哪些思路有利于训练一个高准确高帧率的ReID 产品模型?

欢迎关注AI300学院

