<u>Capstone Project - Dry Bars/</u> Beauty Express <u>Applied Data Science Capstone by IBM/Coursera</u>

Introdução

Com o objetivo de estudar possíveis locais para a abertura de um negócio ainda não explorado no Brasil, este projeto traz o conceito do *DryBar*, e tem como proposta identificar locais mais adequados para a localização deste tipo de estabelecimento. O resultado pode permitir extrapolar o perfil das localizações mais exitosas para outras cidades com características similares.

O conceito

O *DryBar* pode ser definido como espaços expressos de beleza, por preços mais convenientes, se comparado aos serviços tradicionais. Surgiu na Califórnia, em 2010 e se tornaram presença comum em cidades como Nova York e Los Angeles, pela agilidade, facilidades e preços convidativos.

Para o desenvolvimento do projeto, a opção foi mapear uma região da cidade de Nova York, buscando compreender elementos de geolocalização e sua relevância, para a instalação do *DryBar*. Considera-se que este é um tipo de serviço com elevada dependência do fluxo de pessoas do sexo feminino, com pouco tempo disponível e um perfil que valoriza a boa apresentação no ambiente de trabalho. Esses são fatores considerados determinantes para o sucesso deste modelo de negócio.

Objetivo do projeto

Encontrar *DryBar* na região de observação, analisando seu entorno a partir do estudo de clusters, complementado com avaliações dos clientes, considerando que, além da qualidade do serviço, está implícita a facilidade de acesso, elemento relacionado à localização.

Foi feito o mapeamento da região de Midtown, na Ilha de Manhattan, um dos principais hubs de grandes empresas da Cidade de Nova York. Devido a essas características, a região concentra

público com perfil para esse tipo de negócio; mulheres com muitas atividades e pouco tempo para os tradicionais salões de beleza

Com base nesses critérios, o Foursquare (https://developer.foursquare.com/docs) foi usado como a única fonte de dados. O algoritmo de aprendizado não supervisionado 'k-means clustering' foi o meio para identificar as vantagens de cada área, para que seja definido o perfil da melhor localização, para futuros encaminhamentos aos interessados em implantar este negócio em grandes capitais brasileiras.

Desenvolvimento

Na API do Foursquare foi feita uma busca com um raio de 9,5km do centro do distrito de Manhattan, para encontrar os estabelecimentos de *drybar* na região e após, manipular e organizar os dados em uma data frame.

df_	F_drybar_manhattan.head()					
	id	name	categories	lat	Ing	
0	5345ddce498e374167fa7173	DryBar	Salon / Barbershop	40.760087	-73.969126	
1	4f2064f8e4b0a00cf1d3c3c1	Drybar	Salon / Barbershop	40.764110	-73.978769	
2	4e6f679dae604d1b459a5154	DryBar	Salon / Barbershop	40.737554	-73.993193	
3	5085a8b5e4b0ca321fdcea32	Dry Bar	Salon / Barbershop	40.772205	-73.958315	
4	50df63efe4b0454c5e8f655d	Drybar	Salon / Barbershop	40.718100	-74.007092	

Parte data frame com a localização dos Drybars

Retornaram 41 Drybars, no gráfico abaixo é possível ver como estão distribuídos na ilha de Manhattan.

Localização gráfica dos Drybars

É possível observar que os D*rybars* estão concentrados em uma parte da ilha de Manhattan e não em toda sua extensão. Os pontos estão nas regiões de Midtown, Upper e Lower, três das cinco que dividem a ilha de Manhattan. São nessas regiões que estão concentradas grandes empresas, vários órgãos do governo e diferentes comércios, de fato a proximidade com outros estabelecimentos parece ter uma influência na escolha do local para a abertura desse modelo de negócio, já que o outro lado da ilha são áreas consideradas residenciais.

https://www.rodei.com.br/amp/para-entender-melhor-os-bairros-de-manhattan-parte-ii/

Notas dos Drybars

O escopo do projeto está em verificar se existe uma relação do sucesso do negócio com sua localização, neste caso, conhecer quais tipos de categorias, serviços que permeiam estes estabelecimentos e para mensurar o sucesso do negócio que está associado a qualidade de serviço será utilizado as notas dos clientes, que de forma implícita, está a localização, parte-se da hipótese de que estabelecimentos com boas pontuações costumam estar em **pontos estratégicos**.

Novamente é feita uma busca no Foursquare com ID de cada *Drybar* afim de obter as avaliações dadas pelos clientes (detalhes da busca no notebook), após manipulado é organizado um dataframe, df_rating, conforme abaixo.

df_rating.head()							
	id	name	rating	like	text		
0	5345ddce498e374167fa7173	DryBar	8.4	62	My favorite Dry Bar! The stylists know how to		
1	4f2064f8e4b0a00cf1d3c3c1	DryBar	8.0	62	The only place where mixing a Manhattan and a \dots		
2	4e6f679dae604d1b459a5154	DryBar	8.5	142	Uncharged? No worries! You can charge your iPh		
3	50df63efe4b0454c5e8f655d	Drybar	8.9	72	If you want big curls & big volume (The Southe		
4	5085a8b5e4b0ca321fdcea32	Dry Bar	9.2	89	Free champagne and chick flicks. Oh and a blow		

Parte do dataframe com as notas dos clientes

O passo agora é concatenar a primeira data frame que contém a categorias e a localização de cada *drybar*, com o segundo data frame, que contém notas.

df.	head()						
	id	name	categories	lat	Ing	name	rating
0	5345ddce498e374167fa7173	DryBar	Salon / Barbershop	40.760087	-73.969126	DryBar	8.4
1	4f2064f8e4b0a00cf1d3c3c1	Drybar	Salon / Barbershop	40.764110	-73.978769	DryBar	8.0
2	4e6f679dae604d1b459a5154	DryBar	Salon / Barbershop	40.737554	-73.993193	DryBar	8.5
3	5085a8b5e4b0ca321fdcea32	Dry Bar	Salon / Barbershop	40.772205	-73.958315	Dry Bar	9.2
4	50df63efe4b0454c5e8f655d	Drybar	Salon / Barbershop	40.718100	-74.007092	Drybar	8.9

Parte do dataframe após com a concatenação

Com os dados de busca do Fousquare previamente organizados, próxima etapa será usar o algoritmo de Machine learning para extrair informações que serão transformadas em posteriormente em conhecimento.

Machine Learning

O algoritmo Machine Learning não supervisionado "K-means" agrupa dados por semelhanças entre si em torno de um ponto central, o centróide. Para o processamento são dadas as variáveis de entrada, neste caso serão as latitudes e longitudes e ele retorna como saída grupos, chamados de clusters.

Uma vez que se tem os clusters o passo seguinte é calcular a média das notas avaliadas pelos clientes de cada grupo. Os dois clusters que tiverem a maior média de notas, fará uma nova busca no Foursquare a partir dos centróides destes dois clusters para descobrir as categorias dos estabelecimentos vizinhos e tirar conclusões a partir disso.

K-means

Para iniciar o algoritmo é necessário definir o melhor valor de k, como não se sabe qual é o melhor valor para se escolher então se usa o método da *silhouette*, que calcula a média entre o quão coeso estão os pontos dentro do cluster e o quão distantes estão dos outros clusters assim quanto mais próximo de 1 melhor é o valor de k.

Para realizar este processo é preciso fornecer valores para o algoritmo para que ele teste e descubra qual é o melhor valor para k, não há uma regra para a escolha destes números, fica a critério de cada um, no caso do projeto a escolha é de números que vai de 2 até 39 representado por *range* (2,40) conforme imagem abaixo.

```
K_sil = range(2,40)
# minimum 2 clusters required, to define dissimilarity

for k in K_sil:
    print(k, end=' ')
    kmeans = KMeans(n_clusters = k).fit(cluster_dataset)
    labels = kmeans.labels_
    sil.append(silhouette_score(cluster_dataset, labels, metric = 'euclidean'))
plt.plot(K_sil, sil, 'bx-')
plt.xlabel('k')
plt.ylabel('silhouette_score')
plt.title('Silhouette Method For Optimal k')
plt.show()
```

Execução para descobrir qual melhor valor para k

O código acima retornou o gráfico para avaliar qual k será escolhido.

É possível ver no gráfico dois picos, o primeiro aproximadamente entre 11 e 14 e segundo entre 15 e 17, para o cientista de dados a decisão entre escolher quais deles tem o melhor para k é pessoal, mas no caso do projeto com uma amostra pequena de dados não é muito interessante ter muitos clusters.

Ao escolher o primeiro pico do gráfico ainda não se sabe qual é melhor valor par k, pode ser 11,12 ,13 ou 14, qual é o melhor entre eles?

Nem sempre é possível tomar esta decisão apenas olhando para os gráficos, então é importante verificar através dos valores dos coeficientes da *silhouette*, conforme abaixo.

```
coef = silhouette_score(cluster_dataset,labels)
print("N_cluster: {}, score: {}".format(i,coef))

N_cluster: 11, score: 0.4850895353478353
N_cluster: 12, score: 0.5030107466088136
N_cluster: 13, score: 0.4918853791115622
N_cluster: 14, score: 0.4963154066941343
```

Este processou gerou a informação de que o melhor valor para k é 12, significa dizer que o algoritmo não supervisionado *k-means* baseado nas variáveis de entrada: latitude e longitude, retornará 12 cluster semelhantes entre si, conforme pode ser visto no gráfico abaixo.

Os clusters

Conhecendo os clusters

Como parte do projeto não é explorar todos os clusters, mas sim os estabelecimentos considerados como casos de sucesso a partir das avaliações dos clientes. Uma forma de obter estas informações, é pela média das notas de cada cluster.

Como a ideia é saber a influência dos estabelecimentos vizinhos, parece ser considerável a comparação entre dois clusters de maior média.

Para saber as médias de cada cluster é preciso usar a função groupby, conforme abaixo.

```
rating_cluster=df.groupby(["ClusterLabels"])["rating"].mean()
rating_cluster
ClusterLabels
     7.266667
           NaN
      7.100000
      7.900000
3
4
           NaN
      7.700000
      7.500000
           NaN
      7.500000
      8.100000
10
      7.000000
      7.400000
Name: rating, dtype: float64
```

Média das avaliações dos clientes de cada cluster

Os clusters 3 e 9 apresentam as maiores média, apenas estes dois grupos servirão de parâmetro para conclusão do projeto, para isso é selecionado todos os estabelecimentos referentes a cada um destes clusters.

Boxplot do cluster 5

O cluster 3 tem uma boa concentração de notas consideradas boas acima de 7,5 (conforme o gráfico abaixo). Já o cluster 9 tem apenas 1 elemento, ou seja, 1 estabelecimento, por esta razão não é necessário plotar o gráfico, mas como sua nota teve um valor significativo vale a pena conhecer as categorias dos seus estabelecimentos vizinhos. (detalhes no notebook)

Em busca das categorias vizinhas dos clusters 3 e 9

Como dito anteriormente, o algoritmo k-means retorna os clusters e também o ponto central de cada um com a função *"kmeans.cluster_centers"*, estes centroides são coordenadas. Assim, após manipulados são organizados em uma data frame. (detalhes no notebook)

<pre>df_cluster_centroid.head()</pre>	
---------------------------------------	--

	labels	latitude	longitude
0	0	40.739429	-74.030708
1	1	40.770010	-73.957956
2	2	40.894594	-73.973763
3	3	40.716337	-74.006590
4	4	40.734625	-73.994456

Localização dos 12 centroides

Para buscar as categorias a partir de um ponto de localização primeiro é preciso saber quantas categorias a API do Fourquare disponibiliza, assim com o código e as chaves de cadastro feita anteriormente é possível ter esta informação em um dataframe como este abaixo.

cat	egories	
	category_id	category_name
0	4d4b7104d754a06370d81259	Arts & Entertainment
1	4d4b7105d754a06372d81259	College & University
2	4d4b7105d754a06373d81259	Event
3	4d4b7105d754a06374d81259	Food
4	4d4b7105d754a06376d81259	Nightlife Spot
5	4d4b7105d754a06377d81259	Outdoors & Recreation
6	4d4b7105d754a06375d81259	Professional & Other Places
7	4e67e38e036454776db1fb3a	Residence
8	4d4b7105d754a06378d81259	Shop & Service
9	4d4b7105d754a06379d81259	Travel & Transport

As 10 categorias que a API do Foursquare disponibiliza

Com a informação das categorias e sabendo a localização dos centroides, já é possível, buscar quantas categorias tem para cada cluster. Após manipulado e organizado em um dataframe o resultado é esse. (Detalhes deste processo no notebook)

df_12_clusters				
	Cluster	Categories	Total	
0	0	arts entertainment	15	
1	0	college education	52	
2	0	event	0	
3	0	food	51	
4	0	nightlife	26	
5	0	outdoors recreation	49	
6	0	professional	149	
7	0	residence	20	
8	0	shops	152	
9	0	travel	48	
10	1	arts entertainment	13	

Parte do daframe com total de categorias em um raio de 300 metros dos centroides dos clusters

Resultados

Uma forma de visualizar quais categorias estão em um raio de 300 metros dos centroides dos clusters 3 e 9 e por meio do gráfico.

Categorias em um raio de 300 metros do centroide

Há uma alta concentração de categoriais como shop e professional nos dois casos, estas categorias possuem estabelecimentos como: Business Center, Distribution Center, Town Hall, Industrial Estate, Wedding Hall, etc. Para saber mais detalhes, é preciso especificar ainda mais a busca, o que certamente ficará para um pouco momento, com estas informações á é possível tirar algumas conclusões.

Conclusão

Segundo a Associação Brasileira de Franchising - ABF, a definição da melhor localização é um pouco mais complexa do que aparenta, pois envolve variáveis antagônicas, como fluxo de pessoas e custos. A melhor localização não é, necessariamente, aquela que proporcionará o maior faturamento, e sim, a que trará o melhor resultado, sendo um dos fatores a ser considerado as avaliações dadas pelos clientes.

Vários fatores são levados em conta para abertura de um negócio como fluxo de pessoas, nível de demanda e custos operacionais. Com isso, é possível conjecturar, com as informações extraída, quais seriam os melhores lugares para abertura do negócio, a partir do algoritmo K-means, servindo como um dos fatores de referência.

Ao fazer a clusterização o k-means retornou grupos com menores distancias entre si. Associado a verificação das notas dadas pelos clientes, foi observado que os cluster com as maiores médias tinham ao seu redor categorias de negócios como shop e professional, o que indica uma significativa presença

de comércios e empresas e que ajuda a justificar a hipótese de que, lugares bem avaliados e bem frequentados estão estrategicamente posicionados, em relação a um entorno composto por empresas e amplo comércio.

Esta é a contribuição que este projeto oferece, devendo os futuros interessados no promissor negócio de salões expressos, considerar também outros elementos, como fluxo de público com interesse nesse tipo serviço, capacidade de demanda, entre outros, para maior possibilidade de acerto na escolha da localização.