ENGG 201

What is Going On with Vapours + Liquids?

(A Brief Outline of What is Important in Ch 7)

Chapter 7 - Liquids

Main Concepts:

- 1. Volumetric Behaviour of Liquids (Section 7.2)
 - a. How are the VOLUME, TEMPERATURE and PRESSURE related for Liquids?
- 2. Energy Effects in Liquids (Section 7.3)
 - a. How are the VAPOR PRESSURE, LATENT HEAT OF VAPORAZATION and TEMPERATURE related for Liquids?

Things to Remember:

Volumetric Behavior of Liquids

- 1. Effect of Pressure and Temperature (Individually) on Volume
 - a. Isothermal Compressibility $\beta_{\scriptscriptstyle T} = -\frac{1}{V} \bigg(\frac{\partial V}{\partial P} \bigg)_{\scriptscriptstyle T} = -\frac{\Delta V/V}{\Delta P}$
 - b. Effect of Temperature $V_T = V_{T_o} \left(1 + A\theta + B\theta^2 + C\theta^3 \right)$ (Table 7-2)
 - c. Effect of Pressure (Tait's Law)

$$\beta_T = \frac{c}{P+d}$$
 $\frac{V_o - V}{V_o} = c \ln \left[\frac{P+d}{d} \right]$ (Table 7-1)

- d. WATCH UNITS (1 Pa = 1 N/m²)
- 2. van der Waals equation of State
 - a. Liquid volume is smallest of 3 positive roots (T<T $_c$).
- 3. Corresponding States $PV_m = ZRT$ and $T_r = \frac{T}{T_c} P_r = \frac{P}{P_c}$
- a. Z from Generalized Compressibility Charts

(arrows = vapor and liquid in equilibrium $P_r < 1$)

(circles = liquid alone) (mostly $P_r > 1$)

Vapor Z

Liquid Z

Energy Effects in Liquids (Vapor Pressure)

- 4. Specific Heat (C_p or C_v) can be used to calculate changes in temperature or energy added or removed (<u>no phase change</u>) with $\Delta E = mC\Delta T$ or $\Delta E = nC\Delta T$ (watch units).
- 5. Latent Heat of Vaporization (ΔHv) can be used to calculate energy added or removed (<u>phase change</u>) with $\Delta E = m\Delta H_v$ or $\Delta E = n\Delta H_v$ (watch units).
- 6. Vapor Pressure changes with Temperature
- 7. Latent Heat of Vaporization changes with Temperature
- 8. Normal boiling point means that $P_v = 101.325$ kPa
- 9. Vapor Pressure Correlations
 - a. (Clausius Clapeyron) (if given V_g and V_l) $\frac{dP}{dT} = \frac{\Delta H v}{T(V_g V_l)}$
 - b. Low Pressure (Ideal Gas Assumption) (P_v < 2 atm)

$$\ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H v}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

c. High Pressure (No Ideal Gas) (P_v > 2 atm)

$$\ln(P) = -\frac{A}{T} + C$$
 and A = $\frac{\Delta H v}{R}$ only if T₁ and T₂ are close together

10. Trouton's Rule – Last resort to relate Normal Boiling Point to Latent Heat of

Vaporization
$$\frac{\Delta Hv}{T_h} = 88kJ / kmol$$

- 11. Liquid composition given by \boldsymbol{x}_i and vapor composition given by \boldsymbol{y}_i
- 12. Mixtures Raoult's Law $Pv_i x_i = Py_i = \overline{p}_i$
- 13. Bubble Point Pressure above a Liquid Mixture
 - a. Known x_i values \rightarrow Perform a $\sum y_i = 1.0$ where $y_i = \frac{Pv_i x_i}{P}$ and solve for P
 - b. Can then calculate vapor composition using $y_i = \frac{Pv_ix_i}{P}$

14. Dew Point Pressure of a Vapor Mixture

- a. Known y_i values \rightarrow Perform a $\sum x_i = 1.0$ where $x_i = \frac{y_i P}{P v_i}$ and solve for P
- b. Can then calculate liquid composition using $x_i = \frac{y_i P}{P v_i}$
- 15. Mixtures Henry's Law (for gases dissolved in liquids) $H_i x_i = \overline{p}_i$
 - a. Binary mixtures $H_1x_1 + Pv_2(1-x_1) = P$

Examples of Typical Problems:

Volumetric Behavior of Liquids

- Given P, T, calculate V. (If using Tait's Law always do effect of T first (low P), then effect of P) – you will be given c, d for Tait's law
- 2. After calculating V, may have to further calculate dimensions of container or mass/moles of substance in container.
- 3. More ... (See old finals).

Energy Effects in Liquids (Vapor Pressure)

- 4. Given P₁, T₁, and P₂, T₂ derive equation for vapor pressure as a function of temperature.
- 5. Given P₁, T₁, and ΔHv derive equation for vapor pressure as a function of temperature.
- 6. Use correlations (given or derived) to calculate P at a certain temperature.
- 7. Use correlations (given or derived) to calculate ΔHv at a certain temperature.
- 8. Given liquid mixture, calculate bubble point pressure and corresponding vapor composition.
- Given vapor mixture, calculate dew point pressure and corresponding liquid composition.
- 10. Given fixed amount of liquid, and energy input, calculate change in temperature or amount of phase change.
- 11. Given change in temperature or amount of phase change, calculate energy input.
- 12. More ... (See old finals).

ENGG 201 – Example 7.2

Main Concept: Given P, T, calculate V (specific volume) of a liquid. If using Tait's Law, this is done by using a reference volume, and then correcting for how different the temperature and pressure are from the reference conditions (always do effect of T first (low P), then effect of P). Watch the units (1 Pa = 1 N/m^2).

Example 7.2: Calculate V at T and P. Only V we are given is in Table 7.2 at 1 atm and 0°C. First we correct the V to 45°C using $V_T = V_{T_a} \left(1 + A\theta + B\theta^2 + C\theta^3 \right)$ and Table 7.2, and then we correct for P using Tait's law $\frac{V_o - V}{V} = c \ln \left[\frac{P + d}{d} \right]$ and Table 7.1 (getting c,d at T by using two β_T values (at the correct T) at 1 atm and 1000 atm).

Pressure

Example Problem 7-2

Calculate the specific volume of liquid benzene at 45°C and 1000 atm.

Solution

In Table 7-1, two values for β_T are known at 45°C. At 1 atm pressure,

$$\beta_1 = 11.32 \times 10^{-10} \frac{\text{m}^2}{\text{N}} \text{ or } 1.147 \times 10^{-4} \text{ atm}^{-1}$$

and at 1000 atm pressure,

$$\beta_2 = 5.5 \times 10^{-10} \frac{m^2}{N} \text{ or } 0.5572 \times 10^{-4} \text{ atm}^{-1} \quad .$$

We can evaluate the parameters c and d at 45°C from Equations 7.15 and 7.16. Equation 7.8 then becomes

$$\beta_{45^{\circ}C} = \frac{0.1083}{P + 942.8}$$

where P is in atmospheres and $\beta_{45^{\circ}C}$ is in atm $^{-1}$. The Tait equation of state for benzene at 45°C can now be expressed as

$$V = V_o \left[1 - 0.1083 \text{ In } \frac{942.8 + P}{942.8} \right]$$

where the liquid volume at low pressure and 45° C, V_{\circ} , has yet to be determined. From the data in Table 7-2 and from Equation 7.7,

$$V_o = 1.1109 \times 10^{-3} (1.000 + 1.17626 \times 10^{-3} \, \theta + 1.27755 \times 10^{-6} \, \theta^2 \\ + 0.80648 \times 10^{-8} \, \theta^3) \quad .$$

When $\theta = 45^{\circ}C$,

$$V_o = 1.1109 \times 10^{-3} \{1.000 + 0.0529 + 0.0026 + 0.0007\} \text{m}^3 / \text{kg}$$

= 1.173 x 10⁻³ m³/kg .

(Note that the specific volume of liquid benzene at 0°C is 1.1109 x 10⁻³ m³/kg. A 45°C change in temperature produces a 5.62% change in specific volume at 1 atm pressure.)

On substitution for Vo in Tait's equation,

$$V = 1.173 \times 10^{-3} \left[1 - 0.1083 \text{ in } \frac{942.8 + P}{942.8} \right]$$

From this expression, V is calculated to be $1.081 \times 10^{-3} \text{ m}^3/\text{kg}$ at 1000 atm pressure.

It is interesting to note that a 45°C increase in temperature at 1 atm causes a volume increase of 5.6 percent while an increase in pressure from 1 to 1000 atm effects a 7.8 percent decrease in volume at 45°C. The net effect is therefore a 2.7 percent decrease in volume from the original conditions.

2014 NOTE:

You will be given c,d on an exam and will not have to do this step (getting c,d from two values of P and β)

Table 7-1 Isothermal Compressibilities of Selected Liquids

Liquid	Temperature °C	β x 10 ¹⁰ , m ² /N	
		1 atm	1000 atm
Benzene	25	9.67	5.07
	35	10.43	5.28
	45	11.32	5.50
	55	12.29	5.73
	65	13.39	5.98
Carbon-			
tetrachloride	25	10.67	5.30
	35	11.95	5.52
	45	12.54	5.75
	55	13.63	5.97
	65	14.87	6.22
n Hexane	0	13.04	5.92
	25	16.06	6.51
	40	18.31	6.89
	60	21.93	8.87
Mercury	20	0.40	0.39
Water	25	4.57	3.46
	35	4.48	3.42
	45	4.44	3.40
	55	4.44	3.42
	65	4.48	3.47

Table 7-2 Coefficients of Cubical Expansion of Liquids at 1 atm, $T_{\rm o} = 0^{\circ}{\rm C}$

	A x 10 ³	B x 10 ⁶	C x 10 ⁸	V _{To} x 10 ³ m³/kg
Acetone	1.324	3.809	-0.87983	1.230
Benzene	1.17626	1.27755	0.80648	1.1109
Carbon-				
tetrachloride	1.18384	0.89881	1.35135	0.6126
Mercury	0.18169	0.00295	0.01146	0.07356
Water	-0.05325	7.6153	-4.3722	1.00013
n - Pentane	1.50697	3.435	0.975	1.549