Dual 8:1 Mux SN54/74LS451

Features/Benefits

- 24-pin SKINNYDIP® saves space
- Twice the density of SN5/741S151
- Low-current PNP inputs reduce loading

Ordering Information

PART NUMBER	PACKAGE		TEMPERATURE
SN54LS451	JS, W	28L	Mil
SN74LS451	NS, JS	ZOL	Com

Description

The Dual 8:1 Mux selects one of eight inputs, D0 through D7, specified by three binary select inputs, A, B and C. The true data is output on Y when strobed by S. Propagation delays are the same for inputs, addresses and strobes and are specified for 50 pF loading. Outputs conform to the standard 8 mA LS totempole drive standard.

Logic Symbol

Function Table

	INPUTS			OUTPUTS
s	SELECT		STROBE	
С	В	A	S	•
Х	Х	Х	Н	н
L	L	L	L	D0
L	L	Н	L	D1
L	н	L	L	D2
L	Н	Н	L	D3
Н	L	L	L	D4
н	L	Н	L ·	D5
н	Н	L	L	D6
н	Н	Н	L	D7

7

Logic Diagram

Dual 8:1 Mux

Absolute Maximum Ratings

	7 N V
Supply voltage V _{CC}	7.0
Input voltage	55 V
Input voltage	0.0
mput rottage	5.5 V
Off-state output voltage	
Storage temperature65° to +	150°C
Storage temperature	

Operating Conditions

SYMBOL			MLITAR	Y	COMMERCIAL			UNIT
	PARAMETER		NOM	MAX	MIN	NOM	MAX	OIVI I
V _{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
TA	Operating free-air temperature	-55		125*	0		75	°C

^{*} Case temperature.

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYPT MAX	UNIT
VIL	Low-level input voltage					0.8	V
VIH	High-level input voltage				2		V
V _{IC}	Input clamp voltage	V _{CC} = MIN	I _I = -18mA			-1.5	V
I _{IL}	Low-level input current	V _{CC} = MAX	V _I = 0.4V			0.25	mA
IH	High-level input current	V _{CC} = MAX	V _I = 2.4V			25	μΑ
lı lı	Maximum input current	V _{CC} = MAX	V ₁ = 5.5V			1	mA
V _{OL}	Low-level output voltage	V _{CC} = MIN V _{IL} = 0.8V V _{IH} = 2V		I _{OL} = 8mA		0.5	V
.,	OH High-level output voltage $V_{CC} = MIN$ Mil I_{OH}	I _{OH} = -2mA	2.4		V		
VOH		V _{IH} = 2V	Com	I _{OH} = -3.2mA			
los	Output short-circuit current*	V _{CC} = 5.0V		V _O = 0V	-30	-130	
100	Supply current	V _{CC} = MAX			L	60 100	mA

^{*} No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS	MILITARY			COMMERCIAL			UNIT
		(See Test Load)	MIN	TYP	MAX	MIN	TYP	MAX	O.V.
t _{PD}	Any input to Y	$C_L = 50 \text{ pF}$ $R_1 = 560\Omega$ $R_2 = 1.1k\Omega$		25	45		25	40	ns

Test Load

* The "Test Point" is driven by the outputs under test, and observed by instrumentation

Notes: 1. t_{PD} is tested with switch S_1 closed, $C_L = 50$ pF and measured at 1.5 V output level.

2. t_{PZX} is measured at the 1.5 V output level with C_L = 50 pF. S_1 is open for high impedance to "1" test, and closed for high impedance to "0" test.

3. t_{PXZ} is fested with CL = 5 pF. S₁ is open for "1" to high impedance test measured at VOH = 0.5 V output level; S₁ is closed for "0" to high impedance test measured at VOE + 0.5 V output level.

 $[\]dagger$ All typicals values are at V_{CC} = 5 V, T_A = 25° C.

