Systèmes de lancements spatiaux

Ingénierie des satellites

A. SQUELARD

Objectifs de ce module

- Le lancement d'un satellite est la première phase incontournable de sa vie opérationnelle.
- L'objectif de ce module est de décrire les problèmes posés par un lancement, les moyens technologiques utilisés pour les résoudre, et les différentes étapes de la préparation d'un lancement.
- Présentation axée sur Ariane 5; confidentialité des données car ce lanceur est opérationnel.
 - La plupart des figures provient du cours Lanceurs donné au CNES en 2006, 2008, 2011 et 2013

Table des matières

- 1. Généralités sur la conception d'un système de lancement
 - 2. Les fonctions nécessaires au lanceur
 - 3. Le lancement : la base, les opérations
 - 4. Conclusion

1. Les lanceurs spatiaux : généralités

Ordres de grandeur

Etagement

Trajectoire

Performance

Les lanceurs lourds dans le monde

Les lanceurs légers dans le monde

Ordres de grandeur (Ariane 5)

- 1 minute après le décollage : 500 T plus vite qu'une balle de fusil
- 2 minutes après le décollage : 7 200 km/h
- Puissance équivalente au décollage : 17 GW
- Turbopompe LH₂: puissance de 2 trains TGV; vide une baignoire en 50 ms.
- Sur 40 cm, les températures varient de -250 C à 3 000 C
- Le volume des réservoirs est comparable à une piscine de 25 mètres.
- Problèmes de développement, de sécurité, des infrastructures.

Comparaison avec d'autres systèmes

- Pas d'essai à l'échelle 1 possible : fonctionnement des moteurs dans le vide, environnement thermique, accélération variable, acoustique au décollage, réponse structurale dynamique.
- Vol complètement automatique avec précision d'injection de 10 km sur 36000 (apogée GTO), et attitude satellite < 0.1° et 0.1°/s.
- Rapport masse utile / masse propergol de 1/100 (1/2 pour un avion)
- Aspect économique : 12 à 15 € / gramme en orbite GTO (or pur : 40 à 50 € / gramme)

Mission principale du lanceur

- <u>Principale</u>: propulser un satellite de quelques tonnes à une vitesse de 7 à 8 km/s, en un point précis de l'espace, avec un vecteur vitesse défini.
- Ces ordres de grandeur se heurtent à des limitations physiques.

Etagement, optimisation

• Quelques rappels de définition : le ΔV propulsif.

•
$$\Delta V_p = \int_i^f \Gamma_p \ dt = \int_i^f \frac{F_p}{m} \ dt$$

Avec Γ_p = l'accélération propulsive, F_p la force propulsive.

- On a aussi:
- $F_p=q\ g_0\ I_{sp}$; $m=m_0-q(t-t_0)$; $q=-\frac{dm}{dt}$, ce qui donne :

•
$$\Delta V_p = -\int_i^f g_0 I_{sp} \frac{dm}{m} = g_0 I_{sp} \ln \frac{M_i}{M_f}$$

$$\int_{i}^{f} \frac{dV}{dt} dt = \int_{i}^{f} \frac{F_{p}}{m} dt - \left[\int_{i}^{f} \frac{F_{p}}{m} (1 - \cos(i + \beta)) dt - \int_{i}^{f} \frac{R_{a}}{m} \cos i dt - \int_{i}^{f} \frac{R_{n}}{m} \sin i dt - \int_{i}^{f} g \sin \gamma dt \right]$$

Incidence et braquages

Traînée

Portance

Gravité

L'ensemble des pertes sont de l'ordre de 20% sur l'accroissement de vitesse théoriquement possible

$$V_f - V_i = \Delta V_p - pertes$$

Pertes	Incidence et braquages	Traînée	Portance	Gravité
Ordre de grandeur	710 m/s	160 m/s	Faible à nul	1 260 m/s
A ₅ ECA GTO	Systèmes de lancements spatiaux - ULg - 24.09.2014			

Etagement!

	LEO	GTO	LIBERATION
V_{f}	7 500 m/s	10 000 m/s	11 300 m/s
ΔV_{p}	9 000 m/s	12 000 m/s	13 500 m/s

Pour un lanceur mono-étage, en introduisant $k = M_s/M_e$ [$M_s = masse$ structurale, $M_e = masse$ totale étage],

$$\Delta V_{max} = g_0 I_{sp} \ln \frac{1+k}{k}$$

(cas limite : CU = o kg!)

En utilisant les technologies actuelles, on atteint des valeurs de $k \cong$

Etagement

Lancer un satellite de plusieurs tonnes à l'aide d'un lanceur mono-étage est donc irréalisable.

Il faut donc utiliser un lanceur multi-étage!

Etagement : lanceur multi-étage

Etude paramétrique complexe.

Cas théorique (n étages identiques, même k, $I_{sp} \Delta V$) :

Rapport masse au décollage sur masse mise en orbite (R)

$$R = \left[(1+k)e^{-\frac{\Delta V}{n g_0 I_{sp}}} - k \right]^n$$

L'avantage lié aux étages multiples est considérable pour de faibles nombres d'étages, puis s'atténue fortement pour n ≥ 3.

Logique de la trajectoire d'un lanceur

Intérêt d'une base de lancement équatoriale

$$V_i = \Omega R_t \cos(Lat) \sin Az$$

Vitesse d'entraînement

L'inclinaison optimale est égale à la latitude du pas de tir

BASE	Latitude	V _e (m/s)	Effet sur V _i (azimut optimal)
KOUROU	5.23	463	461.07
	JJ	4-2	402.07
KSC	28.50	409	359.44
BAÏKONUR	45.00	329	232.64

Il faut ajouter l'énergie nécessaire pour changer le plan de l'orbite si on veut obtenir une orbite

Pour les orbites polaires (Az = o°), le gain dû à cet effet est nul Systèmes de ancements spatiaux - ULg - 24.09.2014

Intérêt des étages réallumables

 Objectif : obtenir des altitudes de périgée élevées, en vue de diminuer ou supprimer les besoins propulsifs des satellites.

Pour que les manœuvres ci-dessus soient réalisables, il faut des étages réallumables, ousum étages upplémentaire

Réserve de performance

- La performance d'un lanceur est calculée sur un cas nominal.
- En pratique, on s'écarte de cette loi nominale : (dispersion de la loi propulsive, écart sur la masse du satellite, perturbations atmosphériques, etc.)
- On rajoute donc du propergol pour garantir un niveau de probabilité d'atteindre l'orbite visée, par une étude statistique.
- On calcule la probabilité d'épuisement par une méthode de Monte-Carlo.

$$W = \frac{\partial W}{\partial \lambda_1} \Delta \lambda_1 + \frac{\partial W}{\partial \lambda_2} \Delta \lambda_2 + \dots + \frac{\partial W}{\partial \lambda_n} \Delta \lambda_n = \sum_{i=1}^{n} \frac{\partial W}{\partial \lambda_i} \Delta \lambda_i$$

Contraintes sur la trajectoire d'un lanceur

- La première partie de la trajectoire est verticale (évitement des infrastructures de lancement)
- Après le basculement dans le plan de l'azimut visé, le vol en phase atmosphérique se fait à incidence nulle pour minimiser les charges transversales
- La vitesse augmente rapidement et on est vite contraint par les charges mécaniques ($p_{dyn} = \frac{1}{2} \rho$ V²) et thermiques ($\Phi = C_q \rho^{0.5} V^{3.15}$)
- Instant du basculement : compromis entre p_{dyn} et performance.
- Retombée des débris en cas d'explosion lanceur : limites verticale / horizontale
- Retombée des étages nominale : en-dehors des zones habitées.
- Visibilité des stations aval (télémesure, sauvegarde)

Tous les sous-systèmes d'un lanceur sont liés, et le développement est une suite d'itérations en boucles, qui inclut la trajectoire

2. Les fonctions nécessaires au lanceur

Propulsion

Navigation

Guidage

Pilotage

Séquentiel de vol

Télémesure

Sauvegarde

Les fonctions du lanceur

- Donner au satellite un ΔV suffisant (fonction propulsive)
- Positionner le satellite sur l'orbite demandée (fonctions guidage, pilotage, navigation)
- Assurer le bon déroulement des différentes phases de vol, des séparations d'étage (fonction séquentiel de vol).
- Fournir l'état de santé du lanceur et du satellite (fonction télémesure)
- Garantir la sécurité des installations au sol et des zones survolées (fonction sauvegarde)

La propulsion

- Propulsion solide
 - Poussées élevées
 - Simplicité de mise en œuvre
 - I_{sp} faible
 - Utilisée pour les phases de décollage et atmosphérique
- Propulsion liquide cryogénique
 - Poussées moyennes ou faibles
 - Mise en œuvre complexe
 - I_{sp} élevée

La propulsion

- Utilisée pour les phases exo-amosphériques (mais peut être allumé au sol)
- Propulsion liquide stockable
 - I_{sp} moyenne
 - Mise en œuvre complexe, mais peut être anticipée
 - Avantage : mélange hypergolique, et possibilité de réallumage
 - Utilisé en phases balistiques pour mises à poste en orbite.

Loi propulsive

- Déterminée par le besoin en performance du lanceur
- Doit respecter le budget « masse » du lanceur
- Prise en compte des contraintes : p_{dyn}, flux aérothermiques, dissymétrie de poussée si 3 2 boosters, instabilités, etc.
- Coût de production

Launcher Specifications

Design motor
Performances prediction

Launcher performances analysis

Loi propulsive S1: segment étoilé: décollage

S2 et S3 : phase régime et extinction; forme cylindrique/conique

Systèmes de lancements de laux - ULg - 24.09.2014

Mission: positionner le satellite sur son orbite: x, y, z, V_x , V_y , V_z .

Cette mission est assurée par 3 systèmes :

- Navigation : savoir où le lanceur se trouve, et déterminer l'écart par rapport à la trajectoire nominale.
- Guidage : déterminer l'attitude optimale du lanceur pour atteindre le point visé.
- Pilotage : orienter la poussée conformément aux ordres d'étèmes de lancements spatiaux ULg 24.09.2014 quidage.

La navigation

- Cette fonction est assurée par une centrale inertielle, qui se compose de trois gyromètres, et trois accéléromètres.
- La centrale est alignée juste avant le décollage.
- Les accéléromètres mesurent les accélérations, les gyromètres mesurent les vitesses angulaires suivant 3 axes orthogonaux.
- L'accélération de la pesanteur est déduite, et le système calcule ces accélérations dans un repère inertiel équatorial.
- La vitesse et la position sont calculées par double intégration.
- Sur Ariane 5, la redondance est assurée par 2 SRI qui peuvent commuter automatiquement.

Le guidage

But : déterminer l'attitude à donner au lanceur pour les phases propulsées afin de suivre la trajectoire optimale (consommation des ergols), en tenant compte des contraintes.

- La trajectoire de référence est spécifique à chaque vol et fait partie du programme de vol.
- Phase atmosphérique : optimisation simplifiée pour obtenir i = o°
- Phase exo-atmosphérique : calcul par segments
- Calculé par l'OBC

Le pilotage

La loi de pilotage détermine les braquages β pour obtenir l'attitude optimale déterminée par le guidage.

En mode rigide, les équations suivantes sont appliquées.

$$\ddot{\theta} = \frac{q S_{ref} C_{zi} (x_F - x_G)}{I_z} i + \frac{F (x_T - x_G)}{I_z} \beta$$
A6 K1

Le coefficient A6 détermine la stabilité du lanceur

Le coefficient K1 détermine l'efficacité du pilotage

En pratique, le lanceur est déformable, et répond structuralement suivant des modes propres dynamiques : le calcul des variations est appliqué (LQG ou H_∞) pour minimiser l'énergie dépensée.

Le pilotage (technologies utilisées)

- En lacet et en tangage, on utilise des vérins pour orienter la tuyère.
- On a utilisé jadis des moteurs verniers.
- Ces vérins peuvent être hydrauliques en circuit fermé (Ariane 4 et H10), hydrauliques en fluide perdu (Ariane 5), ou électriques (EPS, Vega), en fonction des puissances demandées, de l'encombrement, de la fiabilité, etc.
- Pour le roulis, avec un seul moteur, on utilise des petites tuyères auxiliaires

Le séquentiel de vol (1)

- Le séquentiel de vol est le système qui gère l'ensemble des commandes essentielles pour le déroulement du vol :
 - Les ordres pyrotechniques pour effectuer les allumages des moteurs, les séparations des étages, la destruction en cas d'anomalie grave.
 - Les ordres électriques vers la partie haute pour commander la séparation des satellites
 - Les commandes d'électrovannes pour assurer le fonctionnement des moteurs liquides et la pressurisation des réservoirs.
- Les instructions sont stockées dans le programme de vol, et sont relayées vers les différents systèmes.

Le séquentiel de vol (2) — Sécurité et redondance

- Les fonctions contrôlées par le séquentiel de vol sont critiques.
- Il faut donc se prémunir vis-à-vis
 - des pannes avance (fonctionnement intempestif)
 - des pannes retard (non-fonctionnement après envoi de la commande)
- Cela est réalisé par des redondances multiples

Le séquentiel de vol (3) – Ordres pyrotechniques

 Les ordres pyrotechniques commandent des fonctions qui sont critiques pour la sécurité : on a donc inclus des protections supplémentaires : barrière mécanique ouverte juste avant le décollage (BSA)

Le séquentiel de vol (4) – Séparation des étages

- La séparation des étages s'effectue par découpe pyrotechnique d'une zone fragile.
- Elle s'effectue sur ordre de l'ordinateur de bord, sur la réalisation d'un critère (sur A5 EAP : accélération résiduelle)
- Il faut éviter tout contact entre la partie séparée et le lanceur qui continue sa mission, et donc l'écarter rapidement : sur A5 : fusées d'éloignement, d'accélération)
- La séquence est complexe et doit être robuste par exemple à une panne de fusée d'éloignement.
- Le pilotage doit pouvoir rattraper la perturbation engendrée par les séparations.

La fonction télémesure

 Objectif: transmettre au sol différents paramètres pour s'assurer de l'état de santé du lanceur et de la charge utile.

Architecture générale (A5) :

Fonction télémesure (2)

- Composants :
- Capteurs :
 - Pressions (absolues ou différentielles)
 - Températures
 - Vibrations
 - Accélérations
 - Déformations
 - Déplacements

Fonction télémesure (3)

- UCAT (Unité d'acquisition)
 - Alimente les capteurs
 - Acquiert la tension renvoyée par le capteur et la convertit en numérique
 - Multiplexage des mesures
 - Envoi sur le BUS TM
- UCTM (Unité Centrale)
 - Rassemble les mesures en provenance des UCA
 - Compresse les données
 - Gère le fonctionnement au cours du vol (multiplexage, formats, erreurs, etc.)
 - Elabore le message de sortie TM èmes de lancements spatiaux ULg 24.09.2014

Fonction télémesure (4)

- Emetteur
 - Module le message numérique en fréquence
 - Amplifie le signal
- Antenne
 - Envoie le message vers les stations sol
- Traitement au sol
 - Démodulation
 - Mise en forme

Fonction sauvegarde

Fonction sauvegarde

- Objectif: minimiser les risques pour les personnes et les installations en cas d'échec du lancement
- Le sous-système sauvegarde décide si il y a échec mission, et détruit le lanceur pour éviter la retombée de fragments sur des zones habitées ou des installations sol. Il est complètement indépendant du reste du lanceur.
- Premier problème : décider si on détruit le lanceur. Deux types de destruction :
 - Destruction automatique en cas de séparation intempestive d'étage
 - Destruction commandée : intervention humaine.

Fonction sauvegarde: destruction automatique

- Détecte une séparation intempestive d'étage par rupture de 2 straps (fil conducteur) entre étages.
- Cette ouverture de circuit électrique est traitée par le Boîtier de Commande Sauvegarde. Celui-ci gère les inhibitions (séparation normale), la redondance (protection panne simple) et l'alimentation électrique du système.

Fonction sauvegarde : destruction commandée

- Gérée par une équipe indépendante du CNES
- Utilise les informations de trajectographie générées par une poursuite radar du lanceur, et les compare à un couloir permis.
- Utilise également les informations de la télémesure lanceur.
- Calcule en temps réel le point d'impact lanceur en cas de destruction.
- Si nécessaire, la commande de destruction codée est envoyée vers un récepteur de télécommande, gérée par le BCS qui émet l'ordre d'activation des cordeaux destructeurs de neutralisation.

3. Le lancement : la base, les opérations

La base de lancement
La campagne de lancement
L'exploitation du vol

La base de lancement

- Choix de l'emplacement
 - Position proche de l'équateur
 - Absence de risque météorologique : cyclones
 - Stabilité sismique (bâtiments en hauteur)
 - Angles d'azimut possibles sans survoler de zones habitées, principalement pour les orbites GTO (vers l'Est, SSO (vers le Nord) et ISS (Nord-Est)
 - Infrastructures logistiques et de transport : port en eau profonde, aéroport.
 - Existence de stations de poursuite aval pour le suivi trajectoire et télémesure.
 - Stabilité politique : investissement sur le long terme, conséquences sur le tissu économique local
 - Potentiel de croissance : Kourou : ELA1 → ELA2 → ELA3

La base de lancement : conception et développement

- Difficulté : les travaux doivent débuter alors que la définition du lanceur n'est pas stabilisée.
- La conception de la base dépend de la mise en œuvre du lanceur et définit le dimensionnement des installations.
- Critères de dimensionnement :
 - Cadence de lancement
 - Sécurité : distances entre les sites dangereux, vents dominants, protection des installations
 - Sûreté de fonctionnement : redondances, moyens indépendants
 - Vulnérabilité à une explosion du lanceur au sol
 - Coûts de développement et d'utilisation

La base de lancement : fonctions principales (1)

- Préparation du lanceur
 - Stockage des étages après transport
 - Infrastructures et moyens pour l'intégration du lanceur, ainsi que des satellites sur le lanceur, la chronologie finale et le lancement
- Préparation des satellites
 - Accueil des satellites
 - Infrastructures et moyens pour l'intégration, le remplissage et les contrôles des satellites

La base de lancement : fonctions principales (2)

- Préparation et suivi du vol lanceur
 - Coordination des moyens mis en œuvre pendant la chronologie de lancement et le vol.
 - Sécurité des zones habitées : poursuite radar et moyens de destruction
 - Acquisition des paramètres de vol : suivi radar et télémesure
- Moyens logistiques
 - Moyens routiers, aéroport, port maritime
 - Logements du personnel
 - Sécurité des installations (3^{ème} REI à Kourou)

Déroulement d'une campagne de lancement (1)

- Deux campagnes en parallèle : satellite et lanceur qui se rejoignent lors de l'intégration du satellite sur le lanceur (opérations combinées)
- La campagne satellite débute par la signature du contrat de lancement.
- Une analyse préliminaire est lancée 20 mois avant le lancement pour vérifier la compatibilité lanceur / satellite sur :
 - Trajectoire
 - Evitement lors de la séparation
 - Analyse couplée (dynamique)
 - Analyse électromagnétique
 - Analyse thermique

Déroulement d'une campagne de lancement (2)

- Un an avant le lancement, l'analyse finale est lancée, et se conclut par la RAMF 4 mois avant le lancement.
- La campagne lanceur débute 2 mois avant le lancement (RAV) :
 - BIL :
 - Assemblage des étages
 - Contrôle des raccordements fluides et électriques
 - Contrôle de synthèse (simulation de vol)
 - BAF:
 - Intégration satellite
 - Armements
 - Transfert en ZL
 - ZL :
 - Remplissages
 - Séquence synchronisée
 - Systèmes de lancements spatiaux ULg 24.09.2014

Exploitation du vol (1)

- Quelques heures après le vol : analyse préliminaire de quelques mesures : paramètres orbitaux, orientation du satellite en phase balistique, et normalité du fonctionnement propulsif des différents étages.
- Deux semaines après le vol : analyse détaillée des mesures vol : recherche des anomalies, statistiques sur le fonctionnement, examen des films du décollage.
- Deux mois après le vol : analyse approfondie par l'industriel.

Exploitation du vol (2)

- L'anomalie observée est-elle réelle ? (vraisemblance physique, corrélation avec d'autres mesures).
- Analyse des scénarios possibles :
 - Passage de scénario possible en scénario probable par corrélation avec d'autres mesures, simulation numérique, réexamen des vols précédents, etc.
 - Passage de scénario probable vers scénario prouvé.
- Actions correctives ou en diminution de risque.

4. Conclusion

- Lancer un satellite est une opération complexe, demandant du personnel hautement qualifié et des infrastructures énormes, dans un contexte de sécurité difficile.
- Lancer un satellite est une opération techniquement risquée, à la limite des possibilités du matériel, et toujours à la merci d'incidents pouvant avoir de graves conséquences.
- Lancer un satellite est une opération très chère, de l'ordre de centaines de millions de \$.
- Mais c'est un métier motivant, intéressant, varié, où la finalité du travail est utile soit à la société humaine (GPS, Internet dans les pays difficiles d'accès), ou au progrès scientifique (Rosetta)
- La Belgique participe activement aux programmes Ariane et Vega au travers de plusieurs entreprises :
 - SABCA : hydraulique, structures EAP, système de pilotage VEGA
 - Tech Space Aero: vannes moteur Vulcain
 - ALCATEL-ETCA: électronique bord et sol (pupitres de commande).