This is a sample of the report, but applicable for all homework.

[113062575] [徐義鈞] This is for double verification.

Don't copy the problem statement, just write the answer.

Please write down the question number in unit of sub-question.

Please write down the sub-question number even if you don't know how to solve it.

Part1

(1.3.1)

Layer (type:depth-idx)	Output Shape	Param #	
Net	======================================		
-Sequential: 1-1	[1, 6, 28, 28]		
└─Conv2d: 2-1	[1, 6, 28, 28]	150	
└─ReLU: 2-2	[1, 6, 28, 28]		
├—Sequential: 1-2	[1, 6, 14, 14]		
└─MaxPool2d: 2-3	[1, 6, 14, 14]		
├—Sequential: 1-3	[1, 16, 10, 10]		
└─Conv2d: 2-4	[1, 16, 10, 10]	2,400	
└─ReLU: 2-5	[1, 16, 10, 10]		
├—Sequential: 1-4	[1, 16, 5, 5]		
└─MaxPool2d: 2-6	[1, 16, 5, 5]		
├—Sequential: 1-5	[1, 120, 1, 1]		
└─Conv2d: 2-7	[1, 120, 1, 1]	48,000	
└─ReLU: 2-8	[1, 120, 1, 1]		
├–Sequential: 1-6	[1, 84]		
│ └─Linear: 2-9	[1, 84]	10,080	
└─ReLU: 2-10	[1, 84]		
├–Sequential: 1-7	[1, 10]		
Linear: 2-11	[1, 10]	840 	

Total params: 61,470

Trainable params: 61,470 Non-trainable params: 0

Total mult-adds (Units.MEGABYTES): 0.42

Input size (MB): 0.00

Forward/backward pass size (MB): 0.05

Params size (MB): 0.25

(1.3.2)

	type	input activation	output activation	activation
		size	size	function
conv1	convolution	1*32*32	6*28*28	ReLU
maxpool2	pooling	6*28*28	6*14*14	
conv3	convolution	6*14*14	16*10*10	ReLU
maxpool4	pooling	16*10*10	16*5*5	
conv5	convolution	16*5*5	120*1*1	ReLU
fc6	fully-connected	120	84	ReLU
output	fully-connected	84	10	

(1.3.3)

可以,藉由修改input / ouput activation size 即可正常運作。但是會使參數量顯著提升,影響模型效能,對於影像識別的表現可能會下降。

(2.1.1)

(2.2.1) 我使用symmetric quantization,具體計算為:max(abs(weights)) / 255

(2.2.2)

Accuracy of the network on the test images: 98.69%
Accuracy of the network after quantizing all weights: 98.68%
Accuracy degradation is 0.01%

(2.3.1)

(2.4.1)
SI, SWconv1, and SOconv1 這三者的計算方式概念都一樣,以SI為例:
max(abs(inputactivations)) / 255, 其他兩者依此類推。

(2.4.2)

$$Oconv1q = \frac{SWconv1 * SI}{SOconv1} * (Wconv1q * Iq)$$

$$M_1 = \frac{\text{SWconv1} * \text{SI}}{\text{SOconv1}}$$

(2.4.3)

$$Oconv3q = \frac{SWconv3 * SOconv1}{SOconv3} * (Wconv3q * Oconv1q)$$

(2.4.4)

$$Mn = \frac{\text{SWn} * \text{SI}}{\text{SOn}}$$
, if $n = 1$

$$= \frac{\text{SWn} * \text{SOn} - 1}{\text{SOn}}$$
, otherwise

(2.4.6)

使用floor在硬體層面比較容易實作,相比於round還需要去設計硬體考慮carry-in carry-out

(2.4.7)

由於output_scale為小於1的浮點數, $x * output_scale$ 為浮點數乘法運算較難實現。 而 round($1/output_scale$) 為整數,則 $x/round(1/output_scale)$ 為整數除法運算,硬體上較容易實現

(2.5.1)

$$S\beta = SW * SOn-1$$

(3.1.1)

QAT訓練時就考量quantization,模型學會在該條件下調整權重減少quantization error,故相比於PTQ訓練後才去做quantization,能有更高的accuracy

(3.1.2)

quant:將 floating-point 的 weight 轉成 quantized values (e.g., 8-bit integer values)

dequant:將 quantized values 轉回 floating-point 以供後續的layer運算。

Part2

(2.1.1)

(2.1.2)

```
bit-width range: (-512, 511)
Accuracy: 9.74%
bit: 12
bit-width range: (-2048, 2047)
Accuracy: 9.74%
bit: 14
bit-width range: (-8192, 8191)
Accuracy: 49.34%
bit: 16
bit-width range: (-32768, 32767)
Accuracy: 98.49%
bit: 18
bit-width range: (-131072, 131071)
Accuracy: 98.53%
bit: 20
bit-width range: (-524288, 524287)
Accuracy: 98.53%
bit: 22
bit-width range: (-2097152, 2097151)
Accuracy: 98.53%
bit: 24
bit-width range: (-8388608, 8388607)
Accuracy: 98.53%
bit: 26
bit-width range: (-33554432, 33554431)
Accuracy: 98.53%
bit: 28
bit-width range: (-134217728, 134217727)
Accuracy: 98.53%
bit: 30
bit-width range: (-536870912, 536870911)
Accuracy: 98.53%
bit: 32
bit-width range: (-2147483648, 2147483647)
Accuracy: 98.53%
```

smallest bit-width of partial sums that maintains the same accuracy = 18

(2.2.1)

	min max		standard deviation
C1	-52685	48834	11930.04150
C3	-45165	-45165 17499 5539.8813	
C5	-47968	31846	11342.33533
F6	-50556	60838	16911.83450
Output	-36443	4971	9073.27535

(2.2.2)

	minimum bit-width		
C1	18		
C3	16		
C5	16		
F6	18		
Output	16		

Accuracy: 98.53%

我認為題目應該是指完全不能影響 accuracy,很不巧根據數據理論上只能都取 18 bit-width 但為了符合作業精神只考慮到小數第二位的話,結果是如此

(3.1.1)

根據程式碼 Batch Size = 4

Conv2d 迴圈次數 N*M*P*Q*R*S*C

最內層 3 次 mul, 3 次 add

C1 = 4*6 *28 *28*5*5*1 = 470400

C3 = 4*16*10*10*5*5*6 = 960000

C5 = 4*120*1*1*5*5*16 = 192000

```
for h in range(H):
    for c in range(C):
        x_out[h][c] = 0
        for w in range(W):
        x_out[h][c] += x[h][w] * weights[c][w]
        # clamp the partial sum to the specified range
        if x_out[h][c] < psum_range[0]:
            x_out[h][c] = psum_range[0]
        elif x_out[h][c] > psum_range[1]:
            x_out[h][c] = psum_range[1]

        if psum_record:
            psum_record_list.append(x_out[h][c])

if weightsBias is not None:
        x_out += weightsBias
```

Linear 迴圈次數 H*C*W

F6 = 4*84*120 = 40320

Output = 4*10*84 = 3360

最內層 1 次 mul, 1 次 add

H*C 個 elements 要加 bias

	Nmul	Nadd	Bmul	Smul	Badd	Sadd	Ew
C1	1411200	1411200	8	64	18	18	115718400
C3	2880000	2880000	8	64	18	18	236160000
C5	576000	576000	8	64	18	18	47232000
F6	40320	40320	8	64	18	18	3306240
Output	3360	3400	8	64	18	18	276240

Overall Ew = 402,692,880

(3.1.2)

	Nmul	Nadd	Bmul	Smul	Badd	Sadd	Ew
C1	1411200	1411200	8	64	18	18	115718400
C3	2880000	2880000	8	64	16	16	230400000
C5	576000	576000	8	64	16	16	46080000
F6	40320	40320	8	64	18	18	3306240
Output	3360	3400	8	64	16	16	269440

Overall Ew = 395,774,080