Московский физико-технический институт

ФАКУЛЬТЕТ ИННОВАЦИЙ И ВЫСОКИХ ТЕХНОЛОГИЙ

Математическая статистика

Лектор: М.Е. Жуковский

КОНСПЕКТ ЛЕКЦИЙ автор: Александр Марков 23 мая 2017 г.

Содержание

1	Сходимость случайных векторов		3	
2	Ber	Вероятностно-статистическая модель		
3	Статистики. Непараметрические статистики			
	3.1	Определение статистики. Примеры	8	
	3.2	Непараметрические статистики	8	
	3.3	Ядерные оценки плотности	10	
4	Параметические распределения. Оценки параметров			
	4.1	Определение и свойства оценок	11	
	4.2	Методы нахождения оценок	12	
5	Способы сравнения статистик			
	5.1	Сравнения произвольных оценок	16	
	5.2	Поиск наилучшей оценки в классе несмещенных оценок	16	
6	Оце	енка максимального правдоподобия	19	
7	Условное математическое ожидание			
	7.1	Определение и свойства	22	
	7.2	Поиск УМО в абсолютно непрерывном случае	25	
	7.3	Поиск наилучшей оценки в классе несмещенных оценок	26	
8	Доверительные интервалы			
	8.1	Построение доверительных интервалов методом центральной статистики	30	
	8.2	Асимптотические доверительные интервалы	31	
9	Байесовские методы			
	9.1	Введение	32	
	9.2	Математическое описание байесовских методов. Сравнение подходов	32	
10	Π_1	инейная регрессия	36	
	10.1	Линейная модель	36	
	10.2	Гауссовская линейная модель	38	
11	Π_1	роверка гипотез	40	
	11.1	Построение критериев	40	
	11.2	Гипотезы в линейной регрессии	43	

11.3	Критерии согласия	44
11.4	Байесовские критерии	47

1 Сходимость случайных векторов

Определение 1.1. Пусть ξ , ξ_1 , ..., $\xi_n - k$ -мерные случайные вектора. Как и в случае случайных величин, существуют следующие виды сходимости:

- 1. $\xi_n \xrightarrow{\text{п.н.}} \xi$ если $\mathsf{P}(\xi_n \to \xi) = 1$ (сходимость почти наверное)
- 2. $\xi_n \xrightarrow{\mathsf{P}} \xi$ если $\forall \varepsilon > 0$: $\mathsf{P}(||\xi_n \xi||_2 > \varepsilon) \to 0$, где $||x||_t = \sqrt[t]{\sum_{i=1}^k x_i^t}$ для $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$ (сходимость по вероятности)
- 3. $\xi_n \stackrel{d}{\to} \xi$ если для любой непрерывной ограниченной функции $f: \mathbb{R}^k \to \mathbb{R}$ верно $\mathsf{E} f(\xi_n) = \mathsf{E} f(\xi)$ (сходимость по распределению, слабая сходимость)
- 4. $\xi_n \xrightarrow{L_p} \xi$ если $\mathsf{E}\left(||\xi_n \xi||_p\right)^p \to 0$ (сходимость в L_p)

Утверждение 1.0.1. Пусть ξ , ξ_1 , ... — случайные k-мерные вектора. Тогда верны следующие взаимосвязи между сходимостью векторов и их компонент:

$$\begin{cases} \xi_n \xrightarrow{\Pi.H.} \xi \\ \xi_n \xrightarrow{P} \xi \\ \xi_n \xrightarrow{L_p} \xi \end{cases} \iff \forall i \in \{1, \dots, k\} \begin{cases} \xi_n^{(i)} \xrightarrow{\Pi.H.} \xi^{(i)} \\ \xi_n^{(i)} \xrightarrow{P} \xi^{(i)} \\ \xi_n^{(i)} \xrightarrow{L_p} \xi^{(i)} \end{cases}$$

Доказательство. 1. сходимость почти наверное. \Rightarrow : $\{\xi_n^{(i)} \to \xi^{(i)}\} \supset \{\xi_n \to \xi\}$ и вероятность события справа равна 1.

 \Leftarrow : $\{\xi_n \to \xi\} = \bigcap_{j=1}^k \{\xi_n^{(j)} \to \xi^{(j)}\}$ (известно из матана) и вероятность справа просто равна 1.

- 2. сходимость по вероятности. \Rightarrow : $\{|\xi_n^{(i)} \xi^{(i)}| > \varepsilon\} \subset \{||\xi_n \xi||_2 > \varepsilon\}$ \Leftrightarrow : $\bigcup_{i=1}^k \{|\xi_n^{(i)} \xi^{(i)}| > \frac{\varepsilon}{k}\} \supset \{||\xi_n \xi|| > \varepsilon\}$
- 3. $сходимость в L_p$. Очевидна цепочка неравенств

$$0 \le \left| \xi_n^{(i)} - \xi^{(i)} \right|^p \le \left| \xi_n^{(1)} - \xi^{(1)} \right|^p + \ldots + \left| \xi_n^{(k)} - \xi^{(k)} \right|^p$$

Тогда \Leftarrow следует из линейности мат.
ожидания, а \Rightarrow из свойства мат.
ожидания $f \leqslant g \Rightarrow \mathsf{E} f \leqslant \mathsf{E} g.$

Напоминание: критерием сходимости по распределению может служить теорема Александрова: если F_{ξ} непрерывна, то $\xi_n \stackrel{d}{\to} \xi \iff F_{\xi_n}(x) \to F_{\xi}(x)$ для любого $x \in \mathbb{R}^k$.

Теорема 1.1. (теорема о наследовании сходимостей)

1. Пусть $\xi_n \to \xi$ почти наверное или по вероятности, а $h : \mathbb{R}^k \to \mathbb{R}^m$, такая что P(h непрерывна) = 1. Тогда $h(\xi_n) \to h(\xi)$ почти наверное или по вероятности.

2. Пусть $\xi_n \stackrel{d}{\to} \xi$, $h: \mathbb{R}^k \to \mathbb{R}^m$ и непрерывна (Замечание: это не тоже самое, что и первом пункте). Тогда $h(\xi_n) \stackrel{d}{\to} h(\xi)$.

Доказательство. Для доказательства теоремы воспользуемся следующей леммой:

Лемма 1.1. Если последовательность случайных векторов сходится по вероятности, то из нее можно извлечь подпоследовательность, сходящуюся почти наверное.

которая является прямым следствием одномерного случая (Выделим подпоследовательность для 1 координаты, из нее подпоследовательность для 2 координаты и так далее. В итоге получим сходимость почти наверное всех координат). Приступим к доказательству теоремы:

1. $\xi_n \xrightarrow{\Pi.H.} \xi$:

$$P(h(\xi_n) \to h(\xi)) \geqslant P(h(\xi_n) \to h(\xi), \xi \in B) \geqslant P(\xi_n \to \xi, \xi \in B) = 1$$

где $B = \{h \text{ непрерывна}\}, \mathsf{P}(\xi \in B) = 1.$

2. $\xi_n \xrightarrow{\mathsf{P}} \xi$: Предположим, что $h(\xi_n) \not\xrightarrow{\mathsf{P}} h(\xi)$. Это означает, что

$$\exists \varepsilon > 0 \exists \delta > 0 : P(||h(\xi_n) - h(\xi)|| > \varepsilon) > \delta - (1)$$

для бесконечно многих n. Пусть $\{n_j\}$ это те номера, при которых верно неравенство выше. Из условия $\xi_{n_j} \stackrel{\mathsf{P}}{\longrightarrow} \xi$. По лемме можно выделить подпоследовательность $\xi_{n_{j_k}} \stackrel{\text{п.н.}}{\longrightarrow} \xi$. По доказанному ранее, $h(\xi_{n_{j_k}} \stackrel{\text{п.н.}}{\longrightarrow} h(\xi)$, что противоречит (1).

3. $\xi_n \stackrel{d}{\to} \xi$: Рассмотрим непрерывную ограниченную функцию $f: \mathbb{R}^m \to \mathbb{R}$. Тогда $f(h) = f \circ h: \mathbb{R}^k \to \mathbb{R}$ — непрерывная и ограниченная функция, а значит

$$\mathsf{E} f(h(\xi_n)) = \mathsf{E} (f \circ h)(\xi_n) \to \mathsf{E} (f \circ h)(\xi) = \mathsf{E} f(h(\xi))$$

и $h(\xi_n) \xrightarrow{d} h(\xi)$.

Теорема 1.2. (лемма Слуцкого)

- 1. Если $\xi_n \xrightarrow{d} \xi$, а $\eta_n \xrightarrow{d} \eta = c = const c$ лучайные величины. Тогда $\xi_n + \eta_n \xrightarrow{d} \xi + c$, $\xi_n \eta_n \xrightarrow{d} c \xi$
- 2. Если $\xi_n \xrightarrow{d} \xi = const c$ лучайные вектора, то $\xi_n \xrightarrow{\mathsf{P}} \xi$.

Доказательство. Докажем только второе утверждение.

Поскольку функция проектор непрерывна, то, по теореме о наследовании сходимости $\xi_n \xrightarrow{d} \xi \Rightarrow \xi_n^{(i)} \xrightarrow{d} \xi^{(i)}$, откуда

$$\xi_n^{(i)} \xrightarrow{d} C^{(i)} \Rightarrow \xi_n^{(i)} \xrightarrow{\mathsf{P}} C^{(i)} \Rightarrow \xi_n \xrightarrow{\mathsf{P}} \xi$$

поскольку в одномерном случае сходимость к константе по распределению эквивалентна сходимости по вероятности (*тем, кто забыл: теорема Александрова*).

Утверждение 1.0.2. Пусть $\xi_n \stackrel{d}{\to} \xi$ — случайные вектора размерности $m \geqslant 1, h : \mathbb{R}^m \to \mathbb{R}$ — функция, дифференцируемая в точке $a \in \mathbb{R}^m$. Пусть $b_n \to 0, \ b_n \neq 0$. Тогда

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} \xrightarrow{d} \langle \xi, \nabla h|_a \rangle$$

 $\ \ \, \mathcal{A}$ оказательство. $b_n \to 0 \Rightarrow b_n \xi_n \xrightarrow{\mathsf{P}} 0$ по лемме Слуцкого. По формуле Тейлора справедливо представление

$$h(a+x) = h(a) + \langle \nabla h|_a, x \rangle + \varphi(x)$$

где $\varphi(x)=o(||x||)$ и непрерывна в 0. Поскольку $\frac{\varphi(x)}{||x||}\to 0$, то по теореме о наследовании сходимости $\frac{\varphi(\xi_nb_n)}{||b_n\xi_n||}\stackrel{\mathsf{P}}{\to} 0$.

Подставим в формулу Тейлора $x = \xi_n b_n$:

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} = \frac{\langle \nabla h|_a, \xi_n b_n \rangle}{b_n} + \frac{\varphi(\xi_n b_n)}{b_n}$$

По теореме о наследовании сходимостей $||\xi_n|| \xrightarrow{d} ||\xi||$. Тогда по лемме Слуцкого $\frac{\varphi(\xi_n b_n)}{b_n} = \frac{\varphi(\xi_n b_n)}{b_n ||\xi_n||} \cdot ||\xi_n|| \xrightarrow{\mathsf{P}} 0$, а $\frac{\langle \nabla h|_a, \xi_n b_n \rangle}{b_n} = \langle \nabla h|_a, \xi_n \rangle \xrightarrow{d} \langle \nabla h|_a, \xi \rangle$ по теореме о наследовании сходимостей.

Объединяя все вышесказанное, имеем

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} \xrightarrow{d} \langle \xi, \nabla h|_a \rangle$$

2 Вероятностно-статистическая модель

Предположим, что мы наблюдаем некоторый эксперимент. Пусть \mathscr{X} — множество всех возможных значений эксперимента.

Определение 2.1. Множество $\mathscr X$ называется выборочным пространством.

Обозначим за $\mathscr{B}(\mathscr{X})$ некоторую σ -алгебру на \mathscr{X} (в случае, когда $\mathscr{X} = \mathbb{R}^k$ — борелевскую). \mathcal{P} — семество некоторыех вероятностных мер (распределений) на измеримом пространстве $(\mathscr{X}, \mathscr{B}(\mathscr{X}))$ (например все абсолютно непрерывные распределения) и пусть $\mathsf{P} \in \mathcal{P}$ — некоторое заданное распределение вероятностей на $(\mathscr{X}, \mathscr{B}(\mathscr{X}))$.

Определение 2.2. *Наблюдением* называется функция $X: \mathscr{X} \to \mathscr{X}$, такая что $\forall x \in \mathscr{X}: X(x) = x$ случайная величина.

Momuвировка: заметим, что $\mathsf{P}(X \in B) = \mathsf{P}_X(B) \Rightarrow \mathsf{P}_X(x) = \mathsf{P}(x)$, где P — заданное распределение на $(\mathscr{X},\mathscr{B}(\mathscr{X}))$.

Рассмотрим теперь \mathscr{X}^n . Зададим на нем $\mathscr{B}(\mathscr{X}^n) = \sigma(B_1 \times \ldots \times B_n, B_i \in \mathscr{B}(\mathscr{X}))$. Зададим распределение вероятностней P^n на $(\mathscr{X}^n, \mathscr{B}(\mathscr{X}^n))$ по правилу $\mathsf{P}^n(B_1 \times \ldots \times B_n) = \mathsf{P}(B_1) \ldots \mathsf{P}(B_n) \, \forall B_i \in \mathscr{B}(\mathscr{X})$. Утверждение 2.0.1. (6/д, следствие теоремы о продолжении меры). Существует единственная вероятностная мера P^* , заданная на всем $(\mathscr{X}^n, \mathscr{B}(\mathscr{X}^n))$, такая что $\forall B_i \in \mathscr{B}(\mathscr{X}) : P^*(B_1 \times \ldots \times B_n) = \mathsf{P}^n(B_1 \times \ldots \times B_n)$. Будем обозначать P^* тем же символом P^n .

Определение 2.3. Функция $X: \mathscr{X}^n \to X^n; X(x) = x$ называется *наблюдением*. Аналогично одномерному случаю, $\mathsf{P}_X = \mathsf{P}^n$.

 $Утверждение 2.0.2. \ X$ — вектор из независимых одинаково распределенных случайных величин, такой что любая его координата имеет распределение $\mathsf{P}.$

$$\mathsf{P}(X_i \in B) = \mathsf{P}^n(\mathscr{X}_{j \neq i} \in \mathscr{X}, \, X_i \in B) = \mathsf{P}(B) \cdot \prod_{j \neq i} \mathsf{P}(\mathscr{X}) = \mathsf{P}(B)$$

Теперь установим независимость:

$$\mathsf{P}^n(X_1 \in B_1, X_2 \in B_2, X_{i>2} \in \mathscr{X}) = \mathsf{P}^n(B_1 \times B_2 \times \mathscr{X} \times \ldots \times \mathscr{X}) = \mathsf{P}(B_1)\mathsf{P}(B_2) = \mathsf{P}^n(X_1 \in B_1)\mathsf{P}(X_2 \in B_2)$$

Определение 2.4. $X = (X_1, ..., X_n)$ — выборка из $\mathscr X$ размера n.

Поскольку многие из рассматирваемых в будущем свойств статистик и распределений ассимптотические, необходимо уметь получать выборку любого конечного размера n. Для этого введем следующие определения:

Определение 2.5. $\mathscr{X}^{\infty} = \mathscr{X} \times \mathscr{X} \times \ldots = (x_1, x_2, \ldots), \ \forall i \ x_i \in \mathscr{X}$ — множество бесконечных последовательностей элементов из \mathscr{X} .

 $\mathscr{B}(\mathscr{X}^{\infty}) = \sigma(\{(x_1, \ldots, x_n, \ldots) | (x_1, \ldots, x_n) \in B, B \in \mathscr{B}(\mathscr{X}^n)\}, \forall n \in \mathbb{N})$ — цилиндрическая σ -алгебра. Под знаком σ рассматриваются все множества из \mathscr{X}^{∞} , такие что для некоторого n, первые n их координат являются координатами множества из $\mathscr{B}(\mathscr{X}^n)$.

Определение 2.6. Обозначим P^∞ распределение на $(\mathscr{X}^\infty, \mathscr{B}(\mathscr{X}^\infty))$, заданное по следующему правилу: пусть $B \in \mathscr{B}(\mathscr{X}^n)$. Тогда $\mathsf{P}^\infty(B) = \mathsf{P}^\infty(B \times \mathscr{X} \times \ldots) = \mathsf{P}^n(B)$.

Утверждение 2.0.3. Существует единственная вероятностная мера P^* , заданная на всем $(\mathscr{X}^{\infty},\mathscr{B}(\mathscr{X}^{\infty}))$, совпадающая на элементах $\mathscr{B}(\mathscr{X}^n)$ с P^n . — аналогично n-мерному случаю, будем обозначать P^* так же P^{∞} .

Определение 2.7. Функция $X: \mathscr{X}^{\infty} \to X^{\infty}$ такая что X(x) = x, как и прежде, называется наблюдением.

Утверждение 2.0.4. (б/д, аналогично конечномерному случаю)Пусть $X = (X_1, X_2, ...)$. Тогда $\{X_i\}_{i=1}^{\infty}$ это независимые одинаково распределенные случайные величины с распределением P каждая.

Будем в дальнешем для простоты обозначений писать $(\mathscr{X}, \mathscr{B}(\mathscr{X}), \mathsf{P})$ вместо $(\mathscr{X}^{\infty}, \mathscr{B}(\mathscr{X}^{\infty}), \mathsf{P}^{\infty})$ и называть выборку наблюдениеми наоборот.

Определение 2.8. Тройка

$$(\mathcal{X}, \mathcal{B}(\mathcal{X}), \mathcal{P})$$

где

- а) \mathscr{X} выборочное пространство,
- b) $\mathscr{B}(\mathscr{X}) \sigma$ -алгебра на \mathscr{X} ,
- c) \mathcal{P} множество вероятностых мер на измеримом простанстве $(\mathscr{X},\mathscr{B}(\mathscr{X}))$

называется вероятностно-статистической моделью.

3 Статистики. Непараметрические статистики

3.1 Определение статистики. Примеры

Определение 3.1. Пусть дано измеримое пространство (E,\mathscr{E}) и $(\mathscr{B}(\mathscr{X})|\mathscr{E})$ -измеримая функция $S:\mathscr{X}\to E$. Тогда композиция функций $S\circ X=S(X)$ называется $cmanucmu\kappa o \check{u}$.

Пример 3.1. $\overline{X} = \frac{X_1 + ... + X_n}{n}$ — выборочное среднее.

Пример 3.2. Пусть g — некоторая $(\mathscr{B}(\mathscr{X})|\mathscr{E})$ -измеримая функция. Тогда статистикой является $\overline{g(X)} = \frac{g(X_1) + \ldots + g(X_n)}{n}$. Такая статистика называется выборочной характеристикой.

Пример 3.3. Различные функции от выборочных характеристик тоже являются статистиками. Для примера рассмотрим $h(x,y) = x - y^2, \ h : \mathbb{R}^2 \to \mathbb{R}, \ \mathscr{X} = \mathbb{R}$. Тогда $h(\overline{X^2}, \ \overline{X}) = \overline{X^2} - \overline{X}^2$ является статистикой, называется выборочной дисперсией и обозначается s^2 .

Утверждение 3.1.1. $s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

Доказательство. Рассмотрим числа $x_1, x_2, \ldots, x_n \in \mathbb{R}$ и случайную величину $\xi \sim U(\{x_1, \ldots, x_n\})$. Посчитаем дисперсию ξ двумя способами:

$$D\xi = \mathsf{E}(\xi - \mathsf{E}\xi)^2 = \mathsf{E}(\xi - \overline{x})^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$$
$$= \mathsf{E}\xi^2 - (\mathsf{E}\xi)^2 = \overline{x^2} - (\overline{x})^2$$

Пример 3.4. Порядоквые статистики. Рассмотрим случай $\mathscr{X} = \mathbb{R}$. Тогда

$$X_{(1)} = \min\{X_1, \dots, X_n\}$$

$$X_{(2)} = \min\{\{X_1, \dots, X_n\} \setminus \{X_{(1)}\}\}$$
...
$$X_{(n)} = \max\{X_1, \dots, X_n\}$$

Эти n статистик называются nopядковыми cmamucmuками, $X_{(k)}-k$ -ая порядковая статистика, а $(X_{(1)},\ldots,X_{(n)})-$ sapuaционный pяд.

3.2 Непараметрические статистики

Пусть X_1, \ldots, X_n выборка из неизвестного распределения $\mathsf{P},$ а $B \in \mathscr{B}(\mathscr{X})$ и перед нами стоит задача восстановить P(B).

Определение 3.2. Вероятностная мера P_n^* , заданная по правилу

$$P_n^*(B) = \frac{1}{n} \sum_{i=1}^n I(X_i \in B)$$

называется эмпирическим распределением, построенным по выборке X_1, \ldots, X_n .

 $Утверждение 3.2.1. Пусть <math>\{X_n\}_{n=1}^{\infty}$ — выборка неограниченного размера на $(\Omega, \mathscr{F}, \mathsf{P}).$ Тогда

$$\forall B \in \mathscr{B}(\mathscr{X}): \, \mathsf{P}^*_n(B) \to \mathsf{P}_X(B)$$
 при $n \to \infty$

Доказательство. Зафиксируем множество B. Тогда $\mathsf{P}_n^*(B) = \frac{1}{n} \sum_{i=1}^n I(X_i \in B)$. По УЗБЧ, $\mathsf{P}_n^* \xrightarrow{\text{п.н.}} \mathsf{E} I(X_i \in B)$, но поскольку X_i имеют распределение P_X , то $P_n^*(B) \xrightarrow{\text{п.н.}} \mathsf{E} I(X \in B) = \mathsf{P}(X \in B) = \mathsf{P}_X(B)$

Рассмотрим случай $(\mathcal{X}, \mathcal{B}(\mathcal{X})) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$

Определение 3.3. Функия $F_n^*(x) = \mathsf{P}_n^*((-\infty,x]) = \frac{1}{n} \sum_{i=1}^n I(X_i \leqslant x)$ называется эмпирической функцией распределения, построенной по выборке X_1, \ldots, X_n .

Теорема 3.1. (Гливенко-Кантелли)

 $\Pi y cm$ $\{X_n\}_{n=1}^{\infty}$ — выборка из неизвестного распределения P с функцией распределения F. Тогда

$$D_n = \sup_{x \in \mathbb{R}} |F_n^*(x) - F(x)| \xrightarrow{n.n.} 0$$

Доказательство. Поскольку F_n^* равна константе на каждом из отрезков $[X_{(k)}, X_{(k+1)}],$ то

$$D_n = \sup_{0 \le k \le n} \left\{ \left| F(X_{(k)} - \frac{k}{n} \right|, \left| F(X_{(k+1)}) - \frac{k}{n} \right| \right\},\,$$

где $X_{(0)}=-\infty,\ X_{(n+1)}=+\infty,$ а значит D_n — действительно случайная величина.

Зафиксируем $N \in \mathbb{N}$. Определим число $x_{k,N} := \min\{x \in \mathbb{R} | F(x) \geqslant \frac{k}{N}\}$ (определение корректно, поскольку F непрервына справа) для $k \in \{1, \ldots, N-1\}, x_{0,N} := -\infty, x_{N,N} := +\infty.$

Пусть $x \in [x_{k,N}, x_{k+1,N})$. Тогда

$$\begin{split} F_n^*(x) - F(x) &\leqslant F_n^*(x_{k+1,N} - 0) - F(x_{k,N}) = \\ &= F_n^*(x_{k+1,N} - 0) + \underbrace{F(x_{k+1,N} - 0)}_{\leqslant (k+1)/N} - \underbrace{F(x_{k,N})}_{\geqslant k/N} - F(x_{k+1,N}) \\ &\leqslant F_n^*(x_{k+1,N} - 0) - F(x_{k+1,N} - 0) + \frac{1}{N} \end{split}$$

Аналогично $F_n^*(x)-F(x)\geqslant F_n^*(x_{k,N})-F(x_{k,N})-\frac{1}{N},$ откуда $\forall x\in\mathbb{R}:$

$$|F_n^*(x) - F(x)| \le \max_{0 \le k, l \le N} \{ |F_n^*(x_{k+1,N} - 0) - F(x_{k+1,N} - 0)|, |F_n^*(x_{l,N}) - F(x_{l,N})| \} + \frac{1}{N}$$

однако, по УЗБЧ, $F_n^*(x_{k,N}) \xrightarrow{\text{п.н.}} F(x_{k,N}), \ F_n^*(x_{k+1,N}-0) \xrightarrow{\text{п.н.}} F(x_{k+1,N}-0)$ откуда

$$\overline{\lim}\, D_n = \overline{\lim} \sup_{x \in \mathbb{R}} |F_n^*(x) - F(x)| \leqslant \frac{1}{N}$$
 почти наверное

В силу произвольности N получаем, что $D_n \xrightarrow{\text{п.н.}} 0$.

Теорема 3.2. $(6/\partial, Kолмогорова-Смирнова)$

 $\Pi y cmb\ \{X_n\}_{n=1}^{\infty}$ — выборка неограниченного размера из распределения с непрерывной функцией распределения F. Тогда

$$\sqrt{n} \sup_{x \in \mathbb{R}} |F_n^*(x) - F(x)| \xrightarrow{d} \xi$$

 $\it rde\ \xi$ имеет распределение Колмогорова, $\it m.e.$

$$F_{\xi}(x) = \sum_{k=-\infty}^{+\infty} (-1)^k e^{-2k^2 x^2}, \ x > 0$$

3.3 Ядерные оценки плотности

В данном разделе будем считать, что \mathcal{P} это все абсолютно-непрерывные распределения, $P \in \mathcal{P}$ — неизвестное распределение, имеющее плотность p.

Пусть X_1, \ldots, X_n — выборка из распределения P

Определение 3.4. Пусть Q — некоторое распределение вероятностей с плотностью q(x). Тогда если q(x) симметрична относительно 0, то q(x) называется sdpom.

Пример 3.5. $q(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ — гауссово ядро.

Пример 3.6. $q(x) = \frac{1}{2}I(|x| \le 1)$ — прямоугольное ядро.

Пример 3.7. $q(x) = (1 - |x|)I(|x| \le 1)$ — треугольное ядро.

Пример 3.8. $q(x) = \frac{3}{4}(1-x^2)I(|x| \le 1)$ — ядро Епанечникова.

Определение 3.5. Рассмотрим выборку X_1, \ldots, X_n из неизвестного распределения Р. Вероятностная мера $\tilde{\mathsf{P}_n}$, заданная по правилу

$$\tilde{P}_n(B) = \frac{1}{n} \sum_{i=1}^n Q\left(\frac{B - X_i}{h_n}\right)$$

где $\frac{B-X_i}{h_n}=\{rac{x-X_i}{h_n}\ \big|\ x\in B\}$ и $h_n o 0,\ h_n>0$ называется сглаженным эмпирическим распределением.

Сглаженное эмпирическое распределение обладает следующим набором свойств:

- 1. $\tilde{\mathsf{P}_n}$ имеет плотность $\tilde{p_n}(x) = \frac{1}{nh_n} \sum_{i=1}^n q\left(\frac{x-x_i}{h_n}\right)$
- 2. $\tilde{\mathsf{P}_n}$ свертка распределений P_n^* и $Q(\frac{B}{h_n})$
- 3. Пусть $\alpha = \int\limits_{\mathbb{R}} q^2(x) dx < +\infty$, $h_n \to 0$, $nh_n \to +\infty$ и p(x) непрерывна и ограничена. Тогда $\tilde{p_n}(x) = p_n(x) + \frac{\xi_n}{\sqrt{nh_n}}$, где $p_n(x) = \mathsf{E}\tilde{p_n}(x) = \frac{1}{h_n} \int\limits_{\mathbb{D}} q\left(\frac{x-y}{h_n}\right) p(y) dy$ и $\xi_n(x) \xrightarrow{d} \mathcal{N}(0, \alpha p(x))$

4 Параметические распределения. Оценки параметров

4.1 Определение и свойства оценок

Рассмотрим $(\mathcal{X}, \mathcal{B}(\mathcal{X}), \mathcal{P})$, где $\mathcal{P} = \{ \mathsf{P}_{\theta}, \, \theta \in \Theta \}$ — все параметризованные распределения (например, все нормальные распределения или экспоненциальные распределения).

Определение 4.1. Пусть $S: \mathscr{X} \to \Theta$ — измеримая функция, такая что S(X) — статистика. Тогда S(X) называется оценкой параметра θ .

Если $S:\mathscr{X} \to \tau(\Theta)$ — измеримая функция, такая что S(X) — статистика, то S(X) — оценка параметра $\tau(\theta)$.

Определение 4.2. Пусть X_1, \ldots, X_n — выборка из неизвестного распределения P_{θ} . Оценка $\theta^* = S(X)$ называется *несмещенной*, если $\forall \theta \in \Theta$

$$\mathsf{E}_{\theta}\theta^* = \theta$$

где запись E_{θ} подразумевает, что математическое ожидание зависит от параметра θ .

Пример 4.1. Рассмотрим оценку \overline{X} . $\mathsf{E}_{\theta}\overline{X} = \frac{1}{n}\sum \mathsf{E}_{\theta}X_i = \mathsf{E}_{\theta}X_1$, а значит \overline{X} это несмещенная оценка параметра $\tau(\theta) = \mathsf{E}_{\theta}X_1$.

Определение 4.3. Очевидно, что при различных n (размерах выборки) оценка $\theta_n^* = \theta^*(X_1, \ldots, X_n)$ принимает различные значения. Рассмотрим последовательность оценок $\{\theta_n^*\}_{n=1}^{\infty}$. Оценка θ^* называется состоятельной (сильно состоятельной) если

$$\forall \theta \in \Theta: \; \theta_n^* \overset{\mathsf{P}_\theta}{\to} \theta \; (\theta_n^* \overset{\mathsf{P}_{\theta} \; \text{\tiny II.H.}}{\longrightarrow} \theta \;)$$

где символ P_{θ} означает, что вероятность событий зависит от конкретного значения θ .

Пример 4.2. Оценка \overline{X} является состоятельной оценкой по ЗБЧ для $\mathsf{E}_{\theta}X_1$, и даже сильно состоятельной оценкой для $\mathsf{E}_{\theta}X_1$ по УЗБЧ

Факт. Сильно состоятельные оценки являются состоятельными.

Определение 4.4. Оценка θ^* является асимптотически нормальной оценкой θ , если

$$\sqrt{n} \left(\theta_n^*(X_1, \ldots, X_n) - \theta\right) \xrightarrow{d_\theta} \mathcal{N}(0, \sigma^2(\theta))$$

Функция $\sigma^2(\theta)$ называется асимптотической дисперсией.

Верно и аналогичное определение в многомерном случае, с той лишь разницей, что случайный вектор слева сходиться к случайному вектору $\xi \sim \mathcal{N}(0, \Sigma(\theta))$, но в данном курсе мы будем рассматривать лишь одномерный случай.

Пример 4.3.
$$\sqrt{n} (\overline{X} - \mathsf{E}_{\theta} X_1) \xrightarrow{d_{\theta}} \mathcal{N}(0, \mathsf{D}_{\theta} X_1)$$
 по ЦПТ

Утверждение 4.1.1. Пусть оценка θ^* является асипмтотически нормальной оценкой параметра θ . Тогда оценка θ^* — состоятельная.

Доказательство.

$$\sqrt{n} (\theta^* - \theta) \xrightarrow{d_{\theta}} \xi \sim \mathcal{N}(0, \ \sigma^2(\theta))$$

$$\frac{1}{\sqrt{n}} \to 0$$
по лемме Слуцкого $\theta^* - \theta \xrightarrow{d_{\theta}} 0 \Rightarrow \theta^* - \theta \xrightarrow{\mathsf{P}_{\theta}} 0$

П

Утверждение 4.1.2. Пусть θ^* — (сильно) состоятельная оценка параметра θ , τ : $\Theta \to E$ — непрерывная функция. Тогда $\tau(\theta^*)$ — (сильно) состоятельная оценка параматера $\tau(\theta)$.

Доказательство. Прямое следствие теоремы о наследовании сходимости.

Утверждение 4.1.3. Пусть θ^* — асимптотически нормальная оценка θ с асимптотической дисперсией $\sigma^2(\theta)$, а $\tau:\Theta\to E$ — дифференцируемая функция (мы считаем, что $\Theta\subset\mathbb{R}$). Тогда $\tau(\theta^*)$ — асимптотически нормальная оценка $\tau(\theta)$ с асимптотической дисперсией $\sigma^2(\theta)\big[\tau'(\theta)\big]^2$

Доказательство. Применим утверждение 1.0.2 для $h = \tau, b_n = \frac{1}{\sqrt{n}}, \xi_n = \sqrt{n} \left(\theta^* - \theta\right) \xrightarrow{d_\theta} \eta \sim \mathcal{N}(0, \sigma^2(\theta))$ и $a = \theta$. Имеем:

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} = \sqrt{n} \left(\tau(\theta^*) - \tau(\theta) \right) \xrightarrow{d_{\theta}} \mathcal{N} \left(0, \ \sigma^2(\theta) \left[\tau'(\theta) \right]^2 \right)$$

Пример 4.4. X_1, \ldots, X_n — выборка из экспоненциального распределения с неизвестным параметром $\theta > 0$. По ЦПТ выполнена сходимость

$$\sqrt{n}\left(\overline{X} - \frac{1}{\theta}\right) \xrightarrow{d_{\theta}} \mathcal{N}\left(0, \frac{1}{\theta^2}\right)$$

Рассмотрим функцию $\tau(x)=\frac{1}{x}$, дифференцируемую на $(0,+\infty)=\Theta$. Применяя утверждение 4.1.3, получаем

$$\sqrt{n}\left(\frac{1}{\overline{X}} - \theta\right) \xrightarrow{d_{\theta}} \mathcal{N}\left(0, \frac{1}{\theta^2} \left[-\frac{1}{x^2}\right]^2 \Big|_{\frac{1}{\theta}}\right) = \mathcal{N}(0, \theta^2)$$

что означает, что оценка $\frac{1}{X}$ является асимптотически нормальной оценкой параметра θ с дисперсией θ^2 .

4.2 Методы нахождения оценок

1) Метод подстановки

Рассмотрим функцию G, такую что $G(\mathsf{P}_{\theta}) = \theta$. Предположим, что мы знаем такую функцию G в явном виде. Тогда сделаем оценку $\theta^* = G_n(\mathsf{P}_{\theta}^n)$. Такой метод называется методом подстановки.

Пример 4.5. Пусть X_1, \ldots, X_n — выборка из $\mathcal{N}(\theta, 1)$. Плотность такого распределения

$$p_{\theta} = \frac{1}{2\pi} \exp\left[-\frac{(x-\theta)^2}{2}\right]$$

Тогда $(x-\theta)^2=-2\ln(\sqrt{2\pi}p_\theta)$ и значение θ явно выражается.

Однако, зачастую такой метод непременим в виду сложности функции G, поэтмоу рассмотрим другие методы.

2) Метод моментов

Будем считать, что $\Theta \subset \mathbb{R}^k$. Рассмотрим борелевские функции g_1, \ldots, g_k , действующие из \mathbb{R} в \mathbb{R} , такие что функция $m(\theta)$, заданная по правилу

$$m(\theta) = (\mathsf{E}_{\theta}g_1(X_1), \ldots, \mathsf{E}_{\theta}g_k(X_1))$$

является биекцией с обратной функцией m^{-1} .

Найдем
$$m^{-1}\begin{pmatrix}g_1(\overline{X})\\ \dots\\ g_k(\overline{X})\end{pmatrix}=\theta^*$$
 — это и будет оценкой для θ , полученной методом моментов

Замечание. Часто $g_k(x) = x^k - c$ тандартные пробные функции. Иногда стоит рассматривать в качестве функций g_i индикаторы.

Пример 4.6. Пусть X_1, \ldots, X_n — выборка из гамма распределения с параметрами $(\alpha, \lambda), g_1(x) = x, g_2(x) = x^2$. В таком случае

$$\begin{split} \mathsf{E}_{\theta} X_1 &= \int\limits_0^{+\infty} x \frac{\alpha^{\lambda} e^{-\alpha x}}{\Gamma(\lambda)} dx = \frac{\Gamma(\lambda+1)}{\Gamma(\lambda)\alpha} \int\limits_0^{+\infty} \frac{x^{\lambda} \alpha^{\lambda+1} e^{-\alpha x}}{\Gamma(\lambda)} dx = \frac{\lambda}{\alpha} \\ \mathsf{E}_{\theta} X_1^2 &= \int\limits_0^{+\infty} x^2 \frac{\alpha^{\lambda} e^{-\alpha x}}{\Gamma(\lambda)} dx = \frac{\Gamma(\lambda+2)}{\Gamma(\lambda)} \frac{1}{\alpha^2} = \frac{\lambda(\lambda+1)}{\alpha^2} \end{split}$$

Тогда
$$m(\theta) = \begin{pmatrix} \lambda/\alpha \\ \lambda(\lambda+1)/\alpha^2 \end{pmatrix}$$
 и $\theta = (\alpha,\lambda)$. Решим систему

$$\begin{cases} \frac{\lambda^*}{\alpha^*} = \overline{X} \\ \frac{\lambda(\lambda+1)}{\alpha^{*2}} \end{cases} \Rightarrow \begin{cases} \alpha^* = \frac{\overline{X}}{s^2} \\ \lambda^* = \frac{(\overline{X})^2}{s^2} \end{cases}$$

Установим несколько важных свойств оценки, полученной методом моментов

Утверждение 4.2.1. Пусть m^{-1} непрерывна на $m(\Theta)$. Тогда оценка, полученная методом моментов, является сильно состоятельной.

$$\mathcal{A}$$
оказательство. По УЗБЧ $\overline{g_i(X)} \xrightarrow{\mathsf{P}_{\theta} \text{ п.н.}} \mathsf{E}_{\theta} g_i(X)$, откуда $\begin{pmatrix} \overline{g_1(X)} \\ \dots \\ \overline{g_k(X)} \end{pmatrix} \xrightarrow{\mathsf{P}_{\theta} \text{ п.н.}} m(\theta)$, а значит, по теореме

о наследовании сходимости
$$m^{-1}\begin{pmatrix} \overline{g_1(X)} \\ \dots \\ \overline{g_k(X)} \end{pmatrix} \xrightarrow{\mathsf{P}_{\theta} \text{ п.н.}} \theta.$$

Утверждение 4.2.2. $(6/\partial)$ Пусть $\Theta \subset \mathbb{R}$, m^{-1} дифференцируема на $m(\Theta)$ и существует $\mathsf{E}_{\theta} \big[(g_1(X_1))^2 \big]$. Тогда оценка θ^* , полученная по методу моментов, является а.н.о. параметра θ .

Замечание. Оценка по методу моментов не обязательно является несмещенной.

3) Метод выборочных квантилей

Определение 4.5. Рассмотрим распределение вероятностей P на \mathbb{R} с функцией распределения F и число $p \in (0, 1)$. Тогда *квантилем уровня* p называется число

$$z_p := \min\{x, F(x) \geqslant p\}$$

В случае, если F непрерывна, $z_p = F^{-1}(p)$. Если F разрывна, то либо $z_p = F^{-1}(p)$, либо, если $F^{-1}(p)$ не существует, то существует точка z, в которой у F разрыв, такая что F(z-0) < p, F(z+0) > p. В таком случае $z_p = z$.

Определение 4.6. Рассмотрим выборку X_1, \ldots, X_n из распределения Р. Выборочным квантилем уровня р называется число

$$z_p^* := \begin{cases} X_{(np)} & np \in \mathbb{Z} \\ X_{(\lfloor np \rfloor + 1)} & np \notin \mathbb{Z} \end{cases}$$

Теорема 4.1. $(6/\partial)$

Пусть f — плотность распределения P, причем f — непрерывно дифференцируема на \mathbb{R} , $p \in (0, 1)$, $f(z_p) > 0$. Тогда z_p^* — асимптотически нормальная оценка z_p с асимптотической дисперсией $\frac{p(1-p)}{f^2(z_p)}$

Определение 4.7. *Медианой* называется число $\mu=z_{\frac{1}{2}}$. Для выборки X_1,\ldots,X_n выборочной медианой называется число μ^* , равное $X_{(k+1)}$, если n=2k+1 и равное $\frac{X_{(k)}+X_{(k+1)}}{2}$ для n=2k.

Теорема 4.2. Пусть f- плотность распределения P, причем f- непрерывно дифференцируема на $\mathbb{R} \ f(\mu)>0$. Тогда μ^*- асимптотически нормальная оценка μ с асимптотической дисперсией $\frac{1}{4f^2(\mu)}$

Пример 4.7. Пусть X_1, \ldots, X_n — выборка из распределения Коши со сдвигом $\theta, f(x) = \frac{1}{\pi(1+(x-\theta)^2)}$. Нетрудно заметить, что плотность симметрична относительно θ , а значит $F(\theta) = \frac{1}{2}$ и θ является медианой $\mu = \theta$.

Тогда μ^* это а.н.о. θ с а.д. $\frac{\pi^2}{4}$

Пример 4.8. Пусть X_1, \ldots, X_n — выборка из $\mathcal{N}(\theta, 3)$. Найдем оценки для θ по методу моментов и методу квантилей: по методу моментов это \overline{X} , а по методу квантилей: μ^* . Для $\theta^* = \overline{X}$ а.д. равна 3. $p(\theta) = \frac{1}{\sqrt{6\pi}}$, а значит а.д. $\theta^* = \mu^*$ равна $\frac{3\pi}{2}$.

5 Способы сравнения статистик

5.1 Сравнения произвольных оценок

Определение 5.1. Пусть $\theta \in \Theta$ — оцениваемый параметр, а θ^* — его оценка. Тогда функция $g: \Theta^2 \to \mathbb{R}_+$ называется функцией потерь, а $\mathsf{E}_{\theta}g(\theta^*, \theta)$ — функцией риска для функции потерь g.

Замечание. Как правило, g(x,y) = |x-y| или $g(x,y) = (x-y)^2$. В многомерном случае часто $g(x,y) = \langle A(x-y), (x-y) \rangle$, где A — некоторая неотрицательно определенная матрица.

Определение 5.2. Пусть \mathcal{K} — некоторый класс оценок. Оценка $\theta^* \in \mathcal{K}$ называется *наилучшей* в классе \mathcal{K} , если она лучше всех других оценок из \mathcal{K} .

Существует несколько подходов определения какая из двух оценок является лучшей. Приведем здесь их.

1) Равномерный подход

Определение 5.3. Оценка θ^* лучше оценки $\widehat{\theta}$, если $\forall \theta \in \Theta : \mathsf{E}_{\theta} g(\theta^*, \theta) \leqslant \mathsf{E}_{\theta} g(\widehat{\theta}, \theta)$ и хотя бы для одного $\theta \in \Theta$ неравенство строгое.

Утверждение 5.1.1. В классе всевозможных оценок \mathcal{K} нет наилучшей в равномерном подходе. (считаем $g(x,y)=(x-y)^2$ или |x-y|)

Доказательство. Поскольку класс \mathcal{K} содержит константы, то достаточно рассмотреть их. Действительно, зафиксируем $\theta_0 \in \Theta$ и рассмотрим оценку $\theta^* = \theta_0$. Любая другая оценка либо совпадает с θ^* на θ , либо хуже нее на θ_0 , а любая другая оценка-константа θ_1^* лучше оценки θ^* на $\theta_1 \neq \theta_0$.

2) Байесовский подход

Определение 5.4. Пусть Q — некоторое распределение вероятностей на Θ . Тогда оценка θ^* лучше оценки $\widehat{\theta}$ в байесовском подходе, если для любого $\theta \in \Theta$ выполнено неравенство $\mathsf{E}_Q g(\theta^*, \theta) \leqslant \mathsf{E}_Q g(\widehat{\theta}, \theta)$.

Очевидно, что если оценка является наилучшей в равномерном подходе, то она является лучшей и в байесовском. Обратное же неверно.

3) Минимаксный подход

Определение 5.5. Оценка θ^* лучше оценки $\widehat{\theta},$ если $\sup_{\theta \in \Theta} g(\theta^*,\theta) < \sup_{\theta \in \Theta} g(\widehat{\theta},\theta)$

5.2 Поиск наилучшей оценки в классе несмещенных оценок

B этом разделе используется равномерный подход c функцией потерь $g(x,y)=(x-y)^2.$

Рассмотрим сначала некоторое дискретное распределение P (будем считать б.о.о, что P определено на \mathbb{Z}_+).

Определение 5.6. Положим $\mathsf{P}(B) = \sum\limits_{k \in B \cap \mathbb{Z}_+} \mathsf{P}(\{k\}) = \sum\limits_{k \in B \cap \mathbb{Z}_+} p(k) =: \int\limits_{B} p(x) \mu(dx)$, где $\mu(dx) - c$ читаномия мера, т.е. $\mu: \mathscr{B}(\mathbb{R}) \to \mathbb{Z}_+ \cup \{+\infty\}$ и $\mu(B) = |B \cap \mathbb{Z}|$.

Определение 5.7. Семейство распределений \mathcal{P} доминируемо относительно меры μ , если

- 1. либо все распределения абсолютно непрерывные и μ мера Лебега,
- 2. либо все распределения дискретные и μ считающая мера.

Будем считать для таких семейств, что $\mathsf{P}(B) = \int\limits_{B} p(x) \mu(dx).$

Далее считаем, что имеющееся семество распределений $\mathcal{P}-$ доминируемо относительно некоторой меры μ и $X_1,\ldots,X_n=X$ — выборка из исследуемого распределения $\mathsf{P}_{\theta}\in\mathcal{P}$ с плотностью $p_{\theta}(x)$.

Определение 5.8. Функция $u_{\theta}(x) = \frac{\partial}{\partial \theta} \ln p_{\theta}(x)$ называется *вкладом* наблюдения x, а функция $I_X(\theta) = \mathsf{E}_{\theta} \left[u_{\theta}(X) \right]^2 - u$ нформацией Фишера

Введем условия регулярности

R1: Θ — открытый интервал (возможно, бесконечный) в \mathbb{R} .

R2: Множество $A = \{x \in \mathbb{R} \mid p_{\theta}(x) > 0\}$ не зависит от $\theta \in \Theta$.

R3: $\theta \in \Theta$ и для любой статистики S(X) с конечным вторым моментом справедливо дифференцирование под знаком интеграла, т.е. верно равенство:

$$\frac{\partial}{\partial \theta} \mathsf{E}_{\theta} S(x) = \mathsf{E}_{\theta} \left[S(x) \frac{\partial}{\partial \theta} \ln p_{\theta}(x) \right]$$

обосновать которое можно так:

$$\begin{split} &\frac{\partial}{\partial \theta} \int\limits_{\mathbb{R}} S(x) p_{\theta}(x) \mu(dx) = \int\limits_{A} S(x) \frac{\partial}{\partial \theta} p_{\theta}(x) \cdot \frac{1}{p_{\theta}(x)} p_{\theta}(x) dx = \\ &= \int\limits_{\mathbb{T}} S(x) \left[\frac{\partial}{\partial \theta} \ln p_{\theta}(x) \right] p_{\theta}(x) dx = \mathsf{E}_{\theta} \left[S(x) \frac{\partial}{\partial \theta} \ln p_{\theta}(x) \right] \end{split}$$

R4: $0 < I_X(\theta) < +\infty$ — информация Фишера существует, конечна и отлична от 0.

Теорема 5.1. (неравенство Рао-Крамера)

Пусть выполнены условия регулярности **R1-R4**, τ — дифференцируемая на Θ функция и $\widehat{\theta}$ — несмещенная оценка параметра $\tau(\theta)$. Тогда выполнено неравенство

$$\mathsf{D}_{\theta}\widehat{\theta} \geqslant \frac{\left[\tau'(\theta)\right]^2}{I_{\mathcal{X}}(\theta)} \ \forall \theta \in \Theta$$

Доказательство. Рассмотрим статистику S(X) = 1. Используя **R3**, имеем

$$0 = \frac{\partial}{\partial \theta} \mathsf{E}_{\theta} 1 = \mathsf{E}_{\theta} \frac{\partial}{\partial \theta} \ln p_{\theta}(x) \Rightarrow \mathsf{E}_{\theta} u_{\theta}(X) = 0 \tag{1}$$

Применим теперь **R3** для статистики $S(X) = \widehat{\theta}$. Помня, что эта оценка несмещенная, имеем:

$$\tau'(\theta) = \mathsf{E}_{\theta} \widehat{\theta} u_{\theta}(X) \tag{2}$$

Вычтем из второго равенства первое, домноженное на $\tau(\theta)$:

$$\tau'(\theta) = \mathsf{E}_{\theta} \left[\widehat{\theta} - \tau(\theta) \right] u_{\theta}(X)$$

возведем в квадрат и воспользуемся неравенством Коши-Буняковского:

$$\left(\tau'(\theta)\right)^2 = \left(\mathsf{E}_{\theta}\left[\widehat{\theta} - \tau(\theta)\right]u_{\theta}(X)\right)^2 \leqslant \mathsf{E}_{\theta}\left[\widehat{\theta} - \tau(\theta)\right]^2\mathsf{E}_{\theta}u_{\theta}(X)^2 = \mathsf{D}_{\theta}\widehat{\theta}I_X(\theta)$$

откуда следует требуемое неравенство.

Следствие 5.1.1. Наилучшей оценкой является та, для которой достигается равенство.

Определение 5.9. Если $\forall \theta \in \Theta$ для несмещенной оценки $\widehat{\theta}$ параметра $\tau(\theta)$ в неравенстве Рао-Крамера достигается равенство, то оценка $\widehat{\theta}$ называется эффективной.

Теорема 5.2. (критерий эффективности)

В условиях неравенства Рао-Крамера оценка θ^* является эффективной оценкой параметра $\tau(\theta) \iff \theta^* - \tau(\theta) = c(\theta) \cdot u_{\theta}(X) \iff c(\theta) = \frac{\tau'(\theta)}{I_X(\theta)}$

Доказательство. Заметим, что равенство в Рао-Крамере \iff равенство в КБШ \iff случайные величины для которых применяется КБШ — линейно зависимы, т.е. $\theta^* - \theta = c(\theta)u(\theta) + a(\theta)$. Используя несмещенность θ^* , получаем $\forall \theta \in \Theta : 0 = \mathsf{E}_{\theta}a(\theta) = a(\theta) = 0$.

Имеем теперь

$$u_{\theta}(X) \left[\theta^* - \tau(\theta)\right] = c(\theta) \left(u_{\theta}(X)\right)^2$$

Посчитав мат.ожидание обеих частей равенства, справа имеем $\tau'(\theta)$ аналогично док-ву неравенства Рао-Крамера, а слева $c(\theta)I_X(\theta)$, а значит равенство возможно только при $c(\theta) = \frac{\tau'(\theta)}{I_X(\theta)}$

Следствие 5.2.1. Если есть оценка $\hat{\theta}$ не хуже θ^* , то к ней можно применить те же рассуждения и получить, что $\theta^* = \hat{\theta}$.

Следствие 5.2.2. Эффективная оценка является наилучшей в классе несмещенных оценок в равномерном подходе с квадратичной функцией потерь.

Исследуем D_{θ} на сходимость.

Пусть $X = (X_1, ..., X_n)$. Тогда

$$\begin{split} I_{(X_1, \dots, X_n)}(\theta) &= \mathsf{E}_{\theta} u_{\theta}(X_1, \dots, X_n)^2 = \mathsf{D}_{\theta} u_{\theta}(X_1, \dots, X_n) = \\ &= \mathsf{D}_{\theta} \sum_{i=1}^n u_{\theta}(X_i) = \sum_{i=1}^n \mathsf{D}_{\theta} u_{\theta}(X_i) = n \mathsf{D}_{\theta} u_{\theta}(X_1) = n I_{X_1}(\theta) = n i(\theta) \end{split}$$

где $i(\theta)$ — информация Фишера одного элемента выборки. Взяв $\tau(\theta) = \theta$, имеем $\mathsf{D}_{\theta}\theta^* \geqslant \frac{1}{I_X(\theta)} = \frac{1}{ni(\theta)}$, а значит $\mathsf{D}_{\theta}\theta^* \to 0$ как $\frac{1}{n}$

6 Оценка максимального правдоподобия

Рассмотрим семейство параметрических распределений $\mathcal{P} = \{ \mathsf{P}_{\theta}, \ \theta \in \Theta \}$, доминируемое относительно меры μ , и p_{θ} — плотность P_{θ} .

Определение 6.1. Пусть X_1, \ldots, X_n — выборка из P_{θ} . Тогда *правдоподобием* называется функция $f_{\theta}(X) = \prod_{i=1}^n p_{\theta}(X_i)$

Определение 6.2. Оценка $\theta^* = \arg\max f_{\theta}(X_1, \ldots, X_n)$ называется *оценкой максимального правдопо- добия.*

Пример 6.1. Рассмотрим $\Theta = \mathbb{N}$ и $P_{\theta} = U\{1, ..., \theta\}$. Тогда функция правдоподобия равна

$$f_{\theta}(X_1, \ldots, X_n) = \frac{I(X \in \{1, \ldots, \theta\}^n)}{\theta^n}$$

Откуда $\theta^* = X_{(n)}$.

Пример 6.2. $\Theta = \mathbb{R} \times (0, +\infty)$ и X_1, \dots, X_n — выборка из $\mathcal{N}(a, \sigma^2)$. Функция правдоподобия $f_{\theta} = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{\sum (X_i - a)^2}{2\sigma^2}\right]$. Как видно, функция правдоподобия устроена довольно трудно, поэтому часто имеет смысл рассматривать логарифмическую функцию правдоподобия $L_{\theta} = \ln f_{\theta}$. Тогда

$$L_{\theta} = -\frac{n}{2} \ln 2\pi \sigma^2 - \frac{\sum (X_i - a)^2}{2\sigma^2}$$

Найдем производные

$$\frac{\partial \ln f_{\theta}}{\partial a} = \frac{\sum (X_i - a)}{\sigma^2} = n \frac{\overline{X} - a}{\sigma^2} \tag{3}$$

$$\frac{\partial \ln f_{\theta}}{\partial \sigma^2} = -\frac{n}{2} \frac{2\pi}{2\pi\sigma^2} + \frac{\sum (X_i - a)^2}{2\sigma^4} = \frac{\sum (X_i - a)^2 - n\sigma^2}{2\sigma^4}$$
(4)

откуда о.м.п. $\theta^* = (a^*, \ \sigma^{2*}) = \left(\overline{X}, \ \frac{\sum (X_i - a)^2}{n}\right)$

С этого момента считаем, что $\mathcal{P} = \{\mathsf{P}_{\theta}, \ \theta \in \Theta\}$ — произвольное семейство распределений, доминируемое относительно меры μ , плотность P_{θ} равна p_{θ} и если $\theta_1 \neq \theta_2$ то $\mathsf{P}_{\theta_1} \neq \mathsf{P}_{\theta_2}$. Введем условия регулярности

R1: Множество $A = \{x \in \mathbb{R} \mid p_{\theta}(x) > 0\}$ не зависит от θ .

 ${f R2}$: Будем считать, что $X_1,\,\ldots,\,X_n$ — выборка из ${\sf P}\in{\sf P}.$

R3: Θ — открытый интервал в \mathbb{R} (возможно, бесконечный).

R4: Функция $p_{\theta}(x)$ дифференцируема по θ на множестве A.

R5: Функция $p_{\theta}(x)$ трижды непрерывно дифференцируема по $\theta \ \forall x \in A$.

R6: Интеграл $\int\limits_A p_{\theta}(x)\mu(dx)$ трижды дифференцируемый по θ под знаком интеграла.

R7:
$$\mathsf{E}_{\theta} \left[\frac{\partial}{\partial \theta} \ln p_{\theta}(X_1) \right]^2 = i(\theta) \in (0, +\infty).$$

R8:
$$\forall \theta_0 \in \Theta \ \exists c > 0 \ \exists H(x): \ \forall \theta \in (\theta_0 - c, \ \theta_0 + c): \ \left| \frac{\partial^3}{\partial \theta^3} \ln p_\theta(x) \right| < H(x) \ \text{if} \ \mathsf{E}_\theta H(X_1) < +\infty$$

Теорема 6.1. Пусть выполнены условия регулярности **R1-R2**. Тогда $\forall \theta_0 \neq \theta \in \Theta$:

$$\mathsf{P}_{\theta_0}\left(f_{\theta_0}(X_1,\ldots,X_n) > f_{\theta}(X_1,\ldots,X_n)\right) \xrightarrow{n \to \infty} 1$$

Доказательство.

$$\{f_{\theta_0}(X_1, \dots, X_n) > f_{\theta}(X_1, \dots, X_n)\} = \left\{ \frac{f_{\theta}(X_1, \dots, X_n)}{f_{\theta_0}(X_1, \dots, X_n)} < 1 \right\}$$

$$= \left\{ \ln \frac{\prod p_{\theta}(X_1, \dots, X_n)}{\prod p_{\theta_0}(X_1, \dots, X_n)} < 0 \right\}$$

$$= \left\{ \frac{1}{n} \sum \ln \frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)} < 0 \right\}$$

По УЗБЧ,
$$\frac{1}{n} \sum \ln \frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)} \xrightarrow{\mathsf{P}_{\theta} \text{ п.н.}} \mathsf{E}_{\mathsf{P}_{\theta_0}} \ln \frac{p_{\theta}(X_1)}{p_{\theta_0}(X_1)}$$

$$\begin{split} \mathsf{E}_{\theta_0} \ln \frac{p_{\theta}(x)}{p_{\theta_0}(x)} &= \int\limits_A \ln \frac{p_{\theta}(x)}{p_{\theta_0}} p_{\theta_0}(x) \mu(dx) \\ &\leqslant \int\limits_A \left(\frac{p_{\theta}(x)}{p_{\theta_0}(x)} - 1 \right) p_{\theta_0} \mu(dx) \\ &= \int\limits_A \left(p_{\theta}(x) - p_{\theta_0}(x) \right) \mu(dx) = 1 - 1 = 0 \end{split}$$

где мы воспользовались неравенством $\ln(1+x) \leqslant x$. Равенство в оценке достигается при $\frac{p_{\theta}(x)}{p_{\theta_0}(x)} - 1 = 0 \Rightarrow p_{\theta}(x) = p_{\theta_0}(x)$ равенство при всех x или при x из множества меры 0, очевидно, противоречит условию $\mathsf{P}_{\theta} \neq \mathsf{P}_{\theta_0}$, а значит $\mathsf{E}_{\theta_0} \ln \frac{p_{\theta}(x)}{p_{\theta_0}(x)} < 0$ — если оно существует.

Рассмотрим $f=\ln\frac{p_{\theta}(x)}{p_{\theta_0}(x)}\cdot p_{\theta_0}(x);\ g=p_{\theta}(x)-p_{\theta_0}(x).$ В доказательстве мы показали, что $f\leqslant g\Rightarrow f^+\leqslant g^+,\ f^-\geqslant g^-,$ причем $\mathsf{E} g=0\Rightarrow \mathsf{E} f=\mathsf{E} f^+-\mathsf{E} f^-\leqslant \mathsf{E} g^+-\mathsf{E} g^-=0,$ а значит рассматриваемое мат.ожидание действительно существует и либо конечно, либо равно $-\infty.$ В конечном случае применяем УЗБЧ, а случай, когда мат.ожидание равно $-\infty.$ примем без доказательства.

Теорема 6.2. Пусть выполнены **R1-R4** u $\forall n$ $\forall x_1, \ldots, x_n$ существует единственное решение θ^* уравнения $\frac{\partial}{\partial \theta} \ln f_{\theta}(x_1, \ldots, x_n) = 0$. Тогда θ^* это состоятельная оценка параметра θ u $\forall \theta \in \Theta$: $\mathsf{P}_{\theta}(\theta^* - O.M.\Pi.) \to 1$ npu $n \to \infty$.

Yтверждение 6.0.1. Если $|\Theta| < \infty$ и при фиксированных X_1, \ldots, X_n найдется $\underset{\theta \in \Theta}{\arg\max} f_{\theta}(X_1, \ldots, X_n)$ то существует оценка максимального правдоподобия θ^* .

Доказательство. Предположим, что θ^* не является состоятельной. Тогда $\exists \varepsilon > 0 \exists \delta > 0 \exists \theta \in \Theta$ такие, что

$$\begin{cases} \mathsf{P}_{\theta}(|\theta^* - \theta| > \varepsilon) > \delta \quad \forall n \in \mathbb{N} \\ \forall \theta_0 \in \Theta: \; \mathsf{P}_{\theta_0}(f_{\theta_0} > f_{\theta}) \to 1 \end{cases} \Rightarrow \text{противоречие}.$$

Теорема 6.3. $(6/\partial)$

Пусть выполнены **R1-R8** $u \ \forall n \ \forall x_1, \ \dots, \ x_n$ существует единственное решение θ^* уравнения $\frac{\partial}{\partial \theta} \ln f_{\theta}(x_1, \dots, x_n) = 0$. Тогда θ^* является асимптотически нормальной оценкой θ с асимптотической дисперсией $\frac{1}{i(\theta)}$ — непрерывной в силу **R5** u **R7**.

Более того, если $\widehat{\theta}$ — асимптотически нормальная оценка θ с асимптотической дисперсией $\sigma^2(\theta)$ и σ^2 непрерывна на Θ , то $\sigma^2(\theta) \geqslant \frac{1}{i(\theta)}$ — непрерывной в силу $\mathbf{R5}$ и $\mathbf{R7}$.

Определение 6.3. Оценка θ^* называется асимптотически эффективной, если она является наилучшей в асимптотическом подходе в классе асимптотически нормальных оценок с непрерывной асимптотической дисперсией.

Теорема 6.4. Пусть выполнены условия из неравенства Рао-Крамера. Тогда эффективная оценка является оценкой максимального правдоподобия.

Доказательство. Пусть θ^* — эффективная оценка $\Rightarrow \theta^* - \theta = \frac{1}{i(\theta)} \frac{\partial}{\partial \theta} \ln f_{\theta}$. Поскольку $i(\theta) > 0$ по определнию, имеем

$$\frac{\partial}{\partial \theta} \ln f_{\theta} > 0 \iff \theta^* > \theta$$
$$\frac{\partial}{\partial \theta} \ln f_{\theta} < 0 \iff \theta^* < \theta$$

что и означает, что θ^* это о.м.п.

7 Условное математическое ожидание

7.1 Определение и свойства

Пусть ξ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P})$, а $\mathcal{G} \subset \mathscr{F}$ — некоторая σ -алгебра.

Определение 7.1. Условным математическим ожиданием ξ при условии $\mathcal G$ называется случайная величина $\mathsf E(\xi|\mathcal G)=\eta$, для которой выполнены следующие свойства:

- 1. (измеримость) η является \mathcal{G} измеримой случайной величиной.
- 2. (интегральное условие) $\forall A \in \mathcal{G} \ \mathsf{E}\xi I_A = \mathsf{E}\eta I_A$

Определение 7.2. Функция ν называется *зарядом* на $(\Omega, \mathscr{F}, \mathsf{P})$, если $\nu : \mathscr{F} \to \mathbb{R}$ — счетно-аддитивная функция и $\forall A \in \mathscr{F} : |\nu(A)| < +\infty$.

Определение 7.3. Заряд ν называется *абсолютно непрерывным* относительно меры P, если

$$P(A) = 0 \Rightarrow \nu(A) = 0$$

Замечание. Понятие абсолютной непрерывности как свойства функции или меры носит гораздо более общий характер. Например, распределение вероятностей в абсолютно непрерывном случае является абсолютно непрерывным относительно меры Лебега, поскольку $\mathsf{P}(B) = \int\limits_B g(x)dx$, где g — это плотность распределения P .

Теорема 7.1. $(6/\partial, Pa\partial o + a - Hu \kappa o \partial u + a)$

Если ν — заряд, абсолютно непрерывный относительно меры P, то существует единственная P-n.н. случайная величина η на (Ω, \mathscr{F}, P) , такая что

$$\forall A \in \mathscr{F}: \ \nu(A) = \mathsf{E} \eta I_A = \int_A \eta(\omega) \mathsf{P}(d\omega)$$

Теорема 7.2. Если ξ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P})$, такая что $\mathsf{E}|\xi| < +\infty$, а $\mathcal{G} \subset \mathscr{F}$ — некоторая σ -алгебра, то существует $\mathsf{E}(\xi|\mathcal{G})$ единственное P -n.н.

Доказательство. Рассмотрим функцию $\nu(A) = \mathsf{E}\xi I_A$ для любого множества $A \in \mathcal{G}$. По определению это заряд, абсолютно непрерывный относительно меры P , а значит, по теореме Радона-Никодима, $\exists !$ случайная величина η на (Ω, \mathcal{G}) , такая что $\nu(A) = \mathsf{E}\eta I_A$.

Осталось заметить, что η является \mathcal{G} -измеримой случайной величиной, поскольку задана на (Ω, \mathcal{G}) , а это значит, что η — искомое условное математическое ожидание.

Утверждение 7.1.1. Пусть $\mathcal{G} = \sigma(D_1, \ldots, D_n, \ldots), \ \bigsqcup_{i=1}^{+\infty} D_i = \Omega$ и $\forall i \ \mathsf{P}(D_i) > 0$. Тогда верна формула

$$\mathsf{E}(\xi|\mathcal{G}) = \sum_{i=1}^{+\infty} \frac{\mathsf{E}\xi I_{D_i}}{\mathsf{P}(D_i)} I_{D_i}$$

Доказательство. Обозначим $\eta := \mathsf{E}(\xi|\mathcal{G})$. Покажем сначала, что на любом множестве из разбиения η равна константе.

Предположим противное. Тогда, без ограничения общности, $\exists \omega_1, \ \omega_2 \in D_1: \ \eta(\omega_1) = c_1 \neq c_2 = \eta(\omega_2).$ Рассмотрим множество $\eta^{-1}(\{c_1\}) \cap D_1 = A$. Оно лежит в $\mathcal G$ поскольку $\eta - \mathcal G$ -измеримая величина, и оно отлично от D_1 и $\mathcal O$ поскольку в нем лежит ω_1 и не лежит ω_2 . Однако, так как $\mathcal G = \sigma(D_1, \ldots)$ объединение конечного и бесконечного числа множеств D_i , то A не может лежать в $\mathcal G$ — противоречие, т.е. $\mathsf E(\xi|\mathcal G) = \sum_{i=1}^\infty c_i I_{D_i}.$

Воспользуемся интегральным свойством у.м.о. для $A=D_i$. Имеем

$$\mathsf{E}\xi I_A = \mathsf{E}\eta I_A = \mathsf{E}\left(\sum_{j=1}^\infty c_j I_{D_j}\right) I_{D_i} = \mathsf{E}c_i I_{D_i} = c_i \mathsf{P}(D_i)$$

откуда следует требуемое утверждение.

Пример 7.1. Предположим, что мы бросаем кубик и ξ — количество очков, выпавшее на кубике. Пусть $D_1 = \{1, 3, 5\}$ и $D_2 = \{2, 4, 6\}$ — разбиение Ω . Тогда $\mathsf{E}(\xi|\sigma(D_1, D_2)) = \frac{\mathsf{E}\xi I_{D_1}}{\mathsf{P}(D_1)}I_{D_1} + \frac{\mathsf{E}\xi I_{D_2}}{\mathsf{P}(D_2)}I_{D_2} = \frac{3}{2}I_{D_1} + \frac{4}{2}I_{D_2}$.

Докажем некоторые свойства условных математических ожиданий.

Утверждение 7.1.2. $E(E(\xi|\mathcal{G})) = E\xi$

Доказательство. Воспользуемся интегральным свойством для $A=\Omega$: $\mathsf{E}\xi=\mathsf{E}\xi I_A=\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})I_A\big)=\mathsf{E}\left(\mathsf{E}(\xi|\mathcal{G})\right)$

 $Утверждение 7.1.3. Если <math>\xi - \mathcal{G}$ -измеримая, то $\mathsf{E}(\xi|\mathcal{G}) = \xi$ почти наверное — очевидно из определения. $Утверждение 7.1.4. Если \mathscr{F}_{\xi} \perp \!\!\! \perp \mathcal{G}$, то $\mathsf{E}(\xi|\mathcal{G}) = \mathsf{E}\xi$ п.н.

Доказательство. Пусть $A \in \mathcal{G}$. Тогда $I_A \perp \!\!\! \perp \!\!\! \xi \Rightarrow \mathsf{E} \xi I_A = \mathsf{P}(A) \mathsf{E} \xi$. Поскольку $\mathsf{E} \xi - \mathsf{число}$, то оно измеримо относительно любой σ -алгебры. Тогда, по интегральному свойству для $\eta = \mathsf{E} \xi$ имеем

$$\mathsf{E}\eta I_A = \mathsf{P}(A)\mathsf{E}\xi = \mathsf{E}\xi I_A$$

Утверждение~7.1.5.~ $\mathsf{E}(a\xi+b\eta|\mathcal{G})=a\mathsf{E}(\xi|\mathcal{G})=b\mathsf{E}(\eta|\mathcal{G})$ п.н.

Доказательство. Пусть $\zeta := a\mathsf{E}(\xi|\mathcal{G}) = b\mathsf{E}(\eta|\mathcal{G}) - \mathcal{G}$ -измеримая случайная величина. Проверим для нее интегральное свойство для $A \in \mathcal{G}$:

$$\mathsf{E}\zeta I_A = a\mathsf{E}\left(\mathsf{E}(\xi|\mathcal{G})I_A\right) + b\mathsf{E}\left(\mathsf{E}(\eta|\mathcal{G})I_A\right) = a\mathsf{E}\xi I_A + b\mathsf{E}\xi I_A = \mathsf{E}(a\xi + b\eta)I_A$$

Утверждение 7.1.6. Если $\xi \leqslant \eta$, то $\mathsf{E}(\xi|\mathcal{G}) \leqslant \mathsf{E}(\eta|\mathcal{G})$ п.н.

Доказательство. Пусть $A \in \mathcal{G}$. По интегральному свойству имеем:

$$\mathsf{E}\left(\mathsf{E}(\eta - \xi | \mathcal{G})\right) = \mathsf{E}(\eta - \xi)I_A \geqslant 0$$

откуда, поскольку это верно для любого $A \in \mathcal{G}$, из курса теории вероятностей, следует, что $\mathsf{E}(\eta - \xi | \mathcal{G}) \geqslant 0$ п.н.

Утверждение 7.1.7. (Телескопическое свойство)

Пусть $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathscr{F}$. Тогда

$$\mathsf{E}\left(\mathsf{E}(\xi|\mathcal{G}_1)|\mathcal{G}_2\right) = \mathsf{E}(\xi|\mathcal{G}_1) \text{ п.н.} \tag{1}$$

$$\mathsf{E}\left(\mathsf{E}(\xi|\mathcal{G}_2)|\mathcal{G}_1\right) = \mathsf{E}(\xi|\mathcal{G}_1) \text{ п.н.} \tag{2}$$

Доказательство. Поскольку $\mathsf{E}(\xi|\mathcal{G}_1)$ является \mathcal{G}_2 -измеримой, то равенство один выполнено по утверждению 7.1.3.

Пусть $\eta := \mathsf{E}(\xi|\mathcal{G}_1) - \mathcal{G}_1$ -измерима по определнию. По интегральному свойству, для любого $A \in \mathcal{G}_1 \subset \mathcal{G}_2$ выполнено равенство

$$\mathsf{E}\eta I_A = \mathsf{E}\xi I_A = \mathsf{E}\left(\mathsf{E}(\xi|\mathcal{G}_2)I_A\right)$$

откуда $\eta = \mathsf{E}\left(\mathsf{E}(\xi|\mathcal{G}_2)|\mathcal{G}_1\right)$ п.н. по определению.

Утверждение 7.1.8. (б/д, аналог теоремы Лебега)

Пусть $\xi_n \xrightarrow{\text{п.н.}} \xi$ — случайные величины на $(\Omega, \mathscr{F}, \mathsf{P})$ и $|\xi_n| \leqslant \eta$ для любого $n \in \mathbb{N}$ и $\mathsf{E}\eta < +\infty$. Тогда для любой σ -алгебры $\mathcal{G} \subset \mathscr{F}$ выполнена сходимость $\mathsf{E}(\xi_n|\mathcal{G}) \xrightarrow{\text{п.н.}} \mathsf{E}(\xi|\mathcal{G})$.

Утверждение 7.1.9. Пусть ξ, η — случайные величины, такие что $\mathsf{E}|\xi\eta| < +\infty$, $\mathsf{E}|\eta| < +\infty$ и η является \mathcal{G} -измеримой. Тогда $\mathsf{E}(\xi\eta|\mathcal{G}) = \eta \mathsf{E}(\xi|\mathcal{G})$.

Доказательство. Пусть сначала $\eta = I_A, \ A \in \mathcal{G}$. Тогда для любого $B \in \mathcal{G}$ по интегральному свойству выполнено:

$$\mathsf{E}\eta\mathsf{E}(\xi|\mathcal{G})I_B = \mathsf{E}\left(\mathsf{E}(\xi|\mathcal{G})I_{A\cap B}\right) = \mathsf{E}\xi I_{A\cap B} = \mathsf{E}\xi I_AI_B = \mathsf{E}\xi\eta I_B$$

откуда по линейности получаем требоемое равенство для простых случайных величин.

Пусть η — произвольная случайная величина, и $\eta_n \xrightarrow{\text{п.н.}} \eta$ — последовательность простых, такая что $|\eta_n| < |\eta|$. Тогда $\xi \eta_n \xrightarrow{\text{п.н.}} \xi \eta$, $|\xi \eta_n| < |\xi \eta|$ и $\mathsf{E} |\xi \eta| < +\infty$. По свойству 7.1.8 имеем

$$\begin{split} & \mathsf{E}(\xi\eta_n|\mathcal{G}) \xrightarrow{\text{\tiny II.H.}} \mathsf{E}(\xi\eta|\mathcal{G}) \\ & \mathsf{E}(\xi\eta_n|\mathcal{G}) = \eta_n \mathsf{E}(\xi|\mathcal{G}) \xrightarrow{\text{\tiny II.H.}} \eta \mathsf{E}(\xi|\mathcal{G}) \end{split}$$

Теорема 7.3. $(6/\partial, o \text{ наилучшем среднеквадратичном прогнозе})$

Пусть $\mathcal{G} \subset \mathscr{F}$ и ξ — случайная величина на $(\Omega, \mathscr{F}, \mathsf{P})$, $\mathcal{L} = \{\mathcal{G}$ -измеримые с.в. с конечным мат. ожиданием $\}$. Тогда выполнено равенство:

$$\underset{\eta \in \mathcal{L}}{\operatorname{arg\,min}} \, \mathsf{E}(\xi - \eta)^2 = \mathsf{E}(\xi | \mathcal{G}) \, \, n.$$
н.

24

7.2 Поиск УМО в абсолютно непрерывном случае

Обозначим

$$E(\xi|\eta) = E(\xi \mid \mathscr{F}_{\eta})$$

$$P(A|\mathcal{G}) = E(I_A|\mathcal{G})$$

$$P(A|\eta) = E(I_A|\mathscr{F}_{\eta})$$

Определение 7.4. $\mathsf{E}(\xi|\eta=y)=\varphi(y)$, где φ — борелевская функця, такая что $\forall B\in\mathscr{B}(\mathbb{R})$:

$$\mathsf{E}\xi I(\eta\in B) = \int\limits_{B} \varphi(y)\mathsf{P}_{\eta}(dy) = \mathsf{E}\varphi(\eta)I(\eta\in B) = \int\limits_{\omega:\eta(\omega)\in B} \varphi(\eta(\omega))\mathsf{P}(d\omega).$$

Лемма 7.1. (б/д)

 $\mathsf{E}(\xi|\eta=y)=arphi(y)$ тогда и только тогда, когда $\mathsf{E}(\xi|\eta)=arphi(\eta).$

Из теоремы Радона-Никодима следует, что $\mathsf{E}(\xi|\eta=y)$ существует и единственно почти наверное.

В случае, когда ξ и η обе дискретные и $\mathsf{P}(\eta=y)\neq 0$, имеем

$$\mathsf{E}(\xi \mid \eta = y) = \sum x \mathsf{P}(\xi = x | \eta = y) = \int x p_{(\xi \mid \eta)}(x \mid y) dx.$$

Определение 7.5. Условным распределением ξ при условии η называется $\mathsf{P}_{\xi}(B \mid \eta) = \mathsf{E}(I(\xi \in B) \mid \eta).$

Определение 7.6. Функция $p_{(\xi|\eta)}(x\mid y)\geqslant 0$ называется условной плотностью ξ при условии η , если для любых $B\in \mathscr{B}(\mathbb{R}),\ y\in \mathbb{R}$ выполнено равенство

$$\mathsf{P}_{\xi}(B|\eta=y) = \int\limits_{\mathcal{D}} p_{(\xi|\eta)}(x\mid y) dx.$$

Утверждение 7.2.1. Пусть g — борелевская функция, ξ,η — случайные величины на $(\Omega,\mathscr{F},\mathsf{P}),\,\mathsf{E}|g(\xi)|<\infty$ и $p_{(\xi|\eta)}(x\mid y)$ — условная плотность. Тогда $\mathsf{E}(g(\xi)\mid \eta=y)=\int\limits_{\mathbb{R}}g(x)p_{(\xi|\eta)}(x\mid y)dx$

Доказательство. Достаточно доказать, что

$$\forall B \in \mathscr{B}(\mathbb{R}): \ \mathsf{E}g(\xi)I(\eta = B) = \int\limits_{\mathbb{R}} \left(\int\limits_{\mathbb{D}} g(x) p_{(\xi|\eta)}(x \mid y) dx \right) \mathsf{P}_{\eta}(dy).$$

Пусть $g = I_A$ и $A \in \mathscr{B}(\mathbb{R})$.

 $\mathsf{E}I(\xi\in A)I(\eta\in B)=\mathsf{P}(\xi\in A,\ \eta\in B).$ Перепишем интеграл

$$\int_{B} \left(\int_{\mathbb{R}} I(x \in A) p_{(\xi|\eta)}(x \mid y) dx \right) \mathsf{P}_{\eta}(dy) = \int_{B} \left(\int_{A} p_{(\xi|\eta)}(x \mid y) dx \right) \mathsf{P}_{\eta}(dy)
= \int_{B} \mathsf{P}_{\xi}(A \mid \eta = y) \mathsf{P}_{\eta}(dy)
= \int_{B} \mathsf{E} \left(I(\xi \in A) \mid \eta = y \right) \mathsf{P}_{\eta}(dy)
= \mathsf{E} I(\xi \in A) I(\eta \in B)$$

Для простых случайных величин утверждение следует из линейности мат.ожидания. Произвольную случайную величину можно приблизить простыми и воспользоваться теоремой Лебега о мажорируемой сходимости.

Теорема 7.4. Если существует плотность $p_{(\xi,\eta)}(x,y)$, то существует и условная плотность

$$p_{(\xi|\eta)}(x \mid y) = \begin{cases} \frac{p_{(\xi,\eta)}(x,y)}{p_{\eta}(y)} & p_{\eta}(y) \neq 0, \\ 0 & p_{\eta}(y) = 0 \end{cases}.$$

Доказательство. Достаточно доказать, что $\forall B \in \mathscr{B}(\mathbb{R})$:

$$P_{\xi}(B \mid \eta = y) = \int_{B} \frac{p_{(\xi,\eta)}(x,y)}{p_{\eta}(y)} I(p_{\eta}(y) \neq 0) dx$$

Рассмотрим $A, B \in \mathcal{B}(\mathbb{R})$. С одной стороны

$$\begin{split} \mathsf{P}(\xi \in B, \eta \in A) &= \mathsf{E}I(\xi \in B, \, \eta \in A) = \mathsf{E}I(\xi \in B)I(\eta \in A) = \\ &= \int\limits_A \mathsf{P}_\xi(B \mid \eta = y)\mathsf{P}_\eta(dy) = \int\limits_A \mathsf{P}_\xi(B \mid \eta = A)p_\eta(y)dy \end{split}$$

А с другой

$$\begin{split} \mathsf{P}(\xi \in B, \eta \in A) &= \int\limits_{B \times A} p_{(\xi, \eta)}(x, y) dx dy = \\ &= \int\limits_{A} \left[\int\limits_{B} p_{(\xi, \eta)}(x, y) dx \right] dy = \int\limits_{A} \left[\int\limits_{B} \frac{p_{(\xi, \eta)}(x, y)}{p_{\eta}(y)} I(p_{\eta}(y) \neq 0) dx \right] p_{\eta}(y) dy, \end{split}$$

откуда следует утверждение теоремы.

Алгоритм вычисления УМО в абсолютно непрерывном случае.

Пусть даны случайные величины ξ, η с совместной плотностью $p_{(\xi,\eta)}(x,y)$. Мы хотим найти значение $\mathsf{E}(g(\xi)\mid \eta)$.

- 1. Считаем условную плотность $p_{(\xi|\eta)}(x \mid y)$.
- 2. Находим функцию φ , для которой $\varphi(y) = \mathsf{E}\left(g(\xi)\mid \eta=y\right) = \int\limits_{\mathbb{R}} g(x)p_{(\xi\mid \eta)}(x\mid y)dx.$
- 3. $\mathsf{E}(g(\xi) \mid \eta) = \varphi(\eta)$.

7.3 Поиск наилучшей оценки в классе несмещенных оценок

Определение 7.7. Пусть зафиксирован класс распределений $\mathcal{P} = \{ \mathsf{P}_{\theta} \mid \theta \in \Theta \}$ на $(\Omega, \mathscr{F}, \mathsf{P})$. Тогда σ -алгебра $\mathcal{G} \subset \mathscr{F}$ называется ∂ остаточной σ -алгеброй, если $\forall A \in \mathscr{F}$ величина $\mathsf{P}_{\theta}(A \mid \mathcal{G})$ не зависит от θ .

Определение 7.8. Пусть X — наблюдение из распределения $P \in \mathcal{P} = \{P_{\theta}\}$. Тогда статистика S(X) называется достатичной, если $\forall B \in \mathcal{B}(\mathbb{R}^n)$ величина $P_{\theta}(X \in B \mid S(X))$ не зависит от θ .

Теорема 7.5. (Критерий факторизации Неймана-Фишера)

Пусть $\mathcal{P} = \{ \mathsf{P}_{\theta} \mid \theta \in \Theta \}$ — класс распределений, доминируемых относительно μ с плотностью f_{θ} . Тогда S(X) является достаточной статистикой тогда и только тогда, когда $f_{\theta}(x) = h(x)g_{\theta}(S(X))$ для некоторый функций h u g.

Доказательство. Рассмотрим только дискретный случай.

Пусть статистика S(X) — достаточная. Тогда

$$f_{\theta}(x) = p_{\theta}(X = x) = \mathsf{P}_{\theta}(X = x, S(X) = S(x)) = \underbrace{\mathsf{P}_{\theta}(X = x \mid S(X) = S(x))}_{h(x)} \underbrace{\mathsf{P}_{\theta}(S(X) = S(x))}_{g(\theta, S(X))}.$$

Пусть наоборот, $P_{\theta}(X=x) = h(x)g_{\theta}(S(x))$. Тогда

$$\mathsf{P}_{\theta}(X = x \mid S(X) = 1) = \begin{cases} 0 & S(x) \neq 1, \\ \mathsf{P}_{\theta}(X = x \mid S(X) = S(x)) & S(X) = 1 \end{cases},$$

откуда

$$\begin{split} \mathsf{P}_{\theta}(X = & x \mid S(X) = S(x)) = \frac{\mathsf{P}_{\theta}(X = x, S(X) = S(x))}{\mathsf{P}(S(X) = S(x))} = \frac{\mathsf{P}_{\theta}(X = x, S(X) = S(x))}{\sum\limits_{y : S(y) = S(x)} \mathsf{P}_{\theta}(S(X) = S(x), X = y)} = \\ & = \frac{\mathsf{P}_{\theta}(X = x)}{\sum\limits_{y : S(y) = S(x)} \mathsf{P}_{\theta}(x = y)} = \frac{h(x)g_{\theta}(S(x))}{\sum\limits_{y : S(y) = S(x)} h(y)g_{\theta}(S(x))} = \frac{h(x)}{\sum\limits_{y : S(y) = S(x)} h(y)} \end{split}$$

Теорема 7.6. (Рао-Блэквелла-Колмогорова)

Пусть $\widehat{\theta}$ — несмещенная оценка θ и $\forall \theta$: $\mathsf{D}_{\theta}\widehat{\theta} < +\infty$, а S(X) — достаточная статистика. Тогда для оценки $\theta^* = \mathsf{E}\left(\widehat{\theta}|S(X)\right)$ верно:

- 1. θ^* не зависит от θ (как функция)
- 2. θ^* несмещенная оценка θ
- 3. $D_{\theta}\theta^*\leqslant D_{\theta}\widehat{\theta}$, причем равенство $\forall \theta\in\Theta\iff\theta^*=\widehat{\theta}$ P_{θ} почти наверное

Доказательство. 1. Следствие из определения достаточной статистики.

2.
$$\mathsf{E}_{\theta}\theta^* = \mathsf{E}_{\theta}\left(\mathsf{E}_{\theta}\left(\widehat{\theta}|S(X)\right)\right) = \mathsf{E}_{\theta}\widehat{\theta} = \theta$$

3.

$$\mathsf{D}_{\theta}(\widehat{\theta}) = \mathsf{E}_{\theta}(\widehat{\theta} - \theta)^2 = \mathsf{E}_{\theta}\big[(\widehat{\theta} - \theta^*) + (\theta^* - \theta)\big]^2 = \mathsf{E}_{\theta}(\widehat{\theta} - \theta^*)^2 + \mathsf{D}_{\theta}\theta^* + 2\mathsf{E}_{\theta}\Big[(\widehat{\theta} - \theta^*)(\theta^* - \theta)\Big] = \mathsf{D}_{\theta}\theta^* + \underbrace{\mathsf{E}_{\theta}(\widehat{\theta} - \theta^*)^2}_{\geqslant 0}$$

поскольку

$$\mathsf{E}_{\theta}\Big[(\widehat{\theta}-\theta^*)(\theta^*-\theta)\Big] = \mathsf{E}_{\theta}\bigg[\mathsf{E}\left((\widehat{\theta}-\theta^*)(\theta^*-\theta)\mid S(X)\right)\bigg] = \mathsf{E}_{\theta}\Big[(\theta^*-\theta)\mathsf{E}\left(\widehat{\theta}-\theta^*\mid S(X)\right)\bigg] = 0$$
 причем $\mathsf{D}_{\theta}\widehat{\theta} = \mathsf{D}_{\theta}\theta^* \Leftrightarrow \mathsf{E}_{\theta}(\widehat{\theta}-\theta^*)^2 = 0 \Leftrightarrow \widehat{\theta} = \theta^*\,\mathsf{P}_{\theta}\,\,\mathrm{п.н.}$

Определение 7.9. Статистика S(X) называется *полной*, если для любой борелевской функции f из условия, что $\forall \theta \in \Theta$: $\mathsf{E}_{\theta} f(S(X)) = 0$ следует, что f(S(X)) = 0 P_{θ} п.н. $\forall \theta \in \Theta$.

Лемма 7.2. Если S(X) — полная достаточная статистика и для некоторой функции φ верно равенство $\mathsf{E}_{\theta} \varphi(S(X)) = \theta \ \forall \theta \in \Theta$, то тогда $\varphi(S(X))$ — оптимальная оценка θ .

Доказательство. В силу теоремы БКР достаточно доказать, что $\varphi(S(X))$ — единственная S(X)-измеримая несмещенная оценка θ .

Пусть существует другая S(X)-измеримая несмещенная оценка $\psi(S(X))$. Тогда $\forall \theta \in \Theta$:

$$\begin{aligned} & \mathsf{E}_{\theta} \varphi(S(X)) = \mathsf{E}_{\theta} \psi(S(X)) = \theta \\ & \mathsf{E}_{\theta} \left(\varphi(S(X)) - \psi(S(X)) \right) = 0 \\ & \mathsf{E}_{\theta} (\varphi - \psi)(S(X)) = 0 \end{aligned}$$

откуда, из определения полноты статистики, следует, что $\varphi - \psi = 0$ почти наверное.

Алгоритм нахождения оптимальной оценки

- 1. Находим достаточную оценку S(X)
- 2. Проверяем ее на полноту
- 3. Если статистика полная, то решаем для φ уравнение $\mathsf{E}_{\theta} \varphi(S(X)) = \theta \ \forall \theta \in \Theta$

Определение 7.10. Пусть $\theta \in \Theta \subseteq \mathbb{R}^k$, X — наблюдение с плотностью p_θ из распределения $P \in \mathcal{P}$, доминируемого относительно некоторой меры. Пусть $p_\theta(X)$ имеет вид

$$p_{\theta}(x) = h(x) \exp \left(\sum_{i=1}^{k} a_i(\theta) u_i(X) + b(\theta) \right)$$

где u_1, \ldots, u_k — борелевские функции. Тогда семейство распределений \mathcal{P} принадлежит экспоненциальному классу распределений.

Теорема 7.7. $(6/\partial)$

Пусть X — наблюдение из $P \in \{P_{\theta} \mid \theta \in \Theta\}$, принадлежащего экспоненциальному классу распределений. Пусть кроме того множество $\{(a_1(\theta), \ldots, a_k(\theta))\}$ содержит k-мерный параллелепипед. Тогда статистика $(u_1(X), \ldots, u_k(X))$ — полная достаточная статистика.

Замечание. Зачастую достаточно проверить, чтобы функции $a_1, \dots a_k$ были л.н.з. и Θ содержало в себе открытое множество.

Пример 7.2. Пусть $X_1, \ldots, X_n \sim \mathcal{N}(a, \sigma^2)$. Найдем оптимальную оценку для $a^2 + \sigma^2$.

Статистика $S(X)=(\sum X_i^2,\;\sum X_i)$ является достаточной, причем $\mathsf{E}_\theta\sum X_i^2=n(a^2+\sigma^2),$ откуда получаем, что $\overline{X^2}$ — оптимальная оценка для $a^2+\sigma^2.$

8 Доверительные интервалы

8.1 Построение доверительных интервалов методом центральной статистики

Определение 8.1. Пусть X — наблюдение из $P \in \{P_{\theta} \mid \theta \in \Theta\}$ и $\Theta \subset \mathbb{R}$. Доверительным интервалом уровня $\gamma \in (0,1)$ называется такая пара статистик $(T_1(X), T_2(X))$, что

$$\forall \theta \in \Theta \ \mathsf{P}_{\theta} (\theta \in (T_1(X), T_2(X))) \geqslant \gamma$$

если $\forall \theta$ достигается равенство, то интервал называется *точным*.

Замечание. Обычно рассматриваются д.и. уровня $\gamma = 0.9, 0.95, 0.98, 0.99$.

Приведем один из методов построения доверительных интервалов: *метод центральной статисти-* κu .

Определение 8.2. Пусть X — наблюдение из Р. Случайная величина $G(X, \theta)$, распределение которой не зависит от θ , называется *центральной статистикой*.

Зафиксируем числа $1 > \gamma_2 > \gamma_1 > 0$ и $\gamma_2 - \gamma_1 = \gamma$. Пусть $z_{\gamma_1}, z_{\gamma_2}$ — квантили уровней γ_1 и γ_2 распределения $G(X, \theta)$ соответственно. Тогда выполнено неравенство

$$\mathsf{P}_{\theta}(z_{\gamma_1} \leqslant G(X, \, \theta) \leqslant z_{\gamma_2}) \geqslant \gamma_2 - \gamma_1 = \gamma$$

причем равенство достигается в случае, когда для функции распределения G существуют две точки непрерывности x_1, x_2 , такие что $F_G(x_1) = \gamma_1, F_G(x_2) = \gamma_2$.

Пусть $T_i(X)$ — решения уравнений $G(X, T_i(X)) = z_{\gamma_i}$ для i=1, 2. Тогда

$$\mathsf{P}_{\theta}(T_1(X) < \theta < T_2(X)) = \mathsf{P}_{\theta}(z_{\gamma_1} < G(X, \theta) < z_{\gamma_2}) \geqslant \gamma$$

Пример 8.1. Пусть $X_1, \ldots, X_n \sim \mathcal{N}(b, \sigma^2)$. Тогда $\frac{X_1-b}{\sigma} \sim \mathcal{N}(0,1)$ и $\frac{1}{\sqrt{n}} \sum \frac{X_i-b}{\sigma} \sim \mathcal{N}(0,1)$. Пусть $z_{\frac{1-\gamma}{2}}, \ z_{\frac{1+\gamma}{2}}$ — квантили уровней $\frac{1-\gamma}{2}, \ \frac{1+\gamma}{2}$ распределения $\mathcal{N}(0, 1)$. Тогда

$$\mathsf{P}\left(z_{\frac{1-\gamma}{2}}\leqslant \sqrt{n}\frac{\overline{X}-b}{\sigma}\leqslant z_{\frac{1+\gamma}{2}}\right)=\gamma$$

Выражая отсюда b или σ , получаем доверительный интервал для этих параметров уровня γ .

Лемма 8.1. Пусть у случайной величины X непрерывная функция распределения F и X_1, \ldots, X_n – H.o.p. случайные величины. Тогда

$$-\sum \ln F(X_i) \sim \Gamma(1, n)$$

Доказательство.
$$\mathsf{P}(F(X_1)\leqslant y)=\mathsf{P}(X_1\leqslant F^{-1}(y))=F(F^{-1}(y))\Rightarrow F(X_i)\sim U[0,\,1].$$
 Тогда $-\ln F(X_i)\sim Exp(1)\Rightarrow -\sum \ln F(X_i)\sim \Gamma(1,n)$

Следствие 8.0.1. Пусть $\mathcal{P} = \{ \mathsf{P}_{\theta} \mid \theta \in \Theta \}$ такое семейство распределений, что $\forall \theta \mid \mathsf{P}_{\theta}$ имеет непрерывную функцию распределения. Тогда $-\sum \ln F(X_i)$ — центральная статистика с распределением $\Gamma(1, n)$

8.2 Асимптотические доверительные интервалы

Определение 8.3. Пусть X_1, \ldots, X_n — выборка из распределения $P \in \{P_\theta \mid \theta \in \Theta \subset \mathbb{R}\}$. Тогда последовательность пар статистик $\left(T_1^n(X), T_2^n(X)\right)$ называется асимптотическим доверительным интервалом уровня γ , если

$$\underline{\lim}_{n \to +\infty} \mathsf{P}_{\theta} \left(\theta \in \left[T_1^n(X), T_2^n(X) \right] \right) \geqslant \gamma$$

Асимптотический доверительным интервал называется *точным*, если равенство обращается в равенство, а lim превращается в lim.

Пример 8.2. Пусть X_1, \ldots, X_n имеет распределение P_θ с $E_\theta X = \theta$, $D_\theta X = \sigma^2(\Theta) > 0$ — непрерывная функция. По ЦПТ выполнена сходимость

$$\sqrt{n} \frac{\overline{X} - \theta}{\sigma(\theta)} \xrightarrow{d_{\theta}} \mathcal{N}(0, 1) \ \forall \theta$$

По ЗБЧ $\overline{X} \xrightarrow{\mathsf{P}_{\theta} \text{ п.н.}} \theta$ откуда, по теореме о наследовании сходимости, $\sigma(\overline{X}) \xrightarrow{\mathsf{P}_{\theta} \text{ п.н.}} \sigma(\theta)$ Тогда

$$\sqrt{n} \frac{\overline{X} - \theta}{\sigma(\overline{X})} = \underbrace{\frac{\sqrt{n}(\overline{X} - \theta)}{\sigma(\theta)}}_{\rightarrow \mathcal{N}(0,1)} \cdot \underbrace{\frac{\sigma(\theta)}{\sigma(\overline{X})}}_{\rightarrow 1} \xrightarrow{d_{\theta}} \mathcal{N}(0, 1)$$
 по л. Слуцкого

Тогда для $z_{\frac{1+\gamma}{2}}$ — квантиль $\mathcal{N}(0,1)$ уровня $\frac{1+\gamma}{2}$ верно

$$\mathsf{P}_{\theta}\left(-z_{\frac{1+\gamma}{2}}\leqslant\sqrt{n}\frac{\overline{X}-\theta}{\sigma(\overline{X})}\leqslant z_{\frac{1+\gamma}{2}}\right)=\mathsf{P}_{\theta}\left(\underbrace{\overline{X}-z_{\frac{1+\gamma}{2}}\frac{\sigma(\overline{X})}{\sqrt{n}}}_{T_{1}}\leqslant\theta\leqslant\underbrace{\overline{X}+z_{\frac{1+\gamma}{2}}\frac{\sigma(\overline{X})}{\sqrt{n}}}_{T_{2}}\right)\to\gamma\ \forall\theta$$

Замечание. $T_2 - T_1 \rightarrow 0$

9 Байесовские методы

9.1 Введение

Напоминание: Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, $\{D_n\}$ — разбиение $\Omega, A \in \mathscr{F}$. Тогда формула Байеса имеет вид

$$P(D_n \mid A) = \frac{P(A \mid D_n)P(D_n)}{\sum_{i=0}^{\infty} P(A \mid D_i)P(D_i)}$$
(3)

Определение 9.1. Назовем A — результатом эксперимента, $P(D_n)$ — априорная вероятность — известная до эксперимента. $P(D_n \mid A)$ — апостериорная вероятность — после эксперимента.

Пусть ξ , η — случайные величины на (Ω, \mathscr{F}, P) . Тогда формула Байеса в общем виде:

$$p_{\eta \mid \xi}(y \mid x) = \frac{p_{\xi \mid \eta}(x \mid y)p_{\eta}(y)}{\int_{\mathbb{R}^n} p_{\xi \mid \eta}(x \mid y)p_{\eta}(y)}$$
(4)

История становления Байесовских методов в статистике:

1763: опубликована работа Байеса с формулой 3.

1812: получена современная формула Байеса 4.

1920: Фишер нашел оптимальную оценку ОМП, после чего байесовские методы оказались забыты.

1990: Возраждение байесовских методов.

2010: Начало активного использования баесовских методов в BigData.

2017: Лекция по байесовскиим методам на ПМИ ФИВТ.

Замечание. Баесовские методы в BigData используются, например, в задаче распознования лиц на фотографии или работе со словами, имеющими несколько смысловых значений, в word2vec.

9.2 Математическое описание байесовских методов. Сравнение подходов

Пусть θ — случайный вектор, имеющий распределение Q, доминируемое относительно некоторой меры, с плотностью q(t) и $\theta \in \Theta \subset \mathbb{R}^d$. Пусть X — наблюдение из распределения $\mathsf{P} \in \mathcal{P} = \{\mathsf{P}_t : t \in \Theta\}$, где t — значение случайного вектора θ и P_t имеет плотность $p_t(x)$. Тогда функция

$$f(t,x) = q(t)p_t(x)$$

есть плотность вектора (θ, X) .

Определение 9.2. Плотность q(t) называется априорной плотностью, а $q(t\mid x)$, определяемая по формуле

$$q(t \mid x) = \frac{q(t)p_t(x)}{\int\limits_{\Theta} q(s)p_s(x)dx},$$

называется апостериорной плотностью.

Способы оценивания θ .

- 1. Апостреорное распределение это оценивания θ целым распределением вероятностей, откуда получаются последующие оценки.
- 2. Интервальные оценки: пусть u_p квантиль апостериорного распределения. Тогда доверительный интервал для θ есть $(u_{(1-\alpha)/2}, u_{(1+\alpha)/2})$.
- 3. Точечные оценки:
 - (a) $E(\theta \mid X)$ математическое ожидание по апостериорному распределению.
 - (b) $\underset{t \in \Theta}{\arg\max} q(t \mid x)$ мода априорного распределения.

Подходы	Частотный	Байесовский				
Интерпритация случайности	Никакая случайная величина	Любая случайная величина —				
	никем не прогнозируема (объ-	детерминированный процесс,				
	ективная неопределенность)	но часть фактов скрыта от нас				
		(субъективное незнание)				
Величины	Четкое деление на случайные	Все случайно (в понимании вы-				
	величины и параметры	ше)				
Основной метод вывода	Оценка максимального правдо-	Формула Байеса				
	подобия					
Типы оценок	Точечные и интервальные	Апостериорное распределение				
Корректность методов	Верны при $n \to +\infty$	Верны при $n \geqslant 0$.				

Теорема 9.1. Оценка $E(\theta|X)$ — наилучшая оценка параметра θ в баесовским подходе с квадратичной функцией потерь.

 $\mathcal{\underline{/}}\mathit{оказательство}.$ Нам необходимо найти оценку $\widehat{\theta},$ для которой

$$\int\limits_{\Omega} R(\widehat{\theta},\,t)q(t)dt \to \max.$$

Перепишем интеграл

$$\int\limits_{\Theta}\mathsf{E}_t\left(\widehat{\theta}-t\right)^2q(t)dt=\int\limits_{\Theta}\int\limits_{\mathcal{X}}\left(\widehat{\theta}(x)-t\right)^2f(t,x)dxdt=\mathsf{E}\left(\widehat{\theta}(x)-\theta\right)^2\to\max_{\widehat{\theta}}.$$

Применяя теорему о наилучшем приближении

$$\widehat{\theta} = \mathsf{E}(\theta|X).$$

У байесовсокго метода в статистике имеются свои недостатки. Вот самые существенные из них:

- 1. Предполагается, что распределение q(t) задано, поскольку иначе не существует конструктивных способов выбрать его.
- 2. Большые вычислительные затраты.

Пример 9.1. Пусть $X_1, \ldots, X_n \sim \mathcal{N}(\theta, 1), \ \theta \sim Cauchy$. Тогда

$$\int_{\mathbb{D}} q(t)p_t(x)dt = \int_{\mathbb{D}} \frac{1}{(2\pi)^{n/2}} \exp\left[-\frac{1}{2}\sum (x_i - t)^2\right] \frac{1}{\pi(1 + t^2)} dt.$$

Такой интеграл достаточно тяжело посчитать аналитически, а значит нет знаменателя в формуле Байеса, что означает, что из оценок байесовским методом можно посчитать только моду.

Определение 9.3. Пусть X_1, \ldots, X_n — выборка из распределения $P \in \mathcal{P} = \{P_t \mid t \in \Theta\}$ — некоторый класс распределений. Пусть на Θ задан класс распределений $\mathcal{Q} = \{Q_\alpha \mid \alpha \in \mathcal{A}\}$. Класс \mathcal{Q} называется сопряженным к классу \mathcal{P} , если при взятии априорного распределения из класса \mathcal{Q} соответствующее ему апостериорное распределение тоже лежит в классе \mathcal{Q} .

Пример 9.2. Пусть $X_1, \ldots, X_n \sim Exp(\theta)$. Найдем сопряженный класс распределений и байесовскую оценку. Плотность выборки $p_t(X)$ равна

$$p_t(x) = t^n e^{-t \sum X_i}.$$

Возьмем q(t) пропорциональную выражению выше, где коэффицент пропорциональности не зависит от θ .

$$q(t) \propto t^{\beta-1} e^{-\alpha t} \Rightarrow q(t) = \frac{\alpha^{\beta}}{\Gamma(\beta)} t^{\beta-1} e^{-\alpha t}.$$

Покажем, что гамма распределение действительно сопряжено экспоненциальному:

$$q(\theta|x) \propto q(t)p_t(x) \propto t^{\beta+n-1}e^{-t(\alpha+\sum X_i)} \Rightarrow q(\theta|x) \sim \Gamma(\alpha+\sum X_i, \, \beta+n).$$

Тогда точечная байесовская оценка есть

$$\mathsf{E}(\theta \mid X) = \frac{\beta + n}{\alpha + \sum X_i}.$$

Пример 9.3. Пусть $X_1, \, \dots, \, X_n \sim \mathcal{N}(\theta,1)$. Тогда

$$p_t(x) \propto \exp(-poly_2(t)) \Rightarrow q(t) \propto \exp(-poly_2(t)) \Rightarrow q(t) \sim \mathcal{N}(a, \sigma^2).$$

В качестве упражнения можно доказать, что

$$q(t \mid X) = \mathcal{N}\left(\frac{\sum X_i + \frac{a}{\sigma^2}}{n + \frac{1}{\sigma^2}}; \frac{1}{n + \frac{1}{\sigma^2}}\right).$$

Пример 9.4. Найдем класс распределений, сопряженный экспоненциальному классу, т.е. $p_t(x) = \frac{g(x)}{h(x)}e^{-t^Tu(x)}$. Для выборки имеем

$$p_t(X) \propto \frac{1}{h^n(x)} e^{-t^T \sum u(X_i)} \Rightarrow q(t) \propto h^{-\beta}(t) e^{-t\alpha} = \frac{h^{-\beta}(t)}{f(\alpha, \beta)} e^{-t^T \alpha}$$

И

$$q(t \mid X) \propto q(t)p_t(X) \propto \frac{1}{h^{\beta+n}} \exp\left[-t^T(\alpha + \sum X_i)\right].$$

То есть экспоненциальный класс распределений сопряжен сам себе.

10 Линейная регрессия

10.1 Линейная модель

Начнем с некоторых примеров.

Пример 10.1. Рассмотрим следующую задачу. Пусть имеется 2 груза неизвестной массы и весы. Мы взвешиваем грузы с целью узнать их массу. Пусть мы три раза взвесили первый груз и получили веса $\{x_1, x_2, x_3\}$, пять раз взвесили второй груз с показаниями весов $\{y_1, \ldots, y_5\}$ и десять раз оба груза вместе с весами $\{z_1, \ldots, z_{10}\}$. Причем из-за погрешности измерений все числа x_i, y_i, z_i различны. Условие задачи можно представить следующим образом:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ y_1 \\ \vdots \\ y_5 \\ z_1 \\ \vdots \\ z_{10} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 0 & 1 \\ 1 & 1 \\ \vdots \\ 1 & 1 \end{pmatrix}$$

где a,b — неизвестные веса грузов, а $\vec{\varepsilon}$ — вектор ошибок измерений.

Пример 10.2. Пусть случайная величина X зависит от времени по закону $a_3t^3 + a_2t^2 + a_1t + a_0$, где a_i неизвестны и необходимо найти их оценку. В разные моменты времени t_i были проведены измерения величины X и получены результаты $X_i = a_3t_i^3 + a_2t_i^2 + a_1t_i + a_0 + \varepsilon_i$. Тогда задачу можно сформулировать так:

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} t_1^3 & t_1^2 & t_1 & 1 \\ & \vdots & \\ t_n^3 & t_n^2 & t_n & 1 \end{pmatrix} \begin{pmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{pmatrix} + \vec{\varepsilon}.$$

Поставим задачу линейной регрессии.

Пусть $X \in \mathbb{R}^n$ — случайный вектор. Известно, что $X = l + \varepsilon$, где $l \in \mathbb{R}^n$ — не случайный вектор, а $\varepsilon \in \mathbb{R}^n$ — случайный, причем $l \in L \subset \mathbb{R}^n$, где $L = \langle z_1, \ldots, z_k \rangle - k$ -мерное подпространство в \mathbb{R}^n . Пусть $Z = (z_1, \ldots, z_k)$ — известная матрица и $l = Z\theta, \ \theta \in \Theta \subset \mathbb{R}^k$ — неизвестный вектор-параметр. При этом ε — это вектор-столбец из независимых одинаково распределенных случайных величин с $\mathsf{E}\varepsilon_i = 0$ и $\mathsf{D}\varepsilon_i = \sigma^2 > 0$, где σ^2 неизвестно. Задача линейной регрессии заключается в нахождении оценок θ и σ^2 .

Определение 10.1. Оценка вектора l значением $\hat{l} = \operatorname{proj}_L X$ называется оценкой методом наименьших квадратов.

$$\widehat{l} = \arg\min_{l \in L} ||X - l||^2.$$

Попробуем найти оценку для θ . Для этого преобразуем выражение выше.

$$||X - l||^2 = ||X - Z\theta||^2 = (X - Z\theta)^T (X - Z\theta) =$$

$$= X^T X - (Z\theta)^T X - X^T (Z\theta) + (Z\theta)^T (Z\theta) = X^T X - 2X^T Z\theta + \theta^T Z^T Z\theta.$$

Поскольку для \widehat{l} достигается минимум, а норма это гладкая функция, то

$$\frac{\partial}{\partial \theta_i}||X - l||^2 = -2(X^T Z)_i + 2(Z^T Z \theta)_i = 0.$$

так как равенство верно для любого i, то

$$Z^TZ\theta=(X^TZ)^T\Rightarrow Z^TZ\theta=Z^TX$$

$$\Rightarrow \widehat{\theta}=(Z^TZ)^{-1}Z^TX \text{ — оценка θ по методу наименьших квадратов}$$

$$\Rightarrow \widehat{l}=Z\widehat{\theta}.$$

Утверждение 10.1.1. Оценка $\widehat{\theta}$ несмещенная.

Доказательство.

$$\mathsf{E}_{\theta}\widehat{\theta} = \mathsf{E}_{\theta}(Z^TZ)^{-1}Z^TX = (Z^TZ)^{-1}Z^T\mathsf{E}_{\theta}X = (Z^TZ)^{-1}Z^TZ\theta = \theta.$$

Найдем дисперсию $D_{\theta}\widehat{\theta}$:

$$\begin{split} \mathsf{D}_{\theta} \widehat{\theta} &= \mathsf{D}_{\theta} (Z^T Z)^{-1} Z^T X = (Z^T Z)^{-1} Z^T \mathsf{D}_{\theta} (X) ((Z^T Z)^{-1} Z^T)^T = \\ &= \sigma^2 (Z^T Z)^{-1} Z^T ((Z^T Z)^{-1} Z^T)^T = \sigma^2 (Z^T Z)^{-1} Z^T Z (Z^T Z)^{-1} (Z^T Z)^{-1} Z (Z^T Z)^{-$$

Утверждение 10.1.2. $\frac{1}{n-k}$ $\mathbb{E}_{\theta}||X-Z\widehat{\theta}||^2=\sigma^2.$

Доказательство. Будем использовать следующую формулу: $\operatorname{tr} AB = \operatorname{tr} BA$. Обозначим $A := Z(Z^TZ)^{-1}Z^T$. Тогда $\operatorname{tr} A = \operatorname{tr} Z(Z^TZ)^{-1}Z^T = \operatorname{tr}(Z^TZ)^{-1}(Z^TZ) = k$.

Поскольку $\widehat{\theta}$ — несмещенная оценка, то $\mathsf{E}_{\theta}(X-Z\widehat{\theta})=0$, откуда $\mathrm{tr}\,D_{\theta}(X-Z\widehat{\theta})=\mathsf{E}_{\theta}||X-Z\widehat{\theta}||^2$.

$$\operatorname{tr} D_{\theta}(X - Z\widehat{\theta}) = \operatorname{tr} D_{\theta}(E - A)X = \operatorname{tr} \left[(E - A)\mathsf{D}_{\theta}X(E - A)^{T} \right] =$$

$$= \operatorname{tr} \left[(E - A)\sigma^{2} \right] = n\sigma^{2} - \sigma^{2}\operatorname{tr} A = n\sigma^{2} - \sigma^{2}k = (n - k)\sigma^{2}.$$

поскольку $A^2 = A$.

Следствие 10.0.1. $\frac{1}{n-k}||X-Z\widehat{\theta}||^2=\widehat{\sigma}^2$ — несмещенная оценка σ^2 .

10.2 Гауссовская линейная модель

Определение 10.2. Линейная модель называется гауссовской, если $X=l+\varepsilon$, где $l=Z\theta$ и $\varepsilon\sim \mathcal{N}(0,\,\sigma^2 E).$

Теорема 10.1. $(6/\partial, ob\ opmoгoнaльном разложении гауссовского вектора)$

Пусть $X \sim \mathcal{N}(b, \sigma^2 E)$. Пусть $\mathbb{R}^n = L_1 \oplus \ldots \oplus L_r$; $\dim L_i = k_i$; $l_i = \operatorname{proj}_{L_i} l$ и $X_i = \operatorname{proj}_{L_i} X$ — ортогональные проекции вектора X.

Тогда X_1, \ldots, X_r — независимые случайные вектора и

$$\frac{1}{\sigma^2}||X_i - l_i||^2 \sim \chi_{k_i}^2,$$

 $e \partial e$

$$\chi_k^2 = \Gamma\left(\frac{1}{2}; \frac{k}{2}\right) \stackrel{d}{=} \xi_1^2 + \dots + \xi_k^2,$$

где $\xi_i \sim \mathcal{N}(0,1)$ — независимые одинаково распределенные.

Рассмотрим плотность выборки:

$$p(X) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{\sum (X_i - l_i)^2}{2\sigma^2}\right] = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{||X - l||^2}{2\sigma^2}\right] = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{||\operatorname{proj}_L X - l||^2 + ||X - \operatorname{proj}_L X||^2}{2\sigma^2}\right]$$

откуда, по критерию Неймана-Фишера, статистика $S(X) = (\operatorname{proj}_L X; \ ||X - \operatorname{proj}_L X||)$ — достаточная.

Теорема 10.2. $(6/\partial)$

C татистика $(\operatorname{proj}_L X; ||X - \operatorname{proj}_L X||) - n$ олная.

Следствие 10.2.1. Оценки $\hat{\theta}$ и $\hat{\sigma}^2$ — оптимальные оценки θ и σ^2 соответственно.

$$\begin{split} \widehat{\theta} &= (Z^T Z)^{-1} Z^T \operatorname{proj}_L X \\ \widehat{\sigma}^2 &= \frac{1}{n-k} ||X - Z \widehat{\theta}||^2 = \frac{1}{n-k} ||X - \operatorname{proj}_L X||^2 \end{split}$$

Утверждение 10.2.1. $\widehat{\theta} \perp \!\!\! \perp X - Z \widehat{\theta}$, причем $\frac{1}{\sigma^2} ||X - Z \widehat{\theta}||^2 \sim \chi^2(n-k)$ и $\frac{1}{\sigma^2} ||Z \widehat{\theta} - Z \theta||^2 \sim \chi^2(k)$.

Доказательство. По теореме 10.1:

$$Z\widehat{\theta} = \operatorname{proj}_L X \perp \operatorname{proj}_{L^{\perp}} X = X - Z\widehat{\theta}.$$

Поскольку $\widehat{\theta} = (Z^T Z)^{-1} Z^T (Z \widehat{\theta}) \Rightarrow \widehat{\theta} \perp \!\!\! \perp X - Z \widehat{\theta}.$

Распределение статистик следует из того, что $\dim L = k$.

Определение 10.3. Пусть $\xi \sim \mathcal{N}(0,1), \; \eta \sim \chi_k^2$ и $\xi \perp \!\!\! \perp \eta.$ Тогда случайная величина

$$\frac{\xi}{\sqrt{\frac{\eta}{k}}} \sim T_k$$

имеет распределение Стьюдента с к степенями свободы.

Пусть $\xi \sim \chi_k^2, \ \eta \sim \chi_m^2, \ \xi \perp \!\!\! \perp \eta.$ Тогда случайная величина

$$\frac{\xi/k}{\eta/m} \sim F_{k,m}$$

имеет распределение Φ ишера с параметрами k, m.

Построим доверительные интервалы для параметров в гауссовой линейной модели.

Доверительный интервал для σ^2 :

Поскольку $\frac{1}{\sigma^2}||X-Z\widehat{\theta}||^2 \sim \chi^2(n-k)$, то достаточно взять квантиль $u_{1-\gamma}$ распределения $\chi^2(n-k)$,

а значит

$$\mathsf{P}\left(\frac{1}{\sigma^2}||X-Z\widehat{\theta}||^2>u_{1-\gamma}\right)=\gamma\Rightarrow\mathsf{P}\left(\sigma^2\in\left(0;\frac{||X-Z\widehat{\theta}||^2}{u_{1-\gamma}}\right)\right)=\gamma.$$

Доверительный интервал для $\widehat{\theta}_i$:

Поскольку $\widehat{\theta} \sim \mathcal{N}(\theta, \sigma^2 \underbrace{(Z^T Z)^{-1}}_{A})$, где $A = (a)_{ij}$, то $\widehat{\theta}_i \sim \mathcal{N}(\theta_i, \sigma^2 a_{ii})$. Тогда

$$\begin{cases} \frac{\widehat{\theta}_{i} - \theta_{i}}{\sqrt{\sigma^{2} a_{ii}}} \sim \mathcal{N}(0, 1) \\ \frac{1}{\sigma^{2}} ||X - Z\widehat{\theta}||^{2} \sim \chi^{2}(n - k) \end{cases} \Rightarrow \sqrt{\frac{n - k}{a_{ii}}} \frac{\widehat{\theta}_{i} - \theta_{i}}{\sqrt{||X - Z\widehat{\theta}||^{2}}} \sim T_{n - k},$$

откуда

$$\mathsf{P}\left(u_{(1-\gamma)/2}\leqslant \sqrt{\frac{n-k}{a_{ii}}}\frac{\widehat{\theta}_i-\theta_i}{\sqrt{||X-Z\widehat{\theta}||^2}}\leqslant u_{(1+\gamma)/2}\right)=\gamma,$$

где u_p — квантили T_{n-k} .

Доверительная область для θ :

$$\begin{cases} \frac{1}{\sigma^2} ||Z\widehat{\theta} - Z\theta||^2 \sim \chi^2(k) \\ \frac{1}{\sigma^2} ||X - Z\widehat{\theta}||^2 \sim \chi^2(n-k) \end{cases} \Rightarrow \frac{n-k}{k} \frac{||Z\widehat{\theta} - Z\theta||^2}{||X - Z\widehat{\theta}||^2} \sim F_{k,n-k}$$

11 Проверка гипотез

11.1 Построение критериев

Обозначим неизвестное распределение P. Тогда гипотезой назовем любое утверждение относительно P и обозначим $H: P \in \mathcal{P}$. Пусть \mathcal{P}_0 и \mathcal{P}_1 — два непересекающихся класса распределений. Мы будем проверять гипотезы вида "наблюдаемая величина имеет распределение из класса \mathcal{P}_0 "и обозначать их $H_0: P \in \mathcal{P}_0$. Тогда H_0 называется основной гипотезой. Противоречущую ей гипотезу $H_1: P \in \mathcal{P}_1$ назовем альтернативной гипотезой.

Определение 11.1. Гипотеза H_0 называется простой, если $|\mathcal{P}_0| = 1$.

Определение 11.2. Множество S называется *критерием* проверки гипотезы H_0 против альтернативы H_1 , если $S \subseteq \mathcal{X}$.

Гипотеза H_0 отвергается в пользу альтернативы H_1 если $X \in S$.

Пример 11.1. Пусть $\mathcal{P} = \{ \mathsf{P}_{\theta} \mid \theta \in \Theta \}$ и $H_0 : \mathsf{P} = \mathsf{P}_{\theta_0}, H_1 : \mathsf{P} \neq \mathsf{P}_{\theta_0}$. Построим для θ доверительный интервал $(T_1(X), T_2(X))$ уровня γ . Тогда

$$\mathsf{P}_{\theta}\left(\underbrace{\theta\in(T_1(X),\,T_2(X))}_{A}\right)\geqslant\gamma.$$

Если событие A не выполнено для θ_0 , то гипотеза H_0 отвергается. Заметим, что с вероятностью $\leq 1-\gamma$ верная гипотеза будет отвергнута.

Определение 11.3. *Ошибкой первого рода* называется ситуация, когда отвергается верная гипотеза. *Ошибкой второго рода* называется ситуация, когда неверная гипотеза не отвергается.

Определение 11.4. Мощностью критерия S называется функция $\beta(Q,S) = Q(X \in S)$, где $Q \in \mathcal{P} = \mathcal{P}_0 \sqcup \mathcal{P}_1$.

Определение 11.5. S — критерий *уровня значимости* $1 > \varepsilon > 0$, если

$$\forall Q \in \mathcal{P}_0: \ \beta(Q, S) \leqslant \varepsilon.$$

Pазмер критерия S — наименьший из его уровней значимости.

$$\alpha(S) := \sup_{Q \in \mathcal{P}_0} \beta(Q, S).$$

Определение 11.6. Пусть S и R — два критерия уровня значимости ε . Тогда критерий S мощнее критерия R, если

$$\forall Q \in \mathcal{P}_1: \ \beta(Q, S) \geqslant \beta(Q, R).$$

Заметим, что рассматриваемая вероятность $\beta(Q,S) = Q(X \in S)$ это вероятность отклонить неверную гипотезу.

Определение 11.7. Критерий S называется равномерно наиболее мощным критерием (далее рнмк) уровня значимости ε , если выполнены следующие два свойства:

- 1. $\alpha(S) \leqslant \varepsilon$.
- 2. S мощнее любого другого критерия R уровня значимости $\alpha(R) \leqslant \varepsilon$.

Определение 11.8. Критерий S называется несмещенным, если

$$\sup_{Q \in \mathcal{P}_0} \beta(Q, S) < \inf_{Q \in \mathcal{P}_1} \beta(Q, S).$$

Критерий S называется cocmosmeльным, если

$$\forall Q \in \mathcal{P}_1 \lim_{n \to +\infty} \beta(Q, S) = \lim_{n \to +\infty} Q\left(X \in S\right) \to 1,$$

где n — размер выборки $X = X_1, ..., X_n$.

Пусть $\mathsf{P}_0,\;\mathsf{P}_1$ — два распределения, доминируемые относительно меры μ с плотностями p_0 и p_1 соответственно. Рассмотрим гипотезы $H_0:\;\mathsf{P}=\mathsf{P}_0$ и $H_1:\;\mathsf{P}=\mathsf{P}_1.$ Введем для $\lambda\geqslant 0$ множество

$$S_{\lambda} := \{x : p_1(x) - \lambda p_0(x) \ge 0\}.$$

Теорема 11.1. (лемма Неймана-Пирсона)

 $\Pi y cm b R - \kappa p u m e p u \ddot{u}, \ m a \kappa o \ddot{u} \ u m o$

$$P_0(X \in R) \leqslant P_0(X \in S_\lambda)$$

 $(m.e.\ ypoвня\ значимости\ \mathsf{P}_0(X\in S_\lambda).\ Torдa\ критерий\ S_\lambda\ мощнее\ критерия\ R$

$$P_1(X \in R) \leqslant P_1(X \in S_{\lambda})$$

u, кроме того, S_{λ} — несмещенный критерий.

Доказательство. По свойствам индикаторов

$$I(X \in R)(p_1(x) - \lambda p_0(x)) \leqslant I(X \in R)I(X \in S_\lambda)(p_1(x) - \lambda p_0(x)) \leqslant I(X \in S_\lambda)(p_1(x) - \lambda p_0(x)).$$

Тогда

$$\mathsf{P}_1(x \in R) - \lambda \mathsf{P}_0(x \in R) = \int \left(p_1(x) - \lambda p_0(x) \right) I(x \in R) \mu(dx)$$

$$\leqslant \int I(X \in S_\lambda) (p_1(x) - \lambda p_0(x)) \mu(dx) = \mathsf{P}_1(x \in S_\lambda) - \lambda \mathsf{P}_0(x \in S_\lambda),$$

откуда

$$\mathsf{P}_1(x \in R) - \mathsf{P}_1(x \in S_\lambda) \leqslant \lambda \left(\mathsf{P}_0(x \in R) - \mathsf{P}_0(x \in S_\lambda) \right) \leqslant 0 \Rightarrow \mathsf{P}_1(x \in R) \leqslant \mathsf{P}_1(x \in S_\lambda).$$

Рассмотрим теперь два случая:

1. $\lambda \geqslant 1 \Rightarrow \forall x \in S_{\lambda} : p_1(x) \geqslant p_0(x)$ и

$$\mathsf{P}_0(x \in S_\lambda) = \int I(x \in S_\lambda) p_0(x) \mu(dx) \leqslant \int I(x \in S_\lambda) p_1(x) \mu(dx) = \mathsf{P}_1(x \in S_\lambda).$$

2. $\lambda < 1$. Тогда для $x \notin S_{\lambda} : p_1(x) < p_0(x)$ и

$$\mathsf{P}_0(x \not\in S_\lambda) = \int I_(x \not\in S_\lambda) p_0(x) \mu(dx) \geqslant$$
$$\geqslant \int I_(x \not\in S_\lambda) p_1(x) \mu(dx) = \mathsf{P}_1(x \not\in S_\lambda),$$

откуда

$$\mathsf{P}_0(x \in S_\lambda) = 1 - \mathsf{P}_0(x \not \in S_\lambda) \leqslant 1 - \mathsf{P}_1(x \not \in S_\lambda) = \mathsf{P}_1(x \in S_\lambda).$$

Следствие 11.1.1. Пусть λ таково, что

$$P_0(x \in S_\lambda) = \varepsilon.$$

Тогда S_{λ} это рнмк уровня значимости ε .

Замечание. Для дискретного пространства не существует римк уровия значимости ε для всех ε .

Пример 11.2. Пусть $X_1, \ldots, X_n \sim Bern(\theta)$. Нужно проверить гипотезу $H_0: \theta = \frac{1}{4}$ против $H_1: \theta = \frac{1}{3}$. Тогда

$$S_{\lambda} = \{x : \left(\frac{1}{3}\right)^{\sum X_i} \left(\frac{2}{3}\right)^{n - \sum X_i} - \lambda \left(\frac{1}{4}\right)^{\sum X_i} \left(\frac{3}{4}\right)^{n - \sum X_i} \geqslant 0\} = \{\left(\frac{4}{3}\right)^{\sum X_i} \left(\frac{8}{9}\right)^{n - \sum X_i} \geqslant \lambda\}.$$

Поскольку функция $\left(\frac{4}{3}\right)^{\sum X_i} \left(\frac{8}{9}\right)^{n-\sum X_i}$ возрастает по $T(X) = \sum X_i$, то неравенство верно при $T(X) \geqslant \tilde{\lambda}$. Если H_0 верна, то $\sum X_i \sim Bin(n, \frac{1}{4})$ и $\tilde{\lambda}$ — квантиль уровня $1-\varepsilon$ распределения $Bin(n, \frac{1}{4})$. Причем все проведенные рассуждения верны только для тех ε , где достигается равенство $\mathsf{P}_0(x \in S_{\lambda}) = \varepsilon$.

Теорема 11.2. $(6/\partial, o \ монотонном отношении правдоподобия)$

Пусть $\Theta \subset \mathbb{R}$, $H_0: \theta \leqslant \theta_0(\theta = \theta_0)$, $H_1: \theta > \theta_0$. Пусть P_θ доминируемо относительно меры μ с плотностью p_θ и

$$\forall \theta_2 > \theta_1 \in \Theta : \frac{f_{\theta_2}(X)}{f_{\theta_1}(X)} = g(T(X), \theta_1, \theta_2),$$

r de g не убывает по T(X).

Tогда рнмк уровня значимости ε имеет вид

$$S_{\varepsilon} = \{T(X) \geqslant c_{\varepsilon}\},\$$

если

$$P_0(S_{\varepsilon}) = \varepsilon.$$

Пример 11.3. $X_1, \ldots, X_n \sim Bern(\theta), \ H_0: \theta \geqslant \frac{1}{4}, \ H_1: \theta < \frac{1}{4}.$ Сделаем замену $\tilde{\theta} = -\theta$. Тогда $H_0: \tilde{\theta} \leqslant -\frac{1}{4}, \ H_1: \tilde{\theta} > -\frac{1}{4}.$ Для $\tilde{\theta}_2 > \tilde{\theta}_1:$

$$\frac{f_{\tilde{\theta}_2}}{f_{\tilde{\theta}_1}} = \left(\underbrace{\frac{-\tilde{\theta}_2}{-\tilde{\theta}_1}}_{<1}\right)^{\sum X_i} \left(\underbrace{\frac{1 - (-\tilde{\theta}_2)}{1 - (-\tilde{\theta}_1)}}_{>1}\right)^{n - \sum X_i} = g(-\sum X_i).$$

Функция g возрастает по $-\sum X_i$, откуда римк имеет вид $S=\{\sum X_i\leqslant c\}$, где c — квантиль уровня ε для $Bin(n,\frac{1}{4})$.

Пусть X_1, \ldots, X_n — выборка из $U[0, \theta]$. Проверим гипотезу $H_0: \theta = \theta_0$ против альтернативы $H_1: \theta < \theta_0$.

Утверждение 11.1.1. Римк имеет вид $S = \{X_{(n)} \leqslant \theta_0 \varepsilon^{\frac{1}{n}}\}.$

Доказательство.

$$\mathsf{P}_{\theta_0}(X_{(n)}\leqslant c)=\varepsilon\Rightarrow \left(\frac{c}{\theta_0}\right)^n=\varepsilon\Rightarrow c=\theta_0\varepsilon^{\frac{1}{n}}.$$

Пусть теперь R — критерий уровня значимости ε , т.е. $\mathsf{P}_{\theta_0}(x \in R) \leqslant \varepsilon$. Возможны два случая:

1. $\theta \leqslant c = \theta_0 \varepsilon^{\frac{1}{n}}$. Тогда

$$P_{\theta}(x \in S) = 1 \geqslant P_{\theta}(x \in R) \Rightarrow S$$
 — мощнее.

2. $\theta \in (c, \, \theta_0)$. Тогда $\mathsf{P}_{\theta}(x \in S) = \left(\frac{\theta_0}{\theta}\right)^n \varepsilon$ и

$$\mathsf{P}_{\theta}(x \in R) = \int_{[0,\theta]^n} \frac{1}{\theta^n} I(X_1, \dots, X_n \in R) dx_1 \dots dx_n = \left(\frac{\theta_0}{\theta}\right)^n \int_{[0,\theta]^n} \frac{1}{\theta_0^n} I(X_1, \dots, X_n \in R) dx_1 \dots dx_n$$

$$\leqslant \left(\frac{\theta_0}{\theta}\right)^n \int_{[0,\theta_0]^n} \frac{1}{\theta_0^n} I(X_1, \dots, X_n \in R) dx_1 \dots dx_n = \left(\frac{\theta_0}{\theta}\right)^n \mathsf{P}_{\theta_0}(X \in R) \leqslant \varepsilon \left(\frac{\theta_0}{\theta}\right)^n$$

11.2 Гипотезы в линейной регрессии

Рассмотрим линейную модель $X = Z\theta + \varepsilon$, где $\varepsilon \sim \mathcal{N}(0, \sigma I_n), \ \theta \in \mathbb{R}^k$. Будем проверять гипотезы вида $H: T\theta = \tau$, где T это матрица размера $(m \times k), \ m \leqslant k$, $\operatorname{rk} T = m$. Как мы помним,

$$\widehat{\theta} = (Z^T Z)^{-1} Z^T X \sim \mathcal{N}(\theta, \ \sigma^2 (Z^T Z)^{-1}),$$

а, зная это, имеем

$$T\hat{\theta} \sim \mathcal{N}(\underbrace{T\theta}_{=\tau}, \sigma^2 \underbrace{T(Z^TZ)^{-1}T^T}_{=B}).$$

Матрица B обратиа как матрица с полным рангом, а значит

$$\sqrt{B^{-1}} \frac{1}{\sigma} (T\widehat{\theta} - \tau) \sim \mathcal{N}(0, I_m) \Rightarrow \frac{1}{\sigma^2} (T\widehat{\theta} - \tau)^T B^{-1} (T\widehat{\theta} - \tau) \sim \chi^2(m)$$

 \mathbf{a}

$$\frac{1}{\sigma^2}||X - Z\widehat{\theta}||^2 \sim \chi^2(n-k).$$

Зная всё это, получаем, что

$$\widehat{F} = \frac{(T\widehat{\theta} - \tau)^T B^{-1} (T\widehat{\theta} - \tau)}{||X - Z\widehat{\theta}||^2} \frac{n - k}{m} \sim F_{m, n - k}$$

Определение 11.9. Статистика \hat{F} называется ф-статистикой (эф).

Критерий для проверки H уровня значимости ε имеет вид $\widehat{F}>u_{1-\varepsilon}$, где u — квантиль уровня $1-\varepsilon$ распределения $F_{m,n-k}$.

Пример 11.4. $X_1, \ldots, X_n \sim \mathcal{N}(x, \sigma^2), Y_1, \ldots, Y_m \sim \mathcal{N}(y, \sigma^2)$. Проверим гипотезу H: x = y.

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \\ Y_1 \vdots \\ Y_m \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \vec{\varepsilon}.$$

Возьмем $T=\begin{pmatrix}1&-1\end{pmatrix}\Rightarrow au=T heta=0.$ Тогда

$$Z^T Z = \begin{pmatrix} n & 0 \\ 0 & m \end{pmatrix}, \quad \widehat{\theta} = \begin{pmatrix} \overline{X} \\ \overline{Y} \end{pmatrix} \Rightarrow B = \frac{1}{m} + \frac{1}{n}$$

И

$$\hat{F} = \frac{(\overline{X} - \overline{Y})^2 \frac{nm}{n^2 + m^2}}{nS_X^2 + mS_Y^2} \cdot \frac{n + m - 2}{1}.$$

11.3 Критерии согласия

Критерий хи-квадрат Пирсона

Пусть X_1, \ldots, X_n — выборка из распределения, у которого a_1, \ldots, a_m — все возможные исходы в одном испытании с вероятностями соответсвенно p_1, \ldots, p_m . Проверим гипотезу $H: p_i = p_i^0 \quad \forall i \in \{1, \ldots, m\}$. Положим $\mu_i = \sum_{j=1}^n I(X_j = a_i)$ и рассмотрим статистику

$$\widehat{\mu} = \sum_{i=1}^{m} \frac{(\mu_i - np_i^0)^2}{np_i^0}$$

Теорема 11.3. (Пирсон)

При условии верности H_0 , выполнена сходимость

$$\widehat{\mu} \xrightarrow{d} \chi^2(m-1) \ npu \ n \to \infty.$$

Доказательство. Рассмотрим вектора $Y_j = (I(X_j = a_1), \ldots, I(X_j = a_m)), (Y_j)_i \sim Bern(p_i^0)$. Тогда $\mathsf{E} Y_j = (p_1^0, \ldots, p_m^0) = p^T$ и

$$DY_j = B - pp^T$$
, где $B = \text{diag}(p_1^0, ..., p_m^0)$.

По ЦПТ

$$\sqrt{B^{-1}}\sqrt{n}\left(\left(\frac{Y_1+\ldots+Y_n}{n}\right)^T-p\right)\xrightarrow{d}\mathcal{N}(0,\sqrt{B^{-1}}(B-pp^T)\sqrt{B^{-1}}).$$

Пусть $Z=\sqrt{B^{-1}}p=\begin{pmatrix} \sqrt{p_1^0}\\ \vdots\\ \sqrt{p_m^0} \end{pmatrix}$ и V — ортогональная матрица, первая строка которой равна Z^T . Тогда

$$V\sqrt{B^{-1}}\sqrt{n}\left(\left(\frac{Y_1+\ldots+Y_n}{n}\right)^T-p\right)\xrightarrow{d}\mathcal{N}(0;\underbrace{VI_mV^T}_{=I_m}-VZZ^TV^T)=\mathcal{N}(0;\operatorname{diag}(0,\underbrace{1,\ldots,\ 1}_{m-1})).$$

По теореме о наследовании сходимости

$$\left\| V\sqrt{B^{-1}}\sqrt{n} \left(\left(\frac{Y_1 + \ldots + Y_n}{n} \right)^T - p \right) \right\|^2 = \sum_{j=1}^m \frac{(\mu_j - np_j^0)^2}{np_j^0} \xrightarrow{d} \chi^2(m-1).$$

Следствие 11.3.1. Гипотеза H отвергается на уровне значимости ε , если $\widehat{\mu} > u_{1-\varepsilon}$, где $u - \kappa$ вантиль уровня $1 - \varepsilon$ распределения $\chi^2(m-1)$.

Утверждение 11.3.1. Критерий Пирсона — состоятельный критерий.

Доказательство. Пусть $\exists i: p_i \neq p_i^0$. Без ограничения общности i=1. Покажем, что в таком случае $\mathsf{P}(\widehat{\mu} > u_{1-\varepsilon}) \to 1$. По УЗБЧ $\frac{\mu_i}{n} \xrightarrow{\text{п.н.}} p_i$, а значит

$$\widehat{\mu} = \sum_{i=1}^{m} \frac{(\mu_i - np_i^0)^2}{np_i^0} = \sum_{i=1}^{m} \frac{n\left(\frac{\mu_i}{n} - p_i^0\right)^2}{p_i^0}.$$

В частности, при i=1:

$$\frac{n\left(\frac{\mu_1}{n}-p_1^0\right)^2}{p_1^0} \xrightarrow{\text{п.н.}} n\frac{(p_1-p_1^0)^2}{p_1^0} \xrightarrow{\text{п.н.}} +\infty.$$

Пример 11.5. Максим Евгеньевич Жуковский едет на лекцию по математической статистике. Он планирует задать слушателям три вопроса в начале лекции, возможные варианты ответа на которые следующие: a_1 ="да, да", a_2 ="да, нет", a_3 ="нет, нет". В электричке Максим Евгеньевич выдвинул гипотезу $H: p_1^0 = \frac{1}{2}, \ p_2^0 = \frac{1}{3}, \ p_3^0 = \frac{1}{6}$.

Проведя опрос, Максим Евгеньвич получил следующие результаты: $\mu_1=28,\ \mu_2=20,\ \mu_3=12.$ В таком случае,

$$\widehat{\mu} = \frac{(28-30)^2}{30} + \frac{(12-10)^2}{30} = \frac{8}{15}.$$

Посмотрев на википедии квантили $\chi^2(2)$, Максим Евгеньевич, пользуясь критерием Пирсона, отвергает H на уровне значимости 0.8, но не отвергает на уровне значимости 0.1.

Определение 11.10. Пусть $\{S(x) > u\}$ — критерий проверки гипотезы $H: \mathsf{P} = \mathsf{P}_0$ и $\alpha = \mathsf{P}_0(S(x) > u)$ — его уровень значимости. Найдем значение S(x) для выборки $X_1, \ldots, X_n: S(X_1, \ldots, X_n) = t$. Величина $p = \mathsf{P}_0(S(x) > t)$ называется p-значением (p-value). При $t > u \Rightarrow p < \alpha$ гипотеза H отвергается.

Критерий Колмогорова-Смирнова

Теорема 11.4. (Колмогоров, Смирнов)

Пусть имеется выборка из распределения с непрерывной функцией распределения. Тогда

$$\sqrt{n} \sup_{x} |F(x) - F_n(x)| \xrightarrow{d} K,$$

 $rde\ K$ — распределение Колмогорова с функцией распределения

$$\begin{cases} \sum_{k=-\infty}^{+\infty} (-1)^k e^{-2k^2 x^2} & x \geqslant 0, \\ 0 & x < 0 \end{cases}$$

Рассмотрим статистику $H: \mathsf{P} = \mathsf{P}_0$. Пусть $S(X) = \sqrt{n} \sup_x |F(x) - F_n(x)|$ и $u_{1-\alpha}$ — квантиль распределения K уровня $1-\alpha$. Тогда $\{S(x) > u_{1-\alpha}\}$ это критерий проверки H уровня значимости α .

Утверждение 11.3.2.

$$S(X) = \sqrt{n} \sup_{0 \le k \le n} \left\{ \left| F(X_{(k)} - \frac{k}{n} \right|, \left| F(X_{(k+1)} - \frac{k}{n} \right| \right\},$$

где $X_{(0)} := -\infty, \ X_{(n+1)} := +\infty.$

Доказательство. Следует из того, что $F_n(x) = \text{const}$ на $[X_{(k)}, X_{(k+1)})$.

Критерий Мизеса-Смирнова

Теорема 11.5. $(6/\partial)$

$$n\underbrace{\int\limits_{\mathbb{R}} (F(x) - F_n(x)) dF(x)}_{\omega^2} \xrightarrow{d} \xi,$$

где $\xi \sim a1$.

Упраженение.
$$\omega^2 = \frac{1}{12n} + \sum_{k=1}^n \left(X_{(k)} - \frac{k - \frac{1}{2}}{n} \right)^2$$

Определение 11.11. Все три критерия (Пирсона, Колмогорова-Смиронова, Мизеса-Смирнова) называются *критериями согласия*, поскольку проверяют гипотезу вида $H: \mathsf{P} = \mathsf{P}_0$.

11.4 Байесовские критерии

Пусть мы хотим проверить гипотезу $H_0: \mathsf{P} = \mathsf{P}_0$ против альтернативы $H_1: \mathsf{P} = \mathsf{P}_1$, где $\mathsf{P}_0, \mathsf{P}_1$ — доминируемые относительно меры μ . Пусть Q — априорное распределение, и $Q(\mathsf{P} = \mathsf{P}_0) = p_0, \ Q(\mathsf{P} = \mathsf{P}_1) = p_1$. Для получения критерия разобьем множество $\mathcal{X} = S_0 \sqcup S_1$ на 2, такие что $X \in S_i \Rightarrow$ отклоняем H_i .

Вероятность ошибки первого рода в такой модели равна

$$p_0 \mathsf{P}_0(X \in S_0) + p_1 \mathsf{P}_1(X \in S_1) \to \min_{S_0, S_1}$$

и задача стоит в том, чтобы найти такое разбиение \mathcal{X} , при котором она минимальна.

Пусть
$$S = \begin{cases} S_0 & \mathsf{P} = \mathsf{P}_0, \\ S_1 & \mathsf{P} = \mathsf{P}_1 \end{cases}$$
 — случайное множество. Имеем

$$\mathsf{P}_0(X \in S_0) = \mathsf{E}I(X \in S) = \mathsf{E}\left(\mathsf{E}(I(X \in S) \mid X)\right).$$

Найдем условное мат.ожидание

$$\mathsf{E}\left(I(x \in S) \mid X = x\right) = I(x \in S_0) \underbrace{\frac{p_0 f_0(x)}{p_0 f_0(x) + p_1 f_1(x)}}_{q_0} + I(x \in S_1) \underbrace{\frac{p_1 f_1(x)}{p_0 f_0(x) + p_1 f_1(x)}}_{q_1} = 1 - I(x \in S_1) q_0 - I(x \in S_0) q_1.$$

Тогда

$$\max_{S_0,S_1} \mathsf{E} \left(I(x \in S_1) q_0 + I(x \in S_0) q_1 \right) \leqslant \mathsf{E} \max \{ q_0, \ q_1 \}$$

и равенство достигается при $S_1:=\{p_0f_0>p_1f_1\},\ S_0:=\{p_1f_1\geqslant p_0f_0\}.$

Пример 11.6. $X_1, \, \dots, \, X_n \sim \mathcal{N}(a,1)$ и $H_0: a=a_0, \, H_1: a=a_1$ и $Q(a=a_i)=p_i.$ Тогда S_0 имеет вид

$$S_{0} = \left\{ p_{1} \left(\frac{1}{\sqrt{2\pi}} \right)^{n} \exp\left[-\frac{1}{2} \sum (X_{i} - a_{0})^{2} \right] > p_{0} \left(\frac{1}{\sqrt{2\pi}} \right)^{n} \exp\left[-\frac{1}{2} \sum (X_{i} - a_{1})^{2} \right] \right\}$$

$$= \left\{ \exp\left[(a_{1} - a_{0}) \sum X_{i} - \frac{a_{1}^{2} - a_{0}^{2}}{2} n \right] > \frac{p_{0}}{p_{1}} \right\}$$

$$= \left\{ (a_{1} - a_{0}) \overline{X} > \frac{a_{1}^{2} - a_{0}^{2}}{2} + \frac{1}{n} \ln \frac{p_{0}}{p_{1}} \right\}.$$