

Console SU-EE100 sur FPGA.

Réalisé par : Hiba KHECHAI & Zahra BENSLIMANE.

Sommaire De La Présentation

- Architecture globale de la console.
- Gestion de l'encodeur rotatif.
- Machine à état du module IP Rotary.
- chronogramme du IP rotary.
- Gestion de l'état de la partie (Pause, gagné,perdu).
- Module Mode.
- Bilan du TP.
- Conclusion.

Diagramme SADT

STRUCTURED ANALYSIS AND DESIGN TECHNIQUE

Le niveau A-0 du jeu.

Architecture globale de la console

Source: Documentation Technique (Etudiants), Julien Denoulet.

IP rotary

schéma pour illustrer IP rotary via Vivado

machine à état du module move

Chronogramme de Move

<u>05</u>

déplacement de la raquette à l'aide de l'encodeur rotatif

Gestion du Jeu & Gestion de l'état de la partie

Gestion du Jeu : Game

- Sélectionner le mode Console ou Manette pour la SU-EE100
- Sélectionner le jeu actif (Pong ou Casse Briques)
- Gestion du mode Pause, gagné et perdu.
- Transmission des signaux couleurs l'IP VGA

Schéma élaboré par vivado

<u> 07</u>

master_slave_select

Machine à état : Mode

- Génération des deux signaux Brick_Win et Pause
- Gestion des deux compteurs Tempo Pause et Timer Lost

Simulation d'une partie gagnée : Affichage d'un écran vert pour une durée indéterminée

Simulation d'une partie perdue

Affichage d'un écran rouge pour une durée de 64 images.

Retour à l'état initial S0

Bilan & Conclusions

Tache 01: MovingColors

Tache 02 : IP Rotary

Tache 03 : Mode [gestion du jeu]

MERCI DE VOTRE ATTENTION