

Photo banner - Capstone project Descrition

Photo

Photo

Youtube link: www.youtube.com/XXXXXXX (If there is a link in the info pages)

Photo banner - Hackaton

Descrition

Text Resume Here

Contact Camille Dubost:

Email Address: camillecesardubost@gmail.com

Phone number: +971 52 912 8453

ARISE - Aerial Robotics Capstone Competition - April 2024 Roles : Team captain. Technical Lead on payload design

Developed a payload system designed to deliver a total of 100 balls to 4 distinct targets. Created 4 lightweight fabric arms, each carrying 25 balls, which rotated downward for efficient release. Each arm featured a locking flap at the end that opened automatically based on orientation. Each arm was powered by a 35 kg high-torque servo, coupled with a 3D-printed gear mechanism, allowing the arms to rotate between 90 and 100 degrees.

Additionally, I built custom Li-ion batteries to extend range without added weight, assembling a 4S2P - 116.8V 8400mAh pack using 21700 Molicel P42A cells.

Documented all technical specifications in a comprehensive 57-page report.

FIXED-WING

Building a small plane had been a dream of mine since I began exploring electronics and UAVs.

I created multiple prototypes with bodies made from either foam or 3D-printed plastic parts. After refining and detailing 8 3D designs using Onshape CAD software, my latest prototype has a streamlined shape to allow for easy add-ons. It is a twin-motor plane with a V-tail, a wingspan of 130 cm, and weighs 800 grams without electronics. I printed it in PLA+ but plan to test lightweight PLA soon. This latest prototype took flight in August 2024.

LAST VERSION

DRONES

Passionate about aeronautics and astronautics, drones have become my favorite hobby. After learning to pilot a Mavic, I began building my own FPV drones. I spend hours designing, testing, and refining them based on their specific purposes. I use some for freestyle flying, larger ones—with the capability to carry cameras and fly long-tange—for filming nature, and others optimized for racina,

Through this, I've gained a lot of knowledge about electronics and precise flight control, especially for racing. I still crash regularly, though! My drone frames are made of carbon fiber, with 3D-printed TPU protectors, but hitting a steel racing gate can still be pretty destructive. Maintenance and repair take quite a bit of time.

I'm always working to make my drones more efficient, whether by modifying carbon-fiber frames or enhancing them with custom Li-ion batteries.

Check out my flight videos and follow me on my YouTube channel!

Link video:

https://www.youtube.com/watch?v=VOYRCmxQ5LM

School project completed in 10th grade. This solar-powered Arduino boat is capable of autonomously collecting debris from the water surface using a net and rake. It can also record atmospheric data.

How I made it? The main structure is built from 20x20 aluminum extrusions, supported by 2 floaters made of 6" PVC pipes, and propelled by 2 underwater propellers that steer using differential thrust. All electronics are protected in 2 separate waterproof plastic boxes: one containing the Arduino, receiver, and power distribution, and the other housing 2 6V lead batteries connected in series, along with the solar-powered MPPT.

Youtube link: https://www.youtube.com/watch?v=YFVOGMfQfrU

For many of my UAVs (drones, fixed wings, and Capstone project), I built and used custom-assembled Li-ion batteries. These batteries are more energy-dense than the commonly used LiPo technology, providing UAVs with extended flight time. Additionally, at equal capacity, these custom-made batteries are more economical than off-the-shelf options. Building these batteries required precision and attention to avoid wiring errors. The downside of Li-ion batteries is their lower power output (Amps), which provides less thrust and doesn't handle rapid power surges well. For the Capstone drone, I made two 452P packs (photos below) and connected them in parallel to increase the current from 45A to 90A, effectively doubling the capacity.

Description of me:

A creative problem-solver driven by innovation and sustainability, aspiring to create impactful solutions and advance technology to explore space mindfully, ensuring a more resilient future.