Sr. No	Title of Paper	Name of Authors	Published Year	Remarks
01	A Decision Tree Optimised SVM Model for Stress Detection using Biosignals	Alana Paul Cruz, Aravind Pradeep, Kavali Riya Sivasankar and Krishnaveni K.S	July 28 - 30, 2020	Bio Signals: Electrocardiogra (ECG). Parameters: ECG derived Respiration (EDR), Respiration Rate, QT interval, RR interval. Database: Physionet's "drivedb" database. Algorithm: Cubic SVM, Gaussian Kernel, Decision Tree, Support Vector machines (SVM). Evaluation Metric: Confusion Matrix. Kernal Methods: Linear, Quadratic, Cubic. Model Name: Tree Optimised SVM. Model Accuracy: 96.3%.
02	Automatic Stress Detection Using Wearable Sensors and Machine Learning: A Review	Shruti Gedam,Sanchita Paul	July 1-3,2020	Stressors: Questionnaire, Mathematical Tasks -> Sensores: EMG ,ECG, Respiration ,Skin Conductance -> Algorithm: Linear Bayes Normal Classifier Quadratic Bayes Normal Classifier K-Nearest Neighbor Classifier Fisher's Least Square Linear Classifier Stressors: Some Tests, Breathing, exercise -> Sensores: EDA, EMG, Respiration Heart Rate -> Algorithm: Linear Bayes Normal Classifier Quadratic Bayes Normal Classifier K-Nearest Neighbor Classifier Fisher's Least Square Linear Classifier Stressors: Tracking -> Sensores: Skin Conductance -> Algorithm: Logistic Regression Model. Stressors: Interviews -> Sensores: Heart Rate, Galvanic Skin Response - > Algorithm: Fuzzy Logic Algorithm. Stressors: Age, Working out in Gym -> Sensore: Pulse Sensor, Heart Rate- > Algorithm: Logistic Regression Model Support Vector Machine Classifier. Stressors: Tense and calm conditions, Heart Rate -> Sensores: - Temperature, Galvanic Skin Response Heart Rate > Algorithm: Fuzzy Logic Algorithm.

03	Stress Detection with Machine Learning and, Deep Learning using	Pramod Bobade, Vani M.	September 06,2020	Stressors: STAI self-report Questionnaire -> Sensores: - Heart Rate Skin Temperature, Galvanic Skin Response, Pulse oximeter Breath-rate sensor > Algorithm: Support Vector Machine Classifier K-Nearest Neighbor Classifier Random Forest Classifier Logistic Regression Mode. Dataset: WESAD. Sensors: three- axis acceleration (ACC), electrocardiogram (ECG), blood volume pulse (BVP), body temperature (TEMP), respiration (RESP),
	Multimodal Physiological Data			electromyogram (EMG) and electrodermal activity (EDA). Algorithm: K-Nearest Neighbour, Linear Discriminant Analysis, Random Forest, Decision Tree, AdaBoost and Kernel Support Vector Machine. Accuracy: 81.65%. Deep learning Accuracy: 84.32% to 95.21%
04	Machine Learning and IoT for Prediction and Detection of Stress	Mr.Purnendu Shekhar Pandey	2017	Pulse Sensor : Heart rate ,age lot Devices : NODE-MCU Server : Flask overlay Supervised learning : Logistic regression. Algorithm : Classification, VF – 15, Naive Bayes,SVM. Accuracy : 68%