「ブロックチェーン技術概論 理論と実践」正誤表

最新情報は、サポートページ(https://github.com/blockchain-programming/book2021)をご覧ください.

左に*がついているものは第2刷以降で、**がついているものは第3刷で、それぞれ訂正済です.

2023年10月10日時点

ページ	場所	誤	正	
* v.	一番下の行	(一番下の行に追加)	4.6 秘密計算102	
* 22	上から1行目	計算コストと考えます。	計算コスト *6 と考えます。	
** 23	上から7行目	小さくなります。	大きくなります。	
* 31	上から 11–12 行目	メカニズム使用した	メカニズムを使用した	
50	下から4行目	和を最大化する	和が最大化された状態である	
* 54	上から 11 行目	1996 年	1994 年	
* 70	下から2行目	誤:https://cryptorating.eu/whitepapers/イーサリアム/イーサリアム_white_paper.pdf		
	(参考文献 [2])	$\boxed{\text{$\mathbb{E}$: $\tt https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf}}$		
75	上から 12 行目	整数 e	整数 d,e	
75	上から 13 行目	$c = m^d$	$c=m^e$	
* 75	上から 16, 19, 22 行目	生成限 g	生成元 g	
* 93	上から 10 行目	公開鍵暗号と使って	公開鍵暗号を使って	
* 99	上から 6–8 行目	誤: R については楕円曲線離散対数問題が困難であるという前提から rG の r を知ることは不可能とし, $s=(r+ed) \bmod n$ と $s=r$ が同じエントロピーをもつことを考えると検証者にはこの 2 つの確率変数はともに乱数と区別できません。したがってゼロ知識性		
		正:楕円曲線離散対数問題が困難であるという前提から, $R=rG$ から r を知ることや $eP=edG$ から ed を知ることは不可能で		
		$s = (r + ed) \bmod n$ と $s = r$ の s は確率変数と	して区別できないので ed はわかりません。したがって d に関するゼロ知識性	
* 100	下から 2 行目	誤:対偶をとれば「間違った命題は証明できない」ということになります。		

ページ	場所	誤	正	
		正:対偶をとると「偽なる命題は証明によって否定される」ことになります。		
* 102	下から9行目	秘密計算	4.6 秘密計算	
* 103	上から9行目	ブラックリーの (t,n) しきい値秘密分散法の例	ブラックリーの (t,n) しきい値秘密分散法の簡単な例	
* 103	上から 10 行目	してみましょう。	してみましょう(図 4.14)。	
* 103	下から4行目	誤:ブラークリーの (t,n) しきい値秘密分散法は、空間の次元を変えることで、		
		正:ブラークリーの (t,n) しきい値秘密分散法では,シェアを秘密情報の点 s とランダムな点 r を通る t 次元空間の中の $(t-1)$ 次元超平面		
		とすることで、		
* 121	上から6行目	ビットコインの	ビットコインを	
130	上から3つ目のコード	誤:(実行結果が途中で切れています)		
		正:サポートページ(https://github.com/blockchain-programming/book2021)に完全版を掲載しています.		
* 134	下から3行目	2140年	2141 年ごろ	
* 134	下から 2 行目	$210000\mathrm{btc}$	$21000000\mathrm{btc}$	
* 134	下から1行目	$210000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$	$21000000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$	
* 135	上から 11, 15 行目	係数	係数(のリトルエンディアン)	
* 135	上から 16 行目	誤:0x 00000000 0004864c 00000000 00000000 00000000 00000000 0000		
		正: $0x00000000004c8604000000000000000000000000000000000000$		
* 151	表 6.8 の説明	(行は前半2ビットで後半3ビット)	(行は前半2ビットで,列は後半3ビット)	
* 151	上から 13 行目	ファーマット	フォーマット	
* 167	上から7行目	ゲーム論	ゲーム理論	
* 168	上から7行目	ゲーム論	ゲーム理論	
* 221	下から1行目	ZK-Rolleup	ZK-Rollups	
* 224	上から 20 行目	Locked	Lock	

ページ	場所	誤	正
325	上から 14 行目	(文末に追加)	ベズー方程式の d は最大公約数なので,下表では d を \gcd と表示します。
* 341	上から4行目	加法逆元演算 -a	加法逆元
* 347	下から4行目	$ heta^1=1$	$ heta^1 = heta$
* 350	上から9行目	点を $R^{'}$	点 R'
* 351	上から6行目	$\{(x,y)\mid x,y\in GF(p)\}\cup\{(\infty,\infty)\}$	$\{(x,y)\mid x,y\in GF(p)\}\cup\{(\infty,\infty)\}$. ここで (∞,∞) は無限遠点 O.
* 352	上から9行目	$(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - y_1) + y_1)$	$(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - x_1) + y_1)$