MAR 1 1 2002

SEQUENCE LISTING

<110> Ingram, Lonnie Zhou nghangu

<120> METHODS AND COMPOSITIONS FOR SIMULTANEOUS
 SACCHARIFICATION AND FERMENTATION

<130> BCI-024CP

<140> 09/885,297

<141> 2001-09-19

<150> 60/214,137

<151> 2000-06-26

<150> 60/219,913

<151> 2000-07-21

<160> 17

<170> PatentIn Ver. 2.0

<210> 1

<211> 450

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 1

ctttttcggc atgagcaacc aacattttca aggtatcatc ctgatgcgca atatcggcat 60

cggttagcca taaccatttt acctgtccgg cggccttaat accttgatca gatggttcgt 120

ggtgttgtta ccttgccgaa gggcaccggt aaaaatgttc gcgtcggtgt tttcgcccgt 180

ggcccgaaag ctgaagaagc taaagctgct ggtgcagaag ttgtcggcgc agaagacctg 240

atggaagcca ttcagggcgg cagcattgat ttcgatcgtg atgcccttta tactgaaatt 300

geettgeget gecataatga ageageetee ggtgttttgg cagatttaag egetgeetga 360

ttttcgtgat cctctagagt ctatgaaatg gagattcatt tatgcctctc tcttattcgg 420

ataaccatcc agtcatccgc aagcttggcc 450

<210> 2

<211> 1509

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 2

gatcaaccgg caatttatcc acggcatcaa attcgatctg tcttttcccg tatcattggc 60

aataccggca ttctgattac aggccqtqtt ttgaatgcgg tatqcaqttt tqtctatqtc 120

FYA

gcatggacat cccagacatt gggattgaac ctgtttggtg tcatgctttt gattacgact 180 tttgctaccc tgatttcgga tattacccgt tttcagtcat ggcaaacctt gctgcattac 240 ggttcaaaag cttttcagga aaaagatttt aaccaatttg atgatgtcct tgccttttgc 300 atcagagccg attttttag tgcggcgata ggtatgttgg tagggttagg cggtatcttg 360 attttaggca cttcaagatt gggatggcct gccgaggtca agccagatgc cttgctttgt 420 atgctgatta tactttttat gaatatcggc tggtccaacc gggatgttgc ggctgtgtaa 480 ccgctttaaa ctggtcacta tttatgagtt tattacgacc tgcgtcagaa ccggaggttg 540 tggcattggt tattggcttc atatgccttt ggggtatttt ttgtttatat ggtgcctgac 600 gcaattcacg ctttttgtca cctgtagtta cgctggcatt tatctctttc accaatatac 660 ggagcgagca tttccgataa gaaaaatatt tcagagaaaa acgcccgttg aagggatgtg 720 gaaattcact ttaagcgtca gttttaatga aatcctagac tccattttcc agcagggtgg 780 caccettget attggtaget cactggggge tggggaagee getgtetate gggtegegeg 840 ccagattagt aacggtttat ccaaaccagc acagatgatg atcggctaac atgcatccac 900 cggcagcacc ggccgtttta tgcttgggat tattgatatg ccgaaaagga tacaacatct 960 ggaagaaaaa gacgaaggcc ggaataagcg cccattctgc aaaattgtta caacttagtc 1020 gegecateag ggaatgaaaa ateaateegt etttttegge atgageaace aacattttea 1080 aggtatcatc ctgatgcgca atatcggcat cggttagcca taaccatttt acctgtccgg 1140 eggeettaat acettgatea gatggttegt ggtgttgtta eettgeegaa gggeaeeggt 1200 aaaaatgttc gcgtcggtgt tttcgcccgt ggcccgaaag ctgaagaagc taaagctgct 1260 ggtgcagaag ttgtcggcgc agaagacctg atggaagcca ttcagggcgg cagcattgat 1320 ttcgatcgtg atgcccttta tactgaaatt gccttgcgct gccataatga agcagcctcc 1380 ggtgttttgg cagatttaag cgctgcctga ttttcgtgat cctctagagt ctatgaaatg 1440 gagatteatt tatgeetete tettattegg ataaceatee agteateege aagettggee 1500 gtaatccat 1509

```
<210> 3
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
<400> 3
```

cgaattcctg ccgaagttta ttagcca

<210> 4 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 4 aaggatcctt ccaccagcta tttgttagtg a	31
<210> 5 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 5 agaattctgc cagttggttg acgatag	27
<210> 6 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 6 caggatecee teaagteact agttaaactg	30
<210> 7 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 7 taatacgact cactataggg	20
<210> 8 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 8 taacaatttc acacagga	18

```
<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer
<400> 9
                                                                    19
cacgacgttg taaaacgac
<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:primer
<400> 10
                                                                    30
gactggatgg ttatccgaat aagagagagg
<210> 11
<211> 8
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:primer
<400> 11
ggcgcgcc
<210> 12
<211> 11544
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:vector
<220>
<221> misc feature
<222> 3282-4281
<223> n=a,c,g or t
<220>
<221> misc feature
<222> 9476-11544
<223> n=a,c,g or t
<223> nucleotide positions 1-1451 encodes promoter
<223> nucleotide positions 1452-2735 encodes celZ gene
<220>
```

```
<223> nucleotide positions 4916-5776 encodes bla gene
<220>
<223> nucleotide positions 7061-8251 encodes tet gene
<220>
<223> nucleotide positions 9476-11544 encodes target sequence from K. oxytoca
<220>
<221> CDS
<222> (1452)..(2735)
<220>
<221> CDS
<222> (4916)..(5776)
<220>
<221> CDS
<222> (7061)..(8251)
<400> 12
gatcaaccgg caatttatcc acggcatcaa attcgatctg tcttttcccg tatcattggc 60
aataccggca ttctgattac aggccgtgtt ttgaatgcgg tatgcagttt tgtctatgtc 120
gcatggacat cccagacatt gggattgaac ctgtttggtg tcatgctttt gattacgact 180
tttgctaccc tgatttcgga tattacccgt tttcagtcat ggcaaacctt gctgcattac 240
ggttcaaaag cttttcagga aaaagatttt aaccaatttg atgatgtcct tgccttttgc 300
atcagagecg atttttttag tgeggegata ggtatgttgg tagggttagg eggtatettg 360
attttaggca cttcaagatt gggatggcct gccgaggtca agccagatgc cttgctttgt 420
atgctgatta tactttttat gaatatcggc tggtccaacc gggatgttgc ggctgtgtaa 480
ccgctttaaa ctggtcacta tttatgagtt tattacgacc tgcgtcagaa ccggaggttg 540
tggcattggt tattggcttc atatgccttt ggggtatttt ttgtttatat ggtgcctgac 600
gcaattcacg ctttttgtca cctgtagtta cgctggcatt tatctctttc accaatatac 660
ggagcgagca tttccgataa gaaaaatatt tcagagaaaa acgcccgttg aagggatgtg 720
gaaattcact ttaagcgtca gttttaatga aatcctagac tccattttcc agcagggtgg 780
caccettget attggtaget cactggggge tggggaagee getgtetate gggtegegeg 840
ccagattagt aacggtttat ccaaaccagc acagatgatg atcggctaac atgcatccac 900
cggcagcacc ggccgtttta tgcttgggat tattgatatg ccgaaaagga tacaacatct 960
ggaagaaaaa gacgaaggcc ggaataagcg cccattctgc aaaattgtta caacttagtc 1020
gcgccatcag ggaatgaaaa atcaatccgt ctttttcggc atgagcaacc aacattttca 1080
aggtatcatc ctgatgcgca atatcggcat cggttagcca taaccatttt acctgtccgg 1140
```

cggccttaat accttgatca gatggttcgt ggtgttgtta ccttgccgaa gggcaccggt 1200

aaaaatgtte gegteggtgt tttegeeegt ggeeegaaag etgaagaage taaagetget 1260 ggtgcagaag ttgtcggcgc agaagacctg atggaagcca ttcagggcgg cagcattgat 1320 ttcgatcgtg atgcccttta tactgaaatt gccttgcgct gccataatga agcagcctcc 1380 ggtgttttgg cagatttaag cgctgcctga ttttcgtgat cctctagagt ctatgaaatg 1440 gagatteatt t atg cet etc tet tat teg gat aac eat eea gte ate gat Met Pro Leu Ser Tyr Ser Asp Asn His Pro Val Ile Asp age caa aaa cac gee eea egt aaa aaa etg ttt eta tet tgt gee tgt Ser Gln Lys His Ala Pro Arg Lys Leu Phe Leu Ser Cys Ala Cys tta gga tta agc ctt gcc tgc ctt tcc agt aat gcc tgg gcg agt gtt 1586 Leu Gly Leu Ser Leu Ala Cys Leu Ser Ser Asn Ala Trp Ala Ser Val gag ccg tta tcc gtt agc ggc aat aaa atc tac gca ggt gaa aaa gcc 1634 Glu Pro Leu Ser Val Ser Gly Asn Lys Ile Tyr Ala Gly Glu Lys Ala 55 aaa agt ttt gcc ggc aac agc tta ttc tgg agt aat aat ggt tgg ggt 1682 Lys Ser Phe Ala Gly Asn Ser Leu Phe Trp Ser Asn Asn Gly Trp Gly ggg gaa aaa ttc tac aca gcc gat acc gtt gcg tcg ctg aaa aaa gac 1730 Gly Glu Lys Phe Tyr Thr Ala Asp Thr Val Ala Ser Leu Lys Lys Asp tgg aaa tcc agc att gtt cgc gcc gct atg ggc gtt cag gaa agc ggt 1778 Trp Lys Ser Ser Ile Val Arg Ala Ala Met Gly Val Gln Glu Ser Gly ggt tat ctg cag gac ccg gct ggc aac aag gcc aaa gtt gaa aga gtg 1826 Gly Tyr Leu Gln Asp Pro Ala Gly Asn Lys Ala Lys Val Glu Arg Val 110 115 gtg gat gcc gca atc gcc aac gat atg tat gtg att att gac tgg cac 1874 Val Asp Ala Ala Ile Ala Asn Asp Met Tyr Val Ile Ile Asp Trp His 130 140 tca cat tct gca gaa aac aat cgc agt gaa gcc att cgc ttc ttc cag 1922 Ser His Ser Ala Glu Asn Asn Arg Ser Glu Ala Ile Arg Phe Phe Gln 145 gaa atg gcg cgc aaa tat ggc aac aag ccg aat gtc att tat gaa atc 1970 Glu Met Ala Arg Lys Tyr Gly Asn Lys Pro Asn Val Ile Tyr Glu Ile 160 165 tac aac gag ccg ctt cag gtt tca tgg agc aat acc att aaa cct tat 2018 Tyr Asn Glu Pro Leu Gln Val Ser Trp Ser Asn Thr Ile Lys Pro Tyr 175 gcc gaa gcc gtg att tcc gcc att cgc gcc att gac ccg gat aac ctg 2066 Ala Glu Ala Val Ile Ser Ala Ile Arg Ala Ile Asp Pro Asp Asn Leu 190 195 205 att att gtc ggt acg ccc agt tgg tcg caa aac gtt gat gaa gcg tcg 2114

Ile	e Ile	· Val	Gly	Thr 210		Ser	Trp	Ser	Gln 215		ı Val	Asp	Glu	Ala 220		
cgc Arg	gat Asp	cca Pro	atc Ile 225	aac Asn	gcc Ala	aag Lys	aat Asn	atc Ile 230	Ala	tat Tyr	acg Thr	ctg Leu	cat His 235	ttc Phe	tac Tyr	2162
gcg Ala	gga Gly	acc Thr 240	His	ggt Gly	gag Glu	tca Ser	tta Leu 245	cgc Arg	act Thr	aaa Lys	gcc Ala	cgc Arg 250	cag Gln	gcg Ala	tta Leu	2210
aat Asn	aac Asn 255	Gly	att Ile	gcg Ala	ctt Leu	ttc Phe 260	gtc Val	acc Thr	gag Glu	tgg Trp	ggc Gly 265	gcc Ala	gtt Val	aac Asn	gcg Ala	2258
gac Asp 270	ggc	aat Asn	ggc Gly	gga Gly	gtg Val 275	aac Asn	cag Gln	aca Thr	gat Asp	acc Thr 280	gac Asp	gcc Ala	tgg Trp	gta Val	acg Thr 285	2306
ttc Phe	atg Met	cgt Arg	gac Asp	aac Asn 290	aac Asn	atc Ile	agc Ser	aac Asn	gca Ala 295	aac Asn	tgg Trp	gcg Ala	tta Leu	aat Asn 300	gat Asp	2354
aaa Lys	agc Ser	gaa Glu	ggg Gly 305	gca Ala	tca Ser	acc Thr	tat Tyr	tat Tyr 310	ccg Pro	gac Asp	tct Ser	aaa Lys	aac Asn 315	ctg Leu	acc Thr	2402
gag Glu	tcg Ser	ggt Gly 320	aaa Lys	ata Ile	gta Val	aaa Lys	tcg Ser 325	atc Ile	att Ile	caa Gln	agc Ser	tgg Trp 330	cca Pro	tat Tyr	aaa Lys	2450
gcg Ala	ggc Gly 335	agc Ser	gcc Ala	gcc Ala	agt Ser	aca Thr 340	aca Thr	acc Thr	gat Asp	cag Gln	tca Ser 345	acc Thr	gat Asp	acc Thr	acc Thr	2498
atg Met 350	gca Ala	cca Pro	ccg Pro	ttg Leu	acg Thr 355	aac Asn	cga Arg	cca Pro	caa Gln	ccg Pro 360	aca Thr	cac His	cgg Arg	caa Gln	acc Thr 365	2546
gct Ala	gat Asp	tgc Cys	tgc Cys	aat Asn 370	gcc Ala	aac Asn	gtt Val	tac Tyr	ccc Pro 375	aac Asn	tgg Trp	gtt Val	agc Ser	aaa Lys 380	gac Asp	2594
tgg Trp	gcg Ala	ggc Gly	cgg Arg 385	cag Gln	cga Arg	ctc Leu	ata Ile	acg Thr 390	aag Lys	cag Gln	gcc Ala	Asn	cga Arg 395	tcg Ser	tct Ser	2642
aca Thr	aag Lys	gga Gly 400	acc Thr	tgt Cys	ata Ile	Pro	caa Gln 405	act Thr	ggt Gly	aca Thr	ctt Leu	cat His 410	ccg Pro	ttc Phe	cgg Arg	2690
gca Ala	gcg Ala 415	att Ile	cct Pro	cct Pro	Gly	cac His 420	agg Arg	ttg Leu	gta Val	gct Ala	gta Val 425	act Thr	aat Asn	tga		2735
ttaa	tctt	tt c	accc	ccaa	a at	aaca	gggc	tgc	gatt	gca	gcct	gata	cg c	aaca	ttcca	2795
ttac	ttaa	tt g	cgtt	caaa	a gc	gccc	aaat	ccg	gtgc	gct	gcct	tgta	ac t	aata	tgatt	2855
tctc	tttc	gt a	cccg	cgtt	a at	cagc	tttg	agt	tagc	cga	caga	cgga	ac a	gcga	ggttg	2915

ccggcaacgt gccgtcatta tcacgagata cggtagccag cgaggtgtcc aggctgacga 2975 atcggacgcg gaagccgctg tccgtatcca tgagttgact cgcatccgca ttactgaccg 3035 ttgcagaagc agacagagac acgttgttgc ggaagtaatg tttctgtcct gactggacgt 3095 tgctcccgaa agcataatta atgccgtttt tatatgacgt gttatttatt accgtacgcc 3155 gccgcgttat tgttctggtc aaaacctttg ctcacgttgc caaacgcgac gcaacgggta 3215 atgcgatgat tgccgaccgc tggttcctcc cagtttgaac ccgttggcat tgccggcgaa 3275 gacctgcagg aattcactgg ccgtcgtttt acaacgtcgt gactgggaaa accctggcgt 4355 tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta atagcgaaga 4415 ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat ggcgcctgat 4475 geggtatttt eteettaege atetgtgegg tattteaeae egeataggeg egeetatggt 4535 gcacteteag tacaatetge tetgatgeeg catagttaag eeageeega eaceegeeaa 4595 caccogotga ogogocotga ogggottgto tgotocoggo atoogottao agacaagotg 4655 tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 4715 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 4775

cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 4835 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 4895 aatattgaaa aaggaagagt atg agt att caa cat ttc cgt gtc gcc ctt att 4948 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile ccc ttt ttt gcg gca ttt tgc ctt cct gtt ttt gct cac cca gaa acg 4996 Pro Phe Phe Ala Ala Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr ctg gtg aaa gta aaa gat gct gaa gat cag ttg ggt gca cga gtg ggt 5044 Leu Val Lys Val Lys Asp Ala Glu Asp Gln Leu Gly Ala Arg Val Gly 35 tac atc gaa ctg gat ctc aac agc ggt aag atc ctt gag agt ttt cgc 5092 Tyr Ile Glu Leu Asp Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg ccc gaa gaa cgt ttt cca atg atg agc act ttt aaa gtt ctg cta tgt 5140 Pro Glu Glu Arg Phe Pro Met Met Ser Thr Phe Lys Val Leu Leu Cys ggc gcg gta tta tcc cgt att gac gcc ggg caa gag caa ctc ggt cgc 5188 Gly Ala Val Leu Ser Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly Arg 8.5 cgc ata cac tat tct cag aat gac ttg gtt gag tac tca cca gtc aca 5236 Arg Ile His Tyr Ser Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr 100 gaa aag cat ctt acg gat ggc atg aca gta aga gaa tta tgc agt gct 5284 Glu Lys His Leu Thr Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala 115 gcc ata acc atg agt gat aac act gcg gcc aac tta ctt ctg aca acg 5332 Ala Ile Thr Met Ser Asp Asn Thr Ala Ala Asn Leu Leu Thr Thr 130 atc gga gga ccg aag gag cta acc gct ttt ttg cac aac atg ggg gat 5380 Ile Gly Gly Pro Lys Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp 145 cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc ata 5428 His Val Thr Arg Leu Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile 160 cca aac gac gag cgt gac acc acg atg cct gta gca atg gca aca acg 5476 Pro Asn Asp Glu Arg Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr 180 ttg cgc aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg caa 5524 Leu Arg Lys Leu Leu Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln caa tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg 5572 Gln Leu Ile Asp Trp Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu 210

ege teg gee ett eeg get gge tgg ttt att get gat aaa tet gga gee

5620

Arg Ser Ala Leu Pro Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala 220 230 5668 ggt gag cgt ggg tct cgc ggt atc att gca gca ctg ggg cca gat ggt Gly Glu Arg Gly Ser Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly 240 245 aag ccc tcc cgt atc gta gtt atc tac acg acg ggg agt cag gca act 5716 Lys Pro Ser Arg Ile Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr atg gat gaa cga aat aga cag atc gct gag ata ggt gcc tca ctg att 5764 Met Asp Glu Arg Asn Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile 270 275 280 aag cat tgg taa ctgtcagacc aagtttactc atatactt tagattgatt 5816 Lys His Trp 285 taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat aatctcatga 5876 ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta gaaaagatca 5936 aaggatette ttgagateet ttttttetge gegtaatetg etgettgeaa acaaaaaaac 5996 caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg 6056 taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag ccgtagttag 6116 gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac 6176 cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt 6236 taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg 6296 agegaaegae etacaeegaa etgagataee tacagegtga getatgagaa agegeeaege 6356 ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc 6416 gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc 6476 acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa 6536 acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt 6596 tettteetge gttateecet gattetgtgg ataacegtat tacegeettt gagtgagetg 6656 ataccgeteg cegeageega aegaeegage geagegagte agtgagegag gaageggege 6716 gccagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc cgattcatta 6776 atgcagetgg caegacaggt tteeegaetg gaaageggge agtgagegea aegeaattaa 6836 tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc cgqctcgtat 6896 gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta 6956 egecaagett geatgecaat teteatgttt gaeagettat eategataag etttaatgeg 7016 gtagtttatc acagttaaat tgctaacgca gtcaggcacc gtgt atg aaa tct aac 7072

Met Lys Ser Asn

					atc Ile 10											7120
					ccg Pro			_			_		_		-	7168
					gcc Ala											7216
-	_	_			cta Leu	_	_		_			_	_		_	7264
			_	_	cca Pro	-	_		_	_				_		7312
	_				atg Met 90					-	_					7360
_		_			gcc Ala									_	_	7408
				_	gac Asp			_		_	-		-	_		7456
					gct Ala											7504
					ttg Leu											7552
					aac Asn 170											7600
					aag Lys											7648
			_	_	tcc Ser							-			-	7696
					gtc Val											7744
					gtc Val											7792

														cac His		7840
														ggc Gly 275		7888
														tac Tyr		7936
_	_				_	_								atg Met		7984
Leu														atg Met		8032
														tcg Ser		8080
gcg Ala	_			-			_				_	_		gtc Val 355	_	8128
gcg Ala			_	_	_		_					_	-	tgg Trp		8176
gta Val		_	_				_	_				-	-	cgc Arg		8224
gca Ala				_		-		tga	atgo	gaago	ccg g	gegge	cacct	tc		8271
gcta	acgo	gat t	caco	cacto	cc aa	igaat	tgga	a gco	caato	caat	tctt	gcg	gag a	aacto	gtgaat	8331
gcgc	aaac	cca a	accct	tgg	ca ga	acat	atco	ato	gcgt	ccg	ccat	ctc	cag d	cagco	cgcacg	8391
cggc	gcat	ct o	gggg	gtcga	ac to	ctaga	aggat	ccc	cgca	acg	ctgt	cago	ege t	ttco	cagtta	8451
aacg	gcto	cca a	acgto	cgcca	at aç	gtaa	attco	c to	jcccç	ggcc	atac	cgato	cgg (gcago	gtgccg	8511
ttgg	ctat	.cg d	ccgto	cgcct	g ac	ctcat	caca	a cta	atctt	ccg	ctgo	catco	gcg a	aaggg	gttttg	8571
acca	cttc	ctt o	ccato	ctcto	cc gt	gcgc	ccgga	tgo	cato	gctc	acgt	acgo	egg d	cttat	cagat	8631
agtc	gggc	cag g	gccgt	cgtt	c ca	gcco	caato	g ago	ggaa	igct	ggcg	gtgga	agc q	gatgo	cagca	8691
cctg	ctco	etc a	aaca	ccgta	aa to	igec	ggcgg	g oga	acaç	ggca	ttc	ggcgg	gta a	agcgo	etteca	8751
gccc	ttta	at o	catca	acgct	g cg	gcad	catct	tga	atago	ccga	caco	gctgo	cca a	acgto	gttac	8811
cacc	atac	aca d	ggcgt	taca	at co	aago	gtgg	g tga	igtaa	attc	agca	atto	gcc t	cctgo	ctgtg	8871

gtccccccgt caacagegge gtteggagtg eccetggggg gaeeggegee ateaeegeta 8931 categaeata agegeeggge ttaaageatt tggeageetg aegettggte tgeggggega 8991 cggagttaag gtcaagaaaa tactgcgtgt cggtcatcag cggtgcagct tgtgaggcga 9051 catccagggc ggatcccgcg gtgacggtgg aaaatatgag ttcggcacct gtcaacgcgt 9111 getcaggacc ttgcagcttg caatcccaga cggtgactgg gttcactttt gccagtgcat 9231 ccgcaagaat gccacctgct tcaccataac ctataaacgt tattqtcqtc ataacaqctc 9291 cttacgcggc cacacgtcgg ccggaatgca aacgtcgccc gcgaacagaa gtcgcgccgt 9351 acgcagcaga ccgcagcctg ccaactgccc attatcatca agccggagcg ccacgctgaa 9411 ttgggtaccg agctccgaat tgggtaccga gctcgaatta attcgagctc ggtacccggg 9471 παοπηροποί προσποροποί προσποροποί προσποροποί προσποροποί προσποροποί 10191 плипринии плипринии плипринии плипринии приничин плипринии 10731

```
<210> 13
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 13
ctgttccgtt accaacac
                                                                     18
<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 14
gtgaatggga tcacgagt
                                                                     18
<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
```

```
<400> 15
accatcagca tcaacgccca acaacg
                                                                    26
<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 16
                                                                    30
gactggatgg ttatccgaat aagagagagg
<210> 17
<211> 11772
<212> DNA
<213> Artificial Sequence
<220>
<221> misc feature
<222> 134-1143
<223> n=a,c,g or t
<220>
<221> misc_feature
<222> 5753-7567
<223> n=a,c,g or t
<220>
<223> Description of Artificial Sequence: Synthetic
      construct
<220>
<223> unsequenced Erwinia DNA fragment from nucleotide
      position 144 to 1143
<220>
<223> P1 promoter region for celZ from nucleotide
      position 2974 to 4424
<220>
<223> guide fragment for integration from nucleotide
      position 4677 to 7573
<220>
<223> sequenced partial guide fragment from nucleotide
      position 4677 to 5752
<220>
<223> unsequenced partial guide fragment from nucleotide
      position 5753 to 7573
<220>
<223> P2 promoter region for celY from nucleotide
      position 7585 to 8576
<220>
<223> R6K-Y ori from nucleotide position 10388 to 10763
<220>
```

```
<223> FRTF lipase-binding sequence from nucleotide
    position 16 to 50
<220>
<223> FRTFlipase-binding sequence from nucleotide
    position 10058 to 10092
<220>
<223> celZ gene product is encoded by the complement of
    nucleotides 1690 to 2973
<220>
<223> celY gene product is encoded by the nucleotides
    8576 to 9574
<220>
<223> kanamicin-resistance gene product is encoded by
    the complement of nucleotides 10827 to 11621
<400> 17
atcgatgaat tgatccgaag ttcctattct ctagaaagta taggaacttc gaattgtcga 60
caagettgat etggettate gaaattaata egacteacta tagggagaee qqaatteeee 120
tgcaggtcga ctctagagga tcannnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn 180
nnnagegegt tegeeggeaa tgccaaeggg ttcaaaetgg gaggaaceag eggteggeaa 1200
tcatcgcatt acccgttgcg tcgcgtttgg caacgtgagc aaaggttttg accagaacaa 1260
taacgcggcg gcgtacggta ataaataaca cgtcatataa aaacggcatt aattatgctt 1320
tcgggagcaa cgtccagtca ggacagaaac attacttccg caacaacgtg tctctgtctg 1380
cttctgcaac ggtcagtaat gcggatgcga gtcaactcat ggatacggac agcggcttcc 1440
gcgtccgatt cgtcagcctg gacacctcgc tggctaccgt atctcgtgat aatgacggca 1500
cgttgccggc aacctcgctg ttccgtctgt cggctaactc aaagctgatt aacgcgggta 1560
cgaaagagaa atcatattag ttacaaggca gcgcaccgga tttgggcgct tttgaacgca 1620
attaagtaat ggaatgttgc gtatcaggct gcaatcgcag ccctgttatt ttgggggtga 1680
aaagattaat caattagtta cagctaccaa cctgtgccca ggaggaatcg ctgcccggaa 1740
cggatgaagt gtaccagttt gcggtataca ggttcccttt gtagacgatc gattggcctg 1800
cttcgttatg agtcgctgcc ggcccgccca gtctttgcta acccagttgg ggtaaacgtt 1860
ggcattgcag caatcagcgg tttgccggtg tgtcggttgt ggtcggttcg tcaacggtgg 1920
tgccatggtg gtatcggttg actgatcggt tgttgtactg gcggcgctgc ccgctttata 1980
tggccagctt tgaatgatcg attttactat tttacccgac tcggtcaggt ttttagagtc 2040
cggataatag gttgatgccc cttcgctttt atcatttaac gcccagtttg cgttgctgat 2100
gttgttgtca cgcatgaacg ttacccaggc gtcggtatct gtctggttca ctccgccatt 2160
gccgtccgcg ttaacggcgc cccactcggt gacgaaaagc gcaataccgt tatttaacgc 2220
ctggcgggct ttagtgcgta atgactcacc atgggttccc gcgtagaaat gcagcgtata 2280
ggcgatattc ttggcgttga ttggatcgcg cgacgcttca tcaacgtttt gcgaccaact 2340
gggcgtaccg acaataatca ggttatccgg gtcaatggcg cgaatggcgg aaatcacggc 2400
ttcggcataa ggtttaatgg tattgctcca tgaaacctga agcggctcgt tgtagatttc 2460
```

ataaatgaca ttcggcttgt tgccatattt gcgcgccatt tcctggaaga agcgaatggc 2520 ttcactgcga ttgttttctg cagaatgtga gtgccagtca ataatcacat acatatcgtt 2580 ggcgattgcg gcatccacca ctctttcaac tttggccttg ttgccagccg ggtcctgcag 2640 ataaccaccg ctttcctgaa cgcccatagc ggcgcgaaca atgctggatt tccagtcttt 2700 tttcagcgac gcaacggtat cggctgtgta gaatttttcc ccaccccaac cattattact 2760 ccagaataag ctgttgccgg caaaactttt ggctttttca cctgcgtaga ttttattgcc 2820 gctaacggat aacggctcaa cactcgccca ggcattactg gaaaggcagg caaggcttaa 2880 tcctaaacag gcacaagata gaaacagttt tttacgtggg gcgtgttttt ggctatcgat 2940 gactggatgg ttatccgaat aagagagagg cataaatgaa tctccatttc atagactcta 3000 qaqqatcacq aaaatcaqqc aqcqcttaaa tctqccaaaa caccqgaggc tgcttcatta 3060 tggcagcgca aggcaatttc agtataaagg gcatcacgat cgaaatcaat gctgccgccc 3120 tgaatggctt ccatcaggtc ttctgcgccg acaacttctg caccagcagc tttagcttct 3180 tcaqctttcg qgccacgggc gaaaacaccg acgcgaacat ttttaccggt gcccttcggc 3240 aaqqtaacaa caccacqaac catctgatca aggtattaag gccgccggac aggtaaaatg 3300 gttatggcta accgatgccg atattgcgca tcaggatgat accttgaaaa tgttggttgc 3360 tcatgccgaa aaagacggat tgatttttca ttccctgatg gcgcgactaa gttgtaacaa 3420 ttttgcagaa tgggcgctta ttccggcctt cgtctttttc ttccagatgt tgtatccttt 3480 tcggcatatc aataatccca agcataaaac ggccggtgct gccggtggat gcatgttagc 3540 cgatcatcat ctgtgctggt ttggataaac cgttactaat ctggcgcgcg acccgataga 3600 cagcggcttc cccagccccc agtgagctac caatagcaag ggtgccaccc tgctggaaaa 3660 tggagtctag gatttcatta aaactgacgc ttaaagtgaa tttccacatc ccttcaacgg 3720 gcgtttttct ctgaaatatt tttcttatcg gaaatgctcg ctccgtatat tggtgaaaga 3780 gataaatgcc agcgtaacta caggtgacaa aaagcgtgaa ttgcgtcagg caccatataa 3840 acaaaaaata ccccaaaggc atatgaagcc aataaccaat gccacaacct ccggttctga 3900 cgcaggtcgt aataaactca taaatagtga ccagtttaaa gcggttacac agccgcaaca 3960 tcccggttgg accagccgat attcataaaa agtataatca gcatacaaag caaggcatct 4020 ggcttgacct cggcaggcca tcccaatctt gaagtgccta aaatcaagat accgcctaac 4080 cctaccaaca tacctatcgc cgcactaaaa aaatcggctc tgatgcaaaa ggcaaggaca 4140 tcatcaaatt ggttaaaatc tttttcctga aaagcttttg aaccgtaatg cagcaaggtt 4200 tgccatgact gaaaacgggt aatatccgaa atcagggtag caaaagtcgt aatcaaaagc 4260 atgacaccaa acaggttcaa tcccaatgtc tgggatgtcc atgcgacata gacaaaactg 4320 cataccgcat tcaaaacacg gcctgtaatc agaatgccgg tattgccaat gatacgggaa 4380 aaqacaqatc qaatttgatg ccgtggataa attgccggtt gatcgatccc cgggtaccga 4440 gctcgaattc cgagcttggc gcgcctatgc ggtgtgaaat accgcacaga tgcgtaagga 4500 qaaaataccq catcaqqcqc cattcqccat tcaqqctqcq caactqttqq qaaqqqcqat 4560 cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct gcaaggcgat 4620 taaqttqqqt aacqccaqqq ttttcccagt cacgacgttg taaaacgacg gccagtgaat 4680 tccatcaacg cttgctgtaa ccaggagcca aagctatgaa tgtacctttt agctactcgt 4740 cacccaccct gagcgttgag gcgttaaagc actctattgc ttataagctg atgtttatca 4800 teggeaaaga eeeggetate getaacaage atgaatgget caacgecacg etgttegeeg 4860 ttcgcgatcg tatggttgag cgctggctgc gctcaaaccg cgcgcacgtc tctcaggaag 4920 ttcqccaqqt ttactacctq tcgatggaat ttttgattgg ccgtacgttg tccaacgcgc 4980 tqttatcqct cqqcatttat qaggatqtga acagcqcqct ggaagagatg gggctgaacc 5040 ttgaagaatt aattgatgaa gaaaacgacc cgggcttagg caacggcggt cttggtcgtc 5100 tggcggctg cttcctcgat tcgcttgcgg cgctggggtt accgggccgc ggctacggta 5160 ttcgctacga ctacgggatg tttaagcaga atatcgtcga tgggcggcag aaagaatccc 5220 cggattactg gctggaatac ggtaacccgt gggagttcga gcgccataat acgcgctaca 5280 aagtgcgctt cggcggacgc attcagcagg aaggtaaata ctcccgctgg gtggagaccg 5340 aagagattat tgccgaagcc tatgaccaga ttatccctgg cttcgacacc gacgccacca 5400 acacgctgcg cctgtggagc gcccaggcca gcagcgagat taacctcggt aaattcaacc 5460 agggcgacta cttcgcggcg gtggaagata aaaaccattc cgagaacgtg tcgcgggtac 5520 tctatccgga tgactcgacc tattcaggac gcgagctgcg cctgcggcag gagtacttcc 5580 tcgtttcggc gacggtgcag gacatcctca gccgccacta ccagctgcat aaaacctacg 5640 ccaacctggc ggacaaaatc gcgattcatc tcaacgacac gaacccggtg ctgtcgattc 5700 cggagctgat gcgcctgctg attgacgagc ataagatcag ctgggatgag ggnnnnnnnn 5760 nnnnnnngaa ttcgagctcg gtacccgggg atcgacataa ccgataggtc ctgcattgat 7620 ggactgaaag gtttcgacgg cggttgtgtg ggttttgctt gcccatctgg cggcatgaat 7680 agtgtcattc atgacgatcc agttcgatat tcaacagacc gtctttgtaa tcggcaccga 7740 caattttgat caataaagcg tttgacctga tgcatgaggg taaatccatt cgttcggttg 7800 ttcttttctg attacctgtc ctgttaacct gtggatatag aaggtcggtt caatgagtag 7860 tattctgacg catctgacaa ttggttccaa tgacctgaag aaggcgcgca tcttttatga 7920 tgctgttttg gaaccgttgg gtatcaaact tattcgcgag gtcgaaggac agcgttttgc 7980 ctatggtaaa gacggcgaag aaggacgcat catcattgta aagcctatta atggtgaagc 8040 cgctaccgct ggaaatggta tcactatcgg tttggcagcg ccttctgatg aagctgtcga 8100 tgctttttat aaagcaggct tggctaatgg cggtaaggat gccggagaac cggggcctcg 8160 teeggetget aataattete ggggtgeeta tttatatgae eetgaaggea ataaaatetg 8220 cgctttcaat tttaaataag atttctttgg tgcagggtta ttcaaaatag ccctgcattt 8280 tcagtattat agcggccatt atggcttttg ccttgataaa aaatttatca gggctgtttt 8340 tcgtgatgaa tatttttgat ttttcaagaa aagcctgata tcttccaaca tctttctttg 8400 tatataaatg gagcgagcta tggcgcgcgt aactgtcgaa gactgtatcg ataaagttca 8460 taatcgtttc gatttgatcc tctagagtca acctgcttgt tactcgtgat cccattcaca 8520 agggcgaatt aattcgccct tctgttccgt taccaacact tgagccggag gcataatggg 8580 aaagccaatg tggcgttgtt gggcgttgat gctgatggtg tggttcagtg cgtcggctac 8640 ggcggcgaac ggctgggaaa tctataaaag ccgtttcatg accacggacg ggcgcattca 8700 ggataccggc aataagaatg tcagccacac cgaaggtcag ggattcgcca tgctgatggc 8760 ggtgcattac gatgaccgca tcgcgttcga taacctgtgg aactggacgc aaagccacct 8820 geggaacacg accagegget tgttctactg gegttacgat cegteggegg ceaateeggt 8880 ggtggataag aacaacgcct cggatggcga tgtgctgatt gcctgggcgt tgttaaaagc 8940 gggaaataag tggcaggaca accgttacct gcaggcgtcg gacagcatcc agaaagcgat 9000 catcgccagc aatatcattc agtttgcggg ccgcaccgtg atgttgcccg gcgcctatgg 9060 tttcaacaag aacagctatg tgatccttaa cccgtcgtat ttcctgttcc cggcctggcg 9120 cgactttgct aaccgcagcc atcttcaggt gtggcggcaa ctgattgacg acagcctgtc 9180 attggtcgga gaaatgcgtt tcggtcaggt cgggctgccg acggactggg cggcgctgaa 9240 cgcggatggc tcgatggcgc cggcgacggc ctggccgtcg cgtttcagtt acgacgccat 9300 togtatoccg otgtatttgt actggtatga ogcoaaaacc acggogotgg tgccgttoca 9360 gctgtactgg cgtaactatc cccgcctgac gacgccggcc tgggttgatg tgctgagcag 9420 taacaccgcg acttacaata tgcagggcgg tttgctggcg gtgcgcgacc tgacgatggg 9480 caacctcgac gggctcagcg atctgccagg cgcatcggaa gattactact cgtcgagcct 9540 gcgcctgctg gtgatgttgg cgcgcggtaa ataaccttat tcttgcggta cacatggcga 9600 ggacgatgtc cttgccattt tccccacttt tatccctctg aatggcgtgt ttttcacgct 9660 ttgttaacct gcttgttact cgtgatccca ttcacaaggg cgaattgacc tgcaggcatg 9720 caagettgge gtaatcatgg teatagetgt tteetgtgtg aaattgttat eegeteacaa 9780

ttccacacaa catacgagcc ggaagcataa agtgtaaagc ctggggtgcc taatgagtga 9840 gctaactcac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt 9900 gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt attgggcgct 9960 cttccgctgg cgcgccaggt cgactctaga ggatccccgg ggaagatctt ccggaagatc 10020 ttcccgagct cgaattaatt ccgcgatgaa ttgatcccgg aagttcctat tctctagaaa 10080 gtataggaac tcgaattggt cgacaagcta gcttgcatgc aagcttgtat tctatagtgt 10140 cacctaaatc gtatgtgtat gatacataag gttatgtatt aattgtagcc gcgttctaac 10200 gacaatatgt acaagcctaa ttgtgtagca tctggcttac tgaagcagac cctatcatct 10260 ctctcgtaaa ctgccgtcag agtcggtttg gttggacgaa ccttctgagt ttctggtaac 10320 gccgttccgc accccggaaa tggtcagcga accaatcagc agggtcatcg ctagcccatg 10380 gctaattctg tcagccgtta agtgttcctg tgtcactgaa aattgctttg agaggctcta 10440 agggettete agtgegttae atceetgget tgttgteeae aacegttaaa cettaaaage 10500 tttaaaagcc ttatatattc tttttttct tataaaactt aaaaccttag aggctattta 10560 agttgctgat ttatattaat tttattgttc aaacatqaqa qcttaqtacq tqaaacatqa 10620 gagcttagta cgttagccat gagagcttag tacgttagcc atgagggttt agttcgttaa 10680 acatgagage ttagtacgtt aaacatgaga gettagtacg tgaaacatga gagettagta 10740 cgtactatca acaggttgaa ctgcggatct tgcggccgca aaaattaaaa atgaagtttt 10800 gacggtatcg aaccccagag tcccgctcag aagaactcgt caagaaggcg atagaaggcg 10860 atgcgctgcg aatcgggagc ggcgataccg taaagcacga ggaagcggtc agcccattcg 10920 ccqccaagct cttcaqcaat atcacgggta gccaacgcta tgtcctgata gcggtccgcc 10980 acacccagcc ggccacagtc gatgaatcca gaaaagcggc cattttccac catgatattc 11040 ggcaagcagg catcgccatg ggtcacgacg agatcctcgc cgtcgggcat ccgcgccttg 11100 agcctggcga acagttcggc tggcgcgagc ccctgatgct cttcgtccag atcatcctga 11160 togacaagac eggetteeat eegagtaegt getegetega tgegatgttt egettggtgg 11220 togaatgggc aggtagcogg atcaagcgta tgcagcogcc gcattgcatc agccatgatg 11280 gatactttct cggcaggagc aaggtgagat gacaggagat cctgccccgg cacttcgccc 11340 aatagcagcc agtcccttcc cgcttcagtg acaacgtcga gcacagctgc gcaaggaacg 11400 cccgtcgtgg ccagccacga tagccgcgct gcctcgtctt ggagttcatt cagggcaccg 11460 gacaggtcgg tcttgacaaa aagaaccggg cgcccctgcg ctgacagccg gaacacggcg 11520 gcatcagage ageogattgt etgttgtgee eagtcatage egaatageet etceaeceaa 11580 gcggccggag aacctgcgtg caatccatct tgttcaatca tgcgaaacga tcctcatcct 11640 gtctcttgat ccactagatt attgaagcat ttatcagggt tattgtctca tgagcggata 11700 catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 11760 agtgccacct gc 11772