1. Minimum Spanning Tree

Figure 1: A weighted, connected undirected graph G_1

(a) Prim's algorithm

```
MST-PRIM(G, w, r)
    Q = \text{Empty}
 2
    for each vertex v \in V
 3
         v.key = +Infty
 4
         v.pi = Nil
 5
         INSERT(Q, v)
 6
    Decrease-Key(Q, r, 0)
 7
    while Q not Empty
         u = \text{Extract-Min}(Q)
8
         for each v \in Adj[u]
9
              if v \in Q and w(u, v) < v.key
10
11
                   v.pi = u
12
                   v.key = w(u, v)
```

(b) Kruskal's Algorithm

```
MST-Kruskal(G, w)
   A = \text{Empty}
1
2
   for each vertex u \in V
3
        Make-Set(u)
   Sort the edges E in nondecreasing order by w
4
   for each edge (u, v) \in E, taken in nondecreasing order by w
6
        if FIND-Set(u) \neq FIND-Set(v)
             A = A \cup \{(u, v)\}
7
8
             Union(u, v)
```

2. Single-Source Shortest Paths

Figure 2: A weighted directed graph G_2

(a) The Bellman-Ford algorithm

```
Bellman-Ford(G, w, s)
    // initialization
 2
    for each vertex v \in V
 3
         v.d = +Infty
 4
         v.pi = Nil
 5
    s.d = 0
    for i = 1 to |V| - 1
 6
 7
         for each edge (u, v) \in E
 8
              // relax if needed
 9
              if v.d > u.d + w(u, v)
10
                   v.d = u.d + w(u, v)
11
                   v.pi = u
12
    // check whether there is negative-weight cycle
13
    for each edge (u, v) \in E
         if v.d > u.d + w(u, v)
14
15
              return False
16
    return True
```

	d					pi				
	Α	В	С	D	Е	A	В	С	D	Е
Init	0	∞	∞	∞	∞	Nil	Nil	Nil	Nil	Nil
1										
2										
3										
4										
Check										

Figure 3: A weighted directed graph G_2

(b) Dijkstra's algorithm

```
Dijkstra(G, w, s)
    // initialization
 2
    for each vertex v \in V
 3
         v.d = +Infty
 4
         v.pi = Nil
 5
    s.d = 0
    /\!\!/ priority queue keyed by d
 6
 7
    Q = V
    while Q not Empty
 8
         u = \text{Extract-Min}(Q)
 9
10
         for each edge (u, v) \in E
              // relax if needed
11
12
              if v.d > u.d + w(u, v)
                   v.d = u.d + w(u, v)
13
14
                   v.pi = u
```

3. Minimum Spanning Tree VS Single-Source Shortest Paths

Some might consider that Minimum Spanning Tree and Single-Source Shortest Paths algorithms share a lot in common. Actually, they vary significantly in essence.

In MST, the goal is to connects all of the vertices and to minimize total weights of edges among all possible connections. Therefore, the solution must be a tree. In SSSP, the objective is to reach destination vertex from source vertex with lowest possible weights. This leads the solution to be a path.

We can also compare the four algorithms discussed above in the following aspects.

	MS	${f T}$	SSSP		
	Prim's	Kruskal's	Bellman-Ford	Dijkstra's	
Directed or Undirected	Undire	cted	Directed		
Cycles Allowed	No)	Yes*	Yes	
Negative Weights Allowed	Yes	5	Yes*	No	
Data Structures Used	Priority Queue	Disjoint Set	N/A	Priority Queue	
Time Complexity	$O(E \lg V)$	$O(E \lg V)$	$\Theta(V \times E)$	Varies	

^{*:} Negative cycles are not applicable.

4. Proofs of Shortest Paths (optional)