Statistique Bayésienne

Propriétés asymptotiques des approches bayésiennes

Anna Simoni²

²CREST - Ensae and CNRS

Outline

1 Consistance de la loi a posteriori

2 Théorème de Bernstein - von Mises

Setup

- Θ =espace métrique complet separable avec σ -algèbre $B(\Theta)$;
- P_{θ} = probabilité sur un espace mesurable (X, B);
- X_1, X_2, \ldots = suite de variables-aléatoires qui sont, pour tout $\theta \in \Theta$, *i.i.d.* P_{θ} ;
- $X^{(n)} := (X_1, \dots, X_n)$ et P^n_θ est la mesure produit sur (X^n, B^n) ;
- $\pi = \text{prior sur } (\Theta, B(\Theta));$
- $\pi(\cdot|\cdot): B(\Theta) \times (X^n, B^n) \mapsto [0, l]$ est l'a posteriori (i.e. une version de la distribution conditionnelle de θ étant donné $X^{(n)}$).

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

Statistique Bayésienne

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density}: \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density}: \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density} : \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2} \phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density}: \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density}: \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density}: \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2} \phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density}: \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- $\bullet \ \ \text{posterior density}: \pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2} \phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

Exemple

- likelihood : $Y|\theta \sim N(\theta, \varepsilon)$, prior : $\theta \sim U[a, b]$
- posterior density : $\pi_{\theta|Y}(\theta|y) = \frac{\varepsilon^{-1/2}\phi\left(\frac{\theta-y}{\sqrt{\varepsilon}}\right)}{\Phi\left(\frac{b-y}{\sqrt{\varepsilon}}\right) \Phi\left(\frac{a-y}{\sqrt{\varepsilon}}\right)} 1_{[a,b]}(\theta)$

Consistance de la loi a posteriori. I

Définition

Pour tout n, soit $\pi(\cdot|X^{(n)})$ l'a posteriori étant donné $X^{(n)}$. La suite $\{\pi(\cdot|X^{(n)})\}$ est consistante en θ_0 si pour tout voisinages U de θ_0 ,

$$\lim_{n \to \infty} \pi(\mathbf{U}|X^{(n)}) \to 1 \qquad P_{\theta_0}^n - p.s. \tag{1}$$

• Soit d une métrique définiè sur Θ , alors on peut reécrire (1) comme :

$$\lim_{n\to\infty} \pi(\theta; d(\theta, \theta_0) \le \epsilon | X^{(n)}) \to 1 \qquad P_{\theta_0}^n - p.s.$$

pour tout $\epsilon > 0$.

 Si Θ est un espace métrique separable alors la consistance de l'a posteriori en θ₀ est équivalente à :

$$\pi(\cdot|X^{(n)}) \to \delta_{\theta_0} \qquad P_{\theta_0}^n - p.s.$$

où la convergence est dans le sens de la convergence faible.

Consistance de la loi a posteriori. II

Théorème (Doob 1949)

Soit $X \subset \mathbb{R}^p$ pour quelque $p < \infty$. Soit $\theta \in \Theta$ à valeurs reéls, soit $\theta \mapsto P_\theta \ 1 - 1$, et soit π la distribution a priori. Alors, il $\exists A \subseteq \Theta$ tel que $\pi(A) = 1$ et $\forall \theta_0 \in A, \forall \epsilon > 0$

$$\lim_{n\to\infty}\pi(\theta;\|\theta-\theta_0\|\leq\epsilon|X^{(n)})\to 1 \qquad P_{\theta_0}^n-p.s.$$

Consistance de la loi a posteriori. III

- Le théorème de Doob ne repond pas à la question de la consistance de l'a posteriori à un θ₀ specifique.
- Pour avoir la consistance de l'a posteriori à tous θ₀ il faut imposer des conditions.
- De plus, dans le cas ∞-dimensionnelle, l'ensemble de valeurs θ₀ pour lesquelles la consistance n'est pas satisfaite peux être très grand (voir, Freedman 1963).
- Si $\theta_0 \notin Supp(\pi)$, alors \exists un voisinage U de θ_0 tel que $\pi(U) = 0$. Ceci implique que $\pi(U|X^{(n)}) = 0$ p.s.. Il n'est donc pas raisonnable de s'attendre à avoir la consistance en dehors du support de l'a priori.

Consistance de la loi a posteriori. IV

Théorème (1)

Suppose que K soit un sousensemble compact d'un espace métrique separable. Soit $T(\cdot,\cdot):\theta\times\mathbb{R}\to\mathbb{R}$ telle que

- (i) pour tout x, $T(\cdot, x)$ est continue en θ et
- (ii) pour tout θ , $T(\theta, \cdot)$ est mesurable.

Soient X_1, X_2, \ldots variables aléatoires i.i.d. definie sur (X, B, P) avec $\mathbf{E}(T(\theta, X_1)) = \mu(\theta)$ et suppose en plus que

$$\mathbf{E}\left(\sup_{\theta\in K}|T(\theta,X_i)|\right)<\infty.$$

Alors, pour $n \to \infty$

$$\sup_{\theta \in K} \left| \frac{1}{n} \sum_{i=1}^{n} T(\theta, X_i) - \mu(\theta) \right| \to 0 \qquad p.s.P.$$

Consistance de la loi a posteriori. V

On suppose P_{θ} dominée par la mesure de Lebesgue et on note $p_{\theta} = dP_{\theta}/d\theta$.

Théorème (2)

Soit Θ un espace métrique compact. Pour un θ_0 fixé, soit

$$T(\theta, x) = \log \left(\frac{p_{\theta}(x)}{p_{\theta_0}(x)} \right).$$

Si $T(\theta, X_i)$ satisfait les hypothèses du Théorème (1) avec $P = P_{\theta_0}$, alors

- l'estimateur de maximum de vraisemblance est consistant pour θ_0 ;
- si π est une a priori sur Θ et si θ_0 est dans le support de π alors l'a posteriori defini par la densité (par rapport à Lebesgue)

$$\frac{\prod_{i=1}^{n} p_{\theta}(X_{i})\pi(\theta)}{\int_{\theta} \prod_{i=1}^{n} p_{\theta}(X_{i})\pi(\theta)} d\theta$$

est consistent en θ_0 .

Outline

① Consistance de la loi a posteriori

2 Théorème de Bernstein - von Mises

Vitesses de convergence

L'a posteriori converge à la vitesse $\varepsilon_n \to 0$ pour la distance d en θ_0 si

$$\mathbf{E}_{\theta_0}\pi(\theta;d(\theta,\theta_0)\leq \varepsilon_n|X^{(n)})\to 1.$$

C'est une borne supérieure : on cherche ε_n le plus petit possible.

On dit que ζ_n est une borne inférieure pour la vitesse pour d en θ_0 si

$$\mathbf{E}_{\theta_0}\pi(\theta;d(\theta,\theta_0)\geq \zeta_n|X^{(n)})\to 1.$$

Exemple: Modèles paramétriques *réguliers*. Pour tout $M_n \to +\infty$,

$$\mathbf{E}_{\theta_0} \pi \left(\theta; \frac{1}{M_n \sqrt{n}} \le \|\theta - \theta_0\| \le \frac{M_n}{\sqrt{n}} |X^{(n)}| \right) \to 1.$$

Forme de l'a posteriori I

Encore plus précisément, on peut s'intéresser à la forme de la loi a posteriori.

Le théorème de Bernstein-von Mises (BvM) est un exemple de tel résultat.

Hypothèses:

- **1** X_1, X_2, \ldots, X_n sont i.i.d. p_θ et $p_\theta d\theta = dP_\theta$.
- **2** Θ sousensemble ouvert de \mathbb{R} .
- 3 $\{x; p_{\theta}(x) > 0\}$ est le même $\forall \theta \in \Theta$.
- **4** $L(\theta, x) = \log p_{\theta}(x)$ est 3 fois differentiable par rapport à θ en un voisinage $(\theta_0 \delta, \theta_0 + \delta), \delta > 0$. Dénote : \dot{L}, \ddot{L} et \dddot{L} la première, seconde et troisième derivée. Alors $\mathbf{E}_{\theta_0} \dot{L}(\theta_0) < \infty$ et $\mathbf{E}_{\theta_0} \ddot{L}(\theta_0) < \infty$ et

$$\sup_{\theta \in (\theta_0 - \delta, \theta_0 + \delta)} |\dddot{L}(\theta_0, x)| < M(x) \qquad \text{et} \qquad \mathbf{E}_{\theta_0} M < \infty.$$

5 Échange de l'ordre de l' \mathbf{E}_{θ_0} et de la differentiation en θ_0 est justifié, et donc

$$\mathbf{E}_{\theta_0}\dot{L}(\theta_0) = 0, \qquad \mathbf{E}_{\theta_0}\ddot{L}(\theta_0) = -\mathbf{E}_{\theta_0} \left(\dot{L}(\theta_0)\right)^2.$$

Forme de l'a posteriori II

$$\mathbf{6} \ I(\theta_0) := \mathbf{E}_{\theta_0} \left(\dot{L}(\theta_0) \right)^2.$$

Soit
$$L_n(\theta) = \sum_{i=1}^n L(\theta, X_i)$$
.

Théorème de BvM (I)

Théorème (BvM)

Soupposons que $\{p_{\theta}; \theta \in \Theta\}$ satisfait les hypothèses 1-6 et que $\widehat{\theta}_n$ est une solution consistante de l'équation de vraisemblance. De plus, supposons que

(i). $\forall \delta > 0$, $\exists un \epsilon > 0$ tel que

$$P_{ heta_0}\left\{\sup_{| heta- heta_0|>\delta}rac{1}{n}(L_n(heta)-L_n(heta_0))\leq -\epsilon
ight\}
ightarrow 1;$$

(ii). l'a priori a une densité $\pi(\theta)$ par rapport à la mesure de Lebesgue qui est continue et positive en θ_0 .

Dénote $\pi^*(s|X^{(n)})$ la densité a posteriori de $s := \sqrt{n}(\theta - \widehat{\theta}_n(X^{(n)}))$. Alors, pour $n \to \infty$,

$$\int_{\mathbb{R}} \left| \pi^*(s|X^{(n)}) - \frac{\sqrt{I(\theta_0)}}{\sqrt{2\pi}} e^{-s^2 I(\theta_0)/2} \right| ds \to 0 \qquad en P_{\theta_0}^n - proba.$$

Théorème de BvM (II)

Remarques:

• La distance en variation totale entre deux probabilités P et Q est donnée par

$$||P - Q||_1 = 2 \sup_{B} |P(B) - Q(B)|$$

= $\int |p - q| d\mu$.

• Alors, le théorème de BvM dit que :

$$\left\|\pi(\cdot|X^{(n)})-\operatorname{N}\left(\widehat{\theta_n},\frac{I_{\theta_0}^{-1}}{n}\right)(\cdot)\right\|_1 o 0 \qquad \operatorname{en} P_{\theta_0}^n-\operatorname{proba}$$

où I_{θ_0} est l'information de Fisher.

 On remarque que l'a priori est asymptotiquement "effacée" de la loi a posteriori.

Normalité asymptotique de l'estimateur Bayésien

Théorème (3)

Supposons que les hypothèses du théorème de BvM sont satisfaites et que $\int |\theta| \pi(\theta) d\theta < \infty$. Soit $\theta_n^* := \int_{\mathbb{R}} \theta \pi(\theta|X^{(n)}) d\theta$ l'estimateur de Bayes par rapport à la fonction de coût quadratique. Alors :

- (i) $\sqrt{n}(\widehat{\theta}_n \theta_n^*) \to 0$ en $P_{\theta_0}^n$ -proba.
- (ii) $\sqrt{n}(\theta_n^* \theta_0)$ converge en distribution vers une $N(0, I_{\theta_0}^{-1})$.