Package 'LACPD'

June 19, 2020	
Type Package	
Title Locally Adaptive change-point detection	
Version 0.2.0	
Author Authors@R: c(person(``Mehdi", ``Moradi", email = ``m2.moradi@yahoo.com", role = c(``aut", ``cre")), person(``Manuel", ``Montesino-SanMartin", role = ``ctb"), person(``M. Dolores", ``Ugarte", role = ``ctb"), person(``Ana F.", ``Militino", role = ``ctb"))	
Maintainer Mehdi Moradi <m2.moradi@yahoo.com></m2.moradi@yahoo.com>	
Description This package provides functions to detect abrupt changes in a set of time-ordered numerical observations using the LACPD technique.	
Depends R (>= 3.3.0), trend, modifiedmk	
License GPL (>= 2)	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.1.0	
R topics documented:	
lacpd_bcpw	1
lacpd_cs	4
lacpd_mk	8
lacpd mmky	
lacpd_pwmk	
lacpd_tfpwmk	
Index	17

2 lacpd_bcpw

lacpd_bcpw	Locally change-point detection using the bcpw approach

Description

Locally change-point detection after accommodating the bcpw approach in LACPD procedure

Usage

```
lacpd_bcpw(
    x,
    m = 1,
    k = 2,
    blow = 0.1,
    bup = (1 - blow),
    leave = FALSE,
    adjust = FALSE,
    history = FALSE,
    ...
)
```

Arguments

X	a numeric vector
m	number of times to sub-sample
k	single number or numeric vector proportional to the number of points on each side of the target point. See details
blow	fraction of observations (0-1) at the beginning of the time-series not considered for change detection
bup	similar to blow, but for the end of the time series. Default is 1-blow
leave	if TRUE, the function uses the leave-one-out technique when looking for changes
adjust	if TRUE, p-value will be adjusted by methods in p.adjust
history	if TRUE, it maintains the stepwise results when k is a vector
• • •	arguments passed to p.adjust

Details

This technique accommodates the bcpw trend detection method in the LACPD procedure of Moradi et al. (2020) to look for potential change-points in the numerical vector x.

In the tails of x, since there are not enough data points before/after the target points, the method uses sub-sampling, wherein it moderates the effect of sub-sampling by iteration.

Assume the length of x is n. The argument k is used to set the number of data in the sides of the target point when looking for change-points. n/k is the number of points on each side we consider. For instance, if n=300 and k=10, this means we consider 30 observations before and 30 after when locally detecting changes.

If leave=TRUE, the function removes the target point when checking for possible changes at the target point.

lacpd_bcpw 3

If adjust=TRUE, methods susch as "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" can be passed through function, e.g. method="BY".

If k is a vector of numbers, then the function returns a result based on adaptive sliding windows which is an average result obtained from different windows.

Value

cp: the index of the most probable change point in the time series

z: the z statistics of LACPD

magnitude: the magnitude of change

p.value: the corresponding p.value

s: the time-periods that the function has looked for potential changes

Attributes:

attr(,"zs"): retrieves the obtained z statistics at the time-periods the function has looked for potential changes

attr(,"ps"): retrieves the obtained p-values at the time-periods the function has looked for potential changes

attr(,"mags"): retrieves the magnitude of change at the time-periods the function has looked for potential changes

if history=TRUE and k is a numeric vector, then the following attributes can also be retrieved.

 $attr(,"history"): a \ data frame \ containing \ the \ results \ (cp, \ magnitude, Z, \ and \ p.value) \ based \ on \ different \ adaptive \ sliding \ windows \ which \ are \ permutations \ of \ the \ given \ k$

attr(,"allzs"): a list which retrieves the obtained z statistics at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allmags"): a list which retrieves the magnitude of change at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allps"): a list which retrieves the obtained p-values at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>, Manuel Montesino-SanMartin <manuel.montesino@unavarra.es>

References

Moradi, M., Montesino-SanMartin, M., Ugarte, M. D., and Militino, A. F. (2020). Locally adaptive change-point detection with applications to remote sensing and land use changes.

See Also

bcpw, p.adjust

4 lacpd_cs

Examples

```
x <- rnorm(50)
Z <- lacpd_bcpw(x,m=10,k=3)
plot(Z$s,attr(Z,"zs"),type="l",ylab = "Z",xlab = "time")
plot(Z$s,attr(Z,"mags"),type="l",ylab = "Z",xlab = "time")</pre>
```

lacpd_cs

Locally change-point detection using the Cox-Stuart test

Description

Locally change-point detection after accommodating the Cox-Stuart test in LACPD procedure

Usage

```
lacpd_cs(
    x,
    m = 1,
    k = 2,
    blow = 0.1,
    bup = (1 - blow),
    leave = FALSE,
    adjust = FALSE,
    history = FALSE,
    ...
)
```

Arguments

X	a numeric vector
m	number of times to sub-sample
k	single number or numeric vector proportional to the number of points on each side of the target point. See details
blow	fraction of observations (0-1) at the beginning of the time-series not considered for change detection
bup	similar to blow, but for the end of the time series. Default is 1-blow
leave	if TRUE, the function uses the leave-one-out technique when looking for changes
adjust	if TRUE, p-value will be adjusted by methods in p.adjust
history	if TRUE, it maintains the stepwise results when k is a vector
	arguments passed to p.adjust

Details

This technique accommodates the cs.test trend detection method in the LACPD procedure of Moradi et al. (2020) to look for potential change-points in the numerical vector x.

In the tails of x, since there are not enough data points before/after the target points, the method uses sub-sampling, wherein it moderates the effect of sub-sampling by iteration.

lacpd_cs 5

Assume the length of x is n. The argument k is used to set the number of data in the sides of the target point when looking for change-points. n/k is the number of points on each side we consider. For instance, if n=300 and k=10, this means we consider 30 observations before and 30 after when locally detecting changes.

If leave=TRUE, the function removes the target point when checking for possible changes at the target point.

If adjust=TRUE, methods susch as "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" can be passed through function, e.g. method="BY".

If k is a vector of numbers, then the function returns a result based on adaptive sliding windows which is an average result obtained from different windows.

Value

cp: the index of the most probable change point in the time series

z: the z statistics of LACPD

magnitude: the magnitude of change

p.value: the corresponding p.value

s: the time-periods that the function has looked for potential changes

Attributes:

attr(,"zs"): retrieves the obtained z statistics at the time-periods the function has looked for potential changes

attr(,"ps"): retrieves the obtained p-values at the time-periods the function has looked for potential changes

attr(,"mags"): retrieves the magnitude of change at the time-periods the function has looked for potential changes

if history=TRUE and k is a numeric vector, then the following attributes can also be retrieved.

attr(,"history"): a dataframe containing the results (cp, magnitude, Z, and p.value) based on different adaptive sliding windows which are permutations of the given k

attr(,"allzs"): a list which retrieves the obtained z statistics at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allmags"): a list which retrieves the magnitude of change at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allps"): a list which retrieves the obtained p-values at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

Author(s)

 $Mehdi\ Moradi\ \verb|\mathcolor| and i\ \verb|\mathcolor|$

References

Moradi, M., Montesino-SanMartin, M., Ugarte, M. D., and Militino, A. F. (2020). Locally adaptive change-point detection with applications to remote sensing and land use changes.

6 lacpd_mk

See Also

```
cs.test, p.adjust
```

Examples

```
x <- rnorm(50)
Z <- lacpd_cs(x,m=10,k=3)
plot(Z$s,attr(Z,"zs"),type="l",ylab = "Z",xlab = "time")
plot(Z$s,attr(Z,"mags"),type="l",ylab = "Z",xlab = "time")</pre>
```

lacpd_mk

Locally change-point detection using the Mann-Kendall test

Description

Locally change-point detection after accommodating the Mann-Kendall test in LACPD procedure

Usage

```
lacpd_mk(
    x,
    m = 1,
    k = 2,
    blow = 0.1,
    bup = (1 - blow),
    leave = FALSE,
    adjust = FALSE,
    history = FALSE,
    ...
)
```

Х	a numeric vector
m	number of times to sub-sample
k	single number or numeric vector proportional to the number of points on each side of the target point. See details
blow	fraction of observations (0-1) at the beginning of the time-series not considered for change detection
bup	similar to blow, but for the end of the time series. Default is 1-blow
leave	if TRUE, the function uses the leave-one-out technique when looking for changes
adjust	if TRUE, p-value will be adjusted by methods in p.adjust
history	if TRUE, it maintains the stepwise results when k is a vector
	arguments passed to p.adjust

lacpd_mk 7

Details

This technique accommodates the mk.test trend detection method in the LACPD procedure of Moradi et al. (2020) to look for potential change-points in the numerical vector x.

In the tails of x, since there are not enough data points before/after the target points, the method uses sub-sampling, wherein it moderates the effect of sub-sampling by iteration.

Assume the length of x is n. The argument k is used to set the number of data in the sides of the target point when looking for change-points. n/k is the number of points on each side we consider. For instance, if n=300 and k=10, this means we consider 30 observations before and 30 after when locally detecting changes.

If leave=TRUE, the function removes the target point when checking for possible changes at the target point.

If adjust=TRUE, methods susch as "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" can be passed through function, e.g. method="BY".

If k is a vector of numbers, then the function returns a result based on adaptive sliding windows which is an average result obtained from different windows.

Value

cp: the index of the most probable change point in the time series

z: the z statistics of LACPD

magnitude: the magnitude of change

p.value: the corresponding p.value

s: the time-periods that the function has looked for potential changes

Attributes:

attr(,"zs"): retrieves the obtained z statistics at the time-periods the function has looked for potential changes

attr(,"ps"): retrieves the obtained p-values at the time-periods the function has looked for potential changes

attr(,"mags"): retrieves the magnitude of change at the time-periods the function has looked for potential changes

if history=TRUE and k is a numeric vector, then the following attributes can also be retrieved.

attr(,"history"): a dataframe containing the results (cp, magnitude, Z, and p.value) based on different adaptive sliding windows which are permutations of the given k

attr(,"allzs"): a list which retrieves the obtained z statistics at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allmags"): a list which retrieves the magnitude of change at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allps"): a list which retrieves the obtained p-values at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

Author(s)

8 lacpd_mmkh

References

Moradi, M., Montesino-SanMartin, M., Ugarte, M. D., and Militino, A. F. (2020). Locally adaptive change-point detection with applications to remote sensing and land use changes.

See Also

```
mk.test, p.adjust
```

Examples

```
x <- rnorm(50)
Z <- lacpd_mk(x,m=10,k=3)
plot(Z$s,attr(Z,"zs"),type="l",ylab = "Z",xlab = "time")
plot(Z$s,attr(Z,"mags"),type="l",ylab = "Z",xlab = "time")</pre>
```

lacpd_mmkh

Locally change-point detection using the mmkh approach

Description

Locally change-point detection after accommodating the mmkh approach in LACPD procedure

Usage

```
lacpd_mmkh(
    x,
    m = 1,
    k = 2,
    blow = 0.1,
    bup = (1 - blow),
    leave = FALSE,
    adjust = FALSE,
    history = FALSE,
    ...
)
```

X	a numeric vector
m	number of times to sub-sample
k	single number or numeric vector proportional to the number of points on each side of the target point. See details
blow	fraction of observations (0-1) at the beginning of the time-series not considered for change detection
bup	similar to blow, but for the end of the time series. Default is 1-blow
leave	if TRUE, the function uses the leave-one-out technique when looking for changes
adjust	if TRUE, p-value will be adjusted by methods in p.adjust
history	if TRUE, it maintains the stepwise results when k is a vector
	arguments passed to p.adjust

lacpd_mmkh 9

Details

This technique accommodates the mmkh trend detection method in the LACPD procedure of Moradi et al. (2020) to look for potential change-points in the numerical vector x.

In the tails of x, since there are not enough data points before/after the target points, the method uses sub-sampling, wherein it moderates the effect of sub-sampling by iteration.

Assume the length of x is n. The argument k is used to set the number of data in the sides of the target point when looking for change-points. n/k is the number of points on each side we consider. For instance, if n=300 and k=10, this means we consider 30 observations before and 30 after when locally detecting changes.

If leave=TRUE, the function removes the target point when checking for possible changes at the target point.

If adjust=TRUE, methods susch as "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" can be passed through function, e.g. method="BY".

If k is a vector of numbers, then the function returns a result based on adaptive sliding windows which is an average result obtained from different windows.

Value

cp: the index of the most probable change point in the time series

z: the z statistics of LACPD

magnitude: the magnitude of change

p.value: the corresponding p.value

s: the time-periods that the function has looked for potential changes

Attributes:

attr(,"zs"): retrieves the obtained z statistics at the time-periods the function has looked for potential changes

attr(,"ps"): retrieves the obtained p-values at the time-periods the function has looked for potential changes

attr(,"mags"): retrieves the magnitude of change at the time-periods the function has looked for potential changes

if history=TRUE and k is a numeric vector, then the following attributes can also be retrieved.

attr(,"history"): a dataframe containing the results (cp, magnitude, Z, and p.value) based on different adaptive sliding windows which are permutations of the given k

attr(,"allzs"): a list which retrieves the obtained z statistics at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allmags"): a list which retrieves the magnitude of change at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allps"): a list which retrieves the obtained p-values at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

Author(s)

10 lacpd_mmky

References

Moradi, M., Montesino-SanMartin, M., Ugarte, M. D., and Militino, A. F. (2020). Locally adaptive change-point detection with applications to remote sensing and land use changes.

See Also

```
mmkh, p.adjust
```

Examples

```
x <- rnorm(50)
Z <- lacpd_mmkh(x,m=10,k=3)
plot(Z$s,attr(Z,"zs"),type="l",ylab = "Z",xlab = "time")
plot(Z$s,attr(Z,"mags"),type="l",ylab = "Z",xlab = "time")</pre>
```

lacpd_mmky

Locally change-point detection using the mmky approach

Description

Locally change-point detection after accommodating the mmky approach in LACPD procedure

Usage

```
lacpd_mmky(
    x,
    m = 1,
    k = 2,
    blow = 0.1,
    bup = (1 - blow),
    leave = FALSE,
    adjust = FALSE,
    history = FALSE,
    ...
)
```

Χ	a numeric vector
m	number of times to sub-sample
k	single number or numeric vector proportional to the number of points on each side of the target point. See details
blow	fraction of observations (0-1) at the beginning of the time-series not considered for change detection
bup	similar to blow, but for the end of the time series. Default is 1-blow
leave	if TRUE, the function uses the leave-one-out technique when looking for changes
adjust	if TRUE, p-value will be adjusted by methods in p.adjust
history	if TRUE, it maintains the stepwise results when k is a vector
	arguments passed to p.adjust

lacpd_mmky 11

Details

This technique accommodates the mmky trend detection method in the LACPD procedure of Moradi et al. (2020) to look for potential change-points in the numerical vector x.

In the tails of x, since there are not enough data points before/after the target points, the method uses sub-sampling, wherein it moderates the effect of sub-sampling by iteration.

Assume the length of x is n. The argument k is used to set the number of data in the sides of the target point when looking for change-points. n/k is the number of points on each side we consider. For instance, if n=300 and k=10, this means we consider 30 observations before and 30 after when locally detecting changes.

If leave=TRUE, the function removes the target point when checking for possible changes at the target point.

If adjust=TRUE, methods susch as "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" can be passed through function, e.g. method="BY".

If k is a vector of numbers, then the function returns a result based on adaptive sliding windows which is an average result obtained from different windows.

Value

cp: the index of the most probable change point in the time series

z: the z statistics of LACPD

magnitude: the magnitude of change

p.value: the corresponding p.value

s: the time-periods that the function has looked for potential changes

Attributes:

attr(,"zs"): retrieves the obtained z statistics at the time-periods the function has looked for potential changes

attr(,"ps"): retrieves the obtained p-values at the time-periods the function has looked for potential changes

attr(,"mags"): retrieves the magnitude of change at the time-periods the function has looked for potential changes

if history=TRUE and k is a numeric vector, then the following attributes can also be retrieved.

attr(,"history"): a dataframe containing the results (cp, magnitude, Z, and p.value) based on different adaptive sliding windows which are permutations of the given k

attr(,"allzs"): a list which retrieves the obtained z statistics at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allmags"): a list which retrieves the magnitude of change at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allps"): a list which retrieves the obtained p-values at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

Author(s)

12 lacpd_pwmk

References

Moradi, M., Montesino-SanMartin, M., Ugarte, M. D., and Militino, A. F. (2020). Locally adaptive change-point detection with applications to remote sensing and land use changes.

See Also

```
mmky, p.adjust
```

Examples

```
x <- rnorm(50)
Z <- lacpd_mmky(x,m=10,k=3)
plot(Z$s,attr(Z,"zs"),type="1",ylab = "Z",xlab = "time")
plot(Z$s,attr(Z,"mags"),type="1",ylab = "Z",xlab = "time")</pre>
```

lacpd_pwmk

Locally change-point detection using the pwmk approach

Description

Locally change-point detection after accommodating the pwmk approach in LACPD procedure

Usage

```
lacpd_pwmk(
    x,
    m = 1,
    k = 2,
    blow = 0.1,
    bup = (1 - blow),
    leave = FALSE,
    adjust = FALSE,
    history = FALSE,
    ...
)
```

a numeric vector
number of times to sub-sample
single number or numeric vector proportional to the number of points on each side of the target point. See details
fraction of observations (0-1) at the beginning of the time-series not considered for change detection
similar to blow, but for the end of the time series. Default is 1-blow
if TRUE, the function uses the leave-one-out technique when looking for changes
if TRUE, p-value will be adjusted by methods in p.adjust
if TRUE, it maintains the stepwise results when k is a vector
arguments passed to p.adjust

lacpd_pwmk 13

Details

This technique accommodates the pwmk trend detection method in the LACPD procedure of Moradi et al. (2020) to look for potential change-points in the numerical vector x.

In the tails of x, since there are not enough data points before/after the target points, the method uses sub-sampling, wherein it moderates the effect of sub-sampling by iteration.

Assume the length of x is n. The argument k is used to set the number of data in the sides of the target point when looking for change-points. n/k is the number of points on each side we consider. For instance, if n=300 and k=10, this means we consider 30 observations before and 30 after when locally detecting changes.

If leave=TRUE, the function removes the target point when checking for possible changes at the target point.

If adjust=TRUE, methods susch as "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" can be passed through function, e.g. method="BY".

If k is a vector of numbers, then the function returns a result based on adaptive sliding windows which is an average result obtained from different windows.

Value

cp: the index of the most probable change point in the time series

z: the z statistics of LACPD

magnitude: the magnitude of change

p.value: the corresponding p.value

s: the time-periods that the function has looked for potential changes

Attributes:

attr(,"zs"): retrieves the obtained z statistics at the time-periods the function has looked for potential changes

attr(,"ps"): retrieves the obtained p-values at the time-periods the function has looked for potential changes

attr(,"mags"): retrieves the magnitude of change at the time-periods the function has looked for potential changes

if history=TRUE and k is a numeric vector, then the following attributes can also be retrieved.

attr(,"history"): a dataframe containing the results (cp, magnitude, Z, and p.value) based on different adaptive sliding windows which are permutations of the given k

attr(,"allzs"): a list which retrieves the obtained z statistics at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allmags"): a list which retrieves the magnitude of change at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allps"): a list which retrieves the obtained p-values at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

Author(s)

14 lacpd_tfpwmk

References

Moradi, M., Montesino-SanMartin, M., Ugarte, M. D., and Militino, A. F. (2020). Locally adaptive change-point detection with applications to remote sensing and land use changes.

See Also

```
pwmk, p.adjust
```

Examples

```
x <- rnorm(50)
Z <- lacpd_pwmk(x,m=10,k=3)
plot(Z$s,attr(Z,"zs"),type="l",ylab = "Z",xlab = "time")
plot(Z$s,attr(Z,"mags"),type="l",ylab = "Z",xlab = "time")</pre>
```

lacpd_tfpwmk

Locally change-point detection using the tfpwmk approach

Description

Locally change-point detection after accommodating the tfpwmk approach in LACPD procedure

Usage

```
lacpd_tfpwmk(
    x,
    m = 1,
    k = 2,
    blow = 0.1,
    bup = (1 - blow),
    leave = FALSE,
    adjust = FALSE,
    history = FALSE,
    ...
)
```

X	a numeric vector
m	number of times to sub-sample
k	single number or numeric vector proportional to the number of points on each side of the target point. See details
blow	fraction of observations (0-1) at the beginning of the time-series not considered for change detection
bup	similar to blow, but for the end of the time series. Default is 1-blow
leave	if TRUE, the function uses the leave-one-out technique when looking for changes $$
adjust	if TRUE, p-value will be adjusted by methods in p.adjust
history	if TRUE, it maintains the stepwise results when k is a vector
	arguments passed to p.adjust

lacpd_tfpwmk 15

Details

This technique accommodates the tfpwmk trend detection method in the LACPD procedure of Moradi et al. (2020) to look for potential change-points in the numerical vector x.

In the tails of x, since there are not enough data points before/after the target points, the method uses sub-sampling, wherein it moderates the effect of sub-sampling by iteration.

Assume the length of x is n. The argument k is used to set the number of data in the sides of the target point when looking for change-points. n/k is the number of points on each side we consider. For instance, if n=300 and k=10, this means we consider 30 observations before and 30 after when locally detecting changes.

If leave=TRUE, the function removes the target point when checking for possible changes at the target point.

If adjust=TRUE, methods susch as "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" can be passed through function, e.g. method="BY".

If k is a vector of numbers, then the function returns a result based on adaptive sliding windows which is an average result obtained from different windows.

Value

cp: the index of the most probable change point in the time series

z: the z statistics of LACPD

magnitude: the magnitude of change

p.value: the corresponding p.value

s: the time-periods that the function has looked for potential changes

Attributes:

attr(,"zs"): retrieves the obtained z statistics at the time-periods the function has looked for potential changes

attr(,"ps"): retrieves the obtained p-values at the time-periods the function has looked for potential changes

attr(,"mags"): retrieves the magnitude of change at the time-periods the function has looked for potential changes

if history=TRUE and k is a numeric vector, then the following attributes can also be retrieved.

attr(,"history"): a dataframe containing the results (cp, magnitude, Z, and p.value) based on different adaptive sliding windows which are permutations of the given k

attr(,"allzs"): a list which retrieves the obtained z statistics at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allmags"): a list which retrieves the magnitude of change at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

attr(,"allps"): a list which retrieves the obtained p-values at the time-periods the function has looked for potential changes based on different adaptive sliding windows which are permutations of the given k

Author(s)

16 lacpd_tfpwmk

References

Moradi, M., Montesino-SanMartin, M., Ugarte, M. D., and Militino, A. F. (2020). Locally adaptive change-point detection with applications to remote sensing and land use changes.

See Also

```
tfpwmk, p.adjust
```

Examples

```
x <- rnorm(50)
Z <- lacpd_tfpwmk(x,m=10,k=3)
plot(Z$s,attr(Z,"zs"),type="l",ylab = "Z",xlab = "time")
plot(Z$s,attr(Z,"mags"),type="l",ylab = "Z",xlab = "time")</pre>
```

Index

```
bcpw, 2, 3

cs.test, 4, 5

lacpd_bcpw, 1

lacpd_cs, 4

lacpd_mk, 6

lacpd_mmkh, 8

lacpd_mmky, 10

lacpd_pwmk, 12

lacpd_tfpwmk, 14

mk.test, 6, 8

mmkh, 9, 10

mmky, 11, 12

p.adjust, 2-6, 8, 10, 12, 14, 16

pwmk, 13, 14

tfpwmk, 15, 16
```