Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

Disciplina: ELE0522 - Sistemas de Controle II Período: 2024.1

Projeto 1 - Controle de Nível

1. Considere o seguinte sistema de nível com dois tanques:

Figura 1: Esquema do sistema de nível com dois tanques.

Semana 2 (projeto e simulação de sistemas de controle em malha fechada). Para todos os itens abaixo, obtenha os gráficos do erro, do sinal de controle (com o saturador), e da saída da planta, considerando os modelos não lineares dos tanques. Apresente também o lugar das raízes do sistema (para o modelo linearizado) na presença do controlador.

(a) **Tanque 1:**

i. Projete um controlador ${\bf P}$ para regular o nível em 15cm (ou o mais próximo possível) sem oscilações.

- ii. Com base na técnica de cancelamento de polos, projete um controlador **PI** para regular o nível em 15cm (sem erro em regime), considerando um $PO\% \le 5\%$.
- iii. Projete um controlador para regular o nível em 15cm (sem erro em regime), considerando um $T_{s2\%} \leq 5s$ e um $PO\% \leq 11\%$. Não utilize a técnica de cancelamento de polos.

(b) Tanque 2:

- i. Projete um controlador **P** para regular o nível em 15cm (ou o mais próximo possível), considerando um $PO\% \le 10\%$.
- ii. Projete um controlador **PD** para regular o nível em 15cm (ou o mais próximo possível), considerando um $T_{s2\%} \leq 20s$. Não utilize a técnica de cancelamento de polos.
- iii. Projete um controlador para regular o nível em 15cm (sem erro em regime), considerando um $T_{s2\%} \leq 20s$ e um $PO\% \leq 10\%$. Não utilize a técnica de cancelamento de polos.

Symbol	Description	Value	Unit
K _p	Pump Flow Constant	3.3	cm ³ /s/V
V_{p_max}	Pump Maximum Continuous Voltage	12	V
V_{p_peak}	Pump Peak Voltage	22	V
\mathbf{D}_{out1}	"Out 1" Orifice Diameter	0.635	cm
\mathbf{D}_{out2}	"Out 2" Orifice Diameter	0.47625	cm
L_{1_max}	Tank 1 Height (i.e. Water Level Range)	30	cm
\mathbf{D}_{t1}	Tank 1 Inside Diameter	4.445	cm
K_{L1}	Tank 1 Water Level Sensor Sensitivity	6.1	cm/V
	(Depending on the Pressure Sensor Calibration)		
$L_{2_{max}}$	Tank 2 Height (i.e. Water Level Range)	30	cm
\mathbf{D}_{t2}	Tank 2 Inside Diameter	4.445	cm
K_{L2}	Tank 2 Water Level Sensor Sensitivity	6.1	cm/V
	(Depending on the Pressure Sensor Calibration)		
$\mathbf{V}_{ ext{bias}}$	Tank 1 and Tank 2 Pressure Sensor Power Bias	±12	V
\mathbf{P}_{range}	Tank 1 and Tank 2 Sensor Pressure Range	0 - 6.89	kPa
\mathbf{D}_{so}	Small Outflow Orifice Diameter	0.31750	cm
\mathbf{D}_{mo}	Medium Outflow Orifice Diameter	0.47625	cm
\mathbf{D}_{lo}	Large Outflow Orifice Diameter	0.55563	cm
g	Gravitational Constant on Earth	981	cm/s ²

Figura 2: Parâmetros do sistema de nível com dois tanques.