Nicolas Bernal

CS-225: Discrete Structures in CS

Homework 1, Part 1 Exercise Set #2.1

Problems: Problem #5(b, c, d), #8(c), #10(e), #30, #37, #39, #43, #45, #49, #54

#5

b) Not a statement: Pronoun "she" is ambiguous

c) Statement: Because it is false.

d) Not a statement: Depends on the variable x

#8

c) ¬h ∧ ¬w ∧ ¬s

10

e) ¬p ∨ (q ∧ r)

30

The sentence has the structure: p ∧ q. Using De Morgan's law the negation is ¬p ∨ ¬q.

Therefore, the negation is: The dollar is not at an all-time high or the stock market is not at a record low.

37

The statement is equal to: $(0 > x) \land (x \ge -7)$. Therefore, using De Morgan's laws the negation is: $(0 \le x) \lor (x < -7)$.

39

The statement has the form: $(p \land q) \lor (\neg p \land r \land s)$

Negation: $(\neg p \lor \neg q) \land (p \lor \neg r \lor \neg s)$ (from De Morgan's Law)

Therefore the negation of the statement is:

(num_orders \geq 50 or num_instock \leq 300) and (50 > num_orders or num_orders \geq 75 or num_instock \leq 500)

43

р	q	¬р	¬р∨q	¬q	р∧¬q	(¬p ∨ q) ∨ (p ∧ ¬q)
Т	Т	F	T	F	F	T
Т	F	F	F	Т	Т	Т
F	Т	Т	Т	F	F	Т
F	F	T	T	Т	F	T

Therefore, $(\neg p \lor q) \lor (p \land \neg q)$ is a tautology.

45

Let p = "Bob is both a Computer Science and Math major"

Let r = "Ann is a Math major"

let s = "Ann is a Computer Science major"

Sentence 1: $p \wedge r \wedge \neg (r \wedge s)$

Sentence 2: $\neg(p \land (r \land s)) \land (r \land p)$

Simplifying Sentence 1:

 $p \wedge r \wedge \neg (r \wedge s)$

 $\begin{array}{ll} p \wedge r \wedge (\neg r \vee \neg s) & \text{De Morgan's Law} \\ p \wedge ((r \wedge \neg r) \vee (r \wedge \neg s)) & \text{Distributive Law} \end{array}$

 $p \land ((c) \lor (r \land \neg s))$ Negation Law (c = contradiction)

 $p \land ((r \land \neg s) \lor (c))$ Commutative Law $p \land (r \land \neg s)$ Identity Law $p \land r \land \neg s$ Associative Law

Simplifying Sentence 1:

 $\neg(p \land (r \land s)) \land (r \land p)$

 $\begin{array}{lll} (\neg p \lor \neg (r \land s)) \land (r \land p) & \text{De Morgan's Law} \\ (\neg p \lor \neg r \lor \neg s) \land (r \land p) & \text{De Morgan's Law} \\ (\neg p \land (r \land p)) \lor (\neg r \land (r \land p)) \lor (\neg s \land (r \land p)) & \text{Distributive Law} \end{array}$

 $((\neg p \land p) \land r) \lor ((\neg r \land r) \land p) \lor (\neg s \land r \land p)$ Commutative Law and Associative Law

 $((c) \land r) \lor ((c) \land p) \lor (\neg s \land r \land p)$ $c \lor c \lor (\neg s \land r \land p)$ $(\neg s \land r \land p) \lor c \lor c$ $(\neg s \land r \land p) \lor c \lor c$ $(\neg commutative I)$

 $\begin{array}{lll} (\neg s \wedge r \wedge p) \vee c \vee c & Commutative \ Law \\ ((\neg s \wedge r \wedge p) \vee c) \vee c & Associative \ Law \\ (\neg s \wedge r \wedge p) \vee c & Identity \ Law \\ (\neg s \wedge r \wedge p) & Identity \ Law \\ \end{array}$

p ∧ r ∧ ¬s Commutative Law

Therefore, since Sentence 1 is equal to Sentence 2, they are logically equivalent.

#49

- a) Commutative Law
- b) Distributive Law
- c) Negation Law
- d) Identity Law

54

By De Morgan's Law
By Associative Law
By Idempotent Law
Distributive Law
Commutative Law
Negation Law
Identity Law