Machine Learning - Classification

Regression

Using data to make inferences or predictions

- Supervised
- Training data, each example:
 - Set of predictor values "independent variables"
 - Numerical output value "dependent variable"
- Model is function from predictors to output
 - Use model to predict output value for new predictor values
- Example
 - Predictors: mother height, father height, current age
 - Output: height

Classification

Using data to make inferences or predictions

- Supervised
- Training data, each example:
 - Set of feature values numeric or categorical
 - Categorical output value "label"
- Model is method from feature values to label
 - Use model to predict label for new feature values
- Example
 - Feature values: age, gender, income, profession
 - Label: buyer, non-buyer

Other Examples

Medical diagnosis

- Feature values: age, gender, history, symptom1-severity, symptom2-severity, test-result1, test-result2
- Label: disease

Email spam detection

- Feature values: sender-domain, length, #images, keyword₁, keyword₂, ..., keyword_n
- Label: spam or not-spam

Credit card fraud detection

- Feature values: user, location, item, price
- Label: fraud or okay

Algorithms for Classification

Despite similarity of problem statement to regression, non-numerical nature of classification leads to completely different approaches

- K-nearest neighbors
- Decision trees
- Naïve Bayes
- ... and others

K-Nearest Neighbors (KNN)

For any pair of data items i_1 and i_2 , from their feature values compute $distance(i_1,i_2)$

Example:

```
Features - gender, profession, age, income, postal-code

person<sub>1</sub> = (male, teacher, 47, $25K, 94305)

person<sub>2</sub> = (female, teacher, 43, $28K, 94309)

distance(person<sub>1</sub>, person<sub>2</sub>)
```

distance() can be defined as inverse of similarity()

K-Nearest Neighbors (KNN)

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) person₂ = (female, teacher, 43, \$28K, 94309)

Remember training data has labels

K-Nearest Neighbors (KNN)

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) buyer person₂ = (female, teacher, 43, \$28K, 94309) non-buyer

Remember training data has labels

To classify a new item *i*: In the labeled data find the K closest items to *i*, assign most frequent label

person₃ = (female, doctor, 40, \$40K, 95123)

KNN Example

- City temperatures France and Germany
- Features: longitude, latitude
- Distance is Euclidean distance
 distance([o₁,a₁],[o₂,a₂]) = sqrt((o₁-o₂)² + (a₁-a₂)²)
 actual distance in x-y plane
- Labels: frigid, cold, cool, warm, hot

```
Nice (7.27, 43.72) cool
Toulouse (1.45, 43.62) warm
Frankfurt (8.68, 50.1) cold
.....
```

Predict temperature category from longitude and latitude

KNN Example

KNN Summary

To classify a new item *i*: find K closest items to *i* in the labeled data, assign most frequent label

- No hidden complicated math!
- Once distance function is defined, rest is easy
- Though not necessarily efficient
 Real examples often have thousands of features
 - Medical diagnosis: symptoms (yes/no), test results
 - Email spam detection: words (frequency)

Database of labeled items might be enormous

"Regression" Using KNN

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) buyer person₂ = (female, teacher, 43, \$28K, 94309) non-buyer

Remember training data has labels

To classify a new item *i*, find K closest items to *i* in the labeled data, assign most frequent label

person₃ = (female, doctor, 40, \$40K, 95123)

"Regression" Using KNN

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) \$250 person₂ = (female, teacher, 43, \$28K, 94309) \$100

Remember training data has labels

To classify a new item *i*, find K closest items to *i* in the labeled data, assign average value of labels

person₃ = (female, doctor, 40, \$40K, 95123)

Regression Using KNN - Example

Decision Trees

- Use the training data to construct a decision tree
- Use the decision tree to classify new data

Decision Trees

New data item to classify: Navigate tree based on feature values

Decision Trees

Primary challenge is building good decision trees from training data

- Which features and feature values to use at each choice point
- HUGE number of possible trees even with small number of features and values

Common approach: "forest" of many trees, combine the results

Still impossible to consider all trees

Feature Selection

Real applications often have thousands of features

- Naïve Bayes typically uses only some of the features, those most affecting the label
- Decision trees also rely on choosing features that most affect the label
- Feature selection is a key part of machine learning - an art and a science

Training and Test

Created machine learning model from training data. How do you know whether it's a good model?

> Try it on known data

Other Terms You Might Hear

Logistic regression

- Recall regression model is function f from predictor values to numeric output value
- For classification: from training data obtain one regression function f_L for each label L f_L(feature-values) = probability of item having label L

Support Vector Machine

- Two labels only ("binary classifier")
- Features = multidimensional space
- From training data SVM finds hyper-plane that best divides space according to labels

Other Terms You Might Hear

Deep Learning

- Complex, mysterious (the ultimate "black box" software), becoming extremely popular
- Multiple layers, each layer uses classification techniques to reduce complexity for next layer and further classification
- Important plus: identifies features from raw data

Neural Network

- Precursor to deep learning, typically two layers
- Leap to deep learning enabled by massive amounts of data, powerful computing

Other Terms You Might Hear

Deep Learning

- Complex, my software), be
- Multiple laye techniques t and further
- Important pl

Neural Network

- Precursor to
- Leap to deep

Classification Summary

- Supervised machine learning
- Training data, each example:
 - Set of feature values numeric or categorical
 - Categorical output value label
- Model is "function" from feature values to label
 - Use model to predict label for new feature values
- Approaches we covered
 - K-nearest neighbors relies on distance (or similarity) function
 - Decision trees relies on finding good trees/forests
 - Naïve Bayes relies on conditional independence assumption