DEEP SURVIVAL & PERSONALIZED TREATMENT RECOMMENDER SYSTEM

Presented by

Animesh Guchhait

<u>DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network | BMC Medical Research Methodology | Full Text (biomedcentral.com)</u>

RECAP: COX'S PROPORTIONAL HAZARDS MODEL

Hazard Function

$$\lambda(t|x) = \lambda_0(t) \cdot e^{h(x)}.$$

Where risk score, $r(x) = e^{h(x)}$, $\hat{h}_{\beta}(x) = \beta^T x$ [or equivalently $\hat{r}_{\beta}(x) = e^{\beta^T x}$].

Partial Likelihood

$$L_c(\beta) = \prod_{i:E_i=1} \frac{\hat{r}_{\beta}(x_i)}{\sum_{j \in \Re(T_i)} \hat{r}_{\beta}(x_j)} = \prod_{i:E_i=1} \frac{\exp(\hat{h}_{\beta}(x_i))}{\sum_{j \in \Re(T_i)} \exp(\hat{h}_{\beta}(x_j))},$$

The risk set $\Re(t) = \{i : T_i \ge t\}$ is the set of patients still at risk of failure at time t.

NONLINEAR SURVIVAL MODELS

☐ The Faraggi-Simon method:

- Feed forward neural network that provides the basis for a nonlinear proportional hazards model
- > single hidden layer network with two or three nodes
- the NN computes nonlinear features from the training data
- > calculates their linear combination to estimate the log-risk function
- Similar to Cox regression, the network optimizes a modified Cox partial likelihood
- has not been shown to outperform the linear CPH

■ Random Survival Forest

> a tree method that produces an ensemble estimate for the cumulative hazard function

NONLINEAR SURVIVAL MODELS

■ DeepSurv:

- > deep feed-forward neural network which predicts the effects of a patient's covariates on their hazard rate
- The output of the network $\hat{h}_{ heta}(x)$ is a single node with a linear activation which estimates the log-risk function in the Cox model
- regularization:

$$l(\theta) := -\frac{1}{N_{E=1}} \sum_{i: E_i = 1} \left(\hat{h}_{\theta}(x_i) - \log \sum_{j \in \Re(T_i)} e^{\hat{h}_{\theta}(x_j)} \right) + \lambda \cdot ||\theta||_2^2,$$
(4)

 $N_{E=1}$ is the number of patients with an observable event

The risk set $\Re(t) = \{i : T_i \ge t\}$ is the set of patients still at risk of failure at time t.

NONLINEAR SURVIVAL MODELS

DeepSurv:

- deep feed-forward neural network which predicts the effects of a patient's covariates on their hazard rate
- The output of the network $\hat{h}_{\theta}(x)$ is a single node with a linear activation which estimates the log-risk function in the Cox model
- regularization:

$$l(\theta) := -\frac{1}{N_{E=1}} \sum_{i:E_i=1} \left(\hat{h}_{\theta}(x_i) - \log \sum_{j \in \Re(T_i)} e^{\hat{h}_{\theta}(x_j)} \right) + \lambda \cdot ||\theta||_2^2,$$
(4)

 $N_{E=1}$ is the number of patients with an observable event

The risk set $\Re(t) = \{i : T_i \ge t\}$ is the set of patients still at risk of failure at time t.

TREATMENT RECOMMENDER SYSTEM

- > patients are subject to different levels of risk based on their relevant prognostic features and which treatment they undergo
- \triangleright Let all patients in a given study be assigned to one of n treatment groups $\tau \in \{0, 1, ..., n-1\}$
- \triangleright We assume each treatment i to have an independent risk function $e^{h_i(x)}$
- > So the hazard function becomes

$$\lambda(t; x | \tau = i) = \lambda_0(t) \cdot e^{h_i(x)}.$$

> recommender function

$$\operatorname{rec}_{ij}(x) = \log\left(\frac{\lambda(t; x | \tau = i)}{\lambda(t; x | \tau = j)}\right) = \log\left(\frac{\lambda_0(t) \cdot e^{h_i(x)}}{\lambda_0(t) \cdot e^{h_j(x)}}\right)$$
$$= h_i(x) - h_j(x).$$

if $rec_{ij}(x)$ gives positive result that means treatment i has higher risk of death than j

TREATMENT RECOMMENDER SYSTEM

- > The recommender function can be used to provide personalized treatment recommendations
- DeepSurv's architecture holds an advantage over the CPH because it calculates the recommender function without an a priori specification of treatment interaction terms.
- > CPH recommender function
 - \diamond Let each patient have a set of n features x_n , in which one feature is a treatment variable $x_0 = \tau$
 - Recommender function is

$$\operatorname{rec}_{ij}(x) = \log \left(\frac{\lambda(t; x | \tau = i)}{\lambda(t; x | \tau = j)} \right)$$

$$= \log \left(\frac{\lambda_0(t) \cdot e^{\beta_0 i + \beta_1 x_1 + \dots + \beta_n x_n}}{\lambda_0(t) \cdot e^{\beta_0 j + \beta_1 x_1 + \dots + \beta_n x_n}} \right)$$

$$= \log \left(e^{\beta_0 i + \beta_1 x_1 + \dots + \beta_n x_n - (\beta_0 j + \beta_1 x_1 + \dots + \beta_n x_n)} \right)$$

$$= \beta_0 i - \beta_0 j$$

$$= \beta_0 (i - j).$$

CPH determines whether the treatment is effective and, if so, then recommending it to all patients

RESULTS ON THE DATASETS

 Table 1 Experimental results for all experiments C-index (95% confidence interval)

Experiment	CPH	DeepSurv	RSF
Simulated Linear	0.779239 (0.777,0.781)	0.778065 (0.776,0.780)	0.757863 (0.756,0.760)
Simulated Nonlinear	0.486728 (0.484,0.489)	0.652434 (0.650, 0.655)	0.626552 (0.624,0.629)
WHAS	0.816025 (0.813, 0.819)	0.866723 (0.863,0.870)	0.892884 (0.890,0.895)
SUPPORT	0.583076 (0.581,0.585)	0.618907 (0.617,0.621)	0.619302 (0.618,0.621)
METABRIC	0.631674 (0.627,0.636)	0.654452 (0.650,0.659)	0.619517 (0.615,0.624)
Simulated Treatment	0.516620 (0.514,0.519)	0.575400 (0.573,0.578)	0.550298 (0.548,0.553)
Rotterdam & GBSG	0.658773 (0.655, 0.662)	0.676349 (0.673,0.679)	0.647924 (0.644, 0.651)

Fig. 2 Simulated Linear Experimental Log-Risk Surfaces. Predicted log-risk surfaces and errors for the simulated survival data with linear log-risk function with respect to a patient's covariates x_0 and x_1 . **a** The true log-risk $h(x) = x_0 + 2x_1$ for each patient. **b** The predicted log-risk surface of $\hat{h}_{\beta}(x)$ from the linear CPH model parameterized by β . **c** The output of DeepSurv $\hat{h}_{\theta}(x)$ predicts a patient's log-risk. **d** The absolute error between true log-risk h(x) and CPH's predicted log-risk $\hat{h}_{\theta}(x)$. **e** The absolute error between true log-risk h(x) and DeepSurv's predicted log-risk $\hat{h}_{\theta}(x)$.

Fig. 3 Simulated Nonlinear Experimental Log-Risk Surfaces. Log-risk surfaces of the nonlinear test set with respect to patient's covariates x_0 and x_1 . **a** The calculated true log-risk h(x) (Eq. 9) for each patient. **b** The predicted log-risk surface of $\hat{h}_{\beta}(x)$ from the linear CPH model parameterized on β . The linear CPH predicts a constant log-risk. **c** The output of DeepSurv $\hat{h}_{\theta}(x)$ is the estimated log-risk function

Fig. 4 Simulated Treatment Log-Risk Surface. Treatment Log-Risk Surfaces as a function of a patient's relevant covariates x_0 and x_1 . **a** The true log-risk $h_1(x)$ if all patients in the test set were given treatment $\tau = 1$. We then manually set all treatment groups to either $\tau = 0$ or $\tau = 1$. **b** The predicted log-risk $\hat{h}_0(x)$ for patients with treatment group $\tau = 0$. **c** The network's predicted log-risk $\hat{h}_1(x)$ for patients in treatment group $\tau = 1$

DEEP SURV TREATMENT RECOMMENDATION SURVIVAL CURVE ON RGBSG DATA

SIMULATED TREATMENT SURVIVAL CURVES

Table 2 Experimental results for treatment recommendations: median survival time (months)

Experiment	DeepSurv		RSF	
Experiment	Rec	Anti-Rec	Rec	Anti-Rec
Simulated	3.334	2.867	3.270	3.334
Rotterdam & GBSG	40.099	31.770	39.014	30.752

PYTHON PACKAGES

- > Python package published with the paper: https://github.com/jaredleekatzman/DeepSurv
- ➤ But the package only can be install in python 3.4 or python 2.8 as it needs lasagne==0.2.dev1
- ➤ And lasagne==0.2.dev l is not available in python newer versions
- So instead of DeepSurv package, we can use deepsurvk deepsurvk · PyPI
- Deepsurvk is also based on the above paper and can be installed and used in newer version of python easily.

HYPERPARAMETER OPTIMIZATION

- > Deepsurvk package also provide hyperparameter optimization features.
- ➤ It uses Grid Search method for this optimization
- > So, depending on the dataset, it my take time for optimization.

PACKAGE LIMITATION

- > Deepsurvk package only can use two class of treatments at this moment.
- > For hyper parameter optimization, it use grid search method which takes lots of time.

Thank You