CSC236 Week 05: Languages: Definitions

Hisbaan Noorani

October 7 – October 13, 2021

Contents

1	Some definitions	1
2	More notation — string operations	1
3	Language operations	2
4	Another way to define languages	2
5	Regular expression to languages:	2
6	Regexp examples	3

1 Some definitions

- Alphabet: Finite, non-empty set of symbols, e.g. $\{a,b\}$ or $\{0,1,-1\}$. Conventionally denotes Σ .
- String: Finite (including empty) sequence of symbols over an alphabet: abba is a string over $\{a,b\}$. Convention: ε is the empty string, never an allowed symbol, Σ^* is set of all strings over Σ .
- Language: Subset of Σ^* for some alphabet Σ . Possible empty, possibly empty, possibly infinite subset. E.e. $\{\}, \{aa, aaa, aaaa, \dots\}$.

N.B.:
$$\{\} \neq \{\varepsilon\}$$
. Proof: $|\{\}| = 0 \neq 1 = |\{\varepsilon\}| \implies \{\} \neq \{\varepsilon\}$

Many problems can be reduced to languages: logical formulas, identifiers from compilation, natural language processing. The key question is recognition:

Given language L and string s, is $s \in L$?

2 More notation — string operations

- String length: denotes |s|, is the number of symbols in s, e.g. |bba| = 3.
- s = t: if and only if |s| = |t|, and $s_i = s_t$, for $0 \le i < |s|$.
- s^R : reversal of s is obtained by reversing symbols of s, e.g. $1011^R = 1101$.

- st or $s \circ t$: concatenation of s and t all characters of s followed by all those of t, e.g. $bba \circ bb = bbabb$.
- s^k : denotes s concatenated with itself k times, e.g. $ab^3 = ababab, 101^0 = \varepsilon$.
- Σ^n : all strings of length n over Σ , Σ^* denotes all strings over Σ .

3 Language operations

- \overline{L} : Complement of L, i.e. $\Sigma^* L$. If L is a language of strings over $\{0,1\}$ that start with 0, then \overline{L} is the language of strings that begin with 1 plus the empty string.
- $L \cup L'$: Union.
- $L \cap L'$: Intersection.
- L L': Difference.
- Rev(L): = $\{s^R : s \in L\}$.
- concatenation: LL' or $L \circ L' = \{rt : r \in L, r \in L'\}$. There are some special cases, $L\{\varepsilon\} = L = \{\varepsilon\} L$, and $L\{\} = \{\} = \{\} L$.
- exponentiation: L^k is concatenation of L, k times. There is a special case, $L^0 = \{\varepsilon\}$, including $L = \{\}$.
- Kleene star: $L^* = L^0 \cup L^1 \cup L^2 \cup \dots$

4 Another way to define languages

In addition to the set description $L = \{...\}$.

Definition: The regular expressions (regexps or REs) over alphabet Σ is the smallest set such that

- \emptyset, ε , and x, for every $x \in \Sigma$ are REs over Σ .
- If T and S are REs are over Σ , then so are:
 - -(T+S) (union) lowest precedence operator
 - (TS) (concatenation) middle precedence operator
 - $-T^*$ (star) highest precedence

5 Regular expression to languages:

The L(R), the language denoted (or described) by R is defined by structural induction.

- Basis; If R is a regular expression by the basis of the definition of regular expressions, then define L(R):
 - $-L(\emptyset) = \emptyset$ (the empty language no strings!)
 - $-L(\varepsilon) = \{\varepsilon\}$ (the language consisting of just the empty string)
 - $-L(x) = \{x\}$ (the language consisting of the one-symbol string)

- Induction step: If R is a regular expression by the induction step of the definition, then define L(R):
 - $L((T+S)) = L(S) \cup L(T)$
 - L((TS)) = L(S)L(T)
 - $-L(T^*) = L(T)*$

We are assuming about (S+T) and (ST) above?

6 Regexp examples

- $L(0+1) = L(0) \cup L(1) = \{0,1\}$
- $L((0+1)^*)$ All binary strings over $\{0,1\}$
- $L((01)^*) = \{\varepsilon, 01, 0101, 010101, \dots\}$
- $L(0^*1^*)$ 0 or more 0s followed by 0 or more 1s
- $L(0^* + 1^*)$ 0 or more 0s or 0 or more 1s
- $L((0+1)(0+1)^*)$ Non-empty binary strings over $\{0,1\}$