Unit 1

- 1. Define Machine Learning. Explain with examples why machine learning is important.
- 2. Discuss some applications of machine learning with examples.
- 3. Explain how some disciplines have influenced the machine learning.
- 4. What is well-posed learning problems.
- 5. Describe the following problems with respect to Tasks, Performance and Experience:
 - a. A Checkers learning problem
 - b. A Handwritten recognition learning problem
 - c. A Robot driving learning problem
 - d. In Spam E-Mail detection
- 6. Explain the steps in designing a learning systems in detail.
- 7. Explain different perspective and issues in machine learning.
- 8. Define concept learning and discuss with example.
- 9. Explain the General-to-Specific Ordering of Hypotheses
- 10. Write FIND-S algorithm and explain with example given below and also find instance space, hypothesis space, and segmented distinct space.

Example 1:

Example	Sky	AirTemp	Humidity	wind	water En	for W catstr joySport	
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Example 2:

Weather	Temperature	Company	Humidity	Wind	Shopping
Sunny	Moderate	Yes	Mild	High	Yes
Rainy	Cold	No	Mild	Low	No
Sunny	Moderate	No	Normal	High	Yes
Sunny	Moderate	Yes	High	High	Yes
Cloudy	Cold	No	Mild	Low	No
Rainy	Moderate	Yes	High	High	Yes
Sunny	Moderate	Yes	Normal	Low	Yes
	Sunny Rainy Sunny Sunny Cloudy Rainy	Sunny Moderate Rainy Cold Sunny Moderate Sunny Moderate Cloudy Cold Rainy Moderate	Sunny Moderate Yes Rainy Cold No Sunny Moderate No Sunny Moderate Yes Cloudy Cold No Rainy Moderate Yes	Sunny Moderate Yes Mild Rainy Cold No Mild Sunny Moderate No Normal Sunny Moderate Yes High Cloudy Cold No Mild Rainy Moderate Yes High	Sunny Moderate Yes Mild High Rainy Cold No Mild Low Sunny Moderate No Normal High Sunny Moderate Yes High High Cloudy Cold No Mild Low Rainy Moderate Yes High High

Example 3:

Origin	Manufucturer	Color	Decade	Туре	Example Type
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Sports	Negative
Japan	Toyota	Blue	1990	Economy	Positive
USA	Chrysler	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive

- 11. What are the key properties and complaints of FIND-S algorithm?
- 12. Define Consistent Hypothesis and Version Space.
- 13. Write LIST-THEN-ELIMINATE algorithm.
- 14. Write the candidate elimination algorithm and illustrate with example.
- 15. What is Ensemble Learning? List and Explain Ensemble Learning Methods with Example.
- 16. Give difference between supervised learning and unsupervised learning.
- 17. Give difference between parametric method and non-parametric method in ML.

18. Write the final version space for the below mentioned training examples using candidate elimination algorithm and also find instance space, hypothesis space, and segmented distinct space.

Example – 1:

Origin	Manufacturer	Manufacturer Color Decade Type		Example Type	
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Sports	Negative
Japan	Toyota	Blue	1990	Economy	Positive
USA	Chrysler	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive
Japan	Toyota	Green	1980	Economy	Positive
Japan	Honda	Red	1990	Economy	Negative

Example -2:

Example	Citation	Size	In Library	Price	Edition	Buy
1	Some	Small	No	Affordable	Many	No
2	Many	Big	No	Expensive	One	Yes
3	Some	Big	Always	Expensive	Few	No
4	Many	Medium	No	Expensive	Many	Yes
5	Many	Small	No	Affordable	Many	Yes

Example -3:

Size	Color	Shape	Class
Big	Red	Circle	No
Small	Red	Triangle	No
Small	Red	Circle	Yes
Big	Blue	Circle	No
Small	Blue	Circle	Yes

Example-4:

Example	Citation	Size	In Library	Price	Edition	Buy
1	Some	Small	No	Affordable	One	No
2	Many	Big	No	Expensive	Many	Yes
3	Many	Medium	No	Expensive	Few	Yes
4	Many	Small	No	Affordable	Many	Yes

Example – 5:

Example	Size	Shape	Color	Surface	Thickness	Target Concept
1	Circular	Large	Light	Smooth	Thick	Malignant (+)
2	Circular	Large	Light	Irregular	Thick	Malignant (+)
3	Oval	Large	Dark	Smooth	Thin	Benign (-)
4	Oval	Large	Light	Irregular	Thick	Malignant (+)

Example 6:

Example	Eyes	Nose	Head	Fcolor	Hair	Smile
1	Round	Triangle	Round	Purple	Yes	Yes
2	Square	Square	Square	Green	Yes	No
3	Square	Triangle	Round	Yellow	Yes	Yes
4	Square	Triangle	Round	Green	No	No
5	Square	square	Round	Yellow	Yes	Yes

- 19. Explain in detail the Inductive Bias of Candidate Elimination algorithm.
- 20. Explain Adaboost algorithm. Write Steps of Adaboost algorithm.
- 21. Compute final prediction using Adaboost ensemble methods.

CGPA	Interactiveness	Practical Knowledge	Communication Skill	Job Profile
>=9	Yes	Good	Good	Yes
<9	No	Good	Moderate	Yes
>=9	No	Average	Moderate	No
<9	No	Average	Good	No
>=9	Yes	Good	Moderate	Yes
>=9	Yes	Good	Moderate	Yes

- 22. Compare the different types of machine learning.
- 23. What is Machine Learning? List out its applications and possible ethical issues of machine learning applications?
- 24. List out different issues in machine Learning.
- 25. Define: a. Supervised Learning b. Classification c. Regression

- 26. What is decision tree and decision tree learning?
- 27. Explain the difference between linear and logistic regression with examples.
- 28. List the advantages of SVM and how optimal Hyperplane differs from Hyper plane?
- 29. Explain K-nearest Neighbor algorithm.
- 30. Relate entropy and information gain.
- 31. Consider the training dataset given in the following table. Use weighted k-NN and determine the class. Test instance (7.6, 60, 8) and K=3.

S.No.	CGPA	Assessment	Project Submitted	Result
1	9.2	85	8	Pass
2	8	80	7	Pass
3	8.5	81	8	Pass
4	6	45	5	Fail
5	6.5	50	4	Fail
6	8.2	72	7	Pass
7	5.8	38	5	Fail
8	8.9	91	9	Pass

- 32. What is the role of kernels? Classify the different types of Kernel.
- 33. Distinguish between classification and Clustering.
- 34. Explain representation of the decision tree with examples.
- 35. Explain the concepts of Entropy and Information gain.
- 36. Describe the ID3 algorithm for decision tree learning with an example.
- 37. Give Decision trees for the following set of training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes

D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- 38. Consider the following set of training examples :
 - (a) What is the entropy of this collection of training examples with respect to the target function classification?
 - (b) What is the information gain of a2 relative to these training examples?

Instance	Classification	a1
1	+	Т
2	+	Т
3	-	Т
4	+	F
5	-	F
6	-	F

39. Identify the entropy, information gain and draw the decision trees for the following set of training examples:

Gender	Car ownership	Travel cost	Income Level	Transportation (Class)
Male	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	1	Cheap	Medium	Train
Female	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Male	0	Standard	Medium	Train
Female	1	Standard	Medium	Train
Female	1	Expensive	High	Car
Male	2	Expensive	Medium	Car
Female	2	Expensive	High	Car

- 40. Discuss Hypothesis Space Search in Decision tree Learning.
- 41. Binary classification vs. Multiclass classification in machine learning.
- 42. What is Clustering? Explain K Mean clustering in detail.
- 43. What is Dimensionality Reduction? Explain Dimensionality reduction in detail.
- 44. Difference between PCA and LDA.
- 45. Difference Feature Selection and Feature Extraction Methods.
- 46. Explain the difference between linear and logistics regression with example.
- 47. Discuss the decision tree algorithm in detail.
- 48. What are overfitting and underfitting in context of machine learning models?

 What is the major cause of overfitting and underfitting?

49. Consider the following confusion matrix of the win/loss prediction of cricket match. Calculate model accuracy and error rate, sensitivity, precision, F-measure and kappa value for the same.

	Actual Win	Actual Loss
Predicted Win	85	4
Predicted Loss	2	9

- 50. While predicting malignancy of tumor of a set of patients using a classification model, following are the data recorded:
 - (a) Correct predictions 15 malignant, 75 benign
 - (b) Incorrect predictions 3 malignant, 7 benign Calculate the model accuracy, error rate, Kappa value, sensitivity, precision, and F-measure of the model.
- 51. Explain the process of K-fold-cross-validation method.
- 52. Explain K-mean clustering algorithm.
- 53. What is feature selection? Why it is needed? What are the different approaches of feature selection, briefly explain any one.
- 54. Explain Under-fitting and Over-fitting with an example.
- 55. What is Multiple Linear regression?
- 56. Elaborate the cross validation in training a model
- 57. What is model accuracy in reference to classification? Also Explain the performance parameters Precision, Recall and F-measure with its formula and example.
- 58. Show various distance-based similarity measure with its example.
- 59. Briefly explain K-Medoids
- 60. Differentiate PCA and LDA.
- 61. Write a note on KNN