

Labeling-Heuristiken

Levin Nemesch, Joshua Sangmeister

09. Dezember 2020

Algorithm Engineering - Projekt

Rules-Heuristik: Definitionen

- Ein Punkt hat mehrere Kandidaten
- Kandidaten können in Konflikt stehen
- Die Konflikt-Partner eines Kandidaten sind alle Kandidaten, mit denen er in Konflikt steht
- Konfliktzahl eines Kandidaten: Anzahl der Konflikt-Partner

Conflict Array

- Speichert für jedes Label alle möglichen Konflikt Partner
- Erlaubt später schnelleres Prüfen ob ein Label ein anderes Überlappt
- Aber: Keine Garantie für Größe, möglicherweise kollidieren alle Label
- Alternative: Segment trees
- Conflict arrays können cache locality ausnutzen

Referenzheuristik

- Erzeugt gute Lösung in $O(n^2) \longrightarrow$ Benchmark für Heuristik
- Algorithmus:

```
set all labels false
for all labels in order:
    for every candidate in random order:
        if no conflict for position:
            set label to position
            break
```

Simulated Annealing: Konzept

- Ähnlich wie Gradientenabstieg, erlaubt aber temporäre Verschlechterung
- Simuliert sinkende Energie in sich stabilisiernden System
- Zielfunktion E
- Verbesserungen von E werden immer akzeptiert
- Verschlechterungen von E werden mit über Zeit sinkender Wkt akzeptiert

Simulated Annealing: Algorithmus

```
while temperature above threshold:
    for number_of_tries:
        change label
        if new E lower than previous E:
            decide if to keep solution
        else:
            keep solution
        lower temperature
```

Simulated Annealing: Try New Label

- 1. Wähle zufälliges Label L
- 2. Setzte L auf zufällige und neue Position
- 3. Finde kollidierende Label und verschiebe oder entferne diese
- 4. Falls E verschlechtert: Behalte mit $P=1-\exp^{-\frac{\Delta E}{t}}$

Simulated Annealing:Feste Faktoren

- E: Anzahl aktiver Label
- Abkühlungsrate: 0.9
- Zusätzlicher Abbruch, falls bereits Hälfte aller erlaubten Werte verändert (Annahme, dass Energie in diesem Fall viel zu hoch)

Simulated Annealing: Variable Faktoren

- Starttemperatur (log(n), $\sqrt(n)$, $\frac{\sqrt(n)}{3}$, $\sqrt(n) * \log(n)$, n)
- Versuche pro Temperatur (1, 2, 4, 8)
- Label nicht initialisiert oder mit Referenzheuristik

(Getestete Werte in Klammern)

Simulated Annealing: Parametervariation

- Auf kleinen Instanzen macht sich Variation kaum bemerkbar
- Auf großen Instanzen Initialisierung nötig
- ullet Höhere Temperatur kaum Verbesserung o t=1
- Je mehr Versuche pro Temperatur, desto besser Ergebnis \Longrightarrow Wurzel zu klein, linear zu groß $\to \sqrt(n) * \log(n)$ guter Kompromiss

Simulated Annealing: Lösungsgüte I

Simulated Annealing: Lösungsgüte II

Simulated Annealing: Zeitaufwand Relativ I

Simulated Annealing: Zeitaufwand Absolut I

Simulated Annealing: Zeitaufwand Relativ II

Simulated Annealing: Zeitaufwand Absolut II

Weitere Arbeit

- Bestes im Algorithmus erreichter Wert immer Endwert
 Ist wie Gradientenabstieg?
- Kein Implementationsfehler, einzelne Verschlechterungen kommen vor
 Energie nicht ausreichend um Bereich des lok. Mins zu verlassen
- Parameteraum für höhere Energiewerte absuchen
- Abkühlungsrate in Relation zu initialer Energie setzen
- Zeitlimit

Rules-Heuristik

Figure 3.12: Rule L1

Figure 3.13: Rule $\bf L2$

Figure 3.14: Rule L3

- (L1) If p has a candidate p_i without any conflicts, declare p_i to be part of the solution, and eliminate all other candidates of p, see Figure 3.12.
- **(L2)** If p has a candidate p_i that is only in conflict with some q_k , and q has a candidate q_j ($j \neq k$) that is only overlapped by p_l ($l \neq i$), then add p_i and q_j to the solution and eliminate all other candidates of p and q, see Figure 3.13.
- (L3) If p has only one candidate p_i left, and the candidates overlapping p_i form a clique, then declare p_i to be part of the solution and eliminate all candidates that overlap p_i , see Figure 3.14.

Rules-Heuristik: Ergebnisse

Rules-Heuristik: Laufzeit

Rules-Heuristik: Vergleich mit SAN

Rules-Heuristik: Vergleich mit SAN: Laufzeit

