

Biella, 23 settembre 2022

bus • IT

Episodio II: un lungo viaggio (bus)

Purtroppo, viaggiare sulla Terra non è cosa semplice per un alieno: l'astronave non è in grado di farlo, camminare sulla Terra è faticoso, e persino prendere un mezzo pubblico può sollevare troppe domande e far perdere giorni tra noiosi controlli burocratici, interrogatori, analisi scientifiche e vivisezioni.

Figura 1: Il bus di linea 26 per Biella centrale.

Per questo motivo, \(\Q\) î \(\phi\) \(\psi\) ha deciso che si limiterà alle sole linee di bus, prendendosi tutto il tempo necessario (per fortuna è in anticipo di mesi!) ma facendo il minor numero di cambi, per limitare il numero di controlli a cui sarà sottoposto.

Ci sono N fermate di bus sulla Terra, numerate da 0 a N-1. Il cosmodromo di Baikonur si trova alla fermata 0, mentre l'ITIS Quintino Sella di Biella si trova alla fermata N-1. Le fermate sono collegate da L diverse linee di bus, dove l'i-esima linea $(0 \le i < L)$ effettua le K_i fermate $F_{i,0}$, $F_{i,1}$, ..., $F_{i,K_{i-1}}$, in quest'ordine. In altre parole, tale bus parte dalla fermata $F_{i,0}$, effettua K_i-2 fermate intermedie, e infine termina nella fermata $F_{i,K_{i-1}}$. Nota che non è detto che ogni linea di bus sia appaiata da una linea che fa le stesse fermate in ordine inverso.

 \triangle የነሐርነልቱ፤ vorrebbe quindi prendere un bus nella fermata 0, effettuare il minor numero possibile (anche 0) di cambi, e, per finire, scendere nella fermata N-1. Un cambio consiste nello scendere dal bus su cui si sta viaggiando a una certa fermata j e salire su un altro bus (eventualmente anche della stessa linea) alla medesima fermata. Aiuta \triangle የነሐርነልቱ፤ a pianificare gli spostamenti nel modo migliore, o determina che è impossibile raggiungere la fermata N-1 nel modo descritto!

Implementazione

Dovrai sottoporre un unico file, con estensione .cpp.

Tra gli allegati a questo task troverai un template bus.cpp con un esempio di implementazione.

Dovrai implementare la seguente funzione:

```
C++ | int pianifica(int N, int L, vector<vector<int>>> F);
```

- L'intero N rappresenta il numero di fermate.
- L'intero L rappresenta il numero di linee di bus.
- Il vettore di vettori F, indicizzato da 0 a L-1, contiene le informazioni sulle fermate degli bus. Più precisamente, per $0 \le i < L$, F[i] è un vettore di lunghezza K_i che contiene gli interi $F_{i,0}, F_{i,1}, \ldots, F_{i,K_i-1}$, in quest'ordine.
- La funzione deve restituire il numero minimo di cambi necessari affinché 2im ∇ i Φ II possa raggiungere la fermata N-1 dalla fermata 0, oppure -1 se questo è impossibile.

bus Pagina 1 di 3

¹Il più grande spazioporto sulla terra attualmente operativo, situato in Kazakistan.

Grader di prova

Nella directory relativa a questo problema è presente una versione semplificata del grader usato durante la correzione, che potete usare per testare le vostre soluzioni in locale. Il grader di esempio legge i dati da stdin, chiama la funzione che dovete implementare e scrive su stdout, secondo il seguente formato.

Il file di input è composto da L+1 righe, contenenti:

- Riga 1: gli interi N e L, separati da uno spazio.
- Riga 2 + i $(0 \le i < L)$: l'intero K_i , seguito dai K_i interi $F_{i,0}, \ldots, F_{i,K_i-1}$.

Il file di output è composto da una sola riga, contenente il valore S restituito dalla funzione pianifica.

Assunzioni

- $2 \le N \le 100000$.
- $1 \le L \le 100000$.
- $K_i \geq 2$ per ogni $0 \leq i < L$.
- $K_0 + K_1 + \cdots + K_{L-1} \le 300\,000$.
- $0 \le F_{i,j} < N$ per ogni $0 \le i < L$ e $0 \le j < K_i$.
- $F_{i,j} \neq F_{i,j+1}$ per ogni $0 \le i < L \text{ e } 0 \le j < K_i 1$.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo ad un subtask, è necessario risolvere correttamente tutti i test che lo compongono.

- Subtask 1 [0 punti]: Casi d'esempio.
- Subtask 2 [17 punti]: $K_i = 2$ per ogni $0 \le i < L$.
- Subtask 3 [20 punti]: $N \le 2000$. Inoltre $K_0 + K_1 + \cdots + K_{L-1} \le 4000$.
- Subtask 4 [19 punti]: $F_{i,j} < F_{i,j+1}$ per ogni $0 \le i < L \text{ e } 0 \le j < K_i 1$.
- Subtask 5 [12 punti]: K_i è dispari e $F_{i,j} = F_{i,K_i-j-1}$ per ogni $0 \le i < L$ e $0 \le j < K_i-1$ (ogni bus ripercorre il proprio tragitto nella direzione opposta).
- Subtask 6 [14 punti]: Ogni stazione compare al più 50 volte nell'input.
- Subtask 7 [18 punti]: Nessuna limitazione aggiuntiva.

Esempi di input/output

stdin	stdout
8 3 7 2 3 6 1 4 3 5 2 6 7 2 0 1	3
4 2 4 2 3 1 0 2 0 1	-1

bus Pagina 2 di 3

stdin	stdout
5 3 5 0 3 1 2 4 2 1 4 2 0 1	0

Spiegazione

Nel **primo caso di esempio**, la soluzione ottimale consiste in:

- prendere la linea 2 in corrispondenza della fermata 0;
- cambiare in corrispondenza della fermata 1 e prendere la linea 0;
- scendere alla fermata 3 e salire nuovamente sulla linea 0;
- cambiare in corrispondenza della fermata 6 e prendere la linea 1;
- scendere infine alla fermata 7.

La soluzione ottimale si compone quindi di 3 cambi.

Figura 2: Primo caso di esempio

Nel **secondo caso di esempio**, non è possibile raggiungere la fermata 3 partendo dalla fermata 0.

Nel **terzo caso di esempio**, la soluzione ottimale consiste nel prendere la linea 0 dalla fermata 0 alla fermata 4, senza effettuare nessun cambio. Si noti che è anche possibile raggiungere la fermata 4 prendendo la linea 2 e poi cambiando alla fermata 1 con la linea 1, tuttavia questa soluzione richiede un numero maggiore di cambi.

Figura 3: Secondo caso di esempio

Figura 4: Terzo caso di esempio

bus Pagina 3 di 3