RIT

Proposal for Primary Packaging of Bottles

Purpose, environment, configuration, devices and safety measures

by

Matheus Tararam de Laurentys

Final Report MFET0340 - Automation Control Systems

Directed to: Prefessor Michael Slifka

Report submitted in partial fulfillment of the requirements for the final project

at

 $\begin{array}{c} {\rm Rochester~Institute~of~Technology} \\ {\rm Department~of~Manufacturing~and~Mechanical~Engineering~Technology} \\ {\rm December~2021} \end{array}$

1 Executive Summary

The operation of filling bottles, from those of drinkable waters to containers of washing machine detergent, is highly automated. The high volume and low production cost requirements of these products make automation the only viable option. This report features a system capable of operating with different types of containers and varied liquid materials. The report also dives deep into a program that simulates the production line of bottled liquids. With some adaptations the program can be used to operate on the physical implementation of the system.

The system uses two feeders, one for bottles and one for liquids. When operating, the bottles are moved into a container and get rinsed, filled and caped. Finally the bottles of the same type and liquid, grouped together, are made available to packaging. To operate, the system uses a PLC program that verifies the count of bottles in the feeder to coordinate with moving of products to the conveyor and verifies volume of liquid available to coordinate with filling of bottles.

Other than the two feeders, the system requires a set of colored button devices, a bottle filling machine, a bottle conveyor and the PLC itself. The PLC used is Rockwell's model 5069-L306ER, with models 5069-IB6F and 5069-OB16 as input and output modules.

2 Full System Description

The proposed bottle filling system ("System") solves the problem of rinsing, filling and packaging bottles in high speed with low operation cost. When compared to manual processes the advantage is clear in terms of economy but the System also meets more complex business requirements. In a paint manufacture, for example, several colors of paint are produced, bottled and packaged, but each paint cannot get mixed with the others.

Not only that, but typically black and white paint ship in larger bottles, while colored paint sells is smaller containers. The feeder of bottles of such machines must be able to comport containers of different sizes. The feeder of paint must also be able to be filled with different colors of paint. In the case of paint, the feeder must be cleaned so colors do not get mixed whenever the paint is changed. Other liquid have different requirements, such as toxicity removal or cleaning through chemical reactions. See the following graphic of the System:

Bottles flow from the feeder onto the conveyor. Once on the conveyor, the bottles are rinsed and proceed to the liquid filler. Once a predetermined amount of bottles reach the liquid filler, the liquid flows from the liquid feeder to the bottles. After it is filled the bottle must be caped and moved to a predetermined area. The process of moving may involve sorting or could be directly connected to the startup configuration of the feeders. The conveyor part System featured only fills the bottle.

3 Logic Flow Chart

The flow and logic of the System that is implemented in the form of a PLC program. This flow simulates the behavior of the proposed sorting conveyor.

4 Development Spreadsheet

TYPE	Logic Function	Name	I/O	DATATYPE	BaseTag
1 ALIAS	There is room for more A items on collection point	CONVEYOR_A_GREEN	OUTPUT	DIGITAL	Local:6:O.Pt05.Data
2 ALIAS	Collection point A is full	CONVEYOR_A_RED	OUTPUT	DIGITAL	Local:6:O.Pt06.Data
3 ALIAS	There is room for more C items on collection point	CONVEYOR_C_GREEN	OUTPUT	DIGITAL	Local:6:O.Pt07.Data
4 ALIAS	Collection point C is full	CONVEYOR_C_RED	OUTPUT	DIGITAL	Local:6:O.Pt08.Data
5 ALIAS	Indicates sorter found an A product	CONVEYOR_SOL_A	OUTPUT	DIGITAL	Local:6:O.Pt02.Data
6 ALIAS	Indicates sorter found an C product	CONVEYOR_SOL_B	OUTPUT	DIGITAL	Local:6:O.Pt03.Data
7 ALIAS	Feeder is full, system can start	feeder_green	OUTPUT	DIGITAL	Local:6:O.Pt00.Data
	Operation stopped due to state of feeder. Overfilling or				
8 ALIAS	starting with feeder not full cause this light to blink.	feeder_red	OUTPUT	DIGITAL	Local:6:O.Pt01.Data
9 ALIAS	Collected total amount of C products	TRAFFIC_A_GREEN	OUTPUT	DIGITAL	Local:5:O.Pt07.Data
10 ALIAS	Collected total amount of B products	TRAFFIC_A_RED	OUTPUT	DIGITAL	Local:5:O.Pt05.Data
11 ALIAS	Collected total amount of A products	TRAFFIC_A_YELLOW	OUTPUT	DIGITAL	Local:5:O.Pt06.Data
12 ALIAS	System is off, personnel can interact	tower_green	OUTPUT	DIGITAL	Local:6:O.Pt15.Data
13 ALIAS	System is on, personnel should pay attention	tower_red	OUTPUT	DIGITAL	Local:6:O.Pt13.Data
14 ALIAS	Either a collection point is full or feeder is empty	tower_yellow	OUTPUT	DIGITAL	Local:6:O.Pt14.Data
15 ALIAS	Indicates the main system is operating	motor_1	OUTPUT	DIGITAL	Local:4:O.Pt14.Data
16 ALIAS	Indicates shutting off or recover system are operating	motor_2	OUTPUT	DIGITAL	Local:4:O.Pt15.Data
17 ALIAS	Immediately shuts off the system	e_stop_1	INPUT	DIGITAL	Local:1:I.Pt01.Data
18 ALIAS	Immediately shuts off the system	e_stop_2	INPUT	DIGITAL	Local:2:I.Pt01.Data
19 ALIAS		PB1_NO	INPUT	DIGITAL	Local:1:I.Pt03.Data
	When system is operating, triggers the system to sort next				
20 ALIAS	item in the conveyor	PB3_NO	INPUT	DIGITAL	Local:1:I.Pt07.Data
21 ALIAS	Shuts off the main system and starts shuttof system	PB4_NO	INPUT	DIGITAL	Local:1:I.Pt09.Data
22 ALIAS	Triggers system boot	PB5_NO	INPUT	DIGITAL	Local:1:I.Pt11.Data
23 ALIAS		SW3_NO_left	INPUT	DIGITAL	Local:2:I.Pt07.Data
24 ALIAS	Indicates next item in the conveyor is of type C	SW3_NO_right	INPUT	DIGITAL	Local:2:I.Pt09.Data
	Helper variable used to avoid direct access to NC input. NC				
25 ALIAS	is necessary because there is NO for center position	SW4_aux1	INPUT	DIGITAL	Local:3:I.Pt05.Data
26 ALIAS	Indicates next item in the conveyor is of type A	SW4_left	INPUT	DIGITAL	Local:3:I.Pt01.Data
27 ALIAS	Indicates next item in the conveyor is of type C	SW4 right	INPUT	DIGITAL	Local:3:I.Pt00.Data
28 TAG	Indicates collection point A is full. True if collection point is full or total amount of product As were sorted sorted.	A_full		BOOL	
20 IAG	Indicates collection point C is full. True if collection point is	A_Iuli		BOOL	
29 TAG	full or total amount of product As were sorted sorted.	C_full		BOOL	
30 TAG	Couter for how many products are in line A	A_in_collection_point		COUNTER	
31 TAG	Couter for how many products are in line C	C_in_collection_point		COUNTER	
32 TAG	Counter of total sorted products A	A_total		COUNTER	
33 TAG	Counter of total sorted products B	B_total		COUNTER	
34 TAG	Counter of total sorted products C	C_total		COUNTER	
	Counter of how many products were sorted A but did not				
35 TAG	go through to line A	A_in_D		COUNTER	
	Counter of how many products were sorted B but did not				
36 TAG	go through to line B	B_in_D		COUNTER	
	Counter of how many products were sorted C but did not	0 1- 0			
37 TAG	go through to line C	C_in_D		COUNTER	
38 TAG	Counter of how many items are in the conveyor	conveyor		COUNTER	
39 TAG 40 TAG	Counter for the maximum capacity of the feeder Counter to verify whether the feeder became empty	feeder_limit		COUNTER	
40 IAG	Timer used to control when feeder should put products in	feeder_not_empty		COUNTER	
41 TAG	the container	feed_timer		TIMER	
	Prevents the feeder from counting multiple products				
42 TAG	when only one was added	fill_feeder_ons		BOOL	
40 TAC	Timer used to delay system activation to give personnel	mater start delet		TIMED	
43 TAG	time to react to red lights and horns Auxiliary variable true when state is correct and operator	motor_start_delay		TIMER	
44 TAG	triggers a sorf of an A type product	operate SOL A		BOOL	
	Auxiliary variable true when state is correct and operator	,			
45 TAG	triggers a sorf of an B type product	operate_SOL_B		BOOL	
	Auxiliary variable true when state is correct and operator				
46 TAG	triggers a sorf of an C type product	operate_SOL_C		BOOL	
47 TAG	Auxiliary variable true when system is on. Note that when system is shutting down, this is false	system_on		BOOL	
48 TAG	Auxiliary variable true when shutting is powering off	shutting_off		BOOL	
49 TAG	Auxiliary variable true when system is a recovery process	recover		BOOL	
50 TAG	Delay used to simulate an actual recovery process	recover_simulator		TIMER	_
51 TAG	Delay used to simulate an actual recovery process Delay used to simulate an actual shutoff process	shutoff_simulator		TIMER	-
JI IAG	Timer used to delay recover system activation to give	SHGCOIL_SHITGIACOI		MAILK	
52 TAG	personnel time to react to red lights and horns	recover_start_delay		TIMER	
	Auxiliary variable used to control indicator light				
53 TAG	FEEDER_RED	show_feeder_problem		TIMER	
54 TAG	Auxiliary variable true when SW4 is center	SW4_center		BOOL	

5 PLC definition and specification

Components

Controller selected:

- 5069-L306ER
- 8 I/Os
- https://configurator.rockwellautomation.com/#/configurator/E6650EFBABB645899D338ED D0D78A095/summary

Input Module selected:

- 5069-IB16F
- 16 points
- https://configurator.rockwellautomation.com/#/configurator/5069-IB16F/summary

Output Module selected:

- 5069-OB16
- 16 points
- https://configurator.rockwellautomation.com/#/configurator/5069-OB16/summary

Connections

Find in the table below a possible way to connect the devices listed to the PLC points. Not that only one input and output module are required.

Alias Tag (1)	Base Tag (10)	I/O (3)	Slot (9)	Device Type (4)	Manufacturer (5)	Device PN (6)	Contact(s) (7)	Notes (8)	
estop_conveyor	Local:1:I:Pt01.Data	Input	1	Estop rope/PB	Banner Engineering	RP-RM83F	1	Both the rope and PB use the same tag	
estop_tower	Local:1:I:Pt02.Data	Input	1	Estop button	Banner Engineering	SSA-EB	1		
power_on	Local:1:I:Pt03.Data	Input	1	Momentary PB	Banner Engineering	K50LYXXPPB2Q	1		
power_off	Local:1:I:Pt04.Data	Input	1	Momentary PB	Banner Engineering	K50LYXXPPB2Q	1		
Sorter	Local:1:I:Pt05.Data	Input	1	Sensor for Object detection	Banner Engineering	LX3EQ	1		
roller_sensorA	Local:1:I:Pt06.Data			17					
roller_sensorB	Local:1:I:Pt07.Data	input 1		1 Proximity Sensor	Banner Engineering	TTR1219RPSD7T	1		
roller_sensorC	Local:1:I:Pt08.Data	iliput	1 Proximity Sei	Proximity Sensor	balliler Eligilieerilig	TIKIZI7KF3D/T	1		
roller_sensor_over	Local:1:I:Pt09.Data	1 1							
DiverterA	Local:2:O:Pt01.Data			Cteenable wheel					
DiverterB	Local:2:O:Pt02.Data	output	2	2	Steerable wheel sorter	Nido Automation	DENEB-PU	1	
DiverterC	Local:2:O:Pt03.Data	1 1		Sorter					
A_full_indicator	Local:2:O:Pt04.Data		2 Multi-color Indicator light						
B_full_indicator	Local:2:O:Pt05.Data	output		2 Multi-color	Banner Engineering	K50LGRY2NQ	1	Multi-color indicator lights seem to require a	
C_full_indicator	Local:2:O:Pt06.Data	output			Indicator light	ballilei Eligilleelilig	KSOEGKTZINQ	1	special cable
feeder_indicator	Local:2:O:Pt07.Data			ĺ					
tower_green	Local:2:O:Pt08.Data	output	2	In direct or Tours				Thesethreeindicator	
tower_yellow	Local:2:O:Pt09.Data	output	2	Indicator Tower Light		Banner Engineering	TL70GYRQ	1	lights are located in the
tower_red	Local:2:O:Pt10.Data	output	2	LIGHT		A		same device	
Feeder	Local:2:O:Pt11.Data	input/output	input/output 2	2 1 Feeder	Rovibec Agrisolutions	CC718	2		
	Local:1:I:Pt10.Data	input/output 1							
gravity_rollerA	Local:2:O:Pt12.Data	output	2	A . A A				Prove the products to	
gravity_rollerB	Local:2:O:Pt13.Data	output 2	2	Automated Gravity Roller with breaks		Materials Handling	QTY 10	1	the end of queue
gravity_rollerC	Local:2:O:Pt14.Data	output	2	Nonei With Dreaks				avoiding collision	

6 Specification of input and output devices

E-stop Rope:

• Qty: 1

• PN: RP-RM83F

• https://www.bannerengineering.com/sg/en/products/part.82128.html

E-stop button:

• Qty: 1

• PN: SSA-EB1PLXR-12ECQ8

• https://www.bannerengineering.com/us/en/products/part.25305.html

Illuminated push buttons:

• Qty: 2

• PN: K50LYXXPPB2Q

• https://www.bannerengineering.com/us/en/products/part.32021.html

Sorter:

• Qty: 1

• PN: LX3EQ

• https://www.bannerengineering.com/us/en/products/part.02661.html

Proximity sensor:

• Qty: 4

• PN: TTR1219RPSD7T

• https://www.bannerengineering.com/us/en/products/part.812487.html

Steerable wheel sorter:

• Qty: 3

• PN: DENEB-PU

• https://nidoworld.com/automation/sortation-systems/popup-sorter/

Multi-color Indicator light:

• Qty: 4

• PN: K50LGRY2NQ

• https://www.bannerengineering.com/br/pt/products/part.75668.html

Indicator Tower Light:

• Qty: 3

PN: TL70GYRQ

• https://www.bannerengineering.com/us/en/products/part.92336.html

Feeder:

• Qty: 1

• PN: CC718

• https://rovibecagrisolutions.com/en/produit/feeder-conveyor

Automated Gravity Roller with breaks:

• Qty: 3

• PN: QTY 10

• https://www.materialshandling.com.au/products/gravity-roller-conveyors/

7 Logic of the system

Find the code for the simulation system in the next few pages.

MainRoutine - Ladder Diagram Template:MainTask:MainProgram Total number of rungs in routine: 40

	When both motors timers are off, power on the green light to indicate operator it is Note it is not possible to use motors as they might be in the delay timers, leading to	unsafe situations.
28	motor_start_delay.EN recover_start_delay.EN	tower_green <local:6:o.pt15.data></local:6:o.pt15.data>
29	Controls indicator light for collection point A full. A_in_collection_point.DN	CONVEYOR_A_RED <local:6:0.pt06.data></local:6:0.pt06.data>
30	Controls indicator light for collection point A having space. NOTE: the line may have space but if total number of products A have been collected, products A_in_collection_point.DN	s will not be directed to line A. CONVEYOR_A_GREEN <local:6:0.pt05.data></local:6:0.pt05.data>
31	Controls indicator light for collection point C full. C_in_collection_point.DN	CONVEYOR_C_RED <local:6:0.pt08.data></local:6:0.pt08.data>
32	Controls indicator light for collection point B having space. NOTE: the line may have space but if total number of products B have been collected, products C_in_collection_point.DN Indicates maximum number of sorted products A has been reached.	CONVEYOR_C_GREEN <local:6:o.pt07.data></local:6:o.pt07.data>
33	A_total.DN	TRAFFIC_A_GREEN <local:5:o.pt07.data></local:5:o.pt07.data>
34	Indicates maximum number of sorted products B has been reached B_total.DN	d. TRAFFIC_A_YELLOW <local:5:o.pt06.data></local:5:o.pt06.data>
35	Indicates maximum number of sorted products C has been reached C_total.DN	TRAFFIC_A_RED <local:5:0.pt05.data></local:5:0.pt05.data>
36	Indicates that either of the collection points is full. This is necessary in addition to the in-place indication products may be away from the system. A_in_collection_point.DN C_in_collection_point.DN	tower_yellow <local:6:o.pt14.data></local:6:o.pt14.data>
37	Visual indication that soleniod A was triggered. Note that the product may not have been moved to correspondent A line, but to overflow area, de operate_SOL_A	epending on the state of the line. CONVEYOR_SOL_A <local:6:o.pt02.data></local:6:o.pt02.data>

MainRoutine - Ladder Diagram Template:MainTask:MainProgram Total number of rungs in routine: 40

38

39

(End)

		tion that soleniod B was triggered. brrespondent C line, but to overflow area, depending on the state of the line. CONVEYOR_SOL_B <local:6:o.pt03.data></local:6:o.pt03.data>
		()
ı	ndicates the feeder is completely filled. This is usefull during	g the simulation to know when the system can be powered on, but is also useful in the actual system.
	feeder limit.DN	feeder_green <local:6:o.pt00.data></local:6:o.pt00.data>

8 Startup Configuration

The first requirement for system startup is that emergency stops are reset to their original position. This is a common and necessary procedure.

The other two startup requirements are the feeder being full and the belts being empty. While the former is not a necessity, the second one is because the system relies on constant speed and timers to calculate the position of products. Once there is a reset, like with a power loss, necessary information is lost and there is no way to recover the position of the product. If not emptied the system would end up moving products to wrong lines, to state of the possibilities.

9 Potential System Issues

The system as implemented in the simulation and described section 2 will resist some errors resulting prom emergency stops and power loss. The current state of the system, however, is not safe for all scenarios, including resistance to personnel mistakes, power loss and package jams. This section brings some of them into light.

The conveyor is intended to operate in accessible places as it does not present any major or fatal injury risk. Adding physical barriers might reduce the frequency of injuries but that happens in exchange of productivity gains. It is a decision that may vary depending on the specification of sizes of products or speed of conveyors. However, when looking at production environments, which typically do not have barriers, a decision to not use them was made. The main risk is when a product is redirected by the belt diverter, a PLC or device errors happens, and the product ends up falling, maybe in some employee.

However, the current version of the system does not take into account misuse of the equipment. As from the PLC program, the collection points cannot be accessed when the machine is on due to the risk of having other products coming down from the conveyor in high speed. However, since there are no physical blocks that becomes a risk.

A second issue, that was brought to light since section two is that not all problems related to power loss were handled. If an item is high speed is coming down a line and the automated gravity rollers used do not have power to break their movement, the product may reach the end of the line, falling in the ground and breaking or maybe even hitting someone.

The third problem is that the system does not handle hardware issues, by using additional sensors for example, nor does it fail safe. When a jam happens, for example, it goes unnoticed by the system and this can lead to multiple issues, from braking products, to breaking sensors and even hurting people. While there were attempts to solve safety issues, it is very clear they persist.