

rendu classification images

Voici quelques indications complémentaires pour le rendu du TP.

Lors de la lecture des rapports , on sera plus attentif à la méthodologie utilisée (et la manière d'écrire le rapport) qu'au choix des hyperparamètres pour obtenir la meilleure classification.

Rappel des choses attendues :

- on travaille sur une base d'image de taille raisonnable (au moins 5 classes et au moins 75 images). L'étape préliminaire doit permettre de construire le dataset (X_train, y_train, X_test, y_test).
- étape 1 : on utilise un des classifiers du rendu précédent pour obtenir un premier modèle qui a une *accuracy* de Acc0.
- étape 2 : on utilise un CNN préentrainé pour extraire les 'features' de chaque image et obtenir une version 2 du dataset (X2_train, y_train, X2_test, y_test)
- étape 3 : vous utilisez cette nouvelle version du dataset pour construire 3 prédicteurs que vous choisissez dont un sera nécessairement SVM. Par exemple : régression logistique, réseau de neurones et SVM et vous obtenez 3 nouvelles métriques Acc2a, Acc2b, Acc2c
- étape 4 : vous combinez les 3 modèles précédents pour choisir par un vote la meilleure classification. Le lien <a href="https://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_decision_regions.html#sphx-glr-auto-examples-ensemble-plot-voting-decision-regions-py donne la manière de faire. Ce dernier classifier vous permet d'obtenir une nouvelle métrique : Acc3.

ATTENTION: pour cette quatrième étape, vous pouvez utiliser 'ensemble' que si vos trois modèles sont issus de sklearn.

```
Si vous avez 1 modèle Keras, voici une manière de procéder models = [liste des différents modèle] pred_labels = [] for m in models: predicts = m.predic(X_test) if predicts.shape[1] > 1: predicts = np.argmax(predicts, axis=1) pred_labels.append(predicts) // pred_labels contient pour chaque modèle les prédictions. // il reste à voter... voici une proposition y_pred = scipy.stats.mode(np.array(labels), axis=0)[0] y_pred = np.squeeze(y_pred)
```

Il vous reste à décrire proprement dans votre rapport (rédigé) la manière dont vous avez procédé et de tirer les conclusions sur le travail effectué.

Statut de remise

Statut des travaux remis

Aucune tentative

Statut de l'évaluation	Non évalué
Date de remise	jeudi 5 décembre 2019, 12:00
Temps restant	Le devoir est en retard de 38 jours 10 heures
Dernière modification	-
Commentaires	
	Commentaires (0)

ACTIVITÉ PRÉCÉDENTE slides classification SVM ACTIVITÉ SUIVANTE slides autoencoder

