ECE 3200 Test 1 Solutions

- A) A sample of silicon at T = 300 K is doped with phosphorus at a concentration of $1.30 \times 10^{16} \text{ cm}^{-3}$. Which of the following is closest to the minority carrier concentration?
 - $10^{16} \, \text{cm}^{-3}$ $10^{10} \, \text{cm}^{-3}$ Phosphorus is a donor impurity $10^{4} \, \text{cm}^{-3}$ $10^{3} \, \text{cm}^{-3}$ $\Rightarrow n_o \cong Nd = 1.30 \times 10^{16} \, \text{cm}^{-3}$ $10^{2} \, \text{cm}^{-3}$ and holes are minority, carriers
 - and holes are minority carriers $\Rightarrow p_0 = \frac{n_i^2}{n_0} \approx \frac{(1.5 \times 10^{10} \text{cm}^{-3})^2}{1.30 \times 10^{16} \text{cm}^{-3}} \approx 1.7 \times 10^4 \text{cm}^{-3}$
- B) Which of the following is true for a sample of semiconductor material if it is doped with a donor impurity?
 - The sample contains more electrons than protons.
 - (b:) The sample is n-type.
 - The sample has a negative electric charge.
 - All of the above
 - None of the above See text sec. 1.1.2

Doping with donor produces free electrons => Free electron concentration is greater than hole concentration => n-type (Total # electrons = # protons => No charge)

- Which of the following is closest to the concentration of holes in a sample of pure germanium at a C) temperature of 250 K?

 - (a) 10^{12} cm^{-3} b) 10^{11} cm^{-3} $n_i = BT^{-2}e^{\left(\frac{-Eg}{2KT}\right)}$ c) 10^{10} cm^{-3} d) 10^9 cm^{-3} e) $10^8 \text{ cm}^{-3} = \left(1.66 \times 10^{6} \text{ cm}^{-3}\right) \left(250K\right)^{-3}e^{\left(\frac{-0.66 \text{ eV}}{2KT}\right)}$

- D) Which of the following is closest to the thermal voltage at a temperature of 350 K?
 - 26 mV a:
 - 27 mV b:
 - 28 mV c:
 - d: 29 mV 30 mV
- $V_{T} = \frac{KT}{e} = \frac{(86 \times 10^{-6} \text{ gV})(350 \text{ K})}{\text{g}}$

≈ 0.0301 V

E) I_F is the current flowing through a certain diode at room temperature when a voltage of 0.2 V is applied across the diode in the forward-bias direction. I_R is the current flowing through the same diode at room temperature when a voltage of 0.2 V is applied across the diode in the reverse-bias direction. Which of the following is closest to the magnitude of the ratio of I_F to I_R ?

a: 2,400
b: 2,200
$$I_D = I_S \left[e^{(V_D/V_T)} - 1 \right]$$

c: 2,000
d: 1,800
e: $1,600 \Rightarrow \left| \frac{I_F}{I_R} \right| = \left| \frac{I_S \left[e^{(0.2V/0.026V)} - 1 \right]}{I_S \left[e^{(-0.2V/0.026V)} - 1 \right]} \right|$

$$\Rightarrow \left| \frac{2,190}{-1} \right| = 2,190$$

- Diodes D_1 and D_2 are forward-biased and connected in parallel in a circuit. The diodes have F) identical reverse-bias saturation currents, but D_1 has a larger emission coefficient than D_2 . Which of the following statements is true?
 - D_1 conducts less current than D_2 . (a:) b: The voltage across D_1 is smaller than the voltage across D_2 . c: d:

- G) The parameters of the diode in the circuit below are $V_r = 0.7 \text{ V}$ and $r_f = 10 \Omega$. The current through the diode is 200 mA. Which of the following is closest to the value of R?
 - Note V_R ≥ V_X ⇒ Forward-bias b: (c:) 5V-0.7V-0.2A(1052+R)=0

 $R + 10\Omega = \frac{4.3V}{0.1A} = 21.5\Omega \implies R = 21.5\Omega - 10\Omega = 11.5\Omega$

- H) The parameters of the diode in the circuit below are $V_y = 0.7 \text{ V}$ and $r_f = 0$. If $V_{PS} = 10 \text{ V}$ and the resistor dissipates 14 mW, which of the following is closest to the value of R?
 - $4 k\Omega$ Note 10V = 0.7V => Forward - bras $6 \text{ k}\Omega$ (b: c: d: $\Rightarrow R = \frac{(9.3 \vee)^2}{14 \times 10^2} \approx 6.18 \times 12$

The parameters of the diode in the circuit below are
$$V_{\gamma} = 0.7 \text{ V}$$
 and $r_f = 0$. Which of the following is closest to the value of I_D ?

K) The parameters of the diode in the circuit below are $V_y = 0.7 \text{ V}$ and $r_f = 5 \Omega$. If the battery voltage is increased to 12 V, which of the following changes will occur to the amplitudes of the AC and DC components of the diode's voltage, $v_D(t)$?

L) The parameters of the diode in the circuit below are $V_{\gamma} = 0.7 \text{ V}$ and $r_f = 0$. Which of the following components should be used to model the diode in the circuit's small-signal, ac representation?

a: 11V PIV for DI occurs

b: 9V PIV for DI occurs

c: 7V when
$$U_5 = -5V$$

d: 5V
e: 3V \Longrightarrow DI off and D2 on

d:
$$5V$$

e: $3V \Rightarrow DI$ off and $D2$ on

$$KVL$$
: $V_{D1} = -5V - 5V - (-0.7V)$
 $\Rightarrow V_{D1} = -10V + 0.7V = -9.3V$
 $\Rightarrow PIV = 9.3V$

R) In the circuit shown below, $R_i = 50 \Omega$, $V_Z = 7 V$, and $V_{PS} = 12 V$. If a resistor R_L is placed in parallel with the diode, which of the following is closest to the value of R_L that will cause I_Z to drop to half of its original value?

a:
$$50 \Omega$$

b: 80Ω Original $I_Z = I_I$
c: 110Ω = $12 V - 7 V$ = 0.1A

⇒ RL = 7V = 1405L

$$\begin{array}{ll} 0: & 80\Omega \\ 0: & 110\Omega \\ 140\Omega \\ 0: & 170\Omega \end{array} = \begin{array}{ll} 12V - 7V \\ \hline 50\Omega \\ \hline \end{array} = 0.1A \qquad 12V = V_{PS} \\ \hline = \\ 170\Omega \\ \hline \\ New \ I_Z = \frac{1}{2}(0.1A) = 0.05A \\ \hline \\ \Rightarrow I_L = I_I - I_Z = 0.1A - 0.05A = 0.05A \end{array}$$

In the circuit shown below,
$$R_i = 50 \Omega$$
, $V_Z = 6 \text{ V}$, and R_L varies between 60Ω and 80Ω . The power dissipated by the diode must not exceed 290 mW. Which of the following is closest to the maximum permissible value of V_{PS} ?

a:
$$8V P_{Z}(max) = 290 \text{ mW} = V_{Z} I_{Z}(max)$$
b: $9V \Rightarrow I_{Z}(max) = \frac{290 \text{ mW}}{6V} \cong 48.3 \text{ mA} V_{PS} + \frac{1}{2} I_{Z} I_{Z}(max)$
d: $11V = I_{Z}(max) = I_{Z}(max)$

d: 11 V
$$GV$$

(e:) $12 \text{ V } I_z = I_z(\text{max}) \text{ when } V_{ps} = V_{ps}(\text{max})$

when
$$R_L = 80 \Omega$$
, $I_L = \frac{6V}{80 \Omega} = 0.075 A = 75.0 mA$
and $I_I = I_2 + I_L \cong 48.3 mA + 75.0 mA = 123.3 mA$
 $\Rightarrow V_{CM}(max) \cong (123.3 mA)(0.05 K \Omega) + 6V \cong 12.17 V$

T) In the circuit shown below, V_{PS} varies between 18 and 20 V, $V_Z = 12$ V, and R_L varies between 50 Ω and 70 Ω . Which of the following conditions will minimize the diode's current?

a:
$$V_{PS} = 20 \text{ V} \text{ and } R_L = 50 \Omega$$

S)

b:
$$V_{PS} = 20 \text{ V} \text{ and } R_L = 70 \Omega$$

(c)
$$V_{PS} = 18 \text{ V} \text{ and } R_L = 50 \Omega$$

d:
$$V_{PS} = 18 \text{ V} \text{ and } R_L = 70 \Omega$$

e: None of the above

See text sec. 2.2.1

