- 1. Пусть f(x) = 1 x, $x \in (0,1)$, f(x) = 2 x, $x \in (1,2)$. Существует ли обратная к f функция? Ответ обосновать.
- 2. Пусть $f(x) = x, x \in (0,1), f(x) = 3-x, x \in (1,2)$. Построить график функции y = f(x). Существует ли обратная к ней функция? Если да, то найти ее и нарисовать ее график.
- 3. Пусть $f_1(x) = \operatorname{sign} x$, $f_2(x) = [x]$ целая часть x, $f_3(x) = 1$, если $|x| \le 1$, $f_3(x) = 0$, если |x| > 1. Найти $f_1 \circ f_2 \circ f_3$.
- 4. Пусть $f: E \to F$ и $g: F \to E$ функции такие, что $g \circ f(x) = x$ $\forall x \in E$ и $f \circ g(y) = y \ \forall y \in F$. Доказать, что f биекция и обратной к ней функцией является g.
- 5. Пусть $E = \{1, 2, \dots, n\}$. Сколько существует биекций $f: E \to E$? Сколько инъекций?
- 6. Пусть 1 мажоранта множества E и существует последовательность $x_n \in E$, сходящаяся к 1. Доказать, что $\sup E = 1$.
- 7. Обладает ли множество минорант множества $X = \{x \in \mathbb{R} | x^2 + x^4 \le 100\}$ наибольшим элементом? Ответ аргументировать.
- 8. Пусть $\inf E \leq 1$. Следует ли из этого, что обязательно найдется точка $a \in E$ такая, что a < 1,0001? Ответ аргументировать.
- 9. Охарактеризовать последовательности (x_n) , удовлетворяющие условию: $\forall \ \varepsilon > 0 \ \forall N \ \exists n \geq N \ (|x_n| < \varepsilon)$.
- 10. Охарактеризовать последовательности (x_n) , удовлетворяющие условию: $\exists \ \varepsilon > 0 \ \forall N \ \exists n \geq N \ (|x_n| \geq \varepsilon)$.
- 11. Охарактеризовать последовательности (x_n) , удовлетворяющие условию: $\forall \ \varepsilon > 0 \ \forall N \ \exists n \geq N \ (|x_n| \geq \varepsilon)$.
- 12. Охарактеризовать последовательности (x_n) , удовлетворяющие условию: $\forall \ \varepsilon > 0 \ \forall N \ \forall n \geq N \ (|x_n| < \varepsilon)$.
- 14. Охарактеризовать последовательности (x_n) , удовлетворяющие условию: $\forall \varepsilon > 0 \; \exists N \; \exists n \geq N \; (|x_n| \geq \varepsilon)$.
- 15. Доказать, что если $f:\mathbb{N}\to\mathbb{N}$ биекция, и существует $\lim_{n\to\infty}x_n=a$, то существует $\lim_{n\to\infty}x_{f(n)}=a$.
- 16. Пользуясь ε -N-определением предела последовательности, доказать, что если $x_n \to a > 0, y_n > 0, y_n \to 0,$ то $\frac{x_n}{y_n} \to +\infty$.
- 17. Пусть последовательность (x_n) такова, что существуют пределы $\lim_{k\to\infty} x_{2k} = \lim_{k\to\infty} x_{2k-1} = a$. Можно ли утверждать, что $\lim_{k\to\infty} x_k = a$? Ответ обосновать.
- 18. Опираясь на ε -N-определение предела последовательности, доказать, что если $\lim_{n\to\infty} x_n = 1$, то $\lim_{n\to\infty} |x_{n+2} - x_n| = 0$.

- 19. Опираясь на ε -N-определение предела последовательности, доказать, что если $x_1 \ge x_2 \ge x_3 \ge \dots$ и $\forall n \in \mathbb{N} \ (|x_n| \le 1)$, то (x_n) сходится.
- 20. Доказать, что монотонная последовательность, обладающая сходящейся подпоследовательностью, сходится.
- 21. Доказать, что если $\lim_{n\to\infty} x_n = a > 0$, то $\exists b > 0 \exists N \ \forall n \geq N$ $(x_n > b)$.
- 22. Используя ε -N определение предела, доказать, что последовательность $x_n = (n^2 + n + 1)^{1/2} - n$ сходится.
- 23. Доказать, что если $x_n \neq 0, \ n \geq 1$ и $\lim_{n \to \infty} (x_n + x_n^{-1}) = 2$, то $x_n \to 1, n \to \infty$.
 - 24. Доказать, что если $\lim_{n\to\infty} x_n = a < 0$, то $\exists N \ \forall n \geq N \ (x_n < 0)$.
- 25. Пусть $X\subset [1,+\infty)$ и $\forall n\in\mathbb{N}\ \exists x\in E\ (x<1+\frac{1}{n})$. Пользуясь определением инфимума, доказать, что inf E=1.
- 26. Пользуясь определением предела последовательности, доказать, что если $\lim_{n\to\infty} x_n = 0$ и $0 \ge y_n \ge 3x_n$, то $\lim_{n\to\infty} y_n = 0$.
- 27. Пусть $\lim_{n\to\infty} x_n = a$. Пользуясь определением предела последовательности, доказать, что $\lim_{n\to\infty} x_{3n+1} = a$.
- 28. Используя критерий Коши, доказать, что последовательность $x_n =$ $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}$ не имеет конечного предела. 29. Используя определения предела последовательности и инфимума,
- доказать, что если $\lim_{n\to\infty} x_n = 1$, то $\inf x_n > -\infty$.
- 30. Доказать, что монотонная последовательность, обладающая сходящейся подпоследовательностью, сходится.
- 31. Найти все предельные точки множества $X = [0, 1] \setminus \mathbb{Q}$. Ответ строго обосновать.
- 32. Напишите, что означает, что точка $a \in \mathbb{R}$ не является предельной точкой множества $X\subset\mathbb{R}$. Приведите примеры.
- 33. Доказать, что если точка x_0 является предельной точкой $A \cup B$, то x_0 является предельной точкой по крайней мере одного из множеств
- 34. Доказать, что если $\lim_{x\to+\infty} f(x) = -\infty$, $\lim_{x\to+\infty} g(x) = c > 0$, то $\lim_{x \to +\infty} f(x)g(x) = -\infty.$
- 35. Используя определение бесконечных пределов, доказать, что если $\lim_{x\to-\infty} f(x) = -\infty$, to $\lim_{x\to-\infty} f^4(x) = +\infty$.
- 36. Доказать, что если существует конечный предел $\lim_{x\to 0} \frac{f(x)}{g(x)}$, то $f(x) = O(q(x)) (x \rightarrow 0).$
 - 37. Пусть $f(x) \sim g(x)$ $(x \to 0)$ и существует $\lim_{x\to 0} g(x) \sin x = a$.

- Доказать, что предел $\lim_{x\to 0} f(x) \sin x$ существует и равен a.
- 38. Пользуясь определением бесконечных пределов, доказать, что если $\lim_{x\to +\infty} f(x) = -\infty$, то $\lim_{x\to +\infty} (f(x) + \sin x) = -\infty$
- 39. Пусть $\lim_{x\to 0} f(x) = -\infty$, $\lim_{x\to 0} g(x) = +\infty$. Существует ли предел $\lim_{x\to 0} |f(x)-g(x)|$? Если да, то чему он равен, если нет привести пример.
- 40. Доказать, что функция Дирихле f(x) = 0, если x иррационально; f(x) = 1, если x рационально, не имеет предела ни в одной точке.
- 41. Доказать, что если $f(x) \sim g(x), g(x) \sim h(x) \ (x \to 0),$ то $f(x) \sim h(x) \ (x \to 0).$
- 42. Доказать, что функция Римана f(x) = 0, если x иррационально; $f(x) = \frac{1}{q}$, если $x = \frac{p}{q}$, где $\frac{p}{q}$ несократимая дробь; f(x) = 1, если x = 0, имеет предел в каждой иррациональной точке, равный нулю.
- 43. Доказать, что при n > m имеет место соотношение $O(x^m) + o(x^n) = o(x^n), x \to +\infty$.
- 44. Доказать, что при n > m имеет место соотношение $O(x^n) + o(x^m) = o(x^m), x \to +\infty$.
 - 45. Верно ли, что $\sin x^3 = o(x^2)$, $x \to 0$? Ответ обосновать.
 - 46. Доказать, что $o(f(x)) + O(f(x)) = O(f(x)), x \to x_0$.
- 47. Верно ли, что $o(f(x)) + O(f(x)) = o(f(x)), x \to x_0$? Ответ обосновать.
 - 48. Доказать, что $O(f(x))o(g(x)) = o(f(x)g(x)) \ (x \to x_0).$
 - 49. Доказать, что если $f(x) \sim g(x), x \to 0$, то $g(x) \sim f(x), x \to 0$.
- 50. Привести примеры функций f и g таких, что $\lim_{x\to 0} f(x)=1$, а 1) $\lim_{x\to 0} f(x)^{g(x)}=0$; 2) $\lim_{x\to 0} f(x)^{g(x)}=+\infty$; 3) $\lim_{x\to 0} f(x)^{g(x)}$ не существует.
- 51. Доказать, что если f(x) > 0 и $\lim_{x\to 0} f(x) = 0$, то $\ln(1+f(x)) \sim f(x)$, $x\to 0$.
- 52. Доказать, что если f(x) > 0 и $\lim_{x \to +\infty} f(x) = 0$, $x \to +\infty$, то $e^{f(x)} 1 \sim f(x)$, $x \to +\infty$.