26. Jointly Distributed Random Variables

Sums of Independent Random Variables [Ross S6.3]

Say X and Y are independent continuous random variables. What is the pdf of Z = X + Y?

$$F_{Z}(z) = P[X + Y \le z]$$

$$= \iint_{x+y \le z} f_{XY}(x, y) \, dxdy$$

$$= \iint_{x \le z - y} f_{X}(x) f_{Y}(y) \, dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z - y} f_{X}(x) f_{Y}(y) \, dxdy$$

$$= \int_{-\infty}^{\infty} f_{Y}(y) \int_{-\infty}^{z - y} f_{X}(x) \, dxdy$$

$$= \int_{-\infty}^{\infty} f_{Y}(y) F_{X}(z - y) \, dy$$

Hence:

$$f_Z(z) = \frac{d}{dz} F_Z(z) = \frac{d}{dz} \int_{-\infty}^{\infty} f_Y(y) F_X(z - y) dy$$
$$= \int_{-\infty}^{\infty} f_Y(y) \frac{d}{dz} F_X(z - y) dy$$
$$= \int_{-\infty}^{\infty} f_Y(y) f_X(z - y) dy$$

The pdf of Z = X + Y is the convolution of $f_X(x)$ and $f_Y(y)$!

Example 26.1: $X \sim U(0,1)$ and $Y \sim U(0,1)$ are independent. What is the pdf of Z = X + Y?

Solution:

Sum of Normal (Gaussian) Random Variables

Proposition 26.1 Let $X_1, X_2, ..., X_n$ be independent random variables with $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$.

Let
$$Z = X_1 + X_2 + \dots + X_n$$
.

Then $Z \sim \mathcal{N}(\mu_Z, \sigma_Z^2)$ where

$$\mu_Z = \mu_1 + \mu_2 + \dots + \mu_n$$
 $\sigma_Z^2 = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2$

Why?

Example 36.4 will prove the result for the sum $Z = X_1 + X_2$. The general case follows by repeatedly applying the 2 variables case.

Definition 26.1: A random variable Y is called **lognormal** with parameters μ and σ when $\log Y$ is $\sim \mathcal{N}(\mu, \sigma^2)$,

i.e., when $Y = e^X$ where $X \sim \mathcal{N}(\mu, \sigma^2)$.

Definition 26.2: If the random variables $X_1, X_2, ..., X_n$ are **independent** and identically distributed, we say that they are i.i.d., or iid.

Example 26.2: Let S(n) be the value of an investment at the end of week n.

A model for the evolution of S(n) is that

$$\frac{S(n)}{S(n-1)}$$

are iid lognormal random variables with parameters μ and σ .

What is the probability that

- a) the value increases in each of the next two weeks?
- b) the value at the end of two weeks is higher than it is today? *Solution:*

Example 26.3: Let $X \sim \mathsf{Poisson}(\lambda_1)$ and $Y \sim \mathsf{Poisson}(\lambda_2)$ be independent. What is the pmf of Z = X + Y? *Solution:*