COMPILER DESIGN

$$S \rightarrow aSAb \mid bSBc$$

$$A \rightarrow +AB \mid \epsilon$$

$$B \rightarrow *BC \mid \epsilon$$

$$C \rightarrow aC \mid d$$

1. What is in the Follow(S)?

(a)
$$\{a, b, c, +, \$\}$$

(b)
$$\{a, c, +, *, \$\}$$

(c)
$$\{b, c, +, *, \$\}$$

(d)
$$\{a, b, d, *, \$\}$$

2. What is in the Follow(B)?

(a)
$$\{a, b, c, d, *\}$$

(b)
$$\{a, b, d, \epsilon, \$\}$$

(c)
$$\{a, c, d, *, \$\}$$

(d)
$$\{c, d, b, +, *\}$$

3. Choose the False statement.

- (a) No left recursive/ ambiguous grammar can be LL(1)
- (b) The class of grammars that can be parsed using LR methods is proper subset of the class of grammar that can be parsed by LL method
- (c) LR parsing is non-backtracking method
- (d) LR parsing can describe more languages than LL parsing

4. Consider the following SDT.

$$A \rightarrow BC *(I) B.i = f(A.i)$$

(II)
$$B.i = f(A.S)$$

(III)
$$A.S = f(B.s)$$

Which of the above is violating L – attributed definition?

(b) II only

(d) I, II, III

5.

$$X \rightarrow YZ$$

$$Y \rightarrow Y + Z \{ print ('+'); \}$$

 $T \{ Y.val = T.val \}$

$$Z \rightarrow *Y \{ print (`*`); \} Z$$

 $T \{ Z.val = T.val \}$
 ε

 $T \rightarrow num \{print(num.val);\}$

For 2+3*2, the above translation scheme prints

(a) 2+3*2

(b) 23+2*

(c) 232*+

(d) 23*2+

6. Consider the following expression

$$x = a*b - c*d + e$$

For generating target code how many register will be required apart from accumulator A?

(a) 1

(b) 2

(c) 3

(d) 5

7. Consider the following two grammars

$$G_1: A \rightarrow A1 \mid 0A1 \mid 01$$

 $G_2: A \rightarrow 0A \mid 1$

Which of the following is True regarding above grammars?

(a) L_1 is LR(k)

(b) L_2 is LR(k)

(c) Both L_1 and L_2 is LR(k)

(d) None is LR(k)

8. Consider the following grammar.

$$S \to aB \mid aAb$$

$$A \rightarrow bAb \mid a$$

$$B \rightarrow aB \mid \epsilon$$

How many back tracks are required to generate the string aab from the above grammar?

(a) 1 (b) 2

(c) 3