Supervised Learning Classification

Machine Learning Workshop - Day 3

Erdener Emin Eker

May 17, 2025

TEDU Al Data Science & AFIT Workshop

What We'll Do Today

- Go beyond the basics of classification models.
- Understand how to evaluate model performance more accurately.
- Visualize how classifiers "see" data and make decisions.
- Compare different models: logistic regression, KNN, SVM, decision trees, and random forests.
- Learn how hyperparameters affect model behavior.
- Get ready for hands-on practice in Colab using a real dataset.

Goal: Build intuition about how classification works in practice.

When Accuracy Lies

- Suppose you are building a model to detect fraud.
- Only 5% of the transactions are actually fraudulent.
- A model that always predicts "Not Fraud" would be 95% accurate
 but completely useless!
- This is why accuracy isn't always a reliable performance measure.

Key Message: We need better metrics to understand classification performance.

Precision vs Recall: The Tradeoff

- Precision answers: "Of the ones I predicted as positive, how many were actually correct?"
- Recall answers: "Of all actual positives, how many did I correctly find?"
- Increasing one often decreases the other it's a tradeoff!

F1 Score: The Balance Point

- When precision and recall pull in opposite directions, we need a way to balance them.
- F1 Score is the harmonic mean of precision and recall.
- It punishes extreme values both must be high to get a good F1 score.

$$F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

F1 is useful when both false positives and false negatives are important.

ROC Curve and AUC

- The ROC Curve shows how well your model separates the classes.
- It plots:
 - True Positive Rate (Recall) on the y-axis
 - False Positive Rate (FPR) = 1 Specificity on the x-axis
- A good model stays close to the top-left corner.
- The Area Under the Curve (AUC) tells how good the model is overall.

How Do I Know If My Model Is Good?

- Don't rely only on accuracy ask deeper questions:
 - Are false positives or false negatives more dangerous?
 - Does the model perform equally well for all classes?
 - Does it generalize well to new data?
- Use multiple metrics together:
 - Precision for when false positives hurt (e.g., spam filter)
 - Recall for when false negatives hurt (e.g., cancer detection)
 - F1 Score when you need a balance
- Visual tools like confusion matrix and ROC curve help!

There's no one-size-fits-all metric — it depends on your problem.

Logistic Regression – Linear and Probabilistic

- Logistic Regression draws a straight line (or plane) to separate the classes.
- It estimates the **probability** that a point belongs to class 1.
- Outputs are between 0 and 1, thanks to the **sigmoid function**.
- We can use regularization (L2) to prevent extreme weights and overfitting.

Sigmoid Function – From Scores to Probabilities

- Logistic regression calculates a weighted sum of the input features.
- This raw score (called a logit) is passed through the sigmoid function.
- The sigmoid squashes the score into a value between 0 and 1 a probability!
- ullet Output close to 0 o Class 0, Output close to 1 o Class 1

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Regularization – Preventing Overfitting

- A model can memorize training data by using large weights this is called overfitting.
- Regularization = balancing between fitting the data and keeping weights small.
- Regularization helps by **penalizing large weights**.
- In logistic regression, we often use L2 regularization (also called Ridge penalty).
- It encourages the model to choose simpler solutions that still perform well.

$$\begin{aligned} &\text{L1 Regularization} \\ &\text{Cost} \ = \ \sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j| \\ &\text{L2 Regularization} \\ &\text{Cost} \ = \ \sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2 \\ &\text{Loss function} \end{aligned}$$

K-Nearest Neighbors – Let the Data Speak

- KNN is a very simple and intuitive algorithm:
 - To classify a new point, look at its **K closest neighbors**.
 - The new point gets the label most common among them.
- No training needed it memorizes the data.
- Choosing **K** is important:
 - Small K = sensitive to noise (overfitting)
 - Large K = may miss fine details (underfitting)
- Distance matters! Use scaling when features have different units.

Support Vector Machine (SVM)

- SVM tries to find the **best boundary** that separates the classes.
- It chooses the line (or surface) that leaves the widest margin between classes.
- Only the closest points the support vectors affect this boundary.
- If the data isn't linearly separable, SVM uses the kernel trick to project it into a higher dimension.
- Important parameter: **C** controls the tradeoff between margin width and classification error.

Decision Trees – Splitting Rules Made Simple

- A Decision Tree makes predictions by asking yes/no questions.
- A decision tree splits the space with simple if-then rules
- Each internal "node" splits the data based on a feature (e.g., Age >30?).
- The tree keeps splitting until:
 - · All points are classified, or
 - We hit a stopping rule (like max depth)
- Easy to interpret and visualize.
- But: trees can grow too complex and overfit we need to limit depth

Random Forest - Many Trees Are Better Than One

- A Random Forest builds lots of decision trees each trained on a slightly different dataset.
- Each tree makes its own prediction, and the forest takes a majority vote.
- This reduces overfitting and gives more stable results.
- It can also tell us which features are most important for prediction.
- Common hyperparameters: number of trees, max depth, number of features per split.

What Do Classifiers "See"?

- Different classifiers split the data in different ways.
- Some are linear (Logistic Regression), some flexible (KNN), some smooth (SVM), some blocky (Trees).
- Let's visualize their **decision boundaries** on the same dataset.

Each model sees the world differently — no single one is always best.

Which Model Should I Use?

- No single model is best for every problem.
- Here's a simple comparison use it as a guide, but always test!

Model	Speed	Accuracy	Interpretability
Logistic Regression	High	Medium (if linear)	Very High
K-Nearest Neighbors	Low	High (if K tuned)	Medium
Support Vector Machine	Medium	Very High	Low
Decision Tree	High	Medium-High	High
Random Forest	Medium	Very High	Medium (feature importance)

Choose based on the problem — then validate using real data.

Common Mistakes in Classification

Relying only on accuracy

 A high accuracy can hide poor performance on important cases (e.g., rare classes).

Not scaling features when needed

 Algorithms like KNN and SVM are sensitive to feature scales always normalize or standardize.

Using the test set for model tuning

 This leads to data leakage and overly optimistic results. Use a separate validation set or cross-validation.

• Ignoring class imbalance

• When one class dominates, your model might ignore the minority. Use metrics like recall/F1 and balance the data.

Even great models fail if not used carefully — watch out for these!

How to Improve Your Model

Tuning the model:

- Try different values of hyperparameters (e.g., K in KNN, max depth in trees, C in SVM).
- Use tools like GridSearchCV or RandomizedSearchCV.

• Clean and engineer your data:

- Fill in missing values, remove outliers.
- Create new features or remove irrelevant ones.

Balance the dataset:

• Use undersampling, oversampling, or synthetic data (e.g., SMOTE).

• Try multiple models:

Compare classifiers and choose based on validation performance.

Improving a model is often more about data and testing than complex math.

Wrap-Up What's Next

• Today we:

- Explored popular classification models: Logistic Regression, KNN, SVM, Decision Tree, Random Forest.
- Discussed real-world challenges: imbalanced data, metric tradeoffs, overfitting.
- Learned how to compare models and interpret their behavior.

Next: Hands-on Colab session!

- Load and explore a real dataset (e.g., Titanic or Breast Cancer).
- Train multiple classifiers and tune them.
- Evaluate using precision, recall, F1, and confusion matrix.
- Visualize results and compare models.