University of Illinois

Spring 2020

CS 446/ECE 449 Machine Learning

Homework 9: Generative Adversarial Nets (GANs)

Due on Tuesday April 28 2020, noon Central Time

1. [24 points] Generative Adversarial Nets (GANs) and Duality Consider the following program for a dataset $\mathcal{D} = \{(x)\}$ of points:

$$\max_{\theta} \min_{w} - \sum_{x \in \mathcal{D}} \log p_w(y = 1|x) - \sum_{z \in \mathcal{Z}} \log(1 - p_w(y = 1|G_{\theta}(z))) + \frac{C}{2} ||w||_2^2.$$
 (1)

Hereby θ denotes the parameters of the generator $G_{\theta}(z)$, which transforms 'perturbations' $z \in \mathcal{Z}$ into artificial data, w refers to the parameters of the discriminator model $p_w(y|x)$, $y \in \{0,1\}$ denotes artificial or real data, and $C \geq 0$ is a fixed hyper-parameter.

(a)	(1 point) What is the original motivation (the one used in Goodfellow $et\ al.\ (NIPS'14))$ underlying generative adversarial nets (GANs)?
	Your answer:

(b) (1 point) Without restrictions on the generator model G_{θ} and the discriminator model p_w , what are challenges in solving the program given in Eq. (1)?

Your answer:

(c) (2 points) We now restrict the discriminator as follows:

$$p_w(y=1|x) = \frac{1}{1 + \exp w^{\top} x}.$$

Using this discriminator, write down the resulting cost function for the program given in Eq. (1).

Your answer:			

(d)	(2 points) When is the function $\frac{C}{2} a _2^2 - a^{\top}b$ convex in a ? Why?
	Your answer:
(e)	(2 points) When is the function $\log(1 + \exp a^{\top}b)$ convex in a ? Why?
	Your answer:
	(2 points) Assume we restrict ourselves to the domain (if any) where $\frac{C}{2} a _2^2 - a^{\top}b$ and $\log(1 + \exp a^{\top}b)$ are convex in a , what can we conclude about convexity of the function
	$\sum_{x \in \mathcal{D}} \log(1 + \exp w^{\top} x) + \sum_{z \in \mathcal{Z}} \log(1 + \exp(w^{\top} G_{\theta}(z))) - \sum_{z \in \mathcal{Z}} w^{\top} G_{\theta}(z) + \frac{C}{2} \ w\ _{2}^{2}$
	in w and why?
	Your answer:

(g)	(2 points) Let us introdu	ce variables	$\xi_x =$	$w^{\top}x$	and ξ_z	$x = w^{\top}$	$G_{\theta}(z)$	and le	us	consider
	the following program:									

$$\min_{w} \sum_{x \in \mathcal{D}} \log(1 + \exp \xi_{x}) + \sum_{z \in \mathcal{Z}} \log(1 + \exp \xi_{z}) - \sum_{z \in \mathcal{Z}} w^{\top} G_{\theta}(z) + \frac{C}{2} \|w\|_{2}^{2} \qquad (2)$$
s.t.
$$\begin{cases}
\xi_{x} = w^{\top} x & \forall x \in \mathcal{D} \quad (C1) \\
\xi_{z} = w^{\top} G_{\theta}(z) & \forall z \in \mathcal{Z} \quad (C2)
\end{cases}$$

What is the Lagrangian for this program? Use the Lagrange multipliers λ_x and λ_z for the constraints (C1) and (C2) respectively.

Your answer:			
(0) III			

(h) (2 points) What is the value of

$$\min_{w} \frac{C}{2} \|w\|_2^2 - w^\top b$$

in terms of b and C?

in terms of o and C:		
Your answer:		

(i) (2 points) What is the value of

$$\min_{\xi} \lambda \xi + \log(1 + \exp \xi)$$

in terms of λ ? What is the valid domain for λ ?

in terms of λ : What is the varia domain for λ :
Your answer:

T 1	_			
1	а	m	Ω	•

differentiate it a challenge in	e program give from the dual f GAN training.	unction. Sta	te how this d	ual program o	can help to ad	ldr
Your answer:						
(2 points) Impusing the '-log	lement and pro D' trick in A9	vide the loss	for the discri	minator and t	the generator	wl
(2 points) Impusing the '-log Your answer:	ement and pro D' trick in A9	vide the loss GAN.py.	for the discri	minator and t	the generator	w]
using the '-log	ement and pro D' trick in A9	vide the loss	for the discri	minator and t	the generator	wl
using the '-log	ement and pro D' trick in A9	vide the loss GAN.py.	for the discri	minator and t	the generator	wl
using the '-log	lement and pro D' trick in A9	vide the loss	for the discri	minator and t	the generator	wl
using the '-log	lement and pro D' trick in A9_	vide the loss	for the discri	minator and t	the generator	wl
using the '-log	lement and pro D' trick in A9_	vide the loss	for the discri	minator and t	the generator	wl
using the '-log	lement and pro D' trick in A9_	vide the loss GAN.py.	for the discri	minator and t	the generator	wl
using the '-log	lement and pro D' trick in A9_	vide the loss GAN.py.	for the discri	minator and t	the generator	wl
using the '-log	lement and pro D' trick in A9_	vide the loss GAN.py.	for the discri	minator and t	the generator	w