LOAD FREQUENCY CONTROL

Objectives

- ☐ Simulate load frequency control of an isolated area power system to observe:
 - Change in frequency with primary control loop in case of free governor operation
 - Change in frequency with integral control
 - Effect of variation of governor loop in case of free governor operation
 - Effect of variation of integral controller gain

Simulation Tool

☐ MATLAB Simulink

System Data

□ Observe change in frequency versus time for exact and first order approximation response for the given isolated power system with free governor operation:

$$R = 3^{Hz}/p_{uMW}, \quad \Delta P_L = 0.01 puMW$$

•
$$K_{SG} = 10^{Hz}/p_{uMW}$$
, $T_{SG} = 0.4s$

•
$$K_T = 0.1^{Hz}/p_{uMW}$$
, $T_T = 0.5s$

•
$$K_{PS} = 100 \, ^{Hz}/_{puMW}$$
, $T_{PS} = 20s$

•
$$K_I = 0.09 puMW$$

SIMULATIONS

LFC- Primary Loop

PRIMARY LOAD FREQUENCY CONTROL LOOP OF AN ISOLATED SYSTEM: EXACT

LFC- Primary Loop (Approximated)

$$T_{SG} = T_T = 0, K_{SG}K_T = 1$$

PRIMARY LOAD FREQUENCY CONTROL LOOP OF AN ISOLATED SYSTEM: APPROXIMATED

$$\Delta f_o = -\Delta P_L \frac{RK_{PS}}{R + K_{PS}}$$

LFC- With Integral Control

LOAD FREQUENCY CONTROL WITH PI CONTROLLER

LFC- Integral Control (Approximated)

$$T_{SG} = T_T = 0, K_{SG}K_T = 1$$

LOAD FREQUENCY CONTROL WITH PI CONTROLLER: APPROXIMATED

$$K_{I,crit} = \frac{K_{PS}}{4T_{PS}} \left[\frac{1}{R} + \frac{1}{K_{PS}} \right]^2$$

RESULTS

Primary LFC

LFC With Integral Control

LFC of Isolated Area (Exact)

LFC of Isolated Area (Approximated)

Effect of variation of R

Effect of variation of K_I

THANK YOU