TPC1

Resultados dos exercícios propostos:

1. (A) Efectue as seguintes conversões:

	Valor a converter	Resultado	Valor a converter	Resultado
a) decimal	1101.012	13.25	10.012	2.25
b) octal	110 111 011 1012	67358	11 111.112	37.68
c) hexadec.	10 1100 1011.0012	2CB.2 ₁₆		
d) binário	0xFF1F	1111 1111 0001 11112		
e) ternário	174	201103		

2. ^(A)Converta o número –233 para uma representação binária usando 10-bits, com as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0
Valor	512	256	128	64	32	16	8	4	2	1
Sinal & Ampl	1	0	1	1	1	0	1	0	0	1
Compl p/ 1	1	1	0	0	0	1	0	1	1	0
Compl p/ 2	1	1	0	0	0	1	0	1	1	1
Excesso 2 ⁿ⁻¹	0	1	0	0	0	1	0	1	1	1

3. ^(A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂; pode-se apresentar o resultado de uma de 2 maneiras: (i) escreve-se em cada célula o valor que cada bit (na codificação especificada) tem em decimal, sabendo-se que o <u>resultado</u> na coluna da direita toma em conta o bit do sinal (quando exista) e o seu valor é a soma desses valores, ou (ii) escreve-se em cada célula o valor que cada bit (na codificação especificada) tem no sistema de numeração binário, sabendo-se que o <u>resultado</u> na coluna da direita toma em conta o bit do sinal (quando exista) e o seu valor é a soma do produto dos bits indicados, pelo seu valor.

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codif em bin	1	0	0	1	1	1	0	1	0	1	
Int s/ sinal	512+	0+	0+	64+	32+	16+	0+	4+	0+	1	629
Sinal & Ampl	-	(0+	0+	64+	32+	16+	0+	4+	0+	1)	-117
Compl p/ 1	-	(256+	128+	0+	0+	0+	8+	0+	2+	0)	-394
Compl p/ 2	-	(256+	128+	0+	0+	0+	8+	0+	2+	1)	-395
Excesso 2 ⁿ⁻¹	0+	0+	0+	64+	32+	16+	0+	4+	0+	1	117

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codif em bin	1	0	0	1	1	1	0	1	0	1	
Int s/ sinal	1	0	0	1	1	1	0	1	0	1	629
Sinal & Ampl	_	0	0	1	1	1	0	1	0	1	-117
Compl p/ 1	_	1	1	0	0	0	1	0	1	0	-394
Compl p/ 2	_	1	1	0	0	0	1	0	1	1	-395
Excesso 2 ⁿ⁻¹	0	0	0	1	1	1	0	1	0	1	117

- **4.** (A) A maioria das pessoas apenas consegue contar até 10 com os seus dedos...
 - a) Com este método, até quanto é possível contar usando ambas as mãos? -> 1023
 - b) Um dos dedos na extremidade da mão é o bit do sinal (em compl p/ 2). Qual a gama de valores que é possível representar com ambas as mãos? -> [-29, 29[

AJProença / Fev'15

5. (R)Executar código num computador de 6-bits; um inteiro "short" é codificado com 3-bits.

Expressão	Decimal	Binário
Zero	0	00 0000
	-6	11 1010
	18	01 0010
ux	47	10 1111
У	-3	11 1101
x>>1 *	- 9	11 0111
TMax	31	01 1111
-Tmin	-(-32)	overflow
Tmin+Tmin	-64	overflow

- * Ver-se-á mais tarde porque razão este resultado é assim.
 <u>Sugestão para estudantes</u> B: analisar (e tentar compreender) como é que as operações de deslocamento de bits em C se comportam, e quais as diferenças entre deslocamento para a esquerda e deslocamento para a direita (para além da direcção, como é óbvio).
- **6.** (R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:

	(i)	(ii)	(iii)
a) 6 bits]-2 ⁵ , 2 ⁵ [[-2 ⁵ , 2 ⁵ [$[-2^5, 2^5[$
b) 12 bits]-211, 211[[-2 ¹¹ , 2 ¹¹ [[-2 ¹¹ , 2 ¹¹ [

7. (A) Efectue os seguintes cálculos usando aritmética binária de 8-bits em complemento para 2:

```
a) 4 + 120 Res.: 0000 \ 0100_2 + 0111 \ 1000_2 = 0111 \ 1100_2
b) 70 + 80 Res.: 0100 \ 0110_2 + 0101 \ 0000_2 = 1001 \ 0110_2 overflow (devia ser >0)
c) 100 + (-60) Res.: 0110 \ 0100_2 + 1100 \ 0100_2 = 0010 \ 1000_2
d) -100 - 27 Res.: 1001 \ 1100_2 - 0001 \ 1011_2 = 1000 \ 0001_2
```

AJProença / Fev'15 2