Computer Aided Design Optimization

Virendra Singh

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

EE-677: Foundations of VLSI CAD

CADSL

What is Mathematical Optimization?

 "Optimization" comes from the same root as "optimal", which means best. When you optimize something, you are "making it best".

Optimization Vocabulary

Your basic optimization problem consists of...

- •The objective function, f(x), which is the output you're trying to maximize or minimize.
- •Variables, $x_1x_2x_3$ and so on, which are the inputs things you can control. They are abbreviated x_n to refer to individuals or x to refer to them as a group.
- •Constraints, which are equations that place limits on how big or small some variables can get. Equality constraints are usually noted $h_n(x)$ and inequality constraints are noted $g_n(x)$.

Types of Optimization Problems

- Some problems have constraints and some do not.
- There can be one variable or many.
- Variables can be discrete (for example, only have integer values) or continuous.
- Some problems are static (do not change over time) while some are dynamic (continual adjustments must be made as changes occur).
- Systems can be deterministic (specific causes produce specific effects) or stochastic (involve randomness/ probability).
- Equations can be linear (graph to lines) or nonlinear (graph to curves)

A Single-Variable Problem

- Consider variable x
- Problem: find the maximum value of x subject to constraint, $0 \le x \le 15$.
- Solution: x = 15.

Single Variable Problem (Cont.)

- Consider more complex constraints:
- Maximize x, subject to following constraints:
 - x ≥ 0

(1)

• $5x \le 75$

(2)

• $6x \le 30$

(3)

• x ≤ 10

(4)

A Two-Variable Problem

- Manufacture of chairs and tables:
 - Resources available:
 - Material: 400 boards of wood
 - Labor: 450 man-hours
 - Profit:
 - Chair: \$45
 - Table: \$80
 - Resources needed:
 - Chair
 - 5 boards of wood
 - 10 man-hours
 - Table
 - 20 boards of wood
 - 15 man-hours
 - Problem: How many chairs and how many tables should be manufactured to maximize the total profit?

Formulating Two-Variable Problem

 Manufacture x₁ chairs and x₂ tables to maximize profit:

$$P = 45x_1 + 80x_2$$
 dollars

Subject to given resource constraints:

• 400 boards of wood,
$$5x_1 + 20x_2 \le 400$$
 (1)

• 450 man-hours of labor,
$$10x_1 + 15x_2 \le 450$$
 (2)

$$\bullet \quad \mathsf{x}_1 \ge 0 \tag{3}$$

$$\bullet \quad \mathsf{x}_2 \ge 0 \tag{4}$$

Solution: Two-Variable Problem

Change Profit of Chair to \$64/Unit

• Manufacture x_1 chairs and x_2 tables to maximize profit:

$$P = 64x_1 + 80x_2$$
 dollars

Subject to given resource constraints:

• 400 boards of wood,
$$5x_1 + 20x_2 \le 400$$
 (1)

• 450 man-hours of labor,
$$10x_1 + 15x_2 \le 450$$
 (2)

$$\bullet \quad \mathsf{x}_1 \ge 0 \tag{3}$$

$$\bullet \quad \mathsf{x}_2 \ge 0 \tag{4}$$

Solution: \$64 Profit/Chair

A Dual Problem

- Explore an alternative.
- Questions:
 - Should we make tables and chairs?
 - Or, auction off the available resources?
- To answer this question we need to know:
 - What is the minimum price for the resources that will provide us with same amount of revenue as the profits from tables and chairs?
 - This is the dual of the original problem.

Formulating the Dual Problem

- Revenue received by selling off resources:
 - For each board, w₁
 - For each man-hour, w₂
- Minimize $400w_1 + 450w_2$
- Subject to constraints:

•
$$5w_1 + 10w_2$$

•
$$20w_1 + 15w_2 \ge 80$$

The Duality Theorem

 If the primal has a finite optimal solution, so does the dual, and the optimum values of the objective functions are equal.

Primal-Dual Problems

- **Primal problem**
 - Fixed resources
 - Maximize profit
- Variables:
 - x₁ (number of chairs)
 - x₂ (number of tables)
- Maximize profit $45x_1+80x_2$
- Subject to:

•
$$5x_1 + 20x_2 \le 400$$

•
$$10x_1 + 15x_2 \le 450$$

- **Solution:**
 - $x_1 = 24$ chairs, $x_2 = 14$ tables
 - Profit = \$2200

- **Dual Problem**
 - Fixed profit
 - Minimize value
- Variables:
 - w₁ (\$ value/board of wood)

≥ 45

- w₂ (\$ value/man-hour)
- Minimize value 400w₁+450w₂
- **Subject to:**

•
$$5w_1 + 10w_2$$

•
$$20w_1 + 15w_2 \ge 80$$

•
$$\mathbf{w}_1 \geq \mathbf{0}$$

Solution:

•
$$w_1 = $1, w_2 = $4$$

Thank You

