Section 10.6 052412.notebook May 24, 2012

Announcement:

Chapter 10 Test on Wednesday, 5/30!

Homework Review - 10.4

33)
$$7(x-3)^{2} = 35$$

 7
 7
 $(x-3)^{2} = 5$
 $x-3 = \pm \sqrt{5}$
 $x-3 = 2.24$
 $+3$
 $+3$
 $+3$
 $+3$
 $+3$
 $+3$
 $+3$
 $+3$

$$W = 0.0018 D^{2} d_{5}$$

$$\int = 0.0018 D^{2} (4.5)(2.65)$$

$$\int = 0.02 D^{2}$$

$$\frac{1}{0.02} = 0.02$$

$$\frac{3}{3} = \frac{3(z+14)^2}{3}$$

$$\frac{3}{3} = \frac{3}{3}$$

$$\frac{2+14}{2} = \frac{2+14}{7}$$

$$\frac{2+14}{7} = \frac{2+14}{7}$$

$$\frac{2+14}{7} = \frac{2+14}{7} = \frac{2+14}{7}$$

$$\frac{2+14}{7} = \frac{2+14}{7} = \frac{2+14}$$

$$(39)_{\frac{3}{3}}^{2} = (n+1)^{2} = 33'' \cdot \frac{2}{3},$$

$$(n+1)^{2} = 22$$

$$n+1 = \pm \sqrt{22}$$

$$n+1 = 4.69 \quad \text{or} \quad n+1 = -4.69$$

$$-1 \quad -1 \quad -1$$

$$N=3.69 \quad \text{or} \quad n=-5.69$$

Solving Quadratic Equations using the Quadratic Formula

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

There is a mathematical formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ that allows you to compute the solutions to any quadratic equation.

$$3x^{2} + 5x = 8$$

$$3x^{3} + 5x - 8 = 0$$

$$X = -8 + 5x - 8 = 0$$

$$X = -5 + 5x - 4(3)(-8)$$

$$X = -5 + 5x + 76$$

$$X = -5 + 10$$

$$X = -5 + 1$$

When to use different techniques...

Solve by factoring when ...

Solve by graphing when ...

Solve with square roots when ...

Use the quadratic formula when ...

13.
$$6x^2 - 216 = 0$$

14.
$$8x^2 = 56$$

15.
$$5x^2 - 10x = 0$$

16.
$$x^2 + 8x + 7 = 0$$

17.
$$x^2 - 6x + 1 = 0$$

16.
$$x^2 + 8x + 7 = 0$$
 17. $x^2 - 6x + 1 = 0$ **18.** $-9x^2 + 10x = 5$

Pasta For the period 1990–2003, the amount of biscuits, pasta, and noodles y (in thousands of metric tons) imported into the United States can be modeled by the function $y = 1.36x^2 + 27.8x + 304$ where x is the number of years since 1990.

- **a.** Write and solve an equation that you can use to approximate the year in which 500 million pounds of biscuits, pasta, and noodles were imported.
- **b.** Write and solve an equation that you can use to approximate the year in which 575 million pounds of biscuits, pasta, and noodles were imported.

Eggs For the period 1997–2003, the number of eggs y (in billions) produced in the United States can be modeled by the function $y = -0.27x^2 + 3.3x + 77$ where x is the number of years since 1997.

Write and solve an equation that you can use to approximate the year(s) in which 80 billion eggs were produced.

Homework:

p. 674, 13-22 by 3, 27, 47, 49a