# Midterm Exam S2 Computer Architecture

**Duration: 1 hr 30 min** 

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use a pencil or red ink.

#### Exercise 1 (5 points)

Answer on the <u>answer sheet</u>. Let us consider the following **10-bit** binary number: **1011101010**<sub>2</sub>.

- 1. Write down its hexadecimal representation.
- 2. Assuming that it is an unsigned integer, write down its decimal representation.
- 3. Assuming that it is a signed integer, write down its decimal representation.
- 4. Write down the 10-bit binary representation of the following unsigned number:  $2^{10}$ .
- 5. Write down the 10-bit binary representation of the following signed number:  $-2^{10}$ .
- 6. Determine the minimum number of bits required to encode the following unsigned number: **65,536?**
- 7. Determine the minimum number of bits required to encode the following signed number: -65,536?
- 8. Determine the minimum number of bits required to encode the following signed number: **65,536?**
- 9. How many bytes does the value **2 Gib** contain? Use a power-of-two notation.
- 10. How many bits does the value **512 MiB** contain? Use binary prefixes (Ki, Mi or Gi) and choose the most appropriate prefix so that the integer numerical value will be as small as possible.

## Exercise 2 (7 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form:  $k \times 2^n$  where k and n are integers (either positive or negative).

Midterm Exam S2

#### Exercise 3 (2 points)

- 1. Draw the circuit diagram of a divide-by-two circuit by using only one master-slave D flip-flop. Answer on the answer sheet.
- 1. Draw the circuit diagram of a divide-by-two circuit by using only one master-slave JK flip-flop. Answer on the answer sheet.

## Exercise 4 (6 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.



Figure 1



Figure 2

Midterm Exam S2 2/4

|                                 |        |        | ne: Group:                |
|---------------------------------|--------|--------|---------------------------|
| ercise 1                        |        |        |                           |
| 1.                              |        |        | 6.                        |
| 2.                              |        |        | 7.                        |
| 3.                              |        |        | 8.                        |
| 4.                              |        |        | 9.                        |
|                                 |        |        |                           |
| 5.                              |        |        | 10.                       |
| xercise 2                       |        |        |                           |
| Number                          | S      | E      | M                         |
| -532                            |        | _      |                           |
| 1.03125                         |        |        |                           |
| 0.03125                         |        |        |                           |
|                                 |        |        |                           |
| IEEE-754 Representation         |        |        | Associated Representation |
| $4432000000000000_{16} \\$      |        |        |                           |
| $\rm FFF000000000000_{16}$      |        |        |                           |
| $7\mathrm{FF100000000000}_{16}$ |        |        |                           |
| 000FF0000000000 <sub>16</sub>   |        |        |                           |
|                                 |        |        |                           |
| xercise 3                       | D Flii | p-Flop | JK Flip-Flop              |
|                                 |        |        | r r                       |
|                                 |        |        |                           |
|                                 |        |        |                           |
|                                 |        |        |                           |
|                                 |        |        |                           |

### Exercise 4



Figure 1



Figure 2

Feel free to use the blank space below if you need to:

