

SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

FISIESE WETENSKAPPE: FISIKA (V2)

2021

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 15 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en substitusies in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, bv. 1.11 E.

- 1.1 Watter EEN van die volgende verbindings het waterstofbindings tussen molekule?
 - A Pentanaal
 - B Pentan-2-oon
 - C Pentanoësuur
 - D Metielbutanoaat (2)
- 1.2 Aan watter homoloë reeks behoort 'n verbinding met molekulêre formule $C_6H_{12}O_2$?
 - A Ketone
 - B Alkohole
 - C Aldehiede
 - D Karboksielsure (2)
- 1.3 Watter funksionele groepe is betrokke by die vorming van esters?
 - A Formiel en karboniel
 - B Hidroksiel en karboniel
 - C Hidroksiel en karboksiel
 - D Karboniel en karboksiel (2)
- 1.4 Die vergelyking hieronder stel 'n reaksie by ewewig voor.

$$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(\ell)$$

geel oranje

Watter EEN van die volgende sal die kleur van die mengsel van geel na oranje verander?

- A Byvoeging van natriumhidroksiedkorrels
- B Byvoeging van gekonsentreerde soutsuur
- C Verhoging in druk by konstante temperatuur
- D Verlaging in druk by konstante temperatuur (2)

1.5 Beskou die potensiële-energiegrafiek vir die reaksie wat hieronder getoon word.

Die aktiveringsenergie vir die VOORWAARTSE reaksie in terme van **P**, **Q** en **R** is:

A Q

B **R-P**

C Q - R

$$D \quad \mathbf{Q} - \mathbf{P} \tag{2}$$

1.6 'n Reaksie bereik ewewig in 'n geslote houer volgens die volgende gebalanseerde vergelyking:

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H < 0$$

Watter EEN van die volgende veranderinge sal die waarde van die ewewigskonstante laat TOENEEM?

A Verwyder NH₃(g)

B Verhit die houer

C Verkoel die houer

D Vergroot die volume van die houer (2)

1.7 Swawelsuur ioniseer in water volgens die volgende vergelykings:

$$H_2SO_4(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HSO_4^-(aq)$$

 $HSO_4^-(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + SO_4^{2-}(aq)$

Beskou die volgende stellings oor die ionisasie hierbo:

- I: $H_2O(\ell)$ tree as 'n basis in beide reaksies op.
- II: HSO₄ (aq) tree as 'n amfoliet op.
- III: SO_4^{2-} (aq) is die gekonjugeerde basis van H_2SO_4 .

Watter van die stellings hierbo is WAAR?

- A Slegs I
- B I en II
- C I en III

$$D I, II en III$$
 (2)

1.8 Watter EEN van die volgende reaksies sal 'n positiewe voltmeterlesing gee wanneer dit in 'n voltaïese sel gebruik word?

A
$$Mg^{2+}(aq) + Zn(s) \rightarrow Mg(s) + Zn^{2+}(aq)$$

B
$$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$$

C
$$Co^{2+}(aq) + Sn^{2+}(aq) \rightarrow Co(s) + Sn^{4+}(aq)$$

D
$$3Ni^{2+}(aq) + 2Fe(s) \rightarrow 3Ni(s) + 2Fe^{3+}(aq)$$
 (2)

- 1.9 Watter EEN van die volgende stellings is KORREK vir 'n ELEKTROLITIESE SEL?
 - A Die anode is die positiewe elektrode.
 - B Die katode die positiewe elektrode.
 - C Oksidasie vind by die katode plaas.
 - D Reduksie vind by die anode plaas.
- 1.10 Watter EEN van die volgende toon die nywerheidsprosesse waarin AMMONIAK onderskeidelik 'n reaktans en 'n produk is?

	REAKTANS	PRODUK
Α	Ostwald	Kontak
В	Ostwald	Haber
С	Kontak	Haber
D	Kontak	Kontak

(2)

(2)

Fisiese Wetenskappe/V2

DBE/2021

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters A tot F in die tabel hieronder verteenwoordig ses organiese verbindings.

Α	Metanoësuur	В	Pentanaal
С	C ₁₀ H ₂₂	D	Br - CH-CH ₂ -CH ₃ CH ₃ (CH ₂) ₂ CH-CH ₂ Br
E	H-C-H H-C-H H-C-H	F	H H H O H H-C-C-C-C-H H H H H

2.1 Skryf die LETTER(S) neer wat die volgende verteenwoordig:

2.2 Vir verbinding **D**, skryf neer die:

2.3 Oorweeg verbinding **F**.

Skryf die IUPAC-naam neer van sy:

2.4 Gedurende die reaksie van verbinding **A** met verbinding **E** in die teenwoordigheid van 'n suurkatalisator word twee produkte gevorm.

Vir die ORGANIESE produk gevorm, skryf neer die:

Kopiereg voorbehou

[19]

Verbinding \mathbf{C} ($C_{10}H_{22}$) reageer by hoë temperature en drukke om 'n drie-koolstof-alkeen \mathbf{P} en 'n alkaan \mathbf{Q} te vorm, soos hieronder getoon.

$$C_{10}H_{22} \longrightarrow P + Q$$

Skryf neer die:

2.5.1 Soort reaksie wat plaasvind (1)
2.5.2 Molekulêre formule van verbinding Q (2)
2.5.3 STRUKTUURFORMULE van verbinding P (2)

VRAAG 3 (Begin op 'n nuwe bladsy.)

Leerders gebruik verbindings **A**, **B** en **C** om een van die faktore wat die DAMPDRUK van organiese verbindings beïnvloed, te ondersoek.

Α	Butan-1-ol
В	Butan-2-oon
С	Propanoësuur

3.1 Definieer die term *dampdruk*.

(2)

3.2 Skryf die onafhanklike veranderlike vir hierdie ondersoek neer.

(1)

3.3 Watter verbinding, **A** of **B**, het die hoogste dampdruk?

(1)

3.4 Verduidelik die antwoord op VRAAG 3.3 volledig. Sluit die TIPES INTERMOLEKULÊRE KRAGTE by jou verduideliking in.

(4)

3.5 Die grafiek hieronder verteenwoordig die verwantskap tussen dampdruk en temperatuur vir verbinding **A** by seevlak. **X** en **Y** verteenwoordig verskillende temperature.

3.5.1 Skryf die term neer vir die temperatuur wat deur **X** verteenwoordig word. (1)

3.5.2 Noem die fase van verbinding **A** by temperatuur **Y**. Kies uit GAS, VLOEISTOF of VASTE STOF. (1)

3.5.3 Teken die grafiek hierbo in jou ANTWOORDEBOEK oor. Op dieselfde assestelsel, skets die kurwe wat vir verbinding **C** verkry sal word. Benoem kurwe **A** en kurwe **C** duidelik.

(2) **[12]**

VRAAG 4 (Begin op 'n nuwe bladsy.)

4.1 Die vloeidiagram hieronder toon die omskakeling van propaan na propan-2-ol.

- 4.1.1 Noem EEN reaksietoestand vir **Stap 1**. (1)
- 4.1.2 Skryf die NAAM of FORMULE neer van die ANORGANIESE produk wat in **Stap 1** gevorm word. (1)
- 4.1.3 Noem die TIPE substitusiereaksie voorgestel deur **Stap 2**. (1)
- 4.1.4 Skryf die NAAM of FORMULE neer van die ANORGANIESE reagens wat in **Stap 2** benodig word. (1)
- 4.1.5 Skryf die IUPAC-naam van verbinding **X** neer. (2)
- 4.2 Etaan kan uit 'n proses met TWEE STAPPE uit chlooretaan (CH₃CH₂Cl) berei word. Jy word van die volgende chemikalieë voorsien:

H ₂	HCℓ	Cl ₂	H ₂ O	Pt	Etanol	gekonsentreerde H ₂ SO ₄	gekonsentreerde NaOH
----------------	-----	-----------------	------------------	----	--------	---	-------------------------

Kies chemikalieë in die tabel hierbo wat vir hierdie bereiding gebruik kan word.

Gebruik GEKONDENSEERDE struktuurformules om 'n gebalanseerde vergelyking vir ELKE reaksie neer te skryf. Dui die reaksietoestande vir ELKE reaksie aan.

(8) **[14]**

Kopiereg voorbehou

VRAAG 5 (Begin op 'n nuwe bladsy.)

Twee eksperimente, I en II, word uitgevoer om een van die faktore te ondersoek wat die tempo van die reaksie van aluminiumkarbonaat, $Al_2(CO_3)_3$, met OORMAAT soutsuur, HCl, beïnvloed. Die gebalanseerde vergelyking vir die reaksie is:

$$Al_2(CO_3)_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2O(l) + 3CO_2(g)$$

Die apparaat wat gebruik is, word hieronder getoon.

Die reaksietoestande wat vir elke eksperiment gebruik is, is soos volg:

Eksperiment I:

100 cm³ van 1,5 mol·dm⁻³ HCl(aq) reageer met 0,016 mol Al₂(CO₃)₃-korrels by 25 °C

Eksperiment II:

50 cm³ van 2 mol·dm⁻³ HCl(aq) reageer met 0,016 mol Al₂(CO₃)₃-korrels by 25 °C

- 5.1 Definieer die term *reaksietempo*. (2)
- 5.2 Gebruik die eksperimentele opstelling hierbo en noem die metings wat gemaak moet word om die tempo van hierdie reaksie te bepaal. (2)
- 5.3 Gebruik die botsingsteorie om te verduidelik hoe die gemiddelde reaksietempo in **Eksperiment I** van die gemiddelde reaksietempo in **Eksperiment II** verskil. (3)
- 5.4 Die gemiddelde reaksietempo in **Eksperiment II** gedurende die eerste 2,5 minute is 4,4 x 10⁻³ mol·min⁻¹.
 - Bereken die aantal mol $Al_2(CO_3)_3$ wat na 2,5 minute in die fles oorbly. (3)
- 5.5 Bereken die maksimum volume CO₂(g) wat in **Eksperiment I** by 25 °C berei kan word. Neem molêre gasvolume by 25 °C as 24 000 cm³·mol⁻¹.

(3) **[13]**

VRAAG 6 (Begin op 'n nuwe bladsy.)

Suiwer waterstofjodiedgas, HI (g), met 'n konsentrasie van 1 mol·dm⁻³, word in 'n 500 cm³-houer by temperatuur **T** verseël. Die reaksie bereik ewewig volgens die volgende gebalanseerde vergelyking:

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

6.1 Definieer die term chemiese ewewig.

(2)

6.2 Die grafiek hieronder toon hoe die konsentrasies van die reaktans en produkte met tyd gedurende die reaksie verander.

6.2.1 Watter EEN van die kurwes, X of Y, verteenwoordig die veranderinge in die konsentrasie van die produkte? Gee 'n rede vir die antwoord.

6.2.2 Hoe vergelyk die tempo van die voorwaartse reaksie met dié van die terugwaartse reaksie by t = 4 minute? Kies uit HOËR AS, LAER AS of GELYK AAN. (1)

6.3 Die ewewigskonstante, K_c, vir die reaksie is 0,04 by temperatuur T. Bereken die aantal mol jodium, $I_2(q)$, wat by t = 6 minute teenwoordig is. (9)

(2)

(1)

(4)

6.4 Die grafiek hieronder toon hoe die tempo van die voorwaartse en terugwaartse reaksies met tyd verander.

Die temperatuur van die houer word by t = 10 minute verhoog.

- 6.4.1 Watter reaksie(s) toon by t = 10 minute 'n toename in tempo? Kies uit VOORWAARTS, TERUGWAARTS of BEIDE VOORWAARTS EN TERUGWAARTS. (1)
- 6.4.2 Is die reaksiewarmte (ΔH) vir hierdie reaksie POSITIEF of NEGATIEF? Verduidelik die antwoord volledig. (4) [19]

VRAAG 7 (Begin op 'n nuwe bladsy.)

Leerders berei 'n oplossing met bekende konsentrasie deur 2 g suiwer natriumhidroksiedkristalle, NaOH, in 'n 250 cm³ volumetriese fles in water op te los.

- 7.1 Skryf die term vir die onderstreepte frase neer.
- 7.2 Bereken die:
 - 7.2.1 Konsentrasie van die natriumhidroksiedoplossing
 - 7.2.2 pH van die oplossing (4)

Die leerders reageer nou 1,5 g suiwer CaCO₃ met 50 cm³ verdunde HCl met onbekende konsentrasie. Die OORMAAT HCl word geneutraliseer met 25 cm³ van die NaOH-oplossing wat hulle berei het. Die gebalanseerde vergelykings vir die reaksies is:

$$2HC\ell(aq) + CaCO_3(s) \rightarrow CaC\ell_2(aq) + CO_2(g) + H_2O(\ell)$$

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

7.3 Bereken die aanvanklike konsentrasie van die verdunde HCl(aq). (8)

VRAAG 8 (Begin op 'n nuwe bladsy.)

- 8.1 Wanneer 'n stukkie natriummetaal (Na) by water in 'n proefbuis gevoeg word, word waterstofgas vrygestel. Wanneer fenolftaleïen-indikator by die proefbuis gevoeg word, verkleur die oplossing pienk.
 - 8.1.1 Definieer die term *reduksie* in terme van elektronoordrag. (2)
 - 8.1.2 Skryf die reduksiehalfreaksie neer. (2)
 - 8.1.3 Skryf die gebalanseerde vergelyking neer vir die reaksie wat plaasvind. (3)
 - 8.1.4 Gee 'n rede hoekom die oplossing pienk verkleur. (1)

Wanneer 'n stukkie koper by water in 'n proefbuis gevoeg word, word geen reaksie waargeneem nie.

- 8.1.5 Verwys na die relatiewe sterktes van REDUSEERMIDDELS om te verduidelik waarom geen reaksie waargeneem word nie. (3)
- 8.2 Oorweeg die selnotasie hieronder.

$$Pb(s) | Pb^{2+}(aq) | | Fe^{3+}(aq), Fe^{2+}(aq) | Pt(s)$$

- 8.2.1 Wat word deur die enkellyn (|) in die selnotasie hierbo voorgestel? (1)
- 8.2.2 Skryf die energieomskakeling neer wat in hierdie sel plaasvind. (1)
- 8.2.3 Bereken die aanvanklike emk van die sel onder standaardtoestande. (4) [17]

Kopiereg voorbehou

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die diagramme hieronder toon twee elektrochemiese selle waarin koolstofelektrodes gebruik word. In sel **A** word gekonsentreerde koper(II)chloriedoplossing gebruik en in sel **B** word vloeibare aluminiumoksied gebruik.

- 9.1 Watter tipe elektrochemiese sel, ELEKTROLITIES of GALVANIES, word hierbo getoon? Gee 'n rede vir die antwoord. (2)
- 9.2 Skryf neer die:
 - 9.2.1 Halfreaksie wat by die anode van sel **A** plaasvind (2)
 - 9.2.2 Halfreaksie wat by die katode van sel **B** plaasvind (2)
 - 9.2.3 NAAM of FORMULE van die produk wat by die katode van sel **A** vorm (2)
- 9.3 Gee 'n rede waarom die massa van elektrode **Y** na 'n tyd afneem. (1) [8]

VRAAG 10 (Begin op 'n nuwe bladsy.)

10.1 Die onvolledige vergelykings hieronder toon die vier stappe betrokke by die nywerheidsbereiding van swawelsuur (H₂SO₄). **A** en **B** verteenwoordig twee verbindings.

Stap I: $S(s) + O_2(g) \rightarrow A$

Stap II: $A + O_2(g) \rightleftharpoons B$

Stap III: $B + H_2SO_4 \rightarrow H_2S_2O_7$

Stap IV: $H_2S_2O_7 + H_2O \rightarrow H_2SO_4$

Skryf neer die NAAM of FORMULE van:

10.1.1 Verbinding **A** (1)

10.1.2 Verbinding **B** (1)

10.1.3 Die katalisator wat in **Stap II** gebruik word (1)

Die swawelsuur wat in **Stap IV** gevorm word, word gebruik om ammoniumsulfaat te berei.

10.1.4 Skryf 'n gebalanseerde vergelyking vir hierdie reaksie neer. (3)

10.2 Die diagram hieronder toon 'n sak kunsmis.

10.2.1 Skryf die betekenis van NPK neer.

(1)

10.2.2 Die sak bevat 4 kg ammoniumnitraat, NH₄NO₃, wat die enigste bron van stikstof is. Bereken die massa van die kunsmis in die sak.

(4) [11]

TOTAAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{\mathbf{c_a v_a}}{\mathbf{c_b v_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}}$	$pH = -log[H_3O^+]$

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$\mathsf{E}_{\mathsf{cell}}^\theta = \mathsf{E}_{\mathsf{cathode}}^\theta - \mathsf{E}_{\mathsf{anode}}^\theta \ / \mathsf{E}_{\mathsf{sel}}^\theta = \mathsf{E}_{\mathsf{katode}}^\theta \ - \mathsf{E}_{\mathsf{anode}}^\theta$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{reduksie}}^{\theta} - E_{\text{oksidasie}}^{\theta}$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{oxidisingagent}}^{\theta} - E_{\text{reducingagent}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{oksideemiddel}}^{\theta} - E_{\text{reduseemiddel}}^{\theta}$$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		1	` ,							Α	tomic n	umber				` ,	` ,	` ,	` ,	` ,	
	1							KEY/SL	EUTEL		Atoom	getal									2
2,1	Н										1	•									He
	1										20										4
	3		4]				Flectr	onegati	vitv	29	Sv	mbol			5	6	7	8	9	10
1,0	Li	1,5							onegativ		ರ್. Cn		nbool			0,2 B	2,5 C	င့် N	3,5	0, F	Ne
_		_						Lichard	negati.	ricore	63,5	5 "	110001							•	
	7		9	_							A					11	12	14	16	19	20
	11		12													13	14	15	16	17	18
6,0	Na	1,2	Mg									e atomic				₹. ∀ €	[∞] Si	L,2 P	S ,5	% C€	Ar
	23		24						Bena	derde r	elatiewe	e atoom	massa			27	28	31	32	35,5	40
	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8,0	K	1,0	Ca	1,3	Sc	7,5	Ti	4, V	ç Cr	ਨੂੰ Mu	∞ Fe	⁴ Co	∞ Ni	್ಲ್ Cu	<u>دِ</u> Zn	ဖုံ့ Ga	∞. Ge	% As	% Se	[∞] , Br	Kr
0	39	_	40	_	45	_	48	51	52	55	56	59	59	63,5		70	73	75	79	80	84
	3 3		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
ω	-	0		7		4						_	_					_	_		_
0,8	Rb	1,0	Sr	1,2	Y	4,1	Zr	Nb	[∞] Mo	್ಲ್ Tc				್ಲ್ Ag		Ç In	[∞] Sn				Xe
	86		88		89		91	92	96		101	103	106	108	112	115	119	1	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0,7	Cs	6,0	Ba		La	9,1	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	% T €	² Pb	င့် Bi	% Po	5,5 At	Rn
	133		137		139		179	181	184	186	190	192	195	197	201	204	207	209		``	
	87		88		89														1	1	
2,0	Fr	6,0	Ra		Ac				T	Т	1	1	1	1		1	,	1		1	
0	• •	0	226		AC			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			220					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
									91	92	93	94	95	96	97	98	99	100	101	102	103
								90	_	_		_	_								
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238											
								L	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>		<u> </u>					

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD- REDUKSIEPOTENSIALE

BEL 4A: STANDAARD- REDUKSIEPOTENSIA									
Half-reactions	Ε ^θ (V)								
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87						
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81						
$H_2O_2 + 2H^+ + 2e^-$	=	2H₂O	+1,77						
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51						
Cl ₂ (g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36						
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	$2Cr^{3+} + 7H_2O$	+ 1,33						
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23						
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23						
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20						
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07						
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96						
$Hg^{2+} + 2e^{-}$	=	Hg(ℓ)	+ 0,85						
$Ag^+ + e^-$	=	Ag	+ 0,80						
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80						
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77						
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68						
$I_2 + 2e^-$	=	2I ⁻	+ 0,54						
$Cu^+ + e^-$	=	Cu	+ 0,52						
$SO_2 + 4H^+ + 4e^-$	\Rightarrow	S + 2H ₂ O	+ 0,45						
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40						
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34						
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17						
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16						
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15						
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14						
2H ⁺ + 2e ⁻	=	H ₂ (g)	0,00						
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06						
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13						
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14						
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27						
Co ²⁺ + 2e ⁻	=	Co	- 0,28						
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40						
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41						
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44						
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74						
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76						
$2H_{2}O + 2e^{-}$	=	$H_2(g) + 2OH^-$	- 0,83						
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91						
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18						
$Al^{3+} + 3e^{-}$	=	Αℓ	- 1,66						
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36						
Na ⁺ + e ⁻	=	Na	- 2,71						
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87						
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89						
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90						
Cs ⁺ + e ⁻	=	Cs	- 2,92						
$K^+ + e^-$	=	K	- 2,93						
li⁺ . o⁻		Li	2.05						

 $Li^+ + e^-$

Li

-3,05

Increasing reducing ability/Toenemende reduserende vermoë

Kopiereg voorbehou

Increasing oxidising ability/Toenemende oksiderende vermoë

Blaai om asseblief

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD- REDUKSIEPOTENSIALE

BEL 4B: STANDAA	O I ENSI		
Half-reactions	/Hal	freaksies	Ε ^θ (V)
Li ⁺ + e ⁻	=	Li	- 3,05
$K^+ + e^-$	=	K	- 2,93
Cs ⁺ + e ⁻	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Na ⁺ + e ⁻	=	Na	- 2,71
$Mg^{2+} + 2e^{-}$	=	Mg	- 2,36
$Al^{3+} + 3e^{-}$	=	Al	- 1,66
$Mn^{2+} + 2e^{-}$	=	Mn	- 1,18
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Zn ²⁺ + 2e ⁻ Cr ³⁺ + 3e ⁻	=	Zn	- 0,76
Fe ²⁺ + 2e ⁻	=	Cr	- 0,74
re + 2e Cr ³⁺ + e ⁻	=	Fe Cr ²⁺	- 0,44 - 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,41 - 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0, 4 0 - 0,28
Ni ²⁺ + 2e ⁻	-	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	≠	Fe	- 0,06
2H ⁺ + 2e [−]	=	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40
$SO_2 + 4H^+ + 4e^-$	=	$S + 2H_2O$	+ 0,45
Cu ⁺ + e ⁻	\Rightarrow	Cu	+ 0,52
$I_2 + 2e^-$	=	2I ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80
$Ag^+ + e^-$	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
$NO_3^- + 4H^+ + 3e^-$	=	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	≠	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
$C\ell_2(g) + 2e^-$	÷	2Cℓ¯	+ 1,36
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51
$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+1,77
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87
1 2(g) + 20	=	-1	. 2,01

Increasing reducing ability/Toenemende reduserende vermoë