Atty Dkt No. 5100-0707 USSN: 09/766,273 PATENT

AMENDMENT

In the Specification:

Please amend the paragraph beginning at page 26, line 20, as follows:

The sequences of the oligonucleotides used in the following examples are set forth in Table 1:

Table 1

Oligo	Oligo 70mer sequence (L = NH2)	Genbank	Gene name	SEQ
name		accession		ID NO:
h-136	LTTGAGCAGTGGGCTCACTCTGAAGA	U56390	Caspase 9	
1	CCTGCAGTCCCTCCTGCTTAGGGTCG			1 1
L	CTAATGCTGTTTCGGTGAA			-
h-252	LCCGCGCCGACAAACAGAACCTGGA	AF041835	Laminin γ3	
ĺ	GGCCATTCTGCACAGCCTGCCCGAGA		precursor;	<u>2</u>
	ACTGTGCCAGCTGGCAGTGA		LAMC3	_
h-501-b	LGCTCCCAGAATTTCAGCTTCAGCTT	K00558	Alpha-	
	AACTGACAGATGTTAAAGCTTTCTGG		tubulin	<u>3</u> .
	TTAGATTGTTTTCACTTGC			
h-503-b	LCCACCTGTCCCTCCTGGGCTGCTGG	U14971	Ribosomal	
•	ATTGTCTCGTTTTCCTGCCAAATAAA		protein S9	4
	CAGGATCAGCGCTTTAAAA			4
	50mer complement with biotin at 5' end		•	
	(X = biotin))-1
h-136r50	XTTCACCGAAACAGCATTAGCGACCC			<u>5</u>
<u> </u>	TAAGCAGGAGGGACTGCAGGTCTTC			
h-252r50	XTCACTGCCAGCTGGCACAGTTCTCG			6
	GGCAGGCTGTGCAGAATGGCCTCCA		4.	<u>6</u>
h-501-	XCCAAGTGAAAACAATCTAACCAGA			7
br50	AAGCTTTAACATCTGTCAGTTAAGCT			7
h-503-	XTTTTAAAGCGCTGATCCTGTTTATTT			0
br50	GGCAGGAAAACGAGACAATCCAGC			<u>8</u>

Atty Dkt No. 5100-0707 USSN: 09/766,273 PATENT

Complement oligo with generic tag		
		0
AAGCAGGAGGACTGCAGGTCTTC		9
GGG CGG CGA CCT T		
TTCACCGAAACAGCATTAGCGACCCT		10
AAGCAGGAGGGACTGCAGGTCTTC	,	10
GGG CGG CGA CCT T		<u> </u>
TCACTGCCAGCTGGCACAGTTCTCGG		11
GCAGGCTGTGCAGAATGGCCTCCA		11
G GCG TGG CGG GGA AAG CAT		
TCACTGCCAGCTGGCACAGTTCTCGG		12
GCAGGCTGTGCAGAATGGCCTCCA		12
Oligos for attachment to SCNCs		
5' -Biotin- CTG GAA CAA CAC TCA		12
CAA GGT CGC CGC CC -3'		13
5' -Biotin- CTG GAA CAA CAC TCA		14
CAA TGC TTT CCC CGC CAC GCC -3'		14
	TTCACCGAAACAGCATTAGCGACCCT AAGCAGGAGGGACTGCAGGTCTTC GGG CGG CGA CCT T TCACTGCCAGCTGGCACAGTTCTCGG GCAGGCTGTGCAGAATGGCCTCCA G GCG TGG CGG GGA AAG CAT TCACTGCCAGCTGGCACAGTTCTCGG GCAGGCTGTGCAGAATGGCCTCCA Oligos for attachment to SCNCs 5'-Biotin-CTG GAA CAA CAC TCA CAA GGT CGC CGC CC -3'	G GCG TGG CGG GGA AAG CAT TTCACCGAAACAGCATTAGCGACCCT AAGCAGGAGGGACTGCAGGTCTTC GGG CGG CGA CCT T TTCACCGAAACAGCATTAGCGACCCT AAGCAGGAGGGACTGCAGGTCTTC GGG CGG CGA CCT T TCACTGCCAGCTGGCACAGTTCTCGG GCAGGCTGTGCAGAATGGCCTCCA G GCG TGG CGG GGA AAG CAT TCACTGCCAGCTGGCACAGTTCTCGG GCAGGCTGTGCAGAATGGCCTCCA Oligos for attachment to SCNCs 5' -Biotin- CTG GAA CAA CAC TCA CAA GGT CGC CGC CC -3' 5' -Biotin- CTG GAA CAA CAC TCA

Atty Dkt No. 5100-0707 USSN: 09/766,273 PATENT

Please amend the paragraph beginning at page 30, line 16, as follows:

This experiment demonstrates that detection of polynucleotides on an array using probe polynucleotides comprising a tag sequence produces equivalent results to probe polynucleotides lacking a tag. A reverse transcription primer (RT186) was designed. This sequence of this primer is 5'-GGCGTGGCGGGAAAGCATTTTTTT TTTTTTTTTTTTVN-3' (SEQ ID NO:15). The 5' extension of the primer is identical to one of the strands of the bacteriophage 186 cos site. Such sites serve the purpose of forming hybrids at physiological temperatures, driving circularization of phage genomes in their host cells. The inclusion of a 5' extension readily able to hybridize to its complement at modest temperatures (25-37 C) is intended to allow a two hybridization approach to quantitating mRNA transcripts with microarrays. In the first step, cDNAs synthesized from sample RNAs using the extended primer are hybridized in a high temperature, stringent hybridization to a microarray. After the first hybridization, nonhybridized strands are removed and then a second, low-temperature hybridization is carried out with semiconductor nanocrystals derivatized with oligonucleotides that are the complement of the 5' extension of the hybridized strands. One requirement for this approach to work is that the 5' extension not cause spurious hybridization to the immobilized cDNAs during the first, stringent hybridization.