CENG 280

Formal Languages and Abstract Machines

Spring 2023-2024

Homework 2

Question 1

For each of the FAs given below, construct a regular expression by eliminating states one-by-one. (While doing the conversion, at each step you will derive a smaller generalized finite automaton equivalent to the given FA. Studying example 2.3.2 in your textbook may be helpful.)

```
1. A_1 = \{K_1, \Sigma_1, \Delta_1, s_1, F_1\} where K_1 = \{q_0, q_1, q_2\}, \Sigma_1 = \{a, b\}, s_1 = q_0, F_1 = \{q_0, q_2\} and \Delta_1 = \{(q_0, a, q_1), (q_0, b, q_1), (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_0), (q_2, b, q_1)\}
```

```
2. A_2 = \{K_2, \Sigma_2, \Delta_2, s_2, F_2\} where K_2 = \{q_0, q_1, q_2, q_3, q_4\}, \Sigma_2 = \{a, b\}, s_2 = q_0, F_2 = \{q_3\} and \Delta_2 = \{(q_0, b, q_1), (q_0, b, q_3), (q_0, \epsilon, q_2), (q_1, a, q_1), (q_2, a, q_2), (q_2, b, q_2), (q_2, a, q_4), (q_3, a, q_1), (q_3, \epsilon, q_4), (q_4, a, q_2), (q_4, a, q_3), (q_4, b, q_4)\}
```

Question 2

Figure 1. M_1

- 1. Using the state minimization algorithm you have learned, find and draw the minimal DFA that is equivalent to M_1 . Show each step of your solution clearly.
- 2. Define each equivalence class of the automaton you have found at part-a with regular expressions. **Hint&Remark:** In your regular expressions, you are allowed to use the symbol L to denote all strings recognized by the automaton (e.g. $[\epsilon] = Lbaa$).

Question 3

- 1. Use MyHill-Nerode Theorem to **prove** that the language $L' = \{a^n b^m c^k d^u | m+n=k+2u \text{ and } m,n,k,u \in \mathbb{N}\}$ is not regular.
- 2. Using the pumping lemma for regular languages **prove** that the language $L'' = \{a^m b^n | m > n \text{ and } m, n \in \mathbb{N}\}$ is not regular.
- 3. Using the closure properties of regular languages and the knowledge that L'' is not regular, prove $\overline{L''}$ is not regular.

Question 4

Given $L_1 = L(a(abb)^* \cup b)$ and $L_2 = L(a^+ \cup (ab)^+)$, using methods in the proof of the Theorem 2.3.1 in your textbook,

- 1. Construct an NFA that recognizes L_1 .
- 2. Construct an NFA that recognizes L_2 .
- 3. Construct an NFA that recognizes $L_1 \cup \overline{L_2}$.

Question 5

Give context-free grammars generating the following languages:

- 1. The strings over the alphabet $\{a,b\}$ with more b's than a's.
- 2. $A = \{0^i 1^j 2^k \mid i+k=j \text{ and } i, j, k \ge 0\}$
- 3. $B = \{w \mid the \ length \ of \ w \ is \ odd \ and \ w \in \{0,1\}^*\}$ and draw parse tree for string 0011100.

Question 6

Give the (context-free) languages generated by each of the given grammars:

- 1. 1. $G_1 = (V_1, \Sigma, R_1, S_1)$ where $V_1 = \{S_1, A\} \cup \Sigma$, $\Sigma = \{0, 1\}$ and $R_1 = \{S_1 \longrightarrow 0$ A \mid 1A1 \mid e A $\longrightarrow 0$ A \mid 1A \mid e $\}$
- 2. $G_2=(V_2,\Sigma,R_2,S_2)$ where $V_2=\{S_2,B\}\cup\Sigma,\,\Sigma=\{0,1\}$ and $R_2=\{S_2->$ B1B1B B -> 0B | 1B | e }

Question 7

Given $G=(V,\Sigma,R,S)$ where $V=\{0,1,S,A\},$ $\Sigma=\{0,1\}$ and $R=\{S\rightarrow AS|e,A\rightarrow A1|0A1|01\}$

- 1. Show that G is ambiguous.
- 2. Given an unambiguous grammar for L(G) (i.e. disambiguate the given grammar).
- 3. Give the leftmost derivation of the string 00111 from the grammar you have constructed at part-2 of this question, and draw the corresponding parse tree.