Package 'spatialSPsurv'

August 4, 2020

Title Bayesian Spatial Split Population Survival Model
Version 0.1.3
Description Contains functions to fit Bayesian spatial survival model for split population.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
LinkingTo Rcpp, RcppArmadillo
Imports MCMCpack, FastGP, stats, Rcpp, RcppArmadillo, coda
R topics documented:
exchangeSPsurv
Index
exchangeSPsurv frailtySPsurv

Type Package

Markov Chain Monte Carlo (MCMC) to run Bayesian non-spatial frailty split population survival model

2 pooledSPsurv

Usage

```
exchangeSPsurv(
  duration,
  immune,
  Y0,
  LY,
  S,
  data,
  N,
  burn,
  thin,
  w = c(1, 1, 1),
  m = 10,
  form = c("Weibull", "exponential", "loglog"),
  prop.var
)
```

Arguments

duration .. immune ..

Y0 the elapsed time since inception until the beginning of time period (t-1)

LY last observation year

S spatial information (e.g. district ID) for each observation that matches the spatial

matrix row/column information

data ...

N number of MCMC iterations

burn burn-in to be discarded

thin thinning to prevent from autocorrelation

w size of the slice in the slice sampling for (betas, gammas, rho). Write it as a

vector. E.g. c(1,1,1)

m limit on steps in the slice sampling. A vector of values for beta, gamma, rho.

form type of parametric model (Exponential or Weibull)

prop.var ...

Value

chain of the variables of interest

pooledSPsurv	SPsurv

Description

Markov Chain Monte Carlo (MCMC) to run Bayesian split population survival model with no frailties

spatialSPsurv 3

Usage

```
pooledSPsurv(
   duration,
   immune,
   Y0,
   LY,
   data,
   N,
   burn,
   thin,
   w = c(1, 1, 1),
   m = 10,
   form = c("Weibull", "exponential", "loglog")
)
```

Arguments

duration immune the elapsed time since inception until the beginning of time period (t-1) Υ0 LY last observation year data Ν number of MCMC iterations burn burn-in to be discarded thin thinning to prevent from autocorrelation size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. c(1,1,1)limit on steps in the slice sampling. A vector of values for beta, gamma, rho. m

type of parametric model (Exponential or Weibull)

Value

form

chain of the variables of interest

Description

Markov Chain Monte Carlo (MCMC) to run Bayesian spatial split population survival model

4 spatialSPsurv

Usage

```
spatialSPsurv(
  duration,
  immune,
  Υ0,
  LY,
  S,
  Α,
  data,
  N,
  burn,
  thin,
  w = c(1, 1, 1),
  m = 10,
  form = c("Weibull", "exponential", "loglog"),
  prop.var
)
```

Arguments

duration	
immune	
Y0	the elapsed time since inception until the beginning of time period (t-1)
LY	last observation year
S	spatial information (e.g. district ID) for each observation that matches the spatial matrix row/column information $\frac{1}{2}$
A	Spatial Matrix (load separate spatial weights matrix file)
data	
N	number of MCMC iterations
burn	burn-in to be discarded
thin	thinning to prevent from autocorrelation
W	size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. $c(1,1,1)$
m	limit on steps in the slice sampling. A vector of values for beta, gamma, rho.
form	type of parametric model (Exponential or Weibull)
prop.var	proposal variance for Metropolis-Hastings

Value

chain of the variables of interest

SPstats 5

SPstats SP.stats

Description

A function to calculate the deviance information criterion (DIC) and Log-likelihood for fitted model oupts of pooled, exchangeable, and spatial Split Population survival models for which a log-likelihood can be obtained, according to the formula DIC = -2 * (L - P), where L is the log likelihood of the data given the posterior means of the parameter and P is the estimate of the effective number of parameters in the model.

Usage

SPstats(object)

Arguments

object

An object of the output of pooled, exchangeable, or spatial Split Population survival model .

Value

List.

Index

```
exchangeSPsurv, 1
pooledSPsurv, 2
spatialSPsurv, 3
SPstats, 5
```