8. zero-shot, one-shot, few-shot

최근 나온 인공신경망 모델은 많은 학습 데이터를 요구한다.

많은 학습데이터를 제공함으로써 해당 문제에 대해 일반화를 잘할 수 있게 되었지만, 데이터를 확보하는데 필요한 많은 시간과 돈이 필요하다.

모델이 적은 학습 데이터로(또는 그 문제에 대한 학습 데이터를 제공하지 않더라도) 일반화를 잘 할 수 있도록 관련 연구가 진행되고 있다.

특정 범주를 학습하는데 사용되는 데이터 수에 따라 zero-shot (가르치지 않은 범주를 일반화하는 기법), one-shot (범주 별로 한개의 학습 데이터 사용), few-shot (두개 이상, 일반적인 논문에서는 5개~6개 정도를 학습데이터로 사용)로 분류된다.

풀고자하는 문제

- M-way N-shot learning
 - M개의 class와 N개의 support data가 주어졌을 때 batch data(=query data)가 M개의 범주중 어디에 속하는가를 학습하는 문제
 ex) 5개의 class가 주어지고 support data가 1개씩 주어지면, 5-way 1-shot learning
 - 일반적으로 사용되는 M과 N 값
 - M:5 ~ 25 N:1 ~ 5
 - 일반적인 문제해결 방식
 - Model-based
 - 학습한 Support data를 메모리에 저장한 뒤 batch data와 함께 모델 연산에 사용해 모델이 정답을 예측하는 기법
 - Metric-based (현 시점까지 리뷰한 논문들이 여기에 해당됨)
 - M*N개의 support data의 feature vector와 batch data를 거리계산 함수(코사인 유사도, 유클리드 거리)로 가장 근접 한 class를 정답으로 선택
 - 모델은 다른 class의 feature vector를 잘 떨어드릴수있게 일반화하도록 학습
 - · Optimization-based
 - M*N개의 support data로 모델이 학습을 해도 충분할수 있도록 모델의 파라미터 초기값을 최적화 하는 기법

Meta learning

	Model-based	Metric-based	Optimization-based
Key Idea	RNN; memory	Metric learning	Gradient Descent
How $P_{ heta}(y \mathbf{x})$ is modeled?	$f_{\theta}(\mathbf{x}, S)$	$\sum_{(\mathbf{x}_i, y_i) \in S} k_{\theta}(\mathbf{x}, \mathbf{x}_i) y_i$ (*)	$P_{g_{\phi}(\theta,S^L)}(y \mathbf{x})$

- Episodic training
 - M-way N-shot learning의 테스트 데이터와 동일한 학습 데이터 구성을 맞추기 위해 제안한 기법 데이터 구성
 - - Episode 단위로 support data(M*N)와 batch data(B)가 주어짐
 - data는 superviesed learning과 동일하게 (x,y) 구성
 - Loss 산출
 - metric based meta learning의 경우 batch data와 support data간의 거리차를 Loss로 사용

A CLOSER LOOK AT FEW-SHOT CLASSIFICATION (2019, ICLR)

	1-shot		5-shot	
Method	Reported	Ours	Reported	Ours
Baseline	-	42.11 ± 0.71	-	62.53 ±0.69
Baseline*3	41.08 ± 0.70	36.35 ± 0.64	51.04 ± 0.65	54.50 ± 0.66
MatchingNet ³ Vinyals et al. (2016)	43.56 ± 0.84	48.14 ± 0.78	55.31 ±0.73	63.48 ±0.66
ProtoNet	-	44.42 ± 0.84	-	64.24 ± 0.72
ProtoNet [#] Snell et al. (2017)	49.42 ± 0.78	47.74 ± 0.84	68.20 ± 0.66	66.68 ± 0.68
MAML Finn et al. (2017)	48.07 ± 1.75	46.47 ± 0.82	63.15 ± 0.91	62.71 ± 0.71
RelationNet Sung et al. (2018)	50.44 ± 0.82	49.31 ± 0.85	65.32 ± 0.70	66.60 ± 0.69

mini-ImageNet

관련 자료

https://github.com/sudharsan13296/Awesome-Meta-Learning

https://meta-learn.github.io/2019/