DataStar Machine Learning

Modules

- 01. Introduction
- 02. Regression
- 03. Classification
- 04. Ensemble Methods & Cross-Validation
- 05. Machine Learning Algorithms
- 06. Regularization Techniques
- 07. Introduction to Unsupervised ML
- 08. Dimensionality Reduction Techniques
- 09. Clustering Techniques
- 10. Introduction to Natural Language Processing

Session 3: Classification

18 Sept 2017

Positive reviews are NOT positive everytime, and maybe about something but NOT everything...

Classifying Sentiment of Review

Easily best sushi in Seattle.

Sentence Sentiment Classifier

Classifying Sentiment of Review

All reviews for restaurant

Break all reviews into sentences

The seaweed salad was just OK, vegetable salad was just ordinary.

I like the interior decoration and the blackboard menu on the wall.

All the sushi was delicious.

My wife tried their ramen and it was pretty forgettable.

The sushi was amazing, and the rice is just outstanding.

The service is somewhat hectic.

Easily best sushi in Seattle.

Sentence Sentiment Classifier

Good

Bad

What is Classification?

What is Classification?

Classification can have more than 2 categories

Spam Filtering

Input: x

Text of email, sender, IP,...

Output: y

Image Classification

Input: x Image pixels Output: y
Predicted object

Medical Diagnosis

Intuition of Classifiers

Intuition of Classifiers

Intuition of Classifiers

Problem with threshold classifiers

- How do we get list of positive/negative words?
- Words have different degrees of sentiment:
 - Great > good
 - How do we weigh different words?
- Single words are not enough:
 - Good → Positive
 - Not good → Negative

Addressed by learning a classifier

Addressed by more elaborate features

Linear Classifiers

Simple (linear) classifier

Will use training data to learn a weight for each word

Word	Weight
good	1.0
great	1.5
awesome	2.7
bad	-1.0
terrible	-2.1
aweful	-3.3
restaurant, the, we, where,	0.0

Input x:

Sushi was great, the food was awesome, but the service was terrible.

Score(x) = ?

Linear classifier: Output is weighted sum of input

Scoring a sentence

Decision boundary

Suppose only 2 words had non-zero weights...

Word	Weight	
awesome	1.0	Score(x) = $1.0 \text{ #awesome} - 1.5 \text{ #awful}$
awful	-1.5	Secretary 1.5 havesome 1.5 haviat

Decision boundary

Word	Weight	
awesome	1.0	Score(x) = $1.0 \text{ #awesome} - 1.5 \text{ #awful}$
awful	-1.5	Jedicin, 1.0 havesome 1.5 haviat

A boundary is to...separate

For linear classifiers:

- When 2 weights are non-zero
 - ⇒ line
- When 3 weights are non-zero
 - ⇒ plane
- When many weights are non-zero
 - ⇒ hyperplane

For more general classifiers

⇒ more complicated shapes

train\$Petal.Length

Training a classifier \rightarrow Learning weights

Machine learning system

Coefficients of a classifier

General notation

```
Output: y (-1,+1)
Inputs: x = (x[1],x[2],..., x[d])

d-dim vector

Notational conventions:
x[j] = j<sup>th</sup> input (scalar)
h<sub>j</sub>(x) = j<sup>th</sup> feature (scalar)
x<sub>i</sub> = input of i<sup>th</sup> data point (vector)
x<sub>i</sub>[j] = j<sup>th</sup> input of i<sup>th</sup> data point (scalar)
```


Simple hyperplane

```
Model: \hat{y}_i = sign(Score(\mathbf{x}_i))
```

Score(
$$\mathbf{x}_i$$
) = $\mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}_i[1] + ... + \mathbf{w}_d \mathbf{x}_i[d] = \mathbf{w}^T \mathbf{x}_i$

feature 1 = 1

feature $2 = x[1] \dots e.g.$, #awesome

feature $3 = x[2] \dots e.g.$, #awful

...

 $feature d+1 = x[d] \dots e.g., #ramen$

How did it arrive at this?

Decision boundary: Effect of changing coefficients

Input	Coefficient	Value	
	W ₀	0.0	
#awesome	W ₁	1.0	Score(x) = 1.0 #awesome - 1.5 #awful
#awful	W ₂	-1.5	

Decision boundary: Effect of changing coefficients

Input	Coefficient	Value	
	W ₀	1.0	
#awesome	W ₁	1.0	Score(x) = 1.0 + 1.0 #awesome - 3.0 #awful
#awful	W ₂	-3.0	The formal property of the second sec

More generic features... D-dimensional hyperplane

```
Model: \hat{y}_i = sign(Score(\mathbf{x}_i))

Score(\mathbf{x}_i) = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + ... + w_D h_D(\mathbf{x}_i)

= \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) = \mathbf{w}^T h(\mathbf{x}_i)
```

```
feature 1 = h_0(\mathbf{x}) ... e.g., 1
feature 2 = h_1(\mathbf{x}) ... e.g., \mathbf{x}[1] = \text{#awesome}
feature 3 = h_2(\mathbf{x}) ... e.g., \mathbf{x}[2] = \text{#awful}
or, \log(\mathbf{x}[7]) \mathbf{x}[2] = \log(\text{#bad}) x #awful
or, tf-idf("awful")
```

feature $D+1 = h_D(x)$... some other function of x[1],...,x[d]

ML model

Class probability

How confident is your prediction?

- Thus far, we've outputted a prediction +1 or -1
- But, how sure are you about the prediction?

An intuition on probability

Probability a review is positive is 0.7

x = review text	y = sentiment
All the sushi was delicious! Easily best sushi in Seattle.	+1
The sushi & everything else were awesome!	+1
My wife tried their ramen, it was pretty forgettable.	-1
The sushi was good, the service was OK	+1

I expect 70% of rows to have y = +1 (Exact number will vary for each specific dataset)

Degrees of belief

Not sure if reviews are positive or negative

Property	Two class (e.g., y is +1 or -1)	Multiple classes (e.g., y is dog, cat or bird)
Probabilities always between 0 & 1		
Probabilities sum up to 1		

Conditional probability

Probability a review with 3 "awesome" and 1 "awful" is positive is 0.9

x = review text	y = sentiment
All the sushi was delicious! Easily best sushi in Seattle.	+1
Sushi was awesome & everything else was awesome ! The service was awful , but overall awesome place!	+1
My wife tried their ramen, it was pretty forgettable.	-1
The sushi was good, the service was OK	+1
awesome awesome awful awesome	+1
S	
awesome awesome awful awesome	-1
Com.	
•••	
awesome awesome awful awesome	+1

I expect 90% of rows with reviews containing 3 "awesome" & 1 "awful" to have y = +1 (Exact number will vary for each specific dataset)

Interpreting conditional probabilities

How confident is your prediction?

Goal: Learn conditional probabilities from data

x[1] = #awesome	x[2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1
1		

Optimize **quality metric** on training data

Find best model Poby finding best w

Useful for predicting ŷ

Estimate class probabilities

- Estimating P(y|x) improves interpretability:
 - Predict $\hat{y} = +1$ and tell me how sure you are

Revisit the "Score"

So far, we focused on decision boundaries determined by the "score"

Relate -Score(x_i) to **P̂(y=+1|x,ŵ)**?

Interpreting "Score(x)"

Why not we use regression?

Link Function: Squeeze to [0, 1]

Logistic Regression Classifier

"Linear score with logistic link function"

Logistic function (sigmoid, logit)

$$sigmoid(Score) = \frac{1}{1 + e^{-Score}}$$

Score	-∞	-2	0.0	+2	+∞
sigmoid(Score)					

Logistic regression model

The two steps

Linear decision boundary ⇒ Logistic regression model

Effects of coefficients on logistic regression model

Linear decision boundary ⇒ Logistic regression model

Logistic regression model

Training a classifier → Learning coefficients

Find "best" classifier

$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-\hat{\mathbf{w}} \, h\bar{\mathbf{l}}(\mathbf{x})}} \qquad \qquad \underbrace{\uparrow}_{J(\theta)}^{\text{"non-convex"}} \qquad \underbrace{\downarrow}_{J(\theta)}$$

This nonlinear function now causes the cost to be non-convex

That means it can easily get stuck in many local minimas

Recall
$$\rightarrow$$
 RSS(w) = $\sum_{i=1}^{N} (y_i - h(x_i)^T w)^2$

which is the sum of cost of all samples for linear regression

Find "best" classifier

Logistic function have to be redefined so that it is convex

Let \hat{y} or $H_w(x)$ be the function of the decision boundary, the convex "version" of the logistic function is approximated as

$$J = Cost (H_w(x), y) = -y log(H_w(x)) - (1-y) log (1-H_w(x))$$

Next, compute the gradient of the cost function, which is part of the update procedure:

$$\mathbf{W}^{t+1} := \mathbf{W}^{t} - \sum (\mathbf{H}_{\mathbf{W}}(\mathbf{x}) - \mathbf{y}) \mathbf{x}$$

$$\Delta \mathbf{J}$$

Encoding categorical inputs

Numerical inputs:

- #awesome, age, salary, ...
- Intuitive when multiplied by coefficient, e.g. 1.5 #awesome

Categorical inputs:

Numeric value, but should be interpreted as category (98195 not about 9x larger than 10005)

Zipcode (10005, 98195....)

How do we multiply category by coefficient??? Must convert categorical inputs into numeric features

Categories to numerics

Multi-class Classification

Using 1-versus-All

Multiclass classification

Multiclass classification formulation

1-versus-all

Estimate $\hat{P}(y = \triangle | x)$ using 2-class model

+1 class: points with y_i= ▲
-1 class: points with y_i= ♥ OR ○

Train classifier: $\hat{\mathbb{Q}}(y=+1|\mathbf{x})$

Predict: $\hat{P}(y=\triangle | \mathbf{x}_i) = \hat{P}(y=+1|\mathbf{x}_i)$

1-versus-all

Simple multiclass classification using C 2-class models

Multiclass training

 $\hat{P}_c(y=+1|\mathbf{x})$ = estimate of 1 vs all model for each class

max_prob = 0; $\hat{y} = 0$ For c = 1,...,C: If $\hat{P}_c(y=+1|\mathbf{x}_i)$ ax_prob: $\hat{y} = c$ max_prob = $\hat{P}_c(y=+1|\mathbf{x}_i)$

Input: xi

Evaluating Classifiers

Classification error & Accuracy

Error measures fraction of mistakes made in classification:

(Best possible value: 0.0)

Accuracy measures the fraction of correct predictions:

(Best possible value: 1.0)

What's a good accuracy?

- For binary classification:
 - Half the time, you'll get it right! (on average)
 - \rightarrow accuracy = 0.5
- For k classes, accuracy = 1/k
 - 0.333 for 3 classes, 0.25 for 4 classes,...

At the very, very, very least, you should healthily beat random... Otherwise, it's (usually) pointless...

Is 90% accuracy good? Depends...

2010 data shows: "90% emails sent are spam!"

Predicting every email is spam gets you 90% accuracy!!!

Majority class prediction

Amazing performance when there is class imbalance (but silly approach)

- One class is more common than others
- Beats random (if you know the majority class)

Ask the hard questions...

- Is there class imbalance?
- How does it compare to a simple, baseline approach?
 - Random guessing
 - Majority class

– ...

- Most importantly: what accuracy does my application need?
 - What is good enough for my user's experience?
 - What is the impact of the mistakes we make?

Types of Errors

Predicted label

Types of Errors

Cost of different types of mistakes

Different (and high) in some applications!

	Spam filtering	Medical diagnosis
False negative	Annoying	Disease not treated
False positive	Email lost	Wasteful treatment

Confusion matrix - binary

Test set: 100 samples

Accuracy = ?

Confusion matrix - multiclass

Test set: 100 samples

Predicted label

	Healthy	Cold	Flu
Healthy	60	8	2
Cold	4	12	4
Flu	0	4 2	8

Accuracy = ?

Precision, Recall

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

Precision-Recall Curve

Precision-Recall Curve

Can be extended to multiclass case

⇒ You get separate P-R curves for each class!

Go To Exercises

Learning Curves

How much data do I need?

How much data needed for learning?

- The more the merrier ©
 - But data quality is most important factor
- Theoretical techniques sometimes can bound how much data is needed
 - Typically too loose for practical application
 - But provide guidance
- In practice:
 - More complex models require more data
 - Empirical analysis can provide guidance

Is there a limit? Yes, for most models

More complex models have less bias

Sentiment classifier using single words can do OK, but...

Never classify correctly: "The sushi was not good."

More complex model: consider pairs of words (bigrams)

Word	Weight
good	+1.5
not good	-2.1

Less bias ->
potentially more accurate,
needs more data to learn

Models with less bias

Try Kaggle

Breast Cancer Wisconsin (Diagnostic) Data Set

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

