(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081721 A2

(51) International Patent Classification7:

C12P 13/00

(21) International Application Number: PCT/EP02/02419

(22) International Filing Date: 6 March 2002 (06.03.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

101 16 518.8

3 April 2001 (03.04.2001) DE

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). HERMANN, Thomas; Zirkonstrasse 8, 33739 Bielefeld (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ. VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS USING STRAINS OF THE FAMILY ENTEROBACTE-RIACEAE THAT CONTAIN AN ATTENUATED DGSA GENE

(57) Abstract: The invention relates to a process for the production of L-amino acids, in particular L-threonine, in which the following the control of the

The contract of the property of the cells of the bacteria, and c) isotation of the L-amino acid.

Process for the Production of L-Amino Acids Using Strains of the Family Enterobacteriaceae that Contain an Attenuated dgsA Gene

Field of the Invention

5 The present invention relates to a process for the enzymatic production of L-amino acids, in particular L-threonine, using strains of the family Enterobacteriaceae in which the dgsA gene is attenuated.

Prior Art

- 10 L-amino acids, in particular L-threonine, are used in human medicine and in the pharmaceutical industry, in the foodstuffs industry, and most especially in animal nutrition.
- It is known to produce L-amino acids by fermentation of

 15 strains of Enterobacteriaceae, in particular Escherichia
 coli (E. coli) and Serratia marcescens. On account of
 their great importance efforts are constantly being made to
 improve processes for producing the latter. Process
 improvements may relate to fermentation technology
- 20 measures, such as for example stirring and provision of oxygen, or the composition of the nutrient media, such as for example the sugar concentration during the fermentation, or the working-up to the product form, for example by ion exchange chromatography, or the intrinsic performance properties of the microorganism itself.
- Methods comprising mutagenesis, selection and mutant choice are employed in order to improve the performance properties of these microorganisms. In this way strains are obtained that are resistant to antimetabolites, such as for example the threonine analogue α -amino- β -hydroxyvaleric acid (AHV) or are auxotrophic for regulatorily important metabolites,

and that produce L-amino acids such as for example L-threonine.

Methods of recombinant DNA technology have also been used for some years in order to improve strains of the family Enterobacteriaceae producing L-amino acids, by amplifying individual amino acid biosynthesis genes and investigating their effect on production.

Object of the Invention

The object of the invention is to provide new measures for 10 the improved enzymatic production of L-amino acids, in particular L-threonine.

Summary of the Invention

The present invention provides a process for the enzymatic production of L-amino acids, in particular L-threonine,
15 using microorganisms of the family Enterobacteriaceae that in particular already produce L-amino acids and in which the nucleotide sequence coding for the dgsA gene is attenuated.

Detailed Description of the Invention

- Where L-amino acids or amino acids are mentioned hereinafter, this is understood to mean one or more amino acids including their salts, selected from the group comprising L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and L-
- The term "attenuation" describes in this connection the reduction or switching off of the intracellular activity of one or more enzymes (proteins) in a microorganism that are coded by the corresponding DNA, by using for example a weak

L-threonine is particularly preferred.

3

promoter or a gene or allele that codes for a corresponding enzyme with a low activity and/or that inactivates the corresponding enzyme (protein) or gene, and optionally combining these measures.

5 By means of these attenuation measures the activity or concentration of the corresponding protein is generally reduced to 0 to 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild type protein, or the activity or concentration of the protein in the initial microorganism.

The process is characterized in that the following steps are carried out:

- a) fermentation of microorganism of the family
 Enterobacteriaceae in which the dgsA gene is
 attenuated,
 - b) enrichment of the corresponding L-amino acid in the medium or in the cells of the microorganisms of the family Enterobacteriaceae, and
- c) isolation of the desired L-amino acid, in which optionally constituents of the fermentation broth and/or the biomass in its entirety or parts thereof remain in the product.

The microorganisms that are the subject of the present invention can produce L-amino acids from glucose, sucrose,

- 25 lactose, fructose, maltose, molasses, optionally starch, optionally cellulose or from glycerol and ethanol. The microorganisms are members of the family Enterobacteriaceae selected from the genera Escherichia, Erwinia, Providencia and Serratia. The genera Escherichia and Serratia are
- 30 preferred. In the case of the genus Escherichia the species Escherichia coli may in particular be mentioned, and in the case of the genus Serratia the species Serratia marcescens may in particular be mentioned.

Suitable strains of the genus Escherichia, in particular those of the species Escherichia coli, that produce in particular L-threonine include for example:

Escherichia coli TF427

5 Escherichia coli H4578

Escherichia coli KY10935

Escherichia coli VNIIgenetika MG442

Escherichia coli VNIIgenetika M1

Escherichia coli VNIIgenetika 472T23

10 Escherichia coli BKIIM B-3996

Escherichia coli kat 13

Escherichia coli KCCM-10132

Suitable strains of the genus Serratia, in particular of the species Serratia marcescens, that produce L-threonine 15 include for example:

> Serratia marcescens HNr21 Serratia marcescens TLr156 Serratia marcescens T2000

Strains of the family of Enterobacteriaceae producing L-20 threonine preferably have, inter alia, one or more of the genetic or phenotype features selected from the following group: resistance to α -amino- β -hydroxyvaleric acid, resistance to thialysine, resistance to ethionine, resistance to α -methylserine, resistance to diaminosuccinic 25 acid, resistance to α -aminobutyric acid, resistance to borrelidin, resistance to rifampicin, resistance to valine analogues such as for example valine hydroxamate, resistance to purine analogues such as for example 6dimethylaminopurine, need for L-methionine, optionally 30 partial and compensatable need for L-isoleucine, need for meso-diaminopimelic acid, auxotrophy with regard to threonine-containing dipeptides, resistance to L-threonine, resistance to L-homoserine, resistance to L-lysine, resistance to L-methionine, resistance to L-glutamic acid,

PCT/EP02/02419 WO 02/081721 5

resistance to L-aspartate, resistance to L-leucine, resistance to L-phenylalanine, resistance to L-serine, resistance to L-cysteine, resistance to L-valine, sensitivity to fluoropyruvate, defective threonine 5 dehydrogenase, optionally ability to utilise sucrose, enhancement of the threonine operon, enhancement of homoserine dehydrogenase, I-aspartate kinase I, preferably of the feedback-resistant form, enhancement of homoserine kinase, enhancement of threonine synthase, enhancement of 10 aspartate kinase, optionally of the feedback-resistant form, enhancement of aspartate semialdehyde dehydrogenase, enhancement of phosphoenol pyruvate carboxylase, optionally of the feedback-resistant form, enhancement of phosphoenol pyruvate synthase, enhancement of transhydrogenase, 15 enhancement of the RhtB gene product, enhancement of the RhtC gene product, enhancement of the YfiK gene product, enhancement of a pyruvate carboxylase, and attenuation of

It has now been found that microorganisms of the family 20 Enterobacteriaceae after attenuation, in particular after switching off the dgsA gene, produce L-amino acids, in particular L-threonine, in an improved way.

The nucleotide sequences of the Escherichia coli genes belong to the prior art and may also be obtained from the 25 genome sequence of Escherichia coli published by Blattner et al. (Science 277, 1453 - 1462 (1997)).

The dgsA gene is described inter alia by the following data:

Designation: Regulator of the phosphotransferase system

30 EC-No.:

/(925)

acetic acid formation.

Hosono et al.; Bioscience, Biotechnology Reference: and Biochemistry 59, 256-261 (1995) Morris et al.; Journal of Bacteriology 163, 785-786

Accession No.: AE000255

Note: The dgsA gene is also designated as mlc

gene in the prior art.

Apart from the described dgsA gene, alleles of the gene may 5 be used that result from the degeneracy of the genetic code or from functionally neutral sense mutations, the activity of the protein not being substantially altered.

In order to achieve an attenuation the expression of the gene or the catalytic properties of the enzyme proteins may 10 for example be reduced or switched off. Optionally both measures may be combined.

The gene expression may be reduced by suitable culture conditions, by genetic alteration (mutation) of the signal structures of the gene expression, or also by antisense-RNA 15 techniques. Signal structures of the gene expression are for example repressor genes, activator genes, operators, promoters, attenuators, ribosome-binding sites, the start codon and terminators. The person skilled in the art may find relevant information in, inter alia, articles by 20 Jensen and Hammer (Biotechnology and Bioengineering 58: 191-195 (1998)), by Carrier and Keasling (Biotechnology Progress 15, 58-64 (1999), Franch and Gerdes (Current Opinion in Microbiology 3, 159-164 (2000)) and in known textbooks of genetics and molecular biology, such as for 25 example the textbook by Knippers ("Molekulare Genetik", 6th Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995) or that by Winnacker ("Gene and Klone", VCH Verlagsgesellschaft, Weinheim, Germany, 1990).

Mutations that lead to a change or reduction of the

30 catalytic properties of enzyme proteins are known from the
prior art. As examples there may be mentioned the work by
Qiu and Goodman (Journal of Biological Chemistry 272: 86118617 (1997)), Yano et al. (Proceedings of the National
Academy of Sciences, USA 95. 5511-5515 (1998), Wente and

Schachmann (Journal of Biological Chemistry 266, 20833-20839 (1991). Detailed information may be obtained from known textbooks on genetics and molecular biology, such as for example that by Hagemann ("Allgemeine Genetik", Gustav 5 Fischer Verlag, Stuttgart, 1986).

Suitable mutations include transitions, transversions, insertions and deletions. Depending on the action of the amino acid exchange on the enzyme activity, one speaks of missense mutations or nonsense mutations. Insertions or

- 10 deletions of at least one base pair in a gene lead to frame shift mutations, which in turn lead to the incorporation of false amino acids or the premature termination of a translation: If as a result of the mutation a stop codon is formed in the coding region, this also leads to a
- 15 premature termination of the translation. Deletions of several codons typically lead to a complete disruption of the enzyme activity. Details regarding the production of such mutations belong to the prior art and may be obtained from known textbooks on genetics and molecular biology,
- 20 such as for example the textbook by Knippers ("Molekulare Genetik", 6th Edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), that by Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Germany, 1990) or that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag,
- 25 Stuttgart, 1986).

Suitable mutations in the genes such as for example deletion mutations may be incorporated by gene and/or allele exchange in suitable strains.

A conventional method is the method of gene exchange by
30 means of a conditionally replicating pSC101 derivate
pMAK705 described by Hamilton et al. (Journal of
Bacteriology 171, 4617 - 4622 (1989)). Other methods
described in the prior art, such as for example that of
Martinez-Morales et al. (Journal of Bacteriology 181, 7143-

7148 (1999)) or that of Boyd et al. (Journal of Bacteriology 182, 842-847 (2000)) may likewise be used.

It is also possible to transfer mutations in the respective genes or mutations relating to the expression of the relevant genes, by conjugation or transduction into various strains.

Furthermore for the production of L-amino acids, in particular L-threonine, using strains of the family Enterobacteriaceae it may be advantageous in addition to the attenuation of the dgsA gene also to enhance one or more enzymes of the known threonine biosynthesis pathway or enzymes of anaplerotic metabolism or enzymes for the production of reduced nicotinamide-adenine-dinucleotide phosphate.

- 15 The term "enhancement" describes in this connection the raising of the intracellular activity of one or more enzymes or proteins in a microorganism that are coded by the corresponding DNA, by for example increasing the number of copies of the gene or genes, using a strong promoter or
- 20 a gene that codes for a corresponding enzyme or protein having a high activity, and optionally by combining these measures.

By means of the aforementioned enhancement measures, in particular overexpression, the activity or concentration of the corresponding protein is in general raised by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%, at most up to 1000% or 2000% referred to that of the wild type protein and/or the activity or concentration of the protein in the initial microorganism.

30 Thus, one or more of the genes selected from the following group may for example by simultaneously enhanced, in particular overexpressed:

the thrABC operon coding for aspartate kinase,

- homoserine dehydrogenase, homoserine kinase and threonine synthase (US-A-4,278,765),
- the pyc gene coding for pyruvate carboxylase (DE-A-19 831 609),
 - the pps gene coding for phosphoenol pyruvate synthase (Molecular and General Genetics 231:332 (1992)),
 - the ppc gene coding for phosphoenol pyruvate carboxylase (Gene 31:279-283 (1984)),
- 10 the genes pntA and pntB coding for transhydrogenase (European Journal of Biochemistry 158:647-653 (1986)),
 - the gene rhtB imparting homoserine resistance (EP-A-0 994 190),
- the mgo gene coding for malate:quinone oxidoreductase 15 (DE 100 348 33.5),
 - the gene rhtC imparting threonine resistance (EP-A-1 013 765), and
 - the thrE gene of Corynebacterium glutamicum coding for threonine export (DE 100 264 94.8).
- 20 The use of endogenous genes is in general preferred. The term "endogenous genes" or "endogenous nucleotide sequences" is understood to mean the genes or nucleotide sequences present in the population of a species.
- Furthermore for the production of L-amino acids, in
 25 particular L-threonine, it may be advantageous in addition
 to the attenuation of the dgsA gene also to attenuate, in
 particular to switch off or reduce the expression of one or
 more of the genes selected from the following group:

15

25

- the tdh gene coding for threonine dehydrogenase (Ravnikar and Somerville, Journal of Bacteriology 169, 4716-4721 (1987)),
- the mdh gene coding for malate dehydrogenase (E.C.
 1.1.1.37) (Vogel et al., Archives in Microbiology 149, 36-42 (1987)),
- the gene product of the open reading frame (orf) yjfA (Accession Number AAC77180 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA),
- the gene product of the open reading frame (orf) ytfP (Accession Number AAC77179 des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA),
 - the pckA gene coding for the enzyme phosphoenol pyruvate carboxykinase (Medina et al. (Journal of Bacteriology 172, 7151-7156 (1990)),
 - the poxB gene coding for pyruvate oxidase (Grabau and Cronan (Nucleic Acids Research 14 (13), 5449-5460 (1986)),
- the fruR gene coding for the fructose repressor:

 (Jahreis et al., Molecular and General Genetics 226,
 332-336 (1991) and Accession No.: AE000118), and
 - the aceA gene for isocitrate lyase (EC-No.: 4.1.3.1) kodierende (Matsuoko and McFadden; Journal of Bacteriology 170, 4528-4536 (1988) and Accession No.: AE000474)

Furthermore for the production of L-amino acids, in particular L-threonine, it may be advantageous in addition to the attenuation of the dgsA gene also to switch off undesirable secondary reactions (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of

Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

The microorganisms produced according to the invention may be cultivated in a batch process (batch cultivation), in a fed batch process (feed process) or in a repeated fed batch process (repetitive feed process). A summary of known cultivation methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren and periphere Einrichtungen (Vieweg Verlag, Brunswick/Wiesbaden, 1994)).

The culture medium to be used must appropriately satisfy the requirements of the respective strains. Descriptions of culture media of various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

As carbon sources, sugars and carbohydrates such as for
20 example glucose, sucrose, lactose, fructose, maltose,
molasses, starch and optionally cellulose, oils and fats
such as for example soya bean oil, sunflower oil, groundnut
oil and coconut oil, fatty acids such as for example
palmitic acid, stearic acid and linoleic acid, alcohols
25 such as for example glycerol and ethanol, and organic acids
such as for example acetic acid, may be used. These
substances may be used individually or as a mixture.

As nitrogen source, organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt

30 extract, maize starch water, soya bean flour and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate may be used. The nitrogen sources may be used individually or as a mixture.

As phosphorus source, phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts may be used. The culture medium must furthermore contain salts of metals, such as for example magnesium sulfate or iron sulfate, that are necessary for growth. Finally, essential growth promoters such as amino acids and vitamins may be used in addition to the aforementioned substances. Apart from these, suitable precursors may be added to the culture medium. The aforementioned starting substances may be added to the culture in the form of a single batch or may be metered in in an appropriate manner during the cultivation.

In order to regulate the pH of the culture basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water, or acidic compounds such as phosphoric acid or sulfuric acid are used as appropriate. In order to control foam formation antifoaming agents such as for example fatty acid polyglycol esters may be used. In order to maintain the stability of plasmids, suitable selectively acting substances, for example antibiotics, may be added to the medium. In order to maintain aerobic conditions, oxygen or oxygen-containing gas mixtures such as for example air are fed into the culture. The temperature of the culture is normally 25°C to 45°C, and preferably 30°C to 40°C. Cultivation is continued until a maximum amount of L-amino acids (or L-threonine) has been formed. This target is normally achieved within 10 hours to 160 hours.

The L-amino acids may be analyzed by anion exchange chromotography followed by ninhydrin derivation, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190), or by reversed phase HPLC, as described by Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174).

The process according to the invention can be used for the enzymatic production of L-amino acids, such as for example L-threonine, L-isoleucine, L-valine, L-methionine, L-homoserine and L-lysine, in particular L-threonine.

- 5 A pure culture of the Escherichia coli K-12 strain DH5α/pMAK705 was filed as DSM 13720 on 08 September 2000 at the German Collection for Microorganisms and Cell Cultures (DSMZ, Brunswick, Germany) according to the Budapest Convention.
- 10 The present invention is described in more detail hereinafter with the aid of examples of implementation.

The isolation of plasmid DNA from Escherichia coli as well as all techniques for the restriction, Klenow treatment and alkaline phosphatase treatment are carried out according to

- 15 Sambrook et al. (Molecular Cloning A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press). The transformation of Escherichia coli is, unless otherwise described, carried out according to Chung et al. (Proceedings of the National Academy of Sciences of the
- 20 United States of America, USA (1989) 86: 2172-2175).

The incubation temperature in the production of strains and transformants is 37°C. In the gene exchange process according to Hamilton et al., temperatures of 30°C and 44°C are used.

25 Example 1

Construction of the deletion mutation of the dgsA gene

Parts of the gene regions lying upstream and downstream of the dgsA gene and parts of the 5`-region and 3`-region of the dgsA gene are amplified from Escherichia coli K12 using

30 the polymerase chain reaction (PCR) as well as synthetic oligonucleotides. Starting from the nucleotide sequence of the dgsA gene and sequences in E. coli K12 MG1655 (SEQ ID

No. 1, Accession Number AE000255) lying upstream and downstream, the following PCR primers are synthesised (MWG Biotech, Ebersberg, Germany):

- dgsA'5'-1: 5' CGAATGTAACGCTGGCTGAA 3' (SEQ ID No. 3)
- 5 dgsA'5'-2: 5' TCCAGCAATGGCAAGTCATC 3' (SEQ ID No. 4)
 - dgsA'3'-1: 5' CAGCACATCAGCGTTGAGAG 3' (SEQ ID No. 5)
 - dgsA'3'-2: 5' GATCGCCTGAGCTGTTAGCA 3' (SEQ ID No. 6)

The chromosomal E. coli K12 MG1655 DNA used for the PCR is isolated according to the manufacturer's instructions using 10 "Qiagen Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A ca. 850 bp large DNA fragment from the 5'-region of the dgsA gene region (designated dgsA1) and a ca. 700 bp large DNA fragment from the 3'-region of the dgsA gene region (designated dgsA2) can be amplified with the specific

- 15 primers under standard PCR conditions (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) with taq-DNA-polymerase (Gibco-BRL, Eggenstein, Germany). The PCR products are ligated according to the manufacturer's instructions in each case
- 20 with the vector pCR2.1TOPO (TOPO TA Cloning Kit, Invitrogen, Groningen, Netherlands) and transformed in the E. coli strain TOP10F'. The selection of plasmid-carrying cells is carried out on LB agar to which 50 $\mu g/ml$ of ampicillin has been added. After the plasmid DNA isolation
- 25 the vector pCR2.1TOPOdgsA2 is cleaved with the restriction enzymes Ecl136II and XbaI, and the dgsA2 fragment after separation in 0.8% agarose gel is isolated using the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany). After the plasmid DNA isolation the vector pCR2.1TOPOdgsA1
- 30 is cleaved with the enzymes EcoRV and XbaI and ligated with the isolated dgsA2 fragment. The E. coli strain DH5 α is transformed with the ligation batch and plasmid-carrying cells are selected on LB agar to which 50 ug/ml of

ampicillin has been added. After the plasmid DNA isolation, those plasmids in which the mutagenic DNA sequence shown in SEQ ID No. 7 is present in cloned form are detected by control cleavage with the enzymes HindIII 5 and XbaI. One of the plasmids is designated pCR2.1TOPO∆dgsA.

Example 2

Construction of the exchange vector pMAK705∆dgsA

The dgsA allele described in Example 1 is isolated from the 10 vector pCR2.1TOPO Δ dgsA after restriction with the enzymes HindIII and XbaI and separation in 0.8% agarose gel, and is ligated with the plasmid pMAK705 (Hamilton et al. (1989) Journal of Bacteriology 171, 4617 - 4622), that had been digested with the enzymes HindIII and XbaI. The ligation 15 batch is transformed in $DH5\alpha$ and plasmid-carrying cells are selected on LB agar to which 20 µg/ml of chloramphenicol have been added. The successful cloning is detected after plasmid DNA isolation and cleavage with the enzymes HindIII and XbaI. The resultant exchange vector pMAK705∆dgsA (= 20 pMAK705deltadgsA) is shown in Fig. 1.

Example 3

Site-specific mutagenesis of the dgsA gene in the E. coli strain MG442

The E. coli strain MG442 producing L-threonine is described 25 in patent specification US-A- 4,278,765 and is filed as CMIM B-1628 at the Russian National Collection for Industrial Microorganisms (VKPM, Moscow, Russia).

For the exchange of the chromosomal dgsA gene by the plasmid-coded deletion construct, MG442 is transformed 30 with the plasmid pMAK705∆dgsA. The gene exchange is carried out by the selection process described by Hamilton et al. (1989) Journal of Bacteriology 171, 4617 - 4622) and

PCT/EP02/02419 WO 02/081721 16

is verified by standard PCR methods (Innis et al. (1990) PCR Protocols. A guide to methods and applications, Academic Press) with the following oligonucleotide primers:

dgsA'5'-1: 5' - CGAATGTAACGCTGGCTGAA - 3' (SEQ ID No. 3)

5 dgsA'3'-2: 5' - GATCGCCTGAGCTGTTAGCA - 3' (SEQ ID No. 6)

After the exchange the form of the $\Delta dgsA$ allele shown in SEQ ID No. 8 is present in MG442. The strain obtained is designated MG442∆dgsA.

Example 4

- 10 Production of L-threonine using the strain MG442∆dgsA
 - MG442∆dgsA is cultivated on minimal medium having the following composition: 3.5 g/l $Na_2HPO_4 \cdot 2H_2O$, 1.5 g/l KH_2PO_4 , 1 g/l NH₄Cl, 0.1 g/l MgSO₄·7H₂O, 2 g/l glucose and 20 g/l agar. The formation of L-threonine is checked in batch
- 15 cultures of 10 ml that are contained in 100 ml Erlenmeyer flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract, 10 g/l $(NH_4)_2SO_4$, 1 g/1 KH_2PO_4 , 0.5 g/1 $MgSO_4 \cdot 7H_2O$, 15 g/1 $CaCO_3$, 20 g/l glucose are inoculated and incubated for 16 hours at
- 20 37°C and 180 rpm in an ESR incubator from Kühner AG (Birsfelden, Switzerland). 250 µl of this preculture are reinoculated in 10 ml of production medium (25 g/l $(NH_4)_2SO_4$, 2 g/l KH_2PO_4 , 1 g/l $MgSO_4 \cdot 7H_2O$, 0.03 g/l $FeSO_4 \cdot 7H_2O$, $0.018 \text{ g/1 MnSO}_4\cdot 1\text{H}_2\text{O}$, 30 g/1 CaCO_3 and 20 g/1 glucose) and
- 25 incubated for 48 hours at 37°C. After incubation the optical density (OD) of the culture suspension is measured with an LP2W photometer from the Dr. Lange company (Dusseldorf, Germany) at a measurement wavelength of 660 nm.
- 30 The concentration of formed L-threonine is then determined in the sterile-filtered culture supernatant using an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany)

by ion exchange chromatography and post-column reaction with ninhydrin detection.

The result of the test is given in Table 1.

Table 1

Strain	OD (660 nm)	L- threonine
MG442	6.0	1.5
MG442∆dgsA	6.5	1.8

5

Brief Description of the Figure:

• Fig. 1: pMAK705∆dgsA (= pMAK705deltadgsA)

Length data are given as approximate values. The abbreviations and acronyms used have the following 10 meanings:

• cat: chloramphenicol resistance gene

• rep-ts: temperature-sensitive replication region of the plasmid pSC101

• dgsA1: part of the 5`-region of the dgsA gene and of the upstream-lying region

• dgsA2: part of the 3`-region of the dgsA gene and of the downstream-lying region

The abbreviations for the restriction enzymes have the following meanings:

20 • BamHI: restriction endonuclease from Bacillus amyloliquefaciens

- BglII: restriction endonuclease from Bacillus ... globigii
- restriction endonuclease from Caryphanon latum ClaI:
- EcoRI: restriction endonuclease from Escherichia coli
- 5 EcoRV: restriction endonuclease from Escherichia coli
 - HindIII: restriction endonuclease from Haemophilus influenzae
 - KpnI: restriction endonuclease from Klebsiella pneumoniae
- 10 PstI: restriction endonuclease from Providencia stuartii
 - PvuI: restriction endonuclease from Proteus vulgaris
 - SacI: restriction endonuclease from Streptomyces achromogenes
- 15 SalI: restriction endonuclease from Streptomyces albus
 - SmaI: restriction endonuclease from Serratia marcescens
- SphI: restriction endonuclease from Streptomyces 20 phaeochromogenes
 - restriction endonuclease from Sphaerotilus SspI: species
 - XbaI: restriction endonuclease from Xanthomonas badrii
- 25 XhoI: restriction endonuclease from Xanthomonas holcicola

PCT/EP02/02419 WO 02/081721 19

What is Claimed is:

15

30

1. Process for the production of L-amino acids, in particular L-threonine, wherin the following steps are carried out:

- 5 a) fermentation of the microorganisms of the family Enterobacteriaceae producing the desired L-amino acid, in which the dgsA gene or nucleotide sequences coding therefor are attenuated, in particular are switched off,
- 10 b) enrichment of the L-amino acid in the medium or in the cells of the microorganisms, and
 - C) isolation of the L-amino acid, in which optionally constituents of the fermentation broth and/or the biomass in its entirety or portions thereof remain in the product.
 - 2. Process according to claim 1, wherein microorganisms are used in which in addition further genes of the biosynthesis pathway of the desired L-amino acid are enhanced.
- 20 3. Process according to claim 1, wherein microorganisms are used in which the metabolic pathways that reduce the formation of the desired L-amino acid are at least partially switched off.
- Process according to claim 1, wherein the expression of 25 the polynucleotide(s) that codes/code for the dgsA gene is attenuated, in particular is switched off.
 - 5. Process according to claim 1, wherein the regulatory and/or catalytic properties of the polypeptide (enzyme protein) for which the polynucleotide dgsA codes are reduced.

- 6. Process according to claim 1, wherein for the production of L-amino acids microorganisms of the family Enterobacteriaceae are fermented in which at the same time one or more of the genes selected from the following group is enhanced, in particular overexpressed:
 - 6.1 the thrABC operon coding for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase,
- 10 6.2 the pyc gene coding for pyruvate carboxylase,
 - 6.3 the pps gene coding for phosphoenol pyruvate synthase,
 - 6.4 the ppc gene coding for phosphoenol pyruvate carboxylase,
- 15 6.5 the genes pntA and pntB coding for transhydrogenase,

5

25

- 6.6 the gene rhtB imparting homoserine resistance,
- 6.7 the mgo gene coding for malate:quinone oxidoreductase,
- 20 6.8 the gene rhtC imparting threonine resistance, and
 - 6.9 the thrE gene coding for threonine export.
 - 7. Process according to claim 1, wherein for the production of L-amino acids microorganisms of the family Enterobacteriaceae are fermented in which at the same time one or more of the genes selected from the following group is attenuated, in particular switched off, or the expression is reduced:
 - 7.1 the tdh gene coding for threonine dehydrogenase,
 - 7.2 the mdh gene coding for malate dehydrogenase,

PCT/EP02/02419

WO 02/081721

- 7.3 the gene product of the open reading frame (orf) yjfA,
- 7.4 the gene product of the open reading frame (orf) ytfP,
- 5 7.5 the pckA gene coding for phosphoenol pyruvate carboxykinase,
 - 7.6 the poxB gene coding for pyruvate oxidase,
 - 7.7 the fruR gene coding for the fructose repressor,
 - 7.8 the aceA gene coding for isocitrate lyase.

Fig. 1:

SEQUENCE LISTING

5	<110>	Degussa AG	
	<120>	Process for the production of L-amino acids using strains of family Enterobacteriaceae containing an attenuated dgsA-Gen	the
10	<130>	020003 BT	
10	<160>	8	
	<170>	PatentIn version 3.1	
15	<210> <211> <212> <213>	1 2306 DNA Escherichia coli	
20	<220> <221> <222> <223>	CDS (485)(1705) dgsA gene	
25	<400> cgaatg	1 taac getggetgaa etggegaaag aaceetttgt ettttttgat eegeaegteg	60
	ggacag	ggct gtatgacgat attctcgggc tgatgcgacg ttaccatttg acgcccgtca	120
30	teacte	agga ggtgggcgag gcaatgacca tcatcggtct ggtttccgcc ggtctgggtg	180
	tttcaa	tttt geetgegtea tttaaaegtg tteageteaa egaaatgege tgggtgeega	240
35	ttgctg	aaga ggatgcggtt tetgaaatgt ggttggtetg geegaaacat catgaacaaa	300
33	gtccgg	ctgc gcgtaacttt cgtattcatc tgctgaatgc tctcaggtga gggaaatttc	360
	agcgaa	aaag cccgaaaaat gtgctgttaa tcacatgcct aagtaaaaat ttgacgacac	420
40	gtattg	aagt getteaceat ageetacaga ttatttegga gegegaaaat atagggagta	480
45	tgcg gi Me 1	tg gtt gct gaa aac cag cct ggg cac att gat caa ata aag cag et Val Ala Glu Asn Gln Pro Gly His Ile Asp Gln Ile Lys Gln 5 10 15	529
	acc aad Thr Asi	c gcg ggc gcg gtt tat cgc ctg att gat cag ctt ggt cca gtc n Ala Gly Ala Val Tyr Arg Leu Ile Asp Gln Leu Gly Pro Val 20 25 30	577
50	tcg cgt Ser Arg	t atc gat ctt tcc cgt ctg gcg caa ctg gct cct gcc agt atc g Ile Asp Leu Ser Arg Leu Ala Gln Leu Ala Pro Ala Ser Ile 35 40 45	625
55	act aas Thr Lys	a att gtc cgt gag atg ctc gaa gca cac ctg gtg caa gag ctg s Ile Val Arg Glu Met Leu Glu Ala His Leu Val Gln Glu Leu 50 55 60	673
60	gaa ato Glu Ile 65	c aaa gaa gcg ggg aac cgt ggc cgt ccg gcg gtg ggg ctg gtg e Lys Glu Ala Gly Asn Arg Gly Arg Pro Ala Val Gly Leu Val 70 75	721
65	gtt gaa Val Glu 80	a act gaa gcc tgg cac tat ctt tct ctg cgc att agt cgc ggg u Thr Glu Ala Trp His Tyr Leu Ser Leu Arg Ile Ser Arg Gly 85 90	769

	gag Glu	att Ile	ttc Phe	ctt Leu	gct Ala 100	ctg Leu	cgc Arg	gat Asp	ctg Leu	agc Ser 105	agc Ser	aaa Lys	ctg Leu	gtg Val	gtg Val 110	gaa Glu	817
5	gag Glu	tcg Ser	cag Gln	gaa Glu 115	ctg Leu	gcg Ala	tta Leu	aaa Lys	gat Asp 120	gac Asp	ttg Leu	cca Pro	ttg Leu	ctg Leu 125	gat Asp	cgt Arg	865
10	att Ile	att Ile	tcc Ser 130	cat His	atc Ile	gat Asp	cag Gln	ttt Phe 135	ttt Phe	atc Ile	cgc Arg	cac His	cag Gln 140	aaa Lys	aaa Lys	ctt Leu	913
15	Glu	Arg 145	Leu	Thr	Ser	Ile	Ala 150	Ile	Thr	Leu	Pro	Gly 155	att Ile	Ile	Asp	Thr	961
20	gaa Glu 160	aat Asn	ggt Gly	att Ile	gta Val	cat His 165	cgc Arg	atg Met	ccg Pro	ttc Phe	tac Tyr 170	gag Glu	gat Asp	gta Val	aaa Lys	gag Glu 175	1009
	atg Met	ccg Pro	ctc Leu	ggc •	gag Glu 180	gcg Ala	ctg Leu	gag Glu	cag Gln	cat His 185	acc Thr	ggc Gly	gtt Val	ccg Pro	gtt Val 190	tat Tyr	1057
25	att Ile	cag Gln	cat His	gat Asp 195	atc Ile	agc Ser	gca Ala	tgg Trp	acg Thr 200	atg Met	gca Ala	gag Glu	gcc Ala	ttg Leu 205	ttt Phe	ggt Gly	1105
30	gcc Ala	tca Ser	cgc Arg 210	GJÀ āāā	gcg Ala	cgc Arg	gat Asp	gtg Val 215	att Ile	cag Gln	gtg Val	gtt Val	atc Ile 220	gat Asp	cac His	aac Asn	1153
35	gtg Val	ggg Gly 225	gcg Ala	ggc Gly	gtc Val	att Ile	acc Thr 230	gat Asp	ggt Gly	cat His	ctg Leu	cta Leu 235	cac His	gca Ala	ggc	agc Ser	1201
40	Ser 240	Ser	Leu	Val	Glu	Ile 245	Gly	His	Thr	Gln	Val 250	Asp	ccg Pro	Tyr	Gly	Lys 255	1249
	Arg	tgt Cys	tat Tyr	tgc Cys	ggg Gly 260	aat Asn	cac His	ggc Gly	tgc Cys	ctc Leu 265	gaa Glu	acc Thr	atc Ile	gcc Ala	agc Ser 270	gtg Val	1297
45	gac Asp	agt Ser	att Ile	ctt Leu 275	gag Glu	ctg Leu	Ala	Gln	Leu	cgt Arg	Leu	Asn	caa Gln	tcc Ser 285	atg Met	agc Ser	1345
50	tcg Ser	atg Met	tta Leu 290	cat His	gga Gly	caa Gln	ccg Pro	tta Leu 295	acc Thr	gtg Val	gac Asp	tca Ser	ttg Leu 300	tgt Cys	cag Gln	gcg Ala	1393
55	gca Ala	ttg Leu 305	cgc Arg	ggc ggc	gat Asp	Leu	ctg Leu 310	gca Ala	aaa Lys	gac Asp	atc Ile	att Ile 315	acc Thr	Gly ggg	gtg Val	, Gly ggc	1441
60													tta Leu				1489
- •													gca Ala				1537

	ttc ccg gtc atc tca gac agc atc cgt cag cag gcc ctt cct gcg tat Phe Pro Val Ile Ser Asp Ser Ile Arg Gln Gln Ala Leu Pro Ala Tyr 355 360 365	1585
5	agt cag cac atc agc gtt gag agt act cag ttt tct aac cag ggc acg Ser Gln His Ile Ser Val Glu Ser Thr Gln Phe Ser Asn Gln Gly Thr 370 380	1633
10	atg gca ggc gct gca ctg gta aaa gac gcg atg tat aac ggt tct ttg Met Ala Gly Ala Ala Leu Val Lys Asp Ala Met Tyr Asn Gly Ser Leu 385 390 395	1681
15	ttg att cgt ctg ttg cag ggt taa cattttttaa ctgttctacc aaaatttgcg Leu Ile Arg Leu Leu Gln Gly 400 405	1735
	ctatctcaat ttgggccagg aaagcataac ttagactttc aaggttaatt attttcctgg	1795
20	tttatatttg tgaagcataa cggtggagtt agtgatgctg aagcgtttct ttattaccgg	1855
20	tacagacact tetgtaggga aaacggtggt tteeegggca ttgetacaag egttageete	1915
	ccagggaaaa acggttgcgg gatataaacc cgtagcgaag gggagcaaag agacacccga	1975
25	agggetgegt aataaagatg ecetggtgtt geagagtgtt teaaceateg aactgeetta	2035
	tgaagcagtt aatcctatcg cgttaagcga agaagaaagt agcgtggcgc acagttgccc	2095
20	aatcaattac accetcattt caaacggeet ggeaaacetg accgaaaaag tegatcatgt	2155
30	cgtggtagaa gggactggcg gctggcgcag tctgatgaat gatttgcgtc cactctctga	2215
•	atgggtagtg caggaacaac tgccggtgtt gatggttgtc ggtattcagg aaggttgcat	2275
35	taaccatgca ctgctaacag ctcaggcgat c	2306
10	<210> 2 <211> 406 <212> PRT <213> Escherichia coli	
45	<pre><400> 2 Met Ala Glu Asn Gln Pro Gly His Ile Asp Gln Ile Lys Gln Thr 1</pre>	
	Asn Ala Gly Ala Val Tyr Arg Leu Ile Asp Gln Leu Gly Pro Val Ser 20 25 30	
50	Arg Ile Asp Leu Ser Arg Leu Ala Gln Leu Ala Pro Ala Ser Ile Thr 35 40 45	
55	Lys Ile Val Arg Glu Met Leu Glu Ala His Leu Val Gln Glu Leu Glu 50 60	
	Ile Lys Glu Ala Gly Asn Arg Gly Arg Pro Ala Val Gly Leu Val Val 65 70 75 80	
50	Glu Thr Glu Ala Trp His Tyr Leu Ser Leu Arg Ile Ser Arg Gly Glu 85 90 95	
	Ile Phe Leu Ala Leu Arg Asp Leu Ser Ser Lys Leu Val Val Glu 100 105 110	
-	Ser Sin Dia 194 Tin Teu Trouton aut Des Des ter tas bre Ass Dis	

115 120 125 Ile Ser His Ile Asp Gln Phe Phe Ile Arg His Gln Lys Lys Leu Glu Arg Leu Thr Ser Ile Ala Ile Thr Leu Pro Gly Ile Ile Asp Thr Glu 150 Asn Gly Ile Val His Arg Met Pro Phe Tyr Glu Asp Val Lys Glu Met Pro Leu Gly Glu Ala Leu Glu Gln His Thr Gly Val Pro Val Tyr Ile 15 Gln His Asp Ile Ser Ala Trp Thr Met Ala Glu Ala Leu Phe Gly Ala Ser Arg Gly Ala Arg Asp Val Ile Gln Val Val Ile Asp His Asn Val 20 Gly Ala Gly Val Ile Thr Asp Gly His Leu Leu His Ala Gly Ser Ser 230 235 Ser Leu Val Glu Ile Gly His Thr Gln Val Asp Pro Tyr Gly Lys Arg 250 Cys Tyr Cys Gly Asn His Gly Cys Leu Glu Thr Ile Ala Ser Val Asp 30 Ser Ile Leu Glu Leu Ala Gln Leu Arg Leu Asn Gln Ser Met Ser Ser 280 Met Leu His Gly Gln Pro Leu Thr Val Asp Ser Leu Cys Gln Ala Ala 35 Leu Arg Gly Asp Leu Leu Ala Lys Asp Ile Ile Thr Gly Val Gly Ala His Val Gly Arg Ile Leu Ala Ile Met Val Asn Leu Phe Asn Pro Gln 330 Lys Ile Leu Ile Gly Ser Pro Leu Ser Lys Ala Ala Asp Ile Leu Phe 45 Pro Val Ile Ser Asp Ser Ile Arg Gln Gln Ala Leu Pro Ala Tyr Ser Gln His Ile Ser Val Glu Ser Thr Gln Phe Ser Asn Gln Gly Thr Met 375 50 Ala Gly Ala Ala Leu Val Lys Asp Ala Met Tyr Asn Gly Ser Leu Leu Ile Arg Leu Leu Gln Gly 405 <210> 3 <211> 20 <212> DNA 60 <213> Artificial sequence <220> <221> Primer <222> (1)..(20)

ಕರು ಜಯಾಗಿ ಕಿಳಿಕ ಗಿರ್ಗಾ

```
<400> 3
    cgaatgtaac gctggctgaa
                                                                            20
    <210> 4
<211> 20
    <212> DNA
    <213> Artificial sequence
10
    <220>
    <221> Primer
    <222> (1)..(20)
    <223> dgsA `5`-2
15
    <400> 4
    tccagcaatg gcaagtcatc
                                                                           20
    <210> 5
20 <211> 20
    <212> DNA
    <213> Artificial sequence
    <220>
25 <221> Primer
    <222> (1)..(20)
<223> dgsA `3`-1
    <400> 5
30 cagcacatca gcgttgagag
                                                                            20
    <210> 6
    <211> 20
    <212> DNA
35 <213> Artificial sequence
    <220>
    <221> Primer
<222> (1)..(20)
40 <223> dgsA `3`-2
    <400> 6
    gatcgcctga gctgttagca
                                                                            20
45 <210> 7
    <211> 1756
    <212> DNA
    <213> Escherichia coli
50 <220>
    <221> misc_feature
    <222> (1)..(1756)
    <223>
55 <220>
    <221> misc_feature
    <222> (1)..(60)
    <223> Technical DNA/ remainder polylinker sequence
60 <220>
    <221> misc_feature
    <222> (61)..(921)
<223> Part of the upstream-lying region and part of the 5'-region
          of the dgsA gene
```

5	<220> <221> <222> <223>	misc_feat (922)(9 Technical	86)	remainder g	oolylinker :	sequence		
10	<220> <221> <222> <223>	misc_feat (987)(1 Part of t lying reg	1704) :he 3'-:	region of t	ihe dgsA ger	ne and part	of the do	wnstream-
15	<220> <221> <222> <223>	misc_feat (1705)(Technical	(1756)	remainder p	oolylinker s	sequence		
•	<400>	7 gtac cgago	ctcgga	tccactagta	acggccgcca	gtgtgctgga	attegecet	t 60
20	cgaatg	taac gctgg	gctgaa	ctggcgaaag	aaccctttgt	cttttttgat	ccgcacgto	g 120
	ggacag	ggct gtate	gacgat (attctcgggc	tgatgcgacg	ttaccatttg	acgcccgtc	a 180
25	tcactc	agga ggtgg	gcgag (gcaatgacca	tcatcggtct	ggtttccgcc	ggtctgggt	g 240
25	tttcaa	tttt gcctg	gcgtca.	tttaaacgtg	ttcagctcaa	cgaaatgcgc	tgggtgccg	a 300
	ttgctg	aaga ggatg	geggtt	tctgaaatgt	ggttggtctg	gccgaaacat	catgaacaa	a _. 360
30	gtccgg	ctgc gcgta	acttt	cgtattcatc	tgctgaatgc	tctcaggtga	gggaaattt	c 420
•	agcgaa	aaag cccga	aaaat	gtgctgttaa	tcacatgcct	aagtaaaaat	ttgacgaca	c 480
35	gtattg	aagt gctto	accat a	agcctacaga	ttatttcgga	gcgcgaaaat	atagggagt	a 540
22	tgcggt	ggtt gctga	aaacc	agcctgggca	cattgatcaa	ataaagcaga	ccaacgcgg	g 600
	cgcggt	ttat cgcct	gattg	atcagcttgg	tecagteteg	cgtatcgatc	tttcccgtc	t 660
40	ggcgca	actg gctco	tgcca	gtatcactaa	aattgtccgt	gagatgctcg	aagcacacc	t 720
	ggtgca	agag ctgga	aatca	aagaagcggg	gaaccgtggc	cgtccggcgg	tggggctgg	t 780
45	ggttga	aact gaago	ctggc a	actatctttc	tctgcgcatt	agtcgcgggg	agattttcc	t 840
43	tgctct	gcgc gatct	gagca	gcaaactggt	ggtggaagag	tcgcaggaac	tggcgttaa	a 900
	agatga	cttg ccatt	gctgg a	aaagggcgaa	ttctgcagat	ctcggatcca	ctagtaacg	g 960
50	ccgcca	gtgt gctgg	gaatte (gcccttcagc	acatcagcgt	tgagagtact	cagttttct	a 1020
	accagg	gcac gatgg	cagge	gctgcactgg	taaaagacgc	gatgtataac	ggttctttg	t 1080
55	tgattc	gtct gttgc	agggt (taacattttt	taactgttct	accaaaattt	gcgctatct	c 1140
J J	aatttg	ggcc aggaa	agcat a	aácttagact	ttcaaggtta	attattttcc	tggtttata	1200
	ttgtga	agca taacg	gtgga (gttagtgatg	ctgaagcgtt	tctttattac	cggtacaga	c 1260
60	acttct	gtag ggaaa	acggt (ggtttcccgc	gcattgctac	aagcgttagc	ctcccaggg	a 1320
	aaaacg	gttg cggga	itataa a	acccgtagcg	aaggggagca	aagagacacc	cgaagggct	g 1380
63	cgtaata	aaag atgco	ctggt o	gttgcagagt	gtttcaacca	tegaactgcc	ttatgaagc	a 1440

WO 02/081721 PCT/EP02/02419 7/8

	gttaatecta tegegttaag egaagaagaa agtagegtgg egeacagttg eecaateaat	1500
	tacaccctca tttcaaacgg cctggcaaac ctgaccgaaa aagtcgatca tgtcgtggta	1560
5	gaagggactg geggetggeg cagtetgatg aatgatttge gtecaetete tgaatgggta	1620
	gtgcaggaac aactgccggt gttgatggtt gtcggtattc aggaaggttg cattaaccat	1680
10	gcactgctaa cagctcaggc gatcaagggc gaattctgca gatatccatc acactggcgg	1740
	ccgctcgagc atgcat	1756
15	<210> 8 <211> 559 <212> DNA <213> Escherichia coli	
20	<220> <221> misc_feature <222> (1)(559) <223>	
25	<220> <221> misc_feature <222> (1)(3) <223> Start codon of the delta dgsA allele	
30	<pre><220> <221> misc_feature <222> (1)(377) <223> 5'-region of the delta dgsA allele</pre>	
35	<pre><220> <221> misc_feature <222> (378)(442) <223> Technical DNA/ remainder polylinker sequence</pre>	
40	<pre><220> <221> misc_feature <222> (443)(556) <223> 3'-region of the delta dgsA allele</pre>	
45	<pre><220> <221> misc_feature <222> (557)(559) <223> Stop codon of the delta dgsA allele</pre>	
50	<400> 8 gtggttgctg aaaaccagcc tgggcacatt gatcaaataa agcagaccaa cgcgggcgcg	60
	gtttatcgcc tgattgatca gcttggtcca gtctcgcgta tcgatctttc ccgtctggcg	120
	caactggctc ctgccagtat cactaaaatt gtccgtgaga tgctcgaagc acacctggtg	180
55	caagagctgg aaatcaaaga agcggggaac cgtggccgtc cggcggtggg gctggtggtt	240
	gaaactgaag cctggcacta tctttctctg cgcattagtc gcggggagat tttccttgct	300
60	ctgcgcgatc tgagcagcaa actggtggtg gaagagtcgc aggaactggc gttaaaagat	360
	gacttgccat tgctggaaag ggcgaattct gcagatctcg gatccactag taacggccgc	420
	cagtgtgctg gaattcgccc ttcagcacat cagcgttgag agtactcagt tttctaacca	480
65	gggcacgatg gcaggcgctg cactggtaaa agacgcgatg tataacggtt ctttgttgat	540

WO 02/081721 PCT/EP02/02419 8/8

tcgtctgttg cagggttaa 559

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISM FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2 33790 Halle

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

L IDENTIFICATION OF THE MICROORGANISM	
Identification reference given by the DEPOSITOR: DH5\alpha/pMAK705	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13720
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DE	SIGNATION
The microorganism identified under L above was accompanied by:	
(X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).	
III. RECEIPT AND ACCEPTANCE	
This International Depositary Authority accepts the microorganism identified (Date of the original deposit).	l under I. above, which was received by it on 2000-09-08
IV. RECEIPT OF REQUEST FOR CONVERSION	
The microorganism identified under I above was received by this Internation and a request to convert the original deposit to a deposit under the Budapes for conversion).	nal Depositary Authority on (date of original deposit) t Treaty was received by it on (date of receipt of request
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Depute 2000-09-12

Form DSMZ-BP/4 (sole page) 0196

Where Rule 5.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2 33790 Halle

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR	II. IDENTIFICATION OF THE MICROORGANISM
Name: Degussa-Hüls AG Kantstr. 2 Address: 33790 Halle	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13720 Date of the deposit or the transfer!: 2000-09-08
III. VIABILITY STATEMENT	
The viability of the microorganism identified under II above was test On that date, the said microorganism was (X) ³ viable () ³ no longer viable	ted on 2000-09-08 ² .
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS	BEEN PERFORMED'
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN Gmb Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2000-09-12

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

Mark with a cross the applicable box.

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Fill in if the information has been requested and if the regults of the test were augustive.

(19) World Intellectual Property Organization International Bureau

| 1881 | 1881 | 18 1888 | 18 1888 | 18 18 | 18 18 | 18 18 | 18 18 | 18 18 | 18 18 | 18 18 | 18 18 | 18 18 | 18

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081721 A3

(51) International Patent Classification⁷: 13/04 // (C12P 13/08, C12R 1:19)

C12P 13/08,

(21) International Application Number: PCT/EP02/02419

(22) International Filing Date: 6 March 2002 (06.03.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

101 16 518.8

3 April 2001 (03.04.2001) DE

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). HERMANN, Thomas; Zirkonstrasse 8, 33739 Bielefeld (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MIL, MR, NE, SN, TD, TG).

Published:

- with international search report
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description
- (88) Date of publication of the international search report: 30 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS USING STRAINS OF THE FAMILY ENTEROBACTE-RIACEAE THAT CONTAIN AN ATTENUATED DGSA GENE

(57) Abstract: The invention relates to a process for the production of L-amino acids, in particular L-threonine, in which the following the desired is a light particular and acid, in which the dgsA gene or nucleotide sequences coding therefor are attenuated, in particular are switched off, b) enrichment of the L-amino acid in the medium or in the cells of the bacteria, and c) isolation of the L-amino acid.

PCI/Er 02/02419

		<u></u>	
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C12P13/08 C12P13/04 //(C12P1	3/08,C12R1:19)	
According to	o International Patent Classification (IPC) or to both national classifica	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	ocumentation searched (classification system followed by classification C12P C07K	on symbols)	
	tion searched other than minimum documentation to the extent that s		
Į.	ata base consulted during the international search (name of data baternal, WPI Data, PAJ, BIOSIS, MEDLI		,
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
A	US 4 278 765 A (DEBABOV VLADIMIR 14 July 1981 (1981-07-14) cited in the application the whole document	G ET AL)	1-7
A	MORRIS P W ET AL.: "Cloning and of the dgsA gene of Escherichia of JOURNAL OF BACTERIOLOGY, vol. 163, no. 2, August 1985 (198 pages 785-786, XP008016939 ISSN: 0021-9193 cited in the application the whole document	coli."	1-7
X Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
* Special ca	ategories of cited documents:	*T* later document published after the Inte	ernational filing date
consid	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international	or priority date and not in conflict with cited to understand the principle or th invention	eory underlying the
filing ("X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do	t be considered to
which citatio	is cited to establish the publication date of another in or other special reason (as specified) ient referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the c cannot be considered to involve an in document is combined with one or ma ments, such combination being obvious	claimed invention ventive step when the ore other such docu-
'P' docum	means ent published prior to the international filing date but han the priority date claimed	in the art. *&* document member of the same patent	•
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
2	20 May 2003	02/06/2003	
Name and	mailing address of the ISA Extra on Patera Cifica, P.B. Cific Programs 2	Authorized officer	
	NL - 2280 HV Aijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	van de Kamp, M	

Intel Application No
PCI/ET 02/02419

OCUMENTS CONSIDERED TO BE RELEVANT of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
or document, with indication, where appropriate, of the relevant passages	Hesevant to claim No.
SONO K ET AL.: "Decreasing accumulation acetate in a rich medium by Escherichia li on introduction of genes on a lticopy plasmid." OSCIENCE, BIOTECHNOLOGY, AND OCHEMISTRY, 1. 59, no. 2, February 1995 (1995-02), ges 256-261, XP001148978 SN: 0916-8451 ted in the application stract ge 260, left-hand column, line 38 -page 1, left-hand column, line 36	1-7
99 53035 A (ALTMAN ELLIOT ;GOKARN RAVI (US); EITEMAN MARK A (US); UNIV GEORG) October 1999 (1999-10-21) ge 5, line 20-24 xamples 4,7,9,10 laims 41,49 igures 1,4	1-7
 0 643 135 A (AJINOMOTO KK) March 1995 (1995-03-15) e whole document	1-7
0 237 819 A (KYOWA HAKKO KOGYO KK) September 1987 (1987-09-23) e whole document	1-7
TABASE WPI ction Ch, Week 199148 rwent Publications Ltd., London, GB; ass B05, AN 1991-351136 002241222 JP 03 236786 A (KYOWA HAKKO KOGYO KK), October 1991 (1991-10-22) stract	1-7
CHAL G: "Biochemical pathways: an atlas biochemistry and molecular biology" 99 , JOHN WILEY & SONS INC. AND SPEKTRUM ADEMISCHER VERLAG , NEW YORK – IDELBERG XP002240848 BN: 0-471-33130-9 igures 4.2-1, 4.5-1 and 4.5-2 aragraph '4.5.3!	1-7
	acetate in a rich medium by Escherichia li on introduction of genes on a lticopy plasmid." OSCIENCE, BIOTECHNOLOGY, AND OCHEMISTRY, 1. 59, no. 2, February 1995 (1995-02), ges 256-261, XP001148978 SN: 0916-8451 ted in the application stract ge 260, left-hand column, line 38 -page 1, left-hand column, line 36 ———————————————————————————————————

Intel Application No
PCI/Er 02/02419

		PC1/EF 02/02419			
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	JETTEN M S M ET AL.: "Recent advances in the physiology and genetics of amino acid-producing bacteria." CRC CRITICAL REVIEWS IN BIOTECHNOLOGY, vol. 15, no. 1, 1995, pages 73-103, XP000613291 ISSN: 0738-8551 page 82, left-hand column, line 31-43 page 90, left-hand column, line 1 -page 92, left-hand column, line 17	1-7			
Α	KRAEMER R: "Genetic and physiological approaches for the production of amino acids" JOURNAL OF BIOTECHNOLOGY, vol. 45, no. 1, 1996, pages 1-21, XP002178648 ISSN: 0168-1656 the whole document	1-7			
Α	SAWERS G: "The anaerobic degradation of L-serine and L-threonine in enterobacteria: networks of pathways and regulatory signals" ARCHIVES OF MICROBIOLOGY, vol. 171, no. 1, 1998, pages 1-5, XP002953871 ISSN: 0302-8933 the whole document	1-7			
E	WO 02 081698 A (DEGUSSA) 17 October 2002 (2002-10-17) the whole document page 9, line 21 -page 10, line 22 claim 7	1-7			
E	WO 02 081722 A (DEGUSSA) 17 October 2002 (2002-10-17) the whole document page 9, line 21 -page 10, line 22 claim 7	1-7			

ition on patent family members

Inter Application No
PCI/Er 02/02419

	tent document in search report		Publication date		Patent family member(s)		Publication date
US	4278765	Α	14-07-1981	SU HU	875663 A 190999 B		15-09-1982 28-12-1986
 WO	9953035	A	21-10-1999	AU	3555999 A		01-11-1999
				BR	9909615 A	١	12-12-2000
				CA	2325598 A	1	21-10-1999
				EΡ	1073722 A	1	07 -0 2-2001
				JP	2002511250 T	•	16-04-2002
				WO	9953035 A	1	21-10-1999
				US	2003087381 A		08-05-2003
				US	6455284 B	31 	24-09-2002
EP	0643135	Α	15-03-1995	AT	203769 T		15-08-2001
				CZ	9401658 A		15-12-1994
				DE	69330518 D		06-09-2001
				DE	69330518 T		08-05-2002
				DK	643135 T		15-10-2001
				EP	0643135 A		15-03-1995
		•		JP	3331472 B		07-10-2002
				SK	81994 A		10-05-1995
				US	5661012 A		26-08-1997
				EP	1020526 A		19-07-2000
				ES	2158867 T		16-09-2001
				WO	9411517 A		26-05-1994
				RU 	2113484 0	.1 	20-06-1998
ΕP	0237819	Α	23-09-1987	DE	3788583)1	10-02-1994
				DE	3788583 1		19-05-1994
				EP	0237819 <i>F</i>		23-09-1987
				JP	2574786 E		22-01-1997
	,			JP	63273487		10-11-1988
				KR	9108634 E		19-10-1991
				US	5017483 <i>F</i>	4 	21-05-1991
JP	3236786	Α	22-10-1991	JP	2877414	B2	31-03-1999
MO	02081698	Α	17-10-2002	DE	10116518		17-10-2002
				WO	02081721 /		17-10-2002
				WO	02081698 /		17-10-2002
				WO	02081722		17-10-2002
				US	2003054503		20-03-2003
				US	2003059903 /	A1 	27-03-2003
WO	02081722	Α	17-10-2002	DE	10116518 /		17-10-2002
				WO	02081721		17-10-2002
				WO	02081698		17-10-2002
				WO	02081722		17-10-2002
				110	2003054503	Δ :	20-03-2003
				US US	2003059903		27-03-2003