

Stat GR5205 Lecture 7

Jingchen Liu

Department of Statistics Columbia University

Galileo's experiment

$$distance = \beta_0 + \beta_1 height + \beta_2 height^2 + \varepsilon$$

Galileo's experiment

variable	coefficient	standard error	t-statistic	<i>p</i> -value
intercept	199.91	16.8	11.93	0.0003
height	0.71	0.075	9.5	0.0007
height ²	- 0.00034	0.000067	5.15	0.007

$$R^2 = 0.99$$
 $\hat{\sigma} = 13.6$

Galileo's experiment

$$distance = \beta_0 + \beta_1 height + \beta_2 height^2 + \beta_3 height^3 + \varepsilon$$

- ▶ 50 samples
- ▶ 5 Asian, 15 African American, 30 Whites
- Weight and height
- Coding of the design matrix

Figure: Height (inch) versus log-weight (log-lb)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_{Asian} I_{Asian} + \beta_{Black} I_{Black} + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_{Asian} I_{Asian} + \beta_{Black} I_{Black} + \beta_1 \textit{height}$$

$$\log(\textit{weight}) = eta_0 + eta_1 \textit{height} + arepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_{\textit{Asian}} \textit{I}_{\textit{Asian}} + \beta_{\textit{Black}} \textit{I}_{\textit{Black}} + \beta_1 \textit{height} + \epsilon$$

$$\log(weight) = \beta_0 + \beta_{Asian}I_{Asian} + \beta_{Black}I_{Black} + \beta_1 height + \beta_{Asian,H}I_{Asian} height + \beta_{Black,H}I_{Black} height + \beta_1 height + \beta_2 height + \beta_3 height +$$

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} \emph{I}_{\textit{Asian}} + eta_{\textit{Black}} \emph{I}_{\textit{Black}} + eta_1 \textit{height} + \epsilon$$

$$\begin{array}{ll} \log(\textit{weight}) & = & \beta_0 + \beta_{\textit{Asian}} \textit{I}_{\textit{Asian}} + \beta_{\textit{Black}} \textit{I}_{\textit{Black}} + \beta_1 \textit{height} \\ & + \beta_{\textit{Asian},\textit{H}} \textit{I}_{\textit{Asian}} \textit{height} + \beta_{\textit{Black},\textit{H}} \textit{I}_{\textit{Black}} \textit{height} + \varepsilon \end{array}$$

The extra sum-of-squares F test

- ▶ Question: is there any difference among the three groups aside from that due to height difference
- ► The formulation

$$\log(\mathit{weight}) = eta_0 + eta_{\mathit{Asian}} + eta_{\mathit{Black}} + eta_1$$
height $+ arepsilon$

► The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The extra sum-of-squares F test

- ▶ Question: is there any difference among the three groups aside from that due to height difference
- The formulation

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

► The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The extra sum-of-squares F test

- ► Question: is there any difference among the three groups aside from that due to height difference
- The formulation

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

▶ The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

ightharpoonup Reduced model (H_0)

$$\log(weight) = \beta_0 + \beta_1 height +$$

Comparing the full model against the reduce model

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

▶ Reduced model (H₀)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

Comparing the full model against the reduce model

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = \beta_0 + \beta_{\textit{Asian}} + \beta_{\textit{Black}} + \beta_1 \textit{height} + \epsilon$$

► Reduced model (*H*₀)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

Comparing the full model against the reduce model

ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- \triangleright Reject H_0 if SSE_{extra} is large
- ► Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- \triangleright Reject H_0 if SSE_{extra} is large
- ▶ Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- \triangleright Reject H_0 if SSE_{extra} is large
- ▶ Distribution of *SSR*_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ▶ Reject H_0 if SSE_{extra} is large
- ▶ Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ▶ Reject H_0 if SSE_{extra} is large
- Distribution of SSR_{extra}

Extra sums of squares test

Test statistic

$$F - statistic = \frac{SSE_{extra}/(p_{full} - p_{reduced})}{SSE_{full}/(n - p_{full})}$$

ANOVA

source	sum of sq	d.f.	mean sq	<i>F</i> -stat	<i>p</i> -value
regression	28.7	3	9.6	248	< 0.0001
height	21.4	1	21.4	553	< 0.0001
additional race	7.3	2	7.6	94	< 0.0001
residual	55.7	1441	0.039		
total	84.4	1444			

source	sum of sq	d.f.	mean sq	<i>F</i> -stat	<i>p</i> -value
regression	190	1	190	78	< 0.0001
residual	180	74	2.4		
total	370	75			

source	sum of sq	d.f.	mean sq	<i>F</i> -stat	<i>p</i> -value
between group	196	6	33	13	< 0.0001
residual	174	69	2.5		
total	370	75			

$$F - statisitc = \frac{(196 - 190)/5}{174/69} = 0.48$$

Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

► Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

► Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

▶ Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

► Reduced model

$$SST = SSR(X_1) + SSE(X_1)$$

▶ Full model

$$SST = SSR(X_1, X_2) + SSE(X_1, X_2)$$

Extra sums of squares

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2)$$

$$R_{X_2|X_1}^2 = \frac{SSR(X_2|X_1)}{SSE(X_1)}$$

ANOVA table

$$SST = SSR + SSE$$

source	sums of sq	d.f.	mean sum of sq	F-stat	<i>p</i> -value
Regression	SST	p-1	SST/(p-1)		
Residual	SSE	n-p	SSE/(n-p)		
Total	SST				

Standardization

Correlation between eta_0 and eta_1

Standardization

ightharpoonup Reducing the correlation between \hat{eta}_0 and \hat{eta}_1

$$x_i^* = x_i - \bar{x}$$

Rescaling the covariates

$$x_i^* = \frac{x_i - \bar{x}}{SD(y)}$$

Rescaling the response

$$y_i^* = \frac{y_i - y_i}{SD(y_i)}$$

Standardization

lacktriangle Reducing the correlation between \hat{eta}_0 and \hat{eta}_1

$$x_i^* = x_i - \bar{x}$$

Rescaling the covariates

$$x_i^* = \frac{x_i - \bar{x}}{SD(y)}$$

Rescaling the response

$$y_i^* = \frac{y_i - \bar{y}}{SD(y)}$$

Standardization

ightharpoonup Reducing the correlation between \hat{eta}_0 and \hat{eta}_1

$$x_i^* = x_i - \bar{x}$$

Rescaling the covariates

$$x_i^* = \frac{x_i - \bar{x}}{SD(y)}$$

Rescaling the response

$$y_i^* = \frac{y_i - \bar{y}}{SD(y)}$$

Standardization of covariates

► The standardized regression coefficients

$$\hat{eta}_0^* = 0 \qquad \hat{eta}_1^* =
ho_{xy}$$

- ► Transform back to the original coefficients
- Standardization does not alter prediction

Standardization of covariates

► The standardized regression coefficients

$$\hat{eta}_0^* = 0 \qquad \hat{eta}_1^* =
ho_{xy}$$

- Transform back to the original coefficients
- Standardization does not alter prediction

Standardization of covariates

► The standardized regression coefficients

$$\hat{eta}_0^*=0 \qquad \hat{eta}_1^*=
ho_{xy}$$

- Transform back to the original coefficients
- Standardization does not alter prediction

$$X = (x_{ij})_{n \times p}$$

Standardized covariates

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} = 0, \quad SD(x_j) = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j) = 1$$

Uncorrelated covariates,

$$\sum_{i=1}^{n} x_{ij_1} x_{ij_2} = 0$$

$$X = (x_{ij})_{n \times p}$$

Standardized covariates

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} = 0, \quad SD(x_j) = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j) = 1$$

Uncorrelated covariates,

$$\sum_{i=1}^n x_{ij_1} x_{ij_2} = 0$$

► Uncorrelated covariates

$$X^{\top}X = (n-1)I_{p\times p}$$

► The least-square estimate

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = X^{\top}Y/(n-1)$$

Individual estimated coefficient

$$\hat{\beta}_j = \frac{1}{n-1} \sum_{i=1}^n x_{ij} y_i$$

Uncorrelated covariates

$$X^{\top}X = (n-1)I_{p\times p}$$

▶ The least-square estimate

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = X^{\top}Y/(n-1)$$

Individual estimated coefficient

$$\hat{\beta}_j = \frac{1}{n-1} \sum_{i=1}^n x_{ij} y_i$$

Uncorrelated covariates

$$X^{\top}X = (n-1)I_{p\times p}$$

▶ The least-square estimate

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = X^{\top}Y/(n-1)$$

Individual estimated coefficient

$$\hat{\beta}_j = \frac{1}{n-1} \sum_{i=1}^n x_{ij} y_i$$

Variance

$$Var(\beta_j) = \frac{1}{(n-1)^2} \sum_{i=1}^n x_{ij}^2 = \frac{1}{n-1}$$

Covariance

$$Cov(\beta_{j_1}, \beta_{j_2}) = \frac{1}{(n-1)^2} \sum_{i=1}^{n} x_{ij_1} x_{ij_2} = 0$$

Variance

$$Var(\beta_j) = \frac{1}{(n-1)^2} \sum_{i=1}^n x_{ij}^2 = \frac{1}{n-1}$$

Covariance

$$Cov(\beta_{j_1}, \beta_{j_2}) = \frac{1}{(n-1)^2} \sum_{i=1}^{n} x_{ij_1} x_{ij_2} = 0$$

A paradox due to multicollinearity

$$y,x_1,x_2,...,x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

$$Var(\hat{\beta}_1) = \sigma^2/(n-1)$$

Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_p x_p +$$

$$y,x_1,x_2,\dots,x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

- $Var(\hat{\beta}_1) = \sigma^2/(n-1)$
- Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_p x_p +$$

$$y,x_1,x_2,\dots,x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

- $Var(\hat{\beta}_1) = \sigma^2/(n-1)$
- Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_p x_p + \varepsilon$$

$$ightharpoonup Var(\tilde{\beta}) = \sigma^2(X^\top X)^{-1}$$

$$y, x_1, x_2, ..., x_p$$

With all covariates standardized, we consider

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

- $Var(\hat{\beta}_1) = \sigma^2/(n-1)$
- Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p + \varepsilon$$

$$ightharpoonup Var(\tilde{\beta}) = \sigma^2(X^\top X)^{-1}$$

► Variance inflation factor (VIF)

$$VIF(eta_1) = rac{Var(ilde{eta}_1)}{Var(\hat{eta}_1)}$$

A representation

$$VIF(\beta_1) = \frac{1}{1 - R_1^2}$$

where R_1^2 is the coefficient of determination of x_1 on x_2

► Variance inflation factor (VIF)

$$VIF(eta_1) = rac{Var(ilde{eta}_1)}{Var(\hat{eta}_1)}$$

A representation

$$VIF(\beta_1) = \frac{1}{1 - R_1^2}$$

where R_1^2 is the coefficient of determination of x_1 on x_2 , $x_3,...,x_p$.