FOUNDATIONS OF REPRESENTATION THEORY

7. Exercise sheet

Jendrik Stelzner

November 28, 2013

Exercise 22:

Let (e_1, \ldots, e_n) be a basis of A as a vector space.

$$(i) \Rightarrow (ii)$$

Let (b_1,\ldots,b_m) be a generating set of M as an A-module. We can write $x\in M$ as $x=\sum_{j=1}^m a_jb_j$ with $a_j\in A$ for all j. We can write each a_j as $a_j=\sum_{i=1}^n \lambda_i^je_i$ with $\lambda_i^j\in K$ for all i. Thus we get

$$x = \sum_{j=1}^{m} a_j b_j = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i^j e_i b_j.$$

Thus x is a linear combination of the e_ib_j . Because x is arbitrary it follows that $\{e_ib_j\}_{i=1,\ldots,n,j=1,\ldots,m}$ is a finite generating set of M as a vector space, so M is finite-dimensional.

$$(ii) \Rightarrow (i)$$

If (b_1, \ldots, b_m) is a basis of M as a vector space, then (b_1, \ldots, b_m) is also a generating set of M as an A-module, because $\lambda b_i = \lambda 1_A b_i$ for all $\lambda \in K$ and i.

$$(ii) \Rightarrow (iii)$$

This follows directly from $l(M) \leq \dim(V) < \infty$.

$$\neg$$
(ii) $\Rightarrow \neg$ (iii)

We construct an ascending chain $U_0 \subsetneq U_1 \subsetneq U_2 \subsetneq \ldots$ of finite-dimensional submodules of M as follows: We start with $U_0 := 0$. If U_{n-1} is defined we choose some $v \in M \setminus U_{n-1}$ (this is possible because U_{n-1} is finite-dimensional but M is infinite-dimensional). The submodule $W = Av = \langle e_1v, \ldots, e_nv \rangle$ of M is not contained in U_{n-1} , so $U_{n-1} \subsetneq U_{n-1} + W =: U_n$. U_n is finite-dimensional because U_{n-1} and W are finite-dimensional.

For all $n \in \mathbb{N}$ the filtration

$$0 = U_0 \subsetneq U_1 \subsetneq U_2 \subsetneq \ldots \subsetneq U_{n-1} \subsetneq M$$

is of length n, so $l(M) \ge n$ for all $n \in \mathbb{N}$.