PROJEKT TECHNICZNY MECHANIZMU CHWYTAKA TYPU P-(O-O-O) ZADANIE PROJEKTOWE:

Zaprojektować chwytak do manipulatora przemysłowego wg zadanego schematu kinematycznego spełniający następujące wymagania:

- a) w procesie transportu urządzenie chwytające ma za zadanie pobrać (uchwycić) obiekt w położeniu początkowym, trzymać go w trakcie trwania czynności transportowych i uwolnić go w miejscu docelowym,
- b) obiektem transportu są wałki ze stali o zakresie średnic $d=146 \div 93 \,mm$, długości $l=45 \div 617 \,mm$,
- c) siłownik chwytaka zasilany jest sprężonym powietrzem o ciśnieniu nominalnym $p_n = 0.6 \, \text{MPa}$,
- d) wałki transportowane są w pozycji pionowej.

1. Rozwiązanie zadania projektowego

Obliczenie ruchliwości chwytaka

$$W = 3n - 2p_5 - p_4$$

$$n = 5, p_5 = 7, p_4 = 0$$

$$W = 1$$
(1)

2. Modelowanie schematu kinematycznego, przyjmowanie wymiarów i określenie wymaganego skoku członu napędowego

Rys. 1. Model chwytaka w programie SAM, dwa skrajne położenia przy skoku członu napędzającego $\Delta x=25~mm$: a) rozwarcie maksymalne szczęk $d_A=146~mm$ b) rozwarcie minimalne szczęk $d_B=93~mm$

3. Wyznaczanie koniecznej siły chwytu F_{ch}

Maksymalny ciężar $Q_{A \, max}$ obiektu transportowanego dla **poz. A chwytaka (rys. 1)** obliczono ze wzoru:

$$Q_{A max} = \frac{\pi d_{max}^2}{4} I_{A max} \cdot \gamma [N]$$
 (2)

gdzie: $I_{Amax} = 0.045 \ m$ - maksymalna długość chwytanego obiektu o średnicy d_A

 $\gamma = 78.5 \cdot 10^3 \; \text{N/m}^3$ – ciężar właściwy materiału transportowanego (stali) .

Dane: $d_A = 0.146 \text{ m}$ - maksymalna średnica obiektu manipulacji (wałka),

$$Q_{A \, \text{mex}} = \frac{\pi \cdot 0.146^2}{4} \, 0.045 \cdot 78.5 \cdot 10^3 \cong 59 \, \text{N}$$

Wyznaczenie koniecznej siły chwytu F_{Ach} dla maksymalnego rozwarcia szczęk chwytaka (poz. A rys. 1a)

Dane:

 μ - współczynnik tarcia między szczękami chwytaka a obiektem, przyjmiemy μ =0,2, n=2- współczynnik przeciążenia chwytaka (współczynnik ten wynika z uwzględnienia siły bezwładności oddziaływującej na obiekt transportowany w chwili rozruchu manipulatora, przyjęto że chwytak doznaje wtedy **przyspieszenia równego g,**

 $2\gamma = 124^{\circ}$ - kąt nachylenia szczęk chwytaka (odczytano z modelu SAM).

Transportowany obiekt chwytany jest w pozycji jak na Rys. 2.

Rys. 2. Układ sił działających na chwytak: a) rozkład sił tarcia podczas chwytania obiektu, b) rozkład sił normalnych podczas chwytania obiektu

$$F_{ch} = 2N\cos(90^0 - \gamma),$$
 $N = \frac{F_{ch}}{2\cos(90^0 - \gamma)} = \frac{F_{ch}}{2\sin\gamma},$ $T = \mu N = \frac{F_{ch} \cdot \mu}{2\sin\gamma}.$

Dla prawidłowego uchwycenia transportowanego elementu musi być spełniony warunek:

$$4T = \frac{2F_{ch} \cdot \mu}{\sin \gamma} \ge Q \cdot n \qquad \text{stad siła chwytu} \qquad F_{ch} \ge \frac{Q \cdot n \sin \gamma}{2\mu} \qquad \text{(3)}$$

Dla **pozycji A** chwytaka (rys.1)
$$F_{ch} \ge \frac{Q_{A\,m\!e\!x} \cdot n\,sin\,\gamma}{2\mu}$$

$$F_{Ach} \ge \frac{59 \cdot 2 \cdot \sin 62^{\circ}}{2 \cdot 0.2} \cong 261N$$

4. Charakterystyka przemieszczeniowa chwytaka $y = f_p(x)$

Charakterystyka przemieszczeniowa chwytaka została wyznaczona w programie SAM

Rys. 3. Charakterystyka przemieszczeniowa chwytaka

5. Charakterystyka prędkościowa chwytaka $f_V(x) = \frac{\dot{y}}{\dot{x}}$

W przypadku przyjęcia prędkości członu napędzającego v=1 m/s otrzymamy w programie SAM $f_{v}(x) = \dot{y}(x)$

Rys. 4. Charakterystyka prędkościowa chwytaka $f_{v}(X) = \dot{y}$

6. Charakterystyki siłowa chwytaka

Charakterystyka siłowa
$$f_F(x) = \frac{F_{ch}}{F_s}$$
 (4)

gdzie: F_s - siła na wyjściu zespołu napędowego (siłownika) chwytaka,

 F_{ch} - siła chwytu,

 $f_{E}(x)$ - przełożenie siłowe mechanizmu chwytaka.

Uwaga: zamiast **charakterystyki siłowej** zgodnie ze wzorem (4) znacznie prostsze jest sporządzenie **charakterystyki siły** na członie napędzającym $F_s(x)$ w programie SAM. Przy założeniu obciążenia ramion chwytaka symetrycznym układem sił $F_{chA}=261\,N$ otrzymamy wymaganą do realizacji zadania projektowego (utrzymania przedmiotu) siłę na siłowniku. Na tej podstawie dobierzemy siłownik.

7. Określenie maksymalnej wymaganej siły do napędu chwytaka

Maksymalną wartość $F_{s_{\mathit{MBX}}}$ określimy na podstawie charakterystyki $F_{s}(x)$

Rys. 5. Charakterystyka siły na członie napędzającym $F_s(x)$

8. Obliczenie średnicy tłoka siłownika napędowego przy założeniu ciśnienia zasilania pneumatycznego 0,6 MPa

Wymaganą średnicę D tłoka obliczymy przy założeniu $F_{smax} = 1475N$

$$F_{s} = \frac{\pi D^{2}}{4} p_{n} \qquad D_{min} = \sqrt{\frac{4F_{s max}}{\pi p_{n}}},$$

$$p_{n} = 0.6MPa$$

$$D_{min} = \sqrt{\frac{4 \cdot 1475}{\pi \cdot 0.6 \cdot 10^{6}}} = 0.056 m,$$

$$p_{n}$$
(5)

Należy dobrać siłownik o średnicy tłoka $D \ge 56 \, mm$

Rys. 6. Model siłownika pneumatycznego dwustronnego działania

Dobór siłownika na podstawie wymaganej średnicy tłoka i skoku tłoka oraz siły pchającej na tłoczysku

Zasada doboru siłownika:
$$P_t \ge P_w = k \cdot F_{s max}$$
 (6)

gdzie: P_t - teoretyczna siła pchająca lub ciągnąca siłownika, P_W - obliczona wymagana siła na tłoczysku $k=1,2\div 1,5$ - współczynnik przeciążenia (przyjmiemy k=1,2)

$$P_t \ge P_w = K \cdot F_{s \, max} = 1475 \cdot 1,2 = 1770 \, N$$

Dobieramy siłownik ADVULQ-63-25-P-A. o średnicy tłoka D=63 mm i skoku s=25 mm z katalogu Festo. Dobieramy dodatkowo mocowanie kołnierzowe) na którym zostanie posadowiony mechanizm chwytaka

Siłownik kompaktowy ADVULQ-63-25-P-A

Numer części: 156734

FESTO

z bezdotykową sygnalizacją położenia. Zabezpieczenie przed obrotem zapewnia kwadratowe tłoczysko. Tłoczysko zakończone gwintem wewnętrznym.

Karta danych

Cecha	Wartość
Skok	25 mm
Średnica tłoka	63 mm
Amortyzacja	P: Elastyczne pierścienie / płytki amortyzacyjne z obu stron
Pozycja zabudowy	Dowolna
Tryb pracy	Dwustronnego działania
Zakończenie tłoczyska	Gwint wewnętrzny
Konstrukcja	Tłok
	Tłoczyskowy
Sygnalizacja położenia	Przy pomocy czujników
Warianty	Jednostronne tłoczysko
Zabezpieczenie przed obrotem/prowadzenie	Kwadratowe tłoczysko
Ciśnienie robocze	0.6 10 bar
Medium robocze	Sprężone powietrze wg ISO8573-1:2010 [7:4:4]
Uwagi odnośnie medium roboczego	Możliwa praca na powietrzu olejonym (po rozpoczęciu olejenia jest
	ono wymagane przy dalszej pracy)
Klasa odporności na korozję CRC	2 – Średnia odporność na korozję
Temperatura otoczenia	-20 80 °C
Maks. energia uderzenia w położeniach końcowych	0.7 J
Siła teoretyczna przy 6 bar, skok powrotny	1 750 N
Siła teoretyczna przy 6 bar, wysuw	1 870 N

10. Konstruowanie elementów chwytaka

Konstruowanie chwytaka rozpoczynamy od importu rysunków siłownika i innych elementów montażowych w formacie umożliwiającym wykorzystanie w programach typu CAD.

W celu realizacji zadania projektowego zaimportowano rysunki dwóch elementów:

siłownika ADVULQ-63-25-P-A oraz mocowania kołnierzowego FUA-63.

Rys. 7. Etapy konstruowania chwytaka (rysunek szkoleniowy)

11. Obliczenia sił przyłożonych do elementów konstrukcyjnych chwytaka

Siły wywołujące naprężenia w elementach konstrukcyjnych chwytaka zostały wyznaczone na podstawie modeli w programie SAM.

Rys. 8. Charakterystyka siły reakcji $R_{03}(x)$ w przegubie chwytaka

Rys. 9. Charakterystyka siły reakcji $R_{03}(x)$ w przegubie chwytaka

Obliczenia sprawdzające sił reakcji w parach kinematycznych chwytaka

Obliczenia sprawdzające zostały wykonane przy użyciu programu ForceEffect w pozycji rozwartej chwytaka.

Do ramienia chwytaka przyłożony jest układ środkowy trzech sił F_{ch} , R_{03} , R_{12} S-środek układu sił .

Rys. 10. Siła reakcji $R_{03\,max}$ w przegubie chwytaka (rysunek szkoleniowy ForceEffect))