Problem 1

Assuming 4 spheres (with errors) do share exatly 1 common point (or 1 small common area). Namely, there is no such terrible cases like the Figure 1 in 3D:

Figure 1. a terrible case that there are 2 possible locations in 2D.

There are 3 cases:

Case A: All these 4 centers are collinear.

By the geometric symmetry, the location must be also collinear with these centers, or there exist a whole circle that the location can be.

Obviously, in this case, all 4 spheres are tangent to each other. Therefore, we can pick up any 2 spheres, and use them to compute the location, which is the tangent point.

Say we have
$$(x-c_1)^2=r_1^2,\,(x-c_2)^2=r_2^2,$$
 where $r_1\leq r_2.$ The tangent point is $c_2+r_2 imes rac{c_1-c_2}{\|c_1-c_2\|}$

Case B: All these 4 centers are coplanar but not collinear.

By the geometric symmetry, the location must be also coplanar with these centers, or there exist at least 2 possible location.

Since these 4 centers are not collinear, there must exist a choice to pick up 3 centers, such that (c_1-c_2) , (c_1-c_3) are linearly independent. Namely, the intersection circle C_{12} between Sphere S_1 , S_2 , and the intersection circle C_{13} are not coplanar. Because c_1-c_2 is the normal vector of the plane P_{12} where C_{12} is, and c_1-c_3 is the one of P_{13} .

Also, we have a plane P_0 whose normal vector is $(c_1-c_2) \times (c_1-c_3)$, namely, this coplanar plane.

Given the assumption, the intersection of these 3 plane is the location.

For P_0 , we know c_1 is on it. we can compute the equation of P_0 .

Say
$$d_{12} = ||c_1 - c_2||$$
. Considering P_{12} , we can show $c_1 + k \times (c_2 - c_1)$ is on P_{12} , where $k = \frac{d^2 - r_2^2 + r_1^2}{2d}$.

Similarly, we can also compute a point on P_{13} .

Now, we have 3 linearly-indepent linear equations, say AX = b, and hence the location $X = A^{-1}b$.

Case C: these 4 centers are not coplanar.

Therefore, there must exists 3 different P_1 , P_2 , P_3 where the intersection circle is. We can just compute each of them by computing the normal vector and a point on it.

Now this problem also is reduced to AX = b. The location $X = A^{-1}b$.

Exceptions

Notice that all these solutions are based on the assumption. Therefore, once we computed the location, we can examinate it using these 4 distances. Once it does not according to any distances, the only case is there are more than 1 possible locations (or these 4 spheres have no common point), which is not the case we are going to solve.