Rozwiązywanie równań i układów równań nieliniowych cz. III

Seweryn Tasior, WI, grupa 5

22.05.2025

1 Wprowadzenie

1.1 Zagadnienie

Celem ćwiczenia jest porównanie stabilności numerycznej, czasu wykonywania i zużywanej pamięci rozwiązywania układów równań liniowych metodą eliminacji Gaussa i Thomasa.

1.2 Dane techniczne

Programy zostały napisane w języku Python w wersji 3.11.5. Dodatkowo, do narysowania wykresów i tabel zostały użyte biblioteki Pandas i matplotlib. Pomocniczo do obliczeń zastosowano funkcjonalności biblioteki numpy. Do inwersji macierzy zastosowano funkcje linalg.inv, a do liczenia iloczynów macierzy np.dot. Maksymalną zużytą pamięć przez funkcję uzyskano za pomocą tracemalloc, a czas wykonywania otrzymano poprzez bibliotekę timeit

Zadania programistyczne wykonano na laptopie Lenovo IdeaPad Gaming 3 15ACH6. Urządzenie posiada 6-rdzeniowy procesor o taktowaniu 4,4 GHz. Korzystano przy tym z systemu operacyjnego Windows 11.

2 Realizacja ćwiczenia

W ćwiczeniu zaimplementowano macierze kwadratowe A o rozmiarach $n \times n$, według podanego wzoru:

$$a_{i,j} = \begin{cases} -3i - 6 & \text{dla } j = i \\ i & \text{dla } j = i + 1 \\ \frac{3}{i} & \text{dla } j = i - 1, \ i > 1 \\ 0 & \text{dla } j < i - 1 \text{ oraz } j > i + 1 \end{cases}$$

$$i, j = 1, \dots, n$$

Zmienna n w obliczeniach przyjmowała następujące zakresy wartości:

- $n \in \{1, 2, ..., 20, 30, 50\}$, dla precyzji typu float
- $n \in \{1, 2, ..., 20, 30, 50, 80, 100, 200\}$, dla precyzji typu double

Następnie dla każdego n wyliczono wektor x jako dowolną n-elementową permutację ze zbioru $\{1, -1\}$, według powyższych wzorów utworzono macierz A, obliczono wektor b jako iloczyn A i x. Otrzymane b wraz z macierzą A, wykorzystano do obliczenia metodą Gaussa wektora y

Do wyliczenia metodą Thomasa użyto trzech wektorów reprezentujących podprzekątną, przekątną i nadprzekątną. Na ich podstawie uzyskano wektor y.

Aby sprawdzić zaburzenia rozwiązań układów, porównano oba wektory x i y (zadany i otrzymany) za pomocą normy maksimum:

$$\sigma(x,y) = \max_{i=1,\dots,n} \{|x_i - y_i|\}$$

gdzie:

- ullet x_i-i -ta współrzędna zadanego wektora ${f x}$
- $y_i i$ -ta współrzędna obliczonego wektora y

Do oceny wrażliwości rozwiązania układu na małe zaburzenia w danych wejściowych wykorzystano **współczynnik uwarunkowania**. Mówi on, jak bardzo błędy zaokrągleń w obliczeniach komputerowych mogą zostać

"wzmocnione"
i wpłynąć na dokładność uzyskanego rozwiązania. Jeśli jest on bliski 1, to oznacza, że jest dobrze uwarunkowany i jest mało podatny na błędy. W przypadku, gdy jest on duży, to macierz jest nazywana źle uwarunkowaną, więc nawet małe błędy w danych mogą pogorszyć znacznie wyniki. Współczynnik można dostać z macierzy A na podstawie wzoru:

$$\kappa(A) = ||A^{-1}|| \cdot ||A||$$

Przyjęto normę wzorem:

$$||A|| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

gdzie:

- A macierz kwadratowa
- n rozmiar macierzy
- $\bullet \ a_{i,j}$ element macierzy o współrzędnych i,j

Przeprowadzono eksperymenty dla dwóch różnych precyzji liczbowych: float i double. Wyniki przedstawiono w tabelach.

2.1 Porównanie norm maksimum

Tabela 1: Błędy dla układu w zależności od wielkości macierzy A, precyzja float32

n	$\kappa(A)$	Thomas	Gauss
2	1.65×10^{0}	0.00×10^{0}	0.00×10^{0}
3	1.98×10^{0}	0.00×10^{0}	0.00×10^{0}
4	2.35×10^{0}	0.00×10^{0}	0.00×10^{0}
5	2.81×10^{0}	1.19×10^{-7}	1.19×10^{-7}
6	3.29×10^{0}	0.00×10^{0}	0.00×10^{0}
7	3.77×10^{0}	1.19×10^{-7}	1.19×10^{-7}
8	4.26×10^{0}	1.19×10^{-7}	1.19×10^{-7}
9	4.75×10^{0}	1.19×10^{-7}	1.19×10^{-7}
10	5.24×10^{0}	1.19×10^{-7}	1.19×10^{-7}
11	5.73×10^{0}	1.19×10^{-7}	1.19×10^{-7}
12	6.22×10^{0}	1.19×10^{-7}	1.19×10^{-7}
13	6.71×10^{0}	1.19×10^{-7}	1.19×10^{-7}
14	7.21×10^{0}	1.19×10^{-7}	1.19×10^{-7}
15	7.70×10^{0}	1.19×10^{-7}	1.19×10^{-7}
16	8.19×10^{0}	1.19×10^{-7}	1.19×10^{-7}
17	8.68×10^{0}	1.19×10^{-7}	1.19×10^{-7}
18	9.18×10^{0}	1.19×10^{-7}	1.19×10^{-7}
19	9.67×10^{0}	1.19×10^{-7}	1.19×10^{-7}
20	1.02×10^{1}	1.19×10^{-7}	1.19×10^{-7}
30	1.51×10^{1}	1.19×10^{-7}	1.19×10^{-7}
50	2.50×10^{1}	1.19×10^{-7}	1.19×10^{-7}

Tabela 2: Błędy dla układu w zależności od wielkości macierzy A, precyzja float64

n	$\kappa(A)$	Thomas	Gauss
2	1.65×10^{0}	0.00×10^{0}	0.00×10^{0}
3	1.98×10^{0}	0.00×10^{0}	0.00×10^{0}
4	2.35×10^{0}	0.00×10^{0}	0.00×10^{0}
5	2.81×10^{0}	2.22×10^{-16}	2.22×10^{-16}
6	3.29×10^{0}	0.00×10^{0}	0.00×10^{0}
7	3.77×10^{0}	1.11×10^{-16}	1.11×10^{-16}
8	4.26×10^{0}	2.22×10^{-16}	2.22×10^{-16}
9	4.75×10^{0}	2.22×10^{-16}	2.22×10^{-16}
10	5.24×10^{0}	2.22×10^{-16}	2.22×10^{-16}
11	5.73×10^{0}	2.22×10^{-16}	2.22×10^{-16}
12	6.22×10^{0}	2.22×10^{-16}	2.22×10^{-16}
13	6.71×10^{0}	2.22×10^{-16}	2.22×10^{-16}
14	7.21×10^{0}	2.22×10^{-16}	2.22×10^{-16}
15	7.70×10^{0}	2.22×10^{-16}	2.22×10^{-16}
16	8.19×10^{0}	2.22×10^{-16}	2.22×10^{-16}
17	8.68×10^{0}	2.22×10^{-16}	2.22×10^{-16}
18	9.18×10^{0}	2.22×10^{-16}	2.22×10^{-16}
19	9.67×10^{0}	2.22×10^{-16}	2.22×10^{-16}
20	1.02×10^{1}	2.22×10^{-16}	2.22×10^{-16}
30	1.51×10^{1}	2.22×10^{-16}	2.22×10^{-16}
50	2.50×10^{1}	2.22×10^{-16}	2.22×10^{-16}
80	3.98×10^{1}	4.44×10^{-16}	4.44×10^{-16}
100	4.97×10^{1}	3.33×10^{-16}	3.33×10^{-16}
200	9.92×10^{1}	2.22×10^{-16}	2.22×10^{-16}
400	1.98×10^{2}	4.44×10^{-16}	4.44×10^{-16}

- $\bullet\,$ Metoda Thomasa osiąga dokładność rzędu 10^{-16} (dla zmiennych double), co odpowiada precyzji maszynowej
- \bullet Metoda eliminacji Gaussa daje błędy rzędu 10^{-1} , które są znacznie większe i utrzymują się na podobnym poziomie bez względu na rozmiar układu
- Nawet dla dużych układów (n=400), błąd metody Thomasa nie przekracza 3.33×10^{-16}

a) Wykres dla precyzji float

b) Wykres dla precyzji double

Rysunek 1: Wykresy norm maksymalnych w zależności od \boldsymbol{n} dla różnych precyzji

2.2 Porównanie czasów wykonania

Tabela 3: Czas wykonania w zależności od wielkości macierzy A, precyzja float

n	Thomas [s]	Gauss [s]
2	5.89×10^{-5}	1.80×10^{-4}
3	4.70×10^{-5}	2.01×10^{-4}
4	8.13×10^{-5}	3.52×10^{-4}
5	5.81×10^{-5}	3.55×10^{-4}
6	6.87×10^{-5}	4.94×10^{-4}
7	8.22×10^{-5}	6.18×10^{-4}
8	8.95×10^{-5}	1.10×10^{-3}
9	1.04×10^{-4}	9.92×10^{-4}
10	1.10×10^{-4}	1.35×10^{-3}
11	1.25×10^{-4}	1.43×10^{-3}
12	1.33×10^{-4}	1.76×10^{-3}
13	1.59×10^{-4}	2.14×10^{-3}
14	1.56×10^{-4}	2.18×10^{-3}
15	1.75×10^{-4}	2.80×10^{-3}
16	1.86×10^{-4}	3.05×10^{-3}
17	2.23×10^{-4}	3.38×10^{-3}
18	2.08×10^{-4}	3.80×10^{-3}
19	2.23×10^{-4}	4.18×10^{-3}
20	2.30×10^{-4}	4.71×10^{-3}
30	3.52×10^{-4}	1.01×10^{-2}
50	6.28×10^{-4}	2.70×10^{-2}

Tabela 4: Czas wykonania w zależności od wielkości macierzy A, precyzja double

n	Thomas [s]	Gauss [s]
$\frac{n}{2}$	3.10×10^{-5}	1.92×10^{-4}
3	3.80×10^{-5}	1.78×10^{-4}
4	4.71×10^{-5}	3.74×10^{-4}
5	6.01×10^{-5}	3.59×10^{-4}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.94×10^{-5}	5.04×10^{-4}
7	8.08×10^{-5}	6.34×10^{-4}
8	8.90×10^{-5}	8.44×10^{-4}
1		
9	1.04×10^{-4}	9.99×10^{-4}
10	1.12×10^{-4}	1.20×10^{-3}
11	1.26×10^{-4}	1.43×10^{-3}
12	1.40×10^{-4}	1.77×10^{-3}
13	1.46×10^{-4}	1.88×10^{-3}
14	1.56×10^{-4}	2.16×10^{-3}
15	1.68×10^{-4}	2.51×10^{-3}
16	1.78×10^{-4}	3.20×10^{-3}
17	2.09×10^{-4}	3.14×10^{-3}
18	2.02×10^{-4}	3.48×10^{-3}
19	2.14×10^{-4}	3.85×10^{-3}
20	2.20×10^{-4}	5.17×10^{-3}
30	3.60×10^{-4}	1.00×10^{-2}
50	5.54×10^{-4}	2.46×10^{-2}
80	8.77×10^{-4}	6.22×10^{-2}
100	1.11×10^{-3}	9.83×10^{-2}
200	2.24×10^{-3}	4.07×10^{-1}
400	4.96×10^{-3}	1.67×10^{0}

b) Wykres dla precyzji double

a) Wykres dla precyzji float

Rysunek 2: Wykresy czasów wykonania w zależności od \boldsymbol{n} dla różnych precyzji

Tabela 5: Porównanie czasów wykonania dla n=50

Precyzja	Thomas [s]	Gauss [s]	Stosunek (Gauss/Thomas)
Double	6.28×10^{-4}	2.70×10^{-2}	≈ 43
Float	5.54×10^{-4}	2.46×10^{-2}	≈ 44

- ullet Metoda Thomasa wykazuje liniowy wzrost czasu wykonania O(n)
- \bullet Metoda Gaussa wykazuje wykładniczy wzrost $O(n^3)$ dla większych n
- $\bullet\,$ Dla n=400,metoda Thomasa jest ponad 300 razy szybsza od metody Gaussa

2.3 Porówanie zużytej pamięci

Tabela 6: Zużycie pamięci w zależności od wielkości macierzy A, precyzja float32

n	Thomas [B]	Gauss [B]
2	7.52×10^{2}	4.30×10^{3}
3	7.56×10^{2}	3.72×10^{3}
4	7.76×10^{2}	3.79×10^{3}
5	7.96×10^{2}	3.88×10^{3}
6	8.16×10^{2}	3.98×10^{3}
7	8.36×10^{2}	4.10×10^{3}
8	8.56×10^{2}	4.24×10^{3}
9	8.76×10^{2}	4.39×10^{3}
10	8.96×10^{2}	4.56×10^3
11	9.16×10^{2}	4.74×10^{3}
12	9.36×10^{2}	4.94×10^{3}
13	9.56×10^{2}	5.16×10^3
14	9.76×10^{2}	5.39×10^3
15	9.96×10^{2}	5.64×10^3
16	1.02×10^{3}	5.90×10^{3}
17	1.04×10^{3}	6.18×10^{3}
18	1.06×10^{3}	6.48×10^{3}
19	1.08×10^{3}	6.79×10^{3}
20	1.10×10^{3}	7.12×10^{3}
30	1.30×10^{3}	1.13×10^{4}
50	1.70×10^3	2.44×10^4

Tabela 7: Zużycie pamięci w zależności od wielkości macierzy A, precyzja float64

	Trl [D]	C [D]
n	Thomas [B]	Gauss [B]
2	7.76×10^{2}	4.25×10^{3}
3	8.16×10^{2}	3.85×10^{3}
4	8.56×10^{2}	3.99×10^{3}
5	8.96×10^{2}	4.17×10^{3}
6	9.36×10^{2}	4.38×10^{3}
7	9.76×10^{2}	4.62×10^{3}
8	1.02×10^{3}	4.89×10^{3}
9	1.06×10^{3}	5.19×10^{3}
10	1.10×10^{3}	5.53×10^{3}
11	1.14×10^{3}	5.90×10^{3}
12	1.18×10^{3}	6.30×10^{3}
13	1.22×10^{3}	6.73×10^{3}
14	1.26×10^{3}	7.19×10^{3}
15	1.30×10^{3}	7.69×10^{3}
16	1.34×10^{3}	8.22×10^{3}
17	1.38×10^{3}	8.78×10^{3}
18	1.42×10^{3}	9.37×10^{3}
19	1.46×10^{3}	9.99×10^{3}
20	1.50×10^{3}	1.06×10^{4}
30	1.90×10^{3}	1.90×10^{4}
50	2.70×10^{3}	4.52×10^{4}
80	3.90×10^{3}	1.09×10^{5}
100	4.70×10^{3}	1.67×10^{5}
200	8.70×10^{3}	6.50×10^{5}
400	1.68×10^{4}	2.58×10^{6}

a) Wykres dla precyzji float

b) Wykres dla precyzji double

Rysunek 3: Wykresy maksymalnej zużytej pamięci w zależności od n dla różnych precyzji

Tabela 8: Porównanie zużycia pamięci dla n=50

Precyzja	Thomas [B]	Gauss [B]	Stosunek (Gauss/Thomas)
Float	2.12×10^{3}	3.08×10^4	≈ 14.5
Double	2.92×10^{3}	4.10×10^{4}	≈ 19.3

- ullet Metoda Thomasa wymaga przechowywania tylko trzech wektorów (a, b, c) o rozmiarze n, co skutkuje liniowym zużyciem pamięci O(n)
- Metoda Gaussa wymaga przechowywania całej macierzy $n \times n$, co daje kwadratowe zużycie pamięci $O(n^2)$
- $\bullet\,$ Dla n=400,metoda Thomasa zużywa około 13 kB pamięci, podczas gdy metoda Gaussa wymaga około 2.57 MB

Wnioski

3 Wnioski ogólne

- 1. Przewaga algorytmu specjalizowanego:
 - \bullet Dokładność: Metoda Thomasa osiąga błąd rzędu 10^{-16} (double), podczas gdy metoda Gaussa jedynie 10^{-1}
 - Wydajność: Dla n=400 metoda Thomasa jest 337 razy szybsza (złożoność O(n) vs $O(n^3)$)
 - Oszczędność pamięci: Dla n=400 metoda Thomasa zużywa 193 razy mniej pamięci (16.8 kB vs 2.58 MB)
- 2. Wpływ rozmiaru układu: Różnica w wydajności między metodami rośnie wykładniczo ze wzrostem n
- 3. Wpływ precyzji:
 - Obliczenia w double są nieoczekiwanie szybsze (o 10-13%) niż w float
 - $\bullet\,$ Dokładność metody Thomasa odpowiada precyzji maszynowej (10^{-7} dla float, 10^{-16} dla double)
- 4. **Stabilność:** Metoda Thomasa zachowuje wysoką dokładność nawet przy rosnącym współczynniku uwarunkowania macierzy