A Configurable CEGAR Framework with Interpolation-Based Refinements

Ákos Hajdu^{1,2}, Tamás Tóth², András Vörös^{1,2}, István Majzik²

¹MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary

²Fault Tolerant Systems Research Group Department of Measurement and Information Systems, Budapest University of Technology and Economics

FORTE 2016, Heraklion, Greece, 08.06.2016.

INTRODUCTION

Introduction – Formal methods

- Proving correctness
- Model checking
 - State space explosion

- Abstraction-based methods
 - Over-approximation
 - Problem: proper precision (coarse ←→ fine)
 - Counterexample-Guided Abstraction Refinement [Clarke et al.'03]
 - Start with a coarse abstraction
 - Refine until sufficient precision is reached

Introduction – CEGAR

Motivation

- Generic framework with interchangeable parts
 - Different abstraction methods
 - Based on symbolic representation of abstract states
 - Different refinement strategies
 - Based on splitting abstract states

A CONFIGURABLE CEGAR FRAMEWORK

Formal model and property

Symbolic Transition System (STS)

```
var loc : integer
                        Variables
    x : integer
var
invariant 0 <= loc and loc <= 3</pre>
                                      Invariant formula
initial loc = 0
                      Initial formula
                                                 Transition formula
transition
                        and loc' = 1 and x' = 0) or
     (loc = 0)
     (loc = 1 and x < 5 and loc' = 2 and x' = x) or
     (loc = 1 and x >= 5 and loc' = 3 and x' = x) or
                           and loc' = 1 and x' = x + 1)
     (loc = 2)
models x <= 5
                     Safety property to be checked:
                     Is x <= 5 for all reachable states?
```


int x

Initial abstraction

- 1. Predicate abstraction [Graf & Saidi'97]
 - Track predicates instead of concrete values
 - |P| predicates \rightarrow 2^{|P|} potential abstract states
 - Label of a state: predicates, e.g. $\neg(x > y) \land (y = 3)$

Variables:								
$x, y; D_x = D_v = \{1, 2, 3\}$								
Predicates:								
(x > y), (y = 3)								

	(x > y)	¬(x > y)
(y = 3)		(x=1, y=3) (x=2, y=3) (x=3, y=3)
¬(y = 3)	(x=2, y=1) (x=3, y=1) (x=3, y=2)	(x=1, y=1) (x=1, y=2) (x=2, y=2)

Initial abstraction

- 2. Explicit value abstraction [Clarke et al.'04]
 - Partition variables: visible / invisible
 - Track values for visible variables only
 - \circ Label of a state: assignment, e.g. $(x = 1) \land (y = 2)$

Variables: x, y, z

$$D_x = \{0, 1\}$$
, $D_y = \{0, 1, 2\}$, $D_z = \{0, 1\}$
Visible = $\{x, y\}$

	x=0	x=1
y=0	(x=0, y=0, z=0) (x=0, y=0, z=1)	(x=1, y=0, z=0) (x=1, y=0, z=1)
y=1	(x=0, y=1, z=0) (x=0, y=1, z=1)	(x=1, y=1, z=0) (x=1, y=1, z=1)
y=2	(x=0, y=2, z=0) (x=0, y=2, z=1)	(x=1, y=2, z=0) (x=1, y=2, z=1)

Initial abstraction

- Predicates vs. explicit values
 - Variable with large domain → predicates
 - Variable appearing in many predicates → explicit
- 3. Combined abstraction
 - Predicates + explicit values for a set of variables
 - Explicit variables
 - User input
 - Heuristics (e.g., location variable)

Model checking

- Explicitly traverse abstract state space
- Safety properties
 - φ holds for each reachable state (AG φ)
 - Counterexample: loop-free path
- Optimizations
 - Explicit values: on-the-fly
 - Predicates: incremental

Counterexample concretization

- Traverse subset of concrete state space
 - Similar to bounded model checking
 - Init₁ Λ Label₁ Λ Trans₁ Λ Label₂ Λ Trans₂ Λ ... Λ Trans_{n-1} Λ Label_n
 - Concrete counterexample

- Spurious counterexample
 - Failure state (s_f)

- Classify states mapped to the failure state
 - D = Dead-end: reachable
 - Init₁ Λ Label₁ Λ Trans₁ Λ ... Λ Trans_{f-1} Λ Label_f
 - B = Bad: transition to next state
 - Label_f Λ Trans_f Λ Label_{f+1}
 - IR = Irrelevant: others

 Goal: finer abstraction mapping D and B to separate abstract states

1. Predicate refinement

O Characterize D and B with formulas, such that D Λ B is

unsatisfiable

- Craig interpolation [Henzinger et al.'04]
 - A predicate ϕ exists corresponding to variables of s_f
 - Generalizing D, contradicting B
- P U {φ} eliminates the spurious counterexample
 - Lazy abstraction: only split s_f

2. Explicit value refinement

- Make some invisible variables visible
 - Variables that can distinguish D and B
- Craig interpolation: generate φ as in predicate refinement
 - Visible := Visible + variables in φ

- Generalization: sequence interpolation [McMillan'06]
 - Sequence of interpolants, one for each state (of the counterex.)
 - Predicate refinement: split a sequence of states
 - Explicit value refinement: extract variables from sequence

EVALUATION

- Java implementation
 - Z3 solver
- Configurations

	Abstraction	Refinement
PC	P redicate	Craig interpolation
PS	P redicate	Sequence interpolation
CC	Combined	Craig interpolation
CS	Combined	Sequence interpolation
EC	E xplicit value	Craig interpolation
ES	E xplicit value	Sequence interpolation

■ +/− property satisfied or violated

- Industrial PLC models (runtime, s)
 - L: locations, V: variables
 - CC, CS: location as explicit variable

Best performance for most models

No preprocessing reductions

Largest state space

L	V	PC	PS	CC	CS	EC	ES
36	66	22.5	50.2	42.0	48.5	36.4	211.8
36	66	22.7	49.4	41.0	47.3	32.2	428.5
17	29	479.2	99.2	28.2	51.8	5.2	9.9
17	29	40.2	14.4	17.6	6.1	3.3	3.8
17	29	44.0	406.7	34.3	36.1	7.6	38.0
17	29	42.2	21.4	17.4	6.3	3.5	4.7
43	82	1512.8		333.1	227.5	1254.5	
43	82	190.8	462.2	164.8	164.8	78.1	50.9
43	82	86.1		46.7	46.2	65.1	123.0
14	23	87.4	94.6	61.3	35.7	11.8	14.5
	36 17 17 17 17 43 43	36 66 17 29 17 29 17 29 17 29	36 66 22.5 36 66 22.7 17 29 479.2 17 29 40.2 17 29 44.0 17 29 42.2 43 82 1512.8 43 82 190.8 43 82 86.1	36 66 22.5 50.2 36 66 22.7 49.4 17 29 479.2 99.2 17 29 40.2 14.4 17 29 44.0 406.7 17 29 42.2 21.4 43 82 1512.8 43 82 190.8 462.2 43 82 86.1	36 66 22.5 50.2 42.0 36 66 22.7 49.4 41.0 17 29 479.2 99.2 28.2 17 29 40.2 14.4 17.6 17 29 44.0 406.7 34.3 17 29 42.2 21.4 17.4 43 82 1512.8 333.1 43 82 190.8 462.2 164.8 43 82 86.1 46.7	36 66 22.5 50.2 42.0 48.5 36 66 22.7 49.4 41.0 47.3 17 29 479.2 99.2 28.2 51.8 17 29 40.2 14.4 17.6 6.1 17 29 44.0 406.7 34.3 36.1 17 29 42.2 21.4 17.4 6.3 43 82 1512.8 333.1 227.5 43 82 190.8 462.2 164.8 164.8 43 82 86.1 46.7 46.2	36 66 22.5 50.2 42.0 48.5 36.4 36 66 22.7 49.4 41.0 47.3 32.2 17 29 479.2 99.2 28.2 51.8 5.2 17 29 40.2 14.4 17.6 6.1 3.3 17 29 44.0 406.7 34.3 36.1 7.6 17 29 42.2 21.4 17.4 6.3 3.5 43 82 1512.8 333.1 227.5 1254.5 43 82 190.8 462.2 164.8 164.8 78.1 43 82 86.1 46.7 46.2 65.1

Combined outperforms pure predicate

Combined outperforms pure predicate

- Fischer's protocol (runtime, s)
 - Mutual exclusion algorithm
 - #: number of participants
 - Clock variables → infinite state space
 - CC, CS: lock as explicit variable

#	PC	PS	CC	CS	Droporty holds
+2	1.2	3.0	0.8	1.2	Property holds
-2	0.6	1.1	0.8	1.2	
+3	12.1	68.2	10.3	45.8	Property violated
-3	1.4	1.5	1.7	2.9	1 Toperty violated
	Cra	ig itp.	is ient		

- Hardware models (runtime, s)
 - Hardware Model Checking Competition
 - I: inputs, L: latches, A: and-gates

	1	L	Α	PC	PS	EC	ES
+mutexp0	11	20	159	10.3	24.5	14.3	22.7
+mutexp0neg	11	20	159	6.1	3.7	8.8	6.7
-nusmv.syncarb52.B	5	10	52	1.3	3.1	0.7	0.2
-nusmv.syncarb102.B	10	20	157	31.6	117.9	239.8	1.6
—pdtpmsarbiter	3	46	209	0.5	4.6	5.3	7.8
+ringp0	15	25	145	16.4	25.6	16.1	14.5
+ringp0neg	15	25	145	7.8	35.7	187.5	108.2
+srg5ptimonegnv	30	47	304	0.3	0.5	1.7	1.3

Predicate abs. is more efficient with Craig itp.

Expl. val. abs. is more efficient with sequence itp.

CONCLUSIONS

Conclusions

Results

- Configurable CEGAR framework
 - Different abstraction methods
 - Different refinement strategies
 - Initial abstraction: predicates with explicit values
- Evaluation
 - Behavior of several configurations on different models
- Future work
 - Further configurations
 - Heuristics for configuration selection

hajdua@mit.bme.hu inf.mit.bme.hu/en/members/hajdua

References

- [Clarke et al.'03] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)
- [Graf & Saidi'97] Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)
- [Clarke et al.'04] Clarke, E.M., Gupta, A., Strichman, O.: SAT-based counterexample-guided abstraction refinement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(7), 1113–1123 (2004)
- [Henzinger et al.'04] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 232–244. ACM (2004)
- [McMillan'06] McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

Details of measurements

Industrial PLC models

- L: locations, V: variables
- T: runtime (s), #R: refinements, #S: total abstract states
- CC, CS: location as explicit variable

				PC			PS			CC			CS		EC			ES		
	L	V	T	#R	#S	T	#R	#S	T	#R	#S	T	#R	#S	Т	#R	#S	T	#R	#S
-PLC01	36	66	22.5	33	100	50.2	34	191	42	20	452	48.5	1	81	36.4	7	1640	211.8	3	758
-PLC02	36	66	22.7	33	100	49.4	34	191	41	20	452	47.3	1	81	32.2	7	1697	428.5	5	1439
+PLC03	17	29	479.2	195	6694	99.2	23	292	28.2	34	629	51.8	6	212	5.2	1	339	9.9	1	369
-PLC04	17	29	40.2	64	1076	14.4	16	82	17.6	21	353	6.1	2	47	3.3	1	165	3.8	1	165
+PLC04	17	29	44	65	1069	406.7	31	1198	34.3	35	650	36.1	5	192	7.6	2	274	38	1	209
+PLC05	17	29	42.2	63	1130	21.4	17	98	17.4	21	352	6.3	2	47	3.5	1	167	4.7	1	167
+PLC06	43	82	1512.8	159	4812				333.1	52	1369	227.5	2	120	1254.5	3	20956			
+PLC07	43	82	190.8	58	552	462.2	66	1057	164.8	26	657	164.8	1	70	78.1	2	1163	50.9	1	518
-PLC08	43	82	86.1	37	111				46.7	0	43	46.2	0	43	65.1	2	628	123	3	541
+PLC09	14	23	87.4	90	1716	94.6	32	633	61.3	94	1845	35.7	11	193	11.8	5	1261	14.5	4	833

Details of measurements

- Fischer's protocol
 - Mutual exclusion algorithm
 - #: number of participants
 - Clock variables → infinite state space
 - CC, CS: lock as explicit variable
 - T: runtime (s), #R: refinements, #S: total abstract states

		PC			PS			CC		CS			
#	T	#R	#S	Т	#R	#S	T	#R	#S	T	#R	#S	
+2	1.2	17	69	3	15	107	0.8	18	66	1.2	14	78	
-2	0.6	11	41	1.1	9	45	0.8	18	62	1.2	12	58	
+3	12.1	97	998	68.1	101	1584	10.3	93	1329	45.8	99	1334	
-3	1.4	19	70	1.5	9	44	1.7	28	121	2.9	21	105	

Details of measurements

- Hardware models
 - Hardware Model Checking Competition
 - I: inputs, L: latches, A: and-gates
 - T: runtime (s), #R: refinements, #S: total abstract states

				PC			PS				EC		ES		
	1	L	Α	T	#R	#S	T	#R	#S	T	#R	#S	T	#R	#S
+mutexp0	11	20	159	10.3	63	494	24.5	43	420	14.3	8	742	22.7	7	806
+mutexp0neg	11	20	159	6.1	44	284	3.7	12	82	8.8	9	441	6.7	6	330
-nusmv.syncarb52.B	5	10	52	1.3	30	139	3.1	14	132	0.7	6	113	0.2	2	18
-nusmv.syncarb102.B	10	20	157	31.6	110	779	117.9	56	1491	239.8	11	5179	1.6	2	32
—pdtpmsarbiter	3	46	209	0.5	6	22	4.6	6	22	5.3	15	130	7.8	13	108
+ringp0	15	25	145	16.4	55	300	25.6	19	127	16.1	10	763	14.5	7	657
+ringp0neg	15	25	145	7.8	21	83	35.7	31	237	187.5	11	4870	108.2	7	2629
+srg5ptimonegnv	30	47	304	0.3	3	9	0.5	4	15	1.7	4	40	1.3	3	36

