problemSet_2

Tianjian Xie

2022-09-22

Fuel Economy Part1

1. Do an analysis of Fuel economy over the 40 year span 1984 through 2023, inclusive. You may want to do an analysis by type of fuel which will ignore hybrids and electric vehicles for most the the years under analysis.

```
vehicles <- read.csv("C:/Users/JasonXie/Desktop/TianjianXie/BU/MSSP/MA615_Data Science in R/HW/Set
2/vehicles.csv")
del <- c()
for(i in 1:length(vehicles$fuelType)) {
   if(grepl('Electricity', vehicles$fuelType[i])) {
     del <- c(del,i)
   }
}
vehicles <- vehicles[-del,]
unique(vehicles$fuelType)</pre>
```

```
## [1] "Regular" "Premium"

## [3] "Diesel" "CNG"

## [5] "Gasoline or natural gas" "Gasoline or E85"

## [7] "Gasoline or propane" "Premium or E85"

## [9] "Midgrade"
```

```
table(vehicles$fuelType)
```

```
##
##
                         CNG
                                                                Gasoline or E85
                                               Diesel
##
                                                  1253
                                                                            1377
## Gasoline or natural gas
                                 Gasoline or propane
                                                                        Midgrade
##
                                                                             148
##
                                       Premium or E85
                    Premium
                                                                         Regular
##
                       13625
                                                   127
                                                                           28179
```

Fuel Economy Part2

2. Now, examine vehicle makers. Which ones have made the most progress? Make at least two plots that address the questions above. As you do your work, you may make many plots. If you include plots in addition to the two that described above, make sure that they address different issues and are not simply intermediate steps you took as you made the to plots you're submitting for questions 1 and 2.

 $\label{les2} $$ \ensuremath{\text{vehicles2}} \le \ensuremath{\text{read.csv}("C:/Users/JasonXie/Desktop/TianjianXie/BU/MSSP/MA615_Data Science in R/HW/Set2/vehicles.csv")} $$$

#Find which car maker has large sample table(vehicles2\$make)

##		
##	Acura	Alfa Romeo
##	388	87
##	AM General	American Motors Corporation
##	6	27
##	ASC Incorporated	Aston Martin
##	1	176
##	Audi	Aurora Cars Ltd
##	1199	1
##	Autokraft Limited	Avanti Motor Corporation
##	4	2
##	Azure Dynamics	Bentley
##	2	163
##	Bertone	Bill Dovell Motor Car Company
##	7	4
##	Bitter Gmbh and Co. Kg	BMW
##	5	2296
##	BMW Alpina	Bugatti
##	3	19
##	Buick	BYD
##	705	
##	Cadillac	CCC Engineering
##	709	Change Lan
##	Chevrolet 4330	Chrysler 747
##	CODA Automotive	Consulier Industries Inc
##	CODA Automotive	
##	CX Automotive	Dabryan Coach Builders Inc
##	17	9
##	Dacia	Daewoo
##	3	67
##	Daihatsu	Dodge
##	17	2659
##	E. P. Dutton, Inc.	Eagle
##	1	161
##	Environmental Rsch and Devp Corp	Evans Automobiles
##	1	3
##	Excalibur Autos	Federal Coach
##	1	14
##	Ferrari	Fiat
##	260	77
##	Fisker	Ford
##	1	3644
##	General Motors	Genesis
##	1	96
##	Geo	GMC
##	147	2724
##	Goldacre	Grumman Allied Industries
##	1	1
##	Grumman Olson	Honda
##	4	1111
##	Hummer	Hyundai

шш	10	010
##	19	918
##	Import Foreign Auto Sales Inc	Import Trade Services
##	l Infiniti	Isia Impanta Ital
##	463	Isis Imports Ltd 1
##	I suzu	J.K. Motors
##	434	36
##	Jaguar	JBA Motorcars, Inc.
##	521	JDA MOTOICAIS, IIIC.
##	Jeep	Kandi
##	1068	Kanui 1
##	Karma	Kenyon Corporation Of America
##	5	4
##	Kia	Koenigsegg
##	734	3
##	Laforza Automobile Inc	Lambda Control Systems
##	2	1
##	- Lamborghini	Land Rover
##	155	307
##	Lexus	Lincoln
##	610	397
##	London Coach Co Inc	London Taxi
##	1	1
##	Lotus	Lucid
##	65	6
##	Mahindra	Maserati
##	1	187
##	Maybach	Mazda
##	31	1079
##	Mcevoy Motors	McLaren Automotive
##	6	48
##	Mercedes-Benz	Mercury
##	1766	609
##	Merkur	MINI
##	14	502
##	Mitsubishi	Mobility Ventures LLC
##	1115	4
##	Morgan	Nissan
##	3	1594
##	Oldsmobile	Pagani
##	462	Paras Auto Davidourant
##	Panos	Panoz Auto-Development
##	1 Panther Car Company Limited	PAS Inc - GMC
		PAS THE GMC
##	4 PAS, Inc	Peugeot
##	7 A3, 1110 2	98
##	Pininfarina	Plymouth
##	6	526
##	Polestar	Pontiac
##	9	893
##	Porsche	Quantum Technologies
	10130116	quantum recumenegles

##	1318	2
##	Qvale	- Ram
##	1	127
##	Red Shift Ltd.	Renault
##	2	56
##	Rivian	Rolls-Royce
##	2	221
##	Roush Performance	RUF Automobile
##	69	3
##	Ruf Automobile Gmbh	S and S Coach Company E.p. Dutton
##	3	1
##	Saab	Saleen
##	432	5
##	Saleen Performance	Saturn
##	5	278
##	Scion	Shelby
##	84	1
##	smart	Spyker
##	38	13
##	SRT	Sterling
##	2	12
##	STI	Subaru
##	1	972
##	Superior Coaches Div E.p. Dutton	Suzuki
##	1	515
##	Tecstar, LP	Tesla
##	6	124
##	Texas Coach Company	Toyota
##	4	2296
##	TVR Engineering Ltd	Vector
##	4	4
##	Vixen Motor Company	Volga Associated Automobile
##	1	1
##	Volkswagen	Volvo
##	1280	893
##	VPG	Wallace Environmental
##	5	32
##	Yugo	
##	8	

```
#Select Ford(3644 Samples), Chevrolet(4330 Samples), and Dodge(2659 Samples) to make comparison.
Fordtable <- vehicles2[vehicles2$make == "Ford", ]
Chevrolettable <- vehicles2[vehicles2$make == "Chevrolet", ]
Dodgetable <- vehicles2[vehicles2$make == "Dodge", ]</pre>
#To explain what does "progress" mean, I will choose barrels08(annual petroleum consumption in bar
rels for fuelTypel (1)), barrelsAO8(annual petroleum consumption in barrels for fuelType2 (1)) as
 year going
plotFord <- ggplot(Fordtable) +</pre>
  aes(x = year, y = barrels08 + barrelsA08) +
  geom_point(shape = "circle", size = 1.5, colour = "#112446") +
  geom\ smooth(span = 0.75)
  labs(
    x = "Year",
    y = "Barrels",
    title = "Ford Cars' Annual Petroleum Consumption in Barrels",
    subtitle = "1984-2023"
  ) +
  theme_minimal()
```

NULL

plotFord

```
## geom_smooth() using method = 'gam' and formula 'y s(x, bs = "cs")'
```



```
plotChevrolet <- ggplot(Chevrolettable) +
   aes(x = year, y = barrels08 + barrelsA08) +
   geom_point(shape = "circle", size = 1.5, colour = "#112446") +
   geom_smooth(span = 0.75)
   labs(
        x = "Year",
        y = "Barrels",
        title = "Chevrolet Cars' Annual Petroleum Consumption in Barrels",
        subtitle = "1984-2023"
   ) +
    theme_minimal()</pre>
```

NULL

plotChevrolet

```
## geom_smooth() using method = 'gam' and formula 'y s(x, bs = "cs")'
```



```
plotDodge <- ggplot(Dodgetable) +
  aes(x = year, y = barrels08 + barrelsA08) +
  geom_point(shape = "circle", size = 1.5, colour = "#112446") +
  geom_smooth(span = 0.75)
  labs(
    x = "Year",
    y = "Barrels",
    title = "Dodge Cars' Annual Petroleum Consumption in Barrels",
    subtitle = "1984-2023"
  ) +
  theme_minimal()</pre>
```

NULL

plotDodge

```
## geom_smooth() using method = 'gam' and formula 'y s(x, bs = "cs")'
```


#From the graph we can see cars made by Ford have the largest progress on decrease the consumption of petroleum

NASDAQ Composite

The Nasdaq Composite (ticker symbol ^IXIC) is a stock market index that includes almost all stocks listed on the Nasdaq stock exchange. Along with the Dow Jones Industrial Average and S&P 500, it is one of the three most-followed stock market indices in the United States. Your mission is using ggplot to create a Candlestick chart with the Nasdaq Composite data from September 20, 2021 to September 20, 2022, using file IXIC21-22.csv. Be aware of the following when you create your chart: • Make sure the X-axis is Date and the Y-axis is Adjust Close. • Include an appropriate title with your graph. • Make sure your data is clean before you create the plot. • The format for X label will be month-year or year-month eg, Jul-2022, 07-2022, 2022-07 • You might need to use tidyquant package to create this plot. • In a sentence or two, what does this plot show?

```
NASDAQdata <- read.csv("C:/Users/JasonXie/Desktop/TianjianXie/BU/MSSP/MA615_Data Science in R/HW/S et2/IXIC21-22.csv")

NASDAQdata$Date <- as.Date(NASDAQdata$Date)
ggplot(data = NASDAQdata, aes(x = Date, y = Adj.Close)) +
    geom_candlestick(aes(open = Open, high = High, low = Low, close = Close), colour_up = "darkgree", colour_down = "red", fill_up = "darkgreen", fill_down = "red") +
    labs(title = "NASDAQ", y = "Adjust Close", x = "Date") +
    theme_tq()
```


#This shows the daily changing of Adjust Price, which means the amends closing price of stocks ref lected the stocks' value after accounting for any corporate actions, of the NASDAQ, from 2021-09-2 1 to 2022-09-20

##Rural Capacity Index 1. Create a plot that emphasizes rural capacity indexes. Choose your other variables to reflect their contribution to the rural capacity index.

RCIdata <- read.csv("C:/Users/JasonXie/Desktop/TianjianXie/BU/MSSP/MA615_Data Science in R/HW/Set 2/ruralCapacityData.csv") #1 I choose pop_total as y-axis and use per_over_25_with_bach to color the plot. This graph shows that how the total population and the percentage of the population that can fit working affects t he CPI. ggplot(RCIdata) + aes ($x = cap_index$, y = pop total, colour = per_over_25_with_bach geom_point(shape = "square", size = 1.5) + scale color viridis c(option = "magma", direction = 1) + x = "CPI",y = "Total Population", title = "CPI Based on Labor Force") +

CPI Based on Labor Force

theme dark()

#The graph shows that as the population of labor force (In this case, explained as the product of the population and percentage of population over 25 with bachelor degree.) smaller, the CPI will be lower. If the population, or the percentage, or both variables are high, the CPI might also high.

##Rural Capacity Index 2. Create a plot that demonstrates the relationship between the number of houses with broadband and the percent of adults, 25 and older, with bachelor degrees. Include information about the rural capacity indexes.

```
ggplot(RCIdata) +
  aes(
   x = per over 25 with bach,
   y = house broadband,
    colour = cap index
 ) +
  geom point(shape = "square", size = 1.5) +
  scale color viridis c(option = "magma", direction = 1) +
  labs(
    x = "Number of Houses with Broadband",
   y = "Percentage of Population Over 25 with Bachelor Degree",
    title = "House broadband vs Per over 25 with bach",
    subtitle = "Relationship between Population of House with Broadband and percentage of populati
on over 25 with Bachelor degree,
    including CPI "
 ) +
  theme dark()
```

House_broadband vs Per_over_25_with_bach

Relationship between Population of House with Broadband and percentage of population over including CPI

##Rural Capacity Index 3. Explore different sizes of communities and their capacity indexes. Create three plots that describe communities with total population < 16000, 16000 < total population < 55000, and total population > 55000. What facets of each population subsection stand out to you, demonstrate them in your plots.

```
#Total Population < 16000
RCIdata %>%
filter(pop_total < 16000L) %>%
ggplot() +
   aes(x = pop_total, y = cap_index) +
   geom_point(shape = "square", size = 2L, colour = "#112446") +
   geom_smooth(span = 0.75) +
labs(
    x = "SmallPop",
    y = "CPI",
    title = "CPI vs. Small Population"
) +
   theme_minimal()
```

```
## geom_smooth() using method = 'loess' and formula 'y \tilde{x}'
```



```
#Total Population between 16000 and 55000
RCIdata %>%
filter(pop_total > 16000L & pop_total < 55000L) %>%
ggplot() +
   aes(x = pop_total, y = cap_index) +
   geom_point(shape = "square", size = 2L, colour = "#112446") +
   geom_smooth(span = 0.75) +
   labs(
        x = "MediumPop",
        y = "CPI",
        title = "CPI vs. Medium Population"
) +
   theme_minimal()
```

```
## \geq \infty_s \pmod 0 using method = 'loess' and formula 'y \sim x'
```



```
#Total Population > 55000
RCIdata %>%
filter(pop_total > 55000L) %>%
ggplot() +
   aes(x = pop_total, y = cap_index) +
   geom_point(shape = "square", size = 2L, colour = "#112446") +
   geom_smooth(span = 0.75) +
   labs(
        x = "LargePop",
        y = "CPI",
        title = "CPI vs. Large Population"
) +
   theme_minimal()
```

```
## geom_smooth() using method = 'loess' and formula 'y x'
```


