Politechnika Warszawska

Zakład Podstaw Konstrukcji

Projektowanie

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

1 marca 2023 Wersja 1.22

Charakterystyka silników elektrycznych

- * silniki prądu stałego (regulacja liczby obrotów),
- * silnik<mark>i p</mark>rądu zmiennego:
- ** synchroniczne (częstotliwość obracania jest sztywno powiązana z częstotliwością prądu); zalety: duża sprawność, niewrażliwość na zmiany napięcia w sieci; zastosowanie: napędy o dużych mocach,
- ** asynchroniczne (częstotliwość obracania spada wraz ze wzrostem obciążenia); zalety: prosta konstrukcja, tanie, wysoka sprawność.

Dobór mocy silnika przy pracy ciągłej

Obciążenie silnika jest stałe w czasie M_0 i znana jest prędkość obrotowa ϖ_N

$$P_N = M_0 \cdot \varpi_N$$

Uwzględniając istnienie przekładni oraz strat

$$P_{N} = \frac{M_{0} \cdot \varpi_{N}}{i \cdot \eta_{N}}$$

Z katalogu dobiera się silnik o najbliższy spełniającej powyższe równianie. Następnie sprawdza się pozostałe warunki na M_{max} i M_r .

Współczynnik sprawności

		11	
$\eta_{ m N}$	_	$\prod_{i=1}$	η

rodzaj przekładni	zamknięta	otwarta
walcowa przekładnia zębata	$0.95 \div 0.98$	$0.92 \div 0.94$
stożkowa p <mark>rze</mark> kładnia zę <mark>ba</mark> ta	$0.94 \div 0.97$	$0.91 \div 0.93$
przekładnia ślimakowa niesamohamowana dla liczby zwojów ślimaka $z_1 = 1$	$0,68 \div 0,72$	$0,52 \div 0,62$
przekładnia ślimakowa niesamohamowana dla liczby zwojów ślimaka $oldsymbol{z}_1=2$	$0,73 \div 0,78$	$0,60 \div 0,70$
przekładnia ślimakowa samohamowana dla liczby zwojów ślimaka $oldsymbol{z}_1=4$	$0.78 \div 0.85$	@ /
przekładnia ślimakowa samohamowana dla liczby zwojów ślimaka $z_1 = 1$	0,45	0,4
przekładnia łańcuchowa	$0.94 \div 0.96$	$0.90 \div 0.93$
przek <mark>ład</mark> nia cierna	$0.88 \div 0.94$	$0,70 \div 0,85$
przekładnia pasowa o pasie klinowym, zębatym	$0.93 \div 0.95$	
przekładnia pasowa o pasie płaskim	$0.94 \div 0.96$	
łożyska toczne (jedna para)	żyska toczne (jedna para) $0,99 \div 0,995$	
łożyska ślizgowe o tarciu płynnym (jedna para)	0,99 ÷	- 0,995
łożyska <mark>śliz</mark> gowe o ta <mark>rci</mark> u mieszan <mark>ym</mark> (jedna pa <mark>ra</mark>)	$0.975 \div 0.985$	
sprzęgła	0,97 -	÷ 0,98

Zalecane przełożenia

Rodzaj przekładni	Przełożenie	
Rodzaj przekładni	zalecane	graniczne
zamknięta walcowa szybkobieżna	$3,1 \div 5,0$	8
zamknięta walcowa wolnobieżna	$2,5 \div 4,0$	6,3
zamkni <mark>ęta</mark> walcow <mark>a o z</mark> ębach da <mark>szko</mark> wych	$3,0 \div 5,0$	6,3
zamknięta stożkowa o zębach prostych	$2,0 \div 3,0$	5
zamknięta stożkowa o zębach skośnych	$4,0 \div 6,0$	7
otwarta walcowa	$4,0 \div 7,0$	12
otwarta stożkowa	$3,0 \div 5,0$	7
ślimakowa dla liczby zwojów śmimaka $z_1 = 1$	$28 \div 50$	80
ślimakowa dla liczby zwojów śmimaka $z_1=2$	$14 \div 40$	60
ślimakowa dla liczby zwojów śmimaka $z_1 = 4$	$8 \div 30$	40
pasowa o pasie klinowym, zębatym	$2 \div 5$	7
pasowa o p <mark>asi</mark> e płaskim	$2 \div 4$	6
łańcuchowa	$2 \div 5$	7

Dobór mocy silnika przy pracy ciągłej i zmiennym obciążeniu Warszawska

Metody postępowania strat średnich, prądu zastępczego,

momentu zastępczego,

* mocy zastępczej,

Warszawska

Metoda strat średnich

Każdej wartości obciążenia P_i odpowiadają straty ΔP_z , prąd I_i oraz ciepło wydzielane w maszynie Q_i .

W czasie t_0 wydzieli się ciepło $Q = \sum_{n=0}^{i=1} Q_i$ straty zastępcze będą wynosić

$$\Delta P_z = \frac{\sum\limits_{i=1}^{i=1} \Delta P_i \cdot t_i}{t_0}$$

Moc silnika dobiera się tak, by spełniony był warunek:

$$\Delta P_N = P_N \cdot \frac{1 - \eta_N}{\eta_N} \ge \Delta P_z$$

Metoda strat średnich

Metoda jest iteracyjna:

- * wyznaczyć orientacyjna moc silnika $P=1,1\div 1,3\frac{\sum\limits_{n}^{i=1}\Delta P_{i}\cdot t_{i}}{t_{0}}$
- * na podstawie wykresu $\eta=f(P)$ wyznacza się straty $\Delta \! P_i=\! P_i\cdot rac{1-\eta_i}{\eta_i}$
- * oblicza się ΔP_N .

Metoda strat średnich

Gdy okres t_0 zawiera czas postoju t_s lub okres hamowania t_h i rozruchu t_r to przy przewietrzaniu własnym silnika straty własne pogarszają się;

$$\Delta P_z = \frac{\Delta P_r \cdot t_r + \sum_{n=1}^{i=1} \Delta P_i \cdot t_i + \Delta P_h \cdot t_h}{\alpha \cdot (t_r + t_h) + \sum_{n=1}^{i=1} t_i + \beta \cdot t_s}$$

Współczynnik β przyjmuje się dla silników:

- * zamkniętych bez przewietrzania $\beta=0.9\div0.95$,
- * zamkniętych z przewietrzaniem $\beta = 0.4 \div 0.6$,
- * półotwartych z przewietrzaniem $\beta = 0.25 \div 0.35$.

Politechnika Warszawska

Metoda momentu zastępczego

Stosowana gdy dany jest $M_0 = f(t)$ i moment obrotowy silnika jest funkcją liniową prądu (silniki obcozbudne, bocznikowe prądu stałego i indukcyjne bez fazy rozruchu i hamowania).

$$\mathbf{M}_{z} = \sqrt{rac{1}{\mathbf{t}_{0}}\int\limits_{i=1}^{\mathbf{t}_{0}}\mathbf{M}^{2}d\mathbf{t}} = \sqrt{rac{\mathbf{M}_{r}^{2}\cdot\mathbf{t}_{r} + \sum\limits_{i=1}^{n}\mathbf{M}_{i}^{2}\cdot\mathbf{t}_{i} + \mathbf{M}_{h}^{2}\cdot\mathbf{t}_{h}}{lpha\cdot(\mathbf{t}_{r} + \mathbf{t}_{h}) + \sum\limits_{n}^{i=1}\mathbf{t}_{i} + eta\cdot\mathbf{t}_{s}}}$$

Moment znamionowy musi spełniać warunek $M_N \ge M_z$ oraz musi być spełniony warunek przeciążalności $\frac{M_{max}}{M_n} \le p_m$

Warszawska

Przykład

Dobrać napęd elektryczny dla znanych:

 $F_{wyj} = 340 \, N$

 $v_{wyj} = 1 \frac{m}{s}$

 $D_{\text{wyj}} = 300 \, \text{mm}$

Oznaczenia:

A - silnik

B — przekładnia pasowa o pasie klinowym,

C — przekładnia walcowa,

E – węzeł łożyskowy,

G – koło przekładni łańcuchowej.

Politechnika Warszawska

Przykład

Moc na wałku wyjściowym:

$$P = F_{wyj} \cdot v_{wyj} = 3.4 \,\mathrm{kW}$$

Współczynnik sprawności napędu:

$$\eta = \eta_{PP} \cdot \eta_{L} \cdot \eta_{PW} \cdot \eta_{L} = 0.894$$

Moc obliczeniowa silnika wynosi:

$$P_o = \frac{P}{n} = 3,804 \, \text{kW}$$

Częstot<mark>li</mark>wość o<mark>b</mark>racani<mark>a w</mark>ałka wyjściowego:

$$n_{wyj} = rac{\mathbf{v}_{wyj}}{\pi \cdot D_{wyj}} = 63,662 \, \mathrm{min}^{-1}$$

Przykład

Zalecane przełożenie powinno znajdować się między $i_{min} = 6$ a $i_{max} = 24$, zatem częstotliwość obracania wałka wyjściowego mieści się w przedziale:

$$n_{min} = i_{min} \cdot n_{wyj} = 382 min^{-1}$$

 $n_{max} = i_{max} \cdot n_{wyj} = 1528 min^{-1}$

Z katalogu dobrano silnik elektryczny o mocy $P_s=4kW$ ($P_s>P_o$) oraz $n_s=950\,min^{-1}$. Rzeczywiste przełożenie w układzie wynosi $i_{rzecz}=\frac{n_s}{n_{wyj}}=14,92$

Bibliografia

A. Dziurski, E. Mazanek, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT, 2015. isbn: 9788393491360.

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiei". 2011. isbn: 9788388906343.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.
tom 1. WNT, 2005. isbn: 9788320435528.

W. Starego. Poradnik konstruktora przekładni pasowych.

