Multiple Regression

9 questions

1

Which of the following is **NOT** a **linear** regression model. *Hint: remember that a linear regression model is always linear in the parameters, but may use non-linear features.*

- $y = w_0 + w_1 * x$
- $y = w_0 + w_1 * (x^2)$
- 0 y = w_0 + w_1 * log(x)
- O y = w_0 * w_1 + log(w_1) * x

1 point

2.

Your estimated model for predicting house prices has a large positive weight on 'square feet living'. This implies that if we remove the feature 'square feet living' and refit the model, the new predictive performance will be **worse** than before.

- True
- O False

1 point

3.

•	ete the following: Your estimated model for predicting house prices has		
•	ve weight on 'square feet living'. You then add 'lot size' to the model estimate the feature weights. The new weight on 'square feet living'		
[] be positive.		
0	will not		
0	will definitely		
0	might		
point 4. If you c	louble the value of a given feature (i.e. a specific column of the feature		
other 1	, what happens to the least-squares estimated coefficients for every eature? (assume you have no other feature that depends on the d feature i.e. no interaction terms).		
0	They double		
0	They halve		
0	They stay the same		
0	It is impossible to tell from the information provided		
1 point			
5. Gradie	nt descent/ascent is		
0	A model for predicting a continuous variable		
0	An algorithm for minimizing/maximizing a function		
0	A theoretical statistical result		
0	An approximation to simple linear regression		
0	A modeling technique in machine learning		

poin	t
6. Gradie	ent descent/ascent allows us to
0	Predict a value based on a fitted function
0	Estimate model parameters from data
0	Assess performance of a model on test data
1 poin	t
	of the following statements about step-size in gradient descent is/a (select all that apply)
	It's important to choose a very small step-size
	The step-size doesn't matter
	If the step-size is too large gradient descent may not converge
Ш	
1 poin 8.	If the step size is too small (but not zero) gradient descent may tak a very long time to converge
8. Let's a regres observinverse focus of	If the step size is too small (but not zero) gradient descent may take a very long time to converge t nalyze how many computations are required to fit a multiple linear sion model using the closed-form solution based on a data set with vations and 10 features. In the videos, we said that computing the e of the 10x10 matrix (H^T)H was on the order of D^3 operations. Let
8. Let's a regres observinverse focus or require	If the step size is too small (but not zero) gradient descent may take a very long time to converge t nalyze how many computations are required to fit a multiple linear sion model using the closed-form solution based on a data set with vations and 10 features. In the videos, we said that computing the e of the 10x10 matrix (H^T)H was on the order of D^3 operations. Leads on forming this matrix prior to inversion. How many multiplications

1
point

9.

More generally, if you have D features and N observations what is the total complexity of computing $((H^T)H)^(-1)$?

- O(D^3)
- O(ND^3)
- O(ND $^2 + D^3$)
- **O** O(ND^2)
- $O(N^2D + D^3)$
- O(N^2D)

Submit Quiz

