Lecture 2

Data and methods

Data in phylogenetics

1. Data preparation

- Sample taxonomic groups and genomic regions
- Alignment
- Data filtering

2. Phylogenetic inference

- Method selection
- Parameter estimation (including the tree)
- Additional analysis and interpretation

Data in phylogenetics

- Select data to optimize signal:noise
 - · Slowly evolving regions for ancient evolutionary events
 - Regions that evolve quickly for recent evolutionary events
- Homoplasy
 - Organisms have similarities that do not reflect evolutionary history
- Take advantage of available resources

Types of data

- Sequences
 - Nucleotides
 - Amino acids
- Binary data (presence absence of genomic features)
- Microsatelites (number of repeats)
- Single Nucleotide Polimorphisms (SNP)
- Reduced representation sequences

Sequence types

- Coding regions
 - Ribosomal RNA
 - Protein coding
- Non-coding regiosn
 - Intergenic regions
 - Introns
- Amino acids

Sequence types

Gen codificante

		M	R	E	P	Y	S	R
brown bear	CGTTAGC	AT	GAG	GGA	ACC	CTA	CTC	TAGG
							S	
cave bear	CGATAG-TC	AT(GAG	GGA	ACC	CTA	CTC	TAGG
							P	
black bear	CGTTAG-TT	AT(GAG	GGA	ATC	CTA	CCC	TAGG
		M					S	R
panda	CAGGTTT	AT(GAG	GCA	TTC	C	-TC	TAGG

Phylogenetic methods

Maximum parsimony

Maximum parsimony

Maximum parsimony

- Identifies the topology that explains the data with the minimum possible number of evolutionary changes
- Often use for analysis of morphological data
- Nowadays rarely used for analyses of molecular data
 - Does not allow estimation of molecular rates or times of divergence
 - Has undesired effects when there have been multiple molecular evolutionary events

True substitutions

- Maximum parsimony does not take into account multiple evolutionary events at one site
- This leads to a problem called long branch attraction
 - Long branches = multiple molecular substitutions
 - Similarities (homoplasy) emerge stochastically
 - Long branches are grouped

Long branch attraction

We can use statistical models to correct for multiple events

Popular methods in phylogenetics

- 1. Maximum parsimony
- 2. Distance methods
- 3. Maximum likelihood
- 4. Bayesian inference

Statistical methods

Maximum likelihood

Probability	Model		
Tree 1	0.1		
Tree 2	0.7		
Tree 3	0.15		
Tree 4	0.05		
Sum	1		

Probability	Model		
Tree 1	0.1		
Tree 2	0.7		
Tree 3	0.15		
Tree 4	0.05		
Sum	1		

A mathematical function gives us the probability of each tree:

The phylogenetic likelihood function

• A molecular substitution is a stochastic event

- A molecular substitution is a stochastic event
 - We are interested in the probability of transition

Hypothesis on the number of changes

- A molecular substitution is a stochastic event
 - We are interested in the probability of transition

Hypothesis on the number of changes

The Poisson Distribution describes discrete stochastic events

- A molecular substitution is a stochastic event
 - We are interested in the probability of transition

Hypothesis on the number of changes

- The Poisson Distribution describes discrete stochastic events
 - The transition probability is given by the equation: e^{Qv}

The likelihood of a hypothesis

The likelihood of a hypothesis

The likelihood of a hypothesis

Maximum likelihood

Likelihood optimization

- Search the space of possible trees and parameters
- Calculate the likelihood of each
- Find the case with the maximum likelihood
- Optimize multiple variables

How to find the best tree

• For n taxa, the number of possible unrooted trees (B_n) is:

$$B_n = 1 \times 3 \times 5 \times ... \times (2n - 5) = \prod_{i=3}^{n} (2i - 5)$$

- For example:
 - 4 taxa → 3 trees
 - 5 taxa → 15 trees
 - 10 taxa \rightarrow 2,027,025 trees

How to find the best tree

Maximum likelihood estimates

Parameters of a substitution model

A phylogenetic tree with branch lengths

Likelihoods are attributes of models

Probability	Model 1
Tree 1	0.1
Tree 2	0.7
Tree 3	0.15
Tree 4	0.05
Sum	1

Likelihoods are attributes of models

Probability	Model 1	Modelo 2	Modelo 3
Tree 1	0.1	0.2	0.05
Tree 2	0.7	0.29	0.35
Tree 3	0.15	0.5	0.4
Tree 4	0.05	0.01	0.2
Sum	1	1	1

Likelihoods are attributes of models They don't sum to 1 across models

Probability	Model 1	Modelo 2	Modelo 3
Tree 1	0.1	0.2	0.05
Tree 2	0.7	0.29	0.35
Tree 3	0.15	0.5	0.4
Tree 4	0.05	0.01	0.2
Sum	1	1	1

P(D|H)

Likelihoods are attributes of models They don't sum to 1 across models

Probability	Model 1	Modelo 2	Modelo 3	
Tree 1	0.1	0.2	0.05	
Tree 2	0.7	0.29	0.35	
Tree 3	0.15	0.5	0.4	
Tree 4	0.05	0.01	0.2	
Sum	1	1	1	

Probability is an attribute of the data

Sums to 1 within a model

Strengths and weaknesses

Strengths

- It is a rigorous statistical method
- Can largely correct for multiple substitutions and long branches
- Robust to violation of assumptions

Weaknesses

- Difficult to use when the model has many parameters
- Can be difficult to explore the space of possible trees

Software

RAxML

PhyML

MEGA

PAML

IQ-TREE

Phylogenetic methods in practice

Maximum parsimony

- Often used for analyses of morphological data
- Rarely used for analyses of molecular data

Maximum likelihood

Widely used but partially replaced by Bayesian inference methods