

Grayling 1 Information Base For Generation of Synthetic Thermal Scenes

Jerrell R. Ballard, Jr.

U.S. Army Engineer Waterways Experiment Station Vicksburg, MS

This document has been approved for public telease and sale; its distribution is unlimited.

INTO COLLEY INSPECTION &

19950111 115

SWOE Report 94-1 January 1994

Grayling 1 Information Base For Generation of Synthetic Thermal Scenes

Jerrell R. Ballard, Jr.

U. S. Army Engineer Waterways Experiment Station Vicksburg, MS

Acces	ion For					
DTIC						
Justifi	nounced cation					
By Distrib	By Distribution /					
A	Availability Codes					
Dist	Avail_and or Special					
A-1						

SWOE Report 94-1 January 1994

Approved for public release; distribution unlimited

FOREWORD

SWOE Report 94-1, January 1994, was prepared by J.R. Ballard, Jr. of U.S. Army

Engineer Waterways Experiment Station, Vicksburg, Mississippi.

This report is a contribution to the Smart Weapons Operability Enhancement (SWOE) Program. SWOE is a coordinated, Army, Navy, Marine Corps, Air Force and ARPA program initiated to enhance performance of future smart weapon systems through an integrated process of applying knowledge of the broadest possible range of battlefield conditions.

Performance of smart weapons can vary widely, depending on the environment in which the systems operate. Temporal and spatial dynamics significantly impact weapon performance. Testing of developmental weapon systems has been limited to a few selected combinations of targets and environmental conditions, primarily because of the high costs of full-scale field tests and limited access to the areas or events for which performance data are required.

Performance predictions are needed for a broad range of battlefield environmental conditions and targets. Meeting this need takes advantage of significant DoD investments by Army, Navy, Marine Corps and Air Force in 1) basic and applied environmental research, data collection, analysis, modeling and rendering capabilities, 2) extensive target measurement capabilities and geometry models, and 3) currently available computational capabilities. The SWOE program takes advantage of these DoD investments to produce an integrated process, the SWOE Process.

SWOE is developing, validating, and demonstrating the capability of the SWOE Process to handle complex target and environment interactions for a broad range of battlefield conditions. SWOE is providing the DoD smart weapons and autonomous target recognition (ATR) communities with a validated capability to integrate measurements, information bases, modeling, and simulation techniques for complex environments. This is a DoD-wide partnership that works in concert with advanced weapon system developers

and major weapon system test and evaluation programs.

The SWOE program started in FY89 under Balanced Technology Initiative (BTI) sponsorship. Present sponsorship is by the U.S. Army Corps of Engineers (lead service), the individual services, and the Joint Test and Evaluation (JT&E) program of the Office of the Director of Test & Evaluation, Office of the Under Secretary of Defense OUSD(A/DT&E).

The Joint Test Director is Dr. J.P. Welsh. The Deputy Test Directors are: (Army) LTC Jerre Wilson and (Air Force) Maj Richard Jennings. The Integration Manager is Mr. Richard Palmer. The Modeling Configuration Manager is Dr. George G. Koenig.

Grayling 1 Information Base For Generation of Synthetic Thermal Scenes

Jerrell R. Ballard, Jr.

U.S. Army Engineer Waterways Experiment Station Vicksburg, MS

This document has been approved for public telease and sale; its distribution is unlimited

ISTO QUALITY INSPECTED &

19950111 115

SWOE Report 94-1 January 1994

Grayling 1 Information Base For Generation of Synthetic Thermal Scenes

Jerrell R. Ballard, Jr.

U. S. Army Engineer Waterways Experiment Station Vicksburg, MS

Acces	ion For					
DTIC	rounced \Box					
By						
A	Availability Codes					
Dist	Avail and jor Special					
A-1						

SWOE Report 94-1 January 1994

Approved for public release; distribution unlimited

FOREWORD

SWOE Report 94-1, January 1994, was prepared by J.R. Ballard, Jr. of U.S. Army

Engineer Waterways Experiment Station, Vicksburg, Mississippi.

This report is a contribution to the Smart Weapons Operability Enhancement (SWOE) Program. SWOE is a coordinated, Army, Navy, Marine Corps, Air Force and ARPA program initiated to enhance performance of future smart weapon systems through an integrated process of applying knowledge of the broadest possible range of battlefield conditions.

Performance of smart weapons can vary widely, depending on the environment in which the systems operate. Temporal and spatial dynamics significantly impact weapon performance. Testing of developmental weapon systems has been limited to a few selected combinations of targets and environmental conditions, primarily because of the high costs of full-scale field tests and limited access to the areas or events for which performance data are required.

Performance predictions are needed for a broad range of battlefield environmental conditions and targets. Meeting this need takes advantage of significant DoD investments by Army, Navy, Marine Corps and Air Force in 1) basic and applied environmental research, data collection, analysis, modeling and rendering capabilities, 2) extensive target measurement capabilities and geometry models, and 3) currently available computational capabilities. The SWOE program takes advantage of these DoD investments to produce an

integrated process, the SWOE Process.

SWOE is developing, validating, and demonstrating the capability of the SWOE Process to handle complex target and environment interactions for a broad range of battlefield conditions. SWOE is providing the DoD smart weapons and autonomous target recognition (ATR) communities with a validated capability to integrate measurements, information bases, modeling, and simulation techniques for complex environments. This is

a DoD-wide partnership that works in concert with advanced weapon system developers and major weapon system test and evaluation programs.

The SWOE program started in FY89 under Balanced Technology Initiative (BTI) sponsorship. Present sponsorship is by the U.S. Army Corps of Engineers (lead service), the individual services, and the Joint Test and Evaluation (JT&E) program of the Office of the Director of Test & Evaluation, Office of the Under Secretary of Defense OUSD(A/DT&E).

The Joint Test Director is Dr. J.P. Welsh. The Deputy Test Directors are: (Army) LTC Jerre Wilson and (Air Force) Maj Richard Jennings. The Integration Manager is Mr. Richard Palmer. The Modeling Configuration Manager is Dr. George G. Koenig.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-430	02, and to the Office of Management and		
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE January 1994	3. REPORT TYPE AND Final report	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Grayling 1 Information Bas	e for Generation of Synthe	etic Thermal	
Scenes			
·			
6. AUTHOR(S)			
Jerrell R. Ballard, Jr.			
7. PERFORMING ORGANIZATION NAM	IE(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
			REPORT NUMBER
U.S. Army Engineer Water Environmental Laboratory	ways Experiment Station		
3909 Halls Ferry Road, Vic	kshurg MS 30180_6100		
Java Halls Pelly Road, Vic	Modus, 1910 37100-0177		
9. SPONSORING/MONITORING AGENC	TV NAME/C) AND ADDDECC/EC		10. SPONSORING / MONITORING
		' l	AGENCY REPORT NUMBER
U.S. Department of Defens			
Smart Weapons Operability			
Joint Test and Evaluation Hanover, NH 03755-1290			
11. SUPPLEMENTARY NOTES			
Available from National Te	echnical Information Servi	ce, 5285 Port Royal Re	oad, Springfield, VA 22161.
	•		
12a. DISTRIBUTION / AVAILABILITY STA	ATEMENT		12b. DISTRIBUTION CODE
Approved for public release	e; distribution is unlimited		
	,		
13. ABSTRACT (Maximum 200 words)			
Decodyras on being 4	avaloned for the environm	ental information hase	component of the Smart Weap-
one Operability Ephanceme	eveloped for the environing ant/Ioint Test and Evaluati	on (SWOF/IT&F) Pro	gram analytical thermal infra-
red scene generation proces	dure. Scope is limited to d	ocumentation of the i	iformation base content and
data processing/analysis pr	ocedures developed to sati	sfy other component r	equirements such as thermal
signature modeling, therma	al radiance field prediction	s, and generation of re	alistic graphic representations
of the three-dimensional th			-
	-		
14. SUBJECT TERMS			15. NUMBER OF PAGES
Environment	•	nthetic image	48
Geographic information sy	rstem Th	ermal modeling	16. PRICE CODE
Lindenmayer system		F	SATION OF ABSTRACT
17. SECURITY CLASSIFICATION 18. OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	TATION 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED		

Contents

Prefaceiv
1—Introduction1
Background
2—Information Base Design and Content3
Information Base Function
3—Information Base Development5
Terrain Data
4-Summary11
References12
Figures 1-614-1
Tables 1-1520-3
Plates 1-932-4
Appendix A Information Base File FormatsA1
Appendix B. Physical Properties B1

Preface

The study reported herein was conducted during the period October 1992 to July 1993 by personnel of the Natural Resources Division (NRD), Environmental Laboratory (EL), U.S. Army Engineer Waterways Experiment Station (WES). The study was authorized by Dr. J. P. Welsh, Joint Test Director, Smart Weapons Operability Enhancement (SWOE) Joint Test and Evaluation Program (JT&E), Hanover, NH. LTC Jerre W. Wilson was the Army Deputy Director, SWOE JT&E.

WES has prepared three technical reports on Grayling 1 in support of the SWOE/JT&E Program. These are as follows:

- a. "Grayling 1 Information Base for Generation of Synthetic Thermal Scenes"
- b. "Grayling 1 Site Characterization and Data Summary"
- c. "Analysis of Thermal Imagery Collected at Grayling 1, Grayling, Michigan"

Mr. Jerrell R. Ballard, Jr., Environmental Characterization Branch (ECB), NRD, was Principal Investigator and was responsible for design and development of the digital information base and data analysis procedures. Mr. R. Eddie Melton, Mr. Mark R. Graves, and Dr. M. Rose Kress, ECB, contributed to data analysis. Mr. Ballard prepared the report.

The work was conducted under the general supervision of Mr. Harold W. West, Chief, ECB; Dr. Robert M. Engler, Chief, NRD; and Dr. John Harrison, Director, EL.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multiply	8y	To Obtain
degrees (angle)	0.01745329	radians
feet	0.3048	meters
inches	2.54	centimeters

1 Introduction

Background

The Smart Weapons Operability Enhancement/Joint Test and Evaluation (SWOE/JT&E) Program is a multiservice (U.S. Army, Navy, and Air Force) initiative aimed at providing the technology to simulate complex environmental backgrounds for use by smart weapons designers, developers, and testers. The smart weapons being designed to locate and acquire targets automatically must be able to isolate targets in relatively complex and varied environmental scenes. The technology provided by the SWOE/JT&E program will enhance the ability to characterize the effects of various terrain and atmospheric conditions on the smart weapons sensor performance.

Purpose and Scope

The purpose of this report is to document the methods used and developed for the information base component of the SWOE/JT&E thermal infrared scene generation procedure. This report is limited to the documentation of the information base content and procedures used to develop the Grayling 1 information base. The numerical models and other main components of the SWOE/JT&E thermal infrared scene generation procedure will be described in other reports.

Landscape Area

An area at Camp Grayling, MI, was selected for application of the environmental information base procedures. The area selected is illustrated in Figure 1. The landscape area considered for the information base is approximately 1.42 by 1.22 km with local relief of about 29 m. All geographic data were projected into the universal transverse Mercator (UTM)

projection in zone 16 and referenced to the North American Datum 1983 (NAD83). Detailed in the adjacent tabulation are the geographic coordinates of the Grayling 1 environmental information base extents.

Geographic Limits (UTM zone 16)

North Edge 4952770.0 northings South Edge 4951550.0 northings East Edge 688100.0 eastings West Edge 686680.0 eastings

2 Information Base Design and Content

Information Base Function

The function of the Grayling 1 information base in the SWOE/JT&E thermal infrared scene generation procedure is to provide all spatial and tabular data required by each component in the procedure. This requires providing descriptive environmental data on all combinations of terrain and atmospheric conditions within the designated geographical area.

The information base utilizes the concept of landscape units to describe the environmental conditions of the terrain. This landscape unit and its development is described in detail in Kress (1992). This report provided guidance on determining relevant environmental factors necessary for the Grayling 1 information base.

Information Base Content

The information base contains four kinds of digital data: terrain (e.g., topography, soil types, and vegetation types); meteorological data (e.g., air temperature, visibility, and soil moisture); three-dimensional (3-D) geometric tree models; and texture data. Digital data used in the SWOE scene generation procedure are stored in SWOE/JT&E specific formats described in Appendix A.

Digital terrain data are representations of the geographical area's surface stored in computer-compatible formats. These data depict characteristics such as elevation, vegetation types, soil types, slope, slope-aspect, and other relevant environmental information.

Meteorological data are required during the thermal infrared scene generation procedure and have influence on thermal model predictions (Balick, Link, and Scoggins 1981; Smith et al. 1981). Data collected from from multiple sites (Hahn and Berry 1994) were averaged hourly and used as input to the scene generation procedure.

3-D vegetation geometric tree model data are representations of predominant 3-D features in the study area. The data are typically representations of large vegetation (trees and bushes) and vegetation structures (forest stands). The tree/forest stands were depicted using tree models and population density data collected at the Grayling 1 site. Included with the model data are tables indicating temporal state and changes of the geometric models resulting from winter effects.

The physics-based thermal signature prediction models (Hummel et al. 1991) used in the SWOE scene generation procedure require as inputs complete descriptions of the physical and thermal attributes of each land-scape unit. These data are provided in tabular format for each landscape feature.

3 Information Base Development

As the first step in the development of the Grayling 1 information base, a list of factors required by each thermal prediction model pertaining to the environment was compiled. This process resulted in a list of environmental factors for generation of synthetic scenes. Specification of the factors and their data types defined the information base content and development specifications. Listed in Table 1 are the factors contained in the Yuma 1 information base.

Terrain Data

Six digital terrain data files are required in the SWOE scene generation procedure: topographic elevation, ground slope magnitude, slope aspect, vegetation type, and surface and subsurface soil type. These data files are described below.

Topographic elevation

Digital topographic elevation data define the basic 3-D geometry of the landscape and are used directly during generation of synthetic scenes. The initial digital elevation data for the Camp Grayling area were developed using a 4-m grid cell spacing. These data were generated using the Terrain Information Extraction System (TIES) by the U.S. Army Engineer Topographic Engineering Center (USACE-TEC) Fort Belvoir, VA, with 1:12,000 color aerial photo stereo pairs. The elevation data were imported into the Environmental Systems Research Institute (ESRI) ARC-INFO system and transformed into a triangular irregular network (TIN). The TIN data along with supplemental elevation data from the U.S. Army Engineer Waterways Experiment Station (WES) topographic field survey (Hahn and Berry 1994) were interpolated to produce a 1-m elevation grid array covering the 1.42- by 1.22-km area. The resulting 1-m elevation

grid array is illustrated using a 2-m contour interval in Plate 1. A 3-D wire frame perspective using the 1-m data is shown as Figure 2.

Ground slope magnitude and slope aspect

Ground slope magnitude is defined as the inclination of the earth's surface from horizontal. Slope aspect, the orientation of the surface normal, is referenced clockwise from true north. Slope and slope-aspect are used to determine the solar radiation incident to the earth's surface that affects thermal signature. Values for both are required in the synthetic scene generation procedure for each landscape unit.

Digital terrain data depicting slope and slope-aspect values were calculated using the generated 1-m topographic elevation data. A slope value in degrees and a slope-aspect value expressed as degrees from true north (ESRI ARC-INFO) were calculated for each 1- by 1-m grid cell within the elevation data array.

Numerical model sensitivity in the SWOE scene generation procedure made it necessary to reduce the spatial variability in the slope and slope-aspect digital terrain data by grouping values into a limited number of classes. For each grid cell, the digital slope and slope-aspect value was reassigned to an appropriate class. The class ranges are listed in Tables 2 and 3. Class midpoints are used during numerical calculations of surface temperatures and radiances. Plates 2 and 3 illustrate the distribution of slope and slope-aspect classed values, respectively, within the 1.42- by 1.22-km area.

Vegetation types

Thermal prediction models are available for nonvegetated areas (bare ground), short grass, medium-height grass vegetation, coniferous and deciduous forest canopy, and individual (isolated) trees. All vegetation within the landscape area were assigned one of these five classes.

A vegetation type map, compatible with capabilities of the current numerical models, was prepared by USACE-TEC for the Camp Grayling area using 1:12,000 color aerial photography. These data were field checked, and 1-m vegetation grid data were generated by WES. Plate 4 illustrates the vegetation type distribution and includes a no-vegetation (bare ground) category. Table 4 shows the types and descriptions of vegetation.

Surface and subsurface soil types

Unified Soil Classification System (USCS) soil types for the Camp Grayling area were acquired from existing reports (Hickok and Associates 1987). Because of small variability in the soil types and model sensitivity, both surface soil and subsurface soil were classed as sand (SP by USCS). Data on surface soil and subsurface soil characteristics were compiled and are listed in Appendix B.

Composite Terrain Data Layer

The digital terrain data were then used to identify and delineate uniform landscape units. Landscape units are contiguous areas with uniform conditions of the surface soil type, subsurface soil type, vegetation type, ground slope, and slope aspect.

A new digital terrain data file was generated that combined the values of the five existing data files by simply assigning a code to each unique combination of existing values that actually occurred. This data file represents a combination of vegetation type, surface soil type, subsurface soil type, ground slope, and slope aspect. Executed in the Geographic Resources Analysis System (GRASS-GIS), this step resulted in a raster file that was geographically coregistered to the other raster digital terrain files. This processing operation resulted in 100 unique combinations of the five terrain factors. Plate 5 shows these combinations and illustrates the complexity of the Grayling database. Table 5 lists the 100 unique combinations that occurred in the Camp Grayling landscape area, their description, and the landscape unit code assigned to each combination.

Terrain Parameters

In addition to the digital terrain data, a wide range of quantitative data defining the physical, thermal, and spectral attributes of each landscape unit are required for the SWOE scene generation procedure. These parameters are listed in Table 1. Complete descriptions of these attributes, as well as estimates of their value for various vegetation and soil types, can be found in Balick, Link, and Scoggins (1981); Smith et al. (1981); Dornbusch (1990); Hummel et al. (1991); Jones (1991); and Jordan (1991).

Meteorological Data

Also required in the scene generation procedure are meteorological data, including data on surface weather, atmospheric conditions, and solar loading. Meteorological parameters used in the procedure are listed in Table 1.

Six weeks of meteorological data were collected using several field stations during the SWOE/JT&E field program at Camp Grayling during the period 9 Septemper 1992 to 15 October 1992; hourly data were summarized for the Site E area and are stored in the information base. These data represent the summer-to-fall transition weather conditions for the months of September and October 1993 (Hahn and Berry 1994).

3-D Geometric Tree Data

Three-dimensional geometric model data are representations of predominant 3-D vegetative features in the study area such as trees and forest stands. There were no urban features within the area. Data to support these representations include geographic tree location, height, species, stem and branching structures, foliage sizes, and densities.

There are three major tree types at the Camp Grayling study area. In their general order of predominance, the tree types (species) are black oak (Quercus velutina), jack pine (Pinus banksiani), and aspen (Populus tremuloides). The oak-type forests occurred throughout the study area and were composed of large trees with heights of 50 to 75 ft. The pine forests within the study area were frequently mixed with oaks. The jack pine stands were typically 5 to 10 in. in diameter (diameter at breast height) and reached heights of 50 to 80 ft. The aspen-type forests, although common within the Camp Grayling reservation, were not present in the SWOE test area (see Figure 1) (Hickok and Associates 1987).

To obtain data of vegetative stem and branching structures and foliage characteristics, six jack pine trees, six black oak trees, and two aspens were characterized by surveying the geometry of the stems and branches. Measurements for an approximately 50-year-old black oak tree (inside a deciduous forest) are shown in Table 6. By generalizing these measurements for same species of similar ages, 3-D geometric tree models were developed to describe five different tree shapes for the two dominant species. The models and their descriptions are included in Table 7. These models were described and developed using Lindenmayer systems. The Lindenmayer system, termed L-system, is a string rewriting mechanism used commonly in describing the branching topology of the modeled plants. (Prusinkiewicz and Hanan 1989). An L-system description of the black oak forest tree is shown in Table 8. Using the L-system descriptions, 3-D cylinder descriptions are produced for computer graphic rendering. A 3-D cylinder listing for the black oak forest tree is presented in Table 9, and a 3-D stick and leaf plot is provided in Figure 3.

To obtain geometric locations of individual trees, basal locations of 70 trees and bushes were surveyed in the vicinity of Site E using techniques described in Hahn and Berry (1994). Forest densities were calculated using standard forestry density measurements. Figures 4-6 show the locations of trees for two pine stands and one oak forest stand, respectively.

Using the forest density calculations, basal locations were generated and combined with surveyed locations to arrive at a total of 4,683 basal locations within the 1.42- by 1.22-km SWOE Grayling 1 study area. Forest edges along the "valley area" of the site were mapped in more detail by digitizing tree locations, size, and types using aerial photography and ground truth data.

A model scale value was assigned to each tree location by dividing the measured tree height by the height of its corresponding geometric model. This scale value would be applied to the geometric model at the time of rendering. This technique allows scaling a representative geometric model to the exact height of each measured tree. For each location, the tree basal elevation, tree model, and model scale were assigned. An example of the tree location file is in Table 10.

Foliage characteristics were acquired by measuring leaf cluster lengths and average leaf lengths and widths (Table 11). Also acquired were data for the physical parameters for the thermal models (Tables 12 and 13). These data were used for leaf density calculations and thermal predictions.

For verification of model scale and tree basal positions, several 3-D color graphical plots of the SWOE database were generated. These are shown in Plates 6-9.

Texture Data

Texture data were developed for the scene generation procedure that corresponded to a single vegetation type at a specific time of day. Forty-five separate synthetic texture images were generated based on existing thermal imagery. Each texture image file corresponded to a single background terrain type at a specific time of day. The texture data were used by the SWOE rendering software system for application of thermal texture to terrain areas for which a single mean temperature was estimated.

Texture data were developed from Remote Minefield Detection System (REMIDS) imagery of terrain cover types analogous to those found at the Grayling 1 study area. Imagery segments of selected terrain cover types were then processed to compute a finite impulse response (FIR) kernel (Cadzow et al. 1992). Three replicate synthetic textures, each 256×256 pixels, were created with each FIR kernel by using different random number seeds for the white noise generator. Each histogram of each synthetic texture image then transformed to a Gaussian distribution with a mean of 128 and a standard deviation of 32. Table 14 lists the texture image files generated for the Grayling 1 information base. Each of these texture image files will be correctly scaled to correspond to the gray level to temperature scaling in the rendering process. This is accomplished by subtracting 128 digital gray levels from all values in the texture image file to shift the mean to zero, then the spread of the gray levels in texture image

must be expanded or compressed to correspond to the thermal standard deviation of the appropriate terrain cover type and final scene thermal scaling. Thermal standard deviations are listed in Table 15.1

WES is currently developing a physics-based procedure (Weiss et al., in preparation) for determining texture data; this procedure will be used to generate additional texture data for the Grayling site.

External Memorandum, 14 December 1992, Bruce Sabol, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

4 Summary

This report documents the methods developed for the environmental information base component of the SWOE/JT&E thermal infrared scene generation procedure. An environmental information base was designed and developed for a 1.42- by 1.22-km site at Camp Grayling, MI.

Considerable effort was devoted to verifying geometric locations of individual tree basal locations and their appropriate 3-D geometric models. An L-system description of these models allowed for a realistic rendering of the vegetation without the need for highly detailed measurements.

References

- Balick, L. K., Link, L. E., Jr., and Scoggins, R. K. (1981). "Thermal modeling of terrain surface elements," Technical Report EL-81-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Cadzow, J. A., Wilkes, D. M., Peters, R. A., II, Li, X. K., and Patel, J. N. (1992). "Two dimensional models for the simulation of infrared backgrounds," Contract Report BRL-CR-692, U.S. Army Ballistics Research Laboratory, Aberdeen Proving Grounds, MD.
- Dornbusch, W. K. (1990). "Engineering and environmental data bases and analysis for smart munitions sensors; Task B: Environmental/terrain data development for smart weapons research," prepared by Science and Technology Corporation for U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Hahn, C., and Berry, T. (1994). "Grayling 1 site characterization and data summary," Technical Report prepared by the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, for the Smart Weapons Operability Enhancement Joint Test and Evaluation Program Office, Hanover, NH.
- Hickok, E. A., and Associates. (1987). "Camp Grayling environmental management analysis and plan," E. A. Hickok and Associates, Wayzata, MN.
- Hummel, J. R., Longtin, D. R., Paul, N. L. and Jones, J. R. (1991). "Development of the Smart Weapons Operability Enhancement Interim Thermal Model," PL-PR-91-2073, SPARTA, Inc., Lexington, MA.
- Jones, J. (1991). "Users guide for Treetherm: A 3-D thermal model for single trees," LTR 91-0003 AFG23, SPARTA, Inc., Lexington, MA.
- Jordan, R. (1991). "A one-dimensional temperature model for a snow cover," U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

- Kress, M. R. (1992). "Information base procedures for generation of synthetic thermal scenes," Technical Report EL-92-31, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Prusinkiewicz, P., and Hanan, J. (1989). "Lindenmayer systems, fractals, and plants." *Lecture notes in biomathematics*. Springer-Verlag, New York.
- Smith, J. A., Ranson, K. J., Nguyen, D., and Line, L. E. (1981). "Thermal vegetation canopy model studies," Technical Report EL-81-6, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Weiss, R. A., Sabol, B. M., Smith, J. A., and Bales, J. W. "Physics-based IR terrain radiance texture model," Technical Report in preparation, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Figure 1. Grayling 1 Environmental Information Base location map

Figure 2. Three-dimensional view of the Grayling 1 Environmental Information Base elevation component. Vertical relief is doubled for graphic depiction

Figure 3. Stick-and-leaf plot of the black oak geometric model (forest_oak.wes) used in the forest stand. The model height is 9 m

Figure 4. Forest stand density measurement for west side of forest stand near Site E

Figure 5. Forest stand density measurement for east side of forest stand near Site E

Figure 6. Forest stand density measurement for Site F

Table 1 **Grayling 1 Information Base Content**

Topographic elevation Ground slope magnitude Slope aspect

Vegetation type

Grass

Percent ground cover Height

State - measure of plant vigor

Longwave emissivity Shortwave absorptivity

Forest canopy

Stomatal resistance Longwave emissivity Shortwave absorptivity Longwave transfer coefficient View angle matrix

Surface and subsurface soil type

Number of nodes in layer Quartz content of soil Roughness length

Bulk transfer coefficient for eddy

diffusivity

Turbulent Ptandtl number Turbulent Schmidt number Windless convection coefficient

Shortwave absorptivity Intrinsic density of dry material

Bulk density of dry material

Heat capacity of dry mineral solids Dry soil thermal conductivity

Soil coarseness code

Plasticity index

Albedo

Hemispherical emissivity

Thermal diffusivity

Temperature of nodes

Thickness of nodes

Total bulk water density

Meteorological

Latitude of recording station Longitude of recording station

ZULU time difference

Elevation of recording station

Height above ground of recording station Averaged surface albedo of landscape area

Time interval of data

Year Julian day Local hour, time Atmospheric pressure Air temperature Relative humidity

Wind speed Wind direction

Visibility

Global incoming solar radiation Direct incoming solar radiation Diffuse incoming solar radiation

Downwelling thermal infrared radiation

Low cloud cover, percent Low cloud cover, type Midlevel cloud cover, percent Midlevel cloud cover, type High cloud cover, percent High cloud cover, type Precipitation type Precipitation rate

Precipitation grain size

Table 2 Class Ranges for Terrain Slope				
Class	Class Range, deg	Slope Value Used for Calculation		
1	0-5	3.0		
2	>5-10	8.0		
3	>10-15	13.0		
4	>15-20	18.0		
5	>20	23.0		

Table 3 Class Ranges for Slope-Aspect				
Class	Class Range, deg	Aspect Values Used for Calculation		
1	1-90	45		
2	91-180	135		
3	181-270	225		
4	271-360	315		

Table 4 Vegetation Class Types			
Vegetation Type	Description		
BARE	Bare ground, exposed surface soil		
MVEG	Grass vegetation, medium density		
DECI	Deciduous forest		
CONF	Coniferous forest		
MIXF	Mixed (deciduous, coniferous) forest		

Table 5
Landscape Unit Codes and Descriptions Present in Camp Grayling, MI, Area

Feature Code	Vegetation Type	Surface Soil	Subsurface Soil	Ground Slope Value	Slope Aspec Value
001	BARE	SAND	SAND	. 03	045
002	BARE	SAND	SAND 03		135
003	BARE	SAND	SAND	03	225
004	BARE	SAND	SAND	03	315
005	BARE	SAND	SAND	08	045
006	BARE	SAND	SAND	08	135
007	BARE	SAND	SAND	08	225
800	BARE	SAND	SAND	08	315
009	BARE	SAND	SAND	13	045
010	BARE	SAND	SAND	13	135
011	BARE	SAND	SAND	13	225
012	BARE	SAND	SAND	13	315
013	BARE	SAND	SAND	18	045
014	BARE	SAND	SAND	18	135
015	BARE	SAND	SAND	18	225
016 017	BARE	SAND	SAND	18	315
017	BARE BARE	SAND	SAND	23	045
019	BARE	SAND	SAND	23	135
020	BARE	SAND SAND	SAND	23	225
021	MVEG	SAND	SAND	23	315
022	MVEG	SAND	SAND	03	045
023	MVEG	SAND	SAND	03	135
024	MVEG	SAND	SAND SAND	03	225
025	MVEG	SAND	SAND	03 08	315
026	MVEG	SAND	SAND	08	045
027	MVEG	SAND	SAND	08	135 225
028	MVEG	SAND	SAND	08	315
029	MVEG	SAND	SAND	13	045
030	MVEG	SAND	SAND	13	135
031	MVEG	SAND	SAND	13	225
032	MVEG	SAND	SAND	13	315
033	MVEG	SAND	SAND	18	045
034	MVEG	SAND	SAND	18	135
035	MVEG	SAND	SAND	18	225
036	MVEG	SAND	SAND	18	315
037	MVEG	SAND	SAND	23	045
038	MVEG	SAND	SAND	23	135
039	MVEG	SAND	SAND	23	225
040	MVEG	SAND	SAND	23	315
041	DECI	SAND	SAND	. 03	045
042	DECI	SAND	SAND	03	135
043	DECI	SAND	SAND	03	225
044	DECI	SAND	SAND	03	315
045	DECI	SAND	SAND	08	045
046	DECI	SAND	SAND	08	135
047	DECI	SAND	SAND	08	225
048	DECI	SAND	SAND	08	315
049 050	DECI	SAND	SAND	13	045
000	DECI	SAND	SAND	13	135

22

andscape Feature Code	Vegetation Type	Surface Soil	Subsurface Soil	Ground Slope Value	Slope Aspec Value
051	DECI	SAND	SAND	13	. 225
052	DECI	SAND	SAND	13	315
053	DECI	SAND	SAND	18	045
054	DECI	SAND	SAND	18	135
055	DECI	SAND	SAND	18	225
056	DECI	SAND	SAND	18	315
057	DECI	SAND	SAND	23	045
058	DECI	SAND	SAND	23	135
059	DECI	SAND	SAND	23	225
060	DECI	SAND	SAND	23	315
061	CONF	SAND	SAND	03	045
062	CONF	SAND	SAND	03	135
063 064	CONF	SAND	SAND	03	225
065	CONF	SAND	SAND	03	315
066	CONF CONF	SAND	SAND	08	045
067	CONF	SAND	SAND	80	135
068	CONF	SAND SAND	SAND	08	225
069	CONF	SAND	SAND SAND	08	315
070	CONF	SAND	SAND	13	045
071	CONF	SAND	SAND	13 13	135
072	CONF	SAND	SAND	13	225 315
073	CONF	SAND	SAND	18	045
074	CONF	SAND	SAND	18	135
075	CONF	SAND	SAND	18	225
076	CONF	SAND	SAND	18	315
077	CONF	SAND	SAND	23	045
078	CONF	SAND	SAND	23	135
079	CONF	SAND	SAND	23	225
080	CONF	SAND	SAND	23	315
081	MIXF	SAND	SAND	03	045
082	MIXF	SAND	SAND	03	135
083	MIXF	SAND	SAND	03`	225
084	MIXF	SAND	SAND	03	315
085	MIXF	SAND	SAND	80	045
086	MIXF	SAND	SAND	08	135
087	MIXF	SAND	SAND	08	225
088	MIXF	SAND	SAND	08	315
089 090	MIXF	SAND	SAND	13	045
090	MIXF	SAND	SAND	13	135
091	MIXF MIXF	SAND	SAND	13	225
093	MIXF	SAND SAND	SAND	13	315
094	MIXF	SAND	SAND SAND	18 19	045
095	MIXF	SAND	SAND	18 18	135
096	MIXF	SAND	SAND	18	225 315
097	MIXF	SAND	SAND	23	045
098	MIXF	SAND	SAND	23 23	135
099	MIXF	SAND	SAND	23 23	225
100	MIXF	SAND	SAND	23 23	
. • •	WII/M	OAND	JAND	. 23	315

Table 6				
Measurements	for a	Black	Oak Tree	

Sample Number	Branch Height, cm	Branch Dlameter, cm	Branch Angle	Branch Length,cm	Trunk Diameter, cm
001	145	3.0	50	150	15.5
002	200	2.5	50	150	16.5
003	245	2.5	45	160	15.0
004	275	3.0	40	180	13.5
005	300	3.5	40	230	14.0
006	330	2.0	50	100	14.0
007	360	1.9	45	120	13.0
008	385	4.5	50	340	14.0
009	441	5.0	50	230	13.5
010	485	3.5	40	240	13.0
011	555	4.0	60	270	12.0
012	560	3.0	50	210	12.0
013	675	3.0	40	230	10.0
014	682	3.5	90	170	9.5
015	722	3.0	45	180	10.0
016	760	2.5	45	140	8.5
017	865	2.5	40	140	4.5
018	913	2.5	45	160	4.5

Note: Site number—G072; date—9/11/92; local description—deciduous forest; base circumference—60 cm; species—Black Oak.

Table 7
Three-Dimensional Tree Models

Filename	Description Black Oak tree forest model (9-m height)				
forest_oak.wes					
forest_pine.wes	Jack Pine tree forest model (15.7-m height)				
valley_oak1.wes	Black Oak tree valley model #1 (3.3-m height)				
valley_oak2.wes	Black Oak tree valley model #2 (1.4-m height)				
valley_pine.wes	Jack Pine tree valley model (4.6-m height)				

Table 8
L-System Description of Black Oak Forest Tree

```
**************************
/* Description: This code generates a forest oak tree in the lsys
                programing language. The tree is modeled after
/*
                 the oak trees found in the forests of Grayling, MI. */
/* Date:
                 September 24, 1992
#define maxgen 19
START: !(19.47) F(244) A(244) C(2.5,2)
             ->(.1666) [B(ht)]!(19.47-.0158*ht) &(1) F(34)/(113)A(ht+34)
p1: A(ht)
              ->(.1666) [B(ht)]!(19.47-.0158*ht) &(1) F(34)/(156)A(ht+34)
             \rightarrow (.1670) [B(ht)]!(19.47-.0158*ht) &(0) F(34)/(113)A(ht+34)
             ->(.1666) [B(ht)]!(19.47-.0158*ht) &(0) F(34)/(156)A(ht+34)
->(.1666) [B(ht)]!(19.47-.0158*ht) &(-1) F(34)/(113)A(ht+34)
              ->(.1666) [B(ht)]!(19.47-.0158*ht) &(-1) F(34)/(156)A(ht+34)
p2: B(ht)
             -> &(49.17+.0078*ht)!(4.49939-.0015*ht) \
                C(248.65817 + 0.03003 * ht, 4.49939-.0015*ht)
p3: C(len,w) ->(.25) F(len*.25) [+(45) S(len*.75,w)] &(15) +(5)F(len*.25) \
                                  [-(45) D(len*.50,w)] & (-15) F(len*.25) 
                                  [ +(30) D(len*.25,w)] &(15) F(len*.25) M
             ->(.25) F(len*.25) [-(45) S(len*.75,w)] &(15) -(5)F(len*.25) \
                                  [+(45) D(len*.50,w)] & (-15) F(len*.25) 
                                   -(30) D(len*.25,w)] &(15) F(len*.25) M
                                 [+(45) S(len*.75,w)] & (20) + (10)F(len*.25) 
             ->(.25) F(len*.25)
                                   -(45) D(len*.50,w)] &(-20) F(len*.25) \
                                  [+(30) D(len*.25,w)] & (-20) F(len*.25) M
             ->(.25) F(len*.25) [-(45) S(len*.75,w)] &(-20) -(10)F(len*.25) \
                                  [+(45) D(len*.50,w)] &(20) F(len*.25) 
                                  [-(30) D(len*.25,w)] & (20) F(len*.25) M
p4: S(len,w) -> !(w*.5) F(len*.5) [ +(45) D(len*.5,w)] &(20) F(len*.5) M
p5: D(len,w) -> !(w*.5) F(len) M
p6: M
             \rightarrow [f(11) E] [+(80) f(11) E] [-(80) f(11) E]
p7: E
             -> f(5) & (65) [ f(4) J] / (78)
                f(5) & (65) [ f(4) J] / (78)
                 f(5) & (65)
                            [f(4) J] / (78) \setminus 
                f(5) &(65)
                            [f(4) J] / (78)
                            [f(4) J] / (78)
                f(5) & (65)
                f(5) &(65)
                            [f(4) J] / (78)
                 f(5) &(65)
                            [f(4)J]/(78)
                            [ f(4) J]
[ f(4) J]
                 f(5) &(65)
                                      /(78)
                f(5) & (65)
p8: J
             \rightarrow { +(30) f(7) -(120) f(6)} { +(90) f(6) +(90) f(6) } \
                 \{+(90) f(6) + (90) f(6)\}
```

Table 9
3-D Cylinder Listing for Black Oak Forest Tree

GRAY	LING I	- SWOE/J	JT&E - B	Black Oak	fore	est tree	- Data	sheets:	G071, G072	
Node		Y1	Z1	Dia 19.5 15.6 15.6 15.6 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	Node	x2	¥2	Z2	Dia.	
001	0.0	0.0 0.0 0.0	0.0	19.5	002	0.0	0.0	244.0	15.6	15.6
002	0.0	0.0	244.0	15.6	003	0.0	-49.8	284.2		4.1
002	0.0	0.0	244.0	15.6	012	0.0	0.6	278.0	15.1	15.1
003	0.0	-49.8	284.2	4.1	004	-67.9	-102.6	326.9	2.1	2.1
003	0.0	-49.8 -49.8	284.2	4.1	007	-11.1	-109.4	304.7	4.1 15.1 2.1 4.1	4.1
004	-67.9	-102.6	326.9	2.1	005	-163.9	-102.6	326.9	4.1 2.1 2.1 4.1 4.1 4.1 4.1 14.5 2.0	2.1
004		-102.6	326.9	2.1	006	-131.7	-172.8	341.4	2.1	2.1
007	-11.1		304.7	4.1	800	62.3	-208.6	338.7	2.1	2.1
007	-11.1	-109.4	304.7	4.1	009	-21.6	-158.3	344.6	4.1	4.1
009	-21.6	-158.3	344.6	4.1	010	-62.1	-195.4	377.3	2.1	2.1
009	-21 6	-158.3	344.6	4.1	011	-30.1	-190.6	399.1	4.1	4.1
012	0.0	0.6 0.6 20.9 20.9 -20.3	278.0	15.1	013	-46.2	20.9	317.8	4.1	4.1
012	0.0	0.6	278.0	15.1	022	0.5	1.0	312.0	14.5	14.5
013	-46.2	20.9	317.8	4.1	014	-121.8	-20.3	361.1	2.0	2.0
013	-46.2	20.9	317.8	4.1	017	-102.3	39.1	343.2	4.1	4.1
014	-121.8	-20.3	361.1	2.0	015	-191.1	10.2	420.8	2.0	2.0
014	-121.8	-20.3	361.1	2.0	016	-211.8	-51.4	375.9	2.0	2.0
017	-102.3	39.1	343.2	4.1	018	-153.1	151.0	380.7	2.0	2.0
017	-102.3	39.1	343.2	4.1	019	-150.4	54.3	382.9	4.1	4.1
019	-150.4	54.3	382.9	4.1	020	-202.2	37.0	416.8	2.0	2.0
019	-150.4	54.3	382.9	4.1	021	-206.6	72.5	408.3	4.1	4.1
022	0.5	1.0	312.0	14.5	023	3/.6	36.5	351.1	14.0	14.0
022	0.5	1.0	312.0	14.5	032	124 2	25.0	340.0	2.0	2.0
023	37.6	36.5	351.1	4.0	024	124.3	23.0	374.3	4.0	4.0
023	37.6	-20.3 39.1 39.1 54.3 54.3 1.0 36.5 25.0 25.0 73.7 73.7	321.1	4.0	027	101 5	-14.7	3/3.3	2.0	2.0
024	124.3	25.0	392.3	2.0	025	191.0	20 1	104 7	2.0	2.0
024	124.3	25.0	392.3	2.0	020	220.2 92.6 124.9	28.1 196.7 105.2 107.5	412.7	2.0	2.0
027	84.3	73.7	3/3.3	4.0	020	124.0	105.7	413.3	4.0	4.0
027	84.3	13.7	3/3.3	4.0	029	100 5	103.2	414.5	2.0	2.0
	124.9	105.2 105.2	414.5	4.0	030	171 6	142 3	438 8	4.0	4.0
029 032		1 3	346 0	14.0	031	-17 3	-45 5	386.8	4.0	4.0
032	1.1 1.1	1.3 1.3	346.0	14.0	042	1 6	1.7	380.0	13.5	13.5
032	-17 3	-45.5	386.8	4 0	034	26.8	-120.9	429.3	2.0	2.0
033	-17.3	-45.5	386.8	4.0	037	-18.7	-80.3	441.3	4.0	4.0
034		-120.9	429 3	2.0	035	-0.9	-191.1	490.5	2.0	2.0
034		-120.9	429 3	2.0	036	60.1	-211.0	443.4	2.0	2.0
037		-80.3	441.3	4.0	038	-107.1	-103.5	533.1	2.0	2.0
037	-18 7	-80.3	441.3	4.0	039	-27.1	-130.7	481.2	4.0	4.0
039	-27.1	-130.7	481.2	4.0	040	-3.9	-183.5	510.6	2.0	2.0
039	-27.1	-130.7	481.2	4.0	041	-41.7	-190.4	501.6	4.0	4.0
042	1.6	1.7 1.7 38.4 38.4 126.1	380.0	13.5	043	-34.0	38.4	420.1	3.9	3.9
042	1.6 1.6	1.7	380.0	13.5	052	1.8	2.5	414.0	12.9	12.9
043	-34.0	38.4	420.1	3.9	044	-23.1	126.1	461.3	2.0	2.0
043	-34.0	38.4	420.1	3.9	047	-68.8	89.7	439.7	3.9	3.9
044	-23.1	126.1	461.3	2.0	045	45.9	195.0	459.5	2.0	2.0
044	-23.1	126.1	461.3	2.0	046	-27.7	222.7	473.8	2.0	2.0
047	-68.8	89.7	439.7	3.9	048	-192.7	109.0	474.2	2.0	2.0
047	-68.8	89.7 89.7 133.3	439.7	3.9	049	-96.3	133.3	479.3	4.1 14.5 2.0 4.1 2.0 2.0 2.0 4.0 12.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	3.9
049	-96.3	133.3	479.3	3.9	050	-93.7	189.9	511.3	2.0	2.0
049	-96.3	133.3	479.3	3.9	051	-113.3	163.9	534.1	3.9	3.9
052	1.8 1.8	2.5 2.5 22.7	414.0	12.9	053	49.9	22.7	453.2	3.9	3.9
052		2.5	414.0	12.9	062	1.9	3.2	448.0	12.4	12.4
053	49.9	22.7	392.3 392.3 375.5 414.5 346.0 386.8 429.3 441.3 481.2 481.2 481.2 481.2 481.2 481.3 441.3 461.3 461.3 461.3 461.3 461.3 461.3 461.3 461.3 461.3 461.3 461.3 479.3 479.3 479.3 479.3 479.3 479.3	3.9	054	126.8	-19.9	496.1	3.9 3.9 12.4 1.9 3.9	1.9
053		22.7	453.2	3.9	057	107.7	40.5	4//.5	3.9	3.9
054	126.8	-19.9	496.1	1.9	055	163.5	-110.7	498.1	1.9	1.9

(Sheet 1 of 3)

Table 9 (Continued)

```
509.7
                                    1.9 056
                                                218.0
                                                          -53.0
                                                                               1.9
                                                                                         1.9
054
     126.8
               -19.9
                         496.1
                                    3.9
                                                                               1.9
                                                                                         1.9
                                                162.0
                                                          153.8
                                                                   513.2
057
     107.7
                40.5
                         477.5
                                         058
                                                           55.6
37.6
                                                                   516.7
                                                                                         3.9
     107.7
                                    3.9
                                         059
                                                157.7
                                                                               3.9
057
                40.5
                         477.5
                                                210.7
                                                                               1.9
                                    3.9 060
                                                                                         1.9
059
     157.7
                55.6
                        516.7
                                                                   550.3
                                    3.9 061
                                                                                         3.9
                                                215.6
                                                           73.4
                                                                   541.1
                                                                               3.9
059
     157.7
                55.6
                        516.7
                                                          -47.9
                                                                               3.8
                                                                                         3.8
                                                                   488.9
                                   12.4 063
062
        1.9
                 3.2
                         448.0
                                                  1.1
                                   12.4 072
                                                   2.0
                                                            4.6
                                                                   481.9
                                                                              11.9
                                                                                        11.9
062
        1.9
                 3.2
                         448.0
                                                         -101.0
                                                 -69.2
                                                                   532.5
                                                                               1.9
                                                                                         1.9
               -47.9
                                    3.8 064
063
        1.1
                         488.9
                                                -11.2
                                                         -108.9
                                                                   509.6
                                                                               3.8
                                                                                         3.8
               -47.9
                         488.9
                                    3.8 067
063
        1
          . 1
                                                -167.4
                                                          -99.3
                                                                   532.9
                                                                               1.9
                                                                                         1.9
              -101.0
                                    1.9
                                         065
064
      -69.2
                         532.5
                                    1.9 066
3.8 068
                                               -135.7
                                                         -171.8
                                                                   547.3
                                                                               1.9
                                                                                         1.9
064
     -69.2
              -101.0
                         532.5
                                                 62.3
                                                         -211.9
                                                                   543.7
                                                                               1.9
                                                                                         1.9
                         509.6
067
      -11.2
              -108.9
                                    3.8 069
                                                -22.7
                                                         -159.0
                                                                   550.2
                                                                               3.8
                                                                                         3.8
067
      -11.2
              -108.9
                         509.6
                                    3.8 070
                                                -64.8
                                                         -196.4
                                                                   583.7
                                                                               1.9
                                                                                         1.9
069
      -22.7
              -159.0
                         550.2
                                                         -192.2
27.5
                                    3.8 071
                                                                   606.0
                                                                               3.8
                                                                                         3.8
                                                -31.8
069
      -22.7
              -159.0
                         550.2
                                   11.9 073
                                                                   520.9
                                                                                         3.8
                                                                               3.8
072
       2.0
                 4.6
                         481.9
                                                -45.8
                                                                   515.9
559.5
                                                  2.7
                                   11.9 082
                                                            5.7
                                                                                        11.3
072
        2.0
                 4.6
                         481.9
                                                                              11.3
                                                -68.1
                                                         115.6
                                                                                         1.9
                                    3.8 074
                                                                               1.9
073
     -45.8
                27.5
                         520.9
                                    3.8 077
                                                -98.8
                                                           58.5
                                                                   544.5
555.7
                                                                               3.8
                                                                                         3.8
073
     -45.8
                27.5
                         520.9
                                    1.9 075
                                                -28.0
                                                          205.6
                                                                               1.9
                                                                                         1.9
074
     -68.1
               115.6
                         559.5
                                    1.9 076
                                               -107.8
                                                                               1.9
                                                                                         1.9
                         559.5
                                                          205.5
                                                                   568.6
074
     -68.1
               115.6
                                                                                         1.9
                                                           20.8
                                                                               1.9
                                    3.8 078
                                               -218.4
                                                                   584.4
077
     -98.8
                58.5
                         544.5
                                               -144.2
-167.7
                                                                   583.1
                                                                                         3.8
077
     -98.8
                                    3.8 079
                                                           86.4
                                                                               3.8
                58.5
                         544.5
                                                                                         1.9
                                                          139.3
                                                                   614.3
                                                                               1.9
079
    -144.2
                86.4
                         583.1
                                    3.8 080
                                               -197.2
                                                                                         3.8
                                                                   606.7
                                                                               3.8
079
    -144.2
                86.4
                         583.1
                                    3.8 081
                                                          117.3
                                                 42.2
                                                                                         3.7
082
       2.7
                 5.7
                         515.9
                                   11.3 083
                                                           43.1
                                                                   553.5
                                                                               3.7
                                   11.3 092
3.7 084
                                                                   549.9
                                                                              10.8
                                                                                        10.8
082
        2.7
                 5.7
                         515.9
                                                  3.4
                                                            6.9
                                                 36.2
                                                          133.9
                                                                   592.5
                                                                                         1.9
083
       42.2
                43.1
                         553.5
                                                                               1.9
                                                                                         3.7
                                                                   575.5
                                                           89.7
0.83
       42.2
                43.1
                         553.5
                                    3.7 087
                                                 83.4
                                                                               3.7
                                                 95.4
                                                                   648.9
                                                                               1.9
                                                                                         1.9
084
       36.2
               133.9
                         592.5
                                    1.9 085
                                                          189.9
                                                                   601.4
                                                                                         1.9
084
       36.2
               133.9
                         592.5
                                    1.9 086
                                                 45.0
                                                          232.2
                                                                               1.9
                                                                                         1.9
                                    3.7 088
087
       83.4
                89.7
                         575.5
                                                210.7
                                                           92.9
                                                                   610.5
                                                                               1.9
                                    3.7 089
3.7 090
                                                                                         3.7
                                                                               3.7
                                                118.9
                                                          131.0
                                                                   613.0
087
       83.4
                89.7
                         575.5
                                                                                         1.9
                                                                               1.9
089
     118.9
               131.0
                         613.0
                                                125.2
                                                          188.9
                                                                   644.0
                                    3.7 091
                                                160.1
                                                                               3.7
3.7
                                                                                         3.7
089
      118.9
               131.0
                         613.0
                                                          177.6
                                                                   635.0
                                                                                         3.7
                                                                   590.6
092
        3.4
                  6.9
                         549.9
                                   10.8 093
                                                 22.4
                                                          -41.8
                                                  3.9
                                                            8.6
                                                                   583.8
                                                                              10.2
                                                                                        10.2
092
                  6.9
                         549.9
                                   10.8 102
                                    3.7 094
                                                108.6
                                                                                         1.8
                                                          -69.5
                                                                               1.8
093
       22.4
               -41.8
                         590.6
                                                                   631.7
                         590.6
                                                          -96.8
                                                                               3.7
                                                                                         3.7
093
       22.4
               -41.8
                                    3.7 097
                                                 49.3
                                                                   616.2
                                                137.1
                                                                                         1.8
                                                         -142.6
                                                                   692.8
                                                                               1.8
094
      108.6
               -69.5
                         631.7
                                    1.8 095
                                                                                         1.8
                                                                   643.5
                                                                               1.8
094
      108.6
               -69.5
                         631.7
                                    1.8 096
                                                196.0
                                                         -115.5
                                                                               1.8
                                                                                         1.8
097
       49.3
               -96.8
                         616.2
                                    3.7 098
                                                   2.3
                                                         -213.4
                                                                   658.3
                                                                                         3.7
                                                 73.5
097
       49.3
               -96.8
                         616.2
                                    3.7 099
                                                         -143.4
                                                                   656.7
                                                                               3.7
                                                         -170.0
                                                                   689.6
099
       73.5
              -143.4
                         656.7
                                    3.7 100
                                                 124.5
                                                                               1.8
                                                                                         1.8
                                                                                         3.7
099
       73.5
              -143.4
                         656.7
                                    3.7 101
                                                 100.4
                                                         -198.3
                                                                   682.2
                                                                               3.7
                                                                                         3.6
102
        3.9
                  8.6
                         583.8
                                   10.2 103
                                                 -32.9
                                                           49.1
                                                                    621.8
                                                                               3.6
                                                           10.7
                                                                                         9.7
102
                  8.6
                         583.8
                                   10.2 112
                                                   3.9
                                                                    617.8
                                                                               9.7
                                               -122.6
103
      -32.9
                 49.1
                         621.8
                                    3.6 104
                                                           43.1
                                                                    665.1
                                                                               1.8
                                                                                         1.8
                                                                    675.8
                49.1
103
      -32.9
                         621.8
                                     3.6 107
                                                -65.7
                                                           69.9
                                                                               3.6
                                                                                         3.6
                                               -177.7
     -122.6
104
                 43.1
                         665.1
                                    1.8
                                         105
                                                          103.9
                                                                    722.0
                                                                               1.8
                                                                                         1.8
                                     1.8 106
     -122.6
                                                                                         1.8
104
                 43.1
                         665.1
                                               -221.3
                                                           50.6
                                                                    677.9
                                                                               1.8
107
     -65.7
                 69.9
                         675.8
                                     3.6 108
                                                 -51.6
                                                          170.9
                                                                    761.3
                                                                               1.8
                                                                                         1.8
107
     -65.7
                 69.9
                         675.8
                                     3.6 109
                                               -109.9
                                                          102.5
                                                                    713.4
                                                                               3.6
                                                                                         3.6
                                                                    742.7
    -109.9
               102.5
                         713.4
                                     3.6
                                         110
                                               -169.5
                                                          105.4
                                                                               1.8
                                                                                         1.8
109
                         713.4
                                     3.6 111
                                               -160.1
                                                          142.9
                                                                    730.1
                                                                                3.6
                                                                                         3.6
109
    -109.9
               102.5
                                                                                         3.6
                         617.8
                                     9.7
                                         113
                                                 54.4
                                                           32.5
                                                                    655.7
                                                                                3.6
112
        3.9
                 10.7
                         617.8
                                     9.7 122
                                                   4.5
                                                           13.0
                                                                    651.7
                                                                                9.2
                                                                                         9.2
112
        3.9
                 10.7
                                     3.6 114
                                                 133.4
                                                          -10.4
                                                                    699.9
                                                                                1.8
                                                                                         1.8
113
       54.4
                 32.5
                         655.7
113
       54.4
                 32.5
                         655.7
                                     3.6
                                         117
                                                 117.7
                                                           45.4
                                                                    672.9
                                                                                3.6
                                                                                         3.6
      133.4
                -10.4
                         699.9
                                     1.8
                                         115
                                                 169.4
                                                         -103.8
                                                                    705.7
                                                                                1.8
                                                                                         1.8
```

(Sheet 2 of 3)

Table 9 (Concluded)

114 117 117 119 119 122 122	133.4 117.7 117.7 171.2 171.2 4.5 4.5	-10.4 45.4 45.4 56.7 56.7 13.0	699.9 672.9 672.9 711.2 711.2 651.7	1.8 116 3.6 118 3.6 119 3.6 120 3.6 121 9.2 123 9.2 132	226.4 188.4 171.2 224.2 208.7 3.4 5.1	-45.3 156.4 56.7 33.8 65.0 -38.6 14.8	713.4 696.1 711.2 744.8 765.9 694.5 685.6	1.8 1.8 3.6 1.8 3.6 3.5 8.6	1.8 1.8 3.6 1.8 3.6 3.5
123 123 124 124 127 127	3.4 3.4 -68.9 -68.9 -4.2 -4.2	-38.6 -38.6 -90.8 -90.8 -99.0 -99.0	694.5 694.5 741.1 741.1 722.5 722.5 765.3	3.5 124 3.5 127 1.8 125 1.8 126 3.5 128 3.5 129 3.5 130	-68.9 -4.2 -169.4 -138.1 79.3 -11.0 -50.2	-90.8 -99.0 -87.2 -161.7 -195.4 -150.2 -190.6	741.1 722.5 742.7 758.4 764.1 765.3 801.7	1.8 3.5 1.8 1.8 1.8 3.5	1.8 3.5 1.8 1.8 1.8
129 132 132 133 133 134	-11.0 5.1 5.1 -14.7 -14.7 30.4	-150.2 14.8 14.8 67.5 67.5 150.2	765.3 685.6 685.6 722.4 722.4 758.9 758.9	3.5 131 8.6 133 8.6 142 3.5 134 3.5 137 1.7 135	-18.5 -14.7 5.7 30.4 -32.4 124.0 64.8	-210.6 67.5 16.5 150.2 129.1 187.9 244.9	793.4 722.4 719.6 758.9 743.1 755.3 764.3	3.5 3.5 8.1 1.7 3.5 1.7	3.5 3.5 8.1 1.7 3.5 1.7
137 137 139 139 142 142 143	-32.4 -32.4 -46.9 -46.9 5.7 5.7 46.1	129.1 129.1 183.8 183.8 16.5 16.5	743.1 743.1 779.6 779.6 719.6 719.6 759.8	3.5 138 3.5 139 3.5 140 3.5 141 8.1 143 8.1 152 3.4 144	-148.2 -46.9 -27.4 -64.6 46.1 6.3 138.7	188.1 183.8 241.0 245.3 -19.9 18.2 -6.9	778.2 779.6 809.1 800.2 759.8 753.5 798.8	1.7 3.5 1.7 3.5 3.4 7.6	1.7 3.5 1.7 3.5 3.4 7.6 1.7
143 144 144 147 147 149	46.1 138.7 138.7 82.6 82.6 130.2 130.2	-19.9 -6.9 -6.9 -35.0 -35.0 -63.1 -63.1	759.8 798.8 798.8 814.6 814.6 853.4	3.4 147 1.7 145 1.7 146 3.4 148 3.4 149 3.4 150 3.4 151	82.6 199.3 239.7 75.8 130.2 192.1 183.3	-35.0 -61.4 -10.1 -129.8 -63.1 -61.4 -100.7	814.6 859.1 807.8 910.6 853.4 880.5	3.4 1.7 1.7 1.7 3.4 1.7	3.4 1.7 1.7 3.4 1.7
156 156	6.3 -45.2 -45.2 -124.5 -84.3 -84.3 -139.2	18.2 18.2 39.2 39.2 -6.0 44.1 44.1 54.5	753.5 753.5 792.3 792.3 837.3 847.5 847.5 886.0	7.6 153 7.6 161 3.4 154 3.4 156 1.7 155 3.4 157 3.4 158 3.4 159	-45.2 6.9 -124.5 -84.3 -218.2 -116.1 -139.2 -195.0	39.2 20.0 -6.0 44.1 -43.1 143.6 54.5 30.8	792.3 787.5 837.3 847.5 851.0 934.0 886.0 916.4	3.4 7.0 1.7 3.4 1.7 1.7 3.4	3.4 7.0 1.7 3.4 1.7 1.7 3.4
	-139.2 -139.2 6.9 63.4 102.2 157.4 6.9	54.5 20.0 20.0 25.8 43.0 59.9 21.7	886.0 787.5 787.5 825.0 878.2 914.4 821.4	3.4 160 7.0 162 7.0 166 3.3 163 3.3 164 3.3 165 6.5 167	-203.1 63.4 6.9 102.2 157.4 222.3 6.9	69.2 25.8 21.7 43.0 59.9 74.2 23.3	903.3 825.0 821.4 878.2 914.4 929.1 855.4	3.4 3.3 6.5 3.3 3.3 5.9	3.4 3.3 6.5 3.3 3.3 5.9
167 168 169 169 170 170	6.9 7.0 7.0 7.0 6.4 6.4 7.0	23.3 24.5 24.5 24.5 24.2 24.2 24.3	855.4 889.4 890.0 890.0 890.7 890.7	5.9 168 5.9 169 5.9 170 5.9 173 1.0 171 1.0 172 5.9 174	7.0 7.0 6.4 7.0 5.6 6.0 7.9	24.5 24.5 24.2 24.3 23.7 23.6 24.5	889.4 890.0 890.7 890.6 890.7 891.3	5.9 5.9 1.0 5.9 1.0	5.9 5.9 1.0 5.9 1.0
173 175 175	7.0 7.0 7.0	24.3 24.3 24.3	890.6 891.2 891.2	5.9 175 5.9 176 5.9 177	7.0 6.7 7.0	24.3 24.2 24.2	891.2 891.8 891.8	5.9 1.0 5.9	5.9 1.0 5.9

(Sheet 3 of 3)

Example Tree Locations for Grayling, MI Latitude Longitude Base Elevation Model Model Se							
Latitude	Longitude	354.20	valley_oak2	0.769			
44.696502	-84.636163 -84.636163	354.20	valley_oak2	0.769			
44.696276							
44.696641	-84.636580	354.50	valley_oak2	1.461			
44.696306	-84.636693	354.20	valley_oak2	1.461			
44.697001	-84.635859	354.20	valley_oak1	1.818			
44.695916	-84.636615	353.80	valley_oak1	0.909			
44.695890	-84.636641	353.70	valley_oak1	1.212			
44.696276	-84.636719	354.30	valley_oak1	0.848			
44.697027	-84.636276	353.80	valley_oak1	0.757			
44.697166	-84.636806	355.60	valley_oak1	2.121			
44.697057	-84.636997	355.00	valley_oak1	0.757			
44.697248	-84.635885	354.20	valley_oak1	0.727			
44.696641	-84.636111	354.10	valley_pine	0.869			
44.696250	-84.636198	354.20	valley_pine	0.652			
44.695946	-84.636580	353.80	valley_pine	0.652			
44.696389	-84.637057	354.60	valley_pine	1.304			
44.696389	-84.637170	354.50	valley_pine	1.152			
44.696168	-84.637587	354.60	valley_pine	1.021			
44.696944	-84.637309	355.10	valley_pine	0.804			
44.697222	-84.636415	353.70	valley_pine	1.086			
44.697140	-84.636832	355.60	valley_pine	0.891			
44.697166	-84.636198	354.30	valley_pine	0.978			
44.695841	-84.637823	354.55	valley_oak1	2.500			
44.695710	-84.638429	358.77	valley_oak1	2.500			
44.695728	-84.638513	359.94	valley_oak1	2.500			
44.698257	-84.647789	364.20	forest_pine	1.003			
44.698341	-84.647751	363.70	forest_pine	1.007			
44.698185	-84.647766	365.30	forest_pine	1.090			
44.698147	-84.647896	365.10	forest_oak1	0.934			
44.698307	-84.647797	363.70	forest_oak1	1.040			
44.698219	-84.647728	365.10	forest_pine	0.945			
44.698162	-84.647827	365.30	forest_pine	0.999			
44.698868	-84.646957	363.50	forest_pine	0.925			
44.698959	-84.646393	363.90	forest_oak1	0.917			
44.698792	-84.646912	363.40	forest pine	0.978			
44.698551	-84.647034	365.40	forest_pine	0.955			
44.699314	-84.645317	368.20	forest_oak1	0.974			
44.698685	-84.647125	364.40	forest_pine	1.097			

Table 11 Foliage Data	1		
Tree Type	Average Length	Average Width	Comment
Black Oak	11 cm	6 cm	Leaf
Jack Pine	3 cm		Needle

able 12 lodel Parameters for Deciduous Forest Canopies				
Model Parameter	Top Layer	Middle Layer	Bottom Layer	
Leaf frequency distribution factor	1	1	1	
Leaf clumpiness factor	0.1	0.1	0.1	
Leaf area index	3.4	0.8	0.4	
Longwave emissitivity	0.98	0.98	0.98	
Fractional shortwave absorption coefficient	0.089	0.042	0.040	
Leaf stomatic resistance to water vapor diffusion	0.07	0.07	0.07	

able 13 Model Parameters for Coniferous Forest Canopies					
Model Parameter	Top Layer	Middle Layer	Bottom Layer		
Leaf frequency distribution factor	1	1	1		
Leaf clumpiness factor	0.1	0.1	0.1		
Leaf area index	1.5	5.3	1.0		
Longwave emissitivity	0.98	0.98	0.98		
Fractional shortwave absorption coefficient	0.389	0.019	0.028		
Leaf stomatic resistance to water vapor diffusion	0.66	0.66	0.66		

Table 14 Texture Image Data for Grayling, MI					
Texture File Name	Description	Time, 24 hr			
CA060[1-3].syn	Deciduous Forest Canopy	0600			
CA150[1-3].syn	Deciduous Forest Canopy	1500			
CA190[1-3].syn	Deciduous Forest Canopy	1900			
GR080[1-3].syn	Grassy Field	0800			
GR120[1-3].syn	Grassy Field	1200			
GR200[1-3].syn	Grassy Field	2000			
GS100[1-3].syn	Grass/Shrub Field	1000			
GS150[1-3].syn	Grass/Shrub Field	1500			
GS190[1-3].syn	Grass/Shrub Field	1900			
SO100[1-3].syn	Bare Soil	1000			
SO150[1-3].syn	Bare Soil	1500			
SO190[1-3].syn	Bare Soil	1900			
TR080[1-3].syn	Single Deciduous Tree	0800			
TR140[1-3].syn	Single Deciduous Tree	1400			
TR200[1-3].syn	Single Deciduous Tree	2000			

	Terrain Cover Types								
Time	Grassy Field		Single Deciduous Tree		Coniferous Treeline		Dirt Road		
mm/dd/yy hh:mm:ss	3-5 μ m	8-12 μm	3-5 μ m	8-12 μm	3-5 μm	8-12 μm	3-5 μm	8-12 μm	
09/19/92 01:20:07	0.3	0.3	0.1	0.2	0.3	0.4	0.2	0.8	
09/19/92 14:00:07	0.5	0.5	0.4	0.7	0.6	0.8	0.8	0.7	
09/19/92 18:00:05	0.3	0.3	0.3	0.3	0.2	0.4	0.4	0.4	
09/20/92 11:00:05	0.4	0.4	0.4	0.4	0.6	0.5	1.4	1.0	
09/20/92 15:30:09	0.8	0.8	0.6	0.6	0.9	0.9	1.4	8.0	
09/23/92 08:20:04	0.4	0.3	0.5	0.4	0.5	0.5	0.8	0.3	
09/23/92 15:00:04	1.3	1.0	1.2	1.5	1.7	1.4	1.7	1.4	

Table 15

Plate 1

Plate 2

Plate 3

Plate 4

Landscape Features

Plate 5

Plate 6

Plate 7

Plate 8

Plate 9

Appendix A Information Base File Formats

Meteorological Data

The Grayling 1 Information Base contains two different files describing the meteorological conditions during the program: standard meteorological data and solar flux data. A text description of the standard meteorological data (*.met files) is as follows:

- line 1: General Information
- line 2: Altitude of Station (meters above MSL), Latitude Longitude, Time Flag
- line 3: Time Step, Number of Steps, Year, Season Flag, Dry Soils Flag
- line 4,5: Day, Time, Pressure, Temperature, Relative Humidity, Wind Speed, Wind Direction, Visibility, Aerosol Flag, Precipitation Amount, Precipitation Type, Low Cloud Amount, Low Cloud Type, Medium Cloud Amount, Medium Cloud Type, High Cloud Amount, High Cloud Type, Global Solar, Direct Solar, Diffuse Solar, IR Downwelling, Solar Zenith, Solar Azimuth

lines 6-n: Data Values

The following FORTRAN format statement describes the data values format:

FORMAT (213,12,F7.1,3F6.1,F7.1,F5.1,14,F7.2,13,1X,3[F4.1,12],4[7.1],F6.1,F7.1)

A text description of the solar flux data (*.sol files) is as follows:

line 1-24: Julian Day, Hour, Minute, Low Cloud Amount, Weighted Total Solar, Weighted Direct Solar, Weighted Diffuse Solar, Clear Sky Total Solar, Clear Sky Direct Solar, Clear Sky Diffuse Solar, Overcast Total Solar, Overcast Direct Solar, Overcast Diffuse Solar The following FORTRAN format statement describes the data values format:

FORMAT (13,12,12,F3.1,9[F6.1])

In Jeff Koening's report "Grayling 1 Data Review and Archive Databases," these data values and procedures are described in detail.

Texture Data

Each texture image file contains 256 by 256 pixels of 8-bit binary gray level data with a 512-byte header. These conform to the CIG format specifications. Gray levels are normally distributed with a mean of 128 and a standard deviation of 32. Resolution cell size of the source imagery from which textures were generated is approximately 6.6 cm; therefore, each 256 by 256 texture image corresponds to a square area approximately 17 m on a side.

Appendix B **Physical Properties**

Coniferous Forest Canopy

Average Needle optical properties

Reflectance

0.250

Transmittance

0.224 0.143

Average soil reflectance:

Global irradiance fraction: 1.0 Diffuse irradiance fraction: 0.18

Stomatal resistance:

0.22 min/cm

Number of layers:

3

Layer 1 (top)

Leaf angle distribution:

Spherical

Leaf Area Index:

0.80

Canopy density parameter:

0.10

Layer 2

Leaf angle distribution:

Spherical

Leaf Area Index:

1.0

Canopy density parameter:

0.10

Layer 3

Leaf angle distribution:

Spherical

Leaf Area Index:

0.20

Canopy density parameter:

0.10

Computed shortwave absorption coefficients:

Layer 1:

0.228

Layer 2:

0.214

Layer 3:

0.079

Soil:

0.306

Longwave emissivity/absorption coefficients:

Laver 1:

0.98

Layer 2:

0.98

Layer 3:

0.98

Soil:

XXX

Deciduous Forest Canopy:

Average Leaf optical properties

Reflectance 0.250
Transmittance 0.224
Average soil reflectance: 0.143
Global irradiance fraction: 1.0
Diffuse irradiance fraction: 0.18

Stomatal resistance: 0.07 min/cm

Number of layers: 3

Layer 1 (top)

Leaf angle distribution: Spherical Leaf Area Index: 0.80 Canopy density parameter: 0.10

Layer 2

Leaf angle distribution: Spherical Leaf Area Index: 0.15
Canopy density parameter: 0.10

Layer 3

Leaf angle distribution: Spherical Leaf Area Index: 0.05
Canopy density parameter: 0.10

Computed shortwave absorption coefficients:

Layer 1: 0.255 Layer 2: 0.046 Layer 3: 0.038 Soil: 0.486

Longwave emissivity/absorption coefficients:

Layer 1: 0.98
Layer 2: 0.98
Layer 3: 0.98
Soil: xxx