Elektrotehnički fakultet Univerziteta u Beogradu

Neuralne mreže (13S053NM) Prvi projektni zadatak

PROBLEM

Dataset koji smo odabrali je CatsVsRabbits

(https://www.kaggle.com/datasets/muniryadi/cat-vs-rabbit). Problem koji je trebalo rešiti jeste klasifikacija zečeva i mački. Ulazne podatke podelili smo na trening i test skupove. Test skup sadrži 20% ukupnih podataka, i služi nam za testiranje obučene mreže i evaluaciju njenih performansi. Ukupno podataka ima 2029, a u skupu za validaciju (test) 405.

- 1. Broj primeraka koji pripadaju klasi mačke 1017
- 2. Broj primeraka koji pripadaju klasi zečevi 1012

Kao što možemo videti po broju primeraka, a i sa histograma, podaci su prilično dobro balansirani, pa nije bilo potrebe za njihovim balansiranjem.

Primeri koji pripadaju jednoj, odnosno drugoj klasi:

AUGMENTACIJA

Izršena je augmentacija, i to rotacijom, uvećanjem i flipovanjem ulaznih podataka. Time smo dobili još ulaznih podataka, od početnih, čime se poboljšava obučavanje mreže.

• FORMIRANJE NEURALNE MREŽE

Model je kreiran tako da se sastoji iz 3 konvoluciona sloja i 3 max pooling sloja. Prvi konvolucioni sloj ima 448 parametara, drugi 4640, a treći 18496. Za zaštitu od preobučavanja korisćena je dropout tehnika. Skaliranje je izvršeno pomoću keras.layers.Rescalling() prilikom kog se ulazne vrednosti skaliraju u novi opseg.

Model: "sequential_1"		
Layer (type)	Output Shape	
sequential (Sequential)		
rescaling (Rescaling)	(None, 64, 64, 3)	0
conv2d (Conv2D)	(None, 64, 64, 16)	448
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 32, 32, 16)	0
conv2d_1 (Conv2D)	(None, 32, 32, 32)	4640
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 16, 16, 32)	0
conv2d_2 (Conv2D)	(None, 16, 16, 64)	18496
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 8, 8, 64)	0
dropout (Dropout)	(None, 8, 8, 64)	0
flatten (Flatten)	(None, 4096)	0
dense (Dense)	(None, 128)	524416
dense_1 (Dense)	(None, 2)	258

Total params: 548,258 Trainable params: 548,258 Non-trainable params: 0

OBUČAVANJE MREŽE

Prilikom izbora kriterijumske funkcije izabrali smo sparse categorical crossentropy, koja je kodirana celim brojevima, npr. ukoliko imamo tri klase biće [1],[2],[3].

Aktivaciona funkcija koja je korišćena je ReLU funkcija aktivacija, čiji je rezultat 0 ukoliko je ulaz manji ili jednak nuli, a inače je ta vrednost sa ulaza.

$$\sigma(x) = \max(0, x)$$

Aktivaciona funkcija za FC sloj je SoftMax funkcija, koja daje K realnih vrednosti koje u sumi daju 1, tako da se one mogu koristiti kao verovatnoće.

■ PREOBUČAVANJE NEURALNE MREŽE

Preobučavanje neuralne mreže je pojava koja se dešava kada male izmene na ulazu daju velike promene na izlazu, tj. trening skup daje odlične rezultate, a test skup daje nezadovoljavajuće.

Tehnika koja je korišćena kako bismo se zaštitili od preobučavanja (overfitting-a) je Dropout. Droput sloj u toku treniranja izbacuje ili gasi određene neurone u određenoj verovatnoći (npr. 50%). Koristi se i za poboljšavanje performansi.

Tačnost modela na test skupu je: 88.39506172839506%

Tačnost modela na trening skupu je: 92.91871921182266%

Ispis u konzoli:

Tačnost modela na test skupu je: 88.39506172839506% Tačnost modela na trening skupu je: 92.91871921182266%

Na graficima ispod možemo videti kako se ponaša Accuracy i Loss kroz epohe. Plava linija predstavlja train skup, a crvenkasta validation.

Matrica konfuzije na trening skupu:

Matrica konfuzije na test skupu:

Primer dobrog i lošeg primera:

Dobar primer prikazuje da je mačka dobro prepoznata, a loš primer da jedna slika mačke pripada klasi zečeva.

Trivić Aleksa 2020/0198 Golubović Đorđe 2020/0112