IndiraGandhiDelhiTechnicalUniversityForWomen

(FormerlyIndiraGandhiInstituteofTechnology)
KashmereGate,Delhi-110006

PROBABILITY AND STATISTICS(BAS-103) TUTORIAL SHEET -4

(Expectation, Variance, Covariance & Moment Generating Function)

Q1. Show that Cov(X, Y) = E(XY) - E(X)E(Y).

- Q2. Let the p.m.f. of a random variable X be $f(x) = \frac{(3-x)}{10}$, x = -1, 0, 1, 2.
 - a) Calculate E(X).
 - b) Calculate $E(X^2)$.
 - c) Use the results of (a) and (b) to calculate $E[(4X + 5)^2]$.
 - d) Obtain the m.g.f. and the moments of the random variable.

[Ans. (a) 0 (b) 1 (c) 41 (d)
$$\mu'_0 = 1, \mu'_1 = \frac{7}{2}, \mu'_2 = \frac{91}{12}, ...$$
]

- Q3. An unbiased die is rolled. We say that a success occurs if the score obtained is 1 or 2. Any other score (i.e. a score of 3,4,5 or 6) is called a failure. Let $X_k = 0$ or 1 according as the k^{th} trial results in a failure or success. Notice that $X_1 + \cdots + X_n$ is the number of successes obtained in n rolls of the die.
 - a) Obtain $E(X_k)$ and hence the expected number of successes in n rolls of the die.
 - b) Obtain the variance of the total number of the successes under the assumption that $X_1, X_2, ..., X_n$ are independent random variables.

[Ans. (a) 1/3& n/3 (b) 2n/9]

Q4. Suppose the joint p.m.f. of *X* and *Y* is given by the following table:

У	0 ,	- 1	2	g(x)
x				
0	3/28	9/28	3/28	15/28
1	3/14	3/14	0 .	3/7
2	1/28	0	0	1/28
h(y)	5/14	15/28	. 3/28	1

Obtain Var(X + Y). [Ans. 45/112]

Q5. Suppose the random variables X and Y have the joint p.m.f. f(x,y) specified by the following table

у	0	1
x		
i	0.20	0.15
2	0.20	0.30
3	0.05	0.10

Compute the means, the variances and the covariances for the joint distribution.

[Ans.E(X)= 2.1, E(Y)= 0.55,
$$Var(X)$$
= 4.19, $Var(Y)$ = 0.2475, $Cov(X,Y)$ = 0.395]

Q6. Obtain the distribution of X + Y when the joint p.m.f. of X and Y is defined as follows

a)
$$f(x,y) = \frac{x+y}{30}$$
 for $x = 0,1,2,3$ and $y = 0,1,2$.

b)

У	0	1	2	3	g(x)
x			•		_
0	0	1/6	1/12	1/12	1/3
1	1/24	1/24	1/8	0	5/24
2	5/24	4/24	1/24	1/24	11/24
h(y)	6/24	9/24	6/24	3/24	1

[Ans. (a) possible values of X + Y are 0,1,2,3,4,5 and its p.m.f is 0, 5/24, 1/3, 3/8, 1/24, 1/24 (b) possible values of X + Y are 0,1,2,3,4,5 and its p.m.f is 0, 1/15, 1/5, 3/10, 4/15, 5/30.]

Q7. Suppose the random vector (X, Y) has the joint density function given by

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1\\ 0, & otherwise \end{cases}$$

Then find

- a) The marginal density functions of X and Y.
- b) The covariance of X and Y.
- c) $E(X^2)$.

[Ans. (a)
$$\frac{2}{\pi}\sqrt{1-x^2}$$
 and $\frac{2}{\pi}\sqrt{1-y^2}$ (b) 0]