Pymaceutical Matplotlib Challenge

Type *Markdown* and LaTeX: α^2

```
In [1]: # Dependencies and Setup
         import matplotlib.pyplot as plt
         import pandas as pd
         import numpy as np
         from collections import Counter
         import scipy.stats as st
         from scipy.stats import linregress
         # Study data files
         mouse metadata path = "data/Mouse metadata.csv"
         study_results_path = "data/Study_results.csv"
         # Read the mouse data and the study results
         mouse_metadata = pd.read_csv(mouse_metadata_path)
         study_results = pd.read_csv(study_results_path)
         # Combine the data into a single dataset
         merged_data = pd.merge(mouse metadata, study results, how='outer', on="Mous")
         # Display the data table for preview
         pd.set_option("display.max rows", None, "display.max columns", None)
         display(merged data)
            16
                 s185
                        Capomulin Female
                                                 3
                                                        17
                                                                  30
                                                                        32.959671
                                                                                         1
            17
                 s185
                        Capomulin Female
                                                 3
                                                        17
                                                                  35
                                                                        28.328531
                                                                                          1
            18
                 s185
                        Capomulin Female
                                                 3
                                                        17
                                                                  40
                                                                        25.472143
                                                                                          1
                 s185
                        Capomulin Female
                                                  3
                                                        17
                                                                  45
                                                                        23.343598
                                                                                         1
            19
                 x401
                        Capomulin Female
                                                16
                                                        15
                                                                  0
                                                                        45.000000
                                                                                         0
            20
            21
                 x401
                        Capomulin Female
                                                 16
                                                        15
                                                                  5
                                                                        45.473753
                                                                                          0
                                                                                         0
            22
                 x401
                        Capomulin Female
                                                 16
                                                        15
                                                                  10
                                                                        39.113891
                 x401
                                                16
                                                        15
                                                                  15
                                                                        39.776250
                                                                                         0
            23
                        Capomulin Female
                 x401
                        Capomulin Female
                                                        15
                                                                  20
                                                                        36.065835
                                                                                          0
            24
                                                 16
                 x401
                        Capomulin Female
                                                        15
                                                                  25
                                                                        36.617120
                                                                                          0
            25
                                                16
            26
                 x401
                        Capomulin Female
                                                16
                                                        15
                                                                  30
                                                                        32.915292
                                                                                         0
            27
                 x401
                        Capomulin Female
                                                 16
                                                        15
                                                                  35
                                                                        30.206825
                                                                                          0
                 x401
                                                 16
                                                        15
                                                                  40
                                                                        28.167397
                                                                                         0
            28
                        Capomulin Female
```

By merging on Mouse ID, it was possible to add mouse metadata to the result data.

In [2]: # Checking the number of mice.
 total_mice = len(pd.unique(merged_data['Mouse ID']))
 display(total_mice)

249

- In [3]: # Getting the duplicate mice by ID number that shows up for Mouse ID and Ti
 duplicate_mice = merged_data.loc[merged_data.duplicated(subset = ['Mouse ID
- In [4]: # Optional: Get all the data for the duplicate mouse ID.
 dupe_mouse_df = pd.DataFrame(duplicate_mice)
 dupe_mouse_df
- Out[4]:

0 0 g989

This duplicate mouse was found by searching for pairs of duplicated mouse ID's and timepoints, which could only exist in the case of a duplicated result.

In [5]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.
 cleaned_df = merged_data[merged_data['Mouse ID'].isin(duplicate_mice)==Fals
 display(cleaned_df)

	Mouse ID	Drug Regimen	Sex	Age_months	Weight (g)	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	k403	Ramicane	Male	21	16	0	45.000000	0
1	k403	Ramicane	Male	21	16	5	38.825898	0
2	k403	Ramicane	Male	21	16	10	35.014271	1
3	k403	Ramicane	Male	21	16	15	34.223992	1
4	k403	Ramicane	Male	21	16	20	32.997729	1
5	k403	Ramicane	Male	21	16	25	33.464577	1
6	k403	Ramicane	Male	21	16	30	31.099498	1
7	k403	Ramicane	Male	21	16	35	26.546993	1
8	k403	Ramicane	Male	21	16	40	24.365505	1
9	k403	Ramicane	Male	21	16	45	22.050126	1

```
In [6]: # Checking the number of mice in the clean DataFrame.
    cleaned_mouse_count = len(pd.unique(cleaned_df['Mouse ID']))
    print(cleaned_mouse_count)
```

248

Summary Statistics

```
# Generate a summary statistics table of mean, median, variance, standard d
In [7]:
        \# Use groupby and summary statistical methods to calculate the following \operatorname{pr}
        # mean, median, variance, standard deviation, and SEM of the tumor volume.
        volume mean = cleaned df.groupby('Drug Regimen').mean()['Tumor Volume (mm3)
        volume median = cleaned df.groupby('Drug Regimen').median()['Tumor Volume (
        volume_variance = cleaned_df.groupby('Drug Regimen').var()['Tumor Volume (m
        volume std = cleaned df.groupby('Drug Regimen').std()['Tumor Volume (mm3)']
        volume sem = cleaned_df.groupby('Drug Regimen').sem()['Tumor Volume (mm3)']
        # Assemble the resulting series into a single summary dataframe.
        summary_df = pd.DataFrame({'Mean Tumor Volume (mm3)': volume_mean,
                                   'Median Tumor Volume (mm3)': volume_median,
                                   'Variance in Tumor Volume (mm3)': volume variance
                                   'Standard Dev. of Tumor Volume (mm3)': volume std
                                   'SEM of Tumor Volume (mm3)': volume sem})
        display(summary_df)
```

	Mean Tumor Volume (mm3)	Median Tumor Volume (mm3)	Variance in Tumor Volume (mm3)	Tumor Volume (mm3)	SEM of Tumor Volume (mm3)
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.320930	50.446266	43.852013	6.622085	0.544332
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Variance in

Standard Day of

In [8]: # Generate a summary statistics table of mean, median, variance, standard d
Using the aggregation method, produce the same summary statistics in a si
agg_summary = cleaned_df.groupby('Drug Regimen').agg({'Tumor Volume (mm3)':
agg_summary.head(10)

Out[8]:

Tumor Volume (mm3)

	mean	median	var	std	sem
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.320930	50.446266	43.852013	6.622085	0.544332
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Bar and Pie Charts

```
In [9]: # Generate a bar plot showing the total number of measurements taken on eac
barchart1 = cleaned_df['Drug Regimen'].value_counts().plot(kind='bar')
display(barchart1)
print(cleaned_df['Drug Regimen'].value_counts())
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fc840b4f5c0>

Capomulin	230
Ramicane	228
Ketapril	188
Naftisol	186
Zoniferol	182
Stelasyn	181
Placebo	181
Infubinol	178
Ceftamin	178
Propriva	148

Name: Drug Regimen, dtype: int64


```
In [10]: # Generate a bar plot showing the total number of measurements taken on eac
    regimenlist = cleaned_df['Drug Regimen'].tolist
    #using a counter to create paired regimens and counts
    countedlist = Counter(regimenlist())
    regimenkeys = countedlist.keys()
    regimencounts = countedlist.values()
    plt.bar(regimenkeys,regimencounts)
    plt.title('Measurements Per Drug Regimen')
    plt.xlabel("Drug Regimen")
    plt.ylabel("Number of Measurements")
    #this is a dense chart, needs to be set larger.
    plt.yticks(np.arange(0, max(regimencounts)+1, 25))
    plt.tick_params(axis='x', which='major', labelsize=10, pad=15)
    plt.show()
```



```
In [12]: # Generate a pie plot showing the distribution of female versus male mice u
male = cleaned_df.Sex.value_counts().Male
female = cleaned_df.Sex.value_counts().Female
fig1, ax1 = plt.subplots()
sex_data = [male, female]
mylabels='Male', 'Female'
explode = (0.1, 0)
ax1.pie(explode)
plt.pie(sex_data, labels=mylabels,autopct='%1.1f%%', explode=explode, shado
ax1.axis('equal')
plt.title('Distribution of Sex')
plt.show()
```


Quartiles, Outliers and Boxplots

```
In [13]: # Calculate the final tumor volume of each mouse across four of the treatme
# Capomulin, Ramicane, Infubinol, and Ceftamin
# Start by getting the last (greatest) timepoint for each mouse
max_timepoint = cleaned_df.groupby('Mouse ID').max()['Timepoint']
timepoints_df = pd.DataFrame(max_timepoint)
timepoint_merge = pd.merge(timepoints_df, cleaned_df, on=('Mouse ID','Timep
#use list of the desired medications to create df of final tumor volumes
regimens = ['Capomulin', 'Ramicane', 'Infubinol', 'Ceftamin']
filtered_timepoints = timepoint_merge.loc[timepoint_merge['Drug Regimen'].i
filtered_timepoints = filtered_timepoints.rename(columns={"Timepoint": "Fin
# Merge this group df with the original dataframe to get the tumor volume a
display(filtered_timepoints)
```

	Mouse ID	Final Timepoint	Drug Regimen	Sex	Age_months	Weight (g)	Final Tumor Volume (mm3)	Metastatic Sites
0	a203	45	Infubinol	Female	20	23	67.973419	2
1	a251	45	Infubinol	Female	21	25	65.525743	1
3	a275	45	Ceftamin	Female	20	28	62.999356	3
6	a411	45	Ramicane	Male	3	22	38.407618	1
7	a444	45	Ramicane	Female	10	25	43.047543	0
10	a520	45	Ramicane	Male	13	21	38.810366	1
11	a577	30	Infubinol	Female	6	25	57.031862	2
12	a644	45	Ramicane	Female	7	17	32.978522	1
13	a685	45	Infubinol	Male	8	30	66.083066	3
19	b128	45	Capomulin	Female	9	22	38.982878	2

Generate a box plot of the final tumor volume of each mouse across four regimens of interest

<matplotlib.axes._subplots.AxesSubplot at 0x7fc840d56828>

<Figure size 1080x1080 with 0 Axes>

Line and Scatter Plots

```
In [15]: # Put treatments into a list for for loop (and later for plot labels)
         # Create empty list to fill with tumor vol data (for plotting)
         tumor_vol0 = []
         tumor_vol1 = []
         tumor_vol2 = []
         tumor vol3 = []
         \# Calculate the IQR and quantitatively determine if there are any potential
         # Locate the rows which contain mice on each drug and get the tumor volume
         tumor_vol0 = filtered_timepoints.loc[filtered_timepoints['Drug Regimen'] == r
         tumor vol1 = filtered timepoints.loc[filtered timepoints['Drug Regimen']==r
         tumor vol2 = filtered timepoints.loc[filtered timepoints['Drug Regimen'] == r
         tumor vol3 = filtered timepoints.loc[filtered timepoints['Drug Regimen']==r
         cap_vol = tumor_vol0.tolist()
         ram_vol = tumor_vol1.tolist()
         inf_vol = tumor_vol2.tolist()
         cef vol = tumor vol3.tolist()
         boxplot_df = pd.DataFrame({"Capomulin:":cap vol,
                                   "Ramicane:":ram_vol,
                                    "Infubinol:":inf_vol,
                                    "Ceftamin:": cef vol})
         #calculating quantiles of final tumor volumes
         Q01 = np.quantile(cap vol, 0.25)
         Q03 = np.quantile(cap vol, 0.75)
         IQR0 = Q03 - Q01
         outlier01 = Q01-(IQR0*1.5)
         outlier02 = Q03+(IQR0*1.5)
         #formatting for neat print statements
         outlier01 formatted = "{:.3f}".format(outlier01)
         outlier02 formatted = "{:.3f}".format(outlier02)
         #process for Ramicane
         Q11 = np.quantile(ram vol, 0.25)
         Q13 = np.quantile(ram vol, 0.75)
         IQR1 = Q13 - Q11
         outlier11 = Q11-(IQR1*1.5)
         outlier12 = Q13+(IQR1*1.5)
         outlier11_formatted = "{:.3f}".format(outlier11)
         outlier12 formatted = "{:.3f}".format(outlier12)
         #process for infubinol
         Q21 = np.quantile(inf vol, 0.25)
         Q23 = np.quantile(inf vol, 0.75)
         IQR2 = Q23 - Q21
         outlier21 = Q21-(IQR2*1.5)
         outlier22 = Q23+(IQR2*1.5)
         outlier21 formatted = "{:.3f}".format(outlier21)
         outlier22 formatted = "{:.3f}".format(outlier22)
         #process for ceftamin
         Q31 = np.quantile(cef vol, 0.25)
         Q33 = np.quantile(cef vol, 0.75)
         IQR3 = Q33 - Q31
         outlier31 = Q31-(IQR3*1.5)
         outlier32 = Q33+(IQR3*1.5)
```

```
outlier31 formatted = "{:.3f}".format(outlier31)
outlier32_formatted = "{:.3f}".format(outlier32)
    # Determine outliers using upper and lower bounds
cap outliers = []
ram outliers = []
inf_outliers = []
cef outliers = []
#append outliers to list based on being above/below +/- 1.5~	imes~IQR
for x in cap vol:
    if x < int(outlier01) or x > int(outlier02):
        cap outliers.append(x)
for y in (ram_vol):
    if y < int(outlier11) or y > int(outlier12):
        ram outliers.append(y)
for i in inf vol:
    if i < int(outlier21) or i > int(outlier22):
        inf outliers.append(i)
for z in (cef_vol):
    if z < int(outlier31) or z > int(outlier32):
        cef outliers.append(z)
#print outlier bounds and outlier count
print("For Capomulin, outliers in final tumor volume are below " + str(outl
print("For Ramicane, outliers in final tumor volume are below " + str(outli
print("For Infubinol, outliers in final tumor volume are below " + str(outl
print("For Ceftamin, outliers in final tumor volume are below " + str(outli
```

For Capomulin, outliers in final tumor volume are below 20.705 (mm3) and above 51.832 (mm3). There are 0 in the set.

For Ramicane, outliers in final tumor volume are below 17.913 (mm3) and a bove 54.307 (mm3). There are 0 in the set.

For Infubinol, outliers in final tumor volume are below 36.833 (mm3) and above 82.741 (mm3). There are 0 in the set.

For Ceftamin, outliers in final tumor volume are below 25.355 (mm3) and a bove 87.666 (mm3). There are 0 in the set.

```
# Generate a line plot of tumor volume vs. time point for a mouse treated w
In [16]:
         #generate a df containing only capomulin info
         capo = ['Capomulin']
         capo df = cleaned_df.loc[cleaned_df['Drug Regimen'].isin(capo)]
         #use an id from a mouse that went all the way to the highest timepoint(45)
         capo id = ['s185']
         single_capo_df = capo_df.loc[cleaned_df['Mouse ID'].isin(capo_id)]
         #display(single capo df)
         #use matplotlib
         fig=plt.figure()
         ax=plt.axes()
         plt.title("Tumor Volume vs Timeframe For Mouse s185")
         plt.xlabel("Time Point")
         plt.ylabel("Tumor Vol (mm3)")
         plt.plot(single capo df['Timepoint'], single capo df['Tumor Volume (mm3)'])
```

Out[16]: [<matplotlib.lines.Line2D at 0x7fc84114e898>]

<matplotlib.axes._subplots.AxesSubplot at 0x7fc841182978>

Correlation and Regression

In [18]: # Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen

```
In [25]: x_values = avg_vol_df['Weight (g)']
    y_values = avg_vol_df['Tumor Volume (mm3)']
    (slope, intercept, rvalue, pvalue, stderr) = linregress(x_values, y_values)
    regress_values = x_values * slope + intercept
    line_eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2))
    plt.scatter(x_values,y_values)
    plt.plot(x_values,regress_values,"r-")
    plt.annotate(line_eq,(6,10),fontsize=15,color="red")
    plt.ylabel=('Average Tumor Volume')
    plt.xlabel=('Mouse Weight (g)')
    correlation = y_values.corr(x_values)
    plt.show()
    print("The correlation coefficient is " + str(correlation) +".")
```


The correlation coefficient is 0.9505243961855271.

In []:	
In []:	