In [70].	Project: Clustering Worked By: Rifat Jahan Lia, M1,Iot Step 1: Importing the necessary libraries and loading the dataset I have used the iris.csv dataset for this project. The link of the dataset is here: https://www.kaggle.com/datasets/saurabh00007/iriscsv import_matplotlib.pyplot_as_plt
In [79]: In [80]:	<pre>from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np from numpy import unique from numpy import where from matplotlib import pyplot import seaborn as sns from sklearn.decomposition import PCA</pre> ds = pd.read_csv('/Users/NC/Documents/M1-Semester2/Data Science/Prf. Guyeux Christophe/TP/Clusltering/iris.csv',header = None)
Out[80]:	ds 1 49 30 14 02 ins-setosa 1 49 30 14 02 ins-setosa 3 46 31 15 02 ins-setosa 4 50 36 14 02 ins-setosa 4 50 36 14 02 ins-setosa 1 49 50 36 15 02 ins-setosa 1 45 63 30 52 23 ins-virginica 147 65 30 52 20 15 ins-virginica 148 62 34 54 23 ins-virginica 149 59 30 51 18 ins-virginica 149 59 30 51 18 ins-virginica
In [81]: In [82]: Out[82]:	Step 2: Data Preprocessing ds = ds.rename(columns={0: 'Sepal length', 1: 'Sepal width', 2:'Petal length', 3:'Petal width', 4:'Species'}) ds Sepal length Sepal width Petal length Petal width Species 0 5.1 3.5 1.4 0.2 Iris-setosa
	1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa 145 6.7 3.0 5.2 2.3 Iris-virginica 146 6.3 2.5 5.0 1.9 Iris-virginica 147 6.5 3.0 5.2 2.0 Iris-virginica 148 6.2 3.4 5.4 2.3 Iris-virginica 150 rows × 5 columns 5 columns 1.8 Iris-virginica
In [83]:	ds.Species.value_counts() Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50 Name: Species, dtype: int64 #repalcing Species name ds = ds.replace({'Species' : {'Iris-setosa': 0, 'Iris-versicolor' : 1, 'Iris-virginica' : 2}})
In [85]: Out[85]:	
	148 6.2 3.4 5.4 2.3 2 149 5.9 3.0 5.1 1.8 2 150 rows × 5 columns X = ds.iloc[:, :-1].values y = ds.iloc[:, -1].values ds Sepal length Sepal width Petal length Petal width Species
	0 5.1 3.5 1.4 0.2 0 1 4.9 3.0 1.4 0.2 0 2 4.7 3.2 1.3 0.2 0 3 4.6 3.1 1.5 0.2 0 4 5.0 3.6 1.4 0.2 0 145 6.7 3.0 5.2 2.3 2 146 6.3 2.5 5.0 1.9 2 147 6.5 3.0 5.2 2.0 2
In [145	148 6.2 3.4 5.4 2.3 2 149 5.9 3.0 5.1 1.8 2 150 rows × 5 columns # Standardize features scaler = StandardScaler()
In [90]: In [132…	from sklearn.cluster import AffinityPropagation, KMeans, MeanShift AffinityPropagation trainData1 = np.array(ds) # defining the model model = AffinityPropagation(damping=0.7) #training the model
In [133	<pre>model.fii(trainData1) # assigning each data point to a cluster result = model.predict(trainData1) # getting all of the unique clusters clusters = unique(result) for cluster in clusters: # getting data points that fall in this cluster index = where(result == cluster) # making the plot pyplot.scatter(trainData1[index, 0], trainData1[index, 1])</pre>
	4.0 - 3.5 - 3.0 - 2.5 -
In [134	2.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 MeanShift trainData2 = np.array(ds) # defining the model mean_model = MeanShift()
	<pre># assigning each data point to a cluster mean_result = mean_model.fit_predict(trainData2) # getting all of the unique clusters mean_clusters = unique(mean_result) # plotting Mean-Shift the clusters for mean_cluster in mean_clusters: # getting data points that fall in this cluster index = where(mean_result == mean_cluster) # making the plot pyplot.scatter(trainData2[index, 0], trainData2[index, 1]) # showing the Mean-Shift plot pyplot.show()</pre>
	2.5 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
In [135	<pre>trainData3 = np.array(ds) # defining the model model = KMeans(n_clusters=2) # fitting the model model.fit(trainData3) # assigning a cluster to each example</pre>
	# retrieving unique clusters clusters = unique(result) # creating scatter plot for samples from each cluster for cluster in clusters: # getting row indexes for samples with this cluster row_ix = where(result == cluster) # creating scatter of these samples # pyplot.scatter(trainData3[row_ix, 0], trainData3[row_ix, 1]) # showing the plot pyplot.show() C:\Users\NC\AppBata\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppreture warning warnings.warn(4.5
	3.5 3.0 2.5
In [136	Step 4: Applying several evaluation metrics I am using three evaluation metrics. They are- 1.Silhouette 2. Adjusted Rand Index and 3. Homogeneity from sklearn.metrics import silhouette_score, adjusted_rand_score, homogeneity_score # Evaluating clustering algorithms for algorithm in [af, ms, kneans]: algorithm.fit(X) labels = algorithm.labels_ sil_score = silhouette_score(X, labels) ar_score = adjusted_rand_score(y, labels) homo_score = homogeneity_score(y, labels) print("mv)a[algorithmclassname_]: \n Silhouette Score: {sil_score:.3f}, \n Adjusted Rand Index: {ar_score:.3f}, \n Homogeneity Score: {homo_score:.3f}")
	AffinityPropagation: Silhouette Score: 0.343, Adjusted Rand Index: 0.312, Homogeneity Score: 0.839 MeanShift: Silhouette Score: 0.580, Adjusted Rand Index: 0.568, Homogeneity Score: 0.579 KMeans: Silhouette Score: 0.459, Adjusted Rand Index: 0.620,
In [137	Homogeneity Score: 0.659 C:\Users\Mc\AppBata\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supprethe warning. warn(# Plotting the results labels = ['AffinityPropagation', 'MeanShift', 'KMeans'] x = pp. arange(len(labels)) width = 0.25 fig, ax = plt.subplots() rects1 = ax.bar(x - width, sil_scores, width, label='Kilhouette Score') rects2 = ax.bar(x - width, sil_scores, width, label='Adjusted Rand Index') rects3 = ax.bar(x + width, homo_scores, width, label='Homogeneity Score') ax.set_vlabel('Evaluation Score') ax.set_title('Clustering Algorithm Comparison') ax.set_tit(s(x)) ax.set_xlicklabels(labels) ax.legend()
	Fig. tight_layout() plt.show() Clustering Algorithm Comparison Silhouette Score Adjusted Rand Index Homogeneity Score
	Step 5: Applying Reduction Techniques
In [138	<pre>from sklearn.decomposition import PCA # Defining clustering algorithms ap = AffinityPropagation() ms = MeanShift() km = KMeans(n_clusters=3) # Applying PCA for dimensionality reduction pca = PCA(n_components=2) X_pca = pca.fit_transform(X) # Applying clustering algorithms to the reduced data</pre>
	<pre>ap.fit(X_pca) labels_ap = ap.labels_ ms.fit(X_pca) labels_ms = ms.labels_ km.fit(X_pca) labels_km = km.labels_ km.fit(X_pca) labels_km = km.labels_ # Plotting the results fig, axs = plt.subplots(1, 3, figsize=(18, 6)) axs[0].setter(X_pca[:, 0], X_pca[:, 1], c=labels_ap) axs[0].set_title('AffinityPropagation') axs[1].setater(X_pca[:, 0], X_pca[:, 1], c=labels_ms) axs[1].set_title('MeanShift') axs[2].set_title('MeanShift') axs[2].set_title('KMeans') plt.show()</pre>
	C:\Users\NC\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supprishe warnings.warn(AffinityPropagation MeanShift KMeans 2 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
In [140	Step 6: Applying evalution matric after applying PCA from sklearn.metrics import silhouette_score, adjusted_rand_score, homogeneity_score # Evaluating clustering algorithms for algorithm in [af, ms, kmeans]: algorithm.in[t(X_pca) labels = algorithm.labels_ sil_score = silhouette_score(X_pca, labels) ar_score = adjusted_rand_score(y, labels) homo_score = homogeneity_score(y, labels)
	print(f"\n{algorithmclassname_}: \n Silhouette Score: {sil_score:.3f}, \n Adjusted Rand Index: {ar_score:.3f}, \n Homogeneity Score: {homo_score:.3f}") AffinityPropagation: Silhouette Score: 0.440, Adjusted Rand Index: 0.322, Homogeneity Score: 0.812 MeanShift: Silhouette Score: 0.613, Adjusted Rand Index: 0.568, Homogeneity Score: 0.579 KMeans: Silhouette Score: 0.508,
In [143	Adjusted Rand Index: 0.620, Homogeneity Score: 0.659 C:\Users\NC\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppretent the warning warnings.warn(# Plotting the scores scores_df.plot(kind='bar', rot=0, figsize=(10,6)) plt.title('Clustering Algorithm Comparison after PCA') plt.ylabel('Evaluation Score') plt.ylim(0,1) plt.show()
	Clustering Algorithm Comparison after PCA Silhouette Score Adjusted Rand Index Homogeneity Score
	0.2
	AffinityPropagation MeanShift KMeans Step 7: Comparisom among the result before and after applying PCA Before = Before applying reduction techniques(PCA) After = After applying reduction techniques(PCA) AffinityPropagation: Before Silhouette Score: 0.347, After Silhouette Score: 0.428, Impovement: 0.081 Before Adjusted Rand Index: 0.481, After Adjusted Rand Index: 0.440, Improvement: -0.041 Before Homogeneity Score: 0.927, Improvement: 0.012
In [144	MeanShift: Before Silhouette Score: 0.686, After Silhouette Score: 0.710, Improvement: 0.024 Before Adjusted Rand Index: 0.558, After Adjusted Rand Index: 0.558, Improvement: 0 Before Homogeneity Score: 0.554, After Homogeneity Score: 0.554, Improvement: 0.015 KMeans: Before Silhouette Score: 0.553, After Silhouette Score: 0.598, Improvement: 0.045 Before Adjusted Rand Index: 0.730, After Adjusted Rand Index: 0.716, Improvement: -0.014 Before Homogeneity Score: 0.751, After Homogeneity Score: 0.736, Improvement: -0.015 import matplotlib.pyplot as plt # Data before applying PCA before_sil_scores = [0.347, 0.686, 0.558] before_rand_indices = [0.481, 0.558, 0.736] before_rand_indices = [0.481, 0.558, 0.736] # Data after applying PCA after_sil_scores = [0.428, 0.710, 0.598] after_nhomo_scores = [0.927, 0.554, 0.736] # Creating subplots for each evaluation metric fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
	<pre># Plotting Silhouette Scores axi.plot(['AffinityPropagation', 'MeanShift', 'KMeans'], before_sil_scores, label='Before PCA') axi.set_title('Silhouette Scores') axi.set_vilim([8, 1]) # Plotting Adjusted Rand Index ax2.plot(['AffinityPropagation', 'MeanShift', 'KMeans'], before_rand_indices, label='Before PCA') ax2.plot(['AffinityPropagation', 'MeanShift', 'KMeans'], after_rand_indices, label='After PCA') ax2.set_title('Adjusted Rand Indices') ax2.set_vilim([8, 1]) # Plotting Homogeneity Scores ax3.plot(['AffinityPropagation', 'MeanShift', 'KMeans'], before_homo_scores, label='Before PCA') ax3.plot(['AffinityPropagation', 'MeanShift', 'KMeans'], after_bomo_scores, label='After PCA') ax3.set_vilim([8, 1]) # Adding legend and title to the figure fig.suptitle('Comparison of clustering Algorithms before and after PCA')</pre>
	Fig. suptitie('Comparison of Clustering Algorithms before and after PCA') fig. legend() #displaying plt. show() Comparison of Clustering Algorithms before and after PCA Silhouette Scores 1.0 Adjusted Rand Indices 1.0 0.8 Homogeneity Scores After PCA After PCA Before PCA After PCA After PCA After PCA After PCA After PCA After PCA
	0.6 - 0.6 - 0.6 - 0.4 - 0.4 - 0.4 -
	0.2 -

Course: Data Science

