

Representation and Analysis of Dynamical Systems

Test – 40min – without documentation

Marking scale: true: +1; false or no response: -0.5: I don't know: 0

u(t) is a unitary step input		1. The Laplace transform $U(s)$ of $u(t)$ is:		
		U(s) = 1/s		
		☐ I do not know		
The Laplace transform of a sig	u(t) is:	2. The final value (at $t = \infty$) of $u(t)$ is:		
$U(s) = \frac{2}{1+2s}$		$ \square u(\infty) = 2 $		
1123		$\blacksquare u(\infty) = 0$		
		3. Assuming $u(0) = 0$, $u(t)$ is:		
Error: the solution is:		$ \Box u(t) = 2 \exp(-t/2) $		
	Error. the solution is.	$ \Box u(t) = 2 \exp(-t/2) $ $ \Box u(t) = 2 \exp(t/2) $		
	$u(t) = \exp(-t/2)$	$\Box u(t) = 2 \exp(t/2)$ $\Box u(t) = 2 (1 - \exp(-t/2))$		
	(c) exp(t/2)			
Two signals $u(t)$ and $v(t)$ have	ve respective Laplace transforms $U(s)$ and	4. w(t) = u(t) + v(t) has Laplace		
V(s)		transform $W(s) = U(s) + V(s)$		
(6)		■ Yes □ No		
		5. $w(t) = u(t) \times v(t)$ has Laplace		
		transform $W(s) = U(s) \times V(s)$		
		☐ Yes ■ No		
Consider the transfer function	of a system:	6.The static gain of the system is 8:		
		☐ Yes ■ No ☐ I do not know		
	$H(s) = \frac{8}{2+5s}$			
		7.The system time constant is 5/2		
		■ Yes □ No □ I do not know		
The Laplace transform of diffe	rential equation	8.		
	$3y'(t) + 2y(t) - \partial(t) = 0$	$\square Y(s) = \frac{1}{s^2 + 2s - s}$		
with $\partial(t)$ unit impulse and ini		$6s^2 + 3s - 2$ 6s - 8		
	$= -1 \ and \ y'(0) = 2$	$\Box I(S) - \frac{1}{6s^2 + 3s + 2}$		
is:		$ Y(s) = \frac{1}{6s^2 + 3s - 2} $ $ Y(s) = \frac{6s - 8}{6s^2 + 3s + 2} $ $ Y(s) = \frac{10 - 6s}{6s^2 + 3s + 2} $		
		☐ I don't know		

Consider	the	transf	er f	unct	ion

$$H(s) = \frac{800}{s^2 + 20s + 400}$$

and the step responses below:

(A)

(B)

(C)

19. The step response corresponding to the transfer function is:

 \Box A

■ B

 \Box C

 \Box D

☐ I do not know

Consider the transfer function of a system: $H(s) = \frac{1}{s^2 + s + 4}$	20. The system is stable ■ Yes □ No		
Consider the transfer function of a system: $H(p) = \frac{1}{p^2 - p + 4}$	21. The system is stable ☐ Yes ■ No		
Consider the transfer function of a system: $H(p) = \frac{1}{(p-1)(p^2+p+4)}$	22. The system is stable ☐ Yes ■ No		
Consider the bode diagram of an open-loop system below: Bode Diagram	23. This system in closed-loop with unitary feedback is stable: ☐ Yes ☐ No ☐ I do not know		
Static error: the step response of the plant whose open loop transfer function is: $H(s) = \frac{100}{s^2 + 4s}$ has a null closed loop static error.	24. ■ Yes □ No □ I do not know		
$ \begin{array}{c} x(t) \\ k \\ \hline c \end{array} $ $f(t)$	25. The potential energy is $\blacksquare E_p = \frac{1}{2}kx^2$ $\Box E_p = \frac{1}{2}m\dot{x}^2$ $\Box E_p = 0$ $\Box \text{ I do not know}$		

State Space representation

Consider the differential equation that characterizes a mechanical system with a mass M, a damper of constant C and a stiffness K:

$$m\ddot{x} + c\dot{x} + kx = F,$$

F being the force applied to the system.

The output of the system is the displacement x.

26. A possible representation of the mechanical system is:

$$X = \begin{bmatrix} x & \dot{x} \end{bmatrix}^{t}$$

$$\dot{X} = \begin{bmatrix} 0 & 1 \\ \frac{k}{m} & \frac{c}{m} \end{bmatrix} X + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} F$$

$$Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$$

$$X = \begin{bmatrix} x & \dot{x} \end{bmatrix}^{t} \\
\dot{X} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} X + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} F \\
Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$$

$$\dot{X} = \begin{bmatrix} x & \dot{x} \end{bmatrix}^{t} \\
\dot{X} = \begin{bmatrix} 0 & 1 \\ -\frac{c}{m} & -\frac{k}{m} \end{bmatrix} X + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} F \\
Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$$

☐ I do not know