COMPUTER VISION A MODERN APPROACH

SECOND EDITION

DAVID A. FORSYTH

University of Illinois at Urbana-Champaign

JEAN PONCE

Ecole Normale Supérieure

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Vice President and Editorial Director, ECS:

Marcia Horton Editor in Chief: Michael Hirsch Executive Editor: Tracy Dunkelberger Senior Project Manager: Carole Snyder

Vice President Marketing: Patrice Jones

Marketing Manager: Yez Alayan

Marketing Coordinator: Kathryn Ferranti

Marketing Assistant: Emma Snider

Vice President and Director of Production:

Vince O'Brien

Managing Editor: Jeff Holcomb

Senior Production Project Manager: Marilyn Lloyd

Senior Operations Supervisor: Alan Fischer Operations Specialist: Lisa McDowell

Art Director, Cover: Jayne Conte

Text Permissions: Dana Weightman/RightsHouse,

Inc. and Jen Roach/PreMediaGlobal Cover Image: © Maxppp/ZUMAPRESS.com

Media Editor: Dan Sandin Composition: David Forsyth Printer/Binder: Edwards Brothers Cover Printer: Lehigh-Phoenix Color

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text.

Copyright © 2012, 2003 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-608592-8 ISBN-10: 0-13-608592-X $To\ my\ father,\ Jean-Jacques\ Ponce\ -JP$

Contents

Ι	IN	IAGE	FORMATION	1
1	Geo	metric	c Camera Models	3
	1.1	Image	Formation	4
		1.1.1	Pinhole Perspective	4
		1.1.2	Weak Perspective	6
		1.1.3	Cameras with Lenses	8
		1.1.4	The Human Eye	12
	1.2	Intrins	sic and Extrinsic Parameters	14
		1.2.1	Rigid Transformations and Homogeneous Coordinates	14
		1.2.2	Intrinsic Parameters	16
		1.2.3	Extrinsic Parameters	18
		1.2.4	Perspective Projection Matrices	19
		1.2.5	Weak-Perspective Projection Matrices	20
	1.3	Geome	etric Camera Calibration	22
		1.3.1	A Linear Approach to Camera Calibration	23
		1.3.2	A Nonlinear Approach to Camera Calibration	27
	1.4	Notes		29
2	Lig	ht and	Shading	32
	2.1	Model	ling Pixel Brightness	32
		2.1.1	Reflection at Surfaces	33
		2.1.2	Sources and Their Effects	34
		2.1.3	The Lambertian+Specular Model	36
		2.1.4	Area Sources	36
	2.2	Inferer	nce from Shading	37
		2.2.1	Radiometric Calibration and High Dynamic Range Images	38
		2.2.2	The Shape of Specularities	40
		2.2.3	Inferring Lightness and Illumination	43
		2.2.4	Photometric Stereo: Shape from Multiple Shaded Images	46
	2.3	Model	ling Interreflection	52
		2.3.1	The Illumination at a Patch Due to an Area Source	52
		2.3.2	Radiosity and Exitance	54
		2.3.3	An Interreflection Model	55
		2.3.4	Qualitative Properties of Interreflections	56
	2.4	Shape	from One Shaded Image	59

	2.5	Notes	61
3	Col	or	68
	3.1	Human Color Perception	68
		3.1.1 Color Matching	68
		3.1.2 Color Receptors	71
	3.2	The Physics of Color	73
		3.2.1 The Color of Light Sources	73
		3.2.2 The Color of Surfaces	76
	3.3	Representing Color	77
		3.3.1 Linear Color Spaces	77
		3.3.2 Non-linear Color Spaces	83
	3.4	A Model of Image Color	86
		3.4.1 The Diffuse Term	88
		3.4.2 The Specular Term	90
	3.5	Inference from Color	90
		3.5.1 Finding Specularities Using Color	90
		3.5.2 Shadow Removal Using Color	92
		3.5.3 Color Constancy: Surface Color from Image Color $\ \ldots \ \ldots$	95
	3.6	Notes	99
	0.0	110165	98
	9.0	TVOICES	98
II			
II	E	ARLY VISION: JUST ONE IMAGE	105
II 4	E	ARLY VISION: JUST ONE IMAGE	105 107
	E	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution	105 107
	E Line 4.1	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution	105 107 107
	E	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution	105 107 107 112
	E Line 4.1	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution	105 107 107 107 112 113
	E Line 4.1	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution	105 107 107 107 112 113 115
	E Line 4.1	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions	105 107 107 107 112 113 115
	E Line 4.1	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms	105 107 107 107 112 113 118 118
	E Line 4.1 4.2	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms	105 107 107 107 112 113 115 118 118
	E Line 4.1	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms Sampling and Aliasing	105 107 107 107 112 113 118 118 119 121
	E Line 4.1 4.2	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms Sampling and Aliasing 4.4.1 Sampling	105 107 107 107 112 113 118 118 121 121
	E Line 4.1 4.2	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms Sampling and Aliasing 4.4.1 Sampling 4.4.2 Aliasing	105 107 107 107 112 113 118 118 121 122 125
	E Line 4.1 4.2	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms Sampling and Aliasing 4.4.1 Sampling 4.4.2 Aliasing 4.4.3 Smoothing and Resampling	105 107 107 107 112 118 118 119 121 122 125 126
	E Line 4.1 4.2	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms Sampling and Aliasing 4.4.1 Sampling 4.4.2 Aliasing 4.4.3 Smoothing and Resampling Filters as Templates	105 107 107 107 112 113 118 118 121 122 125 126 131
	E Line 4.1 4.2 4.3 4.4	ARLY VISION: JUST ONE IMAGE Ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms Sampling and Aliasing 4.4.1 Sampling 4.4.2 Aliasing 4.4.3 Smoothing and Resampling Filters as Templates 4.5.1 Convolution as a Dot Product	105 107 . 107 . 107 . 112 . 113 . 118 . 118 . 122 . 125 . 126 . 131 . 131
	E Line 4.1 4.2 4.3 4.4	ARLY VISION: JUST ONE IMAGE ear Filters Linear Filters and Convolution 4.1.1 Convolution Shift Invariant Linear Systems 4.2.1 Discrete Convolution 4.2.2 Continuous Convolution 4.2.3 Edge Effects in Discrete Convolutions Spatial Frequency and Fourier Transforms 4.3.1 Fourier Transforms Sampling and Aliasing 4.4.1 Sampling 4.4.2 Aliasing 4.4.3 Smoothing and Resampling Filters as Templates	105 107 . 107 . 107 . 112 . 113 . 118 . 118 . 121 . 125 . 126 . 131 . 131 . 131

		4.6.1	Controlling the Television by Finding Hands by Normalized Correlation
	4.7	Toohn	ique: Scale and Image Pyramids
	4.1	4.7.1	The Gaussian Pyramid
		4.7.1	Applications of Scaled Representations
	4.8		
	4.8	Notes	
5	\mathbf{Loc}	al Ima	ge Features 141
	5.1	Comp	uting the Image Gradient
		5.1.1	Derivative of Gaussian Filters
	5.2	Repres	senting the Image Gradient
		5.2.1	Gradient-Based Edge Detectors
		5.2.2	Orientations
	5.3	Findin	ng Corners and Building Neighborhoods
		5.3.1	Finding Corners
		5.3.2	Using Scale and Orientation to Build a Neighborhood \dots 151
	5.4	Descri	bing Neighborhoods with SIFT and HOG Features $\dots 155$
		5.4.1	SIFT Features
		5.4.2	HOG Features
	5.5	Comp	uting Local Features in Practice
	5.6	Notes	
6	Tex	ture	164
6	Tex 6.1		164
6			Texture Representations Using Filters
6		Local	Texture Representations Using Filters
6		Local 6.1.1	Texture Representations Using Filters
6		Local 6.1.1 6.1.2 6.1.3	Texture Representations Using Filters
6	6.1	Local 6.1.1 6.1.2 6.1.3	Texture Representations Using Filters
6	6.1	Local 6.1.1 6.1.2 6.1.3 Pooled	Texture Representations Using Filters
6	6.1	Local 6.1.1 6.1.2 6.1.3 Pooled 6.2.1 6.2.2	Texture Representations Using Filters
6	6.1	Local 6.1.1 6.1.2 6.1.3 Pooled 6.2.1 6.2.2	Texture Representations Using Filters
6	6.1	Local 6.1.1 6.1.2 6.1.3 Pooled 6.2.1 6.2.2 Synthe	Texture Representations Using Filters
6	6.1	Local 6.1.1 6.1.2 6.1.3 Poolec 6.2.1 6.2.2 Synthe 6.3.1 6.3.2	Texture Representations Using Filters
6	6.16.26.3	Local 6.1.1 6.1.2 6.1.3 Poolec 6.2.1 6.2.2 Synthe 6.3.1 6.3.2	Texture Representations Using Filters
6	6.16.26.3	Local 6.1.1 6.1.2 6.1.3 Pooled 6.2.1 6.2.2 Synthe 6.3.1 6.3.2 Image	Texture Representations Using Filters
6	6.16.26.3	Local 6.1.1 6.1.2 6.1.3 Poolec 6.2.1 6.2.2 Synthe 6.3.1 6.3.2 Image 6.4.1	Texture Representations Using Filters
6	6.16.26.3	Local 6.1.1 6.1.2 6.1.3 Pooled 6.2.1 6.2.2 Synthe 6.3.1 6.3.2 Image 6.4.1 6.4.2	Texture Representations Using Filters
6	6.16.26.3	Local 6.1.1 6.1.2 6.1.3 Poolec 6.2.1 6.2.2 Synthe 6.3.1 6.3.2 Image 6.4.1 6.4.2 6.4.3 6.4.4	Texture Representations Using Filters
6	6.1 6.2 6.3	Local 6.1.1 6.1.2 6.1.3 Poolec 6.2.1 6.2.2 Synthe 6.3.1 6.3.2 Image 6.4.1 6.4.2 6.4.3 6.4.4	Texture Representations Using Filters

	6.6	Notes	191
II	I l	ARLY VISION: MULTIPLE IMAGES	195
7	Ste	eopsis	197
	7.1	Binocular Camera Geometry and the Epipolar Constraint	198
		7.1.1 Epipolar Geometry	198
		7.1.2 The Essential Matrix	200
		7.1.3 The Fundamental Matrix	201
	7.2	Binocular Reconstruction	201
		7.2.1 Image Rectification	202
	7.3	Human Stereopsis	203
	7.4	Local Methods for Binocular Fusion	205
		7.4.1 Correlation	205
		7.4.2 Multi-Scale Edge Matching	207
	7.5	Global Methods for Binocular Fusion	210
		7.5.1 Ordering Constraints and Dynamic Programming	
		7.5.2 Smoothness and Graphs	
	7.6	Using More Cameras	
	7.7	Application: Robot Navigation	
	7.8	Notes	216
8	Str	cture from Motion	22 1
	8.1	Internally Calibrated Perspective Cameras	221
		8.1.1 Natural Ambiguity of the Problem	223
		8.1.2 Euclidean Structure and Motion from Two Images \dots	224
		8.1.3 $$ Euclidean Structure and Motion from Multiple Images	228
	8.2	Uncalibrated Weak-Perspective Cameras	230
		8.2.1 Natural Ambiguity of the Problem	231
		8.2.2 Affine Structure and Motion from Two Images $\dots \dots$	233
		8.2.3 Affine Structure and Motion from Multiple Images	237
		8.2.4 From Affine to Euclidean Shape	238
	8.3	Uncalibrated Perspective Cameras	240
		8.3.1 Natural Ambiguity of the Problem	241
		8.3.2 Projective Structure and Motion from Two Images	242
		8.3.3 $$ Projective Structure and Motion from Multiple Images	244
		8.3.4 From Projective to Euclidean Shape	246
	0.4	Notes	0.40

II	/ N	ΛID-I	LEVEL VISION	253
9	Segi	mentat	tion by Clustering	255
	9.1	Human	n Vision: Grouping and Gestalt	 256
	9.2	Impor	tant Applications	 261
		9.2.1	Background Subtraction	 261
		9.2.2	Shot Boundary Detection	 264
		9.2.3	Interactive Segmentation	 265
		9.2.4	Forming Image Regions	 266
	9.3	Image	Segmentation by Clustering Pixels $\ \ldots \ \ldots \ \ldots \ \ldots$	 268
		9.3.1	Basic Clustering Methods	 269
		9.3.2	The Watershed Algorithm	 271
		9.3.3	Segmentation Using K-means	 272
		9.3.4	Mean Shift: Finding Local Modes in Data	 273
		9.3.5	Clustering and Segmentation with Mean Shift	 275
	9.4	Segme	ntation, Clustering, and Graphs	 277
		9.4.1	Terminology and Facts for Graphs	 277
		9.4.2	Agglomerative Clustering with a Graph	 279
		9.4.3	Divisive Clustering with a Graph	 281
		9.4.4	Normalized Cuts	 284
	9.5	Image	Segmentation in Practice	 285
		9.5.1	Evaluating Segmenters	 286
	9.6	Notes		 287
10	Gro	uping	and Model Fitting	290
	10.1	The H	ough Transform	 290
		10.1.1	Fitting Lines with the Hough Transform	 290
		10.1.2	Using the Hough Transform	 292
	10.2	Fitting	g Lines and Planes	 293
		10.2.1	Fitting a Single Line	 294
		10.2.2	Fitting Planes	 295
		10.2.3	Fitting Multiple Lines	 296
	10.3	Fitting	g Curved Structures	 297
	10.4	Robus	tness	 299
		10.4.1	M-Estimators	 300
		10.4.2	RANSAC: Searching for Good Points	 302
	10.5	Fitting	g Using Probabilistic Models	 306
		10.5.1	Missing Data Problems	 307
		10.5.2	Mixture Models and Hidden Variables	 309
		10.5.3	The EM Algorithm for Mixture Models	 310
		10 5 4	Difficulties with the EM Algorithm	312

10.6	Motion	n Segmentation by Parameter Estimation	313
	10.6.1	Optical Flow and Motion	315
	10.6.2	Flow Models	316
	10.6.3	Motion Segmentation with Layers	317
10.7	Model	Selection: Which Model Is the Best Fit?	319
	10.7.1	Model Selection Using Cross-Validation	322
10.8	Notes		322
11 Tra	cking		326
11.1	Simple	e Tracking Strategies	327
	11.1.1	Tracking by Detection	327
	11.1.2	Tracking Translations by Matching	330
	11.1.3	Using Affine Transformations to Confirm a Match $\ \ldots \ \ldots$	332
11.2	Tracki	ng Using Matching	334
		Matching Summary Representations	
	11.2.2	Tracking Using Flow	337
11.3	Tracki	ng Linear Dynamical Models with Kalman Filters $\ \ldots \ \ldots$	339
	11.3.1	Linear Measurements and Linear Dynamics $\ \ldots \ \ldots \ \ldots$	340
		The Kalman Filter	
	11.3.3	Forward-backward Smoothing	345
11.4	Data A	Association	349
	11.4.1	Linking Kalman Filters with Detection Methods \dots	349
	11.4.2	Key Methods of Data Association	350
11.5	Partic	le Filtering	350
	11.5.1	Sampled Representations of Probability Distributions $$	351
	11.5.2	The Simplest Particle Filter	355
	11.5.3	The Tracking Algorithm	356
	11.5.4	A Workable Particle Filter	358
	11.5.5	Practical Issues in Particle Filters	360
11.6	Notes		362
V H	IGH-	LEVEL VISION	365
12 Reg	istrati	on	367
12.1	Regist	ering Rigid Objects	368
	12.1.1	Iterated Closest Points	368
	12.1.2	Searching for Transformations via Correspondences	369
	12.1.3	Application: Building Image Mosaics	370
19.9	Model.	-based Vision: Registering Rigid Objects with Projection	375

	12.2.1	to Target	377
12.3	Registe	ering Deformable Objects	
12.0	_	Deforming Texture with Active Appearance Models	
		Active Appearance Models in Practice	
		Application: Registration in Medical Imaging Systems	
12.4			
			391
13.1		nts of Differential Geometry	
		Curves	
10.0		Surfaces	
13.2		ur Geometry	
		The Occluding Contour and the Image Contour	
		The Cusps and Inflections of the Image Contour	
		Koenderink's Theorem	
13.3		Events: More Differential Geometry	
		The Geometry of the Gauss Map	
		Asymptotic Curves	
		The Asymptotic Spherical Map	
		Local Visual Events	
	13.3.5	The Bitangent Ray Manifold	413
	13.3.6	Multilocal Visual Events	414
	13.3.7	The Aspect Graph	416
13.4	Notes		417
14 Ran	ge Dat	ta	422
14.1	Active	Range Sensors	422
14.2	Range	Data Segmentation	424
	14.2.1	Elements of Analytical Differential Geometry	424
	14.2.2	Finding Step and Roof Edges in Range Images	426
	14.2.3	Segmenting Range Images into Planar Regions	431
14.3	Range	Image Registration and Model Acquisition	432
	14.3.1	Quaternions	433
		Registering Range Images	
	14.3.3	Fusing Multiple Range Images	436
14.4		Recognition	
		Matching Using Interpretation Trees	
		Matching Free-Form Surfaces Using Spin Images	
14.5			
		Features	

	14.5.2	Technique: Decision Trees and Random Forests	. 448
	14.5.3	Labeling Pixels	. 450
	14.5.4	Computing Joint Positions	. 453
14.6	Notes		. 453
15 Lea	rning t	to Classify	457
15.1	Classif	fication, Error, and Loss	. 457
	15.1.1	Using Loss to Determine Decisions	. 457
	15.1.2	Training Error, Test Error, and Overfitting	. 459
	15.1.3	Regularization	. 460
	15.1.4	Error Rate and Cross-Validation	. 463
	15.1.5	Receiver Operating Curves	. 465
15.2	Major	Classification Strategies	. 467
	15.2.1	Example: Mahalanobis Distance	. 467
	15.2.2	Example: Class-Conditional Histograms and Naive Bayes $$.	. 468
	15.2.3	Example: Classification Using Nearest Neighbors	. 469
	15.2.4	Example: The Linear Support Vector Machine	. 470
	15.2.5	Example: Kernel Machines	. 473
	15.2.6	Example: Boosting and Adaboost	. 475
15.3	Practi	cal Methods for Building Classifiers	. 475
	15.3.1	Manipulating Training Data to Improve Performance	. 477
	15.3.2	Building Multi-Class Classifiers Out of Binary Classifiers .	. 479
	15.3.3	Solving for SVMS and Kernel Machines	. 480
15.4	Notes		. 481
16 Cla	ssifying	g Images	482
16.1	Buildi	ng Good Image Features	. 482
	16.1.1	Example Applications	. 482
	16.1.2	Encoding Layout with GIST Features	. 485
	16.1.3	Summarizing Images with Visual Words	. 487
	16.1.4	The Spatial Pyramid Kernel	. 489
	16.1.5	Dimension Reduction with Principal Components	. 493
	16.1.6	Dimension Reduction with Canonical Variates	. 494
	16.1.7	Example Application: Identifying Explicit Images	. 498
	16.1.8	Example Application: Classifying Materials	. 502
	16.1.9	Example Application: Classifying Scenes	. 502
16.2	Classif	fying Images of Single Objects	. 504
	16.2.1	Image Classification Strategies	. 505
	16.2.2	Evaluating Image Classification Systems	. 505
	16.2.3	Fixed Sets of Classes	. 508
	16 2 4	Largo Numbers of Classes	500

	16.2.5	Flowers, Leaves, and Birds: Some Specialized Problems .	511
16.3	Image	Classification in Practice	512
	_	Codes for Image Features	
		Image Classification Datasets	
		Dataset Bias	
		Crowdsourcing Dataset Collection	
16.4			
17 Det	ecting	Objects in Images	519
17.1	The Sl	liding Window Method	519
	17.1.1	Face Detection	520
	17.1.2	Detecting Humans	525
	17.1.3	Detecting Boundaries	527
17.2	Detect	ing Deformable Objects	530
17.3	The St	tate of the Art of Object Detection	535
	17.3.1	Datasets and Resources	538
17.4	Notes		539
18 Top	ics in	Object Recognition	54 0
18.1	What	Should Object Recognition Do?	540
	18.1.1	What Should an Object Recognition System Do?	540
	18.1.2	Current Strategies for Object Recognition	542
	18.1.3	What Is Categorization?	542
	18.1.4	Selection: What Should Be Described?	544
18.2	Featur	re Questions	544
	18.2.1	Improving Current Image Features	544
	18.2.2	Other Kinds of Image Feature	546
18.3	Geome	etric Questions	547
18.4	Seman	tic Questions	549
	18.4.1	Attributes and the Unfamiliar	550
	18.4.2	Parts, Poselets and Consistency	551
	18.4.3	Chunks of Meaning	554
VI A	APPL	ICATIONS AND TOPICS	557
19 Ima	ge-Bas	sed Modeling and Rendering	559
	_	Hulls	559
	19.1.1	Main Elements of the Visual Hull Model	561
	19.1.2	Tracing Intersection Curves	563
		Clipping Intersection Curves	566

		19.1.4	Triangulating Cone Strips		567
		19.1.5	Results		568
		19.1.6	Going Further: Carved Visual Hulls		572
	19.2	Patch-	Based Multi-View Stereopsis		573
		19.2.1	Main Elements of the PMVS Model		575
		19.2.2	Initial Feature Matching		578
		19.2.3	Expansion		579
		19.2.4	Filtering		580
		19.2.5	Results		581
	19.3	The Li	ght Field		584
	19.4	Notes			587
20	Loo	king at	t People		590
20		_	s, Dynamic Programming, and Tree-Structured Models		
	20.1		Hidden Markov Models		
			Inference for an HMM		
			Fitting an HMM with EM		
			Tree-Structured Energy Models		
	20.2		g People in Images		
	20.2		Parsing with Pictorial Structure Models		
			Estimating the Appearance of Clothing		
	20.3		ng People		
	20.0		Why Human Tracking Is Hard		
			Kinematic Tracking by Appearance		
			Kinematic Human Tracking Using Templates		
	20.4		m 2D: Lifting		
	20.4		Reconstruction in an Orthographic View		
			Exploiting Appearance for Unambiguous Reconstructions .		
			Exploiting Motion for Unambiguous Reconstructions		
	20.5		ty Recognition		
	20.0		Background: Human Motion Data		
			Body Configuration and Activity Recognition		
			Recognizing Human Activities with Appearance Features		
			Recognizing Human Activities with Compositional Models.		
	20.6		ces		
		Notes			
n •	т	C			
4 1		_	rch and Retrieval		627
	21.1		pplication Context		
			Applications	•	620

	21.1.3	Types of Image Query	. 630
	21.1.4	What Users Do with Image Collections	. 631
21.2	Basic	Technologies from Information Retrieval	. 632
	21.2.1	Word Counts	. 632
	21.2.2	Smoothing Word Counts	. 633
	21.2.3	Approximate Nearest Neighbors and Hashing	. 634
	21.2.4	Ranking Documents	. 638
21.3	Images	s as Documents	. 639
	21.3.1	Matching Without Quantization	. 640
	21.3.2	Ranking Image Search Results	. 641
	21.3.3	Browsing and Layout	. 643
	21.3.4	Laying Out Images for Browsing	. 644
21.4	Predic	ting Annotations for Pictures	. 645
	21.4.1	Annotations from Nearby Words	. 646
	21.4.2	Annotations from the Whole Image	. 646
	21.4.3	Predicting Correlated Words with Classifiers	. 648
	21.4.4	Names and Faces	. 649
	21.4.5	Generating Tags with Segments	. 651
21.5		tate of the Art of Word Prediction	
	21.5.1	Resources	. 655
	21.5.2	Comparing Methods	. 655
	21.5.3	Open Problems	. 656
21.6	Notes		. 659
VII	BACI	KGROUND MATERIAL	661
V II	DACI	MOROUND MAILMAL	001
22 Opt	imizat	ion Techniques	663
22.1	Linear	Least-Squares Methods	. 663
	22.1.1	Normal Equations and the Pseudoinverse	. 664
	22.1.2	Homogeneous Systems and Eigenvalue Problems	. 665
	22.1.3	Generalized Eigenvalues Problems	. 666
	22.1.4	An Example: Fitting a Line to Points in a Plane	. 666
	22.1.5	Singular Value Decomposition	. 667
22.2	Nonlin	ear Least-Squares Methods	. 669
	22.2.1	Newton's Method: Square Systems of Nonlinear Equations.	. 670
	22.2.2	Newton's Method for Overconstrained Systems	. 670
	22.2.3	The Gauss–Newton and Levenberg–Marquardt Algorithms	. 671
22.3	Sparse	Coding and Dictionary Learning	. 672
	22.3.1	Sparse Coding	. 672
	22.3.2	Dictionary Learning	. 673

VV	ı

22.3.3 Supervised Dictionary Learning	675
$22.4~\mathrm{Min\text{-}Cut/Max\text{-}Flow}$ Problems and Combinatorial Optimization	675
22.4.1 Min-Cut Problems	676
22.4.2 Quadratic Pseudo-Boolean Functions	677
22.4.3 Generalization to Integer Variables	679
22.5 Notes	682
Bibliography	684
Index	737
List of Algorithms	76 0

Preface

Computer vision as a field is an intellectual frontier. Like any frontier, it is exciting and disorganized, and there is often no reliable authority to appeal to. Many useful ideas have no theoretical grounding, and some theories are useless in practice; developed areas are widely scattered, and often one looks completely inaccessible from the other. Nevertheless, we have attempted in this book to present a fairly orderly picture of the field.

We see computer vision—or just "vision"; apologies to those who study human or animal vision—as an enterprise that uses statistical methods to disentangle data using models constructed with the aid of geometry, physics, and learning theory. Thus, in our view, vision relies on a solid understanding of cameras and of the physical process of image formation (Part I of this book) to obtain simple inferences from individual pixel values (Part II), combine the information available in multiple images into a coherent whole (Part III), impose some order on groups of pixels to separate them from each other or infer shape information (Part IV), and recognize objects using geometric information or probabilistic techniques (Part V). Computer vision has a wide variety of applications, both old (e.g., mobile robot navigation, industrial inspection, and military intelligence) and new (e.g., human computer interaction, image retrieval in digital libraries, medical image analysis, and the realistic rendering of synthetic scenes in computer graphics). We discuss some of these applications in part VII.

IN THE SECOND EDITION

We have made a variety of changes since the first edition, which we hope have improved the usefulness of this book. Perhaps the most important change follows a big change in the discipline since the last edition. Code and data are now widely published over the Internet. It is now quite usual to build systems out of other people's published code, at least in the first instance, and to evaluate them on other people's datasets. In the chapters, we have provided guides to experimental resources available online. As is the nature of the Internet, not all of these URL's will work all the time; we have tried to give enough information so that searching Google with the authors' names or the name of the dataset or codes will get the right result.

Other changes include:

- We have **simplified.** We give a simpler, clearer treatment of mathematical topics. We have particularly simplified our treatment of cameras (Chapter 1), shading (Chapter 2), and reconstruction from two views (Chapter 7) and from multiple views (Chapter 8)
- We describe a **broad range of applications**, including image-based modelling and rendering (Chapter 19), image search (Chapter 22), building image mosaics (Section 12.1), medical image registration (Section 12.3), interpreting range data (Chapter 14), and understanding human activity (Chapter 21).

xvii

- We have written a comprehensive treatment of the **modern features**, particularly HOG and SIFT (both in Chapter 5), that drive applications ranging from building image mosaics to object recognition.
- We give a detailed treatment of **modern image editing techniques**, including removing shadows (Section 3.5), filling holes in images (Section 6.3), noise removal (Section 6.4), and interactive image segmentation (Section 9.2).
- We give a comprehensive treatment of **modern object recognition techniques**. We start with a practical discussion of classifiers (Chapter 15); we then describe standard methods for image classification techniques (Chapter 16), and object detection (Chapter 17). Finally, Chapter 18 reviews a wide range of recent topics in object recognition.
- Finally, this book has a very detailed index, and a bibliography that is as comprehensive and up-to-date as we could make it.

WHY STUDY VISION?

Computer vision's great trick is extracting descriptions of the world from pictures or sequences of pictures. This is unequivocally useful. Taking pictures is usually nondestructive and sometimes discreet. It is also easy and (now) cheap. The descriptions that users seek can differ widely between applications. For example, a technique known as structure from motion makes it possible to extract a representation of what is depicted and how the camera moved from a series of pictures. People in the entertainment industry use these techniques to build three-dimensional (3D) computer models of buildings, typically keeping the structure and throwing away the motion. These models are used where real buildings cannot be; they are set fire to, blown up, etc. Good, simple, accurate, and convincing models can be built from quite small sets of photographs. People who wish to control mobile robots usually keep the motion and throw away the structure. This is because they generally know something about the area where the robot is working, but usually don't know the precise robot location in that area. They can determine it from information about how a camera bolted to the robot is moving.

There are a number of other, important applications of computer vision. One is in medical imaging: one builds software systems that can enhance imagery, or identify important phenomena or events, or visualize information obtained by imaging. Another is in inspection: one takes pictures of objects to determine whether they are within specification. A third is in interpreting satellite images, both for military purposes (a program might be required to determine what militarily interesting phenomena have occurred in a given region recently; or what damage was caused by a bombing) and for civilian purposes (what will this year's maize crop be? How much rainforest is left?) A fourth is in organizing and structuring collections of pictures. We know how to search and browse text libraries (though this is a subject that still has difficult open questions) but don't really know what to do with image or video libraries.

Computer vision is at an extraordinary point in its development. The subject itself has been around since the 1960s, but only recently has it been possible to build useful computer systems using ideas from computer vision. This flourishing

has been driven by several trends: Computers and imaging systems have become very cheap. Not all that long ago, it took tens of thousands of dollars to get good digital color images; now it takes a few hundred at most. Not all that long ago, a color printer was something one found in few, if any, research labs; now they are in many homes. This means it is easier to do research. It also means that there are many people with problems to which the methods of computer vision apply. For example, people would like to organize their collections of photographs, make 3D models of the world around them, and manage and edit collections of videos. Our understanding of the basic geometry and physics underlying vision and, more important, what to do about it, has improved significantly. We are beginning to be able to solve problems that lots of people care about, but none of the hard problems have been solved, and there are plenty of easy ones that have not been solved either (to keep one intellectually fit while trying to solve hard problems). It is a great time to be studying this subject.

What Is in this Book

This book covers what we feel a computer vision professional ought to know. However, it is addressed to a wider audience. We hope that those engaged in computational geometry, computer graphics, image processing, imaging in general, and robotics will find it an informative reference. We have tried to make the book accessible to senior undergraduates or graduate students with a passing interest in vision. Each chapter covers a different part of the subject, and, as a glance at Table 1 will confirm, chapters are relatively independent. This means that one can dip into the book as well as read it from cover to cover. Generally, we have tried to make chapters run from easy material at the start to more arcane matters at the end. Each chapter has brief notes at the end, containing historical material and assorted opinions. We have tried to produce a book that describes ideas that are useful, or likely to be so in the future. We have put emphasis on understanding the basic geometry and physics of imaging, but have tried to link this with actual applications. In general, this book reflects the enormous recent influence of geometry and various forms of applied statistics on computer vision.

Reading this Book

A reader who goes from cover to cover will hopefully be well informed, if exhausted; there is too much in this book to cover in a one-semester class. Of course, prospective (or active) computer vision professionals should read every word, do all the exercises, and report any bugs found for the third edition (of which it is probably a good idea to plan on buying a copy!). Although the study of computer vision does not require deep mathematics, it does require facility with a lot of different mathematical ideas. We have tried to make the book self-contained, in the sense that readers with the level of mathematical sophistication of an engineering senior should be comfortable with the material of the book and should not need to refer to other texts. We have also tried to keep the mathematics to the necessary minimum—after all, this book is about computer vision, not applied mathematics—and have chosen to insert what mathematics we have kept in the main chapter bodies instead of a separate appendix.

TABLE 1: Dependencies between chapters: It will be difficult to read a chapter if you don't have a good grasp of the material in the chapters it "requires." If you have not read the chapters labeled "helpful," you might need to look up one or two things.

•	Chapter	Requires	Helpful
1:	Geometric Camera Models		
2:	Light and Shading		
3:	Color	2	
4:	Linear Filters		
5:	Local Image Features	4	
6:	Texture	5, 4	2
7:	Stereopsis	1	22
8:	Structure from Motion	1, 7	22
9:	Segmentation by Clustering		2, 3, 4, 5, 6, 22
10:	Grouping and Model Fitting		9
11:	Tracking		2, 5, 22
12:	Registration	1	14
13:	Smooth Surfaces and Their Outlines	1	
14:	Range Data		12
15:	Learning to Classify		22
16:	Classifying Images	15, 5	
17:	Detecting Objects in Images	16, 15, 5	
18:	Topics in Object Recognition	17, 16, 15, 5	
19:	Image-Based Modeling and Rendering	1, 2, 7, 8	
20:	Looking at People		17, 16, 15, 11, 5
21:	Image Search and Retrieval		17, 16, 15, 11, 5
22:	Optimization Techniques		
	2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21:	Chapter 1: Geometric Camera Models 2: Light and Shading 3: Color 4: Linear Filters 5: Local Image Features 6: Texture 7: Stereopsis 8: Structure from Motion 9: Segmentation by Clustering 10: Grouping and Model Fitting 11: Tracking 12: Registration 13: Smooth Surfaces and Their Outlines 14: Range Data 15: Learning to Classify 16: Classifying Images 17: Detecting Objects in Images 18: Topics in Object Recognition 19: Image-Based Modeling and Rendering 20: Looking at People 21: Image Search and Retrieval	1: Geometric Camera Models 2: Light and Shading 3: Color 4: Linear Filters 5: Local Image Features 6: Texture 7: Stereopsis 8: Structure from Motion 9: Segmentation by Clustering 10: Grouping and Model Fitting 11: Tracking 12: Registration 13: Smooth Surfaces and Their Outlines 14: Range Data 15: Learning to Classify 16: Classifying Images 17: Detecting Objects in Images 18: Topics in Object Recognition 17, 16, 15, 5 19: Image-Based Modeling and Rendering 1, 2, 7, 8 20: Looking at People 21: Image Search and Retrieval

Generally, we have tried to reduce the interdependence between chapters, so that readers interested in particular topics can avoid wading through the whole book. It is not possible to make each chapter entirely self-contained, however, and Table 1 indicates the dependencies between chapters.

We have tried to make the index comprehensive, so that if you encounter a new term, you are likely to find it in the book by looking it up in the index. Computer vision is now fortunate in having a rich range of intellectual resources. Software and datasets are widely shared, and we have given pointers to useful datasets and software in relevant chapters; you can also look in the index, under "software" and under "datasets," or under the general topic.

We have tried to make the bibliography comprehensive, without being overwhelming. However, we have not been able to give complete bibliographic references for any topic, because the literature is so large.

What Is Not in this Book

The computer vision literature is vast, and it was not easy to produce a book about computer vision that could be lifted by ordinary mortals. To do so, we had to cut material, ignore topics, and so on.

We left out some topics because of personal taste, or because we became exhausted and stopped writing about a particular area, or because we learned about them too late to put them in, or because we had to shorten some chapter, or because we didn't understand them, or any of hundreds of other reasons. We have tended to omit detailed discussions of material that is mainly of historical interest, and offer instead some historical remarks at the end of each chapter.

We have tried to be both generous and careful in attributing ideas, but neither of us claims to be a fluent intellectual archaeologist, and computer vision is a very big topic indeed. This means that some ideas may have deeper histories than we have indicated, and that we may have omitted citations.

There are several recent textbooks on computer vision. Szeliski (2010) deals with the whole of vision. Parker (2010) deals specifically with algorithms. Davies (2005) and Steger *et al.* (2008) deal with practical applications, particularly registration. Bradski and Kaehler (2008) is an introduction to OpenCV, an important open-source package of computer vision routines.

There are numerous more specialized references. Hartley and Zisserman (2000a) is a comprehensive account of what is known about multiple view geometry and estimation of multiple view parameters. Ma $et\ al.\ (2003b)$ deals with 3D reconstruction methods. Cyganek and Siebert (2009) covers 3D reconstruction and matching. Paragios $et\ al.\ (2010)$ deals with mathematical models in computer vision. Blake $et\ al.\ (2011)$ is a recent summary of what is known about Markov random field models in computer vision. Li and Jain (2005) is a comprehensive account of face recognition. Moeslund $et\ al.\ (2011)$, which is in press at time of writing, promises to be a comprehensive account of computer vision methods for watching people. Dickinson $et\ al.\ (2009)$ is a collection of recent summaries of the state of the art in object recognition. Radke (2012) is a forthcoming account of computer vision methods applied to special effects.

Much of computer vision literature appears in the proceedings of various conferences. The three main conferences are: the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); the IEEE International Conference on Computer Vision (ICCV); and the European Conference on Computer Vision. A significant fraction of the literature appears in regional conferences, particularly the Asian Conference on Computer Vision (ACCV) and the British Machine Vision Conference (BMVC). A high percentage of published papers are available on the web, and can be found with search engines; while some papers are confined to pay-libraries, to which many universities provide access, most can be found without cost.

ACKNOWLEDGMENTS

In preparing this book, we have accumulated a significant set of debts. A number of anonymous reviewers read several drafts of the book for both first and second edition and made extremely helpful contributions. We are grateful to them for their time and efforts.

Our editor for the first edition, Alan Apt, organized these reviews with the

help of Jake Warde. We thank them both. Leslie Galen, Joe Albrecht, and Dianne Parish, of Integre Technical Publishing, helped us overcome numerous issues with proofreading and illustrations in the first edition.

Our editor for the second edition, Tracy Dunkelberger, organized reviews with the help of Carole Snyder. We thank them both. We thank Marilyn Lloyd for helping us get over various production problems.

Both the overall coverage of topics and several chapters were reviewed by various colleagues, who made valuable and detailed suggestions for their revision. We thank Narendra Ahuja, Francis Bach, Kobus Barnard, Margaret Fleck, Martial Hebert, Julia Hockenmaier, Derek Hoiem, David Kriegman, Jitendra Malik, and Andrew Zisserman.

A number of people contributed suggestions, ideas for figures, proofreading comments, and other valuable material, while they were our students. We thank Okan Arikan, Louise Benoît, Tamara Berg, Sébastien Blind, Y-Lan Boureau, Liang-Liang Cao, Martha Cepeda, Stephen Chenney, Frank Cho, Florent Couzinie-Devy, Olivier Duchenne, Pinar Duygulu, Ian Endres, Ali Farhadi, Yasutaka Furukawa, Yakup Genc, John Haddon, Varsha Hedau, Nazli Ikizler-Cinbis, Leslie Ikemoto, Sergey Ioffe, Armand Joulin, Kevin Karsch, Svetlana Lazebnik, Cathy Lee, Binbin Liao, Nicolas Loeff, Julien Mairal, Sung-il Pae, David Parks, Deva Ramanan, Fred Rothganger, Amin Sadeghi, Alex Sorokin, Attawith Sudsang, Du Tran, Duan Tran, Gang Wang, Yang Wang, Ryan White, and the students in several offerings of our vision classes at UIUC, U.C. Berkeley and ENS.

We have been very lucky to have colleagues at various universities use (often rough) drafts of our book in their vision classes. Institutions whose students suffered through these drafts include, in addition to ours, Carnegie-Mellon University, Stanford University, the University of Wisconsin at Madison, the University of California at Santa Barbara and the University of Southern California; there may be others we are not aware of. We are grateful for all the helpful comments from adopters, in particular Chris Bregler, Chuck Dyer, Martial Hebert, David Kriegman, B.S. Manjunath, and Ram Nevatia, who sent us many detailed and helpful comments and corrections.

The book has also benefitted from comments and corrections from Karteek Alahari, Aydin Alaylioglu, Srinivas Akella, Francis Bach, Marie Banich, Serge Belongie, Tamara Berg, Ajit M. Chaudhari, Navneet Dalal, Jennifer Evans, Yasutaka Furukawa, Richard Hartley, Glenn Healey, Mike Heath, Martial Hebert, Janne Heikkilä, Hayley Iben, Stéphanie Jonquières, Ivan Laptev, Christine Laubenberger, Svetlana Lazebnik, Yann LeCun, Tony Lewis, Benson Limketkai, Julien Mairal, Simon Maskell, Brian Milch, Roger Mohr, Deva Ramanan, Guillermo Sapiro, Cordelia Schmid, Brigitte Serlin, Gerry Serlin, Ilan Shimshoni, Jamie Shotton, Josef Sivic, Eric de Sturler, Camillo J. Taylor, Jeff Thompson, Claire Vallat, Daniel S. Wilkerson, Jinghan Yu, Hao Zhang, Zhengyou Zhang, and Andrew Zisserman.

In the first edition, we said

If you find an apparent typographic error, please email DAF... with the details, using the phrase "book typo" in your email; we will try to credit the first finder of each typo in the second edition.

which turns out to have been a mistake. DAF's ability to manage and preserve

email logs was just not up to this challenge. We thank all finders of typographic errors; we have tried to fix the errors and have made efforts to credit all the people who have helped us.

We also thank P. Besl, B. Boufama, J. Costeira, P. Debevec, O. Faugeras, Y. Genc, M. Hebert, D. Huber, K. Ikeuchi, A.E. Johnson, T. Kanade, K. Kutulakos, M. Levoy, Y. LeCun, S. Mahamud, R. Mohr, H. Moravec, H. Murase, Y. Ohta, M. Okutami, M. Pollefeys, H. Saito, C. Schmid, J. Shotton, S. Sullivan, C. Tomasi, and M. Turk for providing the originals of some of the figures shown in this book.

DAF acknowledges ongoing research support from the National Science Foundation. Awards that have directly contributed to the writing of this book are IIS-0803603, IIS-1029035, and IIS-0916014; other awards have shaped the view described here. DAF acknowledges ongoing research support from the Office of Naval Research, under awards N00014-01-1-0890 and N00014-10-1-0934, which are part of the MURI program. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of NSF or ONR.

DAF acknowledges a wide range of intellectual debts, starting at kindergarten. Important figures in the very long list of his creditors include Gerald Alanthwaite, Mike Brady, Tom Fair, Margaret Fleck, Jitendra Malik, Joe Mundy, Mike Rodd, Charlie Rothwell, and Andrew Zisserman. JP cannot even remember kindergarten, but acknowledges his debts to Olivier Faugeras, Mike Brady, and Tom Binford. He also wishes to thank Sharon Collins for her help. Without her, this book, like most of his work, probably would have never been finished. Both authors would also like to acknowledge the profound influence of Jan Koenderink's writings on their work at large and on this book in particular.

Figures: Some images used herein were obtained from IMSI's Master Photos Collection, 1895 Francisco Blvd. East, San Rafael, CA 94901-5506, USA. We have made extensive use of figures from the published literature; these figures are credited in their captions. We thank the copyright holders for extending permission to use these figures.

Bibliography: In preparing the bibliography, we have made extensive use of Keith Price's excellent computer vision bibliography, which can be found at http://iris.usc.edu/Vision-Notes/bibliography/contents.html.

TABLE 2: A one-semester introductory class in computer vision for seniors or first-year graduate students in computer science, electrical engineering, or other engineering or

science disciplines.

	disciplines		
Week	Chapter	Sections	Key topics
1	1, 2	1.1, 2.1, 2.2.x	pinhole cameras, pixel shading models,
			one inference from shading example
2	3	3.1 – 3.5	human color perception, color physics, color spaces,
			image color model
3	4	all	linear filters
4	5	all	building local features
5	6	6.1, 6.2	texture representations from filters,
			from vector quantization
6	7	7.1, 7.2	binocular geometry, stereopsis
7	8	8.1	structure from motion with perspective cameras
8	9	9.1 – 9.3	segmentation ideas, applications,
			segmentation by clustering pixels
9	10	10.1 – 10.4	Hough transform, fitting lines, robustness, RANSAC,
10	11	11.1-11.3	simple tracking strategies, tracking by matching,
			Kalman filters, data association
11	12	all	registration
12	15	all	classification
13	16	all	classifying images
14	17	all	detection
15	choice	all	one of chapters 14, 19, 20, 21 (application topics)

SAMPLE SYLLABUSES

The whole book can be covered in two (rather intense) semesters, by starting at the first page and plunging on. Ideally, one would cover one application chapter—probably the chapter on image-based rendering—in the first semester, and the other one in the second. Few departments will experience heavy demand for such a detailed sequence of courses. We have tried to structure this book so that instructors can choose areas according to taste. Sample syllabuses for busy 15-week semesters appear in Tables 2 to 6, structured according to needs that can reasonably be expected. We would encourage (and expect!) instructors to rearrange these according to taste.

Table 2 contains a suggested syllabus for a one-semester introductory class in computer vision for seniors or first-year graduate students in computer science, electrical engineering, or other engineering or science disciplines. The students receive a broad presentation of the field, including application areas such as digital libraries and image-based rendering. Although the hardest theoretical material is omitted, there is a thorough treatment of the basic geometry and physics of image formation. We assume that students will have a wide range of backgrounds, and can be assigned background readings in probability. We have put off the application chapters to the end, but many may prefer to cover them earlier.

Table 3 contains a syllabus for students of computer graphics who want to know the elements of vision that are relevant to their topic. We have emphasized methods that make it possible to recover object models from image information;

TABLE 3: A syllabus for students of computer graphics who want to know the elements of vision that are relevant to their topic.

Week	Chapter	Sections	Key topics
1	1, 2	1.1, 2.1, 2.2.4	pinhole cameras, pixel shading models,
			photometric stereo
2	3	3.1 – 3.5	human color perception, color physics, color spaces,
			image color model
3	4	all	linear filters
4	5	all	building local features
5	6	6.3, 6.4	texture synthesis, image denoising
6	7	7.1, 7.2	binocular geometry, stereopsis
7	7	7.4, 7.5	advanced stereo methods
8	8	8.1	structure from motion with perspective cameras
9	10	10.1 – 10.4	Hough transform, fitting lines, robustness, RANSAC,
10	9	9.1 – 9.3	segmentation ideas, applications,
			segmentation by clustering pixels
11	11	11.1 - 11.3	simple tracking strategies, tracking by matching,
			Kalman filters, data association
12	12	all	registration
13	14	all	range data
14	19	all	image-based modeling and rendering
15	13	all	surfaces and outlines

understanding these topics needs a working knowledge of cameras and filters. Tracking is becoming useful in the graphics world, where it is particularly important for motion capture. We assume that students will have a wide range of backgrounds, and have some exposure to probability.

Table 4 shows a syllabus for students who are primarily interested in the applications of computer vision. We cover material of most immediate practical interest. We assume that students will have a wide range of backgrounds, and can be assigned background reading.

Table 5 is a suggested syllabus for students of cognitive science or artificial intelligence who want a basic outline of the important notions of computer vision. This syllabus is less aggressively paced, and assumes less mathematical experience.

Our experience of teaching computer vision is that no single idea presents any particular conceptual difficulties, though some are harder than others. Difficulties are caused by the tremendous number of new ideas required by the subject. Each subproblem seems to require its own way of thinking, and new tools to cope with it. This makes learning the subject rather daunting. Table 6 shows a sample syllabus for students who are really not bothered by these difficulties. They would need to have quite a strong interest in applied mathematics, electrical engineering or physics, and be very good at picking things up as they go along. This syllabus sets a furious pace, and assumes that students can cope with a lot of new material.

NOTATION

We use the following notation throughout the book: Points, lines, and planes are denoted by Roman or Greek letters in italic font (e.g., P, Δ , or Π). Vectors are

TABLE 4: A syllabus for students who are primarily interested in the applications of

compu	ter vision.		
Week	Chapter	Sections	Key topics
1	1, 2	1.1, 2.1, 2.2.4	pinhole cameras, pixel shading models,
			photometric stereo
2	3	3.1 – 3.5	human color perception, color physics, color spaces,
			image color model
3	4	all	linear filters
4	5	all	building local features
5	6	6.3, 6.4	texture synthesis, image denoising
6	7	7.1, 7.2	binocular geometry, stereopsis
7	7	7.4, 7.5	advanced stereo methods
8	8, 9	8.1, 9.1 – 9.2	structure from motion with perspective cameras,
			segmentation ideas, applications
9	10	10.1 – 10.4	Hough transform, fitting lines, robustness, RANSAC,
10	12	all	registration
11	14	all	range data
12	16	all	classifying images
13	19	all	image based modeling and rendering
14	20	all	looking at people
15	21	all	image search and retrieval

usually denoted by Roman or Greek bold-italic letters (e.g., \boldsymbol{v} , \boldsymbol{P} , or $\boldsymbol{\xi}$), but the vector joining two points P and Q is often denoted by \overrightarrow{PQ} . Lower-case letters are normally used to denote geometric figures in the image plane (e.g., p, \boldsymbol{p} , δ), and upper-case letters are used for scene objects (e.g., P, Π). Matrices are denoted by Roman letters in calligraphic font (e.g., \mathcal{U}).

The familiar three-dimensional Euclidean space is denoted by \mathbb{E}^3 , and the vector space formed by n-tuples of real numbers with the usual laws of addition and multiplication by a scalar is denoted by \mathbb{R}^n , with $\mathbf{0}$ being used to denote the zero vector. Likewise, the vector space formed by $m \times n$ matrices with real entries is denoted by $\mathbb{R}^{m \times n}$. When m = n, Id is used to denote the identity matrix—that is, the $n \times n$ matrix whose diagonal entries are equal to 1 and nondiagonal entries are equal to 0. The transpose of the $m \times n$ matrix \mathcal{U} with coefficients u_{ij} is the $n \times m$ matrix denoted by \mathcal{U}^T with coefficients u_{ji} . Elements of \mathbb{R}^n are often identified with column vectors or $n \times 1$ matrices, for example, $\mathbf{a} = (a_1, a_2, a_3)^T$ is the transpose of a 1×3 matrix (or row vector), i.e., an 3×1 matrix (or column vector), or equivalently an element of \mathbb{R}^3 .

The dot product (or inner product) of two vectors $\mathbf{a} = (a_1, \dots, a_n)^T$ and $\mathbf{b} = (b_1, \dots, b_n)^T$ in \mathbb{R}^n is defined by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \dots + a_n b_n,$$

and it can also be written as a matrix product, i.e., $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a}$. We denote by $|\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a}$ the square of the Euclidean norm of the vector \mathbf{a} and denote by d the distance function induced by the Euclidean norm in \mathbb{E}^n , i.e., $d(P,Q) = |\overrightarrow{PQ}|$. Given a matrix \mathcal{U} in $\mathbb{R}^{m \times n}$, we generally use |U| to denote its *Frobenius norm*, i.e., the square root of the sum of its squared entries.

TABLE 5: For students of cognitive science or artificial intelligence who want a basic

			f computer vision.
Week	Chapter	Sections	Key topics
1	1, 2	1.1, 2.1, 2.2.x	pinhole cameras, pixel shading models,
			one inference from shading example
2	3	3.1 – 3.5	human color perception, color physics, color spaces,
			image color model
3	4	all	linear filters
4	5	all	building local features
5	6	6.1, 6.2	texture representations from filters,
			from vector quantization
6	7	7.1, 7.2	binocular geometry, stereopsis
8	9	9.1 – 9.3	segmentation ideas, applications,
			segmentation by clustering pixels
9	11	11.1, 11.2	simple tracking strategies, tracking using matching,
			optical flow
10	15	all	classification
11	16	all	classifying images
12	20	all	looking at people
13	21	all	image search and retrieval
14	17	all	detection
15	18	all	topics in object recognition

When the vector \boldsymbol{a} has unit norm, the dot product $\boldsymbol{a} \cdot \boldsymbol{b}$ is equal to the (signed) length of the projection of \boldsymbol{b} onto \boldsymbol{a} . More generally,

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where θ is the angle between the two vectors, which shows that a necessary and sufficient condition for two vectors to be orthogonal is that their dot product be zero.

The cross product (or outer product) of two vectors $\mathbf{a}=(a_1,a_2,a_3)^T$ and $\mathbf{b}=(b_1,b_2,b_3)^T$ in \mathbb{R}^3 is the vector

$$\mathbf{a} \times \mathbf{b} \stackrel{\text{def}}{=} \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}.$$

Note that $\boldsymbol{a} \times \boldsymbol{b} = [\boldsymbol{a}_{\times}]\boldsymbol{b}$, where

$$[a_{\times}] \stackrel{\text{def}}{=} \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}.$$

The cross product of two vectors \boldsymbol{a} and \boldsymbol{b} in \mathbb{R}^3 is orthogonal to these two vectors, and a necessary and sufficient condition for \boldsymbol{a} and \boldsymbol{b} to have the same direction is that $\boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{0}$. If $\boldsymbol{\theta}$ denotes as before the angle between the vectors \boldsymbol{a} and \boldsymbol{b} , it can be shown that

$$|\boldsymbol{a} \times \boldsymbol{b}| = |\boldsymbol{a}| |\boldsymbol{b}| |\sin \theta|.$$

TABLE 6: A syllabus for students who have a strong interest in applied mathematics,

electrical engineering, or physics.

electrica	u engmeering	g, or physics.	
Week	Chapter	Sections	Key topics
1	1, 2	all; 2.1–2.4	cameras, shading
2	3	all	color
3	4	all	linear filters
4	5	all	building local features
5	6	all	texture
6	7	all	stereopsis
7	8	all	structure from motion with perspective cameras
8	9	all	segmentation by clustering pixels
9	10	all	fitting models
10	11	11.1 - 11.3	simple tracking strategies, tracking by matching,
			Kalman filters, data association
11	12	all	registration
12	15	all	classification
13	16	all	classifying images
14	17	all	detection
15	choice	all	one of chapters 14, 19, 20, 21

PROGRAMMING ASSIGNMENTS AND RESOURCES

The programming assignments given throughout this book sometimes require routines for numerical linear algebra, singular value decomposition, and linear and nonlinear least squares. An extensive set of such routines is available in MATLAB as well as in public-domain libraries such as LINPACK, LAPACK, and MINPACK, which can be downloaded from the Netlib repository (http://www.netlib.org/). In the text, we offer extensive pointers to software published on the Web and to datasets published on the Web. OpenCV is an important open-source package of computer vision routines (see Bradski and Kaehler (2008)).

ABOUT THE AUTHORS

David Forsyth received a B.Sc. (Elec. Eng.) from the University of the Witwatersrand, Johannesburg in 1984, an M.Sc. (Elec. Eng.) from that university in 1986, and a D.Phil. from Balliol College, Oxford in 1989. He spent three years on the faculty at the University of Iowa, ten years on the faculty at the University of California at Berkeley, and then moved to the University of Illinois. He served as program co-chair for IEEE Computer Vision and Pattern Recognition in 2000 and in 2011, general co-chair for CVPR 2006, and program co-chair for the European Conference on Computer Vision 2008, and is a regular member of the program committee of all major international conferences on computer vision. He has served five terms on the SIGGRAPH program committee. In 2006, he received an IEEE technical achievement award, and in 2009 he was named an IEEE Fellow.

Jean Ponce received the Doctorat de Troisieme Cycle and Doctorat d'État degrees in Computer Science from the University of Paris Orsay in 1983 and 1988. He has held Research Scientist positions at the Institut National de la Recherche en Informatique et Automatique, the MIT Artificial Intelligence Laboratory, and the Stanford University Robotics Laboratory, and served on the faculty of the Dept. of Computer Science at the University of Illinois at Urbana-Champaign from 1990 to 2005. Since 2005, he has been a Professor at Ecole Normale Superieure in Paris, France. Dr. Ponce has served on the editorial boards of Computer Vision and Image Understanding, Foundations and Trends in Computer Graphics and Vision, the IEEE Transactions on Robotics and Automation, the International Journal of Computer Vision (for which he served as Editor-in-Chief from 2003 to 2008), and the SIAM Journal on Imaging Sciences. He was Program Chair of the 1997 IEEE Conference on Computer Vision and Pattern Recognition and served as General Chair of the year 2000 edition of this conference. He also served as General Chair of the 2008 European Conference on Computer Vision. In 2003, he was named an IEEE Fellow for his contributions to Computer Vision, and he received a US patent for the development of a robotic parts feeder.

