$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

y = f(x) reel fonksiyonunun x noktasındaki türevi

Küçük h değerleri için

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} =: D_h f(x)$$

Sayısal Türev

 $D_h f(x) : f(x)$ fonksiyonunun h adım aralığı için x noktasındaki sayısal türevi

Örnek: $f(x) = \cos x$ in $x = \frac{\pi}{6}$ noktasındaki sayısal türevi: Gerçek Değer : $-\sin\left(\frac{\pi}{6}\right) = -0.5$

h	$D_h f(x)$	hata	oran
0.1	-0.54243	0.04243	-
0.05	-0.52144	0.02144	1.98
0.025	-0.51077	0.01077	1.99
0.0125	-0.50540	0.00540	1.99
0.00625	-0.50270	0.00270	2.00
0.003125	-0.50135	0.00135	2.00

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(c); \quad x < c < x+h$$

$$\frac{f(x+h) - f(x)}{h} = D_h f(x) \Rightarrow$$

$$D_h f(x) = \frac{1}{h} \left[f(x) + h f'(x) + \frac{h^2}{2} f''(c) - f(x) \right] = f'(x) + \frac{h}{2} f''(c)$$

$$\Rightarrow Hata = f'(x) - D_h f(x) = -\frac{h}{2} f''(c)$$

$$f'\left(\frac{\pi}{6}\right) - D_h f\left(\frac{\pi}{6}\right) = \frac{h}{2}\cos(c) \; ; \quad \frac{\pi}{6} < c < \frac{\pi}{6} + h$$

h > 0 iken $f'(x) \approx \frac{f(x+h) - f(x)}{h} = D_h f(x)$

Sayısal Türev için İleri Fark Formülü

 \Longrightarrow Hata $m{h}$ ile orantılı. $m{h}$ yarıya indiğinde hata da yarıya iniyor.

 $h \rightarrow -h$ yapılırsa

Sayısal Türev için İleri Fark Formülü

$$h > 0$$
 iken $f'(x) \approx \frac{f(x+h) - f(x)}{h} = D_h f(x)$

İleri Fark

$$Hata = f'(x) - D_h f(x) = -\frac{h}{2} f''(c); \quad c \in (x, x + h)$$

Sayısal Türev için Geri Fark Formülü

$$h > 0$$
 iken $f'(x) \approx \frac{f(x) - f(x - h)}{h} = D_h f(x)$

Geri Fark

$$Hata = f'(x) - D_h f(x) = \frac{h}{2} f''(c); \quad c \in (x - h, x)$$

İnterpolasyon Yardımıyla Türev Hesabı

 $x_0 = x_1 - h$ $t = x_1 \quad x_2 = x_1 + h$

$$x_0, x_1, \dots x_n$$
 noktaları ve $f(x)$ fonksiyonu için

 $P_n(x), f(x)'i$ interpole eden polinom olmak üzere $f'(t) \approx P_n'(t)$

$$n = 2$$
; $t = x_1, x_0 = x_1 - h, x_2 = x_1 + h \Longrightarrow f'(t) \approx P_2'(t)$

$$P_2(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{2h^2} + f(x_1) \frac{(x - x_0)(x - x_2)}{-h^2} + f(x_2) \frac{(x - x_0)(x - x_1)}{2h^2} \Longrightarrow$$

$$P_2'(x) = f(x_0) \frac{(2x - x_1 - x_2)}{2h^2} + f(x_1) \frac{(2x - x_0 - x_2)}{-h^2} + f(x_2) \frac{(2x - x_0 - x_1)}{2h^2}$$

$$P_2'(x_1) = f(x_0) \frac{(x_1 - x_2)}{2h^2} + f(x_1) \frac{(2x_1 - x_0 - x_2)}{-h^2} + f(x_2) \frac{(x_1 - x_0)}{2h^2}$$

$$P_2'(x_1) = \frac{f(x_2) - f(x_0)}{2h} \Longrightarrow$$

$$P_2'(x_1) = \frac{f(x_2) - f(x_0)}{2h} \Longrightarrow \qquad P_2'(x_1) = \frac{f(x_1 + h) - f(x_1 - h)}{2h}$$

Savısal Türev için Merkezi Fark Formülü

 $f'(x_1) \approx \frac{f(x_1+h) - f(x_1-h)}{2h} = D_h f(x)$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(c_1); \quad x < c_1 < x + h$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(c_2); \quad x - h < c_2 < x$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{12} [f'''(c_1) - f'''(c_2)] \longrightarrow f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} = D_h f(x)$$

Sayısal Türev için Merkezi Fark Formülü

$$Hata = f'(x) - D_h f(x) \propto h^2$$

Merkezi Fark Formülünde Hata h^2 ile orantılı olduğundan daha yüksek doğruluktadır!!!

Teorem: f(x), [a,b] aralığında (n+2). mertebeye kadar sürekli türevlere sahip bir fonksiyon, $x_0, x_1, x_2, ..., x_n$ aynı aralıktaki (n+1) tane interpolasyon noktası ve $P_n(t)$ bu noktalardan geçen enterpolasyon polinomu olmak üzere $t \in [a,b]$ için

$$f'(t) - P'_n(t) = \Psi_n(t) \frac{f^{(n+2)}(c_1)}{(n+2)!} + \Psi'_n(t) \frac{f^{(n+1)}(c_2)}{(n+1)!}$$

$$\Psi_n(t) = (t - x_0)(t - x_1)(t - x_2) \dots \dots (t - x_n); \qquad c_1, c_2 \in [\min(x_i \ ler \ ve \ t), \max(x_i \ ler \ ve \ t)]$$

$$\Psi_2(x) = (x - x_0)(x - x_1)(x - x_2) \qquad \qquad \Psi_2(x_1) = 0$$

$$f'(x_1) - \frac{f(x_1 + h) - f(x_1 - h)}{2h} = -\frac{h^2}{6}f'''(c_2); \quad x_1 - h < c_2 < x_1 + h$$

Örnek: f(x) = cosx in $x = \frac{\pi}{6}$ noktasındaki sayısal türevinin merkezi farklarla hesabı: Gerçek Değer: $-\sin\left(\frac{\pi}{6}\right) = -0.5$

h	$D_h f(x)$	hata	oran
0.1	-0.49916708	-0.0008329	-
0.05	-0.49979169	-0.0002083	4
0.025	-0.49994792	-0.00005208	4
0.0125	-0.49998669	-0.00001302	4
0.00625	-0.49999674	-0.000003255	4

$$f'\left(\frac{\pi}{6}\right) \approx \frac{f\left(\frac{\pi}{6} + 0.025\right) - f\left(\frac{\pi}{6} - 0.025\right)}{2\ 0.025} = \frac{\cos\left(\frac{\pi}{6} + 0.025\right) - \cos\left(\frac{\pi}{6} - 0.025\right)}{0.05}$$
$$= \frac{0.853256086983572 - 0.878253482898284}{0.05} = -0.499947918294246$$

Belirsiz Katsayılar Yöntemi

f(x) fonksiyonu için x = t, x = t + h, x = t - h noktalarındaki değerler cinsinden t noktasındaki türevi ifade etmeye çalışalım. Örneğin ikinci türev f''(x) için bir ifade arayalım:

$$f(t+h) \approx f(t) + hf'(t) + \frac{h^2}{2}f''(t) + \frac{h^3}{6}f'''(t) + \frac{h^4}{24}f^{(iv)}(t)$$

$$f(t-h) \approx f(t) - hf'(t) + \frac{h^2}{2}f''(t) - \frac{h^3}{6}f'''(t) + \frac{h^4}{24}f^{(iv)}(t)$$

$$D_h^{(2)}f(t) \approx (A+B+C)f(t) + h(A-C)f'(t) + \frac{h^2}{2}(A+C)f''(t) + \frac{h^3}{6}(A-C)f'''(t) + \frac{h^4}{24}(A+C)f^{(iv)}(t)$$

$$A + B + C = 0$$

$$D_h^{(2)} f(t) \approx f''(t) \Longrightarrow h(A - C) = 0$$

$$\frac{h^2}{2}(A+C)=1$$

$$A = C = \frac{1}{h^2}; B = \frac{-2}{h^2}$$

$$\frac{h^2}{2}(A+C) = 1 \qquad D_h^{(2)}f(t) = \frac{f(t+h) - 2f(t) + f(t-h)}{h^2}$$

$$f''(t) - D_h^{(2)} f(t) \approx \frac{h^2}{12} f^{(iv)}(t)$$

Hata h^2 ile orantılı!!!

Örnek: f(x) = cosx in $x = \frac{\pi}{6}$ noktasındaki 2.dereceden sayısal türevinin hesabı:

Gerçek Değer: $-\cos\left(\frac{\pi}{6}\right) = -0.866025403784439$

h	$D_h^2 f(x)$	hata	oran
0.5	-0.84813289	-1.789 E-2	-
0.25	-0.86152434	-4.5 E-3	3.97
0.125	-0.86489835	-1.12E-3	3.99
0.0625	-0.86574353	-2.81 E-4	4
0.03125	-0.86595493	-7.048 E-5	4

$$D_h^{(2)}f(t) = \frac{f(t+h) - 2f(t) + f(t-h)}{h^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right) - 2\cos\left(\frac{\pi}{6} - \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{0}.\,\mathbf{125}\right)}{\mathbf{0}.\,\mathbf{125}^2} = \frac{\cos\left(\frac{\pi}{6} + \mathbf{$$

$$\frac{0.796931018703644 - 2 \times 0.866025403784439 + 0.921605752088872}{0.015625} = -0.864898353687174$$

27.04.2021

9

Türev Hesabında Hatanın Etkisi

$$D_h^{(2)}f(t) = \frac{f(t+h) - 2f(t) + f(t-h)}{h^2} \longrightarrow D_h^{(2)}f(x_1) = \frac{f(x_2) - 2f(x_1) + f(x_0)}{h^2} \approx f''(x_1)$$

$$x_2 = x_1 + h$$
 $x_0 = x_1 - h$

 $D_h^{(2)}f(x_1)$ hesabı yapılırken $f(x_0)$, $f(x_1)$ ve $f(x_2)$ nin değerlerinde yapılacak olası hatalar nedeniyle $f(x_i)$ yerine \widehat{f}_i kullanılmış olsun

fonksiyon değerlerindeki hatalar : $f(x_i) - \hat{f}_i = \epsilon_i$, j = 0,1,2;

Hesaplanan
$$D_h^{(2)}f(x_1)$$
 değeri $\widehat{D_h^{(2)}}f(x_1) = \frac{\widehat{f_2} - 2\widehat{f_1} + \widehat{f_0}}{h^2}$ \Longrightarrow $\widehat{f_j} = f(x_j) - \epsilon_j$ yazılırsa

$$f''(x_1) - \widehat{D_h^{(2)}} f(x_1) = f''(x_1) - \frac{[f(x_2) - \epsilon_2] - 2[f(x_1) - \epsilon_1] + [f(x_0) - \epsilon_0]}{h^2}$$

$$f''(x_1) - \widehat{D_h^{(2)}} f(x_1) = f''(x_1) - \frac{[f(x_2) - \epsilon_2] - 2[f(x_1) - \epsilon_1] + [f(x_0) - \epsilon_0]}{h^2} =$$

$$= \left\{ f''(x_1) - \frac{f(x_2) - 2f(x_1) + f(x_0)}{h^2} \right\} + \frac{\epsilon_2 - 2\epsilon_1 + \epsilon_0}{h^2} \approx \frac{h^2}{12} f^{(iv)}(x_1) + \frac{\epsilon_2 - 2\epsilon_1 + \epsilon_0}{h^2}$$

$$f''(t) - D_h^{(2)} f(t) \approx \frac{h^2}{12} f^{(iv)}(t)$$

$$\left| f''(x_1) - \widehat{D_h^{(2)}} f(x_1) \right| \le \frac{h^2}{12} \left| f^{(iv)}(x_1) \right| + \frac{4\delta}{h^2}$$

Hatalar yani $\epsilon_0, \epsilon_1, \epsilon_2$ değerleri belirli bir $(-\delta, \delta)$ aralığında sınırlı rasgele sayılar

 $\frac{4\delta}{h^2}$ terimi nedeniyle h azaldıkça hata artıyor. Enteresan bi sonuç. Hassasiyet ve doğruluğun artmasını beklerken küçülen h larla beraber hata artıyor!!!

Örnek: f(x) = cosx in $x = \frac{\pi}{6}$ noktasındaki 2.dereceden sayısal türevinin hesabında $\widehat{f_j}$ ler $f(x_j)$ gerçek değerlerinin 6 anlamlı hane ile sınırlanarak yuvarlanmış şekli olarak alınırsa $|\epsilon_j| \le 5.0 \ 10^{-7} = \delta$, j = 0.1,2 olmak üzere

$$\left| f''(x_1) - \widehat{D_h^{(2)}} f(x_1) \right| \le \frac{h^2}{12} \left| \cos\left(\frac{\pi}{6}\right) \right| + \frac{4}{h^2} 5.0 \ 10^{-7}$$
$$= 0.0722h^2 + \frac{2 \ 10^{-6}}{h^2} = E(h)$$

h	$\widehat{D_h^{(2)}}f(x_1)$	hata	
0.5	-0.848128	-0.017897	
0.25	-0.861504	-0.004521	
0.125	-0.864832	-0.001193	•
0.0625	-0.865536	-0.000489	Minimum
0.03125	-0.865280	-0.000745	1
0.015625	-0.860160	-0.005865	
0.0078125	-0.851968	-0.014057	
0.00390625	-0.786432	-0.079593	

Aynı örnekte $\left|\epsilon_{j}\right| \leq 5.0~10^{-5} = \delta$, j = 0,1,2 alınırsa

$$\left| f''(x_1) - \widehat{D_h^{(2)}} f(x_1) \right| \le \frac{h^2}{12} \left| \cos\left(\frac{\pi}{6}\right) \right| + \frac{4}{h^2} 5.0 \ 10^{-5}$$
$$= 0.0722h^2 + \frac{2 \ 10^{-4}}{h^2} = E(h)$$

Sayısal Türevde hesaba giren fonksiyonların değerlerindeki, ya da bunlar bir ölçüme aitse dataların değerlerindeki hataların türev hesabındaki etkisi beklenmedik şekilde kötü sonuçlar alınmasına sebep olabilir!!!

