Machine Learning(Assignment1)

Farhad M. Kazemi

MUN ID:201576196

1-

Application	Approach	Reference	Type of
description	description		learning
1-medical image	Image segmentation is a process for	Chang, Chwen-Liang,	Unsupervised
segmentation.	dividing a given image into meaningful	and Yu-Tai Ching.	Learning
Image	regions with homogeneous properties.	"Fuzzy Hopfield neural	
segmentation, a	A new two step approach is proposed	network with fixed	
process to divide	for medical image segmentation using a	weight for medical	
a given image	fuzzy Hopfield neural network based on	image segmentation." Optical	
into	both global and local gray-level	Engineering 41.2	
meaningful	information. The membership function	(2002): 351-358.	
regions with	simulated with neuron outputs is	(2002). 331 330.	
homogeneous	determined using a fuzzy set, and the		
properties, is an	synaptic connection weights between		
essential	the neurons are predetermined and fixed		
step in image	to improve the efficiency		
analysis and	of the neural network. The proposed		
recognition.	method needs initial cluster centers.		
	The initial centers can be obtained from		
	the global information about the		
	distribution of the intensities in the		
	image, or from prior knowledge of the		
	intensity of the region of interest. It is		
	shown by experiments that the		
	proposed fuzzy Hopfield neural		
	network approach is better than most		
	previous approaches. We also show that		
	the global information can be		
	used by applying the hard c-means to		
	estimate the initial cluster centers.		
2-Individual	In this paper, Jinguang proposed a new	Han, Jinguang, and	Supervised
recognition by	spatio-temporal gait representation,	Bir Bhanu.	Learning
Walking	called Gait Energy Image (GEI), to	"Individual	
	characterize human walking properties	recognition using gait	
	for individual recognition by gait. To	energy	
	address the problem of the lack of	image." Pattern	
	training templates, He also proposed a	Analysis and Machine	
	novel approach for human recognition	Intelligence, IEEE	
	by combining statistical gait features	Transactions on 28.2	
	from real and synthetic templates. Hee	(2006): 316-322.	
	directly computed the real templates		
	from training silhouette sequences,		
	while He generated the synthetic		
	templates from training sequences by		
	simulating silhouette distortion. He		
	used a statistical approach for learning		

	effective features from real and synthetic templates. He compared the proposed GEI-based gait recognition approach with other gait recognition approaches on USF HumanID Database. Experimental results show		
	that the proposed GEI is an effective and efficient gait representation for		
	individual recognition, and the		
	proposed approach achieves highly		
3-Human ear	competitive performance. Human ear is a new class of relatively	Chen, Hui, and Bir	Supervised
recognition	stable biometrics that has drawn	Bhanu. "Human ear	Learning
	researchers' attention recently. In this	recognition in	
	paper, Chen proposed a complete	3D." Pattern Analysis	
	human recognition system using 3D ear	and Machine	
	biometrics. The system consists of 3D ear detection, 3D ear identification, and	Intelligence, IEEE Transactions on 29.4	
	3D ear verification. For ear detection,	(2007): 718-737.	
	He proposed a new approach which	(2007). 710-737.	
	uses a single reference 3D ear shape		
	model and locates the ear helix and the		
	antihelix parts in registered 2D color		
	and 3D range images. For ear		
	identification and verification using		
	range images, two new representations		
	are proposed. These include the ear		
	helix/antihelix representation obtained		
	from the detection algorithm and the local surface patch (LSP) representation		
	computed at feature points. A local		
	surface descriptor is characterized by a		
	centroid, a local surface type, and a 2D		
	histogram. The 2D histogram shows the		
	frequency of occurrence of shape index		
	values versus the angles between the		
	normal of reference feature point and		
	that of its neighbors. Both shape		
	representations are used to estimate the		
	initial rigid transformation between a		
	gallery-probe pair. This transformation is applied to selected locations of ears		
	in the gallery set and a modified		
	iterative closest point (ICP) algorithm is		
	used to iteratively refine the		
	transformation to bring the gallery ear		
	and probe ear into the best alignment in		
	the sense of the least root mean square		
	error. The experimental results on the		
	UCR data set of 155 subjects with 902		
	images under pose variations and the		

	T		
	University of Notre Dame data set of		
	302 subjects with time-lapse gallery-		
	probe pairs are presented to compare		
	and demonstrate the effectiveness of the		
	proposed algorithms and the system		
4-nonlinear	Based on the neural network (NN)	Liu, Yan-Jun, et al.	Reinforcement
discrete-time	approximator, an online reinforcement	"Reinforcement	Learning
MIMO systems	learning algorithm is proposed for a	learning design-based	
	class of affine multiple input and	adaptive tracking	
	multiple output (MIMO) nonlinear	control with less	
	discrete-time systems with unknown	learning parameters	
	functions and disturbances. In the	for nonlinear discrete-	
	design procedure, two networks are	time MIMO	
	provided where one is an action	systems." Neural	
	network to generate an optimal control	Networks and	
	signal and the other is a critic network	Learning Systems,	
	to approximate the cost function. An	IEEE Transactions	
	optimal control signal and adaptation	on26.1 (2015): 165-	
	laws can be generated based on two	176.	
	NNs. In the previous approaches, the		
	weights of critic and action networks		
	are updated based on the gradient		
	descent rule and the estimations of		
	optimal weight vectors are directly		
	adjusted in the design. Consequently,		
	compared with the existing results, the		
	main contributions of this paper are: (1)		
	only two parameters are needed to be		
	adjusted, and thus the number of the		
	adaptation laws is smaller than the		
	previous results and (2) the updating		
	parameters do not depend on the		
	number of the subsystems for MIMO		
	systems and the tuning rules are		
	replaced by adjusting the norms on		
	optimal weight vectors in both action		
	and critic networks. It is proven that the		
	tracking errors, the adaptation laws, and		
	the control inputs are uniformly		
	bounded using Lyapunov analysis		
	method. The simulation examples are		
	employed to illustrate the effectiveness		
	of the proposed algorithm.	** 0	
5-Iris recognition	A new set of features for personal	Umer, Saiyed, Bibhas	Supervised
	verification and identification based on	Chandra Dhara, and	Learning
	iris image is proposed in this paper. The	Bhabatosh Chanda.	
	method consists of three major	"Iris recognition using	
	components: image pre-processing,	multiscale	
	feature extraction and classification.	morphologic	
	During image pre-processing, the iris	features." <i>Pattern</i>	
	segmentation is carried out using		

1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Restricted Circular Hough transformation (RCHT). Then only two disjoint quarters of the segmented iris pattern are normalized which is used to extract features for classification purposes. Here, method for feature	Recognition Letters 65 (2015): 67-74.	
6-dialogue system for human—robot interactions with socially-inspired rewards	extraction from iris pattern is based on multiscale morphologic operator. In this approach, the iris features are represented by the sum of dissimilarity residues obtained by applying morphologic top-hat transform. For classification purposes the multi-class problems is transformed to two-class problem using dichotomy method. The performance of the proposed system is tested on four benchmark iris databases UPOL, MMU1, IITD, and UBIRIS and is compared with well known existing methods. This paper investigates some conditions under which polarized user appraisals gathered throughout the course of a vocal interaction between a machine and a human can be integrated in a reinforcement learning-based dialogue manager. More specifically, we discuss how this information can be cast into socially-inspired rewards for speeding up the policy optimisation for both efficient task completion and user adaptation in an online learning setting. For this purpose a potential-based reward shaping method is combined with a sample efficient reinforcement learning algorithm to offer a principled framework to cope with these potentially noisy interim rewards. The proposed scheme will greatly facilitate the system's development by allowing the designer to teach his system through explicit positive/negative feedbacks given as hints about task progress, in the early stage of training. At a later stage, the approach will be used as a way to ease the adaptation of the dialogue policy to specific user profiles.	Ferreira, Emmanuel, and Fabrice Lefevre. "Reinforcement-learning based dialogue system for human—robot interactions with socially-inspired rewards." Computer Speech & Language 34.1 (2015): 256-274.	Reinforcement Learning
	-		

claims in two configurations: firstly,	
with a user simulator in the tourist	
information domain (and thus simulated	
appraisals), and secondly, in the context	
of man-robot dialogue with real user	
trials.	

2-a

The definition of the distance function.

Actually I used two types of distances. Eventually the Experimental results of the first kind of distance was satisfying. **You can see the results of the first one in diagram in section d.**

```
1)
dists = sum(abs(trainx - ones(n1,1)*test(i,:)),2); absolute value
2)
dist= sqrt(sum((trainx - ones(n1,1)*test(i,:)).^2,2)); Euclidean distance
2-b
```

My pseudocode:

```
kNN (dataset, sample) {

1. Go through each item in my dataset, and calculate the "distance"

from that data item to my specific sample.

2. Classify the sample as the majority class between K samples in

the dataset having minimum distance to the sample.

}
```

This pseduocode has been illustrated in the following figure.

```
function result = knnclassifier(trainx, trainy,test, k)
class= unique(trainy);
N= size(test,1);
n1=length(trainy);
if ( n1 < k)
   error('You specified more neighbors than existed points.')
end
%// Use distance
for i=1:N
newpoint=test(i,:);
dists = sum(abs(trainx - ones(n1,1)*test(i,:)),2);
%dists= sqrt(sum((trainx - ones(n1,1)*test(i,:)).^2,2));
Euclidean distance
[d,ind] = sort(dists);
ind closest = ind(1:k);
x closest = trainx(ind closest,:);
x closest class=trainy(ind closest,:);
x closesthist=hist(x closest class, class);
[c, best] = max(x closesthist);
result(i,1) = class(best);
end
```

2-c

Crossvalidation

```
%% Insert Data
load GlassAldata;

X = GlassAldata;
dataRowNumber = size(GlassAldata,1);

crossValidationFolds = 5;
numberOfRowsPerFold = dataRowNumber / crossValidationFolds;

crossValidationTrainData = [];
```

```
crossValidationTestData = [];
for startOfRow = 1:numberOfRowsPerFold:dataRowNumber
    testRows = startOfRow:startOfRow+numberOfRowsPerFold-1;
    if (startOfRow == 1)
        trainRows = [max(testRows)+1:dataRowNumber];
        else
        trainRows = [1:startOfRow-1
max(testRows)+1:dataRowNumber];
    end

crossValidationTrainData = [crossValidationTrainData;
X(trainRows ,:)];
crossValidationTestData = [crossValidationTestData;X(testRows ,:)];
end
```

2-d

In this question, at first I encountered with a problem that includes multiclass. As you know Precision -Recall curve is based on binary classification. So I implemented this subject for multiclass problem. For details you can refer to Source Code Section.

Precision-recall curves for three different values of *k*.

k1=3; k2=25; k3=40; As you can see, if we consider k=40, the result is better.

You'll also notice that precision and recall are inversely related. As such, if precision increases, then recall decreases. Similarly, if precision decreases, then recall will increase.

• The first part makes sense because if you don't retrieve that many samples in the beginning, you have a greater chance of not including irrelevant samples in your results but at the same time, the amount of relevant samples is rather small. This is why recall would decrease when precision would increase

• The second part also makes sense because as you keep trying to retrieve more samples in your database, you'll inevitably be able to retrieve all of the relevant ones, but you'll most likely start to include more irrelevant samples, which would thus drive your precision down.

Source Code (knn) main function

```
clc
clear
close all
format shortG
%% Insert Data
load GlassAldata;
X = GlassAldata;
dataRowNumber = size(GlassAldata,1);
crossValidationFolds = 5;
numberOfRowsPerFold = dataRowNumber / crossValidationFolds;
crossValidationTrainData = [];
crossValidationTestData = [];
for startOfRow = 1:numberOfRowsPerFold:dataRowNumber
    testRows = startOfRow:startOfRow+numberOfRowsPerFold-1;
    if (startOfRow == 1)
        trainRows = [max(testRows)+1:dataRowNumber];
        trainRows = [1:startOfRow-1 max(testRows)+1:dataRowNumber];
    end
    %crossValidationTrainData = [crossValidationTrainData ;
SortedData(trainRows ,:)];
    crossValidationTrainData = [crossValidationTrainData ; X(trainRows ,:)];
    %crossValidationTestData = [crossValidationTestData;SortedData(testRows
    crossValidationTestData = [crossValidationTestData ;X(testRows ,:)];
end
k=[3 25 40];
r=172;
t=43;
result1=knnclassifier(crossValidationTrainData(1:r,1:9),crossValidationTrainD
ata(1:r,10), crossValidationTestData(1:t,1:9), k(1));
%prec rec(result1, crossValidationTestData(1:t,10));
%%%%%conf1=confusionmatStats(crossValidationTestData(1:t,10),result1);
%Eval1=Evaluate(crossValidationTestData(1:t,10),result1);
%conf11=CopconfusionmatStats(crossValidationTestData(1:t,10),result1);
% Compute empirical curves
```

```
[TPR emp, FPR emp, PPV_emp] =
prc stats empirical(crossValidationTestData(1:t,10)', result1');
result2=knnclassifier(crossValidationTrainData(r+1:r*2,1:9),crossValidationTr
ainData(r+1:r*2,10), crossValidationTestData(t+1:t*2,1:9), k(1));
%prec rec(result2, crossValidationTestData(t+1:t*2,10));
%%conf2=confusionmatStats(crossValidationTestData(t+1:t*2,10),result2);
%Eval2=Evaluate(crossValidationTestData(t+1:t*2,10),result2);
%conf22=CopconfusionmatStats(crossValidationTestData(t+1:t*2,10),result2);
% Compute empirical curves
[TPR emp2, FPR emp2, PPV emp2] =  
prc stats empirical(crossValidationTestData(t+1:t*2,10)', result2');
result3=knnclassifier(crossValidationTrainData(r*2+1:r*3,1:9),crossValidation
TrainData(r*2+1:r*3,10), crossValidationTestData(t*2+1:t*3,1:9), k(1));
%prec rec(result3, crossValidationTestData(t*2+1:t*3,10));
%%conf3=confusionmatStats(crossValidationTestData(t*2+1:t*3,10),result3);
%Eval3=Evaluate(crossValidationTestData(t*2+1:t*3,10),result3);
%%conf33=CopconfusionmatStats(crossValidationTestData(t*2+1:t*3,10),result3);
% Compute empirical curves
[TPR emp3, FPR emp3, PPV emp3] =  
prc stats empirical(crossValidationTestData(t*2+1:t*3,10)', result3');
result4=knnclassifier(crossValidationTrainData(r*3+1:r*4,1:9),crossValidation
TrainData(r*3+1:r*4,10), crossValidationTestData(t*3+1:t*4,1:9), k(1));
%prec rec(result4, crossValidationTestData(t*3+1:t*4,10));
%%conf4=confusionmatStats(crossValidationTestData(t*3+1:t*4,10),result4);
%Eval4=Evaluate(crossValidationTestData(t*3+1:t*4,10),result4);
%conf44=CopconfusionmatStats(crossValidationTestData(t*3+1:t*4,10),result4);
% Compute empirical curves
[TPR emp4, FPR emp4, PPV emp4] =
prc stats empirical(crossValidationTestData(t*3+1:t*4,10)', result4');
result5=knnclassifier(crossValidationTrainData(r*4+1:r*5,1:9),crossValidation
TrainData (r*4+1:r*5,10), crossValidationTestData (t*4+1:t*5,1:9), k(1);
%prec rec(result5, crossValidationTestData(t*4+1:t*5,10));
%%conf5=confusionmatStats(crossValidationTestData(t*4+1:t*5,10),result5);
%Eval5=Evaluate(crossValidationTestData(t*4+1:t*5,10),result5);
%conf55=CopconfusionmatStats(crossValidationTestData(t*4+1:t*5,10),result5);
% Compute empirical curves
[TPR emp5, FPR emp5, PPV emp5] =
prc stats empirical(crossValidationTestData(t*4+1:t*5,10)', result5');
```

```
%recallvector=[conf11.recall conf22.recall conf33.recall conf44.recall
conf55.recall];
%precisionvector=[conf11.precision conf22.precision conf33.precision
conf44.precision conf55.precision];
recallvector=[TPR emp TPR emp2 TPR emp3 TPR emp4 TPR emp5];
precisionvector=[PPV emp PPV emp2 PPV emp3 PPV emp4 PPV emp5];
FPRvector=[FPR emp FPR emp2 FPR emp3 FPR emp4 FPR emp5];
[FPRvector sorted indFPR] = sort(FPRvector);
recallvectoradapt=recallvector(indFPR);
[recallvector sorted indrecall]=sort(recallvector);
precisionvectoradapt=precisionvector(indrecall);
result11=knnclassifier(crossValidationTrainData(1:r,1:9),crossValidationTrain
Data(1:r,10),crossValidationTestData(1:t,1:9), k(2));
%prec rec(result1, crossValidationTestData(1:t,10));
%%%%%conf1=confusionmatStats(crossValidationTestData(1:t,10),result1);
%Eval1=Evaluate(crossValidationTestData(1:t,10),result1);
%conf11=CopconfusionmatStats(crossValidationTestData(1:t,10),result1);
% Compute empirical curves
[k2TPR emp, k2FPR emp, k2PPV emp] =
prc stats empirical(crossValidationTestData(1:t,10)', result11');
result22=knnclassifier(crossValidationTrainData(r+1:r*2,1:9),crossValidationT
rainData(r+1:r*2,10),crossValidationTestData(t+1:t*2,1:9), k(2));
%prec rec(result2, crossValidationTestData(t+1:t*2,10));
%%conf2=confusionmatStats(crossValidationTestData(t+1:t*2,10),result2);
%Eval2=Evaluate(crossValidationTestData(t+1:t*2,10),result2);
%conf22=CopconfusionmatStats(crossValidationTestData(t+1:t*2,10),result2);
% Compute empirical curves
[k2TPR emp2, k2FPR emp2, k2PPV emp2] =
prc stats empirical(crossValidationTestData(t+1:t*2,10)', result22');
result33=knnclassifier(crossValidationTrainData(r*2+1:r*3,1:9),crossValidatio
nTrainData(r*2+1:r*3,10), crossValidationTestData(t*2+1:t*3,1:9), k(2));
%prec rec(result3, crossValidationTestData(t*2+1:t*3,10));
%%conf3=confusionmatStats(crossValidationTestData(t*2+1:t*3,10),result3);
%Eval3=Evaluate(crossValidationTestData(t*2+1:t*3,10),result3);
%%conf33=CopconfusionmatStats(crossValidationTestData(t*2+1:t*3,10),result3);
% Compute empirical curves
```

```
[k2TPR emp3, k2FPR emp3, k2PPV emp3] =
prc_stats_empirical(crossValidationTestData(t*2+1:t*3,10)', result33');
result44=knnclassifier(crossValidationTrainData(r*3+1:r*4,1:9),crossValidatio
nTrainData(r*3+1:r*4,10), crossValidationTestData(t*3+1:t*4,1:9), k(2));
%prec rec(result4, crossValidationTestData(t*3+1:t*4,10));
%%conf4=confusionmatStats(crossValidationTestData(t*3+1:t*4,10),result4);
%Eval4=Evaluate(crossValidationTestData(t*3+1:t*4,10),result4);
%conf44=CopconfusionmatStats(crossValidationTestData(t*3+1:t*4,10),result4);
% Compute empirical curves
[k2TPR emp4, k2FPR emp4, k2PPV emp4] =
prc stats empirical(crossValidationTestData(t*3+1:t*4,10)', result44');
result55=knnclassifier(crossValidationTrainData(r*4+1:r*5,1:9),crossValidatio
nTrainData(r*4+1:r*5,10), crossValidationTestData(t*4+1:t*5,1:9), k(2));
%prec rec(result5, crossValidationTestData(t*4+1:t*5,10));
%%conf5=confusionmatStats(crossValidationTestData(t*4+1:t*5,10),result5);
%Eval5=Evaluate(crossValidationTestData(t*4+1:t*5,10),result5);
%conf55=CopconfusionmatStats(crossValidationTestData(t*4+1:t*5,10),result5);
% Compute empirical curves
[k2TPR emp5, k2FPR emp5, k2PPV emp5] =
prc stats empirical(crossValidationTestData(t*4+1:t*5,10)', result55');
%recallvector=[conf11.recall conf22.recall conf33.recall conf44.recall
conf55.recall1;
%precisionvector=[conf11.precision conf22.precision conf33.precision
conf44.precision conf55.precision];
k2recallvector=[k2TPR emp k2TPR emp2 k2TPR emp3 k2TPR emp4 k2TPR emp5];
k2precisionvector=[k2PPV emp k2PPV emp2 k2PPV emp3 k2PPV emp4 k2PPV emp5];
k2FPRvector=[k2FPR emp k2FPR emp2 k2FPR emp3 k2FPR emp4 k2FPR emp5];
[k2FPRvector sorted k2indFPR]=sort(k2FPRvector);
k2recallvectoradapt=k2recallvector(k2indFPR);
[k2recallvector sorted k2indrecall]=sort(k2recallvector);
k2precisionvectoradapt=k2precisionvector(k2indrecall);
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
result111=knnclassifier(crossValidationTrainData(1:r,1:9),crossValidationTrai
nData(1:r,10),crossValidationTestData(1:t,1:9), k(3));
%prec rec(result1, crossValidationTestData(1:t,10));
%%%%%conf1=confusionmatStats(crossValidationTestData(1:t,10),result1);
```

```
%Eval1=Evaluate(crossValidationTestData(1:t,10),result1);
%conf11=CopconfusionmatStats(crossValidationTestData(1:t,10),result1);
% Compute empirical curves
[k3TPR emp, k3FPR emp, k3PPV emp] =
prc stats empirical(crossValidationTestData(1:t,10)', result111');
result222=knnclassifier(crossValidationTrainData(r+1:r*2,1:9),crossValidation
TrainData (r+1:r*2,10), crossValidationTestData (t+1:t*2,1:9), k(3);
%prec rec(result2, crossValidationTestData(t+1:t*2,10));
%%conf2=confusionmatStats(crossValidationTestData(t+1:t*2,10),result2);
%Eval2=Evaluate(crossValidationTestData(t+1:t*2,10),result2);
%conf22=CopconfusionmatStats(crossValidationTestData(t+1:t*2,10),result2);
% Compute empirical curves
[k3TPR emp2, k3FPR emp2, k3PPV emp2] =
prc stats empirical(crossValidationTestData(t+1:t*2,10)', result222');
result333=knnclassifier(crossValidationTrainData(r*2+1:r*3,1:9),crossValidati
onTrainData (r*2+1:r*3,10), crossValidationTestData (t*2+1:t*3,1:9), k(3);
%prec rec(result3, crossValidationTestData(t*2+1:t*3,10));
%%conf3=confusionmatStats(crossValidationTestData(t*2+1:t*3,10),result3);
%Eval3=Evaluate(crossValidationTestData(t*2+1:t*3,10),result3);
%%conf33=CopconfusionmatStats(crossValidationTestData(t*2+1:t*3,10),result3);
% Compute empirical curves
[k3TPR emp3, k3FPR emp3, k3PPV emp3] =
prc stats empirical(crossValidationTestData(t*2+1:t*3,10)', result333');
result444=knnclassifier(crossValidationTrainData(r*3+1:r*4,1:9),crossValidati
onTrainData (r*3+1:r*4,10), crossValidationTestData (t*3+1:t*4,1:9), k(3);
%prec rec(result4, crossValidationTestData(t*3+1:t*4,10));
%%conf4=confusionmatStats(crossValidationTestData(t*3+1:t*4,10),result4);
%Eval4=Evaluate(crossValidationTestData(t*3+1:t*4,10),result4);
%conf44=CopconfusionmatStats(crossValidationTestData(t*3+1:t*4,10),result4);
% Compute empirical curves
[k3TPR emp4, k3FPR emp4, k3PPV emp4] =
prc stats empirical(crossValidationTestData(t*3+1:t*4,10)', result444');
result555=knnclassifier(crossValidationTrainData(r*4+1:r*5,1:9),crossValidati
onTrainData (r*4+1:r*5,10), crossValidationTestData (t*4+1:t*5,1:9), k(3);
%prec rec(result5, crossValidationTestData(t*4+1:t*5,10));
%%conf5=confusionmatStats(crossValidationTestData(t*4+1:t*5,10),result5);
%Eval5=Evaluate(crossValidationTestData(t*4+1:t*5,10),result5);
%conf55=CopconfusionmatStats(crossValidationTestData(t*4+1:t*5,10),result5);
```

```
% Compute empirical curves
[k3TPR emp5, k3FPR emp5, k3PPV emp5] =
prc stats empirical(crossValidationTestData(t*4+1:t*5,10)', result555');
%recallvector=[conf11.recall conf22.recall conf33.recall conf44.recall
conf55.recall];
%precisionvector=[conf11.precision conf22.precision conf33.precision
conf44.precision conf55.precision];
k3recallvector=[k3TPR emp k3TPR emp2 k3TPR emp3 k3TPR emp4 k3TPR emp5];
k3precisionvector=[k3PPV emp k3PPV emp2 k3PPV emp3 k3PPV emp4 k3PPV emp5];
k3FPRvector=[k3FPR emp k3FPR emp2 k3FPR emp3 k3FPR emp4 k3FPR emp5];
[k3FPRvector sorted k3indFPR]=sort(k3FPRvector);
k3recallvectoradapt=k3recallvector(k3indFPR);
[k3recallvector sorted k3indrecall]=sort(k3recallvector);
k3precisionvectoradapt=k3precisionvector(k3indrecall);
% Plot results
cols = [200 45 43; 37 64 180; 0 176 80; 0 0 0]/255;
% Plot ROC curves
figure; hold on;
axis([0 1 0 1]); %// Adjust axes for better viewing
%plot(FPRvector sorted, recallvectoradapt, '-o', k2FPRvector sorted,
k2recallvectoradapt, 'g', k3FPRvector sorted, k3recallvectoradapt, 'c*',
'linewidth', 2);
plot(FPRvector sorted, recallvectoradapt, '-', 'color', cols(4,:),
'linewidth', 2);
plot(k2FPRvector sorted, k2recallvectoradapt, '-o', 'color', cols(1,:),
'linewidth', 2);
plot(k3FPRvector sorted, k3recallvectoradapt, '-', 'color', cols(2,:),
'linewidth', 2);
xlabel('FPR'); ylabel('TPR'); title('ROC curves');
set(gca, 'box', 'on');
% Plot PR(Precision Recall) curves
figure; hold on;
axis([0 1 0 1]); %// Adjust axes for better viewing
grid;
%plot(recallvector sorted, precisionvectoradapt, '-o',k2recallvector sorted,
k2precisionvectoradapt, 'q', k3recallvector sorted,
k3precisionvectoradapt, 'c*', 'linewidth', \overline{2});
plot(recallvector sorted, precisionvectoradapt, '-', 'color', cols(4,:),
'linewidth', 2);
plot(k2recallvector sorted, k2precisionvectoradapt, '-o', 'color', cols(1,:),
'linewidth', 2);
```

Knnclassifier function

```
function result = knnclassifier(trainx, trainy,test, k)
class= unique(trainy);
N= size(test,1);
n1=length(trainy);
if (n1 < k)
   error('You specified more neighbors than existed points.')
end
%// Use distance
for i=1:N
newpoint=test(i,:);
%%%dists = sqrt(sum(bsxfun(@minus, trainx, test(i,:)).^2, 2));Euclidean
distance
dists = sum(abs(trainx - ones(n1,1)*test(i,:)),2);
dist= sqrt(sum((trainx - ones(n1,1)*test(i,:)).^2,2));
%dists = sqrt(sum(trainx-test(i,:)*ones(m1,m2)).^2, 2);
[d,ind] = sort(dists);
ind closest = ind(1:k);
x closest = trainx(ind closest,:);
x_closest_class=trainy(ind closest,:);
x closesthist=hist(x closest class, class);
[c, best] = max(x closesthist);
result(i,1) = class(best);
end
```

prc_stats function

% Computes empirical statistics based on classification output.
%
% Usage:
% [TPR, FPR, PPV, AUC, AP] = prc_stats_empirical(targs, dvs)

```
% Arguments:
     targs: true class labels (targets)
응
     dvs: decision values output by the classifier
응
% Return values:
     TPR: true positive rate (recall)
응
     FPR: false positive rate
     PPV: positive predictive value (precision)
응
응
     AUC: area under the ROC curve
응
     AP: area under the PR curve (average precision)
2
§ ______
function [TPR, FPR, PPV, AUC, AP] = prc stats empirical(targs, dvs)
    % Check input
    assert(all(size(targs) == size(dvs)));
   % Sort decision values and true labels according to decision values
   n = length(dvs);
   [dvs sorted,idx] = sort(dvs,'ascend');
   targs sorted = targs(idx);
   field1 = 'confusionMat';
if nargin < 2</pre>
   value1 = targs;
else
   value1 = confusionmat(targs, dvs);
end
numOfClasses = size(value1,1);
totalSamples = sum(sum(value1));
%[TP,TN,FP,FN,sensitivity,specificity,precision,f score] =
deal(zeros(numOfClasses,1));
for class = 1:numOfClasses
  TP(class) = value1(class, class);
   tempMat = value1;
  tempMat(:,class) = []; % remove column
  tempMat(class,:) = []; % remove row
  TN(class) = sum(sum(tempMat));
  FP(class) = sum(value1(:,class))-TP(class);
  FN(class) = sum(value1(class,:))-TP(class);
end
field2 = 'accuracy'; value2 = (TP+TN) / (TP+TN+FP+FN);
for class = 1:numOfClasses
    TPR((class)) = TP(class)/(TP(class)+FN(class));
       FPR(class) = FP(class)/(FP(class)+TN(class));
       PPV(class) = TP(class)/(TP(class)+FP(class));
    f score(class) = 2*TP(class)/(2*TP(class) + FP(class) + FN(class));
```

```
end
   % Inititalize accumulators
  % TPR = repmat(NaN,1,n+1);
   %FPR = repmat(NaN, 1, n+1);
   PPV = repmat(NaN, 1, n+1);
   \ensuremath{\$} 
 Now slide the threshold along the decision values (the threshold
   % always lies in between two values; here, the threshold represents the
   % decision value immediately to the right of it)
   %for thr = 1:length(dvs sorted)+1
     % TP = sum(targs sorted(thr:end)>0);
    % FN = sum(targs sorted(1:thr-1)>0);
      % TN = sum(targs sorted(1:thr-1)<0);
       %FP = sum(targs sorted(thr:end)<0);
       TPR(thr) = TP/(TP+FN);
       FPR(thr) = FP/(FP+TN);
       PPV(thr) = TP/(TP+FP);
  % end
   % Compute empirical AUC
   %[tmp,tmp,tmp,AUC] = perfcurve(targs,dvs,1)%'ProcessNaN','addtofalse');
   % Compute empirical AP
   AP = abs(trapz(TPR(~isnan(PPV)), PPV(~isnan(PPV))));
```

end