Computing with Signals

Vector Space review

Real plane as a vector space

$$x = \begin{bmatrix} x_0 & x_1 \end{bmatrix}^{\mathsf{T}}$$

Chap.1 and Chap. 2 from

Foundations of Signal Processing

Martin Vetterli École Polytechnique Fédérale de Lausanne

> Jelena Kovačević Carnegie Mellon University

> > Vivek K Goyal

Massachusetts Institute of Technology & Boston University

Vectors

Real plane as a vector space

$$x = \begin{bmatrix} x_0 & x_1 \end{bmatrix}^{\mathsf{T}}$$

- Adding two vectors in the plane produces a third one also in the plane
- multiplying a vector by a real scalar produces a second vector also in the plane.

Real plane as a vector space

$$x = \begin{bmatrix} x_0 & x_1 \end{bmatrix}^{\top}$$

- Adding two vectors in the plane produces a third one also in the plane
- multiplying a vector by a real scalar produces a second vector also in the plane.

Real plane as a vector space

$$x = \begin{bmatrix} x_0 & x_1 \end{bmatrix}^ op$$
 Inner Product and Norm $y = \begin{bmatrix} y_0 & y_1 \end{bmatrix}^ op$ $\langle x, y
angle = x_0 y_0 + x_1 y_1$ $\langle x, x
angle = x_0^2 + x_1^2$ $\|x\| = \sqrt{\langle x, x
angle} = \sqrt{x_0^2 + x_1^2}$

Inner Product (alternate computation)

```
 \langle x, y \rangle = x_0 y_0 + x_1 y_1 
 = (\|x\| \cos \theta_x)(\|y\| \cos \theta_y) + (\|x\| \sin \theta_x)(\|y\| \sin \theta_y) 
 = \|x\| \|y\|(\cos \theta_x \cos \theta_y + \sin \theta_x \sin \theta_y) 
 = \|x\| \|y\| \cos(\theta_x - \theta_y).
```

Inner Product (alternate computation)

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta_x - \theta_y)$$

- norms
- similarity of their orientations

Inner Product (alternate computation)

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta_x - \theta_y)$$

- norms
- similarity of their orientations

Distance between two vectors

$$d(x,y) = ||x-y|| = \sqrt{\langle x-y, x-y \rangle} = \sqrt{(x_0-y_0)^2 + (x_1-y_1)^2}$$

Collection of vectors

Subspaces and projections

(a) Orthogonal projections onto S.

Collection of vectors

Subspaces and projections

(a) Orthogonal projections onto S.

Bases and coordinates

(a) Expansion with an orthonormal basis. For orthogonal bases

$$x = \alpha_0 \varphi_0 + \alpha_1 \varphi_1$$

Bases and coordinates

(a) Expansion with an orthonormal basis.

For orthogonal bases

$$x = \alpha_0 \varphi_0 + \alpha_1 \varphi_1$$

$$\alpha_0 = \langle x, \varphi_0 \rangle$$
 and $\alpha_1 = \langle x, \varphi_1 \rangle$

Bases and coordinates

(a) Expansion with an orthonormal basis.

For orthogonal bases

$$x = \alpha_0 \varphi_0 + \alpha_1 \varphi_1$$

$$\alpha_0 = \langle x, \varphi_0 \rangle$$
 and $\alpha_1 = \langle x, \varphi_1 \rangle$

$$|\alpha_0|^2 + |\alpha_1|^2 = ||x||^2$$

(length can be computed this way as well)

Bases and coordinates

(a) Expansion with an orthonormal basis.

For orthogonal bases

Synthesis or Representation:

$$x = \alpha_0 \varphi_0 + \alpha_1 \varphi_1$$

Analysis:

$$\alpha_0 = \langle x, \varphi_0 \rangle$$
 and $\alpha_1 = \langle x, \varphi_1 \rangle$

Bases and coordinates

(a) Expansion with an orthonormal basis.

(b) Expansion with a nonorthogonal basis.

Bases and coordinates

(a) Expansion with an orthonormal basis.

(b) Expansion with a nonorthogonal basis.

(c) Basis $\{\varphi_0, \varphi_1\}$ and its dual $\{\widetilde{\varphi}_0, \widetilde{\varphi}_1\}$.

Vector Space

DEFINITION 2.1 (VECTOR SPACE) A vector space over a field of scalars \mathbb{C} (or \mathbb{R}) is a set of vectors, V, together with operations of vector addition and scalar multiplication. For any x, y, z in V and α , β in \mathbb{C} (or \mathbb{R}), these operations must satisfy the following properties:

- (i) Commutativity: x + y = y + x.
- (ii) Associativity: (x + y) + z = x + (y + z) and $(\alpha \beta)x = \alpha(\beta x)$.
- (iii) Distributivity: $\alpha(x+y) = \alpha x + \alpha y$ and $(\alpha + \beta)x = \alpha x + \beta x$.

Furthermore, the following hold:

- (iv) Additive identity: There exists an element $\mathbf{0}$ in V such that $x+\mathbf{0}=\mathbf{0}+x=x$ for every x in V.
- (v) Additive inverse: For each x in V, there exists a unique element -x in V such that $x + (-x) = (-x) + x = \mathbf{0}$.
- (vi) Multiplicative identity: For every x in V, $1 \cdot x = x$.

Vector Space

 \mathbb{C}^N : Vector space of complex-valued finite-dimensional vectors

$$\mathbb{C}^{N} = \left\{ x = \begin{bmatrix} x_{0} & x_{1} & \dots & x_{N-1} \end{bmatrix}^{\top} \middle| x_{n} \in \mathbb{C}, \ n \in \{0, 1, \dots, N-1\} \right\}$$

Jan Feb Mar Dec

We have sampled one value each month

Vector Space

 \mathbb{C}^N : Vector space of complex-valued finite-dimensional vectors

$$\mathbb{C}^N \ = \ \Big\{ x = \begin{bmatrix} x_0 & x_1 & \dots & x_{N-1} \end{bmatrix}^\top \ \middle| \ x_n \in \mathbb{C}, \ n \in \{0, 1, \dots, N-1\} \Big\}$$
 Jan Feb Mar De

- Example, average temperature(real value)
- Each year we have a vector with N=12 elements

Vector Space

 \mathbb{C}^N : Vector space of complex-valued finite-dimensional vectors

$$\mathbb{C}^{N} = \left\{ x = \begin{bmatrix} x_{0} & x_{1} & \dots & x_{N-1} \end{bmatrix}^{\mathsf{T}} \mid x_{n} \in \mathbb{C}, \ n \in \{0, 1, \dots, N-1\} \right\}$$

The two fundamental operations in a vector space

$$x + y = \begin{bmatrix} x_0 & x_1 & \dots & x_{N-1} \end{bmatrix}^{\top} + \begin{bmatrix} y_0 & y_1 & \dots & y_{N-1} \end{bmatrix}^{\top}$$

$$= \begin{bmatrix} x_0 + y_0 & x_1 + y_1 & \dots & x_{N-1} + y_{N-1} \end{bmatrix}^{\top},$$

$$\alpha x = \alpha \begin{bmatrix} x_0 & x_1 & \dots & x_{N-1} \end{bmatrix}^{\top} = \begin{bmatrix} \alpha x_0 & \alpha x_1 & \dots & \alpha x_{N-1} \end{bmatrix}^{\top}$$

Vector Space

 $\mathbb{C}^{\mathbb{Z}}$: Vector space of complex-valued sequences over \mathbb{Z}

$$\mathbb{C}^{\mathbb{Z}} = \left\{ x = \begin{bmatrix} \dots & x_{-1} & x_0 & x_1 & \dots \end{bmatrix}^{\mathsf{T}} \middle| x_n \in \mathbb{C}, \ n \in \mathbb{Z} \right\}$$

Negative indices helps to bring the notion of history

Vector Space

 $\mathbb{C}^{\mathbb{R}}$: Vector space of complex-valued functions over \mathbb{R}

$$\mathbb{C}^{\mathbb{R}} = \{ x \mid x(t) \in \mathbb{C}, \ t \in \mathbb{R} \}$$

 Helps understand collection of functions (continuous) of a particular type as a vector space

Vector Space

 $\mathbb{C}^{\mathbb{R}}$: Vector space of complex-valued functions over \mathbb{R}

$$\mathbb{C}^{\mathbb{R}} = \{ x \mid x(t) \in \mathbb{C}, \ t \in \mathbb{R} \}$$

The two fundamental operations in a vector space

$$(x+y)(t) = x(t) + y(t),$$

$$(\alpha x)(t) = \alpha x(t).$$

Vector Space

 $\mathbb{C}^{\mathbb{R}}$: Vector space of complex-valued functions over \mathbb{R}

$$\mathbb{C}^{\mathbb{R}} = \{ x \mid x(t) \in \mathbb{C}, \ t \in \mathbb{R} \}$$

EXAMPLE 2.1 (VECTOR SPACE OF POLYNOMIALS) Fix a positive integer N and consider the real-valued polynomials of degree at most (N-1), $x(t) = \sum_{k=0}^{N-1} \alpha_k t^k$. These form a vector space over \mathbb{R} under the natural addition and multiplication operations. Since each polynomial is specified by its coefficients, polynomials combine exactly like vectors in \mathbb{R}^N .

DEFINITION 2.2 (Subspace) A nonempty subset S of a vector space V is a subspace when it is closed under the operations of vector addition and scalar multiplication:

- (i) For all x and y in S, x + y is in S.
- (ii) For all x in S and α in \mathbb{C} (or \mathbb{R}), αx is in S.

DEFINITION 2.3 (AFFINE SUBSPACE) A subset T of a vector space V is an affine subspace when there exist a vector $x \in V$ and a subspace $S \subset V$ such that any $t \in T$ can be written as x + s for some $s \in S$.

Vector space → Subspace → Span

Definition 2.4 (Span) The span of a set of vectors S is the set of all finite linear combinations of vectors in S:

$$\operatorname{span}(S) = \left\{ \sum_{k=0}^{N-1} \alpha_k \varphi_k \mid \alpha_k \in \mathbb{C} \text{ (or } \mathbb{R}), \, \varphi_k \in S, \text{ and } N \in \mathbb{N} \right\}.$$

DEFINITION 2.5 (LINEARLY INDEPENDENT SET) The set of vectors $\{\varphi_0, \varphi_1, \ldots, \varphi_{N-1}\}$ is called *linearly independent* when $\sum_{k=0}^{N-1} \alpha_k \varphi_k = \mathbf{0}$ is true only if $\alpha_k = 0$ for all k. Otherwise, the set is linearly dependent. An infinite set of vectors is called linearly independent when every finite subset is linearly independent.

Example. Let $p_j(x) = x^j$ for j = 0, 1, 2, ..., n, where n is some positive integer. Then the polynomials $p_0(x), p_1(x), p_2(x), ..., p_n(x)$ are linearly independent elements of the vector space consisting of all polynomials with real coefficients. Indeed if $c_0, c_1, ..., c_n$ are real numbers and if

$$c_0p_0(x) + c_1p_1(x) + c_2p_2(x) + \dots + c_np_n(x) = 0$$

then $c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n$ is the zero polynomial, and therefore $c_j = 0$ for $j = 0, 1, 2, \ldots, n$.

Vector space → Subspace → Linear Independence

Example. Let $p_j(x) = x^j$ for j = 0, 1, 2, ..., n, where n is some positive integer. Then the linearly independent polynomials $p_0(x), p_1(x), p_2(x), ..., p_n(x)$ span the vector space consisting of all polynomials with real coefficients whose degree does not exceed n, since

$$c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n = c_0 p_0(x) + c_1 p_1(x) + c_2 p_2(x) + \dots + c_n p_n(x)$$

for all polynomials $c_0 + c_1x + c_2x^2 + \cdots + c_nx^n$ with real coefficients. We conclude that $1, x, x^2, \dots, x^n$ is a basis of the vector space consisting of all polynomials with real coefficients whose degree does not exceed n.

Vector space → Subspace → Linear Independence → Dimension

DEFINITION 2.6 (DIMENSION) A vector space V is said to have dimension N when it contains a linearly independent set with N elements and every set with N+1 or more elements is linearly dependent. If no such finite N exists, the vector space is infinite-dimensional.

Definitions (notion of value derived from a pair of vectors)

Inner Product

DEFINITION 2.7 (INNER PRODUCT) An inner product on a vector space V over \mathbb{C} (or \mathbb{R}) is a complex-valued (or real-valued) function $\langle \cdot, \cdot \rangle$ defined on $V \times V$, with the following properties for any $x, y, z \in V$ and $\alpha \in \mathbb{C}$ (or \mathbb{R}):

- (i) Distributivity: $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
- (ii) Linearity in the first argument: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.
- (iii) Hermitian symmetry: $\langle x, y \rangle^* = \langle y, x \rangle$.
- (iv) Positive definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ if and only if $x = \mathbf{0}$.

Inner Product

DEFINITION 2.7 (INNER PRODUCT) An inner product on a vector space V over \mathbb{C} (or \mathbb{R}) is a complex-valued (or real-valued) function $\langle \cdot, \cdot \rangle$ defined on $V \times V$, with the following properties for any $x, y, z \in V$ and $\alpha \in \mathbb{C}$ (or \mathbb{R}):

- (i) Distributivity: $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
- (ii) Linearity in the first argument: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$.
- (iii) Hermitian symmetry: $\langle x, y \rangle^* = \langle y, x \rangle$.
- (iv) Positive definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ if and only if x = 0.

Example

$$\langle x, y \rangle = x_0 y_0^* + 5x_1 y_1^* \qquad \langle x, y \rangle = x_0^* y_0 + x_1^* y_1 \qquad \langle x, y \rangle = x_0 y_0^*$$

$$\times \text{(iii)} \qquad \langle x, y \rangle = x_0 y_0^*$$

Inner Product

Standard Inner Product

$$\langle x,\,y
angle \ = \ \sum_{n=0}^{N-1} x_n y_n^* \ = \ y^* x \quad \text{on } \mathbb{C}^N \qquad \qquad \langle x,\,y
angle \ = \ \sum_{n\in\mathbb{Z}} x_n y_n^* \ = \ y^* x \quad \text{on } \mathbb{C}^\mathbb{Z}$$

$$\langle x, y \rangle = \int_{-\infty}^{\infty} x(t) y^*(t) dt$$
 on $\mathbb{C}^{\mathbb{R}}$

Definitions (notion of angle)

DEFINITION 2.8 (ORTHOGONALITY)

- (i) Vectors x and y are said to be orthogonal when $\langle x, y \rangle = 0$, written as $x \perp y$.
- (ii) A set of vectors S is called *orthogonal* when $x \perp y$ for every x and y in S such that $x \neq y$.
- (iii) A set of vectors S is called *orthonormal* when it is orthogonal and $\langle x, x \rangle = 1$ for every x in S.
- (iv) A vector x is said to be *orthogonal* to a set of vectors S when $x \perp s$ for all $s \in S$, written as $x \perp S$.
- (v) Two sets S_0 and S_1 are said to be *orthogonal* when every vector s_0 in S_0 is orthogonal to the set S_1 , written as $S_0 \perp S_1$.
- (vi) Given a subspace S of a vector space V, the orthogonal complement of S, denoted S^{\perp} , is the set $\{x \in V \mid x \perp S\}$.

DEFINITION 2.8 (ORTHOGONALITY)

- (i) Vectors x and y are said to be *orthogonal* when $\langle x, y \rangle = 0$, written as $x \perp y$.
- (ii) A set of vectors S is called *orthogonal* when $x \perp y$ for every x and y in S such that $x \neq y$.
- (iii) A set of vectors S is called *orthonormal* when it is orthogonal and $\langle x, x \rangle = 1$ for every x in S.
- (iv) A vector x is said to be *orthogonal* to a set of vectors S when $x \perp s$ for all $s \in S$, written as $x \perp S$.
- (v) Two sets S_0 and S_1 are said to be *orthogonal* when every vector s_0 in S_0 is orthogonal to the set S_1 , written as $S_0 \perp S_1$.
- (vi) Given a subspace S of a vector space V, the orthogonal complement of S, denoted S^{\perp} , is the set $\{x \in V \mid x \perp S\}$.

(b) $\varphi_1(t) = \sqrt{2}\cos(2\pi t)$.

(c) $\varphi_2(t) = \sqrt{2}\cos(4\pi t)$.

DEFINITION 2.9 (NORM) A norm on a vector space V over \mathbb{C} (or \mathbb{R}) is a real-valued function $\|\cdot\|$ defined on V, with the following properties for any $x, y \in V$ and $\alpha \in \mathbb{C}$ (or \mathbb{R}):

- (i) Positive definiteness: $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0.
- (ii) Positive scalability: $\|\alpha x\| = |\alpha| \|x\|$.
- (iii) Triangle inequality: $||x+y|| \le ||x|| + ||y||$, with equality if and only if $y = \alpha x$.

DEFINITION 2.9 (NORM) A *norm* on a vector space V over \mathbb{C} (or \mathbb{R}) is a real-valued function $\|\cdot\|$ defined on V, with the following properties for any $x,y\in V$ and $\alpha\in\mathbb{C}$ (or \mathbb{R}):

- (i) Positive definiteness: $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0.
- (ii) Positive scalability: $\|\alpha x\| = |\alpha| \|x\|$.
- (iii) Triangle inequality: $||x+y|| \le ||x|| + ||y||$, with equality if and only if $y = \alpha x$.

Example

$$||x|| = |x_0|^2 + 5|x_1|^2$$
 $||x|| = |x_0| + |x_1|$ $||x|| = |x_0|$

Standard Norm

$$\|x\| = \sqrt{\langle x, x \rangle} = \left(\int_{-\infty}^{\infty} |x(t)|^2 dt\right)^{1/2}$$
 on $\mathbb{C}^{\mathbb{R}}$

More general p- norm

$$||x||_p = \left(\sum_{n=0}^{N-1} |x_n|^p\right)^{1/p}$$
 on \mathbb{C}^N for $p \in [1, \infty)$

The unit ball contour under different p-norms

Definitions (notion of a computable vector space)

DEFINITION 2.13 (CONVERGENT SEQUENCE OF VECTORS) A sequence of vectors x_0, x_1, \ldots in a normed vector space V is said to *converge* to $v \in V$ when $\lim_{k\to\infty} ||v-x_k|| = 0$. In other words, given any $\varepsilon > 0$, there exists a K_{ε} such that

$$||v - x_k|| < \varepsilon$$
 for all $k > K_{\varepsilon}$.

Definitions (notion of a computable vector space)

DEFINITION 2.15 (CAUCHY SEQUENCE OF VECTORS) A sequence of vectors x_0 , x_1, \ldots in a normed vector space is called a *Cauchy sequence* when, given any $\varepsilon > 0$, there exists a K_{ε} such that

$$||x_k - x_m|| < \varepsilon$$
 for all $k, m > K_{\varepsilon}$.

Definitions (notion of a computable vector space)

DEFINITION 2.16 (COMPLETENESS AND HILBERT SPACE) A normed vector space V is said to be *complete* when every Cauchy sequence in V converges to a vector in V. A complete inner product space is called a *Hilbert space*.

In a snapshot

Hilbert Space

To ease our analysis we will enforce that our signal/data resides (mostly)

Next lecture we will continue ...

