Проблема поиска сигнала Сначала теория А теперь жизнь Численный анализ задачи Пример расчёта блока поиска сигнала

Лекция б. Поиск сигнала по частоте и задержке.

Болденков Е.Н.

Московский Энергетический институт

октябрь 2011

Содержание

- 🚺 Проблема поиска сигнала
 - Структура навигационного сигнала
 - Проблема поиска сигнала
- 🔼 Сначала теория
 - Метод максимального правдоподобия
 - Функция правдоподобия
- А теперь жизнь
 - Шаг поиска по задержке
 - Шаг поиска по частоте
 - Стоит ли уменьшать шаг поиска?
 - Некогерентное накопление
- Численный анализ задачи
 - Обнаружение сигнала в каждой ячейке
 - Вероятность ложной тревоги в каждой ячейке
 - Сколько сигналов надо искать?
- 🚺 Пример расчёта блока поиска сигнала
 - ТЗ на поиск
 - Шаг 1. Определяем время поиска одного сигнала
 - Шаг 2. Определяем вероятность ложной тревоги в отдельной ячейке
 - Шаг 3. Определяем время накопления
 - Шаг 4. Определяем количество корреляторов
 ◄ □ ➤ ◀ □ ➤ ◀ ➤ ▼ ▼ ●

Структура навигационного сигнала

Навигационный сигнал имеет вид:

$$S(t) = A \cdot \mathcal{G}_{ ext{JK}}(t- au) \mathcal{G}_{ ext{HC}}(t- au) cos(\omega_0 t + \omega t + arphi)$$

Обычно на вход поступает смесь сигнала и шумов приёмника:

$$y(t) = s(t) + n(t)$$

n(t) - аддитивный шум, полагаемый белым гауссовским со спектральной плотностью $N_0/2$.

Что такое поиск сигнала?

Приёмник должен обнаружить сигнал и оценить его частоту и задержку

Чем отличается поиск от обнаружения?

Под обнаружением понимается оценка факта наличия сигнала с известными параметрами

Как искать сигнал?

Из теории оптимального приёма сигнала следует, что нужно искать максимум функции правдоподобия

$$p(Y|f,\tau,\theta) \underset{f,\tau,\theta}{\longrightarrow} \max$$

Как найти максимум функции правдоподобия?

Для функции с одним максимумом можно было бы применить какой-нибудь градиентный метод

Как найти максимум функции правдоподобия?

В реальности решить задачу максимизации функции правдоподобия не просто

Численная максимизация функции правдоподобия

На практике область возможных значений частот и задержек разбивают на множество ячеек

Функция правдоподобия в общем виде

При гауссовских шумах наблюдения функция правдоподобия имеет вид:

$$p(y|\theta) = C \cdot exp\left\{-\frac{2}{N_0} \int_0^T (y(t) - \theta \cdot s(f, \tau, t))^2 dt\right\}$$

Функция правдоподобия

Как и в задаче обнаружения, алгоритм максимизации можно упростить:

- экспонента монотонная функция ⇒ можно взять логарифм;
- f и au неэнергетические параметры \Rightarrow одно из слагаемых можно убрать;

Функция правдоподобия

Как и в задаче обнаружения, алгоритм максимизации можно упростить:

- экспонента монотонная функция ⇒ можно взять логарифм;
- f и au неэнергетические параметры \Rightarrow одно из слагаемых можно убрать;

В результате алгоритм упрощается:

$$\int_0^T y(t) \cdot s(f,\tau,t) dt \underset{f,\tau}{\rightarrow} \max$$

Обычно фаза неизвестна

Для неизвестной фазы сигнала функция правдоподобия аналитически усредняется, что приводит к схеме квадратурного накопления

Размер ячейки по задержке

Шаг поиска по задержке определяется шириной корреляционной функции дальномерного кода

Размер ячейки поиска по задержке не может быть больше ширины основного пика корреляционной функции

Размер ячейки поиска по задержке

Обычно шаг поиска берут равным половине длительности символа дальномерного кода

В этом случае количество ячеек поиска по задержке равно удвоенному числу символов ПСП

В сигнале GPS C/A длина кода 1023 символа, тогда количество ячеек поиска по задержке должно быть 2046.

Размер ячейки поиска по частоте

С частотой сложнее - нужно смотреть эквивалент коррелятора

$$M[I] = 2q_{c/n_0}T \cdot sinc\left(\frac{\Delta\omega T}{2}\right)\rho(\Delta\tau)\cos(\Delta\omega T + \Delta\varphi)$$

$$M\left[\mathcal{Q}\right] = 2q_{c/n_0}\,T\cdot sinc\left(\frac{\Delta\omega\,T}{2}\right)\rho\left(\Delta\tau\right)\sin\left(\Delta\omega\,T + \Delta\varphi\right)$$

Размер ячейки поиска по частоте

Из анализа выражений следует, что ширина корреляционной функции по частоте обратно пропорциональна интервалу накопления в корреляторе Т

Размер ячейки поиска по частоте

Шаг поиска по частоте выбирается из допустимости потерь

- ullet минимальный шаг: $\Delta f = rac{1}{T}$ потери около 0.9 дБ;
- ullet часто берут шаг: $\Delta f = rac{2}{3} \cdot rac{1}{T}$ потери менее 0.5 дБ;

Не стоит мельчить!!!

Что, если уменьшить шаг поиска для снижения потерь?

Пусть шаг поиска по задержке $T_{PN}/2$, по частоте $\frac{2}{3} \cdot \frac{1}{T}$. В результате средние потери составляют около 0.7 дБ.

Не стоит мельчить!!!

Что, если уменьшить шаг поиска для снижения потерь?

Пусть шаг поиска по задержке $T_{PN}/2$, по частоте $\frac{2}{3} \cdot \frac{1}{T}$. В результате средние потери составляют около 0.7 дБ.

Сделаем шаг поиска в два раза меньше.

По задержке $T_{PN}/4$, по частоте $\frac{1}{3} \cdot \frac{1}{T}$. Средние потери уменьшатся до 0.4 дБ.

Не стоит мельчить!!!

Что, если уменьшить шаг поиска для снижения потерь?

Пусть шаг поиска по задержке $T_{PN}/2$, по частоте $\frac{2}{3} \cdot \frac{1}{T}$. В результате средние потери составляют около 0.7 дБ.

Сделаем шаг поиска в два раза меньше.

По задержке $T_{PN}/4$, по частоте $\frac{1}{3} \cdot \frac{1}{T}$. Средние потери уменьшатся до 0.4 дБ.

HO!!!

- В результате общее количество ячеек возрастёт в 4 раза.
- Вместо этого можно в 4 раза увеличить время некогерентного накопления и выиграть 4 дБ!

На прошлой лекции для задачи обнаружения была приведена схема некогерентного накопления

Эффективность накопления:

- удвоение длительности Т даёт выигрыш 3 дБ;
- удвоение длительности NN даёт выигрыш 2 дБ.

 $\mathsf{H}\mathsf{y}\mathsf{x}\mathsf{h}\mathsf{o}$ помнить, что шаг поиска по частоте зависит от T

$$\Delta f \leq \frac{1}{T}$$

Обычно задан диапазон поиска по частоте ΔF_{max}

Расчёт количества каналов поиска по частоте:

$$N_f = \frac{\Delta F_{\mathsf{max}}}{\Delta f} \ge T \cdot \Delta F_{\mathsf{max}}$$

Увеличение в два раза T увеличит количество каналов поиска в два раза.

Пример

- Допустим, принимаем сигнал GPS C/A, диапазон поиска по частоте $\Delta F_{max}=20~{
 m k}\Gamma_{\Pi},~T=1~{
 m MC},~NN=4.$ В этом случае при 45 дБГц, $P_F=0.1,~P_D=0.9.$
- При шаге поиска $\frac{1}{T}=1\ {
 m k}\Gamma_{
 m II}$ по частоте будет 20 каналов поиска.
- В гипотетическом одноканальном приёмнике общее время накопления будет:

$$t = 20 \cdot 2046 \times 4 \times 1 \cdot 10^{-3} = 164 \text{ c.}$$

Допустим, нужно повысить чувствительность до 39 дБГц

Можно увеличить T до 4 мс

Но при этом количество каналов по частоте возрастёт до 80. Общее время поиска в одноканальном приёмнике будет равно:

$$t = 80 \cdot 2046 \times 4 \times 4 \cdot 10^{-3} = 2620 \text{ c.}$$

Допустим, нужно повысить чувствительность до 39 дБГц

Можно увеличить T до 4 мс

Но при этом количество каналов по частоте возрастёт до 80. Общее время поиска в одноканальном приёмнике будет равно:

$$t = 80 \cdot 2046 \times 4 \times 4 \cdot 10^{-3} = 2620 \text{ c.}$$

Можно увеличить *NN* до 32 раз

При этом количество каналов по частоте останется равным 20. Общее время поиска в одноканальном приёмнике будет равно:

$$t = 20 \cdot 2046 \times 32 \times 1 \cdot 10^{-3} = 1309 \text{ c.}$$

Поиск, как обнаружение в каждой ячейке

Решающее правило

$$\sum_{i=1}^{NN} I_i^2 + Q_i^2 > R.$$

Сумма квадратов гауссовских случайных чисел имеет распределение χ^2

Нецентральное $p_{0,\chi^2}(x)$:

Центральное
$$p_{1,\chi^2}(x)$$
:

$$\frac{1}{2^{\,\textit{NN}\,\sigma^{2}\,\textit{NN}\,\Gamma\,(\,\textit{NN})}} x^{\,\textit{NN}-1}\,e^{\,\frac{-\,2}{(2\,\sigma^{\,2})}}\,,$$

$$\frac{1}{2\sigma^2} \left(\frac{x}{S^2}\right) \frac{NN-1}{2} \; e^{\; \frac{-\left(x+S^2\right)}{\left(2\sigma^2\right)}} \, I_{NN-1} \left(\frac{S\sqrt{x}}{\sigma^2}\right),$$

$$\Gamma(NN) = \int_0^{+\infty} y^{NN-1} e^{-y} dy = (NN-1)!.$$

$$I_{NN-1}(x)$$
 — функция Бесселя.

Поиск, как обнаружение в каждой ячейке

Как и в задаче обнаружения, можно назначить порог

$$\int_{R}^{+\infty} p_{0,\chi^2}(x) = P_{F0} \Rightarrow R$$

где P_{F0} — вероятность ложной тревоги в одной ячейке.

Аналогично можно вычислить и вероятность правильного обнаружения

$$P_D = \int_R^{+\infty} p_{1,\chi^2}(x).$$

Вероятность ложной тревоги в каждой ячейке

Ячеек поиска много

Ложная тревога может произойти в каждой из них.

Расчёт вероятности ложной тревоги для отдельной ячейки

$$P_{F0} = 1 - (1 - P_F)^{\frac{1}{N_F \cdot N_\tau}}$$

где N_F и $N_ au$ — количество ячеек поиска по частоте и задержке.

Характеристики зависят от количества ячеек поиска

Отсюда мораль - чем больше ячеек поиска по частоте и задержке, тем меньше вероятность ложной тревоги в ячейке

$$P_{F0} = 1 - (1 - P_F)^{\frac{1}{N_F \cdot N_\tau}}$$

Потери от увеличения количества ячеек поиска

Время холодного старта

Потребителя не интересуют когерентные, некогерентные накопления, вероятности и прочие мелочи.

Потребителя интересует TTFF!!!

Время холодного старта

Потребителя не интересуют когерентные, некогерентные накопления, вероятности и прочие мелочи.

Потребителя интересует TTFF!!!

TTFF — time to the first fix

Обычно задано TTFF - время от включения до выдачи первого решения при стандартных условиях.

Стандартные условия - открытое небо, сигнал 42 дБГц.

Время холодного старта

Потребителя не интересуют когерентные, некогерентные накопления, вероятности и прочие мелочи.

Потребителя интересует TTFF!!!

TTFF — time to the first fix

Обычно задано TTFF - время от включения до выдачи первого решения при стандартных условиях.

Стандартные условия - открытое небо, сигнал 42 дБГц.

Что нужно для решения?

- Следить не менее, чем за 4 сигналами.
- В течении 30 с принимать эфемеридные данные.

Сколько сигналов нужно искать?

Сколько сигналов надо проанализировать?

- В группировке ГЛОНАСС (GPS) 24 штатных спутника.
- Из них видимых 8-10.
- В холодном старте не известно, какие сигналы доступны.

Процедура поиска может завершиться неудачей

При расчёте можно определить вероятность успешного обнаружения сигнала P_D .

Сколько сигналов нужно искать?

Сколько сигналов нужно искать?

Вероятность "наловить" 4 сигнала от количества процедур поиска

Предполагается, что из 24 спутников доступны 8.

- ar 1. Определяем время поиска одного сигнала ar 2. Определяем вероятность дожной тревоги в отдел
- Шаг 3. Определяем время накопления

ТЗ на блок поиска

Зададим параметры холодного старта

- Поиск только сигналов ГЛОНАСС ПТ.
- Стандартный уровень сигнала 42 дБГц.
- lacktriangle Неопределённость по частоте \pm 10 к Γ ц.
- Вероятность старта за время ТТFF: 0.9.

Шаг 2. Определяем вероятность ложной тревоги в отдел
 Шаг 3. Определяем время накопления

Шаг 4. Определяем количество корреляторов

Шаг 1. Определяем время поиска одного сигнала

Время всей процедуры поиска

TTFF-30 c =
$$35-30 = 5$$
 c.

Шаг 2. Определяем вероятность ложной тревоги в отдел
 Шаг 3. Определяем время накопления

Шаг 4. Определяем количество корреляторов

Шаг 1. Определяем время поиска одного сигнала

Время всей процедуры поиска

TTFF-30 c = 35-30 = 5 c.

Количество процедур поиска

Вероятность успеха в холодном старте $P_D=0.9$. Если процедура анализа 1 сигнала имеет вероятность успеха $P_D=0.9$, то для нахождения 4 сигналов её нужно провести 12 раз!

Шаг 2. Определяем вероятность ложной тревоги в отдел Шаг 3. Определяем время накопления

Шаг 4. Определяем количество корреляторов

Шаг 1. Определяем время поиска одного сигнала

Время всей процедуры поиска

TTFF-30 c = 35-30 = 5 c.

Количество процедур поиска

Вероятность успеха в холодном старте $P_D=0.9$. Если процедура анализа 1 сигнала имеет вероятность успеха $P_D=0.9$, то для нахождения 4 сигналов её нужно провести 12 раз!

Длительность одной процедуры поиска

$$T_{\text{поиска}} = 5 \text{ c} / 12 = 416 \text{ мc}.$$

Шаг 3. Определяем время накопления Шаг 4. Определяем количество корреляторов

Шаг 2. Определяем вероятность ложной тревоги в отдельной ячейке

Сигнал ГЛОНАСС ПТ, 511 символов ПСП

Каналов поиска по задержке $N_{ au}=1022.$ Вероятность ложной тревоги на всю процедуру $P_F=0.1.$

Т, мс	1	2	5	10
Δf , Γ ц	1000	500	200	100
N_f	20	40	100	200
$N_{ au} \cdot N_f$	20440	40880	102200	204400
P_{F0}	$5 \cdot 10^{-6}$	$2.5 \cdot 10^{-6}$	$1\cdot 10^{-6}$	$0.5\cdot 10^{-5}$

Шаг 3. Определяем время накопления

Да, да — время накопления определяется из распределений χ^2

Т, мс	1	2	5	10
NN	4	2	1	1
P_D	0.92	0.91	0.93	0.96

Требовалась вероятность обнаружения $P_D=0.9$. Вариант 10 мс явно уже не лучший.

3 на поиск lar 1. Определяем время поиска одного сигнала lar 2. Определяем вероятность ложной тревоги в отдел lar 3. Определяем время накопления

Шаг 4. Определяем количество корреляторов

Время накопления в одноканальном корреляторе

Т, мс	1	2	5	10
NN	5	2	1	1
$N_{\tau} \cdot N_{f}$	20440	40880	102200	204400
t_1 , MC	102	82	164	511

3 на поиск Iar 1. Определяем время поиска одного сигнала Iar 2. Определяем вероятность ложной тревоги в отдел Iar 3. Определяем время накопления

Шаг 4. Определяем количество корреляторов

Время накопления в одноканальном корреляторе

Т, мс	1	2	5	10
NN	5	2	1	1
$N_{ au} \cdot N_f$	20440	40880	102200	204400
t 1, мс	102	82	164	511

Осталось посчитать количество необходимых корреляторов

На поиск одного сигнала есть 416 мс.

Т, мс	1	2	5	10
N_{kopp}	245	197	394	1228

ГЗ на поиск Шаг 1. Определяем время поиска одного сигнала Шаг 2. Определяем вероятность ложной тревоги в отдел Паг 3. Определяем время накопления

Шаг 4. Определяем количество корреляторов

Время накопления в одноканальном корреляторе

Т, мс	1	2	5	10
NN	5	2	1	1
$N_{ au} \cdot N_f$	20440	40880	102200	204400
t 1, мс	102	82	164	511

Осталось посчитать количество необходимых корреляторов

На поиск одного сигнала есть 416 мс.

Т, мс	1	2	5	10
N_{kopp}	245	197	394	1228

В результате наилучшим оказался вариант $T=2~{
m mc}!$

ТЗ на поиск Шаг 1. Определяем время поиска одного сигнала Шаг 2. Определяем вероятность ложной тревоги в отдел

Поиск сигналов с длинными ПСП

Пример выше - для сигнала ГЛОНАСС

В современных сигналах ПСП длиннее

Сигнал	Символов на период	Нужно корреляторов
ГЛОНАСС ПТ	511	197
GPS C/A	1023	403
Galileo E1	4092	1697
GPS L1C	10230	4314
GPS L2 CL	767250	368 тыс.

Главный вывод из лекции!!!

Проектирование блока поиска сводится к тому, чтобы реализовать больше параллельных каналов коррелятора.

тз на поиск
Шаг 1. Определяем время поиска одного сигнала
Шаг 2. Определяем вероятность ложной тревоги в отдел

Следующая лекция

Тема следующей лекции - блок быстрого поиска

Посетите наш web-сайт

http://srns.ru

