

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:										
C07D 213/65, 213/68, 29:	5/108, 295/13,									

(11) International Publication Number:

#506-1105, Sinddonga Apt.,

WO 98/00402

(43) International Publication Date:

8 January 1998 (08.01.98)

1274, Kwonsun-dong,

ı		
1	(21) International Application Number:	PCT/KR97/00

(22) International Filing Date:

28 June 1997 (28.06.97)

A1

(30) Priority Data:		
1996/25825	29 June 1996 (29.06.96)	KR
1996/25826	29 June 1996 (29.06.96)	KR
1996/25827	29 June 1996 (29.06.96)	KR
1996/40596	18 September 1996 (18.09.96)	KR
1997/22984	3 June 1997 (03.06.97)	KR
1997/22985	3 June 1997 (03.06.97)	KR
1997/23192	4 June 1997 (04.06.97)	KR
1997/23193	4 June 1997 (04.06.97)	KR

Kyungki-do 465-032 (KR). KANG, Dong-Wook [KR/KR]; #268-203, Jookong Apt., Wonmoon-dong, Kwachon, Kyungki-do 465-032 (KR). JOO, Jeong-Ho [KR/KR]; 289-83, Noryangjin 2-dong, Dongjak-ku, Seoul 156-052 (KR). LEE, Young-Hee [KR/KR]; 866-5, Bono 1-dong, Ansan, Kyungki-do 425-181 (KR).

Kwonsun-ku, Suweon, Kyungki-do 441-390 (KR). LEE, Jae-Bung [KR/KR]; 390-3, Sinjang-dong, Hannam,

(74) Agent: PARK, Sa-Ryong; 823-5, Yoksam-dong, Kangnam-ku, Seoul 135-080 (KR).

(71) Applicant (for all designated States except US): SAMJIN PHARMACEUTICAL CO., LTD. [KR/KR]; 338-8, Seokyo-dong, Mapo-ku, Seoul 121-739 (KR). (81) Designated States: AU, BG, BR, CA, CN, CZ, HU, JP, MX, NO, NZ, PL, RO, RU, SG, SK, TR, UA, US, VN, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHO, Eui-Hwan [KR/KR]; #105-101, Hyndai 1st Apt., Kaepo-dong, Kangnam-ku, Seoul 135-240 (KR). CHUNG, Sun-Gan [KR/KR]; #131-904, Mokhwa Apt., 850, Keumjeong-dong, Kunpo, Kyungki-do 435-050 (KR). LEE, Sun-Hwan [KR/KR]; #105-403, Daelim Apt., Dokkok-dong, Pangtak, Kyungki-do 459-100 (KR). KWON, Ho-Seok [KR/KR];

Published

With international search report.

(54) Title: PIPERAZINE DERIVATIVES AND PROCESS FOR THE PREPARATION THEREOF

(57) Abstract

The present invention relates to novel compound having strong antitumor activities of general formula (I), wherein R_1 and R_2 are independently hydrogen, substituted or unsubstituted C_1 - C_8 alkyl, substituted or unsubstituted C_2 - C_8 unsaturated alkyl, ketone, substituted or unsubstituted aryl, substituted or unsubstituted aryl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted arylhydroxy, substituted amino, C_1 - C_4 lower ester, C_1 - C_4 lower thioester, thiol, substituted or unsubstituted carboxyl, epoxy, substituted carboxyl, epoxy, substituted carboxyl, epoxy, substituted carboxyl, epoxyl, epoxy

$$\begin{array}{c|c}
R_2 & R_3 & R_4 \\
R_1 & A & Z
\end{array}$$

$$\begin{array}{c|c}
R_3 & R_4 \\
R_5 & R_6
\end{array}$$
(1)

stituted or unsubstituted C₁-C₄ lower thioalkoxy; or R₁ and R₂ are fused to form C₃-C₄ saturated or unsaturated chain; R₃, R₄, R₅, R₆ and R₇ are independently hydrogen, halogen, hydroxy, nitro, C₁-C₄ lower ester, C₁-C₄ lower alkyl, C₁-C₄ lower thioalkyl, substituted or unsubstituted C₃-C₆ cycloalkyl, C₁-C₄ lower alkoxy, C₁-C₄ lower thioalkoxy, substituted or unsubstituted or unsubstituted lower alkylamino, or lower alkyl substituted or unsubstituted carbamate; or among R₃, R₄, R₅, and R₇, two adjacent groups are bonded with each other to form 1,2-phenylene or 2,3-naphthylene; X is oxygen, sulfur, or substituted or unsubstituted imino; Y is bonded at the 3-position or 4-position of the aromatic ring part wherein Y is oxygen or -NR₈- (wherein, R₈ is the same with the above-mentioned R₃); Z is hydroxy, C₁-C₄ lower alkoxy, C₁-C₄ lower thioalkoxy, substituted or unsubstituted aryl xy, C₁-C₄ lower alkylamino, substituted or unsubstituted cycloamino containing 1-5 nitrogen atoms; A is nitrogen or -CH=; its pharmaceutically acceptable acid addition salts and process for the preparation thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES.	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Ħ	Pipland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	170	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Harbados	CH	Chana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benia	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Larael	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	haly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KB	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Pederation		
DE	Germany	u	Liechteustein	\$D	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Piperazine derivatives and process for the preparation thereof

The present invention relates to new piperazine derivatives of the general formula (I)

5

10

$$\begin{array}{c|c}
R_2 & R_3 & R_4 \\
R_1 & A & Z
\end{array}$$
(1)

wherein R₁ and R₂ are independently hydrogen, substituted or 15 unsubstituted C₁-C₈ alkyl, substituted or unsubstituted C₃-C₆ cycloalkyl, substituted or unsubstituted C2-C8 unsaturated alkyl, ketone, substituted or unsubstituted aryl, substituted or unsubstituted C₁-C₄ alkoxy, substituted or unsubstituted arylhydroxy, substituted or unsubstituted amino, C1-C4 lower ester, C1-C4 lower thioester, thiol, substituted or unsubstituted carboxyl, epoxy, substituted or unsubstituted C1-C4 lower thioalkoxy; or R1 and R2 are fused to form C3-C4 saturated or unsaturated chain; R3, R4, R5, R6 and R7 are independently hydrogen, halogen, hydroxy, nitro, C₁-C₄ lower ester, C₁-C₄ lower alkyl, C₁-C₄ lower thioalkyl, substituted or unsubstituted C3-C6 cycloalkyl, C1-C4 lower alkoxy, C₁-C₄ lower thioalkoxy, substituted or unsubstituted aryl, substituted or unsubstituted lower arylalkoxy, substituted or unsubstituted lower alkylamino, or lower alkyl substituted or unsubstituted carbamate; or among R₃, R₄, R₅, R₆ and R₇, two adjacent groups are bonded with each other to form 1,2-phenylene or 2,3-naphthylene; X is oxygen, sulfur, or substituted or unsubstituted imino; Y is bonded at the 3-position or 4-position of the aromatic ring part wherein Y is oxygen or -NR8- (wherein, R8 is the same with the above-mentioned R₃.); Z is hydroxy, C₁-C₄ lower alkoxy, C₁-C₄ lower thioalkoxy, substituted or unsubstituted aryloxy, C1-C4 lower alkylamino, substituted or unsubstituted cycloamino containing 1-5 nitrogen atoms; A is nitrogen or -CH=; its pharmaceutically acceptable acid addition

salts and process for the preparation thereof.

In the above definitions, C_1 - C_8 alkyl means straight or branched alkyl group such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl,

5 tert-butyl, pentyl, iso-pentyl, hexyl, heptyl, octyl, 2-methylpentyl or the like.

 C_1 - C_4 lower alkyl means methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl or tert-butyl.

Substituted or unsubstituted C₃-C₆ cycloalkyl means substituted or unsubstituted cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, substituted cyclopropyl, substituted cyclopentyl, substituted cyclohexyl or the like.

 C_1 - C_4 lower ester means a carboxyl group esterified by a lower alkyl group.

15 C₁-C₄ lower alkoxy means methoxy, ethoxy, propoxy, isopropoxy, butyloxy, isobutyloxy, tert-butyloxy group or the like.

C₁-C₄ lower thioalkoxy means methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, tert-butylthio group or the like.

C₁-C₄ lower alkylamino means methylamino, ethylamino, propylamino,

20 butylamino group or the like. Aryloxy means phenoxy, substituted phenoxy, naphthyloxy or substituted naphthyloxy or the like.

Cycloamino group containing 1-5 nitrogen atoms means pyrrolidinyl, pyrrolinyl, imidazolyl, imidazolidinyl, pyrazolyl, pyrazolinyl, pyrazolidinyl,

25 triazolyl, tetrazolyl, piperazinyl or the like.

The present inventors had studied for a long time to find compounds having intensive antitumor activity. As the results, now we have finally found out the facts that the present compounds of the general formula(I) and acid addition salts thereof have not only prominent antitumor activities but very low toxicities.

Accordingly, the one object of the present invention is to provide the novel compounds of the general formula(I) and acid addition activities.

novel compounds of the general formula(I) and acid addition salts thereof having not only prominent antitumor activities but very low toxicities.

The other object of the present invention is to provide a process for

15

20

25

the preparation of the compounds of general formula(I) and acid addition salts thereof.

The compounds of the present invention can be mixed with pharmaceutically acceptable vehicles by a known method to give pharmaceutical compositions and the pharmaceutical compositions can be used to prevent or treat with various kinds of tumors of human beings or mammals.

Therefore, another object of the present invention is to provide pharmaceutical compositions containing the compounds of the general formula(I) or acid addition salts thereof as active ingredients. Acids which can be reacted with the compounds of the general formula(I) to form acid addition salts are pharmaceutically acceptable inorganic or organic acids; for example, inorganic acids such as hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, nitric acid; organic acids such as formic acid, acetic acid, propionic acid, succinic acid, citric acid, maleic acid, malonic acid, glycolic acid, lactic acid; amino acids such as glycine, alanine, valine, leucine, isoleucine, serine, cysteine, cystine, asparaginic acid, glutamic acid, lysine, arginine, tyrosine, proline; sulfonic acids such as methane sulfonic acid, ethane sulfonic acid, benzene sulfonic acid, toluene sulfonic acid; or the like. Vehicles which can be used in the preparation of pharmaceutical compositions containing the compounds of the general formula(I) as active ingredients are sweetening agent, binding agent, dissolving agent, aids for dissolution, wetting agent, emulsifying agent, isotonic agent, adsorbent, degrading agent, antioxident, antiseptics, lubricating agent, filler, perfume or the like; such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, silica, talc, stearic acid, stearin, magnesium stearate, calcium stearate, magnesium aluminum silicate, starch, gelatine, tragacanth gum, glycine, silica, alginic acid, sodium alginate, methyl cellulose, sodium carboxy methyl cellulose, agar, water, ethanol, polyethylenglycol, polyvinyl pyrrolidone, sodium chloride, potassium chloride, orange essence, strawberry essence, vanila aroma or the like. Daily dosage of the compound of the general formula(I) may be varied depending on age, sex of patient and the degree of disease. Daily dosage is 1.0mg to 5,000mg may be administered one to several times.

The compounds of the general formula (I) according to the present invention may be prepared by the following scheme I.

Scheme I

25

30

35

wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇, A, X, Y and Z are as defined above, and Lie is a leaving group such as halogen atom, sulfonyl or the like.

The above process comprises reacting a compound of the general formula(a) with a -C(=X)- group-providing agent in organic solvent to obtain a compound of the general formula(b) and successively reacting the compound of the general formula(b) with a compound of the general formula(c) to give the compound of the general formula(I). The used -C(=X)-group-providing agent preferably be selected from 1,1-carbonyldiimidazole, 1,1-carbonylthiodiimidazole, phosgene, thiophosgene, carbonyldiphenoxide, phenylchloroformate or the like. The reaction may be carried out in conventional organic solvent such as, for example, tetrahydrofuran, dichloromethane, chloroform,

acetonitrile.

And also the reaction is preferably carried out in the presence of coupling agent such as conventional inorganic or organic base. Such conventional inorganic or organic base used in the reaction means sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine, pyridine, DBU or the like, and 1-1.5 equivalent, preferably 1-1.1 equivalent thereof may be used.

10 The reaction may be carried out between 3°C and boiling point of the solvent used, preferably at 50°C-100°C for 5 - 48 hours, preferably for 10 - 24 hours.

-C(=X)-group-providing agent may be used in an amount of 1 - 1.5 equivalent, preferably 1-1.1 equivalent to the starting compound.

A compound of the general formula(I) wherein Y is -NRs- may be prepared by the following scheme II

Scheme II.

20

wherein, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, A, X and Z are as defined above.

A compound of the general formula(Ib) above may be prepared effectively by introducing R₈ providing agent into a compound of the general formula(Ia).

 R_8 providing agent preferably used in the above reaction is C_1 - C_8 lower alkylhalogen, C_1 - C_8 lower alkyl sulfonate, substituted or unsubstituted C_3 - C_8 cycloalkylhalogen, arylhalogen, substituted or unsubstituted C_3 - C_8 cycloalkyl sulfonate, arylsulfonate, or the like.

C₁-C₈ lower alkylhalogen means methylchloride, methylbromide, methyliodide, ethylchloride, ethylbromide, ethyliodide, propylchloride, propylbromide, propyliodide, butylchloride, butylbromide, butylbromide, pentylchloride, pentylbromide, pentylbromide, ethylbromoacetate, or the like.

 $C_1\text{--}C_8$ lower alkyl sulfonate means methylsulfonate, ethylsulfonate, propylsulfonate, butylsulfonate, pentylsulfonate, or the like.

Substituted or unsubstituted C₃-C₈ cycloalkylhalogen cyclopropylchloride, cyclopropylbromide, cyclopropyliodide, cyclobutylchloride, cyclobutylbromide, cyclobutyliodide, cyclopentylchloride, cyclopentylbromide, cyclopentyliodide, cyclopenyl methylchloride, cyclohexylbromide, cyclohexyliodide, cyclopropyl methylchloride, cyclobutyl methylchloride, cyclobutyl methylchloride, cyclobutyl methylbromide, cyclopentyl methyliodide, cyclopentyl methyliodide, cyclopentyl methyliodide, cyclopentyl methyliodide, cyclopentyl methyliodide, cyclopentyl methyliodide, cyclohexyl methylchloride, cyclohexyl methyliodide, cyclohexyl methyliodide, cyclohexyl methyliodide, cyclohexyl methyliodide, or the like.

Arylhalogen means benzylchloride, benzylbromide, benzyliodide, benzoylchloride, benzoylchloride, benzoylbromide, benzoyliodide, toluylchloride, toluylbromide, toluyliodide, or the like.

35 Substituted or unsubstituted C₃-C₈ cycloalkyl sulfonate means cyclopropyl sulfonate, cyclobutyl sulfonate, cyclopentyl sulfonate,

cyclohexyl sulfonate, methylcyclopropyl sulfonate, methylcyclobutyl sulfonate, methylcyclopentyl sulfonate, methylcyclohexyl sulfonate, or the like.

5 Arylsulfonate means benzyl sulfonate, benzoyl sulfonate, toluyl sulfonate, or the like.

More particularly, a compound of the general formula (1a) may be reacted with an alkylating agent or arylating agent in a solvent at the temperature of 25-80°C, for 30 minutes - 20 hours to give the object compound of the general formula(Ib).

An alkylating agent or arylating agent may be used in amount of 1.0 - 1.5 equivalent.

Conventional organic solvent such as for example tetrahydrofuran, dichloromethane, acetonitrile, dimethylformamide may be used in the above reaction.

In the above reactions, if any acid material is formed, any basic material may be preferably added as scavenger in order to eliminate the acid material from the reaction phase. Such basic material may be alkali metal hydroxide, alkali earth metal hydroxide, alkali metal oxide, alkali earth metal oxide, alkali earth metal carbonate, alkali metal hydrogen carbonate, alkali metal hydrogen carbonate, alkali metal hydrogen carbonate such as sodium hydroxide, potassium hydroxide, calcium oxide, potassium carbonate, sodium carbonate, calcium carbonate, magnesium bicarbonate, sodium bicarbonate, calcium bicarbonate or the like, or organic amines.

- 30 The compound of the general formula(a) is described in prior art (J. Med. Chem., 1992, 35, 3784, 3792) or may be prepared in a similar method to the art.
- 35 Hereinafter the present invention will be described in more details with reference to following examples but it is not intended to limit the scope

of the invention thereinto.

Compounds of the general formula(I) and formula(Ib) are prepared in following examples according to the above-mentioned process.

5

$$R_{2}$$

$$R_{1}$$

$$A$$

$$Z$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

15

10

20 wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , A, X, Y, Z are the same above.

25

		,		·									
	Ex. No.	Rı	R ₂	R ₃	R4	R ₅	R_6	R ₇	A	х	Y	Z	Y
	1	Me	Me	SMe	Н	H	Н	H	N	0	NH	OMe	3-N
5	2	Me	Me	Ļ	Н	H	Н	Н	N	0	NH	OMe	3-N
	3	Me	Me	Me	Me	Н	Me	Me	N	0	NH	ОМе	3-N
	4	Me	Et	SMe	Н	Н	H	Н	N	0	NH	OMe	3-N
10	5	Me	Et	Į.	Н	Н	Н	Н	N	0	NH	OMe	3-N
	6	Ме	Et	Me	Me	Н	Me	Me	N	0	NH	OMe	3-N
	7	Me	Et	Н	SH	Н	Н	Н	N	0	NH	OMe	3-N
,_	8	Me	nPr	H	OMe	H	ОМе	Н	N	0	NH	OMe	3-N
15	9	Me	nPr	Н	Me	Н	Me	Н	N	0	NH	OMe	3-N
	10	Me	nPr	H	F	Н	F	Н	N	0	NH	OMe	3-N
	11	Me	nPr	OMe	Н	Н	Н	Н	N	0	NH	OMe	3-N
20	12	Et	Me	Н	OMe	Н	OMe	Н	N	0	NH	OMe	3-N
20	13	Et	Me	Н	Me	Н	Me	Н	N	0	NH	OMe	3-N
Į	14	Et	Me	Н	OH	Н	Н	Н	N	0	NH	OMe	3-N

				1 -		-							
	Ex. No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	A	x	Y	Z	Y
	15	nPr	Me	Н	OMe	Н	OMe	Н	N	0	NH	OMe	3-N
5	16	nPr	Me	Н	Me	Н	Me	Н	N	0	NH	+	3-N
	17	nPr	Me	Н	ОН	Н	Н	Н	N	0	NH		3-N
	18	-(C	H ₂) ₃ -	H	OMe	Н	OMe	Н	N	0	NH	OMe	3-N
	19	-(C	H ₂) ₃ -	H	Ме	Н	Me	Н	N	0	NH	+	3-N
10	20	-(C)	H ₂) ₄ -	Н	OMe	Н	OMe	Н	N	0	NH	OMe	3-N
	21	-(CI	H ₂) ₄ -	Н	Me	Н	Me	Н	N	0	NH	OMe	3-N
	22	Me	Me	Н	Me	Н	Me	Н	N	S	NH	OMe	3-N
	23	Me	Me	Н	F	Н	F	Н	N	S	NH	OMe	3-N
15	24	Me	Me	Н	OH	Н	Н	Н	N	S	NH	OMe	3-N
	25	Ме	nPr	Н	OMe	Н	OMe	Н	N	S	NH	OMe	3-N
!	26	nPr	Me	Н	OMe	Н	ОМе	Н	N	S	NH	OMe	3-N
	27	nPr	Me	H	Me	Н	Me	Н	N	S	NH	OMe	3-N
20	28	nPr	Me	H	OH	H.	Н	Н	N	S	NH	OMe	3-N
	29	-(CI	I ₂) ₃ -	Н	OMe	H	OMe	Н	Ν	S	NH	OMe	3-N
	30	-(CH		Н	Me	Н	Me	Н	N	S	NH	OMe	3-N
	31	-(CH	2)4-	Н	OMe	Н	ОМе	Н	N	S	NH	OMe	3-N
25	32	-(CH	[2)4-	Н	Me	Н	Me	Н	N	S	NH	OMe	3-N
	33	Me	Me	H	OMe	Н	ОМе	Н	N	0	NH	NHMe	3-N
	34	Me	Ме	H	Me	Н	Me	Н	N	0	NH	NHMe	3-N
	35	Me	Et	H	Me	Н	Me	Н	N	0	NH	NHMe	
30	36	-(CH	2)3-	H	OMe	Н	OMe	Н	N	0	NH	NHMe	
-	37	-(CH	2)3-	H	Me	Н	Me	Н	N	0	NH	NHMe	
	38	Me	Me	Н	OMe	Н	OMe	Н	N	0	NH		3-N
35	39	Ме	Ме	H	Ме	Н	Me	Н	N	0	NH		3-N

	E:		R ₂	R ₃	R4	Re	R ₆	R ₇	A	X	Y	Z	Y
	40	Me	Et	Н	OMe	Н	ОМе	Н	N	0	NH	4 ()(8)	" 3 - 1
5	41	Me	Et	Н	Me	Н	Me	Н	N	0	NH	#_\rightarrow\	× 3-1
J	42	Me	Me	Н	OMe	Н	OMe	Н	N	0	NH	<u> </u>	
	43	Me	Me	Н	Me	H	Me	Н	N	0	NH		+
	44	Me	Et	Н	ОМе	Н	OMe	Н	N	0	NH	10	
10	45	Me	Et	H	Me	Н	Me	Н	N	0	NH	1()	
•	46	Me	Ac	Н	OMe	Н	OMe	Н	N	0	NH	OMe	
	47	Me	Ac	Н	Me	Н	Me	Н	N	0	NH	OMe	+
	48	Me	Ac	H	F	Н	F	Н	N	0	NH	OMe	+
15	49	Me	Ac	Н	CI	Н	CI	· H	N	0	NH	OMe	+
	50	Me	Ac	Me	Me	Н	Н	Н	N	0	NH	OMe	
	51	Me	Ac	OMe	Н	Н	Н	Н	N	0	NH	OMe	3-N
	52	Me	Ac	H	ОН	Н	Н	Н	N	0	NH	OMe	3-N
20	53	Me	Ac	Н	ОМе	Н	OMe	Н	N	S	NH	OMe	3-N
	54	Me	Ac	Н	Ме	Н	Me	Н	N	S	NH	OMe	3-N
ļ	55	Me	Ac	Н	ОН	Н	Н	Н	N	S	NH	OMe	3-N
	56	Me	<u></u>	Н	ОМе	Н	OMe	Н	N	0	NH	OMe	3-N
25	57	Me	OH _	Н	Me	Н	Me	Н	N	0	NH	OMe	3-N
	58	Ме	ŎĦ.	Me	Ме	Н	Н	Н	N	0	NH	OMe	
	59	Ме	Ŏ.	H	F	Н	F	Н	N	0	NH	OMe	
30	60	Ме	OH _	Н	Cl	Н	Cl	Н	N	0	NH	OMe	
30	61	Me	OH _	ΩМе	Н	Н	Н	Н	N	0	NH	OMe	
	62	Ме	OH _	Н	OH	Н	Н	Н	N	0	NH	OMe	
-	63	Me	ОН	Н	ОМе	Н	OMe	Н	N	S	NH	OMe	
35	64	Me	ŏ *	Н	Me	Н	Me	Н	N	S	NH	OMe	
_				1								J	

	Ex	.]	T	7	T	Т	Т	Т		1			
	No	1 D.	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	A	x	Y	Z	Y
	65	Ме	XoH	Н	OMe	Н	OMe	Н	N	0	NH	OMe	3-N
5	66	Me	×° ⁺	Н	Me	Н	Me	Н	N	0	NH	 	3-N
	67	Me	×o _H	Н	OMe	Н	ОМе	Н	N	0	NH	+	3-N
	68	Me	×oH	Н	Me	Н	Me	Н	N	0	NH	┪	3-N
10	69	Me	SCHOEM,	Н	ОМе	Н	OMe	H	N	0	NH	OMe	
	70	Me	SCHOEH,	Н	Me	Н	Me	Н	N	0	NH	ОМе	
	71	Ме	SH	Н	ОМе	Н	OMe	Н	N	0	NH	OMe	
15	72	Ме	\$H	Н	Me	Н	Me	Н	N	0	NH	OMe	
	73	Me	Vinyl	Н	ОМе	Н	OMe	Н	N	0	NH	OMe	
	74	Ме	Vinyl	Н	Me	Н	Me	Н	N	0	NH	OMe	
	75	Me	Vinyl	Н	F	Н	F	Н	N	0	NH	OMe	<u> </u>
20	76	Me	人	Н	OMe	Н	OMe	Н	N	0	NH	OMe	
	77	Me	1	Н	Me	Н	Me	Н	N	0	NH	OMe	
25	78	Me	OCH 20E1	Н	ОМе	Н	ОМе	Н	N	0	NH	ОМе	_
	79	Ме	OCH 20E1	Н	ОМе	Н	ОМе	Н	N	0	NH	ОМе	3-N
30	80	Me	oca Éoe,	Н	Ме	Н	Ме	Н	N	0	NH	ОМе	3-N

	Ex No	I Remark D.	R ₃	R ₄	R ₅	R ₆	R	7 Rs	P	X	Z	Y
	81	-СН=СН-СН=СН	- H	OMe	Н	OM	e H	Н	N	1 0	OMe	= 3-N
5	82	-CH=CH-CH=CH	H	Me	Н	Me	H	Н	N	0	OMe	3-N
	83	-СН=СН-СН=СН-	Me	Me	Н	Н	Н	Н	N	0	+	3-N
	84	-СН=СН-СН=СН-	H	F	Н	F	Н	Н	N	0	+	3-N
	85	-СН=СН-СН=СН-	Н	Cl	Н	Cl	Н	Н	N	0	 -	3-N
10	86	-СН=СН-СН=СН-	F	H	Н	Н	Н	Н	N	0	+	3-N
	87	-СН=СН-СН=СН-	CI	Н	Н	Н	Н	Н	N	0	+	3-N
	88	-СН=СН-СН=СН-	Н	Cl	Н	Н	Н	Н	N	0	OMe	
	89	-СН=СН-СН=СН-	Н	ОН	Н	Н	Н	Н	N	0		3-N
15	90	-СН=СН-СН=СН-	ОМе	H	Н	Н	Н	Н	N	0	OMe	
	91	-СН=СН-СН=СН-	SMe	H	Н	Н	Н	Н	N	0	OMe	
	92	-СН=СН-СН=СН-	Н	\prec	Н	Н	Н	Н	N	0	ОМе	
	93	-СН=СН-СН=СН-	Н	٥٨٨	Н	Н	Н	Н	N	0	OMe	3-N
20	94	-СН=СН-СН=СН-	ОМе	Н	Н	Me	Н	Н	N	0	OMe	3-N
	95	-СН=СН-СН=СН-	ОМе	Н	Н	Ph	Н	Н	N		OMe	
	96	-СН=СН-СН=СН-	Me	Н	Н	OMe	Н	Н	N	0	OMe	
	97	-СН=СН-СН=СН-	-Be	nzo-	Н	Н	Н	Н	N	0	OMe	
25	98	-СН=СН-СН=СН-	Н	ОМе	Н	ОМе	Н	Me	N	0	OMe	
	99	-СН=СН-СН=СН-	Н	ОМе	Н	OMe	Н	Et	N	0	OMe	
	100	-CH=CH-CH=CH-	H	ОМе	Н	OMe	Н	iPr	N	0	OMe	
30	101	-CH=CH-CH=CH-	Н	ОМе	Н	ОМе	Н	\$	N	0	OMe	
30	102	-СН=СН-СН=СН-	Н	ОМе	Н	OMe	Н	Benzyl	N	0	OMe	3-N
	103	-СН=СН-СН=СН-	Н	Me	Н	Me	Н	Me	N		ОМе	
	104	-СН=СН-СН=СН-	Н	Me	Н	Me	Н	Et	N		OMe	
35	105	-СН=СН-СН=СН-	Н	Me	Н	Me	Н	iPr	N		OMe	

	<u> </u>	T	,			T	·	,				
	Ex. No	R ₁ and R ₂	R ₃	R4	R ₅	Ro	R ₇	R ₈	Α	X	Z	Y
	106	-СН=СН-СН=СН-	Н	Ме	Н	Me	Н	Ben zyl	Z	0	OMe	3-N
5	107	-СН=СН-СН=СН-	Н	$ ^{\circ} Y$	Н	Н	Н	Me	N	0	OMe	3-N
	108	-СН=СН-СН=СН-	Н	$^{\circ} Y$	Н	Н	Н	Et	N	0	OMe	3-N
	109	-СН=СН-СН=СН-	Н	ОМе	Н	OMe	Н	Н	N	S	OMe	3-N
	110	-СН=СН-СН=СН-	H	Me	H	Me	Н	Н	N	S	OMe	3-N
10	111	-СН=СН-СН=СН-	H	F	Н	F	Н	Н	N	S	OMe	3-N
	112	-СН=СН-СН=СН-	Н	Cl	Н	Cl	Н	Н	N	S	OMe	3-N
	113	-СН=СН-СН=СН-	Н	ОМе	Н	Н	Н	Н	N	S	OMe	3-N
	114	-СН=СН-СН=СН-	Н	ОМе	Н	ОМе	Н	Н	N	0	Me	3-N
15	115	-СН=СН-СН=СН-	Н	Me	H	Me	Н	Н	N	0	Me	3-N
	116	-CH=CH-CH=CH-	Me	Me	H	Н	Н	Н	N	0	Me	3-N
	117	-CH=CH-CH=CH-	H	F	H	F	Н	Н	N	0	Me	3-N
	118	-СН=СН-СН=СН-	Н	Cl	Н	Cl	Н	Н	N	0	Me	3-N
20	119	-CH=CH-CH=CH-	OMe	Н	Н	Н	Н	Н	N	0	Me	3-N
	120	-СН=СН-СН=СН-	F	Н	Н	Н	H	Н	N	0	Me	3-N
	121	-CH=CH-CH=CH-	Cl	H	Н	Н	Н	Н	N	0	Me	3-N
i	122	-CH=CH-CH=CH-	SMe	Н	Н	Н	Н	Н	N	0	Me	3-N
25	123	-СН=СН-СН=СН-	ОМе	H	Н	Me	Н	Н	N	0	Me	3-N
	124	-СН=СН-СН=СН-	-Ber	120-	H	H	Н	Н	N	0	Me	3-N
	125	-СН=СН-СН=СН-	Н	ОМе	Н	OMe	Н	Н	N	S	Me	3-N
	126	-СН=СН-СН=СН-	Н	Me	Н	Me	Н	Н	N	S	Me	3-N
30	127	-СН=СН-СН=СН-	Н	F	H	F	Н	Н	N	S	Me	3-N
	128	-СН=СН-СН=СН-	Н	OMe	Н	ОМе	Н	Н	N	0	2-Py	4-N
	129	-СН=СН-СН=СН-	Н	OMe	Н	OMe	Н	Н	N	0	3-Ру	4-N
	130	-СН=СН-СН=СН-	Н	ОМе	Н	OMe	Н	Н	N	0	2-Thienyl	4-N
35	131	-СН=СН-СН=СН-	Н	Me	Н	Me	Н	Н	N	0	3-Ру	4-N

						_							
	Ex. No.	R_1	R ₂	R ₃	R4	R ₅	R ₆	R ₇	R ₈	A	x	Z	Y
	132	Me	Me	Н	ОМе	Н	OMe	Н	Me	N	0	OMe	3-N
5	133	Me	Me	Н	ОМе	Н	OMe	Н	Et	N	0	OMe	3-N
	134	Me	Me	Н	ОМе	Н	OMe	Н	i-Pr	N	0	OMe	3-N
	135	Me	Me	Н	Ме	Н	Me	Н	Me	N	0	OMe	3-N
	136	Me	Me	OMe	Н	Н	Н	Н	Me	N	0	OMe	3-N
10	137	Me	Me	ОМе	Н	H	Н	H	Et	N	0	OMe	3-N
	138	Ме	Me	OMe	H	H	Н	H	Bn	N	0	OMe	3-N
	139	Ме	Me	OMe	H	Н	H	H	✓	N	0	OMe	3-N
	140	Ме	Me	Me	Н	H	ОМе	Н	Me	N	0	OMe	3-N
15	141	Me	Ме	Me	Н	Н	ОМе	Н	Et	N	0	OMe	3-N
	142	Me	Me	Me	Н	Н	ОМе	Н	Bn	N	0	OMe	3-N
	143	Me	Et	Н	ОМе	Н	ОМе	Н	Me	N	0	OMe	3-N
	144	Me	Et	Н	Me	Н	Ме	Н	Me	N	0	OMe	3-N
20	145	Me	Et	H	Me	Н	Me	Н	Et	N	0	OMe	3-N

	Ex. No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R	R ₈	A	x	Z	Y
	146	Me	nPr	Н	OMe	Н	OMe	Н	Me	N	0	OMe	3-N
5	147	Et	Me	Н	OMe	Н	OMe	Н	Me	N	0	OMe	+
	148	nPr	Me	Н	ОМе	Н	ОМе	Н	Me	N	0	OMe	+
	149	Me	Ac	H	OMe	Н	OMe	Н	Me	N	0	OMe	3-N
	150	Me	Ac	Н	OMe	Н	OMe	Н	Et	N	0	OMe	3-N
10	151	Me	Ac	H	Ме	Н	Me	Н	Me	N	0	OMe	3-N
	152	Me	<u></u>	Н	ОМе	H	ОМе	Н	Me	N	0	OMe	3-N
	153	Me	*	Н	ОМе	Н	OMe	Н	Et	N	0	OMe	3-N
	154	Me	OH	Н	Me	Н	Me	Н	Me	N	0	OMe	3-N
15	155	Me	XoH	Н	ОМе	Н	ОМе	Н	Me	N	0	OMe	3-N
	156	Me	√X _{OH}	Н	Me	Н	Me	H	Me	N	0	ОМе	3-N
	157	Me	OCH,	Н	OMe	Н	OMe	Н	Me	N	0	OMe	3-N
20	158	Me	Vinyl	Н	OMe	Н	OMe	Н	Me	N	0	OMe	3-N
20	159	Me	Vinyl	Н	Me	Н	Me	H	Me	N	0	OMe	3-N
	160	Me	Vinyl	Н	OMe	Н	OMe	Н	Et	N	0	OMe	3-N
	161	Me	人	H	ОМе	Н	ОМе	Н	Me	N	0	OMe	3-N
25	162	Me	人	Н	Me	Н	Me	Н	Me	N	0	OMe	3-N
	163	Me	Ac	Н	OMe	Н	OMe	Н	O CH,COE1	N	0		3-N
	164	Me	Ac	Н	Me	Н	Me	Н	CH _I COE1	N	0	ОМе	3-N
20	165	Me	Ac	Н	ОМе	Н	OMe	Н	CH*COH	N	0		3-N
30	166	Me	OH	Н	OMe	Н	OMe	Н	CH, COE1	N	0		3-N
	167	Me	OH	Н	OMe	Н	OMe	Н	Сисон	N	0		3-N
	168	Me	<u>"</u>	Н	Me	Н	Me	Н	CHACOE	N	0		3-N
35	169	Me	OH _	Н	Me	Н	Me	Н	о сн _я сон	N			3-N
_						 -		لـــــــــــــــــــــــــــــــــــــ					

		_			·	,	· · · · · · · · · · · · · · · · · · ·						
	Ex. No.	Rı	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	A	x	Z	Y
	170	Me	Me	Н	Н	Н	Н	Н	Н	СН	0	OMe	3-N
5	171	Me	Me	Н	OMe	Н	ОМе	Н	Н	CH	0	OMe	3-N
	172	Me	Me	Н	Ме	Н	Me	H	Н	СН	0	OMe	3-N
	173	Me	Me	Me	Me	Н	Н	Н	·H	CH	0	OMe	3-N
	174	Me	Ме	Ме	Me	H	Me	Me	Н	CH	0	OMe	3-N
10	175	Me	Me	H	F	H	F	H	Н	CH	0	ОМе	3-N
	176	Me	Me	Cl	Н	H	Н	Н	Н	CH	0	ОМе	3-N
	177	Me	Me	Н	Cl	H	Н	Н	Н	CH	0	ОМе	3-N
	178	Me	Me	ОН	Н	H	Н	Н	Н	CH	0	OMe	3-N
15	179	Me	Ме	Н	ОН	Н	Н	Н	Н	СН	0	OMe	3-N
	180	Me	Me	Н	SH	Н	Н	Н	Н	CH	0	OMe	3-N
	181	Me	Me	OAc	Н	Н	Н	Н	Н	СН	0	OMe	3-N
	182	Me	Ме	Н	OAc	H	H	Н	Н	CH	0	OMe	3-N
20	183	Me	Me	OMe	Н	H	Н	Н	Н	CH	0	OMe	3-N
3	184	Me	Ме	H	Me	H	H	ОМе	Н	CH	0	OMe	3-N
	185	Me	Me	H	OMe	H	Н	Me	Н	CH	0	OMe	3-N
	186	Me	Ме	H	ОМе	Н	Н	Ph	Н	CH	0	OMe	3-N
25	187	Me	Me	人	Н	H	H	Н	Н	СН	0	ОМе	3-N
	188	Me	Me	Be	nzo	H	Н	Н	Н	CH	0	ОМе	3-N
	189	Me	Me	Nap	ohto	H	Н	Н	Н	СН	0	ОМе	
30	190	Me	Me	Ħ	OMe	H	ОМе	Н	Me	СН	0	OMe	
	191	Me	Me	Н	Me	Н	Me	Н	Me	СН	0	OMe	
	192	Me	Me	H	F	Н	F	Н	Me	СН	0	OMe	
	193	Me	Me	Н	ОМе	Н	ОМе	Н	Et	СН	0	OMe	
	194	Me	Me	Н	Me	Н	Me	Н	Et	СН	0	ОМе	
3 5										1			لـــــــــــــــــــــــــــــــــــــ

													
	Ex. No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	A	x	Z	Y
	195	Me	Me	Н	F	Н	F	Н	Et	CH	0	OMe	3-N
	196	Me	Me	Н	F	Н	F	Н	iPr	CH	0	OMe	+
5	197	Me	Me	H	OMe	Н	ОМе	+	Н	СН	S	OMe	+
	198	Me	Me	Н	Me	Н	Me	Н	Н	СН	S	OMe	+
	199	Me	Me	Me	Me	Н	Н	Н	Н	СН	S	OMe	
	200	Me	Me	Н	F	Н	F	Н	Н	CH	S	OMe	+
10	201	Me	Me	H	Cl	Н	Cl	H	Н	CH	S	OMe	
10	202	Me	Me	F	Н	H	Н	Н	H	CH	S	OMe	
	203	Me	Me	Cl	H	H	Н	Н	Н	CH	S	OMe	3-N
	204	Me	Me	OMe	H	H	Н	Н	Н	CH	S	OMe	3-N
	205	Me	Me	SMe	Н	Н	Н	Н	Н	CH	S	OMe	3-N
15	206	Me	Me	Н	ОН	Н	Н	Н	Н	СН	S	OMe	3-N
	207	Me	Me	OPh	Н	H	Н	H	Н	СН	S	ОМе	3-N
	208	Me	Me	人	Н	Н	Н	Н	Н	СН	S	OMe	3-N
	209	Me	Me	Н	ОМе	Н	Н	Me	Н	CH	S	OMe	2-N1
20	210	Me	Me	Be	nzo	Н	Н	Н	Н	CH	 S	OMe	
	211	Me	Acetyl	Н	ОМе	Н	ОМе	Н	H	CH	0		3-N
	212	Me	Acetyl	H	Me	Н	Me	Н	Н	CH	0	OMe	3-N
	213	Me	Acetyl	Н	Cl	Н	Cl	Н	H	CH		OMe	3-N
25	214	Ме	OH _	Н	ОМе	Н	ОМе	Н	Н	СН	0	OMe OMe	3-N
	215	Me	> -ĕ	Н	Ме	Н	Me	Н	Н	СН	0	OMe	3-N
	216	Me	Vinyl	Н	OMe	Н	OMe	H	Н	СН	0	OMe	2-N1
30	217	Me	Vinyl	Н	Me	Н	Me	Н	Н	CH			3-N
	218	Me	Acetyl	Н	OMe		OMe	Н	Н	CH	S		
	219	Me	Acetyl	Н	Me	Н	Me	H	H	CH	S	OMe OM	
	220	Me	Acetyl	Н	Cl	Н	Cl	H	H	CH			3-N
3 5	221	Me	ОН	H	ОМе		ОМе	Н	Н	СН	S S	OMe OMe	3-N 3-N

				T									
	Ex.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	A	x	Z	Y
5	222	Me	OH _	Н	Ме	Н	Me	Н	Н	СН	S	OMe	3-N
	223	Ме	, m	Н	CI	Н	CI	Н	Н	СН	S	ОМе	3-N
	224	Me	Ме	Н	ОМе	Н	ОМе	Н	CH2COE1	СН	0	OMe	3-N
10	225	Me	Me	Н	Ме	H	Me	Н	CH ₂ COEt	СН	0	OMe	3-N
	226	Me	Ме	Н	ОМе	Н	OMe	Н	о сн <u>з</u> сон	СН	0	OMe	3-N
15	227	Ме	Me	Н	Ме	H	Ме	Н	сн ^з сон	СН	0	ОМе	3-N
	228	Ме	Me	Н	ОМе	Н	OMe	Н	Н	СН	0	ОН	3-N
	229	Me	Me	Н	Ме	Н	Me	Н	H	СН	0		3-N
	230	Ме	Me	Н	F	Н	F	Н	Н	СН	0		3-N
20	231	Ме	Me	Н	Cl	Н	Cl	Н	Н	СН	0		3-N

Example 1

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methylthio phenyl)piperazine:

a) Phenyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)carbamate: 3-Amino-5,6-dimethyl-2-methoxypyridine(1.52g, 0.01mol) and phenylchloroformate(1.56g, 0.01mol) were dissolved in dichloromethane and was stirred at room temperature for 2 hours. The mixture was concentrated under the reduced pressure to remove the solvent. The

concentrate was purified by column chromatography(ethylacetate : hexane = 1:6) to obtain the titled compound.

yield: 92 %

 1 H-NMR(CDCl₃) δ : 2.18(3H,s), 2.36(3H,s), 4.00(3H,s), 7.31(5H,m), 8.07(1H,s)

b) 1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methyl thiophenyl)piperazine:

Phenyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)carbamate(136mg, 0.5mmol) and 1-(2-methylthiophenyl)piperazine(104mg, 0.5mmol) were

dissolved in anhydrous tetrahydrofuran and DBU(76mg, 0.5mmol) was added. The mixture was stirred at room temperature for 2 hours and concentrated under the reduced pressure to remove tetrahydrofuran. The concentrate was purified by column chromatography(ethylacetate:

hexane = 1:2) to obtain the titled compound.

25 yield: 59%

m.p.: 167-169°C

¹H NMR(CDCl₃) δ: 2.21(3H,s), 2.43(6H,s), 3.06(4H,t), 3.68(4H,t), 4.09(3H,s), 6.89(1H,s), 7.06(1H,m), 7.14(3H,s), 8.26(1H,s)

30 Example 2

 $1-[(5,6-Dimethyl+2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-isopropenyl) piperazine \\ \vdots \\$

Phenyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)carbamate and 1-(2-isopropenylphenyl)piperazine were reacted by the same way with

35 the example 1 to obtain the titled compound. yield: 62 %

m.p.: 139-140°C

¹H NMR(CDCl₃) δ : 2.20(3H,s), 2.21(6H,s), 3.10(4H,t), 3.64(4H,t), 3.84(3H,s), 5.07(1H,s), 5.13(1H,s), 6.64(1H,s), 6.98(1H,s), 7.04(3H,dd), 7.18(1H,d), 7.91(1H,s)

5

Example 3

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2,3,5,6-tetramethylphenyl)piperazine:

Phenyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)carbamate and

10 1-(2,3,5,6-tetramethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 71%

m.p.: 190-192°C

¹H NMR(CDCl₃) δ : 2.21(15H,s), 2.42(3H,s), 3.17(4H,t), 3.61(4H,t),

4.08(3H,s), 6.84(1H,s), 6.89(1H,s), 8.26(1H,s)

Example 4

1-[(5-Ethyl-6-methyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methylthiophenyl)piperazine:

20 Phenyl N-(5-ethyl-6-methyl-2-methoxypyridin-3-yl)carbamate and 1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 56%

m.p.: 160-161°C

25 ¹H NMR(CDCl₃) δ: 1.19(3H,t), 2.43(3H,s), 2.50(3H,s), 2.58(2H,q), 3.07(4H,t), 3.69(4H,t), 4.15(3H,s), 6.93(1H,s), 7.06(1H,m), 7.14(3H,m), 8.35(1H,s)

Mass(EI) m/z: Calcd for C21H28N4O2 400.1932, found 400.1925

30 Example 5

1-[(5-Ethyl-6-methyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-isopropenylphenyl)piperazine:

Phenyl N-(5-ethyl-6-methyl-2-methoxypyridin-3-yl)carbamate and 1-(2-isopropenylphenyl)piperazine were reacted by the same way with

35 the example 1 to obtain the titled compound.

yield: 51%

m.p.: 185-187℃

¹H NMR(CDCl₃) δ : 1.18(3H,t), 2.21(3H,s), 2.42(3H,s), 2.56(2H,q), 3.08(4H,t), 3.62(4H,t), 4.03(3H,s), 5.08(1H,s), 5.13(1H,s), 6.90(1H,s), 7.02(3H,m), 7.18(1H,d), 8.25(1H,s)

5

Example 6

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(2,3,5,6-tetramethylphenyl)piperazine:

Phenyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)carbamate and 1-(2,3,5,6-tetramethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 69%

m.p.: 176-177°C

¹H NMR(CDCl₃) δ: 1.19(3H,t), 2.21(12H,s), 2.44(3H,s), 2.57(2H,q),

15 3.17(4H,t), 3.62(4H,t), 4.06(3H,s), 6.84(1H,s), 6.92(1H,s), 8.30(1H,s)

Example 7

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3-thiophenyl)piperazine:

20 Phenyl N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)carbamate and 1-(3-thiophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 63%

m.p.: 108-110℃

25 ¹H NMR(CDCl₃) δ: 1.17(3H,t), 2.37(3H,s), 2.49(2H,q), 3.28(4H,t), 3.60(4H,t), 3.98(3H,s), 6.87(4H,m), 6.98(1H,s), 8.18(1H,s)

Example 8

1-[(2-Methoxy-6-methyl-5-propylpyridin-3-yl)aminocarbonyl]-4-(3,5-

30 dimethoxyphenyl)piperazine:

Phenyl N-(2-methoxy-6-methyl-5-propylpyridin-3-yl)carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 67%

35 m.p.: 82-84°C

¹H NMR(CDCl₃) δ : 0.94(3H,t), 1.58(2H,m), 2.37(3H,s), 2.49(2H,q),

3.25(4H,t), 3.66(4H,t), 3.78(6H,s), 3.99(3H,s), 6.07(3H,m), 6.88(1H,s), 8.16(1H,s)

Mass(EI) m/z: Calcd for C23H32N4O1 428.2423, found 428.2447

5 Example 9

1-[(2-Methoxy-6-methyl-5-propylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine

Phenyl N-(2-methoxy-6-methyl-5-propylpyridin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with

10 the example 1 to obtain the titled compound.

yield: 64%

m.p.: 145-146℃

¹H NMR(CDCl₃) δ: 0.95(3H,t), 1.59(2H,m), 2.29(6H,s), 2.41(3H,s), 2.49(2H,q), 3.24(4H,t), 3.67(4H,t), 3.98(3H,s), 6.59(3H,m), 6.89(1H,s),

15 8.17(1H,s)

Mass(EI) m/z: Calcd for C23H32N4O4 428.2423, found 428.2385

Example 10

1-[(2-Methoxy-6-methyl-5-propylpyridin-3-yl)aminocarbonyl]-4-(3,5-

20 difluorophenyl)piperazine:

Phenyl N-(2-methoxy-6-methyl-5-propylpyridin-3-yl)carbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 57%

25 m.p.: 121-123°C

 1 H NMR(CDCl₃) δ : 0.95(3H,t), 1.59(2H,m), 2.38(3H,s), 2.50(2H,q), 3.29(3H,t), 3.66(3H,t), 4.00(3H,s), 6.28(1H,m), 6.36(2H,d), 6.87(1H,s), 8.17(1H,s)

30 Example 11

1-[(2-Methoxy-6-methyl-5-propylpyridin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)piperazine:

Phenyl N-(2-methoxy-6-methyl-5-propylpyridin-3-yl)carbamate and 1-(2-methoxyphenyl)piperazine were reacted by the same way with the

35 example 1 to obtain the titled compound.

yield: 71%

m.p.: 109-110°C

¹H NMR(CDCl₃) δ: 0.95(3H,t), 1.59(2H,m), 2.37(3H,s), 2.49(2H,q), 3.12(4H,t), 3.70(4H,t), 3.89(3H,s), 3.97(3H,s), 6.91(4H,m), 6.95(1H,s), 8.19(1H,s)

Example 12

1-[(6-Ethyl-2-methoxy-5-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-(6-ethyl-2-methoxy-5-methylpyridin-3-yl)carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 65%

m.p.: 115-116℃

¹H NMR(CDCl₃) δ: 1.21(3H,t), 2.21(3H,s), 2.65(2H,q), 3.27(4H,t), 3.64(4H,t), 3.79(6H,s), 3.98(3H,s), 6.09(3H,m), 6.86(1H,s), 8.12(1H,s) Mass(EI) m/z: Calcd for $C_{22}H_{30}N_4O_4$ 414.2267, found 414.2240

Example 13

20 1-[(6-Ethyl-2-methoxy-5-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

Phenyl N-(6-ethyl-2-methoxy-5-methylpyridin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

25 yield: 61%

m.p.: 135-136°C

¹H NMR(CDCl₃) δ : 1.22(3H,t), 2.21(3H,s), 2.29(6H,s), 2.65(2H,q), 3.24(4H,t), 3.66(4H,t), 3.98(3H,s), 6.59(3H,m), 6.87(1H,s), 8.12(1H,s) Mass(EI) m/z: Calcd for C₂₂H₃₀N₄O₂ 382.2368, found 382.2376

30

Example 14

1-[(6-Ethyl-2-methoxy-5-methylpyridin-3-yl)aminocarbonyl]-4-(3-hydroxyphenyl)piperazine:

Phenyl N-(6-ethyl-2-methoxy-5-methylpyridin-3-yl)carbamate and

35 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 56%

m.p.: 168-170°C

¹H NMR(CDCl₃) δ : 1.21(3H,t), 2.20(2H,s), 2.63(2H,t), 3.28(4H,t), 3.68(4H,t), 3.98(3H,s), 6.41(1H,d), 6.55(1H,d), 6.84(1H,m), 6.87(1H,s), 7.13(1H,t),

5 8.10(1H,s)

Mass(EI) m/z: Calcd for C₂₀H₂₆N₄O₃ 370.2004, found 370.1992

Example 15

1-[(2-Methoxy-5-methyl-6-propylpyridin-3-yl)aminocarbonyl]-4-(3,5-

10 dimethoxyphenyl)piperazine:

Phenyl N-(2-methoxy-5-methyl-6-propylpyridin-3-yl)carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 57%

15 m.p: 121-122℃

¹H NMR(CDCl₃) δ : 0.96(3H,t), 1.67(2H,m), 2.21(3H,s), 2.58(2H,t), 3.26(4H,t), 3.68(4H,t), 3.79(6H,s), 3.97(3H,s), 6.14(3H,m), 6.89(1H,s), 8.11(1H,s)

Mass(EI) m/z: Calcd for C23H32N4O4 428.2423, found 428.2423

20

Example 16

1-[(2-Methoxy-5-methyl-6-propylpyridin-3-yl)aminocarbonyl]-4-(3,5-di methylphenyl)piperazine:

Phenyl N-(2-methoxy-5-methyl-6-propylpyridin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 54%

m.p.: 138-139℃

¹H NMR(CDCl₃) δ : 0.96(3H,t), 1.72(2H,m), 2.21(6H,s), 2.30(3H,s),

30 2.59(2H,t), 3.28(4H,t), 3.76(4H,t), 3.97(3H,s), 6.70(3H,m), 6.87(1H,s), 8.11(1H,s)

Mass(EI) m/z: Calcd for C23H32N4O2 396.2525, found 396.2432

Example 17

35 1-[(2-Methoxy-5-methyl-6-propylpyridin-3-yl)aminocarbonyl]-4-(3-hydroxyphenyl)piperazine:

Phenyl N-(2-methoxy-5-methyl-6-propylpyridin-3-yl)carbamate and 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 52%

5 m.p.: 153-155℃

¹H NMR(CDCl₃) δ : 0.95(3H,t), 1.69(2H,m), 2.19(3H,s), 2.59(2H,t), 3.22(4H,t), 3.68(4H,t), 3.97(3H,s), 6.42(1H,d), 6.52(1H,d), 6.87(1H,s), 7.12(1H,t), 8.09(1H,s)

Mass(EI) m/z: Calcd for $C_{21}H_{28}N_4O_3$ 384.2161, found 384.2153

10

Example 18

1-[N-(2-Methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl) aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-(2-methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl)

15 carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound. yield: 59%

m.p.: 143-144°C

¹H NMR(CDCl₃) δ : 2.10(2H,m), 2.87(4H,m), 3.12(4H,t), 3.70(4H,t),

3.78(6H,s), 4.00(3H,s), 6.08(3H,m), 6.90(1H,s), 8.24(1H,s) 20

Example 19

1-[N-(2-Methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl) aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

25 Phenyl N-(2-methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl) carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound. yield: 55%

m.p.: 183-185℃

30 H NMR(CDCl₃) δ: 2.08(2H,m), 2.28(6H,s), 2.87(4H,m), 3.22(4H,t), 3.67(4H,t), 4.00(3H,s), 6.57(3H,m), 6.89(1H,s), 8.24(1H,s)

Example 20

1-[(2-Methoxy-5,6,7,8-tetrahydroquinolin-3-yl)aminocarbonyl]-4-(3,5-35 dimethoxyphenyl)piperazine:

Phenyl N-(2-methoxy-5,6,7,8-tetrahydroquinoline-3-yl)carbamate and

1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 54%

m.p.: 161-163°C

5 ¹H NMR(CDCl₃) δ : 1.75(2H,m), 1.84(2H,m), 2.67(2H,t), 2.73(2H,t), 3.27(4H,t), 3.71(4H,t), 3.79(6H,s), 3.97(3H,s), 6.10(3H,m), 6.90(1H,s), 8.07(1H,s)

Example 21

10 1-[(2-Methoxy-5,6,7,8-tetrahydroquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethyphenyl)piperazine:

Phenyl N-(2-methoxy-5,6,7,8-tetrahydroquinolin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

15 yield: 51%

m.p.: 143-144°C

¹H NMR(CDCl₃) δ: 1.75(2H,m), 1.84(2H,m), 2.30(6H,s), 2.68(2H,t), 2.72(2H,t), 3.26(4H,t), 3.67(4H,t), 3.97(3H,s), 6.61(3H,m), 6.91(1H,s), 8.07(1H,s)

20

Example 22

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

Phenyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)thiocarbamate(200mg,

- 0.7mmol) and 1-(3,5-dimethylphenyl)piperazine(154mg, 0.7mmol) were dissolved in anhydrous tetrahydrofuran and DBU(106mg) was added thereto. The mixture was stirred at room temperature for 2 hours and concentrated under the reduced pressure to remove the solvent. The concentrate was purified by column chromatography(ethylacetate:
- 30 hexane = 1:2) to obtain the titled compound.

١.

yield: 50%

m.p.: 192-193°C

¹H NMR(CDCl₃) δ: 2.21(3H,s), 2.29(6H,s), 2.36(3H,s), 3.33(4H,t), 3.96(3H,s), 4.09(4H,t), 6.57(3H,m), 7.33(1H,s), 8.11(1H,s)

35 Mass(EI) m/z: Calcd for C₂₁H₂₈N₄O₁S₁ 384.1983, found 384.1992

Example 23

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine:

Phenyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)thiocarbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

yield: 47%

m.p.: 60-62°C

¹H NMR(CDCl₃) &: 2.21(3H,s), 2.36(3H,s), 3.39(4H,t), 3.96(3H,s),

10 4.10(3H,t), 6.29(3H,m), 7.33(1H,s), 8.14(1H,s)

Example 24

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminothiocarbonyl]-4-(3-hydroxyphenyl)piperazine:

Phenyl N-(5,6-dimethyl-2-methoxypyridin-3-yl)thiocarbamate and 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

yield: 43%

m.p.: 185-186°C

20 ¹H NMR(CDCl₃) δ: 2.14(3H,s), 2.36(3H,s), 3.25(4H,t), 3.89(3H,s), 4.09(4H,t), 6.30(1H,d), 6.36(2H,m), 7.03(1H,t), 7.48(1H,s), 8.56(1H,s)

Example 25

1-[(2-Methoxy-6-methyl-5-propylpyridin-3-yl)aminothiocarbonyl]-4-(3,5 -dimethoxyphenyl)piperazine:

Phenyl N-(2-methoxy-6-methyl-5-propylpyridin-3-yl)thiocarbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

yield: 55%

- 30 m.p.: 143-144°C

 ¹H NMR(CDCl₃) &: 0.93(3H,t), 1.66(2H,m), 2.17(3H,s), 2.65(2H,t),

 3.38(4H,t), 3.79(6H,s), 3.98(3H,s), 4.15(4H,t), 6.11(3H,m), 7.43(1H,s),

 8.25(1H,s)
- Example 26
 1-[(2-Methoxy-5-methyl-6-propylpyridin-3-yl)aminothiocarbonyl]-4-(3.5)

-dimethoxyphenyl)piperazine:

Phenyl N-(2-methoxy-5-methyl-6-propylpyridin-3-yl)thiocarbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

5 yield: 52%

m.p.: 183-184°C

¹H NMR(CDCl₃) δ : 0.98(3H,t), 1.72(2H,m), 2.17(3H,s), 2.62(2H,t), 3.39(4H,t), 3.79(6H,s), 3.96(3H,s), 4.19(4H,t), 6.15(3H,m), 7.42(1H,s), 8.08(1H,s)

10 Mass(EI) m/z: Calcd for C₂₃H₃₂N₄O₃S₁ 444.2195, found 444.2171

Example 27

1-[(2-Methoxy-5-methyl-6-propylpyridin-3-yl)aminothiocarbonyl]-4-(3.5-1)-dimethylphenyl)piperazine:

15 Phenyl N-(2-methoxy-5-methyl-6-propylpyridin-3-yl)thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

yield: 49%

m.p.: 195-197℃

20 ¹H NMR(CDCl₃) δ : 0.98(3H,t), 1.73(2H,m), 2.18(6H,s), 2.34(3H,s), 2.62(2H,t), 3.47(4H,t), 3.96(3H,s), 4.01(4H,t), 6.59(3H,m), 7.02(1H,s), 7.99(1H,s)

Mass(EI) m/z : Calcd for C23H32N4O1S1 412.2296, found 412.2266

25 Example 28

1-[(2-Methoxy-5-methyl-6-propylpyridin-3-yl)aminothiocarbonyl]-4-(3hydroxyphenyl)piperazine:

Phenyl N-(2-methoxy-5-methyl-6-propylpyridin-3-yl)thiocarbamate and 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the

30 example 22 to obtain the titled compound.

yield: 48%

m.p.: 160-162°C

¹H NMR(CDCl₃) δ : 0.98(3H,t), 1.72(2H,m), 2.22(3H,s), 2.61(3H,t), 3.31(4H,t), 3.95(3H,s), 4.10(4H,t), 6.45(3H,m), 7.12(1H,t), 7.41(1H,s),

8.08(1H.s)

Mass(EI) m/z: Calcd for $C_{21}H_{28}N_4O_2S_1$ 400.1932, found 400.1969

Example 29

1-[N-(2-Methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl)aminothiocar bonyl]-4-(3,5-dimethoxyphenyl)piperazine:

5 Phenyl N-(2-methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl) thiocarbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

yield: 55%

m.p.: 169-170℃

10 ¹H NMR(CDCl₃) δ: 2.10(2H,m), 2.89(4H,m), 3.30(4H,t), 3.77(6H,s), 3.98(3H,s), 4.20(4H,t), 6.05(3H,m), 7.37(1H,s), 8.25(1H,s)

Example 30

1-[N-(2-Methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl)aminothiocar

bonyl]-4-(3,5-dimethylphenyl)piperazine:

Phenyl N-(2-methoxy-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl)

thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

yield: 53%

20 m.p.: 159-161°C

¹H NMR(CDCl₃) δ: 2.09(2H,m), 2.28(6H,s), 2.87(4H,m), 3.67(4H,t), 4.00(3H,s), 4.21(4H,t), 6.57(3H,m), 6.93(1H,s), 8.24(1H,s)

Example 31

25 1-[(2-Methoxy-5,6,7,8-tetrahydroquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-[(2-methoxy-5,6,7,8-tetrahydroquinolin-3-yl)thiocarbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

30 yield: 56%

m.p.: 160-161°C

¹H NMR(CDCl₃) δ: 1.77(2H,m), 1.83(2H,m), 2.70(2H,t), 2.76(2H,t), 3.38(4H,t), 3.79(6H,s), 3.96(3H,s), 4.16(4H,t), 6.12(3H,m), 7.45(1H,s), 8.03(1H,s)

- 31 -

1-[(2-Methoxy-5,6,7,8-tetrahydroquinolin-3-yl)aminothiocarbonyl]-4-(3,5dimethylphenyl)piperazine:

Phenyl N-(2-methoxy-5,6,7,8-tetrahydroquinolin-3-yl)thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with

5 the example 22 to obtain the titled compound.

yield: 54%

m.p.: 200-201°C

¹H NMR(CDCl₃) δ : 1.77(2H,m), 1.84(2H,m), 2.34(6H,s), 2.71(3H,t), 2.75(3H,t), 3.47(4H,t), 3.97(3H,s), 4.42(4H,t), 6.35(3H,m), 6.91(1H,s),

7.91(1H.s) 10

Example 33

1-[(5,6-Dimethyl-2-methylaminopyridin-3-yl)aminocarbonyl]-4-(3,5dimethoxyphenyl)piperazine:

15 Phenyl N-(5,6-dimethyl-2-methylaminopyridin-3-yl)carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield : 53%

m.p.: 150-151°C

¹H NMR(CDCl₃) δ : 2.29(3H,s), 2.48(3H,s), 3.29(4H,t), 3.45(3H,s), 20 3.77(6H,s), 3.79(4H,t), 6.10(3H,m), 7.40(1H,s)

Example 34

1-[(5,6-Dimethyl-2-methylaminopyridin-3-yl)aminocarbonyl]-4-(3,5-25 dimethylphenyl)piperazine:

Phenyl N-(5,6-dimethyl-2-methylaminopyridin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 52%

30 m.p.: 160-162℃

¹H NMR(CDCl₃) δ : 2.30(9H,s), 2.48(3H,s), 3.31(4H,t), 3.46(3H,s), 3.78(4H,t), 6.60(3H,m), 7.41(1H,s)

Example 35

35 1-[(5-Ethyl-6-methyl-2-methylaminopyridin-3-yl)aminocarbonyl]-4-(3,5dimethylphenyl)piperazine:

Phenyl N-(5-ethyl-6-methyl-2-methylaminopyridin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 56%

5 m.p.: 143-145°C

¹H NMR(CDCl₃) δ : 1.22(3H,t), 2.28(6H,s), 2.52(3H,s), 2.72(2H,q), 3.29(4H,t), 3.45(3H,s), 3.78(4H,t), 6.59(3H,m), 7.41(1H,s)

Example 36

- 10 1-[(2-Methylamino-6,7-dihydro-5H-cyclopenta[b]pyridin-3-y]) aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:
 Phenyl N-(2-methylamino-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl) carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.
- 15 yield: 49% m.p.: 148-150°C ¹H NMR(CDCl₃) δ: 2.09(2H,m), 2.95(4H,m), 3.30(4H,t), 3.47(3H,s), 3.77(4H,t), 3.80(6H,s), 6.10(3H,m), 7.49(1H,s)
- 20 Example 37

 1-[(2-Methylamino-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl)
 aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:
 Phenyl N-(2-methylamino-6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl)
 carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the

25 same way with the example 1 to obtain the titled compound. yield: 48%

m.p.: 185-187°C

¹H NMR(CDCl₃) δ : 2.14(2H,m), 2.29(6H,s), 2.95(4H,m), 3.32(4H,t), 3.47(3H,s), 3.79(4H,t), 6.59(3H,m), 7.48(1H,s)

Example 38

30

1-{[5,6-Dimethyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:
Phenyl N-[5,6-dimethyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the

same way with the example 1 to obtain the titled compound.

yield: 58%

m.p.: 74-75℃

¹H NMR(CDCl₃) δ : 1.46(9H,s), 2.20(3H,s), 2.21(3H,s), 2.90(4H,t), 3.20(4H,t), 3.55(4H,t), 3.65(4H,t), 3.98(3H,s), 6.02(3H,m), 8.20(1H,s)

5

Example 39

1-{[5,6-Dimethyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine:

Phenyl N-[5,6-dimethyl-2-(4'-butoxycarbonylpiperazinyl)pyridin-3-yl]

carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 56%

m.p.: 155-156°C

¹H NMR(CDCl₃) δ : 1.48(9H,s), 2.22(3H,s), 2.29(6H,s), 2.35(3H,s),

15 2.95(4H,t), 3.25(4H,t), 3.57(4H,t), 3.67(4H,t), 6.59(3H,m), 8.21(1H,s)

Example 40

1-{[5-Ethyl-6-methyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-[5-ethyl-6-methyl-2-(4'-t-butoxycarbonylpiperazinyl) pyridin-3-yl]carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled compound.

yield: 52%

25 m.p.: 119-120°C

¹H NMR(CDCl₃) δ: 1.25(3H,t), 1.48(9H,s), 2.38(3H,s), 2.51(2H,q), 2.96(4H,t), 3.27(4H,t), 3.58(8H,m), 3.78(6H,s), 6.08(3H,m), 8.24(1H,s)

Example 41

- 30 1-{[5-Ethyl-6-methyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine:

 Phenyl N-[5-ethyl-6-methyl-2-(4'-t-butoxycarbonylpiperazinyl) pyridin-3-yl]carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 1 to obtain the titled
- 35 compound. yield: 50%

5

Example 42

1-[(5,6-Dimethyl-2-piperazinylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-([5,6-Dimethyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl]

- aminocarbonyl)-4-(3,5-dimethoxyphenyl)piperazine(0.218g, 0.4mmol) was dissolved in dichloromethane: nitromethane = 2:1(10ml) and anisole(0.26g, 2.4mmol) and aluminum chloride(0.3g, 2,4mmol) were added slowly thereto. The mixture was stirred at room temperature for 20min. Distilled water(50ml) was added into the mixture and the
- mixture was made basic with saturated NaHCO₃ and extracted with dichloromethane and then concentrated under the reduced pressure to remove the solvent. The concentrate was purified by column chromatography(methanol: dichloromethane = 8:1) to obtain the titled compound.

20 yield: 89%

m.p.: oil phase

¹H NMR(CDCl₃) δ: 2.21(3H,s), 2.35(3H,s), 3.02(4H,t), 3.34(4H,t), 3.59(4H,t), 3.62(4H,t), 3.78(6H,s), 6.08(3H,m), 8.18(1H,s)

25 Example 43

1-[(5,6-Dimethyl-2-piperazinylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-{[5,6-Dimethyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine was reacted by the

30 same way with the example 42 to obtain the titled compound. yield: 85%

Jicia . 00/0

m.p.: 103-105°C

¹H NMR(CDCl₃) δ : 2.16(3H,s), 2.24(6H,s), 2.40(3H,s), 3.30(4H,t), 3.44(4H,t), 3.50(4H,t), 3.81(4H,t), 6.95(3H,m), 7.72(1H,s)

1-[(5-Ethyl-6-methyl-2-piperazinylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-{[5-Ethyl-6-methyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine was reacted by the

5 same way with the example 42 to obtain the titled compound. yield: 88%

m.p. : 68-70℃

¹H NMR(CDCl₃) δ : 1.20(3H,t), 2.40(3H,s), 2.52(2H,q), 2.75(4H,t), 3.32(4H,t), 3.70(8H,m), 3.78(6H,s), 6.09(3H,m), 7.68(1H,s), 8.23(1H,s)

10

Example 45

1-[(5-Ethyl-6-methyl-2-piperazinylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-{[5-Ethyl-6-methyl-2-(4'-t-butoxycarbonylpiperazinyl)pyridin-3-yl] aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 42 to obtain the titled compound.

yield: 85%

m.p. : 100-102°C

¹H NMR(CDCl₃) δ : 1.20(3H,t), 2.28(6H,s), 2.39(3H,s), 2.65(2H,q),

20 2.76(4H,t), 3.00(4H,t), 3.23(4H,t), 3.70(4H,t), 6.58(3H,m), 7.66(1H,s), 8.24(1H,s)

Example 46

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)carbamate(200mg, 0.67mmol) and 1-(3,5-dimethoxyphenyl)piperazine(150mg, 0.67mmol) were dissolved in anhydrous tetrahydrofuran(15ml) and DBU(100mg, 0.67mmol) was added. The mixture was stirred at room temperature for

30 2 hrs and concentrated under the reduced pressure to remove tetrahydrofuran. The concentrate was purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

yield: 83%

35 m.p.: 149-151°C

¹H NMR(CDCl₃) δ: 2.57(3H,s), 2.65(3H,s), 3.28(4H,t,J=4.65Hz), 3.70(4H,t,

J=4.65Hz), 3.79(6H,s), 4.06(3H,s), 6.09(1H,s), 6.14(2H,d),6.94(1H,s), 8.87(1H,s)

Example 47

5 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 46 to obtain the titled compound.

10 yield: 82%

m.p.: 66-69°C

¹H NMR(CDCl₃) δ: 2.31(6H,s), 2.57(3H,s), 2.65(3H,s), 3.08(4H,t), 3.30(4H,t), 4.10(3H,s), 6.71(2H,d), 6.94(1H,s), 8.89(1H,s)

15 Example 48

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)carbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 46 to obtain the titled compound.

yield: 77%

 $m.p. : 180-181^{\circ}C$

¹H NMR(CDCl₃) δ : 2.57(3H,s), 2.65(3H,s), 3.33(4H,t,J=5.0Hz), 3.74(4H,t,J=5.0Hz), 4.07(3H,s), 6.37(1H,s), 6.46(2H,d), 6.93(1H,s), 8.85(1H,s)

Example 49

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)carbamate and 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 46 to obtain the titled compound.

yield: 81%

m.p.: oil phase

¹H NMR(CDCl₃) δ: 2.57(3H,s), 2.65(3H,s), 3.34(4H,t), 3.78(4H,t),

35 4.04(3H,s), 6.93(3H,m), 8.80(1H,s)

Example 50

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(2,3dimethylphenyl)piperazine:

Pheny N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)carbamate and

5 1-(2,3-dimethylphenyl)piperazine were reacted by the same way with the example 46 to obtain the titled compound.

yield: 81%

m.p. : 173-174℃

¹H NMR(CDCl₃) δ : 2.29(6H,s), 2.58(3H,s), 2.65(3H,s), 2.98(4H,t),

3.70(4H,t), 4.06(3H,s), 6.91(1H,d), 6.97(1H,s), 7.10(1H,t), 8.89(1H,s)

Example 51

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(2methoxyphenyl)piperazine:

15 Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)carbamate and 1-(2-methoxyphenyl)piperazine were reacted by the same way with the example 46 to obtain the titled compound.

yield: 79%

m.p.: 153-154°C

20 ¹H NMR(CDCl₃) δ : 2.58(3H,s), 2.65(3H,s), 3.15(4H,t), 3.73(4H,t), 3.90(3H,s), 4.06(3H,s), 6.91(1H,d), 6.96(1H,d), 6.97(1H,s), 7.10(1H,t), 8.89(1H.s)

Example 52

25 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3hydroxyphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)carbamate and 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the example 46 to obtain the titled compound.

30 yield: 76%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 2.60(3H,s), 2.72(3H,s), 3.34(4H,t), 3.79(4H,t), 3.98(3H,s), 6.45(3H,m), 6.98(1H,m), 8.97(1H,s)

35 Example 53 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3.5 -dimethoxyphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)thiocarbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

5 yield: 77%

m.p.: 167-169°C

¹H NMR(CDCl₃) δ : 2.58(3H,s), 2.68(3H,s), 3.47(4H,t), 3.81(6H,s), 4.05(3H,s), 4.36(4H,t), 6.42(3H,m), 7.49(1H,s), 9.05(1H,s)

10 Example 54

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with

15 the example 22 to obtain the titled compound.

yield: 75%

m.p.: 176-177°C

¹H NMR(CDCl₃) δ : 2.34(6H,s), 2.58(3H,s), 2.68(3H,s), 3.48(4H,t), 4.06(3H,s), 4.43(4H,t), 7.05(3H,m), 7.52(1H,s), 9.04(1H,s)

20

Example 55

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3-hydroxyphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)thiocarbamate and 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the example 22 to obtain the titled compound.

yield: 71%

m.p.: 114-115°C

¹H NMR(CDC_b) δ : 2.56(3H,s), 2.75(3H,s), 3.68(4H,t), 4.05(3H,s),

30 4.45(4H,t), 7.30(4H,m), 9.03(1H,s)

Mass(EI) m/z: Calcd for C23H30N4O4S1 458.1987, found 458.2527

Example 56

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}

35 -4-(3,5-dimethoxyphenyl)piperazine:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-

dimethoxyphenyl)piperazine(100mg, 0.23mmol) was dissolved in anhydrous ethanol(15ml) and NaBH₄(8.66mg) was added. The reaction solution was stirred at room temperature for 2 hours. The mixture was concentrated under the reduced pressure to remove ethanol and purified

5 by column chromatography (ethylacetate: hexane = 2:1) to obtain the titled compound.

yield: 97%

m.p.: 124-126°C

¹H NMR(CDCl₃) δ : 1.48(3H,d), 2.42(3H,s), 3.27(4H,t), 3.69(4H,t),

3.79(6H,s), 3.99(3H,s), 5.03(1H,q), 6.09(1H,s), 6.15(2H,d), 6.90(1H,s), 8.46(1H,s)

Mass(EI) m/z: Calcd for C22H30N4O5 430.2216, found 430.2265

Example 57

15 1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl) -4-(3,5-dimethylphenyl)piperazine:
1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the

20 yield: 95%

m.p.: 153-154°C

¹H NMR(CDCl₃) δ : 1.48(3H,d), 2.30(6H.s), 2.42(3H,s), 3.26(4H,t), 3.68(4H,t), 3.99(3H,s), 5.05(1H,q), 6.71(2H,d), 6.96(1H,s), 8.46(1H,s) Mass(EI) m/z: Calcd for C₂₂H₃₀N₄O₃ 398.2317, found 398.2343

example 56 to obtain the titled compound.

25

Example 58

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl) -4-(2,3-dimethylphenyl)piperazine:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl]-4-(2,3-

30 dimethylphenyl)piperazine was reacted by the same way with the example 56 to obtain the titled compound.

yield: 96%

m.p.: 100-102°C

¹H NMR(CDCl₃) δ : 1.47(3H,d), 1.59(3H,s), 2.25(3H,s), 2.28(3H,s),

35 2.43(3H,s), 2.93(4H,t), 3.66(4H,t), 3.99(3H,s), 5.05(1H,q), 6.93(3H,m), 7.11(1H,m), 8.48(1H,s)

Example 59

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}-4-(3,5-difluorophenyl)piperazine:

5 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the example 56 to obtain the titled compound.

yield: 97%

m.p.: 184-186°C

10 ¹H NMR(CDCl₃) δ : 1.48(3H,d), 2.50(3H,s), 3.30(4H,t), 3.70(4H,t), 4.11(3H,s), 5.06(1H,q), 6.33(1H,s), 6.42(2H,d), 6.92(1H,s), 8.54(1H,s)

Example 60

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}

15 -4-(3,5-dichlorophenyl)piperazine:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl)piperazine was reacted by the same way with the example 56 to obtain the titled compound.

yield: 95%

20 m.p.: 197-200℃

¹H NMR(CDCl₃) δ: 1.46(3H,d), 2.41(3H,s), 3.28(4H,t), 3.66(4H,t), 3.96(3H,s), 5.20(1H,q), 7.02(3H,m), 8.42(1H,s)

Example 61

- 25 1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl} -4-(2-methoxyphenyl)piperazine:
 - 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)piperazine was reacted by the same way with the example 56 to obtain the titled compound.
- 30 yield: 97%

m.p.: 88-90°C

¹H NMR(CDCl₃) δ : 1.47(3H,d), 2.42(3H,s), 3.11(4H,t), 3.70(4H,t), 3.89(3H,s), 3.99(3H,s), 5.03(1H,q), 6.89(3H,m), 6.94(1H,s), 7.05(1H,m), 8.48(1H,s)

35

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl} -4-(3-hydroxyphenyl)piperazine:

1-[5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3-hydro xyphenyl)piperazine was reacted by the same way with the example 56 to obtain the titled compound.

yield: 87%

m.p.: 194-196°C

¹H NMR(CDCl₃) δ: 1.47(3H,d), 2.41(3H,s), 3.27(4H,t), 3.79(4H,t), 3.98(3H,s), 5.04(1H,q), 6.57(3H,m), 6.90(1H,s), 7.13(1H,t), 8.41(1H,s)

10

Example 63

 $1-\{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminothio carbonyl\}-4-(3,5-dimethoxyphenyl)piperazine$

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5

15 -dimethoxyphenyl)piperazine was reacted by the same way with the example 56 to obtain the titled compound.

yield: 89%

m.p. : 189-190°C

¹H NMR(CDCl₃) δ : 1.47(3H,d), 2.43(3H,s), 3.35(4H,t), 3.78(6H,s),

20 3.97(3H,s), 4.09(4H,t), 5.05(1H,q), 6.07(3H,m), 7.35(1H,s), 8.42(1H,s)

Example 64

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminothio carbonyl}-4-(3,5-dimethylphenyl)piperazine:

25 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminothiocarbonyl]-4-(3,5 -dimethylphenyl)piperazine was reacted by the same way with the example 56 to obtain the titled compound.

yield: 88%

m.p.: 170-172℃

30 ¹H NMR(CDCl₃) δ: 1.46(3H,d), 2.29(6H,s), 2.43(3H,s), 3.43(4H,t), 3.97(3H,s), 4.10(4H,t), 5.06(1H,q), 6.60(3H,m), 7.37(1H,s), 8.40(1H,s)

Example 65

1-{[5-(1-Hydroxy-1-methylethyl)-2-methoxy-6-methylpyridin-3-yl]

aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:
1-{(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-

dimethoxyphenyl)piperazine(214mg, 0.50mmol) was dissolved in tetrahydrofuran(10ml) and CH₃MgBr(0.50ml, 1.50mmol) was added slowly. The mixture solution was refluxed for 15 hrs and concentrated under the reduced pressure to remove the solvent and extracted with ethylacetate, dried and filtered. The resultant was purified by column chromatography(ethylacetate: hexane = 1: 2) to obtain the titled compound.

yield: 84%

m.p.: 146-148°C

10 ¹H NMR(CDCl₃) δ: 1.64(6H,s), 2.64(3H,s), 3.25(4H,t), 3.67(4H,t), 3.78(6H,s), 3.99(3H,s), 6.07(3H,m), 6.86(1H,s), 8.47(1H,s)

Example 66

1-{[5-(1-Hydroxy-1-methylethyl)-2-methoxy-6-methylpyridin-3-yl]
aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine:
1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 65 to obtain the titled compound.
yield: 81%

20 m.p.: oil phase

¹H NMR(CDCl₃) δ: 1.64(6H,s), 2.29(6H,s), 2.65(3H,s), 3.24(4H,t), 3.67(4H,t), 3.99(3H,s), 6.59(3H,m), 7.05(1H,s), 8.48(1H,s)

Example 67

- 25 1-{[5-(1-Hydroxy-1-methylpropyl)-2-methoxy-6-methylpyridin-3-yl] aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:
 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine(214mg, 0.50mmol) was dissolved in tetrahydrofuran(10ml) and C₂H₅MgBr(0.50mg, 1.50mmol) was added
 30 slowly. The mixture solution was refluxed for 15 hours and concentrated under the reduced pressure to remove the solvent and extracted with ethylacetate, dried and filtered. The resultant was purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.
- 35 yield: 76% m.p.: 127-129°C

¹H NMR(CDCl₃) δ: 0.83(3H,t), 1.63(3H,s), 1.94(2H,m), 2.61(3H,s), 3.26(4H,t), 3.68(4H,t), 3.79(6H,s), 3.99(3H,s), 6.08(3H,m), 6.86(1H,s), 8.44(1H,s)

5 Example 68

1-{[5-(1-Hydroxy-1-methylpropyl)-2-methoxy-6-methylpyridin-3-yl] aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the

10 example 67 to obtain the titled compound.

yield: 74%

m.p.: 164-165°C

¹H NMR(CDCl₃) δ: 0.83(3H,t), 1.60(3H,s), 1.95(2H,m), 2.29(6H,s), 2.61(3H,s), 3.23(4H,t), 3.67(4H,t), 3.99(3H,s), 6.59(3H,m), 6.87(1H,s), 3.45(4H,t), 3.99(3H,s), 6.59(3H,m), 6.87(1H,s), 3.99(3H,s), 6.59(3H,m), 6.87(1H,s), 3.99(3H,s), 6.59(3H,m), 6.87(1H,s), 3.99(3H,s), 6.59(3H,m), 6.87(1H,s), 6.59(3H,m), 6.87(1H,s), 6.59(3H,m), 6.87(1H,s), 6.59(3H,m), 6.87(1H,s), 6.59(3H,m), 6.87(1H,s), 6.87(1H,

15 8.45(1H,s)

Example 69

1-[5-({[4-(3,5-Dimethoxyphenyl)piperazino]carbonyl}amino)-6-methoxy-2-methylpyridin-3-yl]ethyl ethanthioate:

- Triphenylphosphine(262mg, 1.0mmol) was dissolved in tetrahydrofuran(15ml) and diethyl azodicarboxylate(157μl, 1.0mmol) was added and then the mixture was stirred at 0°C for 30min.

 1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}
- -4-(3,5-dimethoxyphenyl)piperazine(213mg, 0.5mmol) and thioacetic
 25 acid(72μl, 1.0mmol) were dissolved in tetrahydrofuran and was added into the above solution. The mixture solution was stirred at 0°C for

Thour and at room temperature for Thour and then was concentrated under the reduced pressure to remove the solvent. The concentrate was purified by column chromatography(ethylacetate: hexane = 1:2) to

30 obtain the titled compound.

yield: 62%

35

m.p.: oil phase

¹H NMR(CDCl₂) δ : 1.55(3H,d), 2.20(3H,s), 2.39(3H,s), 3.15(4H,t), 3.57(4H,t), 3.69(6H,s), 3.90(3H,s), 4.74(1H,q), 6.01(3H,m), 6.89(1H,s), 8.33(1H,s)

Example 70

1-[5-(([4-(3,5-Dimethylphenyl)piperazino]carbonyl)amino)-6-methoxy-2-methylpyridin-3-yl]ethyl ethanthioate:

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}

5 -4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 69 to obtain the titled compound.

yield: 60%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.60(3H,d), 2.26(6H,s), 2.52(3H,s), 3.20(4H,t),

10 3.64(4H,t), 3.96(3H,s), 4.80(1H,q), 6.56(3H,m), 6.91(1H,s), 8.38(1H,s)

Example 71

1-{[2-Methoxy-6-methyl-5-(1-sulfanylmethyl)}aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:

- 15 1-[5-(([4-(3,5-Dimethoxyphenyl)piperazino]carbonyl)amino)-6-methoxy-2 -methylpyridin-3-yl]ethyl ethanthioate(180mg, 0.37mmol) was dissolved in tetrahydrofuran(15ml) and LiAlH₄(15mg, 0.4mmol) was added and then the mixture was stirred at 0°C for 20min. 2N-HCl was added the above solution. The mixture was concentrated under the reduced
- pressure to remove the solvent and extracted with dichloromethane, dried and filtered. The resultant was concentrated under the reduced pressure and purified by column chromatography(ethylacetate | hexane = 1:2) to obtain the titled compound.

yield: 88%

m.p.: oil phase

H NMR(CDCl₃) δ: 1.42(3H,d), 2.39(3H,s), 3.25(4H,t), 3.66(4H,t),
3.76(6H,s), 3.96(3H,s), 5.02(1H,q), 6.17(3H,m), 6.87(1H,s), 8.41(1H,s)

Example 72

- 30 1-([2-Methoxy-6-methyl-5-(1-sulfanylmethyl)]aminocarbonyl)-4-(3,5-dimethylphenyl)piperazine:
 - 1-[5-({[4-(3,5-Dimethylphenyl)piperazino]carbonyl}amino)-6-methoxy-2-methylpyridin-3-yl]ethyl ethanthioate was reacted by the same way with the example 71 to obtain the titled compound.
- yield: 87%
 m.p.: oil phase

¹H NMR(CDCl₃) δ: 1.43(3H,d), 2.28(6H,s), 2.40(3H,s), 3.25(4H,t), 3.72(4H,t), 5.03(1H,q), 6.64(3H,m), 6.88(1H,s), 8.42(1H,s)

Exmaple 73

5 1-[(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-{[5-(1-Hydroxyethyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl} -4-(3,5-dimethoxyphenyl)piperazine was dissolved in chloroform(15ml) and pyridinum p-toluensulfonate(60mg, 0.23mmol) was added and then

the mixture solution was refluxed 16hours. The above solution was concentrated under the reduced pressure to remove chloroform and purified by column chromatography to obtain the titled compound. yield: 93%

m.p.: 140-141°C

15 ¹H NMR(CDCl₃) δ: 2.43(3H,s), 3.27(4H,t), 3.69(4H,t), 3.79(6H,s), 4.00(3H,s), 5.25(1H,d), 5.65(1H,d), 6.08(1H,s), 6.13(2H,d), 6.82(1H,d), 6.91(1H,s), 8.53(1H,s)

Mass(EI) m/z : Calcd for C22H28N4O4 412.2110, found 412.2119

20 Example 74

1-[(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with

25 the example 73 to obtain the titled compound.

yield: 94%

m.p.: 131-132°C

¹H NMR(CDCl₃) δ: 1.57(3H,s), 2.31(6H,s), 2.43(1H,s), 3.25(4H,t), 3.68(4H,t), 4.00(3H,s), 5.25(1H,d), 5.65(1H,d) 6.60(3H,m), 6.82(1H,dd),

30 6.92(1H,s), 8.53(1H,s)

Mass(EI) m/z: Calcd for C22H28N4O2 380.2212, found 380.2236

Example 75

1-[(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl)piperazine:

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}

-4-(3,5-difluorophenyl)piperazine was reacted by the same way with the example 73 to obtain the titled compound.

yield: 93%

m.p.: 160-161°C

5 ¹H NMR(CDCl₃) δ: 2.44(3H,s), 3.30(4H,t,J=5.5Hz), 3.68(4H,t,J=5.5Hz), 4.01(3H,s), 5.26(1H,d), 5.65(1H,d), 6.30(1H,s), 6.39(2H,d), 6.81(1H,dd), 8.53(1H,s)

Mass(EI) m/z: Calcd for Cz2Hz8N4O4 412.2110, found 412.2102

10 Example 76

1-[(5-Isopropenyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3.5-dimethoxyphenyl)piperazine:

-{[5-(1-Hydroxy-1-methylethyl)-2-methoxy-6-methylpyridin-3-yl) aminocarbonyl]}-4-(3,5-dimethoxyphenyl)piperazine was reacted by the

15 same way with the example 73 to obtain the titled compound.

yield: 96%

m.p.: 83-85°C

¹H NMR(CDCl₃) δ: 2.01(3H,s), 2.38(3H,s), 3.25(4H,t), 3.66(4H,t), 3.78(6H,s), 3.99(3H,s), 4.86(1H,s), 5.30(1H,s), 6.11(3H,m), 6.90(1H,s), 8.10(1H,s), 6.11(3H,m), 6.90(1H,s), 6.10(1H,s), 6.10(1H,

20 8.18(1H,s)

Example 77

1-[(5-Isopropenyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

25 1-{[5-(1-Hydroxy-1-methylethyl)-2-methoxy-6-methylpyridin-3-yl]amin ocarbonyl}-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with example 73 to obtain the titled compound.

yield: 93%

m.p.: 140-142°C

30 H NMR(CDCl₃) δ: 2.01(3H,s), 2.29(6H,s), 2.28(3H,s), 3.23(4H,t), 3.66(4H,t), 3.99(3H,s), 4.86(1H,s), 5.18(1H,s), 6.59(3H,m), 6.91(1H,s), 8.18(1H,s)

Example 78

Ethyl 2-{1-[5-({[4-(3,5-dimethoxyphenyl)piperazino]carbonyl}amino)-6-methoxy-2-methylpyridin-3-yl]ethoxy)acetate:

1-{[5-(1-Hydroxy)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine(0.5mmol) was dissolved in dimethylformamide(15ml) and NaH(18.5mg, 0.5mmol) was added and then the mixture solution was stirred at room temperature for 15min.

Ethylbromoacetate(83.5mg, 0.5mmol) was added into the above mixture and stirred at room temperature for 3hours. The mixture was concentrated under the reduced pressure to remove the solvent and purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

10 yield: 89%

m.p.: oil phase

¹H NMR(CDCl₃) δ: 1.25(3H,t), 1.34(3H,d), 2.42(3H,s), 3.00(4H,t), 3.29(4H,t), 3.74(6H,s), 3.97(3H,s), 4.16(4H,s), 4.53(1H,q), 6.03(3H,m), 7.58(1H,s)

15

Example 79

4-{1-[5-({[4-(3,5-Dimethoxyphenyl)piperazino]carbonyl}amino)-6-methox y-2-methylpyridin-3-yl]ethoxy}-4-oxobutanoic acid:

1-{[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}

20 -4-(3,5-dimethoxyphenyl)piperazine(107mg, 0.25mmol) and dimethylaminopyridine(3mg, 0.025mmol) were dissolved in pyridine and anhydrous succinic acid(50mg, 0.5mmol) was added. The mixture was stirred at room temperature for 5hrs. Distilled water was added into the above mixture. The above solution was extracted with CH₂Cl₂ and the organic phase washed with 1N-HCl and then concentrated under the

reduced pressure to remove the solvent. The concentrated under the by column chromatography(dichloromethane: methanol = 20:1) to obtain the titled compound.

yield: 78%

- m.p.: 158-160°C

 H NMR(CDCl₃) δ: 1.42(3H,d), 2.43(3H,s), 2.61(4H,m), 3.24(4H,t), 3.66(4H,t), 3.76(6H,s), 3.95(3H,s), 5.94(1H,q), 6.04(3H,m), 6.89(1H,s), 8.13(1H,s)
- Example 80
 4-(1-[5-(([4-(3,5-Dimethylphenyl)piperazino]carbonyl)amino)-6-methoxy-

2-methylpyridin-3-yllethoxy)-4-oxobutanoic acid:
1-{[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]aminocarbonyl}
-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with
the example 79 to obtain the titled compound.

5 yield: 76%

m.p. : 138-140℃

¹H NMR(CDCl₃) δ : 1.43(3H,d), 2.27(6H,s), 2.55(3H,s), 2.65(4H,m), 3.24(4H,t), 3.69(4H,t), 3.95(3H,s), 5.95(1H,q), 6.60(3H,m), 6.88(1H,s), 8.11(1H,s)

10

Example 81

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine:

a) Phenyl N-(2-methoxyquinolin-3-yl)carbamate:
3-Amino-2-methoxyquinoline(4g, 23mmol) and phenyl
chloroformate(4.04g, 25mmol) were dissolved in dichloromethane and
stirred at room temperature for 2 hours. The above mixture was
concentrated under the reduced pressure to remove dichloromethane and
purified by column chromatography(hexane: ether =8:1) to obtain the
titled compound.

yield : 75%

m.p. : oil phase

¹H NMR (CDCl₃): δ 4.01(3H,s), 7.30(5H,s), 7.41(1H,t), 7.70(1H,d),

25 7.71(1H,d), 8.71(1H,s)

b) 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate(148mg, 0.5mmol) and 1-(3,5-dimethoxyphenyl)piperazine(112mg, 0.5mmol) were dissolved in anhydrous tetrahydrofuran and DBU(117mg, 0.75mmol) was added. The solution was stirred at room temperature for 2 hours. The mixture was concentrated under the reduced pressure to remove tetrahydrofuran and purified by column chromatography(hexane : ether = 5:1) to obtain the titled compound.

yield: 81%

m.p.: 200-201°C

¹H NMR (CDCl₃): δ 3.31(4H,t,J=5.0Hz), 3.74(4H,t), 3.79(6H,s), 4.17(3H,s), 6.09(1H,s), 6.17(2H,s), 7.35(1H,t), 7.49(1H,t), 7.71(1H,d), 7.78(1H,d), 8.78(1H,s)

5 Mass(EI) m/z: Calcd for C23H26N4O4 422.1954, found 422.1952

Example 82

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound. yield: 79%

m.p.: 143-145°C

¹H NMR (CDCl₃): δ 2.30(6H,s), 3.29(4H,t), 3.80(4H,t), 4.18(3H,s), 6.62(3H,m), 7.36(1H,t), 7.49(1H,t), 7.71(1H,d), 7.78(1H,d), 8.79(1H,s) Mass(EI) m/z : Calcd for C₂₃H₂₆N₄O₂ 390.2055, found 390.2066

Example 83

20 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(2,3-dimethylphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(2,3-dimethylphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

25 yield: 83%

m.p. : 174−1**75**℃

¹H NMR (CDCl₃): δ 2.20(3H,s), 2.39(3H,s), 3.28(4H,t), 3.69(4H,t), 3.93(3H,s), 5.98(1H,s), 6.30(1H,t), 6.37(1H,s), 6.39(1H,s), 6.63(1H,s)

30 Example 84

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the

35 example 81 to obtain the titled compound.

yield: 78%

m.p.: 158-159°C

¹H NMR (CDCl₃): δ 3.32(4H,t,J=5.0Hz), 3.72(4H,t,J=5.0Hz), 4.19(3H,s), 6.29(1H,s), 6.39(2H,d), 7.36(1H,t), 7.50(1H,t), 7.71(1H,d), 7.81(1H,d), 8.78(1H,s)

5

Example 85

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and

10 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

yield: 56%

m.p.: 156-158°C

¹H NMR (CDCl₃): δ 3.33(4H,t), 3.73(4H,t), 4.21(3H,s) 6.79(1H,s),

15 6.83(1H,d), 6.93(1H,t), 7.26(1H,t), 7.38(1H,t), 7.52(1H,t), 7.71(1H,d), 7.83(1H,d)

Mass(EI) m/z: Calcd for $C_{21}H_{20}N_4O_2Cl_1$ 430.0963, found 430.0977

Example 86

20 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(2-fluorophenyl)piperazine: Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(2-fluorophenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound. yield: 81%

25 m.p.: 156-158°C

¹H NMR (CDCl₃): δ 3.18(4H,t), 3.74(4H,t), 4.18(3H,s), 6.99(2H,q), 7.07(2H,m), 7.35(2H,m), 7.50(1H,t), 7.70(1H,d), 7.77(1H,d)

Example 87

30 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(2-chlorophenyl)piperazine: Phenyl N-(2-methoxyquinoline-3-yl)carbamate and 1-(2-chlorophenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

yield: 789/

35 m.p. : 79-80°C ¹H NMR (CDCl₃): δ 3.32(4H,t), 3.74(4H,t), 4.20(3H,s), 6.82(2H,q), 6.94(2H,m), 7.34(2H,m), 7.48(1H,d), 7.70(1H,d), 7.78(1H,d)

Example 88

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3-chlorophenyl)piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(3-chlorophenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

yield: 73%

m.p.: 97-98°C

10 ¹H NMR (CDCl₃): δ 3.31(4H,t), 3.73(4H,t), 4.18(3H,s), 6.82(1H,d), 6.87(1H,d), 6.92(1H,s), 7.21(1H,t), 7.32(1H,s), 7.37(1H,t), 7.51(1H,t), 7.70(1H,d), 7.78(1H,d), 8.80(1H,s)

Example 89

15 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3-hydroxyphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

20 yield: 75%

m.p. : 190-191°C

¹H NMR (CDCl₃): δ 3.33(4H,t), 3.80(4H,t), 4.19(3H,s), 6.47(1H,s), 6.62(2H,s), 7.16(1H,t), 7.32(1H,s), 7.37(1H,t), 7.51(1H,t), 7.72(1H,d), 7.78(1H,d), 8.78(1H,s)

25

Example 90

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and

30 1-(2-methoxyphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

yield: 88%

m.p.: 159-161°C

¹H NMR (CDCl₃): δ 3.28(4H,t), 3.71(4H,t), 3.81(3H,s), 4.18(3H,s),

35 6.52(2H,s), 6.62(1H,s), 7.23(1H,t), 7.31-7.53(3H,m), 7.72(2H,m), 8.81(1H,s)

Example 91

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(2-methylthiophenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and

5 1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

yield: 78%

m.p.: 147-149°C

¹H NMR (CDCl₃): δ 2.44(3H,s), 3.07(4H,t), 3.75(4H,t), 4.18(3H,s),

7.13(3H,m), 7.18(1H,d), 7.39(2H,m), 7.70(3H,m), 8.81(1H,s)

Example 92

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3-isopropoxyphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(3-isopropoxyphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound. yield: 93%

m.p. : 111-113°C

¹H NMR (CDCl₃): δ 1.34(6H,d), 3.30(4H,t), 3.74(4H,t), 4.18(3H,s), 4.55(1H,m), 6.49(2H,s), 7.05(1H,s), 7.20(1H,t), 7.32(1H,s), 7.37(1H,t), 7.50(1H,t), 7.70(1H,d), 7.77(1H,d), 8.80(1H,s)

Example 93

25 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3-cyclopropylmethoxy phenyl)piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(3-cyclopropylmethoxyphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

30 yield: 90%

m.p.: 146-147°C

¹H NMR (CDCl₃): δ 0.36(2H,t), 0.65(2H,m), 1.28(1H,m), 3.31(4H,t), 3.75(4H,t), 3.80(2H,d), 4.18(3H,s), 6.50(1H,s), 6.60(2H,s), 7.19(1H,t), 7.32(1H,s), 7.37(1H,t), 7.50(1H,t), 7.70(1H,d), 7.77(1H,d), 8.79(1H,s)

35

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(2-methoxy-5-methyl phenyl)piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and

1-(2-methoxy-5-methylphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

yield: 76%

m.p.: 115-116°C

¹H NMR (CDCl₃): δ 2.30(3H,s), 3.14(4H,t), 3.75(4H,t), 3.87(3H,s), 4.18(3H,s), 6.79(2H,m), 6.84(1H,d), 7.35(2H,m), 7.50(1H,t), 7.72(1H,d),

10 7.77(1H,d), 8.82(1H,s)

Example 95

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(2-methoxy-5-phenyl) phenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(2-methoxy-5-phenylphenyl)piperazine were reacted by the same waywith the example 81 to obtain the titled compound.

yield: 77%

m.p.: 122-123°C

¹H NMR (CDCl₃): δ 3.38(4H,t) 3.86(4H,t), 3.97(3H,s), 4.18(3H,s), 7.05(2H,m), 7.34-7.45(6H,m), 7.50(1H,t), 7.56(2H,d), 7.71(2H,d), 7.78(2H,d), 8.88(1H,s)

Example 96

25 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(5-methoxy-2-methyl phenyl)piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(5-methoxy-2-methylphenyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

30 yield: 82%

m.p.: 128-130°C .

¹H NMR (CDCl₃): δ 2.30(3H,s), 3.37(4H,t), 3.84(4H,t), 3.78(3H,s), 3.97(3H,s), 7.05(2H,m), 7.13(1H,d), 7.38(3H,m), 7.62(1H,d), 7.80(1H,s), 8.88(1H,s)

35

Example 97

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(1-naphthyl)piperazine: Phenyl N-(2-methoxyquinolin-3-yl)carbamate and 1-(1-naphthyl)piperazine were reacted by the same way with the example 81 to obtain the titled compound.

5 yield: 68%

m.p.: 158-160℃

¹H NMR (CDCl₃): δ 3.22(4H,t), 3.86(4H,t), 4.20(3H,s), 7.13(1H,d), 7.38(2H,m), 7.43(1H,t), 7.53(3H,m), 7.62(1H,d), 7.72(1H,d), 7.86(1H,d), 8.24(1H,d), 8.84(1H,s)

10

Example 98

1-[N-(2-Methoxyquinolin-3-yl)-N-methylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)

piperazine(106mg, 0.25mmol) was dissolved in dimethylformamide(15ml) and sodium hydride(6.0mg, 0.25mmol) was added and the solution was stirred at room temperature for 15 min. Iodomethane(35mg, 0.25mmol) was added to the above solution. The mixture was stirred at room temperature for 16 hours and concentrated under the reduced pressure

20 to remove dimethylformamide. The concentrate was purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

yield: 93%

m.p. : 88-89°C

¹H NMR (CDCl₃): δ 2.93(4H,t), 3.17(3H,s), 3.34(4H,t), 3.72(6H,s), 4.15(3H,t), 5.95(2H,s), 5.98(1H,s), 7.40(1H,t), 7.61(2H,m), 7.73(1H,s), 7.84(1H,d)

Mass(EI) m/z: Calcd for C24H28N4O4 436.2110, found 436.2105

30 Example 99

1-[N-Ethyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethox yphenyl)piperazine:

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine(106mg, 0.25mmol) was dissolved in dimethylformamide(15ml)

and was sodium hydride(6.0mg, 0.25mmol) was added and the solution was stirred at room temperature for 15 min. Iodoethane(35mg,

0.25mmol) was added to the above solution. The mixture was stirred at room temperature for 16hours and concentrated under the reduced pressure to remove dimethylformamide. The concentrate was purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

yield: 91%

m.p. ∶ 118-120°C

¹H NMR (CDCl₃): δ 1.16(3H,t), 2.89(4H,t), 3.30(4H,t), 3.63(2H,m), 3.71(6H,s), 4.13(3H,s), 5.93(2H,s), 5.98(1H,s), 7.41(1H,t), 7.60(1H,t),

7.66(1H,d), 7.71(1H,s), 7.84(1H,d)

Mass(EI) m/z : Calcd for $C_{25}H_{30}N_4O_4$ 450.2227, found 450.2206

Example 100

1-[N-Isopropyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)phenyl:

- 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine(106mg, 0.25mmol) was dissolved in dimethylformamide(15ml) and sodium hydride(6.0mg, 0.25mmol) was added and the reaction solution was stirred at room temperature for 15 min.
- 20 2-Propyliodide(42mg, 0.25mmol) was added to the above solution. The mixture was stirred at room temperature for 16 hours and concentrated under the reduced pressure to remove the dimethylformamide. The concentrate was purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.
- 25 yield: 87%

m.p.: 123-125°C

¹H NMR (CDCl₃): δ 1.21(6H,d), 2.79(4H,t), 3.29(4H,t), 3.70(6H,s), 4.08(3H,s), 4.41(1H,m), 5.90(2H,s), 5.96(1H,s), 7.43(1H,t), 7.63(1H,t), 7.69(1H,d), 7.75(1H,s), 7.83(1H,d)

30

15

Example 101

- 1-[N-Cyclopropylmethyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:
- 1-[(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)
 35 piperazine(106mg, 0.25mmol) was dissolved in dimethylformamide(15ml)
 and sodium hydride(6.2mg, 0.26mmol) was added and the solution was

stirred at room temperature for 15 min. Bromomethylcyclopropane(22mg, 0.26mmol) was added to the above solution. The mixture was stirred at room temperature for 16 hours and concentrated under the reduced pressure to remove dimethylformamide. The concentrate was purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

yield: 78%

5

15

m.p.: 118-120℃

¹H NMR (CDCl₃): δ 0.41(2H,m), 0.85(2H,m), 1.28(1H,m), 2.88(4H,t),

3.24(4H,t), 3.42(2H,d), 3.71(6H,s), 4.13(3H,s), 5.94(3H,s), 7.44(1H,d), 7.62(1H,d), 7.78(3H,m)

Example 102

1-[N-Benzyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine(114mg, 0.27mmol) was dissolved in dimethylformamide(15ml) and sodium hydride(6.6mg, 0.27mmol) was added and the solution was stirred at room temperature for 15 min. Benzylbromide(46mg, 0.27mmol)

was added to the above solution. The mixture was stirred at room temperature for 16 hours and concentrated under the reduced pressure to remove dimethylformamide. The concentrate was purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

25 yield: 90%

m.p.: oil phase

¹H NMR (CDCl₃): δ 2.92(4H,t), 3.39(4H,t), 3.72(6H,s), 4.13(3H,s), 4.79(2H,s), 6.01(3H,m), 7.21(1H,m), 7.25(2H,m), 7.33(3H,m), 7.51(1H,s), 7.57(2H,m), 7.81(2H,d)

Example 103

30

1-[N-(2-Methoxyquinolin-3-yl)-N-methylaminocarbonyl]-4-(3.5-dimethyl phenyl) piperazine:

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)

piperazine was reacted by the same way with the example 98 to obtain the titled compound.

yield: 92%

m.p: 142-143°C

¹H NMR (CDCl₃): δ 2.27(6H,d), 2.90(4H,t), 3.17(3H,s), 3.34(4H,t), 4.15(3H,s), 6.41(2H,s), 6.49(1H,s), 7.40(1H,t), 7.63(1H,t), 7.65(1H,d),

7.73(1H,s), 7.84(1H,d) 5

Mass(EI) m/z: Calcd for C24H28N4O2 404.2212, found 404.2225

Example 104

1-[N-Ethyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethyl phenyl)piperazine:

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) piperazine was reacted by the same way with the example 99 to obtain the titled compound.

yield: 89%

m.p.: 84-86°C 15

10

¹H NMR (CDCl₃): δ 1.16(3H,t), 2.21(6H,s), 2.87(4H,t), 3.30(4H,t), 3.64(2H,q), 4.13(3H,t), 6.40(2H,s), 6.48(1H,s), 7.40(1H,t), 7.62(1H,t), 7.66(1H,d), 7.71(1H,s), 7.84(1H,d)

Example 105 26

1-[N-Isopropyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5dimethylphenyl)piperazine:

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) piperazine was reacted by the same way with the example 100 to obtain the titled compound.

yield: 84%

25

m.p.: 114-115℃

¹H NMR (CDCl₃): δ 1.21(6H,d), 2.20(6H,s), 2.77(4H,t), 3.28(4H,t), 4.08(3H,s), 4.39(1H,m), 6.37(2H,s), 6.46(1H,s), 7.41(1H,t), 7.63(1H,t),

7.69(1H,d), 7.75(1H,s), 7.83(1H,d) 30

Example 106

1-[N-Benzyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5dimethylphenyl)piperazine:

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl) 35 piperazine was reacted by the same way with the example 102 to

obtain the titled compound.

yield: 90%

m.p.: oil phase

¹H NMR (CDCl₃): δ 2.24(6H,s), 2.87(4H,t), 3.31(4H,t), 4.13(3H,s),

5 4.80(2H,s), 6.42(3H,s), 7.49(1H,t), 7.62(2H,m), 7.72(2H,m)

Example 107

1-[N-(2-Methoxyquinolin-3-yl)-N-methylaminocarbonyl]-4-(3-isopropoxyphenyl)piperazine:

10 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3-isopropoxyphenyl) piperazine was reacted by the same way with the example 98 to obtain the titled compound.

yield: 92%

m.p.: oil phase

15 H NMR (CDCl₃): δ 1.28(6H,d), 2.97(4H,t), 3.18(3H,s), 3.37(4H,t), 4.14(3H,s), 4.49(1H,m), 6.41(3H,m), 7.13(1H,m), 7.40(1H,t), 7.62(1H,t), 7.66(1H,d), 7.74(1H,s), 7.84(1H,d)

Example 108

- 20 1-[N-Ethyl-N-(2-methoxyquinolin-3-yl)aminocarbonyl]-4-(3-isopropoxyphenyl)piperazine:
 - 1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3-isopropoxyphenyl) piperazine was reacted by the same way with the example 99 to obtain the titled compound.
- 25 yield: 87%

m.p.: oil phase

¹H NMR (CDCl₃): δ 1.16(3H,t), 1.34(6H,d), 2.89(4H,t), 3.30(4H,t), 3.63(2H,m), 4.13(3H,s), 4.55(1H,m), 6.49(2H,s), 7.05(1H,s), 7.20(1H,t), 7.32(1H,s), 7.37(1H,t), 7.50(1H,t), 7.70(1H,d), 7.77(1H,d), 8.80(1H,s)

30

Example 109

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)thiocarbamate(56mg, 0.5mmol) and 1-(3,5-dimethoxyphenyl)piperazine(111mg, 0.5mmol) were dissolved in anhydrous tetrahydrofuran and DBU(117mg, 0.75mmol) was added. The

reaction solution was stirred at room temperature for 2 hours. The above solution was concentrated under the reduced pressure to remove tetrahydrofuran and concentrated was purified by column chromatography(Hexane: ether = 5:1) to obtain the titled compound.

5 yield: 76%

m.p.: 171-172°C

¹H NMR (CDCl₃): δ 3.41(4H,t), 3.81(6H,s), 4.17(3H,s), 4.21(4H,t), 6.12(1H,s), 6.20(1H,d), 7.38(1H,t), 7.54(1H,t), 7.74(1H,d), 7.81(1H,d), 8.96(1H,s)

10

Example 110

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)thiocarbamate and

15 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 109 to obtain the titled compound.

yield: 79%

m.p.: 170-171°C

¹H NMR (CDCl₃): δ 2.30(6H,s), 3.38(4H,t), 4.09(3H,s), 4.17(4H,t),

20 6.63(3H,m), 7.38(1H,t), 7.54(1H,t), 7.72(1H,d), 7.81(1H,d), 8.96(1H,s)

Example 111

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)thiocarbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 109 to obtain the titled compound.

yield: 78%

m.p.: 140-142°C

30 ¹H NMR (CDCl₃): δ 3.44(4H,t), 4.20(4H,t), 4.25(3H,s), 6.33(2H,m), 6.45(1H,d), 7.41(1H,t), 7.56(1H,m), 7.72(1H,m), 7.97(1H,m), 8.96(1H,s)

Example 112

1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dichlorophenyl)

35 piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)thiocarbamate and

1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 109 to obtain the titled compound.

yield: 62%

m.p.: 181-183°C

5 ¹H NMR (CDCl₃): δ 3.44(4H,t), 4.20(4H,t), 4.26(3H,s), 6.77(1H,s), 6.88(2H,t), 7.41(1H,t), 7.59(1H,t), 7.70(2H,m), 8.01(1H,t), 8.11(1H,s), 8.93(1H,s)

Example 113

10 1-[(2-Methoxyquinolin-3-yl)aminothiocarbonyl]-4-(3-methoxyphenyl) piperazine:

Phenyl N-(2-methoxyquinolin-3-yl)thiocarbamate and 1-(3-methoxyphenyl)piperazine were reacted by the same way with the example 109 to obtain the titled compound.

yield: 81%
m.p.: oil phase

H NMR (CDCl₃): δ 3.17(4H,t), 3.89(3H,s), 4.17(4H,t), 6.90(4H,m), 7.34(1H,t), 7.48(1H,t), 7.70(1H,d), 7.77(1H,d), 8.80(1H,s)

- 20 Example 114
 1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)
 piperazine:
 - a) Phenyl N-(2-methylquinolin-3-yl)carbamate:
- 3-amino-2-methylquinoline(4g, 25mmol) and phenyl chloroformate(4.04g, 25mmol) were dissolved in methylene chloride and then was stirred at room temperature for 2 hrs. The mixture solution was concentrated under the reduced pressure to remove methylene chloride and purified by column chromatography(ethylacetate: hexane = 1:10) to obtain the titled compound.

yield: 88%

¹H NMR (CDCl₃): δ 2.77(3H,s), 7.30-7.53(9H,m), 8.67(1H,s)

b) 1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)
35 piperazine:
Phenyl N-(2-methylquinolin-3-yl)carbamate(140mg, 0.5mmol) and

1-(3,5-dimethoxyphenyl)piperazine(112mg, 0.5mmol) were dissolved in tetrahydrofuran and DBU(117mg, 0.75mmol) was added and then the mixture was stirred at room temperature for 2 hrs. The above solution was concentrated under the reduced pressure to remove tetrahydrofuran

and purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

yield: 84%

m.p.: 199-200℃

¹H NMR (CDCl₃): δ 2.81(3H,s), 3.30(4H,t), 3.76(4H,t), 3.80(6H,s),

10 6.08(1H,s), 6.12(2H,d), 7.48(1H,t), 7.62(1H,t), 7.71(1H,d), 8.03(1H,d), 8.59(1H,s)

Example 115

1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)

15 piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

yield: 86%

20 m.p.: 230-232°C

³H NMR (CDCl₃): δ 2.31(6H,s), 2.82(3H,s), 3.29(4H,t), 3.76(4H,t), 6.60(3H,s), 7.49(1H,t), 7.63(1H,t), 7.73(1H,d), 8.05(1H,d), 8.61(1H,s)

Example 116

25 1-[(2-methylquinolin-3-yl)aminocarbonyl]-4-(2,3-dimethylphenyl) piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and 1-(2,3-dimethylphenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

30 yield: 81%

m.p.: 169-170°C

¹H NMR (CDCl₃): δ 2.28(6H,d), 2.84(3H,s), 3.00(4H,t), 3.76(4H,t), 6.94(2H,m), 7.11(1H,t), 7.49(1H,t), 7.63(1H,t), 7.72(1H,d), 8.07(1H,d), 8.64(1H,s)

Example 117

1-[(2-Methoxyquinolin-3-yl)aminocarbonyl]-4-(3,5-difluorophenyl) piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and

5 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

yield: 81%

m.p.: 238-240°C

¹H NMR (CDCl₃): δ 2.81(3H,t), 3.34(4H,t), 3.77(4H,t), 6.32(1H,t),

10 6.39(2H,d), 7.49(1H,t), 7.63(1H,t), 7.72(1H,d), 8.03(1H,d), 8.58(1H,s)

Example 118

1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(3,5-dichlorophenyl) piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound. yield: 65%

m.p.: 247-249°C

20 H NMR (CDCl₃): δ 2.79(3H,s), 3.33(4H,t), 3.75(4H,t), 6.78(2H,s), 6.87(1H,s), 7.49(1H,t), 7.63(1H,t), 7.72(1H,d), 8.56(1H,s)

Example 119

1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)

25 piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and 1-(2-methoxyphenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

yield: 83%

- 30 m.p.: 135-136°C

 H NMR (CDCl₃): 8 2.82(3H,s), 3.18(4H,t), 3.79(4H,t), 3.91(3H,s), 6.88(1H,d), 6.97(2H,s), 7.07(1H,m), 7.48(1H,t), 7.62(1H,t), 7.72(1H,d), 8.04(1H,d), 8.63(1H,s)
- Example 120
 1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(2-fluorophenyl)piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and 1-(2-fluorophenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

yield: 84%

5 m.p.: 201-203℃

¹H NMR (CDCl₃): δ 2.84(3H,s), 3.20(4H,t), 3.80(4H,t), 6.99(2H,m), 7.07(2H,m), 7.49(1H,t), 7.62(1H,t), 7.71(1H,d), 8.04(1H,d), 8.62(1H,s)

Example 121

1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(2-chlorophenyl)piperazine:
Phenyl N-(2-methylquinolin-3-yl)carbamate and
1-(2-chlorophenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

yield: 72%

15 m.p. : 180-181 ℃

¹H NMR (CDCl₃): δ 2.83(3H,s), 3.16(4H,t), 3.80(4H,t), 7.04(3H,m), 7.40(1H,d), 7.49(1H,t), 7.63(1H,t), 7.71(1H,d), 8.05(1H,d), 8.62(1H,s)

Example 122

20 1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(2-methylthiophenyl) piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and 1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

25 yield: 76%

m.p.: 165-166℃

¹H NMR (CDCl₃): δ 2.45(3H,s), 2.85(3H,s), 3.11(4H,t), 3.79(4H,t), 7.05(1H,m), 7.15(3H,d), 7.49(1H,t), 7.63(1H,t), 7.69(1H,d), 8.62(1H,s)

30

Example 123

1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(2-methoxy-5-methyl phenyl)piperazine:

Phenyl N-(2-methylquinolin-3-yl)carbamate and

35 1-(2-methoxy-5-methylphenyl)piperazine were reacted by the same way with the example 114 to obtain the titled compound.

```
yield: 80%
     m.p.: oil phase
     <sup>1</sup>H NMR (CDCl<sub>3</sub>): \delta 2.30(3H,s), 2.72(3H,s), 3.17(4H,t), 3.70(4H,t),
      3.87(3H,s), 6.77(1H,s), 6.82(2H,s), 7.73(4H,m), 8.60(1H,s)
 5
     Example 124
     1-[(2-Methylquinolin-3-yl)aminocarbonyl]-4-(1-naphthyl)piperazine:
     Phenyl N-(2-methylquinolin-3-yl)carbamate and
     1-(1-naphthyl)piperazine were reacted by the same way with the
10 example 114 to obtain the titled compound.
    yield : 64%
    m.p.: 220-222°C
     <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 2.83(3H,s), 3.23(4H,t), 3.80(4H,t), 6.91(1H,s),
     7.12(1H,d), 7.44(1H,d), 7.50(3H,m), 7.61(2H,m), 7.73(1H,d), 7.86(1H,d),
15
     8.05(1H,d), 8.23(1H,d), 8.64(1H,s)
     Example 125
     1-[(2-Methylquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)
     piperazine:
20
    a) Phenyl N-(2-methylquinolin-3-yl)thiocarbamate:
     3-Amino-2-methylquinoline(4g, 25mmol) and phenyl
     chlorothionoformate(4.32g, 25mmol) were dissolved in methylene chloride
     and then was stirred at room temperature for 2hours. The mixture
    solution was concentrated under reduced pressure to remove methylene
    chloride and purified by column chromatography(ethylacetate : hexane =
     1:2) to obtain the titled compound.
    yield: 78%
    <sup>1</sup>H NMR (CDCl<sub>3</sub>): \delta 2.77(3H,s), 7.09-7.90(9H,m), 9.14(1H,s)
30
     b)
     1-[(2-Methylquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)
     piperazine:
     Phenyl N-(2-methylquinolin-3-yl)thiocarbamate(147mg, 0.5mmol) and
```

1-(3,5-dimethoxyphenyl)piperazine(112mg, 0.5mmol) were dissolved in anhydrous tetrahydrofuran and DBU(117mg, 0.75mmol) was added and

then the mixture was stirred at room temperature for 2 hrs. The above solution was concentrated under the reduced pressure to remove tetrahydrofuran and purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

5 yield: 86%

m.p. : 211-212°C

¹H NMR (CDCl₃): δ 2.81(3H,s), 3.35(4H,t), 3.79(6H,s), 4.14(4H,t), 6.07(3H,s), 7.49(2H,t), 7.68(2H,m), 8.01(1H,s), 8.07(1H,d)

10 Example 126

1-[(2-Methylquinolin-3-yl)aminothiocarbonyl]-4-(3,5-dimethylphenyl) piperazine:

Phenyl N-(2-methylquinolin-3-yl)thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 125 to obtain the titled compound.

yield: 81%

m.p.: 196-197°C

¹H NMR (CDCl₃): δ 2.27(6H,s), 2.81(3H,s), 3.31(4H,t), 4.11(4H,t), 6.53(2H,s), 6.58(1H,s), 7.48(2H,t), 7.67(2H,m), 7.96(1H,s), 8.04(1H,d)

20

Example 127

1-[(2-Methylquinolin-3-yl)aminothiocarbonyl]-4-(3,5-difluorophenyl) piperazine:

Phenyl N-(2-methylquinolin-3-yl)thiocarbamate and

25 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 125 to obtain the titled compound.

yield: 74%

m.p.: 211-213°C

¹H NMR (CDCl₃): δ 2.85(3H,s), 3.43(4H,t), 4.22(4H,t), 6.33(2H,m),

30 7.49(1H,t), 7.64(1H,d), 7.72(1H,t), 8.16(2H,m)

Example 128

1-{[2-(Pyridin-2-yl)quinolin-4-yl]aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-[2-(pyridin-3-yl)quinolin-4-yl]carbamate(171mg, 0.5mmol) and 1-(3.5-dimethoxyphenyl)piperazine(111mg, 0.5mmol) were dissolved in

anhydrous tetrahydrofuran and DBU(117mg, 0.75mmol) was added and then the mixture was stirred at room temperature for 2hrs. The above solution was concentrated under the reduced pressure to remove tetrahydrofuran and purified by column chromatography

(dichloromethane: methanol=20:1) to obtain the titled compound. yield: 73%

m.p.: 97-98°C

¹H NMR (CDCl₃): § 3.34(4H,t), 3.79(6H,s), 3.90(4H,t), 6.07(1H,s), 6.12(2H,s), 7.43(1H,t), 7.50(1H,t), 7.68(1H,t), 7.93(1H,t), 8.26(1H,d),

8.59(1H,d), 8.80(1H,d), 8.98(1H,s) 10 Mass(EI) m/z : Calcd for C₃₁H₂₇N₅O₃ 517.2113, found 517.3244

Example 129

1-{[2-(Pyridin-3-yl)quinolin-4-yl]aminocarbonyl}-4-(3,5-

dimethoxyphenyl)piperazine: 15

Phenyl N-[2-pyridin-3-yl)quinolin-4-yl]carbamate(171mg, 0.5mmol) and 1-(3,5-dimethoxyphenyl)piperazine(111mg, 0.5mmol) were dissolved in anhydrous tetrahydrofuran and DBU(117mg, 0.75mmol) was added and then the mixture was stirred at room temperature for 2 hours. The

above solution was concentrated under the reduced pressure to remove tetrahydrofuran and purified by column chromatography (dichloromethane: methanol = 20:1) to obtain the titled compound.

yield: 67%

m.p.: 95-96℃

¹H NMR (CDCl₃): δ 3.36(4H,t), 3.87(6H,s), 3.90(4H,t), 6.08(1H,s), 6.12(2H,s), 7.50(1H,t), 7.71(1H,t), 7.93(1H,t), 8.25(1H,d), 8.53(1H,d), 8.67(1H,s), 8.73(1H,d), 9.35(1H,s)

Example 130

1-{[2-Thien-2-yl)quinolin-4-yl]aminocarbonyl}-4-(3,5-dimethoxyphenyl) piperazine:

Phenyl N-[2-(thien-2-yl)quinolin-4-yl]carbamate(173mg, 0.5mmol) and 1-(3,5-dimethoxyphenyl)piperazine(111mg, 0.5mmol) were dissolved in anhydrous tetrahydrofuran and DBU(117mg, 0.75mmol) was added. The resulting mixture was stirred at room temperature for 2 hours,

concentrated under the reduced pressure to remove tetrahydrofuran and

purified by column chromatography(ethylaetate: hexane = 1:1) to obtain the titled compound.

yield: 61%

m.p.: oil phase

¹H NMR (CDCl₃): δ 3.37(4H,t), 3.59(6H,s), 3.97(4H,t), 7.01(3H,m), 7.49(1H,t), 7.69(1H,t), 7.93(1H,t), 8.20(1H,d), 8.52(1H,d), 8.64(1H,s), 8.71(1H,d), 9.35(1H,s)

Example 131

- 1-([2-(Pyridin-3-yl)quinolin-4-yl]aminocarbonyl}-4-(3,5-dimethylphenyl) piperazine:
 - Phenyl N-[2-(pyridin-3-yl)quinolin-4-yl]carbamate(171mg, 0.5mmol) and 1-(3,5-dimethylphenyl)piperazine(95mg, 0.5mmol) were dissolved in anhydrous tetrahydrofuran and DBU(117mg, 0.75mmol) was added. The
- resulting mixture was stirred at room temperature for 2 hours, concentrated under the reduced pressure to remove tetrahydrofuran, and purified by column chromatography(ethylacetate: hexane =1:1) to obtain the titled compound.

yield : 64%

- 20 m.p.: 211-213°C

 ¹H NMR (CDCl₃): δ 2.31(6H,s), 3.32(4H,t), 3.85(4H,t), 6.61(3H,s), 7.47(1H,t), 7.55(1H,t), 7.72(1H,t), 7.86(1H,t), 8.25(1H,d), 8.53(1H,d), 8.66(1H,s), 8.72(1H,d), 9.37(1H,s)
- Example 132
 1-[N-(5,6-Dimethyl-2-methoxypyridin-3-yl)-N-methylaminocarbonyl]-4(3,5-dimethoxyphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine(100mg, 0.25mmol) was dissolved in

- dimethylformamide(15ml) and thereto sodium hydride(6.0mg, 0.25mmol) was added. The resulting mixture was stirred at room temperature for 15 min and thereto iodomethane(35mg, 0.25mmol) was added. The resulting mixture was stirred at room temperature for 16 hrs, concentrated under the reduced presssure to remove dimethylformamide,
- and purified by column chromatography(ethylacetate: hexane=1:2) to obtain the titled compound.

yield: 94%

m.p.: oil phase

¹H NMR(CDC_b) δ : 2.17(3H,s), 2.38(3H,s), 2.92(4H,t), 3.04(3H,s),

3.29(4H,t), 3.74(6H,s), 3.96(3H,s), 6.00(3H,m), 7.08(1H,s)

5

Example 133

1-[N-Ethyl-N-(5,6-dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(3,5-

dimethoxyphenyl)piperazine(100mg, 0.25mmol) was dissolved in dimethylformamide(15ml) and thereto sodium hydride(6.0mg, 0.25mmol) was added, followed by stirring at room temperature for 15 min and then iodoethane(39.2mg, 0.25mmol) was added. The resulting mixture was stirred at room temperature for 16 hrs, concentrated under the

reduced pressure to remove dimethylformamide, and purified by column chromatography(ethylacetate: hexane=1:2) to obtain the titled compound, yield: 86%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.08(3H,t), 2.04(3H,s), 2.38(3H,s), 2.90(4H,t),

20 3.26(4H,t), 3.52(2H,q), 3.74(6H,s), 5.99(3H,m), 7.06(1H,s)

Example 134

1-[N-Isopropyl-N-(5,6-dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

25 1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine(100mg, 0.25mmol) was dissolved in dimethylformamide(15ml) and thereto sodium hydride(6.0mg, 0.25mmol) was added, followed by stirring at room temperature for 15 min, and then 2-iodopropane(42mg, 0.25mmol) was added. The resulting mixture

was stirred at room temperature for 16 hrs, concentrated under the reduced pressure to remove dimethylformamide, purified by column chromatography(ethylacetate: hexane=1:2) to obtain the titled compound. yield: 78%

m.p.: oil phase

¹H NMR(CDCl₃) δ: 1.13(6H,d), 2.19(3H,s), 2.38(3H,s), 2.82(4H,t), 3.26(4H,t), 3.74(6H,s), 3.89(3H,s), 4.27(1H,m), 6.06(1H,s), 6.10(2H,d),

7.07(1H,s), 8.14(1H,s)

Mass(EI) m/z: Calcd for C24H34N4O4 442.2580, found 442.2538

Example 135

5 1-[N-(5,6-Dimethyl-2-methoxypyridin-3-yl)-N-methylaminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(3,5-dimethyl phenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

10 yield: 97%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 2.15(6H,s), 2.23(3H,s), 2.37(3H,s), 2.89(4H,t), 3.04(3H,s), 3.30(4H,t), 3.97(3H,s), 6.46(3H,m), 7.08(1H,s)

Example 136 15

1-[N-(5,6-Dimethyl-2-methoxypyridin-3-yl)-N-methylaminocarbonyl]-4-(2-methoxyphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methoxyph enyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

20

25

yield: 94%

m.p. : 131-132℃

¹H NMR(CDCl₃) δ : 2.16(3H,s), 2.38(3H,s), 2.80(4H,t), 3.05(3H,s),

3.35(4H,t), 3.82(3H,s), 3.97(3H,s), 6.83(4H,m), 7.08(1H,s)

Example 137

1-[N-Ethyl-N-(5,6-dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-independent of the control o(2-methoxyphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methoxyph enyl)piperazine was reacted by the same way with the example 133 to 30 obtain the titled compound.

vield: 87%

m.p. ∶ 112-113°C

¹H NMR(CDCl₃) δ : 1.08(3H,t), 2.16(3H,s), 2.38(3H,s), 2.77(4H,t),

3.31(4H,t), 3.58(2H,q), 3.81(3H,s), 3.96(3H,s), 6.88(4H,m), 7.06(1H,s)35

Example 138

1-[N-Benzyl-N-(5,6-dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)piperazine(100mg, 0.27mmol) was dissolved in dimethylformamide(15ml) and thereto sodium hydride(6.5mg, 0.27mmol) was added, followed by stirring at room temperature for 1hr, and successively benzyl bromide(46.2mg, 0.27mmol) was added. The resulting mixture was stirred at room temperature for 16 hrs,

concentrated under the reduced pressure and purified by column chromatography(ethylacetate: hexane = 1: 2) to obtain the titled compound.

yield: 93%

m.p.: oil phase

15 H NMR(CDCl₃) δ: 2.08(3H,s), 2.35(3H,s), 2.85(4H,t), 3.32(4H,t), 3.81(3H,s), 3.96(3H,s), 4.76(2H,s), 6.96(4H,m), 7.41(5H,m)

Example 139

1-[N-Cyclopropylmethyl-N-(5,6-dimethyl-2-methoxypyridin-3-yl)
20 aminocarbonyl]-4-(2-methoxyphenyl)piperazine:
1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(2-methoxyphenyl)piperazine(100mg, 0.26mmol) was dissolved in dimethylformamide(15ml) and thereto sodium hydride(6.2mg, 0.26mmol) was added, followed by stirring at room temperature for 15 min, and successively bromomethylcyclopropane(21.8mg, 0.26mmol) was added. The resulting mixture was stirred at room temperature for 16 hrs, concentrated under the reduced pressure and purified by column chromatography(ethylacetate: hexane = 1: 2) to obtain the titled compound.

30 yield: 78%
m.p.: oil phase

¹H NMR(CDCl₃) δ: 0.34(2H,m), 0.49(2H,m), 1.35(1H,m), 2.85(4H,t), 3.28(4H,t), 3.40(2H,s), 3.89(3H,s), 3.97(3H,s), 6.97(4H,m), 7.11(1H,s)

Example 140
1-[N-(5,6-Dimethyl-2-methoxypyridin-3-yl)-N-methylaminocarbonyl]-4-

(5-methoxy-2-methylphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(5-methoxy-2-methylphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

5 yield: 74%

m.p.: 91-93°C

¹H NMR(CDCl₃) δ : 2.15(3H,s), 2.18(3H,s), 2.39(3H,s), 2.67(4H,t), 3.05(3H,s), 3.30(4H,t), 3.75(3H,s), 3.97(3H,s), 6.48(3H,m), 7.10(1H,s)

10 Example 141

1-[N-Ethyl-N-(5,6-dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(5-methoxy-2-methylphenyl)piperazine:

1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(5-methoxy-2-methylphenyl)piperazine was reacted by the same way with the

15 example 133 to obtain the titled compound.

yield: 94%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.09(3H,t), 2.15(3H,s), 2.18(3H,s), 2.39(3H,s), 2.60(4H,t), 3.27(4H,t), 3.59(2H,q), 3.75(3H,s), 3.96(3H,s), 6.45(3H,m),

20 7.08(1H,s)

Example 142

1-[N-Benzyl-N-(5,6-dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(5-methoxy-2-methylphenyl)piperazine:

25 1-[(5,6-Dimethyl-2-methoxypyridin-3-yl)aminocarbonyl]-4-(5-methoxy-2-methylphenyl)piperazine was reacted by the same way with the example 138 to obtain the titled compound.

yield: 97%

m.p.: oil phase

30 ¹H NMR(CDCl₃) δ: 1.25(3H,t), 2.08(3H,s), 2.14(3H,s), 2.35(3H,s), 2.60(4H,t), 3.32(4H,t), 3.74(3H,s), 3.95(3H,s), 4.66(2H,s), 6.44(4H,m), 6.96(5H,m), 7.12(1H,s)

Example 143

35 1-[N-(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

yield: 87%

5 m.p.: 78-79°C

¹H NMR(CDCl₃) δ : 1.14(3H,t), 2.41(3H,s), 2.52(2H,q), 2.91(4H,t), 3.02(3H,s), 3.28(4H,t), 3.74(6H,s), 3.98(3H,s), 5.98(3H,m), 7.11(1H,s) Mass(EI) m/z: Calcd for C₂₃H₃₂N₄O₄ 428.2423, found 428.2434

10 Example 144

1-[N-(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the

15 example 132 to obtain the titled compound.

yield: 84%

m.p.: 86-87°C

¹H NMR(CDCl₃) δ: 1.14(3H,t), 2.23(6H,s), 2.45(3H,s), 2.58(2H,q), 2.87(4H,t), 3.05(3H,s), 3.30(4H,t), 3.98(3H,s), 6.46(3H,m), 7.11(1H,s)

20 Mass(EI) m/z: Calcd for C23H32N4O2 396.2525, found 396.2575

Example 145

1-[N-Ethyl-N-(5-ethyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl] -4-(3,5-dimethylphenyl)piperazine:

25 1-[(5-Ethyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 133 to obtain the titled compound.

yield: 86%

m.p.: 84-85°C

30 ¹H NMR(CDCl₃) δ: 1.13(6H,m), 2.23(6H,s), 2.41(3H,s), 2.58(2H,q), 2.85(4H,t), 3.26(4H,t), 3.46(2H,q), 3.96(3H,s), 6.45(3H,m), 7.08(1H,s)

Example 146

1-[N-(2-Methoxy-6-methyl-5-propylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(2-Methoxy-6-methyl-5-propylpyridin-3-yl)aminocarbonyl]-4-

(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

yield: 89%

m.p.: oil phase

5 ¹H NMR(CDCl₃) δ: 1.01(3H,t), 1.78(2H,m), 2.21(3H,s), 2.78(2H,t), 3.78(6H,s), 3.86(4H,t), 3.99(3H,s), 4.00(3H,s), 4.22(4H,t), 6.01(3H,m), 7.02(1H,s)

Example 147

- 1-[N-(6-Ethyl-2-methoxy-5-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine:
 1-[(6-Ethyl-2-methoxy-5-methylpyridin-3-yl)aminocarbonyl]-4(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.
- yield: 85%
 m.p.: oil phase

 ¹H NMR(CDCl₃) δ: 2.21(3H,t), 2.21(3H,s), 2.45(2H,q), 3.21(4H,t),
 3.40(3H,s), 3.67(4H,t), 3.77(6H,s), 4.01(3H,s), 6.07(3H,m), 6.96(1H,s),
 8.07(1H,s)

20

Example 148

- 1-[N-(2-Methoxy-5-methyl-6-propylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine:
- 1-[(2-Methoxy-5-methyl-6-propylpyridin-3-yl)aminocarbonyl]-4-
- 25 (3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

yield: 86%

m.p. : 106-107°C

¹H NMR(CDCl₃) δ : 0.98(3H,t), 1.73(2H,q), 2.18(3H,s), 2.63(2H,t),

2.92(4H,t), 3.05(3H,s), 3.29(4H,t), 3.74(6H,s), 3.96(3H,s), 6.00(3H,m), 7.11(1H,s)

Mass(EI) m/z: Calcd for C₂₄H₃₄N₄O₄ 442.2580, found 442.2543

Example 149

35 1-[N-(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

yield: 89%

5 m.p.: oil phase

¹H NMR(CDCl₃) δ : 2.50(3H,s), 2.70(3H,s), 2.97(4H,t), 3.09(3H,s), 3.33(4H,t), 3.75(6H,s), 4.06(3H,s), 6.03(3H,m), 7.72(1H,s)

Mass(EI) m/z: Calcd for C23H30N4O5 442.2216, 442.2229

10 Example 150

1-[N-Ethyl-N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 133 to obtain the titled compound.

yield: 87%

m.p.: oil phase

¹H NMR(CDCl₃) δ: 1.09(3H,t), 2.49(3H,s), 2.70(3H,s), 3.00(4H,t),

3.32(4H,t), 3.77(6H,s), 4.01(3H,s), 4.09(2H,q), 5.98(3H,m), 7.76(1H,s)

20

Example 151

1-[N-(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-

25 (3,5-dimethylphenyl)piperazine was reacted by the same with the example 132 to obtain the titled compound.

yield: 88%

m.p.: oil phase

¹H NMR(CDC₁₃) δ : 2.24(6H,s), 2.50(3H,s), 2.70(3H,s), 2.93(4H,t),

30 3.09(3H,s), 3.28(4H,t), 4.06(3H,s), 6.46(3H,m), 7.73(1H,s)

Example 152

 $1-\{N-[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-N-methyl aminocarbonyl\}-4-(3,5-dimethoxyphenyl) piperazine:$

35 1-[N-(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine(0.47mmol) was dissolved in

anhydrous ethanol(15ml) and thereto sodium borohydride(17.3mg) was added, then followed by stirring at room temperature for 2 hrs. The resulting mixture was concentrated under the reduced pressure to remove ethanol and purified by column chromatography(ethylacetate:

5 hexane = 2:1) to obtain the titled compound.

yield: 97%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.14(3H,d), 2.44(3H,s), 2.93(4H,t), 3.06(3H,s), 3.30(4H,t), 3.74(6H,s), 3.98(3H,s), 5.03(1H,q), 6.02(3H,m), 7.50(1H,s)

10

Example 153

1-{N-Ethyl-N-[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl] aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine;

1-[N-Ethyl-N-(5-cetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]
15 -4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 152 to obtain the titled compound.

yield: 96%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.09(3H,t), 1.41(3H,d), 2.44(3H,s), 2.91(4H,t),

20 3.27(4H,t), 3.54(1H,q), 3.74(6H,s), 3.96(3H,s), 5.03(1H,q), 6.02(3H,m), 8.46(1H,s)

Example 154

1-{N-[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]-N-methylaminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:
1-[N-Methyl-N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 152 to obtain the titled compound.

yield: 97%

30 m.p.: oil phase 'H NMR(CDCl₃) δ : 1.41(3H,d), 2.24(6H,s), 2.44(3H,s), 2.91(4H,t), 3.06(3H,s), 3.26(4H,t), 3.99(3H,s), 5.03(1H,q), 6.49(3H,m), 7.50(1H,s)

Example 155

35 1-{N-[5-(1-Hydroxy-1-methylethyl)-2-methoxy-6-methylpyridin-3-yl]-N-methylaminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:

1-[N-Methyl-N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)amino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine(221mg, 0.5mmol) was dissolved in tetrahydrofuran(10ml) and thereto methyl magnesium bromide(0.50ml, 1.50mmol). The resulting mixture was refluxed for 15

hrs, concentrated under the reduced pressure to remove used solvent. extracted with ethylacetate, filtered to dryness, and purified by column chromatography(ethylacetate: hexane =1:2) to obtain the titled compound.

yield: 92%

10 m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.59(6H,s), 2.66(3H,s), 2.93(4H,t), 3.06(3H,s), 3.30(4H,t), 3.74(6H,s), 3.99(3H,s), 6.03(3H,m), 7.45(1H,s)

Example 156

- 15 1-{N-[5-(1-Hydroxy-1-methylpropyl)-2-methoxy-6-methylpropyl)-2-methoxy-6-methylpropyl -N-methylaminocarbonyl)-4-(3,5-dimethylphenyl)piperazine: 1-[N-Methyl-N-(5-acetyl-2-methoxy-6-methylpyridin-3-yl)amino carbonyl]-4-(3,5-dimethylphenyl)piperazine(213mg, 0.5mmol) was dissolved in tetrahydrofuran(10ml) and thereto methyl magnesium bromide(0.50ml, 1.50mmol) was added slowly, then refluxed for 15 hrs. The resulting mixture was concentrated under the reduced pressure to
 - remove the used solvent, extracted with ethylacetate, filtered to dryness. and purified by column chromatography(ethylacetate: hexane =1:2) to obtain the titled compound.
- yield: 88% 25

m.p.: oil phase

¹H NMR(CDCl₃) δ : 0.79(3H,t), 1.58(3H,s), 1.85(2H,q), 2.61(3H,s), 2.99(4H,t), 3.07(3H,s), 3.30(4H,t), 3.76(6H,s), 6.12(3H,m), 7.47(1H,s)

30 Example 157

1-{N-[2-Methoxy-5-(1-methoxyethyl)-6-methylpyridin-3-yl]-N-methyl aminocarbonyl)-4-(3,5-dimethoxyphenyl)piperazine:

1-{N-[5-(1-Hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]amino carbonyl)-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same

35 way with the example 132 to obtain the titled compound. vield: 95%

m.p.: 117-119°C

¹H NMR(CDCl₃) δ : 1.34(3H,t), 2.43(3H,s), 2.94(4H,t), 3.06(3H,s), 3.18(3H,s), 3.30(4H,t), 3.74(6H,s), 3.99(3H,s), 4.44(1H,q), 6.02(3H,m),

7.37(1H,s)

5

Example 158

1-[N-(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)aminocarbonyl]-4-

10 (3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

vield: 94%

m.p. i oil phase

'H NMR(CDCl₃) δ : 2.46(3H,s), 2.93(4H,t), 3.07(3H,s), 3.30(4H,t),

3.73(6H,s), 3.99(3H,s), 5.25(1H,d), 5.48(1H,d), 6.01(3H,m), 6.78(1H,s), 7.43(1H,s)

Example 159

1-[N-(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)-N-methylamino

carbonyl]-4-(3,5-dimethylphenyl)piperazine: 20

1-[(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)aminocarbonyl]-4-(3.5-dimethylphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

yield: 89%

m.p.: oil phase 25

> ¹H NMR(CDCl₃) δ : 2.24(6H,s), 2.43(3H,s), 2.90(4H,t), 3.04(3H,s), 3.27(4H,t), 3.99(3H,s), 5.23(1H,d), 5.45(1H,d), 6.05(3H,m), 6.77(1H,s), 7.40(1H,s)

Example 160 30

1-[N-Ethyl-N-(2-methoxy-6-methyl-5-vinylpyridin-3-yl)aminocarbonyl] -4-(3.5-dimethoxyphenyl)piperazine:

1-[(2-Methoxy-6-methyl-5-vinylpyridin-3-yl)aminocarbonyl]-4-

(3.5-dimethoxyphenyl)piperazine was reacted by the same way with the 35 example 133 to obtain the titled compound.

yield: 92%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.09(3H,t), 2.43(3H,s), 2.94(4H,t), 3.28(4H,t), 3.77(6H,s), 4.01(3H,s), 4.11(2H,q), 5.25(1H,d), 5.49(1H,d), 5.98(3H,m), 6.77(1H,s), 7.44(1H,s)

5

Example 161

1-[N-(5-Isopropenyl-2-methoxy-6-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(5-Isopropenyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4- (3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

yield: 92%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.98(3H,s), 2.43(3H,s), 2.92(4H,t), 3.06(3H,s),

3.29(4H,t), 3.74(6H,s), 3.99(3H,s), 4.84(1H,s), 5.30(1H,s), 6.01(3H,m), 7.10(1H,s)

Example 162

1-[N-(5-Isopropenyl-2-methoxy-6-methylpyridin-3-yl)-N-methylamino carbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-[(5-Isoprophenyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 132 to obtain the titled compound.

yield: 91%

25 m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.98(3H,s), 2.24(6H,s), 2.43(3H,s), 2.90(4H.t), 3.06(3H,s), 3.28(4H,t), 4.00(3H,s), 4.84(1H,s), 5.19(1H,s), 6.46(3H,m), 7.10(1H.s)

30 Example 163

Ethyl 2-(([4-(3,5-dimethoxyphenyl)piperazino]carbonyl)(5-acetyl-2-methoxy-6-methylpyridin-3-yl)amino)acetate:

1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine(200mg, 0.5mmol) was dissolved in

dimethylformamide(15ml) and thereto sodium hydride(18.5mg, 0.5mmol) was added, then followed by stirring at room temperature for 15 min.

and ethylbromoacetate(83.5mg, 0.5mmol) was added. The resulting mixture was stirred at room temperature for 3 hrs, concentrated under the reduced pressure to remove the used solvent, and purified by column chromatography(ethylacetate: hexane =1:2) to obtain the titled

5 compound.

yield: 84%

m.p.: oil phase

¹H NMR(CDCl₃) δ : 1.26(3H,t), 2.51(3H,s), 2.69(3H,s), 3.04(4H,t), 3.43(4H,t), 3.75(6H,s), 4.05(3H,s), 4.15(2H,q), 4.19(2H,s), 6.08(3H,s),

10 7.96(1H,s)

Example 164

Ethyl 2-({[4-(3,5-dimethylphenyl)piperazino]carbonyl)(5-acetyl-2-methoxy-6-methylpyridin-3-yl)amino)acetate:

15 1-[(5-Acetyl-2-methoxy-6-methylpyridin-3-yl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 163 to obtain the titled compound.

yield: 80%

m.p.: oil phase

11 NMR(CDCl₃) δ: 1.25(3H,t), 2.56(3H,s), 2.69(3H,s), 3.00(4H,t), 3.29(4H,t), 3.78(6H,s), 4.06(3H,s), 4.18(2H,s), 5.99(3H,m), 7.98(1H,s)

Example 165

2-({[4-(3,5-Dimethoxyphenyl)piperazino]carbonyl}(5-acetyl-2-methoxy-6-

25 methylpyridin-3-yl)amino)acetic acid:

Ethyl ({[4-(3,5-dimethoxyphenyl)piperazino]carbonyl}(5-acetyl-2-methoxy -6-methylpyridin-3-yl)amino)acetate(200mg, 0.38mmol) was dissolved in mixed solvent of dioxane: distilled water =4:1(15ml), and lithium hydroxide hydrate(48.1mg, 1.14mmol) was added, then followed by

stirring at room temperature for 3 hrs. The resulting mixture was made acidic with 1N-HCl, extracted with ethylacetate, filtered to dryness, concentrated under the reduced pressure and purified by column chromatography(ethylacetate: hexane = 1:2) to obtain the titled compound.

35 yield: 94%

m.p.: 135-137°C

¹H NMR(CDCl₃) δ : 2.52(3H,s), 2.69(3H,s), 3.11(4H,t), 3.49(4H,t), 3.74(6H,s), 4.05(3H,s), 4.24(2H,s), 6.15(3H,m), 7.83(1H,s)

Example 166

Ethyl 2-(([4-(3,5-dimethoxyphenyl)piperazino]carbonyl)[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]amino)acetate:

Ethyl 2-(([4-(3,5-dimethoxyphenyl)piperazino]carbonyl)(5-acetyl-2-methoxy-6-methylpyridin-3-yl)amino)acetate was reacted by the same way with the example 152 to obtain the titled compound.

10 yield: 97%

m.p.: 125-127°C

¹H NMR(CDCl₃) δ : 1.26(3H,t), 1.42(3H,d), 2.44(3H,s), 3.04(4H,t), 3.31(4H,t), 3.75(6H,s), 3.97(3H,s), 4.16(2H,q), 4.19(2H,s), 6.15(3H,m), 7.69(1H,s)

15

Example 167

Ethyl 2-({[4-(3,5-dimethoxyphenyl)piperazino]carbonyl)[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]amino)acetate: Ethyl 2-({[4-(3,5-dimethoxyphenyl)piperazino]carbonyl)[5-

20 (1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]amino)acetate was reacted by the same way with the example 164 to obtain the titled compound.

yield: 92%

m.p.: oil phase

25 ¹H NMR(CDCl₃) δ: 1.41(3H,d), 2.44(3H,s), 2.98(4H,t), 3.36(4H,t), 3.74(6H,s), 3.98(3H,s), 4.40(2H,s), 5.00(1H,q), 6.08(3H,m), 7.69(1H,s)

Example 168

Ethyl 2-(([4-(3,5-dimethylphenyl)piperazino]carbonyl)[5-

30 (1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]amino)acetate:
Ethyl 2-({[4-(3,5-dimethylphenyl)piperazino]carbonyl}(5-acetyl-2-methoxy-6-methylpyridin-3-yl)amino)acetate was reacted by the same way with the example 152 to obtain the titled compound.

yield : 94%

35 m.p. : 68-70℃

¹H NMR(CDCl₃) δ : 1.13(3H,t), 1.47(3H,d), 2.33(6H,s), 2.44(3H,s),

2.95(4H,t), 3.30(4H,t), 3.98(3H,s), 4.10(2H,q), 5.01(1H,q), 6.46(3H,m), 7.71(1H,s)

Example 169

2-({[4-(3,5-Dimethylphenyl)piperazino]carbonyl}[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]amino)acetic acid:
Ethyl 2-({[4-(3,5-dimethylphenyl)piperazino]carbonyl}[5-(1-hydroxyethyl)-2-methoxy-6-methylpyridin-3-yl]amino)acetate was reacted by the same way with the example 165 to obtain the titled compound.

vield: 92%

m.p. ∶ 114-116℃

¹H NMR(CDCl₃) δ : 1.40(3H,d), 2.23(6H,s), 2.40(3H,s), 2.91(4H,t), 3.21(4H,t), 3.98(3H,s), 4.06(2H,s), 4.90(1H,q), 6.50(3H,m), 6.51(1H,s)

15

Example 170

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-phenylpiperazine a) 3,4-Dimethyl anisole:

To 3,4-dimethylphenol(19.3g, 0.16mol), methanol(150ml) and KOH(9.65g, 0.25mol) were added and then refluxed for 2hrs. Methyl iodide(36.5g, 0.25mol) was added thereto, refluxed for 3 hours and then followed by addition of water(150ml). The resulting mixture was extracted with ethylacetate and purified by column chromatography to obtain the titled compound.

25 yield: 81%

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.24(3H,s), 3.77(3H,s), 6.71(2H,m), 6.97(1H,s)

b) 4,5-Dimethyl-2-nitroanisole:

Trifluoroacetic acid(250ml) was added into 3,4-dimethylanisole(17.1g, 0.13mol), successively sodium nitrite(16.6g, 0.24mol) was added slowly in water bath, and stirred at room temperature for 14 hrs. After trifluoroacetic acid was removed and water was added thereto, the resulting mixture was extracted with ether, and purified by column chromatography to obtain the titled compound.

35 yield: 55%

¹H NMR(500MHz, CDCl₃): δ 2.25(3H,s), 2.32(3H,s), 3.94(3H,s),

- 82 -

6.85(1H,s), 7.70(1H,s)

c) 4,5-Dimethyl-2-methoxyaniline:

Tetrahydrofuran(100ml) and ethanol(40ml) were added into 4,5-dimethyl-2-nitroanisole(7.80g, 0.043mol) and then added 10%

Pd/activated carbon(0.57g) slowly, hydrogenated for 5 hrs. The reaction was completed by the same way with the above and the resulting product was purified by column chromatography to obtain the titled compound.

yield: 82%

- 10 ¹H NMR(500MHz, CDCl₃): δ 2.23(3H,s), 2.27(3H,s), 3.90(3H,s), 6.80(1H,s), 7.68(1H,s)
 - d) Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate:
 To 4,5-dimethyl-2-methoxyaniline(4.50g, 0.03mol), methylene
 chloride(100ml) was added and phenyl chloroformate(4.80g, 0.03mol) was
- added slowly. The resulting solution was stirred for 2 hrs and thereto water(150ml) was added, and extracted with methylene chloride and purified by column chromatography to obtain the titled compound. yield: 98%

¹H NMR(500MHz, CDCl₃): δ 2.24(3H,s), 2.27(3H,s), 3.89(3H,s),

- 20 6.85(1H,s), 7.20(5H,m), 7.90(1H,s)
 - e) 1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-phenylpiperazine: Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate(5.422g, 0.02mol) and 1-phenylpiperazine(3.44g, 0.02mol) were dissolved in tetrahydrofuran(10ml). After DBU(3.04g, 0.02mol) was added, the
- 25 resulting solution was stirred at room temperature for 2 hrs, concentrated and purified by column chromatography to obtain the titled compound.

yield: 85%

m.p.: 143-144°C

30 H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 3.25(4H,t), 3.67(4H,t), 3.85(3H,s), 6.64(1H,s), 6.94(3H,m), 6.99(1H,s), 7.29(1H,t), 7.91(1H,s)

Example 171

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-

35 (3,5-dimethoxyphenyl)piperazine:
Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and

1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 85%

m.p.: 119-120°C

5 'H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 3.27(4H,t), 3.70(4H,t), 3.79(6H.s), 3.85(3H.s), 6.17(2H.m), 6.65(1H.s), 6.98(1H.s), 7.90(1H.s)Mass(EI) m/z: Calcd for C₂₂H₂₈N₃O₄ 399.2158, found 399.2168

Example 172

10 1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3.5-dimethylphenyl)piperazine: Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(3.5-dimethylphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

15 yield: 88%

m.p.: 177-178°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 2.29(6H,s), 3.23(4H.t), 3.66(4H.t), 3.85(3H.s), 6.58(2H.m), 6.65(1H.s), 6.99(1H.s), 7.92(1H.s)

20 Mass(EI) m/z: Calcd for C₂₂H₂₉N₃O₂ 367.2259, found 367.2290

Example 173

1-[4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2,3-dimethylphenyl) piperazine:

25 Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(2,3-dimethylphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 95%.

m.p.: 140-142°C

¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.22(3H,s), 2.27(3H,s), 2.29(3H,s), 2.95(4H,t), 3.67(4H,t), 3.85(3H,s), 6.65(1H,s), 7.01(3H,m), 7.93(1H,s)

Example 174

35 1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2,3,5,6-tetramethylphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(2,3,5,6-tetramethylphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 93%

5 m.p. oil phase

¹H NMR(500MHz, CDCl₃): δ 2.20(9H,s), 2.21(9H,s), 3.17(4H,t), 3.63(4H,t), 3.84(3H,s), 6.64(1H,s), 6.84(1H,s), 7.95(1H,s)

Example 175

10 1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-difluorophenyl) piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

15 yield: 89%

m.p.: 102-103°C

 1 H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.22(3H,s), 3.29(4H,t), 3.68(4H,t), 3.85(3H,s), 6.65(1H,s), 6.97(3H,m), 7.89(1H,s)

20 Example 176

1-[(4.5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2-chlorophenyl) piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and

1-(2-chlorophenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 90%

m.p.: 176-177°C

¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.22(3H,s), 3.10(4H,t,J=5.0Hz), 3.69(4H,t,J=5.0Hz), 3.85(3H,s), 6.65(1H,s), 7.02(2H,m), 7.24(1H,m),

30 7.39(1H,d,J=4.0Hz), 7.92(1H,s)

Example 177

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3-chlorophenyl) piperazine:

35 Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(3-chlorophenyl)piperazine were reacted by the same way with the

example 170 to obtain the titled compound.

vield: 84%

m.p. : 75-76℃

'H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.22(3H,s), 3.27(4H,t,J=5.0Hz),

5 3.68(4H,t,J=5.0Hz), 3.85(3H,s), 6.65(1H,s), 6.90(3H,m), 7.21(1H,t), 7.90(1H,s)

Mass(EI) m/z: Calcd for C₂₀H₂₄N₃O₂Cl₁ 373.1557, found 373.1590

Example 178

10 1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2-hydroxyphenyl) piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(2-hydroxyphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

15 yield: 87%

m.p. ∶ 197-199°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 2.98(4H,t), 3.72(4H,t), 3.84(3H,s), 6.65(1H,s), 6.89(1H,t), 7.00(2H,m), 7.13(2H,m), 7.89(1H,s)

20 Example 179

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3-hydroxyphenyl) piperazine:

Phenyl N-(4.5-dimethyl-2-methoxyphenyl)carbamate and

1-(3-hydroxyphenyl) were reacted by the same way with the example 25 170 to obtain the titled compound.

yield: 88%

m.р. : 177-178℃

'H NMR(500MHz, CDCl₃): δ 2.19(3H,s), 2.21(3H,s), 3.24(4H,t), 3.68(4H,t), 3.85(3H,s), 6.41(3H,m), 6.65(1H,s), 6.98(1H,s), 7.13(1H,t), 7.88(1H,s)

30

Example 180

1-[(4.5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3-thiophenyl) piperazine:

Phenyl N-(4.5-dimethyl-2-methoxyphenyl)carbamate and

35 1-(3-thiophenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 79%

m.p.: 108-110℃

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 3.26(4H,t), 3.65(4H,t), 3.84(3H,s), 6.64(1H,s), 6.97(4H,m), 7.05(1H,s), 7.89(1H,s)

5

Example 181

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2-acetoxyphenyl) piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and

10 1-(2-acetoxyphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 84%

m.p.: 129-131°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 2.32(3H,s),

3.05(4H,t), 3.63(4H,t), 3.85(3H,s), 6.64(1H,s), 6.99(1H,s), 7.04(1H,m), 7.17(2H,m), 7.22(1H,m), 7.90(1H,s)

Example 182

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3-acetoxyphenyl)

20 piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(3-acetoxyphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 87%

25 m.p.: 154-156°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 2.29(3H,s),
3.27(4H,t), 3.68(4H,t), 3.85(3H,s), 6.64(1H,s), 6.66(2H,m), 6.82(1H,m),
6.98(1H,s), 7.90(1H,s)

30 Example 183

1-[(4,5-Dimethyl+2-methoxyphenyl)aminocarbonyl]-4-(2-methoxyphenyl) piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(2-methoxyphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 90%

m.p.: 144-145°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.22(3H,s), 2.26(3H,s), 2.95(4H,t, J=5.0Hz), 3.65(4H,t,J=5.0Hz), 3.78(3H,s), 3.85(3H,s), 6.59(1H,s), 6.65(1H,s), 7.00(1H,s), 7.11(1H,s), 7.93(1H,s)

5

Example 184

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(5-methoxy-2-methylphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and

10 1-(5-methoxy-2-methylphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 88%

m.p.: 140-141°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.22(3H,s), 2.26(3H,s), 2.95(4H,t,

15 J=5.0Hz), 3.65(4H,t,J=5.0Hz), 3.78(3H,s), 3.85(3H,s), 6.59(1H,s), 6.65(1H,s), 7.00(1H,s), 7.11(1H,s), 7.93(1H,s)

Example 185

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2-methoxy-5-

20 methylphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(2-methoxy-5-methylphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 80%

25 m.p.: 107-108℃

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 2.29(3H,s), 3.10(4H,t, J=5.0Hz), 3.69(4H,t,J=5.0Hz), 3.85(3H,s), 3.86(3H,s), 6.55(1H,s), 6.79(2H,m), 7.01(1H,s), 9.94(1H,s)

30 Example 186

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2-methoxy-5-phenylphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(2-methoxy-5-phenylphenyl)piperazine were reacted by the same way

with the example 170 to obtain the titled compound. yield: 91%

m.p.: 139-140°C

¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.22(3H,s), 3.20(4H,t), 3.74(4H,t), 3.85(3H,s), 3.94(3H,s), 6.65(1H,s), 7.02(2H,m), 7.32(2H,m), 7.42(2H,t), 7.55(2H,d), 7.93(1H,s)

5

Example 187

1-[(4.5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(2-isopropenyl phenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and

10 1-(2-isopropenylphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

vield: 80%

m.p.: 134-135℃

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(6H,s), 3.10(4H,t), 3.64(4H,t),

3.85(3H,s), 5.08(1H,s), 5.14(1H,s), 6.64(1H,s), 7.05(3H,m), 7.70(1H,m), 7.92(1H,s)

Example 188

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(1-naphthyl)

20 piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(1-naphthyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 92%

25 m.p.: 160−162°C

 1 H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.24(3H,s), 3.31(4H,t,J=5.0Hz), 3.83(3H,s), 4.04(4H,t), 6.39(2H,m), 6.69(1H,s), 7.13(1H,t), 7.30(1H,s), 7.46(1H,s)

30 Example 189

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(1-anthranyl) piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)carbamate and 1-(1-anthranyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 94%

m.p.: 74-75℃

 $^{\text{l}}\text{H NMR}(500\text{MHz, CDCl}_3): \quad \delta \quad 2.20(3\text{H,s}), \quad 2.22(3\text{H,s}), \quad 3.24(4\text{H,t}), \quad 3.70(4\text{H,t}), \quad 3.86(3\text{H,s}), \quad 6.70(1\text{H,s}), \quad 7.05(3\text{H,m}), \quad 7.45(5\text{H,m}), \quad 8.00(2\text{H,m})$

5 Example 190

1-[N-(4,5-Dimethyl-2-methoxyphenyl)-N-methylaminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

1-[(4,5-dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine(0.2g, 0.5mmole) was dissolved in

- dimethylformamide(15ml), sodium hydride(12mg, 0.5mmole) was added thereto slowly, and then the resulting mixture was stirred at room temperature for 15 min, then followed by addition of iodomethane(71mg, 0.5mmole) and subsequently at room temperature for 16 hours. The resulting mixture was concentrated under the reduced pressure to
- remove the used solvent, extracted with methylene chloride, dried, filtered and purified by column chromatography to obtain the titled compound.

vield: 92%

m.p.: 86-88°C

¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.24(3H,s), 2.92(4H,t), 3.06(3H,s), 3.31(4H,t), 3.75(6H,s), 3.83(3H,s), 6.00(3H,m), 6.71(1H,s), 6.83(1H,s)

Mass(EI) m/z: Calcd for C2H31N3O4 413.2314, found 413.2293

25 Example 191

1-[N-(4,5-Dimethyl-2-methoxyphenyl)-N-methylaminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-dimethyl phenyl)piperazine was reacted by the same way with the example 190

30 to obtain the titled compound.

yield: 90%

m.p.: 137-138°C

 1 H NMR(500MHz, CDCl₃): δ 2.15(3H,s), 2.24(9H,s), 2.88(4H,t), 3.06(3H,s), 3.29(4H,t), 3.83(3H,s), 6.45(3H,m), 6.71(1H,s), 6.83(1H,s)

35 Mass(EI) m/z: Calcd for C23H29N3O2 381.2416, 381.2436

Example 192

1-[N-(4,5-Dimethyl-2-methoxyphenyl)-N-methylaminocarbonyl]-4-(3,5-difluorophenyl)piperazine:

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-difluorophenyl)

5 piperazine was reacted by the same way with the example 190 to obtain the titled compound.

yield: 87%

m.p.: 98-100℃

¹II NMR(500MHz, CDCl₃): δ 2.16(3H,s), 2.25(3H,s), 2.92(4H,t),

10 3.06(3H,s), 3.29(4H,t), 3.83(3H,s), 6.23(3H,m), 6.72(1H,s), 6.83(1H,s)

Example 193

1-[N-Ethyl-N-(4,5-dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

- 1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-dimethoxyphen yl)piperazine(0.2g, 0.5mmole) was dissolved in dimethylformamide(15ml), and thereto sodium hydride(12mg, 0.5mmole) was added slowly. The resulting mixture was stirred at room temperature for 15 min. After iodoethane(78mg, 0.5mmol) was added, the resulting mixture was stirred
- at room temperature for 16 hours. The resulting mixture was concentrated under the reduced pressure to remove the used solvent, extracted with methylene chloride, dryed, filtered and purified by column chromatography to obtain the titled compound.

 yield: 89%
- 25 m.p.: oil phase

 H NMR(500MHz, CDCl₃): δ 1.09(3H,t), 2.16(3H,s), 2.24(3H,s), 2.75(4H,t), 3.28(4H,t), 3.52(2H,q), 3.75(6H,s), 3.81(3H,s), 5.98(3H,m), 6.70(1H,s), 6.80(1H,s)

30 Example 194

1-[N-(4,5-Dimethyl-2-methoxyphenyl)-N-ethylaminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-dimethyl phenyl)piperazine was reacted by the same way with the example 193 to obtain the titled compound.

35 to obtain to yield: 93%

m.p.: 80-82°C

 1 H NMR(500MHz, CDCl₃): δ 1.21(3H,t), 2.15(3H,s), 2.23(9H,s), 2.90(4H,t), 3.25(4H,t), 3.59(2H,q), 3.81(3H,s), 6.45(3H,m), 6.69(1H,s), 6.81(1H,s)

5 Example 195

1-[N-(4,5-Dimethyl-2-methoxyphenyl)-N-ethylaminocarbonyl]-4-(3,5-difluorophenyl)piperazine:

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-difluorophenyl) piperazine was reacted by the same way with the example 193 to obtain the titled compound.

yield: 87%

m.p.: oil phase

¹H NMR(500MHz, CDCl₃): δ 1.09(3H,t), 2.16(3H,s), 2.25(3H,s), 2.90(4H,t), 3.27(4H,t), 3.52(2H,q), 3.81(3H,s), 6.24(3H,m), 6.70(1H,s), 6.81(1H,s)

15

10

Example 196

1-[N-Isopropyl-N-(4,5-dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-difluorophenyl)piperazine:

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-difluorophenyl)
20 piperazine(0.2g, 0.52mmole) was dissolved in dimethylformamide(15ml)
and thereto sodium hydride(12.48mg, 0.52mmole) was slowly added. The
resulting mixture was stirred at room temperature for 15 min. After
2-iodopropane(87.88mg, 0.52mmole) was added thereto, the resulting
mixture was stirred at room temperature for 16 hours. The resulting
25 mixture was concentrated under the reduced pressure to remove the

mixture was concentrated under the reduced pressure to remove the used solvent, extracted with methylene chloride, dryed, filtered and purified by column chromatography to obtain the titled compound. yield: 84%

m.p.: oil phase

¹H NMR(500MHz, CDCl₃): δ 1.10(3H,s), 1.26(3H,s), 2.20(3H,s), 2.25(3H,s), 2.86(4H,t), 3.26(4H,t), 3.77(3H,s), 4.25(1H,m), 6.17(3H,m), 6.68(1H,s), 6.82(1H,s)

Example 197

35 1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

- (a) Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate: To 3,4-dimethyl-2-methoxyaniline(4.50g, 0.03mol), methylene chloride(100ml) was added and then phenyl chlorothionoformate(5.16g, 0.03mol) was added slowly. The resulting mixture was stirred for 2
- hours, and thereto water (150ml) was added. The resulting mixture was extracted with methylene chloride and purified by column chromatography to obtain the titled compound.

yield: 92%

¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.25(3H,s), 3.85(3H,s),

10 6.80(1H,s), 6.93(5H,m), 7.31(1H,s)

(b) 1-[(4,5-Dirnethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate(0.2g, 0.7mmol) and 1-(3,5-dimethoxyphenyl)piperazine(0.16g, 0.7mmol) were dissolved in

tetrahydrofuran(10ml) and thereto DBU(0.11g, 0.7mmole) was added, followed by stirring at room temperature for 2 hours. The resulting product was concentrated and purified by chromatography to obtain the titled compound.

yield: 84%

20 m.p.: 128-129°C

H NMR(500MHz, CDCl₃): & 2.20(3H,s), 2.24(3H,s), 2.32(6H,s), 3.37(4H,t), 3.83(3H,s), 4.08(4H,t), 6.69(3H,m), 7.39(1H,m), 7.47(1H,s) Mass(EI) m/z : Calcd for C₂₂H₂₉N₃O₃S₁ 415.1929, found 415.1912

25 Example 198

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(3.5-dimethylphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(3,5-dimethylphenyl)perazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 90%

30

m.p.: 164-165°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.24(3H,s), 2.32(6H,s), 3.37(4H,t), 3.83(3H,s), 4.08(4H,t), 6.69(3H,m), 7.39(1H,m), 7.47(1H,s)

35 Mass(EI) m/z: Calcd for C₂₂H₂₉N₃O₁S₁ 383.2031, found 383.2086

Example 199

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(2,3-dimethylphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and

1-(2,3-dimethylphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 89%

m.p.: 151-152°C

¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.24(3H,s), 2.29(6H,s),

3.03(4H,t), 3.83(3H,s), 4.10(4H,t), 6.69(1H,s), 6.97(2H,m), 7.11(1H,t)

Example 200

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(3,5-difluorophenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 92%

m.p.: 167-168°C

20 ¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.24(3H,s), 2.27(3H,s), 2.32(3H,s), 3.39(4H,t,J=5.0Hz), 3.83(3H,s), 4.14(4H,t), 6.70(1H,s), 6.80(2H,m), 7.36(1H,s), 7.44(1H,s)

Example 201

25 1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(3,5-dichlorophenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

30 yield: 85%

m.p.: 188-189°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.24(3H,s), 3.35(4H,t,J=5.0Hz), 3.83(3H,s), 4.04(4H,t,J=5.0Hz), 6.70(2H,m), 6.83(1H,s), 7.30(1H,s), 7.48(1H,s)

35 Mass(EI) m/z: Calcd for $C_{20}H_{24}N_3O_2Cl_1$ 423.0938, 423.0956

- 94 -

Example 202

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(2-fluorophenyl) piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and

5 1-(2-fluorophenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 87%

m.p.: 139-140°C

¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.24(3H,s), 3.40(4H,t),

10 3.83(3H,s), 4.25(4H,t), 6.70(1H,s), 7.13(3H,m), 7.37(2H,m)

Example 203

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(2-chlorophenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(2-chlorophenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 85%

m.p.: 115-116°C

20 ¹H NMR(500MHz, CDCl₃): δ 2.21(3H,s), 2.24(3H,s), 3.18(4H,t), 3.83(3H,s), 4.09(4H,t), 6.69(1H,s), 7.05(2H,m), 7.33(1H,s), 7.41(2H,m)

Example 204

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-

25 (2-methoxyphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(2-methoxyphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 90%

30 m.p.: oil phase

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.23(3H,s), 3.14(4H,t,J=5.0Hz), 3.82(3H,s), 3.88(3H,s), 4.06(4H,t,J=5.0Hz), 6.69(1H,s), 6.94(3H,m), 7.30(1H,s), 7.40(1H,s)

35 Example 205

1-[(4.5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-

(2-methylthiophenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(2-methylthiophenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

5 yield: 93%

m.p.: 136-137°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.26(3H,s), 2.45(3H,s), 3.33(4H,t), 3.82(3H,s), 4.39(4H,t), 6.74(1H,s), 7.16(3H,m), 7.47(2H,m)

10 Example 206

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(3-hvdroxyphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(3-hydroxyphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 77%

m.p.: Decomposed(200℃)

¹H NMR(500MHz, CDCl₃): δ 2.17(3H,s), 2.23(3H,s), 3.31(4H,t), 3.82(3H,s), 4.03(3H,t), 6.37(2H,m), 6.47(1H,d), 6.69(1H,s), 7.13(1H,t),

20 7.45(1H,s)

15

Example 207

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(2-phenoxyphenyl)piperazine:

25 Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(2-phenoxyphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 86%

m.p.: oil phase

30 ¹H NMR(500MHz, CDCl₃): δ 2.17(3H,s), 2.24(3H,s), 3.19(4H,t), 3.80(3H,s), 3.85(4H,t), 6.66(1H,s), 6.91(2H,m), 6.98(1H,m), 7.05(3H,m), 7.13(1H,m), 7.23(1H,m), 7.31(2H,m), 7.36(1H,s)

Example 208

35 1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(2-isopropenylphenyl)piperazine:

Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(2-isopropenylphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 75%

5 m.p.: 157-158°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.21(3H,s), 2.24(3H,s), 3.19(4H,t), 3.82(3H,s), 4.05(4H,t), 5.07(1H,s), 5.16(1H,s), 6.69(1H,s), 7.11(3H,m), 7.33(1H,s), 7.45(1H,s)

10 Example 209

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4(2-methoxy-5-methylphenyl)piperazine:
Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and
1-(2-methoxy-5-methylphenyl)piperazine, were receted by the same way

1-(2-methoxy-5-methylphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 87%

m.p.: oil phase

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.23(3H,s), 2.29(3H,s), 3.13(4H,t), 3.83(3H,s), 3.85(3H,s), 4.05(4H,t), 6.69(1H,s), 6.83(2H,m),

20 7.30(1H,s), 7.40(1H,s)

Example 210

1-[(4,5-Dimethyl-2-methoxyphenyl)aminothiocarbonyl]-4-(1-naphthyl) piperazine:

25 Phenyl N-(4,5-dimethyl-2-methoxyphenyl)thiocarbamate and 1-(1-naphthyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 87%

m.p.: 139-140°C

30 H NMR(500MHz, CDCl₃): δ 2.23(3H,s), 2.24(3H,s), 3.21(4H,t), 3.84(3H,s), 4.09(4H,t), 6.70(1H,s), 7.10(1H,d), 7.48(5H,m), 7.85(1H,m), 8.22(1H,d)

Example 211

35 1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-4-methylphenyl)carbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 91%

5 m.p.: 103-105°C

¹H NMR(500MHz, CDCl₃): δ 2.54(3H,s), 2.59(3H,s), 3.27(4H,t), 3.70(4H,t), 3.79(6H,s), 3.94(3H,s), 6.13(3H,m), 6.70(1H,s), 7.05(1H,s), 8.72(1H,s)

Example 212

10 1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-4-methylphenyl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 88%
m.p.: 140-142°C

¹H NMR(500MHz, CDCl₃): δ 2.30(3H,s), 2.54(3H,s), 2.59(3H,s), 3.26(4H,t), 3.70(4H,t), 3.97(3H,s), 6.61(3H,m), 6.70(1H,s), 7.06(1H,s), 8.72(1H,s)

20

Example 213

1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminocarbonyl]-4-(3,5-dichlorophenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-4-methylphenyl)carbamate and

5 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 170 to obtain the titled compound.

yield: 78%

m.p.: 170-172°C

¹H NMR(500MHz, CDCl₃): δ 2.54(3H,s), 2.59(3H,s), 3.32(4H,t), 3.74(4H,t), 3.94(3H,s), 6.69(1H,s), 6.86(3H,m), 7.04(1H,s), 8.69(1H,s)

Example 214

- 1-{[5-(1-Hydroxyethyl)-2-methoxy-4-methylphenyl]aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine:
- 35 1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine(0.2g, 0.47mmol) was dissolved in

anhydrous ethanol(15ml), and sodium borohydride(17mg) was added thereto, and then the resulting mixture was stirred at room temperature for 2 hours, concentrated under the reduced pressure to remove ethanol, and purified by column chromatography(ethylacetate:hexane = 1:2) to obtain the titled compound.

yield: 96%

m.p.: 152-154°C

¹H NMR(500MHz, CDCl₃): δ 1.41(3H,d), 2.32(3H,s), 3.27(4H,t), 3.71(4H,t), 3.79(6H,s), 3.87(3H,s), 5.04(1H,q), 6.10(3H,m), 6.63(1H,s),

10 7.01(1H,s), 8.22(1H,s)

Example 215

1-{[5-(1-Hydroxyethyl)-2-methoxy-4-methylphenyl]aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine:

15 1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminocarbonyl]-4(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 214 to obtain the titled compound.

yield: 96%

m.p.: 140-142°C

20 ¹H NMR(500MHz, CDCl₃): δ 1.48(3H,d), 2.33(3H,s), 3.26(4H,t), 3.68(4H,t), 3.87(3H,s), 5.06(1H,q), 6.61(3H,m), 6.64(1H,s), 7.01(1H,s), 8.22(1H,s)

Example 216

- 25 1-[(2-Methoxy-4-methyl-5-vinylphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:
 - 1-{[5-(1-Hydroxyethyl)-2-methoxy-4-methylphenyl]aminocarbonyl}-4-(3,5-dimethoxyphenyl)piperazine(0.2g, 0.47mmol) was dissolved in chloroform(15ml), pyridium p-toluenesulfonate(0.12g, 0.47mmol) was
- added thereto, and the resulting mixture was refluxed for 16 hours, and concentrated under the reduced pressure to remove chloroform and purified by column chromatography(ethylacetate:hexane=1:2) to obtain the titled compound.

yield: 84%

35 m.p.: 163-165°C

¹H NMR(500MHz, CDCl₂): δ 2.31(3H,s), 3.23(4H,t), 3.58(4H,t), 3.77(6H,s),

3.87(3H,s), 5.20(1H,d), 5.62(1H,d), 6.59(3H,m), 6.63(1H,s), 6.88(1H,t), 6.99(1H,s), 8.32(1H,s)

Example 217

5 1-[(2-Methoxy-4-methyl-5-vinylphenyl)aminocarbonyl]-4-(3.5-dimethylphenyl)piperazine:

1-{[5-(1-Hydroxyethyl)-2-methoxy-4-methylphenyl]aminocarbonyl}-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the example 216 to obtain the titled compound.

10 yield: 82%

m.p.: 201-203°C

¹H NMR(500MHz, CDCl₃): δ 2.29(6H,s), 2.34(3H,s), 3.24(4H,t), 3.68(4H,t), 3.87(3H,s), 5.22(1H,d), 5.66(1H,d), 6.59(3H,m), 6.63(1H,s), 6.86(1H,t), 7.02(1H,s), 8.32(1H,s)

15

Example 218

1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminothiocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

Phenyl N-(5-acetyl-2-methoxy-4-methylphenyl)thiocarbamate and 1-(3,5-dimethoxyphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 82%

m.p.: 163-165°C

¹H NMR(500MHz, CDCl₃): δ 2.16(3H,s), 2.56(3H,s), 3.35(4H,t),

25 3.91(6H,s), 4.03(3H,s), 4.13(4H,t), 6.06(3H,m), 6.73(1H,s), 8.62(1H,s)

Example 219

1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminothiocarbonyl]-4-(3,5-dimethylphenyl)piperazine:

30 Phenyl N-(5-acetyl-2-methoxy-4-methylphenyl)thiocarbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 79%

m.p.: 180-182°C

35 ¹H NMR(500MHz, CDCl₃): δ 2.29(6H,s), 2.57(6H,s), 3.32(4H,t), 3.92(3H,s), 4.12(4H,t), 6.56(3H,m), 6.72(1H,s), 7.39(1H,s), 8.63(1H,s)

Example 220

- 1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminothiocarbonyl]-4-(3,5-dichlorophenyl)piperazine:
- 5 Phenyl N-(5-acetyl-2-methoxy-4-methylphenyl)thiocarbamate and 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 197 to obtain the titled compound.

yield: 79%

m.p.: 201-203°C

¹H NMR(500MHz, CDCl₃): δ 2.20(3H,s), 2.57(3H,s), 3.46(4H,t). 3.92(3H,s), 4.25(4H,t), 6.64(1H,s), 6.88(3H,m), 7.72(1H,s), 8.57(1H,s)

Example 221

- 1-([5-(1-Hydroxyethyl)-2-methoxy-4-methylphenyl]aminothiocarbonyl}-4
- -(3,5-dimethoxyphenyl)piperazine:
 - 1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminothiocarbony]-4-(3,5-dimethoxyphenyl)piperazine was reacted by the same way with the example 214 to obtain the titled compound.

yield: 94%

- 20 m.p.: 146-148°C ¹H NMR(500MHz, CDCl₃): δ 1.44(3H,d), 2.32(3H,s), 3.35(4H,t), 3.78(6H,s), 3.84(3H,s), 4.11(4H,t), 5.06(1H,q), 6.13(3H,m), 6.66(1H,s), 7.41(1H,s), 7.77(1H,s)
- Example 222
 - 1-{[5-(1-Hydroxyethyl)-2-methoxy-4-methylphenyl]aminothiocarbonyl}-4 -(3.5-dimethylphenyl)piperazine:
 - 1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminothiocarbony]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the
- example 214 to obtain the titled compound. 30

yield: 93%

m.p.: 150-152℃

- ¹H NMR(500MHz, CDCl₃): δ 1.44(3H,d), 2.29(6H,s), 2.32(3H,s), 3.30(4H,t), 3.84(3H,s), 4.07(4H,t), 5.06(1H,q), 6.61(3H,m), 6.66(1H,s),
- 35 7.38(1H,s), 7.79(1H,s)

Example 223

1-{[5-(1-Hydroxyethyl)-2-methoxy-4-methylphenyl]aminothiocarbonyl}-4 -(3,5-dichlorophenyl)piperazine:

1-[(5-Acetyl-2-methoxy-4-methylphenyl)aminothiocarbony]-4-

5 (3,5-dichlorophenyl)piperazine was reacted by the same way with the example 214 to obtain the titled compound.

yield: 77%

m.p.: 166-168°C

¹H NMR(500MHz, CDCl₃): δ 1.45(3H,d), 2.33(3H,s), 3.35(4H,t),

3.84(3H,s), 4.03(4H,t), 5.07(1H,q), 6.68(3H,m), 6.83(1H,s), 7.37(1H,s), 7.82(1H,s)

Example 224

Ethyl 2-({[4-(3,5-dimethoxyphenyl)piperazino]carbonyl}-2-methoxy-4,5-

15 dimethylanilino)acetate:

- 1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine(0.2g, 0.5mmol) was dissolved in dimethylformamide(15ml), sodium hydride(18.5mg, 0.5mmol) was added thereto, and the resulting mixture was stirred at room temperature.
- Then, ethyl bromoacetate(83.5mg, 0.5mmol) was added thereto and the resulting mixture was stirred for 3 hours, concentrated under the reduced pressure to remove the used solvent and purified by column chromatography(ethylacetate:hexane=1:2) to obtain the titled compound. yield: 79%
- 25 m.p.: oil phase

 ¹H NMR(500MHz, CDCl₃): δ 1.36(3H,t), 2.15(3H,s), 2.23(3H,s), 2.91(4H,t), 3.22(4H,t), 3.82(6H,s), 4.12(3H,s), 4.18(2H,s), 5.98(3H,m), 6.69(1H,s), 7.03(1H,s)

30 Example 225

Ethyl 2-(([4-(3,5-dimethylphenyl)piperazino]carbonyl)-2-methoxy-4,5-dimethylanilino)acetate:

1-[(4,5-Dimethyl-2-methoxyphenyl)aminocarbonyl]-4-(3,5-dimethylphenyl)piperazine was reacted by the same way with the 35 example 224 to obtain the titled compound.

yield: 78%

m.p.: oil phase

¹H NMR(500MHz, CDCl₃): δ 1.26(3H,t), 1.56(6H,s), 2.17(3H,s), 2.24(3H,s), 3.32(4H,t), 3.52(4H,t), 3.82(3H,s), 4.15(2H,q), 4.18(2H,s), 6.70(3H,m), 6.94(1H,s), 7.46(1H,s)

5

Example 226

2-(([4-(3,5-Dimethoxyphenyl)piperazino]carbonyl}-2-methoxy-4,5-dimethylanilino)acetic acid:

Ethyl 2-({[4-(3,5-dimethoxyphenyl)piperazino]carbonyl}-2-methoxy-4,5-dimethylanilino)acetate(200mg, 0.41mmole) was dissolved in dioxane:distilled water(4:1, 15ml), lithium hydroxide monohydrate(50.7mg, 1.23mmol) was added thereto, and then the resulting mixture was stirred at room temperature for 3 hours, acidified with 1N-hydrochloric acid, extracted with ethylacetate, filtered to dryness, concentrated under

the reduced pressure to remove the used solvent, and purified by column chromatography(ethylacetate:hexane=1:2) to obtain the titled compound.

yield: 80%

m.p.: 188-189°C

20 ¹H NMR(500MHz, CDCl₃): δ 2.14(3H,s), 2.23(3H,s), 2.93(4H,t), 3.35(4H,t), 3.75(6H,s), 3.87(3H,s), 4.18(2H,s), 5.96(3H,m), 6.71(1H,s), 7.71(1H,s)

Example 227

2-({[4-(3,5-Dimethylphenyl)piperazino]carbonyl}-2-methoxy-4,5-

25 dimethylanilino)acetic acid:

Ethyl 2-(([4-(3,5-dimethylphenyl)piperazino]carbonyl}-2-methoxy-4,5-dimethylanilino)acetate was reacted by the same way with the example 226 to obtain the titled compound.

yield: 78%

30 m.p.: 170-171℃

¹H NMR(500MHz, CDCl₃): δ 2.13(3H,s), 2.24(9H,s), 2.91(4H,t), 3.35(4H,t), 3.83(3H,s), 4.18(2H,s), 6.45(3H,m), 6.70(2H,s), 6.80(1H,s)

Example 228

35 1-[(2-Hydroxy-4,5-dimethylphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

- (a) 4,5-Dimethyl-2-nitrophenol:
- To 3,4-dimethylphenol(12.1g, 0.1mol), trifluoroacetic acid(250ml) was added, and in water bath sodium nitrite(12.4g, 0.18mol) was added slowly. The resulting mixture was stirred at room temperature for 14 hours and concentrated under the reduced pressure to remove
- hours and concentrated under the reduced pressure to remove trifluoroacetic acid, followed by addition of water(150ml), extracted with ether and purified by column chromatography to obtain the titled compound.
- 10 yield: 80%

 ¹H NMR(500MHz, CDCl₃): δ 2.23(3H,s), 2.29(3H,s), 6.93(1H,s), 7.84(1H,s)
 - (b) 4.5-Dimethyl-2-hydroxyaniline:
- To 4,5-dimethyl-2-nitrophenol(11.7g, 0.07mol), tetrahydrofuran(100ml) and ethanol(40ml) were added, and 10% palladium/activated carbon(0.57g) was added slowly, and then the mixture was hydrogenated for 5 hours. The reaction mixture was concentrated and chromatographed by the same way above to obtain the titled compound.
- 20 yield: 77%

 ¹H NMR(500MHz, CDCl₂): δ 2.11(6H,s), 6.56(2H,s)
- (c) Phenyl N-(4,5-dimethyl-2-hydroxyphenyl)carbamate:
 To 4,5-dimethyl-2-hydroxyaniline(6.80g, 0.05mole), methylene
 chloride(100ml) was added and then phenyl chloroformate(8.0g, 0.05mole)
 was added slowly. After stirring for 2 hours, addition of water(150ml),
 extraction with methylene chloride and column chromatography gave
 the titled compound.
 - yield: 92%

 ¹H NMR(500MHz, CDCl₃): δ 2.17(6H,s), 6.74(1H,s), 7.15(5H,m), 7.31(1H,s)
- (d) Phenyl N-[2-(t-butyldimethylsilyloxy)-4,5-dimethylphenyl]carbamate:
 To a mixture of phenyl N-(4,5-dimethyl-2-hydroxyphenyl)carbamate
 (7.72g, 0.03mol) and imidazole(2.2g, 33mmol), methylene chloride(100ml)
 was added, and with stirring t-butyldimethylsilylchloride(5.0g, 33mmole)

was added. Then the mixture was stirred for 2 hours, and water(150ml) was added thereto. The resulting mixture was extracted with methylene chloride, dried, concentrated under the reduced pressure and purified by column chromatography to obtain the titled compound.

5 yield: 83%

¹H NMR(500MHz, CDCl₃): δ 0.27(6H,s), 0.98(9H,s), 2.17(6H,s), 7.12(5H,m), 7.30(2H,s)

- (e) 1-[(2-Hydroxy-4,5-dimethylphenyl)aminocarbonyl]-4-
- 10 (3,5-dimethoxyphenyl)piperazine:

Phenyl N-[2-(t-butyldimethylsilyloxy)-4,5-dimethylphenyl]carbamate (0.17g, 0.5mmole) and 1-(3,5-dimethoxyphenyl)piperazine(0.13g, 0.6mmole) were dissolved in tetrahydrofuran(10ml), and thereto with stirring DBU(0.09g, 0.6mmole) was added, and the resulting mixture

15 was stirred for 2 hours, concentrated and chromatographed to obtain the titled compound.

yield: 87%

m.p.: 145-146°C

¹H NMR(500MHz, CDCl₃): δ 2.14(3H,s), 2.18(3H,s), 3.26(4H,t), 3.67(4H,t),

20 3.79(6H,s), 6.07(3H,m), 6.40(3H,m), 6.67(1H,s), 6.82(1H,s), 8.87(1H,s)

Example 229

1-[(2-Hydroxy-4,5-dimethylphenyl)aminocarbonyl]-4-(3,5-dimethoxyphenyl)piperazine:

25 Phenyl N-[2-hydroxy-4,5-dimethylphenyl)carbamate and 1-(3,5-dimethylphenyl)piperazine were reacted by the same way with the example 228 to obtain the titled compound.

yield: 84%

m.p.: 160-162°C

¹H NMR(500MHz, CDCl₃): δ 2.13(3H,s), 2.17(3H,s), 2.31(6H,s), 3.26(4H,t), 3.75(4H,t), 6.73(3H,m), 6.81(1H,s), 8.86(1H,s)

Example 230

1-[(2-Hydroxy-4,5-dimethylphenyl)aminocarbonyl]-4-(3,5-difluorophenyl)

35 piperazine:

Phenyl N-[2-hydroxy-4,5-dimethylphenyl)carbamate and

1-(3,5-difluorophenyl)piperazine were reacted by the same way with the example 228 to obtain the titled compound.

yield: 80%

m.p.: 152-154°C

¹H NMR(500MHz, CDCl₃): δ 2.17(3H,s), 2.20(3H,s), 3.30(4H,t), 3.70(4H,t), 6.40(3H,m), 6.70(1H,s), 6.82(1H,s), 6.98(1H,s)

Example 231

1-[(2-hydroxy-4,5-dimethylphenyl)aminocarbonyl]-4-(3,5-dichlorophenyl)

10 piperazine:

Phenyl N-(2-hydroxy-4,5-dimethylphenyl)carbamate and 1-(3,5-dichlorophenyl)piperazine were reacted by the same way with the example 228 to obtain the titled compound.

yield: 77%

15 m.p.: oil phase ¹H NMR(500MHz, CDCl₃): δ 2.15(3H,s), 2.20(3H,s), 3.32(4H,t), 3.69(4H,t), 6.29(3H,m), 6.69(1H,s), 6.81(1H,s), 8.65(1H,s)

20

25

30

Antitumor activities of compounds of the present invention were tested in vitro against 5 kinds of human tumor cell lines and 2 kinds of leukemia tumor cell lines. The method and result of in vitro tests is as follows.

5

Experimental 1: In vitro antitumor effect against human tumor cell lines.

A. Tumor cell line: A549 (human non-small lung cell)

10 SKOV-3

(human ovarian)

HCT-15

(human colon)

XF 498

(human CNS)

SKMEL-2 (human melanoma)

15 B. SRB Assay Method.

a. Human solid tumor cell lines, A549(non-small lung cell), SKMEL-2(melanoma), HCT-15(colon), SKOV-3(ovarian), XF-498(CNS) were cultured at 37°C, in 5% CO₂ incubators using the RPMI 1640 media containing 10% FBS, while they were transfer-cultured successively once or twice per week. Cell cultures were dissolved in a solution of 0.25% trypsin and 3 mM CDTA PBS(-) and then cells were separated from media which the cells were sticked on.

25

- b. $5 \times 10^3 2 \times 10^4$ cells were added into each well of 96-well plate and cultured in 5% CO₂ incubator, at 37°C, for 24 hours.
- c. Each sample drug was dissolved in a little DMSO and diluted with the used medium to a prescribed concentration for experiments, wherein the final concentration of DMSO was controlled below 0.5%.
- d. Medium of each well cultured for 24 hours as above b. was removed by aspiration. Each 200 µl of drug samples prepared in c. was added into each well and the wells were cultured for 48 hours. Tz(time zero) plates were collected at the point of time drugs were added.

e. According to the SRB assay method, cell fixing with TCA, staining with 0.4% SRB solution, washing with 1% acetic acid and elution of dye with 10mM Tris solution were carried out on Tz plates and culture-ended plates, and then, OD values were measured at 520 nm.

5

C. Calculation of result

a. Time zero(Tz) value was determined with measuring the SRB protein value at the point of time drugs were added.

10

- b. Control value(C) was determined with the OD value of an well untreated with drug.
- c. Drug-treated test value(T) was determined with the OD value of drug-treated well.
 - d. Effects of drugs were estimated with growth stimulation, net growth inhibition, net killing etc. calculated from Tz, C and T.
- e. If T ≥ Tz, cellular response function was calculated by 100x(T-Tz)/(C-Tz), and if T < Tz, by 100×(T-Tz)/Tz. The results are shown in the next table 1.

* REFERENCE

- 25 1) P. Skehan, R. Strong, D Scudiero, A. Monks, J. B. Mcmahan, D. T. Vistica, J. Warren, H. Bokesh, S. Kenny and M. R. Boyd: Proc. Am. Assoc. Cancer Res., 30, 612(1989)
 - 2) L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. simon, S. Tosini, P. Skehan, D. Scudiero, A. Monks and M. R. boyd.; J. Natl.
- 30 Cancer Inst., 82, 1113(1990)
 - 3) P. Skehan, R. Strong, D. Scudiero, A. monks, J. B. Mcmahan, D. T. Vistica, J. Warren, H. Bokesh, S. Kenny and M. R. Boyd., J. Natl. Cancer Ins., 82, 1107(1990)
- 35 D. Results.

It was found that compounds of the present invention have the

superior antitumor activities than those of cisplatin, one control, and equal to or higher antitumor activities than those of adriamycin, another control, against human solid cancer cell lines.

_		
_	Table 1	
J	Table 1.	

 $ED_{50}=\mu g/ml$

•	Table 1.				EL)50=μg/mi
	Ex. No.	A549	SK-OV-3	SK-MEL-2	XF-498	HCT 15
	4	0.007	0.022	0.007	0.94	0.093
	5	0.71	0.96	0.60	>10.0	0.96
10	9	0.15	0.07	0.21	0.11	0.11
	11	0.91	0.56	0.62	0.73	0.71
	14	0.022	0.02	0.001	0.16	0.007
	15	0.002	0.05	0.052	0.035	0.038
15	16	0.008	0.04	0.038	0.005	0.061
	17	0.018	0.01	0.021	0.077	0.008
	22	0.0009	0.006	0.027	0.0053	0.01
20	23	0.09	0.04	0.09	0.092	0.05
	24	0.03	0.006	0.01	0.234	0.01
	27	0.02	0.11	0.01	0.046	0.165
	28	0.06	0.07	0.001	0.41	0.05
25	46	0.21	0.12	0.08	0.14	0.16
25	47	0.92	0.62	0.47	0.64	0.81
	53	0.47	0.47	0.64	0.67	0.71
	56	0.017	0.0027	0.01	0.013	0.045
20	57	0.27	0.15	0.18	0.22	0.25
30	63	0.04	0.1	0.11	0.03	0.07
	64	0.42	0.56	0.52	0.23	0.37
	73	0.01	0.0054	0.02	0.013	0.012
35	74	0.016	0.0138	0.02	0.026	0.021
33	7 5	0.19	0.09	0.09	0.13	0.12

WO 98/00402 PCT/KR97/00128

- 109 -

	Ex. No.	A549	SK-OV-3	SK-MEL-2	XF 498	HCT 15
	81	0.0032	0.0007	0.0107	0.0097	0.0054
	82	0.0676	0.0249	0.0754	0.0479	0.0346
5	85	0.048	0.117	0.039	0.104	0.10
	88	0.014	0.043	0.02	0.009	0.011
	99	0.43	0.41	0.40	0.52	0.36
	100	4.54	3.02	3.47	0.66	4.21
0	103	0.52	0.46	0.49	0.36 ·	0.33
	109	0.47	0.91	0.86	0.53	0.49
	110	0.52	1.06	0.97	0.81	0.69
	112	0.56	6.43	0.22	2.07	0.61
5	128	0.40	0.37	0.42	0.44	0.51
	132	0.03	0.01	0.03	0.04	0.04
	133	0.57	0.94	0.53	0.61	0.57
	134	0.0009	0.0091	0.0086	0.002	0.0065
80	135	0.056	0.092	0.102	0.06	0.066
	140	0.33	0.47	0.56	0.54	0.49
	142	0.015	0.011	0.021	0.026	0.017
	143	0.0004	0.0095	0.0121	0.0009	0.0108
25	147	0.031	0.092	0.024	0.466	0.18
	148	0.01	0.07	0.03	0.05	0.05
	151	0.004	0.008	0.007	0.007	0.037
•	152	0.18	0.37	0.2	0.26	0.44
30	156	0.06	0.10	0.09	0.06	0.07
	157	0.000002	0.000002	0.000043	0.000245	0.000211
	159	0.05	0.10	0.07	0.21	0.17

	Ex. No.	A549	SK-OV-3	SK-MEL-2	XF 498	HCT 15
	171	0.000645	0.00372	0.003233	0.000572	0.001809
	172	0.0047	0.0097	0.0233	0.0086	0.0180
5	174	0.54	0.56	0.27	0.49	0.33
	177	0.52	0.39	0.17	0.12	0.09
	179	1.04	0.98	0.72	0.74	0.63
	183	0.42	2.27	1.17	1.41	2.09
10	184	0.28	0.34	0.17	0.12	0.20
	190	0.004	0.008	0.002	0.443	0.017
	191	0.09	0.28	0.06	0.47	0.40
	198	0.021	0.068	0.008	0.072	0.56
15	200	0.50	0.53	0.26	1.01	0.44
	201	0.014	0.053	0.049	0.026	0.071
	202	0.57	1.26	0.48	2.09	0.64
	206	0.47	0.54	0.52	0.70	0.38
20	Cisplatin	0.8184	0.7134	0.7147	0.7771	3.0381
	Adriamycin	0.0168	0.0176	0.0108	0.0250	1.6689

25

Experimental 2.

In vitro antitumor effects against animal leukemia cells.

A. Materials:

30

Tumor cell lines: L1210(mouse leukemia cell)

P388 (mouse lymphoid neoplasma cell)

B. Method: Dye Exclusion Assay.

 The concentrations of L1210 and P388 cells being cultured in RPMI 1640 media containing 10% FBS were regulated to 1×10⁶ cells/ml.

- 2) Sample drugs of respective concentrations diluted in the ratio of log doses were added into cell media, and cultured at 37°C, for 48 hours, in 50% CO₂ incubator, and then viable cell number was 5 measured by dye exclusion test using trypan blue.
 - 3) The concentration of sample compounds showing 50 % cell growth inhibition(IC₅₀) compared with the control were determined and listed in the table 2 below.

10

* REFERENCE

- 1) P. Skehan, R. Strong, D. Scudiero, A. Monks, J. B. Mcmahan, D. T. Vistica, J. Warren, H. Bokesh, S. Kenney and M. R. Boyd. Proc. Am. Assoc. Cancer Res., 30, 612(1989).
- L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. Simon, S. Tosini, P. Skehan, D. Scudiero, A. Monks, J. Natl. Cancer Inst., 82, 1113(1990)
 - 3) P. Skehan, R. Strong, D. Scudiero, J. B. Mcmahan, D. T. Vistica, J. Warren, H. Bokesch, S. Kenney and M. R. Boyd. : J. Natl. Cancer
- 20 Inst., 82, 1107(1990)

C. Results

As the results of measurement of antitumor activities of compounds of the present invention against L1210 and P388 mouse cancer cells, it was found that the compounds tested have equal to or higher antitumor activities than those of the control drug, mitomycin C.

- 112 -

	Ex. No.	L1210	P388
L	8	0.9	0.4
5	12	0.2	-
	13	0.5	-
	14	0.3 -	-
	15	0.3	0.4
	16	0.5	0.3
10	17	1.2	0.8
	24	0.5	0.5
15	49	1.5	-
	56	0.2	0.2
	57	1.8	1.2
	60	-1.1	· -
	63	0.5	0.3
	64	1.9	1.4
20	69	-	0.5
	71	-	0.07
	72	-	0.9
05	73	0.2	0.04
25	74	0.5	0.4
	76	-	0.4
	77	-	0.5

	Ex. No.	L1210	P388
	132	0.4	0.4
	134	0.5	0.2
5	140	1.8	1.6
	143	0.5	0.4
	144	1.2	0.5
	148	1.6	-
10	149	1.0	0.6
Ī	151	-	1.2
	152	0.3	0.3
	154	-	0.1
15	157	1.7	1.0
ſ	158	0.5	0.2
Ī	170	0.4	0.4
	173	0.5	0.2
20	178	1.8	1.6
	181	0.5	0.4
	182	1.2	0.5
[186	1.6	-
25	187	1.0	0.6
	190	0.3	0.3
	195	1.7	1.0
0.0	196	0.5	0.2
30	Mitomycin	1.6	1.1

35 Experimental 3.

In vivo antitumor effects against mouse leukemia P388 cells.

WO 98/00402 PCT/KR97/00128

- 114 -

- A. Material of experiment
 BDF1 mice were used.
- B. Method of experiment
- 1) Leukemia P388 cells being transfer-cultured successively in
 5 DBA/2 mouse, were grafted into each mouse of a group comprising 8 mice of 6 week old BDF1 mouse with the dose of 1×10⁶ cells/0.1ml.
- 2) Sample drugs were dissolved in PBS or suspended in 0.5% tween 80, and then injected into abdominal cavity of mouse at each prescribed concentration on days 1, 5, 9, respectively.
- 3) With observation everyday, survival times of tested mice were measured. Antitumor activities was determined in such a manner that the increasing ratio(T/C%) of average survival days of drug-treated groups compared with the control group was calculated using the mean survival times of each tested groups.
 The results are shown at the next table 3.

20

25

- 115 -

	Ex. No.	Dose(mg/kg)	T/C(%)	Interval of administration
_	8	200 100	140.9 104.5	on days 1, 5, 9
5	15	25 10	150 110	nine everyday
	16	50 25	165 110	nine everyday
10	22	100 50 25	150 140 110	nine everyday
15	56	200 100 50	227.3 140.9 118.2	on days 1, 5, 9
20	56	50 25 10	165.0 145.0 140.0	nine everyday
20	73	50 25 10	180.0 150.0 140.0	nine everyday
25	74	50 25 10	250.0 150.0 140.0	nine everyday

	Ex. No.	Dose(mg/kg)	T/C(%)	Interval of adminstration
		200	218.2	
	81	100	145.5	on day 1, 5, 9
5		50	127.3	
		50	210.0	
	81	25	140.0	nine everyday
		10	140.0	
	82	100	127.3	1.50
10	02	50	100 .0	on days 1, 5, 9
		100	150.0	
	98	50	110.0	nine everyday
Į		25	110.0	
		100	150.0	
15	135	50	110.0	nine everyday
		25	100.0	
		200	125.0	·
	144	100	110.0	nine everyday
20		50	110.0	
		100	140.0	
	171	50	100.0	on days 1, 4, 8
		25	100.0	
05		200	190.9	
25	172	100	127.3	on days 1, 4, 8
		50	118.2	

- 117 -

* REFERENCE

A. Goldin et al.: Euro. J. Cancer, 17, 129 (1981).

5 C. Result

Through in vivo experiments using P388 mouse cancer cells, significant antitumor effect of the compounds of examples were observed.

10

Experimental 4.

Acute toxicity test (LD50): Litchfield-Wilcoxon method.

- 6 weeks old ICR mice(male 30±2.0g) were fed freely with solid feed and water at room temperature, 23±1°C and at humidity 60±5%. Sample drugs were injected into the abdominal cavities of mice, while each group comprises 6 mice. Observed during 14 days, external appearances and life or dead were recorded, and then, visible
- pathogenies were observed from dead animals by dissection. LD₅₀ value was calculated by Litchfiled-wilcoxon method.

The results are shown at the next table 4.

25

	Ex. No.	LD ₅₀ (mg/kg)(i.p)
	8	707
_ [12	165
5	13	284.8
	15	190
	16	282.8
10	22	>2,000
	28	>2,000
	56	410
	57	455
15	73	250
	74	361.4
	81	1,600
20	82	700
	170	573
	172	723
	182	348
25	184	309
	186	>2,000
	187	417.6
30	Cisplatin	9.7

As described above, it was found that the compounds of the present invention are more safer and have superior antitumor activities to cisplatin, and accordingly have solved the problems of drugs by the prior art such as restriction of dosage, toxicity, tc.

What is claimed:

1. A compound of the general formula(I)

wherein R₁ and R₂ are independently hydrogen, substituted or unsubstituted C₁-C₈ alkyl, substituted or unsubstituted C₃-C₆ cycloalkyl, substituted or unsubstituted C2-C8 unsaturated alkyl, ketone, substituted or unsubstituted aryl, substituted or unsubstituted C₁-C₄ alkoxy, substituted or unsubstituted arylhydroxy, substituted or unsubstituted amino, C₁-C₄ lower ester, C₁-C₄ lower thioester, thiol, substituted or unsubstituted carboxyl, epoxy, substituted or unsubstituted C₁-C₄ lower thioalkoxy; or R₁ and R₂ are fused to form C₃-C₄ saturated or unsaturated chain; R₃, R₄, R₅, R₆ and R₇ are independently hydrogen, halogen, hydroxy, nitro, C₁-C₄ lower ester, C₁-C₄ lower alkyl, C₁-C₄ lower thioalkyl, substituted or unsubstituted C3-C6 cycloalkyl, C1-C4 lower alkoxy, C₁-C₄ lower thioalkoxy, substituted or unsubstituted aryl, substituted or unsubstituted lower arylalkoxy, substituted or unsubstituted lower alkylamino, or lower alkyl substituted or unsubstituted carbamate; or among R₃, R₄, R₅, R₆ and R₇, two adjacent groups are bonded with each other to form 1,2-phenylene or 2,3-naphthylene; X is oxygen, sulfur, or substituted or unsubstituted imino; Y is bonded at the 3-position or 4-position of the aromatic ring part wherein Y is oxygen or -NR₈- (wherein, R₈ is the same with the above-mentioned R₃.); Z is hydroxy, C₁-C₄ lower alkoxy, C₁-C₄ lower thioalkoxy, substituted or unsubstituted aryloxy, C₁-C₄ lower alkylaming.

substituted or unsubstituted cycloamino containing 1-5 nitrogen atoms;
A is nitrogen or -CH=; and pharmaceutically acceptable acid addition
salts thereof.

2. A process for the preparation of compound of the general formula(I) or a pharmaceutically acceptable acid addition salt thereof comprising reacting a compound of the general formula(a) with a -C(=X)-group-providing agent in the presence of organic solvent to obtain a compound of the general formula(b) and reacting the compound of the general formula(c).

10
$$R_1$$
 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_8 R_7 R_8 R_8 R_7 R_8 R_8 R_9 R

wherein, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , A, X, Y and Z are as defined above and Lie is a leaving group.

3. A process for the preparation of compound of the general formual(Ib) by introducing R₈ providing agent into a compound of the general formula(Ia).

$$\begin{array}{c|c}
R_2 & X & R_4 \\
R_1 & R_5 & R_6
\end{array}$$
(Ib)

35

30

25

wherein, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, A, X and Z are as defined above.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/KR 97/00128

A. CLASSIFICATION OF SUBJECT MATTER

IPC⁶: C 07 D 213/65, 213/68, 295/108, 295/13, 409/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC⁶: C 07 D 213/00, 295/00, 409/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

AT; Chem. Abstr.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Questel: DARC, CAS; EPO: WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

P,A W0 96/21 648 A1 (SAMJIN PHARMACEUTICAL CO., LTD.) 18 July 1996 (18.07.96), claims 1,2. A Chemical Abstracts, Vol.110, No.4, 23 January 1989 (Columbus, Ohio, USA), page 499, column 1, abstract No.31325d, YOSHIMOTO, S. et al.:"Silver halide photographic material giving stable magenta color images", & Jpn. Kokai Tokkyo Koho JP 63,115,167 [88,115,167]. A US 5 461 047 A (HANSEN) 24 October 1995 (24.10.95), claims; example 43. A AT 336 030 B (RHONE-POULENC) 12 April 1977 (12.04.77), claims. A EP 0 547 517 A1 (THOMAE) 23 June 1993 (23.06.93), 1-3 claims.	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(Columbus, Ohio, USA), page 499, column 1, abstract No.31325d, YOSHIMOTO, S. et al.: "Silver halide photographic material giving stable magenta color images", & Jpn. Kokai Tokkyo Koho JP 63,115,167 [88,115,167]. A US 5 461 047 A (HANSEN) 24 October 1995 (24.10.95), l-3 claims; example 43. A AT 336 030 B (RHONE-POULENC) 12 April 1977 (12.04.77), l-3 claims. A EP 0 547 517 Al (THOMAE) 23 June 1993 (23.06.93), l-3	P,A		1-3
claims; example 43. A T 336 030 B (RHONE-POULENC) 12 April 1977 (12.04.77), 1-3 claims. A EP 0 547 517 Al (THOMAE) 23 June 1993 (23.06.93), 1-3	A	(Columbus, Ohio, USA), page 499, column 1, abstract No.31325d, YOSHIMOTO, S. et al.: "Silver halide photographic material giving stable magenta color images",	1-3
claims. A EP 0 547 517 Al (THOMAE) 23 June 1993 (23.06.93), 1-3	A	l	1-3
	A	l ·	1-3
	A		1-3
1			

	Further documents are listed in the continuation of Box C.	X See patent family annex.
• "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document but published on or after the international filling date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	considered novel or cannot be considered to involve an inventive
"O"	document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
Date	of the actual completion of the international search	Date of mailing of the internati nal search report
0	3 September 1997 (03.09.97)	05 September 1997 (05.09.97)
	e and mailing address of the ISA/AT AUSTRIAN PATENT OFFICE Kohlmarkt 8-10 A-1014 Vienna imile No. 1/53424/535	Authorized officer Hammer Telephone No. 1/53424/374

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT Inf rmation on patent family members

Internati nal application N .

PCT/KR 97/00128

angeführte Patent in sea Document	erchembericht s Patentdokument document cited urch report de brevet cité apport de recherche	Datum der Veröffentlichung Publication date Date de publication	Mitglied(er) der Patentfamilie Patent family member(s) Membre(s) de la famille de brøvets	Datum der Veröffentlichung Publication date Date de publication
WD A1	9521648	18-07-96	9690056602257 7/1-2624266602257 96900566602257 96900566602257 9690056650 9690056650 9690056650 9690056650 9690056650 9690056650 9690056650 9690056650 9690056650 9690056650 9690056650 9690056660 969005665650 96900566650 969005666650 969005666650 969005666650 969005666650 969005666650 969005666660 96900566660 96900566660 96900566660 96900566660 96900566660 9690056660 9690056660 9690056660 9690056660 9690056660 96900566660 9690056660 9690056660 9690056660 9690056660 969005660 969005660 969005660 969005660 969005660 969005660 9690005660 9690000000000	31-07-96 18-07-96 19-03-97 12-02-97 27-12-96 10-09-96 10-09-96 10-09-96 11-11-96 20-01-97 11-07-96
US A	5461047	24-10-95	AU A1 71387/94 CA AA 2163908 EP A1 703908 JP T2 9500107 US A 5354747 WO A1 9429286	03-01-95 22-12-94 03-04-94 07-01-97 11-12-94
AT B	336030	12-04-77	111641414131780099605150515051505150515051505151551515	77-667577799547866699586857552352499767790788778586 4-4-1-1-7777777777777777777777777777777

INTERNATIONAL SEARCH REPORT Information on patent family members

International application N . PCT/KR 97/00128

	PC1/KR 9//UU128
	794446578897988770007777018871171016975577177162880077279777777777777777788778877887788778887887
EP A1 547517 23-06-5	975 4575555576446557777657257446 97979797979797979797979999999999999

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/KR 97/00128

ARACUDDEEDELLE ARACUTAARTAAA	29817759 66800000000000000000000000000000000000	1253 127457 1253 1253 1253 1253 1253 1253 1253 1253	99999999999999999999999999999999999999
HILLPOONAGG NAAAAAAAAAA	2 671	44 28-02- 04-04- 04-03- 75 04-03- 14-03- 14-002- 14-002- 14-002- 26-105- 26-12- 26-12- 26-12- 26-12- 26-12- 26-12-	95364235555555555555555555555555555555555