ELEMENTARNE FUNKCIJE - GRAFICI

Osnovne elementarne funkcije su:

- Konstantne funkcije
- Stepene funkcije
- Eksponencijalne funkcije
- Logaritamske funkcije
- Trigonometrijske funkcije
- Inverzne trigonometrijske funkcije
- Hiperboličke funkcije

Elementarnim funkcijama se nazivaju funkcije koje se mogu zadati pomoću osnovnih elementarnih funkcija i konstanti, pomoću konačno mnogo operacija sabiranja, oduzimanja, množenja, deljenja i kompozicija osnovnih elementarnih funkcija.

Napomena: Ovo nije stroga definicija elementarnih funkcija. Vi tu definiciju naučite kako vam je kaže vaš profesor, mi smo tu da samo malo pojasnimo stvari i podsetimo vas kako izgledaju grafici...

Ovo su grafici stepenih funkcija gde je **izložilac prirodni broj**. Svi grafici izgledaju ovako, sem što se u zavisnosti od izložioca sužavaju ili šire...(pogledajte fajl kvadratna funkcija iz druge godine).

Ovo su grafici stepenih funkcija gde je izložilac racionalan broj.

Trebamo zapamtiti da je $y = \sqrt[n]{x}$, kada je n **paran broj** definisana samo za $x \in [0, \infty)$ to jest $x \ge 0$, dok je funkcija $y = \sqrt[n]{x}$ kada je n **neparan broj** definisana na celom skupu R, to jest $x \in (-\infty, \infty)$

Podsetite se logaritamskih funkcija (fajl iz II godine).

Važno je zapamtiti da su one definisane za vrednosti x koje su veće od nule, to jest x > 0.

U graničnim vrednostima funkcija smo rekli da je $\ln 0 = -\infty$. Sa elementarnog grafika to sad možemo i uočiti (slika 3.): kad se x približava 0 sa pozitivne strane funkcija teži beskonačnosti (minus): $\lim_{x\to 0+\varepsilon} \ln x = -\infty$ (žuta crta)

A rekli smo i da je $\ln \infty = \infty$. Sa grafika je i to jasno, kad x teži beskonačnosti i funkcija ide u beskonačno, što je na grafiku prikazano crvenom crtom.

Eksponencijalne funkcije smo takodje obradjivali u II godini. Važno je da su one svuda definisane: $\forall x \in R$.

Kad smo objašnjavali limese, rekli smo da je $e^{-\infty} = 0$. Sada to možemo videti i na grafiku(žuta crta), kad x teži minus beskonačno, funkcija se približava nuli. Dalje smo rekli i da je $e^{\infty} = \infty$ (crvena crta).

Trigonometrijske funkcije:

$$y = sinx$$

$$y = \cos x = \sin(x + \frac{\pi}{2})$$

$$y = tgx = \frac{\sin x}{\cos x}$$

$$y = ctgx = \frac{\cos x}{\sin x}$$

Sinusna funkcija $y = \sin x$ je osnovna trigonometrijska funkcija.

Ostale trigonometrijske funkcije definišemo sa :

$$\cos x = \sin(x + \frac{\pi}{2})$$

$$tgx = \frac{\sin x}{\cos x}$$

$$ctgx = \frac{\cos x}{\sin x}$$

Inverzne trigonometrijske funkcije:

Ove funkcije se nazivaju ciklometrijske ili arkus funkcije.

i) Arkus sinus

Pazite: funkcija y = sinx nema inverznu funkciju, jer nije bijekcija!

Ali ako posmatramo njenu restrikciju na intervalu $[-\frac{\pi}{2}, \frac{\pi}{2}]$ i preslikavanje $f^{-1}:[-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ dobijamo arkus sinus funkciju:

5

Još zapamtite da važi:

$$\arcsin(\sin x) = x$$
 za $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
 $\sin(\arcsin x) = x$ za $x \in [-1, 1]$

Funkcija je definisana za $x \in [-1,1]$

Nula funkcije je u x = 0

ii) Arkus kosinus

I ovde ćemo iz sličnog razloga posmatrati restrikciju funkcije $y = \cos x$ na intervalu $[0, \pi]$.

Posmatramo preslikavanje $g^{-1}:[-1,1] \rightarrow [0,\pi]$

Važi:

$$\arccos(\cos x) = x$$
 za $x \in [0, \pi]$
 $\cos(\arccos x) = x$ za $x \in [-1, 1]$

Funkcija je definisana za $x \in [-1,1]$

Nula funkcije je u x = 1

iii) Arkus tangens

Posmatrajući restrikciju funkcije y = tgx na intervalu $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ i preslikavanje $h^{-1}: R \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Dobijamo funkciju arkus tangens.

$$arctg(tgx) = x$$
 za $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
 $tg(arctgx) = x$ za $x \in \mathbb{R}$

Funkcija je definisana na celom skupu R.

Nula funkcije je x=0.

iv) Arkus kotangens

$$k^{-1}: R \rightarrow [0, \pi]$$

7

$$arcctg(ctgx) = x$$
 za $x \in [0, \pi]$
 $ctg(arcctgx) = x$ za $x \in R$

Funkcija je svuda definisana . Nema nule.

Hiperboličke funkcije

To su funkcije:

hiperbolički sinus
$$shx = \frac{e^x - e^{-x}}{2}$$
,

hiperbolički kosinus
$$chx = \frac{e^x + e^{-x}}{2}$$

hiperbolički tangens
$$thx = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 i

hiperbolički kotangens
$$cthx = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Grafici ovih funkcija se dobijaju iz grafika $y = e^x$ i $y = e^{-x}$ odnosno pomoću $y = \frac{1}{2}e^x$ i $y = \frac{1}{2}e^{-x}$

Ovde važe identiteti (podseti se adicionih formula iz II godine...)

$$ch^2x - sh^2x = 1$$

$$sh(x+y) = shx \cdot chy + chx \cdot shy$$

$$ch(x + y) = chx \cdot chy + shx \cdot shy$$

$$sh2x = 2 \cdot shx \cdot chx$$

$$ch2x = ch^2x + sh^2x$$

<u>hiperbolički tangens</u> i <u>hiperbolički kotangens</u> imaju grafike:

