Combinational Logic Design p.105

2장: 논리 연산들에 대한 논리 게이트들

경제적인 설계를 위한 부울 함수 단순화 방법에 대해 이해하였다.

3장: 2장의 이해를 바탕으로 조합 회로의 설계 과정을 배운다. 기본 함수 불록들(디코더, 인코더..)의 기능을 배운다.

1

1

Technology Mapping

110

- NAND, NOR는 현재 집적회로 기술에서 가장 간단하고 가장
 빠른 게이트이다.
- 그리고 universal Gate 이다. (p.40,42 참고)
- AND, OR, NOT로 구성된 회로 → NAND gate로 매핑

O

NAND mapping / NOR mapping p.113

- 게이트 지연시간의 관점
 - 곱의 합 → NAND mapping이 유리
 - 합의 곱 → NOR mapping이 유리
- 이 외에 다양한 관점에서 기술적 고려를 해야 한다.

10

10

Combinational circuit

- 조합회로
 - 입력 변수들만의 논리 연산에 의한 출력
 - F (x,y,z)
 - G (I₁,I₂,I₃,I₄,I₅,....,I_n)

F(입력변수들) = 출력

11

디지털 설계 과정 p.106

- 1. Specification(구체화, 스펙화)
 - 회로의 기능 정의
 - 입력,출력의 이름과 symbol 정하기
- 2. 수식화(Formulation)
 - · the truth table, initial Boolean equations
- 3. Optimization: 2-level gates 최적화
- Technology Mapping
 - 활용되는 함수적 블록들을 사용한 최적화, 다단계 최적화: 공유할 수 있는 항을 이용, 비용절감
 - 구현기술에 따른 최적화 설계 :최대팬아웃, 허용지연시 간 등
- 5. Verification (검증)
 - · simulation

12

12

BCD-to-7-segment converter(decoder) p.143 ■ BCD-to-7-세그먼트 디코더: 전자계산기, 디지털시계 Specification - 입력 4개(A,B,C,D) - 출력 7개(a~g) ■ 진리표 (a) Segment designation BCD Input Seven-Seg ■ 7개의 간략화된 부울 함수 - 각자 해보기 발생하지 않는다. 선택 1. 무정의 조건 선택 2. 모두 0으로 출력 All other inputs 0 0 0 0 0 0 0 ... 13

연습

- GrayCode –to–BCD converter
- 를 설계하시오.

단) 표에 지정된 10개의 Gray코드 이외에는 발생하지 않는다.

입력변수 ?개:A,B… 로 열거

출력변수 ?개: a,b,…로 열거

			C		
1	0	1	3	2	
	4	5	7	6	В
	12	13	15	14	
١	8	9	11	10	
-	ê f				

	Gray	BCD
0	0000	0000
1	0100	0001
2	0101	0010
3	0111 m	6 0011
4	0110	0100
5	0010	0101
6	0011	0110
7	0001	0111
8	1001	1000
9	1000	1001

16

16

연습(수정)

- GrayCode –to–BCD converter
- 를 설계하시오.

입력변수 ?개: A,B… 로 열거

출력변수 ?개: a,b,…로 열거

	Gray	BCD
0	000	0000
1	100	0001
2	101	0010
3	111	0011
4	110 m2	0100
5	010	0101
6	011	0110
7	001	0111

17

연습(수정)

- GrayCode –to–BCD converter
- 를 설계하시오.

입력변수 ?개: A,B… 로 열거

출력변수 ?개: a,b,…로 열거

	Gray	BCD
0	000	0000
1	100	0001
2	101	0010
3	111	0011
4	110	0100
5	010	0101
6	011	0110
7	001	0111

18

18

연습 p.178그림 참고

 1~6의 이진수가 입력되면 아래 모양과 같이 주사위의 각 세그 먼트가 출력되도록 설계하시오.

 a
 b

 c
 d

 f
 g

1 2 3 4 5

-예) (001)이 입력되면 d만 1로 출력되고 나머지 출력은 0이다.

- 입력변수: 3개 X,Y,Z

- 출력변수: 7개 a~g

-단) 1~6 이외의 이진수가 입력되면 모두 0으로 출력된다.

정리

- 조합회로 설계
 - 스펙작성
 - 수식화
 - 진리표 → 부울함수
 - 최적화
 - 2-level → 논리 회로도
- 모든 부울함수는 NAND 게이트로 구현할 수 있다.
- 모든 부울함수는 NOR 게이트로 구현할 수 있다.
- NAND NOR mapping

20