

Exercice 1 On considère le cube ABCDEFGH

1. Remplacer les pointillés par le sommet du cube qui convient :

$$\overrightarrow{B}$$
.. = $\overrightarrow{B}\overrightarrow{A}$ + $\overrightarrow{B}\overrightarrow{G}$

$$\overrightarrow{C}_{\cdot \cdot \cdot} = \overrightarrow{CA} + \overrightarrow{DG}$$

$$\overrightarrow{B}.. = \overrightarrow{BE} + \overrightarrow{DC} + \overrightarrow{GD}$$

$$\overrightarrow{A}.. = \overrightarrow{AC} + \overrightarrow{DE} + \overrightarrow{BD}$$

- **2.** Placer le point K tel que $\overrightarrow{AK} = \overrightarrow{AE} + \frac{1}{2}\overrightarrow{BC}$.
- **3.** Placer le point L tel que $\overrightarrow{EL} = \overrightarrow{EH} + \frac{1}{3}\overrightarrow{EF} + \overrightarrow{EA}$.
- **4.** Exprimer les vecteurs suivants comme combinaison linéaire des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} :

 \overrightarrow{AF}

 \overrightarrow{AH}

 \overrightarrow{AG}

 \overrightarrow{EB}

 \overrightarrow{CF} \overrightarrow{BH}

Exercice 2 Dans chacun des cas suivants, exprimer le vecteur \overrightarrow{AB} en fonction du vecteur \overrightarrow{AC} :

$$\implies 4\overrightarrow{AB} + 3\overrightarrow{BC} = \overrightarrow{0}$$

$$\implies 2\overrightarrow{AB} - 3\overrightarrow{AC} = \overrightarrow{BC}$$

Exercice 3 Indiquer si les affirmations sont vraies ou fausses, puis justifier.

- 1. Les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} tels que $3\overrightarrow{u} + 4\overrightarrow{v} 2\overrightarrow{w} = \overrightarrow{0}$ ne sont pas coplanaires.
- **2.** A, B et C sont trois points non alignés. Le point M de l'espace tel que $\overrightarrow{AM} = 3\overrightarrow{AB} + 5\overrightarrow{AC}$ appartient au plan (ABC).

1G 1G

Exercice 4 A, B et C sont trois points non alignés et D est le point tel que $-3\overrightarrow{AD} + 5\overrightarrow{BD} + 2\overrightarrow{CD} = \overrightarrow{0}$.

1. Justifier que \overrightarrow{AD} , \overrightarrow{BD} et \overrightarrow{CD} sont coplanaires.

2. Justifier que $\overrightarrow{BD} = -\overrightarrow{AB} + \overrightarrow{AD}$.

3. Justifier que $\overrightarrow{CD} = -\overrightarrow{AC} + \overrightarrow{AD}$.

4. En déduire que $\overrightarrow{AD} = \frac{5}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.

Exercice 5 Dans le tétrèdre ABCD, on place les points I et J tels que :

$$\overrightarrow{AI} = \frac{3}{4}\overrightarrow{AC}$$

$$\overrightarrow{AJ} = \frac{3}{4}\overrightarrow{AB}$$

1. Montrer que $\overrightarrow{JI} = \frac{3}{4}\overrightarrow{BC}$

2. Que peut-on en déduire pour la droite (IJ) et le plan (BCD)?

Exercice 6 Indiquer si les affirmations sont vraies ou fausses, puis justifier. Soit le cube ABCDEFGH.

On se place dans le repère $(A; \overrightarrow{BC}; \overrightarrow{BC}; \overrightarrow{BC})$. Dans ce repère :

Les coordonnées de A sont (0; 0; 0).

Les coordonnées de C sont (1;0;1).

Les coordonnées de F sont (1; 1; 0).

Les coordonnées de G sont (1; 1; 1).

Exercice 7 Soit $\vec{u}(3;1;2)$, $\vec{w}(3;-2;4)$ et $\vec{w}(-3;8;-8)$.

1. Calculer les coordonées du vecteur $2\overrightarrow{u} - 3\overrightarrow{v}$.

2. Justifier que les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

Exercice 8 Le point G est tel que $6\overrightarrow{CG} = 4\overrightarrow{CD} + 2\overrightarrow{CB}$. Le point H est tel que $3\overrightarrow{HA} + \overrightarrow{HD} = \overrightarrow{0}$

1. Exprimer \overrightarrow{CG} en fonction de \overrightarrow{CD} et \overrightarrow{CB} .

2. Exprimer \overrightarrow{AH} en fonction de \overrightarrow{AD} .

Exercice 9

ABCDEFGH est un parrallélépipède et K le point de l'espace tel que $\overrightarrow{BK} = \frac{1}{3}\overrightarrow{BD} + \frac{1}{3}\overrightarrow{BE}$.

1G

- 1. Démontrer que $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} = 3\overrightarrow{AK}$
- **2.** Exprimer \overrightarrow{AG} en fonction de \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .
- 3. En déduire que A, K et G sont alignés.

Exercice 10 ABCD est un tétraèdre.

Soit les points E, F et G tels que :

$$\overrightarrow{AE} = \frac{1}{4}\overrightarrow{AB}$$

$$\overrightarrow{AF} = \frac{1}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AD}$$

$$\overrightarrow{AG} = -\frac{1}{2}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC} + \frac{3}{4}\overrightarrow{AD}$$

- 1. Exprimer \overrightarrow{EF} en fonction de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .
- **2.** Exprimer \overrightarrow{EG} en fonction de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .
- 3. En déduire que E, F et G sont alignés.

Exercice 11 Le point E est tel que $\overrightarrow{AE} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{CD} - \frac{1}{2}\overrightarrow{BD}$. Montrer que les vecteurs \overrightarrow{AE} , \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires.

T I TO CARGO () I I I I I ARCO

Exercice 12 SABCD est une pyramide dont la base ABCD est parrallélogramme. Les points I et J sont tels que :

$$\overrightarrow{BI} = \frac{1}{3}\overrightarrow{BS}$$

$$\overrightarrow{SJ} = \frac{2}{3}\overrightarrow{SC}$$

- 1. Justifier que les droites (IJ) et (BC) sont parrallèles.
- 2. Démontrer que les droites (AJ) et (DI) sont sécantes.

Exercice 13 ABCDEFGH est un cube, I et J sont tels que:

$$\overrightarrow{AI} = \frac{3}{4}\overrightarrow{AB}$$

$$\overrightarrow{AJ} = \frac{1}{4}\overrightarrow{AD}$$

1. Exprimer les vecteurs \overrightarrow{EG} , \overrightarrow{EJ} et \overrightarrow{IF} en fonction des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} .

1**G**

- **2.** En déduire que $\overrightarrow{IF} = \frac{1}{4}\overrightarrow{EG} \overrightarrow{EJ}$.
- **3.** Que peut-on dire de la droite (IF) et du plan (EGJ)?
- 4. Est ce que les points A, J, D, F et G sont alignés?

Exercice 14 ABCD est un tétraèdre.

On définit les points E, F et G par les égalités :

$$\overrightarrow{AE} + \overrightarrow{DE} = \overrightarrow{0}$$

$$\overrightarrow{AF} - \overrightarrow{BF} - \overrightarrow{CF} = \overrightarrow{0}$$

$$\overrightarrow{BG} + \overrightarrow{CG} + \overrightarrow{DG} = \overrightarrow{0}$$

- 1. Que peut-on dire du point E?
- 2. A quels plans appartiennent les points F et G? Justifier.
- **3.** Exprimer \overrightarrow{AE} en fonction de \overrightarrow{AD} .
- **4.** Exprimer \overrightarrow{AF} dans la base $(\overrightarrow{AB}, \overrightarrow{AC})$
- **5.** En déduire l'expression du vecteur \overrightarrow{EF} dans la base $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$.
- **6.** Exprimer \overrightarrow{AG} dans la base $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$.
- 7. En déduire que les points E, F et G sont alignés.

Exercice 15 Soit les vecteurs $\overrightarrow{u}(0;1;2)$, $\overrightarrow{v}(1;1;30)$ et $\overrightarrow{w}(-1;3;1)$.

- 1. Démontrer que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base de l'espace.
- **2.** Déterminer les coordonnées du vecteur \overrightarrow{t} (5; -4; 5) dans cette base.

Exercice 16 Soit A(1;2;3), B(4;-5;6), C(0;0;3) et D(7;8;-9).

- 1. Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD}
- **2.** Démontrer que ces vecteurs ne sont pas coplanaires. Que peut-on en déduire pour les points A, B, C et D?
- **3.** Calculer les coordonnées de I, milieu de [AB], et de J, milieu de [CD].
- **4.** Les points E et F sont tels que IACE et IBDF sont des parallélogrammes. Déterminer les coordonnées de E et F.
- **5.** *Justifier que J est le milieu du segment* [*EF*].