

MINISTÉRIO DAS TELECOMUNICAÇÕES, TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO SOCIAL MINISTÉRIO DA EDUCAÇÃO

# TLP: MODELO RELACIONAL UNIDADE V

PROF. PAULO TUMBA / PROF. JÚLIO BARROS

2024-2025





# ÍNDICE

- 1. Conceitos;
- 2. Estrutura Fundamental;
- 3. Domínio, Atributos, Tuplas, Chaves;
- 4. Regras de Integridade;
- 5. Modelo ER vs Modelo Relacional
- 6. Exercício



# Objectivo

**Objectivo** – Entender o que é o Modelo Relacional;

Compreender a estrutura de uma Base de dados Relacional;

Ser capaz de criar uma Base de dados Relacional à partir de um Diagrama Entidade Relacionamento.



## Modelo Relacional

Uma Base de dados Relacional consiste em uma coleção de TABELAS, cada uma com um nome único.

- Os dados são organizados em tuplas e agrupado em relações ou tabelas.
- Proposto em 1969 por Edgar Codd.

| ESTUDANTE | Nome    | Número | Classe | Departamento |
|-----------|---------|--------|--------|--------------|
|           | Soares  | 17     | 1      | DCC          |
|           | Botelho | 8      | 2      | DCC          |

| CURSO | Nome                      | Número  | Créditos | Departamento |
|-------|---------------------------|---------|----------|--------------|
|       | Introd. Ciências de Comp. | DCC1310 | 4        | DCC          |
|       | Estrutura de Dados        | DCC3320 | 4        | DCC          |
|       | Matemática Discreta       | MAT2410 | 4        | MAT          |
|       | Base de Dados             | DCC3380 | 4        | DCC          |

| PRÉ-REQUISITO | Número  | Pré-requisito |
|---------------|---------|---------------|
|               | DCC3380 | DCC3320       |
|               | DCC3380 | MAT2410       |
|               | DCC3320 | DCC1310       |

| SEÇÃO | Número | Curso   | Semestre | Ano | Professor |
|-------|--------|---------|----------|-----|-----------|
| -     | 85     | MAT2410 | 1        | 86  | Kotaro    |
|       | 92     | DCC1310 | 1        | 86  | Alberto   |
|       | 102    | DCC3320 | 2        | 87  | Kleber    |
|       | 112    | MAT2410 | 1        | 87  | Carlos    |
|       | 119    | DCC1310 | 1        | 87  | Alberto   |
|       | 135    | DCC3380 | 1        | 87  | Souza     |

| HISTORICO | NúmeroEstudante | NúmeroSeção | Nivel |
|-----------|-----------------|-------------|-------|
|           | 17              | 112         | В     |
| 8         | 17              | 119         | С     |
|           | 8               | 85          | A     |
|           | 8               | 92          | Α     |
|           | 8               | 102         | В     |
|           | 8               | 135         | Α     |



## Conceitos

Em base de dados modelo de dados é a forma lógica de representação dos dados.

Existem vários modelos, sendo o Modelo Relacional é o mais utilizado.

A estrutura básica deste modelo é a relação ou tabela.

**Relação ou Tabela** – estrutura bidimensional (colunas e linhas). O esquema da relação é constituído por um ou mais atributos, que traduzem o tipo de dados a armazenar.

**Relação** é o termo matemático para uma tabela. Assim sendo, o modelo relacional usa um conjunto de tabelas para representar os dados e as relações entre estes mesmos dados.

Uma base de dados relacional é uma colecção de tabelas.



## Estrutura Fundamental

#### Relação ou tabela

- O esquema é constituído por um ou mais atributos (campos ou colunas);
- Numero de atributos é fixo;
- Atributos não podem ser ambíguos (i.e, possuem nomes únicos);
- Cada linha chama-se tupla (registo);
- Do cruzamento de uma coluna com uma linha apenas resulta num único valor.
- Exemplo: tabela de clientes

| <u>ID</u> | Nome   | Morada    | Tel.      |
|-----------|--------|-----------|-----------|
| 100001    | Maria  | Ingombota | 999111222 |
| 100002    | José   | Samba     | 999222444 |
| 100003    | Miguel | Viana     | 999333555 |
| 100004    | Márcia | Cazenga   | 999777444 |



## Domínio

Domínio: são valores que os atributos (campos) podem assumir.

Um domínio é sempre atómico.

O valor **Nulo** é membro de todos os domínios e significa que o valor não existe ou é desconhecido.

| Tipo de domínio | Descrição                                |
|-----------------|------------------------------------------|
| Char (n)        | String de caracteres de tamanho fixo     |
| Varchar (n)     | String de caracteres de tamanho variável |
| Integer ou int  | Número inteiro                           |
| Smallint        | Pequeno inteiro                          |
| Float (n)       | Número de vírgula flutuante              |
| Date            | Data                                     |
| Timestamp       | Intervalo temporal                       |

Onde *n* é o tamanho especificado pelo utilizador



## Tuplas/Registos

- Representa cada linha de uma tabela;
- As tuplas devem ser distintas;
- A ordem das tuplas não tem qualquer significado na tabela;
- Uma tabela pode ter 0 ou mais tuplas;
- Um conjunto de tuplas de uma mesma tabela contém o mesmo número de campos, pela mesma ordem e com a mesma estrutura.

| <u>ID</u> | Nome  | Morada    | Tel.      |
|-----------|-------|-----------|-----------|
| 100001    | Maria | Ingombota | 999111222 |
| 100002    | José  | Samba     | 999222444 |



# Chaves (superchave)

- É necessário ter uma maneira de especificar como as tuplas dentro de uma tabela são distinguidas.
- Os valores dos atributos de uma tupla precisam ser tais que se possa identificar unicamente uma tupla.
- **Superchave** é o conjunto de um ou mais atributos, que tomados colectivamente, permitem identificar unicamente uma tupla numa tabela.
- Nota: No limite todos os campos de uma tabela constituem uma superchave.

A combinação de todos os atributos formam uma superchave

- { ID, Nome, Morada, Tel}
- A combinação ID e nome do cliente também é uma superchave da tabela
  {ID, Nome}
- ID do cliente é uma superchave da tabela cliente {ID}
- Mas apenas o nome não é superchave, pois vários clientes podem ter o mesmo nome.



## Chaves (Candidata)

- Chave candidata ou mínima subconjunto dos atributos de uma superchave mínimas. i.e, superchaves que não podem ser reduzidas sem perder a qualidade de superchave.
- **Exemplo**: Ainda tendo em conta uma tabela cliente, o atributo ID do cliente, a combinação de nome de cliente e morada são exemplos de chaves candidatas, partindo do princípio de que a combinação nome e morada será única e suficiente para distinguir as tuplas.

Chaves candidatas: {ID}, {Nome, Morada}.



# Chaves (Primária)

• Chave primária (Primary Key PK) – chave selecionada dentre todas as chaves candidatas para identificar, efectivamente, cada tupla.

• Exemplo: ID do cliente na tabela cliente.

Chave Primária: {ID}

#### **Chave Primária**

| <u>ID</u> | Nome   | Morada    | Tel.      |
|-----------|--------|-----------|-----------|
| 100001    | Maria  | Ingombota | 999111222 |
| 100002    | José   | Samba     | 999222444 |
| 100003    | Miguel | Viana     | 999333555 |
| 100004    | Márcia | Cazenga   | 999777444 |



# Chaves (Primária)

As chaves primárias podem ser simples ou compostas. I.e, podem ser constituída por um ou mais atributos.

- 1)Uma chave primária tem que respeitar as seguintes regras:
  - 1) Unicidade
  - 2)- Não nula

**Nota**: A chave primária é escolhida pela pessoa responsável por projectar a base de dados. E deve-se ter em conta que os valores de uma chave primária nunca ou muito raramente são modificados, ao contrário de outros atributos da relação.



# Chaves (Estrangeira)

- Chave estrangeira ou externa (Foreign Key FK) atributo ou conjuntos de atributos de uma tabela que são chaves primárias noutra tabela.
- **Exemplo**: Seja t1 um esquema de tabela, t1 pode conter dentro dos seus atributos a chave primária de um esquema t2.
- O atributo em t1 é chamado de chave estrangeira, referenciando t2.
- A tabela de **t1** é chamada de tabela referenciadora da dependência de chave estrangeira, e **t2** é chamada de tabela referenciada.
- Nota: As chaves estrangeiras permitem definir o relacionamento entre tabelas.



# Chaves (Estrangeira)

| <u>ID</u> | Nome   | Morada    | Tel.      |
|-----------|--------|-----------|-----------|
| 100001    | Maria  | Ingombota | 999111222 |
| 100002    | José   | Samba     | 999222444 |
| 100003    | Miguel | Viana     | 999333555 |
| 100004    | Márcia | Cazenga   | 999777444 |

| Num_conta | Saldo        | Cliente |
|-----------|--------------|---------|
| 5001      | 100.000,00   | 100002  |
| 5002      | 50.000,00    | 100004  |
| 5003      | 1.000.000,00 | 100001  |
| 5004      | 25.000,00    | 100002  |



- Permitem especificar a semântica dos dados e garantem que os dados estão de acordo com as regras especificadas no negócio. (Damas, 2005)
- As regras de integridade protegem a base de dados contra danos acidentais.
  (Silberschatz et al., 2006)
- Tipos de regras de integridade:
  - Domínio;
  - Chave primária;
  - Referencial;



#### Integridade de Domínio

Asseguram que os valores dos atributos satisfaçam uma determinada condição.

- Especificam que o valor de um atributo A de uma tabela deve ser um valor atômico do domínio dom(A).

#### **Regra valores nulos**

Especifica se a um atributo é permitido ter valores nulos (null). Quando o valor obrigatório atribuição a NOT NULL.

#### Regra unicidade

Indica que os valores associados a determinado atributo não se podem repetir, i.e, devem ser únicos na tabela.

#### Regra valores por defeito

Especifica um valor padrão para o atributo

**Nota**: O valor nulo é membro de todos os domínios, sendo valor padrão para todos os domínios.



#### Integridade de chave primária

- Uma chave primária identifica de forma única cada tupla.
- Nenhum componente de uma chave primária pode ser nulo.
- A regra de integridade de chave primária é equivalente as regras de Unicidade + Valor não nulo.



#### Integridade referencial

- Usada para garantir que um valor aparece numa tabela para um conjunto de atributos também apareça em outro conjunto de atributos em outra tabela. I.e, permite validar chaves estrangeiras.
- Mantêm a consistencia entre tuplas de duas tabelas. Resultam das relações entre entidades. A regra de integridade referencial pode ser expressa pela notação:

#### T1[FK] →T2[PK]

Onde: PK é a chave primária de RT e FK é a chave estrangeira de T1



## Modelo ER vs Modelo Relacional





## Exercício

• Identifique as possíveis chaves primárias, candidatas e estrangeiras, em cada uma

#### **FACULDADES**

Siglafac

Denominação

#### **DEPARTAMENTOS**

Sigladep

Siglafac

Nome\_Dep

#### **CURSOS**

Codigocurso

Título

Sigladep

#### **PROFESSORES**

Codigoprof

Nome\_prof

Regime

Titulacao

Data\_admissao

Endereço

Bairro

Cidade

Bilheteldentidade

Sigladep

#### **ALUNOS**

Mataluno

Nome\_Aluno

Codigocurso

**Data Ingresso** 

Endereço

Sigladep



#### **Tarefa**

Investigar : Mapeamento do Modelo Entidade-Relacionamento para o Modelo Relacional. Trazer exemplos na próxima aula.



# **MUITO OBRIGADO!**