

Data analysis

Courses: Industrial automation, Automatizace pro průmyslovou praxi CTU, FS, U12110
Matouš Cejnek

Contents

- Introduction
- Basic flow
- Types of data
- Practical tools and examples

Introduction

Data analysis

- Data analysis involves inspecting, cleaning, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making.
- Basic flow:
 Pre-processing → Core Analysis → Post-processing

Related tools, methods and fields

- Machine learning
- Statistics
- Data mining
- Natural language processing
- ...

Basic flow

Data pre-processing

- Handling Missing Data
- Data Cleaning removing outliers, errors
- Data Transformation changing format, shape
- Normalization data range adjustment
- Feature Engineering

Core analysis

 Application of various statistical methods, machine learning algorithms, or other analytical techniques to extract meaningful insights and draw conclusions from the dataset.

Core analysis

Most common:

- Regression
- Classification
- Clustering

Post-processing

- Interpretation of results
- Visualization
- Validation (cross-validation)
- Documentation

Types of data

Types of data

- Qualitative (Categorical) Data
- Quantitative (Numerical) Data
- Mixed (Categorical and Numerical) Data

Qualitative (Categorical) Data

Qualitative data represents categories or labels and is non-numeric. It describes qualities or characteristics and cannot be measured in numerical terms.

Nominal Data: (e.g., colors, types of fruits).

Ordinal Data: (e.g., education levels).

Quantitative (Numerical) Data

Quantitative data consists of measurable quantities and is expressed in numerical terms. It represents quantities or amounts and can be further categorized as discrete or continuous.

Discrete Data (e.g., number of employees, customer purchases).

Continuous Data (e.g., height, temperature).

Mixed (Categorical and Numerical) Data

Definition: Some datasets may include both qualitative and quantitative variables, leading to mixed data types.

Example: A survey dataset with both categorical variables (gender, education level) and numerical variables (income, age).

Practical tools and examples

Common metrics for numerical data

We need to calculate different metrics as a step for various other tasks (filtration, normalization, cleaning, modelling, ...)

Number of observations (length of data)
Min, max, and range (max - min) of data
Sum of data (total value)

Common metrics for numerical data

Mean value = sum / number of observations

Median value (most common value, the middle value of ordered data)

Variance - how the data are spread from mean

Standard deviation - square root of variance

Histogram

- A histogram is a visual representation of the distribution of a dataset, displaying the frequency or probability of different ranges or bins of numerical data.
- The horizontal axis (x-axis) represents the numerical data, divided into intervals or bins.
- The vertical axis (y-axis) represents the frequency or probability of occurrences within each bin.

Histogram

Basic cleaning / filtering methods

Thresholding - removing/capping values on below or above a threshold (good for removing outliers)

Mean / median filter - replacing values with mean or median of defined surrounding (e.g. last few samples)

Z-score (standard score)

Used for normalization of data into standard range.

- 1. Remove mean value
- 2. Divide by standard deviation

Z-score transformation

Boxplot

Boxplot is used to visualize multiple variables in a way that displays (for each):

- Median value
- Quartiles
- Outliers

Correlation coefficient

The correlation coefficient quantifies the strength and direction of a linear relationship between two numerical variables:

- 1: Perfect Positive Linear Relationship
- 0: No Linear Relationship
- -1: Perfect Negative Linear Relationship

Regression analysis

Regression analysis is a statistical method used to model and examine the relationship between a dependent variable and one or more independent variables.

For example:

What is the relation between measured value and time?

Prediction of future samples

