Chapter

4

OpenCV 인터페이스

윈도우 제어

- **❖** cv2.namedWindow(winname[, flag]) → None
 - 윈도우 이름을 설정한 후, 해당 이름으로 윈도우 생성
 - flag
 - cv2.WINDOW_NORMAL : 윈도우 크기 재조정 가능
 - cv2.WINDOW AUTOSIZE: 표시될 행렬의 크기에 맞춰 자동 조정

- - winname 윈도우에 mat 행렬을 영상으로 표시
 - 생성된 윈도우가 없으면, winname 이름으로 윈도우를 생성
 - mat : numpy의 ndarray

- - HighGUI로 생성된 모든 윈도우 소멸
- **❖** cv2.destroyWindow(winname) → None
 - winname으로 지정된 윈도우 소멸

- **❖** cv2.moveWindow(winname, x, y) → None
 - winname 윈도우를 (x, y) 위치로 이동. 원점은 모니터의 좌측상단.
- **❖** cv2.resizeWindow(winname, width, height) → None
 - winname 윈도우의 크기를 재조정

라이브리리 임포트

슬라이스 연 산자로 행렬 원소값 지정

예제 4.1.1 윈도우 이동 - 01.move_window.py

01 02	import numpy as np import cv2	# 넘파이 라이브러리 임포트 # OpenCV 라리브러리 임포트
03 04	<pre>image = np.zeros((200, 400), np.uint8)</pre>	# 행렬 생성
95 96	image[:] = 200	# 밝은 회색(200) 바탕 영상 생성
07	title1, title2 = 'Position1', 'Position2'	# 윈도우 이름
08 09	<pre>cv2.namedWindow(title1, cv2.WINDOW_AUTOSIZE) cv2.namedWindow(title2)</pre>	# 윈도우 생성 및 크기 조정 옵션
10	cv2.moveWindow(title1, 150, 150)	# 윈도우 이동 - 위치 지정
11	cv2.moveWindow(title2, 400, 50)	
13	cv2.imshow(title1, image)	# 행렬 원소를 영상으로 표시
14	cv2.imshow(title2, image)	
15	cv2.waitKey(0)	# 키 이벤트(key event) 대기
16	cv2.destroyAllWindows()	# 열린 모든 윈도우 파괴

WINDOW_AUTOSIZE vs. WINDOW_NORMAL

np.ndarray.fill() 함 수로 원소값 지정

```
윈도우의 크기 변경 - 02.window_resize.py
예제 4.1.2
   import numpy as np
   import cv2
03
    image = np.zeros((200, 300), np.uint8)
                                                     # ndarray 행렬 생성
    image.fill(255)
                                                     # 모든 원소에 255(흰색) 지정
06
    title1, title2 = 'AUTOSIZE', 'NORMAL'
                                                     # 윈도우 이름 변수
    cv2.namedWindow(title1, cv2.WINDOW AUTOSIZE)
                                                     # 윈도우 생성 - 크기변경 불가
    cv2.namedWindow(title2, cv2.WINDOW NORMAL)
                                                     # 크기 변경 가능
10
    cv2.imshow(title1, image)
                                                     # 행렬 원소를 영상으로 표시
    cv2.imshow(title2, image)
   cv2.resizeWindow(title1, 400, 300)
                                                     # 윈도우 크기 변경
   cv2.resizeWindow(title2, 400, 300)
                                                     # 키 이벤트(key event) 대기
    cv2.waitKey(0)
                                                     # 열린 모든 윈도우 제거
   cv2.destroyAllWindows()
```


행렬 크기 변경되어 보여지며 윈도우 크기 변경, 실제 행렬이 변경되는 것은 아님

이벤트 처리

❖ 이벤트

- 프로그램에 의해 감지되고 처리될 수 있는 동작이나 사건
- 예
 - 사용자가 키보드의 키를 누르는 것
 - 마우스를 움직인다거나 마우스 버튼을 누르는 것
 - 깊이 들어가면 타이머(timer)와 같은 하드웨어 장치가 발생시키는 이벤트
 - 사용자가 자체적으로 정의하는 이벤트

❖ 일반적으로 이벤트를 처리하기 위해 콜백(callback) 함수 사용

- 콜백 함수
 - 개발자가 시스템 함수를 직접 호출하는 방식
 - 이벤트가 발생하거나 특정 시점에 도달했을 때 시스템이 개발자가 등록한 함수 호출

❖ OpenCV에서도 기본적인 이벤트 처리 함수 지원

■ 키보드 이벤트, 마우스 이벤트, 트랙바(trackbar) 이벤트

키보드 이벤트 처리

- - delay(mili-second)만큼 키보드 입력 대기
 - delay <= 0 : 무한대기
 - delay > 0 : 지정된 시간만큼 대기(시간내에 입력 없으면 -1 반환)
 - 이벤트 발생시, 입력된 키 값 반환
 - waitKey(): 1 byte 키 값 반환
 - waiteKeyEx(): 2 byte 키 값 반환
 - 기능키(F1, F2, ..., F12), ↑, ↓, ←, → 화살표 키 등 특수키를 입력 받을 때 사용

Insert	0x2d0000
Delete	0x2e0000
Home	0x240000
End	0x230000
Page Up	0x210000
Page Down	0x220000
←	0x250000
↑	0x260000
\rightarrow	0x270000
↓	0x280000
F1	0x700000

❖ 주의 : 키 이벤트를 발생시키려면 윈도우를 반드시 선택(클릭)하여 활성화시킨 후, 키보드의 키를 눌려야 함

예제 4.2.1 키 이벤트 사용 - 03.event_key.py

```
01 import numpy as np
02 import cv2
03
    ## switch case문을 사전(dictionary)으로 구현
    switch_case = {
        ord('a'): "a키 입력",
                                             # ord() 함수: 문자 → 아스키코드 변환
96
        ord('b'): "b키 입력",
97
        0x41: "A키 입력",
98
        int('0x42', 16): "B키 입력",
                                             # 0x42(16진수) → 10진수 변환
09
        2424832: "왼쪽 화살표키 입력",
                                             # 0x250000
10
11
        2490368: "윗쪽 화살표키 입력",
                                             # 0x260000
12
        2555904: "오른쪽 화살표키 입력",
                                             # 0x270000
        2621440: "아래쪽 화살표키 입력"
13
                                             # 0x280000
14 }
15
    image = np.ones((200, 300), np.float)
                                             # 원소값 1인 행렬 생성
    cv2.namedWindow('Keyboard Event')
                                             # 윈도우 이름
    cv2.imshow("Keyboard Event", image)
19
    while True:
                                             # 무한 반복
20
        key = cv2.waitKeyEx(100)
                                             # 100ms 동안 키 이벤트 대기
21
22
       if key == 27: break
                                             # ESC 키 누르면 종료
23
24
        try:
            result = switch_case[key]
25
           print(result)
26
        except KeyError:
27
            result = -1
28
29
30 cv2.destroyAllWindows()
                                             # 열린 모든 윈도우 제거
```

마우스 이벤트 처리

cv2.setMouseCallback(winname, onMouse, param=None)

- setMouseCallback() 함수를 사용하여 특정 윈도우를 위한 콜백함수를 지정해 주면 마우스 이벤트가 발생할 때마다 콜백함수(예: onMouse)가 호출됨
 - param : 추가적인 사용자 정의 인수
- 콜백함수의 형식
 - onMouse(event, x, y, flag, param=None) # 콜백함수이름이 onMouse인 경우
 - event : 이벤트의 종류
 - x, y : 이벤트가 발생한 마우스 포인터의 좌표
 - param : 마우스 버튼과 동시에 특수키(Shift, Alt, Ctrl)가 눌렸는지 여부 확인

옵션	값	설명
cv2.EVENT_FLAG_LBUTTON	1	왼쪽 버튼 누르기
cv2,EVENT_FLAG_RBUTTON	2	오른쪽 버튼 누르기
cv2,EVENT_FLAG_MBUTTON	4	중간 버튼 누르기
cv2.EVENT_FLAG_CTRLKEY	8	[Ctrl] 키 누르기
cv2,EVENT_FLAG_SHIFTKEY	16	[Shift] 키 누르기
cv2,EVENT_FLAG_ALTKEY	32	[Alt] 키 누르기

옵션	값	설명
cv2.EVENT_MOUSEMOVE	0	마우스 움직임
cv2.EVENT_LBUTTONDOWN	1	왼쪽 버튼 누르기
cv2.EVENT_RBUTTONDOWN	2	오른쪽 버튼 누르기
cv2.EVENT_MBUTTONDOWN	3	중간 버튼 누르기
cv2.EVENT_LBUTTONUP	4	왼쪽 버튼 떼기
cv2,EVENT_RBUTTONUP	5	오른쪽 버튼 떼기
cv2.EVENT_MBUTTONUP	6	중간 버튼 떼기
cv2,EVENT_LBUTTONDBLCLK	7	왼쪽 버튼 더블클릭
cv2,EVENT_RBUTTONDBLCLK	8	오른쪽 버튼 더블클릭
cv2.EVENT_MBUTTONDBLCLK	9	중간 버튼 더블클릭
cv2,EVENT_MOUSEWHEEL	10	마우스 휠
cv2.EVENT_MOUSEHWHEEL	11	마우스 가로 휠

MouseEventType	값	설명
EVENT_MOUSEMOVE	0	마우스가 창 위에서 움직인 경우
EVENT_LBUTTONDOWN	1	마우스 왼쪽 버튼을 누른 경우
EVENT_RBUTTONDOWN	2	마우스 오른쪽 버튼을 누른 경우
EVENT_MBUTTONDOWN	3	마우스 가운데 버튼을 누른 경우
EVENT_LBUTTONUP	4	마우스 왼쪽 버튼을 떼는 경우
EVENT_RBUTTONUP	5	마우스 오른쪽 버튼을 떼는 경우
EVENT_MBUTTONUP	6	마우스 가운데 버튼을 떼는 경우
EVENT_LBUTTONDBLCLK	7	마우스 왼쪽 버튼을 더블클릭하는 경우
EVENT_RBUTTONDBLCLK	8	마우스 오른쪽 버튼을 더블클릭하는 경우
EVENT_MBUTTONDBLCLK	9	마우스 중간 버튼을 더블클릭하는 경우
EVENT_MOUSEWHEEL	10	마우스 휠을 돌리는 경우
EVENT_MOUSEHWHEEL	11	마우스 휠을 좌우로 움직이는 경우

MouseEventType	값	설명
EVENT_FLAG_LBUTTON	1	마우스 왼쪽 버튼이 눌려있음
EVENT_FLAG_RBUTTON	2	마우스 오른쪽 버튼이 눌려있음
EVENT_FLAG_MBUTTON	4	마우스 가운데 버튼이 눌려있음
EVENT_FLAG_CTRLKEY	8	왼쪽 Ctrl 버튼이 눌려있음
EVENT_FLAG_SHIFTKEY	16	Shift 키가 눌려있음
EVENT_FLAG_ALTKEY	32	Alt 키가 눌려있음

예제 4.2.2 마우스 이벤트 사용 - 04.event_mouse.py

```
01 import numpy as np
    import cv2
03
    def onMouse(event, x, y, flags, param):
                                           # 콜백 함수 - 이벤트 내용 출력
05
        if event == cv2.EVENT_LBUTTONDOWN:
             print("마우스 왼쪽 버튼 누르기")
06
        elif event == cv2.EVENT RBUTTONDOWN:
97
             print("마우스 오른쪽 버튼 누르기")
98
        elif event == cv2.EVENT RBUTTONUP:
09
             print("마우스 오른쪽 버튼 떼기")
10
        elif event == cv2.EVENT LBUTTONDBLCLK:
11
12
             print("마우스 왼쪽 버튼 더블클릭")
13
    image = np.full((200, 300), 255, np.uint8)
                                                    # 초기 영상 생성
15
    title1, title2 = "Mouse Event1", "Mouse Event2"
                                                     # 윈도우 이름
    cv2.imshow(title1, image)
                                                     # 윈도우 보기
    cv2.imshow(title2, image)
19
    cv2.setMouseCallback(title1, onMouse)
                                                     # 마우스 콜백 함수
    cv2.waitKey(0)
                                                     # 키 이벤트 대기
   cv2.destroyAllWindows()
                                                     # 열린 모든 윈도우 제거
```

트랙바 이벤트 제어

- cv2.createTrackbar(trackbarname, winname, value, count, onChange)
 - trackbarname : 트랙바 이름
 - winname : 트랙바의 부모 윈도우 이름
 - value : 초기위치값(정수)
 - count : 트랙바의 최대값(최소값은 항상 0)
 - onChange : 콜백함수의 이름(예)
 - onChange(pos)
 - pos : 트랙바 슬라이더의 위치
- cv2.setTrackbarPos(trackbarname, winname, pos)


```
import cv2
import numpy as np
def nothing(x):
   pass
img = np.zeros((300,512,3), np.uint8)
cv2.namedWindow('image')
# trackbar를 생성하여 named window에 등록
cv2.createTrackbar('R', 'image', 0, 255, nothing)
cv2.createTrackbar('G', 'image', 0, 255, nothing)
cv2.createTrackbar('B', 'image', 0, 255, nothing)
switch = 0:0FF n1:0n'
cv2.createTrackbar(switch, 'image', 1, 1, nothing)
while(1):
   cv2.imshow('image', img)
   if cv2.waitKey(1) & 0xFF == 27:
       break
   r = cv2.getTrackbarPos('R','image')
   g = cv2.getTrackbarPos('G', 'image')
   b = cv2.getTrackbarPos('B', 'image')
   s = cv2.getTrackbarPos(switch, 'image')
   if s == 0:
        img[:] = 0 # 모든 행/열 좌표 값을 0으로 변경. 검은색
   else:
        img[:] = [b,g,r] # 모든 행/열 좌표값을 [b,g,r]로 변경
cv2.destroyAllWindows()
```


그리기 함수

❖ 영상처리 프로그래밍 과정에서 해당 알고리즘 적용시 결과 확인

- 얼굴 검출 알고리즘을 적용했을 때,
 - 전체 영상 위에 검출한 얼굴 영역을 사각형이나 원으로 표시
- 차선 확인하고자 직선 검출 알고리즘을 적용했을 때,
 - 차선을 정확하게 검출했는지 확인하기 위해 도로 영상 위에 선으로 표시

직선, 사각형 그리기

Parameter	내용
img	이미지 파일
pt1	시작점 좌표 (x, y)
pt2	종료점 좌표 (x, y)
color	색상 (blue, green, red) 0 ~ 255
thickness	선 두께 (default 1)
lineType	선 종류 (default cv.Line_8) - LINE_8: 8-connected line - LINE_4: 4-connecterd line - LINE_AA: antialiased line
shift	fractional bit (default 0)

cv2.rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) → img

Parameter	내용
img	이미지 파일
pt1	시작점 좌표 (x, y)
pt2	종료점 좌표 (x, y)
color	색상 (blue, green, red) 0 ~ 255
thickness	선 두께 (default 1)
lineType	선 종류 (default cv.Line_8) - LINE_8: 8-connected line - LINE_4: 4-connecterd line - LINE_AA: antialiased line
shift	fractional bit (default 0)

예제 4.3.1 직선 & 사각형 그리기 - 07.draw_line_rect.py

```
import numpy as np
    import cv2
03
    blue, green, red = (255, 0, 0), (0, 255, 0), (0, 0, 255)
                                                               # 색상 선언
    image = np.zeros((400, 600, 3), np.uint8)
                                                               # 3채널 컬러 영상 생성
    image[:] = (255, 255, 255)
                                                               # 3채널 흰색
97
                                                               # 좌표 선언 - 정수형 튜플
    pt1, pt2 = (50, 50), (250, 350)
    pt3, pt4 = (400, 150), (500, 50)
    roi = (50, 200, 200, 100)
                                                               #사각형 영역 - 4원소 튜플
10
11
    ## 직선 그리기
    cv2.line(image, pt1, pt2, red)
    cv2.line(image, pt3, pt4, green, 3, cv2.LINE AA)
                                                               # 계단 현상 감소선
15
    ## 사각형 그리기
    cv2.rectangle(image, pt1, pt2, blue, 3, cv2.LINE_4) # 4방향 연결선
    cv2.rectangle(image, roi, red, 3, cv2.LINE 8)
                                                              # 8방향 연결선
    cv2.rectangle(image, (400, 200, 100, 100), green, cv2.FILLED)
                                                              # 내부 채움
20
    cv2.imshow("Line & Rectangle", image)
                                                               # 윈도우에 영상 표시
    cv2.waitKey(0)
    cv2.destroyAllWindows()
                                                               # 모든 열린 윈도우 닫기
```


텍스트 출력

parameter	내용
img	이미지 파일
text	출력 문자
org	출력 문자 시작 위치 좌표 (좌측 하단)
	cv2.FONT_HERSHEY_SIMPLEX: 0
	cv2.FONT_HERSHEY_PLAIN: 1
	cv2.FONT_HERSHEY_DUPLEX: 2
	cv2.FONT_HERSHEY_COMPLEX: 3
fontFace	cv2.FONT_HERSHEY_TRIPLEX: 4
	cv2.FONT_HERSHEY_COMPLEX_SMALL : 5
	cv2.FONT_HERSHEY_SCRIPT_SIMPLEX: 6
	cv2.FONT_HERSHEY_SCRIPT_COMPLEX: 7
	cv2.FONT_ITALIC: 16
fontScale	폰트 크기
color	폰트 색상
thickness	폰트 두꼐
	선 종류 (default cv.Line_8)
linoTypo	- LINE_8 : 8-connected line
lineType	- LINE_4 : 4-connecterd line
	- LINE_AA : antialiased line
bottomLeftOrigin	org 사용 옵션. True : 좌측 하단. False : 좌측 상단

표시 문자열

2줄 산세리프 폰트

확대 비율

putText(image, "DUPLEX", pt1, FONT_HERSHEY_DUPLEX, 2, Scalar(128, 128, 0)); putText(image, "TRIPLEX", pt2, FONT_HERSHEY_TRIPLEX, 3, Scalar(221, 160, 221));

색상

3줄 세리프 폰트

세리프 체

- 글자의 획 끝에 날카롭게 튀어나온 글자체
- 명조체, 궁서체 등

❖ 산세리프 체

- 날카로운 장식선이 없는 글자체
- 돋움체 , 고딕체

예제 4.3.2 글자 쓰기 - 08.put_text.py

```
import numpy as np
    import cv2
03
    olive, violet, brown = (128, 128, 0), (221, 160, 221), (42, 42, 165)
                                                                         # 색상 지정
    pt1, pt2 = (50, 230), (50, 310)
                                                         # 문자열 위치 좌표
96
                                                                                 Put Text
    image = np.zeros((350, 500, 3), np.uint8)
    image.fill(255)
09
    cv2.putText(image, 'SIMPLEX', (50, 50), cv2.FONT HERSHEY SIMPLEX, 2, brown)
    cv2.putText(image, 'DUPLEX', (50, 130), cv2.FONT_HERSHEY_DUPLEX, 3, olive)
    cv2.putText(image, 'TRIPLEX', pt1, cv2.FONT_HERSHEY_TRIPLEX, 2, violet)
    fontFace = cv2.FONT HERSHEY PLAIN | cv2.FONT ITALIC # 글차체 상수
    cv2.putText(image, 'ITALIC', pt2, fontFace, 4, violet)
15
    cv2.imshow('Put Text', image)
                                                         # 윈도우 이름 지정 및 영상 표시
    cv2.waitKey(0)
                                                         # 키이벤트 대기
```


원 그리기

Parameter	내용
img	이미지 파일
center	원의 중심 좌표(x, y)
radius	원의 반지름
color	색상 (blue, green, red) 0 ~ 255
thickness	선 두께 (default 1)
lineType	선 종류 (default cv.Line_8) - LINE_8: 8-connected line - LINE_4: 4-connecterd line - LINE_AA: antialiased line
shift	fractional bit (default 0)

예제 4.3.3 원 그리기 - 09.draw_circle.py

```
01 import numpy as np
    import cv2
03
    orange, blue, cyan = (0, 165, 255), (255, 0, 0), (255, 255, 0)
    white, black = (255, 255, 255), (0, 0, 0)
    image = np.full((300, 500, 3), white, np.uint8) # 컬러 영상 생성 및 초기화
97
    center = (image.shape[1]//2, image.shape[0]//2)
                                                # 영상 중심 좌표 - 역순 구성
    pt1, pt2 = (300, 50), (100, 220)
    shade = (pt2[0] + 2, pt2[1] + 2)
                                                       # 그림자 좌표
11
    cv2.circle(image, center, 100, blue)
                                                        # 원 그리기
    cv2.circle(image, pt1, 50, orange, 2)
    cv2.circle(image, pt2, 70, cyan, -1)
                                                       # 원 내부 채움
15
    font = cv2.FONT HERSHEY COMPLEX;
    cv2.putText(image, 'center blue', center, font, 1.0, blue)
    cv2.putText(image, 'pt1_orange', pt1, font, 0.8, orange)
    cv2.putText(image, 'pt2 cyan', shade, font, 1.2, black, 2)
                                                                 # 그림자 효과
    cv2.putText(image, 'pt2_cyan', pt2, font, 1.2, cyan, 1)
21
    cv2.imshow("Draw circles", image)
    cv2.waitKey(0)
```


타원 그리기

parameter	내용
img	이미지 파일
center	타원의 중심 좌표(x, y)
axes	축의 절반 길이(중심에서 긴 거리, 짧은 거리)
angle	타원의 기울기
startAngle	타원을 그리는 시작 각도
endAngle	타원을 그리는 종료 각도
color	색상 (blue, green, red) 0 ~ 255
thickness	선 두께 (default 1)
lineType	선 종류 (default cv.Line_8) - LINE_8: 8-connected line - LINE_4: 4-connecterd line - LINE_AA: antialiased line
shift	fractional bit (default 0)


```
예제 4.3.4
             타원 및 호 그리기 - 10.draw_ellipse.py
    import numpy as np
    import cv2
03
    orange, blue, white = (0, 165, 255), (255, 0, 0), (255, 255, 255) # 색상 지정
    image = np.full((300, 700, 3), white, np.uint8) # 3채널 행렬 생성 및 초기화
96
    pt1, pt2 = (180, 150), (550, 150)
                                                         # 타원 중심점
    size = (120, 60)
                                                         # 타원 크기 – 반지름 값임
09
    cv2.circle(image, pt1, 1, 0, 2)
                                                         # 타원의 중심점(2화소 원) 표시
                                                                                   타원각도: 0
    cv2.circle(image, pt2, 1, 0, 2)
                                                              T Draw Eclipse & Arc
                                                                                                                       12
                                                         # 타원
    cv2.ellipse(image, pt1, size, 0, 0, 360, blue, 1)
                                                                                           호 종료각도: 90
    cv2.ellipse(image, pt2, size, 90, 0, 360, blue, 1)
    cv2.ellipse(image, pt1, size, 0, 30, 270, orange, 4) #호
    cv2.ellipse(image, pt2, size, 90, -45, 90, orange, 4)
17
                                                                            호 시각각도: 30
    cv2.imshow("문자열", image)
                                                         # 키입
    cv2.waitKey()
                                                                                              타원각도: 90
                                                                                                                    호 시각각도: -45
```


이미지 읽기와 쓰기

❖ cv2.imread(filename[, flags]) → retval

parameter	내용
filename	읽어올 파일 명
flags	cv2.IMREAD_UNCHAGED: alpha channel 까지 포함해 읽음(-1) cv2.IMREAD_GRAYSCALE: Grayscale로 읽음(0) cv2.IMREAD_COLOR: Color로 읽음(1) cv2.IMREAD_ANYDEPTH: 정의된 depth에 따라 16/32비트로 변환 (기본 8비트)(2) cv2.IMREAD_ANYCOLOR: 입력파일에 정의된 타입으로 변환(4)

❖ cv2.imwrite(filename, img[, params]) → retval

parameter	내용
filename	저장할 파일 명
img	이미지 파일
params	cv2.IMWRITE_JPEG_QUALITY : JPEG 포맷으로 저장 cv2.IMWRITE_PNG_COMPRESSION : PNG 압축레벨로 저장 cv2.IMWRITE_PXM_BINARY : PPM, PGM 파일의 이진 포맷

예제 4.4.3 행렬 영상 저장1 - 15.write_image1.py

```
import cv2
01
02
    image = cv2.imread("images/read color.jpg", cv2.IMREAD COLOR)
    if image is None: raise Exception("영상파일 읽기 에러")
                                                               # 예외처리
05
    params_jpg = (cv2.IMWRITE_JPEG_QUALITY, 10)
                                                               # JPEG 화질 설정
                                                               # PNG 압축 레벨 설정
    params png = [cv2.IMWRITE PNG COMPRESSION, 9]
08
    ## 행렬을 영상파일로 저장
    cv2.imwrite("images/write_test1.jpg", image)
                                                              # 디폴트는 95
    cv2.imwrite("images/write_test2.jpg", image, params_jpg)
                                                               # 지정한 화질로 저장
    cv2.imwrite("images/write_test3.png", image, params_png)
    cv2.imwrite("iamges/write test4.bmp", image)
                                                               # BMP 파일로 저장
    print("저장 완료")
```


심화예제 4.4.4 행렬 영상 저장2 - 16.write_image2.py

```
import numpy as np
    import cv2
03
    image8 = cv2.imread("images/read_color.jpg", cv2.IMREAD_COLOR)
    if image8 is None: raise Exception("영상파일 읽기 에러")
                                                              # 영상파일 예외처리
96
    image16 = np.uint16(image8 * (65535/255)) # 형변환 및 화소 스케일 조정
    image32 = np.float32(image8 * (1/255))
09
   ## 화소값 확인 - 관심 영역((10, 10) 위치에서 2행, 3열) 출력
    print("image8 행렬의 일부\n %s\n" % image8[10:12, 10:13])
    print("image16 행렬의 일부\n %s\n" % image16[10:12, 10:13])
    print("image32 행렬의 일부\n %s\n" % image32[10:12, 10:13])
14
    cv2.imwrite('images/write test_16.tif', image16) # 16비트 행렬 저장
    cv2.imwrite('images/write test 32.tif', image32) # 32비트 행렬 저정
17
    cv2.imshow('image16', image16) # 영상 표시
    cv2.imshow('image32', (image32*255).astype('uint8'))
   cv2.waitKey(0)
```

비디오 읽기

- - cv2.VideoCapture.open(filename) → retval
 - cv2.VideoCapture.open(device) → retval
 - cv2.VideoCapture.isOpened() → retval
 - cv2.VideoCapture.get(propId) → retval
 - cv2.VideoCapture.set(propId, value) → retval
 - cv2.VideoCapture.read([image]) → retval, image
 - cv2.VideoCapture.retrieve([image[, flag]]) → retval, image
 - cv2.VideoCapture.grab() → retval
 - cv2.VideoCapture.release() → None

parameter	내용
cv2.CAP_PROP_POS_MSEC	동영상 파일의 현재위치(milli-second)
cv2.CAP_PROP_POS_FRAMES	캡쳐되는 프레임의 번호
cv2.CAP_PROP_POS_AVI_RATIO	동영상 파일의 상대적 위치(0: 시작, 1: 끝)
cv2. CAP_PROP_FRAME_WIDTH	프레임의 너비
cv2. CAP_PROP_FRAME_HEIGHT	프레임의 높이
cv2. CAP_PROP_FPS	초당 프레임 수
cv2. CAP_PROP_FOURCC	코덱을 나타내는 4개의 문자
cv2. CAP_PROP_FRAME_COUNT	총 프레임 수
cv2.CAP_PROP_FORMAT	retrieve()에 의해 반환되는 행렬의 포맷
cv2.CAP_PROP_BRIGHTNESS	Brightness of the image (only for cameras)
cv2.CAP_PROP_CONTRAST	Contrast of the image (only for cameras)
cv2.CAP_PROP_SATURATION	Saturation of the image (only for cameras)
cv2.CAP_PROP_HUE	Hue of the image (only for cameras)
cv2.CAP_PROP_GAIN	Gain of the image (only for cameras)
cv2.CAP_PROP_EXPOSURE	Exposure(노출) (only for cameras)
cv2.CAP_PROP_CONVERT_RGB	Boolean flags indicating whether images should be converted to RGB

비디오 쓰기

parameter	내용
filename	저장할 동영상 파일명
fourcc	frame 압축 관련 4자리 code
fps	초당 저장할 frame
frameSize	frame size (가로, 세로)
isColor	컬러 저장 여부

- cv2.VideoWriter.open(filename, fourcc, fps, frameSize[, isColor]) → retval
- cv2.VideoWriter.isOpened() → retval
- cv2.VideoWriter.write(image) → None
- cv2.VideoWriter_fourcc(c1, c2, c3, c4) → retval
 - (예)
 - fourcc = cv2.VideoWriter_fourcc(*'DIVX')
 - out = cv2.VideoWriter(videoFile1, fourcc, 25.0, (320,240)

〈표 4.5.2〉 주요 코덱 문자

속성 상수	설명
cv2.VideoWriter_fourcc('D', 'I', 'V', '4') cv2.VideoWrite_fourcc(*'DIV4')	DivX MPEG-4
cv2.VideoWriter_fourcc('D', 'I', 'V', '5') cv2.VideoWrite_fourcc(*'DIV5')	Div5
cv2.VideoWriter_fourcc('D', 'I', 'V', 'X') cv2.VideoWrite_fourcc(*'DIVX')	DivX
cv2.VideoWriter_fourcc('D', 'X', '5', '0') cv2.VideoWrite_fourcc(*'DX50')	DivX MPEG-4
cv2.VideoWriter_fourcc('F', 'M', 'P', '4') cv2.VideoWrite_fourcc(*'FMP4')	FFMpeg
cv2.VideoWriter_fourcc('1', 'Y', 'U', 'V') cv2.VideoWrite_fourcc(*'TYUV')	IYUV
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G') cv2.VideoWrite_fourcc(*'MJPG')	Motion JPEG codec
cv2.VideoWriter_fourcc'M', 'P', '4', '2') cv2.VideoWrite_fourcc(*'MP42')	MPEG4 v2
cv2.VideoWriter_fourcc('M', 'P', 'E', 'G') cv2.VideoWrite_fourcc(*'MPEG')	MPEG codecs
cv2.VideoWriter_fourcc('X', 'V', 'I', 'D') cv2.VideoWrite_fourcc(*'XVID')	XVID codecs
cv2.VideoWriter_fourcc('X', '2', '6', '4') cv2.VideoWrite_fourcc(*'X264')	H.264/AVC codecs
-1	코덱 선택 대화상자 띄움

4.5.1 카메라에서 프레임 읽기

예제 4.5.1 카메라 프레임 읽기 - 17.read_pccamera.py

```
import cv2
02
    def put string(frame, text, pt, value, color=(120, 200, 90)): #문자열 출력 함수
04
        text += str(value)
        shade = (pt[0] + 2, pt[1] + 2)
05
96
        font = cv2.FONT HERSHEY SIMPLEX
97
        cv2.putText(frame, text, shade, font, 0.7, (0, 0, 0), 2)
                                                                  # 그림자 효과
98
        cv2.putText(frame, text, pt , font, 0.7, color, 2)
                                                                  # 글자 적기
09
    capture = cv2.VideoCapture(0)
                                                          # 0번 카메라 연결
    if capture.isOpened() == False:
                                                          # 카메라 연결 예외처리
         raise Exception("카메라 연결 안됨")
12
                                                             Run: ₱ 17.read_pccamera ▼
                                                              C:\Python\python. exe D:/source/chap04/17. read pccamera. py
13
                                                              Traceback (most recent call last):
    ## 카메라 속성 획득 및 출력
                                                                File "D:/source/chap04/17. read pccamera. py", line 11, in \( module \)
                                                                  if capture. isOpened() == False: raise Exception("카메라 연결 안됨")
    print("니비 %d" % capture.get(cv2.CAP PROP FRAME WIDTH))
                                                              Exception: 카메라 연결 안됨
    print("높이 %d" % capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    print("노출 %d" % capture.get(cv2.CAP_PROP_EXPOSURE))
    print("밝기 %d" % capture.get(cv2.CAP PROP BRIGHTNESS))
19
```

continue... 4.5.1 카메라에서 프레임 읽기

```
14 ## 카메라 속성 획득 및 출력
    print("니비 %d" % capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    print("높이 %d" % capture.get(cv2.CAP PROP FRAME HEIGHT))
    print("노출 %d" % capture.get(cv2.CAP_PROP_EXPOSURE))
    print("밝기 %d" % capture.get(cv2.CAP PROP BRIGHTNESS))
19
    while True
                                                       # 무한 반복
                                                       # 카메라 영상 받기
21
        ret, frame = capture.read()
        if not ret: break
22
        if cv2.waitKey(30) >= 0: break
                                                     # 종료 조건 - 스페이스바 키
23
24
25
        exposure = capture.get(cv2.CAP_PROP_EXPOSURE)
                                                       # 노출 속성 획득
26
         put string(frame, 'EXPOS: ', (10, 40), exposure)
        title = "View Frame from Camera"
27
28
         cv2.imshow(title, frame)
                                                       # 윈도우에 영상 띄우기
    capture.release()
```

카메라에서 프레임 읽기

❖ 실행결과

4.5.2 카메라 속성 설정하기


```
심화예제 4.5.2
              카메라 속성 설정 - 18.set_camera_attr.py
                                                    저자 생성 모듈의 함수 임포트
    import cv2
    from Common.utils import put string
                                                     # 함수 재사용 위한 임포트
03
                                                     # 줌 조절 콜백 함수
    def zoom bar(value):
05
        global capture
                                                                     전역변수
                                                     # 줌 설정
96
        capture.set(cv2.CAP_PROP_ZOOM, value)
97
                                                     # 초점조절 콜백 함수
    def focus bar(value):
98
09
        global capture
        capture.set(cv2.CAP_PROP_FOCUS, value)
10
11
    capture = cv2.VideoCapture(0)
                                                     # 0번 카메라 연결
    if capture.isOpened() == False: raise Exception("카메라 연결 안됨")
                                                                     # 예외처리
14
    capture.set(cv2.CAP_PROP_FRAME_WIDTH, 400)
                                                     # 카메라 프레임 너비
    capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 300)
                                                     # 카메라 프레임 높이
    capture.set(cv2.CAP_PROP_AUTOFOCUS, 0)
                                                     # 자동초점 중지
    capture.set(cv2.CAP PROP BRIGHTNESS, 100)
                                                     # 프레임 밝기 초기화
19
    title = "Change Camera Properties"
                                                     # 윈도우 이름 지정
                                                     # 윈도우 생성
    cv2.namedWindow(title)
    cv2.createTrackbar('zoom', title, 0, 10, zoom bar)
                                                     # 줌 트랙바
    cv2.createTrackbar('focus', title, 0, 40, focus bar)
                                                     # 포커스 트랙바
```

4.5.2 카메라 속성 설정하기 continu

```
continue...
```

```
while True:
        ret, frame = capture.read()
26
                                                       # 카메라 영상 받기
        if not ret: break
27
28
        if cv2.waitKey(30) >= 0: break
29
        zoom = int(capture.get(cv2.CAP_PROP_ZOOM))
30
                                                      # 카메라 속성 가져오기
31
        focus = int(capture.get(cv2.CAP_PROP_FOCUS))
32
        put_string(frame, 'zoom : ', (10, 240), zoom) # 줌 값 표시
33
        put_string(frame, 'focus : ', (10, 270), focus) # 초점 값 표시
        cv2.imshow(title, frame)
34
35
                                                       # 비디오 캡쳐 메모리 해제
   capture.release()
```


❖ 실행결과

카메라 프레임을 동영상파일로 저장

❖ 카메라 영상 실시간 저장 방법

```
예제 4.5.3
           카메라 프레임을 동영상파일로 저장 - 19.write_camera_frame.pv
  import cv2
02
   capture = cv2.VideoCapture(0)
                                   # 0번 카메라 연결
   if capture.isOpened() == False: raise Exception("카메라 연결 안됨")
05
   fps = 29.97
                                                  # 초당 프레임 수
   delay = round(1000/fps)
                                                 # 프레임 간 지연 시간
   size = (640, 360)
                                               # 동영상파일 해상도
   fourcc = cv2.VideoWriter fourcc(*'DX50') # 압축 코덱 설정
10
   ## 카메라 속성 실행창에 출력
   print("width × height: ", size )
   print("VideoWriterfourcc: %s" % fourcc)
   print("delay: %2d ms" % delay)
   print("fps: %.2f" % fps)
16
                                                  # 카메라 속성 지정
   capture.set(cv2.CAP PROP ZOOM, 1)
```

```
continue...
```

```
18 capture.set(cv2.CAP_PROP_FOCUS, 0)
   capture.set(cv2.CAP PROP FRAME WIDTH, size[0]) # 해상도 설정
    capture.set(cv2.CAP_PROP_FRAME_HEIGHT, size[1])
21
   ## 동영상파일 개방 및 코덱, 해상도 설정
    writer = cv2.VideoWriter("images/video file.avi", fourcc, fps, size)
    if writer.isOpened() == False: raise Exception("동영상파일 개방 안됨")
25
    while True:
27
        ret, frame = capture.read() # 카메라 영상 받기
28
        if not ret: break
        if cv2.waitKey(delay) >= 0: break
29
30
        writer.write(frame)
31
                                              # 프레임을 동영상으로 저장
32
        cv2.imshow("View Frame from Camera", frame)
33
    writer.release()
   capture.release()
```


❖ 실행결과

Run: | 19.write_camera_frame | - C:\Python\python. exe D:/source/chap04/19. write_camera_frame. py 프레임 해상도: (640, 360) 압축코덱 숫자: 808802372

delay: 33 ms fps: 29.97

동영상파일 읽기

⟨표 4.5.3⟩ 프레임 번호에 따른 영상처리 예시

프레임 번호	영상처리
1 ~ 99	아무런 영상처리를 적용하지 않음
100 ~ 199	프레임별 화소의 파란색 성분에 100을 더해서 영상을 더 푸르게 만듦
200 ~ 299	프레임별 화소의 녹색 성분에 100을 더해서 영상을 더 녹색으로 만듦
300 ~ 399	프레임별 화소의 빨간색 성분에 100을 더해서 영상을 더 빨갛게 만듦

에제 4.5.4 동영상파일 읽기 - 20.read_video_file.py 01 import cv2 02 from Common.utils import put_string #글쓰기함수임포트 03 04 capture = cv2.VideoCapture("images/video_file.avi") # 동영상파일 개방 05 if not capture.isOpened(): raise Exception("동영상파일 개방 안됨") # 예외처리 06 07 frame_rate = capture.get(cv2.CAP_PROP_FPS) # 초당 프레임수 08 delay = int(1000 / frame_rate) # 지연시간 09 frame_cnt = 0 # 현재 프레임 번호

continue... 4.5.4 동영상파일 읽기

```
11 while True:
12
        ret, frame = capture.read()
        if not ret or cv2.waitKey(delay) >= 0: break # 프레임 간 지연 시간 지정
13
         blue, green, red = cv2.split(frame)
14
                                                     # 컬러 영상 채널 분리
15
         frame cnt += 1
16
17
         if 100 <= frame_cnt < 200: cv2.add(blue, 100, blue)
                                                             # blue 채널 밝기 증가
         elif 200 <= frame cnt < 300: cv2.add(green, 100, green) # green 채널 밝기 증가
18
         elif 300 <= frame cnt < 400: cv2.add(red , 100, red)
                                                             # red 채널 밝기 증가
19
20
         frame = cv2.merge( [blue, green, red] )
21
                                                              # 단일채널 영상 합성
22
         put_string(frame, 'frame_cnt: ', (20, 30), frame_cnt)
23
         cv2.imshow("Read Video File", frame)
24 capture.release()
```

4.5.4 동영상파일 읽기

❖ 실행결과

blue 채널에 더하기

