慶應義塾大学試験問題用紙 (日吉)

WH oc H		_			試験時間	90 分		分
平成 26 年 1 月 21 日 (火) 6 時限施行		学部	学科	年	組	採点欄	*	
担当者名	数学 B1 担当者全員	学籍番号				3		
科目名	数学B1	氏 名						

1. (i) 積分
$$\int_0^1 \frac{3x^2-4}{(2x+1)(x^2+3)} dx$$
 の値を求めよ。

(ii) 線積分 $\int_C \frac{dy}{5x-4x^2}$,ただし $C: x^2+y^2=1$ (向きは反時計回り),の値を求めよ。

2. 積分
$$\int_0^1 \left(\int_{\sqrt{x}}^1 \frac{dy}{\sqrt{1-y^3}} \right) dx$$
 の順序を交換して、さらに値を求めよ。

3. xy 平面内の領域 $D: x \le y \le 2x$ かつ $1 \le xy \le 2$ の面積

$$S(D) = \iint_D dx dy$$

に変数変換 $u=rac{y}{x},\,v=xy$ を行って,S(D) を u,v の積分に書きかえよ。 さらに S(D) の値を求めよ。

4. xyz 空間内の曲面

$$A: x^2 + z^2 = 1$$
 かつ $x^2 + y^2 \le 1$ かつ $z \ge 0$

の表面積S(A)を積分を用いて表し、さらにその値を求めよ。

5. xy 平面において、x 軸上を (-1,0) から (1,0) まで進む路を C_1 とする。また円周 $x^2+y^2=1$ 上を反時計周りに (1,0) から (0,1) を通って (-1,0) に至る上半円周を C_2 とする。さらに C_1 と C_2 をつなげてできる路を Γ とする。

(i) 閉路 Γ上の線積分

$$\int_{\varGamma} \left(x^2 y + \cos\left(\frac{\pi x}{2}\right) \right) dx - (xy^2 + e^y) dy$$

の値を、グリーンの定理を必ず使って求めよ。

(ii) 上半円周 C_2 上の線積分 $\int_{C_2} \left(x^2y + \cos\left(\frac{\pi x}{2}\right)\right) dx - (xy^2 + e^y) dy$ の値を求めよ。