

OPENSHIFT

What is Red Hat OpenShift?

Red Hat OpenShift is an enterprise-ready Kubernetes container platform

Provide a developer-friendly environment with integrated tools for

Building, deploying, and scaling containerized applications.

Features

25 September 2024

3

Benefits of OpenShift

Simplified Management

Automates deployment, scaling, and operations of application containers

Flexibility

Supports hybrid and multi-cloud environments

Enhanced Security

Built-in security features and compliance controls

Core Components of OpenShift

Kubernetes

Container orchestration engine

OpenShift Container Platform

• A fully supported Kubernetes platform with additional features like developer-friendly tooling and enterprisegrade security.

OpenShift Origin (OKD)

 The open-source upstream project for Red Hat OpenShift, providing a community-driven platform for container orchestration.

OpenShift CLI (oc)

Command-line interface for managing applications

Developer Tools

Web console and integrated development environment (IDE) support.

OpenShift Service Mesh

Integrated service mesh based on Istio for managing microservices architecture.

Architecture Overview

Master Nodes:

Responsible for managing the Kubernetes API, scheduling, and cluster management.

Worker Nodes:

Run the containerized applications, managed by the master nodes.

ETCD:

• Distributed key-value store for backing up all cluster data.

Networking and Routing:

 OpenShift provides an integrated SDN (Software Defined Network) and supports external networking plugins.

Persistent Storage:

 Allows storage options like NFS, GlusterFS, or cloud-based block storage for stateful applications.

25 September 2024

7

Installing OpenShift – Hardware Requirements

Refer:

- https://docs.RedHat.com/en/documentation/red_hat_OpenShift_local/
- 2.41/html/getting_started_guide/index
- https://docs.RedHat.com/en/documentation/red hat OpenShift local/
- 2.41/html/getting started guide/installing#minimum system requirements

4 physical CPU cores

10.5 GB of free memory

35 GB of storage space

Installing OpenShift – Software Requirements

Windows 10 or Microsoft Windows 11

macOS 13 Ventura or later

Red Hat Enterprise Linux

CentOS 8 and 9

Ubuntu 18.04 LTS or later and Debian 10 or later are not supported

Our Setup

- Standard D8s v3 (8 vcpus, 32 GiB memory)
- Rocky Linux OS 9.2
- AlmaLinux 9

Installing OpenShift - Download

- sudo yum update -y
- sudo dnf update -y
- sudo dnf install NetworkManager –y
- sudo yum install httpd-tools -y

 wget https://developers.RedHat.com/contentgateway/rest/mirror/pub/OpenShift-v4/clients/crc/latest/crc-linuxamd64.tar.xz

Installing OpenShift - Install

- tar -xvf crc-linux-amd64.tar.xz
- rm crc-linux-amd64.tar.xz
- mkdir -p ~/bin
- cp ~/crc-linux-*-amd64/crc ~/bin
- export PATH=\$PATH:\$HOME/bin
- echo 'export PATH=\$PATH:\$HOME/bin' >> ~/.bashrc
- mkdir ~/crc_backup
- cp -R ~/.crc ~/crc_backup

Installing OpenShift - Install

- crc config set network-mode user
- crc cleanup
- crc setup
- Is ~/.crc/cache
- mkdir -p ~/crc_backup
- cp ~/.crc ~/crc_backup

Installing OpenShift - Start

crc config set pull-secret-file pull-secret.txt

crc start --bundle ~/.crc/cache/crc_libvirt_4.16.7_amd64.crcbundle

crc console --url

crc console --credentials

Install oc cli

- sudo mkdir /ocp-tools
- sudo chmod 777 /ocp-tools
- cd /ocp-tools
- wget https://mirror.OpenShift.com/pub/OpenShift-v4/clients/ocp/stable-4.6/OpenShift-client-linux.tar.gz -P /ocp-tools
- Is -la /ocp-tools
- tar xvf OpenShift-client-linux.tar.gz oc kubectl
- sudo cp oc kubectl /usr/local/bin
- oc version
- kubectl version

Architecture

A Kubernetes cluster consists of two main components:

- Master (Control Plane)
- Worker Nodes.

Master has following components. These components are responsible for maintaining the state of the cluster:

- etcd distributed key value store.
- · API Server.
- Controller Manager
- Scheduler

Every worker node consists of the following components.

These components are responsible for deploying and running the application containers.

- Kubelet
- Container Runtime (Docker)

Kubernetes Architecture

Configuring OpenShift Cluster

- After installing OpenShift, several configurations are needed to ensure the platform operates optimally based on the environment.
- Key configuration areas:
 - User access and authentication
 - Networking
 - Storage
 - Resource limits and quotas
 - Monitoring and logging

User Access and Authentication

 OpenShift integrates with several identity providers (IDPs) for user authentication and access control.

Steps to Configure Authentication:

- Edit the OAuth configuration
 - Navigate to OpenShift Web Console → Administration → OAuth.
- Select an IDP
 - Supported IDPs include GitHub, Google, LDAP, and OpenID Connect.
- Configure Role-Based Access Control (RBAC)
 - Use OpenShift's RBAC to assign roles to users, controlling access to projects, nodes, and resources.
- Example Command
 - oc adm policy add-cluster-role-to-user cluster-admin <username>

Cluster Management & Basic Commands

- Start the OpenShift Cluster: After installing OpenShift Local, you can start the cluster with:
 - crc start
 - crc stop
 - crc status
- Get OpenShift Web Console URL
 - When the cluster starts, it provides the web console URL. However, you can retrieve it later using:
 - crc console

Credentials Management

- Get Default User Credentials:
 - After starting the cluster with crc start, the credentials for the default administrator are typically displayed:
 - Kubeadmin user: kubeadmin
 - Kubeadmin password: <generated_password>
 - To retrieve the password later, you can run
 - crc console --credentials
 - Login to OpenShift using the oc command-line tool: Use the OpenShift client (oc) to interact with the cluster from the terminal.
 - oc login -u kubeadmin -p <password> https://api.crc.testing:6443

User Management

- sudo yum install httpd-tools
- htpasswd -c -B -b users.htpasswd amit amit
- oc create user amit
- oc adm policy add-cluster-role-to-user admin amit
- oc create secret generic htpass-secret --from-file=htpasswd=users.htpasswd n openshift-config
- oc create identity allow_all:amit
- oc create useridentitymapping allow_all:amit amit
- oc get identity
- cat users.htpasswd
- oc get secret htpass-secret -n openshift-config

Common commands

- crc console --url
- crc console
- crc status
- oc new-project my-first-project
- oc new-app nginx --name=my-nginx-app
- oc expose svc/my-nginx-app
- oc get route my-nginx-app
- oc get pods -w
- oc status

Common commands

- oc get nodes
- oc get pods --all-namespaces
- oc logs <pod-name>
- oc get events
- oc exec <pod-name> -- <command>
 - oc exec my-nginx-app-xyz123 -- /bin/bash
- oc describe pod <pod-name>
- oc scale --replicas=3 deployment/my-nginx-app

Common commands

- oc get routes
- oc debug pod/<pod-name>
- oc get svc

Thanks