

INTRODUCTION TO DEEP LEARNING

Vishal Gaurav,
PhD Student, Shibata Lab

Deep Learning

- What is AI?
- Symbolic Al
- Machine learning

Learning representation from data

- For ML
 - Input data points
 - Examples of the expected output
 - A way to measure weather the algorithm is doing a good job
- DL is a mathematical framework for learning representation from data

Introduction

- Imagine you work for a bank
- Need to predict how many transaction each customer will make next year

Interaction

- Neural Networks account for interactions really well
- Deep learning uses especially powerful neural networks
- Application
 - Text
 - Images
 - Videos
 - Audio
 - Source code

Course structure

- First we focus on conceptual knowledge
 - Debug and tune deep learning models on conventional prediction problems
 - Lay the foundation for progressing towards modern applications

Deep learning models capture interactions

Quiz?

Forward Propagation

- Bank transaction example
- Only using #children and # Accounts

Forward Propagation

- Multiply-add process
- Dot product
- Forward propagation for one data point at a time
- Output is the prediction for that data point

Activation Functions

Linear vs Non-linear

Activation function

Applied to node inputs to produce node output

• Eg. Sigmoid, tanh, relu, leakyRelu etc..

ReLU (Rectified Linear Units)

Defined as the positive part of its argument:

$$f(x) = \max(0, x)$$

- Where x is input to neuron
- Introduced by Hahnloser et. Al. in 2000 paper in NATURE.
- The function and its derivative both are monotonic

Deeper Networks

Calculated with RELU activation function

Representation learning

- Deep networks internally build representation of patterns in the data
- Partially replace the need for feature engineering

Subsequent layers build increasingly sophisticated representation of

raw data

Deep Learning

- Modeler doesn't need to specify the interactions
- When you train the model, the neural network gets weights that find the relevant patterns to make better predictions

Back Propagation

Generative equation

$$y = w^T x + b$$

- Where x is input data
- Y is label/target/ output vector
- W and b are weights and bias

Gradient Decent

Loss function:

$$L(y_i, \hat{y}_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log \hat{y}_i]$$

- We prefer to use convex loss function
- Cost function: its just average of loss

$$J(W,b) = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log \hat{y}_i + (1 - y_i) \log \hat{y}_i]$$

Gradient Decent

Parameter Update:

$$W = W - \alpha \frac{\delta J}{\delta W}$$

$$b = b - \alpha \frac{\delta J}{\delta b}$$

• Where α is learning rate.

Assignments

- Implement CNN classification for MNIST dataset. You can either use Keras or tensorflow or Pytorch
- Visualize the activation output of each layer.