Assessment 1:

Question 1. Let $f: X \to Y$ be a function and take $A \subseteq X, B \subseteq Y$.

Prove the following statements.

- (a) A ⊆ f⁻¹ (f(A)).
- (b) In general, equality need not hold in (a).
- (c) G = f⁻¹(f(G)) for every subset G of X if and only if f is injective (1-1).

case: f is injective

f injective: $\langle -7 \rangle \forall x, x' \in X, (f(x) = f(x')) \rightarrow (x = x')$ this condition means that $f^{-1}(f(A)) = A$

case: I is not injective

f n(injective) :<=> $\exists x, x' \in X, (f(x) = f(x') + x)(x = x')$ } this condition means several elements in a map and the same element in f(A):: $A \subset f^{-1}(f(A))$

taking both cases together, A c f'(f(A))

DIb) I think the equality is A=f-'(f(A))
but as demonstrated, it is only true
if f is injective

Let a be any subset a sx

OIC) The claim:

We want to show: f njective: $\langle -2 \rangle \forall x, x' \in X, (f(x) = f(x')) \rightarrow (x = x')$

(=>) Assume G = f⁻¹(f(G))

We can rewrite this as a left inverse $g = f^{-1}$

gof = id_x , g.f: $X \rightarrow X$

 $x \rightarrow x$

So, $\forall x, x' \in X$, $\left(g(f(x)) = g(f(x'))\right) \Rightarrow (x = x')$

(<=) A zome:

f injective :<=> $\forall x, x' \in X$, $(f(x) = f(x')) \rightarrow (x = x')$

then f(x) = f(x')

and $g \cdot f(x) = g \cdot f(x')$ x = x'

 $g \circ f(x)$ can be written as $f^{-1}(f(x))$

Since it was specified for all x & C then: C = f'(f(x))

Question 2.

Given functions $f: X \to Y$ and $g: Y \to Z$, prove the following statements.

- (a) If f and g are both surjective, then so is g f.
- (b) If g ∘ f is surjective, then so is g, but not necessarily f.
- (c) If f and g are bijective, so is g f.
- (d) If g o f is bijective, then neither f nor g need be bijective.

02 a)

026)

- · g must be surjective so that every element in Z, z = g(f(x))
- · if g was not surjective, then] = € Z, Y y EY : g(y) ≠ Z then $\exists z \neq g(f(x))$, so got would not be surjectue.
 - · but I could be not surjective. This hald be tre where the image f(x) cy

02 ()

Assume f is bijective: (=) mective and surjectue

g " " " " "

(surjectivity) f satisfies $(\forall y \in Y, \exists x \in X : f(x)=y)$ g satisfies $(\forall z \in Z, \exists y \in Y : g(y)=z)$

> Here got $X \rightarrow Z$ $x \rightarrow g(f(x))$

implies $(\forall z \in Z, \exists x \in X : g(f(x))=Z)$ then gof exhibits the surjective property

(nyech ily) f satisfies $\forall x, x' \in X$, $\{f(x) = f(x')\} \rightarrow \{x = x'\}$ g satisfies $\forall y, y' \in Y$, $\{g(y) = g(y')\} \rightarrow \{y = y'\}$

> then gof:= g(f(x))sanshes $\forall x, x' \in X, (g(f(x)) = g(f(x')) \rightarrow (x = x'))$ so gof is injective

since gof is njecture at surjecture, then it is also byecture.

If got is byective then:

it is nyecture $\forall x, x' \in X, (g(f(x)) = g(f(x')) \rightarrow (x = x'))$ it is surjecture $\forall z \in Z, \exists x \in X : g(f(x)) = Z$

other g is also surjectue because

∀z ∈ Z, ∃y ∈ Y : g(y)=Z but if f(x) c Y then g is not injective "Strictly less than

· C is injective because

 $\forall x, x' \in X, (f(x) = \{(x') \rightarrow (x = x'))$

but if f(x) < Y the fir not sugestive.

Q3 (R2) The group has a right neutral:

Da *e_R = a

Suppose it has a left inverse

@a = e_l * a

Using eg D, substitute a = e_L

50, the axion G2 is satisfied

(123) The group has a right inverse element:

suppose there is also a left inverse $e = \overline{a_L} * a$ $(\overline{a_L} * a) * \overline{a_R} = e \overline{a_R} = \overline{a_R}$ by associationly: $\overline{a_L} e = \overline{a_L} * (a * \overline{a_R}) = \overline{a_L}$

.. a. = a. * a * a. = a. a. = a.

Col, Co2, Co3 are all satisfied ... (Co, *) is a group