(1) Publication number:

0 307 376 A1

12

EUROPEAN PATENT APPLICATION

21) Application number: 88850240.8

22 Date of filing: 04.07.88

(s) Int. Cl.⁴: **A 01 N 63/00** A 61 L 2/18

//(A01N63/00,59:12,59:00)

(30) Priority: 10.07.87 SE 8702831

(43) Date of publication of application: 15.03.89 Bulletin 89/11

(A) Designated Contracting States:

AT BE CH DE ES FR GB GR IT LI LU NL SE

Applicant: EWOS AKTIEBOLAG
Box 618
S-151 27 Södertälje (SE)

(7) Inventor: Knutsson, Maud Inger Christine Nygard Ashorn S-619 00 Trosa (SE)

(74) Representative: Inger, Lars Ulf Bosson
L + U INGER Patentbyra AB Garvaregatan 12
S-262 63 Ängelholm (SE)

The title of the invention has been amended (Guidelines for Examination in the EPO, A-III, 7.3).

64 Microbiocidal composition.

The present invention relates to a composition having microbicide effect and comprising iodine and the enzyme lactoperoxidase, whereby it comprises lactoperoxidase in an amount of at least 10 mg/l, a peroxide donor in an amount that gives at least 0.5 mM H₂O₂, l⁻ in a concentration of at least 10 ppm, and a pH adjusting agent in such an amount that pH is 3.25-7.0, when lactoperoxidase is used, and 3.5-6, when horse radish peroxidase is used, preferably 4.5-6.5.

Description

MICROBICIDE COMPOSITION.

Technical field

5

10

15

20

25

30

35

40

45

50

60

The present invention relates to a microbicide composition comprising a iodide and the enzyme lactoperoxidase and/or horse radish peroxidase, and hydrogen peroxide and/or a hydrogen peroxide donating system.

The object of the present invention is to obtain a composition, preferably in dry form, which can be used particularly for skin disinfection, but also for other general disinfection purposes to an acceptable cost, and having a low total iodine content, and thereby a less risk for miscolouring and skin irritation, and is a short term composition with an activity term period of some 24 hrs in open air.

Background of the invention

It is previously known to use so called iodophores for skin disinfection and general disinfection, iodophores which are based on a complex between iodine and detergents of the type higher alkyl phenyl polyois or other polymers, such as PVP-I₂. Such complexes comprises in order to give a bactericide effect at a relatively large amount of iodine. Due to this fact, and the effect of the detergent and a low pH, they possess an irritating effect on the skin, and thus they have to be replenished with different skin emollient compositions, which partly complicates the product, partly makes it considerably more expensive.

EP-A1-0 175 801 discloses a combined product for disinfecting contact lenses comprising a bactericide having limited time of bacteriological activity, said product comprising peroxidase, a peroxide, and a system of predetermined donor molecules, i.a., iodine salts. The peroxide used is horse radish peroxide. Such a system, will however, as shown below, not work under all conditions, and particularly not at the condition of neutral pH (7). It is said in EP-A1-0 175 801 that its bactericide effect is due to the formation of free radi cals. However, in the tests made and shown herein, not even such an effect can be proved.

It is further known that oxidation of iodide to iodine in the presence of iodate ions (I⁻ -- I₂) takes place very rapidly at low pH:es, while it takes place more slowly at pH above 5 and is almost completely stopped at pH 7. However, in order to maintain a suitable pH, pH has to be above 3, which means that the reaction according to the knowledge known is relatively slow.

It is known from US-A-4.271,149 a composition comprising iodine containing 1000 ppm of I_2 , and 500-5000 ppm I^- and 50-2000 ppm of iodate at a pH of 5-7.

Description of the present invention.

It has been shown possible to obtain an iodine containing disinfecting composition having microbicide effect, which composition contains lactoperoxidase in a concentration of at least 0.2 mg/l, a hydrogen peroxide donor in an amount which gives a concentration of H_2O_2 of at least 0.05 mM, and I^- in a concentration of at least 10 ppm, and a pH adjusting agent in such an amount that pH is 3.25-7.0 when lactoperoxidase is used, preferably 4.5-6.0, and is 3.5-6.0 when horse radish peroxidase is used, preferably 4.5-5.5, and whereby the composition when dissolved in water shows an optical density of at least 0.02 determined at 460 nm.

Further characteristics are evident from the accompanying claims.

Lactoperoxidase has a molecular weight of about 77,000.

10 ppm of I⁻ correspond to 0.0118 g of Nal or 0.0166 of KI.

The term pH adjusting agent means herein primarily suitable buffer systems, such as citric acid citrate buffer, phosphor ic acid-phosphate buffer and other suitable buffer system which locks pH within the range preferably 4.5-6.5. During the formation of I₂ by means of lactoperperoxidase or horse radish peroxidase pH changes considerably, and rapidly, and thus it has to be buffered. It is hereby essential that the composition is buffered so that pH is within the range given for several reasons, viz. partly from a skin irritation point of view, partly from an enzyme activity point of view and from an enzyme stability point of view, but also to obtain a satisfactory microbicide effect.

As a hydrogen peroxide donor different systems can be used, such as enzymatic systems, such as glucose/glucoseoxidase system, xanthin/xanthinoxidase system, solid peroxide donors, such as cupper/ascorbic acid, sodium percarbonate, magnesium peroxide, carbamide peroxide, and H_2O_2 -solution, alternatively an stabilized H_2O_2 emulsion, where stability has been achieved by, e.g., fatty acids. Particularly, H_2O_2 solution is used in those cases where the system is reactivated. Generally, a solid peroxide donor is used in those cases where an immediate hydrogen peroxide/ I_2 -formation is requested, while the above enzymatic systems, such as glucose/glucoseoxidase, are used when a more slow, more long term acting effect is requested.

Common milk contains the enzyme lactoperoxidase and an addition of milk should thus be a good source of enzyme. This is however, not the case, as it has turned out that milk inhibits, immediately, the effect of any l₂ formed. The enzyme lactoperoxidase is thus added in a purified form, without surplus of organic load.

Thiocyanate, such as sodium thiocyanate, can be added to the composition according to the present

invention, which thiocyanate is a known component of the so called LP-system, i.e., the antibacterial system based upon lactoperoxidase, a hydrogen peroxide donor, and thiocyante. It has, however, turned out that thiocyanate can not be added to the present composi tion in higher concentrations than 10 ppm, as one obtains a reduced effect at higher concentrations, unless the thiocyanate is added in such a form that it is released after the formation of I_2 . Such formulations includes slow release preparations where the thiocyanate containing part is coated with polymer membrane. In this way a first rapid onset will be obtained due to the I_2 effect, and then will a more lasting effect be obtained from the conventional lactoperoxidase-thiocyanate-hydrogen peroxide-system.

An advantage using the present system is that it can be reactivated. When I₂ is formed by the oxidation of I⁻ by the influence of hydrogen peroxide the product obtains an microbicide effect. This active I₂ is then reduced back to I⁻ again when it is left and the hydrogen peroxide donor disappears, e.g., by consumption by glucose, or a solid peroxide donor, or decomposition by the enzyme present. However, the system can be readily reactivated by an addition of more lactoperoxidase and/or hydrogen peroxide donor, as I⁻ is not consumed, or at least is not consumed to any greater extent, provided no organic contamination is present.

It has turned out that the present product has a very rapid onset with regard to microbicide effect, and that one, in certain cases, obtains a considerable killing within a few seconds. The product is thus very well suited for skin disinfection, such as use as an udder disinfectant prior to milking, at general stable hygienic measures, such as cleansing of milking equipment, and disinfection of milk rooms, and in other similar contexts, as well as in dairy cleaning, hospital disinfection, in aquaculture, and the similar where different microorganisms shall be eliminated in large areas to reasonable cost. The product according to the invention is suitable for wound application, as well, where glucose of the plasma is combusted in the use of the glucose/glucoseoxidase system. The composition is thus particularly suitable for diabetics.

The invention will be described more in detail in the follow ing with reference to a number of examples, where comparative examples using active iodophores are used as well.

In Table 1 below the composition of the different compositions are given, pH, LP-content, and absorbancy at 460 nm, which latter is an indirect measure of the I₂-content.

In Table 2 the microbicide effect of the different compositions determined on a number of different bacterial strains are given, viz. E. coli Atec 25922, Staph. aureus +alpha+beta Mj 13151/84, and Strept. agal. S-B 8 after different time intervals. The values given hereby give the number of colony forming units (cfu).

In the Tables below a number of abbreviations have been used, viz:

LP which stands for lactoperoxidase,

HP for horse radish peroxidase,

GOD for glucose oxidase

U/ml for units per milliliter

lodophor I orig pH stands for a first conventional iodophor present on the market with its original pH (2.74) lodophor II orig. pH stands for a second iodophor present on the market with its original pH (4)

40

20

25

30

35

50

45

55

60

65

	TABELL	-							
Example	_	2	м	. 7	5	9	7	80	6
Composition									
LP mg/t	10	10	10		20	20	10		
HP U/L				100		100		100	100
1/1 009	100	100	100	100	100	100	100	100	100
Glucose %	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Nasch ppm	~~~				7.0	7.0		9	-
MgO ₂ (25%) ppm	-								
Iodide as NaI ppm	10	100	100	100	100	100	100	100	100
Urea g/l	80	80	20	20	2.0	20			
Carbamide peroxide								٠	
Citric acid g/l	0,02	0,000048	048						-
Mono-Na-citrate g/l			7,2	4,2	4,2	4,2	2,1	2,1	2,1
Tri-Na-citrate g/l			7,8	7,8	7,8	7,8	3,9	3,9	3,9
pH initially	5,5	9			5,35	5,35	5,5	5,48	2,47
after 30 min							2,47	9775	67'5
24 hrs		5,1			5,32	. 5,33	5,44	5,43	5,45
48 hrs		5			5,3	5,29	5,41	5,41	5,44
LP determ. U/l									
after 30 min	•	0,153			0,42	95'0	-9i,0	0,21	0,3
24 hrs		0,024			0,28	67'0	0,03	0,21	0,24
48 hrs					0,02	0,17	0,01		
Absorbancy 460 nm									
after 10 min	0,027	0,031			0,004	0,004	0,028	0,048	0,09
24 hrs		0,075			0,003	0,003	0,055		0,041
48 hrs		0,078			0,045	0,045	0,028		0,014
-	_								

	TABELL								,
Example	10	11	12	13	14	15	16	17	18
Composition									
LP mg/l	10	10	10	10	10	10	10	10	10
12n dH				100				100	
000 U/l	100		100						
glucose %	0,3		0,3						
NaSCN ppm	9	9	, 9	9	9	9		9	.
MgO ₂ (25%) ppm		300		300	300			360	300
Iodide as NaI ppm	100	100	200	1000	1000	100	100	100	100
Urea g/l									
Carbamide peroxide						9.5	9.5		
Citric acid g/l									
Mono-Na-citrate g/l	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1	2,1
Tri-Na-citrate g/l	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9
pH initially		6,8		5,44	2,44	5,48	2,46	5,43	5,44
after 30 min		5,8(60	min)	5,93	5,93	. 5,52	5,53	5,38	5,88
24 hrs				5,93	5,93	5,51	5,53	5,89	5,89
48 hrs									
LP determ. U/l									
after 30 min	•	0,011		0,3	0,3	0,33	0,37	0,58	0,29
24 hrs		0		1,1-0,1	1,1-0,1	0,001	0,002	0,08	0
48 hrs							-		
Absorbancy 460 nm									
after 10 min		0,24		0,877	0,895	0,222	0,25	0,207	0,221
24 hrs		5,0		0,699	269'0	0,208	0,239	0,194	0,203
48 hrs		0,19							

on NaI,ppm NaI,ppm id g/l itrate g/l trate g/		TABELL 1	•1					
## aposition mg/L	xample	. 61	ophor	Iodophor	I Indophor	II Indophor		21
### mg/L	Composition		pH or1g	C,C Hq	ph orig	0,0 Hq		,
U/l U/l U/l U/l U/l U/l U/l U/l	LP mg/l	1		-				2.5
U/l COSE Z CM ppm 6 2 (25%) ppm ide as MaI,ppm 60 60 60 60 60 60 60 60 60 6	HP U/L							
CN ppm (N ppm	600 U/l	100						
CM ppm (2 (25%) ppm ide as MaI,ppm 60 60 60 60 60 60 60 a g/l bamide peroxide 9,5 ric acid g/l bamide peroxide 9,5 ric acid g/l 0,05 mM 0-Na-citrate g/l initially 5,5 Ander 30 min 5,6 2,75 5,5 3,8 5,5 24 hrs 5,6 2,95 5,5 3,8 5,5 48 hrs orbancy 460 nm after 30 min 0,017 0,444 0,546 0,697 0,820 24 hrs 24 hrs 25 hrs 48 hrs orbancy 460 nm after 10 min 0,017 0,444 0,516 0,677 0,791 48 hrs 0,00	Glucose %	1,0						
(25%) ppm (60 60 60 60 60 60 60 60 60 60 60 60 60 6	a S C N p p m	9						
ide as NaT,ppm 60 60 60 60 60 60 60 a g/l bamide peroxide 9,5 ric acid g/l contracte g/l buffer 2,74 5,4 4 5,5 after 30 min 5,6 2,75 5,5 3,8 5,5 after 30 min 6,018 24 hrs corbancy 460 nm after 10 min 0,017 0,444 0,516 0,677 0,820 24 hrs corbancy 460 nm after 10 min 6,004 0,516 0,677 0,791 48 hrs conditional contractions of the contractions of t	.90 ₂ (25%) ppm							
a g/l bamide peroxide 9,5 ric acid g/l cir acid g/l o_05 mM cric acid g/l o_N5 mM consocitrate g/l o_N5 mM consocitrate g/l o_N5 mM consocitrate g/l o_n6 min s_6	Iodide as MaI,ppm	90	09	09	09	09	09	09
bamide peroxide 9,5 ric acid g/l o_05 mM o_Na-citrate g/l o_105 mM o_	Urea g/l							
o-Na-citrate g/l	Carbamide peroxide	5,6					76	. 76
o-Na-citrate g/l ph 5.5 -Na-citrate g/l citrate initially after 30 min 24 hrs 5,6 2,75 5,5 3,8 5,5 6 trrate buffer 2,74 5,4 4 5,5 3,8 5,5 3,8 5,5 5,1 determ. U/l after 30 min 0,018 24 hrs corbancy 460 nm after 10 min 0,017 0,444 0,516 0,677 0,791 ph 5.5 citrate buffer 5,6 2,75 5,5 3,8 5,5 5,1 5,1 5,1 5,1 6,1 7,1 7,1 7,1 7,1 7,1 7,1 7	itric acid g/l							0.055M
-Na-citrate g/l citrate buffer 2,74 5,4 4 5,5 buffer initially 5,5 2,75 5,5 3,8 5,5 buffer 24 hrs 5,6 2,95 5,5 3,8 5,5 5.1 48 hrs orbancy 460 nm after 10 min 0,017 0,444 0,516 0,677 0,791 48 hrs 0,00 0,404 0,516 0,677 0,791	a,	5,						pH 3.5
after 30 min 5,5 2,74 5,4 4 5,5 buffer 3 after 30 min 5,6 2,75 5,5 3,8 5,5 5,1 3 48 hrs 5,6 2,95 5,5 3,8 5,5 5,1 3 determ. U/l after 30 min 0,018 24 hrs orbancy 460 nm after 10 min 0,017 0,44 0,516 0,677 0,791 48 hrs 0,00 0,404 0,516 0,677 0,791	Tri-Na-citrate g/1	citrate					citrate	buffer
after 30 min 5,6 2,75 5,5 3,8 5,5 5.1 48 hrs 5,6 2,95 5,5 3,8 5,5 5.1 48 hrs determ. U/l after 30 min 0,018		butter 5,5	2,74	5,4	7	5,5	buffer 5.07	3.64
24 hrs 5,6 2,95 5,5 3,8 5,5 5.1 48 hrs determ. U/l after 30 min 0,018 48 hrs orbancy 460 nm 0,017 0,444 0,546 0,697 0,820 24 hrs 0,00 0,404 0,516 0,677 0,791 48 hrs 0,04	after 30 min	5,6	2,75	5,5.	3,8	5,5		
48 hrs determ. U/l after 30 min 24 hrs crbancy 460 nm after 10 min 0,017 0,444 0,516 0,697 0,820 24 hrs 0,00 0,404 0,516 0,677 0,791	24 hrs	2,6	2,95	5,5	3,8	5,5	5. ï	3.6
after 30 min 0,018 24 hrs 48 hrs orbancy 460 nm after 10 min 0,017 0,444 0,516 0,697 0,820 24 hrs 0,00 0,404 0,516 0,677 0,791 48 hrs 0,04	48 hrs						5.1	3.6
s nm 0,018 0,444 0,546 0,697 0,820 s 0,00 0,404 0,516 0,677 0,791	P determ. U/l							
s nm 0,017 0,444 0,546 0,697 s 0,00 0,404 0,516 0,677 s	after 30 min	0,018					•	
s nm 0,017 0,444 0,546 0,697 s 0,00 0,404 0,516 0,677 s 0,04	24 hrs							
nn 0,017 0,444 0,546 0,697 s 0,00 0,404 0,516 0,677 s 0.04	48 hrs							
0,017 0,444 0,546 0,697 0,00 0,404 0,516 0,677 0,04	bsorbancy 460 nm							
hrs 0,00 0,404 0,516 0,677	after 10 min	0 012	7770	0.546	269.0	0.820		
hrs 0.04	24 hrs	00,00	707 0	0.516	679.0	0.791		•
	ء	0.04	7			-		

	TABELL 2	2.						v	
Example		2	~	7	5	9	7.	8	6
Bacteria									
E.coli inoc.	9,7×10 ⁶	1,7×10 ⁶	1,6×10	1,6×10 ⁷	6,6×10 ⁶	6,6×10 ⁶			
30 sek	7,0x10 ¹		<u>۲</u>	÷	>106	>10 ⁶			
2 min	<u>.</u>	^	^ 1	₽	>106	>10 ₆			
10 min	<u>\</u>	^	.	<u>.</u>					
60 min	_	¢1	<u>.</u>	<u>.</u>	۲>				
120 min								•	
240 min					<u>.</u>	<u>-</u>			
Staph.aureus inoc.	1,8×10 ⁶	2,9×10 ⁶	2,4×10 ⁷ 2	,4×107	1,9×10 ⁷	1,9×10 ⁷	5,5×10 ⁷	3,7×10 ⁷	3,7×10 ⁷
30 sek	7	>107	<u>^</u>	5	>107	>107			
2 min	1,8×10 ⁶	\	>	\$	>10 ⁷	>10 ⁷		-	
10 min	₽	_	<u>^</u>	.			3.0	<10	×10
60 min	_	<u>.</u>	<u>~</u>	<u>.</u> ^_	>107	>107	<10	<10	<10
120 min								<10	<10
240 min					3,2×104	7,2×10 ⁶			
Strep/Staph inoc.	2,2×10 ⁶	1,5×10 ⁶	;		5,3×10 ⁶	5,3×10 ⁶	3,0×10 ⁷	2,8×10 ⁷	2,8×10 ⁷
30 sek	۲	10			>10 ⁶	>10 ⁶			
2 min	\ \	0.6			>10 ⁶	>10 ⁶			
10 min	~ 1	_					<10	<10	<10
60 min		_			2×10 ²	3×10 ²	. <10	<10	<10
120 min							<10	<10	<10
240 min					!	<u>\</u>			
1									

Strep, agal S-B 8 has been used for Examples 1 and 2. Strep, uberis has been used for Examples 5 and 6. Staph, aureus has been used for Examples 5 and 6. Staph, aureus has been used for Examples 7-0, whereby the solutions were 29 hrs old. The solutions 1-6 were 1 hr old.

	TABELL 2.							¢	•
Example	10	11	12	13	14	15	16	17	18
Bacteria									
E.coli inoc.									
30 sek									
2 min									
10 min									
60 min									
120 min									
240 min		,			1	1	ſ		
Staph.aureus inoc.	5,6×10 ⁷	6,2×10 ⁸	5,6×10 ⁷	3,8×10 ⁷	3,8×10 ⁷	4,9×10'	4,9×10'	4,5×10 ⁷	
30 sek					4,4×10 ²	20	2,9×10 ²	10	6,5×10 ²
2 min	***			<10	<10	<10	7.0	<10	<10
10 min	20	<10		<10	<10	<10	<10	<10	<10
60 min	<10	<10	<10	<10	<10	<10	<10	<10	<10 01>
120 min									
240 min	2,0×10 ³	<10	<10	4	1	r	ſ	ſ	r
S.aureus 2) inoc.	3,8×10 ⁷	7,7×10 ⁶	3,8×10	3,8×10	3,8×10'	4,9×10 [′]	4,9×10'	3,1×10 ⁶	3,1×10'
30 sek				1,1×10 ²	<10	6,0×10 ²	2,0×10 ³	<10	20
2 min				2.0	<10	<10	100	<10	<10
10 min	<10	<10	<10	<10	<10	<10	<10	<10	<10
60 min	<10 ·	<10	09	<10	<10	<10	<10-	<10	<10
120 min			,						
240 min	<10	<10	1,2×10 ⁵						
2)			,	· · · · · · · · · · · · · · · · · · ·	4 4 •	4 4 3	400 + 00	0.11.10.0	11-18
The solutions of the compositions used vere 29 hrs old, with the exception for the solutions is is in	the compo	sitions us	sed nero	79 hrs 010	, with 1.	ום פאנים ביו		01111100 3	

which were 5 hrs old

Inoc. 19	19 Lodophor I Lodophor I Lodophor II Lodophor II 20 pH orig pH 5,5 pH orig pH 5,5 noc. systlo? 3,6x10? 3,6x10? 4,8x10? 4,8x10? 3.9x10? >10? 590 2,0x10³ 4,9x10² 1,7x10? 3.6x10² >10? <10 100 30 1,1x10² <10 >10? <10 <10 <10 10 20 <10 <10 <10 <10 <10 10 <10 >10 <10 >10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 1,8x10³ 4,0x10² 5,1x10² 3,1x10² 1,8x10³ 4,0x10² <10 <10 <10 1,8x10³ <10 <10 <10 <10 1,8x10³ <10 <10 <10 <10 <10 1,8x10³ <10 <10 <10 <10 <10 1,8x10³ <10 <10 <10 <10 <10 <10		TABELL 2.					6	
noc. 100.	noc. 3,8x10 ⁷ 3,6x10 ⁷ 3,6x10 ⁷ 4,8x10 ⁷ 4,8x10 ⁷ 3.9x10 ⁷ 1,00 ⁷ 590 2,0x10 ³ 4,9x10 ⁴ 1,7x10 ⁷ 3.6x10 ² 1,00 ⁷ 410 100 30 1,1x10 ⁵ 410 20 410 200 410 4,0x10 ³ 4,0x10 ⁴ 20 4,9x10 ⁷ 2,8x10 ⁷ 2,8x10 ⁷ 3,1x10 ⁷ 3,1x10 ⁷ 1,6x10 ⁴ 410 410 410 600 1,6x10 ⁴ 410 410 410 600 1,8x10 ³ 410 410 410 600	Example	19	Iodophor I	Iodophor	Iodophor	II lodophor II nu s s	20	1.7
noc. 1,8×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.0×10 ⁷ 3.1×10 ⁷	reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.6×10 ⁷ 3.0×10 ⁷ 3.1×10 ⁷ 3.1×1	Bacteria		pH orig	pH 5,5	рн огтд	C/C ud		
reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.6×10 ⁷ 590 2,0×10 ³ 4,9×10 ⁴ 1,7×10 ⁷ 3.6×10 ² 1,1×10 ⁵ 10 10 30 1,1×10 ⁵ 10 10 10 10 10 10 10 10 10 10 10 10 10	reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.6×10 ²	E.coli inoc.							
reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 590 2,0×10 ³ 4,9×10 ⁴ 1,7×10 ⁷ 3.6×10 ² 10 10 30 1,1×10 ⁵ 10 10 10 10 10 10 10 10 10 10 10 10 10	reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.6×10 ² >10 ⁷ 590 2,0×10 ³ 4,9×10 ⁴ 1,7×10 ⁷ 3.6×10 ² >10 ⁷ <10 100 30 1,1×10 ⁵ <10 >10	30 sek							
reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.6×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁸ 3.0×10 ⁸ 4,9×10 ⁸ 4.0×10 ⁸ 4.0×1	reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 590 2,0×10 ³ 4,9×10 ⁴ 1,7×10 ⁷ 3.6×10 ² 1,1×10 ⁵ ×10 100 30 1,1×10 ⁵ ×10 100 30 1,1×10 ⁵ ×10 100 200 ×10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 min							
reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.0×10 ⁷ 4,9×10 ⁷ 4,0×10 ⁷ 4,0×10 ⁷ 4,0×10 ⁷ 4,0×10 ⁷ 4,0×10 ⁷ 4,0×10 ⁷ 2,8×10 ⁷ 3,1×10 ⁷ 3,1×10 ⁷ 4,0×10 ⁷ 4,0×1	reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.0×10 ⁷ 3.1×10 ⁷ 3.1×1	10 min							
reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.6×10 ⁷ 3.0×10 ⁷ 3.1×10 ⁷ 3.1×1	reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.6×10 ² >10 ⁷ 590 2,0×10 ³ 4,9×10 ⁷ 3.6×10 ² >10 ⁷ <10 100 30 1,1×10 ⁵ <10 >10 <10	60 min							
reus inoc. 3,8×10 ⁷ 3,6×10 ⁷ 3,6×10 ⁷ 4,8×10 ⁷ 3.9×10 ⁷ 3.9×10 ⁷ 590 2,0×10 ³ 4,9×10 ⁴ 1,7×10 ⁷ 3.6×10 ² 1.00 30 1,1×10 ⁵ 410 10 10 10 10 10 10 10 10 10 10 10 10 1	1,000 3,8×10 ⁷	120 min							
reus inoc. 3,8×10' 3,6×10' 4,8×10' 4,8×10' 5,9×10' 5,9×10' 5,0×10' 5,0×10' 5,0×10' 5,0×10' 5,0×10' 5,0×10' 5,0×10' 5,0×10' 5,0×10' 5,0° 5,0° 5,0° 5,0° 5,0° 5,0° 5,0° 5,0°	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	240 min			7	7		70,0	
2) 2) 4,9×10 ⁷ 5,10 ⁷ 5,10 ⁷ 5,10 ⁷ 5,10 5,	2) 20 20 20 20 20 20 20 20 20	reus	3,8×10		3,6×10'	4,8×10°		5.9×10.	5.9×10
20	20 <10 100 30 1,1×10	30 sek	>10,		2,0×10 ³	4,9×10		3.6×1U	
aureus inoc. 4,9×10 ⁷ <10 <10 <10 <10 10 <10 20 <10 200 <10 4,0×10 ³ <10 3,1×10 ⁷ 3,0×10 ⁷ 3,1×10 ⁷ 3,1×10 ⁷ >10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 2,7×10 ⁴ >10 ⁷ <10 <10 <10 600 1,8×10 ³ <10 <10 <10 600	20 <10 <10 <10 <10 <10 <10 20 <10 200 <10 4,0×10³ <10 30×10³ 2;8×10³ 3,1×10³ 3,1×10³ 3,1×10³ 3,1×10³ 3,1×10³ 4,0×10⁴ <10 2,7×10⁴ 170 170 170 170	2 min	>107		100	30	1,1×10 ⁻	<10 410	, 10 ·
20 <10 200 <10 4,0×10 ⁷ 2,8×10 ⁷ 3,1×10 ⁷ 3,1×10 ⁷ 3,1×10 ⁷ 3,1×10 ⁷ 3,0×10 ⁴ <10 2,7×10 ⁴ >10 ⁷ 3,0×10 ⁴ <10 <10 0.00 1.00 1.00 1.00 1.00 1.00 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.10 min	>10,	<10	<10	<10	10		7 7
2) teus inoc. 4,9×10 ⁷ 2,8×10 ⁷ 3,1×10 ⁷ 3,0×10 ⁸ 4,0×10 ⁴ <10 >10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 10 ⁷ <10 <10 <10 1,6×10 ⁴ <10 <10 <10 1,8×10 ³ <10 <10	4,9×10 ⁷ 2,8×10 ⁷ 2,8×10 ⁷ 3,1×10 ⁷ >10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 >10 ⁷ <10 500 <10 1,6×10 ⁴ <10 <10 <10 1,8×10 ³ <10 <10	60 min	50	<10	200	<10	4,0×10	2	2
2) reus inoc. 4,9×10 ⁷ 2,8×10 ⁷ 2,8×10 ⁷ 3,1×10 ⁷ >10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 >10 ⁷ <10 500 <10 1,6×10 ⁴ <10 <10 <10 1,8×10 ³ <10 <10	4,9×10 ⁷ 2,8×10 ⁷ 2,8×10 ⁷ 3,1×10 ⁷ >10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 >10 ⁷ <10 500 <10 1,6×10 ⁴ <10 <10 <10 1,8×10 ³ <10 <10 <10	120 min							
reus'inoc. 4,9×10' 2,8×10' 3,1×10' >10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 >10 ⁷ <10 500 <10 T,6×10' <10 <10 <10 1,8×10 ³ <10 <10	4,9×10' 2,8×10' 2,8×10' 3,1×10' >10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 >10 ⁷ <10 500 <10 1,6×10 ⁴ <10 <10 <10 1,8×10 ³ <10 <10 <10		ſ		,	~	7		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>10 ⁷ 3,0×10 ³ 4,0×10 ⁴ <10 >10 ⁷ <10 500 <10 1,6×10 ⁴ <10 <10 <10 1,8×10 ³ <10 <10 <10	Staph.aureus inoc.	4,9×10		2,8×10,	3,1×10	3,1×10;		
>10 ⁷	>10 ⁷	30 sek	>107		4,0×104	<10	2,7×10		
$1,6\times10^4$ <10 <10 <10 <10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 <10 · 10 ·	1,8×10 ⁴ <10 <10 <10 1,8×10 ³ <10 <10 <10	2 min	>107		200	<10	170		
1,8×10 ³ <10 <10 <10	1,8×10 ³ <10 <10 <10	10 min	1,6×104	<10	<10	<10	900	•	
		60 min	1,8×10 ³	<10	<10	<10	009		•
240 min		120 min			•				
		240 min							

9

As evident from Tables 1 and 2 a considerable microbicide effect is obtained by means of the according to the present invention. The remarkable thing is that they functions well at a slightly accountral pH, at which pH iodophores do not function, when pH has been adjusted to substantially neutron the latter case the microbicide effect has almost completely failed.

The present composition is present in a water free form, at least concerning the hydrogen peroxide donating/formating part. Thus the composition according to the invention is present preferably in dry form, but can also be present in the form of a paste which comprises two parts which are brought together at the use. Even a liquid composition can be used considering the basic demand, viz that the hydrogen peroxide donating/formating part is kept out of contact with water until in use. Besides a pure dry pulverulent mixture, the composition can be present in the form of tablets and granules as well as double layer tablets which are dissolved in a suitable amount of water prior to use.

The following Examples 22-31 were prepared for comparative testing. Thus compositions according to the present invention were prepared, as well as according to EP-A1-0 175 901. Example 24 is prepared in accordance with Example 5 of EP-A1-0 175 801, and Example 25 is the same as Ex. 24 but for a weaker buffer, 0.01M. Example 27 is the same as Ex. 24 except for the concentration of the buffer and the pH.

Table 3 below gives the different compositions of Examples 22-31.

Table 4 below gives the absorbancy at 460 nm for each of the solutions of Ex. 22-31.

Following the UV absorbancy test four compositions were picked out for a bactericide test, viz. the compositions of Ex. 22, 24, 26, and 27, respectively, whereby the compositions were tested against Staph. aureus MJ 13151/84, Staph. aureus 1243/87, Pseudomonas aerugiriosa Ps. q. 41, and E. coli A126, respectively, with regard to their bactericide effect. The Staph. aureus strains were inocculated in an amount of 8 x 10⁷ cfu/ml, Ps aeruginosa in an amount of 1.1 x 10⁸ cfu/ml, and E. coli in an amount of 6.8 x 10⁷ cfu/ml. Surviving cfu were tested for after 30 s, 60 s, 2 min, and 10 min, respectively. The bactericide effect obtained is shown in Table 5 below, whereby the killing effect is given in percentage of inhibition in a log scale. Zero value indicates no or very weak killing capacity, while 100% corresponds to total killing.

Т	a	b	ı	۵	マ	
,	a	u	L	↽	J	•

5

15

20

25

30	Components	22	23	24	25	26	27	28	29	30	31
35	LP HP Phosphate	10	10	10	10	10	10	10	10	10	10
40	buffer Citrate	0.1	0.01	0.1	0.01			0.1	0.01	0.1	0.01
45	buffer NaI, mM H ₂ O ₂ , mM Urea					0.01 0.05 0.1	0.05	0.05	0.05	0.05	0.05
50	peroxide pH	7.0	7.0	7.0	7.0	5.0	5.0	0.1 7.0	0.1	0.1	0.1

55

60

65

Table 4.						
Example	Absorbanc	y at 46	0 nm		На	
	initially	10 min	30 min	24 hrs	initially	30 min
22	0.065	0.063	0.056	0.018	7.0	7.0
23	0.104	0.100	0.091	0.035	7.1	7.1
24	0.000	0.000	0.002	0.000	7.0	7.1
25	0.000	0.000	0.001	0.000	7.1	7.1
26	0.171	0.163	0.160	0.078	5.1	5.1
27	0.183	0.175	0.167	0.070	5.1	5.1
28	0.052	0.048	0.047	0.011	7.0	7.0
29	0.065	0.061	0.059	0.022	7.1	7.1
30	0.003	0.007	0.008	0.003	7.0	7.0
31	0.004	0.007	0.014	0.005	7.0	7.0

Table 5. Example	22	24	26	27	
S. aureus /84					
30 s	0	0	100	77.1	
60 s	0	0	100	100	
2 min	40.3	0	100	100	
10 min	66.9	0	100	100	
S. aureus /87					
30 s	0	0	100	100	
60 s	0	0	100	100	
2 min	0	0	100	100	
10 min	28.5	0	100	100	
P. aeruginosa					
-30 s	66.4	0	100	100	
60 s	73.7	0	100	100	
2 min	100	0	100	100	
10 min	100	0	100	100	
E. coli					
30 s	58.3	0	79.5	64.1	
60 s	63.3	0	100	100	
2 min	77.3	0	100	100	
10 min	100	0	100	100	

As evident from the Tables above, particularly Table 5, the composition of EP-A1-0 175 801, Ex. 5, does not work under the present conditions. It is also evident that the compositions of the present invention fulfill the object of having a rapid onset and good killing of bacteria.

Claims

2. Composition according to claim 1, characterized in that the amount of lactoperoxidase is 2 mg/l.

^{1.} Microbicide composition comprising iodide and lactoperoxidase and/or horse radish peroxidase, and a hydrogen peroxide donor, suitable in substantially water free form, characterized in that it comprises lactoperoxidase, or corresponding horse radish peroxidase, in an amount of at least 0.2 mg/l, a peroxide donor in an amount that gives a concentration of $\rm H_2O_2$ of at least 0.05 mM, and $\rm I^-$ in a concentration of at least 10 ppm, and a pH adjusting agent in such an amount that pH is 3.25-7.0, preferably 4.5-6.0, when lactoperoxidase is used, and is 3.5-6.0, preferably 4.5-5.5, when horse radish peroxidase is used, and whereby the optical density of an aqueous solution of the composition determined at 460 nm is at least 0.02 at the dissolution in water.

^{3.} Composition according to claims 1-2, characterized in that it further comprises thiocyanate in an amount of at most 10 ppm, unless present in a such a form that it is released after the formation of I₂.

- 4. Composition according to claim 1, characterized in that the peroxide donor is glucose/glucoseoxidase.
 - 5. Composition according to claim 1, characterized in that the peroxide donor is magnesium peroxide.
 - 6. Composition according to claim 1, characterized in that the peroxide donor is carbamide peroxide.
- 7. Composition according to one or more of claims 1-6, characterized in that the amount of I⁻ is at least 50 ppm.
 - 8. Composition according to claim 1, characterized in that pH is 5.0 to 6.0.

EUROPEAN SEARCH REPORT

Application Number

88 85 0240

	DOCUMENTS CONS	SIDERED TO BE RELEVAN	T	
Category	Citation of document with of relevant p	indication, where appropriate, passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
Х	* Column 2, line 3	.L. NEIDLEMAN et al.) 8 - column 3, line 9; -32; examples; claims	1-8	A 01 N 63/00 A 61 L 2/18 // (A 01 N 63/00 A 01 N 59:12
X	CHEMICAL ABSTRACTS 12th February 1968 27662h, Columbus, SEYMOUR: "Iodinati bactericidal mecha 126(6), 1063-78(19 * Abstract *	, page 2665, no. Ohio, US; J.K. on of bacteria: a nism", & J. EXP. MED.	1-8	A 01 N 59:00)
A	et al.: "Susceptib dermatitidis strain	page 458, no. Ohio, US; A.M. SUGAR ility of Blastomyces ns to products of sm", & INFECT. IMMUN.	1-8	TECHNICAL FIELDS
	iodide in peroxidas action against Eschant ANTIMICROB. AGENTS 13(6), 1000-5; "Ox Escherichia coli suby the peroxidase-peroxide-iodide antiperoxide-iodide antiperoxide-iodide action act	8, page 86, no. lumbus, Ohio, US; : "Cofactor role of se antimicrobial herichia coli", & CHEMOTHER. 1978, idation of ulfhydryl components	1-8	A 01 N A 61 L
	The present search report has	been drawn up for all claims		
TUE	Place of search	Date of completion of the search	5.5	Examiner C.
105	HAGUE	27-10-1988	FLE	TCHER A.S.

CATEGORY OF CITED DOCUMENTS

- X: particularly relevant if taken alone
 Y: particularly relevant if combined with another document of the same category
 A: technological background
 O: non-written disclosure
 P: intermediate document

- T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date
 D: document cited in the application
 L: document cited for other reasons
- &: member of the same patent family, corresponding document

EUROPEAN SEARCH REPORT

Application Number

EP 88 85 0240

Category	Citation of document with indicacio of relevant passages	n, where appropriate,		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 4)
D,A	EP-A-0 175 801 (J. KESS * Claims * 	SLER et al.)	1	-8	
					TECHNICAL FIELDS SEARCHED (Int. Cl.4)
	The present search report has been dra				
THE	Place of search HAGUE	Date of completion of the search	1	FLET	Examiner CHER A.S.
X : part V : part doci	CATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another iment of the same category nological background written disclosure	I: theory or pr E: earlier pater after the fil D: document c L: document c &: member of	ing date ited in th ited for o	e application ther reasons	

		•
		•
2		
	17	