Assigned: 10 September

Homework #2

EE 503: Fall 2024

Instructions: Write your solutions to these homework problems. Submit your work to Brightspace by the due date. Show all work and box answers where appropriate. Do not guess.

Due: Tuesday, 17 September at 12:00.

- 1. Use truth tables to prove whether these propositional assertions are valid or invalid:
 - (a) $P \Leftrightarrow [(P \& Q) \lor (P \& \sim Q)].$
 - (b) $\sim (P \rightarrow Q) \Leftrightarrow (P \& Q) \lor (\sim P \& \sim Q)$.
 - (c) $P\&(Q \lor R) \Leftrightarrow [(P \& Q) \lor (P \& R)].$
 - (d) $\{(P \Rightarrow Q) \& [P \lor (\sim P \& R)]\} \Leftrightarrow [P \Leftrightarrow (P \& Q)].$
- 2. Use mathematical induction to prove these theorems for all positive integers $n \ge 1$:
 - (a) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} = 1 \frac{1}{n+1}$.
 - (b) $10^n 1$ is divisible by 11 for every even $n \ge 1$.
 - (c) Let $x \in \mathbb{R}$ be non-zero. If $x + \frac{1}{x}$ is an integer then $x^n + \frac{1}{x^n}$ is an integer.
- 3. Prove or disprove:
 - (a) $2^{A \cup B} = 2^A \cup 2^B$.
 - (b) $2^A \subset 2^B$ if and only if $A \subset B$.
 - (c) $2^{f^{-1}(A)} \cap 2^{f^{-1}(B)} = 2^{f^{-1}(A \cap B)}$.
- 4. Let $\Omega=\{v,w,x,y,z\}$. Find the sigma-algebra $\sigma(\emptyset)$ that the empty set \emptyset generates. Find the sigma-algebra $\sigma(\{w,x\})$. Find the sigma-algebra $\sigma(\{w,x,z\})$. Find $\sigma(\sigma(\{w\})\cup\sigma(\{z\}))$.
- 5. We do not know how the Ancient Green engineer Archimedies proved his famous result $\frac{265}{153} < \sqrt{3} < \frac{1351}{780}$ described in "Measurement of a Circle". Use a proof by contradiction to show that $\sqrt{3}$ is an irrational number.
- 6. Prove by induction that the n eigenvectors e_1,\ldots,e_n of the n-by-n matrix A are linearly independent if the n corresponding eigenvalues $\lambda_1,\ldots,\lambda_n$ are distinct. The column vector e_k is an eigenvector of A with scalar eigenvalue λ_k if and only if $Ae_k=\lambda_k e_k$ and e_k is not the null vector. The p column vectors v_1,\ldots,v_p are linearly independent if and only if the following implication holds for all complex scalars c_1,\ldots,c_p : $\sum_{k=1}^p c_k v_k=0$ imples that all the scalars c_k are zero: $c_1=\cdots=c_p=0$.