

# 24ª OBA – PROVA DO NÍVEL 4 GABARITO - 27-28/05/2021 -

(Atenção: aluno com nota final maior ou igual a 7,0 será convidado para participar das provas seletivas que formam as equipes internacionais, portanto, escreva de forma legível seu e-mail e fique atento a ele e às redes sociais da OBA.)

Veja o gabarito em nossa home page www.oba.org.br

| Nota de Astronomia: Observação: A Nota Final                 | Nota d<br>é a soma das notas d | de Astronáut<br>le Astronomia | ica:<br>ı e de Astronáutica. | Nota Final:<br>Visto do(a) Prof(a): |          |
|--------------------------------------------------------------|--------------------------------|-------------------------------|------------------------------|-------------------------------------|----------|
| Dados do(a) aluno<br>Nome completo:                          | ` ' `                          |                               |                              |                                     | Sexo:    |
| Endereço:                                                    |                                |                               |                              |                                     | N        |
| Bairro:                                                      | CEP:                           |                               | Cidade:                      |                                     | Estado:  |
| Tel. fixo: ()                                                | Tel. celu                      | lar: ()                       |                              | Data de Nascimer                    | nto//    |
| E-mail:                                                      |                                |                               |                              |                                     |          |
| (Obrigatór<br>Ano que está cursando                          |                                | -                             |                              | tiver, deixe em branco.)            |          |
| Declaro que estou reali.<br>Prova fora desta data é ilegal é |                                |                               |                              | Assinatura do alun                  |          |
| Dados da escola ondo<br>Nome da escola:                      | ` '                            |                               |                              |                                     |          |
| Endereço:                                                    |                                |                               |                              | N <u>°</u> -                        | •••••    |
| Bairro:                                                      | CEP:                           | C                             | idade:                       |                                     | .Estado: |

OBSERVAÇÕES IMPORTANTES. Esta prova só pode ser realizada no dia 27-28/05/2021, pois em outros dias é ilegal. Ela pode ser feita no dia e horário que você escolher, e pode durar até 3 horas. Não é permitido nenhum tipo de consulta a colegas, professores, material impresso ou eletrônico. Também não pode usar nenhum tipo de calculadora.

# **ATENÇÃO AO GABARITO**

Este GABARITO deve ser utilizado de BASE para a prova do Nível 4.

A prova contém 10 questões e são diferentes entre si, mas foram feitas com base neste Gabarito de 30 questões.

Leve em consideração o CONTEÚDO das perguntas e respostas e NÃO o posicionamento das perguntas e das alternativas de cada questão.

As questões de Verdadeiro ou Falso estão com duas versões neste gabarito, uma versão para a prova virtual e uma versão para a prova impressa (PRESENCIAL NA ESCOLA), tendo em vista que cada alternativa tem valores parciais.

**Questão 1) (1 ponto)** A Voyager 2 é uma nave robótica norte-americana lançada pela NASA em 20 de agosto de 1977. A sonda se aproximou dos quatro planetas gigantes do Sistema Solar, produzindo valiosíssimos resultados científicos e as melhores fotografias daqueles corpos e dos seus satélites obtidas até então. Tornouse o quarto artefato humano a ultrapassar a órbita de Plutão, em 1989, e no final de 2005 encontrava-se a uma distância de cerca de 75 UA (unidades astronômicas) da Terra.



Voyager 2. Crédito da imagem: NASA (domínio público)

Sua velocidade atual em relação ao Sol é de 15,3 km/s, o que equivale a cerca de 3,23 UA/ano.

Assinale a alternativa que traz a que distância, em UA, a Voyager 2 estava da Terra no final de 2015.

- a) 107,3 (Em vermelho a alternativa correta)
- b) 75,0
- c) 104,7
- d) 110,5
- e) 91,1

#### Resposta:

$$D_{2015} = D_{2005} + vt \rightarrow D_{2015} = 75 UA + 3,23 \frac{UA}{ano} \times 10 \ anos$$
  
 $D_{2015} = 107,3 \ UA$ 

Questão 2) (1 ponto) A Voyager 2 é uma nave robótica norte-americana lançada pela NASA em 20 de agosto de 1977. A sonda se aproximou dos quatro planetas gigantes do Sistema Solar, produzindo valiosíssimos resultados científicos e as melhores fotografias daqueles corpos e dos seus satélites obtidas até então. Tornouse o quarto artefato humano a ultrapassar a órbita de Plutão, em 1989, e no final de 2005 encontrava-se a uma distância de cerca de 75 UA (unidades astronômicas) da Terra.



Voyager 2. Crédito da imagem: NASA (domínio público)

Sua velocidade atual em relação ao Sol é de 15,3 km/s, o que equivale a cerca de 3,23 UA/ano. Assinale a alternativa que traz a que distância, em UA, a Voyager 2 estará da Terra no final de 2025.

- a) 139,6 (Em vermelho a alternativa correta)
- b) 75,0
- c) 171,9
- d) 136,4
- e) 107,3

#### Resposta:

$$D_{2025} = D_{2005} + vt \rightarrow D_{2025} = 75 UA + 3,23 \frac{UA}{ano} \times 20 \ anos$$
  
 $D_{2025} = 139,6 UA$ 

Questão 3) (1 ponto) A Voyager 2 é uma nave robótica norte-americana lançada pela NASA em 20 de agosto de 1977. A sonda se aproximou dos quatro planetas gigantes do Sistema Solar, produzindo valiosíssimos resultados científicos e as melhores fotografias daqueles corpos e dos seus satélites obtidas até então. Tornouse o quarto artefato humano a ultrapassar a órbita de Plutão, em 1989, e no final de 2005 encontrava-se a uma distância de cerca de 75 UA (unidades astronômicas) da Terra.



Voyager 2. Crédito da imagem: NASA (domínio público)

Sua velocidade atual em relação ao Sol é de 15,3 km/s, o que equivale a cerca de 3,23 UA/ano.

Assinale a alternativa que traz a que distância, em UA, a Voyager 2 estará, aproximadamente, da Terra daqui a 100 anos.

- a) 450 (Em vermelho a alternativa correta)
- b) 375
- c) 398
- d) 500
- e) 466

#### Resposta:

$$D_{2121} = D_{2005} + vt \rightarrow D_{2121} = 75 UA + 3,23 \frac{UA}{ano} \times (16 + 100)$$
anos  $D_{2121} \cong 449,7 UA \approx 450 UA$ 

**Questão 4 (1 ponto)** Precessão é o movimento circular do eixo de rotação da Terra. A precessão faz com que o Polo Norte (e Sul) não aponte sempre para a mesma estrela ou constelação. O eixo da Terra precessa com um período de, aproximadamente, 26.000 anos, o que significa que o ponto para onde ele aponta descreve um círculo no céu em 26.000 anos. A imagem traz o círculo de precessão do Polo Sul Celeste, em torno do Polo Sul Eclíptico (PSE), ao longo dos milênios marcados no círculo, onde 2000 (dois mil) corresponde, aproximadamente, à época atual.



Assinale a alternativa que traz o nome da estrela que estará próxima do Polo Sul Celeste daqui a, aproximadamente, 6 mil anos.

- a) Aspidiske (Em vermelho a alternativa correta)
- b) Miaplacidus
- c) Alsephina
- d) ωCar

24ª OBA - 27-28/05/2021



Questão 5 (1 ponto) Precessão é o movimento circular do eixo de rotação da Terra. A precessão faz com que o Polo Norte (e Sul) não aponte sempre para a mesma estrela ou constelação. O eixo da Terra precessa com um período de, aproximadamente, 26.000 anos, o que significa que o ponto para onde ele aponta descreve um círculo no céu em 26.000 anos. A imagem traz o círculo de precessão do Polo Sul Celeste, em torno do Polo Sul Eclíptico (PSE), ao longo dos milênios marcados no círculo, onde 2000 (dois mil) corresponde, aproximadamente, à época atual.



Assinale a alternativa que traz o nome da estrela que estará próxima do Polo Sul Celeste daqui a, aproximadamente, 7 mil anos.

- a) Alsephina (Em vermelho a alternativa correta)
- b) Miaplacidus
- c) Aspidiske
- d) υCar
- e) βDor

Resposta:



Questão 6 (1 ponto) Precessão é o movimento circular do eixo de rotação da Terra. A precessão faz com que o Polo Norte (e Sul) não aponte sempre para a mesma estrela ou constelação. O eixo da Terra precessa com um período de, aproximadamente, 26.000 anos, o que significa que o ponto para onde ele aponta descreve um círculo no céu em 26.000 anos. A imagem traz o círculo de precessão do Polo Sul Celeste, em torno do Polo Sul Eclíptico (PSE), ao longo dos milênios marcados no círculo, onde 2000 (dois mil) corresponde, aproximadamente, à época atual.



Assinale a alternativa que traz o nome da estrela que estava próxima do Polo Sul Celeste há pouco mais de 2 mil e 200 anos.

- a) βHyi (Em vermelho a alternativa correta)
- b) Miaplacidus
- c) Aspidiske
- d) βDor
- e) Achernar

Resposta:



**Questão 7 (1 ponto)** Um satélite artificial, de massa **m**, encontra-se em uma órbita circular, de raio **r**, em torno da Terra. Seu período orbital vale **P**.

Assinale a alternativa que traz o que aconteceria com o raio da órbita se o satélite tivesse o dobro da sua massa e mantivesse o mesmo período orbital.

- a) permaneceria inalterado (Em vermelho a alternativa correta)
- b) diminuiria pela metade
- c) aumentaria para 2r
- d) diminuiria para r/4
- e) aumentaria para 4r

#### Resposta:

A terceira lei de Kepler afirma que "A razão entre o quadrado do período e o cubo do raio médio da órbita de um planeta/satélite/satélite artificial é constante."

$$\frac{P^2}{r^3} = constante$$

Portanto, se o período **P** do satélite não mudou, seu raio **r** também não mudará.

Questão 8 (1 ponto) Um satélite artificial, de massa **m**, encontra-se em uma órbita circular, de raio **r**, em torno da Terra. Seu período orbital vale **P**.

Assinale a alternativa que traz o que aconteceria com o raio da órbita se o satélite tivesse o triplo da sua massa e mantivesse o mesmo período orbital.

- a) permaneceria inalterado (Em vermelho a alternativa correta)
- b) diminuiria de um terço
- c) aumentaria para 3r
- d) diminuiria para r/9
- e) aumentaria para 9r

#### Resposta:

A terceira lei de Kepler afirma que "A razão entre o quadrado do período e o cubo do raio médio da órbita de um planeta/satélite/satélite artificial é constante."

$$\frac{P^2}{r^3} = constante$$

Portanto, se o período **P** do satélite não mudou, seu raio **r** também não mudará.

Questão 9 (1 ponto) Um satélite artificial, de massa  $\mathbf{m}$ , encontra-se em uma órbita circular, de raio  $\mathbf{r}$ , em torno da Terra. Seu período orbital vale  $\mathbf{P}$ .

Assinale a alternativa que traz o que aconteceria com o raio da órbita se o satélite tivesse o quádruplo da sua massa e mantivesse o mesmo período orbital.

- a) permaneceria inalterado (Em vermelho a alternativa correta)
- b) diminuiria de um quarto
- c) aumentaria para 4r
- d) diminuiria para r/16
- e) aumentaria para 16r

#### Resposta:

A terceira lei de Kepler afirma que "A razão entre o quadrado do período e o cubo do raio médio da órbita de um planeta/satélite/satélite artificial é constante."

$$\frac{P^2}{r^3} = constante$$

Portanto, se o período **P** do satélite não mudou, seu raio **r** também não mudará.

**Questão 10 (1 ponto)** Em cada figura (de A até F), a Lua é mostrada em uma fase particular junto com a posição no céu que a Lua teria em um momento durante o dia claro (ou da noite). A área clara em cada figura da Lua mostra a parte iluminada da Lua visível da Terra naquele momento.. Suponha que o pôr do Sol ocorra às 18h e o nascer do Sol às 6h, e que o observador esteja localizado no Hemisfério Norte.



Assinale a alternativa que traz a sequência cronológica de cada fase da Lua (A - F), começando pelo pôr da Lua (18h).

- a) B, E, C, A, F, D (Em vermelho a alternativa correta)
- b) A, C, E, B, D, F
- c) D, F, B, C, E, A
- d) B, D, F, C, E, A
- e) B, F, C, A, E, D

#### Resposta:

A sequência começa pela letra **B**, pois a Lua Nova está no horizonte Oeste, portanto está se pondo. Depois da Lua Nova ela entra na sua fase crescente, com o Sol a oeste dela. Portanto a sequência segue com as letras **E**, **C** e **A** (Lua Cheia). Após a Lua Cheia ela entra na sua fase minguante, com o Sol a leste dela. Portanto a sequência termina com as letras **F** e **D**.

Questão 11 (1 ponto) Em cada figura (de A até F), a Lua é mostrada em uma fase particular junto com a posição no céu que a Lua teria em um momento durante o dia claro (ou da noite). A área clara em cada figura da Lua mostra a parte iluminada da Lua visível da Terra naquele momento. Suponha que o pôr do Sol ocorra às 18h e o nascer do Sol às 6h, e que o observador esteja localizado no Hemisfério Norte.



Assinale a alternativa que traz a sequência cronológica de cada fase da Lua (A - F), começando pelo pôr da Lua (18h).

- a) E, B, F, D, C, A (Em vermelho a alternativa correta)
- b) E, A, C, D, F, B
- c) D, F, B, C, E, A
- d) B, D, F, C, E, A
- e) B, F, C, A, E, D

#### Resposta:

A sequência começa pela letra **E**, pois a Lua Nova está no horizonte Oeste, portanto está se pondo. Depois da Lua Nova ela entra na sua fase crescente, com o Sol a oeste dela. Portanto a sequência segue com as letras **B**, **F** e **D** (Lua Cheia). Após a Lua Cheia ela entra na sua fase minguante, com o Sol a leste dela. Portanto a sequência termina com as letras **C** e **A**.

Questão 12 (1 ponto) Em cada figura (de A até F), a Lua é mostrada em uma fase particular junto com a posição no céu que a Lua teria em um momento durante o dia claro (ou da noite). A área clara em cada figura da Lua mostra a parte iluminada da Lua visível da Terra naquele momento. Suponha que o pôr do Sol ocorra às 18h e o nascer do Sol às 6h, e que o observador esteja localizado no Hemisfério Norte.



Assinale a alternativa que traz a sequência cronológica de cada fase da Lua (A - F), começando pelo pôr da Lua (18h).

- a) B, E, A, C, D, F (Em vermelho a alternativa correta)
- b) E, A, C, D, F, B
- c) D, F, B, C, E, A
- d) F, D, C, E, A, B
- e) B, F, D, C, A, E

#### Resposta:

A sequência começa pela letra **B**, pois a Lua Nova está no horizonte Oeste, portanto está se pondo. Depois da Lua Nova ela entra na sua fase crescente, com o Sol a oeste dela. Portanto a sequência segue com as letras **E**, **A** e **C** (Lua Cheia). Após a Lua Cheia ela entra na sua fase minguante, com o Sol a leste dela. Portanto a sequência termina com as letras **D** e **F**.

Questão 13 (1 ponto) A tabela mostra as massas e distâncias (expressas em unidades arbitrárias) entre quatro pares diferentes de estrelas binárias (casos I, II, III e IV).

| Caso | Massa da estrela 1 | Distância entre a estrela 1 e a estrela 2 | Massa da estrela 2 |
|------|--------------------|-------------------------------------------|--------------------|
| I    | 4                  | 2                                         | 2                  |
| II   | 2                  | 2                                         | 8                  |
| III  | 8                  | 3                                         | 4                  |
| IV   | 1                  | 1                                         | 5                  |

Assinale a alternativa que traz a ordem crescente da intensidade das forças gravitacionais exercidas entre os pares em cada caso.

a) I, III, IV (Em vermelho a alternativa correta)

- b) III, II, I, IV
- c) IV, III, II, I
- d) IV, II, III, I
- e) II, III, IV, I

Caso I:  $F_I \propto \frac{4 \times 2}{2^2} = 2$ Cálculo.

Caso II:  $F_{II} \propto \frac{2 \times 8}{2^2} = 4$ 

Caso III:  $F_{III} \propto \frac{8 \times 4}{3^2} \cong 3.5$ 

Caso IV:  $F_{IV} \propto \frac{1 \times 5}{12} = 5$ 

Questão 14 (1 ponto) A tabela mostra as massas e distâncias (expressas em unidades arbitrárias) entre quatro pares diferentes de estrelas binárias (casos I, II, III e IV).

| Caso | Massa da estrela 1 | Distância entre a estrela 1 e a estrela 2 | Massa da estrela 2 |
|------|--------------------|-------------------------------------------|--------------------|
|      | 1                  | 1                                         | 5                  |
| II   | 8                  | 3                                         | 4                  |
| III  | 2                  | 2                                         | 8                  |
| IV   | 4                  | 2                                         | 2                  |

Assinale a alternativa que traz a ordem crescente da intensidade das forças gravitacionais exercidas entre os pares em cada caso.

a) IV, II, III, I (Em vermelho a alternativa correta)

- b) III, II, I, IV
- c) IV, III, II, I
- d) I, III, II, IV
- e) II, III, IV, I

Caso I:  $F_I \propto \frac{1 \times 5}{1^2} = 5$ Cálculo.

Caso II:  $F_{II} \propto \frac{8 \times 4}{3^2} \cong 3.5$ 

Caso III: 
$$F_{III} \propto \frac{2 \times 8}{2^2} = 4$$

Caso IV: 
$$F_{IV} \propto \frac{4 \times 2}{2^2} = 2$$

Questão 15 (1 ponto) A tabela mostra as massas e distâncias (expressas em unidades arbitrárias) entre quatro pares diferentes de estrelas binárias (casos I, II, III e IV).

| Caso | Massa da estrela 1 | Distância entre a estrela 1 e a estrela 2 | Massa da estrela 2 |
|------|--------------------|-------------------------------------------|--------------------|
| I    | 1                  | 1                                         | 5                  |
| II   | 2                  | 2                                         | 8                  |
| III  | 4                  | 2                                         | 2                  |
| IV   | 8                  | 3                                         | 4                  |

Assinale a alternativa que traz a ordem crescente da intensidade das forças gravitacionais exercidas entre os pares em cada caso.

a) III, IV, II, I (Em vermelho a alternativa correta)

- b) I, II, IV, III
- c) IV, III, II, I
- d) III, II, IV, I
- e) II, III, IV, I

Cálculo.

Caso I:  $F_I \propto \frac{1 \times 5}{1^2} = 5$ 

Caso II:  $F_{II} \propto \frac{2 \times 8}{2^2} = 4$ 

Caso III:  $F_{III} \propto \frac{4 \times 2}{2^2} = 2$ 

Caso IV:  $F_{IV} \propto \frac{8 \times 4}{2} \cong 3.5$ 

**Questão 16 (1 ponto)** Em astronomia, **luminosidade** é a quantidade de energia que um corpo irradia em uma unidade de tempo. Ela é tipicamente expressa em unidades de watts ou em termos da **Luminosidade solar**, L<sub>sol</sub> = 3,8×10<sup>26</sup> Watt. Essa energia é gerada no núcleo do Sol através de reações de fusão nuclear. Parte da massa envolvida na fusão é transformada em energia.

Assinale a alternativa que traz o valor aproximado da massa solar (em kg) transformada em energia a cada **minuto**.

Dica: utilize a equação  $\mathbf{E} = \mathbf{mc}^2$ , da Teoria da Relatividade, e considere a velocidade da luz  $\mathbf{c} = 3.0 \times 10^8 \, \text{m/s}$ .

a) 2,5×10<sup>11</sup> (Em vermelho a alternativa correta)

- b) 4,2×10<sup>9</sup>
- c) 1,3×10<sup>18</sup>
- d) 7,6×10<sup>19</sup>
- e) 4,2×10<sup>15</sup>

$$\frac{3.8 \times 10^{26} J}{E(I)} = \frac{1s}{t(s)}$$

$$E(J) = 3.8 \times 10^{26} J \times t(s)$$

$$m(kg) = \frac{E(J) \times t(s)}{c^2}$$

Portanto, a massa do Sol convertida em energia a cada minuto vale:

$$m_{Sol}^{1min} = \frac{3.8 \times 10^{26} J \times 60}{(3 \times 10^8)^2} \cong 2.5 \times 10^{11} \ kg$$

Questão 17 (1 ponto) Em astronomia, luminosidade é a quantidade de energia que um corpo irradia em uma unidade de tempo. Ela é tipicamente expressa em unidades de watts ou em termos da Luminosidade solar, L<sub>sol</sub> = 3,8×10<sup>26</sup> Watt. Essa energia é gerada no núcleo do Sol através de reações de fusão nuclear. Parte da massa envolvida na fusão é transformada em energia.

Assinale a alternativa que traz o valor aproximado da massa solar (em kg) transformada em energia a cada hora.

Dica: utilize a equação  $\mathbf{E} = \mathbf{mc}^2$ , da Teoria da Relatividade, e considere a velocidade da luz  $\mathbf{c} = 3.0 \times 10^8 \, \text{m/s}$ .

- a) 1,5×10<sup>13</sup> (Em vermelho a alternativa correta)
- b)  $4,2\times10^9$
- c)  $2.5 \times 10^{11}$
- d)  $7,6 \times 10^{19}$
- e) 4.2×10<sup>15</sup>

Resposta:

$$\frac{3.8 \times 10^{26} J}{E(I)} = \frac{1s}{t(s)}$$

$$E(J) = 3.8 \times 10^{26} J \times t(s)$$

$$m(kg) = \frac{E(J) \times t(s)}{c^2}$$

Portanto, a massa do Sol convertida em energia a cada hora vale:

$$m_{Sol}^{1h} = \frac{3.8 \times 10^{26} J \times 60 \times 60}{(3 \times 10^8)^2} \cong 1.5 \times 10^{13} \ kg$$

Questão 18 (1 ponto) Em astronomia, luminosidade é a quantidade de energia que um corpo irradia em uma unidade de tempo. Ela é tipicamente expressa em unidades de watts ou em termos da Luminosidade solar, L<sub>sol</sub> = 3,8×10<sup>26</sup> Watt. Essa energia é gerada no núcleo do Sol através de reações de fusão nuclear. Parte da massa envolvida na fusão é transformada em energia.

Assinale a alternativa que traz o valor aproximado da massa solar (em kg) transformada em energia a cada dia.

Dica: utilize a equação **E = mc²**, da Teoria da Relatividade, e considere a velocidade da luz c = 3,0×10<sup>8</sup> m/s.

- a) 3,6×10<sup>14</sup> (Em vermelho a alternativa correta)
- b)  $4,2 \times 10^9$
- c)  $1.5 \times 10^{13}$
- d)  $7.6 \times 10^{19}$

e)  $4,2 \times 10^{15}$ 

Resposta:

$$\frac{3,8 \times 10^{26} J}{E(J)} = \frac{1s}{t(s)}$$
$$E(J) = 3,8 \times 10^{26} J \times t(s)$$

$$m(kg) = \frac{E(J) \times t(s)}{c^2}$$

Portanto, a massa do Sol convertida em energia a cada dia vale:

$$m_{Sol}^{1dia} = \frac{3.8 \times 10^{26} J \times 24 \times 60 \times 60}{(3 \times 10^8)^2} \cong 3.6 \times 10^{14} \ kg$$

Questão 19 (1 ponto) (0,20 cada acerto) Uma linha importante no espectro de absorção das estrelas ocorre no comprimento de onda de repouso de 656 nm. A imagem a seguir exemplifica como esta linha pode ser observada no espectro de uma estrela.



Imagine que você observou, do seu observatório, cinco estrelas e descobriu que essa linha de absorção é observada nos seguintes comprimentos de onda mostrados na tabela, para cada uma das cinco estrelas.

| Estrela | Comprimento de onda da<br>linha de absorção |
|---------|---------------------------------------------|
| Α       | 654 nm                                      |
| В       | 659 nm                                      |
| С       | 656 nm                                      |
| D       | 657 nm                                      |
| Е       | 655 nm                                      |

Assinale "F" (se falsa) ou "V" (se verdadeira) na frente de cada afirmação abaixo.

- ( V ) A estrela B se afasta de nós mais rapidamente do que a estrela D
- ( V ) A velocidade radial da estrela C é nula
- (V) A estrela E está se aproximando de nós a mais de 450 km/s
- (F) A estrela A está se afastando de nós
- (F) Entre as estrelas, a estrela D é a que tem a menor velocidade de aproximação de nós

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$v_A = \frac{654 - 656}{656} \times 300000 \rightarrow v \cong -915 \text{ km/s}$$

$$v_B = \frac{659 - 656}{656} \times 300000 \rightarrow v \cong 1372 \text{ km/s}$$

$$v_C = \frac{656 - 656}{656} \times 300000 \rightarrow v = 0 \text{ km/s}$$

$$v_D = \frac{657 - 656}{656} \times 300000 \rightarrow v \cong 457 \text{ km/s}$$

$$v_E = \frac{655 - 656}{656} \times 300000 \rightarrow v \cong -457 \text{ km/s}$$

 $v_A < v_E < v_C < v_D < v_B$ 

Questão 19 (1 ponto) PROVA PRESENCIAL Uma linha importante no espectro de absorção das estrelas ocorre no comprimento de onda de repouso de 656 nm. A imagem a seguir exemplifica como esta linha pode ser observada no espectro de uma estrela.



Imagine que você observou, do seu observatório, cinco estrelas e descobriu que essa linha de absorção é observada nos seguintes comprimentos de onda

mostrados na tabela, para cada uma das cinco estrelas.

Assinale "F" (se falsa) ou "V" (se verdadeira) na frente de cada afirmação abaixo.

| Estrela Comprimento de onda da linha de absorção |        |  |
|--------------------------------------------------|--------|--|
| Α                                                | 654 nm |  |
| В                                                | 659 nm |  |
| С                                                | 656 nm |  |
| D                                                | 657 nm |  |
| E                                                | 655 nm |  |

As verdadeiras estão em vermelho.

- 1) A estrela **B** se afasta de nós mais rapidamente do que a estrela **D**.
- 2) A velocidade radial da estrela C é nula.
- 3) A estrela **E** está se aproximando de nós a mais de 450 km/s.
- A estrela A está se afastando de nós.
- 5) Entre as estrelas, a estrela D é a que tem a menor velocidade de aproximação de nós.

Assinale a única alternativa que contém a sequência correta de Falso e Verdadeiro das afirmações acima.

- a) (1) Verdadeira (2) Verdadeira (3) Verdadeira (4) Falsa (5) Falsa 1 PONTO
- b) (1) Verdadeira (2) Verdadeira (3) Verdadeira (4) Falsa (5) Verdadeira 0,6 **PONTO**
- c) (1) Verdadeira (2) Verdadeira (3) Falsa (4) Verdadeira (5) Falsa 0,4 PONTO
- d) (1) Falsa (2) Falsa (3) Verdadeira (4) Verdadeira (5) Falsa 0,2 PONTO
- e) (1) Falsa (2) Falsa (3) Falsa (4) Verdadeira (5) Verdadeira 0,0 PONTO

## Resposta:

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$v_A = \frac{654 - 656}{656} \times 300000 \rightarrow v \cong -915 \text{ km/s}$$

$$v_B = \frac{659 - 656}{656} \times 300000 \rightarrow v \cong 1372 \text{ km/s}$$

$$v_C = \frac{656 - 656}{656} \times 300000 \rightarrow v = 0 \text{ km/s}$$

$$v_D = \frac{657 - 656}{656} \times 300000 \rightarrow v \cong 457 \text{ km/s}$$

$$v_E = \frac{655 - 656}{656} \times 300000 \rightarrow v \cong -457 \text{ km/s}$$

$$v_A < v_E < v_C < v_D < v_B$$

19) - Nota obtida: \_\_\_\_\_

Questão 19 (1 ponto) PROVA PRESENCIAL Uma linha importante no espectro de absorção das estrelas ocorre no comprimento de onda de repouso de 656 nm. A imagem a seguir exemplifica como esta linha pode ser observada no espectro de uma estrela.



Imagine que você observou, do seu observatório, cinco estrelas e descobriu que essa linha de absorção é observada nos seguintes comprimentos de onda

mostrados na tabela, para cada uma das cinco estrelas.

Assinale "F" (se falsa) ou "V" (se verdadeira) na frente de cada afirmação abaixo.

| Estrela | Comprimento de onda da |  |  |  |  |
|---------|------------------------|--|--|--|--|
| LSucia  | linha de absorção      |  |  |  |  |
| Α       | 654 nm                 |  |  |  |  |
| В       | 659 nm                 |  |  |  |  |
| С       | 656 nm                 |  |  |  |  |
| D       | 657 nm                 |  |  |  |  |
| E       | 655 nm                 |  |  |  |  |

As verdadeiras estão em vermelho.

- 1) A estrela **B** se afasta de nós mais rapidamente do que a estrela **D**.
- 2) A velocidade radial da estrela C é nula.
- 3) A estrela **E** está se aproximando de nós a mais de 450 km/s.
- A estrela A está se afastando de nós.
- 5) Entre as estrelas, a estrela D é a que tem a menor velocidade de aproximação de nós.

Assinale a única alternativa que contém a sequência correta de Falso e Verdadeiro das afirmações acima.

- a) (1) Verdadeira (2) Verdadeira (3) Verdadeira (4) Falsa (5) Falsa 1 PONTO
- b) (1) Verdadeira (2) Verdadeira (3) Verdadeira (4) Falsa (5) Verdadeira 0,6 **PONTO**
- c) (1) Verdadeira (2) Verdadeira (3) Falsa (4) Verdadeira (5) Falsa 0,4 PONTO
- d) (1) Falsa (2) Falsa (3) Verdadeira (4) Verdadeira (5) Falsa 0,2 PONTO
- e) (1) Falsa (2) Falsa (3) Falsa (4) Verdadeira (5) Verdadeira 0,0 PONTO

## Resposta:

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$v_A = \frac{654 - 656}{656} \times 300000 \rightarrow v \cong -915 \text{ km/s}$$

$$v_B = \frac{659 - 656}{656} \times 300000 \rightarrow v \cong 1372 \text{ km/s}$$

$$v_C = \frac{656 - 656}{656} \times 300000 \rightarrow v = 0 \text{ km/s}$$

$$v_D = \frac{657 - 656}{656} \times 300000 \rightarrow v \cong 457 \text{ km/s}$$

$$v_E = \frac{655 - 656}{656} \times 300000 \rightarrow v \cong -457 \text{ km/s}$$

$$v_A < v_E < v_C < v_D < v_B$$

19) - Nota obtida: \_\_\_\_\_

Questão 20 (1 ponto) (0,20 cada acerto) Uma linha importante no espectro de absorção das estrelas ocorre no comprimento de onda de repouso de 656 nm. A imagem a seguir exemplifica como esta linha pode ser observada no espectro de uma estrela.



Imagine que você observou, do seu observatório, cinco estrelas e descobriu que essa linha de absorção é observada nos seguintes comprimentos de onda mostrados na tabela, para cada uma das cinco estrelas.

| Estrela | Comprimento de onda da linha de absorção |  |  |
|---------|------------------------------------------|--|--|
| Α       | 654 nm                                   |  |  |
| В       | 659 nm                                   |  |  |
| С       | 656 nm                                   |  |  |
| D       | 657 nm                                   |  |  |
| E       | 655 nm                                   |  |  |

Assinale "F" (se falsa) ou "V" (se verdadeira) na frente de cada afirmação abaixo.

- (V) A estrela A está se aproximando de nós.
- (V) A velocidade radial da estrela C é nula.
- (V) Entre as estrelas, a estrela D é a que tem a menor velocidade de afastamento de nós.
- (F) A estrela D se afasta de nós mais rapidamente que a estrela B.
- (F) A estrela E está se aproximando de nós a cerca de 1372 km/s.

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$v_A = \frac{654 - 656}{656} \times 300000 \rightarrow v \cong -915 \text{ km/s}$$

$$v_B = \frac{659 - 656}{656} \times 300000 \rightarrow v \cong 1372 \text{ km/s}$$

$$v_C = \frac{656 - 656}{656} \times 300000 \rightarrow v = 0 \text{ km/s}$$

$$v_D = \frac{657 - 656}{656} \times 300000 \rightarrow v \cong 457 \text{ km/s}$$

$$v_E = \frac{655 - 656}{656} \times 300000 \rightarrow v \cong -457 \text{ km/s}$$

$$v_A < v_E < v_C < v_D < v_B$$

Questão 20 (1 ponto) PROVA PRESENCIAL Uma linha importante no espectro de absorção das estrelas ocorre no comprimento de onda de repouso de 656 nm. A imagem a seguir exemplifica como esta linha pode ser observada no espectro de uma estrela.



Imagine que você observou, do seu observatório, cinco estrelas e descobriu que essa linha de absorção é observada nos seguintes comprimentos de onda mostrados na tabela, para cada uma das cinco estrelas.

As verdadeiras estão em vermelho.

- 1) A estrela A está se aproximando de nós.
- 2) A velocidade radial da estrela C é nula.
- 3) Entre as estrelas, a estrela D é a que tem a menor velocidade de afastamento de nós.
- 4) A estrela D se afasta de nós mais rapidamente que a estrela B.
- 5) A estrela E está se aproximando de nós a cerca de 1372 km/s.

Assinale a única alternativa que contém a sequência correta de Falso e Verdadeiro das afirmações acima.

- a) (1) Verdadeira (2) Verdadeira (3) Verdadeira (4) Falsa (5) Falsa 1 PONTO
- b) (1) Verdadeira (2) Verdadeira (3) Verdadeira (4) Verdadeira (5) Falsa 0,6 **PONTO**
- c) (1) Verdadeira (2) Verdadeira (3) Falsa (4) Falsa (5) Verdadeira 0,4 PONTO
- d) (1) Falsa (2) Falsa (3) Verdadeira (4) Verdadeira (5) Falsa 0,2 PONTO
- e) (1) Falsa (2) Falsa (3) Falsa (4) Verdadeira (5) Verdadeira 0,0 PONTO

Resposta:

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$v_A = \frac{654 - 656}{656} \times 300000 \to v \cong -915 \ km/s$$

GABARITO Prova do nível 4 (Para alunos de qualquer ano do ensino médio)

24ª OBA - 27-28/05/2021

**TOTAL DE PÁGINAS:** 

Página 24

Comprimento de onda da

linha de absorção

654 nm

659 nm

656 nm

657 nm 655 nm

Estrela

В

С

D

Ε

$$v_{B} = \frac{659 - 656}{656} \times 300000 \rightarrow v \cong 1372 \ km/s$$

$$v_{C} = \frac{656 - 656}{656} \times 300000 \rightarrow v = 0 \ km/s$$

$$v_{D} = \frac{657 - 656}{656} \times 300000 \rightarrow v \cong 457 \ km/s$$

$$v_{E} = \frac{655 - 656}{656} \times 300000 \rightarrow v \cong -457 \ km/s$$

$$v_{A} < v_{E} < v_{C} < v_{D} < v_{B}$$

20) - Nota obtida: \_\_\_\_\_

Questão 21 (1 ponto) (0,20 cada acerto) Uma linha importante no espectro de absorção das estrelas ocorre no comprimento de onda de repouso de 656 nm. A imagem a seguir exemplifica como esta linha pode ser observada no espectro de uma estrela.



Imagine que você observou, do seu observatório, cinco estrelas e descobriu que essa linha de absorção é observada nos seguintes comprimentos de onda mostrados na tabela, para cada uma das cinco estrelas.

| Estrela | Comprimento de onda da<br>linha de absorção |
|---------|---------------------------------------------|
| Α       | 655 nm                                      |
| В       | 657nm                                       |
| С       | 656 nm                                      |
| D       | 659 nm                                      |
| E       | 654 nm                                      |

Assinale "F" (se falsa) ou "V" (se verdadeira) na frente de cada afirmação abaixo.

- (V) A velocidade radial da estrela C é nula.
- (V) A estrela B está se afastando de nós a, aproximadamente, 457 km/s.
- (F) A estrela A está se afastando de nós.
- (F) A estrela D e a estrela E se afastam de nós e a D é mais veloz.
- (F) Entre as estrelas, a estrela A é a que tem a menor velocidade de aproximação de nós.

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$v_A = \frac{655 - 656}{656} \times 300000 \rightarrow v \cong -457 \text{ km/s}$$

$$v_B = \frac{657 - 656}{656} \times 300000 \rightarrow v \cong 457 \text{ km/s}$$

$$v_C = \frac{656 - 656}{656} \times 300000 \rightarrow v = 0 \text{ km/s}$$

$$v_D = \frac{659 - 656}{656} \times 300000 \rightarrow v \cong 1372 \text{ km/s}$$

$$v_E = \frac{654 - 656}{656} \times 300000 \rightarrow v \cong -915 \text{ km/s}$$

$$v_E < v_A < v_C < v_B < v_D$$

Questão 21 (1 ponto) PROVA PRESENCIAL Uma linha importante no espectro de absorção das estrelas ocorre no comprimento de onda de repouso de 656 nm. A imagem a seguir exemplifica como esta linha pode ser observada no espectro de uma estrela.



Imagine que você observou, do seu observatório, cinco estrelas e descobriu que essa linha de absorção é observada nos seguintes comprimentos de onda mostrados na tabela, para cada uma das cinco estrelas.

Assinale "F" (se falsa) ou "V" (se verdadeira) na frente de cada afirmação abaixo.

|         | Comprimento de onda da |  |  |  |
|---------|------------------------|--|--|--|
| Estrela | linha de absorção      |  |  |  |
| Α       | 655 nm                 |  |  |  |
| В       | 657 nm                 |  |  |  |
| С       | 656 nm                 |  |  |  |
| D       | 659 nm                 |  |  |  |
| F       | 654 nm                 |  |  |  |

As verdadeiras estão em vermelho.

- 1) A velocidade radial da estrela C é nula.
- 2) A estrela B está se afastando de nós a, aproximadamente, 457 km/s.
- 3) A estrela A está se afastando de nós.
- 4) A estrela D e a estrela E se afastam de nós e a D é mais veloz.
- 5) Entre as estrelas, a estrela A é a que tem a menor velocidade de aproximação de nós.

Assinale a única alternativa que contém a sequência correta de Falso e Verdadeiro das afirmações acima.

- a) (1) Verdadeira (2) Verdadeira (3) Falsa (4) Falsa (5) Falsa 1 PONTO
- b) (1) Verdadeira (2) Verdadeira (3) Falsa (4) Falsa (5) Verdadeira 0,6 PONTO
- c) (1) Verdadeira (2) Verdadeira (3) Verdadeira (4) Verdadeira (5) Falsa 0,4 **PONTO**
- d) (1) Falsa (2) Falsa (3) Verdadeira (4) Falsa (5) Falsa 0,2 PONTO
- e) (1) Falsa (2) Falsa (3) Verdadeira (4) Verdadeira (5) Verdadeira 0,0 PONTO

#### Resposta:

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$v_A = \frac{655 - 656}{656} \times 300000 \rightarrow v \cong -457 \text{ km/s}$$

$$v_B = \frac{657 - 656}{656} \times 300000 \rightarrow v \cong 457 \text{ km/s}$$

$$v_C = \frac{656 - 656}{656} \times 300000 \rightarrow v \cong 0 \text{ km/s}$$

$$v_D = \frac{659 - 656}{656} \times 300000 \rightarrow v \cong 1372 \text{ km/s}$$

$$v_E = \frac{654 - 656}{656} \times 300000 \rightarrow v \cong -915 \text{ km/s}$$

$$v_E < v_A < v_C < v_B < v_D$$

21) - Nota obtida: \_\_\_\_\_

Questão 22 (1 ponto) Em 2021 o jipe-robô Perseverance, da NASA, com dimensões equivalentes às de um automóvel, foi colocado em Marte para a exploração da sua superfície e realização de uma série de experimentos.

Muito se fala do envio de seres humanos a Marte, mas 95% da atmosfera marciana é composta de dióxido de carbono (CO<sub>2</sub>). O oxigênio (O<sub>2</sub>) está presente na proporção de apenas 0,2%. Um ser humano necessita de 720 gramas de oxigênio por dia para respiração. O MOXIE, um dos experimentos a bordo do Perseverance, produz 10 gramas de O<sub>2</sub>/hora, a partir do CO<sub>2</sub> existente na atmosfera marciana.

Quantos dias serão necessários para que o MOXIE, funcionando ininterruptamente, produza a quantidade de O<sub>2</sub> necessária ao consumo diário de um ser humano?

- a) 3 (Em vermelho a alternativa correta)
- b) 10
- c) 30
- d) 72
- e) 720

#### Resposta:

Podemos calcular os dias necessários por regra de três simples:

$$\frac{10 \ g}{1 \ h} = \frac{720 \ g}{x \ hora} \rightarrow x = \frac{720 \ g \times 1 \ h}{10 \ g} = 72 \ horas \equiv 3 dias$$

Questão 23 (1 ponto) Em 2021 o jipe-robô Perseverance, da NASA, com dimensões equivalentes às de um automóvel, foi colocado em Marte para a exploração da sua superfície e realização de uma série de experimentos.

Muito se fala do envio de seres humanos a Marte, mas 95% da atmosfera marciana é composta de dióxido de carbono (CO<sub>2</sub>). O oxigênio (O<sub>2</sub>) está presente na proporção de apenas 0,2%. Um ser humano necessita de 720 gramas de oxigênio por dia para respiração. O MOXIE, um dos experimentos a bordo do Perseverance, produz 10 gramas de O<sub>2</sub>/hora, a partir do CO<sub>2</sub> existente na atmosfera marciana.

Quantos dias serão necessários para que o MOXIE, funcionando ininterruptamente, produza a quantidade de O2 necessária ao consumo semanal de um ser humano?

#### a) 21 (Em vermelho a alternativa correta)

- b) 7
- c) 10
- d) 72
- e) 720

#### Resposta:

Podemos calcular os dias necessários por regra de três simples:

$$\frac{10 g}{1 h} = \frac{720 \frac{g}{dia} \times 7 dias}{x hora} \rightarrow x = \frac{5040 g \times 1 h}{10 g} = 504 horas \equiv 21 dias$$

Questão 24 (1 ponto) Em 2021 o jipe-robô *Perseverance*, da NASA, com dimensões equivalentes às de um automóvel, foi colocado em Marte para a exploração da sua superfície e realização de uma série de experimentos.

Muito se fala do envio de seres humanos a Marte, mas 95% da atmosfera marciana é composta de dióxido de carbono ( $CO_2$ ). O oxigênio ( $O_2$ ) está presente na proporção de apenas 0,2%. Um ser humano necessita de 720 gramas de oxigênio por dia para respiração. O MOXIE, um dos experimentos a bordo do *Perseverance*, produz 10 gramas de  $O_2$ /hora, a partir do  $CO_2$  existente na atmosfera marciana.

Quantos dias serão necessários para que o MOXIE, funcionando ininterruptamente, produza a quantidade de O<sub>2</sub> necessária ao consumo mensal de um ser humano?

- a) 90 dias (Em vermelho a alternativa correta)
- b) 30
- c) 72
- d) 95
- e) 720

#### Resposta:

Podemos calcular os dias necessários por regra de três simples:

$$\frac{10 \ g}{1 \ h} = \frac{720 \ \frac{g}{dia} \times 30 \ dias}{x \ hora} \rightarrow x = \frac{21600 \ g \times 1 \ h}{10 \ g} = 2160 \ horas \equiv 90 \ dias$$

**Questão 25 (1 ponto)** O jipe-robô *Perseverance*, da NASA, para pousar em segurança na superfície marciana, em 2021, teve que realizar uma sequência de manobras aeroespaciais muito arriscadas. Com 1.025 kg de massa, ao chegar à 120 km da superfície marciana, o *Perseverance* iniciou o processo de entrada (registrado por tempo = 0 s na tabela abaixo), descida e pouso. Até o acionamento do paraquedas a velocidade foi reduzida tão-somente em função do atrito entre a cápsula que protege o *Perseverance* e a atmosfera marciana. Depois o paraquedas foi acionado e funcionou por 2 minutos, quando foi ejetado e entraram em funcionamento 8 retrofoguetes que reduziram a velocidade final de 306 km/h para 3,6 km/h.

| Evento                                               | Tempo<br>[s] | Altitude<br>[km] | Velocidade<br>[km/h] | Velocidade<br>[m/s] |
|------------------------------------------------------|--------------|------------------|----------------------|---------------------|
| Contato com a atmosfera marciana                     | 0            | 120              | 19.800               | 5.500               |
| Acionamento do paraquedas                            | 240          | 11               | 1.512                | 420                 |
| Ejeção do paraquedas e acionamento dos retrofoguetes | 360          | 2                | 306                  | 85                  |
| Ejeção do sistema de retrofoguetes e pouso           | 420          | 0,02             | 3,6                  | 1                   |

Baseado nessas informações, assinale a opção que traz o valor aproximado da desaceleração do *Perseverance* devido ao atrito com a atmosfera.

- a) -21,2 m/s² (Em vermelho a alternativa correta)
- b) -2,8 m/s<sup>2</sup>
- c)  $-1,4 \text{ m/s}^2$
- d)  $-76,2 \text{ m/s}^2$
- e) -10,1 m/s<sup>2</sup>

$$a = \frac{\Delta v}{\Delta t} = \frac{(420 - 5500) \, m/s}{(240 - 0) \, s} = \frac{-5080 \, m/s}{240 \, s} \rightarrow a \cong -21.2 \, m/s^2$$

Questão 26 (1 ponto) O jipe-robô *Perseverance*, da NASA, para pousar em segurança na superfície marciana, em 2021, teve que realizar uma sequência de manobras aeroespaciais muito arriscadas. Com 1.025 kg de massa, ao chegar à 120 km da superfície marciana, o *Perseverance* iniciou o processo de entrada (registrado por tempo = 0 s na tabela abaixo), descida e pouso. Até o acionamento do paraquedas a velocidade foi reduzida tão-somente em função do atrito entre a cápsula que protege o *Perseverance* e a atmosfera marciana. Depois o paraquedas foi acionado e funcionou por 2 minutos, quando foi ejetado e entraram em funcionamento 8 retrofoguetes que reduziram a velocidade final de 306 km/h para 3,6 km/h.

| Evento                                               | Tempo<br>[s] | Altitude<br>[km] | Velocidade<br>[km/h] | Velocidade<br>[m/s] |
|------------------------------------------------------|--------------|------------------|----------------------|---------------------|
| Contato com a atmosfera marciana                     | 0            | 120              | 19.800               | 5.500               |
| Acionamento do paraquedas                            | 240          | 11               | 1.512                | 420                 |
| Ejeção do paraquedas e acionamento dos retrofoguetes | 360          | 2                | 306                  | 85                  |
| Ejeção do sistema de retrofoguetes e pouso           | 420          | 0,02             | 3,6                  | 1                   |

Baseado nessas informações, assinale a opção que traz o valor aproximado da desaceleração do *Perseverance* devido ao acionamento do paraquedas.

- a) -2,8 m/s<sup>2</sup> (Em vermelho a alternativa correta)
- b) -21,2 m/s<sup>2</sup>
- c)  $-1,4 \text{ m/s}^2$
- d)  $-10,1 \text{ m/s}^2$
- e) -5,0 m/s<sup>2</sup>

$$a = \frac{\Delta v}{\Delta t} = \frac{(85 - 420) \, m/s}{(360 - 240) \, s} = \frac{-335 \, m/s}{120 \, s} \rightarrow a \cong -2.8 \, m/s^2$$

Questão 27 (1 ponto) O jipe-robô *Perseverance*, da NASA, para pousar em segurança na superfície marciana, em 2021, teve que realizar uma sequência de manobras aeroespaciais muito arriscadas. Com 1.025 kg de massa, ao chegar à 120 km da superfície marciana, o *Perseverance* iniciou o processo de entrada (registrado por tempo = 0 s na tabela abaixo), descida e pouso. Até o acionamento do paraquedas a velocidade foi reduzida tão-somente em função do atrito entre a cápsula que protege o *Perseverance* e a atmosfera marciana. Depois o paraquedas foi acionado e funcionou por 2 minutos, quando foi ejetado e entraram em funcionamento 8 retrofoguetes que reduziram a velocidade final de 306 km/h para 3,6 km/h.

| Evento                                               | Tempo<br>[s] | Altitude<br>[km] | Velocidade<br>[km/h] | Velocidade<br>[m/s] |
|------------------------------------------------------|--------------|------------------|----------------------|---------------------|
| Contato com a atmosfera marciana                     | 0            | 120              | 19.800               | 5.500               |
| Acionamento do paraquedas                            | 240          | 11               | 1.512                | 420                 |
| Ejeção do paraquedas e acionamento dos retrofoguetes | 360          | 2                | 306                  | 85                  |
| Ejeção do sistema de retrofoguetes e pouso           | 420          | 0,02             | 3,6                  | 1                   |

Baseado nessas informações, assinale a opção que traz o valor da desaceleração do *Perseverance* devido ao acionamento dos retrofoguetes.

- a) -1,4 m/s² (Em vermelho a alternativa correta)
- b) -21,2 m/s<sup>2</sup>
- c) -2,8 m/s<sup>2</sup>
- d) -5,0 m/s<sup>2</sup>
- e) -10,1 m/s<sup>2</sup>

$$a = \frac{\Delta v}{\Delta t} = \frac{(1 - 85) \, m/s}{(420 - 360) \, s} = \frac{-84 \, m/s}{60 \, s} \rightarrow a = -1.4 \, m/s^2$$

**Questão 28 (1 ponto)** Em fevereiro de 2021 foi colocado em órbita da Terra o satélite de observação Amazônia 1, desenvolvido e operado pelo Instituto Nacional de Pesquisas Espaciais (INPE). O Amazônia 1 obtém imagens de um mesmo ponto da superfície terrestre a cada 5 dias, permitindo, por exemplo, que os alertas de desmatamento sejam mais rápidos.

A foto da esquerda (A) representa a região de Ji-Paraná/RO em 1990 e a da direita (B), a mesma região em 2010, com uma grande área desmatada (demarcada pelas linhas tracejadas).





Cada pixel da imagem do Amazônia 1 representa uma área de 60 × 60 metros e cada 1 cm medido na imagem de satélite (exemplificado na foto A) representa 3,0 km na superfície terrestre.

Considere que a região desmatada na foto B seja um retângulo de  $1.5 \times 5.6$  cm e assinale a alternativa que traz 1) a área real desmatada, em km<sup>2</sup>, e 2) a taxa média de desmatamento anual, em km<sup>2</sup>/ano, para o período.

- a) 75,6 km² e 3,78 km²/ano (Em vermelho a alternativa correta)
- b) 75,6 km<sup>2</sup> e 7,56 km<sup>2</sup>/ano
- c) 36,0 km<sup>2</sup> e 3,78 km<sup>2</sup>/ano
- d) 37,8 km<sup>2</sup> e 3,78 km<sup>2</sup>/ano
- e) 75,6 km<sup>2</sup> e 1,89 km<sup>2</sup>/ano

#### Resposta:

Vamos começar por calcular a área na foto B:

$$área (foto) = 1,5 cm \times 5,6 cm = 8,5 cm^2$$

Se cada cm na foto corresponde à 3 km na superfície, então cada cm² corresponderá à 9 km² e podemos calcular a área real desmatada por regra de três simples:

$$\frac{1\ cm^2}{8,5\ cm^2} = \frac{9\ km^2}{\text{área real desmatada}} \rightarrow \text{área real desmatada} = \frac{9\ km^2 \times 8,5\ cm^2}{1\ cm^2} = 75,6\ km^2$$

A taxa média de desmatamento anual para o período será:

$$taxa = \frac{\text{área real desmatada}}{\Delta t} \rightarrow taxa = \frac{75,6 \text{ km}^2}{(2010 - 1990) \text{ ano}} = 3,78 \frac{\text{km}^2}{\text{ano}}$$

Questão 29 (1 ponto) Em fevereiro de 2021 foi colocado em órbita da Terra o satélite de observação Amazônia 1, desenvolvido e operado pelo Instituto Nacional de Pesquisas Espaciais (INPE). O Amazônia 1 obtém imagens de um mesmo ponto da superfície terrestre a cada 5 dias, permitindo, por exemplo, que os alertas de desmatamento sejam mais rápidos.

A foto da esquerda (A) representa a região de Ji-Paraná/RO em 1990 e a da direita (B), a mesma região em 2010, com uma grande área desmatada (demarcada pelas linhas tracejadas).





Cada pixel da imagem do Amazônia 1 representa uma área de 60 × 60 metros e cada 1 cm medido na imagem de satélite (exemplificado na foto A) representa 3,0 km na superfície terrestre.

Considere que a região desmatada na foto B seja um retângulo de  $1.5 \times 5.6$  cm e assinale a alternativa que traz 1) a área real desmatada, em km², e 2) quantos pixel estão contidos nesta área da imagem.

- a) 75,6 km² e 21.000 pixel (Em vermelho a alternativa correta)
- b) 75,6 km<sup>2</sup> e 7,56 km<sup>2</sup>/ano
- c) 36,0 km<sup>2</sup> e 21.000 pixel
- d) 37,8 km<sup>2</sup> e 21.000 pixel
- e) 75,6 km<sup>2</sup> e 1,89 km<sup>2</sup>/ano

#### Resposta:

Vamos começar por calcular a área na foto B:

$$área (foto) = 1,5 cm \times 5,6 cm = 8,5 cm^2$$

Se cada cm na foto corresponde à 3 km na superfície, então cada cm² corresponderá à 9 km² e podemos calcular a área real desmatada por regra de três simples:

$$\frac{1\ cm^2}{8,5\ cm^2} = \frac{9\ km^2}{\text{área real desmatada}} \rightarrow \text{área real desmatada} = \frac{9\ km^2\times 8,5\ cm^2}{1\ cm^2} = 75,6\ km^2$$

Se cada pixel da imagem representa uma área de  $60 \times 60$  metros, ou seja,  $0.06 \times 0.06$  km = 0.0036 km<sup>2</sup>, podemos calcular quantos pixel estão contidos na área da imagem também por regra de três simples:

$$\frac{1 \ pixel}{0.0036 \ km^2} = \frac{x \ pixel}{75.6 \ km^2} \rightarrow x = \frac{75.6 \ km^2 \times 1 \ pixel}{0.0036 \ km^2} = 21.000 \ pixel$$

Questão 30 (1 ponto) Em fevereiro de 2021 foi colocado em órbita da Terra o satélite de observação Amazônia 1, desenvolvido e operado pelo Instituto Nacional de Pesquisas Espaciais (INPE). O Amazônia 1 obtém imagens de um mesmo ponto da superfície terrestre a cada 5 dias, permitindo, por exemplo, que os alertas de desmatamento sejam mais rápidos.

A foto da esquerda (A) representa a região de Ji-Paraná/RO em 1990 e a da direita (B), a mesma região em 2010, com uma grande área desmatada (demarcada pelas linhas tracejadas).





Cada pixel da imagem do Amazônia 1 representa uma área de 60 × 60 metros e cada 1 cm medido na imagem de satélite (exemplificado na foto A) representa 3,0 km na superfície terrestre.

Considere que a região desmatada na foto B seja um retângulo de 1,6  $\times$  5,5 cm e assinale a alternativa que traz 1) a área real desmatada, em km<sup>2</sup>, e 2) a taxa média de desmatamento anual, em km<sup>2</sup>/ano, para o período.

- a) 79,2 km<sup>2</sup> e 3,96 km<sup>2</sup>/ano (Em vermelho a alternativa correta)
- b) 79,2 km<sup>2</sup> e 7,92 km<sup>2</sup>/ano
- c) 39,6 km<sup>2</sup> e 3,96 km<sup>2</sup>/ano
- d) 59,4 km<sup>2</sup> e 3,96 km<sup>2</sup>/ano
- e) 79,2 km<sup>2</sup> e 1,98 km<sup>2</sup>/ano

#### Resposta:

Vamos começar por calcular a área na foto B:

área (foto) = 1,6 cm 
$$\times$$
 5,5 cm = 8,8 cm<sup>2</sup>

Se cada cm na foto corresponde à 3 km na superfície, então cada cm<sup>2</sup> corresponderá à 9 km<sup>2</sup> e podemos calcular a área real desmatada por regra de três simples:

$$\frac{1\ cm^2}{8.8\ cm^2} = \frac{9\ km^2}{\text{área real desmatada}} \rightarrow \text{área real desmatada} = \frac{9\ km^2 \times 8.8\ cm^2}{1\ cm^2} = 79.2\ km^2$$

A taxa média de desmatamento anual para o período será:

$$taxa = \frac{\acute{a}rea\ real\ desmatada}{\Delta t} \rightarrow taxa = \frac{79,2\ km^2}{(2010-1990)\ ano} = 3,96\ \frac{km^2}{ano}$$