

.... and its relevance to Data Science

Peter Foltz

Research Professor, Institute of Cognitive Science

iSAT Overview

The Problem:
How to promote deep conceptual learning via rich socio-collaborative learning experiences for all students?

In our vision, Al is viewed as a social, collaborative partner that helps both students and teachers work and learn more effectively, engagingly, and equitably

Al Partners: A bold and transformative approach

- Most existing educational AI and orchestration systems are unimodal, interact with individual students, or monitor typed chats among students*
- Our Al Partner will observe, participate in, and facilitate collaborative learning conversations by interacting naturally through speech, gesture, gaze, and facial expression in a real-world classrooms (i.e., multimodal, multiparty)
- It will help teachers orchestrate more effective collaborative learning

*[Arroyo et al. 2014; Nojavanasghari et al. 2017; VanLehn et al. 2016; Rose et al.]

The iSAT mission

 Develop foundational theories & Al technologies for creating next-generation collaborative learning environments composed of diverse student-Al teams.

 Grow a diverse workforce of the future by engaging 5,000 middle/high school students in innovative Al education through Al-enabled pedagogies.

• Serve as a **national nexus point for empowering** diverse stakeholders to envision, co-create, critique, and apply student-Al teaming in their communities.

iSAT integrates researchers from 14 research areas

iSAT partnerships

Unites 45 researchers from 14 research areas with partners from academia, K-12, and industry network affiliates

University Partners

- University of Colorado Boulder
- Colorado State University
- University of California, Santa Cruz
- University of California, Berkeley
- Brandeis University
- Worcester Polytechnic Institute
- Georgia Institute of Technology
- U. of Illinois at Urbana Champaign
- University of Wisconsin-Madison

K12 Partners

- Denver Public Schools (DPS)
- St. Vrain Valley School District (SVVSD)
- Project VOYCE
- Rigorous Love
- Youth Empowerment Broadcasting

Development Partners

- SparkFun Electronics
- Curve 10

Industry Network Affiliates

- Front Range Technology Network
- Center on Pervasive Personalized Intelligence

iSAT will integrate Al-education in science & tech courses to provide measurable learning outcomes

A *multi-faceted* Al Partner

- We envision an interactive AI Partner that listens to, analyzes and facilitates student conversations, promoting problem solving and keeping the conversation focused
- Our Al Partner must apply a control policy to make Dialog Management choices that best promote the group's learning, e. g., correct Talk Move
 - Talk Moves* are established ways of moving an academic conversation along (REVOICE, PRESS FOR ACCURACY, etc.)
- Good Dialog Management choices will depend on rich content analysis and multimodal perception (speech, vision) of the learning context

Levels for Al Partner Interaction

Sheepdog
Only "Keeping
Everyone Together"
Talk Moves

ShepherdMore guidance, but no true communication with students

Guide

Follows the gist of most content-based conversation and responds encouragingly

Progressive levels of functioning for the Al partner

Level 2

Y2-4

First concrete rendition of the entire system but interaction/orchestration based on speech data only.

First major field trial with middle school students.

Level 3

Y4-5

Will embody the entire vision and will include both speech and video data and more sophistication throughout.

Second major classroom field trial with middle & high school students.

Level 1

Y1-2

Proof-of-concept prototype for rapid data collection

How does Data Science impact iSAT?

How does iSAT impact Data Science?

The Digital Ocean* Our ability to record, store and process information from learners suggests a paradigm shift

- Focus on a broad range of attributes versus measuring narrowly defined knowledge and skills
- Assessment from in vivo naturalistic tasks vs. via pre-made tests
- Integration of data over activity and time as opposed to over singular events
- Detailed tracking of context outside of testing situations
- Remove current distinctions such as "informal" vs. "formal" learning
- Collection and permanence of learner profile data to make ongoing, intelligent recommendations.

Data Collection and modeling

Content Analysis

Automatic Speech Recognition

Speaker Diarization

Multimodal Student Modeling

Multimodal SCA Modeling

Multimodal Group Modeling

Data collection in live environments

Data:

- Multi-party
- Multi-modal
- Multi-curricular
- Real-time interaction
- Noisy, Incomplete

Data Collection is Evidence Accumulation:

- Frameworks of what skills are being assessed
- How do we operationally define the skills so they can be measured?
- How do we surface feedback to students and teachers?
- How do we validate performance?

Ethics:

- Avoiding algorithmic bias and its consequences
- Accounting for the role of privacy and security
- Responsible Innovation framework: Promote creativity and opportunities for science and innovation that are socially desirable and undertaken in the public interest

Example: Using Educational Data

Building on TalkBack: Accountable Talk Moves DataSet NSF 1600325 & 1837986 (Big Data) – PI, Sumner

Accountability to the learning community

- Keeping everyone together (e.g., "What did she just say?")
- Getting students to relate to another's ideas (e.g., "Who agrees and who disagrees?")
- Restating (e.g., "Let me say back what I heard.")

Ensuring purposeful coherent and productive group discussion Accountability to rigorous thinking

Dataset & Performance

- ~250K sentences, recorded, transcribed annotated with Talk Moves
- 66% Teacher sentences/ 34% Student sentences
- >60% No Move/ < 40% Talk Moves
- Classifier Performance: Teacher Moves: ~79%; Student Moves: ~77% [Suresh, et. al., 2019, 2021]

Data science project life cycle

iSAT Research Process/Methodology

Foundational Research occurring continually: Curriculum Development; Design & Rapid Prototyping; Data Curation & Annotation; Algorithm Development; Experimentation & Evaluation; Community Resource Development

Designing with the End User in Mind: Co-Design

In what ways can inclusive co-design processes empower stakeholders with diverse identities to envision, co-create, critique, and apply Al learning technologies for their schools and communities?*

Penuel & Reiser, 2018; Severance, Penuel, Sumner & Leary, 2016; Penuel & Watkins, 2019]

Select "Anchor Problem"

- Begin with Futures Vision
- **Examine standards**
- Brainstorm possibilities with educators and researchers
- Solicit input from students & educators

Build a Unit

Develop a "storyline" for unit driven by student questions Write lessons with partners Test and revise lessons based on teacher and students experience & evidence

Summary: Data Science in Educational Technology (and other fields as well)

Think of Digital as a Process

From:
Intrusive off-line data
instrumentation & collection
with slow feedback cycles.

To:
Continuous data for
continuous customer insight
and product improvement.

Apply Intelligent Emergent Services

From:
Repetitive human activity that varies in quality and consistency.

To:

Capturing and replicating human intelligence to scale value and free people for high-touch needs.

Exploit the fact that "Everything digital is data"

From:

Analytics focused only on human behavior via "instrumentation".

Value creation from all existing digital assets, whether created by your teams and customers.

Leverage Assessment as Knowledge Creation

From: Isolated and non-persistent descriptions lost in time.

To:

Continually updated and persistent profiles that support customers along the journey.

Questions/Discussion

Peter.Foltz@Colorado.edu