CHAPTER - 01

SOME BASIC CONCEPTS OF CHEMISTRY

3 (NH₄), Cr₂O₇ 1.

1 mol contains 19 mol atoms

Total number of atoms = 19 × N_A = 114.42 × 10²³

- Mass of a given amount of a substance is a constant quantity
- 22.4 L N₂ at NTP \equiv 1 mol N₂

$$5.6 \text{ L O}_2 \text{ at NTP} \equiv \frac{1}{4} \text{ mol O}_2$$

According to Avogadro's hypothesis, equal volumes of all gases contain equal number of molecules under similar conditions of temperature and pressure.

 $5[M_A + 2M_B] = 125$ 4.

 $M_A + 2M_B = 25$ (1)

 $2M_A + 2M_B = 30$ (2)

From eq. (1) and (2), $M_A = 5$, $M_B = 10$

5. 100g compound contains 40g C, 6.66 g H and 53.34 g O. i.e., 3.33 mol C, 6.66 mol H and 3.33

Molar ratio, C: H: O = 3.33: 6.66: 3.33 = 1:2: 1

Thus, empirical formula = CH2O

Molecular formula = $CH_2O \times \frac{60}{30} = C_2H_4O_2$

6. $N_2 + 3H_2 \longrightarrow 2NH_3$

According to Gay Lussac's law, 1L of N₂ reacts with 3L of H₂ to form 2L of NH₂. Here, 30 L of N₂ and 30L of H₂ are taken for reaction. Then a maximum of 10L of N₂ can react with 30 L of H₂ to form 20L of NH₃ (Since H₂ is the limiting reagent). Since the yield is only 50%, 5L of N₂ has reacted with 15L of H_2 and 10L of NH_3 has formed. Final mixture will contain: $30 - 5 = 25 L N_2$; $30 - 15 = 15 L H_2$ and $10 L NH_3$

7. 1L solution

1250 g solution

3M NaCl ⇒ 3 mol NaCl in 1250g solution or 3 mol NaCl in 1074.5g solvent

Thus, molality =
$$\frac{3 \text{ mol}}{1.0745 \text{kg}}$$
 = 2.79 mol/kg

- 10 ppm = $\frac{10.3 \times 10^{-3} \text{g O}_2}{1030 \text{ g solution}} \times 10^6 = 10 \text{ ppm}$ 8.
- 9. 160 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

1 mol CH₄ gives 44g CO₂ and 36g H₂O ... 2mol CH₄ givs 88g CO₂ and 72 g H₂O

Thus, total mass of CO_2 and $H_2O = 88 + 72 = 160g$

 $3BaCl_2 + 2Na_3PO_4 \longrightarrow Ba_3(PO_4), \downarrow +6NaCl$ 10.

Brilliant STUDY CENTRE

11. A
$$6.022 \times 10^{23}$$
 Ax atoms = 409

$$\therefore 3.00 \times 10^{29}$$
 Ax atoms = $40 \times 3.00 \times 10^{9}$

$$6022 \times 10^{9}$$

$$= 1999$$

$$KClo_{g} \longrightarrow KCl + \frac{3}{2}O_{2}$$
 122.59
 189
 $1.69 = \frac{122.5}{48} \times 1.69 \times 1$

15. A Number of equivalents of
$$AI = N_{eq}$$
 of HcI

$$= NV$$

$$= 1.2 \times 0.05$$

$$= 0.6 \text{ meq}$$

$$= 0.6 \times 10^{3} \text{ eq}$$

$$= 6 \times 10^{-4} \text{ eq}$$

WA(=
$$\log x = \log x = 0$$
)

= $6 \times 10^{-4} \times 9$

= $54 \times 10^{-4} = 9$

Volume = Area x thickness

When = $\frac{mass}{density} = \frac{54 \times 10^{-4} = 9}{2.7 = 9}$

= $2 \times 10^{-3} = \frac{3}{10^{-2}} = \frac{3}{$

- 16. A $HCl + AgNO_3 \longrightarrow AgCl + HNO_3$ m.equivalents of HCl left = 0.5 m. equivalents of HNO_3 formed = 1.5 $V_aN_a = V_bN_b$; $2 = V_b \times 0.05$ Volume of NaOH = 40 ml
- 17. B $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ x litres pf propane produce 3x litre of CO_2 $C_4H_{10} + 6.5O_2 \rightarrow 4CO_2 + 5H_2O$ (3-x) litres of butane produce 4(3-x) lit of CO_2 3x + 4(3-x) = 11; 3x+12-4x=11 12-x=11; x=1 litre volume of butane : propane=2:1

Brilliant STUDY CENTRE

18. A,D No of atoms in
$$A = \frac{16}{32}N_A \times R = N_A$$

No of atoms in $B = \frac{16}{48}N_A \times 3 = N_A$

No of molecules in $A = \frac{16}{32}N_A = \frac{N_A}{2}$

No of molecules in $B = \frac{16}{48}N_A = \frac{N_A}{3}$

19. A,B,D

$$243 + 9 - 7 & 450$$
 $49 & 329 & 369$

Given $649 & 649$

Limiting reagent = 02
 $329 & 03 = 369 & 450$
 $649 & 03 = 429 & 400$

21. AD

Let molar mass of M₂O be 'x' and molar mass of M be 'y'

Now,
$$x \times \frac{36.4}{100} = 16g \rightarrow X = 43.95$$

∴
$$2y + 16 = 43.95 \Rightarrow y = 13.98 \approx 14g$$

Let formula of second oxide be M_aO

Now, (14 a + 16)
$$\times \frac{53.4}{100}$$
 = 16 \Rightarrow a = 1

Thus, second oxide is 'MO'

The ratio of mass of metal that reacts with a fixed mass of oxygen to form the two oxides is 2:1

22. AB

On sparking CO is converted to CO_2 according to the equation, $CO + \frac{1}{2}O_2 \rightarrow CO_2$

In option A

 $30\text{mL CO} + 60\text{mL CO}_2 + 10\text{mLO}_2 \xrightarrow{\text{spark}} 10\text{mLCO} + 80\text{mLCO}_2$ (90mL mixture)

In Option (B)

30mLCO + 50mLCO₂ + 20mLO₂ __spark > 80mLCO₂ + 5mLO₂

In Option (C)

50mL CO + 30mLCO₂ + 20mLO₃ spark 10mLCO+70mLCO₃

(80mL mixture)

In Option (D)

 $20\text{mLCO} + 70\text{mLCO}_2 + 10\text{mLO}_2 \xrightarrow{\text{spark}} 90\text{mLCO}_2$

On passing the final mixture through KOH solution, all CO₂ gets absorbed in the solution. Clearly final mixture in option (A) and option (B) contain 80mL CO₂. So in these cases, contraction in volume occurs by 80mL

23. C $8gO_2 \equiv \frac{1}{4} \text{ mol } O_2 \equiv \frac{1}{4} \times 16 \text{ mol protons (i.e., 4 mol protons)}$

11g $CO_2 = \frac{1}{4} mol CO_2 = \frac{1}{4} \times (6+16) mol protons$ (i.e. 5.5mol protons)

22g $CO_2 \equiv 2 \times 5.5$ mol protons (i.e. 11 mol protons)

7g CO = $\frac{1}{4}$ mol CO = $\frac{1}{4}$ × (6+8) mol protons (i.e. 3.5 mol protons)

14g CO $\equiv 2 \times 3.5$ mol protons (i.e. 7 mol protons)

24. 6.20

3
$$Cacl_2 + 2Nq_3 PO_4 - 7 Ca_3 (PO_4)_2 + 6Nacl$$

3 mcl_1 $2mcl_2$ $1mcl_3$

9 $cacl_2 + 2Nq_3 PO_4 - 7 Ca_3 (PO_4)_2 + 6Nacl$

9 $cacl_2 + 2Nq_3 PO_4 - 7 Ca_3 (PO_4)_2$

= 0.06 mcl_1 $2mcl_2$ $2mcl_3$ $2mcl_4$ $2mcl_4$ $2mcl_5$ $2mcl_5$ $2mcl_5$ $2mcl_6$ $2mcl_6$

Neg Navil Xemains unseacted =
$$6 \times 10^3$$
 eq
Neg Navil (nitral = $NV = N \times 265 \times 10^3$ eq
Neg Hel_(g) = $N \times 265 \times 10^3 = 6 \times 10^3 = 0.05$
 $N \times 265 \times 10^3 = 0.056$
 $N = 0.21$

Brilliant STUDY CENTRE

26. 32 1.6g metal \rightarrow 2.0g metal oxide (i.e. 1.6g metal + 0.4g oxygen) Mass of metal that combines with 16g of oxygen = $1.6 \times 40 = 64g$

∴ Equivalent mass of metal = $\frac{64}{2}$ = 32 g

27. 2 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Initial: 1mol 1mol 0 0

Final: 0.5mol 0 0.5mol 1mol

Total no. of moles in the final mixture = 0.5 + 0.5 + 1 = 2 mol

28. 540.47 - 540.48

Wt. of S₈ in sample = 160g;

Moles of $S_R = \frac{160}{32 \times 8} = 0.625$

No. of moles of O_2 required = 0.625×8

Vol. of O_2 required at STP = 22.7×5

... Vol. of air required at STP = $22.7 \times 5 \times \frac{100}{21}$

29. C Molar mass of urea = 60, HNO₃ =63, H₂SO₄ = 98 and CH₃COOH = 60gmol⁻¹ Solution I

 $Molarity = \frac{(120/60) \, mol}{1L} = 2M$

Mass of solution = $1L \times 1.2$ kg / L=1.2kg or 1200g

Mass of solvent = 1200g - 120g = 1080g or 1.08kg

 $\therefore \text{ molality} = \frac{2\text{mol}}{1.08\text{kg}} = 1.85\text{m}$

Solution II:

Data insufficient to calculate molarity of the solution

30. A 1 mol of gas at NTP will occupy 22.4L Molar mass of $SO_2 = 64$, $H_2 = 2$, $O_3 = 48$ and $O_2 = 32$ gmol⁻¹,