Q1(A):
Group 15 elements have 5 valence electrons.
Q1(B):
The atom with smaller atomic size and larger number of protons will have
stronger electric attraction and hence higher first ionisation energy. Therefore,
\boxed{He} has the highest first ionisation energy.
Q1(C):
Metals have deionised electrons that can conduct electricity and heat at their
solid states.
Q1(D):
Using the hints provided, we check the name of each compound:
(1): Hydrogen ox <u>ide</u>
(2): Sulphur triox <u>ide</u> .
(3): Carbon monox <u>ide</u> .
(4): Titanium (IV) ox <u>ide</u> .

(5): Oxyegn

$^{\prime}$	(T)	
()	(H:)	٠
OLT.	(\mathbf{L})	

Ether groups are -O-, where the O atom and its nearby C atoms are not joint by double bond.

Q2:

(A): Ions have the same electronic configuration only if they have the same number of electrons. Among the 5 options, only \overline{KCl} , where both K^+ and Cl^- has 18 electrons statisfying it.

(B):

- (1): Linear
- (2): Linear
- (3): Tetrahedral
- (4) : Bent
- (5): Trigonal pyramidal.
- (C): O_2 contains an O=O double bond and each O atom has 6 outermost shell electrons.

The Lewis structure is hence (2).

Note: The lone pair electrons are usually plotted as "paired".

Q3:

(A) The assumption suggests that the oxidation number of H and O are +1 and -2 respectively.

Therefore, the oxidation number of $Cl=4 \cdot 2 - 1 = \boxed{+7}$.

- (B): The full equation is $2MnO_4^- + 16H^+ + 10I^- \rightarrow 2Mn^{2+} + 5I_2 + 8H_2$. Therefore, the ratio is $\boxed{\frac{2}{10}}$.
- (C): Consider the molar ratio, as $\frac{50.0}{39.1+54.9+4\cdot16.0}$ mol of $KMnO_4$ is used, $\frac{5}{2} \cdot \frac{50.0}{39.1+54.9+4\cdot16.0}$ mol, i.e. $\frac{5}{2} \cdot \frac{50.0}{39.1+54.9+4\cdot16.0} \cdot (2 \cdot 126.9) \approx \boxed{200.8 \ g}$ of I_2 is formed.

Q4:

(A): By the provided information, $\Delta H_f[CO_2] = -394 \ kJ/mol$,

 $\Delta H_f[H_2O] = -286~kJ/mol$ and $\Delta H_f[CH_4] = -75~kJ/mol.$

Therefore, $\Delta H_c[CH_4] = -394 - 2 \cdot 286 + 75 = -891 \ kJ/mol$.

(B): Following the instruction:

$$\boxed{(1)}: \ \frac{286}{2 \cdot 1.0} = 143 \ kJ/g.$$

- (2): $\frac{394}{12.0} \approx 32 \ kJ/g$.
- (3): $\frac{891}{12.0+4\cdot1.0} \approx 55 \ kJ/g$.
- (4): $\frac{3\cdot394+4\cdot286-105}{3\cdot12.0+8\cdot1.0} \approx 50 \ kJ/g$

Q5:

(A):
$$3 \cdot \frac{5}{1000} \ mol$$
, i.e. $3 \cdot \frac{5}{1000} \cdot (65.4 + 32.1 + 4 \cdot 16.0) \approx \boxed{2.42 \ g}$ of $ZnSO_4$ is formed.

(B):
$$[NaOH] = \frac{\frac{2.3}{23.0}}{1.0} = 0.1 \ mol/L.$$

Therefore, pOH of the resultant solution=1.

- (C): The catalyst for Haber process is \overline{Fe}
- (D): For concentrated solution of NaCl, Cl^- are oxidised to Cl_2 and H^+ are dissociated from H_2O and reduced to H_2 .

Therefore, at the anode, we have $2Cl^- \rightarrow Cl_2 + 2e^-$.

At the cathode, we have $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$.

(2)

Note: I think the equation $2H^+ + 2e^- \rightarrow H_2$ will be more suitable as H_2O decomposed as the result of the shift in equilibrium. However, when asked the overall reaction, the equation $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ does explain the situation better.

Q6:

(A): The molar ratio $C: H = \frac{17.1}{12.0}: \frac{20.0-17.1}{1.0} \approx 1:2.$

Therefore, the empirical formula is CH_2 .

(B): Considering the number of moles:

$$\frac{2.0}{22.4} = \frac{5.0}{m}$$

$$m = \boxed{56}$$

(C): Solving $n(12.0 + 2 \cdot 1.0) = 56$, we have n = 4, i.e. the compound is C_4H_8 .

If the compound is non-cyclic, it is an alkene.

Therefore, there are $\boxed{4}$ isomers:

But-1-ene, Cis-but-2-ene, Trans-but-2-ene and 2-methylpropene