Structure de Tas:

1°) Ajout de 12.2 dans le tas :

Ensuite, mise à jour de la position de 12.2 :

Ajout de 7.3:

Mise à jour de la position :

2°) Extraction du minimum, c'est à dire 7.3 :

- 3°) Lors de l'extraction du minimum, une mise à jour des positions est obligatoire qui est en temps logarithmique alors que pour connaître la valeur minimum, il suffit de connaître la racine.
- 4°) Soit un nœud à la case i, sont fils gauche ce trouve à la case 2*i+1, son fils droit à la case 2*i+2 et son père à la case (i-1)/2.

Graphes:

Le plus court chemin entre n0 et n9 est : $n1 \rightarrow n1 \rightarrow n4 \rightarrow n5 \rightarrow n8 \rightarrow n9$

Le temps est en $O((n+a) \log n)$.

Conclusion : Nous avons réussi à faire la partie heap seulement et commencer la partie heap_id.