

Universidad Simón Bolívar

FS-4211: MECÁNICA CLÁSICA I PRIMER PARCIAL

Abril - Julio 2021 Sartenejas, 04 de junio de 2021

A continuación se presentan cuatro (4) problemas que debe desarrollar para un total de cien (100) puntos. Justifique cada argumento siendo coherente, claro, conciso, ordenado y escribiendo con letra legible. Su resolución del examen debe entregarla en un único archivo PDF, con todas las imágenes nítidas, y la orientación de cada página correcta. Si decide realizar la transcripción en LATEX (preferible), deberá incluir también el archivo fuente (.tex).

- 1. (15 ptos.) Sea \mathcal{C} la curva correspondiente a la trayectoria de una cierta partícula clásica no relativista en D=3.
 - (a) (3 ptos.) Sea s un parámetro para \mathcal{C} tal que s crece de manera suave y monótona a lo largo de la trayectoria y sean $\vec{\mathbf{r}}(s_o)$ y $\vec{\mathbf{r}}(s_f)$ dos vectores de posición en la trayectoria con $s_o < s_f$. Muestre que la longitud ℓ a lo largo de la trayectoria que separa los puntos $\vec{\mathbf{r}}(s_o)$ y $\vec{\mathbf{r}}(s_f)$ está dada por

$$\ell(s_o, s_f) = \int_{s_o}^{s_f} \left(\sum_{i=1}^3 \frac{\mathrm{d}x_i}{\mathrm{d}s} \frac{\mathrm{d}x_i}{\mathrm{d}s} \right)^{\frac{1}{2}} \mathrm{d}s \ge d_E \left[\vec{\mathbf{r}}(s_o), \vec{\mathbf{r}}(s_f) \right], \tag{1}$$

donde x_i son las componentes (cartesianas) de $\vec{\mathbf{r}}$ y $d_E[\vec{\mathbf{r}}(s_o), \vec{\mathbf{r}}(s_f)]$ es la distancia euclídea que separa los puntos $\vec{\mathbf{r}}(s_o)$ y $\vec{\mathbf{r}}(s_f)$.

- (b) (3 ptos.) Muestre que la longitud ℓ es independiente del parámetro escogido para describir la curva \mathcal{C} .
- (c) (3 ptos.) Use el vector tangente a la trayectoria $\hat{\mathbf{u}}_T \equiv \frac{d\vec{\mathbf{r}}}{d\ell}$ para construir una tríada de versores, es decir, una Tríada de Frenet-Serret, con $\hat{\mathbf{u}}_N$ el vector normal principal y $\hat{\mathbf{u}}_B$ el vector binormal.
- (d) (3 ptos.) La curvatura κ de la trayectoria se define como

$$\kappa \equiv \left\| \frac{\mathrm{d}\hat{\mathbf{u}}_T}{\mathrm{d}\ell} \right\| = \frac{1}{\rho} \tag{2}$$

con ρ el radio de curvatura. Muestre que esta definición de κ da cuenta de la tasa de rotación de $\hat{\mathbf{u}}_T$, esto es, la tasa de cambio del ángulo que forman $\hat{\mathbf{u}}_T$ con una dirección fija.

- (e) (3 ptos.) Escriba las variables dinámicas $\vec{\bf r}$, $\dot{\vec{\bf r}}$, $\ddot{\vec{\bf r}}$ y $\vec{\bf L}$ de la partícula en términos de la tríada de Frenet-Serret.
- 2. (20 ptos.) Considere una partícula clásica (no relativista) de masa m en \mathbb{E}^3 .
 - (a) (5 ptos.) Demuestre que si sobre ella actúa una fuerza $\vec{\mathbf{F}}$ conocida, entonces su energía cinética T satisface

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \vec{\mathbf{F}} \cdot \dot{\vec{\mathbf{r}}},\tag{3}$$

con $\dot{\vec{\mathbf{r}}}$ su vector velocidad medida en un referencial $\mathbb S$ inercial.

(b) (15 ptos.) Sea $\vec{\mathbf{F}}$ una fuerza central tal que su magnitud F está dada por

$$F = \frac{\kappa}{r^2} \left(1 - \frac{\dot{r}^2 - 2\ddot{r}r}{c^2} \right), \quad \text{donde} \quad r \equiv ||\vec{\mathbf{r}}||,$$
 (4)

donde κ es una constante positiva de dimensión apropiada. Escriba las ecuaciones de movimiento y discuta los aspectos relevantes que pueda sobre la trayectoria de la misma. De ser posible, determine puntos relevantes del movimiento de la partícula.

3. (45 ptos.) Sean $\{\hat{\mathbf{u}}_i\}$ y $\{\hat{\mathbf{e}}_i\}$ dos bases ortonormales fijas en los referenciales \mathbb{S} (inercial) y \mathbb{S}' (no inercial), respectivamente. Ambos referenciales coinciden en el origen y \mathbb{S}' rota respecto a \mathbb{S} con velocidad angular $\vec{\omega}$. Una partícula de masa m se describe en coordenadas cartesianas $\{x_i\}$ en \mathbb{S} y $\{y_i\}$ en \mathbb{S}' , de manera que

$$\vec{\mathbf{r}} = \sum_{i=1}^{3} x_i \hat{\mathbf{u}}_i = \sum_{i=1}^{3} y_j \hat{\mathbf{e}}_j. \tag{5}$$

Considere que sobre la partícula actúa una cierta fuerza $\vec{\mathbf{F}}$ conservativa con potencial asociado $V(x_i)$.

(a) (2 ptos.) Demuestre que

$$\frac{\partial x_i}{\partial y_j} \propto \hat{\mathbf{u}}_i \cdot \hat{\mathbf{e}}_j \tag{6}$$

y determine la constante de proporcionalidad.

(b) (8 ptos.) Determine

$$\frac{\partial V}{\partial y_j}, \quad \frac{\partial}{\partial y_j} \|\vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}}\|, \quad \frac{\partial}{\partial y_j} \left[\mathbf{D}_M(\vec{\mathbf{r}}) \cdot (\vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}}) \right] \quad \text{y} \quad \frac{\partial}{\partial \dot{y}_j} \left[\mathbf{D}_M(\vec{\mathbf{r}}) \cdot (\vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}}) \right]. \tag{7}$$

(c) (10 ptos.) En el referencial S', la segunda ley de Newton toma la forma

$$m\mathbf{D}_{M}^{2}(\vec{\mathbf{r}}) = \vec{\mathbf{Q}}$$
 donde $\vec{\mathbf{Q}} = \vec{\mathbf{F}} + \sum_{i} \vec{\mathbf{F}}_{i}$ (8)

y $\vec{\mathbf{F}}_i$ son las fuerzas ficticias. Se
aUel potencial generalizado definido como

$$U = \mathfrak{C}_1 V(\vec{\mathbf{r}}) + \mathfrak{C}_2 \mathbf{D}_M(\vec{\mathbf{r}}) \cdot (\vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}}) + \mathfrak{C}_3 ||\vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}}||^2.$$
(9)

Determine las constantes \mathfrak{C}_i de manera que

$$\vec{\mathbf{Q}} = \sum_{i=1}^{3} Q_{j} \hat{\mathbf{e}}_{j}, \quad \text{con} \quad Q_{j} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial U}{\partial \dot{y}_{j}} \right) - \frac{\partial U}{\partial y_{j}}. \tag{10}$$

(d) (10 ptos.) Sean T y T' las energías cinéticas en los referenciales $\mathbb S$ y $\mathbb S'$, respectivamente. Demuestre que

$$T - V = T' - \kappa U',\tag{11}$$

donde κ es una constante a determinar.

(e) (15 ptos.) Considere que la partícula está bajo la influencia de un potencial generalizado de la forma

$$U[\vec{\mathbf{r}}, \mathbf{D}_M(\vec{\mathbf{r}})] = V(r) + \vec{\mathbf{\Lambda}} \cdot \vec{\mathbf{L}}, \tag{12}$$

donde $\vec{\mathbf{L}}$ es el momentum angular medido desde el origen y $\vec{\Lambda}$ es un vector fijo en \mathbb{S} . Determine la expresión de la Fuerza asociada a este potencial y escriba las ecuaciones de movimiento.

- 4. (20 ptos.) Sea un sistema aislado de N partículas en el que la partícula i-ésima tiene masa m_i y vector de posición $\vec{\mathbf{r}}_i$.
 - (a) (5 ptos.) Demuestre que el vector Centro de Masa $\vec{\mathbf{R}}$ satisface

$$M^{2}R^{2} = M \sum_{i=1}^{N} m_{i}r_{i}^{2} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} m_{i}m_{j}r_{ij}^{2},$$
(13)

donde

$$M \equiv \sum_{i=1}^{N} m_i, \quad R \equiv \left\| \vec{\mathbf{R}} \right\|, \quad r_i \equiv \left\| \vec{\mathbf{r}}_i \right\| \quad \mathbf{y} \quad \vec{\mathbf{r}}_{ij} \equiv \vec{\mathbf{r}}_i - \vec{\mathbf{r}}_j$$
 (14)

(b) (15 ptos.) Considere que las partículas del sistema interactúan vía una cierta fuerza

$$\vec{\mathbf{F}}_{ij} = -K_{ij} \frac{\vec{\mathbf{r}}_i - \vec{\mathbf{r}}_j}{r_{ij}^n}, \tag{15}$$

donde los coeficientes K_{ij} y n son constantes positivas y los subíndices i, j = 1, 2, ... N. Determine las condiciones bajo las cuales el problema de N cuerpos se reduce a N problemas de un solo cuerpo.