

DS2064 8K x 8 Static RAM

FEATURES

- Low power CMOS design
- Standby current

```
50 nA max at t_A = 25^{\circ}\text{C} V_{CC} = 3.0\text{V}
100 nA max at t_A = 25^{\circ}\text{C} V_{CC} = 5.5\text{V}
     1 \muA max at t_A = 60^{\circ}C V_{CC} = 5.5V
```

- Full operation for V_{CC} = 4.5V to 5.5V
- Data Retention Voltage = 5.5V to 2.0V
- Access time equals 200 ns at 5.0V
- Operating temperature range of -40°C to +85°C
- Full static operation
- TTL compatible inputs and outputs
- Available in 28-pin DIP and 28-pin SOIC packages
- Suitable for both battery operated and battery backup applications

PIN ASSIGNMENT

DS2064-200 28-PIN DIP (600 MIL) DS2064S-200 28-PIN SOIC (330 MIL)

PIN DESCRIPTION

A0-A12 - Address Inputs DQ0-DQ7 - Data Input/Output CE1, CE2 Chip Enable Inputs WE Write Enable Input OE - Output Enable Input - 5V Power Supply Input V_{CC}

GND - Ground NC - No Connection

DESCRIPTION

The DS2064 is a 65536-bit low power, fully static random access memory organized as 8192 words by eight bits using CMOS technology. The device operates from a single power supply with a voltage input between 4.5V and 5.5V. The chip enable inputs (CE1 and CE2) are used for device selection and can be used in order to achieve the minimum standby current mode, which facilitates both battery operate and battery backup applications. The device provides fast access time of 200 ns and is most suitable for low power applications where battery operation or battery backup for nonvolatility are required. The DS2064 is a JEDEC-standard 8K x 8 SRAM and is pin-compatible with ROM and EPROM of similar density.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING
V _{CC}	Power Supply Voltage	-0.3V to +7.0V
$V_{IN}, V_{I/O}$	Input, Input/Output Voltage	-0.3 to V _{CC} + 0.3V
T _{STG}	Storage Temperature	−55°C to +125°C
T _{OPR}	Operating Temperature	-40°C to +85°C
T _{SOLDER}	Soldering Temperature/Time	260°C for 10 seconds

RECOMMENDED DC OPERATING CONDITIONS

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V _{CC}	4.5	5.0	5.5	V	
Input High Voltage	V _{IH}	2.0		V _{CC} + 0.3	V	
Input Low Voltage	V _{IL}	-0.3		0.8	V	
Data Retention Voltage	V_{DR}	2.0		5.5	V	

DC CHARACTERISTICS

 $(t_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%)$

	д	•	,	0. = .0,		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current	I _{IL}	$0V \le V_{IN} \le V_{CC}$			<u>+</u> 0.1	μΑ
I/O Leakage Current	I _{LO}	CE1=V _{IH,} 0V≤V _{IO} ≤V _{CC}			<u>+</u> 0.5	μΑ
Output High Current	I _{OH}	V _{OH} = 2.4V	-1.0			mA
Output Low Current	I _{OL}	V _{OL} = 0.4V	4.0			mA
Standby Current	I _{CCS1}	CE1 = 2.0V			0.5	mA
Standby Current	I _{CCS2}	CE1≥V _{CC} -0.5V t _A =60°C			1	μΑ
Standby Current	I _{CCS2}	CE1 _≥ V _{CC} −0.5V t _A =25°C			100	nA
Operating Current	Icco	CE1=0.8V, 200 ns cycle			70	mA

CAPACITANCE $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C _{IN}		5	10	pF	
Input/Output Capacitance	C _{I/O}		5	12	pF	

AC CHARACTERISTICS, READ CYCLE

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC}=5V \pm 10\%)$

-					, 00	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Read Cycle Time	t _{RC}	200			ns	
Access Time	t _{ACC}			200	ns	
OE to Output Valid	t _{OE}			100	ns	
CE to Output Valid	t _{CO}			200	ns	
CE or OE to Output Active	t _{COE}	5			ns	
Output to High–Z from Deselection	t _{OD}	10		60	ns	
Output Hold from Address Change	t _{OH}	5			ns	

AC CHARACTERISTICS, WRITE CYCLE

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C; V_{CC}=5V \pm 10\%)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Write Cycle Time	t _{WC}	200			ns	
Write Pulse Width	t _{WP}	150			ns	
Address Setup Time	t _{AW}	0			ns	
Write Recovery Time	t _{WR}	10			ns	
Output High–Z from WE	t _{ODW}			70	ns	7
Output Active from WE	t _{OEW}	5			ns	7
Data Setup Time	t _{DS}	80			ns	
Data Hold Time	t _{DH}	0			ns	

TIMING DIAGRAM: READ CYCLE

TIMING DIAGRAM: WRITE CYCLE 1

SEE NOTES 2, 3, 4, 5, 6 AND 7

TIMING DIAGRAM: WRITE CYCLE 2

SEE NOTES 2, 3, 4, 5, 6 AND 7

TIMING DIAGRAM: DATA RETENTION - POWER UP, POWER DOWN

DATA RETENTION CHARACTERISTICS

 $(t_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

PARAMETER	CVMDOL	CONDITIONS	MIN	TYP	MAX	UNITS
PARAMETER	SYMBOL	CONDITIONS	IVIIN	ITP	WAX	UNITS
Data Retention Supply Voltage	V_{DR}	$\overline{\text{CE1}} \ge V_{\text{CC}} - 0.5V$	2.0		5.5	V
Data Retention Current at 5.5V	I _{CCR1}	$\overline{\text{CE1}} \ge V_{\text{CC}} - 5.0V$		0.1*	1	μΑ
Data Retention Current at 2.0V	I _{CCR2}	$\overline{\text{CE1}} \ge V_{\text{CC}} - 5.0V$		50*	750	nA
Chip Deselect to Data Retention	t _{CDR}		0			μs
Recovery Time	t _R		2			ms

^{*} Typical values are at 25°C

FUNCTION TABLE

MODE	CE1	CE2	ŌĒ	WE	A0 – A12	DQ – DQ7	POWER
READ	L	Н	L	Н	STABLE	DATA OUT	Icco
WRITE	L	Н	Х	L	STABLE	DATA IN	I _{cco}
DESELECT	L	Н	Н	Н	Х	HIGH–Z	Icco
STANDBY	Н	Х	Х	Х	Х	HIGH–Z	Iccs
STANDBY	Х	L	Х	Х	Х	HIGH–Z	I _{CCS}

NOTES:

- 1. WE is high for read cycles.
- 2. $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high impedance state.
- 3. t_{WP} is specified as the logical AND of $\overline{\text{CE}}$ and $\overline{\text{WE}}$. t_{WP} is measured from the latter of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ going low to the earlier of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ going high.
- 4. t_{DH} and t_{DS} are measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5. If the $\overline{\text{CE}}$ low transition occurs simultaneously with or latter than the $\overline{\text{WE}}$ low transition, the output buffers remain in a high impedance state.
- 6. If the $\overline{\text{CE}}$ high transition occurs prior to or simultaneously with the $\overline{\text{WE}}$ high transition, the output buffers remain in a high impedance state.
- 7. If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transition, the output buffers remain in a high impedance state.
- 8. If the V_{IH} level of $\overline{\text{CE}}$ is 2.0V during the period that V_{CC} voltage is going down from 4.5V to 2.7V, I_{CCS1} current

DC TEST CONDITIONS

Outputs Open
All voltages are referenced to ground

AC TEST CONDITIONS

Output Load: 100 pF + 1TTL Gate
Input Pulse Levels: 0V – 3.0V
Timing Measurement Reference Levels
Input: 1.5V
Output: 1.5V
Input Pulse Rise and Fall Times: 5 ns

DS2064 28-PIN DIP

PKG	28-PIN				
DIM	MIN	MAX			
A IN.	1.440	1.460			
MM	30.99	32.00			
B IN.	0.540	0.560			
MM	13.72	14.22			
C IN.	0.140	0.160			
MM	3.56	4.06			
D IN.	0.590	0.625			
MM	14.99	15.88			
E IN.	0.015	0.040			
MM	0.380	1.02			
F IN.	0.110	0.135			
MM	2.79	3.43			
G IN.	0.090	0.110			
MM	2.29	2.79			
H IN.	0.625	0.675			
MM	15.88	17.15			
J IN.	0.008	0.012			
MM	0.20	0.30			
K IN.	0.015	0.021			
MM	0.38	0.53			

DS2064S 28-PIN SOIC

PKG	28-	PIN
DIM	MIN	MAX
A IN.	0.080	0.120
MM	2.04	3.05
A1 IN.	0.002	0.014
MM	0.05	0.35
b IN.	0.012	0.020
MM	0.30	0.50
C IN	0.004	0.0125
MM	0.10	0.32
D IN.	0.697	0.728
MM	17.70	18.50
e IN.	0.050	BSC
MM	1.27	BSC
E1 IN.	0.324	0.350
MM	8.23	8.90
H IN	0.453	0.500
MM	11.5	12.7
L IN	0.016	0.051
MM	0.40	1.30
α	0°	10°

The chamfer on the body is optional. If it is not present, a terminal 1 identifier must be positioned so that 1/2 or more of its area is contained in the hatched zone.