Find all solutions to the following complex equations.

1.
$$(1+i)\overline{z} = i(2+8i)$$

2.
$$z^3 = -8i$$

3.
$$e^{\bar{z}} = -2 + 2i$$

Proof.

 $\overline{1. (1+i)\overline{z} = i(2+8i)}.$

Suppose that z is of the form z = a + bi, for $a, b \in \mathbb{R}$. Then the equation becomes

$$(1+i)(a-bi) = i(2+8i) \implies a+b+(a-b)i = -8+2i.$$

Equating coefficients, we get

$$a + b = -8$$
 and $a - b = 2$.

Solving the system of equations gives us a = -3 and b = -5, so z = -3 - 5i.

$$2 z^3 = -8i$$

Suppose that z is of the form $z = re^{i\theta}$, for $r, \theta \in \mathbb{R}$. Then the equation becomes

$$r^3e^{3i\theta} = -8i \implies r^3e^{3i\theta} = 8e^{-i\left(\frac{\pi}{2} + 2n\pi\right)}$$
, for $n \in \mathbb{Z}$

Equating the coefficient and exponent gives us

$$r^{3} = 8 \text{ and } 3\theta = \frac{\pi}{2} + 2n\pi \implies r = 2, \ \theta = \frac{\pi}{6} + \frac{2n\pi}{3}$$

Therefore

$$z = 2e^{i\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right)} = 2\cos\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right) + 2i\sin\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right).$$

We can convert this into the standard form by considering cases when n = 0, 1, 2, as any other value will give us a value of z that is already accounted for. Therefore

$$z = \sqrt{3} + i, -\sqrt{3} + i, -2i$$

3.
$$e^{\overline{z}} = -2 + 2i$$

Let z = a + bi, for $a, b \in \mathbb{R}$. Converting the right hand side of the equation into polar form, we get

$$e^a e^{bi} = 2\sqrt{2}e^{i\left(\frac{3\pi}{4} + 2n\pi\right)}$$
, where $n \in \mathbb{Z}$

We can equate real and complex parts to get that

$$e^a = 2\sqrt{2}$$
 and $b = \frac{3\pi}{4} + 2n\pi$

so

$$z = \frac{3}{2}\ln(2) + i\left(\frac{3\pi}{2} + 2n\pi\right)$$

Find all solutions to the following equations in \mathbb{Z}_9 , or show that they have no solution.

(a)
$$[4]x + [3] = [1]$$

(b)
$$[6]x + [3] = [5]$$

(c)
$$x^2 = [0]$$
.

Proof. (a)
$$[4]x + [3] = [1]$$

Adding [6] to both sides of the equation yields

$$[4]x = [7].$$

Multiplying both sides by [7], we get

$$[28]x = [49]$$

$$\implies x = [4]$$

(b)
$$[6]x + [3] = [5]$$

This equation has no solution. To show this, we first simplify the equation to [6]x = [2] by adding [6] to both sides. We can substitute x = [0], ..., [8] into the left hand side and see that it does not equal the right hand side:

$$[6][1] = [6], [6][2] = [3], [6][3] = [0], [6][4] = [6], [6][5] = [3], [6][6] = [0],$$

$$[6][7] = [6], [6][8] = [3]$$

As shown, the left hand side can never equal [5], so the equation has no solution.

(c)
$$x^2 = [0]$$

We can solve this by substituting every element in \mathbb{Z}_9 into the left hand side. We see that

$$[0]^2 = [0], [1]^2 = [1], [2]^2 = [4], [3]^2 = [0], [4]^2 = [7],$$

$$[5]^2 = [7], [6]^2 = [0], [7]^2 = [4], [8]^2 = [1].$$

Thus the solutions to this equation are x = [0], [3], [6].

Let $\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3\}$, where we define operations $+, \cdot$ by:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi)\cdot(c+di) = (ac-bd) + (ad+bc)i.$$

Set 1 = [1] + [0]i and 0 = [0] + [0]i

- (a) Using only the definition of the operations above, and the fact that \mathbb{Z}_3 is a field, show that $\mathbb{Z}_3[i]$ satisfies Axioms 1-4, as well as the existence of additive inverses.
- (b) Compute the multiplication table for $\mathbb{Z}_3[i]$ to verify that multiplicative inverses exist, and hence conclude that $\mathbb{Z}_3[i]$ is a field.
- (c) What is the characteristic of $\mathbb{Z}_3[i]$? (See question #6 for the definition of characteristic of a field.)

Proof.

(a):

Let $a, b, c, d, p, q \in \mathbb{Z}_3$, so z = a + bi, w = c + di, and x = p + qi are elements of $\mathbb{Z}_3[i]$.

To show closure under addition and multiplication, we use the closure of \mathbb{Z}_3 to see that $a+c\in\mathbb{Z}_3$ and $b+d\in\mathbb{Z}_3$. It follows that $z+w=(a+c)+(b+d)i\in\mathbb{Z}_3[i]$.

As well, we also have that ac - bd, $ad + bc \in \mathbb{Z}_3$, so $zw = (ac - bd) + (ad + bc)i \in \mathbb{Z}_3[i]$.

To show the commutativity of addition and multiplication, we note that a + c = c + a and b + d = d + b, so

$$z + w = (a + c) + (b + d)i = (c + a) + (d + b)i = w + z$$

Likewise, since ac = ca, bd = db, ad = da, and bc = cb,

$$zw = (ac - bd) + (ad + bc)i = (ca - db) + (da + cb)i = wz$$

To show associativity, we again use the field properties of \mathbb{Z}_3 to see that

$$(z+w) + x = ((a+c) + (b+d)i) + p + qi$$

$$= ((a+c) + p) + ((b+d) + q)i$$

$$= (a + (c+p)) + (b + (d+q))i$$

$$= a + bi + (c+p) + (d+q)i$$

$$= z + (w+x)$$
(associativity of \mathbb{Z}_3)

Finally, showing distributivity, we have

$$x \cdot (z+w) = (p+qi) \cdot ((a+c)+(b+d)i)$$

$$= p(a+c) - q(b+d) + (p(b+d)+q(a+c))i$$

$$= pa + pc - qb - qd + (pb+pd+qa+qc)i \qquad \text{(distributivity of } \mathbb{Z}_3\text{)}$$

$$= (pa-qb) + (pc-qd) + ((pb+qa)+(pd+qc))i$$

$$\qquad \qquad \text{(associativity & commutativity of } \mathbb{Z}_3\text{)}$$

$$= (pa-qb) + (pb+qa)i + (pc-qd) + (pd+qc)i$$

$$= (p+qi) \cdot (a+bi) + (p+qi) \cdot (c+di)$$

$$= x \cdot z + x \cdot w$$

We also see that additive inverses exist, because for $z = a + bi \in \mathbb{Z}_3[i]$, we know that -a and -b exist, so if we let -z = (-a) + (-b)i, we see that

$$z + (-z) = (a + bi) + (-a + (-b)i)$$
$$= (a + (-a)) + (b + (-b))i$$
$$= 0 + 0i$$
$$= 0$$

(b): Below is the multiplication table for $\mathbb{Z}_3[i]$

	0+0i	1+0i	2 + 0i	0+1i	1+1i	2+1i	0+2i	1+2i	2+2i
0+0i	0	0	0	0	0	0	0	0	0
1 + 0i	0	1+0i	2 + 0i	0+1i	1+1i	2+1i	0+2i	1+2i	2+2i
2 + 0i	0	2+0i	1 + 0i	0+2i	2+2i	1+2i	0 + 1i	2+1i	1+1i
0 + 1i	0	0+1i	0+2i	2+0i	2+1i	2+2i	1 + 0i	1+1i	1+2i
1+1i	0	1+1i	2+2i	2+1i	0+2i	1+0i	1+2i	2+0i	0 + 1i
2+1i	0	2+1i	1+2i	2+2i	1+0i	0+2i	1+1i	0+i	2+0i
0+2i	0	0+2i	0 + 1i	1+0i	1+2i	1+1i	2+0i	2+2i	2+1i
1+2i	0	1+2i	2+1i	1+1i	2+0i	0+i	2+2i	0+2i	1+0i
2+2i	0	2+2i	1+1i	1+2i	0+1i	2 + 0i	2+1i	1+0i	0+2i

Table 1: Multiplication table

As seen, every row and column not belonging to 0 contains 1 + 0i, which implies that for all $z \in \mathbb{Z}_3[i] \setminus 0$, there is a multiplicative inverse z^{-1} .

(c):
$$\operatorname{char}(\mathbb{Z}_3[i]) = 3$$
, as

$$1+1+1 = ([1] + [0]i) + ([1] + [0]i) + ([1] + [0]i)$$

$$= ([1] + [1] + [1]) + ([0] + [0] + [0])i$$

$$= [0] + [0]i$$

$$= 0$$

We introduce a new definition in this question:

Definition: Let \mathbb{F} be a field. We say a subset $\mathbb{K} \subseteq \mathbb{F}$ is a **subfield** of \mathbb{F} if \mathbb{K} is also a field, using the same operations as \mathbb{F} .

For example: \mathbb{Q} is a subfield of \mathbb{R} . \mathbb{R} is a subfield of \mathbb{C} . \mathbb{Z}_3 is not a subfield of \mathbb{Q} , since \mathbb{Z}_3 is not a subset of \mathbb{Q} .

- (a) Let $\mathbb{K} \subseteq \mathbb{F}$ be a subfield. Let $0_{\mathbb{F}}$, $1_{\mathbb{F}}$ denote the additive and multiplicative identities in \mathbb{F} . Similarly, we denote by $0_{\mathbb{K}}$, $1_{\mathbb{K}}$ the identities in \mathbb{K} . Prove that $0_{\mathbb{F}} = 0_{\mathbb{K}}$ and $1_{\mathbb{F}} = 1_{\mathbb{K}}$. (Hint: Prove that in a field, the only solution to the equation $x^2 = x$ are x = 0, x = 1.)
- (b) Let $\mathbb{K} \subseteq \mathbb{F}$ be a subfield. Prove that for all $x \in \mathbb{K}$, we have $-x \in \mathbb{K}$, and that for all $x \in \mathbb{K} \setminus \{0\}$ we have $x^{-1} \in \mathbb{K}$. (Here -x is the additive inverse of x treated as an element of \mathbb{F} and x^{-1} is the multiplicative inverse of x treated as an element of \mathbb{F} .)
- (c) Prove that a subset $\mathbb{K} \subseteq \mathbb{F}$ is a subfield if and only if the following conditions are met:
 - (i) $0, 1 \in \mathbb{K}$
 - (ii) For all $x, y \in \mathbb{K}$, we have $x + y, x \cdot y \in \mathbb{K}$.
 - (iii) For all $x \in \mathbb{K}$, we have $-x \in \mathbb{K}$.
 - (iv) For all $x \in \mathbb{K} \setminus \{0\}$, we have $x^{-1} \in \mathbb{K}$.

(Hints: For the \implies direction: this is "part c" for a reason. For the \iff direction, you only need one or two short sentences to argue why addition and multiplication in \mathbb{K} satisfy Axioms 1-3. Axioms 4 and 5 should also have fairly short proofs. If you find yourself with a very long argument, you should rethink your argument.)

Proof.

(a):

Fix $x \in \mathbb{K}$. Then because $x \in \mathbb{F}$,

$$0_{\mathbb{F}} + x = x = 0_{\mathbb{K}} + x$$
 (existence of additive identity in \mathbb{F} and \mathbb{K})

Similarly for multiplication,

$$1_{\mathbb{F}} \cdot x = x = 1_{\mathbb{K}} \cdot x \implies 1_{\mathbb{F}} = 1_{\mathbb{K}}$$

(b):

Let $x \in \mathbb{K}$. Since \mathbb{K} is a field, x has an additive inverse $-x_{\mathbb{K}}$. Note that $-x_{\mathbb{K}} \in \mathbb{F}$ as well, so $-x_{\mathbb{K}}$ is an inverse for x in \mathbb{F} . By the uniqueness of additive inverses in \mathbb{F} , we have that $-x_{\mathbb{K}} = -x$.

Similarly, x has a multiplicative inverse $x_{\mathbb{K}}^{-1}$ in \mathbb{K} , which is also an inverse of x with respect to \mathbb{F} . It follows by uniqueness of inverses that $x_{\mathbb{K}}^{-1} = x^{-1}$.

(c):

Suppose that $\mathbb{K} \subseteq \mathbb{F}$ is a subfield. We prove each point in order:

- (i) By part (a), $0, 1 \in \mathbb{K}$.
- (ii) This is simply the axiom of closure, which is immediate by assumption.
- (iii) This is true from part (b).
- (iv) This is true from part (b).

Conversely, suppose that the 4 conditions hold.

Since K has property (ii), it satisfies the axiom of closure

To argue commutativity and associativity of elements in \mathbb{K} , notice that every element of \mathbb{K} is also an element of \mathbb{F} , so they follow the axioms of commutativity, associativity, and distributivity of the field \mathbb{F} .

Existence of inverses comes directly from (iii) and (iv), and existence of identity element is exactly (i).

Since \mathbb{K} satisfies all the field axioms, \mathbb{K} is indeed a subfield of \mathbb{F} .

Let $\mathbb{Q}[\sqrt{-2}] = \{a + b\sqrt{-2} | a, b \in \mathbb{Q}\}$. Prove that if \mathbb{K} is a subfield of \mathbb{C} and $\sqrt{-2} \in \mathbb{K}$, then $\mathbb{Q}[\sqrt{-2}] \subseteq \mathbb{K}$.

Proof. Suppose that \mathbb{K} is a subfield of \mathbb{C} and $\sqrt{2} \in \mathbb{K}$. Fix $z \in \mathbb{Q}[\sqrt{-2}]$. Then $z = a + b\sqrt{-2}$, for some $a, b \in \mathbb{Q}$. First, we will show that for all $c \in \mathbb{Q}$, $c \in \mathbb{K}$.

Letting $c \in \mathbb{Q}$, we can write $c = \frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. By the existence of the additive identity, we have that $1 \in \mathbb{K}$, and we can repeatedly use the closure of addition to see that

$$\underbrace{1+\ldots+1}_{q \text{ times}} = q \in \mathbb{K} \text{ and } \underbrace{1+\ldots+1}_{p \text{ times}} = p \in \mathbb{K}.$$

By the existence of inverses in \mathbb{K} , we know that $\frac{1}{q} \in \mathbb{K}$, and by closure under multiplication, we have that

$$p \cdot \frac{1}{q} = c \in \mathbb{K}$$

as needed.

This implies that $a, b \in \mathbb{K}$ as well. Since $\sqrt{-2} \in \mathbb{K}$, we use closure again to conclude that $b\sqrt{-2} \in \mathbb{K}$, and therefore $z = a + b\sqrt{-2} \in \mathbb{K}$, so $\mathbb{Q}[\sqrt{-2}] \subseteq \mathbb{K}$, proving the statement.

Ш

In this exercise we introduce a new definition:

Definition: Let \mathbb{F} be a field. The smallest non-negative integer n so that $\underbrace{1+1+\cdots+1}_{n \text{ times}}=0$

is called the characteristic of \mathbb{F} . If no such n exists, then we say \mathbb{F} has characteristic 0. We denote this non-negative integer by $\operatorname{char}(\mathbb{F})$.

For example: \mathbb{Z}_3 has characteristic 3 because 1+1+1=0 in \mathbb{Z}_3 , but $1+1\neq 0$ in \mathbb{Z}_3 . So n=3 is the smallest integer so that $\underbrace{1+1+\cdots+1}_{n \text{ times}}=0$ in \mathbb{Z}_3 .

However, \mathbb{Q} has characteristic 0, because for any n we have $\underbrace{1+1+\cdots+1}_{n \text{ times}}=n\neq 0$ in \mathbb{Q} .

- (a) Prove that $char(\mathbb{Z}_p) = p$.
- (b) Prove that $char(\mathbb{F})$ must either be prime or 0. (Hint: For the case that $char(\mathbb{F})$ is non-zero, use contradiction.)

Proof.

(a):

This result is quite fast, as we can add [1] to itself p times to check:

$$\underbrace{[1] + [1] + \dots + [1]}_{p \text{ times}} = [p] = [0]$$

(b):

Assume seeking contradiction that \mathbb{F} is a field and $\operatorname{char}(\mathbb{F})$ is non-zero and non-prime. We disregard the case where $\operatorname{char}(\mathbb{F}) = 1$, because that means that 1 = 0, which is impossible. It follows that $\operatorname{char}(\mathbb{F})$ can be written as a product of two integers $a \cdot b$, where $1 < a, b < \operatorname{char}(\mathbb{F})$. By definition, we see that

$$\underbrace{1+1+\ldots+1}_{a,b \text{ times}} = 0$$

Group the 1's into groups of a like so:

$$\underbrace{(1+\ldots+1)}_{a \text{ times}} + \ldots + \underbrace{(1+\ldots+1)}_{a \text{ times}} = 0$$

Denote each term as x_a . We can repeatedly use the axiom of distributivity to see that

$$x_a \cdot \underbrace{(1 + \dots + 1)}_{b \text{ times}} = \underbrace{x_a + \dots + x_a}_{b \text{ times}} = 0$$

Let
$$x_b = \underbrace{(1 + \dots + 1)}_{b \text{ times}}$$
, so

$$x_a \cdot x_b = 0$$

This means that we must have either $x_a = 0$ or $x_b = 0$. Regardless, we have found a value $p < \text{char}(\mathbb{F})$ such that repeated addition of 1 up to p times results in 0, which is a contradiction.

In this question we introduce a new definition:

Definition: Let $f, g \in \mathbb{P}(\mathbb{F})$. We say that a polynomial $d \in \mathbb{P}(\mathbb{F})$ is a **greatest common divisor** of f and g if:

- d is a divisor of both f and g, and:
- for any other divisor d' of f and g, we have $\deg d \ge \deg d'$
- (a) Prove that if d is a common divisor of f and g, then for all $a \in \mathbb{F} \setminus \{0\}$, the polynomial ad is also a common divisor for f and g. Explain why this shows that there is no "unique" greatest common divisor for f and g like there is for integers.
- (b) Prove that if d_1, d_2 are both greatest common divisors for f and g, then $d_1 = ad_2$ for some non-zero field element a.
- (c) Prove that we can compute a greatest common divisor for f and g like we do for integers: repeatedly apply long division until the remainder is 0, then the last non-zero remainder is a greatest common divisor for f and g.
- (d) Deduce from (c) that if d is a greatest common division for f and g, then we can write d = pf + qg for some polynomials p, q.

Proof.

(a):

Suppose that d is a common divisor of f and g. By definition,

$$f = dp$$
 and $g = dq$, for some $p, q \in \mathbb{P}(\mathbb{F})$.

Let $a \in \mathbb{F} \setminus \{0\}$. We know that a^{-1} exists because \mathbb{F} is a field. It follows that

$$f = dp$$

 $= 1 \cdot dp$ (additive identity)
 $= (a \cdot a^{-1})dp$
 $= a(a^{-1}d)p$ (associativity)
 $= a(da^{-1})p$ (commutativity)
 $= (ad)(a^{-1}p)$ (associativity)

Likewise for g,

$$g = dq$$

 $= 1 \cdot dq$ (additive identity)
 $= (a \cdot a^{-1})dq$
 $= a(a^{-1}d)q$ (associativity)
 $= a(da^{-1})q$ (commutativity)
 $= (ad)(a^{-1}q)$ (associativity)

Apply the procedures in Question 7 to compute a greatest common divisor for the polynomials $f(x) = x^4 + x^2 + 1$, $g(x) = x^4 + 2x^3 + x^2 + 1 \in \mathbb{P}(\mathbb{Q})$, and express this divisor as a combination of f and g.

(In particular, you should not try to factor f, g to find the greatest common divisor, and doing so will not receive any credit.)

Let $p \in \mathbb{P}(\mathbb{C})$ be a polynomial with real coefficients. Prove that if a is a root of p, then \bar{a} is a root of p. (Hint: Write down an equation that means "a is a root of p". Conjugate this equation.)

Using Question 9 and the Fundamental Theorem of Algebra, prove that the only irreducible polynomials over \mathbb{R} are linear and quadratics with no real roots. Use this to deduce our Theorem from class (Week 2) about the factorization of real polynomials.