Calcolo del guadagno

Dall'impurità del nodo genitore viene sottratta la media pesata delle impurità dei nodi figli. Di solito la misura dell'impurità è scelta in modo tale da minimizzare l'impurità / massimizzare il guadagno

Spiegazione della formula

$$\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

NODI FIGLI, IMMAGINANDO DI FARE LO SPLIT SU A

Spiegazione della formula

$$\Delta = I(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j)$$

NB: la colonna A contiene valori diversi, alcuni sono uguali a vj altri no. Questi dati vengono distribuiti fra i figli quando si fa lo split

La porzione di Dt associata al generico nodo figlio j-mo avrà in A valori tutti uguali fra di loro (indichiamo tale valore con vj)

Information gain

Per **information gain** si intende una misura del guadagno ottenuta usando l'**entropia** come valore dell'impurità dei nodi:

$$\Delta = entropia(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} entropia(v_j)$$

Information gain

Per **information gain** si intende una misura del guadagno ottenuta usando l'**entropia** come valore dell'impurità dei nodi:

$$\Delta = entropia(parent) - \sum_{j=1}^{k} \frac{N(v_j)}{N} entropia(v_j)$$

Nota: le misure del grado di confusione, come Gini ed entropia tendono a favorire attributi che hanno *molti valori diversi* rispetto ad attributi con *pochi valori* alternativi

Osservazione: un *identificatore univoco* (es. un numero di matricola) annulla l'entropia (ogni nodo figlio conterrà una sola istanza) ma non è un attributo significativo!

Possibile soluzione: usare solo split binari

```
attributi
Dati:
E = learning set
F = attributi descrittivi
CreaAlbero(E, F) {
if ( stopping_cond(E, F) ) {
  Foglia = creaNodo();
  Foglia.etichetta = classifica(E);
  Risultato = Foglia;
else {
  Nodo = creaNodo();
  Nodo.test = trova_best_split(E, F);
  V = << insieme dei valori possibili risultanti da Nodo.test >>
  For each (\mathbf{v} \in \mathbf{V}) do {
      Ev = << insieme e \in E \mid Nodo.test(e) == <math>v >>
      Figlio = CreaAlbero(Ev, F);
      << aggiungi Figlio ai figli di Nodo, etichettandolo con v >>
  Risultato = Nodo;
return Risultato;
```

```
attributi
Dati:
E = learning set
F = attributi descrittivi
CreaAlbero(E, F) {
if ( stopping_cond(E, F) ) {
  Foglia = creaNodo();
  Foglia.etichetta = classifica(E)
  Risultato = Foglia;
else {
  Nodo = creaNodo();
  Nodo.test = trova_best_split(E, F);
  V = << insieme dei valori possibili risultanti da Nodo.test >>
  For each (\mathbf{v} \in \mathbf{V}) do {
      Ev = << insieme e \in E \mid Nodo.test(e) == <math>v >>
      Figlio = CreaAlbero(Ev, F);
      << aggiungi Figlio ai figli di Nodo, etichettandolo con v >>
  Risultato = Nodo;
return Risultato;
```

```
attributi
Dati:
E = learning set
                                                                                    test
F = attributi descrittivi
CreaAlbero(E, F) {
if ( stopping_cond(E, F) ) {
  Foglia = creaNodo();
  Foglia.etichetta = classifica(E);
  Risultato = Foglia;
else {
  Nodo = creaNodo();
  Nodo.test = trova_best_split(E, F);
  V = << insieme dei valori possibili risultanti da Nodo.test >>
  For each (\mathbf{v} \in \mathbf{V}) do {
      \mathbf{E}\mathbf{v} = << insieme \ e \in E \mid Nodo.test(e) == v >>
      Figlio = CreaAlbero(Ev, F);
      << aggiungi Figlio ai figli di Nodo, etichettandolo con v >>
  Risultato = Nodo;
return Risultato;
```

```
attributi
Dati:
E = learning set
                                                                                  test
F = attributi descrittivi
CreaAlbero(E, F) {
if ( stopping_cond(E, F) ) {
  Foglia = creaNodo();
  Foglia.etichetta = classifica(E);
  Risultato = Foglia;
else {
  Nodo = creaNodo();
  Nodo.test = trova_best_split(E, F);
  V = << insieme dei valori possibili risultanti da Nodo.test >>
  For each (\mathbf{v} \in \mathbf{V}) do {
      Ev = << insieme e \in E \mid Nodo.test(e) == <math>v >>
      Figlio = CreaAlbero(Ev, F);
      << aggiungi Figlio ai figli di Nodo, etichettandolo con v >>
  Risultato = Nodo;
return Risultato;
```

Dettagli

- trova_best_split: può essere individuato per esempio tramite il calcolo dell'entropia;
- classifica: può per esempio restituire la classe più rappresentata
- stopping_cond: può restituire vero per esempio quando tutte le istanze associate al nodo appartengono alla stessa classe oppure quando il numero di istanze è al di sotto di una certa soglia

Partizionamento dello spazio

Supponiamo di poter rappresentare le istanze del learning set come punti in uno spazio multidimensionale: ogni test corrisponde a un **taglio** (una **partizione**) di tale spazio, fatta lavorando su un **singolo attributo**

Partizionamento dello spazio

Supponiamo per semplicità di avere due soli attributi, corrispondenti ai due assi cartesiani. Le lettere rappresentano i valori possibili dei due attributi. Sono stati ordinati con un qualche criterio (anche solo associando numeri a label)

Partizionamento dello spazio

E se gli esempi fossero messi così?

Lavorando su un singolo attributo

Induzione di alberi di decisione: commenti 1/2

- Gli **algoritmi di induzione** di DT sono **non-parametrici**, non occorrono particolari assunzioni sulle distribuzioni di probabilità
- La costruzione di un albero ottimale è un problema NPcompleto, solitamente si adottano delle euristiche
- La costruzione di un DT è computazionalmente poco costosa; dato un albero, la classificazione ha una complessità nel caso peggiore O(w), dove w rappresenta la profondità dell'albero
- Un DT è di semplice interpretazione, soprattutto se l'albero è piccolo
- I DT non sono adatti a risolvere certi problemi di tipo booleano, ad esempio a calcolare la funzione di parità (restituisci 1 se il #1 in una sequenza di bit è pari, 0 altrimenti) – vedere esercizio pag 198
- La presenza di attributi irrilevanti non influenza negativamente la costruzione dell'albero

Induzione di alberi di decisione: commenti 2/2

- È possibile incorrere nella **frammentazione dei dati**: procedendo top-down a un certo punto i nodi hanno associato un numero di istanze troppo piccolo per essere statisticamente significativo
- Si può avere replicazione di sottoalberi
- Partizionamento dello spazio tramite tagli rettilinei e paralleli agli assi
- Poiché molte misure di impurità sono consistenti le une con le altre, variare funzione di impurità spesso non modifica sostanzialmente la qualità degli alberi costruiti

Interpretazione di un DT

If (A1 == v1 && A2 < v2 && A3 > v3 && A4 == v4) then C

Overfitting

Errore di generalizzazione

Learning set

Definizione di sedia:

(numero_gambe = 4) && (schienale == sì)

Errore di generalizzazione

Test set

Sono sedie?

(numero_gambe = 4) && (schienale == sì)

No !!

Il modello appreso è troppo specifico NB: l'esempio è semplice per fornire

un'intuizione, di solito si ha overfitting con alberi grandi (modelli complessi)

A cosa è dovuto?

Un possibile condizione di terminazione è: itera l'applicazione dell'algoritmo finché l'errore di classificazione degli esempi di training non scende al di sotto di una certa soglia

A cosa è dovuto?

Un possibile condizione di terminazione è: itera l'applicazione dell'algoritmo finché l'errore di classificazione degli esempi di training non scende al di sotto di una certa soglia

Caso 1: noise per esempio alcune istanze sono classificate in modo errato

Caso 2: mancanza di esempi il learning set non rappresenta tutti i casi significativi

Overfitting dovuto a confronti multipli

Consideriamo la costruzione di un albero di decisione: ad ogni iterazione occorre individuare un attributo su cui effettuare il test. Un attributo **viene preso in considerazione** se il guadagno che dà supera una soglia minima

Spesso la procedura di costruzione è **greedy**: cerca di massimizzare il guadagno

Overfitting dovuto a confronti multipli

Consideriamo la costruzione di un albero di decisione: ad ogni iterazione occorre individuare un attributo su cui effettuare il test. Un attributo **viene preso in considerazione** se il guadagno che dà supera una soglia minima

Spesso la procedura di costruzione è **greedy**: cerca di massimizzare il guadagno

Attributi per cui il guadagno è sufficiente (di solito ci sono più possibilità):

Guadagno massimo significa miglior modellazione delle istanze di learning

Overfitting

Modello ideale: modello che produce il *minor errore di generalizzazione* possibile. Come poter approssimare il modello ideale quando si ha a disposizione solo un insieme di esempi di learning?

Overfitting

Modello ideale: modello che produce il *minor errore di generalizzazione* possibile. Come poter approssimare il modello ideale quando si ha a disposizione solo un insieme di esempi di learning?

Rasoio di Occam!

Incorporare una nozione di complessità nel modello A parità di errore i modelli più semplici sono preferibili

Minimum description length

Implementazione del rasoio di Occam: la migliore ipotesi per la modellazione di un data set è quella che consente la *massima compressione* dei dati

Modello = strumento che consente di rappresentare i dati in modo compatto catturando le loro regolarità

Apprendimento = strumento per catturare regolarità nei dati

È migliore un modello **accurato** che al contempo è **poco costoso da comunicare** ad un'altra parte che desideri utilizzarlo

Minimum description length

FACOLTATIVO

Implementazione del rasoio di Occam: la migliore ipotesi per la modellazione di un data set è quella che consente la *massima compressione* dei dati

Modello = strumento che consente di rappresentare i dati in modo compatto catturando le loro regolarità

Apprendimento = strumento per catturare regolarità nei dati

si usa la formulazione di base del MDL detta **two-part code**, in generale:

Siano H(1), H(2), ... dei **modelli candidati**, contenenti **ipotesi**. L'ipotesi migliore H \in H(1) \cup H(2) \cup ... per spiegare i dati D è quella che **minimizza la somma** L(H) + L(D|H), dove:

- L(H) è la lunghezza, in bit, della descrizione dell'ipotesi
- L(D|H) è la lunghezza, in bit, delle descrizioni dei dati codificati con l'aiuto dell'ipotesi.

Il **modello migliore** per spiegare D è il modello più piccolo.

Minimum description length: nota

Nota: in questa formalizzazione un modello H(1) cattura una famiglia di possibili funzioni (nel nostro caso di classificazione) che hanno tutte la stessa forma.

Un'ipotesi è un'istanza della forma di una funzione.

Esempio:

Modello: $y = A*x^2$

Ipotesi: $y = 0.75*x^2$

L'MDL deriva dalla *teoria dell'informazione*, la lunghezza in bit indica il costo della trasmissione del modello e dei dati

Esempio di calcolo dell'MDL su alberi di decisione:

Costo(albero, dati) = Costo(albero) + Costo(dati | albero)

codifica di un nodo: identificatore dell'attributo su cui si fa il test codifica di una foglia: identificatore della classe associata Costo(albero): costo della codifica di tutti i suoi nodi Costo(dati | albero): codifica basata sull'errore di classificazione

L'MDL deriva dalla *teoria dell'informazione*, la lunghezza in bit indica il costo della trasmissione del modello e dei dati

Esempio di calcolo dell'MDL su alberi di decisione:

Costo(albero, dati) = Costo(albero) + Costo(dati | albero)

codifica di un nodo: identificatore dell'attributo su cui si fa il test

supponiamo di avere m attributi, possiamo rappresentarli con un numero.

Per codificare un numero *compreso fra 1 e m* occorrono **log2 m** bit

Es. per codificare un numero fra 1 e 4 occorrono 2 bit

codifica di una foglia: identificatore della classe associata Costo(albero): costo della codifica di tutti i suoi nodi Costo(dati | albero): codifica basata sull'errore di classificazione

L'MDL deriva dalla *teoria dell'informazione*, la lunghezza in bit indica il costo della trasmissione del modello e dei dati

Esempio di calcolo dell'MDL su alberi di decisione:

Costo(albero, dati) = Costo(albero) + Costo(dati | albero)

codifica di un nodo: identificatore dell'attributo su cui si fa il test

codifica di una foglia: identificatore della classe associata

se abbiamo **k classi** occorrono **log₂ k** bit

Costo(albero): costo della codifica di tutti i suoi nodi Costo(dati | albero): codifica basata sull'errore di classificazione

L'MDL deriva dalla *teoria dell'informazione*, la lunghezza in bit indica il costo della trasmissione del modello e dei dati

Esempio di calcolo dell'MDL su alberi di decisione:

Costo(albero, dati) = Costo(albero) + Costo(dati | albero)

codifica di un nodo: identificatore dell'attributo su cui si fa il test codifica di una foglia: identificatore della classe associata

Costo(albero): costo della codifica di tutti i suoi nodi

possiamo pensare che sia la somma dei costi dei suoi nodi

Costo(dati | albero): codifica basata sull'errore di classificazione

FACOLTATIVO

L'MDL deriva dalla *teoria dell'informazione*, la lunghezza in bit indica il costo della trasmissione del modello e dei dati

Esempio di calcolo dell'MDL su alberi di decisione:

Costo(albero, dati) = Costo(albero) + Costo(dati | albero)

codifica di un nodo: identificatore dell'attributo su cui si fa il test codifica di una foglia: identificatore della classe associata Costo(albero): costo della codifica di tutti i suoi nodi

Costo(dati | albero): codifica basata sull'errore di classificazione

L'errore è dato fornendo l'istanza classificata erroneamente, quindi per ogni errore viene aggiunto il costo di indicare l'istanza misclassificata, Sia N_E il numero degli errori di classificazione compiuti.

Se il **numero di istanze di training è n** occorrono **log2 n** bit per rappresentarne ciascuna, quindi Costo(dati | albero) sarà **log2 n * N**_E

MDL: risorse

Si potrebbero tenere molte lezioni sul solo MDL, per approfondimenti:

Tutorial: P.Grünwald, A tutorial introduction to the minimum description length principle. In: Advances in Minimum Description Length: Theory and Applications (edited by P. Grünwald, I.J. Myung, M. Pitt), MIT Press, 2005. (https://arxiv.org/pdf/math/0406077.pdf sezione 1.3 in particolare)

Gestione dell'overfitting durante l'induzione

- Pruning: potatura dell'albero ⇒ semplificazione del modello⇒ generalizzazione del modello
 - Prepruning
 - Postpruning

Gestione dell'overfitting durante l'induzione

- Pruning: potatura dell'albero ⇒ semplificazione del modello⇒ generalizzazione del modello
 - Prepruning: la costruzione del DT si interrompe prima che l'albero sia completo. Si impone una regola di terminazione più restrittiva
 - Problema: definire la nuova condizione di terminazione
 - Postpruning

Gestione dell'overfitting durante l'induzione

- Pruning: potatura dell'albero ⇒ semplificazione del modello⇒ generalizzazione del modello
 - Prepruning
 - Postpruning: prima si costruisce l'albero poi si potano alcuni rami, trasformando alcuni nodi interni in foglie
 - Problema: definire la condizione per decidere se un ramo è da potare o meno

Prepruning (early stopping rule)

Regola di interruzione, esempio: non eseguo lo split se il gain è al di sotto di una certa soglia

Vantaggio: evita l'overfitting dei dati di learning

Problema: è difficile scegliere la soglia, se troppo alta si ha *underfitting*

Post-pruning

Questo approccio consiste nel tagliare rami da un albero fatto crescere finché non si hanno più guadagni

Possibili strategie:

- (1) sostituisco un sottoalbero col solo suo cammino usato più di frequente;
- (2) sostituisco un sottoalbero con una foglia la cui classe corrisponde alla classe Maggiormente rapprensentata nelle foglie dell'albero rimosso.

Tende a dare *risultati migliori* del pre-pruning

Problema di efficienza: tagliare rami costruiti significa che il tempo trascorso a costruirli è stato sprecato