In [1]:	<pre>import numpy as mp import pandas as pd import matplotlib.pyplot as plt import seaborn as sns</pre>
	<pre>df = pd.read_csv('Mall_Customers.csv') print(df.head()) CustomerID Gender Age Annual Income (k\$) Spending Score (1-100) 0</pre>
In [3]:	<pre># clean the data df = df.drop(['CustomerID', 'Age', 'Gender'], axis=1) print(df.head()) Annual Income (k\$) Spending Score (1-100) 0 15 39</pre>
In [4]:	1 15 81 2 16 6 3 16 77 4 17 40
In [5]:	<pre># create the hiearchical model hiearchical = AgglomerativeClustering(n_clusters=5) # fit the data into the clusters clusters = hiearchical.fit_predict(df) print(clusters)</pre>
	[4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
In [6]:	[[65 68] [48 49] [156 158] [129 131] [21 23]
	[51 53] [60 61] [67 69] [64 66] [79 82] [74 85] [78 80] [75 81]
	[92 97] [101 109] [107 113] [94 98] [103 104] [100 105] [150 154] [119 120]
	[170 174] [151 155] [63 200] [99 213] [3 5] [26 28] [40 42] [10 14]
	[54 57] [58 62] [70 73] [91 93] [108 112] [126 132] [137 139] [147 159]
	[77 210] [76 212] [149 222] [12 228] [116 233] [13 15] [2 6] [87 90]
	[106 110] [114 115] [128 130] [134 136] [148 152] [153 157] [165 171] [111 217]
	[0 4] [50 52] [86 88] [89 96] [146 160] [216 218] [164 168] [181 183]
	[187 191] [186 190] [176 221] [133 235] [208 230] [140 248] [125 203] [38 44]
	<pre>[83 209] [59 207] [122 220] [16 20] [30 32] [118 121] [102 117] [34 36]</pre>
	[214 215] [135 143] [167 173] [95 224] [138 247] [232 258] [37 39] [55 201] [84 238]
	[46 254] [43 45] [245 246] [72 270] [11 19] [8 243] [56 265] [47 229]
	[123 127] [141 145] [172 263] [206 231] [241 274] [33 41] [236 250] [25 29]
	[178 182] [211 285] [144 219] [225 242] [142 257] [244 255] [162 202] [239 278]
	[256 280] [169 177] [71 269] [163 295] [7 290] [179 260] [1 305] [277 288] [9 17]
	[31 204] [252 275] [223 297] [205 287] [35 301] [124 234] [24 276] [18 272]
	[180 184] [166 259] [264 267] [289 292] [22 273] [188 262] [161 309] [195 197]
	[284 293] [266 281] [175 279] [237 312] [249 304] [189 315] [226 326] [271 320]
	[310 317] [192 194] [282 298] [303 307] [318 319] [227 268] [294 313] [185 340]
	[251 311] [306 324] [300 329] [296 302] [286 321] [27 347] [196 198] [333 349]
	[299 323] [240 291] [308 336] [199 334] [322 355] [325 331] [253 341] [193 350]
	[283 356] [328 339] [330 335] [327 332] [337 358] [343 345] [261 351] [344 357] [338 369]
	[342 346] [360 364] [316 367] [354 368] [314 359] [348 365] [372 376] [363 375]
	[361 379] [353 373] [370 374] [378 380] [362 366] [352 382] [371 385] [377 381]
	[383 389] [388 390] [384 386] [391 392] [387 395] [393 394] [396 397]]
In [7]:	<pre>visualization using KMeans method plt.figure(figsize=(15, 8)) colors = ['red', 'green', 'blue', 'brown', 'magenta'] markers = ['.', '^', '1', 's', 'd'] # create clusters</pre>
	<pre>for k in range(5): plt.scatter(df['Annual Income (k\$)'][clusters == k], df['Spending Score (1-100)'][clusters == k], label=f"cluster {k}", color=colors[k], marker=markers[k])</pre>
Out[7]:	<pre>plt.legend() <matplotlib.legend.legend 0x1469637a520="" at=""> 100</matplotlib.legend.legend></pre>
	80 - Cluster 3 cluster 4
	40 -
	visualization using dendogram
In [8]:	<pre>from scipy.cluster.hierarchy import dendrogram from scipy.cluster import hierarchy linkage_matrix = hierarchy.linkage(hiearchical.children_) # print(linkage_matrix)</pre>
In [10]:	<pre>plt.figure(figsize=(20, 10)) dn = dendrogram(linkage_matrix)</pre>
	30 -
In [11]:	plt.figure(figsize=(20, 10)) dn = dendrogram(linkage_matrix, truncate_mode="lastp", p=30)
	40 -
	20
In [12]:	<pre>plt.figure(figsize=(20, 10)) dn = dendrogram(linkage_matrix, truncate_mode="lastp", p=10)</pre>
	30 -
	10 -
In []:	156 123 (5) (2) (4) (3) (148) (30) 93 (4)