Reverse of a Regular Language

Theorem:

The reverse $\boldsymbol{L}^{\!R}$ of a regular language \boldsymbol{L} is a regular language

Proof idea:

Construct NFA that accepts $\,L^{\!R}:$

invert the transitions of the NFA that accepts L

Proof

Since L is regular, there is NFA that accepts L

Example:

Invert Transitions

Make old initial state a final state

Add a new initial state

Resulting machine accepts L

 L^R is regular

Grammars

Grammars

Grammars express languages

Example: the English language

 $\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$

 $\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$

 $\langle predicate \rightarrow \langle verb \rangle$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow boy$$

 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$

 $\langle verb \rangle \rightarrow walks$

A derivation of "the boy walks":

```
\langle sentence \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
                   \Rightarrow \(\noun_\) phrase \(\neg \verb \)
                   ⇒ ⟨article⟩ ⟨noun⟩ ⟨verb⟩
                   \Rightarrow the \langle noun \rangle \langle verb \rangle
                   \Rightarrow the boy \langle verb \rangle
                   \Rightarrow the boy walks
```

A derivation of "a dog runs":

```
\langle sentence \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
                    \Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                    ⇒ ⟨article⟩ ⟨noun⟩ ⟨verb⟩
                    \Rightarrow a \langle noun \rangle \langle verb \rangle
                    \Rightarrow a dog \langle verb \rangle
                     \Rightarrow a dog runs
```

Language of the grammar:

```
L = \{ \text{"a boy runs"}, 
     "a boy walks",
     "the boy runs",
      "the boy walks",
     "a dog runs",
     "a dog walks",
     "the dog runs",
     "the dog walks" }
```

Notation

Another Example

Grammar:
$$S \rightarrow aSb$$

 $S \rightarrow \lambda$

Derivation of sentence ab:

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Grammar:
$$S \rightarrow aSb$$

 $S \rightarrow \lambda$

Derivation of sentence aabb:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Other derivations:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbt$$

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbt$ $\Rightarrow aaaaSbbbb \Rightarrow aaaabbbb$

Language of the grammar

$$S \rightarrow aSb$$

 $S \rightarrow \lambda$

$$L = \{a^n b^n : n \ge 0\}$$

More Notation

Grammar
$$G = (V, T, S, P)$$

V: Set of variables

T: Set of terminal symbols

S: Start variable

P: Set of Production rules

Example

Grammar
$$G: S \rightarrow aSb$$

 $S \rightarrow \lambda$

$$G = (V, T, S, P)$$

$$V = \{S\} \qquad T = \{a, b\}$$

$$P = \{S \rightarrow aSb, S \rightarrow \lambda\}$$

More Notation

Sentential Form:

A sentence that contains variables and terminals

Example:

*

We write: $S \Rightarrow aaabbt$

Instead of:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbt$

In general we write: $w_1 \Rightarrow w_n$

If: $w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow \cdots \Rightarrow w_n$

By default: $w \Rightarrow w$

Example

Grammar

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Derivations

$$S \Rightarrow \lambda$$

*

$$S \Rightarrow ab$$

*

$$S \Rightarrow aabb$$

*

$$S \Rightarrow aaabbt$$

Example

Grammar

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Derivations

*
aaSbb\ightarrow aaaaaSbbbbbb

Another Grammar Example

Grammar
$$G: S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

Derivations:

$$S \Rightarrow Ab \Rightarrow b$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow abb$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbb \Rightarrow aabbb$$

More Derivations

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbbb \Rightarrow aaaAbbbbb$$
 $\Rightarrow aaaaAbbbbb \Rightarrow aaaabbbbb$

* S⇒aaaabbbbb

 $S \Rightarrow aaaaaaabbbbbbb$

 $S \Rightarrow a^n b^n b$

Language of a Grammar

For a grammar G with start variable S:

$$L(G) = \{w \colon S \Longrightarrow w\}$$

String of terminals

Example

For grammar
$$G: S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

$$L(G) = \{a^n b^n b: n \ge 0\}$$

Since:
$$S \Rightarrow a^n b^n b$$

A Convenient Notation

$$\begin{array}{ccc}
A \to aAb \\
A \to \lambda
\end{array}
\qquad A \to aAb | \lambda$$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

Linear Grammars

Linear Grammars

Grammars with at most one variable at the right side of a production

Examples:
$$S \rightarrow aSb$$
 $S \rightarrow Ab$ $S \rightarrow \lambda$ $A \rightarrow aAb$ $A \rightarrow \lambda$

A Non-Linear Grammar

Grammar
$$G: S \to SS$$

$$S \to \lambda$$

$$S \to aSb$$

$$S \to bSa$$

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Number of a in string w

Another Linear Grammar

Grammar
$$G: S \rightarrow A$$

$$A \rightarrow aB \mid \lambda$$

$$B \rightarrow Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Right-Linear Grammars

All productions have form:

$$A \rightarrow xB$$

or

$$A \rightarrow x$$

Example:
$$S \rightarrow abS$$

$$S \rightarrow a$$

string of terminals

Left-Linear Grammars

All productions have form:

$$A \rightarrow Bx$$

or

$$A \rightarrow x$$

Example:
$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

string of terminals

Regular Grammars

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples:

$$G_1$$
 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $S \rightarrow a$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

Observation

Regular grammars generate regular languages

Exam	pl	es:

$$G_1$$

$$S \rightarrow abS$$

$$S \rightarrow a$$

$$L(G_1) = (ab)*a$$

$$G_2$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

$$L(G_2) = aab(ab)*$$

Regular Grammars Generate Regular Languages

Theorem

Languages
Generated by
Regular Grammars
Regular Grammars

Theorem - Part 1

Any regular grammar generates a regular language

Theorem - Part 2

Languages
Generated by
Regular Grammars
Regular Grammars

Any regular language is generated by a regular grammar

Proof - Part 1

```
Languages
Generated by
Regular Grammars
Regular Grammars
```

The language L(G) generated by any regular grammar G is regular

The case of Right-Linear Grammars

Let G be a right-linear grammar

We will prove: L(G) is regular

Proof idea: We will construct NFA M with L(M) = L(G)

Grammar G is right-linear

Example:
$$S \rightarrow aA \mid B$$

 $A \rightarrow aa \mid B$
 $B \rightarrow b \mid B \mid a$

Construct NFA M such that every state is a grammar variable:

Add edges for each production:

$$S \rightarrow aA$$

$$S \rightarrow aA \mid B$$

$$S \rightarrow aA \mid B$$

 $A \rightarrow aa \mid B$

 $S \Rightarrow aA \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaabc$

In General

A right-linear grammar G

has variables:
$$V_0, V_1, V_2, \dots$$

and productions:
$$V_i \rightarrow a_1 a_2 \cdots a_m V_j$$

or

$$V_i \rightarrow a_1 a_2 \cdots a_m$$

We construct the NFA $\,M\,$ such that:

each variable V_i corresponds to a node:

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

we add transitions and intermediate nodes

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m$

we add transitions and intermediate nodes

Resulting NFA M looks like this:

It holds that: L(G) = L(M)

The case of Left-Linear Grammars

Let G be a left-linear grammar

We will prove: L(G) is regular

Proof idea:

We will construct a right-linear grammar G' with $L(G) = L(G')^R$

Since G is left-linear grammar the productions look like:

$$A \rightarrow Ba_1a_2\cdots a_k$$

$$A \rightarrow a_1 a_2 \cdots a_k$$

Construct right-linear grammar G'

$$A \rightarrow Ba_1a_2 \cdots a_k$$

$$A \rightarrow Bv$$

Right
$$G'$$

$$A \rightarrow a_k \cdots a_2 a_1 B$$

$$A \rightarrow v^R B$$

Construct right-linear grammar G'

$$A \rightarrow a_1 a_2 \cdots a_k$$

$$A \rightarrow v$$

Right
$$G'$$

$$A \rightarrow a_k \cdots a_2 a_1$$

$$A \rightarrow v^R$$

It is easy to see that:
$$L(G) = L(G')^R$$

Since G' is right-linear, we have:

$$L(G') \longrightarrow L(G')^R \longrightarrow L(G)$$
Regular Regular
Language Language Language

Proof - Part 2

```
Languages
Generated by
Regular Grammars
Regular Grammars
Regular Grammars
```

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Proof idea:

Let M be the NFA with L = L(M).

Construct from M a regular grammar G such that L(M) = L(G)

Since L is regular there is an NFA $\,M\,$ such that $\,L\!=\!L(M)\,$

Convert M to a right-linear grammar

$$L(G) = L(M) = L$$

G $q_0 \rightarrow aq_1$ $q_1 \rightarrow bq_1$ $q_1 \rightarrow aq_2$ $q_2 \rightarrow bq_3$ $q_3 \rightarrow \lambda$

In General

For any transition:

For any final state:

Add production:

$$q_f \rightarrow \lambda$$

Since G is right-linear grammar

G is also a regular grammar

with
$$L(G) = L(M) = L$$