Pipeline P2

Alexandre Delétraz, Michaël Cheneval

1.1

Questions

- 1. Comment savoir si une instruction est dépendante d'une instruction qui est pour le moment dans le stage EXECUTE? dans le stage MEMORY_ACCESS? Dans le stage WRITE_BACK?
- 2. Est-ce que ça pose un problème si une instruction dépend du résultat d'une instruction qui est au stage WRITE_BACK?
- 3. Quels informations doivent être mémorisées pour chaque instruction?
- 4. Quelles informations permettent de savoir si le registre D est utilisé?
- 1. Grâce à des registres intermédiaires qui se trouvent dans le decode.

Dans execute:

On a, lors de la sélection de l'opérande, un étage de MUX supplémentaire permettant de définir si on utilise une valeur venant d'un forwarding ou non. (0 \Rightarrow valeur non forwardée, 1 \Rightarrow valeur de l'execute précédent / registre E, 2 \Rightarrow valeur du memory access précédent / registre F1, 3 \Rightarrow 0)

Changements dans le registre reg_mem_read_data_o. L'entrée des données se fait via un MUX dont la sortie varie en fonction d'une entrée sel_op_mem_forward_s (valeur forwardée depuis le memory access d'avant / registre F1).

- 2. Non
- 3. Il faut mémoriser, les adresses des registres de destination, le fait que la banque de registre a été activée en écriture et le flag qui indique si l'instruction est une instruction mémoire.
- 4. Si tous les signaux "compare" sont à 1

1.2

Pipeline P2

Questions

- 1. Quelles informations permettent de savoir si le registre N, M ou mem sont utilisés?
- 1. Les "enable" de chaque registre (reg_n_en_i, reg_m_en_i, reg_mem_en_i)

Questions

- 1. Quelles informations permettent de savoir si le registre D est utilisé?
- 2. Une détection d'aléa de donnée va influencer quel(s) enable(s)? A quel moment? Pourquoi?
- 1. Je ne sais pas.
- 2. Dans l'ordre: les enable du fetch, du decode, de l'execute, du memory access et de la banque de registres.

1.3

Questions

- 1. Est-ce que les valeurs dans les registres sont mises à jour correctement et au bon moment?
- 2. Pourquoi l'instruction *BL* génère un aléa de contrôle et un aléa de donnée?
- 3. Combien de cycles sont nécessaires pour résoudre les aléas de l'instruction *BL*?
- 4. Quel est l'IPC pour votre programme?
- 1. Oui
- 2. Car elle fait un saut et elle demande à écrire dans un registre.
- 3. 3

4.
$$IPC = \frac{nbrInstr}{nbrClk} = \frac{9}{19} = 0.4736$$

Forwarding

2.1

Questions

- 1. A quoi sert le signal sel_mem_i?
- 2. Est-il possible/utile de faire un data forwarding depuis le stage WRITE_BACK? (l'écriture dans le registre dans la banque de registres). Comment pourrait-il être ajouté au circuit?
- 3. Quelles sont les conditions pour que le forwarding puisse avoir lieu? Quelles sont les conditions pour que le forwarding soit utile?
- 4. Quelles sont les conséquences du forwarding sur la gestion des aléas de données? Quelles sont les conséquences du forwarding sur la gestion des aléas de contrôle?
- 1. Il permet de définir quelle opération doit être écrite dans la mémoire.
- 2. C'est possible mais pas très utile. En effet, le résultat ne serait pas disponible à l'execute de l'instruction suivante. Il faudrait ajouter un registre dans le write back.
- 3. Il faut que le pipeline contienne des aléas de données. Il est utile lorsque le pipeline subit une forte quantité d'arrêts de pipeline, dûes à des aléas de données.
- 4. Les aléas de données sont tous éliminés sauf dans le cas d'une instruction suivant directement un LDR et possédant une dépendance sur celui-ci. En revanche, le forwarding n'a aucun effet sur la gestion des aléas de contrôles.

2.2

Questions

- 1. Pourquoi doit-on faire ça?
- 2. Pourquoi doit-on faire ça pour le signal reg_mem_data_s?
- 3. Que devrait-on faire si on avait un data forwarding venant du WRITE_BACK?
- 1. Pour optimiser le circuit. Si le forwarding n'est pas nécessaire, cela ne sert à rien de s'en servir.
- 2. Pareil
- 3. Mettre un registre dans le WRITE_BACK

Pipeline P2

2.3

Questions

- 1. Est-ce que votre processeur fonctionne correctement? Est-ce que les timings sont respectés? Est-ce que les registres contiennent les bonnes valeurs si on regarde étape par étape l'exécution des instructions?
- 2. Quel est l'IPC de votre programme? et le throughput si on considère une clock à 4KHz?
- 3. Combien de cycles sont nécessaires pour que l'instruction BL soit complétée?
- 4. Avez-vous d'autres idées d'optimisation de ce processeur?
- 1. Oui. Oui. Non.

2.
$$IPC = \frac{nbrInstr}{nbrClk} = \frac{12}{25} = 0.48$$
 $D\acute{e}bit = Fr\acute{e}quence = 4KHz$

- 3. 3 cycles
- 4. Non.