Automatización de Invernaderos con la CIAA

Autor Pablo Lodetti
Director del trabajo
Ing. Gustavo Alessandrini

Jurado propuesto para el trabajo

- -Ing. Juan Manuel Cruz
- -Esp. Ing. Pablo Ridolfi
- -Ing. Fernando Lichtschein

Este plan de trabajo ha sido realizado en el marco de la asignatura Gestión de Proyectos entre abril y mayo de 2016.

Tabla de contenido

Rec	istros	de	cam	hios
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		COLL	\sim 100

Acta de Constitución del Proyecto

Identificación y análisis de los interesados

- 1. Propósito del proyecto
- 2. Alcance del proyecto
- 3. Supuestos del proyecto
- 4. Requerimientos
- 5. Entregables principales del proyecto
- 6. Desglose del trabajo en tareas
- 7. Diagrama de Activity On Node
- 8. Diagrama de Gantt
- 9. Matriz de uso de recursos de materiales
- 10. Presupuesto detallado del proyecto
- 11. Matriz de asignación de responsabilidades
- 12. Gestión de riesgos
- 13. Gestión de la calidad
- 14. Comunicación del proyecto
- 14. Gestión de Compras
- 16. Seguimiento y control
- 17. Procesos de cierre

Registros de cambios

Revisión	Cambios realizados	Fecha
1.0	Creación del documento.	30/03/2016
1.1	Completado hasta el punto 6.	12/4/2016
	Corrección de los puntos 1 al 6 y completado hasta el punto 11.	14/4/2016
	Corrección de los puntos 7 al 11. Completado los puntos 11 al 17.	18/4/2016
1.4	Corrección de los puntos 11 al 17.	18/5/2016

Acta de Constitución del Proyecto

Buenos Aires, 30 de marzo de 2016

Por medio de la presente se acuerda con el Sr. Pablo Lodetti que su Proyecto Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Automatización de Invernaderos con la CIAA", consistirá esencialmente en el prototipo funcional para monitoreo y control de las variables climáticas dentro de un recinto, humedad, temperatura, ventilación, riego e iluminación. Tendrá un presupuesto preliminar estimado de 600 hs. de trabajo y \$27700, con fecha de inicio miércoles 30 de marzo de 2016 y fecha de presentación pública miércoles 14 de diciembre de 2016.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg
Director de la CESE-FIUBA

Identificación y análisis de los interesados

Rol	Nombre y Apellido	Departamento	Puesto
Auspiciante	Guido Espinoza	El 46 s.r.l, Comercial	Supervisor
Cliente	Guido Espinoza		
Impulsor			
Responsable	Pablo Lodetti	Investigación y Desarrollo	Responsable Técnico
Colaboradores	Sonia Rocha	Investigación y Desarrollo	Tester
Orientadores			
Equipo			
Opositores			
Usuario Final	Productores pequeña/mediana escala. Agricultura, frutihortícola, plantas ornamentales ,hongos comestibles. Profesionales dedicados a climatizar recintos para diversos usos.		

Perfil de los interesados:

Guido Espinoza, supervisor de cultivos bajo cubiertas, el cual también tiene el rol de abastecer y distribuir productos como frutillas ,cerezas, tomates, etc.

Sonia Rocha, aficionada a los cultivos, cederá y supervisará su pequeño invernadero para las pruebas de campo.

1. Propósito del proyecto

Dos propósitos tiene el proyecto: obtener una certificación de haber cursado las materias de la Carrera de Especialización de Sistemas Embebidos otorgada por la Universidad de Buenos Aires y diseñar un equipo apto para automatizar y controlar variables climáticas en cualquier tipo de invernadero o recinto cerrado.

Se quiere lograr un equipo de bajo costo, comparada con las soluciones actuales, de simple instalación y puesta en funcionamiento por cualquier usuario con mínimos conocimientos eléctricos o técnicos, apto para cualquier tipo y tamaño de invernadero o recinto cerrado.

2. Alcance del proyecto

El proyecto incluye el desarrollo del firmware para la plataforma CIAA, prueba de prototipo funcional y su puesta en funcionamiento en una pequeña planta dentro de las instalaciones del taller ó en planta modelo montada por colaborador para pruebas, simulando el invernadero a controlar.

El proyecto no incluye la puesta en funcionamiento en campo, el mismo se realizará en una segunda etapa con una CIAA-NXP que será evaluada a partir del éxito del prototipo.

3. Supuestos del proyecto

El cliente proveerá los fondos para la compra de sensores, actuadores y materiales varios para invernadero piloto, también para adquirir una CIAA-NXP.

Inicialmente el desarrollo se hará en una EDU-CIAA la cual ya fue adquirida.

Colaboradora cederá espacio en su invernadero para hacer las pruebas y test del sistema.

4. Requerimientos

Los requerimientos del proyecto surgen del cliente y colaboradora del proyecto que son usuarios y conocen el medio. Ellos enumeraron las necesidades básicas para el mantenimientos de un invernadero.

1- Medición de parámetros climáticos.

- **REQ 1.1:** Temperatura ,el censado de temperatura tendrá un rango de entre los 15°C a 30°C con una resolución aceptable de +/- 1°C.
- **REQ 1.2**: Para mantener la temperatura adecuada dentro de valores definidos el equipo accionara sistemas de ventilación.
- **REQ 2.1:** Humedad, para que la humedad se mantenga en un rango a definir un sensor de humedad determinará si la humedad del aire es la adecuada.
- **REQ 2.2**: Para mantener la humedad adecuada se activarán pulverizadores.

3- Administración y configuración de equipo.

- **REQ 3.1**: El equipo tendrá un display y teclado para poder configurar los parámetros deseados en el recinto, así como también visualizar los mismos.
- **REQ 3.2**: También tendrá la opción de accionar manualmente los distintos actuadores.

4- Alarmas avisos

REQ 4.1: El equipo emitirá una alarma por un medio a definir en caso de que algún parámetro esté fuera de los límites permitidos.

5-Requerimientos extras

Requerimientos adicionales que se podrían desarrollar de acuerdo al avance del proyecto o para ser contemplados en una segunda etapa.

- **REQ 5.1**: Programar periodos de riego.
- **REQ 5.2**: Programar periodos de encendido luminarias.
- **REQ 5.3**: Medir niveles de dióxido de carbono (CO₂).

5. Entregables principales del proyecto

- Informe de avance.
- Prototipo funcional.
- Manual de uso.
- Diagrama de instalación.
- Memoria del trabajo.
- Presentación ante el jurado.

6. Desglose del trabajo en tareas

1-Relevamiento e información: 96 hs.

- 1.1 Planificación del proyecto, 32 hs.
- 1.2 Viabilidad , relevamiento de información de productos similares, 16 hs.
- 1.3 Relevar requerimientos particulares para el sistema, 8 hs.
- 1.4 Seleccionar sensores de humedad y temperatura, 8 hs.

- 1.5 Estudiar hojas datos de componentes, placa de desarrollo , 16 hs.
- 1.6 Diseño de la arquitectura del sistema, 16 hs.

2 - Hardware :24 hs

- 2.1 Montaje de sensores en placas experimentales, 16 hs.
- 2.2 Integrar módulos de sensores a placa de desarrollo EDU-CIAA, 8 hs.

3 - Firmware: 208 hs

- 3.1 Implementar el driver del sensor de temperatura, 16 hs.
- 3.2- Implementar el driver del sensor de humedad, 16 hs.
- 3.3- Implementar el driver del display, 16 hs.
- 3.4- Implementar el driver del teclado, 16 hs.
- 3.5- Desarrollar Diagramas de Estado para implementar las funciones del sistema. 40 hs.
- 3.6- Desarrollar las funciones del sistema con los drivers de los distintos componentes, 24 hs.
- 3.7-Desarrollar el menú de interfaz de usuario. 24 hs.
- 3.8- Testear el correcto funcionamiento del firmware, 40 hs.
- 3.9- Desarrollar Informe de avance, 16 hs.

4- Implementar el sistema: 104 hs.

- 4.1-Seleccionar un gabinete para integrar todo el sistema, 8 Hs.
- 4.2- Distribuir los componentes (LCD, teclado, pcb) en gabinete, 8hs.
- 4.3- Testear el correcto funcionamiento del sistema en su conjunto, 32 hs.
- 4.4- Montaje de planta modelo,40 hs.
- 4.5- Integrar el sistema con planta modelo, 16 hs.

- 5- Verificación y validación: 88 hs.
 - 5.1- Planificación de ensayos, 8 hs.
- 5.2- Verificación, 32 hs.
 - 5.3- Informe de verificación, 8 hs.
 - 5.4- Validación, 32 hs.
 - 5.5- Informe de validación 8 hs.
- 6-Presentación del trabajo: 80 hs.
 - 6.1- Desarrollar la memoria escrita, 60 hs.
 - 6.2- Desarrollar la presentación pública del trabajo, 20 hs.

Horas totales: 600 hs.

Hitos del proyecto

- 1- montaje de hardware, prototipo de desarrollo
- 2- implementar el firmware y del sistema en su conjunto.
- 3-entregar informe de avance
- 4 -integrar el sistema con planta modelo
- 5- informe de validación del funcionamiento del sistema
- 6- presentación pública del proyecto.

Para la gestión de tiempo se asume la disponibilidad horaria de una persona trabajando 20 horas semanales. Se utilizó calendario que contempla feriados y fin de semana como no laborables

7. Diagrama de Activity On Node

Página 11 de 32

Si bien el proyecto cuenta con un solo recurso humano para la ejecución de las tareas, existe la posibilidad de realizar algunas tareas en forma paralela.

Se puede observar el camino crítico indicado en negrita corresponde a las tareas:

4.3 Testear correcto funcionamiento y 4.4 montaje de planta modelo se podrían realizar en paralelo ya que los colaboradores se encargarían del montaje.

Camino semicrítico	75 días.
Tareas en paralelo 4.3 y 4.4	60 días.

8. Diagrama de Gantt

	0	Nombre	Duración	Inicio	Fin	Predecesoras	Recursos
1	-	Automatizacion de Invernadero con la CIAA	139d?	30/03/2016	10/10/2016		
2		1- Relevamiento e información, 96 hs.	0d?	30/03/2016	30/03/2016		
3		1.1 Planificacion del proyecto, 32 hs.	4d?	30/03/2016	04/04/2016		PC
1		1.2 Analisis de viabilidad, relevamiento información de similares	2d?	05/04/2016	06/04/2016	3	PC
5		1.3 Relevar requerimientos particulares para el sistema, 8hs.	1d?	07/04/2016	07/04/2016	4	PC
6		1.4 Seleccionar sensores de humedad y temperatura, 8hs.	1d?	08/04/2016	08/04/2016	5	PC
7		1.5 Estudiar hojas datos de componentes, placa de desarrollo y n	2d?	11/04/2016	12/04/2016	6	PC
8		1.6 Diseño de la arquitectura del sistema, 16 hs.	2d?	13/04/2016	14/04/2016	7	PC
9	35	2 - Hardware :24hs	0d?	15/04/2016	15/04/2016		
10		2.1 Montaje de sensores en placas experimentales, 16 hs.	2d?	15/04/2016	18/04/2016	8	PC,HW CIAA
11		2.2 Integrar módulos de sensores a placa de desarrollo EDU-CIA	1d?	19/04/2016	19/04/2016	10	PC,HW CIAA
12	10	HITO 1- montaje de hardware, prototipo de desarrollo	0d?	19/04/2016	19/04/2016		
13	100	3 - Firmware: 208 hs	0d?	20/04/2016	20/04/2016		
14		3.1 - Implementar el driver del sensor de temperatura, 16 hs.	2d?	20/04/2016	21/04/2016	11	PC,HW CIAA
15		3.2- implementar el driver del sensor de humedad, 16 hs.	2d?	22/04/2016	25/04/2016	14	PC,HW CIAA
16		3.3- Implementar el driver del display, 16 hs.	1d?	26/04/2016	26/04/2016	15	PC,HW CIAA
17		3.4- Implementar el driver del teclado, 16 hs.	2d?	27/04/2016	28/04/2016	16	PC,HW CIAA
18		3.5- Desarrollar Diagramas de Estado para implementar las fund	5d?	29/04/2016	05/05/2016	17	PC
19		3.6- Desarrollar las funciones del sistema con los drivers de los o	3d?	06/05/2016	10/05/2016	18	PC,HW CIAA
20		3.7-Desarrollar el menú de interfaz de usuario, 24 hs.	3d?	11/05/2016	13/05/2016	19	PC,HW CIAA
21		3.8- Testear el correcto funcionamiento del firmware, 40 hs.	5d?	16/05/2016	20/05/2016	20	PC,HW CIAA
22		3.9- Desarrollar Informe de avance, 16 hs.	2d?	23/05/2016	24/05/2016	21	PC
23	100	HITO 2- implementar el firmware y del sistema en su conjunto.	0d?	25/05/2016	25/05/2016		

	0	Nombre	Duración	Inicio	Fin	Predecesoras	Recursos
24	150	HITO 3-entregar informe de avance	0d?	25/05/2016	25/05/2016		
25	10	4- Implementar el sistema: 104 hs.	1d?	25/05/2016	25/05/2016		
26		4.1-Selectionar un gabinete para integrar todo el sistema, 8 hs.	1d?	25/05/2016	25/05/2016	22	HW CIAA
27		4.2- Distribuir los distintos componentes (LCD, teclado, pcb) en	1d?	26/05/2016	26/05/2016	26	HW CIAA
28		4.3- Testear el correcto funcionamiento del sistema en su conjunt	4d?	27/05/2016	01/06/2016	27	PC,HW CIAA
29		4.4- Montaje de planta modelo,40hs.	5d?	02/06/2016	08/06/2016	28	PLANTA MODEL
30		4.5- Integrar el sistema con planta modelo, 16 hs.	2d?	09/06/2016	10/06/2016	29	PC,HW CIAA,PL
31	100	HITO 4 -integrar el sistema con planta modelo	1d?	09/06/2016	09/06/2016		
32	35	5- Verificación y validación:88 hs.	042	13/06/2016	13/06/2016		
33		5.1- Planificación de ensayos, 8 hs.	1d?	13/06/2016	13/06/2016	30	PC,HW CIAA,PL
34		5.2- Verificación, 32 hs.	4d?	14/06/2016	17/06/2016	33	PC,HW CIAA,PL
35		5.3- Informe de verificación, 9 hs.	1d?	20/06/2016	20/06/2016	34	PC
36		5.4- Validación, 32 hs.	4d?	21/06/2016	24/06/2016	35	PC,HW CIAA,PL
37		5.5- Informe de validación 8hs	102	27/06/2016	27/06/2016	38	PC
38	10	HITO 5- Informe de validación del funcionamiento del sistema	0d?	27/06/2016	27/06/2016		
39	10	6-Presentación del trabajo : 80hs	0d?	28/06/2016	28/06/2016		
40		6.3- Desarrollar la presentación pública del trabajo, 20 hs.	3d?	28/06/2016	30/06/2016	37	PC
41		6.2- Desarrollar la memoria escrita, 60 hs.	7d?	01/07/2016	11/07/2016	40	PC
42	-	HITO 6- presentación pública del proyecto.	0d?	08/07/2016	08/07/2016		

9. Matriz de uso de recursos de materiales

Para la ejecución del proyecto se identificaron 3 recursos materiales:

- PC
- HW CIAA
- Planta Modelo

En el cuadro se muestra la matriz de recursos materiales con el total de horas de cada grupo principal de tareas del wbs y la cantidad de horas de asignación para cada recurso.

Códig	Nombre de la	Duración de la	Recursos requeridos (horas)			
o WBS	tarea	tarea	PC	HW CIAA	Planta Piloto	
1	Relevamiento e información	96	96			
2	Hardware	24	24	24		
3	Firmware	208	208	172		
4	Implementar sistema	104	36	84	36	
5	Verificaron y validación	88	88	72	72	
6	Presentación del trabajo	80	80			
	Total	600	532	352	108	

10. Presupuesto detallado del proyecto

Para elaborar el presupuesto se tomó el costo de la hora del desarrollador en \$120, equivalente a un sueldo mensual de \$19.200 para una jornada de 8 horas. El costo de la CIAA-NXP fue estimado en u\$s 260 (tipo de cambio a 16) acorde a lo informado por Probattery. Los costos indirectos se calcularon como el 30 % de los costos directos como una primera estimación.

Costos	Detalle	Cantidad	Costos (\$)
Trabajo directo	Mano de obra	600 hs	\$72000
Trabajo indirecto	30% costos directos		\$21600
	CIAA-NXP	1	\$4160
	Planta Modelo	1	\$2000
Total			\$99700

11. Matriz de asignación de responsabilidades

		Nombres y apellidos y el rol definidos en el proyecto				
Código WBS	Título de la tarea	Pablo Lodetti Responsable	Guido Espinoza Impulsor	Ing. Gustavo Alessandrini Director, Orientador	Sonia Rocha Tester	
1.1	Planificación del proyecto	Р	С	А	I	
1.2	Viabilidad ,relevamiento de información de productos similares	P	C,A			
1.3	Relevar requerimientos particulares para el sistema,	P	C,A			
1.4	Seleccionar sensores de humedad y temperatura	Р		C,A		
1.5	Estudiar hojas datos de componentes, placa de desarrollo microcontrolador a usar	P,A				
1.6	Diseño de la arquitectura del sistema	Р	I	C,A	I	
2.1	Montaje de sensores en placas experimentales	P				
2.2	Integrar módulos de sensores a placa de desarrollo EDU-CIAA	P,A		I		

		Nombres y	apellidos y proye	el rol definidos cto	s en el
Código WBS	Título de la tarea	Pablo Lodetti Responsable	Guido Espinoza Impulsor	Ing. Gustavo Alessandrini Director, Orientador	Sonia Rocha Tester
3.1	Implementar el driver del sensor de temperatura	P		А	
3.2	Implementar el driver del sensor de humedad	Р		A	
3.3	Implementar el driver del display	Р		А	
3.4	Implementar el driver del teclado	Р		А	
3.1	Implementar el driver del sensor de temperatura	Р		А	
4.1	Seleccionar un gabinete para integrar todo el sistema	Р	А	I	
4.2	Distribuir los distintos componentes (LCD , teclado, pcb) en gabinete	P,A			
4.3	Testear el correcto funcionamiento del sistema en su conjunto	P		A	
4.4	Montaje de planta modelo	P	S,A	I	S
4.5	Integrar el sistema con planta modelo	Р	C,I	I,A	C,I

		Nombres y apellidos y el rol definidos en el proyecto					
Código WBS	Título de la tarea	Pablo Lodetti Responsable	Guido Espinoza Impulsor	Ing. Gustavo Alessandrini Director, Orientador	Sonia Rocha Tester		
5.1	Planificación de ensayos	Р		А			
5.2	Verificación	Р		А	S		
5.3	Informe de verificación	Р		А			
5.4	Validación	Р	I	А			
5.5	Informe de validación	P	I	I,A	I		
6.1	Desarrollar la memoria escrita	Р		C,A			
	Desarrollar la presentación pública del trabajo	Р	I	C,A			

Referencias: P = Responsabilidad Primaria

S = Responsabilidad Secundaria

A = Aprobación I = Informado C = Consultado

12. Gestión de riesgos

Se detectaron 5 riesgos:

Riesgo 1: El proyecto podría quedar sin financiamiento.

- **Severidad (S)=7**. Al no haber financiamiento puede peligrar el desarrollo del del proyecto.
- **Probabilidad de ocurrencia (O)=5**. Las situación actual de los negocios del cliente pueden precipitar la desición de no poder financiar el proyecto.
- Tasa de no detección (D)= 3. Habrá una fluida comunicación con el cliente para poder anticipar esta situación.

Riesgo 2:Inconvenientes en usar locación cedida por colaboradora para montar la planta modelo.

- **Severidad (S)=5**. Es importante para el proyecto contar con una planta modelo para simular las condiciones de un invernadero real.
- **Probabilidad de ocurrencia (O)=1**. La colaboradora demuestra interés en hacer las pruebas del equipo en locación de su propiedad,por lo que en improbable que esto ocurra.
- Tasa de no detección (D)=1. Hay una fluida comunicación , además ya se ha trabajado en conjunto en proyectos anteriores.

Riesgo 3:No cumplir con los requerimientos o expectativas de funcionalidad.

- **Severidad (S)=7.** La especificación de los requerimientos no es la correcta
- **Probabilidad de ocurrencia (O)**=5.Es probable que el cliente no especifique claramente los requerimiento y atente con la funcionalidad del del producto.
- Tasa de no detección (D)=4. Porque no se conoce el entorno y/o parámetros adecuados para el correcto funcionamiento de equipo.

Riesgo 4: Subestimación en la duración de las tareas.

- **Severidad (S)=7**. Si la duración de las tareas sn mayor al previsto se atenta con la entrega en termino del proyecto.
- **Probabilidad de ocurrencia (O)=3**. Se estima que el tiempo es suficiente como para que esto suceda.

• Tasa de no detección (D)=2. Habrá un permanente seguimiento por parte del responsable principal del proyecto.

Riesgo 5: Inconvenientes y/o demoras en el uso de plataforma CIAA.

- **Severidad (S)=7**.Porque el proyecto se deberá desarrollar en esta nueva plataforma que no se tiene experiencia.
- **Probabilidad de ocurrencia (O)=4**. Porque a pesar de que sea una nueva plataforma, se tiene experiencia en el uso de otras plataformas similares.
- Tasa de no detección (D)=2. Porque se conoce las capacidades del de desarrollador.
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxOxD.)

Riesg	Severida	Ocurren.	Detecció	RPN	Severidad	Ocurren.	Detecc *	RPN*
0	d		n		*	*		
1	7	5	3	105	4	5	3	60
2	5	1	1	5				
3	7	5	4	140	4	4	3	46
4	2	3	2	12				
5	4	2		56				

Criterio adoptado:

- Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 100.

Nota:

- Los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.
- c) Plan de mitigación de los riesgos que originalmente excedían el PRN máximo establecido:

Riesgo 1: El proyecto se queda sin financiamiento.

Plan de mitigación: Se buscaran otras fuentes de financiamientos y/o se autofinanciara.

- Severidad (S)=4: Porque la mayoría de los componentes ,sensores y actuadores para simular planta piloto se pueden conseguir prestado de colegas y/o de equipos en desuso en taller.
- **Probabilidad de ocurrencia(O)=4**: El plan de mitigación no afecta la tasa de no detección.
- Tasa de no detección (D)=3: El plan de mitigación no afecta la tasa de no detección.

Riesgo 3:No cumplir con los requerimientos o expectativas de funcionalidad.

Plan de mitigación: Se consultara a profesionales o usuarios del sector.

- **Severidad (S): 4**.Porque se harán consultas y estudios de mercado con los requerimientos particulares y generales.
- **Probabilidad de ocurrencia(O)=4**: Porque con mas información se podrá tener un panorama amplio de los requerimientos.
- Tasa de no detección (D)=3: porque se conoce ampliamente los requerimientos del sector.

13. Gestión de la calidad

1- Medición de parámetros climáticos.

Req 1.1 y 1.2 : Medición de temperatura y mantenimiento en un rango determinado

- **a. Calidad:** Adquisición de datos del sensor de temperatura con +/- 1c° de error, setear un rango MAX y MIN, accionar ventilación si supera el MAX, accionar calefacción si disminuye el MIN.
- **b. Grado de calidad:** Desarrollar un control de histerisis de los parámetros MAX y MIN.

c. Costo de conformidad y no conformidad.

- i. Conformidad: Se contemplan en la tarea 3.8, test del correcto funcionamiento del firmware, se asignan 40 hs.
- ii. No Conformidad: No se obtiene lectura de temperatura, por lo tanto no se puede mantener parámetros MAX y MIN, no se cumplen con los objetivos del proyecto.

d. Verificación y Validación:

- i. Responsable de la verificación: Pablo Lodetti.
- ii. La verificación consta de realizar pruebas de debugging con sensores.
- iii. Responsable de la validación: Pablo Lodetti
- iv. La validación se realizará a través de los test con sensor y actuadores (ventilación y calefactor) en un pequeño recinto.

Req 2.1, 2.2: Medición de humedad y mantenimiento en un rango determinado

- **a. Calidad:** Adquisición de datos del sensor de humedad relativa con +/- 5 de error, setear un rango MAX y MIN, accionar humidificador si disminuye el MIN, accionar ventilación si supera el MAX.
- **b. Grado de calidad:** Desarrollar un control de histerisis de los parámetros MAX y MIN.

c. Costo de conformidad y no conformidad.

- i. Conformidad: Se contemplan en la tarea 3.8, test del correcto funcionamiento del firmware, se asignan 40 hs.
- ii. No Conformidad: No se obtiene lectura de humedad por lo tanto no se puede mantener los parámetros MAX y MIN, no se cumplen con los objetivos del proyecto.

d. Verificación y Validación:

- i. Responsable de la verificación: Pablo Lodetti
- ii. La verificación consta de realizar pruebas de debugging con sensores y humidificador.
- iii. Responsable de la validación: Pablo Lodetti

iv. La validación se realizará a través de los test con sensor y actuadores(ventilación y humidificado) en un pequeño recinto.

3- Administración y configuración de equipo.

REQ 3.1: El equipo tendrá un display y teclado para poder visualizar y configurar los parámetros deseados en el recinto.

- **a. Calidad:** Mostrar en display la humedad y temperatura actual, configurar los parámetros MAX y MIN mediante el teclado.
- **b. Grado de calidad:** mostrar registros de valores MAX y MIN para su posterior análisis.

c. Costo de conformidad y no conformidad.

- i. Conformidad: Se contemplan en la tarea 3.8, test del correcto funcionamiento del firmware, se asignan 40 hs.
- ii. No Conformidad: No se obtiene lectura de humedad por lo tanto no se puede seleccionar parámetros MAX y MIN, no se cumplen con los objetivos del proyecto.

d. Verificación y Validación:

- i. Responsable de la verificación: Pablo Lodetti.
- ii. La verificación consta de realizar pruebas con display y teclado.
- iii. Responsable de la validación: Pablo Lodetti.
- iv.La validación se realizará a través de la visualización de los parámetros en display y setear mediante teclas asignadas parámetros de MAX Y MIN.

REQ 3.2: Opción de accionar manualmente los distintos actuadores.

- a. Calidad: Asignar teclas para los distintos actuadores (salidas del controlador).
- b. Grado de calidad: visualización mediante leds de las salidas activadas.
- c. Costo de conformidad y no conformidad.
- i. Conformidad: Accionamiento de las salidas independientemente de las funciones del firmware.
- ii. No Conformidad: No se puede accionar manualmente las salidas, no se cumplen con los objetivos del proyecto.

d. Verificación y Validación:

- i. Responsable de la verificación: Pablo Lodetti.
- ii. La verificación consta de realizar test haciendo correr el firmware y mediante teclas asignadas activar y desactivar las distintas salidas.
- iii. Responsable de la validación: Pablo Lodetti.
- iv.La validación se realizará confirmando que se activan y desactivan la salida seleccionada sin ser afectada las funciones del firmware.

4- Alarmas avisos

REQ 4.1: El equipo emitirá una alarma por un medio a definir en caso de que algún parámetro esté fuera de los límites permitidos.

- a. Calidad: Asignar una salida de la CIAA que se activara .
- **b. Grado de calidad:** visualización en display y agregar buzzer para alarma sonora.
- c. Costo de conformidad y no conformidad.
- i. Conformidad: Accionamiento una de las salidas cuando un parámetro este fuera de rango.
- ii. No Conformidad: No se acciona una de las salidas reportando la Alarma, no se cumplen con un requisito del proyecto.

d. Verificación y Validación:

- i. Responsable de la verificación: Pablo Lodetti.
- ii. La verificación consta de realizar test haciendo correr el firmware, seteando parámetros y alterando las condiciones climáticas en un recinto.
- iii. Responsable de la validación: Pablo Lodetti.
- iv. La validación se realizará confirmando que se activan y desactivan la salida "Alarma" al salirse de los parámetros MAX o MIN la humedad y/o temperatura.

5-Requerimientos extras

Requerimientos adicionales que redacto el cliente para desarrollar una ves terminado, verificado y aprobado el prototipo funcional. La calidad, conformidad y validación de redactaran en un nuevo proyecto.

- REQ 5.1: Programar periodos de riego.
- REQ 5.2: Programar periodos de encendido luminarias.
- REQ 5.3: Medir niveles de dióxido de carbono (CO₂) .

14. Comunicación del proyecto

El plan de comunicación del proyecto es el siguiente:

PLAN DE COMUNICACIÓN DEL PROYECTO								
¿Qué comunicar ?	Audiencia	Propósito	Frecuencia	Método de comunicac.	Responsable			
Avances del proyecto en general.	Director, Ing. Gustavo Alessandrini	Obtener feedback sobre algunos aspectos de la implementaci ón y estado del proyecto	Mensual	Correo electronico	Pablo Lodetti			
Avance del proyecto en general	Cliente, (Guido Espinoza) Colaboradora (Sonia Rocha)	Informar del avance del proyecto.	Mensual y/o quincenal.	Correo electronico, telefónica.	Pablo Lodetti			

14. Gestión de Compras

Las compras de los componentes electrónicos se realizarán a través del responsable del proyecto, se seleccionaran, además de por sus características, de acuerdo a la disponibilidad de proveedores locales, mínimo 2 proveedores. Los proveedores serán casas de venta locales radicadas en CABA o alrededores. Los componentes y las cantidades son informados a través de un correo electrónico al cliente, cabe destacar que la mayoría de los componentes para el prototipo se dispone en el taller de desarrollo.

Para el montaje de la planta modelo el cliente proveerá los materiales necesarios.

16. Seguimiento y control

SEGUIMIENTO DE AVANCE							
Tarea del WBS	Indicador de avance	Frecuencia de reporte	Responsable de seguimiento	Persona a ser informada	Método de comunicac.		
1.1, 1.2, 1.3	Entrega de informe.	Semanal	Pablo Lodetti	Ing. Gustavo Alessandrini, Guido Espinosa	Correo electrónico, telefónica.		
1.4, 1.5, 1.6	Entrega de informe.	Única vez	Pablo Lodetti	Ing. Gustavo Alessandrini,	Correo electrónico		
2.x	Entrega de diagramas de conexiones.	Única vez.	Pablo Lodetti	Ing. Gustavo Alessandrini,	Correo electrónico		
3.1 al 3.6	Los drivers se implementaron satisfactoriamente.	Única vez	Pablo Lodetti	Ing. Gustavo Alessandrini,	Correo electrónico		
3.7	El menú de usuario es satisfactorio.	Única vez	Pablo Lodetti	Ing. Gustavo Alessandrini, Guido Espinoza	Correo electrónico, telefónica.		
3.8, 3.9	Los tests fueron satisfactorio, entrega de documentación.	Única vez	Pablo Lodetti	Ing. Gustavo Alessandrini	Correo electrónico		
4.1 a 4.3	Los tests fueron satisfactorios.	Única vez	Pablo Lodetti	Ing. Gustavo Alessandrini	Correo electrónico		
4.4, 4.5	El montaje de la planta modelo e integración fue satisfactorio.	Semanal	Pablo Lodetti	Ing. Gustavo Alessandrini, Guido Espinosa, Sonia Rocha	Correo electrónico, telefónica.		

SEGUIMIENTO DE AVANCE						
Tarea del WBS	Indicador de avance	Frecuencia de reporte	Responsable de seguimiento	Persona a ser informada	Método de comunicac.	
5.1	Documentación de la planificaron de ensayos.	Única vez	Pablo Lodetti	Ing. Gustavo Alessandrini,	Correo electrónico	
5.2 al 5.4	La verificaron y validación fue satisfactoria.	Única vez.	Pablo Lodetti	Ing. Gustavo Alessandrin	Correo electrónico	
5.5	Entrega de informe de validación.	Única vez	Pablo Lodetti	Ing. Gustavo Alessandrini, Guido Espinosa, Sonia Rocha	Correo electrónico, telefónica.	
6.3, 6.2	Entrega de documentación.	Única vez.	Pablo Lodetti	Ing. Gustavo Alessandrini, Guido Espinosa, Sonia Rocha	Correo electrónico, telefónica.	

17. Procesos de cierre

■ Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:

Se analizará el cumplimiento del calendario y evolución del plan del proyecto justificando los retrasos si los hubiere.

La gestión en la comunicación

La gestión de riesgos, si fue bien estimada.

■ Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron:

Evaluación del producto final, Se analizará el cumplimiento de los requisitos, si fueron bien definidos, su implementación y si fue satisfactorio para el cliente.

Se analizaran las distintas distintas combinaciones y características de sensores de acuerdo a al ambiente a controlar.

Se analizaran los requerimientos para en un futuro desarrollar un equipo mas versátil y para distintas aplicaciones el el rubro (agricultura).

■ Agradecimientos y cierre del proyecto.

El responsable del proyecto agradecerá personal o telefónicamente y además enviara un correo electrónico a las personas involucradas durante el todo el proceso del desarrollo: director, colaborador e impulsor, resumiéndoles brevemente los logros alcanzados.