## **Embedded Convex Optimization with CVXPY**

Nicholas Moehle, Jacob Mattingley, Stephen Boyd

Stanford University

November 2017

### **Outline**

### Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

## **Optimization**

#### optimization problem:

minimize 
$$f_0(x; \theta)$$
  
subject to  $f_i(x; \theta) \leq 0, \quad i = 1, \dots, m$ 

- decision variable x (a vector)
- ▶ objective function f<sub>0</sub>
- lacktriangle constraint functions  $f_i$ , for  $i=1,\ldots,m$
- ightharpoonup parameter(s)  $\theta$

the solution  $x^*$  minimizes the objective over all vectors satisfying the constraints.

## **Convex optimization**

- $\blacktriangleright$  all  $f_i$  are convex (have nonnegative curvature)
- ▶ includes least-squares, linear/quadratic programming, . . .
- can obtain global solution quickly and reliably
- mature software available (open source and commercial)

## **Domain-specific languages for convex optimization**

- used to specify (and solve) convex problems
- problem constructed out of:
  - variables
  - constants
  - parameters (value fixed at solve time, may change between solves)
  - functions from a library
- specified problem mapped to a solver format (e.g., conic form)
- makes prototyping easier
- DSLs include CVXPY, CVX, Convex.jl, YALMIP, . . .

## **Example: actuator allocation**



- $lackbox{ } u \in \mathbf{R}^m$  are actuator values
- $lackbox{f }$  generate force  $f^{ ext{des}} \in {f R}^n$  according to  $f^{ ext{des}} = Au$
- ▶ A depends on system configuration (e.g., joint angles)
- ightharpoonup want u small, near previous value  $u^{
  m prev}$
- lacktriangledown actuator limits  $u^{\min} \leq u \leq u^{\max}$

# **Actuator allocation problem**

minimize 
$$\|u\|_1 + \lambda \|u - u^{ ext{prev}}\|_2^2$$
 subject to  $Au = f^{ ext{des}}$   $u^{ ext{min}} \leq u \leq u^{ ext{max}}$ 

- $\triangleright$  variable is u
- ightharpoonup constants are  $u^{\min}$ ,  $u^{\max}$ ,  $\lambda > 0$
- lacktriangle parameters are A,  $f^{
  m des}$ ,  $u^{
  m prev}$

#### **Actuator allocation in CVXPY**

### CVXPY code:

### Under the hood: canonicalization

CVXPY transforms original problem

minimize 
$$\|u\|_1 + \lambda \|u - u^{ ext{prev}}\|_2^2$$
 subject to  $Au = f^{ ext{des}}$   $u^{ ext{min}} \leq u \leq u^{ ext{max}}$ 

into equivalent standard-form QP:

minimize 
$$\begin{bmatrix} u \\ t \end{bmatrix}^T \begin{bmatrix} \lambda I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u \\ t \end{bmatrix} + \begin{bmatrix} -2\lambda u^{\text{prev}} \\ 1 \end{bmatrix}^T \begin{bmatrix} u \\ t \end{bmatrix}$$
 subject to 
$$\begin{bmatrix} A & 0 \end{bmatrix} \begin{bmatrix} u \\ t \end{bmatrix} = f^{\text{des}}$$
 
$$\begin{bmatrix} I & 0 \\ -I & 0 \\ I & -I \\ -I & -I \end{bmatrix} \begin{bmatrix} u \\ t \end{bmatrix} \le \begin{bmatrix} u^{\text{max}} \\ -u^{\text{min}} \\ 0 \\ 0 \end{bmatrix}$$

with variable  $(u,t) \in \mathbf{R}^{2m}$ 

### **Outline**

Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

## **Embedded convex optimization**

- ▶ solve same problem many times, using different parameter values
- ▶ real-time deadlines (milliseconds, microseconds)
- small software footprint
- extreme reliability
- no babysitting

# **Embedded optimization applications**

- automatic control
  - actuator allocation
  - model predictive control
  - trajectory generation
- signal processing
  - moving-horizon estimation
- energy
  - battery management
  - hybrid vehicle control
  - HVAC control
- finance
  - quantitative trading

## **Embedded convex optimization solvers**

- ▶ a solver maps parameters to solution (for a specific problem family)
- ▶ some (open-source) examples:
  - ECOS (2013)
  - qpOASES (2014)
  - OSQP (2016)
- ▶ typically written in C or C++
- special attention to memory allocation, division, . . .
- solve one problem repeatedly with different parameters
  - symbolic step, followed by numerical step (ECOS, OSQP)
  - factorization caching (OSQP)

### Outline

Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

## **DSLs** for embedded convex optimization

▶ parse a parametrized problem, generate a custom solver



- can re-solve problem with new parameters
- problem structure fixed (including parameter size)
- solver code optimized during code generation

## **DSLs** for embedded convex optimization

what can we pre-compute?

- reduction to standard form (canonicalization)
- sparsity patterns of problem data
- efficient permutation for sparse matrix factorization
- ▶ factorization fill-in
- ▶ in some cases, can cache matrix factorizations

for small-medium problems, saved overhead is (very) significant

#### **CVXGEN**

- ► Mattingley, Boyd (2012)
- code generation for quadratic programs
- generates library-free C source
- built-in backend solver (interior point method)
- explicit coding style
  - very fast for small problems
  - code size scales poorly past a few thousand scalar parameters
- ▶ used in industry, e.g., SpaceX

## **CVXPY-codegen**

- ▶ Moehle, Boyd
- Python-based (an extension of CVXPY)
- generates library-free, embedded C source
- interchangeable backend solvers:
  - ECOS (interior point)
  - OSQP (ADMM), soon
- code size / runtime scale gracefully with problem description size
  - (but slower than CVXGEN for very small problems)
- open source
- makes Python interface for generated solver

#### Canonicalization

### parametrized problem

minimize 
$$f_0(x; \theta)$$
  
subject to  $f_i(x; \theta) \leq 0, \quad i = 1, \dots, m$ 

converted to a QP:

minimize 
$$z^T P(\theta)z + q(\theta)^T z$$
  
subject to  $A(\theta)z + b(\theta) \geq 0$ 

- ▶ z is (augmented) decision variable
- ▶ P, q, A, and b depend on parameters
- ightharpoonup solution  $x^*$  recovered from  $z^*$
- canonicalization step during code generation
- (conversion to conic problems is similar)

## Storing P, q, A, and b in CVXGEN

- $\triangleright$   $P(\theta)$ ,  $q(\theta)$ ,  $A(\theta)$ , and  $b(\theta)$  must be updated before each solve
- CVXGEN uses an explicit style:

```
\begin{array}{lll} \mathbf{b} [13] &=& -(\mathbf{G}[300]*h[0] + \mathbf{G}[301]*h[1] + \mathbf{G}[302]*h[2] + \mathbf{G}[303]*h[3] \\ &+& \mathbf{G}[304]*h[4] + \mathbf{G}[305]*h[5] + \mathbf{G}[306]*h[6] + \mathbf{G}[307]*h[7] \\ &+& \mathbf{G}[308]*h[8] + \mathbf{G}[309]*h[9] + \mathbf{G}[310]*h[10] + \mathbf{G}[311]*h[11] \\ &+& \mathbf{G}[312]*h[12] + \mathbf{G}[313]*h[13] + \mathbf{G}[314]*h[14] + \mathbf{G}[315]*h[15] \\ &+& \mathbf{G}[316]*h[16] + \mathbf{G}[317]*h[17] + \mathbf{G}[318]*h[18] + \mathbf{G}[319]*h[19] \\ &+& \mathbf{G}[320]*h[20] + \mathbf{G}[321]*h[21] + \mathbf{G}[322]*h[22] + \mathbf{G}[323]*h[23] \\ &+& \mathbf{G}[324]*h[24] + \mathbf{G}[325]*h[25] + \mathbf{G}[326]*h[26] + \mathbf{G}[327]*h[27] \\ &+& \mathbf{G}[328]*h[28] + \mathbf{G}[329]*h[29] + \mathbf{G}[330]*h[30] + \mathbf{G}[331]*h[31] \\ &+& \mathbf{G}[347]*h[47] + \mathbf{G}[348]*h[48] + \mathbf{G}[349]*h[49]); \end{array}
```

▶ fast, but limits CVXGEN to small problems

# Affine parse tree

• or, store  $A(\theta)z + b(\theta)$  as an affine parse tree:



for 
$$F(z_{[3:5]}-g)-h$$

 $lackbox{P}( heta)$  and  $q( heta)^T$  represented similarly

## Affine parse tree in CVXPY-codegen

- each subtree is an affine function
  - recursively walk the tree to build  $A(\theta)$  and  $b(\theta)$
  - at each node, carry out operation directly on subtree coefficients
- recursion is unwrapped in generated code:

```
neg(param.h, node1_offset);
index_coeff(var_z, node1_var_z);
neg(param_g, node2_offset);
matmul(param_F, node1_var_z, node3_var_z);
matmul(param_F, node2_offset, node3_offset);
sum(node1_offset, node3_offset);
```

- sparsity patterns fixed during code generation
- better scalability than explicit methods; still fast for small problems

#### C code structure

structure of generated code:

- init(): initializes backend solver, allocate solver memory (if needed)
- 2. solve(): takes in parameters, solves problem
- 3. cleanup(): frees solver memory

practical usage: init once, then solve many times in a loop

### **Outline**

Convex optimization

Embedded convex optimization

DSLs for embedded convex optimization

Examples

## **Actuator allocation: code generation**

```
minimize \|u\|_1 + \lambda \|u - u^{	ext{prev}}\|_2^2 subject to Au = f^{	ext{des}} u^{	ext{min}} \leq u \leq u^{	ext{max}}
```

### Python code:

# Actuator allocation: generated code

```
typedef struct params_struct{
   double A[6][10]:
   double f_des[6];
   double u_prev[10];
} Params;
typedef struct vars_struct{
   double u[10];
} Vars:
typedef struct work_struct{
} Work;
void cg_init(Work *work);
int cg_solve(Params *params, Work *work, Vars *vars);
void cg_cleanup(Work *work);
```

## **Actuator allocation: usage example**

```
usage example:
int main(){
    Params params;
    Vars vars;
    Work work;
    cg_init(&work); // Initialize solver.
    while(1){
        update_params(&params); // Get new data, update parameters.
        cg_solve(&params, &work, &vars); // Solve problem.
        implement_vars(&vars); // Implement the solution.
```

#### **Actuator allocation: results**

#### CVXGEN:

▶ solve time: 60  $\mu$ s (1500× speedup over CVXPY)

▶ memory usage: 11 kB

▶ code size: 91 kB

CVXPY-codegen (with ECOS):

▶ solve time: 300  $\mu$ s

▶ memory usage: 23 kB

▶ code size: 96 kB

### Model predictive control

control the linear dynamical system

$$x_{t+1} = Ax_t + Bu_t$$

over T time periods

- lacktriangle input constraints  $\|u_t\|_{\infty} < u^{\max}$
- problem is:

minimize 
$$\sum_{t=0}^{T-1} \|x_t\|_2^2 + \|u_t\|_2^2$$
 subject to  $x_{t+1} = Ax_t + Bu_t, \quad t = 0, \dots, T-1$   $\|u_t\|_{\infty} \leq u^{\max}, \quad t = 0, \dots, T-1$   $x_0 = x_{\mathrm{init}}$   $x_T = 0$ 

## Model predictive control: Python code

```
A = Parameter((n, n), name='A')
B = Parameter((n, m), name='B')
x0 = Parameter(n. name='x0')
u_max = Parameter(name='u_max')
x = Variable((n, T+1), name='x')
u = Variable((m, T), name='u')
obi = 0
constr = [x[:,0] == x0, x[:,-1] == 0]
for t in range(T):
   constr += [x[:,t+1] == A*x[:,t] + B*u[:,t],
              norm(u[:,t], 'inf') <= u_max]
   obj += sum_squares(x[:,t]) + sum_squares(u[:,t])
prob = Problem(Minimize(obj), constr)
codegen(prob, 'target_directory')
```

# Model predictive control: solve times



- ▶ inputs, states, and horizon in ratio 1:2:5
- backend solver for CVXPY-codegen was ECOS

## Other problems

Solve times for other problems (in milliseconds)

| problem    | CVXGEN | CVXPY-cg | CVXPY |
|------------|--------|----------|-------|
| battery1   | .303   | 1.46     | 509   |
| battery2   | 1.52   | 4.50     | 3112  |
| battery3   |        | 61.5     | 55591 |
| portfolio1 | 0.342  | 1.099    | 61.6  |
| portfolio2 | 1.127  | 2.684    | 62.9  |
| portfolio3 |        | 79.8     | 152.9 |
| lasso1     | 0.136  | 1.40     | 44.4  |
| lasso2     |        | 10.51    | 73.3  |
| lasso3     | _      | 52.37    | 185.4 |

#### Conclusion

- ▶ DSLs make (embedded) convex optimization easy to use
- convex optimization for real-time applications
- automatic code generation makes deployment easy