Statistika, Prvi deo (Bodovi:
$$1\rightarrow 10, 2\rightarrow 10, 3\rightarrow 10$$
)

- 1. Središta stranica kvadrata obrazuju ponovo kvadrat. Odrediti verovatnoću da se proizvoljna tačka iz velikog kvadrata nalazi u malom kvadratu.
- 2. Slučajna promenljiva X ima raspodelu $\mathcal{U}(-1,1)$. Naći gustinu raspodele i očekivanje slučajne promenljive $Y=e^X$.
- 3. Pera i Miki jednom nedeljno idu na kuglanje. Perin rezultat ima normalnu raspodelu sa prosečno oborenih 175 čunjeva i standardnim odstupanjem od 30 čunjeva. Mikijev rezultat ima normalnu raspodelu sa prosečno oborenih 150 čunjava i standardnim odstupanjem od 40 čunjeva. Odrediti verovatnoću da u slučajno izabranoj partiji Miki ostvari bolji rezultat od Pere.

Statistika, Drugi deo (Bodovi: $1\rightarrow 10, 2\rightarrow 10$)

1. Posmatra se obeležje X sa normalnom $\mathcal{N}(\theta, \sigma)$ raspodelom, gde je σ poznato. Za ocenjivač parametra θ predloženi su na osnovu uzorka X_1, X_2, \dots, X_n sledeći ocenjivači:

$$\hat{\theta}_1 = \overline{X}_n, \ \hat{\theta}_2 = X_1, \ \hat{\theta}_3 = (X_1 + \overline{X}_n)/2.$$

Ispitati centriranost datih ocenjivača i odrediti koji je najefikasniji.

2. Jedan elektronski uređaj se proizvodi na tri produkcijske linije u fabrici. Za svaku produkcijsku liniju se beleži broj neispravnih uređaja. Kod svakog neispravnog uređaja se nedostatak klasifikuje kao elektronski, napajanje ili mehanički. Dobijeni rezultati su dati u sledećoj tabeli.

	prva linija	druga linija	treća linija
elektronski	13	33	15
napajanje	7	4	11
mehanički	18	10	14

Testirati hipotezu da je vrsta kvara nezavisna od produkcijske linije sa pragom značajnosti $\alpha = 5\%$.

Tablica vrednosti funkcije raspodele normalne $\mathcal{N}(0,1)$ raspodele

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
:	÷	:	:	:	:	:	:	:	:	:
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
÷	:	÷	÷	÷	÷	÷	÷	÷	÷	÷

Kvantili Pirsonove χ_n^2 raspodele

n^F	0.0500	0.1000	0.2500	0.5000	0.7500	0.9000	0.9500	0.9750	0.9900	0.9950
1	0.00393	0.0158	0.102	0.455	1.32	2.71	3.84	5.02	6.63	7.88
2	0.103	0.211	0.575	1.39	2.77	4.61	5.99	7.38	9.21	10.6
3	0.352	0.584	1.21	2.37	4.11	6.25	7.81	9.35	11.3	12.8
4	0.711	1.06	1.92	3.36	5.39	7.78	9.49	11.1	13.3	14.9
5	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.7
6	1.64	2.2	3.45	5.35	7.84	10.6	12.6	14.4	16.8	18.5
7	2.17	2.83	4.25	6.35	9.04	12	14.1	16	18.5	20.3
8	2.73	3.49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22
9	3.33	4.17	5.9	8.34	11.4	14.7	16.9	19	21.7	23.6
10	3.94	4.87	6.74	9.34	12.5	16	18.3	20.5	23.2	25.2
÷	:	÷	÷	÷	÷	÷	÷	÷	÷	: