class 9: Halloween Mini-Project

Aigerim (PID: 09919142)

Today we will analyze some data from 538 (FiveThirtyEight) about Typical Halloween candy.

Importing candy data

First thing to do is to download candy-data.csv and read.csv it.In my case, my file were downloaded as .txt file, so pay attention to how we call it.

```
candy <- read.csv("candy-data.txt", row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedr	icewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511 4	46.11650	
Air Heads	0	0	()	0.906	0	.511 !	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

12 candy types

```
dim(candy)
```

[1] 85 12

Q2. How many chocolate candy types are in the dataset?

```
sum(candy$chocolate)
```

[1] 37

Q. How many variables/dimensiions are there?

```
nrow(candy)
```

[1] 85

Data exploration

What is your favorate candy?

"skimr" install it in your console

```
#library(skimr)
skimr::skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q3. What is your favorite candy in the dataset and what is it's winpercent value? Mine favorite candy is M&M's and it's winpercent is 66.57

```
candy["M&M's",]
```

```
chocolate fruity caramel peanutyalmondy nougat crispedricewafer hard bar M&M's 1 0 0 0 0 0 0 0 0 0 pluribus sugarpercent pricepercent winpercent M&M's 1 0.825 0.651 66.57458
```

```
candy["Twix",]$winpercent
```

[1] 81.64291

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

cor(candy)

```
chocolate
                                            caramel peanutyalmondy
                                 fruity
                                                                        nougat
chocolate
                  1.0000000 -0.74172106
                                         0.24987535
                                                        0.37782357
                                                                    0.25489183
fruity
                 -0.7417211
                             1.00000000 -0.33548538
                                                       -0.39928014 -0.26936712
                  0.2498753 -0.33548538
caramel
                                         1.00000000
                                                        0.05935614
                                                                    0.32849280
peanutyalmondy
                  0.3778236 -0.39928014
                                         0.05935614
                                                        1.00000000
                                                                    0.21311310
                  0.2548918 -0.26936712
                                         0.32849280
                                                                    1.00000000
nougat
                                                        0.21311310
crispedricewafer
                  0.3412098 -0.26936712
                                        0.21311310
                                                       -0.01764631 -0.08974359
hard
                 -0.3441769 0.39067750 -0.12235513
                                                       -0.20555661 -0.13867505
                  0.5974211 -0.51506558
                                        0.33396002
                                                        0.26041960 0.52297636
bar
                 -0.3396752 0.29972522 -0.26958501
pluribus
                                                       -0.20610932 -0.31033884
sugarpercent
                  0.1041691 -0.03439296
                                         0.22193335
                                                        0.08788927
                                                                    0.12308135
pricepercent
                  0.5046754 -0.43096853
                                         0.25432709
                                                        0.30915323
                                                                    0.15319643
winpercent
                  0.6365167 -0.38093814
                                         0.21341630
                                                        0.40619220
                                                                    0.19937530
                 crispedricewafer
                                         hard
                                                      bar
                                                             pluribus
chocolate
                       0.34120978 -0.34417691 0.59742114 -0.33967519
fruity
                      0.29972522
                       0.21311310 -0.12235513 0.33396002 -0.26958501
caramel
peanutyalmondy
                      -0.01764631 -0.20555661 0.26041960 -0.20610932
                      -0.08974359 -0.13867505 0.52297636 -0.31033884
nougat
crispedricewafer
                       1.00000000 -0.13867505 0.42375093 -0.22469338
hard
                      -0.13867505
                                  1.00000000 -0.26516504 0.01453172
bar
                       0.42375093 -0.26516504 1.00000000 -0.59340892
                      -0.22469338
                                  0.01453172 -0.59340892
                                                          1.00000000
pluribus
sugarpercent
                       0.06994969
                                   0.09180975
                                               0.09998516 0.04552282
                       0.32826539 -0.24436534
pricepercent
                                               0.51840654 -0.22079363
winpercent
                       0.32467965 -0.31038158 0.42992933 -0.24744787
                 sugarpercent pricepercent winpercent
chocolate
                   0.10416906
                                 0.5046754
                                           0.6365167
fruity
                  -0.03439296
                                -0.4309685 -0.3809381
caramel
                   0.22193335
                                 0.2543271 0.2134163
peanutyalmondy
                   0.08788927
                                 0.3091532 0.4061922
nougat
                   0.12308135
                                 0.1531964 0.1993753
crispedricewafer
                   0.06994969
                                 0.3282654 0.3246797
hard
                   0.09180975
                                -0.2443653 -0.3103816
bar
                   0.09998516
                                 0.5184065 0.4299293
```

```
      pluribus
      0.04552282
      -0.2207936
      -0.2474479

      sugarpercent
      1.00000000
      0.3297064
      0.2291507

      pricepercent
      0.32970639
      1.0000000
      0.3453254

      winpercent
      0.22915066
      0.3453254
      1.0000000
```

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}

The sequence might represent Boolean values, where 1 could mean "TRUE" or "yes" and 0 could mean "FALSE" or "no".

```
candy$chocolate
```

Or we can use as.logical()

```
as.logical(candy$chocolate)
```

- TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE [25] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE [37] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE [49] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE [61] FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE [73] FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE [85] TRUE
 - Q8. Plot a histogram of winpercent values

```
library("ggplot2")

ggplot(candy, aes(winpercent)) +
  geom_histogram(binwidth=8)
```


Other way to do (does not look accurate):

hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

According to histogram, the distribution of winpercent values is not symmetrical.

Q10. Is the center of the distribution above or below 50%?

The center of the distribution below 50 %.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

- First find all chocolate candy (subset)
- Get their winpercent values
- Summarize these values into one matrix (e.g. mean)
- Do the same for fruity and compare.

```
choc.inds <- as.logical(candy$chocolate)
choc.win <- candy[choc.inds,]$winpercent
mean(choc.win)</pre>
```

[1] 60.92153

```
#candy$chocolate == 1
```

```
fruity.inds <- as.logical(candy$fruity)</pre>
  fruity.win <- candy[fruity.inds,]$winpercent</pre>
  mean(fruity.win)
[1] 44.11974
Yes, on average chocolate candy ranked higher than fruit candy.
     Q12. Is this difference statistically significant?
  t.test(choc.win, fruity.win)
    Welch Two Sample t-test
data: choc.win and fruity.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974
Overall Candy ranking
     Q13. What are the five least liked candy types in this set?
  sort(candy$winpercent)[1:5]
[1] 22.44534 23.41782 24.52499 27.30386 28.12744
  x \leftarrow c(5,1,2,4,3)
  order(x)
[1] 2 3 5 4 1
```

inds <- order(candy\$winpercent) head(candy[inds,])</pre>

	chocolate	fruity	caran	nel j	peanutyalm	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedric	ewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent	;						
Nik L Nip	22.44534							
Boston Baked Beans	23.41782	?						
Chiclets	24.52499)						
Super Bubble	27.30386	;						
Jawbusters	28.12744	:						
Root Beer Barrels	29.70369)						

Q14. What are the top 5 all time favorite candy types out of this set?

tail((candy[inds,]))

	chocolate	fruity	carar	nel	peanutyalr	nondy	nougat
Reese's pieces	1	0		0	-	1	0
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent
Reese's pieces		0	0	0	1		0.406
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546

Reese's Miniatures	0	0	0	0	0.034	
Reese's Peanut Butter cup		0	0	0	0	0.720
pri	icepercent	winpe	ercent			
Reese's pieces	0.651	73.	43499			
Snickers	0.651	76.	67378			
Kit Kat	0.511	76.	76860			
Twix	0.906	81.	64291			
Reese's Miniatures	0.279	81.	86626			
Reese's Peanut Butter cup	0.651	84.	18029			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Does not look nice! What can we do?

Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col() +
  labs(x="Match-up Win Percent", y=NULL)
```



```
ggsave("barplot1.png", height=10, width = 7)
```

We can insert any image using markdown syntax. This is ! followed by square [] to save image

Let's add some color

```
ggplot(candy) +
aes(x=winpercent,
    y=reorder(rownames(candy), winpercent),
    fill=as.factor(chocolate)) +
geom_col() +
labs(x="Match-up Win Percent", y=NULL)
```


Figure 1: Plot

We need to make our own color vector with color we like.

```
my_cols <- rep("darkgray", nrow(candy))
my_cols[as.logical(candy$chocolate)] <- "chocolate"
my_cols[as.logical(candy$bar)] <- "brown"
my_cols[as.logical(candy$fruity)] <- "pink"
#my_cols</pre>
```

Is it matter where we put fill:


```
ggsave("barplot2.png", height=10, width = 7)
```

Q17. What is the worst ranked chocolate candy?

"Twix" as a chocolate bar

Q18. What is the best ranked fruity candy?

"Starburst" as fruity candy

Taking a look at pricepercent

Let's make a plot of winpercent vs pricepercent. The original idea with this 538 plot was to show you the beat candy to get for your money on Halloween

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text(col=my_cols)
```


Figure 2: Plot with our own colors

These label's not looking nice, hard to read.

Let's try ggrepel.

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, max.overlaps=8)
```

Warning: ggrepel: 61 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Hersheys Krackel

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

```
ggplot(candy) +
  aes(pricepercent, reorder(rownames(candy), pricepercent)) +
  geom_col(col="gray40")
```


Lolipop

Explore the correlation structure in candy data

We will calculate all Pearson correlation values.

```
cij <- cor(candy)
head(cij)</pre>
```

	chocolate	fruity	o car	ramel j	peanut	tyalmondy	nougat
chocolate	1.0000000	-0.7417211	0.2498	37535	0	. 37782357	0.25489183
fruity	-0.7417211	1.0000000	-0.3354	18538	-0	.39928014 -	-0.26936712
caramel	0.2498753	-0.3354854	1.0000	0000	0	.05935614	0.32849280
peanutyalmondy	0.3778236	-0.3992801	0.0593	35614	1	.00000000	0.21311310
nougat	0.2548918	-0.2693671	0.3284	19280	0	.21311310	1.00000000
crispedricewafer	0.3412098	-0.2693671	0.2131	1310	-0	.01764631 -	-0.08974359
	crispedrice	ewafer	hard		bar	pluribus	sugarpercent
chocolate	0.341	120978 -0.3	3441769	0.5974	4211 -	-0.3396752	0.10416906
fruity	-0.269	936712 0.3	3906775 -	-0.5150	0656	0.2997252	-0.03439296
caramel	0.213	311310 -0.1	.223551	0.3339	9600 -	-0.2695850	0.22193335
peanutyalmondy	-0.017	764631 -0.2	2055566	0.2604	4196 -	-0.2061093	0.08788927
nougat	-0.089	974359 -0.1	.386750	0.5229	9764 -	-0.3103388	0.12308135

crispedricewafer 1.00000000 -0.1386750 0.4237509 -0.2246934 0.06994969 pricepercent winpercent chocolate 0.5046754 0.6365167 fruity -0.4309685 -0.3809381 caramel 0.2543271 0.2134163 peanutyalmondy 0.3091532 0.4061922 nougat 0.1531964 0.1993753 crispedricewafer 0.3282654 0.3246797

library(corrplot)

corrplot 0.92 loaded

corrplot(cij)

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and Fruity are two variables which is "-1" or anti-correlated.

Q23. Similarly, what two variables are most positively correlated?

The most correlated variables are Chocolate and bar/ chocolate and nougat. And of course chocolate and chocolate.

Principal Component Analysis

The main function is called prcomp() we need to scale

```
pca <- prcomp(candy, scale=TRUE)</pre>
  attributes(pca)
$names
[1] "sdev"
               "rotation" "center"
                                      "scale"
$class
[1] "prcomp"
  summary(pca)
Importance of components:
                                  PC2
                           PC1
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                            PC8
                                    PC9
                                           PC10
                                                   PC11
                                                            PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
  pc.score.results <- as.data.frame(pca$x)</pre>
  library(ggplot2)
  ggplot(pc.score.results) +
    aes(PC1, PC2) +
    geom_point(col=my_cols)
```


Loadings plot

```
pc.loadings <- as.data.frame(pca$rotation)
#pc.loadings
ggplot(pc.loadings) +
   aes(PC1, reorder(rownames(pc.loadings), PC1)) +
   geom_col()</pre>
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, pluribus, hard.

```
pc.score.results <- as.data.frame(pca$x)

library(ggplot2)
ggplot(pc.score.results) +
   aes(PC1, PC2, label=rownames(pc.score.results)) +
   geom_point(col=my_cols)</pre>
```

