

DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : A61K 39/295, C12N 15/45		A2	(11) Numéro de publication internationale: WO 98/03200 (43) Date de publication internationale: 29 janvier 1998 (29.01.98)		
(21) Numéro de la demande internationale: PCT/FR97/01325		(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).			
(22) Date de dépôt international: 16 juillet 1997 (16.07.97)					
(30) Données relatives à la priorité: 96/09403 19 juillet 1996 (19.07.96)		FR			
(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): MERIAL [FR/FR]; 17, rue Bourgelat, F-69002 Lyon (FR).					
(72) Inventeurs; et					
(75) Inventeurs/Déposants (<i>US seulement</i>): AUDONNET, Jean-Christophe [FR/FR]; 119, rue de Créqui, F-69006 Lyon (FR). BOUCHARDON, Annabelle [FR/FR]; 118, cours Gambetta, F-69007 Lyon (FR). BAUDU, Philippe [FR/FR]; 58, avenue Edouard Simon, F-69290 Craponne (FR). RIVIERE, Michel [FR/FR]; 11, chemin du Chancellier, F-69130 Ecully (FR).		Publiée <i>Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.</i>			
(74) Mandataire: COLOMBET, Alain; Cabinet Lavoix, 2, place d'Estienne d'Orves, F-75441 Paris Cedex 09 (FR).					
(54) Title: POLYNUCLEOTIDE VACCINE FORMULA, PARTICULARLY FOR TREATING BOVINE RESPIRATORY DISEASE					
(54) Titre: FORMULE DE VACCIN POLYNUCLEOTIDIQUE NOTAMMENT CONTRE LA PATHOLOGIE RESPIRATOIRE DES BOVINS					
(57) Abstract					
A bovine vaccine formula for treating bovine respiratory disease is disclosed. Said formula includes at least three polynucleotide vaccine valencies that each include a plasmid containing a bovine respiratory disease valency gene capable of being expressed <i>in vivo</i> in host cells. Said valencies are selected from the group which consists of bovine herpes virus, bovine respiratory syncytial virus, mucosal disease virus and parainfluenza virus type 3. The plasmids include one or more genes per valency, and said genes are selected from the group which consists of gB and gD for bovine herpes virus, F and G for bovine respiratory syncytial virus, E2, C + E1 + E2 and E1 + E2 for mucosal disease virus and HN and F for parainfluenza virus type 3.					
(57) Abrégé					
La formule de vaccin bovin contre la pathologie respiratoire des bovins, comprend au moins trois valences de vaccin polynucléotidique comprenant chacune un plasmide intégrant, de manière à l'exprimer <i>in vivo</i> dans les cellules hôtes, un gène d'une valence de pathogène respiratoire bovin, ces valences étant choisies parmi le groupe consistant en virus herpès bovin, virus respiratoire syncytial bovin, virus de la maladie des muqueuses et virus parainfluenza de type 3, les plasmides comprenant, pour chaque valence, un ou plusieurs des gènes choisis parmi le groupe consistant en gB et gD pour le virus herpès bovin, F et G pour le virus respiratoire syncytial bovin, E2, C + E1 + E2 et E1 + E2 pour le virus de la maladie des muqueuses, HN et F pour le virus parainfluenza de type 3.					

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave de Macédoine	TM	Turkménistan
BF	Burkina Faso	GR	Grèce	ML	Mali	TR	Turquie
BG	Bulgarie	HU	Hongrie	MN	Mongolie	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MR	Mauritanie	UA	Ukraine
BR	Brésil	IL	Israël	MW	Malawi	UG	Ouganda
BY	Bélarus	IS	Islande	MX	Mexique	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	NE	Niger	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NL	Pays-Bas	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norvège	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NZ	Nouvelle-Zélande	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire démocratique de Corée	PL	Pologne		
CM	Cameroun	KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakhstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR	Libéria	SG	Singapour		
EE	Estonie						

**FORMULE DE VACCIN POLYNUCLEOTIDIQUE NOTAMMENT CONTRE LA
PATHOLOGIE RESPIRATOIRE DES BOVINS**

La présente invention a trait à une formule de vaccin
5 permettant la vaccination des bovins notamment contre la
pathologie respiratoire. Elle a également trait à une méthode
de vaccination correspondante.

Tous les bovins sont porteurs de virus et de bactéries
10 potentiellement pathogènes à des degrés très variables.

Les virus peuvent se multiplier quand l'immunité
spécifique est affaiblie et quand il y a des lésions des voies
respiratoires. Ils sont ensuite excrétés par l'animal et
peuvent alors contaminer d'autres animaux.

Parmi les virus que l'on rencontre, on peut citer
15 notamment le virus parainfluenza de type 3 (PI-3), de
pathogénicité propre modérée, le virus respiratoire syncytial
bovin (RSV) et l'herpès virus bovin (BHV) encore appelé virus
de la rinotrachéite infectieuse bovine (IBR), de pathogénicités
propres élevées.

20 Un autre virus particulièrement important pour son rôle
immunodépresseur et ses effets néfastes sur la reproduction est
le virus de la maladie des muqueuses ou pestivirus bovin
(BVDV).

Ces virus se traduisent en général par une phase primaire
25 d'hyperthermie, de syndrome grippal et de troubles
respiratoires, avec des troubles digestifs (diarrhées) dans le
cas de BVD. Cette phase peut s'accompagner d'une phase
secondaire avec apparition de bronchopneumonies liées à des
infections bactériennes, en particulier Pasteurella, pouvant
30 entraîner la mort. Ce phénomène est exacerbé en particulier par
l'immunodépression consécutive à l'infection par BVD ou par
l'infection des macrophages par PI-3. D'autres symptômes encore
peuvent apparaître, comme des avortements avec BVD et BHV.

Il paraît donc nécessaire de tenter de mettre au point une
35 prévention efficace contre les principaux virus intervenant
dans la pathologie respiratoire des bovins.

On a déjà proposé par le passé des associations de vaccins
contre certains virus responsables de la pathologie

réspiratoire des bovins.

Les associations développées jusqu'à présent étaient réalisées à partir de vaccins inactivés ou de vaccins vivants et éventuellement de mélanges de tels vaccins. Leur mise en œuvre pose des problèmes de compatibilité entre valences et de stabilité. Il faut en effet assurer à la fois la compatibilité entre les différentes valences de vaccin, que ce soit au plan des différents antigènes utilisés ou au plan des formulations elles-mêmes, notamment dans le cas où l'on combine à la fois des vaccins inactivés et des vaccins vivants. Il se pose également le problème de la conservation de tels vaccins combinés et aussi de leur innocuité notamment en présence d'adjuvant. Ces vaccins sont en général assez coûteux.

Les demandes de brevet WO-A-90 11092, WO-A-93 19183, WO-A-94 21797 et WO-A-95 20660 ont fait usage de la technique récemment développée des vaccins polynucléotidiques. On sait que ces vaccins utilisent un plasmide apte à exprimer dans les cellules de l'hôte l'antigène inséré dans le plasmide. Toutes les voies d'administration ont été proposées (intrapéritonéale, intraveineuse, intramusculaire, transcutanée, intradermique, mucosale, etc.). Différents moyens de vaccination peuvent également être utilisés, tels que ADN déposé à la surface de particules d'or et projeté de façon à pénétrer dans la peau de l'animal (Tang et al., Nature 356, 152-154, 1992) et les injecteurs par jet liquide permettant de transfacter à la fois dans la peau, le muscle, les tissus graisseux et les tissus mammaires (Furth et al., Analytical Biochemistry, 205, 365-368, 1992).

Les vaccins polynucléotidiques peuvent utiliser aussi bien des ADN nus que des ADN formulés par exemple au sein de liposomes ou de lipides cationiques.

G.J.M. COX a déjà proposé la vaccination polynucléotidique contre l'herpès virus bovin de type 1 dans J. of Virology, Volume 67, n° 9, septembre 1993, 5664-5667. Les auteurs ont notamment décrit des plasmides intégrant les gènes gI (gB), gIII (gC) et gIV (gD).

Dans Vaccine, Volume 13, n° 4, 415-421, 1995, J.E. CROWE présente une revue générale sur les différentes méthodes de

vaccination contre le virus respiratoire syncitial et contre le virus parainfluenza de type 3. Cette revue reprend l'ensemble des possibilités offertes par les techniques actuelles de vaccination et suggère simplement que la technologie de l'immunisation polynucléotidique pourrait être utile dans la stratégie d'immunisation contre RSV et PI-3. Aucune construction de plasmide ni résultat de vaccination des bovins contre ces virus n'est décrit dans ce document.

L'invention se propose donc de fournir une formule de vaccin multivalent permettant d'assurer une vaccination contre un certain nombre de virus pathogènes intervenant notamment dans la pathologie respiratoire des bovins et ainsi assurer une vaccination efficace contre cette pathologie.

Un autre objectif de l'invention est de fournir une telle formule de vaccin associant différentes valences tout en présentant tous les critères requis de compatibilité et de stabilité des valences entre elles.

Un autre objectif de l'invention est de fournir une telle formule de vaccin permettant d'associer différentes valences dans un même véhicule.

Un autre objectif de l'invention est de fournir un tel vaccin qui soit de mise en oeuvre aisée et peu coûteuse.

Un autre objectif encore de l'invention est de fournir une telle formule de vaccin et une méthode de vaccination des bovins qui permettent d'obtenir une protection multivalente avec un niveau élevé d'efficacité et de longue durée, ainsi qu'une bonne innocuité et une absence de résidus.

La présente invention a donc pour objet une formule de vaccin notamment contre la pathologie respiratoire des bovins, comprenant au moins trois valences de vaccin polynucléotidique comprenant chacune un plasmide intégrant, de manière à l'exprimer *in vivo* dans les cellules hôtes, un gène d'une valence de pathogène respiratoire bovin, ces valences étant choisies parmi le groupe consistant en virus herpès bovin, virus respiratoire syncitial bovin, virus de la maladie des muqueuses et virus parainfluenza de type 3, les plasmides comprenant, pour chaque valence, un ou plusieurs des gènes choisis parmi le groupe consistant en gB et gD pour le virus

hérpès bovin, F et G pour le virus respiratoire syncitial bovin, E2, C + E1 + E2 et E1 + E2 pour le virus de la maladie des muqueuses, HN et F pour le virus parainfluenza de type 3.

Par valence, dans la présente invention, on entend au moins un antigène assurant une protection contre le virus du pathogène considéré, la valence pouvant contenir, à titre de sous-valence, un ou plusieurs gènes naturels ou modifiés d'une ou plusieurs souches du pathogène considéré.

Par gène d'agent pathogène, on entend non seulement le gène complet, mais aussi les séquences nucléotidiques différentes, y compris fragments, conservant la capacité à induire une réponse protectrice. La notion de gène recouvre les séquences nucléotidiques équivalentes à celles décrites précisément dans les exemples, c'est-à-dire les séquences différentes mais codant pour la même protéine. Elle recouvre aussi les séquences nucléotidiques d'autres souches du pathogène considéré, assurant une protection croisée ou une protection spécifique de souche ou de groupe de souche. Elle recouvre encore les séquences nucléotidiques qui ont été modifiées pour faciliter l'expression *in vivo* par l'animal hôte mais codant pour la même protéine..

De préférence, la formule de vaccin selon l'invention comprend les quatre valences.

En ce qui concerne la valence BHV, on préfère mettre en œuvre les deux gènes codant pour gB et gD, dans des plasmides différents ou dans un seul et même plasmide. Eventuellement, mais d'une façon moins préférée, on peut utiliser l'un ou l'autre de ces gènes.

Pour la valence RSV, on utilise de préférence les deux gènes G et F intégrés dans deux plasmides différents ou dans un seul et même plasmide. Eventuellement, mais de façon moins préférée, on peut utiliser le gène F seul.

Pour la valence BVD, on préférera utiliser un plasmide intégrant le gène E2. Eventuellement, mais de façon moins préférée, on peut utiliser un plasmide codant pour E1 et E2 ensemble ou pour l'ensemble constitué par C, E1 et E2.

Pour la valence PI-3, on préfère utiliser l'ensemble des deux gènes HN et F dans deux plasmides différents ou dans un

séul et même plasmide. On peut aussi utiliser uniquement le gène HN.

Une formule de vaccin préférée selon l'invention comprend et assure l'expression des gènes gB et gD de BHV, G et F de RSV, E2 de BVD et HN et F de PI-3.

La formule de vaccin selon l'invention pourra se présenter sous un volume de dose compris entre 0,1 et 10 ml et en particulier entre 1 et 5 ml.

La dose sera généralement comprise entre 10 ng et 1 mg, de préférence entre 100 ng et 500 µg et plus préférentiellement encore entre 1 µg et 250 µg par type de plasmide.

On utilisera de préférence des plasmides nus, simplement placés dans le véhicule de vaccination qui sera en général de l'eau physiologique (NaCl 0,9 %), de l'eau ultrapure, du tampon TE, etc. On peut bien entendu utiliser toutes les formes de vaccin polynucléotidique décrites dans l'art antérieur.

Chaque plasmide comprend un promoteur apte à assurer l'expression du gène inséré sous sa dépendance dans les cellules hôtes. Il s'agira en général d'un promoteur eucaryote fort et en particulier d'un promoteur précoce du cytomégalovirus CMV-IE, d'origine humaine ou murine, ou encore éventuellement d'une autre origine telle que rat, cochon, cobaye.

De manière plus générale, le promoteur pourra être soit d'origine virale, soit d'origine cellulaire. Comme promoteur viral autre que CMV-IE, on peut citer le promoteur précoce ou tardif du virus SV40 ou le promoteur LTR du virus du Sarcome de Rous. Il peut aussi s'agir d'un promoteur du virus dont provient le gène, par exemple le promoteur propre au gène.

Comme promoteur cellulaire, on peut citer le promoteur d'un gène du cytosquelette, tel que par exemple le promoteur de la desmine (Bolmont et al., Journal of Submicroscopic Cytology and Pathology, 1990, 22, 117-122 ; et ZHENLIN et al., Gene, 1989, 78, 243-254), ou encore le promoteur de l'actine.

Lorsque plusieurs gènes sont présents dans le même plasmide, ceux-ci peuvent être présentés dans la même unité de transcription ou dans deux unités différentes.

La combinaison des différentes valences du vaccin selon

l'invention peut être effectuée, de préférence, par mélange de plasmides polynucléotidiques exprimant le ou les antigènes de chaque valence, mais on peut également prévoir de faire exprimer des antigènes de plusieurs valences par un même plasmide.

L'invention a encore pour objet des formules de vaccin monovalent comprenant un ou plusieurs plasmides codant pour un ou plusieurs gènes de l'un des virus choisis parmi le groupe consistant en BRSV, BVD et PI-3, les gènes étant ceux décrits plus haut. En dehors de leur caractère monovalent, ces formules peuvent reprendre les caractéristiques énoncées plus haut en ce qui concerne le choix des gènes, leurs combinaisons, la composition des plasmides, les volumes de dose, les doses, etc.

Les formules de vaccin monovalent peuvent être utilisées (i) pour la préparation d'une formule de vaccin polyvalent tel que décrit plus haut, (ii) à titre individuel contre la pathologie propre, (iii) associées à un vaccin d'un autre type (entier vivant ou inactivé, recombinant, sous-unité) contre une autre pathologie, ou (iv) comme rappel d'un vaccin comme décrit ci-après.

La présente invention a en effet encore pour objet l'utilisation d'un ou de plusieurs plasmides selon l'invention pour la fabrication d'un vaccin destiné à vacciner les bovins primo-vaccinés au moyen d'un premier vaccin classique du type de ceux de l'art antérieur choisi notamment dans le groupe consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, vaccin recombinant, ce premier vaccin présentant, c'est-à-dire contenant ou pouvant exprimer, le ou les antigènes codé(s) par le ou les plasmides ou antigène(s) assurant une protection croisée.

De manière remarquable, le vaccin polynucléotidique a un effet de rappel puissant se traduisant par une amplification de la réponse immunitaire et l'instauration d'une immunité de longue durée.

De manière générale, les vaccins de primo-vaccination pourront être choisis parmi les vaccins commerciaux disponibles auprès des différents producteurs de vaccins vétérinaires.

L'invention a aussi pour objet un kit de vaccination

regroupant un vaccin de primo-vaccination tel que décrit ci-dessus et une formule de vaccin selon l'invention pour le rappel. Elle a aussi trait à une formule de vaccin selon l'invention accompagnée d'une notice indiquant l'usage de cette 5 formule comme rappel d'une primo-vaccination telle que décrite ci-avant.

La présente invention a également pour objet une méthode de vaccination des bovins contre la pathologie respiratoire, comprenant l'administration de la formule de vaccin efficace 10 telle que décrit plus haut. Cette méthode de vaccination comprend l'administration d'une ou de plusieurs doses de formule de vaccin, ces doses pouvant être administrées successivement dans un court laps de temps et/ou successivement à des moments éloignés l'un de l'autre.

15 Les formules de vaccin selon l'invention pourront être administrées, dans le cadre de cette méthode de vaccination, par les différentes voies d'administration proposées dans l'art antérieur pour la vaccination polynucléotidique et au moyen des techniques d'administration connues.

20 L'invention a encore pour objet la méthode de vaccination consistant à faire une primo-vaccination telle que décrite ci-dessus et un rappel avec une formule de vaccin selon l'invention.

Dans une forme de mise en oeuvre préférée du procédé selon 25 l'invention, on administre dans un premier temps, à l'animal, une dose efficace du vaccin de type classique, notamment inactivé, vivant, atténué ou recombinant, ou encore un vaccin de sous-unité de façon à assurer une primo-vaccination, et, de préférence dans un délai de 2 à 6 semaines, on assure 30 l'administration du vaccin polyvalent ou monovalent selon l'invention.

L'invention concerne aussi la méthode de préparation des formules de vaccin, à savoir la préparation des valences et leurs mélanges, telle qu'elle ressort de cette description.

35 L'invention va être maintenant décrite plus en détails à l'aide de modes de réalisation de l'invention pris en référence aux dessins annexés.

Liste des figures

Figure N° 1 : Plasmide pVR1012
Figure N° 2 : Séquence du gène BHV-1 ST gB
Figure N° 3 : Construction du plasmide pPB156
5 Figure N° 4 : Plasmide pAB087
Figure N° 5 : Plasmide pAB011
Figure N° 6 : Plasmide pAB012
Figure N° 7 : Plasmide pAB058
Figure N° 8 : Plasmide pAB059
10 Figure N° 9 : Plasmide pAB060
Figure N° 10 : Plasmide pAB071
Figure N° 11 : Plasmide pAB072

Liste des séquences SEQ ID N°

SEQ ID N° 1 : Séquence du gène BHV-1 gB (souche ST)
15 SEQ ID N° 2 : Oligonucléotide PB234
SEQ ID N° 3 : Oligonucléotide PB235
SEQ ID N° 4 : Oligonucléotide AB162
SEQ ID N° 5 : Oligonucléotide AB163
SEQ ID N° 6 : Oligonucléotide AB026
20 SEQ ID N° 7 : Oligonucléotide AB027
SEQ ID N° 8 : Oligonucléotide AB028
SEQ ID N° 9 : Oligonucléotide AB029
SEQ ID N° 10 : Oligonucléotide AB110
SEQ ID N° 11 : Oligonucléotide AB111
25 SEQ ID N° 12 : Oligonucléotide AB114
SEQ ID N° 13 : Oligonucléotide AB115
SEQ ID N° 14 : Oligonucléotide AB116
SEQ ID N° 15 : Oligonucléotide AB117
SEQ ID N° 16 : Oligonucléotide AB130
30 SEQ ID N° 17 : Oligonucléotide AB131
SEQ ID N° 18 : Oligonucléotide AB132
SEQ ID N° 19 : Oligonucléotide AB133

EXEMPLES**Exemple 1 : Culture des virus**

Les virus sont cultivés sur le système cellulaire approprié jusqu'à obtention d'un effet cytopathique. Les systèmes cellulaires à utiliser pour chaque virus sont bien connus de l'homme du métier. Brièvement, des cellules sensibles au virus utilisé, cultivées en milieu minimum essentiel de Eagle (milieu "MEM) ou un autre milieu approprié, sont inoculées avec la souche virale étudiée en utilisant une multiplicité d'infection de 1. Les cellules infectées sont alors incubées à 37°C pendant le temps nécessaire à l'apparition d'un effet cytopathique complet (en moyenne 36 heures).

Exemple 2 : Extraction des ADNs génomiques viraux

Après culture, le surnageant et les cellules lysées sont récoltées et la totalité de la suspension virale est centrifugée à 1000 g pendant 10 minutes à + 4°C pour éliminer les débris cellulaires. Les particules virales sont alors récoltées par ultracentrifugation à 400000 g pendant 1 heure à + 4°C. Le culot est repris dans un volume minimum de tampon (Tris 10 mM, EDTA 1 mM). Cette suspension virale concentrée est traitée par la protéinase K (100 µg/ml final) en présence de sodium dodecyl sulfate (SDS) (0,5% final) pendant 2 heures à 37°C. L'ADN viral est ensuite extrait avec un mélange de phénol/chloroforme, puis précipité avec 2 volumes d'éthanol absolu. Après une nuit à - 20°C, l'ADN est centrifugé à 10000 g pendant 15 minutes à + 4°C. Le culot d'ADN est séché, puis repris dans un volume minimum d'eau ultrapure stérile. Il peut alors être digéré par des enzymes de restriction.

Exemple 3 : Isolement des ARNs génomiques viraux

Les virus à ARN ont été purifiés selon les techniques bien connues de l'homme du métier. L'ARN viral génomique de chaque virus a été ensuite isolé en utilisant la technique d'extraction "thiocyanate de guanidium/phénol-chloroforme" décrite par P. Chomczynski et N. Sacchi (Anal. Biochem. 1987. 162. 156-159).

Exemple 4 : Techniques de biologie moléculaire

Toutes les constructions de plasmides ont été réalisées en utilisant les techniques standards de biologie moléculaire décrites par J. Sambrook *et al.* (*Molecular Cloning: A Laboratory Manual*. 2nd Edition. Cold Spring Harbor 5 Laboratory. Cold Spring Harbor. New York. 1989). Tous les fragments de restriction utilisés pour la présente invention ont été isolés en utilisant le kit "Geneclean" (BIO101 Inc. La Jolla, CA).

Exemple 5 : Technique de RT-PCR

10 Des oligonucléotides spécifiques (comportant à leurs extrémités 5' des sites de restriction pour faciliter le clonage des fragments amplifiés) ont été synthétisés de telle façon qu'ils couvrent entièrement les régions codantes des gènes devant être amplifiés (voir exemples spécifiques). La réaction de transcription inverse (RT) et l'amplification en chaîne par polymérase (PCR) ont été 15 effectuées selon les techniques standards (J. Sambrook *et al.* *Molecular Cloning: A Laboratory Manual*. 2nd Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York. 1989). Chaque réaction de RT-PCR a été faite avec un couple d'amplimères spécifiques et en prenant comme matrice l'ARN génomique viral extrait. L'ADN complémentaire amplifié a été extrait au 20 phénol/chloroforme/alcool isoamylrique (25:24:1) avant d'être digéré par les enzymes de restriction.

Exemple 6 : plasmide pVR1012

Le plasmide pVR1012 (Figure N° 1) a été obtenu auprès de Vical Inc. San 25 Diego, CA, USA. Sa construction a été décrite dans J. Hartikka *et al.* (*Human Gene Therapy*. 1996. 7. 1205-1217).

Exemple 7 : Construction du plasmide pPB156 (gène BHV-1 gB)

L'ADN génomique de l'herpèsvirus bovin BHV-1 (Souche ST) (Leung-Tack P. et 30 *al.* *Virology*. 1994. 199. 409-421) a été préparé selon la technique décrite dans l'exemple 2 a été digéré par *Bam*H1. Après purification, le fragment *Bam*H1-*Bam*H1 de 18 kpb a été cloné dans le vecteur pBR322 préalablement digéré par

BamHI, pour donner le plasmide pIBR-4-BamHI (22 kpb).

Le plasmide pIBR-4-BamHI a été ensuite digéré par *Sa*I pour libérer un fragment Sall-Sall de 6,6 kpb contenant le gène codant pour la glycoprotéine gB du BHV-1 (Figure N° 2 et SEQ ID N° 1). Ce fragment a été cloné dans le vecteur 5 pBR322, préalablement digéré par *Sa*I, pour donner le plasmide pIBR-6,6-Sall (10,9 kpb).

Le plasmide pIBR-6,6-Sall a été digéré par *Nhe*I et *Bg*II pour libérer un fragment *Nhe*I-*Bg*III de 2676 pb contenant le gène codant pour la glycoprotéine gB de l'herpèsvirus bovin (BHV-1) (fragment A).

10 Une réaction de PCR a été réalisée avec l'ADN génomique de l'herpèsvirus bovin (BHV-1) (Souche ST) et avec les oligonucléotides suivants:

PB234 (30 mer) (SEQ ID N° 2)

5' TTGTCGACATGGCCGCTCGCGGCCGGTGCTG 3'

PB235 (21 mer) (SEQ ID N° 3)

15 5'GCAGGGCAGCGGCTAGCGCGG 3'

pour isoler la partie 5' du gène codant pour la glycoprotéine gB du BHV-1.

Après purification, le produit de PCR de 153 pb a été digéré par *Sa*I et *Nhe*I pour isoler un fragment Sall-*Nhe*I de 145 pb (fragment B).

Les fragments A et B ont été ligaturés ensemble avec le vecteur pVR1012
20 (exemple 6), préalablement digéré avec *Sa*I et *Bam*HI, pour donner le plasmide pPB156 (7691 pb) (Figure N° 3).

Exemple 8 : Construction du plasmide pAB087 (gène BHV-1 gD)

Une réaction de PCR a été réalisée avec l'ADN génomique de l'herpèsvirus bovin (BHV-1) (Souche ST) (P. Leung-Tack et al. Virology. 1994. 199. 409-421), préparé selon la technique décrite dans l'exemple 2 et avec les oligonucléotides suivants:

AB162 (31 mer) (SEQ ID N° 4)

5'AAACTGCAGATGCAAGGGCCGACATTGGCCG 3'

30 AB163 (27 mer) (SEQ ID N° 5)

5'ATCTTGTACCATATGACCGTGGCGTTG 3'

pour amplifier la partie 5' du gène codant pour la glycoprotéine gD de

l'herpèsvirus bovin (BHV-1) (N° d'accès séquence GenBank = L26360) sous la forme d'un fragment PCR de 338 pb. Après purification, ce fragment a été digéré par *PstI* et *NdeI* pour isoler un fragment *PstI-NdeI* de 317 pb (fragment A).

5 Le plasmide pBHV001 (P. Leung-Tack *et al.* Virology. 1994. 199. 409-421.) a été digéré par *NdeI* et *StyI* pour libérer un fragment de 942 pb contenant la partie 3' du gène codant pour la glycoprotéine gD du BHV-1 (fragment B). Les fragments A et B ont été ligaturés ensemble avec le vecteur pVR1012 (exemple 6), préalablement digéré avec *PstI* et *XbaI*, pour donner le plasmide
10 pAB087 (6134 pb) (Figure N° 4).

Exemple 9 : Construction du plasmide pAB011 (gène BRSV F)

Une réaction de RT-PCR selon la technique décrite dans l'exemple 5 a été réalisée avec l'ARN génomique du virus respiratoire syncytial bovin (BRSV).

15 (Souche 391-2) (R. Lerch *et al.* Virology. 1991. 181. 118-131), préparé comme indiqué dans l'exemple 3, et avec les oligonucléotides suivants:
AB026 (33 mer) (SEQ ID N° 6)
5'AAAAACTGCAGGGATGGCGGCAACAGCCATGAGG 3'
AB027 (31 mer) (SEQ ID N° 7)
20 5'CGCGGATCCTCATTACTAAAGGAAAGATTG 3'
pour isoler le gène codant pour la glycoprotéine de fusion F (BRSV F) sous la forme d'un fragment PCR de 1734 pb. Après purification, ce fragment a été digéré par *PstI* et *BamHI* pour isoler un fragment *PstI-BamHI* de 1717 pb. Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 6), préalablement
25 digéré avec *PstI* et *BamHI*, pour donner le plasmide pAB011 (6587 pb) (Figure N° 5).

Exemple 10 : Construction du plasmide pAB012 (gène BRSV G)

Une réaction de RT-PCR selon la technique décrite dans l'exemple 5 a été
30 réalisée avec l'ARN génomique du virus respiratoire syncytial bovin (BRSV) (Souche 391-2) (R. Lerch *et al.* J. Virology. 1990. 64. 5559-5569) et avec les oligonucléotides suivants:

AB028 (32 mer) (SEQ ID N° 8)

5'AAAAGTGCAGATGTCCAACCATAACCATC 3'

AB029 (35 mer) (SEQ ID N° 9)

5'CGCGGATCCCTAGATCTGTGATTGATTG 3'

5 pour isoler le gène codant pour la protéine G (BRSV G) sous la forme d'un fragment PCR de 780 pb. Après purification, ce fragment a été digéré par *Pst*I et *Bam*HI pour isoler un fragment *Pst*I-*Bam*HI de 763 pb. Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 6), préalablement digéré avec *Pst*I et *Bam*HI, pour donner le plasmide pAB012 (5634 pb) (Figure N° 6).

10

Exemple 11 : Construction du plasmide pAB058 (gène BVDV C)

Une réaction RT-PCR selon la technique décrite dans l'exemple 5 a été réalisée avec l'ARN génomique du virus de la diarrhée virale bovine (BVDV) (Souche Osloss) (L. De Moerlooze et al. J. Gen. Virol. 1993. 74. 1433-1438), préparé.

15 selon la technique décrite dans l'exemple 3 et avec les oligonucléotides suivants:

AB110 (35 mer) (SEQ ID N° 10)

5'AAAAGTGCAGATGTCCGACACAAAAGCAGAAGGGG 3'

AB111 (47 mer) (SEQ ID N° 11)

20 5'CGCGGATCCTCAATAAAATCATTCCACTGCGACTTGAAACAAAAC 3'
pour amplifier un fragment de 342 pb contenant le gène codant pour la protéine de capsidé C du virus BVDV. Après purification, le produit de RT-PCR a été digéré par *Pst*I et *Bam*HI pour donner un fragment *Pst*I-*Bam*HI de 324 pb.
Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 6), préalablement
25 digéré avec *Pst*I et *Bam*HI, pour donner le plasmide pAB058 (5183 pb) (Figure N° 7).

Exemple 12 : Construction du plasmide pAB059 ("gène" BVDV E1)

Une réaction RT-PCR selon la technique décrite dans l'exemple 5 a été réalisée
30 avec l'ARN génomique du virus de la diarrhée virale bovine (BVDV) (Souche Osloss) (L. De Moerlooze et al. J. Gen. Virol. 1993. 74. 1433-1438) et avec les oligonucléotides suivants:

AB114 (32 mer) (SEQ ID N° 12)

5'ACGCGTCGACATGAAGAAACTAGAGAAAGCCC 3'

AB115 (33 mer) (SEQ ID N° 13)

5'CGCGGATCCTCAGCCGGTTGCAAATGGGAG 3'

5 pour isoler la séquence codant pour la protéine E1 du virus BVDV sous la forme d'un fragment PCR de 1381 pb. Après purification, ce fragment a été digéré par *Sa*I et *Bam*HI pour donner un fragment *Sa*I-*Bam*HI de 1367 pb.
Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 6), préalablement digéré avec *Sa*I et *Bam*HI, pour donner le plasmide pAB059 (6236 pb) (Figure 10 N° 8).

Exemple 13 : Construction du plasmide pAB060 ("gène" BVDV E2)

Une réaction RT-PCR selon la technique décrite dans l'exemple 5 a été réalisée avec l'ARN génomique du virus de la diarrhée virale bovine (BVDV) (Souche 15 Osloss) (L. De Moerlooze *et al.* J. Gen. Virol. 1993. 74. 1433-1438) et avec les oligonucléotides suivants:

AB116 (36 mer) (SEQ ID N° 14)

5'ACGCGTCGACATGACGACTACTGCATTCTGGTATG 3'

AB117 (33 mer) (SEQ ID N° 15)

20 5'CGCGGATCCTCATTGACGTCCCGAGGTCATTTG 3'
pour isoler la séquence codant pour la protéine E2 du virus BVDV sous la forme d'un fragment PCR de 1252 pb. Après purification, ce fragment a été digéré par *Sa*I et *Bam*HI pour donner un fragment *Sa*I-*Bam*HI de 1238 pb.
Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 6), préalablement 25 digéré avec *Sa*I et *Bam*HI, pour donner le plasmide pAB060 (6107 pb) (Figure N° 9).

Exemple 14 : Construction du plasmide pAB071 (gène BPIV HN)

Une réaction de RT-PCR selon la technique décrite dans l'exemple 5 a été 30 réalisée avec l'ARN génomique du virus parainfluenza bovin de type 3 (PI3 = BPIV) et avec les oligonucléotides suivants:

AB130 (33 mer) (SEQ ID N° 16)

5' TTTGTCGACATGGAATATTGGAAACACACAAAC 3'
AB131 (33 mer) (SEQ ID N° 17)
5' TTTGGATCCTTAGCTGCAGTTTCGGAACCTTC 3'
pour isoler le gène codant pour la glycoprotéine HN du BPIV (séquence du gène
5 HN déposée par H. Shibuta en 1987. N° d'accès de la séquence sur GenBank
= Y00115) sous la forme d'un fragment PCR de 1737 pb. Après purification,
ce fragment a été digéré par *Sa*/I et *Bam*H/I pour isoler un fragment *Sa*/I-BamH/I
de 1725 pb. Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 6),
préalablement digéré avec *Sa*/I et *Bam*H/I, pour donner le plasmide pAB071
10 (6593 pb) (Figure N° 10).

Exemple 15 : Construction du plasmide pAB072 (gène BPIV F)

Une réaction de RT-PCR selon la technique décrite dans l'exemple 5 a été
réalisée avec l'ARN génomique du virus parainfluenza bovin de type 3 (PI3 =
15 BPIV) et avec les oligonucléotides suivants:
AB132 (30 mer) (SEQ ID N° 18)
5' TTTGTCGACATGATCATCACAAACACAATC 3'
AB133 (30 mer) (SEQ ID N° 19)
5' TTTGGATCCTCATTGTCTACTTGTTAGTAC 3'
20 pour isoler le gène codant pour la protéine F du BPIV (séquence du gène F
déposée par H. Shibuta en 1987. N° d'accès de la séquence sur GenBank =
Y00115) sous la forme d'un fragment PCR de 1641 pb. Après purification, ce
fragment a été digéré par *Sa*/I et *Bam*H/I pour isoler un fragment *Sa*/I-BamH/I de
1629 pb. Ce fragment a été ligaturé avec le vecteur pVR1012 (exemple 6),
25 préalablement digéré avec *Sa*/I et *Bam*H/I, pour donner le plasmide pAB072
(6497 pb) (Figure N° 11).

Exemple 16 : Préparation et purification des plasmides

Pour la préparation des plasmides destinés à la vaccination des animaux, on
30 peut utiliser toute technique permettant d'obtenir une suspension de plasmides
purifiés majoritairement sous forme superenroulée. Ces techniques sont bien
connues de l'homme de l'art. On peut citer en particulier la technique de lyse

alcaline suivie de deux ultracentrifugations successives sur gradient de chlorure de césum en présence de bromure d'éthidium telle que décrite dans J. Sambrook et al. (*Molecular Cloning: A Laboratory Manual*. 2nd Edition. Cold Spring Harbor Laboratory. Cold Spring Harbor. New York. 1989). On peut se 5 référer également aux demandes de brevet PCT WO 95/21250 et PCT WO 96/02658 qui décrivent des méthodes pour produire à l'échelle industrielle des plasmides utilisables pour la vaccination. Pour les besoins de la fabrication des vaccins (voir exemple 17), les plasmides purifiés sont resuspendus de manière à obtenir des solutions à haute concentration (> 2 mg/ml) compatibles avec 10 le stockage. Pour ce faire, les plasmides sont resuspendus soit en eau ultrapure, soit en tampon TE (Tris-HCl 10 mM; EDTA 1 mM, pH 8,0).

Exemple 17 : Fabrication des vaccins associés

Les divers plasmides nécessaires à la fabrication d'un vaccin associé sont 15 mélangés à partir de leurs solutions concentrées (exemple 16). Les mélanges sont réalisés de telle manière que la concentration finale de chaque plasmide corresponde à la dose efficace de chaque plasmide. Les solutions utilisables pour ajuster la concentration finale du vaccin peuvent être soit une solution NACI à 0,9 % , soit du tampon PBS.

20 Des formulations particulières telles que les liposomes, les lipides cationiques, peuvent aussi être mises en oeuvre pour la fabrication des vaccins.

Exemple 18 : Vaccination des bovins

Les bovins sont vaccinés avec des doses de 100 µg, 250 µg ou 500 µg par 25 plasmide. Les injections sont réalisées à l'aiguille par voie intramusculaire soit au niveau du muscle *gluteus*, soit au niveau des muscles du cou. Les doses vaccinales sont administrées sous des volumes compris entre 1 et 5 ml.

REVENDICATIONS

5 1. Formule de vaccin bovin contre la pathologie respiratoire des bovins, comprenant au moins trois valences de vaccin polynucléotidique comprenant chacune un plasmide intégrant, de manière à l'exprimer *in vivo* dans les cellules hôtes, un gène d'une valence de pathogène respiratoire bovin, 10 ces valences étant choisies parmi le groupe consistant en virus herpès bovin, virus respiratoire syncitial bovin, virus de la maladie des muqueuses et virus parainfluenza de type 3, les plasmides comprenant, pour chaque valence, un ou plusieurs des gènes choisis parmi le groupe consistant en gB et gD pour le 15 virus herpès bovin, F et G pour le virus respiratoire syncitial bovin, E2, C + E1 + E2 et E1 + E2 pour le virus de la maladie des muqueuses, HN et F pour le virus parainfluenza de type 3.

20 2. Formule de vaccin selon la revendication 1, caractérisée en ce qu'il comporte les quatre valences de vaccin polynucléotidique.

25 3. Formule de vaccin selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend les gènes gB et gD du virus herpès bovin, dans le même plasmide ou dans des plasmides différents.

4. Formule selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend les gènes F et G du virus respiratoire syncitial bovin, dans le même plasmide ou dans des plasmides différents.

30 5. Formule de vaccin selon la revendication 1 ou 2, caractérisée en ce que le plasmide pour le virus de la maladie des muqueuses comprend le gène E2.

35 6. Formule de vaccin selon la revendication 1 ou 2, caractérisée en ce que, pour la valence virus parainfluenza de type 3, elle comprend le gène HN dans un plasmide ou l'ensemble des gènes codant pour HN et F dans le même plasmide ou dans des plasmides différents.

7. Formule de vaccin selon l'ensemble des revendications

1 à 6.

8. Formule de vaccin selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'il comprend de 10 ng à 1 mg, de préférence de 100 ng à 500 µg plus 5 préférentiellement encore de 1 µg à 250 µg de chaque plasmide.

9. Utilisation d'un ou de plusieurs plasmides tels que décrits dans l'une quelconque des revendications 1 à 8, pour la fabrication d'un vaccin destiné à vacciner les bovins primo-vaccinés au moyen d'un premier vaccin choisi dans le groupe 10 consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, vaccin recombinant, ce premier vaccin présentant le ou les antigène(s) codé(s) par le ou les plasmide(s) ou antigène(s) assurant une protection croisée.

10. Kit de vaccination regroupant une formule de vaccin 15 selon l'une quelconque des revendications 1 à 8 et un vaccin choisi dans le groupe consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, vaccin recombinant, ce premier vaccin présentant l'antigène codé par le vaccin polynucléotidique ou un antigène assurant une 20 protection croisée, pour une administration de ce dernier en primo-vaccination et pour un rappel avec la formule de vaccin.

11. Formule de vaccin selon l'une quelconque des revendications 1 à 8, accompagnée d'une notice indiquant que cette formule est utilisable en rappel d'un premier vaccin 25 choisi dans le groupe consistant en vaccin entier vivant, vaccin entier inactivé, vaccin de sous-unité, vaccin recombinant, ce premier vaccin présentant l'antigène codé par le vaccin polynucléotidique ou un antigène assurant une protection croisée.

30

35

1 / 13

Figure N° 1

2 / 13

1 ATGGCCGCTCGCGCGGTGCTGAACCGCGCCGGGCCGGAGACGGTCGGCGAGGACAGCGT
 1 Met Ala Ala Arg Gly Gly Ala Glu Arg Ala Ala Gly Ala Gly Asp Gly Arg Arg Gly Gln Arg

 64 CGTCATCTACGACCAGGACGTGTTCTCGCTGCTCTACGGGTCTGCAGCGCCTGGCGCCGGC
 22 Arg His Leu Arg Pro Gly Arg Val Leu Ala Ala Leu Arg Gly Pro Ala Ala Pro Gly Ala Gly

 127 CGGGCGCCGCCGCGCTAGCCGCTGCCCTGCTATGGCGACGTGGGCCCTGCTGCTGGCGCCGGC
 43 Gly Ala Arg Ala Ala Leu Ala Ala Leu Leu Trp Ala Thr Trp Ala Leu Leu Ala Ala

 190 CCCGGCCGGGGCGACCGCGACAACGCCCGGCCCCGGCCGGAGAGGGCCGGAGGCCG
 64 Pro Ala Ala Gly Arg Pro Ala Thr Thr Pro Pro Ala Pro Pro Glu Glu Ala Ala Ser Pro

 253 CGCCCCCCCAGCGAGCCCCAGCCCCCGGCCCCGACGGGACGCCAGCCCCGACAAC
 85 Ala Pro Pro Ala Ser Pro Ser Pro Pro Gly Pro Asp Gly Asp Asp Ala Ala Ser Pro Asp Asn

 316 ACCACAGACGTGCGCGCCGCTCCGGCTCGCGCAGGGGGGGAAAATCGCGCTTCTTC
 106 Ser Thr Asp Val Arg Ala Ala Leu Arg Leu Ala Gln Ala Ala Gly Glu Asn Ser Arg Phe Phe

 379 GTGTCCCCGCCGCCCTCGGGCGCCACGGTGTTCCGGCTCGGCCCGGCCGTGCCCTGAG
 127 Val Cys Pro Pro Ser Gly Ala Thr Val Val Arg Leu Ala Pro Ala Arg Pro Cys Pro Glu

 442 TACGGGCTGGCGGAACTACACGGAGGGCATCGGCGTCATTACAAGGAGAACATCGCGCCG
 148 Tyr Gly Leu Gly Arg Asn Tyr Thr Glu Gly Ile Gly Val Ile Tyr Lys Glu Asn Ile Ala Pro

 505 TACACGTTCAAGGCCTACATTACAAAAACGTGATCGTGAACGACCTGGCGGGCAGCACG
 169 Tyr Thr Phe Lys Ala Tyr Ile Tyr Lys Asn Val Ile Val Thr Thr Thr Trp Ala Gly Ser Thr

 568 TACGGCCGATTACAAACCACTACACGGACCGCGTCCCCGTGGCATGGCGAGATCACGGAC
 190 Tyr Ala Ala Ile Thr Asn Gln Tyr Thr Asp Arg Val Pro Val Gly Met Gly Glu Ile Thr Asp

 631 CTGGTGGACAAGAAGTGGCGCTGCCCTTCGAAAGCCGAGTACCTGCCAGGGGGCGAAGGTG
 211 Leu Val Asp Lys Lys Trp Arg Cys Leu Ser Lys Ala Glu Tyr Leu Arg Ser Gly Arg Lys Val

 694 GTGCCCTTGACCGCGACGACGACCCCTGGAGGGCGCCGCTGAAGCTGGCGGGCTGAGCGCG
 232 Val Ala Phe Asp Arg Asp Asp Pro Trp Glu Ala Pro Leu Lys Pro Ala Arg Leu Ser Ala

 757 CCGGGGGTGGGGGCTGGCACACGACGGACCATGTGTACACGGCGCTGGCTGGGGCTGGGGCTC
 253 Pro Gly Val Arg Gly Trp His Thr Thr Asp Asp Val Tyr Thr Ala Leu Gly Ser Ala Gly Leu

 820 TACCGCACGGCACCTCTGTGAACTGCATCGTGAAGAAGTGGAGGCCGCTCGGTGTACCCG
 274 Tyr Arg Thr Gly Thr Ser Val Asn Cys Ile Val Glu Glu Val Glu Ala Arg Ser Val Tyr Pro

 883 TACGACTCGTTCGCGCTCTCGACCGGGGACATTATCTACATGTCGCCCTTTACGGGCTGCC
 295 Tyr Asp Ser Phe Ala Leu Ser Thr Gly Asp Ile Ile Tyr Met Ser Pro Phe Tyr Gly Leu Arg

 946 GAGGGCGCGACCCGAGCACACCAGGCTACTCGCCGGAGCGCTTCCAGCAGATCGAGGGCTA
 316 Glu Gly Ala His Arg Glu His Thr Arg Leu Leu Ala Gly Ala Leu Pro Ala Asp Arg Gly Leu

 1009 CTACAAGCGCAGATGCCACGGGGCGCCCTCAAGGAGCCGGTCTCGCGGAACCTTTTGCG
 337 Leu Gln Ala Arg His Gly His Gly Pro Ala Pro Gln Gly Ala Gly Leu Ala Glu Leu Phe Ala

 1072 TACACAGCACGTGACGGTAGCCCTGGACTGGGTGCCAAGCGAAAAACGTGTGCTCGCTGGC
 358 Tyr Thr Ala Arg Asp Gly Ser Leu Gly Leu Gly Ala Gln Ala Gln Lys Arg Val Leu Ala Gly

Figure N° 2

3 / 13

1135 CAAGTGGCGCGAGGCGGACGAAATGCTGCGAGACGAGGCCGGAACTTCCGTTCACGGC
 379 ▶ GlnValAlaArgGlyGlyArgAsnAlaAlaArgArgGluProArgGluLeuProLeuHisGly
 1198 CCGCTCGCTCTCGGCACCTTGTCAGCGACAGCCACACCTTCGGCTTGCAGAATGTGCCGCT
 400 ▶ ProLeuAlaLeuGlyAspLeuCysGluArgGlnProHisLeuArgValAlaGluCysAlaAla
 1261 GAGCGACTGGGTGATCGAAGAGGCCGAGGCCGGTCAAGCCGCTTACCGCGACGCTACAA
 421 ▶ GluArgLeuArgAspArgArgGlyArgGlyArgGlyArgAlaArgLeuProArgAlaLeuGln
 1324 CGGCACGCACGTGCTGTCGGCAGCTGGAGACGTACCTGGCGCGGCCGTTGTGTCGCGC
 442 ▶ ArgHisAlaArgAlaValGlyGlnLeuGlyAspValProGlyAlaArgArgLeuCysArgGly
 1387 CTTCCGGCGATGCTCAGCAACGAGCTGCCAACGCTGTACCTGCAGGAGCTGGCGCGCTCGAAC
 463 ▶ LeuProAlaMetLeuSerAsnGluLeuAlaLysLeuTyrLeuGlnGluLeuAlaArgSerAsn
 1450 GGCACCGCTCGAGGGCTGTTGCCGCCGCCGCCGCCAACCCGGGCCCCGGCGCGCGCGCGC
 484 ▶ GlyThrLeuGluGlyLeuPheAlaAlaAlaProLysProGlyProArgArgAlaArgArg
 1513 GCGCCGCCGCTCTGCCGCCGCCGCCGCCAACGGCCCGCCGCGACGGCGACGCC
 505 ▶ AlaAlaProSerAlaProGlyGlyProGlyAlaAlaAsnGlyProAlaGlyAspGlyAspAla
 1576 GCGGGGGGGTGACTACCCTGAGCTCGGCCAGTTGGCCGCTGCAGTTCACCTACGACCAC
 526 ▶ GlyGlyArgValThrThrValSerSerAlaGluPheAlaAlaLeuGlnPheThrTyrAspHis
 1639 ATCCAGGACCACGTGAAACACCATGTTAGCCCTGGCACGTCCTGGTGCCTGCTGCAGAAC
 547 ▶ IleGlnAspHisValAsnThrMetPheSerArgLeuAlaThrSerTrpCysLeuLeuGlnAsn
 1702 AAGGAGCGGCCCTGTGGCCGAGGCCATAAGCTCAACCCAGGCCGGCGGCCAGCGCTGG
 568 ▶ LysGluArgAlaLeuTrpAlaGluAlaAlaLysLeuAsnProSerAlaAlaSerAlaAla
 1765 CTGGACCGCCGCCGCCGCATGTTGGGGACGCCATGGCGTGACGTACTGCCACGAG
 589 ▶ LeuAspArgArgAlaAlaAlaArgMetLeuGlyAspAlaMetAlaValThrTyrCysHisGlu
 1828 CTGGCCGAGGGCGCGTGTTCATCGAGAACTCGATGCGCGGCCGGCGCTTGCTACAGC
 610 ▶ LeuGlyGluGlyArgValPheIleGluAsnSerMetArgAlaProGlyGlyValCysTyrSer
 1891 CGCCCCGGCTCCTTGCCTCGGCAACGAGAGCGAGCCGGTGGAGGCCAGCTCGGGAG
 631 ▶ ArgProProValSerPheAlaPheGlyAsnGluSerGluProValGluGlyGlnLeuGlyGlu
 1954 GACAACGAGCTGCTGCCGGCCGAGCTCGTGGAGCCCTGCACCGCCAACCACAAAGCGCTAC
 652 ▶ AspAsnGluLeuLeuProGlyArgGluLeuValGluProCysThrAlaAsnHisLysArgTyr
 2017 TTCCGCTTGGCGGGACTACGTTGACTACGAGAACTACGGTACGTGGCGGGCTCCGCTC
 673 ▶ PheArgPheGlyAlaAspTyrValTyrTyrGluAsnTyrAlaTyrValArgArgValProLeu
 2080 GCGGAGCTGGAGGTGATCAGCACCTTGTGGACCTAAACCTCACGGTCTGGAGGCCGAG
 694 ▶ AlaGluLeuGluValIleSerThrPheValAspLeuAsnLeuThrValLeuGluAspArgGlu
 2143 TTCTTGGCCCTAGAAAGTGTACACGGCGCCGAGCTCGCCGACACGGTCTGCTCGACTACAGC
 715 ▶ PheLeuProLeuGluValTyrThrArgAlaGluLeuAlaAspThrGlyLeuLeuAspTyrSer
 2206 CAGATACACCUCCCCAACGCTGCCAGAGCTCCGGTTCTACGACATTGACCGCTCGTCAAG
 736 ▶ GluIleGlnArgArgAsnGlnLeuHisGluLeuArgPheTyrAspIleAspArgValValLys

Figure N° 2 (suite)

4 / 13

2269 ACGGACGGCAATATGCCCATCGCAGGGCTGCCAACTCTTCAGGGCTGGCCGGCT
 757 ▶ ThrAspGlyAsnMetAlaIleMetArgGlyLeuAlaAsnPhePheGlnGlyLeuGlyAlaVal
 2332 GGGCAGGCCGTGGGCACGGTGGTGCCTGGCGCCGGTGCCTCGACCGTGTCCGGC
 778 ▶ GlyGlnAlaValGlyThrValValLeuGlyAlaAlaGlyAlaAlaLeuSerThrValSerGly
 2395 ATCGCCTCGTTATTGCGAACCGTTCGCGCGCTGGCACGGGGCTGCTGGTGCCTCCCGGG
 799 ▶ IleAlaSerPheIleAlaAsnProPheGlyAlaLeuAlaThrGlyLeuLeuValLeuAlaGly
 2458 CTGGTGGCCGTTCTGGCGTACCGGTACATTCCCGCCTCCGAGCAACCCATGAAGGCG
 820 ▶ LeuValAlaAlaPheLeuAlaTyrArgTyrIleSerArgLeuArgSerAsnProMetLysAla
 2521 CTGTACCCGATCACCAACGCCGCGCTCAAGGACGACGCCGGGCGCAACCCCGGGCGAG
 841 ▶ LeuTyrProIleThrThrArgAlaLeuLysAspAspAlaArgGlyAlaThrAlaProGlyGlu
 2584 GAAGAGGAGGAGTTTGACCGGCCAAACTGGAGCAGGCCGGCGAGATGATCAAGTATATGTCG
 862 ▶ GluGluGluGluPheAspAlaAlaLysLeuGluGlnAlaArgGluMetIleLysTyrMetSer
 2647 CTCGTGTCAGCGGTCCAGCGCAAGAGCACAGGCCAAAAAGACCAACAAGGGCGGGCGCTG
 883 ▶ LeuValSerAlaValGluArgGlnGluHisLysAlaLysSerAsnLysGlyGlyProLeu
 2710 CTGGCGACCCGGCTGACCGAGCTCGCGCTTCGGCGGCCAGCCGGAGTACCGAGCTT
 904 ▶ LeuAlaThrArgLeuThrGlnLeuAlaLeuArgArgAlaProProGluTyrGlnGlnLeu
 2773 CCGATGGCCGACGTCGGGGGGCATGA
 925 ▶ ProMetAlaAspValGlyGlyAla...

Figure N° 2 (fin)

5 / 13

Figure N° 3

6 / 13

Figure N° 4

7 / 13

Figure N° 5

8 / 13

Figure N° 6

9 / 13

Figure N° 7

10 / 13

Figure N° 8

11 / 13

Figure N° 9

12 / 13

Figure N° 10

13 / 13

Figure N° 11