ESERCITAZIONE 1- Soluzioni

Sistemi di numerazione e cambiamenti di base

Algebre di Boole e funzioni logiche

2

Sistemi di numerazione e cambiamenti di base (1)

- 1) Convertire i seguenti numeri in binario, esadecimale e ottale:
 - a) 37
 - b) 148
 - c) 225
 - d) 1023

Sistemi di numerazione e cambiamenti di base (1) Soluzione (1)

Condurre numero in base 10 alla base k.

- 1) Dividere il numero per k, ottenendo così un quoziente Q e un resto R;
- 2) Memorizzare il resto R;
- 3) Ripetere i punti 1) e 2) fino a che non si ottiene un quoziente Q = 0;
- 4) Scrivere i resti nell'ordine inverso rispetto a quello della memorizzazione

Sistemi di numerazione e cambiamenti di base (1) Soluzione (2)

- (37)₁₀ in base 2
- \rightarrow 37 ÷ 2 = 18, R=1;
- \rightarrow 18 ÷ 2 = 9, R=0;
- $9 \div 2 = 4$, R=1;
- + 4 ÷ 2 = 2, R=0;
- $2 \div 2 = 1$, R=0;
- $1 \div 2 = 0, R=1.$

$$(37)_{10} = (100101)_2$$

Sistemi di numerazione e cambiamenti di base (1) Soluzione (3)

(37)₁₀ in base 8

$$\rightarrow$$
 37 ÷ 8 = 4, R=5;

$$\rightarrow$$
 4 ÷ 8 = 0, R=4.

Quindi,
$$(37)_{10} = (45)_8$$

 $(37)_{10}$ in base 16

$$\rightarrow$$
 37 ÷ 16 = 2, R=5;

$$2 \div 16 = 0$$
, R=2.

Quindi,
$$(37)_{10} = (25)_{16}$$

Sistemi di numerazione e cambiamenti di base (1) Soluzione (4)

b)

- (148)₁₀ in base 2
- 148 ÷ 2 = 74, R=0;
- 74 ÷ 2 = 37, R=0;
- \rightarrow 37 ÷ 2 = 18, R=1;
- \rightarrow 18 ÷ 2 = 9, R = 0;
- $9 \div 2 = 4$, R=1;
- $+ \div 2 = 2$, R=0;
- $2 \div 2 = 1$, R=0;
- $1 \div 2 = 0, R=1.$
- $(148)_{10} = (10010100)_2$

Sistemi di numerazione e cambiamenti di base (1) Soluzione (5)

(148)₁₀ in base 8

- 148 ÷ 8 = 18, R=3;
- \rightarrow 18 ÷ 8 = 2, R=2;
- \rightarrow 2 ÷ 8 = 0, R=2

Quindi, $(148)_{10} = (224)_8$

 $(148)_{10}$ in base 16

- $-148 \div 16 = 9$, R=4;
- $-9 \div 16 = 0, R=9$

Quindi,
$$(148)_{10} = (94)_{16}$$

Sistemi di numerazione e cambiamenti di base (1) Soluzione (6)

```
C
```

- (255)₁₀ in base 2
- = 255 ÷ 2 = 127, R=1;
- \rightarrow 127 ÷ 2 = 63, R=1;
- \rightarrow 63 ÷ 2 = 31, R=1;
- \rightarrow 31 ÷ 2 = 15, R = 1;
- 15 ÷ 2 = 7, R=1;
- $7 \div 2 = 3, R=1;$
- $3 \div 2 = 1, R=1;$
- $1 \div 2 = 0, R=1.$
- $(255)_{10} = (111111111)_2$

Sistemi di numerazione e cambiamenti di base (1) Soluzione (7)

(255)₁₀ in base 8

- $-255 \div 8 = 31, R=7;$
- \rightarrow 31 ÷ 8 = 3, R=7;
- \rightarrow 3 ÷ 8 = 0, R=3

Quindi, $(255)_{10} = (377)_8$

 $(255)_{10}$ in base 16

- \sim 255 ÷ 16 = 15, R=15;
- $-15 \div 16 = 0$, R=15

Quindi,
$$(255)_{10} = (FF)_{16}$$

Sistemi di numerazione e cambiamenti di base (1) Soluzione (8)

```
(1023)_{10} in base 2
          1023 \div 2 = 511, R=1;
          511 \div 2 = 255, R=1;
          255 \div 2 = 127, R=1:
         127 \div 2 = 63, R=1;
         63 \div 2 = 31, R=1;
         31 \div 2 = 15, R = 1:
         15 \div 2 = 7, R=1:
         7 \div 2 = 3, R=1;
          3 \div 2 = 1, R=1;
          1 \div 2 = 0, R=1.
(1023)_{10} = 11111111111)_{2}
```

Sistemi di numerazione e cambiamenti di base (1) Soluzione (9)

(1023)₁₀ in base 8

- \rightarrow 1023 ÷ 8 = 127, R=7;
- 127 ÷ 8 = 15, R=7;
- \rightarrow 15 ÷ 8 = 1, R=7;
- $-1 \div 8 = 0, R=1$

Quindi, $(1023)_{10} = (1777)_8$

 $(1023)_{10}$ in base 16

- \blacksquare 1023 ÷ 16 = 63, R=15;
- $-63 \div 16 = 3$, R=15;
- \rightarrow 3 ÷16 = 0, R=3.

Quindi, $(1023)_{10} = (3FF)_{16}$

Sistemi di numerazione e cambiamenti di base (1) Soluzione (10)

Attenzione: possono essere usate alcune accortezze per velocizzare questo procedimento. Esistono due modi molto semplici per trasformare un qualsiasi numero in base 2 in base 8 o 16.

Base 8

- Ogni tripletta di bit del numero in base
 Ogni quartetto di bit del numero in 2 corrisponde a una cifra nel numero in base 8, esattamente alla suo valore binario in base 10.
- \triangleright Esempio: (37)₁₀ = (100101)₂ = (?)₈ > 100 = 4 > 101 = 5

 $(37)_{10} = (100101)_2 = (45)_8$

Base 16

- base 2 corrisponde a una cifra nel numero in base 8, esattamente alla suo valore binario in base 10.
- \rightarrow Esempio: $(37)_{10} = (00100101)_2 = (?)_{16}$ \triangleright 0010 = 2 > 0101 = 5 $(37)_{10} = (100101)_2 = (25)_{16}$

Sistemi di numerazione e cambiamenti di base (2)

2) Qual è la rappresentazione decimale, ottale e esadecimale della stringa binaria 1001101001?

Sistemi di numerazione e cambiamenti di base (2) Soluzione (1)

Condurre numero in base k alla base 10.

- 1) Per ogni cifra i, in posizione j del numero in base k (con j=0 la cifra meno significativa):
 - 1) Ottenere il valore $n_i = i * k^j$
- 2) Sommare gli n_i per ottenere il valore
- 3) $\sum_{i=0}^{m} n_i$, con m numero di cifre del numero in base k

Sistemi di numerazione e cambiamenti di base (2) Soluzione (2)

```
(1001101001)_2 =
```

- $= 1*2^{0}+0*2^{1}+0*2^{2}+1*2^{3}+0*2^{4}+1*2^{5}+1*2^{6}+0*2^{7}+0*2^{8}+1*2^{9} =$
- $= 1+8+32+64+512=(617)_{10}$

Sistemi di numerazione e cambiamenti di base (2) Soluzione (3)

Usiamo lo stesso procedimento illustrato alla slide 12.

Base 8

$$(1001101001)_2 = (?)_8$$

 $(001001101001)_2 = (?)_8$

- > 001 = 1
- > 001 = 1
- ▶ 101 = 5
- > 001 = 1

$$(001001101001)_2 = (1151)_8$$

Base 16

$$(1001101001)^5 = (5)^{19}$$

- > 0010 = 2
- > 0110 = 6
- > 1001 = 9

$$(001001101001)_2 = (269)_{16}$$

Sistemi di numerazione e cambiamenti di base (3)

- 3) Convertire, se possibile, in decimale i seguenti numeri esadecimali:
 - BARBA
 - DECADE
 - CACCIA
 - EFFE

Sistemi di numerazione e cambiamenti di base (3) Soluzione (1)

Cifre per codifica esadecimale:

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- /

- 8
- 9
- A
- B
- (
- D
- E
- F

Se un numero presenta cifre diverse da quelle elencate, non è in rappresentazione esadecimale e non può essere convertito.

Sistemi di numerazione e cambiamenti di base (3) Soluzione (2)

- - BARBA
 - Contiene il carattere R, che non è una cifra della codifica esadecimale.
 - Non è convertibile.

Sistemi di numerazione e cambiamenti di base (3) Soluzione (2)

- b)
 - DECADE
 - È convertibile
 - \blacksquare (DECADE) $_{16} = (?)_{10}$
 - \blacksquare (DECADE)₁₆=14*16⁰+13*16¹+10*16²+12*16³+14*16⁴+13*16⁵=(14.600.926)₁₀

Sistemi di numerazione e cambiamenti di base (3) Soluzione (3)

- **C**
 - CACCIA
 - Contiene il carattere I, che non è una cifra della codifica esadecimale.
 - Non è convertibile.

Sistemi di numerazione e cambiamenti di base (3) Soluzione (3)

- d)
 - EFFE
 - È convertibile
 - \blacksquare (EFFE) $_{16} = (?)_{10}$
 - \blacksquare (EFFE)₁₆=14*16⁰+15*16¹+15*16²+14*16³=(61.438)₁₀

Sistemi di numerazione e cambiamenti di base (4)

4. Quanti numeri diversi si possono rappresentare con k cifre in base b?

Se ne possono rappresentare esattamente b^k, che corrispondono a tutte le possibili combinazioni delle *b* cifre in k modi diversi.

Algebre di Boole e funzioni logiche

25

Algebre di Boole e funzioni logiche (1)

- 1) Semplificare le seguenti espressioni logiche:
 - \rightarrow AB + A \overline{B} C
 - $\overline{A} \, \overline{B} CD + \overline{A} \overline{B} CD + ABCD$

Algebre di Boole e funzioni logiche (1) Soluzioni (1)

Un' algebra di Boole è una tripla (K, +, *), in cui K è un insieme e + e * sono delle operazioni tra gli elementi dell'insieme K. Per le operazioni, valgono le seguenti proprietà:

- 1. Commutativa
 - a+b=b+a, a*b=b*a
- 2. Associativa
 - a+(b+c)=(a+b)+c, a*(b*c)=(a*b)*c
- Assorbimento(1)
 - a+(a*b) = a, a*(a+b)=a
- 4. Assorbimento(2)
- 5. Distributiva
 - $a^*(b+c)=(a^*b)+(a^*c), a+(b^*c)=(a+b)^*(a+c)$

- 5. Idempotenza
 - a+a=a, a*a=a
- 6. Esistenza minimo e massimo
 - a*0 = 0, a+1=1
- 7. <u>Esistenza complemento</u>
 - $a^* \bar{a} = 0$, $a + \bar{a} = 1$
- 8. Esistenza elemento neutro
 - a+0=a, a*1=a
- 9. Doppia negazione
 - ightharpoonup $q=\bar{a}$

Algebre di Boole e funzioni logiche (1) Soluzioni (2)

Per semplificare, si intende una espressione equivalente a quella proposta in esercizio e non immediatamente riconducibile a una più semplice. Si tenga presente che la soluzione proposta non è l'unica. Applicheremo le proprietà appena illustrate.

Algebre di Boole e funzioni logiche (1) Soluzioni (3)

a)
$$AB + A \bar{B} C$$

$$\rightarrow$$
 = A(B + \bar{B} C) =

$$\rightarrow$$
 = A(B + C) =

$$\rightarrow$$
 = AB +AC

Algebre di Boole e funzioni logiche (1) Soluzioni (4)

b)
$$\bar{A} \bar{B} CD + \bar{A} \bar{B} CD + ABCD$$

$$= CD(\bar{A} \bar{B} + \bar{A}B + AB) =$$
 per (5)

$$= CD(\bar{A}(\bar{B} + B) + AB) =$$
 per (5)

$$-$$
 = CD($\bar{A}(1) + AB$) = per (7)

$$Arr$$
 = CD(\bar{A} + AB) = per (8)

$$= CD(\bar{A} + B) =$$
 per (4)

$$= \bar{A}CD + BCD$$
 per (5)

Algebre di Boole e funzioni logiche (2)

- 2) Dimostrare la validità o meno delle seguenti uguaglianze logiche:
 - a) AB+AC = A(B+C)
 - b) $\overline{A} + \overline{B} \overline{C} + BC = 1$
 - c) \overline{A} B+ \overline{B} +CB= \overline{B}
 - d) B+ \overline{B} B=0
 - e) $A = (ABC) + (A(\overline{BC}))$
 - f $\overline{(A+B+C+D)} = A B C D$

Algebre di Boole e funzioni logiche (2) Soluzioni (1)

Dimostrare l'equivalenza tra due espressioni booleane:

- 1. Utilizzare le proprietà per trasformare un'espressione nell'altra
- 2. Confrontare le tavole di verità delle due espressioni.

Anno accademico 2017/2018

Algebre di Boole e funzioni logiche (2) Soluzioni (2)

a) AB+AC = A(B+C)

Α	В	С	F	G
0	0	0	O	0
0	0	1	O	0
0	1	0	0	0
0	1	1	O	O
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Algebre di Boole e funzioni logiche (2) Soluzioni (3)

a) AB+AC = A(B+C)

Con F = AB + AC e G = A(B + C)

VERO

Le due espressioni hanno la stessa tabella di verità e, dunque, sono equivalenti.

Algebre di Boole e funzioni logiche (2) Soluzioni (4)

b) $\bar{A} + \bar{B} \bar{C} + BC = 1$

Α	В	С	F	G
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Algebre di Boole e funzioni logiche (2) Soluzioni (5)

b)
$$\bar{A} + \bar{B} \bar{C} + BC = 1$$

Con
$$F = \overline{A} + \overline{B} \overline{C} + BC e G = 1$$

FALSO

Le due espressioni non hanno la stessa tabella di verità e, dunque, <u>non</u> sono equivalenti.

Algebre di Boole e funzioni logiche (2) Soluzioni (6)

c) \bar{A} B+ \bar{B} +CB= \bar{B}

A	В	С	F	G	
0	0	0	1	1	
0	0	1	1	1	
0	1	0	0	0	
0	1	1	ı	O	
1	0	0	1	1	
1	0	1	1	1	
1	Ī	0	0	0	
1	1	1	ı	0	

Algebre di Boole e funzioni logiche (2) Soluzioni (7)

c)
$$\bar{A}$$
 B+ \bar{B} +CB= \bar{B}

Con
$$F = \overline{A} B + \overline{B} + CB \in G = \overline{B}$$

FALSO

Le due espressioni non hanno la stessa tabella di verità e, dunque, <u>non</u> sono equivalenti.

Algebre di Boole e funzioni logiche (2) Soluzioni (8)

d) B+
$$\bar{B}$$
 B=0

- \blacksquare B+ \bar{B} B=
- \blacksquare = B=

per (3)

■ != 0

FALSO

NON è possibile trasformare la prima espressione nella seconda.

Algebre di Boole e funzioni logiche (2) Soluzioni (9)

e)
$$A = (ABC) + (A\overline{(BC)})$$

$$\blacksquare$$
 (ABC) + (A $\overline{(BC)}$) =

$$\rightarrow$$
 = A(BC) + A $\overline{(BC)}$) = per (2)

$$= A(BC + \overline{(BC)}) =$$
 per (4)

$$-$$
 = A(1) = per (7)

VERO

È possibile trasformare la seconda espressione nella prima.

Algebre di Boole e funzioni logiche (2) Soluzioni (10)

f) $\overline{(A+B+C+D)}$ = A B C D

Α	В	С	D	F	G
0	0	0	0	1	1
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

Algebre di Boole e funzioni logiche (2) Soluzioni (11)

$$\overline{(A+B+C+D)} = A B C D$$

Con
$$F = \overline{(A+B+C+D)} \in G = A B C D$$

VERO

Le due espressioni hanno la stessa tabella di verità e, dunque, sono equivalenti.