Министерство образования Республики Беларусь Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники"

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

ОТЧЁТ

по лабораторной работе по дисциплине «Нейронно-сетевые модели» на тему

«Сжатие графической информации линейной рециркуляционной сетью»

Выполнил студенты группы 521703 Сидоров И. С.

Проверил

Ивашенко В. П.

МИНСК 2009 **Цель:** Ознакомиться, проанализировать и получить навыки реализации модели нейронной сети для задачи предсказания числовых последовательностей.

Задание: предсказание числовых последовательностей нейросетевыми методами.

Реализовать модель сети Джордана-Элмана с функцией активации гиперболичекого тангенса.

Ход работы:

Для решения задачи предсказания числовых последовательностей была создана нейросетевая модель обладающая следующими свойствами:

- 1. количество элементов которые влияют на предсказываемые значения, определяется количеством нейронов на входном слое (Input);
- 2. количество элементов значение которых вычисляется (предсказываются) за один ход, определяет количество нейронов на выходном слое (Result);
- 3. система имеет три вида слоёв: входной слой, выходной слой, промежуточные слои:
 - 1. входной слой умеет заполнять начальное значение данных в зависимости от передаваемого вектора входных данных;
 - 2. выходной слой умеет заполнять выходные значения ожидаемыми результатами, что позволяет простым образом в дальнейшем высчитывать ошибку на последнем слое;
 - 3. промежуточные слои умеют переносить значение ошибки с переднего слоя на задний;
- 4. система реализует два типа связей:
 - 1. связь между элементами контекстного слоя, и элементами повторяющего слоя, данная связь не обучается и всегда только передаёт значения;
 - 2. связь между элементами одного слоя и второго слоя (никакой слой не является контекстным по отношению к другому) такая связь подразумевает набор данных по преобразованию одного слоя в другой.

Дополнительные ограничения:

• начинать поиск заново если суммарная ошибка выше 1000, или текущее значение разности между выходными данными и предполагаемыми составило в 10 большее чем минимальное найденное значение такой разности.

Проводимые испытания и полученные результаты (значения входных и выходных параметров n=2, m=1):

Входные данные	Подобранные	Ожидаемые
	значения	результаты
Арифметическая прогрессия (k=1):	16.007	16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	17.016	17
1 2 3 4 3 0 7 8 9 10 11 12 13 14 13	18.024	18
	19.024	19
	20.008	20
	20.966	21
	21.890	22
Геометрическая посл-сть (k=1.2);	5.140620	5.159
1.000000	6.092788	6.1917
1.200000	7.121988	7.43
1.44000	8.182919	8.916
1.728000		
2.073600		
2.488320		
2.985984		
3.583181		
4.299817		
Функция синуса.	0.000000	0.000000
0.000000	0.500092	0.500000
0.500000	0.866502	0.866000
0.866000	1.000668	1.000000
1.000000	0.865904	0.866000
0.866000	0.498325	0.500000
	-0.002990	0.000000
-0.866000	-0.503598	-0.500000
-0.500000	-0.869590	-0.866000
0.000000	-1.002509	-1.000000

Полученная система обладает следующими особенностями:

1. при работе с возрастающими или убывающими последовательностями (например арифметическая, геометрическая, квадратичная), процесс нахождения зависимости замедляется для последовательностей с большей скоростью изменения (роста);

- 2. при работе с ограниченными последовательностями (функция синуса, косинуса), время затраченное на нахождение зависит только от вводимых пользователем параметров (размер последовательности, размер окна);
- 3. можно отметить, что для более качественного предсказывания, требуется использовать как можно большее количество элементов последовательности, и как можно меньший размер окна; это позволяет уменьшать суммарную ошибку предсказываемых величин;

большее количество элементов обучающей последовательности позволяет снизить ошибку возникающую в результате накапливания значений на контекстных слоях;

меньший размер окна, позволяет минимизировать ошибку предсказываемых величин возникающую в результате округления функций обучающих связь контекстных и скрытого слоёв;

минимальный размер окна (1) не всегда лучший вариант потому, что некоторые последовательности подразумевают подбор функции, которая может высчитать следующее значение только из n предыдущих (где n может быть и 2, и 3 и более). Например функция задающая арифметическую последовательность (без дополнительных константных значений) будет иметь вид: f(n+2) = f(n+1) + f(n+1) - f(n). При этом функции зависимости от одного предыдущего значения (размер окна = 1) не существует.

Вывод:

В результате мы получили пример нейронной сети предсказывающей числовые последовательности.

Для лучшего результата следует использовать следующие правила:

- 1. размер окна должен быть минимальным (например 2);
- 2. модель лучше подбирает ограниченные последовательности;
- 3. значение суммарной ошибки требуется выставлять объективно минимальным (для этого можно сделать несколько предварительных тестов).