Critical Path

 The longest path from the start vertex to the finish vertex

- · The above network has two critical paths
- Length(0, 1, 4, 6, 8) = 18
- Length(0, 1, 4, 7, 8) = 18

Heap Sort Concept

- · Interpret the input list as a
- · Heapify the tree to form a max héap
- Popping pass
 - Pop the top (maximum) record
 - Heap size shrinks by one
 - Space next to the heap becomes unused
 - · Place the popped record at the
- Popping passes are continued until the heap becomes empty
- · Heap Sort is non-stable

Earliest Event/Activity Time

• The length of the longest path from the start vertex to a vertex

- Earliest event time(e₄) = 7 = 6 + 1
- Earliest activity time(a_7) = Earliest activity time(a_8^{\vee}) = 7
- Earliest event time(finish) = 18 = 6 + 1 + 11(9+2 or 7+4)
- Earliest event time(finish) = 18 longest path length(e4, finish) = 11 latest event time(e4) = 7 = 18 - 11

Heap Sort Detail Steps

Summary

	Worst	Average	
Insertion Sort	n²	n²	Fastest method when n is small (e.g., n<100) O(1) space Stable
Quick Sort	n²	nlogn	Fastest method in practice Require O(n²) time in the worst case Require O(log(n)) space Non-stable
Merge Sort	n·log(n)	n·log(n)	Require additional O(n) space Stable
Heap Sort	n·log(n)	n-log(n)	Require additional O(1) space Non-stable

Folding

- · Partition the key into several parts and add them together
 - · Two strategies: shift folding and folding at the boundary
- - k = 12320324111220 =
 - Shift folding

- h(k) = some middle r bits of the square of k
 - The number of bucket is equal to 2^r
- Example

6 3 8 1 5 4 2 7

II interpreted as

heapify the tree to

form a max heap

convert the heap

back to a list

12345678

k		k ²	h(k)
0	0	0000 0000	0
1	1	00 <u>00 00</u> 01	0
2	4	00 <u>00 01</u> 00	1
3	9	00 <u>00 10</u> 01	2
4	16	00 <u>01 00</u> 00	4
5	25	00 <u>01 10</u> 01	6
6	36	00 <u>10 01</u> 00	9
7	40	0011 0001	12

K			n(K)	
	8	64	01 <u>00 00</u> 00	0
	9	81	01 <u>01</u> 0001	4
	10	100	01 <u>10 01</u> 00	9
	11	121	01 <u>11 10</u> 01	14
	12	144	10 <u>01 00</u> 00	4
	13	169	10 <u>10</u> 1001	10
	14	196	11 <u>00 01</u> 00	1
	15	225	1110 0001	8

Please perform decision tree based algorithm analyses.

A. Please prove that any comparison-based algorithm requires log(N!) comparisons in the worst case to sort an N-element list. (5%)

Given N elements to sort, there are a total of NI possible outcomes. Therefore, the decision tree representation of any sorting algorithm must have NI outcomes, too. A decision tree of height k corresponds to at most 2^k outcomes. Therefore, the decision tree representation of sorting N elements must be at least of height log(NI). Any algorithm

must perform log(N!) comparisons to sort N elements in the worst case

Task	Required Time (Days)	Task	Required Time
Α	10	G	5
В	15	Н	10
С	5	1	15
D	20	J	10
E	10	K	15
F	15		

Tips for Preorder, Inorder, & Postorder

- Attach a point to each node · Draw the contour of the tree
 - postorder inorder

Inserting a Node into a Treaded Tree

Searching a Binary Search Tree (Recursive)


```
template <class K, class E>
pair<K, E>* BST<K, E> :: Get(const K& k)
    return rGet(root, k);
template <class K, class E>
pair<K, E>* BST<K, E> :: rGet(TreeNode <pair <K, E> >* p, const K& k)
   if (!p) return 0;
   if (k < p->data.first) return rGet(p->leftChild, k);
   if (k > p->data.first) return rGet(p->rightChild, k);
   return &p->data;
                                      It is correct to name the workhorse "Get"
  The two data members of an STL pair
                                      as the textbook does (because of function
  are named as "first" and "second"
                                      overloading). I change the name to "rGet"
                                      for clarity.
```

Spanning Tree -> Independent Cycles

- Introducing a nontree edge (v, w) into a spanning tree produces a cycle
- These cycles are independent
 - Each introduced nontree edge is not contained in any other cycle
 - We cannot obtain any of these cycles by taking a linear combination of the remaining cycles
 - (# of independent cycles) = (# edges) (# vertices 1)

Kruskal's Example

Prim's Example

Quick Sort Algorithm

Dijastra's Example

Topological Order

· A linear order of the vertices of a graph such that for any two vertices i and j, if i is a predecessor of j in the graph, then i precedes j in the linear ordering

- Note:
- Transitivity among >2 vertices
- Topology order between two vertices does not always imply their precedence in
- Two valid topological orderings (there are many of them)
 - C1, C2, C4, C5, C3, C6, C8, C7, C10, C13, C12, C14, C15, C11, C9 C4, C5, C2, C1, C6, C3, C8, C15, C7, C9, C10, C11, C12, C13, C14

template <class T> void QuickSort(T *a, const int left, const int right) sort a[left..right] if (left < right) { int & pivot = a[left]; int i = left; int j = right + 1; do j--; while (a[j] > pivot); //find a key \(\frac{6}{3} \) 2 1 5 do { i++; //find a key >pivot } while (i < j && a[i] <= pivot);</pre> if (i < j) swap (a[i], a[j]);</pre> while (i < j); swap (pivot, a[j]); //place the pivot between 2 lists QuickSort(a, left, j - 1); // recursion QuickSort(a, j + 1, right); // recursion

3 7 4 8 7 last swap place the pivot between the two sublists

(2) (1)

sublist

pivot sublist