Metamodeling for Bias Estimation of Biological

Reference Points

Nicholas Grunloh

March 21, 2023

5 1 Introduction

- introductory concepts (three parameter srr)
- lit review
- response level model $I_t = qB_te^{\epsilon}$ $\epsilon \sim N(0, \sigma^2)$

2 Methods

11

17

PT/Schaffer Model

• $\gamma = 2 \Rightarrow$ Schaffer model (Schaffer RP)

The three parameter PT family has a convenient form that includes, among others (Fox Jr., 1970; Rankin & Lemos, 2015), the logistic production function as a special case to form the Schaefer model. The Pella-Tomlinson production function is parameterized so that $\boldsymbol{\theta} = [r, K, \gamma]$ and the family takes the following form,

$$P(B; [r, K, \gamma]) = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{(\gamma - 1)} \right). \tag{1}$$

 γ is a parameter which breaks PT out of the 12 restrictive symmetry of the logistic curve. In the 13 special case of $\gamma = 2$ Eq (1) collapses back to the logistic curve, however in general $\gamma \in (1, \infty)$. The parameters r and K maintain the same interpretation as they do in the logistic production

The PT production function Figure 1: plotted across a variety of parameter values. The special cases of Logistic production is shown in black, and the left-leaning and right-leaning regiems are shown in blue and red respectively.

function. In Figure (11) PT recruitment is shown for a range of parameter values so as to 18 demonstrate the various recruitment shapes that can be achieved by PT recruitment. 19

While the form of the PT curve produces some limitations (cite), importantly the intro-20 duction of a third parameter allows enough flexibility to fully describe the space of reference 21 points used in management. To see this, the reference points are analytically derived for the 22 PT model below. 23

PT Reference Points

With B(t) representing biomass at time t, under PT production, the dynamics of biomass are defined by the following ODE,

$$\frac{dB}{dt} = \frac{rB}{\gamma - 1} \left(1 - \left(\frac{B}{K} \right)^{\gamma - 1} \right) - FB. \tag{2}$$

An expression for the equilibrium biomass is attained by setting Eq (2) equal to zero, and rearranging the resulting equation to solve for B. Thinking of the result as a function of F gives,

$$\bar{B}(F) = K \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{(\gamma - 1)}}.$$
 (3)

At this point it is convenient to notice that $\bar{B}(0) = K$. The expression for B^* is given by evaluating Eq (3) at F^* . To get an expression for F^* , the equilibrium yield is maximized with respect to F,

$$F^* = \operatorname*{argmax}_F \bar{B}(F). \tag{4}$$

In the case of PT production this maximization can be done analytically. In this case maximization can proceed by differentiating the equilibrium yield with respect to F as follows,

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{5}$$

$$\frac{d\bar{B}}{dF} = -\frac{K}{r} \left(1 - \frac{F(\gamma - 1)}{r} \right)^{\frac{1}{\gamma - 1} - 1}.$$
 (6)

Setting Eq (5) equal to 0, substituting $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$ by Equations (3) and (6) respectively, and solving for F produces the following expression for the fishing rate required to produce MSY,

$$F^* = \frac{r}{\gamma} \tag{7}$$

Plugging the above expression for F^* back into Eq (3) gives the following expression for biomass at MSY,

$$B^* = K \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}. (8)$$

The above derived expressions for $\bar{B}(0)$, B^* , and F^* can then be used to build a specific analytical form for the biological reference points in terms of only biological model parameters.

$$F^* = \frac{r}{\gamma} \qquad \frac{B^*}{\bar{B}(0)} = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}} \tag{9}$$

$$r = \gamma F^* \qquad \qquad \gamma = \frac{W\left(\frac{B^*}{\overline{B}(0)}\log\left(\frac{B^*}{\overline{B}(0)}\right)\right)}{\log\left(\frac{B^*}{\overline{B}(0)}\right)} \tag{10}$$

Above W is the Lambert product logarithm function. More details about this derivation, and the Lambert product logarithm, are given in Appendix (3).

$_{^{32}}$ 3 Appendix: Inverting $\frac{B^*}{\bar{B}(0)}$ and γ for the PT Model

For bevity let $\zeta = \frac{B^*}{\overline{B}(0)}$.

$$\zeta = \left(\frac{1}{\gamma}\right)^{\frac{1}{\gamma - 1}}$$

$$\zeta = \gamma \zeta^{\gamma}$$

$$\zeta = \gamma e^{\gamma \log(\zeta)}$$

$$\zeta \log(\zeta) = \gamma \log(\zeta) e^{\gamma \log(\zeta)}$$

The Lambert product logarithm, W, is defined as the inverse function of $z = xe^x$ such that x = W(z). Applying this definition allows for the isolation of γ .

$$\gamma \log(\zeta) = W(\zeta \log(\zeta))$$

$$\gamma = \frac{W(\zeta \log(\zeta))}{\log(\zeta)}$$
(11)

The Lambert product logarithm is a mulivalued function with a branch point at $-\frac{1}{e}$. The principal branch, $W_0(z)$, is defined on $z \in \left(-\frac{1}{e}, \infty\right)$, and the lower branch, $W_{-1}(z)$, is

- defined on $z \in \left(-\frac{1}{e}, 0\right)$. Taken individually, each respective branch is analytic, but cannot be expressed in terms of elementary functions.
- When $\zeta \in (0, \frac{1}{e})$ the solution of interest in Eq. (10) comes from W_0 . When $\zeta \to \frac{1}{e}$, the 37
- Fox Model emerges as $\gamma \to 1$. When $\zeta \in \left(\frac{1}{e}, 1\right)$ the solution of interest comes from W_{-1} . For 38
- the use case presented here, Eq. (10) is be interpreted as,

$$\gamma = \begin{cases}
\frac{W_0(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in \left(0, \frac{1}{e}\right) \\
\frac{W_{-1}(\zeta \log(\zeta))}{\log(\zeta)} & \zeta \in \left(\frac{1}{e}, 1\right)
\end{cases}$$
(12)

- Prager 2002, Figure (2). 40
- https://math.stackexchange.com/questions/3004835/is-the-lambert-w-function-analytic-41
- $if-not-everywhere-then-on-what-set-is-it-ana\ https://researchportal.bath.ac.uk/en/publications/algebraic-public$
- properties-of-the-lambert-w-function-from-a-result-of-r 43
- https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf 44

Continuous model formulation 45

- differential equation theory (uniqueness) 46
- chaos

36

- euler vs. Implicate (e.g. lsoda, etc.) 48
- a preface to regularity issues: identifiability, stiffness, and continuity. 49

Uniqueness, Continuity, and Identifiability 3 .0.2 50

- An important (and often overlooked) implementation detail is the solution to the ODE 51
- which defines the progression of biomass through time (See Eq(31)). As a statistical model 52
- it is of paramount importance that this ODE not only have a solution, but also that the
- solution be unique. Of primary concern, uniqueness of the ODE solution is necessary for the
- identifiability of the statistical model. 55
- If the form of $\frac{dB}{dt}$ is at least Lipschitz continuous, then the Cauchy-Lipschitz-Picard theo-56
- rem provides local existence and uniqueness of B(t). Recall from Eq(31) that $\frac{dB}{dt}$ is separated
- into a term for recruitment into the population, R(B), and a term for removals via catch, C.

For determining Lipschitz continuity of $\frac{dB}{dt}$, the smallest Lipschitz constant of $\frac{dB}{dt}$ will be the sum of the constants for each of the terms R(B) and C separately. Typically any choice of R(B) will be continuously differentiable, which implies Lipschitz continuity (since the set of continuous differentiable functions is a subset of the set of Lipschitz continuous functions). Thus, the assumed form of R(B) does not typically introduce continuity concerns, unlike some potential assumptions for C.

In practice C is determined by a series of observed, assumed known, catches. Catch observations are typically observed on a quarterly basis, but in practice may not be complete for every quarter of the modeled period. It is overwhelmingly common to discretize the ODE via Euler's method with integration step sizes to match the observation frequency of the modeled data. This is often convenient but can present several issues. This strategy often pushes the assumption of catch continuity under the rug, but for identifiability of the statistical model an implicit assumption of continuity of the catches is required. While mechanistically at the finest scale fishers must only catch discrete packets of biomass (i.e. individual fish), it is sensible to consider catches at the quarterly (or yearly) scale as accruing in a continuous way. Furthermore any assumption of continuity will be required to be at least Lipschitz continuous for the required regularity of the model.

Here I assume catches accrue linearly between observed catches. This assumption defines
the catch function as a piecewise linear function of time, with the smallest Lipschitz constant
for the catch term defined by the steepest segment of the catch function. This assumption
represents one of the simplest ways of handling catch, while retaining Lipschitz continuity
overall. Furthermore linearly interpolated catch is adequately parsimonious for the typical
handling of catches.

$_{2}$ 3.0.3 Integration and Stiffness

As previously mentioned, the overwhelming majority of implementations of population dynamics models discretize the ODE using Euler's method with the integration step sized fixed so as to match the observation frequency. In this setting we explore model parameterizations that explore the full extent of biologically relevant reference points. This exercise produces some combinations of parameters that result in numerically stiff ODEs. The concept of stiffness in ODEs is hard to precisely characterize (cite). Hairer and Wanner [5, p. 2] describe stiffness in the following pragmatic sense, "Stiff equations are problems for which explicit methods don't work". It is hard to make this definition more mathematically precise, but this is without a doubt a consistent issue for models parameterized so that ζ is greater than about $\frac{1}{2}$. Euler's method, as often implemented, is particularly poorly suited for these stiff regions of parameter space. In these stiff regions it is necessary to integrate the ODE with an implicate integration method.

Several of the most common implicate methods were tried including the Livermore Solver for ODEs (Isode), and the Variable Coefficient ODE Solver (vode) as implemented in the deSolve package of R (cite). The difference between implicate solvers is negligible, while most explicit methods result in wildly varying solutions to the ODE, and in still regions of parameter space explicate methods completely fail to represent the model as stated in the stiff regions of parameter space. Results shown here are computed using the Isode integration method since it runs relatively quickly and has a relatively smaller footprint in system memory.

Schnute/BH Model 3.1

The Schnute production function is a three parameter generalization of many of the most common two parameter production functions (Deriso, 1980; J. Schnute, 1985). It can be written in the following form, with parameters α , β , and γ ,

$$P_s(B; [\alpha, \beta, \gamma]) = \alpha B (1 - \beta \gamma B)^{\frac{1}{\gamma}}. \quad (13)$$

The BH and Logistic production functions arise when γ is fixed to -1 or 1 re- Figure 2: case as $\gamma \to 0$.

104

105

106

107

108 under a wide variety of data is of particular respectively. 109 interest due to the overwhelming popularity of the BH assumption in fisheries models. Since 110

Schnute production models can represent a quantifiably wide varienty of possible productivity 111 behaviours, they present an ideal simulation environment for inquiry of the relability of 112 inference under the BH assumption. 113

Under Schnute production, biomass dynamics evolve accourding to the following ODE,

$$\frac{dB}{dt} = P_s(B;\theta) - (M+F)B. \tag{14}$$

This equation largely takes the same form as previously described, except that P_s is the Schnute production function and natural mortality, M, is modeled explicatly here. Natural 115 mortality models the instantaneous rate of mortality from all causes outside of fishing. Ex-116 plicatly modeling natural mortality in this way is not only a typical assumption of fisheries 117 models, but is also key to the making RPs well defined over the relavant domain of γ .

The derivation of RPs under Eq. (14) follows a similar logic as under the PT model.

spectively, and the Ricker model is a limiting plotted across a variety of parameter values. The special cases of BH, Ricker, and Logistic Inference of BH productivity parameters production are shown in green, blue, and red

The Schnute production function

An expression for equilibrium biomass is attained by setting $\frac{dB}{dt} = 0$ and rearranging the resulting expression to solve for B

$$\bar{B}(F) = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M+F}{\alpha} \right)^{\gamma} \right). \tag{15}$$

The above expression quickly yields B_0 , B_{MSY} by evaluation at F = 0 and $F = F_{MSY}$ respectively,

$$B_0 = \frac{1}{\gamma \beta} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right) \tag{16}$$

$$\frac{B_{MSY}}{B_0} = \frac{1 - \left(\frac{M + F_{MSY}}{\alpha}\right)^{\gamma}}{1 - \left(\frac{M}{\alpha}\right)^{\gamma}}.$$
 (17)

Attaining an expression for F_{MSY} requires maximization of equilibrium yeild, $\bar{Y} = F\bar{B}(F)$, with respect to F. Analytically maximizing proceeds by differentiating \bar{Y} to produce

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{18}$$

$$\frac{d\bar{B}}{dF} = -\frac{1}{\beta} \left(\frac{\left(\frac{M+F}{\alpha} \right)^{\gamma}}{F+M} \right). \tag{19}$$

Setting $\frac{d\bar{Y}}{dF} = 0$, filling in the expressions for $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$, then rearranging to solve for F_{MSY} is less yielding here than it was in the case of the PT model. This proceedure falls short of providing an analytical solution for F_{MSY} directly in terms of θ , but rather shows that F_{MSY} must respect the following expression,

$$0 = \frac{1}{\gamma} - \left(\frac{1}{\gamma} + \frac{F_{MSY}}{F_{MSY} + M}\right) \left(\frac{F_{MSY} + M}{\alpha}\right)^{\gamma}.$$
 (20)

The lack of an analytical solution here is understood. J. T. Schnute and Richards (1998, pg. 519) specifically points out that F_{MSY} cannot be expressed analytically in terms of productivity parameters, but rather gives a partial analytical expression for the inverse relationship. Although parameterized slightly differently, J. T. Schnute and Richards (1998) derives expressions for α and β as a function of RPs and γ .

Since RPs are left without a closed form expression, computing RPs from productivity

124

parameters amounts to numerically solving the system formed by collecting the expressions (20), (16), and (17).

3.1.1 Simulation

127

For the purposed of simulation, it is not neccessary to completely know either of the precise relationships mapping RPs $\mapsto \theta$ or $\theta \mapsto$ RPs. Simulation only requires enough knowledge of these mappings to gather a list of (α, β, γ) tuples, for data generation under the Schnute model, and the corresponding RPs in some reasonable spacefilling design over RP space.

Similarly to (J. T. Schnute & Richards, 1998), solving expressions (20) and (16) for α and β as a function of RPs and γ yields a partial mapping from $(F_{MSY}, B_0) \mapsto (\alpha(\cdot, \gamma), \beta(\cdot, \cdot, \gamma))$. By further working with Eq. (17), to identify γ , the following system is obtained,

$$\alpha = (M + F_{MSY}) \left(1 + \frac{\gamma F_{MSY}}{M + F_{MSY}} \right)^{1/\gamma}$$

$$\beta = \frac{1}{\gamma B_0} \left(1 - \left(\frac{M}{\alpha} \right)^{\gamma} \right)$$

$$\frac{B_{MSY}}{B_0} = \frac{1 - \left(\frac{M + F_{MSY}}{\alpha} \right)^{\gamma}}{1 - \left(\frac{M}{\alpha} \right)^{\gamma}}.$$
(21)

For a population experienceing natural mortality M, by fixing F_{MSY} , B_0 , and $\frac{B_{MSY}}{B_0}$ the 132 above system can fully specify α and β for a given γ . Notice for a given γ a cascade of 133 closed form solutions for α and β can be obtained. First $\alpha(\gamma)$ can be computed, and then 134 $\beta(\alpha(\gamma), \gamma)$ can be computed. If $\alpha(\gamma)$ is filled back into the expression for $\frac{B_{MSY}}{B_0}$, the system 135 collapses into a single onerous expression for $\frac{B_{MSY}}{B_0}(\alpha(\gamma), \gamma)$. For bevity, define the function $\zeta(\gamma) = \frac{B_{MSY}}{B_0} (\alpha(\gamma), \gamma, F_{MSY}, M)$ based on Eq. (17). Inverting $\zeta(\gamma)$ for γ , and computing the cascade of $\alpha(\gamma)$, and then $\beta(\alpha(\gamma), \gamma)$, fully defines 138 the Schnute model for a given $(\frac{F_{MSY}}{M}, \frac{B_{MSY}}{B_0})$. However inverting ζ accuratly is extremely 139 difficult. Inverting ζ analytically is not feasible, and typical methods of numerically inverting 140 ζ are unstable and expensive. Rather than numerically invert precise values of $\zeta(\gamma)$, γ is 141 sampled so that the overall simulation design is space filling.

43 3 .1.2 Latin Hypercube Sampling

144

• a quick lit review of space filling designs

A Latin hypercube sample (LHS) of size n, in an m dimensional space, samples uniformly 145 among uniform grids of size n in each dimension of the design space. By intersecting the 146 grids of each dimension, n^m cells are produced, from which a total of n samples are taken. 147 Crutially only one sample is taken from a given element of each grid in each dimension so 148 as to reduce clumping of the n samples across the design space. 149 Letting \mathcal{F} and \mathcal{B} be equally spaced grids, of size n, on $\frac{F_{MSY}}{M} \in (0.25, 4)$ and $\frac{B_{MSY}}{B_0} \in (0.15, 0.7)$ 150 respectively, a LHS samples 1 point in n of the n^2 cells produced by $\mathcal{F} \times \mathcal{B}$. Given the structured relationship between the RPs and productivity parameters α , β , and γ , obtaining a 152 uniform LHS sample among $\mathcal{F} \times \mathcal{B}$ requires a tactful navigation of the system of equations 153 seen in Eq. (21). The LHS grid setup and rough sampling strategy can be seen in Figure 154 (3).155

Given B_0 , M, and F_{MSY} :

- 1) Draw $\gamma^* \sim \gamma | F_{MSY}, M$.
- 2) Compute $\frac{B_{MSY}}{B_0} = \zeta(\gamma^*)$
- 3) Compute $\alpha^* = \alpha(\gamma^*, F_{MSY}, M)$
- 4) Compute $\beta^* = \beta(\alpha^*, \gamma^*, M, B_0)$

Figure 3: (left) LHS grids. Intersecting \mathcal{F} and \mathcal{B} produces n^2 cells; a particular cell $\mathcal{F}_i \times \mathcal{B}_j$ is shown in grey. (right) An outline of the sampling proceedure for γ (and associated quantities) given B_0 , M, and F_{MSY} .

Since it is not practicle to invert $\zeta(\gamma)$, a uniform sample in $\frac{B_{MSY}}{B_0}$ can be obtained by modeling γ as a random variable, with realization γ^* , and thinking of $\zeta(\gamma)$ as its cumulatice distribution function (CDF). The aim is to model γ as an easily sampled random variable with a CDF that closely approximates ζ , so that $\zeta(\gamma^*) \dot{\sim} U(\zeta_{min}, 1)$ as closely as possible. There may be many good models for the distribution of γ , but in this setting the following distribution is very effective,

$$\gamma \sim \zeta_{min}\delta(\gamma_{min}) + t(\mu, \sigma, \nu)\mathbf{1}_{\gamma > \gamma_{min}}.$$
 (22)

Figure 4: $\zeta(\gamma)$ Plotted for $F_{MSY} = 0.1$ and M = 0.2. The point $(\gamma_{min}, \zeta_{min})$ shows the lowest biologically meaningful value of γ ; below which productivity is negative.

Above, t is the density of the three parameter location-scale family Student's t distribution with location μ , scale σ , and degrees of freedom ν . $\mathbf{1}_{\gamma>\gamma_{min}}$ is an indicator function that serves to truncate Student's t distribution at the lower bound γ_{min} . $\delta(\gamma_{min})$ is the dirac delta function evaluated at γ_{min} , which is scaled by the known value ζ_{min} ; this places probability mass ζ_{min} at the point γ_{min} . Since sampling from Student's t distribution is readily doable, sampling from a truncated Student's t mixture only requires slight modification.

Let T be the CDF of the modeled distribution of γ . Since the point $(\gamma_{min}, \zeta_{min})$ is known from the dynamics of the Schnute model at a given RP, full specification of Eq. (22) only requires determining the values for μ , σ , and ν which make T best approximate $\zeta(\gamma)$. Thus, the values of μ , σ , and ν are chosen by minimizing the L^2 distance between $T(\gamma)$ and $\zeta(\gamma)$.

$$[\hat{\mu}, \hat{\sigma}, \hat{\nu}] = \underset{[\mu, \sigma, \nu]}{\arg\min} \int_{\Gamma} \left(T(\gamma; \mu, \sigma, \nu) - \zeta(\gamma) \right)^2 d\gamma \tag{23}$$

```
Fitting the distribution T(\gamma|\hat{\mu}, \hat{\sigma}, \hat{\nu}) for
                                                                         Algorithm 1 LHS of size n on rectangle R.
166
                                                                          1: procedure LHS_n(R)
      use generating \gamma^* values at a specific F_{MSY}
167
                                                                                   Define n-grids \mathcal{F}, \mathcal{B} \in R
                                                                          2:
      and M releases the need to invert \zeta.
168
                                                                                   for each grid element i do
                                                                          3:
     T(\gamma|\hat{\mu},\hat{\sigma},\hat{\nu}), together with the structure in
169
                                                                                        Draw \frac{F_{MSY}}{M} \sim Unif(\mathcal{F}_i)
     Eq. (21), allows for the collection of an
                                                                          4:
170
                                                                                        Compute [\hat{\mu}, \hat{\sigma}, \hat{\nu}] given F_{MSY} \& M
                                                                          5:
     approximate LHS sample via the algorithm
171
                                                                                        while \mathcal{B}_j not sampled do
                                                                          6:
     seen in Algorithm (1).
172
                                                                                             Draw \gamma^* \sim T(\gamma | \hat{\mu}, \hat{\sigma}, \hat{\nu})
          \frac{F_{MSY}}{M} is drawn uniformly from \mathcal{F}_i. Con-
                                                                          7:
173
                                                                                             Compute \zeta^* = \zeta(\gamma^*)
     ditioning on the sample of F_{MSY}, and M,
                                                                          8:
174
                                                                                             Compute j such that \zeta^* \in \mathcal{B}_i
     T(\gamma|\hat{\mu},\hat{\sigma},\hat{\nu}) is fit and \gamma^* is sampled. \zeta^* is
                                                                          9:
175
                                                                                        end while
     then computed and placed into the appropri-
                                                                         10:
176
                                                                                        Compute \alpha^* = \alpha(\gamma^*, F_{MSY}, M)
     ate grid element \mathcal{B}_{j}. Given \gamma^{*}, the cascade
                                                                         11:
177
                                                                                        Compute \beta^* = \beta(\alpha^*, \gamma^*, M, B_0)
     \alpha(\gamma^*), and \beta(\alpha(\gamma^*), \gamma^*), can be computed.
                                                                         12:
178
                                                                                        Save (\frac{F_{MSY}}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*) in \mathcal{F}_i \times \mathcal{B}_j
                                                                         13:
      The algorithm continues until all of the de-
179
                                                                                   end for
     sign elements, (\frac{F_{MSY}}{M}, \zeta^*) \Leftrightarrow (\alpha^*, \beta^*, \gamma^*),
                                                                         14:
180
                                                                         15: end procedure
     have been computed for all i \in [1, ..., n].
181
```

182 3.1.3 Design Refinement

Since the behavior of RP inference, under misspecified models, will vary in yet-unkown ways, the exact sampling design density may be hard to know a'priori. Several factors, including the particular level of observation uncertainty, high variance (i.e. hard to resolve) features of the response surface, or simply "gappy" instanciations of the initial LHS design may necessitate adaptive design refinement, to accuratly describe RP biases. Given the tempermental relationship between RPs and productivity parameters in the Schnute model, a recursive refinement algorithm, that makes use of the previously described LHS routine, is developed.

Holes in the existing design are identified based on maximin design principles. That is to say, new design points are collected based on areas of the RP design space which maximizes

the minimum distance between all pairs of points in the current design.

$$d(\boldsymbol{x}, \boldsymbol{x'}) = \sqrt{(\boldsymbol{x} - \boldsymbol{x'})^T \boldsymbol{D}^{-1} (\boldsymbol{x} - \boldsymbol{x'})}$$

$$\boldsymbol{D} = \operatorname{diag} \left[\left(\max(\mathcal{F}) - \min(\mathcal{F}) \right)^2, \left(\max(\mathcal{B}) - \min(\mathcal{B}) \right)^2 \right]$$
(24)

Above, d is a scaled distance function that defines the distance between points in the differing scales of $\frac{B_{MSY}}{B_0}$ and $\frac{F_{MSY}}{M}$. \boldsymbol{D} is a diagonal matrix that measures the squared size of each axis of the domain for use normalizing distances to a common scale.

If X_n is the initial design, of size n, let x_a be the augmenting point which maximizes the minimum distance between all of the existing design points,

$$\boldsymbol{x_a} = \underset{\boldsymbol{x'}}{\operatorname{argmax}} \min\{d(\boldsymbol{x_i}, \boldsymbol{x'}) : i = 1, ..., n\}.$$
 (25)

The point x_a is used as an anchor for augmenting X_n . An additional $LHS_{n'}$ (via Algorithm (1)) is collected, adding n' design points, centered around x_a , to the overall design. In the LHS R is defined based on the square centered at x_a with side length $2d_a$, where $d_a = \min\{d(x_i, x_a) : i = 1, ..., n\}$, in the space defined by the metric d. $R_{(x_a, d_a)}$ is truncated by the limits of R_{full} . Since the design space has a nonlinear constraint. the calculation of x_a is truncated based on a convex hull defined by the existing samples in the overall design.

iterate until

201

$$X_n = LHS_n(R_{full}) \tag{26}$$

$$find (x_a, d_a) (27)$$

$$X_{n'} = LHS_{n'}(R_{(x_a, d_a)}) (28)$$

$$add X_{n'} to X_n (29)$$

3.2 Catch

202

It is known that the behavior of catch can effect inference on the productivity parameters (Hilborn & Walters, 1992). In this setting contrast refers to changes in the long term trends of index data. Figure (5, right) demonstrates an example of biomass that includes contrast induced by catch. It is not well understood how contrast may factor into inferential failure induced by model misspecification. A variety of catches are investigated.

Catch is parameterized so that F(t) can be controlled with respect to F^* . Recall that 208 catch is assumed to be proportional to biomass, so that C(t) = F(t)B(t). To control F(t)209 with respect to F^* , C(t) is specified by defining the quantity $\frac{F(t)}{F^*}$ as the relative fishing rate. 210 B(t) is defined by the solution of the ODE, and F^* is defined by the biological parameters of 211 the model, see Eq (40). By defining $\frac{F(t)}{F^*}$, catch can then be written as $C(t) = F^*\left(\frac{F(t)}{F^*}\right)B(t)$. 212 Intuitively $\frac{F(t)}{F^*}$ describes the fraction of F^* that F(t) is specified to for the current B(t). 213 When $\frac{F(t)}{F^*} = 1$, F(t) will be held at F^* , and the solution of the ODE brings B(t) into 214 equilibrium at B^* . For constant $\frac{F(t)}{F^*}$ biomass comes to equilibrium as an exponential decay 215 from K approaching B^* . When $\frac{F(t)}{F^*} < 1$, F(t) is lower than F^* and B(t) is pushed toward 216 $\bar{B} > B^*$. Contrarily, when $\frac{F(t)}{F^*} > 1$, F(t) is higher than F^* and B(t) is pushed toward 217 $\bar{B} < B^*$; the precise values of \bar{B} can be calculated from Eq (15).

Figure 5: (left) Relative fishing specified so as to induce contrast. (right) Population biomass and catch demonstrating contrast in a PT population with $F^* = 0.4$ and $\frac{B^*}{B(0)} = 0.6$.

In practice, catch is determined by a series of observed, assumed known, catches. Catch observations are typically observed on a quarterly (or yearly) basis, so that the ODE may be discretized via Euler's method with integration step sizes to match the observation frequency of the modeled data. In this case, catch is sampled as would be done in practice however, the simulation can encounter a variety of issues working with the naively discretized ODE.

As a result the ODE is integrated implicitly via the Livermore Solver (Radhakrishnan, 1993, lsode), and catch is linearly interpolated between sampled epochs.

- ?quantification of degrees of information? (avg curvature?)
- remake picture w/o PT references

228 4 Results

$_{229}$ 4 .1 PT/Schaffer

- region of chaotic fits due to model misspecification
- arrow plots
- RP break out plots with mechanism of failure

$_{233}$ 4 .2 Schnute/BH

Figure 6: Uniform Q-Q plot for sampled ζ against theoretical uniform quantiles.

Figure 7: Low Contrast/High Contrast Titles, unify the Legends (Only show one.), Matern to eliviate some smoothness wiggles

Figure 8: grid plot of production functions.)

5 Introduction

234

254

The most fundamental model in modern fisheries management is the surplus-production 235 model. These models focus on modeling population growth via nonlinear parametric ordi-236 nary differential equations (ODE). Key management quantities called reference points (RP) 237 are commonly derived from the ODE equilibrium equations and depend upon the parameter-238 ization of biomass production. Two-parameter parameterizations of the production function 239 have been shown to limit the theoretical domain of RPs (Mangel et al., 2013). The limited 240 RP-space of two parameter models are a major source of model misspecification for RPs 241 and thus induce bias in RP estimation. The behavior of RP estimation bias is not well understood and as a result often underappreciated. A metamodeling approach is developed 243 here to describe RP biases and explore mechanisms of model failure in the Schaefer model. 244 Data for a typical surplus-production model comes in the form of an index of abundance 245 through time which is assumed to be proportional to the reproducing biomass for the popu-246 lation of interest. The index is often observed alongside a variety of other known quantities, but at a minimum, each observed index will be observed in the presence of some known 248 catch for the period. 249

The observed indices are assumed to have multiplicative log-normal errors, and thus the following observation model arises naturally,

$$I_t = qB_t e^{\epsilon} \quad \epsilon \sim N(0, \sigma^2). \tag{30}$$

Above q is often referred to as the "catchability parameter"; it serves as the proportionality constant mapping between the observed index of abundance and biomass. σ^2 models residual variation. Biologically speaking q and σ^2 are often treated as nuisance parameters with the "biological parameters" entering the model through a process model on biomass.

Biomass is assumed to evolve as an ODE; in this case I focus on the following form,

$$\frac{dB}{dt} = P(B(t); \boldsymbol{\theta}) - C(t). \tag{31}$$

Here biomass is assumed to change in time by two processes, net production of biomass into

Figure 9: *left*: An observed series of index of abundance data for Namibian Hake from 1965 to 1987 (Hilborn & Mangel, 1997). *right*: The associated catch data for Namibian Hake over the same time period.

the population, and catches removing biomass from the population.

Firstly, the population grows through a production function, P(B). Production in this setting is defined as the net biomass increase due to all reproduction and maturation processes accounting for all naturally occurring sources of mortality other than the recorded fishing from humans. The production function is assumed to be a parametric function that relates the current biomass of the population to an aggregate production of biomass.

Secondly, the population decreases as biomass is removed due to catch, C(t). While catches (aka yields) are observable quantities (Pearson & Erwin, 1997), the model assumes that catch is proportional to biomass with the proportionality constant representing the fishing rate, F(t), so that C(t) = F(t)B(t). From a management perspective a major goal of the model is to accurately infer a quantity known as maximum sustainable yield (MSY). One could maximize simple yield at a particular moment in time (and only for that moment) by fishing all available biomass in that moment. This strategy is penny-wise but pound-foolish (not to mention ecologically devastating) since it doesn't leave biomass in the population to reproduce for future time periods. We seek to fish in a way that allows (or even encourages)

future productivity in the population. This is accomplished by maximizing the equilibrium level of catch over time. Equilibrium yield is considered by replacing the steady state biomass (\bar{B}) in the assumed form for catch, so that $\bar{C} = F\bar{B}(F)$, where indicates a value at steady state. Naturally the steady state biomass is a function of F; we will see a specific example of this in Section (6.2). MSY is found by optimizing $\bar{C}(F)$ with respect to F, and F^* is the fishing rate at MSY. Going forward let * decorate any value derived under the condition of MSY.

The canonical production model in fisheries is the Schaefer model. The Schaefer model is formed by choosing P to be logistic growth (Mangel, 2006) parameterized by $\theta = [r, K]$ so that the family of production functions takes the following form,

$$P(B; [r, K]) = rB\left(1 - \frac{B}{K}\right). \tag{32}$$

r is a parameter controlling the maximum reproductive rate of the population in the absence of competition for resources (i.e. the slope of production function at the origin). K is the so called "carrying capacity" of the population. In this context the carrying capacity can be formally stated as steady state biomass in the absence of fishing (i.e. $\bar{B}(0) = K$).

The logistic production function produces idealized parabolic recruitment with equilibrium quantities taking very simple forms that can be easily understood from the graphical construction seen in Figure (10). Positive recruitment is observed when $B \in (0, K)$. Due to the parabolic shape of the logistic production function it is straightforward to see that yield is maximized by fishing the stock down to B^* , where the stock attains its peak productivity. By symmetry it is clear that this peak occurs at $B^* = \frac{K}{2}$. The fishing rate required to hold the stock at MSY is $F^* = \frac{r}{2}$, which is half of the stock's maximum reproductive rate. MSY is then the product of F^* and B^* so that $MSY = \frac{rK}{4}$.

Fisheries are very often managed based upon reference points which serve as simplified heuristic measures of population behavior. The mathematical form of RPs depends upon the model assumptions through the production function. While a number of different RPs exist which describe the population in different (but related) ways, the most common RPs revolve around the concept of MSY (or robust ways of measuring MSY (Hilborn, 2010; Punt

Logistic SRR and Related Quantities

Figure 10:

The logistic production function in black plotted next to depictions of the key biological parameters and reference points. The slope at the origin (and thus r) is shown in blue, catch resulting in MSY in red, biomass at MSY in green, and K in purple at the right x-intercept. MSY is seen at the peak of the parabola, and is attained with a fishing rate of $\frac{r}{2}$ and biomass equilibrating to $\frac{K}{2}$.

et al., 2016)). Here the focus is primarily on the RPs F^* and $\frac{B^*}{\overline{B}(0)}$ for their pervasive use in modern fisheries (Mangel et al., 2013; Punt & Cope, 2019).

 F^* is the afore mentioned fishing rate which results in MSY. $\frac{B^*}{\overline{B}(0)}$ is the depletion of the stock at MSY. That is to say $\frac{B^*}{\overline{B}(0)}$ describes the fraction of the unfished population biomass that will remain in the equilibrium at MSY. In general $F^* \in \mathbb{R}^+$ and $\frac{B^*}{\overline{B}(0)} \in (0,1)$, however under the under the assumption of logistic production these quantities take the following form,

$$F^* = \frac{r}{2} \qquad \frac{B^*}{\bar{B}(0)} = \frac{1}{2} \tag{33}$$

so that $\left(F^*, \frac{B^*}{\overline{B}(0)}\right) \in \left(\mathbb{R}^+, \frac{1}{2}\right)$.

In current practice, production functions are typically chosen to depend only on two parameters. The Schaefer model as presented depends only on the biological parameters r and r, but other common two parameter choices of the production function are the Beverton-Holt (Beverton & Holt, 1957, BH) and Ricker (Ricker, 1954) curves. All of these two parameter production functions struggle similarly to model the full theoretical space of

RPs (Mangel et al., 2013).

332

The basis of the Schaefer model is ripe with debate (Kingsland, 1982), and the debate continues within modern fisheries modeling (Prager, 2002). On the one hand, Maunder (2003) argues that the Schaefer model is insufficient in large part due to the restriction it places on $\frac{B^*}{B(0)}$, at $\frac{1}{2}$, and further argues that the three parameter Pella-Tomlinson (PT) model (Pella & Tomlinson, 1969) should replace the Schaefer model to avoid biased parameter estimates. On the other hand, while Prager (2003) appreciates the limitations of the Schaefer model, he argues its usefulness as a well understood and simple model that has the ability to reasonably approximate dynamics in many data poor stocks.

The bias-variance trade-off (Ramasubramanian & Singh, 2017) makes it clear that the 312 addition of a third parameter in the production function will necessarily reduce estimation 313 bias. However the utility of this bias reduction is still under debate because the particular 314 mechanisms and behavior (direction and magnitude) of these biases for key management 315 quantities are not fully understood or described. Lee et al. (2012) provides some evidence 316 that estimation of productivity parameters, and thus RPs via (Mangel et al., 2013), are 317 dependent on biomass contrast as well as model specification. Conn et al. (2010) comes 318 to similar conclusions via calibration modeling techniques. Despite this understanding of 319 productivity estimation, the implications have not been extended to a joint description of 320 biases on the scale of management RPs. 321

Together the general behavior of the PT model and the simplicity of the Schaefer model make the PT/Schaefer pair an ideal setting for beginning to understand the consequences of model misspecification on the production function. In this study I consider the behavior of inference when data are simulated from the three parameter PT production model but fit with the two parameter Schaefer model.

The work begins with a derivation of RPs under the three parameter PT model. The parametric forms of RPs under the PT model are then inverted to develop a simulation setting for analyzing inference under the two parameter Schaefer model. Finally a Gaussian Process (GP) metamodel (Gramacy, 2020) is constructed for exploration and analysis of RP biases.

A key insight of this approach is that bias is considered broadly across RP-space to

uncover patterns and correlations between RPs. The GP metamodel is explicit about tradeoffs between RPs so as to inform the full utility of reducing bias, as well as to suggest mechanisms for understanding what causes bias. Further, the effect of contrast on estimation is considered together with model misspecification.

337 6 Methods

$_{ ext{\tiny 838}}$ 6 .1 $\,$ PT $\,$ Model

The three parameter PT family has a convenient form that includes, among others (Fox Jr., 1970; Rankin & Lemos, 2015), the logistic production function as a special case to form the Schaefer model. The Pella-Tomlinson production function is parameterized so that $\theta = [r, K, \gamma]$ and the family takes the following form,

$$P(B; [r, K, \gamma]) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K} \right)^{\gamma - 1}.$$
 (34)

 γ is a parameter which breaks PT out of the restrictive symmetry of the logistic curve. In the special case of $\gamma=2$ Eq (34) collapses back to the logistic curve, however in general $\gamma\in(1,\infty)$. The parameters r and K maintain the same interpretation as they do in the logistic production function. In Figure (11) PT recruitment is shown for a range of parameter values so as to demonstrate the various recruitment shapes that can be achieved by PT recruitment.

Figure 11: (left) PT production functions with parameters chosen so that MSY is consistent, but $\frac{B^*}{\overline{B}(0)}$ is less than $\frac{1}{2}$ (in red), greater than $\frac{1}{2}$ (in blue), or equal to $\frac{1}{2}$ (in black; logistic production function). (right) PT production functions over a range of γ values with the values of r and K fixed at 1 and 10,000 respectively.

While the particular form of how γ appears in PT still produces some limitations to the form of the production function, importantly the introduction of a third parameter allows enough flexibility to fully describe the space of reference points used in management. To see this, the reference points are analytically derived for the PT model below.

949 6 .2 PT Reference Points

354

With B(t) representing biomass at time t, under PT production, the dynamics of biomass are defined by the following ODE,

$$\frac{dB}{dt} = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K} \right)^{\gamma - 1} - FB. \tag{35}$$

An expression for the equilibrium biomass is attained by setting Eq (35) equal to zero, and rearranging the resulting equation to solve for B. Thinking of the result as a function of F gives,

$$\bar{B}(F) = K \left(1 - \left(\frac{F(\gamma - 1)}{r} \right)^{\frac{1}{(\gamma - 1)}} \right). \tag{36}$$

At this point it is convenient to notice that $\bar{B}(0) = K$. The expression for B^* is given by evaluating Eq (36) at F^* .

To get an expression for F^* , the equilibrium yield is maximized with respect to F,

$$F^* = \operatorname*{argmax}_F F\bar{B}(F). \tag{37}$$

In the case of PT production this maximization can be done analytically (however many three parameter production functions do not result in tractable analytical solutions). In this case maximization can proceed by differentiating the equilibrium yield with respect to F as follows,

$$\frac{d\bar{Y}}{dF} = \bar{B}(F) + F\frac{d\bar{B}}{dF} \tag{38}$$

$$\frac{d\bar{B}}{dF} = -\frac{K}{F(\gamma - 1)} \left(\frac{F(\gamma - 1)}{r}\right)^{\frac{1}{\gamma - 1}}.$$
(39)

Setting Eq (38) equal to 0, substituting $\bar{B}(F)$ and $\frac{d\bar{B}}{dF}$ by Equations (36) and (39) respectively, and then solving for F produces the following expression for the fishing rate required to produce MSY,

$$F^* = \frac{r}{\gamma - 1} \left(\frac{\gamma - 1}{\gamma}\right)^{\gamma - 1}.\tag{40}$$

Plugging the above expression for F^* back into Eq (36) gives the following expression for biomass at MSY,

$$B^* = \frac{K}{\gamma}. (41)$$

The above derived expressions for $\bar{B}(0)$, B^* , and F^* can then be used to build a specific analytical form for the biological reference points in terms of only biological model parameters.

$$F^* = \frac{r}{(\gamma - 1)} \left(\frac{\gamma - 1}{\gamma}\right)^{\gamma - 1} \qquad \frac{B^*}{\bar{B}(0)} = \frac{1}{\gamma}$$
 (42)

6.3 Simulation Study

Indices of abundance are simulated from the three parameter PT production model over a grid of F^* and $\frac{B^*}{B(0)}$ values. These PT data are then fit with a two parameter Schaefer model.

Generating simulated indices of abundance from the PT model requires inverting the relationship between $\left(F^*, \frac{B^*}{B(0)}\right)$, and (r, γ) . It is not generally possible to analytically invert this relationship for many three parameter production functions (Punt & Cope, 2019;

J. T. Schnute & Richards, 1998). Most three parameter production functions lead to RPs that require expensive numerical methods to invert; more over the numerical inversion pro-

cedure can often be unstable. That said, for the case of PT this relationship is analytically invertible, and leads to the following relationship

$$r = F^* \left(\frac{1 - \frac{B^*}{\bar{B}(0)}}{\frac{B^*}{\bar{B}(0)}} \right) \left(1 - \frac{B^*}{\bar{B}(0)} \right)^{\left(\frac{B^*}{\bar{B}(0)} - 1 \right)} \qquad \gamma = \frac{1}{\frac{B^*}{\bar{B}(0)}}. \tag{43}$$

Indices are generated under the following conditions. Data are simulated at each point 369 on the grid $\mathcal{F} \times \mathcal{B}$, with $F^* \in \mathcal{F}$ and $\frac{B^*}{\overline{B}(0)} \in \mathcal{B}$, where $\mathcal{F} = \{0.1, 0.2, ..., 0.7\}$ and $\mathcal{B} = \{0.1, 0.2, ..., 0.7\}$ 370 $\{0.2, 0.3, ..., 0.6\}$ as seen in Figure (12). These ranges of values for F^* and $\frac{B^*}{\overline{B}(0)}$ are selected to 371 include a wide range of values thought to reflect many commonly assessed fisheries. The red 372 X's in Figure (12) show four simulation locations where the Schaefer model is misspecified to 373 a large degree and will be considered in more detail in Section(7.1). For each $\left(F^*, \frac{B^*}{\overline{B}(0)}\right)$, the 374 associated pair (r, γ) are computed from Eq (43). Since K does not enter the RP calculation 375 its value is fixed arbitrarily at 10000. The value of q is fixed at a typically small value of 376 0.0005. σ is fixed at the relatively small value of 0.01 to focus specifically on the behavior of population parameters. These parameters fully specify the PT model for the purposes of 378 generating index data for each $\left(F^*, \frac{B^*}{\bar{B}(0)}\right)$ pair. 379

380

381

Reference Point Space 0 × Bmsy/B0 9.4 0 0.3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Fmsy

Figure 12: circles Open show the location of the simulation grid $\mathcal{F} \times \mathcal{B}$. The horizontal line shows the constrained space of RPs for the Schaefer model. The red X's indicated 4 simulation locations where Schaefer modelparticularly misspecified.

382 6.4 Catch

It is known that the behavior of catch can effect inference on the biological parameters 383 (Hilborn & Walters, 1992). In particular it is thought that catch can induce "contrast" in 384 index data so as to better inform r. In this setting contrast refers to changes in the long term 385 trends of index data. Figure (16, right) demonstrates an example of biomass that includes 386 contrast induced by catch. It is not well understood how contrast may factor into biases 387 induced by model misspecification. To investigate this a variety of catches are investigated. 388 Catch is parameterized so that F(t) can be controlled with respect to F^* . Recall that 389 catch is assumed to be proportional to biomass with the proportionality constant amounting 390 to the fishing rate, so that C(t) = F(t)B(t). To control F(t) with respect to F^* , C(t) is 391 specified by defining the quantity $\frac{F(t)}{F^*}$ as the relative fishing rate. B(t) is defined by the 392 solution of the ODE, and F^* is defined by the biological parameters of the model, see Eq. 393 (40). Thus by defining $\frac{F(t)}{F^*}$, catch can then be written as $C(t) = F^*\left(\frac{F(t)}{F^*}\right)B(t)$. 394 Intuitively $\frac{F(t)}{F^*}$ describes the fraction of F^* that F(t) is specified to for the current 395 B(t). When $\frac{F(t)}{F^*} = 1$, F(t) will be held at F^* , and the solution of the ODE brings B(t)396 into equilibrium at B^* . For constant $\frac{F(t)}{F^*}$ the Schaefer model comes to equilibrium as an 397 exponential decay from K approaching B^* . The relative fishing rate is defined on $[0,\infty)$; 398 when $\frac{F(t)}{F^*}$ < 1, F(t) is lower than F^* and B(t) is pushed toward $\bar{B} > B^*$. Contrarily, when 399 $\frac{F(t)}{F^*} > 1$, F(t) is higher than F^* and B(t) is pushed toward $\bar{B} < B^*$; the precise values of \bar{B} 400 can be calculated from Eq (36). 401 In practice, catch is determined by a series of observed, assumed known, catches. Catch 402 observations are typically observed on a quarterly (or yearly) basis, so that the ODE may be 403 discretized via Euler's method with integration step sizes to match the observation frequency 404 of the modeled data. In this case, catch is sampled as would be done in practice however, 405 the simulation can encounter a variate of issues working with the naively discretized ODE. 406 As a result the ODE is integrated implicitly via the Livermore Solver (Radhakrishnan, 1993, 407 lsode), and catch is linearly interpolated between sampled epochs.

409 6.5 Model Fitting

The goal of model fitting is to assess how the biological parameters of the two parameter Schaefer model behave under MLE inference when fit to PT data. Thus, let I_t be an observation of PT index data at time $t \in \{1, 2, 3, ..., T\}$. The observation model is log-normal such that,

$$I_t|q,\sigma^2,\boldsymbol{\theta} \sim LN(qB_t(\boldsymbol{\theta}),\sigma^2).$$
 (44)

For the Schaefer model $\theta = [r, K]$, and $B_t(\theta)$ is defined by the solution of the following ODE

$$\frac{dB}{dt} = rB\left(1 - \frac{B}{K}\right) - FB. \tag{45}$$

The I_t are assumed independent conditional on q, σ^2 , r, K and the ODE model for biomass. Thus the log likelihood can be written as

In this setting, q is fixed at the true value of 0.0005 to focus on the inferential effects

$$\log \mathcal{L}(q, \sigma^2, \boldsymbol{\theta}; I) = -\frac{T}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t} \log\left(\frac{I_t}{qB_t(\boldsymbol{\theta})}\right)^2.$$
 (46)

of model misspecification on biological parameters. σ^2 , r, and K are reparameterized into 411 the log scale as $log(\sigma^2)$, log(r), and log(K) and fit via MLE. σ^2 is allowed to be fit to 412 assess overall model fit. Reparameterization of the parameters into the log scale improves 413 the reliability of optimization in addition to facilitating the use of Hessian information for 414 parameter estimate standard errors. 415 Given that the biological parameters enter the likelihood via a nonlinear ODE, and further 416 the parameters themselves are related to each other nonlinearly, the likelihood function can 417 often be difficult to optimize. A hybrid optimization scheme is used to maximize the log 418 likelihood to ensure that a global MLE solution is found. The R package GA (Scrucca, 2013, 2017) is used to run a genetic algorithm to explore parameter space globally. Optimization occasionally jumps into the L-BFGS-B local optimizer to refine optima within a local mode. 421

The scheme functions by searching globally to iteratively improve hot starts for the local optimizer.

In Appendix A a profile likelihood method for estimating all of the parameters of the 424 model is derived. The profile likelihood technique greatly improves the reliability of local 425 optimizers when fitting the biological parameters alongside additional nuisance parameters. The catchability parameter q has the effect of rescaling biomass which can often function 427 similarly to the role of the carrying capacity parameter K. Thus, the structure of the 428 likelihood may confound q and K, and for some data these parameters may only be weakly 429 identifiable. Posing the model in a Bayesian context provides a convenient mechanism for 430 managing these weak identifiability issues. In a tactful Bayesian formulation q and σ^2 may then be marginalized out of the joint posterior to yield fast and reliable inference (Walters 432 & Ludwig, 1994). 433

434 6.6 Gaussian Process Metamodel

441

442

443

444

446

447

For assessing biological parameters over the simulated grid, as seen in Figure (12), a GP model is used as a flexible, stochastic interpolator over RP space. As previously established, in Section (6.5), the biological parameters of interest are the Schaefer model's log(r) and log(K) parameters. Since the estimates of these parameters are random variables, with variances given by the inverse of the observed fisher information, interpolation of MLEs requires paying additional attention to propagating estimates of uncertainty into the metamodel.

A GP is a stochastic process generalizing the normal distribution to an infinite dimensional analog. GPs are often specified primarily through the choice of a covariance function which defines the relationship between locations in an index set. Typically the index set is spatial for GPs, and in this setting the model is across the reference point space, $\left(F^*, \frac{B^*}{B(0)}\right)$, of the three parameter PT data generating model. A GP model implies an n dimensional multivariate normal distribution on the observations of the model and the covariance function fills out the covariance matrix for the observations.

Modeling the estimates of log(r) and log(K) with independent GP models is used to extend analysis of all major biological RP over the simulated grid. Let $\hat{\mu}$ be the maximum likelihood estimate (MLE) of either log(r) or log(K). Additionally let $\hat{\omega}$ be the inverted Hessian information of the log likelihood evaluated at $\hat{\mu}$.

Each grid location of the simulation produces a single fitted $\hat{\mu}_i$ at an associate $\left(F^*, \frac{B^*}{B(0)}\right)$ location with $i \in \{1, ..., n\}$. $\hat{\mu}$ is jointly modeled over the space of reference points as the following GP,

$$\mathbf{x} = \left(F^*, \frac{B^*}{\overline{B}(0)}\right)$$

$$\hat{\mu} = \beta_0 + \beta' \mathbf{x} + f(\mathbf{x}) + \epsilon$$

$$f(\mathbf{x}) \sim \text{GP}(0, \tau^2 R(\mathbf{x}, \mathbf{x}'))$$

$$\epsilon_i \sim \text{N}(0, \hat{\omega}_i). \tag{47}$$

The GP residual variation provides an ideal mechanism for propagating uncertainty from inference in the simulation step into the metamodel. $\hat{\omega}_i$ is the observed residual variation for the inferred value, $\hat{\mu}_i$. This mechanism down weights the influence of each $\hat{\mu}_i$ in proportion to the inferred sampling distribution uncertainty. This has the effect of smoothing the GP model in a way similar to the nugget effect (Gramacy & Lee, 2012).

Here R is the squared exponential correlation function.

$$R(\boldsymbol{x}, \boldsymbol{x'}) = \exp\left(\sum_{j=1}^{2} \frac{-(x_j - x_j')^2}{2\ell_j^2}\right)$$
(48)

R has an anisotropic separable form to allow for differing length scales in the F^* and $\frac{B^*}{B(0)}$ axes. The flexibility to model correlations separately in the different RP axes is key due to the differences in the extent of the RP domains marginally. ℓ_1 and ℓ_2 model the length scales for F^* and $\frac{B^*}{B(0)}$ respectively. The metamodel parameters β_0 , β , τ^2 , ℓ_1 and ℓ_2 are fit via MLE against the observations of $\hat{\mu}$ and $\hat{\omega}$ from simulation fits.

Predictive estimates of modeled quantities are obtained via kriging over intermediate values over RP space. Let *decorate any quantity that is derived for metamodel interpolation.

$$\check{\mu}(\check{s}) = \beta_0 + \boldsymbol{x}(\check{s})\boldsymbol{\beta} + R_{\ell}(\check{s}, s)R_{\ell}^{-1}(s, s) \left(\hat{\mu}(s) - (\beta_0 + \boldsymbol{x}(s)\boldsymbol{\beta})\right)$$
(49)

7 Results

- chaotic regions
- best hits from Schaffer
- Schnute
- arrow plot
- RP specific plots

While interpolation occurs in the space of either $\log(r)$ or $\log(K)$, these interpolated values are used to build interpolated estimates of major biological reference points. Using the interpolated values $\log(r)$ and $\log(K)$ the following transformation are applied to interpolate RP quantities under the Schaefer model,

$$\check{B}^* = \frac{\check{K}}{2} \qquad \check{F}^* = \frac{\check{r}}{2}. \tag{50}$$

Using these interpolated RP quantities, the bias induced by model misspecification is quantified by the following relative measure of bias, similar to a percent error calculation.

Relative Bias =
$$\frac{\mathring{RP} - RP}{RP}$$
 (51)

Above RP is a stand in for the true value of any of the biological reference points under PT data generation, and \check{RP} refers to the interpolated estimated RP quantity under the Schaefer model.

⁴⁷³ 7 .1 An MSY-Optimal Catch History

When F(t) is held constant at F^* , B(t) comes to equilibrium as an exponential decay from K to B^* . Understanding model misspecification bias is simplified in this setting due to the relative simplicity of B(t). However this simplicity is known to poorly inform estimates of r, and thus F^* , due to the limited range of the production function that is observed (Hilborn & Walters, 1992). This example is a "low contrast" setting.

Figure (13) shows the biases in F^* and $\frac{B^*}{B(0)}$ over the space of simulated RPs. The (top-479 right) panel of Figure (13) shows how data generated across a broad space of RPs are mapped 480 onto the limited space of the Schaefer line. Below the Schaefer line, RP estimates are biased 481 by over-estimating $\frac{B^*}{B(0)}$ and under-estimating F^* . Above the Schaefer line the vice-versa is 482 true; $\frac{B^*}{B(0)}$ is under-estimated and F^* is over-estimated. In the (left) and (bottom) panels of Figure (13) the bias in $\frac{B^*}{\overline{B}(0)}$ and F^* are shown component-wise; each panel showing the 484 same patterns, but focusing on only one component of the bias at a time. In these panels red 485 coloring indicates over-estimation of the RP and blue indicates under-estimation. Notice that 486 the region of RPs near the Schaefer line enjoy relatively low bias since model misspecification 487 is minor in this region. 488

Notice that under the Schaefer model B^* is necessarily half of K. Since $\frac{B^*}{\overline{B}(0)}$ is always under the Schaefer model, the bias in $\frac{B^*}{\overline{B}(0)}$ (as seen in Figure (13)) simply measures the distance from the data generating location vertically to the Schaefer line.

Figure 13: Heatplots showing the bias in RP estimation induced by model misspecification. In all cases the restricted RP-space of the Schaefer model is shown as a horizontal black line at $\frac{B^*}{B(0)} = 0.5$. (left) Relative bias in $\frac{B^*}{B(0)}$. (top-right) Bias in RP-space shown directionally. Arrows point from the location where data is generated, toward the location in on the Schaefer line where MLE projects. The intensity of color shows the absolute error as a distance in RP-space. (bottom) Relative bias in F^* .

Figure 14: A comparison of the true PT production function (in black) and the estimated logistic curve (in red) with 95% CI shown. The examples shown represent the four corners of maximum model misspecification in the simulated RP-space. Observed biomasses are plotted in the rug plots below the curves.

Figure (14) shows four of the most misspecified example production function fits as compared to the true data generating PT production functions. In the rug plots below each set of curves the observed biomasses demonstrate the exponential decay from K to B^* in each case. In particular, notice how only biomasses greater than the PT B^* are observed. Due to the leaning of the true PT curves, and the symmetry of the logistic parabola, the logistic curve only observes information about its slope at the origin from data observed on the right portion of the PT curves. Above the Schaefer line PT is steeper on the right of B^* than it is on the left, and so the the logistic curve over-estimates r, and thus F^* , for data generated above the Schaefer line. Below the Schaefer line the vice versa phenomena occurs. Below the Schaefer line PT is shallower to the right of B^* than it is on the left and so the logistic parabola estimate tends to under estimate F^* .

Figure 15: MLE Bias surfaces for B^* (left) and K (right) individually.

cost of K.

Figure (14) also gives some examples of the relative behavior of B^* and K. In Figure (13)

it is clear that the bias behavior of $\frac{B^*}{B(0)}$ is locked in a fixed pattern under the Schaefer model. Figure (14) indicates that the individual biases of B^* and K may behave quite differently. B^* appears to be estimated fairly accurately while K does not.

Figure (15) teases apart $\frac{B^*}{B(0)}$ into individual bias surfaces for B^* and K respectively. Interestingly B^* enjoys a large region of RP-space with relatively low bias. Given that B^* has relatively consistently low bias, K maintains the expected inverse relationship with $\frac{B^*}{B(0)}$ bias. Since the parabolic structure of the logistic function ties the ratio of B^* and $\bar{B}(0)$ to $\frac{1}{2}$, their is only one degree of freedom shared between B^* and $\bar{B}(0)$ so that their ratio is maintained at $\frac{1}{2}$. In this setting it appears that B^* estimation is largely conserved at the

7 .2 More Informative Catch Histories

Figure 16: (left) Relative fishing specified so as to induce contrast. (right) Population biomass and catch demonstrating contrast in a PT population with $F^* = 0.4$ and $\frac{B^*}{B(0)} = 0.6$.

The setting of constant relative fishing rate is a useful simplification for building understanding of the dynamics that induce bias, but in practice constant fishing rate is a somewhat oversimplified setting. Consider a hypothetical stock where fishing rate accelerates as technology and fishing techniques improve rapidly until management practices are applied. Figure (16) demonstrates this more realistic, while still idyllic, fishing behavior. This population is exposed to a variety of fishing rates, which induce contrast in the generated indices and allows the fitting model to observe a decrease in the population followed by a rebuild of the stock. This represents a "high contrast" setting that is widely thought to better inform growth rate parameters, such as r.

Figure (17) shows the relative bias surfaces for B^* and F^* under 45 epochs of data in the high contrast setting. On the one hand, notice the relative lack of bias in F^* over a large swath of RPs far from the Schaefer line. On the other hand, notice that bias in B^* increases here relative to the low contrast setting. The pattern of bias in B^* maintains a similar pattern, and overall scale, as the low contrast setting seen in Figure (15), however

Figure 17: MLE Bias surfaces for B^* (left) and F^* (right) with relative fishing rate as specified in Figure (16)

a smaller region of RP-space enjoys low bias here. Due to the expanded pattern of B^* bias here, as compared with the low contrast setting, and the constrained relationship with $\frac{B^*}{\overline{B}(0)}$, the bias surface for K maintains the same general inverse relationship with $\frac{B^*}{\overline{B}(0)}$.

If the data are augmented so that the fishing rate is held at F^* for an additional 45 time epochs (90 epochs total), so that slower growing stocks may observe more data near B^* , Figure (18) shows the updated bias surfaces. The scale of bias in B^* is reduced, but the general patterns of bias remains similar for both RPs. While the bias behavior of B^* estimates are diminished, F^* biases are generally magnified.

532

533

535

536

Figure 18: MLE Bias surfaces for B^* (*left*) and F^* (*right*) with relative fishing rate augmented with additional observations near equilibrium.

Discussion 8

537

559

560

561

565

Results presented here generally agree with what is known about estimating growth rate 538 parameters (Lee et al., 2012; Conn et al., 2010; Magnusson & Hilborn, 2007), in this case r, 539 and thus F^* . In the presence of contrast F^* estimation can enjoy very low bias even for a 540 wide range of poorly specified models; conversely in the absence of contrast F^* estimation 541 can suffer very large bias even for slightly misspecified models. In all cases when model 542 misspecification is removed, even with weakly informative data, F^* estimation is unbiased. 543 Model misspecification is thus a necessary but not sufficient condition for inducing bias. 544

While it is established that growth rate parameters require contrast to estimate, the 545 implications of these biases jointly across a variety of RPs have not received as much at-546 tention. When considering B^* alongside F^* in varying contrast environments, it becomes 547 clear that different data informs different parts of the production function differently. In 548 low contrast environments B^* is estimation is remarkably unbiased across all but the most 549 challenging instances of model misspecification. However in the presence of contrast, while 550 F^* enjoys better estimation, B^* estimation experiences substantial bias for only modestly 551 misspecified models. Further, by augmenting contrasting data with an additional period of 552 low contrast data this pattern begins to reverse with B^* bias receding toward more poorly 553 specified models and F^* bias encroaching toward only modestly misspecified models as seen 554 in Figure (18). 555

The behavior of bias in estimating B^* and F^* suggests that the limited parameter space 556 of the Schaefer model induces a trade off in estimating these parameters. In practice, when 557 the true model is not known and the Schaefer model is unlikely to be correctly specified, 558 one should at best expect to only estimate either B^* or F^* correctly depending on the particular degree of model misspecification. The observed contrast then serves to distribute the available information among B^* and F^* . Increasing the flexibility of the production function by moving toward curves with additional parameters could release these structural 562 limitations (Mangel et al., 2013). Punt and Cope (2019) considers a suite of possible three 563 parameter curves which could be used instead of current two parameter curves.

This study only explores the compatibility of the possible productivity shapes exhibited

by the PT and Schaefer models. While the PT and Schaefer models are instructive for a variety of dome shaped production behaviors, it is possible that under different modeling assumptions, for example BH production or age structured models, different bias patterns will emerge. Extending this work to be able to make claims in those settings is necessary for developing more generally extensible claims.

Given the role that catch plays in understanding where the production function is in-571 formed, it is clear that good estimates of catch are important for contextualizing modeling 572 inferences. While the production model treats catches as known without uncertainty, upon 573 inspection of Figure (9, right) this assumption is clearly suspect. Results presented here 574 only consider very deterministic catch histories. More work is needed to understand how 575 jittery catch may affect RP estimation. A smoothing model of catch may be preferable 576 for estimation, but results of this study suggest that even improvements to the contextual 577 understanding of catch will be important for interpreting model inferences correctly. 578

A Proposal: Productivity & Growth Extensions

The Deriso production function presents a convenient three parameter form that is capable of representing many of the most common two parameter production functions as special cases (Deriso, 1980). The BH and Logistic production functions arise when γ is fixed to -1 or 1 respectively, and the Ricker model is a limiting case as $\gamma \to 0$ (J. Schnute, 1985).

$$\frac{dB}{dt} = P(B; \theta) - (M + F)B$$

$$P(B; [\alpha, \beta, \gamma]) = \alpha B(1 - \beta \gamma B)^{\frac{1}{\gamma}}$$

Figure 19: The Deriso production function plotted across a variety of parameter values. The special cases of BH, Ricker, and Logistic production are shown in green, blue, and red respectively.

Using the Deriso model as a data generating model across a wide range of RP-space, similarly as described in Section (6.3), presents an ideal setting for extending the above study of RP biases across a broad range of productivity assumptions. Under the Deriso model inverting the relationship between RPs and model parameters is not fully analytically possible (J. T. Schnute & Richards, 1998). Numerical inversion of the nonlinear system seen in Eq (52) is required for determining parameter values for data generation. Notice for a given γ value, α and β can be solved analytically.

$$\frac{B^*}{\bar{B}(0)} = \frac{\left(\frac{\alpha}{M+F^*}\right)^{\frac{1}{\gamma}} - 1}{\left(\frac{\alpha}{M}\right)^{\frac{1}{\gamma}} - 1}$$

$$\alpha = (M+F^*) \left[1 - \frac{1}{\gamma} \left(\frac{F^*}{M+F^*}\right)\right]^{-\gamma}$$

$$\beta = \frac{1}{\gamma \bar{B}(0)} \left(1 - \left(\frac{\alpha}{M}\right)^{\frac{1}{\gamma}}\right)$$
(52)

$$P_{\mathrm{BH}}(B; [\alpha, \beta, -1]) = \frac{\alpha B}{(1 + \beta B)}$$

$$\frac{B^*}{\bar{B}(0)} = \frac{1}{\frac{F^*}{M} + 2}$$

Figure 20: The restricted RP-space under the BH production function.

Inference under the BH model is of particular interest due to its overwhelming popularity in stock assessment. Similar to the limited RP-space of the Schaefer model the two parameter BH model also has a limited RP-space as shown in Figure (20). While the BH constrained RP space is more complicated than the Schaefer model, analogy to the results obtained under the PT-Schaefer simulation setting, and the flexible GP metamodel, should expedite the analysis of BH inference.

Individual Growth

591

593

594

595

596

Models that include individual growth and maturity dynamics are another important prac-598 tical setting for extending the understanding of how productivity model misspecification can 590 bias RPs estimation. The Deriso-Schnute delay-difference (DD) model provides a compact 600 representation of simple age-structured dynamics (Deriso, 1980; J. Schnute, 1985, 1987). 601 While various modeling strategies may be considered for including effects of age-structure 602 in the population, the Deriso-Schnute DD model presents an ideal model for the simulation 603 setting presented here. The compact representation of the Deriso-Schnute DD model via 604 delay-differential equations accounts for the effects of individual growth and maturity while 605 maintaining relatively fast computation. 606

The DD model is derived directly from an assumption of Von Bertalanffy growth (Von Bertalanffy, 1938) in weight, as seen in Eq (56). In this setting Von Bertalanffy growth relates individual age to individual weight by assuming linear instantaneous growth (as parameterized by the growth parameters κ and w_{∞}). The DD model expands the idea of biomass production into the processes of recruitment, individual growth, and maturity. This formu-

lation separates the number of individuals in the population (N) from the biomass of the population (B). The dynamics of N, as seen in Eq (54), are very similar to that of the Deriso production model presented above, however the role of the production function is now filled by a "recruitment" function which describes how new individuals are added to the numbers equation. The B dynamics, can then be seen to describe biomass by an account of 1) biomass of new recruits, 2) the net growth of existing biomass, and 3) biomass lost due to mortality. The model accounts for maturity as knife-edge maturity at the instant an individual reaches age a_0 .

$$\frac{dB}{dt} = \underbrace{w(a_0)R(B;\theta)}^{\text{Recruitment Biomass}} + \underbrace{\kappa\left[w_{\infty}N - B\right]}^{\text{Net Growth}} - \underbrace{(M+F)B}^{\text{Mortality}}$$
(53)

$$\frac{dN}{dt} = R(B;\theta) - (M+F)N \tag{54}$$

$$R(B; [\alpha, \beta, \gamma]) = \alpha B(t - a_0) (1 - \beta \gamma B(t - a_0))^{\frac{1}{\gamma}}$$

$$(55)$$

$$w(a) = w_{\infty}(1 - e^{-\kappa a}) \tag{56}$$

For the purpose of inference the parameters κ, w_{∞}, a_0 and M are typically fixed at values determined by the population of study. Thus the primary inferential goal of the DD model is 608 again focused on learning the recruitment parameters. Using the Deriso-Schnute DD model 609 as a data generating model across a wide range of RP-space, and fitting those data under a 610 BH restriction of the DD model, further extends the simulation study of RP bias to include 611 the effects of individual growth.

Summary 613

607

612

My dissertation will include extensions of the metamodeling analysis of RP bias, as pre-614 sented in Sections (5 - 8), in the context of the Deriso-BH simulation setting. Additionally 615 my dissertation will include further extensions into the analysis of RP bias under model misspecification of the DD model's recruitment function. The Deriso production/recruitment 617 function presents numerical challenges that require careful numerics and a different handling 618 of the simulation design, but allows for extensions into all of the most widely used models 619 of productivity. Furthermore, the DD model allows for an efficient extension of results into 620

 $_{\rm 621}~$ to context of maturity and growth dynamics.

References

- Beverton, R. J., & Holt, S. J. (1957). On the dynamics of exploited fish populations (Vol. 11).

 Springer Science & Business Media.
- Conn, P. B., Williams, E. H., & Shertzer, K. W. (2010). When can we reliably estimate the productivity of fish stocks? Canadian Journal of Fisheries and Aquatic Sciences, 67(3), 511–523.
- Deriso, R. B. (1980, February). Harvesting Strategies and Parameter Estimation for an Age-Structured Model. Canadian Journal of Fisheries and Aquatic Sciences, 37(2), 268–282. Retrieved 2020-05-13, from https://www.nrcresearchpress.com/doi/abs/
- 10.1139/f80-034 doi: 10.1139/f80-034
- DeYoreo, M. (2012). Integrating catchability out of the likelihood.
- 633 Fox Jr., W. W. (1970). An Exponential Surplus-Yield Model for Optimizing
- Exploited Fish Populations. Transactions of the American Fisheries So-
- ciety, 99(1), 80-88. Retrieved 2022-02-17, from https://onlinelibrary
- .wiley.com/doi/abs/10.1577/1548-8659%281970%2999%3C80%3AAESMF0%3E2
- 637 .O.CO%3B2 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1577/1548-
- 8659%281970%2999%3C80%3AAESMFO%3E2.0.CO%3B2) doi: 10.1577/
- 1548-8659(1970)99 < 80:AESMFO > 2.0.CO;2
- Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and optimization for the applied sciences. Chapman and Hall/CRC.
- Gramacy, R. B., & Lee, H. K. (2012). Cases for the nugget in modeling computer experiments. Statistics and Computing, 22(3), 713–722. (Publisher: Springer)
- Hilborn, R. (2010). Pretty good yield and exploited fishes. *Marine Policy*, 34(1), 193–196. (Publisher: Elsevier)
- Hilborn, R., & Mangel, M. (1997). The Ecological Detective: Confronting Models with Data.
 Princeton University Press.
- Hilborn, R., & Walters, C. J. (1992). Quantitative Fisheries, Stock Assessment: Choice
 Dynamics, and Uncertainty Chapman and Hall. New York.
- 650 Kingsland, S. (1982). The refractory model: the logistic curve and the history of population

- ecology. The Quarterly Review of Biology, 57(1), 29–52. (Publisher: Stony Brook Foundation, Inc.)
- 653 Lee, H.-H., Maunder, M. N., Piner, K. R., & Methot, R. D. (2012, August). Can
- steepness of the stock-recruitment relationship be estimated in fishery stock as-
- sessment models? Fisheries Research, 125-126, 254-261. Retrieved 2022-01-29,
- from https://linkinghub.elsevier.com/retrieve/pii/S0165783612001099 doi:
- 10.1016/j.fishres.2012.03.001
- Magnusson, A., & Hilborn, R. (2007). What makes fisheries data informative? Fish and
- Fisheries, 8(4), 337–358. (Publisher: Wiley Online Library)
- Mangel, M. (2006). The Theoretical Biologist's Toolbox: Quantitative Methods for Ecology and Evolutionary Biology..
- Mangel, M., MacCall, A. D., Brodziak, J., Dick, E., Forrest, R. E., Pourzand, R., & Ralston,
- S. (2013, April). A perspective on steepness, reference points, and stock assessment.
- Canadian Journal of Fisheries and Aquatic Sciences, 70(6), 930–940. Retrieved 2019-
- 665 07-03, from https://www.nrcresearchpress.com/doi/10.1139/cjfas-2012-0372
- doi: 10.1139/cjfas-2012-0372
- Maunder, M. N. (2003). Is it time to discard the Schaefer model from the stock assessment scientist's toolbox? Fisheries Research, 61(1-3), 145–149.
- Pearson, D. E., & Erwin, B. (1997). Documentation of California's commercial market sampling data entry and expansion programs.
- Pella, J. J., & Tomlinson, P. K. (1969). A generalized stock production model. *Inter-*American Tropical Tuna Commission Bulletin, 13(3), 416–497.
- ⁶⁷³ Prager, M. H. (2002). Comparison of logistic and generalized surplus-production models
- applied to swordfish, Xiphias gladius, in the north Atlantic Ocean. Fisheries Research,
- 58(1), 41–57. (Publisher: Elsevier)
- 676 Prager, M. H. (2003, March). Reply to the Letter to the Editor by Maunder. Fisheries
- Research, 61(1), 151-154. Retrieved 2022-01-30, from https://www.sciencedirect
- ors .com/science/article/pii/S0165783602002746 doi: 10.1016/S0165-7836(02)
- 679 00274-6
- 680 Punt, A. E., Butterworth, D. S., Moor, C. L. d., Oliveira, J. A. A. D., & Haddon, M. (2016).

```
Management strategy evaluation: best practices. Fish and Fisheries, 17(2), 303–334.
681
         Retrieved 2018-12-13, from https://onlinelibrary.wiley.com/doi/abs/10.1111/
682
         faf.12104 doi: 10.1111/faf.12104
683
   Punt, A. E., & Cope, J. M. (2019, September). Extending integrated stock assessment mod-
684
         els to use non-depensatory three-parameter stock-recruitment relationships. Fisheries
685
         Research, 217, 46-57. Retrieved 2019-07-19, from http://www.sciencedirect.com/
686
         science/article/pii/S0165783617301819 doi: 10.1016/j.fishres.2017.07.007
687
   Radhakrishnan, K. (1993). Description and Use of LSODE, the Livermore Solver for Ordi-
688
         nary Differential Equations., 124.
689
   Ramasubramanian, K., & Singh, A. (2017). Machine learning using R (No. 1). Springer.
   Rankin, P. S., & Lemos, R. T. (2015, October). An alternative surplus production
691
         model. Ecological Modelling, 313, 109–126. Retrieved 2022-02-11, from https://
692
         www.sciencedirect.com/science/article/pii/S0304380015002732 doi: 10.1016/
693
         j.ecolmodel.2015.06.024
694
   Ricker, W. E. (1954). Stock and recruitment. Journal of the Fisheries Board of Canada,
695
         11(5), 559–623. (Publisher: NRC Research Press Ottawa, Canada)
696
   Schnute, J. (1985, March). A General Theory for Analysis of Catch and Effort Data.
697
         Canadian Journal of Fisheries and Aquatic Sciences, 42(3), 414–429. Retrieved 2020-
698
         05-13, from https://www.nrcresearchpress.com/doi/abs/10.1139/f85-057
699
         10.1139/f85-057
700
   Schnute, J. (1987). A general fishery model for a size-structured fish population. Canadian
701
         Journal of Fisheries and Aquatic Sciences, 44(5), 924–940. (Publisher: NRC Research
702
         Press Ottawa, Canada)
703
   Schnute, J. T., & Richards, L. J. (1998, February). Analytical models for fishery reference
704
         points. Canadian Journal of Fisheries and Aquatic Sciences, 55(2), 515–528. Retrieved
705
         2020-01-14, from https://www.nrcresearchpress.com/doi/abs/10.1139/f97-212
706
         doi: 10.1139/f97-212
707
   Scrucca, L. (2013, April). GA: A Package for Genetic Algorithms in R. Journal of Sta-
708
         tistical Software, 53, 1-37. Retrieved 2022-01-17, from https://doi.org/10.18637/
709
         jss.v053.i04 doi: 10.18637/jss.v053.i04
710
```

```
Scrucca, L. (2017). On Some Extensions to GA Package: Hybrid Optimisation, Paral-
         lelisation and Islands EvolutionOn some extensions to GA package: hybrid optimi-
712
         sation, parallelisation and islands evolution. The R Journal, 9(1), 187–206. Re-
713
         trieved 2022-01-17, from https://journal.r-project.org/archive/2017/RJ-2017
714
         -008/index.html
715
    Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth
716
         laws. II). Human biology, 10(2), 181–213. (Publisher: JSTOR)
717
   Walters, C., & Ludwig, D. (1994). Calculation of Bayes posterior probability distributions
718
         for key population parameters. Canadian Journal of Fisheries and Aquatic Sciences,
719
         51(3), 713–722. (Publisher: NRC Research Press Ottawa, Canada)
720
```

Appendix A: Profile Likelihood MLE

Given that q has the effect of rescaling the mean function, a naive handling of q has the potential to interfere with the inference on θ . While the parameter q is typically identifiable, it can introduce lesser modes which complicate naive inference.

Below I outline a profile likelihood method for MLE inference on q and σ^2 . However if posed in a Bayesian context, q and σ^2 may be marginalized out of the joint posterior to yield a direct sampling scheme for q and σ^2 which factors the posterior into the form $p(q, \sigma^2, \boldsymbol{\theta}|I) = N(\log(q)|\sigma^2, \boldsymbol{\theta}, I)IG(\sigma^2|\boldsymbol{\theta}, I)p(\boldsymbol{\theta}|I)$ (Walters & Ludwig, 1994; DeYoreo, 2012)

The joint likelihood on the log scale can be written as,

$$\log \mathcal{L}(q, \sigma^2, \boldsymbol{\theta}; I) = -\frac{T}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{t} \log\left(\frac{I_t}{qB_t(\boldsymbol{\theta})}\right)^2.$$
 (57)

First Eq (57) is maximized with respect to q by partial differentiation of Eq (57) with respect to q,

$$\frac{\partial \log \mathcal{L}}{\partial q} = -\frac{1}{q\sigma^2} \left(\sum_{t} \log \left(\frac{I_t}{B_t(\boldsymbol{\theta})} \right) - T \log(q) \right)$$
 (58)

The maximum of the likelihood in the q direction is attained when $\frac{\partial \log \mathcal{L}}{\partial q} = 0$. By setting $\frac{\partial \log \mathcal{L}}{\partial q}$ to 0 and solving for q, the MLE of q in terms of θ can be written as

$$q(\boldsymbol{\theta}) = e^{\frac{1}{T} \sum_{t} \log \left(\frac{I_{t}}{B_{t}(\boldsymbol{\theta})} \right)} = \left(\prod_{t} \frac{I_{t}}{B_{t}(\boldsymbol{\theta})} \right)^{\frac{1}{T}}.$$
 (59)

Notice that $\hat{q}(\boldsymbol{\theta})$ is the geometric mean of the empirical scaling factors between the observed index and modeled biomass at each time. This form is emblematic of the interpretation of the q parameter as the proportionality constant between the observed index and the modeled biomass. Additionally notice that \hat{q} is a function of $\boldsymbol{\theta}$, so that achieving the global maximum of the likelihood function still requires maximization over $\boldsymbol{\theta}$. Furthermore, $\hat{q}(\boldsymbol{\theta})$ is only a function of $\boldsymbol{\theta}$ and that σ^2 does not enter the expression. This will be helpful in further maximization of the likelihood with respect to σ^2 .

Now to maximize in the σ^2 direction Eq (57) is differentiated with respect to σ^2 ,

$$\frac{\partial \log \mathcal{L}}{\partial \sigma^2} = -\frac{T}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{t} \log \left(\frac{I_t}{qB_t(\boldsymbol{\theta})} \right)^2.$$
 (60)

The maximum of the likelihood in the σ^2 direction is attained when $\frac{\partial \log \mathcal{L}}{\partial \sigma^2} = 0$. Setting $\frac{\partial \log \mathcal{L}}{\partial \sigma^2}$ to 0 and solving for σ^2 produces the following MLE as a function of $\boldsymbol{\theta}$,

$$\sigma^{2}(\boldsymbol{\theta}) = \frac{1}{T} \sum_{t} \log \left(\frac{I_{t}}{q(\boldsymbol{\theta}) B_{t}(\boldsymbol{\theta})} \right)^{2}$$
 (61)

Notice that the conditionally MLE of σ^2 is not only a function of $\boldsymbol{\theta}$ but also a function of q.

As previously noted, $q(\boldsymbol{\theta})$ is only a function of $\boldsymbol{\theta}$, and so to achieve a global maximum of the joint likelihood, $\sigma^2(\boldsymbol{\theta})$ is written entirely in terms of $\boldsymbol{\theta}$ by replacing q by $q(\boldsymbol{\theta})$ as seen above.

By combining Eq (59) and Eq (61) the MLEs of q and σ^2 can be written entirely in terms of θ . Furthermore, this realization allows the joint maximization of the likelihood to be reduced to the following profile log-likelihood,

$$\log \mathcal{L}(\boldsymbol{\theta}; I) = -\frac{T}{2} \log (\sigma^2(\boldsymbol{\theta})) - \frac{1}{2\sigma^2(\boldsymbol{\theta})} \sum_{t} \log \left(\frac{I_t}{q(\boldsymbol{\theta}) B_t(\boldsymbol{\theta})} \right)^2.$$
 (62)

This profile log-likelihood is maximized numerically over $\boldsymbol{\theta}$, and the estimates for q and σ^2 are given by evaluating Equations (59) and (61) at $\hat{\boldsymbol{\theta}}$.

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \log \mathcal{L}(\boldsymbol{\theta}; I) \tag{63}$$

$$\hat{\sigma}^2 = \sigma^2(\hat{\boldsymbol{\theta}}) \tag{64}$$

$$\hat{q} = q(\hat{\boldsymbol{\theta}}) \tag{65}$$

This profile formulation via $\hat{q}(\boldsymbol{\theta})$ and $\hat{\sigma}^2(\boldsymbol{\theta})$ reduces the computational complexity of this numerical optimization, while also avoiding the multimodality issues induced by q.