

SUMMER - 13 EXAMINATION

Subject Code: 12001 Page No: 1/33 **Model Answer**

Dubje	ci code	e. 12001 <u>Wodel Allswel</u> Lage No	. 17 33	
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
		Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 2/33

Que.	Sub.	~ . ~		Total
No.	Que.	Stepwise Solution	Marks	Marks
1)		Answer any ten of the following:		20
	1)	Classify the following quantities as fundamental and derived		
		quantities length, force, temperature, acceleration.		
		Fundamental quantity: - Length, Temperature.	1	
		Derived quantity:-Force, Acceleration.	1	2
		Derived quantity. 1 ofce, receivation.		
	2)	State Hooke's law of elasticity. Define elastic body.	4	
		Hooke's law	1	2
		Definition		
		Hooke's law:- Within the elastic limit stress is directly proportional		
		to strain.		
		Elastic body :- If the body regain its original shape and size when		
		the external deforming force is removed then it is called as elastic		
		body.		
	3)	Define cohesive and adhesive force.		
		Each definition	1	2
		Cohesive Force		
		It is the force of attraction between two molecules of same		
		substance.		
		Adhesive Force		
		It is the force of attraction between two molecules of different		
		substance.		
	l		l	l

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 3/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	4)	Give significance of Reynold's number in flow of liquids.		
		Any Two points	2	2
		Significance of Downslan number		
		Significance of Reynolds number 1. When R < 2000, the flow of liquid is streamline.		
		 When R > 2000, the flow of liquid is turbulent. 		
		3. When R is in between 2000 to 3000, the flow of liquid is		
		unstable		
	5)			
	,	Why the thermas flask consists of double walled glass vessel with		
		vacuum between walls?	2	2
		Reason		
		1) We know that, the material which does not allow the		
		passage of heat from it is called as Bad Conductor.		
		2) Since, glass is a bad conductor of heat, the vacuum between		
		the walls acts as an insulator.		
		Therefore, the thermos flask consists of doubled walled		
		glass vessel with vacuum between walls.		
	6)			
	6)	Define steady state and variable state of temperature.		
		Each definition	1	2
		Steady State of temperature:		
		It is state at which all amount of heat energy absorbed		
		by materials becomes equal to amount of heat energy given out.		
		OR		
		The state in which temperature of rod remains constant and will not		
		increase further is called as steady state.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 4/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	6)	Variable state of temperature: - It is state at which all amount of		
		heat energy absorbed by material is more than amount of heat		
		energy given out.		
		OR		
		The state in which temperature of rod goes on increasing is called		
		as variable state.		
	7)	State Snell's law with its mathematical equation.		
	,	Law	1	
		Equation	1	2
		Snell's law:- For any two media the ratio of sine angle of incidence		
		to the sine angle of refraction is constant. This is known as Snell's		
		law.		
		Equation:-		
		$\frac{\sin i}{\sin r} = \text{Constant}$		
	8)	State any two properties of LASER		
		Any two properties		
		Properties	2	2
		i) The light is coherent: The light with waves, all exactly		
		in same phase.		
		ii) The light is monochromatic: The light whose waves all		
		have the same frequency or wavelength.		
		iii) The light is unidirectional: The light produces sharp		
		focus.		
		iv) The beam is extremely intense: The light has extreme		
		brightness.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 5/33

Sub. Oue.	Stepwise Solution	Marks	Total Marks
9)	Define amplitude and period of wave. Each Definition	1	2
	Amplitude:- The maximum displacement of the particle from its mean position on either side is called amplitude of the wave. Period: The time taken by a particle to complete one oscillation is called wave period.		
10)	Draw labeled diagram for photo-electric cell. Well labeled diagram.	2	2
11)	Ultraviolet light Ve II + ve K = Cathode A = Anode		
	State any two applications of X-rays. Any two 1) X- rays are used to detect the cracks in the body of aero plane or motor car.	2	2
	2) X- rays are used to detect the manufacturing defects in rubber tyres or tennis ball in quality control.		
	3) X – rays are used to detect flows or cracks in metal jobs.		
	Que. 9)	 Que. Stepwise Solution 9) Define amplitude and period of wave. Each Definition Amplitude:- The maximum displacement of the particle from its mean position on either side is called amplitude of the wave. Period: The time taken by a particle to complete one oscillation is called wave period. 10) Draw labeled diagram for photo-electric cell. Well labeled diagram. 11) Well labeled diagram. State any two applications of X-rays. Any two 1) X- rays are used to detect the cracks in the body of aero plane or motor car. 2) X- rays are used to detect the manufacturing defects in rubber tyres or tennis ball in quality control. 	9) Define amplitude and period of wave. Each Definition Amplitude:- The maximum displacement of the particle from its mean position on either side is called amplitude of the wave. Period: The time taken by a particle to complete one oscillation is called wave period. Draw labeled diagram for photo-electric cell. Well labeled diagram. 2 11) State any two applications of X-rays. Any two 1) X- rays are used to detect the cracks in the body of aero plane or motor car. 2) X- rays are used to detect the manufacturing defects in rubber tyres or tennis ball in quality control.

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 6/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	11)	4) X- rays are used to distinguish real diamond from duplicate one.		
		5) X- rays are used to detect smuggling gold at airport and docks		
		(ship) yard.		
		6) X-rays are used to detect cracks in the wall.		
		7) X- ray radiography is used to check the quality of welded joints.		
		8) X – Rays are used in surgery to detect bone fractured.		
		9) X- Rays are used to cure skin diseases and destroy tumours.		
		10) X – Rays are used to cure diseases like cancer.		
		11) X – Rays are used to detect bullets position inside the body.		
		12) X – Rays are used to study structure of crystals.		
		13) X- Rays are used in chemical analysis and to determine atomic		
		number of elements.		
		14) X – Rays are used to study structure of substances like		
		cellulose, rubber, plastic.		
	12)	Soldier's are ordered not to march with regular steps while crossing		
		the bridge'. Give reason.		
		Reason:	2	2
		If the forced frequency of the regular steps of soldier's and the		
		natural frequency of vibration of the bridge matches then resonance		
		will take place. Therefore the bridge will vibrate with maximum		
		amplitude and it may collapse.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 7/33

Buojec		in 12001 Tuge 110.		
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)		Attempt any four of the following.		16
	1)	Define error. Explain three types of error.		
	-/	Definition	1	
		Each type with explanation	1	4
		Error:		
		Error is fault which can occur even with most carefully observed		
		measurement.		
		It cannot be completely eliminated but can be minimized		
		Explanation:		
		Explanation.		
		Instrumental Error or constant error:		
		This error is caused due to use of faulty instruments		
		For eg.(1)- use of voltmeter having zero error will introduce error in		
		the measurement whenever this voltmeter is used.		
		Eg.(2)-If the zero of vernier scale or main scale is not calibrated		
		properly some error will introduced in measurement. This will		
		produce a constant error in measurement.		
		(Note: Consider only one example)		
		Systematic error:		
		This error is caused due to defective setting or adjustment by user.		
		It is also caused due to sense of vision, sense of hearing.		
		Random Error:		
		This error is caused due to change in experimental condition which		
		are out of control such error cannot be eliminated.		
		For eg. Measurement which are temperature dependent.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 8/33

Que.	Sub.	Stepwise Solution	Marks	Total
No. 2)	Que.	The mass of object is 37.6±0.02gm. Estimate the percentage error in this measurement.		Marks
		Formula	1	
		Proper Substitution & Calculation	2	
		Answer with unit	1	4
		Percentage Error = $\frac{\text{Average absolute error}}{\text{Average reading}} \times 100$		
		OR		
		Percentage Error = $\frac{\delta A_m}{A_m} \times 100$		
		Percentage Error = $\frac{0.02}{37.6} \times 100$		
		= 0.053%		
	3)			
		Define – Stress, strain, restoring force and deforming force.	1	4
		Each definition		
		Stress:- It is defined as internal restoring force per unit cross-		
		sectional area of a body.		
		Strain:- The change in dimensions per unit original dimension is		
		called strain.		
		OR		
		It is the ratio of change in dimensions to original dimension of a body.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 9/33

Que. No.	Sub.	Stepwise Solution	Marks	Total Marks
2)	Que. 3)	Deforming Force: It is an external force which changes the shape and size of the body after its applications. Restoring Force:		Warks
		The force which is developed in a body in ordered to regain its original size and shape is called restoring force.		
	4)	A weight exerts a force of 120 N on steel wire of diameter 0.4mm. Find extension produced in wire, if original length of wire was 5 m. (Given $Y=2 \times 10^{12} \text{ N/m}^2$)		
		Formula Proper Substitution Answer with unit	1 1 2	4
		Given:		
		Force = $F = 120 N$		
		Diameter = $D = 0.4 \text{ mm}$		
		Radius = $r = 0.2 \text{ mm} = 0.2 \times 10^{-3} \text{ m}.$		
		Length = $L = 5$ m.		
		$Y = 2 \times 10^{12} \text{ N/m}^2$		
		1=?		
		$Y = \frac{FL}{\pi r^2 l}$		
		$l = \frac{FL}{\pi r^2 Y}$		
		$l = \frac{120 \times 5}{3.14 \left(0.2 \times 10^{-3}\right)^2 2 \times 10^{12}}$		
		$l = 23.88 \times 10^{-4} \mathrm{m}$ $l = 2.39 \times 10^{-3} \mathrm{m}$		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 10/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	5)	Define Young's modulus, Bulk modulus, modulus of rigidity and		
		state relation between them.		
		Each Definition	1	
		Relation	1	4
		Young's modulus:		
		Within elastic limit the ratio of longitudinal stress to longitudinal		
		strain is called Young's modulus. OR		
		It is the ratio of tensile stress to tensile strain.		
		Bulk Modulus:		
		Within elastic limit the ratio of volume stress/ bulk stress to volume		
		strain/ bulk strain is called Bulk modulus. OR		
		It is the ratio of volume stress to volume strain		
		Modulus of Rigidity:		
		Within elastic limit the ratio of shearing stress to shearing strain is		
		called modulus of rigidity.		
		OR		
		It is the ratio of shearing stress to shearing strain.		
		$\frac{9}{Y} = \frac{3}{\eta} + \frac{1}{K}$		
		$Y = \frac{9K\eta}{3K + \eta}$		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 11/33

1 420 1 (0. 11/33					
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks	
2)	6)	Draw labeled diagram of vernier caliper and micrometer screw-			
		gauge.			
		Each neat labeled diagram	2	4	
		Vernier Caliper:			
		0 10 m Nain scale			
		Micrometer screw-gauge:			
		Axial line Circular scale			

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 12/33

		1 uge 110.		
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)		Attempt any four of the following:		16
	1)	Explain behavior of wire under continuously increasing load by		
		using stress-strain diagram.		
		Neat labeled diagram	2 2	4
		Explanation	_	4
		A graph or diagram of stress and strain is shown as above. OE Portion is straight line which indicates that stress is proportional to strain. Therefore the wire obeys Hooke's law upto the point E this point is called elastic limit. EE' Portion is curved towards strain axis this shows that increase in strain is more, than increase in stress. In this region stress is not proportional to strain. Between any point E and E' if all load is removed then some permanent elonganation/ Expansion / increase in length takes place in the wire this is called set. When wire is again loaded, a new straight line SE' is obtained which obey Hooke's law. Some portion after the point Y is almost parallel to strain axis this shows that strain increases without increase in stress just like wire flows. This is called plastic flow. The point at which the plastic flow begins is called yield point.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 13/33

Que.	Sub.	Commission Collection	M1	Total
No.	Que.	Stepwise Solution	Marks	Marks
3)	1)	During the plastic flow the wire becomes thin and thin. Some weak		
		points called neck are formed in the wire. At weakest point (neck),		
		wire breaks.		
		The maximum stress upto which wire can be loaded or wire can		
		bear is called breaking stress. Point B is breaking point.		
		Before point B the point D is ultimate stress point. It is the max.		
		stress the wire is capable of with standing.		
	2)			
	2)	Define surface tension and state the relation between surface		
		tension, capillary rise, radius of capillary tube with meaning of		
		symbol used in it.		
		Definition	1	
		Relation	2	4
		Meaning	1	
		Definition:- It is defined as the property of liquids by virtue of		
		which the surface of liquid is under constant tension due to the		
		tendency to contract and occupy minimum surface area.		
		OR		
		It is also defined as the force of contraction per unit length in the		
		free surface of liquid.		
		Relation:-		
		T=rhdg/2cosθ		
		Where,		
		r = radius of capillary tube.		
		h = level difference or rise of liquid.		
		d = density of liquid.		
		g = gravitational acceleration.		
		θ = angle of contact.		
	L	I.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 14/33

Que.	Sub.			Total
No.	Que.	Stepwise Solution	Marks	Marks
3)	3)	State Newton's law of viscosity and hence define coefficient of		
		viscosity. Give it's SI unit.		
		Statement	1	
		Equation	1	
		Definition	1 1	4
		Unit		
		Newton's law of viscosity:		
		Statement: The viscous force (F) developed between two liquid		
		layers is		
		i. directly proportional to surface area of liquid layer,		
		(A) i.e. [F α A]		
		ii. directly proportional to Velocity Gradient, (dv/dx)		
		i.e. [F α (dv/dx)]		
		FαA dv/dx		
		E = n A dy/dy		
		$\mathbf{F} = \mathbf{\eta} \mathbf{A} \mathbf{dv}/\mathbf{dx}$		
		Where, η is the coefficient of viscosity of the liquid.		
		Coefficient of viscosity: "Coefficient of viscosity of a liquid is		
		defined as the viscous force developed between two liquid layers of		
		unit surface area & unit velocity gradient."		
		SI unit of Coefficient of viscosity is N-s/m ²		
		ST diffe of Coefficient of Viscosity is 14 s/m		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 15/33

	Sub.		3.6 1	Total
Que. No.	Que.	Stepwise Solution	Marks	Marks
3)	4)	Define coefficient of linear expansion and aerial expansion of solid.		
		State the relation between them.		
		Each definition	1	
		Relation	2	4
		Coefficient of linear expansion(α): -		
		It is increase/change in length per unit original length at 0°C, per		
		unit increase/change in temperature.		
		Coefficient of aerial expansion(β):-		
		It is increase/change in area per unit original area at 0°C, per unit		
		increase/change in temperature.		
		Relation		
		$\alpha:\beta=1:2$		
		OR		
		$\frac{\alpha}{1} = \frac{\beta}{2}$		
		1 2 OR		
		$\beta = 2\alpha$		
	5)	A glass sheet of area 1 m ² has thickness 2 mm. its opposite faces		
	<i>J</i>	are at 35°C and 20°C resp. if coefficient of thermal conductivity		
		of glass is 0.2 x10 ⁻³ K cal/m ^o Cs calculate the quantity of heat		
		conducted in half an hour.		
		Formula		
		Proper Substitution	1	4
		Answer with unit	1	4
			2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 13 EXAMINATION

Subject Code: 12001 <u>Model Answer</u> Page No: 16/33

J		in 12001 Tuge 110.		
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	5) 6)	Given: $A = 1m^2$ $d = 2 \text{ mm} = 2 \times 10^{-3} \text{m}$ $(\theta_1 - \theta_2) = (35 - 20) = 15^{\circ} \text{C}$ $K = 0.2 \times 10^{-3} \text{Kcal/m}^{\circ} \text{Cs}$ $t = \frac{1}{2} \text{ hr} = 30 \times 60 = 1800 \text{ sec.} \qquad Q = ?$ $Q = \frac{KA(\theta_1 - \theta_2)t}{d}$ $Q = \frac{0.2 \times 10^{-3} \times 1 \times 15 \times 1800}{2 \times 10^{-3}}$ $Q = 2700 \text{ K cal}$ Define three modes of transmission of heat with examples. Define the term temperature gradient. Each Definition with Example Conduction: It is the process of transfer of heat from a part of body at higher temperature to a part of body at lower temperature without actual movement of particles of medium. Heat sink in electronic circuits, Safety lamp, Ice box etc. Convection: It is the process of transfer of heat from a part of body at higher temperature to a part of body at lower temperature with actual movement of particles of medium. Formation of trade winds, Room ventilation system, monsoons etc.	1	Marks 4

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 17/33

Que.	Sub.	Stepwise Solution	Marks	Total
No. 3)	Que. 6)	Radiation:		Marks
,	,	In this process, heat is transferred directly from a body at higher temperature to the body at lower temperature without necessity of intervening medium. Use of white clothes, Heat radiators in car, In activation of HIV etc. Temperature Gradient: The temperature gradient is defined as change in temperature per		
4)		unit length of rod. Attempt any four of the following:		16
<i>=)</i>				10
	1)	State Boyle's law, Charle's law and Gay Lussac's law for gases. Define the term absolute zero temperature.		
		Each Law	1	
		Definition	1	4
		Boyle's law: -		4
		For fixed mass of a gas, temperature of a gas remaining constant, its pressure is inversely proportional to its volume.		
		Charle's Law:		
		For fixed mass of a gas, pressure of a gas remaining constant, its		
		volume is directly proportional to its absolute temperature.		
		Gay Lussac's Law: -		
		For fixed mass of a gas, volume of a gas remaining constant, its		
		pressure is directly proportional to its absolute temperature.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 18/33

Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.	Absolute Zero Temperature: -	Iviaixs	Marks
4)	2)	The temperature at which both pressure and volume of gas become theoretically zero is called absolute zero temperature. A gas at 13° C is heated at constant pressure till its volume doubled. What is its final temperature?		
		Formula	1	
		Proper Substitution	1	
		Answer with unit	2	4
		Given		
		Initial Final		
		$t_1 = 13^{\circ} C$ $t_2 = ?$		
		$T_1 = 13 + 273 = 286^0 \text{K}$ $T_2 = ?$		
		V_1 =initial volume V_2 =2 V_1		
		Solution: $\frac{V_1}{V_2} = \frac{T_1}{T_2}$ $\frac{V_1}{2V_1} = \frac{T_1}{T_2}$ $T_2 = 2T_1$ $T_2 = 2 \times 286$ $T_2 = 572^0 \text{K}$ $t_2 = 572 - 273$ $t_2 = 299^0 \text{C}$		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 19/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
4)	3)	State the factors on which the conduction of heat in steady state depends. Write an equation of heat conducted by rod. State SI unit of coefficient of thermal conductivity.		WILKS
		Factors Equation	2 1	4
		SI unit	1	4
		Factors affecting the conduction of heat:		
		i) Cross-sectional area of rod (A) ii) Temperature difference between two surfaces of the conductor $(\theta_1$ - $\theta_2)$		
		iii) Time for which heat flows. (t)		
		iv) Distance between two surfaces.(d)		
	4)		1 1 2	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 20/33

$\begin{array}{c cccc} Que. & Sub. \\ No. & Que. & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Marks	Total Marks
4) 4) Given $L_0 = 80 \text{ cm at } 0^0 \text{C}$ $(L_t - L_0) = 0.16 \text{ cm}$ $L_t = 80.16 \text{ cm at } t = 100^0 \text{C}$ $\alpha = ?$		11141115
$\alpha = \frac{0.16}{80 \times 100}$ $\alpha = 0.02 \times 10^{-3}$ $\alpha = 2 \times 10^{-5} / {}^{0}C$ State the physical significance of refractive index. Each physical significance of refractive index Physical Significance of Refractive Index: (i) When a ray of light travels from rarer (air) medium to denser (glass) medium the ray bends towards the normal as shown in fig. $\therefore \text{ Angle of incidence} > \text{angle of refraction.}$ $A \qquad \qquad \qquad \therefore \frac{\sin i}{\sin r} > 1$ $\therefore \mu > 1$ $\therefore \mu > 1$	2	4

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 21/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
4)	5)	For air - glass pair $\frac{\sin i}{\sin r} = a^{\mu} g > 1$ Also $a^{\mu}g = \frac{\text{Velocity of Light in air}}{\text{Velocity of Light in Glass}}$ e.g. Refractive index of glass with respect to air is 1.5. (ii) When a ray of light travels from denser medium (glass) to rarer medium (air), ray of light bends away from the normal as shown in fig. \therefore Angle of incidence < Angle of refraction		
		$\begin{array}{c c} A & M & \\ & \ddots & \frac{\sin i}{\sin r} < 1 \\ & \ddots & \mu < 1 \\ & & \\ B & r & Air \\ & & \\ &$		
		For glass - air pair $\frac{\sin i}{\sin r} = g^{\mu} a < 1$ Also $g^{\mu} a = \frac{\text{Velocity of Light in Glass}}{\text{Velocity of Light in Air}}$ e.g. Refractive index of air with respect to glass is nearly equal to one.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 22/33

Que.	Sub.	Stepwise Solution	Marks	Total
No. 4)	Que. 6)	Define- refraction, dispersion, diffraction and polarization of light.		Marks
1)		Each Definition	1	4
		Refraction of Light: When a ray of light travels from one medium		
		to another medium it deviates from its original path is called		
		refraction of light.		
		Dispersion:		
		The separation of light into its constituent colours is called		
		dispersion of light.		
		Diffraction of Light: When light falls on obstacles or small		
		apertures whose size is comparable with wavelength of light, then		
		the light bends round the corners of the obstacles or apertures and		
		enters in geometrical shadow. This bending of light is called		
		diffraction.		
		Polarization of Light:		
		The restriction of the vibrations of light wave to a single plane is		
		called polarization.		
5)	1)	Attempt any four of the following:		16
		Describe construction and working of He-Ne LASER with labeled		
		diagram.		
		Each diagram	1 1	4
		construction	1	_
		working		
		Construction:		
		1. It consists of a quartz tube of about 80 cm length and 1.5 cm		
		diameter.		
		2. The tube is filled with mixture of helium (He) and neon (Ne) gas.		
		3. The mixture consists of 90% helium atoms and 10% neon atoms.		
		4. At one end perfect reflector is fixed and at the other end partial		
		reflector is fixed.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 23/33

3		inductifies to		
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
5)	1)	5. The material is excited by using high frequency generator. Perfect Relation of He-Ne Gas Rando Frequency Generator Ho-Ne Gas LASER		
		Working: (1)When electric discharge is produced in the tube, He and Ne gas atoms are excited. Some excited levels of helium are close to some excited levels of neon. Therefore these excited helium atoms collide with excited atoms of neon and transfer the energy to neon atoms. (2) The actual lasing action is done by neon atoms. The neon atoms with extra energy from helium atom are forced to jump in ground state by emitting a photon. This produces the LASER light. The newly emitted photon triggers the next neon atom and increases the radiations. (3) Thus coherent, monochromatic, unidirectional LASER is produced by He-Ne gas LASER The energy level diagram of He-Ne LASER is shown below.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 13 EXAMINATION

Subject Code: 12001 <u>Model Answer</u> Page No: 24/33

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 25/33

Que.	Sub.	Stepwise Solution	Marks	Total
No. 5)	Que.	Let E_1 , E_2 and E_3 are energy levels and N_1 , N_2 and N_3 are respective		Marks
- /	/	concentrations of atoms. The atoms in level E_1 are excited to E_3 by		
		optical pumping. The concentration N_1 decreases. The time for		
		which the atoms can stay in level E ₃ is very short. They lose some		
		energy and return to energy level E_2 . The transition from E_3 to E_2 is		
		rapid and spontaneous. Since level E2 is metastable state, hence		
		atoms relax here for longer time. The no. of atoms in E2 increases		
		and when it is greater than level E ₁ population inversion takes		
		places. i.e. $N_2 \gg N_1$		
		Population Inversion:		
		Population means number of active atoms occupying an energy		
		state.		
		Usually population of ground state is high & that of excited state is		
		low as shown in figure below.		
		N ₂ — E ₂		
		N ₂ << N ₁		
		N ₁ Ground State		
		In order to produce stimulated emission properly, population of		
		excited state should be greater than that of ground state.		
		Making population of excited state more than that of ground state is		
		called population inversion.i.e. $N_2 >> N_1$		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 26/33

2)	N ₂	- E,		
		N ₂ >> N ₁		
	N ₁ Ground state	i.e. Population inversion		
3)	Distinguish between longitudina	al wave and transverse wave.		
	Any four points		4	4
	particles of material medium is perpendicular to the direction of propagation of wave is called transverse wave. Wave travels in form of alternate crests and trough Density and pressure of medium remain same throughout the wave Wave travels through solid	particles of material medium is parallel to the direction of propagation of wave is called longitudinal wave. Wave travels in form of alternate compressions and rarefactions. Density and pressure of medium changes. Wave travels through		
	e.q. Light wave	e.q. Sound waves		
3	3)	Distinguish between longitudina Any four points Transverse Wave The wave in which direction of vibration of particles of material medium is perpendicular to the direction of propagation of wave is called transverse wave. Wave travels in form of alternate crests and trough Density and pressure of medium remain same throughout the wave Wave travels through solid only.	Distinguish between longitudinal wave and transverse wave. Any four points Transverse Wave The wave in which direction of vibration of particles of material medium is perpendicular to the direction of wave is called longitudinal wave is called transverse wave. Wave travels in form of alternate crests and trough Density and pressure of medium changes. Wave travels through solid wave travels through only.	Distinguish between longitudinal wave and transverse wave. Any four points Transverse Wave The wave in which direction of vibration of particles of material medium is perpendicular to the direction of wave is called longitudinal called transverse wave. Wave travels in form of alternate crests and trough Density and pressure of medium changes. Wave travels through solid wave travels through only.

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 27/33

Sub			Total
Que.	-	Marks	Marks
4)	Define forced vibration and free vibration with one example each.		
	Each Definition	1	
	One example of each Definition	1	4
	Free vibrations: The vibrations performed by a body when only		
	once disturbed from its equilibrium position and vibrates with a		
	natural frequency are called free vibrations.		
	Example:		
	1. Cricketers hanging ball		
	2. Vibrating tuning fork		
	3. Vibrations of air column		
	Forced vibrations: When a body is continuously disturbed by a		
	periodic force, then the particle cannot vibrate with its natural		
	frequency but it starts vibrating with the frequency of periodic		
	force. These vibrations are called forced vibrations.		
	Example:		
	1. Concrete bridge in earth quake		
	2. Vibrations of air column under vibrating tuning fork		
	3. Kid swimming after applied external periodic force.		
	Any other relevant definition or example may be considered.		
	_ `	Que. Define forced vibration and free vibration with one example each. Each Definition One example of each Definition Free vibrations: The vibrations performed by a body when only once disturbed from its equilibrium position and vibrates with a natural frequency are called free vibrations. Example: 1. Cricketers hanging ball 2. Vibrating tuning fork 3. Vibrations of air column Forced vibrations: When a body is continuously disturbed by a periodic force, then the particle cannot vibrate with its natural frequency but it starts vibrating with the frequency of periodic force. These vibrations are called forced vibrations. Example: 1. Concrete bridge in earth quake 2. Vibrations of air column under vibrating tuning fork 3. Kid swimming after applied external periodic force.	Que. Stepwise Solution Define forced vibration and free vibration with one example each. Each Definition One example of each Definition Free vibrations: The vibrations performed by a body when only once disturbed from its equilibrium position and vibrates with a natural frequency are called free vibrations. Example: 1. Cricketers hanging ball 2. Vibrating tuning fork 3. Vibrations: When a body is continuously disturbed by a periodic force, then the particle cannot vibrate with its natural frequency but it starts vibrating with the frequency of periodic force. These vibrations are called forced vibrations. Example: 1. Concrete bridge in earth quake 2. Vibrations of air column under vibrating tuning fork 3. Kid swimming after applied external periodic force.

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 28/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
5)	5)	State any four engineering applications of LASER.		
		Each Application	1	4
		1) He-Ne gas laser is commonly used to read bar code.		
		2) They are used in cutting, drilling, welding.		
		3) It can drill holes in the hard substances like diamond without crack.		
		4) It is used for marking, engraving in plastic and metals.		
		5) They are used in communication between earth and moon.		
		Any other relevant application.		
	6)			
	a)	State relation between velocity, wavelength and frequency.		
		Relation $v = n \lambda$	2	
		Where $v = Velocity$ $n = Frequency$ $\lambda = Wavelength$		
	b)	A body produce wave of wave length 33 cm. What is the frequency		
		of vibration if velocity of wave is 330 m/s?	1	4
		Formula and substitution		
		Ans. With unit		
		Given		
		$\lambda = 33 \text{ cm} = 0.33 \text{ m}$		
		v=330 m/s		
		n = ?		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 29/33

Que.	Sub.	Stepwise Solution	Marks	Total
No. 5)	Que.	$v = n \lambda$	TVICING	Marks
	b)			
		$n = v/\lambda$		
		n = 330/0.33		
		n = 1000 Hz.		
6)				16
0)		Attempt any four of the following:		10
	1)	Define the terms – Work function, threshold frequency, threshold		
		wavelength and photoelectric effect.		
		Each definition	1	4
		Work function: It is the energy required to detach the electron		
		from the metal.		
		Through ald free errors are It is the minimum for even or of in sident		
		Threshold frequency: It is the minimum frequency of incident		
		light at which emission just begins.		
		Threshold wavelength: It is the maximum wavelength of incident		
		light at which emission just begins.		
		photoelectric effect: When light of suitable frequency is incident		
		on metal surface, electrons are emitted from it. This effect is called		
		as photoelectric effect.		
	2)	Calculate the K.E. of ejected photoelectrons, if light of frequency		
	<i></i>)	1.39×10^{15} Hz is made to incident on metal plate of threshold		
		frequency 1.12 x 10^{15} Hz. (Given h = 6.63 x 10^{-34} Js)		
		E	1	
		Formula Proper Substitution	1	
		Answer with unit	2	4

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 30/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
6)	2)	Given 4.20 4.215 xx		
		$v = 1.39 \times 10^{15} \text{ Hz}$		
		$v_0 = 1.12 \text{ x } 10^{15} \text{ Hz}$		
		$h = 6.63 \times 10^{-34} \text{ Js}$		
		K.E. = ?		
		$K.E. = h(\upsilon - \upsilon_0)$		
		K.E. = $6.63 \times 10^{-34} (1.39 \times 10^{15} - 1.12 \times 10^{15})$		
		$K.E. = 1.79 \times 10^{-19} J$		
	3)	State any four properties of X-rays.		
		Each property	1	4
		1) X-rays are highly penetrating electromagnetic radiations of		
		very short wavelength.		
		(2) X-rays are electrically neutral.		
		(3) X-rays travel with the speed of light.		
		(4) X-rays affects the photographic plate.		
		(5) X-rays are not deflected by electric or magnetic field.		
		(6) X-rays are invisible.		
		(7) They can ionize gases.		
		(8) They cannot be reflected by ordinary mirrors, lenses or by		
		prism. They can be reflected, refracted, detracted by crystals		
		under certain conditions.		
		(9) They show interference and polarization like light.		
		(10) They produce fluorescence effect.		
		(11) X-ray kill some animal cells		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 31/33

No. Que. With labeled diagram, explain production of X-rays using Coolidge tube. Well labeled diagram Yer Yer	j	Code. 12001 Woder Answer Fage No.		
Well labeled diagram Working T - Targel F - Metal filament S - Cylinder A - Ammeter B - Battery Fh - Rheestat P1 P2 - Primary of transformer S1. S2 - Seconday of transformer Working Or Production of X-rays When the cathode is heated by electric current it produced electron due to thermionic emissions. The beam of electron is then focused on the anode (target) the electrons from cathode are accelerated by applying of high voltage between cathode & anode using step up transformer. When these fast moving electrons are suddenly stopped by tungsten anode, they loses their kinetic energy and x rays are produced from the target. Some amount of Kinetic energy	-	Stepwise Solution	Marks	Total Marks
Working Or Production of X-rays When the cathode is heated by electric current it produced electron due to thermionic emissions. The beam of electron is then focused on the anode (target) the electrons from cathode are accelerated by applying of high voltage between cathode & anode using step up transformer. When these fast moving electrons are suddenly stopped by tungsten anode, they loses their kinetic energy and x rays are produced from the target. Some amount of Kinetic energy	6) 4)	tube. Well labeled diagram		4
When the cathode is heated by electric current it produced electron due to thermionic emissions. The beam of electron is then focused on the anode (target) the electrons from cathode are accelerated by applying of high voltage between cathode & anode using step up transformer. When these fast moving electrons are suddenly stopped by tungsten anode, they loses their kinetic energy and x rays are produced from the target. Some amount of Kinetic energy		F - Metal filament S - Cylinder A - Ammeter B - Battery Rh - Rheostat P1 P2 - Primary of transformer S1, S2 - Seconday of transformer S1, S2 - Seconday of transformer		
By controlling the filament current, the thermionic emission of electron hence intensity of X- rays can be controlled.		When the cathode is heated by electric current it produced electron due to thermionic emissions. The beam of electron is then focused on the anode (target) the electrons from cathode are accelerated by applying of high voltage between cathode & anode using step up transformer. When these fast moving electrons are suddenly stopped by tungsten anode, they loses their kinetic energy and x rays are produced from the target. Some amount of Kinetic energy is converted to large amount of heat. By controlling the filament current, the thermionic emission of		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 32/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
6)	5)	Describe construction and working of photoelectric cell.		
		Diagram	1	
		construction	1 ½	
			1 ½	4
		working		
		Diagram		
		Ve U + ve K = Cathode A = Anode		
		Construction:		
		It consists of cathode (K) & anode (A) enclosed in an		
		evacuated glass bulb.		
		Semi-cylindrical cathode coated with photosensitive		
		material from inner side.		
		Anode is a rod of platinum kept along the axis of cathode.		
		Cathode is connected to the negative terminal & anode is		
		connected to the positive terminal of high tension battery		
		through milliammeter.		

SUMMER – 13 EXAMINATION

Subject Code: 12001 **Model Answer** Page No: 33/33

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
5)	5)	Working:		1714111
		When light is allowed to fall on cathode it emits		
		photoelectrons. These photoelectrons are attracted by anode. The		
		photoelectric current flows through the circuit & milliammeter		
		shows the deflection.		
	6)	What are X-rays? A X-ray tube works on 50 kV. What will be the		
		minimum wavelength of X-rays emitted in it.		
		X-ray meaning	1	
		Formula	1	
		Ans. with unit.	2	4
		X-rays are electromagnetic radiation of very short		
		wavelength.		
		Given $V = 50 \text{ kV} = 50 \text{ x } 10^3 \text{V}$		
		$\lambda_{\min} = ?$		
		Formula		
		$\lambda_{\min} = \frac{hc}{eV} = \frac{12400}{V}$		
		$\lambda_{min} = \frac{12400}{50 \times 10^3}$		
		$\lambda_{min}=0.248~\text{A}^0$		