Limited Dependent Variable Models and Sample Selection Corrections.

Limited dependent variables (LDV)

- LDV are substantively restricted
 - Binary vavariables take only two values, e.g. employed/not employed
 - Nonnegative variables, e.g. wages, prices, interest rates
 - Nonnegative variables with excess zeros, e.g. labor supply
 - Count variables, e.g. the number of arrests in a year

Sample selection models

 The sample used to infer population relationships is endogenously selected, e.g. wage offer regression but data only about working women.

Logit and Probit models for binary response

- Disadvantages of the LPM for binary dependent variables
 - Predictions sometimes lie outside the unit interval
 - Partial effects of explanatory variables are constant

Nonlinear models for binary response

• Response probability is a nonlinear function of explanat, variables

$$P(\gamma=1|X) = G(\beta_0 + \beta_1 \chi_1 + \dots + \beta_k \chi_k) = G(\chi_\beta).$$

$$0 \le G(z) \le 1.$$

Interpretation of coefficients in Logit and Probit models

Continuous explanatory variables:

$$\frac{\partial P(y=1|\mathbf{x})}{\partial x_j} = g(\mathbf{x}\boldsymbol{\beta})\beta_j \quad \text{where} \quad g(z) \equiv \partial G(z)/\partial z > 0$$
How does the probability for y = 1 change if

explanatory variable x; changes by one unit?

Discrete explanatory variables:

$$\overline{G} \left[\beta_0 + \beta_1 x_1 + \ldots + \beta_k (c_k + 1)\right] - G \left[\beta_0 + \beta_1 x_1 + \ldots + \beta_k c_k\right]$$

For example, explanatory variable x_k increases by one unit.

- Partial effects are nonlinear and depend on the level of x.
- Maximum likelihood estimation of Logit and Probit models

$$f(y_i|\mathbf{x}_i;\boldsymbol{\beta}) = [G(\mathbf{x}_i\boldsymbol{\beta})]^{y_i} \left[1 - G(\mathbf{x}_i\boldsymbol{\beta})\right]^{1-y_i} \longleftarrow$$
 The probability that individual i's outcome is \mathbf{y}_i given that his/her characteristics are \mathbf{x}_i

$$\log L(\beta) = \log \left(\prod_{i=1}^n f(y_i | \mathbf{x}_i; \beta) \right) = \sum_{i=1}^n \log f(y_i | \mathbf{x}_i; \beta) \leftarrow \text{Under random sampling}$$

$$\max \ \log L(\boldsymbol{\beta}) \quad \to \quad \widehat{\beta}_0, \widehat{\beta}_1, \dots, \widehat{\beta}_k \longleftarrow \text{ Maximum likelihood estimates}$$

- Properties of maximum likelihood estimators
 - Maximum likelihood estimators are consistent, asymptotically normal, and asymptotically efficient if the distributional assumptions hold.
- Hypothesis testing after maximum likelihood estimation
 - The usual t-tests and confidence intervals can be used.
 - There are three alternatives to test multiple hypotheses:
 - Lagrange multiplier or score test (not discussed here)
 - Wald test (requires only estimation of unrestricted model)
 - Likelihood ratio test (restricted and unrestricted models needed)

$$LR = 2(\log L_{ur} - \log L_r) \sim \chi_q^2$$
 Chi-square distribution with q degrees of freedom

The null hypothesis that the q hypotheses hold is rejected if the growth in maximized likelihood is too large when going from the restricted to the unrestricted model

Goodness-of-fit measures for Logit and Probit models Percent correctly predicted = #correctly predicted \(\tilde{\chi} \).

Percent correctly predicted
$$=\pi$$

$$\tilde{y}_i = \begin{cases} 1 & \text{if } G(\mathbf{x}_i \hat{\boldsymbol{\beta}}) \geq .5 \\ 0 & \text{otherwise} \end{cases}$$
Individual i's outcome is predicted as or if the probability for this event is larger than .5, then percentage of correctly predicted $\mathbf{y} = \mathbf{1}$ and $\mathbf{y} = \mathbf{0}$ is counted

Individual i's outcome is predicted as one

Pseudo R-squared

$$\tilde{R}^2 = 1 - \log L_{ur} / \log L_0 \qquad \longleftarrow$$

Compare maximized log-likelihood of the model with that of a model that only contains a constant (and no explanatory variables)

Correlation based measures

$$Corr(y_i, \tilde{y}_i), \ Corr(y_i, G(\mathbf{x}_i\hat{\boldsymbol{\beta}})) \longleftarrow$$

Look at correlation (or squared correlation) between predictions or predicted prob. and true values

Reporting partial effects of explanatory variables

- The difficulty is that partial effects are not constant but depend on.
- Partial effects at the average:

$$\widehat{PEA}_j = g(\bar{x}\hat{eta})\widehat{eta}_j$$
 The partial effect of explanatory variable x_j is considered for an "average" individual (this is problematic in the case of explana-

The partial effect of explanatory variable (this is problematic in the case of explanatory variables such as gender)

Average partial effects:

$$\widehat{APE}_j = n^{-1} \sum_{i=1}^n g(\mathbf{x}_i \hat{\boldsymbol{\beta}}) \widehat{\beta}_j \qquad \text{The partial effect of explanatory variable } \mathbf{x}_j \text{ is computed for each individual in the sample and then averaged across all sample}$$

members (makes more sense)

• Analogous formulas hold for discrete explanatory variables.

glm (y~ X,+ X,+ -+ Xx, family = binomial (link = probit))

Summary (A) Log Lik (A)

Likelihold rate:
$$LR = 2(LogLik(ur) - LogLik(r))$$

$$\sim \chi_q^2$$

$$P(y=1|x) = \int_{-\infty}^{z} \lambda(z) dz = \int_{-\infty}^{z} \frac{e^{v}}{(1+e^{v})^{2}} dv.$$

$$= \frac{e^{2}}{(1+e^{2})^{2}}$$

$$= \frac{e^{8+\theta_{1}\chi_{1}+\cdots+\theta_{n}\chi_{k}}}{1+e^{8+\theta_{1}\chi_{1}+\cdots+\theta_{k}\chi_{k}}}$$

$$\widehat{P(y=|X)} = \frac{\widehat{\mathcal{C}}_{0}+\widehat{\mathcal{C}}_{1}}{|+\widehat{\mathcal{C}}_{0}+\widehat{\mathcal{C}}_{1}X_{1}+-|\widehat{\mathcal{C}}_{2}X_{2}|}$$