K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College Affiliated to Somaiya Vidyavihar University)

Semester: September – Jan 2020 In-Semester Examination

Class: FY B. Tech Branch: All Branches

Semester: I
pplied Mathematics-I
Course Code: 116U06C101

Full name of the course: Applied Mathematics-I **Duration:** 1hr.15 min (attempting questions) +20 min (uploading) **Course Code:** 11 **Max. Marks:** 30

Q. No	Questions	Marks
Q1	Choose the correct option from the following MCQ (1 MARK EACH)	10 marks
1.1	If $Z = e^{i\emptyset}$ then which of the following is FALSE ?	
	(A) $z^{1/5} = \left(\cos\frac{1}{5}\emptyset + i\sin\frac{1}{5}\emptyset\right)$	
	(B) $\frac{1}{z} = \bar{z}$	С
	$(C) z^2 + \frac{1}{z^2} = 2i\sin 2\emptyset$	
	$(D) z^2 - \frac{1}{z^2} = 2i\sin 2\emptyset$	
1.2	Find the value of $\tanh(\log \sqrt{5})$	
	(A) $\frac{2}{3}$ (B) $-\frac{2}{3}$ (C) $\frac{1}{3}$ (D) $-\frac{1}{3}$	A
1.3	Which of the following is not a correct formula for $\cosh 2x$?	
	(A) $\cosh^2 x + \sinh^2 x$ (B) $2 \cosh^2 x - 1$	С
	(C) $1 - 2\sinh^2 x$ (D) $\frac{1 + \tanh^2 x}{1 - \tanh^2 x}$	
1.4	Roots of $x^{16} + i = 0$ are	
	(A) $cos(4k+1)\frac{\pi}{16} - isin(4k+1)\frac{\pi}{16}$; $k = 0,116$	
	(B) $cos(4k+1)\frac{\pi}{16} - isin(4k+1)\frac{\pi}{16}$; $k = 0,115$	С
	(C) $cos(4k+1)\frac{\pi}{32} - isin(4k+1)\frac{\pi}{32}$; $k = 0,115$	
	(D) $cos(4k+1)\frac{\pi}{32} + isin(4k+1)\frac{\pi}{32}$; $k = 0,116$	

1.5	If $x_n = cos \frac{\pi}{2^n} + i sin \frac{\pi}{2^n}$ then find $x_0 x_1 x_2 \dots x_\infty$	
		В
	(A) -1 (B) 1 (C) i (D) $-i$	
1.6	$\begin{bmatrix} 1 & 2 & -4 & 5 \end{bmatrix}$	
	The number of non-zero rows in the echelon form of $\begin{bmatrix} 1 & 2 & -4 & 5 \\ 1 & 9 & -4 & 5 \\ -2 & 3 & 8 & -10 \\ -1 & 5 & 4 & -5 \end{bmatrix}$	
		В
	is	
	(A) 1 (B) 2 (C) 3 (D) 4	
1.7	Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -4 \\ -2 & -3 & -10 \end{bmatrix}$. Then for any $B \in \mathbb{R}^3$, the system $AX = B$	
	Let $A = \begin{bmatrix} 0 & 1 & -4 \\ -2 & -3 & -10 \end{bmatrix}$. Then for any $B \in \mathbb{R}$, the system $AX = B$	D
	will be inconsistent when $rank(A B)$ is	D
	(A) 0 (B) 1 (C) 2 (D) 3	
1.8	Consider ((1, 1, 4), (2, 2, 0))	
	$S_1 = \{(1, -1, 4), (2, -2, 0)\}$ and $S_2 = \{(1, 0, 0), (0, 0, 1), (1, 0, 1)\}$ (A) Only S_1 is Linearly independent.	
	(B) Only S_2 is Linearly independent.	A
	 (C) both S₁ and S₂ are Linearly independent (D) both S₁ and S₂ are Linearly Dependent. 	
1.9		
	If $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0\\ \frac{i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}$, what is A^{-1} ?	
	$\begin{bmatrix} \sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} rac{1}{\sqrt{2}} & rac{-i}{\sqrt{2}} & 0 \end{bmatrix}$ $\begin{bmatrix} rac{1}{\sqrt{2}} & rac{i}{\sqrt{2}} & 0 \end{bmatrix}$	
	(A) $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0\\ \frac{i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \end{bmatrix}$ (B) $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0\\ \frac{i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \end{bmatrix}$	A
	$\begin{bmatrix} \begin{bmatrix} v_2^2 & v_2^2 & 1 \end{bmatrix} & \begin{bmatrix} v_2^2 & v_2^2 & 1 \end{bmatrix} \\ 0 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-\iota}{\sqrt{2}} & 0 \end{bmatrix} \qquad \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{-\iota}{\sqrt{2}} & 0 \end{bmatrix}$	
	$\begin{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} & 1 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} \sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ (C) \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \\ \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \end{bmatrix} & (D) \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} & 0 \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$	
1.10	Rank of non-zero singular matrix A of order n is	
1.10	(A) n (B) 0 (C) less than n (D) can not say	С
Q2	Attempt any TWO of the following	
(a)	If $x_n + iy_n = (1 + i\sqrt{3})^n$, prove that $x_{n-1}y_n - x_ny_{n-1} = 4^{n-1}\sqrt{3}$.	
	Solution: $x_n + iy_n = \left(1 + i\sqrt{3}\right)^n = 2^n \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^n$	
	= $2^n \left(\cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}\right)$ (By De-Moivre's theorem)	2 marks
	$x_n = 2^n \cos \frac{n\pi}{3}$ and $y_n = 2^n \sin \frac{n\pi}{3}$ (Comparing real and imaginary)	

	parts)	
	Now, LHS = $x_{n-1}y_n - x_ny_{n-1}$	
	$=2^{n-1}\cos\frac{(n-1)\pi}{3}\times 2^n\sin\frac{n\pi}{3}-2^n\cos\frac{n\pi}{3}\times 2^{n-1}\sin\frac{(n-1)\pi}{3}$	4 marks
	$= 2^{n-1} \times 2^n \left[\sin \frac{n\pi}{3} \cos \frac{(n-1)\pi}{3} - \cos \frac{n\pi}{3} \sin \frac{(n-1)\pi}{3} \right]$	
	$= 2^{2n-1} \sin \left[\frac{n\pi}{3} - \frac{(n-1)\pi}{3} \right]$	5 marks
	$= 2^{2n-1} \sin\left[\frac{\pi}{3}\right] = 2^{2n-1} \left(\frac{\sqrt{3}}{2}\right) = 2^{2n-2} \sqrt{3} = 4^{n-1} \sqrt{3} = RHS$	
(b)	If $\sin^{-1}(\alpha + i \beta) = x + i y$,	
	show that sin ² x and cos h ² y are the roots of the equation	
	$\lambda^2 - (\alpha^2 + \beta^2 + 1)\lambda + \alpha^2 = 0$	
	Solution: We have $\sin(x + iy) = \alpha + i\beta$	
	$\sin x \cos iy + \cos x \sin iy = \alpha + i \beta$	
	$\therefore \sin x \cosh y + i \cos x \sinh y = \alpha + i \beta$	
	Equating real and imaginary parts $\sin x \cosh y = \alpha$ and	2 marks
	$\cos x \sinh y = \beta$	
	We know that, in terms of the roots, the quadratic equation is given by	
	$\lambda^2 - (sum \ of \ the \ roots)\lambda + (product \ of \ the \ roots) = 0$	
	Hence the equation whose roots are $\sin^2 x$ and $\cosh^2 y$ is	
	$\lambda^2 - (\sin^2 x + \cosh^2 y)\lambda + (\sin^2 x \cdot \cosh^2 y) = 0$	
	This means we have to prove that	2.14
	$\alpha^2 + \beta^2 + 1 = \sin^2 x + \cosh^2 y$ and $\alpha^2 = \sin^2 x \cdot \cosh^2 y$	3 Marks
	Now, $\alpha^2 + \beta^2 + 1 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y + 1$	
	$= \sin^2 x \cosh^2 y + (1 - \sin^2 x)(\cos h^2 y - 1) + 1$	
	$= sin^2xcosh^2y + cosh^2y - 1 - sin^2xcosh^2y + sin^2x + 1$	
	$= \sin^2 x + \cosh^2 y = sum \ of \ the \ roots$	
	And $\alpha^2 = \sin^2 x \cdot \cosh^2 y$ = Product of the roots	
	Hence the equation whose roots are sin^2x , $cos h^2y$ is	
	$\lambda^2 - (\alpha^2 + \beta^2 + 1)\lambda + \alpha^2 = 0$	5 marks
(c)	Prove that $\log \left\{ \frac{\cos(x-iy)}{\cos(x+iy)} \right\} = 2 i \tan^{-1}(\tan x \tanh y)$	
	Solution: $cos(x + iy) = cos x cos iy - sin x sin iy$	
	$= \cos x \cos hy - i \sin x \sinh y = a - ib (\text{say})$	
	Similarly	1 mark
	$\cos(x - iy) = \cos x \cos hy + i \sin x \sinh y = a + ib (\text{say})$	
		L

	Now $\log(a + ib) = \frac{1}{2}\log(a^2 + b^2) + i\tan^{-1}\left(\frac{b}{a}\right)$ $\log(a - ib) = \frac{1}{2}\log(a^2 + b^2) - i\tan^{-1}\left(\frac{b}{a}\right)$ $\therefore \log\left\{\frac{\cos(x-iy)}{\cos(x+iy)}\right\} = \log[\cos(x-iy)] - \log[\cos(x+iy)]$ $= \log(a + ib) - \log(a - ib)$ $= \frac{1}{2}\log(a^2 + b^2) + i\tan^{-1}\left(\frac{b}{a}\right) - \frac{1}{2}\log(a^2 + b^2) + i\tan^{-1}\left(\frac{b}{a}\right)$	2 marks 3 marks
	$= 2i \tan^{-1} \left(\frac{b}{a}\right)$ $= 2i \tan^{-1} \left(\frac{\sin x \sinh y}{\cos x \cos h y}\right) = 2i \tan^{-1} (\tan x \tanh y)$	5 marks
Q3	Attempt any Two of the following	
(a)	Determine the values of α, β, γ when the matrix given by $A = \begin{bmatrix} \alpha & \beta & -\gamma \\ \alpha & -2\beta & 0 \\ \alpha & \beta & \gamma \end{bmatrix} \text{ is orthogonal.}$ Solution: Given $A = \begin{bmatrix} \alpha & \beta & -\gamma \\ \alpha & -2\beta & 0 \\ \alpha & \beta & \gamma \end{bmatrix}$ $\therefore A^{t} = \begin{bmatrix} \alpha & \alpha & \alpha \\ \beta & -2\beta & \beta \\ -\gamma & 0 & \gamma \end{bmatrix}$ Since A is orthogonal, $AA^{t} = I$ $\therefore \begin{bmatrix} \alpha & \beta & -\gamma \\ \alpha & -2\beta & 0 \\ \alpha & \beta & \gamma \end{bmatrix} \begin{bmatrix} \alpha & \alpha & \alpha \\ \beta & -2\beta & \beta \\ -\gamma & 0 & \gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\therefore \begin{bmatrix} \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{2} - 2\beta^{2} & \alpha^{2} + \beta^{2} - \gamma^{2} \\ \alpha^{2} - 2\beta^{2} & \alpha^{2} + 4\beta^{2} & \alpha^{2} - 2\beta^{2} \\ \alpha^{2} + \beta^{2} - \gamma^{2} & \alpha^{2} - 2\beta^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	1 marks
	Comparing the elements we get, $\alpha^2 + \beta^2 + \gamma^2 = 1, \alpha^2 - 2\beta^2 = 0, \alpha^2 + \beta^2 - \gamma^2 = 0 \text{ and } \alpha^2 + 4\beta^2 = 1$ Solving these equations we will get $\alpha = \pm \frac{1}{\sqrt{3}}, \beta = \pm \frac{1}{\sqrt{6}}, \gamma = \pm \frac{1}{\sqrt{2}}$	3 marks 5 marks
(b)	Reduce $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 4 & 6 & 8 & 10 \\ 15 & 27 & 39 & 51 \\ 6 & 12 & 18 & 24 \end{bmatrix}$ to normal form and hence obtain rank of A .	5 marks

Solution: $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 4 & 6 & 8 & 10 \\ 15 & 27 & 39 & 51 \\ 6 & 12 & 18 & 24 \end{bmatrix}$	
By $R_2 - 4R_1$, $R_3 - 15R_1$, $R_4 - 6R_1$	
$A \sim \begin{bmatrix} 1 & 3 & 5 & 7 \\ 0 & -6 & -12 & -18 \\ 0 & -18 & -36 & -54 \\ 0 & -6 & -12 & -18 \end{bmatrix}$	
By $C_2 - 3C_1$, $C_3 - 5C_1$, $C_4 - 7C_1$	
$A \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -6 & -12 & -18 \\ 0 & -18 & -36 & -54 \\ 0 & -6 & -12 & -18 \end{bmatrix}$	
$\operatorname{By} \frac{-1}{6} R_2$	
$A \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & -18 & -36 & -54 \\ 0 & -6 & -12 & -18 \end{bmatrix}$	
By $R_3 + 18R_2$, $R_4 + 6R_2$	
$A \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	
By $C_3 - 2C_2$, $C_4 - 3C_2$	
$A \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	
\therefore Rank of $A = 2$	
(c) Determine all the possible solutions of the following equations.	
2x - y - z + w = 10, x - 2z + 3w = 6, 4x - y - 5z + 7w = 22.	
Solution: Writing the given system in matrix form	
$\begin{bmatrix} 2 & -1 & -1 & 1 \\ 1 & 0 & -2 & 3 \\ 4 & -1 & -5 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 10 \\ 6 \\ 22 \end{bmatrix}$	5 marks
The augmented matrix $[A:B] = \begin{bmatrix} 2 & -1 & -1 & 1 & 10 \\ 1 & 0 & -2 & 3 & 6 \\ 4 & -1 & -5 & 7 & 22 \end{bmatrix}$	
Applying $2R_2 - R_1$, $R_3 - 2R_1$, we get	

$$[A:B] \sim \begin{bmatrix} 2 & -1 & -1 & 1 & 10 \\ 0 & 1 & -3 & 5 & 2 \\ 0 & 1 & -3 & 5 & 2 \end{bmatrix}$$

Applying
$$R_3 - R_2$$
, we get $[A:B] \sim \begin{bmatrix} 2 & -1 & -1 & 1 & 10 \\ 0 & 1 & -3 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Hence $\rho(A) = \rho[A:B] = 2$, therefor the system is consistent Number of unknowns = 4,

system has (n-r) = 4-2 = 2 linearly independent solution.

The reduced form of the linear equations can be written as

$$2x - y - z + w = 10$$
(i)

$$y - 3z + 5w = 2$$
(ii)

Let z = t and w = s where t and s are arbitrary constants then

$$(ii) \Rightarrow y = 2 + 3t - 5s$$

$$(i) \Rightarrow x = 6 + 2t - 2s$$

Hence
$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 6+2t-2s \\ 2+3t-5s \\ t \\ s \end{bmatrix}$$

The system has infinite solutions as 't' and 's' vary.