Определение параметров межзвездного поглощения света по данным каталога Hipparcos

Амосов Федор, СПбГУ

Постановка задачи

Дан звездный каталог с данными о

- положениях
- параллаксах
- фотометрии
- спектральных классах и классах светимости

Задача

• Построить трехмерную карту пылевых облаков

Каталог

Звездный каталог с данными о

- положениях
- параллаксах
- фотометрии
- спектральных классах и классах светимости
- \Longrightarrow каталог Hipparcos (10^5 звезд)

Покраснение

$$E_{B-V} = (B-V)_{obs} - (B-V)_{int}$$

Пример на звезде НІР 44800

- У нее в каталоге $(B-V)_{obs} = 0.535^m$
- Класс F7V, поэтому* $(B-V)_{int} = 0.493^m$
- Покраснение $0.535^m 0.493^m = 0.042^m$
- Между нами и звездой пыли на 0.042^m

Идеальная кривая покраснения

Пылевые облака

Реальное покраснение

Реальная «кривая» покраснения

«В среднем»

Отрицательный тренд

Коэффициент k

$E_{B-V} = kr$

$k/\sigma_k > 2$

Предварительная обработка

- В расчет берутся 94199 из 118219 звезд
- Разбиение сферы на $12 \cdot 18^2 = 3888$ равновеликих частей алгоритмом Healpix
- Тренды строятся по 90% расчетных звезд
- Расчет отсутствующих классов светимости
 - Спектральный класс, класс светимости $\Longrightarrow (B-V)_{int}$

Наличие классов светимости

Обучение классификатора

- Факторы: показатель цвета, абсолютная звездная величина
- Класс: класс светимости III, или V
- Алгоритм классификации: метод опорных векторов (Support Vector Machines, SVM)

Классификатор

Качество классификации

Результаты кросс-валидации на 10 частях

Решение классификатора →	III	V
III	16636	1992
V	783	20396

Класс	Точность	Полнота	F1-мера
III	95%	89%	92%
V	91%	96%	93%

Результат

Что дальше?

$$E_{B-V} + 3\sigma_{E_{B-V}} < 0$$

Q&A

Спасибо за внимание! github.com/amosov-f/dust-detection