Modelagem de Séries Temporais em R

Prof. Eng. Ícaro Agostino Engenheiro de Produção - Ceuma Mestrando em Engenharia de Produção - UFSM

1. Linguagem R + RStudio

- Utilizando linguagem R
- O ambiente do RStudio
- pacotes
- importando dados

2. O que são series temporais?

- Conceitos básicos
- Componentes
- Séries temporais no mundo real
- Realizar previsões?
- Abordagens e métodos
- O processo de previsão

3. Análise e Modelagem

- Modelos quantitativos
- Holt-Winters
- ARIMA
- Redes Neurais Artificiais
- Medidas de avaliação

4. Ajustando modelos com dados reais

Linguagem R + RStudio

Utilizando linguagem R

- Desenvolvida por cientistas
- Foco em análise de dados
- Linguagem livre
- Altamente documentada*
- Estatística

O ambiente do RStudio

- Ambiente de desenvolvimento integrado
- Gerenciador de arquivos
- Visualizador de variáveis
- Leitor de script (Editor) e Console
- Visualizador de gráficos
- Gratuito

O que são series temporais?

Conceitos básicos

O que são series temporais?

Séries temporais são sequencias de observações sobre uma variável em diferentes instantes de tempo, em que os dados são observados em momentos discretos, usualmente equidistantes

Componentes

As séries temporais são compostas por quatro elementos:

Tendência: verifica o sentido de deslocamento da série temporal ao longo do tempo

Ciclo: movimento ondulatório da série temporal, que ao longo de vários anos tende a ser periódico

Sazonalidade: movimento ondulatório de curta duração, normalmente inferior a um ano, que, em geral, está associado a mudanças climáticas

Ruído aleatório ou erro: compreende a variabilidade intrínseca à série temporal, não podendo ser modelado.

Inflação Mensal - Índice Nacional de Preços ao Consumidor Amplo (IPCA)

Fonte: Ipea data

Figura 1 – Índice de Confiança do Empresário Industrial Fonte: Adaptado de CNI (2017)

Temperaturas e índice pluviométrico médio mensal do Maranhão.

Fonte: Climatempo

Realizar previsões?

Realizar previsões é uma atividade indispensável no planejamento de atividades e nos processos de tomada decisão.

A previsão pode ser entendida como a busca de informações sobre o comportamento futuro de uma variável através de um processo racional envolvendo incerteza.

Previsão consiste em um processo metodológico que objetiva definir os dados futuros com base em modelos

Abordagens e métodos

O processo de previsão

O processo de realização de previsões é composto de etapas estruturadas

Análise e Modelagem

Modelos quantitativos

As técnicas quantitativas utilizam dados históricos para a realização de previsões.

Modelos de séries temporais utilizam o comportamento dos dados ao longo do tempo para extrair um padrão que possa explicar o comportamento futuro da variável estudada.

- Holt-Winters
- ARIMA -
- Redes Neurais Artificiais

ARIMA

• A metodologia de Box-Jenkins (1970) é uma abordagem difundida para a realização de previsão em séries temporais. A ênfase está na análise das propriedades da própria série temporal, capturando a correlação entre os valores da série ao longo do tempo. (Gujarati; Porter, 2011).

• Três filtros: o componente Autorregressivo (AR), o filtro de Integração (I) e o componente de Médias Móveis (MA).

ARIMA

Em aplicações reais, raramente as séries temporais são estacionárias,, sendo necessário a aplicação de diferenças. ARIMA (p,d,q):

$$w_t = \phi_1 w_{t-1} + \dots + \phi_p w_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

Onde: $w_t = \Delta^d Z_t$; ϕ_p é o parâmetro autorregressivo de ordem "p"; θ_q é o parâmetro de médias móveis de ordem "q"; ε_t representa o erro ou ruído aleatório $\sim (0, \sigma^2)$.

- Modelos de Redes Neurais possuem diversas aplicações, com capacidade de reconhecer e aprender padrões complexos e não-lineares (Haykin, 2001)
- Foi desenvolvida inspirada no processo de informação do cérebro humano, por meio de algoritmos de treinamentos, sendo também uma abordagem bastante difundida para realização de previsões em séries temporais (Montgomery; Jennings; Kulahci, 2007)

• A estrutura básica de um neurônio artificial compõe quatro componentes: conexões, junção aditiva, função de ativação e o viés ou bias (Martins; Werner, 2014):

• Os modelos de RNA são divididos em classes de acordo com o formato de funcionamento, as redes alimentadas por múltiplas camadas são consideradas as mais utilizadas, tendo superior capacidade preditiva em modelos temporais (Qi; Zhang, 2001).

• A realização de previsões com modelos univariados, utiliza os períodos defasados da própria série na camada de entrada, podendo ser considerado um modelo genérico autorregressivo não-linear (Zhang; Patuwo; Hu, 2001; Jacobs, 2014):

$$\hat{Z}_t = f(Z_{t-1}, Z_{t-2}, ..., Z_{t-p})$$

• Onde: Z_t corresponde ao valor da série no período "t"; "p" o número de camadas de entrada na RNA; "f" a função linear ou não-linear.

Medidas de avaliação

Sigla	Descrição	Equação
MAE	Erro Médio Absoluto	$\frac{\sum_{t=1}^{n} \varepsilon_t }{n}$
MAPE	Erro Percentual Médio Absoluto	$\frac{\sum_{t=1}^{n} \left \varepsilon_{t_t} / Z_t \right * 100}{n}$
RMSE	Raiz do Erro Quadrático Médio	$\frac{\sqrt{\sum_{t=1}^{n} (\varepsilon_t)^2}}{n}$
U-Theil	Coeficiente U de Theil	$\frac{\sqrt{\sum_{t=1}^{n} (\varepsilon_{t})^{2}}}{\sqrt{\sum_{t=1}^{n} (Z_{t} - Z_{t-1})^{2}}}$

Critérios de seleção

De acordo com Box e Jenkins (1976), a com a inclusão de muitos parâmetros no modelo ajustado pode ser prejudicial, pois o mesmo deve ser o mais parcimonioso possível.

Para decidir sobre a inclusão ou não de parâmetros, os critérios Akaike Information Criteria – AIC (AKAIKE, 1973) e Bayesian Information Criteria – BIC (SCHWARZ, 1978) são utilizados.

Tais critérios são considerados penalizadores visto que levam em consideração o número de parâmetros dos modelos e a variância dos erros gerados, dessa forma o modelo que apresentar menores valores para os critérios e AIC e BIC terá o melhor ajuste (MORETTIN, 2008).

Critérios de seleção

$$AIC(p,q) = ln\sigma_{p,q}^{2} + \frac{2(p+q)}{n}$$
 $BIC(p,q) = ln\sigma_{p,q}^{2} + (p+q)\frac{ln(n)}{n}$

Onde: p e q são os parâmetros conhecidos, n é o tamanho da amostra, ln o logaritmo neperiano e σ^2 a variância estimada dos erros.

Box & Jenkins na prática

Identificação

Padrões teóricos de FAC e FACP para modelos ARMA			
	FAC	FACP	
AR(1)	Barras decaem exponencialmente	Apenas uma barra, em k=1	
	barras positivas se $\phi_1 > 0$	positiva se $\phi_1 > 0$	
	barras de sinais alternados se $\phi_1 < 0$	negativa se $\phi_1 < 0$	
AR(p)	Barras decaem exponencialmente ou em forma de senóide amortecida	Há p barras, de k=1 a k=p	
MA(1)	Apenas uma barra, em k=1	Barras decaem exponencialmente	
. ,	positiva se $\theta_1 < 0$	barras negativas se $\theta_1 > 0$	
	negativa se $\theta_1 > 0$	barras de sinais alternados se $\theta_1 < 0$	
MA(q)	Há q barras, de k=1 a k=q	Barras decaem exponencialmente ou em forma de senóide amortecida	
ARMA(p,q)	Sequência infinita de barras, dominada	Sequência infinita de barras, dominada	
	por exponenciais ou senóides	por exponenciais ou senóides	
	amortecidas, para k>p-q	amortecidas, para k>p-q	

Links úteis

https://github.com/icaroagostino

https://www.r-project.org/

https://www.rstudio.com/

https://otexts.com/fpp2/

Ajustando modelos com dados reais

