* No se permite el uso de ningún tipo de material *

EJERCICIO 1) (2 puntos) Sean $X := \mathbb{N} \setminus \{\emptyset\}$ y $\mathcal{A} := \mathcal{P}(X)$ la colección de subconjuntos de X. Para cada una de las siguientes funciones, de \mathcal{A} en $[0, \infty]$, decir, justificadamente, si es o no una medida (σ -aditiva), y si es o no una medida exterior.

- (1) $\mu: \mathcal{A} \to [0, \infty]$ definida para $B \in \mathcal{A}$ por $\mu(\emptyset) = 0$, $\mu(B) = \sum_{n \in B} 1/(n+1)$ si B es finito y $\mu(B) = \infty$ si B es infinito.
- (2) La aplicación $\nu: \mathcal{A} \to [0, \infty]$ definida para cada $B \in \mathcal{A}$ por $\nu(B) = \sum_{n \in \mathbb{N}} 2^{-n} \mathbb{1}_B(n)$, donde $\mathbb{1}_B$ es la función característica de B.
- (3) La aplicación $\eta: \mathcal{A} \to [0, \infty]$ definida para cada $B \in \mathcal{A}$ por $\eta(\emptyset) = 0$, $\eta(B) = 1 + \operatorname{Card}(B)$ si $\emptyset \neq B$ es finito, y $\eta(B) = \infty$ si B es infinito.

EJERCICIO 2) (5 puntos) Sea \mathcal{B} la σ -álgebra de los borelianos de la recta real \mathbb{R} (con su topología usual) y sea λ la medida de Lebesgue en \mathcal{B} . Sea $(f_n)_n$ una sucesión de funciones $f_n : \mathbb{R} \to \mathbb{R}^+$ λ -medibles y λ -integrables que converge puntualmente a una función $f : \mathbb{R} \to \mathbb{R}^+$. Justificando cada respuesta, decir si son ciertas o no las siguientes afirmaciones:

- (1) La función f es λ -medible.
- (2) Si la sucesión $(f_n)_n$ converge uniformemente a f, entonces lím $\int f_n d\lambda = \int f d\lambda$.
- (3) Para cada $n \in \mathbb{N}$, la restricción de f al intervalo [-n, n] es λ -integrable.
- (4) ¿Existe un conjunto boreliano A con medida de Lebesgue $\lambda(A) < 1$ tal que $(f_n)_n$ converge uniformemente a f en $\mathbb{R} \setminus A$?
- (5) Si $(f_n)_n$ es creciente, entonces $(\int f_n d\lambda)_n$ converge a $\int f d\lambda$.
- (6) Si existe una función λ -integrable g tal que $|f_n(x)| \leq |g(x)|$ para todo $x \in \mathbb{R}$ y todo $n \in \mathbb{N}$, entonces $(\int f_n d\lambda)_n$ converge a $\int f d\lambda$.

EJERCICIO 3) (3 puntos) Sea Ω un conjunto, \mathcal{A} una σ -álgebra sobre Ω y $\lambda, \mu : \mathcal{A} \to [0, \infty[$ dos medidas (finitas) σ -aditivas. Recordemos que μ es absolutamente continua respecto a λ , denotado por $\mu \ll \lambda$, cuando $\lambda(A) = 0$ implica que $\mu(A) = 0$, para todo $A \in \mathcal{A}$. Se pide:

- (1) Justificando la respuesta, dar un ejemplo de λ y μ tales que $\mu \ll \lambda$ y $\mu \not\ll \lambda$.
- (2) Demostrar que $\mu \ll \lambda$ si y solamente si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que para todo $A \in \mathcal{A}$, si $\lambda(A) < \delta$ entonces $\mu(A) < \varepsilon$.