Satisfiability Checking The Simplex Algorithm

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 16/17

Outline

- 1 Gaussian Elimination
- 2 Satisfiability with Simplex
- 3 General Simplex Form
- 4 Simplex Basics
- 5 The General Simplex Algorithm

Gaussian elimination

• Given a linear system Ax = b

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix}$$

lacktriangle Manipulate A|b to obtain an upper-triangular form

$$\begin{pmatrix} a'_{11} & a'_{12} & \dots & a'_{1k} & b'_{1} \\ 0 & a'_{22} & \dots & a'_{2k} & b'_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a'_{kk} & b'_{k} \end{pmatrix}$$

Gaussian elimination

Then, solve backwards from k's row according to:

$$x_i = \frac{1}{a'_{ii}}(b'_i - \sum_{j=i+1}^k a'_{ij}x_j)$$

Example

$$\begin{pmatrix} 1 & 2 & 1 \\ -2 & 3 & 4 \\ 4 & -1 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 9 \end{pmatrix} \implies \begin{pmatrix} 1 & 2 & 1 & | & 6 \\ -2 & 3 & 4 & | & 3 \\ 4 & -1 & -8 & | & 9 \end{pmatrix}$$

$$R3 = \begin{pmatrix} 4, & -1, & -8 & | & 9 &) \\ -4R1 = \begin{pmatrix} -4, & -8, & -4 & | & -24 &) \\ R3 + = & -4R1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & | & 6 \\ -2 & 3 & 4 & | & 3 \\ 0 & -9 & -12 & | & -15 \end{pmatrix}$$

Now: $x_3 = -1$, $x_2 = 3$, $x_1 = 1$. Problem solved!

Satisfiability with Simplex

Simplex was originally designed for solving the optimization problem:

$$\label{eq:max} \begin{aligned} \max \vec{c} \, \vec{x} \\ \text{s.t.} \\ \mathcal{A} \vec{x} \leq \vec{b}, \quad \vec{x} \geq \vec{0} \end{aligned}$$

 We are only interested in the feasibility problem (= satisfiability problem).

General Simplex

- We will learn a variant called general simplex.
- Well-suited for solving the satisfiability problem fast.
- The input: $A\vec{x} \leq \vec{b}$
 - \blacksquare A is a $m \times n$ coefficient matrix
 - The problem variables are $\vec{x} = x_1, \dots, x_n$

■ First step: convert the input to general form

General form

Definition (General Form)

$$A(\vec{x}, \vec{s}) = 0$$
 and $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

A combination of

- Linear equalities of the form $\sum_i a_i x_i = 0$
- Lower and upper bounds on variables

Transformation to general form

- Replace $\sum_i a_i x_i \bowtie b_j$ (where $\bowtie \in \{=, \leq, \geq\}$) with $\sum_i a_i x_i - s_j = 0$ and $s_j \bowtie b_j$.
- Note: no >, <!

 \bullet s_1, \ldots, s_m are called the *additional variables*

Example 1

Convert
$$x + y \ge 2!$$

Result:

$$\begin{aligned}
x + y - s_1 &= 0\\ s_1 &\ge 2
\end{aligned}$$

It is common to keep the conjunctions implicit

Example 2

Convert

$$\begin{array}{ccc}
x & +y & \geq 2 \\
2x & -y & \geq 0 \\
-x & +2y & \geq 1
\end{array}$$

Result:

$$\begin{array}{ccccc}
x & +y & -s_1 & = 0 \\
2x & -y & -s_2 & = 0 \\
-x & +2y & -s_3 & = 0 \\
s_1 & \ge 2 \\
s_2 & \ge 0 \\
s_3 & \ge 1
\end{array}$$

Geometrical interpretation

Linear inequality constraints, geometrically, define a convex polyhedron.

Geometrical interpretation

Our example from before:

$$\begin{array}{ccc}
x & +y & \geq 2 \\
2x & -y & \geq 0 \\
-x & +2y & \geq 0
\end{array}$$

Matrix form

- Recall the general form: $A(\vec{x}, \vec{s}) = 0$ and $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$
- A is now an $m \times (n + m)$ matrix due to the additional variables.

The tableau

■ The diagonal part is inherent to the general form:

$$\begin{pmatrix}
x & y & s_1 & s_2 & s_3 \\
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & -1 & 0 \\
-1 & 2 & 0 & 0 & -1
\end{pmatrix}$$

Instead, we can write:

The tableau

- The tableaux changes throughout the algorithm, but maintains its $m \times n$ structure
- Distinguish basic (also called dependent) and non-basic variables

Notation:

 ${\cal B}$ the set of basic variables ${\cal N}$ the set of non-basic variables

- Initially, basic variables = the additional variables
- The tableaux is simply a different notation for the system

$$\bigwedge_{s_i \in \mathcal{B}} \left(s_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j \right)$$

■ The basic variables are also called the dependent variables.

Data structures

- Simplex maintains:
 - The tableau,
 - lacksquare an assignment lpha to all (problem and additional) variables.
- Initially, $\alpha(x_i) = 0$ for $i \in \{1, ..., n + m\}$
- Two invariants are maintained throughout:
 - $1 A\vec{x} = 0$
 - 2 All non-basic variables satisfy their bounds
- The basic variables do not need to satisfy their bounds.
- Can you see why these invariants are maintained initially?

Invariants

■ The initial assignment satisfies $A\vec{x} = 0$

• If the bounds of all basic variables are satisfied by α , return "satisfiable".

■ Otherwise... *pivot*.

Pivoting

- I Find a basic variable x_i that violates its bounds. Suppose that $\alpha(x_i) < l_i$.
- 2 Find a non-basic variable x_i such that
 - \blacksquare $a_{ij} > 0$ and $\alpha(x_j) < u_j$, or
 - \bullet $a_{ij} < 0$ and $\alpha(x_j) > l_j$.

Why? Such a variable is called suitable.

If there is no suitable variable, return "unsatisfiable".

Why?

Pivoting x_i and x_i (1)

1 Solve equation i for x_i :

From:
$$x_i = a_{ij}x_j + \sum_{k \neq j} a_{ik}x_k$$

To:
$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}} x_k$$

2 Swap x_i and x_i , and update the *i*-th row accordingly

From:
$$a_{i1}$$
 ... a_{ij} ... a_{in}

To:
$$\left| \frac{-a_{i1}}{a_{ij}} \right| \dots \left| \frac{1}{a_{ij}} \right| \dots \left| \frac{-a_{in}}{a_{ij}} \right|$$

Pivoting x_i and x_j (2)

3 Update all other rows: Replace x_j with its equivalent obtained from row i:

$$x_j = \frac{x_i}{a_{ij}} - \sum_{k \neq j} \frac{a_{ik}}{a_{ij}} x_k$$

- 4 Update α as follows:
 - Increase $\alpha(x_j)$ by $\theta = \frac{l_i \alpha(x_i)}{a_{ij}}$ Now x_j is a basic variable: it may violate its bounds. Update $\alpha(x_i)$ accordingly. Q: What is $\alpha(x_i)$ now?
 - Update α for all other basic (dependent) variables.

Pivoting: Example (1)

Recall the tableau and constraints in our example:

	X	у	2		_
<i>s</i> ₁	1	1	0	>	S ₁
<i>s</i> ₂	2	$\overline{-1}$	1	_	5 ₂ 5 ₃
53	-1	2	_	_	J-

- lacktriangle Initially, lpha assigns 0 to all variables
 - \implies Violated are the bounds of s_1 and s_3
- We will fix s_1 .
- x is a suitable non-basic variable for pivoting. It has no upper bound!
- So now we pivot s_1 with x

Pivoting: Example (2)

Solve 1st row for x:

$$s_1 = x + y \quad \leftrightarrow \quad x = s_1 - y$$

Replace x in other rows:

$$s_2 = 2(s_1 - y) - y \quad \leftrightarrow \quad s_2 = 2s_1 - 3y$$

 $s_3 = -(s_1 - y) + 2y \quad \leftrightarrow \quad s_3 = -s_1 + 3y$

Pivoting: Example (3)

This results in the following new tableau:

$$x = s_1 - y$$

$$s_2 = 2s_1 - 3y$$

$$s_3 = -s_1 + 3y$$

$$\begin{array}{rcl}
2 & \leq & s_1 \\
0 & \leq & s_2 \\
1 & \leq & s_3
\end{array}$$

What about the assignment?

- We should increase x by $\theta = \frac{2-0}{1} = 2$
- Hence, $\alpha(x) = 0 + 2 = 2$
- Now s_1 is equal to its lower bound: $\alpha(s_1) = 2$
- Update all the others

Pivoting: Example (4)

The new state:

- Now s₃ violates its lower bound
- Which non-basic variable is suitable for pivoting? That's right...y
- We should increase y by $\theta = \frac{1-(-2)}{3} = 1$

Pivoting: Example (5)

The final state:

All constraints are satisfied.

Observations I

The additional variables:

- Only additional variables have bounds.
- These bounds are permanent.
- Additional variables enter the base only on extreme points (their lower or upper bounds).
- When entering the base, they shift towards the other bound and possibly cross it (violate it).

Observations II

Q: Can it be that we pivot x_i, x_j and then pivot x_j, x_i and thus enter a (local) cycle?

A: No.

- For example, suppose that $a_{ij} > 0$.
- We increased $\alpha(x_j)$ so now $\alpha(x_i) = I_i$.
- After pivoting, possibly $\alpha(x_j) > u_j$, but $a'_{ij} = 1/a_{ij} > 0$, hence the coefficient of x_i is not suitable

Termination

Is termination guaranteed?

■ Not obvious. Perhaps there are bigger cycles.

- In order to avoid circles, we use Bland's rule:
 - 1 Determine a total order on the variables
 - 2 Choose the first basic variable that violates its bounds, and the first non-basic suitable variable for pivoting.
 - 3 It can be shown that this guarantees that no base is repeated, which implies termination.

General simplex with Bland's rule

1 Transform the system into the general form

$$A(\vec{x}, \vec{s}) = 0$$
 and $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$.

- 2 Set \mathcal{B} to be the set of additional variables s_1, \ldots, s_m .
- 3 Construct the tableau for A.
- Determine a fixed order on the variables.
- 5 If there is no basic variable that violates its bounds, return "satisfiable". Otherwise, let x_i be the first basic variable in the order that violates its bounds.
- **6** Search for the first suitable non-basic variable x_j in the order for pivoting with x_i . If there is no such variable, return "unsatisfiable".
- **7** Perform the pivot operation on x_i and x_j .
- 8 Go to step 5.