

Similar Offer Match via Text Input

Efficient solution to a user-end offer search

Anthony Jiang Oct. 2023

Executive Summary

Highlights

- Fast Respond: normal response time 1~2 seconds
- Accurate Entity Extraction: spaCy-transformer NER model with 91.5 F score, understanding

Major Insights

- Basic goal of this project is to analyze what are the searched category/brand/retailer and what are the most similar offers
- Some important assumptions:
 - users are entering keywords or short sentence (by the nature of searching)
 - search input might not be crystal clear due to spelling errors or ambiguous wording (e.g. coke for Pepsi or Coca-cola)
 - use product design and avoid using algorithm to solve everything. When failing to find relevant offers, don't calculate similarity of search input to all available offers; rather, provide guide information for users to refine input
- **Deployment***: App is deployed on Hugging Face. For diagnostic reason, users now can chose similarity score threshold. In future, it can be replaced by user-friendly filtering options
- **Future Improvement**: fuzzy search to handle spelling errors in search input, more drop-down options in search menu to either narrow down search category or recommend keywords of relevant category/offers
- **Scalability**: as mentioned above, the current solution is lightweight and flexible to deploy on production pipeline; a fuzzy search component can be incorporated as well; to large-scale data (e.g. million-level search), you might consider Apache Spark, Parallelization, and Elasticsearch

Problem Statement

User case: When a user searches for offers about a category/brand/retailer, we should return the most similar offers sponsored on our platform

- Input: text (could be keywords or short sentences)
- **Output**: search results (<u>most similar offers</u> and <u>similarity score</u> for diagnostic reason)

	Example Input	Process	Example Output
Category*	Beer, Diaper, Frozen Pizza	Identity category, and find offers under this category	Alcohol**, Baby & Toddler, Frozen Food
Brand	Back to Roots Soil	Identity brand, and find offers related to this brand	Back to the Roots Garden Soil, 1 cubic foot, at Lowe's Home Improvement
Retailer	Costco Member subscription	identify retailer, and find offers related to this retailer	Join Costco as Gold member (Members Only)

Notes: * Although we have multiple examples in the category input, I assume that normal users will give one category per search; multi-category input will still work, but having accuracy decay ** In the dataset, `Alcohol` contains more than alcoholic drinks `[Beer, Malt Beverages, Hard Seltzers, Sodas, Waters, Lemonades & Teas, Hard Ciders, Wine, Spirits]`. I personally believe it should be either renamed or given more categories for better differentiation. However, I didn't change any category names.

Methodology: Project Workflow & Pipeline Design

Design rationale & objectives

- Basic goal of this project is to analyze (1) what are the searched category/brand/retailer and (2) what are the most similar offers
- Why spaCy? Because it is computationally efficient to carry out the task in step (1). Also, I still utilized the transformer-based layer
- Why don't we use LLMs? Too much processing time and limited labeled data. Task (1) only needs NER part. A tradeoff between customer satisfaction (speed) and search quality (search accuracy)
- How to match search to offers? See next slides
- Similarity score. Jaccard or Cosine. You can choose it by your own in demo

Major components: (a) Data EDA, preprocessing, **(b)** spaCy NER model with transformer embedding, **(c)** Development of Search Functionality and Gradio interface, and **(d)** Packaging and deploying to Hugging Face Space

Methodology: Data EDA, Pre-cleaning, and Data Transformation

Data files

- categories.csv: product categories and the upper categories (Beer - Alcohol)
- offer_retailer.csv: offers (OFFER, RETAILER) that supported on platform
- brand_category.csv:brands and the product categories they respond to

Exploratory results

- Basics info*:
 - 118 product categories & 23 upper categories (with a few overlaps)
 - 384 offers and 238 retailers
 - 8501 brands and 118 corresponding product category
- Some overlaps between retailers and brands (e.g. Subway), but such retailed-owned brands will not be sold by other retailers
- Other findings (e.g. entity token length distribution) that helped my cleaning progress can be found in notebooks, or explained further if I were to move on to next stage of this interview

Data Cleaning

- Removed NaN values in offer_retailer table
- Remove punctuations, but kept alphanumeric and special characters like ["&", ".", ",", "-"] in offers and retailer names
- Removed offers that do not have brand retailer name -> noises labels

Data Transformation

- New files created:
- offer_brand_retailer: csv and pickle files about sponsored offers and their brands & retailers
- corpus: training materials for spaCy NER model, such as train.spacy
- brand_belong_category_dict.json: dict, key is category and value is the associated brands

Methodology: Labeling and Preparing Corpus

Goal: Using spaCy pipeline to train a new spaCy NER model to identify brand/retailer

- 1. Use the offer_retailer.csv and clean the table (e.g. removing special characters & pure-number names, removing offers that don't have any information about its retailer or brand)
- 2. Use pandas and pd.Find() to extract labels and start/end positions
- 3. Convert to JSON format and write json_parser() to convert to spaCy binary format
- 4. Write spaCy configuration files and train on Colab (T4 GPU); about why using spaCy transformer, it is a choice about embedding, please refer to Appendix

Examples:

```
('DOVE Chocolate, select sizes, buy 1', [[0, 14, 'BRAND']]), ('The Rustik Oven bread', [[4, 15, 'BRAND']]), ('When you join Costco as an Executive Member New Members Only', [[14, 20, 'BRAND']]),
```

Methodology: Search Function

Step/Function Explanation:

- search_offers: The main function that takes in a search input and decides whether
 it can find entities or not. Then executes the appropriate functions
- check_entity: A function that checks if there are any entities in the search input
- find_category: A function that checks the category of the search input
- offer_finder_by_category: A function that finds similar offers based on the category of the search input
- offer finder by entity: A function that finds similar offers based on the entities in the search input
- final_output: A function that sorts the search results by score and returns the final output
- SearchFailedError: An error that is raised when no entities or categories are found in the search input

When inputting a text search (e.g. keyword or short sentence), here are the steps taken into account:

First, check if there's entity in the searched text

<u>Case#1</u>: If input has entities, then function will filter the available offers on the platform based on brands or retailers; it can handle multiple entities and then extract all relevant offers for similarity calculation (filtered by a customizable score threshold)

If there are no matches of brand/retailer in available offers, it will search based category

Case#2: If no entities found, check if there's any category.

- Normally results for category check is a tuple (product_category, upper_category). If such tuple is returned, the function will filter available offers—through the mapping from brand to category. If no categories found, it will request the user to search again
- If mapping failed, it will recommend the user with other product categories under the same upper category. But it won't calculate similar offers due to computational limitations. Instead, the user will search again

Case#3: If none of the above searches have results, then return None and a message to request a refined search

Methodology: Text Similarity, Jaccard vs Cosine

	Jaccard Similarity	Cosine Similarity
How it works	Jaccard similarity measures the similarity between two sets. For text data, each sentence or document is treated as a set of words (or tokens)	Cosine similarity measures the cosine of the angle between two vectors. In text similarity, sentences or documents are represented as vectors (using techniques like TF-IDF or word embeddings).
Pros	Good for situations where the order of words doesn't matter. Search inputs are usually a bunch of keywords	Takes into account the frequency of words, which can provide a more nuanced similarity measure. Can be used with vector representations of text, which can capture semantic meanings of words.
Cons	May not be as effective if there are synonyms or different ways of expressing the same thing (since it relies on exact word matches, like soda can be baking soda/drinks); same flaws apply to the case of spelling errors	More computationally intensive, especially if using advanced word embeddings. The order of words is not considered (unless you're using more advanced embeddings like BERT).
Treatment & Issues	 cosine similarity calculation But the actual cases of user search might be more often with a k 	s mentioned above, we can consider using better embedding methods to improve bunch of keywords (e.g. Diapers discount Target) otherwise we have to do heavy cleaning if going further with Jaccard; we might use
Takeaways		rent words might have similar meanings. vocabulary, Jaccard similarity might be sufficient and would be faster to compute. ant to implement some form of preprocessing to normalize product names or

Demo & Deployment

<u>Demo</u> available on Hugging Face

If you want to run it locally, follow the instructions on my <u>Github Repo</u>

Appendix - Comparison Offer Similarity Scores

```
# test = "Sara Lee bread, select varieties, buy 2 at Walmart"
           test = "Back to the Roots Garden Soil, 1 cubic foot, at Lowe's Home Improvement"
           main(test, df_offers_brand_retailer, category_dict, brand_belong_category_dict, 'cosine', 0.3)
        Function main | Search input: Back to the Roots Garden Soil, 1 cubic foot, at Lowe's Home Improvement
        Found 2 entity object(s) in the search input.
        Function offer_finder_by_entity | Found entity: Back to the Roots with label: BRAND
        Function offer_finder_by_entity | Found 15 offer(s) for the brand/retailer: Back to the Roots
        Function offer finder by entity | Found entity: Lowe's Home Improvement with label: RETAILER
        Function offer finder by entity | No offer is found for the brand/retailer: Lowe's Home Improvement
Out[10]:
                                                                                OFFER Cosine Similarity Score
                        Back to the Roots Garden Soil, 1 cubic foot, at Lowe's Home Improvement
          0
                                                                                                    1.000000
                                                                                                    0.777778
                        Back to the Roots Potting Mix, 1 cubic foot, at Lowe's Home Improvement
                                                                                                    0.377964
                                    Back to the Roots Soils, select varieties and sizes, at Lowes
                                  Back to the Roots Soils, select varieties, at Walmart or Lowes
                                                                                                    0.377964
                                   Back to the Roots Grow Kits at Walmart or The Home Depot
                                                                                                    0.377964
                               Back to the Roots Dry Plant Food, 5 pounds, at The Home Depot
                                                                                                    0.353553
                                                                                                    0.333333
                                                       Back to the Roots Seeds, at Walmart
          7 Back to the Roots Raised Bed Gardening Kit with Soil, Seeds and Plant Food, at Target
                                                                                                     0.301511
```

	test = "Back to the Roots Garden Soil, 1 cubic foot, at Lowe's Home Improvement" main(test, df_offers_brand_retailer, category_dict, brand_belong_category_dict, 'jaccard', 0.1)					
Found Funct Funct	tion main Search input: Back to the Roots Garden Soil, 1 cubic foot, at Lo d 2 entity object(s) in the search input. tion offer_finder_by_entity Found entity: Back to the Roots with label: Bl tion offer_finder_by_entity Found 15 offer(s) for the brand/retailer: Back tion offer_finder_by_entity Found entity: Lowe's Home Improvement with lal tion offer_finder_by_entity No offer is found for the brand/retailer: Low OFFER Jaccas	RAND k to the Roots bel: RETAILER				
0	Back to the Roots Garden Soil, 1 cubic foot, at Lowe's Home Improvement	1.000				
1	Back to the Roots Potting Mix, 1 cubic foot, at Lowe's Home Improvement	0.636				
2	Back to the Roots Soils, select varieties and sizes, at Lowes	0.231				
3	Back to the Roots Soils, select varieties, at Walmart or Lowes	0.231				
4	Back to the Roots Grow Kits at Walmart or The Home Depot	0.231				
5	Back to the Roots Dry Plant Food, 5 pounds, at The Home Depot	0.214				
6	Back to the Roots Seeds, at Walmart	0.182				
7	Back to the Roots Raised Bed Gardening Kit with Soil, Seeds and Plant Food, at Target	0.176				
8	Back to the Roots Organic Kits and Planters, at Target	0.154				
9	Back to the Roots Soils, select varieties, at Walmart	0.154				
10	Back to the Roots Soils, select varieties and sizes, at Walmart	0.143				
11	Back to the Roots Microgreens Grow Kit OR Seed Refill at Walmart	0.133				
12	Back to the Roots Grow Hydroponic Grow Kit OR Refill Bundle at Walmart	0.125				
13	Back to the Roots Organic 3-In-1 Seed Starting Mix 12 quart, at Walmart or Target	0.125				
14	Back to the Roots Grow Seed Starting Pots OR Germination Trays, at Walmart or Target	0.118				

Both scores provide good rank ordering (that is, separation of offers that can be easily grouped). However, Cosine Similarity Score seem to have a smother distribution of offers by score, allowing more flexible cuttoff with threshold value

Appendix - spaCy, boosting performance with transformers

spaCy NER training with token2vec

====			=== Traini	ng pipel	ine ====	======		
		['tok2vec', 'n						
i In	itial le #	arn rate: 0.00 LOSS TOK2VEC		ENTS F	ENTS_P	ENTS R	SC0RE	
0	0	0.00	49.33	13.43	8.49	32.14	0.13	
13	200	35.81	1490.48	78.90	81.13	76.79	0.79	
28	400	0.00	0.00	80.73	83.02	78.57	0.81	
48	600	2.80	1.93	84.11	88.24	80.36	0.84	
72	800	13.31	6.00	86.24	88.68	83.93	0.86	
L01	1000	0.01	0.00	83.02	88.00	78.57	0.83	
136	1200	17.42	5.06	83.33	86.54	80.36	0.83	
179	1400	101.81	21.93	81.90	87.76	76.79	0.82	
229	1600	25.86	4.08	85.19	88.46	82.14	0.85	
293	1800	0.00	0.00	84.11	88.24	80.36	0.84	
361	2000	0.00	0.00	84.11	88.24	80.36	0.84	
161	2200	0.00	0.00	84.40	86.79	82.14	0.84	
561	2400	0.00	0.00	83.33	86.54	80.36	0.83	

spaCy NER training with base-Bert

				g pipeli	ne =====	======	======
		['transformer',	'ner']				
		arn rate: 0.0			=1.TC D		
E	#	LOSS TRANS	LOSS NER	ENTS_F	ENTS_P	ENTS_R	SCORE
0	0	576.22	453.42	13.94	9.48	26.32	0.14
100	200	21203.24	23940.32	88.89	88.31	89.47	0.89
200	400	0.00	316.27	90.07	90.67	89.47	0.90
300	600	1.58	308.27	88.74	89.33	88.16	0.89
400	800	30.78	338.28	91.39	92.00	90.79	0.91
500	1000	6.35	292.41	92.21	91.03	93.42	0.92
600	1200	1.00	276.68	92.21	91.03	93.42	0.92
700	1400	3.93	272.53	90.79	90.79	90.79	0.91
800	1600	0.00	249.77	90.79	90.79	90.79	0.91
900	1800	0.00	238.44	90.79	90.79	90.79	0.91
1000	2000	0.00	223.54	90.79	90.79	90.79	0.91
1100	2200	0.00	208.17	90.79	90.79	90.79	0.91
1200	2400	21.46	217.55	91.50	90.91	92.11	0.92
1300	2600	2.49	176.41	93.42	93.42	93.42	0.93
1400	2800	1.16	156.54	91.50	90.91	92.11	0.92
1500	3000	0.00	136.26	90.20	89.61	90.79	0.90
1600	3200	0.00	117.72	91.50	90.91	92.11	0.92
1700	3400	0.00	99.77	92.11	92.11	92.11	0.92
1800		0.00	81.52	91.50	90.91	92.11	0.92
1900		0.00	65.55	91.50	90.91		
2000		0.00		91.50			
2100		0.00	37.89	91.50	90.91	92.11	

Does embedding helps to improve performance?

I believe there's minor boosting effect when I trained spaCy NER with transformers. Because user-generated search inputs might be vague and require context. For example:

- "Coca-cola 12 packs discount at Walmart" → Pretty clear meaning
- "Coke 12 packs Walmart" → Challenging because coke is not a clear brand name–it can be Pepsi or Coca-cola; but with context of Walmart, I know at least it is a purchasable brand at walmart, which is highly like a soft drink

About me

Han Jiang

- MS in Data Science@Uchicago (graduation: 12/2023)
- ☐ BA in Economics @ UW Madison
- ☐ Data Scientist Intern at CreditNinja
- □ NLP research intern (capstone) at KYC2020
- Data Analyst and Economic Intern at United Nations
 @UNCDF and @UNESCAP

