GROUNDWATER HYDROLOGY

Summary

Foreword Any error or contribution should be reported in the form of an issue, or a pull request for those who can use git and LATEX, to

https://github.com/mbataillou/Summaries/tree/master/Caminos/Hidrologia

You can notice that there is always place for improvement and your help is therefore welcome.

Version 3.0

January 15, 2018

Github © Marc Bataillou Almagro

Contents

1	General								
2	Dar- tion		w (Momentum continuity equa-	3					
3	Flov	v equat	tion	3					
	3.1		al expression	3					
		$3.1.1 \mathbb{R}^2$							
	3.2	Soluti	ons	3					
		3.2.1	\mathbb{R} / no recharge / steady state / homogeneity	3					
		3.2.2	R / no recharge / steady-state /						
			heterogeneous	3					
		3.2.3	\mathbb{R} / recharge / steady-state /						
				3					
		3.2.4							
		0.2.1		3					
		3.2.5	\mathbb{R}^2 (radial symetry) / no						
		3.2.6	mogeneous	3					
		3.2.7	geneous	3					
4	Gro	undwa	ter Budget	3					
5	Pun	nping t	est	4					
6	Wel	l hydra	ulics	4					
6									
	6.2								
	0.2								
			Fixed head boundary	4					
7	Poll	ution		4					
			tion						
		Hydrodinamic dispersion							
Re	ferer	ices		ression					

General

Types of soil:

- Aguifer: capable to store and transmit water
- Aquiclude: not capable to transmit but able to store water
- Aquitard: transmit very slowly not store

Aquifer types:

- Confined: recharge from other areas (flow)
- *Unconfined*: there is recharge and $\phi \approx 0.3 \in$ [0, 25; 0, 4]

Relation river aquifer

- "Efluente": receives water from the aquifer
- "Afluente": gives water to the aquifer
- Disconnected: doesn't interact with the aquifer

Darcys law (Momentum continuity equation)

$$\begin{cases} q = -K\nabla h \\ v = \frac{q}{\Phi} \end{cases}$$

where

$$K = \begin{pmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{xz} \\ K_{zx} & K_{xy} & K_{zz} \end{pmatrix}$$

$$\phi : \text{ is the porosity}$$

Flow equation

General expression

$$W - \nabla \cdot q = S_s \frac{\partial}{\partial t} h$$

Where $h = \frac{p}{\gamma} + z$ and S_s the specific storage. where $h = \frac{p}{\gamma} + z$: is the piezometric height

 S_c : is the specific storage

3.1.1 \mathbb{R}^2

Suposing that the transversal (depth) conductivity is constant over layers, we obtain

$$r - \nabla \cdot (\mathbf{T}\nabla h) = \mathbf{S}\frac{\partial}{\partial t}h$$

where

r = Wb: is the recharge $S = S_s b$: is the storage T = Kb: is the transmissivity

3.2 **Solutions**

3.2.1 \mathbb{R} / no recharge / steady state / homogeneity

$$h(x) = h_0 - \left(\frac{h_{\mathcal{L}} - h_0}{\mathcal{L}}\right)$$

neous

$$\begin{cases} \frac{d}{dx} \left(\mathbf{T}(x) \frac{d}{dx} h \right) = 0 & x \in \Omega \\ h(0) = h_0 & x \in \partial \Omega \\ h(\mathbf{L}) = h_{\mathbf{L}} \end{cases}$$

$$\Leftrightarrow h(x) = h_0 + \frac{h_{\mathbf{L}} - h_0}{\int_0^{\mathbf{L}} \frac{d}{d\mathbf{T}(u)} u} \int_0^x \frac{d}{d\mathbf{T}(u)} u$$

3.2.3 \mathbb{R} / recharge / steady-state / homogeneous

$$\begin{cases} T \frac{d^2}{dx^2} h + r = 0 & x \in \Omega \\ h(x) = h_0 & x \in \partial \Omega \end{cases}$$

$$\Leftrightarrow h(x) = -\frac{rL}{2T} x^2 + \frac{rL}{2T} x + \frac{rL}{2T} h_0$$

3.2.4 \mathbb{R} / no recharge / transient / homogeneous

$$\begin{cases} T \frac{d^2}{dx^2} h = S \frac{d}{dt} h & x \in \Omega \\ h(x, t = 0) = h_0 & t = 0 \end{cases}$$

⇔ Numerical Methods

3.2.5 \mathbb{R}^2 (radial symetry) / no recharge / steadystate / homogeneous

$$\begin{cases} T_x \frac{d^2}{dx^2} h + T_y \frac{d^2}{dy^2} h = 0 & x \in \Omega \\ \frac{d}{dr} h|_{r=r_w} = Q \\ T_x = T_y \end{cases}$$

Polar transformation $f:(x,y) \in \mathbb{R}^2 \to (r,\theta) \in$ $\mathbb{R} \times [0, 2\pi]$

$$\begin{cases} \frac{d}{dr} \left(r \frac{d}{dr} h \right) = 0 & x \in \Omega \\ \frac{d}{dr} h \big|_{r=r_w} = Q \\ s(r = R) = 0 & x \in \partial \Omega \end{cases}$$

$$\Leftrightarrow s(r) = \frac{Q}{2\pi T} \ln \left(\frac{R}{r}\right)$$

where

where

 $s(r) = h_0 - h(r,t)$: is the drowdown

R: is the influence ratio $\approx 1000m \in [800m, 1500]$

3.2.2 \mathbb{R} / no recharge / steady-state / heteroge- 3.2.6 \mathbb{R}^2 (radial symetry) / no recharge / transient / homogeneous

$$\begin{cases} \frac{d}{dr} \left(r \frac{d}{dr} h \right) = 0 & x \in \Omega \\ s(r,0) = 0 & t = 0 \\ \frac{d}{dr} h|_{r=r_w} = Q \\ \lim_{x \to \infty} s(x,t) = 0 & x \in \partial \Omega \end{cases}$$

$$\Leftrightarrow s(r) = \frac{Q}{4\pi T} \int_{\frac{r^2 s}{4\pi T t}}^{\infty} \frac{e^{-x}}{x} dx$$

3.2.7 \mathbb{R}^2 / no recharge / steady-state / homoge-

$$x \in \partial \Omega$$

$$\Leftrightarrow h(x) = -\frac{rL}{2T}x^2 + \frac{rL}{2T}x + \frac{rL}{2T}h_0$$

$$\text{harge / transient / homogeneous}$$

$$x \in \Omega$$

$$\Rightarrow h(x) = -\frac{rL}{2T}x^2 + \frac{rL}{2T}x + \frac{rL}{2T}h_0$$

$$\text{harge / transient / homogeneous}$$

$$\Rightarrow \frac{d^2}{dx^2}h + \frac{d^2}{dy^2}h = 0$$

$$\Leftrightarrow \frac{d^2}{dx^2}h + \frac{d^2}{dy^2}h = 0$$

4 Groundwater Budget

Water Balance $\Delta S = \frac{A\Delta h\phi}{\Delta t}$ water balance $Q_i = n T \Delta H \frac{a_i}{c_i}$ flow through an isoline segment

> a_i : length along the segment *c_i*: distance between isolines

¹This solution is usually solved with graphic methods

Inputs	Оитритѕ						
Boundaries ²	Boundaries						
Recharge ³	Wells, springs						
	Surface water bodies						

5 Pumping test

Procedure

- Measure water level at each point
- Turn on the pump
- Stop pumping (Generally after 1 day)
- Continue the measurements for about 4-5 days

And we have the following relations ⁴

$$\begin{cases} m = \frac{d}{d \log(t)} s = 0.183 \frac{Q}{T} \\ S = \frac{2,25Tt_i}{r^2} \end{cases}$$

6 Well hydraulics

6.1 Superposition theory

The contribution of n wells 5 at $t = t_0$

$$s((x_0, y_0), t_0) = \sum_{i=1}^n s_i((x_0, y_0), t_0)$$

Steady

$$s(x_0, y_0) = \sum_{i=1}^{n} \frac{Q_i}{2\pi T} \ln \left(\frac{R}{r_i}\right)$$

Transitory

$$s((x_0, y_0), t) = \sum_{i=1}^{n} \frac{Q_i}{4\pi T} \ln \left[\frac{2,25T}{r_i^2 s} (t - t_i) \right]$$

6.2 Boundaries

6.2.1 Impervious boundary

Steady

$$s(x_0, y_0) = \frac{Q}{2\pi T} \ln \left(\frac{R^2}{rr'} \right)$$

Transitory

$$s((x_0, y_0), t) = \frac{Q}{2\pi T} \ln \left[\frac{2,25T}{rr's} (t - t_i) \right]$$

6.2.2 Fixed head boundary

Steady

$$s(x_0, y_0) = \frac{Q}{2\pi T} \ln \left(\frac{r'}{r}\right)$$

Transitory

$$s((x_0, y_0), t) = s(x_0, y_0) = \frac{Q}{2\pi T} \ln \left(\frac{r'}{r}\right)$$

7 Pollution

7.1 Advection

$$\begin{cases} v = \frac{q}{\phi} = -\frac{K}{\phi} \frac{\partial}{\partial x} I \\ F = v \phi C \\ \frac{\partial}{\partial t} C = -v \frac{\partial}{\partial x} C \end{cases}$$

where

v: is the average velocity in the flow direction

$$\begin{cases} \frac{\partial}{\partial t}C = D \cdot \Delta C & difusion + dispersion eq \\ \frac{\partial}{\partial t}C = D \cdot \Delta C - v \frac{\partial}{\partial x}C & advection eq \end{cases}$$

where

D: is the difusivity vector

$$\begin{cases} C_{max} = \frac{M}{\phi b 4\pi t \sqrt{D_L D_T}} \\ C = \frac{M}{\phi b 4\pi t \sqrt{D_L D_T}} \exp\left[\frac{-(x-vt)^2}{4D_L t} - \frac{-y^2}{4D_T t}\right] \end{cases}$$

where

$$M = \frac{C_0 V_0}{M_{molar}}$$

7.2 Hydrodinamic dispersion

- 1. Molecular difusion (Ficks laws)
- 2. Mechanical dispersion

$$\begin{cases} F = -D_d \frac{\partial}{\partial x} C & \textit{Ficks first law} \\ \frac{\partial}{\partial t} C = -D_d \frac{\partial^2}{\partial x^2} C & \textit{Ficks second law} \end{cases}$$

where

F: is the amount of solute per unit area

 D_d : is the diffusivity

C: is the solute concentratios

$$\begin{cases} D_{L} = \alpha_{L} v_{L} + D_{d} \\ D_{T} = \alpha_{T} v_{T} + D_{d} \end{cases}$$

where

 α_L : is the dispersivity

L, D: account for longitudinal and transversal

K (cm/s)	10²	10 ¹	10 ⁰ =1	10-1	10-2	10 ⁻³							10 ⁻¹⁰
K (ft/day)	10 ⁵	10,000	1,000	100	10	1	0.1	0.01	0.001	0.0001	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷
Relative Permeability	Pervious				Semi-Pervious					Impervious			
Aquifer	Good					Poor				None			
Unconsolidated Sand & Gravel	S	Well orted ravel	d Sand or Sand &				Very Fine Sand, Silt, Loess, Loam						
Unconsolidated Clay & Organic					Pe	Peat Laye			ered Clay		Fat / Unweathered Clay		
Consolidated Rocks	Highly Fractured Rocks					Reser		r Fresh Sandstone		Fresh Limestone, Dolomite		esh anite	

Conversion:

$$1ft = 0,3048m$$

$$\frac{1}{86,4} \frac{m^3}{day} = \frac{I}{s}$$

²Surface water bodies

³Must be data

⁴ if $S \approx 0, 2 - 0, 4 \rightarrow$ free aguifer, if $S \approx 10^{-4} - 10^{-3} \rightarrow$ confined aguifer

⁵Only the wells where $|(x_0, y_0) - (x, y)| < R|$

References

[1] Xavier Sanchez Vila. Lecture notes in Groundwater Hydrology. 2017.