Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/013899

International filing date: 07 December 2004 (07.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 10 2004 045 900.2

Filing date: 22 September 2004 (22.09.2004)

Date of receipt at the International Bureau: 19 April 2005 (19.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

petlep 2004/013899

BUNDESREPUBLIK DEUTSCHLAND

09.04.2005 EP04/13899

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 045 900.2

Anmeldetag:

22. September 2004

Anmelder/Inhaber:

RUAG Ammotec GmbH, 90765 Fürth/DE

Bezeichnung:

Thermisches Frühzündmittel

Priorität:

17. Dezember 2003 DE 103 59 536.8

IPC:

C 06 C, C 06 B, B 60 R

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 3. März 2005 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

> > DESENTOR

15

Thermische Frühzündmittel

Gegenstand der vorliegenden Erfindung sind Frühzündmittel, die beispielsweise als thermische Sicherungen in Gasgeneratoren für Kraftfahrzeugsicherheitssysteme eingesetzt werden können.

Thermische Frühzündmittel sind pyrotechnische Substanzen bzw. Mischungen. Sie haben unter anderem die Aufgabe, die in der Regel thermisch sehr stabilen gaserzeugenden Mischungen des Gasgenerators im Falle eines Fahrzeugbrandes kontrolliert anzuzünden.

Als thermische Frühzündmittel werden beispielsweise Nitrocellulose, daraus abgeleitete Treibladungspulver oder die in der Patentanmeldung DE 197 30 873 A1 beschriebenen Mischungen auf Basis von Nitrotriazolon und Guanidinnitrat eingesetzt. Diese Mischungen zeigen Entzündungstemperaturen von ca. 160°C und sind im Falle der Nitrocellulose nur unzureichend langzeitstabil.

Aufgabe der vorliegenden Erfindung war die Bereitstellung von pyrotechnischen Mischungen mit Entzündungstemperaturen um 200°C und ausreichender Langzeitstabilität, die als thermische Frühzündmittel für Gasgeneratoren in Kraftfahrzeugsicherheitssystemen eingesetzt werden können. Gelöst wurde die der Erfindung zu Grunde liegende Aufgabe durch den Einsatz von 2-[Bis-(2,4,6-trinitrophenyl)] aminoethylnitrat, kurz als Dipikrylaminoethylnitrat (DPN) bezeichnet. Diese Substanz kann entweder alleine oder in Mischungen mit weiteren Komponenten verwendet werden. DPN kann aus 2,4-Dinitrochlorbenzol und Ethanolamin mit anschließender Nitrierung hergestellt werden (Lit.: R.V. Clark, Ind. Eng. Chem., 25, 1385 (1933)). Die Strukturformel ist wie folgt:

30

Der Verpuffungspunkt von reinem DPN liegt bei ca. 200°C. Überraschenderweise wurde gefunden, dass sich bei Mischungen von DPN mit ausgewählten Komponenten als Zusatzstoffe der Verpuffungspunkt im Bereich von 178°C bis 208°C steuern lässt und die Verpuffungstemperaturen der Mischungen tiefer liegen können als die der Einzelkomponenten. Für Frühzündmittel sind Verpuffungstemperaturen unter 200°C besonders interessant. Die erfindungsgemäßen Mischungen erfüllen diese Forderung bei ausgezeichneter Langzeitstabilität.

Als Zusatzstoffe können verwendet werden:

1. Stickstoffhaltige Verbindungen (einzeln oder in Mischungen)

Nitroguanidin, Nitroaminoguanidin, Nitrotriazolon, Derivate des Tetrazols wie 5-Aminotetrazol, Ditetrazolylamin, Ditetrazol und deren Salze, Nitraminotetrazol und seine Salze wie Ammonium-Nitraminotetrazol und Aminoguanidinium-Nitraminotetrazol, Aminoguanidinnitrat, Diaminoguanidinnitrat, Triaminoguanidinnitrat, Guanidinnitrat, Dicyandiamidinnitrat, Diaminoguanidin-Azotetrazolat.

2. Oxidationsmittel (einzeln oder in Mischungen)

Nitrate der Alkali- oder Erdalkalimetalle oder des Ammoniums wie Natriumnitrat oder Kaliumnitrat, Perchlorate der Alkali- oder Erdalkalimetalle oder des Ammoniums, Peroxide der Erdalkalimetalle oder des Zinks.

3. Reduktionsmittel (einzeln oder in Mischungen)

Aluminium, Titan, Titanhydrid, Bor, Borhydrid, Zirkon, Zirkonhydrid, Silicium, Graphit, Aktivkohle, Ruß.

4. Bindemittel (einzeln oder in Mischungen)

5 Cellulose sowie deren Derivate, Polyvinylbutyrale, Polynitropolyphenylen, Polynitrophenylether, Plexigum, Polyvinylacetat und Copolymere.

- 5. Energiereiche Zuschläge (einzeln oder in Mischungen) Hexogen, Oktogen und Nitrocellulose.
- **6. Abbrandmoderatoren und Verarbeitungshilfen** (einzeln oder in Mischungen) Ferrocen und Derivate , Acetonylacetate, Salicylate, Silikate, Kieselgele, Bornitrid.

Die Herstellung und Verarbeitung findet nach an sich bekannten und üblichen Verfahren statt. Hierzu zählen beispielsweise Kneten, Extrudieren, Strangpressen, Tablettieren oder Granulieren.

Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne sie ein-15 zuschränken.

In Tabelle 1 sind die Zusammensetzungen von zwölf verschiedenen Mischungen dargestellt. Die Komponenten wurden in den angegebenen Gewichtsverhältnissen (Angaben in Gewichtsprozent (Gew.%)) in Plastikbehälter eingewogen und 30 Minuten im Taumelmischer homogenisiert.

Tabelle 1 : Beispiele

Mischung	DPN in Gew.%	Nitroguanidin in Gew.%	5-Amino- tetrazol in Gew.%	Guanidin- nitrat in Gew.%	Kalium- nitrat in Gew.%	Natrium- nitrat in Gew.%	Kalium- perchlorat in Gew.%
1	50				50		
2	50					50	
3	50						50
4	20	30 .			50		
5	20	30				50	
6	20	30			-		50
7	20		30		50		
8	20		30			50	-
9	20		30				50
10	20			30	50		
11	20			30		50	
12	20			30			50

In Tabelle 2 sind die Explosionswärmen, Reib- und Schlagempfindlichkeiten der Mischungen dargestellt. Die Messung der Reib- und Schlagempfindlichkeiten erfolgte nach Methoden der Bundesanstalt für Materialforschung (BAM), während die Messung der Explosionswärmen mit einem Kalorimeter der Fa. EKA durchgeführt wurden.

Tabelle 2 Übersicht der Explosionswärmen, Reib- und Schlagempfindlichkeiten

Mischung	Explosions- wärme in J/g	Reib- empfindlich-	Schlag- empfindlich-
	waithe in 5/g	keit in N	keit in J
1	4859	240	6
2	3280	240	7,5
3	5915	120	5
4	5157	360	7,5
5	3125.	120	>30
6	5523	80	10
7	4014	240	6
8	3187	360	15
9	5056	80	6
10	4509	360	7,5
11	3484	360	10
12	5115	160	10

In Tabelle 3 sind die Verpuffungspunkte vor und nach thermischer Belastung (400 h, 110°C) und die Gewichtsverluste nach 72 h und 400 h thermischer Belastung bei 110°C zusammengefasst. Die Bestimmung der Verpuffungspunkte erfolgte mit der Thermogravimetrie-Analyse (Fa. Mettler) bei einer Aufheizrate von 10°C pro Minute. Die Messung des Gewichtsverlustes erfolgte analog dem Holland Test. Man erkennt nach 400 h nur geringe Gewichtsverluste von 0,2 bis 0,5 Gew.% und keine signfikante Änderung der Verpuffungstemperatur nach thermischer Belastung.

Tabelle 3 Übersicht der Gewichtsverluste und Verpuffungstemperaturen

Mischung	Gew.verlust 72 h 110°C in Gew.%	Gew.verlust 400 h 110°C in Gew.%	Verpuffungs- temp. in °C	Verp.temp.nach 400 h,110°C in °C
1	0,11	0,27	203	202
2	0,15	0,35	203	203
3	0,12	0,29	201	201
4	0,11	0,49	207	206
5	0,16	0,53	196	194
6	0,11	0,49	201	202
7	0,10	0,44	196	200
8	0,11	0,42	178	184
9	0,11	0,42	196	198
10	0,09	0,18	205	205
11	0,12	0,26	206	208
12	0,11	0,31	205	205

Die Beispiele zeigen, dass die erfindungsgemäß definierten Mischungen Verpuffungstemperaturen im Bereich von 178 bis 208°C aufweisen und gemäß den Forderungen der Automobilindustrie als stabil anzusehen sind.

5 Gegenstand der vorliegenden Erfindung sind im Einzelnen:

Thermische Frühzündmittel, die als Komponente Dipikrylaminoethylnitrat (DPN) in Gewichtsanteilen von 10 bis100 % enthalten.

Thermische Frühzundmittel, die neben DPN stickstoffhaltige Verbindungen, einzeln oder in Mischungen, in Gewichtsanteilen von 0 bis 90 % enthalten, wie beispielsweise Nitroguanidin, Nitroaminoguanidin, Nitrotriazolon, Derivate des Tetrazols wie

5-Aminotetrazol, Ditetrazolylamin, Ditetrazol und deren Salze, Nitraminotetrazol und seine Salze wie Ammonium-Nitraminotetrazol und Aminoguanidinium-Nitraminotetrazol, Aminoguanidinnitrat, Diaminoguanidinnitrat, Triaminoguanidinnitrat, Guanidinnitrat, Dicyandiamidinnitrat, Diaminoguanidin-Azotetrazolat.

Thermische Frühzündmittel, die neben DPN und den oben genannten stickstoffhaltigen Verbindungen, einzeln oder in Mischungen, Oxidationsmittel, einzeln oder in Mischungen, in Gewichtsanteilen von 10 bis 90 % enthalten, wie beispielsweise Nitrate der Alkali- oder Erdalkalimetalle oder des Ammoniums wie Natriumnitrat oder Kaliumnitrat, Perchlorate der Alkali- oder Erdalkalimetalle oder des Ammoniums, Peroxide der Erdalkalimetalle oder des Zinks.

Thermische Frühzündmittel, die neben DPN, den oben genannten stickstoffhaltigen Verbindungen, einzeln oder in Mischungen und/oder den oben genannten Oxidationsmitteln, einzeln oder in Mischungen, Reduktionsmittel, einzeln oder in Mischungen, in Gewichtsanteilen von 1 bis 80 % enthalten, wie beispielsweise Aluminium, Titan, Titanhydrid, Bor, Borhydrid, Zirkon, Zirkonhydrid, Silicium, Graphit, Aktivkohle, Ruß.

Thermische Frühzündmittel, die neben DPN, den oben genannten stickstoffhaltigen Verbindungen, einzeln oder in Mischungen, den oben genannten Oxidationsmitteln, einzeln oder in Mischungen und/oder den oben genannten Reduktionsmitteln, einzeln oder in Mischungen, Bindemittel, einzeln oder in Mischungen, in Gewichtsanteilen von 1 bis 80 % enthalten, wie beispielsweise Cellulose sowie deren Derivate, Polyvinylbutyrale, Polynitropolyphenylen, Polynitrophenylether, Plexigum, Polyvinylacetat und Copolymere.

Thermische Frühzündmittel, die neben DPN, den oben genannten stickstoffhaltigen Verbindungen, einzeln oder in Mischungen, den oben genannten Oxidationsmitteln, einzeln oder in Mischungen, den oben genannten Reduktionsmitteln, einzeln oder in Mischungen und/oder den oben genannten Bindemitteln, einzeln oder in Mischungen, energetische Zusätze, einzeln oder in Mischungen, in Gewichtsanteilen von 10 bis 80 % enthalten, wie beispielsweise. Hexogen, Oktogen und Nitrocellulose.

Thermische Frühzündmittel, die neben DPN, den oben genannten stickstoffhaltigen Verbindungen, einzeln oder in Mischungen, den oben genannten Oxidationsmitteln,

einzeln oder in Mischungen, den oben genannten Reduktionsmitteln, einzeln oder in Mischungen, den oben genannten Bindemitteln, einzeln oder in Mischungen und/oder den oben genannten energetischen Zusätzen, einzeln oder in Mischungen, Abbrandmoderatoren und Verarbeitungshilfen, einzeln oder in Mischungen, in Gewichtsanteilen von 0,1 bis 20 % enthalten, wie beispielsweise Ferrocen und Derivate, Acetonylacetate, Salicylate, Silikate, Kieselgele, Bornitrid.

10

15

25

Patentansprüche

- 1. Thermische Frühzündmittel für Gasgeneratoren, dadurch gekennzeichnet, dass sie 10 bis 100 Gew.% Dipikrylaminoethylnitrat enthalten.
- 2. Thermische Frühzündmittel nach Anspruch 1, dadurch gekennzeichnet, dass sie 0 bis 90 Gew.% eines Zusatzstoffes oder mehrerer Zusatzstoffe enthalten.
- 3. Thermische Frühzündmittel nach Anspruch 2, dadurch gekennzeichnet, dass die Zusatzstoffe ausgewählt sind aus: Nitroguanidin, Nitroaminoguanidin, Nitrotriazolon, Derivate des Tetrazols und/oder deren Salze, Nitraminotetrazol und/oder seine Salze, Aminoguanidinnitrat, Diaminoguanidinnitrat, Triaminoguanidinnitrat, Guanidinnitrat, Dicyandiamidinnitrat, Diaminoguanidin-Azotetrazolat; Nitrate der Alkali- und/oder Erdalkalimetalle und/oder des Ammoniums, Perchlorate der Alkali- und/oder Erdalkalimetalle und/oder des Ammoniums, Peroxide der Erdalkalimetalle und/oder des Zinks; Aluminium, Titan, Titanhydrid, Bor, Borhydrid, Zirkon, Zirkonhydrid, Silicium, Graphit, Aktivkohle, Ruß; Cellulose und/oder deren Derivate, Polyvinylbutyrale, Polynitropolyphenylen, Polynitrophenylether, Plexigum, Polyvinylacetat und Copolymere; Hexogen, Oktogen; Ferrocen und/oder deren Derivate, Acetonylacetate, Salicylate, Silikate, Kieselgele, Bornitrid.
- 4. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie 10 bis 90 Gew.%, vorzugsweise 25 bis 75 Gew.%, besonders bevorzugt 40 bis 60 Gew.% Dipikrylaminoethylnitrat und 10 bis 90 Gew.%, vorzugsweise 25 bis 75 Gew.%, besonders bevorzugt 40 bis 60 Gew.% eines Oxidationsmittels enthalten.
- 5. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie 10 bis 90 Gew.%, vorzugsweise 10 bis 50 Gew.%, besonders bevorzugt 10 bis 30 Gew.% Dipikrylaminoethylnitrat, 10 bis 90 Gew.%, vorzugsweise 10 bis 60 Gew.%, besonders bevorzugt 20 bis 40 Gew.% einer stickstoffhaltigen Verbindung und 10 bis 90 Gew.%, vorzugsweise 25 bis 75 Gew.%, besonders bevorzugt 40 bis 60 Gew.% eines Oxidationsmittels enthalten.

15

25

- 6. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Oxidationsmittel ausgewählt ist aus einem oder mehreren der Nitrate der Alkali- und/oder Erdalkalimetalle und/oder des Ammoniums, der Perchlorate der Alkali- und/oder Erdalkalimetalle und/oder des Ammoniums, der Peroxide der Erdalkalimetalle und/oder des Zinks.
- 7. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die stickstoffhaltige Verbindung ausgewählt ist aus einem oder mehreren von Nitroguanidin, Nitroaminoguanidin, Nitrotriazolon, Derivate des Tetrazols und/oder deren Salze, Nitraminotetrazol und/oder seine Salze, Aminoguanidinnitrat, Diaminoguanidinnitrat, Triaminoguanidinnitrat, Guanidinnitrat, Dicyandiamidinnitrat, Diaminoguanidin-azotetrazolat.
- 8. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie 1 bis 80 Gew.%, vorzugsweise 1 bis 40 Gew.%, besonders bevorzugt 1 bis 15 Gew.% eines Reduktionsmittel enthalten.
- 9. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Reduktionsmittel ausgewählt ist aus einem oder mehreren von Aluminium, Titan, Titanhydrid, Bor, Borhydrid, Zirkon, Zirkonhydrid, Silicium, Graphit, Aktivkohle, Ruß.
- 10. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass sie 1 bis 80 Gew.%, vorzugsweise 1 bis 40 Gew.%, besonders bevorzugt 1 bis 20 Gew.% eines Bindemittels enthalten.
- 11. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Bindemittel ausgewählt ist aus einem oder mehreren von Cellulose und deren Derivate, Polyvinylbutyrale, Polynitropolyphenylen, Polynitrophenylether, Plexigum, Polyvinylacetat und Copolymere.
- 12. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass sie 10 bis 80 Gew.%, vorzugsweise 10 bis 50 Gew.%, besonders bevorzugt 10 bis 30 Gew.% energetische Zusätze enthalten.

- 13. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die energetischen Zusätze ausgewählt sind aus einem oder mehreren von Hexogen, Oktogen und Nitrocellulose.
- 14. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sie 0,1 bis 20 Gew.%, vorzugsweise 0,1 bis 10 Gew.% Abbrandmoderatoren und Verarbeitungshilfen enthalten.
 - 15. Thermische Frühzündmittel nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Abbrandmoderatoren und Verarbeitungshilfen ausgewählt sind aus einem oder mehreren von Ferrocen und dessen Derivate, Acetonylacetate, Salicylate, Silikate, Kieselgele und Bornitrid.
 - 16. Verwendung eines thermischen Frühzündmittels nach einem oder mehreren der Ansprüche 1 bis 15 als thermische Sicherung in Gasgeneratoren für Kraftfahrzeugsicherheitssysteme.

Zusammenfassung

Die Erfindung betrifft thermische Frühzündmittel und deren Verwendung als thermische Sicherung, insbesondere für den Einsatz in Gasgeneratoren für Kraftfahrzeugsicherheitssysteme.