开环频率特性与闭环频率特性

 Φ 单位反馈系统开环传递函数G(s),闭环传递函数 $\Phi(s) = \frac{G(s)}{1+G(s)}$ 。

> 向量作图法

➤ 等M圆图(闭环幅值为常数M½与幅相曲线相切的等M圆的M值即为闭环幅频特性的最大值)

➤ 等N圆图(闭环相角为常数N)

开环频率特性与闭环频率特性

- ◆单位反馈系统开环传递函数G(s),闭环传递函数 $\Phi(s) = \frac{G(s)}{1+G(s)}$ 。设 $G(j\omega) = A(\omega)e^{j\varphi(\omega)}$, $\Phi(j\omega) = M(\omega)e^{j\theta(\omega)}$ 。
- 在[以20lgA为纵坐标,以φ为横坐标的平面]上应用尼科尔斯图线(等M线簇和等θ线簇),可得到闭环对数幅频特性曲线和闭环相频特性曲线。

▶ 如果系统的开环对数幅频特性与某等M线相切,则M值就是闭环幅频特性最大值。

◆ 非单位反馈系统的闭环频率 特性由上述结论扩展可得。

尼科尔斯图线

频域响应分析

W

7频域性能指标有哪些?

■开环频率特性指标:剪切频率、相角 裕度、幅值裕度 0.707A(0)

■闭环频率特性指标: 谐振频率与谐振 峰值、带宽频率与系统带宽等。

- ◆零频值A(0): 指闭环幅频特性在频率为0时的值。
- ◆谐振峰值 M_r 和谐振频率 ω_r : 在一定条件下,闭环系统的幅值 会产生最大值 $A_{max} > A(0)$,此时称系统发生了谐振,对应的 频率为谐振频率 ω_r 。谐振峰值定义为 $M_r = \frac{A_{max}}{A_r(x)}$ 。

 $A(\omega)$

A(0)

- ◆带宽频率 ω_b 和系统带宽:闭环幅值下降到零频值A(0)的70% (常用0.707A(0)) 时的频率,称为带宽频率 ω_h , $0\sim\omega_h$ 的频率 范围称为系统带宽。
- ?如何求解闭环频率特性指标?

由定义、或与时域频域指标的等价关系

频域与时域性能指标的转换关系

• 一阶系统
$$G_B(s) = \frac{1}{Ts+1}$$

带宽频率和时间常数
$$\omega_b = \omega_c = \frac{1}{T}$$

剪切频率、系统带宽和调整时间
$$t_s = 3T = \frac{3}{\omega_c} = \frac{3}{\omega_b}$$

频域与时域性能指标的转换关系

• 二阶系统
$$\Phi(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

谐振峰值与超调量
$$\sigma_p = e^{-\pi \sqrt{\frac{M_r - \sqrt{M_r^2 - 1}}{M_r + \sqrt{M_r^2 - 1}}}} \times 100\%, M_r > 1$$

谐振频率与峰值时间
$$\omega_r t_p = \pi \sqrt{\frac{1-2\zeta^2}{1-\zeta^2}}$$

谐振频率与调整时间
$$\omega_r t_s = \frac{\sqrt{1-2\zeta^2}}{\zeta} \ln \frac{1}{\Delta\sqrt{1-\zeta^2}}$$

带宽频率与峰值时间
$$\omega_b t_p = \pi \sqrt{\frac{1-2\zeta^2+\sqrt{2-4\zeta^2+4\zeta^4}}{1-\zeta^2}}$$

带宽频率与调整时间
$$\omega_b t_s = \frac{1}{\zeta} \sqrt{1 - 2\zeta^2 + \sqrt{2 - 4\zeta^2 + 4\zeta^4}} \ln \frac{1}{\Delta \sqrt{1 - \zeta^2}}$$

相角裕度与阻尼比
$$\gamma = tg^{-1} \frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}$$

相角裕度与阻尼比 $\gamma = tg^{-1} \frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}$ 剪切频率与调整时间和阻尼比 $t_s\omega_c \approx \frac{3\sqrt{4\zeta^4 + 1} - 2\zeta^2}{\zeta} = \frac{6}{tg\gamma}$

频域与时域性能指标的转换关系

● 高阶系统

零频值
$$>$$
 无差度 $v = 0$ 时 $A(0) = \frac{K}{1+K} < 1$

谐振峰值与相角裕度
$$M_r \approx \frac{1}{sin\gamma}$$

超调量与相角裕度
$$\sigma_p = 0.16 + 0.4 \left(\frac{1}{sin\gamma} - 1\right)$$
, $35^\circ \le \gamma \le 90^\circ$

调整时间与相角裕度和剪切频率 $t_s = \frac{K_0 \pi}{\omega_c}$,

其中
$$K_0 = 2 + 1.5\left(\frac{1}{\sin\gamma} - 1\right) + 2.5\left(\frac{1}{\sin\gamma} - 1\right)^2$$
, $35^\circ \le \gamma \le 90^\circ$

第六章 线性系统的校正

三种理论分析方法: 时域分析、根轨迹、频域分析

第六章 线性系统的校正

- ·综合与校正的基本概念
- o常用校正装置及其特性
- <u>○串联校正</u>
- o反馈校正
- OPID控制器
- OMatlab的应用(略)

- ?为什么要进行系统校正?
- ◆设计自动控制系统时:
- ▶ 根据任务要求,选定控制对象;
- ▶ 根据稳定性确定控制规律,设计控制器,选定控制元器件;
- 受控系统不一定满足全部性能指标要求,则需要增加合适的 元件,按一定方式连接到原系统中,使新的系统全面满足设 计要求。

◆ 控制系统的校正元件或校正装置: 为使控制系统的各项性能 满足要求而有目的地增添的元件。

- ?校正是否是必需的?
 - 若系统性能指标要求不高,通过调整控制器的参数即可使系统满足要求。
 - 对控制性能要求较高的系统,常需引入校正装置以充分改善系统性能。
- ?校正的理论分析方法如何选择?
- ◆根据特定的性能指标来确定:
 - ▶ 以稳态误差、峰值时间、最大超调量、和过渡过程时间等时域性能指标给出性能要求,则常用根轨迹法等进行综合与校正;
 - ▶ 以相角裕度、幅值裕量、相对谐振峰值、谐振频率和系统带宽等频域性能指标给出性能要求,则用频率特性法进行综合与校正。

- ?校正的本质是什么?
- ◆ 通过改变闭环系统的零极点分布,以改善系统性能。
- ?实现校正的方式有哪些?
- ◆按校正装置的连接方式,可将校正方式分为:
 - > 串联校正
 - > 反馈校正
 - > 顺馈校正

◆表示符号:

- $G_0(s)$: 原系统开环传递函数;
- $G_c(s)$: 校正装置传递函数;
- 用下标0表示原系统的性能指标信息;
- 下标1、2等表示第1、2等步校正后系统的性能指标信息;
- 上标*表示期望性能指标信息。

串联校正

- ◆串联校正串联连接在前向通道中。具体接入位置视校正装置本身的物理特性和原系统的结构而定。
 - 体积小、重量轻、容量小的校正装置(电器装置居多),常加在系统信号容量不大的地方,即比较靠近输入信号的前向通道中。
 - ▶ 体积、重量、容量较大的校正装置(如无源网络、机械、液压、气动装置等),常串接在容量较大的部位,即比较靠近输出信号的前向通道中。

净串联校正的优缺点?

- ✓ 设计简单,容易对信号进行变换
- 由低能量向高能量部位传递信号,加上校正装置本身的能量损耗,必须进行能量补偿,因此常需要放大元件。(例如滤波器)

反馈校正

◆ 反馈校正:将校正装置反向连接在原系统前向通道的一个或几个环节上,构成局部反馈回路。

? 反馈校正的优缺点?

- ✓ 输入端信号取自于原系统的输出端或原系统前向通道中某个 环节的输出端,由高能量向低能量部位传递信号,因此信号 功率一般较大,不需要放大元件,结构比串联校正装置简单。
- ✓ 可消除校正回路中元件参数的变化对系统性能的影响。因此 若原系统在工作条件变化时参数变化较大时,采用反馈校正 效果会更好些(例如测速发电机)。
- ×由于输入信号功率较大,装置的容量和体积相应较大。

顺馈校正

- ◆ 顺馈校正将校正装置前向并联连接在原系统前向通道的一 个或几个环节上。
- ▶ 比串联校正多一个连接点,即需要一个信号取出点和一个信号加入点。

- ?如何选择校正方式?
- ◆视具体情况而定。考虑的因素有:
- > 设计要求(原系统各方面性能与期望性能的差距);
- ▶ 校正成本(经济条件);
- ▶ 可行性(原系统的物理结构、各点功率的大小、信号是否便 于取出和加入、可供选用的元件及其体积、重量等)等。

综合考虑上述因素,选出最佳方案。对性能指标要求较高的系统,常兼用串联校正与反馈校正。

- ?校正的方式是否唯一?
- ◆ 通过结构图变换,一种连接方式可等效地转换成另一种连接 方式,因此校正方式具有非唯一性。

- 产开环对数幅频特性的
- > 低频段(第一个转折频率ω1之前的频段)
- \rightarrow 中频段($\omega_1 \sim 10\omega_c$)
- ▶ 高频段(最后一个转折频率以后的频段)

分别表征了系统哪些方面的性能呢?

◆ 开环对数幅频特性的低频段(第一个转折频率 ω_1 之前的频段)

低频段由开环传递函数包含的积分环节的个数(型别)和开环增益K决定,

二者与稳态性能直接相关。

- ◆ 开环对数幅频特性的高频段(最后一个转折频率 ω_l 以后的频段),即对高频输入信号的幅值作用,
 - ➤ 衰减越快,抗扰动性能越好。最好是一40dB/dec斜率或一60dB/dec斜率。
 - ightharpoonup 若 $\omega_l \gg \omega_c$,则高频段对动态性能指标影响较小。

ightharpoonup 开环对数幅频特性的中频段 $(ω_1 \sim 10ω_c)$

- ▶ 反映系统的相对稳定性。对最小相位系统也反映了系统的 稳定性。
- ▶ 由相角裕度和剪切频率与动态性能指标之间的关系知,也 反映系统的动态性能。
- 开环对数幅频特性中频段的斜率和宽度,决定了最小相位系统的相角裕度。同时,低频段和高频段的斜率等都对系统的相角裕度有影响。
- ?低频段和高频段的斜率对相角裕度的影响是怎样的?

◆ 当低、中、高频段斜率不变时:

显然,斜率负的越大,相角裕度越小,稳定性越差。

◆ 低频段斜率变化对γ的影响

低频段有更大的斜率时,

- > 稳态误差减小;
- \triangleright 但将导致相角裕度减小。影响的作用大小取决于 ω_c/ω_1 , ω_1 离 ω_c 越远,影响越小。

$$G(s)H(s) = \frac{K}{\frac{s}{\omega_1} + 1}$$

$$\varphi(\omega) = -tg^{-1}\frac{\omega}{\omega_1}$$

$$\gamma = 180^{\circ} - tg^{-1}\frac{\omega_c}{\omega_1} > 90^{\circ}$$

$$G(s)H(s) = \frac{K(\frac{s}{\omega_1} + 1)}{s^2}$$
$$\varphi(\omega) = -180^\circ + tg^{-1}\frac{\omega}{\omega_1}$$
$$\gamma = tg^{-1}\frac{\omega_c}{\omega_1} > 45^\circ$$

◆ 高频段斜率变化对y的影响

$$G(s)H(s) = \frac{K}{s(\frac{s}{\omega_2} + 1)}$$

$$\varphi(\omega) = -90^{\circ} - tg^{-1} \frac{\omega}{\omega_2}$$

$$\gamma = 90^{\circ} - tg^{-1} \frac{\omega}{\omega_2} > 45^{\circ}$$

$$L(\omega)$$
 -20dB/dec ω_2 ω -60dB/dec

$$G(s)H(s) = \frac{K\omega_2^2}{s(s^2 + 2\zeta\omega_2 s + \omega_2^2)}$$

高频段有更大的斜率时:

- 抗扰性能变好,
- \triangleright 但相角裕度减小。 ω_2 离 ω_c 越远,影响越小。

◆低、高频段斜率变化对γ的影响 图示最小相位系统是一个2-1-2型系 统,相角裕度为

$$\gamma = 180^{\circ} - 90^{\circ} - tg^{-1} \frac{\omega_c}{\omega_1} + tg^{-1} \frac{\omega_c}{\omega_2} - tg^{-1} \frac{\omega_c}{\omega_3} - tg^{-1} \frac{\omega_c}{\omega_4},$$

若
$$\omega_2 \ll \omega_c \ll \omega_3$$
,则 $\gamma \approx tg^{-1} \frac{\omega_c}{\omega_2} - tg^{-1} \frac{\omega_c}{\omega_3} > 0$,

当
$$\omega_c = \sqrt{\omega_2 \omega_3} = \frac{\omega_3}{\sqrt{h}} = \omega_2 \sqrt{h}$$
时,相角裕度 γ 最大,即

$$\gamma_{max} = tg^{-1}\sqrt{h} - tg^{-1}\frac{1}{\sqrt{h}} = tg^{-1}\frac{h-1}{2\sqrt{h}},$$

显然,只有h > 1,才会有正的相角裕度。

通常取h=10,即中频段具有十倍频程。

◆结论:三频段理论

三频段分析结果给出了调整系统结构以改善系统性能的原则和方向。

- ◆结论:一个设计合理的系统:
- ▶ 中频段: 要使系统稳定并有足够稳定裕量,应使 $L(\omega)$ 以一 **20dB/dec**的斜率穿越 **0dB**线,并保持 ω_c 前后有一定宽度(**10**倍 频程)。
 - ullet ω_{c} 通常取决于系统的快速性要求。 ω_{c} 大,快速性好,但会导致高频幅值衰减作用的右移,抗扰能力下降。
- > 低频段和高频段可以有更大的斜率。

低频段斜率大,提高稳态性能;

高频段斜率大,抗高频干扰能力强。

常用校正装置及其特性

- ◆(1)(无源)超前校正网络
- ◆(2)(无源)滞后校正网络
- ◆(3)(无源)滞后-超前校正网络
- ◆(4)有源校正网络

?无源和有源?

- ▶ 无需能(电)源的器件称为无源器件,无需加电源即可在有信号时工作,如电阻类、电感类和电容类元件。
- ➢ 需要能(电)源的器件称为有源器件,如三极管、晶闸管、集成运算放大器等。

◆无源超前网络

复阻抗
$$Z_1 = \frac{1}{\frac{1}{R_1} + Cs}$$
, $Z_2 = R_2$

传递函数
$$G(s) = \frac{Z_2}{Z_1 + Z_2} = \frac{1}{a} \frac{1 + aTs}{1 + Ts}$$

其中,
$$T = \frac{R_1 R_2 C}{R_1 + R_2}$$
, $a = \frac{R_1 + R_2}{R_2}$ 。显然, $a > 1$ 。

- \triangleright 无源超前网络具有幅值衰减作用,衰减系数为 $\frac{1}{a}$ 。
- \triangleright 若串联系数为a的比例放大器,则可补偿幅值衰减作用。此时的超前网络传递函数为: $G(s) = \frac{1+aTs}{1+Ts}$

◆ 无源超前网络的性质

$$G(s) = \frac{1 + aTs}{1 + Ts}, \quad a > 1$$

- \rightarrow 有一个极点一 $\frac{1}{r}$ 和一个零点一 $\frac{1}{aT}$,零极点分布图如图。
- ➤ 对复平面上任一点*s*,由超前校 正网络零极点指向s的向量相角 因此具有相位超前作用。

- ◆ 无源超前网络的频率特性
- $G(j\omega) = \frac{1 + jaT\omega}{1 + jT\omega}$
- ▶幅相曲线:位于正实轴上方的半 圆,起点为(1,j0),终点为(a,j0), 半径为 $\frac{a-1}{2}$,圆心为($\frac{a+1}{2}$, j0)。

▶ 最大超前相角: 由切线或相频特性: 相频特性表达式

$$\varphi(\omega) = tg^{-1}(aT\omega) - tg^{-1}(T\omega) = tg^{-1}\frac{T\omega(a-1)}{1 + aT^2\omega^2},$$

$$\frac{d\varphi(\omega)}{d\omega} = 0 等价于 \frac{d}{d\omega} [tg\varphi(\omega)] = 0, \quad \text{即} \frac{d}{d\omega} \left[\frac{T\omega(a-1)}{1+aT^2\omega^2} \right] = 0, \quad \text{则当}$$

$$\omega_m = \frac{1}{T\sqrt{a}}$$
时无源超前校正网络达到最大超前相角,
$$\varphi_m = \varphi(\omega_m) = tg^{-1}\left(\frac{a-1}{2\sqrt{a}}\right) = \arcsin\frac{a-1}{a+1}, \quad \text{即} a = \frac{1+\sin\varphi_m}{1-\sin\varphi_m}.$$
 记

- $a \rightarrow \infty$ 时, $\varphi_m \rightarrow 90^\circ$;
- 当a较小时校正装置超前作用 不明显;
- $\varphi_m > 60$ °之后,若要 φ_m 略有增加, α 需急剧增大,即网络增益衰减很快。

因此,若要求相位超前大于60°,宜采用两级超前装置串联。

- 超前校正装置是高通电路,对高频噪声的增益较大,而对频率较低的控制信号增益较小, a 值过大会降低系统的信噪比。
- ◆ 综上,一级超前校正网络的最大超前相角通常不超过60°, a值一般选在5~20之间。

- ◆无源超前网络的频率特性
- > Bode图:

 $\frac{1 + jaT\omega}{1 + jT\omega}$

- 最大增益是20lgadB,
- 最大增益的频率范围是 $\omega > \frac{1}{\tau}$;
- 最大超前相角对应的频率 ω_m 是两个转折频率的几何中心点,即 $\mathrm{lg}\omega_m = \mathrm{lg}\left(\frac{1}{\sqrt{a}T}\right) = \frac{1}{2}(\mathrm{lg}\frac{1}{aT} + \mathrm{lg}\frac{1}{T}),$
- 最大超前相角对应的对数幅频特性为 $L(\omega_m) = 10 \lg a$ 。

◆无源滞后网络

$$Z_1 = R_1, Z_2 = R_2 + \frac{1}{Cs}$$

$$G(s) = \frac{Z_2}{Z_1 + Z_2} = \frac{1 + bTs}{1 + Ts},$$
 \mathbb{Z}

其中
$$T = (R_1 + R_2)C$$
, $b = \frac{R_2}{R_1 + R_2}$ 。
显然 $b < 1$ 。

• 对复平面上任一点s,由滞后校正网络零极点指向s的向量相角差 $\varphi = \varphi_z - \varphi_p < 0$,滞后校正网络具有相位滞后作用。

- ◆无源滞后网络的频率特性
- 》幅相曲线如图所示。位于正实轴下方的半圆,起点为(1,j0),终点为(b,j0),半径为 $\frac{1-b}{2}$,圆心为 $(\frac{b+1}{2},j0)$ 。
- ▶ 最大滯后相角: 由坐标原点向幅相曲线做切线,或由相频特性 $\varphi(\omega) = tg^{-1}(bT\omega) tg^{-1}(T\omega)$ $= tg^{-1}\frac{T\omega(b-1)}{1+bT^2\omega^2}$,

 $\frac{d\varphi(\omega)}{d\omega} = 0$ 等价于 $\frac{d}{d\omega}[tg\varphi(\omega)] = 0$,即 $\frac{d}{d\omega}[\frac{T\omega(b-1)}{1+bT^2\omega^2}] = 0$,得当 $\omega_m = \frac{1}{T\sqrt{D}}$ 时达到最大滯后相角

$$\varphi_m = \varphi(\omega_m) = tg^{-1} \left(\frac{b-1}{2\sqrt{b}}\right) \varphi_m = \arcsin \frac{b-1}{b+1}$$

W WAR A A STATE OF THE STATE OF

- ◆无源滞后网络的频率特性
- \triangleright 最大滯后相角 φ_m 与参数b之间的关系:
 - $b \rightarrow 0$ 时, $\varphi_m \rightarrow -90^\circ$;
 - b=1 时蜕化为比例环节 $\varphi_m=0^\circ$ 。
 - 滞后校正网络是低通滤波网络, 对高频噪声有衰减作用。

 $G(j\omega) = \frac{1 + jbT\omega}{1 + jT\omega}$

- ◆无源滞后网络的频率特性
- ➤ Bode图如图所示
- 最大幅频衰减是20lgbdB,记
- 最大幅频衰减频率范围 $\omega > \frac{1}{Tb}$ 。
- 副作用的大小: 考察 $\frac{1}{Tb}$ 的10倍频程即 $\omega = \frac{10}{Tb}$ 处的相角 $\varphi(\frac{10}{Tb})$ 。由 $\varphi(\omega)|_{\omega = \frac{10}{Tb}} = tg^{-1}(bT\omega) tg^{-1}(T\omega)$ $= tg^{-1}(10) tg^{-1}\left(\frac{10}{b}\right)$ $= 84.29^{\circ} tg^{-1}\left(\frac{10}{b}\right)$ °

第二个转折频率 $\frac{1}{Tb}$ 的10倍频程处的相位滞后 $\varphi(\omega)$ 不超过6%

滞后-超前校正网络

◆无源滞后-超前网络

$$Z_1 = \left(\frac{1}{R_1} + C_1 s\right)^{-1} = \frac{R_1}{1 + R_1 C_1 s}$$

$$Z_2 = R_2 + \frac{1}{C_2 s} = \frac{1 + R_2 C_2 s}{C_2 s}$$

$$G(s) = \frac{Z_2}{Z_1 + Z_2} = \frac{(1 + R_1 C_1 s)(1 + R_2 C_2 s)}{R_1 C_1 R_2 C_2 s^2 + (R_1 C_1 + R_2 C_2 + R_1 C_2)s + 1}$$

令a > 1,b < 1,且ab = 1, $bT_b = R_1C_1$, $aT_a = R_2C_2$, $R_1C_1 + R_2C_2 + R_1C_2 = T_a + T_b$,验算这四个方程,可知其关于 a, b, T_a, T_b 必然有解。则

滞后-超前校正网络

- ◆ 无源滞后-超前网络的频率特性

-20dB/ded

 $\frac{1}{T_b}\omega_{m1}\frac{1}{bT_b} \frac{1}{aT_a}\omega_{m2}\frac{1}{T_a}\omega_{m3}$

20dB/dec

- > 当 $bT_b > aT_a$ (即 $R_1C_1 > R_2C_2$) 时,Bode图如图所示。 $L(\omega)\uparrow$
- > 由相角条件

$$\varphi(\omega)$$

$$= tg^{-1}(bT_b\omega) - tg^{-1}(T_b\omega)$$

$$+ tg^{-1}(aT_a\omega) - tg^{-1}(T_a\omega)$$

 $\phi(\omega) = 0$,由于ab = 1,可得

$$\omega_0 = \frac{1}{\sqrt{T_a T_b}}$$
,是滯后作用过渡到

超前作用的临界频率。

> 若 $bT_b > 10aT_a$,则 $\varphi_{m1} \approx \arcsin \frac{b-1}{b+1}$, $\varphi_{m2} \approx \arcsin \frac{a-1}{a+1}$ 。

有源校正网络

- ◆常用的有源校正网络由运算放大器和阻容网络构成,
- ▶ 根据连接方式的不同,可分为P调节器、PI调节器、PD调节器和PID调节器等。运算放大器的一般形式如图所示。
- > 图中, 放大器具有放大系数大、输入阻抗高的特点。

通常在分析它的传输特性时,都假设放大系数趋于无穷大,输入电流为零,则运算放大器的传递函数为

$$G(s) = -\frac{Z_2(s)}{Z_1(s)}$$

▶ 改变阻容网络Z₁(s)和Z₂(s)就可得到不同的传递函数,放大器的性能也不同。

有源校正网络

比例(P)调节器

积分(I)调节器

比例积分(PI)调节器

比例微分(PD)调节器

滤波 (惯性)

PID调节器

串联校正

◆ 串联校正:校正后频率特性由校正装置的频率特性与原系统的频率特性的叠加。适宜用频率法。

- ▶ 串联超前校正
- ▶ 串联滞后校正
- ▶ 串联滞后-超前校正
- ▶ 期望频率特性法校正
- > 示例

串联超前校正

- \mathbf{P} 图示系统 $\gamma_0 < 0$ 不满足性能要求,相角还差 $\gamma^* \gamma_0$ 。如何校正?
- \triangleright 在中频段给予超前相角,补偿 $\gamma^* \gamma_0$ 。

串联超前校正装置有此功效。

?采用哪一个相角值来增大相角裕度最好?

利用最大超前相角 $\varphi_m = \gamma^* - \gamma_0$ 来补偿性能差距 $\gamma^* - \gamma_0$ 。

串联超前校正

- ?叠加到哪个位置?
- **?**将最大超前相角叠加到原剪切频率处时,幅值会怎样变?
- \triangleright 原剪切频率 ω_{c0} 处幅值变为10lga。
- ightharpoonup 为保证叠加 ρ_m 处的幅值为0,找出原系统对数幅值 $L_0(\omega)$ =
 - $-10 \lg a$ 处的频率 ω_1 ,在此处叠加 φ_m ,即选择 $\omega_m = \omega_1$ 。

- \mathbf{P} 剪切频率增大(右移),基于 $\gamma^* \gamma_0$ 估算的超前相角是否足够?
- ightharpoons由于剪切频率增大,负相角增多,故需增加相角补偿量 $\Delta \varphi$,即 $\varphi_m = \gamma^* \gamma_0 + \Delta \varphi$ 。
- $\triangleright \Delta \varphi$ 取决于原系统相频特性变化情况。若变化缓慢,则 $\Delta \varphi$ 可取较小,若变化较快,则 $\Delta \varphi$ 取较大。通常取 $\Delta \varphi \in [5^\circ, 20^\circ]$ 。

串联超前校正-例1

【例】已知单位反馈系统的开环传递函数

 $G_0(s) = \frac{K}{s(0.1s+1)(0.001s+1)}$, 设计串联校正装置使校正后系统满足:

(1)相角裕度 $\gamma^* \ge 45^\circ$; (2) 稳态速度误差系数 $K_v^* = 1000s^{-1}$ 。

【解】

- 》第1步:系统前向通道中含有一个积分环节,由稳态速度误差系数 K_v^* ,求出开环放大系数 $K = K_v^* = 1000$ 。满足(2)。
- ▶ 第2步:绘制原系统Bode图。

剪切频率 $\omega_{c0}=100 \, \mathrm{rad/s}$,相角裕度 $\gamma_0 \approx 0^\circ$,不满足 $\gamma^* \geq 45^\circ$ 。

采用串联超前校正。

串联超前校正-例1续

A SHALL A STATE OF THE STATE OF

【例】(1)相角裕度γ≥45°

$$=\frac{1}{s(0.1s+1)(0.001s+1)}$$

【续】

▶ 第3步: 确定 $φ_m$ 和a。由于 $γ_0 ≈ 0°$,为使 $γ^* ≥ 45°$,串联校正装置提供的最大超前相角 $φ_m$ 需大于45°。

因校正后剪切频率变大,需给 φ_m 增加补偿相角 $\Delta\varphi$ 。

该例中相频特性曲线在剪切频率附近变化缓慢,取 $\Delta \varphi = 10^{\circ}$,

即有
$$\varphi_m = \gamma^* - \gamma_0 + \Delta \varphi = 55^\circ$$
。

得校正装置参数a = 10.059。

串联超前校正-例1续

WAR WAR

$$G_0(s) = \frac{1}{2}$$

【续】
$$a = 10.059$$

$$\frac{1}{s} = \frac{1}{s(0.1s+1)(0.001s+1)}$$

 \triangleright 第4步: 确定 ω_m 。求原系统对数幅值为

$$G_c(s) = \frac{1}{a} \cdot \frac{1 + aTs}{1 + Ts}$$

-10lga = -10.026dB处的频率。列方程

$$20lg \frac{1000}{\omega \times 0.1\omega \times 1} = -10.026, \ 20lg \frac{1000}{\omega \times \sqrt{(0.1\omega)^2 + 1} \times \sqrt{(0.001\omega)^2 + 1}}$$

求得 $\omega_1 = 178 \text{rad/s}$,以此作为校正后的剪切频率。令 $\omega_m = \omega_1$ 。

$$ightharpoons$$
 第5步: 确定 T 。由 $\omega_m = \frac{1}{T\sqrt{a}}$ 求得 $T = \frac{1}{\omega_m\sqrt{a}} \approx 0.00177s$,

超前校正装置为

$$G_c(s) = \frac{1}{10.059} \cdot \frac{1 + 0.0178s}{1 + 0.00177s},$$

串联幅值衰减补偿后为

$$G_c(s) = \frac{1 + 0.0178s}{1 + 0.00177s} \, \circ$$

串联超前校正-例1续

$$G_0(s) = \frac{1}{s(s)}$$

$$K = 1000, a = 10.059, T = 0.00177$$

s(0.1s+1)(0.001s+1)

【续】校正前后Bode图对比图如图。 $L(\omega)$

 \triangleright 第6步: 验算。校正后的开环传函 $G_K(s)$

$$= \frac{1000(1+0.0178s)}{s(0.1s+1)(0.001s+1)(1+0.00177s)}$$

求校正后的剪切频率。列方程:

$$\frac{1000 \times 0.0178\omega}{\omega \times 0.1\omega \times 1 \times 1} = 1,$$

求得校正后剪切频率 $\omega_{c1}=178$,则校正后相角裕度

$$\begin{split} \gamma_1 &= 180^\circ - 90^\circ - tg^{-1}0.1\omega_c - tg^{-1}0.001\omega_c - tg^{-1}0.00177\omega_c + \\ tg^{-1}0.0178\omega_c &= 48.12^\circ > 45^\circ, \end{split}$$

满足设计要求(1)。

串联超前校正 - 总结

- ◆串联超前校正的步骤
- 1. 根据稳态性能要求,确定开环放大系数;
- 2. 绘制原系统Bode图,计算剪切频率 ω_{c0} 和相角裕度 γ_0 ;
- 3. 确定补偿量 $\Delta \varphi$,由 $\varphi_m = \gamma^* \gamma_0 + \Delta \varphi$ 确定 φ_m ,则超前校正 网络的参数 $a = \frac{1 + sin\varphi_m}{1 sin\varphi_m}$;
- 4. 计算原系统对数幅频 $L_0(\omega) = -10lga$ 处的频率 ω_1 ,令 $\omega_m = \omega_1$;
- 5. 根据 $\omega_m = \frac{1}{T\sqrt{a}}$ 计算参数T,得到串联连接系数为a的比例放大器之后的超前校正网络的传递函数 $G_c(s) = \frac{1+aTs}{1+Ts}$;
- 6. 写出校正后系统开环传递函数 $G_K(s) = G_0(s)G_c(s)$,绘制校正后系统的Bode图,验算校正的结果。

串联超前校正 - 总结

?串联超前校正对系统的影响?

- ▶增加了开环频率特性在剪切频率附近的正相角,可提高系统的相角裕度;
- ▶减小对数幅频特性在剪切频率上的负斜率,提高了系统的稳定性;
- ▶提高了系统的频带宽度,可提高系统的响应速度。
- ▶幅值补偿后不影响系统的稳态性能。

了不宜采用串联超前校正的情况?

- ▶ 若原系统不稳定或稳定裕量很小,且开环相频特性曲线在剪切频率附近有较大的负斜率时,不宜采用相位超前校正。因为超前校正会导致剪切频率增加,原系统负相角增加的速度将超过超前校正装置正相角增加的速度,超前网络起不到补偿滞后相角的作用。
- $> \varphi_m > 60$ °时,不宜采用相位超前校正。

串联滞后校正

- ho图示系统 γ_0 不满足性能要求,如何校正?将剪切频率 ω_c 变小。
- ?哪种校正装置可以将剪切频率变小?

滯后校正装置具有幅值衰减作用,叠加后可以使原系统 ω_{c0} 变小。

?如何使幅值衰减作用最大?

利用滞后校正装置的最大幅值衰减。

串联滞后校正

?将滞后校正装置叠加在哪个位置 (参数如何选取)?

由 $\gamma^* = 180^\circ + \varphi_0(\omega)$ 找出原系统中符合要求的相角对应的频率 ω_1 ,叠加最大幅值衰减20㎏b(频率范围是 $\omega > \frac{1}{Tb}$)使该频率变为剪切频率。

如何降低相角滯后作用?

为降低相角滞后作用,尽量保持 ω_1 附近的相频特性基本不变,应让第二个转折频率尽量远离期望的 ω_1 。即令 $\frac{10}{Tb} = \omega_1$,

- ?叠加后相频是否能达到期望相角裕度γ*?
- 10倍频程时滞后相角<6°。

寻找 ω_1 的公式应修正为 $\gamma^* = 180^\circ + \varphi_0(\omega) - \Delta\varphi$ 。

串联滞后校正 例1

【例】已知原系统的开环传递函数为 $G_0(s) = \frac{K}{s(0.1s+1)(0.2s+1)}$,试

设计合适的串联校正装置,使系统满足性能要求(1) $K_v^* = 30s^{-1}$; (2)相角裕度 $\gamma^* \ge 40^\circ$ 。

【解】

- ightharpoonup 第1步: 由 K_v^* 得开环放大系数 $K = K_v^* = 30$ 。满足(1)。
- ▶ 第2步:绘制原系统Bode图。

由
$$\frac{30}{\omega \times 0.1\omega \times 0.2\omega}$$
=1得 ω_{c0} =11.44 ≈ 11rad/s.

则原系统的相角裕度 $\gamma_0 \approx -25^\circ$ 。

?采用哪种校正?

需提供25°+40°>60°的超前相角,

串联超前校正很难奏效。可采用串联滞后校正。

串联滞后校正 例1续 $G_0(s) = \frac{K}{s(0.1s+1)(0.2s+1)}$

ightharpoonup 第3步: 确定叠加的频率位置。考虑相角滞后影响,取Δ φ = 5°,即 γ * = 180° + $\varphi(\omega)$ – Δ φ ,则 $\varphi(\omega)$ = -180° + 40° + 5° = -135°

在原相频特性上找到对应相角-135°的频率 ω_1 。求解-90° $-tg^{-1}(0.1\omega)-tg^{-1}(0.2\omega)=-135$ °得 $\omega_1=3$ rad/s。

 \Rightarrow 第4步: 确定 $G_c(s)$ 的幅值。 ω_1 处原系统的幅值为 $20lg|G_0(\omega_1)|$ $\approx 20lg \frac{30}{\omega_1 \times 1 \times 1} = 20$ 。

要保证 ω_1 为校正后的剪切频率,令 $20lgb = -20lg|G_0(\omega_1)|$,求得b = 0.1。

- ightharpoonup 第5步:确定T。令滞后校正网络的第二转折频率 $\frac{1}{Tb}$ 距离 ω_1 十倍频程,即 $\frac{10}{bT}=\omega_1$,则T=33.3秒。
- ightharpoonup 因此串联滞后校正网络的传递函数为 $G_c(s) = \frac{3.33s+1}{33.3s+1}$ 。

串联滞后校正 例1续 $G_0(s) = \frac{K}{s(0.1s+1)(0.2s+1)}$

 $L(\omega)$

-180

0.1 013

【续】滞后网络参数b = 0.1, T = 33.3

> 第6步: 验算。校正后开环传递函数为

$$G_K(s) = \frac{30(3.33s+1)}{s(0.1s+1)(0.2s+1)(33.3s+1)},$$

绘制校正后系统 若对(0.2s+1) 简算,

月
$$\omega_c = 3$$
, $\gamma = 37^\circ$ $\omega_c = 37^\circ$

$$\Rightarrow \frac{30 \times 3.33\omega}{\omega \times 1 \times \sqrt{0.04\omega^2 + 1} \times 33.3\omega} = 1,$$

得
$$\omega_{c1} = 2.65$$
,

则校正后的相角裕度为

$$\gamma_1 = 180^{\circ} - 90^{\circ} - tg^{-1}(0.1\omega_c^*) - tg^{-1}(0.2\omega_c^*)$$

$$-tg^{-1}(33.3\omega_c^*)+tg^{-1}(3.33\omega_c^*)=41.4^{\circ}$$

满足设计要求(2)。

串联滞后校正 例1续 $G_0(s) = \frac{K}{s(0.1s+1)(0.2s+1)}$

【续】滞后校正效果分析

- ✓ 在保持K = 30 不变时,相 角裕度由校正前的-25°提高 到41.4°,说明系统经串联 滞后校正后具有满意的相对 稳定性。
- ✓ 但校正后系统的剪切频率降 低,带宽变窄,

则降低系统响应的快速性,这是串联滞后校正的主要缺点。

✓ 但提高了系统的抗干扰能力。

串联滞后校正 - 总结

- ◆串联滞后校正的步骤
- 1. 根据稳态性能要求,确定开环放大系数;
- 2. 绘制原系统的Bode图, 计算相角裕度 γ_0 ;
- 3. 选择补偿量 $\Delta \varphi$ (通常取 6°), 计算原系统相角 $\varphi(\omega) = -180^\circ + \gamma^* + \Delta \varphi$ 处的频率 ω_1 ,
- 5. $\Rightarrow \frac{10}{Tb} = \omega_1$,得到参数T,则串联滞后校正网络的传递函数为 $G_c(s) = \frac{1+bTs}{1+Ts}$;
- 6. 写出校正后系统开环传递函数 $G_K(s) = G_0(s)G_c(s)$,绘制校正后系统的Bode图,验算校正的结果。

串联滞后校正 - 总结

* 串联滞后校正对系统的影响?

- ▶在保持系统开环放大系数不变的情况下,减小剪切频率, 从而增加了相角裕度,提高了系统相对稳定性;
- ➤幅值衰减作用使得幅值裕度变好,因此在保持系统相对 稳定性不变的情况下,可以提高系统的开环放大系数, 从而改善系统的稳态性能;
- ▶由于降低了剪切频率,系统宽带变小,从而降低了系统的响应速度;
- ✓ 但提高了系统抗干扰的能力。

?不宜采用串联滞后校正的情况?

- > 不能用于期望剪切频率大于原剪切频率时。
- > 不能用于要求增加频带宽度、提高快速性的场合;

串联滞后-超前校正

- ?超前校正和滞后校正的优缺点?
- □ 串联超前校正:
 - ✓ 提高相角裕度,
 - ✓ 剪切频率变大,快速性变好,
 - > 但高频段抬高, 抗干扰(高频噪声)能力降低。
- □ 串联滞后校正:
 - ✓ 降低剪切频率以提高系统的相角裕度,
 - ✔ 间接提高系统的开环放大系数,改善了系统的稳态性能。
 - ✔ 高频段衰减,抗干扰(高频噪声)能力提高。
 - **× 牺牲了快速性。**
- ◆ 有时单独采用串联超前校正或串联滞后校正无法奏效,则可 综合两种方法进行系统校正。

【例】已知单位反馈系统的开环传函 $G_0(s) = \frac{K}{s(s+1)(s+2)}$,要求系统满足下列性能指标: (1) 稳态速度误差系数 $K_v^* = 10s^{-1}$; (2)相角裕度 $\gamma^* \geq 50^\circ$,剪切频率 $\omega_c^* \geq 1$ rad/s。设计串联校正装置。

【解】根据速度误差系数得K = 20。 绘制校正前系统的Bode图。

由
$$\frac{20}{\omega \times \omega \times \omega} = 1$$
解得 $\omega_{c0} = 2.71 rad/s$,则 $\gamma_0 = -33^\circ$ 。

- ?采用哪种串联校正装置?
- \mathbf{P} 超前校正?需提供50°+33°+ $\Delta \varphi$ 的超前相角,不合适。
- **?**滞后校正?取 $\Delta \varphi = 6^{\circ}$,则 $\varphi(\omega) = -180^{\circ} + 50^{\circ} + 6^{\circ}$ 求出 $\omega_1 = 0.42$,不适合。

考虑用滞后-超前校正。

串联滞后-超前校正

- ₹串联滞后-超前校正的思想?
 - ✓ 滞后校正主要用来校正开环频率的低频区特性,
 - ✓ 超前校正主要用于改变中频区特性的形状和参数。
- ₹串联滞后-超前校正的注意事项?
- ▶ 在确定超前校正装置时,要考虑到滞后装置加入对系统动态性能的影响,参数选择应留有裕量;
- 在确定滞后校正装置时,尽量不影响已由超前装置校正好了的系统的动态指标。

$$G_0(s) = \frac{K}{s(s+1)(s+2)}, \quad \gamma^* \ge 50^\circ, \quad \omega_c^* \ge 1 \text{rad/s}, \quad \omega_{c0} = 2.71 rad/s, \quad \gamma_0 = -33^\circ$$

需要增加的超前相位为83°。

◆ 思路:将需要增加的相位一部分由超前校正完成,另一部分由 滞后校正完成;分配方式可以有多种选择。

以此题为例:

- \triangleright 先充分利用超前校正装置提供超前相角(例如60°的超前相角),提高系统的相角裕度,由此得出超前校正装置 $G_{c1}(s)$;
- 》 然后以 $G_{c1}(s)G_0(s)$ 为对象设计滞后校正,满足剩下的性能指标,得到 $G_{c2}(s)$;
- \triangleright 最后得到校正后的开环传递函数为 $G_K(s) = G_{c2}(s)G_{c1}(s)G_0(s)$,

$$G_0(s) = \frac{K}{s(s+1)(s+2)}, \quad \gamma^* \ge 50^{\circ}, \quad \omega_c^* \ge 1 \text{rad/s}, \quad \omega_{c0} = 2.71 rad/s, \quad \gamma_0 = -33^{\circ}$$

- (1) 先用超前校正,则 $\varphi_m = 60^\circ$,由 $a = \frac{1 + \sin \varphi_m}{1 \sin \varphi_m}$,得 a = 13.928。
- 由 $20lg \frac{20}{\omega \times \omega \times \omega} = -10lga$ 得 $\omega_m = 4.210$ rad/s,
- 由 $\omega_m = \frac{1}{T_a\sqrt{a}}$,求得 $T_a = \frac{1}{\omega_m\sqrt{a}} \approx 0.0636s$,
- 则进行幅值衰减补偿后的超前校正装置为 $G_{c1}(s) = \frac{1+0.886s}{1+0.0636s}$,
- 串联超前校正后系统的开环传递函数为

$$G_{K1}(s) = \frac{20(1+0.886s)}{s(s+1)(s+2)(1+0.0636s)},$$

• 串联超前校正后剪切频率 $\omega_{c1} = 4.21$,相角裕度 $\gamma_1 = 8.775$ 。

超前校正效果微弱,因 ω_{c1} 处相角负向增长速度快

$$G_{K1}(s) = \frac{20(1+0.886s)}{s(s+1)(s+2)(1+0.0636s)}, \quad \gamma^* \ge 50^\circ, \quad \omega_c^* \ge 1 \text{rad/s}.$$

- (2) 再用滯后网络将相位裕度提高到50°。取 $\Delta \varphi = 5$ °,
- 由 $20lgb = -20lg|G_{K1}(\omega_2)|$ 求得b = 0.126,
- 进而由 $\frac{10}{bT_b} = \omega_2$ 得 $T_b = 75.59s$,
- 则串联滞后校正网络的传递函数为 $G_{c2}(s) = \frac{1+9.524s}{1+75.59s}$,
- 滯后-超前校正网络的传递函数 $G_c(s) = \frac{(1+0.886s)(1+9.524s)}{(1+0.0636s)(1+75.59s)}$,
- (3) 验算。串联 $G_c(s)$ 后 $G_K(s) = \frac{20(1+0.886s)(1+9.524s)}{s(s+1)(s+2)(1+0.0636s)(1+75.59s)}$,

剪切频率为 $\omega_{c2} = 1.05$,相角裕度为 $\gamma_2 = 50.026$ °,满足要求。

串联滞后-超前校正 法1步骤

- 1. 根据稳态性能要求,确定开环放大系数;
- 2. 绘制原系统Bode图,计算剪切频率 ω_{c0} 和相角裕度 γ_0 ;
- 3. $\Rightarrow \varphi_m = 60^\circ$, $\text{Ma} = \frac{1+\sin\varphi_m}{1-\sin\varphi_m}$;
- 4. 计算 $L_0(\omega) = -10 \lg a$ 处的频率 ω_1 ,令 $\omega_m = \omega_1$;
- 5. 根据 $\omega_m = \frac{1}{T_a\sqrt{a}}$ 计算出 T_a ,得到幅值补偿后的超前校正网络 $G_{c1}(s) = \frac{1+aT_as}{1+T_as}$;以及校正后系统 $G_{K1}(s) = G_{c1}(s)G_0(s)$ 。
- 6. 选择补偿量 $\Delta \varphi$ (通常取6°), 计算 $G_{K1}(s)$ 的相角 $\varphi_{K1}(\omega) = -180° + \gamma^* + \Delta \varphi$ 处的频率 ω_2 ;
- 7. 令 $20 \lg b + 20 \lg |G_{K1}(j\omega_2)| = 0$ 得b。令 $\frac{10}{T_b b} = \omega_2$ 得 T_b ,则串联滞后校正网络为 $G_{c2}(s) = \frac{1+bT_b s}{1+T_b s}$;
- 8. 验算。校正后 $G_K(s) = G_{c2}(s)G_{c1}(s)G_0(s)$ 。

串联滞后-超前校正 例1总结

P超前部分的设计中,是否必须将最大超前相角 φ_m 配置在剪切频率处($\omega_1 = \omega_m$)?

不一定,因为滞后校正有幅值衰减作用。

且正如上例所示,如果相角负向增幅快,则如此配置会削弱相角超前作用。

 \mathbf{P} 最大超前相角 φ_m 配置在何处最好?

受期望剪切频率 ω_c^* 的限制。

$$G_0(s) = \frac{K}{s(s+1)(s+2)}, \quad \gamma^* \ge 50^\circ, \quad \omega_c^* \ge 1 \text{rad/s}, \quad \omega_{c0} = 2.71 rad/s, \quad \gamma_0 = -33^\circ$$

【解】

(1)先用超前校正,用最大超前相角 $\varphi_m = 60^\circ$,此时 a = 13.928。直接将超前校正最大超前相角 φ_m 叠加到当前剪切频率处,即令

$$\omega_m = \omega_{c0} = \frac{1}{T_a \sqrt{a}} = 2.71,$$

则得 $T_a = 0.099s$,

则幅值补偿后超前校正装置 $G_{c1}(s) = \frac{1+1.38s}{1+0.099s}$,

超前校正后的开环传递函数为 $G_{K1}(s) = \frac{20(1+1.38s)}{s(s+1)(s+2)(1+0.099s)}$,

此时
$$\omega_{c1} = 5.25$$
, $\gamma_1 = -3.68$ °。

仍为负,但剪切频率增大

$$G_{K1}(s) = \frac{20(1+1.38s)}{s(s+1)(s+2)(1+0.099s)}, \quad \gamma^* \ge 50^\circ, \quad \omega_c^* \ge 1 \text{rad/s}, \quad \gamma_1 = -3.68^\circ$$

(2) 再用滯后网络将相位裕度提高到50°: 取 $\Delta \varphi = 5$ °,

令
$$\varphi_{K1}(\omega) = -180^{\circ} + \gamma^* + \Delta \varphi = -125^{\circ}$$
解得 $\omega_2 = 1.41$ rad/s。

下面幅值计算均精确求解。

由 $20lgb = -20lg|G_{K1}(\omega_2)|$ 求得b = 0.138,

串联滞后校正网络的传递函数为 $G_{c2}(s) = \frac{1+6.68s}{1+51.39s}$,

滯后-超前校正网络的传递函数为 $G_c(s) = \frac{(1+1.38s)(1+6.68s)}{(1+0.099s)(1+51.39s)}$,

(3) 验算。校正后
$$G_K(s) = \frac{20(1+1.38s)(1+6.68s)}{s(s+1)(s+2)(1+0.099s)(1+51.39s)}$$
,

校正后 $\omega_{c2}=1.35$, $\gamma_2=51.17$ °,满足设计要求。

【例】设系统的开环传递函数为 $G_0(s) = \frac{K}{s(0.1s+1)(0.05s+1)}$,要求系统满足下列性能指标: (1) 稳态速度误差系数 $K_v^* \geq 50$; (2)剪切频率 $\omega_c^* = 10 \pm 0.5 rad/s$; (3)相角裕度 $\gamma^* = 40^\circ \pm 3^\circ$ 。试用频率响应法确定合适的串联校正装置。

【解】(1)根据速度误差系数的要求,选择K = 50。绘制校正前系统的Bode图。

由 $|G(j\omega)| = 1$ 精确求出 $\omega_{c0} = 18$, $\gamma_0 = -13^{\circ}$ 。

?采用哪种串联校正装置? 超前校正会导致 ω_c 增大。

?滞后校正是否可行?

$$G_0(s) = \frac{K}{s(0.1s+1)(0.05s+1)}, \quad \omega_c^* = 10 \pm 0.5 rad/s; \quad \gamma^* = 40^\circ \pm 3^\circ.$$

□ 超前校正的尝试: 由 $\gamma^* = 40^\circ$,选择 $\varphi_m = \gamma^* - \gamma_0 + \Delta \varphi$ = $40^\circ + 13^\circ + 7^\circ = 60^\circ$ ($\Delta \varphi$ 达到最大超前校正相角)。

则由 $a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m}$ 得 $a \approx 14$ 。

由 $20lg \frac{50}{\omega \times 0.1\omega \times 0.05\omega} = -10lga$,求出 $\omega_m = 33.45 \text{rad/s}$,不符合剪切频率要求,

若继续设计,可得 $T_a = 0.008$,校正后 $\gamma_1 = 17.6^{\circ}$,不满足要求。

 \square 滞后校正的尝试: 由 $\gamma^* = 40^\circ$,取补偿相角 $\Delta \varphi = 6^\circ$,

则 $\varphi(\omega) = \gamma^* + \Delta \varphi - 180^\circ = -134^\circ$ 。解得 $\omega_1 = 5.47 \text{rad/s}$,不符合剪切频率要求。

据此可继续求得b = 0.129, $T_b = 14.17$,

校正后 $\gamma_1 = 40.99^\circ$ 。

$$G_0(s) = \frac{\kappa}{s(0.1s+1)(0.05s+1)}, \quad \omega_c^* = 10 \pm 0.5 rad/s; \quad \gamma^* = 40^\circ \pm 3^\circ.$$

- □采用滞后-超前校正。
- ?若沿用原超前校正和滞后校正设计思路是否可行?
- > 上例中,剪切频率的要求是一个范围。
- ▶ 此例,若沿用原超前校正设计思路,无法精确控制剪切频率 在10左右。
- ◆ 改进思路:
- ✓ 用超前校正将期望剪切频率处的相角配置到期望相角裕度 (需要一定的补偿量以弥补滞后校正带来的负相角);
- ✓ 用滯后校正将期望剪切频率处的幅值变为0。

【续】(1)决定超前校正部分。

原系统在 $\omega_c^* = 10$ 处相角为 $\varphi(\omega_c^*) = -162^\circ$,为使 $\gamma^* = 40^\circ$,

取 $\Delta \varphi = 5^{\circ}$,取超前网路最大相角 $\varphi_m = \gamma^* - 180^{\circ} - \varphi(\omega_c^*) + \Delta \varphi = 27^{\circ}$,则由 $a = \frac{1+\sin\varphi_m}{1-\sin\varphi_m}$,可得校正装置参数a = 2.66。

为使 $\omega_c^* = 10$ 时对应最大超前相角 φ_m ,令 $\omega_m = \omega_c^* = 10$,

由
$$\omega_m = \frac{1}{T_a\sqrt{a}}$$
得 $T_a = 0.06$ 秒,

则幅值补偿后的超前校正装置 $G_{c1}(s) = \frac{0.16s+1}{0.06s+1}$,

串联超前校正后
$$G_{K1}(s)$$

$$= \frac{50(0.16s+1)}{s(0.1s+1)(0.05s+1)(0.06s+1)},$$

$$G_0(s) = \frac{K}{s(0.1s+1)(0.05s+1)}, \quad \omega_c^* = 10 \pm 0.5 rad/s; \quad \gamma^* = 40^\circ \pm 3^\circ.$$

【续】(2)决定滞后校正部分。

用串联滞后校正将期望剪切频率 ω_c^* 处的幅值变为0。

$$\omega_c^* = 10 \text{ rad/s时} 20 \text{ lg} |G_{K1}(j\omega_c^*)| = 14 dB$$
。

取
$$\frac{10}{bT_b} = \omega_c^*$$
,则 $T_b = 5$ 。

则串联滞后校正网络 $G_{c2}(s) = \frac{s+1}{5s+1}$,

滯后-超前校正网络
$$G_c(s) = \frac{(0.16s+1)(s+1)}{(0.06s+1)(5s+1)}$$
,

校正后
$$G_K(s) = \frac{50(0.16s+1)(s+1)}{s(0.1s+1)(0.05s+1)(0.06s+1)(5s+1)}$$

$$G_0(s) = \frac{K}{s(0.1s+1)(0.05s+1)}, \quad \omega_c^* = 10 \pm 0.5 rad/s; \quad \gamma^* = 40^\circ \pm 3^\circ.$$

【续】(3) 校验。校正后
$$G_K(s) = \frac{50(0.16s+1)(s+1)}{s(0.1s+1)(0.05s+1)(0.06s+1)(5s+1)}$$

校正后系统的Bode图如图。

$$\pm |G_K(j10)| = 5.12 \times 10/50 \approx 1$$
,

因此校正后剪切频率 $\omega_{c2}=10$,

校正后的相角裕度

$$\gamma_2 = 180^\circ + \angle G_K(j10)$$

$$= -162^{\circ} + 58^{\circ} - 30^{\circ} + 84.3^{\circ}$$

 -88.9°

 $=41.4^{\circ},$

满足性能指标要求。

串联滞后-超前校正 总结

- ◆ 法2步骤 (ω_c*为期望剪切频率)
- 1. 根据稳态性能要求,确定开环放大系数;
- 2. 绘制原系统的Bode图,计算剪切频率 ω_{c0} 和相角裕度 γ_0 ;
- 3. 令最大超前相角 $\varphi_m = \gamma^* 180^\circ \varphi(\omega_c^*) + \Delta \varphi$,则 $a = \frac{1+\sin\varphi_m}{1-\sin\varphi_m}$;
- 4. 令 $\omega_m = \omega_c^*$; 根据 $\omega_m = \frac{1}{T_a \sqrt{a}}$ 得 T_a , 则幅值补偿后 $G_{c1}(s)$ = $\frac{1 + aT_a s}{1 + T_a s}$; 校正后 $G_{K1}(s) = G_{c1}(s)G_0(s)$ 。
- 5. 令 $\omega_2 = \omega_c^*$ 。令 $20 \lg b = -20 \lg |G_{K1}(j\omega_c^*)|$ 得b。令 $\frac{10}{T_b b} = \omega_2$,得 T_b ,则串联滞后校正 $G_{c2}(s) = \frac{1+bT_b s}{1+T_b s}$;
- **6.** 验算。校正后 $G_K(s) = G_{c2}(s)G_{c1}(s)G_0(s)$ 。

期望频率特性法校正

- ?期望频率特性法的思想?
- ✓ 将性能指标要求转化为期望的对数幅频特性,再与原系统的频率特性进行比较,从而得出校正装置的形式和参数。
- ?期望频率特性法的优缺点?
- ✓ 该方法简单、直观,可适合任何形式的校正装置。
- ✓ 由于只有最小相位系统的对数幅频特性和对数相频特性之间有确定的关系,故期望频率特性法仅适合于最小相位系统的校正。

期望频率特性法校正

P期望频率特性法的求解思路?P(s) P(s) P(s) P(s) P(s) P(s) P(s) P(s) P(s) P(s)

设希望开环频率特性为 $G_K(j\omega)$ 、原系统的开环频率特性为 $G_0(j\omega)$,串联校正装置的频率特性是 $G_c(j\omega)$,

则
$$G_K(j\omega) = G_0(j\omega)G_c(j\omega)$$
, $G_c(j\omega) = \frac{G_K(j\omega)}{G_0(j\omega)}$,

相应的对数幅频特性为 $L_c(\omega) = L_K(\omega) - L_0(\omega)$ 。 由此可以求出校正装置的传递函数。

期望频率特性法校正

"期望频率特性通常是怎样的?

通常具有较好性能时期望频率特性如图(2-1-2型)。

• 其传递函数为
$$G(s) = \frac{K(1+\frac{1}{\omega_2}s)}{s^2(1+\frac{1}{\omega_3}s)}$$
,剪切频率为 ω_c^* ,相角裕度为

$$\gamma(\omega) = 180^{\circ} + \varphi(\omega)|_{\omega = \omega_c^*} = tg^{-1} \frac{\omega}{\omega_2} - tg^{-1} \frac{\omega}{\omega_3}|_{\omega = \omega_c^*} \circ$$

- \mathbf{P} 由 ω_c^* 、 γ^* 如何确定参数 ω_2 、 ω_3 ?
- 由 $\frac{d\gamma}{d\omega}$ = 0求出达到最大相角裕度时 角频率为 $\omega_m = \sqrt{\omega_2 \omega_3}$,
- 即 ω_m 是两个转折频率的几何中心。
- 则最大相角裕度满足

$$tg(\gamma(\omega_m)) = \frac{\omega_3 - \omega_2}{2\sqrt{\omega_2\omega_3}},$$

 $G(s) = \frac{K(1 + \frac{1}{\omega_2}s)}{1}$

P由 ω_c^* 、 γ^* 如何确定期望频率特性参数 ω_2 、 ω_3 ? $s^2(1+\frac{1}{\omega_3}s)$ 则最大相角裕度满足 $L(\omega)$ \sim -40 μ

$$sin\gamma(\omega_m) = \frac{\omega_3 - \omega_2}{\omega_3 + \omega_2}$$
°

令斜率为-20dB/dec的中频段宽度为H,即 $H = \frac{\omega_3}{\omega_2}$,则

$$\sin\gamma(\omega_m) = \frac{H-1}{H+1}$$
 H \mathbb{Z} H \mathbb{Z} \mathbb{Z}

此处的 $\gamma(\omega_m)$ 并不是真实相角裕度,真实相角裕度为 $\gamma(\omega_c^*)$,

通常在极大值附近相角变化较小,近似有 $\gamma(\omega_m) \approx \gamma(\omega_c^*)$,则

由谐振峰值与相角裕度之间的关系 $M_r \approx \frac{1}{sin\gamma}$,可得 $M_r = \frac{H+1}{H-1}$ 。

由Bode图得0 $-20lg\frac{\omega_m}{\omega_c^*}=20lg|G(j\omega_m)|$,则 $\frac{\omega_c^*}{\omega_m}=|G(j\omega_m)|$ 。

 \mathbf{P} 由 ω_c^* 、 M_r 如何确定期望频率特性参数 ω_2 、 ω_3 ?

$$\mathbb{N}\frac{\omega_c^*}{\omega_m} = |G(j\omega_m)|_{\circ} \longleftarrow$$

◆结合幅相曲线确定达到最大相角裕度时的开环幅频 $|G(j\omega_m)|$ 。 绘制期望频率特性的开环幅相曲线如图。

在幅相曲线上做等M圆,等M圆半径 $\frac{M}{M^2-1}$ 、圆心($-\frac{M^2}{M^2-1}$, j0)。

由等M圆的结论:与 $G(j\omega)$ 幅相曲线相切的等M圆的M值即为闭环幅频特性的最大值,若M>1,则该值就是 M_r 。由勾股定理得

$$|G(j\omega_m)| = OP = \sqrt{\frac{M^4}{(M^2 - 1)^2} - \frac{M^2}{(M^2 - 1)^2}} \Big|_{M=M_r} = \frac{M_r}{\sqrt{M_r^2 - 1}},$$

 \mathbf{P} 由 ω_c^* 、 M_r 如何确定期望频率特性参数 ω_2 、 ω_3 ?

$$\text{Im} \frac{\omega_c^*}{\omega_m} = \frac{M_r}{\sqrt{M_r^2 - 1}}, \quad M_r > 1, \quad \text{Im} \omega_c^* = \sqrt{\omega_2 \omega_3} \frac{M_r}{\sqrt{M_r^2 - 1}},$$

则
$$\omega_2 = \omega_c^* \frac{2}{H+1}$$
, $\omega_3 = \omega_c^* \frac{2H}{H+1}$,

H越大γ越大,因此

取
$$\omega_2 \le \omega_c^* \frac{2}{H+1}$$
, $\omega_3 \ge \omega_c^* \frac{2H}{H+1}$,
$$则\omega_2 \le \omega_c^* \frac{M_r-1}{M_r}$$
, $\omega_3 \ge \omega_c^* \frac{M_r+1}{M_r}$.

◆ 得期望频率特性的两个参数 ω_2 、 ω_3 ,结合 ω_c^* ,中频段确定。由于校正装置的对数幅频特性 $L_c(\omega) = L(\omega) - L_0(\omega)$,为使校正装置尽量简单,需结合原系统对数幅频特性曲线确定期望频率特性的低频段和高频段。

- ?期望频率特性法的求解步骤?
- 1. 根据稳态误差要求,确定开环增益K,即起始段;
- 2. 由剪切频率 $ω_c^*$ 、相角裕度 γ^* 、谐振峰值 M_r 确定H、 $ω_2$ 、 $ω_3$, 绘制中频段,斜率为-20dB/dec,以保证相角裕度要求;
- 3. 中频段向左延伸,与起始段连接。若不能与起始段的期望 频率特性相连,则增加直线,斜率尽量接近相邻线段;
- 4. 中频段向右延伸,根据幅值裕度及抗干扰要求,确定高频段。斜率尽量与原系统高频段保持一致,或完全重合;
- 5. 将期望对数幅频特性减去原系统对数幅频特性,得串联校 正装置的对数幅频特性及其传递函数;
- 6. 验算。

上述步骤得到的期望频率特性曲线不一定是2-1-2型。

期望频率特性法校正例1

【例】已知单位反馈系统开环传递函数 $G_0(s) = \frac{K}{s(0.12s+1)(0.02s+1)}$,

设计串联校正装置,使系统(1)稳态速度误差系数 $K_v^* \ge 70(s^{-1})$; (2)调整时间 $t_s^* \le 1(s)$; (3)超调量 $\sigma_p^* \le 40\%$ 。

【解】1、由 $K_v^* \ge 70$,取K = 70, $L(\omega)$ 绘制原系统Bode图。

- 2、绘制期望频率特性。
- 低频段:由于速度误差系数为常数,即校正后系统为I型系统, 而原系统为I型系统,则校正装置不含积分环节,低频段选择 与原系统重合。

当 $\omega = 1$ 时,20lgK = 36.9dB,作斜率为-20dB/dec的直线与原系统的低频段重合。

期望频率特性法校正例1续

● 中频段及衔接段:

将 t_s^* 和 σ_p^* 转换成频域指标

$$\sigma_p^* = 0.16 + 0.4 \left(\frac{1}{\sin \gamma} - 1 \right), \ t_s^*$$

$$= \frac{\pi}{\omega_c} \left[2 + 1.5 \left(\frac{1}{\sin \gamma} - 1 \right) + 2.5 \left(\frac{1}{\sin \gamma} - 1 \right)^2 \right]$$

可得 $M_r = \frac{1}{\sin \gamma} \le 1.6$, $\omega_c^* \ge 12$,取 $M_r = 1.6$, $\omega_c^* = 13(rad/s)$ 。

由
$$\omega_2 \leq \omega_c^* \frac{M_r - 1}{M_r}$$
, $\omega_3 \geq \omega_c^* \frac{M_r + 1}{M_r}$,得 $\omega_2 \leq 4.88$, $\omega_3 \geq 21.13$ 。

在 $\omega_c^* = 13$ 处作斜率为-20dB/dec的直线,求与 $20lg|G_0|$ 的交点,

由
$$0-40lg\frac{\omega}{\omega_{c0}}=0-20lg\frac{\omega}{\omega_c^*}$$
,得与 $20lg|G_0|$ 相交于 $\omega=45$,

为使期望频率特性尽量简单,取 $\omega_3=45$,并取 $\omega_2=4$,此时

$$H = \frac{\omega_3}{\omega_2} = 11.25$$
, $\gamma = \arcsin \frac{H-1}{H+1} = 56.8$ °.

期望频率特性法校正例1续

● 中频段及衔接段:

为连接中频段和低频段,在中频段 $\omega_2 = 4$ 的对数幅频值处,作斜率为-40dB/dec直线,求与低频段的交点,由

$$0-20lg\frac{\omega_2}{13}-40lg\frac{\omega_1}{\omega_2}$$

$$=20lgK-20lg\frac{\omega_1}{1}$$

得相交于 $\omega_1 = 0.75 \text{rad/s}$ 处。

• 高频段及衔接段: 在中频段 $\omega_3 = 45$ 的对数幅频值处,作斜率为-40dB/dec直线,此段与原系统对数幅频特性曲线 $20\lg|G_0|$ 重合。

 $\omega > \omega_3$ 时,取期望特性高频段与原系统高频特性一致。

期望频率特性法校正例1续

综合可得期望频率特性 $20\lg|G_cG_0|$ 的参数为:

$$\omega_1 = 0.75$$
, $\omega_2 = 4$, $\omega_3 = 45$, $\omega_4 = 50$, $\omega_c^* = 13$.

3、将 $20\lg|G_cG_0|$ 与 $20\lg|G_0|$ 相减,

得串联校正装置为
$$G_c(s) = \frac{(0.25s+1)(0.12s+1)}{(1.33s+1)(0.022s+1)}$$
,

4、校正后系统的开环传递函数为

$$G_K(s) = \frac{70(0.25s+1)}{s(1.33s+1)(0.02s+1)(0.022s+1)},$$

计算可得校正后 $\omega_{c1}=13$, $\gamma_1=45.6$ °, $M_{r1}=1.4$,

$$\sigma_{p1} = 32\%$$
, $t_{s1} = 0.73(s)$,满足设计要求。

期望频率特性法校正 例2

【例】已知单位反馈系统的开环传递函数 $G_0(s) = \frac{25}{s^2(0.025s+1)}$,

设计串联校正装置,使系统保持稳态加速度误差系数 $K_a^* = 25(s^{-2})$ 不变,超调量 $\sigma_p^* \le 30\%$,调整时间 $t_s^* \le 0.9(s)$ 。

【解】1、绘制系统对数幅频特性。

2、绘制期望频率特性。

为保持稳态性能,低频段应和原系统重合。

中频段斜率取为**-20dB**/dec。将时间域性能指标 t_s 和 σ_p 转换成频域指标。由 $\sigma_p^* \leq 30\%$ 取 $M_r = 1.35$ 。由 $t_s^* \leq 0.9(s)$ 取 $\omega_c^* = 9.9$,

则
$$\omega_2 \le \omega_c^* \frac{M_r - 1}{M_r} = 2.55$$
, $\omega_3 \ge 17.23$,

期望频率特性法校正 例2续

中频段向右端延伸,

原系统对数幅频特性曲线转折频率 40,若取为期望的 ω_3 ,则满足 ω_3 ≥ 17.23 。这一段为期望特性的中频段。

为使期望特性尽量靠近原系统特性,过 ω_3 画斜率为-60dB/dec的直线,即为希望特性的高频段。

期望频率特性为2-1-3型的,与典型的2-1-2型有区别。

过 ω_3 后,斜率由-20dB/dec变为-60dB/dec,说明有两个时间常数为 $\frac{1}{\omega_3}$ = 0.025的惯性环节。

期望频率特性法校正 例2续

3、将 $20\lg|G_cG_0|$ 与 $20\lg|G_0|$ 相减,

得串联校正装置为
$$G_c(s) = \frac{0.4s+1}{0.025s+1}$$
,

是一个超前校正装置。

4、计算校正后系统的性能指标。

校正后 $\omega_{c1} = 9.9$,则相角裕度为 $\gamma_1 = 48.03^\circ$,

谐振峰值为
$$M_{r1} = \frac{1}{\sin \gamma_1} = 1.345$$
,

超调量为
$$\sigma_{p1} = 0.16 + 0.4 \times (M_r - 1) = 29.8\% < 30\%$$
, $k_0 = 2 + 1.5 \times (M_r - 1) + 2.5 \times (M_r - 1)^2 = 2.815$,

则调整时间为
$$t_{s1} = \frac{k_0 \times \pi}{\omega_{c1}} = 0.8933 < 1(s)$$
,

满足设计要求。

串联校正 例1

【例】设单位反馈系统的开环传递函数为 $G_0(s) = \frac{2500K}{s(s+25)}$,若要使

系统的速度误差系数 $K_{v}^{*} = 100s^{-1}$,相角裕度 $\gamma^{*} \geq 45^{\circ}$,剪切频率 $\omega_c^* \geq 65 \text{ rad/s}$,试为该系统设计合适的校正装置。

【解】
$$G_0(s) = \frac{100K}{s(\frac{s}{25}+1)}$$
,由 K_v^*

 $=100s^{-1}$ 得K=1即可满足稳态性能。 绘制原系统的Bode图。

精确计算得 $\omega_{c0} = 47, \gamma_0 = 180^0 - 90^0$ $-tg^{-1}\frac{\omega_c}{25} = 28^{\circ}$,若简算,则由 $\frac{2500}{\omega \times \omega}$ $=180^{\circ}-90^{\circ}-tg^{-1}\frac{\omega_c}{25}=27^{\circ}$

?选择哪种校正装置??滞后校正是否可行? 串联超前网络

校正后要求 $\omega_c^* \geq 65 \text{rad/s}$,而滞后校正会 导致 ω_c 更小,因此不可行

串联校正 例1续

$$G_0(s) = \frac{100K}{s(\frac{S}{25} + 1)}$$

?两个设计目标: $\gamma^* \ge 45^\circ$, $\omega_c^* \ge 65$ rad/s

【续】从相角裕度的期望值出发来设计。

补偿量选取较小(5°) 时不满足要求

选取补偿相角 $\Delta \varphi = 10^{\circ}$,则 $\varphi_m = \gamma^* - \gamma_0 + \Delta \varphi = 45^{\circ} - 27^{\circ} + 10^{\circ} = 28^{\circ}$

由 $a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m}$ 得校正装置参数a = 2.77。

列写方程 $20lg\frac{2500}{\omega\times\omega}=-10lga$ 求得 $\omega_m=64.5$ rad/s。

由 $\omega_m = \frac{1}{T\sqrt{a}}$ 得 $T = \frac{1}{\omega_m\sqrt{a}} \approx 0.0093$,则进行幅值补偿后超前校正装置的传递函数为 $G_c(s) = \frac{1+0.026s}{1+0.0093s}$ 。

验算。校正后 $G_K(s) = \frac{2500(1+0.026s)}{s(s+25)(1+0.0093s)}$,此时由 $\frac{2500\times0.026\omega}{\omega\times\omega} = 1$

得 $\omega_{c1}=65$,则相角裕度 $\gamma_1=49$ °满足设计要求。

串联校正 例1续

$$G_0(s) = \frac{100K}{s(\frac{S}{25} + 1)}$$

【续】从期望剪切频率出发来设计校正网络,

令
$$\omega_m = \omega_c^* = 65$$
,由 $L(\omega_c^*) + 10lga = 0$,即 是否总可行?
$$20lg \frac{100}{\omega_c^* \sqrt{1 + (\omega_c^*/25)^2}} + 10lga = 0$$

求得
$$a = 3.3$$
,则 $T = \frac{1}{\omega_m \sqrt{a}} = 0.0085$

则幅值补偿后的超前校正网络传递函数为

$$G_c(s) = \frac{1 + 0.028s}{1 + 0.0085s}$$

验算。校正后
$$G_K(s) = \frac{100}{s(\frac{1}{25}s+1)} \frac{1+0.028s}{1+0.0085s}$$
,

校正后系统的剪切频率必然为 $\omega_c^*=65$,求相角裕度可得

$$\gamma^* = 180^\circ - 90^\circ + tg^{-1}(0.028\omega_c^*) - tg^{-1}\left(\frac{1}{25}\omega_c^*\right) - tg^{-1}(0.0085\omega_c^*) = 53^\circ$$

串联校正 例1续

?从期望剪切频率出发来设计超前校正网络是否一定可行?

本例取 $\omega_c^* = \omega_m$ 为校正后的剪切频率,并由此求出 $\alpha = 3.3$,

但并未考察此时对应的超前校正网络能否提供足够的超前相角。

事实上,a = 3.3时超前校正网络能提供的最大超前相角为

$$\varphi_m = \arcsin\frac{a-1}{a+1} = 32.34^\circ,$$

上例中,原系统在 $\omega_c^* = 65$ 处的相角为 $\varphi(65) = -159^\circ$,

校正后二者相角叠加,对产生45°相角裕度还有11°的裕量,因此该设计有效。

 2 思考:期望性能指标 ω_{c}^{*} 在什么范围内时这种设计有效?如果原系统在期望剪切频率处负的相角过大,则可能无法通过超前校正网络实现校正。

串联校正 例2 法1

某单位反馈二阶系统单位阶跃响应曲 线如图, 试设计适当的串联校正环节, 使系统的单位阶跃响应的超调量 $\sigma_p \leq$ 20%,调节时间 $t_s \leq 1.5(s)$ 。

【解】由单位阶跃响应求开环传递函数。原系 统 $\sigma_{p0} = 40\%$, $t_{p0} = 2$,

则 $\zeta = 0.28$, $\omega_n = 1.664$,

则原系统开环传递函数 $G_0(s) = \frac{2.69}{s(s+0.918)} \circ \varphi(\omega)$

作原系统的Bode图。由

$$20\lg 2.69 - 20\lg \frac{1.09}{1} - 40\lg \frac{\omega}{1.09} = 0$$

求得 $\omega_{c0} = 1.712$ 。

串联校正 例2续法1

【续】由期望时间性能指标得频域性能指标:

$$\sigma_p = 0.16 + 0.4 \left(\frac{1}{\sin \gamma} - 1 \right) \le 0.2, \quad t_s = \frac{\pi}{\omega_c} \left[2 + 1.5 \left(\frac{1}{\sin \gamma} - 1 \right) + 2.5 \left(\frac{1}{\sin \gamma} - 1 \right)^2 \right] \le 1.5,$$

求得 $\gamma^* \ge 65.4^\circ$, $\omega_c^* \ge 4.55$ 。

从期望的剪切频率出发来设计,取 $\omega_c^*=4.6$,并令 $\omega_m=\omega_c^*$,则 $L(\omega_c^*)+10lga=0$,即

$$20lg \frac{2.69}{\omega_c^* \sqrt{1 + (0.918\omega_c^*)^2}} + 10lga = 0,$$

求得a = 55,则 $T = \frac{1}{\omega_m \sqrt{a}} = 0.0293$,则幅值补偿后的超前校正网络传递函数为 $G_c(s) = \frac{1.612s+1}{0.0293s+1}$ 。

验算。校正后开环传递函数 $G_K(s) = \frac{2.69(1.612s+1)}{s(s+0.918)(0.0293s+1)}$

 $\omega_c^* = 4.6$,则相角裕度 $\gamma^* = 97.3$ °,满足设计要求。

串联校正 例2续法2

【续】该系统校正前是二阶系统,若保持校正后也是二阶系统,

则可根据性能指标要求,得到校正后系统的开环传递函数,

则校正装置由二者相除即可的。

由期望性能指标 $\sigma_p \leq 0.2$, $t_s \leq 1.5$,选取 $\sigma_p = 0.2$, $t_s = 1.5$ 可得

$$\zeta = \sqrt{\frac{\left(\ln \sigma_p\right)^2}{\left(\ln \sigma_p\right)^2 + \pi^2}} = 0.456, \quad \omega_n = \frac{3}{t_s \zeta} = 4.39,$$

则期望的开环传递函数 $G_K(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)} = \frac{19.27}{s(s+4)}$,

则串联校正装置的传递函数

$$G_c(s) = \frac{G_K(s)}{G_0(s)} = \frac{7.16(s + 0.918)}{s + 4}$$

串联校正 例3

30 60

最小相位系统加入串联校正前、后的开环对数幅频特性如图曲线I、 II所示, 画出串联校正装置的对数幅频特性; 并写出串联校正装 $L(\omega)$

置的传递函数。

【解】观察图中曲线I、II,

与校正前曲线相比,校正后曲线

- 在起始段幅值增大8dB,
- 在频率为0.7处斜率减少-20dB/dec,

有2个转折频率 $\omega_1 = 0.7$, $\omega_2 = 5$ 。起始段斜率为0dB/dec,则由 20lgK = 8求得K = 2.51,因此校正装置的传递函数为

$$G_c(s) = \frac{2.51(\frac{1}{5}s+1)}{(\frac{1}{0.7}s+1)} = \frac{2.51(0.2s+1)}{(1.43s+1)}$$
。是一个滯后校正装置。

串联校正 例4

【例】设控制系统的开环传递函数为 $G_0(s) = \frac{8}{s(0.5s+1)(0.25s+1)}$,试设

计一串联校正装置,使校正后系统的相角裕度 $\gamma^* \geq 40^\circ$,幅值裕

度 $K_g^* \ge 10dB$,剪切频率 $\omega_c^* > 1$ rad/s。

【解】作原系统的Bode图。

由
$$\frac{8}{\omega\sqrt{0.25\omega^2+1}\sqrt{(0.25\omega)^2+1}} = 1$$
 转折频率离 简算误差大

求得 $\omega_{c0} = 3.25$,则原相角裕度

$$\gamma_0$$

= $180^{\circ} - 90^{\circ} - tg^{-1}0.5\omega_c - tg^{-1}0.25\omega_c$
= -7.5° ,

?选择哪种校正装置?

原系统在剪切频率 ω_{c0} 处相角负的斜率较大,超前校正难以奏效。而 ω_{c0} 大于性能指标要求的剪切频率,故可采用滞后校正装置。

串联校正 例4续
$$G_0(s) = \frac{8}{s(0.5s+1)(0.25s+1)}$$

【续】超前校正的尝试: $\text{由}\gamma^* \geq 40^\circ$, 选择 $\varphi_m = \gamma^* - \gamma_0 + \Delta \varphi = 40^\circ + 7.5^\circ + 12.5^\circ = 60^\circ$

由 $a = \frac{1+\sin\varphi_m}{1-\sin\varphi_m}$ 得校正装置参数 $a = 13.9 \approx 14$ 。

由
$$20lg \frac{8}{\omega\sqrt{0.25\omega^2+1}\sqrt{(0.25\omega)^2+1}} = -10lga$$
,得 $\omega_m = 5.70rad/s$ 。

由
$$\omega_m = \frac{1}{T\sqrt{a}}$$
得 $T = \frac{1}{\omega_m\sqrt{a}} \approx 0.047$,

串联幅值补偿后超前校正装置为 $G_c(s) = \frac{1+0.658s}{1+0.047s}$,

验算。校正后
$$G_K(s) = \frac{8(1+0.658s)}{s(0.5s+1)(0.25s+1)(1+0.047s)}$$
,

由 $|G_K(j\omega)| = 1$ 得 $\omega_{c1} = 5.7$, $\gamma_1 = 24.5^0$,不满足设计要求。

串联校正 例4续
$$G_0(s) = \frac{8}{s(0.5s+1)(0.25s+1)}$$

【续】滞后校正的设计:根据 $\gamma^* \ge 40^\circ$ 和滞后相角的影响,选

则
$$\varphi(\omega)=-180^\circ+\gamma^*+\Delta\varphi=-134^\circ$$
,得 $\omega_1=1.1rad/s$ 。而 $L(\omega_1)$

$$= 20lg \frac{8}{1.1} - 10lg(1 + (0.5 \times 1.1)^2) - 10lg(1 + (0.25 \times 1.1)^2)$$

= 15.7dB,

令
$$20lgb = -L(\omega_1)$$
 得 $b = 0.164$ 。

进而由第二个转折频率
$$\frac{10}{bT} = \omega_1$$
, 得 $T = 55.43$,

则串联滞后校正网络的传递函数为 $G_c(s) = \frac{1+9.1s}{1+55.43s}$,

验算:校正后为
$$G_K(s) = \frac{8(9.1s+1)}{s(0.5s+1)(0.25s+1)(55.43s+1)}$$
,

串联校正 例4续

$$G_0(s) = \frac{\delta}{s(0.5s+1)(0.25s+1)}$$

【续】校正后开环传递函数为 $G_c(s) = \frac{8(9.1s+1)}{s(0.5s+1)(0.25s+1)(55.43s+1)}$ 。

校正后系统的 Bode 图如图。

由
$$|G_K(j\omega)| = 1$$
得 $\omega_{c1} = 1.11$,

则

$$\gamma_1 = 180^{\circ} - 90^{\circ} + tg^{-1}(9.1 * 1.1) -90^{\circ} -tg^{-1}(0.5 * 1.1) - tg^{-1}(0.25 * 1.1) -270^{\circ}$$

 $-tg^{-1}(55.43*1.1)$

$$=90^{\circ} + 84.30^{\circ} - 89.06^{\circ} - 28.81^{\circ} - 15.38^{\circ} = 41.05^{\circ} > 40^{\circ}$$

由 $\varphi(\omega) = -180^{\circ}$ 得 $\omega_{g1} = 2.73$,则 转折频率离 ω_{g1} 大近,简算误 $K_{g1} = -20lg |G_K(j\omega_{g1})| = 12.58dB > 10dB$, 太近,简算误 差大

满足要求,滞后校正装置合适。

串联校正 例5

【例】单位反馈系统开环传递函数为 $G_0(s) = \frac{K}{s(0.1s+1)(2s+1)}$ 。设计

串联校正装置,使校正后系统静态速度误差系数 $K_v \geq 10$,相角裕

度 γ * ≥ 40°。

【解】由 $K_v \ge 10$,得 $K = K_v = 10$ 。作原系统的Bode图如图。

$$\pm 20 \lg K - 20 \lg \frac{0.5}{1} - 40 \lg \frac{\omega}{0.5} = 0$$

求得 $\omega_{c0} = 2.236$,

$$\gamma_0 = 180^{\circ} - 90^{\circ} - tg^{-1}0.1\omega_c - tg^{-1}2\omega_c$$

= 0°,

?选择哪种校正装置?

难以判断。

串联校正 例5续
$$G_0(s) = \frac{K}{s(0.1s+1)(2s+1)}$$

【续】超前校正的尝试: 由 $\gamma^* \ge 40^\circ$,

选择超前相角
$$\varphi_m = \gamma^* - \gamma_0 + \Delta \varphi = 40^\circ + 0^\circ + 15^\circ = 55^\circ$$
,

由
$$a = \frac{1 + \sin \varphi_m}{1 - \sin \varphi_m}$$
得 $a \approx 10$ 。

补偿量取10⁰时不行 (校正后γ=37⁰左右)

由
$$20lg\frac{10}{\omega\times2\omega\times1} = -10lga$$
,得 $\omega_m = 3.98$ rad/s。

由
$$\omega_m = \frac{1}{T\sqrt{a}}$$
得 $T = \frac{1}{\omega_m\sqrt{a}} \approx 0.079$ 。

则幅值补偿后超前校正装置的传递函数为 $G_c(s) = \frac{1+0.79s}{1+0.079s}$

验算。校正后
$$G_K(s) = \frac{K(1+0.79s)}{s(0.1s+1)(2s+1)(1+0.079s)}$$

此时由 $|G_K(j\omega)| = 1$ 得 $\omega_{c1} = 3.95$, $\gamma_1 = 40.56$ °,满足要求。

串联校正 例5续
$$G_0(s) = \frac{K}{s(0.1s+1)(2s+1)}$$

【续】滞后校正的尝试: 由 γ ^{*} ≥ 40°, 选择 $\varphi = \gamma^* + 6^\circ - 180^\circ = -134^\circ$

解得 $\omega_1 = 0.44 \text{rad/s}$ 。

由滯后装置的第二个转折频率 $\frac{10}{hT} = \omega_1$, 得T = 378.78,

则串联滞后校正网络传递函数为 $G_c(s) = \frac{1+22.73s}{1+279.79s}$,

验算。校正后 $G_K(s) = \frac{K(1+22.73s)}{s(0.1s+1)(2s+1)(1+378.78s)}$,

此时由 $|G_K(j\omega)| = 1$ 得 $\omega_{c1} = 0.45$,则 $\gamma_1 = 40.19$ °, 满足要求。

?为何采用反馈校正?

除了与串联校正一样,可改善系统的性能以外,还可抑制反馈环内不利因素对系统的影响。

采用局部反馈校正的系统,校正装置反向连接在一些环节上,会形成局部反馈回环(又称内回环)。

为保证局部回环的稳定性,被包围的环节不宜过多,一般为2个。

无反馈校正时系统的开 $\overset{R(s)}{\leftarrow} \overset{E(s)}{\hookrightarrow}_{G_1(s)}$ 环传递函数为

$$G(s) = G_1(s)G_2(s)G_3(s)G_4(s)$$

内回环的开环传递函数为 $G'(s) = G_2(s)G_3(s)H(s)$

内回环的闭环传递函数为

$$G'_{B}(s) = \frac{G_{2}(s)G_{3}(s)}{1 + G_{2}(s)G_{3}(s)H(s)} = \frac{G_{2}(s)G_{3}(s)}{1 + G'(s)}$$

校正后系统的开环传递函数为

$$G''(s) = G_1(s)G_{B'}(s)G_4(s) = \frac{G(s)}{1 + G'(s)}$$

当|**G'(j\omega)**|>>1时
$$G''(j\omega) \approx \frac{G(j\omega)}{G'(j\omega)} = \frac{G_1(j\omega)G_4(j\omega)}{H(j\omega)}$$

当
$$|\mathbf{G'(j\omega)}|$$
<<1时 $G''(j\omega) \approx G(j\omega)$ $|\mathbf{G'(j\omega)}|$ =1时近似误差最大。

若内回环稳定,即 G_B '(s)的极点都在左半s平面,则校正后系统的性能可按曲线20lg|G"(j ω)|来分析。

按上述近似时,一般情况下,在曲线 $20lg|G"(j\omega)|$ 的穿越频率附近, $|G'(j\omega)|>>1$,故近似处理的结果还是足够准确。

- ◆综合校正装置时,
- ✓ 先绘制 $20lg|G(j\omega)|$ 的渐近线,
- ✓ 再按要求的性能指标绘制20lg|G"(jω)|的渐近线,由此确定 20lg|G'(jω)|,校验内回环的稳定性,
- ✓ 最后根据 $G'(s) = G_2(s)G_3(s)H(s)$ 求得20lg|H(j\omega)|。

【例】系统结构图如图,试设计反馈校正装置,使系统的性能

指标为 $\sigma_{\rm p} \leq 25\%$, $t_{\rm s} \leq 0.8({\rm s})$ 。

$$G_3(s) = \frac{0.0208}{s}$$

【解】

1、校正前系统的开环传递函数为

$$G_0(s) = G_1(s)G_2(s)G_3(s) = \frac{1130}{s(0.06s+1)(0.36s+1)}$$

原系统的对数幅频特性L 如图。

2、绘制期望对数幅频特性

根据 $\sigma_p \le 25\%$, $t_s \le 0.8(s)$ 得 $M_r \le 1.23$, $\omega_c \ge 9.7$ 。

取 $\omega_c = 10$,则期望特性的 交接频率 $\omega_2 \le \omega_c \frac{M_r - 1}{M_r} = 1.87$

取 $\omega_2=1.1$ 。

为简化校正装置,将 ω_3 取为中高频段的转折频率,即 ω_3 =1/0.06=16.7。

过 ω_{c} 作-20dB/dec的直线,低频端至 ω_{2} 处A点,高频端至 ω_{3} 处B点。

再由A点作-40dB/dec的直线向低频段延伸与 L_0 相交于E点,该点的频率为 ω_E =0.009。

由B点作-40dB/dec的直线向高频段延伸与 L_0 相交于D点,该点的频率为 ω_D =190。即得期望对数幅频特性曲线 L_K 。

3、求校正装置:

由 $\mathbf{L_{0}}$ - $\mathbf{L_{K}}$ 得 $20 \lg |G_{2}(j\omega)H(j\omega)|$

如图中LH所示,

其传递函数为

$$G_2(s)H(s) = \frac{K_H s}{(T_1 s + 1)(T_2 s + 1)}$$
 -20

$$T_1 = 1/1.1 = 0.9$$

 T_2 为原系统的转折频率 $T_2 = 1/2.78 = 0.36$

由 $\omega_E = 0.009$ 时 $L_K(\omega_E) = 0$,带入其频率特性近似可得:

$$K_H = 1/0.009 = 111$$

则校正装置传递函数为

$$H(s) = \frac{G_2(s)H(s)}{G_2(s)} = \frac{0.487s}{0.9s+1}$$

PID控制

?为何在工业上广泛采用PID控制?

被控对象数学模型未知时仍能实现有效设计。

?PID控制的组成?

由比例(P)、积分(I)、微分(D)三种控制作用组合。

PID控制-P

◆比例控制作用(P):

控制器的输出与输入误差信号之间的关系:

时域形式: $u(t) = K_p e(t)$ 传递函数: $\frac{U(s)}{E(s)} = K_p$

Kn为比例增益。

 K_p 增大,则<u>开环增益增大。</u>

?改善哪方面的性能,稳定性、动态性能和稳态性能?

结论1: P控制提高控制精度、

降低相对稳定性。

$$K_g = \frac{1}{\left| \underline{G(j\omega_g)H(j\omega_g)} \right|}$$

PID控制-P 例1

考察图示系统在比例控制作用下单位阶跃输入的稳态误差。

【解】
$$G_c(s) = K_p$$

$$E(s) = R(s) - C(s) = R(s)(1 - \frac{K_p K e^{-\tau s}}{1 + Ts + K_p K e^{-\tau s}})$$

对单位阶跃输入,其稳态误差
$$e_{ss} = \frac{1}{1 + K_p K}$$

 $\mathbf{K}_{\mathbf{p}}$ 增大,则开环增益增大,降低稳态误差,提高控制精度。

- ?比例控制的优缺点
- ▶ 优点:比例控制及时、快速。在串联校正中,控制器的 比例增益越大,稳态误差越小。
- ▶ 缺点: 稳态误差不为0。降低系统的相对稳定性,甚至可能造成闭环系统不稳定。

 $Ke^{-\tau s}$

PID控制-I

- ◆积分控制作用(I): 控制器的输出与输入误差信号之间的关系时域形式: $u(t) = K_i \int_0^t e(\tau)d\tau$ 传递函数: $\frac{U(s)}{E(s)} = \frac{K_i}{s}$ K_i为可调积分系数。
- ?改善哪方面的性能,稳定性、动态性能和稳态性能?
- 结论2: I作用提高控制精度(有差变无差), 稳定性变差。很少单独使用。
- ?积分控制的优缺点
- ▶ 在串联校正中,前向通道上提高控制系统的型别,改善系统的稳态精度。
- ▶ 积分作用使系统增加了一个位于原点的开环极点,产生90 度的滞后相角,对稳定性不利;且调节缓慢,不及时。

PID控制-PD

◆比例微分控制作用(PD)

时域形式:
$$u(t) = K_p \left[e(t) + T_d \frac{de(t)}{dt} \right]$$
 传递函数:
$$\frac{U(s)}{E(s)} = K_p (1 + T_d s)$$

 K_p 为可调比例增益, T_d 为可调微分时间常数。

?改善哪方面的性能,稳定性、动态性能和稳态性能? $\angle (T_d s + 1) = \arctan T_d \omega$ 相位裕度提高。

PID控制 例2

求如下控制器时系统的阶跃响应。R

$$1) G_c(s) = K_p$$

$$2) G_c(s) = \underline{K_p(1 + T_d s)}$$

【解】1) 闭环传递函数

$$\Phi(s) = \frac{K_p}{Js^2 + K_p}$$

0

系统做等幅振荡。无法达到 控制要求。

2) 闭环传递函数

$$\Phi(s) = \frac{1 + T_d s}{\frac{J}{K_p} s^2 + T_d s + 1}$$

可调整参数使系统稳定, 且使系统满足一定的动 态性能,

例如使ξ=0.4~0.8

PID控制-PD

- ◆比例微分控制作用(PD)
- ?改善哪方面的性能,稳定性、动态性能和稳态性能?

结论3: D作用主要改善动态性能。

由于增加D作用,使系统能够在稳定的范围内增大比例增益, 从而间接地改善稳态误差。

微分作用是根据偏差变化的速度大小来修正控制。可称为 "超前"控制作用。

- ♪微分作用不能单独使用。
- ?微分控制的优缺点
- > 微分控制有抑制振荡、提高系统稳定性的效果。
- 不允许信号中有干扰成分,因为微分作用对干扰的反应迅速,很容易造成误操作。

PID控制-PI

◆比例积分控制作用(PI)

$$u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau \right] \qquad \frac{U(s)}{E(s)} = K_p \left[1 + \frac{1}{T_i s} \right] = \frac{K_p (T_i s + 1)}{T_i s}$$

$$-90^0$$

 K_p 为可调比例增益, T_i 为可调积分时间常数。

实质:增加左半平面开环零点和位于原点的开环极点,

- ?改善哪方面的性能,稳定性、动态性能和稳态性能? 结论4:减小稳态误差,改善稳态性能。
- ?会不会使稳定性变差?

不会。只要 T_i 足够大。

$$\angle (T_i s + 1) = \arctan T_i \omega \int 90^0$$

PID控制-PID

◆ PID控制:包含比例、积分、微分控制规律的控制器。

它可以结合三种作用的优点,较好的满足生产过程自动控制

的要求。

 $u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right]$

$$\frac{U(s)}{E(s)} = K_p \left[1 + \frac{1}{T_i s} + T_d s \right]$$

- \mathbf{K}_{p} 为可调比例增益, \mathbf{T}_{i} 为可调积分时间常数, \mathbf{T}_{d} 为可调 微分时间常数。
- ■实质:利用积分作用改善稳态性能,利用微分作用改善动态性能。
- $-1/T_i$ 和 T_d 可以看作是积分作用和微分作用的权系数,权系数越大,起的作用越大。

PID控制

- ◆结论5: PID参数对控制性能的影响
- $\mathbf{K}_{\mathbf{p}}$ 对系统性能的影响 增益 $\mathbf{K}_{\mathbf{p}}$ 的增大,使系统的稳态误差下降,但稳定性下降;
- ■T_i对系统性能的影响

积分作用的增强(即T_i下降),使系统消除稳态误差的能力增强,但稳定性下降;

■T。对系统性能的影响

微分作用的增强(即T_d增大),主要用于改善动态性能。从理论上讲使系统的超前作用增强,相对稳定性得到加强,但高频噪声起放大作用。因而,微分作用不适合于噪声较大的对象。

◆PID控制的设计:三个参数的选择,满足稳态性能指标和动态性能指标。

- ?PID控制的设计方法?
- > 解析法
- > 实验法: 齐格勒-尼柯尔斯法则。包括
 - ✓ 动态响应法
 - ✓ 临界增益法

可以保证单位阶跃响应的最大峰值与第二峰值之比为4:1。

◆1. 动态响应法:

实验求得被控对象对单位阶跃输入信号的动态响应曲线,从而估计出传递函数,

然后通过齐格勒和尼柯尔斯给出的调整法则表,确定PID参数。

♪注: 响应曲线必须呈S形。

♪注:响应曲线是系统在开环情况下测

得的。

፟注:被控对象不能包括积分环节和主导共轭复数极点。

否则一定不是S形响应曲线。

◆1. 动态响应法:

对于S形响应曲线,做拐点的切线,确定切线与时间轴和直线c(t)=K的交点,得到时间常数T和延迟时间τ两个参数,则被控对象的传递函数就可以用一阶惯性环节加延

时环节近似为 $\frac{C(s)}{U(s)} = \frac{Ke^{-\tau s}}{Ts+1}$

查表得PID参数。

即
$$G_c(s) = K_p(1 + \frac{1}{T_i s} + T_s s)$$

= $1.2 \frac{T}{\tau} (1 + \frac{1}{2\tau s} + 0.5\tau s) = 0.6T \frac{(s + \frac{1}{\tau})^2}{s}$

动态响应法调整法则表

控制器类型	K _n	T_{i}	T_d
P	$\frac{T^{t}}{\tau}$	8	0
PI	$0.9\frac{T}{\tau}$	3.3τ	0
PID	$1.2\frac{T}{\tau}$	2τ	0.5τ

PID控制器有一个位于原点的开环极点和一对位于-1/τ的开环零点。

- ◆2. 临界增益法 步骤:
- 1、在闭环状态下,设 $T_i = \infty$, $T_d = 0$ (即为比例控制器),
- 2、令 K_p 从0逐渐增大直到系统响应首次出现等幅振荡,此时的增益称为临界增益,设为 K_{ps} ,振荡周期设为 T_s 。
- 3、查表确定PID的控制参数。

则PID控制器的传递函数 为

$$G_c(s) = K_p \left[1 + \frac{1}{T_i s} + T_d s \right]$$

控制器	Kp	Ti	Td
P	0.5K _{ps}	∞	0
PI	$0.45K_{ps}$	$0.83T_{\rm s}$	0
PID	0.6K _{ps}	$0.5T_{\rm s}$	$0.125T_{\rm s}$

$$= 0.6K_{ps} \left[1 + \frac{1}{0.5T_s s} + 0.125T_s s \right] = 0.075K_{ps}T_s \frac{\left(s + 4/T_s\right)^2}{s}$$

♪注: 如果Kp的增大无法使系统产生等幅振荡,则不能用该法。

动态响应法不适用

利用临界增益法确定PID控 制器的参数,使得系统的超R 调量不超过25%。

【解】 $\diamond T_i = \infty, T_d = 0$,则闭环传函为:

$$\Phi(s) = \frac{K_p}{s(s+1)(s+5)+K_p}$$

要求Kn使系统出现等幅振荡,

振荡周期为
$$T_s = \frac{2\pi}{\sqrt{5}} = 2.81$$
查表得

$$S^3$$
 1

1 5 则Kp=30时系统等幅振荡。

$$S^2$$
 6

 \mathbf{Kp} 求振荡周期。 $s_{1.2} = \pm \sqrt{5} j$

$$S^1$$
 (30-Kp)/6

则系统的解将出现

 S^0 Kp $\sin\left(\sqrt{5}t\right)$ \neq $\cos\left(\sqrt{5}t\right)$

$$G_{c}$$

$$= 0.075K_{ps}T_{s}\frac{(s+4/T_{s})^{2}}{s}$$

$$= 6.3\frac{(s+1.4)^{2}}{s}$$

PID控制参数的确定 例3 续

$$G_c = 6.3 \frac{(s+1.4)^2}{s}$$

此时系统的超调量为62%。需要进 行微调。

፟注:对控制器的参数进行微调通常可以在计算机上进行。

■当保持Kp不变,而将零点移到-0.6时,系统的单位阶跃响应的最大超调量约为20%。

■当保持零点位置不动,调整Kp到39.42时, 系统的响应速度增大,但最大超调量约为28%。

单位反馈控制系统被控对象的开环传递函 数,是否可用上述方法进行PID整定?

$$G(s) = \frac{(s+2)(s+3)}{s(s+1)(s+5)}$$

【解】由于存在积分环节,因此不能用动态响应法。

考察能否用临界增益法。设
$$T_i = \infty$$
, $T_d = 0$,则闭环特征方程为: $s(s+1)(s+5) + K_p(s+2)(s+3) = 0$ 则 $s^3 + (6+K_p)s^2 + (5+5K_p)s + 6K_p = 0$

$$S^3$$
 1 5+5 Kp

$$S^1$$
 (30+29Kp+5 Kp²)/(6+ Kp)

则当 K_p 从0逐渐增大时, 系统无法达到等幅振荡。

因此不能用临界增益法。

♪注:如果被控对象能用齐格勒-尼柯尔斯法则,则具有PID控制 器的受控对象,其阶跃响应呈现出约10%~60%的超调量。

若超调量不符合性能指标要求,则可进一步对控制器参数微调。

因此,齐格勒-尼柯尔斯法则为精确设计控制器提供了起点。

作业

● 裕量的选取: 尽量使期望值凑整

串联超前校正: 6-9, 6-11(单位斜坡输入下的稳态误差)

串联滞后校正: 6-10

串联滞后-超前校正: 6-17

串联期望频率特性校正: 6-18