Arithmétique - exercices supplémentaires

Exercice 1 Soit p un nombre premier.

- 1) Montrer que p divise $\binom{p}{k}$ pour tout $k \in [1, p-1]$.
- 2) En déduire l'identité de Frobenius : $\forall x, y \in \mathbb{Z}, (x+y)^p \equiv x^p + y^p$ [p].
- 3) En déduire le petit théorème de Fermat.

Exercice 2 On souhaite montrer que l'ensemble E des nombres premiers congrus à 3 modulo 4 est infini.

Pour cela on s'inspire de la démonstration du caractère infini de l'ensemble des nombres premiers. En raisonnant par l'absurde, on suppose E fini : on peut alors noter p_1, p_2, \ldots, p_n la liste des éléments distincts de E. On introduit l'entier $N = 4p_1p_2 \ldots p_n - 1$. À vous de finir !