

특 2000-001 4673

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI.[‡] 6096 3/18

(11) 공개번호

특2000-0014673

(43) 공개일자 2000년03월15일

(21) 출원번호	10-1998-0034208
(22) 출원일자	1998년 08월24일
(71) 출원인	엘지.필립스 엘시디 주식회사 구본준, 론 위라하다락사
	서울특별시 영등포구 여의도동 20번지
(72) 발명자	여주천
	경기도 안양시 동안구 평안동 초원대림아파트 203동 1301호
(74) 대리인	김영호
AUTT - OF	
실사점구 : 있음	

(54) 디멀티플렉서 및 그를 이용한 액정 파널

£ 24

잡음 성분 신호를 억제함과 아울러 제어배선을 간소화하기에 적합한 디멀티플렉서가 개시되게 된다.

다맬티플렉서에서는 입력라인에 공통적으로 접속됨과 아울러 적어도 2 미상의 출력라인에 각각 접속되어 적어도 2 미상의 제어라인으로부터의 선택신호에 각각 응답하는 적어도 2 미상의 TFT들에 의해 입력라인으로부터의 신호가 출력라인들중 어느 하나로 출력되게 된다. 적어도 2 미상의 절환용 소지와 적어도 2 미상의 출력라인 사이에 각각 접속되어진 적어도 2 미상의 보조 TFT들은 리던던트 제어라인으로부터의 리던던트 선택신호에 응답하여 TFT로부터 출력라인 쪽으로 유입될 잡음성분신호를 바이패스 시키게 된다

UHE.

57

BAKK

도면의 还단营 监督

- 도 1은 종래의 백정표시장치를 개략적으로 도시하는 도면.
- 도 2는 도 1에 도시되어진 다덜티플렉서들에 공급되는 신호들의 파형도.
- 도 3은 도 1에 도시되어진 데이터 라인의 전기적인 등가회로를 도시하는 도면.
- 도 4은 종래의 액정표시장치를 개략적으로 도시하는 도면.
- 도 5는 도 4에 도시되어진 다덜티플렉서들에 공급되는 신호들의 파형도.
- 도 6은 도 4에 도시되어진 데이터 라인의 전기적인 등가회로를 도시하는 도면.
- 도 4는 도 3을 확대하며 도시한 도면.
- 도 5는 격벽 제조용 몰드를 도시한 도면.
- 도 6은 본 발명의 제1실시예에 따른 플라즈마 디스플레이 패널 소자의 구조를 도시한 도면.
- 도 7은 본 발명의 실시 예에 따른 액정표시장치를 개락적으로 도시하는 도면.
- 도 8는 도 7에 도시되어진 다덜타플렉서들에 공급되는 신호들의 파형도.
- 도 9은 도 7에 도시되어진 데이터 라인의 전기적인 등가회로를 도시하는 도면.
- 도 10은 본 발명의 다른 실시 예에 따른 액정표시장치를 개략적으로 도시하는 도면.

발명의 상세를 설명

क्षिण स्थ

발명이 속하는 기술분야 및 그 분야의 증례기술

본 발명은 입력라인으로부터의 신호를 다수의 출력라인 쪽으로 <mark>디멀티플렉</mark>싱하는 디멀티플렉서에 관한 것으로, 특히 제어배선이 간소화된 디멀티플렉서에 관한 것이다. 또한, 본 발명은 디멀티플렉서에 의해 신

호입력배선이 간소화된 역정 패널에 관한 것이다. 나아가, 본 발명은 **디밀터플렉**서에 의해 **역정** 패널의 구동회로의 구성과 그리고 역정 패널과 그 구동회로간의 신호배선이 간소화된 **역정표**시장치에 관한 것이다.

혁정표시장치(Liquid Crystal Display; 이하 'LCD'라 함)는 비디오신호에 따라 백정의 광 투과율을 조절함으로써 비디오신호에 해당하는 화상을 표시하게 된다. 이러한 LCD에는 역정셀들이 액티브 매트릭스 형태로 배열되어진 혁정 패널과 이 백정 패널을 구동하기 위한 구동회로들이 포함되게 된다. 나아가, LCD에서는 구동회로의 구조와 역정 패널의 신호입력배선을 간소화하기 위한 디멀티플렉서들을 포함하게 된다. 이들 디멀티플렉서들 각각은 구동회로로부터의 데이터신호를 적어도 2이상의 액정 패널 상의 신호입력라인들 쪽으로 디멀티플렉싱 함으로써 역정패널의 신호입력배선 및 구동회로의 구성을 간소화시키게 된다.

쪽으로 디딜티플렉싱 함으로써 액정패널의 신호입력배선 및 구동회로의 구성을 간소화시키게 된다.
이와 같은 디델티플렉서틀을 LCD 포함하는 LCD는 도1 에서와 같이 액정 패널(10) 상의 데이터라인틀(ILI내지ILISI)과 데이터 구동회로(12) 사이에 접속되어진 n개의 디멀티플렉서틀(DMIMIH지DMIXn)과, 액정 패널(10) 상의 m개의 게이트라인틀(ILIH지ILIM)을 수평주시기간씩 순차적으로 구동하는 스캔 구동회로(14)로 구성되게 된다. n개의 디멀티플렉서틀(DMIXIHINDMIXn) 각각은 수평동기기간마다 데이터 구동회로(14)로 구성되게 된다. n개의 디멀티플렉서틀(DMIXIHINDMIXn) 각각은 수평동기가간마다 데이터 구동회로(12)로 보다 신호라인(SLIHINISIn)를 경유하며 공급되는 데이터신호를 3개의 데이터라인틀(ILISI-2,ILISI-1,ILISI)록으로 다멀티플렉싱하게 된다. 이를 위하며, 디멀티플렉서틀(DMIXIHINDMIXN) 각각에는 신호라인(SLIHINISIN)에 공통적으로 접속되어진 제1 내지 제3 박막 트랜지스터(Thin Film Transistor, 이하 'TFT'라 함)틀(MNI 내지 MN3)이 포함되게 된다. 이틀 제1 내지 제3 TFT(MNIHINIMN3)은 도2 에 도시된 바와 같은 게이트 필스(BPS)가 m개의 게이트라인들(ILIHINIGIN)중 어느 하나에 공급되는 동안 순차적으로 한번씩 턴-온데(ITUTPON)되게 된다. 이를 상세히 하면, 제1 TFT(MNI)는 제1 제머라인(ILI)으로부터 자신의 게이트라자쪽으로 도2에서와 같은 제2 선택클릭(MCLK1)에 의해 신호라인(SLI,SL2,...,SLn)으로부터 자신의 게이트라지족으로 전송하게 된다. 제2 TFT(MN2)도 제2 제머라인(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL3)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로부터 자신의 게이트라이(IL2)으로 도2에서와 같은 제3 선택클릭(MCLK3)에 의해 신호라인(SL1,SL2,...,SLn)으로부터의 데이터신호를 3i 번째 데이터라이(IL3,IL6,...,IL1)으로부터 자신의 게이트라이(IL3)으로부터 자신의 게이트라이(IL3)으로부터 자신의 게이트라이(IL3)으로부터 자신의 게이트라이(IL2)으로 도2에서와 같은 제3 선택클릭(MCLK3)에 의해 신호라인(SL1,IL3,...,SLn)으로부터의 데이터신호를 3i 번째 데이터라이(IL3,IL6,...,IL1)으로부터 자신의 게이트라이(IL3)으로부터 자신의 게이트라이(IL3,IL6,...,IL1)으로부터 자신의 게이트라이(IL3,IL6,...,IL1)으로부터 자신의 게이터라이(IL3,IL6,...,IL1)으로부터 자신의 게이트라이(IL3,IL6,...,IL1)으로부터 자신의 게이(IL1)를 함께 데이터라이(IL3,IL6,...,IL1)으로부터 자신의 게임 전하는데 무의 대기 나지 제3 TFT를 (MN1HI지 IMN3) 각각은 턴-오프(Turn-off) 된 때에 자체내의 채널에 충전되어진 전하들이 도3 의 등가회로에서와 같이 신호라인(IL3,IL6,...,IL1)를 함께 보다는데 작물 (IL1)를 함께 된다. 이를 상세히 하면, TFT(MN)이 턴-오된 경우에 데이터라인(IL1)에 공리는 전하량(Il1)의 수학식 2 와 같이 된다. 이를 상세히 하면, TFT(MN)이 턴-오트 경우에는 수학식 2 와 같이 된다. 전하량(Il1)의 무한의 신호하의 구함된다. 이를 상세히 하면, TFT(MN)이 턴-오트 경우에는 수학식 2 와 같이 된다.

$$Qon = Cdata \cdot Vdata$$

$$Qoff = \frac{1}{2} Cmn \cdot (Vmclk - Vdata - Vth)$$

수학식 1 및 수학식 2 에 있어서, Rdata는 데이터라인(DL)의 저항값, Cdata는 액정셀의 용량값, Cmn은 TFT 내의 채널의 용량값, Vdata는 데이터신호의 전압, Vmcik는 선택신호의 전압, 그리고 Vth는 TFT의 문턱전압 을 각각 나타낸다. 이와 같이, TFT가 턴-온된 때에 전하가 데이터라인(DL)에 공급되기 때문에 데이터라인 (DL) 상의 전압이 변하게 된다. 이렇게 데이터라인(DL)에서의 전압변동분은 통상 '피드 트로우 전압(스 Vp)'이라 불리며 그 값은 수학식 3과 같이 된다.

$$\chi Vp = \frac{\frac{1}{2} CmnCDOT(Vmclk-Vdata-Vth)}{Cdata + \frac{1}{2} Cmn}$$

미러한 피드 트로우 전압(ΔVp)은 TFT들의 각각의 문턱전압(Vth)이 달라짐에 따라 데이터라인들(ΩL) 각각에서 다르게 나타나게 된다. 아울러, 피드 트로우 전압(ΔVp)은 인접한 데이터라인들(ΩL)에 공급되는 데이터신호들의 전압차에 따라서도 데이터라인들(ΩL) 각각에 다르게 나타난다. 피드 트로우 전압(ΔVp)이데이터라인들에 따라 변하게 됨으로써 1라인상의 **액정**셀들의 광 투과율이 불균일하게 되고 나아가 액정 패널(10)상에 표시되는 화상이 왜곡 및/또는 열화되게 된다.

이와 같은 피드 트로우 전압(ΔVp)의 변동으로 인한 화질의 열화를 억제하기 위한 방안으로 도4 에 도시된 바와 같은 LCD가 개시되게 되었다. 도4 의 LCD는 도1의 LCD와 비슷한 회로구성을 가지나 디멀티플렉서틀 (DMUX1내지DMUXn) 각각이 제1 내지 제3 TFT(MN1내지MN3)과 데이터라인(DL) 사이에 각각 직렬 접속되어진 제1 내지 제3 보조 TFT들(AMN1내지AMN3)를 추가로 구비한다는 차이점을 가지고 있다. 이들 제1 내지 제3 그러나, 도4 에서와 같은 LCC에서는 디멀티플렉서틀(DMUX1내지DMUXn)을 구동하기 위하며 제어라인의 수가 2배로 증가되고 아울러 제어라인과 제어라인틀로부터의 보기라인틀간의 교차점들이 4배로 증가되게 된다. 이로 인하여, 디멀티플렉서들이 일체화되게 제조되는 액정 패널의 불량율이 높아지게 됨은 물론 액정 패널 의 제조 수율이 떨어지게 된다. 나아가, 디밀티플렉서들을 위한 복잡한 제어배선은 LCD의 제조수율이 떨 어뜨리게 된다.

발명이 이루고자 하는 기술적 과제

따라서, 본 발명의 목적은 제어배선을 간소화하기에 적합한 **디밀터**플렉서를 제공함에 있다. 본 발명의 다른 목적은 제어배선을 간소화하기에 적합한 <mark>디밀터</mark>플렉서 일체형 **액정** 패널을 제공함에 있다. 본 발명의 또 다른 목적은 제어배선을 간소화하기에 적합한 <mark>디밀터</mark>플렉서 일체형 LCD를 제공함에 있다.

발명의 구성 및 곡용

상기 목적을 달성하기 위하여 본 발명에 따른 다델티플렉서는 입력라인에 공통적으로 접속됨과 아울러 적 어도 2 이상의 출력라인에 각각 접속되어 적어도 2 이상의 제어라인으로부터의 선택신호에 각각 응답하여 입력라인으로부터의 신호가 출력라인들중 어느 하나로 출력되게 하는 적어도 2 이상의 절환소자와, 적어도 2 이상의 절환용 소자와 적어도 2 이상의 출력라인 사이에 각각 접속되고 리던던트 제어라인으로부터의 리 던던트 선택신호에 응답하여 절환용 소자로부터 출력라인 쪽으로 유입될 잡음성분신호를 바이패스 시키는 적어도 2 이상의 제어용 바이패스 수단을 구비한다.

본 발명에 따른 다밀티플렉서 일체형 액정 패널은 적어도 2 이상의 데이터라인과 적어도 2 이상의 게이트라인들과의 교차점을 각각에 배열되어진 화소 매트릭스와, 적어도 2 이상의 데이터라인들에 공급되어질 2 이상의 데이터신호를 압력하기 위한 신호라인과, 신호라인에 공통적으로 접속됨과 아울러 적어도 2 이상의 데이터라인에 각각 접속되어 적어도 2 이상의 제어라인으로부터의 선택신호에 각각 응답하여 신호라인으로부터의 데이터라인에 각각 접속되어 적어도 2 이상의 제어라인으로부터의 선택신호에 각각 응답하여 신호라인으로부터의 데이터신호가 데이터라인들중 어느 하나로 출력되게 하는 적어도 2 이상의 절환소자와, 적어도 2 이상의 절환용 소자와 적어도 2 이상의 데이터라인 사이에 각각 접속되고 리던던트 제어라인으로부터의 리던던트 선택신호에 응답하여 절환용 소자로부터 데이터라인 쪽으로 유입될 잡음성분신호를 바이패스 시키는 적어도 2 이상의 제어용 바이패스 수단을 구비한다.

본 발명에 따른 다델티플렉서 일체형 백정표시장치는 적어도 2 이상의 데이터라인과 적어도 2 이상의 게이트라인들과의 교차점들 각각에 배열되어진 화소 매트릭스를 가지는 액정 패널과, 적어도 2 이상의 데이터라인들에 공급되어질 2 이상의 데이터신호를 신호라인에 순차적으로 공급하는 데이터 구동회로와, 신호라인에 공통적으로 접속됨과 아울러 적어도 2 이상의 데이터라인에 각각 접속되어 적어도 2 이상의 제어라인으로부터의 선택신호에 각각 응답하여 신호라인으로부터의 데이터신호가 데이터라인들중 어느 하나로 출력되게 하는 적어도 2 이상의 절환소자와, 적어도 2 이상의 절환용 소자와 적어도 2 이상의 데이터라인 사이에 각각 접속되고 리던던트 제어라인으로부터의 리던던트 선택신호에 응답하여 절환용 소자로부터 데이터라인 쪽으로 유입될 잡음성분신호를 바이패스 시키는 적어도 2 이상의 제어용 바이패스 수단을 구비한다.

상기 목적외에 본 발명의 다른 목적 및 특징들은 첨부도면을 참조한 실시예에 대한 설명을 통하여 명백하게 드러나게 될 것이다.

이하, 본 발명의 실시 예들을 첨부한 도7 내지 도10을 참조하여 상세히 설명하기로 한다.

도 7을 참조하면, 본 발명의 실시 예에 ID른 LCD가 개략적으로 도시되어 있다. 도7 의 LCD는 액정 패널 (20) 상의 데이터라인들(DL1내지DL3n)과 데이터 구동회로(22) 사이에 접속되어진 n개의 디밀티플렉서들 (DMUX1LH지DMUXn)과, 액정 패널(20) 상의 m개의 게이트라인들(GL1내지GLm)을 수평주사기간씩 순차적으로 구동하는 스캔 구동회로(24)를 포함한다. 액정 패널(20)에는 3n 개의 데이터라인들(DL1내지DL3n)과 m개의 게이트라인들(GL1내지GLm)과의 교차점들 각각에 화소들이 배열되어진 화소 매트릭스를 구비하게 된다. 화소들 각각은 데이터라인(DL)으로부터의 데이터신호에 응답하여 투과 광량을 조절하는 액정셀과 그리고 게

이트라인(GL)으로부터의 스캐 펄스에 응답하여 백정셀과 데이터라인(DL)에 선택적으로 접속시키는 절환용 TFT로 구성되게 된다. 데이터 구동회로(22)는 수평동기신호의 주기마다 3n개의 데이터라인(DL1H지DL3n) 각각에 공급되어질 3n 개의 데이터신호들을 발생하게 된다. 데이터 구동회로(22)에서 발생되는 3n 개의 데이터신호들은 n개의 신호라인(SL1H지SLn)을 통해 3회에 걸쳐 n개씩 출력되게 된다. 미를 상세히 하면, 도8 에서의 제1 선택신호(MCLK1)가 하이논리를 유지하는 기간동안에는 3i-2 번째 데이터라인들(DL1,DL4,…, DL3n-2)에 공급되어질 n 개의 데이터신호들 데이터 구동회로(22)에서 출력된다. 도8 에서의 제2 선택신호(MCLK2)가 하이논리를 유지하는 기간동안에는 3i-1 번째 데이터라인들(DL2,DL5,…, DL3n-1)에 공급되어질 n 개의 데이터신호들 데이터 구동회로(22)에서 출력된다. 도8 에서의 제1 선택신호(MCLK1)가 하이논리를 유지하는 기간동안에는 3i 번째 데이터라인들(DL3,DL6,…, DL3n)에 공급되어질 n 개의 데이터신호들이 데이터 구동회로(22)에서 출력된다. 도8 에서의 제1 선택신호(MCLK1)가 하이논리를 유지하는 기간동안에는 3i 번째 데이터라인들(DL3,DL6,…, DL3n)에 공급되어질 n 개의 데이터신호들이 데이터 구동회로(22)에서 출력되게 된다. 게이트 구동회로(24)는 1 프레임의 기간동안 수평동기신호의 주기씩 m 개의 게이트라인들(GLm)을 순차적으로 구동하게 된다. 이를 위해, 게이트 구동회로(24)는 도8 에서와 같이 수평동기신호의 주기씩 순차적으로 하이논리를 유지하게 되는 m개의 스캔 펄스들(SPS)을 발생하게 된다. 도8 에 있어서, SPSI 는 J 번째 게이트라인 (GLj)에 공급되는 스캔 펄스를 그리고 SPSJ+1 은 J+1 번째 게이트라인(GLj+1)에 공급되는 스캔 펄스를 각 나타내고 있다.

한편, n개의 디멀티플렉서들(DMUXILH XIDMUXn) 각각은 수평동기기간마다 데이터 구동회로(22)로부터 신호라인(SLILH XISLn)를 경유하여 공급되는 데이터신호를 3개의 데이터라인들(DL3i-2,DL3i-1,DL3i)쪽으로 디멀티플렉성하게 된다. 이를 위하며, 디멀티플렉서들(DMLXILH XIDMUXn) 각각에는 신호라인(SLILH XISLn)에 공통적으로 접속되어진 제1 내지 제3 박막 트랜지스터들(MN1 내지 MN3)이 포함되게 된다. 이들 제1 내지 제3 IFT(MN1LN MN3)은 도9 에 도시된 바와 같은 게이트 플스(GPS)가 m개의 게이트라인들(GLILH XIGLm)중 어느에 공급되는 동안 순차적으로 한번씩 턴-온(Turn-on)되게 된다. 이를 상세히 하면, 제1 TFT(MN1)는 제1 제어라인(CL1)으로부터 자신의 게이트단자쪽으로 인가되는 제1 선택클릭(MCLK1)가 하이논리를 유지하는 기간동안에 신호라인(SL1,SL2,…,SLn)으로부터의 데이터신호를 3i-2번째 데이터라인(DL1,DL4,…,DL3n-2)쪽으로 전송하게 된다. 제2 TFT(MN2)도 제2 제어라인(CL2)으로부터 자신의 게이트단자쪽으로 인가되는 제2 선택클릭(MCLK2)가 하이논리를 유지하는 기간동안에 신호라인(SL1,SL2,…,SLn)으로부터의 데이터신호를 3i-1번째 데이터라인(DL2,DL5,…,DL3n-1)쪽으로 전송하게 된다. 제3 TFT(MN3)도 제3 제어라인(CL3)으로부터 자신의 게이트단자쪽으로 인가되는 제3 선택클릭(MCLK2)가 하이논리를 유지하는 기간동안에 신호라인(SL1,SL2,…,SLn)으로부터의 데이터신호를 3i 번째 데이터라인(DL3,DL6,…,DL3n)쪽으로 전송하게 된다. 또한, 제1 내지 제3 TFT를(MN1HNM3) 각각은 턴-온 상태로부터 턴-오프(Turn-off) 상태로 진입하게 된 때에 자체내의 채널에 충전되어진 전하들이 도9 의 등가회로에서와 같이 신호라인(SL)과 데이터라인(DL) 쪽들로 양분된 상태로 방전되게 된다. 이렇게 제1 내지 제3 TFT를(MN1H지MN3)가 턴-오프 된 때에 데이터라인(DL)에 공급되는 전하량은 잡음 성분 신호로 작용하게 된다.

이와 같이, 도? 의 LCD에서는 CI멀티플렉서들(DMUXILH지DMUXn)에 바이패스용 보조 TFT(AMN)이 추가됩으로 써 데이터라인(DL)에서 피드 트로우 전압(ΔVP)이 발생되지 않게 된다. 이에 따라, 액정 패널(10) 상의 액정셀들의 광 투과율이 균일하게 되고, 나아가 액정 패널(10) 상에 표시되는 화상이 왜꼭 및/또는 열화되 지 않게 된다. 또한, 도? 의 LCD에서는 보조 TFT들(AMNILH지AMN3) 모두가 라던던트 선택신호(MCLKx)에 공 통적으로 응답함으로써 [[멀티플렉서들(DMUXILH지DMUXn)을 위한 제어배선이 도4 에 도시된 LCD 에 비하여 현저하게 간소화 되게 된다. 이에 따라, 디멀티플렉서들(DMUXILH지DMUXn)이 액정 패널(20) 상에 형성되더라도 액정 패널의 불량율이 현저하게 감소되게 됨은 물론 제조 수율이 현저하게 높아지게 된다. 나아가, LCD의 불량율이 감소되고 LCD의 제조 수율이 향상되게 된다.

도10 은 본 발명의 다른 실시 예에 따른 LCD를 개략적으로 도시하고 있다. 도10 의 LCD 는 도7 의 LCD와 유시하나 단지 제1 내지 제3 보조 TFT들(AMN1LH지AMN3)의 소오스단자들 모두가 기저전압라인(VSSL)에 공통 적으로 접속되어 졌다는 차이점을 가지고 있다. 이를 상세히 하면, 제1 보조 TFT(AMN1)은 제1 TFT(MN1)과 기저전압라인(VSSL)의 사이에, 제2 보조 TFT(AMN2)은 제2 TFT(MN2)과 기저전압라인(VSSL)의 사이에, 그리 미와 같이, 도10의 LCD에서는 다델타플렉서들(DMUX1LH XIDMUXn)에 바이패스용 보조 TFT(AMN)이 추가됨으로써 데이터라인(DL)에서 피드 트로우 전압(ΔVp)이 발생되지 않게 된다. 이에 따라, 액정 패널(10) 상의액정셀들의 광 투과율이 균일하게 되고, 나아가 액정 패널(10) 상에 표시되는 화상이 왜곡 및/또는 열화되지 않게 된다. 또한, 도10의 LCD에서는 보조 TFT들(AMN1LH XIAMN3) 모두가 리던던트 선택신호(MCLKx)에 공통적으로 응답함으로써 다델티플렉서들(DMUX1LH XIDMUXn)을 위한 제어배선이 도4에 도시된 LCD에 비하여 현저하게 간소화 되게 된다. 이에 따라, 다델티플렉서들(DMUX1LH XIDMUXn)이 액정 패널(20) 상에 형성되더라도 액정 패널의 불량율이 현저하게 감소되게 됨은 물론 제조 수율이 현저하게 높아지게 된다. 나아가, LCD의 불량율이 감소되고 LCD의 제조 수율이 향상되게 된다.

延夏의 克彦

상술한 바와 같이, 본 발명에 따른 <mark>디멀티</mark>플렉서에서는 출력라인들 각각에 접속되어진 보조 TFT들이 리던 던트 선택신호에 공통적으로 응답하게 됨으로써 제어배선이 간소화된다.

또한, 본 발명에 따른 액정 패널에서는 디멀티플렉서틀(DMUXIH XDMUXn)에 바이패스용 보조 TFT(AMN)이 추가됨으로써 데이터라만(DL)에서 피드 트로우 전압(ΔVp)이 발생되지 않게 된다. 이에 따라, 액정 패널(10) 상의 액정셀들의 광 투과율이 균일하게 되고, LIO가 액정 패널(10) 상에 표시되는 화상이 왜곡 및/또는 열화되지 않게 된다. 이와 더불어, 본 발명에 따른 액정 패널에서는 보조 TFT플(AMNIH XIAMN3) 모두가 리던던트 선택신호(MCLKx)에 공통적으로 응답함으로써 디멀티플렉서틀(DMUXIH XIDMUXn)을 위한 제어배선이 현저하게 간소화 되게 된다. 이에 따라, 디멀티플렉서틀(DMUXIH XIDMUXn)과 일체화된 액정 패널(20)상에 형성되더라도 액정 패널의 불량율이 현저하게 감소되게 됨은 물론 제조 수율이 현저하게 높아지게 된다. LIO가, LCO의 불량율이 감소되고 LCO의 제조 수율이 향상되게 된다.

이상 설명한 내용을 통해 당업자 라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여 져야만 할 것이다.

(57) 참구의 범위

청구한 1

입력라인에 공통적으로 접속됨과 마울러 적어도 2 이상의 출력라인에 각각 접속되어 적어도 2 이상의 제어 라인으로부터의 선택신호에 각각 응답하여 입력라인으로부터의 신호가 출력라인들중 어느 하나로 출력되게 하는 적어도 2 이상의 절환소자와,

상기 적어도 2 이상의 절환용 소재와 상기 적어도 2 이상의 출력라인 사이에 각각 접속되고 리던던트 제어 라인으로부터의 리던던트 선택신호에 응답하며 절환용 소자로부터 상기 출력라인 쪽으로 유입될 잡음성분 신호를 바이패스 시키는 적어도 2 미상의 제어용 바이패스 수단을 구비하는 것을 특징으로 하는 디멀티플 렉셔.

청구항 2

제 1 할에 있어서,

상기 제어용 바이패스 수단이 상기 리던던트 선택신호에 응답하여 선택적으로 바이패스 동작을 수행하는 전계 효과 트랜지스터를 포함하는 것을 특징으로 하는 **디딜티**플렉서,

청구항 3

제 2 항에 있어서,

상기 평활용 소자가 전계 효과 트랜지스터를 포함하는 것을 특징으로 하는 다멸타플렉셔.

청구항 4

제 1 항에 있어서,

상기 제어용 바이패스 수단에 포합되어진 전계 효과 트랜지스터가 상기 절환용 소자에 포합되어진 전계 효과 트랜지스터에 비하여 작은 채널 폭을 가지게끔 형성되어진 <mark>디밀티</mark>플렉서,

청구한 5

적어도 2 이상의 데이터라인과 적어도 2 이상의 게이트라인들과의 교차점들 각각에 배열되어진 화소 매트릭스와,

상기 적어도 2 미상의 데이터라인들에 공급되어질 2 미상의 데이터신호를 입력하기 위한 신호라인과,

상기 신호라인에 공통적으로 접속됨과 아울러 상기 적어도 2 이상의 데이터라인에 각각 접속되어 적어도 2 이상의 제어라인으로부터의 선택신호에 각각 응답하여 상기 신호라인으로부터의 데이터신호가 데이터라인 들중 어느 하나로 출력되게 하는 적어도 2 이상의 절환소자와,

상기 적어도 2 이상의 절환용 소자와 상기 적어도 2 이상의 데이터라인 사이에 각각 접속되고 리던던트 제 어라인으로부터의 리던던트 선택신호에 응답하여 절환용 소자로부터 상기 데이터라인 쪽으로 유입될 잡음 성분신호를 바이패스 시키는 적어도 2 이상의 제어용 바이패스 수단을 구비하는 것을 특징으로 하는 디멀 티플렉서 일체형 백정 패널.

청구항 6

제 5 항에 있어서.

상기 제어용 바이패스 수단이 상기 리던던트 선택신호에 응답하며 선택적으로 바이패스 동작을 수행하는 전계 효과 트랜지스터를 포함하는 것을 특징으로 하는 디멀티플렉서 일체형 액정 패널.

청구항 7

제 6 항에 있어서,

상기 펼흰용 소자가 전계 효과 트랜지스터를 포함하는 것을 특징으로 하는 **디밀티플렉**서 일체형 **액정** 패널.

청구항 8

제 5 항에 있어서.

상기 제어용 바이패스 수단에 포함되어진 전계 효과 트랜지스터가 상기 결환용 소자에 포함되어진 전계 효과 트랜지스터에 비하여 작은 채널 폭을 가지게끔 형성되어진 디멀티플렉서 일체형 액정 패널.

원그라 q

적어도 2 이상의 데이터라인과 적어도 2 이상의 게이트라인들과의 교차점들 각각에 배열되어진 화소 매트 릭스를 가지는 액정 패널과,

상기 적어도 2 이상의 데이터라인들에 공급되어질 2 이상의 데이터신호를 신호라인에 순차적으로 공급하는 데이터 구동회로와,

상기 신호라인에 공통적으로 접속됨과 아울러 상기 적어도 2 이상의 데이터라인에 각각 접속되어 적어도 2 이상의 제어라인으로부터의 선택신호에 각각 응답하며 상기 신호라인으로부터의 데이터신호가 데이터라인 들중 머느 하나로 출력되게 하는 적어도 2 이상의 절환소자와,

상기 적어도 2 이상의 절환용 소자와 상기 적어도 2 이상의 데이터라인 사이에 각각 접속되고 리던던트 제 어라인으로부터의 리던던트 선택신호에 응답하여 절환용 소자로부터 상기 데이터라인 쪽으로 유입될 잡음 성분신호를 바이패스 시키는 적어도 2 이상의 제어용 바이패스 수단을 구비하는 것을 특징으로 하는 다말 타플렉서 일체형 역정표시장치.

청구항 10

제 9 항에 있어서,

상기 제어용 바이패스 수단이 상기 리던던트 선택신호에 응답하여 선택적으로 바이패스 동작을 수행하는 전계 효과 트랜지스터를 포함하는 것을 특징으로 하는 <mark>디델티</mark>플렉서 일체형 **액정표**시장치.

청구항 11

제 10 항에 있어서,

상기 정원용 소자가 전계 효과 트랜지스터를 포함하는 것을 특징으로 하는 티밀티플렉서 일체형 액정표시 장치,

청구항 12

제 9 함에 있어서,

상기 제어용 바이패스 수단에 포함되어진 전계 효과 트랜지스터가 상기 절환용 소자에 포함되어진 전계 효과 트랜지스터에 비하여 작은 채널 폭을 가지게끔 형성되어진 다밀티플렉제 일체형 백경표시장치.

501

5.02

<u> 5214</u>

5.295

*도ଥ*8

星斑8

