Teoria da Computação

Pode ser dividida em duas grandes áreas:

Computabilidade - Estudo do que é possível fazer com o computador, buscando determinar os limites da computação algorítmica (quais problemas que podem ou nao ser resolvidos por uma máquina de Turing)

Complexibilidade - Estuda quanto um problema é fácil ou difícil de ser resolvido por um computador, separando os problemas:

- Decidíveis
 - Tratáveis Admite uma solução computacional em um tempo de execução razoável.
 - Intratáveis Possui uma solução, entretanto, leva muito tempo para ser executada.
- Indecidíveis

Teoria da Parada

Na teoria da computabilidade o experimento mental do problema da parada é um problema de decisão que pode ser declarado informalmente da seguinte forma: "Dadas uma descrição de um programa e uma entrada finita, decida se o programa termina de rodar ou rodar indefinidamente.", que se torna um paradoxo.

Revisão de alguns termos da Matemática Discreta

Lida com conjuntos discretos (ex: números naturais e inteiros) e Funções:

Funções

- Mapeia os elementos do domínio em elementos do contradomínio, e os elementos que foram mapeados formam a imagem da função
- Podem ser injetoras, sobrejetoras e bijetoras
 - Injetoras Mapeia elementos distintos do domínio e do contradomínio (assim não terá duas ou mais setas apontando para o mesmo elemento);
 - Sobrejetoras Mapeia todos os elementos do contradomínio é o conjunto imagem é igual ao contradomínio (assim nunca haverá um elemento do contradomínio sem uma seta incidente);
 - Bijetoras É uma função injetora e sobrejetora ao mesmo tempo, ou seja, há correspondência de pares no domínio e contradomínio (é igual a imagem)
- Função total: X → Y e uma relação binária sobre X × Y que satisfaz:
 - 1- Para cada $x \in X$, existe um $y \in Y$ tal que $[x, y] \in f$.
 - 2- Se $[x, y1] \in f e [x, y2] \in f$, entao y1 = y2.
- Função parcial : satisfaz somente a condição 2 acima.

Produto Cartesiano

Operação que constrói um conjunto 'de pares ordenados: $X \times Y = \{[x, y] \mid x \in X \text{ e } y \in Y\}.$

Cardinalidade de conjuntos

- A cardinalidade de conjuntos finitos é a quantidade de elementos que possui;
- Se existe uma bijeção (função bijetora) entre dois conjuntos, ambos possuem a mesma cardinalidade;
- A cardinalidade do conjunto X é menor ou igual que a de Y se existe uma função injetiva
- Conjuntos Infinitos
 - Um conjunto é dito infinito se possui um subconjunto próprio com a mesma cardinalidade.
 - Ex: Conjunto dos números naturais e conjunto dos números naturais pares
- Conjunto Universal
 - o É o conjunto que possui todos os números n (sendo que o n varia de 0 a infinito -> $\{n \mid n > y\}$)

Algumas Notações

- Conjuntos pequenos podem ser definidos explicitamente. Ex: Y = {a, b, c, d, e}.
- Conjuntos infinitos e finitos (com um número grande de elementos) devem ser definidos implicitamente. Ex: {n | n > 9}.
- União : $X \cup Y = \{z \mid z \in X \text{ ou } z \in Y\}$. (união de ambos)
- Interseção: $X \cap Y = \{z \mid z \in X \text{ e } z \in Y\}$. (o'que se repete em ambos)
- Diferença: $X Y = \{z \mid z \in X \text{ e } z \in /Y\}$. (o'que tem em um e não tem no outro)
- Complemento : $\overline{X} = U X$. (retira o conjunto do universal nl/n>y [y sendo o maior número del conjunto X]).
- DeMorgan: $\overline{(X \cup Y)} = \overline{X} \cap \overline{Y}$ $\overline{(X \cap Y)} = \overline{X} \cup \overline{Y}$.

Teoremas

- A união de dois conjuntos contáveis é contável.
- O produto Cartesiano de dois conjuntos contáveis é contável.
- O conjunto de subconjuntos finitos de um conjunto contável é contável.

Conjuntos Contáveis e Incontáveis

Conjuntos infinitos contáveis enumeráveis (elementos que podem ser ordenados e contados) possuem a mesma cardinalidade;

- Conjunto contável : conjunto finito ou enumerável .
- Conjunto incontável : conjunto que não é contável (impossível de listar os seus elementos de forma sequencial).

Alguns exemplos:

Argumento de diagonalização de Cantor

Assuma que o conjunto de funções totais de N para N é enumerável, então existe uma sequência f0, f1, f2, . . . que contém todas as funções.

Os valores das funções formam um grid bidimensional.

	0	1	2	3	4	
f_0	$f_0(0)$	$f_0(1)$	$f_0(2)$	$f_0(3)$	$f_0(4)$	
f_1	$f_1(0)$	$f_1(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	$f_2(3)$	$f_2(4)$	
f_3	$f_3(0)$	$f_3(1)$	$f_3(2)$	$f_3(3)$	$f_3(4)$	
f_4	$f_4(0)$	$f_4(1)$	$f_4(2)$	$f_4(3)$	$f_4(4)$	
:	:	:	:	:	:	

Passos da prova:

- Defina a função f : N → N como f(n) = fn(n) + 1, os valores de f vem da diagonal do grid.
- Pela definição de f, temos que f(i) 6= fi(i) para todo i.
- Portanto, não está na sequência f0, f1, f2,
- Contradição! Assumiu-se que a sequência tinha todas as funções totais.
- Assumir que o conjunto de funções totais de N para N é enumerável leva a uma contradição.
- ⇒ O conjunto é incontável. ´

Paradoxo de Russell

Não existe um conjunto de todos os conjuntos existentes, logo, dado um conjunto X ele não pode ser conjunto dele mesmo.

Investiga a relação de pertinência entre dois conjuntos, se dado conjunto é elemento de outro conjunto.

Questiona se o conjunto dos conjuntos que não contêm a si mesmo como membros contêm a si mesmo.

Definições Recursivas

É uma definição recursiva de um conjunto X especifica um método para construir (gerar) os elementos de X.

Possui:

- Base : Princípio pelo qual se parte o problema (objetivo é chegar nesse passo) .
 - o Ex: 0 ∈ N.
- Passo Recursivo : Função/ Operações.
 - Ex: se $n \in N$, então $s(n) \in N$.
- Fecho: Formado por todos os elementos gerados a partir da base por um número í finito de operações.
 - Ex: n ∈ N somente se n pode ser obtido de 0 por um número finito de aplicações do passo Recussivo.

Exemplos:

Exemplo 1.6.3 (Sudkamp)

Definição recursiva do conjunto X de valores ao lado.

- **1 Base:** [0,3], [0,4], [0,5], [0,6] ∈ X.
- **PR:** Se $[m, n] \in X$ então $[s(m), n] \in X$.
- 3 Fecho.

Exemplo 1.6.2 (Sudkamp)

Relação LT (less than):

- **1 Base:** $[0, 1] \in LT$.
- **PR:** Se $[m, n] \in LT$ então $[m, s(n)] \in LT$ e $[s(m), s(n)] \in LT$.
- 3 Fecho.

Indução Matemática

Quando se quer provar que uma propriedade P vale para todos os elementos de um conjunto X, se o conjunto for infinito, basta apenas aplicar a propriedade a todos os elementos, entretanto, se for definido recursivamente é necessário utilizar a "Indução Matemática".

Ex:

- Seja P um propriedade definida sobre os elementos de X. P vale para todos os elementos?
 - Se P vale para o elemento Xi... ele equivale pros elementos Xi + 1, logo P vale para todos os elementos.

- Provar que $n! > 2^n$, para $n \ge 4$.
- **Caso Base** (n = 4): $4! = 24 > 16 = 2^4$.
- Hipótese Indutiva (HI): Assuma que $k! > 2^k$ para k = 4, 5, ..., n.
- **Passo Indutivo**: Devemos provar que $(n+1)! > 2^{n+1}$.

$$(n+1)! = n!(n+1)$$

> $2^{n}(n+1)$ (HI)
> $2^{n}2$ (dado que $n+1>2$)
= 2^{n+1}

Máquina de Turing

É um modelo computacional simples e preciso de computabilidade, que se usa para estudar oque é ou não computável.

