Rimor: Towards identifying anomalous appliances in buildings

Haroon Rashid, Nipun Batra, Pushpendra Singh

Buildings consume 39% of energy [1]

Energy wastage --- anomalies

Reasons for energy wastage:

Duct leakage in HVAC

Energy wastage --- anomalies

Reasons for energy wastage:

Duct leakage in HVAC

Wrong AC settings

Feedback — energy savings

- ** Real-time feedback results in 12% energy savings [1]
 - Showing appliance-wise energy consumption to users
 - Providing anomalous energy consumption alerts [2]

Existing approaches [1,2]

Detect anomalies at the end of the day's consumption

Existing approaches [1,2]

Do not identify the anomalous appliance

Develop an anomaly detection approach which:

can detect anomaly at user-defined intervals

Develop an anomaly detection approach which:

can detect anomaly at user-defined intervals

can identify anomalous appliance

Home appliances

Develop an anomaly detection approach which:

can detect anomaly at user-defined intervals

can identify anomalous appliance

Home appliances

Develop an anomaly detection approach which:

can detect anomaly at user-defined intervals

can identify anomalous appliance

Home appliances

Proposed approach: Rimor

Prediction contextual factors

Prediction

Anomaly detection

Appliance identification

Energy prediction

Prediction

Anomaly detection

Appliance identification

Anomaly detection

Actual usage found outside the prediction band is flagged as an anomaly

Prediction -> Anomaly detection -> Appliance identification

Anomalous appliance identification

** Typically, each home appliance has different power wattage

Our assumption is anomaly caused by an appliance will be proportional to its wattage

Prediction

Anomaly detection

Appliance identification

Anomalous appliance identification

Appliance's wattage minimizing the difference between the predicted and the actual consumption is flagged as anomalous

$$\arg\min_{a_l} (abs(\widehat{Y} - Y) - a_l^u), \forall l \in \{1, \dots, n\}$$

Prediction

Anomaly detection

Appliance identification

Datasets

Dataset	Dataport	AMPds	ECO	REFIT
Homes	24	1	6	20
Country	USA	Canada	Switzerland	UK

Three months data at 10 minutes sampling rate

Downloaded temperature and humidity data from Weather Underground service

Calculated appliance wattage from the datasets

Baseline methods

- ※ Multi-user anomaly detection (MUAD) [Buildsys '15]
 - Uses clustering to identify anomalies
- ** Collect, Compare, and Score (CCS) [e-Energy '16]
 - Computes density to identify anomalies
- ※ Twitter anomaly detection (TAD) [Hotcloud '14]
 - Uses a statistical test to identify anomalies
- ** Real-time anomaly detection (RAD) [Ren. & Sus. Energy Reviews '14]
 - Uses statistical features to identify anomalies

Anomaly detection accuracy

$$F\text{-score} = 2 * \frac{precision * recall}{precision + recall}$$

Rimor improves anomaly detection performance by 15%

Effect of contextual features

Appliance identification accuracy (%)

 $Identification \ Accuracy = \frac{Total \ \# \ of \ correct \ identified \ appliances}{Total \ \# \ of \ true \ positive \ anomalies}$

Rimor reports 82% appliance identification accuracy

Anomalous instances

Extended car charging

No compressor cycles

Rimor prototype

https://github.com/loneharoon/AnomAppliance

Future work

Handle instances with multiple appliances having similar power wattage

Appliances	Dataset	Wattage (W)
Dryer & Microwave	REFIT	450
Cooktop & AC	Dataport	1200
Heatpump & Oven	AMPds	1800

Future work

Maintaining appliance registry portal

Differentiate genuine abnormal usage from the actual anomalous usage

Conclusion

Rimor improves anomaly detection accuracy.

Adding contextual information helps to improve the anomaly detection accuracy.

Rimor can be scaled to a large number of homes.

Thank You!

haroonr@iiitd.ac.in https://loneharoon.github.io

Annexure

Prediction accuracy

$$SMAPE = \sum_{t=1}^{T} \frac{|\widehat{Y^t} - Y^t|}{|\widehat{Y^t}| + |Y^t|}$$

Neural networks reduce SMAPE by 38%

Number of historical days for prediction

Energy prediction

Input features

Prediction

Anomaly detection

→ Appliance identification