Linear transformation

Let U and V be two vector spaces over the same field F.

A mapping T: U>V is said to be a linear maffing or
linear transformation if it satisfies the following conditions

1. TK+B) = T(x) + T(B) + x,B in U

2. T(CX) = CT(X) X c in F and all x in U

These two conditions can be replaced by a single condition

T(ax+6B)= aT(x)+6T(B) + a,6 in F & + x,BinU.

Ex The function $T: V_3(R) \rightarrow V_2(R)$ defined by T(9,6,4)=(6,6)

 $\forall a,b,C \in R \text{ is a L.T. from } V_3(R) \text{ to } V_2(R).$ Sol": Let $x = (a_1,b_1,c_1)$, $\beta = (a_2,b_2,c_2) \in V_3(R)$

If a b ER, then

 $T(ax+b\beta) = T\left[a(a_1,b_1,c_1) + b(a_2,b_2,c_2)\right]$ = $T(aa_1+ba_2,ab_1+bb_2,ac_1+bc_2)$ = $(aa_1+ab_1)+bb_2$ = (aa_1+ba_2,ab_1+bb_2)

= (aa,,ab,) + (ba,,662)

= a(a,, b,)+ b(a,, b2)

= a T(a,,6,,4)+ 6 T(g, 62,62,12)

= a T(x) + b T(B)

., That.T.

For Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a marphing defined by $F(\lambda, y) = (\lambda + 1, y + 2)$. Here $F(0, 0) = (1, 2) \neq 0$. i.e. the zero vector is not mapped into the zero vector. Here F is not linear. Image or range of a linear mapping let U(F) and V(F) be two vector spaces and let The L.T. from U to V. Then the range of T written as R(T) (or image of T written as Im(T)) is the set of all vectors β in V such that $\beta = T(K)$ for some χ in U.

 $Im T = { \tau(x) \in V, x \in U}$

Kernel of a linear transformation

Let U(F) and V(F) be two vector spaces and let T be a L.T. from U to V. Then the kernel of T (or null spaceoft) written as Kert (or N(t1)) is the set of all vectors z in U such that T(z) = O (zero vector of V). Thus X and Y is Y in Y and Y is Y in Y in Y in Y is Y in Y in

Theorem

If U(F) and V(F) are two vector spaces and T is a L.T. from U to V, then Im T is a subspace of V.

Proof Obveiously Im(T) is a non-empty subset of V. Let $\beta_1,\beta_2 \in Im(T)$. Then \exists vectors α_1,α_2 in U such that $T(\alpha_1) = \beta_1, \ T(\alpha_2) = \beta_2$. Let a,b be any elements of the field F. We have

 $a\beta_1 + b\beta_2 = aT(x_1) + bT(x_2) = T(ax_1 + bx_2) = T wal.T.$ Now U in a V.S. Therefore $x_1, x_2 \in U$ and $a, b \in F \Rightarrow ax_1 + bx_2 \in U$ Consequently, $T(ax_1 + bx_2) = a\beta_1 + b\beta_2 \in Im(T)$ Thus $a, b \in F$ and $\beta_1, \beta_2 \in ImT \Rightarrow a\beta_1 + b\beta_2 \in Im(T)$

i' Im(T) is a subspace of V.

Theorem

Let U(F) and V(F) are two vector spaces and T is a L.T. from U to V_5 then the kernel of T or the null space of T is a subspace of U.

Proof Let Ker $T = \{ \alpha \in U : T(\alpha) = 0 \in V \}$: $T(0) = 0 \in V$, therefore at least $0 \in Ker T$ Thus Ker T is a non-empty subset of U. Let $\alpha_{1}, \alpha_{2} \in Ker T$. Then $T(\alpha_{1}) = 0$ and $T(\alpha_{2}) = 0$

Let $a,b \in F$. Then $a\alpha_1 + b\alpha_2 \in U$ and $T(a\alpha_1 + b\alpha_2) = a T(\alpha_1) + b T(\alpha_2)$ [: T Lial.T.]

= 0.0+6.0 = 0+0=06V

i ax, +bx2 E Ker T

Thus $a,b \in F$ and $\alpha_1,\alpha_2 \in \text{Ker } T \Rightarrow a\alpha_1 + b\alpha_2 \in \text{Ker } T$. Thus Ker T is a subspace of U.

Rank and nullity of a L.T.

S(T) = dim lmLT)

 $\nu(T) = dim N(T)$

Thosem -

て: ひ > ٧

rank T+ nulling T= dim U

Theorem

 $T: U \Rightarrow V.$ $\{\alpha_1, \alpha_2, -. \alpha_n\}$ be a basis of U. Then $T(\alpha_1), T(\alpha_2) -.$ $T(\alpha_n)$ generate ImT.

In A mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + 2\alpha_3, \alpha_1 + 2\alpha_2 + \alpha_3)$, $(\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3$. Show that T is a L.T. Find Ker T, dimker T and dim Im T.

Sol?: First to show $T(ax+b\beta) = a T(x) + bT(\beta)$ $ker T = \{ (n_1, n_2, n_3) : T(n_1, n_3, n_3) = (0, 0, 0) \}$ Let $(n_1, n_2, n_3) \in ker T$

:. $n_1 + n_2 + n_3 = 0$ $2n_1 + n_2 + 2n_3 = 0$ $n_1 + 2n_2 + n_3 = 0$ Solving $(n_1, n_2, n_3) = k(1, 0, -1)$, $k \in \mathbb{N}$ $k \in \mathbb{N}$ $k \in \mathbb{N}$:- dim $k \in \mathbb{N}$

Let $\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ be a basis of $1R^{3}$. Im T is the linear span of vectors $T(\alpha_{1})$, $T(\alpha_{2})$, $T(\alpha_{3})$. $\{R_{4} + (1,0,0), (0,1,0), (0,0,1)\}$ is a basis of $1R^{3}$. T(1,0,0) = (1,2,1) T(0,1,0) = (1,1,2)

T(0,0,1) ~ (1,2,1)

: Im T = L{(1,2,1), (1,1,2)} dim of Im T=2 Ex Determine the linear mapping $T: 1R^3 \rightarrow 1R^2$ which maps the basis vector (1,0,0), (0,1,0), (0,0,1) of $1R^3$ to the vectors (1,1), (2,3), (3,2) respectively. Find KerT &ImT. Sol^N: $(n_1,n_1,2) \in 1R^3$ $(n_1,n_2,2) = G(1,0,0) + G(0,1,0) + G(0,0,1)$ G(0,0,1) G(0,0,1) G(0,0,1) G(0,0,1)

 $T(3,3,2) = C_1T(1,0,0) + C_2T(0,1,0) + C_3T(0,0,1)$ = $G(1,1) + C_2(2,3) + C_3(3,2)$ = $G(1,1) + G(2,3) + C_2(3,2)$ = G(3,2)= G(3,2)

Let $(\eta, \eta, 2) \in KarT$ $T(\eta, \eta, 2) = (0, 0)$ $1+2y+3 \neq 26$ $1+3y+2 \neq 20$ $(\eta, \eta, 2) = k(-5,1,1)$ $1+k(\eta, \tau) = L\{(-5,1,1)\}$

Im T is the linear span of T(x1), T(x2), T(x3) where {x1, x2, x3} is any basis of 1R3.

" $\{ (1,0,0), (0,1,0), (0,0,1) \} \text{ is a basis of } 1R3, \\ |mT = L \{ (1,1), (2,3), (3,2) \}$

Linear mappings and system of linear equations Consider a system of m linear equations in n unknowns over a field R:

 $a_{11}n_{1} + a_{12}n_{2} + \cdots + a_{1n}n_{n} = b_{1}$ $a_{21}n_{1} + a_{22}n_{2} + \cdots + a_{2n}n_{n} = b_{2}$ $a_{n1}n_{1} + a_{n2}n_{2} + \cdots + a_{mn}n_{n} = b_{m}$

which is equivalent to the matrix eqn. Aa = b. Now the matrix A may also be viewed as the linear mapping $A' = R^m \rightarrow R^m$

Thus the sol. of egr. Arab may be viewed as the freinage of $b \in R^m$ under the linear mapping $A:R^n \to R^m$. Furthermore, the solution of the associated homogeneous egr. Arab may be viewed as the kirnel of the linear mapping $A:R^n \to R^m$.

dim (KerA) + dim (ImA) = dim Rⁿ

=> dim (KerA) = dim Rⁿ - dim (ImA)

= n-rank A

n in the no. of unknowns in the homogeneous system An=0 Dim of sod". space is n-2.

Injective mapping (one-one)

If $a \neq a' \Rightarrow f(a) \neq f(a')$ or equivalently if $f(a) = f(a') \Rightarrow a = a'$ (ii) Surjective mapping (onto)

If every $b \in B$ is the image of at least one $a \in A$

(iii) Bijechne mapping Both one-one and onto.

Theorem T; U > V be a L.T. Then T is 1-1 iff Ken T2 {0} Proof: Let T is 1-1. Since T(0)=0' in V, O is a freimage of 0' and since T is 1-1, O is the only fre-image of 0'. So Ker T= {0}.

Conversely, let $\text{Ker } T = \{0\}$. Let α , β be 2 elements of U such that $T(\alpha) = T(\beta)$ in V. Now $0' = T(\alpha) - T(\beta) = T(\alpha - \beta)$. $\alpha - \beta \in \text{Ker } T$ and $\alpha : \text{Ker } T = \{0\}$, $\alpha = \beta$.

: T(a)= T(B) >> a>B : T is 1-1.

Theorem Let U g v le two V.S. of same dimension.

T:U>V GaL.T. Then Till 1-1 0 Tis onto.

Proof: Let The 1-1. : Ker T= {0} and dim Ker T=0

dim Ker T+ dim Im T= dim U => dim Im T= dim U

i. dim Im T=dim V : Im T= V : T ii onto.

EX T: F4 > F2 s.t. N(T) = { (2,3,2,W) \in F4: 225y, Z=7W}
Prove that T is onto.

Sol": n-5y=0 dim N(T)=2 dim N(T)+dim R(T)=42-7w=0 i. dim $R(T)=2=dim F^2$

i RLT12F2 i Ti onto.

matrix representation of a linear transformation let U and V be finite dimensional vector space over F with dim U=n and dim V=m. Let $T'_{\cdot}U \Rightarrow V$ be a L. T. T is completely determined by its action on a given basis of V. Let $(\alpha_{1},\alpha_{2},-\alpha_{n})$ be an ordered basis of V and $(\beta_{1}\beta_{1},-\beta_{m})$ be an ordered basis of V. T is completely determined by the images $T(\alpha_{1}), T(\alpha_{2}), -\gamma T(\alpha_{n})$. Each $T(\alpha_{1})$ in V is a linear combination of the vectors $\beta_{1},-\gamma\beta_{m}$. Let $T(\alpha_{1})=a_{1}\beta_{1}+a_{2}\beta_{2}+\cdots+a_{m}\beta_{m}$ $T(\alpha_{1})=a_{1}\beta_{1}+a_{2}\beta_{2}+\cdots+a_{m}\beta_{m}$ $T(\alpha_{1})=a_{1}\beta_{1}+a_{2}\beta_{2}+\cdots+a_{m}\beta_{m}$

where a ij are unique scalars in F determined by the ordered basis $(\beta_1, -\beta_m)$. Let $\mathcal{Z} = \gamma_1 \alpha_1 + \cdots + \gamma_n \alpha_n$ be an arb-vector of V and let $T(\mathcal{Z}) = \gamma_1 \beta_1 + \cdots + \gamma_m \beta_m$ $\gamma_i, \gamma_i \in F$ $T(\mathcal{Z}) = T(\gamma_1 \alpha_1 + \cdots + \gamma_n \alpha_n)$ $= \gamma_1 T(\alpha_1) + \cdots + \gamma_n T(\alpha_n)$

= 21 (G11B1+921B2+-++am1Pm)+-+2n(G1nB1+-+4mnBm)
: {B11--Bm} in L.I.

 $y_1 = a_{11}a_{1} + a_{12}a_{2} + \cdots + a_{1n}a_{n}$ $y_2 = a_{21}a_{1} + a_{22}a_{2} + \cdots + a_{2n}a_{n}$ $y_3 = a_{21}a_{1} + a_{22}a_{2} + \cdots + a_{2n}a_{n}$ $y_4 = a_{21}a_{1} + a_{22}a_{2} + \cdots + a_{2n}a_{n}$ $y_{11} = a_{21}a_{21} + a_{22}a_{21}$ $y_{11} = a_{21}a_{21}$ $y_{12} = a_{21}a_{21}$ $y_{13} = a_{21}a_{21}$ $y_{14} = a_{21}a_{21}$ $y_{15} = a_{21}a_{21}$

or $m = A \times where A = (aij)_{mxr} \times is the co-ordinale rector of an arb. element <math>g$ in U relative to the ordered bases $(\alpha_1, -\alpha_n)$ and Y is the co-ord. vector of T(g) in V relative to the o.e. $(\beta_1, -\beta_m)$.

Y=Ax is the matrix refresentation of the linear mapping relative to the chosen ordered boxes of U and V.

A= (a11 - - a1n) is said to be the matrix associated with the linear mapping T relative to the chosen ordered

bases of U and V.

Ex A linear mapping $T: 1R^3 \rightarrow 1R^2$ is defined by $T(n_1n_2n_3) = (3n_1 - 2n_2 + n_3, n_1 - 3n_2 - 2n_3)$, $(n_1n_2, n_3) \in 1R^3$ Find the matrix of T relative to the ordered bases (i) ((1,0,0),(0,1,0),(0,0,1)) of $1R^3$ and ((1,0),(0,1)) of $1R^2$ (ii) ((0,1,0),(1,0,0),(0,0,1)) of $1R^3$ and ((0,1),(1,0)) of $1R^2$. Solition T(1,0,0) = (3,1) = 3(1,0) + 1(0,1) T(0,1,0) = (-2,-3) = -2(1,0) - 3(0,1) T(0,0,1) = (1,-2) = 1(1,0) - 2(0,1)

 $T = \begin{pmatrix} 3 & -2 & 1 \\ 1 & -3 & -2 \end{pmatrix}$

(ii) T(0,1,0) = (-2,-3) = -3(0,1) - 2(1,0) T(1,0,0) = (3,1) = 1(0,1) + 3(1,0) T(0,0,1) = (1,-2) = -2(0,1) + 1(1,0)i. $T = \begin{pmatrix} -3 & 1 & -2 \\ -2 & 3 & 1 \end{pmatrix}$ The matrix of a linear mapping T: 1R3 > 1R2 relative to the ordered bases ((0,1,1), (1,0,1), (1,1,0)) of 123 and ((1,0),(1,1)) of 1R2 is (1 24). Find T. Also find the matrix of T relative to the ordered bases ((1,1,0), (1,0,1), , (0,1,1)) of 1R3 and ((1,1), (0,1)) of 1R2. Sd^{2} : T(0,1,1) = I(1,0) + 2(1,1) = (3,2)T(1,0,1) = 2(1,0)+1(1,11) = (3,1) T(11/01=4(1/0)+0(1/1)=(4/0) Let (2,15,2) EIR3 and let (2,15,2)= C1(0,1,1)+(2(1,0,1)+(3(1,1,0)) 9+(3=2) 9+(3=4) 9+(2=2 : 9 = 2 (y+2-2), (2= 2 (2+2-4), (3= 2(2+y-2) T(3,5,2/2 4 T(0,1,1)+ C2T(1,0,1)+ C3 T(1,1,0) = 9(3,2)+ 62(3,1)+ C3(4,0) = (3G+3G+4G3, 2G+C2) ~ (2x+2y+2, 1/2 (-x+7+32)), (3,7,2) € 1R3 T(1,1,0)= (4,0); T(1,0,1)=(3,1); T(0,1,1)=(3,2) Let (4,0) = 9 (1,1) + 9 (0,1); 924, 9+920 1-92-4 (3,1)= 9(1,1)+2(0,1), 923, 9+(221 => 622-2 (3,2)= 9 (111)+9(0,1); 9=3,9+5=2=19(23,5=1 i. The matrix of $T = \begin{pmatrix} 4 & 3 & 3 \\ -4 & -2 & -1 \end{pmatrix}$