Exercises for Week 10

The work handed in should be entirely your own. You can consult Dummit and Foote, Artin and/or the class notes but nothing else. To receive full credit, justify your answer in a clear and logical way. Due Nov. 13.

Reading. Review Artin Sections 4.1-4.4 as we go along. Alternatively, consult any linear algebra book for the corresponding material. Read Artin Section 6.3-6.4.

You may have wondered what are all possible finite subgroups of $\operatorname{Iso}(\mathbb{R}^2)$ rather than just $O(2,\mathbb{R})$. We'll show through the following exercises that any finite subgroup $G \subset \operatorname{Iso}(\mathbb{R}^2)$ is also isomorphic to either the cyclic group or the dihedral group.

In what follows, U stands for a Euclidean vector space with the standard metric.

- 1. In class we have shown that the subgroup of $\operatorname{Iso}(U)$ consisting of isometries fixing the origin of U is the orthogonal group O(U). Prove that if $\mathbf{a} \in U$ is an arbitrary vector in U, the subgroup of isometries fixing \mathbf{a} is also isomorphic to O(U) via conjugation by a translation.
- 2. Let G be a finite subgroup of $\operatorname{Iso}(U)$, and a be an arbitrary point in U. Recall that we say a point $\mathbf{b} \in U$ is in the *orbit* of a under the action of G, if there is an isometry $\phi \in G$ such that $\phi(\mathbf{a}) = \mathbf{b}$. The collection of all point in U that is obtainable via applying isometries in G to a is called the *orbit* of a under the G-action, which we will denote by $O_{\mathbf{a}}$:

$$O_{\mathbf{a}} := \{ \mathbf{x} \in U | \exists \phi \in G, \ \phi(\mathbf{a}) = \mathbf{x} \}.$$

Also recall that the center of mass of O_a , by definition, is located at (imagine each point in the orbit carries unit mass)

$$\mathbf{c} = \frac{\sum_{\mathbf{x} \in O_{\mathbf{a}}} \mathbf{x}}{|O_{\mathbf{a}}|},$$

where the sum is under the usual addition of vectors. Prove that G fixes the center of mass \mathbf{c} of the orbit $O_{\mathbf{a}}$.

3. Combining the previous two exercises, show that G is isomorphic to a subgroup of O(U). In particular, if $U \cong \mathbb{R}^2$, then either $G \cong C_n$ or $G \cong D_n$ by the classification theorem we proved in class.

The next few exercises are independent of the previous ones.

- 4. Prove that under addition, \mathbb{R}^n does not contain any non-trivial finite subgroup. (Hint: Use induction on n and the isomorphism $\mathbb{R}^n/\mathbb{R}^{n-1} \cong \mathbb{R}$).
- 5. Simplify the expression $\rho^2 r \rho^{-1} r^{-1} \rho^3 r^3$ in the dihedral group

$$D_n = \langle \rho, r | \rho^n, \ r^2, \ \rho r \rho r \rangle$$

- 6. Let D_n be the dihedral group of the symmetries of a regular n-gon. What's the stablizer of a vertex? of an edge?
- 7. Let $GL_n(\mathbb{R})$ act on \mathbb{R}^n by left multiplication. How many orbits are there in \mathbb{R}^n under the group action? What are the stablizers of e_1 and 0?