CONVERTOARE DE COD

Convertoarele de cod sunt circuite logice combinaționale care realizează conversia numerelor binare dintr-un cod în alt cod.

1. Convertor din cod binar natural în cod Gray

Codul Gray este un cod numeric reflectat, care are proprietatea că 2 numere adiacente deferă prin valoarea unui singur bit. Corespondența celor 2 coduri este prezentată în tabelul următor. Acesta poate fi considerat a fi tabelul de adevăr al convertorului.

Nr. zecimal	Nı	umăr în	cod Gr	ay	Număr în cod binar natural					
	G_3	G_2	G_1	G_0	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_{1}	\mathbf{B}_{0}		
0	0	0	0	0	0	0	0	0		
1	0	0	0	1	0	0	0	1		
2	0	0	1	1	0	0	1	0		
3	0	0	1	0	0	0	1	1		
4	0	1	1	0	0	1	0	0		
5	0	1	1	1	0	1	0	1		
6	0	1	0	1	0	1	1	0		
7	0	1	0	0	0	1	1	1		
8	1	1	0	0	1	0	0	0		
9	1	1	0	1	1	0	0	1		
10	1	1	1	1	1	0	1	0		
11	1	1	1	0	1	0	1	1		
12	1	0	1	0	1	1	0	0		
13	1	0	1	1	1	1	0	1		
14	1	0	0	1	1	1	1	0		
15	1	0	0	0	1	1	1	1		

Din tabelul de adevăr de mai sus, se pot construi diagramele Karnaugh:

B ₁ B ₀ B ₂	0 0	0 1	11	10
0 0	0	0	0	0
0 1	1	1	1	1
1 1	0	0	0	0
1 0	1	1	1	1

B_1 B_0 B_2	0 0	0 1	1 1	1 0
0 0	0	1	1	0
0 1	0	1	1	0
1 1	1	0	0	1
1 0	1	0	0	1

LUCRAREA nr. 3.

B_1 B_0 B_2	0 0	0 1	11	1 0
0 0	0	1	0	1
0 1	0	1	0	1
1 1	0	1	0	1
1 0	0	1	0	1
		G_2		

B_1 B_0 B_2	0 0	0 1	11	1 0
0 0	0	0	1	1
0 1	0	0	1	1
1 1	0	0	1	1
1 0	0	0	1	1
		G_3		

Grupând în diagramele de mai sus termenii "1" și aplicând meoda VK, se obțin ecuațiile booleene ale celor 4 ieșiri:

$$G_0 = B_0 \oplus B_1$$

$$G_1 = B_1 \oplus B_2$$

$$G_2 = B_2 \oplus B_3$$

$$G_3 = B_3$$

În acest moment sinteza circuitului este deosebit de banală:

2. Convertor binar-Gray

Folosind același algoritm ca mai sus se poate obține circuitul pentru conversia inversă. Mult mai simplu este de prelucrat relațiile de mai sus:

LUCRAREA nr. 3.

$$\begin{split} G_3 &= B_3 \\ &\Rightarrow B_3 = G_3 \\ G_2 &= B_2 \oplus B_3 \Rightarrow G_2 \oplus G_3 = B_2 \oplus B_3 \oplus B_3 = B_2 \\ &\Rightarrow B_2 = G_2 \oplus G_3 \\ G_1 &= B_2 \oplus B_1 \Rightarrow G_1 \oplus G_2 \oplus G_3 = B_2 \oplus B_2 \oplus B_1 = B_1 \\ &\Rightarrow B_1 = G_1 \oplus G_2 \oplus G_3 \\ G_0 &= B_0 \oplus B_1 \Rightarrow G_0 \oplus G_1 \oplus G_2 \oplus G_3 = B_0 \oplus B_1 \oplus B_1 = B_0 \\ &\Rightarrow B_0 = G_0 \oplus G_1 \oplus G_2 \oplus G_3 \end{split}$$

Circuitul de conversie rezultă ca mai jos:

3. Alte coduri binare de interes

Cod zecimal	Cod 8421	Cod 2421	Cod exces 3	Cod 2 din 5
0	0000	0000	0011	00011
1	0001	0001	0100	00101
2	0010	0010	0101	00110
3	0011	0011	0110	01001
4	0100	0100	0111	01010
5	0101	1011	1000	01100
6	0110	1100	1001	10001
7	0111	1101	1010	10010
8	1000	1110	1011	10100
9	1001	1111	1100	11000

4. Lucrări de efectuat în laborator

Se efectuează lucrarea conform fișei de laborator de mai jos.

FIŞĂ DE LABORATOR

1. Plecând de la diagramele Karnaugh pentru convertorul binar-Gray, să se deducă ecuațiile booleene și să se verifice circuitul obținut.

B_3B_2 B_1B_0	00	01	11	10
B_1B_0				
0 0	0	0	0	0
0 1	1	1	1	1
1 1	0	0	0	0
1 0	1	1	1	1

B_3B_2	00	01	11	10
B_3B_2 B_1B_0				
0 0	0	1	1	0
0 1	0	1	1	0
1 1	1	0	0	1
1 0	1	0	0	1
$G_1=$				

 $G_0=$ B_3B_2 11 10 B_1B_0 0 0 0 0 0 1 1 0 0 1 0

 $G_2 =$

B_3B_2 B_1B_0	00	01	11	10
B_1B_0				
0 0	0	0	1	1
0 1	0	0	1	1
1 1	0	0	1	1
1 0	0	0	1	1
~				

 $G_3=$

2. Să se sintetizeze convertorul binar-Gray folosind metoda Veitch-Karnaugh și să se verifice funcționarea acestuia în MaxPlusII.

B_0	<u> </u>	<u> </u>		[·	[[[·]	<u> </u>	<u> </u>		<u></u>			[]	
\mathbf{B}_1	 :	<u> </u>		[!	I				<u> </u>]	
B_2	 						<u> </u>										
B_3	 							İ		<u>.</u>	<u>. </u>				<u>.</u>		
G_0	 	- -												 i			
G_1	 					:				:		·		:			
G_2	 		·	•		:		·		:	·		·	·	×		
G_3																	

2. Să se verifice funcționarea convertorului Gray-binar în MaxPlusII.

G_0		 		T			 			 			[
G_1			[, !		 	 !		<u> </u>	
G_2	[]	 ; !	·			:		; :	·		:	:	:	[· · · ·]
G_3		 : :		; :			 							Ī
B ₀		 ;		+			 		: :	 	: :	: :	; :	
В1		 								 				
B ₂		 :		·			 		:	 				:
	÷	 :	÷	÷	:	:	 ·	:	:	 	:	:	÷	÷

Laborator Circuit	e Numerio	ee				Con	vertoa	re de co	d
LUCRAREA	nr. 3.								
B ₃ : : :			 ::	 	-:				٠-