

FD2204

概述

FD2204 是一款半桥栅极驱动集成电路芯片,专为高压、高速驱动 N 型功率 MOSFET 和 IGBT 设计。

FD2204 内置欠压(UVL0)保护功能,防 止功率管在过低的电压下工作,提高效率。

FD2204 集成使能关断功能,能同时关断 高低通道 HO、LO 输出。

封装

40V 半桥栅极驱动器

产品特点

- 悬浮绝对电压+40V
- 电源电压工作范围宽
- 3.3V/5V输入逻辑兼容
- 欠压保护(UVLO)
- 内置死区时间
- 集成使能关断功能
- 高端输出与输入同相,低端输出与输入 反相
- 高低端通道匹配

应用

半桥/全桥转换器 双端正激转换器 电机驱动

1. 订购信息

订货型号	电源电压(V)	I0+/I0-(A)	死区时间	UV+/UV-(V)	封装形式
FD2204M_9	4. 7 [~] 18	1. 2/1. 8	固定150ns	4. 3/4. 0	MSOP10
FD2204M_B	4. 7 [~] 18	3. 7/3. 4	固定150ns	4. 3/4. 0	MSOP10
FD2204M_X ^(注2)	7. 5 [~] 18	1. 2/1. 8	30~500ns可调	6. 9/6. 5	MSOP10
FD2204D_8	4. 7 [~] 18	1. 2/1. 8	固定150ns	4. 3/4. 0	DFN8 (3*3)
FD2204D_A	4. 7 [~] 18	3. 7/3. 4	固定150ns	4. 3/4. 0	DFN8 (3*3)
FD2204D_Y ^(注3)	7. 5 [~] 18	1. 2/1. 8	30~500ns可调	6. 9/6. 5	DFN10 (4*4)

注 1: 订货型号的第九位为批号的第三位

注 2: X 为 1,3,5,6,7,X

注3: Y为2,4,Y

2. 顶层丝印形式图

REV_1.0 2 / 15 www.fortiortech.com

3. 芯片引脚配置

	管脚号				
FD2204M_9/B	FD2204M_X	FD2204D_Y	FD2204D_8/A	管脚名称	管脚描述
MSOP10	MSOP10	DFN10	DFN8		
1	1	1	4	VCC	低侧供电电压
2	2	2	1	VB	高侧浮动绝对电压
3	3	3	8	НО	高侧输出
4	4	4	7	VS	高侧浮动偏移电压
5,6	5	5		NC	空脚
	6	6		RDT	死区时间调整端口
7	7	7	3	EN	使能关断输入
8	8	8	2	IN	输入
9	9	9	6	СОМ	接地
10	10	10	5	LO	低侧输出

REV_1.0 3 / 15 www.fortiortech.com

4. 绝对最大额定值

参数		符号	范围	单位
	MSOP10		1.0	
功率耗散@T _A ≤25°C	DFN8(3*3)	P_{D}	2.5	W
	DFN10(4*4)		3.0	
	MSOP10		125	
结对环境的热阻	DFN8(3*3)	R_{thJA}	50	°C/W
	DFN10(4*4)		40	
环境温度		T _A	- 20∼85	°C
结温范围		T _i	- 20∼150	°C
储存温度范围		T_{stg}	- 55∼150	°C

注:在任何情况下,不要超过 P_D。

5. 绝对最大额定值(除非特殊说明,所有管脚均以 COM 作为参考点)

参数	符号	范围	单位
高侧浮动绝对电压	V_{B}	-0.3~60	V
高侧浮动偏移电压	V_S	-3~40	V
高侧输出电压	V_{HO}	V _S -0.3∼V _B +0.3	V
低侧供电电压	V_{CC}	-0.3~20	V
地	V_{COM}	0	V
低侧输出电压	V_{LO}	-0.3∼V _{CC} +0.3	V
逻辑输入电压(IN, EN,RDT)	V_{IN}	-0.3∼V _{CC} +0.3	V
偏移电压压摆率范围	dV _S /dt	≤50	V/ns

注: 电压超过绝对最大额定值,可能会损坏芯片。

REV_1.0 4 / 15 www.fortiortech.com

6. 电气参数

6.1 FD2204M_9 和 FD2204D_8 的电气参数 (除非特别注明, 否则 T_A =25℃, V_{CC}=V_{BS}=12V, V_S=COM)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电流			•			
Vcc工作电压范围	V _{CC}		4.7		18	V
V _{CC} 静态电流	I _{QCC}			150	300	μΑ
V _{BS} 静态电流	I _{QBS}				120	μΑ
悬浮电源漏电流	I _{LK}	V _B =V _S =40V		0.1	5.0	μΑ
输入 IN/EN						
高电平输入阈值电压	V _{IH}			1.8	2.4	V
低电平输入阈值电压	V _{IL}		0.8	1.4		V
高电平输入偏置电流	I _{IN/EN+}	V _{IN/EN} =5V	20	30	40	μΑ
低电平输入偏置电流	I _{IN/EN-}	V _{IN/EN} =0V			2	μΑ
UVLO						
V _{cc} 欠压保护跳闸电压	V _{CCUV+}		3.9	4.3	4.7	V
V _{cc} 欠压保护复位电压	V _{CCUV-}		3.6	4.0	4.4	V
V _{cc} 欠压保护迟滞电压	V _{CCUVH}		0.2	0.3		V
高端输出						
高电平输出电压	V _{OHH}	I _O =-20mA		0.1	0.17	V
低电平输出电压	V _{OLH}	I _O =20mA		0.05	0.85	V
高电平输出短路脉冲电流	I _{OHH}	V _O =0V	0.8	1.2		Α
低电平输出短路脉冲电流	I _{OLH}	V _O =12V	1.2	1.8		Α
低端输出						
高电平输出电压	V _{OHL}	I _O =-20mA		0.1	0.17	V
低电平输出电压	V _{OLL}	I _O =20mA		0.05	0.85	V
高电平输出短路脉冲电流	I _{OHL}	V _O =0V	0.8	1.2		Α
低电平输出短路脉冲电流	I _{OLL}	V _O =12V	1.2	1.8		Α
开关时间参数						
输出上升沿传输时间	t _{on}			130	250	ns
输出下降沿传输时间	t _{off}			30	100	ns
死区时间	DT			150		ns
输出上升时间	t _r	C _L =1000pF		15		ns
输出下降时间	t _f	C _L =1000pF		10		ns
高低侧延时匹配	MT				30	ns
使能关断延迟时间	t _{sd}			30	100	ns

REV_1.0 5/15 www.fortiortech.com

6.2 FD2204M_B 和 FD2204D_A 的电气参数(除非特别注明,否则 T_A =25℃, V_{CC}=V_{BS}=12V,

 $V_S = COM$)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电流						
Vcc工作电压范围	V _{CC}		4.7		18	V
V _{cc} 静态电流	I _{QCC}			150	300	μΑ
V _{BS} 静态电流	I_{QBS}				120	μΑ
悬浮电源漏电流	I_{LK}	$V_B=V_S=40V$		0.1	5.0	μA
输入 IN/EN						
高电平输入阈值电压	V _{IH}			1.8	2.4	V
低电平输入阈值电压	V _{IL}		0.8	1.4		V
高电平输入偏置电流	I _{IN/EN+}	V _{IN/EN} =5V	20	30	40	μA
低电平输入偏置电流	I _{IN/EN-}	V _{IN/EN} =0V			2	μA
UVLO						
V _{cc} 欠压保护跳闸电压	V _{CCUV+}		3.9	4.3	4.7	V
V _{cc} 欠压保护复位电压	V _{CCUV-}		3.6	4.0	4.4	V
V _{cc} 欠压保护迟滞电压	V _{CCUVH}		0.2	0.3		V
高端输出						
高电平输出电压	V _{OHH}	I _O =-100mA		0.15	0.25	V
低电平输出电压	V _{OLH}	I _O =100mA		0.1	0.17	V
高电平输出短路脉冲电流	I _{OHH}	V _O =0V	2.5	3.7		Α
低电平输出短路脉冲电流	I _{OLH}	V _O =12V	2.2	3.4		Α
低端输出						
高电平输出电压	V _{OHL}	I _O =-100mA		0.15	0.25	V
低电平输出电压	V _{OLL}	I _O =100mA		0.1	0.17	V
高电平输出短路脉冲电流	I _{OHL}	V _O =0V	2.5	3.7		Α
低电平输出短路脉冲电流	I _{OLL}	V _O =12V	2.2	3.4		Α
开关时间参数						
输出上升沿传输时间	t _{on}			130	250	ns
输出下降沿传输时间	t _{off}			30	100	ns
死区时间	DT			150		ns
输出上升时间	t _r	C _L =3000pF		15		ns
输出下降时间	t _f	C _L =3000pF		12		ns
高低侧延时匹配	MT				30	ns
使能关断延迟时间	t _{sd}			30	100	ns

6.3 FD2204M_X 和 FD2204D_Y 的电气参数(除非特别注明,否则 T_A =25℃, V_{CC}=V_{BS}=12V,

 $\text{V}_{\text{S}}\!\!=\!\!\text{COM}\text{, RDT}\!=\!100\text{k}\boldsymbol{\Omega}$)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电流						
Vcc工作电压范围	V _{cc}		7.5		18	V
V _{cc} 静态电流	I _{QCC}	V _{IN} = V _{EN} =0V		240	400	μA
V _{BS} 静态电流	I_{QBS}	V _{IN} = V _{EN} =0V		40	80	μA
悬浮电源漏电流	I _{LK}	V _B =V _S =40V		0.1	5.0	μΑ
输入 IN/EN						
高电平输入阈值电压	V_{IH}			1.8	2.4	V
低电平输入阈值电压	V_{IL}		0.8	1.4		V
高电平输入偏置电流	I _{IN/EN+}	V _{IN/EN} =5V	12	20	30	μΑ
低电平输入偏置电流	I _{IN/EN-}	V _{IN/EN} =0V			2	μΑ
UVLO						
Vcc欠压保护跳闸电压	V _{CCUV+}		6.3	6.9	7.5	V
Vcc欠压保护复位电压	V _{CCUV-}		6.0	6.5	7.0	V
Vcc欠压保护迟滞电压	V _{CCUVH}		0.2	0.4		V
V _{BS} 欠压保护跳闸电压	V_{BSUV+}		6.3	6.9	7.5	V
V _{BS} 欠压保护复位电压	V _{BSUV-}		6.0	6.5	7.0	٧
V _{BS} 欠压保护迟滞电压	V_{BSUVH}		0.2	0.4		V
RDT 控制						
RDT 管脚死区电压	V_{RDT}		4.3	4.9	5.5	V
RDT 管脚最大电流	I _{RDT}	RDT=0	0.75	1.0	1.25	mA
高端/低端输出						
高电平输出电压	V _{OH}	I _O =-20mA		0.1	0.17	V
低电平输出电压	V _{OL}	I _O =20mA		0.05	0.85	V
高电平输出短路脉冲电流	I _{OH}	V _O =0V	0.8	1.2		Α
低电平输出短路脉冲电流	I _{OL}	V _O =12V	1.2	1.8		Α
开关时间参数						
检山上孔派	_	RDT=100k		490	700	ns
输出上升沿传输时间	t _{on}	RDT=10k		160	250	ns
输出下降沿传输时间	t _{off}			80	150	ns
		RDT=10k		70		ns
斯区 时间	DT	RDT=30k		130		ns
死区时间	DT	RDT=50k		180		ns
		RDT=100k		400		ns
输出上升时间	t _r	C _L =1000pF		15		ns
输出下降时间	t _f	C _L =1000pF		10		ns
高低侧延时匹配	MT				50	ns
使能关断延迟时间	t_{sd}			80	150	ns

REV_1.0 7/15 www.fortiortech.com

6.4 FD2204M_9/B 和 FD2204D_8/A 的电路框图

6.5 FD2204M_X 和 FD2204D_Y 的电路框图

REV_1.0 8 / 15 www.fortiortech.com

7. 逻辑时序图

8. 开关时间测试标准

9. 传输时间匹配测试标准

REV_1.0 9 / 15 www.fortiortech.com

10. 死区时间测试标准

11. 使能关断时间测试标准

REV_1.0 10/15 www.fortiortech.com

12 典型应用电路

12.1 FD2204M_X 和 FD2204D_Y 典型应用电路

12.2 FD2204M_9/B 和 FD2204D_8/A 典型应用电路

C1: 电源滤波电容,根据电路情况可选择 $1\mu \ F^{\sim}10\mu \ F$ 。

R: 栅极驱动电阻,阻值根据被驱动器件及死区时间而定。

Dbs: 自举二极管,应选择肖特基二极管。

Cbs: 自举电容,应选择陶瓷电容或钽电容可选择 0.1μ $F^{\sim}10\mu$ F。

RDT: 外接死区时间电阻,可选择 $10 \mathrm{k} \Omega$ $^{\sim} 100 \mathrm{k} \Omega$ 。

REV_1.0 11 / 15 www.fortiortech.com

13. 封装尺寸 (MSOP10)

CVAIDOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
A	-	-	1.10			
A1	0.05	-	0.15			
A2	0.75	0.85	0.95			
A3	0.30	0.35	0.40			
b	0.19	-	0.28			
b1	0.18	0.20	0.23			
С	0.15	-	0.20			
c1	0.14	0.152	0.16			
D	2.90	3.00	3.10			
Е	4.70	4.90	5.10			
E1	2.90	3.00	3.10			
e	0.50BSC					
L	0.40	-	0.70			
L1	0.95BSC					
θ	0	-	8°			

14. 封装尺寸 (DFN10)

REV_1.0 13 / 15 www.fortiortech.com

15.封装尺寸 (DFN8)

Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203	REF.	0.008	REF.
D	2.924	3.076	0.115	0.121
E	2.924	3.076	0.115	0.121
D1	2.300	2.500	0.091	0.098
E1	1.600	1.800	0.063	0.071
k	0.200	OMIN.	0.008MIN.	
b	0.200	0.300	0.008	0.012
е	0.500	TYP.	0.020	TYP.
L	0.324	0.476	0.013	0.019

REV_1.0 14/15 www.fortiortech.com

Copyright Notice

Copyright by Fortior Technology (Shenzhen) Co., Ltd. All Rights Reserved.

Right to make changes —Fortior Technology (Shenzhen) Co., Ltd reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Fortior Technology (Shenzhen) Co., Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Fortior Technology (Shenzhen) Co., Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Fortior Technology (Shenzhen) Co., Ltd.

Fortior Technology(Shenzhen) Co.,Ltd.

Room203,2/F, Building No.11,Keji Central Road2,

SoftwarePark, High-Tech Industrial Park, Shenzhen, P.R. China 518057

Tel: 0755-26867710 Fax: 0755-26867715

URL: http://www.fortiortech.com

Contained herein

Copyright by Fortior Technology (Shenzhen) Co.,Ltd all rights reserved.

REV_1.0 15 / 15 www.fortiortech.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Fortior manufacturer:

Other Similar products are found below:

00028 00053P0231 8967380000 56956 CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902 5813-0901 58410 00576P0030 00581P0070 5882900001 00103P0020 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13 LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP