

Grounding Implementation

Assumptions:

- Different symbols for each quantifier
- Negated Normal Form
- Prenex Normal Form

Classes which inherit from Formula

Methods:

- _latex
- _apply_not
- to_nnf
- ground

Most General Unifier

 $oldsymbol{\cdot} \sigma$ is a unifier of terms t and u if $t\sigma = u\sigma$

• σ is more general than θ if $\theta = \sigma \circ \phi$ for some substitution ϕ

 $\cdot \sigma$ is a most general unifier of terms t and u if it is a unifier and is more general than all the other unifiers

Our Strategy

- * The attribute .func returns the name of the predicate/functional symbol.
- ** The attribute .args returns the list of arguments of the formula.

Binary Resolution Rule

$$\frac{\{l_1, \dots, l_n, P(t_1, \dots, t_n)\}\{\neg P(u_1, \dots, u_n), l_{n+1}, \dots, l_m\}}{\{l_1, \dots, l_m\}\sigma}$$

where l_i is a literal and σ is the Most General Unifier of $P(t_1, \ldots, t_n)$ and $P(u_1, \ldots, u_n)$.

Our Strategy

After considering all the possible couples of literals:

- If we did not perform any unification or any removals then Binary Resolution does not apply
- Otherwise, if we did not end up with empty clauses, we recursively apply the Binary Resolution algorithm on the resulting clauses. At the end we merge the clauses.