Lab 2 Report

Anthony Weems

October 27, 2015

1 Proofs

1.1 GPSR is non-optimal

blah

1.2 Dijkstra Min-Hops is better, but non-optimal

blah

2 Efficiency Analysis

2.1 Memory Efficiency of Graph

The data structure used for this lab consists of a map of vertices to a map of vertices to edges. In essence, each vertex holds a map with keys for each neighbor within the transmission range. The space complexity of this representation is O(V * E).

2.2 Runtime Complexity of Graph

Creating the data structure is rather fast as it only requires examining each edge in the graph. The runtime complexity of creation is O(E).

2.3 Runtime Complexity of Dijkstra

The data structure used within Dijkstra's algorithm allows O(1) lookup of neighbors by allowing us to search for an edge between to vertices. Therefore, the overall runtime complexity of Dijkstra's algorithm is $O(V^2)$. Worst-case, the algorithm will examine the metric between every pair of nodes because we do not use a priority queue in our algorithm.

3 Runtime Efficiency

The graph below displays the runtime of our three algorithms: GPSR (blue), Dijkstra Min-Latency (green), and Dijkstra Min-Hops (red).

The success rate of all algorithms was 100% for all tested transmission ranges in the large input testcase.