Dénombrabilité de quelques ensembles

- 1. Soit $n \geq 1$ un entier. Montrer que \mathbb{N}^n est dénombrable.
- 2. En déduire que le produit cartésien d'un nombre fini d'ensembles dénombrables est dénombrable.
- 3. (Cantor 1891) Montrer que $\mathcal{P}(\mathbb{N})$ n'est pas dénombrable.
- 4. Soit E un ensemble dénombrable infini et, pour tout $e \in E$, soit X_e un ensemble dénombrable de cardinal au moins égal à 2. Montrer que $\prod_{e \in E} X_e$ n'est pas dénombrable.

Soit X un ensemble infini dénombrable.

- 5. Montrer que l'ensemble des parties finies de X est dénombrable.
- 6. En déduire que l'ensemble des parties de X n'est pas dénombrable.
- 1. Première méthode. On va procéder par récurrence. On sait que \mathbb{N}^2 s'injecte dans \mathbb{N} en considérant l'application qui à $(p,q) \in \mathbb{N}^2$ associe $\frac{(p+q)(p+q+1)}{2} + q$. Il s'en suit que \mathbb{N}^2 est dénombrable. Supposons que \mathbb{N}^n est dénombrable pour un certain rang n. On a $\mathbb{N}^{n+1} = \mathbb{N}^n \times \mathbb{N}$ et \mathbb{N}^n s'injecte dans \mathbb{N} par hypothèse de récurrence, donc \mathbb{N}^{n+1} s'injecte dans \mathbb{N}^2 , mais \mathbb{N}^2 s'injecte dans \mathbb{N} d'après ce qui précède. On en déduit que \mathbb{N}^{n+1} s'injecte dans \mathbb{N} , autrement dit \mathbb{N}^{n+1} est dénombrable. Le principe de récurrence permet de conclure.

Seconde méthode. Soit $n \geq 1$ un entier. On considère n nombres premiers $p_1, p_2, ..., p_n$, soit l'application ϕ de \mathbb{N}^n vers \mathbb{N} qui à $(a_1, ..., a_n)$ associe $\prod_{i=1}^n p_i^{a_i}$. D'après le théorème fondamental de la théorie des nombres, l'application ϕ est injective, il s'en suit que \mathbb{N}^n est dénombrable.

- 2. Soit $(E_i)_{1 \le i \le n}$ une famille d'ensembles dénombrables. Il s'en suit que pour tout $1 \le i \le n$, l'ensemble E_i s'injecte dans \mathbb{N} , puis en considérant l'application produit, l'ensemble $\prod E_i$ s'injecte dans \mathbb{N}^n , mais d'après ce qui précède, \mathbb{N}^n s'injecte dans \mathbb{N} , donc par transitivité, $\prod E_i$ s'injecte \mathbb{N} , donc $\prod E_i$ est dénombrable.
- 3. Supposons que $\mathcal{P}(\mathbb{N})$ st dénombrable, i.e. \mathbb{N} est en bijection avec $\mathcal{P}(\mathbb{N})$, soit $\phi: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ une bijection. Considérons l'ensemble $A = \{n \in \mathbb{N} \mid n \notin \phi(n)\}$. Puisque ϕ est une bijection, on peut trouver $n_0 \in \mathbb{N}$ tel que $A = \phi(n_0)$. Deux cas se présentent, ou bien $n_0 \in \phi(n_0) = A$, ceci donne $n_0 \notin \phi(n_0)$ ce qui est contradictoire, ou bien $n_0 \notin \phi(n_0)$, donc $n_0 \in \phi(n_0)$ par construction de l'ensemble A, ce qui est également contradictoire. En conclusion, $\mathcal{P}(\mathbb{N})$ n'est pas dénombrable.
- 4. Supposons que $\prod_{e \in E} X_e$ est dénombrable. Par hypothèse l'ensemble $\{0,1\}^{\mathbb{N}}$ s'injecte dans $\prod_{e \in E} X_e$, mais $\prod_{e \in E} X_e$ est dénombrable, ce qui implique que $\{0,1\}^{\mathbb{N}}$ est dénombrable, mais on sait que l'ensemble $\{0,1\}^{\mathbb{N}}$

possède la puissance du continu (Il est en bijection avec $\mathcal{P}(\mathbb{N})$), ce qui n'est pas possible. En conclusion, l'ensemble $\prod_{e \in E} X_e$ n'est pas dénombrable.

On se ramène dans le cas où $X=\mathbb{N},$ le cas général se traite similairement.

- 5. Soit $n \in \mathbb{N}$. Soit X_n l'ensemble de parties de \mathbb{N} à n éléments, puisque $X_n \subset \mathbb{N}^n$ alors X_n est dénombrable. L'ensemble des parties finies de \mathbb{N} est $X = \bigcup_{n \in \mathbb{N}} X_n$, cette ensemble est dénombrable puisqu'il est réunion dénombrable d'ensembles dénombrables.
- 6. Soit Y l'ensemble des parties infinies de \mathbb{N} , on a $\mathcal{P}(\mathbb{N}) = X \cup Y$. Si Y est dénombrable, sachant que X est dénombrable, il en est de même pour $\mathcal{P}(\mathbb{N})$, ce qui est impossible, puisque $\mathcal{P}(\mathbb{N})$ possède la puissance du continu.