General Topology and Fundamental Groups - Homework 3

Philip Warton

January 29, 2021

Problem 1

(a)

Let $f: X \to Y$ be an open map, and let $A \subset Y$ be arbitrary. Let $f^{-1}(A) \subset C$ where $C \subset X$ is closed. Then there is a closed set $D \subset Y$ such that $A \subset D$ and $f^{-1}(D) \subset C$.

Proof. Let

$$D = Y \setminus f(X \setminus C)$$

Since C is closed, $X \setminus C$ is open. An open map f, will map this complement to an open set, so $f(X \setminus C)$ is open. Thus its complement, D, is closed. Since $f^{-1}(A) \subset C$ it follows by set theory that $A \subset D$. Then we write

$$f^{-1}(D) = f^{-1}(Y) \setminus f^{-1}f(X \setminus C) \subset X \setminus (X \setminus C) = C$$

(b)

 $f: X \to Y$ is a closed map if and only if $\overline{f(A)} \subset f(\overline{A})$.

Proof. \implies Assume that f is closed. Then $f(\overline{A})$ is a closed set, which clearly contains f(A) since $A \subset \overline{A}$. Then since the closure is the smallest closed set containing the original, it must be the case that $\overline{f(A)} \subset f(\overline{A})$.

 \sqsubseteq Suppose $\overline{f(A)} \subset f(\overline{A})$ for every $A \subset X$. Let $C \subset X$ be some arbitrary closed set. Suppose by contradiction that f(C) is not closed. Then by characterization of closed sets we say $f(C) \subsetneq \overline{f(C)}$. However, by assumption, we say $\overline{f(C)} \subset f(\overline{C})$. Since C is closed, $C = \overline{C}$. So

$$f(C) \subsetneq \overline{f(C)} \subset f(\overline{C}) = f(C) \quad \Longrightarrow \quad f(C) \subsetneq f(C) \quad \text{(contradiction)}$$

Problem 2

Let $\mathfrak{U}=\{A_i\}, i=1,2,\cdots$, be a family of sets in X such that $A_{i+1}\subset A_i$ for all k. Show that if $\bigcap_{i\in\mathbb{N}}\overline{A_i}=\emptyset$, then \mathfrak{U} is locally finite.

Proof. Suppose that that $\bigcap_{i\in\mathbb{N}}\overline{A_i}=\emptyset$ and that $\mathfrak U$ is not locally finite. Then there exists some point $x\in X$ such that every neighborhood of x intersects infinitely many sets in $\mathfrak U$. Thus for every natural number N there exists another n>N such that $U(x)\cap A_n\neq\emptyset$. Since these sets are nested, it follows that U(x) must intersect every A_m such that m< n. Then if U(x) did not intersect every single set A_i then since they are nested, it would only intersect finitely many (contradiction). So then we say that every neighborhood of x intersects each A_i .

It follows that x is a limit point of $\bigcap_{i\in\mathbb{N}}\overline{A_i}$ since every neighborhood of x intersects every A_i . Then since this is an intersection of closed sets, we say that $\bigcap_{i\in\mathbb{N}}\overline{A_i}$ is itself a closed set, and must contain its limit points. In particular $x\in\bigcap_{i\in\mathbb{N}}\overline{A_i}$ so it cannot be empty (contradiction). Therefore, such an x must not exist, and the intersection is locally finite.

Problem 3

Let $\{B_{\alpha}\}, \alpha \in \mathcal{A}$ be an open or locally finite, closed cover of Y, and let $f: X \to Y$ be continuous. Suppose that the restrictions $f_{|f^{-1}(B_{\alpha})}: f^{-1}(B_{\alpha}) \to B_{\alpha}, \alpha \in \mathcal{A}$ are homeomorphisms. Show that f is a homeomorphism.

Proof. Continuity Let $U \subset Y$ be open. Show that f^{-1}

Continuity is given for f already. For bijectivity let us first show surjectivity. Let $y \in Y$, then it lies in some B_{α} . Then since we have a homeomorphism from $f^{-1}(B_{\alpha}) \to B_{\alpha}$ we know that there exists $x \in X$ such that f(x) = y. To show injectivity let f(x) = f(y), then for every B_{α} that contains f(x) = f(y), we know that this implies x = y. Thus we know that f is a bijection.

We wish to show now that f is an open map. We break this into two cases:

Case 1: $\{B_{\alpha}\}$ is an open cover of Y Let $U \subset X$ be some arbitrary open set. Since $\{B_{\alpha}\}$ is an open cover of Y and since f is continuous it follows that $\{f^{-1}(B_{\alpha})\}$ is an open cover of X. We write $U = X \cap \bigcup_{\alpha \in A} B_{\alpha}$. Then,

$$U = \bigcup_{\alpha \in A} (f^{-1}(B_{\alpha}) \cap U) \implies f(U) = \bigcup_{\alpha \in A} f(B_{\alpha} \cap U)$$

Then we know that $f(B_{\alpha} \cap U)$ is open in Y since $f_{|B_{\alpha}}$ is a homeomorphism. Therefore f is an open map.

Case 2: $\{B_{\alpha}\}$ is a closed, locally finite cover of Y Suppose that $V \subset Y$ is some arbitrary closed set. Then we know that $\{f^{-1}(B_{\alpha})\}$ is a closed locally-finite cover of X. Then similarly to case 1, except this time with $F \subset A$ being finite.

$$V = \bigcup_{a \in F} (f^{-1}(B_{\alpha}) \cap V) \implies f(V) = \bigcup_{a \in F} f(B_{a} \cap V)$$

Then, we know that $f(B_{\alpha} \cap V)$ is a closed set, so a finite union of closed sets is closed therefore f(V) is closed, and f is a closed map.

In either case f is a bijective continuous open and closed map, therefore it is a homeomorphism.