

Automated and Connected Driving Challenges

Section 3 – Object Fusion and Tracking

Introduction

Challenges

Prof. Dr.-Ing. Lutz Eckstein
Institute for Automotive Engineering

Multi-Instance Kalman Filter: Input / Output and Challenges

Input

Detected objects of multiple sensors

Challenges

- Different sensor types with different measurement characteristics
- False detections (false positives)
- Missing detections (false negatives)
- Partially correct objects (incorrect orientation / classification / ...)

Output

Single list of tracked objects

Multi-Instance Kalman Filter: Input / Output and Challenges

Input

Detected objects of multiple sensors

Challenges

- Different sensor types with different measurement characteristics
- False detections (false positives)
- Missing detections (false negatives)
- Partially correct objects (incorrect orientation / classification / ...)

Output

Single list of tracked objects

Challenges

Object Prediction

- Temporally align sensor objects with global objects
- Use a motion model to predict state of the vehicle

Multi-Instance Kalman Filter

Challenges

Object Prediction

- Temporally align sensor objects with global objects
- Use a motion model to predict state of the vehicle

Object association

- Efficiently associate sensor objects to global objects
- Find candidates for new global objects
- Mark undetected global objects

Object fusion

- Fuse all object states
- Minimize uncertainties

Multi-Instance Kalman Filter

