Class12-Maths-CBSE-Exam-Formulas

October 20, 2025

Chapter	Concept	Formula / Key Point	Explanation of Variables
Relations and Functions	Types of Relations	[Reflexive, Symmetric, Transitive, Equivalence]	Types describing properties of binary relations
	Types of Functions	[One-one, Onto, Bijective]	One-one: unique outputs; Onto: full range covered; Bijective: both
	Inverse of Function	$[f^{-1}(f(x)) = x]$	$f(x)$ is a function, f^{-1} is its inverse
Inverse Trigonomet- ric Functions	Principal Values	$[\sin^{-1} x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \cos^{-1} x \in [0, \pi]]$	x is input; range shows principal value restrictions
	Identities	$[\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}]$	Inverse function identities for complemen- tary angles
Matrices	Matrix Operations	$[(A+B)^T = A^T + B^T, (AB)^T = B^T A^T]$	A, B are matrices; T is transpose
	Inverse of Matrix	$[A^{-1} = \frac{1}{ A } \cdot \text{adj}(A) \text{ if } A \neq 0]$	A is determinant; adj is adjugate of A

Chapter	Concept	Formula / Key Point	Explanation of Variables
Determinants	Properties	$[AB = A B , A^T = A]$	Determinant of matrix product and transpose
	Area of Triangle	$[\text{Area} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}]$	(x_1, y_1) etc. are triangle vertices
	Cramer's Rule	$\left[x = \frac{D_x}{D}, y = \frac{D_y}{D}, z = \frac{D_z}{D}\right]$	D is determinant of main
Continuity and Differ- entiability	Continuity	$[\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a)]$	matrix; D_x etc. are for variables $f(x)$ is continuous if left & right limits equal function
	Derivatives	$[(uv)' = u'v + uv', (f(g(x)))' = f'(g(x)) \cdot g'(x)]$	value Product and chain rule for
	Implicit Differentiation	[Differentiate both sides of equation w.r.t. x]	derivatives Used when y is a function of x but not
Applications of Derivatives	Tangent & Normal	[Slope of tangent: $f'(x)$, Equation: $y-y_1=m(x-x_1)$]	isolated $f'(x)$ is derivative; (x_1, y_1) is point; m is
	Increase/Decrea	$\operatorname{ask} f'(x) > 0 \text{Increasing}, \ f'(x) < 0 \text{Decreasing}]$	slope Positive slope = increasing function;
	Maxima & Minima	[Use $f'(x) = 0$ and second derivative test]	negative = decreasing $f'(x)$ is zero at extrema; $f''(x)$ tells nature
Integrals	Basic Integration	$[\int x^n dx = \frac{x^{n+1}}{n+1} + C, \int e^x dx = e^x + C]$	C is constant of integration

Chapter	Concept	Formula / Key Point	Explanation of Variables
	Integration by Parts	$\left[\int u \cdot v dx = u \int v dx - \int \left(\frac{du}{dx} \int v dx\right) dx\right]$	Used when product of two functions
	Definite Integral	$\begin{split} & \left[\int_a^b f(x) dx = F(b) - F(a), \right. \\ & \left. \int_a^b f(x) dx = \int_a^b f(a+b-x) dx \right] \end{split}$	F is antiderivative of f
Applications of Integrals	Area Under Curve	[Area = $\int_a^b [f(x) - g(x)] dx$]	f(x) is upper curve, $g(x)$ is lower curve
	Area Between Curve and Axis	[Area = $\int_a^b f(x)dx$]	Area between function and x-axis
Differential Equations	Order and Degree	[Order = highest derivative, Degree = power of highest derivative]	Applies if equation is polynomial in derivatives
	Variable Separable Method	$\left[\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx\right]$	Variables separated for integration
Vector Algebra	Dot Product	$[\vec{A} \cdot \vec{B} = \vec{A} \vec{B} \cos \theta]$	Angle θ between vectors
	Cross Product	$[\vec{A} \times \vec{B} = \vec{A} \vec{B} \sin \theta \hat{n}]$	\hat{n} is unit vector perpendicular
	Scalar Triple Product	$ [\vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}] $	Volume of paral-lelepiped
Three- Dimensional Geometry	Line Equation	[Vector: $\vec{r} = \vec{a} + \lambda \vec{b}$, Cartesian: $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$]	$\vec{a} = \text{point}$ vector, $\vec{b} = \text{direction}$ vector
	Plane Equation	$[ax + by + cz + d = 0, Vector: \vec{r} \cdot \hat{n} = d]$	(a, b, c) is normal vector
	Distance Between Point & Plane	$\Big[\frac{ ax_1+by_1+cz_1+d }{\sqrt{a^2+b^2+c^2}}\Big]$	(x_1, y_1, z_1) is point; (a, b, c) is normal to plane

Chapter	Concept	Formula / Key Point	Explanation of Variables
Linear Programming	Constraints & Feasible Region	[Convert word problems to inequalities; Graph feasible region]	Feasible region = region satisfying all constraints
	Objective Function	[Z = ax + by Max/Min at corner points]	a, b are constants; x, y are
Probability	Conditional Probability	$[P(A B) = \frac{P(A \cap B)}{P(B)}]$	variables Probability of A given B has occurred
	Bayes' Theorem	$[P(E_i A) = \frac{P(E_i) \cdot P(A E_i)}{\sum P(E_j) \cdot P(A E_j)}]$	E_i are events; A is observed event
	Independent Events	$[P(A \cap B) = P(A) \cdot P(B)]$	A and B are independent if outcome of one doesn't affect the other