Math 116: Problem Set 5

Owen Jones

2/20/2024

- 2. $\phi(55) = 40 \Rightarrow 1 \cdot 40 + (-13) \cdot 3 = 1 \Rightarrow d = 27$
- 3. (a) Every letter is encrypted to a different number modulo n. Knowing the public key (e, n), we can create a dictionary of number letter pairs, and match each ciphertext number to its corresponding letter.

- 4. $a^1 \equiv a \pmod{n}$ for all a. Thus, e = 1 doesn't encrypt the plaintext. $\phi(n) = p_1^{e_1-1}\phi(p_1)\dots p_k^{e_k-1}\phi(p_k)$. $\phi(p) = p-1$ is an even number for any odd prime, so $\phi(n)$ is even. Thus, e = 2 is not relatively prime to $\phi(n)$.
- 5. Becuase e is suitably chosen, this means $\gcd(e,\phi(p))=1$. Use extended Euclidean algorithm to find integer d s.t $de\equiv 1\pmod{\phi(p)}$. Because p is prime, $\phi(p)=p-1$. The security of RSA relies on n being difficult to factor. i.e $\phi(n)$ is hard to compute. However, primes are very easy to factor because all their factors are trivial, 1 and p. Thus, p is a poor choice to be used in an RSA encryption.
- 6. $(2^ec)^d=2^{ed}(m^e)^d=2^{1+k\phi(n)}m^{1+k\phi(n)}\equiv 2m\pmod n$. Since n is a product of two odd primes, n is odd, so 2 and n are coprime. Thus, we can use the extended Euclidean algorithm to find 2's multiplicative inverse modulo n. $2'\cdot 2m\equiv m\pmod n$ which gives us Nelson's original message. We can consider this a chosen ciphertext attack.

- 7. (a) Eve can compute x^{-e} using the extended Euclidean algorithm because $x^{-e}x^e \equiv 1 \pmod{n}$. Let $m^c = 10^{100e} \pmod{n}$. She creates two lists $cx^{-e} \pmod{n}$ for $1 \le x \le 10^9$ and $m^cy^e \pmod{n}$ for $1 \le y \le 10^9$. If there is a match between the two lists, m = xy.
 - (b) Let L be the length of the message m. $m|m = m(10^L + 1)$. Let $m^c = (10^L + 1)^e \pmod{n}$. She creates two lists $cx^{-e} \pmod{n}$ for $1 \le x \le 10^9$ and $m^cy^e \pmod{n}$ for $1 \le y \le 10^9$. If there is a match between the two lists, m = xy.
- 8. If e_A and e_B are relatively prime, there exist integers x,y s.t $xe_A+ye_B=1$. It follows $c_A^x \cdot c_B^y \equiv m^{xe_A}m^{ye_B} \equiv m^{xe_A+ye_B} \equiv m \pmod{n}$.
- 9. (a) If M is a multiple of p-1 and q-1, there exists integers k_1 and k_2 s.t $M=k_1(p-1)$ and $M=k_2(q-1)$. By Fermat's little theorem, $a^M\equiv (a^{p-1})^{k_1}\equiv 1\pmod p$, and the same idea holds for q. Because $a^M\equiv 1\pmod p$ and $a^M\equiv 1\pmod q$, the Chinese remainder theorem guarantees a unique solution $a^M\equiv x\pmod n$ for some x. Because $a^M=1+kpq$ for some k satisfies the system of system of congruences, x=1 must be the unique solution modulo n.
 - (b) If $ed \equiv 1 \pmod{M}$ then $a^{ed} \equiv a^1 \cdot a^{kM} \equiv a^1 \cdot (a^M)^k \equiv a \pmod{n}$
- 10. $880525^2 \cdot 2057202^2 \equiv 6 \pmod{2288233}$ $\Rightarrow 2288233 \mid (880525 \cdot 2057202 - 648581)(880525 \cdot 2057202 + 648581)$ $\gcd(880525 \cdot 2057202 - 648581, 2288233) = 1871$ is a non-trivial factor of 2288233. The other factor is 1223.
- 11. Given $m^{12345} \equiv 1 \pmod{n}$, we know $ord(m) \mid 12345$. We want to find d st. $ed \equiv 1 \pmod{ord(m)}$. Since $\gcd(12345, e) = 1$, pick $d \equiv e^{-1} \pmod{12345}$ using the extended Euclidean algorithm. Thus, $c^d \equiv m^{ed} \equiv m^{12345k+1} \equiv (m^{12345})^k \cdot m \equiv m \pmod{n}$.

12. (a)
$$m' \equiv m_1 \equiv c^{d_1} \equiv m^{ed_1} \equiv m^{1+k_1(p-1)} \equiv m \pmod{p}$$

$$m' \equiv m_2 \equiv c^{d_2} \equiv m^{ed_2} \equiv m^{1+k_2(q-1)} \equiv m \pmod{q}$$

for integers k_1, k_2 . By the uniquess of CRT, m' = m + kpq for some integer k satisfies the system of congruences. Thus, $m' \equiv m \pmod{n}$

- (b) $m' = m_1 q y + m_2 p x \pmod{n}$.
- $13. \ 60103201518091407091908011804$
- 14. $n = 835338435834994481423891073871 \times 897930023819537415148640533529$
- 15. 2, 3, and 5 all fail to show n is composite $7^{n-1} \equiv 10334100 \pmod{n}$
- 16. (a) For bases b=2,3 $b^{n-1}\equiv 1\pmod n$, so we conclude n is probably prime.

(b) Base b=3 proves n is composite giving non-trivial factor 520801. Other factor is 3361.

```
In [1]:
          import numpy as np
          import math116
In [2]:
          n 13=679787784628977803719246221827067797
          e 13=65537
          c_13=519510187890701360643892801009368951
          p 13=321923906457251617
          q_13=2111641201518679541
          phi_n_13=(p_13-1)*(q_13-1)
In [5]:
          d_13=math116.inverse(e_13,phi_n_13)
In [6]:
          m_13=pow(c_13,d_13,n_13)
          m_{13}
Out[6]: 60103201518091407091908011804
In [7]:
          n\_14 = 750075461586691721388347479335676851282431232292366191320759
          e_14=65537
          d 14=564402113503610411653645537572273583522627068729392076767393
In [8]:
          E_14=e_14*d_14-1
In [9]:
          k_14=0
          q_14=E_14
          while q_14%2==0:
              q_14//=2
              k_14+=1
In [17]:
          a_0=pow(7,q_14,n_14)
          for i in range(k_14):
              if pow(a_0,2,n_14)==1:
                  print(math116.gcd(a_0-1,n_14))
                  break
              a_0=pow(a_0,2,n_14)
         835338435834994481423891073871
In [18]:
          n 14//835338435834994481423891073871
Out[18]: 897930023819537415148640533529
In [19]:
          n 15=21397381
```

```
In [23]:
          pow(7, n_15-1, n_15)
Out [23]: 10334100
In [24]:
          n_16=1750412161
In [25]:
          pow(2, n_16-1, n_16)
Out[25]: 1
In [26]:
          pow(3, n_16-1, n_16)
Out[26]: 1
In [27]:
          k 16=0
          q_16=n_16-1
          while q_16%2==0:
               q_16//=2
               k_16+=1
In [29]:
          a_0_3=pow(3,q_16,n_16)
In [32]:
          a_0_2=pow(2,q_16,n_16)
          for i in range(k_16):
               if pow(a_0_2, 2, n_16) == n_16-1:
                   break
              elif pow(a_0_2,2,n_16)==1:
                   print(math116.gcd(a_0_2-1,n_16))
                   break
               a_0_2=pow(a_0_2,2,n_16)
In [33]:
          a_0_3=pow(3,q_16,n_16)
          for i in range(k_16):
              if pow(a_0_3, 2, n_16) == n_16-1:
                   break
              elif pow(a_0_3,2,n_16)==1:
                   print(math116.gcd(a_0_3-1,n_16))
                   break
               a_0_3=pow(a_0_3,2,n_16)
         520801
In [34]:
          n_16//520801
Out[34]: 3361
In [ ]:
```