- 1. Given the scores of 10 students in a mathematics test are as follows: 75, 58, 84, 59, 68, 72, 83, 60, 76, 65.

 - 1.3 Find the mode. (1 points) ไม่มี เ mode คือ หัวก็ ซ้ำกันมกกสุด)
 - 1.4 Find the variance. (3 points)
 - 1.5 Find the quartiles Q_1 . (3 points)
 - 1.6 Find the deciles D_5 . (3 points)
 - 1.7 Find the percentiles P_{75} . (3 points)
 - (25 minutes)

2. Given the training data in the below table. (20 minutes)

Instance	Outlook	Temperature	Humidity	Wind	PlayTennis
1	sunny	hot	high 1	weak	no 4
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	$\langle rain \rangle \lambda$	mild	high	weak	yes 🗸
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no 🗸
7	overcast	cool	normal	strong	yes
8	sunny	mild	(high)	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes +
11	sunny	mild	normal	strong	yes
12	overcast	(mild) L	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	(high /	strong	no 🗸

2.1 Find the prior probability P(PlayTennis = yes).

2.2 Find the conditional probability P(Wind = strong | PlayTennis = yes).

$$(2 \text{ points})$$
 $3/9$

2.3 Find the conditional probability P(Outlook = rain | PlayTennis = no).

$$(2 \text{ points})$$
 $2/5$

2.4 Find the conditional probability P(Temperature = mild | PlayTennis = yes).

$$(2 \text{ points})$$
 $4/9$

2.5 Find the conditional probability P(Humidity = high | PlayTennis = no).

3. Find the equation $y = \beta_0 + \beta_1 x$ of the regression line that best fits the given data points (1,0), (2,1), (4,2) and (5,3).

(10 points, 20 minutes)

 $S_1 = 0.1$

$$\beta_0 = \overline{\gamma} - \beta_1 \overline{x}$$

$$= \frac{g^3}{g^2} - 0.7 \times 12^3$$

$$= -0.6$$

$$3 \text{ and } \gamma = -0.6 + 0.7 \times 12^3$$

$$y = \beta_0 + \beta_1 x$$

W)
$$MSE = \frac{1}{N} \sum_{i}^{n} (\gamma_i - \hat{\gamma}_i)^2$$

$$SSR = \sum_{i}^{n} (\gamma_i - (\beta_0 + \beta_1 \chi_i))^2$$

$$= 0.1$$

$$y_{i}^{1} \Rightarrow y = -0.6 + 0.7 \times$$

$$\begin{array}{c|cccc}
X & y & y \\
1 & 0 & -0.6+0.7(1) = 0.1 \\
2 & 1 & -0.6+0.7(2) = 0.8 \\
4 & 2 & -0.6+0.7(4) = 2.2 \\
5 & 3 & -0.6+0.7(5) = 2.9
\end{array}$$

$$\frac{1 - 2 (\gamma_1 - \gamma_1)}{5 (\gamma_1 - \overline{\gamma})^2}$$

$$= 1 - \frac{0.1}{5}$$

$$= 0.98 R^2 \%$$

4. Find the global maximum and global minimum values of the function $f(x) = x^3 - 6x^2 + 5$ on the interval [-3, 5].

(10 points, 20 minutes)

$$f(x) = x^{3} - 6x^{2} + 5$$

$$f'(x) = 3x^{2} - 2(6x) + (\frac{15}{3}) \Rightarrow 0$$

$$= 3x^{2} - 12x = 0$$

$$3x(x - 4) = 0$$

$$x = 4,0$$

Case 1
$$f(x) = 0$$

 $f(0) = (0)^3 - 6(0)^2 + 5$
 $= 0 - 0 + 5$
 $= 5$
case 2 $f(x) = 4$
 $f(4) = (4)^3 - 6(4)^2 + 5$
 $= 64 - 96 + 5$
 $= -27$

case 2
$$f(x) = 4$$

 $f(4) = (4)^{3} - 6(4)^{2} + 5$
 $= 64 - 96 + 5$
 $= -27$

$$f(x) = x^{3} - 6x^{2} + 5$$

$$= -27 - 54 + 5$$

$$= -27 - 54 + 5$$

$$= -20$$

$$= -20$$

$$= -20$$

$$= -20$$

$$= -50$$

$$+(2) = (2)_{3} - 6(2)_{5} + 2$$

$$+(x) = x_{3} - 6x_{5} + 2$$

5. If $f(x,y) = \frac{xy}{(x+y)^2}$, find $f_x(1,2)$ and $f_y(1,2)$.

(10 points, 20 minutes)

Loguepp 3 neg progen

6. Find the local maximum and minimum values of the function $f(x,y) = x^3 + y^3 - 3x^2 - 3y^2 - 9x$.

(15 points, 25 minutes)

7. Find the gradient of $f(x, y, z) = 5x^2 - 3xy + xyz$ at the point (3, 4, 5). (10 points, 20 minutes)

8. A farmer has 200 m of fencing and wants to fence off a rectangular field. What are the dimensions of the field that has the largest area (by using method of Lagrange Multipliers)?

(20 points, 30 minutes)