

Aprendizaje Profundo (Grado en IA) Práctica 1.2 - CNNs (2024-2025)

Instrucciones:

■ Fecha límite: 8 de Noviembre, 23:59.

Objetivos

• En esta segunda parte de la práctica desarrollaremos una red convolucional (CNN) para resolver el mismo problema que en la primera parte, identificar el elemento o animal que aparece en una fotografía.

Conjunto de datos

• Usaremos de nuevo el dataset CIFAR-10.

Tareas a realizar

1. Preprocesado del dataset.

• Habrá que preprocesar el *dataset* como en la primera parte, pero ahora no aplanaremos la imagen, sino que se la presentaremos como un mapa bidimensional a la red convolucional.

2. Desarrollar un modelo convolucional personalizado para el problema de clasificación.

- No utilices modelos preentrenados ni modelos ya creados en bibliotecas externas para esta parte.
- Determinar la mejor arquitectura del modelo (capas convolucionales, capas de agrupación, número de filtros, tamaño de los *kernels*, etc.).
- Utiliza el conjunto de datos de validación para el ajuste de hiperparámetros y evita el sobreajuste regularizando el modelo si es necesario. Para este caso es sencillo usar las utilidades de aumento de datos que Keras dispone para las imágenes.

3. Compara los resultados.

- Comentar los resultados obtenidos por cada modelo.
- Realiza una comparación razonada de los resultados obtenidos, dónde han mejorado, empeorado, etc.
- Comentar ventajas, desventajas de los diferentes métodos y aspectos de interés.
- Resume los resultados finales en una tabla o gráfico.

Grupos de prácticas

• Serán los mismos que los de la parte 1.

Envío

- Las instrucciones son las mismas que para la parte 1.
- Los ejercicios se desarrollarán utilizando Jupyter Notebooks.
- Sen entregarán en el mismo assignment de Classroom que la parte 1 (https://classroom.github.com/a/WdUBDmBc) como uno o varios cuadernos nuevos. Puedes organizarlos en directorios si lo consideras necesario.

Criterios de evaluación

- Calidad de las clasificaciones obtenidas.
 - o Exactitud de clasificación en el conjunto de test del modelo.
 - Es esperable un valor de accuracy alto, cercano a 0,8 o superior.

• Calidad del diseño.

- La red convolucional diseñada sigue criterios lógicos en su arquitectura y en la selección de hiperparámetros.
- Se han probado varias medidas de regularización y optimización y se ha comprobado su efecto en la red.

• Calidad de las explicaciones:

- El proceso está suficientemente detallado y las decisiones adoptadas están justificadas.
- Los resultados se comentan e interpretan correctamente.