

U.S. Geological Survey

Water-Resources Investigations 78-53

Prepared in cooperation with the U.S. Army Corps of Engineers

BACTERIOLOGICAL S WATER-QUALITY OF **H TULPEHOCKEN CREEK** BASIN, BERKS AND

LEBANON COUNTIES,

PENNSYLVANIA

DISTRIBUTION STATEMENT A Approved for public release: Distribution Unlimited

April , 1978

AUG 15 1978

08 10 086

1. Report No. 3. Recipient's Accession No. BIBLIOGRAPHIC DATA SHEET USGS/WRD/WRI-78-068 Report Date 4. Title and Subtitle Bacteriological Water Quality of Tulpehocken Creek Basin, APRIL Berks and Lebanon Counties, Pennsylvania Performing Organization Repr. No. USGS/WRI 78-53 7. Author(s) James L. Barker 10. Project/Task/Work Unio No. 9. Performing Organization Name and Address U.S. Geological Survey, Water Resources Division P.O. Box 1107 11. Contract/Grant No. Harrisburg, Pennsylvania 17108 13. Type of Report & Period Covered 12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Division Final P.O. Box 1107 Harrisburg, Pennsylvania 17108 14. 15. Supplementary Notes Prepared in cooperation with the U.S. Army Corps of Engineers, Philadelphia District A four month intensive study of the bacteriological quality of water in the Tulpehocken Creek basin indicates that (1) the streams locally contain high densities of bacteria indicative of fecal contamination, (2) nonpoint waste sources, particularly livestock, are the dominant influence in the excessive bacteriologicalindicator counts observed, and (3) retention time of water in the proposed Blue Marsh Lake is believed sufficient to reduce bacteria densities to acceptable levels except following intense rainfall and runoff events during normally low flow periods. 17. Key Words and Document Analysis. 17a. Descriptors *Aquatic environment, *microbiology, *water quality, stream pollution, coliform bacteria 409821 17b. Identifiers/Open-Ended Terms Delaware River Basin, Bacteriological Survey 17c. COSATI Field Group 18. Availability Statement 19. Security Class (This 21. No. of Pages Report)
UNCLASSIFIED
20. Security Class (This 29

22. Price

USCOMM- DC 8265-P74

Page

THIS FORM MAY BE REPRODUCED

NO RESTRICTIONS ON DISTRIBUTION

FORM NTIS 35 (REV. 10-73) ENDORSED BY ANSI AND UNESCO.

Prepared for NTIS BY U.S.Geological Survey, WRD

BACTERIOLOGICAL WATER QUALITY OF TULPEHOCKEN CREEK BASIN, BERKS AND LEBANON COUNTIES, PENNSYLVANIA James L. Barker U.S. GEOLOGICAL SURVEY Water-Resources Investigations 78-53 Prepared in cooperation with the U.S. Army Corps of Engineers, Philadelphia District 4)USGS/WRD/WRI-78/068, 1USGS/WRI-78-53 AUG 15 1978 ACCESSION for Apr 11 1978 DISTRIBUTION STATEMENT A BISTORBOTHER / AVAILAGE HAFT CAUSES Approved for public release; Aleil end/or special Distribution Unlimited 409 8238 08 10 086

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

For additional information write to:

U.S. Geological Survey P.O. Box 1107, Federal Building Harrisburg, Pennsylvania 17108

CONTENTS

			Page
Abstract. Purpose and scope			1 3 3 3 5 5 9
Fecal coliform/fecal streptococci ratio Summary and conclusion Selected references		:	18 24 25
ILLUSTRATIONS			
			Page
Figure 1. Map showing Tulpehocken Creek Basin Study area 2. Hydrograph for Tulpehocken Creek near Blue Marsh Dam	•	•	2
site, station 01470960			19
3. Relation between fecal coliform density and discharge at station 15 (01470960)			20
4. Persistence of selected enteric bacteria in	•	•	20
stormwater stored at 20°C (after Geldreich, 1969)		•	21
 Graph showing relation between discharge and theoretical retention time in Blue Marsh Lake 			22
TABLES			
TAUGES			
		F	age
Table 1. Summary of point waste source bacteriological			
evaluation			6
 Estimated daily contribution of indicator bacteria from some livestock in Tulpehocken Creek Basin 			10

CONTENTS

TABLES

		Page
Table 3. Summary of fecal colifor concentrations in the Tu 4. Physical and bacteriolog 5. Distribution of fecal coratios frequency at 15 s Creek Basin	lpehocken Cre ical analyses liform/fecal tream sites i	ek Basin
Multiply U.S. Customary units	By	To obtain (SI) units
Feet (ft) Miles (mi) Square Mile (mi ²) Million gallons per day (mgal/d) Ounce avoirdupois (oz avdp)	.3048 1.609 2.590 1.54723 0.03527	Meters (m) Kilometers (km) Square kilometer (km²) Cubic ft/second (ft³/s) Grams (g)

BACTERIOLOGICAL WATER QUALITY OF TULPEHOCKEN CREEK BASIN, BERKS AND LEBANON COUNTIES, PENNSYLVANIA

By James L. Barker

ABSTRACT

A four month intensive study of the bacteriological quality of water in the Tulpehocken Creek basin indicates that (1) the streams locally contain high densities of bacteria indicative of fecal contamination, (2) nonpoint waste sources, particularly livestock, are the dominant influence in the excessive bacteriological-indicator counts observed, and (3) retention time of water in the proposed Blue Marsh Lake is believed sufficient to reduce bacteria densities to acceptable levels except following intense rainfall and runoff events during normally low flow periods.

Figure 1.--Tulpehocken Creek Basin study area. Numbers refer to sampling sites given on page 4 and letters refer to sewage-treatment plants given on page 5.

PURPOSE AND SCOPE

The preimpoundment investigation of water quality in the Tulpehocken Creek basin was begun by the U.S. Geological Survey (USGS) in June 1972 at the request of the Philadelphia District, U.S. Army Corps of Engineers. The purpose of the investigation was to collect base-line water-quality information for Tulpehocken Creek and its major tributaries pertinent to the water quality of the proposed Blue Marsh Lake.

Bacteriological data collected since June 1972 indicated that populations of intestinal bacteria generally exceed the State and Federal recommended standards for public water supply and water-contact recreation (Barker, 1977). The bacterial populations suggestive of recent fecal contamination prompted the U.S. Army Corps of Engineers to request the USGS to gather additional information on the point and nonpoint sources of enteric bacteria.

The present investigation was designed to obtain densities of fecal coliform and fecal streptococci populations at fifteen selected sites on Tulpehocken Creek and its major tributaries, to identify the areas and sources of major fecal contamination, and to determine the extent of temporal variation in these populations during June to September, the water-contact recreation season.

DESCRIPTION OF AREA

The study area includes Tulpehocken Creek and its major tributaries from the headwaters near Myerstown, to a point about 28 miles downstream near the Blue Marsh Lake Dam (Figure 1). The drainage area is 175 mi² in parts of Berks and Lebanon Counties.

The basin is predominantly agricultural but includes the villages of Wernersville, Robesonia, Womelsdorf, Mt. Pleasant, Bernville, Sheridan, Stouchsburg, New Schafferstown and Myerstown. Additional information on the Tulpehocken Creek Basin is published in Biesecker and others (1968) and Barker (1977).

METHODS OF STUDY

Biweekly samples for the determination of enteric bacterial densities were collected 10 times during the period June 1 to September 21, 1977. Sampling was conducted during low to moderate flows. Water temperature, pH, specific conductance, and relative turbidity were measured at time of collection.

Stream samples were collected at the following 15 locations on Tulpehocken Creek and its major tributaries (see figure 1):

- Site No. 1. Tulpehocken Creek upstream from Myerstown
 - 2. Tulpehocken Creek downstream from Myerstown
 - 3. Tulpehocken Creek at Stouchsburg
 - 4. Mill Creek at Sheridan
 - 5. Tulpehocken Creek at Route 419, Womelsdorf
 - 6. Tulpehocken Creek at Kricks Mill, USGS gage 01470779
 - 7. Mill Creek near Kricks Mill
 - 8. Tulpehocken Creek at Bernville, USGS gage 01470800
 - 9. Northkill Creek at Route 183, Bernville
 - 10. Little Northkill Creek upstream of Bernville
 - 11. Licking Creek at Mt. Pleasant
 - 12. Spring Creek at Peacock bridge
 - 13. Hospital Creek at Wernersville
 - 14. Spring Creek near Robesonia
 - 15. Tulpehocken Creek at Rebers bridge

All samples were collected and analyzed for enteric bacteria by the membrane filtration method, as described in the 14th edition of "Standard Methods for the Examination of Water and Wastewater" (American Public Health Association and others, 1976).

Point source samples were collected at six waste-treatment plants by personnel of the Philadelphia District, U.S. Army Corps of Engineers. These samples were also analyzed by methods described in "Standard Methods...," except that the samples were held overnight prior to incubation.

PRESENTATION OF DATA AND DISCUSSION

Major Point Sources

Known point sources of treated domestic sanitary waste include sewage-treatment plants at Myerstown, Womelsdorf, Wernersville State Hospital, Wernersville-Robesonia, Heidelberg Country Club, and Bernville. (See figure 1).

The approximate waste loads at the sewage-treatment plants are as follows:

MAP LETTER	PLANT	LOAD (Mga1/d)	STREAM DISTANCE FROM LAKE (mi)
A	Myerstown	.35	16.7
В	Womelsdorf	.13	9.1
С	Wernersville State Hospital	.08	3.8
D	Wernersville-Robesonia	.35	2.4
Е	Heidelberg County Club	.015	2.2
F	Bernville	.054	1.7

Bacteriological data collected at each of the above point sources are presented in table 1. In addition to sampling the waste effluents, each receiving stream was sampled eight times between May 31, 1977 and September 26, 1977, approximately 20 feet upstream and downstream from each effluent discharge.

Fecal coliform and fecal streptococcus densities of the treatmentplant effluents indicate that, with few exceptions, sufficient residual chlorine is being used to reduce bacterial populations to acceptable levels. Principal among these was the generally high incidence of excessive densities in the effluent at the Wernersville-Robesonia plant. Data from the Bernville plant and the Heidelberg Country Club revealed less-frequent high densities.

Table 1. -- Summary of Point Waste Source Sampling

[Samples collected and analysed by the U. S. Army Corps of Engineers, Philadelphia District. FC, fecal coliform per 100 mL; FS, fecal streptococcus per 100 mL; TNTC, too numerous to count]

	Treatment	Sampling	5-3	11-77	3	13-77	9	28-77	7-	5-77
	Plant	Point	PC PS	PS	PC PS	PS	FC FS	PS	PC	PC PS
	Myerstown	Upstream	430	410	120	420	2200	3400	0	260
		Effluent	0	10	0	80	0	0	0	0
		Downstream	0	360	0	20	3200	3800	0	0
	Wernerville	Upstream	230	700	480	200	100	1900	0	0
	State Hosp	Effluent	0	0	0	0	0	100	0	0
		Downstream	190	760	420	077	100	700	0	0
6	Wormelsdorf	Upstream	1100	700	1200	1200	36000	38000	0	98
		Effluent	0	0	20	0	0	100	0	0
		Downstream	1100	089	006	620	3500	007	0	172
	Wernersville-	Upstream	1600	1600	1100	1000	2500	4700	0	98
	Robesonia	Effluent	0	0	TNTC	TNTC	0	100	24000	22000
		Downstream	1200	1200	3400	9300	11000	3100	069	1800
	Heldelberg	Upstream	840	710	360	089	300	0	0	0
	Country Club	Effluent	10	10	0	0	7800	14000	0	0
		Downstream	730	049	280	1000	11000	15000	0	98
	Bernville	Upstream	1500	1200	1100	400	12000	25000	98	86
		Effluent	TNTC	TNTC	160	100	100	100	0	0
		Downstream	1900	840	300	180	11000	23000	0	0

Treatment	Sampling	8-2	2-77	8	77-63	9-1	77-2.	9	26-77
Plant	Point	FC	FS	FC	FS	FC	FS	FC	FS
Myerstown	Upstream Effluent	ream 0 600 uent 18000 8500	600	0 0 0	0 2400	0 200	200	38000	38000 61000 26000 49000
	Downstream	2700	3800	0	800	0	0	36000	57000
Wernerville	Upstream	0	400	100	400	0	300	100	1900
State Hosp	Effluent	0 (200	0 (0 (0	0 (26000	17000
	Downstream	0	0	0	0	0	0	400	2300
Wormelsdorf	Upstream	800	1600	0	0	100	400	28000	49000
	Effluent	0	200	200	0	0	0	200	200
	Downstream	1300	00089	300	0	0	0	26000	23000
Wernersville-	Upstream	Н	1300	400	200	200	800	6300	9300
Robesonia	Effluent	81000	36000	00066	35000	39000	3000	200	200
	Downstream	18000	7200	300	200	8700	6200	7700	0066
Heidelberg	Upstream	0	200	400	100	0	200	20000	53000
Country Club	Eff1uent	0	1400	200	100	0	0	4600	11000
	Downstream	0	300	100	400	200	0	25000	52000
Bernville	Upstream	0	1100	0	200	0	400	17000	57000
	Effluent	3000	17000	91000	29000	0	0	100	400
	Downstream	1	21000	7800	7000	0	0	14000	TNTC

NONPOINT SOURCES

Densities of enteric bacteria in runoff are influenced by factors such as rainfall, stream hydrology, sediment concentration, and human and animal populations. The majority of human population centers have sewage-treatment facilities to control bacteria. Animal populations, particularly livestock, contribute a significant number of enteric bacteria to the environment. Estimates of the contribution of indicator bacteria by some common livestock in the Tulpehocken Creek basin on the basis of the 1976 Livestock Report are given in table 2. Even if the number of bacteria reaching the stream during a rainstorm is only 1 to 6 percent of the estimated contribution as suggested by Beane and others (1977), the number of bacteria reaching the stream is still large and represents a major source of fecal contamination.

Results of the June to September fecal coliform and fecal streptococci sampling are summarized in table 3. A complete tabulation of data collected during the period is listed in table 4. Table 3 shows that the geometric means of samples collected at all 15 sites exceeded the current U.S. Environmental Protection Agency and Pennsylvania Department of Environmental Resources bathing-water criterion of a geometric mean of 200 fecal coliform per 100 mL. However, retention time of the water in the lake is believed sufficient to reduce these bacteria densities to acceptable levels except following intense rainfall and runoff during normally low flow periods.

Sampling stations at which high densities of fecal coliform or fecal streptococci bacteria were observed in all samples included station 4, Mill Creek at Sheridan; station 5, Tulpehocken Creek at Womelsdorf; station 7, Mill Creek near Kricks Mill; and station 14, Spring Creek near Wernersville.

The populations of indicator bacteria observed in a stream is dependent on many environmental factors. Variations in the transport media--streamflow and sediment--explain a portion of the variability shown by the standard deviations in table 3.

Table 2.--Estimated daily contribution, in millions, of indicator bacteria from some livestock in Tulpehocken Greek Basin 1/

ntribution bacteria ock per	Fecal Streptococci	2,990 x 10 ¹²	806 x 1012	141 × 10 ¹²
Estimated contribution of indicator bacteria from livestock per 24 hours	Fecal Coliform	116 x 10 ¹²	140 × 1012	27 × 10 ¹²
age oution pita hours on)	Fecal Strepto-	230,000	31,000	096
Average Contribution per capita per 24 hours (million)	Fecal Coliforn	8,900	2,400	185
Average y per gram feces $\frac{2}{2}$ /	Fecal Strepto- cocci	84.0	1,3	3.1
Average Density per gram of feces 2/ (million)	Fecal Coliform	3.3	.23	.80
	Average wet weight of feces per 24 hours (grams)	2,700	23,600	315
	Estimated number of animals in basin	13,000	26,000	147,000
	Livestock	Hogs and pigs	Cattle and calves	Chickens and Turkeys

Based upon percentage of basin in Berks and Lebanon Counties as reported in Livestock Annual Summary (1976). Coliform and streptococci data from Geldreich, 1966. 1 12

Table 3.--Summary of fecal coliform (FC) and fecal streptococci (FS) concentrations in the Tulpehocken Creek Basin

Sta	tion	Geometric mean	Standard deviation	Range
1	FC	1000	3300	200 - 8600
•	FS	1200	800	340 - 3200
		-200	000	340 - 3200
2	FC	6600	68000	2300 - 220,000
	FS	4200	20000	1300 - 67,000
3	FC	6100	4300	2500 - 15,000
	FS	9800	46000	2700 - 150,000
4	FC	12000	28000	3900 - 89,000
	FS	8700	22000	1800 - 48,000
5	FC	13000	50000	3200 - 160,000
	FS	13000	64000	2100 - >200,000
6	P.C	6500	26000	1000 100 000
0	FC	9800	36000	1000 - 120,000
	FS	9000	61000	980 - >200,000
7	FC	28000	21000	8000 - 79,000
	FS	39000	82000	8600 - 230,000
				250,000
8	FC	6800	77000	1900 - 250,000
	FS	7700	30000	1900 - >100,000
9	FC	4400	60000	1900 - 23,000
	FS	6300	13000	1500 - 44,000
10	FC	2400	5400	900 10 000
10	FS	5800	28000	800 - 19,000 2700 - >87,000
	13	3000	20000	2700 - 767,000
11	FC	4700	11000	970 - 37,000
	FS	4200	2800	3200 - 12,000
12	FC	3800	9700	1300 - 33,000
	FS	7700	17000	1700 - >50,000
13	FC	2100	8000	400 - 26,000
	FS	3800	5100	1400 - 17,000
14	FC	11000	21000	1800 - 73,000
	FS	31000	33000	5600 - 96,000
	10	31000	33000	3000 - 90,000
15	FC	3600	16000	700 - 48,000
	FS	9000	88000	1000 - 280,000

Fecal Streptococci (col,\l00mL)
Fecal coliform (col./loomL)
FC/FS
Specific conductance (micromhos per centimeter at 250C)
*vzibidzuT
Hq (siinu)
Discharge (ft 3/5)
Water temperature (OC)
e Aa Mo Day Yr

					2,100																4,500
	8,600	4,100	1,400	8,300	700	380	9	250	460	200	al.	2,300	3,900	11,000	220,000	2,400	2,700	11,000	5,900	6,300	2,900
Myerstown	2.7	3.2	1.5	5.9	0.3	0.3	1.8	0.2	0.4	0.3	f Myerstown	1.8	0.7	1.5	3.3	1,3	0.8	0.3	1.4	0.5	9.
Upstream of	505	535	525	510	240	540	535	520	009	550	ownstream o	420	580	525	475	550	260	565	565	565	258
cken Creek	2	1	2	7	7	1	1	0	0	1	ken Creek D	1	က	m	က	7	2	2	1	1	7
Site 1Tulpehocken Creek Upstream of	8.0	8.0	8,1	7.2	8.3	1	8.1	7.6	7.8	7.4	Site 2Tulpehocken Creek Downstream of Myerstown	7.6	7.5	7.9	7.5	8.3	1	7.8	7.6	7.6	7.3
	17.5	19.5	19.0	20.0	20.0	18.0	18.0	17.0	16.5	16.0		17.0	19.0	19.5	21.5	20.0	19.0	18.0	19.5	17.5	17.0
	6-01-77	6-15-77	6-29-77	7-13-77	7-26-77	8-10-77	8-23-77	8-30-77	77-70-6	9-21-77		6-01-77	6-15-77	6-29-77	7-13-77	7-26-77	8-10-77	8-23-77	8-30-77	9-07-77	9-21-77

O	١
H	١
ā	
-D	ĺ
55	۱
77	
~	
ನ	
ŭ	ı
S	۱
	١
T	
a	١
-	
9	ı
e e	ı
5	
_	1
-Tulpehocken Creek at Stouchsbur	
9	ľ
*	
Ö	
2	١
4	l
×	
=	١
-	1
H	1
1	١
1	١
3	
41	ı
Site	
=	J
in	١
	1

		4=Severe		3-Serious,	2-Moderate,	1-Mild,	code O-None,	* Severity code
2,100	3,200	1.5	555	7	7.5		18.0	9-21-77
74,000	31,000	0.4	220	2	7.8		19.0	9-07-77
2,200	5,500	2.5	515	2	8.0		21.5	8-30-77
2,800**	14,000	5.0	525	2	7.9		19.0	8-23-77
4,200	4,000	1.0	044	က	•		22.0	8-10-77
86,000	73,000	6.0	480	3	7.9		21.0	7-26-77
> 200,000**	160,000	8 ° ×	349	4	7.1		24.0	7-13-77
21,000	14,000	0.7	480	m	7.6		19.5	6-29-77
9,400	10,000	1.5	490	m	7.8		19.0	6-15-77
16,000	4,000	0.3	490	2	8.0		17.0	6-01-77
	닒	, Womelsdorf	at Rt 419,	Creek	Site 5Tulpehocken	S41		
3,400	4,500	1.3	490	1	7.3		17.0	9-21-77
7,000	6,200	0.9	525	-	7.7		18.0	9-07-77
3,800	3,900	1.0	455	3	8,0		21.5	8-30-77
1.800**	17,000	0.9	470	2	8.3		18.0	8-23-77
000 9	6,300	1.1	450	· m			21.0	8-10-77
29,000	89,000	3.1	450	ı m	8,3		20.0	7-26-77
63,000	42,000	1.0	415	2	7.3		21.5	7-13-77
48,000	43,000	6.0	450	n m	7.7		21.0	6-29-77
2007	2006		2	10	000		17.0	6-15-77
3 700	7 000	1 0	370	6	7.5		17.0	6-01-77
		idan	k at Sheridan	4Mill Creek	Site 4			
3,500	2,900	0.8	541	1	7.3		17.5	9-21-77
45,000	15,000	0.3	520	1	7.6		18.0	77-70-6
3,100	2,500	0.8	542	2	7.7		20.0	8-30-77
4,300	10,000	2,3	530	5	8.0		19.0	8-23-77
2,700	2,600	1.0	520	3			19.5	8-10-77
1,800	4.200	2,3	520	7	8.4		21.5	7-26-77
150,000	8,000	0.1	458	3	7.4		21.5	7-13-77
29,000	11,000	0.4	520	· E	7.6		21.0	6-29-77
15,000	000,00	0.0	540	4 W	7.7		18.5	6-15-77
12 000	000	0	7.50	·	0 1		0 81	77-10-9

Table 4.--Physical and Bacteriological Analyses--Continued

	•																					
Fecal Streptococct (col./100mL)		980	3,300	29,000	>200,000**	32,000	7,400	4,200	2,200	24,000	1,400		13,000	51,000	54,000	>200,000	110,000	11,000	230,000	8,600	25,000	18,000
Fecal coliform (col./100mL)		1,200	3,500	14,000	120,000**	18,000	1,000**	28,000	1,000**	9,300	3,900									17,000		
FC/FS	s M111	1.2	1.1	0.5	8. >	9.0	0.2	6.7	0.5	0.4	2.8	111	3.1	0.5	9.0		0.7	3.2	0.1	2.0	1.2	0.4
Specific conductance (micromhos per centimeter at 25°C)	eek at Kricks Mill	097	200	710	295	780	510	200	520	505	555	near Kricks Mill	322	350	350	275	330	350	350	325	370	400
Turbidity*	6Tulpehocken Creek	2	3	3	4	3	2	2	3	2	1	11 Creek n	2	3	3	2	1	2	1	0	1	1
Hq (stinu)	Site 6Tulp	7.6	7.7	7.9	8.9	8.1	•	7.9	8.1	7.9	7.6	Site 7Mi	7.9	7.8	8.0	9.9	8.4	1	8.3	8.4	7.9	7.8
Discharge (8/8 11)	w]	29	19	79	163	62	87	52	97	51	77											
Water temperature (OC)		17.0	18.0	21.0	23.5	20.0	23.5	20.5	23.5	20.0	19.0		18.0	20.0	22.0	24.0	22.0	23.0	20.0	24.5	21.0	19.0
e E E Mo Day Yr		6-01-77	6-15-77	6-29-77	7-13-77	7-26-77	8-10-77	8-23-77	8-30-77	9-07-77	9-21-77		6-01-77	6-15-77	6-29-77	7-13-77	7-26-77	8-10-77	8-23-77	8-30-77	9-07-77	9-21-77

Bernville
at
Creek
Tulpehocken
8Tulp
Site

a)	Creek 2011222312	520 400 300 520 480 475 475 475 475 120 160 117 160 117 117 117 117 117 117 1180	w!	6,700 250,000 4,800 2,200 13,000 6,300 1,900 13,000 23,000 23,000 6,000 13,000 13,000 13,000 13,000 13,000	6,500 8,300 7,000 11,000 19,000 5,200 19,000 19,000 44,000 19,000 19,000
8.1 22.0 7.5 23.0 8.1 24.0 8.1 25.0 8.1 25.0 8.1 19.5 17.8 8.1 19.5 17.9 17.9 17.9 17.0 17.9 17.0 17.5 17.5 19.5 19.5 19.5 10.0 1	Creek 201122231122223112222311222231122223112222311222231122223112222311222231122223112222311222223112222231122222311222222	400 300 520 480 475 480 520 475 175 160 117 160 117 160 117 117 117 117 117 117 117 117		12,000 4,800 2,200 13,000 6,300 1,900 13,000 23,000 23,000 5,800 4,000 1,900	
23.0 -77 22.0 8.2 22.0 8.1 22.0 24.0 7.8 23.0 7.9 24.0 7.1 24.0 8.1 7.5 7.5 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	Orthur Creek 20112223	300 520 480 475 480 520 475 122 160 150 117 160 150 175 170		250,000 4,800 13,000 2,500 1,900 1,900 23,000 23,000 5,800 4,000 1,900	
22.0 24.0 24.0 25.0 25.0 25.0 25.0 25.0 27.0 28.1 27.0 28.1 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	Or 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	520 480 475 480 520 475 122 160 150 117 160 175 170		2,800 13,000 1,900 1,900 13,000 23,000 23,000 4,000 1,900	7,000 2,700 11,000 3,300 19,000 3,200 1,500 19,000 44,000 3,700
24.0 7.8 20.0 7.8 23.0 7.9 23.0 7.9 24.0 7.3 24.0 7.3 25.5 7.5 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 1.2 20.0 8.1 20.0 8.1 1.0 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.2 20.0 8.3 20.0	on 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	480 475 480 520 475 475 120 110 110 117 117 117 117 117 117 117 11		13,000 13,000 1,900 1,900 13,000 23,000 5,800 1,900	2,700 11,000 3,300 19,000 5,200 1,500 19,000 44,000 3,700
20.0 7.8 2 23.0 8.1 1 29.0 7.9 2 19.5 7.9 2 29.0 7.8 2 29.0 21.0 7.3 0 24.0 7.8 1 24.5 24.0 7.8 1 24.5 26.0 8.1 1 25.5 8.4 2 25.5 8.4 2 25.5 8.1 0 20.0 8.1 1 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.1 0 20.0 8.2 2	Creek 22 22 22 22 22 22 22 22 22 22 22 22 22	475 480 520 475 475 100 110 117 117 117 117 117 117 117 117		13,000 2,600 1,900 13,000 23,000 5,800 4,000 1,900	11,000 3,300 19,000 5,200 1,500 19,000 44,000 3,700
23.0 19.5 7.9 7.9 2 19.5 19.0 19.0 Site 9Northkill Cree 24.0 7.3 24.0 7.3 24.0 7.8 24.0 7.5 20.0 8.1 11 20.0 8.1 11 20.0 8.1 11 20.0 8.1 11 20.0 8.1 11 20.0 8.1 11 20.0 8.1 11 20.0 8.1 11 20.0 8.1 11 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 8.1 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	Or 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	480 520 475 475 Route 183 150 117 160 150 175 170 180		2,600 6,300 1,900 23,300 23,000 5,800 4,000	3,300 19,000 5,200 1,500 19,000 44,000 3,700
-77 19.5 7.9 2 -77 19.0 51te 9Northkill Cree -77 21.0 7.3 0 -77 24.5 7.8 1 -77 24.5 7.5 2 -77 20.0 8.1 1 -77 20.0 8.1 0 -77 20.0 8.1 -77 20.0 8.1 -77 20.0 8.1 -77 20.0 8.1 -77 20.0 8.1 -77 20.0 8.2 -77 20.0 8.2 -77 20.0 8.2 -77 20.0 8.2 -77 20.0 8.2 -77 20.0 8.2	Oreek 22	520 475 475 Route 183 150 117 160 150 175 170		6,300 1,900 23,300 23,000 5,800 4,000 1,900	19,000 5,200 3,500 1,500 3,100 44,000 3,700
19.0	Creek 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	475 Route 183 122 160 150 117 160 175 170 180		1,900 2,300 13,000 23,000 5,800 4,000 3,600	5,200 3,500 1,500 3,100 44,000 3,700
Site 9Northkill Cree 17.0 17.0 24.0 24.5 20.0 25.5 20.0 23.0 19.5 8.1 11.0 20.0 Site 10Little Northkill 24.0 24.0 24.0 26.2	Creek 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Route 183 122 160 150 117 160 150 175 176	0.9 0.9 1.5 4.1 1.2 0.1 1.2	3,300 2,300 13,000 23,000 4,000 3,600	3,500 1,500 3,100 19,000 44,000 3,700
17.0 21.0 24.0 24.5 26.0 26.0 25.5 20.0 23.0 19.5 20.0 8.1 11.0 20.0 Site 10Little Northkill 24.0 24.0 24.0		122 160 150 117 150 175 176	01410	3,300 13,000 23,000 5,800 4,000 1,900	3,500 1,500 3,100 19,000 44,000 3,700
21.0 24.0 24.5 26.0 26.0 25.5 20.0 23.0 19.5 20.0 Site 10Little Northkill 24.0 24.0 24.0 24.0		160 1150 117 150 175 176	00112	2,300 13,000 23,000 4,000 1,900	1,500 3,100 19,000 44,000 3,700
24.0 24.5 20.0 24.5 20.0 25.5 20.0 23.0 19.5 8.1 11.0 20.0 Site 10Little Northkill 24.0 24.0 24.0 24.0		150 117 160 150 175 176	00.1.00.1.00.000.0000.0000.0000.0000.0000.0000.0000	13,000 23,000 5,800 4,000 1,900	3,100 19,000 44,000 3,700 3,100
24.5 20.0 25.5 20.0 23.0 19.5 20.0 8.1 11.0 20.0 Site 10Little Northkill 24.0 24.0 24.0 26.2		117 160 150 175 170	1.001.001.001.001.001.001.001.001.001.0	23,000 5,800 4,000 3,600	19,000 44,000 3,700 3,100
20.0 25.5 20.0 20.0 8.1 19.5 19.5 20.0 8.1 17.0 17.0 20.0 20.0 20.0 24.0 8.2 2		160 150 175 170 180	1.1	5,800 4,000 3,600 1,900	3,700
25.5 20.0 23.0 8.1 19.5 20.0 8.0 17.6 0 8.1 0 17.0 17.0 17.0 24.0 24.0 8.2 2		150 175 170 180	1.1	4,000 3,600 1,900	3,100
20.0 23.0 19.5 20.0 8.1 7.6 0 8.1 7.6 0 8.1 0 17.0 17.0 17.0 17.0 20.0 20.0 24.0 24.0 24.0		175 170 180	1.2	3,600	3,100
23.0 19.5 20.0 20.0 8.1 0 17.0 17.0 20.0 24.0 8.2 2.2		170	7 0	1.900	
19.5 20.0 8.1 0 8.1 0 17.0 17.0 20.0 20.0 24.0 8.2 2		180	1.0		2,200
20.0 Site 10Little Northkill 17.0 20.0 7.9 1.24.0 8.2 2.2		160	0.3	2,200	8,600
17.0 7.1 0 20.0 7.9 1 24.0 8.2 2		700	0.2	3,400	15,000**
17.0 20.0 24.0 8.2		Creek Upstream	of Bernville		
20.0 24.0 8.2	7.1 0	190	0.0	1,800	87,000**
24.0	7.9 1	235	9.0	3,700	007.9
200	8.2 2	180	9.0	3,700	6,200
6.1		172	7.0	19,000	> 50,000
22.0		210	9.0	3,500	2,600
1		200	0.4	800	2,100
19.0		245	0.8	2,500	3,200
24.0 7.6		228	0.2	1,000**	4,300
9-07-77 19.0 7.5 0		240	7.0	2,400	5,500
7.8		240	0.3	830	2,700
* Severity code 0=None, 1=Mild, 2=Moderate,	2=Moderate,	3=Serious,	4=Severe		
on no					

Table 4. -- Physical and Bacteriological Analyses -- Continued

Fecal Streptococci (col./100mL)		4,800	3,200	4,800	5,200	3,800	006.7	4,200	3,800	12,000		>50,000	2,100	7,600	35,000	4,000	32,000	4,100	3,600	13,000	1,700
Fecal coliform (col./100mL)		6,000	13,000	37,000	2,900	1,900	13,000	1,000**	970	000.9		1,300	2,100	11,000	33,000	2,500	1,700	3,600	3,400	4,500	2,600
FC/FS	Pleasant	1.3	4.1	7.7	9.0	0.5	2.7	0.2	0.3	0.5	Bridge	<0.03	1.00	2.3	6.0	9.0	0.1	0.9	0.9	0.4	1.5
Specific conductance (micromhos per centimeter at 25°C)	Creek at Mt. Ple	304	255	305	340	300	300	298	320	300	Peacock	340	320	265	242	300	350	360	365	350	355
Turbidity*	Licking Cree		٠,	0	0	0	0	1	0	0	g Creek at	1	2	1	8	2	0	1	1	1	1
Hq (siinu)	=	7.4	7.8	7.8	7.9	1	7.8	7.9	7.9	7.6	12Spring	7.6	7.8	8.1	7.6	7.9	1	8.0	8.0	7.7	7.7
Discharge (2\£ 3\S)	Site No.										Site	20		17		15		16			
Water temperature (OC)		14.0	19.5	20.0	19.0	19.0	17.0	24.0	17.5	15.0		16.0	17.5	22.0	22.0	20.0	23.0	19.0	23.0	19.0	18.5
e Day Yr		6-01-77	6-29-77	7-13-77	7-26-77	8-10-77	8-23-77	8-30-77	9-07-77	9-21-77		6-01-77	6-15-77	6-29-77	7-13-77	7-26-77	8-10-77	8-23-77	8-30-77	9-07-77	9-21-77

	١,
- 0	H
-	ì
-	
-	d
-	1
10	
-	i
0	
C	
34	
03	ı
***	1
-	1
6.1	
-	1
10	ij
-	
×	
0)	ij
(U)	ij
1	il
13	ì
-	
-	d
-	d
40	H
*	H
4	ķ.
0	ı
- 00	1
0	ě
	ď
7	
- :	1
٠.	J
(4)	H
-	۱
Site 13 Hospital Creek at Wernersville	J
0	ı
-	į
-	ı
-0	1
43	ı

6-15-77 6-29-77 7-13-77	16.0			7	017	7.0	116.6	11111
6-29-77 7-13-77	16.0		,	1	1			2006
6-29-77			7.7	1	275	2.1	8,800	4,200
7-13-77	20.5		7.5	1	210	6.0	1,300	1,400
	21.0		7.6	3	230	1.5	26,000**	17,000
7-26-77	20.5		4.8	1	280	0.8	2,000	2,600
8-10-77	27.5		,	0	290	0.1	006	12,000
8-23-77	19.0		8.0	0	275	0.3	200	1,700
8-30-77	23.5		8.0	0	295	5.0	1,400	000.4
9-07-77	19.5		7.7	0	325	0.1	**007	4,300
9-21-77	13.0		7.4	0	305	0.5	1,500	3,000
			Site 14Spring	ing Creek	near	Robesonia		
6-01-77	16.0		7 7	c	578	c	0 800	**000 96
6-15-77	15.5		7.7) -	335		16,000	14,000
6-29-77	18.0		7.6		270	1.2	13,000	11,000
7-13-77	19.5		7.6	8	249	9.4	73,000	16,000
7-26-77	17.5		8.2	8	360	0.3	9,000	35,000
8-10-77	22.5			0	410	0.3	1,800	2,600
8-23-77	16.0		4.8	2	375	0.2	22,000	95,000
8-30-77	18.0		8.0	2	420	0.2	5,700	29,000
9-07-77	15.0		7.8	1	435	9.0	11,000	20,000
9-21-77	14.5		7.6	0	420	>0.1	> 20,000	36,000
		Site	Site 15Tulpehocken	ocken Creek	at	Rebers Bridge		
6-01-77	16.0	141	7.6	2	450	0.0	730	28,000
6-15-77	17.0	122	8.3	3	085	0.8	2,100	2,700
6-29-77	22.0	110	7.9	2	325	< 0.5	9,300	19,000
7-13-77	22.5	377	7.5	3	250	0.1	48,000	> 100,000
7-26-77	20.5	54	7.5	3	380	0.1	30,000	280,000
8-10-77	24.5	42	8.0	2	430	7.0	×*007	1,600**
8-23-77	20.0	85	8.0	2	385	9.0	12,000	20,000
8-30-77	24.0	28	8.3	2	415	0.8	800	1,000
9-07-77	22.0	62	8.1	2	065	1.6	1,600	1,000
9-21-77	19.5	89	7.7	2	405	9.	1,700	2,700
* Severity	code O=None,	1=Mild,	2=Moderate,	3=Serious,		4=Severe		
** 2000	Poort continue							

Influence of Precipitation, Discharge and Retention Time on Bacteria Populations

Precipitation and time of sampling are superimposed on the hydrograph for Tulpehocken Creek near the Blue Marsh dam site (Sta 01470960, Site 15) in figure 2. There were at least four storms of one inch or more during the study period. Sampling coincided with one such storm on July 13. It is noteworthy that on this date the samples from all stations contained bacteria populations far in excess of the mean.

Figure 3 shows the relation between discharge and fecal coliform density at site 15. The slope of the line indicates that even a small increase in discharge results in a large increase in the fecal coliform population. Better definition of the relation would be achieved by sampling frequently through the rise and fall of the stream during a storm.

Figure 4 depicts the "dieoff" curve of selected enteric bacteria in storm water stored at 20°C (Geldreich and Kenner, 1969). The application of the curve to the fecal coliform data collected at site 15 shows that the maximum density of 48,000 colonies per 100 mL will require a retention time of 12 days to be reduced to less than 200 colonies per 100 mL. On the basis of the relation between discharge and theoretical retention time for Blue Marsh Lake (fig. 5) (Barker, 1977), it appears that the 12 days retention necessary to reduce the population to acceptable densities will be met except when the discharge from the lake following a rainfall exceeds about 480 ft³/s.

Fecal Coliform/Fecal Streptococci Ratio

A meaningful use of fecal streptococci measurements in assessing water quality has been through the correlation with the fecal coliform data. As reported by Geldreich and Kenner (1969), fecal coliform bacteria are at least 4 times more numerous than fecal streptococci in the feces of man. Conversely, fecal streptococci are at least 1.4 times more numerous than fecal coliform in farm animals, dogs, cats, and rodents.

In other words, a FC/FS ratio of 4 or greater indicates the presence of human waste while a ratio of 0.7 or less is indicative of animal wastes. Ratios between 0.7 and 4 probably represent a mixture of wastes. A ratio between 2 and 4 suggests a preponderance of human waste, and a ratio between 0.7 and 1.0 suggests a preponderance of livestock and poultry waste. A FC/FS ratio between 1 and 2 is difficult to interpret and may require sampling closer to the source. The correlations of FC/FS are most meaningful when applied to stream samples collected during the initial 24-hour contact with the receiving water.

Figure 2. -- Hydrograph for Tulpehocken Creek and precipitation near Blue Marsh, Dam site,

Figure 3.--Relation between fecal coliform density and discharge at Tulpehocken Creek at Rebers Bridge

Figure 4.--Persistence of selected entric bacteria in storm water stored at 20°C (after Geldreich and Kenner, 1969).

Figure 5.--Relation between discharge and theoretical retention in Blue Marsh Lake (Barker, 1977).

Table 5.--Frequency of fecal coliform/fecal streptococci ratios at 15 stream sites in the Tulpehocken Creek Basin

	Su	iggests		Sugges	sts
Site	Non-hu	man source	Unknown	Human so	
No.	0.7	0.7-1	1-2	2-4	4
1	5	0	2	2	1
2	2	2	4	1	1
3	4	4	o	2	0
4	0	6	3	1	0
5	3	3	2	1	1
6	6	0	2	1	1
7	4	2	1	3	0
8	4	3	3	0	0
9	4	1	4	0	1
10	9	1	o	0	0
11	5	0	1	2	2
12	4	4	1	1	0
13	6	2	1	1	0
14	7	0	2	0	1
15			_1	_0	_0
TOTAL	70	30	27	15	8

The correlations of fecal coliform to fecal streptococci at all 15 sampling sites (Table 5) support the belief that the majority of fecal waste entering the Tulpehocken Creek basin is from non-human sources. The fact that most sites have FC/FS ratios that vary from less than 0.7 to 4 or greater indicates a mixed population that, at times, contains a high proportion of human waste.

Summary and Conclusion

An investigation of the bacteriological content of Tulpehocken Creek basin reveals that (1) the current EPA and Commonwealth of Pennsylvania water-quality standards for bathing waters are being exceeded at some sites, (2) the non-point sources of enteric bacteria are the dominant factor in the excessive counts observed, and (3) the majority of enteric bacteria are of non-human origin.

It was further noted that Mill Creek near Sheridan, Tulpehocken Creek near Womelsdorf, Mill Creek near Kricks Mill, and Spring Creek near Robesonia frequently had high bacterial densities. Dairy cattle, horses, and other livestock are believed to be the dominant sources of these bacteria because pastures are commonly adjacent to streams throughout the basin.

Control of drainage from livestock areas, fencing of creek banks, and diligent monitoring of sewage treatment plants for assessing and correcting deficiencies are necessary in reducing the enteric bacterial populations in the Tulpehocken Creek basin to acceptable levels.

Based upon present enteric bacteria populations, estimated rate of die-off, and theoretical retention time in Blue Marsh Lake, a reduction in bacteria densities to meet water-quality standards may be expected during the June-to-September recreation season except during periods of intense rainfall and subsequent runoff.

Additional studies following closure of the dam would permit measurement of actual rates of bacterial survival during various hydrologic conditions which did not occur during this study. Variations of bacterial populations during storms should be documented. Such information could be used to correlate the populations observed with controlling variables indicated by data of this study.

SELECTED REFERENCES

- American Public Health Association and others, 1976, Standard methods for the examination of water and wastewater, 14th edition, American Public Health Association, 1193 p.
- Barker, J. L., 1977, Water-quality study of Tulpehocken Creek, Berks County, Pennsylvania, Prior to impoundment of Blue Marsh Lake, U.S. Geological Survey Water Resources Investigation 77-55, 59 p.
- Beane, Marjorie, and others, 1977, Assessing non-point source pollution: A detailed study of rural watershed in the Coastal Plain of Maryland, Chesapeake Bay Center for environmental studies, Smithsonian Institution, 59 p.
- Biesecker, J. E., Lescinsky, J. B. and Wood, C. R., 1968, Water resources of the Schuylkill River basin, Pennsylvania, Water Resources Bull No. 3, 198 p.
- Biological analysis of water and wastewater, Application Manual AM 302, Millipore Corps, 1973, 84 p.
- Commonwealth of Pennsylvania, Title 25, Rules and Regulations, Part 1,
 Department of Environmental Resources sub part D, Environmental health
 and safety, article III, Recreational facilities, chapter 193, Public
 bathing places, May 1977
- Crop and Livestock Annual Summary, 1976, Statistical Reporting Service, U.S. Department of Agricultural/Pa. Department of Agricultural, 70 p.
- Geldreich, Edwin E., 1966, Sanitary Significance of Fecal Coliform in the environment. U.S. Department of Interior, FW PCA, 122 p.
- Geldreich, Edwin E. and Kenner, Bernard A., 1969, Concepts of fecal streptococci in stream pollution, Journal WPCF, V. 41, no. 8, 16 p.
- U.S. Environmental Protection Agency, 1976, Quality criteria for water, EPA-440/9-76-023, 501 p.