Exercice 1

- 1) Soient a_1,a_2,\ldots,a_n des réels positifs. Montrer que si $\sum_{k=1}^n a_k=0$ alors $\forall k\in [\![1,n]\!],\,a_k=0$
- 2) Soient $x_1, x_2, \dots x_n$ des réels tels que $\sum_{k=1}^n x_k = n$ et $\sum_{k=1}^n x_k^2 = n$. Montrer que pour tout $k \in [\![1,n]\!], \ x_k = 1$.

Exercice 2 -

Déterminer si chacun des ensembles suivants admet une borne supérieure/inférieure ou un maximum/un minimum

$$1) \ A = \left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$$

3)
$$C = \{x \in \mathbb{R} \mid x^2 < 2\}$$

4) $D = \{x + y \mid x \in]3, 5[, y \in]-1, 1]\}$

$$2) \ B = \left\{ \frac{n-1}{n+1} \mid n \in \mathbb{N} \right\}$$

Exercice 3

Voir correction —

Montrer que $1 + |xy - 1| \le (1 + |x - 1|)(1 + |y - 1|)$.

Exercice 4

Résoudre les équations et inéquations suivantes :

1)
$$|x-6| \le \frac{1}{2}$$

4)
$$\frac{1}{x+3} > x-1$$

7)
$$4\exp(2x) - 4\exp(x) + 1 = 0$$

2)
$$|x+1| + |x-3| = 5$$

$$5) \ \frac{1}{x^2 - 4} \le 3$$

$$8) \ \sqrt{x-1} = \sqrt{1-x}$$

9) $\sqrt{3x-2} = x$

3)
$$|x-4| + |x| = 1$$

6)
$$x^3 + x^2 - x - 1 = 0$$

*
Exercice 5

— Voir correction —

Soient a et b deux nombres réels. Montrer que

$$\max(a,b) = \frac{a+b+|a-b|}{2}$$
 et $\min(a,b) = \frac{a+b-|a-b|}{2}$

- Exercice 6 — Voir correction -

Soient a et b deux réels positifs. On appelle **moyenne géométrique** de a et de b le nombre $g(a,b)=\sqrt{ab}=(ab)^{1/2}$, on appelle moyenne harmonique de a et de b le nombre $h(a,b)=\frac{2}{\frac{1}{a}+\frac{1}{b}}$ et on appelle moyenne quadratique de a

et de b le nombre $q(a,b) = \sqrt{\frac{a^2 + b^2}{2}}$.

La moyenne arithmétique de a et de b est le nombre noté $m(a,b)=\frac{a+b}{2}$.

Le but de cet exercice est de montrer que quels que soient les réels positifs a et b on a

$$h(a,b) \le g(a,b) \le m(a,b) \le q(a,b)$$

- 1) Montrer que pour tous réels $a, b \in \mathbb{R}$, on a $|ab| \leq \frac{1}{2}(a^2 + b^2)$.
- 2) En déduire l'inégalité (2)
- 3) Déduire de cette inégalité l'inégalité (1)
- 4) Démontrer l'inégalité (3)

Exercice 7

— Voir correction —

Déterminer l'ensemble des réels x tels que E(-x) = -E(x).

* Exercice 8 — Voir correction —

Soit x un réel fixé. Déterminer $\lim_{n\to +\infty} \frac{E(nx)}{n}$ où E(x) désigne la partie entière de x.

- a) Montrer que $\forall x \in \mathbb{R}, E(x+1) = E(x)$
- b) Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, E\left(\frac{E(nx)}{n}\right) = E(x)$
- c) Montrer que $\forall x \in \mathbb{R}, E(x) + E\left(x + \frac{1}{2}\right) = E(2x)$

Exercice 10 — Voir correction —

Écrire $\frac{3}{4-2\sqrt{7}}$ et $\frac{8+3\sqrt{2}}{4+\sqrt{2}}$ sans racine au dénominateur.

Exercice 11 — Voir correction —

Déterminer la limite de la suite $u_n = \sqrt{n+1} - \sqrt{n}$.

Exercice 12 — Voir correction —

Calculer $\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}$

Exercice 13 — Voir correction —

Simplifier $\sqrt{1+2^{2/3}+2^{-2/3}}$.

Exercice 14 — Voir correction —

Déterminer la limite de $u_n = \frac{2^{n^3}}{3^{n^2}}$

Résoudre dans $\mathbb R$ l'équation $x^{x/2} = \left(\frac{x}{2}\right)^x$ après avoir déterminé l'ensemble de définition de cette équation.

Correction des exercice

Correction de l'exercice 1 :

- 1) Soient a_1, a_2, \ldots, a_n des réels positifs. Supposons qu'il existe $k_0 \in [\![1,n]\!]$ tel que $a_{k_0} > 0$. Alors $\sum_{k=1}^n a_k \ge a_{k_0} > 0$ car tous les termes sont positifs, donc $\sum_{k=1}^n a_k \ne 0$. Par contraposée, si $\sum_{k=1}^n a_k = 0$, alors $\forall k \in [\![1,n]\!]$, $a_k = 0$.
- 2) Pour tout $k \in [1, n], (x_k 1)^2 \ge 0.$ De plus,

$$\sum_{k=1}^{n} (x_k - 1)^2 = \sum_{k=1}^{n} x_k^2 - 2\sum_{k=1}^{n} x_k + \sum_{k=1}^{n} 1$$
$$= n - 2n + n$$

donc pour tout $k \in [1, n]$, $(x_k - 1)^2 = 0$ d'après la question précédente. Ainsi, pour tout $k \in [1, n]$, $x_k - 1 = 0$ donc $x_k = 1$.

Correction de l'exercice 2 :

- 1) A est minoré par 0 et majoré par 1, donc il admet une borne supérieure et une borne inférieure. $1 \in A$ car $1 = \frac{1}{1}$, et $\forall n \in \mathbb{N}^*$, $\frac{1}{n} \le 1$ donc 1 est le maximum de A. Par contre $0 \notin A$ et pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}^*$ tel que $\frac{1}{n_0} < \varepsilon$, donc 0 est le plus grand minorant de A, c'est donc la borne inférieure de A mais A n'admet
- 2) La fonction $f: x \mapsto \frac{x-1}{x+1}$ est dérivable sur $[0, +\infty[$ comme quotient de fonctions dérivables et pour tout $x \in [0, +\infty[$, $f'(x) = \frac{x+1-(x-1)}{(x+1)^2} = \frac{2}{(x+1)^2}$, donc $f'(x) \ge 0$.

Ainsi, f est croissante, donc la suite u définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n-1}{n+1}$ est croissante. De plus, $u_0 = -1$ et $\lim_{n \to +\infty} u_n = 1$, donc pour tout $n \in \mathbb{N}$, $-1 \le u_n \le 1$.

 $\stackrel{n\to +\infty}{B}$ est donc minoré et majoré, donc admet une borne supérieure et une borne inférieure.

 $-1 = \frac{0-1}{0+1}$ donc $-1 \in B$, et $\forall n \in \mathbb{N}, u_n \ge -1$ car (u_n) est croissante, donc B admet -1 comme minimum.

Montrons que 1 est la borne supérieure de B mais que ce n'est pas le maximum. Pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $\frac{n-1}{n+1} > 1 - \varepsilon$ car $\lim_{n \to +\infty} u_n = 1$. Ainsi, 1 est la borne supérieure de B.

En revanche B n'admet pas 1 comme maximum. En effet, supposons qu'il existe $n \in \mathbb{N}$ tel que $\frac{n-1}{n+1} = 1$, alors n-1=n+1 donc -1=1 ce qui est faux.

- 3) $C =]-\sqrt{2}, \sqrt{2}[$ donc C admet $\sqrt{2}$ comme borne supérieure et $-\sqrt{2}$ comme borne inférieure, mais ces bornes n'appartiennent pas à C donc C n'admet pas de minimum ni de maximum.
- 4) Montrons que D =]2, 6[:

Soit $z \in]2, 6[$, alors si $\in]3, 5[$, on pose x = z et y = 0 et on a z = x + y avec $x \in]3, 5[$ et $y \in]-1, 1[$. Si $z \in]2, 3[$, alors $0 < \frac{z-2}{2} \le \frac{1}{2}$ donc $3 + \frac{z-2}{2} \in]3; 3, 5[$. On pose $x = 3 + \frac{z-2}{2}$ et $y = z - x = \frac{z+2}{2} - 3$. Alors, comme $2 < z \le 3$ on a $2 < \frac{z+2}{2} \le \frac{5}{2}$ donc $-1 < y \le -\frac{1}{2}$.

On a donc bien x + y = z avec $x = \in]2, 3[$ et $z \in]-1, 1[$.

De même, si $z \in [5, 6[$, on pose $x = 5 - \frac{6-z}{2}$ et y = z - x, on vérifie qu'on a bien $x \in]3, 5[$ et $y \in]-1, 1[$.

Ainsi, $]2,6[\subset D.$

Réciproquement, si $z \in D$, alors z = x + y avec 3 < x < 5 et -1 < y < 1 donc 2 < x + y < 6 et finalement $z \in]2, 6[$ donc $D \subset]2, 6[$.

Ainsi, D admet 2 comme borne inférieure et 6 comme borne supérieure, mais D n'admet pas de minimum ni de maximum.

Correction de l'exercice 3 : Pour tout $x, y \in \mathbb{R}$, on a d'une part

$$(1+|x-1|)(1+|y-1|) = 1+|x-1|+|y-1|+|(x-1)(y-1)|$$

et d'autre part

$$1 + |xy - 1| = 1 + |(x - 1)(y - 1) + x + y - 2|$$

$$=1+|(x-1)(y-1)+x-1+y-1|$$

$$\leq 1+|(x-1)(y-1)|+|x-1|+|y-1|$$
 par inégalité triangulaire
$$\leq (1+|x-1|)(1+|y-1|)$$

Correction de l'exercice 4:

1)
$$|x-6| \le \frac{1}{2} \iff 6 - \frac{1}{2} \le x \le 6 + \frac{1}{2} \text{ donc } S = [\frac{11}{2}, \frac{13}{2}]$$

- 2) On raisonne par disjonction de cas selon les valeurs possibles de x.
 - Si x < -1, alors x < 3 donc |x+1| = -x 1 et |x-3| = -x + 3. Ainsi, |x+1| + |x-3| = -x - 1 - x + 3 = 2 - 2x.
 - $2-2x=5 \iff x=-\frac{3}{2}$ ce qui est compatible avec l'hypothèse x<-1.
 - Si $-1 \le x \le 3$, alors |x+1| = x+1 et |x-3| = -x+3.

Ainsi, |x+1| + |x-3| = x + 1 - x + 3 = 4, donc l'équation |x+1| + |x-3| = 5 n'a aucune solution dans [-1, 3].

— Si x > 3, alors x > -1 et on a |x + 1| = x + 1 et |x - 3| = x - 3.

Ainsi |x+1| + |x-3| = 2x - 2

 $2x-2=5 \iff x=\frac{7}{2}$ ce qui est compatible avec l'hypothèse x>3.

Finalement, $S = \{-\frac{3}{2}, \frac{7}{2}\}$

- 3) Si x < 0, alors |x-4| = -x+4 et |x| = -x, donc |x-4| + |x| = -2x+4. $-2x+4=1 \Longleftrightarrow x=\frac{3}{2}$, donc l'équation n'a pas de solution dans] $-\infty$, 0[.
- 4) Si $0 \le x < 4$, alors |x-4| + |x| = -x + 4 + x = 4, donc l'équation n'admet aucune solution dans [0,4]
- 5) Si $x \ge 4$, alors |x-4| + |x| = x 4 + x = 2x 4.

 $2x-4=1 \iff x=\frac{5}{2}$. Ainsi l'équation n'admet aucune solution dans $[4,+\infty[$.

Finalement, $S = \emptyset$.

6)
$$\frac{1}{x+3} > x-1 \Longleftrightarrow \frac{1}{x+3} + 1 - x > 0 \Longleftrightarrow \frac{1 + (1-x)(x+3)}{x+3} > 0 \Longleftrightarrow \frac{4-2x-x^2}{x+1} > 0$$

On étudie le signe de l'expression $\frac{4-2x-x^2}{x+3}$ sur $\mathbb{R}\setminus\{-3\}$:

Le discriminant de $4 - 2x - x^2$ est $\Delta = 4 + 4 \times 4 = 20$.

Les racines de ce polynôme sont donc $x_1 = \frac{2 - \sqrt{20}}{-2} = -1 + \sqrt{5}$ et $x_2 = \frac{2 + \sqrt{20}}{-2} = -1 - \sqrt{5}$

x	$-\infty$ $-1-\sqrt{5}$			-3	$-1+\sqrt{5}$			$+\infty$
$\boxed{4-2x-x^2}$	_	Ó	+		+	0	_	
x+3	_		_	0	+		+	
$\frac{4 - 2x - x^2}{x + 3}$	+	0	_		+	0	_	

Finalement
$$S =]-\infty, -1-\sqrt{5}[\cup]-3, -1+\sqrt{5}[$$

7)
$$\frac{1}{x^2 - 4} \le 3 \iff \frac{1 - 3(x^2 - 4)}{x^2 - 4} \le 0 \iff \frac{13 - 3x^2}{x^2 - 4} \le 0$$

On a
$$13 - 3x^2 = 0 \iff x = -\sqrt{\frac{13}{3}}$$
 ou $x = \sqrt{\frac{13}{3}}$ et $x^2 - 4 = 0 \iff x = -2$ ou $x = 2$.

Ainsi, on a le tableau de signe suivant :

x	$-\infty$		$-\sqrt{\frac{13}{3}}$		-2		2		$\sqrt{\frac{13}{3}}$		+∞
$13 - 3x^2$		_	0	+		+		+	Ö	_	
$x^2 - 4$		+		+	Ö	_	0	+		+	
$\frac{13 - 3x^2}{x^2 - 4}$		_	0	+		_		+	0	_	

Finalement
$$S =]-\infty, -\sqrt{\frac{13}{3}}]\cup]-2, 2[\cup[-\sqrt{\frac{13}{3}}, +\infty[.$$

- 8) $x^3 + x^2 x 1$ s'annule pour x = 1 donc il existe une factorisation de la forme $x^3 + x^2 x 1 = (x 1)(ax^2 + bx + c)$. On trouve a = 1, b = 2, c = 1, donc $x^3 + x^2 x 1 = (x 1)(x^2 + 2x + 1) = (x 1)(x + 1)^2$. Ainsi, $x^3 + x^2 x 1 = 0 \iff x = 1$ ou x = -1.
- 9) $4e^{2x} 4e^x + 1 = 0 \iff (2e^x 1)^2 = 0 \iff 2e^x = 1 \iff e^x = \frac{1}{2} \iff x = -\ln(2).$ Donc $S = \{-\ln(2)\}.$
- 10) L'ensemble de définition de cette équation est $\{x \mid x-1 \geq 0\} \cap \{x \mid 1-x \geq 0\}$. Cette équation est donc définie seulement pour x=1. De plus, x=1 est solution, $\boxed{\mathrm{donc}\ S=\{1\}}$.
- 11) $\sqrt{3x-2}=x$ est définie si $3x-2\geq 0$ donc si $x\geq \frac{2}{3}$. On résout cette équation sur $[\frac{2}{3};+\infty[$. Si $x\geq \frac{3}{2},$ alors $x\geq 0$ donc $\sqrt{3x-2}=x\Longleftrightarrow 3x-2=x^2$. On a $x^2-3x+2=0\Longleftrightarrow x=1$ ou x=2. Comme $1<\frac{3}{2},$ la seule solution est x=2, ainsi $S=\{2\}.$

Correction de l'exercice 6:

1) Pour tous réels $a, b \in \mathbb{R}$, on a $(a-b)^2 \ge 0$ et $(a+b)^2 \ge 0$ donc $a^2+b^2-2ab \ge 0$ et $a^2+b^2+2ab \ge 0$. On en déduit que

$$ab \le \frac{a^2 + b^2}{2} \quad \text{et} \quad -ab \le \frac{a^2 + b^2}{2}$$

autrement dit que

$$|ab| \le \frac{1}{2}(a^2 + b^2)$$

2) Soient $a,b\in\mathbb{R}^+$ deux réels. On pose $a'=\sqrt{a}$ et $b'=\sqrt{b}$. D'après la première question, on a

$$|a'b'| \le \frac{1}{2}(a'^2 + b'^2)$$

Or, $|a'b'| = \sqrt{a}\sqrt{b} = \sqrt{ab}$ et $a'^2 = a$ et $b'^2 = b$ donc

$$\sqrt{ab} \le \frac{1}{2}(a+b)$$

3) Soient a et b deux réels strictement positifs. On pose $a' = \frac{1}{a}$ et $b' = \frac{1}{b}$. Alors $\sqrt{a'b'} = \sqrt{\frac{1}{a} \times \frac{1}{b}} = \frac{1}{\sqrt{ab}}$, et d'après la question précédente on a

$$\sqrt{a'b'} \leq \frac{a'+b'}{2}$$

autrement dit $\frac{1}{\sqrt{ab}} \leq \frac{\frac{1}{a} + \frac{1}{b}}{2}$, et donc

$$\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab}$$

4) Soient a et b deux réels positifs. On a

$$\frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} \Longleftrightarrow \left(\frac{a^2+b^2+2ab}{4} \le \frac{a^2+b^2}{2}\right) \qquad \text{car les fonctions carr\'e et racine carr\'e son stictement croissante sur } \\ \Longleftrightarrow \frac{2a^2+2b^2}{4} - \frac{a^2+b^2+2ab}{4} \ge 0 \\ \Longleftrightarrow \frac{a^2+b^2-2ab}{4} \ge 0$$

Or, $a^2 + b^2 - 2ab = (a - b)^2 \ge 0$ donc par équivalence on en déduit la première inégalité, d'où le résultat.

Correction de l'exercice 7 : Soit x un réel quelconque et soit n = E(x). On a $n \in \mathbb{Z}$ et $n \le x < n+1$, donc $-n-1 < x \le n$. On distingue alors deux cas :

- Si x = n, alors $-x \in \mathbb{Z}$ donc E(-x) = -x = -n = -E(x). Dans ce cas, x est donc solution de E(-x) = -E(x).
- Si x < n, alors -n 1 < x < n donc -n 1 = E(-x). Dans ce cas, $E(-x) = -E(x) \iff -n 1 = -n \iff -1 = 0$ donc x n'est pas solution de l'équation E(-x) = -E(x).

On se trouve dans le premier cas si et seulement si $x \in \mathbb{Z}$, et dans le second cas si et seulement si $x \in \mathbb{R} \setminus \mathbb{Z}$. En conclusion, on a $E(-x) = -E(x) \iff x \in \mathbb{Z}$.

Correction de l'exercice 8 : D'après la définition de la partie entière, on a $E(nx) \le nx < E(nx) + 1$ donc

$$\frac{E(nx)}{n} \le x < \frac{E(nx)}{n} + \frac{1}{n}$$

en observant séparément chaque inégalité, on obtient donc l'encadrement suivant

$$x - \frac{1}{n} < \frac{E(nx)}{n} \le x$$

et puisque $\lim_{n\to+\infty} \left(x-\frac{1}{n}\right)=x$ on en déduit d'après le théorème des gendarmes que $\lim_{n\to+\infty}\frac{E(nx)}{n}=x$, et ce quel que soit le réel x

Correction de l'exercice 9 :

- a) Soit $x \in \mathbb{R}$. On a $E(x) \le x < E(x) + 1$ donc $E(x) + 1 \le x + 1 < E(x) + 2$ donc E(x) + 1 = E(x + 1) par unicité de la partie entière.
- b) On a $E(nx) \le nx$ donc $\frac{E(nx)}{n} \le x$.

Comme la fonction partie entière est une fonction croissante, on en déduit que $E\left(\frac{E(nx)}{n}\right) \leq E(x)$.

De plus, en partant de $E(x) \le x$ on obtient $nE(x) \le nx$. Le membre de gauche et de droite sont des entiers donc en appliquant la fonction partie entière à cette inégalité on obtient

$$nE(x) \le E(nx)$$

donc finalement $E(x) \leq \frac{E(nx)}{n}$. En appliquant une dernière fois la fonction partie entière à cette inégalité on obtient $E(x) \leq E\left(\frac{E(nx)}{n}\right)$ donc finalement $E(x) = E\left(\frac{E(nx)}{n}\right)$ par double inégalité.

c) Soit x un réel et soit k = E(x), alors $k \le x < k + 1$. On distingue deux cas : ou bien $k \le x < k + \frac{1}{2}$ ou bien $k + \frac{1}{2} \le x < k + 1$.

Dans le premier cas, on a $x < k + \frac{1}{2}$ donc $k \le x + \frac{1}{2} < k + 1$ et ainsi $E(x + \frac{1}{2}) = E(x)$, d'où E(x) + E(x + 1) = 2E(x). De plus, on a $2k \le 2x < 2k + 1$ donc E(2x) = 2k ce qui prouve l'égalité voulue.

Dans le second cas, on a $k+1 \le x+\frac{1}{2} < k+\frac{3}{2} \le k+2$ donc $E(x+\frac{1}{2})=k+1$ et ainsi $E(x)+E(x+\frac{1}{2})=2k+1$. De plus, $2k+2 \le 2x+1 < 2k+3$ donc $2k+1 \le 2x < 2k+2$ et ainsi E(2x)=2k+1 ce qui prouve l'égalité voulue. Dans tous les cas on a donc bien $E(x)+E(x+\frac{1}{2})=E(2x)$.

Correction de l'exercice 10:

$$\frac{3}{4-2\sqrt{7}} = \frac{3(4+2\sqrt{7})}{4^2-4\times 7}$$

$$= \frac{12 + 6\sqrt{7}}{-12}$$
$$= \frac{-2 - \sqrt{7}}{2}$$

$$\frac{8+3\sqrt{2}}{4+\sqrt{2}} = \frac{(8+3\sqrt{2})(4-\sqrt{2})}{4^2-2}$$

$$= \frac{32-8\sqrt{2}+12\sqrt{2}-3\times 2}{14}$$

$$= \frac{26+4\sqrt{2}}{14}$$

$$= \frac{13+2\sqrt{2}}{7}$$

Correction de l'exercice 11 : Pour tout entier naturel n,

$$u_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Or $\lim_{n \to +\infty} (\sqrt{n+1} + \sqrt{n}) = +\infty$ par opérations sur les limites, donc $\lim_{n \to +\infty} u_n = 0$ par inverse.

Correction de l'exercice 12 : Posons $A = \sqrt{6 - 2\sqrt{5}} - \sqrt{6 + 2\sqrt{5}}$. On a :

$$A^{2} = 6 - 2\sqrt{5} + 6 + 2\sqrt{5} - 2\sqrt{(6 - 2\sqrt{5})(6 + 2\sqrt{5})}$$

$$= 12 - 2\sqrt{6^{2} - 4 \times 5}$$

$$= 12 - 2\sqrt{16}$$

$$= 4$$

Donc A = -2 ou A = 2. Or 4 < 5 < 9 donc $2 < \sqrt{5} < 3$ d'où $0 < 6 - 2\sqrt{5} < 6 + 2\sqrt{5} < 12$ et donc A < 0. On en conclut que A = -2.

Correction de l'exercice 13 : On peut écrire

$$\sqrt{1+2^{2/3}+2^{-2/3}} = \sqrt{(2^{1/3}+2^{-1/3})^2}$$

$$= 2^{1/3}+2^{-1/3}$$

$$= \sqrt[3]{2} + \frac{1}{\sqrt[3]{2}}$$

$$= \frac{2^{2/3}+1}{2^{1/3}}$$

$$= \frac{2^{4/3}+2^{2/3}}{2}$$

Correction de l'exercice 14:

Pour tout $n \in \mathbb{N}$, $u_n = \exp(n^3 \ln(2) - n^2 \ln(3))$. Or $n^3 \ln(2) - n^2 \ln(3) = n^2 (n \ln(2) - \ln(3)) \xrightarrow[n \to +\infty]{} +\infty$ par opérations. Donc par composition, $\lim_{n \to +\infty} u_n = +\infty$.

Correction de l'exercice 15:

Cette équation est définie seulement pour x > 0. On résout donc sur $]0; +\infty[$.

$$x^{x/2} = \left(\frac{x}{2}\right)^x \iff \exp\left(\frac{x}{2}\ln(x)\right) = \exp\left(x\ln\left(\frac{x}{2}\right)\right)$$

$$\iff \exp\left(\frac{x}{2}\ln x\right) = \exp\left(x\ln x - x\ln 2\right)$$

$$\iff \frac{x}{2}\ln x = x\ln x - x\ln 2$$

$$\iff x\left(\frac{\ln x}{2} - \ln 2\right) = 0$$

Or x > 0 donc

$$\iff \ln x = 2\ln(2)$$

$$\iff x = e^{2\ln 2}$$

$$\iff x = 2^2$$