

Analice Coimbra Carneiro Mariah Alice Pimentel Lôbo Pereira Sofia Botechia Hernandes Victoria Duarte Vieira Azevedo

Aplicação do Polinômio de Taylor na Modelagem de Variáveis Relacionadas à Aplicação Web

Trabalho apresentado à Fundação Escola de Comércio Álvares Penteado, São Paulo, durante o 2º semestre do Bacharelado em Ciência da Computação.

Orientadora: Cristina Machado Correa Leite

São Paulo 2025

1. Contextualização

No contexto do Projeto Interdisciplinar do Segundo Semestre do curso de Ciência da Computação, está sendo criada uma aplicação web cujo objetivo é aumentar a eficiência do credenciamento de gerenciamento de informações relativas ao Projeto Lideranças Empáticas, que é dirigido pelo Centro Universitário da FECAP.

Nesse sentido, esta aplicação visa gerar um apoio no que se refere ao controle de equipes, atividades, metas e resultados; auxiliando a coordenação e promovendo transparência no acompanhamento das ações.

Logo, esse documento tem o objetivo demonstrar a utilidade dessa ferramenta matemática na previsão, simplificação computacional e otimização de processos em projetos sociais.

O documento a seguir detalha a aplicação da Série de Taylor de terceira ordem para modelar e analisar a arrecadação de fundos em kg ao longo do primeiro semestre de 2025.

2. Desenvolvimento

Aplicação da série de Taylor:

Para representar a variação da arrecadação em kg durante o primeiro semestre de 2025, é necessária uma função que capture o comportamento dinâmico do projeto. A arrecadação, que pode ter períodos de crescimento e desaceleração, será modelada como uma função contínua do tempo. Para fins de demonstração e para permitir a aplicação do Teorema de Taylor de terceira ordem, optamos por utilizar um **polinômio de terceiro grau** como função de arrecadação, denotada por f(x).

- (x): representa a variação do tempo, durante o semestre, ou seja, de 1 a 6 meses.
- f(x): representa o valor total acumulado em kg ao final do mês.

Portanto, a função hipotética escolhida para este modelo é:

$$f(x) = -60x^3 + 900x^2 - 3000x + 6000$$

A escolha de um polinômio permite a fácil derivação e integração, tornando-o ideal para a aplicação dos conceitos de cálculo.

Construção do Polinômio de Taylor de Terceira Ordem

O Polinômio de Taylor de terceira ordem $P_3(x)$ será construído em torno de um ponto de expansão, escolhido estrategicamente para demonstrar a aproximação em um ponto central do semestre. Selecionamos o mês 3 (x=3), representando o ponto médio da campanha, para ser o centro da nossa expansão. A fórmula geral do polinômio é:

$$P_3(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x-a)^2}{2!} + \frac{f'''(a)(x-a)^3}{3!}$$

Derivadas da função f(x):

- Primeira derivada

$$f'(x) = -60.3x^2 + 900.2x - 3000$$

$$f'(x) = -180x^2 + 1800x - 3000$$

- Segunda derivada

$$f''(x) = -180.2x + 1800$$

 $f''(x) = -360x + 1800$

- Terceira derivada

$$f'''(x) = -360$$

Na formúla de Bhaskara:

$$\frac{+30 \pm \sqrt{(900) - 4.3.50}}{2.3} \Rightarrow \frac{30 \pm \sqrt{300}}{6} \Rightarrow \frac{30 \pm 10\sqrt{3}}{6}$$

Para as raízes da equação:

$$x1 = \frac{30 - 10\sqrt{3}}{6} \div 2 \Rightarrow \frac{15 - 5\sqrt{3}}{3} \approx 2,11$$

$$x2 = \frac{30 + 10\sqrt{3}}{6} \div 2 \Rightarrow \frac{15 + 5\sqrt{3}}{3} \approx 7,89$$

Vamos utilizar o valor mínimo, que foi encontrado durante a fórmula de bhaskara, para demonstrar a capacidade de aproximação do polinômio.

Substituindo os valores para f(2,11), f'(2,11) e f"(2,11):

1.
$$f(x) = -60(2,11)^3 + 900(2,11)^2 - 3000(2,11) + 6000$$

 $f(x) = -563,63586 + 4006,89 - 6330 + 6000 = 3113,25414$

2.
$$f'(x) = -180(2,11)^2 + 1800(2,11) - 3000$$

 $f'(x) = -801,378 + 3789 - 3000 = -3378$

3.
$$f''(x) = -360(2,11) + 1800$$

 $f''(x) = -759,6 + 1800 = 2559,6$

Dentro da formúla:

$$P_3(x) = 3113,25414 - 3378(x - 2, 11) + \frac{2559,6(x - 2, 11)^2}{2} - \frac{360(x - 2, 11)^3}{6}$$

Utilizando como x o número 6

$$P_3(6) = 3113,25414 - 3378(6 - 2,11) + \frac{2559,6(6-2,11)^2}{2} - \frac{360(6-2,11)^3}{6}$$

$$P_3(6) = -\frac{1002717}{100} + \frac{6399 \times 389^2}{500000} - \frac{60 \times 389^3}{100^3} \approx 5807,05944$$

Comparando com a função original

Para f(6) na função original:

$$f(6) = -60.6^{3} + 900.6^{2} - 3000.6 + 6000$$

$$f(6) = -60.216 + 900.36 - 18000 + 6000$$

$$f(6) = -12960 + 20400$$

$$f(6) = 7440$$

Por meio da comparação foi possível perceber que quando foi utilizado o polinômio houve uma diferença de 1.633, para a diferença de um para o outro.

Visualização Gráfica

O gráfico ilustra a trajetória da arrecadação ao longo dos meses, destacando o ponto de mínimo local dentro do período do semestre e a aproximação da série de McLaurin em torno de (x=0).

Conclusão

Este trabalho apresentou uma função matemática fictícia que simula a arrecadação de uma organização de caridade, servindo como uma ferramenta eficaz para demonstrar a série de Taylor McLaurin. A função foi formada para atender aos requisitos de arrecadação total durante o primeiro semestre de 2025. A análise detalhada das derivadas e a visualização gráfica fornecem uma compreensão clara do comportamento da arrecadação ao longo do tempo, destacando a importância da matemática na modelagem de fenômenos do mundo real.

Referências Bibliográficas:

- https://liderancasempaticas.com