

Symboler	
Större än	>
Större eller lika med	≽
Mindre än	<
Mindre än eller lika med	\leq
Lika med	=
Ej lika med	≠
Ungefär lika med	≈
Intervallet $a \le x \le b$	[a,b]
Intervallet $a < x \le b$]a,b]
Intervallet $x \leq b$]-∞,b]
ger	⇒
ekvivalent	\Leftrightarrow
och	\wedge
eller	
icke	
Om A, så B	$A \rightarrow B$
tillhör	€
Tillhör icke	∉
Delmängd av	⊆
Äkta delmängd av	C
union	U
snitt	\cap
differensmängd	\
Tomma mängden	Ø
Naturliga talen	IN
Hel talen	\mathbb{Z}
Rationella talen	Q
Reella talen	IR .
Komplexa talen	${\Bbb C}$
Absolutbeloppet av x	x
modelus	$A \equiv B \pmod{c}$
Det största heltalet mindre än eller lika med x	[x]
Likformig med	~
Vektor AB	\overline{AB}
Storlek av vektor AB	$ \overline{AB} $

Energi	underflag ga	Mäts i	dvs	Eller (SI)	betydelse
	0	[J]	[J]	[Nm]	viloenergi
	p	[J]	[J]	[Nm]	lägesenergi
	Q	[J]	[J]	[Nm]	värmemängd
E	k	[J]	[J]	[Nm]	rörelseenergi
	A	[Nm]	[J]	[Nm]	arbete
	M	[Nm]	[J]	[Nm]	kraftmoment
	u	[J]	[J]	[Nm]	utträdesenergi
Energiknipen					
F	F	[N]	[J/m]	[N]	kraft
1	γ	[N/m]	[J/m²]	[N/m]	ytspänning
	p	[Pa]	$[J/m^3]$	$[N/m^2]$	tryck
	m	[kg]	[J s2/m2]	$[Ns^2/m]$	Massa, vikt
ϵ	M	[u]	[J s2/m2]	$[Ns^2/m]$	atommassa
C	T	[K]	[J/mol]	[K]	Temperatur
	U	[V]	[J/C]	[Nms/A]	Spänning, potential
	E	[V/m]	[J/Cm]	[N/As]	Elektrisk fältstyrka
		[J/Hz]	[Js]	[Nms]	
Ŧ	P	[W]	[J/s]	[Nm/s]	effekt
1			[J/rymdv]	[Nm/rymdv]	
			[J/rad]	[Nm/rad]	
Enheter					
Г	l, r, d	[m]	[m]	[m]	längd
_	A	[m²]	[m²]	[m²]	Area/yta
	V	$[m^3]$	$[m^3]$	$[m^3]$	volym
C	n	[mol]	[mol]	[mol]	Substansmängd, partiklar
	Q	[C]	[C]	[As]	laddning
	f	[Hz]	[1/s]	[1/s]	frekvens
T	τ	[s]	[s]	[s]	tid
1		[rymdv]	[rymdv]	[rymdv]	rymdvinkel
	V	[rad]	[rad]	[rad]	vinkel

Flöden					
	V	$[m^3/s]$	[m³/s]	$[m^3/s]$	volymflöde
	m	[kg/s]	$[Js/m^2]$	[Ns/m]	Massflöde
Φ	n	[mol/s]	[mol/s]	[mol/s]	partikelflöde
Ψ	I	[Vs]	[Js/C]	[Nm/A]	Magnetiskt flöde
	IA	[T]	[Js/Cm ²]	[N/Am]	Magnetisk flödestäthet
	Q	[A]	[C/s]	[A]	Ström
	V	[m/s]	[m/s]	[m/s]	hastighet
	g,a	[m/s ²]	[m/s²]	$[m/s^2]$	axeleration
V		$[m/s^3]$	$[m/s^3]$	$[m/s^3]$	ryck
	p	[kgm/s]	[Js/m]	[Ns]	Rörelsemängd, impulse
	ω	[rad/s]	[rad/s]	[rad/s]	vinkelhastighet
Kapaciteter					
	c	[J/kg K]	[molm²/s²J]	[m²/s²K]	Specefik värmecapacitet
W	1	[J/kg]	[m²/s²]	$[m^2/s^2]$	Smältvärme, ångbildningsvärme
VV	C	[F]	$[C^2/J]$	$[(As)^2/Nm]$	kapacitans
	ϵ	[F/m]	[C²/Jm]	[(As) ² /Nm ²]	kapacivitet
	G	[S]	$[C^2/Js]$	$[A^2s/Nm]$	Konduktans, ledningsförmåga
	R	$[\Omega]$	[Js/C ²]	$[Nm/A^2s]$	resistans
	Rl	$[\Omega m]$	[Jsm/C ²]	$[Nm2/A^2s]$	resistivitet
M	L	[H]	$[Js^2/C^2]$	$[Nm/A^2]$	induktans
	μ	[Vs/Am]	$[Js^2/C^2m]$	$[N/A^2]$	permabilitet
	η	$[Ns/m^2]$	[Js/m³]	$[Ns/m^2]$	viskositet
Övriga ämnesdata					
0	n	[mol/m³]	[mol/m³]	[mol/m³]	substansdensitet
ρ	m	[kg/m³]	[Js²/m ⁵]	$[N s^2/m^4]$	densitet
faktorer	α	[-]	[mol/J]		längdändring
	γ	[-]	[mol/J]		volymändring
	f	[-]	[-]	[-]	frihetsgrader
	η	[-]	[-]	[-]	verkningsgrad
	M	[u]	$[Js^2/m^2]$	$[Js^2/m^2]$	Atom-/molekyl- vickt
	a	[m ⁶ /Pa kmol²]	[m ⁹ /Jmol ²]	[m ⁸ /Nmol]	vandervalsgaskonstant
	b	[m³/kmol]	[m³/mol]	[m³/mol]	vandervalsgaskonstant
			4	ļ	

	k	[J/K]	[J²/mol]	[Nm/K]	boltzmanskonstant
	R	[J/molK]	[-]	[Nm/molK]	Allmäna gaskonstanten
K	$N_{\scriptscriptstyle A}$	[1/mol]	[1/mol]	[1/mol]	Avagardes tal (konstant)
	G	[Nm²/kg²]			Allmäna gravitationskonstanten
konstanter		*		enhet	
Atommassenhete	en	1.66054 ·	10^{-27}	kg	
Elementarladdni	ingen	1.60218 ·	10^{-19}	С	
Elektronens vilo	omassa	9.1094 · 1	10^{-31}	kg	
Protonens vilom	ıassa	1.6726 · 1	10^{-27}	kg	
Neutronens vilo	massa			kg	
Ljushastigheten vakuum	i			m/s	
Gravitationskons	stanten			Nm²/kg²	
Normalaccelerat	tionen			m/s²	
Plancks konstant	t			Js	
Rydbergs konsta	ant			m ⁻¹	
Boltzmanns kon	stant			J/K	
Konstanten i Stefan- Boltzmanns lag			W/m²⋅K⁴		
Konstanten i Wiens förskjutningslag				m·K 1/s·K	
Faradays konsta	.nt			C/mol	
Avogadros kons	tant			1/mol	
Allmänna gaskonstanten				J/mol·K	
Absoluta nollpui	nkten			°C	
Molvolymen för en ideal gas vid 0 °C och 1atm= 101,3 kPa (NTP)					
Elektriska konsta (kapacitiviteten i vakuum)					
Magnetiska kons (permeabiliteten vakuum)					

Konstanter

konstanter	≈
$\sqrt{2}$	1.41421 35623 73095
π	3.14159 26535 89793
e	2.71828 18284 59045
$\log(e)$	0.43429 44819 03252
ln(10)	2.30258 50929 94046
$1^o = \pi/180 rad$	0.01745 32925 19943
$1 rad = 180^{\circ}/\pi$	57.29577 95130 82321°
Rationella närmevärden till π	
$\frac{22}{7} \approx 3.143$	$\frac{355}{113} \approx 3.1415929$

Aritmetik och algebra

Rationella uttryck

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + ba}{ba} \quad a \cdot \frac{b}{c} = \frac{a}{c} \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b} = \frac{a}{bc} \quad \frac{a}{b} = \frac{ac}{b} \quad \frac{a}{b} = \frac{ad}{bc}$$

(Alla nämnare /= 0.)

Några algebraiska formler

$$(a + b)^{2} = a^{2} + 2ab + b^{2} \text{ kvadreringsregel}$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2} \text{ kvadreringsregel}$$

$$a^{2} - b^{2} = (a + b)(a - b) \text{ konjugatregeln}$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

Rotlagar

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}, \ a \ge 0, b \ge 0$$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}, \ a \ge 0, b > 0$$

$$\sqrt{a^2b} = |a|\sqrt{b}, \ b \ge 0$$

Absolutbelopp

$$|x| = \begin{cases} x & om \ x \ge 0 \\ -x & om \ x < 0 \end{cases}$$

Kvadratkomplettering

$$x^{2} + px = x^{2} + px + \left(\frac{p}{2}\right)^{2} - \left(\frac{p}{2}\right)^{2} = \left(x + \frac{p}{2}\right)^{2} - \left(\frac{p}{2}\right)^{2}$$

Andragradsekvationen

$$x^{2} + px + q = 0$$

$$x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

$$R\ddot{o}tterna \ddot{a}r reella om \left(\frac{p}{2}\right)^{2} - q \ge 0$$

Om ekvationen
$$x^2 + px + q = 0$$
 har rötterna x_1 och x_2 , så är
$$x_1 + x_2 = -p$$

$$x_1 \cdot x_2 = q$$

Potenser

För reella x och y, och posetiva a och b gäller

$$a^{x} a^{y} = a \quad a^{x} b^{x} = (ab)^{x}$$

$$\frac{a^{x}}{a^{y}} = a^{x-1} \quad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

$$(a^{x})^{y} = a \quad a^{1/n} = \sqrt[n]{a}, \, d\ddot{a}r \, n \, \ddot{a}r \, ett \, heltal \ge 2$$

specialfall:
$$a^0 = 1$$
, $a^{-x} = \frac{1}{a^x}$

Talet $a \cdot 10^n$, $d\ddot{a}r 1 \le a < 10$ och $n \ddot{a}r$ ett heltal $\ddot{a}r$ skrivet i grundpotensform.

Potenser

För reella x och y, och posetiva a och b gäller

$$a^{x} a^{y} = a \quad a^{x} b^{x} = (ab)^{x}$$

$$\frac{a^{x}}{a^{y}} = a^{x-} \quad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

$$(a^{x})^{y} = a \quad a^{1/n} = \sqrt[n]{a}, \, d\ddot{a}r \, n \, \ddot{a}r \, ett \, heltal \ge 2$$

specialfall:
$$a^0 = 1$$
, $a^{-x} = \frac{1}{a^x}$

Talet $a \cdot 10^n$, $d\ddot{a}r 1 \le a < 10$ och $n \ddot{a}r$ ett heltal $\ddot{a}r$ skrivet i grundpotensform.

Geometri

Triangel

$$Arean = \frac{bh}{2}$$

Herons Arean =
$$\sqrt{s(s-a)(s-b)(s-c)}$$
,
 $d\ddot{a}rs = \frac{a+b+c}{2}$

vinkelsumma =
$$u + v + x = 180^{\circ} = \pi [rad]$$

sidovinklar = $x + y = 180^{\circ} = \pi [rad]$
Yttervinkelsatsen: $u + v = y$

Rätvinkligtriangel:

$$pythagoras \ sats: \ a^2 + b^2 = c^2$$

se även trigonometri

Fyrkant

Rektangel:

$$Arean = bh$$

$$Omkrets = 2b + 2h$$

Paralellogram:

$$Arean = bh$$

Romb:

$$Arean = bh = \frac{d_1 d_2}{2}$$

Diagonalerna korsar varandra med rätavinklar.

Prallelltrapets:

$$Arean = \frac{h(a+b)}{2}$$

Cirklar

$$Arean = \pi r^2 = \frac{\pi d^2}{4}$$

 $Omkrets = 2\pi r = \pi d$

Cirkelsektor:

$$Bågen = 2\pi r \frac{\alpha}{360} = vr$$

Arean =
$$\pi r^2 \frac{\alpha}{360} = \frac{br}{2}$$

α är vinkeln i grader v är vinkeln i radianer

Cirkelsegment:

$$Arean = \frac{r^2(v - \sin(v))}{2}$$

v är vinkeln i radianer

Prisma

Volymen = Bh, där B är basytans area

Räblock

Volymen = blh

Pyramid

 $Volym = \frac{Bh}{3},$ $d\ddot{a}r B \, \ddot{a}r \, basytans \, ar$

klot(svär)

$$Volym = \frac{4\pi r^3}{3}$$

$$Area = 4\pi r^2$$

Klotsegment:

$$Volym = \frac{\pi h^2 (3r - h)}{3}$$

Buktiga ytans area = $2\pi rh$

Rak cirkulär cylinder

 $Volym = \pi r^{2}h$ $Mantelarean = 2\pi rh$ $Totala arean = 2\pi rh + 2\pi r^{2}$ $= 2\pi r(h+r)$

kon

$$Volym = \frac{\pi r^2 h}{3}$$

 $Mantelarean = \pi rs$

$$Totala arean = \pi rs + \pi r^2 = \pi r(s + r)$$

Stympad kon:

$$Volym = \frac{\pi h}{3} \cdot (R^2 + Rr + r^2)$$

$$Mantelarean = \pi s(R + r)$$

Trigonometri

$\frac{\text{Defenetioner}}{\sin(v) = \frac{c}{c}}$

$$\cos(v) = \frac{1}{2}$$

$$\tan(v) = \frac{c}{2}$$

Eulers formler

$$\sin(v) = \frac{e^{iv} - e^{-iv}}{2i}$$

$$\cos(v) = \frac{e^{iv} + e^{-iv}}{2}$$

$$e^{iv} = \cos(v) + iSin(v)$$

Triangelsatser

Areasatsen: Arean =
$$\frac{bc\sin(A)}{2}$$

Sinussatsen:
$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$
 eller $\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$

Cosinussatsen:
$$a^2 = b^2 + c^2 - 2bc \cdot cos(A)$$

Enkla samband

$$\sin(180^{\circ} - u) = \sin(u)$$

$$\cos(180^{\circ} - u) = -\cos(u)$$

$$\tan(180^{\circ} - u) = -\tan(u)$$

$$\sin(90^{\circ} - u) = \cos(u)$$

$$\cos(90^{\circ} - u) = \sin(u)$$

$$\tan(90^{\circ} - u) = \cot(u) = \frac{1}{\tan(u)}$$

$$\sin(-u) = -\sin(u)$$

$$\cos(-u) = \cos(u)$$

$$\tan(-u) = -\tan(u)$$

Additionssatserna

$$\sin(u+v) = \sin(u)\cdot\cos(v) + \cos(u)\cdot\sin(v)$$

$$\sin(u-v) = \sin(u)\cdot\cos(v) - \cos(u)\cdot\sin(v)$$

$$\cos(u+v) = \cos(u)\cdot\cos(v) - \sin(u)\cdot\sin(v)$$

$$cos(u-v) = cos(u) \cdot cos(v) + sin(u) \cdot sin(v)$$

$$\tan(u+v) = \frac{\tan(u) + \tan(v)}{1 - \tan(u) \cdot \tan(v)}$$

$$\tan(u-v) = \frac{\tan(u) - \tan(v)}{1 + \tan(u) \cdot \tan(v)}$$

Trigonometriska ettan

$$\sin^2(u) + \cos^2(u) = 1$$

ormler för dubblavinkeln		
$\sin(2\mathbf{u}) = 2\sin(u) \cdot \cos(u)$		
$\cos(2u) = \cos^{2}(u) - \sin^{2}(u)$ = $2\cos^{2}(u) - 1 = 1 - 2\sin^{2}(u)$		
$\tan(2\mathbf{u}) = \frac{2\tan(u)}{1 - \tan^2(u)}$		

Formler för halva vinkeln
$$\sin^2(\frac{u}{2}) = \frac{1 - \cos(u)}{2}$$

$$\cos^2(\frac{u}{2}) = \frac{1 + \cos(u)}{2}$$
Uttrycket a sinx + b cosx:

Produktformlerna
$2\cos(u)\cdot\cos(v) = \cos(u-v) + \cos(u+v)$
$2\sin(u)\cdot\sin(v) = \cos(u-v) - \cos(u+v)$
$2\sin(u)\cdot\cos(v) = \sin(u-v) + \sin(u+v)$

Några exakta trigonometriska funktionsvärden

$$a \cdot \sin(x) + b \cdot \cos(x) = \sqrt{a^2 + b^2} \cdot \sin(x + v)$$

$$a \cdot \sin(x) - b \cdot \cos(x) = \sqrt{a^2 + b^2} \cdot \sin(x - v)$$

$$D\mathring{a} \ a > 0, \ b > 0, \ \tan(v) = \frac{b}{a}, \ 0 < v < 90^\circ$$

vinkel		Sin v	Cos v	Tan v
grader	radianer	SIII V	Cos v	Tan v
0^{o}	0	0	1	0
30^{o}	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1
60^{o}	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90^{o}	$\frac{\pi}{2}$	1	0	-
120^o	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
135°	$\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{5\pi}{6}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	-1
150^{o}	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$ $-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$
180^{o}	π	0	-1	0
210^{o}	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
225^{o}	$\frac{5\pi}{4}$	$-\frac{1}{\sqrt{2}}$ $-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	1
240^{o}	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$
270^{o}	$\frac{3\pi}{2}$	-1	0	-
300^{o}	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$

315°	$\frac{7\pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	-1
330^{o}	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$
360^{o}	2π	0	1	0

Gränsvärden

Standard gränsvärden

$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\lim_{x \to 0} \frac{\sin(ax)}{x} = a$	$\lim_{x \to 0} \frac{1 - \cos(x)}{\sin(x)} = 0$
$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^{-x} = \frac{1}{e}$	$\lim_{x \to \pm \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a)$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
$\lim \frac{x^a}{a} = 0 \ (b>1)$	$\lim_{x \to \infty} e^{-px} x^a = 0 \ (p > 0)$	$\lim \frac{\ln(x)^a}{} = 0 \ (c>0)$

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \begin{cases} 0 & om \ n < m \\ \frac{a_n}{b_m} & om \ n = m \\ \pm \infty & om \ n > m \end{cases}$$
 Se även transformler för maclarens och

taylor

$$\lim_{x \to 0} \frac{a^n}{n!} = 0$$

Transformer

Taylorserier

Definition

$$T[f(x)] = \sum_{k=0}^{n} \frac{D^{k}[f(a)] \cdot (x-a)^{k}}{k!}$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^{2}}{2} + \frac{f^{(3)}(a)(x-a^{3})}{6} + \dots$$

Betekningar

Taylorserie: T[f(x)]

Maclaurinserier

Definition

$$M[f(x)] = \sum_{k=0}^{n} \frac{D^{k}[f(o)]x^{k}}{k!} = f(0) + f'(0)x + \frac{f''(0)x^{2}}{2} + \frac{f^{(3)}(0)x^{3}}{6} + \dots$$

Betekningar

MacLaurinserie: $M\left[\ f\left(x
ight) \
ight]$

Funktion	Serie		
e^{x}	$\sum_{k=0}^{\infty} \frac{x^k}{k!}$	$1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$	För alla x
$\sin(x)$	$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^2}{(2k-1)}$	$x - \frac{x^3}{6} + \frac{x^5}{120} - \dots$	För alla x
$\cos(x)$	$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$	$1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots$	För alla x
$\ln(x+1)$	$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$	-1 < <i>x</i> ≤
$\frac{1}{1-x}$	$\sum_{k=0}^{\infty} x^k$	$1 + x + x^2 + x^3 + \dots$	-1 < x < 1
arctan(x)	$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^2}{2k - 1}$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$	-1 < x < 1
$(x+1)^a$		$1 + ax + \frac{a(a-1)x^2}{2} + \frac{a(a-1)}{2}$	-1 < x < 1

Derivatan

Definition

$$D[f(x)] = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Central differenskvot för Numerisk derivering

$$D[f(a)] \approx \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$$

$$d\ddot{a}r 'a' \ddot{a}r \text{ ett n\"{a}rmv\"{a}rde till } x. \text{ dvs, } x = a$$

Betekningar

Förstaderivatan:
$$D[f(x)]$$
, $D\!f(x)$, $rac{dy}{dx}$, $f'(x)$, f'

Andraderivatan:
$$D^2[f(x)]$$
, $D^2f(x)$, $\frac{d^2y}{dx^2}$, $f''(x)$, f''

Räkneregler

$$om f(x) = a(x)$$
, $och a(x) = b(x)$, dvs , $f(x) = a(b(x))g$ äller $D[f(x)] = D[a(x)] \cdot D[b(x)]$, dvs , $ytterderivatan \cdot inerderivatan$

Funktion	Derivata
$\sin(kx)$	$\cos(kx) \cdot k$
$e^{u(x)}$	$e^{u(x)}\cdot u'(x)$
$(u(x))^n$	$n(u(x))^{n-1} \cdot u'(x)$
$\frac{k}{u(x)}$	

Om	V =	$\frac{4\pi r^3}{3}c$	och r à	ir en funi	ktion av t så d	är
	$\frac{dV}{dt}$		$\frac{dr}{dr}$	$=\frac{4\pi}{3}$		

Produktregeln:

$$om f(x) = a(x) \cdot b(x) \quad s\mathring{a}\ddot{a}r$$

$$D[f(x)] = a'(x) \cdot b(x) + a(x) \cdot b'(x)$$

kvotregeln:

$$om \quad f(x) = \frac{a(x)}{b(x)} s \ddot{a} \ddot{a} r$$

$$D[f(x)] = \frac{a'(x) \cdot b(x) - a(x) \cdot b'(x)}{b(x)^2}$$

Funktion	Derivata
x ^a , a är reellt	ax^{a-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
e^{x}	e^{x}
a^x , $a > 0$	$a^{x}\ln(a)$
ln(x), x>0	$\frac{1}{x}$
$\log_a(x), x > 0$	$\frac{\log_a(e)}{x} = \frac{1}{x \ln(a)}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}, -1 < x < 1$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}, -1 < x < 1$
arctan(x)	$\frac{1}{1+x^2}$

Intergralen

Defenition

$$I[f(x)] = D^{-1}[f(x)]$$

Betekningar

Primitivfunktion: I[f(x)], If(x), $\int f(x) dx$, F(x)

Räkneregler

Partiell integration

Om $f(x) = a(x) \cdot b(x)$ då är det möjligt att göra följande $I[f(x)] = a(x) \cdot B(x) - I[a'(x) \cdot b(x)]$

Variabelsubstitution

$$I[f(x)], x = u(y) \Rightarrow y = v(x), x \rightarrow y$$

 $I[f(y) \cdot v'(y)]$

Funktion	Intergral
x^a , $a \neq -1$	$\frac{x^{a+1}}{a+1} + C$
$\frac{1}{x}$	$\ln x + C$
$\frac{1}{x^2}$	$-\frac{1}{x} + C$
$\frac{1}{x-a}$	$\ln x-a + C$
$\sin(x)$	$-\cos(x) + C$
$\sin(kx)$	$\frac{-\cos(kx)}{k} + C$
$\cos(x)$	$\sin(x) + C$
$\cos(kx)$	$\frac{\sin(kx)}{k} + C$
$\sin^2(x)$	$\frac{x - \sin(x) \cdot \cos(x)}{2} + C$
$\cos^2(x)$	$\frac{x + \sin(x) \cdot \cos(x)}{2} + C$
$\frac{1}{1+x^2}$	$\arctan(x) + C$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x) + C$
e^{x}	$e^x + C$
e^{kx}	$\frac{e^{kx}}{k} + C$
$a^{x} = e^{x \ln(a)}$	$\frac{a^x}{\ln(a)} + C$
$\ln(x)$	$x \cdot \ln(x) - x + C$

Fouriertransformen

$\int_{-\infty}^{\infty} f(x) \cdot e^{-i\omega t} dt$	Beteckning fouriertransform: F	$\mathcal{F}[f(t)],\hat{f}(\omega)$
f(t)	$\hat{f}\left(\omega ight)$	
f(t)	$\int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$	F1
$\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t}$	$\hat{f}\left(\omega ight)$	F2
$a \cdot f(t) + b \cdot g(t)$	$a \cdot \hat{f}(\omega) + b \cdot \hat{g}(\omega)$	F3
$f(at), (a \neq 0)$	$\frac{1}{ a } \cdot \hat{f}\left(\frac{\omega}{a}\right)$	F4
f(-t)	<u> </u>	F5
$\overline{f\left(t ight) }$	3 \ /	F6
f(t-T)	$\hat{f}(\omega)e^{-i\omega T}$	F7
$f(t)e^{i\Omega t}$	$\hat{f}\left(\omega\!-\!\Omega ight)$	F8
$f(t)\cos(\Omega t)$	$\frac{\hat{f}(\omega - \Omega) + \hat{f}(\omega + \Omega)}{2}$	F9a
$f(t)\sin(\Omega t)$	$\frac{\hat{f}(\omega - \Omega) - \hat{f}(\omega + \Omega)}{2i}$) F9b
$\hat{f}\left(t ight)$	$2\pi f(-\omega)$	F10
D[f(t)]	$i\omega\hat{f}\left(\omega ight)$	F11
$-it\cdot f(t)$	$D[\;\hat{f}(\omega)\;]$	F12
f(t) * g(t)	$\hat{f}\left(\omega\right)\cdot\hat{g}\left(\omega\right)$	F13
$f(t) \cdot g(t)$	$\frac{\hat{f}(\omega) * \hat{g}(\omega)}{2\pi}$	F14
` '	1	F15
$D^{(n)}[\;\delta(t)\;]$	$(i\omega)^{n}$	F16
$\theta(t)e^{-at}$	$\frac{1}{a+i\omega}, (a>0)$	F17
$(1-\Theta(t))e^{at}$	$\frac{1}{a-i\omega},(a>0)$	F18
$e^{-a t }$, $(a>0)$	$\frac{2a}{a^2 + \omega^2}$	F19
$\Theta(t)$	$\pi \delta(\omega) + \frac{1}{i\omega}$	F20
1	$2\pi\delta(\omega)$	F21
$\frac{\sin(\Omega t)}{\pi t}$	$\theta(\omega + \Omega) - \theta(\omega - \Omega)$	F22
$\frac{e^{-t^2/4A}}{\sqrt{4\pi A}}$	$e^{-A\omega^2}$, $(A>0)$	F23
	$f(t)$ $f(t)$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t}$ $a \cdot f(t) + b \cdot g(t)$ $f(at), (a \neq 0)$ $\frac{f(-t)}{f(t)}$ $f(t) = \int_{-\infty}^{\infty} f(t) \cos(\Omega t)$ $f(t) \sin(\Omega t)$ $f(t) \sin(\Omega t)$ $f(t) = \int_{-\infty}^{\infty} f(t) \int_{-\infty}^{\infty} f$	$f(t) \qquad \hat{f}(\omega)$ $f(t) \qquad -\infty \int^{\infty} f(t)e^{-i\omega t} dt$ $\frac{1}{2\pi^{-\infty}} \int^{\infty} \hat{f}(\omega)e^{i\omega t} \qquad \hat{f}(\omega)$ $a \cdot f(t) + b \cdot g(t) \qquad a \cdot \hat{f}(\omega) + b \cdot \hat{g}(\omega)$ $f(at), (a \neq 0) \qquad \frac{1}{ a } \cdot \hat{f}\left(\frac{\omega}{a}\right)$ $\frac{f(-t)}{f(t)} \qquad \hat{f}(-\omega)$ $f(t-T) \qquad \hat{f}(\omega)e^{-i\omega T}$ $f(t)e^{i\Omega t} \qquad \hat{f}(\omega - \Omega)$ $f(t)\cos(\Omega t) \qquad \frac{\hat{f}(\omega - \Omega) + \hat{f}(\omega + \Omega)}{2}$ $f(t)\sin(\Omega t) \qquad \frac{\hat{f}(\omega - \Omega) - \hat{f}(\omega + \Omega)}{2}$ $f(t) \qquad 2\pi f(-\omega)$ $D[f(t)] \qquad i\omega \hat{f}(\omega)$ $-it \cdot f(t) \qquad D[\hat{f}(\omega)]$ $f(t) * g(t) \qquad \hat{f}(\omega) \cdot \hat{g}(\omega)$ $f(t) \cdot g(t) \qquad \frac{\hat{f}(\omega) * \hat{g}(\omega)}{2\pi}$ $\delta(t) \qquad 1 \qquad (i\omega)^{n}$ $\theta(t)e^{-at} \qquad \frac{1}{a + i\omega}, (a > 0)$ $(1 - \theta(t))e^{at} \qquad \frac{1}{a - i\omega}, (a > 0)$ $e^{-a t }, (a > 0) \qquad \frac{2a}{a^{2} + \omega^{2}}$ $\theta(t) \qquad \pi \delta(\omega) + \frac{1}{i\omega}$ $\frac{1}{\alpha + i\omega} = 2\pi \delta(\omega)$ $\frac{\sin(\Omega t)}{\pi t} \qquad \theta(\omega + \Omega) - \theta(\omega - \Omega)$

Laplacetransformen

Defenition

$$L[f(t)] = \int_{-0}^{\infty} f(t)e^{-st}dt$$

F(s)

f(t)

Beteckning

Räkneregler

Laplacetransform: L[f(t)], F(s)

	• , ,	` /	
Defenition	f(t)	$\int_{-0}^{\infty} f(t) e^{-st} dt$	L1
Linearitet	$a \cdot f(t) + b \cdot g(t)$	aF(s) + bG(s)	L2
Dämpning	$f(t)e^{-at}$	F(s + a)	L3
Fördröjning	$f(t-T)\cdot\theta(t-T)$	$F(s)e^{-sT}, \ (T>0)$	L4
Skalning	f(at), (a > 0)	$\frac{1}{a} \cdot F\left(\frac{s}{a}\right)$	L5
Frekv.derivering	tf(t)	D[-F(s)]	L6
Frekv.derivering n ggr	$t^{n}f(t)$	$(-1)^n D^{(n)}[F(s)]$	L7
Tidsderivering	$D[\ f(t)\]$	sF(s)-f(0)	L8
Tidsderivering n ggr	$D^n[\ f(t)\]$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$	L9
Faltning	f(t) * g(t)	$F(s) \cdot G(s)$	L10
Transformpar			
Sinus	$\sin(at)$	$\frac{a}{s^2 + a^2}$	L11
Cosinus	$\cos(at)$	$\frac{s}{s^2 + a^2}$	L12
Konstant	1	$\frac{1}{s}$	L13
Exponetialfunktion	e^{-kt}	$\frac{1}{s+k}$	L14
Fördröjd stegfunktion	$\theta(t-T), \ (T \ge 0)$	$\frac{e^{-sT}}{s}$	L15
Rampfunktion	$r(t) = t \theta(t)$		L16
Potens	t^k	$\frac{k!}{s^{k+1}}$, $k = 1,2,3,$	L17
Deltafunktion	$\delta(t)$	1	L18

Z-transformen

Definition

$$Z[\{x_n\}] = \sum_{n=0}^{\infty} x_n z^{-n}$$

Betekning

z-transform: $Z[\{x_n\}], X(z)$

Räkneregler	$\left\{ x_{n}\right\} _{n=0}^{\infty}$	X(z)	
Defenition	\mathcal{X}_n	$\frac{X(z)}{\sum_{n=0}^{\infty} x_n z^{-n}}$	Z1
Linearitet	$a\{x_n\} + b\{y_n\}$	$aZ[\{x_n\}] + bZ[\{y_n\}]$	Z 2
Dämpning	$a^n x_n$	$X\left(\frac{z}{a}\right)$	Z 3
Derivering	$n x_n$	-zD[X(z)]	Z 4
Derivering	$(1-n)x_{n-1}\sigma_{n-k}$	D[X(z)]	Z 5
Faltning	$\{x_n\} * \{y_n\}$	$X(z) \cdot Y(z)$	Z 6
Förskjutning framåt	$x_{n-k}\sigma_{n-k}, (k \ge 0)$	$z^{-k}X(z)$	Z7
Förskjutning bakåt	x_{n+k} , $(k \ge 0)$	$z^{k}X(z) - \sum_{j=0}^{k-1} x_{j}z^{k-j}$	Z 8
Transformpar			
Enhetssteg	σ_n	$\frac{z}{z-1}$	Z9
Enhetspuls	δ_n	1	Z10
Fördröjd enhetspuls	δ_{n-k}	z^{-k}	Z11
Exponential	a^n	$\frac{z}{z-a}$	Z12
Rampfunktion	$r_n = n\sigma_n$	$\frac{z}{(z-1)^2}$	Z13
Sinus	$\sin(n\theta)$		Z14
Dämpad sin	$a^n \sin(n\theta)$	$\frac{za\sin(\theta)}{z^2 - 2za\cdot\cos(\theta) + a^2}$	Z15
Cosinus	$\cos(n\theta)$	$\frac{z(z-\cos(\theta))}{z^2-2z\cdot\cos(\theta)+1}$	Z 16
Dämpad cos	$a^n\cos(n\theta)$	$\frac{z(z-a\cdot\cos(\theta))}{z^2-2za\cdot\cos(\theta)+a^2}$	Z17

Funktionsregler och stegmetoder

Logaritmer

$$a^x = b \Leftrightarrow x = {}^a \log(b)$$

$$a \log(1) = 0$$

$$a \log(a) = 1$$

$$e \log(a) = \ln(a)$$

$$a \log(st) = a \log(s) + a \log(t)$$

$$a \log \left(\frac{s}{t} \right) = a \log(s) - a \log(t)$$

$$^{a}\log(s^{t}) = t^{a}\log(s)$$

$${}^{b}\log(s) = \frac{{}^{a}\log(s)}{{}^{a}\log(b)}$$

$$e^{\log(x)} = \ln(x)$$

Största gemensamma delare (SGD)

Algebraiskt exempel:

$$SGD(a:b) om a>b$$

$$\Rightarrow a = b \cdot x_1 + r_1$$

$$\Rightarrow b = r_1 \cdot x_2 + r_2$$

$$\Rightarrow r_1 = r_2 \cdot x_3 + r_3$$

$$\Rightarrow \dots$$

$$\Rightarrow r_n = r_{n+1} \cdot x_{n+2}$$

$$svar: om \ r_{n+1} > x_{n+2} \Rightarrow r_{n+1}$$

partialbråksuppdelning (PBU)

Faktorer I nämnaren	Ger upphov till partialbråken		
x - a	$\frac{A_1}{x-a}$		
$(x-a)^n$	$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_n}{(x-a)^n}$		
$x^2 + ax + b$	$\frac{A_1x + B_1}{x^2 + ax + b}$		
$(x^2 + ax + b)^n$	$\frac{A_1x + B_1}{x^2 + ax + b} + \frac{A_2x + B_2}{(x^2 + ax + b)^2} + \dots + \frac{A_nx + B_n}{(x^2 + ax + b)^n}$		

$$Ex: \frac{2x^2 + x - 3}{(x+1)^2(x+2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+2}$$

$$\Leftrightarrow 2x^2 + x - 3 = A(x+1)(x+2) + B(x+2) + C(x+1)^2$$

$$\Leftrightarrow \begin{cases} A = -1 \\ B = -2 \\ C = 3 \end{cases}$$

$$\frac{2x^2 + x - 3}{(x+1)^2(x+2)} = -\frac{1}{x+1} - \frac{2}{(x+1)^2} + \frac{3}{x+2}$$

Differensekvationen

y_h: den homogenalösningen

byt ut samtliga

 $y_n \Rightarrow 1$,

 $y_{n+1} \Rightarrow r$,

 $y_{n+2} \Rightarrow r^2$

 $y_{n+x} \Rightarrow r^x$

övrigatermer försvinner.

lös ekvationen.

nollställena ger upphov till

$$\begin{vmatrix} r_1 = r_2 \Rightarrow y_h = (Cn + D)r^n \\ r_1 \neq r_2 \Rightarrow y_h = Cr_1^n + Dr_2^n \end{vmatrix}$$

$$y = y_h + y_p$$

y_p: partikulärlösningen

byt ut samtliga y_n mot en ansatts A(n),

 $y_{n+1} \Rightarrow A(n+1)$, osv.

övriga termer ger upphov till ekvationen L

 $A \ddot{a}r av samma grad som L \cdot n^k$,

 $d\ddot{a}rk = (antalet r_n = 1, i y_h)$

lös sedan ut alla obekanta.

L-ekvationer av typen

 $(an+b)c^n$ eller (an+b)n

 $kan \ delas \ upp \ i \ tv \mathring{a} \ ansattser$, en $f \ddot{o} r \ c^n \Rightarrow Z_n \cdot (A_c \cdot n^k)$

varifrån de trillar ut en ny ekvation, där du löser ut Z_n där $L_z = (an+b)$

y: den almäna lösningen är nu

$$y = y_p + y_h$$

lös nu ut C och D från y, med hjälp av begynelsevärdena

se även kapitlet Z – transformeln

Diffrentialekvationen

$$y = y_h + y_p$$

y_h: den homogena lösningen

byt ut samtliga

 $y \Rightarrow 1$

 $y' \Rightarrow r$,

 $y'' \Rightarrow r^2$

 $v^{x+n} \Rightarrow r^n$

övrigatermer försvinner.

lös ekvationen.

nollställena ger upphov till

 y_p : partikulärlösningen byt ut samtliga y(x) mot en ansatts A(x), $y'\Rightarrow D[A(x)]$, osv. övriga termer ger upphov till ekvationen L A är av samma grad som $L\cdot x^k$,

 $d\ddot{a}r k = (antalet r_x = 1, i y_h)$

lös sedan ut alla obekanta.

L-ekvationer av typen $(ax+b)c^x$ eller (ax+b)x

kan delas upp i två ansattser, en för $c^n \Rightarrow Z(n) \cdot (A_c \cdot x^k)$ varifrån de trillar ut en ny ekvation, där du löser ut Z(x) där $L_z = (ax + b)$

y: den almäna lösningen är nu

$$y = y_p + y_h$$

lös nu ut C och D från y_h , med hjälp av begynelsevärdena

se även kapitlet Laplace-transform

Mekanik

Kinetisk energi:	Arbete:	Lägesenegi fjäder:
$E_k = \frac{m_{(\epsilon)} v_{(V)}^2}{2}$	$E_A = F_f \cdot l_{(\Gamma)}$	$E_p = \frac{K_k \cdot l_{(\Gamma)}}{2}$
Homogent tyngdkraftfält	kraftmoment	Kinetisk energi konisk pendel
$E_p = m_{(\epsilon)} \cdot g_{(V)} \cdot h_{(\Gamma)}$	$E_M = F_f \cdot l_{(\Gamma)}$	$E_{k} = \frac{m_{(\epsilon)} \cdot v_{(V)}^{2}}{r_{(\Gamma)}} = m_{(\epsilon)} \cdot \omega_{(V)} \cdot r_{(\Gamma)} = \frac{2}{3}$
Rörelse mängd	hastighet	acceleration
$V_P = m_{(\epsilon)} \cdot v_{(V)}$	$v_{(V)} = \frac{l_{(\Gamma)}}{\tau_{(T)}} = I[a_{(V)}]$	$a_{(V)} = \frac{v_{(V)}}{\tau_{(T)}} = D^{2}[f(x)]$
Hastighet cirkulär rörelse	Acceleration cirkulär rörelse	Omlopstid konisk pendel
$V_{\nu} = \frac{2\pi r_{(\Gamma)}}{\tau_{(T)}} = \omega_{(V)}$	$a_{(V)} = \frac{v_{(V)}^2}{r_{(\Gamma)}} = \omega_{(V)}^2 r_{(\Gamma)}$	$\tau_{(T)} = 2\pi \sqrt{\frac{l_{(\Gamma)} \cdot \cos(V_{(T)})}{g_{(V)}}}$
Harmonisk svängningsrörelse	Svängtid Plan pendel	vinkelhastighet
$\omega_{(V)} = \sqrt{\frac{K_k}{m_{(\mathfrak{C})}}}$	$\tau_{\scriptscriptstyle (T)} \; = \; 2 \pi \sqrt{\frac{l_{\scriptscriptstyle (\Gamma)}}{g_{\scriptscriptstyle (V)}}}$	$\omega_{(V)} = 2\pi f_{(T)}$
Tyngdkraft	fjäderkraft	Gravitationskraft mellan partiklar
$F_f = m_{(\epsilon)} \cdot g_{(V)}$	$F_f = K_k l_{(\Gamma)}$	$F_f = K_G \frac{m_{1(\epsilon)} \cdot m_{2(\epsilon)}}{r_{(\Gamma)}^2}$

Vågrörelselära

Fortskridande våg	brytning	interferens
$V_{v} = \lambda \cdot f$	$f = \frac{V_1}{\lambda} = \frac{V_2}{\lambda}$	$S_1 och S_2 tvåpunktkäl$
	$J = \frac{1}{\lambda_1} = \frac{1}{\lambda_2}$	$ = p \cdot \lambda \text{ ger f\"{o}rs} $
		$ PS_2 - PS_1 = (p + \frac{1}{2})\lambda ge$ $= xd/L, då x <$
		$= xd/L, d\mathring{a} x <$
Dopplereffect	Ljudhastighetens temperaturberoende	ljudnivå
Vågkällan i rörelse med hasti	$V = V_0$	$L = 10 \lg \frac{I}{I_0} dB,$
$f' = f \cdot \frac{v}{v - u}, \ u > 0 \text{ vid r\"orelse}$	där Θ är mediets abs	I_0
observatören i rörelse med ha		
$f' = f(1 + \frac{u}{v}), u > 0 \text{ vidröre}$		
I båda formlerna betecknar f ´ den obs		
ljudintensitet		

$I = \frac{P}{4\pi r^2}$	
på avståndet r från isotropt	
strålande punktkälla med effekten P	

Optik

brytningslagen	prisma	Tunna linser
$n_1 \cdot \sin(\theta_1) = n_2 \cdot \sin(\theta_2)$	u : brytande vinkel	$a^{-1} + b^{-1} = f^{-1}$
	$\delta = \vartheta_1 - \vartheta_2 - u(deviationer)$	v
	Tunt prisma:	
	$\delta \approx u \cdot (n-1)$	
Sfäriska speglar	Optiska instrument	Ljusflöde
$a^{-1} + b^{-1} = f^{-1} = 2r^{-1}$	Lupp: G =	$\Phi = 4\pi I$
där r är spegelns radie		(vid lika stort ljusflöde i alla ri
	Keplerkikare: G	
	Mikroskop: G =	
	där L är avståndet mellan de i	
Belysning	ljushastighet	våglängd
$E = \frac{d}{d}$	$c_m = \frac{c}{n}$	$\lambda_m = \frac{\lambda}{n}$
där A är arean av ett område v	n	70
$E = \frac{I \cdot co}{I \cdot co}$		
$E = \frac{1}{r}$		
där 9 är infallsvinkeln och r d		
Gitter (vinkelrätt infall)	tvåspaltsinterferens	
$d\sin\theta_p = p \cdot \lambda$	Fransbredden $\Delta x \approx \frac{L}{d} \cdot \lambda$	
(p = 0, 1, 2,)	\mathcal{A}	

Atom-, kärn- och partikelfysik

Fotonenergi	Fotonens rörelsemängd	Väteatomens energinivåer
Rydbergs formel	Partikels de Broglievåglängd	Fotoelektrisk effekt
Radioaktivt sönderfall	stråldos	

Termodynamik

Energi

Kinetisk energi:

Värmemängd:

Tillståndsändrings värmemängd:

$$E_K = \frac{m_{(\epsilon)} \cdot v_{(V)}^2}{2}$$

$$E_Q = m_{(\epsilon)} \cdot c_{(W)} (T_{2(\epsilon)} - T_{1(\epsilon)})$$

 $E_o = l_v \cdot m_{(\epsilon)}$

Tryck

Partialtryck:

$$P_{tot(\epsilon)} = \sum_{i=1}^{k} P_{i(\epsilon)}$$

höjdtryck:

 $\rho_m \cdot g_{(v)} \cdot h_{(\Gamma)}$

Kinetisk tryck:

$$\frac{\rho_m v_{(v)}^2}{2}$$

Intermolekylärt tryck enligt J.D Vander Waals:

 $P_{(\epsilon)} = P_{(\epsilon)}$

Tillägsterm till totaltryck. Tillämpning av bernoullis ekvation:

$$C = 2f_{(K)} \cdot \frac{l_{(\Gamma)}}{r_{(\Gamma)}} \cdot \frac{\rho_m v_{(V)}^2}{2}$$

f = friktionsfaktor

Temperatur / tryck förhållanden

Tryck, volym och temperatur förhållande (gas):

Densitet och temperaturtryck förhållande:

Partikel densitet:

 $\frac{T_{(\varepsilon)}}{P_{(\varepsilon)}} = \frac{V_{(C)}}{n \cdot K_R}, \quad P_{(\varepsilon)} \cdot V_{(C)} = \rho_m = \frac{P_{(\varepsilon)} \cdot M}{K_R \cdot T_{(C)}} \qquad \rho_n = \frac{P_{(\varepsilon)}}{K_L T_{(C)}}$

Molekyl / massa förhållande

Substansmängd:

Molekyls massa i kilo:

$$n = \frac{m_{(\epsilon)}}{M_{(\epsilon)}}$$

 $\mu = \frac{M_{(\epsilon)}}{K_{N_{\epsilon}}}$

Flöden

Flödeslikhet:

$$\Phi_1 = \Phi_2$$

Flödesdefinition:

Földesändring:

$$\Phi_m = \rho_m \cdot A_{(\Gamma)} \cdot v_{(V)}$$

 $v_{2(V)} = v_{1(V)} \cdot \frac{A_{1(\Gamma)}}{A_{2(\Gamma)}}$

Flöde i rör med viskositet:

Utflödestryck ur tankbotten:

$$\Phi_V = \frac{\pi}{8 \cdot \eta_{(M)}} \cdot \frac{P_{1(\epsilon)} - I_{(\epsilon)}}{l_{(\epsilon)}}$$

$$\Phi_{V} = \frac{\pi}{8 \cdot \eta_{(M)}} \cdot \frac{P_{1(\mathfrak{C})} - v_{(V)}}{l_{(\Gamma)}} \quad v_{(V)} = K \cdot \sqrt{2 g_{(V)} h_{(\Gamma)}} \\ K = virvelbildningskonstant$$

Turbulens

Reynolds tal. Om över 2000 = turbulent

$$R_{e(K)} = \frac{\rho_m v d}{\eta_{(M)}}$$

Friktion, lyft och tyngdkraften på en molekyl:

$$\vec{F}_f + \vec{F}_l + \vec{F}_g = \vec{O}$$

Viskocitetskraft:

$$F_f = -\eta_{(M)} \cdot A_{(\Gamma)} \cdot \frac{v_{(V)}}{l_{(\Gamma)}}$$

 $F_f = -\eta_{(M)} \cdot A_{(\Gamma)} \cdot D[v_V]_{(l_{\Gamma})} \quad F_f = -K \pi r_{\Gamma} \eta_{(M)} \cdot v_{slut(V)}$

Ytspänningskraft på nått ringformat:

$$F_f = 2 \gamma_{(F)} \cdot l_{(\Gamma)}$$

Kapilärkraft:

$$\frac{2 \gamma_{(F)} \cdot \cos(\Theta)}{r_{(\Gamma)}} = \rho_m g_{(V)} h_{\Gamma}$$

Längd och volym förhållanden

Längdändring:

Volymändring:

$$\frac{\Delta l_{(\Gamma)}}{l_{(\Gamma)}} = \alpha \Delta T_{(\epsilon)}$$

$$\frac{\Delta V_{(C)}}{V_{(C)}} = \gamma_{(F)} \cdot \Delta T_{(C)}$$

Konstanter

Boltzmanskonstant:

$$K_k = \frac{K_R}{K_{Na}} = 1,38 \cdot 10^{-23} [J/K]$$