

INDIAN INSTITUTE OF TECHNOLOGY JODHPUR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Week 4 - Live Session

Data Mining

Swapnil S. Mane

mane.1@iitj.ac.in
PMRF Research Scholar

Q1-3 are based on a simple Bayesian Network shown below:

The Bayesian Network is fully specified by the marginal probabilities of the root node(x) and the conditional probabilities.

do

Q1.
$$P(y=0)$$
 s:

- a) 0.70
- b) 0.12
- (1) 0.64
 - d) 0.36

$$P(y=0) = 1 - P(J=1)$$

$$P(y=1) = P(y=1 | x=0) * P(x=1) + P(y=1) + P(y=1) = P(y=1 | x=0) * P(x=0)$$

$$P(y=1) = (0.40 * 6.60) + (0.30 * 0.40)$$

$$P(y=1) = (0.36 * 0.36)$$

$$P(y=1) = (0.36 * 0.40)$$

2

	P(y=1 x=1)=0.40	P(z=1 y=1)=0.25	P(w=1 z=1)=0.45	
P(x=1)=0.60	P(y=1 x=0)=0.30	P(z=1 y=0)=0.60	P(w=1 z=0)=0.30	
x	V	Z P	(2:1 x=1)=0	.46
The Bayesian Netwo	ork is fully specified by the m	arginal probabilities of the	root node(x) and the	

Q3.
$$P(w=0|x=1)$$
 is:

conditional probabilities.

$$= \frac{p(w=0|z=1) \cdot p(z=1|x=1)}{+ p(w=0|z=0) \times p(z=0|z=0)}$$

$$= (0.55 \cdot p \cdot 0.46) + (0.70 \cdot p \cdot 0.54)$$

$$= 0.63$$

Consider the r	ollowing data for questions 5-6	J.	
You are given	the following set of training ex	amples. Each attribute ca	n take value either 0 or 1.
1/	1/		
A1	A2	A3	Class
0	0	1	(C1) ~
0	1	0	C1
0	1	1	C1
1	0	0	(2)
1	1	0	C1
. 1	1	1	

Q5. How would a 3-NN classify the example (A1 = 1, A2 = 0, A3 = 1) if the distance metric is Euclidean distance?

a) C1

 $(1) dis(x,01) = \sqrt{1+6+0} = 1$

d) Not enough information to classify

Consider the following data for questions 5-6.

You are given the following set of training examples. Each attribute can take value either 0 or 1.

	A1	A2	A3	Class
Lar	0	0	1	a Co
سعف	0	1	0	(C1)
03	0	1	1	C1
6	1	0	0	(C2)
رم ح	1	1	0	C1
64	1	1	1	C2

Q6. How would a 3 NN classify the example A1 = 0, A2 = 0, A3 = 0, if the distance metric is Euclidean distance?

a) C1 $J_{ii}(x,o_1) = \sqrt{6+0+1} = 1$ b) C2 $J_{ij}(x,o_2) = \sqrt{6+1+6} = 1$ c) There will be a tie $J_{ij}(x,o_2) = \sqrt{6+1+1} = 1.46$

- Not enough information to classify $\int_{0}^{\infty} (\tau, o_{y}) = \sqrt{1 + o_{y} + o_{y}} = 1$

