Autonomous and Mobile Robotics

Prof. Giuseppe Oriolo

Motion Planning I Retraction and Cell Decomposition

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

motivation

 robots are expected to perform tasks in workspaces populated by obstacles

- autonomy requires that the robot is able to plan a collision-free motion from an initial to a final posture on the basis of geometric information
- information about the workspace geometry can be
 - entirely known in advance (off-line planning)
 - gradually discovered by the robot (on-line planning)

the canonical problem

- robot \mathcal{B} (kinematic chain with fixed or mobile base) moving in a workspace $\mathcal{W}=\mathbf{R}^N$, N=2 or 3
- \mathcal{B} is free-flying in its configuration space \mathcal{C} , i.e., it is not subject to kinematic constraints of any kind
- obstacles $\mathcal{O}_1,...,\mathcal{O}_p$ (fixed rigid objects in \mathcal{W})

given a start configuration q_s and a goal configuration q_g of \mathcal{B} in \mathcal{C} , plan a path that connects q_s to q_g and is safe, i.e., it is completely contained in the free configuration space $\mathcal{C}_{\text{free}}$

- single-body robot in R^2 : piano movers' problem single-body robot in R^3 : generalized movers' problem
- extensions to the canonical problem:
 - moving obstacles
 - on-line planning
 - kinematic (e.g., nonholonomic) constraints
 - manipulation planning (requires contact)
- many methods that can solve the canonical problem can be appropriately modified to address one or more of these extensions

motion planning methods

- ullet all work in the configuration space ${\mathcal C}$
- most need preliminary computation of the C-obstacle region CO, a highly expensive procedure (complexity is exponential in dim C)
- ullet computation of \mathcal{CO} can be

exact: requires an algebraic model of $\mathcal{O}_1,...,\mathcal{O}_p$

approximate: e.g., sample \mathcal{C} using a regular grid, compute the volume occupied by the robot at each sample, and check for collisions between this volume and the obstacles

• efficient collision-checking algorithms exist, such as V-collide in R^2 and I-collide in R^3

classification

- I. roadmap methods represent the connectivity of $\mathcal{C}_{\mathrm{free}}$ by a sufficiently rich network of safe paths e.g., retraction, cell decomposition
- 2. probabilistic methods
 - a particular instance of sampling-based methods where samples of $\mathcal C$ are randomly extracted e.g., PRM, RRT
- 3. artificial potential field methods a heuristic approach which is particularly suitable for on-line planning

retraction method

- assume $C=R^2$ and $C_{\rm free}$ a polygonal limited subset (its boundary $\partial C_{\rm free}$ is entirely made of line segments)
- ullet define the clearance of a configuration $oldsymbol{q}$ in $\mathcal{C}_{ ext{free}}$ as

$$\gamma(\boldsymbol{q}) = \min_{\boldsymbol{s} \in \partial \mathcal{C}_{\text{free}}} \|\boldsymbol{q} - \boldsymbol{s}\|$$

ullet define the neighbors of q as

$$N(\boldsymbol{q}) = \{ \boldsymbol{s} \in \partial \mathcal{C}_{\text{free}} : \|\boldsymbol{q} - \boldsymbol{s}\| = \gamma(\boldsymbol{q}) \}$$

ullet the generalized Voronoi diagram of $\mathcal{C}_{\mathrm{free}}$ is

$$\mathcal{V}(\mathcal{C}_{\text{free}}) = \{ \boldsymbol{q} \in \mathcal{C}_{\text{free}} : \operatorname{card}(N(\boldsymbol{q})) > 1 \}$$

- its elementary arcs are
 - rectilinear (edge-edge, vertex-vertex)
 - parabolic (edge-vertex)
- can be seen as a graph
 - elementary arcs as arcs
 - arc endpoints as nodes
- a natural roadmap as it maximizes safety

- to connect any q to $\mathcal{V}(\mathcal{C}_{\text{free}})$, use retraction: from q, follow $\nabla \gamma$ up to the first intersection r(q) with $\mathcal{V}(\mathcal{C}_{\text{free}})$
- $r(\cdot)$ preserves the connectivity of $\mathcal{C}_{\mathrm{free}}$, i.e., q and r(q) lie in the same connected component of $\mathcal{C}_{\mathrm{free}}$
- hence, a safe path exists between q_s and q_g if and only if a path exists on $\mathcal{V}(\mathcal{C}_{\mathrm{free}})$ between $r(q_s)$ and $r(q_g)$

algorithm

- I. build the generalized Voronoi diagram $\mathcal{V}(\mathcal{C}_{\mathrm{free}})$
- 2. compute the retractions $\boldsymbol{r}(\boldsymbol{q}_s)$ and $\boldsymbol{r}(\boldsymbol{q}_g)$
- 3. search $\mathcal{V}(\mathcal{C}_{\text{free}})$ for a sequence of arcs such that $\boldsymbol{r}(\boldsymbol{q}_s)$ belongs to the first and $\boldsymbol{r}(\boldsymbol{q}_g)$ to the last
- 4. if successful, return the solution path consisting of
 - a. line segment from q_s to $r(q_s)$
 - b. portion of first arc from $m{r}(m{q}_s)$ to its end
 - c. second, third, ..., penultimate arc
 - d. portion of last arc from its start to $\boldsymbol{r}(\boldsymbol{q}_g)$
 - e. line segment from ${m r}({m q}_g)$ to ${m q}_g$
 - otherwise, report a failure

- ullet graph search at step 3: if a minimum-length path is desired, label each arc with a cost equal to its length, and use A^* to compute a minimum-cost solution
- the retraction method is complete, i.e., finds a solution when one exists and reports failure otherwise; and multiple-query, as one can build $\mathcal{V}(\mathcal{C}_{\mathrm{free}})$ once for all
- ullet complexity: if $\mathcal{C}_{ ext{free}}$ has v vertices, $\mathcal{V}(\mathcal{C}_{ ext{free}})$ has O(v) arcs
 - step $I: O(v \log v)$
 - step 2: O(v)
 - step 3: $O(v \log v)$ (A^* on a graph with O(v) arcs)
 - altogether, the time complexity is $O(v \log v)$
- extensions (e.g., to higher-dimensional configuration spaces) are possible but quite complicated

cell decomposition methods

- ullet idea: decompose $\mathcal{C}_{\mathrm{free}}$ in cells, i.e., regions such that
 - it is easy to compute a safe path between two configurations in the same cell
 - it is easy to compute a safe path between two configurations in adjacent cells
- once a cell decomposition of $C_{\rm free}$ is computed, find a sequence of cells (channel) with q_s , q_g in the first, last
- different methods are obtained depending on the type of cells used for the decomposition

exact decomposition

- ullet assume $\mathcal{C}{=}\,\mathrm{R}^2$ and $\mathcal{C}_{\mathrm{free}}$ a polygonal limited subset
- variable-shape cells are needed to decompose exactly $\mathcal{C}_{\mathrm{free}}$; a typical choice are convex polygons
- convexity guarantees that it is easy to plan in a cell and between adjacent cells
- the sweep-line algorithm can be used to compute a decomposition of $\mathcal{C}_{\text{free}}$ into convex polygons

- sweep a line over $\mathcal{C}_{\mathrm{free}}$; when it goes through a vertex, two segments (extensions) originate at the vertex
- an extension lying in $\mathcal{C}_{\mathrm{free}}$ is part of the boundary of a cell; the rest are other extensions and/or parts of $\partial \mathcal{C}_{\mathrm{free}}$
- the result is a trapezoidal decomposition

- ullet build the associated connectivity graph C
- ullet identify nodes (cells) c_s and c_g where $oldsymbol{q}_s$ and $oldsymbol{q}_g$ are
- use graph search to find a path on C from c_s to c_g ; this represents a channel of cells
- extract from the channel a safe solution path, e.g., joining q_s to q_g via midpoints of common boundaries

algorithm

- I. compute a convex polygonal decomposition of $\mathcal{C}_{\mathrm{free}}$
- 2. build the associated connectivity graph ${\cal C}$
- 3. search C for a channel of cells from c_s to c_g
- 4. if successful, extract and return a solution path consisting of
 - a. line segment from q_s to the midpoint of the common boundary between the first two cells
 - b. line segments between the midpoints of consecutive cells
 - c. line segment from the midpoint of the common boundary between the last two cells and $m{q}_g$
 - otherwise, report a failure

- if a minimum-length channel is desired, define a modified connectivity graph with q_s , q_g and all the midpoints as nodes, and line segments between nodes in the same cell as arcs, each with a cost equal to its length, and use A^* to compute a minimum-cost path
- the exact cell decomposition method is complete and multiple-query, as one can build the connectivity graph once for all
- ullet complexity: if $\mathcal{C}_{\mathrm{free}}$ has v vertices, C has O(v) arcs
 - step $I: O(v \log v)$
 - step 2: O(v)
 - step 3: $O(v \log v)$ $(A^*$ on a graph with O(v) arcs)

altogether, the time complexity is $O(v \log v)$

- a channel is more flexible than a roadmap because it contains an infinity of paths; this may be exploited to take into account nonholonomic constraints or to avoid unexpected obstacles during the motion
- the solution path is a broken line, but smoothing may be performed in a post-processing phase
- if $C=R^3$ and $C_{\rm free}$ is a polyhedral limited subset, the sweep-plane algorithm may be used to compute a decomposition of $C_{\rm free}$ into convex polyhedra
- an extension to configuration spaces of arbitrary dimension exists but it is very inefficient: in fact, complexity is exponential in the dimension of $\mathcal C$

approximate decomposition

- ullet assume $\mathcal{C}{=}\,\mathrm{R}^2$ and $\mathcal{C}_{\mathrm{free}}$ a polygonal limited subset
- fixed-shape cells are used to obtain an approximate decomposition (by defect) of $\mathcal{C}_{\mathrm{free}}$; e.g., squares
- as in exact decomposition, convexity guarantees that it is easy to plan in a cell and between adjacent cells
- a recursive algorithm is used for decomposition to reach a trade-off between simplicity and accuracy

- ullet start by dividing ${\mathcal C}$ in 4 cells and classifying each cell as
 - free, if its interior is completely in $\mathcal{C}_{\mathrm{free}}$
 - occupied, if it is completely in \mathcal{CO}
 - mixed, if it is neither free nor occupied

- build the connectivity graph C associated to the current level of decomposition, with free and mixed cells as nodes and arcs between adjacent nodes
- identify nodes (cells) c_s and c_g where q_s and q_g are, and use graph search to look for a path (channel) on C from c_s to c_g ; if it does not exist, report failure
- if a path (channel) exists on C from c_s to c_g , take any mixed cell in the path and decompose it as before
- repeat the above steps (build C, look for a path and decompose mixed cells) until a path is found made only of free cells, or until a minimum size has been reached for the cells; in the latter case, backtrack

- the above planning method is
 - resolution complete, in the sense that a solution is found if and only if one exists at the maximum allowed resolution
 - single-query, because the decomposition is guided by the given q_s , q_g
- recursive decomposition of cells can be implemented efficiently using quadtrees (trees whose internal nodes have exactly four children)
- the method is conceptually applicable to configuration spaces of arbitrary dimension: however, complexity is still exponential in the dimension of $\mathcal C$