Leukocyte Expression Profiling tor: Jay WOHLGEMUTH Adjication No.: 10/006,290 Docket No: 506612000100

Sheet 1 of 11

Novel Gene Sequence Analysis

Title: Leukocyte Expression Profiling Inventor: Jay WOHLGEMUTH Application No.: 10/006,290 Docket No: 506612000100

Sheet 2 of 11

Automated Mononuclear Cell RNA Isolation Device

Title: Leukocyte Expression Profiling Inventor: Jay WOHLGEMUTH Application No.: 10/006,290 Docket No: 506612000100

Sheet 3 of 11

Kits for Discovery of, or Application of Diagnostic Gene Sets

A. Contents of kit for discovery of diagnostic gene sets

- 1. Sterile, endotoxin and RNAse free blood collection tubes (>10cc capacity)
- 2. Alcohol swabs, tourniquet, 18g needle and syringe (>10cc capacity)
- 3. Erythrocyte lysis buffer
- 4. Leukocyte lysis buffer
- 5. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence cDNA microarray expression profiling:

Reverse transcriptase and 10x RT buffer

Poly-dT primer

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

Cy3 and Cy5 labeled deoxynucleotides

- 6. cDNA microarrays containing candidate gene libraries
- 7. Cover slips for slides
- 8. hybridization chambers
- 9. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database

- 10. Password and account number to access central database server.
- 11. Kit User Manual

B. Contents of kit for application of diagnostic gene sets

- 1. Sterile, endotoxin and RNAse free blood collection tubes (>10cc capacity)
- 2. Alcohol swabs, tourniquet, 18g needle and syringe (>10cc capacity)
- 3. Erythrocyte lysis buffer
- 4. Leukocyte lysis buffer
- 5. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence cDNA microarray expression profiling:

Reverse transcriptase and 10x RT buffer

Poly-dT primer

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

Cy3 and Cy5 labeled deoxynucleotides

- 6. cDNA microarrays containing diagnostic gene sets
- 7. cover slips for slides
- 8. hybridization chambers
- 9. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database

- 10. Password and account number to access central database server.
- 11. Kit User Manual

Title: Leukocyte Expression Profiling Inventor: Jay WOHLGEMUTH Application No.: 10/006,290 Docket No: 506612000100

Sheet 4 of 11

FIG._4

FIG._5

Title: Leukocyte Expression Profiling " """ Inventor: Jay WOHLGEMUTH Application No.: 10/006,290

Docket No: 506612000100

Sheet 5 of 11

FIG._6

FIG._7

Title: Leukocyte Expression Profiting Inventor: Jay WOHLGEMUTH Application No.: 10/006,290 Docket No: 506612000100

Sheet 6 of 11

Log Expression of Each Probe Using the R50 Reference RNA. Probe Expression is Ordered by Signal to Noise, S / N, Decreasing from Left to Right.

FIG._8

Deukocyte Expression Profiling br: Jay WOHLGEMUTH Approaction No.: 10/006,290 Docket No: 506612000100 Sheet 7 of 11

The state of the s

F/G._ 10A

Differential Gene Expression Between Grade 0 and 3A Samples:

							In A	tle: I vento pplic ocke Shee	or: Ja ation t No:	y W i No. : 500	OHI : 10/	LGE (006,	MUT ,290	Profi TH	ling												
	SR:	Scaled	Ratio (g / r)	0.710038	1.318579	1.305545	0.444098	0.369371	0.960516	1.257707	0.376823	0.933154	0.459827	0.672539	2.004771	0.398574			0.670576	0.645231	0.6072	0.431139	0.421766	0.520889	0.514739	0.489034	0.420551
Array 107742: Grade 0		Cy3 / Cy5	Ratio	0.188917	0.350829	0.347361	0.118159	0.098277	0.25556	0.334633	0.10026	0.24828	0.122344	0.17894	0.533401	0.106047			0.178417	0.171674	0.161555	0.114711	0.112218	0.138591	0.136955	0.130115	0.111894
Array 1077	F532	Median -	B532	1050	635	487	92	405	3477	515	386	1119	167	486	5254	356			248	240	295	747	755	1188	2128	1558	778
	F633	Median -	B633	5558	1810	1402	804	4121	13488	1539	3850	4507	1365	2716	9850	3357			1390	1398	1826	6512	6728	8572	15538	11974	6953
			Oligo ID	2476	6025	6025	2407	2192	2283	6025	2192	3581	3729	2476	642	2192			4905	4905	4481	3761	3761	3790	3790	3791	3761
Probe	000-		Name	•		major histocompatibility complex, class II. DQ beta 1 (HL	requistor of G-protein signalling 1 (RGS1), mBNA / c					far instream element (FUSE) binding protein 1 (FUBP1	niclear receptor subfamily 4, group A, member 2 (NR4A			CD69 antiden (p60, early T-cell activation an	20.14		. The state of the	mBNA for immunoalobulin lambda heavy chain / cds=(65			rearranged imminoglobulin lambda light chain mRNA / c	CONA FI 191391 fis clone COL02335, highly similar to	CDNA: FI .121321 fis. clone COL02335, highly similar to	CONA FI 121321 fis. clone COL02335, highly similar to	rearranged immunoglobulin lambda light chain mRNA / c
			Acc#		NIVI_0002502	BE220050	DECENSOS NIM OCOSOS	NM 001781	NM_001781	RE220059	NM 001781	ווואן בייטביין	X14008	NIM DO3202	AE035047	NM 001781	O 11 OO INIT		71707	V14737	14/3/ BC006/02	VE7812	X57812	X72/75	X72475	X72475	X57812

Fitle: Leukocyte Expression Profiling Inventor: Jay WOHLGEMUTH Application No.: 10/006,290 Docket No: 506612000100 Sheet 9 of 11

FIG._ 10B

SRs	Grade 3A / 0	0.30955069	0.31800317	0.31910959	0.32068403	0.33311587	0.33989617	0.3471323	0.34746767	0.35289603	0.35389672	0.3566264	0.36278818	0.37028503	4.68929496	4.73359863	4.95040579	5.37301111	5.48481867	5.50803866	5.61339689	5.65696646	5.71604612
Ratio of SRs	Grade 0 / 3A	3.23048873	3.14462275	3.13371968	3.11833431	3.00195843	2.94207495	2.88074602	2.87796556	2.83369583	2.82568319	2.80405488	2.75642938	2.70062225	0.21325167	0.21125576	0.20200364	0.18611538	0.18232143	0.18155283	0.17814525	0.17677319	0.1749461
Ą	SR: Scaled Ratio (g / r)	0.219793	0.419312	0.416612	0.142415	0.123043	0.326476	0.436591	0.130934	0.329306	0.162731	0.239845	0.727307	0.147586	3.144527	3.054262	3.005889	2.316513	2.313311	2.869076	2.889436	2.766449	2.403886
Array 107739: Grade 3A	Cy3 / Cy5 Ratio	0.061438	0.117209	0.116455	0.039809	0.034394	0.091259	0.122039	0.0366	0.09205	0.045488	0.067043	0.203302	0.041254	0 878982	0.853751	0,840229	0.647529	0.646634	0.801986	0.807677	0.773299	0.671952
Array 1077	F532 Median - B532	358	252	247	75	254	2727	237	282	020	434	356	197	246	5767	6112	2498	17730	18636	13892	14245	18761	18560
	F633 Median - B633	5827	2150	2121	1884	7385	29882	1942	7705	0340	9541	5310	0 0	5963	6561	7150	2973	27381	28820	17322	17637	24261	27621

The state of the s

X72475	cDNA: FLJ21321 fis, clone COL02335, highly similar to	3791	10805	1411	0.130588	0.49081	
X72475	cDNA: FLJ21321 fis, clone COL02335, highly similar to	3/30	11246	1453	0.129201	0.4636	
AF067420	SNC73 protein (SNC73) mRNA, complete cds / cds=(39	4399	7654	243	0.09150	0.344123	
X72475	CDNA: FL J21321 fis. clone COL02335, highly similar to	3791	10909	1370	0.125584	0.472005	
AF067420	SNC73 profein (SNC73) mRNA, complete cds / cds=(39	4399	1959	181	0.092394	0.34726	
A F067420	SNC73 profein (SNC73) mRNA, complete cds / cds=(39)	4399	2558	215	0.08405	0.315899	
BC00263	rearranged immunoclobulin mRNA for mu heavy chain e	4474	7538	684	0.09074	0.341044	
BC002963	rearranged immunoclobulin mBNA for mu heavy chain e	4474	8662	780	0.090048	0.338444	
BC002963	rearranged immunoclohulin mBNA for mu heavy chain e	4474	7183	809	0.084644	0.318133	
BC002963	rearranged immunoclobulin mBNA for mu heavy chain e	4475	9868	851	0.094703	0.355938	
BC002963	rearranged imminophilin mBNA for mu heavy chain e	4476	11118	1023	0.092013	0.345828	
BC002963	rearranged immunoplobulin mBNA for mu heavy chain e	4475	7428	730	0.098277	0.36937	
BC002963	rearranged immunoclobulin mBNA for mu heavy chain e	4476	10413	933	0.0896	0.336757	
BC002963	rearranged immunoclobulin mBNA for mu heavy chain e	4475	5841	484	0.082863	0.311436	
A ED67420	SNC73 protein (SNC73) mRNA, complete cds / cds=(39	4398	2960	645	0.08103	0.304549	
VE067420	SNC73 protein (SNC73) mRNA, complete cds / cds=(39	4398	11959	992	0.08295	0.311765	
AF067420	SNC73 protein (SNC73) mRNA, complete cds / cds=(39	4398	6161	447	0.072553	0.272689	

FIG._ 10C

Ventor: Jay WOHLGEMUTH
Application No.: 10/006,290
Docket No: 506612000100
Sheet 10 of 11

								·									
5.95900079	5.9816215	5.98789603	6.4924922	6.59109804	6.86979225	7.01342553	7.24745312	7.96186351	8.0748531	8.09993947	8.21727973	8.2606647	9.11364747	9.55378803	10.2010527	11.4716196	
0.16781337	0.16717875	0.16700357	0.15402406	0.15171979	0.14556481	0.14258368	0.13797951	0.12559874	0.12384126	0.12345771	0.12169477	0.12105563	0.10972555	0.10467052	0.0980291	0.08717165	
2.924735	2.904673	2.060585	3.064488	2.288826	2.170163	2.391889	2.45286	2.532931	2.874145	2.801184	3.035218	2.781837	2.838319	2.909599	3.180333	3.128181	
0.817544	0.811936	0.57599	0.856609	0.63979	0.60662	0.668599	0.685642	0.708024	0.803403	0.783008	0.848427	0.7776	0.793388	0.813313	0.888991	0.874413	
14334	13863	21610	18561	19369	21936	4037	29 7 5	3909	1275	682	890	486	1344	18694	12597	14148	
17533	17074	37518	21668	30274	36161	8038	4339	5521	1587	871	1049	625	1694	22985	14170	16180	

FIG 10B	 1 1 1 1 1	FIG 10D
FIG 10A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FIG10C

mann some and the state of the