ЛАБОРАТОРНА РОБОТА № 2.

ОСНОВНІ ОПЕРАЦІЇ З СИГНАЛАМИ.

Мета: Ознайомитися з поняттям дискретних систем. Освоїти процес та алгоритм дискретної згортки сигналів.

Операції з сигналами.

Складні сигнали можна утворити шляхом комбінування маніпуляцій з найпростішими сигналами. Розглянемо такі операції з сигналами.

Масштабування

Просте збільшення, або зменшення сигналу на певний коефіцієнт a.

Для неперервних аналогових сигналів: y(t) = ax(t)

Коефіцієнт a може бути дійсний/уявний, додатній/від'ємний. При від'ємному a сигнал просто перевертається відносно осі y.

Реверс по часу

Суть операції — відображення сигнала зліва направо, або зміна напрямку осі часу (зазвичай — вісь x).

Зсув по часу

Сигнал зміщується вздовж осі x на певну величину τ (або N для дискретних сигналів). Якщо τ додатнє, то сигнал затримується, і τ від'ємне, то сигнал випереджає вхідний, або початковий сигнал.

Для дискретних сигналів: y[n] = x[n - N]:

Розширення

 $\overline{\text{Вісь часу можна змасштабувати на певну величину } a.$

Для неперервних сигналів: y(t) = x(at):

Для дискретних сигналів: y[n] = x[an]:

Зазначмо, що розширення для дискретних сигналів відрізняється від розширення

неперервних сигналів тим, що x[an] визначена тільки при цілих n. Тобто, для y[n] = x[an] параметр an повинен бути цілим числом.

Однак x[an] для $a \neq 1$ втрачає деякі значення. Цей процес називається *децимація*. Після нього x[n] повністю не відновлюється. Іншими словами децимація — зменшення частоти дискретизації дискретного в часі сигналу шляхом видалення його відліків.

Для дискретних сигналів y[n] = x[an] при a < 1 не існує. y[0] = x[0], y[1] = x[a] Якщо a < 1 вираз не має сенсу. Замість цього ми повинні *інтерполювати* нулі для невизначених величин (якщо an не ціле число).

ДОВІДКА. Інтерполяція — спосіб знаходження проміжних значень величини за наявним дискретним набором відомих значень.

Накладання сигналів

З сигналами можна проводити різноманітні маніпуляції. Існує багато методів комбінування сигналів, але розглянемо два основних:

Додавання

Для неперервних сигналів: $y(t) = x_1(t) + x_2(t)$ Для дискретних сигналів: $y[n] = x_1[n] + x_2[n]$

Множення

Для неперервних сигналів: $y(t) = x_1(t) \cdot x_2(t)$ Для дискретних сигналів: $y[n] = x_1[n] \cdot x_2[n]$

 $x_1[n]$ і $x_2[n]$ можна отримати після модифікації інших сигналів. Для прикладу нижче приведено обмеження експоненційної залежності в точці t=0.

Цей сигнал може бути отриманий шляхом множення

$$x_1(t) = e^{at}$$
 i $x_2(t) = u(t)$,

де $y(t) = e^{at}u(t)$ при a < 0. Таке твердження справджується і для дискретних сигналів. У загальному випадку, односторонні сигнали можна отримати шляхом множення на u[n] (або зміщенням/реверсом по часу u[n] чи u(t)).

Отримання сигналів з основних функцій

Один сигнал можна отримати з інших шляхом математичної обробки. Для неперервних сигналів: u(t) і $\delta(t)$

$$\delta(t) = \frac{du(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Для дискретних сигналів: u[n] і $\delta[n]$

$$\delta[n] = u[n] - u[n-1]$$

$$\delta[n] = u[n] - u[n-k]$$
 i $u[n] = \sum_{k=\infty}^{n} \delta[k]$

Інший спосіб визначення u[n]:

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

В загальному випадку:

$$u[n] = \sum_{k=-\infty}^{\infty} u[k]\delta[n-k]$$

Завдання до роботи.

- 1. Отримати особистий варіант завдання згідно з порядковим номером студента в журналі.
- 2. Створити програму для реалізації основних операцій з чотирма дискретними сигналами (сигнали $\{x_k\}$, $\{y_k\}$ в табл. 1):
 - масштабування
 - реверс по часу
 - зсув по часу
 - розширення

Коефіцієнти обрати на власний розсуд.

- 3. Створити програму для реалізації додавання та множення дискретних сигналів $\{x_k\}$ та $\{y_k\}$.
- 4. У звіті подати результати роботи програми у вигляді скріншотів та лістинг програми.

Таблиця 1. Вхідні дані

таолиця т. Вхідні дані		
Варіант №	$\{x_k\}$	$\{y_k\}$
1	6, 4, 0, 1, 2, 3, 6, 4, 0, 3, 8, 7	4, 0, 8, 2, 7, 3,
	2, 6, 4, 0, 8, 2	6, 4, 0, 1, 2, 8, 6, 4, 0, 8, 3, 7
2	2, 8, 7, 3, 4, 5, 1, 0	1, 2, 8, 3, 4
	2, 4, 0, 9, 1, 2, 7	0, 8, 2, 1, 6, 4, 2
3	2, 6, 5, 4, 7, 6, 5	1, 8, 4, 3, 5, 0, 9
	1, 6, 5, 0, 9, 4, 7	8, 7, 3, 2, 4, 5
4	4, 0, 8, 7, 0, 3, 7	4, 3, 9, 0, 8, 7
	8, 4, 3, 6, 5, 2, 1	3, 2, 4, 9, 0, 8, 7, 3, 2
5	9, 8, 7, 2, 1, 0	7, 1, 3, 2, 9, 4, 7, 1
	5, 7, 6, 1, 0, 8, 7, 6	8, 2, 9, 3, 0,
6	7, 4, 8, 0, 1, 3, 2, 7	8, 7, 7, 5, 8, 1, 0
	4, 0, 1, 7, 5, 1, 0	2, 4, 3, 9, 6, 5
7	0, 7, 1, 4, 5, 6, 1, 2	1, 0, 9, 2, 8, 7,
	0, 9, 4, 5, 0, 7, 5	4, 7, 3, 4, 9, 2, 1, 3, 7, 4
8	9, 8, 7, 4, 9, 5, 0	5, 3, 2, 4, 0, 1, 2
	7, 1, 9, 8, 7, 5	8, 7, 3, 4, 6, 0, 9, 2, 1, 6
9	0, 9, 2, 7, 4, 3	6, 8, 6, 4
	5, 1, 0, 2, 6, 4, 7, 8	0, 1, 2, 8, 7, 4, 0
10	6, 4, 2, 7, 9, 3	4, 9, 0, 8, 1, 7, 2,
	6, 4, 7, 0, 8, 1, 2	3, 4, 8, 7, 0, 6
11	6, 4, 7, 9, 2, 3, 6, 4, 9	8, 2, 7, 3, 6, 4, 0
	2, 3, 6, 4, 2, 4, 8, 2	1, 2, 8, 6, 4, 0, 8, 3, 7, 6, 4, 0
12	2, 1, 4, 3, 6, 8	8, 4, 1, 8
	6, 4, 0, 1, 2, 8, 7, 4, 0, 1, 2	8, 3, 4, 0, 8, 2, 1
13	3, 2, 4, 0, 1, 2, 8, 7	1, 8, 7, 6, 4
	3, 4, 6, 0, 9, 2, 1, 6, 4, 0	0, 1, 2, 3, 6, 4
14	4, 5, 7, 3	4, 1, 6, 7
	6, 4, 7, 8, 1, 1, 5	5, 3, 6, 7, 1, 0
15	2, 3, 4, 7	0, 3, 8, 7, 2, 6, 4,
	6, 3, 2, 4, 6	0, 8, 2, 3, 7, 4, 0, 8, 5