Теорія чисел

- 1) Довести, існує нескінченно багато n, що $2^n + 2$:n.
- 2) Довести, для довільного a існує нескінченно багато n, що $a^n + 1$:n.
- 3) Довести, що для різних натуральних a,b,c існує n, що a+n,b+n,c+n попарно взаємнопрості.
- 4) Довести існують арифметичні послідовності довільної довжини з додатньою різницею, що всі їх члени є степенями натуральних чисел з показниками більшими 1.
- 5) Знайти всі прості p, що виконується $2^p + 1$: p.
- 6) Знайти всі прості p, що $(p-1)!+1=p^m$.
- 7) Довести, що для довільного $k \neq 1$ існує нескінченно багато n , що $2^{2^n} + k$ складене.
- 8) Довести існує нескінченно багато k, що $k2^{n}+1$ складене при всіх натуральних n.
- 9) Довести існує нескінченно багато k, що $2^n + k$ складене при всіх натуральних n.
- 10) Знайти всі натуральні n, що $(n+1)^3 + (n+2)^3 + (n+3)^3 + (n+4)^3 = (n+10)^3$.
- 11) Знайти всі натуральні x, y, що x(x+1) = 4y(y+1).
- 12) Довести, що для простого p рівняння $x(x+1) = y(y+1)p^{2n}$ не має розв'язків в натуральних числах.
- 13) Знайти всі раціональні корені $x^2 + y^2 + z^2 + x + y + z = 1$.
- 14) Довести, рівняння $4xy x y = z^2$ не має розв'язків в натуральних числах, але має нескінченно багато в від'ємних цілих.
- 15) Розв'язати в цілих $y^2 = x^3 + (x+4)^2$.
- 16) Довести, що сума цифр числа 2^n необмежено зростає з ростом n. (тобто починаючи з певного місця сума цифр більша за фіксоване число, і так для кожного числа).
- 17) Довести, що перші s цифр в запису квадрата натурального числа можуть бути довільними.
- 18) Знайти всі натуральні x та прості p , що $x \le 2p$ та $(p-1)^x + 1$: x^{p-1} .
- 19) Випишемо всі дільники чмсла $n: 1=d_1 < d_2 < ... < d_k = n$. Довести, $d_1d_2 + d_2d_3 + ... + d_{k-1}d_k < n^2$. Та знайти всі n , для яких виписана сума є лільником числа n^2 .
- 20) b,n>1 \forall k $\exists a_k:\ b\hbox{-}a_k^n$ $\vdots k$, довести $b=A^n$, для деякого натурального A.
- 21) Знайти всі непарні прості $\,p\,$, для яких існує $\,g\,$, що множини

$$A = \{k^2 + 1 \pmod{p} : k = 1, 2, ..., \frac{p-1}{2}\}$$
 та $B = \{g^k \pmod{p} : k = 1, 2, ..., \frac{p-1}{2}\}$

- 22) Довести існує нескінченно багато n , що n^2+1 має простий дільник більший ніж $2n+\sqrt{2n}$.
- 23) Довести, що рівняння $\frac{x^7 1}{x 1} = y^5 1$ не має розв'язків в натуральних числах.