

Student's Name: Vivek jaiswal Mobile No: 9887552039

Roll Number: B20172 Branch:DSE

Table 1 Mean, median, mode, minimum, maximum and standard deviation for all the attributes

S. No.	Attributes	Mean	Median	Mode	Min.	Max.	S.D.
1	pregs	3.8450	3.00	1	0	17	3.367
2	plas	120.8945	117.0	99	0	199	31.951
3	pres (in mm Hg)	69.1054	72.0	70	0	122	19.343
4	skin (in mm)	20.5364	23.0	0	0	99	15.941
5	test (in mu U/mL)	79.7994	30.5	0	0	846	115.168
6	BMI (in kg/m²)	31.9925	32.0	32.0	0	67.1	7.879
7	pedi	0.4718	0.3725	0.254	0.078	2.42	0.331
8	Age (in years)	33.2408	29.0	22	21	81	11.752

Inferences:

1

- 1. Infer if there is any relation between the magnitude of standard deviation and mean, mode and median values. (Hint: If standard deviation is close to zero; are mean, median and mode close to each other?)
- 2. Inference 2(You may add or delete the number of inferences)

2 a.

Figure 1 Scatter plot: Age (in years) vs. pregs

Inferences:

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with Age (in years) and y-axis legend with pregs.

Figure 2 Scatter plot: Age (in years) vs. plas

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with Age (in years) and y-axis legend with plas.

Figure 3 Scatter plot: Age (in years) vs. pres (in mm Hg)

Inferences:

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with Age (in years) and y-axis legend with pres (in mm Hg).

Figure 4 Scatter plot: Age (in years) vs. skin (in mm)

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with Age (in years) and y-axis legend with skin (in mm).

Figure 5 Scatter plot: Age (in years) vs. test (in mm U/mL)

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with Age (in years) and y-axis legend with test (in mm U/mL).

Figure 6 Scatter plot: Age (in years) vs. BMI (in kg/m²)

Inferences:

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with Age (in years) and y-axis legend with BMI (in kg/m²).

Figure 7 Scatter plot: Age (in years) vs. pedi

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with Age (in years) and y-axis legend with pedi.

b.

Figure 8 Scatter plot: BMI (in kg/m²) vs. pregs

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with BMI (in kg/m²) and y-axis legend with pregs.

Figure 9 Scatter plot: BMI (in kg/m²) vs. plas

Inferences:

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with BMI (in kg/m²) and y-axis legend with plas.

Figure 10 Scatter plot: BMI (in kg/m²) vs. pres (in mm Hg)

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with BMI (in kg/m^2) and y-axis legend with pres (in mm Hg).

Figure 11 Scatter plot: BMI (in kg/m²) vs. skin (in mm)

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with BMI (in kg/m²) and y-axis legend with skin (in mm).

Figure 12 Scatter plot: BMI (in kg/m²) vs. test (in mm U/mL)

Inferences:

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with BMI (in kg/m²) and y-axis legend with x2.

Figure 13 Scatter plot: BMI (in kg/m²) vs. pedi

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with BMI (in kg/m²) and y-axis legend with pedi.

Figure 14 Scatter plot: BMI (in kg/m²) vs. Age (in years)

Inferences:

- 1. Infer how the attribute 1 is correlated to attribute 2 based upon spread of the data points
- 2. Inference based on density of points
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The scatter plot above is for illustration purpose. Replace it with the scatter plot obtained by you. Rename x-axis legend with BMI (in kg/m²) and y-axis legend with Age (in years).

3 a.

Table 3 Correlation coefficient value computed between age and all other attributes

S. No.	Attributes	Correlation Coefficient Value		
1	pregs	0.544		
2	plas	0.263		
3	pres (in mm Hg)	0.239		
4	skin (in mm)	-0.11		
5	test (in mu U/mL)	-0.04		
6	BMI (in kg/m²)	0.036		
7	pedi	0.033		
8	Age (in years)	1.0		

Inferences:

- 1. From the magnitude of correlation coefficient value, comment on the degree of correlation between age and each of the attribute.
- 2. From the sign of correlation coefficient value, comment whether with increase or decrease in age each of the attributes will increase or decrease.
- 3. Relate and comment on the value of correlation coefficient with corresponding scatter plot.
- 4. Inference 4(You may add or delete the number of inferences)

b.

Table 4 Correlation coefficient value computed between BMI and all other attributes

S. No.	Attributes	Correlation Coefficient Value		
1	pregs	0.017		
2	plas	0.22		
3	pres (in mm Hg)	0.28		
4	skin (in mm)	0.39		
5	test (in mu U/mL)	0.19		
6	BMI (in kg/m ²)	1.0		
7	pedi	0.14		
8 Age (in years)		0.036		

- 1. From the magnitude of correlation coefficient value, comment on the degree of correlation between age and each of the attribute.
- 2. From the sign of correlation coefficient value, comment whether with increase or decrease in age each of the attributes will increase or decrease.
- 3. Relate and comment on the value of correlation coefficient with corresponding scatter plot.
- 4. Inference 4(You may add or delete the number of inferences)

4 a.

Figure 15 Histogram depiction of attribute pregs

- 1. Infer the frequency of each bin referring to its height.
- 2. From the histogram, infer in which of the bins mode of the attribute skin lies.
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The histogram plot above is for illustration purpose. Replace it with the histogram plot obtained by you. Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 16 Histogram depiction of attribute skin

Inferences:

- 1. Infer the frequency of each bin referring to its height.
- 2. From the histogram, infer in which of the bins mode of the attribute skin lies.
- 3. Inference 3(You may add or delete the number of inferences)

Note: The histogram plot above is for illustration purpose. Replace it with the histogram plot obtained by you. Rename x-axis legend and y-axis legends with appropriate attribute names with units.

5

Figure 17 Histogram depiction of attribute pregs for class 0

Figure 18 Histogram depiction of attribute pregs for class 1

Inferences:

- 1. From the histogram, infer in which of the bins mode of the attribute pregs lies for class 0 and 1.
- 2. Compare and contrast the frequency referring to the height of each bin for class 0 and 1
- 3. Inference 3(You may add or delete the number of inferences)

 Note: The histogram plot above is for illustration purpose. Replace it with the histogram plot obtained by you. Rename x-axis legend and y-axis legends with appropriate attribute names with units.

6

Figure 19 Boxplot for attribute pregs

Inferences:

1. Inference on outliers and their values.

- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)
 Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you.
 Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 20 Boxplot for attribute plas

Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you. Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 21 Boxplot for attribute pres(in mm Hg)

Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

 Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you.

 Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 22 Boxplot for attribute skin(in mm)

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you. Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 23 Boxplot for attribute test (mu U/mL)

Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you. Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 24 Boxplot for attribute BMI (in kg/m²)

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

 Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you.

 Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 25 Boxplot for attribute pedi

Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Relate with the values from Q1. for this attribute.
- 6. Inference 6(You may add or delete the number of inferences)

Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you. Rename x-axis legend and y-axis legends with appropriate attribute names with units.

Figure 26 Boxplot for attribute Age (in years)

Inferences:

- 1. Inference on outliers and their values.
- 2. Infer the Inter quartile range.
- 3. Infer the variability of attribute.
- 4. Infer the skewness of the data.
- 5. Inference 5(You may add or delete the number of inferences)

 Note: The boxplot above is for illustration purpose. Replace it with the boxplot obtained by you.

 Rename x-axis legend and y-axis legends with appropriate attribute names with units

Guidelines for Report (Delete this while you submit the report):

- The plot/graph/figure/table should be centre justified with sequence number and caption.
- Inferences should be written as a numbered list.

- Use specific and technical terms to write inferences.
- Values observed/calculated should be rounded off to three decimal places.
- The quantities which have units should be written with units.