AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1-73. (Cancelled)

74. (Currently Amended) A haze free PZT film prepared in accordance with the method comprising:

forming a front-end structure over a semiconductor substrate; forming a bottom electrode over said front-end structure; preheating said semiconductor wafer; and

forming a PZT film over said bottom electrode;

wherein said preheating step comprises <u>placing said semiconductor</u>
wafer on a heater, and heating said semiconductor wafer in an ambient comprised of a mixture of an inert gas and an oxidizer gas.

75. (Currently Amended) A haze free PZT film prepared in accordance with the method comprising:

forming a front-end structure over a semiconductor substrate;

forming a bottom electrode over said front-end structure;

preheating said semiconductor wafer; and

forming a PZT film over said bottom electrode;

wherein said preheating step comprises <u>placing said semiconductor</u>

<u>wafer on a heater, and heating said semiconductor wafer in an inert gas.</u>

TI-34784.1

76. (Currently Amended) A haze free PZT film prepared in accordance with the method comprising:

forming a front-end structure;

forming a bottom electrode over said front-end structure;

preheating said semiconductor wafer; and

forming a PZT film over said bottom electrode;

wherein said preheating step comprises <u>placing said semiconductor</u>
wafer on a heater, and heating said semiconductor wafer in a vacuum.

- 80. (Original) The haze free PZT film of Claim 74 wherein said inert gas is Ar.
- 81. (Original) The haze free PZT film of Claim 74 wherein said inert gas is N_2 .
- 82. (Original) The haze free PZT film of Claim 74 wherein said oxidizer gas is O₂.
- 83. (Original) The haze free PZT film of Claim 80, wherein Ar comprises at least 20% of the flow of said inert/oxidizer gas mixture.

- 84. (Original) The haze free PZT film of Claim 74 wherein said PZT film contains at least 2% excess Pb from the stoichiometric composition of $Pb_{1.0}$ (Zr, $Ti)_{1.0}O_3$.
- 85.(Original) The haze free PZT film of Claim 74 wherein said PZT film is a solid solution of the component end members PbZrO₃ and PbTiO₃.
- 86.(Original) The haze free PZT film of Claim 74 wherein said PZT film is doped up to 5% with either La or Nb.
- 87.(Original) The haze free PZT film of Claim 75 wherein said inert gas is Ar.
- 88. (Original) The haze free PZT film of Claim 75 wherein said inert gas is N_2 .
- 89.(Original) The haze free PZT film of Claim 75 wherein said inert gas is He.
- 90.(Original) The haze free PZT film of Claim 75 wherein said PZT film contains at least 2% excess Pb from the stoichiometric composition of Pb_{1.0}(Zr,Ti)_{1.0}O₃.

- 91.(Original) The haze free PZT film of Claim 75 wherein said PZT film is a solid solution of the component end members PbZrO₃ and PbTiO₃.
- 92.(Original) The haze free PZT film of Claim 75 wherein said PZT film is doped up to 5% with either La or Nb.
- 93.(Original) The haze free PZT film of Claim 75 wherein said PZT film is PbZrO₃.
- 94.(Original) The haze free PZT film of Claim 76 wherein said PZT film contains at least 2% excess Pb from the stoichiometric composition of $Pb_{1.0}(Zr,Ti)_{1.0}O_3$.
- 95.(Original) The haze free PZT film of Claim 76 wherein said PZT film is a solid solution of the component end members PbZrO₃ and PbTiO₃.
- 96.(Original) The haze free PZT film of Claim 76 wherein said PZT film is doped up to 5% with either La or Nb.
- 97.(Original) The haze free PZT film of Claim 76 wherein said PZT film is PbZrO₃.