Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Фундаментальные науки» Кафедра «Высшая математика»

ОТЧЁТ

по ознакомительной практике за 1 семестр 2020-2021 учебного года

Руководитель практики, ст. преп. кафедры ФН1		Гордеева Н. М.
	подпись, дата	фамилия, инициалы
Студент группы ФН1-51Б		Шашков А. Ю.
	подпись, дата	фамилия, инициалы

Цели и задачи практики

Цели технологической практики: развитие навыков работы с программным обеспечением и изученными методами решения поставленной задачи, необходимых для успешного освоения материала бакалавриата и применяющихся в будущей профессиональной деятельности.

Задача технологической практики:

• Реализация численных методов решения различных уравнений (систем уравнений) в компьютерной среде.

Индивидуальное задание:

Решить сингулярную двуточечную краевую задачу

$$\varepsilon y'' + (x^2 + x)y' + (x\sin x - \cos x)y = -(x^2 + x), x \in [0; 1]$$

с граничными условиями

$$y'(0) = -2; y'(1) = 5$$

методом конечных разностей, при различных значениях параметра

$$\varepsilon = 1, 0.1, 0.01, 0.001.$$

Теоретическая часть

<u>Метод конечных разностей.</u>

Рассмотрим линейное дифференциальное уравнение 2-го порядка

$$\varepsilon y'' + p(x)y' + q(x)y = f(x), x \in [a; b]$$

для краевой задачи с граничными условиями 3-го рода:

$$lpha_1 y(a) + lpha_2 y'(a) = \gamma_1,$$
 $eta_1 y(b) + eta_2 y'(b) = \gamma_2,$ $p(x), q(x), f(x)$ — непрерывны на $[a;b]$.

Введём на [a;b] сетку с узловыми точками $a=x_1 < x_2 < ... < x_n = b$ с постоянным шагом $h=\frac{b-a}{n-1}$ и будем искать решение в них. Воспользуемся для аппроксимации производных функций формулами численного дифференцирования:

$$y_i'pproxrac{y_{i+1}-y_{i-1}}{2h}, \ y_i''pproxrac{y_{i+1}-2y_i+y_{i-1}}{h^2}$$
для внутренних узлов, $i=\overline{2,n-1}.$

Для граничных точек положим

$$y_1' \approx \frac{y_2 - y_1}{h}$$
$$y_n' \approx \frac{y_n - y_{n-1}}{h}$$

С учётом полученных выражений перепишем дифференциальное уравнение:

$$\varepsilon \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + p(x_i) \frac{y_{i+1} - y_{i-1}}{2h} + q(x_i) y_i = f(x_i), i = \overline{2, n-1}$$

$$y_{i-1} \left(\varepsilon - \frac{p(x_i)h}{2}\right) + y_i (q(x_i)h^2 - 2\varepsilon) + y_{i+1} \left(\varepsilon + \frac{p(x_i)h}{2}\right) = f(x_i)h^2, i = \overline{2, n-1}$$

Граничные условия будут записаны в виде

$$y_1 \left(\alpha_1 - \frac{\alpha_2}{h} \right) + y_2 \frac{\alpha_2}{h} = \gamma_1,$$
$$y_{n-1} \cdot \left(-\frac{\beta_2}{h} \right) + y_n \left(\beta_1 + \frac{\beta_2}{h} \right) = \gamma_2.$$

В итоге получаем СЛАУ из n уравнений с n неизвестными:

$$AY = B, \text{где}$$

$$A = \begin{pmatrix} \alpha_1 - \frac{\alpha_2}{h} & \frac{\alpha_2}{h} & 0 & \cdots & 0 & 0 & 0 \\ \varepsilon - \frac{p(x_2)h}{2} & q(x_2)h^2 - 2\varepsilon & \varepsilon + \frac{p(x_2)h}{2} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -\frac{\beta_2}{h} & \beta_1 + \frac{\beta_2}{h} \end{pmatrix},$$

$$B = \begin{pmatrix} \gamma_1 \\ f(x_2)h^2 \\ \vdots \\ f(x_{n-1})h^2 \\ \gamma_2 \end{pmatrix},$$

Y — вектор-столбец со значениями y_i , $i = \overline{1,n}$. Данная система решается методом прогонки.

Метод прогонки.

Пусть имеется трёхдиагональная матрица:

$$\begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 & | & d_1 \\ c_2 & a_2 & \ddots & & \vdots & | & \\ 0 & \ddots & \ddots & \ddots & 0 & | & \vdots \\ \vdots & & \ddots & \ddots & b_{n-1} & | & \\ 0 & \cdots & 0 & c_n & a_n & | & d_n \end{pmatrix}$$

Применим прямой ход метода Гаусса, получим двухдиагональную матрицу:

$$\begin{pmatrix} 1 & P_2 & \cdots & 0 & | & Q_2 \\ 0 & \ddots & \ddots & \vdots & | & \vdots \\ \vdots & & \ddots & P_n & | & \vdots \\ 0 & \cdots & 0 & 1 & | & Q_{n+1} \end{pmatrix}$$

Запишем і-ю строку преобразованной матрицы в виде

$$x_i = P_{i+1}x_{i+1} + Q_{i+1}; i = 1, ..., n,$$

где $P_{n+1} = x_{n+1} = 0$

Получили рекуррентное соотношение с неизвестными коэффициентами P и Q. Найдём их.

Для обратного хода будет иметь место соотношение

$$x_{i-1} = P_i x_i + Q_i$$
; $i = 2, ..., n$

Тогда для і-й строки исходной матрицы получим

$$c_i(P_ix_i+Q_i)+a_ix_i+b_ix_{i+1}=d_i;\ i=1,...,n,$$
 при этом $c_1=P_1=Q_1=0$

$$x_i = (-a_i - c_i P_i)^{-1} b_i x_{i+1} + (-a_i - c_i P_i)^{-1} (c_i Q_i - d_i); i = 1, ..., n$$

Отсюда определяем

$$P_{i+1}=-\frac{b_i}{a_i+c_iP_i}\text{, }Q_{i+1}=\frac{d_i-c_iQ_i}{a_i+c_iP_i}\text{, }i=1,\dots,n$$
 при этом $P_2=-\frac{b_1}{a_1}\text{, }Q_2=\frac{d_1}{a_1}.$

Практическая часть

Реализация в среде MATLAB:

Метод Конечных разностей

```
function [t] = MKR (a,b,n,e) % Метод конечных разностей
% a, b - границы отрезка
% n - кол-во узлов
% e - коэф-т при у''

t_start=cputime;
h=(b-a)/(n-1); % Шаг сетки
x(1)=a; % Абсциссы узлов

A(1,1)=1; % Матрица для метода прогонки
A(1,2)=-1;
B(1,1)=2*h; % Столбец для метода прогонки
for i=2:n-1
        x(i)=x(i-1)+h;
        A(i,i-1)=e-(x(i)^2+x(i))*h/2;
```

```
A(i,i) = (x(i) * sin(x(i)) - cos(x(i))) * h^2-2*e;
             A(i,i+1)=e+(x(i)^2+x(i))*h/2;
             B(i,1) = -(x(i)^2 + x(i)) *h^2;
         end
    A(n, n-1) = -1;
    A(n,n)=1;
    B(n, 1) = 5*h;
    x(n)=b;
y=Progonka(A,B); % Приближённое решение - значения у в узлах
сетки
plot(x, y, '.');
grid on;
t=vpa(cputime-t start, 6); % Время работы программы (сек)
Метод прогонки
function [X thylda] = Progonka(A,B)
n=length(A);
A new=A;
A new(:,n+1) = B(:,1);
    for i=1:n
         X \text{ thylda}(i,1) = \text{func } X(A \text{ new,} i);
    end
end
function [X i] = func X(A,i) % A - матрица со столбцом, i -
параметр
    n=length(A);
    if i<=n-1</pre>
         X i=koef P(A,i+1)*func X(A,i+1)+koef Q(A,i+1);
    else
         X_{i}=0;
    end
end
function [P] = koef P(A,i) % A - матрица со столбцом, i -
параметр
    if i==1
         P=0;
    end
         if i==2
             P=-A(1,2)/A(1,1);
         end
         if i>2
             P=-A(i-1,i)/(A(i-1,i-1)+A(i-1,i-2)*koef P(A,i-1));
         end
end
function [Q] = \text{koef } Q(A,i) % A - матрица со столбцом, i -
параметр
    n=length(A);
    if i==1
```

```
Q=0;
end
    if i==2
        Q=A(1,n)/A(1,1);
end
    if i>2
        Q=(A(i-1,n)-A(i-1,i-2)*koef_Q(A,i-1))/(A(i-1,i-1)+A(i-1,i-2)*koef_P(A,i-1));
end
end
```

Результаты выполнения задания:

Программа выводит точечный график полученного решения, а также своё время выполнения (сек). Количество узлов = 200.

$\varepsilon = 0.01$:

 $\varepsilon = 0.001$:

Литература

- MATLAB Documentation. URL:
 https://www.mathworks.com/help/index.html (02.02.2021).
- 2. Пирумов. У. Г. Численные методы. Учебное пособие М. Изд-во МАИ, 1998. 188 с