Homework #5

1. Prove that the following sequences of functions converge uniformly on the specified intervals.

i. $\{\frac{1}{n}\cos n^2x\}_{n=1}^{\infty}, x \in R$ ii. $\{n\ln(1+\frac{1}{nx})\}_{n=1}^{\infty}, x \in [1,4].$

2. Let $f_n(x) = \sqrt{nx}e^{-nx}$, for $x \ge 0$. Where does the sequence $\{f_n(x)\}_{n=1}^{\infty}$ converge pointwise and where does it converge uniformly?

3. i. Show that the sequence $\{\frac{nx}{1+n^2x^2}\}_{n=1}^{\infty}$ converges uniformly on $[a,\infty)$ for any a > 0, but that it only converges pointwise on $(0, \infty)$.

ii. Show that the sequence $\{\frac{1}{n}\ln(1+nx)\}_{n=1}^{\infty}$ converges uniformly on [0,b] for any b>0, but that it only converges pointwise on $[0,\infty)$.

4 Find the region where the following series converges uniformly and the region where it converges pointwise: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{n(x^2-3x+2)}$

5. Prove that the following series converges uniformly on (0,1]: $\sum_{n=1}^{\infty} (x \ln x)^n$.

6. Let $f_0(x)$ be integrable on [0, a]. For $n \ge 1$, define $f_n(x) = \int_0^x f_{n-1}(t)dt$, $x \in [0,a]$. Prove that the sequence $\{f_n(x)\}_{n=1}^{\infty}$ converges to 0 uniformly on [0, a].

7. Let $f_n(x) = \frac{nx}{1+n^2x^p}$, $x \in [0,1]$, p > 0.

i. For which p does $\{f_n(x)\}_{n=1}^{\infty}$ converge uniformly to 0?

ii. Does $\lim_{n\to\infty} \int_0^1 f_n(x)dx = 0$ for p=2? For p=4?

8. Find the radii of convergence of the following power series:

i. $\sum_{1}^{\infty} \frac{(-1)^{n}}{n!} (\frac{n}{e})^{n} x^{n};$ ii. $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}} x^{n};$ iii. $\sum_{n=1}^{\infty} \frac{1}{n} (1 + \frac{1}{n})^{n^{2}} x^{3n}.$

9. Prove that for |x| < 1,

$$\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=0}^{\infty} (n+1)(n+2)x^n.$$

10. Calculate the sum for the following series:

 $\begin{array}{l} \text{i. } \frac{x^3}{1 \cdot 3} - \frac{x^5}{3 \cdot 5} + \frac{x^7}{5 \cdot 7} - \frac{x^9}{7 \cdot 9} + \cdots; \\ \text{ii. } 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots. \end{array}$

(Hint for both parts: Find an appropriate power series that you know how to evaluate, and perform an operation on it—differentiation or integration.)