Inteligencia Artificial Clásica

Verónica E. Arriola-Rios

Facultad de Ciencias. UNAM

8 de marzo de 2021

Planeación

Planeación

- Planeación
- 2 Introducción a la planeación con órdenes paciales
- Introducción a la planeación jerárquica

Temas

- Planeación
 - Definición
 - Problema de planeación

Planeación

Definición (Planeación)

En general:

- Es el proceso explícito de deliberación que elige y organiza acciones mediante la anticipación de sus consecuencias.
- Pretende alcanzar un conjunto de objetivos previamente establecidos. (O acercarse a ellos lo más posible - planeación como un problema de optimización).

En IA: Estudio computacional de este proceso de deliberación.

Temas

- Planeación
 - Definición
 - Problema de planeación

Problema de planeación

Definición

Sea un problema de planeación la tupla $\mathcal{P} = (\Sigma, s_i, g)$ con:

- Σ un sistema de transición de estados (con sus operadores),
- s_i un estado incial en S_0 , donde S_0 es el conjunto de estados iniciales.
- g una función de prueba para la meta: un estado objetivo ha sido alcanzado.

Opcionalmente se puede agregar una función de costo del camino, cuando algunas acciones son más complejas de realizar, que otras.

Plan

Definición

Un *plan* es una secuencia de acciones $\pi = \langle \alpha_1, ..., \alpha_k \rangle$, con $k \geqslant 0$.

- La *longitud del plan* π es $|\pi| = k$, el número de acciones.
- Si $\pi_1 = \langle \alpha_1, ..., \alpha_k \rangle$ y $\pi_2 = \langle \alpha_1', ..., \alpha_k' \rangle$ son planes, su *concatenación* es el plan $\pi_1 \bullet \pi_2 = \langle \alpha_1, ..., \alpha_k, \alpha_1', ..., \alpha_k' \rangle$.

Función de transición para planes

La función de transición de estados extendida para planes es:

$$\gamma(s,\pi) = \begin{cases} s & \text{si } k = 0 \text{ (π está vacío)} \\ \gamma(\gamma(s,\alpha_1),<\alpha_2,...,\alpha_k>) & \text{si } k>0 \text{ y} \\ \alpha_1 \text{ es aplicable en } s \\ \text{indefinido} & \text{de otro modo} \end{cases} \tag{1}$$

Verónica E. Arriola-Rios Problema de planeación Facultad de Ciencias, UNAM

Definición clásica de solución

Definición

Sea $\mathcal{P}=(\Sigma,s_{i},g)$ un problema de planeación, una plan π es una **solución** para \mathcal{P} si $\gamma(s_{i},\pi)$ satisface g.

- Una solución π es *redundante* si existe una subsecuencia propia de π que también es solución para \mathcal{P} .
- π es *mínimo* si ninguna otra solución para $\mathcal P$ contiene menos acciones que π .

Referencias

Ejemplo: El mago y el dragón

Plan.

- Avanzar a la derecha.
- Tomar el báculo
- Bajar.
- Mirar a la derecha
- Usar hechizo puente de hielo.
- Avanzar a la derecha.
- Avanzar a la derecha.
- Mirar hacia arriba.
- Matar al dragón con hechizo lanzafuegos.

Figura: Mapa del ambiente en s_i . Ojo: no es lo mismo que el espacio de estados.

Introducción a la planeación con órdenes paciales

- Planeación
- Introducción a la planeación con órdenes paciales
- Introducción a la planeación jerárquica

Búsqueda en:

Planeación

Espacio de estados Espacio de planes

Nodos de búsqueda:

Estados del mundo Planes parciales

Función de transición:

Operaciones de refinamiento de planes $\gamma: S \times A \rightarrow S$

Solución:

Estado final s con g(s) = VPlan con órdenes parciales

 $\pi = \langle a_1, ..., a_k \rangle$

Justificación

Plan clásico:

- Mago, a la derecha.
- Mago, recoge báculo.
- Mago, a la derecha.
- Mago, a la derecha.
- 6 Caballero, a la derecha.
- Caballero, recoge espada.
- Caballero, a la derecha.
- Caballero, atrae dragón.
- Caballero, retrocede. Efecto: Dragón, persigue caballero.
- Mago, abajo.
- Mago, usar hechizo puente de hielo.
- 💶 Mago, baja.
- 🟮 Mago, baja.
- Mago, toma el tesoro.

Figura: El orden estricto en que el mago recoge su báculo y el caballero, su espada no importa, con tal que el cabellero distraiga al dragón antes de que pase el mago.

Definición de plan parcial

Definición

Un *plan parcial* es una tupla $\pi = (A, \prec, B, L)$, donde:

- $A = \{\alpha_1, ..., \alpha_k\}$ es un conjunto de operadores con asignaciones parciales. Acciones con variables libres.
- \prec es un conjunto de restricciones de orden sobre A de la forma $a_i \prec b_i$ (a_i precede a b_i).
- B es un conjunto de restricciones sobre las asignaciones a las variables en A de la forma:
 - x = y, $x \neq y$, $x \in D_x$
- L es un conjunto de vínculos causales de la forma $\alpha_i [p] \to \alpha_j$ tales que:
 - $a_i, a_j \in A \ y \ (a_i \prec a_j) \in \prec$
 - El predicado p es postcondición de a_i y precondición de a_j .
 - Las restricciones sobre las asociaciones a variables en $a_i, a_i, p \in B$.

Verónica E. Arriola-Rios Facultad de Ciencias, UNAM

Características de los planes parciales

- Meta: Alcanzar el estado objetivo satisfaciendo todas sus precondiciones.
- Submetas: Precondiciones sin vínculos causales (no han sido satisfechas por ninguna acción).
- Las acciones sólo se encuentran ordenadas parcialmente ⇒ permite ejecutar acciones en paralelo.
- En los estados intermedios se puede tener **asignaciones parciales** de las variables de los operadores.

Fallas

Fallas en un plan $\pi = (A, \prec, B, L)$:

- Una precondición de una acción en A sin una relación causal en L que la satisfaga.
- ② Una amenaza: una acción α_k que pueda interferir con una relación causal $\langle \alpha_i [p] \to \alpha_j \rangle$. Esto sucede si y sólo si:
 - **1** a_k tiene una postcondición $\neg q$ que se puede unificar con p.
 - $(a_i \prec a_k)$ y $(a_k \prec a_j)$ son consistentes con \prec .
 - Section Las asignaciones que unifican q y p son consistentes con B.

Solución

Teorema

Un plan parcial $\pi=(A,\prec,B,L)$ es una solución al problema de planeación $\mathfrak{P}(\Sigma,s_0,g)$ si:

- $\mathbf{0}$ π no tiene fallas.
- Las restricciones a las asignaciones a variables a B son consistentes.

Ejemplo

Plan parcial:

```
Mago,
                    Caballero,
a la derecha.
                     a la derecha.
   Mago,
                       Caballero.
recoge báculo.
                    recoge espada.
    Mago,
                       Caballero,
a la derecha.
                     a la derecha.
    Mago,
                     Caballero,
a la derecha.
                     atrae dragón.
                       Caballero,
                      retrocede.
            Mago, baja.
   Mago, invoca puente de hielo.
            Mago, baja.
               Mago,
           toma tesoro.
```


Figura: **Asignaciones:** El mago debe poner el puente, por ello el caballero distrae al dragón.

Introducción a la planeación jerárquica

Planeación jerárquica

000

- 3 Introducción a la planeación jerárquica

Planteamiento

- El objetivo es completar una tarea.
- Cada tarea puede ser realizada por uno o más métodos.
- Un método es aplicable para realizar una tarea cuando se cumplen sus precondiciones.
- Cada método puede ser descompuesto en subtareas que permiten completar la tarea original.
- En general, estas subtareas pueden estar ordenadas parcial o totalmente.
- El problema queda resuelto cuando las subtareas más sencillas coinciden con acciones atómicas aterrizadas del dominio.

Ejemplo

Figura: La misión se divide en tres tareas, que al final serán secuencias de acciones primitivas.

Referencias I

Ghallab, Malik, Dana Nau y Paolo Traverso (2004). *Automated Planning, Theory and Practice*. Morgan Kaufmann Publishers.

Licencia

Creative Commons Atribución-No Comercial-Compartir Igual

