Web Appendix to the paper The Predictive Power of Google Searches in Forecasting US Unemployment

Francesco D'Amuri Bank of Italy and IZA Juri Marcucci Bank of Italy

April 29, 2017

Contents

1	Additional Tables and Figures: federal level	1
	1.1 Raw Google Indexes	11
2	Additional Tables and Figures: state level	20

List of Figures

A.1	Relative incidence of keyword searches through Google	2
A.2	Exact timing of monthly US Unemployment rate calculation	3
A.3	US Unemployment rate, Initial claims and Google Index	4
A.4	Different GIs related to unemployment and the Unemployment rate	5
A.5	US Unemployment rate and Google indexes: Short sample 2004.1-2014.2	9
A.6	Forecast errors across forecast horizons	10
A.7	Google indexes 'jobs' for the US across IPs and days of download	16
A.8	Relative forecasting performance across Google indexes downloaded in different	
	days and from different IPs (monthly averages)	17
B.1	Google Indexes across IP and states (AL to FL)	25
B.2	Google Indexes across IP and states (GA to ME)	26
B.3	Google Indexes across IP and states (MD to NH)	27
B.4	Google Indexes across IP and states (NJ to RI)	28
B.5	Google Indexes across IP and states (SC to WY)	29
B.6	Forecast errors from quarterly forecasts: comparison with the Survey of Profes-	
	sional Forecasters	35
B.7	Comparison of forecast errors for the same quarter for individual SPF forecasters	
	versus best model using Google	36
B.8	CSSED Comparison with SPF	37
B.9	RMSFE Comparison: Short sample vs Long sample	38
B.10	Ratios of RMSFEs for models with IC w.r.t. Benchmark over rolling out-of-	
	samples $(R = 37)$	39
B.11	Ratios of RMSFEs for models with Expectations w.r.t. Benchmark over rolling	
	out-of-samples $(R = 37)$	40
B.12	Ratios of RMSFEs for models with $G1$ w.r.t. Benchmark over rolling out-of-	
	samples $(R = 37)$	41
B.13	Ratios of RMSFEs for models with $G2$ w.r.t. Benchmark over rolling out-of-	
	samples $(R = 37)$	42
B.14	Ratios of RMSFEs for models with $G3$ w.r.t. Benchmark over rolling out-of-	
	samples $(R = 37)$	43
B.15	Ratios of RMSFEs for models with $G4$ w.r.t. Benchmark over rolling out-of-	
	samples $(R = 37)$	44

List of Tables

a.1	Descriptive statistics: 2004.1-2014.2	6
a.2	Correlations: sample 2004.1-2014.2	7
a.3	Correlations: sample 2004.1-2014.2	8
a.4	Descriptive statistics for the Google indexes 'jobs' downloaded from different IP	
	addresses and over different days: short sample 2004.1-2014.2	11
a.5	Correlations between GIs monthly averages: sample 2004.1-2014.2	14
a.6	Average in-sample Bayesian Information Criteria for each model at each forecast	
	horizon. Rolling scheme. Direct forecasts. GI for "jobs" $(G1)$	18
a.7	Transition matrix by internet job search activity, various years	19
b.1	State abbreviations and correlation between G1 and the unemployment rate	21
b.2	Descriptive statistics of the unemployment rate for each single US state	22
b.3	Descriptive statistics of Initial Claims for each single US state - Short sample	23
b. 4	Descriptive statistics of Google index for each single US state - Short sample	24
b.5	Incidence of internet job search among the unemployed and Correlation between	
	the unemployment rate and G1	30
b.6	Out-of-sample RMSFEs comparison across states	31

1 Additional Tables and Figures: federal level

Figure A.1: Relative incidence of keyword searches through Google

Notes: The figure depicts the relative incidence of the web searches for the keyword 'jobs' adopted to construct our preferred Google index along with more popular 'facebook' and 'youtube' keywords over the relevant sample 2004.1-2014.2.

Figure A.2: Exact timing of monthly US Unemployment rate calculation

Figure A.3: US Unemployment rate, Initial claims and Google Index

Notes: Shaded areas identify NBER recessions. The Initial claims are monthly averages re-based on their maximum over the sample 2004.1-2014.2. The Google Index is the monthly average of Google 'jobs' searches rebased on their weekly maximum value over the sample 2004.1-2014.2.

Figure A.4: Different GIs related to unemployment and the Unemployment rate

the unemployment rate and 2004.1-2014.2 for the GIs. G1, G2, G3, and G4 are the monthly averages of the weekly Google indexes for keywords 'jobs', 'job center', 'dos' (the false index) and the combination of 'collect unemployment', 'jobs' and Notes: The figure depicts all the Google indices used in the paper and the unemployment rate. Sample: 1997.7-2014.2 for 'job center'.

Table a.1: Descriptive statistics: 2004.1-2014.2

	Mean	Median	Max	Min	Std. Dev.	Skew.	Kurt.	Jarque-Bera	
$\overline{u_t}$	6.886	6.765	9.983	4.398	1.913	0.183	1.474	12.514	0.002***
IC_t	1550.5	1455.0	2615.0	1152.0	327.8	1.408	4.390	50.129	0.000***
$IC_{W1,t}$	387.5	359.0	670.0	282.0	83.1	1.437	4.603	55.038	0.000***
$IC_{W2,t}$	386.5	361.5	655.0	289.0	82.8	1.382	4.404	48.834	0.000***
$IC_{W3,t}$	388.2	363.0	659.0	294.0	80.8	1.376	4.401	48.449	0.000***
$IC_{W4,t}$	388.4	364.0	650.0	283.0	84.9	1.323	4.108	41.825	0.000***
EEM_t	51.8	53.2	62.1	25.5	6.8	-1.841	6.985	149.621	0.000***
$EENM_t$	51.0	52.8	60.2	31.5	5.6	-1.492	5.117	68.025	0.000***
CE_t	-19.4	-22.1	11.4	-46.1	18.8	0.157	1.570	10.897	0.004***
CE_t^{6M}	-6.7	-3.7	6.2	-40.2	8.8	-1.659	5.616	90.739	0.000***
EPU_t	119.9	110.7	245.1	57.2	42.6	0.407	2.208	6.555	0.037**
$G1_t$	71.3	74.9	86.9	56.0	8.9	-0.202	1.510	12.111	0.002***
$G1_{W1,t}$	70.2	73.0	97.1	56.1	9.2	0.176	2.259	3.389	0.184
$G1_{W2,t}$	70.8	73.2	90.9	57.3	8.8	0.026	1.720	8.272	0.016**
$G1_{W3,t}$	72.0	74.2	90.2	55.6	9.4	-0.093	1.616	9.909	0.007***
$G1_{W4,t}$	71.9	75.5	90.4	54.9	9.4	-0.158	1.612	10.303	0.006***
$G2_t$	41.8	55.2	81.9	4.1	24.5	-0.453	1.501	12.909	0.002***
$G2_{W1,t}$	47.2	54.6	80.4	13.4	19.0	-0.648	2.007	9.545	0.008***
$G2_{W2,t}$	46.8	50.9	81.0	12.8	18.8	-0.238	1.720	7.850	0.020**
$G2_{W3,t}$	49.6	57.0	90.2	13.8	20.4	-0.383	1.892	6.803	0.033**
$G2_{W4,t}$	49.4	58.3	78.3	12.7	19.7	-0.762	2.047	11.715	0.003***
$G3_t$	56.2	56.4	83.1	16.2	14.2	-0.072	2.076	4.446	0.108
$G3_{W1,t}$	56.5	56.4	90.2	19.8	14.8	-0.111	2.150	3.890	0.143
$G3_{W2,t}$	55.6	53.0	85.9	27.3	14.4	0.154	1.981	5.710	0.058*
$G3_{W3,t}$	57.3	58.0	91.5	25.4	15.1	0.011	1.961	5.490	0.064*
$G3_{W4,t}$	57.6	58.3	93.8	22.6	15.8	-0.020	2.302	2.489	0.288
$G4_t$	44.3	37.4	82.6	21.3	18.8	0.689	2.051	14.238	0.001***
$G4_{W1,t}$	44.3	37.7	86.8	20.3	19.1	0.687	2.087	13.831	0.001***
$G4_{W2,t}$	44.3	36.4	83.1	21.0	19.1	0.693	2.030	14.543	0.001***
$G4_{W3,t}$	44.3	37.7	86.8	20.3	19.1	0.687	2.087	13.831	0.001***
$G4_{W4,t}$	44.3	36.4	83.1	21.0	19.1	0.693	2.030	14.543	0.001***

Notes: u_t is the US monthly unemployment rate in levels. IC indicates the monthly initial claims, while G1, G2, G3, and G4 are the monthly averages of the weekly Google indexes for keywords 'jobs', 'job center', 'dos' (the false index) and the combination of 'collect unemployment', 'jobs' and 'job center' used as leading indicators. EEM_t and $EENM_t$ are the employment expectations for the manufacturing and non-manufacturing sector, respectively, from the Institute for Supply Management (ISM). CE_t and CE_t^{6M} are respectively the actual and for six-months hence consumer employment expectations from the US Consumer Confidence survey of the Conference Board. The actual consumer employment expectations are the difference between those who respond 'jobs hard to get' and 'jobs plentiful'. The six-month in advance consumer expectations on unemployment are given by the difference between the percentage of consumers saying there will be 'fewer jobs' and that one saying there will be 'more jobs' six months from now. EPU_t is the Economic Policy Uncertainty index by Baker, Bloom, and Davis (2016). The subscripts Wj indicate the j^{th} week. ***, ** and * indicate rejection of the null of normality at 1, 5 and 10%, respectively.

Table a.2: Correlations: sample 2004.1-2014.2

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		u_t	IC_t	$IC_t IC_{W1,t}$	$IC_{W2,t}$	$IC_{W3,t}$	$IC_{W4,t}$	EEM_t	$EENM_t$	CE_t	CE_t^{6M}	$G1_t$	$G1_t$ $G1_{W1,t}$	$G1_{W2,t}$	$G1_{W3,t}$	$G1_{W4,t}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_t	Π														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_t	0.64	-													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{W1,t}$	0.65	0.99	_												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{W2,t}$	0.64	0.99	0.99	Η											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{W3,t}$	0.63	0.99	0.96	0.97	-										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{W4,t}$	0.63	0.99	0.97	0.97	0.98	$\overline{}$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	${\mathbb E} EM_t$	0.22	-0.51	-0.48	-0.48	-0.52	-0.52	Η								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	${\it EENM_t}$	-0.14	-0.78	-0.76	-0.75	-0.77	-0.79	0.80	1							
0.15 -0.40 -0.37 -0.40 -0.40 0.72 0.67 0.04 1 0.80 0.61 0.59 0.58 0.60 0.62 -0.08 -0.30 -0.88 -0.15 1 0.70 0.53 0.51 0.54 0.54 -0.07 -0.25 -0.77 -0.13 0.87 0.74 0.52 0.51 0.49 0.53 -0.02 -0.21 -0.79 -0.07 0.88 0.77 0.60 0.58 0.57 0.60 0.62 -0.09 -0.31 -0.86 -0.16 0.97 0.76 0.60 0.58 0.60 0.62 -0.14 -0.34 -0.84 -0.20 0.97 0.97	$\supset E_t$	-0.96	-0.68	-0.68	-0.67	-0.67	-0.67	-0.10	0.23	-						
0.80 0.61 0.59 0.58 0.60 0.62 -0.08 -0.36 -0.88 -0.15 1 0.70 0.53 0.51 0.50 0.54 0.54 -0.07 -0.25 -0.77 -0.13 0.87 0.74 0.52 0.52 0.51 0.49 0.53 -0.02 -0.21 -0.79 -0.07 0.88 0 0.77 0.60 0.58 0.57 0.60 0.62 -0.09 -0.31 -0.86 -0.16 0.97 0 0.76 0.60 0.58 0.60 0.62 -0.14 -0.34 -0.84 -0.20 0.97 0	$\supset E_t^{6M}$	0.15	-0.40	-0.37	-0.40	-0.40	-0.40	0.72	0.67	0.04	Н					
0.70 0.53 0.51 0.50 0.54 -0.07 -0.25 -0.77 -0.13 0.87 0.74 0.52 0.52 0.51 0.49 0.53 -0.02 -0.21 -0.79 -0.07 0.88 0 0.77 0.60 0.58 0.57 0.60 0.62 -0.09 -0.31 -0.86 -0.16 0.97 0 0.76 0.60 0.58 0.59 0.60 0.62 -0.14 -0.34 -0.84 -0.20 0.97 0	$\vec{z}1_t$	0.80	0.61	0.59	0.58	09.0	0.62	-0.08	-0.30	-0.88	-0.15	П				
0.74 0.52 0.52 0.51 0.49 0.53 -0.02 -0.21 -0.79 -0.07 0.88 0.77 0.60 0.58 0.57 0.60 0.62 -0.09 -0.31 -0.86 -0.16 0.97 0.70 0.60 0.58 0.58 0.60 0.62 -0.14 -0.34 -0.84 -0.20 0.97 0.70 0.70 0.70 0.70 0.70 0.70 0.7	$\vec{z}1_{W1,t}$	0.70	0.53	0.51	0.50	0.54	0.54	-0.07	-0.25	-0.77	-0.13	0.87	_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$31_{W2,t}$	0.74	0.52	0.52	0.51	0.49	0.53	-0.02	-0.21	-0.79	-0.07	0.88	0.58	\vdash		
0.76 0.60 0.58 0.58 0.60 0.62 -0.14 -0.34 -0.84 -0.20 0.97 0.97 0.99 0.9	$\vec{z}1_{W3,t}$	0.77	0.60	0.58	0.57	09.0	0.62	-0.09	-0.31	-0.86	-0.16	0.97	0.81	0.85		
	$\vec{r}1_{W4,t}$	0.76	0.60	0.58	0.58	09.0	0.62	-0.14	-0.34	-0.84	-0.20	0.97	0.86	0.81	0.93	-

Notes: u_t is the US monthly unemployment rate in levels. IC and G1 are the monthly average of initial claims and the monthly average of Google index used as leading indicators. The first subscript wj indicates the j^{th} week.

Table a.3: Correlations: sample 2004.1-2014.2

	u_t	$G1_t$	$G1_{W1,t}$	$G1_{W2,t}$	$G1_{W3,t}$	$G1_{W4,t}$	EPU_t	$h1^{JLN}$	$h3^{JLN}$	$h12^{JLN}$	OV_t
u_t	1	0.87	0.71		0.86		0.78	0.10		0.01	0.11
$G1_t$	0.87				0.98		0.78	0.22		0.16	-0.03
$G1_{W1.t}$	0.71				0.77		0.62	0.20		0.15	-0.03
$G1_{W2,t}$	0.71				0.77		0.65	0.19		0.14	-0.07
$G1_{W3,t}$	0.86	0.98	0.77	0.77	Η	0.97	0.77	0.24	0.23	0.18	-0.04
$G1_{W4,t}$	0.85				0.97		0.78	0.27		0.21	-0.02
$EPU_t^{}$	0.78				0.77		-	0.19		0.13	0.07
$h1^{JLN}$	0.10				0.24		0.19	Η		0.98	0.34
$h3^{JLN}$	0.08				0.23		0.18	1.00		0.99	0.34
$h12^{JLN}$	0.01				0.18		0.13	0.98		-	0.34
OV_t	0.11				-0.04		0.07	0.34		0.34	_

Notes: u_t is the US monthly unemployment rate in levels. G1 is the monthly average of the Google index used as a leading indicator. The first subscript wj indicates the j^{th} week. EPU_t is the Economic Policy Uncertainty index by Baker, Bloom and Davis (2016). hj^{JLN} with j=1,3,12 is the j-th month-ahead uncertainty index by Jurado, Ludvigson, and Ng (2015). OV_t is the macro uncertainty index by Orlik and Veldkamp (2014).

Figure A.5: US Unemployment rate and Google indexes: Short sample 2004.1-2014.2

G1, G2, G3, and G4 are the monthly averages of the weekly Google indexes for keywords 'jobs', 'job center', 'dos' (the false index) and the combination of 'collect unemployment', 'jobs' and 'job center' used as leading indicators. All Google indexes are rebased. Notes: Shaded areas identify NBER recessions. The Google index is the monthly average of weekly Google searches. In particular, Sample: 2004.1-2014.2.

Figure A.6: Forecast errors across forecast horizons

Notes: In this figure we compare the h-step-ahead forecast errors (h=1,2,...,12) generated by our best model in each category (IC short and long sample, Expectations short and long sample, Google models and non-linear ones). The out-of-sample period is 2007.3-2014.2. SETAR, LSTAR and AAR are the corresponding non-linear models estimated over the long sample with two lags.

1.1 Raw Google Indexes

Table a.4: Descriptive statistics for the Google indexes 'jobs' downloaded from different IP addresses and over different days: short sample 2004.1-2014.2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- ***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} G_1^{P1,day1} & 72.1 & 74.7 & 90.5 & 54.9 & 9.4 & -0.084 & 1.644 & 9.492 & 0.009 \\ G_1^{P1,day2} & 71.8 & 75.8 & 88.9 & 55.5 & 9.5 & -0.159 & 1.578 & 10.791 & 0.005 \\ G_1^{P1,day2} & 70.8 & 74.4 & 86.0 & 56.0 & 8.8 & -0.203 & 1.504 & 12.214 & 0.002 \\ G_1^{P1,lay2} & 69.8 & 72.4 & 95.6 & 55.7 & 9.1 & 0.150 & 2.199 & 3.686 & 0.158 \\ G_1^{P1,lay2} & 70.4 & 72.1 & 90.7 & 56.3 & 8.8 & 0.023 & 1.709 & 8.412 & 0.015 \\ G_1^{P1,lay2} & 70.4 & 72.1 & 90.7 & 56.3 & 8.8 & 0.023 & 1.709 & 8.412 & 0.015 \\ G_1^{P1,lay2} & 71.5 & 73.6 & 92.0 & 56.2 & 9.4 & -0.057 & 1.657 & 9.235 & 0.010 \\ G_1^{P1,lay2} & 71.3 & 75.1 & 88.3 & 55.9 & 9.3 & -0.179 & 1.570 & 11.040 & 0.004 \\ G_1^{P1,lay3} & 72.0 & 75.6 & 87.4 & 57.2 & 9.0 & -0.189 & 1.502 & 12.142 & 0.002 \\ G_1^{P1,lay3} & 70.9 & 74.1 & 99.2 & 55.6 & 9.4 & 0.208 & 2.438 & 2.470 & 0.291 \\ G_1^{P1,lay3} & 71.5 & 73.6 & 90.9 & 57.7 & 8.9 & 0.037 & 1.713 & 8.383 & 0.015 \\ G_1^{P1,lay3} & 72.8 & 74.5 & 90.3 & 57.7 & 9.6 & -0.041 & 1.612 & 9.833 & 0.007 \\ G_1^{P1,lay3} & 72.8 & 74.5 & 90.3 & 57.7 & 9.6 & -0.041 & 1.612 & 9.833 & 0.007 \\ G_1^{P1,lay3} & 72.6 & 75.9 & 90.7 & 54.4 & 9.5 & -0.157 & 1.613 & 10.280 & 0.006 \\ G_1^{P1,lay4} & 70.4 & 73.0 & 97.1 & 56.2 & 9.3 & 0.177 & 2.262 & 3.375 & 0.185 \\ G_1^{P1,lay4} & 70.4 & 73.0 & 97.1 & 56.2 & 9.3 & 0.177 & 2.262 & 3.375 & 0.185 \\ G_1^{P1,lay4} & 70.4 & 73.0 & 97.5 & 56.9 & 9.1 & 0.003 & 1.691 & 8.643 & 0.013 \\ G_1^{P1,lay4} & 72.5 & 74.8 & 89.4 & 55.5 & 9.4 & -0.089 & 1.637 & 9.598 & 0.008 \\ G_1^{P1,lay5} & 72.0 & 75.4 & 89.0 & 56.5 & 9.0 & -0.191 & 1.526 & 11.783 & 0.003 \\ G_1^{P1,lay5} & 72.0 & 75.4 & 89.0 & 56.5 & 9.0 & -0.191 & 1.526 & 11.783 & 0.003 \\ G_1^{P1,lay5} & 72.0 & 75.4 & 89.0 & 56.5 & 9.0 & -0.191 & 1.526 & 11.783 & 0.003 \\ G_1^{P1,lay5} & 72.9 & 75.3 & 90.3 & 55.4 & 9.5 & -0.091 & 1.621 & 9.836 & 0.007 \\ G_1^{P1,lay5} & 72.9 & 75.3 & 90.3 & 55.4 & 9.5 & -0.091 & 1.621 & 9.836 & 0.007 \\ G_1^{P1,lay5} & 72.9 & 75.3 & 90.3 & 55.4 & 9.5 & -0.091 & 1.621 & 9.836 & 0.007 \\ G_1^{P1,lay7} & 69.7 & 71.9 & 98.2 & 55.3 & 9.2$	* *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{c} G_1^{IP1,day2} \\ G_1^{IP1,day3} \\ G_1^{IP1,day4} \\ G_1^{IP1,day3} \\ G_1^{IP1,day4} \\ G_1^{IP1,day5} \\ G_1^{IP1,day6} \\ G_1^{IP1,day7} \\ G_1^{$	k**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	* **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	k *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* **
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* **
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* **
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$G1_{W1,t}^{IP1,day6}$ 71.4 74.3 90.0 53.1 9.4 -0.138 1.684 9.186 0.010 $G1_{t}^{IP1,day7}$ 71.6 74.8 87.3 56.4 9.0 -0.199 1.519 11.957 0.003 $G1_{W1,t}^{IP1,day7}$ 70.6 73.4 95.5 56.4 9.1 0.088 2.039 4.811 0.090 $G1_{W2,t}^{IP1,day7}$ 71.0 73.3 91.4 56.6 8.9 0.047 1.770 7.678 0.022	* *
$G1_{W1,t}^{IP1,day6}$ 71.4 74.3 90.0 53.1 9.4 -0.138 1.684 9.186 0.010 $G1_{t}^{IP1,day7}$ 71.6 74.8 87.3 56.4 9.0 -0.199 1.519 11.957 0.003 $G1_{W1,t}^{IP1,day7}$ 70.6 73.4 95.5 56.4 9.1 0.088 2.039 4.811 0.090 $G1_{W2,t}^{IP1,day7}$ 71.0 73.3 91.4 56.6 8.9 0.047 1.770 7.678 0.022	* *
$G1_{tP1,day}^{TP1,day}{}^{7}$ 71.6 74.8 87.3 56.4 9.0 -0.199 1.519 11.957 0.003 $G1_{W1,t}^{IP1,day}{}^{7}$ 70.6 73.4 95.5 56.4 9.1 0.088 2.039 4.811 0.090 $G1_{W2,t}^{IP1,day}{}^{7}$ 71.0 73.3 91.4 56.6 8.9 0.047 1.770 7.678 0.022	* *
$G1_{W1,t}^{IP1,day\ 7}$ 70.6 73.4 95.5 56.4 9.1 0.088 2.039 4.811 0.090 $G1_{W2,t}^{IP1,day\ 7}$ 71.0 73.3 91.4 56.6 8.9 0.047 1.770 7.678 0.022	* **
$G1_{W2,t}^{\widetilde{IP1},day\ 7}$ 71.0 73.3 91.4 56.6 8.9 0.047 1.770 7.678 0.022 $G1_{W3,t}^{\widetilde{IP1},day\ 7}$ 72.3 73.4 89.7 56.3 9.5 -0.103 1.605 10.109 0.006	ķ
$G1_{W3}^{\overline{IP1},day}$ 72.3 73.4 89.7 56.3 9.5 -0.103 1.605 10.109 0.006	k *
	k**
$G1^{IP1,day}$ 7 7 7 7 7 7 7 7 1 90 2 54 0 9 6 -0.153 1 601 10 426 0 005	k**
$G1_{W4,t}^{IP1,day8}$ 71.2 75.1 85.5 55.9 8.9 -0.215 1.496 12.440 0.002	
$G1_{W1}^{IPI, Iday 8}$ 70.2 71.1 97.0 56.1 9.3 0.182 2.211 3.808 0.149	
$G1_{W2}^{W1,t} = 70.7$ 72.5 91.8 57.1 8.9 0.019 1.740 8.016 0.018	* *
$G1_{W2,t}^{IP1,day\;8}$ 70.7 72.5 91.8 57.1 8.9 0.019 1.740 8.016 0.018 $G1_{W3,t}^{IP1,day\;8}$ 72.0 73.8 90.3 54.7 9.4 -0.117 1.634 9.763 0.008	***
$G1_{W4,t}^{W3,t}$ 71.7 75.2 91.3 56.2 9.5 -0.141 1.635 9.875 0.007	

(Continued on next page)

				Table	a.4 – conti				
	Mean	Median	Max	Min	Std. Dev.	Skew.	Kurt.	Jarque-Bera	
$G1_{t}^{IP1,day 9}$	72.2	76.2	88.0	57.3	9.0	-0.209	1.511	12.157	0.002***
$G1_{W_{1,1}}^{IF_{1,1}}$	71.1	74.0	96.9	55.9	9.4	0.121	2.169	3.775	0.151
$G1_{W2,t}^{W1,t}$	71.6	73.7	91.1	57.8	9.0	-0.013	1.654	9.138	0.010**
$G1_{W3}^{IP1,aay}$	72.9	74.8	89.6	55.8	9.5	-0.100	1.633	9.703	0.008***
$C_1IP1,day 9$	72.8	76.1	93.8	55.2	9.5	-0.143	1.672	9.372	0.009***
$G1_t^{IP1,day\ 10}$	70.2	73.7	85.1	55.4	8.8	-0.196	1.506	12.124	0.002***
$G1_{W1}^{11}{}_{t}^{1,aag}$	69.2	71.7	95.8	55.3	9.2	0.230	2.435	2.675	0.263
$G1_{W2,t}^{IP1,day\ 10}$	69.7	72.0	90.0	56.4	8.6	0.046	1.716	8.352	0.015**
$G1_{W3,t}^{IP1,day\ 10}$	71.0	73.4	91.3	54.7	9.4	-0.058	1.672	9.032	0.011**
$G1_{W4,t}^{IP1,day\ 10}$	70.9	74.4	89.1	53.5	9.4	-0.154	1.627	10.062	0.007***
$G1_t^{IP1,day\ 11}$	71.6	74.8	87.7	56.4	9.0	-0.186	1.516	11.895	0.003***
$G1_{W1,t}^{IP1,day\ 11}$	70.6	72.5	100.9	56.1	9.5	0.320	2.718	2.469	0.291
$G1_{W2,t}^{IP1,day\ 11}$	71.1	72.9	89.2	57.7	8.9	-0.010	1.665	8.984	0.011**
$G1_{W3,t}^{IP1,day\ 11}$	72.4	74.6	91.0	54.4	9.5	-0.066	1.631	9.614	0.008***
$C1^{IP1,day\ 11}$	72.2	75.5	90.4	56.8	9.3	-0.147	1.595	10.470	0.005***
$G1_{W4,t}^{IP1,day}$ $G1_t^{IP1,day}$ 12	71.7	75.1	87.1	56.1	9.0	-0.201	1.515	12.036	0.002***
$G1_{W1,t}^{IP1,day\ 12}$	70.4	72.8	97.9	56.2	9.2	0.179	2.252	3.467	0.177
$G1_{W2,t}^{W1,t}$	71.1	73.4	90.9	57.2	9.0	0.044	1.722	8.271	0.016**
$G1_{W_3,t}^{W_2,t}$	72.5	74.1	90.0	55.5	9.6	-0.099	1.600	10.159	0.006***
C_1 IP1,day 12	72.4	75.3	92.0	56.2	9.6	-0.140	1.617	10.122	0.006***
$G1_{W4,t}^{IP2,day 1}$ $G1_t^{IP2,day 1}$	70.8	74.4	86.0	56.0	8.8	-0.203	1.504	12.214	0.002***
$G1_{W1,t}^{IP2,day\ 1}$	69.8	72.4	95.6	55.7	9.1	0.150	2.199	3.686	0.158
$G1_{W2,t}^{W1,t}$	70.4	72.1	90.7	56.3	8.8	0.023	1.709	8.412	0.015**
$G1_{W3,t}^{W2,t}$	71.5	73.6	92.0	56.2	9.4	-0.057	1.657	9.235	0.010***
C_1 IP2,day 1	71.3	75.1	88.3	55.9	9.3	-0.179	1.570	11.040	0.004***
$G1_{W4,t}$ $G1_t^{IP2,day 2}$	72.0	75.6	87.4	57.2	9.0	-0.189	1.502	12.142	0.002***
$G1_{W1,t}^{IP2,day\ 2}$	70.9	74.1	99.2	55.6	9.4	0.208	2.438	2.470	0.291
$G1_{W2,t}^{W1,t}$	71.5	73.6	90.9	57.7	8.9	0.037	1.713	8.383	0.015**
$G1_{W3,t}^{IP2,day\ 2}$	72.8	74.5	90.3	57.7	9.6	-0.041	1.612	9.833	0.007***
α_{1} P_{2} , aay_{2}	72.6	75.9	90.7	54.4	9.5	-0.157	1.613	10.280	0.006***
$G1_{W4,t}^{IP2,day 3}$ $G1_t^{IP2,day 3}$	72.0	75.4	89.0	56.5	9.0	-0.191	1.526	11.783	0.003***
$G1_{W1,t}^{IP2,day 3}$	70.9	73.6	97.8	56.3	9.3	0.160	2.227	3.529	0.171
$G1_{W2,t}^{IP2,day\ 3}$	71.5	73.6	91.4	57.4	9.0	0.016	1.718	8.297	0.016**
$G1_{W3,t}^{IP2,day\ 3}$	72.9	75.3	90.3	55.4	9.5	-0.091	1.621	9.836	0.007***
$C_1^{IP2,day}$ 3	72.6	76.0	90.5	56.2	9.4	-0.155	1.616	10.229	0.006***
$G1_{W4,t}$ $G1_{t}^{IP2,day 4}$	70.7	74.1	86.8	55.6	8.8	-0.195	1.525	11.841	0.003***
$G1_{t}^{IP2,day\ 4}$	69.7	71.9	98.2	55.3	9.2	0.133 0.283	2.600	2.424	0.298
$G1_{W2,t}^{W1,t}$ $G1_{W2,t}^{IP2,day\ 4}$	70.2	72.4	88.7	56.5	8.7	0.010	1.667	8.963	0.011**
$G1_{W3,t}^{IP2,day\ 4}$	71.3	73.4	91.0	55.4	9.4	-0.085	1.684	8.948	0.011
$C1^{IP2,day\ 4}$	71.3 71.4	73.4 74.3	90.0	53.1	9.4	-0.138	1.684	9.186	0.011
$G1_{W4,t}^{IP2,day 5}$	71.4	74.3	87.3	56.4	9.4	-0.199	1.519	11.957	0.010
$G1_{t}$ $G1_{W1,t}^{IP2,day 5}$	70.6	73.4	95.5	56.4	9.0	0.088	2.039	4.811	0.003
$G1_{W1,t}^{IP2,day 5}$ $G1_{W2,t}^{IP2,day 5}$	70.0	73.4	91.4	56.6	8.9	0.033	1.770	7.678	0.030
$G1_{W2,t}^{IP2,day 5}$ $G1_{W3,t}^{IP2,day 5}$	71.0 72.3	73.3 73.4	89.7	56.3	9.5	-0.103	1.770 1.605	10.109	0.022
$G_{W3,t}$ $C_{1}^{IP2,day}$ 5	72.3	75.4 75.1	90.2	$56.5 \\ 54.0$				10.109 10.426	0.005***
$G1_{W4,t}^{IP2,day\ 5}$	12.2	(0.1			9.6	-0.153	1.601	10.420	0.009

(Continued on next page)

Table a.4 – continued

	Mean	Median	Max	Min	$\frac{\mathbf{a.4} - \mathbf{Std.}}{\mathbf{Std.}}$		nuea Skew.	Kurt.	Jarque-Bera	
$G1_{t}^{IP2,day 6}$	70.9	74.3	86.1	55.2		8.9	-0.206	1.505	12.223	0.002***
$G1_{W1}^{IP2,day\ 6}$	69.8	71.7	96.9	55.2		9.3	0.235	2.424	2.783	0.249
$G1_{W1,t}^{IP2,day 6}$ $G1_{W2,t}^{IP2,day 6}$ $G1_{W2,t}^{IP2,day 6}$ $G1_{W3,t}^{IP2,day 6}$	70.5	72.5	91.6	56.6		8.9	0.045	1.776	7.593	0.022**
$G1_{W2,t}^{W2,t}$	71.6	73.9	91.5	54.5		9.4	-0.095	1.646	9.510	0.009***
(7 7774)	71.4	74.9	90.1	53.8		9.5	-0.179	1.613	10.430	0.005***
$G1_{t}^{IP2,day}$ 7	72.2	76.2	88.0	57.3		9.0	-0.209	1.511	12.157	0.002***
$G1_{W1,t}^{IP2,day\ 7}$	71.1	74.0	96.9	55.9		9.4	0.121	2.169	3.775	0.151
$G1_{W2,t}^{W1,t}$	71.6	73.7	91.1	57.8		9.0	-0.013	1.654	9.138	0.010**
$G1_{W3}^{IP2,day}$ 7	72.9	74.8	89.6	55.8		9.5	-0.100	1.633	9.703	0.008***
$C1^{IP2,day\ 7}$	72.8	76.1	93.8	55.2		9.5	-0.143	1.672	9.372	0.009***
$G1_t^{IP2,aay8}$	70.2	73.7	85.1	55.4		8.8	-0.196	1.506	12.124	0.002***
$G1_{W1}^{IF2,aay}$	69.2	71.7	95.8	55.3		9.2	0.230	2.435	2.675	0.263
$G1_{W2,t}^{W1,t}$	69.7	72.0	90.0	56.4		8.6	0.046	1.716	8.352	0.015**
$G1_{W3,t}^{IP2,day\ 8}$	71.0	73.4	91.3	54.7		9.4	-0.058	1.672	9.032	0.011**
$G1_{W4,t}^{IP2,day\ 8}$	70.9	74.4	89.1	53.5		9.4	-0.154	1.627	10.062	0.007***
$G1_t^{IP2,day\ 9}$	70.9	74.3	86.1	55.2		8.9	-0.206	1.505	12.223	0.002***
$G1_{W1,t}^{IP2,day\ 9}$	69.8	71.7	96.9	55.2		9.3	0.235	2.424	2.783	0.249
$G1_{W2,t}^{IP2,day 9}$	70.5	72.5	91.6	56.6		8.9	0.045	1.776	7.593	0.022**
$G1_{W3,t}^{IP2,day\ 9}$	71.6	73.9	91.5	54.5		9.4	-0.095	1.646	9.510	0.009***
$G1_{W4,t}^{112,aag}$	71.4	74.9	90.1	53.8		9.5	-0.179	1.613	10.430	0.005***
$G1_t^{11/2,aag/10}$	70.3	74.0	84.8	55.4		8.8	-0.208	1.512	12.128	0.002***
$G1_{W1}^{IP2,day} = 10$	69.3	71.5	94.1	54.8		9.0	0.127	2.181	3.710	0.156
$G1_{W2,t}^{IP2,day\ 10}$	69.7	71.8	88.9	56.0		8.8	0.000	1.652	9.159	0.010**
$G1_{W3,t}^{IP2,day\ 10}$	71.1	72.9	91.0	55.9		9.4	-0.062	1.674	9.022	0.011**
$G1_{W4,t}^{IP2,day\ 10}$	70.9	74.5	90.6	55.4		9.3	-0.162	1.604	10.445	0.005***
$G1_t^{IP2,day\ 11}$	71.7	75.1	87.1	56.1		9.0	-0.201	1.515	12.036	0.002***
$G1_{W_1,t}^{IP2,day\ 11}$	70.4	72.8	97.9	56.2		9.2	0.179	2.252	3.467	0.177
$G1_{W2,t}^{IP2,day\ 11}$	71.1	73.4	90.9	57.2		9.0	0.044	1.722	8.271	0.016**
$G1_{W3\ t}^{IP2,day\ 11}$	72.5	74.1	90.0	55.5		9.6	-0.099	1.600	10.159	0.006***
$G1_{W4,t}^{IP2,day\ 11}$	72.4	75.3	92.0	56.2		9.6	-0.140	1.617	10.122	0.006***
$G1_t^{11/2,aag/12}$	70.6	74.3	86.3	54.8		8.8	-0.205	1.545	11.619	0.003***
$G1_{W1,t}^{IP2,day\ 12}$	69.4	70.3	95.5	53.6		9.2	0.128	2.160	3.889	0.143
$G1_{W2}^{112,uag}$	70.0	72.2	89.9	56.3		8.7	-0.002	1.702	8.493	0.014**
$G1_{W3}^{112,aag}$	71.3	73.6	89.8	54.6		9.2	-0.089	1.679	9.031	0.011**
$G1_{W4,t}^{IP2,day\ 12}$	71.3	75.1	89.1	54.7		9.3	-0.175	1.611	10.434	0.005***

Notes: The table shows the descriptive statistics for the monthly and weekly Google indexes for the keyword 'jobs', downloaded over two different IP addresses (IP1 and IP2) and across 12 different days. The subscripts Wj indicate the j^{th} week. ***, ** and * indicate rejection of the null of normality at 1, 5 and 10%, respectively.

Table a.5: Correlations between GIs monthly averages: sample 2004.1-2014.2

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2	3	4	55	9	2	∞	6	10		12	13	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$G1_t^{Avg}$	-													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$G1_t^{\overset{\circ}{A}vg}-IP1$	1.000	\vdash												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	က	$G1_t^{\it Avg-IP2}$		1.000	Н											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$G1_t^{\check{I}P2,day\ 1}$		0.999	0.999	Н										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$G1_t^{IP2,day2}$		0.999	0.999	0.998	\vdash									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$G1_t^{IP2,day3}$		0.999	1.000	0.999	0.998	\vdash								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	$G1_t^{IP2,day\;4}$		0.999	0.999	0.998	0.998	0.998	П							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	∞	$G1_t^{IP2,day}$ 5		0.999	0.999	0.998	0.998	0.999	0.998	П						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	$G1_t^{IP2,day6}$		0.999	0.999	0.999	0.998	0.999	0.998	0.998	1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$G1_t^{IP2,day\ 7}$		0.999	0.999	0.998	0.998	0.999	0.998	0.998	0.998	П				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	$G1_t^{IP2,day8}$		0.999	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	\vdash			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	$G1_t^{IP2,day\ 9}$		0.999	0.999	0.999	0.998	0.999	0.998	0.998	1.000	0.998	0.998	П		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	$G1_t^{IP2,day\ 10}$		0.999	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.998	П	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	$G1_t^{IP2,day\ 11}$		0.999	0.999	0.999	0.998	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	$G1_t^{IP2,day\ 12}$		0.999	0.999	0.998	0.998	0.999	0.999	0.999	0.999	0.998	0.998	0.999	0.998	0.999
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	$G1_t^{IP1day1}$		0.999	0.999	0.998	0.998	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	$G1_t^{IP1day2}$	0.999	0.999	0.999	1.000	0.998	0.999	0.998	0.998	0.999	0.998	0.998	0.999	0.998	0.999
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$G1_t^{IP1day3}$	0.999	0.999	0.999	0.998	1.000	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	$G1_t^{IP1day4}$	1.000	0.999	1.000	0.999	0.998	1.000	0.999	0.999	0.999	0.999	0.998	0.999	0.998	0.999
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	$G1_t^{IP1day5}$	1.000	0.999	1.000	0.999	0.998	1.000	0.998	0.999	0.999	0.999	0.998	0.999	0.998	0.999
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	$G1_t^{IP1day6}$	0.999	0.999	0.999	0.998	0.998	0.998	1.000	0.998	0.998	0.998	0.998	0.998	0.998	0.998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	$G1_t^{IP1day7}$	0.999	0.999	0.999	0.998	0.998	0.999	0.998	1.000	0.998	0.998	0.998	0.998	0.998	0.998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	$G1_t^{IP1day8}$	0.999	0.999	0.999	0.998	0.998	0.998	0.998	0.998	0.999	0.998	0.998	0.999	0.998	0.998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	$G1_t^{IP1day9}$	0.999	0.999	0.999	0.998	0.998	0.999	0.998	0.998	0.998	1.000	0.998	0.998	0.998	0.998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	$G1_t^{IP1day10}$	0.999	0.999	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	1.000	0.998	0.998	0.998
$GI_t^{IP1day12} = 0.999 0.999 0.999 0.999 0.998 0$	26	$G1_t^{IP1day11}$	0.999	0.999	0.999	0.998	0.998	0.999	0.998	0.998	0.999	0.998	0.998	0.999	0.997	0.998
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$G1_t^{IP1day12}$	0.999	0.999	0.999	0.999	0.998	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	1.000
		UR	0.872	0.872	0.872	0.872	0.870	0.872	0.871	0.869	0.872	0.868	0.876	0.872	0.873	0.871

Table a.5 – continued

96 36																										1	0.998 1	0.998 0.998	
9.4	# #																								_	0.998		0.998 0	
93	3																							-	0.998	0.998	0.998	0.998	0.871
99	77																						Н	0.998	0.998	0.998	0.998	0.998	0880
91	77																					П	0.998	0.998	0.998	0.998	0.998	0.998	0.871
90	07																				Π	0.998	0.999	0.998	0.999	0.998	0.999	0.999	0.872
10	7.7																			-	1.000	0.999	0.999	0.999	0.999	0.998	0.998	0.999	0.870
18	10																		П	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.870
17	7.																	П	0.998	0.999	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.999	0.872
16	OT																1	0.998	0.998	0.999	0.999	0.998	0.998	0.998	0.998	0.998	0.998	0.998	0.873
70	OT															\vdash	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.998	0.998	0.998	0.998	0.999	0 869
) d	101	$G1_t^{Avg-IF1}$	$G1_t^{Avg-IP2}$	$G1_t^{\check{I}P2,day~1}$	$G1_t^{IP2,day2}$	$^{\circ}2,day~3$	$G1_t^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$G1_t^{LP2,day}$ 5	$G1_t^{IP2,day\ 6}$	$G1_t^{IP2,day 7}$	$G1_t^{IP2,day8}$	$G1_t^{IP2,day\ 9}$	$G1_t^{IP2,day\ 10}$	$G1_t^{IP2,day\ 11}$	$G1_t^{IP2,day\ 12}$	$G1_t^{IP1day1}$	$G1_t^{IP1day2}$	$G1_t^{ar{I}P1day3}$	$G1_t^{IP1day4}$	$G1_t^{IP1day5}$	$^{\circ}1day~6$	$G1_t^{IP1day7}$	$G1_t^{IP1day8}$	$G1_t^{IP1day9}$	$G1_t^{IP1day10}$	$G1_t^{IP1day11}$	$G1_t^{IP1day12}$	
	\bigcap $A\iota$	GI_t^{reg}	$G1_t^{A\eta}$	$G1_{t}^{An}$	$G1_t^{IF}$	$G1_{t}^{IF}$	$G1_I^{IF}$	$G1_I^{IF}$	$G1_I^{IF}$	$G1_t^{IF}$	$G1_{t}^{IF}$	$G1_I^{IF}$	$G1^{IF}_{I}$	$G1_t^{IF}$	$G1_{t}^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	$G1_t^{IF}$	IID.
	-	-	2	ಣ	4	ည	9	2	· ∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	άc

Notes: Correlation between the monthly averages of different Google indexes downloaded across different IPs and over different days.

Figure A.7: Google indexes 'jobs' for the US across IPs and days of download

Notes: The figure depicts the Google indexes for the United States across IPs and different days of download along with the monthly unemployment rate.

Figure A.8: Relative forecasting performance across Google indexes downloaded in different days and from different IPs (monthly averages)

(IP1); 3) the third group IP2 contains the MSE of the 12 GI downloaded from the second IP address (IP2); the fourth group NG contains all the non-Google models (using both IC and Expectations); 5) the fifth group ALL contains all the MSEs in the previous four groups. average across GI and the average across each IP address; 2) the second group IP1 contains the MSE of the 12 GI downloaded from the first IP address Notes: The figure depicts the dispersion of RMSE at each forecast horizon h across different groups of forecasts: 1) the first group AVG contains the overall

Table a.6: Average in-sample Bayesian Information Criteria for each model at each forecast horizon. Rolling scheme. Direct forecasts. GI for "jobs" (G1).

x_{it}	h=1	h=2	h=3	h=4	h=5	h=6	h=7	h=8	h=9	h=10	h=11	h=12
AR(p) - SS	-3.64	-2.99	-2.55	-2.27	-2.13	-1.93	-1.77	-1.60	-1.44	-1.30	-1.15	-1.01
IC_t	-3.72	-3.13	-2.75	-2.45	-2.31	-2.12	-1.97	-1.83	-1.67	-1.55	-1.39	-1.31
$IC_{W1,t}$	-3.73	-3.09	-2.66	-2.39	-2.28	-2.10	-1.97	-1.83	-1.66	-1.55	-1.40	-1.34
$IC_{W2,t}$	-3.65	-3.01	-2.64	-2.39	-2.26	-2.08	-1.93	-1.76	-1.61	-1.49	-1.34	-1.25
$IC_{W3,t}$	-3.68	-3.06	-2.73	-2.43	-2.31	-2.10	-1.96	-1.80	-1.64	-1.54	-1.40	-1.26
$IC_{W4,t}$	-3.75	-3.33	-2.96	-2.57	-2.40	-2.21	-2.06	-1.91	-1.78	-1.68	-1.46	-1.32
EEM_t	-3.69	-3.14	-2.78	-2.57	-2.43	-2.24	-2.11	-1.98	-1.76	-1.59	-1.47	-1.38
$EENM_t$	-3.70	-3.21	-2.85	-2.61	-2.54	-2.30	-2.18	-1.98	-1.88	-1.81	-1.68	-1.55
CE_t	-3.71	-3.18	-2.84	-2.52	-2.41	-2.28	-2.18	-2.09	-1.93	-1.76	-1.56	-1.38
CE_t^{6M}	-3.70	-3.14	-2.79	-2.57	-2.43	-2.31	-2.18	-2.05	-1.93	-1.81	-1.64	-1.49
EPU_t	-3.59	-3.01	-2.69	-2.49	-2.36	-2.10	-1.94	-1.77	-1.62	-1.47	-1.33	-1.25
$G1_t$	-3.80	-3.29	-3.10	-2.77	-2.63	-2.45	-2.27	-2.17	-2.02	-1.91	-1.72	-1.60
$G1_{W1,t}$	-3.67	-3.15	-2.81	-2.59	-2.49	-2.26	-2.11	-2.03	-1.89	-1.79	-1.64	-1.47
$G1_{W2,t}$	-3.71	-3.01	-2.65	-2.39	-2.34	-2.18	-2.08	-1.93	-1.75	-1.65	-1.53	-1.44
$G1_{W3,t}$	-3.74	-3.28	-3.00	-2.71	-2.51	-2.28	-2.16	-2.04	-1.91	-1.74	-1.56	-1.45
$G1_{W4,t}$	-3.72	-3.25	-2.97	-2.68	-2.58	-2.37	-2.24	-2.12	-1.96	-1.85	-1.71	-1.54
AR(p) - LS	-3.78	-3.01	-2.41	-1.99	-1.68	-1.37	-1.11	-0.85	-0.63	-0.43	-0.26	-0.09
$IC_t - LS$	-3.89	-3.20	-2.55	-2.09	-1.76	-1.46	-1.17	-0.91	-0.67	-0.46	-0.27	-0.11
$IC_{W1,t} - LS$	-3.89	-3.13	-2.48	-2.05	-1.74	-1.42	-1.15	-0.89	-0.65	-0.45	-0.27	-0.10
$IC_{W2,t} - LS$	-3.85	-3.11	-2.47	-2.04	-1.71	-1.40	-1.13	-0.87	-0.64	-0.43	-0.25	-0.09
$IC_{W3,t} - LS$	-3.84	-3.12	-2.48	-2.03	-1.72	-1.41	-1.13	-0.88	-0.65	-0.44	-0.26	-0.09
$IC_{W4,t} - LS$	-3.93	-3.33	-2.63	-2.13	-1.81	-1.48	-1.19	-0.91	-0.67	-0.46	-0.27	-0.10
EEM_t-LS	-3.87	-3.20	-2.55	-2.13	-1.79	-1.46	-1.17	-0.89	-0.65	-0.44	-0.26	-0.09
$EENM_t-LS$	-3.91	-3.29	-2.66	-2.26	-1.95	-1.61	-1.31	-1.02	-0.78	-0.58	-0.40	-0.21
CE_t-LS	-3.78	-3.05	-2.45	-2.00	-1.69	-1.38	-1.11	-0.86	-0.64	-0.43	-0.25	-0.09
$CE_t^{6M} - LS$	-3.89	-3.22	-2.61	-2.23	-1.95	-1.69	-1.45	-1.22	-1.00	-0.78	-0.59	-0.41
EPU_t	-3.84	-3.13	-2.53	-2.10	-1.78	-1.47	-1.20	-0.91	-0.68	-0.47	-0.29	-0.13
SETAR(2) - LS	-595.64	-478.91	-386.83	-313.17	-260.91	-211.35	-170.97	-134.43	-105.13	-77.59	-57.64	-35.44
LSTAR(2) - LS	-591.24	-477.77	-385.96	-311.30	-260.36	-211.63	-170.73	-134.54	-105.74	-78.17	-57.89	-35.74
AAR(2) - LS	-537.57	-431.99	-343.00	-271.66	-216.36	-164.30	-123.83	-85.44	-56.00	-28.77	-9.08	11.62

Notes: Short in-sample: 2004.2-2007.2. Long in-sample (LS): 1997.7 - 2007.2.

Table a.7: Transition matrix by internet job search activity, various years

1998 Employed (E)	Voor	Status in T	Internet job search	Stat	us in T	$\Gamma{+}1$	Stat	us in T	+12
1998 Employed (E)			internet job search						
1998 Unemployed (U) Yes 23.5 62.2 14.3 71.0 12.1 16.9 1998 Inactive (I) No 7.4 4.1 88.5 22.2 3.5 74.3 1998 Inactive (I) Yes 10.2 5.7 84.1 36.5 7.0 56.5 2000 Employed (E) No 95.1 1.1 3.8 91.1 2.6 6.3 2000 Employed (E) Yes 95.3 1.4 3.3 91.4 3.1 5.5 2000 Unemployed (U) No 39.6 33.5 26.8 55.8 20.3 23.9 2000 Unemployed (U) Yes 34.7 45.1 20.1 62.4 21.2 16.4 2000 Inactive (I) No 9.3 3.5 87.2 22.5 40.7 35.5 2000 Inactive (I) No 9.3 3.5 87.2 22.5 40.7 35.5 2000 Inactive (I) Yes 17.5 8.4 74.1 33.2 5.8 61.0 2001 Employed (E) Yes 95.4 2.5 2.1 91.2 2.6 5.7 2001 Employed (E) Yes 95.4 2.5 2.1 91.2 2.6 5.7 2001 Unemployed (U) No 28.4 45.4 26.2 52.4 20.9 26.7 2001 Unemployed (U) Yes 27.3 56.9 15.8 64.9 18.9 16.2 2001 Unemployed (U) Yes 27.3 56.9 15.8 64.9 18.9 16.2 2001 Inactive (I) No 7.2 3.5 89.3 21.0 3.8 75.1 2003 Employed (E) Yes 96.6 1.1 2.3 92.5 2.1 5.4 2003 Employed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Unemployed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 8.6 10.9 80.5 3.3 73.3 4.0 2011 Unemployed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 8.6 10.9 80.5 3.5 5.3 5.0 2012 Employed (E) Yes 96.5 1.2 2.3 91.9 2.7 5.4 2011 Unemployed (U) Yes 16.6 65.9 17.5 4.4 29.9 2012				l					
1998 Unemployed (U) Yes 23.5 62.2 14.3 71.0 12.1 16.9 1998 Inactive (I) Yes 10.2 5.7 84.1 36.5 70.5 5.5 2000 Employed (E) No 95.1 1.1 3.8 91.1 2.6 6.3 2000 Employed (E) Yes 95.3 1.4 3.3 91.4 3.1 5.5 2000 Unemployed (U) No 39.6 33.5 26.8 55.8 20.3 23.9 2000 Unemployed (U) Yes 34.7 45.1 20.1 62.4 21.2 16.4 2000 Inactive (I) No 9.3 3.5 87.2 22.5 4.0 73.5 2000 Inactive (I) Yes 17.5 8.4 74.1 32.2 5.6 61.0 2001 Employed (E) No 96.5 1.2 2.4 91.7 2.6 5.7 2001 Unemployed (U) No 28.4 45.4 26.2 52.4 20.9 26.7 2001 Unemployed (U) Yes 27.3 56.9 15.8 64.9 18.9 16.2 2001 Unemployed (U) Yes 27.3 56.9 15.8 64.9 18.9 16.2 2001 Unemployed (U) Yes 27.3 56.9 15.8 64.9 18.9 16.2 2001 Unemployed (E) No 7.2 3.5 89.3 21.0 3.8 75.1 2001 Unemployed (E) No 96.6 1.1 2.3 92.5 2.1 5.4 2003 Employed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (U) No 23.4 50.0 26.6 53.3 17.3 29.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Unemployed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Employed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) No 18.4 58.1 23.5 42.7 29.9 27.4 2011 Unemployed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Unemployed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2012 Unemployed (E) No 95.5 1.3 3.2 3.9 3.7 4.0 2013 Employed (E) No 95.5 1.3 3.2 3.9 3.7 4.0 2									
1998 Inactive (I) Yes 10.2 5.7 84.1 36.5 7.0 56.5		2 0 ()		l					
1998		* * · · /		l					
2000 Employed (E)		` /		1					
2000 Employed (E) Yes 95.3 1.4 3.3 91.4 3.1 5.5				10.2					
2000 Unemployed (U) No 39.6 33.5 26.8 55.8 20.3 23.9 2000 Unemployed (U) Yes 34.7 45.1 20.1 62.4 21.2 16.4 2000 Inactive (I) No 9.3 3.5 87.2 22.5 4.0 73.5 2001 Employed (E) No 96.5 1.2 2.4 91.7 2.6 5.7 2001 Employed (E) Yes 95.4 2.5 2.1 91.2 3.8 5.0 2001 Unemployed (U) No 28.4 45.4 26.2 52.4 20.9 26.7 2001 Inactive (I) No 7.2 3.5 89.3 21.0 3.8 75.1 2001 Inactive (I) Yes 12.1 17.2 70.7 36.3 8.2 55.5 2001 Inactive (I) No 96.6 1.1 2.3 92.9 5.2 2003 Inmployed (E)	2000	Employed (E)	No	95.1	1.1		91.1		
2000 Unemployed (U) Yes 34.7 45.1 20.1 62.4 21.2 16.4		- 0 ()		1					
December 2000		* * · · /		1					
Description				l					
Decomposition				1					
2001 Employed (E) Yes 95.4 2.5 2.1 91.2 3.8 5.0 2001 Unemployed (U) No 28.4 45.4 26.2 52.4 20.9 26.7 2001 Inactive (I) No 7.2 3.5 89.3 21.0 3.8 75.1 2001 Inactive (I) Yes 12.1 17.2 70.7 36.3 8.2 55.5 2003 Employed (E) No 96.6 1.1 2.3 92.5 2.1 5.4 2003 Employed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (U) No 23.4 50.0 26.6 53.3 17.3 29.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 E	2000	Inactive (I)				74.1	33.2		
2001 Unemployed (U) No 28.4 45.4 26.2 52.4 20.9 26.7 2001 Unemployed (U) Yes 27.3 56.9 15.8 64.9 18.9 16.2 2001 Inactive (I) No 7.2 3.5 89.3 21.0 3.8 75.1 2001 Inactive (I) Yes 12.1 17.2 70.7 36.3 8.2 55.5 2003 Employed (E) No 96.6 1.1 2.3 92.5 2.1 5.4 2003 Employed (U) No 23.4 50.0 26.6 53.3 17.3 29.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) Yes 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) Yes 96.5		Employed (E)		ı					
2001 Unemployed (U) Yes 27.3 56.9 15.8 64.9 18.9 16.2 2001 Inactive (I) No 7.2 3.5 89.3 21.0 3.8 75.1 2003 Employed (E) No 96.6 1.1 2.3 92.5 2.1 5.4 2003 Employed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (U) No 23.4 50.0 26.6 53.3 17.3 29.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) No 7.1 3.3 89.6 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Unem				l					
Description				ı					
2001 Inactive (I) Yes 12.1 17.2 70.7 36.3 8.2 55.5 2003 Employed (E) No 96.6 1.1 2.3 92.5 2.1 5.4 2003 Employed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) No 7.1 3.3 89.6 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inact	2001	Unemployed (U)	Yes	1		15.8	64.9		16.2
2003 Employed (E) No 96.6 1.1 2.3 92.5 2.1 5.4 2003 Employed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) No 7.1 3.3 89.6 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactiv		` /		1					
2003 Employed (E) Yes 96.0 2.2 1.8 91.9 2.9 5.2 2003 Unemployed (U) No 23.4 50.0 26.6 53.3 17.3 29.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) No 7.1 3.3 89.6 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Unemployed (U) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012		` '							
2003 Unemployed (U) No 23.4 50.0 26.6 53.3 17.3 29.4 2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) No 7.1 3.3 89.6 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) No 18.4 58.1 23.5 42.7 29.9 27.4 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012		± • \ /		1					
2003 Unemployed (U) Yes 20.8 63.6 15.6 62.4 19.2 18.4 2003 Inactive (I) No 7.1 3.3 89.6 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemp		± • \ /		1				2.9	
2003 Inactive (I) No 7.1 3.3 89.6 20.8 3.8 75.4 2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) No 18.4 58.1 23.5 42.7 29.9 27.4 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 1.4 29.5 26.1 2012 Unemp				ı					
2003 Inactive (I) Yes 8.6 10.9 80.5 32.5 8.4 59.1 2011 Employed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) No 18.4 58.1 23.5 42.7 29.9 27.4 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemplo	2003	Unemployed (U)	Yes	20.8		15.6	62.4	19.2	18.4
2011 Employed (E) No 95.8 1.3 2.8 91.9 3.1 5.0 2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) No 18.4 58.1 23.5 42.7 29.9 27.4 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) Yes 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 In	2003	` /	No	1	3.3	89.6		3.8	75.4
2011 Employed (E) Yes 96.5 1.9 1.6 92.3 3.7 4.0 2011 Unemployed (U) No 18.4 58.1 23.5 42.7 29.9 27.4 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 In	2003	Inactive (I)		8.6	10.9	80.5	32.5		
2011 Unemployed (U) No 18.4 58.1 23.5 42.7 29.9 27.4 2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013				ı					
2011 Unemployed (U) Yes 16.2 70.3 13.6 50.1 33.1 16.8 2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) No 16.8 57.1 26.1 43.0 27.4 29.6 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 U		Employed (E)		1					
2011 Inactive (I) No 5.8 5.1 89.1 18.2 7.0 74.8 2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Unemployed				1					
2011 Inactive (I) Yes 8.6 15.4 76.0 25.4 15.3 59.3 2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) No 16.8 57.1 26.1 43.0 27.4 29.6 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Inactiv				1					
2012 Employed (E) No 96.5 1.2 2.3 91.9 2.7 5.4 2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) No 16.8 57.1 26.1 43.0 27.4 29.6 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inac		Inactive (I)		1	5.1				
2012 Employed (E) Yes 97.2 1.4 1.4 92.9 3.6 3.5 2012 Unemployed (U) No 16.8 57.1 26.1 43.0 27.4 29.6 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Ina		· · · · · · · · · · · · · · · · · · ·							
2012 Unemployed (U) No 16.8 57.1 26.1 43.0 27.4 29.6 2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) No 21.5 52.5 26.0 49.2 24.3 26.4 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 <t< td=""><td></td><td>Employed (E)</td><td></td><td>ı</td><td></td><td>2.3</td><td></td><td></td><td></td></t<>		Employed (E)		ı		2.3			
2012 Unemployed (U) Yes 16.6 65.9 17.5 44.4 29.5 26.1 2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) No 21.5 52.5 26.0 49.2 24.3 26.4 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 E				ı					
2012 Inactive (I) No 5.1 4.1 90.8 16.3 4.3 79.4 2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) No 21.5 52.5 26.0 49.2 24.3 26.4 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Unemploy				l					
2012 Inactive (I) Yes 5.1 12.6 82.3 23.8 8.6 67.6 2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) No 21.5 52.5 26.0 49.2 24.3 26.4 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemp		Unemployed (U)	Yes	1	65.9				
2013 Employed (E) No 95.5 1.3 3.2 92.3 2.4 5.2 2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) No 21.5 52.5 26.0 49.2 24.3 26.4 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2013 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Inact		` /							
2013 Employed (E) Yes 94.1 2.2 3.7 89.4 4.0 6.6 2013 Unemployed (U) No 21.5 52.5 26.0 49.2 24.3 26.4 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 <t< td=""><td></td><td>\ /</td><td></td><td>5.1</td><td>12.6</td><td>82.3</td><td>23.8</td><td></td><td>67.6</td></t<>		\ /		5.1	12.6	82.3	23.8		67.6
2013 Unemployed (U) No 21.5 52.5 26.0 49.2 24.3 26.4 2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9				95.5					
2013 Unemployed (U) Yes 23.4 60.1 16.6 49.1 25.9 25.0 2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9				l			89.4	4.0	
2013 Inactive (I) No 6.4 4.5 89.1 17.2 5.4 77.5 2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9	2013		No	21.5	52.5	26.0	49.2	24.3	26.4
2013 Inactive (I) Yes 8.9 14.6 76.4 34.2 7.7 58.1 2015 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9	2013	Unemployed (U)	Yes	23.4	60.1	16.6	49.1	25.9	25.0
2015 Employed (E) No 95.8 1.0 3.2 92.7 2.0 5.3 2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9		Inactive (I)	No	ı	4.5	89.1	17.2	5.4	
2015 Employed (E) Yes 95.2 2.1 2.7 92.9 2.6 4.4 2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9	2013	Inactive (I)		8.9	14.6	76.4	34.2	7.7	58.1
2015 Unemployed (U) No 27.7 45.4 26.9 54.1 19.6 26.3 2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9	2015	Employed (E)	No	95.8	1.0	3.2	92.7	2.0	5.3
2015 Unemployed (U) Yes 19.0 61.2 19.8 53.2 23.3 23.5 2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9				1					
2015 Inactive (I) No 6.9 3.1 89.9 19.9 4.2 75.9				l					
				l					
9015 In active (I) $V_{eq} = \begin{bmatrix} 10.9 & 10.0 & 79.0 & 90.4 & 90.61.6 \end{bmatrix}$				l					
2015 mactive (1) res 10.2 10.9 (8.9 30.4 8.0 61.6	2015	Inactive (I)	Yes	10.2	10.9	78.9	30.4	8.0	61.6

Notes: Transition probabilities estimated from the IPUMS-Current Population Survey data panel (King et al., 2010). Results for all the years in which an Internet and Computer Use Supplement is present in the CPS survey are reported in table a.7 of the online appendix.

2 Additional Tables and Figures: state level

Table b.1: State abbreviations and correlation between G1 and the unemployment rate

#	State	Abbr.	$Corr.(U_t, G1_t)$	#	State	Abbr.	$Corr.(U_t, G1_t)$
0	United States	USA	0.78	26	Missouri	MO	0.86
1	Alabama	AL	0.84	27	Montana	MT	0.61
2	Alaska	AK	0.35	28	Nebraska	NE	0.85
3	Arizona	AZ	0.88	29	Nevada	NV	0.80
4	Arkansas	AR	0.78	30	New Hampshire	NH	0.76
5	California	CA	0.39	31	New Jersey	NJ	0.86
6	Colorado	CO	0.73	32	New Mexico	NM	0.65
7	Connecticut	CT	0.86	33	New York	NY	0.86
8	Delaware	DE	0.88	34	North Carolina	NC	-0.12
9	District of Columbia	DC	0.80	35	North Dakota	ND	0.84
10	Florida	FL	0.76	36	Ohio	OH	0.78
11	Georgia	GA	0.87	37	Oklahoma	OK	0.72
12	Hawaii	HI	0.82	38	Oregon	OR	0.87
13	idaho	ID	0.79	39	Pennsylvania	PA	0.89
14	Illinois	IL	0.84	40	Rhode Island	RI	0.82
15	Indiana	IN	0.68	41	South Carolina	SC	0.67
16	Iowa	IA	0.80	42	South Dakota	SD	0.85
17	Kansas	KS	0.82	43	Tennessee	TN	0.77
18	Kentucky	ΚY	0.62	44	Texas	TX	0.84
19	Louisiana	LA	0.77	45	Utah	UT	0.16
20	Maine	ME	0.87	46	Vermont	VT	0.01
21	Maryland	MD	0.79	47	Virginia	VA	0.82
22	Massachusetts	MA	0.81	48	Washington	WA	0.78
23	Michigan	MI	0.81	49	West Virginia	WV	0.79
24	Minnesota	MN	0.78	50	Wisconsin	WI	0.71
<u>25</u>	Mississippi	MS	0.88	51	Wyoming	WY	0.70

Table b.2: Descriptive statistics of the unemployment rate for each single US state

	Mean	Median	Max	Min	Std. Dev.	Skew.	Kurt.	Jarque-Bera	Obs.
$\overline{ur_{USA}}$	6.886	6.765	9.983	4.398	1.913	0.183	1.474	12.514***	122
ur_{AL}	6.168	6.277	10.399	3.227	2.308	0.297	1.763	9.567***	122
ur_{AK}	6.995	6.944	8.166	5.931	0.623	0.201	1.908	6.887**	122
ur_{AZ}	6.946	7.655	10.760	3.452	2.455	0.056	1.468	11.989***	122
ur_{AR}	6.524	6.939	8.097	4.929	1.202	-0.036	1.183	16.810***	122
ur_{CA}	8.393	8.345	12.399	4.820	2.795	0.132	1.411	13.181***	122
ur_{CO}	6.380	6.126	9.069	3.511	1.814	0.044	1.527	11.071***	122
ur_{CT}	6.696	7.018	9.457	4.316	1.879	0.063	1.298	14.801***	122
ur_{DE}	5.695	6.181	8.402	3.368	1.828	-0.012	1.262	15.356***	122
ur_{DC}	6.998	6.795	11.435	3.271	2.916	0.176	1.492	12.194***	122
ur_{FL}	7.253	7.502	10.400	4.327	2.264	0.043	1.293	14.849***	122
ur_{GA}	4.574	4.712	7.059	2.282	1.698	0.104	1.398	13.270***	122
ur_{HI}	5.702	5.694	8.821	2.685	2.100	0.054	1.529	11.062***	122
ur_{ID}	7.654	8.267	11.364	4.429	2.153	0.007	1.533	10.946***	122
ur_{IL}	7.078	6.860	10.779	4.501	2.076	0.338	1.657	11.483***	122
ur_{IN}	4.862	4.663	6.396	3.625	0.939	0.371	1.715	11.187***	122
ur_{IA}	5.539	5.559	7.528	3.983	1.055	0.255	1.922	7.237**	122
ur_{KS}	7.635	7.880	10.699	5.288	1.842	0.261	1.557	11.970***	122
ur_{KY}	5.805	5.741	11.199	3.632	1.536	0.713	4.393	20.193***	122
ur_{LA}	6.221	6.393	8.420	4.446	1.444	0.144	1.355	14.173***	122
ur_{ME}	5.594	5.860	8.026	3.257	1.674	0.008	1.303	14.635***	122
ur_{MD}	6.233	6.680	8.708	4.450	1.405	0.195	1.593	10.834***	122
ur_{MA}	9.032	8.723	14.171	6.669	2.349	0.866	2.501	16.521***	122
ur_{MI}	5.535	5.134	8.344	3.922	1.284	0.722	2.272	13.286***	122
ur_{MN}	8.227	8.067	10.968	5.591	1.666	0.182	1.618	10.377***	122
ur_{MS}	6.756	6.331	9.632	4.622	1.658	0.517	1.831	12.381***	122
ur_{MO}	4.985	5.276	6.799	3.109	1.299	-0.040	1.396	13.114***	122
ur_{MT}	3.876	3.948	4.868	2.774	0.613	-0.129	2.009	5.336*	122
ur_{NE}	8.492	8.870	13.950	4.161	3.760	0.106	1.353	14.022***	122
ur_{NV}	4.718	4.878	6.713	3.410	1.076	0.225	1.579	11.292***	122
ur_{NH}	6.927	7.099	9.734	4.162	2.235	0.022	1.186	16.728***	122
ur_{NJ}	5.947	5.925	8.038	3.425	1.516	-0.297	1.733	9.950***	122
ur_{NM}	6.675	6.794	8.876	4.295	1.672	-0.061	1.289	14.965***	122
ur_{NY}	7.520	7.218	11.298	4.574	2.393	0.166	1.369	14.089***	122
ur_{NC}	3.344	3.306	4.203	2.610	0.373	0.415	2.535	4.602	122
ur_{ND}	7.315	7.257	10.628	5.306	1.697	0.655	2.134	12.533***	122
ur_{OH}	5.174	5.169	7.191	3.266	1.059	0.333	2.198	5.522*	122
ur_{OK}	7.846	7.584	11.624	5.004	2.084	0.236	1.743	9.158**	122
ur_{OR}	6.438	6.433	8.691	4.200	1.571	-0.024	1.307	14.581***	122
ur_{PA}	8.206	9.233	11.900	4.795	2.721	-0.059	1.288	14.965***	122
ur_{RI}	8.140	7.182	11.858	5.456	2.072	0.443	1.756	11.859***	122
ur_{SC}	3.924	3.787	5.322	2.634	0.798	0.256	1.870	7.824**	122
ur_{SD}	7.369	7.810	11.029	4.394	2.037	0.192	1.626	10.344***	122
ur_{TN}	6.230	6.157	8.256	4.252	1.314	0.145	1.755	8.300**	122
ur_{TX}	5.032	4.706	8.378	2.426	1.879	0.397	1.914	9.194**	122
ur_{UT}	4.732	4.335	7.250	3.342	1.133	0.737	2.257	13.860***	122
ur_{VT}	4.922	5.091	7.415	2.879	1.557	0.136	1.441	12.726***	122
ur_{VA}	7.010	6.718	10.229	4.394	1.911	0.260	1.622	11.032***	122
ur_{WA}	6.069	5.840	8.509	3.935	1.576	0.215	1.497	12.417***	122
ur_{WV}	6.253	6.248	9.176	4.273	1.561	0.431	1.813	10.944***	122
ur_{WI}	4.617	4.241	7.550	2.632	1.485	0.465	1.967	9.821***	122
ur_{WY}	7.880	7.633	10.429	5.398	1.737	0.010	1.549	10.701***	122
	au baarint	in diant on th	o stata C	Lout com	nle: 2004 1-20	1110 ***	**	* indicate rejection	- 4 1 F -

 $\frac{1.000}{Notes:} \frac{1.000}{\text{The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. Short sample: } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the state. } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subscript indicates the subscript indicates the state. } 2004.1-2014.2.} \frac{1.737}{\text{Notes: The subs$

Table b.3: Descriptive statistics of Initial Claims for each single US state - Short sample

	Mean	Median	Max	Min	Std. Dev.	Skew.	Kurt.	Jarque-Bera	Obs.
IC_{USA}	1550.5	1455.0	2615.0	1152.0	327.8	1.408	4.390	50.1***	122
IC_{AL}	23.4	20.7	46.0	15.1	6.3	1.597	5.309	78.9***	122
IC_{AK}	7.8	7.3	10.8	5.8	1.5	0.392	1.751	11.1***	122
IC_{AZ}	20.7	20.0	39.8	11.0	6.2	0.849	3.383	15.4***	122
IC_{AR}	17.2	15.8	33.6	11.8	4.2	1.804	6.228	119.2***	122
IC_{CA}	223.8	220.9	328.0	145.3	51.2	0.273	1.798	8.9**	122
IC_{CO}	13.3	13.0	24.5	8.4	3.9	0.755	2.799	11.8***	122
IC_{CT}	19.4	18.5	29.3	14.8	3.6	1.105	3.495	26.1***	122
IC_{DE}	4.5	4.4	6.4	2.9	0.7	0.458	2.946	4.3	122
IC_{DC}	60.6	57.1	116.8	32.8	21.0	0.662	2.441	10.5***	122
IC_{FL}	48.6	43.1	97.9	32.6	15.3	1.095	3.389	25.2***	122
IC_{GA}	6.7	7.0	10.8	3.8	2.1	0.190	1.812	7.9**	122
IC_{HI}	9.7	8.9	16.1	5.4	2.7	0.773	2.471	13.6***	122
IC_{ID}	62.1	58.1	112.5	48.3	13.1	2.159	7.402	193.2***	122
IC_{IL}	33.9	30.8	82.1	22.0	10.4	2.269	8.597	263.9***	122
IC_{IN}	16.3	14.0	39.5	10.5	6.4	2.086	6.718	158.7***	122
IC_{IA}	13.1	11.9	27.9	8.3	4.1	1.771	5.634	99.0***	122
IC_{KS}	25.0	23.0	56.8	15.6	7.5	1.982	7.382	177.5***	122
IC_{KY}	16.7	13.7	154.4	7.5	17.5	6.584	48.420	11368.2***	122
IC_{KY} IC_{LA}	6.4	6.1	10.2	4.6	1.3	0.747	2.733	11.7***	122
IC_{LA} IC_{ME}	21.9	22.3	34.0	13.9	5.4	0.349	1.902	8.6**	122
IC_{MD}	$\frac{21.9}{32.1}$	30.9	52.3	23.6	4.6	1.705	6.741	130.2***	122
IC_{MD} IC_{MA}	70.6	67.0	145.2	40.8	19.9	1.623	6.141	105.5***	$\frac{122}{122}$
IC_{MA} IC_{MI}	24.0	$\frac{07.0}{22.0}$	41.6	18.3	5.3	1.810	5.560	99.9***	$\frac{122}{122}$
	13.1	12.2	53.3	8.8	5.1	5.393		7231.0***	$\frac{122}{122}$
$IC_{MN} \ IC_{MS}$	33.2	$\frac{12.2}{30.6}$	52.0	24.3	6.6	1.143	$39.141 \\ 3.574$	28.2***	$\frac{122}{122}$
	$\frac{53.2}{5.4}$	5.3	9.1	$\frac{24.3}{3.2}$	1.5	0.612	$\frac{3.374}{2.319}$	10.0***	$\frac{122}{122}$
IC_{MO}	6.7	6.4	9.1	4.6	1.3	0.362	$\frac{2.319}{2.133}$	6.5**	$\frac{122}{122}$
IC_{MT}	15.7	15.2	29.8	8.6	5.0	0.302 0.831	$\frac{2.133}{2.956}$	14.0***	$\frac{122}{122}$
IC_{NE}	5.1	$\frac{15.2}{4.4}$	9.3	3.3	1.6	0.831	$\frac{2.936}{2.496}$	14.6***	$\frac{122}{122}$
IC_{NV}		44.3		36.9	8.8			7085.5***	$\frac{122}{122}$
IC_{NH}	46.6		$118.9 \\ 10.6$			4.924	39.012	9.2**	
IC_{NJ}	5.7	5.4		3.4	1.4	0.670	$\frac{3.107}{3.107}$	9.5***	122
IC_{NM}	95.2	93.5	150.5	69.4	16.8	0.681		105.8***	122
IC_{NY}	56.5	52.5	125.1	20.0	17.1	1.468	6.493		122
IC_{NC}	2.2	2.0	4.9	1.2	0.7	1.816	6.335	123.6***	122
IC_{ND}	56.1	51.9	109.9	37.3	14.5	2.145	7.312	188.1*** 21.2***	122
IC_{OH}	10.4	9.4	19.7	6.6	3.2	1.017	3.196		122
IC_{OK}	31.7	29.1	60.3	22.0	8.0	1.323	4.389	45.4*** 81.2***	122
IC_{OR}	100.4	94.8	160.8	80.8	18.9	1.658	5.231	862.8***	122
IC_{PA}	6.9	6.7	14.6	4.9	1.2	2.474	15.052	202.0***	122
IC_{RI}	25.5	23.8	54.3	16.7	6.7	2.117	7.670		122
IC_{SC}	1.7	1.5	3.3	1.2	0.4	1.638	5.512	86.6***	122
IC_{SD}	28.8	27.2	64.9	18.8	8.0	2.108	8.076	221.3***	122
IC_{TN}	69.6	69.3	120.0	48.0	14.7	0.857	4.032	20.4***	122
IC_{TX}	7.6	7.4	15.8	4.1	2.7	0.703	2.746	10.4***	122
IC_{UT}	3.6	3.4	6.4	2.4	0.7	1.397	5.098	62.0***	122
IC_{VT}	25.5	23.4	46.0	16.7	6.3	1.340	4.386	46.3***	122
IC_{VA}	40.8	38.3	68.1	28.9	8.8	1.021	3.471	22.3***	122
IC_{WA}	6.7	6.4	11.3	4.6	1.4	1.240	4.128	37.7***	122
IC_{WV}	54.0	48.8	98.2	36.0	13.7	1.850	5.836	110.4***	122
IC_{WI}	2.1	2.1	4.2	1.2	0.7	0.898	3.131	16.5***	122
ICWY	2.2	1.7	4.3	The same	1.1	0.444	1.504	15.4***	122

 $100 \times 100 \times 100$

Table b.4: Descriptive statistics of Google index for each single US state - Short sample

	Mean	Median	Max	Min	Std. Dev.	Skew.	Kurt.	Jarque-Bera	Obs.
GI_{USA}	71.3	74.9	86.9	56.0	8.9	-0.202	1.510	12.1***	122
GI_{AL}	60.2	61.4	83.0	39.4	11.8	0.154	1.804	7.8**	122
GI_{AK}	64.9	65.3	86.8	47.9	7.7	0.330	2.653	2.8	122
GI_{AZ}	65.9	67.7	86.5	48.1	11.7	0.090	1.749	8.1**	122
GI_{AR}	63.8	68.3	81.9	42.5	12.3	-0.125	1.431	12.8***	122
GI_{CA}	74.5	72.0	90.8	60.9	8.6	0.387	1.824	10.1***	122
GI_{CO}	66.3	64.0	87.7	51.0	9.1	0.767	2.464	13.4***	122
GI_{CT}	65.5	68.9	86.2	47.9	11.7	0.033	1.687	8.8**	122
GI_{DE}	58.8	64.0	80.3	33.3	14.1	-0.226	1.488	12.7***	122
GI_{DC}	65.3	63.7	87.8	50.2	11.4	0.434	2.012	8.8**	122
GI_{FL}	66.4	64.9	85.2	52.7	9.1	0.473	2.063	9.0**	122
GI_{GA}	65.0	68.9	89.0	36.4	15.6	-0.148	1.461	12.5***	122
GI_{HI}	65.9	69.5	87.0	45.4	12.4	-0.158	1.552	11.2***	122
GI_{ID}	69.5	68.3	89.9	55.0	9.0	0.491	2.260	7.7**	122
GI_{IL}	62.6	65.1	87.4	45.9	11.0	0.180	1.786	8.2**	122
GI_{IN}	66.3	68.6	87.0	50.5	10.5	0.188	1.743	8.8**	122
GI_{IA}	62.5	63.0	85.5	44.2	11.8	0.285	1.911	7.7**	122
GI_{KS}	62.7	66.0	84.7	42.8	12.4	0.046	1.552	10.7***	122
GI_{KY}	55.5	54.7	83.5	37.3	11.5	0.431	2.179	7.2**	122
GI_{LA}	66.5	69.6	83.7	45.5	10.7	-0.179	1.673	9.6***	122
GI_{LA} GI_{ME}	62.5	63.5	88.3	44.3	12.1	0.250	1.838	8.1**	122
GI_{MD}	70.4	70.5	88.5	55.0	9.1	0.230 0.271	1.964	7.0**	122
GI_{MA}	68.5	65.6	89.4	56.7	8.7	0.870	2.581	16.3***	122
GI_{MI}	67.2	66.2	91.0	53.1	10.3	0.612	$\frac{2.351}{2.351}$	9.8***	$\frac{122}{122}$
GI_{MN}	59.7	61.5	83.9	36.4	13.8	-0.022	$\frac{2.551}{1.557}$	10.6***	122
GI_{MS}	65.5	63.5	88.6	49.8	10.8	0.508	$\frac{1.557}{2.018}$	10.0	$\frac{122}{122}$
	60.8	65.9	86.6	37.7	12.6	-0.130	1.654	9.6***	$\frac{122}{122}$
GI_{MO} GI_{MT}	63.3	63.7	83.6	44.6	10.6	0.130	1.694 1.697	9.4***	122 122
GI_{MT} GI_{NE}	66.1	66.9	87.0	44.0 41.1	13.1	-0.161	1.688	9.3***	$\frac{122}{122}$
GI_{NV}	64.8	68.3	83.1	$41.1 \\ 41.9$	11.9	-0.101	1.588	11.2***	$\frac{122}{122}$
GI_{NH}	66.3	65.5	88.4	50.1	11.3 10.4	0.484	$\frac{1.333}{2.095}$	8.9**	$\frac{122}{122}$
GI_{NJ}	64.0	66.9	86.4	40.6	13.8	-0.059	1.294	14.9***	$\frac{122}{122}$
GI_{NM}	72.6	71.1	90.0	60.3	8.2	0.681	$\frac{1.234}{2.372}$	11.4***	$\frac{122}{122}$
GI_{NY}	67.5	68.5	88.2	50.2	11.0	0.001	1.798	8.2**	$\frac{122}{122}$
GI_{NC}	63.6	60.3	86.6	35.9	12.1	0.210	1.765	8.5**	122
GI_{ND}	69.3	70.4	88.5	53.8	10.1	0.133 0.224	1.819	8.1**	122
GI_{ND} GI_{OH}	63.5	63.3	87.5	45.1	12.8	0.192	1.586	10.9***	122
GI_{OK}	68.7	67.2	90.9	34.7	12.7	-0.308	2.734	2.3	122
GI_{OR}	69.3	73.1	89.8	52.0	11.1	0.049	1.580	10.3***	122
GI_{PA}	66.6	72.0	85.6	42.2	14.0	-0.319	1.462	14.1***	122
GI_{PA} GI_{RI}	62.2	61.8	88.3	41.8	10.9	0.329	2.067	6.6**	122
GI_{SC}	62.0	64.4	88.9	37.6	13.4	-0.018	1.622	9.7***	122
GI_{SD}	63.7	63.9	88.1	46.4	11.7	0.197	1.022 1.797	8.1**	122
GI_{SD} GI_{TN}	68.7	68.9	89.3	53.3	9.7	0.197 0.475	$\frac{1.797}{2.378}$	6.5**	122 122
GI_{TN} GI_{TX}	62.1	62.8	87.6	44.1	12.8	0.475 0.256	1.779	8.9**	$\frac{122}{122}$
GI_{TX} GI_{UT}	59.6	55.9	85.2	37.9	13.0	0.250 0.368	1.779	10.2***	$\frac{122}{122}$
GI_{VT}	59.6 63.8	55.9 61.4	93.9	$\frac{37.9}{37.4}$	13.0 14.7	0.368 0.191	$\frac{1.793}{2.156}$	4.4	$\begin{array}{c} 122 \\ 122 \end{array}$
	66.9	66.3	93.9 92.5	$\frac{37.4}{51.9}$	14.7	0.191 0.550	$\frac{2.156}{2.296}$	4.4 8.7**	$\frac{122}{122}$
GI_{VA}		65.9	92.5 87.2				$\frac{2.296}{1.370}$	13.5***	$\frac{122}{122}$
GI_{WA}	63.7			41.0	13.3	-0.030		13.5****	
GI_{WV}	$66.5 \\ 60.3$	$65.2 \\ 61.6$	$85.6 \\ 80.0$	51.4	$10.3 \\ 10.9$	0.340 -0.003	1.743	9.8***	$\begin{array}{c} 122 \\ 122 \end{array}$
GI_{WI}				42.2	9.8		1.612	10.9***	
GIWY	61.4	58.7	90.3	47.3	9.8	0.619	2.218		122

 $\frac{2.5}{Notes} \times \frac{122}{Notes} \times \frac{10.14}{Notes} \times \frac{10.14}{Notes$

Figure B.1: Google Indexes across IP and states (AL to FL)

Notes: The figure depicts the Google indexes downloaded across two different IP addresses and over twelve days (LHS) along with each state unemployment rate (RHS).

Figure B.2: Google Indexes across IP and states (GA to ME)

Notes: The figure depicts the Google indexes downloaded across two different IP addresses and over twelve days (LHS) along with each state unemployment rate (RHS).

Figure B.3: Google Indexes across IP and states (MD to NH)

Notes: The figure depicts the Google indexes downloaded across two different IP addresses and over twelve days (LHS) along with each state unemployment rate (RHS).

Figure B.4: Google Indexes across IP and states (NJ to RI)

Notes: The figure depicts the Google indexes downloaded across two different IP addresses and over twelve days (LHS) along with each state unemployment rate (RHS).

Figure B.5: Google Indexes across IP and states (SC to WY)

Notes: The figure depicts the Google indexes downloaded across two different IP addresses and over twelve days (LHS) along with each state unemployment rate (RHS).

Table b.5: Incidence of internet job search among the unemployed and Correlation between the unemployment rate and G1

	Corr	Corr	Corr	Corr
	$(U_t,G1_t)$	$(U_t, G1_{t-1})$	$(U_t, G1_{t-2})$	$(U_t, G1_{t-3})$
Share of unempl. using the internet	0.640	0.847^{*}	0.929*	0.920*
	(0.469)	(0.500)	(0.523)	(0.533)
$\operatorname{Constant}$	0.558***	0.467***	0.433***	0.442***
	(0.132)	(0.141)	(0.147)	(0.150)
Observations	51	51	51	51
R-squared	0.037	0.055	0.060	0.057

Notes: Results of an OLS regression of the state-specific correlation between the unemployment rate and the G1 on the share of the unemployed that are actually using the internet for their job search, as estimated from the 2011 July Supplement of the Current Population Survey. Standard error in brackets. * significant at 10%; ** significant at 5%; *** significant at 1%.

Table b.6: Out-of-sample RMSFEs comparison across states.

State	AR IC	ΙĐ	AR IC	GI	AR IC	IĐ	AR IC	IS	AR IC	GI	AR IC	I5
	h=1)=q	2	h=3		h=4		2=q		=q	9:
AL	0.45 0.99	0.90	76.0 89.0	0.94	0.87 0.94	0.90	0.91 0.93	0.85	1.06 0.93**	0.82	1.18 0.93**	0.76
AK	$0.05 \ 1.04++$	- 1.00	0.10 1.03	1.00	0.15 0.98	1.02	0.21 0.98	1.01	0.25 0.98	1.00	$0.28 \ 0.97$	0.99
AZ	0.10 1.00	0.93**	0.16 0.98	96.0	0.22 - 0.95	86.0	0.28 0.94	0.96	0.32 0.91*	0.95	0.36 0.89**	0.92
AR	0.05 0.93	0.93*	0.09 1.00	0.94*	0.14 0.99	0.93	0.18 1.00	0.92	0.25 0.97	0.94	0.30 0.94	0.94
CA	0.05 0.99	1.00	0.11 0.96	0.99	0.19 0.94	0.95	0.27 0.94	0.89	$ 0.36 \ 0.93$	0.82	0.40 0.89*	0.79
CO	0.05 0.99	96.0	0.08 0.98	0.93	0.14 0.98	0.91	0.20 0.95	0.90	$ 0.25 \ 0.92$	0.89	0.30 0.89**	0.87
CI	0.06 1.00	1.00	0.10 1.01	0.98	0.16 1.01	0.95	0.22 1.00	0.93*	0.29 1.01	06.0	0.35 0.89**	0.85*
DE	0.13 0.98	1.02	0.20 0.97	1.02	0.27 0.98	0.99	0.31 0.98	0.99	0.34 0.98	0.97	0.36 0.96	0.96
DC	0.05 0.95	0.91	0.10 0.94	0.95	0.16 0.95	0.92	0.23 0.96	0.87	$ 0.32 \ 0.97$	0.84	0.38 0.98	0.75*
FL	0.15 0.98	0.95	0.24 0.94	*06.0	0.35 0.90**	0.87	0.41 0.85**	0.81*	0.48 0.78**	0.75*	0.50 0.74**	0.71**
GA	0.04 1.05	0.98	0.08 1.05	0.99	0.14 1.01	86.0	0.21 0.98	1.00	0.29 0.91	0.93	0.36 0.89	0.91
Н	0.05 0.99	*96.0	0.09 0.95	0.98	0.14 0.94	0.99	0.19 0.94	1.00	0.23 0.96	1.02	0.25 - 0.97	1.05
	0.07 0.98	1.05	0.16 0.94	1.07	0.27 0.92*	1.05	0.41 0.89**	1.04	0.54 0.86**	1.00	0.66 0.81*	0.90
П	0.18 0.97	1.04	0.28 0.90	1.03	0.38 0.90	1.01	0.50 0.85*	1.01	0.59 0.80*	1.00	0.64 0.76*	0.99
Z	0.24 0.84**	1.01	0.30 0.83	1.03++	0.33 0.81*	1.01	0.36 0.74*	1.05	0.39 0.69**	1.05	$0.43 \ 0.68*$	1.03
IA	0.15 1.03	0.92	0.23 0.96	0.96	0.29 0.98	96.0	0.34 1.00	1.01	0.38 0.87	1.05	0.42 0.76	1.03
KS	0.05 0.98	1.00	0.12 0.99	1.00	0.21 0.97	1.00	0.31 0.96	0.99	0.40 0.97	1.00	0.49 0.97*	1.02
KY	0.10 0.89	0.86	0.16 0.83	0.85	0.23 0.84	0.89	0.32 0.82	0.87	$0.43 \ 0.75*$	0.84*	0.52 0.72**	0.85**
ΓA	0.04 1.02	1.01	0.08 1.03	0.98	0.11 1.01	0.97	0.14 1.02	96.0	0.17 1.01	**96.0	0.19 1.01	0.96**
$\overline{\text{ME}}$	0.06 1.01	1.00	0.11 1.00	1.00	0.17 1.00	1.02	0.23 1.00	1.03	0.28 0.96	1.03	0.32 0.93	1.01
MD	0.08 0.96	0.88	0.12 1.03	0.84	0.16 1.01	98.0	0.21 1.02	0.91*	0.26 1.02	0.95	0.29 0.96	0.97
MA	0.09 0.97	0.99	0.17 0.98	0.98	0.26 1.05	0.98	$0.37 \ 1.04+$	0.97	0.48 1.04	96.0	$0.59\ 1.04++$	0.96
MI	0.13 0.95	0.95	0.23 0.89	0.92	0.33 0.82	0.93	0.42 0.78	0.99	0.49 0.75	0.97	0.55 0.74	0.98
MIN	0.08 0.94*	0.99	0.18 0.93*	1.01	0.30 0.94	1.00	0.45 0.91	1.01	0.64 0.88*	1.00	0.80 0.90	0.97
\overline{MS}	0.25 0.89*	0.92	0.40 0.85	0.94	0.53 0.84	0.95	0.61 0.84	96.0	0.69 0.78	0.95	*62.0 92.0	0.96
MO	0.04 0.91**	0.99	0.07 0.91**	0.95	0.11 0.90**	0.98	0.15 0.87**	1.00	0.17 0.85***	1.01	0.19 0.85***	1.04
$_{ m IM}$	0.03 0.98	0.90	0.06 0.96	0.97	0.10 0.97*	0.95	0.14 0.97	0.95	0.17 0.96	0.97	0.20 0.97	0.98
ŊĒ	0.07 0.95	1.04	0.14 0.99	1.02	0.22 0.91***	1.01	0.31 0.88***	0.99	0.38 0.86***	0.99	0.44 0.87***	0.97*
							(0000- 1					

(Continued on next page)

						Tabl	Table b.6 $-$ c	continued					
	AR IC	$_{ m GI}$	AR IC	$_{ m GI}$	AR	Γ	GI	AR IC	$_{\mathrm{GI}}$	AR IC	$_{ m GI}$	AR IC	GI
	h=1		h=2			h=3		$_{ m h=4}$		$^{\mathrm{q}}$		= $ m q$	=
N	*26.0 20.0	0.99	0.10 0.89*	96.0	0.15	0.89**	0.94*	0.21 0.88**	0.90**	0.26 0.86*	0.90**	0.29 0.87**	0.88
HN	0.06 1.02	1.02	0.12 1.02	1.03	0.20	1.01	1.09	0.29 1.01	1.11	0.35 1.02	1.15	0.39 1.00	1.09
NJ	0.05 0.93*	96.0	0.09 0.88*	1.00	0.13	0.85	0.99	0.19 0.88	0.99	0.22 0.87	1.00	0.23 0.89	1.00
NM	0.08 0.99	1.08+	0.16 1.01	1.08++	0.25	0.98	1.08	0.31 0.98	1.03	0.38 0.99	1.03	0.42 0.99	1.03+++
\overline{NY}	0.14 0.92*	1.02	0.23 0.91	1.02	0.33	96.0	0.97	0.40 0.90	0.94	0.45 0.90	0.93*	0.48 0.81	0.90**
NC	0.03 0.91	0.83	868.0 20.0	0.80	0.13	0.89*	0.70	0.18 0.92*	89.0	0.24 0.93*	29.0	0.28 0.94**	0.65
ND	0.09 0.91	0.97	0.14 0.91*	0.87	0.22	0.92**	0.94	0.29 0.92**	0.95	0.39 0.93**	0.93	0.48 0.93	0.97
НО	0.14 0.95	0.98	0.23 0.93	0.97	0.32	0.89	86.0	0.39 0.80	96.0	0.44 0.71	0.89	0.48 0.69	0.93
OK	0.05 0.99	1.05	0.11 1.03	1.00	0.18	1.02	0.95	0.26 0.98	0.99	$0.34 \ 0.95$	96.0	0.40 0.93	.096*
OR	0.13 0.99	1.06	0.20 0.98	1.03	0.27	96.0	0.99	$0.35 \ 0.94*$	0.99	0.43 0.89**	86.0	0.45 0.89***	0.98
PA	0.05 1.01	1.01		0.99	0.19	1.02	0.97	0.27 0.99	0.97	0.34 0.98	0.97	0.39 0.98	0.99
$_{ m RI}$	0.09 0.99		0.15 0.97	0.99	0.22	0.97	1.00	0.30 0.93	0.99	0.37 0.91*	0.97	0.44 0.89*	0.96
SC	0.12 0.88**		0.19 0.91	1.11	0.24	0.82*	1.03	0.29 0.76*	1.03	0.32 0.68	1.01	0.34 0.65	0.95
SD	0.25 0.94	0.89	0.42 0.94	0.81	0.58	0.91	0.73	0.72 0.91	0.65	0.82 0.91*	0.62	0.88 0.93*	0.61
$\overline{\text{IN}}$	0.12 0.98	1.00	0.20 0.91*	1.01	0.28	0.86**	0.97	0.34 0.81***	0.95	0.39 0.79***	0.94	0.43 0.84**	0.93
TX	0.29 0.62**	0.72**	0.42 0.53**	0.76*	0.59	0.44***	0.71**	0.68 0.48**	0.74*	0.77 0.53**	0.79**	0.84 0.53**	0.78**
Π	0.08 0.99	0.99	0.12 1.00	0.98	0.16	0.99	0.98	0.22 0.99	1.00	0.28 0.99	1.01	0.34 0.97	0.95
Λ	0.04 1.03	1.09	0.08 1.01	1.17	0.13	0.99	1.26	0.17 0.93	1.30	0.21 0.81*	1.24	0.25 0.81*	1.15
VA	0.05 0.95	1.01	0.10 0.92*	1.03	0.16	0.93*	0.99	0.22 0.92*	0.98	0.28 0.94	86.0	0.32 0.94	0.94
WA	0.05 0.98	1.01	0.11 0.92	0.97	0.19	0.89	0.94	0.28 0.87	0.93	0.36 0.82	0.92	0.41 0.90	0.96
MV	0.05 0.94	1.02	0.11 0.91	1.00	0.18	98.0	1.01	0.24 0.84	86.0	0.30 0.85*	0.97	0.35 0.87	0.96
WI	0.04 0.95	1.01	0.07 0.99	1.00	0.12	96.0	1.01	0.19 0.99	86.0	0.25 0.98	96.0	0.31 0.97	0.93
WY	0.07 1.03	1.01	0.15 1.05	1.01	0.25	1.01	1.02	0.36 1.00	1.04	0.46 0.97	0.99	0.55 0.96	0.98

(Continued on next page)

ontinued
)
9
9
le
9

		5	21	5		9	continued	15		ţ		5
	AR IC	15	AK IC	GI	AR IC	<u>.</u> 5	AR IC	<u>.</u> 5	AR IC	15	AK IC	15
	ho = 1	_	h=8	~	h=9		h=10	_	h=11		h=12	12
AL	1.02 0.92	28.0	1.06 0.93	0.86	1.08 0.91	0.85	1.44 0.94	0.65	1.47 0.95	29.0	$1.47 \ 0.95$	0.71
AK	0.30 0.94	0.97	0.31 0.97	96.0	0.32 0.98	0.98	0.33 0.98	0.99	0.35 0.95	86.0	$0.38 \ 0.93$	*96.0
AZ	0.39 0.90**	0.88	0.40 0.91**	0.86	0.40 0.94	0.81	0.40 0.96	0.79	0.41 0.96	0.77	0.42 0.96	*92.0
AR	0.31 0.88	0.91	0.31 0.88	0.90	0.31 0.88	0.87	0.32 0.87	0.85	0.33 0.82*	*98.0	0.34 0.79**	0.86**
CA	0.42 0.90*	0.75	0.44 0.89*	0.72*	0.44 0.89	0.71**	0.43 0.86	0.69**	0.44 0.83	0.70**	0.47 0.83**	0.75**
CO	0.35 0.78**	0.82	0.41 0.69***	*87.0	0.39 0.75***	0.86	0.40 0.74***	0.90	0.40 0.78***	0.86**	0.41 0.77***	0.90***
CI	0.39 0.84*	0.83**	0.43 0.87	0.84**	0.44 0.89	0.80***	0.45 0.87	0.80**	0.44 0.91	0.89**	0.44 0.90	0.92
DE	0.35 0.94	0.93	$ 0.33 \ 0.91$	0.92	0.31 0.98	0.92	0.32 0.98	0.90	0.35 0.96	0.91	$0.37 \ 0.94$	0.92
DC	0.40 0.99	0.73*	0.42 1.01	*99.0	0.42 0.99	89.0	0.46 0.99	0.66*	0.49 0.99	0.62*	0.52 1.01	0.62**
FL	0.52 0.77*	0.68**	0.48 0.82	**29.0	0.44 0.86	0.63**	0.43 0.88	0.62**	0.44 0.89	0.62**	0.48 0.89	0.65**
GA	0.43 0.84**	0.95	0.47 0.80**	96.0	0.51 0.75***	0.92**	0.52 0.73***	0.89**	0.54 0.71*	0.82**	0.56 0.67***	0.78***
H	0.26 0.98	1.05	0.24 1.00	1.06	0.23 1.03	1.02	0.22 1.04	1.01		86.0	0.25 1.00	0.96
П	0.74 0.75*	0.84*	0.79 0.63**	0.77	0.82 0.55**	0.61**	0.76 0.51**	0.74**	0.73 0.47***	0.72**	0.68 0.47***	0.68**
П	0.67 0.74*	26.0	*92.0 89.0	0.97	62.0 99.0	0.97*	0.65 0.83	0.97	0.64 0.85	0.97	0.65 0.86	0.98
Z	0.47 0.63***	k 1.04	0.50 0.60***	. 1.03	0.53 0.57***	1.04	0.54 0.51***	0.94	0.56 0.51***	0.93	0.58 0.49***	0.90
IA	0.44 0.67	1.04	0.47 0.67	1.03	0.48 0.63*	1.04	0.51 0.61**	1.05	0.53 0.60**	1.04	0.55 0.59**	1.01
KS		* 0.97	0.59 0.95	. 0.94	0.65 0.95*	0.94	*26.0 99.0	96.0	***26.0 69.0	0.95	0.72 0.97***	0.94
KY	0.60 0.67***		***99.0 69.0		0.73 0.73***	0.78***	0.76 0.81***	0.80	0.77 0.87*	0.83**	**62.0 92.0	0.83
ΓA	0.21 1.05	0.99	0.22 1.06	0.99	$0.23 \ 1.05 +$	1.02	0.24 1.04	1.02	0.26 1.05	1.03	0.28 1.07	1.00
ME	0.33 0.88	0.99	0.33 0.89	96.0	0.32 0.90	0.95	0.31 0.95	0.97	0.30 0.94**	0.97	0.29 0.91**	0.94*
MD	0.32 0.89**	26.0	0.32 0.86**	96.0	0.32 0.83*	0.93*	$0.33 \ 0.95$	0.95	$0.34 \ 0.95$	96.0	0.36 0.95	0.93
MA	0.67 1.02	0.96	0.71 1.01	0.97	0.75 1.00	0.91	0.78 1.01	0.94	$0.84 \ 1.01+$	0.92	96.0 06.0	0.91
MI	0.60 0.74	1.00	0.64 0.72	1.02	0.67 0.70	1.03	0.70 0.70	1.02	0.73 0.71*	0.92	0.75 0.73**	0.88
MIN	0.90 0.83**	0.93	1.01 0.77***	. 0.90	1.03 0.76***	0.87	1.04 0.75***	0.85	1.07 0.75***	0.83	1.10 0.73***	0.83
\overline{MS}	0.82 0.77**	0.98	0.87 0.78**	0.99	0.91 0.78**	0.99	0.94 0.78**	0.99	0.95 0.74**	0.97	1.00 0.69***	0.96
MO	0.19 0.81***	* 1.06	0.17 0.79***	1.13+	0.16 0.78***	1.12	0.15 0.77***	1.13	0.14 0.78*	1.11	0.15 0.82**	1.06
MT	0.22 0.97	0.96	0.22 0.97	0.98	0.23 0.99	0.99	$0.24 \ 0.99$	0.99	0.24 1.00	0.99	0.25 1.00	0.98
NE	0.47 0.87***	*96.0	0.47 0.88**	0.97	0.45 0.90**	96.0	0.44 0.93	0.97	0.43 0.90**	0.98	0.44 0.89**	0.99
					3							

(Continued on next page)

ntinued
8
Ī
9
Д
le
ap
Ë

	1					-	1	ין י		∄				Ę			1
	AK] []	<u>.</u>	AK]]	Į.	AK	[]	15	AR IC	<u>.</u>	Ţ	AR IC	GI	AK] []	[5]
		h=7			h=8			h=9		. =	h=10		h=11			h=12	2
NV	0.32	86**	0.83	0.34	87*	0.77	0.33	0.85*	0.74	0.34 0.86*	89.0 $*9$		0.36 0.87**	99.0		0.81***	*99.0
NH	0.44	1.00	86.0	0.49	1.04	1.00	0.55	1.06++	0.94	0.60 1.07	06:0 2		0.65 1.08	0.95	0.71 0	0.93	0.83
NJ	0.23	98.0	1.00	0.20	*98.0	0.98	0.18	0.86**	0.97	0.18 0.8	0.83*** 1.00		0.20 0.81	1.01	0.23 0	0.81	1.04
NM	0.45	0.99	1.01	0.48	00.1	96.0	0.50	0.99	0.91	$0.52 \ 0.97$	0.86		0.55 0.91	0.85	0.58 0	0.91	*98.0
NY	0.50	0.81	0.87	0.52	0.85	0.85***	0.54	06.0	0.83***	0.57 0.91	1 0.83*		0.61 0.90	0.83*	0.64 0	0.91	0.81*
NC	0.32	0.94**	0.62	0.33	0.95**	0.58	0.34	0.94***	0.61*	0.35 0.9	0.94*** 0.60*		0.38 0.89*	*09.0	0.39 0	**98.0	0.64**
ND	0.54	0.94	1.00	0.58	0.90**	0.99	0.62	0.90**	0.97	0.066 0.9	0.91** 0.95		0.68 0.94*	0.92*	0.70 0	0.94**	0.91*
НО	0.50	0.71	0.93	0.47 0	0.75	0.94	0.46	0.78	0.94	0.44 0.84	4 0.93		$0.43 \ 0.87$	0.92	0.42 0	06.0	0.83
OK	0.45	0.91	96.0	0.48 0		96.0	0.50	0.80	96.0	$0.51 \ 0.94$	4 0.96		0.51 0.94	0.95	0.51 0	0.94	0.96
0R	0.46	0.90**	0.97	0.46 0	0.90***	0.98	0.46	0.93**	96.0	$0.47 \ 0.93$	3 0.93		$0.48 \ 0.93$	0.88**	0.50 0	06.0	0.82**
PA	0.41	0.98	0.95	0.44 0	0.98**	0.95	0.47	.98*	0.94	0.50 0.99	9 0.93		0.53 0.99	0.92	0.56 0	0.99	0.92
\mathbb{R} I	0.51	0.91	0.89	0.56	96.0	0.83*	09.0	96.0	98.0	0.66 0.95	5 0.93		0.70 0.88	0.97	0.75 0	*98.0	96.0
SC	0.35	0.62	0.94		09.0	0.83	0.34	0.63*	0.88	$0.33 \ 0.59*$	9* 0.94		0.34 0.60**	0.90	0.38 0	0.52***	0.93
SD		*06.0	0.06	0.72	0.85	0.89	0.74	0.87	0.95	0.78 0.88	*96.0 8		$0.81 \ 0.93$	1.00	0.85 0	0.87**	.098*
$_{ m LIN}$	0.43	0.90	0.89	0.44 0	0.95	0.82*	0.45	0.97	0.75**	0.46 1.00	0.70**		0.48 1.00	0.64**	0.51 0	0.99	0.61**
TX	0.87	0.55**	0.79*	0.91	0.56***	0.79*	0.93	0.58***	0.79**	0.97 0.59	0.59*** 0.80**		***09.0 66.0	0.81**	1.03 0	0.61	0.82***
Π	0.33	96.0	0.91	0.44 0	0.93	0.99	0.48	0.84	0.91	0.50 0.76	6 1.02		$0.51 \ 0.76$	1.06	0.51 0	0.81*	1.03
Λ	0.26	0.88	1.46	0.27 0	0.91	1.40	0.27	0.95	1.38	$0.27 \ 0.96$	6 1.40		$0.27 \ 0.97$	1.21	0.28 0	0.93	1.09
VA	0.35	0.94	0.86**	0.38	0.89	0.75***	0.40	0.90	0.68***	0.41 0.92	2 0.63***		$0.44 \ 0.91$	0.63***	0.45 0	06.0	0.66***
WA	0.50	0.84	0.94	0.52	0.89	0.91	0.49	0.89	98.0	$0.48 \ 0.92$	2 0.95		0.50 0.97	0.92	0.50 0	0.95	0.87**
MV	0.38	98.0	96.0	0.41 0	0.93	0.92	0.44	0.94	0.89	0.46 0.94			$0.47 \ 0.93$	0.88	0.48 0	0.92	0.88
WI	0.36	0.97	0.93	0.41 1	1.02	0.94	0.44	1.02	0.94	0.44 1.01	1 0.90**		0.43 1.06	0.89**	0.42 1	1.02	0.89
WY	0.62	0.95	98.0	0.64	96.0	0.78	0.64	0.97	0.77	0.63 0.97	7 0.78		0.65 0.97	0.80	0.70 0	0.95**	92.0

the RMSFE of the benchmark. Therefore, for the ratios of RMSFE, a number below 1 indicates that the model is beating the benchmark, while a the benchmark model has a higher RMSFE) and significant at 10, 5 and 1%, respectively. +, ++, and +++ indicate that the DM test is significant but negative (i.e. the benchmark model has a lower RMSFE and thus it beats the competitor) at 10, 5 and 1%, respectively. Notes: Comparison across states. For G1, the Table reports the RMSFE for the benchmark AR(p) model where p is selected recursively by the BIC, the ratio of the RMSFE of best Non-Google model over the RMSFE of the benchmark, and the ratio of the RMSFE of the best Google model over number above 1 means that the benchmark outperforms. *, **, and *** indicate that the DM test for the null hypothesis of equal forecast accuracy between the benchmark AR model and the AR model with the leading indicator (IC for non-Google models and GI for Google models) is positive (i.e.

Figure B.6: Forecast errors from quarterly forecasts: comparison with the Survey of Professional Forecasters

Notes: In this figure we compare the SPF forecasts for the same quarter with the quarterly forecasts generated from our best models within each group, computed as the average of the realized unemployment rate in the first month of the quarter and the one-month and two-month-ahead forecasts generated right before the 15th of the second month of each quarter. SPF^{mean} is the mean of the SPF forecasts, while SPF^{median} is their median. Best ST IC is the best model estimated over the short sample with the IC as leading indicator. Best ST Expectations is the best model estimated over the short sample using the expectations from the surveys. Best LT IC and Best LT Expectations are the same best models estimated over the long sample. BN SSUR2 is the Barnichon and Nekarda's (2012) steady-state unemployment rate model with two states estimated over a fifteen-year rolling window. Best GI is the best model using the Google index over the short sample.

Figure B.7: Comparison of forecast errors for the same quarter for individual SPF forecasters versus best model using Google

Notes: In this figure we compare the forecast errors for each individual professional forecaster surveyed by the SPF for the same quarter unemployment rate. For each quarter between 2007Q2 and 2014Q1 the box-plot of the distribution of the individual forecast errors are depicted in light green. The triangles indicate outliers, the rectangle indicates the interquartile range, the circle is the mean, the median is the black bar. The dark green circle is the forecast error from the best Google model.

Figure B.8: CSSED Comparison with SPF

Notes: For each forecast horizon the graphs show the Cumulative Sum of Squared forecast Error differences (CSSED) computed as

$$CSSED_{m,\tau} = \sum_{\tau=R}^{T} (\hat{e}_{bm,\tau}^2 - \hat{e}_{m,\tau}^2)$$

model, which can be either the best model using IC estimated over the short sample (Best ST IC) or the long sample (Best LT IC), the best model using Expectations estimated over the short sample (Best ST Expectations) or the long sample (Best LT Expectations), the where $\hat{e}_{bm,\tau}^2$ denotes the squared forecast error of the mean SPF (left panel) or the median SPF (right panel) and $\hat{e}_{m,\tau}^2$ denotes the alternative best model using GI (Best GI), and the Barnichon and Nekarda's (2012) SSUR2 model. R and T indicate the beginning and the end of the forecast evaluation sample, respectively. Values above zero indicate that the alternative model outperform the benchmark. Each graph plots the evolution of the CSSED for each forecast horizon.

Figure B.9: RMSFE Comparison: Short sample vs Long sample

Notes: For each forecast horizon the graphs show the RMSEFs of the competing models on the x axis estimated over the short sample (left histogram) and over the long sample (right histogram). The white horizontal line indicates the lowest RMSFE across the samples. The AR(p) benchmarks are represented by blue bars; models using IC by black bars; models using Expectations by green bars, models using Google Index for 'jobs' by red bars.

Notes: For each forecast horizon the graphs show the ratios of RMSEFs of the competing models using IC with respect to the benchmar AR(p) estimated over the short sample. Numbers below 1 indicate that the competing model beats the benchmark, while numbers above 1 mean that the benchmark outperforms.

Notes: For each forecast horizon the graphs show the ratios of RMSEFs of the competing models using Expectations with respect to the benchmar AR(p) estimated over the short sample. Numbers below 1 indicate that the competing model beats the benchmark, while numbers above 1 mean that the benchmark outperforms.

Notes: For each forecast horizon the graphs show the ratios of RMSEFs of the competing models using G1 with respect to the benchmar AR(p) estimated over the short sample. Numbers below 1 indicate that the competing model beats the benchmark, while numbers above 1 mean that the benchmark outperforms.

Notes: For each forecast horizon the graphs show the ratios of RMSEFs of the competing models using G2 with respect to the benchmar AR(p) estimated over the short sample. Numbers below 1 indicate that the competing model beats the benchmark, while numbers above 1 mean that the benchmark outperforms.

Notes: For each forecast horizon the graphs show the ratios of RMSEFs of the competing models using G3 with respect to the benchmar AR(p) estimated over the short sample. Numbers below 1 indicate that the competing model beats the benchmark, while numbers above 1 mean that the benchmark outperforms.

Notes: For each forecast horizon the graphs show the ratios of RMSEFs of the competing models using G4 with respect to the benchmar AR(p) estimated over the short sample. Numbers below 1 indicate that the competing model beats the benchmark, while numbers above 1 mean that the benchmark outperforms.