A Report

On

IMAGE BASED PLANT LEAF DISEASE DETECTION USING DEEP LEARNING

Submitted in the partial fulfilment of requirements for The award of degree of

BACHELOR OF TECHNOLOGY

In

INFORMATION TECHNOLOGY

Submitted By

- **B.** Gowtham Sai (191FA07098)
- **T. Sai Swaroop (191FA07126)**
- G. Bhanu Prakash (191FA07132)

Under the guidance of

B NAGA SUDHEER

Assistant Professor

Department of IT & CA

DEPARTMENT OF IT & CA

2022-2023

CERTIFICATE

This is to certify that the Socio Centric Project Report entitled "IMAGE-BASED PLANT DISEASES DETECTION USING DEEP LEARNING" is being submitted by B. Gowtham Sai (191FA07098), T. Sai Swaroop (191FA07126), B. Bhanu Prakash(191FA07132) in partial fulfilment for the award of B. Tech Degree in Information Technology at Vignan's Foundation for Science, Technology and Research, deemed to be University. It is a record of bonafide work carried out by them in Department of Information Technology, Vignan's Foundation for Science Technology and Research under the supervision of B NAGA SUDHEER.

Signature of Project Guide

Signature of HOD

(B Naga Sudheer)

(Dr. N. Veeranjanyulu)

Signature of External

TABLE OF CONTENTS

Topics	Page No
Declaration	i
Acknowledgements	ii
Abstract	iii
1. Introduction	
1.1 Plant Leaf Disease	2
1.2 Need of Plant Leaf Disease Detection	3
1.3 Technologies Behind Disease Detection	4
1.4 Machine Learning	5
1.5 Machine Learning Techiques	7
1.6 Why Deep Learning	8
1.7 Convolutional Neural Network	11
1.8 Image Classification Techniques	12
1.9 Motivation, Objectives and Scope of the work	15
1.10 Organization of Report	17
2. Literature Survey	
2.1 Tomato Leaf Disease Detection Using Deep Learning	19
2.2 Reviewing Important Aspects of Plant Leaf Disease	
Detection and Classification	19
2.3 Plant Pathology Disease Detection in Apple Leaves	
Using CNN	20
2.4 Plant Leaf Disease Detection and Classification based	
On CNN	20
2.5 Plant Leaf Detection and Disease Recognition Using	
Deep Learning	21

2.6 Classification of Plant Leaf and Disease Using ML	21
2.7 Detection of plants Disease from Unhealthy Plant	
Leaves Using ML	22
2.8 Detection of Unhealthy Region of Plant Leaves Using	
Image Processing	23
2.9 Application Research of Plant Leaf Pests and Disease	
Base On Unsupervised Learning	23
2.10 Rose Plant Leaves Disease Detection Using CNN	24
2.11 Plant Leaf Disease Detection Using Deep Learning	25
2.12 Plant Disease Detection and Classification Using	
Deep Learning ConvNets	25
2.13 Machine Learning for Plant Leaf Disease Detection	26
and Classification	
2.14 Plant Leaf Disease Classification and Detection	
System Using Machine Learning	26
2.15 Identification of Plant Leaf Disease Using Machine	
Learning Algorithms	27
3. Plant Leaf Disease Detection	
3.1 About Model and Learning	29
3.2 Overview of Existing Work	32
3.3 Selection of Classifiers	37
3.4 Proposed System	41
3.5 Experiment Analysis	42
3.6 Baseline Results	46
4. Results	
4.1 Results of a Web Application	50
5. Conclusion	
5.1 Summary	53
5.2 Conclusion	54
5.3 Future Work and Extension	55
5.4 References	56

TABLE FOR FIGURES

Topics	Page No.
Figure 1.1 Disease of a Plant	2
Figure 1.2 Agriculture Losses Comparison	4
Figure 1.3 Difference Between AL, ML and DL	6
Figure 1.4 Types of Machine Learning	7
Figure 1.5 Convolutional Neural Networks Architecture	9
Figure 1.6 Image Classification	12
Figure 3.1 Block Diagram of Image Classifier	30
Figure 3.2 Samples Images from Datasets	31
Figure 3.3 Image after Preprocessing	31
Figure 3.4 Image Converted to HSV Color Space	32
Figure 3.5 Images After K Means Clustering	32
Figure 3.6 Images After Removal of Background	33
Figure 3.7 Operation of Convolution Layer	35
without Padding Figure 3.8 Operation of Convolution Layerwith	36
Padding	30
Figure 3.9 Pooling Operation	36
Figure 3.10 Naive inception module	37
Figure 3.11 Statistics of PlantDoc Dataset	40
Figure 3.12 Data Collection	41
Figure 3.13 Training Vs Validation Accuracy	45
Figure 4.1 Home Page	47
Figure 4.2 Selection of Images from a Datasets	47
Figure 4.3 Result and Analyze of a plant	48

DECLARATION

We hereby declare that the Socio Centric Project report entitled "IMAGE-BASED PLANT DISEASES DETECTION USING DEEP LEARNING" submitted to the Department of Information Technology, Vignan's Foundation for Science, Technology and Research, deemed to be University. This report is the work done by us in the Department of Information Technology.

Place:		
Date:	Signature of Students	S

ACKNOWLEDGEMENTS

We express our gratitude towards the Management for providing opportunity to work and implement Socio Centric project. We feel it our responsibility to thank **B Naga Sudheer** under whose valuable guidance that the project came out successfully after each stage. It is a great pleasure for us to express our sincere thanks to Prof. Dr. N. Veeranjanyulu, HOD, IT of VFSTR Deemed to be University, for providing me an opportunity to do Socio Centric project. We extend our wholehearted gratitude to all our faculty members of Department of Information Technology who helped us in our academics throughout course. Finally, we wish to express thanks to our family members for the love and affection overseas and forbearance and cheerful depositions, which are vital for sustaining effort, required for completing this work.

With Sincere regards,

B. Gowtham Sai (191FA07098)

T. Sai Swaroop (191FA07126)

G. Bhanu Prakash (191FA07132)

ABSTRACT

Plant diseases are a major threat to farmers, consumers, environment and the global economy. In India alone, 35% of field crops are lost to pathogens and pests causing losses to farmers. Indiscriminate use of pesticides is also a serious health concern as many are toxic and bio magnified. These adverse effects can be avoided by early disease detection, crop surveillance and targeted treatments. Most diseases are diagnosed by agricultural experts by examining external symptoms. However, farmers have limited access to experts. Our project is the first integrated and collaborative platform for automated disease diagnosis, tracking and forecasting. Farmers can instantly and accurately identify diseases and get solutions with a mobile app by photographing affected plant parts. Real-time diagnosis is enabled using the latest Artificial Intelligence (AI) algorithms for Cloud-based image processing. The AI model continuously learns from user uploaded images and expert suggestions to enhance its accuracy. Farmers can also interact with local experts through the platform. For preventive measures, disease density maps with spread forecasting are rendered from a Cloud based repository of geo-tagged images and micro-climactic factors. A web interface allows experts to perform disease analytics with geographical visualizations. In our experiments, the AI model (CNN) was trained with large disease datasets, created with plant images self-collected from many farms over 7 months. Test images were diagnosed using the automated CNN model and the results were validated by plant pathologists. Over 95% disease identification accuracy was achieved. Our solution is a novel, scalable and accessible tool for disease management of diverse agricultural crop plants and can be deployed as a Cloud based service for farmers and experts for ecologically sustainable crop production. Not only as an agricultural economy but also with a large amount of population to feed, it is necessary that leaf diseases in plants are detected at a very early stage and predictive mechanisms to be adopted to make them safe and avoid losses to the agri-based economy.