Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Mod	ule			Fin Plate
MainModule				Shear Connection
Connec	tivity			Column flange-Beam web
Shear(1	κN)*			10.0
`	,	Supporting So	ection	
	Supporti	ng Section		HB 200
		erial *		E 250 (Fe 410 W)A
т Ү	Ultimate stre	ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		250
α	Mass	37.3	Iz(cm4)	36000000.0
ZZ D	Area(cm2) - A	4750.0	Iy(cm4)	9670000.0
1	D(mm)	200.0	rz(cm)	87.10000000000001
R ₁	B(mm)	200.0	ry(cm)	45.09999999999994
В В	t(mm)	6.1	Zz(cm3)	361000.0
Y	T(mm)	9	Zy(cm3)	96700.0
•	FlangeSlope	94	Zpz(cm3)	389800.0
	R1(mm)	9.0	Zpy(cm3)	96700.0
	R2(mm)	4.5		
		Supported Se	ection	
		ed Section		JB 200
		erial *	E 250 (Fe 410 W)A 410	
т—		ngth, fu (MPa)		
		th , fy (MPa)		250
α	Mass	9.9	Iz(cm4)	7810000.0
ZZ D	Area(cm2) -	1260.0	Iy(cm4)	173000.0
	D(mm)	200.0	rz(cm)	78.60000000000001
R ₁	B(mm)	60.0	ry(cm)	11.7
В	t(mm)	3.4	Zz(cm3)	78100.0
Y	T(mm)	5.0	Zy(cm3)	5800.0
	FlangeSlope	91.5	Zpz(cm3)	88000.0
	R1(mm)	5.0	Zpy(cm3)	5800.0
	R2(mm)	1.5		
		Bolt Deta		
Diameter	` '		٠ ـ	2.0, 16.0, 20.0, 24.0, 30.0, 36.0]
Grad			[3.6, 4.6]	4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9
Туре				Bearing Bolt
Bolt hole	e type			Standard

Slip factor (μ_f)

Type of edges

0.3

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		12.0	
Grade *		3.6	
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 1 * 84.3}{\sqrt{3} \ * 1.25}$ $= 11.68$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 3.4 * 410}{1.25}$ $= 17.4$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (11.68, 17.4)$ = 11.68	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{10.0^{2} + 10.0^{2}}}{11.68}$ $= 2$	2	
No of Columns		1	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * \ 3.4, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	70	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * \ 3.4, \ 300 \ mm)$ $= 300$	70	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *4.0 * \sqrt{\frac{250}{250}}$ $= 48.0$	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	25	Pass
IIIII Zage Zistemee (IIIII)	= 1.7 * 13.0 = 22.1		1 4055
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 4.0 * \sqrt{\frac{250}{250}}$ $= 48.0$	25	Pass
Capacity (kN)	11.18	17.4	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 200.0 = 120.0$	120	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 200.0 - 2 * (5.0 + 5.0 + 10)	120	Pass
	= 180.0		
M: Di t ti ()	$2*e_{min} + (n \ c - 1)*p_{min}$	co o	D
Min. Plate Length (mm)	= 2 * 22.1 + (1 - 1) * 30.0	60.0	Pass
Min.Plate Thickness	$= 54.2$ $t_w = 3.4$	4.0	Pass
(mm)	$t_w = 3.4$	4.0	rass
()		$V_{v} = A_v * f_y$	
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity		$= \frac{120 * 4.0 * 250}{\sqrt{3} * 1.1}$	
(V_dy) (kN)		$\sqrt{3} * 1.1$	
		$= 62.98$ $V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
		$V_{dn} = \frac{0.16 * 11_{vn} * j_u}{\sqrt{3} * \gamma_{max}}$	
Shear Rupture Capacity		= 1 * (120 - (2 * 13.0)) * 4.0 * 410)
(V_dn) (kN)		= 115.62	
Block Shear Capacity in		71.71	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	10.0	= Min(62.98, 115.62, 71.71)	Pass
(kN)		=62.98	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tension Yielding Capacity		120*4.0*250	
(kN)		$=\frac{120*4.0*250}{1.1}$	
		= 109.09	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Tension Rupture Capacity		γ_{m1}	0
(kN)		$= \frac{0.9 * (120 - 2 * 13.0) * 4.0 * 410}{1.25}$	
(')		= 126.35	
Block Shear Capacity in		80.43	
Tension (T_db) (kN)			
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	10.0	= Min(109.09, 126.35, 80.43)	Pass
	0.07	= 80.43	
Moment Capacity (kN-m)	0.35	3.27	Pass
Interaction Ratio	≤ 1	$\frac{0.33}{3.27} + \frac{10.0}{80.43} = 0.23$	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	Thickness of Thicker part = $max(9, 4.0)$ = 9 $IS800: 2007 \ cl. 10.5.2.3 \ Table 21,$ $t_{w_{min}} = 3$	3	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(9, 4.0) = 4.0$ $t_{w_{max}} = 4.0$	3	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{350000.0 * 57.0}{246924.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{350000.0 * 0.0}{246924.0}$ $V_{wv} = \frac{V}{l_w} = \frac{10000.0}{228}$ $A_{wh} = \frac{A}{l_w} = \frac{10000.0}{228}$ $R_w = \sqrt{(80.79 + 43.86)^2 + (0.0 + 43.86)^2}$ $= 132.14$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 410}{\sqrt{3} * 1.25}$ $= 568.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View