Introduction to Information Retrieval http://informationretrieval.org

IIR 4: Index Construction

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2008.05.05

Overview

- Recap
- 2 Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

Outline

- Recap
- 2 Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

Dictionary as array of fixed-width entries

term	document	pointer to	
	frequency	postings list	
а	656,265	\longrightarrow	
aachen	65	\longrightarrow	
zulu	221	\longrightarrow	
20 bytes	4 bytes	4 bytes	

space needed: 20 bytes 4 bytes

B-tree for looking up entries in array

Schütze: Index construction 5 / 50

Wildcard queries using a permuterm index

Wildcard queries using a permuterm index

Queries:

- For X, look up X\$
- For X*, look up X*\$
- For *X, look up X\$*
- For *X*, look up X*
- For X*Y, look up Y\$X*

Levenshtein distance for spelling correction

```
LEVENSHTEIN DISTANCE (s_1, s_2)

1 for i \leftarrow 0 to |s_1|

2 do m[i, 0] = i

3 for j \leftarrow 0 to |s_2|

4 do m[0, j] = j

5 for i \leftarrow 1 to |s_1|

6 do for j \leftarrow 1 to |s_2|

7 do if s_1[i] = s_2[j]

8 then m[i, j] = \min\{m[i - 1, j] + 1, m[i, j - 1] + 1, m[i - 1, j - 1]\}

9 else m[i, j] = \min\{m[i - 1, j] + 1, m[i, j - 1] + 1, m[i - 1, j - 1] + 1\}

10 return m[|s_1|, |s_2|]
```

Operations: insert, delete, replace, copy

Peter Norvig's spell corrector

```
import re, collections
def words(text): return re.findall('[a-z]+', text.lower())
def train(features):
    model = collections.defaultdict(lambda: 1)
    for f in features:
        model[f] += 1
    return model
NWORDS = train(words(file('big.txt').read()))
alphabet = 'abcdefghijklmnopgrstuvwxvz'
def edits1(word):
    n = len(word)
    return set([word[0:i]+word[i+1:] for i in range(n)] +
                                                                               # deletion
               [word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition
               [word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + # alteration
               [word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet]) # insertion
def known edits2(word):
    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)
def known(words): return set(w for w in words if w in NWORDS)
def correct(word):
    candidates = known([word]) or known(edits1(word)) or known edits2(word) or [word]
    return max(candidates, key=lambda w: NWORDS[w])
```

Schütze: Index construction 8 / 50

- Recap
- 2 Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

 Many design decisions in information retrieval are based on hardware constraints.

- Many design decisions in information retrieval are based on hardware constraints.
- We begin by reviewing hardware basics that we'll need in this course.

• Access to data is much faster in memory than on disk. (roughly a factor of 10)

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks: No data is transferred from disk while the disk head is being positioned.

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks: No data is transferred from disk while the disk head is being positioned.
- Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks.

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks: No data is transferred from disk while the disk head is being positioned.
- Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks: No data is transferred from disk while the disk head is being positioned.
- Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB
- Servers used in IR systems typically have several GB of main memory, sometimes tens of GB. Available disk space is several orders of magnitude larger.

- Access to data is much faster in memory than on disk. (roughly a factor of 10)
- Disk seeks: No data is transferred from disk while the disk head is being positioned.
- Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks). Block sizes: 8KB to 256 KB
- Servers used in IR systems typically have several GB of main memory, sometimes tens of GB. Available disk space is several orders of magnitude larger.
- Fault tolerance is very expensive: It's much cheaper to use many regular machines rather than one fault tolerant machine.

Hardware basics: Summary

symb	ol statistic	value
S	average seek time	$5 \text{ ms} = 5 \times 10^{-3} \text{ s}$
b	transfer time per byte	$0.02~\mu\mathrm{s} = 2 imes 10^{-8}~\mathrm{s}$
	processor's clock rate	$10^9 \; {\rm s}^{-1}$
p	lowlevel operation (e.g., compare & swap a word)	$0.01~\mu { m s} = 10^{-8}~{ m s}$
	size of main memory	several GB
	size of disk space	1 TB or more

RCV1 collection

 Shakespeare's collected works are not large enough for demonstrating many of the points in this course.

RCV1 collection

- Shakespeare's collected works are not large enough for demonstrating many of the points in this course.
- As an example for applying scalable index construction algorithms, we will use the Reuters RCV1 collection.

RCV1 collection

- Shakespeare's collected works are not large enough for demonstrating many of the points in this course.
- As an example for applying scalable index construction algorithms, we will use the Reuters RCV1 collection.
- English newswire articles sent over the wire in 1995 and 1996 (one year).

A Reuters RCV1 document

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds caused by extreme weather conditions above Antarctica are a possible indication of global warming, Australian scientists said on Tuesday.

Email This Article | Print This Article | Reprints

Known as nacreous clouds, the spectacular formations showing delicate wisps of colors were photographed in the sky over an Australian meteorological base at Mawson Station on July 25.

Schütze: Index construction 14 / 50

Reuters RCV1 statistics

symbol	statistic	value
N	documents	800,000
L	avg. # word tokens per document	200
Μ	terms (= word types)	400,000
	avg. # bytes per word token (incl. spaces/punct.)	6
	avg. # bytes per word token (without spaces/punct.)	4.5
	avg. # bytes per term (= word type)	7.5
	non-positional postings	100,000,000

Reuters RCV1 statistics

symbol	statistic	value
N	documents	800,000
L	avg. # word tokens per document	200
Μ	terms (= word types)	400,000
	avg. # bytes per word token (incl. spaces/punct.)	6
	avg. # bytes per word token (without spaces/punct.)	4.5
	avg. # bytes per term (= word type)	7.5
	non-positional postings	100,000,000

^{4.5} bytes per word token vs. 7.5 bytes per word type: why?

Outline

- Recap
- 2 Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

Index construction in IIR 1: Sort postings in memory

term	docID		term	docID
1	1		ambitio	us 2
did	1		be	2
enact	1		brutus	1
julius	1		brutus	2
caesar	1		capitol	1
1	1		caesar	1
was	1		caesar	2
killed	1		caesar	2
i'	1		did	1
the	1		enact	1
capitol	1		hath	1
brutus	1		1	1
killed	1		1	1
me	1	\rightarrow	i'	1
SO	2	$\overline{}$	it	2
let	2		julius	1
it	2		killed	1
be	2		killed	1
with	2		let	2
caesar	2		me	1
the	2		noble	2
noble	2		SO	2
brutus	2		the	1
hath	2		the	2
told	2		told	2
you	2		you	2
caesar	2		was	1
was	2		was	2
ambitio	us 2		with	2

• In-memory index construction does not scale.

- In-memory index construction does not scale.
- How can we construct an index for very large collections?

- In-memory index construction does not scale.
- How can we construct an index for very large collections?
- Taking into account the hardware constraints we just learned about . . .

- In-memory index construction does not scale.
- How can we construct an index for very large collections?
- Taking into account the hardware constraints we just learned about . . .
- Memory, disk, speed etc.

• As we build index, we parse docs one at a time.

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.
- At 10–12 bytes per postings entry, demands a lot of space for large collections.

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.
- At 10–12 bytes per postings entry, demands a lot of space for large collections.
- T = 100,000,000 in the case of RCV1

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.
- At 10–12 bytes per postings entry, demands a lot of space for large collections.
- T = 100,000,000 in the case of RCV1
- Actually, we can do 100,000,000 in memory, but typical collections are much larger than RCV1.

Sort-based index construction

- As we build index, we parse docs one at a time.
- The final postings for any term are incomplete until the end.
- At 10–12 bytes per postings entry, demands a lot of space for large collections.
- T = 100,000,000 in the case of RCV1
- Actually, we can do 100,000,000 in memory, but typical collections are much larger than RCV1.
- Thus: We need to store intermediate results on disk.

Same algorithm for disk?

• Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?

Same algorithm for disk?

- Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?
- No: Sorting T = 100,000,000 records on disk is too slow too many disk seeks.

Same algorithm for disk?

- Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?
- No: Sorting T = 100,000,000 records on disk is too slow too many disk seeks.
- We need an external sorting algorithm.

• 12-byte (4+4+4) postings (termID, docID, document frequency)

- 12-byte (4+4+4) postings (termID, docID, document frequency)
- Must now sort T=100,000,000 such 12-byte postings by termID

- 12-byte (4+4+4) postings (termID, docID, document frequency)
- ullet Must now sort $T=100,\!000,\!000$ such 12-byte postings by termID
- Define a block to consist of 10,000,000 such postings

- 12-byte (4+4+4) postings (termID, docID, document frequency)
- Must now sort T = 100,000,000 such 12-byte postings by termID
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.

- 12-byte (4+4+4) postings (termID, docID, document frequency)
- Must now sort T = 100,000,000 such 12-byte postings by termID
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.

- 12-byte (4+4+4) postings (termID, docID, document frequency)
- Must now sort T = 100,000,000 such 12-byte postings by termID
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.
- Basic idea of algorithm:

- 12-byte (4+4+4) postings (termID, docID, document frequency)
- Must now sort T = 100,000,000 such 12-byte postings by termID
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.
- Basic idea of algorithm:
 - Accumulate postings for each block, sort, write to disk.

- 12-byte (4+4+4) postings (termID, docID, document frequency)
- Must now sort T = 100,000,000 such 12-byte postings by termID
- Define a block to consist of 10,000,000 such postings
 - We can easily fit that many postings into memory.
 - We will have 10 such blocks for RCV1.
- Basic idea of algorithm:
 - Accumulate postings for each block, sort, write to disk.
 - Then merge the blocks into one long sorted order.

Merging two blocks

Blocked Sort-Based Indexing

```
BSBINDEXCONSTRUCTION()

1  n ← 0

2  while (all documents have not been processed)

3  do n ← n + 1

4  block ← PARSENEXTBLOCK()

5  BSBI-INVERT(block)

6  WRITEBLOCKTODISK(block, f<sub>n</sub>)

7  MERGEBLOCKS(f<sub>1</sub>,..., f<sub>n</sub>; f<sub>merged</sub>)
```

Blocked Sort-Based Indexing

```
BSBINDEXCONSTRUCTION()

1  n ← 0

2  while (all documents have not been processed)

3  do n ← n + 1

4  block ← PARSENEXTBLOCK()

5  BSBI-INVERT(block)

6  WRITEBLOCKTODISK(block, f<sub>n</sub>)

7  MERGEBLOCKS(f<sub>1</sub>,..., f<sub>n</sub>; f<sub>merged</sub>)
```

• Key decision: What is the size of one block?

Outline

- Recap
- 2 Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

Problem with sort-based algorithm

• Our assumption was: we can keep the dictionary in memory.

Problem with sort-based algorithm

- Our assumption was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.

Problem with sort-based algorithm

- Our assumption was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.
- Actually, we could work with term,docID postings instead of termID,docID postings . . .

Problem with sort-based algorithm

- Our assumption was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a term to termID mapping.
- Actually, we could work with term,docID postings instead of termID,docID postings . . .
- ... but then intermediate files become very large. (We would end up with a scalable, but very slow index construction method.)

Abbreviation: SPIMI

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.
- These separate indexes can then be merged into one big index.

SPIMI-Invert

```
SPIMI-INVERT(token_stream)
     output\_file = NewFile()
     dictionary = NewHash()
     while (free memory available)
     do token \leftarrow next(token\_stream)
  5
        if term(token) ∉ dictionary
          then postings_list = ADDToDICTIONARY(dictionary, term(token))
          else postings_list = GETPOSTINGSLIST(dictionary, term(token))
 8
        if full(postings_list)
          then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10
        ADDToPostingsList(postings_list, doclD(token))
11
     sorted\_terms \leftarrow SortTerms(dictionary)
12
     WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
13
     return output_file
```

SPIMI-Invert

```
SPIMI-INVERT(token_stream)
     output\_file = NewFile()
     dictionary = NewHash()
     while (free memory available)
     do token \leftarrow next(token\_stream)
 5
        if term(token) ∉ dictionary
          then postings_list = ADDToDICTIONARY(dictionary, term(token))
          else postings_list = GETPOSTINGSLIST(dictionary, term(token))
 8
        if full(postings_list)
          then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10
        ADDToPostingsList(postings_list, doclD(token))
11
     sorted\_terms \leftarrow SortTerms(dictionary)
12
     WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
13
     return output_file
```

Merging of blocks is analogous to BSBI.

• Compression makes SPIMI even more efficient.

- Compression makes SPIMI even more efficient.
 - Compression of terms

- Compression makes SPIMI even more efficient.
 - Compression of terms
 - Compression of postings

- Compression makes SPIMI even more efficient.
 - Compression of terms
 - Compression of postings
 - See next lecture

Outline

- Recap
- 2 Introduction
- 3 BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

 For web-scale indexing (dont' try this at home!): must use a distributed computer cluster

- For web-scale indexing (dont' try this at home!): must use a distributed computer cluster
- Individual machines are fault-prone.

- For web-scale indexing (dont' try this at home!): must use a distributed computer cluster
- Individual machines are fault-prone.
 - Can unpredictably slow down or fail.

- For web-scale indexing (dont' try this at home!): must use a distributed computer cluster
- Individual machines are fault-prone.
 - Can unpredictably slow down or fail.
- How do we exploit such a pool of machines?

• Google data centers mainly contain commodity machines.

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- Estimate: a total of 1 million servers, 3 million processors/cores (Gartner 2007)

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- Estimate: a total of 1 million servers, 3 million processors/cores (Gartner 2007)
- Estimate: Google installs 100,000 servers each quarter.

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- Estimate: a total of 1 million servers, 3 million processors/cores (Gartner 2007)
- Estimate: Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- Estimate: a total of 1 million servers, 3 million processors/cores (Gartner 2007)
- Estimate: Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- Estimate: a total of 1 million servers, 3 million processors/cores (Gartner 2007)
- Estimate: Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!
- If in a non-fault-tolerant systemn with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system?

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- Estimate: a total of 1 million servers, 3 million processors/cores (Gartner 2007)
- Estimate: Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!
- If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system?
- Answer: 63%

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- Estimate: a total of 1 million servers, 3 million processors/cores (Gartner 2007)
- Estimate: Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!
- If in a non-fault-tolerant systemn with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system?
- Answer: 63%
- Calculate the number of servers failing per minute for an installation of 1 million servers.

Distributed indexing

 Maintain a master machine directing the indexing job – considered "safe"

Distributed indexing

- Maintain a master machine directing the indexing job considered "safe"
- Break up indexing into sets of parallel tasks

Distributed indexing

- Maintain a master machine directing the indexing job considered "safe"
- Break up indexing into sets of parallel tasks
- Master machine assigns each task to an idle machine from a pool.

• We will define two sets of parallel tasks and deploy two types of machines to solve them:

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers
 - Inverters

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers
 - Inverters
- Break the input document collection into splits (corresponding to blocks in BSBI/SPIMI)

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers
 - Inverters
- Break the input document collection into splits (corresponding to blocks in BSBI/SPIMI)
- Each split is a subset of documents.

• Master assigns a split to an idle parser machine.

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

- Master assigns a split to an idle parser machine.
- Parser reads a document at a time and emits (term,doc) pairs.

- Master assigns a split to an idle parser machine.
- Parser reads a document at a time and emits (term,doc) pairs.
- Parser writes pairs into *j* term-partitions.

- Master assigns a split to an idle parser machine.
- Parser reads a document at a time and emits (term,doc) pairs.
- Parser writes pairs into *j* term-partitions.
- Each for a range of terms' first letters

- Master assigns a split to an idle parser machine.
- Parser reads a document at a time and emits (term,doc) pairs.
- Parser writes pairs into *j* term-partitions.
- Each for a range of terms' first letters
 - E.g., a-f, g-p, q-z (here: j = 3)

Inverters

• An inverter collects all (term,doc) pairs (= postings) for one term-partition.

Inverters

- An inverter collects all (term,doc) pairs (= postings) for one term-partition.
- Sorts and writes to postings lists

Data flow

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

MapReduce

 The index construction algorithm we just described is an instance of MapReduce.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.
- The Google indexing system (ca. 2002) consisted of a number of phases, each implemented in MapReduce.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.
- The Google indexing system (ca. 2002) consisted of a number of phases, each implemented in MapReduce.
- Index construction was just one phase.

- The index construction algorithm we just described is an instance of MapReduce.
- MapReduce is a robust and conceptually simple framework for distributed computing . . .
- ... without having to write code for the distribution part.
- The Google indexing system (ca. 2002) consisted of a number of phases, each implemented in MapReduce.
- Index construction was just one phase.
- Another phase: transform term-partitioned into document-partitioned index.

MapReduce schema

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

Index construction in MapReduce

Schema of map and reduce functions

```
\begin{array}{ll} \mathsf{map:} & \mathsf{input} & \to \mathsf{list}(k, \nu) \\ \mathsf{reduce:} & (k, \mathsf{list}(\nu)) & \to \mathsf{output} \end{array}
```

Instantiation of the schema for index construction

```
map: web collection \rightarrow list(termID, docID) reduce: (\langle \text{termID}_1, \text{list}(\text{docID}) \rangle, \langle \text{termID}_2, \text{list}(\text{docID}) \rangle, . . . ) \rightarrow (postings_list_1, postings_list_2, . . . )
```

Example for index construction

```
\begin{array}{lll} \mathsf{map:} & d_2: \mathrm{C} \ \mathsf{DIED.} \ d_1: \mathrm{C} \ \mathsf{CAME,} \ \mathsf{C} \ \mathsf{C'ED.} & \rightarrow (\langle \mathrm{C}, d_2 \rangle, \langle \mathsf{DIED.} d_2 \rangle, \langle \mathrm{C}, d_1 \rangle, \langle \mathrm{CAME.} d_1 \rangle, \langle \mathrm{C}, d_1 \rangle, \langle \mathsf{CAME.} d_1 \rangle, \langle \mathrm{CAME.} (d_1) \rangle, \langle
```

Outline

- Recap
- 2 Introduction
- BSBI algorithm
- 4 SPIMI algorithm
- Distributed indexing
- 6 Dynamic indexing

Dynamic indexing

• Up to now, we have assumed that collections are static.

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are.

Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are.
- Documents are inserted, deleted and modified.

Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are.
- Documents are inserted, deleted and modified.
- This means that the dictionary and postings lists have to be modified.

• Maintain "big" main index on disk

- Maintain "big" main index on disk
- New docs go into "small" auxiliary index in memory.

- Maintain "big" main index on disk
- New docs go into "small" auxiliary index in memory.
- Search across both, merge results

- Maintain "big" main index on disk
- New docs go into "small" auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into one main index

- Maintain "big" main index on disk
- New docs go into "small" auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into one main index
- Deletions:

- Maintain "big" main index on disk
- New docs go into "small" auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into one main index
- Deletions:
 - Invalidation bit-vector for deleted docs

- Maintain "big" main index on disk
- New docs go into "small" auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into one main index
- Deletions:
 - Invalidation bit-vector for deleted docs
 - Filter docs returned by index using this invalidation bit-vector; only return "valid" docs to user

Issue with auxiliary and main index

Frequent merges

- Frequent merges
- Poor performance during merge

- Frequent merges
- Poor performance during merge
- Actually:

- Frequent merges
- Poor performance during merge
- Actually:
 - Merging of the auxiliary index into the main index is efficient if we keep a separate file for each postings list.

- Frequent merges
- Poor performance during merge
- Actually:
 - Merging of the auxiliary index into the main index is efficient if we keep a separate file for each postings list.
 - Merge is the same as a simple append.

- Frequent merges
- Poor performance during merge
- Actually:
 - Merging of the auxiliary index into the main index is efficient if we keep a separate file for each postings list.
 - Merge is the same as a simple append.
 - But then we would need a lot of files inefficient.

- Frequent merges
- Poor performance during merge
- Actually:
 - Merging of the auxiliary index into the main index is efficient if we keep a separate file for each postings list.
 - Merge is the same as a simple append.
 - But then we would need a lot of files inefficient.
- Assumption for the rest of the lecture: The index is one big file.

- Frequent merges
- Poor performance during merge
- Actually:
 - Merging of the auxiliary index into the main index is efficient if we keep a separate file for each postings list.
 - Merge is the same as a simple append.
 - But then we would need a lot of files inefficient.
- Assumption for the rest of the lecture: The index is one big file.
- In reality: Use a scheme somewhere in between (e.g., split very large postings lists, collect postings lists of length 1 in one file etc.)

 Maintain a series of indexes, each twice as large as the previous one.

- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (J_0) in memory

- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (J_0) in memory
- Larger ones $(I_0, I_1, ...)$ on disk

- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (J_0) in memory
- Larger ones $(I_0, I_1, ...)$ on disk
- If J_0 gets too big (> n), write to disk as I_0

- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (J_0) in memory
- Larger ones $(I_0, I_1, ...)$ on disk
- If J_0 gets too big (> n), write to disk as I_0
- or merge with I_0 (if I_0 already exists) and write merger to I_1 etc.

```
LMERGEADDTOKEN(indexes, Z_0, token)
  1 Z_0 \leftarrow \text{MERGE}(Z_0, \{token\})
  2 if |Z_0| = n
         then for i \leftarrow 0 to \infty
  4
                do if I_i \in indexes
  5
                       then Z_{i+1} \leftarrow \text{MERGE}(I_i, Z_i)
                               (Z_{i+1} \text{ is a temporary index on disk.})
  6
                              indexes \leftarrow indexes - \{I_i\}
  8
                       else I_i \leftarrow Z_i (Z_i becomes the permanent index I_i.)
  9
                              indexes \leftarrow indexes \cup \{I_i\}
 10
                              Break
                Z_0 \leftarrow \emptyset
 11
LogarithmicMerge()
 1 Z_0 \leftarrow \emptyset (Z_0 is the in-memory index.)
 2 indexes \leftarrow \emptyset
 3 while true
     do LMERGEADDTOKEN(indexes, Z_0, GETNEXTTOKEN())
```

• 0001

- 0001
- 0010

- 0001
- 0010
- 0011

- 0001
- 0010
- 0011
- 0100

- 0001
- 0010
- 0011
- 0100
- 0101

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001
- 1010

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001
- 1010
- 1011

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
- 1001
- 1010
- 1011
- 1100

• Number of indexes bounded by $O(\log T)$ (T is total number postings read so far)

- Number of indexes bounded by $O(\log T)$ (T is total number postings read so far)
- ullet So query processing requires the merging of $O(\log T)$ indexes

- Number of indexes bounded by $O(\log T)$ (T is total number postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction: Each posting is merged O(log T) times.

- Number of indexes bounded by $O(\log T)$ (T is total number postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction: Each posting is merged O(log T) times.
- Auxiliary index: index construction time is $O(T^2)$ as each posting is touched in each merge.

- Number of indexes bounded by $O(\log T)$ (T is total number postings read so far)
- So query processing requires the merging of $O(\log T)$ indexes
- Time complexity of index construction: Each posting is merged O(log T) times.
- Auxiliary index: index construction time is $O(T^2)$ as each posting is touched in each merge.
- So logarithming merging is an order of magnitude more efficient.

Dynamic indexing at large search engines

Often a combination

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

Dynamic indexing at large search engines

- Often a combination
 - Frequent incremental changes

Recap Introduction BSBI algorithm SPIMI algorithm Distributed indexing Dynamic indexing

Dynamic indexing at large search engines

- Often a combination
 - Frequent incremental changes
 - Occasional complete rebuild

Building positional indexes

Building positional indexes

 Basically the same problem except that the intermediate data structures are large.

• Chapter 4 of IIR

- Chapter 4 of IIR
- Resources at http://ifnlp.org/ir

- Chapter 4 of IIR
- Resources at http://ifnlp.org/ir
- Original publication on MapReduce by Dean and Ghemawat (2004)

- Chapter 4 of IIR
- Resources at http://ifnlp.org/ir
- Original publication on MapReduce by Dean and Ghemawat (2004)
- Original publication on SPIMI by Heinz and Zobel (2003)