DataFlow Analysis Assignment

Amanjot Singh matr. 152792 Leonardo Temperanza matr. 152831

1. Very Busy Expressions

Domain	Set of expressions
Direction	Backward In[b] = f_b (out[b]) Out[b] = Λ in[succ(b)]
Transfer function	$f_b(x) = Gen_b U (x - Kill_b)$
Meet Operator (Λ)	Λ
Boundary Condition	In[exit] = Ø
Initial interior points	In[b] = U

- 1. Una espressione x ⊕ y é *very busy* se in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.
- 2. Un blocco **genera** l'espressione $x \oplus y$ se valuta $x \oplus y$ e non ridefinisce prima x o y
- 3. Un blocco **uccide** l'espressione $x \oplus y$ se ridefinisce prima x o y

Bit vector composto da 3 bit che indicano le seguenti espressioni:

- 1. a − b
- 2. b a
- 3. a!=b

	Iterazione 1		Iterazione 2		
	OUT[B] IN[B]		OUT[B]	IN[B]	
BB7	< 0 0 0 >	< 1 0 0 >	< 0 0 0 >	< 1 0 0 >	
BB6	< 1 0 0 >	< 0 0 0 >	< 1 0 0 >	< 0 0 0 >	
BB5	< 0 0 0 >	< 0 1 0 >	< 0 0 0 >	< 0 1 0 >	
BB4	< 0 0 0 >	< 1 0 0 >	< 0 0 0 >	< 1 0 0 >	
BB3	< 1 0 0 >	< 1 1 0 >	< 1 0 0 >	< 1 1 0 >	
BB2	< 0 1 0 >	< 0 1 1 >	< 0 1 0 >	< 0 1 1 >	
BB1	< 0 1 1 >		< 0 1 1 >		

Se si ragiona limitatamente all'esempio precedente, si potrebbe pensare di inizializzare gli **initial interior points** a \emptyset . Ció è dovuto alla mancata presenza di loop nel CFG analizzato. In seguito si riporta un controesempio che dimostra che gli **initial interior points** vanno inizializzati ad U invece di \emptyset .

Il bit vector è composto da 3 bit che indicano le seguenti espressioni:

- 1. a b
- 2. a-1
- 3. a * b

	Iterazione 1		Iterazione 2		Iterazione 3	
	OUT[B]	IN[B]	OUT[B]	IN[B]	OUT[B]	IN[B]
BB5	< 0 0 0 >	< 0 0 1 >	< 0 0 0 >	< 0 0 1 >	< 0 0 0 >	< 0 0 1 >
BB4	< 0 0 1 >	< 1 0 1 >	< 0 0 1 >	< 1 0 1 >	< 0 0 1 >	< 1 0 1 >
BB1	< 0 0 0 >	< 100>	< 1 0 0 >	< 100>	< 100>	< 100>
BB3	< 1 0 0 >	< 100>	< 100>	< 100>	< 100>	< 100>
BB2	< 100>	< 1 1 0 >	< 1 0 0 >	< 1 1 0 >	< 100>	< 1 1 0 >
ENTRY	< 100>		< 1 0 0 >		< 100>	

Come si puó vedere dalla tabella precedente, viene persa l'informazione sul fatto che l'espressione **a** * **b** è **very busy**.

2. Dominator Analysis

Domain	Set of basic blocks
Direction	Forward $Out[b] = f_b(in[b])$ $In[b] = \Lambda out[pred(b)]$
Transfer function	$f_b(x) = b U x$
Meet Operator (Λ)	n
Boundary Condition	Out[entry] = Ø
Initial interior points	Out[b] = U

- 1. Un nodo X domina un altro nodo Y se il nodo X appare in ogni percorso del grafo che porta dal blocco ENTRY al blocco Y
- 2. Per definizione un nodo domina sé stesso

	Iterazione 1		Iterazione 2		
	IN[B]	OUT[B]	IN[B]	OUT[B]	
Α	< 0 0 0 0 0 0 0 >	<1000000>	< 0 0 0 0 0 0 0 >	<1000000>	
В	<1000000>	<1100000>	<1000000>	<1100000>	
С	<1000000>	<1010000>	<1000000>	<1010000>	
D	<1010000>	<1011000>	<1010000>	<1011000>	
E	<1010000>	<1010100>	<1010000>	<1010100>	
F	<1010000>	<1010010>	<1010000>	<1010010>	
G	<1000000>	<1000001>	<1000000>	<1000001>	
EXIT	<1000001>		<1000001>		

3. Constant Propagation

Domain	Set of couple <variable, constant=""></variable,>
Direction	Forward Out[b] = $f_b(In[b])$ In[b] = Λ out[pred(b)]
Transfer function	$f_b(x) = Gen_b U (x - Kill_b)$
Meet Operator (Λ)	n
Boundary Condition	Out[entry] = Ø
Initial interior points	Out[b] = U

- 1. Se abbiamo la coppia **<x, c>** al nodo **n**, significa che **x** è garantito avere il valore **c** ogni volta che **n** viene raggiunto durante l'esecuzione del programma.
- 2. Un nodo **n** genera la coppia **<x, c>**, se ad **x**:
 - a. Viene assegnato un valore costante
 - b. Viene assegnato il risultato di un operazione, i cui operandi sono costanti. Un operando è costante se è una costante numerica oppure se è garantito avere un valore **c**.
- 3. Un nodo **n** uccide una coppia **<x, c>** se ridefinisce **x**.

	Iterazione	Iterazione 1		Iterazione 2		Iterazione 3	
	IN[B]	OUT[B]	IN[B]	OUT[B]	IN[B]	OUT[B]	
BB1	Ø	<k, 2=""></k,>	Ø	<k, 2=""></k,>	Ø	<k, 2=""></k,>	
BB2	<k, 2=""></k,>						
BB3	<k, 2=""></k,>						
		<a, 4=""></a,>		<a, 4=""></a,>		<a, 4=""></a,>	
BB4	<k, 2=""></k,>						
	<a, 4=""></a,>						
		<x, 5=""></x,>		<x, 5=""></x,>		<x, 5=""></x,>	
BB5	<k, 2=""></k,>						
		<a, 4=""></a,>		<a, 4=""></a,>		<a, 4=""></a,>	
BB6	<k, 2=""></k,>						
	<a, 4=""></a,>						
		<x, 8=""></x,>		<x, 8=""></x,>		<x, 8=""></x,>	
BB7	<k, 2=""></k,>	<k, 4=""></k,>	<k, 2=""></k,>	<k, 4=""></k,>	<k, 2=""></k,>	<k, 4=""></k,>	
	<a, 4=""></a,>						
BB8	<k, 4=""></k,>	<k, 4=""></k,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	
	<a, 4=""></a,>	<a, 4=""></a,>					
BB9	<k, 4=""></k,>	<k, 4=""></k,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	
	<a, 4=""></a,>	<a, 4=""></a,>		<b, 2=""></b,>		<b, 2=""></b,>	
		<b, 2=""></b,>					
BB10	<k, 4=""></k,>	<k, 4=""></k,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	
	<a, 4=""></a,>	<a, 4=""></a,>	<b, 2=""></b,>	<b, 2=""></b,>	<b, 2=""></b,>	<b, 2=""></b,>	
	<b, 2=""></b,>	<b, 2=""></b,>					
		<x, 8=""></x,>	_	_	_	_	
BB11	<k, 4=""></k,>	<k, 4=""></k,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	
	<a, 4=""></a,>	<a, 4=""></a,>	<b, 2=""></b,>	<b, 2=""></b,>	<b, 2=""></b,>	<b, 2=""></b,>	
	<b, 2=""></b,>	<b, 2=""></b,>		<y, 8=""></y,>		<y, 8=""></y,>	
	<x, 8=""></x,>	<x, 8=""></x,>					
2242	1 4	<y, 8=""></y,>					
BB12	<k, 4=""></k,>	<k, 5=""></k,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	
	<a, 4=""></a,>	<a, 4=""></a,>	<b, 2=""></b,>	<b, 2=""></b,>	<b, 2=""></b,>	 <b, 2=""></b,>	
	<b, 2=""></b,>	<b, 2=""></b,>	<y, 8=""></y,>	<y, 8=""></y,>	<y, 8=""></y,>	<y, 8=""></y,>	
	<x, 8=""></x,>	<x, 8=""></x,>					
DD12	<y, 8=""></y,>	<y, 8=""></y,>	/2 A>	<2. As	/2 A>	42 As	
BB13	<k, 4=""></k,>	<k, 4=""></k,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	<a, 4=""></a,>	
EVIT	<a, 4=""></a,>	<a, 4=""></a,>	/2 A>		/2 A>		
EXIT	<k, 4=""></k,>		<a, 4=""></a,>		<a, 4=""></a,>		
	<a, 4=""></a,>						