Part #1- Relaxation Approach

9:>is our Solution. [2] 9:>is our Solution
Finding an argument of that minimize the equation $4 \leq (9i-9j)^2 wij$
oneway > pick cambination of solution. one at the time and then Calculate the Velationship and
once you have done that for every one of them you pick the smallest one.
but there are lots of combination
Such that [] [-1] []

go back to the original one 74 \(\frac{5}{9} \frac{9}{2} - \frac{5}{2} \frac{5}{9} \frac{9}{2} \frac{1}{2} \frac{5}{9} \frac{9}{9} \frac{9} \frac{9}{9} \frac{9} \frac{9}{9} \frac{9}{9} \frac{9}{9} \frac{9}{9} \frac{9}{9} \frac{9}{9} \frac{9}{9} \frac ASC anc Same >> 1 \(\frac{2}{9} \omega_{ij} \quad \quad \frac{1}{2} \frac{1}{2} \omega_{ij} \quad \qq \quad value → 1 2'D2 - 22W2 \$ 2ED-w32 this is Called laplacian = 3/9/19 argmin $\{2, \omega_{ij}, (q_{i}-q_{j})\}=$ 29/12 argmin 2

argmin $\{1, 2\}$ $(2i-2j)^2 = argmin 29i2$ => weknew that when minimizing the constant doesn't matter. So, Side Con Remove / at the X 50 ang min 9/19 Second Smallest To hind 9 ? eigen value Return minimum minimy eigen vetors > loiggest eigen value hint vetum maximum eigen vectors

Spectral clustering example in video lecturer "Going Beyond MinCut".

Graph and Similarity Matrix

	x1	x2	х3	x4	x5	x6	x7
x1	0	0.6	0	0.8	0.1	0	0
x2	0.6	0	0.5	0	0	0	0
х3	0	0.5	0	0.7	0	0	0
x4	0.8	0	0.7	0	0	0.2	0
x5	0.1	0	0	0	0	0.9	0.7
x6	0	0	0	0.2	0.9	0	0.8
x7	0	0	0	0	0.7	0.8	0

Graph and Laplacian Matrix

	x1	x2	х3	x4	x5	x6	x7
x1	1.5	-0.6	0	-0.8	-0.1	0	0
x2	-0.6	1.1	-0.5	0	0	0	0
х3	0	-0.5	1.2	-0.7	0	0	0
x4	-0.8	0	-0.7	1.7	0	-0.2	0
x5	-0.1	0	0	0	1.7	-0.9	-0.7
х6	0	0	0	-0.2	-0.9	1.9	-0.8
x7	0	0	0	0	-0.7	-0.8	1.5

Need to find the eigen values and eigen vectors on Laplacian Matrix.

Solve Eigen Problem

Pre-processing

| Build Laplacian matrix L of the graph.

0.1588

1.2705 = 1.3692 2.2751

2.2751 2.6238

Find

- | Eigenvalues ∧ and eigenvectors x of matrix L.
- Map vertices to the corresponding components of the 2nd eigenvector.

×1	-0.2962
×2	-0.3805
x3	-0.3608
×4	-0.2649
x5	0.4298
х6	0.406
×7	0.4665

we can find the value of of according to nxn matrix we have In, eigen value. -> each eigen value will produce a eigen vector (x) eign value her newill hird the eigen vectors based on the Second smallest light value (2) So this is the solution lable vector(2) - then Split the vector into two pants.

 $A = \{i \mid q_{i} < 0\} \qquad B = \{i \mid q_{i} > 0\}$ $A = \{X_{1}, X_{2}, X_{3}, X_{4}\} \qquad B = \{i \mid q_{i} > 0\}$ $A = \{X_{1}, X_{2}, X_{3}, X_{4}\} \qquad B = \{i \mid q_{i} > 0\}$ $A = \{X_{1}, X_{2}, X_{3}, X_{4}\} \qquad B = \{i \mid q_{i} > 0\}$

Spectral Clustering

