Lista de Exercícios 2

Questões teóricas

Questão 1 (Transformações afins). Para cada uma das figuras abaixo, determine a matriz de transformação afim M necessária para levar o polígono P em P'. Caso conclua que é impossível obter M, justifique sua resposta.

Questão 2 (Transformações afins). Dados três pontos $\mathbf{p}, \mathbf{q}, \mathbf{r} \in \mathbb{R}^2$, descreva um método para determinar se \mathbf{r} está à esquerda, direita ou sobre a reta de suporte do segmento $\overline{\mathbf{pq}}$.

Questão 3 (Transformações afins). Dado o vetor $\mathbf{w}=(2,-1,\sqrt{2}/2)$ em \mathbb{R}^3 , construa uma base ortonormal $\mathcal{B}=\{\tilde{\mathbf{u}},\tilde{\mathbf{v}},\tilde{\mathbf{w}}\}$, onde $\tilde{\mathbf{w}}=\mathbf{w}/\|\mathbf{w}\|$.

Questão 4 (Transformações afins). Mostre que se os vetores coluna de uma matriz M são ortonormais, então esta afirmação também vale para seus vetores linha.

 ${\bf Quest\~ao}$ 5 (Transformações projetivas). Desenhe o resultado da aplicação da transformação projetiva bidimensional

$$\begin{bmatrix} 2 & 0 & -1 \\ 0 & 3 & 0 \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

sobre o quadrado unitário $[0, 1]^2$.

Questão 6 (Projeções). Explique a principal característica que diferencia projeções perspectivas e ortográficas.

Questão 7 (Perspectiva). Considere a matriz de projeção perspectiva a seguir:

$$\mathbf{M}_{per} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0\\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0\\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Mostre que \mathbf{M}_{per} transforma o ponto (r, t, n) em (1, 1, 1).

Questão 8 (Projeções). Classifique as afirmações a seguir em O, para afirmativas relacionadas a projeções ortográficas, P, para projeções perspectivas, ou em OP, quando a afirmação for válida para ambos os tipos de projeções.

- I. Paralelismo é preservado.
- II. Pode conter até 3 pontos de fuga.
- III. Retas são levadas em retas.
- IV. Pontos médios são preservados.
- V. Volume de visão canônico é o cubo unitário $[-1, 1]^3$.
- VI. Angulos são preservados.
- VII. Requer a divisão projetiva para obter as coordenadas euclideanas de um ponto no plano de projeção.

Questão 9 (*Pipeline*). Desenhe um fluxograma do *pipeline* gráfico básico de renderização por varredura e descreva o que é realizado em cada uma de suas etapas.

Questão 10 (Rasterização). Qual o algoritmo mais eficiente visto em sala para a rasterização de segmentos de reta? Explique seu funcionamento e suas principais vantagens com relação a outras soluções estudadas.

Questão 11 (Rasterização). Elabore um algoritmo de força bruta para rasterizar esferas representadas sob a forma implícita.

Questão 12 (Rasterização). Elabore uma versão não recursiva do algoritmo flood fill para preenchimento de regiões com interior 4-conexo. [Dica: utilize uma pilha de pixels.]

Questão 13 (Recorte). Porque os algoritmos de recorte são necessários em implementações de sistemas gráficos?

Questão 14 (Recorte). Em quais dos espaços envolvidos no processo de renderização 3D os algoritmos de recorte podem ser implementados?

Questão 15 (Recorte). Qual a principal desvantagem do algoritmo de Sutherland-Hodgman para recorte de polígonos?

Questão 16 (Recorte). Elabore um algoritmo de recorte de círculos contra o quadrado unitário $[0,1]^2$.

Questão 17 (Iluminação). Explique a principal diferença entre modelos de iluminação local e global. Cite ao menos dois métodos de renderização que empregam modelos de iluminação diferentes.

Questão 18 (Iluminação). Cite quatro tipos de fontes de luz e explique suas diferenças.

Questão 19 (Iluminação). Quais tipos de efeitos de transmissão de luz prevalecem em materiais translúcidos e transparentes?

Questão 20 (Iluminação). Escreva a equação de iluminação de Phong para uma única fonte de luz e explique cada uma de suas parcelas.

Questão 21 (Colorização). Qual método de colorização pode aniquilar a parcela de reflexão especular da equação de iluminação de Phong e em que situação isto pode ocorrer?

Questão 22 (Colorização). Considere um triângulo $T = (p_0, p_1, p_2)$ em \mathbb{R}^3 e um ponto q no interior de T. As coordenadas baricêntricas de q em T são dadas pela tripla $(\alpha_0, \alpha_1, \alpha_2)$, onde $\alpha_0, \alpha_1, \alpha_2 \in [0, 1]$ e $\alpha_0 + \alpha_1 + \alpha_2 = 1$. Explique como as coordenadas baricêntricas de q podem ser utilizadas para aproximar a função de iluminação em q. Qual método de colorização emprega este artifício?

Questão 23 (Colorização). Qual método de colorização produz gradientes de cores mais suaves, o método de Gouraud ou o de Phong? Justifique sua resposta.

Questão 24 (Visibilidade). Como o método backface culling utiliza a normal de uma face para determinar se esta é visível ou não?

Questão 25 (Visibilidade). O método z-buffer utiliza duas matrizes para determinar a ordem de visibilidade entre os objetos de uma cena. Descreva o conteúdo destas matrizes.

Questão 26 (Visibilidade). Explique o problema que surge da aplicação do algoritmo do pintor clássico na seguinte cena:

e forneça uma solução específica para esta situação.

Questão 27 (Modelagem). Escreva a representação paramétrica da esfera unitária S^2 com centro em (0,0,0) e determine uma expressão para calcular o vetor normal em qualquer ponto de S^2 .

Questão 28 (Modelagem). Forneça uma árvore CSG capaz de construir o objeto a seguir.

Questão 29 (Modelagem). Determine o espaço consumido em *bytes* por cada uma das estruturas de dados a seguir para representar um tetraedro.

- i. Sopa de triângulos.
- ii. Estrutura de dados baseada em triângulos clássica.
- iii. Arestas aladas.

Assuma que números inteiros e em ponto flutuante ocupam 8 bytes cada.

Questões práticas

Todas as soluções das questões a seguir devem ser obrigatoriamente implementadas utilizando as bibliotecas OpenGL e glut. As implementações devem empregar como base o conteúdo dos arquivos aula-30-programacao-geometrica.zip e aula-31-malhas-poligonais.zip. Todo o material produzido deve ser enviado para vicentehelano@gmail.com.

Questão 30. A representação paramétrica de um círculo de raio r e centro em (0,0) é dada por $x(\theta) = r \cos \theta$ e $y(\theta) = r \sin \theta$, onde $\theta \in [0, 2\pi)$. Utilize esta representação para implementar uma função denominada filledCircle(r, c) a qual deve desenhar uma aproximação suave de um círculo com interior preenchido.

Questão 31. Implemente um programa que gere círculos aleatoriamente no plano euclideano com raio $r \in (-1,1)$ e centro $\mathbf{c} \in (-1,1)^2$. Os círculos não poderão interceptar as arestas limítrofes da janela, nem interceptar outros círculos. Cada círculo terá um tempo de vida variável igual a $t \in [1,30]$ segundos, após o qual este deverá ser eliminado. A cor de preenchimento de cada círculo também deve ser aleatória.

Questão 32. Desenvolva um pequeno visualizador de malhas triangulares armazenadas no formato Object File Format (OFF). Seu programa deverá representar a malha como uma coleção de objetos da classe Triangle_3, segundo a implementação disponível em aula-31-malhaspoligonais.zip. Observe que a câmera deve ser posicionada de acordo com os limites de cada malha. Para tanto, se r é o raio e \mathbf{c} o centro de uma esfera contendo todos os objetos da cena, a câmera pode ser posicionada em $\mathbf{c} + (0,0,2r)$, com a lente apontada para \mathbf{c} . Será necessário também ajustar o volume de visão fazendo, por exemplo, $z_{near} = r/2$, $z_{far} = 3r$, supondo um ângulo de visão $\theta \geq \pi/3$.