请完成以下练习,并给出文字回答或运行结果截图。在下一次课之前,将带有你的结果的文档上传到 elearning (文档命名规则为: 姓名-学号-20220913.docx)。

- 1. 下载并安装 Matlab 以及 SPM 12 工具包,将 SPM 12 添加到 Matlab 搜索路径
 - (1).Matlab 复旦大学正版软件地址: http://www.ecampus.fudan.edu.cn/2442/list.htm
 - (2).SPM 官方网站: https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
 - (3).在指定位置下载

The software is available after completing a brief Download Form.

(4). 解压下载好的文件,将其复制在 matlab 安装地址中的 toolbox 下,eg: D:\Program Files\MATLAB\R2022a\toolbox(此处需保证 D:\Program Files\MATLAB\R2022a\toolbox 内容下是工具包的内容)==,如下图所示:

(5). 打开 matlab 软件, 在"主页"区选择"设置路径"

(6). 点击"添加子文件夹", 选择刚刚复制的 spm12 的文件夹路径, 保存。

(7).验证,在 MATLAB 控制台 console 中,输入 spm

- 2. 下载 imshow3D 函数(<u>https://ww2.mathworks.cn/matlabcentral/fileexchange/41334-imshow3d</u>)
 - (1).下载压缩包并解压。例如我的地址为(D:\file\002\9_matlabpackages\imshow3D.m)
 - (2).跟刚才的步骤一样,进入 MATLAB 软件,设置路径,添加以上文件目录。
 - (3).imshow3D 的使用方法,可以在命令行中输入 help imshow3D 来查看。
- 3. 通过网络资料,简单了解 TOF-MRA 成像和 DSA 成像
 - (1).TOF-MRA

TOF-MRA 利用流入增强效应,在梯度回波序列中,静止的组织由于短时间内被反复激发产生饱和,而流动的组织由于没有被饱和因此会产生高信号。

(2).DSA

在打血管造影剂之前拍摄一张影像 mask 像,在打入造影剂合适的时间拍摄一张影像叫充盈像,充盈像与门像相减得到 DSA.

4. 使用任意 Dicom 看读软件(例如试用版的 radiant),查看文件夹中的 3D TOF 原始 DICOM 图像;使用 SPM 的图像界面(在 Matlab Command window 中输入 *spm fmri*),将 3D TOF 原始 DICOM 图像转换成 NIFTI 格式文件;使用以下命令,将所得的 NIFTI 文件中的图像读取到 Matlab 的 Workspace 中,并显示。

tof_vol = spm_vol('NIFTI 文件路径'); tof = imrotate(spm_read_vols(tof_vol), 90); figure, imshow3D(tof);

(1).使用 MedVisLab 软件,如图导入相关模块并建立链接,导入 DICOM 文件。

横截面与 MIP

DICOM tag 信息

(2).输入 spm fmri

(3).使用 imshow3d 打开 nii 文件

5. 使用 Matlab 自带函数 dicomread,将同一名被试的冠状位(coronal)和矢状位(sagittal) DSA DICOM 图像(见文件夹 DSA_LVA_cor 和 DSA_LVA_sag)读到 Matlab 的 Workspace,并使用函数 imshow 显示图像。这两组 DSA 图像显示的是左侧椎动脉

(Left vertebral artery) 及其下游分支血管。在 Command window 中,输入指令 imcontrast,调整图像灰度显示范围(即窗宽窗位)。

- 6. 在 Matlab 中,对 **4** 中的 3D TOF 图像分别沿第一维和第二维取最大值(该过程称为最大强度投影,maximum intensity projection, MIP。如果取最小值结果又会怎么样?),并对图像做一定旋转(通常是 90 度)或左右对调,并显示,使其方向与图 **5** 中的 DSA 图像一致。*(注:在 Matlab 中,沿某一维取最大值可使用函数 max,图像旋转可使用函数 imrotate)*
 - (1)沿着三个方向进行最大投影并旋转到合适角度。

```
% 问题6 沿着三个方向进行最大投影并旋转到合适角度。
        tof_vol = spm_vol('TOF_Dicom/sANONYMOUS-0201-00002-000001-01.nii');
3
        % 沿着维度1进行最大投影,并旋转到合适角度
4
        tof1 = imrotate(spm_read_vols(tof_vol), 90);
6
        tof_mip1 = imrotate(squeeze(max(tof,[],1)),90);
        figure, imshow3D(tof_mip1);
7
8
9
        % 沿着维度2进行最大投影,并旋转到合适角度
10
        tof2 = imrotate(spm_read_vols(tof_vol), 90);
        tof_mip2 = imrotate(squeeze(max(tof,[],2)),90);
11
12
        figure, imshow3D(tof_mip2);
13
        % 沿着维度3进行最大投影,并旋转到合适角度
14
        tof3 = imrotate(spm_read_vols(tof_vol), 90);
15
16
        tof_mip3 = imrotate(squeeze(max(tof,[],3)),0);
17
        figure, imshow3D(tof_mip3);
```


中间的图与图 5 中的 DSA 图像观察方向一致。

(2). 沿着三个方向进行最小投影并旋转到合适角度。

```
% 问题6 沿着三个方向进行最小投影并旋转到合适角度。
21
        tof_vol = spm_vol('TOF_Dicom/sANONYMOUS-0201-00002-000001-01.nii');
22
        % 沿着维度1进行最大投影,并旋转到合适角度
23
24
        tof1 = imrotate(spm_read_vols(tof_vol), 90);
25
        tof_mip1 = imrotate(squeeze(min(tof,[],1)),90);
26
        figure, imshow3D(tof_mip1);
27
        % 沿着维度2进行最大投影,并旋转到合适角度
28
29
        tof2 = imrotate(spm_read_vols(tof_vol), 90);
30
        tof_mip2 = imrotate(squeeze(min(tof,[],2)),90);
31
        figure, imshow3D(tof_mip2);
32
        % 沿着维度3进行最大投影,并旋转到合适角度
33
34
        tof3 = imrotate(spm_read_vols(tof_vol), 90);
35
        tof_mip3 = imrotate(squeeze(min(tof,[],3)),0);
36
        figure, imshow3D(tof_mip3);
```


7. 根据 4-6 以及网络资料、简述计算机断层成像与投影成像的主要区别。

计算机断层成像经过重建后,具有三维的空间分辨率。投影成像是三维空间数据沿着某一维度投影,得到的影像只有两个维度的分辨率,无法在第三维进行数据的区分。

8. 使用函数 dicominfo 读取 DICOM 文件头,分别找出上述 TOF 图像和 DSA 图像的空间分辨率(即体素或像素的尺寸)。 *(注:空间分辨率包含在标签 PixelSpacing,和/或 SpacingBetweenSlices,或 ImagerPixelSpacing; 另外,需要注意的是,这些数值仅表示 当前所显示图像的体素或像素大小,并不一定是原始采集分辨率,通常为了提高肉眼*

观察的效果,成像设备厂商会对原始采集图像进行一定倍数的插值,再保存成 Dicom、提供给用户)

(1).显示 DSA 影像 DICOM 头文件,和 ImagerPixelSpacing

可以看到 TOF 影像层厚为 0.5

- 9. 根据网络资料,简述 DSA Dicom 图像中标签 DistanceSourceToDetector,
 DistanceSourceToPatient, PositionerPrimaryAngle 和 PositionerSecondaryAngle 的含义。
 - (0).使用 MATLAB,和 MedVisLab 打印出 DSA_LVA_cor 影像的相关 tag

DistanceSourceToDetector: 1240
DistanceSourceToPatient: 765

PositionerPrimaryAngle: -89.6000
PositionerSecondaryAngle: -0.3000

(0018, 1110) DistanceSourceToDetector	DS	1240.000000
(0018, 1111) DistanceSourceToPatient	DS	765.000000
(0018, 1510) PositionerPrimaryAngle	DS	-89.600000
(0018, 1511) PositionerSecondaryAngle	DS	-0.300000

(1). DistanceSourceToDetector

Distance in mm from source to detector center.

推测是 X 射线管到 CCD、数字平板探测器之间的距离。

(2). DistanceSourceToPatient

Distance in mm from source to the table, support or bucky side that is closest to the Imaging Subject, as measured along the central ray of the X-Ray beam.

推测是X射线管,距离病床的床板的距离。

(3). PositionerPrimaryAngle

Position of the X-Ray beam about the patient from the RAO to LAO direction where movement from RAO to vertical is positive, if Positioner Type (0018,1508) is CARM. RAO(右前斜位) LAO(左前斜位)

X 射线管相对于病人,从右到左的角度。例子中-89.6 应该表示 X 射线管在人的左测。 DSA LVA sag 中这个值为 6.49,表示 X 射线管几乎从正面垂直于人。

这个数值与 imrotate 函数相结合,可以让 TOF 三维影像旋转到与 DSA 相同的角度进行 MIP.

(4). PositionerSecondaryAngle

Position of the X-Ray beam about the patient from the CAU to CRA direction where movement from CAU to vertical is positive, if Positioner Type (0018,1508) is CARM. X 射线管相对于病人,从足到头的角度。例子中-0.3 表示 X 射线管在竖直方向上几乎垂直于人。

CRA(头位) CAU(足位)

参考资料

- [1] https://dicom.innolitics.com/ciods/digital-x-ray-image/dx-positioning/00181110
- [2] https://dicom.innolitics.com/ciods/digital-x-ray-image/dx-positioning/00181111
- [3] https://dicom.innolitics.com/ciods/digital-x-ray-image/dx-positioning/00181511
- [4] https://dicom.innolitics.com/ciods/digital-x-ray-image/dx-positioning/00181510