Formação de imagem com lentes finas

Tiago Prima Álvaro de Sousa

3 de junho de 2022

Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto

Resumo

Neste trabalho, foi estudado a formação de imagens com uma lente fina convergente (+15), determinando, por várias fórmulas, a distância focal f. Determinou-se também a ampliação transversal M_t . Por fim, verificou-se a existência de aberrações cromáticas e esféricas para uma lente convergente (+10).

1 Introdução teórica

1.1 Refração de ondas

Quando uma onda se propaga com uma dada velocidade v_1 num meio m_1 e entra em contacto com outro meio m_2 com características diferentes, formando um ângulo $\theta \neq 0$ com a normal da superfície, a onda é refratada, ou seja, muda de direção. Este fenómeno acontece devido à variação de velocidade da onda de um meio para o outro. Esta mudança está ligada às características do meio em que se propagava e em que se vai propagar, respetivamente, n_1 e n_2 (índices de refração). Sendo

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2} \tag{1}$$

e

$$n_i = \frac{c}{v_i},\tag{2}$$

obtemos a equação

$$n_1 \sin \theta_1 = n_2 \sin \theta_2, \tag{3}$$

também conhecida pela lei da refração ou lei de Snell. Este θ_i resulta do ângulo que a onda forma com a normal do meio incidente, quando θ é 0, não há refração porque $\sin(\theta) = 0$.

1.2 Lentes

Uma lente é um elemento que refrate a luz incidente, criando descontinuidades no meio onde a luz se propaga inicialmente, alterando a direção de propagação da onda. O formato e a espessura da lente alteram a forma de como a onda é refratada, no caso desta experiência, foi utilizada uma lente fina (ou delgada) e convergente (ou positiva). No caso de uma lente convergente, ao se incidir feixes de luz paralelos ao eixo óptico estes, vão ser focados num ponto F a uma distância focal f.

Figura 1: Esquema de uma lente convergente

Usando uma lente fina é possível utilizar a seguinte equação

$$\frac{1}{f} = (n_i - 1)(\frac{1}{R_1} - \frac{1}{R_2}),\tag{4}$$

chamada de equação das lentes delgada. [2]

Por geometria e semelhança de triângulos, é possível chegar à equação

$$\frac{1}{f} = \frac{1}{S_i} + \frac{1}{S_0},\tag{5}$$

também conhecida pela fórmula de Gauss ou equação de conjugação objeto-imagem. [1]

Figura 2: Esquema da distância focal numa lente convergente

1.3 Teoria Paraxial e aberrações

A teoria paraxial, descrita anteriormente de uma forma muito breve , baseia-se no facto de para ângulos θ muito pequenos ($\theta \approx 0$), $\sin \theta = \theta$. No entanto, à medida que os raios mais periféricos contribuem para a formação da imagem, esta aproximação deixa de ser aplicável, podendo criar aberrações. Aberrações são desvios do desempenho de um sistema óptico às previsões da teoria descrita anteriormente.[3] Num mundo ideal, utilizar-se-ia lentes asféricas, impedindo estas aberrações, no entanto, uma vez que têm um custo de fabrico muito elevado, é usual utilizar lentes esféricas, criando aberrações monocromáticas como a que foi verificada nesta experiência, a aberração esférica. Esta aberração resulta dos raios que incidem nas bordas das lentes serem mais refratados do que os raios que incidem no centro.

Figura 3: Esquema de uma aberração esférica, sendo θ o ângulo do feixe com a normal

Para além das aberrações monocromáticas, existem também as aberrações cromáticas que estão relacionadas com a variação do índice de refração ser diferente para cores diferentes. Uma vez que $n_i = \frac{c}{v_i}$, v_i está relacionado com a frequência e o comprimento de onda e, supondo que a frequência é constante para uma dada onda, a cor (dada pelo comprimento de onda) vai influenciar a refração, pois v_i vai ser diferente para cada cor e, por sua vez, n_i , alterando assim a distância focal f.

Figura 4: Esquema de uma aberração cromática, comparando um feixe de luz azul com um feixe de luz vermelha

2 Experiência

2.1 Método Experimental

1. Montou-se o seguinte esquema, utilizando uma lente convergente (+15):

Figura 5: Esquema da montagem realizada

- 2. De seguida, ajustou-se S_i e S_0 , de forma à imagem ficar focada no alvo, mediu-se ambos e registou-se esses valores;
- 3. Repetiu-se o ponto anterior 32 vezes, para outros valores de S_i e S_0 ;
- 4. Substitui-se a lente (+15) por uma lente (+10), na mesma convergente, e ajustou-se as distâncias da lente e do alvo de forma a obter-se a imagem mais nítida;

- 5. Colocou-se a máscara que deixa passar a luz pelo centro e observou-se os efeitos;
- 6. Repetiu-se o ponto anterior com a máscara que deixa passar a luz pelos lados;
- 7. Repetiu-se o procedimento com máscaras de cor vermelha e verde;

2.2 Resultados Experimentais e Análise

Na secção dos anexos, encontra-se a tabela com todos os dados utilizados nesta análise.

Figura 6: Gráfico de S_i^{-1} em função de S_0^{-1} com a função de ajuste fit e as incertezas do ajuste $fit \pm S_y$

Com esta linearização de S_i^{-1} em função de S_0^{-1} é possível chegar a uma função de ajuste, utilizando a funcionalidade "linest" do Excel.

m	-1,032	0,0658	b
u(m)	0,009	0,0003	u(b)
r ²	0,997468	0,000759	Sy

Figura 7: Tabela de dados conseguidos através da função "linest" do Excel

Com estes dados é posível chegar à distância do ponto focal por duas formas:

• $\frac{1}{f}$ é o ponto de interseção no eixo de S_i^{-1} :

$$m \times 0 + b = \frac{1}{f} \Leftrightarrow f = \frac{1}{b} \Leftrightarrow f = 15.20cm$$
 (6)

$$u(f) = \frac{1}{b^2} \times u(b) = \pm 0.07cm$$
 (7)

• $\frac{1}{f}$ é o ponto de interseção no eixo de S_0^{-1} :

$$m \times \frac{1}{f} + b = 0 \Leftrightarrow f = -\frac{m}{b} \Leftrightarrow f = 15.7cm$$
 (8)

$$u(f) = \sqrt{(\frac{m}{b^2} \times u(b))^2 + (\frac{1}{b} \times u(m))^2} = \pm 0.2cm$$
 (9)

Figura 8: Gráfico de Resíduos em função de ${\cal S}_0^{-1}$

Analisando este gráfico, repara-se que os resíduos não apresentam nenhuma tendência aparente, pelo que se pode dizer com alguma confiança que os erros neste trabalho foram aleatórios e que o método usado para descobrir f é adequado.

Figura 9: Gráfico de D em função de S_0

Observando este gráfico, é possível reparar que, para cada D, existe duas combinações de S_0 e S_i possíveis, que criem uma imagem nítida.

Para além das equações (6) e (8), existem outras formas de calcular f, deduzidas através da fórmula de Gauss:

$$\frac{1}{f} = \frac{1}{S_i} + \frac{1}{S_0} = \frac{S_i + S_0}{S_i S_0} \tag{10}$$

Que vão originar as seguintes fórmulas de f:

$$f_1 = \frac{S_i S_0}{D} \tag{11}$$

$$f_2 = S_0 - \frac{S_0^2}{D} \tag{12}$$

$$f_3 = S_i - \frac{S_i^2}{D} \tag{13}$$

Cada uma destas formas vai apresentar um cálculo de incertezas diferentes, pelo que se deve escolher a fórmula que der a menor incerteza de f para o conjunto de dados adquiridos experimentalmente. Respetivamente, as incertezas são dadas pelas expressões:

$$u(f_1) = \sqrt{\left(\left(\frac{u(S_i)}{S_i}\right)^2 + \left(\frac{u(S_0)}{S_0}\right)^2 + \left(\frac{u(D)}{D}\right)^2\right)f}$$
 (14)

$$u(f_2) = \sqrt{(1 + \frac{2S_0}{D})^2 \times u(S_0)^2 + (\frac{S_0^2}{D^2})^2 \times u(D)^2}$$
 (15)

$$u(f_3) = \sqrt{(1 + \frac{2S_i}{D})^2 \times u(S_i)^2 + (\frac{S_i^2}{D^2})^2 \times u(D)^2}$$
 (16)

A expressão que deu menor valor de incerteza foi a de f_1 (equação (14)), como se pode ver na tabela da secção dos Anexos.

A ampliação tranversal está dependente de S_0 , pelo que foi possível criar um gráfico com uma clara tendência.

Figura 10: Gráfico de M_T em função de S_0

É de salientar que M_T é negativo uma vez que, numa lente fina convergente, a imagem é sempre invertida, que significa o mesmo que M_T ser negativo.

 M_T foi calculado de duas formas:

$$M_{T1} = -\frac{S_i}{S_0} \tag{17}$$

$$M_{T2} = -\frac{h'}{h},\tag{18}$$

em que h e h^\prime são, respetivamente, o comprimento do objeto e o comprimento da imagem.

Quando se utilizou a máscara que deixa passar a luz pelo centro, notou-se que a imagem ficou mais nítida, ou seja, as aberrações, tanto esféricas como cromáticas foram menores, já o oposto aconteceu quando se colocou a máscara que permite a passsagem dos feixes pelos lados.

3 Conclusões e Discussões

- Foi possível calcular f de cinco maneiras diferentes, sendo que aquela que deu menor incerteza e que portanto deverá ser a considerada, para esta extração de dados, é o f_1 calculado pela equação (11) e a sua incerteza pela equação (14). É de salientar que entre as equações (11) e (13) apenas o valor da incerteza associado varia, f mantém-se constante nas três;
- O fator de ampliação tranversal M_T foi também calculado, dependendo este de S_0 . Para $S_0 > 35cm$, o fator de ampliação era $M_T > -1$ e por isso a imagem diminuia de tamnhao em relação ao objeto. Quando $S_0 < 35cm$, o fator de ampliação era $M_T < -1$ e, por isso, a imagem aumentava de tamanho face ao objeto;
- Tal como seria esperado, a máscara que reduz os pontos periféricos da lente, ou seja, a máscara que deixa passar a luz só pelo centro, reduziu substancialmente a aberração esférica. O oposto, maior aberração do que sem máscara, verificou-se com a segunda máscara;
- Foi possível verificar também, com o filtro verde e vermelho (metade-metade), as diferenças causadas pela aberração cromática. Ao focar-se no lado verde, desfocava-se no lado vermelho e vice-versa.

4 Anexos

So	Si	h'	D	f1	u(f1)	f2	u(f2)	f3	u(f3)	So ⁻¹	Si ⁻¹	fit	Resíduos	fit+Sy	fit-Sy	Mt1	u(Mt1)	Mt2	u(Mt2)
21,80	53,00	5,80	74,80	15,45	0,04	15,45	0,08	15,4	0,1	0,0459	0,0189	0,0184	0,0004	0,0192	0,0177	-2,431	0,006	-2,52	0,06
20,20	70,90	8,30	91,10	15,72	0,04	15,72	0,07	15,7	0,1	0,0495	0,0141	0,0147	-0,0006	0,0154	0,0139	-3,510	0,009	-3,61	0,08
19,00	86,20	10,60	105,20	15,57	0,04	15,57	0,07	15,6	0,1	0,0526	0,0116	0,0114	0,0002	0,0122	0,0107	-4,537	0,01	-4,61	0,1
17,60	135,60	17,40	153,20	15,58	0,05	15,58	0,06	15,6	0,2	0,0568	0,0074	0,0071	0,0002	0,0079	0,0064	-7,705	0,02	-7,57	0,2
18,60	100,70	12,00	119,30	15,70	0,04	15,70	0,07	15,7	0,1	0,0538	0,0099	0,0103	-0,0003	0,0110	0,0095	-5,414	0,01	-5,22	0,1
18,00	118,20	15,40	136,20	15,62	0,04	15,62	0,06	15,6	0,1	0,0556	0,0085	0,0084	0,0000	0,0092	0,0077	-6,567	0,02	-6,70	0,1
17,50	155,40	20,50	172,90	15,73	0,05	15,73	0,06	15,7	0,2	0,0571	0,0064	0,0068	-0,0004	0,0075	0,0060	-8,880	0,03	-8,91	0,2
25,60	41,00	3,80	66,60	15,76	0,04	15,76	0,09	15,8	0,1	0,0391	0,0244	0,0255	-0,0011	0,0262	0,0247	-1,602	0,004	-1,65	0,04
22,20	52,70	5,50	74,90	15,62	0,04	15,62	0,08	15,6	0,1	0,0450	0,0190	0,0193	-0,0003	0,0200	0,0185	-2,374	0,006	-2,39	0,06
34,50	26,00	1,90	60,50	14,83	0,04	14,8	0,1	14,8	0,1	0,0290	0,0385	0,0359	0,0026	0,0366	0,0351	-0,754	0,002	-0,83	0,03
30,30	32,00	2,60	62,30	15,56	0,04	15,6	0,1	15,6	0,1	0,0330	0,0313	0,0317	-0,0005	0,0325	0,0309	-1,056	0,002	-1,13	0,03
25,80	39,70	3,60	65,50	15,64	0,04	15,64	0,09	15,6	0,1	0,0388	0,0252	0,0258	-0,0006	0,0265	0,0250	-1,539	0,004	-1,57	0,04
23,60	45,40	4,60	69,00	15,53	0,04	15,53	0,09	15,5	0,1	0,0424	0,0220	0,0220	0,0000	0,0228	0,0213	-1,924	0,005	-2,00	0,05
22,40	50,30	5,50	72,70	15,50	0,04	15,50	0,08	15,5	0,1	0,0446	0,0199	0,0197	0,0002	0,0205	0,0189	-2,246	0,005	-2,39	0,06
21,60	56,30	6,40	77,90	15,61	0,04	15,61	0,08	15,6	0,1	0,0463	0,0178	0,0180	-0,0002	0,0187	0,0172	-2,606	0,006	-2,78	0,06
35,00	27,50	2,00	62,50	15,40	0,04	15,4	0,1	15,4	0,1	0,0286	0,0364	0,0363	0,0001	0,0370	0,0355	-0,786	0,002	-0,87	0,03
53,20	21,50	1,20	74,70	15,31	0,04	15,3	0,1	15,31	0,08	0,0188	0,0465	0,0464	0,0001	0,0471	0,0456	-0,404	0,001	-0,52	0,02
49,60	22,10	1,10	71,70	15,29	0,04	15,3	0,1	15,29	0,08	0,0202	0,0452	0,0450	0,0003	0,0457	0,0442	-0,446	0,001	-0,48	0,02
43,20	23,50	0,80	66,70	15,22	0,04	15,2	0,1	15,22	0,09	0,0231	0,0426	0,0419	0,0007	0,0426	0,0411	-0,544	0,001	-0,35	0,02
39,50	24,80	1,00	64,30	15,23	0,04	15,2	0,1	15,2	0,09	0,0253	0,0403	0,0396	0,0007	0,0404	0,0389	-0,628	0,001	-0,43	0,02
41,20	23,90	0,90	65,10	15,13	0,04	15,1	0,1	15,13	0,09	0,0243	0,0418	0,0407	0,0011	0,0415	0,0400	-0,580	0,001	-0,39	0,02
37,40	26,20	1,80	63,60	15,41	0,04	15,4	0,1	15,4	0,1	0,0267	0,0382	0,0382	0,0000	0,0389	0,0374	-0,701	0,002	-0,78	0,03
33,20	28,30	2,20	61,50	15,28	0,04	15,3	0,1	15,3	0,1	0,0301	0,0353	0,0347	0,0007	0,0354	0,0339	-0,852	0,002	-0,96	0,03
27,10	36,50	3,30	63,60	15,55	0,04	15,6	0,1	15,6	0,1	0,0369	0,0274	0,0277	-0,0003	0,0284	0,0269	-1,347	0,003	-1,43	0,04
28,10	34,50	3,30	62,60	15,49	0,04	15,5	0,1	15,5	0,1	0,0356	0,0290	0,0290	-0,0001	0,0298	0,0283	-1,228	0,003	-1,43	0,04
30,80	30,30	2,50	61,10	15,27	0,04	15,3	0,1	15,3	0,1	0,0325	0,0330	0,0323	0,0007	0,0330	0,0315	-0,984	0,002	-1,09	0,03
60,90	21,10	1,00	82,00	15,67	0,04	15,7	0,1	15,67	0,08	0,0164	0,0474	0,0488	-0,0014	0,0496	0,0481	-0,346	0,0009	-0,43	0,02
57,60	21,40	1,00	79,00	15,60	0,04	15,6	0,1	15,60	0,08	0,0174	0,0467	0,0479	-0,0011	0,0486	0,0471	-0,372	0,0009	-0,43	0,02
75,00	19,20	0,70	94,20	15,29	0,04	15,3	0,1	15,29	0,07	0,0133	0,0521	0,0520	0,0001	0,0528	0,0513	-0,256	0,0007	-0,30	0,02
64,50	20,30	0,90	84,80	15,44	0,04	15,4	0,1	15,44	0,08	0,0155	0,0493	0,0498	-0,0005	0,0505	0,0490	-0,315	0,0008	-0,39	0,02
84,50	19,00	0,70	103,50	15,51	0,04	15,5	0,1	15,51	0,07	0,0118	0,0526	0,0536	-0,0009	0,0543	0,0528	-0,225	0,0006	-0,30	0,02
96,90	18,10	0,50	115,00	15,25	0,04	15,3	0,1	15,25	0,07	0,0103	0,0552	0,0551	0,0001	0,0559	0,0544	-0,187	0,0005	-0,22	0,02

Figura 11: Tabela de dados utilizados na análise

Referências

- [1] Docentes da unidade curricular FIS1005. Estudo da formação de imagem com lentes finas. 2022.
- [2] Eugene Hecht. Óptica. 2^a edição. Serviço de Educação e Bolsas, Fundação Calouste Gulbenkian, Lisboa, 2002.
- [3] Guenther Robert. Modern optics, 1990.