Quiz 2

ME2110: Solid Mechanics/ID 1160: Solid Mechanics-I

August-October-December, 2021

22nd 24th September 2021

Time: 10:00-10:50 am-12:00-12:50 pm

Maximum Marks: 15

- All questions are compulsory; use notation employed in the class; state your assumptions clearly.
- Upload a **single** pdf (no other format is allowed) with scanned/photographed solution in the Google Classroom at **12:50 pm**.
- Write your name, roll number, and signature on every page.
- If the solution(s) of a submission is(are) found to be copied, even partially, from other submission(s)/sources, the answer sheet would not be returned. The student would also be not allowed to continue the course.
- You may refer to your own class notes while attempting this quiz.
 - **1.** Consider two circular bars, Bar A and Bar B, with a distance of δ between them as shown in the Fig. 1. The coefficient for thermal expansion of the bars A and B are α_A and α_B

respectively. Their other mechanical parameters and properties are given in the figure. By assuming,

$$\Delta T > 0,$$

$$\alpha_A L_A + \alpha_B L_B \ge \frac{\delta}{\Delta T},$$
(1.1)

find the normal stress developed in Bar A and change in length of Bar B for a change in temperature ΔT .

- State the importance of the assumption given by Eq. 1.1. (1 point)
- Identification of the unknowns (0.5 point)
- Equations required to solve the unknowns (1.5 points)
- Normal stress in the Bar B (1 point)
- Change in the length of the Bar B (1 point)

2. A uniform steel bar shown in Fig. 2 has a modulus of elasticity, $E = 180\,\text{GPa}$, and a coefficient of thermal expansion, $\alpha = 10 \times 10^{-6}\,/^{o}\,C$.

Figure 2

- a) It goes through a temperature rise of $40^{\circ}C$. If the shear stress, τ_{θ} on the plane mn is -20MPa, find the compressive stress, σ_{θ} on the plane and the inclination, θ , of the plane.
 - Relevant equations 1 point, θ 1 point, σ_{θ} 0.5 point
- b) If

$$\sigma_{allowable} = 70MPa,$$
 (1.2) $\tau_{allowable} = 32MPa,$

find the permissible temperature change for this bar.

- Relevant calculations 2 points, ΔT 0.5 point
- 3. Do you agree with the following? Justify your answer in a sentence or two.
 - a) The work done by a gradually applied (quasi-static) load reaching a maximum value of P on a prismatic bar resulting in a maximum elongation δ , is $P\delta$. (1 point)
 - b) The relation for the maximum strain in a circular shaft, $\gamma_{max} = r \frac{d\phi}{dx}$, is valid for nonlinear materials too. (1 point)
 - c) A bar of length 1.5 times its width and area (A) is subjected to a concentrated load (P) at its end. Then the normal stress developed at a cross-section is uniform and has a magnitude of $\sigma = \frac{P}{A}$. (1 point)
 - d) A bar in a uniaxial loading cannot fail in shear. (1 point)
 - e) A bar can develop strain while having zero normal stress due to thermal expansion. (1 point)
 - No points to be awarded without justification