

Representação de Conhecimento – Web Semântica

Prof. Elder Rizzon Santos ersantos@inf.ufsc.br

A Web hoje

- Para quem foi desenvolvida: Nós humanos (felizmente ;-)
 - algumas ferramentas da web 2.0 (mashups) facilitam possibilitam algumas funcionalidades para as máquinas
 - Temos regras sobre a estrutura e visualização da informação, mas não sobre o significado esperado/desejado
- Agentes inteligentes (e aplicativos em geral) não conseguem facilmente utilizar a informação
- Granularidade: nível de documento
 - Metáfora: um gigante sistema de arquivos distribuído para documentos
 - Um documento pode ser ligado a outros documentos
- Re-uso e integração: limitado e dificilmente automatizado

Web Semântica

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation." (Tim Berners-Lee, 2001)

Conteúdo da web "entendível" por máquinas

A web semântica

- Para quem está sendo desenvolvida: agentes inteligentes
 - Especificação explícita do significado desejado da informação
 - lo passo para uma máquina "entender" a informação
- Granularidade: recurso/fato
 - Metáfora: Uma grande base de fatos a respeito de recursos
 - Um recurso pode estar relacionado a outros recursos
- Re-uso e integração: **menos** limitado
 - Recursos possuem identificadores únicos
 - Com a semântica bem definida, transformações e integração podem ser automatizadas

Visão da Web Semântica

- Possibilitar para as máquinas o que a Web clássica possibitou para os humanos
 - Estender os princípios da Web para dados e não somente documentos
- Os dados/informações devem ser acessados diretamente através da arquitetura da Web (URIs, protocolos, etc.)
- Os dados/informações devem ser relacionados entre si assim como os documentos podem ser ligados na web 1.0
- Desenvolvimento de uma arquitetura comum que possibilite:
 - Que informações sejam compartilhadas e re-utilizadas entre aplicações
 - Que as informações possam ser processadas automaticamente
 - Que novas relações e fatos entre os dados possam ser inferidos

Principais aspectos da SW

- Anotação de conteúdos da Web
 - Conectar objetos tais como pedaços de textos e imagens com a sua noção (conceitualização) semântica (e.g. esta imagem é de Floripa, Surfe é um esporte)
- Conectar o conhecimento na Web (Web of Data / Linked Data)
 - Rede global de conhecimento através de URI, RDF, OWL, SPARQL,...
 - Conectar meu calendário com meus horários de aula, aulas com temas e assuntos, temas e assuntos com conceitualizações,....
- Integração de informações da/na Web
 - Integração baseada em diferentes modelos conceituais (ontologias)

+

Web de Docs VS Web de Informações

Web de Documentos

"Documentos"

■ Elementos fundamentais:

- 1. Nomes (URIs)
- 2. <u>Documentos</u> (HTML, XML)
- 3. <u>Interações</u> HTTP
- 4. <u>Hiperlinks</u> entre docs

■ Limitações:

- Hiperlinks indefinidos
- Motores de buscas com pouca expressividade

Web de Docs VS Web de Informações

Web de Docs VS Web de Informações

■ Características:

- Links entre coisas arbitrárias (pessoas, locais, eventos, prédios)
- Estrutura das informações em pag. Web é explicitada
- Coisas descritas em pag.
 Web são nomeadas e recebem URIs
- Links entre coisas são explicitados e "tipados"

■ Web de Informações

Links tipados/
bem def.

"Coisas"

+

Visão da Web of Data

■ A web hoje

- Consiste de repositórios de dados acessíveis através de motores de busca especializados
- Um site (repositório) possui filmes, outro reviews, outro atores
- Muitas coisas semelhantes são representadas em dif. reps.

- A Web of Data é vista como uma base global de dados
 - Consistindo de <u>objetos e</u> <u>suas descrições</u>
 - nas quais os <u>objetos são</u>
 conectados entre si
 - com <u>um alto nível</u> de estruturação de objetos
 - com <u>semântica explícita</u>
 para links e conteúdos
 - O qual é <u>projetado para</u> <u>humanos e máquinas</u>

Web semântica em camadas

+ Webs...

- O potencial da Web 1.0 está nas relações entre os documentos
 - Google
- A chave da Web 2.0 é o contexto social
 - O efeito de rede e relações está na rede social
 - Em larga escala, o tagging apresenta problemas tradicionais de vocabulários
- A Web 3.0 acrescenta relações entre os dados e ligações com vocabulários (padronizados ou específicos)
 - Vocabulários controlados são utilizados para representar as relações básicas entre os dados
 - Padrões da Web Semântica

* Web 4.0

- Ubiquidade
- Autonomia
 - B, D, I
 - Raciocínio deliberativo utilizando conhecimento declarativo de ontologias OWL e dos recursos
 - Lembrem que na web semântica todos os recursos possuem uma semantica e um contexto mínimo possibilitando uma manipulação mais precisa por parte dos agentes

Como podemos utilizar tudo isso hoje?

- A web semântica pode ser vista como um conjunto de linguagens padronizadas
- Da mesma forma como o HTML possibilita interação com a web
- RDF, OWL, SPARQL, etc. possibilitam interação com a WS
- Hoje já podemos utilizar e desenvolver bases de dados RDF e OWL
- Bem como realizar consultas utilizando SPARQL (um SQL para WS)
- watson.kmi.open.ac.uk

+ RDF

- Resource Description Framework
- Um simples modelo de dados para:
 - Descrever formalmente informações (sobre recursos quaisquer em uma forma acessível (interpretável) por máquinas
 - Representar meta-dados
- Possui várias sintaxes: XML, N3, Turtle, etc.
- **■** Fundamentos:
 - Recursos (com identificadores únicos)
 - Literais
 - Relações nomeadas entre pares de recursos (ou recurso e literal)
- Recomendação W3C
 - <u>www.w3.org/2007/02/turtle/primer/</u> → exemplos desta apresentação
 - http://www.w3.org/RDF/ → todo o conjunto das especificações

+ RDF

■ Sujeito (recurso) → Predicado (relação) → Objeto (recurso ou literal)

+ OWL

- Equivalência (igualdade/diferença) entre recursos
- sameAs, differentFrom, equivalentClass (propriedades)
- Definições de classes mais expressivas
 - Interseção, união, complemento e restrições de cardinalidade
- Diferenciação entre Tipo e Indivíduo (classe e objeto)
 - Propriedades específicas para classes e objetos
 - Propriedades transitivas, funcionais, simétricas, inversas

+ Atividade

