

TAREA #1:

Hankel-SVD-Entropy-Fourier + SNN-SGDM

Prof. NIBALDO RODRÍGUEZ A.

OBJETIVO

Implementar y evaluar el rendimiento de un modelo de red neuronal superficial para clasificación de datos de IoT usando matriz Hankel-SVD y Entropía Spectral de Fourier.

Etapas del Modelo:

Pre-proceso: prep.py

■ Formato: □ M-filas. □ d-colum	
■ Donde: □filas □columi	: números de muestras. nas: número de variables.

- **Función Load_data():**
- Para cada Clase, Haga:
 - ☐ Crear una matriz de P-Filas por d-Columnas
 - P: representa el número de muestras
 - d: representa el número de variables.

Pre-proceso: Create_Features()

```
■ For i=1 to NbrClass
   \square For j=1 to NbrVariables
       ■ X = data_class(Dat,j,i) # Retorna j-th variable de i-th
        class
       ■ F = Hankel_Features(X, nFrame, lFrame)
       ■ datF = Apilar_Features(F)
   □ EndFor
   \square Label = Binary_Label(i)
   \Box Y = Apilar\_Label(Label)
   \Box X = Apilar\_Features(datF)
  EndFor
■ X= norm_data(X) #Usar ecuación dada en ppt actual.
 Create_dtrn_dtst(X,Y,p) \# p: denote porcentage de training.
```

Pre-proceso: Hankel_Features()

- Para cada Frame, Haga :
 - □ Descomponga el *n*-Frame en *J*-niveles usando la matriz Hankel diádica y el método SVD.
 - □ Entropy_C:
 - Entropía de Amplitud Espectral para cada uno de los componentes de Hankel.
 - □ Svalues_C:
 - Valores Singulares de la Matriz de Componentes de Hankel usando el método SVD.
 - □ Crear el **n**-ésimo vector de características :
 - \blacksquare $F(n,:) = [Entropy_C Svalues_C]$
 - \Box La dimensión de $F(n,:)=2^{J}+2^{J}$.

Pre-proceso: Create_dtrn_dtst()

- Re-ordenar aleatoriamente las posiciones de la data de entrada X y data de salida Y.
- Dividir la data X y data Y:
 - □ Data Trainig: p (%)
 - xe, ye
 - □ Data Testing: (1-p) %
 - XV, YV
- Crear archivo de training csv:
 - □ dtrain.csv # para xe , ye
- Crear archivo de testing csv:
 - □ dtest.csv # para xe , ye

train.py

- Cargar datos de configuración.
- Realizar el proceso de aprendizaje de la Red Neuronal Superficial (SNN) usando :
 - □ Algoritmo Descenso del Gradiente Estocástico con Momemtum (SGDM).

SNN-SGDM

Algoritmo de Aprendizaje MiniBatch:

Stochastic Gradient Descent with Momentum (SGDM)

M

Training de SNN con SGDM

• Considerar una base de datos de *N*-muestras dada como:

$$\{X_i, Y_i\}_{i=1}^N, \quad X_i \in \Re^d, Y_i \in \Re^m$$

- **X**_i: representa la data de training
- Y_i: representa la data deseada
- **d**: denota el número de variables de entrada
- m: denota en número de clases

М

Algoritmo MiniBatch-SGDM

• **Paso 1**: Re-ordenar aleatoriamente la localización de cada muestra de la base de datos de training.

• Paso 2: Dividir las N-muestras de la base de datos en Batch de M-muestras.

$$B = \frac{N}{M}$$

B: Número de Batch

- Paso 3: Entrenar la SNN usando un Número Máximo de Épocas (Iteraciones).
 - Cada Épocas ajusta los pesos de la SNN *B*-veces vía el **SGDM**.

Ajuste Pesos de Salida de SNN con SGDM

Costo:

$$E = \frac{1}{M} \sum_{n=1}^{M} C_n = \frac{1}{M} \sum_{n=1}^{M} \frac{1}{2} \sum_{k=1}^{m} \left(a_{k,n}^{(L)} - Y_{k,n} \right)^2$$

Notación Matricial: Pesos de Salida

$$w^{(L)}(\tau+1) = w^{(L)}(\tau) - v^{(L)}(\tau+1)$$

 $v^{(L)}(\tau+1) = \beta \times v^{(L)}(t) + \mu \times gW^{(L)}$
 $\tau = 1, 2, ..., \text{MaxIter}$

Notación Matricial: Gradiente

$$gW^{(L)} = \frac{\partial E}{\partial w^{(L)}} = \delta^{(L)} \times (a^{(L-1)})^T$$
$$\delta^{(L)} = e^{(L)} \otimes f'(z^{(L)})$$

Valores Iniciales:

$$\beta, \mu \in (0,1),$$
 $w^{(L)}(0) = \text{random}$
 $v^{(L)}(0) = w^{(L)}.shape$
 $v^{(L)}(0) = 0$

M

Ajuste Pesos Ocultos de SNN con SGDM

Notación Matricial: Pesos Ocultos

$$w^{(l)}(\tau+1) = w^{(l)}(\tau) - v^{(l)}(\tau+1)$$

$$v^{(l)}(\tau+1) = \beta \times v^{(l)}(\tau) + \mu \times gW^{(l)}$$

$$l = L-1, L-2, ..., 2, 1$$

$$\tau = 1, 2, ..., MaxIter$$

Notación Matricial: Gradiente

$$gW^{(l)} = \frac{\partial E}{\partial w^{(l)}} = \left\{ \left(w^{(l+1)} \right)^T \times \delta^{(l+1)} \right\} \otimes f' \left(z^{(l)} \right) \times \left(a^{(l-1)} \right)^T$$

Valores Iniciales:

$$w^{(l)}(0) = \text{random}$$

 $v^{(l)}(0) = w^{(l)}.\text{shape}$
 $v^{(l)}(0) = 0$

Función de Activación: Capas Ocultas

• 1. ReLu:

$$f(x) = \begin{cases} x, & x > 0 \\ 0, & x \le 0 \end{cases}, x \in \Re^d$$

• 2. L-ReLu:

$$f(x) = \begin{cases} 0.01 x, & x < 0 \\ x, & x \ge 0 \end{cases}, x \in \Re^d$$

• 3. ELU:

$$f(x) = \begin{cases} a(e^{x} - 1), & x \le 0 \\ x, & x > 0 \end{cases}, x \in \Re^{d}$$

• 4. SELU:

$$f(x) = \lambda \times \begin{cases} a(e^x - 1), & x \le 0 \\ x, & x > 0 \end{cases}$$
$$x \in \Re^d, \ \lambda = 1.0507, \ a = 1.6732$$

• 5. Sigmoidal:

$$f(x) = \frac{1}{1 + e^{-z}}, \ x \in \Re^d$$

Función de Activación: Capas de Salida

• Sigmoidal:

$$f(x) = \frac{1}{1 + e^{-z}}, \ x \in \Re^d$$

NA.

PseudoCode: train_snn()

```
Param = load_param()
W,V = iniWs(Param) # Setup Pesos
MSE = [];
For Iter = 1 to MaxIter
 X,Y = sort_data_ramdom(X,Y)
 [Cost W V] = trn_minibatch(X,Y,W,V, Param)
 MSE(Iter) = mean(Cost)
 If mod(Iter, 10) == 0
    printf('\n Iterar-SGD:', Iter, MSE(Iter))
 EndIf
EndFor
```

PseudoCode: trn_minibatch(X,Y,W,V, Param)

```
#N samples del dataset X, M-samples del Batch
nBtach = N/M
For n=1 to nBatch
 Idx = get_Idx_n_Batch(n, M)
 xe = X(:,Idx)
 ye = Y(:,Idx)
 Act = forward(xe, W, Param)
\neg gW, Cost = gradW(Act, ye, W, Param)
W, V = upd_WV_sgdm(W, V, gW, Param)
EndFor
```

train.py:

- Cargar parámetros
- Cagar data de training
- Entrenar la SNN vía BP-SGDM
- Crear archivo de costo (MSE):
 - □costo.csv
 - T-filas por 1-columna.
 - □ Crear archivo de pesos:
 - w_snn.npz.

test.py

- Cargar data de test.
- Cargas peso entrenados.
- Realizar proceso forward de SNN.
 - □ Crear archivo de Matriz de Confusión:
 - **cmatriz.csv**.
 - □ Crear archivo F-scores:
 - **fscores.csv**
 - \blacksquare (*m*+1)-filas por 1-columa
 - □Fila (m+1) representa el F-scores promedio de las m-clases.

Configuración: cnf.csv

■ *Parámetros* :

- Línea 1: Número de Clases : 3
- Línea 2: Número de Frame : 50
- Línea 3: Tamaño del Frame : 256
- Línea 4: Nivel de Descomposición : 3
- Línea 5: Nodos Ocultos de Capa₁. : 40
- Línea 6: Nodos Ocultos de Capa₂. : 10
- Línea 7: Función Activación Oculta: 3

Configuración: cnf.csv

■ Línea 8: Porcentaje de Training	: 0.8	
■ Línea 9: Tamaño miniBatch	: 32	
■ Línea 10: Tasa de Aprendizaje	: 0.1	
■ Línea 11: Coeficiente Beta	: 0.8	
■ Línea 12: Número Máximo Iteraciones : 50		
		
		

M

Normalización de Datos:

$$x = \frac{(x - x_{\min})}{(x_{\max} - x_{\min})} \times (b - a) + a, \ a = 0.01 \quad b = 0.99$$

ENTREGA

■ Lunes : 17/Abril/2022

☐ Hora : 13:00 horas

□ Lugar : Aula Virtual del curso

■ Lenguaje Programación:

- □ Python version: 3.7.6 window (anaconda)
 - Numpy/Panda

OBSERVACIÓN:

Si un Grupo no Cumple con los requerimientos funcionales y no-funcionales, entonces la nota máxima será igual a 1,0 (uno coma cero).