

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỀ THI KẾT THÚC HỌC PHẦN Học kỳ II - Năm học 2016-2017

MÃ LƯU TRỮ	
do phòng KT-ĐBCL ghi)

Tên học phần:	VẬT LÝ ĐẠI CƯƠNG 1 (CƠ VÀ NHIỆT)	Mã HP: PHY00001			
Thời gian làm bài:	90 phút	Ngày thi:			
Ghi chú: Sinh viên [🗆 được phép / 🗵 không được phép] sử dụng tài liệu khi làm bài.					

Bài 1: (3 điểm)

Một vật có khối lượng M_1 =1kg có độ lớn vận tốc V_1 , đến va chạm đàn hồi với vật có khối lượng M₂=2kg đang đứng yên. Sau va chạm vật M₁ và M₂ có độ lớn vận tốc lần lượt là V'₁ và V'₂. a/ Nếu vận tốc của M₁ sau va chạm có phương không thay đổi so với lúc đầu thì phương vận tốc của M_1 , M_2 sau va chạm như thế nào?.

b/ Tìm vận tốc các hạt sau va chạm nếu V_1 = 4 m/s.

Bài 2: (3 điểm)

Cho một cơ hệ như hình vẽ. Hai vật có khối lượng lần lượt là m₁=0,5 kg và m₂ =1kg được nổi với nhau bằng một sợi dây không khối lượng, không co giãn và được vắt qua ròng rọc. Hệ số ma sát trượt của m_2 với mặt phẳng nghiêng là k = 0,2, góc hợp mặt phẳng nghiêng và phương ngang là $\alpha = 30^{\circ}$. Ròng rọc là một đĩa tròn đặc đồng chất có khối lượng là M = 1kg.

a/ Tính gia tốc chuyển đông của cơ hê.

b/ Lưc cặng dây T₁ và T₂ trên các đoan dây.

c/ Tính công trọng lực của của vật m₂ sau 2s kể từ lúc bắt đầu chuyển động.

Bài 3: (4 điểm)

Cho 32 g khí Oxy thực hiện 3 quá trình được biểu diễn trên đồ thị (OVT) như Hình vẽ. Trang thái ban đầu có các thông số $V_1 = 1$ lít, $p_1 = 10^6$ Pa. Trạng thái thứ hai có $T_2 = 450$ K.

b/ Biểu diễn lại chu trình này trên giản đồ (OpV)?

c/ Tính nhiệt lượng hệ nhận vào?

d/ Tính nhiệt lượng hệ tỏa ra?

(Đề thi gồm 3 trang)

Ho tên người ra đề/MSCB: Nguyễn Hoàng Hưng / 0372...... Chữ ký: [Trang 1/3]

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỀ THI KẾT THÚC HỌC PHẦN Học kỳ II - Năm học 2016-2017

MÃ LƯU TRỮ (do phòng KT-ĐBCL ghi)

ĐÁP ÁN

Câu	Lời giải	Điểm
1.	a/ Dùng định luật bảo toàn động lượng (do va chạm đàn hồi). $M_1\overrightarrow{V_1} + M_2\overrightarrow{V_2} = M_1\overrightarrow{V_1^i} + M_2\overrightarrow{V_2^i}$	0,5
	Vì vậy nếu $\overline{V_1}$ cùng phương với $\overline{V_1}$, và $\overline{V_2} = \overline{0}$, nên $\overline{V_2}$ cùng phương với $\overline{V_1}$.	0,5
	b) Va chạm đàn hồi, theo định luật bảo toàn năng lượng và động lượng ta có vận tốc hai hạt sau va chạm là: $ \overline{V_1'} = \frac{\left((M_1 - M_2)\overline{V_1} + 2M_2\overline{V_2}\right)}{M_1 + M_2} $	0,5
	$\overrightarrow{V_2'} = \frac{\left((M_2 - M_1)\overrightarrow{V_2} + 2M_1\overrightarrow{V_1} \right)}{M_1 + M_2}$	0,5
	Với M ₁ =1kg, M ₂ =2kg, V ₁ =4 m/s, V ₂ =0, ta suy ra: $\overrightarrow{v_1'} = \frac{(-\overrightarrow{v_1})}{3}, \overrightarrow{v_2'} = \frac{(2\overrightarrow{v_1})}{3}$	0,5
	Như vậy sau va chạm vật M ₁ chuyển động ngược lại so với ban đầu. Vật M ₂ lúc đầu đứng yên, sẽ chuyển động đi tới, Độ lớn các vận tốc sau va chạm là: V' ₁ =4/3 m/s; V' ₂ =8/3 m/s (0.5 điểm)	0,5
2.	a Phương trình động lực học của các vật: $ \vec{P}_1 + \vec{T}_1 = m_1 \vec{a} $ $ \vec{P}_2 + \vec{T}_2 + \vec{F}_{ms} + \vec{N} = m_2 \vec{a} $ $ \vec{M}_{\vec{T}_1} + \vec{M}_{\vec{T}_2} = I \vec{\beta} $	1
	$\vec{M}_{ec{T}_1} + \vec{M}_{ec{T}_2} = I \vec{eta}$	
	Chọn chiều dương là chiều chuyển động của các vật	

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỀ THI KẾT THÚC HỌC PHẦN Học kỳ II – Năm học 2016-2017

MÃ LƯU TRỮ (do phòng KT-ĐBCL ghi)

$\int P_1 - T_1 = m_1 a \qquad \qquad \int T_1 = P_1 - m_1 a$	
$P_2 \sin \alpha + T_2 - F_{ms} = m_2 a$ $T_2 = m_2 a - P_2 \sin \alpha + F_{ms}$	
$\begin{cases} P_{1} - T_{1} = m_{1}a \\ P_{2} \sin \alpha + T_{2} - F_{ms} = m_{2}a \\ RT_{1} - RT_{2} = I\beta = \frac{1}{2}MR^{2}\frac{a}{R} = \frac{1}{2}MRa \end{cases} \begin{cases} T_{1} = P_{1} - m_{1}a \\ T_{2} = m_{2}a - P_{2} \sin \alpha + F_{ms} \\ T_{1} - T_{2} = \frac{1}{2}Ma \end{cases}$	
Chiếu hệ phương trình lên phương vuông góc mp nghiêng:	
$kP_2\cos\alpha-N=0 \Rightarrow F_{ms}=km_2g\cos\alpha$	
$\Rightarrow a = \frac{m_1 g + m_2 g \sin \alpha - k m_2 g \cos \alpha}{\frac{1}{2} M + m_1 + m_2} = 4,13 \text{ m/s}^2$	
b/ <i>Lực căng dây:</i> ⇒ T ₁ =2,935 N và T ₂ =0,86N	1
c/ Công của trọng lực:	1
Quãng đường vật m ₂ đi được sau 2s	
$S_2 = v_0 t + 1/2 \text{ at}^2 = 8,26 \text{ m}$	
$A_P=W_{t1}-W_{t2}=m_2gh_1-m_2gh_2=m_2g(s_1.sin\alpha-ssin\alpha)=m_2gs_2.sin\alpha=1/2.$ 1.10.8,26 =41.3 (J)	
3.	1
b/ PA 1 2 V	1
c/ Trạng thái 1: $P_1V_1 = nRT_1 \Rightarrow T_1 = 120 \text{ K} = T_3$ 1-2: $\frac{V_1}{T_1} = \frac{V_2}{T_2} \Rightarrow V_2 = 3,75.10^{-3} \text{ m}^3 = V_3$ Nhiệt lượng hệ nhận vào: $Q_{12} = \frac{m}{\mu} C_p (T_2 - T_1) = 9598 \text{ J}$	1
Nhiệt lượng hệ tỏa ra: $Q_{23} + Q_{31} = \frac{m}{\mu} C_V (T_3 - T_2) + \frac{m}{\mu} R T_{31} ln \frac{V_1}{V_2} = -81$	174 J 1