Data Structures Final Exam

2021/01/11 @ DS class

Presenter: 吳昱宏

Scoring Criteria

除了表格題(time complexity, stable那題)一格兩分外, 其餘題目皆為一題五分 考卷上每個V代表五分, 每個O代表兩分, 請先確認分數有沒有加錯

YOUR SCORE = COUNT(V) * 5 + COUNT(O) * 2

1. Notations 20%

Which of the following equations are correct?

(A)
$$n! = O(n^n)$$
 correct, $n! < n^n$

(B)
$$87n^3 + 870n^4 + 8700n^22^n = O(n^22^n)$$
 correct, $2^n > n^3 > n^4$

(C)
$$2^n = O(4^n)$$
 correct, $4^n > 2^n$

(D)
$$62^n + n^2 = \Omega(2^n)$$
 correct, omega is lower bound, $62^n > 2^n$

Answer: (A)(B)(C)(D)

2. Quick Sort

- a. What is the average time complexity of quick sort on n numbers? 87%
- b. What is the worst time complexity of quick sort on n numbers? 95%
- c. If we implement quick sort by always choosing the first component as pivot, for all permutations of {1, 2, 3, 4, 5, 6}, which permutations will exhibit the worst-case behavior of quick sort? 25%

Answer: a. O(nlogn) b. O(n^2) c. 1,2,3,4,5,6 and 6,5,4,3,2,1

3. Radix Sort

Suppose you are to sort the following sequence using radix sort:

[18, 203, 16, 30, 123, 521, 63, 528, 210, 216, 941, 55]

Please answer the following questions.

- a. At the end of first step, what is the 8th element of the new order? 80%
- b. At the end of second step, what is the 8th element of the new order? 80%

Answer: a. [30, 210, 521, 941, 203, 123, 63, 55, 16, 216, 18, 528]

b. [203, 210, 16, 216, 18, 521, 123, 528, 30, 941, 55, 63]

4. Time Complexity / Stable Sort

一格兩分!

	Bubble	Selection	Heap	Merge	Insertion
Worst Case	O(n ²)	O(n ²)	O(nlogn)	O(nlogn)	O(n ²)
Stable	Yes	No 30%	No	Yes	Yes

Why isn't Selection Sort Stable?

Suppose we are to sort the array [8a, 8b, 7]. Since the smallest element is 7, we have to swap 7 and 8a. Thus, the new array will be [7, 8b, 8a], which has proved the instability of selection sort.

5. Binary Tree Traversal 95%

In-order = JHKFIDGBEAC

Pre-order = ABDFHJKIGEC

Level-order = ABCDEFGHIJK

6. AVL Tree

a. Given the figure of a binary tree. Is the tree an AVL tree? Why or why not?
80%

No, 11 and 15 are unbalanced.

因為這棵樹不平衡 (X)

因為11不平衡 (O)

6. AVL Tree

b. Please insert 2, 1, 4, 5, 9, 3, 6, 7 into an empty AVL tree. What's the pre-order sequence of the AVL tree? 60%

Pre-order: 42136597

7. BST

How many distinct binary search trees can be created out of 5 distinct keys? 15%

Answer: 42 (14+5+4+5+14)

不會用小畫家, 請看黑板:)

Reference: <u>Leetcode #96</u>

8. Dijkstra's Algorithm

Given a weighted directed graph below, if the Dijkstra's algorithm is applied to find the shortest path starting from vertex A to all other vertices. A is the first vertex added to a set *N*,which is used to hold nodes that a shortest path has been found. Which of the following statements are true? 90%

- (A) F is the last vertex added to set *N*.
- (B) B is the 4th vertex added to set *N*.
- (C) The shortest path from A to E is 13.
- (D) The shortest path from A to H is 18.

8. Dijkstra's Algorithm

Step	N	Selected	Α	В	С	D	Е	F	G	н
0		А	0	-	-	7	15	-	5	-
1	Α	G	0	-	-	7	15	-	5	18
2	AG	D	0	10	-	7	13	-	5	18
3	AGD	В	0	10	12	7	13	-	5	18
4	AGDB	С	0	10	12	7	13	15	5	18
5	AGDBC	E	0	10	12	7	13	15	5	17
6	AGDBCE	F	0	10	12	7	13	15	5	17
7	AGDBCEFH	Н	0	10	12	7	13	15	5	17

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially. 60% Insert 19:

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially.

Insert 8: (swap 8&19)

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially.

Insert 6: (swap 8&6)

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially.

Insert 17: (swap 17&19)

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially.

Insert 2: (swap 2&17, 2&6)

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially.

Insert 15:

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially.

Insert 9:

a. Please build a min heap by inserting 19, 8, 6, 17, 2, 15, 9, 10 sequentially.

Insert 10: (swap 10 & 19)

b. Follow the previous question, please perform the delete operation TWICE and show the resultanting min heap for each step (i.e., draw 2 heaps). 60%

Second deletion

c. What are the minimum and maximum numbers of elements in a heap of height h? 85%

Hint: The height of the root node is 1.

Completed binary tree & 期中考題目借屍還魂

$$Max = 2^h - 1$$

$$Min = 2^{h-1}$$

10. Directed Graph 80%

Use sequetial representation!

$$A^{1} = A \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ D \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \end{bmatrix} \qquad A^{2} = A^{1} \times A^{1} = \begin{bmatrix} 0012 \\ 1101 \\ 1100 \\ 0121 \end{bmatrix}$$

$$A^{3} = A^{2} \times A^{1} = \begin{bmatrix} 2201 \\ 1221 \\ 0121 \\ 1113 \end{bmatrix}$$

$$A^{4}_{4,1} = [1, 1, 1, 3] \times \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = 3 \text{ Ans} = 3 + 1 + 1 = 5$$

11. Double Hashing 50%

 $S = \{16, 3, 35,67,51,1,15,31,19,17\}$

 $h1(key) = key \mod 16$, $h2(key) = 1 + (key \mod 15)$

Insert 16: $h(16, 0) = (h1(16) + 0 \times h2(16)) \mod 16 = 16\%16 = 0$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16															

 $S = \{16, \frac{3}{3}, 35,67,51,1,15,31,19,17\}$

 $h1(key) = key \mod 16$, $h2(key) = 1 + (key \mod 15)$

Insert 3: $h(3, 0) = (h1(3) + 0 \times h2(3)) \mod 16 = 3\%16 = 3$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16			3												

```
S = \{16, 3, 35,67,51,1,15,31,19,17\}

h1(key) = key \mod 16, h2(key) = 1 + (key \mod 15)

Insert 35: h(35, 0) = (h1(35) + 0 \times h2(35)) \mod 16 = 35\%16 = 3 \text{ (collision!)}

h(35, 1) = (h1(35) + 1 \times h2(35)) \mod 16 = 35\%16 + 1X(1 + 35\%15) = 9
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16			3						35						

```
S = \{16, 3, 35,67,51,1,15,31,19,17\}

h1(key) = key \mod 16, h2(key) = 1 + (key \mod 15)

Insert 67: h(67, 0) = (h1(67) + 0 \times h2(67)) \mod 16 = 67\%16 = 3 \text{ (collision!)}

h(67, 1) = (h1(67) + 1 \times h2(67)) \mod 16 = 67\%16 + 1X(1 + 67\%15) = 11
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16			3						35		67				

```
S = \{16, 3, 35,67,51,1,15,31,19,17\}

h1(key) = key \mod 16, h2(key) = 1 + (key \mod 15)

Insert 51: h(51, 0) = (h1(51) + 0 \times h2(51)) \mod 16 = 51\%16 = 3 \text{ (collision!)}

h(51, 1) = (h1(51) + 1 \times h2(51)) \mod 16 = 51\%16 + 1X(1 + 51\%15) = 10
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16			3						35	51	67				

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	1		3						35	51	67				

$$S = \{16, 3, 35,67,51,1,15,31,19,17\}$$

$$h1(key) = key \mod 16$$
, $h2(key) = 1 + (key \mod 15)$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	1		3						35	51	67				15

$$S = \{16, 3, 35,67,51,1,15,31,19,17\}$$
 $h1(key) = key \mod 16, h2(key) = 1 + (key \mod 15)$
Insert 31: $h(31, 0) = (h1(31) + 0 \times h2(31)) \mod 16 = 31\%16 = 15$ (collision QQ)
 $h(31, 1) = (h1(31) + 1 \times h2(31)) \mod 16 = [31\%16 + 1X(1 + 31\%15)] \%16 = 1$ (哭啊)
 $h(31, 2) = (h1(31) + 2 \times h2(31)) \mod 16 = [31\%16 + 2X(1 + 31\%15)] \%16 = 3$ (哭阿門)
 $h(31, 3) = (h1(31) + 3 \times h2(31)) \mod 16 = [31\%16 + 2X(1 + 31\%15)] \%16 = 5$ (噫!我中啦)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	1		3		31				35	51	67				15

```
S = \{16, 3, 35,67,51,1,15,31,19,17\}

h1(key) = key \mod 16, h2(key) = 1 + (key \mod 15)

Insert 19: h(19, 0) = (h1(19) + 0 \times h2(19)) \mod 16 = 19\%16 = 3 (collision QAQ)

h(19, 1) = (h1(19) + 1 \times h2(19)) \mod 16 = 19\%16 + 1X(1 + 19\%15) = 8
```

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	1		3		31			19	35	51	67				15

$$S = \{16, 3, 35,67,51,1,15,31,19,17\}$$

$$h1(key) = key \mod 16$$
, $h2(key) = 1 + (key \mod 15)$

Insert 17:
$$h(17, 0) = (h1(17) + 0 \times h2(17)) \mod 17 = 17\%16 = 1 \text{ (collision } \bigcirc$$

$$h(17, 1) = (h1(17) + 1 \times h2(17)) \mod 16 = 17\%16 + 1X(1 + 17\%15) = 4$$

Final Answer: (沒寫-1沒關係)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	1		3	17	31			19	35	51	67				15

12. Stack 80%

(5%) Please transfer the following infix expression to its postfix form: $a \div (b + c \times d) \times (e - f) + g$

Answer: a b c d \times + \div e f - \times g +

a. Prim's algorithm 70%

$$B \rightarrow D(1) \rightarrow E(2) \rightarrow C(4) \rightarrow A(3)$$

$$-> F(5) -> G(8)$$

b. Krustal's Algorithm 70%

```
Step 1:
```

$$F = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{F\}, \{G\}\}\}$$

$$MST = \{\}$$

(A, F)

$$Q = \{(B, D), (B, E), (A, C), (B, C),$$

$$(C, F), (D, E), (B, F), (E, G),$$

$$(D, G), (G, F), (E, F), (A, B),$$

b. Krustal's Algorithm

```
Step 2:
```

$$F = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{F\}, \{G\}\}\}$$

$$MST = \{(B, D)\}$$

(A, F)

$$Q = \{ (B, D), (B, E), (A, C), (B, C), (C, F), (D, E), (B, F), (E, G), (D, G), (G, F), (E, F), (A, B), (C, F), (C, F)$$

b. Krustal's Algorithm

Step 3:

$$F = \{\{A\}, \{B, D, E\}, \{C\}, \{F\}, \{G\}\}\}$$

$$MST = \{(B, D), (B, E)\}$$

$$Q = \{(B, E), (A, C), (B, C), (C, F), (D, E), (B, F), (E, G), (D, G),$$

b. Krustal's Algorithm

Step 4:

$$F = \{\{A, C\}, \{B, D, E\}, \{F\}, \{G\}\}\}$$

$$MST = \{(B, D), (B, E), (A, C)\}$$

$$Q = \{(A, C), (B, C), (C, F), (D, E), (C, F), (C, F),$$

(B, F), (E, G), (D, G), (G, F),

(E, F), (A, B), (A, F)

b. Krustal's Algorithm

Step 5:

$$F = \{\{A, C, B, D, E\}, \{F\}, \{G\}\}\}$$

$$MST = \{(B, D), (B, E), (A, C), (B, C)\}$$

$$Q = \{(B, C), (C, F), (D, E), (B, F), (C, F),$$

b. Krustal's Algorithm

```
Step 6:
```

$$F = \{\{A, C, B, D, E, F\}, \{G\}\}\}$$

$$MST = \{(B, D), (B, E), (A, C), (B, C)\}$$

(C, F)

(A, F)

$$Q = \{(C, F), (D, E), (B, F), (E, G), (D, G), (G, F), (E, F), (A, B), (D, G), (E, F), (E, F),$$

b. Krustal's Algorithm

Step 7: (dismiss)

$$F = \{\{A, C, B, D, E, F\}, \{G\}\}\}$$

 $MST = \{(B, D), (B, E), (A, C), (B, C)\}$

(C, F)

$$Q = \{(D, E), (B, F), (E, G), (D, G), (G, F), (E, F), (A, B), (A, F)\}$$

b. Krustal's Algorithm

Step 8: (dismiss)

$$F = \{\{A, C, B, D, E, F\}, \{G\}\}\}$$

 $MST = \{(B, D), (B, E), (A, C), (B, C)\}$

(C, F)

$$Q = \{(B, F), (E, G), (D, G), (G, F),$$

$$(E, F), (A, B), (A, F)\}$$

b. Krustal's Algorithm

Step 9: (DONE)

$$F = \{\{A, C, B, D, E, F, G\}\}\$$

 $MST = \{(B, D), (B, E), (A, C), (B, C)\}$

(C, F), (E, G)}

$$Q = \{(E, G), (D, G), (G, F), (E, F), (A, B), (A, F)\}$$

b. Krustal's Algorithm

Step 9: (DONE)

$$F = \{\{A, C, B, D, E, F, G\}\}$$

 $MST = \{(B, D), (B, E), (A, C), (B, C)\}$

(C, F), (E, G)

$$Q = \{(E, G), (D, G), (G, F), (E, F), (A, B), (A, F)\}$$

c. DFS from vertex E 30%

E->B->D->G->F->C->A

d. BFS from vertex E 40%

E->B->D->G->F->C->A

Statistics

120~130	1 (0.9%)
110~119	7 (6.4%)
100~109	10 (9.2%)
90~99	17 (15.7%)
80~89	17 (15.7%)
70~79	14 (12.9%)
60~69	12 (11.1%)
Below 60	30 (27.8%)

Average: 76

Median: 78

Reminder

- 1. Homework #4 #5仍可補交
- 2. 答案卷務必交回!!!!

Questions?