Learning Concept Importance Using a Weighted Dependence Model

Michael Bendersky

Donald Metzler

W. Bruce Croft

UMass Amherst

Yahoo! Research

UMass Amherst

Input free-text user query

Output Ranked list of documents

Ranked Retrieval

- > Search engine must accurately interpret query intent
 - Detect phrases
 - ▶ new york times ≠ time new york
 - Detect relative term/phrase importance
 - **CONTINENTAL airline BOOKING**

Textual Scoring

- Generally concerns computing the similarity between two pieces of text
- This talk will focus on matching (short, textual) queries to (long, textual) documents
- Not as popular as some other search problems (e.g., web link analysis), but very important for many search applications

Retrieval Models

Query/Document Representation

- Bag-of-words
- Bigrams
- Phrases

Query/Document Similarity (Relevance Score)

- Quantifies how 'relevant' a document is to an information need (expressed by a query)
- Documents are ranked by their relevance score

Term-Based Retrieval Models

- Term-based retrieval models treat the user's query as a "bag-of-words"
 - ▶ BM25 (Robertson et al., 2000)
 - Query Likelihood (Ponte & Croft, 1998)
 - ▶ DFR (Amati, 2003)
- A simple query model
 - ▶ Term order is interchangeable
 - Simple collection-based heuristics to weight query terms
 - e.g., *IDF*
 - ▶ Term weights do not vary based on their context

Concept-Based Retrieval Models

- Recently, researchers focused on incorporating term dependence into the term-based retrieval models
 - Markov Random Fields for IR (Metzler & Croft, 2005)
 - ▶ BM25 with term proximities (Song et al., 2008)
 - ▶ DFR-SD, DFR-FD (Peng et al., 2007)
- A more realistic query model
 - Term order is important
 - Captures concepts dependencies between query terms
- ▶ However, concept weighting is still *rigid and ad-hoc*
 - e.g., IDF

Term and Concept Weighting

- Term and concept weighting are usually handled outside the retrieval model
 - Automatic removal of redundant query terms
 - ► (Kumaran & Carvalho, 2009)
 - Classifying concepts (noun phrases) into key/non-key classes
 - ▶ (Bendersky & Croft, 2008)
 - Weighting query terms using regression on their expected performance
 - ▶ (Lease et al., 2009)

Model Desiderata

- Concept weighting should be integrated into the retrieval model
 - Avoid pre/post-retrieval processing of queries
- Retrieval model should handle different types of concepts
 - Moving beyond the bag-of-words
- Retrieval model should be optimized to improve ranking
 - Avoiding metric divergence
- 4. Retrieval model should be general
 - Applicable to various document/query types

What is a Concept?

A concept is any syntactic expression that can be matched within a document

- Not an exhaustive definition
- Does not capture "semantics"
- Practical definition for Information Retrieval

Examples of Concepts

Unigrams

(match each of the terms)

... four white churches. Our own house looked down over the town ...

Exact phrases

(match exact phrase)

... The White House is the official residence and principal workplace of the President of the United States...

Proximities

(match unordered phrase in a window of K terms)

...it was during this construction that the house was painted white ...

Markov Random Fields for IR

- In this work we extend the Markov Random Field approach to IR (Metzler & Croft, 2005)
 - provides a general way of modeling a joint distribution
 - allows incorporating arbitrary scoring functions
 - easy to train model weights
 - state-of-the-art performance
 - ▶ TREC Terabyte/Million Query/Web Tracks (2004-2009)

MRFs for IR

- ▶ Encode document and query terms in a graph **G**
 - vertices represent document/query nodes
 - edges encode dependence semantics

MRFs for IR (Continued)

- Potentials over the cliques of G
 - Non-negative functions over clique configurations
 - Measure query-document similarity
- Score the document using the joint probability over the cliques of G

$$P_{G,\Lambda}(X_1,...X_N) = \frac{1}{Z} \prod_{c \in C(G)} \psi(c;\Lambda)$$

MRFs for IR: Dependence Assumptions

MRFs can encode different dependence assumptions

MRF - Sequential Dependence Model (SD)

- Assume dependence between adjacent terms
- Effectiveness/Efficiency tradeoff
- Empirically proven retrieval performance

SD Ranking Function

Associate each clique in the graph with one or more potential function f

how well does q match D? [bag of words score]

$$P(D|Q) \stackrel{rank}{=} \lambda_T \sum_{q \in Q} f_T(q, D) + \sum_{q \in Q} f_{Q}(q, Q) + \sum_{q \in Q$$

how well does " $q_i q_{i+1}$ " match D? [exact phrase score]

$$\lambda_O \sum_{q_i, q_{i+1} \in Q} \widehat{f_O(q_i, q_{i+1}, D)} +$$

$$\lambda_U \sum_{q_i, q_{i+1} \in Q} f_U(q_i, q_{i+1}, D)$$

how well does $prox(q_i | q_{i+1})$ match D? [**proximity** score]

Limitations of SD

$$P(D|Q) \stackrel{rank}{=} \lambda_T \sum_{q \in Q} f_T(q, D) + \lambda_O \sum_{q_i, q_{i+1} \in Q} f_O(q_i, q_{i+1}, D) + \lambda_U \sum_{q_i, q_{i+1} \in Q} f_U(q_i, q_{i+1}, D)$$

- Parameter tying
 - All matches of the same type are equally weighted
 - Especially detrimental for verbose queries
- Instead, we'd like query concept weights to vary

Weighted Sequential Dependence Model (WSD)

- Allow the parameters to depend on the concept
- Assume the parameters take a simple parametric form
 - maintains reasonable model complexity

$$\lambda(q_i) = \sum_{j=1}^{k_u} w_j^u g_j^u(q_i)$$

$$\lambda(q_i, q_{i+1}) = \sum_{j=1}^{k_b} w_j^b g_j^b(q_i, q_{i+1})$$

w - free parameters

g - concept importance features

Defining Concept Importance

- Features g define the concept importance
- Depend on the concept (term/bigram)

$$\lambda(q_i) = \sum_{j=1}^{k_u} w_j^u g_j^u(q_i)$$

$$\lambda(q_i, q_{i+1}) = \sum_{j=1}^{k_b} w_j^b g_j^b(q_i, q_{i+1})$$

- Independent of a specific document/document corpus
- Combine several sources for more accurate weighting
 - Endogenous Features collection dependent features
 - ▶ Exogenous Features collection independent features

Concept Importance Features

	Data Source	Feature	Description	
Endogenous	Collection	cf(e) Collection frequency for concept e		
		df(e)	Document frequency for concept e	
Exogenous	Google n-Grams	gf(e)	n-gram count of concept e	
	Query Log Sample	qe_cnt(e)	# exact query matches for concept e	
		qp_cnt(e)	# partial query matches for concept e	
	Wikipedia Titles	we_cnt(e)	# exact title matches for concept e	
		wp_cnt(e)	# partial title matches for concept e	

- Unigram concepts: all features (7)
- **Bigram concepts**: all features (7) + PMI for each data source (4)
- Total features: 18
- All features are log-scaled and normalized

Incorporating Concept Importance Features

$$P(D|Q) \stackrel{rank}{=} \lambda_T \sum_{q \in Q} f_T(q, D) + \lambda_O \sum_{q_i, q_{i+1} \in Q} f_O(q_i, q_{i+1}, D) + \lambda_U \sum_{q_i, q_{i+1} \in Q} f_U(q_i, q_{i+1}, D)$$

WSD Ranking Function

Score document D by:

$$P(D|Q) \stackrel{rank}{=} \sum_{i=1}^{k_u} w_i^u \sum_{q \in Q} g_i^u(q) f_T(q, D) +$$

$$\sum_{i=1}^{k_b} w_i^b \sum_{q_j, q_{j+1} \in Q} g_i^b(q_j, q_{j+1}) f_O(q_j, q_{j+1}, D) +$$

$$\sum_{i=1}^{k_b} w_i^b \sum_{q_j, q_{j+1} \in Q} g_i^b(q_j, q_{j+1}) f_U(q_j, q_{j+1}, D)$$

▶ Note that **WSD** model is also linear (with respect to **w**)

Parameter Estimation

- Maximum likelihood or maximum a posteriori estimation possible from labeled data
- However, when ranking, it's better to optimize according to some rank-based loss function
- Many 'learning to rank' approaches for learning linear ranking models that optimize various retrieval metrics
 - RankNet, LambdaRank, Ranking SVMs, AdaRank,...

Direct Optimization

Learn the weights w to directly optimize a retrieval

performance metric

► MAP

Mean Avg. Precision

DCG

Discounted Cumulative Gain

$$P(D|Q) \stackrel{rank}{=} \sum_{i=1}^{k_u} w_i^t \sum_{q \in Q} g_i^u(q) f_T(q, D) +$$

$$\sum_{i=1}^{k_b} w_i^b \sum_{q_j, q_{j+1} \in Q} g_i^b(q_j, q_{j+1}) f_O(q_j, q_{j+1}, D) +$$

$$\sum_{i=1}^{k_b} w_i^b \sum_{q_j, q_{j+1} \in Q} g_i^b(q_j, q_{j+1}) f_U(q_j, q_{j+1}, D)$$

- We use a simple coordinate-level ascent algorithm
 - Efficient for a small number of parameters
 - Empirically good performance
- Most other LR4IR methods can be easily adapted for optimization

Query "civil war battle reenactments"

Concept	Importance Features		Weight	
	GF	•••	DF	
civil	16.9		14.1	<u>0.0619</u>
war	17.9		12.8	0.1947
battle	16.6		12.6	0.0913
reenactments	10.8		9.7	<u>0.3487</u>
civil war	14.5		10.8	<u>0.1959</u>
war battle	9.5		7.4	<u>0.2458</u>
battle reenactments	7.6		4.7	<u>0.0540</u>

Concept weights may vary even if concept DF is similar

Query "civil war battle reenactments"

Concept	Importance Features		ures	Weight
	GF	•••	DF	
civil	16.9		14.1	0.0619
war	17.9		12.8	<u>0.1947</u>
battle	16.6		12.6	0.0913
reenactments	10.8		9.7	<u>0.3487</u>
civil war	14.5		10.8	0.1959
war battle	9.5		7.4	<u>0.2458</u>
battle reenactments	7.6		4.7	<u>0.0540</u>

Good segments do not necessarily predict important concepts

Experimental Results

- A detailed evaluation of our approach
 - ▶ TREC and web document collections
 - Short & Long queries
 - Contribution of different feature types
 - Contribution of different concept types

TREC Title (Short) Queries

TREC Description (Long) Queries

Endogenous & Exogenous Features

- Results with using either endogenous or exogenous features alone are comparable
- Using both types of features improves the performance over the unweighted sequential dependence model (SD)
- In most cases combining both types of features results in better performance

Term & Bigram Weights

- For short web queries (1-3 terms)
 - Bigram weights have more impact than term weights
- For TREC queries and longer web queries
 - Unigram weights have more impact than bigram weights
- In most cases combining both types of weights results in better performance, especially for longer queries

Web Queries

	DCG@I	DCG@5	DCG
QL	0.629	1.691	5.844
SD	0.864	2.383	6.681
WSD	0.884 (+2.3%)	2.443 (+2.5%)	6.741 (+0.9%)

- Results using a large-scale commercial web search test collection
- A sample of long web search queries (length 4+)
- A total of 1,000 queries with 5-fold CV
- All improvements are statistically significant

Model Desiderata Revisited

- Concept weighting should be integrated into the retrieval model
 - Concept importance weights are the model parameters
- 2. Retrieval model should handle different types of concepts
 - (Potentially) handles any arbitrary term dependencies
- 3. Retrieval model should be optimized to improve ranking
 - Concept importance weights are learned to optimize retrieval
- 4. Retrieval model should be general
 - Improves retrieval on both newswire & web collections
 - Improves retrieval with both short & long queries

Conclusions

- Existing retrieval methods can be enhanced by
 - More accurate **modeling** of query concepts
 - More accurate weighting of query concepts
- Concept weight should be determined by a combination of both endogenous and exogenous features
- Dynamic concept weighting leads to significant improvements, especially for long queries

Future Work

- Incorporate concept weighting into the general "learningto-rank" algorithms
 - Take into account both textual and non-textual (link-based, click-based) features
- Extend concept weighting beyond the original query
 - Query Expansion using (Pseudo-)Relevance Feedback
 - Query Reformulation
- Tighter integration of NLP, ML and IR
 - Using NLP/ML to find meaningful classes of concepts in both queries and documents

