

TIN HỌC CƠ SỞ 2

TỔNG QUAN VỀ LẬP TRÌNH VÀ NGÔN NGỮ LẬP TRÌNH C

Đặng Ngọc Hùng

Khoa: Công nghệ thông tin 1

Email: hungdn@ptit.edu.vn

1

Nội dung

- 1 Các khái niệm cơ bản
- 2 Các bước xây dựng chương trình
- Biểu diễn thuật toán
- 4 Cài đặt thuật toán bằng NNLT

Các khái niệm cơ bản

❖ Lập trình máy tính

- Gọi tắt là lập trình (programming).
- Nghệ thuật cài đặt một hoặc nhiều thuật toán trừu tượng có liên quan với nhau bằng một ngôn ngữ lập trình để tạo ra một chương trình máy tính.

❖ Thuật toán

 Là tập hợp (dãy) hữu hạn các chỉ thị (hành động) được định nghĩa rõ ràng nhằm giải quyết một bài toán cụ thể nào đó.

Các khái niệm cơ bản

- ❖ Ví dụ
 - Thuật toán giải PT bậc nhất: ax + b = 0
 (a, b là các số thực).

```
Đầu vào: a, b thuộc R
Đầu ra: nghiệm phương trình ax + b = 0
```

- Nếu a = 0
 - b = 0 thì phương trình có nghiệm bất kì.
 - b ≠ 0 thì phương trình vô nghiệm.
- Nếu a ≠ 0
 - Phương trình có nghiệm duy nhất x = -b/a

Các tính chất của thuật toán

❖ Bao gồm 5 tính chất sau:

- Tính chính xác: quá trình tính toán hay các thao tác máy tính thực hiện là chính xác.
- Tính rõ ràng: các câu lệnh minh bạch được sắp xếp theo thứ tự nhất định.
- Tính khách quan: được viết bởi nhiều người trên máy tính nhưng kết quả phải như nhau.
- Tính phổ dụng: có thể áp dụng cho một lớp các bài toán có đầu vào tương tự nhau.
- Tính kết thúc: hữu hạn các bước tính toán.

Các bước xây dựng chương trình

Xác định vấn đề - bài toán

Lựa chọn phương pháp giải

Xây dựng thuật toán/ thuật giải

Lỗi cú pháp Lỗi ngữ nghĩa Biểu diễn bằng:

- Ngôn ngữ tự nhiên
- Lưu đồ Sơ đồ khối
- Mã giả

Cài đặt chương trình

Hiệu chỉnh chương trình

Thực hiện chương trình

VC & BB

Sử dụng ngôn ngữ tự nhiên

```
Đầu vào: a, b thuộc R
Đầu ra: nghiệm phương trình ax + b = 0
```

- 1. Nhập 2 số thực a và b.
- 2. Nếu a = 0 thì
 - 2.1. Nếu b = 0 thì
 - 2.1.1. Phương trình vô số nghiệm
 - 2.1.2. Kết thúc thuật toán.
 - 2.2. Ngược lại
 - 2.2.1. Phương trình vô nghiệm.
 - 2.2.2. Kết thúc thuật toán.
- 3. Ngược lại
 - 3.1. Phương trình có nghiệm.
 - 3.2. Giá trị của nghiệm đó là x = -b/a
 - 3.3. Kết thúc thuật toán.

Sử dụng lưu đồ - sơ đồ khối

Khối giới hạn

Chỉ thị bắt đầu và kết thúc.

Khối vào ra

Nhập/Xuất dữ liệu.

Khối lựa chọn

Tùy điều kiện sẽ rẽ nhánh.

Khối thao tác

Ghi thao tác cần thực hiện.

Đường đi

Chỉ hướng thao tác tiếp theo.

Sử dụng lưu đồ - sơ đồ khối

Sử dụng mã giả (pseudo code)

Vay mượn ngôn ngữ nào đó (ví dụ Pascal) để biểu diễn thuật toán.

```
Đầu vào: a, b thuộc R
\hat{D}au ra: nghiệm phương trình ax + b = 0
 If a = 0 Then
 Begin
       If b = 0 Then
             Xuất "Phương trình vô số nghiệm"
       Else
             Xuất "Phương trình vô nghiệm"
 End
 Else
       Xuất "Phương trình có nghiệm x = -b/a"
```


Cài đặt thuật toán bằng C

```
#include <stdio.h>
void main()
      int a, b;
      printf("Nhap a, b: ");
      scanf("%d%d", &a, &b);
      if (a==0)
            if (b==0)
                  printf("Phuong trinh VSN");
            else
                  printf("Phuong trinh VN");
      else
            printf("x = %f", float(-b)/a);
```


- Nhập năm sinh của một người. Tính tuổi người đó.
- 2. Nhập 2 số a và b. Tính tổng, hiệu, tính và thương của hai số đó.
- 3. Nhập tên sản phẩm, số lượng và đơn giá. Tính tiền và thuế giá trị gia tăng phải trả, biết:
 - a. tiền = số lượng * đơn giá
 - b. thuế giá trị gia tăng = 10% tiền

Bài tập thực hành

- 4. Nhập điểm thi và hệ số 3 môn Toán, Lý, Hóa của một sinh viên. Tính điểm trung bình của sinh viên đó.
- 5. Nhập bán kính của đường tròn. Tính chu vi và diện tích của hình tròn đó.
- 6. Nhập vào số xe (gồm 4 chữ số) của bạn. Cho biết số xe của bạn được mấy "nước"?
- 7. Nhập vào 2 số nguyên.
 Tính min và max của hai số đó.

Cấu trúc IF

BEGIN
INPUT num

r = num MOD 2

IF r=0

Display "Number is even"

END IF

END

21

Cấu trúc IF...ELSE

BEGIN
INPUT num
r=num MOD 2
IF r=0
DISPLAY "Even Number"
ELSE
DISPLAY "Odd Number"
END IF
END

Vòng lặp

```
BEGIN
cnt=0
WHILE (cnt < 1000)
DO
DISPLAY "Scooby"
cnt=cnt+1
END DO
END
```


- Phân tích thuật toán
 - Tính đúng
 - Tính đơn giản
 - Không gian nhớ
 - Thời gian chạy của thuật toán

- Thời gian chạy của thuật toán
 - Đánh giá như thế nào
 - Thực nghiệm
 - Xấp xỉ

- Thực nghiệm
 - Chịu sự hạn chế của ngôn ngữ lập trình
 - Ånh hưởng bởi trình độ của người cài đặt
 - Chọn được các bộ dữ liệu thử đặc trưng cho tất cả tập các dữ liệu vào của thuật toán: khó khăn và tốn nhiều chi phí
 - Phụ thuộc nhiều vào phần cứng

- * Xấp xỉ tiệm cận
 - Cách thông dụng nhất để đánh giá một thuật toán là ký hiệu tiệm cận gọi là Big-O
 - Định nghĩa toán học của Big-O:
 - Cho f và g là hai hàm từ tập các số nguyên hoặc số thực đến số thực. Ta nói f(x) là O(g(x)) nếu tồn tại hằng số C và k sao cho: $|f(x)| \le C |g(x)|$ với mọi x > k
 - Ví dụ, hàm $f(x) = x^2 + 3x + 2 là O(x^2)$
 - Thật vậy, khi x > 2 thì $x < x^2$ và $2 < 2x^2$
 - Do đó $x^2 + 3x + 2 < 6x^2$
 - Nghĩa là ta chọn được C = 6 và k = 2

- Một số kết quả Big-O quan trọng:
 - Hàm đa thức:
 - $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$
 - Khi đó f(x) là O(xⁿ)
 - Hàm giai thừa:
 - f(n) = n! là O(n!)
 - Logarit của hàm giai thừa:
 - f(n) = logn! là O(nlogn)
 - Hàm điều hòa
 - H(n) = 1 + 1/2 + 1/3 + ... + 1/n là O(logn)

Một số lớp thuật toán

Độ phức tạp	Thuật ngữ/tên phân lớp		
O(1)	Độ phức tạp hằng số		
O(logn)	Độ phức tạp logarit		
O(n)	Độ phức tạp tuyến tính		
O(nlogn)	Độ phức tạp nlogn		
O(na)	Độ phức tạp đa thức		
O(a ⁿ), a > 1	Độ phức tạp hàm mũ		
O(n!)	Độ phức tạp giai thừa		

Một số lớp thuật toán

n \ Hàm	n	lg n	Nlgn	n ²	n ³	2 ⁿ
1	1	0	0	1	1	2
2	2	1	2	4	8	4
4	n	2	8	16	64	16
8	8	3	24	64	512	256
16	16	4	64	256	4096	65536
32	32	5	160	1024	32768	2,147,483,648

30

Giới thiệu ngôn ngữ lập trình C

- 1 Giới thiệu
- Bộ từ vựng của C
- 3 Cấu trúc chương trình C
- 4 Một số ví dụ minh họa

Lịch sử của ngôn ngữ lập trình C

- ❖ Ngôn ngữ lập trình C ra đời năm 1972, tác giả: Dennis Ritchie.
- ❖ C được tạo ra để sử dụng như một phần căn bản của hệ điều hành UNIX (Ken Thompson, Dennis Ritchie và Douglas McIlroy, 1969)
- C được sử dụng rộng rãi và có ảnh hưởng lớn đến nhiều ngôn ngữ lập trình hiện đại, trong đó có C++, được xem là mở rộng của C.
- Là ngôn ngữ lập trình có cấu trúc và phân biệt chữ Hoa - thường (case sensitive)

Môi trường lập trình C/C++

- Môi trường C:
 - Borland C (còn gọi là Turbo C)
 - Borland C++ 3.1 for DOS.
- ❖ Môi trường C/C++:
 - Dev-C++
 - Visual C++ của Microsoft
 - Visual Studio
 - Code Block

Môi trường lập trình C/C++

- ❖ Môi trường phát triển tích hợp IDE (Integrated Development Environment)
 - Biên tập chương trình nguồn (Trình EDIT).
 - Biên dịch chương trình (Trình COMPILE).
 - Chạy chương trình nguồn (Trình RUNTIME).
 - Sửa lỗi chương trình nguồn (Trình DEBUG).

Các lĩnh vực ứng dụng của C

- C được dùng để lập trình hệ thống
- Một chương trình hệ thống làm thành một phần hệ điều hành hoặc các tiện ích hỗ trợ của hệ điều hành
- Hệ điều hành (Operating Systems), trình thông dịch (Interpreters), trình soạn thảo (Editors), trình Hợp Ngữ (Assembly) được gọi là chương trình hệ thống
- + Hệ điều hành UNIX được phát triển dựa vào C
- Có các trình biên dịch dành cho hầu hết các loại hệ thống PC

Đặc điểm của C

- C có 32 từ khóa
- Những từ khóa này kết hợp với cú pháp của C hình thành ngôn ngữ C
- Các quy tắc được áp dụng cho các chương trình C
 - Tất cả từ khóa là chữ thường
 - Đoạn mã trong chương trình C có phân biệt chữ thường, chữ hoa, do while khác DO WHILE
 - •Từ khóa không thể dùng đặt tên biến (variable name) hoặc tên hàm (function name)

```
main()
{
/* This is a sample Program*/
        int i,j;
        i=100;
        j=200;
        :
    }
```


Phần mềm, chương trình, câu lệnh

Cấu trúc chương trình C

main():

- Chương trình C được chia nhỏ thành những đơn vị gọi là hàm
- Cho dù có bao nhiêu hàm trong chương trình, Hệ điều hành luôn trao quyền điều khiển cho hàm main() khi một chương trình C được thực thi.
- Theo sau tên hàm là dấu ngoặc đơn
- Dấu ngoặc đơn có thể có chữa hay không chứa những tham số

Cấu trúc chương trình C (tt.)

Dấu phân cách {...}

- Sau phần đầu hàm là dấu ngoặc xoắn mở { nó cho biết việc thi hành lệnh trong hàm bắt đầu
- Tương tự, dấu ngoặc xoắn đóng } sau câu lệnh cuối cùng trong hàm chỉ ra điểm kết thúc của hàm

Cấu trúc chương trình C (tt.)

Dấu kết thúc câu lệnh ...;

- Một câu lệnh trong C được kết thúc bằng dấu chấm phẩy ;
- Trình biên dịch C không hiểu việc xuống dòng, khoảng trắng hay tab
- Một câu lệnh không kết thúc bằng dấu chấm phẩy sẽ được xem như dòng lệnh lỗi trong C

Cấu trúc chương trình C (tt.)

```
// Dòng chú thích
/*Dòng chú thích*/
```

- Những chú thích thường được viết để mô tả công việc của một lệnh đặc biệt, một hàm hay toàn bộ chương trình
- Trình biên dịch sẽ bỏ qua phần chú thích
- ❖ Dòng chú thích bắt đầu bằng //
- Trong trường hợp chú thích nhiều dòng, nó sẽ bắt đầu bằng ký hiệu /* và kết thúc là

*/

Thư viện C

- Tất cả trình biên dịch C đều chứa một thư viện hàm chuẩn
- Một hàm được viết bởi lập trình viên có thể được đặt trong thư viện và được dùng khi cần thiết
- Một số trình biên dịch cho phép thêm hàm vào thư viện chuẩn
- Một số trình biên dịch yêu cầu tạo một thư viện riêng

Biên dịch và thi hành chương trình

Các ký tự được sử dụng

- Bộ chữ cái 26 ký tự Latinh A, B, C, ..., Z, a, b,
 c, ..., z
- Bộ chữ số thập phân : 0, 1, 2, ..., 9
- Các ký hiệu toán học : + − * / = < > ()
- Các ký tự đặc biệt : . , : ; [] % \ # \$ '
- Ký tự gạch nối _ và khoảng trắng ' '

❖Từ khóa (keyword)

- Các từ dành riêng trong ngôn ngữ.
- Không thể sử dụng từ khóa để đặt tên cho biến, hàm, tên chương trình con.
- Một số từ khóa thông dụng:
 - const, enum, signed, struct, typedef, unsigned...
 - char, double, float, int, long, short, void
 - case, default, else, if, switch
 - do, for, while
 - break, continue, goto, return

❖Tên/Định danh (Identifier)

- Một dãy ký tự dùng để chỉ tên một hằng số, hằng ký tự, tên một biến, một kiểu dữ liệu, một hàm một hay thủ tục.
- Không được trùng với các từ khóa và được tạo thành từ các chữ cái và các chữ số nhưng bắt buộc chữ đầu phải là chữ cái hoặc _.
- Số ký tự tối đa trong một tên là 255 ký tự và được dùng ký tự _ chen trong tên nhưng không cho phép chen giữa các khoảng trắng.

- ❖ Ví dụ Tên/Định danh (Identifier)
 - Các tên hợp lệ: GiaiPhuongTrinh, Bai_Tap1
 - Các tên không hợp lệ: 1A, Giai Phuong Trinh
 - Phân biệt chữ hoa chữ thường, do đó các tên sau đây khác nhau:
 - A, a
 - BaiTap, baitap, BAITAP, bAItaP...

❖ Dấu chấm phẩy ;

- Dùng để phân cách các câu lệnh.
- Ví dụ: printf("Hello World!"); printf("\n");

Câu chú thích

- Từ vị trí cụ thể đến cuối dòng: dùng // ngay tại vị trí đó.
- Ghi chú gồm nhiều dòng: dùng cặp ký tự /* ý ngay trước dòng đầu tiên và cặp ký tự */ ngay sau dòng cuối cùng
- Ví dụ: /*Ho & Ten: NVA*/, // MSSV: 0712078

Các khái niệm

- ❖ Hằng ký tự và hằng chuỗi
 - Hằng ký tự: 'A', 'a', ...
 - Hằng chuỗi: "Hello World!", "Nguyen Van A"

❖ Lệnh:

 Lệnh thực hiện một chức năng nào đó (khai báo, gán, xuất, nhập,...) và được kết thúc bằng dấu chấm phẩy (;)

❖ Khối lênh:

 Khối lệnh gồm nhiều lệnh và được đặt trong cặp dấu ngoặt { }

Qui ước viết lệnh trong C

- Mỗi lệnh nằm trên một dòng. Cuối dòng lệnh PHAI có dấu chấm phẩy (;)
- Không nên đặt nhiều lệnh trên cùng một dòng, ngay cả các khai báo biến. Trừ cặp lệnh nhập xuất có thể viết trên cùng một dòng.
- ❖ Phải sử dụng Tab để trình bày lệnh.
- Phải khai báo biến trước khi sử dụng.

Cấu trúc chương trình C

```
#include "..."; // Khai báo file tiêu đề
int x; // Khai báo biến hàm
void Nhap(); // Khai báo hàm

void main() // Hàm chính
{
    // Các lệnh và thủ tục
}
```


Ví dụ 1

Thư viện nhập xuất chuẩn Ghi chú /*VIDU.CPP*/ #include <stdio.h> int main() printf("Nhap mon lap trinh\n"); Hàm main printf("Vi du don gian\n"); return 0; Nhap mon lap trinh Vi du don gian

Báo CT kết thúc cho HĐH

Ví dụ 2

```
#include <stdio.h>
#include <conio.h>
void main()
     int x, y, tong;
     printf("Nhap hai so nguyen: ");
     scanf("%d%d", &x, &y);
     tong = x + y;
     printf("Tong hai so la %d", tong);
     getch();
```


Ví dụ 3

Khai báo 2 biến số nguyên, "a" và "b"

Nhập 2 số nguyên vào a và b

Viết các biểu thức "a", "b" và "a-b" theo định dạng %i

```
#include <stdio.h>
int main(void)
{
   int a, b;
    printf("Nhap 2 so ngguyen: ");
    scanf("%i %i", &a, &b);
    printf("%i - %i = %i\n", a, b, a - b);
    return 0;
              Nhap 2 so nguyen: 21 17
              21 - 17 = 4
```


Một số lưu ý từ ví dụ

- Phần ghi chú được trình biên dịch bỏ qua
- Phân biệt chữ in hoa và chữ in thường
- Câu lệnh luôn được kết thúc bằng dấu ;
- Chuỗi ký tự phải ghi giữa cặp nháy kép "
- In xuống dòng dùng ký tự \n
- Chương trình có một hàm main

Qui ước

❖Tên/Định danh (Identifier)

- Một dãy ký tự dùng để chỉ tên một hằng số, hằng ký tự, tên một biến, một kiểu dữ liệu, một hàm một hay thủ tục.
- Không được trùng với các từ khóa và được tạo thành từ các chữ cái và các chữ số nhưng bắt buộc chữ đầu phải là chữ cái hoặc _.
- Số ký tự tối đa trong một tên là 255 ký tự và được dùng ký tự _ chen trong tên nhưng không cho phép chen giữa các khoảng trắng.