Práctica V - Ejercicios - Modelos de Descomposición de Programas Paralelos

Problema 3.1

Task-dependency graph corresponding to figure 3.2

Critical path (colored in blue) length: 27

Total amount of work: 63

Average degree of concurrency = 63/27 = 2.33

Task-dependency graph corresponding to figure 3.3

Critical path (colored in blue) length: 34

Total amount of work: 64

Average degree of concurrency = 64/34 = 1.88

Problema 3.2

*Asignándole a cada nodo un peso de 1

Α.

- 1. Maximum degree of concurrency: 8
- 2. Critical path length: 4
- 3. Maximum achievable speedup over one process assuming that an arbitrarily large number of processes is available: 15/4
- 4. Minimum number of processes needed to obtain the maximum possible speedup: 8
- 5. Maximum achievable speedup if the number of processes is limited to (a) 2 = 15/8, (b)
- 4 = 3, and (c) 8 = 15/4.

В.

- 1. Maximum degree of concurrency: 8
- 2. Critical path length: 4
- 3. Maximum achievable speedup over one process assuming that an arbitrarily large number of processes is available: 15/4
- 4. Minimum number of processes needed to obtain the maximum possible speedup: 8
- 5. Maximum achievable speedup if the number of processes is limited to (a) 2 = 15/8, (b)
- 4 = 3, and (c) 8 = 15/4.

C.

- 1. Maximum degree of concurrency: 8
- 2. Critical path length: 7
- 3. Maximum achievable speedup over one process assuming that an arbitrarily large number of processes is available: 2
- 4. Minimum number of processes needed to obtain the maximum possible speedup: 3
- 5. Maximum achievable speedup if the number of processes is limited to (a) 2 = 7/4. (b)
- 4 = 2, and (c) 8 = 2.

D.

- 1. Maximum degree of concurrency: 8
- 2. Critical path length: 8
- 3. Maximum achievable speedup over one process assuming that an arbitrarily large number of processes is available: 15/8
- 4. Minimum number of processes needed to obtain the maximum possible speedup: 2
- 5. Maximum achievable speedup if the number of processes is limited to (a) 2 = 15/8, (b)
- 4 = 15/8, and (c) 8 = 15/8.

Problema 3.3

For matrix multiplication shown in figure 3.10

*4 independent tasks

Average degree of concurrency: 4

Critical path length: 1

For matrix multiplication shown in figure 3.11 *8 tasks (where each even numbered task depends on the previous) Average degree of concurrency: 4 Critical path length: 2

Problema 3.4

Tomando l como la ruta crítica del árbol, sabemos que no existe algún otro camino más largo. Por lo tanto, para contener todos los nodos del árbol necesitamos al menos t/l caminos; de manera que d ha ser mayor o igual a t/l. Si d fuera mayor que t-l+1, no pudieramos tener una ruta crítica de longitud l porque nos harían falta l-1 más nodos para poder tenerla. Por lo que se demuestra la proposición del enunciado.

Problema 3.5

Figure 3.27. A decomposition of LU factorization into 14 tasks.

Problema 3.6

- a) 1, 2, 6, 10, 11, 13, 14
- b) 1, 2, 6, 10, 12, 13, 14
- c) 1, 4, 6, 10, 11, 13, 14
- d) 1, 4, 6, 10, 12, 13, 14

Problema 3.7

	P0	P1	P2	
1	1			
2	2	4	3	
3	5	6	8	
4	7	10	9	
5	12	11		
6	13			
7	14			

Problema 3.8

i i obicina t	<u> </u>			
	<i>P0</i>	<i>P1</i>	P2	<i>P3</i>
1	1			
2	2	5	4	3
3	6	7	8	9
4	10			
5	11	12		
6	13			
7	14			