STA304

Neil Montgomery 2016-03-14

ratio, regression, difference estimation

recap

If one has a sample $\{(y_1, x_1), \dots, (y_n, x_n)\}$ the following may be of interest:

- 1. To estimate the population ratio $R = \tau_y / \tau_x$ using $\hat{R} = r = \bar{y} / \bar{x}$.
- 2. To enable estimation of τ_v when N is unknown.
- 3. To enable improved estimation of τ_y or μ_y when y and x are correlated.

Formula summary:

r	$\hat{ au}_y$	$\hat{\mu}_{\mathrm{y}}$	$\hat{V}(r)$
$\overline{y}/\overline{x}$	$r au_{\scriptscriptstyle X}$	$r\mu_{\scriptscriptstyle X}$	s_r^2

The error bounds are based on this new object:

$$s_r^2 = \frac{\sum_{i=1}^n (y_i - rx_i)^2}{n-1}$$

$r_i = y_i - rx_i$ is a "residual"

Reconsider the teacher salary example with r = 1.0380283. First 5 lines shown:

```
Teacher Past Present Predicted = r*Past
                                                r i
##
## 1
          1 30400
                   31500
                                 31556.06 -56.06028
## 2
         2 31700
                   32600
                                 32905.50 -305.49706
        3 32792
## 3
                   33920
                                 34039.02 -119.02397
## 4 4 34956 36400
                                 36285.32 114.68280
## 5
    5 31355
                   32020
                                 32547.38 -527.37730
```

Think of rx_i as the "predicted" value for y_i . Then $y_i - rx_i$ is in some sense a prediction error, or "residual". And s_r^2 is just the "average" of the squared residuals.

"residuals" plotted

example of improved estimation

We have estimated a ratio and estimated τ_y using ratio techniques because there was no other option. In this example we'll estimate μ_y using ratio techniques simply to take advantage of the information contained in the x variable.

Consider question 6.6. "Rats doing mazes while on drugs". They have \$N = 763 who completed the maze on the standard drug in an average of $\mu_x = 17.2$ seconds.

A random sample of 11 rats are given a new drug. Their old times x_i were known from before and they complete the maze while on the new drug in time y_i .

The task is to estimate the average maze time μ_{y} for the new drug.

these are your rats on drugs

The estimated ratio is r = 1.0226269. The mean estimate is\$\$_y = $s_r^2 = 0.2049424$.