Radon-Nikodym Theorem Proof

Ameer Qaqish

July 5, 2021

This proof is based on von Neumann's proof, but makes it more obvious how the decomposition of ν arises.

Radon-Nikodym Theorem. Let ν, μ be finite measures on a measure space (X, F). Then there exist measures λ, ρ on (X, F) such that

$$\nu = \lambda + \rho,$$
$$\lambda << \mu,$$
$$\rho \perp \mu.$$

Proof. Define linear functionals $\phi_1, \phi_2 \colon L^2(X, \nu + \mu) \to \mathbb{C}$ by

$$\phi_1(f) = \int_X f \, d\nu,$$

$$\phi_2(f) = \int_X f \, d\mu.$$

Note that for $f \in L^2(\nu + \mu)$ we have by Holder's inequality and finiteness of ν that

$$|\phi_{1}(f)| \leq \int_{X} |f| \ d\nu$$

$$\leq ||1||_{L^{2}(X,\nu)} ||f||_{L^{2}(X,\nu)}$$

$$\leq \sqrt{\nu(X)} ||f||_{L^{2}(X,\nu+\mu)}$$

$$< \infty.$$

Thus ϕ_1 is well defined and continuous. Similarly, ϕ_2 is well defined and continuous. Thus by the Hilbert space representation theorem, there exist $h_1, h_2 \in L^2(X, \nu + \mu)$ such that for every $f \in L^2(X, \nu + \mu)$,

$$\int_X f \, d\nu = \int_X f h_1 \, d(\nu + \mu) \tag{1}$$

and

$$\int_X f \, d\mu = \int_X f h_2 \, d(\nu + \mu). \tag{2}$$

In particular, (1) and (2) hold for every bounded measurable f, and therefore for any simple function. Putting $f = \chi_{\{h_1 \le -\frac{1}{n}\}}$ in (1) gives $\nu(\{h_1 \le -\frac{1}{n}\}) \le -\frac{1}{n}(\nu(\{h_1 \le -\frac{1}{n}\})) + \mu(\{h_1 \le -\frac{1}{n}\}))$, which implies $\nu(\{h_1 \le -\frac{1}{n}\}) = \mu(\{h_1 \le -\frac{1}{n}\}) = 0$ for all $n \in \mathbb{N}$. Thus $h_1 \ge 0$ a.e. $\nu + \mu$. Similarly, $h_2 \ge 0$ a.e. $\nu + \mu$. Thus by changing representatives of the equivalence classes of h_1 and h_2 in $L^2(\nu + \mu)$, we may assume that $h_1(x) \ge 0$ and $h_2(x) \ge 0$ for all $x \in X$. Since (1) and (2) hold for simple functions, by the monotone convergence theorem, (1) and (2) hold for all measurable $f: X \to [0, \infty]$. Putting $f = \chi_{\{h_2 = 0\}}$ in (2) gives $\mu(\{h_2 = 0\}) = 0$. Let $Z = \{h_2 = 0\}$. For any measurable set A,

$$\begin{split} \nu(A) &= \nu(A \cap Z^c) + \nu(A \cap Z) \\ &= \int_{A \cap Z^c} h_1 \, d(\nu + \mu) + \nu(A \cap Z) \\ &= \int_{A \cap Z^c} \frac{h_1}{h_2} h_2 \, d(\nu + \mu) + \nu(A \cap Z) \\ &= \int_{A \cap Z^c} \frac{h_1}{h_2} \, d\mu + \nu(A \cap Z). \end{split}$$

Thus the measures λ, ρ defined by

$$\lambda(A) = \int_{A \cap Z^c} \frac{h_1}{h_2} d\mu,$$
$$\rho(A) = \nu(A \cap Z)$$

have the desired properties.