Compass Aligned Distributional Embeddings with Language Shift

Artificial Intelligence - 2019/2020

Amrani Hamza 807386 - Carta Costantino 808417 - Vitali Simone 807792

Aim of the project

- Verify that the vector representation of a word translated in different languages is similar
- Using TWEC to align documents translated in different languages
- TWEC AS-IS vs TWEC-IIS (Identity Injection Substitution)
- Obtained results analysis

Dataset*

- Proceedings of the EUROPEAN PARLIAMENT (1996 -2011)
- Extracted from the website of the European Parliament
- Composed by 1.946.253 non-structured sentences
- Translated in 21 european languages:
 - o <u>italian</u>
 - o english
 - O ...

Aligned through Gale-Church algorithm

Workflow

Dataset preprocessing

- 1. Subsampling **500k sentences**
- 2. Tokenization
- 3. Data cleaning:
 - to lower case
 - deaccented characters
 - removed words with length < 2 or > 15
 - removed digit numbers, date, time, punctuation and special characters
- 4. Removed **stopwords**
- 5. **Lemmatization** with "spacy Lemmatizer"
- 6. Removed words with occurence equal or less than 3 in total

The same preprocessing has been executed for the two corpus

Train - Test Split

Test set

For each

word

TEST

SENTENCES

IT

TRANSLATION

cosa, thing cane, dog albero, tree

if word

LEMMATIZATION

man, uomo dog, cane tree, albero

Translation and Lemmatization

TWEC* with CBOW on train set

- CBOW with negative sampling:
 - Concatenation of the two corpus tokens (Save T)
 - o Italian tokens (Target fixed = T)
 - English tokens (Target fixed = T)
- Parameters:
 - o Dimension: 300
 - Epochs: **10**
 - # of negative sampling: 5
 - o Initial LR: **0.025**
 - o Init Mode: **hidden**

^{*} Carlo, Valerio & Bianchi, Federico & Palmonari, Matteo (2019) <u>Training Temporal Word Embeddings with a Compass</u>

TWEC AS-IS

 Word embeddings from two different languages are difficult to compare

^{*} Word vectors are visualized with PCA

TWEC IIS (Identity Injection Substitution) - Mapping

- Creation of a mapping between words translated in the two languages
- Aim: represent the same word in different languages with the same representation

cosa, thing, id0 anno, year, id1 uomo, man, id2 giorno, day, id3 volta, time, id4 casa, home, id5

TWEC IIS - Mapping taxonomy

- A. Most **frequently** used words in the two languages:
 - Italian
 - https://it.wiktionary.org/wiki/Utente:.mau./Le_mille_parole_pi%C3%B9_comuni
 - English
 - https://en.wikipedia.org/wiki/Dolch_word_list
- B. Most **frequent** words that appear within the two corpus:
 - 350 most frequent words for each corpus

For each type of mapping a **dictionary** has been created composed up by ~500 mappings.

TWEC AS-IS vs TWEC IIS

< european , europeo > = id583

< kitchen , cucina > = id282

< painting , quadro > = id117

< sense , senso > = id49

^{*} Word vectors are visualized with PCA

Evaluation metrics

MRR (Mean Reciprocal Rank):

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{Q} rac{Relevance_Label_Value}{ ext{rank}_i}$$

- HITS@k: if correct translation appear within the top-k
 - elements of measure results list
- Cosine similarity: $similarity = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$

Results on Test set

	MODELS	MRR	HITS@1	HITS@3	HITS@5	HITS@10
lta → Eng	TWEC1	0.1403	0.1095	0.1807	0.2102	0.2418
	TWEC2-A	0.5422	0.4909	0.6066	0.6350	0.6881
	TWEC2-B	0.6036	0.5496	0.6699	0.6941	0.7212
	TWEC2-A+B	0.6439	0.6009	0.6974	0.7304	0.7629
Eng → Ita	TWEC1	0.1141	0.9500	0.1386	0.1776	0.2165
	TWEC2-A	0.4676	0.4092	0.5442	0.5782	0.6248
	TWEC2-B	0.5566	0.5056	0.6153	0.6521	0.6898
	TWEC2-A+B	0.5943	0.5397	0.6616	0.6928	0.7278

Conclusions

- Good results
- TWEC AS-IS doesn't work well in Language shift as in Temporal shift
- The mapping between words improve the accuracy of the model in terms of cosine similarity between the original and the translated word representation

Future work...

- Compare corpus in other languages
 - o ther european languages (e.g. fr, de, etc..)
- Increase Train and Test data quantity
- Improve preprocessing
 - N-grams handling, ...
- Try other algorithms of embedding and alignment
- Further analysis on obtained results

Thank you!