Digitalna vezja UL, FRI

Vaja 11, Pomnilniki: ROM, RAM

Pomnilnik (ROM, RAM)

Logisim

- ROM:
 - Naslovni vhodi (A Address)
 - Onemogoči (sel chip select)
 - Izhodi (D Data)

- RAM:
 - Naslovni vhodi (A Address)
 - Onemogoči (sel chip select)
 - Podatki na izhod (Id Load)
 - Briši (clr Clear)
 - Vhodi/Izhodi (D Data)

Vaja 1: Pomnilnik RAM

- Naslov: A
- Podatkovni vhod/izhod: D
- Krmilni signali:
 - > sel (Chip Select): 0 onemogoči delovanje RAMa
 - ➢ Id (Load): I omogoči podatke na izhod RAMa
 - clr (Clear): I asinhronsko brisanje RAMa
 - > Clk urin signal

Realizirajte:

- ▶ Branje pomnilnika (D→Izhod)
- ➤ Pisanje v pomnilnik (D→Vhod)
- ▶ Branje/Pisanje (D→Vhod/Izhod)

Rešitev:

Vaja 2: Vpis/branje ASCII znakov

Program: logisim-win-2.3.1

Vpis v RAM:

- Signala za določanje vpisa:Vpis = 1, RAM ld =0
- MUX = 0, Vpiše se začetna koda ASCII (število $0 = 30_H$)
- MUX = 1, s signalom Ura se potem vpisujejo kode vse do 3e_H

Branje:

• Signala za določanje branja:Vpis = 0, RAM Id = I

Števec

- Nastavitev maksimalne vrednosti: 0x5
- Vhodi: clk, ct = I inkrement
- ▶ Izhodi: $Q_2 Q_1 Q_0$ stanja, C = I, ko števec doseže maksimalno vrednost

Circuit: main					
Circuit Name	main				
Shared Label					
Shared Label Facing	East				
Shared Label Font	SansSerif Plain 12				

Vpis maksimalne vrednosti in dekrement:

Vaja 3: Realizacija števca

- Števec ima stanja:
 - 0, 1, 2, 3, 4
- Operacija:
 - inkrement
- Vhod:
 - \square B = 1 izvede se asinhronsko brisanje števca = Reset,
- Izhod:
 - \square P = 1, če je števec v stanjih 0,1,2,3
 - □ P = 0, če je števec v stanju 4.
- Realizacija logisim:
 - □ Register stanj: JK pomnilne celice
 - Vhodna/izhodna logika: ROM
 - Prikaz stanj: Hex Digit Display, P: LED

Rešitev: Pravilnostna tabela

Q ₂ (t)	Q ₁ (t)	Q ₀ (t)	$Q_2(t+1)$	$Q_{I}(t+I)$	$Q_0(t+1)$	J ₂ =K ₂	J _I =K _I	$J_0=K_0$	Р
0	0	0	0	0	I	0	0	I	I
0	0	I	0	I	0	0	I	I	I
0	I	0	0	I	I	0	0	I	I
0	I	I	I	0	0	I	I	I	I
1	0	0	0	0	0	I	0	0	0
1	0	I	0	0	0	I	0	I	0
1	I	0	0	0	0	I	I	0	0
1	I	I	0	0	0	I	I	I	0

• ROM 8 x 4

Naslov	Podatki: JK, P
0	3
I	7
2	3
3	F
4	8

Rešitev - logisim

Vaja 4: Realizacija semaforja

Za primer semaforja (Vaja 10) izdelajte krmilnik, ki naj reagira na vhodni signal B, ki ga upravlja pešec.

- Pri realizaciji uporabite stanja z izhodi: Rg, Rr, Yr, Gr
- Na semaforju za pešca naj gori zelena luč 4 urine periode.
- Pri določanju stanj pazite na varnost pešcev!
 - Stanja, ki so varna za pešca
 Rr (rdeča luč avto, rdeča luč pešec)
 Rg (rdeča luč avto, zelena luč pešec)
 Yr (rumena luč avto, rdeča luč pešec)
 Gr (zelena luč avto, rdeča luč pešec)
 - Stanji, ki sta nevarni za pešca
 Yg (rumena luč avto, zelena luč pešec)
 Gg (zelena luč avto, zelena luč pešec)
- □ Oznake vhodov in izhodov: B gumb (1 pritisnjen, 0 ni pritisnjen), R rdeča luč avto, Y rumena luč avto, G zelena luč avto, r rdeča luč pešec, g zelena luč pešec,

- 1. Narišite diagram prehajanja stanj in izpolnite aplikacijsko tabelo.
- 2. Za register stanj uporabite dve JK pomnilni celici.
- 3. Za časovno izvedbo kombinacije Rg uporabite števec.
- 4. Za realizacijo funkcij za določanje naslednjega stanja S(t+1) in izhodov za prižiganje luči uporabite ROM.

Diagram prehajanja stanj

Rešitev:

- B = 1 (semafor gre v stanje Yr)
- P = 1 (čas delovanja semaforja za pešca), postavi se na 1, ko je pešec pritisnil tipko (B = 1) in potem traja 3 periode (uporabimo števec)

	Q ₁ (t)	Q ₀ (t)
Gr	0	0
Yr	0	I
Rr	I	0
Rg	I	I

Števec (D pomnilna celica)

- \square B = Reset, izhod P= 1, če je števec: 0,1,2,3.
- Realizacija: D pomnilne celice, logična vrata: AND, OR, NOT

Q2(t)	QI (t)	Q0(t)	Q2(t+1)	QI (t+I)	Q0(t+1)	Р
0	0	0	0	0	I	I
0	0	I	0	I	0	I
0	I	0	0	I	I	I
0	I	I	I	0	0	I
I	0	0	0	0	0	0
I	0	I				
I	I	0				
I	I	I				

$$D2 = Q2(t+1) = \overline{Q2}.Q1.Q0$$

$$D1 = Q1(t+1) = \overline{Q2}.\overline{Q1}.Q0 \lor \overline{Q2}.Q1.\overline{Q0}$$

$$P = \overline{Q2} \lor Q1 \lor Q0$$

Števec (JK pomnilna celica)

Realizacija: JK pomnilne celice, logična vrata: AND OR; NOT

Q2(t)	QI (t)	Q0(t)	Q2(t+1)	QI (t+I)	Q0(t+1)	J2=K2	JI=KI	J0=K0	Р
0	0	0	0	0	I	0	0	I	I
0	0	I	0	I	0	0	I	I	I
0	ı	0	0	I	I	0	0	I	I
0	ı	I	I	0	0	I	I	I	I
I	0	0	0	0	0	I	0	0	0
I	0	I							
I	ı	0							
I	I	I							

$$J2 = K2 = \overline{Q2}.Q1.Q0 \lor Q2.\overline{Q1}.\overline{Q0}$$
 $J0 = K0 = \overline{Q2} \lor Q1 \lor Q0$ $J1 = K1 = \overline{Q2}.Q0$ $P = \overline{Q2} \lor Q1 \lor Q0$

Števec (JK pomnilna celica) - minimizacija

		Q2		
Q1	X	x	1	
ı	1	х		
			Q0	

$$J2 = K2 = Q2 \vee Q1.Q0$$

$$J0 = K0 = \overline{Q2}$$

		Q2		
Q1	х	x	1	
ı		x	1	
			20	

$$J1=K1=Q0$$

$$P = \overline{Q2}$$

Števec - logisim

Števec - logisim

- Uporabimo števec, kjer določimo:
 - Maksimalno vrednost 5
 - P = 1 (izhod števca se postavi na 1, ko doseže maksimalno vrednost 5)

Counter					
Data Bits	3				
Maximum Value	0x5				
Action On Overflow	Wrap around				
Trigger	Rising Edge				
Label					
Label Font	SansSerif Plain 12				

Register stanj

Definiramo samo prehode, ki so podani v diagramu

Trenutno stanje		Vh	od	Naslednje stanje		
QI(t)	Q0 (t)	В	Р	QI (t+I)	Q0(t+1)	
0	0	0		0	0	
0	0	I	I	0	I	
0	I					
0	I	0	I	I	0	
I	0					
I	0	0	I	I	I	
I	I	0	0	0	0	
I	I	0	I	I	I	

$$D1 = \overline{Q1}.Q0.\overline{B}.P \lor Q1.\overline{B}.P$$

$$D0 = \overline{Q1}.\overline{Q0}.B.P \lor Q1.\overline{B}.P$$

$$D0 = \overline{Q1}.\overline{Q0}.B.P \lor Q1.\overline{B}.P$$

Register stanj - logisim

Izhodi – prižiganje luči

S	stanje)	semafor avto			semafo	or pešec
	Q ₁	Q_0	R	Υ	G	r	g
Gr	0	0	0	0	1	1	0
Yr	0	1	0	1	0	1	0
Rr	1	0	1	0	0	1	0
Rg	1	1	1	0	0	0	1

$$R = Q1$$
 $r = \overline{Q1.Q0} = \overline{Q1} \lor \overline{Q0}$ $Y = \overline{Q1.Q0}$ $g = Q1.Q0$ $G = \overline{Q1.\overline{Q0}}$

Semafor - logisim

□ Signal B =1 toliko <u>časa</u>, da se prižge Y, potem ga postavimo na 0) P_števec_cnt P_števec Avto Reg_stanj Reg_stanj Pešec Pešec

22