Directly imaged wide orbit planets/brown dwarfs

(Marois et al., 2010)

Disk instability theory

Young, massive protoplanetary disks can fragment under its own gravity

(Lin, Fargo sims., log density)

The cooling criterion is empirical!

When do realistic protostellar disks fragment?

Work out $\Sigma(R)$, T(R)..etc., then ask

- Where/when is Toomre $Q \lesssim 2$?
- ② Where/when is $t_{\rm cool}\Omega \lesssim 3$?

WARNING

Critical cooling depends on the numerical simulation!

(resolution, 2D/3D, local/global, particle-based or grid-based simulations)

When do realistic protostellar disks fragment?

Work out $\Sigma(R)$, T(R)..etc., then ask

- Where/when is Toomre $Q \lesssim 2$?
- **2** Where/when is $t_{\rm cool}\Omega \lesssim 3$?

WARNING

Critical cooling depends on the numerical simulation!

(resolution, 2D/3D, local/global, particle-based or grid-based simulations)

Motivation 1:

Assess disk fragmentation without input from hydrodynamic simulations

Beyond classical gravitational instability

Modern simulations (c. 2010)

Cooling physics, e.g.

$$\frac{\partial E}{\partial t} = -\frac{E}{t_{\text{cool}}}$$

• Turbulent/viscous, e.g.

$$\nu = \frac{\alpha c_s^2}{\Omega}$$

Analytic toolbox (c. 1960) Lin-Shu dispersion relation, Toomre Q

$$\omega^{2} = \kappa^{2} - 2\pi G \Sigma |k| + c_{s}^{2} k^{2}$$

$$Q \equiv \frac{c_{s} \kappa}{\pi G \Sigma}$$

- Isothermal/adiabatic (no cooling)
- Laminar (inviscid)

Beyond classical gravitational instability

Modern simulations (c. 2010)

Cooling physics, e.g.

$$\frac{\partial E}{\partial t} = -\frac{E}{t_{\text{cool}}}$$

Turbulent/viscous, e.g.

$$\nu = \frac{\alpha c_s^2}{\Omega}$$

Analytic toolbox (c. 1960) Lin-Shu dispersion relation, Toomre Q

$$\omega^2 = \kappa^2 - 2\pi G \Sigma |k| + c_s^2 k^2$$
$$Q \equiv \frac{c_s \kappa}{\pi G \Sigma}$$

- Isothermal/adiabatic (no cooling)
- Laminar (inviscid)

Motivation 2:

Generalize analytic treatment of GI to include cooling, irradiation and viscosity

$$\omega = \omega(k; Q, t_{\text{cool}}, \alpha)$$

Quantifying cooling

Dispersion relation with cooling

$$\underbrace{s^2}_{\text{growth}} = \underbrace{2\pi G \Sigma |k|}_{\text{+gravity}} \underbrace{-\Omega^2}_{\text{-rotation}} - \underbrace{\left(\frac{T_{\text{irr}}/T + \gamma t_{\text{cool}} s}{1 + t_{\text{cool}} s}\right) c_s^2 k^2}_{\text{-modified pressure}}$$

(Lin & Kratter, 2016, arXiv:1603.01613)

- \bullet T_{irr} : irradiation or floor temperature
- ullet Can be unstable even for Q>1 (cf. Q<1 for classic GI)

Cooling changes the fundamental nature of disk GI

Cooling-driven gravitational instability

(Lin & Kratter, 2016, arXiv:1603.01613)

Understanding simulations

Cooling timescale to remove pressure over a lengthscale $\sim H$

$$t_{\text{cool},*} = (\sqrt{\gamma} - 1)^{-3/2} \Omega^{-1}$$
 (Lin & Kratter, 2016, arXiv:1603.01613)

Simulations: Gammie (2001); Rice et al. (2005, 2011); Paardekooper (2012)

Viscous gravitational instability

 Viscosity/friction can remove rotational stabilization (Lynden-Bell & Pringle, 1974)

Putting it all together: application to protoplanetary disks

Input physical disk model with cooling and viscosity — get growth timescales

(Lin & Kratter, 2016, arXiv:1603.01613)

• High \dot{M} disk fragments \gtrsim 60AU, growth times \sim one orbit

M-K. Lin (Arizona) Vortices, VSI, and GI April 7 2016 15 / 35

What's next for disk GI theory?

- Global effects
 with cooling and viscosity
 - Mass infall
 - Disks with radial structure
 - Large-scale spiral instabilities
- Magnetic effects : good or bad for stability?
 - ► Extend Lin (2014) to include cooling/viscosity