Max Marks: 30

Time: 4.30-6.00

1. The real root of following equation upto two decimal accuracy is: $5x-2\sin x-1=0$

[5]

2. Find approximation of following function for second order Taylor series using $x_i=0$, h=1, and $f(x)=0.1x^4+0.15x^3+0.5x^2+0.25x+1.2$

[4]

- 4. The following equation represents velocity of parachutist. Find drag coefficient (c) using bisection method to until 2 iterations. m=70 kg, v=40 m/s at t=10 s, c_i=12 Ns/m, c_u=16 Ns/m.

$$v = \frac{mg}{c} \left(1 - e^{-\frac{ct}{m}} \right) \tag{4}$$

5. The following are the system of equations generated by applying the mesh current law to a circuit. Solve I₁, I₂, I₃ using Gauss elimination method.

$$60I_1 - 40I_2 = 200$$

$$-40I_1 + 150I_2 - 100I_3 = 0$$

$$-100I_2 + 130I_3 = 230$$

[5]

6. Derive the coefficients of linear regression model for the following data: $(x_1, y_1)=(1, 1)$, $(x_2, y_2)=(2, 3)$, $(x_3, y_3)=(3, 2)$.

[5]

7. Using Lagrange interpolation of following function, find the value at x=2 for the data: $x_0=1$, $x_1=3$, $x_2=6$.

$$f(x) = \ln x$$

The Lagrange interpolating polynomial is represented as

$$f(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$
, where $L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$

[3