МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Нижегородский государственный университет им. Н.И. Лобачевского» Институт информационных технологий, математики и механики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

«Решение многомерных интегралов методом Симпсона»

Выполнила:
студентка группы 381706-2
Савосина Александра Дмитриевна
Подпись
Научный руководитель:
доцент кафедры МОСТ
Сысоев А.В.
Подпись

Нижний Новгород 2019

Оглавление

Введение	3
Постановка задачи	4
Описание алгоритма	5
Схема распараллеливания	6
Описание программной реализации	7
Корректность	8
Результаты экспериментов	9
Вывод	10
Литература	11
Приложение	12

Введение

В современном мире многие вычисления уже не производятся вручную – для этого существует специальная вычислительная техника, ведь проводимые эксперименты становятся сложнее: объём выборки и трудоёмкость алгоритмов уже не позволяют производить расчёты на бумаге – такой объём работы может оказаться просто не под силу даже группе людей, к тому же в таком случае нельзя гарантировать правильность подсчётов наверняка, так как имеет место быть человеческих фактор. Для больших объёмов вычислений уже давно используют специальную технику и имеющиеся алгоритмы, однако даже при использовании производящих подсчёты устройств может пройти достаточно много времени до получения результата. А если это не научный эксперимент, результаты которого в дальнейшем станут почвой для размышлений больших умов, а программа, работающая в реальном времени, то вопрос скорости получения ответа встаёт более остро. Здесь нам на помощь приходит понятие оптимизации.

Оптимизация — процесс максимизации выгодных характеристик, соотношений (например, оптимизация производственных процессов и производства), и минимизации расходов.

В нашем случае речь идёт о минимизации времени вычислений путём распараллеливания программы на некоторое количество процессов, так как время в контексте поставленной задачи — самый ценный ресурс.

Реализация метода Симпсона включает в себя рекурсивный алгоритм, необходимый для осуществления погружения на уровни при вычислении многомерного интеграла, являющийся частью системы распараллеливания интеграла первого уровня на заданное число процессов.

Постановка задачи

Основной задачей проекта является изучение метода Симпсона для решения множественных интегралов различной сложности, реализация программы, осуществляющей последовательное и параллельное вычисление заданных уравнений, тестирование работоспособности написанных алгоритмов и анализ полученных результатов и эффективности на основе времени работы программы.

Описание алгоритма

Суть метода Симпсона заключается в приближении подынтегральной функции на отрезке [a; b] интерполяционным многочленом второй степени $\mathbf{p_2}(\mathbf{x})$, то есть приближение графика функции на отрезке параболой.

Пусть функция $\mathbf{y} = \mathbf{f}(\mathbf{x})$ непрерывна на отрезке $[\mathbf{a}; \ \mathbf{b}]$ и нам требуется вычислить определенный интеграл $\int_a^b \mathbf{f}(\mathbf{x}) \, d\mathbf{x}$.

Разобьем отрезок [a; b] на n элементарных отрезков [x2i-2; x2i], $i=1,\,2,\,...,\,n$ длины 2h=(b-a) / n точками $a=x_0< x_2<...< x_{2n-2}< x_n=b$.

Пусть точки \mathbf{x}_{2n-1} , $\mathbf{i}=1,2,...,n$ являются серединами отрезков [\mathbf{x}_{2i-2} ; \mathbf{x}_{2i}], $\mathbf{i}=1$, $\mathbf{2},...,n$ соответственно.

В этом случае все "узлы" определяются из равенства $\mathbf{x}_i = \mathbf{a} + \mathbf{ih}, \mathbf{i} = \mathbf{0}, \mathbf{1}, \mathbf{2}, ..., \mathbf{n}$

На каждом интервале [\mathbf{x}_{2i-2} ; \mathbf{x}_{2i}], $\mathbf{i}=\mathbf{1}$, $\mathbf{2}$, ..., \mathbf{n} подынтегральная функция приближается квадратичной параболой $\mathbf{y}=\mathbf{a}_i\,\mathbf{x}^2+\mathbf{b}_i\,\mathbf{x}+\mathbf{c}_i$, проходящей через точки (\mathbf{x}_{2i-2} ; $\mathbf{f}(\mathbf{x}_{2i-2})$), (\mathbf{x}_{2i-1} ; $\mathbf{f}(\mathbf{x}_{2i-1})$), (\mathbf{x}_{2i} ; $\mathbf{f}(\mathbf{x}_{2i})$). Отсюда и название метода - метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла $\int_{x2i-2}^{x2i} f(x) \, dx$ взять $\int_{x2i-2}^{x2i} ai \, x2 \, + \, bi \, x \, + \, ci \, dx$, который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключается суть метода парабол.

Геометрически это выглядит так:

Рисунок 1. Геометрическое представление метода парабол.

Схема распараллеливания

В лабораторной работе осуществляется распараллеливание интеграла первого уровня на заданное число процессов. В начале имеется область интегрирование, заданная отрезками [ai; bi], i = 1, ..., n, количество которых совпадает с количеством интегралов n в многомерном интеграле. Также в примере изначально задаётся параметр, определяющий разбиение данного отрезка; эти данные в алгоритм передаются в алгоритм виде литеры и не имеют отдельной переменной для хранения, так как для каждого примера имеется своё индивидуальное значение.

Далее в зависимости от количества процессов данные о разбиении первого интеграла передаются в разные процессы для вычисления значений на заданных промежутках, после чего данные суммируются и становятся итоговым ответом. На уровнях интеграла > 2 разбиение не производится, поскольку предоставленный алгоритм уже обеспечивает оптимизацию решения по времени работы программы. Погружение производится за счёт рекурсии, которая позволяет производить вычисления для множественного интеграла. Остановка программы и возвращение результата осуществляются при прохождении процессом всех уровней интегрирования и завершения рекурсии.

Описание программной реализации

Для решения поставленной задачи используется три основные функции и одна вспомогательная:

- double calculateIntegralSequential(const std::vector<std::pair<double, double>>& _scope, const size_t& _n, const std::function<double(const std::vector<double>&)>& f, const size_t& _nRec = 2)

 последовательное вычисление интеграла
- double calculateRecusionLevel(std::vector<double> _fixedVar, size_t _levelNumber, const std::vector<std::pair<double, double>>& _scope, const std::function<double(const std::vector<double>&)>& f, const size_t& _n) _ функция, вычисляющая уровень погружения (или уровень интеграла, на котором производятся вычисления)
- void scopeCheck(const std::vector<std::pair<double, double>>& scope) – проверяет правильность границ интегрирования (чтобы верхняя граница не оказалась меньше нижней)

Корректность

Основным инструментом работоспособности программы являются тесты, разработанные при использовании Google C++ Testing Framework.

Правильность получаемых результатов проверяется на пяти различных функциях разной сложности.

Примеры подынтегральных функций некоторых из них:

$$\sin(x + y) dxdy$$
, $x - (0, pi/2)$, $y - (0, pi/4)$
 $\sin(x)y\cos(z) dxdydz$, $x - (0, 1)$, $y - (-2, 2)$, $z - (3, 7)$
 $x^2+y+z+c^2+s^3$, $x - (0, 1)$, $y - (1, 2)$, $z - (-1, 1)$, $c - (-2, 2)$, $s - (0, 1)$

Все тесты проходят проверку, что является доказательством корректной работы программы

Результаты экспериментов

В таблицах приведены результаты времени вычислений в зависимости от количества процессов и сложности примеров.

Пример 1	Число разбиений = 2048			(0, pi/2), (0, pi/4)		$\sin(x + y) dx dy$	
	последовательно	1 попытка	2 попытка	3 попытка	4 попытка	5 попытка	среднее
4 процесса	3.01043	1.59008	1.60491	1.57133	1.6008	1.59154	1.591732
3 процесса	3.01043	2.5741	2.55274	2.55274	2.55274	2.57073	2.050062
2 процесса	3.01043	2.94741	3.02116	2.98953	3.03401	2.99584	2.99759

Таблица 1. Данные по первому примеру

Пример 2	Число разбиений = 200			(0, 1), (-2, 2), (3, 7)		sin(x) y cos(z)dxdydz	
	последовательно	1 попытка	2 попытка	3 попытка	4 попытка	5 попытка	среднее
2 процесса	7.14103	6.46929	6.90064	6.87955	6.85982	6.87668	6.79796
3 процесса	7.14103	4.28247	4.49798	4.49941	4.5008	4.4975	4.455632
4 процесса	7.14103	3.43169	3.38789	3.38789	3.57926	3.47251	3.451846

Таблица 2. Данные по второму примеру

Пример 3	Число разбиений	(0, 1), (1, 2), (-1, 1), (-2, 2), (0, 1)			x^2+y+z+c^2+s^3		
	последовательно	1 попытка	2 попытка	3 попытка	4 попытка	5 попытка	среднее
2 процесса	9.93028	5.49439	5.47534	5.50913	5.50732	5.54199	5.505634
3 процесса	9.93028	5.9047	5.88409	5.88613	5.88279	5.88328	5.888198
4 процесса	9.93028	4.41494	4.3233	4.25916	4.48253	4.36258	4.368502

Таблица 3. Данные по третьему примеру

Функция	Посл.	Параллельное время						
ИЗ	время		2		3	4		
таблицы		время	ускорение	время	ускорение	время	ускорение	
3	9.93028	5.505634	1.803658	5.888198	1.686472	4.368502	2.273155	
2	7.14103	6.79796	1.050466	4.455632	1.602697	3.451846	2.068756	
1	3.01043	2.99759	1.004283	2.050062	1.468458	1.591732	1.891292	

Таблица 4. Сравнение данных и расчёт ускорения

Полученные данные демонстрируют разность во времени работы при последовательном и параллельном вычислениях. По результатам можно сделать вывод, что параллельное выполнение программы выигрывает во времени у последовательного во всех случаях уравнений. Причём чем больше процессов, тем быстрее работает параллельная программа.

Вывод

Результатом лабораторной работы стала реализация метода Симпсона для решения множественного интеграла в виде параллельных и последовательных вычислений, причём основным результатом работы программы стали данные, подтверждающие превосходство параллельных вычислений. Корректность получаемых результатов проверяется с помощью тестов, написанных при использовании Google C++ Testing Framework.

Литература

- 1. Самарский А.А. «Введение в численные методы»
- 2. Самарский А. А., Гулин А. В. «Численные методы»

Приложение

simpson_method.h

```
// Copyright 2019 Savosina
#ifndef
MODULES_TASK_3_SAVOSINA_A_SIMPSON_METHOD_SIMPSON_METH
OD_H_
#define
MODULES_TASK_3_SAVOSINA_A_SIMPSON_METHOD_SIMPSON_METH
OD_H_
#include <vector>
#include <utility>
#include <functional>
double calculateIntegral(const std::vector<std::pair<double, double>>& _scope,
const size_t& _n,
const std::function<double(const std::vector<double>&)>& f, const size_t& _nRec
= 2);
double calculateIntegralSequential(const std::vector<std::pair<double, double>>&
_scope, const size_t& _n,
const std::function<double(const std::vector<double>&)>& f, const size_t& _nRec
double calculateRecusionLevel(std::vector<double>_fixedVar, size_t
levelNumber,
const std::vector<std::pair<double, double>>& _scope,
const std::function<double(const std::vector<double>&)>& f, const size_t& _n);
void scopeCheck(const std::vector<std::pair<double, double>>& scope);
#endif //
MODULES_TASK_3_SAVOSINA_A_SIMPSON_METHOD_SIMPSON_METH
OD_H_
```

main.cpp

```
// Copyright 2019 Savosina
#define _USE_MATH_DEFINES
#include <gtest-mpi-listener.hpp>
#include <gtest/gtest.h>
#include <cmath>
#include <utility>
#include <vector>
#include "./simpson_method.h"
TEST(Simpson_Method_MPI, Test_First_Function) {
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  std::function<double(const std::vector<double>&)> func = [](const
std::vector<double>& vec){
    return sin(vec[0]+vec[1]);};
  std::vector<std::pair<double, double>> scope = { {0, M_PI_2}, {0, M_PI_4}};
// expected 1.00028
  scopeCheck(scope);
  double res = calculateIntegral(scope, 100, func, 100);
  if (rank == 0) {
    ASSERT_LE(std::abs(res - 1.0), 0.01);
  }
}
TEST(Simpson_Method_MPI, Test_Second_Function) {
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  std::function<double(const std::vector<double>&)> func = [](const
std::vector<double>& vec){
```

```
return \sin(\text{vec}[0])*\text{vec}[1]*\cos(\text{vec}[2]);};
  std::vector<std::pair<double, double>> scope = { {0, 1}, {-2, 2}, {3, 7} }; //
expected ~ 0
  scopeCheck(scope);
  double res = calculateIntegral(scope, 100, func, 100);
  if (rank == 0) {
     ASSERT LE(std::abs(res - 0.0), 0.01);
  }
}
TEST(Simpson_Method_MPI, Test_Third_Function) {
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  std::function<double(const std::vector<double>&)> func = [](const
std::vector<double>& vec){
    return std::sqrt(1 + 2*std::pow(vec[0], 2) - std::pow(vec[0], 3));};
  std::vector<std::pair<double, double>> scope = { {1.2, 2} }; // expected 1.09
  scopeCheck(scope);
  double res = calculateIntegral(scope, 100, func, 100);
  if (rank == 0) {
    ASSERT_LE(std::abs(res - 1.09), 0.01);
  }
}
TEST(Simpson Method MPI, Test Fourth Function) {
  int rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  std::function<double(const std::vector<double>&)> func = [](const
std::vector<double>& vec){
  return vec[0] / (std::pow(vec[0], 4) + 4);;
  std::vector<std::pair<double, double>> scope = { {0, 5} }; // expected 0.377
  scopeCheck(scope);
  double res = calculateIntegral(scope, 100, func, 100);
```

```
if (rank == 0) {
                          ASSERT_LE(std::abs(res - 0.377), 0.01);
             }
 }
TEST(Simpson_Method_MPI, Test_Fifth_Function) {
            int rank;
            MPI_Comm_rank(MPI_COMM_WORLD, &rank);
            std::function < double(const std::vector < double> \&) > func = [](const std::vector < double) > func = [](const std::vector 
std::vector<double>& vec){
                          return std::pow(vec[0], 2) + vec[1] + vec[2] + std::<math>pow(vec[3], 2) + vec[3] + vec
std::pow(vec[4], 3);};
            std::vector<std::pair<double, double>> scope = { {0, 1}, {1, 2}, {-1, 1}, {-2, 2},
 \{0, 1\}\}; // expected ~ 27
             scopeCheck(scope);
            double res = calculateIntegral(scope, 5, func, 5);
           if (rank == 0) {
                          ASSERT_LE(std::abs(res - 27), 1);
             }
 }
int main(int argc, char** argv) {
              ::testing::InitGoogleTest(&argc, argv);
            MPI_Init(&argc, &argv);
             ::testing::AddGlobalTestEnvironment(new
GTestMPIListener::MPIEnvironment);
             ::testing::TestEventListeners& listeners =
                          ::testing::UnitTest::GetInstance()->listeners();
            listeners.Release(listeners.default_result_printer());
            listeners.Release(listeners.default_xml_generator());
```

```
listeners.Append(new GTestMPIListener::MPIMinimalistPrinter);
  return RUN_ALL_TESTS();
}
simpson method.cpp
// Copyright 2019 Savosina
#include <mpi.h>
#include <utility>
#include <vector>
#include <stdexcept>
#include "../../modules/task_3/savosina_a_simpson_method/simpson_method.h"
double calculateIntegral(const std::vector<std::pair<double, double>>& _scope,
const size_t& _n,
const std::function<double(const std::vector<double>&)>& f, const size_t& _nRec)
  int size;
  MPI_Comm_size(MPI_COMM_WORLD, &size);
  double res = 0;
  if (size == 1) {
    res = calculateIntegralSequential(_scope, _n, f, _nRec);
  } else {
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Status status;
    int levelNumber = 0;
    if (rank == 0) {
       double h = (_scope[levelNumber].second - _scope[levelNumber].first) / (2 *
_n);
       std::vector<double> funcResults;
       int rankItr = 1;
       double mes;
       if (size > static_cast<int>(_n * 2)) {
```

```
for (double i = _scope[levelNumber].first; i <=
_{scope}[levelNumber].second; i = i + h) {
            MPI_Send(&i, 1, MPI_DOUBLE, rankItr, 1, MPI_COMM_WORLD);
            rankItr++;
         }
         for (int i = 1; i < rankItr; i++) {
            MPI Recv(&mes, 1, MPI DOUBLE, i, 1, MPI COMM WORLD,
&status);
            funcResults.push_back(mes);
         }
       } else {
         int needToSolve = _n * 2 / size;
         double iter = _scope[levelNumber].first;
         iter += needToSolve * h:
         for (rankItr = 1; rankItr < size; rankItr++)
            for (int i = 0; i < needToSolve; i++) {
              MPI_Send(&iter, 1, MPI_DOUBLE, rankItr, 1,
MPI_COMM_WORLD);
              iter += h;
            }
         for (rankItr = 1; rankItr <= static_cast<int>(_n * 2 % size); rankItr++) {
            MPI_Send(&iter, 1, MPI_DOUBLE, rankItr, 1,
MPI_COMM_WORLD);
            iter += h;
         for (double i = _scope[levelNumber].first; i < _scope[levelNumber].first
+ needToSolve * h; i = i + h) {
            std::vector<double> fixedVar = { i };
            if (static_cast<int>(_scope.size()) == levelNumber + 1) {
              funcResults.push_back(f(fixedVar));
            } else {
              funcResults.push_back(calculateRecusionLevel(fixedVar,
levelNumber + 1, _scope, f, _nRec));
            }
```

```
for (rankItr = 1; rankItr < size; rankItr++)
           for (int i = 0; i < needToSolve; i++) {
              MPI_Recv(&mes, 1, MPI_DOUBLE, rankItr, 1,
MPI_COMM_WORLD, &status);
              funcResults.push_back(mes);
            }
         for (rankItr = 1; rankItr <= static_cast<int>(_n * 2 % size); rankItr++) {
           MPI_Recv(&mes, 1, MPI_DOUBLE, rankItr, 1,
MPI_COMM_WORLD, &status);
           funcResults.push_back(mes);
         }
       }
       mes = -1;
       for (rankItr = 1; rankItr < size; rankItr++) {
         MPI_Send(&mes, 1, MPI_DOUBLE, rankItr, 2,
MPI_COMM_WORLD);
       }
       double tempRes = funcResults[0];
       res = tempRes;
       tempRes = 0;
       for (size_t i = 1; i \le n; i++)
         tempRes += funcResults[2*i - 1];
       res += 4 * tempRes;
       tempRes = 0;
       for (size_t i = 1; i \le n - 1; i++)
         tempRes += funcResults[2*i];
       res += 2 * tempRes;
       res += funcResults[2 * _n - 1];
       res = res * h / 3;
     } else {
       bool terminate = false;
       while (!terminate) {
```

```
double mes;
         MPI_Recv(&mes, 1, MPI_DOUBLE, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
         if (status.MPI\_TAG == 2) {
           terminate = true;
         } else {
            std::vector<double> fixedVar = { mes };
           if (static_cast<int>(_scope.size()) == levelNumber + 1) {
              res = f(fixedVar);
            } else {
              res = calculateRecusionLevel(fixedVar, levelNumber + 1, _scope, f,
_nRec);
            }
           MPI_Send(&res, 1, MPI_DOUBLE, 0, 1, MPI_COMM_WORLD);
         }
  return res;
}
double calculateIntegralSequential(const std::vector<std::pair<double, double>>&
_scope, const size_t& _n,
const std::function<double(const std::vector<double>&)>& f, const size_t& _nRec)
{
  int levelNumber = 0;
  double h = (\_scope[levelNumber].second - \_scope[levelNumber].first) / (2 * _n);
  std::vector<double> funcResults;
  for (double i = _scope[levelNumber].first; i <= _scope[levelNumber].second; i =
i + h) {
    std::vector<double> fixedVar = { i };
    if (static_cast<int>(_scope.size()) == levelNumber + 1) {
       funcResults.push_back(f(fixedVar));
```

```
} else {
       funcResults.push_back(calculateRecusionLevel(fixedVar, levelNumber + 1,
_scope, f, _nRec));
     }
  }
  double tempRes = funcResults[0];
  double res = tempRes;
  tempRes = 0;
  for (size_t i = 1; i \le n; i++)
    tempRes += funcResults[2*i - 1];
  res += 4 * tempRes;
  tempRes = 0;
  for (size_t i = 1; i \le n - 1; i++)
    tempRes += funcResults[2*i];
  res += 2 * tempRes;
  res += funcResults[2 * n - 1];
  res = res * h / 3;
  return res;
}
double calculateRecusionLevel(std::vector<double>_fixedVar, size_t
_levelNumber,
const std::vector<std::pair<double, double>>& _scope,
const std::function<double(const std::vector<double>&)>& f, const size_t& _n) {
  double h = ( scope[ levelNumber].second - scope[ levelNumber].first) / (2 *
_n);
  std::vector<double> funcResults;
  _fixedVar.push_back(0);
  if (_levelNumber + 1 == _scope.size()) {
     for (double i = _scope[_levelNumber].first; i <=
_{scope[_{levelNumber}].second}; i = i + h) {
       _fixedVar[_levelNumber] = i;
       funcResults.push_back(f(_fixedVar));
```

```
}
  } else {
    for (double i = _scope[_levelNumber].first; i <=
_{scope}[_{levelNumber}].second; i = i + h) {
       _fixedVar[_levelNumber] = i;
       funcResults.push_back(calculateRecusionLevel(_fixedVar,
_levelNumber+1, _scope, f, _n));
     }
  }
  double tempRes = funcResults[0];
  double res = tempRes;
  tempRes = 0;
  for (size_t i = 1; i \le n; i++)
    tempRes += funcResults[2*i - 1];
  res += 4 * tempRes;
  tempRes = 0;
  for (size_t i = 1; i \le n - 1; i++)
    tempRes += funcResults[2*i];
  res += 2 * tempRes;
  res += funcResults[2 * _n - 1];
  res = res * h / 3;
  return res;
}
void scopeCheck(const std::vector<std::pair<double, double>>& scope) {
  for (auto iter = scope.begin(); iter != scope.end(); iter++) {
    if (iter->first > iter->second)
       throw std::runtime_error("Invalide scope");
  }
}
```