

# **Details**

| Ver. Rel. | Release Date | Prepared By                              | Reviewed By | To Be<br>Approved | Remarks/Revision Details |
|-----------|--------------|------------------------------------------|-------------|-------------------|--------------------------|
| 1.0       | 21/02/2022   | Nayan<br>Balkrishna<br>Farde<br>40021043 |             |                   |                          |



# **Contents**

| Miniproject – 1: Tourism Management System[Individual] | 5   |
|--------------------------------------------------------|-----|
| Modules:                                               | 5   |
| Requirements                                           | 5   |
| High Level Requirements                                | 6   |
| Low Level Requirements                                 | 6   |
| Design                                                 | 7   |
| Test Plan                                              | 9   |
| High Level Test Plan                                   | 9   |
| Low Level Test Plan                                    | 9   |
| Implementation and Summary                             | 9   |
| Git Link:                                              | 9   |
| Git Dashboard                                          | 9   |
| Summary                                                |     |
| Git Inspector Summary                                  |     |
| Miniproject 2 – Embedded Calculator [Individual]       | 10  |
| Modules                                                | 10  |
| Requirements                                           | 10  |
| High Level Requirements                                | 10  |
| Low Level Requirements                                 | 11  |
| Design                                                 | 11  |
| Test Plan                                              | 13  |
| High Level Test Plan                                   | 13  |
| Low Level Test Plan                                    | 13  |
| Implementation and Summary                             | 14  |
| Git Link:                                              | 14  |
| Git Dashboard                                          | 14  |
| Miniproject 3 – Scientific Calculator [Team]           | 15  |
| Modules                                                | 15  |
| Requirements                                           |     |
| High Level Requirements                                | 17  |
| Low Level Requirements                                 | 17  |
| Design                                                 | 19  |
| Test Plan                                              | 21  |
| High Level Test Plan                                   | 2.1 |



| Low Level Test Plan                        | 23 |
|--------------------------------------------|----|
| Implementation and Summary                 | 24 |
| Git Link:                                  | 24 |
| Individual Contribution and Highlights     |    |
| Summary                                    |    |
| Miniproject 4 – Calendar Automation [Team] | 24 |
| Modules                                    | 27 |
| Requirements                               | 27 |
| High Level Requirements                    | 27 |
| Low Level Requirements                     | 27 |
| Test Plan                                  |    |
| High Level Test Plan                       |    |
| Low Level Test Plan                        |    |
| Implementation and Summary                 | 28 |
| Git Link:                                  | 30 |
| Git Dashboard                              | 30 |
| Git Inspector Summary                      |    |
| Individual Contribution and Highlights     | 30 |
| Miniproject 5 – BMW Project[Team]          | 31 |
| Modules                                    | 31 |
| Requirements                               | 31 |
| Design                                     | 31 |
| Miniproject 6 – Wiper Control[Team]        | 35 |
| Modules                                    | 35 |
| Requirements                               | 35 |
| High Level Requirements                    | 35 |
| Low Level Requirements                     | 36 |
| Design                                     | 37 |
| Test Plan                                  | 39 |
| High Level Test Plan                       | 39 |
| Low Level Test Plan                        | 40 |
| Implementation and Summary                 | 43 |
| Git Link:                                  | 43 |
| Individual Contribution and Highlights     | 43 |
| Miniproject 7 –BMW Project[Team]           | 44 |
| Modules                                    | 44 |
| Requirements                               | 44 |



| Design                                           |          |
|--------------------------------------------------|----------|
| Implementation and Summary                       | 46       |
| Git Link:                                        | 46       |
| Individual Contribution and Highlights           | 46       |
| Miniproject 8 – Golf Cart[Team]                  |          |
| Modules                                          | 47       |
| Requirements                                     |          |
| Implementation and Summary                       | 51       |
| Individual Contribution and Highlights           |          |
| Miniproject 9 – Power Window Control[Individual] |          |
| Modules                                          |          |
| Requirements                                     |          |
| Design                                           |          |
| Implementation and Summary                       |          |
| Git Link:                                        |          |
| Individual Contribution and Highlights           |          |
|                                                  |          |
| List of Figures                                  |          |
| Figure 1 Behavior Diagram                        |          |
| Figure 2 Structure Diagram                       |          |
| Figure 3 Git Dashboard                           |          |
| Figure 4 Git Inspector Summary                   |          |
| Figure 5 Behavior Diagram                        |          |
| Figure 6 Structure Diagram                       |          |
| Figure 7 Block Diagram                           |          |
| Figure 8 Simulation                              |          |
| Figure 9 Git Dashboard                           |          |
| Figure 10 Behavior Diagram                       |          |
| Figure 11 UserFlow Diagram                       |          |
| Figure 12 Structure Diagram                      |          |
| Figure 13 Git Dashboard                          |          |
| Figure 14 Git Inspector Summary                  |          |
| Figure 15 Structure Diagram                      |          |
| Figure 16 Behavior Diagram                       | 38<br>45 |
| FIGURE 1 / NITHERITE LIBOTAM                     | 45       |



# Mini Project – 1: Tourism Management System [Individual]

### **Modules:**

- 1. C Programming
- 2. Git

### Requirements

4W's and 1 H's

#### Who:

• This application can be useful for whom who are planning to go for tour so as grab the best tourism packages for them.

### Where:

• The people who are finding best platform to book a ticket for tourism packages.

#### Who:

• This application can be useful for whom who are planning to go for tour so as grab the best tourism packages for them

### When:

• It can be used when someone is thinking to go for the tour.

#### How:

• The user can do many things in the system in the system, he/she can add Book a package, check current tickets, cancel ticket, change user password. The system will give you a specific function that will help you to manage your business. The system will store your data as a text file.



# **High Level Requirements**

| ID    | Description                                               | Status      |
|-------|-----------------------------------------------------------|-------------|
| HLR_1 | User shall be able to sign up for the new account         | Implemented |
| HLR_2 | User shall be able to login/logout of their account       | Implemented |
| HLR_3 | User shall be able to Book Tour Package and check Tickets | Implemented |
| HLR_4 | Admin should be able to cancel tickets   Successful       | Implemented |
| HLR_5 | Admin should be able to change their password             | Implemented |

# **Low Level Requirements**

| ID    | Description                                                                                           | Status      |
|-------|-------------------------------------------------------------------------------------------------------|-------------|
| LLR_1 | When the system is accessed then the system will give the option to sign up or login to their account | Implemented |
| LLR_2 | When they login should give appropriate menu for them                                                 | Implemented |
| LLR_3 | If user logged in, it should show the user's previously booked tickets                                | Implemented |
| LLR_4 | The system should save the new user login data and their booked tickets                               | Implemented |







Figure 1. High Level & Low Level Behavioural Diagram







Figure 2. High Level & Low Level Structural Diagram



### **Test Plan**

# **High Level Test Plan**

| ID   | Description            | Expected I/P          | Expected<br>O/P | Actual<br>O/P | Type Of Test         |
|------|------------------------|-----------------------|-----------------|---------------|----------------------|
| HL_1 | Change<br>Password     | Type Old<br>Password  | SUCCESS         | SUCCESS       | Requirement<br>Based |
| HL_2 | Ticket<br>Booking      | Show list of packages | SUCCESS         | SUCCESS       | Requirement<br>Based |
| HL_3 | Ticket<br>Cancellation | Yes / No              | SUCCESS         | SUCCESS       | Requirement<br>Based |

### Low Level Test Plan

| ID   | Description        | Expected I/P                 | Expected O/P                    | Actual O/P                      | Type Of Test         |
|------|--------------------|------------------------------|---------------------------------|---------------------------------|----------------------|
| LL_1 | Booking<br>Details | Select<br>booking<br>package | Package<br>Details              | Package<br>Details              | Requirement<br>Based |
| LL_2 | Ticket<br>Status   | Login credentials            | Confirmed /<br>Not<br>Confirmed | Confirmed /<br>Not<br>Confirmed | Requirement<br>Based |
| LL_3 | Login /<br>Logout  | Username /<br>Password       | Success                         | Success                         | Requirement<br>Based |

# **Implementation and Summary**

### Git Link:

Link: Nayan349/M1\_Application\_TourismManagementSystem (github.com)

### Git Dashboard



Figure 3 Git Dashboard



### **Mini Project 2 – Obstacle Detection System [Individual]**

### **Modules**

- 1. C Programming
- 2. Embedded System
- 3. Simul IDE
- 4. Git

### Requirements

### 4W's and 1 H's

#### What:

• I have made a setup based on a microcontroller in which object detection and real time distance is sensed by an ultrasonic sensor and displays measured distance on an LCD display.

#### Where:

• It measures accurate distance using a non-contact technology.

#### Who:

The importance of the project is to detect and calculate accurate distance from any
obstacle that we want to measure. Ultrasonic sensors are used primarily as proximity
sensors. They can be found in automobile self-parking technology, medical
applications and anti-collision safety systems

#### When:

• This will be useful to user when they need assistance in dark light and whenever we want to measure the particular distance from the moving object.

#### How:

Ultrasonic sensors generate high frequency sound waves and evaluate the echo which
is received back by the sensor if obstacle detected. Sensors calculate the time interval
between sending the signal and receiving the echo to determine the distance to an
object

# **High Level Requirements**

| ID    | Description                                   | Status      |
|-------|-----------------------------------------------|-------------|
| HLR_1 | Interfacing Ultrasonic Sensor with controller | Implemented |
| HLR_2 | Interfacing LCD display with controller       | Implemented |



| ID    | Description                                   | Status      |
|-------|-----------------------------------------------|-------------|
| HLR_3 | Installing required software on the PC/Laptop | Implemented |

# **Low Level Requirements**

| ID    | Description                                                    | Status      |
|-------|----------------------------------------------------------------|-------------|
| LLR_1 | Setting the range up to 80 cm                                  | Implemented |
| LLR_2 | The high-level signal is sent to 10 microseconds using Trigger | Implemented |

# Design



Figure 4 Behavioural Diagram



Figure 6 Block Diagram



Working of HC-SR04 Ultrasonic Sensor

Figure 5 Block Diagram



Figure 6 Simulation



Test Plan High Level Test Plan

| ID   | Description                                                                                 | Expected I/P        | Expected<br>O/P                                   | Actual<br>O/P  | Type Of Test         |
|------|---------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------|----------------|----------------------|
| HL01 | Sensor Working                                                                              | Obstacle            | Obstacle<br>Detected                              | As<br>Expected | Requirement<br>Based |
| HL02 | High accuracy                                                                               | Object in the range | Accurate<br>distance<br>from object<br>on Display | As<br>Expected | Scenario<br>based    |
| HL03 | Measuring time<br>lapses between<br>the sending and<br>receiving of the<br>ultrasonic pulse | Object in the range | Display                                           | As<br>Expected | Requirement<br>Based |

### **Low Level Test Plan**

| ID   | Description                                    | Expected I/P       | Expected O/P | Actual<br>O/P  | Type Of Test         |
|------|------------------------------------------------|--------------------|--------------|----------------|----------------------|
| LL01 | Detection of clear objects                     | Obstacle           | Display      | As<br>Expected | Scenario<br>based    |
| LL02 | Provide multiple range measurements per second | Moving<br>Obstacle | Display      | As<br>Expected | Requirement<br>Based |



## **Implementation and Summary**

### Git Link:

Link GENESIS2021Q1/Applied\_SDLC-Dec\_Team\_48: Details (github.com)

### Git Dashboard



Figure 7 Git Dashboard



# Mini Project 3 – Scientific Calculator [Team]

### **Modules**

- 1. SDLC
- 2. Git

### Requirements

### **Features**

- It can do all operations (Addition, Subtraction, Multiplication, Division).
- Logarithmic operations, Exponential operations are also available.
- Power functions, Factorial and Conversions which are helpful for students are added.
- Basic Trigonometric Operations are also available.
- Basic Matrix Operations are also available.
- It has double precision.

### Cost v/s features



### **SWOT ANALYSIS**

### **Strengths**

- User Friendly
- All basic operations
- Double Precision
- Trigonometric operations
- Matrix Operations

### Weakness

- Limited Operations
- Memory Wastage

### **Opportunities**

• It can be expanded by adding additional features like Inverse Trigonometric operations, Equations etc.

### **Threats**

• There are other programmable calculators which may affect our product marketing.

### 4W's and 1'H

### Why:

• For Easy and faster Calculations.

#### Where:

Used in Provisional Stores and Students.

### What:

• Scientific Calculator.

### When:

• For Complex Calculations.

#### How:

• Operates by using User Inputs.



# **High Level Requirements**

| ID   | Description              | Status      |
|------|--------------------------|-------------|
| HLR1 | Basic Operations         | Implemented |
| HLR2 | Trigonometric Operations | Implemented |
| HLR3 | Matrix Operations        | Implemented |
| HLR4 | Conversions              | Implemented |
| HRL5 | Advanced operations      | Implemented |

# **Low Level Requirements**

| ID    | Description     | Status      |
|-------|-----------------|-------------|
| LLR1  | Addition        | Implemented |
| LLR2  | Subtraction     | Implemented |
| LLR3  | Multiplication  | Implemented |
| LLR4  | Division        | Implemented |
| LLR5  | Sine            | Implemented |
| LLR6  | Cos             | Implemented |
| LLR7  | Tan             | HLR2        |
| LLR8  | Cosec           | HLR2        |
| LLR9  | sec             | HLR2        |
| LLR10 | Cot             | HLR2        |
| LLR11 | matrix addition | HLR3        |

| ID    | Description                 | Status |
|-------|-----------------------------|--------|
| LLR12 | matrix subtraction          | HLR3   |
| LLR13 | matrix multiplication       | HLR3   |
| LLR14 | Binary - Decimal Conversion | HLR4   |
| LLR15 | Decimal - Binary Conversion | HLR4   |
| LLR16 | Decimal - Octal Conversion  | HLR4   |
| LLR17 | Octal - Decimal Conversion  | HLR4   |
| LLR18 | Length unit Conversion      | HLR4   |
| LLR19 | Temperature unit Conversion | HLR4   |
| LLR20 | Current AC-DC Conversion    | HLR4   |
| LLR21 | Log                         | HLR5   |
| LLR22 | Exponential                 | HLR5   |
| LLR23 | Modulus (remainder)         | HLR5   |
| LLR24 | Factorial                   | HLR5   |
| LLR25 | Square root                 | HLR5   |
| LLR26 | Cube root                   | HLR5   |
| LLR27 | LCM                         | HLR5   |
| LLR28 | GCD                         | HLR5   |
| LLR29 | Permutation                 | HLR5   |
| LLR30 | Combination                 | HLR5   |





Figure 8 Behavioural Diagram



Figure 9 Behavioural Diagram of Matrix Operation

### **Test Plan**

# **High Level Test Plan for Basic & Matrix Operation**

| ID    | Description                             | Expected I/P                    | Expected O/P | Actual<br>O/P | Type Of Test         |
|-------|-----------------------------------------|---------------------------------|--------------|---------------|----------------------|
| HLR01 | Check the<br>number<br>dived by<br>zero | Given number is divided by zero | Error        | Error         | Requirement<br>Based |
| HLR02 | Check the base of log                   | Given number is other than 2,10 | Error        | Error         | Requirement<br>Based |



| ID    | Description                               | Expected I/P                          | Expected O/P             | Actual<br>O/P        | Type Of Test         |
|-------|-------------------------------------------|---------------------------------------|--------------------------|----------------------|----------------------|
| HLR03 | Check the number in square root           | Given number is negative not positive | Error                    | Error                | Requirement<br>Based |
| HLR04 | Check the number in cube root             | Given number is negative              | Negative<br>number       | Negative<br>number   | Requirement<br>Based |
| HLR05 | Check<br>divided by<br>big number         | Given number is greater               | Less than zero           | Less than zero       | Requirement<br>Based |
| HLR06 | Check<br>divided by<br>smaller<br>number  | Given number is smaller               | Greater<br>than zero     | Greater<br>than zero | Requirement<br>Based |
| HLR07 | Check<br>divided by<br>negative<br>number | Given number is negative              | Negative<br>number       | Negative<br>number   | Requirement<br>Based |
| HLR08 | R1!=R2<br>&C1!=C2                         | Invalid                               | Invalid                  | LLR8                 | Requirement<br>Based |
| HLR09 | R1=R2<br>&C1=C2                           | Do Matrix<br>Addition                 | Do<br>Matrix<br>Addition | LLR8                 | Requirement<br>Based |
| HLR10 | R1!=R2<br>&C1!=C2                         | Invalid                               | Invalid                  | LLR9                 | Requirement<br>Based |
| HLR11 | R1=R2<br>&C1=C2                           | Do Matrix<br>Subtraction              | Do<br>Matrix<br>Addition | LLR9                 | Requirement<br>Based |
| HLR12 | R2!=C1                                    | Invalid                               | Invalid                  | LLR10                | Requirement<br>Based |



| ID    | Description | Expected I/P                | Expected O/P             | Actual<br>O/P | Type Of Test         |
|-------|-------------|-----------------------------|--------------------------|---------------|----------------------|
| HLR13 | R2=C1       | Do Matrix<br>Multiplication | Do<br>Matrix<br>Addition | LLR10         | Requirement<br>Based |

# **Low Level Test Plan**

| ID    | Description | Expected I/P | Expected O/P          | Actual O/P | Type Of<br>Test    |
|-------|-------------|--------------|-----------------------|------------|--------------------|
| LLR1  | sin(30)     | -0.988032    | Positive<br>Test case | -0.988032  | Requirem ent Based |
| LLR2  | cos(30)     | 0.1542       | Positive<br>Test case | 0.1542     | Requirem ent Based |
| LLR3  | tan(30)     | -6.405331    | Positive<br>Test case | -6.405331  | Requirem ent Based |
| LLR4  | cot(30)     | -0.15612     | Positive<br>Test case | -0.15612   | Requirem ent Based |
| LLR5  | sec(30)     | 6.4829       | Positive<br>Test case | 6.4829     | Requirem ent Based |
| LLR6  | cosec(30)   | -1.012113    | Positive<br>Test case | -1.012113  | Requirem ent Based |
| LLR7  | sin(60)     | -0.304811    | Positive<br>Test case | -0.304811  | Requirem ent Based |
| LLR8  | cos(60)     | -0.9524      | Positive<br>Test case | -0.9524    | Requirem ent Based |
| LLR9  | tan(60)     | 0.32004      | Positive<br>Test case | 0.32004    | Requirem ent Based |
| LLR10 | cot(60)     | 3.124606     | Positive<br>Test case | 3.124606   | Requirem ent Based |



| ID    | Description | Expected I/P | Expected O/P          | Actual O/P | Type Of<br>Test    |
|-------|-------------|--------------|-----------------------|------------|--------------------|
| LLR11 | sec(60)     | -1.04996     | Positive<br>Test case | -1.04996   | Requirem ent Based |
| LLR12 | cosec(60)   | -3.280726    | Positive<br>Test case | -3.280726  | Requirem ent Based |

# **Implementation and Summary**

### **Git Link:**

Link: <a href="https://github.com/GENESIS2021Q1/Applied\_SDLC-Dec\_Team\_47">https://github.com/GENESIS2021Q1/Applied\_SDLC-Dec\_Team\_47</a>





```
Enter 1 for decimal to binary
Enter 2 for binary to decimal
Enter 3 for decimal to octal
Enter 4 for octal to decimal
Enter 5 to exit
Enter option: 1

Enter number to convert: 12

Answer: 1100
Enter the Operation you want to perform:
Enter 1 for decimal to binary
Enter 2 for binary to decimal
Enter 3 for decimal to octal
Enter 3 for decimal to octal
Enter 5 to exit
Enter option: 2

Enter number to convert: 10100

Answer: 20
Enter number to convert: 10100

Answer: 2 for binary to decimal
Enter 3 for decimal to octal
Enter 4 for octal to decimal
Enter 5 to exit
Enter option: 3

Enter 1 for decimal to octal
Enter 5 to exit
Enter 1 for decimal to octal
Enter 6 for decimal to octal
Enter 7 for decimal to octal
Enter 8 for decimal to octal
Enter 9 for decimal to octal
Enter 1 for decimal to octal
Enter 5 to exit
```





```
nter the Operation you want to perform:
 : Exponential : Modulus
   Factorial
   Square root
    cube root
  : LCM
  : Combination
11 : Exit
nter option: 6
Enter number: 4
Enter the Operation you want to perform:
 : Log
: Exponential
  : Modulus
: Factorial
    Square root
  : cube root
: GCD
   Combination
   : Permutation
: Exit
nter option: 4_
```

### Git Dashboard

# **SDLC Activity Based Learning**



### **Challenges Faced and How Was It Overcome**

- 1. Running the make file as its resolved by defining its correct path(.out for Linux and lm for math functions)
- 2. Synchronizing the VS code to GitHub, colleague help to resolve the issue
- 3. Making the function call in correct path
- 4. Open git log while committing, thus went to GitHub desktop and pulled origin and then pushed origin.
- 5. Test case code for the boundary problem. Added code with the help of internet



# **Mini Project 4 – Calendar Automation [Team]**

### **Modules**

- 1. Python
- 2. Git

### Requirements

# **High Level Requirements**

| ID   | Feature                                                            | MATLAB v.0<br>Status | Python v.0 Status |
|------|--------------------------------------------------------------------|----------------------|-------------------|
| HR01 | GUI                                                                | Implemented          | Implemented       |
| HR02 | Master calendar                                                    | Implemented          | Implemented       |
| HR03 | Faculty calendar                                                   | Implemented          | Implemented       |
| HR04 | Faculty load sheet                                                 | Implemented          | Implemented       |
| HR05 | Showing Available Open Slots based on faculty and modules          | Not Available        | Not Available     |
| HR06 | Output file generated across different computers (windows + Linux) | Not Available        | Implemented       |
| HR07 | Visualizing data to create Meaningful Insights                     | Not Available        | Not Available     |
| HR08 | Calculate Individual Faculty Load                                  | Implemented          | Implemented       |

# **Low Level Requirements**

| ID   | Feature                                                | High Level<br>ID | MATLAB v.0<br>Status | Python v.0<br>Status |
|------|--------------------------------------------------------|------------------|----------------------|----------------------|
| LR01 | GUI should allow user<br>to login using<br>credentials | HR01             | Not Available        | Not Available        |



| ID   | Feature                                                           | High Level<br>ID | MATLAB v.0<br>Status | Python v.0<br>Status |
|------|-------------------------------------------------------------------|------------------|----------------------|----------------------|
| LR02 | Input Files Based on<br>Different Initiatives and<br>Timelines    | HR01             | Implemented          | Not Available        |
| LR03 | GUI should get Base<br>Calendar as Input                          | HR01             | Implemented          | Implemented          |
| LR04 | GUI should get Month and Initiative as Input                      | HR01             | Implemented          | Implemented          |
| LR05 | GUI should be able to<br>show<br>Conflicts/Warnings               | HR01             | Implemented          | Not<br>Implemented   |
| LR06 | Master Calendar:<br>display Month wise                            | HR02             | Implemented          | Implemented          |
| LR07 | Master Calendar:<br>display Initiative wise                       | HR02             | Implemented          | Not Available        |
| LR08 | Master Calendar: Differentiate Initiatives (Colour Codes/Numbers) | HR02             | Implemented          | Implemented          |
| LR09 | Master Calendar:<br>Appending                                     | HR02             | Implemented          | Not Available        |
| LR10 | Master Calendar:<br>Course code correction                        | HR02             | Implemented          | Not Available        |

# Link for template standard input template:

 $\frac{https://docs.google.com/spreadsheets/d/1EWYp\_1iyK2wLMfKGJOiTJAk5Wex}{ZusCP/edit?usp=sharing\&ouid=113003694561146884677\&rtpof=true\&sd=true}$ 

• Using the template above, training schedule can be added monthwise and initiatives wise



- The name of the input excel sheet MUST be named as "Test\_vector"(as shown in template)
- Along with the Test\_vector sheet, "Key" sheet MUST be present under the columns assigned as in the template
- The "Key" sheet must contain all times the 6 fixed initiatives with their respective codes and total list of course code and course title in order to refer for corrections while writing to output files
- Appending additional slots for existing courses is possible by adding just the additional slots in the input file for the same course

# Requirements for updating Master calendar using Master calendar as input

### Link for template

2 Slots format - M/A

: <a href="https://docs.google.com/spreadsheets/d/1jtKnXV12VE1fH20CGDo4B3uNWRTAhQCWz-hHUDWUe3I/edit?usp=sharing">https://docs.google.com/spreadsheets/d/1jtKnXV12VE1fH20CGDo4B3uNWRTAhQCWz-hHUDWUe3I/edit?usp=sharing</a>

4 Slots format - M1/M2/A1/A2

: https://docs.google.com/spreadsheets/d/1jVheSPZkOtfNKRNoc\_858nwk2Ua HCe0gExTNZfZ8vxA/edit?usp=sharing

- Any of the two templates can be used for updating Master calendar month wise on to the drive
- The blocked slots must have the corresponding initiative code in the cell according to the key as shown in the sample data in the template
- The name of the sheet must be the name of the month to be updated
- The "Key" sheet must be present with the fixed list of initiatives and initiative code

### App deployment

- The app is deployed on heroku servers.
- To add/modify new features, you will be required to install HEROKU CLI link
- After installation, open terminal in working directory and enter the following commands:
  - o "heroku git:clone -a gea calendar"



- login using heroku credentials
- After pulling and making changes, enter the following commands to push app and deploy on server
  - o Git add.
  - o git commit -m "commit message"
  - o git push Heroku master

### Additional features for V1 to do

- Update key sheet by appending new initiatives/courses list
- Check for duplicate course entries in input file
- Using built in libraries to identify number of days in month, current year and highlight weekend and holidays
- Function to remove a course schedule
- Read multiple months data in one sheet as input file (currently takes data one by one month)
- Calculate individual faculty load

### Git Link:

### **Implementation and Summary**

#### Git Link:

Link: Usharani8/Oopswithpython Calendar Automation Team-47 (github.com)

### Git Dashboard



Figure 10 Git Dashboard

### **Individual Contribution and Highlights**

- 1. Improved implementation of Python Programming
- 2. Source code management using GitHub

### Role in Project Team

- 1. Programmer: Done Programming for Attendance Automation
- 2. Integrator: Integrated all the codes



# Mini Project 5 – BMW Project [Team]

### **Modules**

- 1. MATLAB
- 2. Git

### Requirements

We have implemented following features

- 1. Adaptive Cruise Control System
- 2. Anti-Lock Braking System
- 3. Interior Light Control System
- 4. Door Locking system
- 5. Suspension System
- 6. HVAC System
- 7. Power Window

### **Individual Feature Requirements**

# **Door Locking System**

### **High Level Requirements: -**

| ID   | Description                                                              |  |
|------|--------------------------------------------------------------------------|--|
| HLR1 | The lock button on the key should lock all the doors of the car.         |  |
| HLR2 | The unlock button on the key should unlock all the doors of the car.     |  |
| HLR3 | After locking exterior lights of the car should get pop up for 3 seconds |  |
| HLR4 | Exterior lights should get pop up after unlocking the car.               |  |

# **Low Level Requirements: -**

| ID   | Description                                                               |
|------|---------------------------------------------------------------------------|
| LLR1 | Status of the door should have to be visible on the display               |
| LLR2 | Locking and the exterior light pop up should be in synchronised manner.   |
| LLR3 | Unlocking and the exterior light pop up should be in synchronised manner. |
| LLR4 | If any door is opened it should indicate on the display.                  |



# Design

Locking & Unlocking System:







### **OUTPUT**

### Running the Simulation in ABS Mode

• Vehicle Locking System:



• Vehicle unlocking system:





• Overall output with exterior light status:





# Mini Project 6 – Wiper Control [Team]

### **Modules**

- 1. C Programming
- 2. STM32

### Requirements

### 4W's and 1'H

#### Who:

Users who drives the vehicles can use this.

#### What:

This project is concerned is about automatic wiper system in vehicles.

#### When:

When there is a change in the weather the wipers work automatically.

#### Where:

This projects helps the users to achieve the clear path when there is a change of weather.

#### How:

The wiper system is controlled using rain sensor, temperature sensor and SMT32 microcontroller

### **High Level Requirements**

| ID    | Description                                                            | Status      |
|-------|------------------------------------------------------------------------|-------------|
| HLR_1 | Press and hold the button to put the Ignition key position in ACC mode | Implemented |
| HLR_2 | Different wiper frequencies to be set (1Hz, 4Hz & 8Hz)                 | Implemented |
| HLR_3 | Hold the button to put the system in Idle state                        | Implemented |



# **Low Level Requirements**

| ID    | Description                                                              | HLTP ID         | Status      |
|-------|--------------------------------------------------------------------------|-----------------|-------------|
| LLR_1 | Hold the button for 2 sec to bring the ignition key position at ACC mode | HLR_1           | Implemented |
| LLR_2 | Hold the button for 2 sec to go back to the Idle state                   | HLR_1,<br>HLR_3 | Implemented |
| LLR_3 | Press the button one time to set frequency to 1Hz                        | HLR_2           | Implemented |
| LLR_4 | Press the button second time to set frequency to 4Hz                     | HLR_2           | Implemented |
| LLR_5 | Press the button third time to set frequency to 8Hz                      | HLR_2           | Implemented |
| LLR_6 | Press the button fourth time to turn OFF the wiper action                | HLR_2           | Implemented |
| LLR_7 | Hold the button for 2 sec to bring ignition key position at Lock state   | HLR_3           | Implemented |

# Design



Figure 11 Structural Diagram



Figure 12 Behavioural Diagram



# Test Plan High Level Test Plan

| TEST<br>PLAN<br>ID | Description                                     | Expected Input         | Expected<br>Output                                                          | Status |
|--------------------|-------------------------------------------------|------------------------|-----------------------------------------------------------------------------|--------|
| HLR01              | Check Red LED on & wiper work                   | Press and held<br>2sec | Red LED<br>On & Wiper<br>works                                              | pass   |
| HLR02              | Press button 1 more time                        | press button           | Blue LED<br>ON                                                              | Pass   |
| HLR03              | Hold the button to put the system in Idle state | Enters Idle State      | Requirement<br>Based                                                        |        |
| HLR03              | Check the frequency of blue LED                 | 1HZ                    | Wiper receive 1HZ                                                           | Pass   |
| HLR04              | Press the button again 1 more time              | press button           | Green LED<br>ON                                                             | Pass   |
| HLR05              | Check the frequency of Green LED                | 4HZ                    | wiper<br>receive 4HZ                                                        | Pass   |
| HLR06              | Press the button 1 more time again              | Press Button           | Orange LED<br>ON                                                            | Pass   |
| HLR07              | Check the frequency of Orange LED               | 8HZ                    | Wiper<br>receive 8HZ                                                        | Pass   |
| HLR08              | Check the frequency of LED & check wiper work   | 5,6,7HZ                | Wiper<br>receive 5HZ<br>for<br>blue,6HZ<br>for green &<br>7HZ for<br>orange | Pass   |



# **Low Level Test Plan**

| LLR<br>ID | Description                                   | HLR<br>ID | Expected Input                   | Expected Output                    | Status |
|-----------|-----------------------------------------------|-----------|----------------------------------|------------------------------------|--------|
| LLR01     | Run the system                                | HLR01     | Check the LEDs & wiper           | LEDs off & wiper off               | Pass   |
| LLR02     | Press the button for 2sec                     | HLR01     | Press and held<br>2sec           | Red LED will be<br>ON              | Pass   |
| LLR03     | Press the button for 1sec                     | HLR01     | Press and held<br>1sec           | Red LED will be<br>OFF             | Pass   |
| LLR04     | Press the button for 3sec                     | HLR01     | Press and held<br>more then 3sec | Red LED will be<br>OFF             | Pass   |
| LLR05     | Press the button for 2sec                     | HLR01     | Press and held<br>2sec           | Red LED will be<br>OFF             | Fail   |
| LLR06     | After red<br>LED ON<br>wiper is<br>also ON    | HLR01     | Wiper ON                         | Wiper will start<br>working        | Pass   |
| LLR07     | After red<br>LED ON<br>wiper is<br>also ON    | HLR01     | Wiper OFF                        | Wiper will stop<br>working         | Fail   |
| LLR08     | Press & check the blue LED                    | HLR02     | press button                     | Blue LED ON                        | Pass   |
| LLR09     | Check the<br>frequency<br>of wiper<br>working | HLR03     | 1HZ                              | Wiper gets 1HZ & work at 1HZ speed | Pass   |



| LLR<br>ID | Description                               | HLR<br>ID | Expected Input | Expected Output                          | Status |
|-----------|-------------------------------------------|-----------|----------------|------------------------------------------|--------|
| LLR10     | Check the frequency after some time       | HLR03     | 1HZ            | Wiper work at<br>1HZ range only          | Pass   |
| LLR11     | Check the frequency after some time       | HLR03     | 1HZ            | Wiper working<br>more then 1HZ           | Fail   |
| LLR12     | Press the<br>button &<br>Green LED<br>ON  | HLR04     | Press button   | Green LED ON                             | Pass   |
| LLR13     | Press the<br>button &<br>Green LED<br>ON  | HLR04     | Press button   | Green LED OFF                            | Fail   |
| LLR14     | Check the frequency wiper receiving       | HLR05     | 4HZ            | Wiper should<br>receive & work at<br>4HZ | Pass   |
| LLR15     | Check the frequency after some time       | HLR05     | 4HZ            | Wiper working at<br>4HZ                  | Pass   |
| LLR16     | Check the frequency after some time       | HLR05     | 4HZ            | Wiper working<br>more then 4HZ           | Fail   |
| LLR17     | Press the<br>button &<br>Orange<br>LED ON | HLR06     | Press button   | Orange LED ON                            | Pass   |



| LLR<br>ID | Description                                | HLR<br>ID | Expected Input        | Expected Output                               | Status         |
|-----------|--------------------------------------------|-----------|-----------------------|-----------------------------------------------|----------------|
| LLR18     | Press the<br>button &<br>orange<br>LED ON  | HLR06     | Press button          | Orange LED OFF                                | Fail           |
| LLR19     | Check the frequency wiper receiving        | HLR07     | 8HZ                   | Wiper works at<br>same 8HZ level              | Pass           |
| LLR20     | Check the frequency wiper receiving        | HLR07     | 8HZ                   | Wiper works mare<br>then 8HZ level            | Fail           |
| LLR21     | Check the<br>frequency<br>for each<br>LEDs | HLR08     | 5,6,7HZ               | New frequency set<br>for<br>Blue,Green,Orange | Pass           |
| LLR22     | Repeat<br>steps from<br>LLR08 to<br>LLR21  | HLR09     | same i/p              | Same O/P                                      | Same<br>status |
| LLR23     | Press & held button for 2sec & Red LED OFF | HLR09     | Press button for 2sec | Red LED OFF                                   | Pass           |
| LLR24     | Press & held button for 2sec & Red LED OFF | HLR09     | Press button for 2sec | Still ON Red LED                              | Fail           |
| LLR25     | Check the<br>wiper after<br>Red LED<br>OFF | HLR09     | Press button for 2sec | Wiper stops<br>working                        | Pass           |



| LLR<br>ID | Description                                    | HLR<br>ID | Expected Input                | Expected Output               | Status |
|-----------|------------------------------------------------|-----------|-------------------------------|-------------------------------|--------|
| LLR26     | Check the other LED's too                      | HLR09     | Press button for 2sec         | Blue,Green,Orange<br>LED's ON | Pass   |
| LLR27     | Press the button again & again check the LED's | HLR10     | Press button again<br>& again | Blue,Green,Orange<br>LED's ON | Pass   |
| LLR28     | Press the button again & again check the LED's | HLR10     | Press button again & again    | Blue,Green,Orange<br>LED's ON | Fail   |

#### Git Link:

Link: GENESIS-2022/MasteringMCU-Team33: Details (github.com)

### **Individual Contribution and Highlights**

- 1. Wiper System using C Programming
- 2. Source code management using GitHub

#### Role in Project Team

1. Programmer: Done Programming for Wiper System

2. Integrator: Integrated all the codes

3. Tester: Writing Testcases and testing the integrated code



# Mini Project 7 – Automotive BMW Project [Team]

#### **Modules**

- 1. Automotive Systems
- 2. Git

## Requirements

In this BMW project we have taken following features and I have contributed to Parking System Feature

- 1. Power Window Control System
- 2. Mirror Control System
- 3. Door Locking System
- 4. Interior Light Control System

# **Power Window Control System**

| High Level<br>Requirement | Description                                                                                                                |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------|
| HLR1                      | The Front Right(FR) window glass should get raised or lowed after the switch of the door is pulled up or pushed.           |
| HLR2                      | The Front Left(FL) window glass should get raised or lowed after the switch of the door is pulled up or pushed.            |
| HLR3                      | The Back Right(BR) window glass should get raised or lowed after the switch of the door is pulled up or pushed.            |
| HLR4                      | The Back Left(BL) window glass should get raised or lowed after the switch of the door is pulled up or pushed.             |
| HLR5                      | The master control on driver side door should be able to grant or deny access to open or close other windows in the car.   |
| HLR6                      | The auto-lower & auto-raised feature is triggered if the driver's window lower switch is held down for more than 1 second. |



| High Level<br>Requirement | Description                                                                                                                                 |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| HLR7                      | After pressing the door lock button on the key, if any window is opened should get automatically closed.                                    |
| HLR8                      | The windows should get automatically raised according to the humidity and cooling status of the AC as per need.                             |
| HLR9                      | If the seatbelt is not wore by the driver while the car is above 20 km/h, access to the power windows control should get removed.           |
| HLR10                     | While raining, by gathering wiper control data, windows should get raised automatically.                                                    |
| HLR11                     | Due to anti-pinch feature, if the system senses any obstacle in the path of the glass the window glass should be stopped moving further up. |

# **UML Diagram**



Figure 13 Structure Diagram



#### Git Link:

Link: Nayan349/Automotive\_BMW\_Project (github.com)

## **Individual Contribution and Highlights**

- 1. Power Window Case Study
- 2. Source code management using GitHub

#### Role in Project Team

- 1. Designer: Done Designing for Project
- 2. Researcher: Done case study for Power Window Control System



## Mini Project 8 – Golf Cart [Team]

#### **Modules**

- 1. MATLAB
- 2. MATLAB Script

#### **HISTORY**

Reportedly, the first use of a motorized cart on a golf course was by JK Wadley of Texarkana, Texas/Arkansas, who saw a three-wheeled electric cart being used in Los Angeles to transport senior citizens to the grocery store. Later, he purchased a cart and found that it worked poorly on a golf course. The first electric golf cart was custom-made in 1932, but did not gain widespread acceptance. In the 1930s until the 1950s the most widespread use of golf carts was for those with disabilities who could not walk far. By the mid 1950s the golf cart had gained wide acceptance with US golfers, with several manufactures (e.g. Victor Adding Machine Co. and Sears Roebuck) producing various models. Most were electric.

#### **ABSTRACT**

In this paper, the Design & Calculations of an Electric golf cart is done, the calculations and process to develop a golf cart chassis, electrical transmission using transaxle, braking, steering geometry, suspension system, solar panel of a long six seat golf cart, battery calculations and controller which monitors the electric system is explained. All the materials used for the calculation are industry standard being utilized currently. Priority of this design was to keep the cart as light weight as possible and rigid with good performance on grassy and concrete terrain's used in either golf course or in hospitality education sectors. A unique tubular chassis is used in the design comprising of circular & rectangular shape. The focus of design was long mileage from the batteries used and how much, adding solar panels can contribute to the existing range of the electric vehicle. A 23 miles range from the battery pack using 6 deep cycle lead acid batteries was achieved and increased12 miles from the solar panels under the constraint assumed for its use (direct sunlight for over 6-7 hours)

#### INTRODUCTION

This projects aim is to Design an electric golf cart with six people seating capacity which runs on batteries as well as solar panels. The need for a golf cart isn't just using it in the golf course and is nowadays being used in large universities spread over vast acres of land and in expensive hotels and latest complexes for comfort traveling i.e Hospitality industry and providing low cost of charging with increasing mileage as technology advances. In this project the aim has been to put forth an industry standard design for an electric golf cart that can run exceedingly well on grassy / muddy terrains as well as wet conditions and concrete roads. During designing all the constraints and cost considerations and all technical aspects were set according to the current advancements in the industry in a thoroughly researched manner. A battery electric vehicle (BEV) has far fewer moving parts than a conventional gasoline-powered vehicle. There's no need for a liquid fuels or oil changes. There's no



transmission or timing belt to fail you. And most of the maintenance cost associated with ic engine are eliminated.



### **REQUIREMENTS**



## Range

| Vehicle | Model | Buggy   |
|---------|-------|---------|
| venicie | MOUCI | עעעוונו |

Colour Wide range of Colour options

Usage/Application Eco-friendly drive within enclosed campuses.

Seating Capacity
Running Distance
Maximum Speed
Brand

Leo-Frichtly the Le

Material Powder coated tubular steel Chassis, Body frame - dent proof

**ABS** 

Number Of Battery 6 no, 8 Volt each, 150AH

Voltage 48V



Motor Rated 48 Volt AC Motor
Power 4 Kw Continuous
Speed 11KM/Hour
Seater 2-14 seater
Capacity Kg 200-1100 KG

#### **BATTERY**

Brand Trojan

Capacity @20Hr - 170Ah

Model Name/Number Trojan Motive T-875 with Bayonet Cap

Voltage 8V

Battery Type Deep-Cycle Flooded/Wet Lead-Acid Battery

**Dimensions** 10.27 x 7.10 x 11.14 Inches

Weight 29 Kg Material Polypropylene

**Application / Usage** Golf cart, Low Speed Electric Vehicle

## **EZGO marathon Vs YAMAHA UMAX rally 2+2:**

# **Motor Specifications:**

| Component          | EZGO marathon            | Y- UMAX rally 2+2         |
|--------------------|--------------------------|---------------------------|
|                    |                          |                           |
| Engine Type        | 350cc twin cylinder unit | 402cc low-emission        |
|                    | 18 cubic inches          | single cylinder 60 degree |
|                    |                          | incline OHV               |
| Fuel Tank Capacity | Twin cylinder unit       | 5.2US GAL (20             |
|                    |                          | LITERS)                   |
| Top speed          | 12-14 Nm                 | 15 mph (24.1 km/hr)       |
|                    |                          |                           |
| Minimum Turning    | 4.24m                    | 3.98m                     |
| Radius             |                          |                           |
| Maximum Forward    | 12mph (19.3 km/h)        | 15mph (24.1 km/h)         |
| Speed              |                          |                           |

# **Battery Specifications:**

| Component             | EZGO marathon         | Y- UMAX rally 2+2 |
|-----------------------|-----------------------|-------------------|
| Battery Type          | Works on gas cylinder | Lithium-ion       |
| Range                 | 25-30 miles           | 35 miles          |
| Battery Charging Time | Works on gas cylinder | 4 Hours           |



| Battery Capacity | Works on gas cylinder | 2 kWh  |
|------------------|-----------------------|--------|
| No of Cells      | Works on gas cylinder | 20,500 |

# **Dimensions:**

| Component                   | EZGO marathon      | Y- UMAX rally 2+2   |
|-----------------------------|--------------------|---------------------|
| Overall Length              | 125.5 in (317.3cm) | 134.37 in (341.3cm) |
| Overall Width               | 50.3 in (127.6cm)  | 53.54 in (136cm)    |
| Overall Height              | 72.7 in (182.4cm)  | 77.20 in (196.1cm)  |
| Wheelbase                   | 72.2 in (182.1cm)  | 77.28 in (196.3cm)  |
| Front Wheel Tread           | 38.5 in (96.8cm)   | 41.26 in (104.8cm)  |
| Rear Wheel Tread            | 37.2 in (94.1cm)   | 41.26 in (104.8cm)  |
| Minimum Ground<br>Clearance | 5.1 in (12.7cm)    | 5.94 in (15.1cm)    |

# **Wheel Specifications:**

| Wheel Type       | EZGO marathon                      | Y- UMAX rally 2+2                 |
|------------------|------------------------------------|-----------------------------------|
| Front Wheel Size | 10 inches                          | 12 inches                         |
| Rear Wheel Size  | 11 inches                          | 12 inches                         |
| Front Tyre Size  | 22*9-11*10.5 - ply<br>monitor k272 | 23*10.5-12*4- ply<br>monitor k389 |

# **Dimensions & Chassis Specifications:**

| Component      | EZGO marathon | Y- UMAX rally 2+2 |
|----------------|---------------|-------------------|
| Kerb Weight    | 125 kg        | 108 kg            |
| Overall Length | 1,859 mm      | 1,800 mm          |
| Overall Width  | 712 mm        | 700 mm            |
| Overall Height | 1,160 mm      | 1,250 mm          |



| Wheelbase        | 1,359 mm | 1,278 mm                             |
|------------------|----------|--------------------------------------|
| Ground Clearance | 165 mm   | 160 mm                               |
| Seat Height      | 792 mm   | 765 mm                               |
| Chassis Type     | Tubular  | Precision Machined<br>Hybrid Chassis |

Submission: Submitted in GEA Learn

# **Individual Contribution and Highlights**

1. Done in MATLAB Script

Role in Project Team

- 1. Done MATLAB scripting for EV Bike
- 2. Researcher: Done case study for EV Bike



# **Mini Project 9 – Power Window Control [Individual]**

## **Modules**

- 1. AutoSAR
- 2. Git

# Requirements

| S.NO | Description                                                                                                                       |
|------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1    | The Front Right(FR) window glass should get raised or lowed after the switch of the door is pulled up or pushed.                  |
| 2    | The Front Left(FL) window glass should get raised or lowed after the switch of the door is pulled up or pushed.                   |
| 3    | The Back Right(BR) window glass should get raised or lowed after the switch of the door is pulled up or pushed.                   |
| 4    | The Back Left(BL) window glass should get raised or lowed after the switch of the door is pulled up or pushed.                    |
| 5    | The master control on driver side door should be able to grant or deny access to open or close other windows in the car.          |
| 6    | The auto-lower & auto-raised feature is triggered if the driver's window lower switch is held down for more than 1 second.        |
| 7    | After pressing the door lock button on the key, if any window is opened should get automatically closed.                          |
| 8    | The windows should get automatically raised according to the humidity and cooling status of the AC as per need.                   |
| 9    | If the seatbelt is not wore by the driver while the car is above 20 km/h, access to the power windows control should get removed. |



| S.NO | Description                                                                                                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 10   | While raining, by gathering wiper control data, windows should get raised automatically.                                                    |
| 11   | Due to anti-pinch feature, if the system senses any obstacle in the path of the glass the window glass should be stopped moving further up. |

#### Git Link:

Link: Automotive BMW Project/40021043 Nayan Farde TRN at main · Nayan349/Automotive\_BMW\_Project (github.com)

## **Individual Contribution and Highlights**

- 1. Power Window Control Case Study
- 2. Source code management using GitHub
- 3. AtomicSwComponent
- 4. SWCInternalBehavior
- 5. SWCImplementation