Реализация квантового компьютера на ионной ловушке

Вопрос по выбору к ГКЭ, январь 2022

Станислав Сидельников Б01-908, Егор Батарин Б01-906

Московский физико-технический институт

Содержание

■ Введение в квантовые вычисления

Содержание

- Введение в квантовые вычисления
- Принцип работы ионной ловушки
 - Захват иона
 - Доплеровское охлаждение
 - Pro & Contra

Содержание

- Введение в квантовые вычисления
- Принцип работы ионной ловушки
 - Захват иона
 - Доплеровское охлаждение
 - Pro & Contra
- Кубит на ионной ловушке
 - Физическая реализация кубита
 - Приготовление начального состояния
 - Оптическая накачка
 - Измерение конечного результата

Введение в квантовые вычисления

Классический бит: 0 или 1 - два состояния.

Квантовый бит: $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$, $\alpha,\beta\in\mathbb{C}$, $|\alpha|^2+|\beta|^2=1$ - бесконечно много состояний?

Представление на сфере Блоха:

$$|\psi
angle=e^{i\gamma}\left(\cosrac{ heta}{2}\left|0
ight
angle+e^{i\phi}\sinrac{ heta}{2}\left|1
ight
angle
ight)\sim\cosrac{ heta}{2}\left|0
ight
angle+e^{i\phi}\sinrac{ heta}{2}\left|1
ight
angle$$
, где $\gamma, heta$ и ϕ - действительные числа.

Введение в квантовые вычисления

Принцип работы ионной ловушки

 Мы рассматриваем ловушку Пауля. Данный тип ионной ловушки представляет собой систему электродов, между которыми находятся ионы.

Принцип работы ионной ловушки

■ Для содержания ионов в замкнутой области пространства используется периодическая смена напряжения электрического поля на обоих электродах: $F_{\nu} = -\frac{U+V\cos\omega t}{2}$ х

$$E_x = -\frac{U + V \cos \omega t}{r_0^2} x,$$

$$E_z = \frac{U + V \cos \omega t}{r_0^2} z E_y = 0$$

■ U - постоянное напряжение, V - напряжение на частоте ω

Реализация квантового компьютера на ионной ловушке

Рис.: Захваченный ион

Принцип работы ионной ловушки

■ Получаем эффект динамической стабилизации: потенциал в ловушке представляет собой геометрически поверхность седла.

Принцип работы ионной ловушки

- В статике положение равновесие шарика (механический аналог иона) в этом седле будет неустойчиво.
- В то время как если систему вращать вокруг оси, проходящей через центр седла перпендикулярно плоскости *ху*, то система будет устойчива.

Рис.: Захваченный ион

Принцип работы ионной ловушки

1. Покоящийся атом, смещения по частоте нет, налетающий фотон не поглощается

Рис.: Иллюстрация доплеровского охлаждения

Принцип работы ионной ловушки

- 1. Покоящийся атом, смещения по частоте нет, налетающий фотон не поглощается
- 2. Атом движется. Смещение по частоте в область красного спектра, поглощение фотона не происходит

Рис.: Иллюстрация доплеровского охлаждения

Принцип работы ионной ловушки

- 1. Покоящийся атом, смещения по частоте нет, налетающий фотон не поглощается
- 2. Атом движется. Смещение по частоте в область красного спектра, поглощение фотона не происходит
- 3.1 Атом движется. Смещение по частоте в область синего спектра, происходит поглощение фотона.

Рис.: Иллюстрация доплеровского охлаждения

Принцип работы ионной ловушки

3.2 Атом возбуждается

Рис.: Иллюстрация доплеровского охлаждения

Принцип работы ионной ловушки

- 3.2 Атом возбуждается
- 3.3 Атом излучает в случайном направлении

Рис.: Иллюстрация доплеровского охлаждения

Физическая реализация кубита

Кубитная ионная ловушка

- Кубит представляет собой атомные состояния сверхтонкой структуры удерживаемых в ловушке атомов.
- Два сверхтонких уровня основного состояния (они называются «сверхтонкими кубитами»)
- Уровень основного состояния и возбужденный уровень (они называются «оптическими кубитами»)

Рис.: Девять атома кальция в ловушке

Приготовление начального состояния

Кубитная ионная ловушка

 Состояния ионных кубитов могут быть приготовлены в определенном состоянии кубита с помощью процесса, называемого оптической накачкой. В этом процессе лазер связывает ион с некоторыми возбужденными состояниями, которые в конечном итоге распадаются до одного состояния, которое не связано с лазером.

Приготовление начального состояния

Кубитная ионная ловушка

- Состояния ионных кубитов могут быть приготовлены в определенном состоянии кубита с помощью процесса, называемого оптической накачкой. В этом процессе лазер связывает ион с некоторыми возбужденными состояниями, которые в конечном итоге распадаются до одного состояния, которое не связано с лазером.
- Как только ион достигает этого состояния, у него нет возбужденных уровней, с которыми можно было бы взаимодействовать в присутствии этого лазера, и, следовательно, он остается в этом состоянии.

Приготовление начального состояния

Кубитная ионная ловушка

■ Если ион распадается до одного из других состояний, лазер будет продолжать возбуждать ион до тех пор, пока он не распадется до состояния, которое не взаимодействует с лазером. Этот процесс инициализации является стандартным для многих физических экспериментов и может выполняться с очень высокой точностью (> 99,9)

Оптическая накачка

Кубитная ионная ловушка

Рис.: Оптическая накачка лазерного стержня дуговой лампой

Измерение состояния