CLAIMS:

· 4

5

6 7

1	1. A method for reducing the number of messages to be processed by a control
2	processor in a load balancer comprising the steps of:
3	receiving a request to establish a TCP connection from a client by a network
4	processor in said load balancer;
5	establishing said TCP connection with said client via handshake messages
6	between said network processor and said client;
7	receiving a request message from said client;
8	bundling said request message and information from said handshake messages
9	involved in establishing said TCP connection by said network processor; and
10	transmitting said bundled message to said control processor by said network
11	processor.
1	2. The method as recited in claim 1 further comprising the steps of:

- identifying a server in a server farm to service said client's request message by 2 3 said control processor;
 - bundling said client's request message and a control message by said control processor; and
 - transmitting said bundled message comprising said client's request message and said control message to said network processor.
- 1 3. The method as recited in claim 2, wherein said server in said server farm is 2 identified using information extracted from said client's request message.
- 4. 1 The method as recited in claim 2, wherein said control message comprises 2 information used to enable said network processor to create entries in a forwarding 3 table to ensure packets from said client are transmitted to said server and to ensure 4 packets from said server are transmitted to said client.

1	3.	The method as recited in claim 2, wherein said control message comprises
2	inforn	nation to establish a TCP connection between said load balancer and said server.
1	6.	The method as recited in claim 2 further comprising the steps of:
2		receiving a request to terminate said TCP connection from said server by said
3	netwo	rk processor;
4		facilitating said termination of said connection between said server and said
5	client;	
6		bundling information regarding a series of closed connections by said network
7	proces	ssor; and
8		transmitting said bundled message regarding said series of closed connections
9	to said	d control processor by said network processor.
1	7.	The method as recited in claim 6 further comprising the step of:
2	٠.	extracting information from said bundled message regarding said series of
3	closed	connections by said control processor.

1	8. A computer program product embodied in a machine readable medium for
2	reducing the number of messages to be processed by a control processor in a load
3	balancer comprising the programming steps of:
4	receiving a request to establish a TCP connection from a client by a network
5	processor in said load balancer;
6	establishing said TCP connection with said client via handshake messages
7	between said network processor and said client;
8	receiving a request message from said client;
9	bundling said request message and information from said handshake messages
10	involved in establishing said TCP connection by said network processor; and
11	transmitting said bundled message to said control processor by said network
12	processor.
1	9. The computer program product as recited in claim 8 further comprising the
2	programming steps of:
3	identifying a server in a server farm to service said client's request message by
4	said control processor;
5	bundling said client's request message and a control message by said control
6	processor; and
7	transmitting said bundled message comprising said client's request message
8	and said control message to said network processor.
1	10. The computer program product as recited in claim 9, wherein said server in
2	said server farm is identified using information extracted from said client's request
^	
3	message.

The computer program product as recited in claim 9, wherein said control

message comprises information used to enable said network processor to create

entries in a forwarding table to ensure packets from said client are transmitted to said

server and to ensure packets from said server are transmitted to said client.

11.

1

2

3

4

1	12. The computer program product as recited in claim 9, wherein said control
2	message comprises information to establish a TCP connection between said load
3	balancer and said server.
1	
1	13. The computer program product as recited in claim 9 further comprising the
2	programming steps of:
3	receiving a request to terminate said TCP connection from said server by said
4	network processor;
5	facilitating said termination of said connection between said server and said
6	client;
7	bundling information regarding a series of closed connections by said network
8	processor; and
9	transmitting said bundled message regarding said series of closed connections
10	to said control processor by said network processor.
1	14. The computer program product as recited in claim 13 further comprising the
2	programming step of:
3	extracting information from said bundled message regarding said series of
4	closed connections by said control processor.

1	15. A load balancer, comprising:
2	a network processor, wherein said network processor is configured to process
3	fast path packets;
4	a control processor coupled to said network processor, wherein said control
5	processor is configured to process slow path packets; and
6	a memory unit coupled to said control processor and said network processor,
7	wherein said memory unit is operable for storing a computer program for reducing
8	the number of messages to be processed by said control processor;
9	wherein said network processor, responsive to said computer program,
10	comprises:
11	circuitry operable for receiving a request to establish a TCP connection
12	from a client;
13	circuitry operable for establishing said TCP connection with said client
14	via handshake messages between said network processor and said client;
15	circuitry operable for receiving a request message from said client;
16	circuitry operable for bundling said request message and information
17	from said handshake messages involved in establishing said TCP connection; and
18	circuitry operable for transmitting said bundled message to said
19	control processor.
1	16. The system as recited in claim 15, wherein said control processor, responsive
2	to said computer program, comprises:
3	circuitry operable for identifying a server in a server farm to service said
4	client's request message;
5	circuitry operable for bundling said client's request message and a control
6	message; and
7	circuitry operable for transmitting said bundled message comprising said
8	client's request message and said control message to said network processor.

- 1 17. The system as recited in claim 16, wherein said control message comprises
- 2 information used to enable said network processor to create entries in a forwarding
- 3 table to ensure packets from said client are transmitted to said server and to ensure
- 4 packets from said server are transmitted to said client.

1	18. A load balancer, comprising:
2	a network processor, wherein said network processor is configured to process
3	fast path packets;
4	a control processor coupled to said network processor, wherein said control
5	processor is configured to process slow path packets; and
6	a memory unit coupled to said control processor and said network processor,
7	wherein said memory unit is operable for storing a computer program for reducing
8	the number of messages to be processed by said control processor;
9	wherein said network processor, responsive to said computer program,
10	comprises:
11	circuitry operable for receiving a request to establish a TCP connection
12	from a client;
13	circuitry operable for establishing said TCP connection with said client
14	via handshake messages between said network processor and said client;
15	circuitry operable for receiving a request message from said client;
16	circuitry operable for bundling said request message and information
17	from said handshake messages involved in establishing said TCP connection;
18	circuitry operable for transmitting said bundled message to said
19	control processor;
20	circuitry operable for receiving a request to terminate said TCP
21	connection from said server;
22	circuitry operable for facilitating said termination of said connection
23	between said server and said client;
24	circuitry operable for bundling information regarding a series of closed
25	connections; and
26	circuitry operable for transmitting said bundled message regarding said
27	series of closed connections to said control processor.

1 19. The system as recited in claim 18, wherein said control processor comprises:
2 circuitry operable for extracting information from said bundled message
3 regarding said series of closed connections.