Subgradients

- subgradients
- strong and weak subgradient calculus
- optimality conditions via subgradients
- directional derivatives

Basic inequality

recall basic inequality for convex differentiable f:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

- ullet first-order approximation of f at x is global underestimator
- $(\nabla f(x), -1)$ supports $\mathbf{epi} f$ at (x, f(x))

what if f is not differentiable?

Subgradient of a function

g is a **subgradient** of f (not necessarily convex) at x if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

- ullet g is a subgradient of f at x iff (g,-1) supports $\operatorname{\mathbf{epi}} f$ at (x,f(x))
- g is a subgradient iff $f(x) + g^T(y x)$ is a global (affine) underestimator of f
- ullet if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

subgradients come up in several contexts:

- algorithms for nondifferentiable convex optimization
- ullet convex analysis, e.g., optimality conditions, duality for nondifferentiable problems

(if $f(y) \le f(x) + g^T(y - x)$ for all y, then g is a supergradient)

Example

 $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable

- $f_1(x_0) > f_2(x_0)$: unique subgradient $g = \nabla f_1(x_0)$
- $f_2(x_0) > f_1(x_0)$: unique subgradient $g = \nabla f_2(x_0)$
- $f_1(x_0) = f_2(x_0)$: subgradients form a line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$

Subdifferential

- ullet set of all subgradients of f at x is called the **subdifferential** of f at x, denoted $\partial f(x)$
- $\partial f(x)$ is a closed convex set (can be empty)

if f is convex,

- $\partial f(x)$ is nonempty, for $x \in \mathbf{relint} \, \mathbf{dom} \, f$
- $\partial f(x) = {\nabla f(x)}$, if f is differentiable at x
- if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

Example

$$f(x) = |x|$$

righthand plot shows $\bigcup \{(x,g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

Subgradient calculus

- weak subgradient calculus: formulas for finding *one* subgradient $g \in \partial f(x)$
- **strong subgradient calculus**: formulas for finding the whole subdifferential $\partial f(x)$, *i.e.*, all subgradients of f at x
- many algorithms for nondifferentiable convex optimization require only one subgradient at each step, so weak calculus suffices
- some algorithms, optimality conditions, etc., need whole subdifferential
- \bullet roughly speaking: if you can compute f(x), you can usually compute a $g\in \partial f(x)$
- ullet we'll assume that f is convex, and $x \in \mathbf{relint} \, \mathbf{dom} \, f$

Some basic rules

- $\partial f(x) = {\nabla f(x)}$ if f is differentiable at x
- scaling: $\partial(\alpha f) = \alpha \partial f$ (if $\alpha > 0$)
- addition: $\partial(f_1+f_2)=\partial f_1+\partial f_2$ (RHS is addition of point-to-set mappings)
- affine transformation of variables: if g(x) = f(Ax + b), then $\partial g(x) = A^T \partial f(Ax + b)$
- ullet finite pointwise maximum: if $f=\max_{i=1,\dots,m}f_i$, then

$$\partial f(x) = \mathbf{Co} \bigcup \{ \partial f_i(x) \mid f_i(x) = f(x) \},$$

i.e., convex hull of union of subdifferentials of 'active' functions at x

 $f(x) = \max\{f_1(x), \dots, f_m(x)\}$, with f_1, \dots, f_m differentiable

$$\partial f(x) = \mathbf{Co}\{\nabla f_i(x) \mid f_i(x) = f(x)\}\$$

example: $f(x) = ||x||_1 = \max\{s^T x \mid s_i \in \{-1, 1\}\}$

at
$$x = (1, 0)$$

at
$$x = (1, 1)$$

Pointwise supremum

if
$$f = \sup_{\alpha \in \mathcal{A}} f_{\alpha}$$
,

cl Co
$$\bigcup \{\partial f_{\beta}(x) \mid f_{\beta}(x) = f(x)\} \subseteq \partial f(x)$$

(usually get equality, but requires some technical conditions to hold, e.g., \mathcal{A} compact, f_{α} cts in x and α)

roughly speaking, $\partial f(x)$ is closure of convex hull of union of subdifferentials of active functions

Weak rule for pointwise supremum

$$f = \sup_{\alpha \in \mathcal{A}} f_{\alpha}$$

- find any β for which $f_{\beta}(x) = f(x)$ (assuming supremum is achieved)
- choose any $g \in \partial f_{\beta}(x)$
- then, $g \in \partial f(x)$

example

$$f(x) = \lambda_{\max}(A(x)) = \sup_{\|y\|_2=1} y^T A(x)y$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$, $A_i \in S^k$

- f is pointwise supremum of $g_y(x) = y^T A(x) y$ over $||y||_2 = 1$
- \bullet g_y is affine in x, with $\nabla g_y(x) = (y^T A_1 y, \dots, y^T A_n y)$
- hence, $\partial f(x) \supseteq \mathbf{Co} \{ \nabla g_y \mid A(x)y = \lambda_{\max}(A(x))y, \|y\|_2 = 1 \}$ (in fact equality holds here)

to find **one** subgradient at x, can choose **any** unit eigenvector y associated with $\lambda_{\max}(A(x))$; then

$$(y^T A_1 y, \dots, y^T A_n y) \in \partial f(x)$$

Expectation

- $f(x) = \mathbf{E} f(x, \omega)$, with f convex in x for each ω , ω a random variable
- for each ω , choose any $g_{\omega} \in \partial_f(x,\omega)$ (so $\omega \mapsto g_{\omega}$ is a function)
- then, $g = \mathbf{E} g_{\omega} \in \partial f(x)$

Monte Carlo method for (approximately) computing f(x) and $a \in \partial f(x)$:

- ullet generate independent samples ω_1,\ldots,ω_K from distribution of ω
- $f(x) \approx (1/K) \sum_{i=1}^{K} f(x, \omega_i)$
- for each i choose $g_i \in \partial_x f(x, \omega_i)$
- $g = (1/K) \sum_{i=1}^{K} g_i$ is an (approximate) subgradient (more on this later)

Minimization

define g(y) as the optimal value of

minimize
$$f_0(x)$$

subject to $f_i(x) \leq y_i, i = 1, ..., m$

 $(f_i \text{ convex}; \text{ variable } x)$

with λ^* an optimal dual variable, we have

$$g(z) \ge g(y) - \sum_{i=1}^{m} \lambda_i^{\star} (z_i - y_i)$$

i.e., $-\lambda^*$ is a subgradient of g at y

Composition

- $f(x) = h(f_1(x), \dots, f_k(x))$, with h convex nondecreasing, f_i convex
- find $q \in \partial h(f_1(x), \dots, f_k(x))$, $g_i \in \partial f_i(x)$
- then, $g = q_1g_1 + \cdots + q_kg_k \in \partial f(x)$
- ullet reduces to standard formula for differentiable $h,\ f_i$ proof:

$$f(y) = h(f_1(y), \dots, f_k(y))$$

$$\geq h(f_1(x) + g_1^T(y - x), \dots, f_k(x) + g_k^T(y - x))$$

$$\geq h(f_1(x), \dots, f_k(x)) + q^T(g_1^T(y - x), \dots, g_k^T(y - x))$$

$$= f(x) + g^T(y - x)$$

Subgradients and sublevel sets

g is a subgradient at x means $f(y) \ge f(x) + g^T(y - x)$

hence
$$f(y) \le f(x) \Longrightarrow g^T(y-x) \le 0$$

- f differentiable at x_0 : $\nabla f(x_0)$ is normal to the sublevel set $\{x \mid f(x) \leq f(x_0)\}$
- ullet f nondifferentiable at x_0 : subgradient defines a supporting hyperplane to sublevel set through x_0

Quasigradients

 $g \neq 0$ is a **quasigradient** of f at x if

$$g^T(y-x) \ge 0 \implies f(y) \ge f(x)$$

holds for all y

quasigradients at \boldsymbol{x} form a cone

example:

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad (\mathbf{dom} \, f = \{x \mid c^T x + d > 0\})$$

 $g = a - f(x_0)c$ is a quasigradient at x_0

proof: for $c^T x + d > 0$:

$$a^{T}(x - x_0) \ge f(x_0)c^{T}(x - x_0) \Longrightarrow f(x) \ge f(x_0)$$

example: degree of $a_1 + a_2t + \cdots + a_nt^{n-1}$

$$f(a) = \min\{i \mid a_{i+2} = \dots = a_n = 0\}$$

 $g = \operatorname{sign}(a_{k+1})e_{k+1}$ (with k = f(a)) is a quasigradient at $a \neq 0$

proof:

$$g^{T}(b-a) = \operatorname{sign}(a_{k+1})b_{k+1} - |a_{k+1}| \ge 0$$

implies $b_{k+1} \neq 0$

Optimality conditions — unconstrained

recall for f convex, differentiable,

$$f(x^*) = \inf_{x} f(x) \iff 0 = \nabla f(x^*)$$

generalization to nondifferentiable convex f:

$$f(x^*) = \inf_{x} f(x) \iff 0 \in \partial f(x^*)$$

proof. by definition (!)

$$f(y) \ge f(x^*) + 0^T (y - x^*) \text{ for all } y \iff 0 \in \partial f(x^*)$$

. . . seems trivial but isn't

Example: piecewise linear minimization

$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

$$x^*$$
 minimizes $f \iff 0 \in \partial f(x^*) = \mathbf{Co}\{a_i \mid a_i^T x^* + b_i = f(x^*)\}$

 \iff there is a λ with

$$\lambda \succeq 0, \qquad \mathbf{1}^T \lambda = 1, \qquad \sum_{i=1}^m \lambda_i a_i = 0$$

where
$$\lambda_i = 0$$
 if $a_i^T x^* + b_i < f(x^*)$

. . . but these are the KKT conditions for the epigraph form

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

with dual

maximize
$$b^T \lambda$$
 subject to $\lambda \succeq 0$, $A^T \lambda = 0$, $\mathbf{1}^T \lambda = 1$

Optimality conditions — constrained

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$

we assume

- f_i convex, defined on \mathbf{R}^n (hence subdifferentiable)
- strict feasibility (Slater's condition)

 x^{\star} is primal optimal (λ^{\star} is dual optimal) iff

$$f_i(x^*) \le 0, \quad \lambda_i^* \ge 0$$
$$0 \in \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*)$$
$$\lambda_i^* f_i(x^*) = 0$$

. . . generalizes KKT for nondifferentiable f_i

Directional derivative

directional derivative of f at x in the direction δx is

$$f'(x; \delta x) \stackrel{\Delta}{=} \lim_{h \searrow 0} \frac{f(x + h\delta x) - f(x)}{h}$$

can be $+\infty$ or $-\infty$

- f convex, finite near $x \Longrightarrow f'(x; \delta x)$ exists
- f differentiable at x if and only if, for some g (= $\nabla f(x)$) and all δx , $f'(x; \delta x) = g^T \delta x$ (i.e., $f'(x; \delta x)$ is a linear function of δx)

Directional derivative and subdifferential

general formula for convex f: $f'(x; \delta x) = \sup_{g \in \partial f(x)} g^T \delta x$

Descent directions

 δx is a **descent direction** for f at x if $f'(x;\delta x)<0$ for differentiable f, $\delta x=-\nabla f(x)$ is always a descent direction (except when it is zero)

warning: for nondifferentiable (convex) functions, $\delta x = -g$, with $g \in \partial f(x)$, need not be descent direction

example: $f(x) = |x_1| + 2|x_2|$

Subgradients and distance to sublevel sets

if f is convex, f(z) < f(x), $g \in \partial f(x)$, then for small t > 0,

$$||x - tg - z||_2 < ||x - z||_2$$

thus -g is descent direction for $||x-z||_2$, for **any** z with f(z) < f(x) $(e.g., x^*)$

negative subgradient is descent direction for distance to optimal point

proof:
$$||x - tg - z||_2^2 = ||x - z||_2^2 - 2tg^T(x - z) + t^2||g||_2^2$$

 $\leq ||x - z||_2^2 - 2t(f(x) - f(z)) + t^2||g||_2^2$

Descent directions and optimality

fact: for f convex, finite near x, either

- $0 \in \partial f(x)$ (in which case x minimizes f), or
- ullet there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define
$$\delta x_{sd} = - \underset{z \in \partial f(x)}{\operatorname{argmin}} ||z||_2$$

if $\delta x_{\rm sd}=0$, then $0\in\partial f(x)$, so x is optimal; otherwise $f'(x;\delta x_{\rm sd})=-\left(\inf_{z\in\partial f(x)}\|z\|_2\right)^2<0$, so $\delta x_{\rm sd}$ is a descent direction

idea extends to constrained case (feasible descent direction)