Complementos de Análise Matemática EE

Departamento de Matemática e Aplicações

20012/2013

Folha de Exercícios 6

EDP's I

Eng^a. de Comunicações, Eng^a de Polímeros

Valores próprios e funções próprias de PVFs

1. Mostrar que as funções $sen(\pi x)$, $sen(2\pi x)$, $sen(3\pi x)$, ... são as funções próprias do problema de valores de fronteira

$$y'' + \lambda y = 0,$$
 $y(0) = y(1) = 0,$

no intervalo [0,1].

2. Mostrar que as funções $1, \cos(\pi x), \cos(2\pi x), \cos(3\pi x), \dots$ são as funções próprias do problema de valores de fronteira

$$y'' + \lambda y = 0,$$
 $y'(0) = y'(1) = 0,$

no intervalo de [0,1].

3. Determinar os valores próprios e as funções próprias dos seguintes problemas de valores de fronteira.

(a)
$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y'(l) = 0$

(b)
$$y'' - \lambda y = 0$$
, $y'(0) = 0$, $y'(l) = 0$

(c)
$$y'' + \lambda y = 0$$
, $y(0) - y'(0) = 0$, $y(\pi) - y'(\pi) = 0$

(d)
$$y'' + \lambda y = 0$$
, $y(0) - y'(0) = 0$, $y(1) = 0$

4. Para que valores de λ é que o problema de valores de fronteira

$$y'' + \lambda y = 0$$
, $y(0) = y(2\pi)$, $y'(0) = y'(2\pi)$,

tem solução não-trivial?

5. Para que valores de λ é que o PVF

$$y'' - 2y' + (1 + \lambda)y = 0,$$
 $y(0) = 0,$ $y(1) = 0,$

tem solução não-trivial?

Classificação e solução de EDPs de segunda ordem

- 6. Escrever a forma geral de uma EDP de primeira ordem linear com três variáveis independentes. Quantas funções são necessárias para especificar esta EDP?
- 7. Conside-se o operador \mathcal{L} dado por $\mathcal{L}u(x,y) = a(x,y)u_{xx} + b(x,y)u_{xy} + c(x,y)u_{yy}$. Mostrar que \mathcal{L} é um operador linear.
- 8. Supondo que \mathcal{L}_1 e \mathcal{L}_2 são operadores lineares. Mostrar que o operador $\mathcal{L}_1 + \mathcal{L}_2$ também é um operador linear.
- 9. Classificar cada uma das EDPs de segunda ordem como elíptica, parabólica ou hiperbólica.
 - (a) $u_{xx} + 3u_{xy} + u_{yy} + 2u_x u_y = 0$ (b) $u_{xx} 2u_{xy} + u_{yy} + 2u_x u_y = 0$
 - (c) $u_{xx} + xu_{yy} = 0$ (d) $u_{xx} + 2e^{xy}u_{xy} + e^{2xy}u_{yy} = 0$
 - (e) $e^y u_{xx} + e^x u_{yy} = 0$ (f) $u_{xx} + 2\cos(x)u_{yy} = 0$ $x \in]0, \pi/2[$
- 10. Mostrar que a função $u(x,y)=e^{kx}\cos ky$ é uma solução da equação de Laplace $u_{xx}+u_{yy}=0$ qualquer que seja o valor da constante k.
- 11. Mostrar que a função $u(x,t) = e^{kx}e^{-k^2t}$ é uma solução da equação de calor $u_{xx} + u_t = 0$ qualquer que seja o valor da constante k.
- 12. Mostrar que a função $u(x,y) = e^{kx}e^{-ky}$ é uma solução da equação de onda $u_{xx} u_{yy} = 0$ qualquer que seja o valor da constante k.
- 13. Mostrar que a função $u(x,y)=\frac{kx^2}{2}+\frac{(1-k)y^2}{2}$ é uma solução da equação de Poisson $u_{xx}+u_{yy}=1$ qualquer que seja o valor da constante k.

Soluções da folha de exercícios 6

3. (a)
$$\lambda_n = \frac{(2n+1)^2 \pi^2}{4l^2}, \ y(x) = \frac{\sin[(2n+1)\pi x]}{2l};$$

(b)
$$\lambda = 0, y(x) = 1; \lambda_n = -n^2 \pi^2 / l^2, y(x) = \cos(\frac{n\pi x}{l});$$

(c)
$$\lambda = -1$$
, $y(x) = e^x$; $\lambda_n = n^2$, $y(x) = n\cos(nx) + \sin(nx)$;

(d)
$$y(x) = \operatorname{sen}\left(\sqrt{\lambda_n}x\right) + \cos\left(\sqrt{\lambda_n}x\right)$$
, onde $\operatorname{tg}\left(\sqrt{\lambda_n}\right) = -\sqrt{\lambda_n} \operatorname{e}\frac{(2n-1)^2\pi^2}{4} < \lambda_n < n^2\pi^2$.

4.
$$\lambda = 0$$
, $y(x) = 1$; $\lambda_n = n^2$, $y(x) = c_1 \cos(nx) + \sin(nx)$.

5.
$$\lambda_n = n^2 \pi^2$$
, $y(x) = e^x \operatorname{sen}(n\pi x)$.

6.
$$a(x,y,z)u_x+b(x,y,z)u_y+c(x,y,z)u_z+d(x,y,z)u=f(x,y,z);$$
 são necessárias 5 funções.

- 9. (a) hiperbólica;
 - (b) parabólica;
 - (c) elíptica se x > 0, hiperbólica se x < 0;
 - (d) parabólica;
 - (e) elíptica;
 - (f) elíptica;