Ref of Fu's 1993 paper

The linearized drift kinetic equation is given by

$$\left(\partial_t + \mathbf{v}_d \cdot \nabla + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla\right) g = ie \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) \frac{i}{\omega} \mathbf{v}_d \cdot \delta \mathbf{E}_{\perp}$$

where,
$$\mathbf{v}_d = \frac{\hat{\mathbf{b}}}{\Omega} \times \left(\mu \nabla B + \kappa v_{\parallel}^2 \right) \approx \frac{v_{\perp}^2/2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \kappa, \ \mu = \frac{v_{\perp}^2}{2B}, \ \omega_{\star} = \frac{i\hat{\mathbf{b}} \times \nabla F \cdot \nabla}{\Omega \partial F/\partial \epsilon}, \ \delta \mathbf{E}_{\perp} = i\omega \xi \times \mathbf{B}.$$

The term $\mathbf{v}_d \cdot \delta \mathbf{E}_{\perp}$ can be expressed by the following form.

$$\mathbf{v}_d \cdot \delta \mathbf{E}_{\perp} = \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \kappa \cdot \delta \mathbf{E}_{\perp} = i\omega \frac{v_{\perp}^2 / 2 + v_{\parallel}^2}{\Omega} \hat{\mathbf{b}} \times \vec{\kappa} \cdot \left(\vec{\xi} \times \mathbf{B} \right)$$
(1)

$$=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\vec{\kappa}\cdot\vec{\xi}=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\left(\nabla\theta\kappa_{\theta}+\nabla r\kappa_{r}\right)\cdot\left(\xi_{\theta}\nabla\theta+\xi_{r}\nabla r\right)$$

$$=-i\omega B\frac{v_{\perp}^{2}/2+v_{\parallel}^{2}}{\Omega}\left(\nabla\theta\cdot\nabla\theta\xi_{\theta}\kappa_{\theta}+\nabla r\cdot\nabla r\xi_{r}\kappa_{r}+\nabla\theta\cdot\nabla r\xi_{r}\kappa_{\theta}+\nabla r\cdot\nabla\theta\xi_{\theta}\kappa_{r}\right)$$

$$=-i\omega B\frac{\epsilon}{\Omega}\left(\frac{\Lambda}{b}+2\left(1-\frac{\Lambda}{b}\right)\right)\left(\left(g^{\theta\theta}\kappa_{\theta}+g^{r\theta}\kappa_{r}\right)\xi_{\theta}+\left(g^{rr}\kappa_{r}+g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$

with
$$g^{rr} = \nabla r \cdot \nabla r$$
, $g^{\theta r} = \nabla \theta \cdot \nabla r$, $g^{\theta \theta} = \nabla \theta \cdot \nabla \theta$. $\xi_r \nabla r = \xi_r \mathbf{e}_r$, $\xi_{\theta} \nabla \theta = \frac{1}{r} \xi_{\theta} \mathbf{e}_{\theta}$. $\Lambda = \frac{\mu B_0}{\epsilon}$, $b = B_0/B \approx 1 - (r/R_0) \cos \theta$, $\epsilon = \frac{1}{2} v^2$, $\kappa_{\theta} = -\frac{1}{R} \frac{\partial R}{\partial \theta}$, $\kappa_r \approx -\frac{1}{R} \frac{\partial R}{\partial r} - \frac{r}{q^2 R^2}$.

The linearized drift kinetic equation is rewritten as

$$\frac{d}{dt}g = ie\frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B \frac{\epsilon}{\Omega} \left(\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right)\right) \left(\left(g^{\theta\theta}\kappa_{\theta} + g^{r\theta}\kappa_{r}\right)\xi_{\theta} + \left(g^{rr}\kappa_{r} + g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)
\frac{d}{dt}g = H\left(r, \theta, \phi, t\right)$$
(2)

The solution of perturbed distribution function g is obtained in the followings. At equilibrium, the projection of the orbit on the polodial cross section is a closed curve. For either mirror-trapped or passing orbit, we define the bounce time

$$\tau_b = \oint d\tau = \oint \frac{d\psi}{\dot{\psi}} = \oint \frac{d\theta}{\dot{\theta}} \tag{3}$$

as the time it takes to close an equilibrium orbit on the poloidal plane. We assume that perturbations have the form

$$X^{(1)} = \hat{X}^{(1)}(r,\theta) \exp\left(-i\omega t - in\phi\right) \tag{4}$$

The formal solution of the nonadibatic distribution g is

$$g = \int_{-\infty}^{t} ie \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B \frac{\epsilon}{\Omega} G(\tau) d\tau \tag{5}$$

with

$$G = \left(\frac{\Lambda}{b} + 2\left(1 - \frac{\Lambda}{b}\right)\right) \left(\left(g^{\theta\theta}\kappa_{\theta} + g^{r\theta}\kappa_{r}\right)\xi_{\theta} + \left(g^{rr}\kappa_{r} + g^{r\theta}\kappa_{\theta}\right)\xi_{r}\right)$$

where $G(\tau) = \hat{G}[r(\tau), \theta(\tau)] \exp(-i\omega\tau + in\phi(\tau))$ and the τ dependence is through the following equations:

$$\dot{r} = \dot{\mathbf{R}} \cdot \nabla r, \dot{\theta} = \dot{\mathbf{R}} \cdot \nabla \theta, \dot{\phi} = \dot{\mathbf{R}} \cdot \nabla \phi \tag{6}$$

Let us separate $\phi(\tau)$ into its secular and osillating parts:

$$\phi\left(\tau\right) = \left\langle \dot{\phi} \right\rangle \tau + \widetilde{\phi}\left(\tau\right) \tag{7}$$

where the brackets indicate bounce averaging.

The quantity $\tilde{G}[r(\tau), \theta(\tau)] = \hat{G}[r(\tau), \theta(\tau)] \exp(in\tilde{\phi}(\tau))$ is a periodic function of τ , which can be expanded in Fourier series,

$$\tilde{G}(\tau) = \sum_{-\infty}^{\infty} Y_p(\Lambda, \bar{r}; \sigma) \exp(ip\omega_b \tau)$$
(8)

where,

$$Y_{p}\left(\Lambda, \bar{r}; \sigma\right) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}\left(\tau\right) \exp\left(-ip\omega_{b}\tau\right) \tag{9}$$

with $r(\tau) = \bar{r} + \rho \cos \theta (\tau)$.

Carrying out the time integration, the solution of g is obtained

$$g = e \frac{\partial F}{\partial \epsilon} (\omega - \omega_{\star}) B \frac{\epsilon}{\Omega} \sum_{-\infty}^{\infty} Y_p (\Lambda, \bar{r}; \sigma) \frac{\exp \left[i \left(n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega \right) t \right]}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega}$$
(10)

The formula of δW_k is derived as follows.

$$\delta W_k = \int d^3 x \vec{\xi}^{\star} \cdot \nabla \cdot \delta \mathbf{P}_k = -e \int d^3 x \int d^3 v \left(\frac{i}{\omega} \mathbf{v}_d \cdot \delta \mathbf{E}_{\perp} \right)^{\star} g$$

$$=-e\int d^3x\int d^3vgB\frac{\epsilon}{\Omega}\left(\frac{\Lambda}{b}+2\left(1-\frac{\Lambda}{b}\right)\right)\left(\left(g^{\theta\theta}\kappa_{\theta}+g^{r\theta}\kappa_{r}\right)\xi_{\theta}^{\star}+\left(g^{rr}\kappa_{r}+g^{r\theta}\kappa_{\theta}\right)\xi_{r}^{\star}\right)$$

$$= -e \int d^3x \int d^3v g B \frac{\epsilon}{\Omega} G^*$$

where $G^{\star} = \hat{G}^{\star} \left[r\left(\tau\right), \theta\left(\tau\right) \right] \exp\left(i\omega\tau - in\phi\left(\tau\right)\right)$. Let $\tilde{G}^{\star} \left[r\left(\tau\right), \theta\left(\tau\right) \right] = \hat{G}^{\star} \left[r\left(\tau\right), \theta\left(\tau\right) \right] \exp\left(-in\tilde{\phi}\left(\tau\right)\right)$, which is a periodic function of τ , which can be expanded in Fourier series,

$$\tilde{G}^{\star}(\tau) = \sum_{-\infty}^{\infty} Y_p^{\star}(\Lambda, \bar{r}; \sigma) \exp(-ip\omega_b \tau)$$
(11)

where,

$$Y_{p}^{\star}\left(\Lambda, \bar{r}; \sigma\right) = \frac{1}{\tau_{b}} \oint d\tau \tilde{G}^{\star}\left(\tau\right) \exp\left(ip\omega_{b}\tau\right) \tag{12}$$

with $r(\tau) = \bar{r} + \rho \cos \theta (\tau)$.

$$\delta W_k = -e^2 \int d^3x \int d^3v \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B^2 \frac{\epsilon^2}{\Omega^2} \sum_{-\infty}^{\infty} Y_p \left(\epsilon, \mu, P_{\phi}; \sigma\right)$$

$$\cdot \frac{\exp\left[i\left(n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega\right)\tau\right]}{n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star}\left(\Lambda, \bar{r}; \sigma\right) \exp\left(i\omega\tau - in\left\langle\dot{\phi}\right\rangle\tau - ip'\omega_b\tau\right)$$
(13)

$$\delta W_k = -e^2 \int d^3x \int d^3v \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B^2 \frac{\epsilon^2}{\Omega^2}$$

$$\cdot \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \bar{r}; \sigma \right) \frac{\exp\left[ip\omega_b \tau \right]}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star} \left(\Lambda, \bar{r}; \sigma \right) \exp\left(-ip'\omega_b \tau \right) \tag{14}$$

Using $d^3v = \sqrt{2}\pi \frac{1}{b\sqrt{1-\frac{\Lambda}{k}}}d\Lambda \epsilon^{1/2}d\epsilon$, $d^3x = 2\pi J dr d\theta$, yields

$$\delta W_k = -e^2 \int 2\pi J dr d\theta \int \sqrt{2\pi} \frac{1}{b\sqrt{1-\frac{\Lambda}{b}}} d\Lambda \epsilon^{1/2} d\epsilon \frac{\partial F}{\partial \epsilon} \left(\omega - \omega_{\star}\right) B^2 \frac{\epsilon^2}{\Omega^2}$$

$$\cdot \sum_{-\infty}^{\infty} Y_p \left(\Lambda, \bar{r}; \sigma \right) \frac{\exp\left(ip\omega_b \tau \right)}{n \left\langle \dot{\phi} \right\rangle + p\omega_b - \omega} \sum_{-\infty}^{\infty} Y_{p'}^{\star} \left(\Lambda, \bar{r}; \sigma \right) \exp\left(-ip'\omega_b \tau \right) \tag{15}$$

Applying $d\tau=\frac{qR_0}{\sqrt{2\epsilon}b\sqrt{1-\frac{\Lambda}{b}}}d\theta,$ one finially obtains

$$\delta W_k = -4\pi^2 \frac{e^2 B^2}{\Omega^2} \frac{1}{qR_0} \int J dr \int d\Lambda \epsilon^3 d\epsilon \frac{\partial F}{\partial \epsilon} \tau_b \left(\omega - \omega_\star\right)$$

$$\cdot \sum_{-\infty}^{\infty} \frac{|Y_p|^2}{n\left\langle\dot{\phi}\right\rangle + p\omega_b - \omega} \tag{16}$$

The normalized relations of the quantities are $F = \frac{n}{v_{th}^3} \bar{F}_0$, $v_t = \sqrt{\frac{2T}{M}}$, $\epsilon = \frac{T}{M} \bar{\epsilon}$, $r = a\bar{x}$, $J = aR_0\bar{J}$, $R = R_0\bar{R}$, $\omega_t = \frac{v_{th}}{R_0} \bar{\omega}_t$, $\frac{1}{\tau_t} = \frac{v_{th}}{2\pi R_0} \bar{\omega}_t = \frac{v_{th}}{R_0} \frac{\bar{\omega}_t}{2\pi} = \frac{v_{th}}{R_0} \frac{1}{\bar{\tau}_t}$.