

AUTOMATISME INDUSTRIEL

Introduction aux API

Cours 2

1h - v1.0 P

IUT de Cachan - 9 Avenue de la division Leclerc - 94230 Cachan

INTRODUCTION AUX SYSTÈMES SÉQUENTIELS

Table des matières

1	Introduction 1					
	1.1	Les limites du combinatoire	1			
	1.2	Automaintien	2			
2	2 La bascule RS					
	2.1	Présentation	3			

1 Introduction

Les équations combinatoires nous permettent de décrire des systèmes dont les actions ne dépendent que de l'état des entrées du système. Cela peut suffire dans certaines applications très simples mais il semble évident que l'introduction de la notion de séquence dans le comportement d'un automate est indispensable à l'élaboration d'un système automatisé.

1.1 Les limites du combinatoire

Un exemple très simple de système séquentiel est un télérupteur :

- Un appui sur l'interrupteur allume la lumière
- Un nouvel appui sur l'interrupteur éteint la lumière

La sortie dépend de l'état des entrées, mais aussi de son état précédent. En effet, la lumière sera allumé par un appui si elle est éteinte ou par l'absence d'appui si elle est déjà allumée.

Il est impossible de décrire ce comportement par une équation purement combinatoire.

Automaintien 1.2

Activité 1

S _

Tenter d'établir la table de vérité correspondant au chronogramme précédent Question 1

Question 2 A quel problème êtes-vous confronté? La sortie peut prendre deux états différents pour des combinaisons d'entrées identiques

A partir du chronogramme de l'activité précédente, remplir la table de vérité Question 3 suivante en prenant en compte la sortie à l'état précédent.

R	S	$Q_{\mathrm{pr\'ec}}$	Q	Remarque
0	0	0	0	Mémoire
0	0	1	1	Mémoire
0	1	0	1	Mise à 1
0	1	1	1	Mise à 1
1	0	0	0	Mise à 0
1	0	1	0	Mise à 0
1	1	0	0	Mise à 0 prioritaire
1	1	1	0	Mise à 0 prioritaire

Définition

Un système séquentiel est un système logique dont le comportement dépend de ses entrées mais aussi de son état précédent

www.iut-cachan.u-psud.fr

Remarque Conséquences

Une même cause (même combinaison des entrées peut produire des effets différents)

$\mathbf{2}$ La bascule RS

2.1 Présentation

Définition bascule

Une bascule (ou verrou) est un circuit logique capable de maintenir les valeurs de ses sorties malgré les changements de valeurs d'entrées. Une bascule a donc un effet de mémoire.

À retenir

Une bascule RS est une bascule à deux entrées de contrôle : S (SET) et R (RESET). Elle possède deux sorties Q et \overline{Q} . Son comportement est le suivant:

- $\bullet\,$ Une mise à 1 de S met la sortie Q à 1
- Une mise à 1 de R met la sortie Q à 0
- $R = S = 0 \rightarrow$ Etat mémoire : la sortie Q maintient son état précédent.
- \bullet R et S à 1 est un état interdit

R	S	Q	Remarque
0	0	Q	Mémoire
0	1	1	Mise à 1
1	0	0	Mise à 0
1	1	0	Interdit

Activité 2

Question 4 Compléter le chronogramme ci-dessous

www.iut-cachan.u-psud.fr

Activité 3: Bascules

Question 5 Etablir une bascule RS en langage LADDER

