Department of Mathematics Math 126: Algebra and Geometry Exercise 4

TK/KD/ALM/EAYA/GAB 22/7/22

1. If **A** is the matrix
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r \end{pmatrix}$$
 and **I**, the unit matrix of order 3, show that $\mathbf{A}^3 = p\mathbf{I} + q\mathbf{A} + r\mathbf{A}^2$.

- 2. A matrix **A** has x rows and x + 5 columns. **B** has y rows and 11 y columns. Both **AB** and **BA** exist. Find x and y.
- 3. If \mathbf{A}_{mn} , \mathbf{B}_{pq} are two matrices, state the conditions when they are conformable for (i) addition, (ii) multiplication (iii) addition and multiplication.
- 4. Let **A** be a square matrix and \mathbf{A}^T denote the transpose of **A**. Show that $\mathbf{A} + \mathbf{A}^T$ is a symmetric matrix and $\mathbf{A} \mathbf{A}^T$ is a skew symmetric matrix. Hence express the matrix $\begin{pmatrix} 1 & 2 & 4 \end{pmatrix}$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & -1 \\ -3 & 1 & 4 \end{pmatrix}$$
 as the sum of a symmetric and a skew symmetric matrix.

- 5. **P** is a 3×3 matrix such that $\mathbf{P}^2 = \mathbf{P} \mathbf{I}$.
 - (a) Find \mathbf{P}^{-1} in terms of \mathbf{P} and \mathbf{I} .
 - (b) Show that $P^3 + I = 0$.
 - (c) If $\mathbf{PQ} = 2\mathbf{I} \mathbf{P}$, find \mathbf{Q} in the form $\lambda \mathbf{I} + \mu \mathbf{P}$, where λ and μ are constants to be determined.
- 6. Use the method of row reduction to solve the simultaneous equations: 2x y + z = 1, 2x 2y + 3z = -1, x + y 2z = 3.
- 7. Apply Cramer's rule to solve the equations: 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4.

1

- 8. (a) For what value of k will the system 4x + y + 4z = 0, 2x + ky + z = 0, (k-1)x y + 2z = 0 have non-trivial solutions?
 - (b) Obtain non-trivial solutions when they exist:

i.
$$3x - 2y + z = 0$$
, $x + 2y - 2z = 0$, $2x - y + 2z = 0$,

ii.
$$x + y - 3z = 0$$
, $3x - y - z = 0$, $2x + y - 4z = 0$.

- 9. Find the values of λ for which the equations $(\lambda 1)x + (3\lambda + 1)y + 2\lambda z = 0$, $(\lambda 1)x + (4\lambda 2)y + (\lambda +)z = 0$, $2x + (3\lambda + 1)y + 3(\lambda 1)z = 0$ are consistent and find the ratios of x : y : z when λ has the smallest of these values. What happens when λ has the greatest of these values?
- 10. Find the adjoint of the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$ and verify that $\mathbf{A}(adj\mathbf{A}) = (adj\mathbf{A})\mathbf{A} = |\mathbf{A}|\mathbf{I}$.
- 11. Find the inverse of the matrix $\begin{pmatrix} 1 & 1 & -1 \\ 3 & 4 & -2 \\ -1 & 1 & 4 \end{pmatrix}$ by elementary row operations. Hence solve the simultaneous equations x+y-z=1, 3x+4y-2z=3, -x+y+4z=2, and find the matrix \mathbf{X} such that $\mathbf{X}\mathbf{A}=\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$.
- 12. Determine the values of λ and μ so that the following systems of equations have
 - (i) Unique solution (ii) No solution (iii) Infinite number of solutions

(a)
$$x - 2y + 3z = 6$$
, $3x + 4y - 10z = 1$, $3x + 4y + \lambda z = \mu$,

(b)
$$x + y + z = 1$$
, $x + 2y + 3z = 2$, $2x + 3y + \lambda y = \mu$,

(c)
$$2x + 3y + 5z = 9$$
, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$.

13. Show that the following sets of equations are consistent and solve them.

(a)
$$4x - 2y + 6z = 8$$
, $x + y - 3z = -1$, $15x - 3y + 9z = 21$,

(b)
$$x + y + 2z = 4$$
, $2x - y + 3z = 9$, $3x - y - z = 2$,

(c)
$$5x + 3y + 7z = 4$$
, $3x + 26y + 2z = 9$, $7x + 2y + 10x = 5$.

- 14. Find the values of α for which the equations x+2y+3z=1, $5x+y+3z=\alpha$, $3x+9y+13z=\alpha^2$ have solutions. Find all the solutions for each value of α .
- 15. For the matrix equation $\mathbf{M}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 4+k \end{pmatrix}$, where $\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & k \end{pmatrix}$, find the value of k for which the equation does not have unique solution. For this value of k, solve the equations and interpret the solution geometrically in relation to the linear transformation with matrix \mathbf{M} .
- 16. Show that the linear transformation with matrix $\begin{pmatrix} 1 & -3 & 0 \\ 2 & -4 & 3 \\ 1 & 1 & 6 \end{pmatrix}$ maps every point of the three-dimensional space onto a single plane and give the Cartesian equation of this plane. Describe the set of points mapped onto the origin under this transformation.

- 17. Write down the 2×2 matrices representing the following transformations of the plane.
 - (i) Reflection in the y-axis, (ii) Reflection in the line y = x (iii) Rotation through 180° about the origin (iv) Enlargement from the origin with scale factor λ .
- 18. (a) A matrix **A** of a linear transformation T(x,y) = (px + qy, rx + sy) is given by
 - i. Determine the values of the constant coefficients p, q, r and s.
 - ii. Find the matrix of the inverse of the transformation T and use it to find the point whose image is (2,1) under T.
 - (b) Write down the matrix **B** of the linear transformation S(x,y) = (x+3y,2x+y). Find the image of the point (2,1) under the transformation given by AB.
- 19. The linear transformation $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, where **M** is 3×3 matrix, maps

the points with position vectors $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ to the points with position

vectors $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ respectively. Write down the matrix \mathbf{M} and find the

inverse matrix \mathbf{M}^{-1} . Show that the transformation with the matrix \mathbf{M} maps points of the plane x + y + z = 0 to points of the plane x = y and verify that the inverse transformation with matrix \mathbf{M}^{-1} maps points of the plane x = y to points of the plane x + y + z = 0.

- (a) Show that for all values of θ , the determinant $\begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix}$ lies be-20. tween 2 and 4 inclusive. State the value of θ for which the determinant has the value 2, and one for which it has the value 4.
 - (b) Expand the determinant $y = \begin{vmatrix} x & x^2 & x^3 \\ a & b & c \\ p & q & r \end{vmatrix}$ by the first row, and from the expansion, find $\frac{dy}{dx}$. Express $\frac{dy}{dx}$ in the form of a determinant, and hence or otherwise, find the two values of x for which the determinant $y = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2 & 3 \\ 1 & -2 & 3 \end{vmatrix}$ has standard the form of a determinant $y = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2 & 3 \\ 1 & -2 & 3 \end{vmatrix}$ has standard the form of a determinant $y = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2 & 3 \\ 1 & -2 & 3 \end{vmatrix}$

tionary values.