Exercises: Overdetermined Linear Systems (Solutions)

2. (a) Writing down the interpolating conditions, we have

$$\left\{
\begin{array}{l}
y_1 = p(x_1) \\
y_2 = p(x_2) \\
y_3 = p(x_3)
\end{array}
\right\} \implies \left\{
\begin{array}{l}
3 = c_1 - 1 \cdot c_2 \\
6 = c_1 + 2 \cdot c_2 \\
9 = c_1 + 5 \cdot c_2
\end{array}
\right\}$$

Using matrix and vector notation, we can succinctly express the system as \mathbf{y} "=" $X\mathbf{c}$:

$$\underbrace{\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}}_{=:\mathbf{v}} = \underbrace{\begin{bmatrix} 1 & -1 \\ 1 & 2 \\ 1 & 5 \end{bmatrix}}_{-:\mathbf{v}} \underbrace{\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}}_{=:\mathbf{c}}.$$

(b) With X and y found in the previous part, we write the residual vector as

$$\mathbf{r} = X\mathbf{c} - \mathbf{y} = \begin{bmatrix} c_1 - c_2 - 3 \\ c_1 + 2c_2 - 6 \\ c_1 + 5c_2 - 9 \end{bmatrix},$$

whose squared 2-norm is given by

$$\|\mathbf{r}\|_{2}^{2} = (c_{1} - c_{2} - 3)^{2} + (c_{1} + 2c_{2} - 6)^{2} + (c_{1} + 5c_{2} - 9)^{2} =: g(c_{1}, c_{2}).$$

(c) Setting $\nabla g = \mathbf{0}$, we obtain the following two equations:

$$\frac{\partial g}{\partial c_1} = 2(c_1 - c_2 - 3) + 2(c_1 + 2c_2 - 6) + 2(c_1 + 5c_2 - 9) = 0$$

$$\frac{\partial g}{\partial c_2} = -2(c_1 - c_2 - 3) + 4(c_1 + 2c_2 - 6) + 10(c_1 + 5c_2 - 9) = 0$$

Dividing both equations by 2, collecting like terms, and moving constants to the other side of equations, we obtain

$$\begin{cases} 3c_1 + 6c_2 = 18 \\ 6c_1 + 30c_2 = 54 \end{cases}$$

which, in turn, is written as a matrix equation

$$\begin{bmatrix} 3 & 6 \\ 6 & 30 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 18 \\ 54 \end{bmatrix}. \tag{②}$$

The problem never asked to solve for c, so you may just stop here.

(d) By simple matrix calculation,

$$X^{\mathrm{T}}X = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 30 \end{bmatrix} \quad \text{and} \quad X^{\mathrm{T}}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 18 \\ 54 \end{bmatrix}.$$

Thus, we verify that the normal equation $X^{T}X\mathbf{c} = X^{T}\mathbf{y}$ is indeed the same as the matrix equation $\mathbf{\Theta}$ obtained in the previous part. How nice!

- 3. See the function lsqrfact in Lecture 21.
- 4. Begin by constructing the matrix and the vector as described.

```
A = reshape(1:40, 10, 4);
x = ([1:10].^2)';
```

Now we want to decompose \mathbf{x} into $\mathbf{u} + \mathbf{z}$, where \mathbf{u} lies in $\mathcal{R}(A)$ and \mathbf{z} is perpendicular to \mathbf{u} and thus lies in $\mathcal{R}^{\perp}(A)$. This is achieved when \mathbf{u} is an orthogonal projection of \mathbf{x} onto $\mathcal{R}(A)$.

To this end, it is the most convenient to work with an orthonormal basis of the range of A rather than working with the columns of A. So let's grab one by doing Gram-Schmidt on columns of A.

Thankfully, we do not need to do this by hand and thus we will use the thin QR factorization of $A = \widehat{Q}\widehat{R}$; the columns of \widehat{Q} form an orthogonal basis of $\mathcal{R}(A)$. For the sake of simplicity, we will simply call them \mathbb{Q} and \mathbb{R} in the code below.

```
[Q, \sim] = qr(A, 0); % R is not needed, but we still need a placeholder.
```

The projection of \mathbf{x} onto the range of A is now neatly written as

$$\mathbf{u} = (\mathbf{q}_1^{\mathrm{T}}\mathbf{x})\mathbf{q}_1 + (\mathbf{q}_2^{\mathrm{T}}\mathbf{x})\mathbf{q}_2 + (\mathbf{q}_3^{\mathrm{T}}\mathbf{x})\mathbf{q}_3 + (\mathbf{q}_4^{\mathrm{T}}\mathbf{x})\mathbf{q}_4 = \sum_{j=1}^4 (\mathbf{q}_j^{\mathrm{T}}\mathbf{x})\mathbf{q}_j.$$

Once it is computed, **z** is found simply by

$$z = x - u$$
.

In MATLAB:

```
u = zeros(size(x));
for j = 1:4
    u = u + (Q(:,j)'*x)*Q(:,j);
end
z = x - u;
```

To confirm, try

```
u'*z % are u and z indeed orthogonal?
```

If the outcome is small, u and z are nearly orthogonal numerically.

Alternately, observe that

$$\mathbf{z} = \mathbf{x} - \mathbf{u} = \left(I - \hat{Q}\hat{Q}^{\mathrm{T}}\right)\mathbf{x}.$$

So we can write a more compact code as

```
z1 = (eye(10) - Q*Q')*x;
u1 = x - z1;
u1'*z1
```

How close are the results to the previous ones?

```
norm(u-u1)
norm(z-z1)
```