2003 年"宇振杯"上海市初中数学竞赛 答案详解

一、填空题

1、【答案】-ax²+bx-c

【解析】已知 C 为函数 $y=ax^2+bx+c(a\neq 0)$ 的图像,那么 C 关于 y 轴对称的曲线为 C_1 ,则 C_1 的方程为 $y=a(-x)^2+b(-x)+c=ax^2-bx+c(a\neq 0)$; C_1 关于 x 轴对称的曲线为 C_2 ,则 C_2 的方程为- $y=ax^2-bx+c(a\neq 0)$,即 $y=-ax^2+bx-c(a\neq 0)$

2、【答案】10.95

【解析】设小王从甲店买了 a 只笔,按照题设中两商店的优惠条件,显然, a=0, a=5 或者 a=10.

当 a=0 时,即小王不从甲店买,全从乙店买,此时他将花掉 $13\times0.85=11.05$ (元); 当 a=5 时,即小王从甲店花 5 块钱得到 6 只笔,再从乙店中买 7 只笔就可以了, 此时,他将花掉 $1\times5+7\times1\times0.85=10.95$ (元);

当 a=10 时,即小王从甲店花 10 块钱得到 12 只笔,再从乙店中买 1 只笔就可以了,此时,他将花掉 $1\times10+1=11$ (元)

对比以上结果,显然,小王最少需要花 10.95 元。

3、【答案】0.005

【解析】已知 a+b+c=0,即 a+b=-c (1)

由 $a^2+b^2=(a+b)^2-2ab$ 以及 $a^2+b^2+c^2=0$. 1, 则(a+b) $^2-2ab+c^2=c^2-2ab+c^2=0$. 1, 得 $ab=c^2-0$. 05

所以,

$$\begin{aligned} a^4 + b^4 + c^4 &= (a^2 + b^2)^2 - 2a^2b^2 + c^4 \\ &= [(a+b)^2 - 2ab]^2 - 2a^2b^2 + c^4 \\ &= [c^2 - 2(c^2 - 0.05)]^2 - 2(c^2 - 0.05)^2 + c^4 \\ &= (0.1 - c^2)^2 - 2(c^2 - 0.05)^2 + c^4 \\ &= (0.01 + c^4 - 0.2c^2) - 2(c^4 - 0.1c^2 + 0.0025) + c^4 \\ &= 0.005 \end{aligned}$$

4、【答案】0° 〈∠A<90°

【解析】已知 ABCD 为四边形,所以, \angle A>0,又知 ABCD 为凸四边形,所以 \angle A 的最大值必须小于 CD 与 BC 共线时的长度,当 CD 与 BC 共线时,AB=8,AD=6,BD=BC+CD=4+6=10,此时因为 $6^2+8^2=10^2$,所以,此时, \angle A=90°,所以,满足题意的 \angle A 大小的范围是 0° 〈 \angle A<90°

5、【答案】44

【解析】由题意,设 $x^2+x-n=(x+a)(x-b)=x^2+(a-b)x-ab$, 两边对应得 a-b=1, ab=n, 由 a-b=1 得 a=b+1,代入 ab=n 得 b(b+1)=n,可见 n 是两个连续自然数的乘积,所以在 1-100 之间,两个连续自然数相乘是: $1\times 2=2$ 、 $2\times 3=6$ 、 $3\times 4=12$ 、 $4\times 5=20$ 、 $5\times 6=30$ 、… $43\times 44=1892$, $44\times 45=1980$. 因为 $45\times 46>2003$,因此,所有满足条件的 n 的所有值共有 44 个: 2, 6, 12, 20, 30, …, 1892, 1980

6【答案】527

【解析】因为
$$\frac{1}{m^2+m}+\frac{1}{(m+1)^2+(m+1)}+\dots+\frac{1}{n^2+n}=\frac{1}{23}$$
,提公因式得

$$\frac{1}{m(m+1)} + \frac{1}{(m+1)(m+2)} + \dots + \frac{1}{n(n+1)} = \frac{1}{23}$$

$$\mathbb{E} \mathbb{I} \qquad \frac{1}{m} - \frac{1}{m+1} + \frac{1}{m+1} - \frac{1}{m+2} + \dots + \frac{1}{n} - \frac{1}{n+1} = \frac{1}{23}$$

消去后得 $\frac{1}{m} - \frac{1}{n+1} = \frac{1}{23}$

移项得
$$m = 23 \times \frac{n+1}{n+24}$$

已知 m, n 都是正整数, 经检验, 当且仅当 n+24=232=529 时, 才能使得满足

$$m = 23 \times \frac{n+1}{n+24}$$
 的 m 为 正 整 数 , 此 时 , n=529-24=505

$$m = 23 \times \frac{n+1}{n+24} = 23 \times \frac{23^2 - 24 + 1}{23^2} = 22$$

所以, m+n=22+505=527

7、【答案】 $\frac{1}{2}$ k(k²+1)

【解析】观察列的特征,每一列除以 k 的余数都是相同的:根据去掉数的特征知道,选的数不可能在同一列,也就是说,它们的除以 k 的余数是不可能相同的:所以,所取出的 k 个数除以 k 后余数一定分别为 0,1,2,3, …, k-1, 所以,取的数可以使对角线上的数字,即 1, k+2,2k+3,3k+4, …, k^2 ,这 k 个数的和是

$$1+ (k+2) + (2k+3) + (3k+4) + \cdots + k^2$$

$$=1+(k+2)+(2k+3)+(3k+4)+\cdots+[(k-1)k+k]$$

$$=k[1+2+\cdots+(k-1)]+(1+2+3+\cdots+k)$$

$$= k \left[k-1 + \frac{(k-1)(k-2)}{2} \right] + \left[k + \frac{k(k-1)}{2} \right]$$

$$=\frac{1}{2}k(k^2+1)$$

8、【答案】5π

【解析】因为三角形 ANB 为正三角,所以,顶点 A 在翻转过程中的轨迹:或者半径为 1 的圆心角为 120 度的扇形弧,或者为半径为 1 圆心角为 30 度的扇形弧。

当三角形 ANB 在 PN 上旋转时, A 的轨迹为: 2 个为半径为 1 圆心角为 120 度的扇形弧:

当三角形 ANB 在 PQ 上旋转时, A 的轨迹为: 1 个为半径为 1 圆心角为 30 度的扇形弧, 1 个半径为 1 圆心角为 120 度的扇形弧。

当三角形 ANB 在 MQ 上旋转时, A 的轨迹为: 1 个为半径为 1 圆心角为 30 度的

扇形弧, 2个为半径为1圆心角为120度的扇形弧;

当三角形 ANB 在 MN 上旋转时, A 的轨迹为: 2 个为半径为 1 圆心角为 120 度的扇形弧。

然后, A 点不动, N 点旋转 1 个为半径为 1 圆心角为 30 度的扇形弧, 正三角形 ANB 恰好回到原来起始位置。

综上,顶点 A 在翻转过程中形成轨迹,恰好是:2 个为半径为1圆心角为30度的扇形弧和7个为半径为1圆心角为120度的扇形弧,总长为

$$2 \times (2\pi \times 1 \times \frac{30}{360}) + 7 \times (2\pi \times 1 \times \frac{120}{360}) = \frac{30}{6}\pi = 5\pi$$

9、【答案】 50√57 19

【解析】设∠BAN= α,∠NAM=β

由已知 MN=AM, AB=BC, \angle MAC= \angle BAN, 知 \angle MAC= α , \angle ANM= β , 且 \angle A= \angle 0 由 "外角等于两个不相邻的内角之和"得 \angle B= \angle ANM- \angle BAN= β - α 由以上各角知, \angle A= \angle C=2 α + β . 又 \angle A+ \angle B+ \angle C=180°、

即 2 (2 α + β) + β - α =180°

解得α +β =60°, 即∠BAM=60°.

在三角形 BAM 中,由点 M向 AB 边作高,垂足记作 P,那么

$$PM=AM \times \sin 60^{\circ} = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$

$$AP = AM \times \cos 60^{\circ} = 4 \times \frac{1}{2} = 2$$

BP=AB-AP=10-2=8

BM=
$$\sqrt{BP^2 + MP^2} = \sqrt{8^2 + (2\sqrt{3})^2} = 2\sqrt{19}$$

过 C 点向 AB 边作高,垂足记作 Q。那么, \triangle BPM \backsim \triangle BQC,从而, $\frac{PM}{CQ} = \frac{BM}{BC}$

即
$$\frac{2\sqrt{3}}{CQ} = \frac{2\sqrt{19}}{10}$$
,解得 $CQ = \frac{10 \times \sqrt{3}}{\sqrt{19}}$

所以,△ABC 的面积等于
$$\frac{1}{2}$$
 • AB • CQ= $\frac{1}{2} \times 10 \times \frac{10 \times \sqrt{3}}{\sqrt{19}} = \frac{50\sqrt{57}}{19}$

10、【答案】3

【解析】设 $\angle A=\alpha$,那么 $\angle C=3$ $\angle A=3\alpha$,由正弦定理得 $\frac{BC}{\sin \angle A}=\frac{AB}{\sin \angle C}$,即 $\frac{8}{\sin \alpha}=\frac{10}{\sin 3\alpha}$ 解得 $\cos \alpha=\frac{3}{4}$,再由余弦定理得

$$AC^2=AB^2+BC^2-2 \cdot AB \cdot BC \cdot \cos (180^\circ -4\alpha)$$

= $10^2+8^2+2\times 10\times 8\times \cos (4\alpha)$
=9
所以,AC=3

二、【解答】令 f (x)=4x²-2mx+n,则 y=f (x) 的图像时开口向上的抛物线,对称 轴为 x= $\frac{m}{4}$

$$1 < x_1, x_2 < 2 \begin{cases} 1 < \frac{m}{4} < 2 \\ f(\frac{m}{4}) = -\frac{m^2}{4} + n \le 0 \\ f(1) = 4 - 2m + n > 0 \\ f(2) = 16 - 4m + n > 0 \end{cases} \Leftrightarrow \begin{cases} 4 < m < 81 \\ m^2 \ge 4n2 \\ 4 + n > 2m3 \\ 16 + n > 4m4 \end{cases}$$

由①知 m=5,6,7,当 m=5 时,由②得 $n \le \frac{25}{4}$,故 $n \le 6$,又由③得 n > 6,矛盾,

当 m=6 时,由②得 n≤9,又由③、④得 n>8,所以 n=9,

当 n=7 时,由②得 n≤12,又由④得 n>12,矛盾,

综上所述, m=6, n=9

三、【解答】如图

延长 CB 至 L,使 BL=DN,则 Rt△ABL≌Rt△ADN 故 AL=AN, ∠1=∠2,∠NAL=∠DAB=90°. 又 MN=2-CN-CM=DN+BM=BL+BM=ML,且 AM=AM,

所以 $\triangle AMN \cong \triangle AML$,故 $\angle MAN = \angle MAL = \frac{90^{\circ}}{2} = 45^{\circ}$

(2) 设 CM=x, CN=y, MN=z, 则 $\begin{cases} x+y+z=2\\ x^2+y^2=z^2 \end{cases}$

价于
$$x = 2 - y - z$$

 $x^2 + y^2 = z^2$

于是 $(2-y-z)^2+y^2=z^2$,整理得 $2y^2+(2z-4)y+(4-4z)=0$

因为 y>0,所以△=4(z-2)²-32(1-z)≥0,即(z+2+2 $\sqrt{2}$)(z+2-2 $\sqrt{2}$)≥0

又因为 z>0,故 $z \ge 2\sqrt{2}$ -2, 当且仅当 x=y=2- $\sqrt{2}$ 时等号成立。

由于 $S_{\triangle AMN} = S_{\triangle AML} = \frac{1}{2}$ • ML • AB= $\frac{1}{2}$ MN • 1= $\frac{z}{2}$, 因此, \triangle AMN 的面积的最小值为 $\sqrt{2}-1$

四、【解答】设 x_2 - x_1 = x_3 - x_2 = \cdots = x_7 - x_6 =a, 且 x_i 对应的函数值为 y_i ,则

 $\triangle_k = y_{k+1} - y_k$

 $=(ax_{k+1}^{2}+bx_{k+1}+c)-(ax_{k}^{2}+bx_{k}+c)$

 $=a[(x_k+d)-x_k^2]+b[(x_k+d)-x_k]$

 $=2adx_k+(ad^2+bd)$

故 \triangle_{k+1} - \triangle_k =2ad(x_{k+1} - x_k)=2ad²(常数)。由给出的数据

 y_k : 51
 107
 185
 285
 407
 549
 717, 得

 \triangle_k : 56
 78
 100
 122
 142
 168,

 $\triangle_{k+q} - \triangle_k$: 22 22 22 20 26

由此可见,549是被算错的 y值,其正确值应该是551.

翔文学习 数学频道

QQ: 2254 2374 33

Email: xiangwenjy@gmail.com