AuW Recap

Axel Montini amontini@student.ethz.ch

July 27, 2021

Cannot be used during the exam, but it's a nice short recap of everything done in the second semester.

1 Last semester

Go read again about MST algorithms and so on.

2 Zusammenhang

Definition 1. A graph G = (V, E) is k-zusammenhängend if $|V| \ge k + 1$ and for all $X \subseteq V$, |X| < k the following is true:

The graph $G[V \setminus X]$ is zusammengehängend

Definition 2. A graph G = (V, E) is k-kanten-zusammenhängend if for all $X \subseteq E$, |X| < k the following is true:

The graph $G(V, E \setminus X)$ is zusammengehängend

Note 1. A graph can be both 2-kanten-zusammengehängend and be only 1-zusammengehängend at the same time. Example:

Definition 3. In a zusammengehängend Graph, *Artikulationsknoten* disconnect the graph when removed. Only 1-zusammengehängend graphs can have Artikulationsknoten

Theorem 1. In zusammenhängende Graphs it's possible to find Artikulationsknoten in $\mathcal{O}(|E|)$ if an adjacency list is used.

Definition 4. A zusammenhängend Graph may contain *Brücke*. In this case, it's **not 2-kanten-zusammenhängend**.

An edge is a bridge if it disconnects the graph when removed.

Theorem 2. Brücke can also be computed in $\mathcal{O}(|E|)$ using an adjacency list.

Definition 5. G = (V, E) is zusammenhängend. For $e, f \in E$ we define the relation

 $e \sim f \Leftrightarrow e = f$ or there is a Kreis containing both edges

This is an equivalence relation. Each equivalence class is called a Block (plural Blöcke).

3 Kreise

Definition 6. An *Eulertour* in a graph G is a closed path (Zyklus) that contains every edge $\in E$ exactly once.

A graph containing an Eulertour is called *eulersch*.

Definition 7.

Theorem 3.

A graph is eulersch \Leftrightarrow deg(v) is even for all vertices

Theorem 4. In a connected and eulersch Graph it's possible to find an Eulertour in $\mathcal{O}(|E|)$.

Definition 8. A Hamintonkreis in G is a cycle that goes through every vertex exactly once. A graph containing an Hamintonkreis is called hamintonsch.

Theorem 5. The algorithm seen in class can find an Hamintonkreis in time $\mathcal{O}(n^2 \cdot 2^n)$ and memory $\mathcal{O}(n \cdot 2^n)$, where n = |V|.

Theorem 6. A bipartite graph $G = (A \uplus B, E)$ cannot contain an Hamintonkreis.

Theorem 7 (Dirac). A graph G with $V \geq 3$ in which every vertex has at least |V|/2 neighbors is hamintonsch.

Definition 9. In a complete graph K_n (all vertices are connected together), the metric Traveling Salesman Problem consists in finding an Hamintonkreis C with minimal cost (distance).

Definition 10. An α -Approximationsal gorithmus of this problem finds an H.kreis C so that

$$\sum_{e \in C} l(e) \le \alpha \cdot opt(K_n, l)$$

Meaning that it finds a solution worse by the optimal solution by a factor α .

Theorem 8. If there's an α -Approximationsalgorithmus with $\alpha > 1$ for the TSP with running time $\mathcal{O}(f(n))$ then there's also an algorithm that decides whether a graph with n vertices is hamintonsch in $\mathcal{O}(f(n))$.

Theorem 9. For the metric TSP there's a 2-Approximationsalgorithmus with running time $\mathcal{O}(n^2)$. It find the MST in $\mathcal{O}(n^2)$ and then uses it to find the H.k.

4 Matching

Definition 11. A set of edges $M \subseteq E$ is called *Matching* in a graph G if

$$\forall e, f \in M \ (e \cap f = \emptyset)$$

- A vertex v is said to be $\ddot{u}berdeckt$ by a matching M if the matching contains an edge containing v.
- A matching M is called *perfektes Matching* if every vertex is überdeckt (equivalent: |M| = |V|/2).

Definition 12. A matching M is said to be:

• inklusions maximal if $M \cup \{e\}$ is not a matching for all $e \in E \setminus M$.

• kardinalit "atsmaximal" if $|M| \ge |M'|$ for all matchings M' in G.

Note that $kardinalit \ddot{a}tsmaximal \Rightarrow inklusionsmaximal$ (the opposite might not be true).

Theorem 10. The greedy-matching algorithm finds an inklusions maximal Matching in time $\mathcal{O}(|E|)$ for which the following holds: $|M_{Greedy}| \geq \frac{1}{2} |M_{max}|$, where M_{max} is a kardinalitäts maximales Matching.

Theorem 11 (Berge). Let M be a matching in G that is not kardinalitätsmaximal, then there is an augmented path to M.