ОШИБКИ ОЦЕНИВАНИЯ СИГНАЛА С ПОМОЩЬЮ КОМПЛЕКСНОГО АНАЛИЗА СИНГУЛЯРНОГО СПЕКТРА 1

Голяндина Н. Э., доцент кафедры Статистического Моделирования СПбГУ, n.golyandina@spbu.ru

Сенов М. А., студент, СПбГУ, senov.mikhail@gmail.com

Аннотация

Анализ Сингулярного Спектра (Singular Spectrum Analysis, SSA) — непараметрический метод для разложения временного ряда на сумму интерпретируемых компонент, таких как тренд, периодики и шум. Расширение SSA на комплексный случай называется CSSA. В комплексных временных рядах одним из часто встречающихся случаев является сигнал, состоящий из суммы мнимых экспонент. В работе проведено теоретическое сравнение CSSA и SSA, примененного отдельно к вещественной и мнимой части, для случая синусоидальных сигналов, частным случаем которых является мнимая экспонента. Для константного сигнала получен явный вид первого порядка ошибки его оценки в случае наличия в ряде выброса.

Введение

Анализ Сингулярного Спектра (Singular Spectrum Analysis, SSA) [2] — мощный метод анализа временных рядов, не требующий предварительного задания параметрической модели ряда. Однако есть класс сигналов, а именно временный ряды, управляемые линейными рекуррентными соотношениями, который позволяет получать теоретические результаты.

В данной работе рассматриваются случаи константного и двух синусоидальных сигналов. Для анализа ошибки оценивания сигнала используется теория возмущений [5], которая была применена для выделения сигнала методом SSA в ряде работ, см., например, [6].

¹Работа выполнена при поддержке гранта РФФИ 20-01-00067

Алгоритм CSSA

Алгоритм 1.

Вход: Временной ряд $\mathbb{X}=(x_1,\ldots,x_N)$, длина окна L, ранг сигнала r. **Выход:** Оценка сигнала $\widetilde{\mathbb{S}}$.

Алгоритм:

- 1. **Вложение.** Построим $\mathbf{X} \in \mathbb{R}^{L \times K}$, L-траекторную матрицу $p \mathfrak{g} \partial a$ $\mathbb{X} : \mathbf{X} = \mathcal{T}_L \mathbb{X} = [X_1 : \ldots X_K]$, $\epsilon \partial e K = N L + 1$, ϵX_i векторы L-вложения: $X_i = (x_i, \ldots, x_{i+L-1})^{\mathrm{T}} \in \mathbb{R}^L$.
- 2. **Разложение.** Построим SVD-разложение матрицы \mathbf{X} : $\mathbf{X} = \sum_{k=1}^{\mathrm{rank}\,\mathbf{X}} \sqrt{\lambda_k} U_k V_k^{\mathrm{H}} = \sum_{k=1}^{\mathrm{rank}\,\mathbf{X}} \widehat{\mathbf{X}}_k$, где U_k , V_k правые u левые сингулярные векторы матрицы \mathbf{X} соответственно, $\sqrt{\lambda_k}$ сингулярные числа.
- 3. **Группировка.** Сгруппируем матрицы компонент сигнала $\hat{\mathbf{S}}$: $\hat{\mathbf{S}} = \sum_{k=1}^r \hat{\mathbf{X}}_k$.
- 4. **Диагональное усреднение.** Применим процедуру диагонального усреднения (проекции в норме Фробениуса на линейное пространство ганкелевых матриц): $\widetilde{\mathbf{S}} = \mathcal{H}\widehat{\mathbf{S}}$, затем сопоставим полученным Ганкелевым матрицам ряды длины $N: \widetilde{\mathbb{S}} = \mathcal{T}_L^{-1}\widetilde{\mathbf{S}}$.

Для дальнейших рассуждений потребуется знание рангов конкретных рядов.

Из [3] известно, что ранг комплексного сигнала, состоящего из двух синусоид равен 2, если сдвиг между синусоидами не равен $\pi/2$ и равен 1 в случае мнимой экспоненты. Ранг вещественного сигнала, состоящего из синусоиды, равен 2. Ранги же комплексной и вещественной констант равны 1.

Применение теории возмущений к SSA и CSSA

Наблюдаем комплексный временной ряд $\mathbb X$ длины N и длиной окна L, данный ряд представляется как $\mathbb X=\mathbb S+\mathbb R$, где $\mathbb S$ — сигнал, $\mathbb R$ — возмущение.

В [6] вводится разложение восстановления сигнала в модели $\mathbb{S}(\delta) = \mathbb{S} + \delta \mathbb{R}$, что соответствует $\mathbf{H}(\delta) = \mathbf{H} + \delta \mathbf{E}$, где $\mathbf{H}(\delta)$ — траекторная матрица $\mathbb{S}(\delta)$, \mathbf{H} — траекторная матрица \mathbb{S} , $\delta \mathbf{E}$ — траекторная матрица

возмущения $\delta \mathbb{R}$ и рассматривается линейный по δ член ошибки восстановления, называемый первым порядком ошибки восстановления.

Рассмотрим возмущение ряда \mathbb{R} с $\delta = 1$, его траекторная матрица \mathbf{E} . Первый порядок ошибки восстановления обозначим как $\mathbb{F}^{(1)} = \mathcal{H}(\mathbf{H}^{(1)})$.

В [8] для теоремы 2.1 из [6] была получена следующая формула для ${f H}^{(1)}$ в случае достаточно маленького возмущения.

$$\mathbf{H}^{(1)} = \mathbf{P}_0 \mathbf{E} \mathbf{Q}_0^{\perp} + \mathbf{P}_0^{\perp} \mathbf{E},\tag{1}$$

где ${f P}_0^\perp$ — проектор на пространство столбцов ${f H}, {f Q}_0^\perp$ — проектор на пространство строк $\mathbf{H}, \mathbf{P}_0 = \mathbf{I} - \mathbf{P}_0^{\perp}, \mathbf{I}$ — единичная матрица.

Сравнение CSSA и SSA в случае совпадающих пространств сигналов

Обозначим за: $\mathbb{F}^{(1)} = (f_1^{(1)}, \dots, f_N^{(1)})$ первый порядок ошибки восстановления $\mathbb S$ с возмущением \mathbb{R} метода CSSA,

 $\mathbb{F}_{\mathrm{Re}}^{(1)}=(f_{\mathrm{Re},1}^{(1)},\ldots,f_{\mathrm{Re},N}^{(1)})$ первый порядок ошибки восстановления $\mathrm{Re}(\mathbb{S})$ с возмущением $\mathrm{Re}(\mathbb{R})$ метода SSA,

 $\mathbb{F}_{\mathrm{Im}}^{(1)}=(f_{\mathrm{Im},1}^{(1)},\ldots,f_{\mathrm{Im},N}^{(1)})$ первый порядок ошибки восстановления $\mathrm{Im}(\mathbb{S})$ с возмущением $\mathrm{Im}(\mathbb{R})$ метода SSA.

Теорема 1. Пусть траекторные пространства S, Re(S) и Im(S) совnaдaют.

Тогда

$$\mathbb{F}^{(1)} = \mathbb{F}_{Re}^{(1)} + i\mathbb{F}_{Im}^{(1)}$$
.

Линейность вхождения Е в формулу (1) позволяет доказать данное утверждение.

Случайное возмущение

Рассмотрим случайное возмущение \mathbb{R} .

Для дальнейших рассуждений приведём известный результат.

Лемма 1. Пусть $\zeta = \xi + i\eta$. Тогда $\mathbb{D}\zeta = \mathbb{D}\xi + \mathbb{D}\eta$.

Доказательство.

$$\mathbb{D}\zeta = \mathbb{E}(|\zeta - \mathbb{E}\zeta|^2) = \mathbb{E}(|(\xi - \mathbb{E}\xi) + i((\eta - \mathbb{E}\eta))|^2) =$$

$$= \mathbb{E}((\xi - \mathbb{E}\xi)^2 + (\eta - \mathbb{E}\eta)^2) = \mathbb{E}(\xi - \mathbb{E}\xi)^2 + \mathbb{E}(\eta - \mathbb{E}\eta)^2 = \mathbb{D}\xi + \mathbb{D}\eta.$$

Следствие 1. Пусть выполнены условия теоремы 1.

Tог ∂a

$$\mathbb{D}f_l^{(1)} = \mathbb{D}f_{\text{Re},l}^{(1)} + \mathbb{D}f_{\text{Im},l}^{(1)}.$$
 (2)

Получается автоматически из теоремы 1 и леммы 1.

Случай двух зашумленных синусоид

Следствие 2. Для комплексного ряда, состоящего из двух зашумленных синусоид со сдвигом, не равным $\pi/2$, выполняется формула (2).

Совпадение траекторных пространств сигналов для такого ряда было показано в [3].

Замечание 1. Численные эксперименты, проведённые в [1], показывают, что для сигнала в виде комплексной экспоненты MSE CSSA-оценка сигнала равна полусумме MSE SSA-оценок сигнала его вещественной и мнимой частей.

Замечание 2. Численные эксперименты, проведённые для данной работы показывают, что для сигнала в виде комплексной экспоненты MSE CSSA-оценки сигнала поточечно равны полусумме MSE SSA-оценок сигнала его вещественной и мнимой частей.

Случай константных сигналов с выбросом

Рассматриваем сигнал $\mathbb{S}=(c_1+ic_2,\ldots,c_1+ic_2)$, возмущённый выбросом a_1+ia_2 на позиции k. Исходя из теоремы 1, достаточно уметь вычислять первый порядок ошибки восстановления сигнала $\mathbb{S}=(c,\ldots,c)$, возмущённого выбросом a на позиции k.

В работе [7] была получен частный случай формулы (1) для вещественных сигналов единичного ранга.

$$\mathbf{H}^{(1)} = -U^{\mathrm{T}} \mathbf{E} V U V^{\mathrm{T}} + U U^{\mathrm{T}} \mathbf{E} + \mathbf{E} V V^{\mathrm{T}},$$

где U, V — сингулярные вектора матрицы ${\bf H}.$

Подставляя $U=\{1/\sqrt{L}\}_{i=1}^L,\, V=\{1/\sqrt{K}\}_{i=1}^K,\, K=N-L+1$ и в предположении, что $L\leq K$, можно получить явный вид первого порядка ошибки восстановления.

Выпишем его для случая $k \leq \min(L/2, K-L)$

$$f_l^{(1)} = \frac{a}{LK} \begin{cases} (L+K-k), & 1 \leq l \leq k \\ \frac{1}{l}(L+K-l)k, & k < l \leq L \\ \frac{1}{L}K(L+k-l), & L < l < L+k \\ 0, & L+k \leq l \leq K \end{cases}.$$

$$\frac{1}{N-l+1}(K-l)(L-k), & K < l < K+k \\ -k, & K+k \leq l \leq N \end{cases}$$

Замечание 3. Из данной формулы видно, что при фиксированном L, не зависящим от N, первый порядок ошибки не стремится κ 0 c ростом N, тогда как численные эксперименты показывают, что полная ошибка восстановления стремится κ 0 c ростом N.

Численное сравнение первого порядка ошибки и полной ошибки оценивания сигнала

Для случая зашумленных гармоник рассмотрен пример с сигналом $s_l=\cos(2\pi l/10)+i\cos(2\pi l/10+\pi/2),\ \sigma^2=0.1,\ N=49,\ L=20.$ Результат представлен на Рис. 1.

Рис. 1: Вещественные части первого порядка и полной ошибок.

Для случая возмущения в виде выброса был рассмотрен пример с сигналом $s_l=1+1i$, с возмущением в виде выброса $a_1+ia_2=10+i10$ на позиции k=L-1. Результаты представлены в таблице 1.

Таблица 1: Максимальное различие первого порядка и полной ошибок.

N	50	100	400	1600
L = N/2	0.1313	0.0419	0.0033	0.0002
L = 20	0.3074	0.1965	0.5655	0.6720

Численные результаты показывают, что для случая зашумленных гармоник первый порядок адекватно оценивает полную ошибку восстановления сигнала в каждой точке.

Однако для случая возмущения в виде выброса это верно только когда L и K стремятся к бесконечности с ростом N.

Все численные результаты были получены при помощи пакета [4].

Заключение

В работе удалось подвести теоретическую базу под имеющиеся ранее численные результаты ([1]) по сравнению CSSA и SSA для двух зашумленных гармоник с одинаковой частотой и сдвигом, не равным $\pi/2$. Для мнимой экспоненты был получен более общий, нежели имеющиеся ранее, численный результат. Для константного ряда с выбросами был получен явный вид ошибок первого порядка оценки сигнала в каждой точке, а также численно исследовано соотношение между ошибкой первого порядка и полной ошибкой.

Литература

- [1] N. Golyandina, A. Korobeynikov, A. Shlemov, and K. Usevich. Multivariate and 2D extensions of singular spectrum analysis with the Rssa package. *Journal of Statistical Software*, 67(2):1–78, 2015.
- [2] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky. *Analysis of Time Series Structure: SSA and Related Techniques*. Chapman&Hall/CRC, 2001.

- [3] Д. Степанов, Н. Голяндина. Варианты метода "Гусеница"-SSA для прогноза многомерных временных рядов. Труды IV Международной конференции "Идентификация систем и задачи управления" SICPRO'05. Москва, 2005, с. 1831-1848.
- [4] A. Korobeynikov, A. Shlemov, K. Usevich, and N. Golyandina. Rssa: A collection of methods for singular spectrum analysis http://CRAN.R-project.org/package=Rssa, 2021. R package version 1.04.
- [5] T. Kato. Perturbation theory for linear operators. Springer-Verlag, 1966.
- [6] V. Nekrutkin. Perturbation expansions of signal subspaces for long signals. *Statistics and Its Interface.*, Vol.3, P. 297-319, 2010.
- [7] V. Nekrutkin. Perturbations in SSA. Manuscript, 2008.
- [8] А. Константинов. Некоторые задачи анализа временных рядов (теория методов "Singal Subspace"). *Курсовая работа, науч. рук. В. Некруткин*, 2018.