See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244287080

An experimental and theoretical study of vibrational spectra of picolinamide, nicotinamide, and isonicotinamide

ARTICLE in JOURNAL OF MOLECULAR STRUCTURE · JANUARY 2007

Impact Factor: 1.6 · DOI: 10.1016/j.molstruc.2006.04.021

READS

CITATIONS

33 25

3 AUTHORS:

Meric Bakiler

Mimar Sinan Fine Arts University

7 PUBLICATIONS 118 CITATIONS

SEE PROFILE

Olcay Bolukbasi

Istanbul University

11 PUBLICATIONS 81 CITATIONS

SEE PROFILE

Ayberk Yilmaz

Istanbul University

11 PUBLICATIONS 66 CITATIONS

SEE PROFILE

Available online at www.sciencedirect.com

Journal of Molecular Structure 826 (2007) 6-16

Journal of MOLECULAR STRUCTURE

www elsevier com/locate/molstruc

An experimental and theoretical study of vibrational spectra of picolinamide, nicotinamide, and isonicotinamide

Meric Bakiler a,*, Olcay Bolukbasi b, Ayberk Yilmaz b

^a Mimar Sinan Fine Art University, Department of Physics, Besiktas, 34347 Istanbul, Turkey

Received 20 January 2006; received in revised form 13 April 2006; accepted 17 April 2006 Available online 5 June 2006

Abstract

The molecular structures and vibrational spectra of the three isomers of pyridinecarboxamide (picolinamide, nicotinamide, isonicotinamide) were calculated with the Density Functional Theory (DFT) method using the B3LYP function and the 6-31++G(d,p), Z2PolX, Z3PolX basis sets. The calculations were performed by using the Gaussian98W packet program set. The total energy distributions (TED) of the vibrational modes of these molecules were calculated by using the Scale 2.0 program and the vibrational modes of the molecules were determined. The Scaled Quantum Mechanical (SQM) method was used in the scaling procedure. In the experimental part of the study, the solid phase FT-IR and Micro Raman spectra of the three isomers of pyridinecarboxamide have been recorded in the range of 4000-650 and 1200-100 cm⁻¹, respectively. The calculated wavenumbers were compared to the corresponding experimental values. As a result, the observed bands of the three isomers of pyridinecarboxamide were assigned with good accuracy. © 2006 Elsevier B.V. All rights reserved.

Keywords: DFT calculations; Picolinamide; Nicotinamide; Isonicotinamide; Z3PolX basis set; SQM; Vibrational spectra

1. Introduction

The three isomers of pyridinecarboxamide; picolinamide (2-pyridinecarboxamide; 2-NH₂COpy), nicotinamide (3pyridinecarboxamide; 3-NH₂COpy), and isonicotinamide (4- pyridinecarboxamide; 4-NH₂COpy) are a class of medicinal agents with activity that includes the reduction of iron-induced renal damage [1]. The structure of picolinamide and nicotinamide has been determined by experimental methods and reported in previous papers [2-5]. In the present paper, we report a complete description of the molecular geometry and the molecular vibrations of the three isomers of pyridinecarboxamide. For that purpose, quantum chemical computations were performed on the three isomers of pyridinecarboxamide by using the Density Functional Theory (DFT). Experimental information on the molecular vibrations was obtained from the FT-IR and Micro Raman spectra measured. Our assignments were made by using the advantages of theoretical computations.

2. Experimental details

The solid phase FT-IR spectra of the powdered three isomers of pyridinecarboxamide were recorded with the ATR unit by using the Perkin-Elmer FT-IR spectrometer in the range of 4000–650 cm⁻¹. In these experiments a resolution of 4 cm⁻¹ was applied. The Raman spectra of the powdered samples were recorded on a Micro Raman Jobin YVON Horiba HR800 UV instrument using 632.8 nm excitation from a He–Ne laser in the range of 1200–100 cm⁻¹, 1800 grating, 5 scans per 30 s pulse and with 10× zoom.

3. Computational details

The geometry optimizations and calculated wavenumbers have been carried out at the Density Functional Theory (DFT) method with the B3LYP exchange-correlation

b Istanbul University, Science Faculty, Physics Department, Vezneciler, 34118 Istanbul, Turkey

^{*} Corresponding author. Tel.: +902122366936; fax: +902122611121. E-mail address: mbakiler@msu.edu.tr (M. Bakiler).

functional [6,7] by using the Gaussian 98W program [8]. The 6-31++G(d,p) basis set and the new highly compact Pol-type basis sets, Z2PolX and Z3PolX [9,10], for the three molecules and their conformers were used in the DFT calculations.

The vibrational modes of all these molecules were determined by using total energy distribution (TED) and the calculated wavenumbers were scaled by using the scaled quantum mechanical (SQM) analysis method, with the help of the Scale 2.0 program [11,12] for the results of B3LYP/6-31++G(d,p) basis set. The natural internal coordinates were used for SOM procedure and 10 scaling factors were classified according to different types of internal coordinates. The scaling factors were taken from previous studies for each group [13-15]. Only the scaling factors related to the out of plane bendings and NH2 rocking were refined. The diagonal force constants were scaled by the factor associated with the internal coordinates and the off-diagonal force constants were scaled by the geometric mean of the associated scaling factors. As Oakes et al. have stated, [9,10] wavenumbers calculated with the Z2PolX and Z3PolX basis sets showed to be in conformity with the experimental wavenumbers. For this reason, SQM method was not used on the results obtained from the Z2PolX and Z3PolX basis sets.

4. Results and discussion

The optimized geometries for the E- and Z-forms of the three molecules were calculated and their total energies are given in Table 1. In addition to the calculated wavenumbers and the total energy distribution results for the Eforms of the three molecules were obtained by using the DFT/B3LYP method with the 6-31++G(d,p), Z2PolX and Z3PolX basis sets. The calculated data for the Eand Z-forms of the three molecules are very similar. However, it was found to be that the *E*-forms of these molecules are more stable than the Z-forms. Therefore, we gave a detailed explanation only for the E-form. The E-form structures of these molecules with the atomic numbering used in this study are shown in Fig. 1. The optimized geometry parameters were obtained by using the DFT/B3LYP method with the 6-31++G(d,p), Z2PolX, and Z3PolX basis sets according to these atom numberings are given

Table 1
The total energies (in hartree) of the optimized geometry for the *E*- and *Z*-forms of the three isomers of pyridinecarboxamide

	Picolinamide		Nicotinamide		Isonicotinamide		
	E-Form	Z-Form	E-Form	Z-Form	E-Form	Z-Form	
B3LYP/6-31G++(d,p)	-417.0289	-417.0156	-417.0199	-417.0195	-417.0198	-417.01978	
B3LYP/Z2POLX	-416.9806	-416.9648	-416.9712	-416.9694	-416.9699	-416.9698	
B3LYP/Z3POLX	-417.0202	-417.0038	-417.0104	-417.0088	-417.0091	-417.0090	

Fig. 1. The atom numbering of three isomers of pyridinecarboxamide.

Table 2
The optimized geometry parameters obtained by using the DFT/B3LYP method with the 6-31++G(d,p), Z2PolX, and Z3PolX basis sets of the three isomers of pyridinecarboxamide

Atoms	Picolinamide		Nicotinamide			Isonicotinamide			
	6-31++G(d,p) (Å/deg)	Z2POLX (Å/deg)	Z3POLX (Å/deg)	6-31++G(d,p) (Å/deg)	Z2POLX (Å/deg)	Z3POLX (Å/deg)	6-31++G(d,p) (Å/deg)	Z2POLX (Å/deg)	Z3POLX (Å/deg)
R(1,2)	1.3432	1.3542	1.3534	1.3383	1.3490	1.3480	1.3387	1.3496	1.3486
R(2,3)	1.3977	1.401	1.4014	1.4025	1.4058	1.4069	1.3973	1.4004	1.4033
R(3,4)	1.3941	1.3988	1.4013	1.4004	1.4057	1.4069	1.4001	1.4051	1.4060
R(4,5)	1.3959	1.4015	1.4032	1.3915	1.3959	1.3982	1.3985	1.404	1.4049
R(5,6)	1.3979	1.4022	1.4042	1.3984	1.4025	1.4043	1.3951	1.3982	1.4008
R(6,1)	1.3378	1.3471	1.3457	1.3398	1.3505	1.3499	1.3413	1.3524	1.3515
R(6,7)	1.0876	1.0902	1.0943	1.0877	1.0903	1.0945	1.0875	1.0897	1.0943
R(5,8)	1.0854	1.0889	1.0918	1.0854	1.089	1.0918	1.0844	1.0870	1.0904
R(4,9)	1.086	1.0893	1.0926	1.0851	1.0875	1.0913	_	_	_
R(3,10)	1.0839	1.0873	1.0903	_	_	_	_	_	_
R(2,11)	1.5133	1.5084	1.5095	-	-	_	-	-	-
R(2,10)		_	_	1.0883	1.0902	1.0955	1.0878	1.0899	1.0945
R(3,9)	_	_	_	_	_	_	1.0857	1.0885	1.0923
R4,11)	_	_	_	_	-	-	1.5077	1.5069	1.5071
R(3,11)	_	_	_	1.5031	1.5023	1.5018	_	_	-
R(11,12)	1.2295	1.2532	1.2493	1.2277	1.2531	1.2490	1.2262	1.2518	1.2477
R(11,13)	1.3564	1.3595	1.3631	1.3696	1.3691	1.3728	1.3693	1.3685	1.3720
R(13,14)	1.0101	1.0112	1.0157	1.0077	1.007	1.0109	1.0079	1.0068	1.0106
R(13,15)	1.0081	1.0088	1.0105	1.0101	1.0101	1.0122	1.0102	1.0102	1.0122
A(11,13,14)	119.6839	119.0827	117.9942	122.2195	123.5099	123.296	121.8300	123.3605	123.1941
A(11,13,15)	118.978	119.531	120.0128	116.6389	117.6356	117.9044	116.695	117.7494	118.0125
A(14,13,15)	121.3381	121.3863	121.9930	117.8266	118.8545	118.799	117.767	118.8901	118.7934
A(13,11,12)	124.0067	124.0116	124.2953	121.7543	121.1288	121.1198	122.0911	121.2751	121.3221
A(13,11,2)	114.5465	114.5365	114.0045		- 117.0414	- 117.771		_	_
A(13,11,3)	_	_	_	116.8525	117.8414	117.771 –	116.4342	117.6682	- 117.5558
A(13,11,4)	- 121.4467	- 121.4519	121.7002	_	_	_	110.4342		
A(12,11,2)	121.4407	121.4319		121.3864	121.0298	121.1092	_	_	_
A(12,11,3) A(12,11,4)	_	_	_	121.5004	121.0298	121.1092	121.4674	121.0566	121.1221
A(11,2,3)	119.0911	119.7337	119.6291	_	_	_	121.4074	-	-
A(11,4,3)	-	- -	-	_	_	_	123.8514	124.4989	124.6230
A(11,4,5)	_	_	_			_	118.213	117.5675	117.5815
A(11,2,1)	117.6005	117.4448	117.0388	_	_	_	110.213	-	-
A(10,2,1)	-	-	-	115.1379	114.6825	114.4778	116.1544	116.4706	116.1916
A(10,2,3)	_	_	_	120.9163	121.9127	121.6566	120.146	120.4776	120.3911
A(3,2,1)	123.3084	122.8215	123.3321	123.9241	123.4048	123.8656	123.6991	123.0519	123.4174
A(2,3,4)	118.3056	118.4752	118.3207	117.7444	117.7735	117.7515	118.7247	119.0682	119.0286
A(2,3,10)	119.0192	119.025	118.9831	_	_	_	_	_	_
A(4,3,10)	122.6751	122.4998	122.6961	_	_	_	_	_	_
A(4,3,11)	_	_	_	118.2621	117.7991	117.7965	_	_	_
A(2,3,11)	_	_	_	123.9788	124.4274	124.452	_	_	_
A(2,3,9)	_	_	_	_	_	_	119.3905	118.4175	118.5479
A(4,3,9)	_	_	_	_	_	_	121.8511	122.5143	122.4235
A(2,1,6)	117.8589	118.3733	117.8598	117.3681	118.0455	117.4645	117.1373	117.7617	117.2374
A(3,4,5)	118.8381	118.992	118.8357	118.9226	119.2708	119.0445	117.9268	117.9336	117.7954
A(5,4,9)	120.6538	120.5368	120.6132	122.1098	122.1284	122.2685	_	_	_
A(3,4,9)	120.5081	120.4712	120.5511	118.9674	118.6008	118.687	_	_	_
A(1,6,5)	123.1628	122.5937	122.9989	123.4783	122.7444	123.2168	123.7231	123.0342	123.5037
A(1,6,7)	116.2019	116.5838	116.3788	115.9815	116.3245	115.9926	116.0192	116.3148	115.9949
A(5,6,7)	120.6353	120.8226	120.6223	120.5394	120.9311	120.7905	120.2577	120.6510	120.5014
A(4,5,6)	118.5262	118.7444	118.6527	118.5477	118.761	118.6571	118.7802	119.1504	119.0175
A(4,5,8)	121.3385	121.1597	121.2474	121.1519	120.9935	121.0803	119.7488	119.1370	119.3303
A(6,5,8)	120.1353	120.0959	120.0999	120.3004	120.2455	120.2626	121.4708	121.7126	121.6521
D(14,13,11,12)	-179.9369	-180.0	180.0000	-164.4174	-180.0145	-179.8022	163.8062	179.9867	179.9592
D(14,13,11,2)	-0.0532	0.0139	-0.0079	_	_	_	_	_	-
D(14,13,11,3)	-	_	_	16.5246	-0.0258	0.2138		_	-
D(14,13,11,4)	_	_	_	_	_	_	-17.1629	-0.0148	-0.0439
D(15,13,11,12)	0.0577	0.0036	0.0075	-5.4448	-0.0332	-0.1041	6.0024	0.0045	0.0131
D(15,13,11,2)	179.9415	180.0175	-180.0000	_	-	-	_	_	-
D(15,13,11,3)	_	_	_	175.4972	-180.0445	179.912	-	_	-
D(15,13,11,4)	_	_	_	_	_	-	-174.9666	-179.9970	-179.9900

Table 2 (continued)

Atoms	Picolinamide			Nicotinamide			Isonicotinamide			
	6-31++G(d,p) (Å/deg)	Z2POLX (Å/deg)	Z3POLX (Å/deg)	6-31++G(d,p) (Å/deg)	Z2POLX (Å/deg)	Z3POLX (Å/deg)	6-31++G(d,p) (Å/deg)	Z2POLX (Å/deg)	Z3POLX (Å/deg)	
D(13,11,2,3)	-179.946	180.0492	-179.9891	_	_	_	_	_	_	
D(13,11,3,4)	_	_	_	-163.1349	-179.9988	-179.853	_	_	_	
D(13,11,4,5)	_	_	_	_	_	_	159.1972	179.996	179.9777	
D(13,11,2,1)	0.0593	-0.0063	-0.0028	_	_	_	_	_	_	
D(13,11,3,2)	_	_	_	18.2965	0.0001	0.1509	_	_	_	
D(13,11,4,3)	_	_	_	_	_	_	-21.9052	-0.0040	-0.0259	
D(12,11,2,3)	-0.0589	0.0627	0.0055	_	_	_	_	_	_	
D(12,11,3,4)	_	_	_	17.8034	-0.0101	0.163	_	_	_	
D(12,11,4,5)	_	_	_	_	_	_	-21.7653	-0.0055	-0.0254	
D(12,11,2,1)	179.9464	-179.9928	179.9917	_	_	_	_	_	_	
D(12,11,3,2)	_	_	_	-160.7652	-180.0112	-179.833	_	_	_	
D(12,11,4,3)	_	_	_	_	_	_	157.1323	179.9944	179.971	
D(11,2,3,4)	-179.9936	180.0094	179.9866	_	_	_	_	_	_	
D(11,3,4,5)	_	_	_	-179.8916	180.0033	-179.9894	_	_	_	
D(11,4,5,6)	_	_	_	_	_	_	179.9795	-179.9998	-179.9994	
D(11,2,3,10)	0.0042	-0.067	0.0000	_	_	_	_	_	_	
D(11,3,2,10)	_	_	_	1.5115	-0.0376	0.0514	_	_	_	
D(11,3,4,9)	_	_	_	-0.0397	-0.0089	0.0073	_	_	_	
D(11,4,5,8)	_	_	_	-	_	-	0.1554	0.0004	0.001	
D(1,2,3,11)	_	_	_	179.7362	180.0068	179.9638	_	_	_	
D(1,2,3,4)	0.0008	0.068	0.0000	1.1607	0.0056	-0.0322	-0.3005	-0.0006	-0.0028	
D(1,2,3,10)	179.9986	179.998	-179.9872	_	_	-	_	_	_	
D(1,2,3,9)	-	-	-	_	_	_	-178.2303	-179.9995	-179.9953	
D(11,2,1,6)	179.9924	180.0155	-179.9879	_	_	_	170.2303	-	-	
D(11,4,3,2)	-	-	-	_	_	_	-179.4685	-179.9996	-179.9968	
D(11,4,3,2) D(11,4,3,9)	_		_			_	-1.5920	-0.0007	-0.0046	
D(3,2,1,6)	-0.0021	-0.0419	0.0000	-0.1679	-0.0163	0.0268	0.6776	0.0007	0.0040	
D(3,2,1,0) D(2,3,4,5)	-0.0021 -0.0001	-0.0417 -0.0547	0.0000	-0.1075 -1.2326	0.0044	0.0069	-0.5679	0.0002	-0.0021	
D(2,3,4,9) D(2,3,4,9)	179.9996	-180.0244	180.0000	178.6192	-180.0079	-179.9963	-0.5077	-	-0.0004	
D(2,3,4,9) D(4,3,2,10)	179.9990	-100.02 44	-	-177.0640	-180.0379 -180.0387	-179.9446	179.4103	179.9999	179.9978	
D(4,3,2,10) D(9,3,2,10)	_	_	_	-177.0040	-180.0387	-179.9440	1.4805	0.0009	0.0053	
D(9,3,2,10) D(10,3,4,5)	-179.9978	- -179.9821	- 179.9871	_	_	_	-	0.0009	-	
D(10,3,4,3) D(9,3,4,5)	-1/9.99/6	-179.9621	-	_	_	_	177.3085	179.9993	179.9918	
D(9,3,4,3) D(10,3,4,9)	0.0018	0.0482	-0.0120	_	_	_	-		1/9.9916 —	
	0.0018	-0.0029	0.0046	0.5246	0.028	0.0094	_	_	_	
D(9,4,5,8)	0.0008 -	-0.0029	- -	178.1497	180.0252	179.9448	- -179.0438	- 179.9997	-179.9985	
D(10,2,1,6)						0.0309				
D(8,5,6,7)	0.0005	-0.0174	0.0062	0.3439	-0.0285		-0.7547	0.0004	-0.001	
D(2,1,6,5)	0.0027	0.0035	0.0028	-0.7561	0.0172	0.0039	-0.1834	0.0005	0.0019	
D(2,1,6,7)	-179.9995	180.0195	179.9907	179.55683	-179.98065	179.96215	179.7273	179.9993	179.9978	
D(3,4,5,6)	0.0007	0.0194	0.0000	0.4083	-0.0035	0.0207	1.0157	0.0002	0.004	
D(3,4,5,8)	-179.9995	180.0274	-179.9946	-179.6285	180.0152	-179.994	-178.8084	-179.9996	-179.9957	
D(9,4,5,6)	-179.999	-180.0108	-180.0000	-179.4387	-179.9907	-179.9759	-	-	- 0.005	
D(1,6,5,4)	-0.0021	0.0071	0.0000	0.6341	-0.0076	-0.0274	-0.6685	-0.0007	-0.005	
D(1,6,5,8)	179.9981	179.9992	179.9935	-179.3295	179.9738	179.9872	179.1524	179.9992	179.9947	
D(7,6,5,4)	-179.9997	-180.0096	0.00622	-179.6925	179.990	-179.9837	179.4244	-179.9994	179.9993	

R, A, and D stand for bond, angle and dihedral angle, respectively.

in Table 2. The dihedral angles between the ring plane and $CONH_2$ group for picolinamide, nicotinamide, and isonicotinamide are marked in bold. These angles show that nicotinamide and isonicotinamide have a non-planar environment, and picolinamide has a planar environment. It was reported that the substitution of the amide group into the pyridine ring does not affect the dimensions of the ring very much [2]. The results of optimized geometry parameters were found to support this. The optimized geometry parameters obtained by using the DFT/B3LYP method with the 6-31++G(d,p) basis set were found to

be in better agreement with the experimental ones than the Z2PolX and Z3PolX basis sets.

The assignments of experimental wavenumbers, the calculated wavenumbers by using the DFT/B3LYP method with the 6-31++G(d,p), Z2PolX, and Z3PolX basis sets compared with experimental wavenumbers and total energy distribution results for each molecule are given in Tables 3–5. When compared with experimental spectra the results showed that the Z2PolX and Z3PolX basis sets gave accurate relative band intensities and band positions better than 6-31++G(d,p) basis set

without scaling. The simulated IR and Raman spectra and the experimental spectra are shown in Figs. 2–4 for picolinamide, nicotinamide, and isonicotinamide, respectively. IR and Raman intensities, scaled wavenumbers obtained from the SQM procedure, were found to

be in good agreement with the Z2PolX and Z3PolX basis sets. We found that the Z3PolX basis set gives the best results for predicting experimental IR and Raman spectra. Scaled wavenumbers at the 6-31++G(d,p) basis set were calculated by using the scaling factors which were

Table 3
The assignments of experimental wavenumbers, the calculated wavenumbers by using the DFT/B3LYP method with the 6-31++G(d,p), Z2PolX, and Z3PolX basis sets compared with the experimental wavenumbers and the total energy distribution results for picolinamide

Experimental				Calcu	Calculation									
				6-31++G(d,p)			Z2PO	LX	Z3POLX					
Assign.	IR	Ra	Gas ^a	U	S	TED (%)	U	TED(%)	U	TED (%)				
				77	75	100 τСССО	77	100 τCCCO	93	100 τCCCO				
				157	147	52 γ (CC), 40 $\tau_{\rm ring}$	157	47 γ (CC), 46 τ _{ring}	170	51 $\tau_{\rm ring}$, 41 $\gamma({\rm CC})$				
				219	219	62 δ (CC), 25 δ (CN)	219	62 δ (CC), 25 δ (CN)	216	62 δ (CC), 26 δ (CN)				
				335	301	99 NH _{2wag}	335	96 NH _{2wag}	373	24 ν (CC), 24 δ_{ring} , 22 δ (CO), 19 δ (CN)				
				379	373	32 ν (CC), 25 δ_{ring} , 18 δ (CO), 15 δ (CN)	379	29 ν (CC), 26 δ_{ring} , 19 δ (CO), 16 δ (CN)	425	$100 \tau_{\rm ring}$				
				414	399	$100 \tau_{\rm ring}$	414	$100 \tau_{\rm ring}$	438	45 NH _{2wag} , 40 τ_{ring}				
				451	428	76 τ_{ring} , 16 γ (CC)	451	69 τ_{ring} , 21 $\gamma(\text{CC})$	486	39 δ (CN),				
				431	420	70 tring, 10 7 (CC)	731	0) tring, 21 /(CC)	400	24 δ (CC), 11 $v_{\rm ring}$				
				495	490	43 δ (CN), 22 δ (CC), 12 $v_{\rm ring}$	495	42 δ (CN), 23 δ (CC), 11 ν_{ring}	498	55 NH_{2wag} ,				
				473	470	45 0(C11), 22 0(CC), 12 vring	473	42 0 (C14), 23 0 (CC), 11 vring	470	31 τ_{ring} , 12 γ (CC)				
			602	612	604	69 NH _{2twist} , 15 γ (CO), 11 τ _{ring}	612	42 δ (CO), 41 δ _{ring}	597	45 δ (CO), 36 δ _{ring}				
			002	629	608	44 δ (CO), 38 δ _{ring}	629	78 NH _{2twist}	632	83 $\delta_{\rm ring}$				
				640	636	76 δ_{ring}	640	$76 \delta_{\rm ring}$	671	81 NH _{2twist}				
γ(CO)			680	717	679	41 γ (CO), 29 NH _{2twist} , 29 τ _{ring}	717	51 τ_{ring} , 33 γ (CO), 19 NH _{2twist}	724	54 $\tau_{\rm ring}$, 36 γ (CO),				
	754							2 , , , , , , , , , , , , , , , , , , ,		16 NH _{2twist}				
$ au_{ m ring}$	754		747	763	735	60 $\tau_{\rm ring}$, 34 $\gamma({\rm CH})$	763	57 γ (CH), 37 $\tau_{\rm ring}$	776	42 δ_{ring} , 23 $\nu(\text{CC})$,				
2	704			701	765	42 \$ 21(CC) 21	790	42 \$ 22 n(CC) 10 n	705	21 v _{ring}				
$\delta_{ m ring}$	794			781	765	43 $\delta_{\rm ring}$, 21 $\nu({\rm CC})$, 21 $\nu_{\rm ring}$	780	42 $\delta_{\rm ring}$, 23 ν (CC), 19 $\nu_{\rm ring}$	795	47 γ (CH), 36 τ_{ring} ,				
(CII)	925		017	022	701	46(CII) 20(CC)	922	24 ··(CO) 28 ··(CH)	970	12 γ(CO)				
γ(CH)	825		817	832	781	46 γ(CH), 20 γ(CC),	832	34 γ(CO), 28 γ(CH),	870	44 γ(CH),				
(CII)	000			020	906	20 γ (CO), 14 $\tau_{\rm ring}$	020	25 γ (CC), 13 $\tau_{\rm ring}$	079	24 γ(CC), 22 γ(CO)				
γ(CH)	909			928	896	100 γ(CH)	928	100 γ(CH)	978	100 γ(CH)				
γ(CH)				988	954	100 γ(CH)	988	100 γ(CH)	1000	$57 \delta_{\text{ring}}$, $41 v_{\text{ring}}$				
γ(CH)	006	000	006	1016	988	100 γ(CH)	1016	$54 \delta_{\text{ring}}, 45 v_{\text{ring}}$	1057	59 $v_{\rm ring}$, 19 δ (CH)				
$v_{\rm ring}$	996	998	996	1022	996	59 $v_{\rm ring}$, 39 $\delta_{\rm ring}$	1022	100 γ(CH)	1061	100 γ(CH)				
v _{ring}	1043	1043	1030	1064	1032	60 v_{ring} , 23 δ (CH), 14 δ_{ring}	1064	68 $v_{\rm ring}$, 22 δ (CH)	1065	48 NH ₂ rock, 15 v _{ring}				
NH _{2rock}	1005	1083	1006	1091	1065	43 NH _{2rock} , 21 ν (CN), 12 ν _{ring}	1091	51 NH _{2rock} , 18 ν (CN)	1110	45 δ (CH), 40 $v_{\rm ring}$				
δ (CH)	1095	1100	1086	1115	1085	39 δ (CH), 35 v_{ring}	1115	43 δ (CH), 36 $\nu_{\rm ring}$	1134	100 γ(CH)				
δ (CH)	1143	1142	1156	1172	1140	74 δ (CH), 21 v_{ring}	1171	67 δ (CH), 21 ν_{ring}	1170	48 δ (CH), 24 $\nu_{\rm ring}$				
$v_{\rm ring}$	1164	1168	1156	1178	1148	29 v_{ring} , 22 δ_{ring} , 16 $\delta(\text{CH})$	1178	32 $v_{\rm ring}$, 28 δ (CH), 13 $\delta_{\rm ring}$	1178	49 δ (CH), 27 $v_{\rm ring}$				
V _{ring}	1254		1244	1310	1267	76 v_{ring} , 18 δ (CH)	1310	65 v_{ring} , 29 δ (CH)	1305	54 δ (CH), 40 v_{ring}				
δ (CH)	1284		1291	1324	1287	54 δ (CH), 36 v_{ring}	1324	47 v_{ring} , 44 δ (CH)	1326	70 $v_{\rm ring}$, 18 δ (CH)				
v(CN)	1387		1362	1386	1346	25 v(CN), 16 v(CC),	1386	28 v(CN), 16 v(CC),	1378	23 v(CN), 17 v(CC),				
S (CII)	1.442		1.422	1.471	1.420	13 δ (CO), 12 δ (CH), 12 NH _{2scis}	1.471	12 δ (CH), 12 δ (CO), 11 ν_{ring}	1.461	15 v_{ring} , 14 δ (CH)				
δ (CH)	1442		1433	1471	1429	57 δ (CH), 33 $v_{\rm ring}$	1471	55 δ (CH), 35 ν_{ring}	1461	59 δ (CH), 33 $\nu_{\rm ring}$				
δ (CH)	1468		1472	1505	1461	56 δ (CH), 36 $v_{\rm ring}$	1505	54 δ (CH), 38 $\nu_{\rm ring}$	1490	51 δ (CH), 37 $\nu_{\rm ring}$				
NH_{2scis}	1603		1567	1594	1528	78 NH _{2scis}	1594	81 NH _{2scis}	1551	74 NH _{2scis}				
$v_{\rm ring}$	1568		1645	1620	1570	71 v_{ring} , 16 δ (CH)	1620	73 $v_{\rm ring}$, 15 δ (CH)	1611	74 $v_{\rm ring}$, 15 δ (CH)				
$v_{\rm ring}$	1587		1645	1637	1588	65 v_{ring} , 21 δ (CH)	1637	67 v_{ring} , 20 δ (CH)	1629	0				
v(CO)	1658		1722	1760	1702	74 v(CO)	1760	75 v(CO)	1707	71 v(CO)				
v(CH)	2061		3020	3176	3037	100 v(CH)	3176	100 v(CH)	3153	100 v(CH)				
v(CH)	3061		2075	3194	3054	100 v(CH)	3194	100 v(CH)	3178	100 v(CH)				
v(CH)			3075	3213	3072	99 v(CH)	3213	99 v(CH)	3202	99 ν(CH)				
v(CH)	2164		2415	3233	3091	99 v(CH)	3233	100 v(CH)	3220	99 v(CH)				
$v(NH_2)$	3164		3415	3589	3431	100 v(NH ₂)	3589	100 v(NH ₂)	3519	100 v(NH ₂)				
$v(NH_2)$	3414		3552	3738	3574	$100 \text{ v(NH}_2)$	3738	$100 \text{ v(NH}_2)$	3691	100 ν(NH ₂)				

IR, experimental IR solid phase wavenumbers; Ra, the experimental Raman wavenumbers; Gas, experimental IR gas phase wavenumbers; U, unscaled wavenumbers; S, scaled wavenumbers; TED, total energy distribution of picolinamide obtained by using the Scale 2.0 program; τ , torsion; δ , in plane bending; ν , stretching; γ , out of plane bending vibrations.

^a Taken from Ref. [19].

Table 4
The assignments of experimental wavenumbers, the calculated wavenumbers by using the DFT/B3LYP method with the 6-31++G(d,p), Z2PolX and Z3PolX basis sets compared with the experimental wavenumbers and the total energy distribution results for nicotinamide

Experime	ntal			Calcu	lation						
				6-31+	+G(d,p)	Z2PO	LX	Z3POLX		
Assign.	IR	Ra	Gasa	U	S	TED(%)	U	TED(%)	U	TED(%)	
				52	50	97 τCCCO	38	99 τCCCO	33	98 τCCCO	
				153	147	52 γ (CC), 38 $\tau_{\rm ring}$	165	47 $\tau_{\rm ring}$, 46 $\gamma(CC)$	164	51 $\tau_{\rm ring}$, 42 $\gamma({\rm CC})$	
				212	210	63 δ (CC), 18 δ (CN)	227	66 δ (CC), 23 δ (CN)	227	67 δ (CC), 23 δ (CN)	
				314	284	90 NH _{2wag}	385	30 ν (CC), 27 δ_{ring} , 18 δ (CO), 12 δ (CN)	342	83 NH _{2wag} , 12 NH _{2twi}	
				378	370	26 ν (CC), 20 δ_{ring} , 22 τ_{ring} , 15 δ (CO)	397	78 $\tau_{\rm ring}$, 14 $\gamma({\rm CC})$	381	27 δ_{ring} , 27 $v(\text{CC})$, 18 $\delta(\text{CO})$, 15 $\delta(\text{CN})$	
				387	374	58 $\tau_{\rm ring}$, 12 $\delta({\rm CN})$	443	$88 \tau_{\rm ring}$	400	89 $\tau_{\rm ring}$	
				418	404	93 $\tau_{\rm ring}$	467	76 NH _{2wag} , 18 NH _{2twist}	444	74 $\tau_{\rm ring}$, 16 $\gamma({\rm CC})$	
				495	488	43 δ (CN), 15 δ (CC)	477	50 δ (CN), 18 δ (CC), 11 ν_{ring}	466	47 δ (CN), 18 δ (CC)	
NH _{2twist}				559	537	76 NH _{2twist}	602		571	78 NH _{2twist}	
		(27						64 NH _{2twist} , 22 NH _{2wag}			
$\delta_{ m ring}$		627		616	611	49 δ_{ring} , 28 δ (CO)	614	39 δ_{ring} , 38 δ (CO)	600	40 δ_{ring} , 37 δ (CO)	
$\delta_{ m ring}$				643	639	61 $\delta_{\rm ring}$, 22 $\delta({\rm CO})$	645	74 $\delta_{\rm ring}$, 14 $\delta({\rm CO})$	631	74 $\delta_{\rm ring}$, 14 $\delta({\rm CO})$	
ring				717	689	71 $\tau_{\rm ring}$, 33 $\gamma({\rm CO})$	740	96 $\tau_{\rm ring}$, 12 γ (CO)	725	95 $\tau_{\rm ring}$, 14 $\gamma({\rm CO})$	
y(CO)	701		733	747	698	35 γ (CO), 30 τ_{ring} , 26 γ (CH)	759	50 γ(CO), 35 γ(CH)	758	53 γ(CO), 31 γ(CH)	
$\delta_{ m ring}$	776	788	777	781	766	44 $\delta_{\rm ring}$,	780	45 $\delta_{\rm ring}$, 22 $v_{\rm ring}$, 19 $v({\rm CC})$	773	45 $\delta_{\rm ring}$,	
Ü						22 v _{ring} , 18 v (CC)		<i>3</i> . <i>3</i> . , , ,		21 $v_{\rm ring}$, 20 $v({\rm CC})$	
y(CH)	828	833	812	841	808	68 γ (CH), 12 γ (CC)	875	65 γ(CH), 15 γ(CC), 14 γ(CO)	886	70 γ (CH), 13 γ (CC)	
y(CH)				947	915	100 γ(CH)	973	100 γ(CH)	969	100 γ(CH)	
(CH)	936			990	957	100 γ(CH) 100 γ(CH)	1038	• • •	1023		
		040				, ()		43 v_{ring} , 42 δ_{ring} , 12 $\delta(\text{CH})$		$67 \delta_{\text{ring}}, 23 v_{\text{ring}}$	
(CH)	996	940		1015	981	100 γ(CH)	1046	100 γ(CH)	1041	100 γ(CH)	
S _{ring}				1037	1022	45 δ_{ring} , 37 ν_{ring} , 16 $\delta(\text{CH})$	1056	65 $v_{\rm ring}$, 25 $\delta_{\rm ring}$	1047	58 NH _{2rock} , 16 v(CN) 11 v(CO)	
ring	1029	1042	1025	1061	1027	63 $v_{\rm ring}$, 28 $\delta_{\rm ring}$	1087	50 NH _{2rock} , 22 ν(CN), 14 ν(CO)	1056	79 $v_{\rm ring}$, 13 $\delta({\rm CH})$	
VH _{2rock}	1091	1093	1077	1083	1057	52 NH _{2rock} , 24 v(CN), 10 v(CO)	1118	100 γ(CH)	1104	100 γ(CH)	
$\delta(CH)$	1124	1123	1107	1135	1101	45 δ (CH), 43 $\nu_{\rm ring}$	1128	46 $v_{\rm ring}$, 41 δ (CH)	1123	48 δ (CH), 42 $\nu_{\rm ring}$	
ring	1154	1161	1135	1157	1127	27 $v_{\rm ring}$, 26 $\delta({\rm CH})$, 17 $\delta_{\rm ring}$	1165	30 δ (CH), 27 $v_{\rm ring}$, 14 $\delta_{\rm ring}$,	1155	32 $v_{\rm ring}$, 29 δ (CH),	
Tillg								13 NH _{2rock}		13 ν (CN), 10 δ_{ring}	
δ(CH)	1202		1193	1231	1195	48 δ (CH), 44 $\nu_{\rm ring}$	1228	54 δ (CH), 37 $v_{\rm ring}$	1225	54 δ (CH), 40 $\nu_{\rm ring}$	
ring	1231		1261	1308	1263	90 $v_{\rm ring}$	1303	95 $v_{\rm ring}$	1315	93 $v_{\rm ring}$	
S(CH)	1340			1365	1330	86 δ(CH)	1370	85 δ (CH)	1353	87 δ(CH)	
v(CN)	1393		1347	1374	1337	31 $v(CN)$, 20 $v(CC)$,	1389	36 v(CN), 18 v(CC),	1376	35 $v(CN)$, 22 $v(CC)$,	
(011)	1373		1317	13/1	1557	15 δ (CO), 10 NH _{2rock}	1507	14 δ (CH), 12 δ (CO)	1570	12 δ (CH), 11 δ (CO)	
S(CH)	1422		1417	1.454	1412		1420		1.420		
δ(CH)	1422		1417	1454	1412	50 δ (CH), 43 $\nu_{\rm ring}$	1439	52 δ (CH), 41 $\nu_{\rm ring}$	1439	52 δ (CH), 41 ν_{ring}	
δ(CH)	1486		1476	1514	1470	59 δ (CH), 34 $\nu_{\rm ring}$	1506	58 δ (CH), 32 $\nu_{\rm ring}$	1501	55 δ (CH), 34 $\nu_{\rm ring}$	
NH _{2scis}	1615		1587	1614	1555	85 NH _{2scis}	1590	59 $v_{\rm ring}$, 16 δ (CH), 15 δ (CO)	1586	63 NH _{2scis} , 12 ν(CO), 12 ν _{ring}	
$v_{\rm ring}$	1575			1625	1565	65 $v_{\rm ring}$, 22 $\delta({\rm CH})$	1627	68 $v_{\rm ring}$, 20 δ (CH)	1601	58 v_{ring} , 16 NH _{2scis} , 16 δ (CH)	
$v_{\rm ring}$	1593			1638	1589	66 v_{ring} , 21 δ (CH), 10 δ_{ring}	1643	38 ν(CO), 36 NH _{2scis} , 11 ν _{ring}	1630	70 $v_{\rm ring}$, 18 $\delta({\rm CH})$	
v(CO)	1674		1722	1753	1695	76 ν (CO)	1684	58 NH _{2scis} , 24 v(CO)	1691	68 v(CO)	
v(CH)	10/1		3016	3165	3026	100 v(CH)	3158	100 v(CH)	3133	100 v(CH)	
			2010			` /		. ,		, ,	
(CH)	20.55		20.50	3177	3038	100 v(CH)	3176	100 v(CH)	3155	100 v(CH)	
(CH)	3061		3050	3206	3065	100 v(CH)	3201	99 v(CH)	3191	100 v(CH)	
(CH)			3088	3222	3080	99 v(CH)	3223	99 v(CH)	3214	99 ν(CH)	
(NH_2)	3150		3436	3598	3440	$100 \ v(NH_2)$	3570	$100 \ v(NH_2)$	3550	$100 \ v(NH_2)$	
$v(NH_2)$	3358		3554	3732	3568	$100 v(NH_2)$	3713	$100 \ v(NH_2)$	3698	$100 \ v(NH_2)$	

IR, experimental IR solid phase wavenumbers; Ra, experimental Raman wavenumbers; Gas, experimental IR gas phase wavenumbers; U, unscaled wavenumbers; S, scaled wavenumbers; TED, total energy distribution of nicotinamide obtained by using the Scale 2.0 program; τ , torsion; δ , in plane bending; ν , stretching; ν , out of plane bending vibrations.

determined by Pulay and Pongor [13–15]. Only the scaling factors related to the out of plane bendings and NH_2 rocking were refined. The final scaling factors are given

in Table 6. They were used without making any changes for the three isomers. In this way we showed that these scaling factors are transferable.

^a Taken from Ref. [20].

Table 5 The assignments of experimental wavenumbers, the calculated wavenumbers by using the DFT/B3LYP method with the 6-31++G(d,p), Z2PolX and Z3PolX basis sets compared with the experimental wavenumbers and the total energy distribution results for isonicotinamide

Experimental		Calcu	lation							
		6-31++G(d,p)			Z2PO	LX	Z3PO	LX		
Assign.	IR	Ra	U	S	TED(%)	U	TED(%)	U	TED (%)	
			56	54	98 τCCCO	32	98 τCCCO	35	98 τCCCO	
			151	141	57 γ (CC), 33 $\tau_{\rm ring}$	166	48 γ (CC), 44 $\tau_{\rm ring}$	168	48 $\tau_{\rm ring}$, 45 $\gamma({\rm CC})$	
			211	209	64 δ (CC), 18 δ (CN)	229	65 δ (CC), 23 δ (CN)	228	66 δ (CC), 23 δ (CN)	
			341	309	91 NH _{2wag}	383	33 $\delta_{\rm ring}$,	350	83 NH _{2wag} , 13 NH _{2twist}	
					zwag		29 $v(CC)$, 15 $\delta(CO)$		2wag) 2twist	
			368	365	30 $\delta_{\rm ring}$, 28 ν (CC),	391	$100 \ \tau_{\rm ring}$	374	31 $\delta_{\rm ring}$, 26 ν (CC),	
					14 δ (CO),		·g		16 δ (CO), 15 δ (CN)	
					$12 \delta(CN)$, , , , ,	
			387	375	$100 \tau_{\rm ring}$	445	34 $\tau_{\rm ring}$,	393	$100 \tau_{\rm ring}$	
					·····g		26 NH _{2twist} , 23 NH _{2wag}		iiig	
			415	400	61 $\tau_{\rm ring}$, 11 $\delta({\rm CN})$	472	52 NH _{2wag} , 31 $\tau_{\rm ring}$	461	58 τ _{ring} , 19 γ(CC), 15 γ(CO	
			510	501	38 δ (CN),	476	49 δ (CN), 17 δ (CC)	468	47 δ (CN), 18 δ (CC)	
					14 δ (CC), 10 $\tau_{\rm ring}$		(, , , (,		(-), ()	
NH _{2twist}			565	542	71 NH _{2twist}	606	53 δ (CO), 24 δ _{ring}	582	74 NH _{2twist} , 10 NH _{2wag}	
$\delta_{ m ring}$			614	610	49 δ (CO), 28 δ _{ring}	610	60 NH _{2twist} , 21 NH _{2wag}	595	53 δ (CO), 28 δ _{ring}	
$\delta_{ m ring}$	668	664	681	675	$\delta \delta (co)$, 20 oring $\delta \delta \delta _{\rm ring}$,	686	88 $\delta_{\rm ring}$	670	89 $\delta_{\rm ring}$	
ring	000	001	001	075	25 γ (CO), 10 $\tau_{\rm ring}$	000	oo oring	0,0	Oring	
γ(CO)	708		720	683	$36 \ \delta_{\rm ring}$,	735	49 $\tau_{\rm ring}$, 40 $\gamma({\rm CO})$	724	57 $\tau_{\rm ring}$, 41 $\gamma({\rm CO})$	
/(00)	700		720	005	$27 \gamma(CO)$, $22 \tau_{ring}$	755	ring, 10 /(CO)	721	or tring, II / (CO)	
$\delta_{ m ring}$	754		766	731	82 τ_{ring} , 15 $\gamma(\text{CO})$	760	40 $\delta_{\rm ring}$, 24 ν (CC), 18 $\nu_{\rm ring}$	760	38 $\delta_{\rm ring}$, 25 ν (CC), 17 $\nu_{\rm ring}$	
	776	783	769	761		780	59 τ_{ring} , 22 $\gamma(\text{CC})$, 15 γ_{ring}	778		
τ _{ring}		703			35 δ_{ring} , 25 ν (CC), 17 ν_{ring}			892	49 τ_{ring} , 24 γ (CH), 20 γ (CO	
γ(CH)	795		855	812	85 γ (CH), 14 γ (CC)	883	66 γ(CH),	892	70 γ(CH),	
(CII)	0.53	0.67	006	065	100 (CH)	020	19 γ(CC), 18 γ(CO)	026	18 γ(CC), 15 γ(CO)	
γ(CH)	852	867	896	865	100 γ(CH)	928	97 γ(CH)	936	99 γ(CH)	
γ(CH)			984	950	100 γ(CH)	996	$64 v_{\rm ring}, 34 \delta_{\rm ring}$	994	51 $v_{\rm ring}$, 48 $\delta_{\rm ring}$	
γ(CH)			1007	973	100 γ(CH)	1053	100 γ(CH)	1045	58 NH _{2rock} ,	
	004	005	1011	1004	56 42 S	1004	21NH 16(CN)	1052	17 v(CN), 11 v(CO)	
$v_{\rm ring}$	994	995	1011	1004	56 $v_{\rm ring}$, 43 $\delta_{\rm ring}$	1084	$31NH_{2rock}$, 16 ν (CN),	1052	100 γ(CH)	
NILL	1065	1062	1002	1067	46 NIII 20(GNI)	1005	$16 v_{\text{ring}}, 12 v(\text{CO})$	1001	46 22 S(CH) 21 S	
NH _{2rock}	1065	1063	1083	1067	46 NH _{2rock} , 20 v(CN),	1085	100 γ(CH)	1081	46 $v_{\rm ring}$, 33 δ (CH), 21 $\delta_{\rm ring}$	
	1006	1004	1001	1076	11 v _{ring}	1001	20 27 \$	1005	100 ··(CH)	
$v_{\rm ring}$	1086	1084	1091	1076	41 v _{ring} ,	1091	38 $v_{\rm ring}$, 27 $\delta_{\rm ring}$,	1085	100 γ(CH)	
S (CII)	1122	1120	1116	1007	34 δ (CH), 20 δ _{ring}	1101	21 δ (CH)	1116	47 40 S (CH)	
δ (CH)	1122	1128	1116	1097	43 δ (CH), 38 ν_{ring}	1121	40 $v_{\rm ring}$, 35 δ (CH)	1116	47 $v_{\rm ring}$, 40 δ (CH)	
$v_{\rm ring}$	1148	1152	1151	1138	32 v_{ring} , 20 δ_{ring} , 12 $v(\text{CN})$,	1161	$32 v_{\text{ring}}$, $18 \delta_{\text{ring}}$,	1146	37 v_{ring} , 15 δ (CH),	
S (CII)	1210		1046	1221	12 ν (CC), 11 δ (CH)	1040	18 NH _{2rock} , 13 ν (CC)	1041	15 ν (CN), 12 δ_{ring} , 10 ν (CC	
δ (CH)	1219		1246	1221	64 δ (CH), 34 $v_{\rm ring}$	1243	64 δ (CH), 32 $\nu_{\rm ring}$	1241	65 δ (CH), 33 $\nu_{\rm ring}$	
v _{ring}	1263		1297	1284	$94 v_{\rm ring}$	1292	$97 v_{\text{ring}}$	1302	95 $v_{\rm ring}$	
δ (CH)	1322		1352	1322	79 δ (CH), 15 $\nu_{\rm ring}$	1356	72 δ (CH), 13 $\nu_{\rm ring}$	1341	78 δ (CH), 17 $\nu_{\rm ring}$	
v(CN)	1390		1371	1352	$32 \nu(CN),$	1387	36 v(CN), 19 v(CC),	1372	35 v(CN), 21 v(CC),	
					19 $\nu(CC)$, 14 $\delta(CO)$		14 δ (CH), 12 δ (CO), 10 NH _{2rock}		12 δ (CO), 10 δ (CH)	
δ (CH)	1408		1444	1417	55 δ (CH), 40 $v_{\rm ring}$	1429	57 δ (CH), 37 $v_{\rm ring}$	1428	59 δ (CH), 36 $\nu_{\rm ring}$	
δ (CH)	1496		1527	1497	59 δ (CH), 35 $\nu_{\rm ring}$	1507	65 δ (CH), 30 $\nu_{\rm ring}$	1508	62 δ (CH), 32 $\nu_{\rm ring}$	
NH_{2scis}	1622		1606	1559	$85 \text{ NH}_{2\text{scis}}$	1588	66 $v_{\rm ring}$, 15 δ (CO)	1584	70 NH _{2scis} , 12 ν (CO)	
$v_{\rm ring}$	1551		1623	1589	$77 v_{\rm ring}$	1628	65 $v_{\rm ring}$, 21 δ (CH)	1599	$70 v_{\rm ring}$	
v _{ring}	1596		1642	1621	67 $v_{\rm ring}$, 20 δ (CH)	1646	38 NH _{2scis} , 37 ν (CO)	1630	66 $v_{\rm ring}$, 20 δ (CH)	
v(CO)	1655		1759	1740	80 v(CO)	1684	54 NH _{2scis} , 26 ν (CO)	1696	69 v(CO)	
v(CH)	3042		3173	3044	100 v(CH)	3174	99 v(CH)	3150	100 v(CH)	
v(CH)			3180	3050	100 v(CH)	3179	99 v(CH)	3158	100 v(CH)	
v(CH)	3066		3200	3070	99 v(CH)	3194	99 v(CH)	3181	99 v(CH)	
v(CH)			3226	3095	99 v(CH)	3221	99 v(CH)	3218	99 v(CH)	
$v(NH_2)$	3178		3596	3450	$100 \ v(NH_2)$	3568	99 $v(NH_2)$	3552	$100 \ v(NH_2)$	
$v(NH_2)$	3362		3731	3578	$100 \ v(NH_2)$	3714	99 $v(NH_2)$	3701	$100 \ v(NH_2)$	

IR, experimental IR solid phase wavenumbers; Ra, experimental Raman wavenumbers; U, unscaled wavenumbers; S, scaled wavenumbers; TED, total energy distribution of isonicotinamide obtained by using the Scale 2.0 program; τ , torsion; δ , in plane bending; ν , stretching; γ , out of plane bending vibrations.

Fig. 2. (a) The experimental Raman spectrum, (b) the simulated Raman spectrum, (c) the experimental IR gas phase spectrum, (d) the simulated IR gas phase spectrum, (e) the IR solid phase spectrum of picolinamide.

In the present work, TED calculations indicate a very significant mixing of all ring and bending vibrations. Such mixing was indicated in previous studies [16,17] and it should increase with respect to the pyridine case due to the lowering of molecular symmetry and presence of an amide group which is a heavy group. For example, the ring breathing mode includes ring vibrations and ring bond

stretching in different proportions. Therefore, it does not resemble the ring breathing mode of the pyridine. In this study, the ring breathing modes of picolinamide, nicotinamide, and isonicotinamide were assigned in Raman spectra 998, 1042, 995 cm⁻¹, respectively. Also, it was reported that the ring breathing mode of coordinated nicotinamide was found to be at 1033 cm⁻¹ in Raman spectra [18].

Fig. 3. (a) The experimental Raman spectrum, (b) the simulated Raman spectrum, (c) the experimental IR gas phase spectrum, (d) the simulated IR gas phase spectrum, (e) the IR solid phase spectrum of nicotinamide.

5. Conclusion

The combination of good intensity and wavenumber data made it possible for the isomers of pyridinecarbox-amide to have a close correspondence between the simulated IR and Raman spectra and experimental data. The

results of 6-31++G(d,p) basis set, which were obtained by applying the SQM procedure and the results of Z3PolX basis set, showed us that the observed bands could easily be assigned. We found that the Z3PolX basis set gave the best results for predicting experimental IR and Raman spectra.

Fig. 4. (a) The experimental Raman spectrum, (b) the simulated Raman spectrum, (c) the simulated IR gas phase spectrum, (d) the IR solid phase spectrum of isonicotinamide.

Table 6
The scaling factors for the isomers of pyridinecarboxamide

Internal coordinates	Scaling factors				
X–Y stretching	0.9300				
X–H stretching	0.9140				
X–Y–Z in plane bending	0.9950				
X–Y–H in plane bending	0.9500				
CO/CC out of plane bending	0.8300				
CH out of plane bending	0.9340				
All torsion	0.9350				
NH ₂ scissoring	0.9130				
NH ₂ rocking	0.9672				
NH ₂ wagging	0.8000				

H means hydrogen; X, Y, and Z mean first-row heavy atoms C, N, O.

Acknowledgement

The authors thank Prof. Dr. Mustafa Urgen and Assoc. Prof. Dr. Gultekin Goller for Raman and FT-IR measurements at the Istanbul Technical University, Istanbul, Turkey.

References

- [1] T. Kawabata, T. Ogino, M. Mori, M. Awai, Acta Pathol. Jpn. 42 (1992) 469–475.
- [2] T. Takano, Y. Sasada, M. Kakudo, Acta Crystallogr. 21 (1966) 514– 522.
- [3] T. Takeshima, H. Takeuchi, T. Egawa, S. Konaka, J. Mol. Struct. 644 (2003) 197.
- [4] E.A. Velcheva, L.I. Daskalova, J. Mol. Struct. 741 (2005) 85-92.
- [5] W.B. Wright, G.S.D. King, Acta Crystallogr. 7 (1954) 283.
- [6] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [7] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
- [8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.J. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Raplogle, J.A. Pople, GAUSSIAN 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.

- [9] R.E. Oakes, S.E.J. Bell, Z. Benkova, A.J. Sadlej, J. Comput. Chem. 26 (2004) 154.
- [10] Z. Benkova, A.J. Sadlej, R.E. Oakes, S.E.J. Bell, J. Comput. Chem. 26 (2004) 145.
- [11] G. Pongor, Scale2, Department of Theoretical Chemistry, Eotvos Lorand University, Budapest, 1978.
- [12] G. Pongor, G. Fogarasi, I. Magdo, J.E. Boggs, G. Keresztury, I.S. Ignatyev, Spectrochim. Acta 48A (1992) 111.
- [13] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.
- [14] G. Rauhut, P. Pulay, J. Am. Chem. Soc. 117 (1995) 4167.

- [15] F. Kalincsak, G. Pongor, Spectrochim. Acta Part A 58 (2002) 99– 1011.
- [16] M. Bakiler, I.V. Maslov, S. Akyuz, J. Mol. Struct. 475 (1999) 83–92
- [17] M. Bakiler, I.V. Maslov, S. Akyuz, J. Mol. Struct. 476 (1999) 21-26.
- [18] O. Bolukbasi, S. Akyuz, J. Mol. Struct. 744-747 (2005) 961-971.
- [19] http://webbook.nist.gov/cgi/cbook.cgi?ID=C1452773&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC/>.
- [20] http://webbook.nist.gov/cgi/cbook.cgi?ID=C98920&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC/>.