

TP: THERMODYNAMIQUE

TP numérique-Mesure de la constante adiabatique

17 DECEMBRE 2020

IPSA Gana Malek, Chaouki Zakaria.

Table des matières

l.	La méthode de Rückhardt	2
II.	La méthode de Clément-Desormes	4
III.	La méthode acoustique	6
IV	Conclusion	8

La méthode de Rückhardt

Rayon du piston $r = 6mm = 6.10^{-3}m$

Masse du piston m=7.05g = $7,05 * 10^{-3}$ kg

Pression atmosphérique $P = 10^5 Pa$

Volume du récipient V = 1012 cm^3 = 1012. $10^{-6}cm^3$

Formules

Equation différentielle du mouvement de la masse : $\chi'' + \frac{\gamma \pi^2 r^4 P x}{mV}$

Formule de la période T:
$$\sqrt{\frac{4mV}{\gamma r^4 P}}$$

Formule de la constante adiabatique : $\gamma = \frac{4mV}{Pr^4T^2}$

Expérience + calcul

Expérience (1)

Pour chacune de ces expériences, nous prendront 10 oscillations (n = 10)

$$\checkmark$$
 Azote N_2 :

$$t = 4,04s$$

$$T = \frac{4,04}{10} = 0,404$$

Grace aux données fournies en début de page et à l'application numérique de la formule de la constante adiabatique, on a :

$$\gamma = \frac{4*7.05*10^{-3}*1012*10^{-6}}{10^{5}*(6*10^{-3})^{4}*0.404^{2}} = 1.349$$

✓ Dioxyde de carbone CO_2 :

$$n = 10$$

$$t = 4,18s$$

$$T = \frac{4,18}{10} = 0,418s$$

Grace aux données fournies en début de page et à l'application numérique de la formule de la constante adiabatique, on a :

$$\gamma = \frac{4*7,05*10^{-3}*1012*10^{-6}}{10^5*(6*10^{-3})^4*0,418^2} = 1,260$$

✓ Argon Ar:

$$t = 3,74s$$

$$T = \frac{3,74}{10} = 0,374s$$

Grace aux données fournies en début de page et à l'application numérique de la formule de la constante adiabatique, on a :

$$\gamma = \frac{4 * 7,05 * 10^{-3} * 1012 * 10^{-6}}{10^5 * (6 * 10^{-3})^4 * 0,374^2} = 1,574$$

II. La méthode de Clément-Desormes

Expérience (2)

Pression atmosphérique : 101 300 Pa = 1 atm

Température : $T_0 = 300$ K

Quelles sont les trois transformations subies par le gaz :

- I Compression
- II Détente adiabatique
- III Stabilisation isochore

\checkmark Azote N_2 :

Mesure de
$$h_1$$
 = 9 cm = 9.10^{-2} m

Mesure
$$h_2$$
 = 2,42cm = 2,42.10⁻²m

Que ce soit à la compression ou la détente, la température reste constante : T_0 = 300K. Les surpressions sont faibles.

$$\gamma = \frac{h_1}{h_1 - h_2} = \frac{9.10^{-2}}{9.10^{-2} - 2.42.10^{-2}} = 1.367$$

✓ Dioxyde de carbone CO_2 :

Mesure de
$$h_1$$
 = 9 cm = 9.10^{-2} m

Mesure
$$h_2$$
 = 1,88cm = 1,88. 10^{-2} m

Que ce soit à la compression ou la détente, la température reste constante : T_0 = 300K. Les surpressions sont faibles.

$$\gamma = \frac{h_1}{h_1 - h_2} = \frac{9.10^{-2}}{9.10^{-2} - 1.88.10^{-2}} = 1.264$$

\checkmark Argon Ar:

Mesure de
$$h_1$$
 = 9 cm = 9.10^{-2} m

Mesure
$$h_2$$
 = 3,33cm = 3,33. 10^{-2} m

Que ce soit à la compression ou la détente, la température reste constante : T_0 = 300K. Les surpressions sont faibles.

$$\gamma = \frac{h_1}{h_1 - h_2} = \frac{9.10^{-2}}{9.10^{-2} - 3.33.10^{-2}} = 1.587$$

III. La méthode acoustique

Les de la contraction : Les des la contraction : Les des la contraction : Les des les

Expérience (3)

Constante des gaz parfaits R = 8,314 $J. mol^{-1}. K^{-1}$

✓ Dioxyde de carbone CO_2 :

Masse molaire M = $44,01 \ g. \ mol^{-1} = 44,01.10^{-3} \ kg. \ mol^{-1}$

Vitesse: v = 259m/s

Température : T = 300K

$$\gamma = \frac{44,01 * 10 * (259)2}{8.314 * 300} = 1,184$$

√ Hélium He:

Masse molaire M = $4,0026 \ g. \ mol^{-1} = 4,0026. \ 10^{-3} \ kg. \ mol^{-1}$

Vitesse: v = 965 m/s

Température : T = 300K

$$\gamma = \frac{4,0026 * 10^{-3} * (965)^2}{8.314 * 300} = 1,494$$

✓ Méthane CH_4 :

Masse molaire M = $16,04g. mol^{-1} = 16,04.10^{-3} kg. mol^{-1}$

Vitesse : v = 430m/s

Température : T = 300K

$$\gamma = \frac{16,04 * 10^{-3} * (430)^2}{8.314 * 300} = 1,189$$

IV. Conclusion.

	Méthode 1	Méthode 2	Méthode 3
N_2	1,349	1,367	
CO_2	1,26	1,264	1,184
Ar	1,574	1,587	
Не			1,494
CH_4			1,189

Observation:

On observe que pour chacune des ses 3 méthodes la constante adiabatique tourne autour de 1.

Après recherche sur internet, les constantes adiabatiques trouvés par les 3 expériences sont toute relativement proches de leur valeur théorique respectives.

		Indice	adiabatique	pour di	fférents	gaz			
Temp.	Gaz	γ	Temp.	Gaz	γ	Temp.	Gaz	γ	
−181 °C		1,597	200 °C	-	1,398	20 °C	NO	1,400	
-76 °C		1,453	400 °C		1,393	20 °C	N ₂ O	1,310	
20 °C		1,410	1000 °C		1,365 -181 °C	1,365	-181 °C	M	1,470
100 °C	H ₂	1,404	2000 °C			N ₂	1,404		
400 °C		1,387	0 °C		1,310	20 °C	Cl ₂	1,340	
1000 °C	He	1,358	20 °C			1,300	-115 °C		1,410
2000 °C		1,318	100 °C	CO ₂	1,281	-74 °C	CH ₄	1,350	
20 °C		1,660	400 °C	_	1,235	20 °C		1,320	
20 °C		1,330	1000 °C		1,195	15 °C	NH ₃	1,310	
100 °C	H ₂ O	1,324	20 °C	co	1,400	19 °C	Ne	1,640	
200 °C		1,310	-181 °C		1,450	19 °C	Xe	1,660	
−180 °C	Ar	1,670	-76 °C		1,415	19 °C	Kr	1,680	
20 °C		Ar [1,670	20 °C		1,400	15 °C	SO ₂	1,290
0 °C		1,403	100 °C	02	1,399	360 °C	Hg	1,670	
20 °C	Air sec	1,400	200 °C		1,397	15 °C	C ₂ H ₆	1,220	
100 °C		1,401	400 °C		1,394	16 °C	C ₃ H ₈	1,130	