Simulation and High-Performance Computing

Part 10: Non-local force fields

Steffen Börm

Christian-Albrechts-Universität zu Kiel

October 2nd, 2020

Example: Gravitation

Task: Given n planets at positions $y_1, \ldots, y_n \in \mathbb{R}^2$ with masses $m_1, \ldots, m_n \in \mathbb{R}$, we want to evaluate the gravitational potential in $x \in \mathbb{R}^2$, given by

$$\varphi(x) = \gamma \sum_{j=1}^n m_j \frac{1}{\|y_j - x\|}.$$

Example: Gravitation

Task: Given n planets at positions $y_1, \ldots, y_n \in \mathbb{R}^2$ with masses $m_1, \ldots, m_n \in \mathbb{R}$, we want to evaluate the gravitational potential in $x \in \mathbb{R}^2$, given by

$$\varphi(x) = \gamma \sum_{j=1}^n m_j \frac{1}{\|y_j - x\|}.$$

Reformulation: Describe non-local interactions by the kernel function

$$g(x,y) = \frac{\gamma}{\|y-x\|},$$
 $\varphi(x) = \sum_{j=1}^{n} g(x,y_j) m_j.$

Example: Gravitation

Task: Given n planets at positions $y_1, \ldots, y_n \in \mathbb{R}^2$ with masses $m_1, \ldots, m_n \in \mathbb{R}$, we want to evaluate the gravitational potential in $x \in \mathbb{R}^2$, given by

$$\varphi(x) = \gamma \sum_{j=1}^n m_j \frac{1}{\|y_j - x\|}.$$

Reformulation: Describe non-local interactions by the kernel function

$$g(x,y) = \frac{\gamma}{\|y-x\|},$$
 $\varphi(x) = \sum_{j=1}^n g(x,y_j) m_j.$

Challenge: Evaluating $\varphi(x)$ requires at least n operations. If we have to evaluate in many points, this will take a long time.

Low-rank approximation

Low-rank approximation: If we can find a_1, \ldots, a_k and b_1, \ldots, b_k with

$$g(x,y) \approx \sum_{\nu=1}^k a_{\nu}(x) b_{\nu}(y),$$

we can approximate the potential by

$$\varphi(x) = \sum_{j=1}^{n} g(x, y_j) m_j \approx \sum_{j=1}^{n} \sum_{\nu=1}^{k} a_{\nu}(x) b_{\nu}(y_j) m_j$$

$$= \sum_{\nu=1}^{k} a_{\nu}(x) \sum_{j=1}^{n} b_{\nu}(y_j) m_j = \sum_{\nu=1}^{k} a_{\nu}(x) z_{\nu}, \qquad z_{\nu} := \sum_{j=1}^{n} b_{\nu}(y_j) m_j.$$

Approach: If we have prepared z_1, \ldots, z_k in advance, approximating $\varphi(x)$ requires $\sim k$ operations. If $k \ll n$, this can be very efficient.

Tensor interpolation

Goal: Find low-rank approximation of g.

Approach: Interpolate first in the y_1 variable, then in y_2 .

$$g(x,y) \approx \sum_{\nu_1=0}^{m} g(x,(\xi_{1,\nu_1},y_2)) \ell_{1,\nu_1}(y_1)$$

$$\approx \sum_{\nu_1=0}^{m} \sum_{\nu_2=0}^{m} g(x,(\xi_{1,\nu_1},\xi_{2,\nu_2})) \ell_{1,\nu_1}(y_1) \ell_{2,\nu_2}(y_2)$$

$$= \sum_{\nu \in M} g(x,\xi_{\nu}) \ell_{\nu}(y)$$

with $M := [0:m] \times [0:m]$ and

$$\xi_{\nu} := (\xi_{1,\nu_1}, \xi_{2,\nu_2}), \qquad \ell_{\nu}(y) := \ell_{1,\nu}(y_1) \, \ell_{2,\nu_2}(y_2) \qquad \text{for all } \nu \in M.$$

Fictitious planets

Interpolation yields

$$g(x,y) \approx \sum_{\nu \in M} g(x,\xi_{\nu}) \ell_{\nu}(y).$$

Gravitational potential approximated by

$$\varphi(x) = \sum_{j=1}^{n} g(x, y_j) m_j \approx \sum_{\nu \in M} g(x, \xi_{\nu}) \sum_{j=1}^{n} \ell_{\nu}(y_j) m_j$$
$$= \sum_{\nu \in M} g(x, \xi_{\nu}) z_{\nu} \quad \text{with} \quad z_{\nu} := \sum_{j=1}^{n} \ell_{\nu}(y_j) m_j.$$

Interpretation: Our n planets are replaced by "fictitious planets" at positions ξ_{ν} with masses z_{ν} .

Admissibility

Problem: Interpolation is only accurate if the function g is smooth enough to be approximated by a polynomial.

Admissibility

Problem: Interpolation is only accurate if the function g is smooth enough to be approximated by a polynomial.

Error analysis: If we interpolate g on a box $B = [a_1, b_1] \times [a_2, b_2]$, we can expect a good accuracy if

$$\mathsf{diam}(B) \leq \eta \; \mathsf{dist}(x,B)$$

holds with an admissibility parameter $\eta > 0$.

Admissibility

Problem: Interpolation is only accurate if the function g is smooth enough to be approximated by a polynomial.

Error analysis: If we interpolate g on a box $B = [a_1, b_1] \times [a_2, b_2]$, we can expect a good accuracy if

$$\mathsf{diam}(B) \leq \eta \; \mathsf{dist}(x,B)$$

holds with an admissibility parameter $\eta > 0$.

Problem: The box B has to be large enough to contain all y_j , so the admissibility condition will only be satisfied if x happens to be positioned far away from all planets.

Clusters

Idea: If a box B is too large, split it into smaller boxes.

Clusters

Idea: If a box B is too large, split it into smaller boxes.

Cluster tree:

- Start with a box containing all planets. This box is the root of the cluster tree.
- ullet If a box σ contains only a few planets, stop.
- Otherwise, split σ into smaller boxes σ' . These smaller boxes become the children of σ .

Clusters

Idea: If a box B is too large, split it into smaller boxes.

Cluster tree:

- Start with a box containing all planets. This box is the root of the cluster tree.
- If a box σ contains only a few planets, stop.
- Otherwise, split σ into smaller boxes σ' . These smaller boxes become the children of σ .

Index sets

Idea: For each cluster σ , define

$$\hat{\sigma} := \{ j \in [1:n] : y_j \in \sigma \}.$$

Precise definition:

- $y_j \in \sigma$ for all $j \in \hat{\sigma}$.
- If σ is the root cluster, $\hat{\sigma} = [1:n]$.
- If σ has children, we have

$$\hat{\sigma} = \bigcup_{\sigma' \in \mathsf{chil}(\sigma)} \hat{\sigma}'.$$

• If σ_1, σ_2 are children of σ , we have

$$\sigma_1 \neq \sigma_2 \implies \hat{\sigma}_1 \cap \hat{\sigma}_2 = \emptyset.$$

Recursion

Goal: Approximate the potential

$$\varphi(x) = \sum_{j=1}^n g(x, y_j) m_j.$$

Root cluster: If σ is the root cluster, we have $\hat{\sigma} = [1:n]$ and therefore

$$\varphi(x) = \sum_{j \in \hat{\sigma}} g(x, y_j) m_j.$$

Recursion

Goal: Approximate the potential

$$\varphi(x) = \sum_{j=1}^n g(x, y_j) m_j.$$

Root cluster: If σ is the root cluster, we have $\hat{\sigma} = [1:n]$ and therefore

$$\varphi(x) = \sum_{j \in \hat{\sigma}} g(x, y_j) m_j.$$

Recursion: If σ is not admissible with respect to x, use

$$\varphi(x) = \sum_{\sigma' \in \mathsf{chil}(\sigma)} \sum_{j \in \hat{\sigma}'} g(x, y_j) \, m_j$$

and compute the sums for the children σ' recursively. Stop the recursion once the cluster is a leaf or admissible.

```
typedef struct cluster_struct cluster;
struct cluster struct {
  /* Bounding box */
  real a[2], b[2];
  /* Interpolation points */
  real *xi_1d[2];
  real (*xi)[2];
  /* Children */
  int children;
  cluster **chil;
}:
```

Children represented by s->chil[i] with $i \in [0 : children - 1]$.

```
real
eval_cluster(real x[2], const cluster *s)
₹
  if(diam(s) \le dist(x, s)) {
    for(nu=0; nu<k; nu++)</pre>
      result += potential(x, s->xi[nu]) * s->z[nu];
  }
  else if(s->children > 0) {
    for(i=0; i<s->children; i++)
      result += eval_cluster(x, s->chil[i]);
  else {
    for(i=0; i<s->size; i++)
      result += potential(x, y[s->idx[i]]);
  return result;
```


12 / 18

12 / 18

Observation: In typical situations, $\sim \log(n)$ clusters are sufficient.

Cluster tree: Recursive subdivision take $\sim n \log(n)$ operations. Direct construction takes $\sim n$ operations, but is less flexible.

Coefficients: The masses of the "fictitious planets" can be computed directly in $\sim n \, k \, \log(n)$ operations.

$$z_{\sigma,\nu} = \sum_{j\in\hat{\sigma}} \ell_{\sigma,\nu}(y_j) m_j.$$

Cluster tree: Recursive subdivision take $\sim n \log(n)$ operations. Direct construction takes $\sim n$ operations, but is less flexible.

Coefficients: The masses of the "fictitious planets" can be computed directly in $\sim n k \log(n)$ operations.

$$z_{\sigma,\nu} = \sum_{j\in\hat{\sigma}} \ell_{\sigma,\nu}(y_j) \, m_j.$$

Forward transformation: If we use the same order for all clusters, we have

$$\begin{split} \ell_{\sigma,\nu}(y) &= \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \, \ell_{\sigma',\nu'}(y), \\ z_{\sigma,\nu} &= \sum_{\sigma' \in \mathsf{chil}(\sigma)} \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \sum_{j \in \hat{\sigma}'} \ell_{\sigma',\nu'}(y_j) \, m_j \end{split}$$

Cluster tree: Recursive subdivision take $\sim n \log(n)$ operations. Direct construction takes $\sim n$ operations, but is less flexible.

Coefficients: The masses of the "fictitious planets" can be computed directly in $\sim n \, k \, \log(n)$ operations.

$$z_{\sigma,\nu} = \sum_{j\in\hat{\sigma}} \ell_{\sigma,\nu}(y_j) m_j.$$

Forward transformation: If we use the same order for all clusters, we have

$$\begin{split} \ell_{\sigma,\nu}(y) &= \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \, \ell_{\sigma',\nu'}(y), \\ z_{\sigma,\nu} &= \sum_{\sigma' \in \mathsf{chil}(\sigma)} \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \sum_{j \in \hat{\sigma}'} \ell_{\sigma',\nu'}(y_j) \, m_j \\ &= \sum_{\sigma' \in \mathsf{chil}(\sigma)} \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \, z_{\sigma',\nu'}. \end{split}$$

Cluster tree: Recursive subdivision take $\sim n \log(n)$ operations.

Direct construction takes $\sim n$ operations, but is less flexible.

Coefficients: The masses of the "fictitious planets" can be computed directly in $\sim n \, k \, \log(n)$ operations.

$$z_{\sigma,\nu} = \sum_{j\in\hat{\sigma}} \ell_{\sigma,\nu}(y_j) m_j.$$

Forward transformation: If we use the same order for all clusters, we have

$$\begin{split} \ell_{\sigma,\nu}(y) &= \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \, \ell_{\sigma',\nu'}(y), \\ z_{\sigma,\nu} &= \sum_{\sigma' \in \mathsf{chil}(\sigma)} \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \sum_{j \in \hat{\sigma}'} \ell_{\sigma',\nu'}(y_j) \, m_j \\ &= \sum_{\sigma' \in \mathsf{chil}(\sigma)} \sum_{\nu' \in M} \ell_{\sigma,\nu}(\xi_{\sigma',\nu'}) \, z_{\sigma',\nu'}. \end{split}$$

"Recycling" the childrens' masses reduces work to $\sim n k$ operations.

13 / 18

Experiment: Tree evaluation

Approach: Setup via forward transformation, recursive evaluation.

Observation: Recursive evaluation far more efficient.

Symmetric approximation

Goal: Reduce the runtime even further.

Assumption: All evaluation points x_1, \ldots, x_n are known in advance.

ightarrow Construct clusters au for these points, too.

Idea: Interpolate in both variables.

$$g(x,y) pprox \sum_{
u \in M} \sum_{\mu \in M} g(\xi_{\tau,\nu}, \xi_{\sigma,\mu}) \, \ell_{\tau,\nu}(x) \, \ell_{\sigma,\mu}(y)$$

Admissibility: We can expect a good accuracy if

$$\mathsf{diam}(\tau) \leq \eta \, \mathsf{dist}(\tau,\sigma) \qquad \text{ and } \qquad \mathsf{diam}(\sigma) \leq \eta \, \mathsf{dist}(\tau,\sigma).$$

Three-phase algorithm

Forward transformation: For all source clusters σ , compute

$$z_{\sigma,\mu} = \sum_{j \in \hat{\sigma}} \ell_{\sigma,\mu}(y_j) m_j.$$

Recursion: If τ and σ are admissible, update

$$z_{\tau,\nu} \leftarrow z_{\tau,\nu} + \sum_{\mu \in M} g(\xi_{\tau,\nu}, \xi_{\sigma,\mu}) z_{\sigma,\mu}.$$

If τ and σ are inadmissible, switch to their children. If there are no children, evaluate directly.

Backward transformation: For all target clusters au, update

$$\varphi(x_i) \leftarrow \varphi(x_i) + \sum_{\nu \in M} \ell_{\tau,\nu}(x_i) z_{\tau,\nu}.$$

Experiment: Symmetric evaluation

Approach: Forward transformation, recursive symmetric interpolation, backward transformation.

Observation: Symmetric approach grows more efficient as the number of planets increases, requires $\sim n\,k$ operations.

17 / 18

Summary

Low-rank approximation allows us to prepare quantities in advance and re-use them for multiple evaluations of the potential.

Interpolation offers a simple way to obtain low-rank approximations. Can be interpreted as using "fictitious planets" to replace entire clusters.

Recursive evaluation based on an admissibility condition takes only $\sim \log(n)$ operations.

Symmetric approach improves the performance if all evaluation points are known in advance and can be clustered, as well.