

IN THE SPECIFICATION:

Please replace the paragraph at the end of pg. 14, and continuing to pg. 15, as follows:

Upon locating a packet boundary for a given packet, physical connection circuitry 210 forwards the packet to ingress packet processing circuitry 212. In an embodiment, ingress packet processing circuitry 212 can perform mapping, possible multiple de-encapsulating and/or multiple encapsulating of different protocol headers of the given packet, which is described in more detail in a patent application titled “A Method and Apparatus for Switching Data of Different Protocols” to David Stiles, filed on December 30, 2000, Serial No: 09/823,480 ~~Unassigned, Attorney Docket Number: 004906.P002~~, which is hereby incorporated by reference.

Please replace the paragraph on pg. 15, as follows:

Subsequent to any demapping, de-encapsulation and/or encapsulation, ingress packet processing circuitry 212 forwards the packets to egress packet processing circuitry 214 of a different or same line card based on the address for the given packet. In particular, a table stored in memory within the given network element includes an association between a given address and the destination line card number as well as a port number of a given buffer within physical connection circuitry 210 of this destination line card, which is described in more detail in a patent application titled “A Method and Apparatus for Switching Data of Different Protocols” to David Stiles, filed on December 30, 2000, Serial No: 09/823,480 ~~Unassigned, Attorney Docket Number: 004906.P002~~.

Please replace the paragraph at the end of pg. 15, and continuing to pg. 16, as follows:

As described above, egress packet processing circuitry 214 includes a memory for the temporary storage of packets, which can be received from various ingress packet processing circuitry 212 on different line cards within a given in-ring network element. For example, egress packet processing circuitry 214 of line card 314 can receive packets from ingress packet processing circuitry 212 from any of line cards 302-316. Upon receipt of packets, in an embodiment, egress packet processing circuitry 214 can de-encapsulate and/or encapsulate the incoming packets with protocol headers, which is described in more detail in a patent application titled “A Method and Apparatus for Switching Data of Different Protocols” to David Stiles, filed on December 30, 2000, Serial No: 09/823,480~~Unassigned, Attorney Docket Number: 004906.P002~~. Additionally, egress packet processing circuitry 214 forwards these packets to physical connection circuitry 210. Physical connection circuitry 210 places a given packet into a given output buffer based on the port number of the buffer associated therewith. In an embodiment, a proprietary protocol allows for the transmitting of the port number of the buffer for a given packet between egress packet processing circuitry 214 and physical connection circuitry 210.

Please replace the paragraph at the end of pg. 17, and continuing to pg. 18, as follows:

Upon receipt of packets, in an embodiment, ingress packet processing circuitry 212 can map, de-encapsulate and/or encapsulate the incoming packets with protocol headers, which is described in more detail in a patent application titled “A Method and Apparatus for Switching Data of Different Protocols” to David Stiles, filed on December 30, 2000, Serial No: 09/823,480~~Unassigned, Attorney Docket Number: 004906.P002~~. Additionally, ingress packet processing circuitry 212 of line card 318 forwards the packet to egress packet processing circuitry 214 of line card 328 through packet mesh 226 (not shown), as illustrated by the data path between line card 318 and line card 328. Moreover, assuming that this packet is destined for output buffer 510 within line card 328, the address for this particular packet is associated with the number for line card 328 as well as the port number of output buffer 510, based on the

address stored in the tables located within in-ring network element 104. In an embodiment, a proprietary protocol is employed on packet mesh 226 for the transferring of packets between the different line cards. In one such embodiment, the protocol allows for the transfer of the port number of the given output buffer to which the packet is destined within the line card to which such a packet is being forwarded.

Please replace the paragraph on pg. 18, as follows:

Upon receipt of packets, in an embodiment, egress packet processing circuitry 214 of line card 328 can de-encapsulate and/or encapsulate the incoming packets with protocol headers, which is described in more detail in a patent application titled “A Method and Apparatus for Switching Data of Different Protocols” to David Stiles, filed on December 30, 2000, Serial No: 09/823,480 Unassigned, Attorney Docket Number: 004906.P002. Moreover, egress packet processing circuitry 214 of line card 328 forwards this packet to physical connection circuitry 210 of line card 328. Physical connection circuitry 210 places a given packet into a given output buffer based on the port number of the buffer associated therewith. In an embodiment, a proprietary protocol allows for the transmitting of the port number of the buffer for a given packet between egress packet processing circuitry 214 and physical connection circuitry 210.

Please replace the paragraph on pg. 21, as follows:

Ingress packet processing circuitry 212 of line card 408 can de-encapsulate and/or encapsulate the incoming packets with protocol headers, which is described in more detail in a patent application titled “A Method and Apparatus for Switching Data of Different Protocols” to David Stiles, filed on December 30, 2000, Serial No: 09/823,480 Unassigned, Attorney Docket Number: 004906.P002. Additionally, ingress packet processing circuitry 212 of line card 408 forwards the packet to egress packet processing circuitry 214 of line card 414 through packet mesh 226

(not shown), as illustrated by the data path between line card 408 and line card 414. Moreover, assuming that this packet is destined for output buffer 510 within line card 414, the address for this particular packet is associated with the number for line card 414 as well as the port number of output buffer 510, based on the address stored in the tables located within in-ring network element 106.