2022-2023 MP2I

23. Espaces vectoriels

Exercice 1. (c) Parmi les ensembles suivants, lesquels sont des sous espaces vectoriels de $\mathcal{F}(\mathbb{R},\mathbb{R})$?

- 1) L'ensemble des fonctions 2π -périodiques.
- 2) L'ensemble des fonctions qui admettent au moins un zéro.
- 3) $\{f \mid \forall x \in \mathbb{R}, \ f(x) + f(1-x) = 0\}.$
- 4) $\{f \mid \forall x \in \mathbb{R}, \ f(x) + f(1-x) = 2x\}.$
- 5) L'ensemble des fonctions croissantes.

Exercice 2. (m) Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$. On note \mathcal{C} l'ensemble des fonctions de E croissantes et $\Delta = \{f - g, f, g \in \mathcal{C}\}$. Montrer que Δ est un sous-espace vectoriel de E.

Exercice 3. (m) Soient A, B, F trois sous espaces vectoriels d'un espace vectoriel E. Montrer que $(A \cap F) + (B \cap F) \subset (A + B) \cap F$ mais que l'inclusion réciproque est en général fausse.

Exercice 4. (i) Soient E et F deux sous espaces vectoriels sur \mathbb{R} tels que $E \cup F$ soit un espace vectoriel. Montrer qu'alors $E \subset F$ ou $F \subset E$

(*) De même, on suppose que E_1, E_2, \ldots, E_n sont des sous espaces vectoriels sur \mathbb{R} et que $E_1 \cup \ldots \cup E_n$ est un sous espace vectoriel. Montrer qu'un des E_i contient tous les autres.

Exercice 5. (m) Soient E, F, G trois sous espaces vectoriels d'un espace commun avec $F \subset G$. On suppose que $E \cap F = E \cap G$ et que E + F = E + G. Montrer que F = G.

Exercice 6. (m) Soit $E = (\mathcal{F}(\mathbb{R}, \mathbb{R}), +)$, F le sous-espace vectoriel de E constitué des fonctions paires et G le sous-espace vectoriel de E constitué des fonctions nulles sur \mathbb{R}_+ . Montrer que $E = F \oplus G$.

Exercice 7. $\boxed{\mathbf{m}}$ On note E l'espace vectoriel des suites convergentes. Vérifier que l'ensemble constitué des suites de limite nulle est un sous-espace vectoriel de E et en déterminer un supplémentaire.

Exercice 8. (i) Déterminer $Vect(f / f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R}) \text{ et } f \geq 0)$.

Exercice 9. (a, b, c) une famille libre de trois vecteurs d'un \mathbb{R} -espace vectoriel E. Montrer que les vecteurs a + b, b + c et c + a forment une famille libre.

Exercice 10. (m) Montrer que la famille (cos, sin, exp) est libre.

Exercice 11. (m) Soit $(x_1, x_2, ..., x_n)$ une famille libre d'un espace vectoriel E. Pour tout $k \in [1, ..., n]$, on pose $y_k = \sum_{i=1}^k x_i$. Montrer que la famille $(y_1, y_2, ..., y_n)$ est libre.

Exercice 12. (m) On pose pour $\alpha \in \mathbb{R}$, $f_{\alpha} : x \mapsto |x - \alpha|$. Montrer que la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.

Exercice 13. (m) Montrer que la famille $(X^2, (X+1)^2, (X+2)^2)$ est une base de $\mathbb{R}_2[X]$.

Exercice 14. © Montrer que $\{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0 \text{ et } 2x - y + 3z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . En donner une famille génératrice.

Exercice 15. (c) Parmi les applications suivantes $u: E \to F$, lesquelles sont linéaires?

- 1) $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R}), F = \mathbb{R}, u: f \mapsto f(0).$
- 2) $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R}), F = \mathbb{R}, u : f \mapsto \sup_{x \in [0,1]} |f(x)|.$
- 3) $E = F = \mathbb{R}^n$, $u: (x_1, x_2, \dots, x_n) \mapsto (x_n, x_{n-1}, \dots, x_1)$.

Exercice 16. (m) Soient $u, v \in \mathcal{L}(E)$. Montrer que $u(\ker(v \circ u)) = \ker(v) \cap \operatorname{Im}(u)$.

Exercice 17. (m) Soit $u \in \mathcal{L}(E)$. Montrer que $E = \ker u \oplus \operatorname{Im} u$ si et seulement si $\operatorname{Im} u^2 = \operatorname{Im} u$ et $\ker u^2 = \ker u$.

Exercice 18. (m) Soit $u \in \mathcal{L}(E, F)$ et soient E_1 et E_2 deux sous espaces de E.

- 1) Montrer que $u(E_1 + E_2) = u(E_1) + u(E_2)$.
- 2) On suppose à présent que la somme $E_1 + E_2$ est directe. Montrer que $u(E_1) + u(E_2)$ est directe si u est injective mais que ce résultat n'est pas forcément vrai si u n'est pas injective.

Exercice 19. (m) Soit $u \in \mathcal{L}(E)$ et F et G deux sous espaces vectoriels de E. Montrer que

$$F + \ker u = G + \ker u \Leftrightarrow u(F) = u(G).$$

Exercice 20. (m) Soit $f \in \mathcal{L}(E)$. On pose $g : \begin{cases} E^2 \to E^2 \\ (x,y) \mapsto (x+y,f(x+y)) \end{cases}$. Montrer que g est linéaire et calculer son noyau et son image.

Exercice 21. (i) Soit E un \mathbb{R} -espace vectoriel. Soit $u \in \mathcal{L}(E)$ telle que pour tout $x \in E$, la famille (x, u(x)) est liée. Montrer que u est une homothétie i.e. $\exists \lambda \in \mathbb{R}$ tel que pour tout $x \in E$, $u(x) = \lambda x$.

Exercice 22. © Soient $u, v \in \mathcal{L}(E)$ tels que $u \circ v = u$ et $v \circ u = v$. Montrer que u et v sont deux projecteurs de même noyau.

Exercice 23. (i) Soit p un projecteur dans l'espace vectoriel E et $u \in \mathcal{L}(E)$. Montrer que si $u \circ p + p \circ u = 0$ alors $u \circ p = p \circ u = 0$.

Exercice 24. (m) Soit E un \mathbb{C} -espace vectoriel et f un endomorphisme de E tel que $f^2 = -\mathrm{Id}_E$. On pose $F = \{x \in E \mid f(x) = ix\}$ et $G = \{x \in E \mid f(x) = -ix\}$.

- 1) Montrer que F et G sont des sous espaces vectoriels supplémentaires de E.
- 2) Exprimer f en fonction du projecteur sur F parallèlement à G.

Exercice 25. (c) Déterminer la nature géométrique et les éléments caractéristiques de :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ \begin{pmatrix} x \\ y \end{pmatrix} & \mapsto & \frac{1}{3} \begin{pmatrix} -x + 2y \\ -2x + 4y \end{pmatrix} \right. .$$

Exercice 26. © Soit $f: \left\{ \begin{array}{ll} \mathbb{R}_2[X] & \to & \mathbb{R}_2[X] \\ P(X) & \mapsto & P(1-X) \end{array} \right.$ Montrer que f est une symétrie et déterminer ses éléments caractéristiques.

Exercice 27. * Soient p et q deux projecteurs tels que $p \circ q = 0$. Montrer que $r = p + q - q \circ p$ est un projecteur dont on déterminera l'image et le noyau.