Unit 5 Outlier Detection

Preliminaries,
Outliers and types

Approaches

(Statistical, Proximity-based, Clustering-based, Classification based)

Objective

- Preliminaries
- Outliers and types
- Approaches
 - Statistical
 - Proximity-based
 - Clustering-based
 - Classification based

Anomaly/Outlier Detection

Similar terms

- Anomaly
- Deviation
- Extreme Value
- Noise
- Novelty → something new, off-track, unusual

- Fluctuation
- Discrepancy

Anomaly/Outlier

- What are anomalies/outliers?
 - The set of data points that are considerably different than the remainder of the data
 - An outlier is a data point that significantly differs from other data points in a dataset.
- Outliers are different from the noise data
 - Noise is random error or variance in a measured variable
 - Noise should be removed before outlier detection

Anomaly/Outlier

- How outliers are formed?
 - Outliers can occur due to various reasons, such as errors in data collection, measurement variability, or genuine rare occurrences in the data.
- Identifying and handling outliers is important in data analysis and statistics because they can distort statistical analyses and machine learning models.

Characteristics of Outliers

Unusual Value

- Outliers are data points that are significantly different from the majority of other data points in the dataset.
- They may be unusually high or low compared to the rest of the data.

Impact on Summary Statistics

- Outliers can significantly affect summary statistics such as the mean and standard deviation.
- For example, a single extremely high or low value can skew the mean and increase the variance.

Visual Detection

- Outliers can often be detected visually in plots such as histograms, box plots, or scatter plots.
- They may appear as points that are far from the main cluster of data points.

Quantitative Detection

Outliers can also be detected quantitatively using statistical methods such as the z-score, which measures how many standard deviations a data point is away from the mean.

Impact on Models

- Outliers can have a significant impact on statistical analyses and machine learning models.
- They can lead to biased estimates, reduced model performance, or incorrect conclusions if not properly handled.

Sources of Outliers

Data Entry Errors

- Outliers may occur due to human errors during data entry, recording, or transcription.
- For example, typos, misreadings, or mistakes in data collection can lead to erroneous data points that deviate significantly from the true values.

Sampling Errors

- Outliers may arise from sampling errors when the sample size is small or not representative of the population.
- Sampling variability, sampling bias, or outliers in the population itself can lead to outliers in the sample data.

Natural Variability

 In some cases, outliers may occur naturally due to inherent variability or heterogeneity in the data-generating process.

Unit 5: Outlier Detection

 Natural processes, such as biological variation, environmental factors, or random fluctuations, can produce outliers that deviate from the central tendency of the data

Sources of Outliers

Measurement Variability

- Variability in measurement instruments or techniques can lead to outliers in the data.
- Measurement errors, calibration issues, or sensor malfunctions may result in data points that are inconsistent or inaccurate compared to the majority of observations.

Measurement Units

- Outliers may arise from inconsistencies in measurement units or scales used to record data.
- Incompatible units, unit conversions, or mixing of different measurement scales can result in outliers that do not conform to the expected distribution of values.

Data Collection Methods

- Outliers may be introduced by limitations or biases in data collection methods.
- Biased sampling, non-random selection of subjects, or incomplete data collection can lead to outliers that do not accurately represent the underlying population.

Sources of Outliers

Genuine Extreme Values

- Outliers may represent genuine extreme values or rare events in the data.
- Unusual phenomena, extreme weather events, or rare occurrences may produce outliers that are legitimate observations but deviate from the typical patterns in the data.

Errors in Data Processing

- Outliers can result from errors or anomalies introduced during data processing or manipulation.
- Mistakes in data cleaning, transformation, or aggregation processes may lead to outliers that distort the analysis or modeling results.

Data Corruption or Tampering

- Outliers may be introduced deliberately or accidentally through data corruption or tampering.
- Malicious attacks, data breaches, or data manipulation can alter the integrity of the data and introduce outliers that compromise its quality and reliability.

Types of Outliers

- Three kinds
 - Global
 - Contextual
 - Collective outliers

Global Outlier (Point Anomaly)

 Object is Og if it significantly deviates from the rest of the data set

- Ex. Intrusion detection in computer networks
- Issue
 - Find an appropriate measurement of deviation

Contextual Outlier (Conditional Outlier)

- Object is Oc if it deviates significantly based on a selected context
 - Ex. 25 Degree C in Kathmandu:
 - Outlier?
 - depending on summer or winter
- Attributes of data objects should be divided into two groups
 - Contextual attributes: defines the context, e.g., time & location
 - Behavioral attributes: characteristics of the object, used in outlier evaluation, e.g., temperature
- Can be viewed as a generalization of local outliers
 - whose density significantly deviates from its local area
- Issue
 - How to define or formulate meaningful context?

Collective Outliers

- A subset of data objects collectively deviate significantly from the whole data set, even if the individual data objects may not be outliers
- Applications: E.g., intrusion detection:
 - When a number of computers keep sending denial-of-service packages to each other
- Detection of collective outliers
 - Consider not only behavior of individual objects, but also that of groups of objects
 - Need to have the background knowledge on the relationship among data objects, such as a distance or similarity measure on objects

Outlier Detection Problem

- Variants of Anomaly/Outlier Detection Problems
 - Given a database D, find all the data points $x \in D$ with anomaly scores greater than some threshold t
 - Given a database D, find all the data points $x \in D$ having the top-n largest anomaly scores f(x)
 - Given a database D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D

Applications

The outlier detection techniques are applicable in various fields

- Credit card fraud detection
- Telecommunication fraud detection
- Network intrusion detection
- Fault detection
-

Challenges

- How many outliers are there in the data?
- Method is unsupervised
 - Validation can be quite challenging (just like for clustering)

Unit 5: Outlier Detection

Finding needle in a haystack

Anomaly Detection Schemes

General Steps

- Build a profile of the **normal** behavior
 - Profile can be patterns or summary statistics for the overall population
- Use the normal profile to detect anomalies
 - Anomalies are observations whose characteristics differs significantly from the normal profile

Types of Anomaly Detection Schemes

- Based on user-labeled data
 - Supervised Methods, Semi-Supervised
- Based on assumptions about normal data and outliers
 - Unsupervised Method
 - Graphical and Statistical Based
 - Distance Based
 - Model Based

Supervised Method

- Modeling outlier detection as a classification problem
 - Samples examined by domain experts used for training & testing
- Methods for Learning a classifier for outlier detection effectively:
 - Model normal objects & report those not matching the model as outliers, or
 - Model outliers and treat those not matching the model as normal

Challenges

- Imbalanced classes, i.e., outliers are rare
 - Boost the outlier class and make up some artificial outliers
- Catch as many outliers as possible, i.e., recall is more important than accuracy (i.e., not mislabeling normal objects as outliers)

Unsupervised Method

- Assume the normal objects are somewhat 'clustered' into multiple groups, each having some distinct features
- An outlier is expected to be far away from any groups of normal objects
- Weakness: Cannot detect collective outlier effectively
 - Normal objects may not share any strong patterns, but the collective outliers may share high similarity in a small area

Unsupervised Method

- Ex. In some intrusion or virus detection, normal activities are diverse
 - Unsupervised methods may have a high false positive rate but still miss many real outliers.
 - Supervised methods can be more effective, e.g., identify attacking some key resources
- Many clustering methods can be adapted for unsupervised methods
 - Find clusters, then outliers: not belonging to any cluster
 - Problem 1: Hard to distinguish noise from outliers
 - Problem 2: Costly since first clustering: but far less outliers than normal objects

Unit 5: Outlier Detection

Newer methods: tackle outliers directly

Semi-Supervised Methods

• Situation:

- In many applications, the number of labeled data is often small: Labels could be on outliers only, normal objects only, or both
- Semi-supervised outlier detection: Regarded as applications of semi-supervised learning
- If some labeled normal objects are available
 - Use the labeled examples and the proximate unlabeled objects to train a model for normal objects
 - Those not fitting the model of normal objects are detected as outliers
- If only some labeled outliers are available, a small number of labeled outliers many not cover the possible outliers well
 - To improve the quality of outlier detection, one can get help from models for normal objects learned from unsupervised methods

Graphical Approach

Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)

Limitations

- Time consuming
- Subjective

Interquartile Range (IQR)

- The interquartile range (IQR) is a measure of statistical dispersion by dividing a data set into quartiles and is also called as Midspread or H-spread.
 - It shows how the data is spread about the median.
 - The data sorted in ascending order and then divided into quartiles.
- IQR is calculated as the difference between the 75th and 25th percentiles.
- This method is also called Extreme Value analysis

Interquartile Range (IQR)

$$IQR = Q3 - Q1$$

Upper Limit = Q3 + 1.5 IQR

Lower Limit = Q1 - 1.5 IQR

Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

Likelihood Approach

- Assume the data set D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General Approach:
 - Initially, assume all the data points belong to M
 - Let $L_t(D)$ be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, Delta = $L_t(D)$ $L_{t+1}(D)$
 - If Delta > c (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

- Data distribution, $D = (1 \lambda) M + \lambda A$
- M is a probability distribution estimated from data
 - Can be based on any modeling method
 - A is initially assumed to be uniform distribution
- Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1 - \lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$

$$LL_{t}(D) = \left| M_{t} \middle| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + \middle| A_{t} \middle| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i}) \right|$$

Limitation of Statistical Approaches

- Most of the tests are for a single attribute
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution

Distance-based Approaches

- Data is represented as a vector of features
- Three major approaches
 - Nearest-neighbor based
 - Density based
 - Clustering based

Nearest-Neighbor Based Approach

Approach:

- Compute the distance between every pair of data points
- There are various ways to define outliers:
 - Data points for which there are fewer than p neighboring points within a distance D
 - The top n data points whose distance to the kth nearest neighbor is greatest

Unit 5: Outlier Detection

 The top n data points whose average distance to the k nearest neighbors is greatest

Density Based: LOF Approach

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample p as the average of the ratios of the density of sample p and the density of its nearest neighbors
- Outliers are points with largest LOF value

In the NN approach, p2 is not considered as outlier, while LOF approach find both p1 and p2 as outliers

Clustering Based

Basic idea:

- Cluster the data into groups of different density
- Choose points in small cluster as candidate outliers
- Compute the distance between candidate points and non-candidate clusters.
 - If candidate points are far from all other non-candidate points, they are outliers

Reference

 https://medium.com/subex-ai-labs/an-introduction-to-outlier-de tection-methods-using-python-f2013824a7b7

Unit 5: Outlier Detection

•