Computação Evolutiva

Aula 5 – Algoritmos Genéticos (Parte I)

Prof. Tiago A. E. Ferreira

Roteiro

- Visão geral dos Algoritmos Genéticos (AG's)
- Algoritmo Genético Simples (AGS)
 - Algoritmo do AGS
 - Definição dos Operadores de Genéticos
 - Cruzamento (ou crossover)
 - Mutação
 - Um primeiro Exemplo!

Visão Geral dos AG's

- Desenvolvido: EUA nos Anos 70 's
- Pioneiros: J. Holland, K. DeJong, D. Goldberg
- Tipicamente Aplicado à:
 - Otimização
- Característica gerais:
 - Convergência não muito rápida (AG simples)
 - Boa heurística para problemas combinatórias
- Características especiais
 - Tradicionalmente enfatiza a combinação de informação a partir de bons indivíduos (crossover)
 - Muitas variantes, e.g., modelos de reprodução, operadores

Algoritmos Genéticos (AG's)

- Desenvolvido originalmente por John Holland em Michigan
 - Este AG original é conhecido como Algoritmo Genético Simples (AGS)
- Atualmente foram desenvolvidos várias novas versões, que usam diferentes:
 - Representações
 - Operadores de Mutação
 - Operadores de Cruzamento (crossover)
 - Mecanismos de Seleção

Sumário Técnico dos AGS's

Representação	Strings Binárias
Recombinação	N-pontos ou Uniforme
Mutação	Inversão de bit com probabilidade fixa
Seleção dos Pais	Proporcional ao Fitness
Seleção de Sobrevivência	Toda a prole é recolocada na população
Especialidade	Ênfase sobre o Cruzamento

Representação

Ciclo de um AGS

- 1. Criar a população inicial
- 2. Avaliar os indivíduos
- 3. Enquanto Critério de Parada não satisfeito, Faça:
 - 3.1 Selecione os pais (pool de acompanhamento)
 - **3.2** Para cada par de pais aplica-se o operador de cruzamento (crossover) com uma probabilidade p_c , caso contrário copia-se diretamente os pais
 - **3.3** Para cada filho aplica-se o operador de mutação (com uma probabilidade p_m de inversão dos bits independentemente)
 - 3.4 Incluir toda a prole na nova geração da população

AGS: Operador de Cruzamento Crossover de 1-Ponto

- Escolhe-se de forma aleatória um ponto sobre os dois pais
- Divide-se os pais neste ponto sorteado
- Cria-se os filhos a partir da troca das caldas dos pais

 P_c (Prob. de Cruzamento) varia tipicamente do intervalo (0.6, 0.9)

parents

children

AGS: Operador de Mutação

- Altere cada gene independentemente com probabilidade p_m
- p_m é chamada de probabilidade de mutação
 - Tipicamente entre: 1/(pop_side) e 1/(Cromossomo_Length)

AGS: Seleção Método da Roleta

- Idéia Central: Melhores Indivíduos têm maior Chances
 - Chances proporcionais ao fitness
 - Implementação: Método da Roleta
 - Assinala para cada indivíduo uma fatia da roleta
 - Gira-se a roleta para selecionar-se um indivíduo

AGS: Seleção Método da Roleta

Roleta

População Fitness $\operatorname{ind}_1 \longrightarrow 0.20$ $\operatorname{ind}_2 \longrightarrow 0.40$ $\operatorname{ind}_3 \longrightarrow 0.15$ $\operatorname{ind}_4 \longrightarrow 0.20$ $\operatorname{ind}_5 \longrightarrow 0.05$

Implementação do Método Da Roleta

Probabilidade de seleção do Indivíduo i

$$\Pr\{Ind_{i}\} = \frac{fitness(Ind_{i})}{\sum_{Pop} fitness(Ind)}$$

Probabilidade acumulada do Indivíduo i

$$q_0 = 0$$

 $q_1 = q_0 + \Pr\{Ind_1\}$
 $q_2 = q_1 + \Pr\{Ind_2\}$
:
:
 $q_n = q_{n-1} + \Pr\{Ind_n\} = 1$

Implementação do Método Da Roleta

A fatia da roleta para o indivíduo i

$$q_{i-1} < Fatia _Ind_i \le q_1$$

Gera-se um número aleatório [0,1] – giro da roleta

4

Exemplo – Goldeberg 1989

- Problema simples: Encontra o máximo da função x² no intervalo {0,1,2,...,31}
- AG Abordagem:
 - Representação: código binário 01101₂ ↔ 13₁₀
 - Tamanho da População: 4 (toy problem)
 - Cruzamento de 1-ponto, mutação de um bit
 - Seleção pelo método da Roleta
 - Inicialização Aleatória

Exemplo: Seleção

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	0 1 1 0 1	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

Exemplo: Cruzamento

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0 1 1 0 1	4	0 1 1 0 0	12	144
2	1 1 0 0 0	4	$1\ 1\ 0\ 0\ 1$	25	625
2	11 000	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10 0 1 1	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729

Exemplo: Mutação

String	Offspring	O	ffspring	x Value	Fitness
no.	after xover	after	mutation		$f(x) = x^2$
1	0 1 1 0 0	1	$1 \ 1 \ 0 \ 0$	26	676
2	$1\ 1\ 0\ 0\ 1$	1	$1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	1	1 0 1 1	27	729
4	$1\ 0\ 0\ 0\ 0$	1	$0 \ 1 \ 0 \ 0$	18	324
Sum					2354
Average					588.5
Max					729

Exemplo: Evolução do AGS

Segunda Geração

		X	f(x)
1	11011	27	729
2	11000	24	576
3	10111	23	529
4	10101	21	441

Terceira Geração

_		X	f(x)
1	11011	27	729
2	10111	23	529
3	01111	15	225
4	00111	7	49

Exemplo: Evolução do AGS

Quarta Geração

		X	f(x)
1	11111	31	961
2	11011	27	729
3	10111	23	529
4	10111	23	529

Quinta Geração

		Χ	f(x)
1	11111	31	961
2	11111	31	961
3	11111	31	961
4	10111	23	529

Desafio

Dada a função matemática abaixo:

$$f(\vec{x}) = \sum_{i=1}^{n-1} \left(100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right)$$

- Onde $-2.048 \le x_i \le 2.048$ e n = 2.
- Encontre o mínimo desta função.