(Party)
1. f(n):= moly (h(1-n))

(20)

(a) nEDy (=> 1-n2 EDm 1 ln(1-n2) EDmoty

6) 2<1 (1) x6]-1,1[.

:. Dy =]-1,1[.

(60)

(b), Sund Dy mu interal about a of differentiable on todo o ser hommer (e comprosiste de funços diferen-(2001), when , we hower extremely the tem pre ocover en ponto ond of size terr (Turns de Fermet)

 $J'(x) = \frac{\frac{-2x}{1-x^2}}{(1+[l_{11}(1-x^2)]^2)_{>0}}, x \in]-1,1($

			-1	 	0		1	
	- LM	\ +	4	+	0	-	-	
	1-n2	_	0	+	+	+	0	
_	{ '(n)		1	+	o			
-	161	<u> </u>		71		<i>y</i>		

Assim, o mice extremo rove grand n=0, tostand - a to making dorlite (of quality de variação)

(30) Com
$$\frac{du}{dx} = -\min(tgx) \cdot \operatorname{nec}^2 u = -\frac{\min(tgx)}{to^2 u}$$

entz + primitive x'
$$\int_{-\infty}^{\infty} conundn = -ninn+C$$

= -nin (m(tgn)) + C, CEIR un intervalor

(60) (b)
$$\int \frac{n-q}{(n^2+3)(n-1)} dx$$

Funçai recional pripria ja com o denominador completamente fotoritade en IR.

$$\frac{C.A.}{(n^2+3)(n-2)} = \frac{An+B}{n^2+3} + \frac{c}{n-2}$$

$$\Rightarrow x-9 = (Ax+B)(x-2) + C(x^2+3)$$

$$\begin{cases}
A + C = 0 \\
B - 2A = 1 \\
-2B + 3C = -9
\end{cases}$$

$$\begin{cases}
A = -C \\
B + 2C = 1 \\
-2B + 3C = -9
\end{cases}$$

$$\begin{cases}
A = -C \\
2B + 4C = 2 \\
-2B + 3C = -9
\end{cases}$$

$$\Rightarrow \begin{cases}
2B + 4c = 2 \\
0 + 7c = -7
\end{cases}
\Rightarrow \begin{cases}
c = -1 \\
2B = 2 + 4 = 6
\end{cases}
\Rightarrow \begin{cases}
c = -1 \\
B = 3
\end{cases}$$

$$A = 1$$

$$\int \frac{n-9}{(n^2+3)(n-2)} dn = \int \frac{n+3}{n^2+3} dn + \int \frac{-1}{n-2} dn$$

$$= \frac{1}{2} \int \frac{2x}{n^2+3} dn + \int \frac{3}{n^2+3} dn - \ln|n-2|$$

$$= \frac{1}{2} \ln |n^2 + 3| + \int \frac{1}{(\sqrt{3})^2 + 1} dn - \ln |n - 2|$$

$$= \frac{1}{2} \ln (n^2 + 3) + \sqrt{3} \operatorname{and}_{3} \frac{x}{\sqrt{3}} - \ln |n - 2| + C$$

3. ~ EIN\{1).

(a) $\int (hn)^m dn = n.(hn)^m - \int x.m.(hn)^m \frac{1}{2\pi} dn$ por parter,

scothand 1 pars primitives

 $= n(\ln n)^m - m \int (\ln n)^{m-1} dn$

(b) $\int (h x)^2 dx = x \cdot (h x)^2 - 2 \int (h x)^2 dx$

Fórmus _ acing com m=2

= $n.(hn)^2 - 2[n.(hn)^2 - 1.5(hn)^2 dn]$

formulacións, agos com n=1 (ditum-nos

 $= x \cdot (\ln x)^2 - 2x \ln x + 2x + C$

que também « vadis un tal Carr)