Empirical log odds plots

Motivating example: Dengue data

Data: Data on 5720 Vietnamese children, admitted to the hospital with possible dengue fever. Variables include:

- Sex: patient's sex (female or male)
- Age: patient's age (in years)
- WBC: white blood cell count
- PLT: platelet count
- other diagnostic variables...
- Dengue: whether the patient has dengue (0 = no, 1 = yes)

Previously: Logistic regression model

$$Y_i = ext{dengue status } (0 = ext{negative, } 1 = ext{positive}) \ Y_i \sim Bernoulli(
otationsis) \ \log\left(rac{
otation{eta_i}{p_i}}{1 -
otation{eta_i}{p_i}}
ight) = eta_0 + eta_1 WBC_i$$

What assumptions does this logistic regression model make? How should we assess these assumptions? Discuss with your neighbor for 2--3 minutes, then we will discuss as a group.

1) randomness (date come from some random process)
2) log odds are a linear function of WBC (shape assumption)
3) independence (observations ti are independent)

Don't use usual residuals for logistic regression

Fitted model:
$$\log\left(\frac{\hat{\mathcal{D}}_i\,\hat{\mathcal{V}}_{\hat{i}}}{1-\hat{\mathcal{D}}_i}\right)=1.737-0.361~WBC_i$$
 Residuals $Y_i-\hat{\hat{\mathcal{D}}}_i$:

Assessing shape with empirical log odds plots

Example: Putting data. Interested in the relationship between the length of a putt, and whether it was made:

$$Y_i \sim Bernoulli(\mathbf{p}_i) \ \log \left(rac{\mathbf{p}_i}{1-\mathbf{p}_i}
ight) = eta_0 + eta_1 \ Length_i$$

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134

Empirical log odds

Step 1: estimate the probability of success for each length of putt

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134
Probability of success \hat{p}	0.832	0.739	0.565	0.488	0.328

Empirical log odds

Step 2: convert empirical probabilities to empirical log odds

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134
Probability of success \hat{p}	0.832	0.739	0.565	0.488	0.328
Odds $rac{\hat{p}}{1-\hat{p}}$	4.941	2.839	1.298	0.953	0.489
$Log\text{-odds} \log \bigg(\frac{\hat{p}}{1 - \hat{p}} \bigg)$	1.60	1.04	0.26	-0.05	-0.72

Empirical log odds

Step 3: plot empirical log-odds against predictor, and add a least-squares line

Does it seem reasonable that the log-odds are a linear function of length?

Back to the dengue data...

WBC	0.90	1.15	1.23	1.25	1.54	1.58	•••
Dengue = 0	0	0	0	0	0	0	•••
Dengue = 1	1	2	1	1	3	1	•••

What problem do I run into?

0.90 =>
$$\hat{f} = 1$$
 $\log \left(\frac{\hat{f}}{1-\hat{n}}\right) = \log(\frac{1}{0}) = \infty$
we have too few observations @ each wBC?
Soldier: 1) Bin observations
2) Calculate log odds in each bin

Binned empirical log odds plots

Does it seem reasonable that the log-odds are a linear function of WBC?

Trying some transformations

Lab 2

https://sta214-f22.github.io/labs/lab_2.html