Rattrapage de Théorie des graphes

Exercice 1. (8 points)

Soit le graphe orienté G = (X, U) représenté par le tableau ci-dessous :

-, -	1	2	3	4	5	6	7	8	9
1		12	1			7			
2						1			0
3				4		2			
4							3		
5				8				3	
6					3				
7								6	
8		5							1
9									

Chaque valeur dans la matrice représente le poids d'un arc. Les cases vides signifient que l'arc n'existe pas.

- 1. Dessiner le graphe pondéré après l'avoir ordonnancé selon la valeur du niveau de chaque sommet. Il faut noter que v(x)=0 si x est une source sinon v(x) représente la longueur du plus long chemin élémentaire se terminant en x.
- 2. Appliquer l'algorithme le plus adéquat pour trouver les plus courts chemins à partir du sommet 1. Justifier le choix de l'algorithme.
- 3. Trouver l'arbre de couverture de poids minimal pour ce graphe et donner son poids.

Exercice 2. (8 points)

Soit un graphe non-orienté simple et connexe G = (X, E), tel que |X| = n et |E| = m.

- 1. Quel est le nombre maximum d'arêtes à supprimer de telle façon à ne pas déconnecter $G(k_1=|F_1|$ tel que $\exists F_1 \subset E$ et le graphe partiel $G_1=(X, E-F_1)$ est connexe) ?
- 2. Quel est le nombre minimum d'arêtes à supprimer de telle façon qu'on est certain de déconnecter $G(k_2=|F_2|$ tel que $\forall F_2 \subset E$, on a le graphe partiel $G_2=(X, E-F_2)$ est non connexe) ?
- 3. Quel est le nombre minimum d'arêtes à supprimer de telle façon à avoir p composantes connexes $(k_3=|F_3|$ tel que $\forall F_3 \subset E$, on a le graphe partiel $G_3=(X, E-F_3)$ contient p composantes connexes) ?
- 4. Quel est le nombre minimum (pmin) et maximum (pmax) de composantes connexes du graphe partiel G' de G engendré par $E \{e_1, ..., e_k\}$. A discuter selon les valeurs de k.

Exercice 3. (4 points)

On appelle graphe de Petersen un graphe non-orienté P représenté par la figure ci-dessous.

Montrer que pour tout sommet x du graphe de Petersen P, $P \setminus x$ (en supprimant x) est Hamiltonien.