CSC12001

Data Security in Information Systems

C01 – Overview of Information Security

Dr. Phạm Thị Bạch Huệ MSc. Lương Vĩ Minh

Information System Department – Faculty of Information Technology
University of Science, VNU-HCM

Outline

- Information Security: basic concepts
- Threats and Goals of Security
- Security Policies and Security Mechanisms
- Privacy: basic concepts and comparison with security

Information Protection - Why?

- Information are an important strategic and operational asset for any organization
- Damages and misuses of information affect not only a single user or an application; they may have disastrous consequences on the entire organization
- Additionally, the advent of the Internet as well as networking capabilities has made the access to information much easier

Information Security: Main Requirements

Information Security - main requirements

- *Confidentiality* it refers to information protection from unauthorized read operations
 - the term *privacy* is often used when data to be protected refer to individuals
- *Integrity* it refers to information protection from modifications; it involves several goals:
 - Assuring the integrity of information with respect to the original information (relevant especially in web environment) often referred to as *authenticity*
 - Protecting information from unauthorized modifications
 - Protecting information from incorrect modifications referred to as *semantic integrity*
- Availability it ensures that access to information is not denied to authorized subjects

Information Security: Examples

- Consider a payroll database in a corporation, it must be ensured that:
 - salaries of individual employees are not disclosed to arbitrary users of the database
 - salaries are modified by only those individuals that are properly authorized

Information Security: Examples

- Our enrollment system Moodle:
 - Only academic staff have authorizations to Insert/ Delete/ Update a course. Students can read (select) the data only.
 - Lecture of a course has authorization to update the marks of (that course) of students who enrolled the course.
 - Students can insert/ delete an enrollment.

Information Security – Additional requirements

- *Information Quality* it is not considered traditionally as part of information security but it is very relevant
- *Completeness* it refers to ensure that subjects receive all information they are entitled to access, according to the stated security policies

Classes of Threats

- Disclosure (Sự phơi bày)
 - Snooping (rình mò), Trojan Horses
- Deception (Lùa gạt)
 - Modification, spoofing (lừa đảo), repudiation (thoái thác) of origin, denial (phủ nhận) of receipt
- Disruption (Sự phá võ)
 - Modification
- Usurpation (Sự chiếm đoạt)
 - Modification, spoofing, delay, denial of service

Goals of Security

- Prevention
 - Prevent attackers from violating security policy
- Detection
 - Detect attackers' violation of security policy
- Recovery
 - Stop attack, assess and repair damage
 - Continue to function correctly even if attack succeeds

Information Security – How?

- Information must be protected at various levels:
 - The operating system
 - The network
 - The data management system
 - Physical protection is also important

Information Security: A Complete Solution

- It consists of:
 - <u>first</u> defining a <u>security policy</u>
 - then choosing some *mechanism* to enforce the policy
 - <u>finally</u> providing *assurance* that both the mechanism and the policy are sound

SECURITY LIFE-CYCLE

Policies and Mechanisms

- Policy says what is, and is not, allowed
 - This defines "security" for the information
- Mechanisms enforce policies
- Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities

Information Security – Mechanisms

- *User authentication* to verify the identity of subjects wishing to access the information
- Confidentiality is enforced by the access control mechanism
- Integrity is enforced by the access control mechanism and by the semantic integrity constraints
- Availability is enforced by the recovery mechanism and by detection techniques for DoS attacks – an example of which is query flood

Information Security – How? Additional mechanisms

• Access control

- the matrix model and the safety problem
- discretionary access control
- mandatory access control
- role-based and task-based access control
- context-based access control

Information Security – How? Additional mechanisms

- *Information authentication* to ensure information authenticity it is supported by signature mechanisms
- *Encryption* to protect information when being transmitted across systems and when being stored on secondary storage
- Intrusion detection to protect against impersonation (sự mạo danh) of legitimate (hợp pháp) users and also against insider threats

Data vs Information

- Computer security is about controlling access to information and resources
- Controlling access to information can sometimes be quite elusive and it is often replaced by the more straightforward goal of controlling access to data
- The distinction between data and information is subtle (khó thấy) but it is also the root of some of the more difficult problems in computer security
- Data represents information. Information is the (subjective) interpretation of data

Data vs Information

- Protecting information means to protect not only the data directly representing the information
- Information must be protected also against transmissions through:
 - Covert channels
 - Inference
 - It is typical of database systems
 - It refers to the derivation of sensitive information from non-sensitive data

Inference - Example

Name	Sex	Programme	Units	Grade Ave
Alma	F	MBA	8	63
Bill	M	CS	15	58
Carol	F	CS	16	70
Don	M	MIS	22	75
Errol	M	CS	8	66
Flora	F	MIS	16	81
Gala	F	MBA	23	68
Homer	М	CS	7	50
Igor	М	MIS	21	70

Inference - Example

- Assume that there is a policy stating that the average grade of a single student cannot be disclosed; however statistical summaries can be disclosed
- Suppose that an attacker knows that Carol is a female CS student
- By combining the results of the following legitimate queries:
 - Q1: SELECT Count (*) FROM Students WHERE Sex = 'F' AND Programme = 'CS'
 - Q2: SELECT Avg (Grade Ave) FROM Students WHERE Sex = 'F' AND Programme = 'CS'

The attacker learns from Q1 that there is only one female student so the value 70 returned by Q2 is precisely her average grade

Assurance

- Specification
 - Requirements analysis
 - Statement of desired functionality
- Design
 - How system will meet specification
- Implementation
 - Programs/systems that carry out design

Key Points

- Policies define security, and mechanisms enforce security
 - Confidentiality
 - Integrity
 - Availability
- Importance of assurance

Privacy - Motivations

- Privacy is an important issue today
 - Individuals feel
 - Uncomfortable: ownership of information
 - Unsafe: information can be misused
 - (e.g., identity thefts)
 - Enterprises need to
 - Keep their customers feel safe
 - Maintain good reputations
 - Protect themselves from any legal dispute
 - Obey legal regulations

Definition

- **Privacy** is the ability of a person to control the availability of information about and exposure of him- or herself. It is related to being able to function in society anonymously (including pseudonymous or blind credential identification).
- Types of privacy giving raise to special concerns:
 - Political privacy
 - Consumer privacy
 - Medical privacy
 - Information technology end-user privacy; also called data privacy
 - Private property

Data Privacy

- Data Privacy problems exist wherever uniquely identifiable data relating to a person or persons are collected and stored, in digital form or otherwise. Improper or non-existent disclosure control can be the root cause for privacy issues.
- The most common sources of data that are affected by data privacy issues are:
 - Health information
 - Criminal justice
 - Financial information
 - Genetic information

Data Privacy

- The challenge in data privacy is to share data while protecting the personally identifiable information.
 - Consider the example of health data which are collected from hospitals in a district; it is standard practice to share this only in aggregate form
 - The idea of sharing the data in aggregate form is to ensure that only non-identifiable data are shared.
- The legal protection of the right to privacy in general and of data privacy in particular varies greatly around the world.

Technologies with Privacy Concerns

- Biometrics (DNA, fingerprints, iris) and face recognition
- Video surveillance, ubiquitous networks and sensors
- Cellular phones
- Personal Robots
- DNA sequences, Genomic Data

Approaches in Privacy-Preserving Information Management

- Anonymization Techniques
 - Have been investigated in the areas of networks (see the Anonymity Terminology by Andreas Pfitzman) and databases (see the notion of kanonymity by L. Sweeney)
- Privacy-Preserving Data Mining
- P3P policies
 - Are tailored to the specification of privacy practices by organizations and to the specification user privacy preferences
- Hippocratic Databases
 - Are tailored to support privacy policies
- Fine-Grained Access Control Techniques
- Private Information Retrieval Techniques

Privacy vs Security

- Privacy is not just confidentiality and integrity of user data
- Privacy includes other requirements:
 - Support for user preferences
 - Support for obligation execution
 - Usability
 - Proof of compliance

Relevant Bibliography

- Chapter 1- Matt Bishop "Introduction to Computer Security"
- E. Bertino, R. Sandhu "Database Security Concepts, Approaches, and Challenges", IEEE Transactions on Dependable and Secure Computing, 2(1), 2005.
- L. Sweeney, "k-Anonymity: a Model for Protecting Privacy" http://privacy.cs.cmu.edu/people/sweeney/cv.html#publications
- A. Pfitzman et al. "Anonymity, Unobservability, Pseudonymity and Identity Management A Proposal for Terminology", http://dud.inf.tu-dresden.de/Literatur VI.shtml

Q & A

Dr. Phạm Thị Bạch Huệ - ptbhue@fit.hcmus.edu.vn

MSc. Lương Vĩ Minh - lvminh@fit.hcmus.edu.vn

