

NON-TEXTUAL DATA EXTRACTION

José Antonio Ruiz Heredia Joseph Tartivel Álvaro Honrubia

MOTIVATION

A brief introduction of the project.

STATE OF THE ART

Presentation of research paper used for this work.

DATASET

Presentation of the dataset used

IMPLEMENTATION

Description of the implementation of the project.

OTHER EXPERIMENTS

Quick summary of multiple experiments we did during this project.

IMPROVEMENTS

A view of potentials improvements.

CONTENTS

MOTIVATION

- **Problem:** Incomplete and inaccurate car listings on Milanuncios.
- Solution: Use CBIR to suggest accurate car details from images.
- **Method:** ORB for shape matching + CCH & SCH for color refinement.
- **Challenges:** Image variations, similar models, and color inconsistencies.
- Impact: More accurate listings, better search results, improved user experience.

STATE OF THE ART

ORB: Fast and Robust Feature Detector

Open-source alternative to SIFT & SURF

Key Components:

- **FAST** (with intensity centroid)
- **rBRIEF** (with learning-based feature selection)

Applications:

- **Feature extraction** for tracking & recognition
- Enhanced object detection
- Efficient large-scale **image search**
- Hybrid image retrieval

COLOR: cch & sch

Double Color Histogram for CBIR

- Conventional Colour Histogram (CCH) for global color distribution
- Stacked Colour Histogram (**SCH**) to capture texture information

Why It Matters for Car Image Matching

- Robust against *lighting*, *angle*, and transformation variations
- Distinguishes cars with similar shapes but different textures/colors
- Improves accuracy in identifying visually similar vehicles

CONSTRUCTING THE TRAINING DATASET

Stanford Cars Dataset with 16,185 images

Diverse range of **vehicle models**

Dataset's detailed metadata offer additional classification insights for future improvements

IMPLEMENTATION

ORB MATCHER

Uses ORB (Oriented FAST and Rotated BRIEF)

- Compares the query image's descriptors against the descriptors of the dataset
- Matches based on the number of keypoint using a brute-force matcher

COLOR MATCHER

Computes two types of **color-based features**:

- **CCH** based on standard RGB color histograms.
- **SCH** applies <u>blur</u> and <u>averaging</u> over several iterations

Both combined into a **single vector** to find similar images.

Match 1

ORB Matches: 165

Combined Score: 5.819

Color Distance: 0.321

Match 2

Color Distance: 0.325 ORB Matches: 162

Combined Score: 5.645

Match 3

Color Distance: 0.350 ORB Matches: 163

Combined Score: 5.280

HYBRID MATCHING

integrates the **ORB** and **color-based** results to provide a **combined ranking**

- Filters top n images using ORB matcher.
- Compute color features of the filtered list.
- Calculate a combined score
- Display top results with metrics and scores.

OTHER EXPERIMENTS

BACKGROUND REMOVAL

Remove the background from images while preserving the foreground

- Image Standardization:
- Background Removal (BackgroundSubtractorMOG2)
- Dataset Processing

Finally, result didn't match the required expectations

ORB MATCHER ALTERNATIVES

Experimented with other two feature matching techniques:

- FLANN uses Locality Sensitive Hashing (LSH) for fast nearest neighbor searches.
- **HNSW** is a graph-based algorithm from **Faiss** that provides efficient similarity search for high-dimensional data.

Both methods didn't enhance the outputs by **BF Matcher**

IMPROVEMENTS

Background removal

Implement **robust segmentation techniques** to isolate subject from surroundings Evaluate performance of **different algorithms** across varied conditions

Experiment ORB matcher alternatives

Evaluate *SIFT*, *SURF*, *AKAZE* and other feature detection algorithms
Compare **performance metrics**: accuracy, processing time, robustness

Standardize images

Develop **normalization** procedures for lighting variations Create **position calibration** for consistent vehicle orientation Implement **bias correction** methods for environmental factors

Methods beyond color matcher

Investigate **texture-based** recognition approaches Explore **deep learning-based** feature extraction Research **hybrid methods** combining multiple recognition strategies