SUITES NUMÉRIQUES E06

EXERCICE N°1 Suite arithmético-géométrique

Soit u la suite définie par : $u_0 = 0$ et $u_{n+1} = 0.2 u_n + 4$.

- 1) Calculer puis représenter les 5 premiers termes de la suite.
- 2) Conjecturer les variations de u.
- 3) Démontrer que u n'est ni arithmétique, ni géométrique.
- 4) On pose $v_n = u_n 5$ pour tout n. Calculer v_0 ; v_1 ; v_2 .
- 5) Conjecturer la nature de la suite v.
- 6) Le démontrer.
- 7) En déduire une expression de u_n en fonction de n.

EXERCICE N°2 Suite arithmético-géométrique

Soit v la suite définie par: $v_0 = 5$ et $v_{n+1} = 0.5 v_n + 1$.

- 1) Calculer v(1) et v(2). Vérifier que v n'est ni arithmétique, ni géométrique.
- 2) On pose $u_n = v_n 2$ pour tout n. Calculer u_0 ; u_1 ; u_2 .
- 3) Conjecturer la nature et la raison de la suite u.
- 4) Le démontrer.
- 5) En déduire une expression de v_n en fonction de n

EXERCICE N°3 Suite homographique

Soit u la suite définie par : $u_0 = -1$ et $u_{n+1} = \frac{9}{6 - u_n}$

1) On admet que pour tout n, $u_n \neq 6$ et donc que u_n est bien défini.

Vérifier que *u* n'est ni arithmétique, ni géométrique.

2) On pose $v_n = \frac{1}{u_n - 3}$ pour tout n.

On admet que pour tout n, $u(n) \neq 3$ et donc que v_n est bien défini. Calculer v_0 ; v_1 ; v_2 .

- 3) Conjecturer la nature et la raison de la suite v.
- 4) Le démontrer.

EXERCICE N°4 Suite de la forme $u_{n+1}=u_n+an+b$

On définit une suite u par $u_0=1$ et pour tout n entier naturel par $u_{n+1}=u_n+2n-1$.

- 1) Calculer u_1 ; u_2 ; u_3 . La suite u est-elle croissante? Décroissante?
- 2) La suite u est-elle arithmétique? Géométrique?
- 3) On pose $v_n = u_n 4n + 10$ pour tout n. Calculer v_0 ; v_1 ; v_2 ; v_3 .
- 4) Démontrer que la suite $y_n = v_n u_n$ est arithmétique et préciser sa raison.

SUITES NUMÉRIQUES E06

EXERCICE N°1 Suite arithmético-géométrique

Soit u la suite définie par : $u_0=0$ et $u_{n+1}=0,2u_n+4$.

- 1) Calculer puis représenter les 5 premiers termes de la suite.
- 2) Conjecturer les variations de u.
- 3) Démontrer que u n'est ni arithmétique, ni géométrique.
- 4) On pose $v_n = u_n 5$ pour tout n. Calculer v_0 ; v_1 ; v_2 .
- 5) Conjecturer la nature de la suite v.
- 6) Le démontrer.
- 7) En déduire une expression de u_n en fonction de n.

EXERCICE N°2 Suite arithmético-géométrique

Soit v la suite définie par: $v_0 = 5$ et $v_{n+1} = 0.5 v_n + 1$.

- 1) Calculer v(1) et v(2). Vérifier que v n'est ni arithmétique, ni géométrique.
- 2) On pose $u_n = v_n 2$ pour tout n. Calculer u_0 ; u_1 ; u_2 .
- 3) Conjecturer la nature et la raison de la suite u.
- 4) Le démontrer.
- 5) En déduire une expression de v_n en fonction de n

EXERCICE N°3 Suite homographique

Soit u la suite définie par : $u_0 = -1$ et $u_{n+1} = \frac{9}{6 - u_n}$

1) On admet que pour tout n, $u_n \neq 6$ et donc que u_n est bien défini.

Vérifier que *u* n'est ni arithmétique, ni géométrique.

2) On pose $v_n = \frac{1}{u_n - 3}$ pour tout n.

On admet que pour tout n, $u(n) \neq 3$ et donc que v_n est bien défini. Calculer v_0 ; v_1 ; v_2 .

- 3) Conjecturer la nature et la raison de la suite v.
- 4) Le démontrer.

EXERCICE N°4 Suite de la forme $u_{n+1}=u_n+an+b$

On définit une suite u par $u_0=1$ et pour tout n entier naturel par $u_{n+1}=u_n+2n-1$.

- 1) Calculer u_1 ; u_2 ; u_3 . La suite u est-elle croissante? Décroissante?
- 2) La suite u est-elle arithmétique? Géométrique?
- 3) On pose $v_n = u_n 4n + 10$ pour tout n. Calculer v_0 ; v_1 ; v_2 ; v_3 .
- 4) Démontrer que la suite $y_n = v_n u_n$ est arithmétique et préciser sa raison.