Lecture 7. Edge connectivity

Yanbo ZHANG

Hebei Normal University

• Edge connectivity

2 Whitney's theorem

The difference between deleting a vertex and deleting an edge

Delete a vertex is to delete this vertex and all the edges incident to this vertex.

Delete an edge is to delete only this edge.

Vertex cut \longrightarrow Disconnecting set k-connected \longrightarrow k-edge-connected

connectivity $\kappa(G) \longrightarrow \text{edge-connectivity } \kappa'(G)$

 $Cut \ vertex \longrightarrow Bridge(Cut \ edge)$

Edge connectivity

Definition

A disconnecting set of edges is a set $F \subseteq E(G)$ such that $G \setminus F$ has more than one component. A graph is k-edge-connected if every disconnecting set has at least k edges. The edge-connectivity of G, written $\kappa'(G)$, is the minimum size of a disconnecting set. One edge disconnecting G is called a bridge (cut edge).

disconnecting set

disconnecting set

Edge cut

Definition

Given $S, T \subseteq V(G)$, the notation [S, T] specifies the set of edges having one endpoint in S and the other in T. An edge cut is an edge set of the form $[S, \overline{S}]$, where S is a non-empty proper subset of V(G).

Example

$$G = K_n$$
: $\kappa'(G) = n - 1$. $\kappa'(G) = \kappa(G) = \delta(G) = n - 1$.

$$G = K_{m,n}, m \le n$$
: $\kappa'(G) = \kappa(G) = \delta(G) = m$.

Remark. If G is k+1-edge connected, then G is k-edge connected.

An edge cut is a disconnecting set, but a disconnecting set may not be an edge cut.

Example

$$\kappa'(G) = 3, \ \kappa(G) = 2, \ \delta(G) = 3.$$

$$\kappa'(G) = 2, \ \kappa(G) = 2, \ \delta(G) = 3.$$

The relation between connectivity and edge-connectivity

Theorem

$$\kappa(G) \le \kappa'(G) \le \delta(G).$$

Proof.

Yanbo ZHANG

The edges incident to a vertex v of minimum degree form a disconnecting set, hence $\kappa'(G) \leq \delta(G)$. It remains to show $\kappa(G) \leq \kappa'(G)$. Suppose |G| > 1 and $[S, \overline{S}]$ is a minimum edge cut, having size $\kappa'(G)$. Every edge of $[S, \overline{S}]$ has an end in S. Do all the ends of the edge cut $[S, \overline{S}]$ form a vertex cut?

The relation between connectivity and edge-connectivity

Sketch of the proof.

Case 1. Every vertex of S is adjacent to every vertex of \overline{S} .

Case 2. There exists $x \in S, y \in \overline{S}$ with x not adjacent to y.

The relation between connectivity and edge-connectivity

Proof.

If every vertex of S is adjacent to every vertex of \overline{S} , then $\kappa'(G) = |S||\overline{S}| = |S|(|G| - |S|)$. This expression is minimized at |S| = 1. By definition, $\kappa(G) \le |G| - 1 \le \kappa'(G)$, so the inequality holds.

Hence we may assume there exists $x \in S, y \in \overline{S}$ with x not adjacent to y. Let T be the vertex set consisting of all neighbours of x in \overline{S} and all vertices of $S \setminus x$ that have neighbours in \overline{S} . Deleting T destroys all the edges in the cut $[S, \overline{S}]$ (but does not delete x or y), so T is a separating set. Now, by the definition of T we can injectively associate at least one edge of $[S, \overline{S}]$ to each vertex in T, so $\kappa(G) \leq |T| \leq |[S, \overline{S}]| = \kappa'(G)$.

Internally disjoint paths

Definition

Two paths are internally disjoint if neither contains a non-endpoint vertex of the other. That is, they have no common internal vertex. The length of the shortest path from u to v is called the distance from u to v, denoted by d(u,v).

Figure: Three internally disjoint *xy*-paths

Internally disjoint paths

Definition

Two paths are internally disjoint if neither contains a non-endpoint vertex of the other. That is, they have no common internal vertex. The length of the shortest path from u to v is called the distance from u to v, denoted by d(u,v).

Figure: Two paths which are **NOT** internally disjoint

Whitney's theorem

Theorem (Whitney's theorem)

A graph G having at least three vertices is 2-connected if and only if each pair $u,v \in V(G)$ is connected by a pair of internally disjoint u,v-paths in G.

Proof.

When G has internally disjoint u,v-paths, deletion of one vertex cannot separate u from v. Since this is given for every u,v, the condition is sufficient(G is 2-connected).

For the converse, suppose that G is 2-connected. We prove by induction on d(u,v) that G has two internally disjoint u,v-paths.

When d(u,v) = 1, the graph $G \setminus (u,v)$ is connected, since $\kappa'(G) \ge \kappa(G) \ge 2$. A u,v-path in $G \setminus (u,v)$ is internally disjoint in G from the u,v-path consisting of the edge (u,v) itself.

Whitney's theorem

Proof.

For the induction step, we consider d(u,v) = k > 1 and assume that G has internally disjoint x, y-paths whenever $1 \le d(x,y) < k$. Let w be the vertex before v on a shortest u,v-path. We have d(u,w) = k-1, and hence by the induction hypothesis G has internally disjoint u, w-paths P and Q. Since $G \setminus w$ is connected, $G \setminus w$ contains a u,v-path R. If this path avoids P or Q, we are finished. But *R* may share internal vertices with both *P* and *Q*. Let *x* be the last vertex of *R* belonging to $P \cup Q$. Without loss of generality, we may assume $x \in P$. We combine the u,x-subpath of *P* with the x,v-subpath of *R* to obtain a u,v-path internally disjoint from $Q \cup \{(w,v)\}.$

Whitney's theorem

Corollary

G is 2-connected and $|G| \ge 3$ if and only if every two vertices in G lie on a common cycle.

Thank you!