Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление программная инженерия Образовательная программа системное и прикладное программное обеспечение

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1 курса «Программирование»

Вариант № 108699

Выполнил студент:

Мухамедьяров Артур Альбертович

группа: Р3109

Преподаватель:

Гаврилов А. В.,

Мустафаева А. В.

Санкт-Петербург, 2024 г.

Содержание

Лабораторная работа № 1. Принципы ООП											
1. Задание варианта № 108699	2										
2. Выполнение задания	į										
1. Листинги кода	9										
3. Результат работы программы											
1. Первый запуск.	4										
2. Второй запуск											
4. Вывод											

Лабораторная работа № 1 Принципы ООП

1. Задание варианта № 108699

, , ,

- 1. Создать одномерный массив s типа short. Заполнить его числами от 1 до 16 включительно в порядке убывания.
- 2. Создать одномерный массив x типа double. Заполнить его 11-ю случайными числами в диапазоне от -14.0 до 11.0.
- 3. Создать двумерный массив w размером 16х11. Вычислить его элементы по следующей формуле (где x = x[j]):
 - если s[i] = 15, то $w[i][j] = \ln\left(\sqrt{\left(\frac{|x|+1}{2}\right)^2}\right)$;
 - если $s[i] \in \{1, 3, 7, 8, 11, 12, 13, 16\},$ то $w[i][j] = \left(\frac{3}{4} \cdot \left(\left(\frac{\sqrt[3]{x}}{\frac{1}{3} + (x)^{x+\pi}}\right)^3 + 1\right)\right)^3;$
 - ullet для остальных значений s[i] :

$$w[i][j] = \tan\left(\left(\tan\left(\frac{1}{2}/x\right)\right)^{\left(\frac{2}{3}\cdot\tan\left(x\right)\right)^2}\right).$$

4. Напечатать полученный в результате массив в формате с четырьмя знаками после запятой.

, , ,

2. Выполнение задания.

Задание было выполнено в редакторе кода neovim, позже собрано с помощью javac в jar файл itmo_proga_lab1.jar.

2. 1. Листинги кода

Листинг из файла 1.1

```
import java.util.random.RandomGenerator;
  public class Main {
      public static double[][] w;
      private static void generateRX(short[] s, double[] x) {
          for (int i = 1; i <= 16; i++) {</pre>
               s[16 - i] = (short) i;
          for (int i = 0; i < 11; i++) {</pre>
               x[i] = RandomGenerator.getDefault().nextDouble(-14.0, 11.0);
          }
12
      }
13
14
      private static void calculateW(double[][] w, short[] s, double[] x,
     int i, int j) {
          switch (s[i]) {
               case 15:
17
                   w[i][j] = Math.log10(Math.sqrt(Math.pow((Math.abs(x[j]) +
18
     1) / 2, 2)));
               case 1, 3, 7, 8, 11, 12, 13, 16:
20
                   w[i][j] = Math.pow(((double) 3 / 4 * ((Math.pow((Math.cbrt))))))
21
     (x[j]), 3) / ((double) 1 / 3 + Math.pow(x[j], x[j] + Math.PI)) + 1)),
      3);
                   break;
22
               default:
23
                   w[i][j] = Math.tan(Math.pow(Math.tan(((double) 1 / 2) / x[
24
     j]), Math.pow((double) 2 / 3 * Math.tan(x[j]), 2)));
25
26
27
      private static void printFormatted(double[][] w) {
          for (double[] row : w) {
29
               for (double e : row) {
30
                   System.out.format("%8.4f ", e);
31
32
               System.out.println();
33
          }
34
      }
35
36
      public static void main(String[] args) {
37
          short[] s = new short[16];
38
          double[] x = new double[11];
39
          w = new double[16][11];
40
41
          generateRX(s, x);
42
43
          for (int i = 0; i < 16; i++) {</pre>
```

Листинг 1.1: Исходный код программы

3. Результат работы программы.

3. 1. Первый запуск.

```
0.4219 \ \ 2.1391 \ \ NaN
                      0.4272 \ NaN
                                     NaN
                                            0.4517 \ NaN
                                                           NaN
                                                                   0.5154 NaN
0.4465 \quad 0.0044 \quad 0.5442
                      0.2940 \quad 0.5439
                                     0.2140
                                            0.2207 \quad 0.8667
                                                           0.1828
                                                                  0.1650 \quad 0.5961
0.0000 \quad 0.5157
              NaN
                      1.4478 \ NaN
                                     NaN
                                            0.5003 NaN
                                                           NaN
                                                                   0.0133
                                                                          NaN
0.4219 \ \ 2.1391
              NaN
                      0.4272 \quad NaN
                                     NaN
                                            0.4517 \ NaN
                                                           NaN
                                                                   0.5154 NaN
0.4219 \ \ 2.1391
              NaN
                      0.4272 NaN
                                     NaN
                                            0.4517 \ NaN
                                                           NaN
                                                                  0.5154 NaN
                                            0.5003 \ NaN
                                                                  0.0133 NaN
                      1.4478 \ NaN
0.0000 \quad 0.5157
              NaN
                                     NaN
                                                           NaN
                                            0.5003 \ NaN
                                                                  0.0133 NaN
0.0000 \ 0.5157 \ NaN
                      1.4478 \ NaN
                                     NaN
                                                           NaN
                      0.4272 \quad NaN
                                     NaN
                                            0.4517 NaN
                                                           NaN
0.4219 \ \ 2.1391
              NaN
                                                                  0.5154 NaN
0.4219 \ \ 2.1391
              NaN
                      0.4272 NaN
                                     NaN
                                            0.4517 \ NaN
                                                           NaN
                                                                  0.5154 NaN
0.0000 \quad 0.5157
              NaN
                      1.4478 \ NaN
                                     NaN
                                            0.5003 NaN
                                                           NaN
                                                                  0.0133 NaN
0.0000 \quad 0.5157
              NaN
                      1.4478 NaN
                                     NaN
                                            0.5003 NaN
                                                           NaN
                                                                  0.0133 NaN
0.0000 \quad 0.5157
              NaN
                      1.4478 \ NaN
                                     NaN
                                            0.5003 NaN
                                                           NaN
                                                                   0.0133 NaN
0.4219 \ \ 2.1391
              NaN
                      0.4272 NaN
                                            0.4517 NaN
                                                           NaN
                                                                  0.5154 NaN
                                     NaN
0.0000 \quad 0.5157
              NaN
                      1.4478 \ NaN
                                     NaN
                                            0.5003 NaN
                                                           NaN
                                                                   0.0133 NaN
0.4219 \ 2.1391 \ NaN
                      0.4272 \quad NaN
                                            0.4517 NaN
                                                           NaN
                                                                  0.5154 NaN
                                     NaN
```

3. 2. Второй запуск.

0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN
0.2727	0.8196	0.6911	0.6421	0.2623	0.7320	0.5301	0.4477	0.6763	0.7570	0.2665
1.2042	NaN	0.6068	NaN	NaN	NaN	NaN	NaN	0.1006	NaN	NaN
0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN
0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN
0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN
1.2042	NaN	0.6068	NaN	NaN	NaN	NaN	NaN	0.1006	NaN	NaN
1.2042	NaN	0.6068	NaN	NaN	NaN	NaN	NaN	0.1006	NaN	NaN
0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN
0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN
1.2042	NaN	0.6068	NaN	NaN	NaN	NaN	NaN	0.1006	NaN	NaN
1.2042	NaN	0.6068	NaN	NaN	NaN	NaN	NaN	0.1006	NaN	NaN
1.2042	NaN	0.6068	NaN	NaN	NaN	NaN	NaN	0.1006	NaN	NaN
0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN
1.2042	NaN	0.6068	NaN	NaN	NaN	NaN	NaN	0.1006	NaN	NaN
0.4310	NaN	0.4219	NaN	NaN	NaN	NaN	NaN	0.4219	NaN	NaN

4. Вывод

Во время выполнения лабораторной работы я изучил синтаксис языка Java, встроенную библиотеку Math, научислся работать со средством разработки Java (JDK). Также в процессе выполения я научился рабоать с типами данных, классами, функциями, массивами и циклами. Полученные мною знания являются необходимой базой для дальнейшего изучения языка и разработки уже более комлпексных проектов.

Также во время работы над лабораторной, я научился работать с официальной документацией Oracle по встроенной библиотеке Math[2], а также ознакомился с базовыми командами *NIX[4] и Git[3].

Литература

- [1] Ссылка на личный репозиторий GitHub: https://github.com/pozitp/itmo-labs/tree/main/prog/lab1
- [2] Ссылка на официальную документацию Oracle для JDK 17 по встроенной библиотеке Math: https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Math.html
- [3] Ссылка на официальную документацию Git с базовыми командами для работы с системами конторя версий файлов: https://git-scm.com/docs/giteveryday
- [4] Ссылка на официальную документацию GNU по coreutils (базовые команды *NIX): https://www.gnu.org/software/coreutils/manual/coreutils.html