物理実験

T1 電子天秤による固体の比重および 液体の体膨張係数の測定

(物理実験指導書の概要)

担当者: 一刀 祐一

所属: 基礎教育センター

部屋: 10号館6階2608室

2020年度

内容

- A) 1. 固体の比重
 - 2. ジルコニアボールの比重
- B) 1. 液体の体膨張係数
 - 2. エチルアルコールの体膨張係数

課題

A) 1. 固体の比重

物質のt℃における比重は

M: 物質の質量

*m*₀: 4°Cの純水の質量

で与えられる

物質

┃ 体積は等しい

4°Cの純水

S'の測定によってSを決定する! $(\sigma$ は既知)

A) 2. ジルコニアボールの比重

本実験: 比重瓶と蒸留水を使用して、ジルコニアボールの比重を測定

通る細孔

蒸留水が ジルコニアボール

電子天秤

質量を測る

S'の測定方法

①+②の質量

- ① 比重瓶
- ② ジルコニアボール
- ③ 蒸留水

②と③両方あるいは一方を①に入れて質量を測る

B) 1. 液体の体膨張係数

液体の温度が上昇するとその体積は増大する

$$v_2 = v_1 \{1 + \alpha(t_2 - t_1)\}$$

α: 液体の体膨張係数

 v_1, v_2 : t_1, t_2 °Cにおける液体の 単位質量あたりの体積

 ρ_1, ρ_2 : t_1, t_2 °Cにおける液体の密度 $(v_1\rho_1 = v_2\rho_2)$

膨張する液体の体積

αを求める: 膨張計を使用する

膨張計も膨張する

液体を入れる

$$V_2 = V_1 \{1 + \beta(t_2 - t_1)\}$$

β: 膨張計の体膨張係数

 V_1, V_2 : t_1, t_2 °Cにおける膨張計の容積

膨張計

本実験ではソーダガラス でできているものを使用 (βは既知)

これらの式に基づいて、

膨張計内の液体の質量

$$\alpha = \frac{m_1 - m_2}{m_2(t_2 - t_1)} + \beta$$

 t_1 °C

で与えられる

膨張計から液体 があふれるため

 $m_1 = V_1 \rho_1$

 $m_1 > m_2$

$$m_2 = V_2 \rho_2$$

 t_2 °C

m₁, m₂: 膨張計内の液体の質量

B) 2. エチルアルコールの体膨張係数

本実験: エチルアルコールの体膨張係数を測定

αの測定方法

①エチルアルコール が満たされた膨張計

 t_1 °C

②先端の液面が内側 に入った膨張計

 t_2 °C

課題

- (1) 固体の比重および液体の体膨張係数を説明せよ。
- (2) 以下の実験データAとBを用いて、次ページの※を作成せよ。

試料: ジルコニアボール

実験データA

水温 $t_1 = 21.5^{\circ}$ C 水温 $t_2 = 24.0^{\circ}$ C 平均水温 $t = 22.8^{\circ}$ C

温度tにおける水の比重 $\sigma = 0.9976$

比重瓶の質量 $M_0 = 21.4670$ g

ジルコニアボールを入れた比重瓶の質量 $M_1 = 75.3772$ g

蒸留水とジルコニアボールを入れた比重瓶の質量

 $M_2 = 94.2250$ g

蒸留水を入れた比重瓶の質量 $M_3 = 49.6759g$

試料: エチルアルコール

実験データ B

室温: 25.0℃

膨張計の質量 $M_0 = 6.5349$ g

温度 $t_1 = 25.3$ $^{\circ}$ Cにおいてアルコールを満たした膨張計の質量

 $M_1 = 11.0011$ g

温度 $t_2 = 64.3$ °C においてアルコールを満たした膨張計の質量

 $M_2 = 10.8505$ g

電子天秤による固体の比重および液体の体膨張係数の測定

班番号

遠隔講義用提出用紙(次ページ参照)を用いて、赤枠内の箇所だけを書くこと。

指導書 p. 18 と p. 19 の【実験結果の整理】、p. 20 を参照して、同様に作成すること。

平均水温 t= $=\frac{\delta M_1+\delta M_0}{24}+\frac{(\delta M_1+\delta M_0)+(\delta M_2+\delta M_3)}{(\delta M_1+\delta M_0)+(\delta M_2+\delta M_3)}$ 蒸留水とジルコニアボールを入れた比重瓶の質量 M_2 ジルコニアボールを入れた比重瓶の質量 M_1 = $S = \frac{M}{m} = \frac{(M_1 - M_0)}{(M_1 - M_0) - (M_2 - M_3)}$ 蒸留水を入れた比重瓶の質量 M3 $S = \frac{M}{m_0} = S'\sigma =$ ジルコニアボールの比重 S 試料:ジルコニアボール $\delta S = \frac{\delta S}{S} \cdot S =$ A. 固体の比重の測定 比重瓶の質量 M₀ =

B. 液体の体膨張係数の測定 試料: エチルアルコール 室温: 膨張計の質量 $M_0 =$ 温度 $t_1 =$ においてアルコールを満たした膨張計の質量 $M_1 =$ 温度 $t_2 =$ においてアルコールを満たした膨張計の質量 $M_2 =$ エチルアルコールの体膨張係数 $a = \frac{M_1 - M_2}{(M_2 - M_0)(t_2 - t_1)} + \beta =$ $= \frac{\delta a}{a - \beta} = \frac{\delta M_1 + \delta M_2}{M_1 - M_2} + \frac{\delta M_2 + \delta M_0}{M_2 - M_0} + \frac{\delta t_2 + \delta t_1}{t_2 - t_1} =$ $= \frac{\delta a}{a - \beta} \left(a - \beta \right) (a - \beta) =$ 結果: a =

結果: S=

