

- QhX: A Python package for periodicity detection in red
- ₂ noise
- 3 Andjelka B. Kovačević ^{1*¶}, Dragana Ilić ¹, Momčilo Tošić ^{1*}, Marina
- Pavlović 2, Aman Raju 1, Mladen Nikolić 1, Saša Simić 3, Iva Čvorović
- 5 Hajdinjak ¹ , and Luka Č. Popović ⁴
- 1 University of Belgrade-Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia 2 Mathematical
- Institute of Serbian Academy of Science and Arts, Serbia 3 Faculty of sciences, University of Kragujevac,
- Radoja Domanovića 12, Serbia 4 Astronomical Observatory, Belgrade, Serbia ¶ Corresponding author *
- These authors contributed equally.

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🗗
- Archive ♂

Editor: Ivelina Momcheva 대 🏮

Reviewers:

- @danhey
- @sgeorge91

Submitted: 18 November 2024 **Published:** unpublished

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

QhX is a Python package for detecting periodicity in red noise time series, developed as an in-kind contribution to the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST, Ivezić et al., 2019). Traditional Fourier-based methods often struggle with red noise, which is common in quasar light curves and other accreting objects. QhX addresses these challenges with its core 2D Hybrid method (Kovačević et al., 2018). Input data are mapped into a time-period plane via wavelet transforms, which are (auto)correlated to produce a correlation density map in a "period-period" plane. Statistical vetting incorporates significance, upper and lower error bounds, and the novel Intersection over Union (IoU) metric to evaluate the proximity and overlap of detected periods across bands and objects. In addition to a vetted numerical catalog, QhX dynamically visualizes periodicity across photometric bands and objects.

Statement of need

23

24

26

28

30

37

38

39

41

Figure 1: The left panel shows a 1D light curve with observational data (black error bars) and a model (blue line). QhX transforms the time-series into the time-frequency domain and cross-correlates wavelet matrices to produce a 2D period-period correlation map (right), where clusters indicate periodic signals. After map integration, statistical vetting generates a numerical catalog of flagged periodic objects (bottom left) and a dynamic view of detected periods across objects and bands (bottom right).

Periodic variability spans a range of astronomical objects, from asteroids to quasars. Identifying meaningful signals is complicated by red noise (see, e.g., Figure 1 in Gaia Collaboration et al., 2019; Kasliwal et al., 2015; Kovačević, Radović, et al., 2022), which exhibits fractal-like patterns across time scales (Belete et al., 2018; Vio et al., 1991). Non-stationary signals and unfavorable sampling (Brandt et al., 2018; D'Orazio & Charisi, 2023) further obscure coherent patterns. Traditional time-frequency methods, constrained by the Fourier uncertainty principle (i.e., Gabor limit, Gabor, 1947), often fail with such complex signals, highlighting the need for nonlinear approaches (Abry et al., 1995; Cohen, 1995).

QhX provides features specifically designed to address these challenges. The first feature is its core 2D Hybrid method (see Figure 1), detailed in (Kovačević et al., 2018), inspired by 2D Correlation Spectroscopy (Kovačević, 2024; Noda, 2018). By applying wavelet transforms, QhX maps time-series data into the time-frequency domain and (auto)correlates it, generating a period-period correlation density that enhances signal detection. Secondly, QhX introduces an Intersection over Union (IoU) metric, combined with standard statistical measures (significance, upper and lower error bounds), to evaluate the overlap of detected periods across bands and objects. Each period is represented as the center of an "IoU ball," with its radius reflecting relative error, calculated as the mean of the upper and lower error bounds—analogous to a circular aperture in photometry (Saxena et al., 2024). Thirdly, QhX enhances traditional analysis by generating numerical and interactive visual catalogs that rank periodicity candidates by reliability. These interactive catalogs enable detailed inspection of signal consistency, offering greater interpretability than traditional static plots.

43 QhX structure

Figure 2: Schematic representation of the QhX package architecture.

QhX (Version 0.2.0) is an open-source package optimized for gappy quasar light curves but adaptable to other datasets. It supports both dynamic and fixed modes, with parallel processing capabilities for large-scale data. The modular design facilitates rapid experimentation by enabling easy swapping or modification of functions (see Figure 2), addressing diverse research needs. For fixed-only workflows, specialized functions such as data_manager offer minimal overhead and optimal performance, while data_manager_dynamical supports both dynamic and fixed configurations to handle more complex scenarios involving dynamic filters.

The package is organized as follows:

1. Core:

51

52

55

59

- algorithms module provides essential signal-processing techniques, including the Weighted Wavelet Z-Transform (wwtz) and prototype superlet transforms.
- correlation function within the utils module supports the 2D Hybrid method by converting light curve data into wavelet matrices and performing (auto)correlation, creating correlation density.

2. Signal Detection and Validation:

 detection module identifies candidate periodic signals and assesses their validity using statistical measures (significance and upper and lower error (Johnson et al., 2019)). The Intersection over Union (IoU) metric identifies overlapping periods

63

66

67

69

70

71

72

74

75

77

78

79

81

82

83

87

88

91

100

102

103

104

105

106

107

110

111

112

across bands and objects. To our knowledge, this is the first application of the Intersection-over-Union (IoU) metric to quantify the overlap between detected and reference periods in astronomical time-series analysis.

 Statistical vetting categorizes detected periods for each object and band as reliable, medium, or poor.

3. Data Management:

- QhX assumes input time-series data in a simple tabular format containing time, flux (or magnitude), and associated uncertainties. Examples in the documentation illustrate how to map data from other commonly used formats into this structure.
- data_manager and data_manager_dynamical modules manage data flow, data loading, outlier removal, and format compatibility.
- batch_processor and parallelization_solver modules optimize task distribution across multiple processors.

4. Visualization and Output:

- plots module includes tools for creating interactive visualizations, such as interactive_plot, which allows for exploring detected periodicities across bands and objects. For large datasets, interactive_plot_large_files enables in-depth inspection of signal consistency.
- output and output_parallel modules handle result storage, supporting both single-threaded and parallelized workflows.

5. Testing:

 tests module, containing test_parallel and test_integrated, validates the functionality across various processing setups.

Representative Applications

QhX has been benchmarked with respect to widely used periodicity detection software across multiple domains. In Fatović et al. (2023), applying QhX to SDSS J2320\$+\$0024 yielded a period of $278.36^{+57.34}_{-25.21}$ days, with a significance above 99% measured via the shuffling method, and a 90% significance from the Generalized Extreme Value (GEV) approach. A Lomb-Scargle periodogram applied to the same dataset produced a consistent period of 278-days at the same significance level. In Kovačević et al. (2019),QhX detected periods of 1972 ± 254 ~days (observed light curve) and 1873 ± 250 days (modeled light curve) for PG~1302-102, both within 1σ of the 1884 ± 88 day period reported by Graham et al. (2015) using generalized Lomb-Scargle, wavelet, and autocorrelation methods; a Bayesian reanalysis by Zhu & Thrane (2020) on an extended dataset for PG~1302-102 yielded a comparable quasi-period of 5.6 yr, interpreted as quasiperiodic oscillations. In the case of Mrk 231 (Kovačević, Yi, et al., 2020), the 2D hybrid method identified a characteristic period of 403 days with a significance greater than 99.7%, in agreement with a Lomb-Scargle periodogram result of 413 days at a significance above 95%; the slightly larger uncertainty in the QhX-derived period reflects the temporal variation of the periodicity, while the average oscillation power is comparable between the two methods. The method has also been validated in the context of damped oscillations in the changing-look quasar NGC 3516 (Kovačević, Popović, et al., 2020), where experimental results demonstrated robustness against the combined effects of red noise and complex time-series structure. Beyond astrophysical applications, QhX has been applied to Very Low Frequency (VLF) signal analysis for pre- and post-earthquake intervals (Kovačević, Nina, et al., 2022). In the no-earthquake scenario (same date one year earlier), the topology of QhX 2D hybrid maps exhibited distinct correlation cluster patterns compared to earthquake-day records, with detected periods below 111 s in most intervals and a ~ 140 s signal in the -2 h segment, closely matching a 147 s signal detected during the earthquake event. Comparison with Fast Fourier Transform (FFT) results (Nina et al., 2020) showed strong agreement before the earthquake for periods below 1.5 min, and convergence of both methods to similar values in subsequent intervals. Post-earthquake periods obtained with QhX were also consistent with the < 10s to few-hundred-second range reported in (Ohya et al., 2018). QhX is the LSST

directable software in-kind contribution.

Acknowledgements

Funding was provided by the University of Belgrade - Faculty of Mathematics (the contract 451-03-66/2024-03/200104), Faculty of Sciences University of Kragujevac (451-03-65/2024-03/200122), and Astronomical Observatory Belgrade (contract 451-03-66/2024-03/200002), through grants by the Ministry of Education, Science, and Technological Development of the Republic of Serbia.

References

- Abry, P., Gonçalvès, P., & Flandrin, P. (1995). Wavelets, spectrum analysis and 1/f processes (A. Antoniadis & G. Oppenheim, Eds.; pp. 15–29). Springer New York. https://doi.org/10.1007/978-1-4612-2544-7_2
- Belete, A. B., Bravo, J. P., Canto Martins, B. L., Leão, I. C., De Araujo, J. M., & De Medeiros, J. R. (2018). Multifractality signatures in quasars time series I. 3C 273. 478(3), 3976–3986. https://doi.org/10.1093/mnras/sty1316
- Brandt, W. N., Ni, Q., Yang, G., Anderson, S. F., Assef, R. J., Barth, A. J., Bauer, F. E., Bongiorno, A., Chen, C.-T., De Cicco, D., Gezari, S., Grier, C. J., Hall, P. B., Hoenig, S. F., Lacy, M., Li, J., Luo, B., Paolillo, M., Peterson, B. M., ... Yu, Z. (2018). Active Galaxy Science in the LSST Deep-Drilling Fields: Footprints, Cadence Requirements, and Total-Depth Requirements. arXiv e-Prints, arXiv:1811.06542. https://doi.org/10.48550/arXiv:1811.06542
- ¹³⁴ Cohen, L. (1995). *Time-frequency analysis*. Prentice Hall PTR. ISBN: 9780135945322
- D'Orazio, D. J., & Charisi, M. (2023). Observational Signatures of Supermassive Black Hole Binaries. arXiv e-Prints, arXiv:2310.16896. https://doi.org/10.48550/arXiv.2310.16896
- Fatović, M., Palaversa, L., Tisanić, K., Thanjavur, K., Ivezić, Ž., Kovačević, A. B., Ilić, D., & Č. Popović, L. (2023). Detecting Long-period Variability in the SDSS Stripe 82 Standards Catalog. 165(4), 138. https://doi.org/10.3847/1538-3881/acb596
- Gabor, D. (1947). Acoustical quanta and the theory of hearing. *Nature*, 159(4044), 591-594. https://doi.org/10.1038/159591a0
- Gaia Collaboration, Eyer, L., Rimoldini, L., Audard, M., Anderson, R. I., Nienartowicz, K.,
 Glass, F., Marchal, O., Grenon, M., Mowlavi, N., Holl, B., Clementini, G., Aerts, C., Mazeh,
 T., Evans, D. W., Szabados, L., Brown, A. G. A., Vallenari, A., Prusti, T., ... Zwitter, T.
 (2019). Gaia Data Release 2. Variable stars in the colour-absolute magnitude diagram.

 Astronomy & Astrophysics, 623, A110. https://doi.org/10.1051/0004-6361/201833304
- Graham, M. J., Djorgovski, S. G., Stern, D., Glikman, E., Drake, A. J., Mahabal, A. A., Donalek, C., Larson, S., & Christensen, E. (2015). A possible close supermassive black-hole binary in a quasar with optical periodicity. 518(7537), 74–76. https://doi.org/10.1038/nature14143
- Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., Alonso, D., AlSayyad,
 Y., Anderson, S. F., Andrew, J., Angel, J. R. P., Angeli, G. Z., Ansari, R., Antilogus, P.,
 Araujo, C., Armstrong, R., Arndt, K. T., Astier, P., Aubourg, É., ... Zhan, H. (2019). LSST:
 From Science Drivers to Reference Design and Anticipated Data Products. 873(2), 111.
 https://doi.org/10.3847/1538-4357/ab042c
- Johnson, M. A. C., Gandhi, P., Chapman, A. P., Moreau, L., Charles, P. A., Clarkson, W. I., & Hill, A. B. (2019). Prospecting for periods with LSST low-mass X-ray binaries as a test case. *Monthly Notices of the Royal Astronomical Society*, 484(1), 19–30.

158

- https://doi.org/10.1093/mnras/sty3466
- Kasliwal, V. P., Vogeley, M. S., & Richards, G. T. (2015). Are the variability properties of the
 Kepler AGN light curves consistent with a damped random walk? *Monthly Notices of the* Royal Astronomical Society, 451(4), 4328–4345. https://doi.org/10.1093/mnras/stv1230
- Kovačević, A. B. (2024). Two-dimensional (2D) hybrid method: Expanding 2D correlation spectroscopy (2D-COS) for time series analysis. *Applied Spectroscopy*, 0(0), 00037028241241308. https://doi.org/10.1177/00037028241241308
- Kovačević, A. B., Nina, A., Popović, L. Č., & Radovanović, M. (2022). Two-dimensional
 correlation analysis of periodicity in noisy series: Case of VLF signal amplitude variations
 in the time vicinity of an earthquake. *Mathematics*, 10(22). https://doi.org/10.3390/math10224278
- Kovačević, A. B., Pérez-Hernández, E., Popović, L. Č., Shapovalova, A. I., Kollatschny, W., & Ilić, D. (2018). Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei. 475(2), 2051–2066. https://doi.org/10.1093/mnras/stx3137
- Kovačević, A. B., Popović, L. Č., & Ilić, D. (2020). Two-dimensional correlation analysis of periodicity in active galactic nuclei time series. *Open Astronomy*, 29(1), 51–55. https://doi.org/10.1515/astro-2020-0007
- Kovačević, A. B., Popović, L. Č., Simić, S., & Ilić, D. (2019). The Optical Variability of Supermassive Black Hole Binary Candidate PG 1302-102: Periodicity and Perturbation in the Light Curve. 871(1), 32. https://doi.org/10.3847/1538-4357/aaf731
- Kovačević, A. B., Radović, V., Ilić, D., Popović, L. Č., Assef, R. J., Sánchez-Sáez, P., Nikutta,
 R., Raiteri, C. M., Yoon, I., Homayouni, Y., Li, Y.-R., Caplar, N., Czerny, B., Panda, S.,
 Ricci, C., Jankov, I., Landt, H., Wolf, C., Kovačević-Dojčinović, J., ... Marčeta-Mandić, S.
 (2022). The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping.
 262(2), 49. https://doi.org/10.3847/1538-4365/ac88ce
- Kovačević, A. B., Yi, T., Dai, X., Yang, X., Čvorović-Hajdinjak, I., & Popović, L. Č. (2020).
 Confirmed short periodic variability of subparsec supermassive binary black hole candidate
 Mrk 231. 494(3), 4069–4076. https://doi.org/10.1093/mnras/staa737
- Nina, A., Pulinets, S., Biagi, P. F., Nico, G., Mitrović, S. T., Radovanović, M., & Popović, L. Č. (2020). Variation in natural short-period ionospheric noise, and acoustic and gravity waves revealed by the amplitude analysis of a VLF radio signal on the occasion of the kraljevo earthquake (mw= 5.4). Science of the Total Environment, 710, 136406.
- Noda, I. (2018). Chapter 2 advances in two-dimensional correlation spectroscopy (2DCOS). In J. Laane (Ed.), *Frontiers and advances in molecular spectroscopy* (pp. 47–75). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-811220-5.00002-2
- Ohya, H., Tsuchiya, F., Takishita, Y., Shinagawa, H., Nozaki, K., & Shiokawa, K. (2018).
 Periodic oscillations in the d region ionosphere after the 2011 tohoku earthquake using LF
 standard radio waves. *Journal of Geophysical Research: Space Physics*, 123(6), 5261–5270.
- Saxena, A., Salvato, M., Roster, W., Shirley, R., Buchner, J., Wolf, J., Kohl, C., Starck, H.,
 Dwelly, T., Comparat, J., & al., et. (2024). CIRCLEZ: Reliable photometric redshifts for
 active galactic nuclei computed solely using photometry from Legacy Survey Imaging for
 DESI. 690, A365. https://doi.org/10.1051/0004-6361/202450886
- Vio, R., Cristiani, S., Lessi, O., & Salvadori, L. (1991). 3C 345: Is the Variability of Quasars
 Nonlinear? 380, 351. https://doi.org/10.1086/170594
- Zhu, X.-J., & Thrane, E. (2020). Toward the Unambiguous Identification of Supermassive Binary Black Holes through Bayesian Inference. 900(2), 117. https://doi.org/10.3847/ 1538-4357/abac5a