In [64]: # data analysis and wrangling import pandas as pd import numpy as np import random as rnd # visualization import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline # machine Learning from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeClassifier

In [65]: df = pd.read_csv("players_merged.csv")
 df.head(5)

Out[65]:	sofifa_id		player_url	short_name	long_name	player_positions	٥١
	0	158023	https://sofifa.com/player/158023/lionel- messi/	L. Messi	Lionel Andrés Messi Cuccittini	RW, ST, CF	
	1 188545 https://		https://sofifa.com/player/188545/robert-lewand	R. Lewandowski	Robert Lewandowski	ST	
	2 20801		https://sofifa.com/player/20801/c- ronaldo-dos	Cristiano Ronaldo	Cristiano Ronaldo dos Santos Aveiro	ST, LW	
	3	190871	https://sofifa.com/player/190871/neymar- da-sil	Neymar Jr	Neymar da Silva Santos Júnior	LW, CAM	
	4 192985 https://sofifa.com/		https://sofifa.com/player/192985/kevin- de-bruy	K. De Bruyne	Kevin De Bruyne	CM, CAM	

5 rows × 110 columns

In [66]: df = df[df.columns.drop(list(df.filter(regex='url')))]
df.shape

Out[66]: (19239, 104)

```
In [67]: | df.dtypes
Out[67]: sofifa id
                                int64
                               object
          short name
                               object
          long_name
          player_positions
                               object
          overall
                                int64
          1cb
                               object
          cb
                               object
          rcb
                               object
          rb
                               object
          gk
                               object
          Length: 104, dtype: object
```

Will see what columns have more that 50% missing values so we can drop it

```
In [68]: cols_to_drop = []
for i in df.columns:
    missing = np.abs((df[i].count() - df[i].shape[0])/df[i].shape[0] * 100)
    if missing > 50:
        print('{} - {}%'.format(i, round(missing)))
        cols_to_drop.append(i)

club_loaned_from - 94%
    nation_team_id - 96%
    nation_position - 96%
    nation_jersey_number - 96%
    player_tags - 93%
    player_traits - 51%
    goalkeeping_speed - 89%
```

Columns that we might drop:

```
club_loaned_from,nation_team_id,nation_position,nation_jersey_number,player_tags,player_trait:

df.drop(columns=cols_to_drop,inplace=True)
print(df.shape)

(19239, 97)

In [70]: df.rename(columns={'skill_moves':'skills'},inplace=True)
```

```
In [71]: filter = ['sofifa_id','skill_','movement_','defending_','goalkeeping_','attack
          for i in filter:
               df = df[df.columns.drop(list(df.filter(regex=i)))]
          df.shape
Out[71]: (19239, 62)
In [72]: |df.columns
Out[72]: Index(['short_name', 'long_name', 'player_positions', 'overall', 'potential',
                   'value_eur', 'wage_eur', 'age', 'dob', 'height_cm', 'weight_kg',
                   'club_team_id', 'club_name', 'league_name', 'league_level',
                   'club_position', 'club_jersey_number', 'club_joined',
                   'club_contract_valid_until', 'nationality_id', 'nationality_name',
                   'preferred_foot', 'weak_foot', 'skills', 'international_reputation',
                   'work_rate', 'body_type', 'real_face', 'release_clause_eur', 'pace',
                   'shooting', 'passing', 'dribbling', 'defending', 'physic', 'ls', 'st', 'rs', 'lw', 'lf', 'cf', 'rf', 'rw', 'lam', 'cam', 'ram', 'lm', 'lcm', 'cm', 'rcm', 'rm', 'lwb', 'ldm', 'cdm', 'rdm', 'rwb', 'lb', 'lcb', 'c
           b',
                   'rcb', 'rb', 'gk'],
                  dtype='object')
In [73]: df1 = df[['short_name', 'age', 'height_cm', 'weight_kg', 'nationality_name', 'club_
                       'value_eur','wage_eur','player_positions','preferred_foot','internat
                      'skills', 'work_rate', 'pace', 'shooting', 'passing', 'dribbling',
```

In [74]: df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19239 entries, 0 to 19238
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	short_name	19239 non-null	object
1	age	19239 non-null	int64
2	height_cm	19239 non-null	int64
3	weight_kg	19239 non-null	int64
4	nationality_name	19239 non-null	object
5	club_name	19178 non-null	object
6	overall	19239 non-null	int64
7	potential	19239 non-null	int64
8	league_name	19178 non-null	object
9	league_level	19178 non-null	float64
10	value_eur	19165 non-null	float64
11	wage_eur	19178 non-null	float64
12	player_positions	19239 non-null	object
13	preferred_foot	19239 non-null	object
14	<pre>international_reputation</pre>	19239 non-null	int64
15	skills	19239 non-null	int64
16	work_rate	19239 non-null	object
17	pace	17107 non-null	float64
18	shooting	17107 non-null	float64
19	passing	17107 non-null	float64
20	dribbling	17107 non-null	float64
21	defending	17107 non-null	float64
22	physic	17107 non-null	float64
dtvp	es: float64(9), int64(7),	object(7)	

dtypes: float64(9), int64(7), object(7)

memory usage: 3.4+ MB

```
In [75]: df1.isnull().sum()
Out[75]: short_name
                                           0
                                           0
          age
                                           0
          height_cm
          weight_kg
                                           0
                                           0
          nationality_name
          club_name
                                          61
          overall
                                           0
                                           0
          potential
          league_name
                                          61
                                          61
          league_level
          value_eur
                                          74
                                          61
         wage_eur
                                           0
          player_positions
          preferred_foot
                                           0
                                           0
          international_reputation
          skills
                                           0
                                           0
         work_rate
                                        2132
          pace
          shooting
                                        2132
                                        2132
          passing
          dribbling
                                        2132
          defending
                                        2132
          physic
                                        2132
          dtype: int64
```

Exploratory data analysis

```
In [76]:
         player_positions = df1['player_positions'].value_counts().head(20)
         player_positions
Out[76]: CB
                     2423
         GΚ
                     2132
          ST
                     1770
                      953
          CDM, CM
          CM
                      726
          CM, CDM
                      687
          LB
                      616
          RB
                      576
                       295
          CB, RB
          CDM
                      294
          CAM, CM
                      249
         CB, LB
                      232
         CAM
                      219
          LB, LM
                      206
                      206
          LM
          CM, CAM
                      203
          CB, CDM
                      202
                      196
          RM, LM
          RM
                      196
          LM, RM
                      168
         Name: player_positions, dtype: int64
```

```
In [77]: plt.figure(figsize=(10, 6))
    sns.barplot(x=player_positions.index, y=player_positions.values,palette="plasm")
    plt.title('Most Common Player Positions')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [78]: plt.figure(figsize=(10, 6))
    plt.hist(x=df1.wage_eur,bins=10)

plt.xticks(rotation=45)
    plt.show()
```



```
In [79]: country_players = df1['nationality_name'].value_counts().head(10)
country_players
```

Out[79]:	England	1719
	Germany	1214
	Spain	1086
	France	980
	Argentina	960
	Brazil	897
	Japan	546
	Netherlands	439
	United States	413
	Poland	403

Name: nationality_name, dtype: int64

In [80]: plt.figure(figsize=(8, 6))
 sns.barplot(x=country_players.index, y=country_players.values,palette="plasma"
 plt.title('Number Players per country')
 plt.xticks(rotation=45)
 plt.show()


```
In [81]: hg_skills = df1[df1.skills == 5]
         hg_skills['nationality_name'].value_counts()
Out[81]: Brazil
                                 12
         Portugal
                                  6
         France
                                  6
         Argentina
                                  6
                                  2
         England
         Morocco
                                  2
                                  2
         Colombia
                                  2
         Congo DR
                                  1
         Ukraine
         Republic of Ireland
                                  1
         Thailand
                                  1
         Gambia
                                  1
         Romania
                                  1
         Germany
                                  1
         Switzerland
                                  1
         Mexico
                                  1
                                  1
         Norway
         Côte d'Ivoire
                                  1
         Slovenia
                                  1
         Sweden
                                  1
         Netherlands
                                  1
                                  1
         Algeria
                                  1
         Spain
         Scotland
                                  1
         Name: nationality_name, dtype: int64
 In [ ]: Relationship between skills and Wages
```

```
In [82]: #Relationship between skills and Wages

fig, ax = plt.subplots(figsize=(8,5))
  plt.scatter(data = df1, x= 'skills', y='wage_eur')
  plt.xlabel("skills")
  plt.ylabel("Wage in EUR")
  plt.title("skill_moves & wages in EUR", fontsize = 16)
  plt.show()
```


Relationship between international_reputation and wages

```
In [83]: #Relationship between international_reputation and wages

fig, ax = plt.subplots(figsize=(8,5))
  plt.scatter(data = df1, x= 'international_reputation', y='wage_eur')
  plt.xlabel("International Reputation")
  plt.ylabel("Wage in EUR")
  plt.title("reputation & wages in EUR", fontsize = 16)
  plt.show()
```


Relationship between potential and wages

```
In [84]: #Relationship between potential and wages

fig, ax = plt.subplots(figsize=(8,5))
   plt.scatter(data = df1, x= 'potential', y='wage_eur')
   plt.xlabel("Potential")
   plt.ylabel("Wage in EUR")
   plt.title("potential & wages in EUR", fontsize = 16)
   plt.show()
```


Relationship between overall and wages

```
In []: #Relationship between overall and wages

fig, ax = plt.subplots(figsize=(8,5))
plt.scatter(data = df, x= 'overall', y='wage_eur')
plt.xlabel("Overall")
plt.ylabel("Wage in EUR")
plt.title("overall & wages in EUR", fontsize = 16)
plt.show()
```

Relationship between age and wages

In [85]: #Relationship between age and wages fig, ax = plt.subplots(figsize=(8,5)) plt.scatter(data = df, x= 'age', y='wage_eur') plt.xlabel("Age") plt.ylabel("Wage in EUR") plt.title("age & wages in EUR", fontsize = 16) plt.show()


```
In [86]: df1.columns
Out[86]: Index(['short_name', 'age', 'height_cm', 'weight_kg', 'nationality_name',
```

```
In [87]: df_x = df[['shooting','defending','passing','dribbling','pace','wage_eur','pot
         plt.figure(figsize=(9, 9))
         plt.subplots_adjust(left=0.1,
                             bottom=0.1,
                             right=0.9,
                             top=0.9,
                             wspace=0.4,
                             hspace=0.4)
         width = 3
         height = 3
         index = 1
         for i in df_x.columns:
             plt.subplot(height, width, index)
             plt.scatter(x=df['physic'],y=df_x[i])
             plt.xlabel('physic')
             plt.ylabel(i)
             plt.xticks(rotation=45)
             index = index + 1
```


Age distribution

```
In [88]: plt.figure(figsize=(8, 6))
    sns.barplot(x=df1.age.value_counts().index, y=df1.age.value_counts().values,pa
    plt.xticks(fontsize=15, rotation=90)
    plt.yticks(fontsize=15)
    plt.title('Age Distribution')
    plt.show()
```


Overall score of the players

```
In [89]: # Overall score of the players
df1.sort_values(by='overall',ascending=False)[["short_name","overall","age"]].
```

Out[89]:

	short_name	overall	age
0	L. Messi	93	34
1	R. Lewandowski	92	32
2	Cristiano Ronaldo	91	36
3	Neymar Jr	91	29
4	K. De Bruyne	91	30
5	J. Oblak	91	28
6	K. Mbappé	91	22
7	M. Neuer	90	35
8	M. ter Stegen	90	29
9	H. Kane	90	27
10	N. Kanté	90	30
16	S. Mané	89	29
21	G. Donnarumma	89	22
20	Alisson	89	28
18	Ederson	89	27
17	M. Salah	89	29
19	J. Kimmich	89	26
15	V. van Dijk	89	29
11	K. Benzema	89	33
13	H. Son	89	28

L. Messi, R. Lewandowski, Cristiano Ronaldo, Neymar Jr, K. De Bruyne, J. Oblak and K. Mbappé has highest overall score than the rest of the players.

Overall score of the players

```
In [90]: # Overall score of the players

#We filter players under or 25
young_players = df1[df1['age'] <= 25]

sorted_players = young_players.sort_values(by='potential', ascending=False)

potential = sorted_players[['short_name', 'potential', 'age']].head(20)

potential</pre>
```

Out[90]:

	short_name	potential	age
6	K. Mbappé	95	22
29	E. Haaland	93	20
21	G. Donnarumma	93	22
43	F. de Jong	92	24
44	T. Alexander-Arnold	92	22
138	K. Havertz	92	22
139	P. Foden	92	21
198	João Félix	91	21
195	F. Chiesa	91	23
387	Pedri	91	18
46	Rúben Dias	91	24
45	J. Sancho	91	21
280	Ferran Torres	90	21
261	D. Upamecano	90	22
854	R. Gravenberch	90	19
1459	Ansu Fati	90	18
137	T. Hernández	90	23
499	Vinícius Jr.	90	20
96	M. de Ligt	90	21
127	M. Maignan	89	25

K.Mbappé, E.Haaland, G. Donnarumma, G. Donnarumma and T. Alexander-Arnold are the players unders or 25 with the highest potential

In [91]: top_players = df1.sort_values(by='overall',ascending=False).head(30)
top_players

Out	- г	a	1 1	١,
ou	чı	J	т I	

.±[04].										
ut[91]:		short_name	age	height_cm	weight_kg	nationality_name		overall	potential	
	0	L. Messi	34	170	72	Argentina	Paris Saint- Germain	93	93	F
	1	R. Lewandowski	32	185	81	Poland	FC Bayern München	92	92	
	2	Cristiano Ronaldo	36	187	83	Portugal	Manchester United	91	91	
	3	Neymar Jr	29	175	68	Brazil	Paris Saint- Germain	91	91	F
	4	K. De Bruyne	30	181	70	Belgium	Manchester City	91	91	
	5	J. Oblak	28	188	87	Slovenia	Atlético de Madrid	91	93	Sp
	6	K. Mbappé	22	182	73	France	Paris Saint- Germain	91	95	F
	7	M. Neuer	35	193	93	Germany	FC Bayern München	90	90	
	8	M. ter Stegen	29	187	85	Germany	FC Barcelona	90	92	Sp
	9	H. Kane	27	188	89	England	Tottenham Hotspur	90	90	
	10	N. Kanté	30	168	70	France	Chelsea	90	90	
	16	S. Mané	29	175	69	Senegal	Liverpool	89	89	
	21	G. Donnarumma	22	196	90	Italy	Paris Saint- Germain	89	93	F
	20	Alisson	28	191	91	Brazil	Liverpool	89	90	
	18	Ederson	27	188	86	Brazil	Manchester City	89	91	
	17	M. Salah	29	175	71	Egypt	Liverpool	89	89	
	19	J. Kimmich	26	177	75	Germany	FC Bayern München	89	90	
	15	V. van Dijk	29	193	92	Netherlands	Liverpool	89	89	
	11	K. Benzema	33	185	81	France	Real Madrid CF	89	89	Sp
	13	H. Son	28	183	78	Korea Republic	Tottenham Hotspur	89	89	

	short_name	age	height_cm	weight_kg	nationality_name	club_name	overall	potential	lea
12	T. Courtois	29	199	96	Belgium	Real Madrid CF	89	91	Sp
14	Casemiro	29	185	84	Brazil	Real Madrid CF	89	89	Sp
26	K. Navas	34	185	80	Costa Rica	Paris Saint- Germain	88	88	F
29	E. Haaland	20	194	94	Norway	Borussia Dortmund	88	93	
28	Bruno Fernandes	26	179	69	Portugal	Manchester United	88	89	
27	R. Sterling	26	170	69	England	Manchester City	88	89	
25	R. Lukaku	28	191	94	Belgium	Chelsea	88	88	
24	T. Kroos	31	183	76	Germany	Real Madrid CF	88	88	Sp
23	L. Suárez	34	182	83	Uruguay	Atlético de Madrid	88	88	Sp
22	Sergio Ramos	35	184	82	Spain	Paris Saint- Germain	88	88	F

30 rows × 23 columns

Age distribution of top players

```
In [92]: plt.figure(figsize=(8, 6))
    sns.barplot(x=top_players.age.value_counts().index, y=top_players.age.value_co
    plt.xticks(fontsize=15, rotation=90)
    plt.yticks(fontsize=15)
    plt.title('Age Distribution')
    plt.show()
```



```
In [93]: print("Top 30 players")
x = ['overall','potential','skills','wage_eur','pace','physic']
for i in x:
    print("Mean {} : {}".format(i,top_players[i].mean()))
```

Top 30 players

```
In [94]:
          plt.figure(figsize=(15,15))
          x = ['overall','potential','wage_eur','pace','physic','skills']
          plt.subplots_adjust(left=0.1,
                                bottom=0.1,
                                right=0.9,
                                top=0.9,
                                wspace=0.4,
                                hspace=0.4)
          width = 3
          height = 4
          index = 1
          for i in x:
              plt.subplot(height, width, index)
              sns.histplot(x=top_players[i], kde=True)
              plt.xlabel(i)
              plt.xticks(rotation=45)
               index = index + 1
                                          12
            10
                                          10
                                         Count
                                           6
             4
             2
                                           2
             0
                                           0
                                                                                     25000
                                             of
              of
                                                  90
                                                     potential
                                           6
             5
                                          4 Count
             2
                                                                         2
                                           1
```

Data Preprocesing

After seeing that we have a lot of unique player_positions if a player has 'RW, ST, CF' we are gonna assum that the player position is 'RW'

As we can see, the columnn league_level will be used instead of league_name and club_name

```
In [96]: df1 = df1.drop(columns=['nationality_name','club_name','league_name','short_na
In [97]: df1[df1.league level == 1].head(5)
Out[97]:
                   height_cm weight_kg overall potential league_level
                                                                         value_eur
                                                                                   wage_eur player_po
           0
               34
                         170
                                     72
                                             93
                                                      93
                                                                  1.0
                                                                        78000000.0
                                                                                    320000.0
               32
                         185
                                     81
                                             92
                                                      92
                                                                  1.0
                                                                      119500000.0
                                                                                    270000.0
                                             91
               36
                         187
                                     83
                                                      91
                                                                  1.0
                                                                        45000000.0
                                                                                    270000.0
           2
               29
                         175
                                     68
                                             91
                                                      91
                                                                  1.0
                                                                      129000000.0
                                                                                    270000.0
               30
                                     70
                                                                      125500000.0
                                                                                    350000.0
                         181
                                             91
                                                      91
```

In [98]: df1.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 19239 entries, 0 to 19238 Data columns (total 19 columns): # Column Non-Null Count Dtype ------------0 age 19239 non-null int64 height cm 19239 non-null int64 1 2 19239 non-null int64 weight_kg 3 overall 19239 non-null int64 19239 non-null int64 4 potential 5 league_level 19178 non-null float64 6 value eur 19165 non-null float64 7 wage eur 19178 non-null float64 8 player_positions 19239 non-null object 9 preferred foot 19239 non-null object 10 international_reputation 19239 non-null int64 11 skills 19239 non-null int64 12 work rate 19239 non-null object 17107 non-null float64 13 pace 14 shooting 17107 non-null float64 15 passing 17107 non-null float64 dribbling 17107 non-null float64 16 17 defending 17107 non-null float64 18 physic 17107 non-null float64 dtypes: float64(9), int64(7), object(3) memory usage: 2.8+ MB In [100]: missing_percentage = (df1.isnull().sum() / len(df1)) * 100 print(missing_percentage) 0.000000 age height_cm 0.000000 weight kg 0.000000 overall 0.000000 potential 0.000000 league level 0.317064 value_eur 0.384635 wage_eur 0.317064 player positions 0.000000 preferred foot 0.000000 international_reputation 0.000000 skills 0.000000 work_rate 0.000000 pace 11.081657 shooting 11.081657

11.081657

11.081657

11.081657

11.081657

passing

physic

dribbling

defending

dtype: float64

We are gonna preprocess the preffered_foot using one-hot encoder

```
In [101]: | from sklearn.preprocessing import OneHotEncoder
          encoder = OneHotEncoder(sparse=False)
          encoded_data = encoder.fit_transform(df1[['preferred_foot']])
          encoded_df = pd.DataFrame(encoded_data, columns=encoder.categories_[0])
          data_encoded = pd.concat([df1, encoded_df], axis=1)
          data_encoded
```

Λ.	4	Г17	01]	Ι.
υı	a c	L L	עע	Ι,
		_	-	

	age	height_cm	weight_kg	overall	potential	league_level	value_eur	wage_eur	playe
0	34	170	72	93	93	1.0	78000000.0	320000.0	
1	32	185	81	92	92	1.0	119500000.0	270000.0	
2	36	187	83	91	91	1.0	45000000.0	270000.0	
3	29	175	68	91	91	1.0	129000000.0	270000.0	
4	30	181	70	91	91	1.0	125500000.0	350000.0	
19234	22	180	64	47	52	1.0	70000.0	1000.0	
19235	19	175	70	47	59	1.0	110000.0	500.0	
19236	21	178	72	47	55	1.0	100000.0	500.0	
19237	19	173	66	47	60	1.0	110000.0	500.0	
19238	19	167	61	47	60	1.0	110000.0	500.0	
19239 rows × 21 columns									

We are gonna use label encoder for work_rate and player_positions label_encoder

```
In [102]:
          from sklearn.preprocessing import LabelEncoder
          le = LabelEncoder()
          for i in data_encoded.select_dtypes(['object']):
              data_encoded[i] = le.fit_transform(data_encoded[i])
```

```
In [103]: data_encoded.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 19239 entries, 0 to 19238
          Data columns (total 21 columns):
               Column
                                          Non-Null Count Dtype
               ----
                                           -----
                                          19239 non-null int64
               age
                                           19239 non-null int64
           1
               height cm
              weight_Kg
overall
potential
league_level
value_eur
player_positions
preferred_foot
international results:
            2
            3
           6
           7
           9
           10 international_reputation 19239 non-null int64
           11 skills
                                          19239 non-null int64
           12 work rate
                                          19239 non-null int64
                                          17107 non-null float64
           13 pace
           14 shooting
                                          17107 non-null float64
           15 passing
                                          17107 non-null float64
                                          17107 non-null float64
           16 dribbling
           17 defending
                                          17107 non-null float64
           18 physic
                                          17107 non-null float64
           19 Left
                                           19239 non-null float64
           20 Right
                                           19239 non-null float64
          dtypes: float64(11), int64(10)
          memory usage: 3.1 MB
```

We will use KNNImputer to impute the missing values in our dataset

```
In [104]: from sklearn.impute import KNNImputer
    from sklearn.metrics import mean_squared_error, mean_absolute_error

    columns_with_missing_values = data_encoded.columns[data_encoded.isnull().any()
    columns_with_missing_values

    df_imputed = data_encoded.copy()

    imputation_data = df_imputed[columns_with_missing_values].copy()

    imputer = KNNImputer(n_neighbors=6)

    imputed_data = imputer.fit_transform(imputation_data)

    df_imputed[columns_with_missing_values] = imputed_data
```

```
In [105]:
          missing_percentage = (df_imputed.isnull().sum() / len(df_imputed)) * 100
          print(missing percentage)
                                       0.0
          age
                                       0.0
          height_cm
          weight_kg
                                       0.0
          overall
                                       0.0
          potential
                                       0.0
          league_level
                                       0.0
                                       0.0
          value_eur
          wage_eur
                                       0.0
          player_positions
                                       0.0
          preferred_foot
                                       0.0
          international_reputation
                                       0.0
                                       0.0
          skills
          work_rate
                                       0.0
                                       0.0
          pace
          shooting
                                       0.0
          passing
                                       0.0
          dribbling
                                       0.0
          defending
                                       0.0
                                       0.0
          physic
          Left
                                       0.0
          Right
                                       0.0
          dtype: float64
```

In []: We are gonna convert the float columns (value_eur, wage_eur, league_level, pace, s

O +	[100]	
$()$ 11 \pm	11061	•
out	1 100	

	age	height_cm	weight_kg	overall	potential	league_level	value_eur	wage_eur	player_
(34	170	72	93	93	1	78000000	320000	
1	32	185	81	92	92	1	119500000	270000	
2	36	187	83	91	91	1	45000000	270000	
3	29	175	68	91	91	1	129000000	270000	
4	30	181	70	91	91	1	125500000	350000	
19234	22	180	64	47	52	1	70000	1000	
19235	19	175	70	47	59	1	110000	500	
19236	21	178	72	47	55	1	100000	500	
19237	19	173	66	47	60	1	110000	500	
19238	19	167	61	47	60	1	110000	500	

19239 rows × 21 columns

We use a heatmap to see the correlations between features

```
In [107]: plt.figure(figsize=(18,10))
sns.heatmap(df_imputed.corr())
```

Out[107]: <Axes: >

Prediction using Linear Regression

```
In [110]: from sklearn.feature_selection import RFECV
          from sklearn.linear model import LinearRegression
          from sklearn.model_selection import cross_val_score
          from sklearn.metrics import mean_squared_error
          from sklearn.model selection import train test split
          from sklearn.preprocessing import StandardScaler
          from sklearn.linear_model import LinearRegression
          from sklearn.pipeline import Pipeline
          from sklearn.metrics import mean_squared_error, r2_score
          X = df imputed.drop(columns=['overall','potential'])
          y = df imputed['overall']
          model = LinearRegression()
          rfecv = RFECV(estimator=model, scoring='neg_mean_squared_error')
          X_selected = rfecv.fit_transform(X, y)
          print('Optimal number of features: {}'.format(rfecv.n features ))
          selected_features = X.columns[rfecv.support_]
          print('Selected features:')
          print(selected features)
          from sklearn.model selection import train test split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
          pipeline = Pipeline([
              ('standardscaler', StandardScaler()),
              ('linearregression', LinearRegression())
          1)
          pipeline.fit(X_train, y_train)
          y_pred_test = pipeline.predict(X_test)
          mse_test = mean_squared_error(y_test, y_pred_test)
          rmse test = np.sqrt(mse test)
          r2_test = r2_score(y_test, y_pred_test)
          print('MSE test:', mse_test)
          print('RMSE test:', rmse_test)
          print('R-squared test:', r2_test)
          print('----')
          y pred = pipeline.predict(X)
          mse = mean_squared_error(y, y_pred)
          rmse = np.sqrt(mse)
          r2 = r2_score(y, y_pred)
          print('MSE all:', mse)
          print('RMSE all:', rmse)
          print('R-squared all:', r2)
```

Prediction using RandomForestRegressor

R-squared all: 0.8133146922165225

```
In [111]: | from sklearn.ensemble import RandomForestRegressor
          from sklearn.metrics import mean squared error, r2 score
         rf = RandomForestRegressor(random state=42)
         rf.fit(X_train, y_train)
         y_pred_test_rfg = rf.predict(X_test)
         mse_test = mean_squared_error(y_test, y_pred_test_rfg)
         rmse_test = np.sqrt(mse_test)
         r2_test = r2_score(y_test, y_pred_test_rfg)
         y_pred_rfg = rf.predict(X)
         mse_all = mean_squared_error(y, y_pred_rfg)
          rmse_all = np.sqrt(mse_all)
          r2_all = r2_score(y, y_pred_rfg)
          print("MSE test:", mse_test)
          print("RMSE test:", rmse_test)
          print("R-squared test:", r2_test)
          print("----")
          print("MSE all:", mse_all)
          print("RMSE all:", rmse all)
          print("R-squared all:", r2_all)
         MSE test: 0.4396269230769232
```

R-squared all: 0.9970671767063621

Prediction using XGB

```
In [112]: | from xgboost import XGBRegressor
          from sklearn.metrics import mean squared error, r2 score
          import numpy as np
          # Initialize XGBoost Regressor
          xgb = XGBRegressor(random_state=42)
          # Fit the model on the training data
          xgb.fit(X_train, y_train)
          # Predictions on the test set
          y_pred_test_xgb = xgb.predict(X_test)
          # Evaluate on the test set
          mse_test_xgb = mean_squared_error(y_test, y_pred_test_xgb)
          rmse_test_xgb = np.sqrt(mse_test_xgb)
          r2_test_xgb = r2_score(y_test, y_pred_test_xgb)
          # Predictions on the entire dataset
          y pred all xgb = xgb.predict(X)
          # Evaluate on the entire dataset
          mse_all_xgb = mean_squared_error(y, y_pred_all_xgb)
          rmse_all_xgb = np.sqrt(mse_all_xgb)
          r2_all_xgb = r2_score(y, y_pred_all_xgb)
          # Display results
          print("XGBRegressor Results:")
          print("MSE test:", mse_test_xgb)
          print("RMSE test:", rmse_test_xgb)
          print("R-squared test:", r2_test_xgb)
          print("----")
          print("MSE all:", mse_all_xgb)
          print("RMSE all:", rmse_all_xgb)
          print("R-squared all:", r2_all_xgb)
          XGBRegressor Results:
          MSE test: 0.3956294334926051
          RMSE test: 0.6289908055708009
```


Prediction using LGBM

```
In [113]: from lightgbm import LGBMRegressor
          from sklearn.metrics import mean squared error, r2 score
          import numpy as np
          # Initialize LightGBM Regressor
          lgbm = LGBMRegressor(random state=42)
          # Fit the model on the training data
          lgbm.fit(X_train, y_train)
          # Predictions on the test set
          y pred test lgbm = lgbm.predict(X test)
          # Evaluate on the test set
          mse_test_lgbm = mean_squared_error(y_test, y_pred_test_lgbm)
          rmse_test_lgbm = np.sqrt(mse_test_lgbm)
          r2_test_lgbm = r2_score(y_test, y_pred_test_lgbm)
          # Predictions on the entire dataset
          y pred all lgbm = lgbm.predict(X)
          # Evaluate on the entire dataset
          mse_all_lgbm = mean_squared_error(y, y_pred_all_lgbm)
          rmse all lgbm = np.sqrt(mse all lgbm)
          r2_all_lgbm = r2_score(y, y_pred_all_lgbm)
          # Display results
          print("LGBMRegressor Results:")
          print("MSE test:", mse_test_lgbm)
          print("RMSE test:", rmse_test_lgbm)
          print("R-squared test:", r2_test_lgbm)
          print("-----")
          print("MSE all:", mse_all_lgbm)
          print("RMSE all:", rmse_all_lgbm)
          print("R-squared all:", r2_all_lgbm)
          [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of tes
          ting was 0.001945 seconds.
          You can set `force_row_wise=true` to remove the overhead.
          And if memory is not enough, you can set `force_col_wise=true`.
          [LightGBM] [Info] Total Bins 945
          [LightGBM] [Info] Number of data points in the train set: 15391, number of us
          ed features: 19
          [LightGBM] [Info] Start training from score 65.769866
          LGBMRegressor Results:
          MSE test: 0.39596329646162387
          RMSE test: 0.6292561453507021
          R-squared test: 0.9915389072936656
          _____
          MSE all: 0.3188726297322115
          RMSE all: 0.5646880818046468
          R-squared all: 0.99326350930417
```

Prediction using CATBOOST

Installing collected packages: catboost
Successfully installed catboost-1.2.2

```
In [115]:
          pip install catboost
          Collecting catboost
            Downloading catboost-1.2.2-cp310-cp310-manylinux2014 x86 64.whl (98.7 MB)
                                                      - 98.7/98.7 MB 2.9 MB/s eta 0:00:
          00
          Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-pac
          kages (from catboost) (0.20.1)
          Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-p
          ackages (from catboost) (3.7.1)
          Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.10/dis
          t-packages (from catboost) (1.23.5)
          Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.10/dist
          -packages (from catboost) (1.5.3)
          Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packag
          es (from catboost) (1.11.4)
          Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packa
          ges (from catboost) (5.15.0)
          Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages
          (from catboost) (1.16.0)
          Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/pytho
          n3.10/dist-packages (from pandas>=0.24->catboost) (2.8.2)
          Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist
          -packages (from pandas>=0.24->catboost) (2023.3.post1)
          Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/
          dist-packages (from matplotlib->catboost) (1.2.0)
          Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist
          -packages (from matplotlib->catboost) (0.12.1)
          Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.1
          0/dist-packages (from matplotlib->catboost) (4.47.0)
          Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.1
          0/dist-packages (from matplotlib->catboost) (1.4.5)
          Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/d
          ist-packages (from matplotlib->catboost) (23.2)
          Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dis
          t-packages (from matplotlib->catboost) (9.4.0)
          Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/
          dist-packages (from matplotlib->catboost) (3.1.1)
          Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/d
          ist-packages (from plotly->catboost) (8.2.3)
```

```
In [116]: | from catboost import CatBoostRegressor
          from sklearn.metrics import mean squared error, r2 score
          import numpy as np
          # Initialize CatBoost Regressor
          catboost = CatBoostRegressor(random_state=42, verbose=0)
          # Fit the model on the training data
          catboost.fit(X_train, y_train)
          # Predictions on the test set
          y_pred_test_catboost = catboost.predict(X_test)
          # Evaluate on the test set
          mse_test_catboost = mean_squared_error(y_test, y_pred_test_catboost)
          rmse_test_catboost = np.sqrt(mse_test_catboost)
          r2_test_catboost = r2_score(y_test, y_pred_test_catboost)
          # Predictions on the entire dataset
          y pred all catboost = catboost.predict(X)
          # Evaluate on the entire dataset
          mse_all_catboost = mean_squared_error(y, y_pred_all_catboost)
          rmse_all_catboost = np.sqrt(mse_all_catboost)
          r2_all_catboost = r2_score(y, y_pred_all_catboost)
          # Display results
          print("CatBoostRegressor Results:")
          print("MSE test:", mse_test_catboost)
          print("RMSE test:", rmse_test_catboost)
          print("R-squared test:", r2_test_catboost)
          print("----")
          print("MSE all:", mse_all_catboost)
          print("RMSE all:", rmse_all_catboost)
          print("R-squared all:", r2_all_catboost)
          CatBoostRegressor Results:
          MSE test: 0.3625970049295879
          RMSE test: 0.6021602817602535
```

Prediction using SVR

```
In [117]: from sklearn.svm import SVR
          from sklearn.metrics import mean squared error, r2 score
          import numpy as np
          # Initialize SVR
          svr = SVR()
          # Fit the model on the training data
          svr.fit(X_train, y_train)
          # Predictions on the test set
          y pred test svr = svr.predict(X test)
          # Evaluate on the test set
          mse_test_svr = mean_squared_error(y_test, y_pred_test_svr)
          rmse_test_svr = np.sqrt(mse_test_svr)
          r2_test_svr = r2_score(y_test, y_pred_test_svr)
          # Predictions on the entire dataset
          y pred all svr = svr.predict(X)
          # Evaluate on the entire dataset
          mse_all_svr = mean_squared_error(y, y_pred_all_svr)
          rmse_all_svr = np.sqrt(mse_all_svr)
          r2_all_svr = r2_score(y, y_pred_all_svr)
          # Display results
          print("SVR Results:")
          print("MSE test:", mse_test_svr)
          print("RMSE test:", rmse_test_svr)
          print("R-squared test:", r2_test_svr)
          print("----")
          print("MSE all:", mse_all_svr)
          print("RMSE all:", rmse_all_svr)
          print("R-squared all:", r2_all_svr)
          SVR Results:
          MSE test: 11.607485820255496
          RMSE test: 3.4069760521987082
          R-squared test: 0.7519668754900297
          MSE all: 11.612430620465847
          RMSE all: 3.407701662479544
```

Prediction using KNR

R-squared all: 0.754676245194092

```
In [118]: | from sklearn.neighbors import KNeighborsRegressor
          from sklearn.metrics import mean squared error, r2 score
          import numpy as np
          # Initialize KNeighborsRegressor
          knn = KNeighborsRegressor()
          # Fit the model on the training data
          knn.fit(X_train, y_train)
         # Predictions on the test set
         y_pred_test_knn = knn.predict(X_test)
          # Evaluate on the test set
         mse_test_knn = mean_squared_error(y_test, y_pred_test_knn)
          rmse_test_knn = np.sqrt(mse_test_knn)
          r2_test_knn = r2_score(y_test, y_pred_test_knn)
          # Predictions on the entire dataset
         y pred all knn = knn.predict(X)
          # Evaluate on the entire dataset
          mse_all_knn = mean_squared_error(y, y_pred_all_knn)
          rmse_all_knn = np.sqrt(mse_all_knn)
          r2_all_knn = r2_score(y, y_pred_all_knn)
          # Display results
          print("KNeighborsRegressor Results:")
          print("MSE test:", mse_test_knn)
          print("RMSE test:", rmse_test_knn)
          print("R-squared test:", r2_test_knn)
          print("----")
          print("MSE all:", mse_all_knn)
          print("RMSE all:", rmse_all_knn)
          print("R-squared all:", r2_all_knn)
          KNeighborsRegressor Results:
          MSE test: 6.143866943866944
          RMSE test: 2.478682501626004
          R-squared test: 0.8687155394149516
          -----
          MSE all: 4.115319923072925
```

Prediction using Neueal Network

RMSE all: 2.028625131233695

R-squared all: 0.9130599123686898

```
In [119]: from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense
         from sklearn.metrics import mean_squared_error, r2_score
         import numpy as np
         # Define the neural network model
         model = Sequential()
         model.add(Dense(64, input dim=X train.shape[1], activation='relu'))
         model.add(Dense(32, activation='relu'))
         model.add(Dense(1, activation='linear'))
         # Compile the model
         model.compile(loss='mean squared error', optimizer='adam')
         # Fit the model on the training data
         model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, ve
         # Predictions on the test set
         y_pred_test_nn = model.predict(X_test).flatten()
         # Evaluate on the test set
         mse_test_nn = mean_squared_error(y_test, y_pred_test_nn)
         rmse_test_nn = np.sqrt(mse_test_nn)
         r2_test_nn = r2_score(y_test, y_pred_test_nn)
         # Predictions on the entire dataset
         y pred all nn = model.predict(X).flatten()
         # Evaluate on the entire dataset
         mse_all_nn = mean_squared_error(y, y_pred_all_nn)
         rmse all nn = np.sqrt(mse all nn)
         r2_all_nn = r2_score(y, y_pred_all_nn)
         # Display results
         print("Neural Network Results:")
         print("MSE test:", mse_test_nn)
         print("RMSE test:", rmse test nn)
         print("R-squared test:", r2_test_nn)
         print("----")
         print("MSE all:", mse_all_nn)
         print("RMSE all:", rmse_all_nn)
         print("R-squared all:", r2 all nn)
          121/121 [======== ] - 0s 1ms/step
          602/602 [======== ] - 1s 1ms/step
         Neural Network Results:
         MSE test: 15369.244356344723
          RMSE test: 123.97275650861653
          R-squared test: -327.4157963311215
          -----
         MSE all: 16212.77038843957
          RMSE all: 127.32937755459095
```

R-squared all: -341.5103526981053

```
In [120]: from tensorflow.keras.models import Sequential
          from tensorflow.keras.layers import Dense, Dropout
          from tensorflow.keras.optimizers import Adam
          from sklearn.metrics import mean_squared_error, r2_score
          import numpy as np
          # Define the neural network model
          model = Sequential()
          model.add(Dense(128, input_dim=X_train.shape[1], activation='relu'))
          model.add(Dropout(0.5)) # Add dropout for regularization
          model.add(Dense(64, activation='relu'))
          model.add(Dense(1, activation='linear'))
          # Compile the model with a lower learning rate
          model.compile(loss='mean_squared_error', optimizer=Adam(lr=0.001))
          # Fit the model on the training data with verbose printing
          history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_sp
          # Predictions on the test set
          y_pred_test_nn = model.predict(X_test).flatten()
          # Evaluate on the test set
          mse_test_nn = mean_squared_error(y_test, y_pred_test_nn)
          rmse test nn = np.sqrt(mse test nn)
          r2_test_nn = r2_score(y_test, y_pred_test_nn)
          # Predictions on the entire dataset
          y_pred_all_nn = model.predict(X).flatten()
          # Evaluate on the entire dataset
          mse_all_nn = mean_squared_error(y, y_pred_all_nn)
          rmse all nn = np.sqrt(mse all nn)
          r2_all_nn = r2_score(y, y_pred_all_nn)
          # Display results
          print("Neural Network Results:")
          print("MSE test:", mse_test_nn)
          print("RMSE test:", rmse_test_nn)
          print("R-squared test:", r2_test_nn)
          print("----")
          print("MSE all:", mse all nn)
          print("RMSE all:", rmse_all_nn)
          print("R-squared all:", r2_all_nn)
```

```
In [124]: from tensorflow.keras.models import Sequential
          from tensorflow.keras.layers import Dense, Dropout
          from tensorflow.keras.optimizers import Adam
          from sklearn.metrics import mean_squared_error, r2_score
          import numpy as np
          model = Sequential()
          model.add(Conv1D(filters=64, kernel size=3, activation='relu', input shape=(X
          model.add(MaxPooling1D(pool size=2))
          model.add(Flatten())
          model.add(Dense(50, activation='relu'))
          model.add(Dense(1))
          model.compile(optimizer='adam', loss='mean squared error')
          history = model.fit(X_train, y_train, epochs=500, batch_size=32, validation_sp
          # Predictions on the test set
          y pred test nn = model.predict(X test)
          # Evaluate on the test set
          mse_test_nn = mean_squared_error(y_test, y_pred_test_nn)
          rmse_test_nn = np.sqrt(mse_test_nn)
          r2_test_nn = r2_score(y_test, y_pred_test_nn)
          # Predictions on the entire dataset
          y pred all nn = model.predict(X)
          # Evaluate on the entire dataset
          mse_all_nn = mean_squared_error(y, y_pred_all_nn)
          rmse all nn = np.sqrt(mse all nn)
          r2_all_nn = r2_score(y, y_pred_all_nn)
          # Display results
          print("Neural Network Results:")
          print("MSE test:", mse_test_nn)
          print("RMSE test:", rmse test nn)
          print("R-squared test:", r2_test_nn)
          print("----")
          print("MSE all:", mse_all_nn)
          print("RMSE all:", rmse_all_nn)
          print("R-squared all:", r2 all nn)
```

```
1 loss: 9.6714
Epoch 329/500
l loss: 10.5363
Epoch 330/500
1 loss: 9.2930
Epoch 331/500
l loss: 9.1779
Epoch 332/500
1 loss: 9.3445
Epoch 333/500
1 loss: 8.9611
Epoch 334/500
```

Random Forest:

MSE test: 0.4396RMSE test: 0.6630R-squared test: 0.9906

MSE all: 0.1388RMSE all: 0.3726R-squared all: 0.9971

The Random Forest model shows excellent performance on both the test and overall datasets. The low MSE and high R-squared values indicate a good fit to the data.

XGBoost:

MSE test: 0.4396RMSE test: 0.6630R-squared test: 0.9906

MSE all: 0.1388RMSE all: 0.3726R-squared all: 0.9971

XGBoost performs similarly to Random Forest, demonstrating strong predictive capabilities on both test and overall datasets.

LightGBM:

MSE test: 0.3960RMSE test: 0.6293R-squared test: 0.9915

MSE all: 0.3189RMSE all: 0.5647

• R-squared all: 0.9933

LightGBM also shows strong performance, with slightly lower MSE and higher R-squared values on the test set compared to Random Forest and XGBoost.

CatBoost:

MSE test: 0.3626RMSE test: 0.6022R-squared test: 0.9923

MSE all: 0.2535RMSE all: 0.5035R-squared all: 0.9946

CatBoost performs exceptionally well, with the lowest MSE on the test set and impressive R-squared values on both test and overall datasets.

Conclusion:

- All models, including Random Forest, XGBoost, LightGBM, and CatBoost, demonstrate strong predictive performance.
- CatBoost has a slightly better performance on the test set compared to the other models, with the lowest MSE.
- · LightGBM also performs well, with competitive results.
- Random Forest and XGBoost show robust performance, especially on the overall dataset.
- It's essential to consider the specific requirements of your task, computational efficiency, and interpretability when choosing the best model for deployment. For this dataset,
 CatBoost or LightGBM may be preferred due to their lower MSE on the test set.

In []:	