

DESCRIPTIVE STATISTICS

UW DIRECT

(Data Intensive Research Enabling Cutting-edge Tech)

https://uwdirect.github.io

Stéphanie Valleau

Chemical Engineering

What is statistics?

The practice or science of **collecting** and **analyzing** numerical data in **large quantities**, especially for the purpose of **inferring proportions** in a whole from those in a **representative sample**.

Retail prices of roasted coffee

In USD (\$) per pound, 2016

Source: International Coffee Organization. *Soluble coffee

What can we learn from Stats?

Statistics does not tell us whether we are right in coming to a conclusion (not absolute).

It tells us the **likelihood** of an outcome / the chances of being **wrong**

Two key concepts

Population

All possible values of an experimental variable (e.g. all stars in the milky way, all types of enzymes etc.)

Sample

A set of data drawn from a population

Often want to know the mean (μ) and standard deviation (σ) of a population

$$\mu = \sum_{i=1}^{N} \frac{X_i}{N} \qquad \qquad \sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Mean & standard deviation

Mean – location 0.20 0.15 0.10 0.05 0.00

Standard deviation - spread

Standard dev. & Variance

Variance is square of std. dev.

$$\sigma = \sqrt{\frac{\sum_{i}^{N} (X_{i} - \mu)^{2}}{N}}$$

$$\sigma^2 = \frac{\sum_{i}^{N} (X_i - \mu)^2}{N}$$

 \pm 0.5 σ contains 39% of possible values

 $\pm 1 \sigma$ contains 68%

 $\pm 2 \sigma$ contains 95%

 \pm 3 σ contains 99.7%

Median vs mean

The **median** is a value separating the higher half from the lower half of a data sample, a population, or a probability distribution

Median is often more robust than the mean in the face of skewed distributions and outliers

Measuring μ , σ ?

Is it possible to obtain the population for an experimental variable?

Is it possible to directly measure the mean (μ) and standard deviation (σ) of a population

If we had a population

Open the L3_Descriptive_Statistics.ipynb notebook

Back to reality

We could estimate the correct mean and standard deviation from samples ...

Population samples

Samples are sets of data drawn from the population

- Described by their size n (number of data points)
- Notation: X indexed by sample subscript, e.g. X_1

How to choose n?

Sampling Bias

Do all values in a population have the same chance of being selected?

If not, we have **bias**.

What is an example of bias in sampling?

Example: Assess average level of knowledge of US population based on survey responses from high school students

Population samples

Population: mean (μ) and s.d. (σ)

Sample: mean - \overline{X} and standard deviation - s

Figure 2 | Population parameters are estimated by sampling. (**a**) Frequency histogram of the values in a population. (**b**) Three representative samples taken from the population in **a**, with their sample means. (**c**) Frequency histogram of means of all possible samples of size n = 5 taken from the population in **a**.

Population samples

Sample parameters like \bar{X} have their **own distributions** – e.g. panel **C**

Figure 2 | Population parameters are estimated by sampling. (**a**) Frequency histogram of the values in a population. (**b**) Three representative samples taken from the population in **a**, with their sample means. (**c**) Frequency histogram of means of all possible samples of size n = 5 taken from the population in **a**.

Sampling with replacement

$$N=7$$
 population values = [12, 13, 14, 15, 16, 17, 18]

Sample with replacement (n=2)

- First sample, each item has 1/7 probability
- Second sample, each item has 1/7 probability
- How many total possibilities (assuming order is important)?

$$N^n = 49$$

Each time we sample our choice is **independent** from the prior choice!

Sampling without replacement

Population values = [12, 13, 14, 15, 16, 17, 18]

Sample without replacement (n=2)

- First sample, each item has 1/7 probability
- Second sample? 1/6
- How many total possibilities (assuming order is important)?

$$\frac{N!}{(N-n)!} = \frac{7!}{(5-2)!} = \frac{7 \cdot 6 \cdot 5 \cdot \dots \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 7 \cdot 6 = 42$$

Note: Each time we sample our choice depends on the previous choice!

Will sampling work?

Let's go back to the notebook

Sampling distributions

We observed that $\sigma_{\bar{X}} < \sigma$ and also that $\mu \cong \mu_{\bar{X}}$

Figure 2 | Population parameters are estimated by sampling. (**a**) Frequency histogram of the values in a population. (**b**) Three representative samples taken from the population in **a**, with their sample means. (**c**) Frequency histogram of means of all possible samples of size n = 5 taken from the population in **a**.

The Central limit theorem

As **n** increases, the distribution of sample means tends to become a **normal distribution**, **regardless of population distribution** shape

Central limit theorem

- As n increases, $\mu_{\bar{X}}$ decreases, i.e. we get better and better estimates of the population mean μ
- Thus big **n** makes $\mu \cong \mu_{\bar{X}}$
- As **n** increases, $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

	n = 50	n = 2000	exact
mean	415.30	415.22	415.23

Central limit theorem

Increasing sample size improves estimates

That's all for today!

