(1) a) arety
$$x = \sum_{k=0}^{\infty} a_k x^k = a_k \cdot x - \frac{x}{3} + \frac{x}{5} - \dots = \sum_{k=0}^{\infty} (-1)^{\frac{2k+1}{2k+1}} + a_k$$

(1) a) arety $x = \sum_{k=0}^{\infty} k \cdot a_k \cdot x^{k+1}$

(2) A arety $x = \sum_{k=0}^{\infty} k \cdot a_k \cdot x^{k+1}$

(3) arety $x = \sum_{k=0}^{\infty} (-1)^{\frac{2k+1}{k}} \cdot a_k$

(4) areto $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(5) areto $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(6) areto $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(7) areto $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(8) areto $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(9) arety $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(1) $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(1) $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(2) $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(3) $x = x^{k+2} \cdot (-1)^{\frac{2k+1}{k}} \cdot a_k$

(4) $x = x^{k+2} \cdot a_k$

(5) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(2) $x = x^{k+2} \cdot a_k$

(3) $x = x^{k+2} \cdot a_k$

(4) $x = x^{k+2} \cdot a_k$

(5) $x = x^{k+2} \cdot a_k$

(6) $x = x^{k+2} \cdot a_k$

(7) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(2) $x = x^{k+2} \cdot a_k$

(3) $x = x^{k+2} \cdot a_k$

(4) $x = x^{k+2} \cdot a_k$

(5) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(2) $x = x^{k+2} \cdot a_k$

(3) $x = x^{k+2} \cdot a_k$

(4) $x = x^{k+2} \cdot a_k$

(5) $x = x^{k+2} \cdot a_k$

(6) $x = x^{k+2} \cdot a_k$

(7) $x = x^{k+2} \cdot a_k$

(8) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(2) $x = x^{k+2} \cdot a_k$

(3) $x = x^{k+2} \cdot a_k$

(4) $x = x^{k+2} \cdot a_k$

(5) $x = x^{k+2} \cdot a_k$

(6) $x = x^{k+2} \cdot a_k$

(7) $x = x^{k+2} \cdot a_k$

(8) $x = x^{k+2} \cdot a_k$

(9) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(2) $x = x^{k+2} \cdot a_k$

(3) $x = x^{k+2} \cdot a_k$

(4) $x = x^{k+2} \cdot a_k$

(5) $x = x^{k+2} \cdot a_k$

(6) $x = x^{k+2} \cdot a_k$

(7) $x = x^{k+2} \cdot a_k$

(8) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(2) $x = x^{k+2} \cdot a_k$

(3) $x = x^{k+2} \cdot a_k$

(4) $x = x^{k+2} \cdot a_k$

(5) $x = x^{k+2} \cdot a_k$

(6) $x = x^{k+2} \cdot a_k$

(7) $x = x^{k+2} \cdot a_k$

(8) $x = x^{k+2} \cdot a_k$

(9) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(1) $x = x^{k+2} \cdot a_k$

(2) $x = x^{k+2}$

(3)
$$\ln(4+3\times-x^2) = \ln((4-x)(y+1)) = \ln(4-x) + \ln(1+x) =$$

= $\ln 4 + \ln(1-\frac{x}{4}) + \ln(1+x)$

(4) $\sin^4 x = \left(1 - \cos^2 2x\right)^2 = \frac{1}{4} - \cos^2 2x + \cos^2 2x$