# **Exercise 3 - Solution**

# Q1.

No,  $AB+ = \{A,B,C\}$ , a proper subset of  $\{A,B,C,D,E\}$ 

Yes,  $ABD+ = \{A,B,C,D,E\}$ 

#### **Q2.**

Let us use the following shorthand notation:

C = CourseNo, SN = SecNo, OD = OfferingDept, CH = CreditHours, CL = CourseLevel,

I = InstructorSSN, S = Semester, Y = Year, D = Days\_Hours, RM = RoomNo,

NS = NoOfStudents

Hence, R = {C, SN, OD, CH, CL, I, S, Y, D, RM, NS}, and the following functional dependencies hold:

 $\{C\} \rightarrow \{OD, CH, CL\}$ 

 $\{C, SN, S, Y\} \rightarrow \{D, RM, NS, I\}$ 

 $\{RM, D, S, Y\} \rightarrow \{I, C, SN\}$ 

First, we can calculate the closures for each left hand side of a functional dependency, since these sets of attributes are the candidates to be keys:

- (1)  $\{C\}$ + =  $\{C, OD, CH, CL\}$
- (2) Since  $\{C, SN, S, Y\} \rightarrow \{D, RM, NS, I\}$ , and  $\{C\} + \{C, OD, CH, CL\}$ , we get:

 $\{C, SN, S, Y\} + = \{C, SN, S, Y, D, RM, NS, I, OD, CH, CL\} = R$ 

(3) Since  $\{RM, D, S, Y\} \rightarrow \{I, C, SN\}$ , we know that  $\{RM, D, S, Y\} + \text{contains } \{RM, D, S, Y\} + \text{c$ 

Y, I, C, SN}. But {C}+ contains {OD, CH, CL} so these are also contained in {RM, D, S,

Y}+ since C is already there. Finally, since {C, SN, S, Y} are now all in {RM, D, S, Y}+

and  $\{C, SN, S, Y\}$ + contains  $\{NS\}$  (from (2) above), we get:

$$\{RM, D, S, Y\} + = \{RM, D, S, Y, I, C, SN, OD, CH, CL, NS\} = R$$

Hence, both  $K1 = \{C, SN, S, Y\}$  and  $K2 = \{RM, D, S, Y\}$  are (candidate) keys of R.

### Q3.

(a)The key for this relation is Book\_title,Authorname. This relation is in 1NF and not in 2NF as no attributes are FFD on the key. It is also not in 3NF.

(b)

3NF decomposition:

Book0(Book\_title, Authorname)

Book1-1(Book\_title, Publisher, Book\_type)

Book1-2(Book\_type, Listprice)

Book2(Authorname, Author\_affil)

#### **Q4.**

(a)

- {M} IS NOT a candidate key since it does not functionally determine attributes Y or P.
- {M, Y} IS a candidate key since it functionally determines the remaining attributes P, MP, and C.
- {M, C} IS NOT a candidate key since it does not functionally determine attributes Y or P. (b)

REFRIG is not in 2NF, due to the partial dependency  $\{M, Y\} \rightarrow MP$  (since  $\{M\} \rightarrow MP$  holds). Therefore REFRIG is neither in 3NF nor in BCNF.

Alternatively: BCNF can be directly tested by using all of the given dependencies and finding out if the left hand side of each is a superkey (or if the right hand side is a prime attribute). In the two fields in REFRIG: M -> MP and MP -> C. Since neither M nor MP is a superkey, we can conclude that REFRIG is is neither in 3NF nor in BCNF.

(c) Yes. Please follow the algorithm provided in the lecture notes.

## Q5.

1) List the candidate keys for R.

## EH/ABH/BDH/CDH

- 2) Determine the highest normal form of R with respect to F.
- 1NF. Non-prime attribute G is functionally determined by D.
- 3) Is the decomposition  $\{ABCD, DEGH\}$  (with the same FD set F) of R lossless-join? No.

| Decomposition  | A | В | C | D | Е | G | Н |
|----------------|---|---|---|---|---|---|---|
| $R_1(A,B,C,D)$ | a | a | a | a | b | b | b |
| $R_2(D,E,G,H)$ | b | b | b | a | a | a | a |

| Decomposition     | A | В | С | D | Е | G | Н |
|-------------------|---|---|---|---|---|---|---|
| $R_1(A,B,C,D)$    | a | a | a | a | b | a | b |
| $R_2(D, E, G, H)$ | a | b | b | a | a | a | a |

4) Find a minimal cover  $F_m$  for  $\overline{F}$ .

$$F_m = \{AB \rightarrow C, D \rightarrow A, D \rightarrow G, E \rightarrow B, AB \rightarrow D, E \rightarrow A, CD \rightarrow E\}$$

5) Decompose into a set of 3NF relations if it is not in 3NF. Make sure your decomposition is dependency-preserving and lossless-join.

For 
$$F_m = \{AB \rightarrow C, D \rightarrow A, D \rightarrow G, E \rightarrow B, AB \rightarrow D, E \rightarrow A, CD \rightarrow E\}$$
:

From  $AB \rightarrow C$ ,  $AB \rightarrow D$ , derive  $R_1\{A, B, C, D\}$ 

From  $D \to A$ ,  $D \to G$ , derive  $R_2\{A, D, G\}$ 

From  $E \to B$ ,  $E \to A$ , derive  $R_3\{A, B, E\}$ 

From  $CD \rightarrow E$ , derive  $R_4\{C, D, E\}$ 

None of the relation schemas contains a key of R, add one relation schema  $R_5\{E, H\}$ 

6) Decompose it into a collection of BCNF relations if it is not in BCNF. Make sure your decomposition is lossless-join.

For = 
$$\{AB \rightarrow CD, E \rightarrow D, ABC \rightarrow DE, E \rightarrow AB, D \rightarrow AG, ACD \rightarrow BE\}$$
:

Consider  $AB \to CD$ , AB is not a superkey, split R into  $R_1\{A, B, C, D\}$  and  $R_2\{A, B, E, G, H\}$ 

Consider  $D \to A$  in  $R_1\{A, B, C, D\}$ , D is not a superkey, split  $R_1$  into  $R_{11}\{A, D\}$  and  $R_{12}\{B, C, D\}$ 

Consider  $E \to AB$ , E is not a superkey, split  $R_2$  into  $R_2\{A, B, E\}$  and  $R_3\{E, G, H\}$ 

Consider  $E \to G$ , E is not a superkey, split  $R_3$  into  $R_{31}\{E,G\}$  and  $R_{32}\{E,H\}$ 

One of the possible lossless-join decompositions to BCNF is:  $R_{11}$ ,  $R_{12}$ ,  $R_2$ ,  $R_{31}$ ,  $R_{32}$ 

## **Q6.**

1)



2) According to the definition of B+-tree, the biggest B+-tree for the same set of index entries will be the tree where every node is just "half full". Note that the answer is not unique.