Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики учебный центр общей физики фтф

Группа <u> M3202</u>	К работе допущен
Студент Кочубеев Николай	_Работа выполнена
Преподаватель Тимофеева Эльвира	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.11

Вынужденные электромагнитные колебания в последовательном колебательном контуре

1. Цель работы.

Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.

2. Задачи, решаемые при выполнении работы.

Построить резонансную кривую и определить резонансную частоту, построить графики зависимостей, определить активное сопротивление и добротность колебательного контура.

3. Объект исследования.

Колебательный контур

4. Метод экспериментального исследования.

Измерение значений амплитуды выходного напряжения при изменении частот.

5. Рабочие формулы и исходные данные.

$$Q(L,C,R)=rac{1}{R}\sqrt{rac{L}{C}}.$$
 $\Omega_{res}^2=rac{1}{LC}-rac{R^2}{4I_c^2}$ (квадрат резонансной частоты)

$$\begin{cases} \Omega_{R_{res}} = \Omega_0 = \frac{1}{\sqrt{LC}};\\ \Omega_{C_{res}} = \Omega_0 \sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2};\\ \Omega_{L_{res}} = \frac{\Omega_0}{\sqrt{1 - 2\left(\frac{\beta}{\Omega_0}\right)^2}}; \end{cases}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф ОЦЛ2	цифровой	0 – 50 МГц	± 3%

7. Схема установки.

Рис. 6. Общий вид лабораторной установки

- Синусоидальный сигнал с генератора (1) подается на блок ФПЭ-11 (2), содержащий катушку индуктивности.
- 2. Осциллограф (3) показывает выходное (измеряемое на конденсаторе) напряжение.
- 3. Блок "Магазин емкостей" (4) используется для выбора емкости конденсатора, включенного в колебательный контур.

8. Результаты прямых измерений и их обработки

f Гц	U _{вых} мВ
1100	540
1150	700
1200	820
1250	850
1300	820
1350	760
1400	700
1450	640
1500	580
1550	540
1600	480
1650	450
1700	420
1750	380
1800	360
1850	340
1900	320
1950	300
2000	280
2050	264
2100	260
2150	240
2200	230

СнФ	f _{рез} Гц
1	12320
3	7200
10	3900
30	2500
100	1300
300	600

9. Расчёт результатов косвенных измерений

$$f_{\text{расч}} = \frac{1}{2\pi\sqrt{LC}} = 1592.3567$$
 Гц

$$f_{min}$$
 = 1092.3567 Гц

$$f_{max} = 2092.3567$$
 Гц

$$\Delta\Omega=350$$
 Гц

$$\Omega_0=$$
 1250 Гц

Q =
$$\frac{\Omega_0}{\Delta\Omega}$$
 \approx 3,5714 Гц

$$Q_{\text{теор}} = \frac{1}{R} \sqrt{\frac{L}{C}} = 13.3333$$
 Гц

Расчет активного сопротивления и экспериментально найденной индуктивности:

$$L = \frac{1}{k} = 0,167 \text{ ГH}$$

R = 1013 Om
$$(\frac{R^2}{2L^2} = b)$$

10. Расчёт погрешности измерений

$$\Delta L \approx 0.02 \ \Gamma$$
н

11. Окончательные результаты

$$L = 0.167 \pm 0.02 \Gamma H$$

R = 1013 Om
$$(\frac{R^2}{2L^2} = b)$$

12. Выводы

Я нашел экспериментальное значение резонанса. Зависимость амплитуды выходного напряжения от частоты входного соответствует теоретическим ожиданиям, при определенной частоте резонанса амплитуда выходного напряжения достигает своего максимального значения. Можно не считать погрешности, потому что различие между значениями, полученными разными методами и теоретическими величинами, слишком велико.

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

учебный центр общей физики фтф

Группа	M3202	К работе допущен_ 18.11. 21 Мудиль
Студент_	Кочубеев	_Работа выполнена 18.11. 21 Жудель
Преподава	атель Тимофеева Эльвира	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.11

Вынужденные электромагнитные колебания в последовательном колебательном контуре

8. Результаты прямых измерений и их обработки.

ν, Гц	Uвых, мВ
1100	540
1150	700
1200	820
1250	350
1300	820
1350	760
1950 -50	700
1500-50	640
1550 -50	580
1600 - 50	540
1650 - 50	480
1700 - 50	450
1750-50	400420
1800 -50	380
1850-30	360
1900 -50	340
1950-50	320
2000 - 50	300
2050-30	230
2100-50	2644
被害	
2400	260

18 1/13/