

Design and Analysis of Algorithms I

Contraction Algorithm

The Analysis

The Minimum Cut Problem

Input: An undirected graph G = (V, E).

[parallel edges allowed]

[See other video for representation of input]

Goal: Compute a cut with fewest number of crossing edges. (a min cut)

Random Contraction Algorithm

[due to Karger, early 90s]

While there are more than 2 vertices:

- pick a remaining edge (u,v) uniformly at random
- merge (or "contract") u and v into a single vertex
- remove self-loops return cut represented by final 2 vertices.

The Setup

Question: what is the probability of success?

Fix a graph G = (V, E) with n vertices, m edges.

Fix a minimum cut (A, B).

Let k = # of edges crossing (A, B). (Call these edges F)

What Could Go Wrong?

- 1. Suppose an edge of F is contracted at some point \Rightarrow algorithm will not output (A,B).
- 2. Suppose only edges inside A or inside B get contracted \Rightarrow algorithm will output (A, B).

<u>Thus</u>: Pr [output is (A, B)] = Pr [never contracts an edge of F]

Let S_i = event that an edge of F contracted in iteration i.

Goal: Compute $\Pr[\neg S_1 \land \neg S_2 \land \neg S_3 \land \dots \land \neg S_{n-2}]$

Tei ve

What is the probability that an edge crossing the minimum cut (A, B) is chosen in the first iteration (as a function of the number of vertices n, the number of edges m, and the number k of crossing edges)?

each iteration, the decreased edge can be more than one, it is not stable, so, we use vertices to represent the probability in the following slides....

The First Iteration

Key Observation: degree of each vertex is at least k

of incident edges

Reason: each vertex v defines a cut $(\{v\}. V-\{v\})$.

Since
$$\sum_{v} \frac{\text{for undirected graph}}{\text{degree}(v) = 2m}$$
, we have $m \ge \frac{kn}{2}$

Since
$$\Pr[S_1] = \frac{k}{m}, \Pr[S_1] \le \frac{2}{n}$$

The Second Iteration

Recall:
$$\Pr[\neg S_1 \land \neg S_2] = \Pr[\neg S_2 | \neg S_1] \cdot \Pr[\neg S_1]$$

$$= 1 - \frac{k}{\text{of remaining edge}} \ge (1 - \frac{2}{n})$$
what is this?

Note: all nodes in contracted graph define cuts in G (with at least k crossing edges).

> all degrees in contracted graph are at least k So: # of remaining $ec \ge \frac{1}{2}k(n-1)$

So
$$\Pr[\neg S_2 | \neg S_1] \ge 1 - \frac{2}{(n-1)}$$

All Iterations

In general:

$$\begin{split} & \Pr[\neg S_1 \wedge \neg S_2 \wedge \neg S_3 \wedge \wedge \neg S_{n-2}] \\ &= \underbrace{\Pr[\neg S_1] \Pr[\neg S_2 | \neg S_1]}_{\Pr[\neg S_2 | \neg S_1]} \Pr[\neg S_3 | \neg S_2 \wedge \neg S_1]..... \Pr[\neg S_{n-2} | \neg S_1 \wedge ... \wedge \neg S_{n-3}] \\ &\geq (1 - \frac{2}{n})(1 - \frac{2}{n-1})(1 - \frac{2}{n-2}).....(1 - \frac{2}{n-(n-4)})(1 - \frac{2}{n-(n-3)}) \\ &= \underbrace{\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2}.....\frac{2}{s} \cdot \frac{1}{s}}_{n-1} = \frac{2}{n(n-1)} \geq \frac{1}{n^2} \end{split}$$

Problem: low success probability! (But: non trivial)

recall $\simeq 2^n$ cuts!

So, brute-force method will result in $Pr = 1/(2^n)$. ref: overview, slide 5

Repeated Trials

Solution: run the basic algorithm a large number N times, remember the smallest cut found.

Question: how many trials needed?

Let T_i = event that the cut (A, B) is found on the ith try.

 \triangleright by definition, different T_i 's are independent

So: Pr[all N trails fail] = Pr[
$$\neg T_1 \land \neg T_2 \land ... \land \neg T_N$$
]

$$\prod_{i=1}^{N} \Pr[\neg T_i] \le (1 - \frac{1}{n^2})^N$$

By independence !

Repeated Trials (con'd)

<u>Calculus fact:</u> \forall real numbers x, $1+x \leq e^x$

 $\Pr[\text{all trials fail}] \le (1 - \frac{1}{n^2})^N$

So: if we take $N = n^2$, $\Pr[\text{all fail}] \leq \left(e^{-\frac{1}{n^2}}\right)^{n^2} = \frac{1}{e}$

If we take $N = n^2 \ln n$, $\Pr[\text{all fail}] \le \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n}$

n^2 is the number of times we execute, m is the calculation we need each execution

Running time: polynomial in n and m but slow $(\Omega(n^2m))$

But: can get big speed ups (to roughly $O(n^2)$) with more ideas.