CS220 Assignment 8 Report

Hitarth Kirankumar Makawana (230479) Pittala Sruthi (230751)

PDS1

The registers used in this assignment are the same as the registers used in QTSPIM/MIPS convention. However PC and hi, lo are not considered as a part of the register file. Moreover, There are 32 registers in the register file each 32 bits wide.

PDS2

The instruction size is kept 32 bits wide i.e. 32×1 bits. The data and instruction memory both are implemented using the **Distributed Memory** present in the **IP catalog** of **vivado Vitis**. Both the instruction memory and data memory are 32 bits wide and 512 words (1 word = 32 bits) in depth.

Memory and Register Field Size Distribution

Name	Size	Usage
	(bits)	
data memory	512×32	Stores the data corresponding to the lw and
		sw instructions
inst. memory	512×32	Stores the MIPS assembly code instructions
		to be executed
instruction	32	Stores the current instruction fetched by PC
op_code	6	Opcode of instruction fetched
rs_add	5	Address of the source register rs
rt_add	5	Address of the source register rt
rd_add	5	Address of the destination register rd
shamt	5	Shift amount
func	6	Function code of the instruction
j_add	26	absolute jump address of the target
const	16	immediate values for immediate inst. and
		branch inst.
RF	32×32	Register File that stores the data of MIPS
		registers
FPR	32×32	Float Reg. File that stores the data of
		MIPS float pt. registers
PC	32	Program Counter points to the current
		instruction being fetched

Assignment 8 CS220 Report

hi, lo	32	hi and lo MIPS registers used to store the
		mult result
rs, rt, rd	32	Register contents of inst. fetched

PDS3

Size encoding of R-type, I-type and J-type instructions

R-Type:

$$[31:26]$$
 op_code $[25:21]$ rs_add $[20:16]$ rt_add $[15:0]$ const

J-Type:

[31:26] op_code [25:0] j_add

Instruction encoding for the specified instructions

R-Type Instructions

Type	Instruction	Encoding
R-type	add r0, r1, r2	$op_code = 0$, rs_add, rt_add, rd_add, shamt,
		func = 32
R-type	sub r0, r1, r2	$op_code = 0$, rs_add, rt_add, rd_add, shamt,
		func = 34
R-type	addu r0, r1, r2	$op_code = 0$, rs_add, rt_add, rd_add, shamt,
		func = 33
R-type	subu r0, r1, r2	$op_code = 0$, rs_add, rt_add, rd_add, shamt,
		func = 35
R-type	mul r0, r1	$op_code = 0$, rs_add, rt_add, rd_add = 0,
		shamt = 0, func = 24
R-type	madd r0, r1	$op_code = 0$, rs_add, rt_add, rd_add = 0,
		shamt = 0, func = 25
R-type	maddu r0, r1	$op_code = 0$, rs_add, rt_add, rd_add = 0,
		shamt = 0, func = 26
R-type	and r0, r1, r2	op_code = 0, rs_add, rt_add, rd_add, shamt,
		func = 36
R-type	or r0, r1, r2	op_code = 0, rs_add, rt_add, rd_add, shamt,
.		func = 37
R-type	xor r0, r1, r2	op_code = 0, rs_add, rt_add, rd_add, shamt,
D .		func = 38
R-type	not r0, r1	$op_code = 0$, rs_add, rt_add, rd_add = 0,
D .	11 0 1 10	shamt = 0, func = 39
R-type	sll r0, r1, 10	$op_code = 0$, rs_add , $rt_add = 0$, rd_add ,
		shamt = 10, func = 0

Assignment 8 CS220 Report

R-type	srl r0, r1, 10	\mid op_code = 0, rs_add, rt_add = 0, rd_add, \mid
		shamt = 10, func = 2
R-type	sla r0, r1, 10	$ \text{op_code} = 0, \text{ rs_add}, \text{ rt_add} = 0, \text{ rd_add}, $
		shamt = 10, func = 4
R-type	sra r0, r1, 10	$ \text{op_code} = 0, \text{ rs_add}, \text{ rt_add} = 0, \text{ rd_add}, $
		shamt = 10, func = 3
R-type	slt r0, r1, r2	$op_code = 0$, rs_add, rt_add, rd_add, shamt,
		func = 41
R-type	mfc1 r0, f0	$op_code = 11$, rs_add, rt_add = 0, rd_add,
		shamt = 0, func = 56
R-type	mtc1 f0, r0	$op_code = 11$, rs_add, rt_add = 0, rd_add,
		shamt = 0, func = 55
R-type	mov.s cc f0, f1	$op_code = 11$, rs_add, rt_add = 0, rd_add,
		shamt = 0, func = 52
R-type	add.s f0, f1, f2	op_code = 11, rs_add, rt_add, rd_add, shamt,
		func = 53
R-type	sub.s f0, f1, f2	$op_code = 11$, rs_add, rt_add, rd_add, shamt,
		func = 54
R-type	c.eq.s cc f0, f1	$op_code = 11$, rs_add, rt_add, rd_add, shamt,
		func = 41
R-type	c.le.s cc f0, f1	op_code = 11, rs_add, rt_add, rd_add, shamt,
		func = 48
R-type	c.lt.s cc f0, f1	op_code = 11, rs_add, rt_add, rd_add, shamt,
		func = 49
R-type	c.ge.s cc f0, f1	$op_code = 11, rs_add, rt_add, rd_add, shamt,$
		func = 50
R-type	c.gt.s cc f0, f1	$op_code = 11, rs_add, rt_add, rd_add, shamt,$
		func = 51

J-Type Instructions

Type	Instruction	Encoding
J-type	j 10	$op_code = 1, j_add = 10$
J-type	jal 10	$op_code = 2, j_add = 10$

I-Type Instructions

Type	Instruction	Encoding
I-type	addi r0, r1, 1000	$op_code = 8, rs, rt, const = 1000$
I-type	addiu r0, r1, 1000	$op_code = 9, rs, rt, const = 1000$
I-type	andi $r0, r1, 1000$	$op_code = 15$, rs, rt, $const = 1000$
I-type	ori r0, r1, 1000	$op_code = 13$, rs, rt, $const = 1000$
I-type	xori r0, r1, 1000	$op_code = 14$, rs, rt, $const = 1000$
I-type	lw r0, 10(r1)	$op_code = 35$, rs, rt, $const = 10$
I-type	sw r0, 10(r1)	$op_code = 43$, rs, rt, $const = 10$
I-type	lui r0, 1000	$op_code = 36$, rs, rt, $const = 1000$
I-type	$\mathrm{beq}\ \mathrm{r0},\mathrm{r1},10$	$op_code = 41, rs, rt, const = 10$

Assignment 8 CS220 Report

```
I-type
        bne r0, r1, 10
                              op\_code = 48, rs, rt, const = 10
                             op\_code = 49, rs, rt, const = 10
I-type
        bgt r0, r1, 10
I-type
        bgte r0, r1, 10
                             op\_code = 50, rs, rt, const = 10
        ble r0, r1, 10
I-type
                             op\_code = 51, rs, rt, const = 10
        bleq r0, r1, 10
                              op\_code = 52, rs, rt, const = 10
I-type
                              op\_code = 53, rs, rt, const = 10
        bleu r0, r1, 10
I-type
I-type
        bgtu r0, r1, 10
                             op\_code = 54, rs, rt, const = 10
I-type
        slti r0, r1, 100
                              op\_code = 10, rs, rt, const = 100
I-type
        seq r0, r1, 100
                             op\_code = 10, rs, rt, const = 100
I-type
                             op\_code = 10, rs, rt = 0, const = 0
        jr r0
```