EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

MODEL BUILDING

ADDING DENSE LAYER

Date	05 November 2022
Team ID	PNT2022TMID30907
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library

import keras from keras.preprocessing.image import ImageDataGenerator

Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2, rotation_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

Applying ImageDataGenerator functionality to trainset

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDrive/Colab Notebooks/Dataset/trainset',

```
target_size=(128,128),batch_size=32, class_mode='binary')
```

Found 117 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive/Dataset/testset', target_size=(128,128),batch_size=32, class_mode='binary') Found 117 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential from

keras.models import Sequential

#To add layers import Dense from keras.layers

import Dense

#To create Convolution kernel import Convolution2D

from keras.layers import Convolution2D

#import Maxpooling layer

from keras.layers import MaxPooling2D

#import flatten layer

from keras.layers import Flatten import warnings warnings.filterwarnings('ignore')

Initializing the model

model=Sequential()

Add CNN Layer

```
model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu')) #add maxpooling layer model.add(MaxPooling2D(pool_size=(2,2))) #add flatten layer model.add(Flatten())
```

Add Dense Layer

```
#add hidden layer
model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid'))
```