Z-types

Given b:B+E(b) type (in log E (b:B): UU), want to form a type whose terms are dependent pairs <b,e> where b:B, e:E(b).

Dependent pair types Z

$$Z$$
-dim: $\Gamma, z: \overline{Z} Q(p) + D(z)$

$$\frac{\Gamma, x: P, y: Q(x) + a: D(pair(x,y))}{\Gamma, z: \overline{Z} Q(p) + ind_{\Sigma}(a,z): D(z)}$$

$$\frac{Z-lonp:}{\Gamma, z: Z Q(p)+D(z)}$$

$$\frac{\Gamma, x: P, y: Q(x)+a: D(pair(x,y))}{\Gamma, x: P, y: Q(x)+ind_{Z}(a, pair(x,y)) \doteq a: D(pair(x,y))}$$

Exercise. Construct a function $\pi_1: \sum_{x:P} Q(x) \longrightarrow P$.

Construct a function $\pi_2: TT = Q(\pi_1S)$.

S: $\sum_{x:P} Q(x)$

Types as logic, set, programs (Luny-Howard, Browner-Heyling-Kolmogener)

	Logic	Sets	Program
Tch	hypothuses	indexing set	hame in sage
T+T type	Predicate Tont	family To f sets on	program specification worms
TH:T	proof of T	section, i.e., T/y brallyer	Program
M	_	N	Phyram w/ no input that outputs a nn
S+T (ZT	i) v	U	√
SXT (ET		×	٨
S->T (TT-)		\rightarrow	tem one find of program into another
Z E (b)	3		Σ
TT E(6)	\forall	TT (set of) sections	TT

The strangest inductive type : Id

Why do we need the identity type?

(If we're not interested in homotopy.)

A1: There are many equalities that hold only propositionally.

 \underline{Ex} . add $(x, \delta) \doteq x$ add $(x, sy) \doteq s$ add (x, y)One cannot prove add $(0, x) \doteq x$.

To prove this, we need to induct on n (i.e. use N-elimination), but this only allows us to construct a term of a type.

We will be able to prove add(0,x)=x.

AZ: We already have a notion of equality:

judgmental equality =

(The identity type is called propositional equality =.)

Loginal interpretation: propositions are types / proofs are terms.

To prove an equality (and be consistent with the logical interpretation) we want to produce a term of a type of equalities.

Type constructors often internalize structure

· bool

can also be seen as internalizing external versions.

· The universe type

internalizes the judgment of the form

A type

· We'll see how the identity type internalizes judgmental equality ...

=- form

= - into

= - elim

T, x: A y: A, z: x = ay + ind = (d, x,y, 2): D(x,y, 2) type

= - 60mp

T, x: A + ind = (d,x,x,r) = d: D(x,x,rx)

Type constructors often internalize structure

At a 'meta' level, we can talk about judgmental equality: Ex. a = b:A

We and discuss this at the 'type-and-term' level by using identity types: Ex. ra: a = b

Note that the wes governing equality say that if $a \doteq b : A$, then $(a = a) \doteq (a = b)$, and if $r_a : a = a$ and $(a = a) \doteq (a = b)$, then $r_a : a = b$.

- Reflexivity (r.) turns judgmental equalities into propositional equalities.

Exercise. Add (0, n) = n for all n:N.

(Note: one of add (0,n)=n and add (n,0)=n will hald definitionally depending on how you defined add. Show the other one holds judgmentally.)

The groupoidal behaviour of types (The first homotopical phenomena)

We can now think of types as collections of points (terms) connected by homotopics/paths (equalities).

We un:

have moltiple equalities of the same type (ex: p,p': a=b) (Ex.) take the inverse of an equality (if q:b=ac, then q':c=b) (Ex.) take composition of equalities (if p:a=b and q:b=c, then $p\cdot q:a=c$) (Ex) have equalities of equalities ($\alpha:p=a=b$)

Moveover: (Ex) functions A - B respect equality (i.e. map a = aa' to fa = Bfa')
This is how homotopies in spaces behave.

The space interpretation

Thm. (Voerodsky) There is an interpretation of dependent type theory into Spaces (the category of Kan complexes) in which

types ~ spaceo terms ~ points equalities ~ paths

Transport

Pup. (EX)

For any dependent type $x:B \vdash E(x)$ type, any terms b,b':B, and any equality p:b=b', there is a function $tr_p:E(b) \rightarrow E(b')$.

- This ensures that everything respects propositional equality. If we think of E as a predicate on B, then if E(b) is the and b = b', so is E(b').
- 'This is part of a more sophisticated relationship between type the and homotopy theory (Quillen model entegory theory). Transport so that $\pi: \mathbb{Z} \to \mathbb{E}(\mathbb{W}) \xrightarrow{} \mathbb{B}$ behaves like a fibration in a QMC.

Equivalence. For types S.T., there is a notion of equivalence SIT

Similar to

(To be revisted later.)

Characterizing equality in standard types

bool: We can show false = false, tru = tre, false * tre.

N: We have similar: sn=sn=n=m, 0 +sn

Z-types: For s,t: Σ B(a), than (s=t) = Σ to, π28 = π2t.

TT-types: For fig : TT B(a) , want (f = g) = TT fx = gx.

Not provable. Called functional extensionality. (funext)

Validated by interpretations in logic, sets, spaces.

= -types: For p,q: a=b, maybe want $(p=q)^{a}$ 41.

Not provide. Called uniqueness of identity profs. (UIP)

Validated by interpretations in logic, sit.

U-typis: For S,T: U, maybe want

 $(S=T)^{2}(S=T)$.

Not provales. Called univalence. (UA)

Validated by interpretation in spaces.

· UA = finext.

· UIP , funext \$1

· UA + UIP => L.

We choose UA.