TKP4120 Prosjektoppgave CO_2 -fangst GRUPPE 3

Simone Bystadhagen Marie Edvardsen Andrea Hillestad Anne Charlotte Wold

22. april 2016

Figur 1: Bilde av stripper og absorber fra CO_2 -fangstanlegget på Tiller

Sammendrag

Denne rapporten er skrevet for å gi bedre innsikt i prosessen bak CO₂-fangst. Oppgaven vil forklare prinsippet bak CO₂-fangst og hvordan prosessen fungerer, samt vise utregning av resultater av gitte betingelser. Første del av rapporten er en innledning, deretter beskrives prosessen mer detaljert og reaksjonene som foregår forklares. Deretter forklares metodene som er brukt for utregning og evt. utledning av formler. Videre framlegges og kommenteres resultatene fra prosjektet, og til slutt oppsummeres rapporten ved en konklusjon.

I arbeidet med prosjektet var det nødvendig å utlede balanseligninger. Det ble først satt opp et flytskjema over prosessen. Det ble valgt en basis. Videre ble de gitte opplysningene og strømdata skrevet inn i flytskjemaet. Det var også viktig å ha oversikt over andre gitte opplysninger som ikke inngikk i flytskjemaet, og sørge for at alt hadde konsistente enheter. Videre måtte det analyseres om problemet var løsbart, dette ble gjort ved å se om antall ligninger stemte med antall ukjente. Deretter ble massebalansene og energibalansene formulert og ligningene ble løst med hensyn på de ukjente ved hjelp av funksjonen fsolve i Matlab. Resultatene ble brukt til videre utregninger av energiforbruk i stripper, varmeoverføringsareal i varmeveksler, nødvendig strømningsrate i kjøler og partialtrykk av CO_2 i gassfase. Videre ble resultatene drøftet og det ble konkludert med om de var fornuftige eller ikke.

I rapporten ble det kommet fram til at varmeoverføringsareal i varmeveksler er 6.2*10^3 m^2. Det konkluderes med at resultatet ble litt for lavt i forhold til forventet. Nødvendig strømningsrate for kjøler ble regnet ut til 650 kg/s med H₂O (l). Det ble konkludert med at dette var et fornuftig resultat. Energiforbruket i kjøleren og kokeren knyttet til stripperen er regnet ut til å være forholdsvis likt, men med forskjellig fortegn siden de gjør den motsatte prosessen av hverandre. Det konkluderes med at energibehovet i stripperen med tilhørende koker og kjøler er relativt høyt. I oppgaven ble kompresjonen av CO₂-gass ved ett steg og tre stegs kompresjon vurdert. Det ble konkludert med at det lønner seg å komprimere ved tre steg isteden for ett steg siden temperaturen holder seg lavere ved tre steg.

Til slutt ble det konkludert med at CO_2 -fangst er bra for miljøet, siden utslipp av CO_2 bidrar til globaloppvarming. Samtidig går det med mye energien i CO_2 -fangst prosessen, som går til varmeveksleren, kjølerne og kokeren.

Innhold

1	Inn	ledning	4									
2	Prosessbeskrivelse											
	2.1	Reaksjoner	6									
	2.2	Viktige faktorer og utfordringer ved prosessen	7									
3	Metode 8											
	3.1	Valg av basis og konvertering mellom ulike basis	9									
	3.2											
		3.2.1 Massebalanser	9									
		3.2.2 Energibalanser	11									
	3.3	Energiforbruk i stripper	13									
	3.4	Varmeveksling i prosessen	13									
	3.5	Kompresjon av produktstrøm	15									
		3.5.1 Kompresjon i tre steg	16									
		3.5.2 Kompresjon i ett steg	18									
4	Resultater og diskusjon 18											
	4.1	Prosessdata ved gitte betingelser	18									
		4.1.1 Massefraksjoner	18									
		4.1.2 Massestrømmer	19									
		4.1.3 Entalpier	20									
		4.1.4 Oppsummering	20									
	4.2	Energiforbruk i stripper med tilhørende koker og kjøler	20									
	4.3	Varmeveksling i prosessen	21									
	4.4	Kompresjon av CO_2	22									
	4.5		23									
5	Kor	nklusion	24									

1 Innledning

Denne rapporten omhandler post-combustion CO₂-fangst og er gitt i oppgave i faget Prosessteknikk (TKP4120) ved Norges teknisk-naturvitenskaplige universitet. Den vil forklare prinsippene bak og vise utregninger for prosessen. CO₂-fangst er viktig for klimaet på jorden. Klimaendringer, både naturlige og menneskeskapte kan føre til mer ekstremvær og naturkatastrofer, tørkeperioder og flommer, utryddelser av dyrearter etc. For å få et bedre klima kan det iverksettes flere tiltak. En av disse er å redusere utslipp av CO₂, siden en av grunnene til økte klimaendringer er økt utslipp av CO₂ til atmosfæren. Dette kan gjøres ved å benytte de fossile brenslene mindre eller å fjerne CO₂ som slippes ut. Å fjerne CO₂ er dyrt, men et annet alternativ er å fange CO₂ fra kilden. Ved å fange CO₂ kan vi fortsette å bruke olje og kull uten de store utslippene av CO₂ til atmosfæren. I post-combustion CO₂-fangst blir CO₂-gassen fjernet etter forbrenningsprosessen. Det finnes andre typer CO₂-fangst, men det er denne typen som er omtalt i rapporten. I et CO₂-anlegg blir CO₂ først fanget og deretter lagret. Dette gjøres ved å samle CO₂ fra mange kilder og deretter separere fra 14% CO₂ til 1%, og det produseres en strøm av ren CO₂. Dette er hovedprinsippet bak CO₂-fangst. En av de mest aktuelle lagringsmetodene er å lagre det i gamle olje- og gassfelt, siden det her er tett og stor plass.

I prosjektet beskrives CO_2 -fangst ved absorbsjon. Da vil CO_2 først bli løst, og deretter absorbert av en aminløsning. I dag prøver man å finne en løsning som bruker minst mulig energi på å fange CO_2 , slik at prosessen blir billigere. Det er aminløsninger som er brukt til å fange CO_2 . Mye av forskningen foregår på regenerering av amin, siden det er hit energien går. Energi brukes til å varme opp løsningen, reversering og produksjon av damp til stripperen. I prosessen ønsker man en løsning som kan absorbere mye CO_2 , og som absorberer ekstremt fort i absorberen samtidig som den gir CO_2 lett fra seg igjen i stripperen. MEA er mest brukt som absorbent og det er også MEA som er brukt og omtalt i denne oppgaven. MEA (C_2H_7NO) er tilsatt vann og denne væsken omtales som MEA-løsning. [1][2]

I første del av oppgaven forklares prosessen, samt faktorer og utfordringer ved den. Videre i oppgaven forklares metodene som er brukt for utregninger i prosessen, samt resultater, diskusjon og konklusjon.

2 Prosessbeskrivelse

Figur 2: Forenklet prosessflytskjema for post-combustion CO2-fangst. Tall viser strømnummer

Strømmene og komponentene som navngis i prosessforklaringen referer til figur 1 i rapporten. Prosessen er delt inn i flere komponenter, absorber, stripper, pumpe, varmeveksler, kjøler, koker og reflukstank. Strøm 1 er en blanding fra forbrenning som inneholder CO₂ fra ulike kilder etter forbrenning, og går inn i absorberen. I absorberen vil gass bevege seg oppover, mens væske vil gå nedover. Strøm 3 går også inn i absorberen. Denne strømmen består av en væske som inneholder amin-løsning og noe CO₂. Aminene i denne løsningen vil absorbere CO₂ (REAKSJONSLIGNING), i dette tilfelle er absorben er MEA-løsning. Ren gass vil da gå ut av toppen av absorberen gjennom strøm 2 og ut til atmosfæren, denne gassen består av all N₂ (g), O₂ (g), H₂O (g) som kom inn som strøm 1 i tillegg til noe CO₂. CO₂ som har reagert med aminløsningen fra strøm 3 vil gå ut i bunn av absorberen som strøm 4, gjennom pumpen og opp til varmeveksleren V-1. Denne høyverdige CO₂-løsningen blir varmere i varmeveksleren og vil få en høyere temperatur. Dette er fordi løsningen vil holde dårligere på CO2 når den er varmere. Løsningen går så inn i toppen av stripperen som strøm 5. I stripperen vil reaksjonen gå i motsatt retning i forhold til i absorberen, og vil dermed kreve

energi for å gå. Gassen vil bevege seg oppover og ut av stripperen som strøm

8. Strøm 8 inneholder nå bare CO₂ (g) og H₂O (g). Gassen vil så bli kjølt ned i kjøler V-3, og gå inn i reflukstanken som strøm 12. Etter at strømmen har blitt kjølt ned i kjøleren har H₂O gått over til væskeform og CO₂ er fortsatt i gassform. Dette gjøres for at det skal bli lettere å separere CO₂ og H₂O. I reflukstanken vil ren CO₂-gass gå ut som strøm 9 og videre til kompressoren, og H₂O vil gå tilbake til stripperen. Væsken i stripperen vil bevege seg ned og deretter ut og inn i kokeren V-4. Der vil den varmes opp, slik at MEA-løsningen holder dårligere på restene av CO₂ som fortsatt er tatt opp i løsningen. CO₂ som blir separert fra løsningen i kokeren vil gå tilbake inn i stripperen.

Den resterende løsningen som består av MEA-løsning og noe CO₂ vil gå ut av kokeren som strøm 6 og inn i varmeveksleren. Denne lavverdige CO₂ - løsningen vil gi fra seg varme til den høyverdige CO₂- løsningen, og vil derfor få en lavere temperatur i varmeveksleren. Den beveger seg så videre inn i kjøler V-2 som strøm 7. I V-2 vil strømmen bli kjølt end av et kjølemedium som går inn i kjøleren som strøm 10 og ut som strøm 11. Strømmen kjøles ned slik at den klarer å holde på mest mulig CO₂. Deretter går den ut av kjøleren og inn i absorberen som strøm 3 og er klar til å reagere med mer blanding av CO₂ fra strøm 1. Nå er prosessen tilbake ved startfasen. ^[3]

2.1 Reaksjoner

De to viktigste reaksjonene i prosessen:

$$CO_2(g) \leftrightarrow CO_2(aq)^{[4]}$$
 (1)

$$CO_2(aq)_2^+HO(CH_2)_2NH_2(aq) \leftrightarrow HO(CH_2)_2NH_3^+ + HO(CH_2)_2NHCOO^{-[5]}$$
(2)

I reaksjon (1) løser CO_2 seg i MEA-løsningen. Reaksjon (2) er en absorbsjonsreaksjon, hvor MEA absorberer CO_2 . Det oppstår en likevekt mellom CO_2 og MEA-løsningen. Reaksjonene foregår først i absorberen hvor den vil gå mot høyre. Deretter i stripperen, men da vil reaksjonen gå motsatt vei.

2.2 Viktige faktorer og utfordringer ved prosessen

Den viktigste faktoren ved prosessen er at abosrberen skal være kald, mens stripperen skal være varm. Det er flere ulike utfordringer ved prosessen. En av utfordringene er energibehovet. Prosessen krever lavt partialtrykk for CO_2 og man trenger store prosessanlegg til prosessen. Prosessen har et høyt energibehov siden prosesser som å varme opp løsningen, reversering av reaksjonen og produksjon av stripping damp krever mye energi. [6]

Prosessen har også noen miljøproblemer. Potensielle utslipp av absorben og degradering av produktet kan forekomme. Kjemikalier som blir brukt kan også gi utslipp. I tillegg er korrosjon en utfordring ved prosessen.

3 Metode

I dette kapittelet presenteres ligninger og utledninger av ligninger som er brukt i utregning av oppgaven. Kapitlet inneholder fremgangsmåter for å komme fram til resultatene som presenteres i kapittel 4 og forklaring av disse fremgangsmåtene og ligningene som er brukt.

Det skjer flere reaksjoner ved CO_2 -fangst. I oppgaven er det oppgitt to likninger (1) og (2). Ved hjelp av disse, Henrys lov og målet loading, alpha, kan partialtrikket til CO2 vises ved likningen gitt i oppgaven. Reaksjonsskjema gjør det lettere å se hva som reagerer under likevekten.

Stoff	Start	Likevekt
CO ₂ MEA HO(CH ₂) ₂ NH ₃ ⁺ HO(CH ₂) ₂ NHCOO	0 [MEA] ₀ 0 0	$\begin{array}{c} P_{CO2}/K_H \\ [\text{MEA}]_0\text{-2MEA} \\ [\text{HO}(\text{CH}_2)_2\text{NH}_3^+] \\ [\text{HO}(\text{CH}_2)_2\text{NHCOO}^-] \end{array}$

Tabell 1: Reaksjonsskjema for reaksjon mellom CO_2 og MEA

Målet for loading er gitt ved:

$$\alpha = \frac{[MEA]_0}{[CO_2]_{absorbert}}$$
 (3)

Henrys lov:

$$p_{CO_2} = [CO_2]K_H^{[8]} (4)$$

Likevektskonstanten for reaksjonen i likning (2) blir:

$$K_{2} = \frac{([\text{HO}(\text{CH}_{2})_{2}\text{NH}_{3}^{+}] \cdot [\text{HO}(\text{CH}_{2})_{2}\text{NHCOO}^{-}])}{([\text{CO}_{2}] \cdot 2 [\text{MEA}]^{2})}$$
(5)

Likning (5) kan gjøres om til

$$\mathrm{CO}_2 absorbert = \alpha \cdot [MEA]_0$$

For å uttrykke konsentrasjonen av CO₂ skrives Henrys lov om

$$[CO_2] = \frac{p_{CO_2}}{K_H}$$

Produktene i likning(2) vi få lik konsentrasjon og kan derfor begge skrives som $CO_{2absorbert}$. Fra endringer av likningene og reaksjonsskjemaet kan også nevneren forandres.

$$K_2 = \frac{\alpha \cdot ([MEA]_0)^2}{(p_{CO2}/K_H)([MEA]_0 - 2\alpha \cdot [MEA]_0)^2}$$

 $[MEA]_0$ kan strykes, og Pco_2 settes for seg selv. Noe som gir utrykket til trykket for CO_2 :

$$p_{\text{CO}_2} = \frac{[K_H \cdot \alpha^2]}{(1 - 2\alpha)^2 * K_2}^{[9]} \tag{6}$$

3.1 Valg av basis og konvertering mellom ulike basis

I konstantfila er det oppgitt at massen i strøm m_1 er 500 kg/s dette ble da valgt som basis for å slippe å skalere størrelsene i ettertid. Under utførelsen av prosjektet var det nødvendig å konvertere mellom ulike basis ettersom konstantene i konstantfilen ikke alltid hadde samsvarende benevninger. I tabell 1 er basisene oppgitt. MATLAB funksjonen getWtFrac.m (vedlagt) ble laget for å konvertere molfraksjoner om til massefraksjoner.

3.2 Massebalanser og energibalanser for strømmene i prosessen

3.2.1 Massebalanser

Beskrivelse av hvilke massebalanser som ble brukt for å finne massene og komponentsammensetningen i strøm 1-9 i prosessen. Disse ble brukt til simulatoren i MATLAB.

$$m_1 * \omega_{O_2}^1 = m_2 * \omega_{O_2}^2$$

$$m_1 * \omega_{N_2}^1 = m_2 * \omega_{N_2}^2$$

$$m_1 * \omega_{H_2O}^1 = m_2 * \omega_{H_2O}^2$$

Det er oppgitt at all O_2 , N_2 og H_2O fra strøm 1 går ut i strøm 2. Massene er derfor naturligvis uendret.

$$\omega_{CO_2}^4 = \frac{(m_1 \cdot \omega_{CO_2}^1) + (m_3 \cdot \omega_{CO_2}^3)) - (m_2 \cdot \omega_{CO_2}^2)}{m_4}$$

Massen til CO_2 i strøm 4 blir gitt ved CO_2 fra strøm 1 og 3 minus det som går ut i strøm 2. Vektfraksjonen finner man når man deler på den totale massen i strøm 4.

$$m_4 = m_9 + m_3$$

Alt som går inn i stripperen går ut av stripperen, enten tilbake til absorberen eller til kompresjon.

$$m_1 + m_3 = m_4 + m_2$$

Massen som kommer inn i absorberen går ut av absorberen.

$$m_1 = m_2 + m_9$$

Massen som kommer inn i systemet går ut av systemet.

$$\omega_{CO_2}^2 + \omega_{N_2}^2 + \omega_{H_2O}^2 + \omega_{O_2}^2 = 1$$

Summen av vektfraksjonene til komponentene i en strøm er alltid 1.

$$m_4=m_5$$

$$m_3=m_6$$

$$m_3=m_7$$

Massen endres ikke når løsningen endrer temperatur.

$$m_9 = (m_1 \cdot \omega_{CO_2}^1) \cdot 0.8$$

Massen til strøm 9 er lik massen til CO_2 i strøm 1 ganget med fangingsgraden av CO_2 til hele prosessen

$$\omega_{MEA}^4 \cdot m_4 = \omega_{MEA}^3 \cdot m_3$$

Massen til MEA er den samme i strøm 3 og strøm 4

$$\omega_{MEA}^3 = \frac{m_3 - (m_3 \cdot \omega_{CO_2}^3) \cdot 0.3}{m_3}$$

Likningen brukes til å finne vektfraksjonen til MEA i strøm 3. For kun MEA og vann er massefraksjonen 0.3. Videre trekker man fra all massen av CO_2 fra strøm 3 for å finne massen til kun MEA. Denne massen deles på totalmassen (inkludert CO_2) for å finne massefraksjonen.

$$m_8 = m_9 + m_8 \cdot 0.15$$

Massen til strøm 8 er lik massen til strøm 9 og massen til H_2O i strøm 8.

3.2.2 Energibalanser

Varmeveksler V-1

$$H_7 = m_4 \cdot h_4 - m_5 \cdot h_5 + m_6 \cdot h_6$$

Her går strøm 4 og 6 inn i varmeveksleren og strøm 5 går ut.

$$h_7 = \frac{H_7}{m_7}$$

I varmeveksleren møtes en varm og en kald strøm og utveksler varme. I systemet er strøm 6 og 7 den varme strømmen og strøm 4 og 5 er den kalde. Det er antatt at all energi bevares.

Kjøler V-2

$$h_3 + h_7 = h_{10} + h_{11}$$

$$\Delta H_{(3,7)} = \Delta H_{(10,11)}$$

Antar at W = 0

$$Q = \Delta H_{(3,7)}$$

Det er antatt at all energi bevares. Kjøler V-3

$$\Delta H_{kond} = -(\Delta H_{sub} - \Delta H_{fus})$$

 ΔH_{sub} er endringen i entalpi fra gass til fast stoff, ΔH_{fus} er endringen i entalpi fra væske til fast stoff.

$$Q_{V-3} = m_8 \cdot \omega_C^8 \cdot (T(12) - T(8)) \cdot Cpg(1) + m_8 \cdot \omega_H^8 \cdot (T(12) - T(8)) \cdot Cpg(2) + m_8 \cdot \omega_H^8 \cdot \frac{\Delta H_{kond}}{M_w(2)} \cdot 10^3$$
(7)

Her går strøm 8 inn i kjøleren, den kjøles ned, og kommer ut som strøm tolv. Prosessen deles opp i kjøling av CO_2 , kjøling av H_2O og kondensasjon av H_2O . Energiforbruket for kjøling er gitt ved endringen av temperatur multiplisert med varmekapasiteten, som igjen multipliseres med massen av det utvalgte stoffet i strømmen. Energiforbruket for kondensasjon er gitt ved kondensasjonsentalpien per molar masse, multiplisert med 10^3 for å få riktig enhet, deretter multiplisert med massen av H_2O i strømmen.

Koker V-4

$$Q_{V-4} = -h_5 - Q_{V-3} + h_9 + h_6 (8)$$

Her går en strøm fra stripperen inn, en strøm tilbake til stripperen, og strøm 6 ut. Strøm 9 kommer fra stripperen og har blitt kjølt ned. Energiforbruket er gitt ved differansen mellom entalpiene i strømmene som går ut av kokeren og entalpien i strømmen som går inn i kokeren pluss energiforbruket i kjøleren. Både i kjøleren og i kokeren er negativt energiforbruk definert som varme inn og positivt som varme ut.

3.3 Energiforbruk i stripper

Energiforbruket i stripperen er absoluttverdien til energiforbruket i kokeren. Væskestrømmen som går ut av stripperen går inn i kokeren. Kokeren varmer opp løsningen fordi den da har lettere for å gi fra seg CO_2 , og minst mulig CO_2 blir igjen i løsningen. Den varmede løsningen går tilbake til stripperen og ut i strøm 6.Kjøleren har også tilhørighet til stripperen. For å skille CO_2 og H_2O i strøm 8, som er gasstrømmen ut av stripperen, sendes den inn i kjøleren. Der kjøles strøm 8 ned for at vannet skal kondensere og gå over til væskeform. Da er CO_2 og H_2O i hver sin fase, og er lette å skille. CO_2 gassen går ut i strøm 9, mens vannet går tilbake til stripperen.

3.4 Varmeveksling i prosessen

I varmeveksleren vil en varm og en kald strøm gå inn i varmeveksleren i hver sin strøm, disse strømmene vil ikke blandes. Funksjonen til varmeveksleren er at den varme strømmen vil få en lavere temperatur, og den kalde strømmen vil få en høyere temperatur. Med andre ord så skjer det en varmeoverføring mellom strømmene – de veksler varme. Dette gjøres fordi strøm
4, som skal videre inn i kjøler V-2 også videre inn i absorberen. Det ønskes
en lav temperatur slik at løsningen lettere tar opp CO₂. Etter varmeveksleren er temperaturen i strømmen lavere slik at det kreves mindre kjøling av
strømmen i kjøler V-2 før den går videre inn i absorberen.

Den kalde strømmen som går inn i varmeveksleren som strøm 4 får høyere temperatur i varmeveksleren og går ut som strøm 5 og inn i stripperen. Denne får høyere temperatur slik at løsningen lettere gir fra seg CO_2 i stripperen. Nedenfor er utregning for hvor stort varmeoverføringsareal som er nødvendig i varmeveksleren for å få ønskede temperaturer på strømmene ut av V-1. Varmeoverføringsarealet i varmeveksleren V-1 (se figur 2) er gitt ved formelen:

$$A = \frac{Q}{U} \cdot lmT$$

som er utledet fra (9).

$$Q = A \cdot U \cdot lmT^{[10]} \tag{9}$$

Antar at W= 0 for varmeveksleren og finner at

$$Q = \Delta H = H_{inn} - H_{ut}^{[11]} \tag{10}$$

$$lmT = \frac{T2 - T1}{ln\frac{T2}{T1}}^{[12]} \tag{11}$$

hvor $T2 = (T_{h,ut} - T_{c,inn})$ og $T1 = (T_{h,inn} - T_{c,ut})$ I kjøler V-2 vil strøm 7 gå inn og komme ut som strøm 3 etter å ha blitt kjølt ned. Dette gjøres fordi strømmen vil ta opp mer CO_2 når den er kaldere. For å kjøle ned strømmen vil det gå inn en kald strøm 10 i kjøleren. Kjølemediet er H_2O (l), og mediet vil ikke reagere med løsningen som strømmer inn i kjøleren, men kun avkjøle den. Kjølemediet vil så gå ut igjen av kjøleren som strøm 11, og har nå fått en høyere temperatur fordi strømmen har gitt fra seg varme til kjølemediet. Det har blitt gjort utregning på hvor mye medium som er nødvendig for å kjøle ned strømmen til ønsket temperatur.

Nødvendig strømningsrate for kjøler V-2 er gitt ved:

$$Q = mc_p \Delta T \leftrightarrow m = \frac{Q}{c_p \Delta T}^{[13]} \tag{12}$$

 ΔT er endringen i temperatur i strøm 11 og 10, og c_p regnes ut ved å bruke matlabfunksjonen getCpH2O.m(vedlagt)

Energibalanser er benyttet for å finne Q i ligningen for nødvendig strømningsrate:

$$h_3 + h_7 = h_{10} + h_{11}$$

$$\Delta H_{3.7} = \Delta_{10.11}$$

Finner ΔH for strøm 7 og 3, hvor vi tidligere har regnet ut massen til strømmene og h_7 og h_3 . (se tabell 2)

$$Q = \Delta H_{3,7} = \Delta h_7 \cdot m_7 - h_3 \cdot m_3$$

3.5 Kompresjon av produktstrøm

I kompressoren øker trykket til gass-strømmen fordi det tilsettes mekanisk arbeid W_s Kompresjonen av strøm 9 er en ideelt sett en adiabatisk prosess, fordi det er endring i temperatur. For å regne ut kompresjonsarbeidet i i strøm 9, må først de ukjente temperaturene regnes ut. Da kan denne formelen brukes:

$$\frac{T_2}{T_1} = \frac{(p_b)^{\frac{\gamma}{\gamma - 1}}}{(p_0)} [14] \tag{13}$$

Eksponenten kan alternativt skrives som

$$\frac{\gamma}{\gamma - 1} = \frac{R}{c_{p,m}}$$

Noe som vil gi

$$\frac{T_2}{T_1} = \frac{(p_1)^{\frac{R}{c_{p,m}}}}{(p_2)} \tag{14}$$

I oppgaven er c_p opgitt i kJ/Kg. i likning skal må molar varmekapasitet benyttes. c_p regnes derfor om til $c_{p,m}$:

$$c_{p,m} = c_p \cdot Mm_{CO2}^{[15]}$$
 (15)

Det ideellet arbeidet kan da regnes ut med

$$W_s^{rev} = mc_p (T_2 - T_1)^{[16]} (16)$$

Når det ideelle arbeidet er funnet, gjenstår det å finne det arbeidet som omdannes til nyttig trykkøkning. Dette gjøres ved bruk av virkningsgraden.

$$W_s = \frac{W_s^{rev}}{\eta}$$
 (17)

Den ideelle temperaturen ut ved hjelp av (14).

Mellom hver av kompressorene (i trestegskompresjon) er det plassert en kjøler. Kjøleren tar til seg varme fra løsningen som går inn kjøleren, slik at løsningen blir kaldere. Siden kjøleren tar til seg varme, er Q for kjøleren definert som negativ, og kompressjonsarbeidet, Ws er positiv.

Varmearbeidet regnes ut ved hjelp av formlen:

$$Q = mc_p \Delta T^{[18]} \tag{18}$$

Energiendringen etter kompresjon i strøm 9 er blir da

$$\Delta H = Q + W_s^{[19]} \tag{19}$$

3.5.1 Kompresjon i tre steg

Figur 3: tre-stegskompresjon av strøm $9(CO_2)$

For kompresjon ved tre steg endres trykket noe opp for hvert steg. Det er plassert kjølere mellom hver kompressor for å gjøre kompresjonsarbeidet minst mulig. De forskjellige delstrømmene ved trestegskompresjon vil her bli kalt 9,b,c,d,e,f og ut. Temperaturene i strøm 9.b, 9.d og 9.f må regnes ut, for å finne kompresjonsarbeidet i hver av delstrømmene. Dette gjøres ved å manipulere (14).

$$T_b = \frac{(p_9)^{\frac{R}{c_{p,m}}}}{(p_b)} \cdot T_9$$

$$T_d = \frac{(p_d)^{\frac{R}{c_{p,m}}}}{(p_c)} \cdot T_c$$

$$T_f = \frac{(p_f)^{\frac{R}{c_{p,m}}}}{(p_e)} \cdot T_e$$

Fra disse temperaturene regnes det ideelle arbeidet i de tre stegene, gitt ved (16).

$$W_{s,1}^{rev} = m_{CO2} \cdot c_p (T_b - T_9)$$

$$W_{s,2}^{rev} = m_{CO2} \cdot c_p (T_d - T_c)$$

$$W_{s,3}^{rev} = m_{CO2} \cdot c_p (T_f - T_e)$$

For å finne det totale kompresjonsarbeidet legges disse sammen.

$$W_s^{rev} = W_{s,1}^{rev} + W_{s,2}^{rev} + W_{s,3}^{rev}$$

Reellt arbeid må også regnes ut for hver av de ideelle arbeida i prosessen. Dette gjøres ved (16). $W_{s,1}, W_{s,2}, W_{s,3}$ regnes ut.

Videre kan den reelle tempraturen i hvert steg regnes ut ved å gjøre om på (16)

$$T_b I = T_9 + \frac{W_{s,1}}{m_{CO2} \cdot c_p}$$

$$T_d I = T_c + \frac{W_{s,2}}{m_{CO2} \cdot c_p}$$

$$T_f I = T_e + \frac{W_{s,3}}{m_{CO2} \cdot c_p}$$

Q for hver kjøler regnes også ut ved (18).

$$Q_1 = m_{CO2}c_p(Tc - TbI)$$

$$Q_2 = m_{CO2}c_p(Te - TdI)$$

$$Q_1 = m_{CO2}c_p(Tut - TfI)$$

Tilslutt regnes energiforbruket ut v.h.a. å legge sammen Q og bruke (19).

$$Q = Q_1 + Q_2 + Q_3$$

3.5.2 Kompresjon i ett steg

Figur 4: Ett-stegskompresjon av strøm $9(CO_2)$

Kompresjon i ett steg har samme fremgangsmåte som ved tre steg, men her er det kun en ukjent temperatur. Det er ingen mellomkjøling i kompresjonen. Trykkøkningen går direkte fra 2 bar til 20 bar. Kompresjonsarbeidet forventes derfor å være høyere i dette steget, enn det er for hvert av stegene i i trestegskompresjon. Det skal regnes ut en reell temperatur, et reelt arbeid, ideellt arbeid, en ideell temperatur, et arbeid og energiendringen ved ett-stegskompresjon.

4 Resultater og diskusjon

4.1 Prosessdata ved gitte betingelser

Den ukjente temperaturen og entalpiene er beregnet i MATLAB-filen streams.m(vedlagt). For å renge entalpiene i strøm 3 til 7 ble først likningen for varmekapasitet som funksjon av temperatur for væsken i prosessen og absorbert CO₂^[20] og varmekapasitet for MEA-løsning^[21] benyttet i MATLAB funksjonene getEnthalpyMEAsol.m og getIntCpCO2.m (begge vedlagt),deretter ble likningen for entalpi for MEA-løsning med CO₂ benyttet^[22] fra oppgavesettet benyttet. Entalpiene i strøm 1,2,8 og 9 ble så regnet ut ^[23] og brukt i MATLAB-filen streams.m. Utregning av temperaturen i strøm 7 mislyktes (se forklaring i MATLAB-filen residual2.m(vedlagt)) Vi har satt inn en plausibel temperatur og brukt den til senere beregninger.

4.1.1 Massefraksjoner

Massefraksjonene virker fornuftige. Strøm 1 er oppgitt i oppgaven. I strøm 2 har massefraksjonen til CO_2 gått ned og massefraksjonene til de andre

Tabell 2: Data for hovedstrømmer i post-combustion CO_2 -fangst

Strøm	Т	р	h	masse	$CO_2(g)$	$H_2O(g)$	$N_2(g)$	$O_2(g)$	MEA	CO_2
-	K	bar	kJ/kg	kg/s	wf	wf	wf	wf	wf	wf
1	313	1	-1136	500	0.09	0.03	0.79	0.09	0	0
2	313	1	-537	464	0.0194	0.0323	0.8513	0.097	0	0
3	313	1	-13381	518.3	0	0	0	0	0.2896	0.0346
4	328	1	-13035	554.3	0	0	0	0	0.2708	0.0973
5	379	2	-12849	554.3	0	0	0	0	0.2708	0.0973
6	393	2	-13078	518.3	0	0	0	0	0.2896	0.0346
7	343	2	-13276	518.3	0	0	0	0	0.2896	0.0346
8	379	2	-9802	42.4	0.85	0.15	0	0	0	0
9	298	2	-9170	36	1	0	0	0	0	0

komponentene gått opp som følge av at CO_2 i strøm 1 har blitt tatt opp i MEA-løsningen i strøm 4. H_2O gass, N_2 gass og O_2 gass går rett ut i strøm 2, så strømmene videre inneholder ikke det. Strøm 5 har lik massefraksjon som strøm 4 siden det bare har skjedd en endring i temperatur. Strøm 6 har lavere massefraksjon av CO_2 og høyere av MEA på grunn av en stor andel av CO_2 har gått ut i strøm 8. Videre i strøm 7 og 3 skjer det kun endringer i temperaturen. CO_2 gass og litt H_2O gass som har skilt seg fra MEA-løsningen i stripperen går ut i strøm 8. Og strøm 9 inneholder bare CO_2 gass, siden det har blitt skilt fra H_2O .

4.1.2 Massestrømmer

Massestrømmene ser ut til å stemme godt. Strøm 1 er oppgitt i oppgaven. I strøm 2 har noe av CO_2 gått over i strøm 4, så den er lavere.

Fra strøm 4 til strøm 5 endres ikke massestrømmen, bare temperaturen. I strøm 6 er massefraksjonen lavere på grunn av mye av CO_2 har gått ut i strøm 8.

Videre i strøm 7 og 3 er det bare temperaturen som endres. I strøm 8 er det CO_2 gass og litt H_2O gass, og strøm 9 har H_2O blitt fjernet. Det er like mye MEA-løsning i alle strømmene som inneholder det. Differansen av CO_2 i strøm 1 og 2 er like differansen av CO_2 i strøm 3 og 4. Differansen av CO_2 i strøm 5 og 6 er lik massestrømmen i strøm 9.

4.1.3 Entalpier

Entalpiene gir mening. I strøm 1 og strøm 2 er det kun H_2O og CO_2 som innvirker på entalpien. Selv om

 CO_2 kun utgjør en liten andel av massene i strøm 1 og strøm 2, vil endringen entalpi fra strøm 1 til strøm 2 alikevel gi et større utslag. I strøm 3-7 vil entalpien være mye lavere fordi disse strømmene inneholder både CO_2 og MEA som vil reagere eksotermt i kontakt med hverandre. I denne prosessen vil MEA-løsningen absorbere CO_2 i størst grad når temperaturen er lav, derfor vil entalpiendringen fra strøm 4 til strøm 5 øke fordi reaksjonen blir forskjøvet mot venste når temperaturen øker. (2) Strøm 4 og 5 er ikke sammenlignbare med strøm 6,7 og 3 fordi de inneholder ulike mengder CO_2 . Fra strøm 6 til 7 minker entalpien fordi temperaturen synker, samme gjelder fra strøm 7 til strøm 3. I strøm 8 er det både CO_2 og H_2O mens i strøm 9 er det kun CO_2 . Til tross for at strøm 9 er kaldere enn strøm 8 vil entalpien være minst i strøm 8 da den inneholder H_2O .

4.1.4 Oppsummering

Alt i alt ser dataene ut til å stemme. Massestrømmene stemmer i forhold til massebalansene vi har basert de på. Ingen masse forsvinner under prosessen og ingenting blir dannet. Massefraksjonene i tabell 2 summeres til å bli 1 (med unntak av massestrømmene 3 til 7 fordi vannet ikke er medregnet i vår tabell). Massefraksjonene øker når de skal øke, og minker når de skal minke. Entalpiene gir mening i forhold til hverandre.

4.2 Energiforbruk i stripper med tilhørende koker og kjøler

Energiforbruket i kjøleren er regnet ut med (7) i MATLAB-filen streams.m(vedlagt). Energiforbruket i kokeren er regnet ut med (8) i samme fil. Resultatet er:

$$Q_{V-3} = -3,3451 \cdot 10^4$$

$$Q_{V-4} = 2,4052 \cdot 10^4$$

Kjøleren bruker i utgangspunktet mindre energi enn kokeren, siden den skal kjøle ned mye mindre masse enn kokeren skal varme opp, men differansen i temperatur er mye høyere i kjøleren enn i kokeren, så energiforbruket i kjøleren blir større enn i kokeren, sett bort fra fortegn. Energiforbruket i kokeren og kjøleren har ulikt fortegn. Siden negativ Q er definert som varme inn og positiv Q som varme ut, stemmer det bra at kokeren har positivt energiforbruk, siden den gir varme til strømmen, mens kjøleren har negativt energiforbruk, siden den tar til seg varme fra strømmen.

4.3 Varmeveksling i prosessen

Bruker (9) til å regne ut nødvendig varmeoverføringsareal A $[m^2]$ i V-1. Først regnes lmT ut ved (11).

$$T2 = (70 - 55)K = 15K$$

$$T1 = (120 - 106)K = 14K$$

$$lmT = \frac{(15 - 14)}{ln_{\frac{15}{14}}^{\frac{15}{14}}}$$

U er gitt i konstantfilen. Finner Q ved (10):

$$Q = \Delta H = h_6 \cdot m_6 - h_7 \cdot m_7 = -1.3078 \cdot 10^4 \cdot 518.2967 - 1.3276 \cdot 10^4 \cdot 518.2967 = 1.02622 \cdot 10^8 W$$

Setter dette inn i formel uteledet fra (9) og får følgende:

$$A = \frac{(1.02622 \cdot 10^8)}{1150} \frac{W}{m^2 \cdot K} \frac{\cdot (15 - 14)}{\ln \frac{15}{14}} = 6157m^2 = 6.2 \cdot 10^3 m^2$$

Utregningen viser at nødvendig varmeoverføringsareal i kjøler V-1 er 6.2*10^3 m^2. Dette er regnet ut ved å bruke en temperatur i strøm 7 lik 343 K. Som nevnt tidligere ble det ikke funnet en realistisk temperatur for strøm 7. Temperaturen som er brukt i utregning for nødvendig masseareal er kun estimert, og svaret er derfor ikke nødvendigvis helt korrekt, men mest sannsynlig litt for lavt. Resultatet virker likevel ikke helt usannsynlig med tanke på at det går inn 1073 kg/s (m6+m4) i varmeveksleren, og det krever stort varmeoverføringsareal. Resultatet ble relativt stort, men tolkes som for lavt for det nødvendige behovet.

Regner ut Q:

 $Q = \Delta H_{3,7} = (-13276*518.3)-(-13381*518.3) = 544421.5 \text{ kJ/kg}$ Finner c_p ved hjelp av matlabfunksjonen getCpH2O.m(vedlagt) med T(10) = 278 K som parameter, $c_p = 4.19 \text{ kJ/kg*K}$. $\Delta T = T(11) - T(10) = (298-278) \text{K} = 20 \text{ K}$ Bruker (12) til å regne ut nødvendig strømningsrate:

$$m = \frac{544421.5kJ/kg}{4.19kJ/(kg*K) \cdot 20K} = 650kg/s$$

Utregningen viser nødvending strømningsrate for kjølemediet ($\rm H_2O$ (l)) for kjøler V-2. Dette resultatet virker fornuftig med tanke på at en strøm på ca. 518 kg/s skal kunne kjøles ned fra 343 K til 313 K, med andre ord 30 K. Dette krever mye kjølemedium, og resultatet virker derfor logisk. Det skal også her poengteres at temperaturen til strøm 7 kun er estimert, så hvor mange Kelvin strømmen faktisk skal kjøles ned er usikkert.

4.4 Kompresjon av CO_2

For ett- og trestegskompresjon av CO_2 ble alle svar regnet ut ved hjelp av MATLAB-filen compressor.m.(vedlagt) Der brukes de samme likningene som er er vist i 3.5 Kompresjon av produktstrøm Tilsvarende ble gjort for ett-stegskompresjon.

Trykk og temperatur for kompresjon i tre steg:

 $P_9 = 2 \text{ bar } T_9 = 273 \text{K}$

 $P_9.b=9 \text{ bar } T_9.b=?$

 $P_9.c = 4 \text{ bar } T_9.c = 303 \text{K}$

 $P_9.d = 8 \text{ bar } T_9.d = ?$

 $P_{9}.e = 8 \text{ bar } T_{9}.e = 303 \text{K}$

 $P_9.f = 20 \text{ bar } T_9.f = ?$

Trykk og temperatur for kompresjon i tre steg:

 $P_9 = 2 \text{ bar } T_9 = 273 \text{K}$

 $P_9.b = 20 \text{ bar } T_9.b = ?$

 $P_9.ut = 20 \text{ bar } T_9.c = 303K$

At de reelle temperaturene og kompresjonsarbeidet er endel høyere enn de ideelle temperaturene stemmer godt, ettersom virkningsgraden i prosessen

_	ideell T [K]	\mathbf{W}_{s}^{rev} [KJ]	W_s [KJ]	reell T [K]	Q [KJ]	ΔH
tre-stegskompresjon						
steg 1 steg 2 steg 3	413.4 352.3 369.9	3606 1540 2090	4242 1812 2458	433 361 382	-4087 -1814 -2458	
totalt(3 steg)		7234	8510		-8359	156
ett-stegskompresjon						
_	491.8	6058	7127	526	-6971	159

kun er på 0.85. Det er altså en god del av kompresjonsarbeidet som ikke utnyttes.

Kjølerne er som sagt plassert for å minske kompresjonsarbeidet. Kjølerne tar til seg varme, og det blir derfor rett at Q er negativ. I en ideell kompressor vil likning likning(20) gi $\Delta H=0$, mens det i denne oppgaven er en entalpiendring på ca 156 KJ. Dette kan være fordi det reelle kompresjonsarbeidet gir en så høy temperatur at ikke kjøleren klarer å ta til seg all varmen som blir dannet.

Det totale reelle kompresjonsarbeidet som ble utført ved tre-stegs-kompresjon er i følge utregningene 8510 KJ, mens det totale reelle arbeidet som ble utført ved ett-stegs kompresjon var på 7217 KJ. Ideelt sett skal det lønne seg å kjøle mest mulig, da det skal føre til en reduksjon i kompresjonsarbeidet. Selv om det totale kompresjonsarbeidet her ble større ved tre steg, viser svarene likevel at dette lønner seg. Temperaturen etter kompresjon er en god del høyere ved ett steg enn tre steg.

4.5 Partialtrykk av CO_2 i gassfase

Loading er gitt ved likning (3).

Antar at temperaturen er konstant. Ut fra ligningen for p_{CO_2} i gassfase, og formelen for loading kan man finne ut om p_{CO_2} i gassfase vil øke eller minke med økende mengde absorbert CO_2 . Økende [CO2]absorbert vil gi en økende α . Hvis α blir større vil

$$\frac{[K_H \cdot \alpha^2]}{K_2 \cdot (1 - 2\alpha)^2}$$

bli mindre og omvendt. Grunnen til at partialtrykket for CO_2 blir mindre dersom α øker er at det absorberes mer CO_2 av MEA-løsningen med økende α og da vil trykket bli mindre. Dette er også testet med MATLAB-filen trykk.m. Dermed vil partialtrykket for CO_2 i gassfase minke med økende mengde absorbert CO_2 i væskefasen.

Ved å bruke ligningen for p_{CO_2} (6) og tilleggsdata i tabell 3 og tabell 4 ^[24] ble p_{CO_2} i gassfase ved ulike temperaturer regnet ut. Partialtrykket viste seg å minke ved minkende temperatur. Dette kommer av at når temperaturen minker vil K_H minke mer enn K_2

Henrys konstant som funksjon av temperatur og loading for CO_2 i MEA er gitt ved [25]:

$$K_H(T[K], \alpha)[-]) = (c_1 + c_2 \alpha T^{-1})e^{c_3 \alpha^2 + c_4 T^{-1} + c_5 \alpha T^{-1}}$$

5 Konklusjon

I underkapittel 4.1.4 konkluderes det med at massestrømmene stemmer i forhold til massebalansene som de er basert på. Konklusjonen er basert på at ingen masse forsvinner eller dannes under prosessen. Det konkluderes også med at massefraksjonene stemmer. Entalpiene ser også ut til å stemme i forhold til hverandre. Dermed kan det konkluderes med at dataene i tabellen ser ut til å være korrekt. Dette er med unntak av temperaturen i strøm 7. Den korrekte temperaturen til strøm 7 ble ikke funnet, og er derfor kun estimert til 343 K. Det er dermed også en usikkerhet rundt resultatene som er regnet ut med utgangspunkt i temperaturen i strøm 7, som er nevnt i blant annet delkapittel 4.3 Varmeveksling i prosessen.

I samme delkapittel viser utregningen at nødvendig varmeoverføringsareal i varmeveksler V-1 er $6.2*10^{\circ}3$ m $^{\circ}2$. Temperaturen som er brukt i utregning for nødvendig varmeoverføringsareal er som sagt estimert. Det konkluderes med at resultatet ble relativt stort, men at det fortsatt er litt for lavt.

Nødvendig strømningsrate for kjøler V-2 ble regnet ut til 650 kg/s med H_2O (l). Det ble konkludert med at dette var et fornuftig resultat med tanke på hvor stor mengde og hvor mye denne strømmen skulle nedkjøles.

Energiforbruket i kjøleren og kokeren knyttet til stripperen er regnet ut til å være forholdsvis likt, men med forskjellig fortegn siden de gjør den motsatte prosessen av hverandre. Det totale energiforbruket i stripperen er $2.4052*10^4$ kJ/s, som er et realativt høyt energibehov.

For kompresjonen ved ett steg økte temperaturen en god del mer enn ved tre steg. Kompresjonsarbeidet for hver kompressor var også en god del lavere ved tre steg enn ved ett, noe som viser at det kan lønne seg å komprimere ved tre steg enn i ett siden temperaturen holder seg lavere.

Ut i fra beregninger viste partialtrykket til CO_2 seg å minke ved minkende temperatur. Hvis loadingen ble større ville trykket av CO_2 bli mindre, og dermed partialtrykket til CO_2 minke med økende mengde absorbert CO_2 i væskefasen.

 CO_2 -fangst er veldig bra for miljøet, siden CO_2 bidrar til globaloppvarming, som igjen gir store klimaendringer. I prosessen der CO_2 fanges går det med mye energi, det jobbes derfor med å finne en løsning som bruker minst mulig energi. Energien i prosessen går til varmeveksleren, kjølerne og kokeren.

Referanser

- [1] Forelesningsslides $\it CO2\textsubscript{-}absorpsjon$ og lagring på itslearning, NTNU. side 9
- [2] oppgavesett gitt i oppgaven, del 1 Kjemien bak
- [3] SINTEF Post-combustion CO₂ capture by amine absorption (Figur side 13) Forelesningsslides "CO₂-absorpsjon og lagringpå itslearning, NTNU.
- [4] oppgavesett gitt i oppgaven likning(1)
- [5] oppgavesett gitt i oppgaven likning(2)
- [6] Forelesningsslides *CO2-absorpsjon og lagring* på itslearning, NTNU. side 16
- [7] oppgavesett gitt i oppgaven likning(3)
- [8] oppgavesett gitt i oppgaven likning(5)
- [9] oppgavesett gitt i oppgaven likning(4)
- [10] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave, likning (5.13)
- [11] Skogestad,S., Prosessteknikk Masse-og energibalanser, 3.utgave likning (5.8)
- [12] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave (5.2)
- [13] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave (5.7)
- [14] Skogestad,S., Prosessteknikk Masse-og energibalanser, 3.utgave, likning (6.8)
- [15] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave, side 4
- [16] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave, likning (6.16)
- [17] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave, likning (6.2)
- [18] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave, likning (5.7)

- [19] Skogestad, S., Prosessteknikk Masse-og energibalanser, 3. utgave, likning (6.1)
- [20] Oppgavesett gitt i oppgaven likning(9)
- [21] Oppgavesett gitt i oppgaven likning(10)
- [22] Oppgavesett gitt i oppgaven likning(A.6)
- [23] Oppgavesett gitt i oppgaven likning(A.39)
- [24] Oppgavesett gitt i oppgaven tabell 3+4
- [25] Oppgavesett gitt i oppgaven likning(8)