İstatistiksel Dağılımlar

Deniz Balcı

24-09-2019

Contents

1	Kes	ikli Dağılımlar 3
	1.1	Bernoulli Dağılımı
		1.1.1 Olasılık Fonksiyonu
	1.2	Binom Dağılımı
		1.2.1 Olasılık Fonksiyonu
	1.3	Çok terimli dağılım
		1.3.1 Olasılık Fonksiyonu
	1.4	Geometrik dağılım
		1.4.1 Olasılık Fonksiyonu
	1.5	Negatif Binom dağılımı
		1.5.1 Olasılık Fonksiyonu
	1.6	Hipergeometrik Dağılım
		1.6.1 Olasılık Fonksiyonu
	1.7	Poisson Dağılımı
		1.7.1 Olasılık Fonksiyonu 4
2	Siir	ekli Dağılımlar 4
_	2.1	Normal Dağılım
	2.1	2.1.1 Olasılık Yoğunluk Fonksiyonu
	2.2	Sürekli Uniform Dağılım
	2.3	Üstel Dağılım
	2.0	2.3.1 Olasılık Yoğunluk Fonksiyonu 4
	2.4	Gama Dağılımı
	2.1	2.4.1 Olasılık Yoğunluk Fonksiyonu 4
	2.5	Beta Dağılımı
	2.0	2.5.1 Olasılık Yoğunluk Fonksiyonu
	2.6	T Dağılımı
	2.0	2.6.1 Olasılık Yoğunluk Fonksiyonu
	2.7	Ki-kare Dağılımı
	2.,	2.7.1 Olasılık Yoğunluk Fonksiyonu
	2.8	Cauchy Dağılımı
	2.0	2.8.1 Olasılık Yoğunluk Fonksiyonu
	2.9	LogNormal Dağılım

	2.9.1	Olasılık Yoğunluk Fonksiyonu	5
3	kaynakça		6

1 Kesikli Dağılımlar

1.1 Bernoulli Dağılımı

1.1.1 Olasılık Fonksiyonu

$$f(x) = p^{x} \cdot (1 - p)^{1 - x}, x = 0, 1$$

$$E[x] = p, Var[X] = p(1 - p), MX(t) = 1 - p + p.e^{(t)}$$

$$\omega X(t) = 1 - p + p.e^{(t)}$$

1.2 Binom Dağılımı

1.2.1 Olasılık Fonksiyonu

$$\binom{n}{r}.p^{x}.(1-p)^{1-x}, x = 0.1....n$$

$$E[X] = NP, Var[X] = np(1-p), MX(t) = (1-p+p^{e}(t))^{n}$$

$$\omega X(t) = (1-p+p.e^{(it)})^{n}$$

1.3 Çok terimli dağılım

1.3.1 Olasılık Fonksiyonu

$$\left(\frac{n!}{x1!....xk!}\right).p^{x1}...p^{xk}, xi = 0, 1, 2..., i = 1, 2, 3...k$$

1.4 Geometrik dağılım

1.4.1 Olasılık Fonksiyonu

$$\begin{split} f(x) &= p.q^{x-1}, x = 1, 2, \dots \\ E[X] &= \frac{1-p}{p}, Var[X] = \frac{1-p}{p^2}, \\ MX(t) &= \frac{p}{1-(1-p)e^t}, \omega X(t) = \frac{p}{1-(1-p)e^t} \end{split}$$

1.5 Negatif Binom dağılımı

1.5.1 Olasılık Fonksiyonu

$$\left(\begin{array}{c} x-1\\ r-1 \end{array}\right).p^k.(1-p)^{x-k}, x=k,k+1$$

1.6 Hipergeometrik Dağılım

1.6.1 Olasılık Fonksiyonu

$$\frac{\binom{a}{x}\binom{N-a}{n-x}}{\binom{N}{n}}, x=0,1,2,....,n$$

$$E[X]=npVar[x]=npq\frac{N-n}{N-1}, \mu 3=npq(q-p)\frac{(N-n)(N-2n)}{(N-1)(N-2)}$$

$$\mu 4$$

1.7 Poisson Dağılımı

1.7.1 Olasılık Fonksiyonu

$$\begin{split} P\left(x\right) &= \frac{e^{-\lambda}\lambda^{x}}{x!} \text{ x=0,1....} \\ \text{E[X]=}\lambda, \text{ Var[X]=}\lambda, MX(t) &= e^{\lambda[e^{t}-1]} \\ , &\omega X(t) &= e^{\lambda[e^{t}-1]} \end{split}$$

2 Sürekli Dağılımlar

2.1 Normal Dağılım

2.1.1 Olasılık Yoğunluk Fonksiyonu

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

2.2 Sürekli Uniform Dağılım

$$f(x) = \frac{1}{b-a}$$
,a \leq x \leq b

2.3 Üstel Dağılım

2.3.1 Olasılık Yoğunluk Fonksiyonu

$$\begin{array}{l} \lambda e^{(-\lambda x)}, x = [0, \infty) \\ E[X] = \frac{1}{\lambda}, Var[X] = \frac{1}{\lambda^2}, Mx(t) = \frac{\lambda}{\lambda - it} \\ \omega X(t) = \frac{\lambda}{\lambda - it} \end{array}$$

2.4 Gama Dağılımı

2.4.1 Olasılık Yoğunluk Fonksiyonu

$$\begin{split} f(x) &= cx^{n/2-1}.e^{(-\frac{n}{h}.\frac{1}{2}X)}, x \geq 0 \\ E[X] &= h, Var[X] = 2.\frac{h^2}{n}, MX(t) = (1 - \frac{2h}{n}t)^{-\frac{n}{2}} \end{split}$$

$$\omega X(t) = (1 - \frac{2h}{n}t)^{-\frac{n}{2}}$$

2.5 Beta Dağılımı

2.5.1 Olasılık Yoğunluk Fonksiyonu

$$B(u,v) = \int_0^1 .x^{u-1}.(1-x)^{v-1}.dx$$

2.6 T Dağılımı

2.6.1 Olasılık Yoğunluk Fonksiyonu

$$f(x) = \frac{(1 + \frac{x^2}{\nu})^{\frac{-(\nu+1)}{2}}}{B(0.5, 0.5\nu)\sqrt{\nu}}$$

2.7 Ki-kare Dağılımı

2.7.1 Olasılık Yoğunluk Fonksiyonu

$$\begin{array}{l} f(x)=cx^{n/2-1}.e^{(-\frac{1}{2}X)}, x=[0,\infty) \\ E[X]=n, Var[X]=2n, MX(t)=(1-2t)^{-\frac{n}{2}} \\ \omega X(t)=(1-2it)^{-\frac{n}{2}} \end{array}$$

2.8 Cauchy Dağılımı

2.8.1 Olasılık Yoğunluk Fonksiyonu

$$f(x) = \frac{1}{\pi(1+(x-\theta)^2)} \infty \ge x \ge \infty, \theta \in R$$

2.9 LogNormal Dağılım

2.9.1 Olasılık Yoğunluk Fonksiyonu

$$f(x) = \frac{e^{-((\ln x)^2/2\sigma^2)}}{x\sigma\sqrt{2\pi}} \quad x > 0; \sigma > 0$$

$$E[X] = e^{\mu + \frac{1}{2}.\sigma^2}, Var[X] = e^{2\mu + 2.\sigma^2} - e^{2\mu + \sigma^2}$$

$$E[X^N] = e^{(n\mu + \frac{1}{2}n^2\sigma^2)}$$

kaynakça 3

 $1. https://www.statlect.com/probability-distributions/\\ 2. https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm$