Homework Sheet 3

Author: Abdullah Oğuz Topçuoğlu

Exercise 9

We are given the function:

$$f(x_1, x_2) := \begin{cases} \frac{x_1^2 x_2}{x_1^2 + x_2^2}, & (x_1, x_2) \neq (0, 0) \\ 0, & (x_1, x_2) = (0, 0) \end{cases}$$

(i)

To show that f is continuous at the point (0,0), we need to verify that every sequence $(x_1^{(n)},x_2^{(n)})$ converging to (0,0), $f(x_1^{(n)},x_2^{(n)})$ also converges to f(0,0) = (0,0).

Fix a sequence $(x_1^{(n)}, x_2^{(n)})$ such that $(x_1^{(n)}, x_2^{(n)}) \to (0, 0)$.

Then, we have:
If
$$(x_1^{(n)}, x_2^{(n)}) \neq (0, 0)$$

$$\begin{split} |f(x_1^{(n)}, x_2^{(n)}) - f(0, 0)| &= \left| \frac{(x_1^{(n)})^2 x_2^{(n)}}{(x_1^{(n)})^2 + (x_2^{(n)})^2} - 0 \right| \\ &= \left| \frac{(x_1^{(n)})^2 x_2^{(n)}}{(x_1^{(n)})^2 + (x_2^{(n)})^2} \right| \\ &\leq \left| \frac{(x_1^{(n)})^2 x_2^{(n)}}{(x_1^{(n)})^2} \right| \quad (\text{since } (x_1^{(n)})^2 + (x_2^{(n)})^2 \ge (x_1^{(n)})^2) \\ &= |x_2^{(n)}| \end{split}$$

 $|x_2^{(n)}| \to 0 \text{ since } (x_1^{(n)}, x_2^{(n)}) \to (0, 0). \text{ Therefore } f(x_1^{(n)}, x_2^{(n)}) \to (0, 0).$

If
$$(x_1^{(n)}, x_2^{(n)}) = (0, 0)$$

$$|f(x_1^{(n)}, x_2^{(n)}) - f(0, 0)| = |0 - 0| = 0$$

which also converges to 0.

Thats what we wanted to show.

(ii)

We need to show that the following limit doesn't converge to zero

$$\lim_{x \to 0} \frac{f(x) - f(0) - Jf(0)x}{\|x\|}$$

The J is the Jacobian matrix.

$$J = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}$$

Lets compute the partials at (0, 0)

$$\begin{split} \frac{\partial f}{\partial x_1}(0,0) &= \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0 \\ \frac{\partial f}{\partial x_2}(0,0) &= \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0 \end{split}$$

Thus, the Jacobian matrix at (0, 0) is:

$$Jf(0,0) = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Substituting this into our limit we get

$$\lim_{x \to 0} \frac{f(x) - f(0)}{\|x\|}$$

We also know that f(0) = 0, so we can simplify this to:

$$\lim_{x \to 0} \frac{f(x)}{\|x\|}$$

So it is enough if i can show a vector x where this limit is not zero. Lets choose $x = (x_1, x_1)$. Then we have:

$$\lim_{x_1 \to 0} \frac{f(x_1, x_1)}{\|(x_1, x_1)\|} = \lim_{x_1 \to 0} \frac{\frac{x_1^2 x_1}{x_1^2 + x_1^2}}{\sqrt{x_1^2 + x_1^2}}$$

$$= \lim_{x_1 \to 0} \frac{\frac{x_1^3}{2x_1^2}}{\sqrt{2}|x_1|}$$

$$= \lim_{x_1 \to 0} \frac{x_1}{2\sqrt{2}|x_1|}$$

$$= \lim_{x_1 \to 0} \frac{1}{2\sqrt{2}} \cdot \frac{x_1}{|x_1|}$$

This limit doesnt even exist so it cant be equal to zero. Thats what we wanted to show.