Package 'QGARCH'

October 2, 2022

Type Package	
Title Quantile autoregressive conditional heteroscedasticity	
Version 1.0.0	
Date 2022-09-26	
Author Songhua Tan	
Maintainer Songhua Tan <tansonghua@163.sufe.edu.cn></tansonghua@163.sufe.edu.cn>	
Description Programs of the quantile GARCH model in Zhu, Q., Tan, S., Zheng, Y and Li	, G.(2022+)
License GPL (>= 2)	
Encoding UTF-8	
LazyData true	
Depends Rcpp,RcppEigen,parallel,rugarch,dfoptim	
LinkingTo Rcpp,RcppEigen	
RoxygenNote 7.2.0	
ASD_QR	
const_test	
fit1_optim_grid	
fit2_optim	7
g_tau Loss_CQR Loss_CQR_gr	8
Loss_QR Loss_QR_gr	9
q_y	11 12
weight_function_HeYi2021_cpp	12 14

const_test

ASD_QR

Compute ASD and related covariances of QR estimation

Description

Compute ASD, Ω_{0w} , Ω_{1w} and Σ_w of QR estimation

Usage

```
ASD_QR(parm, Y, w, tau, h_type = "HS")
```

Arguments

parm Vector. Parameter vector. $(\omega(\tau), \alpha_1(\tau), \beta_1(\tau))'$.

Y Vector. Data.

W Vector. Self-weights.

tau Double. Specific quantile level (τ) .

h_type Character ("HS" or "B"). The commonly used bandwidth types for ℓ to estimate the asymptotic covariance $\Sigma_w(\tau)$ at Theorem 3.3. The default value is "HS"

Value

A list of ASD and related covariances of QR estimation.

- ASD: 3-dim vector. The asymptotic standard errors (ASD) of the corresponding parameter vector.
- Omega_0: 3×3 matrix. $\widetilde{\Omega}_{0w}(\tau,\tau) = \frac{1}{n} \sum_{t=1}^n w_t^2 \dot{\widetilde{q}}_t \left(\widetilde{\theta}_{wn}(\tau) \right) \dot{\widetilde{q}}_t \left(\widetilde{\theta}_{wn}(\tau) \right)$.
- Omega_1: 3×3 matrix. $\widetilde{\Omega}_{1w}(\tau) = \frac{1}{n} \sum_{t=1}^{n} \widetilde{f}_{t-1} \left(F_{t-1}^{-1}(\tau) \right) w_t \dot{\widetilde{q}}_t \left(\widetilde{\boldsymbol{\theta}}_{wn}(\tau) \right) \dot{\widetilde{q}}_t \left(\widetilde{\boldsymbol{\theta}}_{wn}(\tau) \right)$.
- Sigma: 3×3 matrix. $\widetilde{\Sigma}_w(\tau,\tau) = \tau(1-\tau)\widetilde{\Omega}_{1w}^{-1}(\tau)\widetilde{\Omega}_{0w}(\tau,\tau)\widetilde{\Omega}_{1w}^{-1}(\tau)$.

const_test

The Cramér-von Misses (CvM) test

Description

The Cramér-von Misses (CvM) test for constant persistence coefficient

Usage

```
const_test(Y, w, tau_multi, parm_multi, Omega_1_multi, b = NA)
```

fit1_optim 3

Arguments

Y Vector. Data.

w Vector. Self-weights.

tau_multi Vector(k-dim). Multiple quantile levels.

parm_multi Matrix $(k \times 3)$. Each row in parm_multi represents a parameter estimate in

corresponding quantile levels.

 ${\tt Omega_1_multi} \quad {\tt Array} (k\times 3\times 3). \ {\tt Each \ Omega_1_multi[i,,]} \ {\tt i=1,\ldots,k} \ {\tt represents} \ {\tt The \ estimate 1}.$

mate of $\hat{\Omega}_{1w}$ in the corresponding quantile level.

b Int. The block size for subsampling. If b=NA, $b == \sqrt{length(Y)}$.

Details

This function provides a test for constant persistence coefficient.

 H_0 : for all $\tau \in \mathcal{T}$, $R\theta(\tau) = \beta_1$ against H_1 : there exist $\tau \in \mathcal{T}$, $R\theta(\tau) \neq \beta_1$,

where R=(0,0,1) is a row vector, and $\beta_1\in(0,1)$ is an unknown constant independent of τ . If the null hypothesis H_0 holds, then $\beta_1(\tau)$ does not vary cross quantiles.

Define the inference process $\nu_n(\tau) = R\left(\tilde{\theta}_{wn}(\tau) - \int_{\mathcal{T}} \tilde{\theta}_{wn}(\tau) d\tau\right)$. To test H_0 , the CvM test statistic is constructed as follows

$$S_n = n \int_{\mathcal{T}} \nu_n^2(\tau) d\tau.$$

Value

A list of test results.

• stat_CvM: the CvM test statistic

• stat_b_CvM: the CvM test statistics in each step of subsampling

• p_value: p-value of the CvM test

· information: summary information

fit1_optim An optimization function of self-weighted QR estimation given fixed initial value.

Description

This function provide an optimization function of self-weighted QR with a fixed initial value. Either method, derivative optimization using stats::optim() or derivative-free optimization using dfoptim::hjkb(), can be used. To avoid error or non-convergence in optimization, we add an innovation to the initial value and re-optimize this problem. If the optimization fails on the fixed initial value, a more complicated optimization function fit1_optim_grid based on greedy search.

4 fit1_optim

Usage

```
fit1_optim(
  par = NULL,
  Y,
  w,
  tau,
  lower = c(NA, NA, 0.001),
  upper = c(NA, NA, 1 - 0.001),
  method = "optim",
  iter_max_1 = 10,
  iter_max_2 = 20,
  seed = 1234
)
```

Arguments

par Vector. Initial value for optimization.

Y Vector. Data.

w Vector. Self-weights.

tau Double. Specific quantile level.

lower Vector. Lower bound for parameter. The default value is c(NA, NA, 1e-3).

upper Vector. Upper bound for parameter. The default value is c(NA, NA, 1-1e-3).

method Character. If method="optim", derivative optimization by stats::optim() is

used. If method="dfoptim", derivative-free optimization by dfoptim::hjkb()

is used.

iter_max_1 Int. If the optimization function does not converge or the parameter is at the

boundary, then re-optimize. Maximum number of repetitions of this step is

iter_max_1.

iter_max_2 Int. If the condition in iter_max_1 cannot be satisfied, then relax the boundary

condition and estimate again. Maximum number of repetitions of this step is

iter_max_2-iter_max_1.

seed Double. Random seed is used to generate an innovation to perturb the initial

value.

Value

A list of optimization results returned from the optim() or hjkb() function.

Note

1. The selection of initial values.

Since the QGARCH model is extended from the classical GARCH model, the initial value can be chosen based on GARCH model. Specifically,

- Estimate the parameters of GARCH(1,1) model (2.1) with $r_t = \sqrt{|y_t|} \left(sgn(y_t) \right)$ using Gaussian QMLE and $Q_{\tau}(\eta_t)$ using empirical quantile of $\hat{\eta}_t$ based on package rugarch.
- The initial value can be chosen as $\left(\frac{\hat{a}_0}{1-\hat{b}_1}\hat{Q}_{\tau}(\varepsilon_t),\hat{a}_1\hat{Q}_{\tau}(\varepsilon_t),\hat{b}_1\right)$, where $\hat{\varepsilon}_t=\hat{\eta}_t^2sgn(\hat{\eta}_t)$.

fit1_optim_grid 5

2. The necessity of random seed.

To avoid error or non-convergence in optimization, we add an innovation to the initial value and re-optimize this problem, the random seed is set for reproducible results.

Description

This function extends the optimization function fit1_optim() given with a single initial value to multiple initial values. The method is based on greedy algorithm. In this framework, we start by listing all the possible parameter values with interval 1/D. Then the loss function is evaluated at all points, and the points with the least loss are selected as the starting points for our optimization.

Usage

```
fit1_optim_grid(
    Y,
    w,
    tau,
    lower = c(NA, NA, 0.001),
    upper = c(NA, NA, 1 - 0.001),
    D = 10,
    num_best = 10
)
```

Arguments

Υ	Vector. Data.
w	Vector. Self-weights.
tau	Double. Specific quantile level.
lower	Vector. Lower bound for parameter. The default value is $c(NA,NA,1e-3)$.
upper	Vector. Upper bound for parameter. The default value is $c(NA,NA,1-1e-3)$.
D	Int. 1/D is the interval for partition. The default value is 10.
num_best	Int. The number of the selected points. The default value is 10.

Value

A list of optimization results returned from the optim() or hjkb() function.

6 fit2_optim

fit2_optim	An optimization function of self-weighted CQR estimation given fixed initial value.

Description

This function provide an optimization function of self-weighted CQR with a fixed initial value. Either method, derivative optimization using stats::optim() or derivative-free optimization using dfoptim::hjkb(), can be used. To avoid error or non-convergence in optimization, we add an innovation to the initial value and re-optimize this problem. If the optimization fails on initial value, a more complicated optimization function fit2_optim_grid based on greedy search.

Usage

```
fit2_optim(
  par,
  Y,
  w,
  tau,
  lower = c(1e-09, 0.001, 0.001, -Inf),
  upper = c(+Inf, 1 - 0.001, 1 - 0.001, +Inf),
  method = "optim",
  iter_max_1 = 10,
  iter_max_2 = 20,
  seed = 1234
)
```

Arguments

par	Vector. Initial value for optimization.
Υ	Vector. Data.
W	Vector. Self-weights.
tau	Vector. Composite quantile levels.
lower	Vector. Lower bound for parameter vector. The default value is $c(1e-9,1e-3,1e-3,NA)$.
upper	Vector. Upper bound for parameter vector. The default value is $c(NA,NA,1-1e-3,NA)$.
method	Character. If method="optim", derivative optimization by stats::optim() is used. If method="dfoptim", derivative-free optimization by dfoptim::hjkb() is used.
iter_max_1	Int. If the optimization function does not converge or the parameter vector is at the boundary, then re-optimize. Maximum number of repetitions of this step is iter_max_1. The default is 10.
iter_max_2	Int. If the condition in iter_max_1 cannot be satisfied, then relax the boundary condition and estimate again. Maximum number of repetitions of this step is iter_max_2-iter_max_1. The default of iter_max_2 is 20.
seed	Double. Random seed is used to generate an innovation to perturb the initial value.

fit2_optim_grid 7

Value

A list of optimization result returned from the optim() function.

fit2_optim_grid	An optimization function of self-weighted CQR given multiple initial values

Description

This function extends the optimization function fit2_optim() given with a single initial value to multiple initial values. The method is based on greedy algorithm. In this framework, we start by listing all the possible parameter values with interval 1/D. Then the loss function is evaluated at all points, and the points with the least loss are selected as the starting points for our optimization.

Usage

```
fit2_optim_grid(
    Y,
    w,
    tau,
    lower = c(1e-09, 0.001, 0.001, -Inf),
    upper = c(+Inf, 1 - 0.001, 1 - 0.001, +Inf),
    D = 10,
    num_best = 10
)
```

Arguments

Υ	Vector. Data.
w	Vector. Self-weight.
tau	Vector. Composite quantile level.
lower	Vector. Lower bound for parameter vector. The default value is c(1e-9,1e-3,1e-3,+Inf).
upper	Vector. Upper bound for parameter vector. The default value is c(-Inf,-Inf,1-1e-3,-Inf).
D	Int. 1/D is the interval for partition. The default value is 10.
num_best	Int. The number of the selected points. The default value is 10.

Value

A list of optimization result returned from the optim() or hjkb() function.

Loss_CQR

g_tau

Transformation function in CQR

Description

Transformation function in CQR

Usage

```
g_tau(parm_CQR, tau)
```

Arguments

parm_CQR Vector. Parameter vector (4-dim), i.e. $(a_0, a_1, b_1, \lambda)'$.

tau Vector. Observations.

Value

Vector. Transformed parameter vector (3-dim), i.e. $(a_0Q_\lambda(\lambda)/(1-b_1),a_1Q_\lambda,b_1)'$.

Loss_CQR

The loss function of CQR

Description

The loss function of CQR

Usage

```
Loss_CQR(parm, Y, w, tau)
```

Arguments

parm 4-dim vector. $(a_0, a_1, b_1, \lambda)'$.

Y Vector. Data.

w Vector. Self-weights.

tau Vector. Composite quantile levels.

Value

Double. The loss of CQR given a parameter vector

Loss_CQR_gr

Loss	COR	σr
LUSS_	_CVR_	_႘၊

The derivative of CQR loss function

Description

The derivative of CQR loss function

Usage

```
Loss_CQR_gr(parm, Y, w, tau)
```

Arguments

parm Vector (4-dim). $(a_0, a_1, b_1, \lambda)'$.

Y Vector. Data

w Vector. Self-weights.

tau Vector. Composite quantile levels.

Value

Vector. The vector of the gradient of loss function for self-weighted CQR estimation given a parameter vector.

Loss_QR

Loss function for self-weighted QR estimation

Description

Loss function for self-weighted QR estimation

Usage

```
Loss_QR(parm, Y, w, tau)
```

Arguments

parm Vector. Parameter vector (3-dim), i.e. $(\omega(\tau), \alpha_1(\tau), \beta_1(\tau))'$.

Y Vector. Data.

w Vector. Self-weights.

tau Double. Specific quantile level.

Value

Double. The value of the loss function for self-weighted QR estimation given a parameter vector.

10 q_y

Loss	OR	gr
LUSS_	_VI_	

Gradient of the loss function for self-weighted QR estimation

Description

Gradient of the loss function for self-weighted QR estimation

Usage

```
Loss_QR_gr(parm, Y, w, tau)
```

Arguments

parm Vector. Parameter vector (3-dim), i.e. $(\omega(\tau), \alpha_1(\tau), \beta_1(\tau))'$.

Y Vector. Data.

w Vector. Self-weights.

tau Double. Specific quantile level.

Value

Vector. The vector of the gradient of loss function for self-weighted QR estimation given a parameter vector.

q_y

Conditional quantile function of Y_t

Description

Conditional quantile function of Y_t , i.e. $Q_{\tau}(y_t|\mathcal{F}_{t-1})$.

Usage

```
q_y(parm, Y)
```

Arguments

parm Vector. Parameter vector (3-dim), i.e. $(\omega(\tau), \alpha_1(\tau), \beta_1(\tau))'$.

Y Vector. Data.

Value

Vector.
$$(Q_{\tau}(y_1|\mathcal{F}_0), \dots, Q_{\tau}(y_N|\mathcal{F}_{N-1}))'$$
.

 $\begin{tabular}{ll} VaR_forecasting_CQR & Rolling for exacting for conditional quantiles based on self-weighted \\ CQR & \end{tabular}$

Description

One-step-ahead conditional quantile forecast based on using a rolling forecast procedure.

Usage

```
VaR_forecasting_CQR(
  data,
  N_train,
  N_val,
  fixTau = c(0.005, 0.01, 0.05, 0.95, (1 - 0.01), (1 - 0.005)),
  H = 1:10/100,
  seed = 1234
)
```

Arguments

data	Vector. Data.
N_train	Int. The size of rolling window.
N_val	Int. The size of validation set.
fixTau	Vector. Multiple quantile levels.
Н	Vector. Discrete points for grid search.
seed	Double. Select random seed to generate initial value for optimization.

Details

The framework is similar to $VaR_forecasting_QR$, see more details in $VaR_forecasting_QR$. Moreover, since the self-weighted CQR needs to choose an optimal h in advance, we divide the dataset into the training set with size N_train , validation set with size N_val and test set with size $length(data)-N_train-N_val$, and choose the optimal h that minimizes the check loss in the validation set.

Value

Matrix with length(data)-N_train-N_val rows and length(fixTau) columns. Each column saves the conditional quantile forecasts at a specific quantile level for the test set.

VaR_forecasting_QR

Rolling forecasting for conditional quantiles based on self-weighted QR

Description

One-step-ahead conditional quantile forecast based on self-weighted QR using a rolling forecast procedure.

Usage

```
VaR_forecasting_QR(
  data,
  N_train,
  fixTau = c(0.005, 0.01, 0.05, 0.95, (1 - 0.01), (1 - 0.005)),
  seed = 1234
)
```

Arguments

data Vector. Data.

N_train Int. The size of rolling window. fixTau Vector. Multiple quantile levels.

seed Double. Select random seed for optimization.

Details

We begin with the forecast origin $t_0 = N_{train} + 1$, and obtain the fitted quantile GARCH(1,1) model using the data from the beginning to the forecast origin (exclusive). For each fitted model, we calculate the one-step-ahead conditional quantile forecast for the next trading day by $\widetilde{Q}_{\tau}(y_{t_0}|\mathcal{F}_{n_0}) = \widetilde{\omega}_{wn_0}(\tau) + \widetilde{\alpha}_{1wn_0}(\tau) \sum_{j=1}^{n_0} \left(\widetilde{\beta}_{1wn_0}(\tau)\right)^{j-1} |y_{N_{train}-j}|$ based on the self-weighted QR. We then advance the forecast origin by one and repeat the estimation and forecasting until all data are utilized.

Value

Matrix with length(data)-N_train rows and length(fixTau) columns. Each columns is the conditional quantile forecast result.

Description

Self-weight function based on He & Yi (2021)

Usage

```
weight_function_HeYi2021_cpp(Y, C)
```

Arguments

Y Vector. Data.

C Double. Quantile of Y or |Y|.

Index

```
ASD_QR, 2

const_test, 2

fit1_optim, 3
fit1_optim_grid, 5
fit2_optim, 6
fit2_optim_grid, 7

g_tau, 8

Loss_CQR, 8
Loss_CQR_gr, 9
Loss_QR_gr, 10

q_y, 10

VaR_forecasting_CQR, 11
VaR_forecasting_QR, 12

weight_function_HeYi2021_cpp, 12
```