EE25BTECH11049 - Sai Krishna Bakki

Question:

Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0, $l^2 + m^2 - n^2 = 0$.

Solution:

1 SETTING UP THE EQUATIONS IN MATRIX FORM

We begin by representing the given system of equations using vectors and matrices. Let the direction cosines be represented by the column vector \mathbf{x} :

$$\mathbf{x} = \begin{pmatrix} l \\ m \\ n \end{pmatrix} \tag{0.1}$$

The three conditions on the direction cosines can be written in matrix form:

$$l + m + n = 0 \implies \mathbf{C}^T \mathbf{x} = 0, \mathbf{C} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (0.2)

$$l^{2} + m^{2} - n^{2} = 0 \implies \mathbf{x}^{T} \mathbf{A} \mathbf{x} = 0, \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 (0.3)

$$l^{2} + m^{2} + n^{2} = 1 \implies \mathbf{x}^{T} \mathbf{I} \mathbf{x} = 1, \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (0.4)

2 Solving for the Direction Cosine Vectors

Our goal is to find the two vectors, \mathbf{D}_1 and \mathbf{D}_2 , that satisfy these matrix equations.

2.1 Finding the value of n using Matrix Theory

We can efficiently find the value of n by subtracting the two quadratic form equations:

$$\mathbf{x}^{T}\mathbf{I}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}\mathbf{x} = 1 \implies \mathbf{x}^{T}(\mathbf{I} - \mathbf{A})\mathbf{x} = 1$$
 (0.5)

The matrix $(\mathbf{I} - \mathbf{A})$ is:

$$\mathbf{I} - \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \tag{0.6}$$

1

Substituting this back into the equation (0.5) gives:

$$\begin{pmatrix} l & m & n \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} l \\ m \\ n \end{pmatrix} = 1$$
 (0.7)

$$2n^2 = 1 \implies n = \pm \frac{1}{\sqrt{2}} \tag{0.8}$$

2.2 Finding the values of l and m

Let's choose $n = -\frac{1}{\sqrt{2}}$. Substituting this into the remaining linear and normalization equations gives a system for l and m:

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} l \\ m \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = 0 \implies l + m = \frac{1}{\sqrt{2}}$$
 (0.9)

$$\begin{pmatrix} l & m & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} l & m & \frac{-1}{\sqrt{2}} \end{pmatrix} \implies l^2 + m^2 = \frac{1}{2}$$
 (0.10)

Squaring the first part gives

$$(l+m)^2 = \left(\frac{1}{\sqrt{2}}\right)^2 \implies l^2 + 2lm + m^2 = \frac{1}{2}$$
 (0.11)

substituting equation (0.10) in equation (0.11), we get

$$2lm = 0 \tag{0.12}$$

so we get 1=0 and m=0,

$$l = 0, m = \frac{1}{\sqrt{2}} \tag{0.13}$$

$$m = 0, l = \frac{1}{\sqrt{2}} \tag{0.14}$$

2.3 Assembling the Direction Cosine Vectors

Combining our results, the two direction cosine vectors are:

$$\mathbf{D}_1 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \quad \text{and} \quad \mathbf{D}_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$
 (0.15)

3 CALCULATING THE ANGLE USING MATRIX THEORY

The cosine of the angle θ between the lines is the dot product of their direction cosine vectors. Using matrix multiplication, this is

$$\cos \theta = \mathbf{D}_1^T \mathbf{D}_2 \tag{0.16}$$

$$\cos \theta = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$
 (0.17)

$$\cos \theta = 0 + 0 + \frac{1}{2} = \frac{1}{2} \tag{0.18}$$

Therefore, the angle is:

$$\theta = \cos^{-1}\left(\frac{1}{2}\right) = 60^{\circ} \quad \text{or} \quad \frac{\pi}{3} \text{ radians}$$
 (0.19)

Visualization of the Two Lines in 3D

