

"CULTIVATING EXCELLENCE IN EVERY STUDENT"

RAKESH KUMAR

M.Sc. (Chemistry) B.Ed. CTET, PSTET, HPTET qualified

+917973739678 +919814516618	thakurkumar82@gmail.com
--------------------------------	-------------------------

<u>Class:-</u>XII (Sci.) <u>Subject</u>:- Chemistry Name of Student.....

10 YEAR QUSTIONS

Chapter-4

Chemical kinetics

- (a) A reaction is second order in A and first order in B.
 - Write the differential rate equation.
 - (ii) How is the rate affected on increasing the concentration of A three times?
 - (iii) How is the rate affected when the concentrations of both A and B are doubled?
 - (b) A first order reaction takes 40 minutes for 30% decomposition. Calculate t_{1/2} for this reaction.

(Given $\log 1.428 = 0.1548$)

Nitrogen pentoxide decomposes according to equation: 2N₂O₅(g) → 4 NO₂(g) + O₂(g).
 This first order reaction was allowed to proceed at 40 °C and the data below were collected:

$[N_2O_5](M)$	Time (min)	
0.400	0.00	
0.289	20.0	
0.209	40.0	
0.151	60.0	
0.109	80.0	

- (a) Calculate the rate constant. Include units with your answer.
- (b) What will be the concentration of N₂O₅ after 100 minutes?
- (c) Calculate the initial rate of reaction.
- **3.** A first order reaction takes 20 minutes for 25% decomposition. Calculate the time when 75% of the reaction will be completed. (Given: log 2 = 0.3010, log 3 = 0.4771, log 4 = 0.6021)

- 4. What do you understand by the rate law and rate constant of a reaction? Identify the order of a reaction if the units of its rate constant are: (i) L⁻¹ mol s⁻¹ (ii) L mol⁻¹ s⁻¹
- 5. The thermal decomposition of HCO_2H is a first order reaction with a rate constant of 2.4×10^{-3} s⁻¹ at a certain temperature. Calculate how long will it take for three-fourths of initial quantity of HCO_2H to decompose. (log 0.25 = -0.6021)
- 6. A reaction is of second order with respect to a reactant. How is its rate affected if the concentration of the reactant is (i) doubled (ii) reduced to half?
- 7. The reaction, $N_2(g) + O_2(g) \rightleftharpoons 2 \, NO(g)$ contributes to air pollution whenever a fuel is burnt in air at a high temperature. At 1500 K, equilibrium constant K for it is 1.0×10^{-5} . Suppose in a case $[N_2] = 0.80 \, \text{mol L}^{-1}$ and $[O_2] = 0.20 \, \text{mol L}^{-1}$ before any reaction occurs. Calculate the equilibrium concentrations of the reactants and the product after the mixture has been heated to 1500 K.
- 8. For a chemical reaction $R \to P$, the variation in the concentration (R) vs. time (t) plot is given as:

- (i) Predict the order of the reaction.
- (ii) What is the slope of the curve?
- 9. The following data \cdot were obtained \cdot during the first order thermal decomposition of SO_2Cl_2 at a constant volume; $SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$

Experiment	Time/s ⁻¹	Total pressure/at	
1	0	0-4	
2	100	0.7	

Calculate the rate constant. (Given: $\log 4 = 0.6021$, $\log 2 = 0.3010$)

10. For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained:

t/s 0 30 60 [CH₃COOCH₃]/mol L⁻¹ 0.60 0.30 0.15

- (i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.
- (ii) Calculate the average rate of reaction between the time intervals 30 to 60 seconds. (Given $\log 2 = 0.3010$, $\log 4 = 0.6021$)

- 11. (a) For a reaction $A + B \rightarrow P$, the rate is given by Rate = $k[A][B]^2$
- (i) How is the rate of reaction affected if the concentration of B is doubled?
- (ii) What is the overall order of reaction if A is present in large excess?
- (b) A first order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction. ($\log 2 = 0.3010$)
- **12.** The rate Constant of a first order reaction increases from 2×10^{-2} to 4×10^{-2} when the temperature changes from 300 K to 310 K Calculate the energy of activation (Ea); $(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$
- 13. Define rate of reaction. Write two factors that affect the rate of reaction.
- 14. The rate constant for the first order decomposition of H_2O_2 is given by the following equation: $\log k = 14.2 \frac{1.0 \times 10^4}{T} K$

Calculate Ea for this reaction and rate constant k if its half-life period be 200 minutes. (Given: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

- 15. For a reaction : $2NH_3(g) \xrightarrow{Pt} N_2(g) + 3H_2(g)$ Rate = k
 - (i) Write the order and molecularity of this reaction.
 - (ii) Write the unit of k.
- 16. For a reaction: $H_2 + Cl_2 \frac{hv}{} \rightarrow 2HCl$, Rate=k
 - (i) Write the order and molecularity of this reaction.
 - (ii) Write the unit of k.
- 17. Show that the time required for completion of $\frac{3}{4}$ th of reaction of first order is twice that of half-life $(t_{\frac{1}{2}})$ of the reaction.
- 18. Derive integrated rate equation for rate constant of a zero order reaction.
- 19. For the first order thermal decomposition reaction, the following data were obtained : $C_2H_5Cl(g) \rightarrow C_2H_4(g) + HCl(g)$

Calculate the rate constant. (Given : log 2=0.301 log 3=0.4771 log 4=0.6021)

20. For a reaction $R \longrightarrow P$, half-life $(t_{1/2})$ is observed to be independent of the initial concentration of reactants. What is the order of reaction?

21. Following data are obtained for the reaction : $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$

t/s	0	300	600
$[N_2O_5]/\text{mol }L^{-1}$	1.6×10^{-2}	0.8×10^{-2}	0.4×10^{-2}

- (a) Show that it follows first order reaction.
- (b) Calculate the half-life.

(Given $\log 2 = 0.3010 \log 4 = 0.6021$)

22. (a) A first order reaction is 75% completed in 40 minutes. Calculate its t1/2. (b) Predict the order of the reaction in the given plots :

Where [R]o is the initial concentration of reactant. (Given: $\log 2 = 0.3010$, $\log 4 = 0.6021$)

23. The following data were obtained for the reaction : $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$

Experiment	[NO] / M	[O ₂] / M	Initial rate of formation of NO_2 / M min ⁻¹
1	0.3	0.2	7.2×10^{-2}
2	0.1	0.1	6·0 × 10 ⁻³
3	0.3	0.4	2.88×10^{-1}
4	0.4	0.1	2.40×10^{-2}

- (a) Find the order of reaction with respect to NO and O_2 .
- (b) Write the rate law and overall order of reaction. (c) Calculate the rate constant (k).
- **24.** A reaction is first order in A and second order in B
- (i) Write the differential rate equation.
- (ii) How is the rate affected on increasing the concentration of B three times?
- (iii) How is the rate affected when the concentration of both A and B are doubled?
- **25.** The decomposition of NH_3 on platinum surface is zero order reaction. If rate constant (k) is $4 \times 10^{-3} \text{ Ms}^{-1}$, how long will it take to reduce the initial concentration of NH_3 from 0.1 M to 0.064 M?
- 26. For a reaction $2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$

The proposed mechanism is as given below:

- $(1) \ H_2O_2 + \Gamma^- \rightarrow H_2O + IO^- (slow) \ (2) \ H_2O_2 + IO^- \rightarrow H_2O + \Gamma^- + O_2 \ (fast)$
- (i) Write rate law for the reaction. (ii) Write the overall order of reaction.
- (iii) Out of steps (1) and (2), which one is rate determining step?

27. Define order of reaction. Predict the order of reaction in the given graphs :

Where [R]o is the initial concentration of reactant and t1/2 is half-life.

28. The following data were obtained for the reaction : $A + 2B \rightarrow C$

Experiment	[A]/M	[B]/M	Initial rate of formation of C /M min ⁻¹
1	0.2	0.3	$4\cdot2\times10^{-2}$
2	0.1	0.1	6·0 × 10 ⁻³
3	0.4	0.3	1.68×10^{-1}
4	0.1	0.4	2.40×10^{-2}

- (a) Find the order of reaction with respect to A and B.
- (b) Write the rate law and overall order of reaction. (c) Calculate the rate constant (k).
- **29.** (a) Define order of reaction. How does order of a reaction differ from molecularity for a complex reaction? (b) A first order reaction is 50% complete in 25 minutes. Calculate the time for 80% completion of the reaction.
- **30.** (a) The decomposition of a hydrocarbon has value of rate constant as 2.5×10^4 s⁻¹ at 27^0 C. At what temperature would rate constant be 7.5×10^4 s⁻¹ if energy of activation is 19.147×10^3 J mol⁻¹? (b) Write a condition under which a bimolecular reaction is kinetically first order. Give an example of such a reaction. (Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 5 = 0.6990$)
- **31.** The rate of reaction quadruples when temperature changes from 293 K to 313 K. Calculate Ea assuming that it does not change with time. $[R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}]$
- **32.** (a) Draw the plot of $\ln k$ vs 1/T for a chemical reaction. What does the intercept represent? What is the relation between slope and Ea? (b) A first order reaction takes 30 minutes for 20% decomposition. Calculate $t_{1/2}$. [Log 2=0.3010]
- **33.** The reaction between A and B is first order with respect to A and zero order with respect to B. For this reaction, fill in the blanks in the following table.

Experiment	[A] mol/L	[B] mol/L	Initial Rate Mol/L/min
I	0.1	0.1	$2 \cdot 0 \times 10^{-2}$
II	_	0.2	4.0×10^{-2}
III	0.4	0.4	_
IV	_	0.2	$2 \cdot 0 \times 10^{-2}$