

### 1. INTRODUCTION

We present **SketchBot**, a real-time **React + Flask** system for sketch recognition and generation across 10 Google Quick, Draw! classes.

The pipeline enforces identical train serve preprocessing (binarize  $\rightarrow$  crop  $\rightarrow$  pad  $\rightarrow$  resize 64×64  $\rightarrow$  normalize) to avoid distribution shift.

UCD DUBLIN

- We use a compact **SketchCNN** that takes the 64×64 grayscale canvas and outputs 10-way class probabilities, enabling real-time recognition of what the user is drawing.
- We adopt a **Sketch-RNN-style** conditional VAE (**GenerateRNN**): a **BiLSTM encoder** maps stroke sequences to a latent code, and an **LSTM** + MDN decoder samples pen states to generate sketches of classes using a generative deep-learning model.

Both services are exposed through simple HTTP endpoints (/predict, /category) for interactive use. We evaluate the system on the 10-class benchmark and demonstrate robust classification and coherent, classconditioned drawings in real time

| Bat  | Bicycle | Bus       | Cactus     | Clock      |
|------|---------|-----------|------------|------------|
| Door | Guitar  | Lightbulb | Paintbrush | smileyface |

Table 1. QuickDraw classes used for this work

## 2. MODEL ARCHITECTURE & PIPELINES

Input image 64x64 Grayscale



Fig. 1D. GenerateRNN Architecture

#### 3. RESULTS



Fig. 2A. Normalized confusion matrix (test Classification set).

- Overall: strong diagonals **8/10** classes ≥ **0.94** recall.
- **Best:** bus = 1.00; door ≈ 0.99.
- Lowest: cactus  $\approx$  0.89, paintbrush  $\approx$  0.94.
- thin/elongated shapes (cactus, paintbrush) share stroke topology → occasional confusions with rounded/line-like classes.

#### Fig. 2B Precision–Recall

Classification

- Curve stays near **top-right** → **high** precision across recall.
- Average Precision (micro) 0.991 confirms balanced performance despite class differences.
- Thresholding: the app's **0.6 confidence** keeps precision high while rejecting uncertain cases.





Fig. 3A Latent Space t-SNE

Generation

- Clear class-separable clusters latent z captures object structure.
- Compact clusters indicate consistent intra-class stroke patterns.
- Minimal overlap → decoder can condition on z to produce class-specific strokes.

Fig. 3B Total Loss by Class

Generation

 $\mathcal{L}_{total} = \mathcal{L}_{rec} + \beta.\mathcal{L}_{KL}$ 

Strong downward trend in first **5–8 epochs**; most classes plateau ~epoch 12-**15**.

Occasional **spikes** from MDN sampling/difficulty of some classes.



Total Loss by Class

# 4. CONCLUSION

- Our classifier achieves **96.0%** test accuracy (Macro-F1 0.959, AP 0.991); the per-class F1 plot is uniformly high most classes ≥ 0.94 with bus and door near 0.99 and cactus/paintbrush slightly lower due to similar thin, line-like strokes.
- the generator learns class-separable latents and draws coherent, class-conditioned sketches showing that compact models can power a **reliable**, interactive tool.
- Next, we will build a Transformer/attentionbased conditional generator and strengthen conditioning with **KL-annealing** and probability calibration.

