

 $\frac{qy}{qx} = \frac{k_0 + x_0}{k^2 K_0} - k^2 X$ X=Probein. dx = 4= 8 (x<4)-43 x > No in Mibition K = Inhibition Gerhüent

(08)

Half Sahwation Constant when x< 1 -> 1 -> Inhibition only when se>B-Saturates at stody state R [x<<k] If we don't have auto-inhibition, then x is simply given by If x<<) (st) dx = R => x= k++ Constant >> Linear initially As time increases, effect of degradation increases. A h it apparaches, three hold and settles due to damping

PAR [Positive AutoRegulation]

2 activates itself

If X activates skelf, prometes its

In this case, depends on how hast a accountly

NOR is typically used in senses systems.

Comparison of SS, NBR in beams of sobustness with plat

Steady state values change very dramatically by LAR.
Whereas the simple System has a lot of Nuctuation
Signifying robustness of NAR but not there in SS.

3 Component MOTIF Subsystem

There are 149-4 mode system

•	Feedborward Systems:
	Feedborward Systems:
	con advisate z disectly and indisectly. Acts like a AND for method for a disectly and indisectly. Acts like a AND for method
	For a distration Z
	V