BUDYNEK MIESZKALNY JEDNORODZINNY WRAZ Z NIEZBĘDNĄ INFRASTRUKTURĄ TECHNICZNĄ

jednostka ew. 141803_2 Lesznawola, obręb 0013 Łazy, działka ew. nr 210,211/3 położona przy ul. Krótkiej we wsi Łazy gm. Lesznawola

KATEGORIA I

PROJEKT ARCHITEKTONICZNO-BUDOWLANY

Inwestor: Państwo Malwina i Michał Witczak ul. Szulborska 3/5 m. 366 01-104 Warszawa

Projektował: mgr inż. arch. Maciej Hejna, upr. nr MA/010/11 do projektowania bez ograniczeń w specjalności architektonicznej

STYCZEŃ 2021r.

ARCHITEKTURA - SPIS TREŚCI

CZEŚĆ OPISOWA

- 1) Rodzaj i kategoria obiektu budowlanego będącego przedmiotem zamierzenia budowlanego
- 2) Zamierzony sposób użytkowania oraz program użytkowy obiektu budowlanego
- 3) Układ przestrzenny oraz forma architektoniczna istniejących i projektowanych obiektów budowlanych
- 4) Charakterystyczne parametry obiektu budowlanego
 - a) kubatura
 - b) zestawienie powierzchni
 - c) wysokość, długość, szerokość, średnica
 - d) ilość kondygnacji
- 5) Opinia geotechniczna oraz informacja o sposobie posadowienia obiektu budowlanego
- 6) Liczba lokali mieszkalnych i użytkowych
- 9) Parametry techniczne obiektu budowlanego charakteryzujące wpływ obiektu budowlanego na środowisko i jego wykorzystanie oraz na zdrowie ludzi i obiekty sąsiednie pod względem:
 - a) zapotrzebowanie i jakości wody oraz ilości, jakości i sposobu odprowadzenia ścieków oraz wód opadowych
 - emisji zanieczyszczeń gazowych, w tym zapachów, pyłowych i płynnych, z podaniem ich rodzaju, ilości i zasięgu rozprzestrzeniania się
 - c) rodzaju i ilości wytwarzanych odpadów
 - d) właściwości akustycznych oraz emisji drgań, a także promieniowania, w szczególności jonizującego, pola elektromagnetycznego i innych zakłóceń
 - e) wpływu obiektu budowlanego na istniejący drzewostan, powierzchnię ziemi, w tym glebę, wody powierzchniowe i podziemne
- 10) Analiza technicznych, środowiskowych i ekonomicznych możliwości realizacji wysoce wydajnych systemów alternatywnych zaopatrzenia w energię i ciepło
- 11) Analiza technicznych i ekonomicznych możliwości wykorzystania urządzeń, które automatycznie regulują temperaturę oddzielnie w poszczególnych pomieszczeniach lub w wyznaczonej strefie ogrzewanej
- 12) Zestawienie przegród budowlanych

CZĘŚĆ RYSUNKOWA

Rys. A-01	Elewacje	1:100
Rys. A-02	Elewacje	1:100
Rys. A-03	Rzut parteru	1:100
Rys. A-04	Rzut poddasza	1:100
Rys. A-05	Rzut dachu	1:100
Rys. A-06	Przekroje	1:100
Rys. A-07	Zestawienie stolarki	-

Wszystkie elementy dokumentacji należy rozpatrywać łącznie.

PODSTAWA OPRACOWANIA

- Wytyczne Inwestora
- Materiały i opracowania przekazane przez Inwestora
- Wizja lokalna
- Uzgodnienia międzybranżowe
- Wypis i wyrys z miejscowego planu zagospodarowania przestrzennego znak pisma RUP.6727.1.626.2019.BL z dnia 2019.08.28 na podstawie Uchwały Nr 84/VIII/2011 Rady Gminy Lesznowola z dnia 23 sierpnia 2011 r. w sprawie uchwalenia miejscowego planu zagospodarowania przestrzennego gminy Lesznowola dla cześci wsi Łazy
- [1] Ustawa prawo budowlane (Dz.U. z 2020 r. poz. 1333)
- [2] Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. z 2019 r. poz. 1065 z późn. Zmian.)
- [3] Rozporządzenie Ministra Rozwoju z dnia 11 września 2020r. w sprawie szczegółowego zakresu i formy projektu budowlanego (Dz.U. z 2020 r. poz. 1609)
- Inne przepisy szczegółowe i Polskie Normy

UWAGI OGÓLNE

- W CYKLU TECHNOLOGICZNYM BUDOWY NALEŻY BEZWZGLĘDNIE PRZESTRZEGAĆ WSZYSTKICH ZASAD I WARUNKÓW TECHNICZNYCH WYKONYWANIA I PROWADZENIA ROBÓT BUDOWLANYCH.
- WSZELKIE ROBOTY PROWADZIĆ POD NADZOREM OSÓB UPRAWNIONYCH.
- PRACE PROWADZIĆ ZGODNIE Z OBOWIAZUJACYMI NORMAMI, PRZEPISAMI ORAZ ZASADAMI BHP.
- NALEZY STOSOWAĆ WYROBY BUDOWLANE POSIADAJĄCE ATESTY I CERTYFIKATY DOPUSZCZENIA DO PRAC W BUDOWNICTWIE.
- ZE WZGLĘDU NA BRAK MOŻLIWOŚCI WERYFIKACJI NIEKTÓRYCH DANYCH WYJŚCIOWYCH DO PROJEKTOWANIA ZASTRZEGA SIĘ MOŻLIWOŚĆ ZMIAN PRZYJĘTYCH ROZWIĄZAŃ PROJEKTOWYCH W RAMACH NADZORU AUTORSKIEGO.
- WSZYSTKIE WYMIARY SPRAWDZIĆ W NATURZE.

1. Rodzaj i kategoria obiektu budowlanego bedacego przedmiotem zamierzenia budowlanego

Planowana inwestycja polega na budowie budynku mieszkalnego jednorodzinnego z garażem wbudowanym na działce ew. nr 210, 211/3 z obrębu 0013 Łazy, j. ew. 141803_2 Lesznawola położonej w rejonie ul. Krótkiej we wsi Łazy, gmina Lesznawola, oznaczonej na planie zagospodarowania literami ABCDEFGA.

2. Zamierzony sposób użytkowania oraz program użytkowy obiektu budowlanego

Budynek projektuje się jako mieszkalny jednorodzinny o dwóch kondygnacjach nadziemnych z garażem wbudowanym.

3. Układ przestrzenny oraz forma architektoniczna istniejących i projektowanych obiektów budowlanych Zaprojektowano dwie kondygnacje nadziemne. Na parterze zlokalizowano wejścia do budynku, garaż wbudowany,

∠aprojektowano dwie kondygnacje nadziemne. Na parterze zlokalizowano wejscia do budynku, garaz wbudowany, taras.

Bryła budynku została zaprojektowana i usytuowana na działce w taki sposób by zapewnić odpowiednie nasłonecznienie i oświetlenie dla budynku projektowanego i sąsiednich oraz z uwzględnieniem możliwości zabudowy sąsiednich niezainwestowanych nieruchomości.

Wymóg § 13 "Rozporządzenia Ministra Infrastruktury z dn. 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie" [2] jest spełniony poprzez zachowanie odległości (większej niż wysokość przesłaniania) pomiędzy poszczególnymi częściami budynku projektowanego oraz pomiędzy budynkami istniejącym a projektowanym.

4. Charakterystyczne parametry obiektu budowlanego

a) Kubatura: ok. 2200 m³

b) Zestawienie powierzchni

POWIERZCHNIA ZABUDOWY 1)	278,35 m ²
POWIERZCHNIA CAŁKOWITA NADZIEMNA	401,00 m ²
POWIERZCHNIA UŻYTKOWA 2)	306,11 m ²
KUBATURA BRUTTO	Ok. 2200,00 m ³

1) Zgodnie z normą PN-ISO 9836

2) Powierzchnia pomieszczeń lub ich części o wysokości w świetle równej lub większej od 2,20 m zalicza się do obliczeń w 100%, o wysokości równej lub większej od 1,40m, lecz mniejszej od 2,20m – w 50%, natomiast o wysokości mniejszej od 1,40m pomija się całkowicie

c) Wysokość, długość, szerokość, średnica

- wysokość: 7,27 m- długość: 19,53 m

- szerokość: 18,08 m (elewacji frontowej)

- średnica: nie dotyczy

d) Ilość kondygnacji

Budynek posiada dwie kondygnacje nadziemne.

5. Opinia geotechniczna oraz informacja o sposobie posadowienia obiektu budowlanego

Zgodnie z zapisami Dz. U. 2012 nr 0, poz. 463: Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 25 kwietnia 2012 r. w sprawie ustalania geotechnicznych warunków posadowienia obiektów budowlanych projektowany budynek został zaliczony do pierwszej kategorii geotechnicznej. Kategoria ta została ustalona z uwagi na charakter obiektu oraz warunki gruntowe występujące w podłożu projektowanej inwestycji określone jako proste. Na badanym terenie podczas realizacji badań swobodne zwierciadło pierwszego poziomu wodonośnego nawiercono na głębokości 1,60 m

6. Liczba lokali mieszkalnych i użytkowych

W budynku zaprojektowano jeden lokal mieszkalny o zróżnicowanym programie funkcjonalnym. Nie projektuje się lokali użytkowych.

- 9. Parametry techniczne obiektu budowlanego charakteryzujące wpływ obiektu budowlanego na środowisko i jego wykorzystanie oraz na zdrowie ludzi i obiekty sąsiednie pod względem:
 - zapotrzebowanie i jakości wody oraz ilości, jakości i sposobu odprowadzenia ścieków oraz wód opadowych

Przewidywane zapotrzebowanie:

Zapotrzebowanie na wodę na cele socjalno-bytowe: Q = 750 l/d llość ścieków bytowych: Q = 750 l/d

Sposób odprowadzania ścieków

Projektuje się instalację kanalizacji sanitarnej z rur z PVC niskoszumowych łączonych na uszczelkę gumową produkcji np.: Wavin lub równoważne. Rzędną wyjścia kanalizacji z budynku zostanie dopasowana do rzędnej przyłącza kanalizacyjnego (wg odrębnego opracowania). Przewód główny prowadzony będzie ze spadkiem min. 1,5 % z zachowaniem minimalnego przykrycia na wyjściu poniżej strefy przemarzania.

Ścieki z projektowanego budynku odprowadzane będą do sieci usytuowanej w ul. Krótkiej (wg odrębnego opracowania) przebiegającej wzdłuż północnej granicy działki. Projekt przyłącza kanalizacyjnego według odrębnego opracowania.

Instalacja kanalizacji sanitarnej odprowadza ścieki z poszczególnych odbiorników do projektowanych pionów kanalizacji sanitarnej. Projektuje się piony kanalizacyjne o średnicy ø110 (PVC Wavin) odpowietrzone poprzez wywiewkę kanalizacyjną usytuowaną na dachu.

Sposób odprowadzania wód opadowych:

Wody opadowe z dachów odprowadzane na teren własny.

b) emisji zanieczyszczeń gazowych, w tym zapachów, pyłowych i płynnych, z podaniem ich rodzaju, ilości i zasięgu rozprzestrzeniania się

Z uwagi na fakt, że budynek projektowany jest jako mieszkalny jednorodzinny, nie przewiduje się emisji zanieczyszczeń gazowych, w tym zapachów, pyłowych i płynnych.

c) rodzaju i ilości wytwarzanych odpadów

Z uwagi na fakt, że budynek projektowany jest jako mieszkalny jednorodzinny, nie przewiduje się wytwarzania ponadnormatywnych lub uciążliwych odpadów. Odpady stałe pochodzące z bieżącej działalności obiektu (gospodarstwo domowe) gromadzone będą w pojemnikach zapewniających segregację we wiacie śmietnikowej. Lokalizacja wiaty śmietnikowej jest zgodna z przepisami. Wywóz odpadów na podstawie podpisanej umowy z wyspecjalizowaną firmą.

właściwości akustycznych oraz emisji drgań, a także promieniowania, w szczególności jonizującego, pola elektromagnetycznego i innych zakłóceń

Emisja i poziom hałasu nie wykracza poza teren planowanej inwestycji i zostaje zachowana w granicy określonej przez normę (tj. 55 dB w porze dnia 6:00- 22:00, 45 dB w porze nocy 22:00 – 6:00).

e) wpływu obiektu budowlanego na istniejący drzewostan, powierzchnię ziemi, w tym glebę, wody powierzchniowe i podziemne

Istniejący drzewostan zostanie uporządkowany w zakresie niezbędnym do realizacji zamierzenia budowlanego. Warstwa gleby (humusu) pod warunkiem spełnienia wymagań fizycznych będzie zabezpieczona na terenie działki i wykorzystana dla zagospodarowania terenu po zakończeniu budowy lub zutylizowana. Budynek zaprojektowano powyżej poziomu wód gruntowych.

10. Analiza technicznych, środowiskowych i ekonomicznych możliwości realizacji wysoce wydajnych systemów alternatywnych zaopatrzenia w energię i ciepło

Do realizacji przyjęto system charakteryzujący się niższym zapotrzebowaniem na nieodnawialną energię pierwotną. Budynek projektuje się jako ogrzewany pompą ciepła typu powietrze/woda, sprężarkową, napędzane elektrycznie, 55/45°C.

11. Analiza technicznych i ekonomicznych możliwości wykorzystania urządzeń, które automatycznie regulują temperaturę oddzielnie w poszczególnych pomieszczeniach lub w wyznaczonej strefie ogrzewanej

Nie projektuje się urządzeń automatycznie regulujących temperaturę oddzielnie w poszczególnych pomieszczeniach lub w wyznaczonej strefie ze względu na ekonomiczne możliwości.

12. Zestawienie przegród budowlanych

Maksymalne wartości współczynnika przenikania ciepła U(max) [W/m²K], zgodnie z Rozporządzeniem Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie [2] od 1 stycznia 2021 wynoszą:

- Ściany zewnętrzne (stykające się z powietrzem zewnętrznym, niezależnie od rodzaju ściany) przy ti> 16 °C: U(max) = 0,20 [W/m2K]
- Ściany zewnętrzne (stykające się z powietrzem zewnętrznym, niezależnie od rodzaju ściany) przy 8°C ≤ ti < 16°C: U(max) = 0,45 [W/m2K]
- Ściany zewnętrzne (stykające się z powietrzem zewnętrznym, niezależnie od rodzaju ściany) przy ti < 8°C: U(max) = 0,9 [W/m2K]
- Dach (przy ti> 16 °C): U(max) = 0,15 [W/m2K]
- Posadzki na gruncie: U(max) = 0,30 [W/m2K]
- Okna (z wyjątkiem połaciowych), drzwi balkonowe i powierzchnie przezroczyste nieotwieralne (fasady), przy ti> 16 °C: U(max) = 0,9 [W/m2K]
- Drzwi zewnętrzne wejściowe do budynku: U(max) = 1,3 [W/m2K]
- ti temperatura obliczeniowa w pomieszczeniu zgodnie z § 134 ust. 2 rozporządzenia.

ZESTAWIENIE WARSTW PRZEGRÓD POZIOMYCH I PIONOWYCH

WG - WARSTWY NA GRUNCIE
WS - WARSTWY STROPOWE
WSZ - WARSTWY STROPÓW ZEWNĘTRZNYCH
WD - WARSTWY DECHU
SZ - WARSTWY ŚCIAN ZEWNĘTRZNYCH
SW - WARSTWY ŚCIAN WEWNĘTRZNYCH
SD - WARSTWY ŚCIAN DZIAŁOWYCH

1. WG - WARSTWY NA GRUNCIE

1.1. WG1 PODŁOGA NA GRUNCIE MIN. U=0,30W/m2*K

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
	2,00	PANELE PODŁOGOWE/PŁYTKI CERAMICZNE
	6,00	WYLEWKA CEMENTOWA ZBROJONA SIATKĄ WRAZ Z OGRZEWANIEM PODŁOGOWYM
23,00	-	PRZEKŁADKA POŚLIZGOWA Z FOLI PE (1X0,02) UKŁADANA NA ZAKŁAD SZEROKOŚĆ 30,00CM
	15,00	STYROPIAN EPS PODŁOGOWY LAMBDA MIN 0,040
	-	PRZEKŁADKA POŚLIZGOWA Z FOLI PE (2X0,02) UKŁADANA NA ZAKŁAD SZEROKOŚĆ 30,00CM
	WG. PK	BETON C-12/15 WG PROJ. KONSTRUKCJI
	-	HYDROIZOLACJA
	20,00	GRUNT RODZIMY, NOŚNOŚĆ I ZAGĘSZCZENIE GRUNTU WG PROJ. KONSTRUKCJI

1.2. WG2 PODŁOGA NA GRUNCIE W GARAŻU

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
	2,00	PŁYTKI CERAMICZNE
	6,00	WYLEWKA CEMENTOWA ZBROJONA SIATKĄ Z DRUTU PROWADZONA ZE SPADKIEM MIN. 1%
18,00	-	PRZEKŁADKA POŚLIZGOWA Z FOLI PE (1X0,02) UKŁADANA NA ZAKŁAD SZEROKOŚĆ 30,00CM
	10,00	STYROPIAN EPS TYPU PARKING EPS LAMBDA MIN 0,040
	-	PRZEKŁADKA POŚLIZGOWA Z FOLI PE (2X0,02) UKŁADANA NA ZAKŁAD SZEROKOŚĆ 30,00CM
	WG. PK ZMIENNA	BETON C-12/15 WG PROJ. KONSTRUKCJI PROWADZONY ZE SPADKIEM
		HYDROIZOLACJA
	-	GRUNT RODZIMY, NOŚNOŚĆ I ZAGĘSZCZENIE GRUNTU WG PROJ. KONSTRUKCJI

1.3. WG3 PODŁOGA TARASU NA GRUNCIE

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
	6,00	DESKA TARASOWA
	-	PODKONSTRUKCJA
	-	GRUNT RODZIMY, NOŚNOŚĆ I ZAGĘSZCZENIE GRUNTU WG PROJ. KONSTRUKCJI

2. WS – WARSTWY STROPOWE

1.1. WS1 PŁYTA STROPOWA NAD PARTEREM

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
	2,00	PANELE PODŁOGOWE/PŁYTKI CERAMICZNE
	5,00	WYLEWKA CEMENTOWA ZBROJONA SIATKĄ WRAZ Z OGRZEWANIEM PODŁOGOWYM
12,00	-	PRZEKŁADKA POŚLIZGOWA Z FOLI PE (1X0,02) UKŁADANA NA ZAKŁAD SZEROKOŚĆ 30,00CM
	5,00	STYROPIAN Z INSTALACJĄ WENTYLACJI MECHANICZNEJ PROWADZONEJ W WARSTWIE STYROPIANU
	-	PRZEKŁADKA POŚLIZGOWA Z FOLI PE (1X0,02) UKŁADANA NA ZAKŁAD SZEROKOŚĆ 30,00CM
	WG PK	PŁYTA ŻELBETOWA WG PROJ. KONSTRUKCJI
	1,50	TYNK CEMENTOWO-WAPIENNY

3. WSZ – WARSTWY STROPÓW ZEWNĘTRZNYCH

1.2. WSZ1 POWIERZCHNIA OPASEK ŻWIROWYCH

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
	15,00	ŻWIR RZECZNY
MIN. 25 CM	0,01	GEOWŁÓKNINA FILTRACYJNA
	10,00	PIASEK ZAGĘSZCZONY MECHANICZNIE

4. WD - WARSTWY DACHU

1.3. WD1 DACH MIN. U=0,15W/m2*K

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
	-	DACHÓWKA CERAMICZNA
	5,0	ŁATY
	2,5	KONTRŁATY
	-	FOLIA PAROPRZEPUSZCZALNA
	18,00	KROKIEW WG. PROJ. KONSTRUKCJI
	25,00	WEŁNA MINERALNA LAMBDA 0,031 W/(m.K) POMIĘDZY KROKWIAMI. OCIEPLENIE MURŁATY WEŁNĄ
	-	FOLIA PAROSZCZELNA

5. SZ – WARSTWY ŚCIAN ZEWNĘTRZNYCH

1.4. SZ1 ŚCIANA FUNDAMENTOWA ZEWNĘTRZNA

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
		OPASKA ŻWIROWA
MIN. 42.00	2,00	CEGŁA LICÓWKA/FOLIA KUBEŁKOWA
MIN. 42,00	18,00	STEINODUR PSN SD 100 LAMBDA=0,036
		HYDROIZOLACJA

24,00	BLOCZEK BETONOWY
	HYDROIZOLACJA

1.5. SZ2 ŚCIANA ZEWNĘTRZNA, MIN. U=0.20 W/m2K

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
MIN. 47,50	1,00/2,00	TYNK CIENKOWARSTWOWY MINERALNY ATLAS CERMIT SN-MAL POKRYTY FARBĄ SILIKATOWĄ
	20,00	PŁYTY STYROPIANOWE NA ZAKŁAD LAMBDA MIN.=0.031, NP. KNAUF Therm EXPERT Fasada XTherm
	24,00	BLOCZEK H+H Silikat N24 15-1400 WG PROJEKTU KONSTRUKCJI
	1,50	TYNK CEMENTOWO-WAPIENNY

6. SW – WARSTWY ŚCIAN WEWNĘTRZNYCH

1.6. SW1 ŚCIANA WEWNĘTRZNA

	GRUBOŚĆ [CM]	OPIS
	1,5	TYNK CEMENTOWO-WAPIENNY
28,00	24,00	BLOCZEK H+H Silikat N24 15-1400
	1,5	TYNK CEMENTOWO-WAPIENNY

1.7. SW2 ŚCIANA WEWNĘTRZNA GARAŻ

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ [CM]	OPIS
33,00	1,00	TYNK CIENKOWARSTWOWY MINERALNY ATLAS CERMIT SN-MAL POKRYTY FARBĄ SILIKATOWĄ
	5,00	IZOLACJA TERMICZNA STYROPIAN KNAUF Therm EXPERT
	24,00	BLOCZEK GAZOBETON H+H GOLD 3,0-600 PWU
	1,5	TYNK CEMENTOWO-WAPIENNY

7. SD - WARSTWY ŚCIAN DZIAŁOWYCH

1.8. SD1 ŚCIANA WEWNĘTRZNA DZIAŁOWA

GRUBOŚĆ ŁĄCZNA [CM]	GRUBOŚĆ[CM]	OPIS
		GŁADŹ GIPSOWA
	12,00	BLOCZEK H+H Silikat N12 15-1400
		GŁADŹ GIPSOWA

Opracował:

mgr inż. arch. Maciej Hejna upr. nr: MA/010/1