Title

D. Zack Garza

Tuesday 13th October, 2020

Contents

1	Friday, October 09																	1
	1.1 Bott-Borel-Weil Theor	v					 											6

Friday, October 09

Last time: Bott-Borel-Weil. Stated for characteristic zero, working toward a generalization.

Let Δ be the set of simple roots, and $\alpha \in \Delta$. We can form a Levi decomposition $P_{\alpha} := L_{\alpha} \rtimes U_{\alpha}$:

Figure 1: Image

We have $B \subseteq P_{\alpha} \subseteq G$. The dot action is given by the following: Let W be the Weyl group, then W acts on X(T) by $w \cdot \lambda = w(\lambda + \rho) - \rho$, where

$$\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha = \sum_{i=1}^n w_i.$$

We obtained a formula

$$S_{\alpha} \cdot \lambda = \lambda - \langle \lambda + \rho, \ \alpha^{\vee} \rangle \alpha.$$

1.1 Bott-Borel-Weil Theory

Proposition 1.1.1(?).

Let $\alpha \in \Delta$ be simple and $\lambda \in X(T)$ be an arbitrary weight. Then

- U_{α} acts trivially on $\operatorname{Ind}_{B}^{P_{\alpha}} \lambda$.
- (Kempf's Vanishing for P_{α}) If $\langle \lambda, \alpha^{\vee} \rangle = r \geq 0$, then

$$R^i \operatorname{Ind}_{R}^{P_{\alpha}} \lambda = 0$$
 for $i \ge 0$,

- and dim $\operatorname{Ind}_{B}^{P_{\alpha}} \lambda = r + 1$.

 If $\langle \lambda, \alpha^{\vee} \rangle = -1$, then $R^{i} \operatorname{Ind}_{B}^{P_{\alpha}} \lambda = 0$ for all i.

 If $\langle \lambda, \alpha^{\vee} \rangle \leq -2$, then

 $R^{i} \operatorname{Ind}_{B}^{P_{\alpha}} \lambda = 0$ for $i \neq 1$, and

 dim $R^{1} \operatorname{Ind}_{B}^{P_{\alpha}} \lambda = r + 1$

Note: we have

$$\operatorname{Ind}_{B}^{P_{\alpha}} \lambda = S^{r}(V) \qquad \text{when } \langle \lambda, \ \alpha^{\vee} \rangle = r \geq 0$$

$$R^{1} \operatorname{Ind}_{B}^{P_{\alpha}} = S^{r}(V)^{\vee} \qquad \text{where } V \text{ is a 2-dim representation and } \langle \lambda, \ \alpha^{\vee} \rangle \leq -2$$

$$\operatorname{and} r = |\langle \lambda, \ \alpha^{\vee} \rangle| - 1.$$

This gives us an analog of A_1 or SL_2 theory. Also note that we have Serre duality:

$$H^{1}(\lambda) = H^{0}(-(\lambda + 2\rho))^{\vee}.$$

Corollary 1.1.1(?).

Let $\alpha \in \Delta$ and $\lambda \in X(T)$, and suppose λ is dominant with respect to α , i.e. $\langle \lambda, \alpha^{\vee} \rangle \geq 0$.

• If char (k) = 0 then $\operatorname{Ind}_{B}^{P_{\alpha}} \lambda = R^{1} \operatorname{Ind}_{B}^{P_{\alpha}} s_{\alpha} \cdot \lambda$

- If char (k) = p and if there exists an s, m with 0 < s < p and $\langle \lambda, \alpha^{\vee} \rangle = sp^m 1$ (Steinberg weights), then

$$\operatorname{Ind}_B^{P_\alpha}\lambda=R^1\operatorname{Ind}_B^{P_\alpha}s_\alpha\cdot\lambda.$$

The proof of this will use a Grothendieck-type spectral sequence of the form

$$E_2^{i,j} = R^i \operatorname{Ind}_{P_{\alpha}}^G \left(R^j \operatorname{Ind}_B^{P_{\alpha}} \lambda \right) \Rightarrow R^{i+j} \operatorname{Ind}_B^G \lambda.$$

We'll have a version of $Grothendieck\ vanishing$:

$$R^{j}\operatorname{Ind}_{B}^{P_{\alpha}}\lambda=0$$
 for $j>\dim P_{\alpha}/B=1$.

So the resulting spectral sequence will only be supported on the first two lines, and $E_3 = E_{\infty}$. Note the differential will be of bidegree $\partial_r \leadsto (r, 1-r)$, and E_2 will look like the following,

Figure 3: Image

Recall that $R^i \operatorname{Ind}_B^G \lambda := H^i(\lambda)$

Proposition 1.1.2(?).

Let $\alpha \in \Delta$ and $\lambda \in X(T)$.

- 1. If $\langle \lambda, \alpha^{\vee} \rangle = -1$, then $H^{\cdot}(\lambda) = 0$. 2. If $\langle \lambda, \alpha^{\vee} \rangle \geq 0$, then $H^{i}(\lambda) = R^{i} \operatorname{Ind}_{B}^{P_{\alpha}} \lambda$ for all $i \geq 0$. 3. If $\langle \lambda, \alpha^{\vee} \rangle \leq -2$, then

$$H^{i}(\lambda) = R^{i-1} \operatorname{Ind}_{P_{\alpha}}^{G} \left(R^{1} \operatorname{Ind}_{B}^{P_{\alpha}} \lambda \right) \quad \forall i.$$

4. Suppose $\langle \lambda, \alpha^{\vee} \rangle \geq 0$. If char (k) = 0, or char (k) = p > 0 and $\langle \lambda, \alpha^{\vee} \rangle = sp^n - 1$, then

$$H^i(\lambda) = H^{i+1}(s_\alpha \cdot \lambda).$$

$Proof\ (of\ a).$

If $\langle \lambda, \alpha^{\vee} \rangle = -1$, then R Ind $_B^{P_{\alpha}} \lambda = 0$. But this is what appears as the "coefficients" in the spectral sequence, so $E_2^{\cdot,\cdot} = 0$ and this $R^{\cdot} \operatorname{Ind}_{R}^{P_{\alpha}} = 0$.

Proof (of b).

If $\langle \lambda, \alpha^{\vee} \rangle = 0$, then $R^{j} \operatorname{Ind}_{B}^{P_{\alpha}} \lambda = 0$ for all j > 0. Thus only the bottom line survives, and the spectral sequence degenerates on page 2. Thus $E_{2}^{1,0} = R^{i} \operatorname{Ind}_{B}^{G} \lambda$, where the LHS is equal to $R^i \operatorname{Ind}_{P_{\alpha}}^G \left(\operatorname{Ind}_B^{P_{\alpha}} \lambda \right).$

Proof (of c).

If $\langle \lambda, \alpha^{\vee} \rangle = -2$, then $R^i \operatorname{Ind}_{B}^{P_{\alpha}} \lambda = 0$ for $i \neq 1$, so only i = 1 survives Then

$$R^{i-1}\operatorname{Ind}_{P_{\alpha}}^{G}\left(\operatorname{Ind}_{B}^{PP_{\alpha}}\alpha\right) = R^{i}\operatorname{Ind}_{B}^{G}\lambda,$$

so there is some dimension shifting.

Proof (of d). If $\langle \lambda, \alpha^{\vee} \rangle \geq 0$, then by (b),

$$H^{i}(\lambda) = R^{i} \operatorname{Ind}_{P_{\alpha}}^{G} \left(\operatorname{Ind}_{B}^{P_{\alpha}} \lambda \right)$$
 by c
= $R^{i} \operatorname{Ind}_{P_{\alpha}}^{G} \left(R^{1} \operatorname{Ind}_{B}^{P_{\alpha}} s_{\alpha} \cdot \lambda \right)$ by corollary
= $H^{i+1}(s_{\alpha} \cdot \lambda)$.

We can then check that

$$s_{\alpha} \cdot \lambda = \lambda - \langle \lambda + \rho, \ \alpha^{\vee} \rangle \alpha$$

$$= \lambda - (\langle \lambda, \ \alpha^{\vee} \rangle + 1) \alpha \qquad \text{using } \langle \rho, \ \alpha^{\vee} \rangle = 1$$

$$\implies \langle s_{\alpha} \cdot \lambda, \ \alpha^{\vee} \rangle = \langle \lambda, \ \alpha^{\vee} \rangle - (\langle \lambda, \ \alpha^{\vee} \rangle + 1) \langle \alpha, \ \alpha^{\vee} \rangle$$

$$= \langle \lambda, \ \alpha^{\vee} \rangle - (\langle \lambda, \ \alpha^{\vee} \rangle + 1) 2$$

 $=-\langle \lambda, \alpha^{\vee} \rangle - 2$

Now define

$$\overline{C}_{\mathbb{Z}} \coloneqq \left\{ \lambda \in X(T) \mid 0 \le \langle \lambda + \rho, \ \beta^{\vee} \rangle \, \forall \beta \in \Phi^{+} \right\} \quad \text{if char } (k) = 0$$
$$\coloneqq \left\{ \lambda \in X(T) \mid 0 \le \langle \lambda + \rho, \ \beta^{\vee} \rangle \le \text{char } (k) \, \forall \beta \in \Phi^{+} \right\} \quad \text{if char } (k) = p.$$

Idea:

Theorem 1.1.1(Bott-Borel-Weil Generalization, due to Andersen). a. If $\lambda \in \overline{C}_{\mathbb{Z}}$ and $\lambda \not\in X(T)_+$, then $H^0(w \cdot \lambda) = 0$. b. If $\lambda \in \overline{C}_{\mathbb{Z}} \cap X(T)_+$, then for all $w \in W$,

$$H^{i}(w \cdot \lambda) = \begin{cases} H^{0}(\lambda) & i = \ell(w) \\ 0 & \text{otherwise} \end{cases}$$

Note that this covers everything in the char (k) = 0 case, but only gives the following hexagon in the char (k) = p case:

Figure 4: Image

Remark 1.1.1.

Open Problem: Determine char $H^i(\lambda)$ for $\lambda \in X(T)$ in characteristic p > 0.

Andersen provided necessary an sufficient conditions for $H^1(\lambda) \neq 0$ and computed $\operatorname{Soc}_G H^1(\lambda)$.