

Matlab Middle Layer and AT 1.4

L. Nadolski, Accelerator Physics Group, SOLEIL

https://sourceforge.net/projects/atcollab

Contents

MML in a nutshell

Matlab versions and compatibility

How easy is the migration to AT 1.4?

Conclusion

MML Genesis

Using Matlab for Accelerator Experimentation and Control or A Matlab "MiddleLayer" (MML)

Gregory J. Portmann

Jeff Corbett, Andrei Terebilo, James Safranek (SSRL) Christoph Steier, Tom Scarvie, Dave Robin (ALS) Laurent Nadolski (SOLEIL)

http://www2.als.lbl.gov/als_physics/portmann/MiddleLayer/

MML community around the word: a short list Many users, few developers

North America: ALS, SSRL (SPEAR3), Duke FEL, NSLS2, (VUV or X-Ray rings), CLS, ...

Europe: SOLEIL, LAL/THOMX (France), DIAMOND (England), ALBA (Spain), ANKA (Germany), ILSF (Iran), MAX-IV (Sweden), SOLARIS (Poland), ...

Asia: PLS2 (Korea), SLS (Thailand), SSRF (China), NSRRC/TPS (Taiwan), ...

Middle East: SESAME (Jordan)

Australia: ASP

Why Matlab?

- Only true available software available in late 90s
- Matrix programming language (variables default to a double precision matrix)
- Extensive built-in math libraries
- Active workspace for experimentation and algorithm development
- Easy of import/export of data
- Graphics library
- Compact code and good readability
- · Adequate GUI capabilities
- Platform independents

Automating Physics Experiments

(without becoming a software engineer)

Goals

- Develop an easy scripting method to experiment with accelerators (accelerator independent)
 - Remove the control system details from the physicist (like Tango names and how to connect to the computer control system)
 - Easy access to important data (offsets, gains, rolls, max/min, etc.)
- Integrate simulation and online control. Make working on an accelerator more like simulation codes.
- Integrate data taking and data analysis tools
- Develop a software library of common tasks (orbit correction, tune correction, chromaticity, ID compensation, etc.)
- Develop a high level control applications to automate the setup and control of storage rings, boosters, transfer lines.

Matlab Toolbox Suite for Accelerator Physics

- MiddleLayer + High Level Applications
 - 1. Link between applications and control system or simulator.
 - 2. Functions to access accelerator data.
 - 3. Provide a physics function library.
- MCA, LabCA, SCAIII Matlab to EPICS links
- TANGO/Matlab binding
- Accelerator Toolbox for simulations
- LOCO Linear Optics from Closed Orbits (Calibration)
- NAFF Library (frequency maps)
- Used for transfer lines, Booster, Storage Ring

Home

Products and Services

Physical Reference Data

Research Areas

Contact

Search

The NIST Reference on Constants, Units, and Uncertainty

Information at the foundation of modern science and technology from the Physical Measurement Laboratory of NIST

Fundamental physical constants

by Jarek Luberek 22 May 2009

Functions that returns a struct() containing most fundamental physical constants.

Be the first to rate this file!

13 Downloads (last 30 days) File Size: 7.39 KB File ID: #24236 Version: 1.0

Fundamental Physical Constants

File Information

Description

The struct has two levels. The first level is the name of the constant. The second level has fields: "value", "uncert" and "unit".

Example:

phc = fundamentalPhysicalConstantsFromNIST();

phc.speed_of_light_in_vacuum.value

returns

299792458

and

phc.speed of light in vacuum.unit

returns

ms^-1

Data was obtained from http://physics.nist.gov./cuu/index.html and (almost) automatically transferred to matlab syntax with the help of some c and awk programming.

The constants who's uncertainties are given av (exact), the value of 0 is returned.

MATLAB release MATLAB 7.8 (R2009a)

Defined as a Class for easy of use

Software Interconnection Diagram

Known features of MML/AT

Spirit and strength

- free of charge in our community
- Sharing of development between labs
- Avoid Matlab Toolbox

Robustness and reliability for operation

- For many: Machine dedicated shifts
- For some labs: Daily operation

Different uses

- in control-rooms (online simulator)
- Offices (simulation, optimization, design)

Various version of MML

- Matlab Middle Layer
 - Origin pot: ALS (G. Portmann)
 - Many forks and local development in most of the labs
 - add-ons and developments for extensive use
 - Home made functions
 - Use for controlling injector to front-ends of an accelerator facility
 - Tuned MML versions for commissioning
 - Dedicated/specific High Level Application (HLA/GUI) for accelerator physics (insertion, diagnostics, operation groups)
 - Consequence
 - Very few labs are in sync with ALS version (anyway: very few improvement and release)
 - Hundreds of Matlab scripts, applications written and interface with MML
 - Low use of ESRF AT version
- Can we do something to improve that?
- MML maintenance status?
- MML diffusion list status activity?

MIGRATION FOR YOUR LABORATORY OF AT TO THE NEW AT 1.4

Matlab compatibility with new AT version

Different Matlab versions used

- Two Matlab releases a year
- Many evolutions of function interface since 2009 (figure return a structure, deprecated function, ...)

Matlab usage

- Development
- Operation of the Accelerator in the control room (reliability/robustness are a MUST)

Legitimate Questions

- Is my MML setup compatible?
- How much work to do a migration to AT 1.4?

Short Answer

Very few showstoppers have been identified between AT 1.4 and MML

Efforts have been made to keep

- The AT 1.2 interface with MML using global variable (for instance the RING structure is not a mandatory input argument)
- Thorough tests have been done at SOLEIL

Simple procedure

- Download AT 1.4 at http://atcollab.sourceforge.net/download.html
- In the past, in principle:
 - MMLROOT/AT hosted the AT version from SLAC
 - MMLROOT/MML/AT hosted your own AT development
- Define a new path to AT 1.4 in your setpathmml fonction (MMLROOT/AT)
- Recompile with : atmexall
- Its works seamlessly with 2009 to 2017a Matlab version at SOLEIL
- For Matlab 2009 version and earlier
 - num2cell.m need to be overloaded when AT is loaded in your session

Atcollab web site: http://atcollab.sourceforge.net/download.html

номе

DOCUMENTATION

PROJECT

How to download the latest release

DOWNLOAD

WNLOAD THE LATEST RELEASE

and window and type

ps://svn.code.sf.net/p/atcollab/code-0/trunk <yourdesidered

browse the code before installing it, go here.

Open a command window and type

\$ syn checkout https://syn.code.sf.net/p/atcollab/code-0/trunk <yourdesideredpath>/atcollab

If you want to browse the code before installing it, go here.

IN WALKTHROUGH

ab (>7.0)

b to your MatLab path, typing in the MatLab panel:

= ATROOTDIR; %where ATROOTDIR is the path to atcollab/trunk lirs = genpath(atrd); path([atcdirs]);

the integrators files, typing in the MatLab panel:

Conclusion and Next step

- AT 1.4 is mature with lost of new capabilities
 - See list of features in Boaz's and Nicolas's talks
- AT 1.4 is an improved version with better performance
- Let us increase the community of AT 1.4 users
- When upgrade to recent Matlab versions
 - Be aware that some GUIs need some minor upgrades with recent versions of Matlab due to the figure output structure (numerical before)
 - Last version of MML (ALS 2016-02-08) included most of these small upgrades http://www2.als.lbl.gov/als_physics/portmann/MiddleLayer/

