Categorical Data Analyses:

Logistic Regression & Loglinear Analysis

Overview

Logistic regression

- Binary and multinomial (Ch. 8)
- Examples:
 - Predicting life satisfaction and lifestyle

Categorical analysis

- Chi-square & Loglinear analyses (Ch. 18)
- Examples:
 - Sex, job satisfaction, and lifestyle (no DV)

Logistic regression

Binary and multinomial

- When & why to use logistic regression
 - Categorical DVs do not tend to have a linear relationship with predictors
- How to assess
 - ...the model (LLR and deviance)
 - ...the predictors (OR and CIs)
- Assumptions and trouble-shooting
 - Assumptions should be checked, and problems should be dealt with

Nonlinear association between age and CD Toon's Show

Table 2 Age and signs of coronary heart disease (CD)

Nonlinear association between age and CD Toon's Show

Table 3 Age and signs of coronary heart disease (CD)

Equation with One Predictor

Toon and Andy Agree?

Toon:
$$P(y|x) = \frac{e^{x+bx}}{1 + e^{a+bx}}$$
Andy: $P(Y) = \frac{1}{1 + e^{-(b_0 + b_1 X_1 + \varepsilon_i)}}$

- Outcome
 - Predict the probability of the outcome occurring
- a and bx $(b_0 \text{ and } b_1)$
 - Intercept of entire model; and slope (gradient) associated with individual predictors

Equation with Multiple Predictors

Toon and Andy Agree?

Toon:
$$\ln \left(\frac{P}{1-P} \right) = a + b_1 x_1 + b_2 x_2 + ... b_i x_i$$

Andy:
$$P(Y) = \frac{1}{1+e^{-(b_0+b_1X_1+b_2X_2+...+b_nX_n+\varepsilon_i)}}$$

Outcome

 We still predict the probability of the outcome occurring

Differences

 This part of the equation expands to accommodate additional predictors

Assessing a Model

The log-likelihood statistic

Toon:
$$L(B) = \ln[l(B)] = \sum_{i=1}^{n} \{y_i \ln[\pi(x_i)] + (1 - y_i) \ln[1 - \pi(x_i)] \}$$

Andy:
$$\log - \text{likelihood} = \sum_{i=1}^{N} \left[Y_i \ln(P(Y_i)) + (1 - Y_i) \ln(1 - P(Y_i)) \right]$$

- Analogous to the residual sum of squares
- It is an indicator of how much unexplained information there is after the model has been fitted
- Large values indicate poorly fitting statistical models, but values are not comparable.
 - Chi-square, AIC, BIC

Assessing Changes in Models

Deviance (a test of parsimony)

Toon:

Andy:

$$\chi^2 = 2[LL(\text{new}) - LL(\text{baseline})]$$

$$(df = k_{\text{new}} - k_{\text{baseline}})$$

- It is possible to compare the difference (deviance) between the log-likelihoods of nested models.
 - null (intercepts only), main effects, higherorder interactions, saturated, etc.

Assessing Predictors

The Wald Statistic

Toon: Wald =
$$(\frac{b}{SE_b})^2$$
 (df = 1)

Andy:
$$Wald = \frac{b}{SE_b}$$

- Toon's version tested using chi-square; Andy's version tested using z-distribution
- Tests the null hypothesis that b = 0.
- Wald statistic is biased when b is large.
 - Better to look at odds ratios.

Assessing Predictors:

Odds Ratio

Toon:

Andy: $odds\ ratio = \frac{odds\ after\ a\ unit\ change\ in\ the\ predictor}{odds\ before\ a\ unit\ change\ in\ the\ predictor}$

- Indicates the change in odds resulting from a unit change in the predictor.
 - OR > 1: Predictor ↑, Probability of outcome occurring ↑.
 - OR < 1: Predictor ↑, Probability of outcome occurring ↓.

Assumptions

Logistic regression

- Linearity (in the logit)
 - There should be a linear relationship between any continuous predictor and the logit of the outcome
 - This can be tested by examining the interaction between the continuous predictor and its log transformation
- Independence of errors (observations)
 - Durbin-Watson
- Absence of multicollinearity, multivariate outliers and influential cases
 - VIF, standardized residuals, DFBeta, leverage

R U ready?

Does lifestyle predict job satisfaction similarly for males and females?

- Job satisfaction (high/low), lifestyle (dull, routine, and exciting), and sex (female/male)...sound familiar?
 - 1500 participants, lots of missing values.

Set, Import, and Inspect

```
setwd("C:/.../Analyzing in R Stats II 2015")
logex <-
  read.spss("logreg.sav",to.data.frame=T)
head(logex)
                  id age sex satjob educ hours life income
                    1
                       43
                                            35
                                                       17
                 2 2 44 1
3 3 43 2
4 4 45 2
5 5 78 2
                                  2 16 21 3
1 16 45 3
                                                       18
                                                       18
                                  2 15 20 0
                                                       22
                                 NA 17 -1 3
NA 11 -1 2
                                                        0
                       83
```

Set, Import, and Inspect ...with value labels

logex <read.spss("logreg.sav",to.data.frame=T,
 use.value.labels = T)</pre>

head(logex)

```
> head(logex)
                                 satjob educ hours
                                                            life
  id age
          sex
                                                                         income
                                            11
16
16
15
17
  1 43 Male Not very satisfied
2 44 Male Not very satisfied
3 43 Female Very satisfied
                                                    35 Routine $35000-39999
                                                    21 Exciting $40000-49999
                                                    45 Exciting $40000-49999
  4 45 Female Not very satisfied
                                                   20
                                                            <NA>
                                                                            <NA>
   5 78 Female
                                                    NA Exciting
                                                                            <NA>
                                    <NA>
                                            11
             Male
                                                        Routine
                                    <NA>
                                                                            <NA>
```

VIM

Visualization and Imputation of Missing values

Install and load

install.packages("VIM")
library(VIM)

- Import data
 - Ensure that categorical measures are listed as factors

miss<- aggr(logex, numbers = T, prop = F) miss

miss2<- logex[,c("age","satjob")] histMiss(miss2)

R U really ready?

Does lifestyle predict job satisfaction similarly for males and females?

- Job satisfaction (high/low), lifestyle (dull, routine, and exciting), and sex (female/male)...sound familiar?
 - 1500 participants, lots of missing values.
- I limit the analyses to the 754 participants with all three measures.
 - Alternative strategies to dealing with missing values will be addressed in the SEM course.

Extract subset()

Select valid cases and relevant variables

logex1sub<-subset(logex1, satjob != FALSE &
 life != FALSE, select=c("id", "sex", "satjob",
 "life"))</pre>

Check

head(logex1sub) nrow(logex1sub)

```
> head(logex1sub)
  id
                                  life
                        satjob
        sex
1 1 Male Not very satisfied Routine
       Male Not very satisfied Exciting
3 Female
                Very satisfied Exciting
  7 Female
                Very satisfied Routine
       Male
                Very satisfied Exciting
10 10 Female
                Very satisfied Exciting
> nrow(logex1sub)
[1] 754
```

Extract

complete.cases & na.omit

Select relevant variables

logex1 <- logex[,c(1,3,4,7)]

Use complete.cases()

logex1sub2 <- logex1[complete.cases(logex1),]</pre>

Use na.omit()

logex1sub3 <- na.omit(logex1)</pre>

Contrast settings?

More on this next week...

- Default is dummy coding
- What are the reference groups?

Perform logistic regression

Sex and lifestyle as predictors of job satisfaction

```
logmodel1 <- glm(satjob ~ sex + life, data =
logexsub, family = binomial())</pre>
```

- Examine the model diagnostics
 - Not the output (yet)!
- Note: The default of glm() is listwise deletion, so I could have also simply used the original data file, but...

Diagnostic tests

in the car () package

Independence of errors (Durbin-Watson)

dwt(logmodel1)

```
lag Autocorrelation D-W Statistic p-value
1 -0.01427466 2.027084 0.742
```

Multicollinearity (VIF)

vif(logmodel1)

```
GVIF Df GVIF^{(1/(2*Df))} sex 1.003113 1 1.001555 1ife 1.003113 2 1.000777
```

Model Diagnostics

pp 338-341 in FMF

Examine standardized residuals (outliers)

- 5% of cases should have residuals > 2, 1% should have residuals > 2.5, and none > 3.

Examine DFBetas (influential cases)

- effect on coefficients after deleting observation
- No values should be above 1

Calculate leverage (influential cases)

- (# predictors + 1) / sample size
- Are any values larger than 2x or 3x this value?

0.6 - 0.5 - 0.4 - 0.2 - 0.1 - 0.0 - 0.0 - 0.1 - 0.0 - 0.0 - 0.1 - 0.0 - 0.0 - 0.2 - 0.0 -

Histogram of logex1sub\$dfbeta

Diagnostic plots

Leverage -> 3/754 [1] 0.00397878

plot(logmodel1)

summary(logmodel1)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.05027 0.54564 3.758 0.000172 ***

sexFemale -0.09433 0.15495 -0.609 0.542670

lifeRoutine -1.19360 0.54662 -2.184 0.028993 *

lifeExciting -2.25033 0.54430 -4.134 3.56e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 1029.16 on 753 degrees of freedom Residual deviance: 965.96 on 750 degrees of freedom

AIC: 973.96

Where is R-square?

Assess model fit: $\chi^2 \& R^2$

```
#Computing chi-square
logChi <- logmodel1$null.deviance-logmodel1$deviance</pre>
chidf <- logmodel1$df.null - logmodel1$df.residual</pre>
chisq.prob <- 1 - pchisq(logChi, chidf)</pre>
logChi; chidf; chisq.prob
[1] 63.20087
[1] 3
[1] 1.216804e-13
#Compute R-square (WRITE A FUNCTION, p. 334, FMF!)
R2.hl<-logChi/logmodel1$null.deviance
R.cs<-1-exp(
(logmodel1$deviance-logmodel1$null.deviance)/754)
R.n < -R.cs/(1-(exp(-(logmodell*null.deviance/754))))
R2.h1; R.cs; R.n
[1] 0.0614101
[1] 0.08040395
[1] 0.1079824
```

Assess predictors: ORs & Cls

```
#Compute odds ratios and 95% confidence intervals
exp(logmodel1$coefficients)
(Intercept) sexfemale liferoutine lifeexciting
  7.7700061 0.9099800
                                0.1053647
                      0.3031289
                      exp(confint(logmodel1))
                  2.5 %
                             97.5 %
(Intercept) 2.97096398 26.6791248
sexfemale 0.67117679 1.2325086
liferoutine 0.08818527
                         0.7952406
             0.03075298
                         0.2747995
lifeexciting
```

Do individuals with routine & exciting lifestyles differ on job satisfaction?

relevel

logex\$life <- relevel(logex\$life, ref = 2)</pre>

- Perform analysis w/ alternative reference group
 logmodel1alt <- glm(satjob ~ sex + life, data = logex, family = binomial())
- The reference group is now routine lifestyle summary (logmodel1alt)

summary(logmodel1alt)

```
Estimate Std. Error z value Pr(>|z|)

(Intercept)  0.85667  0.14577  5.877 4.18e-09 ***

sexfemale  -0.09433  0.15495  -0.609  0.543

lifedull  1.19360  0.54662  2.184  0.029 *

lifeexciting -1.05673  0.15616  -6.767 1.32e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 1029.16 on 753 degrees of freedom Residual deviance: 965.96 on 750 degrees of freedom

AIC: 973.96

Perform hierarchical regression

Main effects model (previous)

```
logmodel1 <- glm(satjob ~ sex + life, data =
logex, family = binomial())</pre>
```

Interactional model

```
logmodel2 <- glm(satjob ~ sex * life, data =
logex, family = binomial())</pre>
```

summary(logmodel2)

summary(logmodel2)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.9072 0.1786 5.079 3.79e-07 ***

sexfemale -0.1828 0.2355 -0.776 0.438
lifedull 0.3456 0.8214 0.421 0.674
lifeexciting -1.1223 0.2366 -4.743 2.11e-06 ***

sexfemale:lifedull 1.3279 1.1150 1.191 0.234
sexfemale:lifeexciting 0.1158 0.3151 0.368 0.713
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1029.16 on 753 degrees of freedom

Residual deviance: 964.55 on 748 degrees of freedom

AIC: 976.55

Model Comparison

Parsimony rules!

```
#Compare two models
anova(logmodel1,logmodel2)

Analysis of Deviance Table

Model 1: satjob ~ sex + life
Model 2: satjob ~ sex * life
   Resid. Df Resid. Dev Df Deviance
1 750 965.96
2 748 964.55 2 1.4092
```

```
> logChi1; chidf1; chisq.prob1
[1] 1.409211
[1] 2
[1] 0.4943036
```

ns, interactions did not significantly contribute

Multinomial logistic regression

Multinomial logistic regression

A simple extension?

- Multinomial logistic regression can be used when the DV has 3 or more <u>unordered</u> categories.
- Has same assumptions as binary logistic regression, plus...
 - IIA (Independence of Irrelevant Alternatives)
 - The odds of choosing A over B should not depend on whether some other alternative C is present or absent.
 - Hausman-McFadden test (1984) Small-Hsiao test (1985)

Multinomial logistic regression

Restructure and perform

- Several packages can be used to perform multinomial logistic regression models (multinom, mlogit, mnlogit, vgam)
- mlogit() is most flexible, but requires data to be in "its own" long format.
 - mlogit.data creates new data frame referencing the outcome variable

```
newDataFrame<-mlogit.data(oldDataFrame,
    choice = "outcome", shape = "wide")</pre>
```

Install and Load

install.packages("mlogit")

necessary for multinomial logistic regression

install.packages("car")

"Companion for Applied Regression"

library(car) library(mlogit)

Long format

```
mlog1 <-mlogit.data(logex, choice
="life", shape ="wide")</pre>
```

Perform multinomial logistic regression

Sex and job satisfaction as predictors of lifestyle

```
mlogmodel1<-mlogit(life ~ 1 | sex + satjob, data = mlog1, reflevel = 1)
```

Diagnostics not straightforward⊗

- Best option? Examine/evaluate diagnostics from all possible binary logistic regression models
 - In this case, 3 binary logistic regressions

...examine the output

summary(mlogmodel1)

summary(mlogmodel1)

```
Coefficients:
                                        Estimate Std. Error t-value Pr(>|t|)
                                         3.83945
                                                    0.71467 5.3723 7.772e-08
  exciting:(intercept)
                                                    0.72300 4.2753 1.909e-05
                                         3.09104
  routine: (intercept)
                                         0.23807
                                                    1.00957 0.2358
                                                                     0.81358
  exciting:sexfemale
                                                    1.01912 0.3522
  routine: sexfemale
                                         0.35893
                                                                     0.72469
  exciting:satjobnot satisfied
                                        -1.46787
                                                    0.81667 - 1.7974
                                                                     0.07227
                                        -0.34560
                                                    0.82144 - 0.4207
                                                                     0.67395
  routine:satjobnot satisfied
  exciting:sexfemale:satjobnot satisfied -1.21205
                                                    1.11000 - 1.0919
                                                                     0.27486
  routine:sexfemale:satjobnot satisfied
                                        -1.32787
                                                    1.11525 -1.1907
                                                                     0.23379
```

```
Log-Likelihood: -600.42
McFadden R^2: 0.054003
```

Signif. codes:

Likelihood ratio test : chisq = 68.552 (p.value = 8.0999e-13)

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Perform regression again with alternative reflevel

```
mlogmodel2<-mlogit(life ~ 1 | sex + satjob, data = mlog1, reflevel = 2)
```

• Examine the output summary(mlogmodel2)

summary(mlogmodel2)

```
Coefficients:
                                     Estimate Std. Error t-value
                                                                 Pr(>|t|)
                                     -3.83945
                                                 0.71467 -5.3723 7.772e-08 ***
dull:(intercept)
routine: (intercept)
                                     -0.74841
                                                 0.18298 -4.0902 4.310e-05 ***
dull:sexfemale
                                     -0.23807
                                                 1.00957 -0.2358
                                                                  0.81358
routine:sexfemale
                                      0.12086
                                                 0.24047 0.5026
                                                                  0.61525
                                      1.46787
                                                 0.81667 1.7974
                                                                  0.07227 .
dull:satjobnot satisfied
                                                          4.7430 2.106e-06 ***
routine:satjobnot satisfied
                                      1.12227
                                                 0.23662
dull:sexfemale:satjobnot satisfied
                                      1.21205
                                                 1.11000
                                                          1.0919
                                                                  0.27486
routine:sexfemale:satjobnot satisfied -0.11582
                                                 0.31506 - 0.3676
                                                                  0.71316
               0 \***' 0.001 \**' 0.05 \.' 0.1 \' 1
Signif. codes:
Log-Likelihood: -600.42
                                                                 OR = 3.07
McFadden R^2: 0.054003
Likelihood ratio test: chisq = 68.552 (p.value = 8.0999e-13)
>
```

Summary

Logistic regression

Evaluating models & estimates

Chi-square determines model fit; LLR (deviance) used for model comparisons; ORs and CIs used to assess individual predictors

Assumptions/Diagnostics

- Fewer than MLR (multiple linear regression), but it is still an important issue to check a-priori and to potentially deal with post-hoc
 - Multinomial logistic regression = piecewise
- Some new concepts (R functions), but a high degree of consistency with MLR

Chi-square and Loglinear Analyses

No DV? No Problem!

Chi-square (bivariate)

- Loglinear analyses (multivariate)
 - Assumptions, contingency tables, model comparisons (backward elimination)

- Example
 - Job satisfaction, lifestyle, and sex

Pearson's Chi-Square Test

Andy:
$$\chi^2 = \sum \frac{\left(Observed_{ij} - Model_{ij}\right)^2}{Model_{ij}}$$

$$Model_{ij} = E_{ij} = \frac{Row Total_i \times Column Total_j}{n}$$

- The 'model' is based on 'expected frequencies'.
 - Calculated for each of the cells in the contingency table.
 - n is the total number of observations.

Test statistic

- Checked against a distribution with (r-1)(c-1) degrees of freedom.
- The test distribution is approximate so in small samples use Fisher's exact test.

Likelihood Ratio Statistic

Andy:
$$L\chi^2 = 2\sum Observed_{ij} \ln \left(\frac{Observed_{ij}}{Model_{ij}} \right)$$

An alternative to Pearson's chi-square,

- based on maximum-likelihood theory.
- Creates an "optimal" model (probability of obtaining the observed set of data is maximized), and this model is compared to the probability of obtaining those data under the null hypothesis

Test statistic

- Has a chi-square distribution with (r-1)(c-1) degrees of freedom.
- Preferred to the Pearson's chi-square when samples are small.

Statistical Assumptions

 No distributional assumptions, but there are a few things to watch out for...

Independence of observations:

- All cases contribute equally (once): N = # of cases
- Same as MLinR and MLogR

Ratio of cases to variables

5x the # of cases to cells in the design

Adequacy of expected values

All expected values are >1 & 80% >5

R U ready?

How are lifestyle, job satisfaction, and sex associated?

- Job satisfaction (high, low, lifestyle (dull, routine, and exciting), and sex (female, male)...sound familiar?
 - 1500 participants, lots of missing values.

 I limit the analyses to the 754 with all three measures.

Install and Load

install.packages("gmodels") install.packages("MASS")

library(gmodels) library(MASS)

x² = CrossTable() Options, options, options...

Default (X²)

CrossTable(logex\$satjob, logex\$life, chisq = TRUE)

Add and suppress statistics (sresid)

CrossTable(logex\$satjob, logex\$life, chisq = TRUE, expected = TRUE, prop.c = FALSE, prop.r = FALSE, prop.t = FALSE, prop.chisq = FALSE, sresid = TRUE, format = "SPSS")

Add and suppress statistics (asresid)

CrossTable(logex\$satjob, logex\$life, chisq = TRUE, expected = TRUE, prop.c = FALSE, prop.r = FALSE, prop.t = FALSE, prop.chisq = FALSE, asresid = TRUE, format = "SPSS")

CrossTable

Total Observations in Table: 754

logex1sub\$life						
logex1sub\$satjob	routine	dull	exciting	Row Total		
satisfied	107	4	211	322		
	147.761	14.093	160.146	1		
	-6.022	-3.632	7.488	l I		
not satisfied	239	29	164	432		
	198.239	18.907	214.854	l l		
	6.022	3.632	-7.488	1		
Column Total	346	33	375	754		

Statistics for All Table Factors

Fisher's Exact Test for Count Data

Alternative hypothesis: two.sided p = 2.09576e-14

Minimum expected frequency: 14.09284

Hierarchical loglinear analysis

- Start with saturated model, and eliminate nonsignificant parameters until the most parsimonious model is identified.
 - Sometimes easier said than done...
- Requires contingency table
 - xtabs()
- Requires model comparisons
 - anova()
- Requires subsequent post-hoc analyses
 - CrossTable()

Step 1: Create Contingency table

xtabs(~ classifying variables, data.frame)

Ilinx<-xtabs(~ satjob + life + sex, data =
 logex1sub)</pre>

Step 2: Specify Models

```
#Saturated
loglin1_sat<-loglm(~ satjob*life*sex, data=llinx,fit=TRUE)</pre>
#no3wayinteraction
no3way<-
loglm(~satjob+life+sex+satjob:life+satjob:sex+life:sex,data=
llinx, fit=TRUE)
#no2wayinteractions
nosexlife<-loglm(~satjob+life+sex + satjob:life + satjob:sex</pre>
data = llinx, fit, fit = TRUE)
nojobsex<-log1m(~satjob+life+sex + satjob:life + life:sex,</pre>
data = llinx, fit = TRUE)
nojoblife<-loglm(~satjob+life+sex + satjob:sex + life:sex,
data = llinx, fit = TRUE)
nolifeint<-loglm(~satjob+life+sex + satjob:sex,</pre>
data= llinx,fit=TRUE)
nojobint<-loglm(~satjob+life+sex + life:sex,</pre>
data = llinx, fit = TRUE)
nosexint<-loglm(~satjob+life+sex + satjob:life,</pre>
data = llinx. fit = TRUE)
#only main effects
mainonly<-loglm(~ satjob + life + sex,</pre>
data = llinx, fit = TRUE)
```

Step 3: Compare models

anova ()...for nested models

```
anova (loglin1_sat,no3way)
#ns, so saturated model not better than model without 3-way interaction
anova (no3way, nosexlife)
anova (no3way, nojobsex)
anova (no3way, nojoblife)
#sign. satjob:life improves fit
anova (nosexlife,nosexint)
#ns, satjob:sex does not improve
anova (nojobsex,nosexint)
#ns, life:sex does not improve
anova (nosexlife, nolifeint)
#sign. satjob:life improves fit
```

Most parsimonious model:

satjob:life + main effects

Step 4: Post-hoc contingency tables

Create subsets

```
table(logex1sub$satjob, logex1sub$life, logex$sex)
xtabs(~sex + satjob + life, data = logex)
justmales = subset(logex1sub, sex =="male")
justfemales = subset(logex1sub, sex =="female")
```

Perform chi-square

```
CrossTable(justmales$satjob, justmales$life, asresid = TRUE, prop.t=FALSE, prop.r=FALSE, prop.c=FALSE, prop.c=FALSE, format = "SPSS")
```

Total Observations in Table: 330 justmales2\$life									
justmales2\$satjob	du]]	routine	exciting	Row Total					
not satisfied	7 5.209 1.226	109 88.555 4.571	75 97.236 -4.959	191					
satisfied	2 3.791 -1.226	44 64.445 -4.571	93 70.764 4.959	139					
Column Total	9	153	168	330					

Males

Pearson's Chi-squared test

 $Chi^2 = 24.74111$ d.f. = 2 p = 4.241656e-06

Life:Satjob Minimum expected frequency: 3.790909 Cells with Expected Frequency < 5: 1 of 6 (16.66667%)

Total Observations in Table: 424

justfemales2\$life							
justfemales2\$satjob	dull	routine	exciting	Row Total			
not satisfied	22 13.642 3.547	130 109.700 3.997	89 117.658 -5.621	241			
satisfied	2 10.358 -3.547	63 83.300 -3.997	118 89.342 5.621	183			
Column Total	24	193	207				
Doomson's Chi sayono	1						

Females

Pearson's Chi-squared test

 $Chi^2 = 36.7421$ d.f. = 2 p = 1.050884e-08Minimum expected frequency: 10.35849

Mosaic plot

mosaicplot(nosexint\$fit, shade = TRUE, main = "Expected Values")

Red is negative (less likely); Blue is positive (more likely)

Summary

Loglinear analyses

- Hierarchical analyses require several steps
 - Objective: Identify most parsimonious model
- Post-hoc analyses
 - Chi-squares and mosaic plots
- Raw data and contingency tables
 - The latter requires a bit more "Runderstanding"