Οι	uestion 1: Grådige algoritmer
7	
Hv	ilke(n) påstand(er) er korrekt(e)?
\checkmark	Grådige algoritmer tar globalt optimale valg.
\checkmark	Grådige algoritmer trenger ikke å vite løsningen på alle mulige delproblemer før den kan gjøre det grådige valget.
	Dersom man kan løse et problem med dynamisk programmering kan man også løse det med en grådig algoritme.
	Grådige algoritmer pleier å ombestemme seg senere når de har funnet ut mer om løsningene på delproblemene.

Grådige algoritmer finner alltid den globalt optimale løsningen.

Grådige algoritmer brukes til å løse optimaliseringsproblemer.

Question 2: Grådige algoritmer
x
Hvilke to egenskaper må et problem ha for at vi kan bruke en grådig algoritme?
Syklisk og optimal substruktur
O Polynomisk kjøretid og problemet lar seg redusere til bare ett delproblem
 Grådighetsegenskapen og optimal substruktur
○ Ingen av alternativene er korrekt
○ Grådighetsegenskapen og polynomisk kjøretid
Question 3: Grådige algoritmer
×
Hvorfor kan det være ønskelig å bruke en grådig algoritme istedenfor dynamisk programmering?
O For å utnytte overlappende delproblemet på en bedre måte
Fordi vi ønsker å løse problemet rekursivt - noe vi ikke får til med dynamisk programmering.
Algoritmen kan være enklere å implementere og ha bedre kjøretid

Question 4: Grådige algoritmer
×
Hva har grådige algoritmer og dynamisk programmering til felles?
Begge løser problemer nedenfra og opp Begge garanterer O(n) kjøretid
Begge utnytter optimal delstruktur
Begge utnytter overlappende delproblemer
Question 5: Grådige algoritmer
×
Hvilke(n) påstand(er) er korrekt(e)?
☐ En grådig algoritme kan enkelt løse både 0-1 og fractional knapsack-problemet
En grådig algoritme kan ikke løse fractional knapsack-problemet
☑ En grådig algoritme kan ikke løse 0-1 knapsack-problemet

Question (6:	Aktivitetsutval	g	1
------------	----	-----------------	---	---

Du ønsker å velge ut så mange aktiviteter som mulig fra en mengde av åtte aktivitet uten at de overlapper. Aktivitetene har følgende start og sluttidspunkter.

TASK	START	FINISH
1	12	14
2	12	17
3	6	10
4	15	18
5	16	17
6	0	5
7	4	7
8	6	9
Gitt a	at du	hadde

Gitt at du hadde brukt RECURSIVE-ACTIVITY-SELECTOR (side 419) til å løse problemet. Hvilken aktivitet ville vært den 2. i løsningsmengden A?

- 0
- 0
- 0
- 0
- 0
- 0
- \bigcirc 2
- O 2

Question 7: Aktivitetsutvalg 2

(Bruk tabellen i oppgave 'Aktivitetsutvalg 1')

Gitt at du hadde brukt GREEDY-ACTIVITY-SELECTOR (side 421) på tabellen. Hvilken aktivitet ville vært den 3. aktiviteten i løsningsmengden A?

MERK For at algoritmen skal fungere vil du måtte omorganisere elementene i tabellen slik at antagelsen til GREEDY-ACTIVITY-SELECTOR er oppfylt.

- O 5
- 0
- 0
- 0
- 0
- 0
- 0

Question 8: Aktivitetsutvalg 3
×
(Bruk tabellen fra oppgave 'Aktivitetsutvalg 1')
Gitt at du hadde brukt RECURSIVE-ACTIVITY-SELECTOR (side 419) på tabellen. Hva blir løsningen (aktiviteter i kronologisk rekkefølge)?
○ 6, 3, 2, 5
⊙ 6, 8, 1, 5
O 6, 7, 1, 5
O 6, 7, 3, 2
Question 9: Aktivitetsutvalg 4
x
Hva forteller teorem 16.1 i boka om aktivitetsutvalg-problemet?
Oet har optimal substruktur
O Det lar seg ikke løse
At det har grådighetsegenskapen
Oet har overlappende delproblemer

Question 10: Huffman-koder 1

Du ønsker å finne optimal prefix-kode for en streng. Strengens alfabet representeres ved bokstavene a til g. Frekvensene er som følger:

0
0
5
00
0
0

BOKSTAV FREKVENS

Gitt at vi velger å kode alfabetet på følgende måte:

- a: 00001b: 001
 - c: 1
 - c: 1 • d: 00000
 - e: 0001
 - f: 010 • g: 011
- Hvor mange bits må vi bruke for å representere strengen?
- 1621
- 1537
- O 1689
- O 1546

Question 11: Huffman-koder 2
imes
(Bruk tabellen fra oppgave Huffman-koder 1)
Du bruker Huffmans algoritme. Hvilke to bokstaver slår du sammen først?
○ a og e
○ c og d
○ e og f
● b og c
$\bigcirc a \circ g b$
Question 12: Huffman-koder 3
x
(Bruk tabellen fra oppgave Huffman-koder 1)
Du bruker Huffmans algoritme. Hvor mange bits blir b kodet til?
○ 2
© 5
○ 1
O 4
○ 6 ○ 3
○ 3

Question 13: Huffman-koder 4
(Bruk tabellen fra oppgave Huffman-koder 1)
Du bruker Huffmans algoritme. Hvor mange bits blir d kodet til?
O 6
O 1
○ 3
○ 5
○ 4
○ 2
Question 14: Huffman-koder 5
x
(Bruk tabellen fra oppgaven Huffman-koder 1)
Du bruker Huffmans algoritme. Hvor mange bits blir e kodet til?
○ 5
O 4
0 6
0 1
O 3
0.2

Question 15: Huffman-koder 6	
	×
(Bruk tabellen fra oppgave Huffman-koder 1)	
Du bruker Huffmans algoritme. Hvor mange bits trenger du for å kode strengen med løsningen du finner?	
O 1023	
O 734	
O 561	
O 452	
O 450	
O 958	
980	
O 603	
○ 789	