PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-320329

(43)Date of publication of application: 16.11.2001

(51)Int.CI.

H04B 10/02 H04B 10/18 H04L 25/02

(21)Application number: 2000-142321

(71)Applicant: NEC CORP

(22)Date of filing:

10.05.2000

(72)Inventor: MORIBAYASHI SHIGERU

(54) DEVICE AND METHOD FOR DETECTING PULSE DISTORTION, AND RECORDING MEDIUM WITH PROGRAM RECORDED THEREON

(57)Abstract:

PROBLEM TO BE SOLVED: To simply detect the distorted state of a received optical pulse signal. SOLUTION: A post-transmission optical waveform 13 is controlled by an optical amplifier 2 so that output power is a constant level, converted into an electrical signal by O/E converter 3 and controlled by an amplifier circuit 4 so that power is a constant level, and a direct current component is eliminated by an AC coupler 5. Next, the slanted line part of an in-phase electricity waveform 14 is inputted to a lowpass filter 8 by an offset adjustment circuit 6 and a rectifier 7. Next, a voltage comparison circuit 9 compares a voltage circuit output 16 decided by a variable voltage circuit 11 with a filter output 15 of the filter 8, and it can be detected whether a pulse distortion is due to pulse compression or pulse expansion, in such a manner that a voltage monitor 10 monitors the comparison output. Adverse effects due to automatic dispersion compensation and nonlinear optics by feedbacking a value detected by the monitor 10 to a

dispersion compensation module 17 and by controlling the gain of the optical signal.

LEGAL STATUS

[Date of request for examination]

13.04.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出顧公開番号 特開2001-320329 (P2001-320329A)

(43)公開日 平成13年11月16日(2001.11.16)

(51) Int.Cl.7		識別記号	FΙ	テーマコード(②考)	
H 0 4 B	10/02	•	H04L 25/02	302C 5K002	
	10/18	•		303A 5K029	
H04L	25/02	302	H04B 9/00	M	
		303			

審査請求 有 請求項の数15 OL (全 8 頁)

(21)出願番号	特願2000-142321(P2000-142321)	(71)出願人 000004237 日本電気株式会社
(22)出顧日	平成12年5月10日(2000.5.10)	東京都港区芝五丁目7番1号
		(72)発明者 森林 茂
		東京都港区芝五丁目7番1号 日本電気株
		式会社内
-		(74)代理人 100084250
	•	弁理士 丸山 隆夫
	•	Fターム(参考) 5K002 CA01 DA05 DA07 FA01
		5KO29 AA18 CCO4 DDO2 JJ01 KK21
	•	KK25 KK26 LL01

(54) 【発明の名称】 パルス歪み検出装置、方法及びプログラムを記録した記録媒体

(57)【要約】

【課題】 受信した光パルス信号の歪みの状態を簡単に 検出できるようにする。

【解決手段】 伝送後光波形13は光増幅器2により出力パワーが一定になるように制御され、光/電気変換器3で電気信号に変換され、増幅回路4でパワーが一定になるように制御され、AC結合器5で直流成分が除去される。次に、オフセット調整回路6と整流器7により同相電気波形14の斜線部が低域透過フィルタ8に入力される。次に、可変電圧回路11により決められる電圧回路出力16と、低域透過フィルタ8のフィルタ出力15が電圧比較回路9により比較され、その比較出力を電圧モニタ10でモニタすることにより、パルス歪みの状態がパルス圧縮かパルス拡がりかを検出できる。また、電圧モニタ10で検出した値を分散補償モジュール17にフィードバックし、光信号の利得を制御することにより、自動分散補償及び非線形光学効果による影響を除去することもできる。

1

【特許請求の範囲】

【請求項1】 入力される光パルス信号を電気的なパルス信号に変換する変換手段と、

前記変換されたバルス信号の歪みの状態がバルス圧縮であるかバルス拡がりかを検出し、検出した状態に応じたレベルの信号を出力する検出手段とを設けたことを特徴とするバルス歪み検出装置。

【請求項2】 前記検出手段は、

前記変換されたバルス信号の直流成分を除去する除去手 段と、

前記直流成分を除去されたバルス信号を整流する整流手段と、

前記整流手段のターンオフ電圧を調整する調整手段と、 前記整流された信号が通過する低域通過フィルタ手段 と、

所望の電圧を出力する可変電圧出力手段と、

前記可変電圧出力手段の出力電圧と前記低域通過フィルタ手段の出力電圧とを比較する電圧比較手段とからなる ことを特徴とする請求項1記載のパルス歪み検出装置。

【請求項3】 前記変換手段は、前記入力される光バル 20 ス信号と同相のバルス信号と逆相のバルス信号とを出力 するようになされ、

前記検出手段は、

前記同相及び逆相のバルス信号の直流成分を除去する2つの除去手段と、

前記直流成分を除去された各パルス信号を整流する2つ の整流手段と、

前記各整流手段のターンオフ電圧を調整する調整手段

前記整流された各信号が通過する2つの低域通過フィル 30 タ手段と、

前記各低域通過フィルタ手段の出力電圧を比較する電圧 比較手段とからなることを特徴とする請求項1記載のバルス歪み検出装置。

【請求項4】 前記検出手段は、

前記変換されたパルス信号の直流成分を除去する除去手 段と、

前記直流成分を除去されたパルス信号を整流する2つの 整流手段と、

前記各整流手段のターンオフ電圧を調整する調整手段と、

前記整流された各信号が通過する2つの低域通過フィルタ手段と、

一方の低域通過フィルタ手段の出力を反転する反転手段と、

前記反転手段の反転出力と他方の低域通過フィルタ手段 の出力電圧とを比較する電圧比較手段とからなることを 特徴とする請求項1記載のバルス歪み検出装置。

【請求項5】 前記検出手段の検出出力に応じて前記入力される光パルス信号の利得を制御する制御手段を設け 50

たことを特徴とする請求項 1 記載のパルス歪み検出装置。

2

【請求項6】 入力される光パルス信号を電気的なパルス信号に変換する変換手順と、

前記変換されたバルス信号の歪みの状態がバルス圧縮であるかパルス拡がりかを検出し、状態に応じたレベルの信号を出力する検出手順とを設けたことを特徴とするパルス歪み検出方法。

【請求項7】 前記検出手順は、

10 前記変換されたバルス信号の直流成分を除去する除去手順と、

前記直流成分を除去されたパルス信号を整流する整流手 順と、

前記整流手順におけるターンオフ電圧を調整する調整手順と、

前記整流された信号の低域成分を通過させる低域通過手順と、

所望の電圧を出力する電圧出力手順と、

前記電圧出力手順による出力電圧と前記低域通過手順に 5 よる出力電圧とを比較する比較手順とからなることを特 徴とする請求項6記載のパルス歪み検出方法。

【請求項8】 前記変換手順により前記入力される光パルス信号と同相のパルス信号と逆相のパルス信号とを出力し、

前記検出手順は、

前記同相及び逆相のパルス信号の直流成分をそれぞれ除去する除去手順と、

前記直流成分を除去された各パルス信号をそれぞれ整流する整流手順と、

80 前記整流手順におけるターンオフ電圧を調整する調整手 順と、

前記整流された各信号の低域成分をそれぞれ通過させる低域通過手順と、

前記低域通過手順の各出力電圧を比較する比較手順とからなることを特徴とする請求項6記載のバルス歪み検出方法。

【請求項9】 前記検出手順は、

前記変換されたパルス信号の直流成分を除去する除去手順と、

40 前記直流成分を除去されたパルス信号を整流して2つの 整流出力を得る整流手順と、

前記各整流手順におけるターンオフ電圧を調整する調整 手順と、

前記整流された各信号の低域成分をそれぞれ通過させる低域通過手順と、

一方の低域通過出力を反転する反転手順と、

前記反転出力と他方の低域通過出力電圧とを比較する比 較手順とからなることを特徴とする請求項 6 記載のバル ス歪み検出方法。

50 【請求項10】 前記検出手順による検出出力に応じて

前記入力される光パルス信号の利得を制御する制御手順 を設けたことを特徴とする請求項6記載のパルス歪み検 出方法。

【請求項11】 入力される光パルス信号を電気的なパ ルス信号に変換する変換処理と、

前記変換されたパルス信号の歪みの状態がパルス圧縮で あるかパルス拡がりかを検出し、状態に応じたレベルの 信号を出力する検出処理とを実行するためのプログラム を記録した記録媒体。

【請求項12】 前記検出処理は、

前記変換されたパルス信号の直流成分を除去する除去処 理と.

前記直流成分を除去されたバルス信号を整流する整流処 理と、

前記整流処理におけるターンオフ電圧を調整する調整処

前記整流された信号の低域成分を通過させる低域通過処 理と、

所望の電圧を出力する電圧出力処理と、

前記電圧出力処理による出力電圧と前記低域通過処理に 20 よる出力電圧とを比較する比較処理とからなることを特 徴とする請求項11記載のプログラムを記録した記録媒 体。

【請求項13】 前記変換処理により前記入力される光 バルス信号と同相のバルス信号と逆相のバルス信号とを 出力し、

前記検出処理は、

前記同相及び逆相のバルス信号の直流成分をそれぞれ除 去する除去処理と、

前記直流成分を除去された各パルス信号をそれぞれ整流 する整流処理と、

前記整流処理におけるターンオフ電圧を調整する調整処

前記整流された各信号の低域成分をそれぞれ通過させる 低域通過処理と、

前記低域通過手順の各出力電圧を比較する比較処理とか らなることを特徴とする請求項11記載のプログラムを 記録した記録媒体。

【請求項14】 前記検出処理は、

前記変換されたバルス信号の直流成分を除去する除去処 40 歪みの状態は異なる。 理と、

前記直流成分を除去されたパルス信号を整流して2つの 整流出力を得る整流処理と、

前記各整流処理におけるターンオフ電圧を調整する調整 処理と、

前記整流された各信号の低域成分をそれぞれ通過させる 低域通過処理と、

一方の低域通過出力を反転する反転処理と、

前記反転出力と他方の低域通過出力電圧とを比較する比

ログラムを記録した記録媒体。

【請求項15】 前記検出処理による検出出力に応じて 前記入力される光パルス信号の利得を制御する制御処理 を実行するためのプログラムを記録したことを特徴とす る請求項11記載のプログラムを記録した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光通信システムに おける光パルスの歪みの状態を検出するパルス歪み検出 装置、方法及びそれらに用いられるプログラムを記録し た記録媒体に関する。

[0002]

【従来の技術】一般に、光ファイバ通信システムの光伝 送路として用いられる光ファイバは波長分散特性を有す る。波長分散特性は、光信号の伝搬時間が波長によって 異なる特性である。波長分散特性を有する光ファイバ中 を伝搬するディジタル光信号は、その伝送速度が増加す るに従い、又は光ファイバの伝送距離が長くなるに従 い、伝送後の光波形が劣化する。典型的なシングルモー ド光ファイバの波長分散特性は、波長分散値=17ps /nm/km@波長1.55 μmの程度である。

【0003】との光ファイバ80kmで、例えば伝送速 度10Gbit/sのディジタル信号を伝搬させた場 合、伝送特性は多大な影響を受け、伝送後の光波形は波 長分散のため大きく歪む。その結果、受信されるディジ タル波形は、マークとスペースの判別がつかなくなるた め、誤り率の十分小さい良好な品質での光伝送が不可能 となる。

【0004】この波長分散による波形歪みを補正する手 段として、光ファイバの分散を補償する、即ち、光ファ イバの分散量と絶対値が等しく符号が逆の分散値を有す る光デバイスを光ファイバに挿入する方法が検討されて いる。一般に、分散補償デバイスには、分散値が伝送路 と逆符号となる分散補償ファイバやチャープト・グレー ティングが用いられている。

【0005】とれらのデバイスを用いて分散補償を行う 場合には、伝送路の総分散量と分散補償デバイスの補償 量とを一致させる必要がある。伝送路分散量と送信器の 変調器が有するチャープ特性との相関関係により、波形

【0006】図6に変調器のチャープ特性と伝送路分散 量による波形歪みの関係を示す。一例として、変調器の チャープ特性が正で、伝送路分散量が正であるとき、図 6(a)に示すように波形は拡がる傾向に歪む。また、 変調器のチャープ特性が正で、伝送路分散量が負である とき、図6(b)に示すように波形は圧縮する傾向に歪 む。このように、伝送路分散により波形が歪み、これに より受信感度の劣化が生じる。

【0007】一方、分散補償量と伝送路の総分散量とが 較処理とからなることを特徴とする請求項11記載のプ 50 一致した場合、(図6(b)、(e)、(h)の場合)

受信波形は光送信部波形と同等の波形となり、光受信部 で感度劣化のない良好な光伝送が実現される。即ち、分 散補償を行う場合においては、伝送路の総分散量と分散 補償量とを一致させることが重要となる。

[0008]

【発明が解決しようとする課題】上記のように伝送路の 総分散量と分散補償量とを一致させるためには、伝送路 の分散量を知る必要がある。このためには、受信バルス 歪みの状態を検出する必要がある。また光伝送システム においては、非線形光学効果による影響によってもバル 10 ス歪みを生じさせ、これにより伝送距離が制限される。 以上のことから、バルス歪みを補正するためには、光線 路を伝搬した光信号の歪みを検出することは重要な課題 である。

【0009】尚、分散補償を行う技術が、例えば特開平 8-256106号公報、特開平8-265256号公 報、特開平10-213714号公報及び特開平11-136186号公報等に開示されている。

【0010】本発明は上記の実情に鑑みてなされたもの であり、光パルス信号の歪み状態を容易に検出できるよ 20 うにすることを目的としている。

[0011]

【課題を解決するための手段】かかる目的を達成するた めに、本発明によるパルス歪み検出装置においては、入 力される光パルス信号を電気的なパルス信号に変換する 変換手段と、変換されたパルス信号の歪みの状態がパル ス圧縮であるかパルス拡がりかを検出し、状態に応じた レベルの信号を出力する検出手段とを設けている。

【0012】また、本発明によるバルス歪み検出方法に おいては、入力される光パルス信号を電気的なパルス信 30 号に変換する変換手順と、変換されたパルス信号の歪み の状態がパルス圧縮であるかパルス拡がりかを検出し、 状態に応じたレベルの信号を出力する検出手順とを設け ている。

【0013】また、本発明によるプログラムを記録した 記録媒体においては、入力される光パルス信号を電気的 なパルス信号に変換する変換処理と、変換されたパルス 信号の歪みの状態がパルス圧縮であるかパルス拡がりか を検出し、状態に応じたレベルの信号を出力する検出処 理とを実行するためのプログラムを記録している。

[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面 と共に説明する。本実施の形態は、光通信システムに適 用され、光受信器で受信される光バルスの歪みの状態を 検出するものである。図2に示すように、パルス歪みに よりパルス圧縮又はパルス拡がりが生じる。これらの歪 みは、前述した光ファイバが持つ分散による影響や、光 通信システムにおける非線形光学効果による影響等が原 因で生じる。

ァイバ1を伝搬した光送信波形12にパルス歪みを生 じ、光増幅器2に入力されたとき、光/電気変換器3に より光パルスが電気パルスに変換され、パルス歪み検知 回路18によりパルス歪みを検出し、検出値を電圧モニ タ10によりモニタできる特徴を有する。このとき、パ ルス歪みの原因が、分散及び非線形光学効果、どちらの 影響によるものであっても、検出が可能であるという特 徴も有する。また電圧モニタ10で検出した値を分散補 僚モジュール 17 にフィードバックし制御することによ り、自動分散補償を行うこともできる。

【0016】図1は本発明の第1の実施の形態によるバ ルス歪み検出装置を示すブロック図である。図1におい て、バルス歪み検出装置は、光ファイバ1と光増幅器2 と光/電気変換器3と増幅回路4とAC結合器5とオフ セット調整回路6と整流器7と低域通過フィルタ8と電 圧比較回路9と電圧モニタ10と可変電圧回路11から 構成される。

【0017】次に動作の概略を説明する。光ファイバ1 を介して伝搬された光送信波形 12が、分散及び非線形 光学効果の影響により、伝送後光波形13のようにバル ス歪みが生じた場合を例に説明する。 伝送後光波形 13 は光増幅器2により、出力パワーが一定になるように制 御され、光/電気変換器3で電気信号に変換され、増幅 回路4でパワーが一定になるように制御され、AC結合 器5で直流成分が除去される。次に、オフセット調整回 路6と整流器7により同相電気波形14の斜線部が低域 透過フィルタ8に入力される。

【0018】次に、可変電圧回路11により決められる 電圧回路出力16と、低域透過フィルタ8のフィルタ出 カ15が電圧比較回路9により比較され、その差分出力 を電圧モニタ10でモニタすることにより、パルス歪み の状態を検出できる。また、電圧モニタ10で検出した 値を分散補償モジュール17にフィードバックし、入力 される光信号の利得を制御することにより、自動分散補 償及び非線形光学効果による影響を低減することもでき

【0019】次に、さらに詳細な動作について説明す る。光ファイバ1の伝送後光波形13が分散や非線形光 学効果等の影響により歪む場合、図2(a)、(c)に 40 示すように、パルス圧縮又はパルス拡がりとなって表れ る。マーク率1/2でデューティ比50%の理想的な光 パルス信号が送信される場合、図2(a)に示すよう に、パルス圧縮ではマーク成分が増大し、逆に図2

(c) に示すように、パルス拡がりではマーク成分が減 少する。

【0020】それぞれの場合について、本実施の形態の 動作を説明をする。図1において、まず、図2(b)に 示すようにバルス歪みのない光バルス信号を光増幅器2 に入力する。光増幅器2により出力パワーが一定に制御 【0015】本実施の形態は、図5に示すように、光フ 50 された光パルス信号が光/電気変換器3で電気パルス信

号に変換され、増幅回路4で出力パワーを一定に制御し た電気バルス信号となり、AC結合器5で直流成分が除 去される。次に、オフセット調整回路6から整流器7の ターンオン電圧が印加され、整流器7から半波整流され た信号が得られ、低域通過フィルタ8で直流電圧値のフ ィルタ出力15に変換される。

【0021】ここで、フィルタ出力15の電圧値と、可 変電圧回路11の電圧値が等しくなるように電圧回路出 カ16を設定する。この状態を初期設定状態とする。増 幅器2に入力される光波形が図2(a)に示すパルス圧 10 縮の場合は、マーク成分が増大するため、フィルタ出力 15は電圧回路出力16より大きくなる。逆に図2

(c) に示すパルス拡がりの場合は、マーク成分が減少 するため、フィルタ出力15は電圧回路出力16より小 さくなる。

【0022】この関係を電圧比較回路9を介して電圧モ ニタ10で電圧値として検出することにより、パルス歪 みの状態を検出することができる。さらに、電圧モニタ 10で検出した値を分散補償モジュール17にフィード バックし制御することにより、自動分散補償及び非線形 20 光学効果による影響を低減することもできる。

【0023】図3は本発明の第2の実施の形態によるパ ルス歪み検出装置を示すブロック図である。図3におい て、本実施の形態によるパルス歪み検出装置は、光増幅 器2と光/電気変換器3と増幅回路4とAC結合器5 a、5bとオフセット調整回路6と整流器7a、7bと 低域通過フィルタ8a、8bと電圧比較回路9と電圧モ ニタ10から構成される。

【0024】次に動作について説明する。光増幅器2に より出力パワーが一定に制御された光パルス信号が光/ 電気変換器3で電気パルス信号に変換され、増幅回路4 により出力パワーを一定に制御した同相、逆相の電気パ ルス信号となる。続いて、AC結合器5a、5bで直流 成分が除去される。次に、オフセット調整回路6から整 流器7a、7bのターンオン電圧が印加され、同相電気 波形14aと逆相電気波形14bの斜線部が整流器7 a、7bで半波整流された信号が得られ、低域通過フィ ルタ8a、8bで直流電圧に変換される。

【0025】光増幅器2に入力される光パルスが、図2 (b) に示す歪みのない場合は、同相フィルタ出力15 aの電圧値と、逆相フィルタ出力15bの電圧値は等し くなる。光増幅器2に入力される光波形が図2 (a) に 示すパルス圧縮の場合、マーク成分が増大するため、同 相フィルタ出力15 aは、逆相フィルタ出力15 bより 大きくなる。逆に図2(c)に示すバルス拡がりの場 合、マーク成分が減少するため、同相フィルタ出力15 aは逆相フィルタ出力15bより小さくなる。

【0026】この関係を電圧モニタ10で検出すること により、パルス歪みの状態を検出することができる。さ らに、電圧モニタ10で検出した値を分散補償モジュー 50 概略的に示した図であり、各図と対応する部分には同一

ル17にフィードバックし制御することにより、自動分 散補償及び非線形光学効果による影響を低減することも できる。本実施の形態によれば、図1の可変電圧回路1 1による調整を省略できるという効果がある。

【0027】図4は本発明の第3の実施の形態によるパ ルス歪み検出装置を示すブロック図である。

【0028】本実施の形態によるパルス歪み検出装置 は、光増幅器2と光/電気変換器3と増幅回路4とAC 結合器5とオフセット調整回路6と整流器7a、7bと 低域通過フィルタ8a、8bと反転回路19と電圧比較 回路9と電圧モニタ10から構成される。

【0029】次に動作について説明する。光増幅器2で 出力パワーが一定に制御された光パルス信号が光/電気 変換器3にて電気バルス信号に変換され、増幅回路4で 出力パワーを一定に制御した同相電気パルス信号とな り、続いてAC結合器5で直流成分が除去される。オフ セット調整回路6から整流器7a、7bのターンオン電 圧がそれぞれ印加され、同相電気波形 1 4 a と逆相電気 波形14bの斜線部が整流器7a、7bで半波整流さ れ、それぞれ整流の向きが異なる半波整流された信号が 得られ、低域通過フィルタ8a、8bで直流電圧に変換 される。整流器7bから出力された信号は反転回路18 で反転される。この反転出力と整流器7aの整流出力と が電圧比較回路9で比較される。

【0030】光増幅器2に入力される光波形が図2

(b) に示す歪みのない場合、同相フィルタ出力15a の電圧値と、同相フィルタ出力15bの電圧値は等しく なる。増幅器2に入力される光波形が図2(a)に示す バルス圧縮の場合、マーク成分が増大するため、同相フ ィルタ15 aは同相フィルタ出力15 bより大きくな る。逆に図2(c)に示すパルス拡がりの場合、マーク 成分が減少するため、同相フィルタ出力15 a は逆相フ ィルタ出力15bより小さくなる。

【0031】この関係を電圧モニタ10にて検出するこ とにより、バルス歪みを検出することができる。さら に、電圧値モニタ10で検出した値を分散補償モジュー ル18にフィードバックし制御することにより、自動分 散補償及び非線形光学効果による影響を低減することも できる。本実施の形態によれば、図1の可変電圧回路1 40 1による調整を省略でき、同相電気信号のみで検出可能 という効果がある。

【0032】以上に説明した各実施の形態は、光伝送シ ステムにおいて、伝送路の分散補償を行うに際し、伝送 路の総分散量と分散補償量とを一致させることが必要で あり、そのために、伝送後光波形の歪みの状態がパルス 圧縮かバルス拡がりかを判別すると共に、電圧比較回路 9から判別した状態に応じたレベルの電圧値を得るよう にしたものである。

【0033】図5は図1、図3、図4の各実施の形態を

番号を付して重複する説明は省略する。図5において、 パルス歪み検知回路18は、各実施の形態におけるAC 結合器5、オフセット調整回路6、整流器7、低域通過 フィルタ8、電圧比較回路9等を含んで構成されるもの で、伝送後波形の歪みの状態がバルス圧縮かバルス拡が りかを判別すると共に、判別した状態に応じたレベルの 電圧値を得るものである。

【0034】尚、図1、図3、図4の回路はハードウェ ア構成としてもよいが、CPUとメモリからなるコンピ ュータシステムに構成することもできる。 コンピュータ 10 システムに構成システムする場合、上記メモリは本発明・ によるプログラムを記録した記録媒体を構成する。この 記録媒体には、前述した動作に基づく処理を実行するた めのプログラムが格納される。またこのような記録媒体 としては、半導体記憶装置、光ディスク、光磁気ディス ク、磁気記録媒体等を用いることができる。

[0035]

【発明の効果】以上説明したように本発明によれば、伝 送後光波形の歪みの状態がパルス圧縮及びパルス拡がり かを判別すると共に、判別した状態に応じたレベルの信 20 号を得るようにしたので、歪みの状態を簡単な構成で容 易に検出することができると共に、検出した信号に基づ いて入力光信号の利得を制御することにより、歪みの除 去された信号を得ることができ、光通信システムの伝送 品質を向上させることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態によるパルス歪み検 出装置を示すブロック図である。

【図2】伝送後の光波形を示す波形図である。

【図3】本発明の第2の実施の形態によるパルス歪み検*30 19 反転回路

* 出装置を示すブロック図である。

【図4】本発明の第3の実施の形態によるバルス歪み検 出装置を示すブロック図である。

【図5】各実施の形態を概略的に示すブロック図であ る。

【図6】変調器のチャープ特性と伝送路分散量による波 形歪みを示す波形図である。

【符号の説明】

- 1 光ファイバ
- 2 光增幅器
- 3 光/電気変換器
 - 4 増幅回路
 - 5 AC結合器
 - 6 オフセット調整回路
 - 7 整流器
 - 8 低域通過フィルタ
 - 9 電圧比較回路
 - 10 電圧モニタ
 - 11 可変電圧回路
- 12 光送信波形
 - 13 伝送後光波形
 - 14 同相電気波形
 - 14 逆相電気波形
 - 15 フィルタ出力
 - 15a 同相フィルタ出力
 - 15b 逆相フィルタ出力
 - 16 電圧回路出力
 - 17 分散補償モジュール
 - 18 パルス歪み検知回路

【図1】

[図3]

【図4】

[図5]

【図6】

