Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

In the Claims:

What is claimed is:

1. (Currently amended) A c

A compound of formula (I): R_1^{1} R_2^{6}

(l)

wherein:

R¹ represents hydrogen, C₁₋₄alkyl, -CH₂CO₂H, -CH₂CO₂C₁₋₂alkyl, or -CH₂CONR⁷R⁸;

 R^2 and R^3 independently represent hydrogen, $-C_{1\text{-}6}$ alkyl, $-C_{1\text{-}3}$ alkylCN, $-C_{1\text{-}}$ $_3$ alkylCO $_2$ H, $-C_{1\text{-}4}$ alkyl, $-C_{1\text{-}3}$ alkylCO $_2$ C $_{1\text{-}4}$ alkyl, $-C_{1\text{-}3}$ alkylCO $_2$ C $_{0\text{-}2}$ alkylR 9 , $-C_{1\text{-}3}$ alkylCOC $_0$ - $_2$ alkylR 9 , $-C_{1\text{-}3}$ alkylCOC $_0$ - $_2$ alkylR 9 , $-C_{1\text{-}3}$ alkylCOC $_0$ - $_2$ alkylR 9 , $-C_{1\text{-}3}$ alkylNCOC $_0$ - $_2$ alkylR 9 or $-C_{0\text{-}2}$ alkylR 9 , with the proviso that one of R^2 and R^3 is hydrogen and the other is a substituent other than hydrogen; n is an integer between 0 and 2;

R⁴ and R⁵ together with the nitrogen atom to which they are attached form a morpholino ring;

R⁶ represents a group selected from:

wherein T_1 and T_2 independently represent CH_2 , NH, S or O with the proviso that when one of T_1 or T_2 represents NH, S or O the other represents CH_2 ; M represents CH_3 , -OH or =O;

V represents CH or N;

W represents H, CH₃, Cl or F;

X represents Cl, Br, F or -CH₃;

Y represents CH₃ or CF₃;

Z represents -CH₃ or F;

R⁷ and R⁸ are independently hydrogen, C₁₋₄alkyl or together with the N atom to which they are bonded form a 5- or 6- membered non-aromatic heterocyclic ring, optionally containing an additional heteroatom selected from O, N or S; R¹⁰ and R¹¹ independently represent C₁₋₄alkyl or together with the N atom to which they are bonded form a 5- or 6- membered non-aromatic heterocyclic ring, optionally containing an additional heteroatom selected from O, N or S; R⁹ represents phenyl or a 5- or 6- membered aromatic or non-aromatic heterocyclic group, containing at least one heteroatom selected from O, N or S, each of which is optionally substituted by 0-2 groups selected from: C₁₋₃alkyl or halogen;

and or pharmaceutically acceptable derivatives thereof.

- 2. (Original) A compound of formula (I) as claimed in claim 1 wherein R¹ represents hydrogen, methyl, -CH₂CO₂C₁₋₂alkyl, or -CH₂CONR⁷R⁸.
- 3. (Currently amended) A compound of formula (I) as claim<u>ed</u>s in claim 1 or claim-2 wherein R^2 and R^3 independently represent $-C_{1-6}$ alkyl, $-C_{1-3}$ alkylCN, $-C_{1-4}$ alkylOC₁₋₄alkyl, $-C_{1-4}$ alkylS(O)_nC₁₋₄alkyl, $-C_{1-4}$ alkylNR¹⁰R¹¹, $-C_{1-3}$ alkylCONR⁷R⁸, $-C_{1-3}$ alkylCO₂C₀₋₂alkylR⁹, $-C_{1-3}$ alkylCON(R⁸)C₀₋₂alkylR⁹ or $-C_{0-2}$ alkylR⁹, with the proviso that one of R^2 and R^3 is hydrogen and the other is a substituent other than hydrogen.
- 4. (Currently amended) A compound of formula (I) as claimed in any of-claims 1-3 wherein R³ represents hydrogen.
- 5. (Currently amended) A compound of formula (I) as claimed in any of claims 1-4- wherein R⁶ represents a group selected from:

6. (Original) A compound as claimed in claim 1 wherein: R¹ represents hydrogen, methyl, -CH₂CO₂H, -CH₂CO₂C₁₋₂alkyl, or

-CH₂CONR⁷R⁸;

R² represents -C₁₋₄alkyl, -CH₂CO₂H, -CH₂OCH₃, -CH(CH₃)OCH₃,

-CH $_2$ CON(CH $_3$) $_2$, benzyl, -CH $_2$ CO $_2$ -benzyl, -CH $_2$ CO-morpholine, or

-CH₂-thiophene;

R³ represents hydrogen;

R⁴ and R⁵ together with the nitrogen atom to which they are attached form a morpholino ring;

R⁶ represents a group selected from:

wherein W represents H, Cl or F;

X represents CI, Br, F or -CH₃;

Y represents CH₃ or CF₃;

Z represents -CH3 or F; and

R⁷ and R⁸ are independently hydrogen or methyl.

- 7. Cancelled.
- 8. (Currently amended) A pharmaceutical composition comprising a compound according to any of claims 1-6 together with a pharmaceutical carrier and/or excipient.
- 9. Cancelled.
- 10. (Currently amended) A method of treating a patient suffering from a condition susceptible to amelioration by a thrombin inhibitor comprising administering a therapeutically effective amount of a compound according to any of claims 1-6.

11. (Currently amended) A process for preparing a compound of formula (I)

including pharmaceutically acceptable derivatives thereof, wherein:

R¹ represents hydrogen, C₁₋₄alkyl, -CH₂CO₂H, -CH₂CO₂C₁₋₂alkyl, or -CH₂CONR⁷R⁸;

 R^2 and R^3 independently represent hydrogen, $-C_{1\cdot6}$ alkyl, $-C_{1\cdot3}$ alkylCO, $-C_{1\cdot3}$ alkylCO₂H, $-C_{1\cdot4}$ alkyl, $-C_{1\cdot3}$ alkylCO₂C_{0·2} alkylR⁹, $-C_{1\cdot3}$ alkylCOC_{0·2} alkylR⁹, $-C_{1\cdot3}$ alkylCOC_{0·2} alkylR⁹, $-C_{1\cdot3}$ alkylCOC_{0·2} alkylR⁹, $-C_{1\cdot3}$ alkylCOC_{0·2} alkylR⁹, alkylCOC_{0·2} alkylR⁹, with the proviso that one of R^2 and R^3 is hydrogen and the other is a substituent other than hydrogen; n is an integer between 0 and 2;

R⁴ and R⁵ together with the nitrogen atom to which they are attached form a morpholino ring;

R⁶ represents a group selected from:

wherein T_1 and T_2 independently represent CH_2 , NH, S or O with the proviso that when one of T_1 or T_2 represents NH, S or O the other represents CH_2 ; M represents CH_3 , -OH or =O;

V represents CH or N;

W represents H, CH₃, Cl or F;

X represents Cl, Br, F or -CH₃;

Y represents CH₃ or CF₃;

Z represents -CH₃ or F;

R⁷ and R⁸ are independently hydrogen, C₁₋₄alkyl or together with the N atom to which they are bonded form a 5- or 6- membered non-aromatic heterocyclic ring, optionally containing an additional heteroatom selected from O, N or S; R¹⁰ and R¹¹ independently represent C₁₋₄alkyl or together with the N atom to which they are bonded form a 5- or 6- membered non-aromatic heterocyclic ring, optionally containing an additional heteroatom selected from O, N or S; R⁹ represents phenyl or a 5- or 6- membered aromatic or non-aromatic heterocyclic group, containing at least one heteroatom selected from O, N or S, each of which is optionally substituted by 0-2 groups selected from: C₁₋₃alkyl or halogen;

which comprises reacting a compound of formula (II) with a compound of formula (III):