```
Vandermande Matrix
     Let {x,, ... xm} be a segunce
of numbers. If p and b are polynomials of degree of and a is a scalar than ptg is of degree < n dp is of degree < n
  The values of the polynomials at X: satisfy
the linearity properties
                (\rho + g) (x_i) = \rho(x_i) + g(x_i)
                 (dp) (xi) = d (p(xi))
                of vector coefficient
 Thus the map
  (p(x), p(x), -- p(xm))
                                       p(x) = 6+C, x+ 6 x + 6 x + ... + 6 x
    Multiplying a matrix by a matrix

Let A be m by n matrix

X be n by p matrix
           Let's say B = A \times
                                   Then B is an m by p matrix
                         b_{i\delta} = \sum_{k=1}^{K=1} a_{ik} \times \kappa_{\delta}
                           bij is the dot product /inner product
                Thus
                  Of the ith row of A and ith column of X,
            psuedo-code for calculating B
                                     B 4 0
                                           for j=1, --- P
                                                  fer. K=1, --- n
```

fer. K=1, --- n bij e bij + aik Xkj If A is mxn X is nxp flops are there when we calculate AX 2mnp If A and X are n by n matrices

AX has how many flogs? We have on $O(n^3)$ B lock matrices

Consider AX = BA 10 an m by h matrix X is an n by P matrix $A = M_1 \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \qquad M = M_1 + M_2 \\ M = N_1 + N_2$ We label the matrices in such a way that

We label the matrices in such a way that $A_{13} \quad \text{has dimension} \quad m_1 \quad \text{by } n_3$ $X = \begin{cases} n_1 \\ n_2 \end{cases} \quad X_{12} \\ X_{21} \quad X_{22} \end{cases} \quad p = p_1 + p_2$ Thu $B = \begin{cases} m_1 \\ B_{11} \\ B_{21} \end{cases} \quad B_{22}$ $M_2 \begin{cases} B_{21} \\ B_{21} \\ B_{22} \end{cases}$

M2 B21 B22 That is,

we suspect B11 = A11 X11 + A12 X21

Theorem Let A, X, B be as partitioned Then AX=B if and only if

 $A_{i1} \times_{i\dot{\delta}} + A_{i2} \times_{2\dot{\delta}} = R_{i\dot{\delta}} \quad i,\dot{\delta} = 1,2$

See homework as an exercise to convince yourself this Theoren is true,

n=n,+nz+-..+ns

n= n,+n2+ --+n3 p=P1+ P2+-- P+

p= P, + -- Pt

Theorem Let A, X, and B be as partitioned above $B = A \times Lf$ and only Lf

$$B = A \times lf$$
 and only lf

$$B_{i\delta} = \sum_{K=1}^{3} A_{iK} \times_{K\delta} \quad i=1, \dots, r$$

psuedo code B = 0

for i=1--- r for j=1--- t for k=

Por K = 1 -- S Bis = Bis + Aix * Xx8

what does this do to our flop count?

It does not change!

It is still 2mnp,

Varying the block size will not affect the

Let's A, X, and B are n by n matrices

the flop count would remain as n.

What changes is how objects are stored in the cache,

Fast Matrix Multiplication

"Standard" matrix multiplication requires 2n3 flops

In 1969 V. Strasson developed another method that has θ (ns) where so $\log_2(7)$? 2.81

The current record holder $\theta(n^{2.376})$

The current record holder $\theta(n^{2.376})$ however there is a catch 2.376 (n flops C is Very large.

Per turbation and Condition number Perturbation Theory = Study of how much the solution of a problem is changed (perturbed) If the input data is slightly perturbed. Example Let f be a real valued differentiable Goal To calculate f(x), but we do not know (precisely) what X is. we instead have X+DX (8X) (DX is bounded) We can compute $f(x+\Delta x)$ absolute error $|f(x+\Delta x) - f(x)|$ he $f(t) \approx L(t) = f(x) + f(x)(t-x)$ $f(x+\Delta X)$ & f(x) + f(x) ΔX |-((x+Dx)-f(x) | ~ | f(x)+f(x)=x -f(x) $= |f(x) \Delta x| = |\Delta x| |f(x)|$ - Absolute 250 |f(x)| is the absolute condition number If If(x) Is large enough that the error may be large even for Small AX

error may be large even for Small AX f is ill-conditioned at X | f(x+dx) - f(x) | | f(x) | (er nor in input Relative Error We know: |f(x+Ax)-f(x)| x |Ax| |f'(x)| Divide by IF(x) The relative condition number is | \[\left[\frac{1}{\kappa}(\times)](\times) \]

Vector and matrix norms

A norm on R is a function that assigns to each $x \in \mathbb{R}^n$ a non-negative real number lixil such the following 3 properties are satisfied for $x, y \in \mathbb{R}^n$ and all $x \in \mathbb{R}$ positive definite $\Rightarrow 0$ ||x|| > 0 if $x \neq 0$ and i|o||=0

positive definite = () ||x|| > 0 if x +0 and 11011=0 @ ||dx|| = |d| ||x|| = abodute homogeneity

3 11x+y11 \le 11x11 +1/y11 & triangle linequality

Example The Euclidean norm is defined by $||x||_2 = \left(\sum_{i=1}^n |X_i|^2\right)^{\frac{1}{2}}$

11x-y112 = Enclider between x and y.

11x-y112 = distance between x and y.

-> Exercise; Verify this is a norm.