

KNOX GRAMMAR SCHOOL MATHEMATICS DEPARTMENT

TRIAL HSC EXAMINATION

Mathematics Extension 1

Total marks (84)

- Attempt Questions 1-7
- All questions are of equal value
- Use a SEPARATE writing booklet for each question

General Instructions

Reading time – 5 minutes

Working time - 2 hours

Write using blue or black pen

A table of standard integrals is Board-approved calculators may be used provided on page 10

All necessary working should be shown in every question

NAME:

TEACHER:

Attempt questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks)

Use a SEPARATE writing booklet

Marks

(a) Evaluate $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$.

(b) Find a primitive function of $\frac{1}{\sqrt{4-x^2}}$.

Show that $\frac{1+\cos 2\theta}{\sin 2\theta} \equiv \cot \theta$. 3

Solve $\frac{2}{x-4} \ge 1$. ਉ

Solve $\sin x - \cos x = 1$ for $0 \le x \le 2\pi$. **©** Find the acute angle between the lines y = 2x - 1 and 3x - 2y = 5. $\boldsymbol{\Xi}$

Give your answer in radians correct to two decimal places.

Use a SEPARATE writing booklet Question 2 (12 marks)

Marks

(a) Find $\frac{d^2}{dx^2} \left(e^{x^2}\right)$.

Express $\cos 2x$ completely in terms of $\sin x$. ⊕ 3

(ii) Hence or otherwise find $\int_{-2}^{\pi} 2 \sin^2 2x \, dx$.

Use the substitution $x = 1 - u^2$ to find $\int \frac{x}{\sqrt{1 - x}} dx$.

If α , β , and γ are the roots of the cubic equation $x^3 + 2x^2 - 5x - 4 = 0$ then find the value of: ਉ

 $\alpha + \beta + \gamma$ Ξ

 $\alpha \beta \gamma$ (E) (iii)

 $\alpha^2 + \beta^2 + \gamma^2$. (iv)

0

Use a SEPARATE writing booklet
12 marks)
Question 3 (

Find
$$\int \frac{1}{4+9x^2} dx$$
.

(a) Find
$$\int \frac{1}{4+9x^2} dx$$
.

(b) Find the exact volume of the solid formed by rotating the area between the curve
$$y = \tan x$$
 and the $x - axis$ from $x = 0$ to $x = \frac{\pi}{4}$, about the $x - axis$.

The polynomial $Q(x) = x^3 + 2x^2 + ax + b$ has a factor of (x + 2). When Q(x) is divided by (x-2) the remainder is 12.

Find the values of a and b.

(d) Consider the function
$$f(x) = e^x + 4x$$
.

(i) Find
$$f'(x)$$
.

(ii) Explain why
$$f(x)$$
 is increasing for all x ?

(iii) Show that
$$f(x) = 0$$
 has a root lying between $x = -1$ and $x = 0$.

(iv) By letting
$$x = -0.5$$
 be an initial approximation to the real root of $f(x) = 0$, use Newton's method to find a second approximation, correct to two decimal

Question 4 (12 marks)

Marks

Marks

- P is the point (2at, at²) on the parabola $x^2 = 4ay$ and the line l is tangent to the parabola at P.
- Represent this information on a clear and well-labelled diagram.

Θ

m

a

- Prove that the equation of the tangent line *l* is given by $y = ix at^2$. Ξ
- If l cuts the x axis at A and the y axis at B, then find the coordinates of A and B. (iii)
- In what ratio does the point P divide the interval AB externally? 3
- Suppose Q is the midpoint of the interval PS where S is the focus of the parabola. 3

Find the Cartesian equation of the locus of Q.

2

In the diagram above, TA is a tangent to the circle at A and DA bisects $\angle BAC$.

Copy or trace this diagram into your writing booklet.

Prove, with reasons, that TA = TD.

Ś

ıesti	iestion 5 (12 marks)	narks) Use a SEPARATE writing booklet	Marks	Question 6 (12 marks) Use a SEPARATE writing booklet	
_	Consider	Consider the function $f(x) = (x-1)^2$.	(a)	Let T be the temperature inside a room at time t and let A be the temperature of	emperature of
	ts (i)	Sketch $y = f(x)$.	,	its surrounding. Newton's Law of Cooling states that the rate of change of the temperature T is proportional to $(T-A)$.	change of the
	(ii) E3	Explain why $f(x)$ does not have an inverse function for all x in its domain?	1	(i) Verify that $T = A + Be^{\mu}$ (where B and k are constants) satisfies Newton's	isfies Newton's
	(iii) St	State a domain and range for which $f(x)$ has an inverse function $f^{-1}(x)$.	1	Law of Cooling.	
		For $x \ge 1$, find the equation of the inverse function $f^{-1}(x)$.	2	 (ii) The constant temperature of the surrounding is 4°C and an air conditioning system causes the temperature inside a room to drop from 25°C to 15°C in 45 minutes. 	n air conditioning 125°C to 15°C in
	ř. (v.)	Hence on a new set of axes, sketch the graph of $y = f^{-1}(x)$.	1	Find how long it takes for the inside room temperature to reach $\$^{\circ} \mathbb{C}?$	reach 8°C?
					ι
	A small ro above sea acceleration	A small rock is projected horizontally from the top of a vertical cliff 180 metres above sea level with a speed of projection of 35 metres per second. You may assume the acceleration g due to gravity is $10~\text{m/s}^2$.	(q) ,	The displacement x (in metres) of a particle is given by $x = 5\cos(4\pi t)$, where t is in seconds.	(4π) , where t is
_	ers (i)	Show that the equations of motion of the rock after l seconds in the horizontal and vertical directions can be given by $x = 35l$ and $v = -5l^2$.	74	(i) Show that the acceleration of the particle can be expressed in the form:	ed in the form:
J	(i)	Calculate the time for the rock to reach the ocean.	-	$x = -n^2 x$	
_	(iii) Ca	Calculate the distance from the base of the cliff to the point where the rock		(ii) State the period, T, of the motion.	
		strikes the surface of the ocean.		(iii) Determine the maximum velocity of the particle.	
-	(iv) Fin	Find, to the nearest degree, the angle at which the rock strikes the ocean.		(iv) Express v^2 completely in terms of x , where v is the velocity of the particle.	ity of the particle.

2

Marks

Question 5 (12 marks)

(a)

۲--

Use the Principle of Mathematical Induction to prove that $2^{10n+3} + 3$ is divisible by 11 for all positive integers.

@

8

In the circle, the chord AB is 6 metres long. The chord is produced to the point P and BP is a metres. A tangent to the circle cuts the chord at P where PT is x metres

Show that $x = \sqrt{a(a+6)}$

the field. A kicker may then take the ball back at right angles from the try line and In a rugby game, teams score by placing the ball over the try line at the end of attempt to kick the ball between the goal posts. æ

In the diagram above, a try has been scored a metres to the right of the goal posts. The kicker has brought the ball back to the point P to attempt his kick. The kicker wants to maximise θ , his angle of view of the goal posts.

Question 7(b) continues on page 9 - please turn over.

Question 7(b) continued

Let PT be x metres and assume that the goal posts are 6 metres wide.

Show that
$$\tan \theta = \frac{6x}{a^2 + 6a + x^2}$$
.

 \odot

(ii) Letting
$$T = \tan \theta$$
, find the exact value of x for which T is a maximum.

(iii) Hence show that the maximum angle,
$$\theta$$
, is given by $\theta = \tan^{-1} \left(\frac{3}{\sqrt{a^2 + 6a}} \right)$.

(iv) If a try is scored 10 metres to the right of the goal posts, find the maximum value of
$$\theta$$
 (to the nearest minute) and the corresponding value of x (to the nearest centimetre).

End of Paper