PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ

CAMPUS CURITIBA

ENGENHARIA DE SOFTWARE

Eduardo Monteiro

Leonardo Grattão

Gabriel Maron

Vinícius Chella

DomuNet

Eduardo Monteiro

Leonardo Grattão

Gabriel Maron

Vinícius Chella

DomuNet

Trabalho de conclusão de matéria apresentado ao curso de Engenharia de Software da Pontifícia Universidade Católica do Paraná - Campus Curitiba, como requisito parcial da disciplina Performance de Sistemas Ciberfísicos. Área de concentração: Sistemas IOT.

Orientador: Prof. Fabio Garcez Bettio

SUMÁRIO

Sumário

1.	INTRODUÇÃO	13
2.	Objetivo do Projeto	14
3.	Justificativa	15
4.	Tecnologias Utilizadas	16
5.	Arquitetura Geral do Sistema	17
	1 Camada de Sensoriamento (Entrada de dados)	17
	2. Camada de Processamento e Controle (Lógica de decisão)	17
	3. Camada de Comunicação e Notificação (Saída de dados e resposta ao usuário)	17
6.	Representação em Camadas	19
7.	Testes	20
8.	CONCLUSÃO	21
O	DEEEDÊNCIAS	22

1. INTRODUÇÃO

A presente pesquisa tem como foco o desenvolvimento de um sistema integrado de monitoramento e segurança, utilizando microcontroladores ESP32, sensor infravermelho e a câmera da webcam de notebooks. A proposta visa aprimorar as soluções de vigilância disponíveis, especialmente em regiões urbanas com altos índices de vulnerabilidade, como garagens, entradas residenciais, pequenos comércios e espaços públicos. O sistema busca combinar tecnologias acessíveis e de baixo custo com funcionalidades modernas, oferecendo uma alternativa viável para a seguranca pública e privada.

O problema central que norteia este projeto é a crescente insegurança em centros urbanos, em especial o aumento de invasões domiciliares e furtos em áreas periféricas de cidades como Curitiba. A dificuldade de acesso a sistemas de monitoramento mais avançados por parte da população de baixa renda evidencia a necessidade de soluções econômicas, eficientes e de fácil implementação.

Com o objetivo de ampliar a capacidade de vigilância e resposta a incidentes, este trabalho propõe o desenvolvimento de um sistema embarcado baseado no ESP32, integrado a sensores e câmeras, com envio de notificações e imagens em tempo real por meio de aplicativos como o Telegram. A webcam do notebook será utilizada como ponto de captura visual, enquanto o ESP32 gerenciará a conectividade Wi-Fi, o processamento de dados dos sensores e o acionamento de alertas sonoros.

A justificativa para a realização deste projeto encontra respaldo em dados alarmantes. De acordo com o Atlas da Violência (IPEA/FBSP, 2023), Curitiba registrou uma taxa de 23,7 homicídios por 100 mil habitantes, com crescimento expressivo de furtos e invasões. Apenas no primeiro semestre de 2024, a Secretaria de Segurança Pública do Paraná contabilizou mais de 3.000 ocorrências de furtos a residências na capital. Tais números reforçam a urgência de medidas preventivas com base tecnológica, que sejam acessíveis e escaláveis.

Com base nessa arquitetura, o sistema proposto pretende transformar a vigilância passiva em um mecanismo proativo de segurança, contribuindo para a democratização do acesso à proteção residencial e comunitária por meio da tecnologia embarcada.

2. Objetivo do Projeto

Com o objetivo de aprimorar os sistemas de monitoramento e reforçar a segurança pública e privada, propomos o desenvolvimento de uma solução integrada baseada na câmera webcam do notebook, microcontroladores ESP32 e sensor infravermelho. Este sistema visa ampliar significativamente a capacidade de vigilância, especialmente em áreas com vulnerabilidades de segurança urbana, como garagens, entradas residenciais, comércios e espaços públicos. A câmera da webcam do notebook, será utilizada como ponto central de captura visual. Seu potencial é ampliado por meio da integração com o ESP32, responsável pelo gerenciamento da conectividade Wi-Fi, comunicação com sensores adicionais e controle do sistema embarcado.

A arquitetura do sistema prevê a transmissão imediata de alertas para o usuario e um aplicativo móvel, permitindo ao usuário o acesso remoto às imagens em tempo real, independentemente da distância geográfica.

Essa solução visa, portanto, não apenas fornecer vigilância passiva, mas atuar de forma proativa na prevenção e resposta a incidentes de segurança, representando um passo importante na democratização do acesso à tecnologia de proteção domiciliar e comunitária.

3. Justificativa

A escolha por este tipo de solução se justifica pelo aumento expressivo dos índices de criminalidade urbana em centros metropolitanos como Curitiba, capital do Paraná. De acordo com o Atlas da Violência (IPEA/FBSP, 2023), Curitiba apresentou uma taxa de 23,7 homicídios por 100 mil habitantes, com registro crescente de furtos e invasões domiciliares em bairros periféricos. Dados da Secretaria de Segurança Pública do Paraná indicam ainda que, apenas no primeiro semestre de 2024, houve mais de 3.000 ocorrências de furtos a residências na capital, reforçando a necessidade de medidas preventivas e tecnológicas de apoio à segurança.

Do ponto de vista técnico, a combinação de dispositivos de baixo custo como o ESP32, com sensores acústicos e câmeras com capacidades de IA embarcada, representa uma solução viável e escalável, principalmente para comunidades que não podem arcar com sistemas comerciais robustos. O ESP32 oferece recursos como conectividade Bluetooth/Wi-Fi, processamento em tempo real de sinais digitais e suporte a múltiplos protocolos, permitindo a coleta, filtragem e envio dos dados para servidores remotos. Toda a estrutura será baseada em arquitetura cliente-servidor, com autenticação segura de usuários, logs de eventos e armazenamento de vídeos em nuvem criptografada.

4. Tecnologias Utilizadas

- ESP32: microcontrolador central do projeto. Ele atua como a "inteligência embarcada" do sistema, responsável por receber e enviar informações da internet, processar os sinais recebidos de sensores. Acionar periféricos e atuar como intermediário entre sensores físicos e sistemas de notificação externos, como aplicativos móveis ou servidores web.
- Jumpers: cabos de conexão usados para fazer a ligação entre o ESP32 e outros componentes eletrônicos, como buzzers, sensores infravermelho e módulos de alimentação.
- Telegram: O Telegram será usado como interface de notificação em tempo real para os usuários. Com o uso da API do Telegram Bot.
- Protocolos de conexão à internet externa: Esses protocolos viabilizam a comunicação entre o ESP32 e os programas externos. Por exemplo, o HTTPS, o NTP e o MQTT.
- Protocolo RTSP (usado pela câmera): O RTSP é o protocolo usado pela câmera da webcam, permitindo que aplicativos ou softwares acessem o vídeo da câmera remotamente e viabilizar a captura de frames para envio ao Telegram.
- Buzzers para alarme: Os buzzers atuam como dispositivos de alerta sonoro no sistema através da emissão de um alarme audível quando for detectado movimento, som ou outro evento crítico definido pelo usuário.
- Sensor infravermelho para testes iniciais: O sensor detecta variações no campo infravermelho, causadas principalmente pelo movimento de pessoas ou animais.
 Validando a lógica de notificação do sistema e servindo também para acionar os buzzers e o envio de mensagens ao Telegram quando detectar presença.

- 5. Arquitetura Geral do Sistema
- 5.1 Camada de Sensoriamento (Entrada de dados)

Inclui todos os dispositivos que capturam eventos ou estímulos do ambiente.

Câmera webcam do notebook(Protocolo RTSP): responsável pela captação de vídeo contínuo e transmissão via rede local através do protocolo RTSP (Real Time Streaming Protocol). Este sinal pode ser monitorado em tempo real por um servidor externo ou aplicativo.

Sensor Infravermelho (IR): detecta movimento em ambientes delimitados por variação de calor (presença humana ou animal). Envia sinais digitais ao ESP32 sempre que detectar movimento. Usado especialmente nos testes iniciais.

Jumpers: conectores físicos que permitem comunicação entre sensores e o microcontrolador ESP32, promovendo a integração de hardware.

Buzzer: responsável para começar a tocar e chamar atenção de quem esteja por perto para servir como um alerta

2. Camada de Processamento e Controle (Lógica de decisão)

Responsável por interpretar os dados recebidos e tomar decisões.

ESP32:

Recebe sinais dos sensores (movimento).

Decide se os critérios de alerta foram atingidos (ex.: movimento).

Controla o acionamento do alarme (buzzer).

Envia uma requisição à camada de comunicação para acionar uma notificação.

3. Camada de Comunicação e Notificação (Saída de dados e resposta ao usuário)

Encaminha as respostas do sistema aos usuários ou interfaces externas.

Rede Wi-Fi:

O ESP32 se conecta à internet por meio de Wi-Fi para envio de alertas.

Comunicação com servidores externos, como a API do Telegram.

Protocolo HTTP/HTTPS:

Usado pelo ESP32 para se comunicar com servidores web ou a API do Telegram.

Pode também ser utilizado para integração futura com uma interface web própria.

Telegram (API Bot):

O ESP32 envia mensagens de alerta (com texto, horário, e talvez imagem) para um canal ou chat pré-configurado no Telegram via Bot API.

Notificações são instantâneas e permitem interação com o usuário.

Protocolo RTSP:

Usado pelo ESP32 para conexão com a câmera do notebook

Buzzer:

Acionado localmente para alertas sonoros em tempo real, auxiliando como dissuasor físico em caso de intrusão.

6. Representação em Camadas
Camada de Comunicação & Notificação
Telegram Bot API
Interface Web (futuro)
Protocolo HTTP/HTTPS
Camada de Processamento
Microcontrolador ESP32 (com firmware)
Lógica de validação e decisão
Comunicação com sensores
Camada de Sensoriamento
Câmera webcam
Sensor de Movimento (IR)
Jumpers (interconexão dos módulos)
Buzzer (saída local)

7. Testes

Abaixo iremos anexar algumas imagens de testes feitos com as peças, assim como o link para um vídeo no Youtube onde mostramos o resultado de outros testes feitos de maneira mais completa por nossa equipe com as peças e suas integrações, por exemplo, com o aplicativo externo que decidimos usar com a autorização do professor, sendo esse o aplicativo Telegram.

Anexo 1

Legenda: Sensor infravermelho conectado pela primeira vez

Anexo 2:

Legenda: ESP32 ligado e conectado ao notebook pela primeira vez, testando sua conectividade.

Anexo 3:

Link para o vídeo dos testes: https://youtube.com/shorts/k7TEM1jCQC4

8. CONCLUSÃO

Diante do aumento da criminalidade urbana e da crescente demanda por soluções de segurança acessíveis, o desenvolvimento de um sistema integrado de monitoramento com o uso do microcontrolador ESP32, sensor infravermelho e a câmera do notebook representa uma proposta inovadora e de alto impacto social. Ao longo deste trabalho, foi possível identificar as principais vulnerabilidades de segurança enfrentadas por comunidades urbanas, especialmente em regiões periféricas, e propor uma arquitetura tecnológica capaz de mitigar tais riscos.

Retomando o problema inicial, relacionado à dificuldade de acesso a sistemas de vigilância eficazes por parte da população de baixa renda, os objetivos traçados foram alcançados por meio da concepção de uma solução de baixo custo, escalável e tecnicamente viável. A utilização do ESP32 como núcleo do sistema, aliado a protocolos de comunicação modernos e sensores inteligentes, possibilita a criação de um sistema autônomo capaz de detectar eventos, emitir alertas sonoros e transmitir informações em tempo real ao usuário por meio de plataformas como o Telegram.

A principal contribuição deste estudo reside na demonstração de que tecnologias simples, quando bem integradas, podem gerar sistemas robustos, com aplicação direta na segurança doméstica e comunitária. Além disso, o projeto promove a inclusão digital e tecnológica, ao oferecer uma alternativa de monitoramento acessível a diferentes camadas da sociedade.

Portanto, este trabalho não apenas apresenta uma proposta de solução, mas também abre caminho para futuras pesquisas e melhorias, como a integração de inteligência artificial para reconhecimento de padrões, a expansão para múltiplos sensores e o uso de energia solar para maior autonomia do sistema. A relevância da pesquisa está na sua aplicabilidade prática e no seu potencial transformador, contribuindo diretamente para o fortalecimento da segurança pública e privada em contextos urbanos.

9. REFERÊNCIAS

PARANÁ. Secretaria da Segurança Pública. Furtos e roubos atingem menor patamar da história; apreensão de drogas aumenta no Paraná. 2025. Disponível em: https://www.aen.pr.gov.br/Noticia/Furtos-e-roubos-atingem-menor-patamar-da-historia-apreensao-de-drogas-aumenta-no-Parana. Acesso em: 12 maio 2025.

MAKE2EXPLORE. Home Security System Using ESP32-CAM and Telegram App. 2020. Disponível em: https://www.instructables.com/Home-Security-System-Using-ESP32-CAM-and-Telegram-/. Acesso em: 12 maio 2025.

TP-LINK. How to view Tapo camera on PC/NAS/NVR through RTSP/Onvif. 2025. Disponível em: https://www.tp-link.com/us/support/faq/2680/. Acesso em: 12 maio 2025.

ISPYCONNECT. Complete Tapo IP Camera Setup Guide - ONVIF, RTSP and more. 2025. Disponível em: https://www.ispyconnect.com/camera/tapo. Acesso em: 12 maio 2025.

DIGIKEY. ESP32-CAM with PIR motion sensor PLUS Telegram?. 2022. Disponível em: https://www.digikey.com/en/maker/projects/esp32-cam-with-pir-motion-sensor-plus-telegram/c0abd73974c54e46ac97efeaa5f8028c. Acesso em: 12 maio 2025.

PCBWAY. Motion detector with light, esp32 and telegram notifications. 2021. Disponível em: https://www.pcbway.com/project/shareproject/Motion_detector_with_light_esp32_and_telegram_notifications.html. Acesso em: 12 maio 2025.

VINICXS. TDE. 2024. Disponível em: https://github.com/vinicxs/TDE. Acesso em: 12 maio 2025.

CHELLA, vinicius. Testes sensor IR e integração BOT TELEGRAM. YouTube, 06/06/2025.

Disponível em: https://youtube.com/shorts/k7TEM1jCQC4. Acesso em: 06/06/2025