Some Topics in Measure Theory

Huan Q. Bui July 3, 2020

1 Introduction

This is a collection of concepts in measure theory that serves as my crash course to the subject. Read at your own risk!!!

2 Some Theorems on Subsets of \mathbb{R}^n

Theorem 2.1. Every open subset \mathcal{O} of \mathbb{R} can be written uniquely as a countable union of disjoint open intervals.

Theorem 2.2. Every open subset \mathcal{O} of \mathbb{R}^d , $d \geq 1$, can be written as a countable union of almost disjoint closed cubes.

3 Exterior measure

Definition 3.1. If $E \subseteq \mathbb{R}^d$, then the exterior measure of E is

$$m_*(E) = \inf \sum_{n=1}^{\infty} |Q_j| \in [0, \infty]$$

where the infimum is taken over all countable coverings $E \subseteq \bigcup_{j=1}^{\infty} Q_j$ by closed cubes.

Proposition 3.1. (Monotonicity) If $E_1 \subset E_2$ then $m_*(E_1) \leq m_*(E_2)$.

Proposition 3.2. (Countable Sub-additivity) If $E = \bigcup_{j=1}^{\infty} E_j$ then $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$.

Proposition 3.3. If $E \subseteq \mathbb{R}^d$, $m_*(E) \le \inf m_*(\mathcal{O})$ where the infimum is taken over all open $\mathcal{O} \supseteq E$.

Proposition 3.4. If $E = E_1 \cup E_2$ and $d(E_1, E_2) > 0$ then $m_*(E) = m_*(E_1) + m_*(E_2)$.

Proposition 3.5. If E is a countable union of almost disjoint cubes $E = \bigcup_{i=1}^{\infty} Q_i$ then $m_*(E) = \sum_{i=1}^{\infty} |Q_i|$.

4 Measurable sets and the Lebesgue measure

Definition 4.1 (Lebesgue measurable). A subset E of \mathbb{R}^d is Lebesgue measurable if for any $\epsilon > 0$ there exists an open set \mathcal{O} containing E such that

$$m_*(\mathcal{O} \setminus E) \le \epsilon$$
,

in which case, the Lebesgue measure of E is given by

$$m(E) = m_*(E).$$

Proposition 4.1. Every open set in \mathbb{R}^d is measurable.

Proposition 4.2. If $m_*(E) = 0$ then E is measurable. In particular, if $F \subseteq E$ with $m_*(E) = 0$ then F is measurable.

Proposition 4.3. A countable union of measurable sets is measurable.

Proposition 4.4. Closed sets are measurable.

Proposition 4.5. The complement of a measurable set is measurable.

Proposition 4.6. A countable intersection of measurable sets is measurable.

Theorem 4.2. If E_1, \ldots, are disjoint measurable sets, and $E = \bigcup_{i=1}^{\infty} E_i$ then

$$m(E) = \sum_{i=1}^{\infty} m(E_i)$$

Corollary 4.3. Suppose $E_1, \ldots,$ are measurable subsets of \mathbb{R}^d ,

- If $E_k \uparrow E$ then $m(E) = \lim_{n \to \infty} m(E_n)$.
- If $E_k \downarrow E$ and $m(E_k) < \infty$ for some k then $m(E) = \lim_{n \to \infty} m(E_n)$.

Theorem 4.4. If E is a measurable subset of \mathbb{R}^d then for every $\epsilon > 0$,

- There exists an open set \mathcal{O} with $E \subseteq \mathcal{O}$ and $m(\mathcal{O} \setminus E) \leq \epsilon$.
- There exists a closed set F with $F \subseteq E$ and $m(E \setminus F) \le \epsilon$.
- If m(E) is finite, there exists a compact set K with $K \subseteq E$ and $m(E \setminus K) \le \epsilon$.
- If m(E) is finite, then there exists a finite union $F = \bigcup_{i=1}^{N} Q_i$ of closed cubes such that $m(E\Delta F) \leq \epsilon$, where the notation $E\Delta F$ stands for the symmetric difference between the sets E and F:

$$E\Delta F = (E \setminus F) \cup (F \setminus E).$$

Corollary 4.5. A subset E of \mathbb{R}^d is measurable

- if and only if E differs from a G_{δ} set by a set of measure zero. Here a G_{δ} set is a countable intersection of open sets,
- if and only if E differs from a F_{σ} by a set of measure zero. Here an F_{σ} set is a countable union of closed sets.

5 σ -algebra

Definition 5.1. Consider a set X an its power set $\mathcal{P}(X)$. A set $\mathcal{A} \subseteq \mathcal{P}(X)$ is a σ -algebra if

- $\varnothing, X \in \mathcal{A}$
- $A \in \mathcal{A} \implies A^c = X \setminus A \in \mathcal{A}$.
- $A_j \in \mathcal{A}, i \in \mathbb{N} \implies \bigcup_{i=1}^{\infty} A_j \in \mathcal{A}.$

Any set $A \in \mathcal{A}$ is called an \mathcal{A} -measurable set.

Remark 1. If A_i is a σ -algebra on X, then for $i \in I$ where I is any index set, then $\bigcap_{i \in I} A_i$ is also a σ -algebra on X.

This is important especially when we want to construct some σ -algebra that has all the properties of other σ -algebras.

6 Borel σ -algebra

Definition 6.1. For $\mathcal{M} \subset \mathcal{P}(X)$, there is a smallest σ -algebra that contains \mathcal{M} :

$$\sigma(M) \coloneqq \bigcap_{\mathcal{A} \supseteq \mathcal{M}} \mathcal{A}, \quad \mathcal{A} \text{ is a σ-algebra}$$

called the σ -algebra generated by \mathcal{M} .

Definition 6.2. Let X be a topological space (or a metric space, or a subset of \mathbb{R}^n), so that we have "open sets." The Borel σ -algebra $\mathcal{B}(X)$ is the smallest σ -algebra generated by the open sets.

7 Measure(able) space

Definition 7.1. Consider a set X and a σ -algebra \mathcal{A} on X. (X,\mathcal{A}) is a measurable space. The map $\mu: \mathcal{A} \to [0,\infty] = [0,\infty) \cup \{\infty\}$ is called a measure if it satisfies:

- $\mu(\varnothing) = 0$
- σ -additivity

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

whenever $A_i \cap A_j = \emptyset$ for $i \neq j$ and $A_i \in \mathcal{A}$ for all i.

Once the measure μ is defined on the measurable space (X, \mathcal{A}) , the triple (X, \mathcal{A}, μ) is called a measure space.

8 Measurable functions

Definition 8.1. Given measurable spaces (Ω_1, A_1) and (Ω_2, A_2) . Consider a map $f: \Omega_1 \to \Omega_2$. f is measurable (w.r.t A_1, A_2) if the pre-image $f^{-1}(A_2) \in A_1$ for all $A_2 \in A_2$.

Example 8.1. Given (Ω, \mathcal{A}) and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. It is easy to check that the characteristic function (or the indicator function) $\chi_A : \Omega \to \mathbb{R}$ is a measurable function.

Proposition 8.1. If f, g are measurable functions, then $f \circ g$ (if it is defined) is also a measurable function. This can be checked by looking at subsequent pre-images.

Proposition 8.2. Given (Ω, \mathcal{A}) and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and measureable functions $f, g : \Omega \to \mathbb{R}$. Then $f \pm g, f \circ g, |f|$ are measurable functions.

Proposition 8.3. The finite-value function f is measurable if and only if $f^{-1}(\mathcal{O})$ is measurable for every open set \mathcal{O} and if and only if $f^{-1}(F)$ is measurable for every closed set F.

Proposition 8.4. If f is continuous on \mathbb{R}^d , then f is measurable. If f is measurable and finite-valued, an Φ is continuous, then $\Phi \circ f$ is measurable.

Proposition 8.5. Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of measurable functions then

$$\sup_{n} f_n(x), \quad \inf_{n} f_n(x), \quad \limsup_{n \to \infty} f_n(x), \quad \liminf_{n \to \infty} f_n(x)$$

are all measurable.

Proposition 8.6. Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of measurable functions and

$$\lim_{n \to \infty} f_n(x) = f(x)$$

then f is measurable.

Proposition 8.7. If f, g are measurable, then

- The integer powers f^k , $k \ge 1$, are measurable.
- f + g, fg are measurable if both f, g are finite-valued.

Proposition 8.8. If f is measurable and f = g for almost every x then g is measurable.

9 Lebesgue Integral

Definition 9.1 (Simple Functions). A function f is a simple function if we can find measurable sets A_i, \ldots, A_n and numbers $c_1, \ldots, c_n \in \mathbb{R}$ such that we can write

$$f(x) = \sum_{i=1}^{n} c_i \chi_{A_i}(x).$$

Remark 2. Simple functions are measurable.

Suppose a simple function f is given by the representation

$$f(x) = \sum_{i=1}^{n} c_i \chi_{A_i}(x).$$

then the "Lebesgue integral" of f is given by

$$I(f) := \sum_{i=1}^{n} c_i \mu(A_i)$$

where μ is the Lebesgue measure. However, this becomes problematic when some measures are infinite and the c_i are not all negative or positive. One way to refine this to introduce the set of nonnegative simple functions:

$$S^+ := \{ f : X \to \mathbb{R} | f \text{ simple}, f \ge 0 \}.$$

Definition 9.2 (Lebesgue integral of a nonnegative simple function). Let $f \in S^+$ be given and choose a representation:

$$f(x) = \sum_{i=1}^{n} c_i \chi_{A_i}(x).$$

The Lebesgue integral of f with respect to the measure μ is

$$\int_X f \, d\mu \equiv \int_X f(x) \, d\mu(x) = I(f) = \sum_{i=1}^n c_i \mu(A_i) \in [0, \infty].$$

Theorem 9.3. Suppose f is measurable on \mathbb{R}^d . Then there exists a sequence of simple functions $\{\varphi_k\}_{k\in\mathbb{N}}$ that satisfies

$$|\varphi_k(x)| \le |\varphi_{k+1}(x)|, \quad \lim_{k \to \infty} \varphi_k(x) = f(x), \forall x$$

In particular, we have $|\varphi_k(x)| \leq |f(x)|$ for all x, k.

Theorem 9.4. Suppose f is measurable on \mathbb{R}^d . Then there exists a sequence of step functions $\{\psi_k\}_{k\in\mathbb{N}}$ that converges pointwise to f(x) for almost every x.

Definition 9.5 (L-integrals for nonnegative functions). Let $f: X \to [0, \infty)$ be a measurable function.

$$\int_X f \, d\mu = \sup\{I(h) | h \in \mathcal{S}^+, h \le f\} \in [0, \infty]$$

f is μ -integrable if $\int_X f d\mu < \infty$.

Proposition 9.1. Given measurable nonnegative functions $f,g:X\to [0,\infty),\ f=g$ μ -almost everywhere (a.e.) $\Longrightarrow \int_X f\,d\mu=\int_X g\,\mu.$ By f=g μ -a.e., we mean $\mu(\{x\in X|f(x)\neq g(x)\})=0.$

Proposition 9.2 (Linearity). $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$ for $\alpha, \beta \ge 0$.

Proposition 9.3 (Monotonicity). $f \leq g \implies I(f) \leq I(g)$ for $f, g \in S^+$.

Proposition 9.4. Given measurable nonnegative functions $f, g: X \to [0, \infty), f \leq g$ μ -a.e. $\Longrightarrow \int_X f \, d\mu \leq \int_X g \, d\mu$.

Proposition 9.5. Given measurable nonnegative functions $f, g: X \to [0, \infty), f = 0$ μ -a.e. $\iff \int_X f d\mu = 0$.

Proposition 9.6 (Additivity). If E and F are disjoint subsets of \mathbb{R}^d with finite measure, then

$$\int_{E \cup F} \varphi = \int_{e} \varphi + \int_{F} \varphi.$$

Proposition 9.7 (Triangle Inequality). If φ is a simple function, then so is $|\varphi|$, and

$$\left| \int \varphi \right| \le \int |\varphi|.$$

Proposition 9.8. The propositions above hold for functions f, g which are bounded and supported on sets of finite measure.

10 Bounded Convergence Theorem

Theorem 10.1 (BCT). Suppose that $\{f_n\}$ is a sequence of measurable functions that are all bounded by M, are supported on a set E of finite measure, and $f_n(x) \to f(x)$ for almost every x as $n \to \infty$. Then f is measurable, bounded, supposed on E for almost every x, and

$$\int |f_n - f| \to 0, \quad n \to \infty.$$

Consequently,

$$\int f_n \to \int f$$
, $n \to \infty$.

11 Monotone Convergence Theorem

Theorem 11.1 (MCT). Let a measure space (X, \mathcal{A}, μ) and measurable functions $f_n, f: X \to [0, \infty)$ be given for all $n \in \mathbb{N}$ with

- $f_1 \le f_2 \le f_3 \le \dots \mu$ -a.e.
- $\lim_{n\to\infty} f_n(x) = f(x) \mu$ -a.e.

then

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int \lim_{n \to \infty} f_n \, d\mu = \int_X f \, d\mu.$$

Corollary 11.2. Suppose $(g_n)_{n\in\mathbb{N}}$ with $g_n:X\to[0,\infty]$ measurable for all n be given. Then $\sum_{i=1}^{\infty}g_n:X\to[0,\infty]$ is measurable. By the MCT

$$\int_X \sum_{i=1}^{\infty} g_n \, d\mu = \sum_{i=1}^{\infty} \int_X g_n \, d\mu.$$

12 Fatou's Lemma

Lemma 12.1 (Fatou's). Let a measure space (X, \mathcal{A}, μ) be given with $f_n : X \to [0, \infty]$ be measurable for all $n \in \mathbb{N}$. Then

$$\int_{Y} \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int_{Y} f_n \, d\mu$$

where $\liminf_{n\to\infty} f_n: X\to [0,\infty]$ is defined by

$$g(x) := \left(\liminf_{n \to \infty} f_n \right)(x) = \lim_{n \to \infty} \underbrace{\left(\inf_{k \ge n} f_k(x) \right)}_{g_k(x)} \in [0, \infty].$$

It turns out that $g_1 \leq g_2 \leq \ldots$ are measurable and thus g(x) is also measurable.

13 Lebesgue's Dominated Convergence Theorem

Theorem 13.1 (LDCT). Let a measure space (X, \mathcal{A}, μ) be given. Consider the set of all Lebesgue-integrable functions:

$$\mathcal{L}^{1}(\mu) \coloneqq \{f: X \to \mathbb{R} \ measureable | \int_{X} \left| f \right|^{1} d\mu < \infty \}.$$

For $f \in \mathcal{L}^1(\mu)$, write $f = f^+ - f^-$ with $f^+, f^- \geq 0$ and define

$$\int_X f \, d\mu := \int_X f^+ \, d\mu - \int_X f^- \, d\mu.$$

Consider $f_n: X \to \mathbb{R}$ a sequence of measurable functions and $f: X \to \mathbb{R}$ with $\lim_{n \to \infty} f_n(x) = f(x)$ for $x \in X$, μ -a.e. where $|f_n| \leq g$ with $g \in \mathcal{L}^1(\mu)$ for all n. Then $f_1, \ldots, \in \mathcal{L}^1(\mu)$, $f \in \mathcal{L}^1(\mu)$ and

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu.$$

14 σ -finite measure

Definition 14.1. Let (X, \mathcal{A}, μ) be a measure space. The measure μ is called a σ -finite measure if it satisfies one of the following equivalent criteria:

- The set X can be covered with at most countably many measurable sets with finite measure, i.e., there are sets $A_1, \ldots, \in A$ with $\mu(A_n) < \infty$ for all n such that $\bigcup_{n \in \mathbb{N}} A_n = X$.
- The set X can be covered with at most countable many measureable disjoint sets with finite measure, i.e., there are sets $B_1, \ldots, \in \mathcal{A}$ with $\mu(B_n) < \infty$ for all n and $B_i \cap B_j = \emptyset$ for $i \neq j$ that satisfy $\bigcup_{n \in \mathbb{N}} B_n = X$.
- The set X can be covered with a monotone sequence of measurable sets with finite measure, i.e., there are sets $C_1, \ldots, \in \mathcal{A}$ with $C_1 \subseteq C_2 \subseteq \ldots$ and $\mu(C_n) < \infty$ for all n that satisfy $\bigcup_{n \in \mathbb{N}} C_n = X$.
- There exists a strictly positive measurable function f whose integral is finite, i.e., f(x) > 0 for all $x \in X$ and $\int_X f d\mu < \infty$.

If μ is a σ -finite measure, the measure space (X, \mathcal{A}, μ) is called a σ -finite measure space.

15 Lebesgue's Decomposition Theorem & Radon-Nikodym Theorem

Consider the special measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ where λ is the Lebesgue reference measure: $\lambda([a, b)) = b - a$. Also, consider another measure $\mu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$.

Definition 15.1.

• μ is called **absolutely continuous** with respect to the reference measure λ if $\lambda(A) = 0 \implies \mu(A) = 0$ for all $A \in \mathcal{B}(\mathbb{R})$. To denote this, one writes $\mu \ll \lambda$.

• μ is called **singular** with respect to the reference measure λ if there is $N \in \mathcal{B}([R])$ with $\lambda(N) = 0$ and $\mu(\mathbb{R} \setminus N) = 0$. To denote this, one writes $\mu \perp \lambda$.

Theorem 15.2. Consider some measure $\mu: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ that is σ -finite.

• (Lebesgue's Decomposition Theorem). There are two measures (uniquely determined) $\mu_{ac}, \mu_s : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ with

$$\mu = \mu_{ac} + \mu_s$$

where $\mu_{ac} \ll \lambda$ and $\mu_s \perp \lambda$.

• (Radon-Nikodym Theorem). There is a measurable map $h: \mathbb{R} \to [0, \infty)$ with

$$\mu_{ac}(A) = \int_A h \, d\lambda$$

for all $A \in \mathcal{B}(\mathbb{R})$. We call such an h a density function.

16 Product Measure

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. We have the product σ -algebra $\mathcal{M} \otimes \mathcal{N}$ on $X \times Y$, so now we construct the a measure on $\mathcal{M} \otimes \mathcal{N}$ that is the product of μ and ν .

A measurable **rectangle** is a set of the form $A \times B$ where $A \in \mathcal{M}$ and $B \in \mathcal{N}$. The collection \mathcal{A} of finite disjoint unions of rectangles is an algebra. The σ -algebra it generates is $\mathcal{M} \otimes \mathcal{N}$.

Suppose $A \times B$ is a rectangle that is a finite/countable **disjoint** union of rectangles $A_j \times B_j$. Then for $x \in X, y \in Y$,

$$\chi_A(x)\chi_B(y) = \chi_{A\times B}(x,y) = \sum \chi_{A_j\times B_j}(x,y) = \chi\chi_{A_j}(x)\chi_{B_j}(y).$$

Integrating wrt x to get

$$\mu(A)\chi_B(y) = \dots = \sum \mu(A_j)\chi_{B_j}(y).$$

By symmetry, we get

$$\mu(A)\nu(B) = \sum \mu(A_j)\nu(B_j)$$

Thus, if $E \in \mathcal{A}$ is a disjoint union of rectangles $A_1 \times B_1, \dots, A_n \times B_n$ and we set

$$\pi(E) = \sum_{1}^{n} \mu(A_j) \nu(B_j)$$

then π is well-defined on \mathcal{A} and π is a premeasure (a function that satisfies $\mu(\emptyset) = 0$ and σ -additivity but isn't necessarily defined on a σ algebra) on \mathcal{A} . Theorem 1.4 of Folland says that π generates an exterior measure on $X \times Y$ whose restriction to $\mathcal{M} \otimes \mathcal{N}$ is a measure that extends π . This measure is the product of μ and ν and we denote it by $\mu \times \nu$.

If μ, ν are σ -finite, then $\mu \times \nu$ is also σ -finite. In this case, Theorem 1.4 of Folland also tells us that $\mu \times \nu$ is a **unique** measure on $\mathcal{M} \otimes \mathcal{N}$ such that

$$\mu \times \nu(A \times B) = \mu(A)\nu(B)$$

for all rectangles $A \times B$.

17 "Measurable Slice" Theorems

Definition 17.1. Let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be measure spaces. If $E \subset X \times Y$, for $x \in X, y \in Y$ we define the x-section E_x and y-section E^y of E by

$$E_x = \{ y \in Y : (x, y) \in E \} \subseteq Y, \quad E^y = \{ x \in X : (x, y) \in E \} \subseteq X$$

Also, if f is a function on $X \times Y$ we define the x-section f_x and y-section f^y of f by

$$f_x(y) = f^y(x) = f(x, y).$$

Example 17.1. One can check that

$$(\chi_E)_x = \chi_{E_x}, \quad (\chi_E)^y = \chi_{E^y}$$

Proposition 17.1.

- If $E \in \mathcal{M} \otimes \mathcal{N}$, then $E_x \in \mathcal{N}$ for all $x \in X$ and $E^y \in \mathcal{M}$ for all $y \in Y$.
- If f is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then f_x is \mathcal{N} -measurable for all $x \in X$ and f^y is \mathcal{M} -measurable for all $y \in Y$

18 Monotone Class Lemma

Definition 18.1 (Algebra in a set). Let X be a set. An algebra in X is a non-empty collection of subsets of X that is closed under complements, finite unions, and finite intersections.

Definition 18.2 (Premeasure). Let A be an algebra in X. A premeasure on an algebra A is a function $\mu_0: A \to [0, \infty]$ that satisfies

- $\mu_0(\emptyset) = 0$.
- If E_1, \ldots is a countable collection of disjoint sets in A with $\bigcup_{n=1}^{\infty} E_n \in A$ then

$$\mu_0 \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} \mu_0(E_k)$$

In particular, μ_0 is finitely additive on A.

Definition 18.3 (Monotone class). A monotone class on a space X is a subset $C \subset \mathcal{P}(X)$ that is closed under increasing unions and countable decreasing intersections. That is, if $E_j \in C$ and $E_1 \subset E_2 \subset ...$ then $\bigcup E_j \in C$, and likewise for intersections.

Remark 3. Every σ -algebra is a monotone class.

Remark 4. The intersection of any family of monotone classes is a monotone class.

Definition 18.4 (Monotone class Generated by a subset of $\mathcal{P}(X)$). For any $\mathcal{E} \subset \mathcal{P}(X)$, there is a unique smallest monotone class containing \mathcal{E} , called the monotone class generated by \mathcal{E} .

Definition 18.5 (σ -algebra generated by a family of subsets). Let F be an arbitrary family of subsets of X. Then there exists a unique smallest σ -algebra which contains every set in F. It is, in fact, the intersection of all σ -algebras containing F. This σ -algebra is denoted $\sigma(F)$ and is called the σ -algebra generated by F.

Lemma 18.6 (Monotone Class Lemma). If A is an algebra of subsets of X, then the monotone class C generated by A coincides with the σ -algebra M generated by A.

Proof. \mathcal{M} is a σ -algebra, so it is a monotone class. As a result, $\mathcal{C} \subset \mathcal{M}$. To show the reverse containment, we show that \mathcal{C} is a σ -algebra. To do this, let $E \in \mathcal{C}$ be given and define

$$\mathcal{C}(E) = \{ F \in \mathcal{C} : E \setminus F, F \setminus E, E \cap F \in \mathcal{C} \}.$$

Check that $\emptyset, E \in \mathcal{C}(E)$, and $E \in \mathcal{C}(F) \iff F \in \mathcal{C}(E)$. Check that $\mathcal{C}(E)$ is a monotone class. Because \mathcal{A} is an algebra, $E \in \mathcal{A} \implies F \in \mathcal{C}(E) \forall F \in \mathcal{A}$. This means $\mathcal{A} \subset \mathcal{C}(E) \implies \mathcal{C} \subset \mathcal{C}(E)$. This means if $F \in \mathcal{C}$ then $F \in \mathcal{C}(E) \iff E \in \mathcal{C}(F) \forall E \in \mathcal{A}$, and by a similar argument we get $\mathcal{C} \in \mathcal{C}(F)$. So, if $E, F\mathcal{C}, E \setminus F, E \cap F \in \mathcal{C}$. Now, $X \in \mathcal{A} \subset \mathcal{C}$, so \mathcal{C} is an algebra. Finally, since \mathcal{C} is closed under countable increasing unions, \mathcal{C} is a σ -algebra.

Theorem 18.7. Suppose $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ are σ -finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$ then the functions $x \mapsto \nu(E_x)$ and $y \mapsto \mu(E^y)$ are measurable on X, Y respectively and

$$\mu \times \nu(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y)$$

19 Fubini-Tonelli's Theorem

Theorem 19.1. Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces

• (Tonelli's) If $f_1\mathcal{L}^+(X\times Y)$ then the functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $\mathcal{L}^+(X), \mathcal{L}^+(Y)$, respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x) = \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

• (Fubini's) If $f \in \mathcal{L}^1(\mu \times \nu)$ then $f_x \in \mathcal{L}^1(\nu)$ for a.e. $x \in X$, $f^y \in \mathcal{L}^1(\mu)$ for a.e. $y \in Y$, the a.e.-defined functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $\mathcal{L}^1(\mu)$, $\mathcal{L}^1(\nu)$ respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x) = \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

20 Fubini's Theorem for Complete Measures

Theorem 20.1. Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite and complete measure spaces, and let $(X \times Y, \mathcal{L}, \lambda)$ be the completion of $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$. If f is \mathcal{L} -measurable and either (a) $f \geq 0$ or (b) $f \in \mathcal{L}^1(\lambda)$, then f_x, f^y are also integrable for a.e. x, y. Moreover, $x \mapsto \int f_x d\nu, y \mapsto \int f^y d\mu$ are measurable, and in case (b) also integrable, and

$$\int f \, d\lambda = \iint f(x, y) \, d\mu(x) d\nu(y) = \iint f(x, y) \, d\nu(y) d\mu(x).$$

21 Integration in Polar Coordinates

Denote the unit sphere $\{x \in \mathbb{R}^n : |x| = 1\}$ by S^{n-1} . If $x \in \mathbb{R}^n \setminus \{0\}$ then the polar coordinates of x are

$$r = |x| \in (0, \infty), \quad x' = \frac{x}{|x|} \in S^{n-1}.$$

The map $\Phi(x) = (r, x')$ is a continuous bijection from $\mathbb{R}^n \setminus \{0\}$ to $(0, \infty) \times S^{n-1}$ whose continuous inverse is $\Phi^{-1}(r, x') = rx'$. Denote by m_* the Borel measure on $(0, \infty) \times S^{n-1}$ induce by Φ from the Lebesgue measure on \mathbb{R}^n , that is

$$m_*(E) = m(\Phi^{-1}(E)).$$

Moreover, define the measure $\rho = \rho_n$ on $(0, \infty)$ by

$$\rho(E) = \int_E r^{n-1} \, dr.$$

Theorem 21.1. There is a unique Borel measure $\sigma = \sigma_{n-1}$ on S^{n-1} such that $m_* = \rho \times \sigma$. If f is Borel measurable on \mathbb{R}^n and $f \geq 0$ or $f \in \mathcal{L}^1(m)$, then

$$\int_{\mathbb{R}^n} f(x) dx = \int_0^\infty \int_{S^{n-1}} f(rx') r^{n-1} d\sigma(x') dr.$$

References

- [1] Stein & Shakarchi's Real Analysis.
- [2] G. Folland's Real Analysis: Modern Techniques and Their Applications.
- [3] Rudin's Principles of Mathematical Analysis.