Zusammenfassung Analysis II

© M Tim Baumann, http://timbaumann.info/uni-spicker

Notation. Im Folgenden seien $a,b \in \mathbb{R}$ mit a < b und $I,J \subset \mathbb{R}$ offene Intervalle.

Integration

Def. Eine **Zerlegung** eines Intervalls $[a,b] \subset \mathbb{R}, a < b$ ist eine Menge $Z = \{a = x_0 < x_1 < ... < x_n = b\}$. Die Zahl $\mu_Z := \max\{x_j - x_{j-1} \mid j \in \{1,...,n\}\}$ heißt **Feinheit** der Zerlegung Z. Wenn Z, Z' zwei Zerlegungen von [a,b] sind mit $Z' \subset Z$, dann heißt Z' Verfeinerung von Z.

Def. Eine Funktion $\phi:[a,b]\to\mathbb{R}$ heißt **Treppenfunktion** bezüglich einer Zerlegung $Z=\{x_0<\ldots< x_n\}$ von [a,b], wenn für alle $j\in\{1,\ldots,n\}$ die Funktion ϕ auf dem offenen Intervall (x_{j-1},x_j) konstant ist. Die Menge aller Treppenfunktionen (bezüglich irgendeiner Zerlegung) eines Intervalls [a,b] wird mit $\mathcal{T}_{[a,b]}$ bezeichnet.

Satz. $\mathcal{T}[a,b]$ ist ein UVR des reellen VR aller reellwertigen Funktionen auf [a,b].

Def. Sei $\phi: [a,b] \to \mathbb{R}$ eine Treppenfunktion bezüglich einer Zerlegung $Z = \{x_0 < \ldots < x_n\}$. Dann heißt

$$\int_{a}^{b} \phi(x) dx := \sum_{j=1}^{n} \phi\left(\frac{x_{j-1} + x_{j}}{2}\right) (x_{j} - x_{j-1})$$

Integral von ϕ .

Bemerkung. Obige Definition ist unabhängig von der gewählten Zerlegung ${\cal Z}.$

Satz. Das Integral von Treppenfunktionen ist linear und monoton.

Def. Sei $f:[a,b]\to\mathbb{R}$ beschränkt. Dann heißen

$$\int_{a}^{b} f(x) dx := \inf \left\{ \int_{a}^{b} \phi(x) dx : \phi \in \mathcal{T}[a, b], \phi \ge f \right\}$$
$$\int_{\overline{a}}^{b} f(x) dx := \sup \left\{ \int_{a}^{b} \phi(x) dx : \phi \in \mathcal{T}[a, b], \phi \le f \right\}$$

Oberintegral bzw. Unterintegral von f.

Bemerkung. Da wir in der Definition vorraussetzen, dass die Funktion f beschränkt ist, existieren Ober- und Unterintegral im eigentlichen Sinne. Für Treppenfunktionen sind Oberintegral und Unterintegral gleich dem Integral für Treppenfunktionen. Das Oberintegral ist immer größer gleich dem Unterintegral.

Satz. Für $f, f_1, f_2 : [a, b] \to \mathbb{R}$ beschränkt und $\lambda \geq 0$ gilt

1.
$$\int_{a}^{b} f(x) dx = -\int_{a}^{b} -f(x) dx$$

2.
$$\int_{a}^{\underline{b}} (f_1 + f_2)(x) dx \le \int_{a}^{\underline{b}} f_1(x) dx + \int_{a}^{\underline{b}} f_2(x) dx$$

3.
$$\int_{\overline{q}}^{b} (f_1 + f_2)(x) dx \ge \int_{\overline{q}}^{b} f_1(x) dx + \int_{\overline{q}}^{b} f_2(x) dx$$

4.
$$\int_{a}^{b} (\lambda f)(x) dx = \lambda \int_{a}^{b} f(x) dx$$

5.
$$\int_{\overline{a}}^{b} (\lambda f)(x) dx = \lambda \int_{\overline{a}}^{b} f(x) dx$$

Def. Eine Abb. $f:[a,b]\to\mathbb{R}$ heißt Riemann-integrierbar, wenn

$$\int_{\overline{a}}^{b} f(x) \, \mathrm{d}x = \int_{a}^{\underline{b}} f(x) \, \mathrm{d}x.$$

Bemerkung. Für Treppenfunktionen stimmt das Riemann-Integral mit dem vorher definierten Integral für Treppenfunktionen überein.

Satz. Die Menge aller Riemann-integrierbaren Funktionen auf einem Intervall [a,b] ist ein UVR des \mathbb{R} -VR aller Funktionen $f:[a,b]\to\mathbb{R}$ (genannt $\mathcal{R}_{[a,b]}$) und das Riemann-Integral verhält sich linear, dh. es gilt für alle $f,g:\mathcal{R}_{[a,b]}$ und $\lambda\in\mathbb{R}$:

1.
$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

2.
$$\int_{a}^{b} (\lambda f)(x) dx = \lambda \int_{a}^{b} f(x) dx$$

Satz. Das Riemann-Integral verhält sich monoton.

 ${\bf Satz.}\,$ Alle monotonen und alle stetigen Funktionen $f:[a,b]\to \mathbb{R}$ sind Riemann-integrierbar.

Satz. Seien $f, g: R_{[a,b]}$, dann auch Riemann-integrierbar:

1. $f_+: [a,b] \to \mathbb{R}, x \mapsto \max\{f(x), 0\}$

2. $f_-: [a,b] \to \mathbb{R}, x \mapsto \max\{-f(x), 0\}$

3. $|f|^p:[a,b]\to\mathbb{R},\ x\mapsto |f(x)|^p,\ \mathrm{mit}\ p\geq 1$

4. $fg: [a,b] \to \mathbb{R}, x \mapsto f(x)g(x)$

Satz (Erster MWS für das Riemann-Integral). Seien $f, g : [a, b] \to \mathbb{R}$ stetig und $g \ge 0$. Dann gibt es ein $x_0 \in [a, b]$, sodass gilt:

$$\int_{a}^{b} f(x)g(x) dx = f(x_0) \int_{a}^{b} g(x) dx$$

Def. Sei $f:[a,b] \to \mathbb{R}$ beschränkt und $Z = \{x_0 < ... < x_n\}$ eine Zerlegung von [a,b]. Dann heißt

1. $R(f, Z, \xi_1, ..., \xi_n) := \sum_{j=1}^n f(\xi_j)(x_j - x_{j-1})$

Riemannsche Summe von f bzgl. Z und den Stützstellen $\xi_j \in [x_{j-1}, x_j]$ für $j \in \{1, ..., n\}$.

2. $O(f,Z) := \sum_{j=1}^{n} (\sup\{f(x) \mid x \in [x_{j-1}, x_j]\})(x_j - x_{j-1})$

(Darbouxsche) Obersumme von f bzgl. Z

3. $U(f,Z) := \sum_{j=1}^{n} (\inf\{f(x) \mid x \in [x_{j-1}, x_j]\})(x_j - x_{j-1})$

(Darbouxsche) Untersumme von f bzgl. Z

Bemerkung. Sei Z' eine Verfeinerung von Z, dann gilt $O(f,Z') \leq O(f,Z)$ und $U(f,Z') \geq U(f,Z)$.

 ${\bf Satz.}$ Seien $Z_1,$ und Z_2 Zerlegungen von [a,b], dann gilt $U(f,Z_1) \leq O(f,Z_2).$

Satz (Charakterisierung des Riemann-Integrals). Für $f:[a,b]\to \mathbb{R}$ beschränkt sind folgende vier Aussagen äquivalent:

1. f ist Riemann-integrierbar.

2. Für alle $\epsilon>0$ gibt es eine Zerlegung Z von [a,b], sodass

$$O(f,Z) - U(f,Z) < \epsilon$$
.

3. Es gibt eine Zahl $\iota \in \mathbb{R}$ mit folgender Eigenschaft: Für alle $\epsilon > 0$ gibt es ein $\delta > 0$, sodass für jede Zerlegung $Z = \{x_0 < \ldots < x_n\}$ von [a,b] der Feinheit $\mu_Z \leq \delta$ und jede Wahl von Stützstellen ξ_1,\ldots,ξ_n gilt:

$$|\iota - R(f, Z, \xi_1, ..., \xi_n)| < \epsilon$$

4. Es gibt eine Zahl $\iota \in \mathbb{R}$ mit folgender Eigenschaft: Für alle $\epsilon > 0$ gibt es eine Zerlegung $\widetilde{Z}_{\epsilon} = \{\widetilde{x}_0 < \ldots < \widetilde{x}_m\}$ von [a,b], sodass für jede Verfeinerung $Z = \{x_1 < \ldots < x_n\}$ von \widetilde{Z}_{ϵ} und jede Wahl von Stützstellen ξ_1, \ldots, ξ_n bzgl. Z gilt:

$$|\iota - R(f, Z, \xi_1, ..., \xi_n)| \le \epsilon.$$

 $\mathbf{Satz.} \ \mathrm{Sei} \ f:[a,b] \to \mathbb{R} \ \mathrm{und} \ c \in (a,b).$ Dann ist f genau dann Riemann-integrierbar, wenn $f\mid_{[a,c]} \mathrm{und} \ f\mid_{[c,b]}$ Riemann-integrierbar sind und es gilt in diesem Fall

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Satz (\triangle -Ungleichung für das Riemann-Integral). Für $f, g \in \mathcal{R}_{[a,b]}$:

$$\int_{a}^{b} |f(x) + g(x)| \, \mathrm{d}x \le \int_{a}^{b} |f(x)| \, \mathrm{d}x + \int_{a}^{b} |g(x)| \, \mathrm{d}x.$$

Satz (Vertauschung von Integration und Limes bei glm. Konv.). Sei $f_n:[a,b]\to\mathbb{R}, n\in\mathbb{N}$ eine Folge Riemann-integrierbarer Funktionen, welche gleichmäßig gegen $f:[a,b]\to\mathbb{R}$ konvergiert. Dann ist f Riemann-integrierbar und es gilt

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \left(\int_{a}^{b} f_n(x) dx \right)$$

Def. Eine differenzierbare Funktion $F:I\to\mathbb{R}$ heißt **Stammfunktion** von f, wenn die Ableitung von F gerade f ist.

Bemerkung. Zwei Stammfunktionen einer Funktion f unterscheiden sich nur durch eine additive Konstante.

Satz. Sei $f: I \to \mathbb{R}$ stetig. Dann ist eine Stammfunktion von f:

$$F: I \to \mathbb{R}, \quad x \mapsto \int_{a}^{x} f(t) dt$$

Satz (HDI). Sei $f: I \to \mathbb{R}$ stetig und F eine Stammfunktion von f. • Sei a < b mit $a \in \mathbb{R} \cup \{-\infty\}$ und $b \in \mathbb{R} \cup \{\infty\}$ und $c \in (a, b)$. Sei Dann gilt für alle $x, y \in I$

$$\int_{x}^{y} f(x) \, \mathrm{d}x = F(y) - F(x)$$

Satz (Vertauschung von Grenzwerten und Ableitungen). Sei $f_n:[a,b]\to\mathbb{R}$ eine Folge stetig differenzierbarer Funktionen, welche pktw. gegen $f:[a,b]\to\mathbb{R}$ konvergiert. Wenn die Folge der Ableitungen f'_n gleichmäßig gegen eine Funktion $f^*:[a,b]\to\mathbb{R}$ konvergiert, dann ist auch f differenzierbar und es gilt $f' = f^*$.

Funktion $f(x)$	Stammfunktion $F(x)$
$x^n, n \in \mathbb{Z} \setminus \{-1\}$	$\frac{1}{n+1}x^{n+1}$
$\frac{1}{x}$	$\ln(x)$
$\sin(x)$	$-\cos(x)$
$\cos(x)$	$\sin(x)$
$\exp(ax)$	$\frac{1}{a}\exp(ax)$
$\frac{1}{1+x^2}$	$\arctan(x)$
$x^n \ln(x)$	$\frac{x^{n+1}}{n+1}(\ln x - \frac{1}{n+1}), \ n \ge 1$
$\log_a x$	$\frac{1}{\ln a}(x\ln x - x)$

Satz (Substitutionsregel). Sei $f: I \to \mathbb{R}$ stetig und sei $g: J \to I$ stetig differenzierbar. Dann gilt für $a, b \in J$:

$$\int_{a}^{b} f(g(t))g'(t) dt = \int_{g(a)}^{g(b)} f(x) dx$$

Satz (Partielle Integration). Seien $f, g: I \to \mathbb{R}$ stetig differenzierbar. Dann gilt für $a, b \in I$:

$$\int_{a}^{b} f(x)g'(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx$$

Def (Riemann-Integral für komplexwertige Funktionen). Eine komplexwertige Funktion $f:[a,b]\to\mathbb{C}$ heißt Riemann-integrierbar, wenn ihr Realteil $\Re(f)$ und ihr Imaginärteil $\Im(f)$ Riemann-integrierbar sind. Wir setzen

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \Re(f) dx + i \int_{a}^{b} \Im(f) dx.$$

Def (Uneigentliche Integrale). • Sei a < b mit $b \in \mathbb{R} \cup \{\infty\}$ und $f:[a,b)\to\mathbb{R}$ eine Funktion, sodass $f\mid_{[a,R]}$ für alle $R\in(a,b)$ Riemann-integrierbar ist. Wir setzen

$$\int_{a}^{b} f(x) dx := \lim_{R \uparrow b} \int_{a}^{R} f(x) dx$$

falls der Grenzwert existiert.

• Sei a < b mit $a \in \mathbb{R} \cup \{-\infty\}$ und $f: (a, b] \to \mathbb{R}$ eine Funktion, sodass $f|_{[R,b]}$ für alle $R \in (a,b)$ Riemann-integrierbar ist. Wir setzen

$$\int_{a}^{b} f(x) dx := \lim_{R \downarrow a} \int_{R}^{b} f(x) dx$$

falls der Grenzwert existiert.

 $f:(a,b) \to \mathbb{R}$ eine Funktion, sodass für alle $a < R_1 < c < R_2 < b$ die $f|_{[R_1,c]}$ und $f|_{[c,R_2]}$ Riemann-integrierbar sind. Wir setzen

$$\int_{a}^{b} f(x) dx = \lim_{R_1 \downarrow a} \int_{R_1}^{c} f(x) dx + \lim_{R_2 \uparrow b} \int_{c}^{R_2} f(x) dx$$

falls beide Grenzwerte existieren.

Def. Für zwei Funktionen $f, g: [a, b] \to \mathbb{R}$, eine Zerlegung $Z = \{a = x_0 < ... < x_n = b\}$ von [a, b] und Stützstellen $\xi_1, ..., \xi_n$ bzgl. Z heißt die Summe

$$S(f, dg, Z, \xi_1, ..., \xi_n) := \sum_{j=1}^n f(\xi_j)(g(x_j) - g(x_{j-1}))$$

Riemann-Stieltjes-Summe von f bzgl. g und der Zerlegung Zmit Stützstellen $\xi_1, ..., \xi_n$.

Def. Seien $f, q : [a, b] \to \mathbb{R}$. Die Funktion f heißt Riemann-Stieltjes-integrierbar (RS-integrierbar) bzgl. der Gewichtsfunktion q, wenn gilt: Es gibt ein $\iota \in \mathbb{R}$, sodass für alle $\epsilon > 0$ eine Zerlegung Z_{ϵ} von [a, b] existiert, sodass für alle Verfeinerungen $Z \supset Z_{\epsilon}$ und Wahlen von Stützstellen $\xi_1, ..., \xi_n$ gilt:

$$|\iota - S(f, dg, Z, \xi_1, ..., \xi_n)| \le \epsilon.$$

Dieses (eindeutig bestimmte) ι heißt Riemann-Stieltjes-Integral (RS-Integral) von f bzgl. q.

Bemerkung. Für die Identitätsfunktion q(x) = x stimmt das Riemann-Stieltjes-Integral mit dem Riemann-Integral überein.

Satz (Linearität des RS-Integrals). • Seien $f_1, f_2 : [a, b] \to \mathbb{R}$ bzgl. $g:[a,b]\to\mathbb{R}$ RS-integrierbar und $\lambda_1,\lambda_2\in\mathbb{R}$. Dann ist auch $(\lambda_1 f_1 + \lambda_2 f_2)$ bzgl. g RS-integrierbar mit

$$\int_{a}^{b} (\lambda_{1} f_{1} + \lambda_{2} f_{2})(x) \, dg(x) = \lambda_{1} \int_{a}^{b} f_{1}(x) \, dg(x) + \lambda_{2} \int_{a}^{b} f_{2}(x) \, dg(x)$$

• Sei $f:[a,b]\to\mathbb{R}$ bzgl. den Funktionen $g_1,g_2:[a,b]\to\mathbb{R}$ RS-integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann ist f auch bzgl. $(\lambda_1 q_1 + \lambda_2 q_2)$ RS-integrierbar mit

$$\int_{a}^{b} f(x) d(\lambda_{1}g_{1} + \lambda_{2}g_{2}) = \lambda_{1} \int_{a}^{b} f(x) dg_{1}(x) + \lambda_{2} \int_{a}^{b} f(x) dg_{2}(x)$$

Satz. Seien $f, g : [a, b] \to \mathbb{R}$ und $c \in (a, b)$, dann ist f genau dann bzgl. g RS-integrierbar, wenn die Funktionen $f\mid_{[a,c]}$ bzgl $g\mid_{[a,c]}$ und $f|_{[c,b]}$ bzgl $g|_{[c,b]}$ RS-integrierbar sind und es gilt

$$\int_{a}^{b} f(x) dg(x) = \int_{a}^{c} f(x) dg(x) + \int_{c}^{b} f(x) dg(x).$$

Satz (Partielle Integration beim RS-Integral). Sei $f:[a,b]\to\mathbb{R}$ bzgl. $q:[a,b]\to\mathbb{R}$ RS-integrierbar, dann ist auch q bzgl. f RS-integrierbar und es gilt

$$\int_{a}^{b} f(x) \, dg(x) = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} g(x) \, df(x)$$

Satz (Riemann-Stieltjes- und Riemann-Integral). Sei $f \in \mathcal{R}_{[a,b]}$ und $q:[a,b]\to\mathbb{R}$ stetig differenzierbar, dann ist f bzgl. q RS-integrierbar

$$\int_{a}^{b} f(x) dg(x) = \int_{a}^{b} f(t)g'(t) dt.$$

Def. Die Variation von $g:[a,b] \to \mathbb{R}$ bzgl. einer Zerlegung $Z = \{x_0 < \dots < x_n\}$ von [a, b] ist die nicht-negative Zahl

$$V(g,Z) := \sum_{j=1}^{n} |g(x_j) - g(x_{j-1})|.$$

Die **Totalvariation** von $q:[a,b] \to \mathbb{R}$ ist

 $V_a^b(g) := \sup \{V(g, Z) : Z \text{ Zerlegung von } [a, b]\} \in \mathbb{R}_{\geq 0} \cup \{\infty\}$

Falls $V_a^b(g) < \infty$, so heißt g von beschränkter Variation.

Satz. Alle monotonen und alle Lipschitz-stetigen Funktionen sind von beschränkter Variation.

Satz. Sei $g:[a,b]\to\mathbb{R}$ von beschränkter Variation und $c\in(a,b)$, dann sind auch $g|_{[a,c]}$ und $g|_{[c,b]}$ von beschränkter Variation und es

$$V_a^c(g \mid_{[a,c]}) + V_c^b(g \mid_{[c,b]}) = V_a^b(g).$$

Satz. Seien $g_1, g_2 : [a, b] \to \mathbb{R}$ von beschränkter Variation, dann gilt

$$V_a^b(g_1 + g_2) \le V_a^b(g_1) + V_a^b(g_2).$$

Satz. Die Menge aller Funktionen $q:[a,b]\to\mathbb{R}$ bildet einen UVR des VR der reellwertigen Funktionen auf [a, b].

Satz. Sei $g:[a,b]\to\mathbb{R}$ von beschränkter Variation, dann ist jede stetige Funktion $f:[a,b]\to\mathbb{R}$ bzgl. q RS-integrierbar mit

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}g(x) \right| \le ||f||_{\sup} \cdot V_{a}^{b}(g).$$

Satz (1. MWS für RS-Integrale). Sei $f:[a,b]\to\mathbb{R}$ beschränkt und bzgl einer monoton wachsenden Gewichtsfunktion $g:[a,b]\to\mathbb{R}$ RS-integrierbar. Dann gibt es $\mu \in [\inf f([a,b]), \sup f([a,b])]$ mit

$$\int_{a}^{b} f(x) dg(x) = \mu(g(b) - g(a)).$$

Satz (2. MWS für RS-Integrale). Sei $f:[a,b]\to\mathbb{R}$ monoton und $g:[a,b]\to\mathbb{R}$ stetig, dann ist f bzgl. g RS-integrierbar und es gibt $c \in [a, b]$, sodass

$$\int_{a}^{b} f(x) dg(x) = f(a)(g(c) - g(a)) + f(b)(g(b) - g(c)).$$

 $\mathbf{Satz.} \ \mathrm{Sei} \ f_n: [a,b] \to \mathbb{R}$ eine Folge stetiger Funktionen, welche gleichmäßig gegen eine (stetige) Funktion $f:[a,b]\to\mathbb{R}$ konvergiert und $q:[a,b]\to\mathbb{R}$ von beschränkter Variation, dann gilt:

$$\int_{a}^{b} f(x) dg(x) = \lim_{n \to \infty} \left(\int_{a}^{b} f_n(x) dg(x) \right).$$

Satz (Helly-Bray). Sie $f:[a,b]\to\mathbb{R}$ stetig und $g_n:[a,b]\to\mathbb{R}$ eine Folge von Funktionen von beschränkter Variation, sodass es eine Konstante c>0 mit $V_a^b(g_n)< c$ für alle $n\in\mathbb{N}$ gibt. Konvergiere g_n pktw. gegen eine Funktion $g:[a,b]\to\mathbb{R}$, dann gilt

$$\int_{a}^{b} f(x) dg(x) = \lim_{n \to \infty} \left(\int_{a}^{b} f(x) dg_{n}(x) \right).$$

Metrische und normierte Räume

Def. Ein metrischer Raum (X,d) ist ein Tupel bestehend aus einer Menge X und einer Abbildung $d: X \times X \to \mathbb{R}$, genannt Metrik, die folgende Eigenschaften erfüllt:

- 1. $d(x,y) = 0 \iff (x = y)$
- 2. Symmetrie: $\forall x, y \in X : d(x, y) = d(y, x)$
- 3. Dreiecksungleichung: $\forall x, y, z \in X : d(x, y) + d(y, z) \ge d(x, z)$

Bemerkung. Aus den obigen Axiomen folgt: $\forall x, y \in X : d(x,y) \geq 0$

Notation. Sei im folgenden (X, d) ein metrischer Raum.

Def. Für $r \in \mathbb{R}$ und $m \in X$ heißt

$$B_r(m) = B_r^d(m) = \{x \in X : d(x, m) < r\}$$

offener Ball oder offene Kugel um m von Radius r und

$$B_r^a(m) = B_r^{a,d}(m) = \{x \in X : d(x,m) \le r\}$$

abgeschlossener Ball oder abgeschlossene Kugel um m.

Def. $Y \subset X$ heißt eine **Umgebung** von m bzgl. d, wenn gilt:

$$\exists \epsilon > 0 : B_{\epsilon}(m) \subset Y.$$

Def. • Eine Menge $U \subset X$ heißt **offen** in (X, d) (notiert $U \subseteq X$), falls U eine Umgebung von allen Punkten $u \in U$ ist, d. h.

$$\forall u \in U : \exists \epsilon_u > 0 : B_{\epsilon_u}(u) \subset U$$

- Eine Menge $U \subset X$ heißt abgeschlossen in (X, d) (notiert $U \odot X$), falls $X \setminus U$ offen ist.
- Ein Punkt $x \in X$ heißt **Randpunkt** von $Y \subset X$, falls gilt:

$$\forall \epsilon > 0 : (B_{\epsilon}(x) \cap Y \neq \emptyset \text{ und } B_{\epsilon}(x) \cap (X \setminus Y) \neq \emptyset).$$

Die Menge aller Randpunkte von Y wird mit ∂Y bezeichnet.

Bemerkung. Die Mengen \emptyset und X sind jeweils sowohl offen als auch abgeschlossen in X. Es gilt außerdem $\partial Y = \partial (X \setminus Y)$ für alle $Y \subset X$.

Def. Sei $Y \subset X$. Dann heißt

- $Y^{\circ} := Y \setminus \partial Y$ das Innere oder der offene Kern von Y.
- $\overline{Y} := Y \cup \partial Y$ der Abschluss oder die abgeschl. Hülle von Y.

 ${\bf Satz.}\,$ Obige Definition ergeben Sinn, d. h. es gilt für alle $Y\subset X\colon Y^\circ \ @\ X$ und $\overline{Y}\ @\ X$

Satz. Sei $Y \subset X$. Dann gilt:

• $(Y \odot X) \iff (Y \cap \partial Y) = \emptyset$ • $(Y \odot X) \iff (\partial Y \subset Y)$

Satz (Metrische Räume sind hausdorffsch). Seien $x,y\in X$ mit $x\neq y$, dann gibt es offene Teilmengen $U_x,U_y\circledcirc X$ mit $x\in U_x,$ $y\in U_y$ und $U_x\cap U_y=\emptyset$.

Def. Sei x_n eine Folge in X. Die Folge heißt konvergent in (X, d), wenn gilt

$$\exists x \in X : \forall \epsilon > 0 : \exists N \in \mathbb{N} : \forall n \geq N : d(x_n, x) \leq \epsilon.$$

Die eindeutige Zahl x heißt Grenzwert oder Limes von (x_n) , notiert $x = \lim_{n \to \infty} x_n$.

 ${\bf Satz}$ (Folgenkriterium für Abgeschlossenheit). Sei $A\subset X.$ Dann sind folgende Aussagen äquivalent:

- 1. A ist abgeschlossen in X.
- 2. Für jede in X konvergenten Folge, die vollständig in A liegt, gilt $\lim_{n\to\infty} x_n \in A$.

Def. Eine Folge (x_n) heißt Cauchyfolge in (X,d), wenn gilt:

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \in \mathbb{N} : |x_n - x_m| < \epsilon$$

Satz. Jede konvergente Folge (x_n) in einem metrischen Raum ist eine Cauchyfolge.

Def. Ein metrischer Raum (X, d) heißt **vollständig**, wenn jede Cauchyfolge in (X, d) auch in (X, d) konvergiert.

Def. Eine Norm auf einem reellen VR V ist eine Abbildung

$$\|...\|:V\to\mathbb{R},\quad x\mapsto\|x\|$$

für die gilt:

- 1. $(||x|| = 0) \iff (x = 0)$
- 2. $\forall x \in V, \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda|||x||$
- 3. Dreiecksungleichung: $\forall x, y \in V : ||x + y|| < ||x|| + ||y||$

Das Tupel $(V, \|...\|)$ heißt normierter Vektorraum.

Bemerkung. In jedem normierten Raum gilt $||x|| \ge 0$.

Bemerkung (Wichtige Normen). • Die euklidische Norm auf \mathbb{R}^n :

$$\|(x_1,...,x_n)\|_{\text{eukl}} \coloneqq \sqrt{x_1^2 + ... + x_n^2}$$

• Die Maximumsnorm auf \mathbb{R}^n :

$$||(x_1,...,x_n)||_{\max} := \max\{|x_1|,...,|x_n|\}$$

 \bullet Sei X eine nichtleere Menge. Dann ist die **Supremumsnorm**

$$||f||_{\sup} := \sup \{|f(x)| : x \in X\}$$

eine Norm auf $V = \left\{ f: X \to \mathbb{R} : \sup_{x \in X} |f(x)| < \infty \right\}.$

• Sei $V = \mathcal{C}([a,b],\mathbb{R})$ der VR der reellwertigen stetigen Funktionen auf [a,b] und $p \geq 1$. Dann ist die p-Norm

$$||f||_p \coloneqq \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}$$

eine Norm auf V.

• Seien $(V, ||...||_V)$ und $(W, ||...||_W)$ zwei normierte (reelle) VR, dann ist auch $\operatorname{Hom}(V, W) \coloneqq \{f : V \to W : f \text{ linear }\}$ ein reeller VR. Die Norm

$$||f||_{\text{op}} := \sup \left\{ \frac{||f(x)||_W}{||x||_V} : x \in V \setminus \{0\} \right\}$$
$$= \sup \left\{ ||f(x)||_W : x \in V, ||x||_V = 1 \right\}$$

auf Hom(V, W) heißt **Operatornorm**.

Def. Die Abbildung

$$d_{\parallel} \quad \parallel : V \times V \to \mathbb{R}, \quad (x, y) \mapsto \|x - y\|$$

ist eine Metrik auf V und heißt von der Norm $\|...\|$ induzierte Metrik auf V.

Def. Ein vollständiger normierter Vektorraum (V, ||...||) heißt Banachraum

Satz (Bolzano-Weierstraß). Für eine Folge (x_n) in $(\mathbb{R}^m, \|...\|_{\text{eukl}})$ gilt:

- Ist (x_n) beschränkt, d. h. gibt es ein C > 0, sodass $||x_n||_{\text{eukl}} \le C$ für alle $n \in \mathbb{N}$, dann hat (x_n) eine konvergente Teilfolge.
- Ist (x_n) eine Cauchyfolge, so ist (x_n) konvergent (d. h. $(\mathbb{R}^m, \|...\|_{\text{engl}})$) ist vollständig).

Def. Sei V ein reeller VR. Zwei Normen $\|...\|_1$ und $\|...\|_2$ auf V heißen äquivalent, wenn es c, C > 0 gibt, sodass für alle $x \in V$ gilt:

$$c||x||_2 \le ||x||_1 \le C||x||_2$$

Satz. Alle Normen auf \mathbb{R}^n (und allen anderen endlich-dimensionalen, reellen VR) sind äquivalent.

Def. Seien (X, d_X) und (Y, d_Y) zwei metrische Räume und $f: X \to Y$.

• Die Abbildung f heißt stetig in $a \in X$, wenn gilt:

$$\forall \epsilon > 0 : \exists \delta_a > 0 : d_X(x,a) < \delta_a \implies d_Y(f(x),f(a)) < \epsilon$$

Wenn f in allen Punkten $x \in X$ stetig ist, so heißt f stetig.

• Die Abbildung f heißt folgenstetig in $a \in X$, wenn gilt:

$$\lim_{x \to a} f(x) = f(a),$$

d. h. für jede Folge (x_n) in X mit $\lim_{n\to\infty}(x_n)=a$ gilt $\lim_{n\to\infty}f(x_n)=f(a)$.

Satz. Für eine Funktion $f: X \to Y$ zwischen zwei metrischen Räumen und $a \in X$ gilt: f stetig in $a \iff f$ folgenstetig in a

Satz. Seien $f: X \to Y$ und $g: Y \to Z$ Abbildungen zwischen metrischen Räumen und $a \in X$. Falls f in a und g in f(a) stetig sind, so ist $(g \circ f): X \to Z$ stetig in a.

Satz. Seien $(V, ||...||_V)$ und $(W, ||...||_W)$ zwei normierte VR und $f: V \to W$ linear. Dann sind äquivalent:

- f ist stetig
- $\exists C > 0 : \forall x \in V : ||f(x)||_W < C||x||_V$
- $||f||_{\text{op}} < \infty$

Korollar. Jede lineare Abbildung zwischen endlich-dimensionalen normierten reellen VR ist stetig.

Def. Sei X eine Menge und (Y, d_Y) ein metrischer Raum. Sei $f_n: X \to Y$ eine Folge von Abbildungen. Die Folge (f_n) konvergiert gleichmäßig gegen eine Funktion $f: X \to Y$, wenn gilt:

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} : \forall n \geq N : \sup \{d_Y(f_n(x), f(x)) \mid x \in X\} \leq \epsilon$$

Satz. Seien (X, d_X) und (Y, d_Y) zwei metrische Räume und sei $f_n: X \to Y$ eine Folge stetiger Abbildungen, die gleichmäßig gegen $f: X \to Y$ konvergiert. Dann ist f stetig.

Korollar. Der normierte VR $(\mathcal{C}([a,b],\mathbb{R}), \|...\|_{\text{sup}})$ der stetigen reellen Funktionen auf [a,b] versehen mit der Supremumsnorm ist vollständig. Allgemeiner ist für jeden metrischen Raum (X,d) der Vektorraum $\mathcal{C}(X,\mathbb{R})$ bezüglich der Supremumsnorm vollständig.

Def. Sei $W \subset X$ eine Teilmenge eines metrischen Raumes (X, d). Eine Familie offener Teilmengen $\{U_i \odot X : i \in I\}$ heißt **offene** Überdeckung von W, wenn gilt:

$$W \subseteq \bigcup_{i \in I} U_i$$

Def. Sei (X,d) ein metrischer Raum. Eine Teilmenge $K\subset X$ heißt **kompakt** in (X,d), wenn gilt: Jede offene Überdeckung $\{U_i \odot X: i\in I\}$ besitzt eine endliche offene Teilüberdeckung, d. h. es gibt eine endliche Teilmenge $J\subset I$, sodass $K\subseteq \bigcup_{i\in J}U_j$ gilt.

 ${\bf Satz.}$ Eine kompakte Teilmenge Keines metrischen Raumes (X,d)ist beschränkt und abgeschlossen.

Achtung. Die Umkehrung gilt im Allgemeinen nicht.

Satz (Heine-Borel). Im \mathbb{R}^n gilt auch die Umkehrung: Eine beschränkte und abgeschlossene Teilmenge $K \subset (\mathbb{R}^n, \|...\|_{\text{eukl}})$ ist kompakt. Allgemeiner ist jede beschränkte und abgeschlossene Teilmenge eines endlich-dimensionalen, normierten, reellen VR kompakt.

Achtung. Obige Aussage gilt nicht für unendlichdimensionale, reelle, normierte VR.

Satz. Sei K eine kompakte Teilmenge eines metrischen Raumes (X,d) und $A \subset K$ abgeschlossen in X. Dann ist auch A kompakt.

Def. Seien $[a_j, b_j], a_j < b_j, j = 1, ..., n$ kompakte Intervalle in \mathbb{R} , dann ist

$$Q := [a_1, b_1] \times \dots \times [a_n, b_n]$$

= $\{(x_1, ..., x_n) \in \mathbb{R}^n \mid \forall j \in \{1, ..., n\} : a_j \le x_j \le b_j\}$

ein abgeschlossener Quader im \mathbb{R}^n .

Satz. Abgeschlossene Quader im \mathbb{R}^n sind kompakt.

Def. Eine Teilmenge $A \subset X$ eines metrischen Raumes (X, d) heißt **folgenkompakt**, wenn jede Folge (x_n) in A eine konvergente Teilfolge besitzt, deren Grenzwert in A liegt.

Satz (Bolzano-Weierstraß). Jede kompakte Teilmenge eines metrischen Raums ist folgenkompakt.

Bemerkung. Es gilt auch die Umkehrung: Jede folgenkompakte Teilmenge eines metrischen Raums ist kompakt.

Satz. Seien (X, d_X) und (Y, d_Y) zwei metrische Räume und $f: X \to Y$ eine stetige Abbildung. Sei $K \subset X$ kompakt. Dann ist $f(K) \subset Y$ kompakt.

Satz (Weierstraßscher Satz vom Extremum). Sei (X, d) ein metrischer Raum und $K \subset X$ eine nichtleere kompakte Teilmenge. Sei $f: X \to \mathbb{R}$ stetig. Dann gibt es $m, M \in K$, sodass gilt:

$$f(m) = \inf \{ f(x) : x \in K \}, \quad f(M) = \sup \{ f(x) : x \in K \}$$

Def. Seien (X, d_X) und (Y, d_Y) zwei metrische Räume. Eine Abbildung $f: X \to Y$ heißt **gleichmäßig stetig**, wenn gilt:

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x, y \in X : (d_X(x, y) < \delta) \implies (d_Y(f(x), f(y)) < \epsilon)$$

Satz. Seien (X, d_X) und (Y, d_Y) zwei metrische Räume wobei X kompakt ist und $f: X \to Y$ stetig. Dann ist f gleichmäßig stetig.

Kurven

Notation. Sei nun $I \subset \mathbb{R}$ ein Intervall, das mindestens zwei Punkte enthält. Wir verwenden in diesem Abschnitt die euklidische Norm.

Def. Eine stetige Abbildung $f: I \to \mathbb{R}^n$ heißt Kurve im \mathbb{R}^n .

Def. Sei $I = [a,b] \subset \mathbb{R}$ mit Zerlegung $Z = \{a = t_0 < ... < t_m = b\}$ und $f: I \to \mathbb{R}^n$ eine Kurve. Dann hat der **Polygonzug** $P_f(Z)$ die Länge

$$L(P_f(Z)) = \sum_{j=1}^m ||f(t_j) - f(t_{j-1})||.$$

Def. Eine Kurve $f:[a,b]\to\mathbb{R}^n$ heißt **rektifizierbar**, wenn gilt: Es gibt ein $L\in\mathbb{R}$, sodass es für alle $\epsilon>0$ ein $\delta>0$ gibt, sodass für jede Zerlegung Z von [a,b] der Feinheit $\mu_Z\leq\delta$ gilt:

$$|L - L(P_f(Z))| \le \epsilon$$

Def. Sei $I = (a, b) \subset \mathbb{R}$ ein offenes Intervall. Eine Kurve $f: I \to \mathbb{R}^n$ heißt in $t_0 \in I$ differenzierbar, wenn der Limes

$$f'(t_0) = \lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$$

existiert. Wenn f in jedem Punkt $t \in I$ differenzierbar ist, so heißt f differenzierbar. Falls I kein offenes Intervall ist, so heißt die Kurve $f:I \to \mathbb{R}^n$ differenzierbar, wenn es ein offenes Intervall $J \supset I$ in \mathbb{R} und eine differenzierbare Kurve $F:J \to \mathbb{R}^n$ gibt, sodass $F\mid_I = f$ gilt.

Bemerkung. Eine Kurve $f = (f_1, ..., f_n) : I \to \mathbb{R}^n$ ist genau dann in $t \in I$ differenzierbar, wenn alle Komponentenfunktionen $f_1, ..., f_n$ in t differenzierbar sind.

 ${\bf Satz.}\,$ Jede stetig differenzierbare Kurve $f:[a,b]\to \mathbb{R}$ ist rektifizierbar mit Länge

$$L = \int_a^b ||f'(t)|| \, \mathrm{d}t.$$

Def (Riemann-Integral für Funktionen nach \mathbb{R}^n). Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ heißt **Riemann-integrierbar**, wenn gilt: Es gibt ein $\iota\in\mathbb{R}^n$, sodass es für alle $\epsilon>0$ ein $\delta>0$ gibt, sodass für jede Zerlegung $Z=\{a=t_0<\ldots< t_m=b\}$ der Feinheit $\mu_Z\leq \delta$ und Wahl von Stützstellen ξ_1,\ldots,ξ_m bzgl. Z gilt:

$$\|\iota - R(f, Z, \xi_1, ..., \xi_m)\| \le \epsilon.$$

Der Vektor $\iota \in \mathbb{R}^n$ heißt Riemann-Integral von f.

Bemerkung. Eine Funktion $f = (f_1, ..., f_n) : [a, b] \to \mathbb{R}^n$ ist genau dann **Riemann-integrierbar**, wenn jede Komponentenfunktion $f_j, j = 1, ..., n$ Riemann-integrierbar ist. Es gilt in diesem Fall:

$$\int_{a}^{b} f(t) dt = \left(\int_{a}^{b} f_{1}(t) dt, \dots, \int_{a}^{b} f_{n}(t) dt \right)$$

Insbesondere sind stetige Funktionen $f:[a,b]\to\mathbb{R}^n$ stets Riemann-integrierbar.

Satz. Sei $f:[a,b]\to\mathbb{R}^n$ stetig, dann gilt:

$$\left\| \int_{a}^{b} f(t) dt \right\| \leq \int_{a}^{b} \|f(t)\| dt.$$

Es gilt Gleichheit, wenn alle f(t) gleichgerichtet sind, d. h. für alle $x_1, x_2 \in [a, b]$ mit $f(x_1) \neq 0$ gibt es ein $\lambda \geq 0$, sodass $f(x_2) = \lambda f(x_1)$.

Def. Eine Kurve $f:[a,b]\to\mathbb{R}$ heißt **regulär**, wenn sie stetig differenzierbar ist und die Ableitung f' keine Nullstelle hat.

Korollar. Sei $f:[a,b] \to \mathbb{R}^n$ eine reguläre Kurve, $x \coloneqq f(a)$ und $y \coloneqq f(b)$. Dann gilt für die Länge L_f von f:

$$L_f \ge ||x - y||.$$

Falls hier Gleichheit gilt, dann gibt es eine stetig differenzierbare bijektive Abbildung $\phi: [a, b] \to [0, 1]$, sodass $f = c_{xy} \circ \phi$ wobei

$$c_{xy}:[0,1]\to\mathbb{R}^n,\quad t\mapsto x+t(y-x)$$

die Strecke von x nach y ist.

Motto: Die Gerade ist die kürzeste Verbindung zweier Punkte.

Partielle Ableitungen

Def. Sei $U \subseteq \mathbb{R}^n$ und $v \in \mathbb{R}^n$ mit ||v|| = 1. Eine Funktion $f: U \to \mathbb{R}^m$ heißt in einem Punkt $u \in U$ in Richtung v differenzierbar, wenn der Grenzwert

$$D_v f(u) \coloneqq \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(u + hv) - f(u)}{h}$$

existiert. In diesem Fall heißt $D_v f(u)$ die Richtungsableitung von f im Punkt $u \in U$ in Richtung $v \in \mathbb{R}^n$.

Def. Sei $U \subseteq \mathbb{R}^n$ und $j \in \{1,...,n\}$. Eine Abbildung $f: U \to \mathbb{R}^m$ heißt

 im Punkt u ∈ U bzgl. der j-ten Koordinatenrichtung partiell differenzierbar, falls die Richtungsableitung

$$D_j f(u) = \frac{\partial f}{\partial x_j}(u) := D_{e_j} f \in \mathbb{R}^m$$

existiert. In diesem Fall heißt $D_j f(u)$ die j-te partielle Ableitung von f in u.

- (auf U) bzgl. der j-ten Koordinatenrichtung partiell differenzierbar, wenn f in jedem Punkt $u \in U$ bzgl. der j-ten Koordinatenrichtung partiell differenzierbar ist.
- im Punkt $u \in U$ partiell differenzierbar, wenn f für alle $j \in \{1,...,n\}$ in u bzgl. der j-ten Koordinatenrichtung partiell differenzierbar ist.
- (auf U) partiell differenzierbar, wenn f in jedem Punkt $u \in U$ partiell differenzierbar ist.

Achtung. Eine Funktion $f: U \to \mathbb{R}^m$, die in $u \in U$ partiell differenzierbar ist, muss noch lange nicht in u stetig sein!

Def. Ist $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$, partiell differenzierbar, so setzen wir

$$D_j f = \frac{\partial f}{\partial x_j} : U \to \mathbb{R}^m, \quad x \mapsto D_j f(x) = \frac{\partial f}{\partial x_j}(x)$$

Falls die Abbildungen D_jf für alle $j\in\{1,...,n\}$ wieder partiell differenzierbar sind, also für alle $j,k\in\{1,...,n\}$ die Abbildungen

$$D_k D_j f \coloneqq D_k(D_j f) : U \to \mathbb{R}^m$$

existieren, so nennen wir f zweimal partiell differenzierbar. Alternative Schreibweise:

$$D_k D_j f = \frac{\partial^2 f}{\partial x_k \partial x_j}.$$

Analog definiert man für $l \in \mathbb{N}$ rekursiv die l-te partielle Ableitung

$$D_{j_l}D_{j_{l-1}}\cdots D_{j_1}f = \frac{\partial^l f}{\partial x_{j_l}\partial x_{j_{l-1}}\cdots \partial x_{j_1}}.$$

Falls jede l-te partielle Ableitung stetig ist, so heißt f l-mal stetig partiell differenzierbar.

Satz (Schwarz / Clairaut). Sei $U \otimes \mathbb{R}^n$, $u \in U$ und $f: U \to \mathbb{R}^m$ sowie $j,k \in \{1,...,n\}$. Wenn die ersten partiellen Ableitungen $D_j f$, $D_k f$ und die zweiten partiellen Ableitungen $D_j D_k f$ und $D_k D_j f$ im Punkt u stetig sind, dann gilt

$$D_i D_k f(u) = D_k D_i f(u).$$

Die totale Ableitung

Def. Sei $U \subseteq \mathbb{R}^n$ und $u \in U$. Eine Abbildung $f: U \to \mathbb{R}^m$ heißt in u (total) differenzierbar, wenn gilt: Es gibt eine \mathbb{R} -lineare Abbildung $A_u: \mathbb{R}^n \to \mathbb{R}^m$ und eine Abbildung $\phi_u: B_{r_u}(0) \to \mathbb{R}^m$ für ein hinreichend kleines $r_u > 0$, sodass gilt

- 1. $\lim_{\eta \to 0} \frac{\phi_u(\eta)}{\|\eta\|} = 0$
- 2. für alle $\xi \in B_{r_u}(0)$ gilt $u + \xi \in U$ und
- 3. $f(u+\xi) = f(u) + A_u(\xi) + \phi_u(\xi)$

Die \mathbb{R} -lineare Abbildung A_u heißt das totale Differential von f in u. Man schreibt

$$A_u = Df(u).$$

Wenn f in jedem $u \in U$ total differenzierbar ist, dann heißt f total differenzierbar.

Bemerkung. Seien $f_1, f_2: U \to \mathbb{R}^m$ in $u \in U$ total differenzierbar. Dann ist auch $(f_1 + f_2)$ in u total differenzierbar und es gilt

$$D(f_1 + f_2)(u) = Df_1(u) + Df_2(u)$$

Satz. Ist $f:U\to\mathbb{R}^m$ in $u\in U$ total differenzier bar, so ist f in diesem Punkt u stetig.

Achtung. Wenn f in einem Punkt u partiell differenzierbar ist, so folgt daraus nicht, dass f in diesem u total differenzierbar ist. Selbst wenn in u alle Richtungsableitungen existieren, muss f in u nicht total differenzierbar sein.

Satz. Sei $f:U\to\mathbb{R}^m$ in $u\in U$ total differenzier bar und $v\in\mathbb{R}^n$ mit $\|v\|=1$. Dann ist f in u in Richtung v able itbar mit

$$Df(u)(v) = D_v f(u).$$

Def. Sei $f: U \to \mathbb{R}^m$ in $u \in U$ total differenzierbar. Dann ist

$$Df(u) = J_u f := \left(\frac{\partial f}{\partial x_1}(u), ..., \frac{\partial f}{\partial x_n}(u)\right) \in \mathbb{R}^{m \times n}.$$

Die Matrix $J_u f$ heißt **Jacobimatrix** von f im Punkt u.

Satz. Sei $f:U\to\mathbb{R}^m$ partiell diffbar und alle partiellen Ableitungen in $u\in U$ stetig. Dann ist f in u total differenzierbar.

Bemerkung. Es gelten folgende Implikationen:

- f ist stetig partiell differenzierbar
- \implies f ist total differenzierbar (\implies f ist stetig)
- $\implies f$ ist partiell differenzierbar

Satz. Sie $f:U\to\mathbb{R}^m$ k-mal stetig partiell differenzierbar mit $k\in\mathbb{N}$. Sei $1\leq l\leq k$, dann sind alle l-ten partiellen Ableitungen von f stetig.

Satz (Kettenregel). Sei $U \otimes \mathbb{R}^n$ und $V \otimes \mathbb{R}^m$ sowie $g: U \to V$ und $f: V \to \mathbb{R}^l$ Abbildungen. Wenn g in $u \in U$ und f in g(u) total differenzierbar ist, dann ist $(f \circ g): U \to \mathbb{R}^l$ in u total differenzierbar mit.

$$D(f \circ g)(u) = Df(g(u)) \circ Dg(u).$$

Satz (MWS). Sei $U \otimes \mathbb{R}^n$, $u \in U$ und $f = (f_1, ..., f_m) : U \to \mathbb{R}^m$ stetig differenzierbar. Sei außerdem $\xi \in \mathbb{R}^n$, sodass das Bild der Strecke $[0,1] \to \mathbb{R}^n$, $t \mapsto u + t\xi$ ganz in U liegt. Dann gilt

$$f(u+\xi) - f(u) = \left(\int_0^1 (J_{u+t\xi}f) dt\right) \cdot \xi = \int_0^1 ((J_{u+t\xi}f) \cdot \xi) dt$$

Korollar (Schrankensatz). Sei $U \subseteq \mathbb{R}^n$, $u \in U$, $f = (f_1, ..., f_m) : U \to \mathbb{R}^m$ und $\xi \in \mathbb{R}^n$ wie eben. Sei

$$M := \sup \left\{ \|J_{u+t\xi} f\|_{\text{op}} : t \in [0,1] \right\},\,$$

dann gilt

$$||f(u+\xi) - f(u)|| \le M||\xi||$$

Notation. Sei $f:U\to\mathbb{R}$ k-mal stetig differenzierbar, $u\in U$ und $\xi=(\xi_1,...,\xi_n)\in\mathbb{R}^n$. Dann setzen wir

$$d^{k} f(u) \xi^{k} := \sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} (D_{j_{k}} \cdots D_{j_{1}} f(u)) \xi_{j_{1}} \cdots \xi_{j_{k}}$$

und

$$d^0 f(u)\xi^0 := f(u).$$

Satz (Taylorformel in mehreren Veränderlichen). Sei $U \otimes \mathbb{R}^n$ und $f: U \to \mathbb{R}$ eine (p+1)-mal stetig differenzierbare Funktion. Ferner sei $u \in U$ und $\xi \in \mathbb{R}^n$, sodass für alle $t \in [0,1]$ gilt $h(t) \coloneqq u + t\xi \in U$. Dann gibt es ein $\tau \in [0,1]$, sodass

$$f(u+\xi) = F(1) = \left(\sum_{k=0}^p \frac{1}{k!} \, d^k f(u) \, \xi^k \right) + \frac{1}{(p+1)!} \, d^{p+1} f(u+\tau \xi) \, \xi^{p+1}.$$

Bemerkung (Taylor
formel für p=2). Sei $f:U\to \mathbb{R}$ zweimal stetig differenzierbar. Wir nennen

$$(\operatorname{Hess} f)(u) := (D_j D_k f(u))_{j,k}$$

$$= \begin{pmatrix} D_1 D_1 f(u) & \cdots & D_1 D_n f(u) \\ D_2 D_1 f(u) & \cdots & D_2 D_n f(u) \\ \vdots & \ddots & \vdots \\ D_n D_1 f(u) & \cdots & D_n D_n f(u) \end{pmatrix} \in \mathbb{R}^{n \times n}$$

die Hesse-Matrix von f in u. Mit der Taylorformel für p=2 folgt

$$f(u+\xi) = f(u) + \sum_{j=1}^{n} Df(u) \xi + \frac{1}{2} \cdot \xi^{T} \cdot (\text{Hess}f)(u) \cdot \xi + R_{2}^{f,u}(u+\xi).$$

Def. Sei $U \subseteq \mathbb{R}^n$ und $f: U \to \mathbb{R}$ partiell differenzierbar. Ein Punkt $u \in U$ heißt **kritischer Punkt** von f, wenn

$$D_j f(u) = 0 \in \mathbb{R}^{1 \times n} \quad \forall j \in \{1, ..., n\}.$$

Satz. Sei $U \subseteq \mathbb{R}^n$ und $f: U \to \mathbb{R}$ partiell differenzierbar. Hat f in $u \in U$ ein lokales Extremum, dann ist u ein kritischer Punkt von f.

Def. Eine reelle symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ heißt

- **degeneriert**, wenn det(A) = 0 gilt.
- positiv definit, wenn für alle $\xi \in \mathbb{R}^n \setminus \{0\}$ gilt: $\xi^T A \xi > 0$. Äquivalent ist A positiv definit, wenn alle Eigenwerte von A positiv sind.

- negativ definit, wenn -A positiv definit ist (bzw. alle Eigenwerte von A negativ sind).
- indefinit, wenn A weder degeneriert, noch positiv, noch negativ definit ist (d. h. A besitzt sowohl negative als auch positive Eigenwerte).

Satz (Hinreichende Bedingung für lokale Extrema). Sei $U \otimes \mathbb{R}^n$, die Funktion $f: U \to \mathbb{R}$ zweimal stetig differenzierbar und $u \in U$ ein kritischer Punkt von f. Dann gilt

- 1. Ist $(\operatorname{Hess} f)(u)$ positiv definit, so hat f in u ein isoliertes lokales Minimum.
- 2. Ist (Hess f)(u) negativ definit, so hat f in u ein isoliertes lokales Minimum.
- 3. Ist (Hessf)(u) indefinit, so hat f in u kein lokales Extremum (also einen Sattelpunkt).

Achtung. Ist (Hess f)(u) degeneriert, so ist keine Aussage möglich.

Strategie (Bestimmung globaler Extrema auf Kompakta). Sei $K \subset \mathbb{R}^n$ ein Kompaktum mit $K^\circ \neq \emptyset$ und $f: K \to \mathbb{R}$ eine stetige und auf K° partiell differenzierbare Funktion. Als stetige Funktion auf einem Kompaktum nimmt f auf K ein Maximum und Minimum an. So kann man Maximum und Minimum bestimmen:

- 1. Bestimme alle kritischen Stellen von $f|_{K^{\circ}}$.
- 2. Bestimme alle Extrema von f auf dem Rand ∂K .
- 3. Vergleiche die Funktionswerte von f an den kritischen Stellen in $f|_{K^{\circ}}$ und $f|_{\partial K}$.

Strategie (Bestimmung globaler Extrema). Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ partiell differenzierbar.

- 1. Bestimme alle Funktionswerte von f in allen kritischen Stellen. Sei M der größte und m der kleinste Funktionswert an einer kritischen Stelle.
- 2. Wenn es ein R>0 gibt, sodass $f\mid_{\mathbb{R}^n\backslash B_R(0)}$ nur Werte kleiner als M bzw. Werte größer als m annimmt, dann ist M das globale Maximum bzw. m das globale Minimum.

Satz von der Umkehrfunktion

Def. Sei $U \otimes \mathbb{R}^n$ und $V \otimes \mathbb{R}^m$. Eine Abbildung $f: U \to V$ heißt (\mathcal{C}^{1-}) **Diffeomorphismus**, wenn f invertierbar ist und sowohl f als auch f^{-1} stetig partiell differenzierbar sind.

Bemerkung. Sei $f:U\to V$ ein Diffeomorphismus, wobei $U \otimes \mathbb{R}^n$ und $V \otimes \mathbb{R}^m$. Aus der Kettenregel folgt für $u\in U$:

$$(J_u f)^{-1} = J_{f(u)}(f^{-1}).$$

Satz (Banachscher Fixpunktsatz). Sei $K \subset \mathbb{R}^n$ kompakt und $\psi: K \to K$ eine Kontraktion, d.h. es gibt eine Konstante κ mit $0 < \kappa < 1$, sodass für alle $x, y \in K$ gilt

$$\|\psi(x) - \psi(y)\| \le \kappa \|x - y\|.$$

Dann hat ψ genau einen Fixpunkt in K.

Satz (Satz von der lokalen Umkehrfunktion). Sei $U \otimes \mathbb{R}^n$ und $u \in U$ sowie $f: U \to \mathbb{R}^n$ stetig partiell differenzierbar. Wenn Df(u) invertierbar ist, so gibt es offene Umgebungen $X,Y \otimes \mathbb{R}^n$ mit $u \in X \subset U$, sodass f(X) = Y gilt und $f|_{X}: X \to Y$ ein Diffeomorphismus ist.

Bemerkung. Es ist wichtig, dass f stetig partiell differenzierbar ist. Für Funktionen, die lediglich total differenzierbar sind, gilt der Satz von der lokalen Umkehrabbildungen im Allgemeinen nicht.

Korollar (Offenheitssatz). Sei $U \subseteq \mathbb{R}^n$ und $f: U \to \mathbb{R}^n$ stetig partiell differenzierbar. Wenn für alle $u \in U$ die Differentiale Df(u) invertierbar sind, dann ist f(U) eine offene Teilmenge von \mathbb{R}^n .

Korollar. Sei $U \subseteq \mathbb{R}^n$ und $f: U \to \mathbb{R}^n$ eine injektive stetig partiell differenzierbare Abbildung, sodass für alle $u \in U$ die Differentiale Df(u) invertierbar sind. Dann ist f ein Diffeomorphismus auf sein Bild, d. h. $f|_{f(U)}$ ist ein Diffeomorphismus.

Satz über implizite Funktionen

Notation. Seien $U \otimes \mathbb{R}^n$ und $V \otimes \mathbb{R}^p$ offene Teilmengen, dann ist $U \times V$ eine offene Teilmenge von $\mathbb{R}^n \times \mathbb{R}^p = \mathbb{R}^{n+p}$. Sei $f: U \times V \to \mathbb{R}^q$ stetig differenzierbar. Für ein festes $u \in U$ sei

$$f_u: V \to \mathbb{R}^q, \quad v \mapsto f(u, v).$$

Wir definieren

$$D_V f(u,v) := D(f_u)(v) : \mathbb{R}^p \to \mathbb{R}^q$$

bzw. als Matrix

$$J_V f(u, v) := J_v(f_u) \in \mathbb{R}^{q \times p}$$
.

Analog definieren wir $f^v: U \to \mathbb{R}^q$ und $D_U f(u, v)$ bzw. $J_U f(u, v)$.

Bemerkung. Offenbar gilt für $u \in U$ und $v \in V$:

$$J_{(u,v)}f = (J_U f(u,v), J_V f(u,v)) \in \mathbb{R}^{q \times (n+p)}$$
.

Satz. Seien $U \otimes \mathbb{R}^n$ und $V \otimes \mathbb{R}^p$ und $f: U \times V \to \mathbb{R}^p$ stetig partiell differenzierbar, welche in einem Punkt $(u_0, v_0) \in U \times V$ eine Nullstelle habe, d. h. $f(u_0, v_0) = 0$. Wenn in diesem Punkt $J_V f(u_0, v_0) \in \mathbb{R}^{p \times p}$ invertierbar ist, dann gibt es

- eine offene Menge $X \otimes U \times V$ mit $(u_0, v_0) \in X$,
- eine offene Menge $Y \otimes \mathbb{R}^n \times \mathbb{R}^p$ mit $(u_0, 0) \in Y$,
- einen Diffeomorphismus $G: Y \to X$ mit $G(u_0, 0) = (u_0, v_0)$, sodass $f \circ G = \pi_2$.

Satz (Satz über implizite Funktionen). Seien $U \subseteq \mathbb{R}^n$ und $V \subseteq \mathbb{R}^p$ und $f: U \times V \to \mathbb{R}^p$ stetig partiell differenzierbar, welche in $(u_0, v_0) \in U \times V$ eine Nullstelle hat, d. h. $f(u_0, v_0) = 0 \in \mathbb{R}^p$. Wenn in diesem Punkt $J_V f(u_0, v_0) \in \mathbb{R}^{p \times p}$ invertierbar ist, dann gibt es

- eine offene Menge $X \otimes U \times V$ mit $(u_0, v_0) \in X$,
- eine offene Menge $\widetilde{U} \otimes U$ mit $u_0 \in \widetilde{U}$,
- \bullet eine stetig partiell differenzierbare Abbildung $g: \tilde{U} \to \mathbb{R}^p,$ sodass

$$f^{-1}(0) \cap X = \text{Graph}(g) = \{(u, g(u)) : u \in \widetilde{U}.\}$$

In anderen Worten: Für alle $(u, v) \in X$ gilt

$$f(u,v) = 0 \iff v = g(u).$$

Die Funktion q erfüllt dabei

$$g(u_0) = v_0$$
 und $J_{u_0}g = -(J_V f(u_0, v_0))^{-1} \cdot J_U f(u_0, v_0)$.

Untermannigfaltigkeiten des \mathbb{R}^n

Def. Eine Teilmenge $M \subset \mathbb{R}^n$ heißt m-dimensionale **Untermannigfaltigkeit** von \mathbb{R}^n , wenn gilt: Für alle $u \in M$ gibt es eine offene Teilmenge $U \subseteq \mathbb{R}^n$ mit $u \in U$ und eine offene Teilmenge $V \subseteq \mathbb{R}^n$ mit $0 \in V$, sowie einen Diffeomorphismus $\Phi: U \to V$ mit $\Phi(u) = 0$, sodass gilt:

$$\Phi(M \cap U) = V \cap \{(x_1, ..., x_m, 0, ..., 0) \in \mathbb{R}^n\} \cong V \cap \mathbb{R}^m.$$

Die Abbildung Φ heißt Karte von M um den Punkt u.

Def. Sei $c: (-\epsilon, \epsilon) \to M \subset \mathbb{R}^n$ eine differenzierbare Kurve mit $c(0) = u \in M$, deren Bild ganz in M liegt, dann heißt der Vektor $c'(0) \in \mathbb{R}^n$ Tangentialvektor an M in $u \in M$. Für $u \in M$ setzen wir

 $T_u M := \{ v \in \mathbb{R}^n : v \text{ Tangential vektor an } M \text{ in } u \}.$

Die Menge T_uM heißt **Tangentialraum** von M im Punkt u.

Satz. Ist $M \subset \mathbb{R}^n$ eine m-dimensionale Untermannigfaltigkeit von \mathbb{R}^n und $u \in M$, dann ist T_uM ein m-dimensionaler UVR von \mathbb{R}^n .

Def. Sei $M \subset \mathbb{R}^n$ eine m-dimensionale Untermannigfaltigkeit und $u \in M$. Das orthogonale Komplement (bzgl. des Standardskalarprodukts $\langle ..., ... \rangle$)

$$N_u M = (T_u M)^{\perp}$$

von T_uM in \mathbb{R}^n heißt **Normalraum** von M im Punkt u.

Def. Sei $U \otimes \mathbb{R}^n$ und $f: U \to \mathbb{R}^p$ mit $p \leq n$ stetig partiell differenzierbar. Ein Punkt $u \in U$ wird **regulärer Punkt** von f genannt, wenn die lineare Abbildung $Df(u): \mathbb{R}^n \to \mathbb{R}^p$ Rang p hat (also surjektiv ist). Sei $Y \in \mathbb{R}^p$, dann heißt sein Urbild

$$f^{-1}(\{y\}) = \{u \in U : f(u) = y\}$$

reguläres Urbild oder reguläre Niveaumenge, wenn alle Punkte in $f^{-1}(\{y\})$ reguläre Punkte von f sind.

Def. Sei $U \otimes \mathbb{R}^n$ und $f: U \to \mathbb{R}^p$ mit $p \leq n$ stetig partiell differenzierbar. Ist $y \in \operatorname{Bild}(f)$ und $M := f^{-1}(\{y\})$ ein reguläres Urbild, dann ist M eine m-dimensionale Untermannigfaltigkeit des \mathbb{R}^n , wobei m = n - p.

 $\mathbf{Def.}\;$ Sei $U \subseteq \mathbb{R}^n\;$ und $g:U \to \mathbb{R}$ partiell differenzierbar. Dann heißt die Abbildung

$$\nabla g: U \to \mathbb{R}^m, \quad u \mapsto \begin{pmatrix} D_1 g(u) \\ \vdots \\ D_n g(u) \end{pmatrix}$$

Gradient von q. Ist q in u differenzierbar, so gilt

$$\nabla q(u) = (J_u q)^{\perp}.$$

Satz. Sei $U \otimes \mathbb{R}^n$ und $f = (f_1, ..., f_p) : U \to \mathbb{R}^p, p \le n$ stetig partiell differenzierbar. Ist $y = (y_1, ..., y_p) \in \text{Bild}(f)$ und $M := f^{-1}(\{y\})$ ein reguläres Urbild sowie $u \in M$, dann ist $\{\nabla f_1(u), ..., \nabla f_p(u)\}$ eine Basis von $N_u M$.

Satz (Lokale Extrema unter Nebenbedinungen). Sei $U \otimes \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ differenzierbar. Ferner sei $M \subset U \otimes \mathbb{R}^n$ eine Untermannigfaltigkeit des \mathbb{R}^n und $u_0 \in M$ ein Punkt, an welchem $f|_M$ ein lokales Extremum annimmt. Dann gilt $\nabla f(u_0) \in N_{u_0}M$. Ist M sogar ein reguläres Urbild einer stetig partiell differenzierbaren Abbildung $g = (g_1, ..., g_p): U \to \mathbb{R}^p$, dann gibt es eindeutig bestimmte Zahlen $\lambda_1, ..., \lambda_p \in \mathbb{R}$, sodass

$$\nabla f(u_0) = \sum_{j=1}^p \lambda_j \nabla g_j(u_0).$$

Die Zahlen $\lambda_1, ..., \lambda_p \in \mathbb{R}$ heißen Lagrange-Multiplikatoren.