$y = 2x + 3 + \frac{8}{x^2}, x > 0$	
	(6)

2.	A curve has equation	
	$y = 2x^3 - 4x + 5$	
	Find the equation of the tangent to the curve at the point $P(2, 13)$.	
	Write your answer in the form $y = mx + c$, where m and c are integers to be found.	
	Solutions relying on calculator technology are not acceptable.	(-)
		(5)

3	A curve has equation	
	$y = 3x^2 + \frac{24}{x} + 2 \qquad x > 0$	
	(a) Find, in simplest form, $\frac{dy}{dx}$	(3)
	(b) Hence find the exact range of values of x for which the curve is increasing.	
		(2)

4.	The curve C has equation $y = 6 - 3x - \frac{4}{x^3}$, $x \ne 0$	
	(a) Use calculus to show that the curve has a turning point P when $x = \sqrt{2}$	(4)
	(b) Find the x -coordinate of the other turning point Q on the curve.	(1)
	(c) Find $\frac{d^2y}{dx^2}$.	(1)
	(d) Hence or otherwise, state with justification, the nature of each of these turning	ng points
	P and Q .	(3)

5. The curve with equation	
$y = x^2 - 32\sqrt{(x)} + 20, x > 0$	
has a stationary point P .	
Use calculus	
(a) to find the coordinates of <i>P</i> ,	
	(6)
(b) to determine the nature of the stationary point P .	(3)
	(3)

6		
	A curve has equation $y = g(x)$.	
	Given that	
	• $g(x)$ is a cubic expression in which the coefficient of x^3 is equal to the coefficient	ent of x
	• the curve with equation $y = g(x)$ passes through the origin	
	• the curve with equation $y = g(x)$ has a stationary point at $(2, 9)$	
	(a) find $g(x)$,	
	(a) find $g(x)$,	(7)
	(b) prove that the stationary point at (2, 9) is a maximum.	
	(-) p	(2)

The curve C has equation $y = f(x)$ where $f(x) = xx^3 + 15x^2 + 20x + b$	
$f(x) = ax^3 + 15x^2 - 39x + b$	
and a and b are constants.	
Given	
 the point (2, 10) lies on C the gradient of the curve at (2, 10) is -3 	
(a) (i) show that the value of a is -2	
(ii) find the value of b.	
(ii) This the value of θ .	(4)
(b) Hence show that C has no stationary points.	
	(3)
(c) Write $f(x)$ in the form $(x - 4)Q(x)$ where $Q(x)$ is a quadratic expression to be found.	(2)
(d) Hence deduce the coordinates of the points of intersection of the curve with equation	l
y = f(0.2x)	
and the coordinate axes.	
	(2)

8. The curve C has equation	
$y = 3x^4 - 8x^3 - 3$	
(a) Find (i) $\frac{dy}{dx}$	
12	
(ii) $\frac{d^2y}{dx^2}$	(2)
	(3)
(b) Verify that C has a stationary point when $x = 2$	(2)
(a) Determine the nations of this station convenient sixing a mass of features and according	(=)
(c) Determine the nature of this stationary point, giving a reason for your answer.	(2)
	· /

The curve C has equation	
$y = 5x^4 - 24x^3 + 42x^2 - 32x + 11 \qquad x \in \mathbb{R}$	
(a) Find	
(i) $\frac{dy}{dx}$	
d^2v	
(ii) $\frac{d^2y}{dx^2}$	(3)
(b) (i) Verify that C has a stationary point at $x = 1$	
(ii) Show that this stationary point is a point of inflection, giving reasons for	
your answer.	(4)
	(1)

10.

Figure 1

Figure 1 shows a sketch of a curve C with equation y = f(x) where f(x) is a cubic expression in x.

The curve

- passes through the origin
- has a maximum turning point at (2, 8)
- has a minimum turning point at (6, 0)
- (a) Write down the set of values of x for which

$$f'(x) < 0 \tag{1}$$

The line with equation y = k, where k is a constant, intersects C at only one point.

(b) Find the set of values of k, giving your answer in set notation.

(2)

(c) Find the equation of C. You may leave your answer in factorised form.

(3)

. Th	ne curve C has equation
	$y = (2x - 3)^5$
The	e point P lies on C and has coordinates $(w, -32)$.
Fin	d
(a)	the value of w , (2)
(b)	the equation of the tangent to C at the point P in the form $y = mx + c$, where m and
	c are constants. (5)