PD-95409A

International Rectifier

IRF1312PbF IRF1312SPbF IRF1312LPbF

HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters
- Motor Control
- Uninterrutible Power Supplies
- Lead-Free

V _{DSS}	R _{DS(on)} max	I _D
80V	10m $Ω$	95A®

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	95©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	67©	Α
I _{DM}	Pulsed Drain Current ①	380	
P _D @T _A = 25°C	Power Dissipation ®	3.8	W
P _D @T _C = 25°C	Power Dissipation	210	
	Linear Derating Factor	1.4	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ③	5.1	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface ⑦	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient⑦		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)®		40	

Notes ① through ® are on page 11

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	80			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	_	0.078		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		6.6	10	mΩ	V _{GS} = 10V, I _D = 57A ④
V _{GS(th)}	Gate Threshold Voltage	3.5		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS} Drain-to-Source Leakage Current				1.0	μA	$V_{DS} = 76V, V_{GS} = 0V$
I _{DSS}	Diam-to-Source Leakage Current			250	μΛ	V _{DS} = 64V, V _{GS} = 0V, T _J = 150°C
1	Gate-to-Source Forward Leakage			100	nA -	V _{GS} = 20V
IGSS	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$

Dynamic @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	92			S	$V_{DS} = 25V, I_D = 57A$
Qg	Total Gate Charge		93	140		I _D = 57A
Q _{gs}	Gate-to-Source Charge		36		nC	$V_{DS} = 40V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		34		Ī	V _{GS} = 10V, ⊕
t _{d(on)}	Turn-On Delay Time		25			$V_{DD} = 40V$
t _r	Rise Time		130		ns	$I_D = 57A$
t _{d(off)}	Turn-Off Delay Time		47		110	$R_G = 4.5\Omega$
t _f	Fall Time		51			V _{GS} = 10V ④
C _{iss}	Input Capacitance		5450			$V_{GS} = 0V$
Coss	Output Capacitance		550			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		340		pF	f = 1.0MHz
Coss	Output Capacitance		1910			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		380			$V_{GS} = 0V$, $V_{DS} = 64V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		620			V _{GS} = 0V, V _{DS} = 0V to 64V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@6		250	mJ
I _{AR}	Avalanche Current①		57	Α
E _{AR}	Repetitive Avalanche Energy①		21	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions					
Is	Continuous Source Current			25.0		MOSFET symbol					
	(Body Diode)					95©	956	- 956	956	Δ Α	showing the
I _{SM}	Pulsed Source Current			380		integral reverse					
	(Body Diode) ①⑥			300		p-n junction diode.					
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 57A$, $V_{GS} = 0V$ ④					
t _{rr}	Reverse Recovery Time		64	96	ns	$T_J = 25$ °C, $I_F = 57$ A					
Q _{rr}	Reverse RecoveryCharge		150	230	nC	di/dt = 100A/µs ④					
t _{on}	Forward Turn-On Time	Int	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)								

International Rectifier

IRF1312/S/LPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

3

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

4

International Rectifier

IRF1312/S/LPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

7

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

International IOR Rectifier

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14,5 M- 1994,
 DIMENSIONING ARE SHOWN IN INCHES [MILLIMETERS].
 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1,
 DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH
 SHALL NOT EXCEED ...005" (0 127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DIMENSION b1 & c1 APPLY TO BASE METAL ONLY.
 CONTROLLING DIMENSION; INCHES.
 THERMAL PAD CONTIOUR OPTONAL WITHIN DIMENSIONS E,H1,D2 & E1
 DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING
 AND SINGULATION IRREGULARITES ARE ALLOWED.

SYMBOL	MILLIN	ETERS	INC	HES	
	Min.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.82	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2,04	2,92	.080	,115	
b	0,38	1,01	.015	.040	
ь1	0.38	0.96	.015	.038	5
b2	1,15	1,77	.045	070ء	
b3	1,15	1.73	.045	.068	
С	0.36	0.61	.014	.024	
c1	0,36	0,56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	12.19	12.88	.480	.507	7
E	9.66	10,66	.380	.420	4.7
E1	8,38	8,89	,330	,350	7
e	2.54	BSC	.100	BSC BSC	
e1	5,08		,200		ł
H1	5,85	6,55	.230	.270	7,8
L	12.70	14,73	.500	.580	
L1	-	6,35	-	.250	3
øP	3,54	4,08	139	,161	
Q	2.54	3.42	.100	.135	
ø	90*-	-93"	90*	-93*	1

LEAD ASSIGNMENTS HEXFET

IGBTs, CoPACK

1,- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line

position indicates "Lead-Free"

International TOR Rectifier

IRF1312/S/LPbF

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005*] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

5.	CONTROLLING	DIMENSION:	INCH

S Y M		Ŋ			
B	MILLIM	ETERS	INC	HES	O T E S
Ľ	MIN,	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	,000	.010	
b	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	4
ь2	1,14	1.78	.045	.070	
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	4
c2	1.14	1.65	.045	.065	
D	8.51	9.65	.335	.380	3
D1	6.86		.270		
Ε	9.65	10.67	.380	.420	3
E1	6.22		.245		
e	2.54	BSC	.100	BSC	
н	14,61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1		1,65		.065	
L2	1.27	1,78	.050	.070	
L3	0.25	0.25 BSC		BSC	
L4	4.78	5.28	.188	.208	
m	17,78		.700		
m1	8,89		,350		
n	11,43		.450		
٥	2.08		.082		
р	3.81		.150		
R	0,51	0.71	.020	.028	
l e	90.	93*	90.	93.	1

LEAD ASSIGNMENTS

HEXFET 1.— GATE 2, 4.— DRAIN 3.— SOURCE

IGBTs, CoPACK

1,- GATE 2, 4,- COLLECTOR 3,- EMITTER

DIODES

1.- ANODE *
2. 4.- CATHODE
3.- ANODE

* PART DEPENDENT.

D²Pak Part Marking Information

International

TOR Rectifier

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J = 25^\circ C$, $L = 0.15mH$ \\ $R_G = 25\Omega$, $I_{AS} = 57A$. (See Figure 12) \\ \hline \end{tabular}$
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- ① Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- This is only applied to TO-220AB package
- ® This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

TO-220AB package is not recommended for Surface Mount Application

Data and specifications subject to change without notice.

This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.12/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/