Osnovna segmentacija – Python zadatak 1/3

KOD KUĆE: Instalirati <u>SimpleITK</u> biblioteku (U *Anaconda Prompt*:

conda install -c https://conda.anaconda.org/simpleitk SimpleITK).

U RC-u: Nije moguće instalirati *SimpleITK* biblioteku.

Umesto sitk.ReadImage('testing_axial_full_pat10.nii') koristiti

np.loadtxt('matrix slajs 200.txt').

Zadatak 1 Dat je fajl sa MRI podacima srca. Izvršiti segmentaciju srca (na slajsu 200) tako da se izdvoji region označen na slici. Primeniti median filtriranje, a potom odgovarajuće morfološke operacije (npr. *ndi.binary_erosion, ndi.binary_dilation*). Ispisati koliko je objekata nadjeno.


```
import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage as ndi
import SimpleITK as sitk
```

Čitanje

sitk.ReadImage()
sitk.GetArrayFromImage() – konverzija
ili np.loadtxt

Histogram i obrada ndi.histogram() ndi.median filter

Maskiranje mask= logički uslov im_mask=np.where (mask,im,0)

Odvajanje objekata ndi.label()

Osnovna segmentacija – Python zadatak 2/3

Zadatak 2

- 1. Prikazati izdvojene objekte iz prethodnog zadatka "preklopljene" sa originalnom slikom. Nivo transparencije (alpha) podesiti na 0.15.
- 2. Nacrtati na posebnoj slici pravougaonu ROI oko izdvojenog plavog regiona i odgovarajući histogram. Ako je tkivo homogeno, koji je očekivani oblik histograma?
- 3. Za izdvojeni region odrediti "metriku": srednju vrednost i standardnu devijaciju

"Preklapanje" overlay = np.where(labels > 0, labels, np.nan) "Pronalaženje objekta" ndi.find objects()

Metrika

ndi.mean()
ndi.standard deviation()

Osnovna segmentacija – Python zadatak 3/3

Zadatak 3

- 1. Izdvojiti samo posmatrani plavi region iz prethodnih zadataka i njega prikazati preklopljenog sa originalnom slikom. Nivo transparencije (alpha) podesiti na 0.15. Pronaći centar izdvojenog regiona (ispisati njegove koordinate) i označiti ga crvenim xom veličine 10 tačaka na slici.
- 2. Odrediti "sliku rastojanja" (*distance transform*) za izdvojeni region. Transformacija rastojanje je nova matrica koja predstavlja rastojanje svake tačke od najbliže granice objekta.
- 3. Odrediti maksimalno rastojanje i poziciju tačke koja ima najveće rastojanje.

"Pronalaženje centra objekta" ndi.center_of_mass()

Crtanje markera x plt.scatter()

"Transformacija rastojanja" ndi.distance_transform_edt

Metrika ndi.maximum() ndi.maximum position()