Y36SAP-2

Logické obvody kombinační
Formy popisu
Příklad návrhu
Sčítačka

2008-Kubátová

Y36SAP-Logické obvody

1

Logický obvod

 Vstupy a výstupy nabývají pouze hodnot 0 nebo 1

Kombinační obvod – popsán kombinační funkcí

Hodnoty všech výstupních proměnných jsou v každém časovém okamžiku určeny pouze hodnotami vstupních proměnných v témže časovém okamžiku

2008-Kubátová

Y36SAP-Logické obvody

Logický obvod

- Dvojkové signály 0 a 1
- Číslicový návrh
- Číslicové obvody logické obvody
- Realizace základních bloků číslicového počítače – obecněji číslicového systému a jejich komunikace
- Kombinační obvody x sekvenční obvody
- Práce s moderními návrhovými systémy (Laboratoř)

2008-Kubátová

Y36SAP-Logické obvody

3

Problémy k řešení při návrhu

- Specifikace co chceme realizovat
- Hlavně aby to fungovalo
- Optimalizace z různých hledisek
 - Velikost
 - Rychlost
 - Příkon
 - Spolehlivost
 - Cena včetně návrhových prostředků
 - Rychlost návrhu
- Testovatelnost DFT = design for testability

2008-Kubátová

Y36SAP-Logické obvody

Kombinační funkce

Kombinační funkce:

$$out_k = f(i_1, i_2, i_3, \dots i_p), k=1,2,\dots,m$$

2008-Kubátová

Y36SAP-Logické obvody

5

Jednotlivé fáze návrhového procesu pro číslicové systémy

Specifikace

Příklad 1, sl. 7 - 9

- Určení vstupů a výstupů
- Pravdivostní tabulky
- Booleovské rovnice

Příklad 1, sl. 10 - 12

- Návrh realizace na úrovni hradel Příklad 1, sl. 12-15
- Simulace na úrovni hradel
- Realizace číslicového obvodu
- Ověření návrhu

2008-Kubátová

Y36SAP-Logické obvody

Obecná kombinační logická buňka, zpoždění

Combinational

Logic Cell

Kombinační buňka

je plně určena:

- Funkčním chováním
 - Pravdivostní tabulka,
 - Algebraický výraz (logická rovnice),
- Zatížením vstupů
- Propagačním zpožděním z každého vstupu na výstup a pro každou změnu signálu
- Ty nejrychlejší a nejmenší (z nejméně transistorů) jsou
 Invertor (v CMOS 2 transistory), NAND a NOR (4), AND a OR (6)
 XOR

2008-Kubátová

Y36SAP-Logické obvody

15

Cout

Návrhový proces

- Specifikace
- Určení vstupů a výstupů
- Pravdivostní tabulky
- Boolovské rovnice
- Návrh realizace na úrovni hradel
- Simulace na úrovni hradel
- Realizace číslicového obvodu
- Ověření návrhu

2008-Kubátová

Y36SAP-Logické obvody

19

Základní pojmy logické syntézy

- Logické funkce a jejich reprezentace, formy popisu a jejich vzájemný převod
 - tabulka
 - n-rozměrné krychle
 - algebraický zápis
 - mapy
- Logická minimalizace
 - Karnaughova mapa
 - existuji další metody
- Realizace na úrovni hradel

2008-Kubátová

Y36SAP-Logické obvody

Booleovské funkce

 $f(x): B^n \to B$

 $B = \{0, 1\}, x = (x_1, x_2, ..., x_n)$

- x₁, x₂, ... jsou proměnné variables
- $x_1, \overline{x}_1, x_2, \overline{x}_2, \dots$ jsou literály literals
- Každému vrcholu Bⁿ je přiřazena 0 nebo 1
 - onset f je $\{x|f(x)=1\}=f^{-1}=f^{-1}(1)$
 - offset f je $\{x|f(x)=0\} = f^0 = f^{-1}(0)$
- jestliže $f^1 = B^n$, f je tautologie, tzn. f = 1
- jestliže $f^0 = B^n$ ($f^1 = \emptyset$), f není splnitelná
- jestliže f(x) = g(x) pro všechna x ∈ Bⁿ, pak f a g jsou ekvivalentní

Obvyklé zjednodušení: f namísto f 1

2008-Kubátová

Y36SAP-Logické obvody

23

Příklad 1 - krychle

S _i	а	b	р	q	S
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

2008-Kubátová

SOP – Úplná normální disjunktivní forma ÚNDF

$$q = \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp} + \overline{abp}$$

SOP – Minimální normální disjunktivní forma MNDF

q = bp + ap + ab

Y36SAP-Logické obvody

Literaly

Literál je proměnná nebo její negace

Literál reprezentuje logickou funkci.

Literál x1 reprezentuje logickou funkci f, kde

 $f = \{x | x1 = 1\}$

f = x1

Literál x1 reprezentuje logickou funkci g, kde

$$g = \{x | x1 = 0\}$$

2008-Kubátová

Y36SAP-Logické obvody

25

Boolovské formule - výrazy

Boolovské formule (Boolean formulas) mohou být reprezentovány formulemi definovanými jako zřetězení

- závorek (,)
- literálů x, y, z, \overline{x} , \overline{y} , \overline{z}
- Boolovských operátorů + (OR), (AND)
- komplementace, např. x + y

Příklady

$$f = x_1 \cdot \overline{x_2} + \overline{x_1} \cdot x_2 = (x_1 + x_2) \cdot (\overline{x_1} + \overline{x_2})$$

$$h = a + b \cdot c = \overline{\overline{a \cdot (b + c)}}$$

Obvykle nahrazujeme . jen zřetězením, a . b → ab

2008-Kubátová

Y36SAP-Logické obvody

Logické funkce

Existuje 2ⁿ vrcholů v prostoru Bⁿ

Existuje 2² různých logických funkcí
Každá podmnožina vrcholů tvoří jinou logickou funkci:
f \subset **B**ⁿ

2008-Kubátová

Y36SAP-Logické obvody

27

Logické funkce

• Ale existuje nekonečně logických formulí

$$f = x + y$$

$$= xy + x\overline{y} + xy$$

$$= x\overline{x} + x\overline{y} + y$$

$$= (x + \overline{y})(x + y) + x\overline{y}$$

 Syntéza – nalezení "nejlepší" formule (nebo "reprezentace") z hlediska cílové platformy

2008-Kubátová

Y36SAP-Logické obvody

Boolovské operace -AND, OR, KOMPLEMENT

 $f:B^n\to B$ $g:B^n\to B$

- AND fg = h kde
 h = {x| f(x)=1 and g(x)=1}
- OR f + g = h kde h = {x| f(x)=1 or g(x)=1}
- KOMPLEMENT $\overline{\mathbf{f}} = \mathbf{h}$ kde h = {x| f(x) = 0}

2008-Kubátová

Y36SAP-Logické obvody

29

Úpravy algebraických výrazů

Shannonův expanzní teorém:

$$f(a,b,...,c) = a.f(1,b,...,c) + \overline{a}.f(0,b,...,c)$$

Důkaz: platí pro všechna a $\forall a \in \{0,1\}$ **Důsledek**:

$$f(a,b,...,c) = a.g(b,...,c) + \overline{a}.h(b,...,c)$$

Každá logická funkce se dá zapsat pomocí logického součtu, součinu a negace

2008-Kubátová

Y36SAP-Logické obvody

Krychle - cube

 Logický součin (AND) množiny literálů ("conjunction - konjunkce" literálů) je krychle

$$C = x\overline{y}$$
 $C = (x=1)(y=0)$

ale může to být i samotný literál

2008-Kubátová

Y36SAP-Logické obvody

33

Reprezentace Boolovských funkcí

 Pravdivostní tabulka funkce f : Bⁿ → B je vyjádření jejich hodnot všech 2ⁿ vrcholů z Bⁿ.

 Pro f = abcd + abcd abcd + abcd + a 	abcd f 0 0000 0 1 0001 1 2 0010 0 3 0011 1	
Pravdivos	stní tabulka (truth table):	4 0100 0 5 0101 1 6 0110 0
Nepoužitelná pr (ale je <mark>kanonic</mark> l	7 0111 0 8 1000 0 9 1001 1 10 1010 0	
Kanonická znar stejné, je jejich reprezentace iz	11 1011 1 12 1100 0 13 1101 1 14 1110 1 15 1111 1	
2008-Kubátová	Y36SAP-Logické obvody	34

Pravdivostní tabulka

Pravdivostní tabulka:

Nejpřirozenější forma: výčet všech kombinací hodnot vstupních proměnných a jim odpovídajících hodnot výstupních proměnných

Př.: Identifikujte LF f₁ až f₆ dle pravdivostních tabulek:

X ₁	X ₂	f ₁	f ₂	f ₃	f ₄	f ₅	f ₆
0	0	0	1	0	1	1	0
0	1	0	1	1	0	0	1
1	0	0	1	1	0	0	1
1	1	1	0	1	0	1	0
		AND	NAND	OR	NOR	EQU	NEQU

2008-Kubátová

Y36SAP-Logické obvody

Programovatelné obvody

- Specifikace
- Určení vstupů a výstupů
- Pravdivostní tabulky
- Booleovské rovnice
- Návrh realizace na úrovni hradel
- Simulace na úrovni hradel
- Realizace číslicového obvodu
- Ověření návrhu SW simulátotory

2008-Kubátová

Y36SAP-Logické obvody

39

automatizováno

Kombinační x sekvenční obvody

- Kombinační vystup je dán kombinací vstupů, "nezáleží" na čase
- Sekvenční výstup závisí na posloupnosti (sekvenci) hodnot na vstupech, realizuje se tzv. zpětnou vazbou
- Vše lze matematicky popsat
 - Logická funkce
 - Konečný automat FSM

2008-Kubátová

Y36SAP-Logické obvody