Отчет по лабораторной работе №5

Дисциплина: Имитационное моделирование

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	24
Список литературы		25

Список иллюстраций

3.1	Установка переменных окружения в xcos	7
3.2	Модель SIR в xcos	8
3.3	Установка начальных значений в блоках интегрирования	8
3.4	Установка начальных значений в блоках интегрирования	9
3.5	Установка конечного времени интегрирования в xcos	9
3.6	Эпидемический порог модели SIR при $B = 1$, $v = 0.3$	10
3.7	Модель SIR в xcos с применением блока Modelica	10
3.8	Параметры блока Modelica для модели	11
3.9	Параметры блока Modelica для модели	12
3.10	Результат моделирования	12
	Код для реализации модели SIR в OpenModelica	13
3.12	Установка конечного времени интегрирования	13
3.13	Результат моделирование	14
3.14	Модель SIR с учётом процесса рождения / гибели особей в хсоs	14
3.15	Установка переменных окружения в хсоз	15
3.16	Эпидемический порог модели SIR при $B = 1$, $v = 0.3$ и $M = 0.1$	15
3.17	Модель SIR в xcos с применением блока Modelica	16
3.18	Установка переменных окружения в хсоз	16
	Параметры блока Modelica для модели	17
	Параметры блока Modelica для модели	18
	Результат моделирования	18
	Код для реализации модели SIR в OpenModelica	19
3.23	Установка конечного времени интегрирования	19
3.24	Результат моделирования	20
	Изменение параметра м	20
	Эпидемический порог модели SIR при $B = 1$, $v = 0.3$ и $M = 0.5$	21
	Изменение параметра В	21
3.28	Эпидемический порог модели SIR при $B = 7$, $v = 0.3$ и $M = 0.1$	22
	Изменение параметра v	22
3.30	Эпидемический порог модели SIR при B = 1. v = 1 и м=0.1	23

Список таблиц

1 Цель работы

Построить модель SIR в xcos и в OpenModelica.

2 Задание

- 1. Реализовать модель в хсоз.
- 2. Реализовать модель с помощью блока Modelica в xcos.
- 3. Реализовать модель SIR в OpenModelica.
- 4. В дополнение к предположениям, которые были сделаны для модели SIR (5.1), предположим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми.

Требуется:

- реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

3 Выполнение лабораторной работы

1. В меню Моделирование, Задать переменные окружения задала значения переменных B=1 и v=0.3.

Рис. 3.1: Установка переменных окружения в хсоз

2. Создала модель в xcos с помощью блоков CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION и PROD_f.

Рис. 3.2: Модель SIR в хсоя

3. В параметрах верхнего и среднего блока интегрирования задала начальные значения s(0) = 0,999 и i(0) = 0,001.

Рис. 3.3: Установка начальных значений в блоках интегрирования

Рис. 3.4: Установка начальных значений в блоках интегрирования

4. В меню Моделирование, Установка задала конечное время интегрирования, равным времени моделирования (в данном случае 30).

Рис. 3.5: Установка конечного времени интегрирования в хсоѕ

Рис. 3.6: Эпидемический порог модели SIR при B = 1, v = 0.3

5. Для реализации модели с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX использовала блоки CONST_m, MBLOKC. Задала значения переменных B и v.

Рис. 3.7: Модель SIR в хсоз с применением блока Modelica

6. Установила параметры блока Modelica.

Рис. 3.8: Параметры блока Modelica для модели

Рис. 3.9: Параметры блока Modelica для модели

Рис. 3.10: Результат моделирования

7. Написала код для реализации модели SIR в OpenModelica.

```
| Dope..ica | 1 | model lab5_1 | model lab5_1 | parameter Real s_0 = 0.999; parameter Real i_0 = 0.001; parameter Real r_0 = 0; | 27 | Modelica | Modelica
```

Рис. 3.11: Код для реализации модели SIR в OpenModelica

8. Задала конечное время интегрирования, равным времени моделирования (в данном случае 30).

Рис. 3.12: Установка конечного времени интегрирования

Рис. 3.13: Результат моделирование

9. Создала модель в xcos c помощью блоков CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL m (3), GAINBLK f (5), SUMMATION (4) и PROD f.

Рис. 3.14: Модель SIR с учётом процесса рождения / гибели особей в хсоя

10. В меню Моделирование, Задать переменные окружения задала значения переменных B=1, v=0.3 и м=0.1.

Рис. 3.15: Установка переменных окружения в хсоѕ

Рис. 3.16: Эпидемический порог модели SIR при B = 1, v = 0.3 и M = 0.1

11. Создала модель с помощью блоков CLOCK_c, CSCOPE, TEXT_f, MUX, CONST_m, MBLOKC.

Рис. 3.17: Модель SIR в хсоз с применением блока Modelica

12. Задала значения переменных В, v и м.

Рис. 3.18: Установка переменных окружения в хсоѕ

13. Установила параметры блока Modelica.

Рис. 3.19: Параметры блока Modelica для модели

Рис. 3.20: Параметры блока Modelica для модели

Рис. 3.21: Результат моделирования

14. Написала код для реализации модели SIR в OpenModelica.

```
model lab5 2
 2
 3
      parameter Real s_0 = 0.999;
      parameter Real i_0 = 0.001;
 4
      parameter Real r_0 = 0;
 5
 6
 7
      parameter Real beta = 1;
8
      parameter Real nu = 0.3;
      parameter Real mu = 0.1;
9
10
11
      Real s(start=s_0);
      Real i(start=i 0);
12
      Real r(start=r_0);
13
14
    equation
15
16
17
      der(s) = -beta*s*i + mu*(r+i);
18
      der(i) = beta*s*i - nu*i - mu*i;
19
   der(r) = nu*i - mu*r;
20
21 end lab5 2;
```

Рис. 3.22: Код для реализации модели SIR в OpenModelica

15. Задала конечное время интегрирования.

Рис. 3.23: Установка конечного времени интегрирования

Рис. 3.24: Результат моделирования

16. Изменила значения параметра м (=0.5).

```
parameter Real beta = 1;
parameter Real nu = 0.3;
parameter Real mu = 0.5;
```

Рис. 3.25: Изменение параметра м

Рис. 3.26: Эпидемический порог модели SIR при B = 1, v = 0.3 и M = 0.5

17. Изменила значения параметра В (=7).

```
parameter Real beta = 7;
parameter Real nu = 0.3;
parameter Real mu = 0.1;
```

Рис. 3.27: Изменение параметра В

Рис. 3.28: Эпидемический порог модели SIR при B = 7, v = 0.3 и M = 0.1

18. Изменила значения параметра v (=1).

```
parameter Real beta = 1;
parameter Real nu = 1;
parameter Real mu = 0.1;
```

Рис. 3.29: Изменение параметра v

Рис. 3.30: Эпидемический порог модели SIR при B=1, v=1 и M=0.1

4 Выводы

Я построила модель SIR в xcos и в OpenModelica.

Список литературы