COMSATS Sahimal

Computer Science Department

<u>Subject:</u>

Data Structures and Algorithms

Submitted by;

M. Adnan Tariq FALL-BCS-082

<u>Submitted to:</u>

Man Tahreem Saced

Asymptotic Notations

Big-Oh Notation

notation often denoted es O(f(n))is a mathematical notation used in computer science to describe the upper bound or worst-case time complexity of an algorithm

"f(n)" represents a function, that characterizes the upper bound

on algorithm.
""" represent the size of input-

trample 01

Prove that running time T(n)=n+20n+1is $O(n^3)$

By Big-Oh definition T(n) is $O(n^3)$ if $T(n) \leq C \cdot n$

$$f(n) \leq c \cdot g(n)$$

$$n^{3} + 20n + 1 \leq c \cdot n^{3}$$

$$\left(\frac{n^{3} + 20n + 1}{n^{3}}\right) \leq B c$$

$$1 + \frac{20}{n^{2}} + \frac{1}{n^{2}} \leq C$$

hence.
$$f(n) \in Q(q(n)), C \ge 21, n_0 = 1$$

Show that
$$f(x) = x^3 + 3x - 2$$
 is $O(x^3)$

$$f(n) = x^3 + 3x - 2$$
, $g(n) = x^3$
Now we have to show that
$$f(n) \in O(g(n)).$$

$$f(n) \leq c \cdot g(n)$$

 $x^3 + 3x - 2 \leq c \cdot x^3$

$$\frac{\chi^{3} + 3\chi - 2}{\chi^{3}} \le C$$

$$1 + \frac{3}{\chi^{2}} - \frac{2}{\chi} \le C$$

hance f(n)60(g(n)), c=2, x=1

Big-Omega Notation

Big-Omega Notation, denoted as 52 is a mathematical notation used in computer science to describe the lower bound of growth rate of function or an algorithm.

- It provides information about best-case scenario for the performance of an algorithm.
- For a function f(n) to be 2(g(n)), the following condition must hold;

$$f(n) \ge c \cdot g(n)$$
 $\therefore n \ge n_0$

7 c.g(n)

- · "f(n)" is the function's actual
- · "q(n)" is lower bound function
- · "c" is positive constant.

f show that the function
$$f(x) = 3x^2 + 2x + 1$$
 is $\Omega(x^2)$.

$$f(n) = 3x^2 + 2x + 1$$
, $g(n) = x^2$

Now we have to show that $f(n) \in \mathcal{I}(g(n))$?

$$\frac{3x^2+2x+1}{x^2} \geq c.$$

$$3 + \frac{2}{x^2} + \frac{4}{x^2} \ge C$$

Hence
$$f(n) \in \Omega(g(n))$$
 if $c=1$, $x=2$.

Show that
$$f(x) = x \in \mathcal{D}(x^2)$$

$$f(n) = x$$
, $g(n) = x^2$

$$f(n) \geq c \cdot g(n)$$

$$x \geq c \cdot x^2$$

We could not find constants c,n that satisfy the condition

Honce $f(n) \not\in \Omega(g(n)).$

for f(x)=x being sing.

Theta Notation

- Big theta (0) notation is a mathematical notation commonly used in computer science to describe the tight or asymptotically optimal bound on the growth rate of a function/algorithm.
- It provides information about both the upper and lower bounds of growth rate of function, indicating that function's behaviour is bounded within a specific range.
- For a function f(n) to be 0(q(n)), the following must hold;

1- There exist positive constant ca and ca such that;

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$
.

 $n \geq n_0$

2- The function for exhibits the same asymptotic growth rate as g(n).

- · Big Theta Notation is particularly useful for describing the average-case time companity of algorithms.
- It indicates that the algorithms performance is neither better nor worse than growth rate 9(n).

Show that the function $f(x) = 4x^2 - 2x^2 + 7$ is $\theta(x^3)$

 $f(x) = 4x^3 - 2x^2 + 7$, $g(x) = x^3$

 $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ $c_1 \cdot \chi^3 \leq 4\chi^3 - 2\chi^2 + 1 \leq c_2 \cdot \chi^3$

if we take $C_1=1$, $C_2=5$, $C_3=1$ then this equation satisfies:

Hen $f(n) \in O(g(n)), C_{1}=1, C_{2}=5, x=2$ Example or

Show that $f(x) = x^2 \in \theta(x^3)$

 $f(x) = \chi^2$, $g(n) = \chi^3$ $g(n) \leq f(n) \leq c_2 \cdot g(n)$

We could not find constants that can satisfy the equation.

Little-Oh Notation

little-Oh notation denoted as "o", is a mathematical notation used in computer science to describe the relationship between the growth rates of two functions.

• It is used to denote that one function grows significantly faster than another as the input size becomes larger.

For a function f(n) to be o(g(n)), the following must hold;

$$\lim_{(n\to\infty)}\frac{f(n)}{g(n)}=0$$

This means that the ratio of f(n) to g(n) approaches zero as

n becomes very large.

• ≥ 0- Notation is used to denote a upper bound that is not asymptotically light

Example:

Show that $f(x) = x^2 \in o(x^3)$

To prove that $f(x) = x^2 \in O(x^3)$, we need to show that the ratio $\frac{f(x)}{x^3}$ approaches to zero as x goes to infinity.

$$\lim_{(\chi\to\infty)}\frac{f(\chi)}{\chi^3}=\frac{\chi^2}{\chi^3} \quad 2 \quad \frac{1}{\chi} \quad 2 \quad 0$$

As n-approaches infinity, the limit becomes zero. This means that function $f(x) = x^2$ grows slower than x^3 as no becomes large.

little-Omega

denoted as "w", is a mathematical notation used in computer science to describe relationship between the growth rates of two functions

It is essentially the opposite of little-oh notation, indicating that one function grows strictly faster than another as the input size becomes larger.

For a function to be w(g(n)) the following must hold;

 $\lim_{(n\to\infty)} \frac{f(n)}{g(n)} = \infty$

This means that ratio of f(n) to g(n) approaches infinity as n

becomes very large.

Example:

Show that f(x) = x i w(x)

Consider the limit

 $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\frac{x}{x^2}=\infty$

As a exproaches infinity, the limit becomes infinite. This means that function $f(x) = x^3$ grows significantly faster than x^2 as a becomes very large