OTP and AES: A Historical Transition Between two Systems of Cryptography

Valdemar Thanner Supervised by Mr. Bernhard Keller Linguistic supervision by Ms. Margrit Oetiker

Kantonsschule Zug

06.03.2017

Overview

OTP

AES: The Advanced Encryption standard

High Level Structure Rounds

A Historical Transition

Conflicts Throughout History Cryptography in Our Society

Questions

OTP

AES: The Advanced Encryption standard High Level Structure Rounds

A Historical Transition Conflicts Throughout History Cryptography in Our Society

Questions

• Great historical impact

- Great historical impact
- Basis for or important part of many of today's modern algorithms

- Great historical impact
- Basis for or important part of many of today's modern algorithms
- The key must be disposed of securely after being used once

- Great historical impact
- Basis for or important part of many of today's modern algorithms
- The key must be disposed of securely after being used once
- Symmetrical cipher: Keeping of a shared secret

• Stream Cipher

- Stream Cipher
- $\bullet \ \, \mathsf{Key} \ \mathsf{length} \ge \mathsf{Message} \\ \mathsf{length} \\$

- Stream Cipher
- Key length

 Message length
- Based on modular addition

$$b+d=1+3=4=e$$

 $j+t=9+19=28$ A letter
can't be assigned to 28!
 $(9+19) \mod 26=2=c$

- Stream Cipher
- ullet Key length \geq Message length
- Based on modular addition
- Perfect (forward) secrecy

$$b+d=1+3=4=e$$

 $j+t=9+19=28$ A letter
can't be assigned to 28!
 $(9+19) \mod 26=2=c$

OTP: A Precursor to Modern Computer-aided Cryptography

• Gilbert Vernam: Secret signaling system of 1919

OTP: A Precursor to Modern Computer-aided Cryptography

- Gilbert Vernam: Secret signaling system of 1919
- Looping perforated tape: known-plaintext vulnerability

OTP: A Precursor to Modern Computer-aided Cryptography

- Gilbert Vernam: Secret signaling system of 1919
- Looping perforated tape: known-plaintext vulnerability
- Bits: Binary digits

OTP

AES: The Advanced Encryption standard

High Level Structure Rounds

A Historical Transition

Conflicts Throughout History Cryptography in Our Society

Questions

OTP

AES: The Advanced Encryption standard High Level Structure Rounds

A Historical Transition

Conflicts Throughout History

Cryptography in Our Society

Questions

AES: Terminology

 Bit: Boolean value first conclusively described by Claude Shannon $0 \lor 1$

AES: Terminology

- Bit: Boolean value first conclusively described by Claude Shannon
- Byte: 8 Bits; can represent any number from 0-255

$$0 \lor 1$$

$$(2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0})_{b}$$

$$(00000011)_{b} = 1 \cdot 2^{1} + 1 \cdot 2^{0} = 3$$

$$(16 + 1)_{h} 1 - 9; A; B; C; D; E; F$$

$$(B4)_{h} = 16 \cdot 11 + 4 \cdot 1 = 180$$

AES: Design Goals

 Confusion: Each bit of the ciphertext should depend on multiple bits of the key

AES: Design Goals

- Confusion: Each bit of the ciphertext should depend on multiple bits of the key
- Diffusion: The "avalanche effect"

AES: Design Goals

- Confusion: Each bit of the ciphertext should depend on multiple bits of the key
- Diffusion: The "avalanche effect"
- Two different implementations: Computationally or memory efficient

• Block Cipher

$$\begin{pmatrix}
a_0 & a_4 & a_8 & a_{12} \\
a_1 & a_5 & a_9 & a_{13} \\
a_2 & a_6 & a_{10} & a_{14} \\
a_3 & a_7 & a_{11} & a_{15}
\end{pmatrix}$$

- Block Cipher
- The current N.I.S.T standard for SECRET and TOP-SECRET designated files

$$\begin{pmatrix}
a_0 & a_4 & a_8 & a_{12} \\
a_1 & a_5 & a_9 & a_{13} \\
a_2 & a_6 & a_{10} & a_{14} \\
a_3 & a_7 & a_{11} & a_{15}
\end{pmatrix}$$

- Block Cipher
- The current N.I.S.T standard for SECRET and TOP-SECRET designated files
- Original name: Rijndael; was selected as the successor to DES.

$$\left(\begin{array}{ccccc}
a_0 & a_4 & a_8 & a_{12} \\
a_1 & a_5 & a_9 & a_{13} \\
a_2 & a_6 & a_{10} & a_{14} \\
a_3 & a_7 & a_{11} & a_{15}
\end{array}\right)$$

AES: High-Level Structure

OTP

AES: The Advanced Encryption standard

High Level Structure Rounds

A Historical Transition

Conflicts Throughout History Cryptography in Our Society

Questions

 bitwise logical operation; can be performed directly by the CPU

- bitwise logical operation; can be performed directly by the CPU
- addition mod 2

- bitwise logical operation; can be performed directly by the CPU
- addition mod 2
- can randomize biased input

AES: SubBytes

• Bytewise operation

- Bytewise operation
- Sole source of Confusion; the only non-linear operation in AES (affine transformation)

- Bytewise operation
- Sole source of Confusion; the only non-linear operation in AES (affine transformation)
- Key-independence is accepted in return for non-linearity;
 this eliminates one of DES' major weaknesses

- Bytewise operation
- Sole source of Confusion; the only non-linear operation in AES (affine transformation)
- Key-independence is accepted in return for non-linearity;
 this eliminates one of DES' major weaknesses
- Utilization of the multiplicative inverse: if $a \cdot b = 1$ then $b = a^{-1}$

- Bytewise operation
- Sole source of Confusion; the only non-linear operation in AES (affine transformation)
- Key-independence is accepted in return for non-linearity;
 this eliminates one of DES' major weaknesses
- Utilization of the multiplicative inverse: if $a \cdot b = 1$ then $b = a^{-1}$
- Maximizes non-linearity, but negatively impacts diffusion: $0^{-1}=0$ and $1^{-1}=1$

$$\begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \xrightarrow{\text{ShiftRows}} \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,1} & a_{1,2} & a_{1,3} & a_{1,0} \\ a_{2,2} & a_{2,3} & a_{2,0} & a_{2,1} \\ a_{3,3} & a_{3,0} & a_{3,1} & a_{3,2} \end{pmatrix}$$

$$\begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \xrightarrow{\text{ShiftRows}} \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,1} & a_{1,2} & a_{1,3} & a_{1,0} \\ a_{2,2} & a_{2,3} & a_{2,0} & a_{2,1} \\ a_{3,3} & a_{3,0} & a_{3,1} & a_{3,2} \end{pmatrix}$$

• One of the two primary sources of diffusion

$$\begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \xrightarrow{\text{ShiftRows}} \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,1} & a_{1,2} & a_{1,3} & a_{1,0} \\ a_{2,2} & a_{2,3} & a_{2,0} & a_{2,1} \\ a_{3,3} & a_{3,0} & a_{3,1} & a_{3,2} \end{pmatrix}$$

- One of the two primary sources of diffusion
- One small change to the plaintext should result in a large change to the ciphertext

$$\begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \xrightarrow{\text{ShiftRows}} \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,1} & a_{1,2} & a_{1,3} & a_{1,0} \\ a_{2,2} & a_{2,3} & a_{2,0} & a_{2,1} \\ a_{3,3} & a_{3,0} & a_{3,1} & a_{3,2} \end{pmatrix}$$

- One of the two primary sources of diffusion
- One small change to the plaintext should result in a large change to the ciphertext
- Bytes are placed into the state in column order, but shifted across rows

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix}$$

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix}$$

$$s_0 = 02a_0 + 03a_1 + 01a_2 + 01a_3$$

$$s_1 = 01a_0 + 02a_1 + 03a_2 + 01a_3$$

$$s_2 = 01a_0 + 01a_1 + 02a_2 + 03a_3$$

$$s_3 = 03a_0 + 01a_1 + 01a_2 + 02a_3$$

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix}$$

$$\begin{aligned} s_0 &= 02a_0 + 03a_1 + 01a_2 + 01a_3 \\ s_1 &= 01a_0 + 02a_1 + 03a_2 + 01a_3 \\ s_2 &= 01a_0 + 01a_1 + 02a_2 + 03a_3 \\ s_3 &= 03a_0 + 01a_1 + 01a_2 + 02a_3 \end{aligned}$$

 Each new byte is dependent on an entire column of four old bytes

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix}$$

$$\begin{split} s_0 &= 02a_0 + 03a_1 + 01a_2 + 01a_3 \\ s_1 &= 01a_0 + 02a_1 + 03a_2 + 01a_3 \\ s_2 &= 01a_0 + 01a_1 + 02a_2 + 03a_3 \\ s_3 &= 03a_0 + 01a_1 + 01a_2 + 02a_3 \end{split}$$

- Each new byte is dependent on an entire column of four old bytes
- Second source of diffusion

AES: AddRoundKey

- Identical to the initialing XOR
- XORs the round key with the state

OTP

AES: The Advanced Encryption standard

High Level Structure Rounds

A Historical Transition

Conflicts Throughout History Cryptography in Our Society

Questions

OTP

AES: The Advanced Encryption standard High Level Structure Rounds

A Historical Transition Conflicts Throughout History Cryptography in Our Society

Questions

• WWII: British Special Operations Executive

- WWII: British Special Operations Executive
- Value of information: Rising exponentially alongside globalization

- WWII: British Special Operations Executive
- Value of information: Rising exponentially alongside globalization
- Covert operations and proxy wars

- WWII: British Special Operations Executive
- Value of information: Rising exponentially alongside globalization
- Covert operations and proxy wars

• Cryptologists vs. Cryptanalysts

- Cryptologists vs. Cryptanalysts
- Speed and Efficiency: RAM (Rapid Analytic Machines)

- Cryptologists vs. Cryptanalysts
- Speed and Efficiency: RAM (Rapid Analytic Machines)
- Each different problem required a specialized RAM

- Cryptologists vs. Cryptanalysts
- Speed and Efficiency: RAM (Rapid Analytic Machines)
- Each different problem required a specialized RAM
- Alan Turing's Thesis: Build a computer not restricted to one specific problem

- Cryptologists vs. Cryptanalysts
- Speed and Efficiency: RAM (Rapid Analytic Machines)
- Each different problem required a specialized RAM
- Alan Turing's Thesis: Build a computer not restricted to one specific problem
- Colossus: The world's first programmable computer

• Mode of operation: ECB

• Mode of operation: ECB

- Mode of operation: ECB
- Goal for security purposes:
 Pseudo-random result

- Mode of operation: ECB
- Goal for security purposes: Pseudo-random result
- Other modes of operation: CBC (Cipher Block Chaining)

- Mode of operation: ECB
- Goal for security purposes:
 Pseudo-random result
- Other modes of operation: CBC (Cipher Block Chaining)
- A variety of systems are necessary; key exchange

Cipher Block Chaining (CBC) mode encryption

OTP

AES: The Advanced Encryption standard High Level Structure Rounds

A Historical Transition

Conflicts Throughout History Cryptography in Our Society

Questions

New Possibilities and new Risks

New Possibilities and new Risks

 Technology and social media are becoming ever more linked with our daily lives

New Possibilities and new Risks

- Technology and social media are becoming ever more linked with our daily lives
- Multiple protocols and algorithms are integral to the security of your data

New Possibilities and new Risks

- Technology and social media are becoming ever more linked with our daily lives
- Multiple protocols and algorithms are integral to the security of your data
- Insecure or compromised data can be easily accessed

 3 billion data elements were collected over 30 days in the US alone

- 3 billion data elements were collected over 30 days in the US alone
- Data collection took place worldwide, including phone call metadata

- 3 billion data elements were collected over 30 days in the US alone
- Data collection took place worldwide, including phone call metadata
- Data collection and storage is still active

Historically academic subject

- Historically academic subject
- Thrust into the public eye through recent revelations

- Historically academic subject
- Thrust into the public eye through recent revelations
- Highly relevant to the daily lives of regular people for the first time

OTP

AES: The Advanced Encryption standard

High Level Structure Rounds

A Historical Transition

Conflicts Throughout History Cryptography in Our Society

Questions

Questions

?