Сложность алгоритмов

Юрий Литвинов yurii.litvinov@gmail.com

17.09.2019

Сложность

- Быстрее не значит лучше!
 - Время работы программиста может быть дороже времени работы программы
 - ▶ Но может быть и наоборот, если программа часто используется
- Сложность
 - Вычислительная (время работы)
 - Емкостная (объём потребляемой памяти)
 - Они взаимосвязаны
- Вычислительную сложность непонятно, как измерять
 - > Зависит от машины, на которой считаем
 - Зависит от объёма входных данных
 - Зависит от самих входных данных

Асимптотическая сложность

О-символика

$$f(n) \in O(g(n))$$

 $\exists C > 0, n_0 : \forall n > n_0 \ f(n) \le C(g(n))$

- ▶ То есть "f принадлежит классу функций O(g), если начиная с некоторого n_0 она ограничена сверху функцией g с точностью до некоторого наперёд заданного множителя"
- ▶ Или ещё более то есть "f растёт не быстрее g"

Пример

Правила вычисления трудоёмкости

- ▶ Оператор S_1 выполняется за время $T_1(n)$, имеющее порядок O(f(n)), оператор S_2 за время $T_2(n)$, имеющее порядок O(g(n)), тогда S_1 ; S_2 выполняется за время $O(\max(f(n), g(n)))$
 - ightharpoonup Следствие: $O(n^2 + n) = O(n^2)$
- ▶ Если S_1 внутри себя порядка O(f(n)) раз вызывает S_2 , то итоговая трудоёмкость равна O(f(n)*g(n))
 - Это правило позволяет анализировать циклы

Пример: пузырёк

- ► Бывают сортировки за O(n * log(n))
- ▶ Бывает сортировка подсчётом, за O(n)
- ▶ Это важно, $log_2(1000000) \sim 20$
 - ▶ Обратите внимание, $O(log_2(n)) = O(ln(n))$

Анализ рекурсивных алгоритмов

```
int recursiveFactorial(int a) {
    if (a <= 1)
        return 1;
    else
        return a * recursiveFactorial(a - 1);
}

T(n) = c + T(n-1) при n > 1, и d, при n <= 1
T(n) = c + T(n-1) = 2c + T(n-2) = ... = i * c + T(n-i) = ... = (n-1) * c + T(1) = (n-1) * c + d
```

Числа Фибоначчи

- $ightharpoonup F_n = F_{n-2} + F_{n-1}, F_0 = 1, F_1 = 1$
- F = 1, 1, 2, 3, 5, 8, 13, 21, ...
- ▶ Рекурсивное решение ?
- Итеративное решение ?
- ▶ Решение за *O*(*log*(*n*)):

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$

Формула Бине:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

Пример времён вычисления в зависимости от трудоёмкости алгоритма

Сложность	n = 10	$n = 10^3$	$n = 10^6$
алгоритма			
log(n)	1 c.	2 c.	5 c.
n	1 c.	1 мин. 40 с.	27 ч. 46 мин. 40
			C.
n^2	1 c.	2 ч. 46 мин. 40 с.	\sim 317 лет
2 ⁿ	1 c.	$\sim 40 imes 10^{21}$ лет	Очень много