CSCI699: Theory of Machine Learning

Fall 2021

Lecture 14: Boosting and Convex Learning Problems

Instructor: Vatsal Sharan Scribe: Navid Hashemi

Time slots for the presentation review have been posted on the project homepage:

1 Boosting

Definition 1. Weak Learning: An algorithm A is a weak learner with edge/advantage γ for class \mathcal{C} if: for any distribution \mathcal{D} and any target $c \in \mathcal{C}$ given access to example (C, D) with probability $(1 - \delta)$, A produces a hypothesis with $\operatorname{\mathbf{error}}(h; c, D) \leq \frac{1}{2} - \gamma$.

If A runs in time $\mathbf{poly}(d, \frac{1}{\delta})$ and $\gamma \geq \frac{1}{\mathbf{poly}(d)}$, then \mathcal{C} is efficiently weakly PAC-learnable.

Theorem 2. If C is weakly PAC-learnable (efficiently) the C is PAC-learnable (efficiently).

Proof. The proof relies on the AdaBoost algorithm due to Freund and Schapire. We first restate our setup.

There is a training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathcal{X}, y_i \in \{-1, 1\}$.

By realizability,

$$\exists c \in \mathcal{C} \ s.t. \forall i \ y_i = c(x_i).$$

We assume there exists weak learning algorithm (WL), for \mathcal{C} .

AdaBoost (Freund and Schapire):

- 1. $\forall i \in [n] \ D_1(i) = \frac{1}{n}$
- 2. for $t = 1, 2, \dots, T$
- 3. use WL with dist D_t to get h_t
- 4. let $\epsilon_t = \mathbb{P}_{x \sim D_t}[h_t(x) = y]$. $(\epsilon_t \le 1 \gamma \text{ w.p } 1 \delta)$
- 5. choose $\alpha_t = \frac{1}{2} \log \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6. $D_{t+1}(i) = \frac{D_t(i)}{z_{t+1}} = \begin{cases} e^{-\alpha_t} & ifh_t(x_i) = y_i \\ e^{\alpha_t} & ifh_t(x_i) \neq y_i \end{cases} = \frac{D_t(i)}{z_{t+1}} e^{-\alpha_t h_t(x_i) y_i}, \text{ where } z_{t+1} \text{ is normalizing constant.}$
- 7. Output sign(H(x)) where $H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$

Note:

- 1. We can assume $\epsilon_t \leq \frac{1}{2} \gamma$ (union bound).
- 2. We can emulate the example oracle $EX(c, D_t)$, because D_t has finite support, Just reweight.

Aside: Ada Boost fits in the "Multiplicative Weight Update" framework. General framework with many algorithmic applications.

Lemma 3. for $T = \frac{1}{2\gamma^2} \log(2n)$, training error is 0.

Proof.

Training error =
$$\mathbb{P}_{D_1}(\operatorname{sign}(H(x) \neq y)) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(\operatorname{sign}(H(x) \neq y_i)).$$

Note that

$$\mathbb{1}(\operatorname{sign}(H(x) \neq y)) \le e^{-yH(x)}.$$

Define $H_t(x) = \sum_{s=t}^{T} \alpha_s h_s(x)$. $H_t(x)$ has the following recursive form,

$$H_t(x) = \alpha_t h_t(x) + H_{t+1}(x)$$

$$H_1(x) = H(x)$$

Therefore we can write the training error as,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(\operatorname{sign}(H(x_i) \neq y_i)) \leq \sum_{i=1}^{n} D_1(i)e^{-y_i H_1(x_i)}$$

$$= \sum_{i=1}^{n} D_1(i)e^{-d_1 y_i h_1(x_i) - y_i H_2(x_i)}$$

$$= z_2 \sum_{i=1}^{n} D_2(i)e^{-y_i H_2(x_i)}$$

$$= z_2 \sum_{i=1}^{n} D_2(i)e^{-\alpha_2 y_i h_2(x_i) - y_i H_3(x_i)}$$

$$= z_2 z_3 \sum_{i=1}^{n} D_3(i)e^{-y_i H_3(x_i)}$$

$$\vdots$$

$$= \prod_{t=2}^{T+1} z_t$$

We now need to bound z_{t+1} .

$$z_{t+1} = \sum_{i=1}^{n} D_t(i)e^{-\alpha_t y_i h_t(x_i)}$$

$$= \sum_{i:y_i = h_t(x_i)} D_t(i)e^{-\alpha_t} + \sum_{i:y_i \neq h_t(x_i)} D_t(i)e^{\alpha_t}$$

$$= (1 - \epsilon_t)e^{-\alpha_t} + \epsilon_t e^{\alpha_t} \quad \text{Recall: } \alpha_t = \frac{1}{2}\log(\frac{1 - \epsilon_t}{\epsilon_t})$$

$$z_{t+1} = (1 - \epsilon_t)\sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} - 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

Define $\gamma_t = \frac{1}{2} - \epsilon_t$ Note that $\gamma_t \ge \gamma$:

$$\begin{split} z_{t+1} &= 2\sqrt{(1/2 - \gamma_t)(1/2 + \gamma_t)} \\ &= \sqrt{1 - 4\gamma_t^2} \\ &\leq (e^{-4\gamma_t^2})^{\frac{1}{2}} = e^{2\gamma_t^2} \leq e^{-2\gamma^2} \\ \text{Therefore } \prod_{t=1}^{T+1} z_t \leq e^{-2T\gamma^2} \leq \frac{1}{2n} \text{ if } T \geq \frac{1}{2\gamma^2} \log(2n) \end{split}$$

What about test error?

Suppose that WL(weak learning algo) always outputs a hypothesis from some class \mathcal{H} whose VC-dim is d.

$$LC(\mathcal{H}, T) = \left\{ sign(\sum_{i=1}^{T} \alpha_i h_i(x)) : h_i \in \mathcal{H} \ d_i \in \mathbb{R} \right\}$$

Exercise: VC-dim $(LC(\mathcal{H},T)) \leq c.T.d.\log(T)$ for some constant c. Hint: As in HW1, Compute Growth function and use Sauer's Lemma.

Due to VC-theorem,

If $n \ge \frac{c}{\epsilon} \left(\log(\frac{1}{\delta}) + Td \log(T) \log(1/\epsilon) \right)$ then the hypothesis produced by Ada Boost has **error** $\le \epsilon$, with probability $(1 - \delta)$.

Putting in the bound of T, if $n \ge \frac{c}{\epsilon} \left(\log(1/\delta) + \frac{1}{2\gamma^2} \log(2n) d \log \left(\frac{1}{2\gamma^2} \log(2n) \right) \log(1/\epsilon) \right)$, we will get **error** $\le \epsilon$ w.p. $1 - \delta$.

This is satisfied for $n \geq \frac{c}{\epsilon} \left(\frac{d}{\gamma^2} \mathbf{poly} \left(\log(d, \frac{1}{\gamma^2}, \frac{1}{\epsilon}) \right) + \log(1/\delta) \right)$ $(n \geq a \log(n)$ is satisfied for $n \geq O(a \log(a))$.

3

2 Convex Optimization

We start with some basic properties:

Definition 4. (Convex set) A set $C \subset \mathbb{R}^d$ is convex if $x, y \in C \to tx + (1-t)y \in C$, $\forall 0 \le t \le 1$.

Definition 5. (Convex functions) A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $\mathbf{Domain}(f) \subset \mathbb{R}^d$ is convex and

 $f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \ \ \forall \ t \in [0,1] \ \textit{and} \ (x,y) \in \mathbf{Domain}(f).$

Lemma 6. If f is differentiable, then f is convex if and only if $\mathbf{Domain}(\mathbf{f})$ is convex and:

$$f(y) - f(x) \ge \langle y - x, \nabla f(x) \rangle.$$
 (or equivalently, $f(y) - f(x) \le \langle y - x, \nabla f(y) \rangle$)

Proof. Exercise: Use definition of convexity

Corollary 7. If f is convex and differentiable the $\nabla f(x) = 0$ implies x is a global minima of f (Local minima implies global minimum).

Definition 8. (Strong Convexity) A function f is λ -strongly convex if its domain is convex and,

$$\forall x, y \ f(y) \ge f(x) + \langle y - x, \nabla f(x) \rangle + \frac{\lambda}{2} ||y - x||^2.$$

Lemma 9. (Some Properties of convex functions)

- 1. If f is twice differentiable, then f is convex iff domain(f) is convex and $\forall x \in domain(f), \nabla^2 f(x) \succeq 0$, (Recall that $A \succeq 0 \iff \forall x : x^\top A x \geq 0$).
- 2. If $f_i(x)$ is convex $\forall i \in [n]$ then $y(x) = \sum_{i=1}^n w_i f_i(x)$ is convex, where $w_i \geq 0$.
- 3. If $f_i(x)$ is convex $\forall i \in [n]$ then $g(x) = \max_{i \in [n]} f_i(x)$ is convex.

3 Convex learning Problems

An optimization problem

$$\min_{x \in A} f(x)$$

is called a convex optimization problem if (1) f(x) is convex (2) A is convex.

Remark. As we'll show next class, convex optimization problems can be solved efficiently.

Recall the ERM problem of finding the ERM w.r.t some Hypotheis \mathcal{H} in some training set $\mathcal{S} = (z_1, z_2, \dots, z_n)$ where $z_i = (x_i, y_i)$.

$$\mathbf{ERM}_{\mathcal{H}}(\mathcal{S}) = \operatorname{argmin}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h, z_i)$$

Let $\mathcal{H} \subset \mathbb{R}^d$ parametrized by $w \in \mathcal{H}$.

$$\mathbf{ERM}_{\mathcal{H}}(\mathcal{S}) = \operatorname{argmin}_{w \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(w, z_i).$$

Lemma 10. If ℓ is a convex loss (in terms of w), and \mathcal{H} is convex, then $\mathbf{ERM}_{\mathcal{H}}(\mathcal{S})$ is a convex optimization problem.

Proof. Average of convex functions is convex.

Example (Linear regression with squared loss):

Let
$$\mathcal{H} = \left\{ x \to \langle w, x \rangle, w \in \mathbb{R}^d \right\}$$

 $\ell(h, (x, y)) = (h(x) - y)^2$
 $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$
 $\mathcal{H} = \mathbb{R}^d \text{ convex}$

Exercise: $\ell(w,(x,y))$ is convex in terms of w.

 $\mathbf{ERM}_{\mathcal{H}}(\mathcal{S})$ is a convex problem.

What about the 0/1 loss?

$$\ell_{01}(h,(x,y)) = \mathbb{1}(h(x) \neq y) = \mathbb{1}(yh(x) \leq 0)$$

A common technique to handle a non-convex loss is to instead consider a convex surrogate.

hinge loss:
$$\ell(h,(x,y)) = \max(1-yh(x),0)$$

logistic loss $\ell(h,(x,y)) = \log(1+e^{-yh(x)})$

Next class we will discuss more about convex surrogates.