Prova 2 Prática - Estatística Não-Paramétrica

Augusto Cesar Ribeiro Nunes 6 de julho de 2015

Introdução

O presente trabalho tem como produto final uma minuta do relatório de administração semestral do Instituto de Resseguros do Brasil (IRB), a partir de um estudo de caso reduzido disponibilizado pelo Professor Doutor Raul Yukihiro Matsushita. Esta tarefa faz parte da 2a Prova Prática da disciplina Métodos Estatísticos 2 (Estatística Não-Paramétrica), ministrada no 10 semestre de 2015 aos alunos de Graduação em Estatística da Universidade de Brasília.

Em particular, apresentaremos uma estimativa para a contabilização de provisão para contingências judiciais passivas do IRB, a partir de uma amostra de dados de encerramento referentes a processos cíveis, criminais, fiscais e trabalhistas onde o IRB foi réu, até o dia 31/12/2003.

Esta análise de risco é inerente à natureza de uma empressa de resseguros, que, convenientemente, "adquire" parte da carteira de riscos de seguradoras menores, usualmente quando da ocorrência de apólices de grande valor. Considera-se que os casos estudados são aqueles em que há desacordo entre a parte segurada e a IRB após um dado sinistro, desacordo que usualmente deve-se a interpretação de cobertura contratual.

Análise

Estudo Exploratório

É de praxe iniciar um trabalho desta natureza com uma descrição exploratória do problema a ser estudado e as variáveis observadas. Temos as seguintes variáveis no conjunto de dados disponibilizado:

- **Posição** indica o estado litigioso do IRB no processo. No conjunto de dados disponibilizado, o IRB é réu para todas as observações.
- Tipo tipo do processo em questão: Cível, Trabalhista, Tributário ou Outros.
- Estado Unidade da Federação onde foi impetrado o litígio judicial.
- VrCausa Valor da Causa, em Reais.
- VrPago Valor Pago, quando aplicável. Em caso de decisão favorável ao IRB, o valor desta variável é nulo na observação.
- **Procedência** Resumo do resultado do processo, se resultou em acordo, outras hipóteses ou julgado procedente/improcedente em decisão monocrática.
- Tempo Tempo, em meses, decorrido da autuação do processo até a decisão monocrática.

Variável Tipo do Processo

##	Cível (Outros	Cível	Seguros	Criminal	Trabalhist	a Tributário
##		12		2460	3	33	1 1

Distribuição do Tipo do Processo

Nota-se uma maioria esmagadora de processos cíveis referentes a seguros.

Variável Estado

Distribuição dos Estados em que os processos foram impetrados

Como era de se esperar, temos ampla concentração de litígios em Estados onde há maior atividade econômica, como SP, RJ e MG.

Variável Valor da Causa

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
##	0	1520	15960	790600	106100	486700000	10

Densidade da distribuição da variável Valor da Causa

Histograma da distribuição da variável Valor da Causa

Note que tanto as estatísticas de ordem quanto os gráficos de Densidade e Histograma da variável sugerem que sua distribuição segue um modelo de cauda pesada, uma *Power Law* ou Lei de Potências. Basta atentar para o máximo (486700000), que é cerca de 4587 vezes maior que a estatística do 30 quartil (106100).

Podemos então aplicar uma transformação (monótona) logarítmica nesta variável, chamada de **logVrCausa** no conjunto de dados, cuja distribuição é a seguinte.

```
logVrCausa = log(na.exclude(VrCausa))
logVrCausa[mapply(is.infinite, logVrCausa)] <- NA
summary(logVrCausa)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -4.605 7.452 9.710 9.082 11.610 20.000 39
```

```
par(cex=0.6)
plot(density(na.exclude(logVrCausa)), main="Densidade da distribuição da variável Valor da Causa após to
```

Densidade da distribuição da variável Valor da Causa após transformação logarítmica

qqnorm(logVrCausa, main="Gráfico Q-Q para a variável Valor da Causa\n pós transformação logarítmica")
qqline(logVrCausa)

Gráfico Q-Q para a variável Valor da Causa pós transformação logarítmica


```
fitdistr(na.exclude(logVrCausa), "normal")
##
         mean
                       sd
##
     9.08203565
                  3.94234679
    (0.07506849) (0.05308144)
ks.test(logVrCausa, "pnorm")
## Warning in ks.test(logVrCausa, "pnorm"): ties should not be present for the
## Kolmogorov-Smirnov test
##
##
    One-sample Kolmogorov-Smirnov test
## data: logVrCausa
## D = 0.91056, p-value < 2.2e-16
## alternative hypothesis: two-sided
shapiro.test(logVrCausa)
##
```

Shapiro-Wilk normality test

W = 0.92249, p-value < 2.2e-16

data: logVrCausa

##

Note que após a transformação a variável deixa de assumir comportamento de distribuição com cauda pesada. O gráfico Q-Q sugere que ainda assim a distribuição da variável após a transformação é não-Normal. Na verdade nem seria necessário o gráfico QQ, pois a própria densidade da variável nos mostra uma distribuição bimodal.

Forçando a barra e ajustando a partir da máxima verossimilhança uma distribuição Normal a partir da variável transformada, a função fitdistr dá uma estimativa com $\mu=9.08203565\pm0.07506849$ e $\sigma^2=3.94234679\pm0.05308144$. Entretanto, os testes de Kolmogorov-Smirnov e Shapiro-Wilk **REJEITAM** a hipótese de Normalidade desta variável.

Variável Valor Pago

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
##	5	18440	78280	1414000	353400 1	27400000	2368

Densidade da distribuição da variável Valor Pago

Histograma da distribuição da variável Valor Pago

Similarmente ao observado no Valor da Causa, o Valor Pago no processo também segue uma distribuição de cauda longa, ou uma Lei de Potência. Aplicando a transformação logarítmica e atribuindo os valores à variável logVrPago, temos:

```
logVrPago = log(na.exclude(VrPago))
logVrPago[mapply(is.infinite, logVrPago)] <- NA
summary(logVrPago)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.533 9.822 11.270 11.340 12.780 18.660

par(cex=0.6)
plot(density(na.exclude(logVrPago)), main="Densidade da distribuição da variável Valor Pago após transf</pre>
```

Densidade da distribuição da variável Valor Pago após transformação logarítmica

qqnorm(logVrPago, main="Gráfico Q-Q para a variável Valor da Pago\n pós transformação logarítmica")
qqline(logVrPago)

Gráfico Q-Q para a variável Valor da Pago pós transformação logarítmica


```
fitdistr(na.exclude(logVrPago), "normal")
##
         mean
                        sd
##
     11.34039334
                    2.37292628
    (0.11325359) (0.08008238)
ks.test(logVrPago, "pnorm")
## Warning in ks.test(logVrPago, "pnorm"): ties should not be present for the
## Kolmogorov-Smirnov test
##
##
    One-sample Kolmogorov-Smirnov test
## data: logVrPago
## D = 0.99772, p-value < 2.2e-16
## alternative hypothesis: two-sided
shapiro.test(logVrPago)
##
    Shapiro-Wilk normality test
##
##
## data: logVrPago
```

W = 0.99215, p-value = 0.02066

Agora sim temos um melhor ajuste à distribuição Normal da variável transformada, justificado pelo gráfico de densidade e histograma, bem como pelo gráfico Q-Q. O ajuste de Máxima-Verossimilhança a partir de uma distribuição Normal hipótetica nos dá a seguinte estimativa para os parâmetros: $\mu=11.34039334\pm0.11325359$ e $\sigma^2=2.37292628\pm0.08008238$. Entretanto, os testes de Kolmogorov-Smirnov e Shapiro-Wilk **REJEITAM** a hipótese de Normalidade desta variável.

Variável Procedência

##	ACORDO	IMPROCEDENTE	OUTRAS HIPÓTESES	PROCED EM PARTE
##	569	422	1546	74
##	PROCEDENTE			
##	196			

Distribuição das Procedências dos resultados nos processos impetrados

Nota-se prevalência de processos que resultaram em "Outras Hipóteses" (que seriam quais?), seguida de acordos, processos considerados improcedentes, e finalmente, procedentes em sua totalidade ou parte.

Variável Tempo

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.00 13.00 33.00 44.67 62.00 257.00 1752
```

Densidade da distribuição da variável Tempo (em meses)

Histograma da distribuição da variável Tempo


```
## rate
## 0.0223848928
## (0.0006891738)
```

Aqui vemos um retrato da morosidade do Judiciário no Brasil, processos que demoraram até 250 meses (mais de 20 anos) para chegarem a uma decisão. O gráfico de densidade sugere uma distribuição assimétrica, mas não necessariamente com cauda longa, de valores não nulos, então podemos ajustar a distribuição do tempo a uma distribuição Exponencial. O ajuste de máxima verossimilhança nos dá a estimativa $\lambda = 0.0223848928 \pm 0.0006891738$ para o parâmetro de taxa da distribuição Exponencial empírica. Note que $Exp(\lambda) = \Gamma(1, \lambda)$. O teste de Kolmogorov-Smirnov para uma amostra no entanto rejeita a hipótese nula com alto nível de significância.

Distribuição da variável diferença entre o valor pago e o valor da causa

Criaremos a variável auxiliar delta = logVrPago - logVrCausa.

```
delta = logVrPago[VrPago != 0] - logVrCausa[VrPago != 0]
delta[mapply(is.infinite, delta)] <- NA</pre>
summary(delta)
##
              1st Qu.
                        Median
                                          3rd Qu.
                                                       Max.
                                                                 NA's
       Min.
                                    Mean
  -11.4900
             -2.0900
                        0.0805
                                  0.4534
                                           2.8190
                                                    16.8100
                                                                 2568
plot(density(na.exclude(delta)), main="Densidade da distribuição da variável delta")
```

Densidade da distribuição da variável delta


```
qqnorm(delta, main="Gráfico Q-Q para a variável delta")
qqline(delta)
```

Gráfico Q-Q para a variável delta

fitdistr(na.exclude(delta), "normal")

```
## mean sd
## 0.4534014 3.9994362
## (0.2587020) (0.1829300)
```

shapiro.test(delta)

```
##
## Shapiro-Wilk normality test
##
## data: delta
## W = 0.97272, p-value = 0.0001471
```

Note que o gráfico nos dá indícios de que a distribuição desta variável é normal, dada sua simetria. O ajuste usando máxima verossimilhança supondo a distribuição normal estima $\mu=0.8538448\pm0.2597719$ e $\sigma^2=4.0159756\pm0.1836864$. Entretato, os testes de Kolmogorov-Smirnov e Shapiro-Wilk rejeitam a hipótese de normalidade com considerável significância.

Estimativa da Probabilidade de um processo durar mais de 260 meses

Utilizaremos um argumento de máxima verossimilhança. Supondo que a duração do processo é uma realização de uma variável Bernoulli com sucesso quando o processo dura mais de 260 meses, e sabendo pelo Princípio da verossimilhança que a mesma resume toda a informação sobre o parâmetro dada pela amostra, criamos uma variável indicadora auxiliar **nProcLongos** que é igual a um quando o processo durou mais de 260 meses (não estrito), e nula caso contrário.

```
nProcLongos = sum(na.exclude(tempo[tempo>260]))
nProcLongos
```

[1] 0

Note que, por este argumento, um processo pode durar mais de 260 meses com probabilidade nula. Utilizando a distribuição empírica ajustada pela verossimilhança acima, podemos estimar essa probabilidade calculando P(X > 260), com $X \sim Exp(\lambda = 0.0223848928)$, que nos dá 6.6424732×10^{-5} , muito próximo de zero.

Estimativa para a probabilidade de o valor a ser pago em um processo superar 30 mil vezes o valor da causa

Como supomos que a distribuição da variável delta é normal, podemos simplesmete obter esta estimativa calculando $P(\frac{logVrPago}{logVrCausa} > 10.30895)$. Como supomos que logVrPago e logVrCausa seguem distribuições Normais, a distribuição de sua razão é Cauchy. Então $P(\frac{logVrPago}{logVrCausa} > 10.30895) = 0.0617349$.

Estimativa da probabilidade de o valor a ser pago em um processo superar a quantia de $\mathbb{R}\$$ 130.000.000,00

Por raciocínio similar ao feito para a estimativa do processo durar mais de 260 meses, podemos usar um argumento de verossimilhança e obter quantas vezes, na amostra, o valor a ser pago ultrapassa o estipulado.

```
nValoresAltos = sum(na.exclude(VrPago[VrPago>130000000]))
nValoresAltos
```

[1] O

O que poderia nos levar à conclusão de que o evento é impossível. No entanto, como trata-se de distribuição de cauda longa, o comportamento nos extremos é inesperado, e então deveríamos estudar o comportamento da distribuição testada nos valores extremos. como log130000000 = 18.683045, e supomos que $logVrPago \sim Normal(\mu = 11.34039334, \sigma^2 = 2.37292628)$, podemos calcular P(logVrPago > 18,68305) = 0.001401.

Estudo acerca das probabilidades de ocorrências dos eventos [Y>X] e [Y<X]

Vamos criar duas novas variáveis: CausamqPago, e PagomqCausa.

```
CausamqPago = sum(na.exclude(logVrCausa > logVrPago))

## Warning in logVrCausa > logVrPago: comprimento do objeto maior não é

## múltiplo do comprimento do objeto menor
```

CausamqPago ## [1] 873 PagomqCausa = sum(na.exclude(logVrCausa < logVrPago)) ## Warning in logVrCausa < logVrPago: comprimento do objeto maior não é ## múltiplo do comprimento do objeto menor PagomqCausa ## [1] 1885</pre>

Ou seja, em 31.1008194% dos casos o valor da Causa é maior que o valor Pago, e em 67.1535447% dos casos o Valor Pago é maior que o valor da Causa.

Teste de dependência entre o Tipo do Processo e as variáveis tempo, Valor Pago, Valor da Causa e delta

```
chisq.test(dados$TIPO[TIPO == "Cível Seguros" | TIPO == "Cível Outros" | TIPO == "Trabalhista"], dados$
## Warning in chisq.test(dados$TIPO[TIPO == "Civel Seguros" | TIPO == "Civel
## Outros" | : Chi-squared approximation may be incorrect
##
##
   Pearson's Chi-squared test
## data: dados$TIPO[TIPO == "Cível Seguros" | TIPO == "Cível Outros" |
       TIPO == "Trabalhista"] and dados$tempo[TIPO == "Cível Seguros" | TIPO == "Cível Outros" |
       TIPO == "Trabalhista"]
##
## X-squared = 349.95, df = 328, p-value = 0.1936
chisq.test(dados$TIPO[TIPO == "Civel Seguros" | TIPO == "Civel Outros" | TIPO == "Trabalhista"], logVrC
## Warning in chisq.test(dados$TIPO[TIPO == "Cível Seguros" | TIPO == "Cível
## Outros" | : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: dados$TIPO[TIPO == "Civel Seguros" | TIPO == "Civel Outros" |
      TIPO == "Trabalhista"] and logVrCausa[TIPO == "Cível Seguros" | TIPO == "Cível Outros" |
##
      TIPO == "Trabalhista"]
## X-squared = 5449.8, df = 4974, p-value = 1.801e-06
```

```
chisq.test(dados$TIPO[TIPO == "Cível Seguros" | TIPO == "Cível Outros" | TIPO == "Trabalhista"], logVrP
## Warning in chisq.test(dados$TIPO[TIPO == "Civel Seguros" | TIPO == "Civel
## Outros" | : Chi-squared approximation may be incorrect
##
##
   Pearson's Chi-squared test
##
## data: dados$TIPO[TIPO == "Cível Seguros" | TIPO == "Cível Outros" |
      TIPO == "Trabalhista"] and logVrPago[TIPO == "Cível Seguros" | TIPO == "Cível Outros" |
##
      TIPO == "Trabalhista"]
## X-squared = 439, df = 433, p-value = 0.4108
chisq.test(dados$TIPO[TIPO == "Cível Seguros" | TIPO == "Cível Outros" | TIPO == "Trabalhista"], delta[
## Warning in chisq.test(dados$TIPO[TIPO == "Civel Seguros" | TIPO == "Civel
## Outros" | : Chi-squared approximation may be incorrect
##
##
   Pearson's Chi-squared test
##
## data: dados$TIPO[TIPO == "Cível Seguros" | TIPO == "Cível Outros" |
       TIPO == "Trabalhista"] and delta[TIPO == "Cível Seguros" | TIPO == "Cível Outros" | TIPO ==
##
##
       "Trabalhista"]
## X-squared = 239, df = 238, p-value = 0.4696
```

Não há dependência entre o tipo de processo e a variável tempo Não há dependência entre o tipo de processo e a variável log-Valor da Causa Não há dependência entre o tipo de processo e a variável log-Valor Pago Não há dependência entre o tipo de processo e a variável delta

Testar se as distribuições em SP diferem das no RJ

```
ks.test(tempo[Estado == "RJ"], tempo[Estado == "SP"])

## Warning in ks.test(tempo[Estado == "RJ"], tempo[Estado == "SP"]): p-value
## will be approximate in the presence of ties

##

## Two-sample Kolmogorov-Smirnov test
##

## data: tempo[Estado == "RJ"] and tempo[Estado == "SP"]

## D = 0.17635, p-value = 0.0001254
## alternative hypothesis: two-sided

ks.test(VrCausa[Estado == "RJ"], VrCausa[Estado == "SP"])

## Warning in ks.test(VrCausa[Estado == "RJ"], VrCausa[Estado == "SP"]): p-
## value will be approximate in the presence of ties
```

```
##
  Two-sample Kolmogorov-Smirnov test
##
##
## data: VrCausa[Estado == "RJ"] and VrCausa[Estado == "SP"]
## D = 0.27827, p-value < 2.2e-16
## alternative hypothesis: two-sided
ks.test(VrPago[Estado == "RJ"], VrPago[Estado == "SP"])
## Warning in ks.test(VrPago[Estado == "RJ"], VrPago[Estado == "SP"]): p-value
## will be approximate in the presence of ties
##
   Two-sample Kolmogorov-Smirnov test
##
##
## data: VrPago[Estado == "RJ"] and VrPago[Estado == "SP"]
## D = 0.067932, p-value = 0.9618
## alternative hypothesis: two-sided
ks.test(delta[Estado == "RJ"], delta[Estado == "SP"])
##
##
   Two-sample Kolmogorov-Smirnov test
##
## data: delta[Estado == "RJ"] and delta[Estado == "SP"]
## D = 0.23932, p-value = 0.1235
## alternative hypothesis: two-sided
```

As seguintes distribuições são diferentes em SP e RJ:

Tempo: p-valor = 0.0001254
Valor da Causa: p-valor ~ 0

Por outro lado, o Valor Pago (p-valor = 0.9618), e o delta (p-valor = 0.7147) têm mesma distribuição em RJ e SP com alta significância estatística.

Estruturas de dependência

```
plot(tempo,log(VrCausa), main = "Gráfico de Dispersão log-Valor da Causa vs Tempo")
```

Gráfico de Dispersão log-Valor da Causa vs Tempo


```
cor.test(tempo, log(VrCausa))
```

```
##
## Pearson's product-moment correlation
##
## data: tempo and log(VrCausa)
## t = 3.8922, df = 1051, p-value = 0.0001056
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.0592175 0.1783311
## sample estimates:
## cor
## 0.1192032
```

hoeffd(tempo, VrCausa)

```
## D
## x y
## x 1.00 0.01
## y 0.01 1.00
##
## avg|F(x,y)-G(x)H(y)|
## x y
## x 0.0000 0.0134
```

```
## y 0.0134 0.0000
##
## \max |F(x,y)-G(x)H(y)|
##
## x 0.0000 0.0424
## y 0.0424 0.0000
## n
##
        Х
## x 1055 1053
## y 1053 2797
##
## P
##
     Х
       У
## x
## y 0
```

plot(tempo, VrPago, main = "Gráfico de Dispersão Valor Pago vs Tempo")

Gráfico de Dispersão Valor Pago vs Tempo


```
cor.test(tempo, log(VrPago))
```

```
##
## Pearson's product-moment correlation
##
## data: tempo and log(VrPago)
```

```
## t = 3.5348, df = 437, p-value = 0.0004517
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.07429365 0.25631595
## sample estimates:
##
        cor
## 0.1667249
hoeffd(tempo, VrPago)
## D
## x y
## x 1 0
## y 0 1
##
## avg|F(x,y)-G(x)H(y)|
## x y
## x 0.000 0.013
## y 0.013 0.000
## \max |F(x,y)-G(x)H(y)|
       X
              У
## x 0.000 0.035
## y 0.035 0.000
##
## n
##
       х у
## x 1055 439
## y 439 439
##
## P
## x
           У
## x
           0.0049
## y 0.0049
```

plot(tempo,delta, main = "Gráfico de Dispersão delta vs Tempo")

Gráfico de Dispersão delta vs Tempo

cor.test(tempo, delta)

```
##
## Pearson's product-moment correlation
##
## data: tempo and delta
## t = 0.60635, df = 237, p-value = 0.5449
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.08797812  0.16542515
## sample estimates:
## cor
## 0.03935628
```

hoeffd(tempo, delta)

```
## D
## x y
## x 1 0
## y 0 1
##
## avg|F(x,y)-G(x)H(y)|
## x y
## x 0.0000 0.0095
```

```
##
## \max |F(x,y)-G(x)H(y)|
##
## x 0.0000 0.0375
## y 0.0375 0.0000
## n
##
        X
## x 1055 239
      239 239
##
## P
##
## x
            0.1656
## y 0.1656
```

y 0.0095 0.0000

plot(log(VrCausa), log(VrPago), main = "Gráfico de Dispersão Valor Pago vs log-Valor da Causa")

Gráfico de Dispersão Valor Pago vs log-Valor da Causa


```
cor.test(log(VrCausa), log(VrPago))

##

## Pearson's product-moment correlation
##

## data: log(VrCausa) and log(VrPago)
```

```
## t = 12.328, df = 437, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4350762 0.5742706
## sample estimates:
## cor
## 0.5079822

plot(log(VrCausa), delta, main = "Gráfico de Dispersão delta vs log-Valor da Causa")</pre>
```

Gráfico de Dispersão delta vs log-Valor da Causa

cor.test(log(VrCausa), delta)

```
##
## Pearson's product-moment correlation
##
## data: log(VrCausa) and delta
## t = -4.3834, df = 237, p-value = 1.757e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3872854 -0.1522441
## sample estimates:
## cor
## -0.2738486
```

Gráfico de Dispersão Delta vs log Valor Pago

cor.test(log(VrPago), delta)

```
##
## Pearson's product-moment correlation
##
## data: log(VrPago) and delta
## t = -1.5946, df = 237, p-value = 0.1121
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.22695414 0.02418502
## sample estimates:
## cor
## -0.1030262
```

Não há correlação linear entre o tempo e o Valor Pago, nem entre o tempo e o delta, tampouco entre o tempo e o logaritmo de delta. Há correlação linear entre o tempo e o Valor da Causa (e também portanto o logaritmo do Valor da Causa), bem como entre o tempo e o logaritmo do Valor Pago.

Há correlação linear entre o logaritmo do valor da causa e o logaritmo do valor pago . Não há correlação linear entre o logaritmo do Valor da Causa e o delta, e nem entre log do Valor Pago e o delta.

n é muito grande para calcular-se o teste de Hoeffding no computador que foi utilizado para este trabalho. Ou seja, não pude estimar dependência não-linear entre as variáveis.

Conclusão

Esta minuta de relatório de administração nos possibilitou prever eventos extremos quanto à variável Tempo e Valor Pago, bem como a proporação de eventos em que a Variável Valor da Causa é maior que Valor Pago, e também a ocorrência ou não de correlações - lineares apenas em razão da limitação computacional - entre as variáveis de interesse.