Mean Mode Median

1. Mean

The mean of a set of n numbers, $x_1, x_2, x_3, ..., x_n$ is denoted by x where

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{\sum x}{n} OR = \frac{\sum f(x)}{\sum f}$$

2. Median

The median is the value of the middle term of a set of numbers, arranged in either ascending or descending order

For n numbers,

if n is odd:
$$median = \frac{(n+1)}{2}$$
 th term

if n is even:
$$median = \frac{\frac{n}{2}th\ term + \frac{(n+1)}{2}th\ term}{2}$$

3. Mode

The mode is the number with the highest frequency

4. Example - MMM

1	The marks of 12 pupils: $14,13,16,20,11,16,19,14,16,8,17,19$ $14+13+16+20+11+16+19+14+16+8+17+19$ $mean \rightarrow \frac{14+13+16+20+11+16+19+14+16+8+17+19}{15.25}$
	2
	$8,11,13,14,14,16,16,16,17,19,19,20$ $median \rightarrow \frac{16+16}{2} = 16$
	$mode \rightarrow 16$ (there are three 16)
2	$5x^{2} + 3x - 2 = x^{2} + \frac{3}{5}x + \left(\frac{3}{5}\right)^{2} = \frac{2}{5} + \left(\frac{9}{25}\right)$ $= \left(x + \frac{3}{5}\right)^{2} + \frac{19}{25}$
3	$(2x-1)^2 - 2 = 2^2 \left(x - \frac{1}{2}\right)^2 - 2 = 4\left(x - \frac{1}{2}\right)^2 - 2$

5. Standard Deviation

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n}} OR \sqrt{\frac{\sum x^2}{n} - \bar{x}^2}$$

Set A

x	$x_i - \bar{x}$	$(x-\bar{x})^2$	χ^2		
3	-4	16	9		
3	-4	16	9		
5	-2	4	25		
7	0	0	49		
8	1	1	64		
9	2	4	81		
9	2	4	81		
12	5	25	144		
$\bar{x} = 7$		$\sum (x - \bar{x})^2 = 70$	$\sum x^2 = 462$		
$\sqrt{\frac{\sum (x - \bar{x})^2}{n}} = \sqrt{\frac{70}{8}} \approx 2.96, \qquad \sqrt{\frac{\sum x^2}{n} - \bar{x}^2} = \sqrt{\frac{462}{8} - 49} = \sqrt{\frac{70}{8}} \approx 2.96$					

Set B

x	x^2			
0	0			
1	1			
1	1			
1	1			
4	16			
11	121			
15	225			
23	529			
$\bar{x} = 7$	$\sum x^2 = 894$			
$\frac{\sum x^2}{1} - \bar{x}^2 = \sqrt{\frac{894}{9} - 49} \approx 7.52$				

Both SD have the same mean, it is meaningful to compare the SD

Set A has smaller SD, meaning narrow spread of marks, most number are around the mean

Set B has greater SD, meaning further spread of marks, wide spread of number, extreme performance

6. Standard Deviation for a Frequency Distribution

$$S = \sqrt{\frac{\sum_{i=1}^{k} f_i(x_i - \bar{x})^2}{n}} OR \sqrt{\frac{\sum f(x - \bar{x})^2}{\sum f}}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} f_i x_i^2}{n} - \bar{x}^2} OR \sqrt{\frac{\sum f x^2}{\sum f} - \left(\frac{\sum f x}{\sum f}\right)^2}$$

No. of People	1	2	3	4	5	6
No. of Units	20	35	40	55	91	59

х	f	fx	$x-\bar{x}$	$(x-\bar{x})^2$	$f(x-\bar{x})^2$
1	20	20	-3.13	9.796	195.938
2	35	70	-2.13	4.5368	159.7915
3	40	120	-1.13	1.276	51.076
4	55	220	-0.13	0.0169	0.9295
5	91	455	0.87	0.7569	68.8779
6	59	354	1.87	3.4969	206.3171
	$\sum f = 300$	$\sum f x = 1239$	$\bar{x} = \frac{1239}{300} \approx 4.13$		$\sum f(x - \bar{x})^2 = 681.93$

$$\sqrt{\frac{\sum f(x - \bar{x})^2}{\sum f}} = \sqrt{\frac{681.93}{300}} \approx 1.51$$

х	f	fx	fx^2
1	20	20	40
2	35	70	140
3	40	120	360
4	55	220	880
5	91	455	2275
6	59	354	2124
	$\sum f = 300$	$\sum f x = 1239, \qquad \bar{x} = \frac{1239}{300} \approx 4.13$	$\sum fx^2 = 5799$

$$\sqrt{\frac{\sum_{i=1}^{n} f_i x_i^2}{n} - \bar{x}^2} = \sqrt{\frac{5799}{300} - (4.13)^2} = 1.51$$