

Базы данных и SQL

Семинар 3.

Вопросы?

План на сегодня:

- → Quiz!
- → Задания на top, order, distinct
- → Задания на group by
- → Задания на where + having
- → Домашнее задание

Quiz!

Что такое агрегирующие функции?

- 1. функции, которые фильтруют значения
- 2. функции, которые сортируют значения
- 3. функции, которые работают с набором данных, превращая их в одно итоговое значение
- 4. функции, которые суммируют все значения

Что такое агрегирующие функции?

- 1. функции, которые фильтруют значения
- 2. функции, которые сортируют значения
- 3. функции, которые работают с набором данных, превращая их в одно итоговое значение
- 4. функции, которые суммируют все значения

Для подсчета количества записей в таблице «Persons» используется команда:

- 1. COUNT ROW IN Persons
- 2. SELECT COUNT(*) FROM Persons
- 3. SELECT ROWS FROM Persons
- 4. SELECT SUM(*) FROM Persons

Для подсчета количества записей в таблице «Persons» используется команда:

- 1. COUNT ROW IN Persons
- 2. SELECT COUNT(*) FROM Persons
- 3. SELECT ROWS FROM Persons
- 4. SELECT SUM(*) FROM Persons

Какая агрегатная функция используется для расчета суммы?

- 1. SUM
- 2. AVG
- 3. COUNT

Какая агрегатная функция используется для расчета суммы?

- 1. SUM
- 2. AVG
- 3. COUNT

Запрос для выборки первых 14 записей из таблицы «Users» имеет вид:

- 1. SELECT * FROM Users LIMIT 14
- 2. SELECT * LIMIT 14 FROM Users
- 3. SELECT * FROM USERS

Запрос для выборки первых 14 записей из таблицы «Users» имеет вид:

- 1. SELECT * FROM Users LIMIT 14
- 2. SELECT * LIMIT 14 FROM Users
- 3. SELECT * FROM USERS

Что покажет следующий запрос?

```
1 select DISTINCT seller_id
2 order by seller_id
3 from Orders;
```

- 1. Уникальные ID продавцов, отсортированные по возрастанию
- 2. Уникальные ID продавцов, отсортированные по убыванию
- 3. Ничего, запрос составлен неверно, ORDER BY всегда ставится в конце запроса
- 4. Неотсортированные никак уникальные ID продавцов

Что покажет следующий запрос?

```
1 select DISTINCT seller_id
2 order by seller_id
3 from Orders;
```

- 1. Уникальные ID продавцов, отсортированные по возрастанию
- 2. Уникальные ID продавцов, отсортированные по убыванию
- 3. Ничего, запрос составлен неверно, ORDER BY всегда ставится в конце запроса
- 4. Неотсортированные никак уникальные ID продавцов

Что покажет следующий запрос:

```
1 select seller_id, count(*)
2 from Orders
3 GROUP BY seller_id
4 HAVING seller_id IN (2,4,6);
```

- 1. количество заказов сгруппированное по продавцам 2, 4 и 6
- 2. количество продавцов, у которых 2, 4 или 6 товаров
- 3. ничего, запрос составлен неверно, HAVING указывается до группировки
- 4. ничего, запрос составлен неверно, для указания условия должно быть использовано WHERE

Что покажет следующий запрос:

```
1 select seller_id, count(*)
2 from Orders
3 GROUP BY seller_id
4 HAVING seller_id IN (2,4,6);
```

- 1. количество заказов сгруппированное по продавцам 2, 4 и 6
- 2. количество продавцов, у которых 2, 4 или 6 товаров
- 3. ничего, запрос составлен неверно, HAVING указывается до группировки
- 4. ничего, запрос составлен неверно, для указания условия должно быть использовано WHERE

ORDER BY. Табличка для работы

SELECT поле1, поле2, ...

FROM имя_таблицы

WHERE условие

ORDER BY поле1, поле2, ... ASC(DESC);

←7	амет →		∇	id	name	surname	specialty	seniority	salary	age
	0	3-6	X	1	Вася	Васькин	начальник	40	100000	60
	0	3-6	X	2	Петя	Петькин	начальник	8	70000	30
	1	3-6	X	3	Катя	Каткина	инженер	2	70000	25
	1	3-6	X	4	Саша	Сашкин	инженер	12	50000	35
	1	3-6	X	5	Иван	Иванов	рабочий	40	30000	59
	1	3-6	X	6	Петр	Петров	рабочий	20	25000	40
	1	3-6	X	7	Сидор	Сидоров	рабочий	10	20000	35
	0	3-6	X	8	Антон	Антонов	рабочий	8	19000	28
	1	30	X	9	Юра	Юркин	рабочий	5	15000	25
	1	3-6	X	10	Максим	Воронин	рабочий	2	11000	22
	1	3-6	X	11	Юра	Галкин	рабочий	3	12000	24
	1	3-6	X	12	Люся	Люськина	уборщик	10	10000	49
<u>t</u> _		Отм	етить	все	Сотм	еченными:	∌ 3-i	×		

Операторы сортировки

- 1. Выведите все записи, отсортированные по полю "age" по возрастанию
- 2. Выведите все записи, отсортированные по полю "name"
- 3. Выведите записи полей "name", "surname", "age", отсортированные по полю "name" в алфавитном порядке по убыванию
- 4. Выполните сортировку по полям "name" и "age" по убыванию

Операторы сортировки. DISTINCT, LIMIT

DISTINCT:

SELECT DISTINCT поле1, поле2, ...

FROM имя_таблицы;

LIMIT:

LIMIT[смещение_относительно_начала,] количество_извлекаемых_строк

Операторы сортировки. DISTINCT, LIMIT

- 1. Выведите уникальные (неповторяющиеся) значения полей "name"
- 2. Выведите первые две первые записи из таблицы
- 3. Пропустите первые 4 строки ("id" = 1, "id" = 2,"id" = 3,"id" = 4) и извлеките следующие 3 строки ("id" = 5, "id" = 6, "id" = 7)
- **4*.** Пропустите две последнии строки (где id=12, id=11) и извлекаются следующие за ними 3 строки (где id=10, id=9, id=8)

Агрегатные функции. Таблица для работы

```
mysql> SELECT * FROM employee tbl;
  id | name | work date | daily typing pages
  ----
     John | 2007-01-24 |
                          250
      Ram 2007-05-27
                          220
      Jack | 2007-05-06 |
                          170
     Jack 2007-04-06
                          100
      Jill | 2007-04-06 |
                          220
      Zara 2007-06-06
                          300
     Zara | 2007-02-06 | 350
7 rows in set (0.00 sec)
```


Агрегатные функции

- 1. Paccчитайте общее количество всех страниц dialy_typing_pages
- 2. Выведите общее количество напечатанных страниц каждым человеком (с помощью предложения GROUP BY)
- 3. Посчитайте количество записей в таблице
- 4. Выведите количество имен, которые являются уникальными
- 5. Найдите среднее арифметическое по количеству ежедневных страниц для набора (daily_typing_pages)

Ваши вопросы?

Перерыв

GROUP BY

SELECT * FROM имя_таблицы
WHERE условие
GROUP BY поле_для_группировки

id	name	age	salary
1	Дима	23	100
2	Петя	23	200
3	Вася	23	300
4	Коля	24	1000
5	Иван	24	2000

GROUP BY

- 1. Сгруппируйте поля по возрасту (будет 3 группы 23 года, 24 года и 25 лет). Для каждой группы найдите суммарную зарплату
- 2. Сгруппируйте поля по возрасту (будет 3 группы 23 года, 24 года и 25 лет). Найдите максимальную заработную плату внутри группы
- 3. Сгруппируйте поля по возрасту (будет 3 группы 23 года, 24 года и 25 лет). Найдите минимальную заработную плату внутри группы

HAVING

GROUP BY поле HAVING условие

Задания:

- 1. Выведите только те строки, в которых суммарная зарплата больше или равна 1000
- 2. Выведите только те группы, в которых количество строк меньше или равно двум
- 3. Выведите только те группы, в которых количество строк меньше или равно двум. Для решения используйте оператор "BETWEEN"
- 4.* Выведите только те группы, в которых количество строк меньше или равно двум. Для решения используйте оператор "IN"

Ваши вопросы?


```
:=========== ТАБЛИЦА 1: ПРОЛАВЦЫ (SALESPEOPLE) =============
               sname | city | comm
        snum |
   -----|-----|------|
        1001 | Peel | London | .12
        1002 | Serres | San Jose | .13
        1004 | Motika | London | .11
        1007 | Rifkin | Barcelona | .15
        1003 | Axelrod | New York | .10
:============ ТАБЛИЦА 2: ЗАКАЗЧИКИ (CUSTOMERS) ============
        cnum | cname | city | rating | snum
   -----|-----|-----|-----|
        2001 | Hoffman | London | 100 | 1001
        2002 | Giovanni | Rome | 200 | 1003
        2003 | Liu | SanJose | 200 | 1002
        2004 | Grass | Berlin | 300 | 1002
        2006 | Clemens | London | 100 | 1001
        2008 | Cisneros | SanJose | 300 | 1007
        2007 | Pereira | Rome | 100 | 1004
```



```
======== ТАБЛИЦА 3: ЗАКАЗЫ (ORDERS)
     onum |
             amt
                       odate | cnum | snum
-----|-----|-----|-----|-----|
     3001 | 18.69 | 10/03/1990 | 2008 | 1007
     3003 | 767.19 | 10/03/1990 | 2001 | 1001
     3002 | 1900.10 | 10/03/1990 | 2007 | 1004
     3005 | 5160.45 | 10/03/1990 | 2003 | 1002
         | 1098.16 | 10/03/1990 | 2008 | 1007
     3006
     3009
          | 1713.23 | 10/04/1990 | 2002 | 1003
         | 75.75 | 10/04/1990 | 2004 | 1002
     3007
         | 4723.00 | 10/05/1990 | 2006 | 1001
     3008
         | 1309.95 | 10/06/1990 | 2004 | 1002
     3010
     3011 | 9891.88 | 10/06/1990 | 2006 | 1001
```


- 1. Напишите запрос, который вывел бы таблицу со столбцами в следующем порядке: city, sname, snum, comm. (к первой или второй таблице, используя SELECT)
- 2. Напишите команду SELECT, которая вывела бы оценку(rating), сопровождаемую именем каждого заказчика в городе San Jose. ("заказчики")
- 3. Напишите запрос, который вывел бы значения snum всех продавцов из таблицы заказов без каких бы то ни было повторений. (уникальные значения в "snum" "Продавцы")
- 4*. Напишите запрос, который бы выбирал заказчиков, чьи имена начинаются с буквы G. Используется оператор "LIKE": ("заказчики") https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html
- 5. Напишите запрос, который может дать вам все заказы со значениями суммы выше чем \$1,000. ("Заказы", "amt" сумма)
- 6. Напишите запрос который выбрал бы наименьшую сумму заказа. (Из поля "amt" сумма в таблице "Заказы" выбрать наименьшее значение)
- 7. Напишите запрос к таблице "Заказчики", который может показать всех заказчиков, у которых рейтинг больше 100 и они находятся не в Риме.

Таблица для работы (из классной работы)

←7	$\Gamma \rightarrow$		∇	id	name	surname	specialty	seniority	salary	age
	1	3-6	X	1	Вася	Васькин	начальник	40	100000	60
	1	3-6	X	2	Петя	Петькин	начальник	8	70000	30
	1	3-6	X	3	Катя	Каткина	инженер	2	70000	25
	1	3-6	X	4	Саша	Сашкин	инженер	12	50000	35
	1	3-6	X	5	Иван	Иванов	рабочий	40	30000	59
	1	3-6	X	6	Петр	Петров	рабочий	20	25000	40
	1	3-6	X	7	Сидор	Сидоров	рабочий	10	20000	35
	0	3-6	X	8	Антон	Антонов	рабочий	8	19000	28
	1	3-6	X	9	Юра	Юркин	рабочий	5	15000	25
	1	3-6	X	10	Максим	Воронин	рабочий	2	11000	22
	1	3-6	X	11	Юра	Галкин	рабочий	3	12000	24
	1	3-6	X	12	Люся	Люськина	уборщик	10	10000	49
† _	↑ Отметить все С отмеченными: 🥕 👫 🔀									

- 1. Отсортируйте поле "зарплата" в порядке убывания и возрастания
- 2. ** Отсортируйте по возрастанию поле "Зарплата" и выведите 5 строк с наибольшей заработной платой (возможен подзапрос)
- 3. Выполните группировку всех сотрудников по специальности, суммарная зарплата которых превышает 100000

Рефлексия

Был урок полезен вам?

Узнали вы что-то новое?

Что было сложно?

Спасибо /// за внимание /