Computer Organization 計算機組織

Virtual Memory

國立成功大學資訊工程學系 105 年度第二學期

We now go to this part

So far the memory system we learn...

Virtual Memory (1/2)

- Allow many programs to run at once
- Virtual memory
 - Every program has its own address space (can be greater than physical memory), starting at address 0
 - only accessible to itself
 - can run anywhere in physical memory
- Virtual memory is a technique implementing the translation from virtual space to physical space
 - OS runs all the time and allocates physical resources

Virtual Memory (2/2)

Mapping of pages from a virtual address to a physical address or disk address

Issues in Virtual Memory

Size of a page

Page: a basic unit of memory blocks transferring between main memory and secondary storage (e.g., disk)

- Placement policy
 where to place a page in main memory
- Replacement policy replace pages if cannot find any free space in main memory
- When to fetch a page? may fetch when we miss

Address Translation: Virtual to Physical

• Given a virtual address a, return the physical address (a') corresponding to a

Paging with 4K-byte Page Size (assume 1GB main memory)

Example Problem

- Assume:
 - 32-bit virtual address
 - 4 KB page size
 - 4 bytes per page table entry
 - The page table maps page 0 to frame 10, page 1 to frame 8, page 2 to frame 100, page 3 to frame 1, ...
- Q1: What is the total page table size if we want to be able to access all of the virtual memory?
- Q2: What is the page no. of the virtual address 8196?
- Q3: What is the physical address corresponding to the virtual address 8196?

Solution

- No. of page table entries = address space size / page size = 2³² / 2¹² = 2²⁰
- (Maximum) Size of page table = No. of entries \times entry size = $2^{20} \times 4$ bytes = 4 MB
 - However, a program typically takes a few of pages
- ♦ 8196/4096=2.x (i.e. address 8196 is at the 2nd page)
- Physical address is 100*4096+4

Page Fault

- Page fault means that page is not resident in memory
- Then, hardware must trap to the operating system so that it can remedy the situation
 - "May" need to pick a page to discard (may write the replaced page to disk)
 - i.e., page replacement policy
 - Note: if a page in "main memory" is updated, then it is "dirty"
 - Load the requested page in from disk
 - i.e., placement policy
 - Update the page table
 - Resume to program so HW will retry and succeed!

So Far

- We assume that we are given a virtual memory address to access the virtual memory system
- We have not integrate virtual memory with processor, i.e., how does a processor send out a virtual memory address due to 1w or sw?
- Put everything together in the following...

Practical Address Translation

 To speedup the address translation, typical processor implements a hardware page table cache, namely Translation Lookaside Buffer (TLB)

"May" invoke page fault handler

TLB

More on TLB

- TLB can be organized as fully associative, set associative, or direct mapped
 - TLBs are typically small in size, typically < 128~256 entries
- TLB hit on write:
 - Toggle dirty bit (write back to page table on replacement)
- TLB miss:
 - If only TLB miss => load "page table entry" into TLB
 - If page fault also => OS exception
- Inclusion property
 - If L1 is a upper level "data" memory of L2, then "data" in L1 must appear in L2

TLB in Pipeline

Inst Fetch	Dcd/ Reg	ALU / E.A	Ме	mory	Write Reg
TLB I-Cache	RF	E.A.	TLB	D-Cache	WB

inst. flow

TLB + Cache

Cache	TLB	Virtual Memory	Possible? Conditions?
Miss	Hit	Hit	Yes; but page table never checked if TLB hits
Hit	Miss	Hit	TLB miss, but entry found in page table; after retry, data in cache
Miss	Miss	Hit	TLB miss, but entry found in page table; after retry, data miss in cache
Miss	Miss	Miss	TLB miss and is followed by a page fault; after retry, data miss in cache
Miss	Hit	Miss	impossible; not in TLB if page not in memory
Hit	Hit	Miss	impossible; not in TLB if page not in memory
Hit	Miss	Miss	impossible; not in cache if page not in memory