Workshop sobre Macroeconomia com Agentes Heterogêneos

Dados do Curso

Professor: Tomás R. Martinez

tomas.martinez@insper.edu.br

Carga Horária 20 horas (10 aulas)

Formato: Híbrido

1 Professor

Tomás é professor assistente no Insper. Ele concluiu sua graduação em Economia pela Universidade Federal da Bahia em 2011, obtendo seu mestrado em Economia pela Universidad Carlos III de Madrid em 2015, e posteriormente, em 2019, completou seu doutorado na mesma instituição. Antes de se juntar ao Insper, Tomás foi professor adjunto na Universidade de Brasília e pesquisador pós-doutoral na Universitat Pompeu Fabra.

2 Objetivos e Descrição do Curso

O objetivo deste curso é proporcionar uma introdução aos modelos macroeconômicos com agentes heterogêneos ao nível da família, juntamente com os métodos computacionais empregados para a sua resolução. O curso terá uma abordagem prática, onde os participantes terão a oportunidade de explorar os conceitos teóricos por meio da resolução de modelos no computador.

O curso começará com uma revisão do modelo canônico com mercados incompletos em um estado estacionário. Nesse modelo, a distribuição de riqueza na economia é endógena, e choques econômicos individuais, como renda, emprego e saúde, tem fortes implicações no consumo das famílias/agentes. Posteriormente, serão abordados os métodos para a resolução do modelo canônico fora do estado estacionário. O restante do curso será dedicado aos modelos HANK (Heterogeneous Agent New Keynesian), onde a heterogeneidade de renda e riqueza das famílias interagem com a política monetária/rigidez nominal. Ao final, discutiremos brevemente alguns aspectos sobre a calibração e estimação dos parâmetros de interesse destes modelos.

No contexto dos métodos computacionais, serão abordados em detalhes os procedimentos para a resolução do equilíbrio do modelo canônico no estado estacionário. Isso inclui a discretização do espaço de estados, métodos globais para solucionar o problema das famílias e a iteração da distribuição endógena. Além disso, será enfatizado o método Sequence-Space Jacobian (Auclert et al., 2021) para a resolução fora do estado estacionário. Esse método, amplamente adotado na literatura mais recente, oferece a vantagem de contar com um pacote em Python, o que possibilita a resolução eficiente de modelos complexos em um curto espaço de tempo.

Durante o curso, os participantes terão a oportunidade de aplicar os conceitos aprendidos por meio de exercícios práticos. Serão fornecidos códigos e exercícios para auxiliar no processo de aprendizagem. O curso será oferecido em formato híbrido, permitindo que pesquisadores e servidores que não estejam baseados em Brasília possam participar de forma remota.

3 Pré-Requesito

O requisito mínimo para participação no curso é a conclusão de um curso inicial de Macroeconomia em nível de pós-graduação, abrangendo os seguintes tópicos: (i) modelo de crescimento neoclássico, (ii) programação dinâmica e (iii) cadeias de Markov. Recomenda-se ter noções básicas do modelo Novo-Keynesiano de 3 equações, como o apresentado no capítulo 3 do livro de Galí (2015).

No que diz respeito à programação, é altamente recomendável possuir uma familiaridade básica com Python e, especificamente, com operações vetoriais simples usando a biblioteca NumPy. Se você não possui experiência prévia com Python, NumPy ou o ambiente Jupyter Notebook, recomenda-se começar com o QuatEcon. Os tópicos abordando NumPy, Matplotlib e SciPy serão particularmente úteis. Outra referência valiosa é o Python Data Science Handbook.

Como preparação adicional, é altamente recomendado que os participantes realizem a "leitura recomendada" antes de cada aula, bem como revisem as notas de aula disponibilizadas.

4 Software e Linguagem de Programação

Existem várias linguagens que podem ser utilizadas para a resolução computacional desses modelos. Neste curso, optaremos pelo Python, por duas razões: (i) é uma escolha relativamente acessível para pesquisadores com experiência prévia em outras linguagens de programação, como MatLab, Julia, Fortran, entre outras; (ii) utilizaremos o pacote Sequence-Space Jacobian, que permite solucionar modelos complexos rapidamente.

Para participar do curso, é necessário ter acesso a um computador com Python 3.7 ou versão mais recente e realizar a instalação do pacote Sequence-Space Jacobian. A distribuição mais recente do Anaconda já inclui todos os pacotes essenciais para o funcionamento adequado do pacote Sequence-space jacobian, como NumPy, SciPy, Numba, entre outros. Embora não seja obrigatório, recomenda-se o uso do VScode como editor de código.

5 Conteúdo Programático

- Aulas 1 e 2: Revisão do modelo de Bewley-Huggett-Aiyagari-Imrohoroglu, teoria e métodos computacionais.
 - Discretização do processo estocástico.
 - Solução do problema de consumo e poupança; Endogenous grid method.
 - Distribuição estacionária; Equilíbrio.

Leitura recomendada: Ljungqvist and Sargent (2012) - Cap. 16 e 17. Referências adicionais: Aiyagari (1994), Huggett (1993), Guvenen (2011), Heathcote et al. (2009), Fella (2014), Kopecky and Suen (2010), Heer and Maussner (2009), Achdou et al. (2022).

- Aulas 3 e 4: Dinâmicas de transição e choques agregados em modelos de agentes heterogêneos.
 - Método de Krusell-Smith.
 - Método de Reiter.
 - Dinâmicas de transição após um "MIT Shock".
 - Sequence-Space Jacobian.

¹https://github.com/shade-econ/sequence-jacobian.

Leitura recomendada: Auclert et al. (2021), Boppart et al. (2018). Referências adicionais: Krueger et al. (2016), Krusell and Smith (1998), Algan et al. (2014), Reiter (2009), Bayer and Luetticke (2020), Ahn et al. (2017).

- Aulas 5 e 6: O modelo HANK. Política fiscal em modelos HANK.
 - Intertemporal marginal propensities to consume.
 - Rigidez de preços vs rigidez de salários.
 - Política fiscal financiada via dívida e receita tributária.

Leitura recomendada: Auclert et al. (2023b). Referências adicionais: Broer et al. (2020), Hagedorn et al. (2019), McKay and Reis (2016). Wolf (2023), Auclert et al. (2023a).

- Aulas 7 e 8: Política monetária em modelos HANK.
 - Efeitos diretos e indiretos.
 - Distribuição do lucro de monopólio.
 - Forward guidance.

Leitura recomendada: Kaplan et al. (2018). Referências adicionais: Auclert (2019), McKay et al. (2016), Mckay and Wolf (2023).

- Aula 9: Exercícios, extensões e outras aplicações.
 - Economia aberta.
 - Fricções no mercado de trabalho.

Referências: Auclert et al. (2021), Ravn and Sterk (2021), Luetticke (2021), Acharya et al. (2023), Cui and Sterk (2021), Broer et al. (2021), Guntin et al. (2023).

- Aula 10: Calibração e estimação de modelos de agentes heterogêneos.
 - Estimação e identificação do processo estocástico da renda.
 - Calibração da distribuição de riqueza e da propensão marginal ao consumo.
 - Estimação de modelos HANK.

Leitura recomendada: Bayer et al. (2023), Kaplan and Violante (2022), Guvenen et al. (2021). Referências adicionais: Auclert et al. (2020), Nardi et al. (2020), Nakamura and Steinsson (2018), Kaplan and Violante (2014), Bayer et al. (2019), Blundell et al. (2008), Acharya et al. (2023).

Plano de Aula Revisão do Modelo Aiyagari Aula 1 Aula 2 Métodos computacionais para solucionar o modelo Aiyagari Aula 3 Além do estado estacionário: Krusell-Smith, Reiter, "MIT Shocks" Aula 4 Sequence-Space Jacobian e exercícios Aula 5 Modelo HANK básico e política fiscal Aula 6 Exercícios computacionais Aula 7 HANK e política monetária Aula 8 Exercícios computacionais Aula 9 Exercícios adicionais e outras aplicações do modelo HANK Aula 10 Calibração e estimação de modelos de agentes heterogêneos

Referências

- Acharya, S., E. Challe, and K. Dogra (2023, 7). Optimal monetary policy according to hank. *American Economic Review 113*, 1741–1782.
- Acharya, S., W. Chen, M. D. Negro, K. Dogra, A. Gleich, S. Goyal, E. Matlin, D. Lee, R. Sarfati, and S. Sengupta (2023). Estimating hank for central banks.
- Achdou, Y., J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll (2022). Income and wealth distribution in macroeconomics: A continuous-time approach. *Review of Economic Studies* 89, 45–86.
- Ahn, S., G. Kaplan, B. Moll, T. Winberry, and C. Wolf (2017). When Inequality Matters for Macro and Macro Matters for Inequality, pp. 1–75.
- Aiyagari, R. (1994). Uninsured idiosyncratic risk and aggregate savings. Quarterly Journal of Economics 109, 659–684.
- Algan, Y., O. Allais, W. J. D. Haan, and P. Rendahl (2014). Solving and Simulating Models with Heterogeneous Agents and Aggregate Uncertainty, Volume 3. Elsevier B.V.
- Auclert, A. (2019). Monetary policy and the redistribution channel. *American Economic Review* 109, 2333–2367.
- Auclert, A., B. Bardóczy, M. Rognlie, and L. Straub (2021). Using the sequence-space jacobian to solve and estimate heterogeneous-agent models. *Econometrica* 89, 2375–2408.
- Auclert, A., M. Rognlie, M. Souchier, and L. Straub (2021). Exchange rates and monetary policy with heterogeneous agents: Sizing up the real income channel.
- Auclert, A., M. Rognlie, and L. Straub (2020). Micro jumps, macro humps: Monetary policy and business cycles in an estimated hank model.
- Auclert, A., M. Rognlie, and L. Straub (2023a). Determinacy and existence in the sequence space.
- Auclert, A., M. Rognlie, and L. Straub (2023b). The intertemporal keynesian cross.
- Bayer, C., B. Born, and R. Luetticke (2023). Shocks, frictions, and inequality in us business cycles.
- Bayer, C. and R. Luetticke (2020). Solving discrete time heterogeneous agent models with aggregate risk and many idiosyncratic states by perturbation. *Quantitative Economics* 11, 1253–1288.
- Bayer, C., R. Luetticke, L. Pham-Dao, and V. Tjaden (2019). Precautionary savings, illiquid assets, and the aggregate consequences of shocks to household income risk. *Econometrica* 87, 255–290.
- Blundell, R., L. Pistaferri, and I. Preston (2008). Consumption inequality and partial insurance. *American Economic Review 98*, 1887–1921.
- Boppart, T., P. Krusell, and K. Mitman (2018). Exploiting mit shocks in heterogeneous-agent economies: the impulse response as a numerical derivative. *Journal of Economic Dynamics and Control* 89, 68–92.

- Broer, T., J. Druedahl, K. Harmenberg, and E. Öberg (2021). The unemployment-risk channel in business-cycle fluctuations.
- Broer, T., N.-J. H. Hansen, P. Krusell, and E. Öberg (2020). The new keynesian transmission mechanism: A heterogeneous-agent perspective. *The Review of Economics Studies* 87, 77–101.
- Cui, W. and V. Sterk (2021, 10). Quantitative easing with heterogeneous agents. *Journal of Monetary Economics* 123, 68–90.
- Fella, G. (2014). A generalized endogenous grid method for non-smooth and non-concave problems. *Review of Economic Dynamics* 17, 329–344.
- Galí, J. (2015). Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework and Its Applications Second edition. Number 10495 in Economics Books. Princeton University Press.
- Guntin, R., P. Ottonello, and D. J. Perez (2023, 8). The micro anatomy of macro consumption adjustments. *American Economic Review* 113, 2201–2231.
- Guvenen, F. (2011). Macroeconomics with heterogeneity: A practical guide. *Economic Quarterly 97*, 255–326.
- Guvenen, F., F. Karahan, S. Ozkan, and J. Song (2021). What do data on millions of u.s. workers reveal about lifecycle earnings dynamics. *Econometrica* 89, 2303–2339.
- Hagedorn, M., I. Manovskii, and K. Mitman (2019). The fiscal multiplier.
- Heathcote, J., K. Storesletten, and G. L. Violante (2009). Quantitative macroeconomics with heterogeneous households. *Annual Review of Economics* 1, 319–354.
- Heer, B. and A. Maussner (2009). Dynamic General Equilibrium Modeling. Springer.
- Huggett, M. (1993). The risk-free rate in heterogeneous-agent incomplete-insurance economies. Journal of Economic Dynamics and Control 17, 953–969.
- Kaplan, G., B. Moll, and G. L. Violante (2018). Monetary policy according to hank. *American Economic Review* 108, 697–743.
- Kaplan, G. and G. L. Violante (2014). A model of the consumption response to fiscal stimulus payments. *Econometrica* 82, 1199–1239.
- Kaplan, G. and G. L. Violante (2022). The marginal propensity to consume in heterogeneous agent models. *Annual Review of Economics* 14, 747–75.
- Kopecky, K. A. and R. M. H. Suen (2010). Finite state markov-chain approximations to highly persistent processes. *Review of Economic Dynamics* 13, 701–714.
- Krueger, D., K. Mitman, and F. Perri (2016). *Macroeconomics and Household Heterogeneity* (1 ed.), Volume 2, pp. 843–921. Elsevier B.V.
- Krusell, P. and A. A. Smith (1998). Income and wealth heterogeneity in the macroeconomy. Journal of Political Economy 106, 867–896.
- Ljungqvist, L. and T. J. Sargent (2012, February). Recursive Macroeconomic Theory, Third Edition, Volume 1 of MIT Press Books. The MIT Press.

- Luetticke, R. (2021). Transmission of monetary policy with heterogeneity in household portfolios. *American Economic Journal: Macroeconomics* 13, 1–25.
- McKay, A., E. Nakamura, and J. Steinsson (2016). The power of forward guidance revisited. *American Economic Review* 106, 3133–3158.
- McKay, A. and R. Reis (2016). The role of automatic stabilizers in the u.s. business cycle. *Econometrica* 84, 141–194.
- Mckay, A. and C. K. Wolf (2023). Monetary policy and inequality. *Journal of Economic Perspectives* 37, 121–144.
- Nakamura, E. and J. Steinsson (2018). Identification in macroeconomics. *Journal of Economic Perspectives* 32, 59–86.
- Nardi, M. D., G. Fella, and G. Paz-Pardo (2020). Nonlinear household earnings dynamics, self-insurance, and welfare. *Journal of the European Economic Association* 18, 890–926.
- Ravn, M. O. and V. Sterk (2021). Macroeconomic fluctuations with hank and sam: An analytical approach. *Journal of the European Economic Association* 19, 1162–1202.
- Reiter, M. (2009). Solving heterogeneous-agent models by projection and pertubation. *Journal of Economic Dynamics and Control*, 649–665.
- Wolf, C. K. (2023). Interest rate cuts vs. stimulus payments: An equivalence result.