BAYESIAN LEARNING - LECTURE 7

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

LECTURE OVERVIEW

- ► Monte Carlo simulation and random number generation
- **▶** Gibbs sampling
- ► Data augmentation
 - ► Probit regression
 - Mixture models
- Regularized regression revisited

MONTE CARLO SAMPLING

▶ If $\theta^{(1)}$, $\theta^{(2)}$,, $\theta^{(N)}$ is an *iid* sequence from a distribution $p(\theta)$, then

$$\frac{1}{N} \sum_{t=1}^{N} \theta^{(t)} \rightarrow E(\theta)$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

where $g(\theta)$ is some well-behaved function.

▶ Easy to compute **tail probabilities** $Pr(\theta \le c)$ by letting

$$g(\theta) = I(\theta \le c)$$

and

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) = \frac{\# \theta \text{-draws smaller than } c}{N}.$$

DIRECT SAMPLING BY THE INVERSE CDF METHOD

- ► How to simulate from a distribution?
- Let f(x) be the density function of a stochastic variable. CDF: F(x). Inverse CDF method:
 - 1. Generate u from the uniform distribution on [0, 1].
 - **2.** Compute $x = F^{-1}(u)$.
- Example 1: Exponential distribution:

$$u = F(x) = 1 - \exp(-\lambda x)$$

Inverting gives

$$x = -\ln(1-u)/\lambda$$

But 1 - u is also uniformly distributed on [0,1]. So:

▶ If $x = -(\ln u)/\lambda$ where $u \sim Unif(0,1)$, then $x \sim Expon(\lambda)$.

INVERSE CDF METHOD, DISCRETE CASE

DIRECT SAMPLING BY THE INVERSE CDF METHOD

► Example 2: Cauchy distribution:

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$$

$$u = F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan(x)$$

Inverting ...

$$x = \tan[\pi(u - 1/2)].$$

- We can also use relations between distribution to sample from distributions.
- ► Cauchy-example, cont. If y and z are independent N(0,1) variables, then $z = \frac{y}{z} \sim Cauchy$.
- Example: Chi-square. If $x_1, ..., x_v \stackrel{iid}{\sim} N(0, 1)$, then $y = \sum_{i=1}^{v} x_i^2 \sim \chi_v^2$.

GIBBS SAMPLING

- ► Easily implemented methods for sampling from multivariate distributions, $p(\theta_1, ..., \theta_k)$.
- ► Requirements: Easily sampled full conditional posteriors:
 - $\triangleright p(\theta_1|\theta_2,\theta_3...,\theta_k)$
 - \triangleright $p(\theta_2|\theta_1,\theta_3,...,\theta_k)$

 - $\triangleright p(\theta_k|\theta_1,\theta_2,...,\theta_{k-1})$
- ▶ Started out in the early 80's in the image analysis literature.
- ► Gibbs sampling is a **special case of Metropolis-Hastings** (see Lecture 8)
- Metropolis-Hastings is a Markov Chain Monte Carlo (MCMC) algorithm.

THE GIBBS SAMPLING ALGORITHM

```
A: Choose initial values \theta_2^{(0)}, \theta_3^{(0)}, ..., \theta_k^{(0)}.

B: B_1 Draw \theta_1^{(1)} from p(\theta_1|\theta_2^{(0)},\theta_3^{(0)},...,\theta_k^{(0)})

B_2 Draw \theta_2^{(1)} from p(\theta_2|\theta_1^{(1)},\theta_3^{(0)},...,\theta_k^{(0)})

: B_n Draw \theta_k^{(1)} from p(\theta_k|\theta_1^{(1)},\theta_2^{(1)},...,\theta_{k-1}^{(1)})

C: Repeat Step B N times.
```

GIBBS SAMPLING, CONT.

► The Gibbs draws $\theta^{(1)}$, $\theta^{(2)}$,, $\theta^{(N)}$ are dependent (autocorrelated), but arithmetic means converge to expected values

$$\frac{1}{N} \sum_{t=1}^{N} \theta_{j}^{(t)} \rightarrow E(\theta_{j})$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

- lacktriangledown $eta^{(1)},, eta^{(N)}$ converges in distribution to the target $p(\theta)$.
- $lackbox{ } heta_j^{(1)},..., heta_j^{(N)}$ converge to the marginal distribution of $heta_j,\ p(heta_j).$
- ▶ Dependent draws → less efficient than iid sampling.
- Compare sampling from:
 - $\rightarrow x_t \stackrel{iid}{\sim} N(0, \sigma^2)$
 - $x_t = 0.9x_{t-1} + \varepsilon_t$ with $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$.

GIBBS SAMPLING MULTIVARIATE NORMAL

- ▶ Bivariate normal:
 - Joint distribution

$$\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right) \sim N_2\left[\left(\begin{array}{c}\mu_1\\\mu_2\end{array}\right), \left(\begin{array}{cc}1&\rho\\\rho&1\end{array}\right)\right]$$

► Full conditional posteriors:

$$\begin{array}{lll} \theta_{1}|\theta_{2} & \sim & N[\mu_{1}+\rho(\theta_{2}-\mu_{2}),1-\rho^{2}] \\ \theta_{2}|\theta_{1} & \sim & N[\mu_{2}+\rho(\theta_{1}-\mu_{1}),1-\rho^{2}] \end{array}$$

GIBBS SAMPLING - BIVARIATE NORMAL

GIBBS SAMPLING - BIVARIATE NORMAL

GIBBS SAMPLING - BIVARIATE NORMAL

DIRECT SAMPLING VS GIBBS SAMPLING

Estimating the density of $g(\theta_1, \theta_2) = \sqrt{\theta_1^2 + \theta_2^2}$

ESTIMATING $Pr(\theta_1 > 0, \theta_2 > 0)$

▶ We can estimate a joint probability by counting:

$$Pr(\theta_1 > 0, \theta_2 > 0) \approx N^{-1} \sum_{i=1}^{N} 1(\theta_1^{(i)} > 0, \theta_2^{i)} > 0)$$

.

Direct draws

Gibbs draws

GIBBS SAMPLING FOR NORMAL MODEL WITH NON-CONJUGATE PRIOR

Normal model with semi-conjugate prior

$$\mu \sim N(\mu_0, \tau_0^2)$$

$$\sigma^2 \sim Inv - \chi^2(\nu_0, \sigma_0^2)$$

Conditional posteriors

$$\mu|\sigma^2, x \sim N\left(\mu_n, \tau_n^2\right)$$

$$\sigma^2|\mu, x \sim Inv - \chi^2\left(\nu_n, \frac{\nu_0\sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{n + \nu_0}\right)$$

GIBBS SAMPLING FOR AR PROCESSES

▶ AR(p) process

$$x_t = \mu + \phi_1(x_{t-1} - \mu) + \dots + \phi_p(x_{t-p} - \mu) + \varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2).$$

- ▶ Let $\phi = (\phi_1, ..., \phi_p)'$.
- ▶ Prior:
 - μ ~Normal
 - $\phi \sim$ Multivariate Normal
 - $\sigma^2 \sim \text{Scaled Inverse } \chi^2$.
- ▶ The posterior can be simulated by Gibbs sampling:
 - $\mu | \phi, \sigma^2, x \sim \text{Normal}$

 - $\phi | \mu, \sigma^2, x \sim \text{Multivariate Normal}$ $\sigma^2 | \mu, \phi, x \sim \text{Scaled Inverse } \chi^2$

DATA AUGMENTATION - MIXTURE DISTRIBUTIONS

- ▶ Let $\phi(x|\mu,\sigma^2)$ denotes the PDF of a normal variable $x \sim N(\mu,\sigma^2)$.
- ► Two-component mixture of normals [MN(2)]

$$p(x) = \pi \cdot \phi(x|\mu_1, \sigma_1^2) + (1 - \pi) \cdot \phi(x|\mu_2, \sigma_2^2)$$

- ► Simulate from a MN(2):
 - ▶ Simulate an indicator $I \in \{1, 2\}$: $I \sim \textit{Bern}(\pi)$.
 - ▶ If I = 1, simulate x from $N(\mu_1, \sigma_1^2)$ ▶ If I = 2, simulate x from $N(\mu_2, \sigma_2^2)$.

ILLUSTRATION OF MIXTURE DISTRIBUTIONS

MIXTURE DISTRIBUTIONS, CONT.

- ▶ Not easy to estimate directly the likelihood is a product of sums.
- Assume that we knew which of the two densities each observation came from.

$$I_i = \left\{ egin{array}{ll} 1 & \mbox{if } x_i \ \mbox{came from Density 1} \\ 2 & \mbox{if } x_i \ \mbox{came from Density 2} \end{array}
ight. .$$

- Armed with knowledge of $I_1, ..., I_n$ it is now easy to estimate π , $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ by separating the sample according to the I's.
- ▶ But we do **not** know $I_1, ..., I_n!$

GIBBS SAMPLING FOR MIXTURE DISTRIBUTIONS

- ▶ Prior: $\pi \sim Beta(\alpha_1, \alpha_2)$. Conjugate prior for (μ_j, σ_j^2) , see Lecture 5.
- ▶ Define: $n_1 = \sum_{i=1}^{n} (I_i = 1)$ and $n_2 = n n_1$.
- ▶ Gibbs sampling:
 - \blacksquare $\pi \mid \mathbf{I}, \mathbf{x} \sim Beta(\alpha_1 + n_1, \alpha_2 + n_2)$
 - $\sigma_1^2 \mid \mathbf{I}, \mathbf{x} \sim \mathit{Inv-}\chi^2(\nu_{n_1}, \sigma_{n_1}^2) \text{ and } \mu_1 \mid \mathbf{I}, \sigma_1^2, \mathbf{x} \sim \mathit{N}\left(\mu_{n_1}, \frac{\sigma_1^2}{\kappa_{n_1}^2}\right)$
 - $\qquad \qquad \boldsymbol{\sigma}_2^2 \mid \mathbf{I}, \mathbf{x} \sim \mathit{Inv-}\chi^2(\nu_{n_2}, \sigma_{n_2}^2) \text{ and } \mu_2 | \mathbf{I}, \sigma_2^2, \mathbf{x} \sim \mathit{N}\left(\mu_{n_2}, \frac{\sigma_2^2}{\kappa_{n_2}}\right)$
 - ► $I_i \mid \pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \mathbf{x} \sim Bern(\theta_i), i = 1, ..., n,$

$$\theta_i = \frac{(1-\pi)\phi(x_i; \mu_2, \sigma_2^2)}{\pi\phi(x_i; \mu_1, \sigma_1^2) + (1-\pi)\phi(x_i; \mu_2, \sigma_2^2)}.$$

GIBBS SAMPLING FOR MIXTURE DISTRIBUTIONS

► *K*-component mixture of normals

$$p(x) = \sum_{k=1}^{K} \pi_k \phi(x; \mu_k, \sigma_k^2),$$

where $\sum_{k=1}^{K} \pi_k = 1$.

- ▶ Multi-class indicators: $I_i = k$ if observation i comes from density k.
- ► Gibbs sampling with
 - $(\pi_1, ..., \pi_K) \mid \mathbf{I}, \mathbf{x} \sim Dirichlet(\alpha_1 + n_1, \alpha_2 + n_2, ..., \alpha_K + n_K)$
 - $\sigma_k^2 \mid \mathbf{I}, \mathbf{x} \sim Inv \chi^2$ and $\mu_k \mid \mathbf{I}, \sigma_k^2, \mathbf{x} \sim Normal$, for k = 1, ..., K,
 - ▶ $I_i \mid \pi, \mu, \sigma^2, \mathbf{x} \sim Multinomial(\theta_{i1}, ..., \theta_{iK})$, for i = 1, ..., n,

$$\theta_{ij} = \frac{\pi_j \phi(x_i; \mu_j, \sigma_j^2)}{\sum_{r=1}^k \pi_r \phi(x_i; \mu_r, \sigma_r^2)}.$$

► Gibbs sampling is very powerful for missing data problems. Semi-supervised learning.

DATA AUGMENTATION - PROBIT REGRESSION

Probit model:

$$\Pr(y_i = 1 \mid x_i) = \Phi(x_i^T \beta)$$

▶ Random utility formulation of the probit:

$$u_i \sim N(x_i^T \beta, 1)$$

 $y_i = \begin{cases} 1 & \text{if } u_i > 0 \\ 0 & \text{if } u_i \leq 0 \end{cases}$

- ► Check: $\Pr(y_i = 1 \mid x_i) = \Pr(u_i > 0) = 1 \Pr(u_i \le 0) = 1 \Pr(u_i x_i^T \beta < -x_i^T \beta) = 1 \Phi(-x_i^T \beta) = \Phi(x_i^T \beta).$
- ▶ If $u = (u_1, ..., u_n)$ were observed, then β could be analyzed by traditional linear regression. But, u is **not observed**. Gibbs sampling to the rescue!

GIBBS SAMPLING FOR THE PROBIT REGRESSION

- Simulate from joint posterior $p(u, \beta|y)$ iterating between the **full** conditional posteriors:
 - ▶ $p(\beta|u,y)$, which is multivariate normal (this is just a linear regression)
 - ▶ $p(u_i|\beta, y)$, i = 1, ..., n.
- ▶ The full conditional posterior distribution of u_i is:

$$\begin{split} p(u_i|\beta,y) &\propto p(y_i|\beta,u_i)p(u_i|\beta) \\ &= \begin{cases} N(u_i|x_i'\beta,1) & \text{truncated to } u_i \in (-\infty,0] \text{ if } y_i = 0 \\ N(u_i|x_i'\beta,1) & \text{truncated to } u_i \in (0,\infty) \text{ if } y_i = 1 \end{cases} \end{split}$$

► Collect the β -draws. A histogram of these draws approximates $p(\beta|y) = \int p(u, \beta|y) du$.

REGULARIZED REGRESSION WITH GIBBS

▶ Recap: The joint posterior of β , σ^2 and λ is

$$\begin{split} \beta|\sigma^2, \lambda, \mathbf{y}, \mathbf{X} &\sim \textit{N}\left(\mu_n, \Omega_n^{-1}\right) \\ \sigma^2|\lambda, \mathbf{y}, \mathbf{X} &\sim \textit{Inv} - \chi^2\left(\nu_n, \sigma_n^2\right) \\ \rho(\lambda|\mathbf{y}, \mathbf{X}) &\propto \sqrt{\frac{|\Omega_0|}{|X'X + \Omega_0|}} \left(\frac{\nu_n \sigma_n^2}{2}\right)^{-\nu_n/2} \cdot \rho(\lambda) \end{split}$$

where $p(\lambda)$ is the $Inv - \chi^2$ prior for λ .

► This is the conditional-marginal decomposition

$$p(\beta, \sigma^2, \lambda | \mathbf{y}, \mathbf{X}) = p(\beta | \sigma^2, \lambda, \mathbf{y}, \mathbf{X}) p(\sigma^2 | \lambda, \mathbf{y}, \mathbf{X}) p(\lambda | \mathbf{y}, \mathbf{X})$$

- Gibbs sampling can instead be used:
 - ► Sample $\beta | \sigma^2, \lambda, y, X$ from Normal
 - ► Sample $\sigma^2 | \beta, \lambda, \mathbf{y}, \mathbf{X}$ from Inv- χ^2
 - ► Sample $\lambda | \beta, \sigma^2, \mathbf{y}, \mathbf{X}$ from Inv- χ^2
- ▶ Note that λ is now **easy** to simulate **once we condition** on β and σ^2 .

IMPROVING THE EFFICIENCY OF THE GIBBS SAMPLER

- ► *Efficient blocking*. Correlated parameters should ideally be included in the same updating block.
- ► *Reparametrization*. Convergence can improve dramatically in alternative parametrizations.
- ▶ Data augmentation. Bring in latent (unobserved) variables that make the full conditional posteriors more easily sampled (Probit, Mixture models etc). Downside: Typically increases the autocorrelation between draws.
- Parameter expansion. Introducing (non-sense) parameters in the model may break the dependence between the original parameters (Example probit).