

"概率论"部分

测验题 参考答案

《概率论》部分测验题一 参考答案

填空题

- 1. $A\overline{B}\overline{C}$ 2. 0.3 3. $\frac{9}{100}$

5.
$$\frac{1}{2}, \quad F(x) = \begin{cases} 0, & x < -1 \\ \frac{1}{6}, & -1 \le x < 0 \\ \frac{1}{2}, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

6.
$$e^{-1} - e^{-2}$$

8.
$$\pi(7)$$

10.
$$\frac{1}{3}$$

二、解: 记电源电压为随机变量X, 事件 $A = \{$ 电子元件损坏 $\}$. 则 $X \sim N(220,25^2)$.

(1)
$$P\{X < 200\} = P\{X \le 200\} = \Phi\left(\frac{200 - 220}{25}\right)$$

= $\Phi(-0.8) = 1 - \Phi(0.8) = 0.2119$

$$P\{200 \le X \le 240\} = P\left\{\frac{200 - 220}{25} \le \frac{X - 220}{25} \le \frac{240 - 220}{25}\right\}$$
$$= \Phi\left(\frac{240 - 220}{25}\right) - \Phi\left(\frac{200 - 220}{25}\right)$$
$$= \Phi(0.8) - \Phi(-0.8) = 2\Phi(0.8) - 1 = 0.5762$$

$$P\{X > 240\} = 1 - \Phi\left(\frac{240 - 220}{25}\right) = 1 - \Phi(0.8) = 0.2199$$

故由全概率公式知:

$$P(A) = P\{A \mid X < 200\}P\{X < 200\}$$

$$+ P\{A \mid 200 \le X \le 240\}P\{200 \le X \le 240\}$$

$$+ P\{A \mid X > 240\}P\{X > 240\}$$

$$\mathbb{P}(A) = 0.1 \times 0.2199 + 0.01 \times 0.5762 + 0.1 \times 0.2199$$
$$= 0.048142$$

(2)
$$P\{200 \le X \le 240 \mid A\}$$

= $\frac{P\{A \mid 200 \le X \le 240\}P\{200 \le X \le 240\}}{P(A)}$
= $\frac{0.01 \times 0.5762}{0.048142} = 0.1197$

三、计算

1. 解: 因 $X \sim N(1,2), Y \sim N(-1,14),$ 且X与Y相互独立, 故 Z = X - Y 仍服从正态分布,且 E(Z) = E(X) - E(Y) = 1 - (-1) = 2

$$D(Z) = F(X) + F(Y) = 2 + 14 = 16$$

即 $Z \sim N(2,4^2)$,从而概率密度函数为

$$f_Z(z) = \frac{1}{\sqrt{2\pi} \cdot 4} e^{-\frac{(z-2)^2}{32}}, \quad z \in \mathbb{R}$$

2. 解: 方程有实根 $\Leftrightarrow \Delta = (2X)^2 - 4 \times 1 \times (5X - 4) \ge 0$ $\Leftrightarrow X \ge 4$ 或 $X \le 1$

$$P$$
{方程有实根}= P { $X \ge 4$ 或 $X \le 1$ }
$$= P$$
{ $X \ge 4$ }+ P { $X \le 1$ }
$$= P$$
{ $4 \le X \le 6$ }+ P 0 < $X \le 1$ }
$$= \frac{2}{6} + \frac{1}{6}$$

$$= \frac{1}{2}$$

四、解:由卷积公式知,Z = X + Y的概率密度函数为

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$

由题意知当且仅当 $\begin{cases} 0 < x < 1 \\ z - x > 0 \end{cases}$ 即 $\begin{cases} 0 < x < 1 \\ z > x \end{cases}$

被积函数才不为零.

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

$$= \begin{cases} 0, & z \le 0 \\ \int_0^z f_X(x) f_Y(z - x) dx, & 0 < z < 1 \\ \int_0^1 f_X(x) f_Y(z - x) dx, & z \ge 1 \end{cases}$$

$$f_{Z}(z) = \begin{cases} 0, & z \leq 0 \\ \int_{0}^{z} 1 \times e^{-(z-x)} dx, & 0 < z < 1 \\ \int_{0}^{1} 1 \times e^{-(z-x)} dx, & z \geq 1 \end{cases}$$

$$= \begin{cases} 0, & z \le 0 \\ 1 - e^{-z}, & 0 < z < 1 \\ e^{-z}(e - 1), & z \ge 1 \end{cases}$$

五、解 (1)
$$f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其它. \end{cases}$$

$$f_{Y}(y) = \begin{cases} \int_{-y}^{1} 1 dx = 1 + y, & -1 < y < 0, \\ \int_{y}^{1} 1 dx = 1 - y, & 0 \le y < 1, \\ 0, & \cancel{X} \stackrel{\text{Te.}}{=} \end{cases}$$

(2)
$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \times 2x \ dx = \frac{2}{3}$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx = \int_{0}^{1} x^{2} \times 2x \ dx = \frac{1}{2}$$

$$D(X) = E(X^2) - [E(X)]^2 = \frac{1}{18}$$

$$E(Y) = \int_{-\infty}^{\infty} y f_Y(y) dx = 0$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx = 0$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

六、解
$$p = P\left\{X > \frac{\pi}{3}\right\} = \int_{\frac{\pi}{3}}^{\pi} \frac{1}{2} \cos \frac{x}{2} dx = \frac{1}{2}$$

由题意知 $Y \sim b(n,p)$, 其中 n = 4, $p = \frac{1}{2}$.

从而
$$E(Y) = np = 4 \times \frac{1}{2} = 2$$
,

$$D(Y) = np(1-p) = 1.$$

故有
$$E(Y^2) = D(Y) + [E(Y)]^2 = 5$$
.

七、解

(1)
$$Cov(X,Y) = \frac{1}{2}[D(X) + D(Y) - D(X - Y)] = -2$$

(2)
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} = -\frac{1}{3}$$

(3)
$$Cov(X - 2Y, X + Y)$$

= $D(X) + Cov(X,Y) - 2Cov(Y,X) - 2D(Y)$
= -12

《概率论》部分测验题二 参考答案

一、填空题

1.
$$\overline{ABC}$$
, \overline{ABC}

3.
$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}}, & 0 \le y \le 1\\ 0, & 其它 \end{cases}$$
 4. $\frac{25}{2}e^{-5}$

6. 0.3 7.
$$\frac{4}{5}$$
, $\frac{4}{5}$

8.
$$f_X(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0\\ 0, & 其它 \end{cases}$$

- 9. 7
- 10. 0, 25
- 11. $\frac{1}{9}$
- **12.** 1

$$=$$
 (1) 0.17; (2) $\frac{6}{17}$

$$\equiv$$
 (1) e^{-1} ; (2) e^{-4}

$$\begin{array}{c}
\square \\
 \end{array}
 \begin{array}{c}
 1. \ A = \frac{\sqrt{2}}{2}; \\
 2. \ F_X(x) = \begin{cases}
 0, & x < -\frac{\pi}{4} \\
 \frac{\sqrt{2}}{2} \sin x + \frac{1}{2}, & -\frac{\pi}{4} \le x \le \frac{\pi}{4} \\
 1, & x > \frac{\pi}{4}
\end{array}$$

3.
$$P\{0 < X < \frac{\pi}{4}\} = \frac{1}{2}$$
.

五、

1.
$$f_X(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
, $f_Y(y) \begin{cases} e^{-y}, & y > 0 \\ 0, & y \le 0 \end{cases}$.

2.
$$E(X) = \frac{1}{2}$$
, $E(Y) = 1$, $E(XY) = \frac{1}{2}$,
 $Cov(X,Y) = 0$, $D(X) = \frac{1}{4}$, $D(Y) = 1$.

3. X与Y相互独立,因为 $f_{X,Y}(X,Y) = f_X(X)f_Y(Y)$; X与Y不相关,因为Cov(X,Y) = 0. (或独立性可得)

七、
$$P\{|Y| \le 10\} = 2\Phi(1) - 1$$

 $P\{|Y| > 10\} = 1 - P\{|Y| \le 10\} = 2 - 2\Phi(1)$

《概率论》部分测验题三 参考答案

填空题

1.
$$\frac{2}{3}$$
 2. $\frac{1}{\sqrt{2\pi} \cdot 3} e^{-\frac{z^2}{18}}, z \in \mathbb{R}$ 3. 3 4. 0.6

5.
$$\frac{1}{2}, F_X(x) = \begin{cases} \frac{1}{2}e^x, & x < 0\\ 1 - \frac{1}{2}e^{-x}, & x \ge 0 \end{cases}$$

6. 0.2 7.
$$\frac{17}{648}$$

8. $(0.9)^9$, 1.9

9.
$$a = 0.3, b = 0.2$$

9.
$$a = 0.3$$
, $b = 0.2$ 10. $\frac{3}{4}$, $\frac{1}{2}$, $\frac{5}{4}$

11.
$$\frac{2-\sqrt{2}}{4}$$

12.
$$F_{\text{max}}(z) = F_x(z)F_Y(z)$$

13.
$$\frac{1}{3\varepsilon^2}$$

15. 0.5

二、计算与证明题

1. (1) 0.22696; (2) 0.3008

2.
$$f_Y(y) = \begin{cases} \frac{2}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, & y \ge 0\\ 0, & y < 0 \end{cases}$$

3.
$$f_Z(z) = \begin{cases} \frac{z}{\sigma^2} e^{-\frac{z^2}{2\sigma^2}}, & z \ge 0\\ 0, & z < 0 \end{cases}$$

4. (1)
$$f_X(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, & -1 \le x \le 1 \\ 0, & \sharp$$

$$f_{Y}(y) = \begin{cases} \frac{2}{\pi} \sqrt{1 - y^{2}}, & -1 \le y \le 1 \\ 0, & \text{ 其它} \end{cases}$$

- (3) E(X) = 0, E(XY) = 0, 故Cov(X,Y) = 0. 从而 $\rho_{XY} = 0$.

5. (1)
$$E(Z) = 1$$
, $D(Z) = 7$

$$(2) \ \rho_{XZ} = \frac{2\sqrt{7}}{7}$$

6. (1) 利润函数

$$S = \begin{cases} 1000X, & X \le Y \\ 1000Y - 200(X - Y), & X > Y \end{cases}$$

(2) 应生产: 900·ln6≈1613 (件)

