Unité : Electronique appliquée Promotion : Master 1 académique (AS et AII) Année universitaire : 2019/2020

Exercices

Exercice 1:

Soient les deux montages amplificateurs réalisés à l'aide d'un amplificateur opérationnel possédant une impédance d'entrée Z_e , une amplification différentielle A_d et une impédance de sortie nulle Z_s .

- 1. Déterminer l'amplification en tension A_v des deux montages.
- 2. Dans le cas où l'amplificateur opérationnel est parfait, quelle est la nouvelle expression $d'A_v$?
- 3. Quel rôle joue chaque montage?

Exercice 2:

On considère le montage amplificateur ci contre :

- 1. Sans faire de calculs, cet amplificateur est-il inverseur ou non inverseur et pourquoi?
- 2. Ve est un signal sinusoïdal d'amplitude l volts, on désire pour V_S un signal d'amplitude l0Volts. Calculer l'amplification en tension A_V .
- 3. Calculer le gain en tension G_V .
- 4. Calculer les résistances R_1 et R_2 afin que le courant efficace I soit de 0, I mA.

R_2 V_s V_s

Exercice 3:

Pour les trois montages à amplificateurs opérationnels suivants :

- 1. Calculer les tensions de sortie V_S en fonction des différentes grandeurs d'entrée.
- 2. Quel rôle joue chaque montage, si on suppose les résistances égales.

1 Mme O. CHILALI

${\it Unit\'e}: {\bf Electronique\ appliqu\'ee}$ Promotion: Master 1 académique (AS et AII) Année universitaire : 2019/2020

Exercice 4:

Pour les deux amplificateurs opérationnels ci dessous :

- 1. Donner l'expression des entrées e^- et e^+ .
- 2. Déterminer les seuils de basculement haut et bas.
- 3. Tracer la caractéristique $V_s = f(V_e)$.
- 4. Donner le signal de sortie lorsque V_e est un signal triangulaire d'amplitude crête à crête de 12Volts. On donne : $V_{CC}=15Volts$, E=3Volts, $R_1=3.2k\Omega$, $R_2=47k\Omega$, $R_3=12k\Omega$ et $R_4=220k\Omega$.

2 Mme O. CHILALI