COURS: Architecture et Technologie des Ordinateurs

Pr Youssou FAYE

Université Assane Seck de Ziguinchor

Année 2020-2021

Licence 1 en Ingénierie Informatique

Objectifs du Cours

A la fin de ce cours, l'apprenant sera capable de:

- ☐ faire une représentation de l'information dans l'ordinateur
- ☐ Pouvoir construire des circuits combinatoires et séquentiels
- ☐ Pouvoir modéliser et simuler une Unité Arithmétique et Logique
- ☐ Décrire le chemin de données et le traitement d'un programme

Programme

- Partie 1: Numération et de Codage
 - ☐ Chapitre 1: Système de numération
 - ☐ Chapitre 2: Représentation des informations
- Partie 2: Logique Combinatoire
 - ☐ Chapitre 3: Algèbre de Boole
 - ☐ Chapitre 4: Circuits combinatoire
- Partie 3: Séquentielle
 - ☐ Chapitre 4: Las bascules
 - ☐ Chapitre 5: Les compteurs
 - ☐ Chapitre 6: Les registres
- Partie 4: Architecture de l'ordinateur
 - ☐ Chapitre 7: Architecture de base des microprocesseurs
 - ☐ Chapitre 8: Architecture de base des ordinateurs

Chapitre 1 : Systèmes de Numération

Les Systèmes de Numération: définition

Système de numération

- Défini comme un ensemble de règles permettant de représenter le nombre états d'un système
 - Il est composé d'un alphabet muni d'un certain nombre d'opérateurs permettant de lier les éléments de l'alphabet
 - Dans un Système de numération positionnel, la valeur du chiffre dépend de sa position dans la représentation du nombre;
 - Exemple : Système de numération décimal est positionnel
 - Système de numération romain est non positionnel

Numération de position

- Mathématiquement, la valeur d'un nombre N est représentée sous forme d'un plolynôme par n chiffres dans la base b.
 - $\mathbb{N} = a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + \dots + a_1b^1 + a_0b^0$
 - **Exemple** en base 10 (décimale) : $3254 = 3.10^3 + 2.10^2 + 5.10^1 + 4.10^0$
 - Un décalage à gauche multiplie un nombre par sa base
 - Un décalage à droite divise un nombre par sa base

Numération binaire

- L'alphabet est composé de deux symbôles {0, 1} appelés éléments binaires ou bit pour Binary digIT
- La base est 2, le système est pondéré par 2, c'est à dire les poids sont des puissances de 2
- L'addition et la multiplication sont les opérations de base
- Exemple de représentation d'un nombre en binaire
 - 10010₂ où le 2 en indice indique la base binaire
 - $10010_2 = 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 0x2^0$
 - Le bit le plus significatif, le bit le plus à gauche est appelé bit de poids fort ou MSB (Most Significant Bit).
 - Le bit le moins significatif, le bit le plus à droite est appelé bit de poids faible ou LSB (Less Significant Bit)
- Si on utilise n bits, on peut représenter 2^n valeurs différentes, de 0 à 2^n -1
- Exemple pour N=8 : 00000000 à 11111111

Numération en base 5

- L'alphabet est composé de 5 symbôles {0, 1, 2, 3, 4}
- La base est 5, le système est pondéré par 5, c'est à dire les poids sont des puissances de 5
- L'addition et la multiplication sont les opérations de base
- Exemple de représentation d'un nombre en base 5
 - 13042₅ où le 5 en indice indique la base
 - $13042_5 = 1x5^4 + 3x5^3 + 0x5^2 + 4x5^1 + 2x5^0$

Numération Octale

- Les nombres binaires sont souvent composés d'un grand nombre de bits, généralement ils sont exprimés en octale (b=8) ou en hexadécimal (b=16), car leur conversion avec le système binaire est plus simple
- L'alphabet est composé de 8 symbôles {0, 1, 2, 3, 4, 5, 6, 7}
- La base est 8 ou base octale, le système est pondéré par 8, c'est à dire les poids sont des puissances de 8
- L'addition et la multiplication sont les opérations de base
- Exemple de représentation d'un nombre en octal
 - 13762₈ où le 8 en indice indique la base
 - $13762_8 = (1x8^4 + 3x8^3 + 7x8^2 + 6x8^1 + 2x8^0)_{10}$
- L'intérêt de ce système est que la base 8 est une puissance de 2 (8 = 2³), donc les poids sont aussi des puissances de 2.
- Chaque symbole de la base octale peut être exprimé sur 3 éléments binaires

Numération hexadécmale

- L'alphabet est composé de 16 symbôles {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
 B, C, D, E, F}
- La base est 16, le système est pondéré par 16, c'est à dire les poids sont des puissances de 16
- L'addition et la multiplication sont les opérations de base hexadécmale
- Exemple de représentation d'un nombre en hexadécmale
 - $1A57F_{16}$ où le 16 en indice indique la base hexadécmale
 - $1A57F_{16} = (1x16^4 + 10x16^3 + 5x16^2 + 7x16^1 + 15x16^0)_{10}$
- L'intérêt de ce système est que la base 16 est une puissance de 2 (16 = 2⁴), donc les poids sont aussi des puissances de 2.
- Chaque symbole de la base hexadécmale peut être exprimé sur 4 éléments binaires

Conversion d'un système de numération à un autre (1)

- Plusieurs méthodes existent pour passer d'une base à une autre dont nous pouvons noter : la décomposition, la méthode de la division successive et celle de la soustraction successive. Des facilités de transition s'offrent également quand l'une des base est une puissance de l'autre
- Base B vers la base 10
- L'opération qui permet de passer de la base B vers la base 10 est appelée décodage
- Dans ce cas on fait une décomposition dans la base 10 en puissance de B
 - $(a_n....a_0)_B = a_n.B^n + + a_0.B^0 = (a_m^{Exemple})$
 - $(1001)_2 = 1.2^3 + 0.2^2 + 0.2^1 + 1.2^0 = 9_{10}$
 - $(A12)_{16} = 10.16^2 + 1.16^1 + 2.16^0$

Conversion d'un système de numération à un autre (2)

- Base 10 vers base B
- L'opération qui permet de passer de la base 10 vers une autre base est appelée codage
 - Méthode à divisons successives
 - Elle consiste à diviser successivement par B autant de fois que cela est nécessaire pour obtenir un quotient nul. Ensuite on écrit les restes dans l'ordre inverse de celui dans lequel ils ont été obtenus.
 - Exemple : base 10 vers base 2 : 20, 625₁₀=.....2

```
Partie entière - - - - - - - - - - - - Partie décimale 20/2 = 10 reste 0 - - - - - - - 0,625x2= 1 + 0,25 10/2 = 5 reste 0 - - - - - - - 0,25x2= 0 + 0,5 5/2 = 2 reste1 - - - - - - - 0,5x2= 1 + 0 2/2 = 1 reste 0 1/2 = 0 reste 1
20,625<sub>10</sub> = 10100, 101<sub>2</sub>
```

Conversion d'un système de numération à un autre (3)

Base 10 vers base B

- Méthode à soustractions successives
- Elle consiste à soustraire successivement la plus grande puissance de B multiplié par un élément de la base. on note l'élément de la base, et on continue de la même manière jusqu'à la plus petite puissance de B.
- Exemple1 : Base 10 vers base 2 :135₁₀=.....2
 - De 135 on peut (1) retirer 128 reste $7 -> 135 = 2^7 + 7$ (on met 1 en position 7 de la suite binaire)
 - De 7 on peut (1) retirer 4 reste $3 ->7 = 2^2 + 3$ (on met 1 en position 2 de la suite binaire)
 - De 3 on peut (1) retirer 2 reste 2 ->3=2¹+1 (on met 1 en position 1 de la suite binaire)
 - De 1 on peut (1) retirer 1 reste $0 -> 1 = 2^{0} + 0$ (on met 1 en position 0 de la suite binaire)
 - 135₁₀=10000111₂

Conversion d'un système de numération à un autre (4)

Base 10 vers base B

- Méthode à soustractions successives (suite)
- Exemple 2 : Base 10 vers base 8 239₁₀=.....8
 - $239 = 3.8^2 + 47 -> 3$ en position 2
 - \blacksquare 47 = 5.8¹ + 7 -> 5 en position 1
 - $= 7 = 7.8^{\circ} + 0 -> 7$ en position 0
 - 239₁₀=357₈

Conversion d'un système de numération à un autre (5)

Base 2ⁿ vers base 2

- Chaque symbole de la base B = 2ⁿ peut être représenté par n éléments binaires.
- Exemple 1 : Base $16 = 2^4$ vers base 2 $3A9_{16} = 001110101001_2$
- Exemple 2 : Base $8 = 2^3$ vers base 2 742, $5_8 = 111100010$, 101_2

Base 2 vers base 2^n

- Il suffit de regrouper les éléments binaires par paquets de n.
- Exemple : 1011011₂=₈
- $0 1011011_2 = 001 011 011 = 133_8$

1 3 3

1011011₂ = 0101 1011= 5 B_{16}

Conversion d'un système de numération à un autre (6)

Base i vers base j

- Si la base i et la base j sont différentes de 10, l'opération qui permet de passer de la base i vers la base j et inversement est appelée transcodage
 - si i et j sont des puissances de 2, on utilise la base 2 comme relais
 - Exemple : Base 8 -> base 2 -> base 16
 - sinon, on utilise la base 10 comme relais i.e faire une conversion de la base i vers La base 10 et de la base 10 vers la base j.
 - Exemple : Base 5 -> base 10 -> base 2

Arithmétique dans un système de numération positionnel

Addition binaire

Soustraction binaire

Multiplication binaire

Division binaire

Addition Binaire

L'addition binaire se fait avec les mêmes règles qu'en décimal.

- On commence par additionner les bits de poids faibles;
- On a des retenues lorsque la somme de deux bits de même poids dépasse la valeur de l'unité la plus grande (dans le cas du binaire : 1)
- Cette retenue est reportée sur le bit de poids plus fort suivant.

La table d'addition binaire est la suivante :

	Table de l'addition													
_	A B Résultat Retenue													
	+ 0 1 0 + 0 = 0 0													
	0	0	1	0	+	1	=	1	0					
	1	1	10	1	+	0	=	1	0					
L				1	+	1	=	0	1					

Exemple :

Soustraction Binaire

Dans la soustraction binaire, on procède comme en dcimal qu'en décimal.

- Quand la quantité à soustraire est supérieure à la quantité dont on soustrait, on emprunte 1 au voisin de gauche;
- En binaire, ce 1 ajoute 2 à la quantité dont on soustrait, tandis qu'en décimal il ajoute 10.

La table de soustraction binaire est la suivante :

T	Table de la soustraction													
	A B Résultat Retenue													
	- 0 1 0 - 0 = 0													
	0	0	11	0	-	1	=	1	1					
	1	1	0	1	-	0	=	1	0					
ı				1	-	1	=	0	0					

 Exemple 2:00011
01100
---1 \Leftarrow = 10111

La règle ne marche pas pour l'exemple2 A voir en complément à 1 ou à 2 oú la soustraction d'un nombre se réduit à l'addition de son complément

Multiplication Binaire

La table de multiplication binaire est la suivante

•

Table de la multiplication														
	A B Résultat													
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
	0	0	0	0	X	1	=	0						
	1	0	1	1	X	0	=	0						
				1	X	1	=	1						

Exemple :

$$\begin{array}{c} 1 & 0 & 1 & 1 & 0 \\ & & 1 & 0 & 1 \\ - & - & - & - & - \\ & & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & . \\ 1 & 0 & 1 & 1 & 0 & . \\ - & - & - & - & - & - \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \end{array}$$

Division Binaire

La table de la division binaire est la suivante

Table de la division

/	0	1
0		0
1	٠٠	1

Α		В		Résultat
0	/	0	=	impossible
0	/	1	=	0
1	/	0	=	impossible
1	/	1	=	1

Table d'addition

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	10
2	2	3	4	10	11
3	3	4	10	11	12
4	4	10	11	12	13

Table de multiplication

X	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	11	13
3	0	3	11	14	22
4	0	4	13	22	31

Addition en base 5

Table d'addition

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	10
2	2	3	4	5	6	7	10	11
3	3	4	5	6	7	10	11	12
4	4	5	6	7	10	11	12	13
5	5	6	7	10	11	12	13	14
6	6	7	10	11	12	13	14	15
7	7	10	11	12	13	14	15	16

Table de multiplication

X	0	1	2	3	4	5	6	7
0	0	0	2	3	4	5	6	7
1	0	1	2	3	4	5	6	7
2	0	2	4	6	10	12	14	16
3	0	3	6	11	14	17	22	25
4	0	4	10	14	20	24	30	34
5	0	5	12	17	24	31	36	43
6	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

Table d'addition

+	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
1	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10
2	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	11
3	3	4	5	6	7	8	9	Α	В	С	D	E	F	10	11	12
4	4	5	6	7	8	9	Α	В	С	D	E	F	10	11	12	13
5	5	6	7	8	9	Α	В	С	D	E	F	10	11	12	13	14
6	6	7	8	9	Α	В	С	D	E	F	10	11	12	13	14	15
7	7	8	9	Α	В	С	D	E	F	10	11	12	13	14	15	16
8	8	9	Α	В	С	D	E	F	10	11	12	13	14	15	16	17
9	9	Α	В	С	D	E	F	10	11	12	13	14	15	16	17	18
Α	Α	В	С	D	E	F	10	11	12	13	14	15	16	17	18	19
В	В	С	D	E	F	10	11	12	13	14	15	16	17	18	19	1 A
С	С	D	E	F	10	11	12	13	14	15	16	17	18	19	1 A	1 B
D	D	E	F	10	11	12	13	14	15	16	17	18	19	1 A	1 B	1 C
E	E	F	10	11	12	13	14	15	16	17	18	19	1A	1 B	1 C	1 D
F	F	10	11	12	13	14	15	16	17	18	19	1 A	1B	1 C	1 D	1 E

Table de multiplication

X	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
2	0	2	4	6	8	Α	С	E	10	12	14	16	18	1A	1 C	1 E
3	0	3	6	9	С	F	12	15	18	1 B	1 E	21	24	27	2 A	2 D
4	0	4	8	С	10	14	18	1 C	20	24	28	2 C	30	34	38	3 C
5	0	5	Α	F	14	19	1 E	23	28	2 D	32	37	3 C	41	46	4 B
6	0	6	С	12	18	1 E	24	2 A	30	36	3 C	42	48	4 E	54	5 A
7	0	7	E	15	1 C	23	2 A	31	38	3 F	46	4 D	54	5 B	62	69
8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	0	9	12	1 B	24	2 D	36	3 F	48	51	5 A	63	6 C	75	7 E	87
Α	0	Α	14	1 E	28	32	3 C	46	50	5 A	64	6 E	78	82	8 C	96
В	0	В	16	21	2 C	37	42	4 D	58	63	6 E	79	84	8 F	9 A	A 5
С	0	С	18	24	30	3 C	48	54	60	6 C	78	84	90	9 C	A8	B4
D	0	D	1 A	27	34	41	4 E	5 B	68	75	82	8 F	9 C	A 9	В6	С3
E	0	E	1 C	2 A	38	46	54	62	70	7 E	8 C	9 A	A8	В6	CA	D2
F	0	F	1 E	2 D	3 C	4 B	5 A	69	78	87	96	A 5	B 4	С3	D2	E1