```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl

from google.colab import drive
drive.mount('/content/drive')

___ Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount...)
```

Line Charts

```
col1 = np.linspace(0, 10, 1000)
col2 = np.sin(col1)
df = pd.DataFrame({"C1" : col1 , "C2" :col2})
df.head(10)
```

```
    C1 C2
    0 0.00000 0.000000
    1 0.01001 0.010010
    2 0.02002 0.020019
```

Plotting lineplot using sns.lineplot()
plt.style.use('seaborn-darkgrid')
%matplotlib inline
sns.lineplot(x=df.C1,y=df.C2,data=df)
plt.show()

- """ Adjusting background color using axes.facecolor
 - Changing label size using xtick.labelsize , ytick.labelsize ""'

```
plt.figure(figsize=(14,6))
sns.set(rc={"axes.facecolor":"#FFFDE7", "axes.grid":True,'xtick.labelsize':14,'ytick.la
sns.lineplot(x=df.C1,y=df.C2,data=df, linewidth = 2)
sns.lineplot(y=df.C1,y=df.C2+1,data=df, linewidth = 2)
```

3113. $\pm \pm 111$ cp ± 0.0 (Λ - α 1 , γ - α 1 , α - α 2)

plt.show()

- """ Adjusting background color using axes.facecolor
 - Changing label size using xtick.labelsize , ytick.labelsize """

```
plt.figure(figsize=(14,6))
sns.set(rc={"axes.facecolor":"yellow", "axes.grid":False,'xtick.labelsize':14,'ytick.la
sns.lineplot(x=df.C1,y=df.C2,data=df , color = "#FF5722" , linewidth = 2 )
sns.lineplot(x=df.C1,y=np.cos(df.C1),data=df , color = "#FFEB3B" , linewidth = 2)
plt.show()
```

С

Recover default matplotlib settings
mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline

import warnings
warnings.filterwarnings("ignore")

spotify = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seaborn
spotify.head(10)

₽

Shape of You Despacito Something Just Like This HUMBLE. Unforgettable

Date					
2017-01-06	12287078	NaN	NaN	NaN	NaN
2017-01-07	13190270	NaN	NaN	NaN	NaN
2017-01-08	13099919	NaN	NaN	NaN	NaN
2017-01-09	14506351	NaN	NaN	NaN	NaN
2017-01-10	14275628	NaN	NaN	NaN	NaN
2017-01-11	14372699	NaN	NaN	NaN	NaN
2047 04 42	4 4 4 4 0 4 0 0	NIONI	NI a NI	NIANI	NIANI

plt.figure(figsize=(20,8))

sns.lineplot(data=spotify)

plt.show()

 \Box


```
spotify.index = pd.to_datetime(spotify.index) # Converting datatype of index to Datetim
             NUMBER WEREN STANKING MOSS M.
plt.figure(figsize=(20,8))
sns.lineplot(data=spotify,linewidth = 2)
plt.title("Daily Global Streams")
plt.show()
С→
```

С→


```
# Using Matplotlib for same visualization
import matplotlib as mpl
plt.figure(figsize=(20,8))
plt.plot(spotify['Despacito'] , label="Despacito")
plt.plot(spotify['Shape of You'] , label="Shape of You")
plt.plot(spotify['Something Just Like This'] , label="Something Just Like This")
plt.plot(spotify['HUMBLE.'] , label="Humble")
plt.plot(spotify['Unforgettable'] , label="Unforgettable")
plt.legend()
plt.show()
```


So we can see using Seabon we can save many lines of code.

```
plt.figure(figsize=(20,6))
sns.lineplot(data=spotify['Despacito'],linewidth = 1.5 , label = 'Despacito')
sns.lineplot(data=spotify['HUMBLE.'],linewidth = 1.5 , label = 'Humble')
plt.show()
```

₽

le7

— Despacito

canada = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seaborn/ canada.head()

₽		Туре	Coverage	OdName	AREA	AreaName	REG	RegName	DEV	DevName	1980	1981	1982	1983	1984	1985
	0	Immigrants	Foreigners	Afghanistan	935	Asia	5501	Southern Asia	902	Developing regions	16	39	39	47	71	340
	1	Immigrants	Foreigners	Albania	908	Europe	925	Southern Europe	901	Developed regions	1	0	0	0	0	0
	2	Immigrants	Foreigners	Algeria	903	Africa	912	Northern Africa	902	Developing regions	80	67	71	69	63	44
	3	Immigrants	Foreigners	American Samoa	909	Oceania	957	Polynesia	902	Developing regions	0	1	0	0	0	0
	4	Immigrants	Foreigners	Andorra	908	Europe	925	Southern Europe	901	Developed regions	0	0	0	0	0	0

canada.columns

canada.drop(columns=['AREA' , 'DEV', 'DevName' , 'REG', 'Type', 'Coverage' , 'AreaName'
canada.head()

С

	OdName	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	199
0	Afghanistan	16	39	39	47	71	340	496	741	828	1076	1028	1378	1170	713	858	1537	2212	255
1	Albania	1	0	0	0	0	0	1	2	2	3	3	21	56	96	71	63	113	30
2	Algeria	80	67	71	69	63	44	69	132	242	434	491	872	795	717	595	1106	2054	184:
3	American Samoa	0	1	0	0	0	0	0	1	0	1	2	0	0	0	0	0	0	1
4	Andorra	0	0	0	0	0	0	2	0	0	0	3	0	1	0	0	0	0	(

canada.rename(columns={'OdName':'Country'} , inplace=True)
canada.set_index(canada.Country,inplace=True)
canada.head()

С→ Country 1980 1981 1982 1983 1984 1985 1986 1987 1988 Country Afghanistan Afghanistan **Albania** Albania Algeria Algeria **American** American Samoa Samoa **Andorra** Andorra

canada.index.name=None
canada.head()

С→

	Country	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Afghanistan	Afghanistan	16	39	39	47	71	340	496	741	828	1076	1028	1378	1170	713	858	1537
Albania	Albania	1	0	0	0	0	0	1	2	2	3	3	21	56	96	71	63
Algeria	Algeria	80	67	71	69	63	44	69	132	242	434	491	872	795	717	595	1106
American Samoa	American Samoa	0	1	0	0	0	0	0	1	0	1	2	0	0	0	0	0

del canada['Country']
canada.head()

₽		1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
	Afghanistan	16	39	39	47	71	340	496	741	828	1076	1028	1378	1170	713	858	1537	2212	2555
	Albania	1	0	0	0	0	0	1	2	2	3	3	21	56	96	71	63	113	307
	Algeria	80	67	71	69	63	44	69	132	242	434	491	872	795	717	595	1106	2054	1842
	American Samoa	0	1	0	0	0	0	0	1	0	1	2	0	0	0	0	0	0	0
	Andorra	0	0	0	0	0	0	2	0	0	0	3	0	1	0	0	0	0	0

canada = canada.transpose()

canada.head()

С→

```
Antigua
                                   American
          Afghanistan Albania Algeria
                                                                 Argentina Armenia Australia Austria Azerba
                                            Andorra Angola
                                                             and
                                      Samoa
                                                          Barbuda
     1980
                 16
                                80
                                         0
                                                 0
                                                               0
                                                                      368
                                                                               0
                                                                                       702
                                                                                              234
     1981
                 39
                                67
                                                 0
                                                               0
                                                                                       639
                                                                                              238
                                                                      426
                                                                               0
     1982
                         0
                                         0
                                                 0
                                                       6
                 39
                                71
                                                               0
                                                                      626
                                                                               0
                                                                                       484
                                                                                              201
plt.figure(figsize=(16,6))
plt.title("Immigrants from India", fontsize = 14)
sns.set(rc={"axes.facecolor":"#283747", "axes.grid":False,'xtick.labelsize':10,'ytick.l
plt.xticks(rotation=45) # Rotating X tickts by 45 degrees
```

С⇒

plt.show()

sns.lineplot(x = canada.index.values, y = canada['India'])

Immigrants from India

35000

```
ultiple countries in one plo
```

```
# Plotting multiple sets of data (E.g Immigration data of multiple countries in one plo
plt.figure(figsize=(16,6))
sns.set(rc={"axes.facecolor":"#283747", "axes.grid":False,'xtick.labelsize':10,'ytick.l
plt.title("Immigrants from India , Pakistan & Bangladesh",fontsize = 14)
plt.xticks(rotation=45) # Rotating X tickts by 45 degrees
sns.lineplot(x = canada.index.values, y = canada['India'] , color = '#ff9900' , label=
sns.lineplot(x = canada.index.values, y = canada['Pakistan'] , color = '#4586ff' , labe
sns.lineplot(x = canada.index.values, y = canada['Bangladesh'] , color = '#a2ef44' , la
plt.legend(facecolor= 'grey' , fontsize='large' , edgecolor = 'black' ,shadow=True) # L
plt.show()
```

 \Box

Immigrants from India Pakistan & Bangladesh

```
# Plotting multiple sets of data using for loop (E.g Immigration data of multiple count
plt.figure(figsize=(16,6))
plt.title("Immigrants",fontsize = 16)
for i in canada.columns:
    if canada[i].name != 'Total' and canada[i].name != 'Unknown':
        x=canada.index.values
        y=canada[i]
        sns.lineplot(x,y)
plt.xlabel ('Year')
plt.ylabel ('Country')
plt.show()
```


1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Year

Recover default matplotlib settings
mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline

employment = pd.read_excel("/content/drive/My Drive/Python DataScience/Visualization/Se
employment.head(10)

₽		Age	Gender	Period	Unemployed
	0	16 to 19 years	Men	2005-01-01	91000
	1	20 to 24 years	Men	2005-01-01	175000
	2	25 to 34 years	Men	2005-01-01	194000
	3	35 to 44 years	Men	2005-01-01	201000
	4	45 to 54 years	Men	2005-01-01	207000
	5	55 to 64 years	Men	2005-01-01	101000
	6	65 years and over	Men	2005-01-01	33000
	7	16 to 19 years	Women	2005-01-01	38000
	8	20 to 24 years	Women	2005-01-01	90000
	9	25 to 34 years	Women	2005-01-01	142000

employment.dtypes

Gender object
Period datetime64[ns]
Unemployed int64
dtype: object

```
plt.figure(figsize=(14,7))
plt.style.use('seaborn-darkgrid')
# Group variable using "hue" that will produce lines with different colors
sns.lineplot(x="Period" , y="Unemployed" , hue="Gender" , data=employment) # ,ci=None
plt.show()
```



```
# Using markers to identify groups
plt.figure(figsize=(14,7))
plt.style.use('seaborn-darkgrid')
sns.lineplot(x="Period" , y="Unemployed" , hue = "Gender" ,style="Gender" , markers=Tru
plt.show()
```



```
plt.figure(figsize=(14,7))
plt.style.use('seaborn-darkgrid')
sns.lineplot(x="Period" , y="Unemployed" , hue = "Gender" ,style="Gender" , err_style=
plt.show()
```

https://colab.research.google.com/drive/1pO9pSYq3c0ITSFRSI9e-KqSNxFSRMy1V?authuser=1#printMode=true

https://colab.research.google.com/drive/1pO9pSYq3c0ITSFRSI9e-KqSNxFSRMy1V?authuser=1#printMode=true


```
# Color and line dashing to represent 2 different grouping variables using "hue" & "sty
plt.figure(figsize=(16,9))
plt.style.use('seaborn-darkgrid')
plt.gcf().text(.2, .84, "Line Plot", fontsize = 40, color='Black', ha='center', va='cen
sns.lineplot(x="Period", y="Unemployed", hue="Age", style="Gender",data=employment)
plt.show()
```

С→

emp = employment[employment.Period.between('2005-01-01', '2006-01-01' , inclusive = Tru
emp.tail()

₽		Age	Gender	Period	Unemployed
	177	25 to 34 years	Women	2006-01-01	92000
	178	35 to 44 years	Women	2006-01-01	134000
	179	45 to 54 years	Women	2006-01-01	110000
	180	55 to 64 years	Women	2006-01-01	85000
	181	65 years and over	Women	2006-01-01	61000

```
#Showing all experiments instead of Aggregate using "units" and "estimator"
plt.figure(figsize=(14,7))
plt.style.use('seaborn-darkgrid')
sns.lineplot(x="Period" , y="Unemployed" , hue = "Age" ,style="Gender" ,
   units="Age" ,markers=True , dashes=False ,estimator=None, lw=1,data=emp)
plt.legend(bbox_to_anchor=(1.0, 1.0) , shadow=True, fontsize='large')
nlt.show()
```



```
# Combining lineplots using relplot
plt.figure(figsize=(10,10))
sns.set(rc={'xtick.labelsize':17,'ytick.labelsize':17,'axes.labelsize':20 , "axes.grid
sns.relplot(x="Period" , y="Unemployed" , hue="Age" , col="Gender",kind='line', height=
plt.show()
```

₽

₽

Country Confirmed	Recovered	Deaths
-------------------	-----------	--------

Date				
2020-01-22	Afghanistan	0	0	0
2020-01-22	Albania	0	0	0
2020-01-22	Algeria	0	0	0
2020-01-22	Andorra	0	0	0
2020-01-22	Angola	0	0	0
2020-01-22	Antique and Rarhuda	Λ	Λ	Λ

corona.head()

Country Confirmed Recovered Deaths

Date				
2020-01-22	Afghanistan	0	0	0
2020-01-22	Albania	0	0	0
2020-01-22	Algeria	0	0	0
2020-01-22	Andorra	0	0	0
2020-01-22	Angola	0	0	0

```
plt.figure(figsize=(20,6))
sns.lineplot(data=corona[corona['Country'] == 'Italy']['Confirmed'] , label = "Confirme
sns.lineplot(data=corona[corona['Country'] == 'Italy']['Deaths'] , label = "Deaths")
sns.lineplot(data=corona[corona['Country'] == 'Italy']['Recovered'], label = "Recovered
plt.title("Total Confirmed Cases / Deaths / Recovered in Italy")
plt.show()
```

 \Box


```
plt.figure(figsize=(20,6))
sns.lineplot(data=corona[corona['Country'] == 'US']['Confirmed'] , label = "Confirmed")
sns.lineplot(data=corona[corona['Country'] == 'US']['Deaths'] , label = "Deaths")
sns.lineplot(data=corona[corona['Country'] == 'US']['Recovered'], label = "Recovered")
plt.title("Total Confirmed Cases / Deaths / Recovered in USA")
plt.show()
```


▼ Plot Styling

```
# Enabling whitegrid style
sns.set_style("whitegrid")
plt.figure(figsize=(20,6))
sns.lineplot(data=corona[corona['Country'] == 'US']['Confirmed'] , label = "Confirmed")
sns.lineplot(data=corona[corona['Country'] == 'US']['Deaths'] , label = "Deaths")
sns.lineplot(data=corona[corona['Country'] == 'US']['Recovered'], label = "Recovered")
plt.title("Total Confirmed Cases / Deaths / Recovered in USA")
plt.show()
```

U.D

С→

There will be horizontal grid lines in the background for "whitegrid" style.

```
# Enabling darkgrid style
sns.set_style("darkgrid")
plt.figure(figsize=(20,6))
sns.lineplot(data=corona[corona['Country'] == 'US']['Confirmed'] , label = "Confirmed")
sns.lineplot(data=corona[corona['Country'] == 'US']['Deaths'] , label = "Deaths")
sns.lineplot(data=corona[corona['Country'] == 'US']['Recovered'], label = "Recovered")
plt.title("Total Confirmed Cases / Deaths / Recovered in USA")
plt.show()
```


There will be horizontal grid lines in the background for "darkgrid" style. Also we will see a dark Background.

```
# Ticks Style
sns.set_style("ticks")
plt.figure(figsize=(20,6))
sns.lineplot(data=corona[corona['Country'] == 'US']['Confirmed'] , label = "Confirmed")
sns.lineplot(data=corona[corona['Country'] == 'US']['Deaths'] , label = "Deaths")
sns.lineplot(data=corona[corona['Country'] == 'US']['Recovered'], label = "Recovered")
plt.title("Total Confirmed Cases / Deaths / Recovered in USA")
plt.show()
```


There will be no horizontal grid lines in the background for "ticks" style. We will only see ticks in X & Y axis

1.0 -

$\bullet \ Revert \ to \ default \ styling$

[] 41 cell hidden