1 Expected value of kth element of an ordered sequence of elements from some interval

1.1 Question:

Let each ordered sequence of n unique elements X_1, \ldots, X_n from the interval (a, b) be equally probable. What is the expected value of the element X_k ?

1.2 Answer:

Consider random variables Y_1, \ldots, Y_n sampled from a uniform distribution over (a, b) such that no two Y_i are equal. First, we show that any ordered sequence made from Y_1, \ldots, Y_n is equally probable.

Let $X_1 = Y_{i_1}, \ldots, X_n = Y_{i_n}$ be the ordered sequence made from our random variables Y_1, \ldots, Y_n . Then we see the probability density function, f, at a specific random sequence is

$$f_X([X_1, \dots, X_n]) = \sum_{Y_1, \dots, Y_n \in \text{Permuations}(X_1, \dots, X_n)} f_{Y_1, \dots, Y_n}(Y_1, \dots, Y_n)$$

$$= \sum_{Y_1, \dots, Y_n \in \text{Permuations}(X_1, \dots, X_n)} f_{Y_1}(Y_1) \cdots f_{Y_n}(Y_n)$$

Note that the value of a uniform probability does not change if we introduce a finite number of holes (as the integral over the pdf does not change in value), thus:

$$f_{Y_i}(Y_i) = \begin{cases} \frac{1}{b-a}, & \text{if } Y_i \in (a,b) \text{ and } Y_i \neq Y_j \text{ for } j \neq i \\ 0, & \text{otherwise} \end{cases}$$

NOTE: I think I can rewrite it this way, because all I'm doing is reorganizing the points of the composite Y pdf into groups that produce the same ordered sequence. So when I integrate over the pdf of the ordered sequences, it's integrating over the same region as the composite Y pdf. But the multiplier of n! can't be right or the pdf for f_X will integrate to greater than 1!

Therefore we can rewrite f_X :

$$f_X([X_1, \dots, X_n]) = \sum_{Y_1, \dots, Y_n \in \text{Permuations}(X_1, \dots, X_n)} \frac{1}{(b-a)^n}$$
$$= \frac{n!}{(b-a)^n}$$