TD 1

Méthodes et techniques de calcul

† Domaines de définition

Exercice I

a) Calculer les domaines de définition des fonctions suivantes

$$f_1(x) = ln(x-4)$$
 , $f_2(x) = \sqrt{2x+1}$, $f_3(x) = \frac{x^2+x-4}{3x-4}$

b) Déterminer le domaine de définition ainsi que le signe des fonctions suivantes

$$g_1(x) = x^2 + 3x - 4,$$
 $g_2(x) = \frac{x+1}{x-1},$ $g_3(x) = \sin(x)$

c) Déterminer les domaines de définition des fonctions suivantes

$$h_1(x) = \sqrt{x^2 + 3x - 4}$$
 $h_2(x) = \ln(x^2 + 3x - 4),$ $h_3(x) = \frac{1}{x^2 + 3x - 4}$
 $h_4(x) = \sqrt{\frac{x+1}{x-1}}$ $h_5(x) = \ln(\frac{x+1}{x-1}),$ $h_6(x) = \frac{1}{\frac{x+1}{x-1}}$
 $h_7(x) = \sqrt{\sin(x)},$ $h_8(x) = \ln(\sin(x)),$ $h_9(x) = \frac{1}{\sin(x)}$

Exercice II

Calculer les domaines de définitions des fonctions définies par les formules suivantes :

$$f_1(x) = \frac{3x+1}{x^2-5x+6}, f_2(x) = \sqrt{x^2-3x+2}, f_3(x) = \sqrt{x^2-x+1},$$

$$f_4(x) = \ln(-x^2+1), f_5(x) = \frac{1}{\sqrt{-x^2+2x-1}}, f_6(x) = \sqrt{3x+2} - \frac{1}{3-x},$$

$$f_7(x) = \frac{\ln(x+2)}{x^2+2x-3}, f_8(x) = \sqrt{\frac{2x-1}{x+3}},$$

Exercice III Calculer les domaines de définition des fonctions suivantes

$$f_1(x) = \sqrt{\sqrt{16 + x^2} - 5}.$$
 $f_2(x) = \frac{x^2}{\sin(2x+1)},$ $f_3(x) = \ln(\cos(x))$
 $f_4(x) = \sqrt{x^3 - 2x^2 - x + 2},$ $f_5(x) = \sqrt{tg(x)}$

Pour ces trois exercices on écrira les domaines de définition comme des unions d'intervalles disjoints.

 \dagger Continuité

Exercice IV

Calculer les domaines de définition et de continuité des fonctions suivantes :

1)
$$f: \mathbf{R} \to \mathbf{R}; x \mapsto f(x) = E(3x+2)$$
 où E est la fonction partie entière.

2)
$$g: \mathbf{R} \to \mathbf{R}; x \mapsto g(x)$$
 avec $g(x) = \frac{1}{x+1}$ si $x \neq -1$ et $g(-1) = 2$.

Exercice V

Quels sont les domaines de continuité des fonctions définies par les formules suivantes

1)
$$f(x) = \sin(\frac{1}{x})$$
 si $x \neq 0$ et $f(0) = 0$.

2)
$$g(x) = x.\sin(\frac{1}{x})$$
 si $x \neq 0$ et $g(0) = 0$.

† Théorème des valeurs intermédiaires

Exercice VI

Montrer que l'équation

$$3x + 1 + \sin(x) = 0$$

admet au moins une solution dans l'intervalle] $-\frac{\pi}{2}$, 0[.

Exercice VII

Montrer que toutes les équations de degré impair admettent au moins une solution réelle.

Exercice VIII

- 1) Soit f une fonction de [0,1] vers [0,1] continue sur [0,1] et telle que f(0)=1 et f(1)=0, montrer que l'équation f(x)=x admet au moins une solution.
- 2) Donner le tableau des variations de la fonction $x \mapsto h(x) = x^3 + 2x^2 7x + 1$. Combien de solution l'équation h(x) = a où a est un réel donné admet-elle? (on discutera selon les valeurs de a)
- † Dérivabilité, domaine de dérivabilité

Exercice IX

Déterminer le domaine de définition, de continuité, de dérivabilité des fonctions suivantes, donner une expression de leur fonctions dérivées.

$$f(x) = 2x^3 + 3x - 4,$$
 $g(x) = ln(x^2 + 1),$ $h(x) = sin^2(3x + 1)$

Exercice X

Calculer les domaines de définition, de continuité et de dérivabilité des fonctions suivantes, Calculer les expressions des fonctions dérivées :

$$f_1(x) = \sqrt{x^2 - 6x + 8},$$
 $f_2(x) = \sqrt{\frac{x-1}{x+3}},$ $f_3(x) = |x^2 - 4x + 3|,$
 $f_4(x) = \ln(\frac{x-1}{x+2}),$ $f_5(x) = e^{\sqrt{x^2 - 3x + 2}},$ $f_6(x) = \sin(\frac{1}{x})$

Exercice XI*

Etudier la continuité et la dérivabilité de la fonction définie par la formule

$$f(x) = x^2 \sin(1/x) \text{ si } x \neq 0$$
$$f(0) = 0$$