culmi - soluție

Numărul de combinații corecte posibile reprezintă exact numerele Catalan $\mathbf{C}_{\mathbf{n}}$.

Pentru n=3, configurațiile corecte sunt în număr de $5 = \mathbb{C}_3$.

Așa cum se cunoaște numărul Catalan de ordin n este

$$C_n = \frac{C_{2n}^n}{n+1}$$

Numerele Narayana sunt date de formula:

$$N(n,k) = \frac{1}{n} C_n^k C_n^{k-1}, 1 \le k \le n$$

și reprezintă o descompunere a numerelor Catalan dată de următoarea sumă

$$\sum_{k>0} N(n,k) = C_n$$

Tabelul primelor numere Narayana și sumele corespunzătoare sunt:

n k	0	1	2	3	4	5	6	7	$\Sigma = C_n$
0	1								1
1	0	1							1
2	0	1	1						2
3	0	1	3	1					5
4	0	1	6	6	1				14
5	0	1	10	20	10	1			42
6	0	1	15	50	50	15	1		132
7	0	1	21	105	175	105	21	1	429

Urmărind "munții" figurați conform convenției se observă că N(n,k) reprezintă numărul de "munți" care au exact k vârfuri adică cerința problemei.

Pentru obținerea unei soluții corecte pentru toate cazurile este necesară implementarea operațiilor pe numere mari. Soluțiile implementate fără numere mari pot lua maxim 30 puncte.