SEMINARIO DE SOLUCION DE PROBLEMAS DE TRADUCTORES DE LENGUAJES I - PRACTICA 13

INTRODUCCION

... continuando con el MD indexado.*

PRACTICA 13: IDENTIFICACION DE COP DE MD IDX UTILIZANDO LAS FORMULAS 1-6 EXCEPTO LA

MODIFICARA EL PROGRAMA DE LA PRACTICA ANTERIOR DE MANERA QUE OBTENGA MEDIANTE EL ALGORITMO DE 2 PASOS(CONLOC, LST, TABSIM) EL COP DEL MODO DE DIRECCIONAMIENTO INDEXADO.

DIRECCIONAMIENTO INDEXADO.

En este, los registros internos indexados son el segundo operador, lo que hace que:

- El operando se encuentra en memoria.
- Registro índice: se modifica a menudo en la ejecución del programa

Al igual que todos y cada uno de los modos de direccionamiento cada estructura, representa una accion diferente. Para llevar a cabo la traduccion correcta se presenta la siguiente figura, que es una tabla de modos de direccionamiento indexado (formas fuente)

Para saber que formula se utilizara, debemos determinar:

- P1. que la línea de programa esta utilizando modo de direccionamiento indexado
- P2. la forma fuente del modo de indexado (n,r)
- P3. formula aplicar, de acuerdo al rango. Se tienen 6 formulas

Chequemos por puntos:

Línea de programa	P1	P2	Р3
LDAA 5,y	IDX	n,r	1
LDAA -15,SP	IDX	-n,r	1
LDAA A, PC	IDX	A,r	5
LDAA [45,PC]	IDX	[n,r]	3
LDAA [D, PC]	IDX	[D,r]	6
LDAA \$4000,X	IDX	n,r	2
IBNE X, \$4000	ES REL DE 9		

Postbyte Code (xb)	Source Code Syntax	Comments rr; 00 = X, 01 = Y, 10 = SP, 11 = PC		
rrünnnnn	ı, ı,n ı,n–	5-bit constant offset n = -16 to +15 r can specify X, Y, SP, or PC		
111rrūzs	n.r -n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte(s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) r can specify X, Y, SP, or PC	-256 ≤ n ≤ 255 -32,768 ≤ n ≤ 65,535	
111m011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC	-32,768 ≤ n ≤ 65,535	
rripnnnn	n,-r n,+r n,r- n,r+	Auto predecrement, preincrement, postdecrement, or p = pre-(0) or post-(1), n = -8 to -1, +1 to +8 r can specify X, Y, or SP (PC not a valid choice) +8 = 0111 +1 = 0000 -1 = 11118 = 1000	r postincrement;	
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 6-bit or 16-bit) aa-00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect r can specify X, Y, SP, or PC		
11111111	[0,r]	Accumulator D offset Indexed-Indirect r can specify X, Y, SP, or PC		

Línea de programa	MD	FORMA FUENTE	FORMULA	СОР
LDAA 1,X	IDX	n,r	F1(rr 0 nnnnn)	A6 xb 01
			00 0 00001 ⇒ 01	
LDAA 16,Y	IDX	n,r	F2(111 rr 0 z s)	A6 xb E8 10
			111 01 0 00⇒E8	
LDAA 10,X	IDX	n,r	F1(rr 0 nnnnn)	A6 xb OA
			00 0 01010⇒0A	
LDAA -10,Y	IDX	-n,r	F1(rr 0 nnnnn)	A6 xb 56
			01 0 10110⇒56	
LDAA [1,X]	IDX	[n,r]	F3(111 rr 0 11)	A6 xb-E3 0001
			111 00 0 11⇒E3	
LDAA B,PC	IDX	B,r	F5(111 rr 1 aa)	A6 xb-FD
			111 11 1 01⇒FD	
LDAA [D,X]	IDX	B,r	F6(111 rr 111)	A6 xb E7
			111 00 111⇒E7	
LDAA [255,X]	IDX	[n,r]	F3(111 rr 11)	A6 xb ee ff E3 00FF
			111 00 11⇒E3	
LDAA [256,X]	IDX	[n,r]	F3(111 rr 11)	A6 xb ee ff E3 0100
			111 00 11⇒E3	
LDAA [256,PC]	IDX	[n,r]	F3(111 rr 11)	A6 xb eeff FF 0100
			111 11 11⇒FF	