Problemas de valores fronteira

1/17

Problemas de valores fronteira

Problemas de valores fronteira (boundary value problems BVP) - equações diferenciais para as quais não temos todos os valores das variáveis dependentes e suas derivada para um determinado valor da variável independente mas, em alternativa, temos os valores dessas variáveis dependentes em mais do que um valor da variável independente.

Exemplo: considere uma equação diferencial de ordem 2

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = f(y, y', t)$$

- Problema de valor inicial são dados $y(t_0)$ e $y'(t_0)$;
- Problema de valor fronteira são dados $y(t_0)$ e $y(t_1)$

Métodos numéricos para BVPs

Os métodos para BVPs abordados em Física Computacional são de dois tipos:

- Métodos de Shooting que consistem em:
 - arbitrar um conjunto de condições iniciais;
 - integrar numericamente por um método adequado a problemas de valor inicial;
 - no final da integração, verificar quão o resultado se afasta/aproxima das condições fronteira desejadas;
 - ajustar as condições iniciais de maneira a aproximarmo-nos da solução pretendida;

repetir o processo tantas vezes quantas forem necessárias.

Métodos de diferenças finitas que reescreve a equação diferencial na forma de um sistema de equações algébricas, usando aproximações de diferenças finitas para as derivadas.

Exemplo — Modos normais de vibração

Consideremos uma corda com densidade linear μ que está sujeita a uma tensão T e que se encontra fixa nas duas extremidades, x=0 e x=L, logo y(0)=y(L)=0. Sabemos que a corda vibra com modos normais de vibração que são soluções da equação

$$\frac{T}{\mu}\frac{\mathsf{d}^2y(x)}{\mathsf{d}x^2}+\omega^2y(x)=0$$

A cada modo normal de vibração, identificado pelo índice $n=1,2,3,\ldots$, corresponde uma frequência ω_n .

Problema de valores próprios

Este tipo de problema cujo equação diferencial se pode escrever na forma

$$\mathcal{L}y(x) = \lambda y(x)$$
, \mathcal{L} é um operador diferencial

designa-se por **problema de valores próprios**.

A equação das vibrações da corda pode ser reescrita

$$\frac{\mathrm{d}^2 y(x)}{\mathrm{d} x^2} = -\frac{\mu}{T} \omega^2 y(x)$$

onde identificamos o valor próprio como $-\frac{\mu}{T}\omega^2$. No entanto, como T e μ são constantes é usual designar ω como o valor próprio.

Modos normais de vibração

Uma vez que a equação diferencial é linear, se uma dada função y(x) for solução, o produto dessa função por qualquer constante é ainda uma solução, com o mesmo valor próprio. Assim, embora tenhamos apenas os valores de y nas fronteiras y(0) = y(L) = 0, podemos usar um qualquer valor não nulo de y'(0), obtendo apenas uma amplitude diferente.

No entanto, geralmente as frequências ω_n não são conhecidas. Neste caso, conhecemo-las porque o problema tem solução analítica.

Problemas diferenciais de valores próprios são um tipo de BVPs – geralmente, neste tipo de problemas, faltam-nos condições iniciais e o valor dos valores próprios.

Existem outros tipos de BVPs que não são propriamente problemas de valores próprios mas para os quais também não conhecemos um dado parâmetro.

Método das diferenças finitas

No método das diferenças finitas as derivadas num ponto são substituídas por diferenças entre valores da função em pontos vizinhos.

Vamos voltar a trabalhar com base na série de Taylor, para encontrar aproximações para as derivadas.

Método das diferenças finitas

$$y(x+h) = y(x) + y^{(1)}(x)h + \frac{1}{2!}y^{(2)}(x)h^2 + \frac{1}{3!}y^{(3)}(x)h^3 + \dots$$

$$y(x-h) = y(x) - y^{(1)}(x)h + \frac{1}{2!}y^{(2)}(x)h^2 - \frac{1}{3!}y^{(3)}(x)h^3 + \dots$$

Usando a primeira expansão, obtemos a aproximação de **diferenças progressivas** para a primeira derivada:

$$y'(x) = \frac{y(x+h) - y(x)}{h} + O(h)$$

Usando a segunda expansão, obtemos a aproximação de **diferenças regressivas** para a primeira derivada:

$$y'(x) = \frac{y(x) - y(x - h)}{h} + O(h)$$

Método das diferenças finitas

$$y(x+h) = y(x) + y^{(1)}(x) \cdot h + \frac{1}{2!}y^{(2)}(x) \cdot h^2 + \frac{1}{3!}y^{(3)}(x) \cdot h^3 + \dots$$
$$y(x-h) = y(x) - y^{(1)}(x) \cdot h + \frac{1}{2!}y^{(2)}(x) \cdot h^2 - \frac{1}{3!}y^{(3)}(x) \cdot h^3 + \dots$$

Subtraindo as duas expansões, obtemos a aproximação de **diferenças centradas** para a primeira derivada:

$$y'(x) = \frac{y(x+h) - y(x-h)}{2h} + O(h^2)$$

Somando as duas expansões, obtemos a aproximação de **diferenças** centradas para a segunda derivada:

$$y''(x) = \frac{y(x+h) - 2y(x) + y(x-h)}{h^2} + O(h^2)$$

Voltemos à equação diferencial:

$$\frac{T}{\mu}\frac{\mathsf{d}^2y(x)}{\mathsf{d}x^2}+\omega^2y(x)=0$$

Consideremos uma grelha de N pontos discretos no domínio de integração, neste caso entre 0 e L. Para um dado ponto de índice k, substitui-se a segunda derivada pela sua aproximação de diferenças finitas centradas:

$$\frac{y_{k+1} - 2y_k + y_{k-1}}{h^2} = -\frac{\omega^2 \mu}{T} y_k$$

A equação diferencial deu origem a um sistemas de N equações algébricas:

$$\begin{cases} y_1 = 0 \\ \frac{y_3 - 2y_2 + y_1}{h^2} = -\frac{\omega^2 \mu}{T} \cdot y_2 \\ \frac{y_4 - 2y_3 + y_2}{h^2} = -\frac{\omega^2 \mu}{T} \cdot y_3 \\ \vdots \\ \frac{y_N - 2y_{N-1} + y_{N-2}}{h^2} = -\frac{\omega^2 \mu}{T} y_{N-1} \\ y_N = 0 \end{cases}$$

As N-2 equações centrais podem ser expressas em notação matricial, depois de substituir os valores de y_0 e y_N :

$$\begin{bmatrix} -2 & 1 & & & & \\ 1 & -2 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_3 \\ \vdots \\ y_{N-2} \\ y_{N-1} \end{bmatrix} = -\frac{\omega^2 \mu}{T} h^2 \begin{bmatrix} y_2 \\ y_3 \\ \vdots \\ y_{N-2} \\ y_{N-1} \end{bmatrix}$$

Esta é a equação de valores próprios da matriz A:

$$\mathbf{A}\mathbf{y} = \lambda \mathbf{y}$$

Como **A** é uma matriz tridiagonal, é bastante fácil determinar todos os valores próprios. Na aula prática, vamos usar uma rotina do Matlab.

Os 5 valores próprios de módulo mais baixo, por exemplo, permitem-nos obter as frequências angulares dos primeiros 5 modos normais de vibração.

O erro numérico é menor quanto mais baixo é o modo normal de vibração.

Nos métodos de shooting, o processo de ajuste de condições iniciais e/ou parâmetros (ou valor próprio) no final de cada integração é uma parte importante do algoritmo. O método proposto em FC para esta parte do algoritmo é o **método da secante**.

Considere um problema de valores fronteira

$$\frac{d^2y}{dt^2} = f(y, y', t), \quad y(t_0) = A \quad e \quad y(t_1) = B$$

- Falta-nos a condição inicial $y'(t_0)$, para a qual usamos uma primeira estimativa guess(1)
- Integramos a equação usando $y(t_0) = A$ e $y'(t_0) = guess(1)$ desde t_0 até t_1 obtendo $y(t_1) = result(1)$.
- Usamos uma outra estimativa, n\u00e3o muito afastada da primeira, guess(2).
- Voltamos a integrar, agora usando $y(t_0) = A$ e $y'(t_0) = guess(2)$, obtendo $y(t_1) = result(2)$

Partindo do princípio que $y(t_1)$ é uma função de $y'(t_0)$, (guess, result) são pontos dessa função, conforme se ilustra no gráfico. Usamos a secante para estimar uma nova guess(3) para a qual a solução tem como valor fronteira um valor mais próximo de B

Declive da secante:

$$m = \frac{result(2) - result(1)}{guess(2) - guess(1)}$$

Ordenada na origem:

$$b = result(2) - m \times guess(2)$$

• Nova estimativa para $y'(t_0)$, ou seja *guess*(3):

$$guess(3) = guess(2) + \frac{B - result(2)}{m}$$

- Integramos de novo, agora usando $y(t_0) = A$ e $y'(t_0) = guess(3)$, obtendo $y(t_1) = result(3)$.
- O processo terá que ser repetido até que as duas últimas estimativas para $y'(t_0)$ (*guesses*) não difiram mais que uma determinada tolerância pré-estabelecida.

No caso genérico, o método da secante fica:

Declive da secante:

$$m = \frac{result(i) - result(i-1)}{guess(i) - guess(i-1)}$$

• Nova estimativa para $y'(t_0)$, ou seja guess(i + 1):

$$guess(i+1) = guess(i) + \frac{B - result(i)}{m}$$

Lembre-se que:

- a guess(i) é a estimativa sucessiva de um valor inicial ou parâmetro que não conhecemos e queremos determinar;
- o result(i) é o resultado que vamos obtendo com a guess(i), usualmente para um valor na fronteira;
- B é o resultado pretendido para result que nos foi dado no início do problema.