

SIPMOS® Small-Signal-Transistor

Features

- N-channel
- Depletion mode
- dv/dt rated
- ullet Available with $V_{\mathrm{GS(th)}}$ indicator on reel
- Pb-free lead plating; RoHS compliant
- Qualified according to AEC Q101
- Halogen-free according to IEC61249-2-21

Product Summary

V _{DS}	400	V
R _{DS(on),max}	24	Ω
I _{DSS.min}	40	mA

PG-SOT223

Туре	Package	Tape and Reel	Marking	Halogen-	Packaging
BSP179	PG-SOT223	H6327: 1000 pcs/reel	BSP179	Yes	Non dry
BSP179	PG-SOT223	H6906: 1000 pcs/reel sorted in V _{GS(th)} bands ¹⁾	BSP179	Yes	Non dry

Maximum ratings, at T_i =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	T _A =25 °C	0.21	А
		T _A =70 °C	0.17	
Pulsed drain current	I _{D,pulse}	T _A =25 °C	0.83	$oldsymbol{f L}$
Reverse diode dv/dt	dv/dt	$I_{\rm D}{=}0.21$ A, $V_{\rm DS}{=}20$ V, di/d $t{=}200$ A/ $\mu{\rm s}$, $T_{\rm j,max}{=}150$ °C	6	kV/μs
Gate source voltage	$V_{\rm GS}$		±20	V
ESD sensitivity (HBM) as per JESD-A114-HBM			1A (>250V, <500V)	
Power dissipation	P_{tot}	T _A =25 °C	1.8	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150	°C
IEC climatic category; DIN IEC 68-1			55/150/56	

¹⁾ see table on next page and diagram 11

Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.]
Thermal characteristics						
Thermal resistance, junction - soldering point (pin 4)	$R_{ m thJS}$		-	-	25	K/W
SMD version, device on PCB	R_{thJA}	minimal footprint	-	-	115]
		6 cm ² cooling area ²⁾	-	-	70	

Electrical characteristics, at T_i =25 °C, unless otherwise specified

$V_{(BR)DSS}$	V _{GS} =-3 V, I _D =250 μA	400	-	-	V
$V_{\rm GS(th)}$	V _{DS} =3 V, I _D =94 μA	-2.1	-1.4	-1	
I _{D(off)}	$V_{\rm DS}$ =400 V, $V_{\rm GS}$ =-3 V, $T_{\rm j}$ =25 °C	-	-	0.1	μΑ
	V _{DS} =400 V, V _{GS} =-3 V, T _j =150 °C	-	-	10	
I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	-	100	nA
I _{DSS}	V _{GS} =0 V, V _{DS} =10 V	40	-	-	mA
R _{DS(on)}	V _{GS} =0 V, I _D =0.01 A	-	18	24	Ω
	V _{GS} =10 V, I _D =0.21 A	-	13	18	1
g_{fs}	V _{DS} >2 I _D R _{DS(on)max} , I _D =0.17 A		0.21	-	s
bands ³⁾					•
$V_{GS(th)}$	V _{DS} =3 V, I _D =94 μA	-1.2	-	-1	V
		-1.35	-	-1.15	
		-1.5	-	-1.30	
		-1.65	-	-1.45	
		-1.8	-	-1.6	
	$V_{ m GS(th)}$ $I_{ m D(off)}$ $I_{ m GSS}$ $I_{ m DSS}$ $R_{ m DS(on)}$ $g_{ m fs}$	$V_{\rm GS(th)} \qquad V_{\rm DS} = 3 \text{ V, } I_{\rm D} = 94 \mu \text{A}$ $I_{\rm D(off)} \qquad V_{\rm DS} = 400 \text{ V, } V_{\rm GS} = -3 \text{ V,}$ $I_{\rm T} = 25 \text{ °C}$ $V_{\rm DS} = 400 \text{ V, } V_{\rm GS} = -3 \text{ V,}$ $I_{\rm T} = 150 \text{ °C}$ $I_{\rm GSS} \qquad V_{\rm GS} = 20 \text{ V, } V_{\rm DS} = 0 \text{ V}$ $I_{\rm DSS} \qquad V_{\rm GS} = 0 \text{ V, } V_{\rm DS} = 10 \text{ V}$ $R_{\rm DS(on)} \qquad V_{\rm GS} = 0 \text{ V, } I_{\rm D} = 0.01 \text{ A}$ $V_{\rm GS} = 10 \text{ V, } I_{\rm D} = 0.21 \text{ A}$ $g_{\rm fs} \qquad V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max},$ $I_{\rm D} = 0.17 \text{ A}$ $bands^{3)}$	$V_{\rm GS(th)}$ $V_{\rm DS}=3$ V, $I_{\rm D}=94$ μA -2.1 $I_{\rm D(off)}$ $V_{\rm DS}=400$ V, $V_{\rm GS}=-3$ V, $I_{\rm DS}=400$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $^{^{2)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (single layer, 70 μ m thick) copper area for drain connection. PCB is vertical in still air.

³⁾ Each reel contains transistors out of one band whose identifying letter is printed on the reel label. A specific band cannot be ordered separately.

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	
Dynamic characteristics ⁴⁾						
Input capacitance	Ciss		-	102	135	pF
Output capacitance	Coss	V_{GS} =-3 V, V_{DS} =25 V, f =1 MHz	-	10	14	
Reverse transfer capacitance	C _{rss}		-	6	9	
Turn-on delay time	t _{d(on)}		-	6.1	9.2	ns
Rise time	t _r	V _{DD} =200 V, V _{GS} =-35 V,	-	8.8	13.1	
Turn-off delay time	$t_{d(off)}$	$I_{D}=0.2 \text{ A}, R_{G,\text{ext}}=25 \Omega$	-	17	25	
Fall time	t _f]	-	68	102	
Gate Charge Characteristics ⁴⁾	1	1		1	I	1
Gate to source charge	Q _{gs}		-	0.43	0.65	nC -
Gate to drain charge	Q _{gd}	$V_{\rm DD}$ =400 V, - $I_{\rm D}$ =0.21 A, $V_{\rm GS}$ =-3 to 5 V	-	2.2	3.3	
Gate charge total	Qg		-	4.5	6.8	
Gate plateau voltage	V _{plateau}		-	0.49	-	V
Reverse Diode	·					
Diode continous forward current	Is	− T _A =25 °C	-	-	0.21	А
Diode pulse current	I _{S,pulse}		-	-	0.83	7
Diode forward voltage	V_{SD}	V _{GS} =-3 V, I _F =0.21 A, T _j =25 °C	-	0.84	1.1	V
Reverse recovery time ⁴⁾	t _{rr}	V _R =200 V, I _F =0.21 A,	-	111	167	ns
Reverse recovery charge ⁴⁾	Q _{rr}	$di_{F}/dt = 100 \text{ A/}\mu\text{s}$	-	390	584	nC

 $^{^{}m 4)}$ Defined by design. Not subjected to production test

1 Power dissipation

$P_{\text{tot}} = f(T_A)$

2 Drain current

$$I_D=f(T_A); V_{GS} \ge 10 \text{ V}$$

3 Safe operating area

$$I_D=f(V_{DS}); T_A=25 \text{ °C}; D=0$$

parameter: t_p

4 Max. transient thermal impedance

$$Z_{\text{thJA}} = f(t_p)$$

parameter: $D=t_p/T$

5 Typ. output characteristics

 $I_D=f(V_{DS}); T_j=25 °C$

parameter: V_{GS}

7 Typ. transfer characteristics

 $I_{D}=f(V_{GS}); |V_{DS}|>2|I_{D}|R_{DS(on)max}$

6 Typ. drain-source on resistance

 $R_{DS(on)}=f(I_D); T_j=25 \text{ °C}$

parameter: V_{GS}

8 Typ. forward transconductance

 g_{fs} =f(I_D); T_j =25 °C

9 Drain-source on-state resistance

 $R_{DS(on)} = f(T_i); I_D = 0.01 A; V_{GS} = 0 V$

11 Threshold voltage bands

 $I_D = f(V_{GS}); V_{DS} = 3 \text{ V}; T_j = 25 \text{ }^{\circ}\text{C}$

10 Typ. gate threshold voltage

 $V_{GS(th)}$ =f(T_i); V_{DS} =3 V; I_D =94 μ A parameter: I_D

12 Typ. capacitances

 $C=f(V_{DS}); V_{GS}=-3 V; f=1 MHz$

13 Forward characteristics of reverse diode

 $I_F = f(V_{SD})$

parameter: T_i

15 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_D =0.21 A pulsed

parameter: $V_{\rm DD}$

16 Drain-source breakdown voltage

 $V_{BR(DSS)}=f(T_j); I_D=250 \mu A$

Package Outline:

Footprint:

Packaging:

