Combinatorics

Thomas Fleming

November 5, 2021

Contents

Lecture 29

for info on the szemerdi lemma.

Lecture 28 Mon 01 Nov 2021 10:20

Fri 05 Nov 2021 10:21

I skipped taking notes on a few lectures. See the paper in the onedrive

Lemma 0.1 (Triangle Removal Lemma). Denote $K_3(G)$ to be the number of triangles in G.

Then, for all $0 < \varepsilon < 1$ there is $\delta > 0$ so that if G is a graph of order n with $K_3(G) < \delta n^3$ there are edges e_1, e_2, \ldots, e_p with $p < \varepsilon n^2$ and $K_3(G - e_1 - e_2 - \ldots - e_p) = 0$.

For an example, we may take the graph $K_{n,n}$ and add an edge within one of the partite sets. Then, we see the only triangles are the ones incident to this new edge. Hence, we need only remove one edge to obtain a triangle-less graph. More generally, adding cross edges between two subsets of size εn within one of the partite sets will yield $\frac{\varepsilon^2}{2}n^3$ triangles which may be removed by simply deleting all of the edges which we added.

Proof. Fix ε and apply the regularity lemma with $\frac{\varepsilon}{4}$ and $m > \frac{2}{\varepsilon}$