STRUCTURE OF SCIENTIFIC DOCUMENTS MATHEMATICAL MATERIALS

STW EX20003 UNIT 04

WHAT ARE MATHEMATICAL MATERIALS

- Numbers
- Expressions involving basic arithmetic operations, variables, parameters, and constants used in mathematical models
- Functions that work like mathematical operators
- · Subscripts and superscripts in a series of variables
- · Equations

CONSISTENCY IN WRITING

Consistency should be maintained throughout text e. g. writing 5000 in two places like this:
 0.05 × 10⁵ in one place and 0.5 × 10⁴ in another, is inconsistent practice
 Consistently, it should be stated as 5 × 10³

SI (Engineering) & Scientific Notation of Numbers

- · $a \times 10^b$
- a: Coefficient, 10: Base, b: Exponent
- SI (Engineering) Notationb takes values 0, 3, 6, 9, ... and -3, -6, ...
- Scientific Notation

SI Notation of Numbers

Standard Scientific Notation

- 525 is written as 0.525×10^{3}
- 0.005 is written as 5×10^{-3}

- Standard scientific notations are preferred to computer exponentials e. g. 5.0×10^{-3} instead of $5.0 \text{ E}{-3}$
 - Computer exponentials (using E) appearing in computer output may be given in Appendixes, but not in main text
- $^{\circ}$ 25.5 is represented as 2.55 × 10¹
- 0.055 is represented as 5.5×10^{-2}

USE OF % SYMBOL

COMPUND NUMBERS

- % symbol is used with Indo-Arabic numbers
- 'Per cent' is used with word version of number e.g. 5 % and five per cent (not 5 per cent)
- % symbol is not repeated with each number in a series or with each number in a range of values e. g.
 5, 10, and 15 %, OR 5–10 %

Hyphen separates individual numbers of compound number and their ordinal counterparts e.g. twentyone, thirty-four, . . . twenty-first, thirty-fourth, . . .

NUMERALS OR WORDS?

- Numbers (nine or less) should be written in words e. g.
 We carried out two experiments . . .
- If a series of numbers contain numbers both less and more than 10, then only Arabic numerals should be used e.g. There are 25 samples, with a sample size of 5.

 Marks secured by the students are: 2, 5, 10, and 15.
- Exception: We assume that x is greater than 1.

THOUSAND OPERATOR

- For very large and very small numbers, give a space in the thousand operator e.g. 10 000 000, 0.254 25
- · Always use figures when symbol of unit of measurement follows e. g. 5 A

NUMBER OF MATHEMATICAL OPERATIONS

 Use figures when mathematical operations are implied e. g. factor of 2, 3 × 3 matrix

ROUND NUMBERS

Always spell approximate values, 'round numbers' e.g. about five years, two orders of magnitude, about four times larger

APPROXIMATE VALUES

If approximate value is followed by a unit, then the unit is not expressed in symbols e. g. several kilovolts, a few tens of megahertz, a few volts

MODIFICATION OF NOUN

Units of measurement are nouns and should not be used to modify another noun:

Incorrect: The signal generator had a 15-kHz frequency.

Correct: The signal generator had a frequency of 15 kHz.

Incorrect: It is a 6-centimeter long pipe.

Correct: The length of the pipe is 6 cm.

LIST OF SYMBOLS

- Research document should contain list of symbols in the beginning
- · List of symbols helps to
 - To ensure that same symbol is neither used for more than one purpose nor defined in more than one way
 - Reader to refer to one place to find definition of a symbol
- · List of symbols should be arranged with Latin letters followed by Greek letters, each arranged alphabetically
- Whenever applicable, unit of measure should be given for each symbol:

```
c: Velocity (km/h)
```

m: Mass (kg)

. . .

β: Regression coefficient (unit/rupee)

η: Efficiency (1)

BASIC ARITHMETIC OPERATIONS

- · Signs for basic arithmetic operations:
- Plus +
- Minus (different from hyphen look at length, vertical location, and intensity)
- Multiplication × (different from the letter x or symbol asterisk *)
- Division / (different from solidus i. e. slash or oblique / look at the inclination) and ÷
- Except plus symbol, no symbol is available on a keyboard normally available in the market
- · All other symbols are to be selected from Symbols list

SCALARS, VECTORS, AND MATRICES

• Scalars, vectors, and matrices are written as follows:

```
scalar: lightface italic (v, l, m, ...)
```

vector: boldface, lower-case (v, l, m, ...)

matrix: boldface, upper-case (V, L, . . .)

tensor: boldface, italic (V, L)

 Purpose of italicizing scalars is to distinguish them from SI units that are always written upright

VARIABLES & CONSTANTS

- Symbols for variables, constants, and unknown quantities are italicized e. g. x, l, m
- Greek letters (α , β , etc.) are always written upright
- Greek letters (α , β , etc.) are always set in Roman
- Subscripted variables follow different writing styles:

Subscripts are numbers: x_1, x_2

Subscripts are variables: x_i , x_{ij}

- Subscript is upright when it refers to input or output variable or entities
 - other than a quantity e. g. x_i (input variable), x_o (output variable), x_e (mass of electron)
- Subscript is upright when it refers to values of upper and lower limits or maximum and minimum values e. g. x_u and x_l , x_{max} and x_{min}

FUNCTIONS & OPERATORS

- Abbreviations for standard functions, such as log, max, min, exp, sin, cos, tan, cosh, lim, avg, cov, diag, and ln, are set in Roman (upright)
- A space separates function name from expression e. g. $\log x$, $\sin (x + y)$, . . .
- Operators for expectation and transposition are in italic e. g. E and T

Transpose of a vector

$$\mathbf{x}^{\mathsf{T}}(n)$$

not

 $\mathbf{x}(\mathbf{n})^{\mathsf{T}}$

Power of a scalar

$$x^2(n)$$
 not

 $x(n)^2$

SUPERSCRIPTS

Vertical alignment of superscript and subscript

$$x_i^2$$

not

Indexing a subscripted variable:

$$x_{i}^{(2)}$$

not

$$x_i^2$$

USE OF ELLIPSES

- · Ellipsis indicate omitted words, sentences, or symbols
- · Ellipses indicate a series of variables e. g.

$$x_1, x_2, ..., x_n$$
 (not $x_1, x_2, ..., x_n$)

Three raised ellipses (centered dots) are used for series of additions or multiplications of variables e.g.

$$x_1 + x_2 + \dots + x_n$$
 (not $x_1 + x_2 + \dots + x_n$)
 $x_1 x_2 \cdots x_n$ (not $x_1 x_2 \cdots x_n$)

· Three ellipses indicate range of variable e.g.

$$x_i$$
, $i = 1, 2, ...$ (not x_i , $i = 1, 2...$)

SPACE ACCOMPANYING MATHEMATICAL OPERATORS

One space should be provided on both sides of a mathematical operator

$$z = x + y$$
 $z = x - y$
 $z = x \times y$ $z = x \div y$

 No space appears if division is indicated by the symbol / and also when multiplication is implied

$$z = x/y$$
 $z = xy$ $z = 25x$

Negative number should not have space separating sign and number The number -2 (not - 2) is more than -3 (not - 3).

$$-3 < -2$$
 (correct) $-3 < -2$ (not correct)

 When plus sign indicates positive number then no space appears between sign and number

$$-3 \le X \le +3$$

 No space appears between a variable and its subscripts (or superscripts) and between a variable and its power

$$X_i$$
, X_{ij} , X^2

REFERENCING EQUATIONS

- Each equation should appear immediately after it is referenced in text for first time
- Explanation for each equation should appear in text that precedes it
- Explanation should define important variables and their relationships that lead to equation
- Subsequent referencing takes place by citing equation number
- All symbols appearing in equation should be defined immediately after
- Symbols should be sequenced in order of their appearance in equation
- ' Unambiguous definitions should be given along with units of measure (wherever applicable)

EXPLANATION OF TERMS

EQUATION NUMBER

LOCATION OF EQUATION

- A long equation can have many terms, each representing a particular aspect of theme of equation
- Each term should be explained before or immediately after equation

- Equations are referred to in text by equation numbers
- Equations are numbered in order of appearance (like tables and figures)
- When document is divided into chapters, equation number bears chapter number and number reflecting order of appearance

- Equation should be separated from texts preceding and following it by a larger line spacing (compared to one in text)
- It should be set off from left margin with an indentation
- Equation numbers should be right justified and should be preceded by three raised ellipses

EXAMPLES

Number of students (z) in class is given in Eq. 4.2 as sum of number of male students (x) and number of female students (y):

$$z = x + y \qquad \cdots (4.2)$$

- This equation is second in order of appearance in Chapter
 4 of document
- · Note abbreviation "Eq." used in text preceding equation

Concentration = $(ma' + b) \times dilution factor$

where a': unknown sample absorption

m: slope of calibration graph

b: intercept on concentration axis

Note: 'where' is not capitalized

- Equations should be punctuated as a sentence e.g.
- Defining y as a quadratic function of x,

$$y = ax + bx^2, (3)$$

• the gradient of y is given as

$$\frac{dy}{dx} = a + 2bx \tag{4}$$

PUNCTUATION

• Note: commas, full stop, raised dots, vertical alignments

PARAMETERS IN EQUATIONS

Not numbers but parameters appear in equations (because they are estimated values and not constants):

y = 2

Not recommended: z = x + 2

Recommended: z = x + y

EQUATION IN TEXT LINE

A numbered equation should not appear in a line in the text Incorrect: It thus comes out to be true that $x^2 + y = x + y^2 \cdot \cdot \cdot (4.3)$

Correct: Thus the following equation holds:

$$x^2 + y = x + y^2$$
 ... (4.3)

BREAKING EQUATIONS

- Long equation may not fit in one line, and may be broken in two ways:
- before verb operator (such as =, \neq , <, >, \leq , \geq) or
- before conjunction (such as +, ×) that follows an aggregation (i. e. meaningful expression within brackets)
- · In first case, run-over lines are aligned on verb operators
- In second case, **conjunction on run-over line** is lined up with right of verb in line above

Example:

Verb Operator

$$z = (x + y - ef + r)$$

+ 2y - ef + r
- (e - f) $(x + y - ef + r)$
< (2y - ef + r)

conjunction on run-over line

USE OF NUMBERS IN SENTENCES

Provide numerical values and avoid ambiguous words
Incorrect: The voltage across a forward-biased silicon diode
is small.

Correct: The voltage across a forward-biased silicon diode is about 0.7 V.

Correct: The voltage across a forward-biased silicon diode is small (about 0.7 V).

Avoid dangling comparatives and superlatives Incorrect: The voltage across the diode is *smaller*. Correct: The voltage across the diode is smaller than the voltage across resistor R1.

FRACTIONS & MIXED NUMBERS

Incorrect	Correct
3 ½	3½
3½ kilograms	3-1/2 kilograms
	3-1/2 kilograms

USE OF HYPHENS

Incorrect	Correct
A ten members committee	A ten-member committee
25 inch cloth	25-inch cloth
5-A current	5 A current
3, 5, 10 ampere current	3-, 5-, 10-ampere current
1 foot long wire	1-foot-long wire

ORDERS OF MAGNITUDE

- Same 'order of magnitude' means their ratio is less than ten e. g. 5 and 45 are of same order of magnitude
- An order of magnitude larger means ten times as large e. g. 125 is an order of magnitude larger than 10
- Two orders of magnitude larger means 100 times larger e.g. 825 is two orders of magnitude larger than 7

SPECIAL SYMBOLS

∀: for all ∋: such that

∃: there exists ∄: there does not exist

 \Rightarrow : implies \mathbb{R} : the set of real numbers

 (\cdot, \cdot) : open interval $[\cdot, \cdot]$: closed interval

 $[\cdot,\cdot)$: closed-open interval $(\cdot,\cdot]$: open-closed interval

 $\delta(x) = 1$ if x = 0, = 0 otherwise (Dirac-delta function)

I(x) = 1 if x is true, = 0 otherwise (Indicator function)

OTHER SYMBOLS

Set-specific Symbols

Statistical

μ: population mean

σ: population standard deviation

Σ: population variance-covariance matrix

 R^2 : Coefficient of determination

z, t, and F: test statistics

THANK YOU!