Predicting vaccination rate

Joshua Ko

About the data

- Provided by Drivendata
- ✓ Features
 - Behavioral
 - Economic/Social status
 - Medical history
 - o etc.
- ✓ Targets
 - H1N1 Vaccination
 - Seasonal Flu Vaccination

Accuracy of each model

Performance of the model

~~~

- Confusion Matrix
- Positive and negative predictive values
 - Precision
 - Recall
 - Accuracy
 - o F1
- Receiver operator characteristic curve (ROC)

Confusion Matrix

- True positives (bottom left) and false positives (top right) are most important
- True positive indicates a correct prediction in receiving the vaccine
- False positive indicates an incorrect prediction

Pfizer should look for high true positive and low false positive values

True Positive Rate (TPR) and False Positive Rate (FPR)

- TPR can help predict how much money Pfizer will make
- Seasonal model had the higher TPR but also the higher FPR

Prediction Scores

- H1N1 has the higher accuracy but is lower in all other metrics
- Low recall is same as TPR
- Precision is another metric for true positives
- F1 score is the average of the two (Precision & Recall)
- Higher F1 score the better

Area under ROC curve

- A higher AUC value means better efficiency of the model
- Seasonal vaccine model has a higher value
 - Able to distinguish between positive and negative classes

Final predictions & recommendations ^>>>

Vaccine	Average Probability of Receiving the Seasonal Vaccine
H1N1	0.21
Seasonal	0.46

- The logistic model should be used to predict vaccination rate
 - Values of the table above was obtained from the logistic model
- More people are likely to take the seasonal vaccine
 - Pfizer should produce more seasonal vaccine
- Investigate why certain variables yield lower rates
 - Race
 - Education
 - Income
- May use this outcome to push future vaccinations

Improvements & Further developments

- Working with less null values
- o Finding the best predictive model for each column
- Trying different combinations of hyperparameters

Removing variables

- The dataset has multiple columns
- Removing more irrelevant columns

This Presentation is Prepared by

Link:

https://github.com/Jko0425

Email:

joshuawko@gmail.com