1. V **Pythonu** proveďte lineární regresi závislosti veličiny *y* na *x* metodou nejmenších čtverců.

x	у	σ_y
1	4	2
2	8	2
3	16	4
4	18	3
5	20	3
6	30	3
7	30	5
8	45	6
9	42	4
10	50	5

fit polynomu v Pythonu metodou nejmenších čtverců

2. V **Pythonu** proveďte polynomiální fit závislosti veličiny *y* na *x* metodou nejmenších čtverců.

fit polynomu v Pythonu metodou nejmenších čtverců

3. V **Pythonu** proveďte polynomiální fit závislosti veličiny *y* na *x* metodou nejmenších čtverců.

nelineární fit v Pythonu metodou nejmenších čtverců

4. V **Originu** proveďte lineární regresi závislosti veličiny *y* na *x* metodou nejmenších čtverců.

x	$\sigma_{\!\scriptscriptstyle \chi}$	у	σ_y
9.1	1	16.3	5
11.1	10	66.7	20
25.5	5	85.9	10
20.9	8	138.2	5
44.7	3	156.2	10
66.6	10	166	20
85.2	5	282.3	10
110.5	10	300.6	10
100.2	1	378.5	5
120.5	10	405.5	15

fit:

$$a = 3.3 \pm 0.3$$

$$b = 20 \pm 20$$

$$a = 3.9 \pm 0.2$$

$$b = -20 \pm 10$$

lr-data-exy.txt

4. V **Pythonu** proveďte lineární regresi závislosti veličiny *y* na *x* metodou nejmenších čtverců.

x	σ_{χ}	у	σ_y
9.1	1	16.3	5
11.1	10	66.7	20
25.5	5	85.9	10
20.9	8	138.2	5
44.7	3	156.2	10
66.6	10	166	20
85.2	5	282.3	10
110.5	10	300.6	10
100.2	1	378.5	5
120.5	10	405.5	15

fit: a = 3.908

$$b = -18.157$$

lr-data-exy.txt

Lineární regrese

5. V **Matlabu** proveďte lineární regresi závislosti veličiny y na x metodou nejmenších čtverců.

x	у	σ_y
1	4	2
2	8	2
3	16	4
4	18	3
5	20	3
6	30	3
7	30	5
8	45	6
9	42	4
10	50	5

lr-data.txt

fit: $a = 5.0 \pm 0.4$

$$b = -2 \pm 2$$

$$corr(a, b) = -0.82$$

fit:

$$m = 4.7 \pm 0.2$$

Fit polynomu

6. V **Matlabu** polynomiální fit závislosti veličiny y na x metodou nejmenších čtverců.

X	y	σ_y
0	9.5	2
1	0.8	3
2	-21	3
3	-55	3
4	-90	2
5	-114	4
6	-130	3
7	-140	2
8	-120	3
9	-70	3
10	11	3

polydata.dat

