

Confrontatore

- Il blocco funzionale confrontatore ha:
 - due ingressi A e B da n ≥ 1 bit ciascuno
 - tre uscite:
 - A < B
 - A = B
 - A > B
- Il blocco confronta i due numeri binari A e B da n bit presenti sui due gruppi di ingressi, e
 - attiva (a 1) l'uscita corrispondente all'esito del confronto
 - azzera le uscite corrispondenti alle condizioni false

Confrontatore di numeri a 2 bit

Esempi:

- Se A = 01 e B = 10
 - ► A>B=0
 - A = B = 0
 - ▶ A<B = 1
- Se A = 10 e B = 00
 - ► A>B = 1
 - A = B = 0
 - A < B = 0
- Se A = 10 e B = 10
 - A>B=0
 - ▶ A=B = 1
 - A < B = 0

Confrontatore di numeri a 2 bit

A1	A0	B1	B0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Confrontatore a 2 bit: sintesi (A<B)

A1	Α0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Confrontatore a 2 bit: sintesi (A<B)

Tabella delle verità

A1	A 0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

A < B = /A1 B1 + /A1 /A0 B0 + /A0 B1 B0

Confrontatore a 2 bit: sintesi (A=B)

A1	A0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Confrontatore a 2 bit: sintesi (A>B)

Tabella delle verità

A1	A0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

A>B = A0/B1/B0 + A1/B1 + A1A0/B0

Confrontatore a 2 bit: sintesi (A=B)

A1	A 0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

A=B =
$$/(A1 \oplus B1) / (A0 \oplus B0)$$

$$A>B = /(A$$

Ripasso: operatore booleano NXOR

NXOR

(«fa il contrario di XOR»)

A	В	X
0	0	1
0	1	0
1	0	0
1	1	1

Significati intuitivi di A NXOR B:

- uno XOR seguito da un NOTA NXOR B = \(A XOR B \)
- cioè...
 entrambi veri oppure
 entrambi falsi
- cioè...AB + \A\B
- cioè...
 operatore di uguaglianza fra A e B
 vero se A e B sono uguali.
 falso se sono diversi

Confrontatore a 2 bit: possibile implementazione

Confrontatore a 4 bit realizzato con confrontatori a 2 bit

 Si confrontano separatamente le parti più significative, e le parti meno significative, di X e Y.

Compito a casa

- Si noti che circuiti come Decoder e Multiplexer non fanno alcuna ipotesi sul significato dei segnali.
- Il confrontatore invece ipotizza che i dati di ingresso siano dei numeri naturali codificati in binario
 - (e non in CP2 o in virgola mobile...).

- Realizzare un confrontatore tra numeri di tre bit in complemento a 2.
- Es. se X = 011 e Y = 111, il confrontatore deve mettere a uno l'uscita
 X>Y e a zero le altre. Infatti in complemento a 2 011=3, mentre 111=-1.

Interpretazione dei dati

- Nello stesso modo, posso costruire un confrontore per 2n bit con due confrontatori da n bits
 - ▶ Due confrontatori a 2 bit == 1 confrontatore a 4 bit
 - Due confrontatori a 4 bit == 1 confrontatore da 1 byte
 - Due confrontatori a 1 byte == 1 conf. da 2 byte (per short int!)
 - Due confrontatori a 2 byte == 1 conf. da 4 byte (per int!)

Ripasso: operatore XOR

XOR («or esclusivo»)

Α	В	X	
0	0	0	
0	1	1	uno o l'altro, ma
1	0	1 /	NON entrambi
1	1	0	

Significati intuitivi di A XOR B:

- A oppure B, ma non entrambi (in latino: A aut B)
- vero se A e B diversi falso se A e B uguali
- vale /A se B = 1vale A se B = 0
 - (e viceversa)
- il contrario di A, se B vale;
 A immutato, altrimenti
 - (e viceversa)
- . . .
- somma naturale di A e B come numeri di... 1 bit! (ignorando il bit di riporto)

Semisommatore

 Dati due numeri naturali rappresentati su un solo bit, il circuito ne calcola la somma (compreso il riporto).

Tavola delle verità

Semisommatore

 Dati due numeri naturali rappresentati su un solo bit, il circuito ne calcola la somma (compreso il riporto).

Tavola delle verità

Α	В	S	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Semisommatore

 Dati due numeri naturali rappresentati su un solo bit, il circuito ne calcola la somma (compreso il riporto).

Tavola delle verità

Α	В	S	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

