$Exercices \,\, MP/MP^*$

Séries numériques et familles sommables

Exercice 1. Soit la suite définie par $a_0 = 1$ et pour tout $n \ge 1$,

$$a_n = 2a_{\lfloor n/3 \rfloor} + 3a_{\lfloor n/9 \rfloor}$$

- 1. On pose pour $p \in \mathbb{N}$, $b_p = a_{3^p}$. Calculer b_p en fonction de p.
- 2. Montrer que si $3^p \leqslant n < 3^{p+1}$, alors $a_n = b_p$.
- 3. Déterminer l'ensemble des valeurs d'adhérence de $(\frac{a_n}{n})_{n\geqslant 2}$.

Exercice 2. Soit $[a,b] \subset \in \mathbb{R}$ avec a < b et $f : [a,b] \to [a,b]$ continue. Soit $x_0 \in [a,b]$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$.

- 1. Montrer que f admet au moins un point fixe $l \in [a, b]$.
- 2. Si $\lim_{n\to+\infty} x_{n+1} x_n = 0$, montrer que l'ensemble des valeurs d'adhérence de $(x_n)_{n\in\mathbb{N}}$ est un segment.
- 3. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge si et seulement si $\lim_{n\to+\infty} x_{n+1} x_n = 0$.

Exercice 3. Soit $\theta \in [0, 2\pi[$, on définit $u_0 = e^{i\theta}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2$. Peut-on avoir $(u_n)_{n \in \mathbb{N}}$

- stationnaire?
- convergente?
- périodique ?
- dense dans \mathbb{U} ?

On pourra étudier le développement binaire de $\frac{\theta}{2\pi} = \sum_{k=1}^{+\infty} \frac{a_k}{2^k}$.

Exercice 4. Soit $(a,b) \in \mathbb{R}^2_+$, étudier $u_n = \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2}\right)^{n^2}$.

Exercice 5. Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ telle que $\lim_{n\to+\infty}=0$ et $\sum_{n=0}^{+\infty}x_n=+\infty$.

- 1. Montrer qu'il existe $\varphi : \mathbb{N} \to \mathbb{N}$ bijective telle que $(x_{\varphi(n)})$ est décroissante.
- 2. Montrer que pour tout $l \in \overline{\mathbb{R}_+}$, pour tout $\varepsilon > 0$, il existe un sous-ensemble $I \subset \mathbb{N}$ fini tel que

$$\left| \sum_{k \in I} x_k - l \right| \leqslant \varepsilon$$

ou si $l = +\infty$: $\forall A > 0$, il existe un sous-ensemble I fini tel que $\sum_{k \in I} x_k \geqslant A$.

Exercice 6. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ telle que $\lim_{n\to+\infty}u_n\times\sum_{k=0}^nu_k^2=1$. Montrer que $u_n\sim\frac{1}{\sqrt[3]{3n}}$. Une telle suite existe-t-elle?

Exercise 7. Étudier $x_n = n - \sum_{k=1}^n \cosh(\frac{1}{\sqrt{k+n}})$.

Exercice 8. Soit $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ des suites réelles telles que

- (i) $\lim_{n \to +\infty} a_n + b_n + c_n = 0,$
- (ii) $\lim_{n \to +\infty} e^{a_n} + e^{b_n} + e^{c_n} = 3.$

Montrer que $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = \lim_{n\to+\infty} c_n = 0$. On pourra étudier $\varphi: x\mapsto e^x - x - 1$.

Exercice 9. Soit $u_0 \in]0,1[$ et pour $n \in \mathbb{N}$, $u_{n+1} = u_n - u_n^2$. On pose $v_n = \frac{1}{u_n}$.

- 1. Montrer que $(v_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Montrer que $v_n = n + \ln(n) + O(1)$, en déduire un développement de u_n .

Exercice 10.

- 1. Montrer que pour tout $n \ge 2$, il existe un unique $u_n \in \mathbb{R}_+$ tel que $u_n^n = u_n + n$.
- 2. Montrer que $(u_n)_{n\geq 2}$ converge vers $\lambda \in \mathbb{R}_+$.
- 3. Donner un développement asymptotique à deux termes de $x_n \lambda$.

Exercice 11. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs non tous nuls. On suppose que

$$u_n = o\left(\sum_{k=0}^n u_k\right)$$

Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ de limite a. En cas d'existence, évaluer

$$\lim_{n \to +\infty} \frac{u_n a_0 + u_{n-1} a_1 + \dots + u_0 a_n}{u_0 + \dots + u_n}$$

Exercice 12.

- 1. Soit $x \in [0, 1[$, montrer qu'il existe une unique suite $(a_n)_{n \ge 2}$ d'entiers naturels telle que
 - (i) $0 \leqslant a_n \leqslant n-1 \text{ pour tout } n \geqslant 2$,
 - (ii) il existe $m \ge n$ tel que $a_m < m-1$ pour tout $n \ge 2$,
 - (iii) $x = \sum_{n=2}^{+\infty} \frac{a_n}{n!}$.

- 2. Donner une condition nécessaire et suffisante sur $(a_n)_{n\geq 2}$ pour que $x\in\mathbb{Q}$.
- 3. Soit $l \in [-1,1]$, montrer qu'il existe $x \in [0,1[$ tel que $\lim_{n \to +\infty} \sin(n!2\pi x) = l$.

Exercice 13. Soit $u_0 > 0$, $u_1 > 0$ et pour tout $n \ge 1$,

$$u_{n+1} = \ln(1 + u_n) + \ln(1 + u_{n-1})$$

Étudier la suite (u_n) . On pourra poser $M_n = \max(u_n, u_{n-1}, l)$, $m_n = \min(u_n, u_{n-1}, l)$ où $l = 2\ln(1+l)$ et l > 0.

Exercice 14. Soit $(p,q) \in (\mathbb{R}^*)^2$ avec $\frac{p}{q} \in \mathbb{R} \setminus \mathbb{Q}$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite réelle bornée. On suppose que $(e^{ipx_n})_{n \in \mathbb{N}}$ et $(e^{iqx_n})_{n \in \mathbb{N}}$ convergent. Montrer que $(x_n)_{n \in \mathbb{N}}$ converge. Et si $(x_n)_{n \in \mathbb{N}}$ n'est pas bornée?

Exercice 15.

- 1. Montrer que pour tout $n \ge 1$, pour tout $k \in \{0, \ldots, n\}$, $\binom{n}{k} \le \frac{n^k}{k!}$.
- 2. Soit $z \in \mathbb{C}$, montrer que

$$\left| \sum_{k=0}^{n} \frac{z^{k}}{k!} - \left(1 + \frac{z^{n}}{n} \right) \right| \leqslant \sum_{k=0}^{n} \frac{|z|^{k}}{k!} - \left(1 + \frac{|z|}{n} \right)^{n}$$

3. En déduire $\lim_{n\to+\infty} \left(1+\frac{z}{n}\right)^n$.

Exercice 16. Soit $u_n = \prod_{k=2}^n \frac{\sqrt{k}-1}{\sqrt{k}+1}$ pour $n \ge 2$. Quelle est la limite de cette suite? Quelle est la nature de la série $\sum_{n\ge 2} u_n^{\alpha}$ pour $\alpha \in \mathbb{R}$?

Exercice 17. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{\mathbb{N}}$ décroissante de limite nulle. Montrer que si $\sum u_n$ converge, alors $u_n=o\left(\frac{1}{n}\right)$. On pourra minorer $u_{n+1}+\cdots+u_{2n}$. Montrer ensuite que si $\{p\in\mathbb{N},pu_p\geqslant 1\}$ est infini, alors $\sum u_n$ diverge.

Exercice 18. Nature de $\sum u_n$ où $u_n =$

- 1. $n^{-1-\frac{1}{n}}$
- 2. $\int_0^{\frac{\pi}{2}} t^n \sin(t) dt$
- 3. $\sin(2\pi \frac{n!}{2})$

4.
$$\frac{(-1)^n}{n^{\alpha} + (-1)^n \ln(n)} \text{ où } \alpha \in \mathbb{R}$$

Exercice 19. Montrer la convergence et calculer la somme des différentes séries suivantes :

$$1. \sum_{n\geqslant 1} \sum_{k\geqslant n} \frac{(-1)^k}{k}$$

- 2. $\sum_{n \geqslant 0} \frac{1}{(3n)!}$
- 3. $\sum_{n\geqslant 1} \frac{E\left(n^{\frac{1}{3}}\right)-E\left((n-1)^{\frac{1}{3}}\right)}{4n-n^{\frac{1}{3}}}$ où E désigne la partie entière.

Exercice 20. Soit $f: [1, +\infty[\to \mathbb{R}^*_+ \ de \ classe \ \mathcal{C}^2 \ et \ telle \ que \lim_{x \to +\infty} \frac{f'(x)}{f(x)} = a < 0$. Montrer la convergence de $\sum_{n \geqslant 1} f(n)$. Donner un équivalent de $R_n = \sum_{k=n}^{+\infty} f(k)$.

Exercice 21. Donner un équivalent de $S_n = \sum_{k=1}^n \frac{e^k}{k}$.

Exercice 22. Donner la nature de $\sum u_n$ quand u_n vaut

1.
$$\left(1 - \frac{1}{n}\right)^{n^{\alpha}} où \alpha \in \mathbb{R}$$

$$2. \ \frac{1}{\sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\frac{1}{k}}}$$

3.
$$\frac{\sin(n!\pi e)}{\ln(n)}$$

Exercice 23. Montrer la convergence et calculer la somme de $\sum u_n$ où u_n vaut

- 1. $a \ln(n) + b \ln(n+1) + c \ln(n+2)$ pour $n \ge 1$.
- 2. $\frac{2^n}{3^{2^{n-1}}+1}$ pour $n \geqslant 1$.
- 3. $\frac{n-k\lfloor \frac{n}{k} \rfloor}{n(n+1)}$ avec $k \in \mathbb{N}^*$ est fixé.
- 4. $\arctan(\frac{1}{n^2+n+1})$ pour $n \ge 0$.

Exercice 24. Soit $(u_n)_{n\geqslant 1}\in\mathbb{R}^{\mathbb{N}}$ et $v_n=n(u_n-u_{n+1})$. Montrer que $\sum u_n$ et $\sum v_n$ ont même nature lorsque

- (i) $(nu_n)_{n\geqslant 1}$ converge vers 0 OU
- (ii) $(u_n)_{n\geqslant 1}$ décroît et tend vers 0.

Comparer alors les sommes respectives. En déduire, pour $p \geqslant 1$ fixé,

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)}$$

Exercice 25. Soit $q \ge 2$ et $v_n = \frac{1}{(n+q)!} \sum_{k=1}^n k!$. Donner la nature de $\sum v_n$. En cas de divergence, donner un équivalent des sommes partielles.

Exercice 26. Soit $(a, b, c) \in (\mathbb{N}^*)^3$, $z \in \mathbb{C}$, |z| < 1. Montrer, en justifiant l'existence :

$$\sum_{n=0}^{+\infty} \frac{z^{nb}}{1+z^{na+c}} = \sum_{n=0}^{+\infty} \frac{(-1)^n z^{nc}}{1-z^{na+b}}$$

Exercice 27. Soit $\sum_{n\geqslant 1} a_n$ une série complexe absolument convergente. On pose pour $q\in\mathbb{N}^*$, $b_q=\frac{1}{q(q+1)}(a_1+2a_2+\cdots+qa_q)$. Montrer que $\sum_{q\geqslant 1} b_q$ converge et évaluer sa somme en fonction de $\sum_{n=1}^{+\infty} a_n$. On pourra poser $u_{n,q}=\frac{na_n}{q(q+1)}$ si $n\leqslant q$ et 0 sinon.

Exercice 28 (Inégalité de Carleman). Soit $(u_n)_{n\geqslant 1}\in \mathbb{R}_+^{\mathbb{N}}$ telle que $\sum u_n<+\infty$. On pose $v_n=\frac{1}{n(n+1)}(u_1+\cdots+nu_n)$ et $w_n=\sqrt[n]{u_1\times u_2\times\cdots\times u_n}$. On admet que pour tout $n\in \mathbb{N}^*$, pour tout $(a_1,\ldots,a_n)\in \mathbb{R}_+^n$, on a l'inégalité entre la moyenne géométrique et arithmétique :

$$\sqrt[n]{a_1 \dots a_n} \leqslant \frac{1}{n} (a_1 + \dots + a_n)$$

avec égalité si et seulement si $a_1 = \cdots = a_n$.

Montrer que $\sum w_n$ converge et que $\sum_{n=1}^{+\infty} w_n \leqslant e \sum_{n=1}^{+\infty} u_n$. On pourra utiliser l'exercice précédent. Montrer que e est la "meilleure" constante possible, c'est-à-dire que si $\forall (u_n)_{n\geqslant 1} \in (\mathbb{R}_+^*)^{\mathbb{N}^*}$ telle que $\sum u_n$ converge, on a $\sum w_n \leqslant C \sum u_n$ alors $C \geqslant e$.

Exercice 29.

- 1. Trouver une condition nécessaire et suffisante sur $\alpha \in \mathbb{R}$ pour que $\left(\frac{1}{(p+q)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2\setminus\{(0,0)\}}$ soit sommable et exprimer alors la somme en fonction de la fonction ζ de Riemann.
- 2. Trouver une condition nécessaire et suffisante sur $\alpha \in \mathbb{R}$ pour que $\left(\frac{1}{(p^2+q^2)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2\setminus\{(0,0)\}}$ soit sommable.

Exercice 30. Étudier la sommabilité de $\left(\frac{1}{(m+n^2)(m+n^2+1)}\right)_{(m,n)\in\mathbb{N}\times\mathbb{N}^*}$. En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{\left\lfloor \sqrt{n} \right\rfloor}{n(n+1)}$.

Exercice 31.

1. Montrer que

$$\prod_{k\geqslant 1} \frac{1}{1-\frac{1}{p_k}}$$

converge si et seulement si

$$\sum_{k \geqslant 1} \frac{1}{p_k}$$

converge (où les p_k sont les nombres premiers). En déduire la nature de

$$\sum_{k\geqslant 1}\frac{1}{p_k}$$

2. Montrer que pour tout $s \in]1, +\infty[$, le produit infini

$$\prod_{k=1}^{+\infty} \frac{1}{1 - \frac{1}{p_k^s}}$$

converge. Donner sa valeur en fonction de $\zeta(s)$.

3. Généraliser ce résultat à $s \in \mathbb{C}$ avec $\Re(s) > 1$.

Exercice 32. On note $\varphi(n) = |\{k \in \{1, ..., n\}, k \land n = 1\}|$ (fonction d'Euler). Pour quelles valeurs de $\alpha \in \mathbb{R}$ la somme $\sum \frac{\varphi(n)}{n^{\alpha}}$ converge-t-elle? Donner alors sa somme en fonction de $\zeta(\alpha)$.

Exercice 33. Soit $(z_n)_{n\in\mathbb{N}}\in(\mathbb{C}^*)^{\mathbb{N}}$ telle que pour tout $n\neq m, |z_n-z_m|\geqslant 1$. Montrer que $\sum_{n\in\mathbb{N}}\frac{1}{z_n^3}$ converge.

Exercice 34. Donner la nature de $\sum_{n\geqslant 1} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n}$.

Exercice 35. Pour $(a,b) \in (\mathbb{R} \setminus \mathbb{Z}^*)$, on définit $u_n = \frac{a(a+1)...(a+n)}{b(b+1)...(b+n)}$

- 1. Donner une condition nécessaire et suffisante pour que $\sum u_n$ converge.
- 2. Dans ce cas, calculer sa somme.
- 3. Faire le cas où $a = -\frac{1}{2}$ et b = 1.

Exercice 36. Soit $u_n = \frac{\ln(n)}{n}$ et $v_n = (-1)^n u_n$ pour $n \ge 1$.

- 1. Donner la nature de $\sum u_n$ et $\sum v_n$.
- 2. Soit $S_N = \sum_{n=1}^N u_n$. Donner un équivalent de S_N puis développer jusqu'au o(1).
- 3. Exprimer $\sum_{n=2}^{+\infty} v_n$ en fonction de γ (constante d'Euler) et $\ln(2)$.

Exercice 37. Soit pour $n \in \mathbb{N}^*$, $q_1(n)$ la nombre de chiffres de l'écriture décimale de n. On définit par récurrence $q_{k+1}(n) = q_1(q_k(n))$. Étudier la convergence de

$$\sum_{n>1} \frac{1}{nq_1(n)q_2(n)\dots q_n(n)}$$

Exercise 38. Soit $P_n(X) = \sum_{k=0}^n \frac{X^k}{k!}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $P_{2n} > 0$ sur \mathbb{R} et P_{2n+1} s'annule une seule fois en $a_{2n+1} < 0$.
- 2. Déterminer $\lim_{n\to+\infty} a_{2n+1}$.

Exercice 39. Montrer qu'il existe un unique $x_n \ge 0$ tel que $e^{x_n} = x_n + n$. Donne un développement asymptotique à deux termes de x_n pour $n \ge 1$.

Exercice 40. Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$, on pose $S_n=\sum_{k=0}^n u_k$. Soit $\alpha\in\mathbb{R}$ et $v_n=\frac{u_n}{S_n^{\alpha}}$.

- 1. On suppose que $\sum u_n$ converge, étudier $\sum v_n$.
- 2. On suppose que $\sum u_n$ diverge. Pour $\alpha = 1$, montrer que pour tout $(n, p) \in \mathbb{N}^2$, $v_{n+1} + \cdots + v_{n+p} \geqslant 1 \frac{S_n}{S_{n+p}}$. En déduire que $\sum v_n$ diverge.
- 3. On suppose que $\sum u_n$ diverge. Pour $\alpha > 1$, on forme $w_n = \int_{S_{n-1}}^{S_n} \frac{dt}{t^{\alpha}}$. Montrer que $\sum v_n$ converge. Et si $\alpha < 1$?
- 4. On suppose que $\sum u_n$ converge. On pose $R_n = \sum_{k=n}^{+\infty} u_k$ et $w_n = \frac{u_n}{R_n^{\alpha}}$. Étudier la nature de $\sum w_n$.

Exercice 41 (Principe des tiroirs de Dirichlet). Soit $x \in \mathbb{R} \setminus \mathbb{Q}$.

- 1. Soit $n \in \mathbb{N}^*$, montrer qu'il existe $(p,q) \in \mathbb{Z} \times \{1,\ldots,n\}$ tel que $\left|x \frac{p}{q}\right| < \frac{1}{qn}$. On pourra étudier les n+1 réels $(kx \lfloor kx \rfloor) = (x_k)_{0 \leqslant k \leqslant n}$ et montrer qu'il existe $k \neq k'$ avec $|x_k x_{k'}| < \frac{1}{n}$.
- 2. Montrer qu'il existe $(p_n, q_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}} \times (\mathbb{N}^*)^{\mathbb{N}}$ telles que $\left| x \frac{p_n}{q_n} \right| < \frac{1}{q_n^2}$ et $\lim_{n \to +\infty} q_n = +\infty$.
- 3. Étudier la convergence de la suite $\left(\frac{1}{n\sin(n)}\right)_{n\geq 1}$ (on admet que $\pi\notin\mathbb{R}\setminus\mathbb{Q}$).

Exercice 42. Soit $(a_{n,p}) \in \mathbb{C}^{(\mathbb{N}^*)^2}$ telle que

- (i) pour tout $p \in \mathbb{N}^*$, il existe $\lim_{n \to +\infty} a_{n,p} = a_p \in \mathbb{C}$,
- (ii) il existe une suite de réels positifs (b_p) donc la série converge telle que pour tout $(n,p) \in (\mathbb{N}^*)^2$, $|a_{n,p}| \leq b_p$.
 - 1. Évaluer $\lim_{n \to +\infty} \sum_{p=1}^{n} a_{n,p}$.
 - 2. Calcular $\lim_{n \to +\infty} \left(\left(\frac{1}{n} \right)^n + \left(\frac{2}{n} \right)^n + \dots + \left(\frac{n-1}{n} \right)^n \right)$.

Exercice 43. Soit $\sum_{n\geq 1} u_n$ une série complexe absolument convergente.

1. Montrer que pour tout $k \geqslant 1$, on peut définir $S_k = \sum_{n=1}^{+\infty} u_{kn}$.

2. On suppose que pour tout $k \ge 1$, $S_k = 0$. Montrer que pour tout $n \ge 1$, $u_n = 0$.

Exercice 44. Soit $f : \mathbb{R} \to \mathbb{R}$ telle que pour toute suite $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$, si $\sum u_n$ converge, alors $\sum f(u_n)$ converge.

- 1. Montrer que f(0) = 0 et que f est continue en 0.
- 2. Montrer qu'il existe $\alpha > 0$, $\forall x \in]-\alpha, \alpha[$, f(x) = -f(x) (f est impaire au voisinage de 0).
- 3. Montrer qu'il existe $\beta > 0 \ \forall (x,y) \in]-\beta, \beta[^2, f(x+y) = f(x) + f(y) \ (f \ est linéaire au voisinage de 0).$
- 4. Montrer qu'il existe $\lambda \in \mathbb{R}$ et $\gamma > 0$ tels que $\forall x \in]-\gamma, \gamma[$, $f(x) = \lambda x$ (f est une homothétie au voisinage de 0).