Aula 6: Expressão Regular e Autômatos

Prof. Lucio A. Rocha

Engenharia de Computação Universidade Tecnológica Federal do Paraná, UTFPR Campus Apucarana, Brasil

 2^{o} semestre / 2023

Sumário

Seção 1

Autômato Finito

- (Revisão) Autômato Finito: É uma máquina de estados finitos que aceita símbolos de entrada de uma sentença.
- Ao final da sentença, o autômato indica se a sentença é válida para a gramática ou não.
- O autômato é definido para o conjunto de símbolos que devem ser reconhecidos.

Autômato Finito é descrito por uma quíntupla:

$$M = (\Sigma, Q, \delta, q_0, F)$$

- Σ : alfabeto (finito) de entrada.
- Q: conjunto finito de estados.
- δ : conjunto de transições (função parcial, função de transição ou programa)

$$\delta: Qx\Sigma \to Q$$

- q_0 : estado inicial $(q_0 \in Q)$
- F: conjunto de estados finais. ($F \subseteq Q$)

• Estados e transição:

Figura: AF.

Estado inicial e estados finais:

Figura: AF com Múltiplos Estados Finais.

- Autômato Finito Determinístico (AFD):
 - A partir de um estado:
 - A transição sempre é feita a partir do símbolo de entrada.
 - Não há transição pela sentença vazia.
 - Não há transições alternativas a partir de um dado estado com um determinado símbolo de entrada.

- (Revisão) Autômato Finito Não-Determinístico (AFN)
 - A partir de um estado:
 - Pode existir transição para dois ou mais estados diferentes a partir do símbolo de entrada.
 - Uma das transições é escolhida se existir o símbolo na sentença.
 - Pode haver transição para outro(s) estado(s) sem a existência de nenhum símbolo.
 - Transição pela sentença vazia.

- Geração de AFD a partir de Expressão Regular (ER):
 - palavras de uma linguagem regular:

Procedimento sistemático para construir um AFD que reconhece

- Algoritmo de Thompson: construção de um AFN a partir de uma ER.
- Método da construção de subconjuntos: conversão do AFN para um AFD equivalente.
- Minimização de estados: combinação de estados redundantes para construir o menor AFD que reconhece sentenças da linguagem regular.

- Algoritmo de Thompson:
 - Gera um AFN pela combinação de autômatos menores que reconhecem na ER os elementos primitivos:
 - Um símbolo do alfabeto.
 - Concatenação de duas ER.
 - Alternativa de duas ER.
 - Repetição (zero ou mais vezes) de uma ER.

- Algoritmo de Thompson:
 - Autômato que reconhece um símbolo do alfabeto.

Figura: AF.

- Algoritmo de Thompson:
 - Para as demais construções, dois autômatos serão combinados: um para a ER A e outro para a ER B.

Figura: AF.

- Algoritmo de Thompson:
 - Concatenação de duas ER: Autômato que reconhece AB.

Figura: $AFN\varepsilon$.

- Algoritmo de Thompson:
 - Alternativa de duas ER: Autômato que reconhece A|B.

Figura: $AFN\varepsilon$.

- Algoritmo de Thompson:
 - Repetição de uma ER: Autômato que reconhece A*

Figura: $AFN\varepsilon$.

- Exemplo:
 - AFN para reconhecer palavras da linguagem:

$$(0|1)*0$$

- Procedimento:
 - Oncatenação, para reconhecer (0|1)∗ e 0
 - 2 Repetição, para reconhecer (0|1)*
 - lacktriangle Alternativa, para reconhecer 0|1

ullet Concatenação, para reconhecer (0|1)* e 0

Figura: $AFN\varepsilon$.

- Concatenação, para reconhecer (0|1)* e 0 √
- Repetição, para reconhecer (0|1)*

Figura: $AFN\varepsilon$.

- Concatenação, para reconhecer (0|1)* e 0 \checkmark
- Repetição, para reconhecer (0|1)* √
- Alternativa, para reconhecer 0|1

Figura: $AFN\varepsilon$.

- Método da construção de subconjuntos.
 - Procedimento para converter um AFN em um AFD
 - Autômato gerado reconhece sentenças da mesma ER
 - Estados que podem ser alcançados a partir de outro por meio de transições pela string vazia são combinados em um único estado.
 - Conceito de ε^* de um subconjunto de estados do AFN.

- Método da construção de subconjuntos
 - Obter estado inicial.
 - O estado inicial do AFD é a ε^* do conjunto contendo apenas o estado inicial do AFND.
 - Obter novos estados e transições.
 - Cada estado obtido para o AFD é analisado para descobrir, para cada símbolo do alfabeto, suas transições de saída e novos estados que são gerados.
 - Marcar estados finais.
 - Cada estado do AFD que contenha em seu subconjunto um estado final do AFN será um estado final do AFD.

- Exemplo: Conversão do AFN para AFD.
- Expressão regular: (0|1)*0

Figura: $AFN\varepsilon$.

• $E^*{e1} = S0 = {e1, e2, e3, e4, e8, e9}$

S_0	e_1	e_2	e ₃	e_4	e ₈	e 9
0	_	_	e ₅	-	_	e ₁₀
1	_	_	_	e ₆	_	_

 $\bullet \ \textit{E}^*\{\textit{e}5,\textit{e}10\} = \textit{S}1 = \{\textit{e}2,\textit{e}3,\textit{e}4,\textit{e}5,\textit{e}7,\textit{e}8,\textit{e}9,\textit{e}10\}$

S_1	e_2	e ₃	e_4	e_5	e_7	e ₈	e 9	e ₁₀
0	_	e ₅	_	_	_	_	e ₁₀	_
1	_	_	e ₆	_	_	_	_	_

• $E^*{e6} = S2 = {e2, e3, e4, e6, e7, e8, e9}$

S_1	e_2	e ₃	e_4	e_5	<i>e</i> ₇	e ₈	e 9	e ₁₀	e ₁₀
0	_	e ₅	_	_	_	_	_	_	e ₁₀
1	_	_	e ₆	_	_	_	_	_	_

ullet Tabela de Transições para Reconhecer sentenças da ER (0|1)*0

		S_0	S_1	S_2
•	0	S_1	S_1	S_1
	1	S_2	S_2	S_2

• Estado inicial: S_0

• Estados finais: S₁

Figura: AFD da ER: (0|1) * 0.

- Minimização de Estados
 - Eliminar estados redundantes
 - Particionamento do conjunto de estados

•
$$P_1 = \{C_1, C_2\} \mid C_1 = F, C_2 = Q - F$$

- F: conjunto de estados finais.
- Q-F: conjunto de estados não-finais.
- $C_1 = \{S_1\}$
- $C_2 = \{S_0, S_2\}$

- Minimização de Estados
 - C_1 é unitário, então não possui estados redundantes.

$$\begin{array}{c|c} \bullet & C_1 = \{S_1\} \\ \hline & C_1 \\ \hline & 0 & C_1 \\ \hline & 1 & C_2 \\ \end{array}$$

•	$C_2 =$	$\{S_0,$	S_2
		C.	C

	S_0	S_2			C_2
0	C_1	C_1	\rightarrow	0	C_1
1	C_2	C_2		1	C_2

Minimização de Estados:

Figura: AFD Minimizado da ER: (0|1)*0