Introduction to Neural Networks

Linear Models, MLPs, Backpropagation

EE367/CS448I: Computational Imaging

stanford.edu/class/ee367

Lecture 8

Axel Levy Stanford University

Neural Networks in Computational Imaging

Now: learned pipelines for computational imaging

Learning end-to-end image processing

Learned demosaicking

Neural Networks in Computational Imaging

Now: learned pipelines for computational imaging

Learned denoising

Learned deblurring

Today

- What is a neural network?
- How do we train neural networks?

Today

- What is a neural network?
- How do we train neural networks?

Wed.

- Convolutional neural networks
- Making networks deep
- Applications in denoising and deblurring

What is a neural network?

Image classification example

Image classification example

Images

Image classification example

Image classification example

Images

Challenges

Intra-class variation

- stroke widths
- alignment
- writing styles

Image classification example

Images

Challenges

Intra-class variation

- stroke widths
- alignment
- writing styles

Inter-class similarities

"four" or "nine"?

Image classification example

Images

Implementation?

```
def classify_digit(image):
    # ???
    return image_class
```

Can't hardcode solution!

Supervised Learning

1. Collect training images and labels
$$\{x_i^{\mathrm{tr}}\}, \{y_i^{\mathrm{tr}}\}$$

weights)

$$\mathcal{L}(\{\hat{y}_i\}, \{y_i\})$$

$$\{f(x_i^{
m tr}, 0\}$$

 $f(x,\theta) = \hat{y}$

$$\min_{\theta} \mathcal{L}(\{f(x_i^{\mathrm{tr}}, \theta)\}, \{y_i^{\mathrm{tr}}\})$$

$$[f(x_i^{
m or}, heta)]$$

Evaluate the model on unseen images
$$\mathcal{L}(\{f(x_i^{ ext{test}}, \theta^*)\}, \{y_i^{ ext{test}}\})$$

.e., optimize the
$$\,{
m m}$$

Step 2: Defining a model

If x and y are **vectors**, what is the simplest (non-trivial) "model" you can think of?

Step 2: Defining a model

Linear Model

$$f(x, W) = Wx$$

Linear Model

f(x, W) = Wx

Linear Model

$$f(x, W) = Wx$$

Linear Model

$$f(x, W) = Wx$$

Length (dimension) of this vector = number of pixels

Linear Model

$$f(x, W) = Wx$$

In general: Wx + b

Linear Model

$$f(x, W) = Wx$$

Output: entry with the highest score

Linear model: geometric interpretation

Linear model: geometric interpretation

 $Wx = \begin{bmatrix} \vdots \\ w_9 \cdot x \end{bmatrix}$

Can be seen as 10 inner products.

• Linear model (visual interpretation)

Learned filters (rows of W)

Limits of linear classifiers

Linear classifiers learn linear decision planes

What if dataset is not linearly separable?

- Linear Model f=Wx
- 2-layer MLP $f=W_2\max(0,W_1x)$

Multilayer Perceptrons (MLPs) • Linear Model f=Wx

• 2-layer MLP
$$f = W_2 \max(0, W_1 x)$$

- 3-layer MLP $f = W_3 \max(0, W_2 \max(0, W_1 x))$

- Linear Model f=Wx
- 2-layer MLP $f = W_2 \max(0, W_1 x)$

Non-linearity/activation function between linear layers

• Linear Model f=Wx

Multilayer Perceptrons (MLPs)

- 2-layer MLP $f = W_2 \max(0, W_1 x)$
- 3-layer MLP $f = W_3 \max(0, W_2 \max(0, W_1 x))$

Activation Functions

...many to choose from

... ReLU is a good general-purpose choice: ReLU(x) = max(0, x)

- Linear Model f=Wx
- 2-layer MLP $f=W_2\max(0,W_1x)$

Back to our classification example...

- Linear Model f=Wx
- 2-layer MLP $f=W_2\max(0,W_1x)$

Back to our classification example...

- Linear Model f = Wx
- 2-layer MLP $f=W_2\max(0,W_1x)$

Back to our classification example...

Now we have 100 shape templates, shared between classes

Overcomes limits of linear classifiers

- Can learn non-linear decision boundaries
- Complexity scales with the number of neurons/hidden layers

- More parameters is not always better!
 - Can lead to overfitting the training data
 - Performance on test data is worse

test

- More on classification...
 - CS231N (Deep Learning for Computer Vision)
 - CS229 (Machine Learning)

Supervised Learning

$$\frac{\{x_i^{\mathrm{tr}}\}, \{y_i^{\mathrm{tr}}\}}{}$$

4. **Train** the model (i.e., optimize the weights)
$$\min_{\theta} \mathcal{L}(\{f(x_i^{\mathrm{tr}}, \theta\})\})$$

with discretized outputs
$$f(x,\theta) = \hat{y}$$
 Define a **loss** = score function
$$\mathcal{L}(\{\hat{y}_i\}, \{y_i\})$$

$\min_{\theta} \mathcal{L}(\{f(x_i^{\mathrm{tr}}, \theta)\}, \{y_i^{\mathrm{tr}}\})$ **Evaluate** the model on unseen images $\mathcal{L}(\{f(x_i^{\text{test}}, \theta^*)\}, \{y_i^{\text{test}}\})$

Image Inpainting

input

output

Step 1: Collect training inputs and outputs

masked images

ground truth

Step 2: Define a model

Step 3: Defining a loss

$$\mathcal{L}_{\theta} = \frac{1}{2}\|y - \hat{y}\|_2^2$$
 network parameters $\theta = \{W_1, W_2\}$

Step 3: Defining a loss

Step 4: Training the model

Gradient-based optimization

$$abla_{ heta}\mathcal{L}$$

$$\theta^{(k+1)} = \theta^{(k)} - \alpha \nabla_{\theta} \mathcal{L}(\theta^{(k)})$$

Step 4: Training the model

Need to calculate the partial derivative with respect to each parameter

$$\frac{\partial}{\partial W_1} \mathcal{L}_{\theta} = \frac{\partial}{\partial W_1} \frac{1}{2} \|y - \hat{y}\|_2^2$$

$$\frac{\partial}{\partial W_2} \mathcal{L}_{\theta} = \frac{\partial}{\partial W_2} \frac{1}{2} \|y - \hat{y}\|_2^2$$

Computing Gradients

Level 1 - "Numerical" differentiation

Level 2 - "Symbolic" differentiation

Level 3 - "Automatic" differentiation

Numerical Differentiation

$$\frac{\partial f(x)}{\partial x} \approx \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Compute this with a "small" h (e.g. 10^{-6})

Easy to implement!

Not very accurate....

Symbolic Differentiation

$$\begin{split} \frac{\partial \mathcal{L}_{\theta}}{\partial W_1} &= \frac{\partial}{\partial W_1} \frac{1}{2} \|y - \hat{y}\|_2^2 \\ &= \frac{\partial}{\partial W_1} \frac{1}{2} (y - W_2 \sigma(W_1 x))^T \cdot (y - W_2 \sigma(W_1 x)) \\ \text{chain rule, product rule...} \end{split}$$

Accurate

Tedious (must be manually calculated for each term)

Think about the problem as a "computational graph"

"Divide and conquer" using the chain rule

Enables "backpropagation" – an efficient way to take derivatives of the loss w.r.t. all the parameters in the graph

Think about the problem as a "computational graph"

Divide and conquer using the chain rule

Think about the problem as a "computational graph"

Divide and conquer using the chain rule

$$\frac{\partial \mathcal{L}}{\partial W_2} = \frac{\partial \hat{y}}{\partial W_2} \frac{\partial \mathcal{L}}{\partial \hat{y}}$$

Think about the problem as a "computational graph"

Divide and conquer using the chain rule

$$\frac{\partial \mathcal{L}}{\partial W_1} = \frac{\partial f}{\partial W_1} \frac{\partial g}{\partial f} \frac{\partial \hat{y}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{y}}$$

Think about the problem as a "computational graph"

Divide and conquer using the chain rule

$$\frac{\partial \mathcal{L}}{\partial W_1} = \frac{\partial f}{\partial W_1} \frac{\partial g}{\partial f} \frac{\partial \hat{y}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{y}}$$

We can calculate analytical expressions for each of these terms and then plug in our values

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial f}{\partial w_1} \frac{\partial g}{\partial f} \frac{\partial \hat{y}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{y}}$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial f}{\partial w_1} \frac{\partial g}{\partial f} \frac{\partial \hat{y}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{y}}$$

$$\frac{\partial \mathcal{L}}{\partial \hat{y}} = \frac{\partial}{\partial \hat{y}} \frac{1}{2} (\hat{y} - y)^2 = \hat{y} - y$$

$$\frac{\partial \mathcal{L}}{\partial w_{1}} = \frac{\partial f}{\partial w_{1}} \frac{\partial g}{\partial f} \frac{\partial \hat{g}}{\partial g} \frac{\partial \hat{g}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{g}}$$

$$\frac{\partial \mathcal{L}}{\partial \hat{g}} = \frac{\partial f}{\partial w_{1}} \frac{\partial g}{\partial f} \frac{\partial \hat{g}}{\partial g} \frac{\partial \hat{g}}{\partial g} \frac{\partial \mathcal{L}}{\partial g}$$

$$\frac{w_1}{x} = \frac{w_2}{f} = \frac{y}{g} + \frac{y}{\hat{y}} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \\
\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial f}{\partial w_1} \frac{\partial g}{\partial f} \frac{\partial \hat{y}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{y}} \\
\frac{\partial \hat{y}}{\partial g} = \frac{\partial}{\partial g} w_2 \cdot g = w_2$$

$$\frac{\partial \mathcal{L}}{\partial w_{1}} = \frac{\partial f}{\partial w_{1}} \frac{\partial g}{\partial f} \frac{\partial \hat{g}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{g}}$$

$$\frac{w_{1}}{g} \frac{w_{2}}{g} \frac{y}{\hat{y}} \frac{\hat{J}}{\hat{y}} \mathcal{L}$$

$$\frac{\partial \hat{g}}{\partial g} \frac{\partial \hat{g}}{\partial g} \frac{\partial \mathcal{L}}{\partial \hat{g}}$$

$$\frac{w_1}{x} = \frac{w_2}{\sigma} \underbrace{\frac{y}{\hat{y}} \cdot \frac{\hat{y}}{\hat{y}}}_{x} \underbrace{\frac{\partial \hat{y}}{\partial g}}_{x} \underbrace{\frac{\partial \hat$$

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial f}{\partial w_1} \frac{\partial g}{\partial f} \frac{\partial \hat{g}}{\partial g} \frac{\partial \hat{g}}{\partial g} \frac{\partial \mathcal{L}}{\partial g} \qquad \frac{\partial g}{\partial g} \qquad \frac{\partial g}{\partial g} \qquad \frac{\partial \mathcal{L}}{\partial g}$$

$$\frac{\partial \mathcal{L}}{\partial w_{1}} = \frac{\partial f}{\partial w_{1}} \frac{\partial g}{\partial f} \frac{\partial \hat{g}}{\partial g} \frac{\partial \mathcal{L}}{\partial g} \frac{\partial \mathcal{L}}{\partial g} \frac{\partial g}{\partial g} \frac{\partial \mathcal{L}}{\partial g} \frac{\partial g}{\partial g} \frac{\partial \mathcal{L}}{\partial g} \frac{\partial g}{\partial g} \frac{\partial g}{\partial g} \frac{\partial \mathcal{L}}{\partial g} \frac{\partial g}{\partial g} \frac{\partial g}{\partial$$

Save these intermediate values during forward computation

Then we perform a "backward pass"

What about $\frac{\partial \mathcal{L}}{\partial w_2}$?

Image Inpainting Training Loop

1. Sample batch of images from dataset

2. Run forward pass to calculate network output for each image

- 3. Run backward pass to calculate gradients with backpropagation
- 4. Update parameters with stochastic gradient descent

4. Update parameters with stochastic gradient descent

$$\nabla_{\theta} \mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial W_1}, \frac{\partial \mathcal{L}}{\partial W_2}\right)$$

$$W_2^{(k+1)} = W_2^{(k)} - \alpha \frac{\partial \mathcal{L}}{\partial W_2}$$

$$W_1^{(k+1)} = W_1^{(k)} - \alpha \frac{\partial \mathcal{L}}{\partial W_1}$$

"stochastic" refers to the fact that inputs are processed in batches

Recap: vector differentiation

Scalar wrt Scalar

$$x \in \mathbb{R} \ y \in \mathbb{R}$$

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

Recap: vector differentiation

$$x \in \mathbb{R} \ y \in \mathbb{R}$$

$$\in \mathbb{R}$$

Vector wrt Vector
$$x \in \mathbb{R}^N \ y \in \mathbb{R}^M$$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{M \times N}$$

"output x input"

Recap: vector differentiation

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_N} \\ \vdots & \vdots & \\ \frac{\partial y_M}{\partial x_1} & \cdots & \frac{\partial y_M}{\partial x_N} \end{bmatrix} \qquad \begin{array}{l} \text{Vector wrt Vector} \\ x \in \mathbb{R}^N \ y \in \mathbb{R}^M \\ \frac{\partial y}{\partial x} \in \mathbb{R}^{M \times N} \\ \end{array}$$

"output x input"

Example 1: matrix multiply

$$\frac{\partial \hat{y}}{\partial g} = \frac{\partial}{\partial g} W_2$$

$$g \in \mathbb{R}^{N}$$

$$\hat{y} \in \mathbb{R}^M$$

$$g \in \mathbb{R}^{N}$$

$$\hat{y} \in \mathbb{R}^{M}$$

$$W_{2} \in \mathbb{R}^{M \times N}$$

Example 1: matrix multiply
$$\frac{\partial \hat{y}}{\partial g} = \frac{\partial}{\partial g} W_2 g \\ g \in \mathbb{R}^N \\ \hat{y} \in \mathbb{R}^M \\ W_2 \in \mathbb{R}^{M \times N}$$

$$\frac{\partial \hat{y}}{\partial g} = W_2$$

Example 2: elementwise functions

$$h = f \odot g$$

$$f \in \mathbb{R}^N$$
$$h \in \mathbb{R}^N$$

$$\mathbb{R}^N$$

$$\frac{\partial h}{\partial f} \in \mathbb{R}^{N \times N}$$

Example 2: elementwise functions

$$h = f \odot g$$

$$f \in \mathbb{R}^{N}$$

$$h \in \mathbb{R}^{N}$$

$$\frac{\partial h}{\partial f} \in \mathbb{R}^{N \times N}$$

Final hint: dimensions should always match up!

$$\mathbf{x} = \frac{\partial \mathcal{L}}{\partial W_{1}} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial g} \cdot \frac{\partial g}{\partial f} \cdot \frac{\partial f}{\partial W_{1}}$$

⚠ The product would be flipped with the "input x output" convention

Summary

Linear models and MLPs

Gradient descent

Automatic differentiation, backpropagation

Computational graphs

Next Time

Convolutional neural networks

Building blocks of deep networks

Image processing with deep networks

(b) Raw data via traditional pipeline

(c) Our result

References and Further Reading

slides adapted from Stanford CS231N: http://cs231n.stanford.edu/slides/

CS229/CS231n notes on linear classifiers

https://cs231n.github.io/linear-classify/

https://cs229.stanford.edu/notes2021fall/cs229-notes1.pdf

CS231n Notes on backprop

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

https://cs231n.github.io/optimization-2/

Intro to pytorch autograd

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Extending pytorch autograd functions

https://pytorch.org/docs/stable/notes/extending.html

$$f = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}$$

