MIDTERM EXAM ____ FYS3120 ____

CANDIDATE 15137

1. A (BORING) LAGRANGIAN

A non-relativistic particle (no-potential) of mass m is moving in three dimensions.

1.a.

1.b.

1.c.

1.d.

1.e.

1.f.

1.g. Consider a Lorentz transformation where the Lorentz transformation tensor is given as

$$(1) L^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu}.$$

Any particular Lorentz transformation must leave the line element $ds^2 = dx_\mu dx^\mu$ invariant,

$$g_{\mu\nu}dx'^{\mu}dx'^{\nu} = g_{\mu\nu}L^{\mu}_{\ \rho}L^{\mu}_{\ \sigma}dx^{\rho}dx^{\sigma} = g_{\rho\sigma}dx^{\rho}dx^{\sigma}$$
$$g_{\mu\nu}L^{\mu}_{\ \rho}L^{\nu}_{\ \sigma} = g_{\rho\sigma}$$

Not to see if the Lorentz transformation in 1 statisfies this requirement

$$g_{\mu\nu} = q_{\mu\nu} L^{\mu}_{\ \rho} L^{\nu}_{\ \sigma}$$

$$= g_{\mu\nu} (\delta^{\mu}_{\ \rho} + \omega^{\mu}_{\ \rho}) (\delta^{\nu}_{\ \sigma} + \omega^{\nu}_{\ \sigma})$$

$$= (\delta_{\nu\rho} + \omega_{\nu\rho}) (\delta^{\nu}_{\ \sigma} + \omega^{\nu}_{\ \sigma})$$

$$= \delta_{\nu\rho} \delta^{\nu}_{\ \sigma} + \delta_{\nu\rho} \omega^{\nu}_{\ \sigma} + \omega_{\nu\rho} \delta^{\nu}_{\ \sigma} + \omega_{\nu\rho} \omega^{\nu}_{\ \sigma}$$

$$= g_{\nu\rho} \delta^{\nu}_{\ \sigma} + g_{\nu\rho} \omega^{\nu}_{\ \sigma} + \omega_{\nu\rho} g^{\nu\gamma} g_{\gamma\sigma} + \omega^{2}_{\rho\sigma}$$

$$= \delta_{\rho\sigma} + \omega_{\rho\sigma} + \omega_{\sigma\rho} = g_{\rho\sigma} + g_{\nu\rho} (\omega^{\nu}_{\ \sigma} + \omega^{\nu}_{\sigma}),$$

which only works if ω^{μ}_{ν} is antisymmetric, that is if $\omega^{\mu}_{\nu} = -\omega_{\nu}^{\mu}$.

Date: March 27, 2017.