

What does coding do?

Figure 1: Communication system

- Why coding?
- 1. Source coding
 - ► Convert source messages to channel symbols (for example 0,1)
 - Minimize number of symbols needed
 - Adapt probabilities of symbols to maximize mutual information
- 2. Error control
 - ► Protection against channel errors / Adds new (redundant) symbols

Source-channel separation theorem

Source-channel separation theorem (informal):

- ▶ It is possible to obtain the best reliable communication by performing the two tasks separately:
 - 1. Source coding: to minimize number of symbols needed
 - Error control coding (channel coding): to provide protection against noise

Source coding

- Assume we code for transmission over ideal channels with no noise
- Transmitted symbols are perfectly recovered at the receiver
- Main concerns:
 - minimize the number of symbols needed to represent the messages
 - make sure we can decode the messages
- Advantages:
 - Efficiency
 - Short communication times
 - Can decode easily

Definitions

- ▶ Let $S = \{s_1, s_2, ... s_N\}$ = an input discrete memoryless source
- Let $X = \{x_1, x_2, ... x_M\}$ = the alphabet of the code
 - ► Example: binary: {0,1}
- ▶ A **code** is a mapping from *S* to the set of all codewords:

$$C = \{c_1, c_2, ...c_N\}$$

Message	Codeword		
<i>s</i> ₁ <i>s</i> ₂	$c_1 = x_1 x_2 x_1 \dots$ $c_2 = x_1 x_2 x_2 \dots$		
 S _N	$c_3 = x_2 x_2 x_2 \dots$		

- ► Decoding: given a sequence of symbols, deduce the original sequence of messages
- ▶ Codeword length l_i = the number of symbols in c_i

Example: ASCII code

Letter	ASCII Code	Binary	Letter	ASCII Code	Binary
a	097	01100001	Α	065	01000001
b	098	01100010	В	066	01000010
С	099	01100011	C	067	01000011
d	100	01100100	D	068	01000100
e	101	01100101	E	069	01000101
f	102	01100110	F	070	01000110
g	103	01100111	G	071	01000111
h	104	01101000	H	072	01001000
i	105	01101001	I	073	01001001
j	106	01101010	J	074	01001010
k	107	01101011	K	075	01001011
- 1	108	01101100	L	076	01001100
m	109	01101101	M	077	01001101
n	110	01101110	N	078	01001110
0	111	01101111	0	079	01001111
р	112	01110000	P	080	01010000
q	113	01110001	Q	081	01010001
r	114	01110010	R	082	01010010
S	115	01110011	S	083	01010011
t	116	01110100	T	084	01010100
u	117	01110101	U	085	01010101
V	118	01110110	V	086	01010110
w	119	01110111	W	087	01010111
×	120	01111000	X	088	01011000
У	121	01111001	Υ	089	01011001
Z	122	01111010	Z	090	01011010

Figure 2: ASCII code (partial)

Average code length

- ▶ How to measure representation efficiency of a code?
- ► Average code length = average of the codeword lengths:

$$\bar{l} = \sum_{i} p(s_i) l_i$$

- ► The probability of a codeword = the probability of the corresponding message
- Smaller average length: code more efficient (better)
- How small can the average length be?

Definitions

A code can be:

- non-singular: all codewords are different
- uniquely decodable: for any received sequence of symbols, there is only one corresponding sequence of messages
 - ▶ i.e. no sequence of messages produces the same sequence of symbols
 - ▶ i.e. there is never a confusion at decoding
- instantaneous (also known as prefix-free): no codeword is prefix to another code
 - ▶ A *prefix* = a codeword which is the beginning of another codeword

Examples: at the blackboard

The graph of a code

Example at blackboard

Instantaneous codes are uniquely decodable

Theorem

- ► An instantaneous code is uniquely decodable
- ► (The converse is not necessary true; there exist uniquely decodable codes which are not instantaneous)

Proof

- ▶ There is exactly one codeword matching the beginning of the sequence
 - Suppose the true initial codeword is c
 - ▶ There can't be a shorter codeword c', since it would be prefix to c
 - ▶ There can't be a longer codeword **c**", since **c** would be prefix to it
- Remove first codeword from sequence
- ▶ By the same argument, there is exactly one codeword matching the new beginning
 - ▶ and so on ...

Graph-based decoding of instantaneous codes

- ▶ How to decode an instantaneous code: graph-based decoding
- Advantage on instantaneous code over uniquely decodable: simple decoding
- ▶ Why the name *instantaneous*?
 - ▶ The codeword can be decoded as soon as it is fully received
 - Counter-example: Uniquely decodable, non-instantaneous, delay 6: {0, 01, 011, 1110}

Existence of instantaneous codes

When can an instantaneous code exist?

Kraft inequality theorem:

▶ There exists an instantaneous code with D symbols and codeword lengths $l_1, l_2, \ldots l_n$ if and only if the lengths satisfy the following inequality:

$$\sum_{i} D^{-l_i} \leq 1.$$

Proof: At blackboard

Comments:

- ▶ If lengths do not satisfy this, no instantaneous code exists
- ▶ If the lengths of a code satisfy this, that code can be instantaneous or not (there exists an instantaneous code, but not necessarily that one)
- Kraft inequality means that the codewords lengths cannot be all very small

Instantaneous codes with equality in Kraft

► From the proof => we have equality in the relation

$$\sum_{i} D^{-l_i} = 1$$

only if the lowest level is fully covered <=> no unused branches

- ► For an instantaneous code which satisfies Kraft with equality, all the graph branches terminate with codewords (there are no unused branches)
 - ▶ This is most economical: codewords are as short as they can be

Kraft inequality for uniquely decodable codes

- Instantaneous codes must obey Kraft inequality
- ▶ How about uniquely decodable codes?

McMillan theorem:

▶ Any uniquely decodable code **also** satisfies the Kraft inequality:

$$\sum_{i} D^{-l_i} \leq 1.$$

Consequence:

- ► For every uniquely decodable code, there exists in instantaneous code with the same lengths!
- ► Even though the class of uniquely decodable codes is larger than that of instantaneous codes, it brings no benefit in codeword length
- ▶ We can always use just instantaneous codes.

Finding an instantaneous code for given lengths

- ▶ How to find an instantaneous code with code lengths $\{I_i\}$
- 1. Check that lengths satisfy Kraft relation
- 2. Draw graph
- 3. Assign nodes in a certain order (e.g. descending probability)
- ► Easy, standard procedure
- ► Example: at blackboard

Optimal codes

▶ We want to **minimize the average length** of a code:

$$\bar{l} = \sum_{i} p(s_i) l_i$$

▶ But the lengths must obey the Kraft inequality (for uniquely decodable), so:

minimize
$$\sum_{i} p(s_i) l_i$$
 subject to $\sum_{i} D^{-l_i} \leq 1$

The optimal values are:

$$I_i = -\log(p(s_i))$$

- Rigorous proof: at blackboard (method of Lagrange multiplier)
- ▶ Intuition: using $l_i = -\log(p(s_i))$ satisfies Kraft with equality, so the lengths cannot be any shorter, in general

Entropy = minimal codeword lengths

If the optimal values are:

$$I_i = -\log(p(s_i))$$

▶ Then the minimal average length is:

$$\min \bar{I} = \sum_{i} p(s_i)I_i = -\sum_{i} p(s_i)\log(p(s_i)) = H(S)$$

Average length >= entropy

The average length of an uniquely decodable code cannot be smaller than the source entropy

$$H(S) \leq \overline{I}$$

Meaning of entropy

- ► One can never represent messages, in general, with a code having average length less than the entropy
- ► Truck analogy: at blackboard

Non-optimal codes

- ▶ Problem: $-\log(p(s_i))$ might not be an integer number
- ▶ $l_i = -\log(p(s_i))$ only when probabilities are power of 2 (*dyadic distribution*)
- Shannon's solution: round to bigger integer

$$I_i = \lceil -\log(p(s_i)) \rceil$$

Shannon coding

- Shannon coding:
 - 1. Arrange probabilities in descending order
 - 2. Use codeword lengths $I_i = \lceil -\log(p(s_i)) \rceil$
 - 3. Find an instantaneous code for these lengths
- ► Simple scheme, better algorithms are available
 - **Example:** compute lengths for S:(0.9,0.1)
- ▶ But still enough to prove fundamental results

Average length of Shannon code

Theorem:

► The average length of a Shannon code satisfies

$$H(S) \leq \overline{I} < H(S) + 1$$

- Proof:
- 1. The first inequality is because H(S) is minimum length
- 2. The second inequality:

$$I_i = \lceil -\log(p(s_i)) \rceil = -\log(p(s_i)) + \epsilon_i$$

where $0 \le \epsilon_i < 1$

2.2 Compute average length:

$$\bar{I} = \sum_{i} p(s_i)I_i = H(S) + \sum_{i} p(s_i)\epsilon_i$$

2.3 Since
$$\epsilon_i < 1 = \sum_i p(s_i) \epsilon_i < \sum_i p(s_i) = 1$$

Average length of Shannon code

- ► Shannon code approaches minimum possible lengths up to at most 1 extra bit
 - ► That's not bad at all
 - ▶ There exist even better codes, in general
- ► Can we get even closer to the minimum length?
- Yes, as close as we want! See next slide.

Shannon's first theorem

Shannon's first theorem (coding theorem for noiseless channels):

 One can always compress messages from a source S with an average length as close as desired to H(S), but never below H(S) (for infinitely long sequences of messages)

Proof:

- Average length can never go below H(S) because this is minimum
- ▶ How can it get very close to H(S) (from above)?
 - 1. Use n-th order extension S^n of S
 - 2. Use Shannon coding for S^n , so it satisfies

$$H(S^n) \leq \overline{I_{S^n}} < H(S^n) + 1$$

3. But $H(S^n) = nH(S)$, and average length per message of S is

$$\overline{I_S} = \frac{\overline{I_{S^n}}}{n}$$

because messages of S^n are just n messages of S glued together

Shannon's first theorem

- Continuing:
 - 4. So, dividing by n:

$$H(S) \leq \overline{I_S} < H(S) + \frac{1}{n}$$

5. If extension order $n \to \infty$, then

$$\overline{I_S} \to H(S)$$

Comments:

- ► Shannon's first theorem says what entropy H(S) means:
- ► The entropy H(S) means the minimum number of bits required to describe a message from S, in general
- ► For any distribution we can approach H(S) to any desired accuracy using extensions of large order
 - ► The complexity is too large for large *n*, so in practice we settle with a close enough value
- Other codes are even better the Shannon coding

Meaning of entropy

Now we have a practical meaning of entropy:

- ► The entropy of an information source is the minimum number of bits required to represent the messages, on average
 - ▶ One can never use a code with average length smaller than the entropy
 - We can use codes with average length bigger, but as close as desired to the entropy
 - ▶ So entropy is the actual minimum number of bits needed
- Again the truck analogy

Efficiency and redundancy of a code

Efficiency of a code (M = size of code alphabet):

$$\eta = \frac{H(S)}{\overline{I} \log M}$$

► **Redundancy** of a code:

$$\rho = 1 - \eta$$

- These measures indicate how close is the average length to the optimal value
- ▶ When $\eta = 1$: optimal code
 - for example when $I_i = -\log(p(s_i))$

Coding with the wrong code

- ▶ Consider a source with probabilities $p(s_i)$
- ▶ We use a code designed for a different source: $I_i = -\log(q(s_i))$
- ▶ The message probabilities are $p(s_i)$ but the code is designed for $q(s_i)$
- ▶ How much do we lose?
- ► Example: different languages

- lacktriangle Codeword lengths are not optimal for this source => increased \bar{I}
- ▶ If code were optimal, best average length = entropy H(S):

$$\overline{I_{optimal}} = -\sum p(s_i) \log p(s_i)$$

▶ The actual average length:

$$\overline{I_{actual}} = \sum p(s_i)I_i = -\sum p(s_i)\log q(s_i)$$

The Kullback-Leibler distance

Difference is:

$$\overline{I_{actual}} - \overline{I_{optimal}} = \sum_{i} p(s_i) \log(\frac{p(s_i)}{q(s_i)}) = D_{KL}(p, q)$$

Definition: the Kullback-Leibler distance of two distributions is

$$D_{KL}(p,q) = \sum_{i} p(i) \log(\frac{p(i)}{q(i)})$$

Properties:

► Always positive:

$$D_{KL}(p,q) \geq 0, \forall p,q$$

▶ Equals 0 only when the two distributions are identical

$$D_{KL}(p,q) = 0 \ll p(s_i) = q(s_i), \forall i$$

The Kullback-Leibler distance

Where is the Kullback-Leibler distance used:

- Using a code for a different distribution:
 - Average length is increased with $D_{KL}(p,q)$
- Definition of mutual information:
 - ▶ Distance between $p(x_i \cap y_j)$ and the distribution of two independent variables $p(x_i) \cdot p(y_i)$

$$I(X,Y) = \sum_{i,j} p(x_i \cap y_j) \log(\frac{p(x_i \cap y_j)}{p(x_i)p(y_j)})$$

Shannon-Fano coding (binary)

Shannon-Fano (binary) coding procedure:

- 1. Sort the message probabilities in descending order
- 2. Split into two subgroups as nearly equal as possible
- 3. Assign first bit 0 to first group, first bit 1 to second group
- 4. Repeat on each subgroup
- 5. When reaching one single message => that is the codeword

Example: blackboard

Comments:

- Shannon-Fano coding does not always produce the shortest code lengths
- Connection: yes-no answers (see example from source chapter)

Huffman coding (binary)

Huffman coding procedure (binary):

- 1. Sort the message probabilities in descending order
- 2. Join the last two probabilities, insert result into existing list, preserve descending order
- 3. Repeat until only two messages are remaining
- 4. Assign first bit 0 and 1 to the final two messages
- 5. Go back step by step: every time we had a sum, append 0 and 1 to the end of existing codeword

Example: blackboard

Properties of Huffman coding

Properties of Huffman coding:

- Produces a code with the smallest average length (better than Shannon-Fano)
- ► Assigning 0 and 1 can be done in any order => different codes, same lengths
- When inserting a sum into existing list, may be equal to another value => options
 - we can insert above, below or in-between equal values
 - ▶ leads to codes with different *individual* lengths, but same *average* length
- Some better algorithms exist which do not assign a codeword to every single message (they code a while sequence at once, not every message)

Huffman coding (M symbols)

General Huffman coding procedure for codes with *M* symbols:

- ▶ Have M symbols $\{x_1, x_2, ...x_M\}$
- ► Add together the last *M* symbols
- ▶ When assigning symbols, assign all *M* symbols
- ▶ **Important**: at the final step must have *M* remaining values
 - ▶ May be necessary to add *virtual* messages with probability 0 at the end of the initial list, to end up with exactly *M* messages in the end
- Example : blackboard

Comparison of Huffman and Shannon-Fano coding

Comparison of binary Huffman and Shannon-Fano example:

$$p(s_i) = \{0.35, 0.17, 0.17, 0.16, 0.15\}$$

Coding followed by channel

▶ For every symbol x_i , $i \in \{1, 2...M\}$ we can compute the average number of symbols x_i in a codeword

$$\overline{I_{x_i}} = \sum_i p(s_i) I_{x_i}(s_i)$$

- (here $I_{x_i}(s_i)$ = number of symbols x_i in codeword of s_i)
- ▶ Divide by average length => obtain probability (frequency) of symbol x_i

$$p(x_i) = \frac{\overline{I_{x_i}}}{\overline{I}}$$

- ► These are the symbol probabilities at the input of the following channel
- **Example:** binary code $(\overline{I_0}, \overline{I_1}, p(0), p(1))$

Source coding as data compression

- Consider that the messages are already written in a binary code
 - Example: characters in ASCII code
- ► Source coding = remapping the original codewords to other codewords
 - ► The new codewords are shorter, on average
- This means data compression
 - Just like the example in lab session
- What does data compression remove?
 - ► Removes **redundancy**: unused bits, patterns, regularities etc.
 - ▶ If you can guess somehow the next bit in a sequence, it means the bit is not really necessary, so compression will remove it
 - ► The compressed sequence looks like random data: impossible to guess, no discernable patterns

Chapter summary

- Average length: $\bar{I} = \sum_i p(s_i) I_i$
- lackbox Code types: instantaneous \subset uniquely decodable \subset non-singular
- All instantaneous or uniqualy decodable code must obey Kraft inequality

$$\sum_{i} D^{-l_i} \leq 1$$

- ▶ Optimal codes: $I_i = -\log(p(s_i))$, $\overline{I_{min}} = H(S)$
- ▶ Shannon's first theorem: use n-th order extension of S, S^n :

$$H(S) \leq \overline{I_S} < H(S) + \frac{1}{n}$$

- average length can get as close as possible to H(S)
- average length can never be smaller than H(S)
- Coding techniques:
 - Shannon: ceil optimal codeword lengths (round to upper)
 - Shannon-Fano: split in two groups approx. equal
 - Huffman: best