Statistical Practice in Epidemiology 2018

Survival analysis with competing risks

Janne Pitkäniemi (EL)

1/33

Survival time – time to event

Time spent (lex.dur) in a given **state** (lex.Cst) from its beginning till a certain *endpoint* or *outcome* **event** (lex.Xst) or *transition* occurs, changing the state to another.

Examples of such times and outcome events:

- ightharpoonup lifetime: birth ightharpoonup death,
- ▶ duration of marriage: wedding → divorce,
- healthy exposure time: start of exposure → onset of disease,
- ► clinical survival time: diagnosis of a disease → death.

Points to be covered

- 1. Survival or time to event data & censoring.
- 2. Competing risks: event-specific cumulative incidences & hazards.
- 3. Kaplan-Meier and Aalen-Johansen estimators.
- 4. Regression modelling of hazards: Cox model.
- 5. Packages survival, mstate, (cmprisk).
- 6. Functions Surv(), survfit(), plot.survfit(), coxph().

Ex. Survival of 338 oral cancer patients

Important variables:

- time = duration of patientship from diagnosis (entry) till death (death) or censoring (Alive), (lex.Cst is (Alive))
- event = indicator for the outcome and its observation at the end of follow-up (exit):
 - 0 = censoring,
 - 1 = death from oral cancer

Special features:

- ► Two possible endpoints
- ► Censoring incomplete observation of the survival time.

3/33 4/33

Set-up of classical survival analysis

- ► **Two-state model**: only one type of event changes the initial state.
- Major applications: analysis of lifetimes since birth and of survival times since diagnosis of a disease until death from any cause.

► **Censoring**: Death and final lifetime not observed for some subjects due to emigration or closing the follow-up while they are still alive

Distribution concepts: hazard function

The **hazard rate** or **intensity** function $\lambda(t)$

$$\lambda(t) = P(t < T \le t + \Delta | T > t)/\Delta$$
, forsmall Δ

 \approx the conditional probability that the event occurs in a short interval $(t, t + \Delta]$, given that it does not occur before t, divided by interval length.

In other words, during a short interval

risk of event \approx hazard \times interval length

5/33

Distribution concepts: survival and cumulative hazard functions

Survival function

$$S(t) = P(T > t),$$

= probability of avoiding the event at least up to t (the event occurs only after t).

The **cumulative hazard** (or integrated intensity):

$$\Lambda(t) = \int_0^t \lambda(u) du$$

Connections between the functions:

$$S(t) = \exp\{-\Lambda(t)\}$$

Observed data on survival times

For individuals i = 1, ..., n let

 T_i = time to outcome event,

 $U_i =$ time to censoring.

Censoring is assumed **noninformative**, *i.e.* independent from occurrence of events.

We observe

 $y_i = \min\{T_i, U_i\}, i.e.$ the exit time, and

 $\delta_i = 1_{\{T_i < U_i\}}$, indicator (1/0) for the outcome event occurring first, before censoring.

Censoring must properly be taken into account in the statistical analysis.

7/33 8/33

Approaches for analysing survival time

▶ Parametric model (like Weibull, gamma, etc.) on hazard rate $\lambda(t) \rightarrow$ Likelihood:

$$L = \prod_{i=1}^{n} \lambda(y_i)^{\delta_i} S(y_i)$$

- ▶ Piecewise constant rate model on $\lambda(t)$ see Bendix's lecture on time-splitting (Poisson likelihood).
- Non-parametric methods, like Kaplan-Meier (KM) estimator of survival curve S(t) and Cox proportional hazards model on $\lambda(t)$.

9 / 33

11/33

0 947

R package survival

Tools for analysis with one outcome event.

- ▶ Surv(time, event) -> sobj creates a **survival object** sobj assuming that all start at 0, containing pairs (y_i, δ_i) ,
- ► Surv(entry, exit, event) -> sobj2 creates a survival object from entry and exit times,
- survfit(sobj ~ x) -> sfo creates a survfit object sfo containing KM or other non-parametric estimates (also from a fitted Cox model),
- plot(sfo)
 plot method for survival curves and related graphs,
- coxph(sobj ~ x1 + x2) fits a Cox model with covariates x1 and x2.
- survreg() parametric survival models.

10/33

Ex. Oral cancer data (cont'd)

0 498

```
> orca$suob <- Surv(orca$time, 1*(orca$event > 0) )
> orca$suob[1:7] # + indicates censored observation
[1] 5.081+ 0.419 7.915 2.480 2.500 0.167 5.925+
> km1 <- survfit( suob ~ 1, data = orca)
                  # brief summary
Call: survfit(formula = suob ~ 1, data = orca)
      n events median 0.95LCL 0.95UCL
338.00
        229.00
                   5.42
                           4.33
                                   6.92
> summary(km1)
                   # detailed KM-estimate
Call: survfit(formula = suob ~ 1, data = orca)
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0.085
           338
                         0.9941 0.00417
                                              0.9859
                                                            1.000
 0.162
           336
                         0.9882 0.00588
                                              0.9767
                                                            1.000
 0.167
           334
                         0.9763 0.00827
                                              0.9603
                                                            0.993
 0.170
           330
                         0.9704 0.00922
                                              0.9525
                                                            0.989
 0.246
           328
                         0.9675 0.00965
                                              0.9487
                                                            0.987
           327
 0.249
                         0.9645 0.01007
                                              0.9450
                                                            0.984
           326
                                                            0.978
 0.252
                                              0.9339
                         0.9556 0.01120
 0.329
           323
                                              0.9303
                                                            0.976
                         0.9527 0.01155
 0.334
           322
                         0.9497 0.01189
                                              0.9267
                                                            0.973
 0.413
           321
                                              0.9231
                                                            0.971
                         0.9467 0.01221
 0.419
           320
                         0.9290 0.01397
                                              0.9020
                                                            0.957
  0.496
           314
                         0.9231 0.01449
                                              0.8951
                                                            0.952
```

0 9172 0 01499

Oral cancer: Kaplan-Meier estimates

Estimated survival (95% CI) and CDF

Competing risks model: causes of death

- ▶ Often the interest is focused on the risk or hazard of dying from one specific cause.
- ► That cause may eventually not be realized, because a **competing cause** of death hits first.

Generalizes to several competing causes.

13/33

Event-specific quantities

Cumulative incidence function (CIF) or

$$F_c(t) = P(T \le t \text{ and } C = c), \quad c = 1, 2,$$

From these one can recover

- ▶ $F(t) = \sum_{c} F_c(t)$, CDF of event-free survival time T, *i.e.* cumulative risk of any event by t.
- ▶ S(t) = 1 F(t), event-free survival function, *i.e.* probability of avoiding all events by t, but $S(t) \neq F_1(t) + F_2(t)$

Competing events & competing risks

In many epidemiological and clinical contexts there are competing events that may occur before the target event and remove the person from the population at risk for the event, e.g.

- target event: occurrence of endometrial cancer, competing events: hysterectomy or death.
- target event: relapse of a disease (ending the state of remission), competing event: death while still in remission.
- target event: divorce, competing event: death of either spouse.

Event-specific quantities (cont'd)

Event- or cause-specific hazard function

$$egin{aligned} \lambda_c(t) &= \lim_{\Delta o 0} rac{P(t < T \le t + \Delta \; ext{and} \; C = c \mid T > t)}{\Delta} \ &= rac{f_c(t)}{1 - F(t)} \end{aligned}$$

CIF = risk of event c over risk period [0, t] in the presence of competing risks, also obtained

$$F_c(t) = \int_0^t \lambda_c(v) S(v) dv, \quad c = 1, 2,$$

More on the technical definitions of relevant quantities: http://bendixcarstensen.com/AdvCoh/papers/fundamentals.pdf

15/33 16/33

Warning of "net risk" and "cause-specific survival"

► The "net risk" of outcome c by time t, assuming hypothetical elimination of competing risks, is often defined as

$$F_1^*(t) = 1 - S_1^*(t) = 1 - \exp\{-\Lambda_1(t)\} \neq S(t)$$

- ▶ In clinical survival studies, function $S_1^*(t)$ is often called "cause-specific survival", or "net survival"
- Yet, these *-functions, $F_1^*(t)$ and $S_1^*(t)$, lack proper probability interpretation when competing risks exist.
- ► Hence, their use should be viewed critically (Andersen & Keiding, *Stat Med*, 2012)

17/33 18/33

R tools for competing risks analysis

- survfit(Surv(...,type="mstate")) in Survival-package can be fitted for any transition of a multistate model and to obtain A-J estimates.
- ► Package cmprsk cuminc(ftime, fstatus, ...) computes CIF-estimates, and can be compared in more than two samples. plot.cuminc() plots them.
- ▶ Package Epi Lexis tools for multistate analyses Will be advertised by Bendix!

Analysis with competing events

Let U_i = censoring time, T_i = time to first event, and C_i = variable for event 1 or 2. We observe

- ▶ $y_i = \min\{T_i, U_i\}$, *i.e.* the exit time, and
- ▶ $\delta_{ic} = 1_{\{T_i < U_i \& C_i = c\}}$, indicator (1/0) for event c being first observed, c = 1, 2.

Non-parametric estimation of CIF

- ▶ Let $t_1 < t_2 < \cdots < t_K$ be the K distinct time points at which any outcome event was observed, Let also $\widetilde{S}(t)$ be KM estimator for overall S(t).
- ▶ **Aalen-Johansen estimator** (AJ) for the cumulative incidence function F(t) should be used

Box diagram for transitions

NOTE: entry.status has been set to "Alive" for all.
NOTE: entry is assumed to be 0 on the stime timescale.

19/33 20/33

Ex. Survival from oral cancer

- ▶ AJ-estimates of CIFs (solid) for both causes.
- ▶ Naive KM-estimates of CIF (dashed) > AJ-estimates
- ▶ CIF curves may also be stacked (right).

NB. The sum of the naive KM-estimates of CIF exceeds 100% at 13 years!

21 / 33

Ex. CIFs by cause in men and women

CIF for cancer higher in women (chance?) but for other causes higher in men (no surprise).

22/33

Regression models for time-to-event data

Regression models for hazards can be defined e.g. for

(a) hazards, multiplicatively:

$$\lambda_i(t) = \lambda_0(t; \alpha) r(\eta_i),$$
 where

 $\lambda_0(t; \alpha)$ = baseline hazard and $r(\eta_i)$ = relative rate function, typically $\exp(\eta_i)$

(b) hazards, additively:

$$\lambda_i(t) = \lambda_0(t; \alpha) + \eta_i.$$

Relative hazards model or Cox model

In model (b), the baseline hazard $\lambda_0(t,\alpha)$ may be given a parametric form (e.g. Weibull) or a piecewise constant rate (exponential) structure.

Often a parameter-free form $\lambda_0(t)$ is assumed. Then

$$\lambda_i(t) = \lambda_0(t) \exp(\eta_1),$$

specifies the **Cox model** or the **semiparametric proportional hazards model**.

 $\eta_i = \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$ not depending on time.

Generalizations: **time-dependent** covariates $x_{ij}(t)$

23/33 24/33

PH model: interpretation of parameters

Present the model explicitly in terms of x's and β 's.

$$\lambda_i(t) = \lambda_0(t) \exp(\beta_1 x_{i1} + \dots + \beta_p x_{ip})$$

Consider two individuals, i and i', having the same values of all other covariates except the j^{th} one.

The ratio of hazards is constant:

$$\frac{\lambda_i(t)}{\lambda_{i'}(t)} = \frac{\exp(\eta_i)}{\exp(\eta_{i'})} = \exp\{\beta_j(x_{ij} - x_{i'j})\}.$$

Thus $e^{\beta_j} = HR_j =$ **hazard ratio** or relative rate associated with a unit change in covariate X_i .

25/33 26/33

Predictions from the Cox model

▶ Individual survival *times* cannot be predicted but ind'l survival *curves* can. PH model implies:

$$S_i(t) = [S_0(t)]^{\exp(\beta_1 x_{i1} + \dots + \beta_p x_{ip})}$$

- ▶ Having estimated β by partial likelihood, the baseline $S_0(t)$ is estimated by Breslow method
- ► From these, a survival curve for an individual with given covariate values is predicted.
- ▶ In R: pred <- survfit(mod, newdata=...) and plot(pred), where mod is the fitted coxph object, and newdata specifies the covariate values. newdata is always needed for predictions.

Ex. Total mortality of oral ca. patients

Fitting Cox models with sex and sex + age.

```
> cm0 <- coxph( suob ~ sex, data = orca)</pre>
> summary( cm0)
        coef exp(coef) se(coef)
                                     z Pr(>|z|)
sexMale 0.126
                   1.134
                            0.134 0.94
                                             0.35
        exp(coef) exp(-coef) lower .95 upper .95
sexMale
             1.13
                        0.882
                                   0.872
                                               1.47
> cm1 <- coxph( suob ~ sex + age, data = orca)</pre>
> summary(cm1)
        exp(coef) exp(-coef) lower .95 upper .95
sexMale
             1.49
                        0.669
                                    1.14
                                               1.96
             1.04
                        0.960
                                    1.03
                                               1.05
age
```

The M/F contrast visible only after age-adjustment.

Modelling with competing risks

Main options, providing answers to different questions.

- (a) Cox model for event-specific hazards $\lambda_c(t) = f_c(t)/[1-F(t)]$, when e.g. the interest is in the biological effect of the prognostic factors on the fatality of the very disease that often leads to the relevant outcome.
- (b) **Fine–Gray model** for the hazard of the subdistribution $\gamma_c(t) = f_c(t)/[1 F_c(t)]$ when we want to assess the impact of the factors on the overall cumulative incidence of event c.
 - Function crr() in package cmprsk.

27/33 28/33

Competing risks model: excess hazard of death

where

- $ightharpoonup \lambda_{P}(u)$ is the hazard of dying from any cause among disease-free members
- $\lambda_{\rm E}(t)$ is the excess hazard of dying from the disease among diseased cohort members

Rectal cancer

Ex. rectal cancers in females in Finland 2008-2012. Calculate observed mortality, excess mortality and relative mortality.

```
> library(popEpi)
> library(Epi)
> library(survival)
> data("sire")
> head(sire)
```

	sex	bi_date	dg_date	ex_date	status	dg_age
1:	1	1952-05-27	1994-02-03	2012-12-31	0	41.68877
2:	1	1959-04-04	1996-09-20	2012-12-31	0	37.46378
3:	1	1958-06-15	1994-05-30	2012-12-31	0	35.95616
4:	1	1957-05-10	1997-09-04	2012-12-31	0	40.32055
5:	1	1957-01-20	1996-09-24	2012-12-31	0	39.67745
6:	1	1962-05-25	1997-05-17	2012-12-31	0	34.97808

29/33 30/33

Rectal cancer

```
> data(sire)
> ## split data
   fotcut \leftarrow c(0,3/12,6/12,1,2,3,4,5)
   lex.split <- lexpand(sire, birth = bi_date, entry = dg_date,</pre>
                         exit = ex_date
                         status=status %in% 1:2,
                         breaks = list(fot=fotcut),
                         pophaz=popmort, # population mortality
                         pp=F, # weights for survival estimation
                         aggre = list(fot) )
> head(lex.split)
    fot
            pyrs at.risk
                              d.exp from0to0 from0to1
1: 0.00 1946.997
                     8227
                           71.43614
                                          105
                                                   717
2: 0.25 1779.831
                          61.05649
                                          103
                                                   431
3: 0.50 3215.778
                     6871 105.11004
                                          190
                                                   633
4: 1.00 5459.795
                                          340
                                                   791
                     6048 174.61314
5: 2.00 4501.971
                     4917 145.38757
                                          294
                                                   492
6: 3.00 3825.438
                                                   322
                     4131 128.43103
                                          281
```

Rectal cancer - mortality models

Modeling mortality by splitted follow-up time since cancer diagnosis (fot)

Estimate excess mortality $\lambda_E(t)$ (link function d.exp)

```
> excess.mort <- relpois_ag(formula = from0to1 ~ -1 + fot,
+ data = lex.split,
+ d.exp = d.exp,
+ offset = log(pyrs))</pre>
```

Estimate relative mortality (offset=log(d.exp))

```
> relative.mort <- glm(formula = from0to1 ~ -1 + as.factor(fot),
+ family=poisson(link="log"),
+ data=lex.split,
+ offset=log(d.exp))</pre>
```

Estimate observed mortality (offset=log(pyrs))

```
> obs.mort <- glm(formula = from0to1 ~ -1 + as.factor(fot),
+ family=poisson(link="log"),
+ data=lex.split,
+ offset=log(pyrs))</pre>
```

31/33 32/33

Rectal cancer mortality

Observed, expected, excess and relative mortality

