

CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Jiawel Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

What Is Pattern Discovery?

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- □ Pattern'discovery: Uncovering patterns from massive data sets
- Motivation examples: Ex. เรารื่อใจแผลไขโล้ ครั้งตัดไข่เกาะรั้งตัวไร
 - □ What products were often purchased together? □ Isaahan
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- □ Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports

- เช่ตของไอล์น : สินดังในน ที่คนมักจางชื่อ ร่วมกัน

 ☐ Itemset: A set of one or more items
- ໄດ້ການຄົນ ອັນເສດຈີໄຮດວ່າໄດ້ໄດ້

 k-itemset: $X = \{x_1, ..., x_k\}$
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- □ (absolute) support (count) of X, sup{X}: Frequency or the number of occurrences of an itemset X
 - Ex. sup{Beer} = 3 ^{ອີ |ຄາ}ໄລ ຄາລາເຄຣັ
 - Ex. sup{Diaper} = 4 shull transaction
 - Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - \square Ex. s{Beer} = 3/5 = 60%
- ช มีกรบอกลักล่อง ของ transaction กั้งขมด
- \Box Ex. s{Diaper} = 4/5 = 80%
- Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a minsup threshold σ
- Let $\sigma = 50\%$ (σ : minsup threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

การ ค.ถัยานแสดงว่ารไดวาม น่าสนใจ

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - Ex. Diaper → Beer
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \square Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both X and Y are itemsets X भौर्य लाउँ० Y
 - Support, s: The probability that a transaction contains X U Y X կեր կ դրան պարան
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - □ Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - Ex. $c = \sup\{Diaper, Beer\}/\sup\{Diaper\} = \frac{3}{4} = 0.75$

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

Mining Frequent Itemsets and Association Rules

Efficient Pattern Mining Methods

- The Downward Closure Property of Frequent Patterns
- The <u>Apriori</u> Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate <u>itemset</u> of size k

E_k: Frequent <u>itemset</u> of size k

K := 1;
E_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} 

While (E_k != \emptyset) \text{ do } \{ // \text{ when } E_k \text{ is non-empty} 
C_{k+1} := \text{ candidates generated from } E_k; // \text{ candidate generation} 
Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup; K := K + 1

K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K + 1
K := K
```

Apriori: A Candidate Generation & Test Approach

- Outline of <u>Apriori</u> (level-wise, candidate generation and test)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate <u>itemsets</u> from length-k frequent itemsets
 - Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent <u>itemsets</u> derived

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

The Apriori Algorithm—An Example

