隐马尔可夫模型

一、隐马尔可夫模型HMM

- 1. 隐马尔可夫模型 (Hidden Markov model, HMM) 是可用于序列标注问题的统计学模型,描述了由隐马尔可夫链随机生成观察序列的过程,属于生成模型。
- 2. 隐马尔可夫模型: 隐马尔可夫模型是关于时序的概率模型, 描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列, 再由各个状态生成一个观察而产生观察随机序列的过程。
 - 。 隐藏的马尔可夫链随机生成的状态的序列称作状态序列。
 - 每个状态生成一个观测,而由此产生的观测的随机序列称作观测序列。
 - 序列的每一个位置又可以看作是一个时刻。

1.1 基本概念

- 1. 设 $\mathbb{Q}=\{\mathbf{q}_1,\mathbf{q}_2,\cdots,\mathbf{q}_Q\}$ 是所有可能的状态的集合, $\mathbb{V}=\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_V\}$ 是所有可能的观测的集合,其中 Q 是可能的状态数量,V 是可能的观测数量。
 - 。 ℚ 是状态的取值空间, ♥ 是观测的取值空间。
 - 每个观测值 \mathbf{v}_i 可能是标量,也可能是一组标量构成的集合,因此这里用加粗的黑体表示。状态值的表示也类似。
- 2. 设 $\mathbf{I} = (i_1, i_2, \dots, i_T)$ 是长度为 T 的状态序列, $\mathbf{O} = (o_1, o_2, \dots, o_T)$ 是对应的观测序列。
 - $i_t \in \{1, \dots, Q\}$ 是一个随机变量,代表状态 \mathbf{q}_i 。
 - o $o_t \in \{1, \cdots, V\}$ 是一个随机变量,代表观测 \mathbf{v}_{o_t} 。
- 3. 设 A 为状态转移概率矩阵

$$\mathbf{A} = egin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,Q} \ a_{2,1} & a_{2,2} & \cdots & a_{2,Q} \ dots & dots & dots & dots \ a_{Q,1} & a_{Q,2} & \cdots & a_{Q,Q} \end{bmatrix}$$

其中 $a_{i,j}=P(i_{t+1}=j\mid i_t=i)$,表示在时刻 t 处于状态 \mathbf{q}_i 的条件下,在时刻 t+1 时刻转移到状态 \mathbf{q}_j 的概率。

4. 设 B 为观测概率矩阵

$$\mathbf{B} = egin{bmatrix} b_1(1) & b_1(2) & \cdots & b_1(V) \ b_2(1) & b_2(2) & \cdots & b_2(V) \ dots & dots & dots & dots \ b_Q(1) & b_Q(2) & \cdots & b_Q(V) \end{bmatrix}$$

其中 $b_j(k) = P(o_t = k \mid i_t = j)$,表示在时刻 t 处于状态 \mathbf{q}_j 的条件下生成观测 \mathbf{v}_k 的概率。

5. 设 $\vec{\pi}$ 是初始状态概率向量: $\vec{\pi}=(\pi_1,\pi_2,\cdots,\pi_Q)^T, \quad \pi_i=P(i_1=i)$ 是时刻 t=1 时处于状态 \mathbf{q}_i 的概率。根据定义有: $\sum_{i=1}^Q \pi_i=1$ 。

- 6. 隐马尔可夫模型由初始状态概率向量 $\vec{\pi}$ 、状态转移概率矩阵 **A** 以及观测概率矩阵 **B** 决定。因此隐马尔可夫模型 λ 可以用三元符号表示,即: $\lambda = (\mathbf{A}, \mathbf{B}, \vec{\pi})$ 。其中 $\mathbf{A}, \mathbf{B}, \vec{\pi}$ 称为隐马尔可夫模型的三要素:
 - \circ 状态转移概率矩阵 A 和初始状态概率向量 π 确定了隐藏的马尔可夫链,生成不可观测的状态序列。
 - 。 观测概率矩阵 B 确定了如何从状态生成观测,与状态序列一起确定了如何产生观测序列。
- 7. 从定义可知, 隐马尔可夫模型做了两个基本假设:
 - 齐次性假设:即假设隐藏的马尔可夫链在任意时刻 t 的状态只依赖于它在前一时刻的状态,与其他时刻的状态和观测无关,也与时刻 t 无关,即:

$$P(i_t \mid i_{t-1}, o_{t-1}, \dots, i_1, o_1) = P(i_t \mid i_{t-1}), \quad t = 1, 2, \dots, T$$

观测独立性假设,即假设任意时刻的观测值只依赖于该时刻的马尔可夫链的状态,与其他观测及状态无关,即:

$$P(o_t \mid i_T, o_T, \dots, i_{t+1}, o_{t+1}, i_t, i_{t-1}, o_{t-1}, \dots, i_1, o_1) = P(o_t \mid i_t), \quad t = 1, 2, \dots, T$$

1.2 生成算法

- 1. 隐马尔可夫模型可以用于标注问题:给定观测的序列,预测其对应的状态序列。如:词性标注问题中,状态就是单词的词性,观测就是具体的单词。在这个问题中:
 - o 状态序列:词性序列。
 - 。 观察序列: 单词序列。
 - 。 生成方式:
 - 给定初始状态概率向量 π , 随机生成第一个词性。
 - 根据前一个词性,利用状态转移概率矩阵 A 随机生成下一个词性。
 - 一旦生成词性序列,则根据每个词性,利用观测概率矩阵 ${f B}$ 生成对应位置的观察,得到观察序列。
- 2. 一个长度为 T 的观测序列的 HMM 生成算法:
 - 输入:
 - 隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \hat{\pi})$
 - 观测序列长度 T
 - 输出: 观测序列 $\mathbf{O} = (o_1, o_2, \dots, o_T)$
 - 。 算法步骤:
 - 按照初始状态分布 $\hat{\pi}$ 产生状态 i_1 。
 - 令 t=1, 开始迭代。迭代条件为: $t \leq T$ 。迭代步骤为:
 - 按照状态 i_t 的观测概率分布 $b_i(k)$ 生成 o_t , $o_t \in \mathbb{V}$.
 - 按照状态 i_t 的状态转移概率分布 $a_{i,j}$ 产生状态 $i_{t+1}, i_{t+1} \in \mathbb{Q}$ 。

二、 HMM 基本问题

1. 隐马尔可夫模型的 3 个基本问题:

- 。 概率计算问题: 给定模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$ 和观测序列 $\mathbf{O}=(o_1,o_2,\cdots,o_T)$,计算观测序列 \mathbf{O} 出现的概率 $P(\mathbf{O};\lambda)$ 。即: 评估模型 λ 与观察序列 \mathbf{O} 之间的匹配程度。
- 。 学习问题:已知观测序列 $\mathbf{O}=(o_1,o_2,\cdots,o_T)$,估计模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$ 的参数,使得在该模型下观测序列概率 $P(\mathbf{O};\lambda)$ 最大。即:用极大似然估计的方法估计参数。
- 。 预测问题(也称为解码问题): 已知模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$ 和观测序列 $\mathbf{O}=(o_1,o_2,\cdots,o_T)$, 求对给定 观测序列的条件概率 $P(\mathbf{I}\mid\mathbf{O})$ 最大的状态序列 $\mathbf{I}=(i_1,i_2,\cdots,i_T)$ 。即:给定观测序列,求最可能的对应的状态序列。

如:在语音识别任务中,观测值为语音信号,隐藏状态为文字。解码问题的目标就是:根据观测的语音信号来推断最有可能的文字序列。

2.1 概率计算问题

- 1. 给定隐马尔可夫模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$ 和观测序列 $\mathbf{O}=(o_1,o_2,\cdots,o_T)$,概率计算问题需要计算在模型 λ 下 观测序列 \mathbf{O} 出现的概率 $P(\mathbf{O};\lambda)$ 。
- 2. 最直接的方法是按照概率公式直接计算:通过列举所有可能的、长度为 T 的状态序列 $\mathbf{I}=(i_1,i_2,\cdots,i_T)$,求各个状态序列 \mathbf{I} 与观测序列 $\mathbf{O}=(o_1,o_2,\cdots,o_T)$ 的联合概率 $P(\mathbf{O},\mathbf{I};\lambda)$,然后对所有可能的状态序列求和,得到 $P(\mathbf{O};\lambda)$ 。
 - 状态序列 $\mathbf{I} = (i_1, i_2, \dots, i_T)$ 的概率为:

$$P(\mathbf{I};\lambda) = \pi_{i_1} a_{i_1,i_2} a_{i_2,i_3} \cdots a_{i_{T-1},i_T}$$

• 给定状态序列 $\mathbf{I} = (i_1, i_2, \dots, i_T)$, 观测序列 $\mathbf{O} = (o_1, o_2, \dots, o_T)$ 的条件概率为:

$$P(\mathbf{O} \mid \mathbf{I}; \lambda) = b_{i_1}(o_1)b_{i_2}(o_2)\cdots b_{i_T}(o_T)$$

。 O 和 I 同时出现的联合概率为:

$$P(\mathbf{O}, \mathbf{I}; \lambda) = P(\mathbf{O} \mid \mathbf{I}; \lambda) P(\mathbf{I}; \lambda) = \pi_{i_1} a_{i_1, i_2} a_{i_2, i_3} \cdots a_{i_{T-1}, i_T} b_{i_1}(o_1) b_{i_2}(o_2) \cdots b_{i_T}(o_T)$$

对所有可能的状态序列 I 求和,得到观测序列 ○ 的概率:

$$P(\mathbf{O};\lambda) = \sum_{\mathbf{I}} P(\mathbf{O},\mathbf{I};\lambda) = \sum_{i_1,i_2,\cdots,i_T} \pi_{i_1} a_{i_1,i_2} a_{i_2,i_3} \cdots a_{i_{T-1},i_T} b_{i_1}(o_1) b_{i_2}(o_2) \cdots b_{i_T}(o_T)$$

 \circ 上式的算法复杂度为 $O(T \times Q^T)$,太复杂,实际应用中不太可行。

2.1.1 前向算法

- 1. 给定隐马尔可夫模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$,定义前向概率:在时刻 t 时的观测序列为 o_1,o_2,\cdots,o_t , 且时刻 t 时状态为 \mathbf{q}_i 的概率为前向概率,记作: $\alpha_t(i)=P(o_1,o_2,\cdots,o_t,i_t=i;\lambda)$
- 2. 根据定义, $\alpha_t(j)$ 是在时刻 t 时观测到 o_1, o_2, \dots, o_t ,且在时刻 t 处于状态 \mathbf{q}_i 的前向概率。则有:
 - 。 $\alpha_t(j) \times a_{j,i}$: 为在时刻 t 时观测到 o_1,o_2,\cdots,o_t ,且在时刻 t 处于状态 \mathbf{q}_j ,且在 t+1 时刻处在状态 \mathbf{q}_i 的概率。
 - 。 $\sum_{j=1}^Q \alpha_t(j) \times a_{j,i}$: 为在时刻 t 观测序列为 o_1,o_2,\cdots,o_t ,并且在时刻 t+1 时刻处于状态 \mathbf{q}_i 的概率。
 - o 考虑 $b_i(o_{t+1})$,则得到前向概率的地推公式:

$$lpha_{t+1}(i) = \left[\sum_{j=1}^Q lpha_t(j) a_{j,i}
ight] b_i(o_{t+1})$$

- 3. 观测序列概率的前向算法:
 - 输入:
 - 隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \vec{\pi})$
 - 观测序列 $\mathbf{O} = (o_1, o_2, \dots, o_T)$
 - \circ 输出: 观测序列概率 $P(\mathbf{O}; \lambda)$
 - o 算法步骤:
 - 计算初值: $\alpha_1(i) = \pi_i b_i(o_1)$, $i = 1, 2, \dots, Q$ 。 该初值是初始时刻的状态 $i_1 = i$ 和观测 o_1 的联合概率。
 - 递推: 对于 $t = 1, 2, \dots, T 1$:

$$lpha_{t+1}(i) = \left[\sum_{j=1}^Q lpha_t(j) a_{j,i}
ight] b_i(o_{t+1}), \quad i=1,2,\cdots,Q$$

- 终止: $P(\mathbf{O};\lambda)=\sum_{i=1}^Q\alpha_T(i)$ 。 因为 $\alpha_T(i)$ 表示在时刻 T ,观测序列为 o_1,o_2,\cdots,o_T ,且状态为 \mathbf{q}_i 的概率。对所有可能的 Q 个 状态 \mathbf{q}_i 求和则得到 $P(\mathbf{O};\lambda)$ 。
- 4. 前向算法是基于 状态序列的路径结构 递推计算 $P(\mathbf{O}; \lambda)$ 。
 - o 其高效的关键是局部计算前向概率, 然后利用路径结构将前向概率"递推"到全局。
 - 算法复杂度为 $O(TQ^2)$ 。

2.1.2 后向算法

- 1. 给定隐马尔可夫模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$,定义后向概率:在时刻 t 的状态为 \mathbf{q}_i 的条件下,从时刻 t+1 到 T 的 观测序列为 $o_{t+1},o_{t+2},\cdots,o_T$ 的概率为后向概率,记作: $\beta_t(i)=P(o_{t+1},o_{t+2},\cdots,o_T\mid i_t=i;\lambda)$ 。
- 2. 在时刻 t 状态为 \mathbf{q}_i 的条件下,从时刻 t+1 到 T 的观测序列为 $o_{t+1}, o_{t+2}, \cdots, o_T$ 的概率可以这样计算:

- o 考虑 t 时刻状态 \mathbf{q}_i 经过 $a_{i,j}$ 转移到 t+1 时刻的状态 \mathbf{q}_i 。
 - ullet t+1 时刻状态为 ${f q}_j$ 的条件下,从时刻 t+2 到 T 的观测序列为观测序列为 $o_{t+2},o_{t+3},\cdots,o_T$ 的 概率为 $\beta_{t+1}(j)$ 。
 - ullet t+1 时刻状态为 \mathbf{q}_j 的条件下,从时刻 t+1 到 T 的观测序列为观测序列为 $o_{t+1},o_{t+2},\cdots,o_T$ 的概率为 $b_j(o_{t+1}) imes eta_{t+1}(j)$ 。
- o 考虑所有可能的 \mathbf{q}_i , 则得到 $\beta_t(j)$ 的递推公式:

$$eta_t(i) = \sum_{i=1}^Q a_{i,j} b_j(o_{t+1}) eta_{t+1}(j)$$

3. 观测序列概率的后向算法:

- 输入:
 - 隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \vec{\pi})$
 - 观测序列 $\mathbf{O} = (o_1, o_2, \dots, o_T)$
- \circ 输出: 观测序列概率 $P(\mathbf{O}; \lambda)$
- o 算法步骤:
 - 计算初值: $\beta_T(i)=1, \quad i=1,2,\cdots,Q$ 对最终时刻的所有状态 \mathbf{q}_i , 规定 $\beta_T(i)=1$ 。
 - 递推: 对 $t = T 1, T 2, \dots, 1$:

$$eta_t(i) = \sum_{j=1}^Q a_{i,j} b_j(o_{t+1}) eta_{t+1}(j), \quad i = 1, 2, \cdots, Q$$

學 终止: $P(\mathbf{O}; \lambda) = \sum_{i=1}^{Q} \pi_i b_i(o_1) \beta_1(i)$ $\beta_1(i)$ 为在时刻 1,状态为 \mathbf{q}_i 的条件下,从时刻 2 到 T 的观测序列为 o_2, o_3, \cdots, o_T 的概率。对 所有的可能初始状态 \mathbf{q}_i (由 π_i 提供其概率)求和并考虑 o_1 即可得到观测序列为 o_1, o_2, \cdots, o_T 的概率。

2.1.3 统一形式

1. 利用前向概率和后向概率的定义,可以将观测序列概率统一为:

$$P(\mathbf{O};\lambda) = \sum_{i=1}^{Q} \sum_{j=1}^{Q} lpha_t(i) a_{i,j} b_j(o_{t+1}) eta_{t+1}(j), \quad t = 1, 2, \cdots, T-1$$

- \circ 当 t=1 时,就是后向概率算法;当 t=T-1 时,就是前向概率算法。
- o 其意义为: 在时刻 t:
 - $\alpha_t(i)$ 表示: 已知时刻 t 时的观测序列为 o_1, o_2, \dots, o_t 、 且时刻 t 时状态为 \mathbf{q}_i 的概率。
 - $\alpha_t(i)a_{i,j}$ 表示: 已知时刻 t 时的观测序列为 o_1,o_2,\cdots,o_t 、 且时刻 t 时状态为 \mathbf{q}_i 、且 t+1 时刻 状态为 \mathbf{q}_i 的概率。
 - $\alpha_t(i)a_{i,j}b_j(o_{t+1})$ 表示: 已知时刻 t+1 时的观测序列为 o_1,o_2,\cdots,o_{t+1} 、 且时刻 t 时状态为 \mathbf{q}_i 、且 t+1 时刻状态为 \mathbf{q}_i 的概率。
 - $\alpha_t(i)a_{i,j}b_j(o_{t+1})\beta_{t+1}(j)$ 表示: 已知观测序列为 o_1,o_2,\cdots,o_T 、 且时刻 t 时状态为 \mathbf{q}_i 、 且 t+1 时刻状态为 \mathbf{q}_i 的概率。
 - 对所有可能的状态 $\mathbf{q}_i, \mathbf{q}_j$ 取值,即得到上式。
- 2. 根据前向算法有: $\alpha_{t+1}(j) = \sum_{i=1}^{Q} \alpha_t(i) a_{i,j} b_j(o_{t+1})$ 。则得到:

$$egin{aligned} P(\mathbf{O};\lambda) &= \sum_{i=1}^Q \sum_{j=1}^Q lpha_t(i) a_{i,j} b_j(o_{t+1}) eta_{t+1}(j) \ &= \sum_{j=1}^Q \left[\sum_{i=1}^Q lpha_t(i) a_{i,j} b_j(o_{t+1})
ight] eta_{t+1}(j) = \sum_{j=1}^Q lpha_{t+1}(j) eta_{t+1}(j) \ &\quad t = 1, 2, \cdots, T-1 \end{aligned}$$

由于 t 的形式不重要,因此有:

$$P(\mathbf{O};\lambda) = \sum_{j=1}^Q lpha_t(j)eta_t(j), \quad t=1,2,\cdots,T$$

- 3. 给定模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$ 和观测序列 \mathbf{O} 的条件下,在时刻 t 处于状态 \mathbf{q}_i 的概率记作: $\gamma_t(i)=P(i_t=i\mid\mathbf{O};\lambda)$
 - 。 根据定义:

$$\gamma_t(i) = P(i_t = i \mid \mathbf{O}; \lambda) = \frac{P(i_t = i, \mathbf{O}; \lambda)}{P(\mathbf{O}; \lambda)}$$

• 根据前向概率和后向概率的定义,有: $\alpha_t(i)\beta_t(i) = P(i_t = i, \mathbf{O}; \lambda)$,则有:

$$\gamma_t(i) = \frac{P(i_t = i, \mathbf{O}; \lambda)}{P(\mathbf{O}; \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{P(\mathbf{O}; \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^{Q} \alpha_t(j)\beta_t(j)}$$

- 4. 给定模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$ 和观测序列 \mathbf{O} ,在时刻 t 处于状态 \mathbf{q}_i 且在 t+1 时刻处于状态 \mathbf{q}_j 的概率记作: $\xi_t(i,j)=P(i_t=i,i_{t+1}=j\mid\mathbf{O};\lambda)$
 - o 根据

$$\begin{aligned} \xi_t(i,j) &= P(i_t = i, i_{t+1} = j \mid \mathbf{O}; \lambda) = \frac{P(i_t = i, i_{t+1} = j, \mathbf{O}; \lambda)}{P(\mathbf{O}; \lambda)} \\ &= \frac{P(i_t = i, i_{t+1} = j, \mathbf{O}; \lambda)}{\sum_{v=1}^{Q} \sum_{v=1}^{Q} P(i_t = u, i_{t+1} = v, \mathbf{O}; \lambda)} \end{aligned}$$

。 考虑到前向概率和后向概率的定义有: $P(i_t=i,i_{t+1}=j,\mathbf{O};\lambda)=\alpha_t(i)a_{i,j}b_j(o_{t+1})\beta_{t+1}(j)$, 因此有:

$$\xi_t(i,j) = rac{lpha_t(i) a_{i,j} b_j(o_{t+1}) eta_{t+1}(j)}{\sum_{u=1}^Q \sum_{v=1}^Q lpha_t(u) a_{u,v} b_v(o_{t+1}) eta_{t+1}(v)}$$

- 5. 一些期望值:
 - $oldsymbol{\circ}$ 在给定观测 $oldsymbol{O}$ 的条件下,状态 i 出现的期望值为: $\sum_{t=1}^T \gamma_t(i)$ 。
 - o 在给定观测 $\mathbf O$ 的条件下,从状态 i 转移的期望值: $\sum_{t=1}^{T-1} \gamma_t(i)$ 。
 - 这里的转移,表示状态 *i* 可能转移到任何可能的状态。
 - 假若在时刻 T 的状态为 \mathbf{q}_i ,则此时不可能再转移,因为时间最大为 T 。
 - 在观测 O 的条件下,由状态 i 转移到状态 j 的期望值: $\sum_{t=1}^{T-1} \xi_t(i,j)$ 。

2.2 学习问题

- 1. 根据训练数据的不同, 隐马尔可夫模型的学习方法也不同:
 - o 训练数据包括观测序列和对应的状态序列:通过监督学习来学习隐马尔可夫模型。
 - 训练数据仅包括观测序列:通过非监督学习来学习隐马尔可夫模型。

2.2.1 监督学习

- 1. 假设数据集为 $\mathbb{D} = \{(\mathbf{O}_1, \mathbf{I}_1), (\mathbf{O}_2, \mathbf{I}_2), \cdots, (\mathbf{O}_N, \mathbf{I}_N)\}$ 。其中:
 - O_1, \cdots, O_N 为 N 个观测序列; I_1, \cdots, I_N 为对应的 N 个状态序列。
 - 序列 \mathbf{O}_k , \mathbf{I}_k 的长度为 T_k , 其中数据集中 $\mathbf{O}_1, \dots, \mathbf{O}_N$ 之间的序列长度可以不同。
- 2. 可以利用极大似然估计来估计隐马尔可夫模型的参数。
 - 。 转移概率 $a_{i,j}$ 的估计:设样本中前一时刻处于状态 i 、且后一时刻处于状态 j 的频数为 $A_{i,j}$,则状态转移概率 $a_{i,j}$ 的估计是:

$$\hat{a}_{i,j} = rac{A_{i,j}}{\sum_{u=1}^{Q} A_{i,u}}, \quad i = 1, 2, \cdots, Q; j = 1, 2, \cdots, Q$$

。 观测概率 $b_j(k)$ 的估计: 设样本中状态为 j 并且观测为 k 的频数为 $B_{j,k}$, 则状态为 j 并且观测为 k 的概率 $b_j(k)$ 的估计为:

$$\hat{b}_{j}(k) = rac{B_{j,k}}{\sum_{v=1}^{V} B_{j,v}}, \quad j=1,2,\cdots,Q; k=1,2,\cdots,V$$

o 初始状态概率的估计:设样本中初始时刻(即:t=1)处于状态 i 的频数为 C_i ,则初始状态概率 π_i 的估计为: $\hat{\pi}_i=\frac{C_i}{\sum_{i=1}^Q C_i},\quad i=1,2,\cdots,Q$ 。

2.2.2 无监督学习

- 1. 监督学习需要使用人工标注的训练数据。由于人工标注往往代价很高,所以经常会利用无监督学习的方法。 隐马尔可夫模型的无监督学习通常使用 Baum-Welch 算法求解。
- 2. 在隐马尔可夫模型的无监督学习中,数据集为 $\mathbb{D} = \{\mathbf{O}_1, \mathbf{O}_2, \cdots, \mathbf{O}_N\}$ 。其中:
 - \circ $\mathbf{O}_1, \dots, \mathbf{O}_N$ 为 N 个观测序列。
 - 序列 \mathbf{O}_k 的长度为 T_k ,其中数据集中 $\mathbf{O}_1, \cdots, \mathbf{O}_N$ 之间的序列长度可以不同。

- 3. 将观测序列数据看作观测变量 ${f O}$, 状态序列数据看作不可观测的隐变量 ${f I}$,则隐马尔可夫模型事实上是一个含有隐变量的概率模型: $P({f O};\lambda)=\sum_{{f I}}P({f O}\mid{f I};\lambda)P({f I};\lambda)$ 。其参数学习可以由 ${f EM}$ 算法实现。
 - \circ E 步: 求 Q 函数 (其中 $\bar{\lambda}$ 是参数的当前估计值)

$$Q(\lambda, \bar{\lambda}) = \sum_{j=1}^{N} \left(\sum_{\mathbf{I}} P(\mathbf{I} \mid \mathbf{O} = \mathbf{O}_{j}; \bar{\lambda}) \log P(\mathbf{O} = \mathbf{O}_{j}, \mathbf{I}; \lambda) \right)$$

将 $P(\mathbf{I} \mid \mathbf{O} = \mathbf{O}_j; \bar{\lambda}) = \frac{P(\mathbf{I}, \mathbf{O} = \mathbf{O}_j; \bar{\lambda})}{P(\mathbf{O}_j; \bar{\lambda})}$ 代入上式,有:

$$Q(\lambda,ar{\lambda}) = \sum_{j=1}^N rac{1}{P(\mathbf{O}_j;ar{\lambda})} \Biggl(\sum_{\mathbf{I}} P(\mathbf{I},\mathbf{O} = \mathbf{O}_j;ar{\lambda}) \log P(\mathbf{I},\mathbf{O} = \mathbf{O}_j;\lambda) \Biggr)$$

- 在给定参数 $\bar{\lambda}$ 时, $P(\mathbf{O}_i; \bar{\lambda})$ 是已知的常数,记做 \tilde{P}_i 。
- 在给定参数 $\bar{\lambda}$ 时, $P(\mathbf{I}, \mathbf{O} = \mathbf{O}_i; \bar{\lambda})$ 是 \mathbf{I} 的函数,记做 $\tilde{P}_i(\mathbf{I})$ 。

根据 $P(\mathbf{O}, \mathbf{I}; \lambda) = \pi_{i_1} b_{i_1}(o_1) a_{i_1, i_2} b_{i_2}(o_2) \cdots a_{i_{T-1}, i_T} b_{i_T}(o_T)$ 得到:

$$egin{aligned} Q(\lambda,ar{\lambda}) &= \sum_{j=1}^N rac{1}{ ilde{P}_j} \Biggl(\sum_{\mathbf{I}} (\log \pi_{i_1}) ilde{P}_j(\mathbf{I}) + \sum_{\mathbf{I}} \Biggl(\sum_{t=1}^{T_j-1} \log a_{i_t,i_{t+1}} \Biggr) ilde{P}_j(\mathbf{I}) \ &+ \sum_{\mathbf{I}} \Biggl(\sum_{t=1}^{T_j} \log b_{i_t}(o_t^{(j)}) \Biggr) ilde{P}_j(\mathbf{I}) \Biggr) \end{aligned}$$

其中: T_i 表示第 j 个序列的长度, $o_t^{(j)}$ 表示第 j 个观测序列的第 t 个位置。

o M 步: 求 Q 函数的极大值:

$$ar{\lambda}^{< new>} \leftarrow rg \max_{\lambda} Q(\lambda, ar{\lambda})$$

极大化参数在 ② 函数中单独的出现在3个项中,所以只需要对各项分别极大化。

lacksquare $rac{\partial Q(\lambda, ar{\lambda})}{\partial \pi_i} = 0$:

$$\begin{split} \frac{\partial Q(\lambda, \bar{\lambda})}{\partial \pi_i} &= \frac{\partial (\sum_{j=1}^N \frac{1}{\tilde{P}_j} \sum_{\mathbf{I}} (\log \pi_{i_1}) \tilde{P}_j(\mathbf{I}))}{\partial \pi_i} \\ &= \sum_{j=1}^N \frac{1}{\tilde{P}_j} \sum_{i_1=1}^Q P(i_1, \mathbf{O} = \mathbf{O}_j; \bar{\lambda}) \frac{\partial \log \pi_{i_1}}{\partial \pi_i} \end{split}$$

将 $\pi_Q=1-\pi_1-\cdots-\pi_{Q-1}$ 代入,有:

$$\frac{\partial Q(\lambda, \bar{\lambda})}{\partial \pi_i} = \sum_{j=1}^N \frac{1}{\tilde{P}_j} \left(\frac{P(i_1 = i, \mathbf{O} = \mathbf{O}_j; \bar{\lambda})}{\pi_i} - \frac{P(i_1 = Q, \mathbf{O} = \mathbf{O}_j; \bar{\lambda})}{\pi_Q} \right) = 0$$

将 $\tilde{P}_i = P(\mathbf{O} = \mathbf{O}_i; \bar{\lambda})$ 代入,即有:

$$\pi_i \propto \sum_{j=1}^N P(i_1 = i \mid \mathbf{O} = \mathbf{O}_j; ar{\lambda})$$

考虑到 $\sum_{i=1}^Q \pi_i = 1$,以及 $\sum_{i=1}^Q \sum_{j=1}^N P(i_1=i \mid \mathbf{O} = \mathbf{O}_j; \bar{\lambda}) = N$,则有:

$$\pi_i = rac{\sum_{j=1}^N P(i_1 = i \mid \mathbf{O} = \mathbf{O}_j; ar{\lambda})}{N}$$

其物理意义为: 统计在给定参数 $\bar{\lambda}$, 已知 $\mathbf{O}=\mathbf{O}_j$ 的条件下, $i_1=i$ 的出现的频率。它就是 $i_1=i$ 的后验概率的估计值。

 $lacksymbol{\bullet} \ rac{\partial Q(\lambda,ar{\lambda})}{\partial a_{i,j}}=0$:同样的处理有:

$$egin{aligned} rac{\partial Q(\lambda, ar{\lambda})}{\partial a_{i,j}} &= \sum_{k=1}^N rac{1}{ ilde{P}_k} \sum_{t=1}^{T_k-1} igg(rac{P(i_t=i, i_{t+1}=j, \mathbf{O} = \mathbf{O}_k; ar{\lambda})}{a_{i,j}} \ &- rac{P(i_t=i, i_{t+1}=Q, \mathbf{O} = \mathbf{O}_k; ar{\lambda})}{a_{i,Q}} igg) \end{aligned}$$

得到:

$$a_{i,j} \propto \sum_{k=1}^{N} \sum_{t=1}^{T_k-1} P(i_t=i,i_{t+1}=j \mid \mathbf{O} = \mathbf{O}_k; ar{\lambda})$$

考虑到 $\sum_{i=1}^Q a_{i,j}=1$,则有:

$$a_{i,j} = rac{\sum_{k=1}^{N} \sum_{t=1}^{T_k-1} P(i_t = i, i_{t+1} = j \mid \mathbf{O} = \mathbf{O}_k; ar{\lambda})}{\sum_{j'=1}^{Q} \sum_{k=1}^{N} \sum_{t=1}^{T_k-1} P(i_t = i, i_{t+1} = j' \mid \mathbf{O} = \mathbf{O}_k; ar{\lambda})}$$

$$= rac{\sum_{k=1}^{N} \sum_{t=1}^{T_k-1} P(i_t = i, i_{t+1} = j \mid \mathbf{O} = \mathbf{O}_k; ar{\lambda})}{\sum_{k=1}^{N} \sum_{t=1}^{T_k-1} P(i_t = i \mid \mathbf{O} = \mathbf{O}_k; ar{\lambda})}$$

其物理意义为: 统计在给定参数 $\bar{\lambda}$, 已知 $\mathbf{O} = \mathbf{O}_j$ 的条件下,统计当 $i_t = i$ 的情况下 $i_{t+1} = j$ 的 出现的频率。它就是 $i_{t+1} = j \mid i_t = i$ 的后验概率的估计值。

 $lacksymbol{f ext{$ lacksymbol{ iny $\partial Q(\lambda,ar{\lambda})$}$}}{\partial b_j(k)}=0$:同样的处理有:

$$\frac{\partial Q(\lambda, \bar{\lambda})}{\partial b_j(k)} = \sum_{i=1}^N \frac{1}{\tilde{P}_i} \sum_{t=1}^{T_i} \left(\frac{P(i_t = j, o_t = k, \mathbf{O} = \mathbf{O}_i; \bar{\lambda})}{b_j(k)} - \frac{P(i_t = j, o_t = V, \mathbf{O} = \mathbf{O}_i; \bar{\lambda})}{b_j(V)} \right)$$

得到:

$$b_j(k) \propto \sum_{i=1}^N \sum_{t=1}^{T_i} P(i_t = j, o_t = k \mid \mathbf{O} = \mathbf{O}_i; ar{\lambda})$$

其中如果第 i 个序列 \mathbf{O}_i 的第 t 个位置 $o_t^{(i)}\neq k$,则 $P(i_t=j,o_t=k\mid \mathbf{O}=\mathbf{O}_i;\bar{\lambda})=0$ 。 考虑到 $\sum_{k=1}^V b_j(k)=1$,则有:

$$egin{aligned} b_{j}(k) &= rac{\sum_{i=1}^{N} \sum_{t=1}^{T_{i}} P(i_{t} = j, o_{t} = k \mid \mathbf{O} = \mathbf{O}_{i}; ar{\lambda})}{\sum_{k'=1}^{V} \sum_{i=1}^{N} \sum_{t=1}^{T_{i}} P(i_{t} = j, o_{t} = k' \mid \mathbf{O} = \mathbf{O}_{i}; ar{\lambda})} \ &= rac{\sum_{i=1}^{N} \sum_{t=1}^{T_{i}} P(i_{t} = j, o_{t} = k \mid \mathbf{O} = \mathbf{O}_{i}; ar{\lambda})}{\sum_{i=1}^{N} \sum_{t=1}^{T_{i}} P(i_{t} = j \mid \mathbf{O} = \mathbf{O}_{i}; ar{\lambda})} \end{aligned}$$

其物理意义为: 统计在给定参数 $\bar{\lambda}$, 已知 $\mathbf{O}=\mathbf{O}_j$ 的条件下,统计当 $i_t=j$ 的情况下 $o_t=k$ 的 出现的频率。它就是 $o_t=k\mid i_t=j$ 的后验概率的估计值。

4. 令 $\gamma_t^{(s)}(i)=P(i_t=i\mid \mathbf{O}=\mathbf{O}_s;\bar{\lambda})$,其物理意义为:在序列 \mathbf{O}_s 中,第 t 时刻的隐状态为 i 的后验概率。令 $\xi_t^{(s)}(i,j)=P(i_t=i,i_{t+1}=j\mid \mathbf{O}=\mathbf{O}_s;\bar{\lambda})$,其物理意义为:在序列 \mathbf{O}_s 中,第 t 时刻的隐状态为 i 、且第 t+1 时刻的隐状态为 j 的后验概率。

则 M 步的估计值改写为:

$$\pi_{i} = \frac{\sum_{s=1}^{N} P(i_{1} = i \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})}{N} = \frac{\sum_{s=1}^{N} \gamma_{1}^{(s)}(i)}{N}$$

$$a_{i,j} = \frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} P(i_{t} = i, i_{t+1} = j \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} P(i_{t} = i \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})} = \frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} \xi_{t}^{(s)}(i, j)}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} \gamma_{t}^{(s)}(i)}$$

$$b_{j}(k) = \frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} P(i_{t} = j, o_{t} = k \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} \gamma_{t}^{(s)}(j) \mathbb{I}(o_{t}^{(s)} = k)}$$

$$\frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} \gamma_{t}^{(s)}(j) \mathbb{I}(o_{t}^{(s)} = k)}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} \gamma_{t}^{(s)}(j)}$$

其中 $\mathbb{I}(o_{\scriptscriptstyle t}^{(s)}=k)$ 为示性函数,其意义为:当 \mathbf{O}_s 的第 t 时刻为 k 时,取值为 1;否则取值为 0 。

5. Baum-Welch 算法:

• 输入:观测数据 $\mathbb{D} = \{\mathbf{O}_1, \mathbf{O}_2, \cdots, \mathbf{O}_N\}$

○ 输出: 隐马尔可夫模型参数

。 算法步骤:

■ 初始化: n=0, 选取 $a_{i,j}^{<0>},b_j(k)^{<0>},\pi_i^{<0>}$, 得到模型 $\lambda^{<0>}=(\mathbf{A}^{<0>},\mathbf{B}^{<0>},\pi^{<0>})$

■ 迭代, 迭代停止条件为: 模型参数收敛。迭代过程为:

■ 求使得 Q 函数取极大值的参数:

$$\pi_{i}^{< n+1>} = \frac{\sum_{s=1}^{N} P(i_{1}=i \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})}{N} = \frac{\sum_{s=1}^{N} \gamma_{1}^{(s)}(i)}{N}$$

$$a_{i,j}^{< n+1>} = \frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} P(i_{t}=i, i_{t+1}=j \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} P(i_{t}=i \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})} = \frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} \xi_{t}^{(s)}(i,j)}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}-1} \gamma_{t}^{(s)}(i)}$$

$$b_{j}(k)^{< n+1>} = \frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} P(i_{t}=j, o_{t}=k \mid \mathbf{O} = \mathbf{O}_{s}; \bar{\lambda})}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} \gamma_{t}^{(s)}(j) \mathbb{I}(o_{t}^{(s)}=k)}$$

$$\frac{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} \gamma_{t}^{(s)}(j) \mathbb{I}(o_{t}^{(s)}=k)}{\sum_{s=1}^{N} \sum_{t=1}^{T_{s}} \gamma_{t}^{(s)}(j)}$$

- 判断模型是否收敛、如果不收敛、则 $n \leftarrow n + 1$ 、继续迭代、
- 最终得到模型 $\lambda^{< n>} = (\mathbf{A}^{< n>}, \mathbf{B}^{< n>}, \vec{\pi}^{< n>})$ 。

2.3 预测问题

2.3.1 近似算法

- 1. 近似算法思想:在每个时刻 t 选择在该时刻最有可能出现的状态 i_t^* ,从而得到一个状态序列 $\mathbf{I}^*=(i_1^*,i_2^*,\cdots,i_T^*)$,然后将它作为预测的结果。
- 2. 近似算法: 给定隐马尔可夫模型 $\lambda=(\mathbf{A},\mathbf{B},\vec{\pi})$, 观测序列 $\mathbf{O}=(o_1,o_2,\cdots,o_T)$, 在时刻 t 它处于状态 \mathbf{q}_i 的概率为:

$$\gamma_t(i) = rac{lpha_t(i)eta_t(i)}{P(\mathbf{O};\lambda)} = rac{lpha_t(i)eta_t(i)}{\sum_{j=1}^Q lpha_t(j)eta_t(j)}$$

在时刻 t 最可能的状态: $i_t^* = \arg \max_{1 \le i \le Q} \gamma_t(i)$ 。

3. 近似算法的优点是: 计算简单。

近似算法的缺点是:不能保证预测的状态序列整体是最有可能的状态序列,因为预测的状态序列可能有实际上不发生的部分。

o 近似算法是局部最优(每个点最优),但是不是整体最优的。

o 近似算法无法处理这种情况: 转移概率为 0。因为近似算法没有考虑到状态之间的迁移。

2.3.2 维特比算法

- 维特比算法用动态规划来求解隐马尔可夫模型预测问题。
 它用动态规划求解概率最大路径(最优路径),这时一条路径对应着一个状态序列。
- 2. 维特比算法思想:
 - 。 根据动态规划原理,最优路径具有这样的特性:如果最优路径在时刻 t 通过结点 i_t^* ,则这一路径从结点 i_t^* 到终点 i_T^* 的部分路径,对于从 i_t^* 到 i_T^* 的所有可能路径来说,也必须是最优的。

- 只需要从时刻 t=1 开始,递推地计算从时刻 1 到时刻 t 且时刻 t 状态为 $i,i=1,2,\cdots,N$ 的各条部分路径的最大概率(以及取最大概率的状态)。于是在时刻 t=T 的最大概率即为最优路径的概率 P^* ,最优路径的终结点 i_T^* 也同时得到。
- 。 之后为了找出最优路径的各个结点,从终结点 i_T^* 开始,由后向前逐步求得结点 i_{T-1}^*,\cdots,i_1^* ,得到最优路径 $\mathbf{I}^*=(i_1^*,i_2^*,\cdots,i_T^*)$ 。
- 3. 定义在时刻 t 状态为 i 的所有单个路径 (i_1,i_2,\cdots,i_t) 中概率最大值为:

$$\delta_t(i) = \max_{i_1, i_2, \cdots, i_{t-1}} P(i_t = i, i_{t-1}, \cdots, i_1, o_t, \cdots, o_1; \lambda), \quad i = 1, 2, \cdots, Q$$

它就是算法导论中《动态规划》一章提到的"最优子结构"

则根据定义,得到变量 δ 的递推公式:

$$egin{aligned} \delta_{t+1}(i) &= \max_{i_1,i_2,\cdots,i_t} P(i_{t+1} = i,i_t,\cdots,i_1,o_{t+1},\cdots,o_1;\lambda) = \max_{1 \leq j \leq Q} \delta_t(j) imes a_{j,i} imes b_i(o_{t+1}) \ i &= 1,2,\cdots,Q; t = 1,2,\cdots,T-1 \end{aligned}$$

4. 定义在时刻 t 状态为 i 的所有单个路径中概率最大的路径的第 t-1 个结点为:

$$\Psi_t(i) = rg\max_{1 \leq j \leq Q} \delta_{t-1}(j) a_{j,i}, \quad i = 1, 2, \cdots, Q$$

它就是最优路径中,最后一个结点(其实就是时刻 t 的 \mathbf{q}_i 结点) 的前一个结点。

5. 维特比算法:

- 输入:
 - 隐马尔可夫模型 $\lambda = (\mathbf{A}, \mathbf{B}, \vec{\pi})$
 - 观测序列 $\mathbf{O} = (o_1, o_2, \cdots, o_T)$
- \circ 输出: 最优路径 $\mathbf{I}^* = (i_1^*, i_2^*, \cdots, i_T^*)$
- o 算法步骤:
 - 初始化:因为第一个结点的之前没有结点,所以有:

$$\delta_1(i)=\pi_i b_i(o_1), \Psi_1(i)=0, \quad i=1,2,\cdots,Q$$

■ 递推: 对 $t = 2, 3, \dots, T$

$$egin{aligned} \delta_t(i) &= \max_{1 \leq j \leq Q} \delta_{t-1}(j) a_{j,i} b_i(o_t), \quad i = 1, 2, \cdots, Q; t = 1, 2, \cdots, T \ \Psi_t(i) &= rg\max_{1 \leq j \leq Q} \delta_{t-1}(j) a_{j,i} \;, \quad i = 1, 2, \cdots, Q \end{aligned}$$

- ullet 终止: $P^* = \max_{1 \leq i \leq Q} \delta_T(i), \quad i_T^* = rg \max_{1 \leq i \leq Q} \delta_T(i)$ 。
- $lacksymbol{\blacksquare}$ 最优路径回溯:对 $t=T-1, T-2, \cdots, 1$: $i_t^* = \Psi_{t+1}(i_{t+1}^*)$ 。
- 最优路径 $\mathbf{I}^* = (i_1^*, i_2^*, \cdots, i_T^*)$ 。

三、 最大熵马尔科夫模型MEMM

- 1. HMM 存在两个基本假设:
 - 。 观察值之间严格独立。
 - o 状态转移过程中, 当前状态仅依赖于前一个状态 (一阶马尔科夫模型)。

如果放松第一个基本假设,则得到最大熵马尔科夫模型 MEMM。

2. 最大熵马尔科夫模型并不通过联合概率建模,而是学习条件概率 $P(i_t \mid i_{t-1}, o_t)$ 。

它刻画的是:在当前观察值 o_t 和前一个状态 i_{t-1} 的条件下,当前状态 i_t 的概率。

3. MEMM 通过最大熵算法来学习。

根据最大熵推导的结论:

$$P_{ec{\mathbf{w}}}(y \mid ec{\mathbf{x}}) = rac{1}{Z_{ec{\mathbf{w}}}(ec{\mathbf{x}})} \mathrm{exp} \Biggl(\sum_{i=1}^{n} w_{i} f_{i}(ec{\mathbf{x}}, y) \Biggr)$$
 $Z_{ec{\mathbf{w}}}(ec{\mathbf{x}}) = \sum_{y} \mathrm{exp} \Biggl(\sum_{i=1}^{n} w_{i} f_{i}(ec{\mathbf{x}}, y) \Biggr)$

这里 $\vec{\mathbf{x}}$ 就是当前观测 o_t 和前一个状态 i_{t-1} ,因此: $\vec{\mathbf{x}}=(i_{t-1},o_t)$ 。这里 y 就是当前状态 i_t ,因此: $y=i_t$ 。因此得到:

$$egin{aligned} P_{ec{\mathbf{w}}}(i_t \mid i_{t-1}, o_t) &= rac{1}{Z_{ec{\mathbf{w}}}(i_{t-1}, o_t)} \mathrm{exp}igg(\sum_{i=1}^n w_i f_i(i_t, i_{t-1}, o_t)igg) \ Z_{ec{\mathbf{w}}}(i_{t-1}, o_t) &= \sum_{i_t} \mathrm{exp}igg(\sum_{i=1}^n w_i f_i(i_t, i_{t-1}, o_t)igg) \end{aligned}$$

- 4. MEMM 的参数学习使用最大熵中介绍的 IIS 算法或者拟牛顿法,解码任务使用维特比算法。
- 5. 标注偏置问题:

如下图所示,通过维特比算法解码得到:

$$egin{aligned} P(1
ightarrow 1
ightarrow 1
ightarrow 1) &= 0.4 imes 0.45 imes 0.5 = 0.09 \ P(2
ightarrow 2
ightarrow 2) = 0.2 imes 0.3 imes 0.3 = 0.018 \ P(1
ightarrow 2
ightarrow 1
ightarrow 2) = 0.6 imes 0.2 imes 0.5 = 0.06 \ P(1
ightarrow 1
ightarrow 2
ightarrow 2) = 0.4 imes 0.55 imes 0.3 = 0.066 \end{aligned}$$

可以看到:维特比算法得到的最优路径为 $1 \rightarrow 1 \rightarrow 1 \rightarrow 1$ 。

。 实际上,状态 1 倾向于转换到状态 2 ; 同时状态 2 也倾向于留在状态 2 。但是由于状态 2 可以转化出去的状态较多,从而使得转移概率均比较小。

而维特比算法得到的最优路径全部停留在状态 1 , 这样与实际不符。

- o MEMM 倾向于选择拥有更少转移的状态,这就是标记偏置问题。
- 6. 标记偏置问题的原因是: 计算 $P_{\vec{\mathbf{w}}}(i_t \mid i_{t-1}, o_t)$ 仅考虑局部归一化,它仅仅考虑指定位置的所有特征函数。
 - o 如上图中, $P_{\vec{\mathbf{w}}}(i_t \mid i_{t-1} = 2, o_t)$ 只考虑在 $(i_{t-1} = 2, o_t)$ 这个结点的归一化。
 - 对于 $(i_{t-1}=2,o_t)$, 其转出状态较多, 因此每个转出概率都较小。
 - 对于 $(i_{t-1}=1,o_t)$, 其转出状态较少,因此每个转出概率都较大。
 - o CRF 解决了标记偏置问题,因为 CRF 是全局归一化的:

$$P(\mathbf{Y} \mid \mathbf{X}) = rac{1}{Z} \mathrm{exp} \Biggl(\sum_{j=1}^{K_1} \sum_{i=1}^{n-1} \lambda_j t_j(Y_i, Y_{i+1}, \mathbf{X}, i) + \sum_{k=1}^{K_2} \sum_{i=1}^{n} \mu_k s_k(Y_i, \mathbf{X}, i) \Biggr)$$

它考虑了所有位置、所有特征函数。