

FINAL REPORT

DEVELOPMENT OF LOW COST ABLATIVE NOZZLES
FOR SOLID PROPELLANT ROCKET MOTORS

VOLUME II

by

J. R. Mathis and R. C. Laramee

THIOKOL CHEMICAL CORPORATION
WASATCH DIVISION
Brigham City, Utah

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

12 February 1970

CONTRACT NAS3-10288

NASA Lewis Research Center
Cleveland, Ohio

J. J. Notardonato, Project Manager

SP-30

NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA or employee of such contractor prepares, disseminates, or provides access to any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration
Scientific and Technical Information Facility
P.O. Box 33
College Park, Md 20740

NASA CR-72641

FINAL REPORT

DEVELOPMENT OF LOW COST ABLATIVE NOZZLES
FOR SOLID PROPELLANT ROCKET MOTORS

VOLUME II

by

J. R. Mathis and R. C. Laramee

THIOKOL CHEMICAL CORPORATION
WASATCH DIVISION

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS3-10288
J. J. Notardonato, Project Manager

FOREWORD

The research and development work described herein was conducted by Thiokol Chemical Corporation under NASA Contract NAS3-10288. The work was done under the management of the NASA Project Manager, Mr. J. J. Notardonato, NASA-Lewis Research Center.

This program was conducted at the Wasatch Division under the management of Mr. E. L. Bennion with Mr. E. L. Gray as the project engineer. Principal investigators were Mr. J. R. Mathis and Mr. R. C. Laramee. Motor manufacturing was supervised by Mr. L. S. Jones.

The program final report consists of two volumes. Volume I contains the text and Volume II the illustrations and tables as referenced in the text.

ABSTRACT

The object of this program was to investigate and evaluate low cost materials and processes applicable to full sized nozzles for 260 in. solid rockets.

Over 20 materials were subjected to increasingly severe tests, consisting of mechanical, physical, and thermal properties and evaluation in nozzles of three different sizes, ranging in throat diameter from 0.34 to 8.1 inches. Resulting data were analyzed, and the better performing materials were employed in the design and performance prediction of four full sized nozzles for 260 in. solid rockets.

Conclusions are that acceptable full sized nozzles can be fabricated at substantially lower cost than those produced in the past.

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Tensile and Interlaminar Shear Specimens	11
2	Compression Test Specimen Cutting Pattern and Configuration.	12
3	TU-379 Materials Screening Motor	18
4	TU-379 Nozzle.	19
5	TU-379 Inlet Cone Erosion and Char Profile	21
6	TU-379 Exit Cone Erosion and Char Profile	22
7	Fired TU-379 Nozzle Sections, Low Cost Carbonaceous Materials	24
8	Fired TU-379 Nozzle Sections, Carbon Cloth Reinforced Materials	25
9	Fired TU-379 Nozzle Sections, Avceram C/S Cloth Reinforced Materials	26
10	Fired TU-379 Nozzle Sections, Silica Cloth Reinforced Materials	27
11	Fired TU-379 Nozzle Sections, Asbestos and Paper Reinforced Materials	28
12	TU-622 Materials Evaluation Motor.	33
13	TU-622 Materials Evaluation Nozzle	34
14	TU-622 Segmented LCCM-2626 Exit Cone (View A)	39

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
15	Forward End TU-622 Test Nozzle, LCCM-2610 (Graphite-Phenolic).....	40
16	Aft End TU-622 Test Nozzle, LCCM-2610 (Graphite-Phenolic).....	41
17	Forward End TU-622 Test Nozzle, 4C-1686 (Carbon Cloth Polyphenylene).....	42
18	Aft End TU-622 Test Nozzle, 4C-1686 (Carbon Cloth Polyphenylene).....	43
19	Forward End TU-622 Test Nozzle, WB-8251 (Avceram C/S-Phenolic) Inlet and Throat, LCCM-2610 Dry (Graphite-Phenolic) Segmented Exit Cone	44
20	Aft End TU-622 Test Nozzle, WB-8251 (Avceram C/S-Phenolic) Inlet and Throat, LCCM-2610 Dry (Graphite-Phenolic) Segmented Exit Cone	45
21	Forward End TU-622 Test Nozzle, SP-8057 (Pluton H-1 Phenolic)	46
22	Aft End TU-622 Test Nozzle, SP-8057 (Pluton H-1 Phenolic)	47
23	Forward End TU-622 Test Nozzle, MXCS-198 (Avceram C/S Epoxy Novolac) Inlet and Throat, LCCM-2610 (Graphite-Phenolic) Segmented Exit Cone	48
24	Aft End TU-622 Test Nozzle, MXCS-198 (Avceram C/S Epoxy Novolac) Inlet and Throat, LCCM-2610 (Graphite-Phenolic) Segmented Exit Cone	49
25	Forward End TU-622 Test Nozzle, LCCM-4120 (Graphite-Phenolic)	50
26	Aft End TU-622 Test Nozzle, LCCM-4120 (Graphite- Phenolic)	51

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
27	Forward End TU-622 Test Nozzle, SP-8030-96 (Silica Cloth Phenolic)	52
28	Aft End TU-622 Test Nozzle, SP-8030-96 (Silica Cloth Phenolic)	53
29	Forward End TU-622 Test Nozzle, MXS-198 (Silica-Epoxy Novolac) Inlet, Silica-Phenolic Split Throat, LCCM-2610 Dry (Graphite-Phenolic) Exit Cone	54
30	Aft End TU-622 Test Nozzle, MXS-198 (Silica-Epoxy Novolac) Inlet, Silica-Phenolic Split Throat, LCCM-2610 Dry (Graphite-Phenolic) Exit Cone	55
31	Forward End TU-622 Test Nozzle, 23-RPD (Cork Asbestos-Phenolic).	56
32	Aft End TU-622 Test Nozzle, 23-RPD (Cork Asbestos-Phenolic)	57
33	Forward End TU-622 Test Nozzle, SMS-21 (Paper-Phenolic)	58
34	Aft End TU-622 Test Nozzle, SMS-21 (Paper-Phenolic)	59
35	TU-622.01 Motor Pressure-Time Record.	60
36	TU-622.02 Motor Pressure-Time Record.	60
37	TU-622.03 Motor Pressure-Time Record.	61
38	TU-622.04 Motor Pressure-Time Record.	61
39	TU-622.05 Motor Pressure-Time Record.	62
40	TU-622.06 Motor Pressure-Time Record.	62
41	TU-622.07 Motor Pressure-Time Record.	63

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
42	TU-622.08 Motor Pressure-Time Record.....	63
43	TU-622.09 Motor Pressure-Time Record.....	64
44	TU-622.10 Motor Pressure-Time Record.....	64
45	Sectioned TU-622 Test Nozzle, LCCM-2610 (Graphite-Phenolic)	65
46	Sectioned TU-622 Test Nozzle, 4C-1686 (Carbon Cloth Polyphenylene).....	66
47	Sectioned TU-622 Test Nozzle, WB-8251 (Avceram C/S-Phenolic) Inlet and Throat, LCCM-2610 Dry (Graphite-Phenolic) Segmented Exit Cone	67
48	Sectioned TU-622 Test Nozzle, SP-8057 (Pluton H-1 Phenolic)	68
49	Sectioned TU-622 Test Nozzle, MXCS-198 (Avceram C/S Epoxy Novolac) Inlet and Throat, LCCM-2610 (Graphite-Phenolic) Segmented Exit Cone	69
50	Sectioned TU-622 Test Nozzle, LCCM-4120 (Graphite- Phenolic)	70
51	Sectioned TU-622 Test Nozzle, SP-8030-96 (Silica Cloth Phenolic)	71
52	Sectioned TU-622 Test Nozzle, MXS-198 (Silica-Epoxy Novolac) Inlet, Silica-Phenolic Split Throat, LCCM-2626 Dry (Graphite-Phenolic) Exit Cone	72
53	Sectioned TU-622 Test Nozzle, 23-RPD (Asbestos Cork- Phenolic)	73
54	Sectioned TU-622 Test Nozzle, SMS-21 (Paper-Phenolic) ..	74
55	TU-622 Nozzle Cross Section.....	75

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
56	TU-622 Motor Convective Heat Transfer Coefficient vs Axial Location Carbonaceous Materials	89
57	TU-622 Erosion Performance, LCCM-2610 (Graphite Particle Phenolic)	90
58	TU-622 Erosion Performance, LCCM-4120 (Graphite Particle Phenolic)	90
59	TU-379 Erosion Performance, LCCM-4120 (Graphite Particle Phenolic)	90
60	TU-622 Motor Erosion Performance, 4C-1686 (Carbon Cloth Polyphenylene)	91
61	TU-379 Motor Erosion Performance, 4C-1686 (Carbon Cloth Polyphenylene)	91
62	TU-622 Motor Erosion Performance, SP-8057 (Pluton H-1 Cloth Phenolic)	92
63	TU-379 Motor Erosion Performance, SP-8057 (Pluton H-1 Cloth Phenolic)	92
64	TU-622 Motor Erosion Performance, WB-8251 (Avceram C/S Cloth Phenolic)	93
65	TU-379 Motor Erosion Performance, WB-8251 (Avceram C/S Cloth Phenolic)	93
66	TU-622 Motor Erosion Performance, MXCS-198 (Avceram C/S Cloth Epoxy Novolac)	94
67	TU-622 Material Test Motor Total Heat Flux vs Axial Location	96
68	TU-379 Material Screening Motor Total Heat Flux vs Axial Location (Silica Material)	97

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
69	TU-379 Material Screening Motor Total Heat Flux vs Axial Location (Paper Material)	98
70	TU-379 Material Screening Motor Total Heat Flux vs Axial Location (Asbestos Material)	99
71	Erosion Performance Line for Low C/O Ratio Material (Silica SP-8030-96)	100
72	TU-379 Motor Erosion Performance, SP-8030-96 (Silica Cloth Phenolic)	101
73	TU-622 Motor Erosion Performance, MXS-198 (Silica Cloth Epoxy Novolac) and MX-2600 (Silica Cloth Phenolic)	102
74	TU-379 Motor Erosion Performance, MXS-198 (Silica Cloth Epoxy Novolac)	102
75	TU-622 Motor Erosion Performance, 23-RPD (Asbestos/ Cork Phenolic)	103
76	TU-379 Motor Erosion Performance, 23-RPD (Asbestos/ Cork Phenolic)	103
77	TU-622 Motor Erosion Performance, SMS-21 (Kraft Paper Phenolic)	104
78	TU-379 Motor Erosion Performance, SMS-21 (Kraft Paper Phenolic)	104
79	Mechanical Properties vs Temperature, WB-8251 (Avceram C/S Cloth Phenolic)	106
80	Mechanical Properties vs Temperature, LCCM-4120 (Graphite Particle Phenolic)	107
81	Mechanical Properties vs Temperature, LCCM-2610 (Graphite Particle Phenolic)	108

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
82	Mechanical Properties vs Temperature, SMS-21 (Kraft Paper Phenolic)	109
83	Mechanical Properties vs Temperature, 23-RPD (Asbestos/Cork Phenolic)	110
84	Mechanical Properties vs Temperature, SP-8057 (Pluton H-1 Cloth Phenolic)	111
85	Mechanical Properties vs Temperature, 4C-1686 (Carbon Cloth Polyphenylene)	112
86	Mechanical Properties vs Temperature, MXS-198 (Silica Cloth Epoxy Novolac)	113
87	Mechanical Properties vs Temperature, SP-8030-96 (Silica Cloth Phenolic)	114
88	Carbon Polyphenylene 4C1686, Coefficient of Thermal Expansion vs Temperature.	118
89	Carbon Phenolic SP-8057, Coefficient of Thermal Expansion vs Temperature.	119
90	Graphite Particle Phenolic LCCM-2626, Coefficient of Thermal Expansion vs Temperature	120
91	Silica Phenolic SP-8030-96, Coefficient of Thermal Expansion vs Temperature.	121
92	Asbestos Phenolic 23-RPD, Coefficient of Thermal Expansion vs Temperature.	122
93	Subscale Nozzle Test Motor Assembly	124
94	Subscale Aft Closure	125
95	Subscale Nozzle.	127

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
96	Subscale Nozzle Convective Heat Transfer Coefficient (Carbonaceous Material)	134
97	Subscale Nozzle No. 1 Thermal Gradient Planes	135
98	Subscale Nozzle No. 1 Thermal Gradient, Throat Section 5	136
99	Stage II Minuteman Structural Analysis	137
100	Nozzle Closure Modification	138
101	Nozzle No. 1 Exit Cone Assembly	146
102	Nozzle No. 1 Throat and Backup Assembly	147
103	Nozzle No. 1 Inlet Ring	148
104	Nozzle No. 1 Nose	149
105	Nozzle No. 1 Backside Insulation	150
106	Nozzle No. 1 Final Assembly (View A)	151
107	Nozzle No. 1 Final Assembly (View B)	152
108	Nozzle No. 3 (View A)	153
109	Nozzle No. 3 (View B)	154
110	Nozzle No. 3 (View C)	155
111	Nozzle No. 4 (View A)	156
112	Nozzle No. 4 (View B)	157
113	Nozzle No. 4 (View C)	158
114	Nozzle No. 4 (View D)	159

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
115	Nozzle No. 6 Before Test (View A)	160
116	Nozzle No. 6 Before Test (View B)	161
117	Nozzle No. 6 Before Test (View C)	162
118	Nozzle No. 6 Before Test (View D)	163
119	Nozzle No. 6 Before Test (View E)	164
120	Nozzle No. 2 LCCM-2626 Molded Cylinders	166
121	Nozzle No. 2 Four Mating Exit Cone Segments	167
122	Nozzle No. 2 Four Mating Exit Cone Segments	168
123	Nozzle No. 2 Exit Cone Segments on Tape Wrapped Mandrel	169
124	Nozzle No. 2 Installation of Mandrel Prior to Tape Wrap ..	170
125	Nozzle No. 2 Tape Wrapping Segments (View A)	171
126	Nozzle No. 2 Tape Wrapping Segments (View B)	172
127	Nozzle No. 2 Cured Middle Segmented Tier	173
128	Nozzle No. 2 Assembled Exit Cone Tiers	174
129	Nozzle No. 2 Installed Segmented Exit Cone	175
130	Nozzle No. 2 Segmented Exit Cone	176
131	Nozzle No. 2 Nose and Throat View	177
132	Nozzle No. 2 (View A)	178
133	Nozzle No. 2 (View B)	179

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
134	Nozzle No. 5	180
135	Nozzle No. 5 Tiered Exit Cone (View A)	181
136	Nozzle No. 5 Tiered Exit Cone (View B)	182
137	Nozzle No. 5 Nose Inlet and Segmented Throat (View A) . . .	183
138	Nozzle No. 5 Nose Inlet and Segmented Throat (View B) . . .	184
139	TU-622 Material Performance Curve, 4C-1686 (Carbon Cloth)	185
140	TU-622 Material Performance Curve, SP-8030-96 (Silica) . .	186
141	Subscale Nozzle Convective Heat Transfer Coefficient, Carbonaceous Material	187
142	Subscale Nozzle Total Heat Flux, Asbestos Material	188
143	Subscale Nozzle Total Heat Flux, Silica Material.	189
144	Subscale Nozzle Total Heat Flux, Canvas and Paper Material	190
145	Nozzle No. 1 Material Performance Evaluation	192
146	Nozzle No. 2 Material Performance Evaluation	193
147	Nozzle No. 3 Material Performance Evaluation	194
148	Nozzle No. 4 Material Performance Evaluation	195
149	Nozzle No. 5 Material Performance Evaluation	196
150	Nozzle No. 6 Material Performance Evaluation	197
151	TU-622 Pre and Post Test Evaluation	198

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
152	Subscale Nozzle-Closure Assembly.....	199
153	Subscale Motor and Test Stand	200
154	Disassembly of Postfired Nozzle from Aft Closure.....	201
155	Pressure Time Envelope for Six Subscale Motor Firings...	203
156	Subscale Nozzle No. 1 Submerged Liner and Nose	204
157	Subscale Nozzle No. 1 Nose, Inlet, and Throat	205
158	Subscale Nozzle No. 1 Exit Cone	206
159	Nozzle No. 1 Sectioned at Propellant Star Valley.....	207
160	Nozzle No. 1 Submerged Liners Sectioned at Plane 2-3 ...	208
161	Nozzle No. 1 Erosion-Char Profile (Propellant Starpoint)	209
162	Nozzle No. 1 Erosion-Char Profile (Propellant Star Valley).	210
163	Nozzle No. 1 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)	211
164	Nozzle No. 1 Three Plane Erosion-Char Summary	213
165	Subscale Nozzle No. 2 Submerged Liner and Nose	216
166	Subscale Nozzle No. 2 Nose, Inlet, and Throat	217
167	Subscale Nozzle No. 2 Exit Cone	218
168	Subscale Nozzle No. 2 Aft Exit Cone	219
169	Sectioned Nozzle No. 2 Exit Cone.....	220

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
170	Sectioned Nozzle No. 2 Submerged Liners	221
171	Nozzle No. 2 Erosion-Char Profile (Propellant Starpoint)	222
172	Nozzle No. 2 Erosion-Char Profile (Propellant Star Valley)	223
173	Nozzle No. 2 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)	224
174	Nozzle No. 2 Maximum Exit Erosion.....	225
175	Nozzle No. 2 Minimum Exit Erosion	226
176	Nozzle No. 2 Nominal Exit Erosion.....	227
177	Nozzle No. 2 Three Plane Erosion-Char Rate Summary ..	229
178	Partial Motor Thrust vs Time, Nozzles 2 and 3	232
179	Nozzle No. 3 Submerged Liner and Nose	233
180	Nozzle No. 3 Nose, Inlet, and Throat	234
181	Nozzle No. 3 Exit Cone (View A)	235
182	Nozzle No. 3 Exit Cone (View B)	236
183	Sectioned Nozzle No. 3 Submerged Liners	237
184	Sectioned Nozzle No. 3 Exit Cone	238
185	Nozzle No. 3 Erosion-Char Profile (Propellant Starpoint)	239
186	Nozzle No. 3 Erosion-Char Profile (Propellant Star Valley)	240

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
187	Nozzle No. 3 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)	241
188	Nozzle No. 3 Three Plane Erosion-Char Rate Summary	243
189	Nozzle No. 4 Submerged Liners	246
190	Nozzle No. 4 Submerged Liners, Nose, Inlet and Throat	247
191	Nozzle No. 4 Nose and Inlet.	248
192	Nozzle No. 4 Exit Cone.	249
193	Sectioned Nozzle No. 4 Submerged and Exit Cone Liners	250
194	Nozzle No. 4 Erosion-Char Profile (Propellant Starpoint)	251
195	Nozzle No. 4 Erosion-Char Profile (Propellant Star Valley)	252
196	Nozzle No. 4 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)	253
197	Nozzle No. 4 Three Plane Erosion-Char Rate Summary	255
198	Partial Motor Pressure and Thrust, Nozzle No. 4	258
199	Nozzle No. 5 Submerged Liners	260
200	Nozzle No. 5 Nose, Inlet, and Throat	261
201	Nozzle No. 5 Exit Cone.	262
202	Sectioned Nozzle No. 5 Submerged Liners	263
203	Sectioned Nozzle No. 5 Exit Cone Liner.	264

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
204	Nozzle No. 5 Erosion-Char Profile (Propellant Starpoint)	265
205	Nozzle No. 5 Erosion-Char Profile (Propellant Star Valley)	266
206	Nozzle No. 5 Erosion-Char Profile (Between Propellant and Star Valley).....	267
207	Nozzle No. 5 Three Plane Erosion-Char Rate Summary ..	269
208	Throat Ring Segment Orientation to Propellant Grain	272
209	Nozzle No. 5 Exit Cone with Steel Shell Exposed	273
210	Nozzle No. 5 Motor Performance	274
211	Middle Exit Cone Liner OD Surface.....	275
212	Nozzle No. 6 Submerged Liner and Nose	276
213	Nozzle No. 6 Submerged Liners	277
214	Nozzle No. 6 Nose, Inlet, and Throat	278
215	Nozzle No. 6 Exit Cone.....	279
216	Sectioned Nozzle No. 6 Submerged and Exit Cone Liners ..	280
217	Nozzle No. 6 Erosion-Char Profile (Propellant Starpoint)	281
218	Nozzle No. 6 Erosion-Char Profile (Propellant Star Valley)	282
219	Nozzle No. 6 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)	283

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
220	Nozzle No. 6 Three Plane Erosion-Char Rate Summary	285
221	LCCM-2626 Erosion Performance Curve	303
222	LCCM-4120 Erosion Performance Curve	304
223	SP-8057 Erosion Performance Curve.	305
224	SP-8057 Char Performance Curve.	306
225	SP-8050 Erosion Performance Curve.	307
226	SP-8050 Char Performance Curve.	308
227	WB-8217 Erosion Performance Curve	309
228	WB-8217 Char Performance Curve	310
229	MX-4926 Erosion Performance Curve	311
230	MX-4926 Char Performance Curve	312
231	4C-1686 Erosion Performance Curve.	313
232	4C-1686 Char Performance Curve.	314
233	KF-418 Erosion Performance Curve	315
234	KF-418 Char Performance Curve	316
235	FM-5272 Erosion Performance Curve	317
236	FM-5272 Char Performance Curve	318
237	SP-8030-96 Erosion Performance Curve	319
238	SP-8030-96 Char Performance Curve	320

LIST OF ILLUSTRATIONS (Cont)

<u>Figure</u>		<u>Page</u>
239	MXS-198 Erosion Performance Curve	321
240	MXS-198 Char Performance Curve	322
241	23-RPD Erosion Performance Curve	323
242	23-RPD Char Performance Curve	324
243	MXA-6012 Erosion Performance Curve	325
244	MXA-6012 Char Performance Curve	326
245	Major Computer Subroutines and Flow Path	327
246	Modifying Nozzle Design on Graphic Display Console	328
247	Computer Output, Standard Nozzle Drawing	329
248	260 In. Convective Heat Transfer Coefficient vs Axial Location (Carbonaceous Wall)	334
249	260 In. Total Heat Flux vs Axial Location (Asbestos Wall)	335
250	260 In. Total Heat Flux vs Axial Location (Silica Wall)	336
251	260 In. Total Heat Flux vs Axial Location (Canvas-Paper Wall)	337
252	Low Cost Material Nozzle No. 1	339
253	Low Cost Material Nozzle No. 2	341
254	Low Cost Material Nozzle No. 3	343
255	Low Cost Material Nozzle No. 4	345

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Vendors Contacted	1
2	Candidate Nozzle Materials	2
3	Thiokol Material Recommendations.	9
4	Materials Selected for Subscale Evaluation.	10
5	Physical and Mechanical Properties	13
6	Physical and Mechanical Properties of Low Cost Carbon Cloth Materials	15
7	Physical and Mechanical Properties of Low Cost Silica Cloth Materials	16
8	Physical and Mechanical Properties of Low Cost Asbestos and Paper Materials	17
9	Summary of Fabrication Conditions, TU-379 Nozzle Components	20
10	Summary of Information on Candidate Materials	23
11	Materials Recommended for Further Evaluation.	29
12	TU-379 Motor Material Performance	31
13	TU-622 Nozzle Component Cure Summary	35
14	Fabrication Problem Summary, TU-622 Nozzle Assemblies	37

LIST OF TABLES (Cont)

<u>Table</u>		<u>Page</u>
15	TU-622 Nozzle Data, LCCM-2610	76
16	TU-622 Nozzle Data, 4C-1686	77
17	TU-622 Nozzle Data WB-8251 Inlet and Throat, LCCM-2626 Dry Segment Exit	78
18	TU-622 Nozzle Data, SP-8057	79
19	TU-622 Nozzle Data, MXCS-198 Inlet and Throat, LCCM-2626 Wet Segment Exit	80
20	TU-622 Nozzle Data, LCCM-4120	81
21	TU-622 Nozzle Data SP-8030-96	82
22	TU-622 Nozzle Data, MXS-198 Inlet, Silica Segmented Throat, LCCM-2626 Dry Exit	83
23	TU-622 Nozzle Data 23-RPD	84
24	TU-622 Nozzle Data, SMS-21	85
25	TU-622 Motor Material Performance	87
26	TU-622 High C/O Ratio Material Performance	95
27	TU-622 Low C/O Ratio Material Performance at the Throat ..	105
28	High Temperature Compression Tests	115
29	Thermal Conductivity of Nozzle Materials	116
30	Specific Heat of Nozzle Materials	117
31	List of Material Candidates for the Subscale Nozzle Task ..	123
32	Subscale Nozzle Materials Test Location	133

LIST OF TABLES (Cont)

<u>Table</u>		<u>Page</u>
33	Nozzle No. 1 Component Fabrication	139
34	Nozzle No. 2 Component Fabrication	140
35	Nozzle No. 3 Component Fabrication	141
36	Nozzle No. 4 Component Fabrication Summary.....	142
37	Nozzle No. 5 Component Fabrication Summary.....	143
38	Nozzle No. 6 Component Fabrication Summary	144
39	Component Radiographic Inspection Results	145
40	Final Assembly Discrepancies, Subscale Nozzles	165
41	Predicted vs Actual Erosion Rate	191
42	Subscale Motor Performance	202
43	Nozzle No. 1 Post-Test Inspection	215
44	Nozzle No. 2 Post-Test Inspection	231
45	Nozzle No. 3 Post-Test Inspection	245
46	Nozzle No. 4 Post-Test Inspection	257
47	Nozzle No. 4 Forward Exit Cone Tag End Test Results (23-RPD)	259
48	Nozzle No. 5 Post-Test Inspection	271
49	Nozzle No. 6 Post-Test Inspection	287
50	Subscale Material Component Performance Rating	288
51	Recommended Nozzle Material Area Location	289

LIST OF TABLES (Cont)

<u>Table</u>		<u>Page</u>
52	Comparison of Material Properties and Fabrication Techniques with Material Test Performance	290
53	Summary of Fabrication Conditions, Tape Wrapped Components	291
54	Material Performance and Prediction Analysis	292
55	Material Performance Subscale Nozzle Maximum Erosion-Char Rates (Uncorrected)	293
56	Submerged Liner Material Evaluation	294
57	Nose Material Evaluation	295
58	Inlet Material Evaluation.....	296
59	Throat Material Evaluation	297
60	Forward Exit Material Evaluation	298
61	Aft Exit Material Evaluation	299
62	Subscale Material Cost Rating	300
63	260 In. Four Nozzle Ablative Material Matrix	301
64	Insulative Liner Evaluation	302
65	Computer Output, Liner Thickness Design	331
66	Computer Output, Liner Weight	332
67	Computer Output, Steel Structure Weight	333
68	260 In. Low Cost Material Erosion-Char Rates	338
69	260 In. Nozzle and Component Weight Summary	347

LIST OF TABLES (Cont)

<u>Table</u>		<u>Page</u>
70	Cost Performance Effectiveness of Five Full Scale Nozzle Designs	348
71	Standard Baseline Nozzle	349
72	NASA 260 In. Nozzle Cost Effectiveness	350
73	Nozzle No. 1 Cost and Weight Breakdown	351
74	NASA 260 In. Nozzle Cost Effectivness (Low Cost Nozzle No. 1)	352
75	Nozzle No. 2 Cost and Weight Breakdown (Segmented)	353
76	NASA 260 In. Nozzle Cost Effectiveness (Low Cost Nozzle No. 2)	354
77	Nozzle No. 3 Cost and Weight Breakdown	355
78	NASA 260 In. Nozzle Cost Effectiveness (Low Cost Nozzle No. 3)	356
79	Nozzle No. 4 Cost and Weight Breakdown	357
80	NASA 260 In. Nozzle Cost Effectiveness (Low Cost Nozzle No. 4)	358

TABLE 1
VENDORS CONTACTED

1. Armour Coated Products and Adhesives Co.
Standard Insulation Division
Saugus, California
2. Coast Manufacturing and Supply Co.
Livermore, California
3. Hooker Chemical Corporation
Durez Plastics Division
Los Angeles, California
4. Fiberite Corporation
Orange, California
5. Whittaker Corporation
Narmco Materials Division
Costa Mesa, California
6. Raybestos-Manhattan, Inc.
Manheim, Pennsylvania
7. U.S. Polymeric, Inc.
Santa Ana, California
8. Ferro Corporation
Cordo Division
Culver City, California
9. Johns-Manville Sales Corporation
Aerospace Products Dept
Los Angeles, California
10. Minnesota Mining and Mfg Co.
St. Paul, Minnesota
11. IIT Research Institute
Chicago, Illinois

TABLE 2
CANDIDATE NOZZLE MATERIALS

FAMILY	DESIGNATION	SUPPLIER	MATERIAL DESCRIPTION	MECH. PROPERTIES AT 75°F	PROCESSING INFORMATION	FIRING EXPERIENCE	COST AND AVAIL	POTENTIAL USE	REMARKS
LOW COST CARBONA-CEOUS	LCCM-2610*	THIOKOL	GRAPHITE POWDER PHENOLIC MOLDING COMPOUND GRAPHITE PARTICLES 75% SC-108 RESIN 25%	TENSILE 2,000 PSI ELONGATION 0.2% COMPRESSIVE 12,000 PSI DENSITY 1.7 GM/CC COMP. MOD. 4.5 X 10 ⁵ PSI THERMAL COND. 0.41 BTU/FT-HR. °F	COMPRESSION MOLD AT 1,000 PSI AND 300°F	1. TU-379 MOTOR EXIT CONE .0.14 mil/sec THROAT .2 mil/sec ADAPTER mil/sec 2. CHAR MOTOR (Q ₀ = 3.8) THROAT + 0 mil/sec FWD EXIT CONE = (1 mil/sec)	0.5¢/LB DEV. MATERIAL EASILY PRODUCED	THROAT INLET EXIT CONE	LOW MATERIAL COST WITH EXCELLENT EROSION RESISTANCE
LOW COST CARBONA-CEOUS	LCCM-4113*	THIOKOL	GRAPHITE PARTICLE-PHENOLIC CASTING COMPOUND GRAPHITE PARTICLES 75% SC-108 RESIN 12.5% HITCO 198 12.5%	TENSILE 440 PSI ELONGATION 5.2% COMPRESSIVE, ULT. 300 PSI MODULUS 6.7 X 10 ⁵ PSI DENSITY 1.3 GM/CC THERMAL COND. 0.66 BTU/FT. -HR. °F	TROWEL AND CURE AT 15 PSI AND 170°F	1. TU-379 MOTOR ADAPTER 3.9 mil/sec 2. CHAR MOTOR INLET + 3 mil/sec BACKUP-OK	0.50/LB DEV. MATERIAL EASILY PRODUCED	BACKUP INLET CAP	LOW MATERIAL COST RELATIVELY FLEXIBLE EXTENSIVE CURING FACILITIES NOT REQ'D
LOW COST CARBONA-CEOUS	LCCM-4120*	THIOKOL	GRAPHITE PARTICLE-PHENOLIC CASTING OR MOLDING COMPOUND GRAPHITE PARTICLES 75% DUREZ 10694 25% RESIN	TENSILE 2,300 PSI ELONGATION 0 15% COMPRESSIVE, ULT. 8,200 PSI MODULUS 4.6 X 10 ⁵ PSI DENSITY 1.6 GM/CC THERMAL COND. 0.89 BTU/FT. -HR. °F	CAST AND CURE AT 15 PSI AND 170°F	1. TU-379 MOTOR THROAT .6 mil/sec EXIT CONE .0.2 mil/sec 2. CHAR MOTOR BACKUP-OK AFT EXIT + 0.5 mil/sec EXIT CONE + 1.5 mil/sec	0.50/LB DEV. MATERIAL EASILY PRODUCED	THROAT EXIT CONE INLET	LOW MATERIAL COST CURING FACILITIES NOT REQ'D POTENTIALLY A GOOD THROAT MATERIAL
LOW COST CARBONA-CEOUS	LCCM-(Reinforced)*	THIOKOL	GRAPHITE PARTICLE-PHENOLIC+ASBESTOS, GLASS, RAYON, OR CARBON FIBERS				1.00-10.00/LB EASILY PRODUCED OFF-THE-SHELF RAW MATERIALS		RELATIVELY LOW MATERIALS COST WITH IMPROVED MECH. PROPERTIES. HANDLING AND CURING CHARACTERISTICS RELATIVELY SIMPLE.
LOW COST CARBONA-CEOUS	LCCM-(Microballoon)	THIOKOL	GRAPHITE PARTICLE-PHENOLIC+GLASS, SILICA OR PHENOLIC MICROBALLOONS				0.75-1.50/LB EASILY PRODUCED OFF-THE-SHELF RAW MATERIALS		LOW COST, LOW DENSITY
LOW COST CARBONA-CEOUS	D-1	ATLANTIC RESEARCH CORP.	COKE FIRED-ACID CATALYZED FURFURAL ALCOHOL CASTING COMP. UNGROUND COKE 49.2% GROUND COKE 16.4% PETROLEUM COKE 16.4% BINER 18%	COMPRESSIVE, ULT. 10,000 PSI		AFRPL MOTORS - PERFORMED ADEQUATELY (REPORT NO. AFRPL-TR-66-111)	UNKNOWN	BACKUP	POTENTIALLY A GOOD BACKUP MATERIAL LONG, SLOW CURC REQ'D.

*MATERIALS RECOMMENDED FOR USE IN EVALUATION PHASE OF PROGRAM

TABLE 2. -Continued

CANDIDATE NOZZLE MATERIALS

FAMILY	DESIGNATION	SUPPLIER	MATERIAL DESCRIPTION	MECH. PROPERTIES AT 75°F	PROCESSING INFORMATION	FIRING EXPERIENCE	COST AND AVAIL.	POTENTIAL USE	REMARKS
LOW COST CARBON CLOTH BINDER	SP-8050*	ARMOUR COATED PRODUCTS	CARBON CLOTH-PHENOLIC (-2 IS DOUBLE THICKNESS)	COMPRESSIVE, ULT. 34,500 PSI MOD. 2.4 X 10 ⁶ PSI TENSILE, ULT. 9,100 PSI MOD. 2.5 X 10 ⁶ PSI SPECIFIC GRAVITY 1.47	TAPE WRAP AND HYDRO-CLAVE CURE AT 325°F AND 250+PSI	NOMAD NOZZLE PROGRAM-AFTER 1ST SEVEN FIRINGS SP-8050 RECOMMENDED FOR THROAT EXTENSION (PWD EXIT CONE) EROSION = 1.7 mils/sec CHAR = 6.8 mils/sec	17.00-18.50/LB COMMERCIALLY AVAILABLE	FWB EXIT CONE OR THROAT EXTENSION THROAT	A GOOD PERFORMER AT RELATIVELY LOW COST
LOW COST CARBON CLOTH BINDER	AC-1031	COAST MFG AND SUPPLY CO.	CARBON CLOTH-PHENOLIC RESIN 33% REINFORCEMENT 57-61% FILLER 6-10%	SPECIFIC GRAVITY 1.455 SPECIFIC HEAT 0.2406 AT 100°C 0.2222 AT 200°C TENSILE, ULT. 18,000 PSI MOD. 2.3 X 10 ⁶ PSI COMPRESSIVE, ULT. 38,000 PSI	TAPE WRAP AND AUTO-CLAVE CURE AT 325°F AND 200 PSI	NOMAD NOZZLE PROGRAM-RECOMMENDED FOR ENTRANCE CAP OR THROAT INLET EROSION = 7.1 mils/sec CHAR = 7.9 mils/sec	20.50/LB COMMERCIALLY AVAILABLE	ENTRANCE CAP OR INLET	
LOW COST CARBON CLOTH BINDER	FM-5059	U.S. POLYMERIC	CARBON CLOTH-PHENOLIC	COMPRESSIVE, ULT. 24,000 PSI MOD. 2.3 X 10 ⁶ PSI TENSILE, ULT. 3,700 PSI MOD. 1.57 X 10 ⁶ PSI SPECIFIC GRAVITY 1.48 SPECIFIC HEAT: 0.2935 AT 100°C 0.3276 AT 200°C	Die Mold at 325°F and 500 PSI Adaptable to Hydroclave	NOMAD NOZZLE PROGRAM-RECOMMENDED FOR ENTRANCE CAP EROSION = 3.7 mils/sec CHAR = 7.9 mils/sec	17.12/LB COMMERCIALLY AVAILABLE	ENTRANCE CAP	REQUIRES RELATIVELY HIGH PRESSURE CURE
LOW COST CARBON CLOTH BINDER	WB-8217*	FERRO CORP. CARBON CLOTH-PHENOLIC CORDO DIV.		COMPRESSIVE, ULT. 27,000 PSI MOD. 1.99 X 10 ⁶ PSI TENSILE, ULT. 7,700 PSI MOD. 1.39 X 10 ⁶ PSI SPECIFIC GRAVITY 1.41 SPECIFIC HEAT: 0.2222 AT 100°C 0.2472 AT 200°C	TAPE WRAP AND HYDRO-CLAVE CURE AT 300°F AND 250 PSI	NOMAD NOZZLE PROGRAM-RECOMMENDED FOR THROAT THROAT EROSION = 6.4 mils/sec CHAR = 7.6 mils/sec INLET EROSION = 10.2 mils/sec CHAR = 5.5 mils/sec	20.97/LB COMMERCIALLY AVAILABLE	THROAT OR INLET	
LOW COST CARBON CLOTH BINDER	MXC-198*	FIBERITE CORP.	CARBON CLOTH-EPOXY NOVOLAC		TAPE WRAP-VACUUM BAG CURE	NO FIRING EXPER.	21.50/LB NEW MATERIAL NO PRODUCTION PROBLEMS FORESEEN	THROAT OR INLET	VERY LOW PRESSURE CURING SYSTEM REQUIRING ONLY VACUUM BAG AND OVEN. HAS GOOD POTENTIAL
LOW COST CARBON CLOTH BINDER	MXC-1600	FIBERITE CORP.	CARBON CLOTH-PHENOLIC (DOUBLE THICKNESS FABRIC)		TAPE WRAP	NO FIRING EXPER.	17.50/LB NEW MATERIAL	ENTRANCE CAP, INLET THROAT	DOUBLE THICKNESS TAPE RESULTING IN LOW FAB. TIME.

TABLE 2. -Continued
CANDIDATE NOZZLE MATERIALS

FAMILY	DESIGNATION	SUPPLIER	MATERIAL DESCRIPTION	MECH. PROPERTIES AT 75°F	PROCESSING INFORMATION	FIRING EXPERIENCE	COST AND AVAIL.	POTENTIAL USE	REMARKS
LOW COST CARBONA-CEOUS	D-13	ATLANTIC RESEARCH CORP.	COKE FILLED+ACID CATALYZED FURFYL ALCOHOL CASTING COMPOUND UNGROUND COKE 49.8% GROUND COKE 16.6% PETROLEUM COKE 16.6% BINDER 17.0%			AFRPL MOTORS - IN CONCLUSIVE RESULTS	UNKNOWN	INLET	MAY REQUIRE ADDITIONAL DEVELOPMENTS
FIBER PAPER PHENOLIC	MXC-113* (MXC-313)	FIBERITE CORP.	CARBON FIBER PAPER PHENOLIC	COMPRESSIVE, ULT. 10,600 PSI TENSILE, ULT. 7,900 PSI MOD. 0.94 X 10 ⁶ PSI ELONGATION 0.96% FLEXURAL, ULL. 12,400 PSI SPECIFIC GRAVITY 1.05	TAPE WRAP AND CURE IN HYDROCLAVE OR AUTO-CLAVE AS LOW AS 25 PSL DENSITY CONTROLLED BY TAPE TENSION, HEAD PRESSURE AND CURE PRESSURE	NOMAD NOZZLE NO. 4- ENTRANCE CAP-ACCEPTABLE PERFORMANCE-8.7 mil/sec TU-379 1.4 mil/sec NOMAD NO. 1, 5.4 mil/sec NOMAD NO. 6, 13 mil/sec	14.50/LB COMMERCIALLY AVAILABLE	BACKUP FWD EXIT CONE INLET	LOWER COST, LOWER FAB. COSTS. DENSITY MAY BE A LITTLE HIGH. SOME DEV. OF FAB. TECHNIQUES REQ'D. GOOD POTENTIAL
CO	FIBER PAPER PHENOLIC	MXS-113* (MXS-313)	FIBERITE CORP.	SILICA FIBER PAPER PHENOLIC	SAME AS FOR MXC-113		4.75/LB COMMERCIALLY AVAILABLE	BACKUP AFT EXIT CONE	SAME AS FOR MXC-113
	FIBER PAPER PHENOLIC	MXA-113* (Mxa-313)	FIBERITE CORP.	ASBESTOS FIBER PAPER PHENOLIC	SAME AS FOR MXC-113		1.80/LB COMMERCIALLY AVAILABLE	BACKUP AFT EXIT CONE	SAME AS FOR MXC-113
	FIBER PAPER PHENOLIC	MXCS-313	FIBERITE CORP.	CARBON-SILICA FIBER PAPER PHENOLIC	SAME AS FOR MXC-113		9.75/LB COMMERCIALLY AVAILABLE	EXIT CONE	SAME AS FOR MXC-113. INTENDED TO BE USED IN TRANSITION AREA FROM HIGH EROSION (MXC-113) TO LOW EROSION (MXS-113) AREAS OF EXIT CONE. COST SAVINGS WOULD RESULT.
	FIBER PAPER PHENOLIC	MXSA-313	FIBERITE CORP.	SILICA-ASBESTOS FIBER PAPER PHENOLIC	SAME AS FOR MXC-113		3.25/LB COMMERCIALLY AVAILABLE	EXIT CONE	SAME AS FOR MXC-113. INTENDED TO BE USED IN TRANSITION AREA FROM MEDIUM EROSION (MXS-113) TO LOW EROSION (Mxa-113) AREAS OF EXIT CONE. COST SAVINGS WOULD RESULT. ENTIRE 113 AND 313 SERIES FEATURE "TAPERED DENSITY" CAPABILITY IN EXIT CONE.

TABLE 2. -Continued

CANDIDATE NOZZLE MATERIALS

FAMILY	DESIGNATION	SUPPLIER	MATERIAL DESCRIPTION	MECH. PROPERTIES AT 73°F	PROCESSING INFORMATION	FIRING EXPERIENCE	COST AND AVAIL.	POTENTIAL USE	REMARKS	
LOW COST CARBON CLOTH BINDER	FM-5511	U.S. POLYMERIC	CARBON CLOTH-PHENOLIC	TENSILE, ULT. 14,000 PSI MOD. 1.9×10^6 PSI COMPRESSIVE, ULT. 18,000 PSI MOD. 1.5×10^6 PSI FLEXURAL, ULT. 23,500 PSI MOD. 1.6×10^6 PSI SPECIFIC GRAVITY, 1.51	TAPE WRAP AND CURE AT 325°F AND 1,000 PSI	NO FIRING EXPER.	20.00/LB COMMERCIALLY AVAILABLE	INLET, FWD EXIT CONE, THROAT EXTENSION		
LOW COST CARBON CLOTH BINDER	4C-1831	COAST MFG. AND SUPPLY	CARBON CLOTH-PHENOLIC (DOUBLE THICKNESS FABRIC) RESIN 33% REINFORCEMENT 57-01% FILLER 6-10%	TENSILE, ULT. 22,500 PSI MOD. 1.7×10^6 PSI COMPRESSIVE, ULT. 31,000 PSI SPECIFIC GRAVITY, 1.35 SPECIFIC HEAT, 0.3384 AT 200°C THERMAL DIFFUSIVITY- 0.0038 AT R.T. 0.0048 AT 100°C AND 200°C	TAPE WRAP AND CURE AT 350°F AND 250 PSI	NOMAD NOZZLE NO. 4 THROAT EXTENSION EROSION = 5.3 mils/sec CHAR = 2.9 mils/sec	20.50/LB COMMERCIALLY AVAILABLE	INLET, FWD EXIT CONE, THROAT EXTENSION	DOUBLE THICKNESS FABRIC PROVIDES DECREASED WRAP TIME	
CT	LOW COST CARBON CLOTH BINDER	4C-1680*	COAST MFG. AND SUPPLY	CARBON CLOTH-POLY- PHENYLENE RESIN 33% REINFORCEMENT 57-61% FILLER 6-10%	TENSILE, ULT. 25,000 PSI MOD. 2.5×10^6 PSI COMPRESSIVE, ULT. 30,000 PSI SPECIFIC GRAVITY, 1.40	TAPE WRAP AND CURE AT 350°F AND 250 PSI	NOMAD NOZZLE NO. 11- THROAT	20.60/LB COMMERCIALLY AVAILABLE	INLET, FWD EXIT CONE, THROAT, THROAT EXTENSION, CAP	POTENTIAL IMPROV- EMENT IN PERFOR- MANCE THROUGH SUPERIOR CHAR CHARACTERISTICS OF POLYPHENYLENE SYSTEM.
	LOW COST CARBON CLOTH BINDER	FM-5072 LD*	U.S. POLYMERIC	CARBON CLOTH-PHENOLIC (with Silica Microballoons)	COMPRESSIVE, ULT. 16,400 PSI MOD. 1.39×10^6 PSI TENSILE, ULT. 7,800 PSI MOD. 1.95×10^6 PSI SPECIFIC GRAVITY, 1.31 SPECIFIC HEAT, 0.2279 THERMAL DIFFUSIVITY AT R.T. 0.026 cm ² /sec	TAPE WRAP AND CURE AT 300°F AND 200 PSI MAX	NOMAD NOZZLE NO. 3 (THROAT EXTENSION) EROSION = 2 mils/sec CHAR = 5.7 mils/sec NOMAD NOZZLE NO. 6 (INLET) EROSION = 14.5 mils/sec CHAR = 4.8 mils/sec	23.25/LB COMMERCIALLY AVAILABLE	THROAT, THROAT EXTENSION ENTRANCE CAP	
LOW COST CARBON CLOTH BINDER	4037	NARMCO	CARBON CLOTH-PHENOLIC RESIN (NARMCO 50%) REINFORCEMENT FILLER 8%	COMPRESSIVE, ULT. 32,000 PSI TENSILE, ULT. 17,000 PSI FLEXURE, ULT. 30,000 PSI MOD. 2.5×10^6 PSI SPECIFIC HEAT, 0.25 SPECIFIC GRAVITY, 1.48	TAPE WRAP AND CURE AT 300°-350°F AND 200- 1,000 PSI	NO FIRING EXPERIENCE		INLET, THROAT, THROAT EXTENSION	AVAILABLE IN SINGLE OR DOUBLE THICKNESS TAPE	

TABLE 2. -Continued

CANDIDATE NOZZLE MATERIALS

FAMILY	DESIGNATION	SUPPLIER	MATERIAL DESCRIPTION	MECH. PROPERTIES AT 35°F	PROCESSING INFORMATION	FIRING EXPERIENCE	COST AND AVAIL.	POTENTIAL USE	REMARKS
LOW COST SILICA CLOTH BINDER	MX-2600-96	FIBERITE CORP.	SILICA CLOTH-PHENOLIC (DOUBLE THICKNESS FABRIC)	SPECIFIC HEAT 0.2181 AT 100°C 0.2338 AT 200°C DENSITY, 1.60 G/CM ³	TAPE WRAP AND HYDRO- CLAVE CURE AT 325°F AT 1,000 PSI	NOMAD NOZZLES NO 2, 3, 6, USED AS THROAT OVERWRAP. NO COM- MENTS MADE ON PER- FORMANCE, ASSUMED TO BE GOOD	5.20/LB COMMERCIALLY AVAILABLE	AFT EXIT CONE, BACKUP	DOUBLE THICK- NESS TUBE PRO- VIDES DECREASED FAB. TIME
LOW COST SILICA CLOTH BINDER	MXS-198*	FIBERITE CORP.	SILICA CLOTH-EPOXY NOVOLAC		TAPE WRAP AND OVEN CURE AT 15 PSI	NO FIRING EXPER.	6.10/LB NEW MATERIAL NO PRODUCTION PROBLEMS ANTICIPATED	AFT EXIT CONE	WILL CURE IN OVEN UNDER VACUUM BAG PRESSURE-VERY LOW COST PROC- ESS
LOW COST SILICA CLOTH BINDER	SP-8030-95*	ARMOUR	SILICA CLOTH-PHENOLIC (DOUBLE THICKNESS FABRIC)		TAPE WRAP AND CURE AT 300°F AND 250 PSI	NOMAD NOZZLE PRO- GRAM NOZZLE NO. 1 THROAT APPROACH EROSION 6.4 mil/sec CHAR 3.5 mil/sec	4.75/LB COMMERCIALLY AVAILABLE	AFT EXIT CONE, THROAT APPROACH	LOWER DRY MATERIAL COST DOUBLE THICKNESS TUBE PROVIDES DECREASED FABRI- CATION TIME
LOW COST SILICA CLOTH BINDER	-42*		SINGLE THICKNESS FABRIC	COMPRESSIVE, ULT. 22,000 PSI MOD. 2.61 X 10 ⁶ PSI	TENSILE, ULT. 10,000 PSI MOD. 2.43 X 10 ⁶ PSI	SPECIFIC GRAVITY 1.70	NOZZLE NO. 2, THROAT APPROACH EROSION 4.8 mil/sec CHAR 2.7 mil/sec NOZZLE NO. 4-EXIT EXTENSION (SP-8030- 48) EROSION 5.7 mil/sec CHAR 2.4 mil/sec	AFT EXIT CONE, BACKUP	
				TENSILE, ULT. 5,500 PSI MOD. 1.15 X 10 ⁶ PSI					
LOW COST SILICA CLOTH BINDER	FM-5504 LD	U.S. POLYMERIC	SILICA CLOTH-PHENOLIC WITH MICROBALLOONS ADDED	SPECIFIC GRAVITY, 1.00 TENSILE, ULT. 15,000 PSI MOD. 1.15 X 10 ⁶ PSI	TAPE WRAP AND CURE AT 300°F AND 200 PSI MAX				'SPECIFIC GRAVITY MAY BE VARIED FROM 0.60-1.20
LOW COST SILICA CLOTH BINDER	45-5132	"COAST MFG"	SILICA CLOTH-PHENOLIC AND SUPPLY (DOUBLE THICKNESS FABRIC)	TENSILE, ULT. 15,000 PSI MOD. 2.2 X 10 ⁶ PSI	TAPE WRAP AND CURE AT 300°F AND 250 PSI		5.10/LB COMMERCIALLY AVAILABLE	AFT EXIT CONE, BACKUP THROAT APPROACH	DOUBLE THICK- NESS TUBE PRO- VIDES DECREASED FABRICATION TIME
LOW COST SILICA CLOTH BINDER	45-5186*	COAST MFG.	SILICA CLOTH-POLYPHENYL- AND SUPPLY ENE (DOUBLE THICKNESS FABRIC)	TENSILE, ULT. 16,000 PSI MOD. 2.7 X 10 ⁶ PSI	TAPE WRAP		5.25/LB COMMERCIALLY AVAILABLE	AFT EXIT CONE	POTENTIAL IMPROVED PER- FORMANCE THROUGH SUPER- IOR CHARAC- TERISTICS OF POLYPHENYLENE SYSTEM
LOW COST SILICA CLOTH BINDER	4065*	NARMO	SILICA CLOTH-NBR PHE- NOLIC (WITH ORGANIC SPHERES)	COMPRESSIVE, ULT. 2,100 PSI TENSILE, ULT. 2,000 PSI FLEXURAL, ULT. 5,100 PSI	TAPE WRAP AND CURE AT 325°F AND 15 PSI		COMMERCIALLY AVAILABLE	BACKUP	LIGHTWEIGHT MATERIAL REQUI- RING ONLY VACUUM BAG CURE

TABLE 2. -Continued

CANDIDATE NOZZLE MATERIALS

FAMILY	DESIGNATION	SUPPLIER	MATERIAL DESCRIPTION	MECH. PROPERTIES AT 75°F	PROCESSING INFORMATION	FIRING EXPERIENCE	COST AND AVAIL.	POTENTIAL USE	REMARKS
ASBESTOS BINDER	MXA-6012*	FIBERITE CORP.	ASBESTOS-PHENOLIC (CROCIDOLITE)	COMPRESSIVE, ULT. 22,000 PSI MOD. 1.1 X 10 ⁶ PSI TENSILE, ULT. 10,000 PSI MOD. 1.59 X 10 ⁶ PSI SPECIFIC GRAVITY, 1.60 SPECIFIC HEAT 0.2181 AT 100°C 0.2838 AT 200°C THERMAL DIFFUSIVITY-0.0013 AT 100°C AT 200°C	TAPE WRAP-CURE AT 300°F AND 225 PSI	NOMAD NOZZLE PROGRAM-NOZZLE NO. 1 THROAT OVERWRAP -NO NOZZLE NO. 2- EXIT EXTENSION EROSION, 6.2 mils/sec CHAR, 1.7 mils/sec NOZZLES NO. 3 AND 4- THROAT APPROACH EROSION, 5.1 AND 5.7 mils/sec CHAR, 3 AND 2.1 mils/sec	1.85LB COMMERCIALLY AVAILABLE	EXIT CONE, OVERWRAP, INLET, APPROACH	RELATIVELY THICK TAPE (0.014-0.015) ALLOWS FOR LOWER WRAP TIME
ASBESTOS BINDER	MXA-198	FIBERITE CORP.	ASBESTOS FABRIC-EPOXY NOVOLAC		TAPE WRAP AND CURE UNDER VACUUM BAG IN OVEN	NO FIRING EXPERIENCE	2.00LB NEW MATERIAL, NO PRODUCTION PROBLEMS ANTICIPATED	AFT EXIT CONE, OVERWRAP	VERY LOW COST CONE, OVERWRAP FACILITIES REQ'D VACUUM BAG AND OVEN
ASBESTOS BINDER	WBC-720L	CORDO DIV. ASBESTOS-PHENOLIC FERRO CORP. (WITH SILICA MICRO-BALLOONS)						AFT EXIT CONE, OVERWRAP	
ASBESTOS BINDER	FM-5525	U.S. POLYMERIC	ASBESTOS-PHENOLIC (CROCIDOLITE)	COMPRESSIVE, ULT. 7,000 PSI MOD. 1.55 X 10 ⁶ PSI TENSILE, ULT. 16,000 PSI MOD. 2.88 X 10 ⁶ PSI SPECIFIC GRAVITY, 1.68 SPECIFIC HEAT: 0.2163 AT 100°C 0.2533 AT 200°C	TAPE WRAP-CURE AT 300°F AND 230 PSI	NOMAD NOZZLE PROGRAM-SATISFACTORY PERFORMANCE NOZZLE NO. 3-EXIT EXTENSION EROSION, 6.6 mils/sec CHAR, 1.5 mils/sec NOZZLE NO. 4, THROAT OVERWRAP NO DATA REPORTED	2.00LB COMMERCIALLY AVAILABLE	AFT EXIT CONE, OVERWRAP	
ASBESTOS BINDER	4A-6385*	COAST MFG. AND SUPPLY	ASBESTOS-POLYPHENYLENE RESIN (With Ceramic Microballoons) REINFORCEMENT 50% 50%	COMPRESSIVE, ULT. 23,000 PSI TENSILE, ULT. 6,400 PSI MOD. 1.06 X 10 ⁶ PSI ELONGATION, 0.8% FLEXURAL, ULT. 17,800 PSI SPECIFIC GRAVITY, 1.40	TAPE WRAP-CURE AT 325°F AND 25 PSI	TU-37, RESULTS INCONCLUSIVE	3.50LB COMMERCIALLY AVAILABLE	AFT EXIT CONE, OVERWRAP	
ASBESTOS BINDER	22-RPD	RAYBESTOS MANHATTAN	CHRYSTOFILE ASBESTOS-PHENOLIC (With Ceramic Filter)	TENSILE, ULT. 13,200 PSI MOD. 2.15 X 10 ⁶ PSI FLEXURE, ULT. 15,700 PSI MOD. 1.78 X 10 ⁶ PSI COMPRESSION, ULT. 6,800 PSI MOD. 1.28 X 10 ⁶ PSI SPECIFIC GRAVITY, 1.11	TAPE WRAP AND CURE AT 300°F AND 50 PSI		4.25LB COMMERCIALLY AVAILABLE	BACKUP	
ASBESTOS BINDER	23-RPD*								
ASBESTOS BINDER	MICROBESTOS DS-PHENOLIC*	JOHNS-MANVILLE ASBESTOS-ASBESTOS- ASBESTOS- (IMPREG-NATOR NOT YET KNOWN)	CHRYSTOFILE ASBESTOS-PHENOLIC (With Cork Filter)		TAPE WRAP AND CURE AT 300°F AND 50 PSI	NO FIRING EXPERIENCE	4.25LB COMMERCIALLY AVAILABLE	BACKUP	

TABLE 2. -Continued

CANDIDATE NOZZLE MATERIALS

FAMILY	DESIGNATION	SUPPLIER	MATERIAL DESCRIPTION	MECH. PROPERTIES AT 75°F	PROCESSING INFORMATION	FIRING EXPERIENCE	COST AND AVAIL.	POTENTIAL USE	REMARKS
PAPER BINDER	SMS-21	THIOKOL	KRAFT PAPER-PHENOLIC	COMPRESSIVE, ULT. 36,000 PSI TENSILE, ULT. 22,000 PSI MOD. 1.64×10^6 PSI ELONGATION, 1.9% FLEXURAL, ULT. 21,000 PSI SPECIFIC GRAVITY, 1.22	TAPE WRAP-CURE AT 325°F AND 25 PSI	TU-379, RESULTS INCONCLUSIVE	1.20/LB COMMERCIALY AVAILABLE	BACKUP	LOW COST, WILL REQUIRE SOME DEVELOPMENT OF FAB. TECHNIQUES. APPARENT LOW CHAR STRENGTH
PAPER BINDER	FM-5272*	U.S. POLYMERIC	KRAFT CREPE PAPER-PHENOLIC	SPECIFIC HEAT, 0.372 AT 200°C SPECIFIC GRAVITY, 1.33 TENSILE, ULT. 7,400 PSI MOD. 0.9×10^6 PSI FLEXURAL, ULT. 11,400 PSI MOD. 0.94×10^6 PSI	TAPE WRAP AND CURE AT 325°F AND 150 PSI	NOMAD NOZZLE NO. 7 THROAT APPROACH EROSION, 2.9 mils/sec CHAR, 2.4 mils/sec	2.00/LB COMMERCIALY AVAILABLE	BACKUP, THROAT APPROACH	
PAPER BINDER	MXP-1	FIBERITE CORP.	KRAFT PAPER-PHENOLIC		TAPE WRAP			BACKUP	
OTHER SYSTEMS	V-44	GENERAL TIRE AND RUBBER	ASBESTOS AND SILICA FILLED-NBR		LAYUP AND CURE IN OVEN AT 300°F UNDER VACUUM BAG	NOMAD NOZZLE NO. 5- THROAT APPROACH EROSION, 14.1 mils/sec CHAR, 0.1 mils/sec FIRED IN FULL SPEC- TRUM OF THIOKOL MOTORS, NORMALLY AS CASE INSULATION, PERFORMANCE HAS GENERALLY BEEN GOOD.	3.19/LB COMMERCIALY AVAILABLE	THROAT APPROACH	
KF-418*	FIBERITE CORP.	CANVAS DUCK-PHENOLIC		COMPRESSIVE, ULT. 20,300 PSI MOD. 0.81×10^6 PSI TENSILE, ULT. 8,200 PSI MOD. 0.73×10^6 PSI SPECIFIC GRAVITY, 1.33	TAPE WRAP AND CURE AT 300°F AND 225 PSI	NOMAD NOZZLE NO. 6- EXIT EXTENSION EROSION, 5 mils/sec CHAR, 0.9 mils/sec NOMAD NOZZLE NO. 8, EXIT CONE EROSION, 12 mils/sec (AFT OF THROAT) CHAR, 1.7 mils/sec NOMAD NOZZLE NO. 8, THROAT APPROACH EROSION, 4.7 mils/sec CHAR, 4.7 mils/sec	1.50/LB COMMERCIALY AVAILABLE	THROAT APPROACH EXIT EXTENSION BACKUP	

TABLE 3
THIOKOL MATERIAL RECOMMENDATIONS

<u>Material</u>	<u>Type</u>	<u>Supplier</u>
LCCM-2610	Graphite particle phenolic	Thiokol Chemical Corporation
LCCM-4113	Graphite particle NBR phenolic	Thiokol Chemical Corporation
LCCM-4120	Graphite particle phenolic	Thiokol Chemical Corporation
LCCM-(reinforced)	Graphite particle phenolic, reinforced	Thiokol Chemical Corporation
MXC-113	Carbon fiberpaper phenolic	Fiberite Corporation
MXS-113	Silica fiberpaper phenolic	Fiberite Corporation
MXC-198	Carbon cloth epoxy novolac	Fiberite Corporation
MXA-6012	Crocidolite asbestos phenolic	Fiberite Corporation
KF-418	Canvas phenolic	Fiberite Corporation
MXS-198	Silica cloth epoxy novolac	Fiberite Corporation
SP-8030-48	Silica cloth phenolic	Armour Coated Products
SP-8030-96	Heavyweight silica cloth phenolic	Armour Coated Products
SP-8050	Carbon cloth phenolic	Armour Coated Products
4C-1686	Carbon cloth polyphenylene	Coast Mfg & Supply
4S-5186	Silica cloth polyphenylene	Coast Mfg & Supply
4A-6385	Asbestos polyphenylene (ceramic microballoons)	Coast Mfg & Supply
FM-5072LD	Carbon cloth phenolic (silica microballoons)	U.S. Polymeric
FM-5272	Crepe paper phenolic	U.S. Polymeric
4065	Silica cloth NBR phenolic (silica microballoons)	Narmco Materials
23-RPD	Cork/asbestos phenolic	Raybestos-Manhattan, Inc
WB-8217	Carbon cloth phenolic	Western Backing
WB-7605	Microbestos DS phenolic	Western Backing/Johns-Manville

TABLE 4
MATERIALS SELECTED FOR SUBSCALE EVALUATION

<u>Material</u>	<u>Type</u>	<u>Nomad Nozzles No.</u>	<u>Supplier</u>
MXC-313	Carbon fibertape phenolic	1, 4, 5, 6	Fiberite Corporation
SP-8050	Carbon cloth phenolic	2	Armour Coated Products
WB-8217	Carbon cloth phenolic	1, 4	Western Backing
MXA-6012	Asbestos phenolic	1, 2, 3, 4	Fiberite
FM-5272	Kraft crepe paper phenolic	7	U.S. Polymeric
KF-418	Canvas phenolic	6, 8	Fiberite Corporation

TENSILE SPECIMEN

NOTES:

1. SAW CUTS MUST BE PARALLEL WITHIN 0.030
2. DEPTH OF SAW CUTS SHALL BE 1/2 LAMINATE THICKNESS (+0.005, -0).

24535-16

Figure 1 . Tensile and Interlaminar Shear Specimens

NOTE: MARK ARROWS AS INDICATED

24535-2

Figure 2 . Compression Test-Specimen Cutting Pattern and Configuration

TABLE 5
PHYSICAL AND MECHANICAL PROPERTIES

<u>Physical and Mechanical Properties</u>	<u>LCCM-2610</u>	<u>LCCM-4113</u>	<u>LCCM-4120</u>
THIOKOL LOW COST CARBONACEOUS MATERIALS			
Tensile Strength (psi)			
1. Room Temperature			
Ultimate	2,900	450	2,300
2. 300°F, Ultimate	1,700	80	800
3. 600°F, Ultimate	*	350	150
Compressive Strength (psi)			
1. Room Temperature			
Ultimate	12,000	130	8,200
2. 300°F, Ultimate	5,000	30	2,000
3. 600°F, Ultimate	2,800	800	6,700
Hardness, Shore "D"	81	55	70
Specific Gravity	1.8	1.6	1.5

*Specimens fractured due to excessive gripping pressure.

TABLE 5.. - Continued

PHYSICAL AND MECHANICAL PROPERTIES

<u>Physical and Mechanical Properties</u>	<u>MXA-313</u>	<u>MXS-313</u>
FIBERITE FIBER PAPER PHENOLIC MATERIALS		
Tensile Strength (psi)		
A. Parallel		
1. Room Temperature, Ultimate	17,100	6,700
Room Temperature, Modulus	3.19 x 10 ⁶	1.31 x 10 ⁶
2. 300°F, Ultimate	9,900	4,800
3. 600°F, Ultimate	1,900	2,600
B. Perpendicular		
1. Room Temperature, Ultimate	15,200	4,100
Room Temperature, Modulus	2.79 x 10 ⁶	0.81 x 10 ⁶
2. 300°F, Ultimate	10,800	2,500
3. 600°F, Ultimate	1,800	2,200
Compressive Strength (psi)		
A. Parallel		
1. Room Temperature, Ultimate	18,500	9,600
2. 300°F, Ultimate	14,050	7,900
3. 600°F, Ultimate	8,700	3,900
B. Perpendicular		
1. Room Temperature, Ultimate	17,300	5,500
2. 300°F, Ultimate	13,750	4,700
3. 600°F, Ultimate	8,000	2,000
Interlaminar Shear (psi)		
A. Parallel		
1. Room Temperature, Ultimate	1,270	390
2. 300°F, Ultimate	1,000	310
3. 600°F, Ultimate	850	150
B. Perpendicular		
1. Room Temperature, Ultimate	.330	260
2. 300°F, Ultimate	940	220
3. 600°F, Ultimate	780	220
Hardness, Shore D	93	66
Specific Gravity	1.6	0.8

TABLE 6
PHYSICAL AND MECHANICAL PROPERTIES OF LOW COST CARBON CLOTH MATERIALS

<u>Supplier</u>	<u>Fiberite</u>	<u>Coast</u>	<u>Coast</u>	<u>US Polymeric</u>	<u>Armour</u>	<u>Western Backing</u>
<u>Physical and Mechanical Properties</u>	<u>MXC-198</u>	<u>4C1686</u>	<u>4C2530</u>	<u>PM5072LD</u>	<u>SP8057</u>	<u>WB8251</u>
Tensile Strength (psi)						
A. Parallel						
1. Room Temperature, Ultimate	8,900	18,300	7,600	9,000	6,500	9,000
Room Temperature, Modulus	1.40×10^6	1.86×10^6	2.53×10^6	1.29×10^6	1.39×10^6	2.54×10^6
2. 300°F, Ultimate	5,100	12,500	3,100	5,600	4,900	5,100
3. 600°F, Ultimate	3,400	10,400	4,500	4,700	4,300	4,400
B. Perpendicular						
1. Room Temperature, Ultimate	9,100	13,600	6,200	4,700	4,900	7,000
Room Temperature, Modulus	1.23×10^6	1.66×10^6	3.30×10^6	1.57×10^6	1.28×10^6	3.15×10^6
2. 300°F, Ultimate	6,100	10,600	3,300	4,500	4,000	3,900
3. 600°F, Ultimate	2,800	13,800	1,900	3,400	3,900	2,900
Compressive Strength (psi)						
A. Parallel						
1. Room Temperature, Ultimate	31,100	13,000	28,100	20,500	28,600	30,200
2. 300°F, Ultimate	18,800	10,900	23,500	8,300	9,200	25,900
3. 600°F, Ultimate	4,000	7,200	8,000	6,100	4,800	5,900
B. Perpendicular						
1. Room Temperature, Ultimate	18,900	14,400	23,900	16,900	27,000	26,700
2. 300°F, Ultimate	11,000	12,100	18,600	6,200	8,300	22,900
3. 600°F, Ultimate	2,500	7,300	5,700	4,900	4,800	4,500
Interlaminar Shear (psi)						
A. Parallel						
1. Room Temperature, Ultimate	780	1,270	760	990	560	650
2. 300°F, Ultimate	570	950	420	580	590	570
3. 600°F, Ultimate	280	680	290	430	N/A	490
B. Perpendicular						
1. Room Temperature, Ultimate	720	1,040	460	870	460	470
2. 300°F, Ultimate	540	870	390	610	580	500
3. 600°F, Ultimate	150	960	210	380	360	370
Hardness, Shore D	84	85	95	91	91	95
Specific Gravity	1.1	1.3	1.5	1.2	1.4	1.5

TABLE 7
PHYSICAL AND MECHANICAL PROPERTIES OF LOW-COST SILICA CLOTH MATERIALS

<u>Supplier</u>	<u>Fiberite</u>	<u>Coast</u>	<u>Armour</u>	<u>Narmco</u>
<u>Physical and Mechanical Properties</u>	<u>MXS-198</u>	<u>4S5186</u>	<u>SP-6030-96</u>	<u>4065</u>
Tensile Strength (psi)				
A. Parallel				
1. Room Temperature, Ultimate	10,000	10,800	6,200	6,100
Room Temperature, Modulus	2.61×10^6	2.37×10^6	2.67×10^6	0.89×10^6
2. 300°F, Ultimate	4,500	10,100	4,500	2,800
3. 600°F, Ultimate	2,000	8,300	6,400	2,200
B. Perpendicular				
1. Room Temperature, Ultimate	9,900	10,900	4,200	4,100
Room Temperature, Modulus	2.01×10^6	1.63×10^6	1.79×10^6	0.40×10^6
2. 300°F, Ultimate	4,300	8,700	4,400	1,600
3. 600°F, Ultimate	2,800	5,100	2,800	1,300
Compressive Strength (psi)				
A. Parallel				
1. Room Temperature, Ultimate	34,600	13,600	23,100	6,700
2. 300°F, Ultimate	9,900	12,200	22,900	1,200
3. 600°F, Ultimate	3,600	10,000	10,300	990
B. Perpendicular				
1. Room Temperature, Ultimate	24,000	12,900	27,900	4,200
2. 300°F, Ultimate	7,800	10,400	18,100	920
3. 600°F, Ultimate	2,100	8,400	8,100	620
Interlaminar Shear (psi)				
A. Parallel				
1. Room Temperature, Ultimate	1,250	1,060	600	590
2. 300°F, Ultimate	640	650	550	300
3. 600°F, Ultimate	200	850	610	180
B. Perpendicular				
1. Room Temperature	760	590	390	460
2. 300°F, Ultimate	690	550	510	240
3. 600°F, Ultimate	.250	550	490	110
Hardness, Shore D	88	92	94	68
Specific Gravity	1.5	1.7	1.6	1.0

TABLE 8·
PHYSICAL AND MECHANICAL PROPERTIES OF LOW COST
ASBESTOS AND PAPER MATERIALS

<u>Supplier</u>	<u>Coast</u>	<u>Raybestos</u>	<u>Panelyte</u>
<u>Physical and Mechanical Properties</u>	<u>4A6385</u>	<u>23-RPD</u>	<u>SMS-21</u>
Tensile Strength (psi)			
A. Parallel			
1. Room Temperature, Ultimate	17,200	19,700	12,700
Room Temperature, Modulus	2.60×10^6	2.99×10^6	1.52×10^6
2. 300°F, Ultimate	18,100	15,200	6,000
3. 600°F, Ultimate	11,600	8,900	3,500
B. Perpendicular			
1. Room Temperature, Ultimate	10,500	10,800	12,100
Room Temperature, Modulus	1.89×10^6	1.76×10^6	1.38×10^6
2. 300°F, Ultimate	6,600	11,100	6,200
3. 600°F, Ultimate	7,300	7,300	3,000
Compressive Strength (psi)			
A. Parallel			
1. Room Temperature, Ultimate	17,600	15,500	23,400
2. 300°F, Ultimate	12,300	8,300	12,000
3. 600°F, Ultimate	10,000	3,400	2,800
B. Perpendicular			
1. Room Temperature, Ultimate	17,600	13,900	22,400
2. 300°F, Ultimate	12,100	7,700	9,000
3. 600°F, Ultimate	9,200	2,700	1,800
Interlaminar Shear (psi)			
A. Parallel			
1. Room Temperature, Ultimate	1,190	1,700	760
2. 300°F, Ultimate	1,100	1,080	560
3. 600°F, Ultimate	880	1,000	300
B. Perpendicular			
1. Room Temperature, Ultimate	780	1,070	630
2. 300°F, Ultimate	670	720	530
3. 600°F, Ultimate	620	640	330
Hardness, Shore D	92	88	93
Specific Gravity	1.4	1.5	1.3

Figure 3 . TU-379 Materials Screening Motor

Figure 4 . TU-379 Nozzle

TABLE 9
SUMMARY OF FABRICATION CONDITIONS
TU-379 NOZZLE COMPONENTS

	<u>Material</u>	<u>Curing Conditions</u>
1.	MXA-313 (Asbestos fiberpaper)	100 psi (autoclave) and 320°F
2.	MXS-313 (Silica fiberpaper)	100 psi (autoclave) and 320°F
3.	MXC-198 (Carbon epoxy novolac)	13 psi (vacuum bag) and 310°F
4.	MXS-198 (Silica epoxy novolac)	13 psi (vacuum bag) and 310°F
5.	FM-5072LD (Carbon phenolic)	200 psi (autoclave) and 325°F
6.	4065 (Silica NBR phenolic)	200 psi (autoclave) and 310°F
7.	SP-8030-96 (Silica phenolic)	115 psi (autoclave) and 320°F
8.	SP-8057 (Carbon phenolic)	200 psi (autoclave) and 320°F
9.	4C-1686 (Carbon polyphenylene)	200 psi (autoclave) and 320°F
10.	4C-2530 (Avceram phenolic)	200 psi (autoclave) and 320°F
11.	4S-5186 (Silica polyphenylene)	200 psi (autoclave) and 320°F
12.	4A-6385 (Asbestos polyphenylene)	115 psi (autoclave) and 320°F
13.	WB-8251 (Avceram phenolic)	200 psi (autoclave) and 320°F
14.	23-RPD (Asbestos/cork phenolic)	225 psi (autoclave) and 300°F
15.	SMS-21 (Paper phenolic)	225 psi (autoclave) and 320°F
16.	LCCM-2610 (Graphite phenolic)	1,000 psi (press) and 300°F
17.	LCCM-4120 (Graphite phenolic)	13 psi (vacuum bag) and 300°F
18.	LCCM-4113 (Graphite NBR phenolic)	200 psi (autoclave) and 300°F

MATERIAL

EROSION RATE, MIL/SEC

1. STA 1
2. STA 8
3. STA 9
4. MAXIMUM, STA

CHAR RATE (TYPICAL), MIL/SEC

- 1.
- 2.

MOTOR DATA

1. P_{MAX}
2. P_{AVG}
3. t_b

Figure 5. TU-379 Inlet Cone Erosion and Char Profile

MATERIAL

EROSION RATE, MIL/SEC

1. STA 1
2. STA 7
3. STA 14
4. MAXIMUM, STA

CHAR RATE (TYPICAL), MIL/SEC

1. STA
2. STA

MOTOR DATA

1. P_{MAX}
2. P_{AVG}
3. t_b

Figure 6. TU-379 Exit Cone Erosion and Char Profile

TABLE 10
SUMMARY OF INFORMATION ON CANDIDATE MATERIALS

Material	Yard	Reinforcement	Material Description	Specific Gravity	TU-379 Erosion and Char Data						Comments		
					Inject Erosion Station	Inject Erosion MIL/sec	Exit Erosion Station	Exit Erosion MIL/sec	Station	Exit Char MIL/sec	Exit Char MIL/sec		
SP-909T	Armor	Platon H-1	Graphite	EC-391 Phenolic	1.4	1 8 9 Max	3.1 4.4 4.9 3.6	14.0 17.0 17.0 Max	1 7 14 0	0 0 0 0	7 7 7 0	11.9 11.9 11.9 15.90	
FM-5072 LD	US Polymeric	VOK Carbon	Microballoons	H1 LD Phenolic	1.2	1 8 9 Max	3.0 3.2 6.3 0.1	18.9 21.0 14.0 Max	1 7 7 0	0 0 0 0	7 7 7 14.2	23.25	
AC 1006	Coast	GSC-C2 Carbon	Graphite	Polyphenylene	1.3	1 8 9 Max	3.3 3.0 3.4 4.5	20.1 21.7 14.0 Max	1 7 7 0	0 0 0 0	7 7 7 17.7	20.60	
MXC-196	Cation Reinforced	Fiberite	CCA-1 Carbon	--	HT-105 Epoxy Novolac	1.1	1 8 9 Max	7.1 12.1 19.6 25.9	79.0 80.6 80.6 Max	1 7 14 8.2	0 0 0 0	7 7 7 28.1	21.56
WB-2231		Corda	Avercam C/S	Graphite	WB-2231 Phenolic	1.5	1 8 9 Max	3.3 3.0 7.7 8.3	15.0 16.0 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 14.0	22.97
AC 5230	Coast	Avercam C/S	Note	EC-391 Phenolic	1.4	1 8 9 Max	4.4 6.3 9.1 12.7	18.0 20.7 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 10.8	13.25	
MXC9-198	Anions Reinforced	Fiberite	Avercam C/S	--	HT-105 Epoxy Novolac	1.1	1 8 9 Max	7.1 11.4 13.9 14.1	18.0 17.4 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 12.5	5.35
AB 5185		Coast	C-190-96 Silox	Silox	Polyphenylene	1.7	1 8 9 Max	4.7 11.4 13.9 14.1	20.0 20.7 18.0 Max	1 7 14 0	0 0 0 0	7 7 7 13.1	4.30
SP-4010-96	Armor	C-190-96 Silox	Silox	EC-391 Phenolic	1.6	1 8 9 Max	4.7 11.0 13.2 13.7	20.0 20.7 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 8.75	Erosion and char surpassed measurable stage.	
MXC-312	Silox Reinforced	Fiberite	Silox Fibers	MIL-H-3289 Phenolic	8.8	1 8 9 Max	5.3 19.3 27.6 27.6	22.0 26.9 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 14.4	13.98	
4065		Narco	C-190-28 Silox	Phenolic Microballoons	1.0	1 8 9 Max	5.3 19.3 27.6 27.6	22.0 26.9 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 12.0	6.10	
MXC-196	Silox Reinforced	Fiberite	C-190-48 Silox	--	HT-105 Epoxy Novolac	1.5	1 8 9 Max	7.0 22.1 25.0 35.7	43.2 52.3 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 13.0	Erosion and char surpassed measurable stage.
MKA-512		Fiberite	Adhesive	MIL-H-3289 Phenolic	1.6	1 8 9 Max	7.0 15.0 16.4 18.4	44.0 20.3 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 10.9	8.25	
AA 6285	Adhesive Reinforced	Coast	Adhesive	Silox Microballoons	1.4	1 8 9 Max	5.9 12.2 16.5 17.2	16.1 21.6 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 10.7	3.50	
23-RPD		Adhesive Reinforced	Baykote-Masticite	Adhesive Cork	Phenolic	1.8	1 8 9 Max	6.7 13.1 12.4 13.1	14.4 15.4 14 Max	1 7 14 0	0 0 0 0	7 7 7 7.4	6.20
WB-7605	Polymer Reinforced	Corda	Adhesive	Phenolic Microballoons	Phenolic	--	1 8 9 Max	5.9 12.2 16.5 17.2	16.1 21.6 14.0 Max	1 7 14 0	0 0 0 0	7 7 7 13.4	1.30
SMS-21		Thixol	Paper	Note	Phenolic	1.3	1 8 9 Max	6.9 13.1 8.1 8.0	21.7 14.0 14 Max	1 7 14 0	0 0 0 0	7 7 7 13.4	0.70
LCCM-0810	Thixol	None	Graphite	EC-1600 Phenolic	1.8	1 8 9 Max	5.5 12.0 15 0	26.0 20.3 14 Max	1 7 14 0	0 0 0 0	7 7 7 20.2	6.71	
LCCM-4109	Low Cost Corrosion	Thixol	None	Graphite	Dowex 10034 Phenolic	1.9	1 8 9 Max	2.9 2.4 5.6 10.4	1 7 14 0	0 0 0 0	7 7 7 14.0	0.70	
LCCM-4113		Thixol	--	Graphite	Phenolic Dowex 10034 Silox Nitrile	1.8	1 8 9 Max	2.9 2.4 5.6 10.4	1 7 14 0	0 0 0 0	7 7 7 14.0	Erosion and char surpassed measurable stage.	
LCCM-Reinforced	Thixol											Material not sufficiently developed for evaluation.	

LCCM-2610

LCCM-4120

Figure 7. Fired TU-379 Nozzle Sections, Low Cost Carbonaceous Materials

SP-8057

FM-5072

4C-1686

MXC-198

Figure 8. Fired TU-379 Nozzle Sections, Carbon Cloth Reinforced Materials

WB-8251

4C-2530

Figure 9. Fired TU-379 Nozzle Sections, Avceram C/S Cloth Reinforced Materials

4S-5186

SP-8030-96

4065

MXS-198

Figure 10. Fired TU-379 Nozzle Sections Silica Cloth Reinforced Materials

28

MXA-313

4A-6385

23-RPD

SMS-21

Figure 11. Fired TU-379 Nozzle Sections, Asbestos and Paper Reinforced Materials

TABLE 11
MATERIALS RECOMMENDED FOR FURTHER EVALUATION

<u>Material</u>	<u>Vendor</u>	<u>General Description</u>	<u>Cost \$/lb</u>	<u>Remarks</u>
LCCM-2610	Thiokol	Graphite particle - phenolic molding compound	0.75	Excellent erosion resistance, very low cost, demonstrated successfully in char motor nozzles ($D_T = 3.8$ in.) and Stage II Minuteman nozzle ($D_T = 8.5$ in.).
LCCM-4120	Thiokol	Graphite particle - phenolic castable compound	0.75	Good erosion resistance as demonstrated in the exit cones of char nozzles ($D_T = 3.8$ in.) and Stage II Minuteman nozzle ($D_T = 8.5$ in.). Material can be cast in place and cured at low pressure (15 psi), and is very low in cost.
SP-8057	Armour	Pluton H-1 fabric in EC-201 phenolic resin	15.00	Good erosion resistance that is comparable to the best carbon fabric - phenolic materials. Material has a 50 percent resin content; and therefore, a relatively low cost for this class of material.
4C1686	Coast	GS-CC2 carbon fabric in polyphenylene resin	20.60	Good erosion resistance, and reasonable cost for this type of material.
29 WB-8251	Cordo	Aceram C/S in WB-2233 phenolic resin	12.97	Erosion resistance is comparable to carbon - phenolic materials. Has lower price than carbon-phenolic materials. Has lower thermal conductivity than carbon - phenolic materials.
MXCS-198	Fiberite	Aceram C/S in epoxy - novolac resin		This material has not been tested but is recommended because of its potential advantages. Aceram reinforcement has shown excellent results in both this program and the Nomad program. Aceram performance is similar to that of carbon cloth but is lower in cost. Epoxy novolac resins have performed well in the Nomad program. They have the advantage of being cured at low pressure; therefore, Thiokol recommends that lower cost Aceram be combined with low pressure curing epoxy novolac resin.
SP-8030-96 or SP-8030-48	Armour	C-100-96 Silica or C-100-48 Silica	4.90	Good performing low cost silica - phenolic. Can be wrapped successfully in double thickness, reducing fabrication costs.
MXS-198	Fiberite	C-100-96 Silica	6.10	Adequate erosion resistance. Can be fabricated at low pressures, reducing facility requirements and fabrication costs.
23 RPD	Raybestos-Manhattan	Asbestos mat with cork filler and phenolic resin	4.25	Excellent backup material. Has good char properties. Good erosion resistance for asbestos - phenolic.
4065	Narmco	C-100-20 Silica fabric, phenolic macroballoon filled, phenolic modified nitrile	18.08	Low density material. Would make a good backup insulation material because of its low density.

PRECEDING PAGE BLANK NOT FILMED.

TABLE 12
TU-379 MOTOR MATERIAL PERFORMANCE

Nozzle Location with Material Erosion and Char Rates (mil/sec)

Material	Nozzle Location with Material Erosion and Char Rates (mil/sec)									
	Station 1 (A) UC	Station 8 (B) UC	Station 9 (C) UC	Station 1 (D) UC	Station 7 (E) UC	Station 14 (F) UC				
1. LCCM T2610	Erosion ① Char	0.0 18.6	0.0 31.7	0.0 32.2	0.0 0.5	0.0 0.5	0.0 0.5	0.0 0.5	0.0 0.5	0.0 0.5
2. LCCM T4120	Erosion ① Char	2.9 N/A	3.2 N/A	5.6 N/A	6.2 N/A	8.8 N/A	9.7 N/A	0.2 N/A	0.2 N/A	0.0 N/A
3. 4C-1686	Erosion ① Char	1.3 20.6	1.3 20.6	3.0 22.6	3.6 22.6	3.6 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
4. SP-8057	Erosion ① Char	3.1 14.7	2.8 14.3	4.4 15.9	4.1 15.4	4.9 0.5	4.6 0.5	0.0 0.0	0.0 0.0	0.0 0.0
5. WB-8251	Erosion ① Char	3.2 14.1	3.3 14.4	7.0 17.1	7.2 17.4	7.7 0.5	7.9 0.5	0.0 0.0	0.0 0.0	0.0 0.0
6. MXCS-198	Erosion ① Char	MATERIAL NOT EVALUATED						N/A		
7. SP-803-96	Erosion ① Char	4.7 13.7	4.8 14.0	13.0 21.9	13.3 22.3	13.2 0.5	13.5 0.5	0.0 0.5	0.0 0.5	0.0 0.5
8. MXS-198	Erosion ① Char	N/A N/A	N/A 54.4	22.7 0.7	22.9 65.1	25.5 0.5	25.8 0.5	1.5 0.5	1.5 0.5	2.9 0.5
9. 23RPD	Erosion ① Char	6.7 12.7	6.6 12.5	13.1 16.6	12.8 16.4	12.4 0.5	12.2 0.5	1.1 0.5	1.1 0.5	2.7 0.5
10. SMS-21	Erosion ① Char	6.9 12.6	6.8 12.4	5.5 12.8	5.4 12.7	8.1 0.5	7.9 0.5	0.6 0.5	0.6 0.5	7.7 5.1

Avg Web Pressure

NOTES. ① Erosion and char rates corrected for pressure and time.

② Erosion and char as pictured

⑤ Values not realistic due to graphite throat ring

⑥ Definitions: UC = Uncorrected

C = Corrected

N/A = Not Available

⑦ Poor Fabrication Processing of Material

⑧ Average of three nozzle tests for each material.

⑨ Erosion and char measured 1 to 2.

FOLDOUT FRAME

TABLE 12

TU-379 MOTOR MATERIAL PERFORMANCE

Material	Motor Parameters										Material Erosion Factors					Material Char Corr Factor
	Avg Web Pressure (psi)	Throat Diameter (in.)	Propellant Grain Design	Propellant Formulation	Nozzle Type	Nozzle Shape	Web Burn Time (sec)	Erosion Press. Corr. Factor to Avg Press. of all the Motors and all the Materials	Erosion Dia Corr Factor	Erosion Nozzle Contour & Shape Corr Factor	Erosion Propellant Grain Corr Factor	Erosion Propellant Formulation Corr Factor	Erosion Nozzle Type Corr Factor			
1. LCCM T2610	425	0.34	Sorop TF-H1011	End Burner	Fixed External	1) 2 deg Inlet 2) 9 1/2 deg Exit	15.46	0.99	1.00	1.00	1.00	1.00	1.00	0.98		
2. LCCM T4120	375						15.04	1.10						0.98		
3. 4C-1686							14.92	1.01						1.00		
4. SP-8057	460						14.29	0.93						1.03		
5. WB-8251	407						15.37	1.03						0.98		
6. MXCS-198							N/A	N/A						N/A		
7. SP-803-96	413						15.51	1.02						0.97		
8. MXS-198	416						15.62	1.01						0.97		
9. 23RPD	434						14.76	0.98						1.01		
10. SMS-21	436						15.04	0.98						0.98		

$$\text{Erosion Press. Factor} = \frac{(422 \text{ psi})}{\frac{14.91}{X}} \frac{1}{1.25} = \frac{0.502}{\frac{1}{1.25}}$$

$$\text{Char Time Factor} = \frac{(14.91)}{\frac{1}{X}} \frac{1}{1.47} = \frac{6.29}{\frac{1}{1.47}}$$

FOLDOUT FRAME

DESIGN I

P_{MAX} = 500 PSIA	P_{MAX} = 1,000 PSIA
P_{MIN} = 315 PSIA	P_{MIN} = 100 PSIA
P_{AVG} = 400 PSIA	P_{AVG} = 400 PSIA
T_b = 30 SEC	T_b = 35 SEC
D_T = 1.74 IN.	D_T = 1.41 IN.

DESIGN II

24535-33

Figure 12. TU-622 Materials Evaluation Motor

24535-7

Figure 13. TU-622 Materials Evaluation Nozzle

TABLE 13
TU-622 NOZZLE COMPONENT CURE SUMMARY

<u>Material</u>	<u>Component</u>	<u>Cure</u>
1. 4C-1686	Inlet	Apply 225 psi. Cure 2.5 hr at 180°F, 2.5 hr at 210°F, 2.5 hr at 240°F, 2.5 hr at 270°F, 2.5 hr at 300°F, and 6 hr at 350°F. Cool under pressure to 150°F.
	Throat	Same as for inlet.
	Exit cone	Stage 1 hr at 180°F under vacuum. Apply 225 psi. Cure 2.5 hr at 200°F, 2.25 hr at 240°F, 2.25 hr at 270°F, 2 hr at 300°F, 2.5 hr at 350°F. Cool under pressure and vacuum to 160°F.
2. WB-8251	Inlet	Debulk 2 hr at 170°F and 225 psi. Cool to 100°F under pressure. Additional plies added. Apply 225 psi. Cure 4 hr at 170°F, 4 hr at 200°F, 4 hr at 230°F, 3 hr at 265°F, and 6 hr at 300°F. Cool under pressure to 160°F.
	Throat	Same as for inlet.
	Exit cone	Apply vacuum and 225 psi. Cure 1.5 hr at 180°F, 1.5 hr at 200°F, 3 hr at 225°F, 3 hr at 250°F, and 6 hr at 310°F. Cool under vacuum and pressure to 140°F.
3. SMS-21	Inlet	Apply 225 psi. Cure 1 hr at 180°F, 2 hr at 250°F, 6 hr at 320°F. Cool under pressure to 160°F.
	Throat	Same as for inlet.
	Exit cone	Apply vacuum and 225 psi. Cure 2 hr at 180°F, 2 hr at 250°F, and 6 hr at 310°F. Cool under pressure to 160°F.
4. SP-8030-96	Inlet	Apply 225 psi. Cure 2.5 hr at 200°F, 2.5 hr at 250°F, and 6 hr at 310°F. Cool under pressure to 160°F.
	Throat	Same as for inlet.
	Exit cone	Apply vacuum and 225 psi. Cure 1.5 hr at 180°F, 1.5 hr at 200°F, 3 hr at 225°F, 3 hr at 250°F, and 6 hr at 310°F. Cool under vacuum and pressure to 140°F.
5. SP-8057	Inlet	Apply 225 psi. Cure 1 hr at 180°F, 1 hr at 210°F, 2 hr at 240°F, 2 hr at 275°F, and 5 hr at 310°F. Cool under pressure to 150°F.
	Throat	Same as for inlet.
	Exit cone	Apply vacuum and stage 0.5 hr at 180°F. Apply 225 psi. Cure 2 hr at 180°F, 2 hr at 210°F, 2 hr at 240°F, 2 hr at 275°F, and 4.5 hr at 310°F. Cool under vacuum and pressure to 150°F.
6. LCCM-2610	Inlet	Debulk at 170°F and 1,000 psi as required. Cure 8 hr at 325°F and 1,000 psi. Cool under pressure to 170°F.
	Throat	Cure 6 hr at 300°F and 1,000 psi.
	Exit cone	Same as for throat.

TABLE 13. -Continued
TU-622 NOZZLE COMPONENT CURE SUMMARY

<u>Material</u>	<u>Component</u>	<u>Cure</u>
7. LCCM-4120	Inlet	Apply vacuum. Cure 8 hr at 310°F.
	Throat	Same as for inlet.
	Exit cone	Same as for inlet.
8. 23-RPD	Inlet	Debulk extensively at 180°F and 150 psi. Apply 225 psi. Cure 2 hr at 200°F, 2 hr at 250°F, and 6 hr at 310°F. Cool under pressure to 150°F.
	Throat	Same as for inlet.
	Exit cone	Stage under vacuum 2 hr at 180°F. Apply 225 psi. Cure 2 hr at 180°F, 2 hr at 250°F, 3 hr at 275°F, and 6 hr at 300°F. Cool under vacuum and pressure to 140°F.
9. MXS-198	Inlet	Debulk 2 hr at 180°F and 140 psi. Remove pressure. Apply vacuum. Cure 2 hr at 175°F, 4 hr at 210°F, 4 hr at 240°F, and 9 hr at 325°F. Cool under vacuum to 150°F.
	Throat	Same as for inlet.
	Exit cone	Apply vacuum. Cure 3 hr at 180°F, 4 hr at 210°F, 4 hr at 240°F, and 9 hr at 325°F. Cool under vacuum to 180°F.
10. MXCS-198	Inlet	Debulk 2 hr at 180°F and 140 psi. Remove pressure. Apply vacuum bag. Apply vacuum. Cure 2 hr at 180°F, 4 hr at 210°F, 4 hr at 240°F, and 9 hr at 325°F. Cool under vacuum to 160°F.
	Throat	Same as for inlet.
	Exit cone	Apply vacuum. Cure 3 hr at 180°F, 4 hr at 210°F, 4 hr at 240°F, and 9 hr at 325°F. Cool under vacuum to 180°F.

TABLE 14
FABRICATION PROBLEM SUMMARY
TU-622 NOZZLE ASSEMBLIES

<u>Nozzle and Material</u>	<u>Component</u>	<u>Problem</u>	<u>Solution</u>
1. SK-41798-01 (LCCM-2610)	Inlet	None	
	Throat	None	
	Exit cone	None	
2. SK-41798-02 (4C-1686)	Inlet	None	
	Throat	None	
	Exit cone	None	
3. SK-41798-03 (WB-8251)	Inlet	Numerous delaminations over half the length of the billet.	Machined off delaminated area. Added new piles and cured to a longer cure cycle.
	Throat	Several large delaminations which could not be machined out.	Scrapped part. Remade with fresh material and longer cure cycle.
	Exit cone	Severe cracks and delaminations throughout.	Scrapped part. Insufficient time left to reorder material. Substituted segmented LCCM-2626 exit cone.
4. SK-41798-04 (SP-8057)	Inlet	Billet fabricated too short. No additional material on hand.	Added plies of SP-8030-96 to one end and cured. Machined so that SP-8030-96 was located at extreme forward end.
	Throat	Oriented 45 deg upstream.	Used as is.
	Exit cone	None	
5. SK-41798-05 (MXCS-198)	Inlet	None	
	Throat	Throat diameter machined too big.	Redesigned to a different contour.
	Exit cone	Extensive cracks and delaminations.	Scrapped part. Insufficient time left to reorder material. Substituted segmented LCCM-2610 exit cone.
6. SK-41798-06 (LCCM-4120)	Inlet	None	
	Throat	None	
	Exit cone	None	
7. SK-41798-07 (SP-8030-96)	Inlet	None	
	Throat	None	
	Exit cone	None	
8. SK-41798-08 (MXS-198)	Inlet	None	
	Throat	Machining to throat diameter left resin starved areas. Continued machining until such areas were eliminated, resulting in too large a throat diameter.	Machined and installed throat insert (2 pieces) of standard silica phenolic material (MX-2600).
	Exit cone	As molded part had several large resin starved areas, which delaminated extensively during machining.	Scrapped part. Insufficient time left to reorder material. Substituted LCCM-2626 exit cone.

TABLE 14. -Continued

FABRICATION PROBLEM SUMMARY
TU-622 NOZZLE ASSEMBLIES

<u>Nozzle and Material</u>		<u>Solution</u>
9. SK-41798-09 (23-RPD)	None None	Shrank more during cure than expected, resulting in too small an OD.
		Added graphite sleeve.
10. SK-41798-10 (SMS-21)	Inlet Throat Ext cone	None None None

Figure 14. TU-622 Segmented LCCM-2626 Exit Cone (View A)

Figure 15. Forward End TU-622 Test Nozzle,
LCCM-2610 (Graphite Phenolic)

Figure 16. Aft End TU-622 Test Nozzle, LCCM-2610 (Graphite Phenolic)

Figure 17. Forward End TU-622 Test Nozzle,
4C-1686 (Carbon Cloth Polyphenylene)

Figure 18. Aft End TU-622 Test Nozzle,
4C-1686 (Carbon Cloth Polyphenylene)

Figure 19. Forward End TU-622 Test Nozzle, WB-8251 (Avceram C/S-Phenolic)
Inlet and Throat, LCCM-2610 Dry (Graphite-Phenolic) Segmented Exit Cone

Figure 20. Aft End TU-622 Test Nozzle, WB-8251 (Avceram C/S-Phenolic) Inlet and Throat, LCCM-2610 Dry (Graphite-Phenolic) Segmented Exit Cone

Figure 21. Forward End TU-622 Test Nozzle,
SP-8057 (Pluton H-1 Phenolic)

Figure 22. Aft End TU-622 Test Nozzle,
SP-8057 (Pluton H-1 Phenolic)

Figure 23. Forward End TU-622 Test Nozzle, MXCS-198 (Avceram C/S-Epoxy Novolac Inlet and Throat, LCCM-2610 (Graphite-Phenolic) Segmented Exit Cone

Figure 24. Aft End TU-622 Test Nozzle, MXCS-198 (Avceram C/S Epoxy Novolac)
Inlet and Throat, LCCM-2610 (Graphite-Phenolic) Segmented Exit Cone

Figure 25. Forward End TU-622 Test Nozzle
LCCM-4120 (Graphite Phenolic)

Figure 26. Aft End TU-622 Test Nozzle,
LCCM-4120 (Graphite Phenolic)

Figure 27. Forward End TU-622 Test Nozzle,
SP-8030-96 (Silica Cloth Phenolic)

Figure 28. Aft End TU-622 Test Nozzle,
SP-8030-96 (Silica Cloth Phenolic)

Figure 29. Forward End TU-622 Test Nozzle, MXS-198 (Silica-Epoxy Novolac) Inlet,
Silica-Phenolic Split Throat, LCCM-2610 Dry (Graphite-Phenolic) Exit Cone

Figure 30. Aft End TU-622 Test Nozzle, MXS-198 (Silica-Epoxy Novolac) Inlet,
Silica-Phenolic Split Throat, LCCM-2610 Dry (Graphite-Phenolic) Exit Cone

Figure 31. Forward End TU-622 Test Nozzle, 23-RPD (Cork Asbestos-Phenolic)

Figure 32. Aft End TU-622 Test Nozzle, 23-RPD (Cork Asbestos-Phenolic)

Figure 33. Forward End TU-622 Test Nozzle, SMS-21 (Paper-Phenolic)

Figure 34. Aft End TU-622 Test Nozzle, SMS-21 (Paper-Phenolic)

WEB TIME AVG PRESSURE - 466 PSIA
 WEB TIME - 23.4 SEC
 TEST MATERIAL - LCCM-2610
 AVG BALLISTIC EROSION - 2.15 MILS/SEC
 AVG INITIAL THROAT DIAMETER - 1.749 IN.
 AVG FINAL THROAT DIAMETER - 1.883 IN.

Figure 35. TU-621.01 Motor Pressure-Time Record

WEB TIME AVG PRESSURE - 458 PSIA
 WEB TIME - 23.4 SEC
 TEST MATERIAL - 4C-1686
 AVG BALLISTIC EROSION - 3.28 MILS/SEC
 AVG INITIAL THROAT DIAMETER - 1.740 IN.
 AVG FINAL THROAT DIAMETER - 1.959 IN.

Figure 36. TU-622.02 Motor Pressure-Time Record

TEST MATERIAL
 INLET, THROAT - WB-8251
 EXIT - LCCM-2610X SEGMENTED
 WEB TIME - 39.4 SEC
 AVG WEB PRESSURE - 312.9 PSIA
 AVG INITIAL THROAT DIAMETER - 1.744 IN.
 AVG FINAL THROAT DIAMETER - 2.2458 IN.
 AVG BALLISTIC EROSION RATE - 6.363 MILS/SEC

Figure 37 . TU-622.03 Motor Pressure-Time Record

WEB TIME AVG PRESSURE - 397 PSIA
 WEB TIME - 35.3 SEC
 TEST MATERIAL - SP-8057
 AVG BALLISTIC EROSION - 4.62 MILS/SEC
 AVG INITIAL THROAT DIAMETER - 1.740 IN.
 AVG FINAL THROAT DIAMETER - 2.066 IN.

Figure 38 . TU-622.04 Motor Pressure-Time Record

TEST MATERIAL
 INLET AND THROAT - MXSC-198
 EXIT CORE - LCCM-2610 SEGMENTED
 WEB TIME - 37.55 SEC
 AVG WEB PRESSURE - 343.2 PSIA
 AVG INITIAL THROAT DIAMETER - 1.741 IN.
 AVG FINAL THROAT DIAMETER - 2.2097 IN.
 AVG BALLISTIC EROSION RATE - 6.24 MILS/SEC

Figure 39 . TU-622.05 Motor Pressure-Time Record

WEB TIME AVG PRESSURE - 385 PSIA
 WEB TIME - 35.5 SEC
 TEST MATERIAL - LCCM-4120
 AVG BALLISTIC EROSION - 3.85 MILS/SEC
 AVG INITIAL THROAT DIAMETER - 1.74+ IN.
 AVG FINAL THROAT DIAMETER - 2.019 IN.

Figure 40 . TU-622.06 Motor Pressure-Time Record

Figure 41 . TU-622.07 Motor Pressure-Time Record

TEST MATERIAL

INLET - MXSC-198
 EXIT - LCCM-2610X
 THROAT - MX-2600
 ASTRO/140 P

MODIFIED CONTOUR

WEB TIME	- 38.5 SEC	Avg APPARENT EROSION RATE = 13.20 B MILS/SEC
AVG WEB PRESSURE	- 362.6 PSIA	(SILICA EROSION RATE)
AVG INITIAL THROAT DIAMETER	- 1.418	(AVERAGE DIA = 2.435)
AVG FINAL THROAT DIAMETER	- 2.32	
AVG BALLISTIC EROSION RATE	- 11.84 MILS/SEC	• THROAT ACTUALLY MOVED AFT OUT OF THE SILICA INTO THE LCCM MATERIAL AND SMALL- EST DIAMETER MEASURED HERE WAS 2.32.

Figure 42 . TU-622.08 Motor Pressure-Time Record

24535-55

TEST MATERIAL - 23-RPD
 WEB TIME - 40.6 SEC
 AVG WEB PRESSURE - 316.3
 AVG INITIAL THROAT DIAMETER - 1.421
 AVG FINAL THROAT DIAMETER - 2.5742
 AVG BALLISTIC EROSION RATE - 14.702 MILS/SEC

Figure 43 . TU-622.09 Motor Pressure-Time Record

TEST MATERIAL - 8M8-21
 WEB TIME - 29.35 SEC
 AVG WEB PRESSURE - 324.9 PSIA
 AVG INITIAL THROAT DIAMETER - 1.410
 AVG FINAL THROAT DIAMETER - 2.3602
 AVG BALLISTIC EROSION RATE - 12.071 MILS/SEC

Figure 44 . TU-622.10 Motor Pressure-Time Record

Figure 45. Sectioned TU-622 Test Nozzle, LCCM-2610 (Graphite Phenolic)

Figure 46. Sectioned TU-622 Test Nozzle, 4C-1686 (Carbon Cloth Polyphenylene)

Figure 47. Sectioned TU-622 Test Nozzle, WB-8251 (Avceram C/S-Phenolic)
Inlet and Throat, LCCM-2626 Dry (Graphite-Phenolic) Segmented Exit Cone

Figure 48. Sectioned TU-622 Test Nozzle, SP-8057 (Pluton H-1 Phenolic)

Figure 49. Sectioned TU-622 Test Nozzle, MXCS-198 (Avceram C/S-Epoxy Novolac)
Inlet and Throat, LCCM-2610 (Graphite-Phenolic) Segmented Exit Cone

07

Figure 50. Sectioned TU-622 Test Nozzle, LCCM-4120 (Graphite Phenolic)

Figure 51. Sectioned TU-622 Test Nozzle, SP-8030-96 (Silica Cloth Phenolic)

Figure 52. Sectioned TU-622 Test Nozzle, MXS-198 (Silica-Epoxy Novolac) Inlet,
Silica-Phenolic Split Throat, LCCM-2626 Dry (Graphite-Phenolic) Exit Cone

Figure 53. Sectioned TU-622 Test Nozzle, 23-RPD (Asbestos Cork-Phenolic)

Figure 54. Sectioned TU-622 Test Nozzle, SMS-21 (Paper-Phenolic)

75

0 2 4 6 8 10 12 14 16 18 20 22 24 26

STATION

24535-9

Figure 55. TU-622 Nozzle Cross Section

TABLE 15

TU-622 NOZZLE DATA, LCCM-2610

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE (MILS/SEC)
	INITIAL	EROSION	CHAR			
26	2.35	2.38	1.86	+0.03	0.49	+
25	2.50	2.54	2.08	+0.04	0.42	+
24	2.66	2.70	2.25	+0.04	0.41	+
23	2.79	2.85	2.46	+0.06	0.33	+
22	2.98	3.00	2.58	+0.02	0.40	+
21	3.14	3.16	2.68	+0.02	0.46	+
20	3.30	3.33	2.82	+0.03	0.48	+
19	3.46	3.44	2.92	0.02	0.54	0.60
18	3.60	3.60	2.96	0.00	0.64	0.00
17	3.78	3.70	3.02	0.08	0.76	2.40
16	3.89	3.76	3.06	0.13	0.83	3.91
15	3.90	3.76	3.08	0.14	0.82	4.22
14	3.87	3.77	3.08	0.10	0.79	3.01
13	3.84	3.72	3.04	0.12	0.80	3.61
12	3.80	3.68	3.04	0.12	0.76	3.61
11	3.74	3.62	3.00	0.12	0.74	3.61
10	3.66	3.56	2.94	0.10	0.72	3.01
9	3.58	3.50	2.86	0.08	0.72	2.40
8	3.48	3.40	2.78	0.08	0.70	2.40
7	3.36	3.28	2.70	0.08	0.66	2.40
6	3.24	3.16	2.56	0.08	0.68	2.40
5	3.11	3.08	2.42	0.03	0.69	0.90
4	2.94	2.92	2.20	0.02	0.74	0.60
3	2.79	2.76	1.96	0.03	0.83	0.90
2	2.45	2.44	1.60	0.01	0.85	0.30
1	1.96	2.00	1.20	+0.04	0.76	+
0	1.46	1.46	0.90	0.00	0.56	0.00

LEGEND

BURNING TIME 33.2 SEC

- PREFIRING SURFACE
- - - POSTFIRING SURFACE
- - - CHAR DEPTH

24535-22

TABLE 16

'TU-622 NOZZLE DATA, 4C-1686

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE (MILS/SEC.)
	INITIAL	EROSION	CHAR			
26	2.35	2.40	2.10	+0.05	0.25	+
25	2.50	2.54	2.27	+0.04	0.23	+
24	2.66	2.74	2.50	+0.08	0.16	+
23	2.79	2.86	2.62	+0.07	0.17	+
22	2.98	3.04	2.74	+0.06	0.24	+
21	3.14	3.20	2.90	+0.06	0.24	+
20	3.30	3.31	3.04	+0.01	0.26	+
19	3.46	3.48	3.16	+0.02	0.30	+
18	3.60	3.60	3.26	0.00	0.34	0.00
17	3.78	2.70	3.34	0.08	0.44	2.39
16	3.89	3.74	3.40	0.15	0.49	4.49
15	3.90	3.74	3.46	0.16	0.44	4.79
14	3.87	3.72	3.46	0.15	0.41	4.49
13	3.84	3.70	3.44	0.14	0.40	4.19
12	3.80	3.66	3.40	0.14	0.40	4.19
11	3.74	3.64	3.32	0.10	0.42	2.99
10	3.66	3.58	3.24	0.08	0.42	2.39
9	3.58	3.50	3.10	0.08	0.48	2.39
8	3.48	3.38	3.04	0.10	0.44	2.99
7	3.36	3.30	3.00	0.06	0.36	1.79
6	3.24	3.19	2.80	0.05	0.44	1.50
5	3.11	3.06	2.66	0.05	0.45	1.50
4	2.94	2.92	2.50	0.02	0.44	0.60
3	2.79	2.76	2.34	0.03	0.45	0.90
2	2.45	2.58	2.10	+0.13	0.36	+
1	1.96	2.06	1.70	+0.10	0.26	+
0	1.46	--	--	--	--	--

LEGEND

BURNING TIME 33.4 SEC

24535-23

TABLE 17

TU-622 NOZZLE DATA, WB-8251 INLET AND THROAT, LCCM-2626 DRY SEGMENT EXIT

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE (MILS/SEC)
	INITIAL	EROSION	CHAR			
26	2.35	2.40	--	+0.05	--	+
25	2.50	2.54	--	+0.04	--	+
24	2.66	2.70	--	+0.04	--	+
23	2.79	2.88	--	+0.09	--	+
22	2.98	3.08	--	+0.10	--	+
21	3.14	3.19	--	+0.05	--	+
20	3.30	3.34	--	+0.04	--	+
19	3.46	3.48	--	+0.02	--	+
18	3.60	3.56	--	0.04	--	--
17	3.78	3.61	3.36	0.17	0.42	4.31
16	3.89	3.62	3.40	0.27	0.49	6.85
15	3.90	3.58	3.40	0.32	0.50	8.12
14	3.87	3.56	3.38	0.31	0.49	7.87
13	3.84	3.54	3.34	0.30	0.50	7.61
12	3.80	3.49	3.30	0.31	0.50	7.86
11	3.74	3.43	3.24	0.31	0.50	7.86
10	3.66	3.38	3.10	0.28	0.56	7.11
9	3.58	3.32	3.04	0.26	0.54	6.60
8	3.48	3.22	2.96	0.26	0.52	6.60
7	3.36	3.10	2.84	0.26	0.52	6.60
6	3.24	3.00	2.72	0.24	0.52	6.09
5	3.11	2.84	2.60	0.27	0.51	6.85
4	2.94	2.76	2.46	0.18	0.48	4.57
3	2.79	2.64	2.30	0.15	0.49	3.81
2	2.45	2.34	1.98	0.11	0.47	2.79
1	1.96	1.86	1.52	0.10	0.44	2.54
0	1.46	--	--	--	--	--

BURNING TIME 39.4 SEC

LEGEND

- PREFIRING SURFACE
- - - POSTFIRING SURFACE
- CHAR DEPTH

124535-29.

TABLE 18
TU-622 NOZZLE DATA, SP-8057

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION-RATE MILS/SEC
	INITIAL	EROSION	CHAR			
26	2.35	2.42	2.24	+0.07	0.11	+
25	2.50	2.60	2.42	+0.10	0.08	+
24	2.66	2.76	2.54	+0.10	0.12	+
23	2.79	2.90	2.64	+0.11	0.15	+
22	2.98	3.04	2.78	+0.06	0.20	+
21	3.14	3.20	2.96	+0.06	0.18	+
20	3.30	3.32	3.06	+0.02	0.24	+
19	3.46	3.42	3.16	0.04	0.30	1.13
18	3.60	3.58	3.26	0.02	0.34	0.57
17	3.78	3.70	3.38	0.08	0.40	2.27
16	3.89	3.70	3.42	0.19	0.47	5.38
15	3.90	3.66	3.40	0.24	0.50	6.80
14	3.87	3.64	3.38	0.23	0.49	6.52
13	3.84	3.60	3.36	0.24	0.48	6.80
12	3.80	3.58	3.30	0.22	0.50	6.23
11	3.74	3.50	3.20	0.24	0.54	6.80
10	3.66	3.42	3.06	0.24	0.60	6.80
9	3.58	3.40	3.00	0.18	0.58	5.10
8	3.48	3.32	2.92	0.16	0.56	4.53
7	3.36	3.24	2.86	0.12	0.50	3.40
6	3.24	3.10	2.72	0.14	0.52	3.97
5	3.11	3.00	2.60	0.11	0.51	3.12
4	2.94	2.82	2.40	0.12	0.54	3.40
3	2.79	2.70	2.28	0.09	0.51	2.55
2	2.45	2.42	1.90	0.03	0.55	0.85
1	1.96	1.86	1.42	0.10	0.54	2.83
0	1.46	--	--	--	--	--

LEGEND

PREFIRING SURFACE
POSTFIRING SURFACE
CHAR DEPTH

BURNING TIME 35.3 SEC

STATION

24535-20

TABLE 19

TU-622 NOZZLE DATA, MXCS-198 INLET AND THROAT, LCCM-2810 WET SEGMENT EXIT

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE (MLS/SEC)
	INITIAL	EROSION	CHAR			
26	2.35	2.38	—	+0.03	—	+
25	2.50	2.54	—	+0.04	—	+
24	2.67	2.70	—	+0.03	—	+
23	2.82	2.86	—	+0.04	—	+
22	2.98	3.02	—	+0.04	—	+
21	3.12	3.18	—	+0.06	—	+
20	3.28	3.36	—	+0.08	—	+
19	3.43	3.50	—	+0.07	—	+
18	3.58	3.57	3.16	0.01	0.42	0.26
17	3.75	3.62	3.24	0.13	0.51	3.46
16	3.86	3.65	3.38	0.21	0.48	5.59
15	3.86	3.62	3.38	0.24	0.48	6.39
14	3.85	3.62	3.36	0.23	0.49	6.12
13	3.80	3.58	3.32	0.22	0.48	5.86
12	3.72	3.52	3.25	0.20	0.47	5.33
11	3.63	3.46	3.16	0.17	0.47	4.53
10	3.52	3.38	3.04	0.14	0.48	3.73
9	3.40	3.36	2.98	0.04	0.42	1.06
8	3.27	3.30	2.90	+0.03	0.37	+
7	3.16	3.22	2.80	+0.06	0.36	+
6	3.06	3.12	2.74	+0.06	0.33	+
5	2.95	3.00	2.56	+0.05	0.39	+
4	2.84	2.84	2.42	0.00	0.42	0.00
3	2.66	2.71	2.20	+0.05	0.46	+
2	2.36	2.39	1.82	+0.03	0.54	+
1	1.97	1.92	1.34	0.02	0.60	0.53
0	1.44	1.40	1.00	0.04	0.44	1.06

LEGEND

BURNING TIME 37.55

TABLE 20
TU-622 NOZZLE DATA, LCCM-4120

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE (MILS/SEC)
	INITIAL	EROSION	CHAR			
26	2.35	--	1.80	--	0.55	--
25	2.50	2.24	1.90	--	0.60	--
24	2.66	2.60	2.10	0.06	0.56	1.70
23	2.79	2.80	2.32	+0.01	0.47	+
22	2.98	3.00	2.50	+0.02	0.48	+
21	3.14	3.16	2.66	+0.02	0.48	+
20	3.30	3.30	2.76	0.00	0.54	0.00
19	3.46	3.42	2.90	0.04	0.56	1.13
18	3.60	3.58	3.04	0.02	0.56	0.56
17	3.78	3.70	3.12	0.08	0.66	2.26
16	3.89	3.74	3.14	0.15	0.75	4.25
15	3.90	3.72	3.20	0.18	0.70	5.10
14	3.87	3.70	3.10	0.17	0.77	4.81
13	3.84	3.64	3.04	0.20	0.80	5.66
12	3.80	3.60	2.94	0.20	0.86	5.66
11	3.74	3.52	2.80	0.22	0.94	6.23
10	3.66	3.48	--	0.18	--	5.10
9	3.58	3.44	--	0.14	--	3.96
8	3.48	3.36	--	0.12	--	3.40
7	3.36	3.26	--	0.10	--	2.83
6	3.24	3.14	--	0.10	--	2.83
5	3.11	3.04	--	0.07	--	1.98
4	2.94	2.92	--	0.02	--	0.56
3	2.79	2.74	--	0.05	--	1.42
2	2.45	2.46	--	+0.01	--	+
1	1.96	2.00	--	+0.04	--	+
0	1.46	1.46	--	0.00	--	0.00

LEGEND

— PREFIRING SURFACE
— POSTFIRING SURFACE
— CHAR DEPTH

BURNING TIME 35.3 SEC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

STATION

24535-26

TABLE 21

TU-622 NOZZLE DATA, SP-8030-96

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE (MILS/SEC)
	INITIAL	EROSION	CHAR			
26	2.32	2.32	2.10	0.00	0.22	0.00
25	2.48	2.48	2.30	0.00	0.18	0.00
24	2.64	2.62	2.44	0.02	0.20	0.527
23	2.80	2.80	2.60	0.00	0.20	0.00
22	2.96	2.92	2.74	0.04	0.22	1.05
21	3.12	3.04	2.88	0.08	0.24	2.11
20	3.28	3.16	3.00	0.12	0.28	3.16
19	3.44	3.28	3.12	0.16	0.32	4.22
18	3.60	3.40	3.22	0.20	0.38	5.27
17	3.75	3.46	3.34	0.29	0.41	7.65
16	3.92	3.50	3.38	0.42	0.54	11.08
15	4.06	3.46	3.34	0.72	0.60	15.82
14	4.07	3.44	3.34	0.63	0.73	16.62
13	4.04	3.40	3.30	0.64	0.74	16.88
12	4.00	3.38	3.26	0.62	0.74	16.36
11	3.98	3.34	3.22	0.64	0.76	16.88
10	3.90	3.30	3.18	0.60	0.72	15.83
9	3.84	3.26	3.12	0.58	0.72	15.30
8	3.76	3.22	3.08	0.54	0.68	14.25
7	3.66	3.16	3.00	0.50	0.66	13.19
6	3.56	3.10	2.92	0.46	0.64	12.13
5	3.44	3.02	2.84	0.42	0.60	11.08
4	3.30	2.84	2.64	0.46	0.66	12.13
3	2.98	2.52	2.30	0.46	0.68	12.13
2	2.46	2.12	1.82	0.34	0.64	8.97
1	1.96	1.62	1.44	0.34	0.54	8.97
0	1.44	1.16	1.00	0.28	0.44	7.38

BURNING TIME 37.9 SEC

LEGEND

TABLE 22

TU-622 NOZZLE DATA, MXS-198 INLET, SILICA SEGMENTED THROAT, LCCM-2626 DRY EXIT

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE (MLS/SEC)
	INITIAL	EROSION	CHAR			
26	2.48	2.50	--	+0.02	--	+
25	2.64	2.66	--	+0.02	--	+
24	2.79	2.80	--	+0.01	--	+
23	2.95	3.00	--	+0.05	--	+
22	3.10	3.16	--	+0.06	--	+
21	3.25	3.30	--	+0.05	--	+
20	3.40	3.46	--	+0.06	--	+
19	3.55	3.58	--	+0.03	--	+
18	3.71	3.50	3.34	0.21	0.37	5.45
17	3.86	3.50	3.38	0.36	0.48	9.35
16	4.01	3.50	3.35	0.51	0.66	18.24
15	4.00	3.46	3.32	0.54	0.68	14.0
14	3.95	3.41	3.30	0.54	0.65	14.0
13	3.90	3.36	3.24	0.54	0.74	14.0
12	3.84	3.32	3.20	0.52	0.64	13.50
11	3.75	3.24	3.08	0.51	0.67	13.24
10	3.64	3.13	2.99	0.51	0.65	13.24
9	3.54	3.08	2.90	0.46	0.64	11.94
8	3.46	2.99	2.84	0.47	0.62	12.20
7	3.36	2.91 [*]	2.74	0.45	0.62	11.68
6	3.24	2.84	2.64	0.40	0.60	10.39
5	3.11	2.74	2.56	0.37	0.55	9.61
4	2.97	2.64	2.62	0.33	0.35	8.57
3	2.80	2.46	2.24	0.34	0.56	8.83
2	2.42	2.19	1.90	0.23	0.52	5.97
1	1.91	1.80	1.48	0.11	0.43	2.85
0	1.42	1.20	1.02	0.22	0.40	5.71

BURNING TIME 38.5 SEC

LEGEND

TABLE 23
TU-622 NOZZLE DATA, 23-RPD

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE MILS/SEC
	INITIAL	EROSION	CHAR			
26	2.32	2.46	2.32	+0.14	0.00	+
25	2.49	2.62	2.46	+0.13	0.03	+
24	2.64	2.76	2.62	+0.12	0.02	+
23	2.80	2.90	2.76	+0.10	0.04	+
22	2.96	3.00	2.90	+0.04	0.06	+
21	3.11	3.10	3.04	0.01	0.07	0.24
20	3.28	3.16	3.12	-0.12	0.16	2.95
19	3.44	3.24	3.20	0.20	0.24	4.92
18	3.60	3.28	3.24	0.32	0.36	7.88
17	3.76	3.36	3.30	0.40	0.46	9.85
16	3.92	3.42	3.36	0.50	0.56	12.31
15	4.06	3.42	3.36	0.64	0.60	15.76
14	4.05	3.40	3.36	0.65	0.69	16.00
13	4.04	3.38	3.32	0.66	0.62	16.25
12	4.00	3.34	3.28	0.66	0.72	16.25
11	3.96	3.32	3.22	0.64	0.74	15.76
10	3.89	3.28	3.18	0.61	0.71	15.02
9	3.82	3.20	3.12	0.62	0.70	15.27
8	3.74	3.16	3.04	0.58	0.70	14.28
7	3.66	3.08	3.00	0.58	0.66	14.28
6	3.55	3.06	2.94	0.49	0.61	12.1
5	3.42	2.96	2.87	0.46	0.65	11.33
4	3.28	2.80	2.72	0.48	0.56	11.82
3	2.92	2.54	2.42	0.38	0.50	9.36
2	2.41	2.10	1.98	0.31	0.43	7.63
1	1.90	1.72	1.58	0.18	0.32	4.43
0	1.43	1.08	--	0.35	--	8.62

LEGEND

BURNING TIME 40.6 SEC

TABLE 24
TU-622 NOZZLE DATA, SMS-21

STATION NO.	CONTOUR			MATERIAL LOSS	CHAR DEPTH	EROSION RATE MILS/SEC
	INITIAL	EROSION	CHAR			
26	2.32	2.06	2.00	0.26	0.32	6.60
25	2.49	2.14	2.08	0.35	0.31	8.89
24	2.64	2.28	2.19	0.36	0.45	9.15
23	2.80	2.42	2.32	0.35	0.48	9.66
22	2.96	2.58	2.50	0.38	0.46	9.66
21	3.11	2.72	2.64	0.39	0.47	9.91
20	3.28	2.90	2.82	0.38	0.46	9.66
19	3.44	3.04	2.96	0.40	0.48	10.16
18	3.60	3.20	3.08	0.40	0.52	10.16
17	3.76	3.20	3.10	0.56	0.66	14.23
16	3.92	3.30	3.18	0.62	0.74	15.75
15	4.06	3.34	3.23	0.72	0.83	18.29
14	4.05	3.42	3.32	0.63	0.73	16.00
13	4.04	3.49	3.34	0.55	0.70	13.97
12	4.00	3.49	3.30	0.51	0.70	12.96
11	3.96	3.45	3.25	0.51	0.71	12.96
10	3.89	3.40	3.22	0.49	0.67	12.45
9	3.82	3.32	3.14	0.50	0.68	12.70
8	3.74	3.26	3.10	0.48	0.64	12.20
7	3.66	3.20	3.08	0.46	0.58	11.69
6	3.55	3.10	2.98	0.45	0.57	11.43
5	3.42	3.00	2.90	0.42	0.52	10.67
4	3.28	2.90	2.80	0.38	0.48	9.66
3	2.92	2.58	2.50	0.34	0.42	8.64
2	2.41	2.20	2.02	0.21	0.39	5.34
1	1.90	1.78	1.62	0.12	0.28	3.05
0	1.43	1.38	1.22	0.05	0.21	1.27

LEGEND

PREFIRING SURFACE

POSTFIRING SURFACE

ESTIMATED SURFACE

CHAR DEPTH

BURNING TIME 39.35 SEC

TABLE 25

TU-622 MOTOR MATERIAL PERFORMANCE

NOTES 1. Form and other definitions as defined

² Erosion rates are less since those in

LCCM T2616X a low erosion material

Baron et al. / Emotion and obstructiveness measured by GCS 315

18000

2

30 今

FOLDOUT FRAME

PRECEDING PAGE BLANK NOT FILMED.

Figure 56 . TU-622 Motor Convective Heat Transfer Coefficient vs Axial Location, Carbonaceous Materials

Figure 57. TU-622 Erosion Performance, LCCM-2610
(Graphite Particle Phenolic)

Figure 58. TU-622 Erosion Performance, LCCM-4120
(Graphite Particle Phenolic)

Figure 59. TU-379 Erosion Performance, LCCM-4120
(Graphite Particle Phenolic)

16

Figure 60. TU-622 Motor Erosion Performance, 4C-1686
(Carbon Cloth Polyphenylene)

TU-379 MOTORS
INLET {
 ○ NO. 1012
 □ NO. 1013
 ◇ NO. 1014
NO EXIT CONE EROSION
4 POINTS CONSIDERED
QUESTIONABLE

Figure 61. TU-379 Motor Erosion Performance, 4C-1686
(Carbon Cloth Polyphenylene)

24523-8

Figure 62. TU-622 Motor Erosion Performance, SP-8057
(Pluton H-1 Cloth Phenolic)

Figure 63. TU-379 Motor Erosion Performance, SP-8057
(Pluton H-1 Cloth Phenolic)

24535-6

Figure 66. TU-622 Motor Erosion Performance , MXCS-198 (Avceram C/S Cloth Epoxy Novolac)

TABLE 26

TU-622 HIGH C/O RATIO MATERIAL PERFORMANCE

55

<u>Material</u>	Material Erosion Performance at Predicted Erosion Rate of <u>7.0 mils/sec</u>		Material Cure Cycle		Reinforcement Resin Ratio	Reinforcement and Resin Type
	Theoretical Line (mils/sec)	Actual Line (mils/sec)	Pressure (psi)	Temperature (°F)		
LCCM-2610	7.00	3.40	1,000	315 \pm 10	3/1	Graphite particle and phenolic
LCCM-4120	7.00	5.30	15	315 \pm 10	3/1	Graphite particle and phenolic
4C-1686	7.00	3.00	225	350 \pm 5	1.44/1	Carbon cloth and polyphenylene
SP-8057	7.00	7.00	225	315 \pm 10	0.96/1	Carbon cloth and phenolic
WB-8251	7.00	7.5 Est.	225	315 \pm 10	1.56/1	Carbon-silica cloth and phenolic
MXCS-198	7.00	6.4 Est.	15	315 \pm 10	1.08/1	Carbon-silica cloth and epoxy novolac

Figure 67. TU-622 Material Test Motor Total Heat Flux vs Axial Location

24535-99

Figure 68. TU-379 Material Screening Motor Total Heat Flux vs Axial Location (Silica Material)

24535-70

Figure 69: TU-379 Material Screening Motor, Total Heat Flux vs Axial Location (Paper Material)

- 24535-98

Figure 70. TU-379 Material Screening Motor Total
Heat Flux vs Axial Location (Asbestos Material)

Figure 7T. Erosion Performance Line for Low C/O Ratio Material
(Silica SP-8030-96)

TU-379 MOTORS

INLET
 { O NO. 982
 □ NO. 983
 ◇ NO. 984

NO EXIT CONE EROSION

† POINTS CONSIDERED QUESTIONABLE

Figure 73. TU-622 Motor Erosion Performance, MXS-198
(Silica Cloth Epoxy Novolac) and MX-2600 (Silica Cloth Phenolic)

Figure 74. TU-378 Motor Erosion Performance, MXS-198
(Silica Cloth Epoxy Novolac)

Figure 75. TU-622 Motor Erosion Performance, 23-RPD (Asbestos/Cork Phenolic)

Figure 76. TU-379 Motor Erosion Performance, 23-RPD (Asbestos/Cork Phenolic)

z4535-5

Figure 77. TU-622 Motor Erosion Performance, SMS-21 (Kraft Paper Phenolic)

Figure 78. TU-379 Motor Erosion Performance, SMS-21 (Kraft Paper Phenolic)

TABLE 27

TU-622 LOW C/O RATIO MATERIAL PERFORMANCE AT THE THROAT

<u>Material</u>	<u>Erosion Performance</u>		<u>Reinforcement/ Resin Ratio</u>	<u>Reinforcement and Resin Type</u>
	<u>Total Heat Flux Q/T</u>	<u>Actual (mils/sec)</u>		
SP-8030-96	525	16.5	2.57/1	Double thick silica cloth and phenolic
MXS-198	N/A	N/A	2.22/1	Silica cloth and epoxy novolac
105 MX-2600	565	17.0	N/A	Silica cloth and phenolic
23-RPD	725	14.0	1.70/1	Asbestos cork filled mat and phenolic
SMS-21	1,450	13.3	N/A	Paper mat and phenolic

24535-50

Figure 79. Mechanical Properties vs Temperature,
WB-8251 (Avceram C/S Cloth Phenolic)

24535-49

Figure 80. Mechanical Properties vs Temperature,
LCCM-4120 (Graphite Particle Phenolic)

24535-48

Figure 81. Mechanical Properties vs Temperature,
 LCCM-2610 (Graphite Particle Phenolic)

24536-47

Figure 82. Mechanical Properties vs Temperature,
SMS-21 (Kraft Paper Phenolic)

Figure 83. Mechanical Properties vs Temperature, 23-RPD (Asbestos/Cork Phenolic)

SP-8057 (Pluton H-1 Cloth Phenolic)
Figure 84. Mechanical Properties vs Temperature,
Mechanical Properties vs Temperature,

Figure 85. Mechanical Properties vs Temperature,
4C-1686 (Carbon Cloth Polyphenylene)

Figure 86. Mechanical Properties vs Temperature,
MXS-198 (Silica Cloth Epoxy Novolac)

24535-43

Figure 87. Mechanical Properties vs Temperature,
SP-8030-96 (Silica Cloth Phenolic)

TABLE 28
HIGH TEMPERATURE COMPRESSION TESTS

<u>Material</u>	<u>Test Temperature (°F)</u>	<u>Ultimate Compression (psi)</u>	<u>Material</u>	<u>Test Temperature (°F)</u>	<u>Ultimate Compression (psi)</u>
SP-8030-96 (Heavyweight silica fabric phenolic)	1,930-1,950 1,930-1,950 1,930-1,950	2,120 2,920 3,120 Avg 2,720	LCCM-2626 (Graphite particle phenolic)	1,930-1,950 1,930-1,950 1,930-1,950	3,620 3,600 3,520 Avg 3,580
115	1,250	3,175		1,200	1,180
	1,225	4,490		1,225	3,600
	1,200	2,870		1,250	1,380
		Avg 3,510			Avg 2,050
23-RPD (Cork filled asbestos phenolic)	1,950 1,950	2,590 2,105 1,005 Avg 1,900	LCCM-4120 (Graphite particle phenolic)	1,900-1,950 1,900-1,950	1,910 2,550 Avg 2,230
4C-1686	1,250	1,855		1,220	2,350
	1,250	2,075		1,200	2,375
	1,225	1,975	KF-418 (Canvas cloth phenolic)	1,950 1,250	Avg 2,360 Burned out 260 Prior to burnout
		Avg 1,970			
(Carbon fabric polyphenylene)	1,950 1,950 1,950	1,575 1,875 1,735 Avg 1,730			
	1,200	2,770			
	1,200	2,350			
	1,200	2,885			
		Avg 2,670			

TABLE 29
THERMAL CONDUCTIVITY OF NOZZLE MATERIALS

<u>Material</u>	<u>Thermal Conductivity (Btu/in.)/(sq ft/sec/°F)</u>	
	<u>32°F</u>	<u>207°F</u>
23-RPD	2.39×10^{-4} 2.18×10^{-4} Avg	2.05×10^{-4} 2.05×10^{-4} 2.05×10^{-4}
4C-1686	4.96×10^{-4} 5.18×10^{-4} Avg	4.44×10^{-4} 4.30×10^{-4} 4.37×10^{-4}
SP-8030-96	3.60×10^{-4} 3.31×10^{-4} Avg	2.31×10^{-4} 2.46×10^{-4} 2.38×10^{-4}
SP-8057	4.51×10^{-4} 4.61×10^{-4} Avg	4.24×10^{-4} 4.37×10^{-4} 4.32×10^{-4}
LCCM-2626	10.62×10^{-4} 10.70×10^{-4} Avg	11.41×10^{-4} 12.23×10^{-4} 11.82×10^{-4}

TABLE 30
SPECIFIC HEAT OF NOZZLE MATERIALS

<u>Material</u>	<u>Specific Heat (Btu/lb/°F)</u>					
	<u>32°F</u>	<u>144°F</u>	<u>200°F</u>	<u>300°F</u>	<u>600°F*</u>	<u>900°F*</u>
23-RPD	0.383	0.296	0.294	0.316	0.351	0.358
	0.385	0.290	0.298	0.320	0.345	0.368
	Avg	0.384	0.293	0.296	0.318	0.348
4C-1686	0.303	0.253	0.244	0.274	0.325	0.376
	0.306	0.260	0.244	0.273	0.325	0.377
	Avg	0.304	0.256	0.244	0.274	0.325
SP-8030-96	0.319	0.222	0.223	0.248	0.279	0.303
	0.311	0.218	0.217	0.248	0.277	0.307
	Avg	0.315	0.220	0.220	0.248	0.278
SP-8057	0.326	0.300	0.297	0.336	0.354	0.388
	0.329	0.306	0.298	0.340	0.358	0.364
	Avg	0.328	0.303	0.296	0.338	0.356
LCCM-2626	0.300	0.215	0.235	0.259	0.317	0.352
	0.292	0.214	0.234	0.273	0.319	0.357
	Avg	0.296	0.215	0.235	0.266	0.318

*Samples exhibited significant weight loss at 600° and 900°F. The sample weight used to calculate the specific heat was the weight after heating to these temperatures.

24535-65

Figure 88. Carbon Polyphenylene 4C-1686,
Coefficient of Thermal Expansion vs Temperature
(with Lamina Laboratory Virgin Material)

24535-76

Figure 89. Carbon Phenolic SP-8057,
Coefficient of Thermal Expansion vs Temperature
(with Lamina Laboratory Virgin Material)

24535-67

Figure 90. Graphite Particle Phenolic LCCM-2626,
Coefficient of Thermal Expansion vs Temperature
(with Lamina Laboratory Virgin Material)

Figure 91. Silica Phenolic SP-8030-96,
Coefficient of Thermal Expansion vs Temperature
(with Lamina Laboratory Virgin Material)

24535-69

Figure. 92. Asbestos Phenolic 23-RPD,
Coefficient of Thermal Expansion vs Temperature
(with Lamina Laboratory Virgin Material)

TABLE 31
LIST OF MATERIAL CANDIDATES FOR THE . SUBSCALE NOZZLE TASK

123

<u>Number</u>	<u>Family</u>	<u>Material</u>	<u>Vendor</u>	<u>General Description</u>	<u>Specific Gravity</u>	<u>Raw Material Cost (\$/lb)</u>
1	LCCM	LCCM-2826	Thiokol	Graphite particle - phenolic molding compound	1.8	0.75
2		LCCM-4120	Thiokol	Graphite particle - phenolic casting compound	1.5	0.75
3	Carbon reinforced	SP-8057	Armour	Plutor-H fabric - EC-201 phenolic	1.4	15.00
4		4C1686	Coast	GS-CC2 carbon fabric-polyphenylene	1.3	20.60
5		SP-8050 ^a	Armour	CCA-1 carbon-EC-201 phenolic	1.44	16.50
6		WB-8217 ^a	Cordo	Carbon fabric - WB-2233 phenolic	1.42	20.97
7		MX-4926 ^a	Fiberite	Carbon fabric - phenolic	1.40	19.00
8	Averam reinforced	WB-8251	Cordo	Averam C/S - WB-2233 phenolic	1.5	12.97
9		MXCS-198 ^b	Fiberite	Averam C/S - epoxy novolac	--	--
10	Silica reinforced	SP-8030-96	Armour	C-100-96 silica fabric-EC-201 phenolic resin	1.6	4.90
11		MXS-198	Fiberite	C-100-96 silica fabric-epoxy novolac	1.5	6.10
12	Asbestos reinforced	23-RPD	Raybestos-Manhattan	Cork filled asbestos phenolic	1.5	4.25
13		MXA-6012 ^a	Fiberite	Crocidolite asbestos	1.61	1.85
14	Cotton or paper reinforcement	KF-418 ^a	Fiberite	Canvas duct-SC-1008 phenolic	1.35	1.50
15		FM-5272 ^a	US Polymeric	Kraft crepe paper-USP 100 phenolic	1.34	2.00
16		SMS-21	Thiokol	Paper phenolic	1.3	1.20

^aMaterials preselected for subscale evaluation by NASA and Thiokol Chemical Corporation.

^bMaterials not tested

Figure 93. Subscale Nozzle Test Motor Assembly

1 MARK PART NO. FOR TUS-59-103, METHOD 6

2 WELD AND INSPECT FOR TUS-104, CLASS A MAGNETIC PARTICLE INSPECTION PREFERRED, DYE PENETRANT MAY BE USED AS AN ALTERNATE

3 FINISH WELD PROCESSURE MUST BE APPROVED BY ENGINEER

4 MATERIAL PROPERTIES REQUIRED ARE:

ULTIMATE TENSILE STRENGTH	= 110,000 PSI
YIELD POINT	= 70,000 PSI
ELONGATION	= 18%
REDUCTION OF AREA	= 40%
(11-12, AISI 4130 NORMALIZED, OR EQUIVALENT)	

MATERIALS OF A LONGITUDINAL WELDABLES
MATERIALS OF A LONGITUDINAL WELDABLES
DELETED

5 MARK "INDEX HOLE" PER TUS-59-103, METHOD 1.

6 MATERIAL PROPERTIES MUST BE VERIFIED BY PROCESS CONTROL FOR ASTM-A434 IF ONE PIECE CONSTRUCTION IS UTILIZED, 2 CUTS FROM THE LONGITUDINAL WELD; IF TWO PIECE CONSTRUCTION IS UTILIZED, EIGHT COUPONS WILL BE REQUIRED.

7 2 EA FROM THE KNOT FORGS

8 2 EA FROM THE END OF THE CROWN

9 2 EA FROM THE END OF THE CROWN

10 2 EA FROM THE END OF THE CROWN

11 2 EA FROM THE END OF THE CROWN

12 2 EA FROM THE END OF THE CROWN

13 COAT ALL PARTS WITH LIGHT MACHINE OIL UPON COMPLETION OF PART NUMBER

14 INSPECTOR SIGNATURE WILL BE ONE PLACE FORGINGS, LATERAL INSPECT, FORGINGS OF THE WELDED METHOD FOR THICKNESS THRU THE STD.

Figure 94. Subscale Aft Closure

TABLE 32

SUBSCALE NOZZLE MATERIALS TEST LOCATION

TESTED MATERIALS

NOZZLE NO.	NOZZLE DESIGN	A	B	C	D	E	F	G	H	I	J
1	I	FM-5272 PAPER PHENOLIC	WB-8217 CARBON PHENOLIC	WB-8217 CARBON PHENOLIC	MX-4926 CARBON PHENOLIC	SP-8050 CARBON PHENOLIC	---	KF-418 CANVAS PHENOLIC	---	MXA-6012 ASBESTOS PHENOLIC	MXA-6012 ASBESTOS PHENOLIC
2	II	MXA-6012 ASBESTOS PHENOLIC	4C-1686 CARBON POLY- PHENYLENE	4C-1686 CARBON POLY- PHENYLENE	LCCM-2626 GRAPHITE PARTICLE PHENOLIC SEGMENTED	LCCM-2626X GRAPHITE PARTICLE PHENOLIC SEGMENTED	LCCM-2626X GRAPHITE PARTICLE PHENOLIC SEGMENTED	EM-5083 CARBON PHENOLIC	1581 GLASS PHENOLIC	23-RPD ASBESTOS CORK PHENOLIC	23-RPD ASBESTOS CORK PHENOLIC
3	I	23-RPD ASBESTOS CORK PHENOLIC	SP-8057 CARBON PHENOLIC	SP-8057 CARBON PHENOLIC	SP-8050 CARBON PHENOLIC	SP-8057 CARBON PHENOLIC	SP-8030-96 SILICA PHENOLIC	SP-8030-96 SILICA PHENOLIC	23-RPD ASBESTOS CORK PHENOLIC	23-RPD ASBESTOS CORK PHENOLIC	FM-5272 PAPER PHENOLIC
4	I	KF-418 CANVAS PHENOLIC	KF-418 CANVAS PHENOLIC	SP-8030-96 SILICA PHENOLIC	SP-8030-96 SILICA PHENOLIC	23-RPD ASBESTOS CORK PHENOLIC	---	MKS-198 SILICA EPOXY NOVOLAC	---	KF-418 CANVAS PHENOLIC	SP-8030-96 SILICA PHENOLIC
5	II	KF-418 CANVAS PHENOLIC	SP-8630-96 SILICA PHENOLIC	LCCM-2626 GRAPHITE PARTICLE PHENOLIC	LCCM-2626 GRAPHITE PARTICLE PHENOLIC	LCCM-2626X GRAPHITE PARTICLE PHENOLIC	LCCM-4120 GRAPHITE PARTICLE PHENOLIC	KF-418 CANVAS PHENOLIC	1581 GLASS PHENOLIC	23-RPD ASBESTOS CORK PHENOLIC	23-RPD ASBESTOS CORK PHENOLIC
6	I	SP-8030-96 SILICA PHENOLIC	FM-5272 PAPER PHENOLIC	SP-8030-96 SILICA PHENOLIC	SP-8057 CARBON PHENOLIC	KF-418 CANVAS PHENOLIC	---	FM-5272 PAPER PHENOLIC	---	FM-5272 PAPER PHENOLIC	KF-418 CANVAS PHENOLIC

24525-63

24535-96

Figure 96. Subscale Nozzle Convective Heat Transfer Coefficient (Carbonaceous Material)

24535-96

Figure 97. Subscale Nozzle No. 1 Thermal Gradient Planes

Figure 98. Nozzle No. 1 Thermal Gradient, Throat Section No. 5

Figure 99. Stage II Minuteman Structural Analysis

DIMENSIONS IN INCHES

24535-97

Figure 100. Nozzle Closure Modification

TABLE 33
NOZZLE NO. 1 COMPONENT FABRICATION

<u>Component and Materials</u>	<u>Fabrication Method</u>	<u>Cure</u>
Exit Cone Assembly SP-8050 KF-418 MXA-6012	Tape wrap halfway up cone mandrel with 6 in. SP-8050 tape, switch to 6 in. KF-418 tape, and complete wrapping of cone. Autoclave cure. Overwrap full length of cone with 1 1/2 in. MXA-6012 tape. Autoclave cure.	<u>Cure No. 1.</u> Apply vacuum and 225 psi positive pressure. Cure 1 hr at 200°F, 1 hr at 250°F, 6 hr at 300°F. Cool to 150°F under pressure. <u>Cure No. 2.</u> Apply vacuum and stage 3 hr at 180°F. Apply 225 psi 1/2 hr at 200°F. Cure 1/2 hr at 225°F, 1 hr at 250°F, 1 hr at 275°F, 4 hr at 300°F. Cool to 150°F under pressure.
Throat Billet MX-4926	Cut 900 "coolie hat" plies. Install in compression tool, debulking as required. Install male punch and press cure.	Apply 225 psi (calculated). Cure 2 hr at 200°F, 2 hr at 250°F, 6 hr at 320°F. Cool to 150°F under pressure.
Throat Backup MXA-6012	Tape wrap cylindrical mandrel with 5 in. MXA-6012 tape. Autoclave cure.	Apply vacuum and stage 3 hr at 180°F; apply 225 psi. Cure 1/2 hr at 200°F, 1/2 hr at 225°F, 1 hr at 250°F, 4 hr at 300°F. Cool to 150°F under pressure.
I39. Inlet Ring Billet WB-8217	Cut 130 deg ply patterns. Install in mold, butting ply ends together. Debulk as required. Install male punch and press cure.	Apply 225 psi (calculated). Cure 1 hr at 200°F, 1 hr at 250°F, 3 hr at 300°F. Cool to 150°F under pressure.
Nose Ring Billet WB-8217	Tape wrap 5 in. WB-8217 on cylindrical mandrel, debulking as required. Autoclave cure.	Apply vacuum and 225 psi positive pressure. Cure 1 hr at 200°F, 1 hr at 250°F, 6 hr at 300°F. Cool to 150°F under pressure.
Backside Insulation Billet FM-5272	Tape wrap full length of cone mandrel with 6 in. FM-5272 tape. Overwrap full length with 3 in. FM-5272 tape. Autoclave cure.	Apply vacuum and 225 psi; stage 3 hr at 180°F. Cure 1-1/2 hr at 250°F, 6 hr at 310°F. Remove from mandrel while hot (180°-200°F).

TABLE 34
NOZZLE NO. 2 COMPONENT FABRICATION

<u>Component and Materials</u>	<u>Fabrication Method</u>	<u>Cure</u>
Exit Cone Assembly LCCM-2626 Glass-Phenolic Tape	Compression mold billets of LCCM-2626. Machine into segments. Bond segments together on mandrel and overwrap with glass phenolic tape. Autoclave cure. Machine tiers and assemble together.	<u>Cure No. 1 - LCCM-2626.</u> Load tool with calculated quantity of molding compound. Apply 200 tons pressure. Cure 10 hr at 325°F. <u>Cure No. 2 - Overwrap.</u> Apply vacuum and 225 psi autoclave pressure. Cure 2 hr at 200°F, 2 hr at 250°F, 4 hr at 310°F. Cool under vacuum and pressure to 150°F.
Throat Bullet LCCM-2626	Add molding compound to compression tool, install male punch and press cure.	Apply 1,000 psi. Cure 6 hr at 325°F.
Throat Backup Billet 23-RPD	Tape wrap cylindrical mandrel with 5 in. 23-RPD tape. Autoclave cure.	Apply vacuum and stage 2 hr at 180°F; apply 225 psi. Cure 2 hr at 180°F, 2 hr at 240°F, 2 hr at 270°F, 3 hr at 310°F. Cool to 150°F under vacuum and pressure.
Inlet Ring Billet 4C-1686	Cut 130 deg ply patterns Install in mold, butting ply ends together. Install male punch and press cure.	Apply 225 psi. Cure 2 hr at 180°F, 2 hr at 210°F, 2 hr at 240°F, 2 hr at 270°F, 2 hr at 300°F, 5 hr at 350°F. Cool to 160°F under pressure.
Nose Ring Billet 4C-1686	Tape wrap cylindrical mandrel with 5 in. tape. Autoclave cure.	Apply 225 psi. Cure 2 hr at 180°F, 2 hr at 210°F, 2 hr at 240°F, 2 hr at 270°F, 2 hr at 300°F, 4 hr at 350°F. Cool under vacuum and pressure to 160°F.
Backside Liner Billet MXA-6012	Make two full-length wraps of conical mandrel with 5 in. tape. Autoclave cure.	Apply vacuum, stage 3 hr at 180°F, apply 225 psi. Cure 2 hr at 200°F, 2 hr at 225°F, 2 hr at 250°F, 2 hr at 275°F, 6 hr at 310°F. Cool under vacuum and pressure to 150°F.

TABLE 35
NOZZLE NO. 3 COMPONENT FABRICATION

<u>Component and Materials</u>	<u>Fabrication Method</u>	<u>Cure</u>
Exit Cone Assembly SP-8057 Forward SP-8030-96 Aft 23-RPD Overwrap	Wrap forward portion of conical mandrel with 6 in. SP-8057 tape. Wrap aft portion with 6 in. SP-8030-96 tape. Autoclave cure. Overwrap cone with 2-1/2 in. 23-RPD tape. Autoclave cure.	<u>Cure No. 1.</u> Apply vacuum and 225 psi. Cure 2 hr at 180°F, 2 hr at 200°F, 3 hr at 225°F, 3 hr at 250°F, 3 hr at 275°F, 6 hr at 310°F. Cool under pressure to 150°F at a rate not to exceed 25°F per 1/2 hr. <u>Cure No. 2.</u> Apply vacuum and stage 3 hr at 180°F. Apply 225 psi. Cure 3 hr at 250°F, 6 hr at 310°F. Cool as in No. 1.
Throat Insert Billet SP-8050	Hand layup "coolie hat" method. Cut required number of plies. Install in compression tool with 45 deg starter ring in bottom. Debulk. Install male punch and press cure.	Apply 225 psi (calculated). Cure 2 hr at 200°F, 2 hr at 250°F, 6 hr at 320°F. Cool to 150°F under pressure.
Throat Backup Billet FM-5272	Tape wrap on cylindrical mandrel with 5 in. tape. Install vacuum bag and autoclave cure.	Apply vacuum and 225 psi. Cure 1 hr at 180°F, 2 hr at 250°F, 4 hr at 310°F. Cool to 200°F and remove from mandrel while hot.
Inlet Ring Billet SP-8057	Cut required number of plies. Hand layup in mold. Debulk as required. Install male punch and press cure.	Apply 225 psi (calculated). Cure 2 hr at 180°F, 2 hr at 250°F, 2 hr at 275°F, 4 hr at 310°F. Cool to 160°F or lower under pressure.
Backside Liner Billet 23-RPD	Tape wrap full length of conical mandrel with 5 in. 23-RPD tape, stage. Overwrap full length of cone with 5 in. 23-RPD tape. Autoclave cure.	Stage 1st wrap under vacuum for 3 hr at 180°F. After 2nd wrap (overwrap) stage as for nose ring billet below. Apply 225 psi. Cure 2 hr at 200°F, 2 hr at 250°F, 6 hr at 310°F. Cool to 150°F or lower under pressure.
Nose Ring Billet SP-8057	Tape wrap 5 in. SP-8057 on cylindrical mandrel, debulking as required. Autoclave cure.	Apply vacuum and 225 psi. Cure 2 hr at 180°F, 2 hr at 210°F, 2 hr at 240°F, 2 hr at 270°F, 4 hr at 300°F. Cool to 160°F or lower under pressure.

TABLE 36

NOZZLE NO. 4 COMPONENT FABRICATION SUMMARY

<u>Component and Materials</u>	<u>Fabrication Method</u>	<u>Cure</u>
Exit Cone Assembly 23-RPD Forward MXS-198 Aft KF-418 Overwrap	Wrap forward portion of conical mandrel with 6 in. 23-RPD tape. Cure No. 1. Wrap aft portion with 6 in. MXS-198 tape. Cure No. 2. Overwrap entire cone with 2-1/2 in. KF-418 tape. Cure No. 3.	<u>Cure No. 1.</u> Stage 3 hr at 180°F under vacuum. Apply 225 psi. Cure 2 hr at 200°F, 2 hr at 250°F, 6 hr at 310°F. Cool to 180°F or lower. <u>Cure No. 2.</u> Vacuum bag only. Cure 2 hr at 180°F, 2 hr at 200°F, 3 hr at 250°F, 3 hr at 275°F, 9 hr at 310°F. Cool to 180°F at 25°F per hour. <u>Cure No. 3.</u> Apply vacuum and 225 psi. Cure 2 hr at 200°F, 2 hr at 250°F, 2 hr at 275°F, 6 hr at 310°F. Cool to 150°F at 25°F per hr.
Throat Billet SP-8030-96	Hand layup "coolie hat" method. Cut required number of plies. Install in compression tool with 45 deg starter ring in bottom. Debulk, install male punch, and press cure.	Apply 225 psi. Cure 2 hr at 200°F, 2 hr at 250°F, 2 hr at 275°F, 6 hr at 310°F. Cool to 160°F at 30°F per hr under pressure.
Throat Backup SP-8030-96	Tape wrap on cylindrical mandrel with 5 in. tape. Autoclave cure.	Apply vacuum and 225 psi. Cure 1 hr at 180°F, 2 hr at 200°F, 2 hr at 275°F, 4 hr at 310°F. Cool under pressure to 160°F at 30°F per hour.
Inlet Billet SP-8030-96	Cut required number of plies. Hand layup in mold. Debulk. Install male punch and press cure.	Apply 225 psi. Cure 2 hr at 180°F, 2 hr at 250°F, 2 hr at 275°F, 4 hr at 310°F. Cool under pressure to 160°F at 30°F per hour.
Nose Billet KF-418	Tape wrap 5 in. tape on cylindrical mandrel. Debulk as required. Cure in autoclave.	Apply vacuum and 225 psi. Cure 2 hr at 200°F, 2 hr at 225°F, 2 hr at 250°F, 2 hr at 275°F, 4 hr at 310°F. Cool under pressure to 160°F.
Backside Liner KF-418	Tape wrap over conical mandrel with 5 in. tape. Stage. Overwrap staged part with 5 in. tape. Autoclave cure.	Apply vacuum and 225 psi. Cure 2 hr at 200°F, 2 hr at 225°F, 2 hr at 250°F, 3 hr at 275°F, 6 hr at 310°F. Cool under pressure to 160°F.

TABLE 37

NOZZLE NO. 5 COMPONENT FABRICATION SUMMARY

<u>Component and Materials</u>	<u>Fabrication Method</u>	<u>Cure</u>
Exit Cone Assembly LCCM-2626 LCCM-4120 KF-418 Glass Phenolic	Compression mold billets of LCCM-2626 and LCCM-4120. Machine OD. Install on mandrel and overwrap with glass phenolic tape. Autoclave cure. Machine tiers and assemble. Tape wrap KF-418 tape on mandrel. Autoclave cure. Machine and install into steel nozzle shell.	<u>Cure No. 1 - LCCM-2626.</u> Load compression tool with material. Cure 24 hr at 325°F and 850 psi. <u>Cure No. 2 - LCCM-4120.</u> Cast material into mold. Vacuum bag. Cure 24 hr at 325°F and 1 atmosphere pressure. <u>Cure No. 3 - Overwrap.</u> Apply vacuum and 225 psi. Cure 2 hr at 200°F, 2 hr at 225°F, 3 hr at 250°F, 3 hr at 275°F, 6 hr at 310°F. Cool under pressure to 160°F. <u>Cure No. 4 - KF-418 Ring.</u> Apply vacuum and 225 psi. Cure 2 hr at 200°F, 2 hr at 225°F, 2 hr at 250°F, 2 hr at 275°F, 4 hr at 310°F. Cool under pressure to 160°F.
Throat Assembly LCCM-2626 23-RPD	Compression mold LCCM-2626 billet. Machine into four segments. Install segments on mandrel and overwrap with 23-RPD. Autoclave cure.	<u>Cure No. 1 - LCCM-2626.</u> Load compression tool with material. Cure 12 hr at 325°F and 1,000 psi. <u>Cure No. 2 - Overwrap.</u> Apply vacuum bag and 225 psi. Cure 1 hr at 180°F and 3 hr at 300°F. Cool under pressure to 200°F.
Inlet Ring Billet LCCM-2626	Compression mold LCCM-2626.	Load tool with material and apply 1,000 psi. Cure 2 hr at 250°F, 2 hr at 275°F, 8 hr at 310°F.
Nose Ring Billet SP-8030-96	Tape wrap cylindrical mandrel with 5 in. tape. Autoclave cure.	Apply vacuum and 225 psi. Cure 2 hr at 180°F, 2 hr at 225°F, 3 hr at 250°F, 3 hr at 275°F, 6 hr at 310°F. Cool under vacuum and pressure to 150°F.
Backside Liner Billet KF-418	Make two full length wraps of conical mandrel with 5 in. tape. Autoclave cure.	Apply vacuum and 225 psi. Cure 2 hr at 180°F, 2 hr at 200°F, 3 hr at 225°F, 3 hr at 250°F, 3 hr at 275°F, 6 hr at 310°F. Cool to 150°F.

TABLE 38
NOZZLE NO. 6 COMPONENT FABRICATION SUMMARY

<u>Component and Materials</u>	<u>Fabrication Method</u>	<u>Cure</u>
Exit Cone Assembly KF-418, Forward FM-5272, Aft FM-5272, Over	Tape wrap forward portion. Tape wrap aft portion. Autoclave cure. Machine OD. Overwrap entire cone. Autoclave cure. Machine and install.	Cure No. 1. Apply vacuum and 225 psi. Cure 2 hr at 200°F, 2 hr at 225°F, 2 hr at 250°F, 2 hr at 275°F, 8 hr at 310°F. Cool under pressure to 180°F. Cure No. 2 - Overwrap. Apply vacuum and 225 psi. Cure 2 hr at 200°F, 2 hr at 250°F, 2 hr at 275°F, 6 hr at 310°F. Cool under pressure to 150°F.
Throat Billet SP-3057	Hand layup "coolie hat" method. Cut required number of plies. Install in compression tool with 45 deg starter ring. Debulk. Install male punch and press cure.	Apply 225 psi. Cure 2 hr at 200°F, 2 hr at 250°F, 2 hr at 275°F, 6 hr at 310°F. Cool under pressure to 160°F.
Throat Backup KF-418	Tape wrap on cylindrical mandrel with 5 in. tape. Autoclave cure.	Apply vacuum and 225 psi. Cure 1 hr at 180°F, 2 hr at 200°F, 2 hr at 240°F, 2 hr at 275°F, 4 hr at 310°F. Cool under pressure to 160°F.
Inlet Ring Billet SP-3030-96	Cut required number of plies. Hand layup in mold. Debulk. Install male punch and press cure.	Apply 225 psi. Cure 2 hr at 180°F, 2 hr at 250°F, 2 hr at 275°F, 4 hr at 310°F. Cool under pressure to 160°F at a rate of 30°F/hr.
Nose Ring Billet FM-5272	Tape wrap 5 in. tape on cylindrical mandrel. Autoclave cure.	Apply vacuum and 225 psi. Cure 2 hr at 180°F, 2 hr at 225°F, 2 hr at 275°F, 6 hr at 310°F. Cool under pressure to 180°F. Remove part immediately while at 180°F.
Backside Liner Billet SP-3030-96	Tape wrap over conical mandrel with 5 in. tape. Stage. Overwrap with additional 5 in. tape. Autoclave cure.	Apply vacuum and 225 psi. Cure 2 hr at 180°F, 2 hr at 200°F, 3 hr at 225°F, 3 hr at 250°F, 3 hr at 275°F, 6 hr at 310°F. Cool under pressure to 150°F.

TABLE 39

COMPONENT RADIOGRAPHIC INSPECTION RESULTS

Nozzle No.	Component	Discrepancy	Disposition
1	Exit cone	None	
	Throat	Several delaminations	Removed during final machining
	Throat backup	Folds and resin rich areas, 1 metallic inclusion	Use as is
	Inlet	None	
	Nose	Numerous small delaminations, 2 inclusions	Removed during final machining
	Backside liner	None	
2	Exit cone	Not inspected	
	Throat	None	
	Throat backup	None	
	Inlet	None	
	Nose	None	
	Backside liner	None	
3	Exit cone	None	
	Throat	None	
	Throat backup	None	
	Inlet	None	
	Nose	None	
	Backside liner	None	
4	Exit cone	None	
	Throat	Small voids near OD, 1 inclusion	Removed during final machining
	Throat backup	None	
	Inlet	None	
	Nose	None	
	Backside liner	Several small voids	Use as is
5	Exit cone	Retainer ring - None	
	Throat	Aft, mid and fwd rings not inspected	Use as is, typical of material
	Throat backup	Small high density inclusion throughout	
	Inlet	Not inspected (not fabricated as separate part)	Use as is, typical of material
	Nose	Small high density inclusions throughout	
	Backside liner	None	
6	Exit cone	None	
	Throat	None	
	Throat backup	Numerous delaminations and separations	Use as is
	Inlet	Surface porosity	Use as is
	Nose	Small delamination near OD	Use as is
	Backside liner	None	Use as is

Figure 101. Nozzle No. 1 Exit Cone Assembly

Figure 102. Nozzle No. 1 Throat and Backup Assembly

Figure 103. Nozzle No. 1 Inlet Ring

Figure 104. Nozzle No. 1 Nose

Figure 105. Nozzle No. 1 Backside Insulation

Figure 106. Nozzle No. 1 Final Assembly (View A)

Figure 107. Nozzle No. 1 Final Assembly (View B)

Figure 108. Nozzle No. 3 (View A)

Figure 109. Nozzle No. 3 (View B)

Figure 110. Nozzle No. 3 (View C)

Figure 111. Nozzle No. 4 (View A)

Figure 112. Nozzle No. 4 (View B)

Figure 113. Nozzle No. 4 (View C)

159

Figure 114. Nozzle No. 4 (View D)

Figure 115. Nozzle No. 6 Before Test (View A)

Figure 116. Nozzle No. 6 Before Test (View B)

Figure 117. Nozzle No. 6 Before Test (View C)

Figure 118. Nozzle No. 6 Before Test (View D)

Figure 119. Nozzle No. 6 Before Test (View E)

TABLE 40

FINAL ASSEMBLY DISCREPANCIES, SUBSCALE NOZZLES

<u>Nozzle No.</u>	<u>Discrepancy</u>	<u>Disposition</u>
1	OD of exit cone overwrap debulked excessively, causing undersize condition. Gap between throat and exit cone up to 0.087 in. wide.	Trowelled UF-1155 (silica filled epoxy polyamide) on cone, cured, and remachined to print.
2	Gap between exit cone segments up to 0.015 in. wide. Print specified 0 - 0.005.	Filled in with UF-1120 (asbestos filled epoxy polysulfide). Used as is.
3	Groove gouged around aft part of throat during final machining, 0.080 in. deep by 0.250 in. wide.	Hand sanded to blend in smoothly with exit cone.
4	Backside liner machined incorrectly, causing improper fit to steel shell and to other components.	Remachined. Resulted in decrease in part thickness of 1/8 in. and large gap between part and steel shell at aft end by bolt flange. Gap was filled in with UF-1120 (asbestos filled epoxy polysulfide).
	During cure of exit cone liner, forward portion debulked excessively. When skim cut, part was 0.20 in. thinner than specified. Inner surface of aft exit cone was rough and nonuniform after cure.	Increased thickness of overwrap by 0.20 inch. Sand blasted and applied epoxy polysulfide smoother compound.
5	Backside liner machined incorrectly, causing improper fit to steel shell. Gap between throat segments up to 0.015 in. wide. Print specified 0 - 0.005.	Remachined. Resulted in decrease in part thickness of 1/8 in. Used as is. Used as is.
6	Backside liner intentionally shifted 0.10 in. forward during final fitting. To insure proper fit, exit cone was shifted forward 0.10 in., resulting in a 0.10 in. gap between exit cone and steel aft retainer plate.	Used as is. Used as is.

Figure 120. Nozzle No. 2 LCCM-2626 Molded Cylinders

Figure 121. Nozzle No. 2 Four Mating Exit Cone Segments

Figure 122. Nozzle No. 2 Four Mating Exit Cone Segments

Figure 123. Nozzle No. 2 Exit Cone Segments on Tape Wrapped Mandrel

Figure 124. Nozzle No. 2 Installation of Mandrel Prior to Tape Wrap

Figure 125. Nozzle No. 2 Tape Wrapping Segments (View A)

Figure 126. Nozzle No. 2 Tape Wrapping Segments (View B)

Figure 127. Nozzle No. 2 Cured Middle Segmented Tier

174

Figure 128. Nozzle No. 2 Assembled Exit Cone Tiers

Figure 129. Nozzle No. 2 Installed Segmented Exit Cone

176

Figure 130. Nozzle No. 2 Segmented Exit Cone

177

Figure 131. Nozzle No. 2 Nose and Throat View

Figure 132. Nozzle No. 2 (View A)

Figure 133. Nozzle No. 2 (View B)

Figure 134. Nozzle No. 5

Figure 135. Nozzle No. 5 Tiered Exit Cone (View A)

Figure 136. Nozzle No. 5 Tiered Exit Cone (View B)

Figure 137. Nozzle No. 5 Nose Inlet and Segmented Throat (View A)

Figure 138. Nozzle No. 5 Nose Inlet and Segmented Throat (View B)

23814-3

Figure 139. TU-622 Material Performance Curve, 4C-1686 (Carbon Cloth)

Figure 140. TU-622 Material Performance Curve, SP-8030-96 (Silica)

23814-4

24535-98

Figure 141. Subscale Nozzle Convective Heat Transfer Coefficient, Carbonaceous Material

24535-53

Figure 142. Subscale Nozzle Total Heat Flux, Asbestos Material

Figure 143. Subscale Nozzle Total Heat Flux, Silica Material

.06II

24535-79

Figure 144. Subscale Nozzle Total Heat Flux, Canvas and Paper Material

TABLE 41
PREDICTED VERSUS ACTUAL EROSION RATE

Material	Subscale Nozzle Area Location	Predicted Erosion Rate (Mils/Sec)	Actual Erosion Rate (Mils/Sec)	Actual E. R. Factor/ Predicted E. R.	Allowable Erosion Factor Increase				
					Nozzle Type Factor	X	Heat Sink Factor	=	Total Factor
LCCM-2626 Graphite Particle 1,000 psi Cure	Throat (#2)	3.00	8.52	2.84	1.50	2.25			3.38
	Inlet (#5)	3.50	8.57	2.45	1.50	2.25			3.38
	Throat (#6)	3.00	9.94	3.31	1.50	2.25			3.38
LCCM-2626X Graphite Particle 850 psi Cure	Forward Exit (#2)	1.80	8.50	4.72	1.00	2.25			2.25
	Middle Exit (#2)	0.65	5.70	8.77	1.00	2.25			2.25
	Aft Exit (#2)	0.18	-2.90	-16.11	1.00	2.25			2.25
191 23-RPD Asbestos	Forward Exit (#5)	1.80	18.33	10.18	1.00	2.25			2.25
	Submerged Liner (#1)	10.00	6.40	0.64	1.00	1.00			1.00
	Forward Exit (#4)	6.70	18.02	2.69	1.00	1.00			1.00
SP-8030-96	Aft Exit (#3)	0.70	2.13	3.04	1.00	1.00			1.00

NOTE:

1. If Erosion Rate Factor is 1.00 or greater, the Actual Erosion is higher than Predicted Erosion.
2. If Erosion Rate Factor is under 1.00 or a minus number, the Actual Erosion is lower than Predicted Erosion.

Figure 145. Nozzle No. 1 Material Performance Evaluation

NO SCALE

- NOTES: 1. AXIAL LOCATION ON NOZZLE IN INCHES IS 1/2 OF STATION (CIRCLED) NUMBER. ZERO REFERENCE IS AT THE THROAT. NUMBERS FORWARD OF THROAT ARE NEGATIVE. NUMBERS AFT OF THROAT ARE POSITIVE.
2. PROPELLANT BLOWING COEFFICIENT (β) = 0.098
3. MINUS (-) SIGN INDICATES WALL THICKNESS INCREASED

STATION	AXIAL LENGTH (IN.)	SUBSCALE AERODYNAMIC PARAMETERS $\frac{D}{CD}$ $\frac{h}{CD}$ (3) 12,000 ρ			PREDICTED EROSION RATE FROM TU-622 MATERIAL DESIGN CURVES (MILS/SEC)	ACTUAL TEST EROSION RATE BETWEEN STAR-POINT AND STAR VALLEY (MILS/SEC)
+8 ①	+1.50	—	—	515	(NOT TESTED IN TU-622)	1.74
-6 ②	-3.00	0.205	2.98	—	1.40	2.95
-6 ③	-3.00	0.700	10.12	—	4.90	8.35
0 ④	0	0.800	6.32	—	3.00	8.52
+6 ⑤	+8.00	0.355	3.72	—	1.80	8.50
+26 ⑥	+13.00	0.122	1.28	—	0.65	5.70
+38 ⑦	+19.00	0.075	1.79	—	0.18	-2.93 ³

24535-52

Figure 146. Nozzle No. 2 Material Performance Evaluation

Figure 147. Nozzle No. 3 Material Performance Evaluation

- NOTES:
1. AXIAL LOCATION ON NOZZLE IN INCHES IS 1/2 OF STATION (CIRCLED) NUMBER. ZERO REFERENCE NUMBER IS AT THE THROAT. NUMBERS FORWARD OF THROAT ARE NEGATIVE. NUMBERS AFT OF THROAT ARE POSITIVE.
 2. PROPELLANT BLOWING COEFFICIENT (ϵ) = 0.098
 3. INLET C EROSION PATTERN WAS LESS IN THREE OTHER SIMILAR PLANES

STATION	AXIAL LENGTH (IN.)	SUBSCALE AERODYNAMIC PARAMETERS $h/\epsilon p$ $b/\epsilon p (\delta/12,000)$ $\frac{q}{\rho T}$	PREDICTED EROSION RATE FROM TU-622 MATERIAL DESIGN CURVES (MILS/SEC)	ACTUAL TEST EROSION RATE BETWEEN STAR POINT AND STAR VALLEY (MILS/SEC)
+8 ④	+1.59	---	690	(NOT TESTED IN TU-622) 4.43
-5 ②	-2.50	---	940	(NOT TESTED IN TU-622) 9.02
-5 ③	-2.50	---	592	18.50 ³ 27.87
0 ①	0	---	450	14.00 18.85
+6 ⑤	+3.00	---	345	6.70 18.02
+13.5 ⑥	+19.00	---	17	1.80 1.96

24535-54

Figure 148. Nozzle No. 4 Material Performance Evaluation

Figure 149. Nozzle No. 5 Material Performance Evaluation

NOTES: 1. AXIAL LOCATION ON NOZZLE IN INCHES IS 1/2 OF STATION
(CIRCLED NUMBER). ZERO REFERENCE NUMBER IS AT THE THROAT.
NUMBERS FORWARD OF THROAT ARE NEGATIVE. NUMBERS
AFT OF THROAT ARE POSITIVE.

2 PROPELLANT BLOWING COEFFICIENT (β) = 0.098.

STATION	AXIAL LENGTH (IN.)	SUBSCALE AERODYNAMIC PARAMETERS				PREDICTED EROSION RATE FROM TU-622 MATERIAL DESIGN CURVES (MILS/SEC)	ACTUAL TEST EROSION RATE BETWEEN STAR POINT AND STAR VALLEY (MILS/SEC)
		h/cp	h/cp	ρ	Q_T		
+3 (A)	+1.50	—	—	155	—	4.85	6.06
-5 (B)	-2.50	—	—	225	(NOT TESTED IN TU-622)	5.83 EST	
-6 (C)	-3.00	—	—	575	—	18.00	23.00
+0 (D)	0	0.60	8.09	—	—	8.09	9.40
+12 (E)	+6.00	—	—	640	(NOT TESTED IN TU-622)	17.18	
+32 (F)	+16.00	—	—	240	(NOT TESTED IN TU-622)	5.50	

24538-55

Figure 150. Nozzle No. 6 Material Performance Evaluation

24535-70

Figure 151. TU-622 Pre and Post-Test Evaluation

Figure 152. Subscale Nozzle-Closure Assembly

Figure 153. Subscale Motor and Test Stand

Figure 153. Subscale Motor and Test Stand

TABLE 42
SUBSCALE MOTOR PERFORMANCE

<u>Motor No.</u>	<u>Nozzle Throat Material</u>	<u>Avg Web Pressure (psia)</u>	<u>Web Time (sec)</u>
1	MX-4926 carbon ^a	471	56.8
2	LCCM-2626 graphite particle	466	57.5
3	SP-8050 carbon	476	56.2
4	SP-8030-96 silica	384	61.0
5	LCCM-2626 graphite particle segmented	446	58.4
6	SP-8057 carbon	446	58.3

^a Standard base nozzle

24635-58

Figure 155. Pressure Time Envelope for Six Subscale Motor Firings

Figure 156. Subscale Nozzle No. 1 Submerged Liner and Nose

Figure 157. Subscale Nozzle No. 1 Nose, Inlet, and Throat

Figure 158. Subscale Nozzle No. 1 Exit Cone

Figure 159. Nozzle No. 1 Sectioned at Propellant Star Valley

Figure 160. Nozzle No. 1 Submerged Liners Sectioned at Plane 2-3

Figure 161. Nozzle No. 1 Erosion-Char Profile (Propellant Starpoint)

Figure 163. Nozzle No. 1 Erosion-Char Profile Between Propellant Starpoint and Star Valley

EROSION & CHAR RATES
(inches/sec) = { RATES BASED ON AVERAGE TIME = 36.03 SECONDS
MOTOR AVG. RET. PRESSURE = 4500 psi }

STATION INT. SPAC.	INLET LINER	NOSE RING			INLET RING			THROAT ASSEMBLY			EXIT CONE LINER			
		2-3	3-3	1-2	2-3	3-3	1-2	2-3	3-3	1-2	2-3	3-3	1-2	2-3
-6	927	13.9	16.8	2.70	3.3	2.91	12.8	12.2	10.2	1.70	1.70	1.70	1.2	1.2
-7	105	4.39	2.16	1.00	0.27	0.14	1.25	0.44	0.22	0.00	0.00	0.00	0.0	0.0
-6	116	1.96	1.13	1.00	0.15	0.07	1.24	0.44	0.22	0.00	0.00	0.00	0.0	0.0
-5	128	0.81	0.51	1.00	0.25	0.12	1.16	0.42	0.20	0.00	0.00	0.00	0.0	0.0
-4	241	10.33	12.91	1.76	1.62	1.50	1.23	1.09	0.88	0.00	0.00	0.00	0.0	0.0
-3	131	2.81	1.40	0.92	0.50	0.25	1.19	1.01	0.78	0.00	0.00	0.00	0.0	0.0
-2	139	2.41	1.13	0.92	0.50	0.25	1.19	1.01	0.78	0.00	0.00	0.00	0.0	0.0
-1	139	0.62	0.30	0.25	0.15	0.07	0.47	0.22	0.12	0.00	0.00	0.00	0.0	0.0
0	139	0.82	0.75	1.75	0.48	0.24	---	---	---	0.00	0.00	0.00	0.0	0.0
1	139	2.16	16.55	0.7	---	---	---	---	---	0.00	0.00	0.00	0.0	0.0
2	135	8.73	9.26	10.95	7.79	7.79	---	---	---	0.00	0.00	0.00	0.0	0.0
3	135	0.59	0.26	0.50	0.26	0.14	0.50	0.22	0.12	0.00	0.00	0.00	0.0	0.0
4	140	6.83	2.03	7.00	1.75	1.70	6.83	6.83	6.83	0.00	0.00	0.00	0.0	0.0
5	125	2.46	0.68	2.81	0.81	0.41	---	---	---	0.00	0.00	0.00	0.0	0.0
6	135	2.46	0.50	2.81	0.81	0.41	---	---	---	0.00	0.00	0.00	0.0	0.0
7	135	5.98	5.98	2.46	6.1	6.1	---	---	---	0.00	0.00	0.00	0.0	0.0
8	135	5.07	2.11	5.77	2.28	5.58	---	---	---	0.00	0.00	0.00	0.0	0.0
9	175	4.92	2.11	5.08	5.05	5.05	---	---	---	0.00	0.00	0.00	0.0	0.0
10	143	4.75	2.08	5.08	4.63	4.63	---	---	---	0.00	0.00	0.00	0.0	0.0
11	143	4.75	1.28	5.08	4.63	4.63	---	---	---	0.00	0.00	0.00	0.0	0.0
12	143	4.75	1.28	5.08	4.63	4.63	---	---	---	0.00	0.00	0.00	0.0	0.0
13	143	4.75	1.28	5.08	4.63	4.63	---	---	---	0.00	0.00	0.00	0.0	0.0
14	143	4.75	1.28	5.08	4.63	4.63	---	---	---	0.00	0.00	0.00	0.0	0.0
15	143	4.75	1.28	5.08	4.63	4.63	---	---	---	0.00	0.00	0.00	0.0	0.0
16	143	4.75	1.28	5.08	4.63	4.63	---	---	---	0.00	0.00	0.00	0.0	0.0
17	87	1.75	1.93	2.27	---	---	---	---	---	0.00	0.00	0.00	0.0	0.0
18	87	0.59	0.50	0.25	0.40	0.40	---	---	---	0.00	0.00	0.00	0.0	0.0
19	87	0.59	0.50	0.25	0.40	0.40	---	---	---	0.00	0.00	0.00	0.0	0.0
20	87	0.59	0.50	0.25	0.40	0.40	---	---	---	0.00	0.00	0.00	0.0	0.0
21	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
22	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
23	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
24	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
25	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
26	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
27	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
28	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
29	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
30	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
31	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
32	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
33	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
34	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
35	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
36	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
37	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
38	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
39	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
40	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
41	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
42	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
43	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
44	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
45	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
46	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
47	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
48	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0
49	0	0	0	0	0	0	---	---	---	0.00	0.00	0.00	0.0	0.0

*KEY:

- ① EROSION RATE
- ② CHAR RATE
- ③ SIGHTS + 1.11 INCHES AT THE TOP OF THE COLUMN AND ONE INCHES FROM THE BOTTOM
- ④ EROSION RATE AT NO. 8
- ⑤ PLATELIT CHANGED FROM 7.71
- ⑥ SIGHTS 2.3 WAS SELECTED AT THE MIDDLE
- ⑦ SIGHTS 2.3 WAS SELECTED AT THE MIDDLE
- ⑧ SIGHTS 2.3 WAS SELECTED AT THE MIDDLE
- ⑨ SIGHTS + 1.11 INCHES AT THE TOP OF THE COLUMN AND ONE INCHES FROM THE BOTTOM
- ⑩ INTERNAL ASSEMBLY BY ADHESIVE
- ⑪ CHAR LAYER IN NOSE RING
- ⑫ DISSEMBLY: EST. TAKING 16.00 SEC
- ⑬ TARGET - GUN - EXIT CONE
- ⑭ INTERNAL GUN - 16.00 SEC FILLED
- ⑮ INTERNAL ASSEMBLY BY ADHESIVE
- ⑯ SIGHTS DEPTH
- ⑰ CHAR DEPTH
- ⑱ SIGHTS - DATA REDUCED BECAUSE MEDIUM VOLT
- ⑲ CUTTING EXIT CONE - ESTIMATED SURFACE

Figure 164. Nozzle No. 1 Three Plane Erosion-Char Summary

TABLE 43

NOZZLE NO. 1 POST-TEST INSPECTION

<u>Ablative Liner</u>	<u>Comments</u>
OD Submerged Liner FM-5272 paper	Ply delaminations Low uniform erosion Very weak char layer Good performance
Nose WB-8217 carbon	Local spalling and cracks Local gouging and ply delaminations Low uniform erosion Good performance
Inlet WB-8217 carbon	Ply delaminations Low uniform erosion Light surface spall Excellent performance
Throat MX-4926 carbon	Ply delaminations Low uniform erosion Excellent performance
Forward exit SP-8050	Ply delaminations Low uniform erosion Excellent performance
Aft exit KF-418 canvas	Weak char layer Ply delaminations Small local gouging Very good performance
<u>Insulation Liner</u>	<u>Comments</u>
Exit Cone Insulation MXA-6012 asbestos	Local ply delaminations Satisfactory performance
Inlet - Throat Insulation MXA-6012 asbestos	Local ply delaminations Satisfactory performance

Figure 165. Subscale Nozzle No. 2 Submerged Liner and Nose

Figure 166. Subscale Nozzle No. 2 Nose, Inlet, and Throat

Figure 167. Subscale Nozzle No. 2 Exit Cone

Figure 168. Subscale Nozzle No. 2 Aft Exit Cone

Figure 169. Sectioned Nozzle No. 2 Exit Cone

221

Figure 170. Sectioned Nozzle No. 2 Submerged Liners

Figure 172. Nozzle No. 2 Erosion-Char Profile (Propellant Star Valley)

Figure 173. Nozzle No. 2 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)

STATION	INLET LINER	NOSE RING	INLET LINER	THROAT - ASSEMBLY	EXIT CONE LINER UPWARD SECTION	MIDDLE SECTION	ATT SECTION END RING
-15							
-14							
-13							
-12							
-11							
-10							
-9							
-8							
-7							
-6							
-5							
-4							
-3							
-2							
-1							
0							
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							

(1) NO CREEP DEFORMATION RATES ARE SHOWN. MATERIAL CHANGES COULD NOT BE SEEN WITH EYE OBSERVATION.

- 1. ALCOA 51000-1204-A-149
- 2. ALCOA 51000-1204-A-149
- 3. HANUS (-) STAINLESS STEEL
- 4. ALUMINUM UNL. EXTERNS

Figure 174. Nozzle No. 2 Maximum Exit Erosion

PRECEDING PAGE BLANK NOT FILMED.

SUMMARY

EROSION AND CHAR. RATES

NASA - SUBSCALE NOZ PHASE II . SUBMERGED NOZZLE
WEB TIME . 57.4 SEC.

Figure 177. Nozzle No. 2 Three Plane Erosion-Char Rate Summary

TABLE 44
NOZZLE NO. 2 POST-TEST INSPECTION

<u>Ablative Liner</u>	<u>Comments</u>
OD Submerged MXA-6012 asbestos	Ply delaminations Uniform erosion Good performance
Nose 4C-1686 carbon polyphenylene	Ply delaminations Uniform erosion Local gouging Good performance
Inlet 4C-1686 carbon polyphenylene	Ply delaminations Uniform erosion Good performance
Throat LCCM-2626 graphite particle phenolic	Uniform erosion Local spalling Internal delaminations Very good performance
Forward Exit LCCM-2626X graphite particle phenolic segmented	Nonuniform erosion Spalled and gouged areas Internal delamination Segmented joint O. K. Fair performance
Middle Exit LCCM-2626X graphite particle phenolic segmented	Spalled and gouged area Nonuniform erosion Internal delaminations Segmented joints O. K. Fair performance
Aft Exit LCCM-2626X graphite particle phenolic segmented	Spalled and gouged areas Nonuniform erosion Internal delaminations Segmented joints O. K. Fair performance
<u>Insulation Liner</u>	<u>Comments</u>
Exit Cone Insulation 1581 glass phenolic	No delaminations Very satisfactory performance
Inlet-Throat Insulation 23-RPD asbestos phenolic	No delaminations Very satisfactory performance

24535-109

Figure 178. Partial Motor Thrust vs Time, Nozzles No. 2 and 3

Figure 179. Nozzle No. 3 Submerged Liner and Nose

Figure 180. Nozzle No. 3 Nose, Inlet, and Throat

Figure 181. Nozzle No. 3 Exit Cone (View A)

Figure 182. Nozzle No. 3 Exit Cone (View B)

Figure 183. Sectioned Nozzle No. 3 Submerged Liners

Figure 184. Sectioned Nozzle No. 3 Exit Cone

Figure 185. Nozzle No. 3 Erosion-Char Profile (Propellant Starpoint)

Plane 2-3 = Propellant Star Valley

NASA - SUBSCALE #3 PHASE II SURVEYED NOZZLES

Figure 186. Nozzle No. 3 Erosion-Char Profile (Propellant Star Valley)

Figure 187. Nozzle No. 3 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)

Figure 188. Nozzle No. 3 Three Plane Erosion-Char Rate Summary

TABLE 45
NOZZLE NO. 3 POST-TEST INSPECTION

<u>Ablative Liner</u>	<u>Comments</u>
OD Submerged 23-RPD asbestos	Uniform erosion Axial surface wrinkles Very good performance
Nose SP-8057 carbon	Ply delaminations Uniform erosion Axial cracks Local spalling and gouging Good performance
Inlet SP-8057 carbon	Local gouging and delaminations Uniform erosion Very good performance
Throat SP-8050 carbon	Uniform erosion Ply delamination Excellent performance
Forward Exit SP-8057 carbon	Ply delaminations Low uniform erosion Very good performance
Aft Exit SP-8030-96 silica	Interface delamination Uniform erosion Very good performance
<u>Insulation Liner</u>	<u>Comments</u>
Exit Insulation 23-RPD asbestos	No delaminations Very satisfactory performance
Inlet-Throat Insulation FM-5272 paper	Localized delaminations Adequate performance

Figure 189. Nozzle No. 4 Submerged Liner

Figure 190. Nozzle No. 4 Submerged Liner. Nose, Inlet, and Throat

Figure 191. Nozzle No. 4 Nose and Inlet

249

Figure 192. Nozzle No. 4 Exit Cone

Figure 193. Sectioned Nozzle No. 4 Submerged and Exit Cone Liners

Figure 194. Nozzle No. 4 Erosion-Char Profile (Propellant Starpoint)

Figure 195. Nozzle No. 4 Erosion-Chart Profile (Down-Hill Side, Valley).

PRECEDING PAGE BLANK NOT FILMED.

~~PRECEDING PAGE BLANK NOT FILMED.~~

TABLE 46
NOZZLE NO. 4 POST-TEST INSPECTION

<u>Ablative Liner</u>	<u>Comments</u>
OD Submerged KF-418 canvas phenolic	Structural integrity Uniform erosion Weak char layer Very good performance
Nose KF-418 canvas phenolic	Local high erosion Localized gouge and spalling Weak char layer Structural integrity Fair to good performance
Inlet SP-8030-96 silica phenolic	Local high erosion Local gouge Structural integrity Fair to good performance
Throat SP-8030-96 silica phenolic	Local spalling and gouge High uniform erosion Structural integrity Good performance
Forward Exit 23-RPD asbestos phenolic	Liner lost High uniform erosion Poor performance
Aft Exit MXS-198 silica epoxy novolac	Interface spalling and gouge Ply delamination Uniform erosion Good performance
<u>Insulation Liner</u>	<u>Comments</u>
Exit Insulation KF-418 canvas phenolic	Local loss of insulation No delaminations Very satisfactory
Inlet-Throat Insulation SP-8030-96 silica phenolic	No delaminations Very satisfactory

WEB TIME = 61.0 SEC
AVG WEB PRESSURE = 383.7 PSIA

24535-108

Figure 198. Partial Motor Pressure and Thrust, Nozzle No. 4

TABLE 47

NOZZLE NO. 4 FORWARD EXIT CONE TAG END TEST RESULTS
(23-RPD)

Compression, Ult (psi)		Density (gm/cc)	
<u>Tag End</u>	<u>Control</u>	<u>Tag End</u>	<u>Control</u>
--	--	1.59	--
12,425	--	1.60	--
12,675	--	1.60	--
13,250	13,650	1.63	--
<u>13,325</u>	<u>14,100</u>	<u>1.63</u>	<u>--</u>
Avg	12,020	13,875	1.61
		<u>Acetone Extraction</u>	
Avg of 5 specimens (%)		2.30	3.33
Range of 5 specimens (%)		1.88 - 3.03	3.25 - 3.40
		<u>Residual Volatiles</u>	

Figure 199. Nozzle No. 5 Submerged Liners

Figure 200. Nozzle No. 5 Nose, Inlet, and Throat

Figure 201. Nozzle No. 5 Exit Cone

Figure 202. Sectioned Nozzle No. 5 Submerged Liners

Figure 203. Sectioned Nozzle No. 5 Exit Cone Liners

Figure 204. Nozzle No. 5 Erosion-Char Profile (Propellant Starpoint)

Figure 206. Nozzle No. 5 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)

PRECEDING PAGE BLANK NOT FILMED

Figure 207. Nozzle No. 5 Three Plane Erosion-Char Rate Summary

FOLDOUT FRAME

~~PRECEDING PAGE BLANK NOT FILMED~~

TABLE 48

NOZZLE NO. 5 POST-TEST INSPECTION

<u>Ablative Liner</u>	<u>Comments</u>
OD Submerged Liner KF-418 canvas phenolic	Uniform erosion Weak char layer Structural integrity Good performance
Nose SP-8030-96 silica phenolic	Local high erosion Ply delaminations Structural integrity Good performance
Inlet LCCM-2626 graphite particle phenolic	Low uniform erosion Delaminations and cracks Local spalling Good performance
Throat LCCM-2626 graphite particle phenolic	Uniform erosion Internal delaminations Local spalling Fair to good performance
Forward Exit Cone LCCM-2626X graphite particle phenolic	High nonuniform erosion Spalling and gouging Internal delaminations Liner lost locally Poor to fair performance
Middle Exit Cone LCCM-4120 graphite particle phenolic	Interface gouging and spalling Low uniform erosion Delaminations and cracks Fair to good performance
Aft Exit Cone LCCM-4120 graphite particle phenolic	Low uniform erosion Delaminations and cracks Good performance
<u>Insulation Liner</u>	<u>Comments</u>
Exit Cone Insulation 1581 glass phenolic	No delaminations Prevented loss of steel shell Very satisfactory
Inlet-Throat Insulation .23-RPD asbestos phenolic	Local delaminations Satisfactory

Figure 208. Throat Ring Segment Orientation to Propellant Grain

Figure 209. Nozzle No. 5 Exit Cone with Steel Shell Exposed

PL

Figure 210. Nozzle No. 5 Motor Performance

23971-4

Figure 211. Middle Exit Cone Liner OD Surface

Figure 212. Nozzle No. 6 Submerged Liner and Nose

Figure 213. Nozzle No. 6 Submerged Liners

Figure 215. Nozzle No. 6 Exit Cone

Figure 216. Sectioned Nozzle No. 6 Submerged and Exit Cone Liners

Figure 216. Sectioned Nozzle No. 6 Submerged and Exit Cone Liners

FIGURE 32

Figure 217. Nozzle No. 6 Erosion-Char Profile (Propellant Starpoint)

FIGURE 3

NOTE - 1. ADDED SIGHTS #4, #26 EXIT CAGE
2. NOZZLE FABRICATION OR DISASSEMBLY
CHANGES ARE NOTED IN SECTIONED PLATE 3-3

Figure 219. Nozzle No. 6 Erosion-Char Profile (Between Propellant Starpoint and Star Valley)

PRECEDING PAGE BLANK NOT FILMED.

Figure 220. Nozzle No. 6 Three Plane Erosion-Char Rate Summary

~~PRECEDING PAGE BLANK NOT FILMED.~~

TABLE 49
NOZZLE NO. 6 POST-TEST INSPECTION

<u>Ablative Liner</u>	<u>Comments</u>
OD Submerged SP-8030-96 silica	Local delaminations Uniform erosion Good performance
Nose FM-5272 paper	Local high erosion Very weak char Local delamination and spalling Fair to good performance
Inlet SP-8030-96 silica	Local high erosion Structural integrity Good performance
Throat SP-8057 carbon	Uniform erosion Local delaminations and surface pitting Excellent performance
Forward Exit KF-418 canvas	Ply delamination High uniform erosion Irregular erosion surface Good performance
Aft Exit FM-5272 paper	Uniform erosion Irregular very weak char Local delaminations Good performance
<u>Insulation Liner</u>	<u>Comments</u>
Exit Cone Insulation FM-5272 paper	Local delaminations and cracks Adequate performance
Inlet-Throat Insulation KF-418 canvas	No delaminations Very satisfactory performance

TABLE 50
SUBSCALE MATERIAL COMPONENT PERFORMANCE RATING

Material	Ablative Liners						Insulative Liners		Raw Material Cost (\$/lb)
	Submerged Liner	Nose	Inlet	Throat	Forward Exit	Aft Exit	Exit Cone Insulation	Inlet Throat Insulation	
Carbonaceous Tape Wrapped									
WB-8217 (Std)	Good (1)*	Excellent (1)							20.97
MX-4026 (Std)				Excellent (1)					19.00
SP-8050 (Std)				Excellent (3)	Excellent (1)				16.50
SP-8057	Good (3)	Very Good (3)	Excellent (6)	Very Good (3)					15.00
4C-1686	Good (2)	Good (2)							20.00
Molded									
LCCM-2626		Good (5)	Fair to Good (5) Very Good (2)						0.75
LCCM-2626X					Poor to Fair (5)** Fair (2)**	Fair (2)**			0.75
LCCM-4120						Good (5)			0.75
Low Carbonaceous or Non-Carbonaceous Tape Wrapped									
KF-418 Std Canvas	Good (6) Very Good (4)	Fair to Good (4)			Good (6)	Very Good (1)	Very Satisfactory (4)	Very Satisfactory (6)	1.50
FM-5272 Std Paper	Good (1)	Fair to Good (6)				Good (6)	Adequate (6)**	Adequate (3)**	2.00
23-RPD Asbestos Cork	Very Good (3)				Poor (4)**		Very Satisfactory (3)	Satisfactory (5) Very Satisfactory (2)	4.25
MXA-8012 Asbestos	Good (2)						Satisfactory (1)	Satisfactory (1)	1.85
SP-8030-96 Silica	Good (6)	Good (5)	Good (6) Fair to Good (4)	Good (4)		Very Good (3)		Very Satisfactory (4)	4.00
MXB-198 Silica						Good (4)			6.10
1681 - Glass							Very Satisfactory (3)		
MXD-6001							Satisfactory (5)		2.82

*() indicates subscale test number.

**Nozzle material areas were eliminated as unacceptable.

TABLE 51

RECOMMENDED NOZZLE MATERIAL AREA LOCATION FOR 260 IN. NOZZLE

Ablative Liners						Insulation Liners		
Submerged Liner Ⓐ	Nose Ⓑ	Inlet Ⓒ	Throat Ⓓ	Forward Exit Ⓔ	Aft Exit Ⓖ	Exit Cone Ⓗ	Throat Ⓘ	Inlet ⒑
1. FM-5272 paper	WB-8217 carbon	WB-8217 carbon	MX-4926 carbon	SP-8030 carbon	KF-418 canvas	MXB-6001 glass		23-RPD asbestos
2. MXA-6012 asbestos	4C-1686 carbon	4C-1686 carbon	LCCM-2626 graphite particle	SP-8037 carbon	SP-8030 silica	KF-418 canvas	KF-418 canvas	KF-418 canvas
3. 23-RPD asbestos	SP-8057 carbon	SP-8057 carbon	SP-8050 carbon	KF-418 asbestos	MXS-198 silica	23-RPD asbestos	23-RPD asbestos	MXA-6012 asbestos
4. KF-418 canvas	KF-418 canvas	SP-8030 silica	SP-8030 silica		LCCM-4120 graphite particle	MXA-6012 asbestos	MXA-6012 asbestos	SP-8030-98 silica
5. SP-8030-98 silica	FM-5272 paper	LCCM-2626 graphite particle	SP-8057 carbon		FM-5272 paper		SP-8030-98 silica	
6.	SP-8030 silica							

TABLE S2
COMPARISON OF MATERIAL PROPERTIES AND FABRICATION TECHNIQUES WITH MATERIAL TEST PERFORMANCE

Material	Fabrication Technique	Material Properties			Material Test Performance Erosion Rate (in/sec)	Post-Test Structural Integrity
		Specific Gravity	Ult Compression ^a	Thermal Conductivity, $\text{Btu}/(\text{hr}\cdot\text{ft}^2\cdot^\circ\text{F})$		
<u>Throat Area (Silica and Carbonaceous Materials)</u>						
MX-4926 (Std) Carbon	Tape wrap - cured (225 psi - 300° F)	1.40	36,000	0.483	8.09	Very good
SP-6050 Carbon	Tape wrap - cured (225 psi - 300° F)	1.44	34,546	0.351	9.78	Excellent
LCCM-2626 Graphite particle	Molded - cured (1,000 psi - 325° F)	1.80	12,000	0.320	8.70	Very good, good
SP-6057 Carbon	Tape wrap - cured (225 psi - 320° F)	1.40	28,000	0.190	9.54	Excellent
SP-6030 Silica	Tape wrap - cured (225 psi - 310° F)	1.60	23,100	0.100	18.85	Excellent
<u>OD Submerged Area (Silica, Asbestos, Canvas and Paper Materials)</u>						
SP-6030 Silica	Tape wrap - cured (225 psi - 310° F)	1.60	23,100	0.100	6.18	Good
KF-418 Canvas	Tape wrap - cured (225 psi - 300° F)	1.35	22,812	0.159	3.93/6.85	Excellent, excellent
23-RPD Asbestos	Tape wrap - cured (225 psi - 310° F)	1.50	15,500	0.069	4.98	Excellent
FM-5272 (Std) Paper	Tape wrap - cured (225 psi - 300° F)	1.34	24,370	0.230	2.46	Fair to good
MXA-6012 Asbestos	Tape wrap - cured (225 psi - 300° F)	1.61	22,219	0.077	5.22	Good
<u>Aft Exit Cone (Silica, Canvas, Paper, and Carbonaceous Materials)</u>						
LCCM-2626X Graphite particle	Molded - cured (850 psi - 325° F)	NA	NA	NA	16.20	Fair
LCCM-4120 Graphite particle	Molded - cured (15 psi - 325° F)	1.50	8,200	0.886	0.68	Fair
SP-6030 Silica	Tape wrap - cured (225 psi - 310° F)	1.60	23,100	0.100	3.55	Very good
KF-418 (Std) Canvas	Tape wrap - cured (225 psi - 300° F)	1.35	22,812	0.159	1.75	Good
FM-5272 Paper	Tape wrap - cured (225 psi - 310° F)	1.34	24,370	0.230	5.53	Good
MXS-198 Silica	Tape wrap - cured (15 psi - 310° F)	1.50	34,600	NA	4.10	Very good

^aWith lamina warp direction or grain (psi) room temperature.

^bAcross lamina ($\text{Btu}/(\text{hr}\cdot\text{ft}^2\cdot^\circ\text{F})$) room temperature.

References: Materials screening section of this report.

AFRL-TR-07-310 - "Evaluation of Low Cost Materials and Manufacturing Processes for Large Solid Rocket Motors"

AFML-TR-65-133 - "Thermal-Mechanical Properties of Five Ablative Reinforced Plastics from Room Temperature to 750° F"

AFRL-Contract AF 04(011)-11417 - "Development of Castable Carbonaceous Materials for Solid Rocket Nozzles"

TABLE 53
SUMMARY OF FABRICATION CONDITIONS
TAPE WRAPPED COMPONENTS

<u>Material</u>	<u>Preheat Temperature (°F)</u>	<u>Head Pressure (lb/in.)</u>	<u>Billet Temperature (°F)</u>	<u>Stage</u>	<u>Maximum Cure Pressure (psi)</u>	<u>Maximum Cure Temperature (°F)</u>
1. SP-8030-96	100-125	240-300	100-110	No	225	310
291 2. SP-8050 MX-4926 WB-8217	100-125	300	100-125	No	225	300
	100-125	300	100-125	No	225	320
	100-125	300	100-125	No	225	300
3. SP-8057	225-275	200-300	125-155	No	225	300
4. 4C-1686	150-200	240-300	60-110	No	225	350
5. 23-RPD	150-200	160-240	40-50	Yes	225	310
6. FM-5272	270-290	200-300	110-120	No	225	310
7. KF-418	175-250	200-280	85-120	No	225	310
8. MXA-6012	125-160	180-300	40-70	Yes	225	310
9. MXS-198	80-120	200-300	80-110	No	13 (1 Atmosphere)	310

TABLE 54
MATERIAL PERFORMANCE AND PREDICTION ANALYSIS

1. Preliminary Material Selection

Fourteen materials rated by erosion, char, specific gravity and cost/lb.

Four 260 in. low cost material nozzle matrices of best ranked subscale materials.

2. Material Performance Graphs

Thirteen materials erosion-char rates plotted vs subscale wall.
Heat transfer coefficient (h/cp) or total wall flux (Q_T)

Material design lines drawn.

3. Preliminary 260 in. Nozzle Design

A standard material nozzle (computer designed).

Aerodynamic flow analysis for h/cp and Q_T .

Four low cost material nozzle matrices erosion (char rates predicted and scale factors calculated).

Four low cost material nozzles computer designed, drawn, and weighted.

MATERIAL PERFORMANCE SUBSCALE NOZZLE
 MAXIMUM EROSION-CHAR RATES (UNCORRECTED)

Material	Inlet Liner A		Nose B		Inlet C		Throat D		Exit Cone E						
	+6	+1	-3	-8	-8	-4	-3	0	+3	+5 Forward	+12 Forward	+20 Forward Middle	+32 Aft	+44 Aft	
1. Carbonaceous															
WB-8217 (Standard)				2.26 10.55	10.55 17.06	10.20 17.06	11.78 15.83								
MX-4926 (Standard)								9.32 14.55	8.09 14.95	4.75 13.02					
SP-8050 (Standard)								12.09 17.60	9.78 15.60	4.98 12.09	3.69 13.02	1.58 5.32	0.70 8.09		
LCCM-2626						17.14 a	9.60 a	8.87 a	8.70 a	6.96 a					
LCCM-2626								11.31 ^b a	12.34 ^b a	15.42 ^b a					
LCCM-2626X										11.30 ^b a	15.50 ^b a	19.50 ^b a	16.20 ^b a	5.60 ^b a	
LCCM-2626X										18.85 a	Material Lost				
LCCM-4120												Material Lost	0.68 a	0.34 a	
SP-8057				4.44 8.89	12.09 15.66	13.52 16.90	12.09 16.37	12.50 15.76	9.54 14.24	5.68 11.18	3.91 9.96	2.84 9.26	1.07 6.94		
4C-1686				9.74 12.70	8.70 17.40	8.70 15.46	9.92 16.50								
2. Low Carbonaceous Noncarbonaceous															
SP-8030-96	6.18 6.92	8.75 10.81				22.80 25.41	20.25 22.32								
SP-8030-96				10.79 12.85	19.71 22.28	31.96 33.77	23.93 24.76	20.98 22.13	18.85 20.16	13.93 16.23			3.55 6.76	1.42 5.69	
KF-418 (Standard)	3.93 6.58	5.25 6.52													
KF-418 (Standard)	6.85 9.42	5.48 8.57		8.68 11.15	27.05 28.68						6.86 9.95	17.18 18.40	10.62 11.30	1.75 4.39	1.40 4.92
23-RPD	4.98 5.09	7.47 8.18									14.42 15.57	Material Lost	Material Lost		
FM-5272 (Standard)	2.46 ^c 5.27	2.81 ^c 6.68		9.44 ^d	26.60 ^d								5.50 6.18	3.09 3.60	
MXA-6012	5.22 6.96	9.22 10.61												4.10 6.19	0.82 6.55
MXS-198															

^aChar thickness cannot be seen.

^bIndicates segmented ring.

^cChar layer thickness estimated.

^dChar lost in nozzle disassembly.

 NOTES: 1. Input data for cost merit rating (CMR) index.
 2. Erosion-char design curves.

 Erosion Rate (inches/sec)
 Char Rate (inches/sec)

TABLE 56
SUBMERGED LINER MATERIAL EVALUATION

<u>Material Tested</u>	<u>Motor No.</u>	Average Corrected Erosion Rate (mils/sec)	Average Corrected Char Rate (mils/sec)	Specific Gravity ρ	Raw Material Cost (\$/lb)	<u>CMR Index</u>	<u>Rank</u>
1. SP-8030-96 Silica (Standard)	6	7.90	2.35	1.60	4.90	105	--
2. KF-418 Canvas	4, 5	6.00	2.86	1.35	1.50	24	2
294 3. 23-RPD Asbestos	3	6.13	0.72	1.50	4.25	56	4
4. FM-5272 Paper	1	2.64	3.34	1.34	2.00	22	1
5. MXA-6012	2	7.36	1.55	1.61	1.85	34	3

NOTES:

- Erosion rate factor of safety = 1.25
Char rate factor of safety = 1.50
- Typical CMR index value calculation:

$$[2.64 (1.25) + (3.34) (1.50)] \cdot 1.34 (2.00) = 22 \text{ CMR for FM-5272}$$
 Lowest CMR index number is best.

TABLE 57

NOSE MATERIAL EVALUATION

<u>Material Tested</u>	<u>Motor No.</u>	Average Corrected Erosion Rate (mils/sec)	Average Corrected Char Rate (mils/sec)	Specific Gravity ρ	Raw Material Cost (\$/lb)	CMR Index	Rank
1. FM-5272 Paper	6	17.29	1.68	1.34	2.00	68	2
2. KF-418 Canvas	4	21.27	1.95	1.35	1.50	63	1
3. SP-8030-96 Silica	5	16.17	2.27	1.60	4.90	192	3
295 4. 4C-1686 Carbon	2	9.40	5.77	1.30	20.60	501	--
5. SP-8057 Carbon	3	8.27	4.05	1.40	15.00	324	4
6. WB-8217 Carbon (Standard)	1	6.42	7.39	1.42	20.97	482	--

NOTES:

1. Erosion rate factor of safety = 1.375
Char rate factor of safety = 1.00
2. Assume paper char layer thickness ($t = 0.10$ in.)
3. Typical CMR index value calculation:

$$\left[9.4 (1.375) + 5.77 (1.00) \right] 1.30 (20.60) = 501 \text{ CMR for 4C-1686}$$

Lowest CMR index number best.

TABLE 58

INLET MATERIAL EVALUATION

<u>Material Tested</u>	<u>Motor No.</u>	Average Corrected Erosion Rate (mils/sec)	Average Corrected Char Rate (mils/sec)	Specific Gravity ρ	Raw Material Cost (\$/lb)	CMR Index	Rank
1. SP-8030-96 Silica	4, 6	28.05	1.77	1.60	4.90	344	2
2. 4C-1686 Carbon	2	9.14	8.10	1.30	20.60	584	4
3. SP-8057 Carbon	3	12.80	3.87	1.40	15.00	484	3
4. LCCM-2626 Graphite Particle	5	14.17	12.59	1.80	0.75	46	1
5. WB-8217 Carbon (Standard)	1	10.99	5.45	1.42	20.97	653	--

NOTES:

1. Char thickness for LCCM-2626 was assumed to be 0.75 in. (from TU-622 test data).
2. Erosion rate factor of safety = 1.5
Char rate factor of safety = 1.0
3. Typical CMR index value calculation:

$$\left[12.80 (1.50) + 3.87 (1.00) \right] 1.40 (15.00) = 484 \text{ CMR for SP-8057}$$

Lowest CMR index number is best.

TABLE 59

THROAT MATERIAL EVALUATION

<u>Material Tested</u>	<u>Motor No.</u>	Average Corrected Erosion Rate (mils/sec)	Average Corrected Char Rate (mils/sec)	Specific Gravity ρ	Raw Material Cost (\$/lb)	CMR Index	<u>Rank</u>
1. SP-8030-96 Silica	4	21.32	1.51	1.60	4.90	263	2
2. SP-8057 Carbon	6	9.79	4.40	1.40	15.00	401	3
3. LCCM-2626 Graphite Particle	2, 5	11.07	12.79	1.80	0.75	40	1
4. SP-8050 Carbon	3	8.95	6.29	1.44	16.50	469	4
5. MX-4926 Carbon (Standard)	1	7.38	6.92	1.40	23.00	579	--

NOTES:

1. Char thickness for LCCM-2626 was assumed to be 0.75 in. (based on TU-622 test data).
2. Erosion rate factor of safety = 1.50
Char rate factor of safety = 1.00
3. Typical CMR index value calculation:

$$\left[21.32 (1.50) + 1.51 (1.00) \right] 1.60 (4.90) = 263 \text{ CMR for SP-8030}$$

Lowest CMR index number is best.

TABLE 60
FORWARD EXIT MATERIAL EVALUATION

<u>Material Tested</u>	<u>Motor No.</u>	Average Corrected Erosion Rate (mils/sec)	Average Corrected Char Rate (mils/sec)	Specific Gravity ρ	Raw Material Cost (\$/lb)	<u>CMR Index</u>	<u>Rank</u>
1. 23-RPD Asbestos	4				Material Lost During Test	--	-- ^a
2. KF-418 Canvas	6	12.24	1.63	1.35	1.50	34	1
3. SP-8057 Carbon	3	2.61	6.17	1.40	15.00	198	2
853	4. LCCM-2626X Graphite Particle	5			Material Lost Locally During Test	--	--
5. LCCM-2626X Graphite Particle	2	15.74	8.62 ^b	1.80	0.75	38	-- ^a
6. SP-8050 Carbon (Standard)	1	1.99	8.15	1.44	16.50	253	3

^aMaterial LCCM-2626X needs further processing development to be applied on this area.

^bChar depth thickness was assumed to be 0.50 in. for LCCM-2626X.

NOTES:

1. Erosion rate factor of safety = 1.25
Char rate factor of safety = 1.00
2. Typical CMR index value calculation:

$$[(12.24) 1.25 + 1.63 (1.00)] 1.35 (1.50) = 34 \text{ CMR for KF-418}$$

TABLE 61
AFT EXIT MATERIAL EVALUATION

<u>Material Tested</u>	<u>Motor No.</u>	<u>Average Corrected Erosion Rate (mils/sec)</u>	<u>Average Corrected Char Rate (mils/sec)</u>	<u>Specific Gravity ρ</u>	<u>Raw Material Cost (\$/lb)</u>	<u>CMR Index</u>	<u>Rank</u>
1. MXS-198 Silica	4	2.93	4.66	1.50	6.10	76	4
2. FM-5272 Paper	6	4.55	0.58	1.34	2.00	17	2
3. KF-418 Canvas (Standard)	1	1.57	3.08	1.35	1.50	10	1
4. SP-8030-96 Silica	3	2.48	3.83	1.60	4.90	54	3
5. LCCM-4120 Graphite Particle	5	0.54	8.39 ^a	1.50	0.75	10	1
6. LCCM-2626X Graphite Particle	2	11.12	8.60 ^a	1.80	0.75	30	-- ^b

^aChar depth thickness assumed to be 0.50 in. for LCCM-2626X and LCCM-4120.

^bMaterial needs further improvement before it can be used for aft exit cone.

NOTES:

- Erosion rate factor of safety = 1.25
Char rate factor of safety = 1.00
- Typical CMR index value calculation:

$$\left[2.48 (1.25) + 3.83 (1.00) \right] (1.60) (4.90) = 54 \text{ CMR for SP-803-96}$$

Lowest CMR index number is best.

TABLE 62
SUBSCALE MATERIAL COST RATING

<u>Rating</u>	<u>Submerged</u>	<u>Liner</u>	<u>Nose</u>	<u>Inlet</u>	<u>Throat</u>	<u>Forward</u>	<u>Exit</u>	<u>Aft</u>	<u>Exit</u>
First	FM-5272 Paper	KF-418 Canvas	LCCM-2626 Graphite Particle	LCCM-2626 Graphite Particle	KF-418 Canvas	KF-418 Canvas LCCM-4120 Graphite Particle			
Second	KF-418 Canvas	FM-5272 Paper	SP-8030-96 Silica	SP-8030-96 Silica	SP-8057 Carbon	SP-8057 Carbon	FM-5272 Paper		
Third	MXA-6012 Asbestos	SP-8030-96 Silica	SP-8057 Carbon	SP-8057 Carbon	SP-8050 Carbon	SP-8050 Carbon	SP-8030-96 Silica		
Fourth	28-RPD Asbestos	SP-8057 Carbon	4C-1686 Carbon	SP-8050 Carbon	a		MXS-198 Silica Epoxy Novolac		

^aOnly three materials qualified.

TABLE 63
260 IN. FOUR NOZZLE ABLATIVE MATERIAL MATRIX

<u>Low Cost Material Nozzle</u>	<u>Submerged Liner</u>	<u>Nose</u>	<u>Inlet</u>	<u>Throat</u>	<u>Forward Exit</u>	<u>Aft Exit</u>
1	FM-5272 Paper (1)	WB-8217 Carbon	WB-8217 Carbon	MX-4926 Carbon	SP-8050 Carbon (3)	KF-418 Canvas (1)
2	KF-418 Canvas (2)	KF-418 Canvas (1)	LCCM-2626 Graphite Particle (1)	LCCM-2626 (1)	SP-8057 Carbon (2)	LCCM-4120 Graphite Particle (1)
3	23-RPD Asbestos (3)	FM-5272 Paper (2)	SP-8030-96 Silica (2)	SP-8030-96 Silica (2)	KF-418 Canvas (1)	FM-5272 Paper (2)
4	MXA-6012 Asbestos (4)	SP-8057 Carbon (3)	SP-8057 Carbon (3)	SP-8050 Carbon (4)	SP-8050 Carbon (3)	MXS-198 Silica (4)

NOTE: Numbers in parentheses indicate subscale material cost rating

TABLE 64
INSULATIVE LINER EVALUATION

<u>Subscale Nozzle Material</u>	<u>(lb/cu in.)</u>	<u>x</u>	<u>(\$/lb)</u>	<u>=</u>	<u>(CR)</u>	<u>Rank</u>
<u>Exit Cone Backup Insulation</u>						
1581 glass phenolic MXB-6001	0.073		3.50		0.26	4
KF-418 canvas phenolic	0.049		1.50		0.07	1
23-RPD asbestos phenolic	0.054		4.25		0.23	3
MXA-6012 asbestos phenolic	0.058		1.85		0.11	2
FM-5272 paper phenolic	0.048		2.00		0.10	a
<u>Throat-Inlet Insulation</u>						
KF-418 canvas phenolic	0.049		1.50		0.07	1
23-RPD asbestos phenolic	0.054		4.25		0.23	3
MX-6012 asbestos phenolic	0.058		1.85		0.11	2
SP-8030-96 silica phenolic	0.057		4.90		0.28	4
FM-5272 paper phenolic	0.048		2.00		0.10	a

^aMaterial eliminated from consideration because of only adequate structural integrity.

NOTES

1. C₂ DATA SHOWED HIGH EROSION DUE TO SP-8030-96/SILICA MATERIAL INTERFACE ON NOZZLE NO. 5.
2. LCCM-2626 GRAPHITE PARTICLE TESTED AT C ON SUBSCALE NOZZLE NO. 5 AND AT D ON SUBSCALE NOZZLES 2 AND 5.
3. FOR CHAR DESIGN LINE, USE TU-622 CHAR RATES.

24535-64

Figure 221. LCCM-2626 Erosion Performance Curve

NOTES:

1. *THIS AREA WAS NOT PLOTTED BECAUSE IT WAS NEXT TO LCCM-2626X WHICH ERODED OUT IN THE FORWARD EXIT CONE.
2. LCCM-4120 GRAPHITE PARTICLE WAS TESTED IN SUBSCALE NOZZLE NO. 5.
3. TU-622 CHAR RATES SHOULD BE USED FOR CHAR DESIGN LINE.

24535-82

Figure 222. LCCM-4120 Erosion Performance Curve

NOTE: SP-8057 CARBON TESTED AT B, C,
AND E IN SUBSCALE NOZZLE NO. 3
AND AT D IN SUBSCALE NOZZLE
NO. 6.

24535-72

Figure 223. SP-8057 Erosion Performance Curve

NOTE: SP-8057 CARBON TESTED AT B,
 C, AND E IN SUBSCALE NOZZLE
 NO. 3 AND AT D IN SUBSCALE
 NOZZLE NO. 6.

24535-78

Figure 224. SP-8057 Char Performance Curve

NOTE: SP-8050 CARBON TESTED AT D
IN SUBSCALE NOZZLE NO. 3
AND AT E IN SUBSCALE NOZZLE
NO. 1.

24535-87

Figure 225. SP-8050 Erosion Performance Curve

NOTE: SP-8050 CARBON TESTED AT D
IN SUBSCALE NOZZLE NO. 3
AND AT E IN SUBSCALE
NOZZLE NO. 1.

24535-86

Figure 226. SP-8050 Char Performance Curve

NOTE: WB-8217 CARBON TESTED AT
B AND C IN SUBSCALE NOZZLE NO. 1.

24535-85

Figure 227. WB-8217 Erosion Performance Curve

NOTE: WB-8217 CARBON TESTED AT
B AND C IN SUBSCALE NOZZLE
NO. 1.

24535-88

Figure 22.8. WB-8217 Char Performance Curve

NOTE: MX-4926 CARBON TESTED AT D
IN SUBSCALE NOZZLE NO. 1.

24535-91

Figure 229. MX-4926 Erosion Performance Curve.

NOTE: MX-4926 CARBON TESTED AT D
IN SUBSCALE NOZZLE NO. 1.

24535-80

Figure 230. MX-4926 Char Performance Curve

NOTES

1. B₁ DATA WAS FROM SEPARATED FLOW AREA AND SHOWED LOCALLY HIGH EROSION.

2. 4C-1686 CARBON WAS TESTED AT B AND C IN SUBSCALE NOZZLE NO. 2.

24535-66

Figure 231. 4C-1686 Erosion Performance Curve

NOTES:

1. B_1 DATA WAS FROM SEPARATED FLOW AREA AND SHOWED LOCALLY HIGH EROSION.
2. HC-1686 CARBON WAS TESTED AT B AND C IN SUBSCALE NOZZLE NO. 2.

24535-81

Figure 232. 4C-1686 Char Performance Curve

NOTES:

1. B₂ DATA AT NOSE TIP SHOWED LOCALLY HIGH EROSION DUE TO PROPELLANT STAR GRAIN GAS FLOW.
 2. E DATA SHOWED HIGH EROSION, WHICH MAY BE DUE TO INTERFACE WITH CARBON SP-8057 THROAT MATERIAL.
 3. KF-418 CANVAS TESTED AT A AND B IN SUBSCALE NOZZLE NO. 4, AT E IN NO. 6, AND AT F IN NO. 1.

245.35~94

Figure 233. KF-418 Erosion Performance Curve

NOTES:

- B₂ DATA AT NOSE TIP SHOWED LOCALLY HIGH EROSION DUE TO PROPELLANT STAR GRAIN GAS FLOW.
- E DATA SHOWED HIGH EROSION, WHICH MAY BE DUE TO INTERFACE WITH SP-8057 CARBON THROAT.
- KF-418 TESTED AT A AND B IN SUBSCALE NOZZLE NO. 4, AT E IN NO. 6, AND AT F IN NO. 1.

24535-83

Figure 234. KF-418 Char Performance Curve

NOTES:

1. B_2 DATA AT NOSE TIP SHOWED HIGH LOCAL EROSION DUE TO PROPELLANT STAR GRAIN GAS FLOW.
2. FM-5272 PAPER TESTED AT A IN SUBSCALE NO. 1 AND AT B AND F IN SUBSCALE NO. 6.

24535-92

Figure 235. FM-5272 Erosion Performance Curve

NOTES:

1. B₂ DATA AT NOSE TIP SHOWED HIGH LOCAL EROSION DUE TO PROPELLANT STAR GRAIN GAS FLOW.
2. FM-5272 PAPER TESTED AT A IN SUBSCALE NO. 1 AND AT B AND F IN SUBSCALE NO. 6.

24535-93

Figure 236. FM-5272 Char Performance Curve

NOTES

1. C₂ DATA AT INLET SHOWED LOCAL HIGH EROSION ON ONE TEST DUE TO PROPELLANT STAR GRAIN GAS FLOW.
 2. SP-8030-96 SILICA TESTED AT A
IN SUBSCALE NO. 6, AT B IN
SUBSCALE NO. 5, AT C IN SUB-
SCALE NO. 4 AND 6, AT D IN
SUBSCALE NO. 4, AND AT F IN
SUBSCALE NO. 3.

24535-95

Figure 237. SP-8030-96 Erosion Performance Curve

NOTES:

1. C₂ DATA AT INLET SHOWED LOCAL HIGH EROSION DUE TO PROPELLANT STAR GRAIN GAS FLOW.

2. SP-8030-96 SILICA WAS TESTED
AT A IN SUBSCALE NO. 6,
AT B IN SUBSCALE NO. 5,
AT C IN SUBSCALE NO. 4
AND 6, AT D IN SUBSCALE
NO. 4, AND AT F IN
SUBSCALE NO. 3.

24535-97

Figure 238. SP-8030-96 Char Performance Curve

NOTE

1. MXS-198 SILICA WAS TESTED AT F IN SUBSCALE NO. 4.

24535-71

Figure 239. MXS-198 Erosion Performance Curve

NOTE

- MXS-198 SILICA WAS TESTED AT F IN SUBSCALE TEST NO. 4.

24535-77

Figure 240. MXS-198 Char Performance Curve.

NOTES

1. E DATA WAS NOT PLOTTED BECAUSE IT DID NOT SURVIVE MOTOR FIRING.
2. 23-RPD ASBESTOS WAS TESTED AT A IN SUBSCALE TEST NO. 3 AND AT E IN SUBSCALE NO. 4.

24535-78

Figure 241. 23-RPD Erosion Performance Curve

□ PROPELLANT STAR VALLEY
△ BETWEEN PROPELLANT STAR VALLEY AND STARPOINT
○ PROPELLANT STARPOINT

NOTES

1. E DATA IN THIS REGION WAS NOT PLOTTED BECAUSE IT DID NOT SURVIVE MOTOR FIRING.
2. 23-RPD ASBESTOS WAS TESTED AT A IN SUBSCALE NO. 3 AND AT E IN SUBSCALE NO. 4.

24535-74

Figure 242. 23-RPD Char Performance Curve

NOTE

1. MXA-6012 ASBESTOS TESTED AT A IN SUBSCALE NO. 2.

24535-89

Figure 243. MXA-6012 Erosion Performance Curve

NOTE

1. MXA-6012 ASBESTOS TESTED AT A IN SUBSCALE TEST NO. 2.

24535-90

Figure 244. MXA-6012 Char Performance Curve

Figure 245. Major Computer Subroutines and Flow Path

Figure 246. Modifying Nozzle Design on Graphic Display Console

TABLE 65
COMPUTER OUTPUT, LINER THICKNESS DESIGN

BASE																					
NOZZLE INSULATION DESIGN (PAGE_1) INSULATION STATION TABLE																					
BUST	INST	EPS	A	R	M	N	PS	FSE	MOD	XDOT	TLE	FSC	TLV	TL	TBU	A	TBN	TB	TTOT	L	NO.
1		1.429	21.046	53.200	3.467	522.92	1.25	1.00	0.0	0.0	1.00	C.700	0.2	0.700	C.060	0.0	0.060	0.760	L	125	
2UP		1.204	7.062	48.883	0.597	483.09	1.25	1.00	0.0	0.0	1.00	0.700	0.0	0.700	0.060	0.0	0.060	0.760	L	180	
JDN		1.251	7.062	49.820	6.562	494.16	1.25	1.00	0.0	0.0	1.00	0.861	0.0	0.861	0.060	0.0	0.060	0.921	L	270	
4UP		2.103	35.000	64.600	9.290	564.20	1.50	1.00	3.20	0.440	1.00	0.861	0.395	1.702	0.060	0.0	0.060	1.762	L	324	
4UN(NGS)		2.133	-35.000	64.600	0.236	564.20	1.50	1.00	3.20	0.446	1.00	1.033	0.223	1.702	0.257	0.0	0.257	1.960	L	342	
5UP		1.124	-17.500	47.236	3.372	497.57	1.50	1.00	7.25	1.012	1.00	1.033	0.503	2.548	0.257	1.058	0.315	2.863	L	360	
JDN		1.154	-17.500	47.236	0.672	497.57	1.50	1.00	7.25	1.016	1.00	1.033	0.505	2.548	0.315	1.0	0.315	2.863	L	378	
6(THRAT)		1.090	0.0	44.550	0.000	337.63	1.50	1.00	8.28	1.153	1.00	0.968	0.576	2.697	0.315	0.0	0.315	3.013	L	414	
7UP		1.056	0.033	35.787	1.253	248.27	1.50	1.00	9.25	0.737	1.00	0.964	0.369	2.071	0.315	1.0	0.315	2.386	L	450	
JDN		1.056	-8.038	45.787	L.256	248.27	1.25	1.00	6.29	0.737	1.00	0.664	0.104	1.886	0.257	1.0	0.242	0.500	2.306	L	468
7.1		1.124	12.032	67.236	1.385	208.98	1.25	1.00	5.03	0.700	1.00	0.360	0.176	1.835	0.257	0.0	0.237	2.425	L	500	
7.2		1.142	17.090	48.641	1.480	192.59	1.25	1.00	4.75	0.567	1.00	0.958	0.167	1.790	0.257	0.0	0.237	2.425	L	500	
8UP		1.260	21.422	30.007	1.398	162.69	1.25	1.00	4.39	0.638	1.00	0.951	0.159	1.748	0.257	1.000	0.237	2.004	L	522	
JDN		1.260	21.422	56.007	1.1558	192.69	1.25	1.00	4.59	0.638	1.00	0.951	0.159	1.748	0.257	1.0	0	0.257	2.006	L	540
8.1		2.297	76.948	67.514	2.100	59.62	1.25	1.00	2.03	0.448	1.00	0.885	0.103	1.395	0.257	0.0	0.257	1.653	L	558	
8.2		3.333	120.787	61.237	2.455	34.69	1.25	1.00	2.32	0.324	1.00	0.822	0.081	1.222	0.257	0.0	0.257	1.484	L	576	
14UP		4.370	158.187	93.130	2.654	23.78	1.25	1.00	1.60	0.763	0.070	1.113	0.257	1.0	0	0.237	1.370	L	594		
14DN		4.370	158.187	93.130	2.654	23.78	1.25	1.00	3.09	0.430	1.00	0.360	0.108	0.916	0.257	1.0	0.194	0.452	1.370	L	612
14.1		6.580	225.261	114.277	2.940	13.67	1.25	1.00	0.97	0.136	1.00	0.305	0.034	0.475	0.257	0.0	0.257	0.732	L	630	
14.2		8.790	281.729	132.081	3.136	9.32	1.25	1.00	0.0	1.00	0.244	0.244	0.244	0.257	0.0	0.257	0.502	L	648		
18(EXIT)		11.000	231.464	147.786	3.285	6.29	1.25	1.00	9.0	0.0	1.00	0.195	0.0	0.195	0.257	0.0	0.257	0.452	L	666	
SL		1.254	21.046	45.889	1.551	104.29	1.75	1.00	4.60	0.640	1.00	0.952	0.160	1.752	0.257	0.0	0.257	2.099	L	684	

DEFINITION OF SYMBOLS

BUST	BOUNDARY STATION SYMBOL	FSC	FACTOR OF SAFETY,CHAR
INST	INTERMEDIATE STATION SYMBOL	TLV	CHARGED LINER THICKNESS (IN)
EPS	EXPANSION RATIO AT STATION	TVL	VIRGIN LINER THICKNESS AT TIME OF FIRING (IN)
A	AXIAL DISTANCE DOWNSTREAM OF THROAT (IN)	TL	THICKNESS OF BACKUP INSULATION (IN)
R	RADIAL DISTANCE FROM AXIS (IN)	TBU	ACQUIRED BACKUP INSULATION THICKNESS (IN)
M	MACH NUMBER	A	BOUNDARY MATCH FLAG (1 REQUIRES MATCHING OF TTOT ON EACH SIDE..)
PS	STATIC PRESSURE	TBA	EXTRA BACKUP NECESSARY FOR MATCH OF TTOT (IN)
FSE	FACTOR OF SAFETY, EROSION	TB	TOTAL BACKUP THICKNESS, TAB, TBL, TBT (IN)
MOD	EROSION RATE MULTIPLIER	TTOT	TOTAL OF LINER AND BACKUP THICKNESSES, TL + TB (IN)
XDOT	EROSION RATE OF LINER (MM'S PER SEC)	LN	LINER THICKNESS, LNE, LNR, LNL, LNT (IN)
TLE	ERODED LINER THICKNESS (IN)	SL	SPLIT LINE, FLANGE, OR INJECTOR STATION IN EXIT
NOTE--	SOME VALUES IN TABLE ARE NOT OPTIONAL INPUT, SEE DIAGRAM IN USERS MANUAL FOR THIS NOZZLE DESIGNATOR		
	NOTE-- IF XDOT IS INPUT AT THOT,XDOT AT EACH STATION WILL CHANGE BY THE RATIO (XDOT THROAT INPUT/XDOT THROAT CALCULATED)		
	EXCEPT AT STATIONS WHERE XDOT IS ALSO INPUT, USE MOD TO CHANGE THROAT_XDOT ONLY.		

PRECEDING PAGE BLANKS NOT FILMED

TABLE 66
COMPUTER OUTPUT, LINER WEIGHT

BASE

NOZZLE INSULATION DESIGN (PAGE 2) MATERIALS WEIGHT SUMMARY, AND THROAT INSERT GEOMETRY.
MATERIAL IDENTIFICATION AND WEIGHT OF INSULATION SECTIONS BETWEEN STATIONS

SOLUTION	MATERIAL CODE	LINER Lb	LINER Lb	BACKUP CODE	BACKUP Lb	TOTAL SECTION WEIGHT	L NUMBER OF LINER CODE
1-202	2	206.55	3	0.0	0.0	206.55	L 762
10A-1LP	7	1105.90	3	0.5	0.5	1105.90	L 717
30N-5LP	7	176.72	3	1444.95	3221.68	L 727	
30H-7LP	7	1128.26	2	2293.65	3413.94	L 732	
70K-PLP	7	406.92	3	169.24	516.17	L 742	MATERIAL CODES ARE IDENTIFIED IN INSULATION
80N-14UP	7	6161.72	3	1117.71	7279.43	L 147	MATERIALS TABLE AT BOTTOM OF PAGE
14D4-15	2	4611.22	3	3168.67	7779.89	L 752	

INSULATION MATERIALS

CODE	NAME	VIRGIN DENSITY (LB/IN ³)	CHAR DENSITY (LB/IN ³)	L NUMBER OF VIR. DENS.
1	CERAMIC CLOTH PHENOLIC	0.6521	0.0376	L 757
2	SILICA CLOTH PHENOLIC	0.6532	0.0509	L 759
3	GLASS CLOTH PHENOLIC	0.0660	0.0538	L 761
4	ASBESTOS CLOTH PHENOLIC	0.6521	0.0376	L 763
5	GRAPHITIC GRAPHITE	0.5777	0.0	L 765
6	TUNGSTEN	0.6980	0.0	L 767
7	CARBON CLOTH PHENOLIC	0.0521	0.0376	L 769
8	ASBESTOS CLOTH PHENOLIC	0.0637	0.0539	L 771
9	FILLED BUNA RUBBER	0.0464	0.0230	L 773
10	FIBROUS GRAPHITIC COMPOSITE	0.6596	0.0	L 775
11	FERROUS TUNGSTEN	0.6249	0.0	L 777
12	W	0.0	0.0	L 779
13	W	0.0	0.0	L 781
14	W	0.0	0.0	L 783
15	W	0.0	0.0	L 785

COMPUTER OUTPUT, STEEL STRUCTURE WEIGHTS

BASE

NOZZLE STRUCTURAL DESIGN (PAGE 1) PINGS, SHELLS, AND SPECIAL STATIONS

STRUCTURAL PINGS		SAFETY FACTOR	MATERIAL CODE	X TO CENTROID (IN)	R TO CENTROID (IN)	AXIAL LENGTH (IN)	PADIAL THICKNESS (IN)	WEIGHT (LB)	MINIMUM THICKNESS (IN)	L NUMBER OF SAFETY FACTOR
FLANGE		1.25	2	21.768	53.842	17.844	2.757	486.54	0.10	L 787
FIXED EXTENSION		1.25	2	-5.993	48.575	24.322	0.648	1389.98	0.20	L 893
STRUCTURAL SHELLS (STATION-TO-STATION)		SAFETY FACTOR	MATERIAL CODE	X, UPSTREAM END (IN)	X, DOWNSTREAM END (IN)	UPSTREAM THICKNESS (IN)	DOWNSPEAN THICKNESS (IN)	WEIGHT (LB)	MINIMUM THICKNESS (IN)	L NUMBER OF SAFETY FACTOR
HS 7-9	1.25	2		8.078	21.046	0.444	0.446	666.71	0.100	L 899
HS 9-12	1.25	2		21.346	17.243	0.236	0.219	4598.96	0.100	L 907
HS12-13	1.25	6		176.243	331.440	0.325	0.232	1810.08	0.050	L 923
SPECIAL STRUCTURAL STATIONS										
STATION	X FROM THROAT	RADIUS	LINER SURFACE	X	L NUMBER	OF X				
	(IN)	(IN)								
9	21.046	46.899		L 931						
12	176.243	96.822		L 933						

MATERIAL CODES REFER TO STRUCTURAL MATERIALS TABLE ON NEXT PAGE

388

BASE

NOZZLE STRUCTURAL DESIGN (PAGE 2) STRUCTURAL MATERIALS

STRUCTURAL MATERIALS	CODE	NAME	DENSITY ("LB/IN ³)	MODULUS (PSI)	DESIGN STRENGTH (PSI)	COMPRESSIVE YIELD STRENGTH (PSI)	POISSONS RATIO	L NUMBER OF DENSITY	IL NUMBERS ARE CONSECUTIVE FROM LEFT TO RIGHT
1 MANUFACTURING STEEL	J-2373	23700000	215000.	240000.	0.30	L 935			
2 180-000 ULTIMATE STCHL	J-2393	20600000	190000.	172000.	0.30	L 940			
3 90-000 ULTIMATE STBL	J-2390	29000000	90000.	70000.	0.30	L 945			
4 EAL-AV TITANIUM	J-1600	16500000	160000.	155000.	0.31	L 950			
5 7075-T652 ALUMINUM	J-1611	10500000	70000.	63000.	0.33	L 955			
6 STRUCTURAL FIBERGLASS	J-0700	4000300.	52000.	45000.	0.25	L 960			
7 BERYLLIUM	J-0668	42900000	40000.	30000.	0.30	L 965			
8 MOLYBDENUM	J-0360	47000000	90000.	80000.	0.30	L 970			
9 COLUMBIUM	J-0100	15000000	40000.	40000.	0.30	L 975			
10 304 STAINLESS STEEL	J-0269	28000000	125000.	55000.	0.30	L 980			
11 17-7 PH STEEL	J-0270	29000000	170000.	75000.	0.30	L 985			
12 -	J-0	J-	J-	J-	J-	L 990			
13 -	J-0	J-	J-	J-	J-	L 995			
14 -	J-0	J-	J-	J-	J-	L 1000			
15 -	J-0	J-	J-	J-	J-	L 1005			
16 -	J-0	J-	J-	J-	J-	L 1010			
17 -	J-0	J-	J-	J-	J-	L 1015			
18 FLEXIBLE SEAL ELASTOMER	J-0470	33.0 (SICAR)	50.0 (SMEAR)		0.4998	L 1020			

HONEYCOMB MATERIALS

19 HONEYCOMB CHRL 20.00 '30 L 1061

20 FLNG USED IF DESIGNATOR HONEYCOMB IN STRUCTURAL SHELL TABLE IN PREVIOUS PAGE (IF SHELL CODE IS 20, HONEYCOMB IS USED)

CODE (VALVE TABLE) L NUMBER OF FACTOR CODE STORAGE LOCATION
 INNER HONEYCOMB FACTOR J-1613 L 1023
 OUTER HONEYCOMB FACTOR J-1614 L 1024

Figure 248. 260 In. Convective Heat Transfer Coefficient vs Axial Location (Carbonaceous Wall)

Figure 249. 260 In. Total Heat Flux vs Axial Location (Asbestos Wall)

24535-60

Figure 250. 260 In. Total Heat Flux vs Axial Location (Silica Wall)

Figure 251. 260 In. Total Heat Flux vs Axial Location (Paper-Canvas Wall)

TABLE 68

Submerged Liner		Nose		Inlet Ring		Throat		Forward Exit Cone		Aft Exit Cone	
Erosion Rate (mils/sec)	Char Rate (mils/sec)										
		<u>FM-5272</u>		<u>SP-8030-96</u>		<u>SP-8030-96</u>		<u>MXS-198</u>			
		38.2	1.30	29.7	3.3	27.0	3.0	--	--	3.5	5.2
<u>KF-418</u>		<u>KF-418</u>						<u>KF-418</u>		<u>FM-5272</u>	
9.7	2.7	37.0	3.7					29.5	3.5	4.0	0.50
<u>23-RPD</u>		<u>SP-8057</u>		<u>LCCM-2626</u>		<u>SP-8057</u>		<u>KF-418</u>			
10.8	2.4			14.2	5.4	15.10	13.04	11.85	5.75	2.75	2.75
<u>FM-5272</u>		<u>LCCM-2626</u>		<u>SP-8050</u>							
7.0	2.8			16.2	12.85	10.63	7.67				
<u>MXA-6012</u>		<u>SP-8057</u>		<u>WB-8217</u>		<u>MX-4926</u>		<u>LCCM-4120</u>			
13.7	2.5	14.20	5.40	11.68	4.42	10.92	4.38			0	8.56
		<u>WB-8217</u>				<u>SP-8050</u>					
		11.56	4.44			9.59	7.91				

TABLE 69
260 IN. NOZZLE AND COMPONENT WEIGHT SUMMARY

Location	Structure Steel Weights (lb)								
	Standard Base Line Nozzle	Low Cost Material Nozzle No. 1		Low Cost Material Nozzle No. 2		Low Cost Material Nozzle No. 3		Low Cost Material Nozzle No. 4	
9 Flange Steel	487		527		538		609	551	
5-7 Throat Steel	1,390		1,387		1,422		1,422	1,401	
7-9 Forward Exit Steel	667		676		693		720	677	
9-12	4,999		5,022		5,059		5,088	5,027	
12-15 Sandwich Aft Exit	<u>1,810</u>		<u>1,811</u>		<u>1,818</u>		<u>1,799</u>	<u>1,815</u>	
Subtotal	9,353		9,423		9,530		9,635	9,471	
Liner-Reinforced Plastic Weights (lb)									
	Liner	Backup	Liner	Backup	Liner	Backup	Liner	Backup	
Submerged Liner	1-2	317	0	383	0	515	0	665	0
Nose	3-4	1,106	0	1,961	0	4,552	0	3,681	0
Inlet	4-5	<u>1,777</u>	<u>1,445</u>	<u>1,940</u>	<u>1,305</u>	<u>3,626</u>	<u>430</u>	<u>3,140</u>	<u>518</u>
Throat	5-7	1,120	2,294	1,146	2,367	2,455	1,148	2,541	1,331
Forward Exit	7-14	6,569	1,227	6,952	1,201	7,276	1,014	12,344	922
Aft Exit	14-15	<u>4,611</u>	<u>3,168</u>	<u>3,409</u>	<u>5,101</u>	<u>6,588</u>	<u>2,460</u>	<u>2,463</u>	<u>6,764</u>
	Subtotal	<u>23,627</u>		<u>25,766</u>		<u>30,064</u>		<u>34,369</u>	<u>25,918</u>
	Total Nozzle Weight	32,875		35,190		39,594		44,004	35,389

NOTE: Of the five designs, the Standard Base Line Nozzle and Nozzle No. 1 received the greatest level of design effort.

TABLE 70
COST/PERFORMANCE EFFECTIVENESS OF FIVE FULL SCALE NOZZLE ASSEMBLY DESIGNS

<u>Nozzle Design</u>	Total Cost (\$)	Total Weight (lb)	Cost/Lb (\$)	Cost Change (%)	Weight Change (%)	Cost/Performance Index
Standard (Baseline)	1,296,807	32,875	39.45	--	--	100.00
Nozzle 1	1,183,888	35,190	33.64	-8.7	+6.6	96.39
Nozzle 2	933,972	39,594	23.59	-28.0	+20.4	88.00
Nozzle 3	863,635	44,004	19.63	-33.4	+33.8	88.83
Nozzle 4	1,179,795	35,389	33.34	-7.6	+7.6	96.38

TABLE 71
STANDARD BASELINE NOZZLE

I. COST

A.	MATERIALS (Table 72)	\$ 345,184.00
B.	NOZZLE SHELL 9,352 lb Machined Steel at \$20.00/lb	\$ 187,060.00
C.	LABOR 33,000 hr at \$10.00/hr	\$ 330,000.00
D.	MATERIALS CONTINGENCY FOR HYDROCLAVE CURE (10%)	\$ 34,518.00
E.	FACILITIES Hydroclave \$2,000,000.00 Tape Wrapper <u>275,000.00</u> Total \$2,275,000.00	
	Amortized at six nozzles per year for 5 yr	\$ 75,000.00
F.	TOOLING AND HANDLING EQUIPMENT Tape Wrap Mandrels (4) \$382,353.00 Handling and Insp Equip <u>382,353.00</u> Total \$764,706.00	
	Amortized at six nozzles per year for 5 yr	\$ 25,500.00
G.	BURDEN	\$ 299,263.00
H.	GRAND TOTAL	\$1,296,807.00
II.	WEIGHT	
A.	STEEL	9,352 lb
B.	PLASTIC	<u>23,523 lb</u>
	TOTAL NOZZLE WEIGHT	32,875 lb

TABLE 72
NASA 260 IN. NOZZLE COST EFFECTIVENESS
(Standard Nozzle)

<u>Nozzle Location</u>	<u>Description</u>	Total Material Required (incl scrap factor) ^a	<u>Total Cost</u>
Submerged OD	Liner	MX-2600 Warp 412 lb at \$6.50/lb	\$ 2,680
Nose	Liner	MX-4926 Warp 1,438 lb at \$19.00/lb	27,332
Inlet	Liner	MX-4926 Warp 2,310 lb at \$19.00/lb	43,890
	Backup	MXB-6001 Warp 1,878 lb at \$3.50/lb	6,573
Throat	Liner	MX-4926 Bias 1,624 lb at \$21.00/lb	34,104
	Backup	MX-2600 Warp 529 lb at \$6.50/lb	3,438
	Backup	MXB-6001 Warp 2,453 lb at \$3.50/lb	8,586
Fwd Exit	Liner	MX-4926 Warp 8,540 lb at \$19.00/lb	162,260
	Backup	MXB-6001 Warp 1,595 lb at \$3.50/lb	5,583
Aft Exit	Liner	MX-2600 Warp 5,994 lb at \$6.50/lb	38,961
	Backup	MXB-6001 Warp 4,118 lb at \$3.50/lb	<u>14,413</u>
			\$345,184

^aScrap factor is 30% for warp tape, 45% for bias tape

TABLE 73
NOZZLE NO. 1 COST AND WEIGHT BREAKDOWN

I.	COST	
A.	MATERIALS (Table 74)	\$ 354,223.00
B.	NOZZLE SHELL	
	9,423 lb Machined Steel at \$20.00/lb	\$ 188,460.00
C.	LABOR	
	30,000 hr at \$10.00/hr	\$ 300,000.00
D.	FACILITIES	
	Autoclave \$1,000,000.00	
	Tape Wrapper <u>275,000.00</u>	
	Total \$1,275,000.00	
	Amortized at 6 nozzles per year for 5 yr	\$ 42,500.00
E.	TOOLING AND HANDLING EQUIPMENT	
	Tape Wrap Mandrels (4) \$382,353.00	
	Handling and Insp Equip <u>382,353.00</u>	
	Total \$764,706.00	
	Amortized at 6 nozzles per year for 5 yr	\$ 25,500.00
F.	BURDEN	\$ 273,205.00
G.	GRAND TOTAL	\$1,183,888.00
II.	WEIGHT	
A.	STEEL STRUCTURE WEIGHT	9,423 lb
B.	PLASTIC WEIGHT	25,406 lb
	TOTAL NOZZLE WEIGHT	35.190 lb

TABLE 74
NASA 260 IN. NOZZLE COST EFFECTIVENESS
(Low Cost Nozzle No. 1)

<u>Nozzle Location</u>	<u>Description</u>	<u>Total Material Required (incl scrap factor)^a</u>	<u>Total Cost</u>
Submerged OD	Liner	FM-5272 Warp 498 lb at \$2.00/lb	\$ 996.00
Nose	Liner	WB-8217 Warp 2,549 lb at \$20.97/lb	53,453.00
Inlet	Liner	WB-8217 Warp 2,522 lb at \$20.97/lb	52,886.00
	Backup	MXB-6001 Warp 1,697 lb at \$3.50/lb	5,939.50
Throat	Liner	MX-4926 Bias 1,662 lb at \$21.00/lb	34,902.00
	Backup	MX-2600 Warp 819 lb at \$6.50/lb	5,323.50
	Backup	MXB-6001 Warp 2,258 lb at \$3.50/lb	7,903.00
Fwd Exit	Liner	SP-8050 Warp 9,038 lb at \$17.50/lb	158,165.00
	Backup	MXB-6001 Warp 1,561 lb at \$3.50/lb	5,463.50
Aft Exit	Liner	KF-418 Warp 4,432 lb at \$1.35/lb	5,983.00
	Backup	MXB-6001 Warp 6,631 lb at \$3.50/lb	<u>23,208.50</u>
			\$354,223.00

^aScrap factor is 30% for warp tape, 45% for bias tape

TABLE 75

NOZZLE NO. 2 COST AND WEIGHT BREAKDOWN
(Segmented)

I. COST

A.	MATERIALS (Table 76)	\$160,370.00
B.	NOZZLE SHELL	
	9,530 lb Net Machined Steel at \$20.00/lb	\$190,600.00
C.	LABOR	
	30,000 hr at \$10.00/hr	\$300,000.00
D.	FACILITIES	
	Autoclave \$1,000,000.00	
	Tape Wrapper <u>275,000.00</u>	
	Total \$1,275,000.00	
	Amortized at 6 nozzles per year for 5 yr	\$ 42,500.00
E.	TOOLING AND HANDLING EQUIPMENT	
	Tape Wrap Mandrels (3) \$286,764.00	
	Segmented Molds (8) 80,000.00	
	Handling and Insp Equip <u>382,353.00</u>	
	Total \$749,117.00	
	Amortized at 6 nozzles per year for 5 yr	\$ 24,970.00
F.	BURDEN	\$215,532.00
G.	GRAND TOTAL	\$933,972.00

II. WEIGHT

A.	STEEL STRUCTURE WEIGHT	9,530 lb
B.	PLASTIC WEIGHT	30,064 lb
	TOTAL NOZZLE WEIGHT	39,594 lb

TABLE 76
NASA 260 IN. NOZZLE COST EFFECTIVENESS
(Low Cost Nozzle No. 2)

<u>Nozzle Location</u>	<u>Description</u>	<u>Total Material Required (incl scrap factor)^a</u>	<u>Total Cost</u>
Submerged OD	Liner	KF-418 Warp 670 lb at \$1.35/lb	\$ 905.00
Nose	Liner	KF-418 Warp 5,918 lb at \$1.35/lb	7,989.00
Inlet	Liner	LCCM-2626 3,807 lb at \$0.75/lb	2,855.00
	Backup	KF-418 Warp 559 lb at \$1.35/lb	755.00
Throat	Liner	LCCM-2626 2,578 lb at \$0.75/lb	1,934.00
	Backup	KF-418 Warp 615 lb at \$1.35/lb	880.00
	Backup	KF-418 Warp 1,031 lb at \$1.35/lb	1,392.00
Fwd Exit	Liner	SP-8057 Warp 9,459 lb at \$14.00/lb	132,426.00
	Backup	KF-418 Warp 1,318 lb at \$1.35/lb	1,779.00
Aft Exit	Liner	LCCM-4120 6,917 lb at \$0.75/lb	5,188.00
	Backup	KF-418 Warp 3,198 lb at \$1.35/lb	<u>4,317.00</u>
			\$160,870.00

^aScrap factor is 30% for warp tape, 45% for bias tape, 5% for molding compounds

TABLE 77
NOZZLE NO. 3 COST AND WEIGHT BREAKDOWN

I. COST

A.	MATERIALS (Table 78)	\$103,635.00
B.	NOZZLE SHELL	
	9,635 lb Net Machined Steel at \$20.00/lb	\$192,700.00
C.	LABOR	
	30,000 hr at \$10.00/hr	\$300,000.00
D.	FACILITIES	
	Autoclave \$1,000,000.00	
	Tape Wrapper <u>275,000.00</u>	
	Total \$1,275,000.00	
	Amortized at 6 nozzles per year for 5 yr	\$ 42,500.00
E.	TOOLING AND HANDLING EQUIPMENT	
	Tape Wrap Mandrels (4) \$382,353.00	
	Handling and Insp Equip <u>382,353.00</u>	
	Total \$764,706.00	
	Amortized at 6 nozzles per year for 5 yr	\$ 25,500.00
F.	BURDEN	\$199,300.00
G.	GRAND TOTAL	\$863,635.00
II.	WEIGHT	
A.	STEEL STRUCTURE WEIGHT	9,635 lb
B.	PLASTIC WEIGHT	34,369 lb
	TOTAL NOZZLE WEIGHT	44,004 lb

TABLE 78
NASA 260 IN. NOZZLE COST EFFECTIVENESS
(Low Cost Nozzle No. 3)

<u>Nozzle Location</u>	<u>Description</u>	<u>Total Material Required (incl scrap factor)^a</u>	<u>Total Cost</u>
Submerged OD	Liner	23-RPD Warp 865 lb at \$4.25/lb	\$ 3,676.00
Nose	Liner	FM-5272 Warp 4,785 lb at \$2.00/lb	9,570.00
Inlet	Liner	SP-8030-96 Warp 4,082 lb at \$4.90/lb	20,002.00
	Backup	KF-418 Warp 673 lb at \$1.35/lb	909.00
Throat	Liner	SP-8030-96 Bias 3,684 lb at \$6.90/lb	25,420.00
	Backup	KF-418 Warp 615 lb at \$1.35/lb	830.00
	Backup	KF-418 Warp 1,210 lb at \$1.35/lb	1,634.00
Fwd Exit	Liner	KF-418 Warp 16,047 lb at \$1.35/lb	21,700.00
	Backup	KF-418 1,199 lb at \$1.35/lb	1,619.00
Aft Exit	Liner	FM-5272 Warp 3,202 lb at \$2.00/lb	6,404.00
	Backup	KF-418 Warp 8,793 lb at \$1.35/lb	<u>11,871.00</u>
			<u>\$103,635.00</u>

^aScrap factor is 30% for warp tape, 45% for bias tape

TABLE 79
NOZZLE NO. 4 COST AND WEIGHT BREAKDOWN

I. COST		
A. MATERIALS (Table 80)		\$ 351,653.00
B. NOZZLE SHELL		
9,471 lb Net Machined Steel at \$20.00/lb		\$ 189,420.00
C. LABOR		
30,000 hr at \$10.00/hr		\$ 300,000.00
D. FACILITIES		
Autoclave	\$1,000,000.00	
Tape Wrapper	<u>275,000.00</u>	
Total	\$1,275,000.00	
Amortized at 6 nozzles per year for 5 yr		\$ 42,500.00
E. TOOLING AND HANDLING EQUIPMENT		
Tape Wrap Mandrels (4)	\$382,353.00	
Handling and Insp Equip	<u>382,353.00</u>	
Total	\$764,706.00	
Amortized at 6 nozzles per year for 5 yr		\$ 25,600.00
F. BURDEN		\$ 272,722.00
G. GRAND TOTAL		\$1,179,795.00
II. WEIGHT		
A. STRUCTURE STEEL WEIGHT		9,471 lb
B. PLASTIC WEIGHT		25,918 lb
TOTAL NOZZLE WEIGHT		35,389 lb

TABLE 80
NASA 260 IN. NOZZLE COST EFFECTIVENESS
(Low Cost Nozzle No. 4)

<u>Nozzle Location</u>	<u>Description</u>	<u>Total Material Required (incl scrap factor)^a</u>	<u>Total Cost</u>
Submerged OD	Liner	MXA-6012 Warp 1,056 lb at \$1.85/lb	\$ 1,954.00
Nose	Liner	SP-8057 Warp 3,120 lb at \$14.00/lb	43,680.00
Inlet	Liner	SP-8057 Warp 2,720 lb at \$14.00/lb	38,080.00
	Backup	KF-418 Warp 1,122 lb at \$1.35/lb	1,515.00
Throat	Liner	SP-8050 Bias 1,937 lb at \$19.50/lb	37,772.00
	Backup	KF-418 Warp 615 lb at \$1.35/lb	830.00
	Backup	KF-418 Warp 1,615 lb at \$1.35/lb	2,180.00
Fwd Exit	Liner	SP-8050 Warp 9,814 lb at \$17.50/lb	171,745.00
	Backup	KF-418 Warp 1,099 lb at \$1.35/lb	1,484.00
Aft Exit	Liner	MXS-198 Warp 7,922 lb at \$6.10/lb	48,324.00
	Backup	KF-418 Warp 3,029 lb at \$1.35/lb	<u>4,089.00</u>
			\$351,653.00

^a Scrap factor is 30% for warp tape, 45% for bias tape

DISTRIBUTION LIST

<u>Recipient</u>	<u>Copies</u>	<u>Recipient</u>	<u>Copies</u>
NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Contracting Officer Mail Stop 500-313 Solid Rocket Technology Branch Mail Stop 500-205 Technical Library Mail Stop 60-3 Tech. Report Control Office Mail Stop 5-5 J. Kennard Mail Stop 3-17 Tech. Utilization Office Mail Stop 3-19 Patent Counsel Mail Stop 500-311	(1) (8) (2) (1) (1)	NASA George C. Marshall Space Flight Center Redstone Arsenal Huntsville, Alabama 35812 Attn: Technical Library R-P & VE-PA/K, Chandler Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91103 Attn: Richard Bailey Technical Library Scientific & Technical Information Facility NASA Representative P. O. Box 33 College Park, Maryland 20740 Attn: CRT	(1) (1) (1) (1) (1)
National Aeronautics and Space Administration Washington, D.C. 20546 Attn: RPM/William Cohen RPS/Robert W. Ziem ATSS-AL/Technical Library	(3) (1) (2)	<u>GOVERNMENT INSTALLATIONS</u>	
NASA Ames Research Center Moffett Field, California 94035 Attn: Technical Library	(1)	AF Space Systems Division Air Force Unit Post Office Los Angeles, California 90045 Attn: Col. E. Fink	(1)
NASA Langley Research Center Langley Station Hampton, Virginia 23365 Attn: Robert L. Swain Technical Library	(1)	AF Research and Technology Division Bolling AFB, D.C. 20332 Attn: Dr. Leon Green, Jr.	(1)
NASA Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Technical Library	(1) (1)	AF Rocket Propulsion Laboratory Edwards AFB, California 93523 Attn: RPM/Mr. C. Cook	(2)
NASA Manned Spacecraft Center 2101 Webster Seabrook Road Houston, Texas 77058 Attn: Technical Library	(1)	AF Materials Laboratory Wright-Patterson AFB, Ohio 45433 Attn: MANC/D. Schmidt MAAE P. F. Pirrun	(1) (1) (1)

DISTRIBUTION LIST (Cont)

<u>Recipient</u>	<u>Copies</u>	<u>Recipient</u>	<u>Copies</u>
AF Ballistic Missile Division P. O. Box 262 San Bernardino, California 92402 Attn: WDSOT	(1)	Chemical Propulsion Information Agency Applied Physics Laboratory 8621 Georgia Avenue Silver Spring, Maryland 20910	(1)
Structures Division Wright-Patterson AFB, Ohio 45433 Attn: FDT/R. F. Hoener	(1)	Defense Documentation Center Cameron Station 5010 Duke Street Alexandria, Virginia 22314	(1)
Army Missile Command Redstone Scientific Information Center Redstone Arsenal, Alabama 35809 Attn: Chief, Document Section	(1)	Defense Materials Information Center Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201	(1)
Ballistic Research Laboratory Aberdeen Proving Ground, Maryland 21005 Attn: Technical Library		Materials Advisory Board National Academy of Science 2101 Constitution Ave., N.W. Washington, D.C. 20418 Attn: Capt. A. M. Blamphion	(1)
Picatinny Arsenal Dover, New Jersey 07801 Attn: Technical Library		Institute for Defense Analysis 1666 Connecticut Ave., N.W. Washington, D.C. 20009 Attn: Technical Library	(1)
Navy Special Projects Office Washington, D.C. 20360 Attn: H. Bernstein		Advanced Research Projects Agency Pentagon, Room 3D154 Washington, D.C. 20301 Attn: Technical Information Office	(1)
Naval Air Systems Command Washington, D.C. 20360 Attn: AIR-330/Dr. O. H. Johnson		Naval Research Laboratory Washington, D.C. 20390 Attn: Technical Library	(1)
Naval Propellant Plant Indian Head, Maryland 20640 Attn: Technical Library		<u>INDUSTRY CONTRACTORS</u>	
Naval Ordnance Laboratory White Oak Silver Spring, Maryland 20910 Attn: Technical Library		Aerojet-General Corporation P. O. Box 296 Azusa, California 91702 Attn: Technical Library	(1)
Naval Ordnance Test Station China Lake, California 93557 Attn: Technical Library C. J. Thelen			

DISTRIBUTION LIST (Cont)

<u>Recipient</u>	<u>Copies</u>	<u>Recipient</u>	<u>Copies</u>
Aerojet-General Corporation P. O. Box 1168 Solid Rocket Plant Sacramento, California 94086 Attn: Dr. B. Simmons Technical Information Center Space Booster Department	(1) (1) (8)	Lockheed Missiles & Space Company P. O. Box 504 Sunnyvale, California 94088 Attn: Technical Library	(1)
Aerospace Corporation 2400 East El Segundo Boulevard El Segundo, California 90245 Attn: Technical Library Solid Motor Dev. Office	(1) (1)	Lockheed Propulsion Company P. O. Box 111 Redlands, California 93273 Attn: Bud White	(1)
Aerospace Corporation P. O. Box 95085 Los Angeles, California 90045 Attn: Technical Library	(1)	Martin Marietta Corporation Baltimore Division Baltimore, Maryland 21203 Attn: Technical Library	(1)
Atlantic Research Corporation Shirley Highway at Edsall Road Alexandria, Virginia 22314 Attn: Technical Library		Mathematical Sciences Corporation 278 Renook Way Arcadia, California 91107 Attn: M. Fourney	(1)
Battelle Memorial Library 505 King Avenue Columbus, Ohio 43201 Attn: Edward Unger		Philco Corporation Aeronutronics Division Ford Road Newport Beach, California 92660 Attn: Technical Library	(1)
The Boeing Company P. O. Box 3999 Seattle, Washington 98124 Attn: Technical Library		Rocketdyne Solid Propulsion Operations P. O. Box 548 McGregor, Texas 76657 Attn: Technical Library	(1)
Chrysler Corporation Space Division Michoud Operations New Orleans, Louisiana 70150 Attn: Technical Library		Rocketdyne 6633 Canoga Avenue Canoga Park, California 91304 Attn: Technical Library	(1)
Hercules, Inc. Allegany Ballistics Laboratory P. O. Box 210 Cumberland, Maryland 21502 Attn: Technical Library	(1)	Rohm and Haas Redstone Arsenal Research Division Huntsville, Alabama 35807 Attn: Technical Library	(1)
		Douglas Missiles & Space Systems Huntington Beach, California 92647 Attn: T. J. Gordon	(1)

DISTRIBUTION LIST (Cont)

<u>Recipient</u>	<u>Copies</u>	<u>Recipient</u>	<u>Copies</u>
Hercules Company Bacchus Works P. O. Box 98 Magna, Utah 84044 Attn: Technical Library	(1)	Rohr Corporation Space Products Division 8200 Arlington Boulevard Riverside, California 92503	(1)
Thiokol Chemical Corporation Elkton Division Elkton, Maryland 21921 Attn: Technical Library	(1)	Raybestos-Manhattan, Inc. 4651 Pacific Building Los Angeles, California 90053	(1)
Thiokol Chemical Corporation Huntsville Division Huntsville, Alabama 35807 Attn: Technical Library	(1)	Narmco Materials Division Whittaker Corporation 600 Victoria Street Costa Mesa, California 92627	(1)
Minnesota Mining & Mfg Company 2501 Hudson Road St. Paul, Minnesota 55101	(1)	Hexcel Corporation Coast Division 11711 Dublin Boulevard Dublin, California 94566	(1)
US Polymeric, Inc. 700 E. Dyer Road Santa Ana, California 92707	(1)	HITCO 1602 West 135 Street Gardena, California 90249	(1)
Ferro Corporation 3512-20 Helms Avenue Culver City, California 90230	(1)	AVCO Corporation 201 Lowell Street Wilmington, Massachusetts 01887	(1)
Fiberite Corporation 645 No. Cypress Street Orange, California 92666	(1)	TRW, Inc. Structures Division 23444 Euclid Avenue Cleveland, Ohio 44117 Attn: L. Russell	(1)
United Technology Center P. O. Box 358 Sunnyvale, California 94088 Attn: Technical Library	(1)	TRW Systems One Space Park Redondo Beach, California 90278 Attn: M. Lipow	(1)

DISTRIBUTION LIST (Cont)

<u>Recipient</u>	<u>Copies</u>
Thiokol Chemical Corporation	
Wasatch Division	
Brigham City, Utah 84302	
Attn: C. Hickox	
Mail Stop 284	(2)
R. Ellis	
Mail Stop 284	(1)
R. Laramee	
Mail Stop 284	(1)
W. Allen	
Mail Stop 268	(1)
E. Gray	
Mail Stop 240	(1)
P. Russell	
Mail Stop 240	(1)
J. Mathis	
Mail Stop 240	(1)
E. Bennion	
Mail Stop 315	(1)
U. Garrison	
Mail Stop 310	(1)
Library	
Mail Stop 125C	(1)
W. Skidmore	
Mail Stop 712	(1)