SECURITY AND CRYPTOGRAPHY LABORATORY

Exercise Sheet #11

Advanced Cryptography 2021

Exercise 1 Decorrelation

Compute $||M||_a$, for

$$M := \begin{pmatrix} (0,0) & (0,1) & (1,0) & (1,1) \\ (0,0) & 5 & 4 & 1 & 2 \\ 6 & 8 & 0 & 4 \\ (1,0) & 2 & 4 & 4 & 5 \\ (1,1) & 10 & 0 & 0 & 1 \end{pmatrix}$$

where the rows are (x_1, x_2) and the columns (y_1, y_2) .

Exercise 2 Decorrelation and Differential Cryptanalysis

A typical measure in the differential cryptanalysis of a random permutation C is the maximum value of the expected differential probability defined by

$$\mathrm{EDP}^{C}_{\mathrm{max}} = \max_{a \neq 0, b} \mathrm{E}(\Pr_{X}[C(X \oplus a) = C(X) \oplus b]).$$

Prove that

$$\mathrm{EDP}_{\mathrm{max}}^{C} \leq \frac{1}{2^{m}-1} + \mathrm{BestAdv}_{\mathrm{Cl}_{a}^{2}}(C, C^{*}).$$

Deduce how decorrelation theory can prevent differential attacks.

Exercise 3 Decorrelation (2)

In this exercise we consider a random permutation $C: \{0,1\}^m \to \{0,1\}^m$ and compare it to the uniformly distributed random permutation $C^*: \{0,1\}^m \to \{0,1\}^m$.

- 1. Prove that $|||[C]^{d-1} [C^*]^{d-1}|||_{\infty} \le |||[C]^d [C^*]^d|||_{\infty}$. **Hint:** Use the interpretation of $|||[C]^d - [C^*]^d|||_{\infty}$ in term of best non-adaptive distinguisher.
- 2. Prove that $0 \le |||[C]^d [C^*]^d|||_{\infty} \le 2$.
- 3. Show that the property $\mathrm{Dec}^d(C)=0$ does not depend on the choice of the distance on the matrix space.

4. Show that if $\operatorname{Dec}^1(C) = 0$, then the cipher C provides perfect secrecy for any distribution of the plaintext.

In a typical situation, C is a block cipher and the randomness actually comes from the randomness of the secret key. Let $f_K : \{0,1\}^m \to \{0,1\}^m$ be a function parametered by a uniformly distributed random key K in a key space K. We compare f_K to a uniformly distributed random function F^* .

- 5. Prove that if $\operatorname{Dec}^d(f_K) = 0$, then $|\mathcal{K}| \geq 2^{md}$.
- 6. Show that for $f_K(x) = x \oplus K$, we obtain $\mathrm{Dec}^1(f_K) = 0$.
- 7. Propose a construction for f_K such that $\operatorname{Dec}^d(f_K) = 0$ and $|\mathcal{K}| = 2^{md}$.