Chapitre 1

Équations et inéquations quadratiques

Table 1.1 – Objectifs. À fin de ce chapitre 1...

	Pour m'entraîner 🚣			
Je dois connaître / savoir faire	₡ ♥ Ŏ			
Résoudre une équation quadratique en diversifiant	les stratégi	es		
Notion d'équation quadratiques	1.1, 1.2, 1.3,			
Résolution par complétion au carré	1.4, 1.5	1.6, 1.7		
Résolution par formule quadratique	1.8	1.9, 1.10, 1.11		
Résolution par factorisation : regroupement, identités remarquables, somme-produit	1.12, 1.13	1.14		
Résolution d'inéquations				
La forme factorisée $a(x-r_1)(x-r_2)$	1.15			
Résolution à l'aide d'un tableau de signe		1.16, 1.17	1.18	
Approfondissements				
Utiliser un changement de variable pour se ramener à une quadratique (bicarée,)		1.19, 1.20, 1.21		
Factorisation par racine évidente et résolution d'équations cubiques	1.23	1.24, 1.25, 1.26		

1.1 Vocabulaire des polynômes

Définition 1.1 — vocabulaire des expressions polynômiales.

Pour $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$, un terme de la forme ax^n est un monôme (1) de la variable x (2) de degré n (3) et de coefficient a.

Un polynôme est une somme de monômes.

■ Exemple 1.1

- 1. Le monôme $-2x^5$ est de degré 5 et de coefficient -2.
- 2. Le monôme $\sqrt{2}x^5$ est de degré 5 et de coefficient $\sqrt{2}$
- 3. Le binôme -2x + 1 est un polynôme de degré 1. C'est une expression affine.
- 4. Le trinôme $5x^2 + 3x 1$ est un polynôme de degré 2 de coefficient dominant 5.
- 5. Le trinôme $x^3 \frac{2}{3}x + 3\sqrt{2}$ est un polynôme de degré 3 de coefficient dominant 1.

Définition 1.2 r est une racine (un zéro) du polynôme P(x) si P(r)=0

■ Exemple 1.2

- 1. r = 1 est une racine de $x^2 2x + 1$ car $(1)^2 2(1) + 1 = 0$.
- 2. ax + b ($a \neq 0$) est un polynôme de degré 1. Il admet une unique racine $r = \frac{-b}{a}$.
- 3. $r = -\sqrt{2}$ est une racine (un zéro) du polynôme $x^2 2$ car $(-\sqrt{2})^2 2 = 0$.
- 4. Le polynôme $x^2 + 2$ n'a pas de racines, car l'équation $x^2 + 2 = 0$ est sans solutions réelles.

Définition 1.3 Un polynôme est factorisé s'il est écrit comme produit de facteurs.

■ Exemple 1.3

- 1. $5(x-3)^2(2x-1)(3x+1)$ est factorisé.
- **2.** $2(x-3)^2 + (2x-1)(2x+1)$ n'est pas factorisé.

Théorème 1.1 Les racines d'un polynôme factorisé sont les racines de ses facteurs.

■ Exemple 1.4
$$-11(3x-1) = 0$$
 $5(3x-2)(2x-5) = 0$ $4(3x-5)^2 = 0$ $\iff 3x-1=0$ $\iff 3x-2=0$ ou $2x-5=0$ $\iff 3x-5=0=0$ $\iff x=\frac{1}{3}$ $\iff x=\frac{2}{3}$ ou $x=\frac{5}{2}$

Corollaire 1.2 — catégories de polynômes du second degré.

Pour un polynôme du second degré $P(x) = ax^2 + bx + c$ (avec $a \neq 0$):

- 1. Si P est factorisable P(x) = (px + q)(rx + s) alors P a une ou deux racines réelles.
- 2. Si P n'a pas de racines réelles, alors P n'est pas factorisable sous la forme (px+q)(rx+s).

Définition 1.4 — polynômes irréductibles.

On appelle polynômes irréductibles (dans \mathbb{R}):

- les polynômes du premier degré ax + b ($a \neq 0$).
- les polynômes du second degré $ax^2 + bx + c$ sans racines réelles.

Une factorisation est complète si tous facteurs sont irréductibles.

■ Exemple 1.5

- 1. Le polynôme $9x^2 + 4$ est irréductible. L'équation $9x^2 + 4 = 0$ n'a pas de solutions dans \mathbb{R} .
- 2. Le polynôme $9x^2 4$ est factorisable : $9x^2 4 = (3x 2)(3x + 2)$. $9x^2 4$ admet deux racines $r_1 = \frac{2}{3}$ et $r_2 = \frac{-2}{3}$.

■ Exemple 1.6

- 1. $x^3 x^2 + 4x 4 = (x 1)(x^2 + 4)$ est une factorisation complète. 2. $x^3 x^2 4x + 4 = (x 1)(x^2 4)$ n'est pas complète. On a $x^3 x^2 4x + 4 = (x 1)(x 2)(x + 2)$
- Tous les polynômes de degré 3 ou plus sont factorisables (dans ℝ) sans pour autant avoir des racines réelles. Par exemple, $P(x) = x^4 + 4$ n'a pas de racines réelles, et pourtant il est factorisable par $x^4 + 4 = (x^2 - 2x + 2)(x^2 + 2x + 2)$.

Figure 1.1 – En bref:

1.2 Équations quadratiques

Définition 1.5 — Équation quadratique sous forme standard.

Une équation quadratique d'inconnue x sous forme standard est une équation de la forme

$$ax^2 + bx + c = 0$$
 ou $a \neq 0$, b et $c \in \mathbb{R}$

Les solutions de l'équation sont les racines du polynôme du 2^{nd} degré $P(x) = ax^2 + bx + c$.

■ Exemple 1.7

Par extension on appelle équation quadratique toute équation équivalente à une équation quadratique sous forme standard.

- 1. L'équation $3x^2 5x + 2 = 0$ est sous forme standard.
- 2. L'équation $2x^2 = x^2 + 2x + 3$ est quadratique et a une forme standard :

$$2x^2 = x^2 + 2x + 3$$

$$\iff x^2 - 2x - 3 = 0$$

$$\text{Ici } a = 1 \neq 0, \ b = -2 \text{ et } c = -3.$$

3. L'équation $2(x+3)^2 = 0$ est quadratique et a une forme standard :

$$2(x+3)^2 = 0$$

$$\iff 2x^2 + 12x + 18 = 0$$

$$\text{Ici } a = 2 \neq 0, \ b = 12 \text{ et } c = 18$$

4. L'équation $x^2 + 3x = x^2 - 1$ n'est pas quadratique :

$$x^{2} + 3x = x^{2} - 1$$

 $\iff 3x + 1 = 0; \ a = 0, \ b = 3 \text{ et } c = 1$

Pour résoudre une équation quadratique sous forme standard P(x)=0 on peut :

- factoriser (si possible) le polynôme P pour se ramener à une équation produit nul.
- dans des cas simples, compléter au carré pour obtenir forme canonique de P et résoudre.
- utiliser la formule quadratique pour déterminer directement les racines de P.

Mémoriser, comprendre et maitriser différentes stratégies de résolution vous permettra de choisir les méthodes les plus appropriées à chaque cas.

1.3 Résolution par complétion au carré, forme canonique

Lemm 1.3 La complétion au carré repose sur l'identité suivante :

pour tout
$$x$$
 et $b \in \mathbb{R}$ on a $x^2 + bx = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$

Démonstration.

$$x^{2} + bx = x(x+b)$$

$$= \left(x + \frac{b}{2} - \frac{b}{2}\right) \left(x + \frac{b}{2} + \frac{b}{2}\right)$$

$$= \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2}$$

Définition 1.6 — discriminant. Soit un polynôme du second degré $P(x) = ax^2 + bx + c$ ($a \neq 0$).

On appelle disciminant le réel $\Delta = b^2 - 4ac$

Théorème 1.4 — forme canonique d'un polynôme du second degré.

Soit un polynôme P du second degré $P(x) = ax^2 + bx + c$ ($a \neq 0$).

On pose
$$\alpha = \frac{-b}{2a}$$
 et $\beta = \frac{-\Delta}{4a}$.

Le polynôme P admet une écriture sous forme canonique :

pour tout
$$x \in \mathbb{R}$$
 $P(x) = ax^2 + bx + c = a(x - \alpha)^2 + \beta$

Démonstration.
$$ax^{2} + bx + c = ax\left(x + \frac{b}{a}\right) + c$$

$$= a\left(x + \frac{b}{2a} - \frac{b}{2a}\right)\left(x + \frac{b}{2a} + \frac{b}{2a}\right) + c$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}}\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x - \frac{-b}{2a}\right)^{2} - \frac{(b^{2} - 4ac)}{4a} = a\left(x - \frac{-b}{2a}\right)^{2} + \frac{-\Delta}{4a}$$

$$= a(x - \alpha)^{2} + \beta$$

$$\begin{array}{ll} \hbox{\it I\hskip -2pt R} & P(x)=ax^2+bx+c=a\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a} & \text{ (la forme canonique)} \\ & =a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right] & \text{ (n'est pas la forme canonique)} \end{array}$$

1.3.1 Résolution par la formule quadratique, forme factorisée

Théorème 1.5 — forme factorisée et signe.

Soit un polynôme du second degré $P(x) = ax^2 + bx + c$ ($a \neq 0$).

On note $\Delta = b^2 - 4ac$ son discriminant.

1. Si $\Delta > 0$, sa forme factorisée est $P(x) = a(x - r_1)(x - r_2)$.

P admet deux racines distinctes : $r_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

P est du même signe de a à l'extérieur des racines :

x	$-\infty$	r_1	r_2	$+\infty$
P(x)	signe de a	0 signe de $-a$	0 signe de a	ı

2. Si $\Delta = 0$ sa forme factorisée est $P(x) = a(x-r)^2$.

P admet une racine (double) $r = \frac{-b}{2a}$. P est du même signe que a.

x	$-\infty$	r		$+\infty$
P(x)	signe de a	0	signe de a	

3. Si $\Delta < 0$, P est irréductible (pas factorisable).

P n'a pas de racines. Son signe est toujours du signe de a.

x	$-\infty$	$+\infty$
P(x)	signe de a	

Démonstration.

$$P(x) = ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a}$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right]$$
Si $\Delta > 0 = a\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)$
Si $\Delta = 0 = a\left(x + \frac{b}{2a}\right)^{2}$
Si $\Delta < 0 = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right]$

x	$-\infty$	r_1 r	·2 +∞
$(x-r_1)$	_) +	+
$(x-r_2)$	_	- (9 +
a	signe de a	signe de a	signe de a
P(x)	signe de a) signe de $-a$ () signe de a

1.4 Exercices : Équations quadratiques

1.4.1 Exercices: Notion d'équation quadratique sous forme standard

Exercice 1.1 — concepts.

Voir le corrigé

1. Parmi ses équations, l'équationest une équation quadratique à une inconnue.

(A)
$$3(x+1)^2 = 2(x+1)^2$$

(B)
$$x^2 + 2x = x^2 - 1$$

(C)
$$ax^2 + bx + c = 0$$

(A)
$$3(x+1)^2 = 2(x+1)$$
 (B) $x^2 + 2x = x^2 - 1$ (C) $ax^2 + bx + c = 0$ (D) $\frac{1}{x^2} + \frac{1}{x} - 2 = 0$

2. Les équations quadratiques à une inconnue sont

(A)
$$2x^2 = -3x$$

(B)
$$3x^2(x-3) = x$$

(A)
$$2x^2 = -3x$$
 (B) $3x^2(x-3) = x$ (C) $\frac{2}{x^2} - 1 = 0$ (D) $\frac{y^2}{4} = 7$ (E) $x^2 = 9$

(D)
$$\frac{y^2}{4} = 7$$
 (2)

(E)
$$x^2 = 9$$

- 3. Une forme standard de l'équation $5x^2 = 6x 8$ est $5x^2 \dots = 0$.
- 4. Si 3 est solution de l'équation $\frac{4}{3}x^2 2a + 1 = 0$, inconnue x. Alors $2a = \dots$
- 5. Si a-b+c=0 et $a\neq 0$, alors une des solutions de l'équation $ax^2+bx+c=0$ d'inconnue xest x = car $a(.....)^2 + b(.....) + c =$
- 6. Si l'équation $mx^2 + 3x 4 = 0$ est quadratique d'inconnue x, alors $m \neq \dots$
- 7. Si l'équation $(k-3)x^2+2x-1=0$ est quadratique d'inconnue x, alors $k\neq\ldots$
- 8. Une forme standard de l'équation x(x+3) = 2x 5 est
- 9. Une forme standard de l'équation $3x^2 = x$ est
- 10. Sachant que l'équation $(a^2 1)x^3 (a + 1)x^2 + 4 = 0$ est quadratique d'inconnue x, alors avérifie les équations $a^2-1\ldots 0$ et $a+1\ldots 0$. Donc a prend le(s) valeur(s)

Exercice 1.2 Voir le corrigé

Pour chaque cas, entourer les valeurs solutions de l'équation :

- 1. L'équation $3x^2 2x 1 = 0$ et les valeurs (A) $x = \frac{2}{3}$ (B) $x = -\frac{1}{3}$ 2. L'équation $2x^2 3x + 1 = 0$ et les valeurs (A) $x = \frac{1}{2}$ (B) x = 1 (C) x = 2
- 3. L'équation $ax^2 ax 2a = 0$, inconnue x, $(a \neq 0)$ et les valeurs (A) x = 1 (B) x = -1
- 4. L'équation $(x-a)^2=a^2+2ab+b^2$, inconnue x et les valeurs (A) x=a+2b (B) x=2a+b

Exercice 1.3 Voir le corrigé

Soit le paramètre $k \in \mathbb{R}$, et l'équation $kx^2 - k(x+2) = x(2x+3) + 1$ d'inconnue x.

- 1. Écrire l'équation sous forme standard $ax^2 + bx + c = 0$. Exprimer a, b et c en fonction de k.
- 2. Pour quelle(s) valeur(s) de k l'équation n'est pas quadratique?
- 3. Justifier que -1 est solution quelle que soit la valeur de k.
- 4. Sachant que 0 est solution de l'équation, déterminer k.

1.4.2 Exercices : Résolution par complétion au carré

■ Exemple 1.8 — réactivation 2^{nde} : résoudre par racine carrée.

Isoler le terme au carré et résoudre par racine-carré les équations suivantes.

$$3x^2 - 1 = 8$$

$$5 - 2x^2 = 11$$

$$5 - 2x^2 = 11 \qquad (x+3)^2 = 36$$

$$(2x - 4)^2 = 7$$

$$3x^2 = 9$$

$$-2x^2 = 6$$

$$x + 3 = \pm \sqrt{36}$$

$$-2x^2 = 6 x+3 = \pm\sqrt{36} 2x-4 = \pm\sqrt{7}$$

$$x^{2} = 3$$

$$x^2 = -3$$

$$x + 3 = \pm 6$$

$$2x = 4 \pm \sqrt{7}$$

$$x = \pm \sqrt{3}$$

 $x^2=-3$ $x+3=\pm 6$ pas de solutions $x=-3\pm 6$

$$x = -3 \pm 6$$

$$x = 2 \pm \frac{\sqrt{7}}{2}$$

$$\mathscr{S} = \{\sqrt{3}; -\sqrt{3}\} \qquad \mathscr{S} = \varnothing$$

$$\mathscr{S} = \varnothing$$

$$\mathscr{S} = \{3; -9\}$$

$$\mathscr{S} = \{2 + \frac{\sqrt{7}}{2} \; ; \; 2 - \frac{\sqrt{7}}{2} \}$$

Exercice 1.4

Voir le corrigé

Isoler le terme au carré et résoudre par racine-carré les équations suivantes.

$$(E_1) 3x^2 - 6 = 21$$

$$(E_2) \ 2x^2 + 8 = 0$$

$$(E_3)$$
 $18 - 2x^2 = 0$

$$(E_4) (3x-1)^2 - 5 = 0$$

$$\begin{vmatrix} (E_4) & (3x-1)^2 - 5 = 0 \\ (E_5) & \frac{4}{5}(x-3)^2 = 0 \\ (E_6) & (x+1)^2 + 1 = 0 \end{vmatrix}$$

$$\begin{vmatrix} (E_7) & -(2x+1)^2 + 32 = 0 \\ (E_8) & 9(x+6)^2 + 16 = 0 \\ (E_9) & \frac{(3x+1)^2}{2} = 8$$

$$(E_6) (x+1)^2 + 1 = 0$$

$$(E_7) - (2x+1)^2 + 32 = 0$$

$$(E_8) \ 9(x+6)^2 + 16 = 0$$

$$(E_9) \frac{(3x+1)^2}{2} = 8$$

Exercice 1.5 — concepts.

Voir le corrigé

Compléter et entourer les bonnes propositions.

- (B) a = 0 (C) a > 0 alors l'équation $(2x 1)^2 = a$ d'inconnue x admet deux 1. Si (A) a < 0solutions distinctes.
- (B) b = 0 (C) b > 0] alors l'équation $5(x a)^2 + b = 0$ d'inconnue x admet 2. Si [(A) b < 0une solution unique.
- (B) c = 0 (C) c > 0] alors l'équation $(3x + 1)^2 = c$ d'inconnue x n'a pas de 3. Si [(A) c < 0solutions.
- 4. Les solutions de l'équation $(x+d)^2 = 10$ sont $x = \dots$ et $x = \dots$ et $x = \dots$
- 5. La plus petite des solutions de l'équation $(3x e)^2 60 = 0$ est $r = \dots$
- 6. Si $\geqslant 0$ alors les solutions de l'équation $(3x e)^2 60 = 0$ sont positives.

■ Exemple 1.9 — compléter au carré pour résoudre.

Exercice 1.6 Voir le corrigé

Compléter les résolutions par complétion au carré (certains - sont à corriger en +).

$$x^{2} - 4x + 1 = 0 x^{2} + 5x = \frac{3}{2}$$

$$x(x - ...) + 1 = 0 x(x - ...) = \frac{3}{2}$$

$$(x - 0)(x - ...) + 1 = 0 (x - 0)(x - ...) = \frac{3}{2}$$

$$(x - ...)^{2} - + 1 = 0 (x - \frac{3}{2}) \left(x - \frac{3}{2} - \frac{3}{2}\right) \left(x - \frac{3}{2} - \frac{3}{2}\right) = \frac{3}{2}$$

$$(x - ...)^{2} = (x - ...)^{2} = (x - ...)^{2} = x = ... \pm ...$$

$$x^{2} + 6x = 2 x^{2} - 3x + \frac{2}{5} = 0$$

$$x(x - ...) = 2 x(x - ...) + \frac{2}{5} = 0$$

$$(x - 0)(x - ...) = 2 (x - 0)(x - ...) + \frac{2}{5} = 0$$

$$(x - ...)^{2} - = 2 (x - \frac{3}{2})(x - \frac{3}{2}) + \frac{3}{2}$$

$$(x - ...)^{2} = (x - ...)^{2} =$$

Exercice 1.7 Voir le corrigé

Résoudre par complétion les équations suivantes.

$$(E_1) x^2 - 8x + 13 = 0$$
 $(E_2) x^2 + x - 1 = 0$ $(E_3) x^2 + 16 = 8x$ $(E_4) x^2 = 4x - 1$

1.4.3 Exercices : Discriminant et formule quadratique

Exercice 1.8 Voir le corrigé

Complétez le tableau à l'aide de la formule quadratique.

Equation	Formule quadratique	simplification	Solutions
$x^2 + 4x + 2 = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$\frac{-4 \pm \sqrt{8}}{2}$	$r_1 = -2 + \sqrt{2}$ $r_2 = -2 - \sqrt{2}$
$x^2 - 5x + 3 = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$5\pm\sqrt{\phantom{00000000000000000000000000000000000$	$egin{aligned} r_1 = \ r_2 = \end{aligned}$
$x^2 + x - 2 = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	±√	$r_1 = r_2 =$
$3x^2 + 4 = 12x$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	±√	$r_1 = r_2 =$
$3x^2 + 2\sqrt{3}x = 2$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	±√	$egin{aligned} r_1 = \ r_2 = \end{aligned}$
$x^2 + x + = 0$	$\frac{-() \pm \sqrt{()^2 - 4()(-3)}}{2()}$	±√	$egin{aligned} r_1 = \ r_2 = \ \end{aligned}$
$2x^2 x = 0$	$\frac{-(7) \pm \sqrt{(7)^2 - 4(2)(1)}}{2()}$	±√	$r_1 = r_2 =$
$x^2 x = 0$	$\frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-4)}}{2(3)}$	±√	$egin{aligned} r_1 = \ r_2 = \end{aligned}$
$x^2 x = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$\frac{-3\pm\sqrt{5}}{2}$	$r_1 = r_2 =$
$x^2 x = 0$	$\frac{-() \pm \sqrt{()^2 - 4()()}}{2()}$	$\frac{2\pm\sqrt{24}}{2}$	$r_1 = r_2 =$

Exemple 1.10 — résoudre par la formule quadratique. les équations suivantes d'inconnue x:

$$3x^2 - 5x - 1 = 0$$

$$4x^2 + 12x + 9 = 0$$

$$x^2 + 2x + 2 = 0$$

$$a = 3$$
 b

$$b = -5$$
 $c = -1$

$$a = 3$$
 $b = -5$ $c = -1$ $a = 4$ $b = 12$ $c = 9$

$$a=1$$
 $b=2$ $c=2$

$$\Delta = b^2 - 4ac = (-5)^2 - 4(3)(-1) = 37$$

$$\Delta = b^2 - 4ac = (12)^2 - 4(4)(9)$$

$$\Delta = b^2 - 4ac = (2)^2 - 4(1)(2)$$

$$\Delta = b^2 - 4ac = (12)^2 - 4(4)(9)$$

$$\Delta = b^2 - 4ac = (2)^2 - 4(1)(2)$$

$$\Delta > 0$$

$$\Delta =$$

$$\Delta = -4$$

2 solutions distinctes
$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
 1 solution $x = \frac{-b}{2a}$

1 solution
$$x$$

$$\Delta < 0$$

$$x = \frac{5 - \sqrt{37}}{6}$$
 $x = \frac{5 + \sqrt{37}}{6}$ $x = \frac{-12}{8} = \frac{-3}{2}$

$$x = \frac{-12}{8} = \frac{2a}{2}$$

pas de solutions dans $\ensuremath{\mathbb{R}}$

Exercice 1.9 Voir le corrigé

Résoudre les équations suivantes d'inconnue x.

$$(E_1) x^2 - 3x - 4 = 0$$

$$(E_5)$$
 $5x^2 - 2x = 7$

$$(E_2) \ x^2 = 2(x-1)$$

$$(E_4) -5x^2 - 3x + 2 = 0$$

$$(E_6) 6x + 1 = 2x^2$$

Exercice 1.10 Voir le corrigé

Utiliser le discriminant pour déterminer le *nombre* de solutions de l'équation.

$$(E_1) x^2 - 6x + 1 = 0$$

$$(E_3) \ 3x^2 = 6x - 9$$

$$(E_5)$$
 $3x^2 = 2(2x-1)$

$$(E_2) \ 4x^2 + 5x + \frac{13}{8} = 0$$

$$(E_4) 4x(x-1) - 3 = 0$$

$$(E_1) \ x^2 - 6x + 1 = 0$$

$$(E_2) \ 4x^2 + 5x + \frac{13}{8} = 0$$

$$(E_3) \ 3x^2 = 6x - 9$$

$$(E_4) \ 4x(x - 1) - 3 = 0$$

$$(E_5) \ 3x^2 = 2(2x - 1)$$

$$(E_6) \ x^2 + rx - s = 0 \ (s > 0)$$

Exercice 1.11 — concepts.

- 1. Le discriminant de l'équation $2x^2 + 4x 1 = 0$ vaut $\Delta = \dots$
- 2. Le discriminant de l'équation $\frac{2}{3}x x^2 \frac{1}{3} = 0$ vaut $\Delta = \dots$
- 3. Le discriminant de l'équation $x^2 x = \frac{1}{2}$ vaut $\Delta = \dots$
- 4. Entourez les équations quadratiques ayant deux solutions réelles distinctes.

(A)
$$x^2 + 1 = 0$$

(A)
$$x^2 + 1 = 0$$
 (B) $x^2 + 2x + 3 = 0$ (C) $x^2 + 2x + 1 = 0$ (D) $x^2 + 2x - 2 = 0$

(C)
$$x^2 + 2x + 1 = 0$$

(D)
$$x^2 + 2x - 2 = 0$$

- 5. Entourez les équations quadratiques ayant une solution réelles unique.
- (A) $x^2 + 2 = 0$ (B) $x^2 + x + 3 = 0$ (C) $x^2 + x 1 = 0$ (D) $4x^2 4x + 1 = 0$ La plus grande
- des deux solutions est $x = \dots$
- 6. Le discriminant de l'équation $x^2 + 4x + a = 0$ vaut $\Delta = \dots$ Si l'équation admet une unique solution alors $a = \dots$
- 7. L'équation quadratique $x^2 + 2bx + c = 0$ est sous forme

Son discriminant est $\Delta = \dots$

- Si $b^2 < c$ alors Δ est, et l'équation admet
- Si $\Delta \dots 0$, la plus petite des deux solutions est $x = \dots 0$

1.4.4 Exercices: Résolution par factorisation

Certaines équations quadratiques peuvent se résoudre par :

1. factorisation après mise en évidence de facteurs communs

depuis la 4^e

2. factorisation par identité remarquable de la différence de carrés

depuis la 3e

3. factorisation par identité remarquable du carré d'une somme

en 2nd

■ Exemple 1.11 — facteurs commun.

$$(x-4)(3x+7) = 0$$

$$x-4 = 0 \text{ ou } 3x+7 = 0$$

$$x = 4 \text{ ou } x = -\frac{7}{3}$$

$$\mathcal{S} = \{4; -\frac{7}{3}\}$$

$$21x-3x^2 = 0$$

$$3x(7-x) = 0$$

$$3x(7-x) = 0$$

$$3x = 0 \text{ ou } 7-x = 0$$

$$x = 0 \text{ ou } 7-x = 0$$

$$x = 0 \text{ ou } 7-x = 0$$

$$2x(x+1) = 5(x+1)$$

$$2x(x+1) = 0$$

■ Exemple 1.12 — identités remarquables.

$$(3x-1)^2 - 4x^2 = 0$$

$$(3x-1)^2 - (2x)^2 = 0$$

$$(3x-1-2x)(3x-1+2x) = 0$$

$$(x-1)(5x-1) = 0$$

$$x - 1 = 0$$

$$x - 2(x)(3) + 3^2 = 0$$

$$(x - 3)^2 = 0$$

$$(x - 3)^2 = 0$$

$$x - 3 = 0$$

- **■** Exemple 1.13 non exemple.
- 1. L'équivalence $x^2 x = 1 \iff x(x 1) = 1$ n'aboutit pas à une équation produit *nul*! On se ramène à la forme standard avec $x^2 - x = 1 \iff x^2 - x - 1 = 0$.
- 2. (3x-1)(2x+3) = 1 n'est pas une équation produit nul.

Exercice 1.12 — entrainement.

Voir le corrigé

Résoudre les équations suivantes d'inconnue x par une factorisation adaptée.

1.
$$(E_1)$$
 $5x^2 = 4x$

$$(E_2)$$
 5(3x+2)(x-5) = 0 (E_3) 2x(x-3) = 5(x-3)

$$(E_3)$$
 $2x(x-3) = 5(x-3)$

2.
$$(E_1)$$
 $x^2 + 2x + 1 = 0$ $|(E_2)$ $9x^2 + 6x + 1 = 0$ $|(E_3)$ $9x^2 + 4 = 12x$

$$(E_2) 9x^2 + 6x + 1 = 0$$

$$(E_3) 9x^2 + 4 = 12x$$

3.
$$(E_1)$$
 $(x-1)^2 - 9x^2 = 0$

3.
$$(E_1)$$
 $(x-1)^2 - 9x^2 = 0$ $|(E_2)(x+4)^2 - (2x-1)^2 = 0$ $|(E_3)(2x+1)^2 = (3x-2)^2$

$$(E_3) (2x+1)^2 = (3x-2)^2$$

Exercice 1.13 - 6.

Voir le corrigé

Résoudre les équations suivantes en passant par la forme standard et le discriminant.

$$(E_1) \ x^2 - x = 0$$

$$(E_2) \ 2(3-x)^2 = 5$$

$$(E_3) \ 5(2x-3)^2 = -1$$

Définition 1.7 — technique de factorisation par produit-somme d'expressions du type $1x^2 + bx + c$.

Si la factorisation $1x^2 + bx + c = (x + p)(x + q)$ est vraie, p et q vérifient :

Si a, b et $c \in \mathbb{Z}$, factoriser par produit-somme consiste à identifier une factorisation (x+p)(x+q), en cherchant parmi la liste de paires de facteurs de c, la paire p et q de somme égale à b. Cette méthode peut ne pas aboutir.

■ Exemple 1.14

- 1. Déterminer deux entiers p et q tel que $x^2 9x + 20 = (x+p)(x+q)$.
- 2. Déterminer deux entiers p et q tel que $x^2 12x 13 = (x+p)(x+q)$.
- 3. En déduire les solutions des équations (E_1) : $x^2 9x + 20 = 0$ et E_2): $x^2 12x 13$.

solution.

1.
$$x^2 - 9x + 20 \stackrel{?}{=} (x+p)(x+q)$$
.

On cherche p et q entiers tels que pq = 20 et p + q = -9.

Ici p et q sont de même signe.

Vérification
$$(x - 13)(x + 1) = x^2 - 12x - 13$$

2.
$$x^2 - 12x - 13 \stackrel{?}{=} (x+p)(x+q)$$

On cherche p et q entiers tels que pq = -13 et p + q = -12.

Ici p et q sont de signes contraires.

Vérification $x^2 - 9x + 20 = (x - 4)(x - 5)$

p	q	pq	p+q	
13	-1	-13	12	X
-13	1	-13	-12	/

pq

20

20

-5

p+q

$$3. x^2 - 9x + 20 = 0$$

$$x^2 - 12x - 13 = 0$$

$$(x-4)(x-5) = 0$$

$$\mathscr{S} = \{4:5\}$$

$$(x-4)(x-5) = 0$$
 $\mathscr{S} = \{4; 5\}$ $(x-13)(x+1) = 0$ $\mathscr{S} = \{13; -1\}$

Exercice 1.14

Voir le corrigé

Résoudre les équations suivantes d'inconnue x par une factorisation somme-produit :

- 1. (E_1) $x^2 + 6x + 5 = 0$
- $|(E_2)| x^2 5x + 6 = 0$ $|(E_3)| x^2 17x + 16 = 0$
- **2.** (E_1) $x^2 14x 15 = 0$ (E_2) $x^2 + x 6 = 0$
- (E_3) $x^2 5x 14 = 0$

Cette méthode est généralisable au cas $a \neq 1$ pour factoriser tout polynôme du second degré du moment ses racines sont rationnelles (dans \mathbb{Q}).

1.4.5 Exercices : Inéquations quadratiques

■ Exemple 1.15 — précision sur la forme factorisée.

La forme factorisée au sens du théorème 1.5 est $a(x-r_1)(x-r_2)$.

1.
$$P(x) = (3x - 7)(2x + 5) = 3\left(x - \frac{7}{3}\right) \times 2\left(x + \frac{5}{2}\right)$$

$$P(x) = 6\left(x - \frac{7}{3}\right)\left(x + \frac{5}{2}\right)$$
 forme factorisée avec racines $r_1 = \frac{7}{3}$ et $r_2 = -\frac{5}{2}$

2.
$$P(x) = 2(3x-7)^2 = 2\left(3(x-\frac{7}{3})\right)^2 = 2(3^2)\left(x-\frac{7}{3}\right)^2$$

$$P(x)=18\left(x-\frac{7}{3}\right)^2$$
 forme factorisée avec racine double $r_1=r_2=\frac{7}{3}$

Exercice 1.15 Voir le corrigé

Déterminer pour chaque fonction sa forme factorisée et préciser les racines.

1.
$$f(x) = 2(x+3)(x-5)$$

3.
$$f(x) = (5x - 2)(3x - 4)$$

3.
$$f(x) = (5x - 2)(3x - 4)$$
 5. $f(x) = 4(-x + 5)(2x + 3)$

2.
$$f(x) = (2x - 10)(3x + 15)$$
 4. $x(2 - 5x)$

4.
$$x(2-5x)$$

6.
$$(5x-2)(7-3x)$$

■ Exemple 1.16 — résoudre une inéquation quadratique de la forme P(x) > 0.

Résoudre dans \mathbb{R} l'inéquation $2x^2 + 3x - 6 \geqslant 0$.

solution. On pose $P(x) = 2x^2 + 3x - 6$.

$$\Delta = (3)^2 - 4(2)(-6) = 57 > 0$$

P a deux racines $r = \frac{-3 \pm \sqrt{57}}{4}$

$$P(x) = a(x - r_1)(x - r_2)$$

$$=2(x-\frac{-3-\sqrt{57}}{4})(x-\frac{-3+\sqrt{57}}{4})$$

$$\therefore \mathscr{S} = \left] -\infty; \frac{-3 - \sqrt{57}}{4} \right] \cup \left[\frac{-3 - \sqrt{57}}{4}; +\infty \right[.$$

Figure 1.2 – P est du signe de a à l'extérieur des racines

■ Exemple 1.17 — et si aucune racine?.

Résoudre dans \mathbb{R} l'inéquation $-2x^2 + 4x - 3 \leq 0$.

solution.

On pose
$$P(x) = -2x^2 + 4x - 3$$
.

$$\Delta = (4)^2 - 4(-2)(-3) = -10 < 0$$

P est irréductible, sans racines réelles.

$$\mathcal{L} \mathscr{S} = \mathbb{R}$$
.

Figure 1.3 – P est toujours signe de a

■ Exemple 1.18 — et si une racine unique?.

Résoudre dans \mathbb{R} l'inéquation $3x^2 + 24x + 48 > 0$.

solution.

On pose $P(x) = 3x^2 + 24x + 48$.

$$\Delta = (24)^2 - 4(3)(48) = 0$$

P a une racine double $r = \frac{-b}{2a} = \frac{-24}{2(3)} = -4$.

$$P(x) = a(x - r)^2 = 3(x + 4)^2$$

$$\therefore \mathscr{S} =]-\infty; -4[\cup]-4; +\infty[.$$

Figure 1.4 – P est toujours du signe de a lorsque

■ Exemple 1.19 — ... et si l'expression est déja sous forme factorisée.

Résoudre dans \mathbb{R} l'inéquation $(1-2x)(x+4) \ge 0$.

solution.

On pose
$$P(x) = (2x - 1)(x + 4)$$

$$= -2(x - \frac{1}{2})(x + 4)$$

P a deux racines $r_1 = \frac{1}{2}$ et $r_2 = -4$.

$$\therefore \mathscr{S} = \left[-4; \frac{1}{2} \right]$$

Figure 1.5 – P est du signe de a à l'extérieur des racines

■ Exemple 1.20 — ... et si l'expression à un signe évident.

Résoudre dans \mathbb{R} l'inéquation $2(x-5)^2+4\leqslant 0$.

solution. Il n'est pas nécessaire ici de ramener à une forme standard et calculer le discriminant

On pose
$$P(x) = 2(x-5)^2 + 4$$

P n'a pas de racines.

P est toujours positif.

$$\mathcal{L} \mathscr{S} = \emptyset$$

Figure 1.6 – P est toujours positif

Exercice 1.16 — entrainement intelligent.

Voir le corrigé

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x.

1.
$$(I_1)$$
 $3(x-2)(x+9) > 0$

$$(I_2)$$
 $-5x(x+2) \ge 0$

$$(I_3)$$
 $(8-x)(3x+5) < 0$

2.
$$(I_1)$$
 $-2x^2 + 3x + 1 \ge 0$ $|(I_2)| 2x^2 + 3x + 5 > 0$ $|(I_3)| 6 - 7x - 3x^2 \le 0$

$$(I_2) 2x^2 + 3x + 5 > 0$$

$$(I_3)$$
 $6 - 7x - 3x^2 \le 0$

3.
$$(I_1)$$
 $x^2 - 3x < 5$

$$(I_2) x^2 - 2x - 15 \leqslant 1$$

$$|(I_3)| 4x^2 \geqslant 12$$

4.
$$(I_1)$$
 $2x^2 + 5 < 0$

$$(I_2)$$
 5(2-3x)² + 1 \geqslant 0

$$(I_3) -(x+10)^2 - 1 < 0$$

■ Exemple 1.21

Résoudre dans $\mathbb R$ l'inéquation $\frac{x^2-6x+5}{-x^2+3x-2}\leqslant 0$.

solution.

$$x^{2} - 6x + 5 = 0 -x^{2} + 3x - 2 = 0$$

$$\Delta = (-6)^{2} - 4(1)(5) = 16 \Delta = (3)^{2} - 4(-1)(-2) = 1 > 0$$

$$x_{1} = \frac{-(-6) + \sqrt{16}}{2(1)} = 5 x_{2} = \frac{-(-6) - \sqrt{16}}{2(1)} = 1 x_{1} = \frac{-(3) + \sqrt{1}}{2(-1)} = 1 x_{2} = \frac{-(3) - \sqrt{1}}{2(-1)} = 2$$

$$x - \infty 1 2 5 + \infty$$

$$x^{2} - 6x + 5 + 0 - 0 + 0$$

$$-x^{2} + 3x - 2 - 0 + 0 - 0 + 0$$

$$\frac{x^{2} - 6x + 5}{-x^{2} + 3x - 2} - 0 + 0 - 0$$

Exercice 1.17 Voir le corrigé

Résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x.

1.
$$(I_1)$$
 $(3x^2 + x + 2)(x + 3) \le 0$

 $\therefore \mathscr{S} =]-\infty; 1[\cup]1; 2[\cup[5; +\infty]]$

$$|(I_2)|(-x^2+x-7)(3x^2-x+2) \ge 0$$

x	$-\infty$	$+\infty$	x	$-\infty$		$+\infty$
$3x^2 + x + 2$			$-x^2 + x - 7$			
x+3			$3x^2 - x + 2$			
×			×			

2.
$$(I_1)$$
 $\frac{3x^2-4x+7}{2x+1} \le 0$

$$\left| (I_2) \right| \frac{x^2 - 4x - 1}{x^2 - 2} \leqslant 0$$

Exercice 1.18 Voir le corrigé

Résoudre l'inéquation $x + \frac{1}{x} \le 4$, inconnue x.

1.4.6 Exercices : Résolution d'équations par changement de variable

■ Exemple 1.22

Résoudre dans $\mathbb R$ par un changement de variable $-2(x-2)^2+7(x-2)+15=0$.

solution. On pose t = x - 2, t vérifie :

$$-2t^2 + 7t + 15 = 0$$

$$\Delta = (7)^2 - 4(-2)(15) = 169$$

$$t_1 = \frac{-(7) + \sqrt{169}}{2(-2)} \quad t_2 = \frac{-(7) - \sqrt{169}}{2(-2)} \quad 2 \text{ solutions}$$

$$t_1 = \frac{-3}{2} \quad t_2 = 5$$

$$x - 2 = \frac{-3}{2} \quad x - 2 = 5$$

$$x = \frac{1}{2} \quad x = 7$$
 substituer pour retrouver une équation pour x

Exercice 1.19 Voir le corrigé

Résoudre par un changement de variable idoine les équations suivantes

(E₁)
$$(2x-3)^2 - 3(2x-3) - 4 = 0$$

$$(E_2)$$
 5(2x+3)² + 3(2x+3) - 2 = 0

■ Exemple 1.23 — équations bicarrées.

Résoudre dans \mathbb{R} l'équation $x^4 - 5x^2 + 4 = 0$.

solution.

$$x^4 - 5x^2 + 4 = 0$$

$$(x^2)^2 - 5x^2 + 4 = 0$$

On pose
$$t = x^2$$
 $t^2 - 5t + 4 = 0$

$$(t-1)(t-5) = 0$$

resoudre pour t

$$x^2 = 1$$
 ou $x^2 = 5$

$$t=1 \quad \text{ou} \quad t=5$$

$$x^2=1 \quad \text{ou} \quad x^2=5$$

$$x=1 \quad \text{ou} \quad -1 \quad x=\sqrt{5} \quad \text{ou} \quad -\sqrt{5}$$
 résoudre pour x
$$\mathscr{S}=\{1;-1;\sqrt{5};-\sqrt{5}\}$$

Exercice 1.20 Voir le corrigé

Résoudre les équations bicarrées suivantes

$$(E_1) \ x^4 - 3x^2 + 2 = 0$$

$$(E_3)$$
 $x^4 - 2x^2 - 8 = 0$

$$(E_2) \ x^4 - 13x^2 + 40 = 0$$

(E₄)
$$2x^4 + 4x^2 + 1 = 0$$

Exercice 1.21 Voir le corrigé

Résoudre les équations suivantes à l'aide du changement de variable $t=\sqrt{x}$.

(E₁)
$$3x + 8\sqrt{x} - 3 = 0$$

$$(E_2)$$
 $x - 5\sqrt{x} + 6 = 0$

Exercice 1.22

Voir le corrigé

Résoudre l'équation $\frac{5}{x^2} - \frac{2}{x} - 7 = 0$ à l'aide du changement de variable $t = \frac{1}{x}$.

1.4.7 Exercices : Résolution d'équations et d'inéquations cubiques

Théorème 1.6 — admis. Soit P un polynôme de degré n.

Si $r \in \mathbb{R}$ est une racine de P alors P est factorisable par (x - r).

Il existe un polynôme de degré n-1 tel que pour tout $x \in \mathbb{R}$: P(x) = (x-r)Q(x).

■ Exemple 1.24

- 1. Vérifier que r=-2 est racine du polynôme $P(x)=3x^2+10x+8$
- 2. Factoriser le polynôme $P(x) = 3x^2 + 10x + 8$.
- 3. Identifier les racines

solution.

- 1. $P(-2) = 3(-2)^2 + 10(-2) + 8 = 0$, f est factorisable par (x (-2)) = (x + 2).
- 2. On cherche Q(x) = ax + b tel que :

pour tout
$$x \in \mathbb{R}$$
 $3x^2+10x+8=(x+2)(ax+b)$ $3x^2+10x+8=ax^2+(b+2a)x+2b$ développer $a=3$ $b+2a=10$ $2b=8$ développer par identification des

$$a = 3$$
 $b = 4$

$$\therefore P(x) = 3x^2 + 10x + 8 = (x+2)(3x+4)$$

3. Les racines de *P* sont $r_1 = -2$ et $r_2 = -\frac{4}{3}$.

Exercice 1.23 Voir le corrigé

Les polynômes suivants ont une racine parmi les valeurs $\{-3 ; -2 ; -1 ; 1 ; 2 ; 3\}$.

Identifier la racine écidente et factoriser le polynôme ${\cal P}.$

1.
$$P(x) = 2x^2 - 5x + 3$$

3.
$$P(x) = 2x^2 - 3x - 2$$

2.
$$P(x) = 4x^2 + 5x + 1$$

4.
$$P(x) = 3x^2 + 14x + 8$$

■ Exemple 1.25

- 1. Vérifier que r=2 est racine du polynôme $P(x)=-x^3-8x^2-x+42$
- 2. Factoriser le polynôme $P(x) = -x^3 8x^2 x + 42$.
- 3. En déduire les racines de P.

solution.

- 1. $P(2) = (2)^3 8(2)^2 (2) + 42 = 0$, P est factorisable par (x (2)) = (x 2).
- 2. pour tout $x \in \mathbb{R}$ $-x^3 8x^2 x + 42 = (x 2)(ax^2 + bx + c)$ $-x^3 8x^2 x + 42 = ax^3 + (-2a + b)x^2 + (-2b + c)x + (-2)c$ par identification a = -1 -2a + b = -8 -2b + c = -1 -2c = 42 coefficients il faut

$$a = -1 \quad b = -10 \quad c = -21$$

$$\therefore P(x) = -x^3 - 8x^2 - x + 42 = (x - 2)(-x^2 - 10x - 21)$$

3.
$$P(x) = 0 \iff (x-2)(-x^2 - 10x - 21) = 0$$

$$x - 2 = 0 \quad \text{ou} \quad -x^2 - 10x - 21 = 0$$

$$x = 2; \quad x = \frac{-(-10) - \sqrt{16}}{2(-1)} = -7; \quad x = \frac{-(-10) + \sqrt{16}}{2(-1)} = -3.$$

Exercice 1.24 Voir le corrigé

Soit le polynôme cubique défini sur \mathbb{R} par $P(x) = -2x^3 + 8x^2 + 6x - 36$.

- 1. Montrer que P(-2) = 0
- 2. Déterminer a, b et $c \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}$ on a $P(x) = (x+2)(ax^2 + bx + c)$
- 3. Résoudre dans \mathbb{R} l'équation P(x) = 0.

Exercice 1.25 Voir le corrigé

Soit le polynôme cubique défini sur \mathbb{R} par $P(x) = x^3 - 3x + 2$.

- 1. Montrer que 1 est une racine de ${\cal P}$
- **2.** Déterminer a, b et $c \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}$ on a $P(x) = (x-1)(ax^2 + bx + c)$
- 3. Dresser le tableau de signe de P.

Exercice 1.26 Voir le corrigé

Soit le polynôme cubique défini sur $\mathbb R$ par $P(x)=-x^3+x^2+x-1$.

- 1. Montrer que P(-1) = 0
- 2. Déterminer a, b et $c \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}$ on a $P(x) = (x+1)(x^2+bx+c)$
- 3. Résoudre dans $\mathbb R$ l'inéquation $P(x) \leqslant 0$.