1.	1+	じめい	
⊥.	19	レダブレ	,

2. 平均

ドンジ

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

6. 標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3): 円グラフ

11. 平均の応用(1):加重平均

12. 平均の応用(2):条件付き平均

13. 平均の応用(3): 平均成長率(CAGR)

本章の目的

(1) 数字の見方を学ぶ

- たくさん並んでいる数字を見て、どのように結論づけるか
- この数字は、大きいのか、小さいのか、偏っているのか・・・

(2) 数字を見るための計算方法、グラフの作り方も解説します

- 平均値、中央値、標準偏差・・・
- ヒストグラム
- パレート図

ケース:電話営業データ

	Α	В	С	D
1				
2		電話営業に	かかる時間(秒)	
3			新人A	ベテランB
4		1回目	120	150
5		2回目	150	140
6		3回目	500	160
7		4回目	100	170
8		5回目	600	200
9		6回目	110	160
10		7回目	140	170
11		8回目	800	180
12		9回目	150	150

(1) 電話営業にかかる時間

- A)新人Aさんと、ベテランBさん
- B) Aさん「電話時間が長くて非効率」
- C) 2人の違いを定量的に評価

(2) 評価指標

- A) 平均值
- B) グラフ
- C)中央值
- D) 標準偏差

1.	はじめ	(
	10.0	•

2. 平均值

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

6. 標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3): 円グラフ

11. 平均の応用(1): 加重平均

12. 平均の応用(2): 条件付き平均

13. 平均の応用(3): 平均成長率 (CAGR)

ケース:電話営業データ

	Α	В	С	D
1				
2		電話営業に	かかる時間(私	少)
3			新人A	ベテランB
4		1回目	120	150
5		2回目	150	140
6		3回目	500	160
7		4回目	100	170
8		5回目	600	200
9		6回目	110	160
10		7回目	140	170
11		8回目	800	180
12		9回目	150	150

(1) 電話営業にかかる時間

- A)新人Aさんと、ベテランBさん
- B) Aさん「電話時間が長くて非効率」
- C) 2人の違いを定量的に評価

(2) 評価指標

- A) 平均值
- B) グラフ
- C)中央值
- D) 標準偏差

平均值

(1) もっとも代表的な指標

- とにかく分かりやすい
- 複雑な計算をするほど、ビジネスの現場で議論がスムーズに進まない

(2) 計算式

• =AVERAGE(計算範囲)

(3) 計算結果

• 新人Aさんは、ベテランBさんよりも平均会話時間が長くなっている

1.	はじ	めに
т.	VO U	U) V

2. 平均值

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

6. 標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3): 円グラフ

11. 平均の応用(1): 加重平均

12. 平均の応用(2): 条件付き平均

13. 平均の応用(3): 平均成長率 (CAGR)

ケース:電話営業データ

	Α	В	С	D
1				
2		電話営業に	かかる時間(私	少)
3			新人A	ベテランB
4		1回目	120	150
5		2回目	150	140
6		3回目	500	160
7		4回目	100	170
8		5回目	600	200
9		6回目	110	160
10		7回目	140	170
11		8回目	800	180
12		9回目	150	150

(1) 電話営業にかかる時間

- A)新人Aさんと、ベテランBさん
- B) Aさん「電話時間が長くて非効率」
- C) 2人の違いを定量的に評価

(2) 評価指標

- A) 平均值
- B) グラフ
- C)中央值
- D) 標準偏差

平均値の課題

(1) 平均值

- 極端に大きい数値があると、平均が引っ張られてしまう
- 新人Aさんは、一部の極端なデータを除けば、ベテランBさんと同じくら

データは、まずグラフで見る

- (1) グラフのメリット
 - 数字のバラつきが分かりやすい

- (2) バラつきの原因を追究し、対応策を考える
 - 改善できる数字かもしれない
 - 見込みがない顧客と、つい長い時間話してしまっている、など
 - あるいは、ビジネスの世界では、無視していい数字もある
 - たまたまクレームがあって長電話になってしまった。
 - 平均値に入れない、という判断も

グラフ(1) 縦棒グラフ

(1) 縦棒グラフ

- シンプルで分かりやすい
- 平均値を出すときは、組み合わせ→折れ線グラフで

- 1. はじめに
- 2. 平均值
- 3. グラフ化(1) 縦棒グラフ
- 4. グラフ化(2) ヒストグラム
- 5. 中央値
- 6. 標準偏差
- 7. ここまでのまとめ

9. パレート分析(2):パレート図

8. パレート分析(1)

- 10. パレート分析(3): 円グラフ
- 11. 平均の応用(1): 加重平均
- 12. 平均の応用(2): 条件付き平均
 - 13. 平均の応用(3): 平均成長率 (CAGR)

グラフ(2) ヒストグラム

(1) ヒストグラム

- どのあたりに数字が集中しているか(分布)がわかる
- 150~180の間で、頻度を計算
- ベテランBさんに比べて、Aさんはバラつきが大きい(=極端)

グラフ(2) ヒストグラム

(1) ヒストグラム

• どのあたりに数字が集中しているか (分布) がわかる

(2) 作り方

- 挿入 → 統計グラフ → ヒストグラム
- 横軸を右クリック → 軸の書式設定
 - ビンの数
 - オーバーフロー(右端の最大値)
 - アンダーフロー(左端の最小値)

1.	は	じめい
	100	

2. 平均值

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3): 円グラフ

11. 平均の応用(1): 加重平均

12. 平均の応用(2): 条件付き平均

13. 平均の応用(3): 平均成長率 (CAGR)

ケース:電話営業データ

	Α	В	С	D
1				
2		電話営業に	かかる時間(秒)	
3			新人A	ベテランB
4		1回目	120	150
5		2回目	150	140
6		3回目	500	160
7		4回目	100	170
8		5回目	600	200
9		6回目	110	160
10		7回目	140	170
11		8回目	800	180
12		9回目	150	150

(1) 電話営業にかかる時間

- A)新人Aさんと、ベテランBさん
- B) Aさん「電話時間が長くて非効率」
- C) 2人の違いを定量的に評価

(2) 評価指標

- A) 平均值
- B) グラフ
- C) 中央値
- D) 標準偏差

平均値の課題

(1) 平均值

極端に大きい数値があると、平均が引っ張られてしまう→中央値という数字を使う

平均值:297

中央値

(1) 中央値とは

- 大きい順に並び替えたときに、真ん中(9回中5番目に)大きい数字
- 極端な数値に引っ張られにくい

平均值:297

新人A (秒) 1,000 750 平均值: 500 297 250 7回目 2回目 4回目 5回目 8回目 9回目 中央值:150

中央值

(1) グラフの作り方

フィルターで大きい順に並び替えると便利

(2) 関数

• =MEDIAN (計算範囲)

(3) 計算結果

- 中央値でみると、新人Aさんと、ベテランBさんでは変わらない
 - → 新人Aさんが時間かかっている理由は、一部の極端の数字のせい

1. は	じめ
------	----

2. 平均值

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

6. 標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3): 円グラフ

11. 平均の応用(1): 加重平均

12. 平均の応用(2): 条件付き平均

13. 平均の応用(3): 平均成長率 (CAGR)

ケース:電話営業データ

	Α	В	С	D
1				
2		電話営業に	かかる時間(秒))
3			新人A	ベテランB
4		1回目	120	150
5		2回目	150	140
6		3回目	500	160
7		4回目	100	170
8		5回目	600	200
9		6回目	110	160
10		7回目	140	170
11		8回目	800	180
12		9回目	150	150

(1) 電話営業にかかる時間

- A)新人Aさんと、ベテランBさん
- B) Aさん「電話時間が長くて非効率」
- C) 2人の違いを定量的に評価

(2) 評価指標

- A) 平均值
- B) グラフ
- C)中央值
- D) 標準偏差

分散と標準偏差

- (1) 先ほどグラフで分布をチェックしました
 - グラフだけでは、数字の分散(バラつき)を定量的に表現しにくい

- (2) 分散 (バラつき) を、数字で定量的に表現する
 - 標準偏差
 - 高いほど、バラつきが大きい(新人Aさん)

- (3) 関数(標準偏差)
 - = STDEV.P (計算範囲)

グラフ(1) 縦棒グラフ

(1) 縦棒グラフ

- シンプルで分かりやすい
- 平均値を出すときは、組み合わせ→折れ線グラフで

グラフ(2) ヒストグラム

(1) ヒストグラム

- どのあたりに数字が集中しているか(分布)がわかる
- 150~180の間で、頻度を計算
- ベテランBさんに比べて、Aさんはバラつきが大きい(=極端)

標準偏差

(1) メリット

- 分散(数字のバラつき)を定量的に表現できる
- AさんよりBさんのほうが、バラつきは少ないとはっきり説明できる

(2) 注意点

- バラつき方が分かりにくい
 - 1つだけ極端な数字があるのかもしれない
 - 解決策のアイデアが出にくい
- あくまで、バラつきを知るきっかけとして使う
 - 標準偏差が高かったら、改めてグラフでチェックする

- 1. はじめに
- 2. 平均值
- 3. グラフ化(1) 縦棒グラフ
- 4. グラフ化(2) ヒストグラム
- 5. 中央値

6. 標準偏差

- 7. ここまでのまとめ

- 8. パレート分析(1)
- 9. パレート分析(2):パレート図
- 10. パレート分析(3): 円グラフ
- 11. 平均の応用(1): 加重平均
- 12. 平均の応用(2): 条件付き平均
- 13. 平均の応用(3): 平均成長率 (CAGR)

ここまでのまとめ

	Α	В	С	D
1				
2		電話営業に	かかる時間(タ	砂)
3			新人A	ベテランB
4		10目	120	150
5		2回目	150	140
6		3回目	500	160
7		40目	100	170
8		5回目	600	200
9		6回目	110	160
10		70目	140	170
11		8回目	800	180
12		9回目	150	150

(1) 電話営業にかかる時間

- A)新人Aさんと、ベテランBさん
- B) Aさん「電話時間が長くて非効率」
- C) 2人の違いを定量的に評価

(2) 評価指標

- A) 平均值
- B) グラフ
- C) 中央値
- D) 標準偏差

ここまでのまとめ(分析例)

	Α	В	С	D
1				
2		電話営業に	かかる時間(秒)
3			新人A	ベテランB
4		1回目	120	150
5		2回目	150	140
6		3回目	500	160
7		4回目	100	170
8		5回目	600	200
9		6回目	110	160
10		7回目	140	170
11		8回目	800	180
12		9回目	150	150
13				
14		平均	297	164
15		中央値	150	160
16		標準偏差	249	17

(1) 平均值

- 新人Aさんのほうが長い
- (2) 中央値
 - ふたりとも同じ水準
- (3) 標準偏差
 - 新人Aさんのほうが大きい

Aさんは、<u>一部極端に長い</u>会話時間があるため、 平均値は長いが、それを解決できればBさんと

同じ水準まで改善できそう

- 2. 平均值
- 3. グラフ化(1) 縦棒グラフ
- 4. グラフ化(2) ヒストグラム
- 5. 中央値 6. 標準偏差
- 7. ここまでのまとめ

8. パレート分析(1)

- 9. パレート分析(2):パレート図
- 10. パレート分析(3): 円グラフ
- 11. 平均の応用(1): 加重平均
- 12. 平均の応用(2): 条件付き平均
- 13. 平均の応用(3): 平均成長率 (CAGR)

パレート分析

(1) パレートの法則

- 全体の数値の大部分は、一部の要素が生み出している
- 売上の80%は、20%の優良顧客から生まれている
 - 80:20の法則

(2) なぜ重要か?

- 優良顧客が誰か、を明確にする
- マーケティング対象の優先順位を考える
 - 50代~70代の顧客を優先的に営業して、40代以下は気にしない

グラフ(2) ヒストグラム

(1) ヒストグラム

- どのあたりに数字が集中しているか(分布)がわかる
- 150~180の間で、頻度を計算
- ベテランBさんに比べて、Aさんはバラつきが大きい(=極端)

ある百貨店の顧客数を見ると、50代以上が80%

	Α	В	С		D	Е
1						
2		世代別顧客	数(千人)			
3				顧客数	シェア	累計シェア
4		70代以上		9,000	38%	38%
5		60代		6,000	25%	63%
6		50代		4,000	17%	80%
7		40代		2,500	11%	91%
8		30代		1,000	4%	95%
9		20代		700	3%	98%
10		10代以下		500	2%	100%
11		合計		23,700	100%	

1.	はじめい
	1000

2. 平均值

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

6. 標準偏差

7. ここまでのまとめ

9. パレート分析(2):パレート図

8. パレート分析(1)

10. パレート分析(3): 円グラフ

11. 平均の応用(1): 加重平均

12. 平均の応用(2): 条件付き平均

13. 平均の応用(3): 平均成長率 (CAGR)

ある百貨店の顧客数を見ると、50代以上が80%

	Α	В	С		D	Е
1						
2		世代別顧客	数(千人)			
3				顧客数	シェア	累計シェア
4		70代以上		9,000	38%	38%
5		60代		6,000	25%	63%
6		50代		4,000	17%	80%
7		40代		2,500	11%	91%
8		30代		1,000	4%	95%
9		20代		700	3%	98%
10		10代以下		500	2%	100%
11		合計		23,700	100%	

パレート図

50代~70代が80%

→ 最優先でマーケティングを考える

40代まで含めると90%

→ 次に優先

1.	1+	じめ	1 -
	4	(x, α)	6.
	10		, -

2. 平均值

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

6. 標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3): 円グラフ

11. 平均の応用(1): 加重平均

12. 平均の応用(2): 条件付き平均

13. 平均の応用(3): 平均成長率 (CAGR)

パレート図

50代~70代が80%

→ 最優先でマーケティングを考える

40代まで含めると90%

→ 次に優先

円グラフ

50代~70代が80%

→ 最優先でマーケティングを考える

40代まで含めると90%

→ 次に優先

円グラフ作成のコツ

- (1) データラベル
 - 右クリック → データラベルの追加

- (2) データラベルの書式設定
 - 分類名
 - 外部に表示

パレート分析

(1) 使用例

- クレーム内容ごとに、クレーム件数を調べる
 - → 実はクレームの80%は、一部の原因によるもの
 - → その原因をなくすための対策に時間をかける

- 商品ごとに、販売数を調べる
 - → 一部の商品が売上の80%を占める
 - →商品開発、改善を考える

1.	1+	じめ	1
⊥.	14		6

2. 平均值

2. 十功能

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

5. 中大恒

6. 標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3):円グラフ

11. 平均の応用(1):加重平均

12. 平均の応用(2):条件付き平均

13. 平均の応用(3): 平均成長率(CAGR)

(1) 計算の王道

• いちばん分かりやすい指標

(2) 平均の計算の応用

- 加重平均
- 条件付き平均
- 平均成長率(CAGR)

(1) 計算の王道

• いちばん分かりやすい指標

(2) 平均の計算の応用

- 加重平均
- 条件付き平均
- 平均成長率(CAGR)

(1) 加重平均

- 単純に平均せずに、人数や販売数などに重みを付けて平均を計算する
- 合計の売上を計算してから、販売数で割る

(2) 計算式

- =SUMPRODUCT(範囲①, 範囲②)
- ※範囲①×範囲②をそれぞれ掛け合わせる

1.	は	じめい
	101	O - 7 1

2. 平均值

3. グラフ化(1) 縦棒グラフ

4. グラフ化(2) ヒストグラム

5. 中央値

6. 標準偏差

7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3): 円グラフ

11. 平均の応用(1): 加重平均

12. 平均の応用(2): 条件付き平均

13. 平均の応用(3): 平均成長率 (CAGR)

(1) 計算の王道

• いちばん分かりやすい指標

(2) 平均の計算の応用

- 加重平均
- 条件付き平均
- 平均成長率(CAGR)

(1) 条件付き平均

- 条件に合致した数字だけの平均を計算する
- 男性だけの平均売上、女性だけの平均売上
- データ分解することで、結論が変わることがある
 - 男性の売上は増加したものの、女性の売上は減少した

(2) 計算式

• =AVERAGEIF(検索範囲,検索条件,平均計算範囲)

1.	は	じめ	(;
	,		•

- 2. 平均值
- 3. グラフ化(1) 縦棒グラフ
- 4. グラフ化(2) ヒストグラム
- 5. 中央値
 - 6. 標準偏差
- 7. ここまでのまとめ

8. パレート分析(1)

9. パレート分析(2):パレート図

10. パレート分析(3):円グラフ

11. 平均の応用(1):加重平均

12. 平均の応用(2):条件付き平均

13. 平均の応用(3): 平均成長率(CAGR)

(1) 計算の王道

• いちばん分かりやすい指標

(2) 平均の計算の応用

- 加重平均
- 条件付き平均
- 平均成長率(CAGR)

平均成長率

- (1) 成長率 (CAGR = Compound Annual Growth Rate)
 - 販売数の成長率の平均は36%

平均成長率

(1) 成長率 (CAGR = Compound Annual Growth Rate)

- 毎年の成長率は、掛け合わせていく
- たとえば、30%の成長率が3年続く場合

(2) 計算式

- (4年目 ÷ 1年目) ÷3乗-1
- (4年目 ÷ 1年目) ^ (1/3) -1

- 1. 相関分析とは
- 2. 近似曲線の基本(1): R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3):相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

- 10. 近似曲線の応用(1): 指数近似
- 11. 近似曲線の応用(2):対数近似
- 12. 近似曲線の応用(3): 累乗近似
- 13. 近似曲線の応用(4): 多項式近似
- 14. 最適解(1) 効率的なマーケティング
- 15. 最適解(2)マーケティング予算の分配

相関分析

(1) 相関分析とは

- AとBは「本当に関係あるのか」を検証
 - 広告宣伝費をかけると売上が上がる → 本当?
 - 営業マンを増やすと売上が上がる → 本当?
- これらを、過去のデータの傾向から判断する

(2) 相関分析が分かると・・・

- 自信をもってマーケティング投資の意思決定ができる
- さらに、最も効率的なマーケティング予算もシミュレーションできる

相関分析(例)

(1) 広告宣伝費と売上の関係

• 広告宣伝費が増えるほど売上が上がる傾向・・・?

相関分析(例)

(1) 広告宣伝費と売上の関係

• 広告宣伝費が増えるほど売上が上がる傾向

- 1. 相関分析とは
- 2. 近似曲線の基本(1): R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3):相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

相関分析(例)

(1) 広告宣伝費と売上の関係

• 広告宣伝費が増えるほど売上が上がる傾向

相関分析(例)

(1) 広告宣伝費と売上の関係

• 広告宣伝費が増えるほど売上が上がる傾向

2つの関係の強さを示す

- 一般的には・・・
- 0.5以上 関係あり
- 0.7以上 関係が強い

(1) 実際にグラフで比べてみる

- 左図は0.50
- 右図は0.84 → 関係性がはっきりわかる

相関分析

(1) 近似曲線のつくりかた

- A) 散布図
- B)近似曲線
 - 線形近似
- $C) R^2$

(2) 関数でもR²を計算できます

- A) CORREL(範囲1, 範囲2) = R
- B) このRを2乗(^2)してR²を計算
- C) 数字のバラつきは分からないので注意

- 1. 相関分析とは
- 2. 近似曲線の基本(1): R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3): 相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

正の相関、負の相関

(1) 相関の種類

- A) 気温が上がれば、Tシャツが売れる → 正の相関
- B) 気温が上がれば、コートが売れない → 負の相関

→どちらもR²は0.90なので注意!相関の向きもチェック!

- 1. 相関分析とは
- 2. 近似曲線の基本(1):R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3): 相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

相関関係と、因果関係

(1) 相関

- A) 気温とTシャツの販売数には関係がある
 - 気温が上がる → Tシャツが売れる
 - × Tシャツが売れる → 気温が上がる
- B) 相関分析だけでは、<u>どちらが原因</u>で、<u>どちらが結果</u>か分かりにくい

(2) 因果関係

- A) 原因と結果
- B) 納得感のある仮説を考える
- C) ・・・それって逆じゃないか?と疑問をもつ

因果関係を突き止めるためのテクニック

(1) 反事実

- A) 気温が上がれば、Tシャツが売れる
 - 気温が上がらなかったら、Tシャツは売れない?正しい
- B) Tシャツが売れれば、気温が上がる
 - Tシャツが売れなかったら、気温は下がる?誤り

(2) テストしてみる

- A) テレビCMのおかげで商品売上が増加した(本当?)
 - 1ヶ月テレビCMを止めてみて、売上が減少するか検証

- 1. 相関分析とは
- 2. 近似曲線の基本(1): R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3): 相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

予測値を計算する

(1) 広告宣伝費と売上の関係

• 広告宣伝費を250にすると、売上は500くらい?

予測値を計算する

(1) 近似曲線を計算式にする

• y (縦軸:売上) = 1.4 x (横軸:広告宣伝費) + 160

• 510 = $1.4 \times 250 + 160$

予測値を計算する

(1) 近似曲線

- A) 計算式を表示する
- B) 傾き、切片を表示
- C) x を計算式に代入して、yを求める

(2) 関数でも計算できます

- A) 傾き:SLOPE (y軸の範囲、x軸の範囲)
- B) 切片:INTERCEPT (y軸の範囲、x軸の範囲)

- 1. 相関分析とは
- 2. 近似曲線の基本(1): R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3):相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

データを読み解く

(1) ビジネスにおけるデータの使い方

- A) すべてのデータが有益とは限らない
- B)データの中には例外(外れ値)も存在する
- C) あるいは、グループが異なる場合もある

(1) 広告宣伝費と売上

A) R^2 は0.41と高くない・・・なぜか?

- (1) 広告宣伝費と売上
 - A) R²は0.41と高くない・・・なぜか?
 - B) ひとつだけ外れている数字がある

(1) 広告宣伝費と売上

A) 外れた数字を使わないと、相関が高い

(1) 外れ値

- A) データの中には例外(外れ値)も存在する
- B) この数字を相関の計算から外す場合があります

(2) 季節要因

A) クリスマスで、広告宣伝費をかけなくても商品の売上が伸びた

(3) 一時要因

A) 有名人が紹介してくれた

目次

- 1. 相関分析とは
- 2. 近似曲線の基本(1): R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3): 相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

(1) 広告宣伝費と売上

• R²は0.62と、それほど高くない・・・なぜか?

(1) 広告宣伝費と売上

- R²は0.62と、それほど高くない・・・なぜか?
- おそらく2つのグループに分かれているのではないか(仮説)

(1) 広告宣伝費と売上

2つのグループを分けて相関をとると、それぞれ高い数値になる

(1) グループ

- A) データの中には異なるグループが混在している可能性がある
- B) グループごとに分けて相関を計算する場合があります

(2) 集団の違い

A) 40代以下の顧客と、50代以上の顧客

(3) 時期の違い

- A) 消費税が増税される前は、広告宣伝すれば売上は伸びた
- B) 増税してからは、なかなか売上は伸びなくなった

目次

- 1. 相関分析とは
- 2. 近似曲線の基本(1): R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3): 相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

(1) 売上と人件費

- A) 「もっと人件費をかければ、売上が増えるはず」
- B)本当にそう言えるだろうか?

売上と人件費											
		1年目	2年目	3年目	4年目	5年目	6年目	7年目	8年目	9年目	10年目
売上	百万円	300	250	280	1,200	720	1,500	1,440	1,800	650	1,500
顧客数	社	30	50	40	60	90	100	120	120	130	150
顧客単価	百万円	10	5	7	20	8	15	12	15	5	10
人件費	百万円	50	75	100	200	240	280	400	450	500	550
営業マン数	人	10	15	20	25	30	35	40	45	50	55
1人あたり人件費	百万円	5	5	5	8	8	8	10	10	10	10

- (1) 売上と人件費
 - A)「もっと人件費をかければ、売上が増えるはず」
 - B) あまり関係はなさそう

(1) 売上と人件費

- A) 「もっと人件費をかければ、売上が増えるはず |
- B) でも、営業マン数を増やせば、顧客数は増えそう

- (1) データは分解して考える
 - A) 人件費を増やせば、売上が増える → そうとは限らない
 - B) 顧客単価が上がるとは限らないから

- (2) データを分解すれば、課題とアイデアが明確になる
 - A) 売上=顧客数×顧客単価
 - 顧客数を増やしたい → 営業マンを増やす
 - 顧客単価を上げたい → 他の施策を考えたほうがよさそう

目次

- 1. 相関分析とは
- 2. 近似曲線の基本(1):R²
- 3. 近似曲線の基本(2):正の相関、負の相関
- 4. 近似曲線の基本(3):相関関係と因果関係
- 5. 近似曲線の基本(4):予測値を計算
- 6. データを読み解く(1):外れ値
- 7. データを読み解く(2): グループ分け
- 8. データを読み解く(3):分解
- 9. データを読み解く(4):累計

(1) テレビCM費用(年間)と知名度の関係

A) 関係なさそう・・・

- (1) 知名度は、何で決まるのか?
 - A) 知名度 = これまでのテレビCM費用の累計によって決まるのでは?
 - B) テレビCM費用(累計)で見ると、知名度アップにつながっている

目次

- 10. 近似曲線の応用(1):指数近似
- 11. 近似曲線の応用(2):対数近似
- 12. 近似曲線の応用(3): 累乗近似
- 13. 近似曲線の応用(4):多項式近似
- 14. 最適解(1) 効率的なマーケティング
- 15. 最適解(2)マーケティング予算の分配

(1) 近似曲線の種類

- A) 必ずしも直線(線形)とは限らない
- B) マーケティングの特徴を考えながら、適切な線を考える

- (1) 広告宣伝費と、獲得顧客数の関係
 - 広告宣伝費をかけるほど・・・獲得顧客数は?

- (1) 広告宣伝費と、獲得顧客数の関係
 - 少しイメージと違う?

(1) 広告宣伝費と、獲得顧客数の関係

• 広告宣伝費をかけるほど、<u>それ以上に</u>顧客を獲得できている

- (1) 今回のマーケティングの仮説
 - A) 口コミで広がるケース
 - B) 利用者が、どんどん友人に商品の良さを紹介
 - C) その友人がまた別の友人に紹介
 - → 広告費を増やすと、それ以上のペースでユーザー数が増えていく
 - → 指数近似

目次

- 10. 近似曲線の応用(1): 指数近似
- 11. 近似曲線の応用(2):対数近似
- 12. 近似曲線の応用(3): 累乗近似
- 13. 近似曲線の応用(4): 多項式近似
- 14. 最適解(1) 効率的なマーケティング
- 15. 最適解(2)マーケティング予算の分配

- (1) ダイレクトメール (DM) 数と、購入希望の問い合わせ件数
 - DMを送るほど問い合わせは増えるか?

- (1) ダイレクトメール (DM) 数と、購入希望の問い合わせ件数
 - DMが増える(右にいく)ほど、あまり問い合わせが増えていない?

- (1) ダイレクトメール (DM) 数と、購入希望の問い合わせ件数
 - DMが増える(右にいく)ほど、<u>頭打ちになっている</u>
 - 500通以上のDMはムダといえるかもしれない

- (1) 今回のマーケティングの仮説
 - A) DMは、購入が見込める顧客から順番に送っているのでは?
 - B) 最初は、DMを送るほど顧客も獲得できる
 - C) DMを送りすぎると、購入が見込めない顧客にまで送ってしまう
 →対数近似

目次

- 10. 近似曲線の応用(1): 指数近似
- 11. 近似曲線の応用(2):対数近似
- 12. 近似曲線の応用(3):累乗近似
- 13. 近似曲線の応用(4): 多項式近似
- 14. 最適解(1) 効率的なマーケティング
- 15. 最適解(2)マーケティング予算の分配

- (1) ユーザー獲得してからの経過月数と、継続利用者数
 - 時間がたつほど、継続利用者数は減っている?

- (1) ユーザー獲得してからの経過月数と、継続利用者数
 - 直線的ではない?

(1) ユーザー獲得してからの経過月数と、継続利用者数

- はじめは継続利用者数は急速に減少
- 時間がたつと、利用者数はあまり変わらない

- (1) 今回のマーケティングの仮説
 - A)継続利用ペースは、一定ではない
 - B) ライトユーザー(お試しで始めてみた)は、早めに離脱
 - C) 時間がたつと、ヘビーユーザーだけが残る
 - → 累乗近似

目次

- 10. 近似曲線の応用(1): 指数近似
- 11. 近似曲線の応用(2):対数近似
- 12. 近似曲線の応用(3): 累乗近似
- 13. 近似曲線の応用(4): 多項式近似
- 14. 最適解(1) 効率的なマーケティング
- 15. 最適解(2)マーケティング予算の分配

- (1) 広告宣伝費と、1ユーザーあたり獲得費用の関係
 - 広告宣伝費をかけるほど・・・1ユーザーあたり獲得費用は?

- (1) 広告宣伝費と、1ユーザーあたり獲得費用の関係
 - あまり関係なさそう・・・

近似曲線の応用

(1) 広告宣伝費と、1ユーザーあたり獲得費用の関係

- 広告費をかけると最初は獲得費は下がるが、
- 広告費をかけすぎると逆に上がってしまう

近似曲線の応用

- (1) 今回のマーケティングの仮説
 - A) まったく費用をかけないと、効率的なマーケティングができない
 - B) 費用をかけると、効率的に獲得できる
 - 40代女性をターゲットにすると効率的
 - 関西地方をターゲットにすると効率的
 - C) 一方、費用をかけすぎると、むしろ非効率になる
 - ターゲットではない20代男性にコストをかけてしまう
 - 東北地方までターゲットを広げてしまった

近似曲線の応用

(1) 多項式近似

- A)
 〇次関数
- B) 左図は2次関数、右図は3次関数

- 10. 近似曲線の応用(1):指数近似
- 11. 近似曲線の応用(2):対数近似
- 12. 近似曲線の応用(3): 累乗近似
- 13. 近似曲線の応用(4): 多項式近似
- 14. 最適解(1) 効率的なマーケティング
- 15. 最適解(2)マーケティング予算の分配

(1) 広告宣伝費と、1ユーザーあたり獲得費用の関係

- 広告費をかけると最初は獲得費は下がるが、
- 広告費を<u>かけすぎると</u>逆に上がってしまう

- (1) 広告宣伝費と、1ユーザーあたり獲得費用の関係
 - いちばん獲得費用が安くなるのは、広告宣伝費350くらい?

- (1) もっとも獲得費が安いポイントを調べる
 - $y = 0.0088 x^2 6.3393 x + 1400 から、y が一番小さくなる x を計算(数学)$
 - ソルバーを使うと、簡単に計算できます

(1) ソルバー

- 計算式を基に、もっとも最適な数値を求める
- yを最小にするためにはxの数字は?

(2) Excelの使用方法

- ソルバーの設定 [オプション] → [アドイン] → [Excelアドイン]
- [データ] → [ソルバー]

- (1) もっとも獲得費が安いポイントを調べる
 - $y = 0.0088 x^2 6.3393 x + 1400 から、y が一番小さくなる x を計算(数学)$
 - <u>広告宣伝費360</u>のときが、1ユーザー獲得費は258と最小になる

- 10. 近似曲線の応用(1):指数近似
- 11. 近似曲線の応用(2):対数近似
- 12. 近似曲線の応用(3): 累乗近似
- 13. 近似曲線の応用(4): 多項式近似
- 14. 最適解(1) 効率的なマーケティング
- 15. 最適解(2)マーケティング予算の分配

(1) 販売数を増やすために、2つのウェブサイトA, Bに広告を出そうと考えている

- 広告宣伝費の予算100を、AとBにいくらずつ振り分けるべきか
- 過去の広告宣伝費と、販売数の関係は以下の通り

(1) ウェブサイトBの特徴

- 広告宣伝費をかけ始めたときは、販売数はAよりも大きく伸びる
- ところが、広告宣伝費をかけすぎると、販売数が減少
- おそらく、40くらいまでBに投資して、残り60をAに投資するのが正解?

- (1) 目的セル
 - 販売数の合計
- (2) 目標値
 - 最大化させたい
- (3) 変数セル
 - サイトAの予算、サイトBの予算(Ctrlキーを押しながらクリック)
- (4) 制約条件
 - 予算の合計=100

(1) ウェブサイトBの特徴

- 広告宣伝費をかけ始めたときは、販売数はAよりも大きく伸びる
- ところが、広告宣伝費をかけすぎると、販売数が減少
- おそらく、42くらいまでBに投資して、残り58をAに投資するのが正解?

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

数字の信頼性

(1) 目的

数字をより正確に理解し、思い込みをなくし、正しく伝える

(2) 信頼区間

1日あたり平均の販売数は、100個

→ 95%の確率で、平均の販売数は96個~104個の間に収まります

(3) P値

100人にアンケートとったら、新商品が欲しいという声が多数

→10,000人に聞かないと、統計的に意味があるとは言えない

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

- (1) 平均値の幅を考える
 - A) 同じ平均値でも幅が変わる
 - データのバラつき
 - データ数

- (2) 幅が分かることのメリット
 - A) 将来の売上の予測
 - B) 必要な材料の調達、社員の採用

- (1) 平均値の幅を考える
 - A) 過去8日間のデータと、過去32日間のデータ(4倍)
 - B) どちらも平均値は100

- (1) 平均値の幅を考える
 - A) 過去8日間のデータと、過去32日間のデータ(4倍)
 - B) データが多いほど、平均値の幅はせまくなる(精度が高くなる)

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

- (1) 平均値の幅を考える
 - A) 過去8日間のデータと、過去32日間のデータ(4倍)
 - B) データが多いほど、平均値の幅はせまくなる(精度が高くなる)

信頼区間

- (1) 平均値の幅をどのように計算するか
 - A) ○○%の確率で、平均値はこの範囲(幅)に収まります、という考え
 - B)信頼区間

(2) 信頼区間

- A) 95%を使う場合が多い
- B) 「ほとんどの場合、平均値は、この区間の範囲に収まる」
- C) 95%信頼区間の場合、平均値は<u>91~109の間</u>です
 - <u>平均值100、信頼区間±9</u>

エクセルで信頼区間=「平均値の幅」を計算

(1) 信頼区間の計算は、以下の要素で決まる

- A) データの数(COUNT関数)※標本数
- B) 平均值(AVERAGE関数)
- C) 標準偏差(STDEV.S関数)
- D) 有意水準(1-信頼区間%)
 - 95%信頼区間の場合は、有意水準5%

(2) 信頼区間の計算

A) CONFIDENCE.T (有意水準、標準偏差、データの数)

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

エクセルで信頼区間シミュレーション

(1) 信頼区間%を変えてみる

- A) 95%信頼区間 → 平均値は、91~109の間(ほぼ確実)
- B) 99%信頼区間 → 平均値は、87~113の間(絶対に確実!)
- C) 信頼区間を上げるほど、平均値の幅は広がる

(2) データの数を変えてみる

- A) 8個 → 平均値は、91~109の間
- B) 32個 → 平均値は、96~104の間
- C) データの数が増えるほど、平均値の幅はせまくなる (精度が上がる)

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

テストは重要

- (1) 現在のマーケティングはテストを重視しています
 - アンケート
 - 試作品
 - A/Bテスト
 - ウェブサイト上で、複数の広告をランダムに表示して反応を計測
 - 広告のクリック率、購入率に違いが見られるか

- (2) テストマーケティングにおける統計×エクセル
 - 「そのテスト結果、正しいといえるのか?」を解説します

テストマーケティング

- (1) 今回のマーケティングの仮説
 - 新商品を開発中
 - テストをして、新商品が現在の商品よりも売れそうかチェックしたい

(2) テスト結果

- 100人に試してもらって「新商品と現商品どちらを買いたい?」
- 新商品:51人 現商品:49人

→ 果たして、新商品は現商品より売れそうといえるか?

(1) P値とは

- 統計的に有意か、を示す指標
- 有意=たまたま起こった可能性は低い(明確に差が発生している)
- P値=たまたま起こる確率
- このP値が低いほど、たまたま起こったとは言えない

(2) P値の基準 (例)

• 5%を下回ると、たまたま起こった可能性は低い(差は有意である)

(1) たとえば

- サイコロを振ったら、なぜか10回連続で1が出た
- たまたま起きるだろうか?
 - → おそらく起きない
 - → 細工がしてあるサイコロの可能性が高い
- P値はすごく低い
 - →差は有意

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

(1) P値の計算方法

- カイ2乗検定という計算方法を使います
- 関数 = CHISQ.TEST(実測値、期待値)
- CHI:カイ
- SQ:2乗(スクエア)
- TEST:検定

(1) 実測値と期待値

- 実測値とは、実際に測定された結果
- 期待値とは、差がない場合の結果(理論的な)

(2) 今回のケース

- 新商品と現商品のどちらを買いたいか?
- 実測値

新商品:51人 現商品:49人

• 期待値

<u>新商品:50人</u>

<u>現商品:50人</u>

この違いがP値

(1) P値の判断基準

• 一般的には、5%以下であれば差は有意(と言う場合が多い)

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

P値と、必要なテスト数

- (1) 51%が欲しいと答えたなら・・・
 - 100 人中 51 人が欲しい → 有意差はない
 - 10,000 人中 5,100 人が欲しい → 有意差はある
- (2) 54%が欲しいと答えたなら・・・
 - 1,000人のテストで十分
 - 10,000人は必要なし
- (3) ざっくりいうと
 - 少しの差なら、多くのテスト数が必要
 - 大きな差なら、少しのテスト数で十分

- 1. 数字の信頼性とは
- 2. 信頼区間(1):平均値の「幅」
- 3. 信頼区間(2):エクセルで計算
- 4. 信頼区間(3):シミュレーション
- 5. P値(1):テストの検証
- 6. P値(2):エクセルで計算
- 7. P値(3):シミュレーション
- 8. P値(4): 有意差の注意点

有意差の注意点

(1) テスト結果

- A) 新商品を買いたい人は、100人中51人
- B) 有意差はない

(2) 誤解しないように注意

- A) 有意差がない = 新商品を買いたくない、と言ってるわけではない
 - 新商品の販売をあきらめるのは早い
 - まだ分からないだけなので、テストを続ける必要あり
- B) 新薬が効くか分からない ≠ 新薬が効かない