Les Règles d'association

HAMID NECIR | COURS FOUILLE DE DONNÉES

Définition

La fouille de données (data mining) vise à découvrir, dans les grandes quantités de données, les informations précieuses qui peuvent aider à comprendre les données ou à prédire le comportement des données futures.

Le datamining utilise depuis sont apparition plusieurs outils de statistiques et d'intelligence artificielle pour atteindre ses objectifs.

Introduction

- Rechercher des régularités dans les données
- Trouver des schémas fréquents, des associations, des corrélations parmi des ensembles d'articles dans des bases de données de transactions
- Comprendre les habitudes d'achat des clients en trouvant des associations et corrélations entre les différents achats que les clients placent dans leur "panier"

Applications:

- Rayonnage, mailing,...
- Analyse des données du panier,
- marketing croisé,
- conception de catalogue,
- analyse de journal Web, détection de fraude

Etapes de l'approche

Approche en deux étapes:

- 1. Extraction des itemsets fréquents (Motifs)
- Extraction de tous les ensembles d'éléments qui apparaissent fréquemment
- 2. Génération de règles
- Générez des règles de confiance élevées à partir de chaque ensemble d'éléments fréquents. déjà extrait

Etape 1: génération des itemsets fréquents

Etape 1: génération des itemsets fréquents

Conceptsde base

Soit I = {i1,i2,..., in} un ensemble d'éléments appelés items.

- Une base de données D consiste en un ensemble de transactions Ti tel que: Ti ⊆ I
- ▶On dit que T contient X si $X \subseteq T$
- ▶ Item (motif): Correspond à une valeur d'un attribut dans la base de transactions,
- Itemset: un itemset X est un ensemble d'items X ⊆ I
- K-itemset : est un itemset de longueur k (formé de k items).

• Exemple :

Pour les items {A, B, C} on a:

les 1-itemset: A B C

les 2-itemset: AB AC BC

les 3-itemsets: ABC

8

Problèmes

Générer tous les itemsets est trés complexe.

N items 2^N-1 itemsets possible

- ► Comment garder en mémoire un nombre important d'itemsets ?
 - 100 items => 2100 -1 itemsets possibles !!!!
- ► Comment calculer le fréquence d'apparition d'un nombre important d'itemsets dans une grande base de données (100 million de transactions) ?

Exemple: Les itemsets possibles pour pour 3 items {A, B, C}.

Mesures utilisées

• Support : facteur de fiabilité de la règle .

Le support d'un itemset X noté Sup(X) est la proportion de transaction de D contenant X.

où Freq (X): nombre des transactions dans D qui contiennent l'itemset X. $Sup(X) \in [0,1]$

• Itemset fréquent : On appelle X un itemset fréquent si:

où MinSup est le seuil minimal transmit par l'utilisateur. MinSup $\in [0,1]$

Propriétés de l'algorithme Apriori

1) Propriété de monotonie: tous les sous ensembles d'un itemset fréquent sont aussi fréquents.

Exemple:

si ABCD est un d'itemset fréquents, alors, les sous ensembles :ABC,ABD, BCD, AB,AC,BC,BD,CD,A,B,C,D les sont aussi.

2) Propriété d'anti monotonie:

tous les sur ensembles d'un itemset infréquent sont aussi infréquents.

Exemple:

si AB est un itemset infréquents, alors, les sur ensembles :ABC, ABD les sont aussi.

Algorithme Apriori

Entrée: K : Contexte d'Extraction, Minsup

Sortie: Ensemble des itemsets fréquents

1: Initialiser l'ensemble de candidats de taille 1

2: tant que ensemble de candidats est non vide faire

- 1) Calculer le support des candidats
- 2) Élaguer l'ensemble de candidats par rapport à minsup

Étape d'élagage (ou de test)

1) Construire l'ensemble des candidats pour l'itération suivante

Étape de construction

5: fin tant que

6: retourner Ensemble des itemsets fermés fréquents

Exemple

Soit D la base de transactions contenant un ensemble de transaction décrivant des achats de produits dans l'ensemble {A, B, C, D, E}

	A	В	С	D	Е
T1	1	0	1	0	1
T2	1	1	1	0	0
Т3	1	0	0	1	1
T4	0	1	1	0	1
T5	0	1	1	0	0

13

Exemple

Les étapes d'extraction des itemsets fréquents par l'algorithme Apriori sont: MinSup=2/5

1- itemset	Sup	
А	3/5	191989
В	3/5	
С	4/5	
D	1/5	infréquent
Е	3/5	

2- itemset	Sup			
AB	1/5	infréquent		Link A
AC	2/5		3- itemset	Sup
AE	2/5		ACE	1/5
ВС	3/5			
BE	1/5	infréquent		
CE	2/5	334		

Etape 2: génération des règles d'association

Règle d'association

Règle d'association : Indication de précision de la règle. Implication de la forme:

 $A \rightarrow B$

où $A B \subseteq I$, $B \subseteq I$ et $A \cap B = \emptyset$

A est dit Antécédant et B est dit Conséquent.

Une règle d'association exprime le fait que les items de A tendent à apparaître avec ceux de B.

Mesure de qualité d'une règle d'association

Confiance: La confiance d'une règle d'association $A \rightarrow B$, représente la proportion (Pouvant être exprimé en pourcentage) de transactions couvrant A qui couvrent aussi B.

Confiance($A \rightarrow B$)=Sup(AB)/Sup(A)

Règle solide : Une règle d'association $A \rightarrow B$ est solide si sa confiance dépasse un seuil donné, fixé a priori, appelé MinConf.

Règle forte : Une règle d'association $A \rightarrow B$ est forte si sa confiance est égale a 1 (100%).

Mesure de qualité d'une règle d'association

Lift: Mesure le caractère significatif de l'association.

$$Lift(A \rightarrow B) = Sup(AB) / (Sup(A).Sup(B))$$

- Un lift supérieur à 1 : Indique une corrélation positive
- Un lift de 1 indique une corrélation nulle
- Un lift inférieur à 1 : Indique une corrélation négative

18

Exemple

Les étapes d'extraction des règles d'association. On considère MinConf=3/5=0,67

itemset	règles d'association	Lift	Confiance
AC	A→C	1,40	Conf(A→C)=0.67
AC	C→A	1.40	Conf(C→A)=0,5
AE	A→E	1,11	Conf(A→E)=0,67
AE	E → A	1,11	Conf(E→A)=0,67
BC	B → C	1,25	$Conf(B \rightarrow C) = 1$
ВС	C→B	1,25	Conf(C→B)=0,75
CE	C→E	0,83	Conf(C→E)=0,5
	E→C	0,83	Conf(E→C)=0,67

Règle forte

L'algorithme CLOSE

- ▶Proposé en 1998 par Pasquier et al.
- Algorithme itératif par niveau pour l'extraction des itemsets fermés fréquents.
- Durant chaque itération k de l'algorithme, un ensemble de kgénérateurs candidats est considéré. Chaque élément de cet ensemble est constitué de trois éléments : le k-générateur candidat, sa fermeture, et leur support.
- À la fin de l'itération k, l'algorithme stocke un ensemble contenant les k-générateurs fréquents, leurs fermetures, qui sont des itemsets fermés fréquents, et leurs supports.

Algorithme CLOSE

Entrée: K : Contexte d'Extraction, minsup

Sortie: Ensemble des itemsets fermés fréquents

1: Initialiser l'ensemble de candidats de taille 1

2: tant que ensemble de candidats est non vide faire

- 1) Calculer le support des candidats
- 2) Élaguer l'ensemble de candidats par rapport à minsup
- 3) calculer les fermetures des candidats retenus
- 1) Construire l'ensemble des candidats pour l'itération suivante
- 2) Élaguer cet ensemble en utilisant les propriétés des itemsets fermés.

5: fin tant que

6: retourner Ensemble des itemsets fermés fréquents

Étape d'élagage (ou de test)

Étape de construction

Exemple

Soit D la base de transactions contenant un ensemble de transaction décrivant des achats de produits dans l'ensemble {A, B, C, D, E} . MinSup=2/5

Α	В	С	D	E
1	1	1	1	1
1	1	0	0	0
0	0	1	0	1
1	1	0	1	1
1	0	1	1	0

Exemple

Les étapes d'extraction des itemsets fréquents par l'algorithme CLOSE sont:

1-Gen	Sup	Ferm
Α	4/5	Α
В	3/5	AB
С	3/5	С
D	3/5	AD
Е	3/5	Е

2- itemset	Sup	Ferm
AC	2/5	ACD
AE	2/5	ABDE
ВС	1/5	ABCDE
BD	2/5	ABDE
BE	2/5	ABDE
CD	2/5	ACD
CE	2/5	CE
DE	2/5	ABDE

3- itemset	Sup	Ferm
ACE	1/5	ABCDE
CDE	1/5	ABCDE

22

23

Exemple

Les étapes d'extraction des règles d'association. On considère MinConf=3/5=0,67

règles d'association	Confiance	Lift
B→A	Confiance=1	1,25
D→A	Confiance=1	1,67
AC→D	Confiance=1	4,17
AE→BD	Confiance=1	6,25
BD→AE	Confiance=1	6,25
BE→AD	Confiance=1	4,17
CD→A	Confiance=1	3,13
DE→AB	Confiance=1	4,17