

Foundation of Artificial Intelligence TD 04 CSP

Dr. NECIBI Khaled

Faculté des nouvelles technologies

Khaled.necibi@univ-constantine2.dz

Systèmes Intelligents

- CSP -

Dr. NECIBI Khaled

Faculté des nouvelles technologies

Khaled.necibi@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
Nouvelles technologies	IFA	Master 1	SDIA

Université Constantine 2 2023/2024. Semestre

• Exercice 01

- On représente un problème donné à l'aide d'un CSP binaire discret P suivant
 - \bullet A = {1, 2, 3}
 - \bullet B = {1, 2, 3}

 - \bullet A > B
 - B ≠ ○
- Questions
 - Appliquer l'algorithme Backtracking search au CSP P
 - Afficher pour chaque étape l'évolution des assignations

• Exercice 02

- Jeu à 03 Reines
 - On représente le problème de <u>trois reines</u> à l'aide d'un CSP binaire discret P = (X, D, C)
 - $\bullet \quad X = \{X_1, X_2, X_3\}$
 - $D(X) = \{1, 2, 3\}$
 - La reine i se déplace sur la ligne i et la variable Xi désigne sa position sur la ligne
- Questions
 - Donner l'ensemble C des contraintes de P
 - Appliquer l'algorithme de recherche Forward Checking au CSP P
 - Représenter au niveau de chaque nœud de l'arbre de recherche l'évolution des domaines des différentes variables
 - Respecter l'ordre statique X_1 , X_2 , X_3 d'instanciation des variables et l'ordre statique 1, 2, 3 de choix des valeurs du domaine commun $\{1, 2, 3\}$

Université Constantine 2 © Dr. NECIBI Khaled

- Exercice 02 : Solution
 - L'ensemble de contraintes C du problème P est comme suit :

```
C = {C1: X2 ≠ X1,
C2: X3 ≠ X2,
C3: X3 ≠ X1,
C4: X2 ≠ X1 - 1,
C5: X3 ≠ X2 - 1,
C6: X3 ≠ X1 - 2,
C7: X2 ≠ X1 + 1,
C8: X3 ≠ X2 + 1,
C9: X3 ≠ X1 + 2}
```

- C1, C2, C3: interdiction d'avoir deux reines sur la même colonne
- C4, C5, C6: interdiction d'avoir deux reines sur la même diagonale montante
- C7, C8, C9: interdiction d'avoir deux reines sur la même diagonale descendante

• Exercice 02 : Solution

- Exercice 02 : Solution
 - Echec 01
 - Instanciation de X_2 avec la valeur 3 de son domaine
 - On supprime du domaine $\{2\}$ de la variable non encore instanciée X_3 l'unique valeur 2 qui n'est pas compatible avec ce choix 3 pour l'instanciation de X_2 :
 - Le domaine de X₈ devient ainsi vide
 - Echec 02
 - Instanciation de X₁ avec la valeur de son domaine
 - Aucune valeur du domaine {1, 2, 3} de la variable non encore instanciée X₂ n'est compatible avec ce choix 2 pour l'instanciation de X₁: le domaine de X₂ devient ainsi vide
 - Echec 03
 - Instanciation de X_2 avec la valeur 1 de son domaine
 - On supprime du domaine {2} de la variable non encore instanciée X_3 l'unique valeur 2 qui n'est pas compatible avec ce choix 1 pour l'instanciation de X_2 : Le domaine de X_3 devient ainsi vide

• Exercice 03

- On représente un problème donné à l'aide d'un CSP binaire discret P suivant
 - \bullet X = {1, 2, 3}
 - $\bullet Y = \{1, 2, 3\}$
 - \bullet Z = {1, 2, 3}
 - \bullet \times > \vee
 - \bullet Y = Z
- Questions
 - Appliquer l'algorithme de recherche AC3 au CSP P
 - Afficher pour chaque itération l'évolution de la fille d'attente des arcs

• Exercice 04

- On considère la carte suivante décrivant les frontières entre les quatre villes V_1 , V_2 , V_3 et V_4 en utilisant les couleurs : rouge, bleu et vert
- Les villes adjacentes ne peuvent avoir la même couleur et :
 - V₁ doit avoir la couleur rouge ou en vert,
 - V_2 et V_3 doivent être en bleue ou en vert
 - V₄ doit avoir la couleur verte
- Questions
 - Appliquer l'algorithme de recherche AC3 à ce problème
 - Afficher pour chaque itération l'évolution de la fille d'attente pour vérifier la consistance des arcs

 V_4 V_2 V_3

- Exercice 04: Solution
- Variables et domaine de valeur
 - $V1 = \{r, v\}$
 - $\sqrt{2} = \{b, v\}$
 - $V3 = \{b, v\}$
 - $\vee 4 = \{ \vee \}$

Queue (ensemble des arcs de contrainte entre variables) = $\{ <V1, V1 \neq V2 >, <V1, V1 \neq V4 >, <V1, V1 \neq V3 >, <V2, V1 \neq V2 >, <V2, V2 \neq V3 >, <V3, V1 \neq V3 >, <V3, V3 \neq V4 >, <V3, V3 \neq V4 >, <V4, V1 \neq V4 >, <V4, V3 \neq V4 >, <V4, V1 \neq V4 >, <V4, V3 \neq V4 >, <V4, V1 \neq V4 >, <V4, V3 \neq V4 >, <V4, V1 \neq V4 >, <V4, V3 \neq V4 >, <V4, V1 \neq V4 >, <V4, V3 \neq V4 >, <V4, V1 \neq V4 >, <V4, V3 \neq V4 >, <V4, V4 >, <V4$

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

•
$$\sqrt{2} = \{b, v\}$$

- $V3 = \{b, v\}$
- $\vee 4 = \{ \vee \}$


```
<V1, V1 \( \psi \)2>
<V1, V1 \( \psi \)4>
<V1, V1 \( \psi \)3>
```

Pas de réduction de domaine et pas d'arcs reliés à V2, V3 et V4 à ajouter puisqu'ils sont déjà dans la liste

Queue (ensemble des arcs de contrainte entre variables) = $\{$ <\\2, \V1\neq\2 >, <\\2, \V2 \neq\3 >, <\\3, \V3\neq\4 >, <\\3, \V3\neq\4 >, <\\4, \V1\neq\4 >, <\\4, \V3\neq\4 \neq\4 >, \} $\}$

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

•
$$\sqrt{2} = 6 + 6$$

- $V3 = \{b, v\}$
- $\vee 4 = \{ \vee \}$

<\2, \1 \neq\2 >

Pas de réduction de domaine et pas d'arcs reliés à V2, V3 et V4 à ajouter puisqu'ils sont déjà dans la liste

Queue (ensemble des arcs de contrainte entre variables) = $\{$ <V2, V2 \neq V3>, <V3, V1 \neq V3>, <V3, V3 \neq V4>, <V3, V3 \neq V4>, <V4, V1 \neq V4>, <V4, V3 \neq V4> $\}$

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

•
$$\sqrt{2} = b + b + \sqrt{3}$$

- $\sqrt{3} = \{ \sqrt{3} \}$
- $\vee 4 = \{ \vee \}$

<V2, V2 ±V3>

Réduction de domaine et ajout de contraintes reliées à V3

Queue (ensemble des arcs de contrainte entre variables) = $\{$ <V3, V1 \neq V3>, <V3, V3 \neq V4>, <V3, V3 \neq V2>, <V4, V1 \neq V4>, <V4, V3 \neq V4>, <V1, V1 \neq V3>, $\}$

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

•
$$\sqrt{2} = b + \frac{b}{\sqrt{3}}$$

- $\sqrt{3} = \sqrt{3}$
- $\vee 4 = \{ \vee \}$

Pas de réduction de domaine

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

•
$$\sqrt{2} = b + \frac{b}{\sqrt{3}}$$

- V3 = V
- $\vee 4 = \{\}$

<\3, \3\pm\4>

Réduction de domaine Domaine de V4 vide Backtrack sur le dernier choix

Queue (ensemble des arcs de contrainte entre variables) = $\{$ <\0.3, \0.\03\pm\02\>, <\0.\04, \0.\01\pm\04\>, <\0.\04\), \0.\03\pm\04\>, <\0.\01\pm\04\>, <\0.\01\pm\04\>, \0.\01\pm\04\>, \01\pm\04\>, \0.\01\pm\04\>, \01\pm\04\>, \01\pm\04\pm\04\>, \01\pm\04\pm\04\>, \01\pm\04\pm\0

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

$$\bullet$$
 $\vee 2 = \vee \{b, \forall\}$

- $V3 = \{b, v\}$
- $\vee 4 = \{ \vee \}$

<V2, V1≠V2 >

Pas de réduction de domaine et pas d'arcs reliés à V2, V3 et V4 à ajouter puisqu'ils sont déjà dans la liste

Queue (ensemble des arcs de contrainte entre variables) = $\{$ <\2, \V2 \neq \V3>, <\3, \V3\neq \V4>, <\V3, \V3\neq \V4>, <\V4, \V1\neq \V4>, <\V4, \V3\neq \V4>, <\V4>, <\V4\neq \V4>, <\V4\neq \V4\neq \V4>, <\V4\neq \V4>, <\V4\neq \V4\neq \V4>, <\V4\neq \V4\neq \V4\neq \V4>, <\V4\neq \V4\neq \V

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

- $V3 = \{b\}$
- $\vee 4 = \{ \vee \}$

<V2, V2 ≠V3>

Réduction de domaine et pas d'ajout de contraintes reliées à V3

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

•
$$\sqrt{2} = \sqrt{\frac{b}{b}}$$

- $V3 = \{b\}$
- $\vee 4 = \{ \vee \}$


```
<\3, \1≠\3>
<\3, \3≠\4>
<\3, \3≠\2>
```

Pas de réduction de domaine

Queue (ensemble des arcs de contrainte entre variables) = { < V4, V1 ≠ V4>, < V4, V3 ≠ V4>, }

- Exercice 04: Solution
- Variables et domaine de valeur

•
$$V1 = r \{r, V\}$$

•
$$\sqrt{2} = \sqrt{\frac{b}{b}}$$

- $\sqrt{3} = b$
- $\vee 4 = \{ \vee \}$

Pas de réduction de domaine

Queue (ensemble des arcs de contrainte entre variables) = {}

- Exercice 04: Solution
- Variables et domaine de valeur
 - $V1 = r \{r, V\}$
 - $\sqrt{2} = \sqrt{\frac{b}{b}}$
 - $\sqrt{3} = 6$
 - $\sqrt{4} = \sqrt{2}$

Queue (ensemble des arcs de contrainte entre variables) = {}

 $\{V1 = r, V2 = v, V3 = b, V4 = v\}$: Affectation complète et consistante