Polynomial Operations SOLUTIONS (version 2)

1. Let polynomials p(x) and q(x) be defined below.

$$p(x) = 6x^5 - 8x^3 + x^2 - 5x - 7$$

$$q(x) = 3x^5 - 6x^4 + 8x^3 - 10x + 1$$

Express the sum of p(x) + q(x) in standard form.

Get "unsimplified" forms. Then find p(x) + q(x) with addition/subtraction.

$$p(x) = (6)x^5 + (0)x^4 + (-8)x^3 + (1)x^2 + (-5)x^1 + (-7)x^0$$

$$q(x) = (3)x^5 + (-6)x^4 + (8)x^3 + (0)x^2 + (-10)x^1 + (1)x^0$$

$$p(x) + q(x) = (9)x^5 + (-6)x^4 + (0)x^3 + (1)x^2 + (-15)x^1 + (-6)x^0$$

$$p(x) + q(x) = 9x^5 - 6x^4 + x^2 - 15x - 6$$

2. Let polynomials a(x) and b(x) be defined below.

$$a(x) = 6x^2 - 7x + 8$$

$$b(x) = -4x - 5$$

Express the product $a(x) \cdot b(x)$ in standard form.

You can use a table for multiplication.

*	$6x^2$	-7x	8
-4x	$-24x^{3}$	$28x^{2}$	-32x
-5	$-30x^{2}$	35x	-40

$$a(x) \cdot b(x) = -24x^3 + 28x^2 - 30x^2 - 32x + 35x - 40$$

Combine like terms.

$$a(x) \cdot b(x) = -24x^3 - 2x^2 + 3x - 40$$

3. Express $(x+1)^6$ in standard (expanded) form.

Remember the binomial theorem. It tells us to use Pascal's triangle.

$$x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1$$

Polynomial Operations SOLUTIONS (version 2)

4. Let polynomials f(x) and g(x) be defined below.

$$f(x) = 6x^3 - 25x^2 + 4x + 6$$
$$g(x) = x - 4$$

The quotient of $\frac{f(x)}{g(x)}$ can be expressed as a polynomial, h(x), and a remainder, R (a real number).

$$\frac{f(x)}{g(x)} = h(x) + \frac{R}{x-4}$$

By using synthetic division or long division, express h(x) in standard form, and find the remainder R.

I prefer using synthetic division.

So,

$$\frac{f(x)}{g(x)} = 6x^2 - x + \frac{6}{x - 4}$$

In other words, $h(x) = 6x^2 - x$ and the remainder is R = 6.

5. Let polynomial f(x) still be defined as $f(x) = 6x^3 - 25x^2 + 4x + 6$. Evaluate f(4).

You could do this the hard way.

$$f(4) = (6) \cdot (4)^3 + (-25) \cdot (4)^2 + (4) \cdot (4) + (6)$$

$$= (6) \cdot (64) + (-25) \cdot (16) + (4) \cdot (4) + (6)$$

$$= (384) + (-400) + (16) + (6)$$

$$= 6$$

Or, if you reference the polynomial remainder theorem, you can state that you know f(4) equals the remainder when f(x) is divided by x - 4. Thus, f(4) = 6.

2