Ø	(0.7	Assignment
10.3	2 The labor supply of married women has been a subject of a great deal of economic research. Consider the following supply equation specification	C10Q02(a)
	$HOURS = \beta_1 + \beta_2 WAGE$ $\beta_3 EDUC + \beta_4 AGE + \beta_5 KIDSL6 + \beta_6 NWIFEINC + e$ where $HOURS$ is the supply of labor, $WAGE$ is hourly wage, $EDUC$ is years of education, $KIDSL6$ is	C10Q02(b)
	the number of children in the household who are less than 6 years old, and <i>NWIFEINC</i> is household income from sources other than the wife's employment.	C10Q02(c)
a. b.	Explain why this supply equation cannot be consistently estimated by OLS regression.	C10Q02(d,e)
c. d.	Suppose we consider the woman's labor market experience EXPER and its square, EXPER ² , to be instruments for WAGE. Explain how these variables satisfy the logic of instrumental variables. Is the supply equation identified? Explain.	C10Q03(a)
e.		C10Q03(b)
(M.	C10Q03(c)
	Parameters B2 B3 B4 B5 B6	C10Q03(d)
	Prediction +	C10Q03(e)
	thus leads to endogenise for the OLS regression, parameters inconsistent and biased.	librium is emand, which
C	Q = a + b Wage, + e Q = c + d Wage, + u A good instrument unrighte should be correlated to e Wage a	ated to Uill increase

excess explanation to quantity supplied other than wage do. Therefore, Cov (Wage, Experience) + 0 Gu (Experience, e) = 0 Wage is the only endogenous variable in the equation, and EXPER, EXPER are 2 IV. The equation is thus overidentified. e. 1. Regress wage on EXPER and EXPERT Wage = X,+ X, EXPER + d, EXPER and extract fitted Wage 2. Replace Wage with Wage and estimate original regression HOURS = B1 + B2 Wage + X/B + e B. IV is Consistent and unbiased. Q (0.3 10.3 In the regression model $y = \beta_1 + \beta_2 x + e$, assume x is endogenous and that z is a valid instrument. In Section 10.3.5, we saw that $\beta_2 = \text{cov}(z, y)/\text{cov}(z, x)$. a. Divide the denominator of $\beta_2 = \text{cov}(z, y)/\text{cov}(z, x)$ by var(z). Show that cov(z, x)/var(z) is the coefficient of the simple regression with dependent variable x and explanatory variable z, $x = \gamma_1 + \theta_1 z + v$. [Hint: See Section 10.2.1.] Note that this is the first-stage equation in two-stage **b.** Divide the numerator of $\beta_2 = \text{cov}(z, y)/\text{cov}(z, x)$ by var(z). Show that cov(z, y)/var(z) is the coefficient of a simple regression with dependent variable y and explanatory variable z, $y = \pi_0 + \pi_1 z + u$. [*Hint*: See Section 10.2.1.] c. In the model $y = \beta_1 + \beta_2 x + e$, substitute for x using $x = \gamma_1 + \theta_1 z + v$ and simplify to obtain $y = \pi_0 + \pi_1 z + u$. What are π_0 , π_1 , and u in terms of the regression model parameters and error and the first-stage parameters and error? The regression you have obtained is a reduced-form equation. **d.** Show that $\beta_2 = \pi_1/\theta_1$. e. If $\hat{\pi}_1$ and $\hat{\theta}_1$ are the OLS estimators of π_1 and θ_1 , show that $\hat{\beta}_2 = \hat{\pi}_1/\hat{\theta}_1$ is a consistent estimator of $\beta_2 = \pi_1/\theta_1$. The estimator $\hat{\beta}_2 = \hat{\pi}_1/\hat{\theta}_1$ is an **indirect least squares** estimator.

a.
$$X = X_1 + \theta_1 Z + V$$
 $E(X) = X_1 + \theta_1 E(Z)$
 $X - E(X) = X_1 + \theta_1 E(Z)$
 $= \theta_1 \left[Z - E(Z) \right] + V$
 $= \theta_1 \left[Z - E(Z) \right] + V \left[Z - E(Z) \right] - E(X) \left[Z - E(Z) \right] - E(Z) \left[Z - E(Z) \right] - E(X) \left[Z - E(Z) \right] - E(Z) \left[Z - E(Z) \right] - E(X) \left[Z - E(Z) \right] - E(Z) \left[Z - E(Z) \right] - E(X) \left[Z - E(Z) \right] - E(Z) \left[Z - E(Z) \right] - E($

$$\begin{aligned}
y &= \beta_1 + \beta_1 z + V \\
y &= T_0 + T_1 z + y
\end{aligned}$$

$$\begin{aligned}
y &= T_0 + T_1 z + y
\end{aligned}$$

$$\begin{aligned}
y &= T_0 + T_1 z + y
\end{aligned}$$

$$\begin{aligned}
z &= T_0 \\
z &= T_1
\end{aligned}$$

$$\begin{aligned}
z &= T_1
\end{aligned}$$

d.
$$\beta_{2} = \frac{\pi C_{1}}{\theta_{1}} = \frac{\cos(y_{1}z) / Var(z)}{\cos(x_{1}z) / Var(z)} = \frac{\cos(y_{1}z)}{\cos(x_{1}z)}$$
e. $\frac{\sum(y_{1}-\bar{y})(z_{1}-\bar{z})}{\sum(z_{1}-\bar{z})^{2}}$

$$\frac{\sum(x_{1}-\bar{x})(z_{1}-\bar{z})}{\sum(z_{1}-\bar{z})} = \frac{\sum(y_{1}-\bar{y})(z_{1}-\bar{z})}{\sum(x_{1}-\bar{x})(z_{1}-\bar{z})}$$

c, y= B, + B2 X+e

$$\Sigma (z_{i} - \overline{z})^{2} \qquad \beta_{i} = \frac{\Sigma(y_{i} - \overline{y})(z_{i} - \overline{z})}{\Sigma(x_{i} - \overline{x})(z_{i} - \overline{z})}$$

$$\theta_{i} = \frac{\Sigma(x_{i} - \overline{x})(z_{i} - \overline{z})}{\Sigma(z_{i} - \overline{z})^{2}} \qquad \frac{Cov(y_{i}, z)}{Gv(x_{i}, z)} = \beta_{2}$$