

CI 3: Ingénierie Numérique & Simulation

TD – ÉTUDE DU GEL D'UNE CANALISATION D'EAU

Exercice 1: Mise hors gel des canalisations d'eau (temps : 45 min - difficulté : **)

La température dans le sol terrestre étant initialement constante, égale à 5° C, on cherche à déterminer à quelle profondeur minimale il est nécessaire d'enterrer une canalisation d'eau pour qu'une brusque chute de la température de sa surface à -15°C n'entraine pas le gel de cette canalisation après 10 jours.

Les hypothèses sont les suivantes :

- la température en un point quelconque du sol et de sa surface à tout instant t < 0 est constante et égale à $T_0 = 278 K$ ($\theta_0 = 5^o C$);
- la température à la surface du sol, confondue avec le plan d'équation z=0, passe brutalement à l'instant t=0, de $T_0=278~K$ à $T_1=258~K$ ($\theta_1=-15^oC$) et se maintient à cette valeur pendant $t_f=10$ jours.

On peut montrer que la température T(z,t) à la profondeur z et à l'instant t est donnée par la relation suivante :

$$T(z,t) = T_1 + (T_0 - T_1)\operatorname{erf}\left(\frac{z}{2\sqrt{Dt}}\right)$$

où erf(x) désigne la fonction définie par :

$$\operatorname{erf}(x) = \frac{2}{\pi} \int_0^x e^{-u^2} du$$

Données numériques : $D = 2,8 \cdot 10^{-7} \ m^2 \cdot s^{-1}$ (diffusivité thermique du sol terrestre).

Question 1

Écrire une fonction python, appelée integrale, permettant de réaliser d'intégrer une fonction sur un intervalle, en utilisant la méthode du point milieu.

Question 2

Écrire une fonction Python, appelée erf, prenant en paramètre un nombre réel positif ou nul x et retournant la valeur de erf(x).

Question 3

Écrire une fonction Python, appelée Temperature, prenant en paramètre la profondeur z (exprimée en m) et le temps t (exprimé en s) et retournant la valeur de la température T(z,t).

Question 4

Écrire un programme Python permettant de créer une liste, nommée Liste Erreur, contenant les valeurs de la fonction erf(x) pour x variant par pas de 0,05 dans l'intervalle [0;2].

Question 5

En déduire, à 1 cm près, à quelle profondeur minimale z_{min} il est nécessaire d'enterrer une canalisation d'eau pour qu'une brusque chute de la température de la surface du sol de 5°C à -15 °C n'entraine pas le gel de cette canalisation au bout de 10 jours.

1