

Chapter 02. 가장 단순한 신경망을 통해 작동 원리 이해하기

STEP2. 얕은 신경망의 수식적 이해

얕은 신경망을 깊게 이해해 보자

입력 계층 은닉 계층 출력 계층 (Input layer) (Hidden layer) (Output layer)

얕은 신경망에 대한 깊은 이해가 깊은 신경망(심층 신경망)에 대한 이해를 도울 것이다.

뉴런의 수학적 표현

$$\sum_{i=0}^{N-1} w_i x_i = \boldsymbol{w} \cdot \boldsymbol{x} = \boldsymbol{w}^T \boldsymbol{x}$$

$$y = a$$
 $\left(\sum_{i=0}^{N-1} w_i x_i + b\right)$ 편향(Bias) 활성함수 두 벡터의 내적

$$y = a(\mathbf{w}^T \mathbf{x} + b)$$

뉴런은 수학적으로 두 벡터의 내적으로 쉽게 표현할 수 있다.

전결합 계층의 수학적 표현

$$W = [w_0, w_1, ..., w_{M-1}]^T$$

 $\boldsymbol{b} = [b_0, b_1, ..., b_{M-1}]^T$

$$y_{0} = a(\mathbf{w}_{0}^{T} \mathbf{x} + b_{0})$$

$$y_{1} = a(\mathbf{w}_{1}^{T} \mathbf{x} + b_{1})$$

$$\vdots$$

$$y_{M-1} = a(\mathbf{w}_{M-1}^{T} \mathbf{x} + b_{M-1})$$

$$\mathbf{y} = a(\mathbf{W} \mathbf{x} + \mathbf{b})$$

FC 계층은 여러 개의 뉴런을 한 곳에 모아둔 것으로, Matrix 곱셈 연산으로 표현된다.

입력 계층 (Input Layer)

입력 계층 (Input Layer)

- 입력 계층은 아무런 연산도 일어나지 않는다.
- 신경망의 입력을 받아서 다음 계층으로 넘기는 역할
- 무엇을 입력으로 주어야 하는가? > 특징 추출 문제
- 계층의 크기 = Node의 개수 = 입력 Scalar의 수 = 입력 Vector의 길이

$$\mathbf{x} = [x_0, x_1, x_2, ..., x_{N-1}]^T$$

은닉계층 (Hidden Layer)

은닉 계층 (Hidden Layer)

- 은닉 계층은 입력 계층과 연결된 전결합 계층이다.
- 입출력 관점에서 볼 때 드러나지 않는다고 하여, 은닉 계층이라 한다.
- 복잡한 문제를 해결할 수 있게 하는 핵심적인 계층.
- 얕은 신경망에서는 1개의 은닉 계층만을 사용한다.

$$\boldsymbol{h} = a_h(W_h \boldsymbol{x} + \boldsymbol{b}_h)$$

출력 계층 (Output Layer)

출력 계층 (Output Layer)

- 출력 계층은 은닉 계층 다음에 오는 전결합 계층이다.
- 신경망의 외부로 출력 신호를 전달하는 데에 사용된다.
- 신경망의 기능은 출력 계층의 활성 함수에 의해 결정된다.
- 출력 계층의 크기 = 출력의 Scalar 수 = 출력 벡터의 길이

$$\mathbf{y} = a_o(W_o \mathbf{h} + \mathbf{b}_o)$$