

PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 1

Aufgabe 2

Schreiben Sie für die folgenden Mengen M jeweils die Potenzmenge $\mathcal{P}(M)$ explizit durch Angabe aller Elemente auf:

(b)
$$M = \mathcal{P}(\mathcal{P}(\emptyset))$$

 $L\ddot{o}sung.$

(b)
$$\mathcal{P}(\emptyset) = \{\emptyset\}, \, \mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\}\$$

 $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

Aufgabe 3

 $L\ddot{o}sung.$ (c)

$$\begin{split} A \cap (B \cup C) &= \{x \mid x \in A \text{ und } x \in (B \cup C)\} \\ &= \{x \mid x \in A \text{ und } (x \in B \text{ oder } x \in C))\} \\ &= \{x \mid (x \in A \text{ und } x \in B) \text{ oder } (x \in A \text{ und } x \in C))\} \\ &= (A \cup B) \cap (A \cup C). \end{split}$$

Aufgabe 4

Für Mengen M, N definieren wir

$$M\Delta N := (M \cup N) \setminus (M \cap N).$$

Zeigen Sie, dass für beliebige Mengen M, N, O stets gilt:

- (1) $(M\Delta N)\Delta O = M\Delta(N\Delta O)$
- (2) $M\Delta N = N\Delta M$
- (3) $M\Delta N = \emptyset \Leftrightarrow M = N$.

Lösung. (1) Am leichtesten lässt sich die Gleichheit der beiden Mengen beweisen, indem man alle möglichen Kombinationen von Wahrheitswerten für die Aussagen $x \in M, x \in N$ und $x \in O$ in einer Tabelle auffasst, und daraus jeweils die entsprechenden Wahrheitswerte der Aussagen $x \in (M\Delta N)\Delta O$ und $x \in M\Delta(N\Delta O)$ berechnet. (Zur Hilfe beim Rechnen könnte man auch Spalten für die Aussagen $x \in M\Delta N$ und $x \in N\Delta O$ hinzufügen.) Man sieht, dass die Wahrheitswerte der Aussagen $x \in (M\Delta N)\Delta O$ und $x \in M\Delta(N\Delta O)$ immer übereinstimmen.

(2) \cup und \cap sind kommutativ.

1

$x \in M$	$x \in N$	$x \in O$	$x \in M\Delta N$	$x \in N\Delta O$	$x \in (M\Delta N)\Delta O$	$x \in M\Delta(N\Delta O)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	0	0	0

(3) Unter Anwendung der Tatsache, dass $(M\cap N)\subseteq (M\cup N)$ immer gilt, können wir die Äquivalenz der beiden Aussagen direkt beweisen:

$$(M \cup N) \setminus (M \cap N) = \emptyset$$

$$\iff (M \cup N) \subseteq (M \cap N)$$

$$\iff (M \cup N) = (M \cap N)$$

$$\iff M = N,$$

wobei wir beim zweiten Äquivalenzzeichen $(M\cap N)\subseteq (M\cup N)$ verwendet haben, und die dritte Äquivalenz leicht zu zeigen ist.