Name:	Student number:
-------	-----------------

Chemistry 1A03 Exam December 8, 2014

McMaster University VERSION 1

Instructors: D. Brock, G. Goward, J. Landry

Duration: 180 minutes

This test contains 24 numbered pages printed on both sides. There are **35** multiple-choice questions appearing on pages numbered 3 to 20. Pages 21 and 22 are extra space for rough work. Page 23 includes some useful data and equations, and there is a periodic table on page 24. You may tear off the last page to view the periodic table and the data provided.

You must enter your name and student number on this question sheet, as well as on the answer sheet. Your invigilator will be checking your student card for identification.

You are responsible for ensuring that your copy of the question paper is complete. Bring any discrepancy to the attention of your invigilator.

All questions are worth 2 marks the total marks available are 76. There is **no** additional penalty for incorrect answers.

BE SURE TO ENTER THE CORRECT VERSION OF YOUR TEST (shown near the top of page 1), IN THE SPACE PROVIDED ON THE ANSWER SHEET.

ANSWER ALL QUESTIONS ON THE ANSWER SHEET, IN PENCIL.

Instructions for entering multiple-choice answers are given on page 2.

SELECT ONE AND ONLY ONE ANSWER FOR EACH QUESTION from the answers (A) through (E). No work written on the question sheets will be marked. The question sheets may be collected and reviewed in cases of suspected academic dishonesty.

Academic dishonesty may include, among other actions, communication of any kind (verbal, visual, *etc.*) between students, sharing of materials between students, copying or looking at other students' work. If you have a problem please ask the invigilator to deal with it for you. Do not make contact with other students directly. Try to keep your eyes on your own paper – looking around the room may be interpreted as an attempt to copy.

Only Casio FX 991 electronic calculators may be used; but they must NOT be transferred between students. Use of periodic tables or any aids, other than those provided, is not allowed.

Name:	Student number:

OMR EXAMINATION – STUDENT INSTRUCTIONS

NOTE: IT IS YOUR RESPONSIBILITY TO ENSURE THAT THE ANSWER SHEET IS PROPERLY COMPLETED: YOUT EXAMINIATION RESULT DEPENDS UPON PROPER ATTENTION TO THESE INSTRUCTIONS.

The scanner, which reads the sheets, senses the bubble shaded areas by their non-reflection of light. A heavy mark must be made, completely filling the circular bubble, with an HB pencil. Marks made with a pen will **NOT** be sensed. Erasures must be thorough or the scanner will still sense a mark. Do **NOT** use correction fluid on the sheets. Do **NOT** put any unnecessary marks or writing on the sheet.

- 1. On SIDE 1 (**red side**) of the form, in the top box, *in pen*, print your student number, name, course name, and the date in the spaces provided. Then you **MUST** write your signature, in the space marked SIGNATURE.
- 2. In the second box, *with a pencil*, mark your student number, **exam version number** in the space provided and fill in the corresponding bubble numbers underneath.
- 3. Answers: mark only **ONE** choice from the alternatives (A,B,C,D,E) provided for each question. The question number is to the left of the bubbles. Make sure that the number of the question on the scan sheet is the same as the number on the test paper.
- 4. Pay particular attention to the Marking+ Directions on the form.
- 5. Begin answering the question using the first set of bubbles, marked "1".

Name:	Student number:
ivanic.	Student number.

- 1. Which element has the **largest atomic radius**?
 - A) Li
 - B) Ga
 - C) Cs
 - D) F
 - E) I

- 2. Under which of the following situations is it **not appropriate** to hit the panic alarm?
 - A) Another student is having a seizure.
 - B) A large fire has started and is spreading.
 - C) A large spill (20 L) of concentrated nitric acid has occurred.
 - D) Your TA has injured themselves and is bleeding profusely.
 - E) More than one of the above.

- 3. Which atom has the greatest first ionization energy (IE_1)?
 - A) Li
 - B) Ga
 - C) Ba
 - D) Be
 - E) B

4. Graphite and carbon dioxide are kept at constant volume (1.00 L vessel) and 1000. K until the following reaction has come to equilibrium. The initial pressure of CO₂(g) is 1.00 bar, the mass of graphite is 12.0 g, and K is 1.746. What is the **equilibrium** pressure of CO(g)?

$$C(graphite) + CO_2(g) \rightleftharpoons 2CO(g)$$

- A) 0.726 bar
- B) 0.955 bar
- C) 0.889 bar
- D) 0.231 bar
- E) 0.524 bar

Name:	Student number:

- 5. Determine the **FALSE** statement:
 - A) A group and period intersect at a right angle on the periodic table.
 - B) The atomic number of an element is always smaller than its average atomic mass.
 - C) Considering two metals of equal volume, the metal with the highest density will have the lowest mass.
 - D) Concentration is an intensive property.
 - E) The oxidation number of P in PO_4^{3-} is +5.

- 6. In order to form ozone (O₃), the bonds of oxygen molecules must first be broken by sunlight. The minimum energy required to break the oxygen-oxygen bond is 495 kJ mol⁻¹. What is the **maximum wavelength** (in nm) of sun light that can break the oxygen-oxygen bond?
 - A) 837
 - B) 242
 - C) 19.4
 - D) 619
 - E) 356

Name:	Student number:
- 10101	

- 7. Which of the following statements is **FALSE** regarding HPO₄²⁻ and H₂PO₄⁻? (H atoms are attached to O atoms)
 - A) Both anions have a tetrahedral electron pair geometry around P.
 - B) The two anions form a Bronsted-Lowry conjugate acid base pair.
 - C) The average formal charges on the terminal oxygen atoms are -2/3 and -1/2, for HPO_4^{2-} and $H_2PO_4^{-}$, respectively.
 - D) Both anions are represented by the same number of resonance structures.
 - E) The average P-O bond order for terminal oxygen atoms is 4/3 for HPO₄²⁻ and 3/2 for H₂PO₄⁻.

8. Consider the following equilibria

$$2SO_3(g) \implies 2SO_2(g) + O_2(g)$$
 $K = 5.7 \times 10^{-6}$
 $2NO_3^-(aq) \implies 2NO_2^-(aq) + O_2(g)$ $K = 3.5 \times 10^{-2}$

What is the **equilibrium constant**, K, for the reaction:

$$SO_2(g) + NO_3(aq) \implies NO_2(aq) + SO_3(g)$$
 $K = ?$

- A) 4.7×10^3
- B) 9.2×10^{-9}
- C) 3.1×10^{-5}
- \vec{D}) 6.5×10^{-7}
- E) 7.8×10^{1}

Name:	Student number:

- 9. Determine the **FALSE** statement:
 - A) NH₄⁺ is the conjugate acid of NH₃.
 - B) A Brønsted base is a proton acceptor.
 - C) H_2F^+ would be a strong acid.
 - D) H⁺ is a Lewis base.
 - E) Mg(OH)₂ would react to completion with HCl to produce a neutral solution.

- 10. Vitamin B9, also known as folic acid (FAH), helps the body convert carbohydrates into glucose for energy. It has a p K_a of 4.65. The conjugate base, Folate, FA⁻, is found in many vitamin supplements.
 - A 1.60 mg sample of folate (molecular mass = $441.40 \text{ g mol}^{-1}$) was dissolved in water and made up to a final volume of 10.0 mL. **What is the % dissociation** of this solution?
 - A) 18
 - B) 3.4
 - C) 6.9
 - D) 0.11
 - E) 1.5

Name:	Student number:
Name.	Student number.

- 11. What is the **pH** of a 0.80 M solution of monochloroacetic acid (CH₂ClCOOH)? $K_a = 1.35 \times 10^{-3}$
 - A) 1.59
 - B) 1.49
 - C) 2.87
 - D) 4.17
 - E) 1.30

- 12. Which of the following is the **strongest acid**?
 - A) OH-
 - B) F-
 - C) CH₄
 - D) HSO₄-
 - E) NH₂⁻

Name:	Student number:

- 13. Which of the following salts would produce a solution with the **highest pH** (assume all are 1.0 M)?
 - A) NH₄I
 - B) NaNH₂
 - C) NH₄F
 - D) NH₄OH
 - E) NH₃

- 14. Consider a weak acid, HA with $K_a = 1.0 \times 10^{-4}$. Which of the following is **FALSE** with respect to a 1.0 M solution of HA.
 - A) The small x approximation is valid when solving for the pH.
 - B) $K_a < [H_3O^+]$ in solution.
 - C) $[OH^-]$ in solution is 10^{-10} M.
 - D) pK_b of the conjugate base = $-\log 10^{-10}$.
 - E) The conjugate base is a weak base.

15. The painkiller, Advil® contains the active ingredient ibuprofen (IB), which has a p K_b of 5.20. If the pH of a solution containing a dissolved tablet of Advil® was found to be 8.20, what was the equilibrium concentration (mol L^{-1}) of ibuprofen?

$$IB + H_2O \Longrightarrow IBH^+ + OH^-$$

- A) 3.7×10^{-4}
- B) 5.5×10^{-5}
- C) 2.8×10^{-7}
- D) 4.0×10^{-7}
- E) 9.2×10^{-7}

- 16. Using an ice calorimeter such as that in experiment #4, it was determined that the reaction of 0.18 g of magnesium with excess HCl (aq), caused 0.68 g of ice to melt. What was the **heat of reaction per mole of Mg** (kJ mol⁻¹)? [$\Delta H_{\text{fus}}(\text{ice}) = 333 \text{ J g}^{-1}$]
 - A) -180
 - B) 590
 - C) -95
 - D) 240
 - E) -31

17. Consider an ionic compound M_2X where M is a metal that forms a cation of +1 charge, and X is a nonmetal that forms an anion of -2 charge. A Born-Fajans-Haber cycle for M_2X is given below. Each step in this cycle has been assigned a number (1-7).

Identify the **FALSE** statement:

- A) Step 5 is the electron affinity of X and is exothermic.
- B) Step 3 is the bond enthalpy of X_2 and is endothermic.
- Step 1 is the enthalpy of formation of M_2X and is exothermic. C)
- D) Step 7 is the lattice enthalpy of M_2X and is exothermic.
- Step 2 is twice the enthalpy of sublimation of M and is endothermic.

Name:	Student number:	

- 18. A reaction of 6.085 g of Na with excess water was carried out in constant pressure and constant volume calorimeters at 25.00 °C. What is the **difference in energy** between q_P and q_V .
 - A) q_P and q_V are the same
 - B) q_V is greater than q_P by 328 J
 - C) q_V is greater than q_P by 947 J
 - D) q_P is greater than q_V by 947 J
 - E) q_P is greater than q_V by 328 J

- 19. Identify the **FALSE** statement among the following:
 - A) If a system is heated during a process for which $\Delta U = 0$, then the system did work on its surroundings during this process.
 - B) The thermite reaction, $Fe_2O_3(s) + 2 Al(s) \rightarrow 2 Fe(l) + Al_2O_3(s)$, is exothermic.
 - C) The breaking of a chemical bond is always endothermic.
 - D) For any compound, ΔH_f° (liquid) is less than ΔH_f° (gas).
 - E) If 100 J of work is done on a system during a process for which $\Delta U = 50$ J, then 50 J of heat flowed into the system from its surroundings during this process.

20. Find the standard enthalpy of formation of ethylene, C₂H₄(g) (in kJ), given the following data:

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$$
 $\Delta H_f^0 = -1411 \text{ kJ}$

$$\Delta H_{\rm f}^{\rm o} = -1411 \text{ kJ}$$

C(graphite) +
$$O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_f^o = -393.5 \text{ kJ}$

$$\Delta H_{\rm f}^{\,0} = -393.5 \, \text{kJ}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$$
 $\Delta H_f^o = -285.8 \text{ kJ}$

$$\Delta H_{\rm f}^{\rm o} = -285.8 \text{ kJ}$$

- A) -2090
- B) +486
- C) -1090
- D) +52
- E) +732

21. Calculate the **enthalpy of formation**, ΔH_f° in kJ, of hydrogen peroxide, $H_2O_2(g)$, from the relevant bond energy data.

Bond	Bond energy	Bond	Bond energy
О-Н	463 kJ mol^{-1}	H-H	436 kJ mol ⁻¹
O=O	498 kJ mol ⁻¹	O-O	138 kJ mol ⁻¹

- A) +130
- B) -130
- C) +285
- D) -380
- E) -285

- 22. A sample of aluminum, initially at 5.0 °C, was placed in 18.0 g of water, initially at 25.0 °C. The final temperature of the water and the metal was 21.0 °C. The specific heat of water is 4.184 J g⁻¹ °C⁻¹ and aluminum is 0.940 J g⁻¹ °C⁻¹. Ignore the heat capacity of the container. What is the mass (in g) of the aluminum?
 - A) 1.7
 - B) 20.
 - C) 68
 - D) 34
 - E) 59

23. A gas is allowed to expand at constant temperature from a volume of 1.0 L to 10.1 L against an external pressure of 0.50 bar. If the gas absorbs 250 J of heat from the surroundings, what are the values of q, w, and ΔU (in J)?

A)
$$-250 -4.55 +245$$

- B) -250 +460 -210
- C) +250 -460 -210
- D) +250 +460 +710
- E) -250 -460 -710

Name:	Student number:

- 24. Consider the following two reactions, with thermodynamic data at 298.15 K:
 - (1) $Pb(s) + CO(g) \rightarrow PbO(s) + C(graphite)$ $\Delta H^{\circ} = -107 \text{ kJ mol}^{-1}$ $\Delta G^{\circ} = -51 \text{ kJ mol}^{-1}$
 - (2) 2C(graphite) + O₂(g) \rightarrow 2CO(g) $\Delta H^{\circ} = -221 \text{ kJ mol}^{-1} \Delta G^{\circ} = -274 \text{ kJ mol}^{-1}$

Which of the following statements are **FALSE**? (Assume ΔH° and ΔS° are independent of temperature.)

- (i) $\Delta G_f^{\circ} [PbO(s)] = +188 \text{ kJ mol}^{-1}$.
- (ii) Both reactions are spontaneous under standard conditions at room temperature.
- (iii) ΔS° for reaction (2) is +178 J mol⁻¹ K⁻¹ at 298.15 K.
- (iv) Reaction (2) is spontaneous at 500 °C when the partial pressures of O₂ and CO are 1 bar each.
- (v) Reaction (1) will become non-spontaneous as temperature is decreased.
- A) iv, v
- B) ii, iii
- C) i, ii
- D) iii, iv
- E) i, v

- 25. Choose the **FALSE** statement regarding entropy.
 - A) $\Delta S^{\circ} < 0$ for the reaction $H_2(g) + O_2(g) \rightarrow HOOH(g)$.
 - B) Entropy is a property of state; its changes do not depend on the path taken by the system.
 - C) Entropy is an intensive property, in other words, it does not depend on the amount of substance present.
 - D) For a spontaneous chemical reaction at 298.15 K and 1 bar, $\Delta G^{\circ} < 0$.
 - E) For a system at equilibrium, $\Delta H_{\text{sys}} = T\Delta S_{\text{sys}}$.

26. The standard elemental form of mercury at 300. K is Hg(1). The standard enthalpy of formation for Hg(g) is +60.78 kJ mol⁻¹. The standard entropy of vapourization of mercury is $+97.3 \text{ J mol}^{-1} \text{ K}^{-1}$.

Calculate the equilibrium vapour pressure (in bar) of mercury at 300. K.

- A) 21.7
- B) 3.16×10^{-6}
- C) 0.822
- D) 6.13×10^5
- E) 0.492

- 27. Identify the reaction with the largest positive ΔS° .
 - A) $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$
 - B) $H_2O(s) \rightarrow H_2O(g)$
 - C) $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$
 - D) $KClO_4(s) + 4C(s) \rightarrow KCl(s) + 4CO(g)$
 - E) $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

Name:	Student number:

- 28. Choose the expected order of increasing molar entropy.
 - A) $NH_4NO_3(aq) < C(diamond)(s) < C(graphite) < H_2O(1) < C_4H_{10}(g)$
 - B) $NH_4NO_3(aq) < H_2O(1) < C(diamond)(s) < C(graphite) < C_4H_{10}(g)$
 - C) $C(diamond)(s) \le C(graphite) \le NH_4NO_3(aq) \le C_4H_{10}(g) \le H_2O(1)$
 - D) $C(diamond)(s) < C(graphite) < H_2O(1) < NH_4NO_3(aq) < C_4H_{10}(g)$
 - E) $C(graphite)(s) < C(diamond) < H_2O(1) < NH_4NO_3(aq) < C_4H_{10}(g)$

29. The reaction of nitrogen with oxygen under high pressure and temperature is a source of nitric oxide, NO, precursor to smog. Calculate ΔG° (in kJ) for the following reaction at 25°C:

$$N_2(g) + O_2(g) \Longrightarrow 2NO(g)$$
 $\Delta H_f^{\circ}[NO, g] = +90.4 \text{ kJ mol}^{-1}$
 $S^{\circ}[N_2, g] = 191.5 \text{ J mol}^{-1} \text{K}^{-1}$
 $S^{\circ}[O_2, g] = 205.0 \text{ J mol}^{-1} \text{K}^{-1}$
 $S^{\circ}[NO, g] = 210.6 \text{ J mol}^{-1} \text{K}^{-1}$

- A) 528.5
- B) 263.8
- C) 173.4
- D) -893.2
- E) 101.3

- 30. In the lab you create a concentration cell. What **ratio of concentrations** is needed for this concentration cell to produce a voltage of 0.100 V (z = 2, T = 298 K)? Consider the solutions to be both $M^{2+}(aq)/M(s)$ where M = a metal.
 - A) 6.95×10^6
 - B) 7.59×10^5
 - C) 1.56×10^4
 - D) 4.15×10^{-4}
 - E) 2.26×10^{-5}

31. Given the following reduction potentials, what species, either reactant or product has the greatest tendency to be oxidized?

$$\begin{array}{ll} S(s) + 2H^{^{+}} + 2e^{^{-}} \rightarrow H_2S(g) & E^o = 0.144 \ V \\ O_2(g) + 4H^{^{+}} + 4e^{^{-}} \rightarrow 2 \ H_2O(l) & E^o = 1.229 \ V \\ Mg^{^{2+}}(aq) + 2e^{^{-}} \rightarrow Mg(s) & E^o = -2.356 \ V \end{array}$$

- A) $Mg^{2+}(aq)$
- B) $O_2(g)$
- C) $H_2O(1)$
- D) Mg(s)
- E) S(s)

Name:	Student number:	

- 32. Determine the **FALSE** statement regarding electrochemistry.
 - A) Electrons travel towards the cathode in a galvanic cell.
 - E_{anode} must always be lower than E_{cathode} in a spontaneous electrochemical cell.
 - In a concentration cell, electrons flow from the higher to lower concentration halfcell.
 - D) During electrolysis, electricity is needed to drive a non-spontaneous redox reaction.
 - The purpose of an inert electrode is to facilitate the transfer of electrons.

33. When the following redox reaction is balanced in basic solution, what is the **coefficient** in front of hydroxide?

$$NH_3$$
 (aq) + OCl^- (aq) $\rightarrow Cl_2$ (g) + N_2H_4 (aq)

- A) 3
- B) 1
- C) 6
- D) 2
- E) 4

- 34. How many **electrons are gained** (+) or lost (-) when oxide (O_2^{2-}) ? Use the lowest whole number coefficients to balance the half-reaction.
 - A) –2
 - B) 0
 - C) +1
 - D) -1
 - E) +2

35. Three electrochemical cells are built based on the following reductions which are listed in order of decreasing reduction potential (1 is highest, 3 lowest)

1)
$$Hg^{2+}$$
 (aq) + 2 $e^{-} \rightarrow Hg$ (s)

2)
$$Cu^{+}$$
 (aq) + 1 $e^{-} \rightarrow Cu$ (s)

3)
$$In^{3+}$$
 (aq) + 3 e⁻ \rightarrow In (s)

If all concentrations used are 0.20 M, given the following generated potentials, determine $\mathbf{E_{red}^o}$ for each metal (V).

Reduction	Oxidation	Potential (V)
Hg ²⁺ /Hg	Cu/Cu ⁺	0.35
Hg ²⁺ /Hg	In/In ³⁺	1.18
Cu ⁺ /Cu	In/In ³⁺	0.82

- A) Hg = 0.99; Cu = 0.48; In = 0.22
- B) Hg = 0.67; Cu = -0.14; In = -0.55
- C) Hg = 0.75; Cu = 0.33; In = -0.16
- D) Hg = 0.88; Cu = 0.25; In = -0.30
- E) Hg = 0.85; Cu = 0.52; In = -0.34

Name:	Student number:

Extra space for rough work:

Name:	Student number:

Extra space for rough work:

- Some general data are provided on this page.
- A Periodic Table with atomic weights is provided on the next page.

STP = 273.15 K, 1 atm $N_{\rm A} = 6.022 \times 10^{23} \, \rm mol^{-1}$ $h = 6.6256 \times 10^{-34} \,\mathrm{Js}$

 $density(H_2O, 1) = 1.00g/mL$

Specific heat of water = $4.184 \text{ J}/\text{g} \cdot ^{\circ}\text{C}$

 $R = 8.3145 \text{ J K}^{-1} \text{ mol}^{-1} = 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1} = 0.083145 \text{ L bar K}^{-1} \text{ mol}^{-1}$

1 bar =
$$100.00 \text{ kPa} = 750.06 \text{ mm Hg} = 0.98692 \text{ atm}$$

 $1 \text{ J} = 1 \text{ kg m}^2 \text{ s}^{-2} = 1 \text{ kPa L} = 1 \text{ Pa m}^3$

 $1 \text{ cm}^3 = 1 \text{ mL}$

1 Hz = 1 cycle/s

$$F = 96485 \text{ C/mol}$$

 $c = 2.9979 \times 10^8 \text{ m/s}$

 $m_e = 9.109 \times 10^{-31} \text{ kg}$

 $\Delta H_{\text{vap}}^{0}[H_{2}O] = 44.0 \text{ kJ mol}^{-1}$

$$0^{\circ}C = 273.15 \text{ K}$$

1 m =
$$10^6 \mu m = 10^9 nm = 10^{10} \text{ Å}$$

1 g = 10^3 mg

De Broglie wavelength:

 $\lambda = h / mu = h / p$

Hydrogen atom energy levels:

$$E_n = -R_{\rm H} / n^2 = -2.179 \times 10^{-18} \text{ J} / n^2$$

 $KE = \frac{1}{2}mu^2$

Nernst Equation:

$$E = E^{\circ} - \frac{RT}{zF} \ln Q = E^{\circ} - \frac{0.0257 \text{ V}}{z} \ln Q = E^{\circ} - \frac{0.0592 \text{ V}}{z} \log_{10} Q$$

 $\Delta S = \frac{q_{\text{rev}}}{T}$ Entropy change:

Solubility Guidelines for Common Ionic Solids

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations and the NH₄⁺ cation are soluble . Except LiF and Li₂CO₃ which are insoluble.
- 2. Nitrates, acetates, bicarbonates, and perchlorates are soluble.
- 3. Salts of silver, lead and mercury (I) are insoluble. Except AgF which is soluble.
- 4. Fluorides, chlorides, bromides, and iodides are soluble. Except Group 2 fluorides which are insoluble
- 5. Carbonates, phosphates, chromates, sulfides, oxides, and hydroxides are insoluble. Except Group 2 sulfides and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ which are soluble.).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

Wil He 4.0026	° E	<u> </u>	17 18	C A	35.453 39.948	35 36	Br 자	79.904 83.80	53 54	- Xe	126.90 131.29	85 86	At Rn	[210] [222]		nt digits.		-	רת	174.97	103	Ľ	1000
≥ 5	<u></u> 0	15.999	16 1	S	32.066	34	Se	78.96	52 5	<u>e</u>	127.60		Po	[509]		Atomic weights are based on 12 C = 12 and conform to the 1987 IUPAC report values rounded to 5 significant digits.		12 02	Ϋ́	173.04	102	ş	10101
> 15	Z	14.007	15	<u>a</u>	30.974	33	As	74.922	51	Sb	121.75	83	ä	208.98		es rounded		69	<u>ع</u>	168.93	101	PΜ	10101
≥ 4	္မပ	12.011	14	ij	28.086	32	Ge	72.61	20	S	118.71	85	Pp	207.2		report valu		 89	ш	167.26	100	Fa	2
≡ ₽	^ه س	10.811	13	4	26.982	31	Ga	69.723	49	2	114.82	81	F	204.38		87 IUPAC		29	욷	164.93	66	Es	10101
				Ī	12	30	Zu	62.33	48	<u>გ</u>	112.41	80	Ť	200.59		m to the 19		99	2	162.50	6	ŭ	[1054]
ည					11	29	<u>ე</u>	63.546	47	Ag		6/	Au	196.97		and confor	isotope.	99	£	158.93		쓪	1017
				į	10	28	Ż	58.69	46	В	105.42	8/	置	195.08		2C = 12	nost stable	2	පි	157.25	96	Am Cm	1247
PERIODIC TABLE OF THE ELEMENTS					6	27	ပ္ပ	58.933	45	둔		22	<u> </u>	192.22		are based o	Numbers in [] indicate the most stable isotope.	83	Eu	151.97	92	Am	[0/0]
S II				Transition Metals	8	26	Fe	55.847	4	2	101.07	9/	S _O	190.2		ic weights	oers in [] in	62	Sm	150.36	94	Pu	[DAA]
PERIODIC TABLE OF THE ELEMEN ^T				- Transiti	7	25	₹ E	54.938	43	2	[86]	75	Re	186.21				19	Pa	[145]	93	Š	237 OF
PEI PEI					9	24	ර	51.996	42	§ E	95.94	74	≥	183.85	106	Jnp Unh	[263]	8	2	144.24	85	>	238 03
TORIGH ®					2	23	>	50.942	41	2	92.906	73	ا ھ	180.95	105	<u> </u>	[262]	29	ቯ	140.91	91	Pa	231 04
					4	75	F	47.88	40	Z		_	Ξ	178.49	104	Und	[261]	28	ပ္ပ	140.12	06	드	230 04
-		iios ki	***	J	က	21	သွင	44.956	39	>	88.906	22	La *	138.91	88	**Ac	227.03		Lanthanides Ce			nides	
= 0	₽ Be	9.0122	12	Mg	24.305	20	င္မ	40.078	38	က်	87.62	26	Ba	137.33	88	Ra	226.03		Lanth			** Actinides	
T 6200	:	.941		<u>R</u>	2.990		¥	9.098		2	5.468		SS	32.91		亡	223]		*			*	8