SEQUENCE LISTING

GENERAL INFORMATION:

BRUCE C. ROSS et al. (1) APPLICANT:

P. GINGIVALIS POLYPEPTIDES AND NUCLEOTIDES TITLE: (2)

(3) PP 0839 1997-10-12

RECEIVED

(4) PCT/AU98/01023 1998-10-12

MAY 1 6 2003

(5) NUMBER OF SEQUENCES: 532 **TECH CENTER 1600/2900**

(6) (A) NIXON & VANDERHYE P.C.

(B) 1100 NORTH GLEBE ROAD, 8^{TH} FLOOR

(C) ARINGTON

- (D) VIRGINIA
- (E) USA
- (F) 22201

(7) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: CD ROM
- (B) COMPUTER: IBM PC COMPTIBLE
- (C) OPERATING SYSTEM: MS-DOS
- (D) SOFTWARE: WORD 97

(8) CURRENT APPLICATION DATA:

(A) 09/581,286

(B) June 28, 2000

(2) INFORMATION FOR SEQ ID NO:1

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1362 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...1362
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1

TTCTGTGTCA	TGGCAAAAGT	TATAAAAACA	AAAAAAGGCC	TTGCACTTAA	TCTGAAAGGA	60
AAACCGCTGC	CCGAGATGCT	GGCCGAACCG	GCCCAAAGTC	CTACTTACGC	GGTCGTGCCC	120
GACGATTTTG	AAGGTGTTAT	CCCCAAGGTG	ACGGCTCGTC	CGGGGGATAA	GGTGCGTGCC	180
GGCTCAGCAC	TGATGCACCA	CAAGGCATAT	CCGGAGATGA	AGTTTACAAG	TCCGGTTAGC	240
GGCGAAGTGA	TCGCGGTGAA	TCGCGGTGCC	AAGCGCAAGG	TGTTGAGCAT	CGAGGTGAAA	300
CCGGACGGAC	TGAACGAATA	CGAGTCATTC	CCTGTCGGGG	ATCCGTCTGC	CCTCTCTGCC	360
GAACAGATCA	AGGAGCTTTT	ACTGTCGAGC	GGTATGTGGG	GTTTTATTAA	GCAACGTCCT	420
TACGACATAG	TGGCTACACC	GGATATAGCT	CCACGCGACA	TTTATATTAC	TGCCAACTTT	480
ACTGCACCAT	TGGCTCCGGA	CTTCGATTTC	ATCGTTCGAG	GAGAAGAACG	CGCCCTGCAG	540
ACTGCCATCG	ATGCCTTGGC	CAAACTCACG	ACAGGAAAGG	TGTATGTGGG	CCTGAAGCCG	600
GGTTCATCTC	TGGGCTTGCA	CAATGCAGAA	ATCGTAGAAG	TACACGGACC	TCATCCGGCA	660
GGTAACGTGG	GCGTGCTGAT	CAATCATACG	AAGCCAATCA	ATCGGGGCGA	AACGGTGTGG	720
ACGCTCAAGG	CTACCGACCT	GATCGTGATC	GGACGTTTCC	TGCTTACGGG	CAAAGCCGAT	780
TTTACCAGAA	TGATTGCCAT	GACCGGCTCA	GACGCTGCAG	CTCACGGATA	CGTCCGTATT	840
ATGCCGGGTT	GCAATGTCTT	TGCTTCCTTC	CCCGGCCGAC	TGACAATAAA	GGAATCTCAC	900
GAGCGTGTGA	TCGATGGCAA	TGTGCTGACC	GGTAAGAAGC	TCTGCGAGAA	GGAGCCTTTC	960
CTGTCAGCCC	GGTGTGACCA	GATCACGGTG	ATCCCCGAAG	GCGACGATGT	GGACGAACTC	1020
TTCGGGTGGG	CTGCACCCCG	TCTCGATCAG	TACAGCATGA	GCAGAGCTTA	TTTCTCTTGG	1080
TTGCAGGGGA	AAAACAAAGA	GTACGTACTC	GATGCCCGGA	TCAAGGGTGG	CGAACGTGCT	1140
ATGATCATGA	GCAACGAGTA	TGACCGCGTT	TTCCCGATGG	ACATCTATCC	GGAGTATTTG	1200
CTCAAGGCTA	TTATAGCATT	CGACATCGAC	AAGATGGAGG	ACTTAGGCAT	ATATGAAGTG	1260

69581286

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 603 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...603
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2

GAACTAAGCA AGTGTTACAT GGATAAAGTG AGCTATGCTC TGGGATTGAG CATCGGTAAT 60 AATTTCAAGT CTTCGGGCAT CGACAGCGTC GTTATGGATG ATTTCATGCA AGGTCTGTCT 120 GATGTACTGG AAGAAAAAGC CCCTCAGCTC TCGTATGACG AGGCCAAGCG CGAAATAGAG 180 GCGTATTTCA TGGATTTGCA GCAGAAGGCT GTCAAACTGA ACAAAGAGGC CGGAGAAGAA 240 TTCCTCAAGA TAAATGCACA CAAGGAAGGT GTGACGACCT TACCGAGCGG CTTGCAATAC GAAGTCATTA AGATGGGAGA GGGCCCGAAA CCCACCCTTT CGGACACGGT AACCTGTCAT 360 TATCACGGTA CGCTCATCAA CGGTATCGTT TTCGATAGCT CTATGGACAG GGGAGAACCG 420 GCCAGTTTCC CTCTAAGAGG AGTTATAGCC GGCTGGACGG AGATTCTTCA ATTAATGCCT 480 GTAGGATCCA AGTGGAAAGT AACTATACCG AGCGATCTGG CGTATGGAGA TCGTGGTGCC 540 GGCGAACATA TCAAACCGGG TAGTACGCTC ATTTTTATAA TCGAATTATT GAGTATCAAC 600 AAA 603

- (2) INFORMATION FOR SEQ ID NO:3
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 837 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...837
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3

CAAAAAAACA	AACGAAAGAT	GAAAAAAGCA	TTACTTATTG	GTGCTGCTCT	TTTGGGAGCA	60
GTCAGTTTTG	CAAGTGCTCA	GTCTTTGAGC	ACAATCAAAG		TTCAGTACAG	120
CAACCTCGTG	AGGAAGCCAC	TATTCAGGTT	TGTGGAGAAT		AGTTGACTGC	180
ATTGGGACAG	GTAATTCTGC	AATCATAGCC	GCTGCAGCGA	AATTTGAAAG	CGATGATCTC	240
GAAAGCTATG	TTGGCTGGGA	GATCATGAGT	GTTGATTTCT		TAAAGCGTGC	
	CTGCAGTCTG				AGAAGATAGT	300
GATCCCGAAA	TGCAGACTAT	CAACAATCTT	COMOMONA	IGGGCCAAIC	AGAAGATAGT	360
CCCTTCTTT	TOCHGACIAI	CAACAATCII	GCTCTCAAGA	CTAGTGTCAA	GATTGAAGCC	420
GGCAAGAATT	ACATAGTTGG	TTATATTGCT	AATACCGCAG	GTGGACATCC	TATCGGATGT	480
GATCAGGGCC	CTGCCGTTGA	TGGTTATGGA	GATTTGGTTT	CTATATCAGA	AGATGGTGGT	540
GCTACTTTCC	CTCCGTTCGA	ATCTCTTCAT	CAAGCAGTTC	CTACCTTAAA	TTACAACATC	600
TATGTCGTTG	TTCATTTGAA	GAAGGGTGAA	GGTGTTGAGG	CTCTTCTTAC	CAACCACAAC	
GCTAATGCTT	ΔΤΩΤΤΟΛΟΛΛ	TCCCCCTTATC	TATION COOK	CIGITCIIAC	CAACGACAAG	660
TCTCTT	ATGTTCAGAA	IGGCGITATC	TATGTAGCCG	GAGCTAATGG	TCGTCAGGTA	720
	ACATGAACGG			TTAGCGAAAC	GATTGCAGCT	780
CCTCAGAAGG	GCATGTATAT	CCTCCGTGTA	GGTGCTAAGA	GCATCAAGCT	GGCTATC	837
				INDICI	COCIAIC	03/

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 471 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...471
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4

${\tt CGTGnATTCC}$	TGCCGGAGAA	AGCTCTCTAT	ATCGGCTGCC	GCGTGGAGAC	GCAAGAGGGG	60
CATGCCGTAG	GTTTCGGACT	GGATGACGGC	CCTGCGATGA	AAGGCAAGGG	CGATCTGGTC	120
GGGAGCTATC	TTCCCGGTGC	TGCTCCGATG	CCTTTTGTCC	CGCTTTCTGA	TATTCCGGCT	180
CGTTCGATGG	ATGCCAATTT	TTATATCTAT	TCTCGTATTT	CACTGGGTTC	GGGCACGCAG	240
GATGTTCTCC	AGCATAGGAT	GAAAGTGTAT	CCCAACCCTG	CCACGACGGA	GCTGCATGTG	300
GAAGCCCTGT	CCGCATGGGT	GGGCGAGCAG	GCTGCGGTAT	ATGATATGCG	TGGTCGTCGG	360
GTATCGGCTC	${\tt GGACGGTGGA}$	TAGCGAGAAG	CTGTGCATCG	ACATTGCCTC	ACTGCCCGTG	420
GGCGTCTATA	TGCTGCGCAT	CGGCAGCTAC	TCGGCCAAGT	TCGAGAAGAG	A	471

- (2) INFORMATION FOR SEQ ID NO:5
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1686 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1686
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5

ACAAGAAATG	TTTCACTCAT	AAAAATGCCA	AGAATTATGA	AATTAAAAAT	TGCACTCAGA	60
CTGCTGCTGG	CGACTTTTGC	CATAGTTTTA	TTTAGCCCTC	TGGCCAAGGC	CCAGATGGAT	120
ATTGGTGGAG	ACGATGTATT	GATCGAGACG	ATGTCCACCC	TATCAGGATA	TTCAGAGGAT	180
TTTTATTACA	AGATGGCTGT	GGCAGACAAT	GGATGGATCT	ATGTGATGTT	GGATTTCTCT	240
CGTATTTATT	TTGATGATGT	CAGGCTGTAT	CGTTCCAAAG	ACGGTGGTGC	TACTTACCAA	300
AAGTTAGGGT	CTTTGGGGTC	TTTGGTGCCT	TATGACTTCG	ATGTCTCGCA	TTGCGATTTT	360
ATTGTAACGG	GAAAGGATGA	AGATGATATC	AATGTTTGGA	CAGTCATGAC	AGCATTCGAA	420
TATGTAGGTG	GTACTATTGG	CAATGGCGTT	TTGCTGATGC	ATCGCCATGA	TGCAGATATC	480
AATAATACAG	AGTGTGTGTA		TTCCCTAATA	ATAGACTGAT	GGGTGTAGCC	540
ATCGCCTCCA	ACTACCGTGC	GCCCTCTCCT	TACGGTTTGG	GGGGCGATCC	TTTTGCTCTC	600
GCTGTCGCCG	TTAGTGGCTC	CGGAAGCGAT	CACAGCTTCT	TGGACTATAT	TTTTTCGTTA	660
GATGGTGGAG	TACACTTTGA	GCAAAAGCGT	ATTTACACAA	GACCCCAAAA	ACTGACTATC	720
AATAGAGTAG	ACCTTTCATT	AGGCAGTACA	TCTCCTTCTC	TTGGATTTAA	TACTTGGCCA	780
CTAATGGGAG	TCGTATTCGA	AATGAATAAG	AACCTTGATG	GCTTCGACAT	TGGTTTCATT	840
TCCAACTTTG	TGGACTATGA	TCCCCGCTAT	GCGTGGTCTG	AACCGATAAT	AATAGAAGAA	900
GACTGTGGAT	GGACTGATTT	TAATCCTTTG	GGAGCACTAA	GTATAGAGAT	CCAAATGATG	960
	ATTCGGATAA	TACCGTGGGT	GGAGAACGCT	CCCATAACTT	CCTGATCACT	1020
		TCCGAAGCAA		ATTCTCCCGG	ACATACACCG	1080
ACAAAGAAAG	ATCTGGTCTT	TAAACACTGT	ATAGGTATTC	CGGCTTTGGC	ATACGATAAG	1140

GAAGGCGATC	GTTATCTGAC	TACTTTTCAA	GATCACAATC	TAATGAGATA	CAGATGGATC	1200
AAATACGATG	ACATTAACTC	${\tt TTTTTATGGT}$	TGGAGTTGGC	CATATGTATA	TGCAAAAGAA	1260
GCTAAAGATA	AAAAGAGGCG	CCGTCCGCAA	GTAGCACTCA	ATCCTACCAA	TGGAAAGGCT	1320
TGTTGGGTAT	GGCATACTCG	CAAGAGCCCA	TATGATGAAA	CCAAACCACA	TCCTACTCCT	1380
GTAATTATTA	AACATTTCCT	ATGGTCCGAT	ACGGAGTGGG	TACATGCTCT	GGACGTGGGG	1440
GACGTATTGC	AGAAGGAGGG	TAGCATGAAG	CTCTACCCCA	ATCCTGCCAA	AGAATATGTT	1500
CTGATCAACC	TACCCAAAGA	AGGGGGCAC	GAGGCAGTCG	TATACGACAT	GCAGGGCCGA	1560
ATCGTGGAGA	AAGTTTCATT	TTCAGGGAAA	GAATATAAGC	TGAATGTGCA	GTATCTGTCC	1620
AAAGGTACGT	ACATGCTGAA	AGTTGTAGCG	GATACGGAGT	ATTTCGTGGA	AAAAATCATT	1680
GTAGAG						1686

- (2) INFORMATION FOR SEQ ID NO:6
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1173 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: UNKNOWN
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1173
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6

```
CAAATGAAAC GATTACTCCC CTTTCTCCTT TTAGCAGGAC TCGTAGCCGT AGGAAACGTG
                                                                        60
TCTGCTCAGT CACCCCGAAT CCCTCAAGTG GATGTACACA CTCGCATCGC AAGAAATGCC
                                                                       120
CGTTATCGAC TGGACAAGAT CAGTGTCCCG GATTCTCGTC AGATATTCGA TTACTTCTAT
                                                                       180
AAAGAAGAAA CGATACCCAC TAAAATACAA ACGACCACAG GAGGTGCAAT TACAAGCATC
                                                                       240
GATTCGCTTT TCTATGAAGA CGACAGGTTG GTTCAGGTGC GCTATTTTGA CAATAACCTT
GAATTAAAAC AAGCGGAGAA GTATGTATAC GACGGTTCTA AGCTGGTCCT TCGAGAAATT
                                                                       360
CGCAAGTCGC CGACAGACGA AACGCCAATA AAGAAAGTTA GCTATCACTA TCTCTGTGGC
                                                                       420
AGCGATATGC CTTTTGAGAT TACGACAGAG ATGAGCGATG GCTATTTTGA AAGCCATACG
                                                                       480
CTTAACTATC TGAATGGAAA GATTGCCCGA ATAGATATCA TGACTCAACA GAACCCATCG
                                                                       540
GCCGAATTGA TCGAAACGGG TAGAATGGTA TATGAGTTTG ATGCCAATAA TGATGCTGTA
                                                                       600
CTGCTTCGTG ACAGTGTATT TCTTCCTCTT CAAAACAAGT GGGTAGAAAT GTTTACTCAC
                                                                       660
CGTTATACAT ACGACAATAA GCATAATTGT ATTCGTTGGG AACAAGACGA ATTCGGCACC
                                                                       720
CTCACCCTTG CCAACAACTT CGAATACGAC ACCACTATCC CTCTGTCGTC TGTATTGTTC
                                                                       780
CCCACGCATG AGGAGTTCTT CCGTCCTCTT CTTCCCAATT TTATGAAGCA TATGCGTACG
                                                                       840
AAGCAAACGT ATTTCAATAA CTCCGGAGAA GGCTTGTCAG AGGTATGCGA TTACAACTAC
                                                                       900
TTCTATACCG ATATGCAGGG TAATGCACTG ACCGATGTTG CCGTGAACGA ATCGATCAAG
                                                                       960
ATTTATCCTC GTCCTGCCAC GGATTTTCTG CGTATAGAAG GTTCGCAACT GCTTCGCCTT
                                                                      1020
TCGCTATTCG ACATGAACGG GAAGCTCATC AGAGCTACCG AATTGACAGG CGATTTGGCC
                                                                      1080
ATTATCGGAG TTGCATCTCT TCCGAGAGGC ACTTACATCG CAGAAATAAC TGCTGCAAAC
                                                                      1140
AGCAAAACCA TACGTGCAAA AGTATCGCTC AGA
                                                                      1173
```

- (2) INFORMATION FOR SEQ ID NO:7
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1284 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1284

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7

AAGAGGAATC	CCTTACCTTT	GACGGCATCA	AATCGAAAGA	TTTTTATAAA	AATGAGACAG	60
CATTTATCTC	TATTTCCTTT	TATCTTGTTT	CTGCTTCTTG	CCTTCTCTTA	TGTCGGTTGC	120
AGAACAGTCC	GACAAACACC	TAAGCAGTCG	GAACGGTACG	TCGTAGTCCT	GTCTTTGGAC	180
GGCTTCCGAC	CGGACTATAC	CGATCGGGCA	CGTACACCGG	CGTTGGATCG	GATGGCACAG	240
GAGGGATTGA	GCGGGTCGCT	CCAACCATGC	TTCCCCTCGC	TTACATTTCC	CAATCATTAC	300
AGCATGGCTA	CGGGGCTTTA	CCCCGATCAT	CACGGTATCG	TAGCCAATGA	GTTTGTGGAT	360
TCGCTACTGG	GCATCTTTCG	TATATCCGAC	CGAAAAGCCG	TGGAGACCCC	CGGATTTTGG	420
GGCGGCGAGC	CGGTTTGGAA	TACGGCCGCA	CGCCAAGGCA	TCCGTACCGG	TGTCTACTTT	480
TGGGTAGGAT	CCGAAACGGC	TGTGAACGGA	AATCGGCCGT	GGCGGTGGAA	AAAATTCTCC	540
TCCACCGTTC	CGTTTCGTGA	CCGTGCCGAC	TCCGTCATCG	CGTGGCTCGG	ACTGCCCGAA	600
AAGGAGCGAC	CGCGCTTGCT	CATGTGGTAC	ATCGAGGAGC	CGGATATGAT	CGGACACAGC	660
CAAACGCCCG	AAAGCCCGCT	GACACTGGCA	ATGGTAGAGC	GGTTGGACAG	TGTGGTCGGC	720
TATTTCCGCA	AGCGGTTGGA	CTCTCTGCCC	ATAGCCGCAC	AGACCGACTT	CATCATAGTA	780
TCCGATCACG	GTATGGCCAC	GTACGAAAAT	GAGAAATGTG	TCAATCTGTC	GCATTATCTG	840
CCTGCGGACA	GTTTCCTCTA	CATGGCCACC	GGGGCCTTCA	CCCACTTGTA	CCCGAAGCCC	900
TCCTATACCG	AGCGAGCCTA	TGAGATCCTG	CGGGCCATTC	CACATATATC	GGTTTACCGC	960
AAGGGGGAGG	TGCCCAAGCG	TTTGCGCTGT	GGCACCAATC	CTCGTTTGGG	CGAACTGGTC	1020
GTGATTCCGG	ACATAGGCTC	CACCGTCTTT	TTCGCAATAA	ATGAAGACGT	TCGTCCGGGA	1080
		CCAAGCACCG	GAAATGCGGG	CTTTACTCCG	GGCTGTCGGA	1140
CCCGATTTCC	GTCCGGGCAG	TAGGGTGGAA	AACCTGCCGA	ATATCACCAT	CTATCCGCTC	1200
ATATGCAGGC	TGTTGGGTAT	AGAGCCTGCA	CCCAACGATG	CGGACGAAAC	GTTGCTGAAC	1260
GGCCTGATCC	GAGACAAACG	ACCA				1284

(2) INFORMATION FOR SEQ ID NO:8

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...846
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8

CTTTCCCGTG	GAGTTTTTCC	CCTGATGTAT	GGCCGAAGAG	GAAGCATTCG	TGCCTCTTCA	60
GGGCATAGGG	ACAAAATTTT	TAAGAATACA	ATTATCAGAT	TTATCACAAT	GAAAGTAGGT	120
TTGTTCATCC	CCTGTTATGT	CAATGCAGTG	TATCCGGAAG	TGGGTATCGC	CACGTACAAA	180
CTGCTGAAGA	GTTTGGACAT	AGATGTCGAC	TACCCGATGG	ATCAGACATG	TTGCGGCCAG	240
CCTATGGCCA	ATGCCGGATT	CGAACAGAAA	GCTCAAAAGC	TGGCTTTGCG	ATTCGAAGAG	300
CTGTTCGAGT	CGTATGATGT	AGTCGTAGGG	CCATCGGCCA	GTTGCGTTGC	TTTCGTGAAA	360
GAAAACTATG	ATCATATCCT	CAGACCGACA	GGACATGTCT	GCAAGTCGGC	AGCCAAGGTT	420
CGGGATATAT	GCGAGTTCTT	GCACGATGAC	CTGAAGATCA	CCAGCCTCCC	CTCCCGATTC	480
GCCCATAAGG	TGAGCCTGCA	CAACAGTTGC	CACGGTGTGC	GCGAACTGCA	TCTGTCCACC	540
CCCAGTGAAG	TGCACCGACC	GTACCACAAC	AAGGTGCGCC	GGCTATTGGA	GATGGTGCAG	600
GGCATAGAGG	TATTCGAGCC	GAAGCGAATA	GACGAATGCT	GCGGTTTCGG	CGGTATGTAC	660
TCGGTGGAGG	AGCCGGAGGT	ATCCACCTGT	ATGGGGCATG	ACAAGGTGCT	GGATCACATA	720
TCCACAGGTG	CGGAGTACAT	CACAGGGCCG	GACAGCTCGT	GCCTCATGCA	TATGCAGGGA	780
GTGATAGACA	GAGAGAAATT	GCCGATCAAG	ACAATTCATG	CAGTAGAAAT	TTTAGCAGCA	840
AACTTA						846

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...753
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9

CCTCTGAAAA	AACGAATGGA	TATTGTAAGT	ATGGCCGATA	AAGCTCTTGT	AGTGGAGATG	60
AGAGATGTGA	CGCTCTGTCA	GGAGGAAAAC	GTCATTTTTC	AAAATTTGAA	TCTGACCCTT	120
TCCGCCGGAG	ACTTCGTCTA	TCTGATAGGC	TCAGTGGGAT	CGGGGAAGAG	CACTTTGCTG	180
			GCCGGTTATG			240
			TATCTGCGCA			300
CAGGATTTCC	AGTTGCTGAA	CGGACGTACT	GTTGCGGAGA	ATTTGGATTT	CGTTTTGCGA	360
GCTACGGACT	GGAAAAACCG	AGCCGATCGC	GAGCAGCGTA	TCGAGGAGGT	TTTGACCCGT	420
GTGGGAATGT	CTCGGAAGGC	TTATAAGAGA	CCGCACGAAC	TGTCCGGAGG	GGAGCAACAA	480
CGTGTGGGTA	TAGCCAGAGC	TTTGCTGGCG	AAGCCTGCGT	TGATCCTGGC	CGACGAACCC	540
ACAGGCAACC	TCGATTCGGT	GACCGGATTG	CAGATCGCTT	CTCTGCTCTA	CGAAATCAGT	600
AAGCAGGGCA	CTGCAGTACT	TATGAGCACG	CACAACAGCA	GCCTGCTGTC	GCATCTGCCG	660
			GATGCCTCCT			720
GATGCTGTTT	CAAGAAAAA	TACGGAAATA	GAT			753

- (2) INFORMATION FOR SEQ ID NO:10
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 714 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...714
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10

ACCAGGCATT	GTCCGGCTTG	TCGCTCTTCC	TTTCACCTCA	TAAAAACAAG	TAAAACAATG	60
ATTGAAATCA	GCAACCTCAC	CAAGGTTTTC	AGAACAGAAG	AAATAGAGAC	GGTAGCCCTC	120
GATGGCGTAT	CGCTCAAAGT	GGACAAAGGC	GAATTTATCG	CCATAATGGG	GCCTTCGGGA	180
TGCGGTAAGT	CCACTCTGCT	CAATATCCTC	GGCCTTCTCG	ACAATCCCAC	TTCCGGTATC	240
TACAAGCTCG	ATGGGGCAGA	AGTGGGCAAC	CTCCGGGAAA	AAGACAGGAC	TGCCGTCCGT	300
AAGGGCAATA	TCGGCTTCGT	ATTCCAGAGC	TTCAACCTCA	TCGAAGAGAT	GACGGTAAGC	360
GAGAACGTGG	AGTTGCCGCT	CGTCTATCTG	GGTGTGAAGG	CCTCCGAGCG	GAAAGAGCGA	420
GTGGAGGAGG	CACTGCGCAA	GATGAGCATC	AGCCACCGGG	CCGGCCACTT	CCCCAATCAG	480
CTCTCCGGAG	GACAACAGCA	GCGCGTGGCT	ATCGCCCGTG	CCGTGGTGGC	CAATCCGAAG	540
CTCATCCTCG	CCGATGAACC	CACGGGTAAC	CTCGACTCCA	AAAACGGAGC	CGATGTCATG	600
GAACTGCTCA	GAGGTCTCAA	TCGCGAAGGT	GCAACCATCG	TCATGGTGAC	GCACTCCGAG	660
CACGATGCAC	GTAGTGCCGG	CCGCATCATC	AATCTGTTCG	ACGGTAAGAT	TCGC	714

- (2) INFORMATION FOR SEQ ID NO:11
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1812 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1812
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11

AGCA	CAGAAA	CAAATAGCAA	ATCTGAAATG	AAAGAATTTT	TCAAAATGTT	TTTCGCCTCG	60
				TTGTTCTGTA			120
GGCA'	TCGTAG	CCGGTATTGC	CTCCAAGGCA	ACGGGAGGAA	CCATTCCGAA	GATCGAAGCA	180
AACT	CCATCC	TACATATANA	CAATTCTTCT	TTCCCTGAGA	TCGTATCGGC	CAATCCCTGG	240
AGCA'	TGCTCA	CAGGCAAAGA	CGAGTCCGTA	TCGCTCTCAC	AGGCAGTCGA	AGCCATCGGC	300
CAAG	CCAAAA	ATAATCCCAA	CATAACCGGT	ATCTTCCTCG	ATCTGGACAA	CCTTTCCGTC	360
GGTA'	TGGCAT	CGGCAGAGGA	ATTGCGTCGC	GCGTTGCAGG	ATTTCAAGAT	GTCGGGCAAG	420
TTCG'	TCGTAT	CCTATGCCGA	CAGATACACC	CAAAAGGGTT	ACTACCTCTC	CAGTATTGCA	480
GACA	AACTCT	ACCTCAATCC	GAAAGGAATG	TTGGGGCTTA	TCGGGATTGC	GACCCAAACA	540
ATGT	TCTACA	AAGATGCCCT	CGACAAATTC	GGCGTGAAGA	TGGAGATCTT	CAAGGTAGGC	600
ACCT	ACAAGG	CAGCCGTAGA	GCCATTCATG	CTCAACAGGA	TGAGCGATGC	CAATCGCGAA	660
CAAA	rcacca	CATACATAAA	CGGGCTTTGG	GACAAGATCA	CATCCGATAT	TGCAGAGTCG	720
			CGTGAAAATG		AAGGCGAAAT	GTTCGGTCTT	780
GCCG	AGAAAG	CGGTGGAGAT	GAAGCTCGTG	GATGAGCTGG	CTTACCGTAC	CGATGTGGAG	840
				GAGAAAGATG		CGTATCGCTT	900
TCTC	AGGTTC	TGGCCAATGG	CCCGATGAAC	AAAACGAAAG	GCAGTCGGAT	CGCCGTTCTC	960
				ATAAAGAAGC		TGACGGTAGC	1020
TCCAT	CACAC	AAGAACTCGC	CAAAGAAATC	AAGGCAGCAG	CCGATGACGA	TGATATCAAA	1080
	TAGTAC	TTCGTGTCAA	TTCTCCGGGA	GGTAGTGCTT	TCACTTCCGA	ACAGATATGG	1140
AAGC	AGGTAG	CCGATCTCAA	GGCCAAAAAG	CCTATCGTGG	TCTCCATGGG	CGACGTAGCA	1200
GCCTC	CGGGCG	GATACTACAT	AGCCTGCGCA	GCCAACAGTA	TCGTGGCAGA	GCATACGACT	1260
CTGAC	CCGGCT	CCATCGGCAT	ATTCGGCATG	TTCCCGAACT	TCGCGGGCGT	AGCCAAGAAG	1320
ATAGO	SAGTGA	ATATGGACGT	CGTACAGACA	TCCAAGTATG	CAGACTTGGG	CAACACCTTC	1380
GCTCC	GATGA	CGGTCGAAGA	TCGTGCCCTC	ATCCAACGCT	ACATAGAGCA	GGGCTACGAC	1440
CTCTT	CCTCA	CTCGCGTATC	GGAAGGCCGC	AACCGCACCA	AGGCACAGAT	CGACAGCATC	1500
GCTCA	AGGCC	GTGTATGGCT	CGGCGACAAA	GCTCTTGCAC	TCGGTTTGGT	GGATGAGCTT	1560
				GCGAAGCTGG		TGGCAACTAC	1620
				TTCTTCGAAG		CTCATCAGCA	1680
GCGGA	TATGA	AGTCTGCCAT	CCTGAGTACC	ATTCTCTCCG	ATCCGGAAAT	AGAAGTTCTG	1740
CGCGA	ACTCC	GCTCCATGCC	GCCCCGTCCT	TCGGGCATAC	AGGCACGTCT	CCCCTATTAC	1800
TTCAT	GCCGT	AC					1812

- (2) INFORMATION FOR SEQ ID NO:12
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 972 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...972
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12

CTAACGTTGT TTTGTTG	CAA CTATTTCAAA	CAGATGAGAG	CAAACATTTG	GCAGATACTT	60
TCCGTTTCGG TTCTCTT	TTT CTTCGGGACA	GCGATCGGAC	AGGCTCAGAG	TCGAAACCGT	120
ACATACGAGG CTTATGT					180
AATATACCGG CAAGCAT	CAC CATAGCACAG	GCTTTGGTGG	AGACAGGAGC	CGGAGCCAGT	240
ACACTGGCCA GCGTACA	CAA CAATCACTTC	GGGATCAAAT	GCCACAAATC	GTGGACGGGC	300
AAGCGCACCT ATCGTAC	CGA CGATGCGCCG	AACGAATGCT	TCCGCAGCTA	TTCGGCCGCT	360
CGCGAATCGT ATGAAGA					420
AAACTCGACA GAGAAGA					480
ACCAATCGGG GCTATGC	CAA TCTGCTGATC	AAGATGGTGG	AGCTGTATGA	GCTATATGCT	540
TTGGATCGCG AGAAGTA	CCC CTCATGGTTC	CACAAGTCTT	ACCCCGGGTC	CAACAAAAA	600

TCCCATCAAA	CGACCAAGCA	GAAGCAGAGC	GGACTCAAGC	ACGAAGCTTA	CTTCAGCTAC	660
GGACTGCTCT	ACATCATAGC	CAAGCAAGGC	GATACCTTCG	ATTCTTTGGC	CGAAGAGTTC	720
GACATGAGAG	CCTCCAAACT	GGCCAAATAC	AACGATGCTC	CCGTGGATTT	CCCGATCGAA	780
AAGGGCGATG	TGATCTATCT	GGAGAAAAAG	CACGCATGCT	CCATCTCCAA	ACACACACAG	840
CACGTAGTGC	GTGTGGGCGA	TTCGATGCAC	AGTATCTCCC	AACGCTATGG	CATCCGGATG	900
AAGAACCTCT	ACAAGCTCAA	CGACAAGGAT	GGCGAATATA	TACCCCAAGA	GGGCGATATA	960
CTGCGCTTGC	GC					972

- (2) INFORMATION FOR SEQ ID NO:13
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1599 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1599
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13

AGGATCCCCG	ACGAGCAGAC	CGGACGTATC	ATGGACGGAC	GTCGATATTC	GGATGGCCTC	60
CATCAGGCTA	TCGAAGCCAA	AGAGCATGTG	AAAGTAGAGG	CTGCGACACA	GACATTTGCA	120
ACTATCACTT	TGCAGAACTA	TTTCCGCATG	TATCATAAGC	TGGCAGGGAT	GACCGGTACT	180
GCTGAAACTG	AAGCGGGAGA	GCTTTGGGAC	ATCTACAAAC	TGGACGTTGT	AGTTATTCCG	240
ACAAACAAGC	CTATCGCCCG	TAAGGATATG	AATGATCGTA	TCTATAAGAC	GGCACGTGAA	300
AAATATGCAG	CAGTTATCGA	AGAGATTGTA	CGTCTTGTCG	AAGAGGGCAG	ACCTGTACTT	360
GTCGGTACTA	CTTCGGTGGA	AATATCCGAA	TTGTTGAGCC	GTATGTTACG	CTTGCGTGGC	420
ATCCAACACA	ATGTACTCAA	TGCCAAATTG	CATCAGAAGG	AGGCCGAGAT	TGTAGCTCAG	480
GCCGGTCAGA	AAGGAACTGT	TACCATCGCA	ACGAACATGG	CCGGTCGTGG	TACCGACATC	540
AAGCTCTCTG	CCGAGGTTAA	GAAAGCCGGG	GGTTTGGCTA	TCATTGGTAC	GGAAAGGCAC	600
GAATCCAGAC	GAGTGGACAG	ACAGCTTCGT	GGTCGTTCCG	GCCGTCAGGG	TGATCCCGGT	660
TCGTCCATAT	TCTATGTTTC	CCTTGAAGAT	CATCTGATGC	GCCTCTTTGC	CACAGAAAAG	720
ATTGCATCAT	TGATGGATCG	TTTAGGTTTC	AAGGAAGGAG	AAGTGCTCGA	AAACAACATG	780
CTGAGTAAGT	CCGTGGAGCG	TGCTCAAAAG	AAGGTGGAAG	AGAACAACTT	CGGTATCCGT	840
AAACATCTGC	TTGAGTACGA	TGATGTAATG	AATTCGCAGC	GTGAAGTCAT	TTATACCCGT	900
CGCCGTCATG	CTTTGATGGG	AGAGCGTATC	GGTATGGATG	TACTCAATAC	CATATACGAC	960
GTATGTAAGG	CTCTGATTGA	CAATTATGCA	GAAGCCAATG	ATTTCGAAGG	CTTCAAGGAA	1020
GATCTGATGC	GTGCACTCGC	GATAGAATCT	CCTATCACGC	AAGAAATATT	CAGAGGTAAG	1080
AAAGCAGAAG	AGCTGACCGA	TATGCTTTTC	GATGAAGCTT	ACAAGTCTTT	CCAACGTAAG	1140
ATGGATCTGA	TCGCAGAAGT	GGCCCACCCT	GTGGTTCATC	AGGTATTCGA	GACCCAAGCC	1200
GCCGTGTACG	AGCGCATTCT	AATCCCCATT	ACGGATGGTA	AACGTGTCTA	TAACATAGGA	1260
TGCAATTTGC	GTGAAGCGGA	TGAAACTCAA	GGGAAAAGCA	TCATCAAAGA	ATTTGAGAAA	1320
GCTATCGTAC	TGCATACTAT	CGATGAGTCT	TGGAAAGAAC	ATCTGCGTGA	GATGGACGAG	1380
CTTCGTAATT	CCGTTCAGAA	TGCCAGCTAC	GAAAACAAAG	ATCCACTACT	TATCTATAAA	1440
CTCGAATCTT	ACGAACTGTT	CCGCAAGATG	GTAGAAGCCA	TGAACCGTAA	GACCGTAGCG	1500
ATCCTAATGC	GTGCTCGGAT	ACCGGTACCG	GAGGCTCCTT	CCCAAGAAGA	GCTGGAACAC	1560
AGGCGGCAAA	TAGAAATCCG	ACATGCAACC	CAACAACGT			1599

- (2) INFORMATION FOR SEQ ID NO:14
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2160 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION 1...2160
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14

```
AAATCTTGCC GTGTTATTGG CCAGACGAGG CGATACGGAT GCTGCCCTGT CGGACTACGA
                                                                       60
CCGTGCCATC AAAGCCTATC CGGAGTTTGC CGATGCCTAT TTCAATCGCG GCCTGCTGTT
                                                                      120
GCTTTCGCGC GGAAAGGCCA AAGAAGGCAT CGCCGATCTG AGTCGGGCAG GCGAATACGG
                                                                      180
GCTCTACAAG GCGTACAACA TCATCAAACG AATGAGCACG AAGTCATGAT CTCCGTCAAT
AACCTGACTG TCGATTTCGG CACCCGTCTG CTCTTCGATC AGGTATCATT CGTCATCAAC
                                                                      300
AGGCGCGACC GTATCGCTCT TGTAGGGAAG AACGGTGCCG GCAAGAGTAC GCTGCTCAAG
CTGATTGCCG GCATGGAAGA ACCGACATCC GGACACATAG CACGCCCCAA GGGGATCCGC
                                                                      420
ATAGGCTATC TGCCGCAGGT GATGCGTTTG CAGGACGGAC ACACGGTTTA CGAAGAGGTC
                                                                      480
GAGCAGGCTT TCAACGATAT TCGCCAAATA GAGGAAGAGA TACGGCGTCT GTCCGATGAA
                                                                      540
ATGGCCGGAC GTACGGACTA CGAATCGGAT GACTATATCC GACTGATAGA GCATTATACG
                                                                      600
AATATGAGCG AGACCCTCTC TCTCATGCAG CAGGGCAACT ATCATGCTGC GATCGAACAG
                                                                      660
ACATTGATCG GTCTGGGCTT CGGCCGAGAG GACTTCCACC GCCCCACAGC CGATTTCAGC
                                                                      720
GGAGGATGGC GTATGCGGAT AGAGCTGGCC AAACTTCTGC TCCAACGCCC CGAAGTTTTG
                                                                      780
CTGCTCGACG AGCCGACCAA TCACCTCGAC ATCGAATCCA TCGGCTGGCT GGAGCAGTTC
                                                                      840
ATCGCCACCA ATGCAGGAGC CGTTATCCTG GTGTCGCACG ACAGGGCATT CATCGACAAT
                                                                      900
ACCACGACAC GCACTATCGA AATAGAACTG GGACATATAT ACGACTACAA GACCAACTAC
                                                                      960
AGCCACTATG TGGAGCTGCG CGAAGAGCGG CTGCGACAGC AGATGCGTGC CTACGAGAAT
                                                                     1020
CAGCAGAAGA TGATCCGCGA TACGGAGGAC TTCATCGAAC GATTCAGATA CAAGGCCACG
                                                                     1080
AAGTCCGTAC AGGTACAGAG CCGGATCAAA CAGTTGGAGA AAGTAGAGCG CGTGGAGATA
                                                                     1140
GACGAGCGGG ATCGTTCGGC ATTTCACTTC CGCTTTATCC CGGCACAGCC TTCCGGCAGT
                                                                     1200
TATCCGCTAA TAGTGGATGA TTTGGCCAAG GCTTATGGCG ATCACCAGGT GTTTTCCGGA
                                                                     1260
GCTACATACA CCATCGAAAG AGGCGAAAAG GTGGCTTTCG TAGGCAAAAA CGGTGCCGGC
                                                                     1320
AAAAGTACCA TGGTCAAGTG TATCATGGGA GAGCTGACAG ACTACACCGG CAAGCTCGAA
                                                                     1380
CTGGGGCACA ACGTGCAGCT GGGCTACTTT GCCCAAAACG AAGCCCAAGA GCTAAGAGGG
                                                                     1440
GATCTCACGG TATTCGACAC GATAGACCGT GAGGCCGTGG GCGACATCCG TCTGCGCCTG
                                                                     1500
AACGATTTGC TCGGGGCTTT TCTCTTCGGG GGCGAAGCAT CGGAAAAGAA AGTAAGTGTC
                                                                     1560
CTGAGTGGAG GAGAACGAGC ACGATTGGCT ATTATCAGGC TTTTGCTACA GCCGGCTAAC
                                                                     1620
TTCCTTATTC TCGATGAGCC GACCAATCAC CTCGATATGC GCTCGAAGGA TGTACTGAAA
                                                                     1680
GAGGCGATCA AGAACTTCGA TGGGACTGTC ATCGTAGTAT CTCACGACCG TGAGTTCCTC
                                                                     1740
GATGGGCTTG TCAGCAAGGT GTATGAATTT GCAGATGGAC AGGTGAACGA ACACCTCGGA
                                                                     1800
GGTATATACG ACTATCTCCG GACCCGCCGT ATGCAGACGC TGACAGAGCT GGAGCGAACC
                                                                     1860
ACTACGATCG AAACAAAAAC CACACGGGAG GCTATACCTG AAACGGAAGC CAAAGCGGAC
                                                                     1920
TACCGTCGGC AAAAGGAGGT AGCCAAACAG CTGCGCACGT TGGAGCGAAC CGTAGCAACC
TGCGAGGAGC GGATCGGAAA ATTGGAGTCG GAATTACAGG CAATAGAGAT GCTACTGCAA
                                                                     2040
GATCCGAAAC ATGCGACTGA CGCGAATCTG TTCGAGCGAT ACGCCGGCAT GAAACAAGAA
                                                                     2100
CTCGAAAAGG CCATGGAGGA CTGGGAACAG GCTTCCGAAG CTTTATCCGA AGCCCAAGGA
                                                                     2160
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1158 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1158
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15

TATTTGAAGC '	TATTAATACT	ACAAATAGCC	TTGATGAATT	TCTTAAAAAA	AGAACCGTTT	60
AAAATATTCT	CTATGATTTA	TCTGCTGTTA	GATACAATAA	CAAACCGTGC	CGGTACAGAA	120
CGCGCCGTGA '	TCAACTTGGC	TAACAACCTG	CATGCCAATG	GTCATCGCGT	ATCATTAGTC	180
AGCGTTTGTA	CAAAAGAAGG	AGAGCCTTCC	TTCCAAGTAG	AAAAAGGAAT	AGAAGTACAC	240
CATCTCGGAA '	TTAGGCTTTA	TGGCAATGCA	TTAGCCCGCA	AAACAGTATA	TTTCAAGGCT	300
TATCGAAGGA '	TAAAAGCCCT	ATACAAGAAG	CGTGAACCGG	TTTTATTGAT	AGGGACTAAT	360
ATTTTTATCA	ATACAATTTT	GTCTCAGATC	AGTAACAGAG	GCAGAATATT	TACGATCGGA	420
TGCGAACATA '	TCTCTTATGA	TATTGCCCGC	CCTATTACAA	AACGCATAAG	GGGGTTTCTG	480
TATTCAGGGC '	TTGATGCCGT	TGTAGCACTG	ACAAAAAGAG	ATCAGCAATC	GTTCGAGGCA	540

ATCTTACGTG	GACGCTCTAA	AGCATATGTC	ATACCCAATC	AAGTTTCATT	TACTACAGTC	600
CAAAGAGATG	CTACTACTCA	CAAACAAATG	TTGGCGATTG	GCAGGCTTAC	CTACCAGAAG	660
GGTTTTGAAT	TCATGATAGA	AGATGCATCA	CGAGTGCTGC	GAGAAAGGCC	TGATTGGAAG	720
CTTATCATAG	TCGGAGATGG	CGAAAATGAA	TCGATGCTAC	GTAAAGAAAT	TGCATCTCGC	780
AATATGGAGT	CGCAAATAGA	AATACATCCA	TCTACACCGG	AAATTCGCAA	ATACTACGAA	840
TCATCTGCTA	TTTATCTAAT	GACGTCCCGT	TTCGAAGGAC	TACCAATGGT	ACTTCTCGAA	900
GCAGAAGCAT	ATGCACTACC	TATAATCTCA	TACGATTGTC	CGACCGGCCC	GAGGGAACTG	960
ATCGAAAACG	GTCGCAATGG	TTTCCTTGTG	CCAATGGAAG	CACATGAAGA	CTTCGCGGAT	1020
AAGTTACGCT	TATTGATGGA	TGATGAAACT	CTTCGTAAGA	AAATGGGACA	AGAATCAGAG	1080
TTGATGGTCA	AATCCTACTC	TCCGGCAAAT	ATCTATGAAT	GTTGGAAGAA	ACTATTCGTC	1140
GAAATCGGCT	ACATGAAT					1158

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1965 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1965
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16

ACAACGAAAG	AAAACGAGAC	AACAACAAAA	AACGAATATA	${\tt GAATTATGGG}$	AAAAATCATT	60
GGAATTGACT	TAGGCACAAC	GAACTCTTGT	GTCTCTGTAT	TGGAAGGTAA	CGAACCTATC	120
GTTATTACAA	ACAGTGAGGG	CAAGCGCACA	ACGCCCTCGG	TAGTGGCTTT	TGTGGATGGT	180
GGCGAGCGTA	AGGTGGGCGA	TCCGGCCAAG	CGTCAGGCCA	TCACCAATCC	GACCAAGACG	240
ATATACTCTA	TCAAACGCTT	CATGGGCGAA	ACTTACGATC	AGGTTTCCAG	AGAAGTGGAG	300
AGAGTGCCAT	TCAAGGTAGT	ACGTGGGGAC	AATAATACTC	CGCGCGTAGA	TATAGACGGT	360
CGTCTCTATA	CGCCGCAGGA	AATTTCGGCC	ATGATCCTTC	AGAAGATGAA	GAAGACGGCC	420
GAAGACTACC	TCGGTCAGGA	AGTAACGGAG	GCCGTGATCA	CTGTGCCCGC	ATACTTCAAC	480
GACGCTCAAC	GTCAGGCAAC	GAAAGAAGCA	GGAGAGATCG	CCGGCCTGAA	AGTTCGCCGT	540
ATTGTGAACG	AGCCTACGGC	AGCTTCTCTG	GCCTACGGTC	TGGACAAGTC	CAATAAGGAT	600
ATGAAGATCG	CTGTCTTCGA	CTTGGGTGGC	GGTACCTTCG	ATATCTCTAT	CTTGGAATTG	660
GGCGACGGCG	TTTTCGAAGT	GAAATCGACC	AACGGTGATA	CGCACCTCGG	AGGAGACGAC	720
TTCGACCACG	TGATCATTGA	CTGGCTGGCA	GAAGAGTTCA	AGTCTCAGGA	AGGTGTGGAT	780
CTTCGCCAGG	ATCCTATGGC	TATGCAGCGT	CTGAAAGAAG	CTGCCGAAAA	AGCCAAGATA	840
${\tt GAGCTCTCCA}$	GCACTTCATC	TACGGAGATC	AACCTCCCCT	ATATCATGCC	GGTGAACGGC	900
ATCCCCAAGC	ACTTGGTGAT	GACGCTTACA	AGGGCTAAGT	TCGAGCAGTT	GGCCGATCGT	960
CTGATTCAGG	CATGTGTGGC	ACCCTGCGAA	ACGGCCTTGA	AAGATGCCGG	TATGTCACGT	1020
GGCGATATCG	ATGAAGTGAT	TCTCGTAGGT	GGTTCCACAC	GTATTCCTGC	TATTCAGGAG	1080
ATTGTGGAGA	AGATCTTCGG	TAAGGCTCCG	TCCAAGGGTG	TGAATCCCGA	CGAAGTGGTA	1140
GCTGTGGGTG	CCGCTATTCA	AGGCGGTGTT	CTGACCGGTG	AGGTAAAGGA	TGTCTTGCTG	1200
TTGGACGTTA	CCCCCTTGTC	GCTCGGTATC	GAGACTATGG	GAGGCGTGAT	GACTCGCTTG	1260
ATCGATGCCA	ATACCACTAT	CCCGACGAAG	AAGAGCGAAA	TCTTTACCAC	AGCAGTGGAC	1320
AATCAACCTT	CGGTAGAGAT	TCATGTACTT	CAGGGTGAGC	GTTCTTTGGC	TAAGGACAAT	1380
AAGAGCATCG	GCCGTTTCAA	CTTGGACGGT	ATTGCTCCGG	CGCCCCGTCA	GACACCGCAG	1440
ATCGAAGTAA	CGTTTGACAT	CGATGCCAAC	GGTATCCTGA	ATGTAACGGC	TCATGACAAA	1500
GCTACCGGCA	AGAAGCAGAA	TATCCGCATC	GAAGCCTCCA	GCGGTTTGTC	CGATGATGAG	1560
ATCAAGCGCA	TGAAGGAAGA	GGCGCAGGCC	AATGCCGAAG	CAGATAAGAA	AGAGAAAGAA	1620
CGTATCGACA	AGATCAATCA	GGCCGACAGC	ATGATCTTCC	AGACGGAAAA	GCAGTTGAAG	1680
GAGTTGGGAG	ACAAATTCCC	GGCCGACAAG	AAGGCTCCGA	TCGATACCGC	TCTCGACAAA	1740
CTGAAAGAAG	CACACAAAGC	ACAGGATGTA	GCTGCTATCG	ATACAGCCAT	GGCCGAACTG	1800
CAAACCGCTC	TTTCCGCAGC	GGGCGAAGAG	CTTTACAAGA	ATGCCGGAGC	AGCCCAAGGT	1860
${\tt GGCGCACAAC}$	CCGGTCCGGA	CTTCGGCGGT	GCTCAAGGTC	CCTCTGCCGG	TGATCAGCCC	1920
TCTGACGACA	AGAACGTCAC	AGACGTAGAC	TTCGAGGAAG	TGAAG		1965

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1401
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17

AAGTGGGCAC	GTACAACTAC	TTTAAGGATA	TCGAACGCAA	CAATCTATAA	AACTATGCGC	60
TACGACTTAG	CTATCATCGG	TGGAGGGCCG	GCCGGTTATA	CGGCTGCCGA	ACGTGCTGCC	120
AAAGGTGGCC	TGAAAACCCT	CCTAATTGAG	AAGAATGCTC	TCGGTGGTGT	ATGCCTCAAC	180
GAAGGATGTA	TACCGACCAA	GACGCTACTC	TACTCGGCCA	AAGTGCTACA	TCAAATTGCT	240
ACGGCATCTA	AATATGCAGT	AAGTGGAACG	GCCGATGGAC	TTGACCTCGG	CAAGGTGATT	300
GCCAGAAAAG	GTAAAATCAT	TCGCAAGCTG	ACTGCAGGCA	TCCGTTCACG	CCTGACAGAG	360
GCCGGAGTAG	AGATGGTGAC	GGCAGAAGCT	ACCGTAACGG	GATGCGATGC	AGACGGCATC	420
ATCGGCATTA	CTGCGGGCGA	AGCACAGTAC	AAAGCTGCCA	ACCTGCTACT	ATGTACCGGT	480
TCGGAGACGT	TTATTCCACC	CATCCCCGGA	GTGGAGCAGA	CAGAGTATTG	GACAAACCGT	540
GAAGCTCTAC	AGAACAAAGA	GATTCCGACC	TCTCTCGTCA	TCATCGGTGG	TGGAGTGATC	600
GGAATGGAGT	TCGCTTCTTT	CTTCAACGGT	ATCGGTACGC	AAGTGCACGT	GGTGGAGATG	660
CTGCCGGAAA	TACTCAACGG	TATCGATCCC	GAACATGCAG	CTATGCTACG	CGCTCACTAT	720
GAAAAAGAAG	GAATCAAATT	CTACCTCGGG	CACAAAGTAA	CATCGGTTCG	CAACGGAGCT	780
GTTACGGTAG	AATACGAAGG	AGAAAGCAAA	GAGATCGAAG	GAGAACGTAT	CCTGATGAGT	840
GTGGGACGTC	GCCCCGTGCT	GCAAGGATTC	GAGTCGCTCG	GATTGGTGCT	TGCCGGCAAA	900
GGTGTAAAGA	CTAATGAGAG	GATGCAAACT	TCCCTGCCCA	ATGTCTATGC	TGCAGGTGAT	960
ATTACAGGCT	TCTCGCTTTT	GGCACATACG	GCTGTACGGG	AAGCAGAGGT	AGCAGTAGAT	1020
CAGATTTTGG	GCAAAACAGA	CGAAACGATG	AGCTACCGTG	CCGTACCAGG	TGTGGTGTAC	1080
ACCAATCCCG	AGGTCGCCGG	TGTGGGAGAG	ACGGAAGAAT	CGCTTCGCAA	AGCAGGACGT	1140
GCCTACACTG	TTCGTCGCCT	TCCTATGGCC	TTCTCCGGTC	GATTTGTAGC	AGAAAACGAA	1200
CAAGGCAATG	GAGAGTGCAA	ACTACTACTT	GATGAAGAGA	ACCGCTTGAT	CGGAGCACAC	1260
${\tt CTCATTGGCA}$	ATCCGGCCGG	CGAACTCATC	GTAACCGCTG	CCATGGCCAT	CGAGACCGGC	1320
ATGACGGATC	GACAAATCGA	ACGAATCATA	TTCCCTCATC	CGACTGTAGG	CGAAATCCTA	1380
AAAGAAACTC	TCGCCGGAGG	T				1401

- (2) INFORMATION FOR SEQ ID NO:18
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2835 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2835
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18

CCTAAGATAC	TTATGGAATT	GAAAAGATTT	TTATCACTTG	GTCTTCTGCT	TGTGGGATTC	60
ATTCCGATGA	AGCTTTCTGC	CCAACAGGCT	CAGCCACTCC	CTACAGATCC	GGCTGTTCGT	120
GTCGGTAAGT	TGGACAACGG	ATTGACTTAT	TTCATCCGTC	ACAACGAGAA	CCCGAAAGAT	180
CGTGCGGATT	TCTTTATCGC	ACAAAAGGTA	GGTTCTATTC	TTGAAGAAGA	TAGCCAGTCC	240
GGTTTGGCTC	ACTTCTTGGA	ACACATGGCT	TTCAACGGTA	CGAAGAACTT	CCCCGGTAAG	300
AACTTGATCA	ACTATCTCGA	AACGATCGGT	GTACGTTTCG	GTCAGAACCT	GAACGCTTCT	360
ACCGGATTCG	ACAAGACGGA	ATATACGATA	ATGGATGTGC	CGACTACACG	TCAGGGAATC	420
ATCGACTCCT	GCTTGCTTAT	CCTGCATGAT	TGGAGTAACA	ATATTACCCT	CGACGGGCAT	480
GAGATCGACG	AGGAGCGCGG	TGTGATCCAG	GAAGAGTGGC	GTGCTCGTCG	CGATGCCAAC	540
CTTCGTATGT	TCGAGGCTAT	ACTTGCCAAG	GCTATGCCGG	GTAATAAATA	TGCAGAACGC	600
ATGCCCATCG	GTCTGATGGA	CGTCGTGCTC	AACTTCAAGC	ATGATGAGCT	GCGCAACTAT	660

TATAAGAAAT	GGTATCGTCC	CGACCTGCAA	GGTCTGGTGA	TCGTGGGAGA	TATCGATGTG	720
GACTATGTGG	AGAACAAGAT	CAAAGAACTC	TTCAAGGACG	TTCCTGCTCC	CGTGAATCCA	780
GCAGAGCGTA	TCTATACGCC	GGTAGAGGAC	AACGATGAGC	CTATCGTAGC	CATTGCTACC	840
GATGCTGAGG	CTACTACCAC	GCAGCTCTCC	ATCAGCTTCA	AGAGCGACCC	CACTCCTCAA	900
GAAGTGCGAG	GATCGATATT	CGGACTTGTG	GAAGACTATA	TGAAACAGGT	GATCACTACA	960
GCCGTGAATG	AGCGTCTGTC	CGAGATTACT	CACAAGCCTA	ACGCTCCTTT	CCTCAGTGCA	1020
GGAGCTTTCT	TCTCTAACTT	CATGTACATC	ACCCAGACTA	AGGACGCATT	CAATTTTGTT	1080
GCCACGGTTC	GTGAGGGTGA	AGCGGAGAAA	GCGATGAACG	CATTGGTGGC	AGAGATAGAA	1140
AGCCTCCGTC	AGTTCGGTAT	CACCAAAGGC	GAATACGATC	GTGCACGCAC	GAATGTGCTC	1200
AAGCGATACG	AGAATCAATA	CAACGAAAGA	GACAAGCGTA	AGAACAATGC	TTATGCCAAT	1260
GAATACTCCA	CCTACTTCAC	CGATGGCGGC	TATATCCCGG	GTATTGAGGT	GGAATATCAG	1320
ACGGTGAATG	CTTTTGCTCC	TCAGGTTCCT	CTGGAAGCAT	TCAATCAGGC	TATTGCCCAA	1380
ATGATCGATC	CGGTGAAGAA	TGCTGTCGTT	ACCCTCACCG	GTCCTTCAAA	GGCTGAAGCC	1440
AAGATTCCGA	GCGAAGCAGA	CTTCCTCGCT	GCTTTCAAAG	CTGCTCGTCA	GCAGAAAGTA	1500
GAAGCCAAGA	AAGACGAAGT	CTCCGACCAA	AAATTGATGG	AGAAAGCTCC	TAAGGCCGGA	1560
AAGATCGTTT	CCGAGAAGAA	AGATCAGAAG	TTCGGTACCA	CGGAACTTAC	CCTTAGCAAT	1620
GGCATCAAAG	TATACCTCAA	GAAGACCGAT	TTCAAATCAA	ACGAAATCCT	GATGAGTGCT	1680
CTCAGCCCGG	GTGGTATCCT	CTCCGGAAAG	CATGCTCCCA	ACCAATCTGT	GATGAATTCG	1740
TTCATGAACG	TGGGTGGCTT	GGGCAACTTC	GATGCTATCC	AGCTGGATAA	GGTGCTGACA	1800
GGTCGCTCTG	CTTCCGTATC	TCCCTCTTTG	TCTCTGCTCA	GTGAAGGTCT	TTCGGGCAAA	1860
ACGACTGTAG	AAGATATGGA	AACTTTCTTC	CAGTTGATCT	ATCTCCAAAT	GACTGCTAAC	1920
CGCAAGGATC	CCGAAGCGTT	CAAGGCCACA	CAGGAAAAGT	TGTACAATAA	CTTGAAAAAT	1980
CAGGAAGCCA	ACCCGATGGC	TGCGCTTATG	GACTCTATCC	GTCATACCAT	GTACGGCGAT	2040
AATCCGATGA	TGAAACCCAT	GAAAGCTGCT	GACGTGGAGA	AAGTAAATTA	CGATCAGGTA	2100
ATGGCTTTCT	ACAATGAGCG	ATTCGCTGAT	GCCGGCGACT	TTATGTTCTT	CTTTATCGGT	2160
AATCTGGATG	AAGCCAAGAT	GAAGCCATTG	ATCGAAACTT	ATCTTGCTTC	ATTGCCCAAC	2220
CTCAAGCGTG	GCGATAAGAT	GAATAAGGCT	CAGGTACCGG	CTGCCCGTTC	GGGAAAGATC	2280
GATTGCAAGT	TCGAGAAGGA	AATGGATACT	CCTTCGACTA	${\tt CTATATTCGA}$	TGTCGTGTCC	2340
GGAAATGTGG	AATATACGCT	CAAGAACAGT	CTCCTGCTGG	AAGTCTTCTC	AGCCGTAATG	2400
GATCAGGTGT	ACACGGCTAC	CGTTCGCGAG	AAGGAAGGCG	GTGCATACAG	TGTGGCTGCA	2460
TTCGGCGGTC	TCGAGCAATA	TCCTCAGCCC	AAGGCTCTGA	TGCAGATCTA	TTTCCCCACG	2520
GATCCTGCTC	GTGCCGAGGA	AATGAATGCT	ATCGTTTTTG	CTGAGTTGGA	GAAGCTTGCC	2580
AAGGAGGCC	CCAATGTGGA	ATACTTTAAG	AAGACTATCG	AAAACCTGAA	TAAGCAGCAC	2640
AAAGAAAGTC	TGCGTGAGAA	TCGTTTCTGG	CTCGAAGCCA	TGAAGGCGTC	TTTCTTCGAA	2700
GGAAATGACT	TCATCACAGA	CTACGAATCC	GTACTGAACG	GTCTTACTCC	TGCTGAATTG	2760
CAAAAGTTTG	CGGCAGACCT	CTTGAAGCAG	CAGAATCGGG	TTGTTGTCAT	GATGGCTCCT	2820
GTTGCAAAGG	CTCAA					2835

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2058 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 (B) LOCATION 1...2058
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19

TACACTATGA GTAAGAAAGG	AACAATCGGG	GTAACGAGCG	ACAATATATT	CCCCGTCATC	60
AAAAAATTCC TGTACAGCGA	CCATGAGATA	TTCCTGCGTG	AGATCGTCTC	CAATGCCGTG	120
GATGCTACGC AGAAGCTGAA	AACGCTTACA	TCCGTCGGCG	AATTCAAAGG	CGAGACGGGT	180
GACCTCCGCG TAACGGTCAG	CGTGGATGAA	GTGGCACGCA	CGATCACGGT	CAGCGACCGC	240
GGCGTAGGGA TGACCGAAGA	GGAGGTGGAG	AAGTACATCA	ATCAGATTGC	TTTCTCCAGT	300
GCGGAAGAGT TTCTTGAAAA	GTACAAAGAC	GACAAGGCCG	CCATTATCGG	CCACTTCGGA	360
CTCGGATTTT ACTCGGCTTT	CATGGTGTCC	GAGCGAGTGG	ACGTGATCAC	GCGCTCTTTC	420
CGAGAAGATG CTACGGCGGT	GAAATGGAGC	TGCGACGGAT	CGCCCGAATA	CACGCTCGAA	480
CCTGCGGACA AGGCTGACCG	TGGCACCGAC	ATCGTGATGC	ACATCGATGA	GGAGAATAGC	540
GAGTTCCTCA AAAAAGAAAA	GATAGAGGGG	CTCCTCGGCA	AATACTGTAA	GTTCCTTACC	600
GTGCCGATCA TTTTCGGCAA	GAAGCAGGAA	TGGAAAGACG	GCAAGATGCA	AGATACGGAC	660
GAGGACAATC AGATCAACGA	CACACATCCT	GCCTGGACCA	AAAAGCCTGC	CGACCTCAAG	720
GACGAAGACT ATAAGGAATT	TTACCGTTCG	CTCTATCCCA	TGTCCGAAGA	GCCTCTCTTC	780
TGGATCCACC TCAATGTGGA	CTATCCGTTC	AATCTGACAG	GTATCCTCTA	TTTCCCGAAG	840
ATCAAAAACA ACTTGGATCT	GCAGCGCAAC	AAGATTCAGC	TCTACTGCAA	TCAGGTTTAC	900

GTCACCGATG	AAGTACAGGG	TATCGTGCCG	GACTTCCTCA	CCCTCCTGCA	CGGGGTCATC	960
GATTCGCCGG	ATATTCCCCT	CAACGTATCG	CGCTCCTATC	TGCAGAGCGA	TGCCAATGTG	1020
AAGAAGATCT	CGTCTCATAT	CACCAAGAAG	GTGGCAGACC	GTCTGGAAGA	AATTTTCAAA	1080
AACGACCGCC	CCACATTCGA	GGAGAAATGG	GATAGTCTGA	AGCTCTTCGT	CGAATACGGT	1140
ATGCTGACGG	ATGAGAAGTT	CTATGAGCGT	GCAGCCAAAT	TCTTCCTTTT	CACCGATATG	1200
GACGGACACA	AGTACACGTT	CGACGAATAC	CGAACGCTCG	TCGAAGGTGT	ACAGACGGAT	1260
AAGGACGGAC	AGGTAGTGTA	TCTCTATGCT	ACGGACAAGC	ATGGACAGTA	CAGCCACGTG	1320
AAACGTGCAT	CCGACAAAGG	CTACAGCGTG	ATGCTGTTGG	ATGGTCAGTT	GGATCCGCAT	1380
ATCGTGAGCC	TGCTGGAGCA	AAAGTTGGAG	AAGACACACT	TTGTCCGTGT	CGATAGCGAT	1440
ACGATCAACA	ATCTGATCCG	CAAGGAGGAA	AGAGCCGAAG	TGAAACTGTC	CGATACGGAG	1500
CGCGCCACTC	TCGTGAAGCT	GTTCGAAGCA	CGCCTGCCAC	GGGACGAGAA	GAAGCACTTC	1560
AATGTAGCTT	TCGAATCGCT	CGGAGCCGAA	GGTGAAGCCA	TCCTTATCAC	ACAAGCCGAA	1620
TTCATGCGCC	GTATGCGCGA	TATGGCACAG	CTGCAGCCGG	GAATGAGCTT	CTACGGCGAA	1680
CTCCCCGATT	CGTACAATCT	GGTACTTAAT	ACCGATCATC	CGCTCATCGA	CAGGGTACTC	1740
TCCGGTGAGA	AAGAATCGGT	AGAGCCTTCG	CTCACAGAGC	TTAGAGCGAA	AATCGCCGAG	1800
CTGAAAGCGG	AAGAGGCCAA	GCTGCTCGAT	GAGGAAAAAG	GGAAGAAACC	GGAGGAAATC	1860
CCTGTTGCCA	CGAAGGAAGC	CAAGGAGAAC	AACGCCGTCG	AACAGGCCAA	AACCGAAGGC	1920
AGTATCAACG	ATCAACTGAC	CAAATATGCT	CAGGACAACG	AGCTGATAGG	TCAGCTCATC	1980
GACTTGGCTC	TGCTCGGAAG	CGGATTGCTG	ACGGGAGAGG	${\tt CTTTGGCCGA}$	ATTCATTCGT	2040
CGCAGCCAGC	GTCTTCTC					2058

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1446 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1446
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20

GACATTCGAC	AGAAAAGACC	GTGCTTCAAC	GCCAATTTGT	ACTTTTACCG	TGCAATGGAA	60
AAACTGATCG	ATATTTTGGT	CGTAGACGAT	GATGTGGCAG	TCTGTGCCGC	ACTGCGTCTG	120
GTGCTCAAGC	GAGCGGGCTA	TAATCCCGTT	ATAGCCAACA	GTCCCGACGA	AGCTTTGTCC	180
ATAATGCGGA	ATCCTGATGG	CGGCTGTAAG	CCGGCTGTGA	TTCTGATGGA	TATGAATTTC	240
TCCCTTTCGA	CCTCCGGCAG	GGAAGGATTG	GAACTACTGG	AGAAGATGCA	GATATTCACT	300
TCCTGCCCTG	TCATACTGAT	GACGGCTTGG	GCTTCGATTC	CACTGGCAGT	GGAGGGAATG	360
AGGCTTGGAG	CTTTCGACTT	CATAGGCAAG	CCATGGGACA	ACGATCGGCT	CCTTCGTACC	420
ATAGATACGG	CCTTGCATCT	GGCTGCTCCC	TCAGCTGTGG	CGAATCCATC	GGAACAGTCT	480
GACAGAGATA	CAGCCCGTCA	GCCGAAAGCT	ACAGTCCAAG	AGAATGACCC	CTGTGCCCAT	540
ATCATAGGCC	GGAGCGATGC	CATCTGTAAG	ATCAAGGAAC	GGATACGCCG	CATAGCTCCC	600
ACCCATGCCT	CTGTGCTGAT	CACGGGCGAG	AGCGGTACGG	GCAAAGAGTT	GATAGCCGAA	660
GCTCTGCACC	GTGGGAGCAA	ACGAGCCTCA	GCCCCATTCG	TCAAGGTCAA	TTTGGGTGGG	720
ATTCCCGAAA	GTTTGTTCGA	AAGTGAGCTG	TTCGGACATA	AGAAAGGAGC	TTTTACCAAT	780
GCTTTTTCCG	ACAGGAAAGG	ACGGTTCGAG	CTGGCTGATG	GCGGCACGAT	CTTTCTGGAC	840
GAAATAGGCG	AACTACCGGT	CGGCAACCAA	GTAAAACTGC	TGCGAGTGCT	ACAGGAACAG	900
ACATTCGAGC	CGTTGGGCGA	GAGCGTCTCC	CACCGAGTGG	ACATCCGTGT	GGTATCGGCT	960
ACGAATGCTT	CCTTGGAGCG	AATGGTAGCC	GAAGGACGTT	TCAGAGAGGA	CCTCTACTAT	1020
CGAATCAACC	TGATACATCT	GCATCTGCCT	CCGCTGCGTG	AGCGTCAGGA	GGATATACAG	1080
CTGCTGGTGG	AAGCCTTCAG	TGAAGCCTTT	GCCCAATCGA	ACGGATTGCC	CCATGCCGTT	1140
TGGAGTGCGG	AAGCTATGCG	ACGTATCTGT	GCCATGCCCC	TACCGGGCAA	TGTACGCGAA	1200
CTGAAAAACG	TAGTGGAGCG	TACGCTATTG	CTCTCGGGAT	CGAGAGAAAT	CAGTGCCCGG	1260
GATGTGGCTG	ACTTCGGTTC	GCAGGTGACG	GCAGCAGACC	ACTCCGACGA	ACGGGCTTTG	1320
ACCGACATGG	AGGAAGCTGC	TATCCGAGAG	ACGCTGACTA	AATACAACGG	CAACGTTAGT	1380
CGTGCTGCAC	GAGCCTTGGG	ATTGAGCCGG	GCAGCTCTTT	ACCGGCGAAT	GGAGAAATAC	1440
GGACTG						1446

(2) INFORMATION FOR SEQ ID NO:21

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 789 base pairs

(B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...789
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21

AGATCTCTGC	AATCATTTCA	AAATAAAAA	CACTCAAGTA	TGCTTAAGAT	AAAGAACCTC	60
CACGCCACAG	TACAGGGCAA	AGAGATATTG	AAAGGAATCA	ATCTGGAGAT	CAATGCCGGA	120
GAGATTCATG	${\tt CTATCATGGG}$	GCCGAACGGA	TCGGGGAAAA	${\tt GTACGCTCTC}$	TTCCGTTTTG	180
GTGGGACATC	$\tt CCTCCTTTGA$	AGTCACGGAA	GGAGAGGTGA	CATTCAATGG	AATCGACCTG	240
CTCGAACTCG	AACCGGAAGA	ACGTGCACAC	CTCGGACTCT	${\tt TTCTCAGTTT}$	CCAATATCCG	300
GTCGAGATCC	${\tt CGGGCGTCAG}$	CATGGTGAAT	TTCATGAGGG	CAGCTGTCAA	TGAACATAGG	360
AAAGCGATCG	GAGCAGAACC	CGTATCGGCA	AGCGACTTCC	${\tt TCAAGATGAT}$	GCGAGAGAAG	420
CGTGCCATTG	${\tt TGGAGCTGGA}$	CAACAAATTG	GCCAGCCGTT	CTGTGAACGA	AGGCTTCTCC	480
GGTGGAGAAA	AAAAGAGGAA	CGAAATCTTC	CAAATGGCTA	TGCTCGAACC	CAAGCTGGCT	540
ATTTTGGACG	AAACCGATAG	CGGGCTCGAT	ATCGACGCTC	TCCGCATCGT	AGCAGGCGGG	600
GTAAACCGAC	TCCGCTCTCC	GGAGAATGCT	GCTATTGTGA	TCACACACTA	TCAGCGTTTG	660
CTCGAGTACA	TCAAGCCGGA	CTTCGTACAC	GTCCTTTACA	AGGGGCGCAT	CGTCAAGTCG	720
GGAGGAGCCG	AGCTGGCTCT	CACGCTCGAA	GAAAAAGGCT	ACGACTGGAT	CAAGGAAGAG	780
ATAGGAGAA						789

- (2) INFORMATION FOR SEQ ID NO:22
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1386 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1386
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22

AGCATGGCTA	AGGAGAAAAC	GATCTACGTC	TGCCGTTCGT	GCGGAACCAA	ATACGCCAAA	60
TGGCAAGGCA	ACTGCAATGC	CTGTGGAGAG	TGGAACTGCA	TTGATGAGGA	GAAGGTGCCG	120
GCACCGGCAT	CGGGCAAGCA	TGCAGCCAAG	AGTTTTATGC	CTCGGGAGCA	GGACAACCGG	180
CCAAGACTCT	TACAGGATGT	GGAGTCCGGC	GATGAAGAGC	GTATTCGCCT	CGGCGATGAA	240
GAGTTCGACC	GCGTACTGGG	TGGAGGAATT	GTCAAAGGAG	CATTTGTCCT	GCTTGGCGGC	300
GAGCCGGGAA	TCGGTAAGTC	CACGCTTATC	CTCCAGACGG	TGCTGCGTCT	GCCGCAGTTG	360
CGCACGCTCT	ATGTGTCGGG	CGAAGAAAGT	GCCCGACAAC	TGAAGATGCG	CGCCGAACGA	420
CTGGGGCAAG	CCATGAATGG	GTGCTACGTA	TACTGCGAAA	CGAATATAGA	GAGGATACTC	480
TCCCGTGCAG	AAGAACTCAC	ACCCGATCTC	CTCGTGATAG	ACTCTATACA	GACGGTCTAT	540
ACCGAGGAAA	TGGAAAGCTC	GGCCGGCAGC	GTGGGGCAGA	TCCGCGAATG	TGCCGCCTTA	600
CTGCTCAAAT	ACTGCAAGAC	TACGGGTATC	CCCGTCATCG	TCATCGGACA	CATCACCAAA	660
GAAGGTAGCA	TAGCCGGACC	GAAGGTGCTG	GAGCATATAG	TGGATACGGT	GCTTCTCTTC	720
GACGGGGATA	AGCATCATCT	CTACCGGATA	CTCCGAGGAC	AGAAGAACCG	CTATGGCAGT	780
ACTTCCGAGC	TGGGGATATA	CGAGATGCGG	CAGGACGGTC	TGCGTGGCGT	GGAGAATCCG	840
AGCGAACATC	TCATCACACG	CAATAGGGAA	GACCTCAGTG	GCATAGCCAT	AGCCGTAGCG	900
ATGGAGGGCA	TTCGCCCGAT	ACTCATCGAA	GCGCAGGCTT	TGGTCAGCTC	GGCCATTTAT	960
GCCAATCCGC	AGCGTTCGGC	CACGGGCTTC	${\tt GATATTCGGC}$	GGATGAACAT	GCTCTTAGCC	1020
GTACTGGAGA	AACGTGCCGG	CTTCAAGCTC	ATACAGAAGG	ATGTGTTTCT	GAACATTGCC	1080
GGAGGTATCA	AAATAGCCGA	TCCGGCTACG	GATCTGGCCG	TTATCTCGGC	AGTGCTGGCG	1140
TCGAGTCTGG	ACATCGTTAT	CCCGCCGGCC	GTATGCATGA	CGGGCGAGGT	CGGACTCTCC	1200

GGAGGATAC GTCCCGTGAG CCGCATCGAG CAGCGCATAA CGGAAGCGCG TCGCATAGGG TTCAAAGAGA TATTGGTACC GGCCGATAAT TTCCGGCAGG AGGATGCCGG CCGCTTCGGT ATTCGGCTCG TGCCGGTCAG AAAGGTGGAG GAAGCCTTCC GCCATCTGTT CTCGAAAGGA AGAGAA	1260 1320 1380 1386
(2) INFORMATION FOR SEQ ID NO:23	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1119 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(vi) ORIGINAL SOURCE: (A) ORGANISM: PORYPHYROMONAS GINGIVALIS	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION 11119</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23	
GGGTCTTGTG GAAGTAGCCC AGCAATTGGC CGATCAGGGT GTTCGCGTTG TGATCGCCGG ATTGGACATG GACTTTCCAC GTCAGCCTTT CGGACCTATG CCGGGCTTGT GTGCCATAGC CGACTCCGTG ACCAAAGTTC ATGCCGTGTG TGTGGAATGC GGCCGATTGG CCAGCTATTC TTTCCGTCGT GTCCAAGGCG ATCAGCAAGT GATACTGGCC GAACTGAACC AATACAGTCC CCTCTGCAGA ACCTGCTACA GGAAATGCAG TTCTCCCCCA CAAAACAGAAG AAATCCATTC GACAATATGA ATAGCAGACA TCTGACAATC ACAATCATTG CCGGCCTCTC CCTCTTTGTA CTGACATTGG GCGGCTGCTC CGTAGCCCAA CAAAACAATCA CGGCCTCTC CCTCTTTGTA CTGACATTGG GCGGCTGCTC CGTAGCCCAA CAAAACAATACA AGGCGCTTTC CGGCGGAAAG CTCTTTACTT CGGCGTGAT ACAACGTTCG GCCGAATATC AAGCGCTTTG CATTCAGGCA TACAACATCG CTACGGAAAG AGTGGACGCT CTACCGGCAG AACGTAAACA AGGAGATAGG CCTTATGCCA TCGTAACGGA CATAGACGAA ACCATTTTGG ACAATACGCC TAACTCCGTG TATCAGGCTC TCAGGGGCAA GGATTATGAT GAAGAGACAT GGGGGAAATG GTGTGCACAG GCCGATGCCC ACACACTGGC AGGAGCTTTG TCTTTCTTCC TCCATGAGCC GAACAAGGGG ATCGAGGTCT TTTACGTCAC CAACCGCAGA GACAATCTCC GCGAAGCAAC TCTTCAGACC CTTCAGCGTT ACGGATTCCC CTTTGCCGAT GAAGAACATT TGCTTACGAC GAACAAGGGG ATCGACAAAA AACCCCCGTCG GCTCAAAATA CAAGAACATT TGCTTACGAC CCATGGCCCA CCGACAAAC AACCCCGTCG GCTCAAAATA CAAGAACATT TGCTTACGAC CCATGGCCA CTCCGACAAAC AACCCCGTCG GCTCACAAATA CAAGAACAGT ATGAAATACT ATTGCTCATA GGAGACAACT TGGGCGACT CCACACTTC TCAATACGA AAGAAGAGT CCGGACCAAA CAGGCTCTGG GCCTGACCAG CGGGGGATTT GGCCGGCACT TCATCATGCT GCCCAAATCCC AACTACGGAT CTTGGGAACC GGCATGGTAC GGCCGGAACT TCATCATGCT GCCCAATCCC AACTACGGAT CTTGGGAACC GGCATGGTAC GGCCGGAACT TCATCATGCT GCCCGAAAGA (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1278 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1119
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(vi) ORIGINAL SOURCE: (A) ORGANISM: PORYPHYROMONAS GINGIVALIS	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION 11278</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24	
CGTTGGGGTT TTTCTAATTT TGTGGCCATG AGCACCAATA TAGATGTACA ACAGATCAAA CAGCGTTTCG GCATCATCGG TAGCAGTCCG CTGATGGAAC ATGCCATACG AGTGGCAGCA CAGGTGGCTC CTACCGACAT GTCCGTCCTC GTGACGGGGG AGACCGGTTC GGGGAAAGAG TTCTTCCCAC AGATAATCCA CTACTACAGC GCCCGGAAAC ATCATAGCTA CATTGCAGTC	60 120 180 240

AATTGCGGAG	CCATCCCCGA	AGGAACCATC	GATTCCGAGC	TGTTCGGACA	CCGCAAAGGT	300
TCCTTTACCG	GAGCCGTATC	GGATCGCAAG	GGGTACTTCG	AAGAAGCATC	CGGCGGCACG	360
ATCTTTCTGG	ACGAAGTGGG	CGAACTGCCT	TTGCCCACGC	AGGCGAGGCT	GCTGAGGGTG	420
CTGGAGACGG	GCGAGTTCAT	CCCCGTAGGA	GCCAGCCAGT	CGCAGAAGAC	GGATGTCCGT	480
ATCGTAGCGG	CGACGAATGT	GAACCTCAAG	${\tt GAGGCGGTAG}$	CGAACGGGAA	GTTCCGGGAA	540
GACCTCTTCT	TCCGGCTCAA	TACGGTACCG	ATCGAGGTGC	CTGCGCTGCG	TATGCGACCG	600
GACGACGTGC	CCTTGCTTTT	TCGCCGATTC	GCCGCCGACA	GCGCCGAGAA	GTATCGGATG	660
CCTCCGCTGC	GCCTATCGGA	CGAAGCCCGT	ACCATATTAA	TGCGTTACCG	CTGGCCCGGC	720
AATGTGCGAG	AGCTGCGCAA	TATAACCGAC	AGGCTGAGCA	TCCTGGAGGA	GGAGCGGACG	780
GTATCGGCAG	AGACCATCAC	TCGCTACCTG	GACGCTGAGG	GGATGCAAGA	CCTCCACCCC	840
GTCGTGATCC	GACGGAACGA	AACGACCGAA	GCGGACAAAC	AAATCCCCCA	TTACGAGCGC	900
GAAATCATCT	ACCAGGTGCT	ATACGATATG	AAGAAAGAGA	TAGCCGATTT	GAAGGGGATG	960
ATGAACCGCC	TGGCGCACCA	CGAACAGCCC	TCATGGCCTG	TAGGGTCGGA	CGTCTGGGGC	1020
AACGACGACA	AGCGCACCGC	AGATCCGAAG	${\tt TGGGGCGTCA}$	GCACGCACAA	GGCCCCCATC	1080
GCGAACGCGG	CAGAACCCGT	GGAGCCGATA	CAGGAAGCCA	GCGAATACAC	CGAGGATCCG	1140
GTTTCGCTGG	AGGAGGTAGA	GAAGAAAATG	ATTTCCCTTG	CATTGGAACG	CCACGGCGGA	1200
AGGCGCAAGC	AGACAGCCGA	GGAACTGAAG	ATTTCGGAGC	GGACACTATA	CCGTAAAATC	1260
AAGGAGTATG	GACTGGAA					1278

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1959 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1959
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25

AAAAATCTTC	CGAGGTACGC	TCCGGCATTT	GGCAGAAATC	GTAAAAGGGA	ACAACCTGAC	60
CCTGACAACG	ATGATAGTCG	TGGGAGAAGC	CATAGACAAT	CGGGAAGGGC	TGTCACGGTT	120
GTATGCCGAC	GAATTCAAAC	ACCTCTTCCG	CACATGATCC	TACTCTTCGG	CGGTACTACG	180
GAAGGCCGTG	CCGCAGCTCG	CGTGCTGGAT	GAAGCGGGAA	GTCCGTTTTT	CTACTCCACC	240
AAAGGCAATC	TGCAAGAGAT	CCAGAGTAGC	CACGGCCATC	GTCTGACAGG	AGCCATGACG	300
GTTGCCGACA	TGGTTTCGTT	TTGTCGGAAA	GAAGAGATCC	GACTGATCGT	GGACGCCGCT	360
CATCCTTTCG	CCGAAGAATT	GCACGCTTCA	GTGGCAGAAG	CCTCTGAACA	AACAGGTATC	420
CCCGTAGTAA	GATACGAGAG	ACAATACCCT	CCACGCGAAG	AAGGTATCGT	CTGGTGTGCA	480
AACTACGATA	CGGCTGCCGA	GCGGATGCTT	GGCGATGGCG	TGCAGCGTCT	GCTGATGCTC	540
ACAGGAGTGA	ATACGATCCC	CAAGCTGGCT	GCTTTCTGGA	AAGAGCGCAC	CACCTTTTGC	600
CGCATATTGA	AGCGAGACGA	ATCGGTTGCT	TTGGCAGAGA	AGAACGGCTT	TCCTGCGGAG	660
CGCATCGTTT	TCTTCGAACC	GCATGCGGAC	GAGGAGCTGA	TGCAAGCCGT	TCGCCCCGAT	720
GCCATTATCA	CAAAAGAAAG	CGGAGAGAGC	GGTTACTTCC	GAGAAAAGAT	AGAAGCTGCC	780
CGACGGATGG	GCATCCGTAT	ATATGCCGTC	GTACGTCCCC	CTTTGCCTCC	TTCATTCATT	840
CCCGTAGGCG	GGCCTGTCGG	TTTGAGACGG	GCGGTAGAAC	GCCTCGTGCC	GGGATTCTTT	900
TCACTCCGAA	GCGGATTCAC	TACCGGCACC	ACAGCTACCG	CTGCAGTAGT	AGCAGCCATG	960
TACCGATTGA	TGGGGCTTGG	CTCTCTCGCC	GAAGCTCCCG	TAGAATTGCC	TTCGGGCGAA	1020
ATAGTCAGTC	TGCCCATAGC	GGAAATTCGA	GAGGAAGAAG	ATGCTGTCGT	ATCCGCAGTC	1080
CTGAAAGATG	CAGGTGATGA	TCCGGATGTG	ACCAATGGCA	TGGCGGTATG	CGCTACGATC	1140
AGGCTCAATC	CCGAACATGA	GGAAGTCCGC	TTCCTGCAGG	GTGAAGGGGT	GGGGGTAGTG	1200
ACGCTCCCCG	GCCTCGGTCT	${\tt GGAGGTCGGA}$	GGTCCGGCTA	TCAACCTCGT	ACCTCGACGA	1260
ATGATGACAG	CAGAGGTACG	CCGACTCTAT	GCGCAGGGAG	GTGTGGATAT	TACGATTAGC	1320
GTACCCGAAG	GCCGAGAGGC	TGCTACCCAG	ACATTCAATC	CCCGACTCGG	CATACGGGAC	1380
GGCATCTCTA	TTATCGGAAC	ATCGGGAGTC	GTGAAACCTT	TTTCGGCCGA	AGCGTTCGTT	1440
GGTGCCATCC	GTAAGCAAGT	GGGTATTGCC	ACCGCCTTGG	GAGCCAATCA	TATCGTCCTC	1500
AATTCGGGAG	CCAAGAGTGA	GCGTTATGTA	AAAGGAGCCT	ATCCGGCACT	CATTCCACAG	1560
GCCTTTGTGC	AGTATGGCAA	TTTCGTCGGC	GAATCACTCA	GTTGTGTAGC	TTCCTTCCCT	1620
TCTGTCCGTT	CGGTAACGGT	AGGAATCATG	CTCGGCAAAG	CAGTGAAACT	CGCCGAAGGC	1680
TATCTGGATA	CGCACAGTAA	AAAGGTAGTG	ATGAATCGGG	ATTTCCTGCA	CGAACTGGCT	1740
CGTCAGGCAG	GTTGTTCGGA	AGACATCCAT	GCCATAATAG	ACAGCCTGAA	TTTGGCTCGT	1800
GAGCTATGGA	CTATGCCGAG	TGCGGAGGAC	AGCGATCGAC	TGCTACGAAA	GATTGCCGAA	1860
CGATCTTGGG	AAACTTGCCG	CCCATCGGTA	CCATCGGCCG	AATTAGAACT	CCTGCTGATC	1920
GATGAGTCCG	GAGCGATTCG	TTTTCGTATC	GGTGGAGAA			1959

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1353 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1353
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26

CAACAAAGAC	CACATAGAAT	TATTATGTTG	AGGACTTTCC	GAATCGGTGG	TATTCACCCC	60
CCCGAAAACA	AGTTGTCGGC	AGGCAAGCCC	GTAGAGGTGT	TGCCTATCCC	CTCACAGGTA	120
GTCATCCCTC	TTGGTCAGCA	CATCGGTGCA	CCGGCAACTG	CCACGGTCAA	GAAAGGGGAT	180
GAAGTTAAGG	TCGGGACTAT	CATTGCTCAG	GCCGGAGGAT	TCGTATCAGC	TAATATCCAC	240
TCATCTGTGT	CGGGTAAGGT	GCTGAAGATC	GATAACGTAT	ACGACTCAAG	CGGCTATCCC	300
AAGCCCGCAG	TCTTCATTAG	CGTAGAAGGT	GACGAATGGG	AAGAGGGCAT	CGATCGCTCA	360
CCAGCCATCG	TCAAAGAATG	CAATCTGGAT	GCAAAAGAAA	TCGTAGCCAA	AATTTCTGCA	420
$\tt GCCGGTATTG$	TGGGTCTTGG	CGGTGCTACC	TTCCCTACCC	ATGTGAAGCT	GTCCCCTCCT	480
CCGGGCAACA	AAGCTGAGAT	CCTGATCATC	AACGCCGTAG	AGTGCGAGCC	TTATCTGACG	540
AGCGACCATG	TCCTTATGCT	GGAGCACGGC	GAAGAGATCA	TGATCGGCGT	GAGTATCCTG	600
ATGAAAGCCA	TTCAGGTAAA	CAAGGCCGTC	ATCGGAGTTG	AGAATAATAA	GAAAGATGCT	660
ATTGCTCACC	TCACCAAACT	GGCCACTGCA	TATCCGGGCA	TAGAGGTAAT	GCCGTTGAAG	720
${\tt GTGCAATATC}$	CTCAAGGCGG	TGAGAAGCAG	CTGATCGATG	CAGTGATCCG	CAAGCAGGTA	780
AAAAGCGGTG	CCTTGCCTAT	CAGCACAGGT	GCCGTAGTAC	AAAACGTGGG	TACGGTATTC	840
GCCGTGTACG	AAGCAGTACA	GAAGAACAAG	CCTCTGGTCG	AGCGCATCGT	GACGGTTACA	900
GGAAAAAAAC	TGTCTCGTCC	GTCTAACCTC	CTCGTTCGTA	TAGGTACTCC	TATTGCGGCT	960
TTGATCGAAG	CAGCAGGTGG	CTTGCCGGAG	AATACGGGCA	AGATCATCGG	CGGAGGTCCG	1020
ATGATGGGAC	GCGCTCTGCT	GTCACCGGAT	GTGCCTGTGA	CCAAAGGCAG	CTCCGGAGTA	1080
TTGATTCTCG	ATAGAGAAGA	GGCAGTTCGC	AAGCCTATGC	GCGACTGTAT	CCGATGCGCC	1140
AAGTGCGTCG	GAGTGTGTCC	GATGGGACTC	AATCCGGCTT	TCCTTATGCG	CGACACCTTA	1200
TATAAGAGCT	GGGAAACAGC	GGAAAAAGGC	AACGTGGTTG	ACTGTATCGA	ATGCGGTTCG	1260
TGCAGCTTCA	CCTGTCCGGC	CAACCGTCCT	CTGCTGGATT	ATATCCGCCA	AGCCAAGAAG	1320
ACTGTGATGG	GTATCCAAAG	AGCACGTAAG	CAA			1353

- (2) INFORMATION FOR SEQ ID NO:27
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1467 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1467
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27

AAAATTTCGT TGGACAAAAC CGGAAACAAG GTTGTACTGA ATGGTGCGGC AGATATGAGT AATTTAAAGC TCAAGAGCAC TCAGATGATC ATTGTTACGC CTATTCTTCG TTCAGAAGAT 24	ATGAACTCTC	AAAAGAAAGA	GGCTTTTAAT	ATGAAAAGAA	TACAACTAAC	TCTTATCGCT	60
AATTTAAAGC TCAAGAGCAC TCAGATGATC ATTGTTACGC CTATTCTTCG TTCAGAAGAT 24	CTCTTCGCCG	CTGTTGCCGG	TTTGGTCGCT	CAAAATGCTT	ACGAGGGAGT	AATTTCATAT	120
	AAAATTTCGT	TGGACAAAAC	CGGAAACAAG	GTTGTACTGA	ATGGTGCGGC	AGATATGAGT	180
GGTACCAGCC GGGTGGAATT TCCTTCGGTA GTCATTACAG GCCGCAATAG AACAAAAGCT 30	AATTTAAAGC	TCAAGAGCAC	TCAGATGATC	ATTGTTACGC	CTATTCTTCG	TTCAGAAGAT	240
	GGTACCAGCC	GGGTGGAATT	TCCTTCGGTA	GTCATTACAG	GCCGCAATAG	AACAAAAGCT	300

CTCAAGCGTG	AAATCGCATT	TAGTTCGGCT	TTGCCCCAAG	CAAAACATGC	AGCTCAATAC	360
ATTCGCCGTC	ATAATGGGAA	GAGCGAGCAG	TTTGCTTTTA	CAGGAGAACA	TGCTTATGCA	420
TCATGGATGA	TGGATGCCAA	GTTTGTGGTT	CGTGAGGAGG	TACGAGGTTG	TGCTAAATGC	480
CCTGTAGGTC	TCTCGAGTAA	TATTGTTCCT	TTTGATCCAC	TCTTCAATCC	GGCAGAGGCT	540
CCTTATTTGT	TGGCACACAT	TACTCCGGCA	GAAGAAGTGG	AAAAACAGCG	AGAGTCCAGC	600
TTCGATGCTT	ATATCAACTT	CAAAGTCAAT	AAGGCAGATG	TCCTTCCTGA	GTATCGCAAC	660
AATAAGGCGG	AGTTAGAGAA	AATCAAAGAA	TTTGTAAGCA	CCGTTAAGGC	TAATCCAAAC	720
TATTCGGTCA	ATAAAATGAT	CATCGAAGGG	TTTGCTTCTC	CCGAGGCTTC	AATAGCCCAC	780
AATAAGGCTT	TGTCGGAGCG	CCGTGCTAAA	AGACTCGCGG	AAGAATTGGT	GCGTAAGTAT	840
GGCAAAACAT	TGCCGAATAT	AACCACTGAA	TTCGGCGGTG	AAGATTGGAA	GGGGCTGAAA	900
CTGGCTATCG	AAAAGAGTGA	TATAGCCGAT	CGTGACCGCG	TATTGGAGAT	AATCAACTCC	960
GATAAATATG	CCGATGATGA	TGCACGTGAA	CAGGCTCTGA	AGCAACTTTC	GTCTTATCGT	1020
TATATCTTGG	ATCAGATCTA	TCCGAATTTG	CGTCGCAATA	CGATAACCAT	GGGGTATATC	1080
GTTCGTGATT	ATACCCTCGA	AGAAGCTCGT	GAAATCATTA	AGACTGCTCC	GAAAGAACTT	1140
AGTGAGGCCG	AAATGTACCG	TGTGGCAATG	TCTTATCCTG	AGGGGCACCA	AGAGCGTTTG	1200
TTTGCTCTGA	ATACGACCCT	TAAGTATTTC	CCTGAAAGTG	TAACGGGCCG	AATCAATTTG	1260
GCTGTAGCCG	CTTTTAATGG	TGGAGACGTT	CAACAGGCAA	TTGCTCTGTT	GAGTCCGATT	1320
CAGACAGAAA	AGGGTGTAAG	CAATATCCTT	GGAGCTGCTT	ATGCTCGTAC	GGGAGATTTT	1380
GCTCGTGCCG	AAACCTTCTT	CCGTAAGGCC	GTTGCAGAAG	GAGATGCAAA	TGCGCAGCGC	1440
AACCTCGATA	TGCTGCTTGG	CAAAAAG				1467

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1152 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1152
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28

GACATGGCAG	AAAAAAGAGA	CTATTACGAA	GTCCTCGGTG	TATCGAAGAA	TGCCACCGAC	60
GATGAACTGA	AAAAAGCATA	TCGCAAGAAG	GCTATCCAAT	ACCATCCTGA	TAAGAACCCC	120
GGTGACAAGG	AGGCCGAAGA	GCACTTCAAA	GAGGTAGCTG	AAGCCTACGA	CGTATTGAGC	180
GATCCGCAGA	AGCGCAGTCA	ATATGACCAG	TTCGGCCATG	CCGGATTGGG	CGGAGCTGCC	240
GGTGGAGGTT	TCAGCGGAGG	CGGTATGTCC	ATGGAGGATA	TTTTCAGTCG	CTTCGGTGAT	300
CTATTCGGTG	GGTTCGGCGG	TTTCGGCGGA	TTCTCCGATA	TGGGCGGTGG	CAGTCGCAGA	360
CGTGTTCGCA	${\tt GAGGGTCTGA}$	CCTGCGAGTA	CGAGTGAAGC	TTTCTTTGGC	CGATATAAGT	420
AAAGGTGTGG	AGAAGAAAGT	GAAGGTAAAA	AAGCAGGTAG	TGTGCAGCAA	ATGTCGTGGC	480
GATGGCACGG	AAGAAGCCAA	TGGCAAGACT	ACCTGCCAGA	CCTGCCATGG	AACCGGCGTG	540
GTTACACGTG	TGAGCAACAC	TTTCCTTGGG	GCCATGCAGA	CCCAGAGCAC	TTGTCCCACT	600
TGCCACGGAG	AGGGTGAGAT	CATCACGAAG	CCATGCTCCA	AGTGTAAGGG	CGAAGGTGTG	660
GAGATCGGCG	AAGAGGTGAT	CTCATTCCAC	ATCCCTGCCG	GTGTAGCCGA	AGGAATGCAA	720
ATGTCCGTGA	ACGGCAAGGG	AAATGCCGCG	CCCCGAGGAG	GCGTGAATGG	CGACTTGATA	780
GTCGTGATCG	CCGAGGAACC	GGATCCGAAT	CTGATCCGCA	ATGGCAACGA	TCTGATATAC	840
AATCTGCTTA	TATCCGTTCC	GTTGGCTATA	AAAGGAGGTA	GTGTGGAAGT	GCCGACGATA	900
GACGGACGAG	CCAAGATCCG	CATCGAGGCG	GGGACACAAC	CCGGCAAGAT	GCTGCGTTTG	960
CGCAATAAGG	GGTTGCCCAG	CGTAAACGGC	TATGGCATGG	GAGACCAACT	GGTGAATGTC	1020
AATGTCTATA	${\tt TCCCCGAATC}$	GATCGATGCC	AAAGATGAGC	AGGCTATCGC	AGCGATGGAA	1080
AACTCGGACA	GCTTCAAACC	TACCGATGCT	${\tt GCTCGTAAGG}$	ATATAGACAA	GAAATACAGA	1140
GAGATGCTGG	AT					1152

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 927 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...927
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29

CGATTCGATT	CAACAACTAA	TGTCTCACAA	ATTAATTTAA	GAACAGAGAT	GAAAAAACTG	60
ATTTTAGCGA	CTTTGGGACT	TATGGCCATT	GCCATGCTCT	CATGTTCAAG	CAACAACAAG	120
GATTTGGAGA	ACAAAGGGGA	GGCTACTCTT	TTGGTAACGT	TTGGTAGCTC	CTATAAAGCT	180
CCACGCGAAA	CCTATGCGAA	GATTGAGAAG	ACTTTTGCCG	CAGCTTATCC	CGATCAAAGG	240
ATAAGCTGGA	CATACACGTC	TTCTATTATC	CGAAAGAAAC	TGGCTCAGCA	GGGTATTTAT	300
ATCGATGCTC	CGGATGAGGC	TTTGGAGAAA	TTGGCTCGTC	TGGGTTATAA	GAAGATCAAT	360
GTACAGAGTC	TTCATGTGAT	TCCCGGCCGA	GAATATGATG	AGATGATCGA	CTTTGTCAAT	420
AAGTTTAAGG	CAGCACATAG	TGATATTACT	GTGAAGGTAG	GGGCTCCGCT	TTTCGATACC	480
GATGAAGATA	TGCGCGAGGT	GGCAGAGATC	TTGCACAAGC	GTTTTCAGCA	AACGATAGAG	540
AAAGGTGAAG	CTATTGTATT	CATGGGACAC	GGCACCGAGC	ATGCTGCCAA	TGACAGGTAT	600
GCCCGTATCA	ATAAGATCAT	GAAGAACTAT	AGCAAGTTCA	TGATCGTCGG	AACCGTCGAG	660
TCCGATCCCT	CTATCAATGA	TGTTATTGCC	GAACTGAAAG	AAACCGGTGC	CACGGCCGTA	720
ACAATGATGC	CGCTGATGAG	TGTGGCAGGC	GACCATGCTA	CGAATGATAT	GGCCGGAGAT	780
GAGGACGATA	GCTGGAAGAC	GTTGCTGACC	AATGCCGGCT	ACACAGTTTC	TATAGACAAG	840
CTGGACAATG	${\tt GCAATTTCTC}$	${\tt AGCTCTTGGA}$	GATATAGAAG	AGATCCGGAA	TATCTGGCTC	900
AAGCATATGA	AAGCCACCTC	TGCTCGC				927

- (2) INFORMATION FOR SEQ ID NO:30
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1473 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1473
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30

CGGAGAGATG	CGCGGAGGCA	ACTGGTACGC	CGTAGGAGGA	AAGAGCTATC	TGGCACAGCA	60
AATACGCGAT	GCCGGAGGAG	AGTATTTCCT	GAAAGACGAT	CAGCGATCCG	GTGGTGTTTC	120
CCTCGACTTC	GAGACGGTCT	ACAGCCGATC	CGATTCGGCT	CGCTACTGGC	GAATCCTCAA	180
CAGCTATCCC	GGGGAGTTCG	GTTACGAAGC	TTTGAAAGCC	GAAGACAGCC	GATATGCCGA	240
TTTCAGGGCA	TTCAAGGAAA	AAGGCGTGAT	ATACTGCAAC	CTGAGGGAAA	CAGCCTTCTA	300
CGAACTCATG	CCCATGCATC	CCGATTGGGT	GCTGGCCGAT	CTTATCGCTA	TCTTGCACCC	360
CGGACTACTT	CCCGACCACC	AACCGCATTT	CTATTATTTG	CTCCAATGAC	ATCCGTCAGC	420
CACTTACGTA	CAATTTCTGT	CGCAGGTATC	CTGGCTGCGC	TGGGAGGGC	TGTACTCATT	480
CTCTTCGGGG	TTAATCTCTT	CCTCGGCTCG	GTGGCTATTC	CGATGAGCGA	GATCTTCCGA	540
CATCTTTTTT	CAGATCGTCC	CGAAGGAGGA	GAAGCACTCG	TGCACTACAA	TATCCTATGG	600
AAATCCCGCC	TGCCCGAAGC	CCTCACGGCT	GCTTTTGCCG	GCGCAGGTTT	ATCCGTTAGT	660
GGCTTGCAGA	TGCAGACCGT	CTTTCGCAAT	CCTTTGGCCG	GTCCGTCCGT	TCTCGGCATC	720
AGCTCCGGTG	CCAGTTTGGG	TGTTGCTTTG	GTCGTTCTGC	TGAGCGGCTC	GCTGGGAGGA	780
GTGGCATTGA	${\tt GTAGCCTGGG}$	TTATATGGGC	GAGGTGGCCA	TGAATATAGC	CGCTGCCGTA	840
GGCTCGCTGG	CAGTAATGGG	GCTGATCGTT	TTTGTCAGCA	CCAAGGTGCG	CAGCCACGTT	900
ACGCTGCTCA	TTATCGGCGT	TATGATCGGA	TATGTAGCCA	CTGCCGTCAT	CGGGGTATTC	960
AAGTTTTTCA	GTATCGAAGA	AGATATTCGG	GCATACGTAA	TTTGGGGGTT	GGGCAGCTTT	1020
TCCCGTGCCA	${\tt CGGATTCGCA}$	ACTGAGTTTC	TTTGCCATTC	TGATGTTGAT	CTTTATTCCG	1080
GCCGGTATGC	TCCTTGTCAA	GCAGTTGAAT	CTCTTATTGC	TGGGAGAAAG	CTACGCACGT	1140
AATCTGGGAC	TGAATACTCG	TCGGGCACGG	CTGCTCGTGA	TCTCTTCCGC	CGGTTTGCTC	1200
ATCGCTACCG	TCACGGCCTA	TTGCGGTCCC	ATCGGCTTTT	TGGGGATGGC	TGTGCCACAC	1260
TTGGCACGGG	TTATCTTTCA	CACATCGGAT	CATCGGATCC	TGATGCCTGC	TACCTGTTTG	1320
ATTGGAAGTG	CTCTGGCTCT	TTTCTGCAAT	ATCATTGCTC	GTATGCCGGG	GTTTGAGGGG	1380

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2289 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2289
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31

CATTTTTTAG	TAACGATTAT	GCGGACAAAA	ACTATCTTTT	TTGCGATTAT	CTCTTTTATT	60
GCTCTATTGT	CGTCTTCTCT	GTCGGCTCAG	AGCAAAGCCG	TTTTAACCGG	TAGTGTGTCG	120
GATGCCGAAA	CCGGAGAGCC	TCTTGCCGGT	GCTCGAATCG	AAGTCAAACA	CACCAACATA	180
GTAGCCGGTG	CCGATGCCGG	CGGACATTTC	GAGATCAAGA	ACCTGCCGGC	AGGGCAGCAT	240
ACTATTATAT	GTTCGTTGGG	GGGGTATGGA	CAGAAAGAGG	AGGTGGTTGC	CATCGAAGCC	300
GGACAGACCA	AAACGATCTC	TTTTGCATTG	CGACTGCGAA	CGAACAACTT	GGAGGAAGTC	360
GTCGTTACCG	GTACCGGTAC	ACGTTACCGC	TTGGTCGATG	CTCCTGTGGC	AACGGAAGTC	420
CTTACCGCTA	AGGACATAGC	CTCTTTCTCG	GCTCCTACTT	CCGAGGCCTT	ATTGCAGGGG	480
CTGAGTCCGT	CTTTTGACTT	CGGCCCCAAT	CTGATGGGCT	CTTTCATGCA	GCTGAACGGC	540
CTTAGCAGTA	AGTATATCCT	CATCCTTATC	GATGGTAAGC	GTGTGTACGG	CGATGTAGGC	600
GGTCAGGCCG	ATTTGAGTCG	TATTTCTCCT	GATCAGATCG	AACGGATCGA	ACTGGTGAAA	660
GGTGCTTCGA	${\tt GTTCGCTCTA}$	CGGATCCGAT	GCCATCGCCG	GGGTAATCAA	TGTGATCACA	720
AAAAAGAATA	CGAATCGACT	GAGTGCATAT	ACGTCACATC	GCATATCGAA	GTACAACGAT	780
CGGCAAACCA	ATACTTCGCT	CGATATAAAC	ATCGGTAAGT	TCAGTAGCAA	TACCAACTAT	840
TTCTTCTACC	ATACGGATGG	CTGGCAGAAT	AGTCCGTTCG	AAATAAAAA	GAAAAAAGGA	900
TCCGGCGAAC	${\tt CGGTCTTGGA}$	GGAAACGTAT	AAGAAAACTT	TTCGTGCACA	GGAAAATCAG	960
GGTGTAAGCC	AATCGCTTTC	CTATTATGCA	ACTAACAATC	TTAGCTTCAG	CGGAAATGTG	1020
CAGTACAATA	AACGTCAGAT	CTTCACTCCG	${\tt ACTTTTTCCG}$	AAAAGAAGGC	CTATGACATG	1080
GATTATCGTG	CTTTGACGGC	TTCACTCGGT	ACGAACTATC	TTTTCCCCAA	TGGTCTGCAT	1140
ACGCTTTCTT	TCGATGCCGT	CTACGATCGC	TTCCGTTTCG	GATATTTGTA	TCATGACAAG	1200
GACAGCAGTG	AGAGCCTGAT	CAACAACCAA	GGTCAGACCG	AGCAACCCAC	ATTCTTTCCG	1260
GGTCAGCTAC	GCAATAAAAA	CGATCAGATC	CGATACACGG	CAGAGGCTCG	CGGTGTATTT	1320
ACACTGCCTT	ATGCGCAGAA	ACTGACCGGC	GGTTTGGAGT	ATTTCCGTGA	GGAATTGATC	1380
TCTCCCTATA	ATTTGATTAC	CGACAAGGCA	GATGCTTCCA	CGCTCTCTGC	TTATGTACAA	1440
GATGAATGGA	AACCGCTCGA	TTGGTTCAAT	ATGACAGCCG	GTTTCCGTCT	GGTACACCAT	1500
		GACGCCTAAG	GTATCCATAC	TCGCCAAGTA	TGGGCCGCTG	1560
AACTTCCGCG		TAACGGCTAT				1620
		GGGTTCGCAC				1680
		TGCTTTGGGC				1740
		TGAACTTCGC				1800
		GGGAATCAAG				1860
GCTCGCAGCC	GCGGCCTTGA	TGTCCTATGT	GATGCCTCTA	TCGGTTGGGG	TATCAAGTTA	1920
		GGAAGCTAAG				1980
		TGTGCACGCC			-	2040
		CCGTATTCAG		ACTACAAAGA	CGGCAATGCT	2100
		ACTCGCCACA			CCGCCACATC	2160
		TATAGACAAC				2220
	ATGCTACCGT	AACGCCGGGA	CGTACTTTCT	TTGCTCAAAT	AGCGATTCGA	2280
TTCAACAAC						2289

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1095 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1095
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32

TGCTGCGCAA	GGCTTCGGGA	CACCTCTCCC	CGGAAGAAGT	CGTTTCGGAA	TGATACCGTT	60
TTTCCTTATT	TCGTTATTCA	TCTGATCAAA	CATATTATCA	TTATGACGGA	CAACAAACAA	120
CGTAATATCG	TATTCCCGGC	GTTTCTCCTC	TTGCTGGGAG	TCATCGCAGT	GGTGACGATC	180
GTTGGTTTTT	TCATGCTCAG	ACCGGCCGAG	GAGATTATCC	AAGGACAGAT	AGAAGTGACC	240
GAATACCGAG	TGTCCAGCAA	AGTGCCCGGG	CGCATCAAGG	AACTTAGGGT	ATCCGAGGGA	300
CAGCAGGTGC	AGGCCGGCGA	TACCCTCGCT	${\tt GTCATCGAAG}$	CCCCGACGT	AGCGGCTAAG	360
ATGGAGCAGG	CAAAGGCTGC	CGAAGCAGCT	${\tt GCACAGGCTC}$	AGAACGCCAA	GGCTCTCAAA	420
GGAGCACGCA	GCGAACAGAT	ACAGGCAGCC	TATGAGATGT	GGCAGAAAGC	TCAGGCCGGC	480
GTAGCCATAG	CGACCAAGAC	ACACCAGCGC	GTGCAGAACC	TCTATGACCA	GGGAGTGGTA	540
CCGGCTCAGA	AGTTGGACGA	AGCCACTGCC	CAGCGCGATG	CGGCCATCGC	TACGCAAAAA	600
GCGGCCGAAG	CCCAGTACAA	TATGGCTCGC	${\tt AACGGTGCCG}$	AACGCGAAGA	CAAGCTGGCA	660
GCTTCTGCCC	TCGTCGATAG	AGCGAGAGGA	GCCGTCGCCG	AGGTGGAGTC	GTACATCAAC	720
GAAACCTACC	TCATCGCCCC	ACGGGCAGGC	GAAGTGTCGG	AGATATTCCC	CAAAGCCGGC	780
${\tt GAACTCGTAG}$	GTACCGGCGC	ACCTATCATG	AATATCGCCG	AGATGGGCGA	TATGTGGGCC	840
AGCTTTGCCG	TTCGTGAGGA	TTTCCTCAGC	AGCATGACCA	TGGGAGCCGT	TCTGGAGACT	900
GTGGTGCCGG	CTCTGAATGA	AGAAAAGTA	CGCTTCAAGA	TCACATTCAT	CAAGAACATG	960
GGTACCTATG	CTGCCTGGAA	AGCGACCAAG	ACAACAGGGC	AGTACGACCT	GAAGACCTTC	1020
GAGGTAAAGG	CCACCCTTGC	GGATAAAGAC	AAGGCACAAA	AGCTACGCCC	GGGTATGTCC	1080
${\tt GTGATCATAC}$	GCAAG					1095

- (2) INFORMATION FOR SEQ ID NO:33
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 960 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...960
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33

CCGCAATCCT	CTCCTGATCG	AAGAAGCTTC	CAAAACGTCA	TGAATAAATA	TCATTCTCAA	60
AGCGTTTTAG	AGGTCGGCAA	AATTGGGATT	GTGATTATCT	TTGCGCCCAT	AGTACGGAAT	120
GTACATCAAC	AACCCCCTTT	TTTAAGCCAT	AAATCAATTA	TGCGTATTGT	CAGTAATTTT	180
TTGTTCGTCT	${\tt CTTTTTCGGT}$	TTTGCTTTTT	GCATCATGCC	GTTCCCAGCG	AGAAAAGGTC	240
GTTTACCTGC	AAGATATCCA	AACTTTTAAT	CGGGAGATTA	TCGCTAAACC	ATATGACGTA	300
AAAATTGAGA	AGGACGATGT	GCTGAACATC	CTTGTCAGCA	GTAGAGACCC	GGAGCTTTCA	360
ACGCCCTACA	ACCAAGTGTT	GACCACTCGT	GCACTGGCCC	GCAACGGCTA	TGGAACGAAC	420
TCGAACGAAG	GCTTCCTGGT	CGATTCGAAA	GGGTACATCA	ATTATCCTAT	TTTAGGCCAG	480
ATCTATGTAG	AGGGCCTTAC	TCGTACCGAA	CTGGAGAAGG	AGATACAGAA	GAGGATTATT	540
TCCAGTGGAT	TTATCAAGGA	TCCTACGGTA	ACGGTGCAGC	TTCAAAATTT	CAAGGTGTCG	600
GTTTTGGGAG	${\tt AGGTGAATCA}$	TCCGGGTTCG	ATGTCGGTAA	AAGGAGAGCG	AATAACTCTT	660
TTGGAAGCGA	${\tt TCGGAATGGC}$	CGGAGACCTG	ACAATCTATG	GTCGCCGCGA	TCGGGTTTTT	720
GTGATTAGAG	AAACCGATGG	GCATCGCGAG	GTTTTCCAGA	CGGATCTCAG	AAAGGCCGAC	780
TTGCTCGCAA	${\tt GCCCCGTGTA}$	CTATCTGCAT	CAGAACGACG	TCATCTATGT	GGAGCCGAAC	840
GACAAGAAAA	CACAGATGAG	CGAGATCAAC	CAGAATAATA	ACGTAAACGT	ATGGCTGAGT	900
GTTACCTCCA	CTTTGGTATC	CATTTCCACG	CTGACGATTA	CGATAATAGA	TAAGACCAAA	960

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1746 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1746
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34

TCAAAAATAG	TACTACGAAA	GTTTTGTACC	TTAGCGCGCA	TGAAAAAGAC	CAATCTGTTT	60
TTATCTCTGC	TGGTGATCTT	TATCACCGGT	AGTTTTATGA	CTGCCTGTGC	ACAGAAGTCC	120
AAGACGAACA	AACTCACCGA	AGAAGATCGG	AGCCGCAATG	AGTATGTACA	GTCGATGGAT	180
GTGCTTAGCA	ATATTATCGG	TAACGTCAGG	CTGTATTTCG	TCGATACCAT	AAGTATCAAA	240
CATATGACTC	GGCGTGGTAT	AGATGCGATG	TTGGGCGGGC	TTGACCCCTA	TACCGAATAC	300
ATTCCTTACG	AGGAAATGGA	TGAACTGAAA	TTGATGACTA	CGGGAGAGTA	TGCCGGAGTC	360
GGAGCTATCA	TATCGCAGCG	CCCGGATAGT	GCTGTGATTA	TCCAGAGACC	TATGGAAGGT	420
ATGCCCGCAG	ACGAAGCAGG	ATTGATAGCA	GGCGACCGCA	TCCTGACTAT	CGATGGGAAA	480
GACTTCCGCA	AATCCACCAC	ACCGAAAGTA	AGCCAAGCAC	TGAAAGGGAT	AGCCGGTACT	540
GTTGCAAAGG	TGACAGTAAT	GCGCTATGGC	GAAACCAAAC	CTCGTACTTT	TTCCGTGAAA	600
CGTCAAAAAG	TGATTATGAA	TTCCGTCACT	TACAGCGGAA	TGCTCGATGG	CTCGATAGGA	660
TATATCCGCT	TGAACAACTT	TACGGACAAA	AGTGCAGAAG	AGGTGCGCAC	GGCCTTGTTG	720
GATCTTCGTG	ACAAACAAGG	AGCGAAAGGT	CTCATTTTGG	ATTTAAGAGG	CAATGGTGGC	780
GGACTGATGC	AGGCTGCTAT	CGAGATAGTC	AATCTGTTCG	TCCCTAAGGG	CAAAGAGGTG	840
GTAACGACCA	AAGGTCGCAT	TGCAGAGTCG	GCGTCCGTAT	TTCGCACATT	GACTGAACCG	900
ATCGACACGA	AACTCCCGAT	AGTAGTCCTG	ATCGATGGAC	AATCGGCATC	TTCCTCGGAG	960
ATTGTAGCCG	GAGCACTGCA	GGATATGGAC	AGGGCTGTAC	TGATGGGACA	AAAGAGCTAT	1020
GGCAAAGGGC	TTGTACAAAC	GACTCGTCAG	CTACCATACA	ACGGCGTGAT	CAAATTGACT	1080
ACGGCCAAGT	ACTACATCCC	AAGCGGACGT	TGTATTCAGC	GTTTGGACTA	CAGCCGCACC	1140
AATCGGACAG	GTATGGCAAC	GGCCATTCCT	GACAGTCTGC	ACAAAATCTT	TTACACTGCT	1200
GCCGGAAGAC	GTGTAGAAGA	TGCAGGAGGA	ATCCTGCCTG	ACATCGAGGT	CAAACAAGAT	1260
ACAGCTGCGA	CATTACTTTA	TTATATGGCC	ATCAATAATG	ACGTTTTCGA	TTTCGTCACA	1320
GGTTATGTGC	TCAAGCATAA	AACGATTGCC	AAGCCGGAGG	ATTTTTCCAT	AACGAACGAG	1380
GACTATGCAG	CTTTCTGCAA	GATGATGGAA	GAAAAGAAAT	TTGACTATGA	TCGCCAGAGT	1440
GGCAAGATGC	TTGACAAACT	GGAGGAACTG	GCTAAGATAG	AAGGCTACCT	GCCGGAAGCC	1500
AACTCGGAGC	TTAAAGCACT	ACGCGAAAAG	CTAAAACCCA	ACCTGTCGCG	TGATCTGCTA	1560
CGATTCAAAA	AGGAGATAAC	AAACTATCTC	AACAATGAGA	TTGTCACTCG	CTATTATTAT	1620
GAGCGAGGCA	GTATCCGCCA	GAGTTTGCCG	GAAGATAAGG	TAGTCAAAGA	AGCTATTAAG	1680
CTGCTGAAGG	ACCATCCGGA	ACAAATTCGA	CAGATCCTTG	CAGCTCCGAA	AGCAGAGAAT	1740
AAAGGG						1746

- (2) INFORMATION FOR SEQ ID NO:35
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2955 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2955
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35

CHARCACACA	AAATGCAAAA	CAAACCATTT	СТСАТТСТТА	TONONTOGGO	TCTCCCCATC	60
	TTTACCTGTC					120
	ATGTTGCCGG					180
	CGCTGAAAGA					240
	ACGTTATCTT					300
	ATCCCAACTT					360
	TCGATATTTT					420
	TCGGTTCGGG					480
	GTCTGCTCAA					540
	GTATCGATGC					600
	TCCTTGTCGA					660
	GTGCCAACCT					720
	CTGCCAATGA					780
	AGCCTGCAAC					840
	CTGATTCTGC					900
	TCTCTCTGCT					960
	ATATGGCTCA					1020
	ATGTGCTTTT					1080
	ACCTCTACGA					1140
	ATGTAGTGAC					1200
GAACCGATCG	TTTCGATGAC	GATGAATGAA	GAAGGTGCTC	GTAAATGGGC	GCGTATCACA	1260
AAGGATAACG	TGGGACGGGC	AATCGCTATC	GTTTTGGATG	GTGTGGTTTA	TTCTGCTCCG	1320
AACGTGAATG	ATGAGATCAC	GGGCGGTCGC	TCTCAGATCT	CCGGGCACTT	CACCGTGGAG	1380
GAGGCCGGTG	ACCTTGCCAA	CGTACTCAAC	TCCGGTAAAA	TGGATGCTAC	GGTAAGCATC	1440
GAACAGGAAA	ACGTGATTGG	TCCTACGCTG	GGTGCCGAGT	CCATTAAAGC	CGGATTCTTG	1500
TCGTTCCTGC	TCGCTTTGGT	TATCCTGATG	TGTTACATGT	${\tt GTCTGGCTTA}$	CGGTTTCTTG	1560
CCGGGTCTTA	TCGCAAACGG	CGCATTGATT	GTAAACAGCT	TCTTCACATT	GGGCGTATTG	1620
GCTTCTTTCC	ATGCCGTGCT	GACCCTCTCG	GGTATCGCAG	GTTTGGTGCT	GACGCTGGGT	1680
ATGGCTGTGG	ATGCCAACGT	ACTTATCTTC	GAGCGTATCA	AAGAAGAGCT	TCGTGCCGGT	1740
AAGACTCCGA	TTCGTGCCGT	TACGGATGGT	TATGGCAACG	CTTTCTCTGC	CATCTTCGAC	1800
TCGAACGTTA	CGACTATTAT	TACCGGTATC	ATCCTATTCC	TCTACGGGAC	GGGGCCGATT	1860
CGCGGTTTTG	CCACTACGTT	GATTATCGGT	CTTATCGCTT	CTTTCATTAC	GGCTGTCTTC	1920
TTGACTCGTA	TCGTCTTCGA	GAAACTGGCG	AAAAAAGGTC	GTTTGGATAA	GATTACATTC	1980
ACTACGAGCA	TTACTCGCAA	TCTCCTTGTC	AATCCCTCAT	ACAACATCTT	GGGTAAGCGC	2040
AAGACCGGCT	TTATCATTCC	GGTGATTATC	ATCGTTTTGG	GACTTATAGC	TTCATTTACA	2100
ATCGGTCTCA	ATAGGGGTAT	TGAATTCTCC	GGAGGACGTA	ACTACGTAGT	TAAATTCGAC	2160
CAGCCTGTAT	CTTCCGAAGC	CGTTCGTTCG	GCCTTGTCTT	CTCCCCTGCA	GGAAAAGGTA	2220
TTGGTTACCT	CCATCGGTAC	TGAAGGGACA	GAGGTGCGTA	TATCTACGAA	CTATAAGATC	2280
CAGGAGGAAA	GCGAAGAAAC	TGAAGCAGAG	ATTACTGACA	AATTGTATCA	GAGCCTGAAA	2340
GGTTTCTACA	CCCAGCAGCC	TACTGCTGAT	CAGTTCTTGG	ACAATATCAT	TAGCTCTCAG	2400
AAAGTAAGTC	CCAGTATGTC	GAGTGACATC	ACGAGAGGTG	CTATTTGGGC	TGTGCTGTTA	2460
TCGATGATCT	TCATGGCCAT	TTATATTCTG	ATTCGCTTCC	GTGACATTTC	TTTCTCTGCC	2520
GGGGTATTCG	TATCTGTGGC	CGCTACTACA	TTCTGCATTA	TTGCTCTGTA	TGCGTTGCTG	2580
TGGAAGATTC	TGCCCTTCAC	CATGGAGATC	GATCAGAACT	TCATCGCTGC	TATTCTGGCT	2640
	ACTCGCTCAA					2700
	CCAACAGAGA					2760
	TAAATACGTC					2820
GGAGGTGCTA	CGATGCGTAG	TTTCACGTTC	TCGATCCTGC	TCGGTATCGT	TATCGGTACA	2880
	TCTTTGTTGC					2940
AAAGCAGCTA						2955

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3138 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...3138
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36

C	TGACGAGCA	TTGGGTGGGC	TATGGCCCAG	AATAGAACCG	TGAAGGGTAC	AGTTATCTCC	180
				AATGTCGTGG			240
				ACGCTTAGCG			300
				AAAGAGGTCG			360
				GAGCAGGTAG			420
				GTGGCCAAAG			480
_				CTCCAAGGTC			540
				GCTTCTGTGG			600
				GTGGATGGTA			660
				TCTATGTCCG			720
				GGAGTCGTTT			780
				AATGCCAGTT			840
				GGAGATGAAT			900
				CAGAAGGTTA			960
-	-			TTGAAAGATG			1020
				CTCAAGGCTT			1020
				TCTCAGGGAA			1140
				GAACCGGCAA			1200
				TGGCTGAAAG			1260
				TTTGGAAAGT			1320
				AACCCTTTTG			1380
				CCTTCTATGA			1440
				GCCAATGTAA			1500
				GCTGGTGTTG			1560
				GATTCTACTC			1620
				ACAAATACGG			1680
				GGGCATGAAT			1740
				AGTGATAAGT			1800
				CACAGAGTCG			1860
				AAATGGATGT			1920
				AATAGAAGCG			1980
				CAAGAAAGTA			2040
				TCGGAGATTG			2100
				GCTATGGGGC			2160
				CAGTTCAACT			2220
				TTCTATGTCC			2280
				TTCTTCTCAC			2340
ΑT	rgaaaaata	CGGGTGTAGA	CCTTTCTCTT	AAGGGGACGA	TCTACCAAAA	TAAGGACTGG	2400
AA	ATGTATATG	CTTCTGCGAA	TTTCAACTAC	AATAGACAGG	AAATAACAAA	GCTTTTCTTC	2460
GC	STCTCAATA	AGTACATGTT	GCCTAATACC	GGTACTATAT	GGGAAATTGG	GTACCCCAAT	2520
TC	CGTTCTATA	TGGCTGAATA	TGCTGGAATC	GACAAAAAAA	CCGGTAAGCA	GTTGTGGTAT	2580
GI	TCCTGGTC	AAGTCGATGC	GGATGGTAAT	AAAGTTACAA	CAAGCCAGTA	CTCAGCTGAC	2640
TT	TGGAGACAC	GAATTGATAA	GTCTGTTACT	CCTCCTATTA	CAGGTGGTTT	CTCCTTAGGT	2700
GC	CTTCTTGGA	AAGGACTTTC	TTTAGATGCT	GATTTTGCCT	ACATCGTTGG	TAAATGGATG	2760
ΓA	CAATAATG	ACCGTTACTT	TACAGAGAAT	GCAGGTGGAT	TGATGCAATT	AAATAAAGAT	2820
AA	AATGCTAT	TGAATGCCTG	GACAGAGGAT	AATAAAGAAA	CAGATGTTCC	AAAATTGGGA	2880
CP	AGTCTCCTC	AGTTTGATAC	GCATTTGTTG	GAGAATGCTT	CTTTCCTGCG	TTTGAAGAAT	2940
CI	CAAACTCA	CCTATGTACT	CCCCAATAGT	CTTTTTGCTG	GGCAGAATGT	GATTGGTGGA	3000
GC	CTCGTGTCT	ATTTGATGGC	GCGCAATCTG	TTAACTGTTA	CGAAGTATAA	AGGCTTTGAC	3060
CC	CTGAAGCAG	GGGGGAATGT	GGGAAAAAAT	CAATATCCTA	ATTCTAAGCA	GTACGTTGCG	3120
GG	TATTCAGT	TGTCTTTC					3138

- (2) INFORMATION FOR SEQ ID NO:37
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2607 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2607
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37

CCATACCGTT	ATGCAAAAAC	CGAGCACCTT	TTTCTCGCAA	AAGGATACTG	CAAGAATCCA	120
ATAACAAACA	TAATTATCCT	ATTTATGAAG	AAAAAGAATT	TTTTGCTTCT	TGGCATTTTC	180
				AGGCCAAAGA		240
TTTGACGAAC	GGGGCGAGGC	CTACTTCTCA	TTCAAAGTGC	CTGATAGGGC	CGTTCTACAA	300
GAGCTGGCTC	TGATCATGTC	CATCGACGAG	TTTGACCCCG	TAACCAATGA	AGCCATTGCC	360
TATGCCAGCG	AAGAGGAGTT	CGAGGCATTC	CTGCGCTATG	GGCTCAAGCC	TACATTCTTG	420
ACTCCTCCAT	CCATGCAGCG	CGCTGTCGAG	ATGTTCGACT	ACCGCTCAGG	AGAAAAATAC	480
GAATGGAATG	CTTACCCCAC	CTATGAAGCC	TATATCAGCA	TGATGGAAGA	GTTCCAAACA	540
				CCGTAAAGGA		600
ATGATTTGCA	AGCTGACGTC	CTCTGCCAAT	ACAGGGAAAA	AGCCTCGCGT	GCTCTATACT	660
TCTACGATGC	ACGGAGACGA	AACGACCGGA	TATGTGGTAC	TGCTCCGACT	CATAGACCAT	720
CTGCTGTCGA	ACTACGAATC	CGATCCGAGG	ATTAAGAACA	TTCTGGATAA	AACGGAAGTA	780
TGGATCTGCC	CTTTGACCAA	TCCGGACGGA	GCATACAGAG	CCGGAAACCA	CACCGTACAA	840
GGAGCTACTC	GCTACAATGC	CAACAATGTC	GATTTGAACC	GTAACTTCAA	GGATGATGTA	900
GCCGGTGATC	ACCCCGATGG	AAAACCTTGG	CAGCCGGAGG	CAACTGCATT	CATGGATTTG	960
GAAGGAAACA	CCTCTTTCGT	GCTCGGTGCC	AATATACATG	GAGGAACAGA	GGTGGTGAAC	1020
				AGTGGTACAA		1080
				ACATGACCTC		1140
				GAAGTCGTCA		1200
				GCAACACGAA		1260
				CTCTGCTTGC		1320
				CGAACGGACA		1380
				ATGTTTACTC		1440
				CGGTGAAATA		1500
				AAGAAACCGT		1560
				TCACAGCTTC		1620
				CAAATAACCC		1680
				AGCAGAATCC		1740
TATAGTCATC	CCGGTCAGTA	CGACGTTACG	CTCAAAGTGT	GGAATGCAAG	TGGTTCCAAC	1800
				TGCCTGTAGC		1860
				TCCAAAACCA		1920
				CTACCAGTGA		1980
				CGCTCAAGGC		2040
				TCAAGAAAGC		2100
				AGAAAGGCGA		2160
				GGGTGTTCGA		2220
CCTGCCACCA	GCACGGAGCA	AAACCCGGTG	GTCACCTACA	ATGAAACAGG	CAAGTACGAT	2280
				AGAAAGCAGA		2340
GAGGTTATCC	TCGATGACAG	TGTCGAGGAC	ATAGTGGCAC	AGACGGGTAT	CGTCATTCGT	2400
CCGCAAAACG	GAACGAAGCA	GATCCTCATA	GAAGCCAACG	CTGCTATCAA	AGCGATCGTT	2460
CTCTATGACA	TCAATGGACG	GGTCGTACTC	AAAACTACTC	CGAATCAGCT	CCGCTCGACC	2520
			TACACCATCA	ATATCAAAAC	GGAAAAATCC	2580
GCTCGCACGG	AAAAGATCCA	TATCGGG				2607

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 318 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...318
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38

```
CTTTCGTACA GTGGAGAGA CGATGCAAAA GAGTCTGATC AGAATTGCCG GAAATGTACC
TTCATCGGCT TTGAAAAACG AGTAAATACG ATGCGACTGA TCAAGGCTTT TCTCGTGCAA 120
CTCTTACTGC TCCCCATTTT CTTCTACAAG CGGTTTATATT CGCCGCTTAC ACCGCCTTCA 180
TGCCGGTTTA CCCCCTCATG TTCGTCCTAT GCCATCGAAG CCTTACGTAA ATATGGCCCG 240
GGCAAAGGAC TATTGCTGAG CATCAAGCGT ATTCTCCGCT GTCACCCGTG GGGTGGAAGT 300
GGCTATGACC CCGTTCCG TTCCGTCT TTCTCCGCT GTCACCCGTG GGGTGGAAGT 318
```

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2583 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2583
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39

TTAGAGATGG CATACGACTT TACACAAACA TTCCGCAACA GCCTGGAGTA CAGCTATCAG 60 GAAGCAACCC GTCTCGGCGT CGTAGCCGTG ACGCAAGATA TGCTCGTACT CGGTATCATT 120 CGCGACGGAG ACAATGGCGC GATCGACATC ATGCGGCACT ATGGGATCAA CTTGTACGAA 180 CTCAAACGGT TGATCGAGTT GGAAGCCATC GCCGAGAGTT TGCCTGCTTC GCCTGAGGGA TCGCCCATCT TCACCCCTTC GGCTCGGGAG GCTATCGATG ATGCCACAGA CATCTGTGCC 300 GACATGGAGG ACGAGGCCGT CAGCCCGGTC CATCTGTTGC TGAGTATCCT CAACTCGACA 360 CAGGAGAGCT TAGTACAAAA GATATTTATG AAACAAGGTA TAAAATACGA CACCATCCTG 420 TCGGATTACT TCGGACAGCG CAACCCCTCC GAAGGGAAGT CTCCCTCCGA AATGGAGATC 480 CTCGACGGT ACCAAGACAA CGACTTCGAC GACGAAGAGG ACGAATCCTC TCCGCCTTCC GGGAATAGCG GGACAGGCGG AGGCTCCGGC GACGCCCCCG AACAGAATAC CGGCGGAGGC 600 GATACTACCA CCACGACACG GAGTGGAGGC GACACGCCTG CACTGGACAC CTTCGGCACC 660 GACATCACTG CCATGGCGGC AGCAGGCAAG CTCGACCCGG TAGTGGGTCG GGAGCAGGAG 720 ATCGAAAGGG TGATACAGAT ACTCAGCCGG CGCAAAAAGA ACAATCCGGT GCTCATCGGC 780 GAACCCGGTG TAGGCAAGAG TGCCATCGTG GAAGGACTGG CCGAACGCAT CGTGAACAGG AAGGTGAGCC GTATTCTTTT CGACAAGCGG ATCATCAGCC TCGATTTGGC TCAGATGGTA 900 GCCGGCACCA AATATCGCGG ACAGTTCGAA GAGCGGTTGA AAGCCGTGCT CGATGAGCTG AAGAAGAATC CGCAGATCAT CCTCTTCATC GACGAGATAC ATACCATCGT GGGAGCAGGC 1020 TCTGCAGCCG GATCGATGGA TACGGCCAAT ATGCTCAAAC CCGCTCTTGC CCGTGGACAG 1080 GTACAGTGCA TCGGAGCCAC TACGCTGGAT GAGTATCGTA AGAACATAGA AAAGGACGGA 1140 GCACTCGAAC GCCGCTTCCA GAAGGTGCCG ATAGCCCCCT CGACTGCAGA AGAAACGCTG 1200 ACCATCCTGC AAAACATCAA AGAGAAATAC GAGGACTATC ACGGTGTACG CTATACGGAC GAAGCGATCA AAGCGGCAGT GGAACTGACC GATCGCTATG TATCCGATCG TTTCTTCCCA 1320 GATAAGGCGA TAGATGCCAT GGACGAGGCC GGCGCGAGCG TCCATATCAC CAATGTGGTG 1380 GCTCCGAAAG AAATCGAGAT ACTGGAGGCC GAATTGGCAT CGGTGCGAGA GAACAAGCTC 1440 TCGGCCGTAA AGGCTCAGAA CTACGAACTG GCTGCCTCCT TCCGCGATCA GGAGCGGCGC 1500 ACTCAGCAGC AGATAGCGGA AGAGAAGAAA AAATGGGAAG AGCAGATGTC CAAGCACCGC GAGACGGTGG ACGAGAATGT AGTGGCGCAT GTAGTGGCGT TGATGACAGG CGTTCCGGCT 1620 GAGCGGCTGA GCACGGCGA AGGCGAACGT CTGCGCACGA TGGCAGATGA TCTCAAGACC 1680 AAAGTAGTAG GTCAGGACAC AGCCATCGAA AAGATGGTGC ATGCCATCCA GCGCAATCGT 1740 CTGGGACTTC GCAATGAAAA GAAACCGATC GGTTCTTTCC TTTTCCTCGG CCCCACGGGG 1800 GTAGGCAAGA CCTATTTGGC CAAGAAGCTC GCCGAATACC TGTTCGAGGA TGAGAATGCC ATGATCAGGG TGGATATGAG CGAGTATATG GAGAAGTTCT CCGTTTCGCG TCTCGTGGGT 1920 GCCCCTCCGG GATATGTGGG CTATGAAGAA GGCGGCCAAC TGACGGAGCG CGTAAGACGC 1980 AAACCCTATT CCGTGGTTCT CTTGGATGAG ATCGAAAAGG CGCATGCCGA TGTCTTCAAT 2040 CTGCTCTTAC AGGTGATGGA CGAAGGTCAG CTGACCGACA GTCTGGGACG GCGCGTGAAT 2100 TTCAAGAACA CCGTGATCAT CATCACCTCC AACGTGGGTA CACGCCAGCT CAAAGACTTC 2160 GGGCAGGTA TCGGGTTCCG TTCGGAAAAA GACGAGGAAG CGAACAAGGA GCATAGCCGT 2220 TCCGTGATCC AAAAAGCTCT GAACAAGACG TTCAGCCCCG AATTTCTCAA CCGTTTGGAC GATATCATCC TCTTCGACCA ACTGGGCAAG ACGGAGATTC GCCGGATGGT GGACATAGAG 2340 CTTAAAGCCG TCTTGGCGCG CATCCATCGT GCCGGATACG ACCTCGTCCT TACCGATGAA 2400 GCCAAGGATG TGATAGCGAC GAAGGGATAC GACCTCCAAT ACGGAGCACG ACCGCTCAAG 2460 CGCACACTCC AGAACGAAGT GGAGGATCGC CTCACGGATC TTATCCTCTC CGGACAGATC 2520 GAGAAAGGGC AGACGCTTAC GCTCTCTGCT CGCGATGGCG AGATCATCGT ACAAGAACAA 2580 2583

- (2) INFORMATION FOR SEQ ID NO:40
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1368 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1368
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40

AGAGGAGGAC	AAATCCGCCG	ACACCATACC	GATTCGTCAA	GGGGATCGGA	CAGCAAAGCC	60
TGCCGCTTCT	CCTTTCATGC	CGAGACCATC	GGTTTCTCCA	ACCACCAAAG	AGCAAAAATG	120
AATTACCTGT	ACATACTGAT	TACACTTTTA	CTCTCCGGCT	TTTTTTCCGG	TGCTGAGATT	180
GCTTTCCTTT	CTTCGGACAA	ACTGCGTCTT	GAGTTGGACA	GGAATAGAGG	CGATCTCACA	240
GGCAGAGCGT	TAAACTTGCT	GTATCGACAT	CCGGACCAAC	TGGTGACTAC	TCTCCTTGTG	300
GGTAATAATA	TCGTTTTGGT	AGTCTATGGT	CTGCTGATGG	CGGGATTGCT	GGCCGCACCT	360
TTGGCGCAAT	GGATTGATAA	CGATGCTATG	ATCGTCGTTC	TCCAATCTGT	CTTATCCACT	420
ATCATCATAC	TGTTTACCGG	GGAATTTCTA	CCCAAAGCCA	TTTTCAAGAC	CAATGCCAAT	480
ATGATGATGA	GGGTATTCGC	CCTCCCTATC	GTAGCGATCT	ATTATCTGCT	TTATCCTCTG	540
TCTAAACTCT	TCACCGGTTT	ATCTCGCTCT	TTTATTCGTC	TGGTGGACAA	GAATTATGTG	600
CCTACAACAG	TAGGGTTGGG	GCGCGTAGAT	CTCGATCATT	ATTTGGCAGA	AAATATGTCC	660
GGAGAAAACG	AACAGAACGA	CTTGACTACC	GAAGTGAAAA	TCATCCAGAA	TGCGCTGGAT	720
TTTTCCGGTA	TTCAGGTGCG	AGACTGCATG	ATCCCACGCA	ATGAGATGAT	AGCATGTGAG	780
TTGCAAACGG	ATATTGAAGT	ACTCAAAACG	ACTTTTATCG	ATACCGGTTT	GTCCAAGATC	840
ATTATCTACA	GACAGAACAT	AGATGACGTA	GTAGGATATA	TCCATTCGAG	CGAAATGTTT	900
CGTGGGCAAG	ACTGGCAAAA	ACGTATCAAT	ACTACTGTAT	TCGTACCCGA	AAGCATGTAT	960
GCCAATAAAC	TGATGCGACT	ACTCATGCAG	CGCAAGAAAA	GCATTGCGAT	CGTCATCGAT	1020
GAACTTGGAG	GTACGGCCGG	AATGGTCACA	TTAGAGGATT	TGGTAGAAGA	GATTTTCGGT	1080
GACATTGAGG	ACGAACACGA	CACTCGCAAG	ATCATAGCCA	AACAGCTCGG	CCCTCATACC	1140
TATCTGGTCA	GTGGTCGTAT	GGAAATAGAT	GATGTGAACG	AACGTTTTGG	GTTGTCCTTG	1200
CCTGAGTCTG	ACGACTACCT	TACCGTGGCC	GGATTTATCC	TGAATAGCCA	TCAAAATATC	1260
CCACAGGCCA	ATGAGGTCGT	GGAGATTGCT	CCTTATACTT	TTACCATTCT	CAGATCTTCT	1320
TCCACCAAGA	TCGAACTGGT	GAAAATGTCC	ATCGACGACC	AATCGAAC		1368

- (2) INFORMATION FOR SEQ ID NO:41
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 897 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...897
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41

TTAAAAAAGG	AGATAACTAT	GAAACAGAAC	TACTTCAAAA	GAGTCTGCTC	ACTGCTTTGG	60
CTGGTTTTAC	CCATGCTTAT	TATGCCATTG	GAAGTAGCAG	CTCAAGAGAT	TATTCCGAAC	120
GAAGAGGTGT	TGGAATCATT	GACTTTCGTT	GCACCGGTTG	AGGAGACAGA	CGCAATAGAG	180
GCAGAGGTAG	AAGCTCTGCA	GGAGATAGTC	GCTACTGAGG	AGATTGCGGA	GCAGGCTGTT	240
CGTTCTTATA	CCTACACGGT	CTATCGTGAT	GGCGTGAAGA	TTGCTTCAGG	ATTGACTGAG	300
CCCACTTTTC	TCGATGAAGA	TGTTCCTGCC	GGCGAACATA	CCTACTGCGT	AGAAGTACAG	360
TATCAGGGAG	GCGTATCCGA	CAAAGTATGC	GTGGACGTAG	AGGTGAAGGA	CTTCAAACCG	420
GTTACCAATC	TCACCGGAAC	TGCTTCCAAT	GACGAAGTTT	CTTTGGACTG	GGACGGTGTG	480
GAAGAGAAAG	CTGAAGAGCC	GGCAAGTGAT	AAAGCAGTCA	GCTACAACGT	CTACAAGAAT	540
GGAACCTTGA	TCGGTAATAC	AGCTGAAACT	CATTATGTGG	AGACCGGTGT	AGCCAATGGT	600
ACATACATCT	ACGAAGTGGA	AGTAAAGTAT	CCTGACGGTG	TATCTCCGAA	GGTGGCTGTA	660
ACCGTGACCG	TGACCAACAG	CTCATTGAGC	AATGTAGATG	GACAGGCTCC	TTACACATTG	720
CGAGTAGAAG	GCAAGAAGAT	TATTGCGGAA	GCCCATGGTA	TGATCACGCT	CTACGACATC	780
AACGGACGTA	CCGTGGCCGT	AGCCCCGAAT	CGATTGGAAT	ACATGGCGCA	AACCGGTTTC	840
TATGCAGTGC	GCTTCGATGT	GGGGAATAAA	CACCATGTAT	CGAAAATACA	AGTAAGA	897

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1131 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1131
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42

TTGTTTAATC ATAAA	AAAATC ATGGTATGAA	. ACATTTCAAT	TTTATCTCGT	TGTTTTCCGC	60
TCTGGCTTTA TTCTT	TTTGTG TGAAAATACO	CTTGCACAAC	AAAAAACAGA	GGAGTTTGCA	120
CCTGTGTCGG ATTT	ACGTGC AGAAGCGTAG	GGCTCTACCG	TTTTCCTCCA	CTGGACTCCG	180
CCGTATGACA ATCC	GATGAT TCCTCTAAGO	GAGAGTTTTG	AATCAGGTAT	TCCAGCTATA	240
TGGAAGACCA TTGAC	CGCAGA TGGCGATGGC	TATAATTGGA	TGCATTTGAC	CAATTTCACG	300
GGACAGAGTG GTCTC	CTGTGT CTCTTCGGCT	TCATACATAG	GCGGCGTCGG	AGCTTTGACT	360
CCGGACAATT ATCTC	GATAAC ACCCGAATTA	AAACTACCCA	CAGACGCGTT	GGTGGAAATA	420
ATCTATTGGG TATGT	TACTCA AGATCTCACT	GCTCCATCGG	AGCACTATGC	CGTTTATTCC	480
TCTTCTACAG GCAAT	TAATGC TGCTGACTTI	GTTAATCTCT	TATATGAAGA	GACTTTGACT	540
GCCAAACGGA TACAA	ATCCCC CGAGTTGATO	CGCGGAAATC	GGACACAAGG	TGTTTGGTAT	600
CAAAGAAAGG TGGTA	ACTCCC TAACGATACT	AAATATGTTG	CTTTCCGCCA	TTTTAATTCC	660
ACGGATAATT TCTGG	GCTCAA TTTGGATGAA	GTATCTATCC	TGTATACCCC	TCTTCCCCGA	720
AGAGCTCCGT GTCCC	GCATCC GGGTGGTTAC	ACTTATTCTG	TATTCCGTGA	TGGACAAAAG	780
ATAGCGAGTG GATTC	GTCGGC ATTGGCATAT	ATCGATACGG	ATGTACCGTA	TGGGACTCAA	840
GACTATTGTG TCCA	AGTCAA TTATCTGCAA	GGAGACTCGT	ATAAAGTCTG	CAAAAATATA	900
GTGGTGGCAA ATTCT	TGCAAA CATCTATGGG	GCGGATAAGC	CTTTTGCGTT	GACCGTGGTT	960
GGCAAGACCA TTGTA	AGCGAG TGCTTTCAA	GGAGAGATCA	CTCTTTATGA	CATTCGTGGC	1020
CGGCTGATAG CTTCC	CGGCTG CGATACGCTT	AGGTACAAAG	CGGAAAATGG	TTTTTACCTC	1080
ATTAAAATAC AGGTA	AAACGG AACTGTCTAI	ACTGAGAAAA	TCCAAATCCA	A	1131

- (2) INFORMATION FOR SEQ ID NO:43
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2547 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2547
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43

TTCGGAATAT	CACCTTCAAT	GAAAAAAAGT	TTTCTTTTAG	CCATAGTAAT	GCTCTTTGGC	60
ATTGCCATGC	AGGGACATTC	TGCTCCGGTT	ACGAAAGAGC	GAGCTTTGAG	TCTGGCTCGG	120
CTGGCTTTGC	GACAGGTATC	CTTGCGAATG	GGACAAACAG	CAGTATCTGA	CAAGATTTCC	180
ATCGATTACG	TTTATCGGCA	AGGAGATGCT	GAGAGGGGTA	TCACATCACA	AGAGGAAGGC	240
TCTCCTGCAT	ATTTTTATGT	AGCTAATCGT	GGAAATAATG	AGGGCTATGC	TCTTGTAGCA	300
GCAGATGACA	GAATACCGAC	AATTTTAGCC	TATTCACCCA	TTGGCCGTTT	CGACATGGAC	360
AGTATGCCGG	ACAATCTTCG	CATGTGGCTA	CAAATTTACG	ATCAGGAAAT	AGGCCTGATA	420
CTTTCCGGAA	AAGCTCAGCT	CAATGAAGAG	ATATTACGTA	CCGAGGGCGT	ACCGGCTGAA	480

GTACATGCTC	TGATGGATAA	CGGTCATTTT	GCCAACGATC	CCATGCGATG	GAATCAAGGT	540
TACCCATGGA	ACAATAAGGA	ACCACTGCTT	CCTAATGGCA	ATCATGCCTA	TACCGGCTGT	600
GTTGCTACTG	CTGCAGCACA	AATCATGCGC	TACCATAGCT	GGCCGCTTCA	AGGTGAAGGC	660
TCTTTCGATT	ATCATGCAGG	TTCATTAGTT	GGCAACTGGT	CCGGCACATT	TGGTGAAATG	720
TACGACTGGA	TCAATATGCC	CGGAAATCCC	GACCTTGATA	ATCTGACTCA	ATCTCAAGTG	780
GATGCCTACG	CCACACTGAT	GCGTGATGTG	AGTGCATCTG	TTTCGATGAG	TTTTTATGAA	840
AATGGAAGTG	GTACGTACAG	CGTTTATGTA	GTAGGAGCCT	TGCGAAACAA	CTTTCGCTAC	900
AAGCGTTCAC	TGCAGCTACA	TGTACGCGCC	TTATATACCT	CACAGGAGTG	GCACGATATG	960
ATCCGCGGGG	AACTTGCCTC	CGGAAGGCCG	GTCTATTATG	CAGGGAATAA	CCAGAGCATA	1020
GGACATGCTT	TCGTTTGCGA	TGGTTATGCT	TCGGATGGTA	CTTTCCATTT	CAACTGGGGT	1080
TGGGGAGGTG	TTTCCAACGG	CTTCTACAAA	CTAACACTCC	TCTCGCCGAC	TTCGTTGGGT	1140
ATCGGAGGTG	AGGGAATAGG	TTTTACCATT	TATCAAGAGA	TCATCACCGG	TATCGAACCG	1200
GCTAAGACTC	CCGCTGAAGC	CGGTACAGAT	GCCTTGCCGA	TCTTGGCACT	GAAAGACATA	1260
GAAGCCGAGT	ATAAAAGTGA	ATCCGGATTG	AACGTAGGGT	ATTCGATATA	TAATACAGGT	1320
GAAGAGCAAT	CAAATCTTGA	CCTCGGATAC	AGATTGAACA	AGGCTGACGG	AGAAGTCATA	1380
GAGGTGAAAA	CTTCATCTAT	CAATATCTCT	TGGTACGGAT	ACGGAGAGCA	TCCCGAGAGT	1440
TTCTCATTGG	CACCTAATCA	GTTGTCACAA	GGAATCAACA	CCATCACCCT	ACTTTATCGT	1500
CGCACAGGCA	CCGAACAGTG	GGAGCCGGTA	CGGCATGCAC	AGGGAGGATA	TGTCAATAGC	1560
ATTAAAGTAA	ATACGACAGA	CCCGAACAAT	GTCGTAGTCA	CGGTAGATAA	TAACGAAGGC	1620
AAGCTCAGTA	TCGTCCCCAA	CAGCTTTGTC	GCAGATCTGA	ATTCTTATGA	ACATAGTACG	1680
			GATGAGATCC			1740
CTATCTACAG	GAGCTACTGC	GGACGATGTA	ATATCTTTGG	GCTGGGTAAT	GGCTGAAGTT	1800
CCGGGCGGTA	GCAGCAACTA	TCCGGTGGTT	TGGTCTAAAG	ACGTTCTCAC	TCTCTCGGAA	1860
GGCGACTATA	CATTGTGGTA	TAGATTTTCC	ATCAACAACC	AAAAGGATGA	ATGGAAAAAG	1920
			GAGTATACGC			1980
			ATGGCACACA			2040
			GGTGAGTTGG			2100
			CAAGAAACAG			2160
			CCTATACCTG			2220
			TTGTACCTCA			2280
GTGAAGATCG	TCAATGGTAC	AGCGGTAGAA	GCAATAGAAT	CGTCAGAAGA	GATCAGAGTA	2340
			ATATCGGCAC			2400
			ATTGTCATGA			2460
CATGGCAGAA	TGGATGTCAG	CCGACTTCCT	AATGGGGCCT	ACATCCTTAA	GGTGGATGGA	2520
TATACGACGA	AAATAAATAT	AGTGCAC				2547

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 885 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...885
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44

ACGAAGAAAA	CACTGATGAA	AAAGCTATTT	CTCTCGCTCA	CGAGTCTTGT	AATGGTCTTC	60
GCTGTTGCAA	GTTGCGATAT	AATCGACAAG	GATCAAACCC	TCTTGCCGGC	TCCGACCAAT	120
GTGACACCCG	ATAATCCGGA	TGACAATCCT	TCGGAGATCG	ACATTACGCA	GACGCACACA	180
GAAAAATATG	TTTTGGCTGA	AGAATTTACC	GGCCAAAAAT	GTCTCAACTG	TCCGAAAGGT	240
CATCGCAAAC	TGGCGGCTCT	CAAGGAGCAA	TACGGTAAGA	GATTGACTGT	TGTCGGTATA	300
CATGCCGGCC	CTGGATCTCT	CGTGCCACCT	CTTTTCCGTA	CAGAAGCCGG	AGACGCATAT	360
TATAGCAAGT	TCGCCAATAA	TACCCCTCTC	CCTGCGCTGA	TGGTTTCGCG	CAAAAAGTTC	420
GGCTCTTCCT	ACGTTTATGA	TAAGAGCTAC	AAAACGTGGG	ACGTGCCTAT	TGCCGAGCAG	480
ATGGAGCAAA	AGGCGAAGAT	CAATATCTTT	GCCGTGGCCG	AATACACCGA	TACCCAAAAG	540
ATCAAGGTGA	CTGTAAAGGG	TAAAATACTG	GAGGGGAATA	CACTCCCGAA	GTCCATGGTT	600
CAGGTGTATC	TGTTGGAGGA	TAAGCTGATC	GCTCCGCAGG	TGGATGGCAA	TACGACAGTC	660
GAGAATTACG	AGCACAATCA	CGTGTTGCGT	GGAGCCGTTA	ATGGTATTTG	GGGCGAAGAA	720
TTTGTGAATC	TCAAAGATTA	TTTGTATACT	TACGCCGTTG	AACCGCTCTC	GGGTATGTCC	780
TTCGTAGCCG	AGAATTATTC	GATTGTGGCT	TTTGTATACG	ATGTGCAGAC	GTTCGAAGTG	840
TATGACGTTG	TGCATGTAAA	GATCAATCCG	CAATCCGATG	GCAAA		885

(2) INFORMATION FOR SEQ ID NO:45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 690 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: PORYPHYROMONAS GINGIVALIS (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION 1...690 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45 ACGAATAAAA AAGAAGAGAC AATGAAGAAA TCAAGTGTAG TAGCCTCAGT TTTGGCCGTG 60 GCTCTCGTGT TCGCCGGTTG CGGACTGAAC AATATGGCAA AAGGCGGCCT TATCGGCGCC 120 GGAGTAGGAG GTGCCATTGG TGCCGGAGTA GGTAACGTAG CCGGAAATAC GGCTGTCGGT 180 GCCATCGTCG GTACTGCAGT CGGTGGAGCA GCCGGTGCTC TCATCGGAAA GAAGATGGAC 240 AAGCAGAAAA AAGAACTGGA GGCCGCAGTA CCCGATGCTA CGATTCAGAC AGTAAATGAC 300 GGAGAGGCTA TTCTGGTTAC TTTCGATAGC GGTATCCTCT TTGCGACGAA CTCCAGCACT CTGAGTCCCA ACTCACGCAC TGCGCTGACG AAGTTTGCTG CAAACATGAA CAAAAACCCC 420 GACACGGATA TTCGTATCGT AGGCCATACG GACAATACCG GCTCCGACAA GATCAACGAT 480 CCTCTGTCTG AGAGACGTGC AGCCAGCGTA TATTCTTTCC TGAATTCTCA GGGTGTGAGT 540 ATGTCGCGCA TGGCAGCCGA AGGGCGTGGG AGCCATGAAC CGGTTGCAGA CAATAGCACA 600 GTTGCCGGAC GTTCGGCCAA CCGCCGTGTG GAGGTTTATA TCTTGCCGAA TGCCAAGATG 660 ATCGAACAAG CACAGCAAGG TACGCTGAAG 690 (2) INFORMATION FOR SEQ ID NO:46 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1026 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: PORYPHYROMONAS GINGIVALIS (ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION 1...1026 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46 AACAGGAACA GAAATATGTC GAAAAAATCG ATCCTTCTGC TTTGCTGTTC GCTGTGCTTC ATTTCTGCTA CGAAGGCTGT GACCCCCGTC AGAAATGTGC GCAATAGCCA AGTGAACAGC 120 AAAGCAAAGA CCGAACGTAC AAAGCCCTCG GACTCTGTAC GGTACATTAG CAACATGATT 180 GCAGATCGGC TGGAGTTCCG CAACAAGATT TCTTCCGAAA AAGAGGTAAG AAAAGCCGAA 240 TATGAAAATC GGCTGGCGAT GGAAGCACTC AATTACCCTG CCATAGATTT ATATGGTGAA 300

GATTCTTGGA GCGAGTATGT AAACCCTTTC GTGGGTGCAG GAACCGATGT CGAAATTCCG

AACTCCTATG ACATTGATTG CTCTTCGTTC GTGATGCCCG TCGAAGATAA GCAGGTCACC

TCTCAATTTG GCTACCGTCG GCGTTTCGGA CGGATGCACT ATGGTATTGA TCTTTCAGTG

AATCGTGGCG ATACGATACG AGCAGCCTTT GACGGGAAAG TTCGTGTACG CAGCTATGAA

GCGCGTGGCT ATGGCTACTA CATAGTCTTG CGCCATCCGA ACGGACTGGA GACTGTGTAC

GGACACATGA GTCGCCAATT GGTAGACGAG AATCAGATCG TTCGAGCAGG ACAACCGATC GGATTAGGAG GCAGCACGGG TCGAAGCACC GGTCCTCATC TTCACTTCGA GACCCGCTTC

ATGGGTATTC CCATCAATCC GAGTACCATT ATAGACTTCG ATAACGGAGT GCCGCTCCGA

GACATTTACA CATTCAAACG AGGGAGCAAT TCTCGCTATG CAAAAGCCTC TAAGACTTCT TCTCGCTATG CAAAAAAAGG GAAGAAAGGC AGACAAGCTT CTTCTCCTAT GACCTATAGA

ATCAAAAAG GCGATACTTT GGAAACAATA GCCAAAAGGC ACGGCACTTC TGTTCAGAAA

CTCTGTGCTA CCAATGGCAT TGGCAAGAGT AAAATTTTGA CTCCGGGCAA AGCCTTGAGG

360

420

480

540

600

720

780

900

960

1020

ATCAAA 1026

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...477
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47

CCGAGCAAAA	CGATAATTAA	GACAATGGCA	AAAATCAATT	TCTATGCTGA	AGGCGTCAGC	60
${\tt CTTCCTCGGA}$	TCAGAAGACG	${\tt GATCGTCGGT}$	AAGTGGATAG	CCGAAGTATG	CAGCCGATAT	120
GGGAAAGCGG	TGGGAGAAAT	CTCCTATCTT	TTCTGTGATG	ACGAATATAT	CCTGAAAGCC	180
AATCAGGAAT	${\tt TTCTCGATCA}$	${\tt TGACTACTAC}$	ACCGACATCA	TCACCTTCGA	TTCCTGCGAA	240
GCGGATACGG	TGAATGGCGA	CCTGCTTATC	AGTCTCGATA	CCGTACGCTC	GAATGCCCGT	300
GCTCTTGATC	${\tt TTCGATACGA}$	AGACGAACTG	CATCGTGTCA	TTATCCACGG	CATACTGCAT	360
CTTTGCGGAT	TGAAAGACAA	GAGCAAAAAG	GATGAAGCCC	AAATGCGTGC	AGCCGAAGAG	420
AAAGCCCTTG	TCATGCTGCG	AGAAACCATC	GGATCGGAGC	TTTCCCTATT	GCATACA	477

- (2) INFORMATION FOR SEQ ID NO:48
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1185 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1185
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48

AAAAGTAAAA	CTATGAAGGT	AAAGTACTTA	ATGCTCACAT	TGGTTGGAGC	AATTGCACTG	60
AACGCAAGTG	CACAGGAGAA	TACTGTACCG	GCAACGGGTC	AGTTACCCGC	TAAGAATGTT	120
GCTTTTGCTC	GCAATAAAGC	AGGCAGCAAT	TGGTTTGTAA	CACTGCAAGG	CGGTGTTGCA	180
GCGCAGTTCC	TCAATGACAA	CAACAACAAA	GACCTCATGG	ACCGCTTAGG	AGCCATAGGT	240
${\tt TCTCTTTCTG}$	TCGGAAAGTA	TCACAGCCCT	TTCTTTGCAA	CTCGTTTGCA	AATTAACGGA	300
${\tt GGTCAAGCCC}$	ACACTTTCCT	CGGAAAAAAT	GGCGAACAAG	AAATCAACAC	CAATTTTGGT	360
GCAGCTCACT	TCGACTTTAT	GTTTGATGTG	GTTAACTACT	TTGCACCATA	TCGCGAAAAT	420
${\tt CGTTTCTTCC}$	ATTTAATTCC	ATGGGTAGGT	GTTGGCTACC	AACACAAATT	CATCGGTAGC	480
${\tt GAATGGAGCA}$	AAGACAATGT	GGAATCACTG	ACGGCGAATG	TAGGAGTTAT	GATGGCTTTC	540
${\tt AGATTAGGAA}$	AGCGAGTAGA	CTTTGTGATC	GAAGCACAAG	CAGCTCACTC	CAATCTCAAT	600
${\tt CTAAGTCGCG}$	CATACAATGC	CAAGAAAACT	CCCGTATTCG	AAGATCCCGC	AGGACGTTAT	660
TACAATGGAT	TCCAGGGGAT	GGCTACAGCA	GGTCTTAATT	TCCGCCTGGG	AGCCGTAGGC	720
TTCAATGCCA	TTGANCCAAT	GGACTACGCA	CTTATCAATG	ATCTGAATGG	TCAGATTAAC	780
CGTTTGCGCA	$\tt GCGAGGTCGA$	AGAACTCTCA	AAACGTCCTG	TATCATGCCC	CGAATGTCCT	840
GAAGTAACTC	CTGTTACTAA	GACAGAAAAT	ATACTGACGG	AAAAAGCTGT	ACTGTTCCGT	900
TTCGACAGCC	${\tt ACGTTGTGGA}$	CAAAGATCAA	TTGATCAACC	TGTATGACGT	AGCTCAGTTT	960
GTAAAAGAAA	CTAACGAGCC	GATTACCGTT	${\tt GTTGGTTATG}$	CTGATCCTAC	GGGTAATACT	1020
CAATACAACG	AGAAATTGTC	TGAGCGTCGG	GCTAAAGCCG	TTGTTGATGT	TCTGACAGGT	1080

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1161 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1161
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49

משתמממתמם	СУДОСОСТВЕ	TATCAAACCT	AAATCTTTAT	TATTAGCACT	TGCGGGTCTC	60
			GCTACTACAC			120
						180
ACCGCATTCC	AACGTGATAA			TTGACATTGC		
GGTATGGCTC	TCTCGGGATG	GAATAATGAT	GTAGACTTTG	TAGATCGTCT	AAGTATCGTT	240
CCTACTTTCG	GTATCGGTAA	ATGGCATGAG	CCTTATTTCG	GTACTCGTCT	CCAATTCACA	300
GGATTCGACA	TCTATGGATT	CCCGCAAGGG	AGCAAGGAGC	GTAACCACAA	TTACTTTGGA	360
AACGCCCACC	TTGACTTCAT	GTTCGATCTG	ACGAACTATT	TCGGTGTATA	CCGTCCCAAT	420
CGTGTCTTCC	ATATCATCCC	ATGGGCAGGT	ATAGGATTTG	GTTATAAATT	CCATAGCGAA	480
AACGCCAATG	GTGAAAAAGT	AGGAAGTAAA	GATGATATGA	CCGGAACAGT	TAATGTCGGT	540
TTGATGCTGA	AATTCCGCCT	ATCAAGAGTC	GTAGACTTCA	ATATTGAAGG	ACAAGCTTTT	600
GCCGGAAAGA	TGAACTTTAT	CGGGACAAAG	AGAGGAAAAG	CAGACTTCCC	TGTAATGGCT	660
ACAGCAGGTC	TAACGTTCAA	CCTTGGCAAG	ACAGAGTGGA	CAGAAATTGT	TCCTATGGAC	720
TATGCTTTGG	TCAATGACCT	GAACAACCAA	ATCAACTCAC	TTCGCGGTCA	AGTGGAAGAG	780
TTGAGCCGTC	GTCCTGTTTC	ATGCCCTGAA	TGCCCTGAGC	CTACACAGCC	TACAGTTACT	840
CGTGTAGTCG	TTGACAATGT	GGTTTACTTC	CGTATCAATA	GTGCAAAGAT	TGATCGTAAT	900
CAAGAAATCA	ATGTTTACAA	TACAGCTGAA	TATGCGAAGA	CCAACAACGC	ACCGATCAAG	960
GTAGTAGGTT	ACGCTGACGA	AAAAACCGGT	ACTGCGGCCT	ATAACATGAA	GCTTTCAGAG	1020
CGTCGTGCAA	AAGCGGTAGC	CAAGATGCTT	GAAAAGTATG	GTGTTTCTGC	GGATCGCATT	1080
ACAATTGAAT	GGAAGGGCTC	ATCAGAGCAA	ATCTATGAAG	AGAACGCTTG	GAATCGTATT	1140
GTAGTAATGA	CTGCAGCGGA	A				1161

- (2) INFORMATION FOR SEQ ID NO:50
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 585 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...585
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50

GTAATTGGCA	TCATTATGGA	ATTTTTCATG	TTATTCATAG	CGGCGGTTTT	CGTTAATAAC	60
GTCGTGCTGT	CGCAGTTCCT	CGGTATATGC	CCATTCTTAG	GCGTATCGAA	GAAGGTAGAC	120
ACCTCAATCG	GTATGGGTGC	AGCCGTGACA	TTCGTATTGG	CACTGGCTAC	CTTGGTTACC	180
TTCCTGATTC	AGAAGTTCGT	TTTGGATCGT	TTCGGATTGG	GCTTTATGCA	GACCATTGCA	240
TTTATTTTGG	TCATTGCCGC	CTTGGTGCAG	ATGGTGGAGA	TCATACTCAA	GAAAGTATCT	300

CCTCCCCTCT ATCAGGCA	CT GGGTGTATTC	TTGCCCTTGA	TTACGACGAA	CTGCTGTGTG	360
CTCGGTGTGG CTATTTTG	GT TATCCAGAAG	GATTATACCC	TGCTCCAGAG	CTTCGTCTAT	420
GCAATATCCA CGGCTATC	GG TTTCACCTTG	GCAATGGTTA	CTTTCGCAGG	TATTCGAGAG	480
CAACTCGATA TGACCAAT	CT CCCCAAAGCT	ATGAAGGGAA	TACCTTCGGC	ACTCTTGGCT	540
GCCGGTATAT TGGCTATO	GC TTTCATGGGC	TTCAGCGGTA	TCGCC		585

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2628 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...2628
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51

TACCGATCTT	ATCGTGGGAT	AGGGAGTGGG	ACACACTCTC	CTAACCTCAA	AAACCGACTA	60
AAAAGGATCG	GAATAAGGAT	ACCGAACAGA	CACTATATCC	ATATCAAGCC	AATCAAACCA	120
AAAAATAAAA	TGAAACAACT	AAACATTATC	AGCTTCATCA	TTGCTTTCCT	ATTCTTAGGA	180
ACGAGCGCAT	CGGCTCAGCA	ATCGGGCGGA	TCCGTTACAG	GTACCGTAGT	GGACAAAAGC	240
TCAAAAGAAC	CTATCGCATA	CGTACAAGTA	TTCGTCAAAG	GAACCACTCT	CGGAACTTCC	300
ACGGATGCAA	ACGGAAACTA	CTCGATCAAG	GGAATCCCTT	CGGGTAATCA	AACTATCGTA	360
GCCCGACTCA	TGGGTTACTC	CACTTGCGAA	GAAAAAGTAC	ATATAGAAAA	GGGTGGTTCC	420
CGCCACGTAG	ACCTCTATCT	GACCGAAGAG	ATTCTCTCTC	TCGATGGGGT	AGTGGTATCT	480
GCCAATAGAA	ACGAGACTTT	CCGCCGTCAA	GCACCCTCGT	TGGTAACGGT	ACTGTCGCCG	540
GAACTTTTCC	TCAAAACCAA	CTCTACCAAC	CTGAGTCAGG	GACTTAAGTT	CCAGCCCGGT	600
CTGCGCGTGG	AGGACAACTG	TCAGAACTGC	GGTTTCAACC	AAGTTCGTAT	CAATGGACTC	660
GAAGGAGCCT	ATTCGCAAAT	TCTTATCGAC	AGCCATCCCA	TCTTCAGTTC	GCTTGCCGGT	720
GTCTATGGCT	TGGAGCAGAT	GCCTGCCAAT	ATGATCGAAC	GTGTAGAAGT	AATTCGCGGT	780
GGAGGTTCGG	CTCTGTTCGG	CTCTAATGCT	GTGGGAGGCG	TTATCAACGT	AATTACGAAA	840
GAACCGCTTC	GCAATTCGGC	CGAGATCAGC	CATTCTACGA	TGACCTTCGA	CCACGCGAAA	900
GGGTGGGGGA	GCTTCCAAAA	TACGACCCAG	TTCAACGGTT	CTATGCTGAC	GGAAGACCGC	960
AAAGCCGGTG	TCATGGTATT	CGGCCAACAC	AACTACCGTC	CCGGACAGGA	TATAGACGGC	1020
GACAACTTTA	CCGAACTACC	CAATCTGCGC	AACCGCTCGC	TCGGTTTCCG	CTCATACTAT	1080
AAGACCGGTC	TCTACAGCAA	AGCAACCCTC	GAATATCACA	GCATGCAGGA	GTACCGTCGT	1140
GGTGGCGACA	GACTGGACAA	TCCTCCTTTC	GAAGCCCAGA	TAGCGGAATA	TCTCCAGCAC	1200
TATATCAATG	GCGGAAGTTT	CAAATTCGAT	CAGGGCTTCA	GCGGTGGCAA	GGATTTCTTC	1260
AGTCTGTATG	CTTCAGCACA	AGACGTTCAG	CGTCGTAGCT	ACTACGGGGG	TGGCGACTAT	1320
ACCGAAAATC	TGCTGAACGG	AGCAGTTCAG	AGTGGAAGCA	CCGAATCGGA	CGAATACAAC	1380
GATGCTTTCA	CGGCTCTTAC	TTCCTACGGG	ACTACCAAGG	GATTCGATTT	GCAAGGAGGA	1440
GGTATGTACC	GTCATACCTT	CGGAGAAAAC	TGGGACTTTA	CCGGCGGACT	CGAATATATC	1500
TACGGCCAAC	TCGATGACAG	AAGCGGCTAC	AGACCGAGCA	AAATAGATCA	GAATACCTCT	1560
ACTTTTAGTC	AGTACGACCA	GCTCGAATAT	AAGACGGAGA	AGTTAAGTGC	CCTTATCGGA	1620
GCACGTATCG	ACTATGTTCT	CCTCAATCAG	GATGGCAAAC	GCTATATCGA	TCCGCTCTTC	1680
ATTTTCAGTC	CTAGAGCCAA	CGTACGATAC	AATCCCAATA	AGAATCTCAG	CTTCCGACTC	1740
TCATACAGCG	AAGGATTCCG	CGCTCCTCAG	TATTTCGATG	AAGATCTGCA	CGTAGAGTTG	1800
GCCGGTGGTA	CTCCTATCAG	CCGTGTCCTT	TCCCCCAATC	TGAAAGAAGA	ACGTTCACGA	1860
AGCATCAGTG	${\tt CTTCTTTCGA}$	TTATTACCAC	AGAGCCGACG	AATGGCAATT	CAATATCATG	1920
GGAGAAGCCT	TCTCCACCTT	TATCAGCAAT	CAGTTCAAAC	CATCCGATAA	GGTCGAAACC	1980
ACGAGCGATG	GCAAAGAATG	GATCATTCGT	ACCATCTACA	ACGACAAGGA	TGGAGTATCG	2040
AAGGTATATG	GTGTGAATCT	GGAGGGAAGA	ATCGCCTACA	ACAAATCGTT	CGACCTCCAG	2100
CTCGGCGGTA	CATGGCAGAG	AAGCCGCTAC	GGAAGCATCT	ATACCGCTGT	GGAAGCGGAC	2160
AAAACAACGG	GACAAGCCGA	GATCTCTGTG	AAAGACTATG	TACGCACTCC	GAATCTGTAC	2220
GGCTATTTCG	TTGCTACGGT	ACGTCCTACC	GAGCACTTCG	CCATCAATCT	CTCCGGTACA	2280
TTCACGGGCA	AAATGGATGT	AGTACACGAA	GCCTATGAAG	GCGATATTCC	CGCAGAACAC	2340
ATAGCTCCGG	ACGGATCGTT	CGACTTTGAA	ATGAATGGTC	AGCAATTCAA	AGGTTTGGCC	2400
GAAGGTCATG	CCAAGCTCGT	CAAGACTCCG	GCCTTCGCCG	ATATAGACCT	CAAGCTGAGC	2460
CACGACTTCC	ACCTTGCTTC	CACTATGACC	TTGGAATTGA	ATGCCGGAAT	ACAGAACATA	2520
TTCAACAGCT	ATCAGAAAGA	CACGGACAAG	GGACCGGGTA	GAGCTTCTAC	TTACGTATAC	2580
GGTCCTATGC	AGCCCAGAAG	GATTTTCGTC	GGTACAAAGA	TCAATTTC		2628

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2697 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...2697
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52

			AAAAAGATTA			60
TGCGCCAGCA	TAGGGATCCT	GAAAGGACAG	TCCTCGGATC	TGACCCCTCA	GGATACTATA	120
TATAGCCCTG	AAATATCCTA	TGCCAAGCCT	ATTCATAAGA	CCATAGCATC	TATTGAGATC	180
			TTGCGCAATC			240
GATGAAGTCC	TGATTCCTGG	AGATGCCATG	TCTGCTGCCG	TGAATAGAAT	TATGCGTCAG	300
GGCTACTTCT	CAAATGTGCG	AATCATCGCG	GATAAATATG	TCGGCAATAA	AGTCTATCTG	360
AAAATCATTG	TCACTGAACG	TCCTCGCATC	AGTAAGGTTA	CTTTTAGCGG	GGTAAAGAAG	420
TCTGAGAGAG	AAGATCTTGA	AATGAAAATC	GGTCTTCGCG	AGGGGATTCA	GATGACCAGA	480
AATAATGAAG	ACAAGGTCAG	${\tt GCAAATCGTA}$	CAGAAGTATT	TTAGTGAGAA	AGGTTATCGC	540
GATGCCAGCA	TACGGATAAC	GCAGGAACCG	GATCTTTCCA	AAGATGGCTT	TGTCAATGTG	600
CTTATCTCGA	TTGAGAAGAA	AAGCAAAACC	AAGGTGAATG	AAATTTATTT	TTCCGGCAAC	660
AAGGCCCTTA	GCAATCATAA	GCTAAGAATG	GCGATGAAGA	ACACCAATGC	CAAATTCAGT	720
CTTAGAAAGC	ATATTCGCTC	ATCTTTCTTG	AAACTTTTTA	GTACTCATAA	GTTTGTGGAA	780
GAGAGCTACC	GTGAAGATTT	GGTCCGATTG	ATAGAGAAGT	ATCAGGAATA	TGGATATCGT	840
GATGCTGAAA	TACTGACCGA	CAGTGTCGTG	AAGGCTCCTG	ACGGCAAAAG	AGTGGATATT	900
TATCTCAACA	TCGAAGAGGG	GCAGAAGTAT	TATATTAAGG	ATGTCAACTT	TGTGGGCAAT	960
TCACAATATC	CATCGGAGTA	TTTGGAACGA	GTGCTCGGAA	TAAAATCCGG	AGATGTGTAC	1020
AATCAGAGAC	GATTGGCTAA	GCGTCTCAAT	GAAGATGAAG	ATGCTGTGGG	GAACCTGTAC	1080
TATAACAATG	GCTATATTTT	TGCGTGGGTC	GATCCCGTGG	AAACAAATGT	AGTGGGGGAT	1140
TCTGTTTCGC	TTGATATTCG	TATAGCGGAG	GGGAAGCAGG	CCAATATCAA	TAAGGTGATC	1200
ATCAAAGGAA	ATACTGTCGT	GTACGAAGAC	GTAGTACGCC	GAGAGCTTTA	CACAAAGCCC	1260
GGCCAGCTCT	TTAGTCGCGA	GGATATCATT	AACTCTATTC	GTCTCATCAA	TCAGCTTGGG	1320
CATTTCGATG	CCGAAAAATC	TATTCCCCGT	CCGATTCCCA	ATCCCGAAAC	AGGAACAGTG	1380
GATATAGAGT	ATGATTTGGT	GCCGCGTAGC	AGTGACCAAT	TGGAGCTTTC	TGTCGGTTGG	1440
AGTCAGTCCG	GACTTCTGTT	CCGAGGAGCC	ATTAAGTTCA	CGAACTTCTC	TGTCGGCAAC	1500
TTGCTCCATC	CCTCGATGTA	TAAGAAAGGG	ATCATTCCGC	AAGGGGATGG	GCAAACACTA	1560
TCACTGAGTG	CTCAGACCAA	TGGAAAGTAC	TATCAGCAGT	ATAGTGTCAC	ATTTATGGAT	1620
CCATGGTTTG	GGGGCAAGCG	GCCGGATATG	TTCAGCTTCA	GTGCATTCTA	TTCCAAGACT	1680
ACGGCGATTG	ACTCCAAGTT	CTACAATAGC	AATGCCGGCA	ACTACTATAA	TGCCTACTAT	1740
AATAGCTACT	ACAACAACTA	TAATAGTTAT	TACAACGGTA	TGTCGAACTA	TACCGGCGAC	1800
CTCTATACTC	AGGCCAGCGA	TCCGGATCGT	TCGCTTCAGA	TGTTAGGTAC	TTCGATCGGT	1860
TACGGTAAGC	GTTTGACTTG	GCCGGACAAT	TGGTTCCAGA	TTTATACTTC	TCTGAACTAC	1920
ACCTACTATA	GACTGCGAAA	TTGGAGCTAC	AATACCTTCC	AAAATTTCCA	TCATGGCTCG	1980
GCTAATGATC	TCAACTTGGA	GCTGCGTCTC	TCTCGTACTT	CCATCGATAA	TCCTATTTAT	2040
ACCAGAAGCG	GATCGGATTT	CATGGTTTCT	GTTGCTGCTA	CTCTTCCTTA	TTCTTTGTGG	2100
GACAATCATG	ACTATGCCAG	CCAGAACCTC	AGCGTAAGCG	ATCGTTACAG	ATTTATCGAG	2160
TATCACAAGT	GGAAGTTTAG	AGGACGAGTT	TTTACTCCAT	TGCTCAATCC	TGCTACGCAT	2220
AAATATACAC	CGGTGCTCAT	GAGTCGAGTG	GAAGGAGCAG	TTCTTGGTTC	GTATAATTCC	2280
AATAAGAAAT	CTCCTTTCGG	TACTTTCTAT	ATGGGAGGTG	ATGGTATGTC	CAGCTATTAT	2340
GGTGGCTACA	TGAATGAGAC	TATAGGTTTG	CGTGGTTATA	AGAACGGATC	TATTGCCGGT	2400
AATAACTACG	ACTATGCATA	TGCTTATATG	CGGCTTACGA	TGGAACTACG	TTTCCCGATT	2460
CTGTTTGAAA	ACTCATTCAA	TGCGTGGCTC	TTAGCTTTTG	CCGAAGCAGG	CAATGCGTGG	2520
CGCAGTATCG	ACAATTATAA	TCCCTTTAAC	CTGAAGCGAT	CGGCCGGTGT	AGGATTGCGT	2580
GTAACGTTAC	CGATGGTCGG	AATGCTCGGT	ATCGATTGGG	GATATGGCTT	TGACCGTCCG	2640
GACAATTCTC	TACAGCGAGG	AGGAAGCAAT	GTCCACTTTG	TGCTCGGACA	GGAGTTC	2697
			_	=		

- (2) INFORMATION FOR SEQ ID NO:53
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 531 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

(A) NAME/KEY: misc_feature
(B) LOCATION 1...531

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53

CAAATAAACA	TGAATGGCGA	TATGAAACGG	TTTTTGATTT	TGATCGGCTT	TGCACTGGCG	60
GTAGCTTTCT	CCGGTTTTTC	CCAAAAGTTC	GCTTTGGTAG	ATATGGAATA	TATCCTCAGG	120
AATATTCCTG	ACTATGAGAT	GATGAACGAA	CAGCTGGAAC	AGGTGTCCAA	GAAATGGCAA	180
AATGAAATCG	AAGCTCTCGA	AAATGAAGCC	CAATCTATGT	ATAAGAAGTA	TCAGAGCGAT	240
CTCGTATTCT	TGTCTGCTGC	ACAGAAGAAA	ACCCAAGAAG	AGGCTATCGT	AAAGAAAGAG	300
CAGCAAGCAT	CCGAGCTCAA	GCGGAAGTAT	TTCGGCCCGG	AGGGGGAGCT	GTATAAGAAA	360
CGCTCCGATC	TGATGAAGCC	TATTCAGGAT	GAGATTTGGA	ATGCTATCAA	AGAGATTGCC	420
AAGCGTAACA	ACTATCAGAT	GGTGCTTGAT	AGAGGTACGT	CCGGAATTAT	CTTTGCCAGT	480
CCGTCTATTG	ACATTAGCGA	CCTTGTACTG	AGCAAGATGG	GCTTTAGCAA	G	531

(2) INFORMATION FOR SEQ ID NO:54

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 510 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...510
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54

CGAATAAATA A	AACAACACGA	AATGAAGAAA	TTTTTTCTCA	TGCTTCTGAT	GGCTCTTCCT	60
TTGAGCCTCT T	TGGCACAAAA	GGTGGCAGTG	GTAAACACTG	AGGAGATCAT	TTCCAAAATG	120
CCGGAACAAG 1	TAGCTGCTAC	CAAACAGCTC	AACGAATTGG	CCGAAAAGTA	TCGCCTTGAT	180
CTCAAGAGTA T	TGGACGATGA	GTTTGCCAAA	AAGACAGAAG	AATTTGTAAA	GGAAAAAGAC	240
TCTCTACTGG A	AGAACATCCG	CAATCGTCGT	CAGCAGGAAC	TTCAGGATAT	TCAAACTCGT	300
TATCAGCAGT (CATACCAAAC	GATGCAGGAG	GATTTGCAAA	AGCGCCAACA	ACAGCTTTTT	360
GCTCCTATCC A	AACAAAAGGT	GGCTGATGCC	ATCAAGAAAG	TGGGTGACGA	AGAAAACTGT	420
GCCTACATCA T	TGGAGGCCGG	TATGATGCTT	TACACCGGAG	CTACTGCTAT	TGACTTGACC	480
GCAAAGGTAA A	AAGCGAAACT	CGGAATCAAG				510

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2484 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2484
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55

ATCATGAAGG	AAGCTATTCC	CCGAAAGAAC	AAGTATATAA	AGCTCAACGG	TATATACAGA	60
TTGTCATTCA	TTCTGCTATG	CTGCCTGCTA	TGCTCTCAGG	CAGCTATGGC	ACAAGGCGTC	120
AGGGTATCGG	GCTATGTGCT	CGACCGTGGG	GAAAAGCCGA	TCCCGTTCGC	CGGAGTCAAA	180
${\tt GTGCGTGGTA}$	CGGGGACAGG	CGCAACGACG	AATCTGAAAG	GATACTACGA	GTTTCGGATG	240
AAGGCCACGA	CGGACAGCAT	CACGATCGAG	TTCAGCTCCA	TGGGGTACCA	AGGGGTAAGT	300
CGCAGCTTTC	CGTCTCTGAC	CAAGGACACT	CGGCTGAATG	TTCGTTTGGC	AGAGGCCGAG	360
ATGGAGCTTT	CGAGCGTGAC	GGTACAGGCC	ACAAAACGCA	GACTCAACAC	GATGGAGCGC	420
GTCAATACCC	GAGACCTTCG	TGTCAATGCA	GGGCCTACGG	GAGGGGTGGA	ATCGCTCATC	480
AGTACCTACG	CAGGAGTAAC	GCAGAACAAT	GAACTAAGCT	CGCAATACTC	GGTTCGCGGA	540
GGAAGCTACG	ATGAGAATAT	GGTCTATGTA	AACGGAGTGG	AGGTTTATCG	CCCGCTGCTG	600
GTTCGCTCTG	CACAGCAGGA	AGGTCTGAGC	TTCGTCAATC	CGGATCTGAC	ACAATCCGTA	660
CAGTTCTCCG	CCGGAGGGTT	CACGGCCGAC	TATGGCGACA	AGATGTCCTC	CGTACTGGAT	720
ATTCGCTACA	AGCAACCGCA	GGAGAAGGAA	GGAGCGGTAC	TCCTCGGGAT	GCTACAATCG	780
AGTGCCTACT	ATGGCAGCAG	TGCCGGAGCC	TTCAGCCAAA	TCACGGGTGT	ACGCTACAAG	840
AGTGCCAAAT	CGCTCTTGGG	CACTACGGAC	ACGAAAGCCG	AATACGATCC	GATCTATGCG	900
GACGGACAGA	CATTCATGAC	GTACCGTTTC	AGCCCCAAGC	TGTCGGTTAG	TTTCCTCGGC	960
AATATTTCGC	AAACTCGCTA	CAAGTTTGTC	CCTCAGACCC	GTGAGACGAG	CTTCGGTACA	1020
CTGAGCGATG	CCAAAAAGTT	GAAGATCTTT	TTCGACGGTC	AGGAACAAGA	TCGTTTCCTG	1080
ACCTACTTCG	GTGCCTTCAG	CATGAACTTC	GTGCCGGACG	ACAAACAGCG	GCATACGGTT	1140
ACGCTTTCGG	CCTTCAACAG	TAACGAACGG	GAGACCTACG	ATATTCAGGG	AGAATACTTT	1200
CTGAACGATG	TGCAGCTGGG	GGCGGACGGA	ACTGCTTCGA	TGGCTTCGGG	CTCAGAGAAC	1260
TCCAACGGCT	TGGGCATCGG	GCGCAATCAC	GAGCATGCGC	GCAACAGGCT	GAGCTACCGC	1320
GTGCTGAACA	TGGGTTACAG	AGGGGAGATG	AAGCTGAACG	AGAAGCATCG	CCTGCAAGCC	1380
GGCGTATCGG	CACAGATGGA	GAAAATAGCC	GACCATATCA	GCGAATGGGA	ACGGAGGGAT	1440
TCGGTAGGAT	ACAACCTACC	TCACTCGGAG	ACCGTATTGC	TGATGTACAA	TAACCTATAT	1500
GCCGATACGC	AGATGAGGGG	AACGCGCTTG	TCGGCATTCG	TACAGGATCG	ATTCAACTTC	1560
AGCATGGGAG	GAGGTACATT	TTCTCTCATT	CCGGGTATCA	GAGCTTCGTG	GTGGAGCTTC	1620
AACAAGGAGT	TGCTCGTCAG	CCCACGTATC	${\tt AGCGTGGGTT}$	ATTCTCCCGA	AAGCAACCCG	1680
GCTTTGGTAC	TGCGTGCAGC	CGCCGGACTT	TATTATCAGG	CACCGTTTTA	CAAAGAGCTA	1740
AGGCAGACGC	ATAAGGATGC	CGAAGGCAAT	${\tt AACGTGGTTG}$	TCCTCAACGA	GAAGATCCGC	1800
TCTCAGGGAG	CTTTTCACAT	TCTCGCAGGA	GCAGACTATA	CCTTCGAAAT	GGGGGGCGA	1860
AAATACAAGT	TTACGGCAGA	GGCTTACTAC	AAGAGCCTGT	TCAACATCAA	CCCGTATATA	1920
ATAGAGAACG	TGAAGATCCG	CTATCTGGGC	GAAAACATCG	GTTCGGGTTA	TGCTGCGGGT	1980
ATCGATCTCA	AGCTCTTCGG	CGAACTGGTA	CCCGGAGTGG	ATTCGTGGCT	GACGGCTTCC	2040
ATTATAAAAG	CCCGTCAGAA	ACTGGATGGC	TACGGTTCTT	TACCACTGAT	GAACGCACCC	2100
ACTTACAATT	TCTCCTTCTT	CCTTCAGGAG	TACGTGCCGG	GCAATAAACG	CATCACAGCC	2160
ACCCTGCGGG	CTGCACTAAG	CGGAGGATTG	CCCCAGCTCA	ATCCGAGCAA	AGGGCTTAGC	2220
TCGCCGGCCT	TTACCGCACC	GGCCTATAAG	${\tt CGTGTCGATC}$	${\tt TGGGGGTAAT}$	GTACAAATGG	2280
CTCGACCCGG	ATGACTCCTT	${\tt TGCCGGCCGA}$	AGCAAATGGC	TAATGGGAGT	AAAAGGGCC	2340
TACATAGGGG	CTGACCTCTT	CAATCTGTTC	GACATGACCA	ACGTCAATTC	TTACTACTGG	2400
GTGTCGGATG	CCTACCAACA	GCAATACGCC	${\tt GTACCGAACT}$	ACCTGACACG	CCGCCAATTC	2460
AACCTGCGTC	TCCTCGTCGA	ATTC				2484

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2037 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2037
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56

CCTATCCCTT	TTCTTCTTAA	TATGTACAGC	GGACATCATA	AAATCCATTA	TCCTTTTCTT	60
ATCCTGTTGG	TATGCCTTGC	TTTTGCTGCC	TGCAAGAGCG	TGAAGTTGAA	AGATGCGGAG	120
AAGGCACATG	ATCGCCAAGA	GTATACCAAG	GCTGCCGATA	TGTACAATAC	ATTATACAGG	180
CGTACCCGAC	GAAAGCAGGT	GGAGATGAAA	GCTTATACGG	CTTTCCGATC	CGGTGAAAAC	240

TATCGTGCCG	CCGGCAGACA	AGCCAAAGCT	TTGCGTGGCT	ATCTGAATGC	CAGACGCTAC	300
GGGTATCCGG	ATTCTGTGGT	ACTGCTCCGT	TTGGCACAGA	CTTATCAGCA	AGGAGGTAAC	360
TATAAGGAAG	CCGAGGTACT	CTTCCGTGGA	TATCTGGAAG	CTTATCCGAA	AAGTTATTTT	420
GCAGCTATCG	GTTTGGAGGG	GTGTCTCTTT	GCCCGCCAGC	AAAAGGAATA	TCCTACACGT	480
TACCGGATAC	GGCGAGCTGC	CGAGTGGAAT	TCGGCACGGG	GCGACTTCGG	CCCGGCCTAT	540
GCACCCGATG	CTTCGGCTCT	CTATTTCACA	TCGAGCAGAA	GCAAAGACGA	CGGTTTGGAT	600
AATAGCAGCA	TAACGGGACT	GAAACCCAAC	GACATTTATA	TCATCAAACG	AGATGCACAA	660
GGACGATGGG	GACGTCCCGA	TAGCGTGTCC	GGAGGAATCA	ACACTCCATG	GGATGAAGGC	720
GTGCCAACGA	TCACGCCCGA	TGGTAGTACC	ATATATTATA	CGTTGGCGCA	GCAAGGAGCC	780
GATTACGACC	GTACGGTACA	GATCTATTCC	GCCGCTCGGA	GCGGAGAAGG	CGGTTGGAGC	840
AACGGTTCGC	TCGTGGACAT	TATGCGCGAT	TCGCTCCGTA	TGGCTGCTCA	TCCCTCTATG	900
TCGGCATCCG	GCGATTACCT	GTATTTCGTC	AGCAATATAG	GCGGTAGCTA	TGGCGGCAAG	960
GATATTTATC	GTGTCAAGGT	GTCGGATCGT	TCTTATGGTT	CACCGGAGAA	TTTGGGGCCT	1020
GATATCAATA	CGCCGGGGGA	CGAAATGTTT	CCCTTCATAG	ATGGGGATAG	TACCCTTTTC	1080
TTCGCTTCGG	ACGGACACGC	CGGTCTGGGA	GGACTGGATA	TTTTCAAAGC	CACGCTGGAC	1140
TCTACCGGCC	AATGGCATGT	AGTCAATATG	GGACAACCGG	TCAATTCCTC	TGCCGATGAT	1200
TTCGGCTTGG	CTGTGGAGCC	TAAAGGCAAA	AACAAAGAAG	AAGCTTTGCC	GGACAACGGA	1260
GTCAAAGGTG	${\tt TATTTTGTTC}$	CAACCGAGGC	GATGCACGCG	${\tt GATGGCCGCA}$	CCTCTTCCAT	1320
TTCGAACTGC	CGGCTATCTA	CACCGAGATT	CAAGGTTATG	TGATGGACAG	AGAAGAAAAT	1380
CCCATAGCCG	GAGCCACTGT	CAGGATCGTA	GGCGAACGCG	$\tt GCCCCGTAGG$	ACAGGGATTC	1440
GTGACTACTC	GTGACGATGG	CTCCTATAAG	ATGAGCGTGC	AGGGCGATAC	TCGCTATGTA	1500
ATGCTTGCCG	GAGCATCGGG	${\tt TTATTTGAAT}$	CAGTACGTAG	AACTCAAGAC	CGATACCGCC	1560
AAGCAGAGTG	AGACCTACTA	TGTGGACTTT	TTCCTTGCAT	${\tt CGCGTGAGAA}$	AGCCGAGGGC	1620
TTGCAAAATA	${\tt TTTTCTATGA}$	${\tt TTTCGATAAA}$	GCTACTCTTC	GCCCCGAAAG	CATGAAGAGC	1680
TTGGACGAAC	TGATTCGTAT	CCTCACGGAC	AATCCGGATA	${\tt TTCGGATCGA}$	ATTGGGTTCG	1740
CATGCCGACA	GGAAAGGCCC	CGATGCTTAC	AACCTCGGAC	TATCTGACCG	CAGAGCCAAA	1800
TCCGTGGTGG	ATTACCTCAC	GAGTCGTGGC	ATAGCGGCCG	ACAGGCTTAC	GTGGAAAGGC	1860
TACGGTAAGT	CTGTCCCCAA	GACGGTGACA	GCCAAAATTG	CCGAACGGCA	CGATTTCCTG	1920
AAGGAAGGCG	ATGTGCTCAC	CGAGGAATTC	GTAGCACCTT	TGACCGAGGA	GCAGCAGTCA	1980
GTCTGCGACC	AACTGAACCG	TCGTACCGAG	TTCCGTGTGA	TCGAAGAAGA	GTTGCGT	2037

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2316 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2316
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57

CCTGCACAGC	CGAAAACATA	TTGCATACGA	TACTTTCGGA	GAGAGGTATC	TCCGAGGAGG	60
CAAACAGAAA	${\tt GGACATTGTA}$	TGCGGACAAG	ATGCGCCGGC	ATATCGTCAA	GTGCTGTCCC	120
${\tt TCTGCCTCCA}$	TACTCTTGCA	AGAATACTCC	ACAACAGAAT	TATTCATTCA	TCACTTTAAC	180
ATATCAATAA	TTATGAAAAA	GTTTTTCTTC	GCGCTACTAT	CGATTGGTAT	TTCAGCGCAG	240
${\tt GCTTTTGCCA}$	AGACGGACAA	CGTCCCGACA	GATTCGCTAC	GAGTACACAA	TCTTCAGACC	300
GTCACGGTCT	ATTCTACACG	CACGGCCGTA	CCTCTGAAAA	AGATACCGGC	CAAGATGGAA	360
CTCATCTCAT	CGCGCAACAT	CAAGCAGTCC	GGCTTTAACA	ACATGACCGA	CATCCTCAAG	420
ACGCAAAGTT	CGCTCGATGT	CATACAATAC	CCGGGCTTTA	GTTCGAACAT	CGGTATCCGC	480
${\tt GGTTTCAAGC}$	CCTCCGGCAA	GTATGTAACC	${\tt GTATTGGTAA}$	ACGGCATCCC	TGCGGGAACG	540
GACAATATCT	CTACGCTCAA	CACGAGCAAC	ATCGAACAAA	TCGAGATCCT	CAAAGGCCCG	600
${\tt TTCTCTTCCA}$	TCTACGGCAC	CAATGCCATG	GGCGGTGTGG	TGAACATCAT	CACCCACAAA	660
TCCAAGGACA	AGATCCATGG	CAACGTTTCT	CTCTTCGGCG	GTAGCTACCA	GACCATGGCC	720
GGATCATTCA	ACTTGGGTGG	CCGCTTCGAG	GATATTTTCT	CATTCGATCT	TAGTCTGGGC	780
TTGGACAAGC	AGAACAAGGA	CTATAAGACC	GGATCAAACA	ATTTCCTATC	CCTGAGCAAA	840
CTGGAAGAAG	CTATAGTAGA	TGTAAATGCT	ACCAAAAACA	AGAAAATGAA	GGGGAGCGAC	900
TATACTGTAG	CAACGGGACG	TCTGCGTTTC	GGTATCGACT	TCACGCCCGA	ATGGTCGCTG	960
AATCTGTATC	AAAACGTATT	CCTCGGAGAT	GCGATCCCCG	TAGGAGGATC	TATATGGGGC	1020
GTTTACGGAG	AATCCAAAAA	AAATCTGAAT	${\tt CGTTCTTCGA}$	CCTCTTTCGA	GCTGCTCGGC	1080
AAACATGGCT	GCCACACGCT	TCAATTCTCC	CCCTACTTCA	ACATAGAGAA	ATCGGAGAAC	1140
TATAACAATG	CCGATCCCAC	CGGTTTCATC	AACTACAAAA	GCGACTACTA	CACCTATGGT	1200
GCCCTACTCC	AGGACAAGAT	TTCCTTTGGA	GGACAAAATA	TCGTACTCGG	TGTCGACAGC	1260
CGAAACATGA	CGATGGAGTC	AGAAAGATTC	GAGCAGGCAG	GAGTGAATAC	AAAGCCATAC	1320

AACCCCGGAT	ATGCCACGAA	CAATATCGGT	TTGTTCGGAC	AGGCCAATTT	CTACCTGCTG	1380
AACGATGCTC	TATCGATATC	TGCCGGTGCA	CGTGCCGACT	TCATGTTCTT	TGACCTGAAA	1440
GCGAACGAGT	ATCTCAACAA	TGAAGCCAAA	CAGGAAACTC	ATAACGTAAT	CAATCCGAAT	1500
GTCGGAATCA	AATATGAGTT	TGTGAAAGGC	CTTACAGCTC	ATGGTACATT	CGGTAGTGCA	1560
TTCAGTGCTC	CCGATGCTTT	CCAAAAAGCA	GGCCAATACG	TAGGCCCGTT	CGGCACGACC	1620
ATAGGCAATC	CTGACCTGAA	ACCCGAAAAG	TCCATGACCT	GGGACTTCGG	TATCGGATAC	1680
AGCAATGCAC	GCTGCGGGAT	CCAAGCCGAC	GTAACCTTAA	CCTATTTCCA	CACCGACCAC	1740
AAAGATCTGA	TCTTGTCCAG	CCCTGACTAT	GCTAATAATA	TCACCACATA	CATCAATGCC	1800
GACAAGGCTC	GTATGAGCGG	TATCGAGGCC	CTTTTGTCTT	ATGACTTCGG	CAGCCTCTTT	1860
GCCAACAAGT	TCTCTCTCCG	CGCATTTGCG	AATGCCACGA	TCATGCTCAA	TTCCGAGATG	1920
AAGAAAAGCC	AGACCGATGC	CCCTTGGAGC	GAAATGTACT	ACGTTCGCAA	GCAGAACATC	1980
ACCTTCGGTA	TCGAATATCG	TGGCAAAGAA	GGACTTGAAG	TGATGCTCAA	CGGTCGCTTC	2040
ATGGGACGCA	GGATCGAGCA	AAACTGGTAT	GCTTACTACC	CCGAAGTTCG	CCCCGAACTC	2100
CAGCAACTGC	TTGCAGCAGA	AGAGCCTGAA	TTGGCTGCTC	AGGGACTGCT	CCGTCATCCG	2160
CAAGCAATGG	TGTTCAATGC	CTCTGCTTAC	TACCACATGA	ACAAGTATCT	CACCTTCGGT	2220
GTGAACTTGA	ACAACATCTT	GGATGAGCTT	TATACGGAGA	AAGACGGCTA	CCACATGCCC	2280
GGACGTAACA	TCATGGGTAA	${\tt GGTTATGGTC}$	AACTTC			2316

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1452 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1452
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58

GGCCGGGCCT	CTTCCCCTTA	CAGGCAAATG	GATGGCATAC	TAAACGATGA	ATATAGACAA	60
GCATCTATGA	ACAGGTTTTC	AAATCATTGG	CCCTGCATCC	TCGTGGGGTT	TGTACTCTGG	120
TTTGTATCGG	CGAGTCGGAC	TGTGGCACAA	AACGCCTCCG	AAACGACGGT	ATCGTACGAT	180
ACGGATACCG	CCGTACTCTC	CGAAGCCGAT	GTGCTTCGGA	TCGCTCTTAG	TGAGAATGCC	240
ACAGTGAAAG	TGGCCGATAT	GGATGTGCGC	AAACAGGAAT	ATGCACGTAG	GGCAGCACGT	300
GCCGATCTCT	TCCCGAAAGT	AGACCTCAAT	GGCGTTTACA	GCCATACGCT	AAAGAAGCAG	360
GTCTTATATA	TAGATATGCC	CGGTTTCAGC	AGTAGCGAAG	GTATCGAAAT	GGGGCGTACA	420
CACAATACGC	AAGGAGGGGT	GAACGTCTCC	ATGCCATTGG	TGTCGGCACA	GCTTTGGAAA	480
AGCATTGCCA	TGACCGGAGA	ACAGCTCGAT	CTGGCTCTGG	AGAAAGCTCG	CAGCTCCCGA	540
ATCGATTTGG	TGGCAGAGGT	GAAGAAGGCT	TACCTCAGTG	TATTGTTGGC	CGAGGACTCT	600
TATGGCGTAT	TCAAGCGCAG	CTATGACAAT	GCTCTGGCCA	ATTATAAGAA	CATATCCGAC	660
AAGTTCGATC	GTGGACTTGT	GGCCGAGTAT	GATAAGATTC	GAGCCAATGT	ACAGGTACGC	720
AACATCGAGC	CTAACCTCTT	GCAAGCGCAG		CCCTTGCTCT		780
AAGGTCCTGA	TGAGCATGGA	AGTGGAAACT	CCGATCAGAC	TCTCCGGTTC	ATTGTCCGAC	840
TATAAAGAAC	AAGTCTATAC	CGGCTATTTT	GCCGCCGATA	CGCTTATTTC	CAACAACTCC	900
TCCCTGCGTC	AGCTCGATAT	ACAGCGTCGT	CTGGCTGTCA	GTGCAGACAA	GCTGAACAAG	960
TACAGCTTCC	TGCCTACACT	CAATCTGGGA	GGGCAGTACA	CCTATTCGCT	CAACAGCAAC	1020
GACATCAAAT	TCTGGGGCGA	GGGACAACGC	TGGACGCCTT	TCTCCACCAT	ATCGCTCAGC	1080
CTGTACATTC	CTATATTCAA	TGGAGGCAAA	CGTCTGTACA	ACGTGAAGCA	AAGTGCTTTA	1140
TCGATCCGTC	AGATCGATCT	GCAACGACGC	CACATAGAGC	AATCCATCCG	AATGGGAATC	1200
AAGAACCAAA	ATGACCGTCT	GCGTACCTGT	ATGCAGAGAT	TTGTGGCCTC	GGAAGAGGCT	1260
GTCCGAAGTG	CAGAAAAGGG	CTATCAGATA	GCAGAGAAAC	GCTATCAGAC	AGGCGAAGGC	1320
ACTCTCGTCG	AGCTCAACGA	TGCCGATGTG	GCTCTTTTGC	AGGCTCGACT	CAATTATAAT	1380
CAGGCCATAT	TCGACTTTAT	GACCGCAAAG	GCCGAATTGG	ACAAGATGAA	CGGCATGGGG	1440
ATTCCCGAAC	AA					1452

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1620 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1620
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59

```
TTTCATAACT TTGACTTCCT AAACGGTATA AAATTGTTTT CGATGGCAAA TAATACTCTT
TTGGCGAAGA CTCGACGTTA TGTCTGCCTT GTCGGTTTCT GTTGGCTCAT GGCGATGATG
                                                                      120
CACCTCTCTG GGCAGGAGT CACTATGTGG GGGGACAGCC ATGGAGTGGC GCCGAACCAA
                                                                      180
GTGCGCCGAA CGCTGGTGAA GGTAGCCTTA AGTGAATCCC TTCCTCCGGG TGCAAAACAG
                                                                      240
ATTCGTATCG GATTCTCTCT TCCGAAAGAA ACGGAGGAAA AAGTCACCGC CCTATATCTC
                                                                      300
CTTGTGAGTG ATTCTTTAGC GGTGCGCGAC TTGCCGGACT ACAAAGGGCG AGTCTCTTAC
                                                                      360
GATAGCTTCC CGATCTCAAA GGAAGATCGT ACCACAGCCC TTTCTGCGGA TTCGGTAGCC
                                                                      420
GGACGCCGCT TCTTTTATTT GGCTGCGGAT ATAGGGCCTG TTGCTTCTTT TTCCCGATCC
GATACGCTGA CTGCCCGTGT GGAAGAGGTG GCTGTCGATG GCCGCCCTTT GCCGTTGAAA
                                                                      540
GAGCTGTCGC CTGCCTCCCG TCGTCTGTAT AGGGGGGTATG AGGCCCTCTT TGTACCCGGT
                                                                      600
GATGGCGGAT CGCGGAACTA TCGTATCCCG GCCATTTTGA AAACGGCTAA TGGAACACTC
                                                                      660
ATAGCGATGG CCGACAGACG AAAATATAAT CAGACGGATC TGCCGGAGGA TATAGATATA
                                                                      720
GTCATGCGGC GCAGTACGGA CGGAGGGAAA TCGTGGAGCG ATCCCAGGAT TATCGTACAG
                                                                      780
GGAGAGGGC GCAATCATGG CTTTGGCGAT GTAGCCCTGG TGCAAACCCA AGCAGGAAAG
                                                                      840
CTCCTGATGA TCTTTGTCGG TGGAGTAGGC CTGTGGCAGT CTACCCCCGA TCGTCCTCAG
                                                                      900
CGCACTTATA TATCGGAAAG TCGGGACGAA GGACTGACTT GGTCGCCTCC TCGGGATATA
ACCCATTTCA TCTTCGGCAA GGATTGTGCC GATCCGGGAC GCAGTCGCTG GTTGGCCTCC
                                                                     1020
TTTTGTGCTT CGGGACAAGG GCTTGTGCTG CCATCCGGTC GTATCACGTT TGTGGCTGCC
ATCCGCGAAT CAGGGCAGGA GTACGTCCTG AACAACTATG TCCTCTATAG CGACGATGAG
                                                                     1140
GGCGATACAT GGCAGCTTTC CGACTGTGCA TACCGCCGTG GCGATGAGGC AAAGCTTTCA
                                                                     1200
TTGATGCCCG ATGGCAGGGT ACTGATGAGC ATACGCAATC AGGGACGGCA GGAGAGCCGA
                                                                     1260
CAGCGTTTCT TCGCTCTCTC CTCCGACGAT GGCCTTACTT GGGAGAGAGC CAAGCAGTTC
                                                                     1320
GAGGGCATCC ATGACCCCGG CTGTAATGGA GCTATGCTTC AAGTGAAAAG GAACGGAAGG
                                                                     1380
GATCAAGTGC TGCACTCCCT GCCTCTCGGC CCGGATGGGC GTCGCGATGG AGCTGTCTAT
                                                                     1440
CTCTTCGATC ATGTCTCCGG CCGCTGGTCC GCTCCCGTTG TTGTCAATTC AGGATCGAGT
                                                                     1500
GCCTACTCGG ATATGACTCT GCTGGCGGAT GGAACGATCG GTTATTTCGT CGAAGAGGGC
                                                                     1560
GATGAGATCT CATTGGTTTT CATTCGGTTC GTCCTTGACG ATCTCTTCGA TGTCCGGCAA
                                                                     1620
```

- (2) INFORMATION FOR SEQ ID NO:60
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 879 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: circular
 - (b) Torobodi. Circulai
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...879
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60

AAGTCTCCGA	GCGATTCGGC	TTTGCCGTCG	GTATGGAGCG	CGAATACAAT	ATCTGGACTC	60
${\tt GTCGGTGGGA}$	AACGCATTAC	TTTGCTTATC	CTGTATTCTA	TGGCGATAAG	AAGTAGTAAT	120
ATAGAATCAA	TACAGTGCTT	TGTGATGAAA	AAAGAAAAAC	TTTGGATTGC	GATCGTCGCC	180
GGTTTGGCTT	TCGTATTGGG	CCTTTATGCT	CTTGGCCGCA	GTGTCGCTCA	GCTACGCCGC	240
TCTCAGCCTT	CGGTGACTGT	GACCGGTATG	GCCGAGCGTA	ATTTCAAATC	CGATCTGATC	300
GTTTGGACTG	CTTCGTACCA	GCTCCAGATG	ATGGATCTCG	AATCGGCCTA	CAAGGCTTTG	360
AAGGAAAAAC	AGATATTGGT	AGCAGACTAT	TTGAAAAACA	AGCAGCTGCC	CGATTCGTCT	420
TATATCTTCT	CAAGCGTAGC	CATCTCTAAA	GAATACAACT	ACTATTACGA	TCCTCGGCAG	480
GAACAAAACG	TCAGGACCTT	TGCCGGGTAT	CTGCTCAGCC	AGACAGTTAC	GGTGACCTCA	540
CAGGACATCG	AACATGTGGA	GAAAATATCT	CGCGATATAA	CGGAGCTGAT	CAATCAGGGG	600

GTAGAGATTA CCTCCGACCG TCCGGCCTAT TACTACACCA AGCTCAATGA	TCTGAAGGTG	660
GAGATGCTGC GCAATGCCTC CGAAGACGCT TTCAATCGTG CTTCGGTCAT	TGCGGAGGGG	720
AGCGGTTCCT CCGTGGGTAA GATGCTATCT TCTTCGATGG GCGTGTTCCA	GATAGTGGGG	780
CTCAACTCGA ACGAAGATTA TAGCTGGGGA GGTTCGTTCA ATACGTCTTC	CAAGATGAAG	840
ACGGCAAGCA TAACGGTTAA GGCTTCTTTC GCTTTGAAG		879
(2) INFORMATION FOR SEQ ID NO:61		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 840 base pairs		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: double		
(D) TOPOLOGY: circular		

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...840
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61

GGGAAACTCC	AAATGAAAAA	AACAATTGCA	ATTATCGCCT	CAGCCCTCTT	GGCTTTAGGA	60
GCCGTCGGCT	GTAAGAAAAA	TGCTGACACT	ACCGCTGTCA	GTGAAAAGGA	TAGCATAGCC	120
TTGTCCATGG	${\tt GTATTTGTA}$	CGGACAGGAT	TTTGCCAATC	AGTTCGAAAT	GTCCCGCTTG	180
CAAGGCCAGC	CGATTGATTC	GGTAGCTTTC	TTGGACGGTT	TCAAATATGG	TATCGATACG	240
ACGCGCTTCT	CGTACAATCT	GGGAGCCATC	TATGCTTCCA	ATATAGCTCG	TCAGCTGGCT	300
CATGATTCCA	TCGATATCGA	CAAGTTCTAT	GCAGCCATGC	GTGCGGCTCT	TCTTAAAGAC	360
ACCGTATCTA	TCGCCATGAA	GCCTGCAGAT	GCACAGGCTT	TCATGCAACG	AATCCAAGCC	420
AAAAAGCAGC	GAGAAAACAA	TATGAAGCAG	TTTGGCCAGA	ACATCGAAAA	GGGTAATGAA	480
TACATCGATA	CCTTTAAAAA	AGAAGATGGT	GTAACTGTTA	CGACAACTGG	TCTGGCATAC	540
AAGACTCTTC	${\tt AGGAAGGTAC}$	GGGAGCTACT	CCCTCTTTGG	CCGATACTGT	ACGTGTCAAG	600
${\tt TATGTGGGTA}$	${\tt CTCTGGTCGA}$	TGGTAAAGAG	TTCGACAAAA	ACGAAGAAGG	AATCGAATTT	660
GCCGTTACCG	${\tt GTGTGATTAA}$	AGGCTGGACG	GAGATGCTCC	AACTCATGAA	GGTCGGTCAG	720
AAAGTTCGCG	TGGTAATCCC	ACAGGAGCTG	GCTTATGGGG	AGACCGGCAA	CTATACCATC	780
GAACCGTTCT	CTACCCTGAC	GTTCGAGATG	GAACTTATCG	GGATCAAGCC	CGGGAAAAAG	840

- (2) INFORMATION FOR SEQ ID NO:62
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2409 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2409
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62

TGTCGAAAGC	AGAAGCTCTC	AAACCCGAAG	AGGAGCCGGT	ATCCGTGCAG	ACGGATATCA	60
TTCCGACAAA	GCGATAAGAA	TCCGATGAAA	GTATTACGGC	AAGTATTCCT	CCCCATCCTT	120
TTTGTCCTAC	TGACAGGTGC	CTGCTCCACC	ACAAAGAATC	TGCCGGAAGG	CGAACAGCTG	180
TATATCGGAA	TGGGCAAGAC	ACAGATACTC	CGGCAGGACA	AGAGCCACGC	CGGCCAACAG	240
GCTCTGACCG	AAGTGGAGAG	TACACTGAAA	GTTACACCCA	ATGGAGCTAT	TTTCGGCAGT	300
GCAAGTGCCT	CCTTACCCAA	GATACCATTC	GGGCTATGGC	TATACAACAG	CTTCGTGGGG	360
GATTCCACTG	TCATTTCGAA	ATGGATATTC	GACAAGTTTG	CAGCCAAGCC	GGTTTTCATC	420
AGTCAGGTCA	AATCCGATAG	CCGGGCTAAG	GTGGCGACGA	ACATCCTCCG	CGAACACGGG	480

TACTTCGATG	CTAAAGTAAA	AAGCAGTGTG	ACCACTCTGA	AAAAGGACTC	GCTCAAAGCC	540
AAAATCTCCT	ATACGGTGGA	TATGGCCTCT	CCTTATCATT	ACGACAGCAT	CATTCCCTTA	600
CCGATCAGCA	CTTTCCCCGA	CAGCATTCTG	GCTTACAGGC	AGACTCCGTC	TTTGATCAGG	660
AAAGGAGACC	AGTTCAATTT	GGCAAAGCTG	CACGAAGAGC	GTCAGACCAT	CAGTGCCCTG	720
CTGAGAGACA	ATGGTTACTA	CTACTTCCGC	CCACAGGATA	TTATCTACGA	AGCCGATACC	780
CTCCTCGTAA	GAGGTGCCGT	ATGCCTGCGA	GCCAAGCTCT	CGGAAGATAC	TCCACCCCAA	840
GCCATGCGCC	CGTGGAGGAT	AGGGAAACGG	ACAGCAGTCC	TGCTCGGAAT	GAACGGAGAA	900
AGCCCGACAG	ACTCGCTCGA	AGTGGAGGAT	ATGAAAGTCC	TTTACTATCG	TAAAATGCCG	960
GTTCGCCCCA	AGATTTTGGC	CAAACGCTTT	CGTTTCTTCT	CCGGCAATCT	GTATCGGCAG	1020
AAAGACGATG	AGACGACACG	CAAATCCTTG	GCTCGTTTGG	GAGCCTTCTC	CGTTATCGAT	1080
CTCAATTTTT	TGCAACGCGA	TTCCATTTCC	GGCCTTTTGG	ATGTGCGACT	GCTAACCACC	1140
CTCGACAAAC	CTTGGGATGC	ATCATTAGAG	ACCTTGTTCA	CGAGCAAAAG	CAATGACTTC	1200
ATCGGTCCCG	GACTGAATTT	TGCTCTTGCT	CGGCGCAATG	TATTCGGCGG	AGGAGAAAAT	1260
CTTTCTTGGA	ATATCGGTGG	ATCGTATGAG	TGGGAGACCG	GCAATCGTCC	CGAAAATAGC	1320
AGCAATCGGC	TGATCGATAT	AAATTCGTAC	AACATGAATA	CGGCCGTGAA	CCTCTCGTTT	1380
CCCTCGATTG	TATTTCCCGG	TCTGCTGGAT	AAATACTATT	ACTACCCCAC	GACTACGACT	1440
TTTCAGGCTT	CTGCCACCGC	GCTGAACAGG	GCACACTACT	TTAGCATGTA	CTCTTTCGGC	1500
TTTTCGACCA	CCTACGAATT	TCAGCCCTCC	AAGGAACACC	GGCATGCTAT	TTTCCCGCTC	1560
AAGCTCAACT	ACAACCTCCT	GGGGCATCAG	ACAGAAACTT	TCCAGGCCAT	TACGGCGAAC	1620
AATCCGCCCC	TGCTGCTCAG	CCTTCAGAGT	CAGTTCCTTG	CTCAAATGGG	GTATATCTAT	1680
ACGTTCAACA	AATCCGTTTC	AGAGAAAAGT	CCTCATCATC	TTTGGATGCA	ATTCGGACTA	1740
TCCGAGGCAG	GCAATCTCCT	GAATCTGATC	TATCTGGCAG	CCGGCAAGAA	GTACAGCGAC	1800
ACCAAGAATT	TCGTCGGCGT	CCCCTTCTCT	CAGTTCATCA	AAGCCACGGG	AGAACTGCGC	1860
TATTCCTATA	CCATAGACCG	CAATCAGTCA	CTGGCAACCC	GTTTCGGGAC	AGGCGTGATA	1920
TATAGCTATG	GCAATATGCG	AGTGGCACCC	TATAGCGAGC	AGTTCTATGT	AGGCGGTGCC	1980
AATAGTATCA	GAGCTTTCAC	CGTCCGTAGC	ATCGGCCCCG	GACGGTTCAA	TCCGGATTCC	2040
GACAATCAGT	ATTCCTATTT	GGATCAGGTG	GGCGAATTCA	AACTCGAAGC	CAACGTGGAA	2100
TATAGAGGCA	AGCTTTTCGG	GGATCTCCAC	GCAGCCGTTT	TCCTCGATGC	GGGCAACGTT	2160
TGGCTCTTGA	GGGAGGATTC	TTCCCGTCCG	GGCGGTGCTC	TGTCCGAAGT	GGGATCGGTG	2220
AGCAATTTCC	TGAATAGCAT	CGCTCTCGGC	ACCGGTGTCG	GCCTTCGCTA	CGATCTGGCA	2280
${\tt TTTCTCGTGG}$	TTCGTGTCGA	TGTCGGCTTC	GGTCTCCACC	TTCCTTACAA	TACGGGTAAG	2340
AAAGGTTACT	ACAATATCCC	ACGCTTTAAG	GATGCCATCG	GTTTCCATTT	GGCTGTCGGC	2400
TATCCCTTC						2409

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2349 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2349
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63

TCTCTCTCCC CGTATATCCC	TTTTCCTATG	TCCTCGCATT	CCGTTCGGTA	TCTAATCGGC	60
ATTGCCGGCT GCTTGCTCCT	CATGCTTGCT	TCCTCCTGCT	CGGTCACCCG	TTATGTGCCG	120
GACGGTAGCA GACTATTAGA	CAGGGTAACG	ATCGCAAGCG	AAACGGGCAG	TATCGCTCTG	180
CCGGAAGATA TTCGGGACTA	TACCCTCCAG	CAACCCAATT	ACAGACTGTT	CGGGATGACT	240
CGCTGGCTAC TGCGCGTCTA	TAGCAGCTCG	AATCCGAACA	GCAACAGCTG	GTGGAACCGT	300
TCGCTCCGGA AAATGGGCGA	ACCGCCTGTC	CTCATCGATT	CTGTCCTCAC	CGATCGTACT	360
GCCAACCGTC TGGCAAAGGC	GATGGCCGGC	GATGGCTTTC	TCGATGCTAC	TGCTCGTGCC	420
GTGGTAGACA CCGGCTTGTA	CAAGAAAGCT	CGCATTACTT	ATCTGATTCA	GCCCGGAAGC	480
CGTTATTATA TACGCAATAT	GGCTTTGGAT	GTGAAGAATC	CACTCCTTCC	TCCCGTTGCG	540
CTTGGCAATT CGCTTCCTTC	GGCATACAAG	GTCGGGATCA	GCGAGGGTTC	TCCCTTGTCG	600
CCCATCGTAC TCGATGAAGA	GAGAAAGGCG	ATAGCTCGTC	ATATGCGCAA	CAACGGCTTC	660
TGGAAGTTCT CCGCCGAGGA	TGTTTATTAT	GAAGCAGATA	CTACCGTTTC	AGGAGGATCG	720
GGTACGAAAT CTGCCGATCT	GAAATTAGTG	GTCAATGGCA	TCGGGCGTTA	TCCATATCGG	780
ATCGGCAGGG TATTCTTTCA	TGCCGATTAT	GATCCTCTCG	AATCGGACTT	CAGAGTTCAG	840
GAGCTGCCAC GTATCGATTC	GATTTCGCGT	GGCGATTACA	CTGTTTACTA	TGGGAGTAGG	900
GGACGTTATA TCCGGGCATC	GGCTCTCACG	CGGTCGGTGT	CCGTTACACC	GGGAGCTTTT	960
TTCTGCGAGG ATGATGTGGA	ACGCTCTTAT	ATCAAGCTGA	ATGCGCTCCC	TATCGTTCGG	1020
AACGTGAATA TCCGATTTGT	GGAGCACAAT	GGTAAGGATG	AGATTGCTCT	GGCGGATAGC	1080
TCTCGCCTTG TGGACTGCTA	TATTCTTACC	GTTCCGGCCA	AGAGCAAATC	GTTCGAAGCC	1140

GAAGTCCTCG	GCACCAATTC	CGCTGGAGAC	TTCGGGGCGG	CTTTGTCTCT	CGGTTTCACC	1200
GATCGCAATT	TGTTTCGTGG	GGCGGAGATG	TTCAATATCA	AACTCAAGGG	TGCTTACGAA	1260
GCCATTCGCA	AGGGTTCGCA	CAGCTTCATG	GAATATGGGG	TGGAAAGCTC	GCTCCGTTTC	1320
CCTCGTCTCC	TCTTCCCATT	CATTTCTGAC	GAAACGCGCC	GGCGGCTACG	GGCATCCACG	1380
GAATGGAAGA	TCGGGTATAA	TTACCAGACA	CGTCCGGAGT	TTGATCGGGT	GATTCTCTCC	1440
GCTCAACTCA	ATTATTCATG	GCAGACCTAC	CTGCACAATC	GTCTGCGTCA	TACGATCCGC	1500
CTGCTGGATG	TCGATTATCT	CCATCTCCCG	TACATCGATC	CCGACTTCGC	CCAATCCCTT	1560
CCGCCTACGA	CTGCACTGTA	TAACTACACG	GAGCAGTTTA	TCCTCGGCTC	GGCATATATA	1620
CTGAACTATA	CCACGGCTTC	GTCCATGGAG	CGTACCGTAT	CCAATCCTTT	TACGGCACGG	1680
TTCAGTATCC	AGACAGCCGG	CAACCTGCTG	CAAGCCATTT	CTTATCTGAC	CGATTCTCCG	1740
AAAGACGAAC	ACGGGTTGTA	TAAAATGTTC	GGTCTGCACT	ATGCTCAGTT	CGTCAAGCTC	1800
GATCTCGATC	TGGCTAAAAC	CGTTCTTCTC	GAAAAGGACA	ATACTTTGGC	ACTGCATCTG	1860
GGTTTCGGAC	TGGCTTTCCC	TTATGGCAAT	GCTCGCCATA	TACCCTTTGA	GTTACGTTAC	1920
TTTGCCGGAG	GATCGAACAG	CGTTCGCGGC	TGGAGTGTCC	GTACCCTCGG	CCCGGGGAGT	1980
ATGAAGATGA	CTCCGGACAA	GACCTTCTTC	GATCAGATGG	GTGATATTCG	TCTGGATCTG	2040
AATGTCGAAT	ACAGGACAAA	GCTGTTCTGG	AAGTTTCGCG	CAGCAGCTTT	TGTCGATGCC	2100
GGCAATGTCT	GGACGATAAA	GGAGTATGAG	AATCAGGAGG	ACGGTCTCTT	TCGTTTCGAT	2160
CGCTTCTACA	AGGAAATAGC	TTTGGCCTAC	GGTCTGGGGC	TTCGTCTCGA	CTTCGATTAT	2220
TTCCTTGTGC	GGCTGGATGC	CGGACTGAAA	GCCTACGATC	CTCAGCAGAC	AGGGCGTTAC	2280
AAATGGGCTA	TCACACGCCC	AAACCTTTCT	TCCAATTTCG	CTTGGCACAT	TGCAGTAGGC	2340
TATCCGTTC						2349

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2625 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2625
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64

GTCGAATCTA	AATTGTTATG	TCTTATGAGA	AAAAGAATTC	TACAACTTTT	CCTGACCGCA	60
TTGCTGCTGG	CATTAGGCTC	CTCTCTCGCC	ATAGCGCAAA	CAGTGGTGAC	CGGTAAGGTG	120
ATCGATTCAG	AAACGTCCGA	ACCGCTCATC	GGTGTATCCG	TAAGCACCGG	TCAGGGAGCA	180
TCCCTCCGCG	GTGTAACCAC	CGATATGGAT	GGTGGCTTCC	GATTCGAAGT	ACCGGCCAAA	240
TCTGTCTTGA	CTTTCCGTTG	CGTAGGTTAT	GCTACCGTAA	CTCGCTCTAT	AGGCAGAGGT	300
TCTCAAGAAG	ACCTCGGTAC	GATTCTCCTC	GATCCCCAGG	CCATCGGCTT	GGATGAGATT	360
CAGGTAATAG	CCTCTGTGGT	GCCCAAAGAC	CGTATGACGC	CGGTACCCGT	TTCCAATATC	420
CGTGTGGCTG	ATATTCAGGC	AGCATCGTTG	AATGTCGAAT	TTCCCGAACT	GGTTAAATCC	480
ACTCCCTCTA	CCTATACGAC	AAAAGGAAGC	GGAGGTTTCG	GTGATGGTCG	TACCAATGTG	540
CGTGGATTCG	ACACTTACAA	CTTCGGTGTA	CTCATCAACG	GAGTTCCTGT	CAATGGTATG	600
GAAGACGGGA	AAGTATATTG	GAGCAATTGG	AGTGGTCTGA	TGAATCAAGC	CAGTACCATT	660
CAGATTCAGC	GCGGACTCGG	AGCCTCCAAG	CTCGGTATCA	GCTCGGTAGG	TGGTACGATG	720
AACATTATCA	CGAAGACTAC	GGACGCCAAC	ACCGGAGGTT	CGGCTTATGT	CGGTATGGGT	780
AATGATGGAT	TGCACAAAGA	ATCGTTCTCC	ATTTCTACGG	GTATGAACGA	CGGTTGGGCT	840
ATCACCATTG	CAGGCTCCCA	TATGACGGGT	CTGGGTTATG	TGAAGGGGCT	GAAGGGACGT	900
GCATTCTCTT	ACTTCTTCAA	CGTTTCGAAG	AAGTTCAATG	AACGTCATAC	CCTCTCTCTT	960
ACCGGATTCG	GTGCACCACA	ATGGCACAAC	CAACGTTCTT	CCAAATATTC	TGTAGCCGAC	1020
TATGACAAAT	ACGGCATCCG	TCACAATCAA	TCCTTCGGCT	ATCTGCGAGG	CGAACTGACT	1080
CCTACGGCTT	ATGCTTACAA	TACGTACCAC	AAGCCCCAGT	TCTCGCTGAA	CCACTTCTGG	1140
AAGATGGATG	AAAATACCTC	TCTTTATACc	gCANCCTACG	CATCTTTGGC	TACCGGTGGA	1200
GGTCGTCGCG	CTTATGGAAA	GAACAGTAAG	TGGGTATTGA	TCAACTACAA	CACCGGACAA	1260
CCCTATGAAC	AAACAAAGGT	GACTCCCGAT	GGACTTATCG	ACTACGATGC	CGTACTGGCT	1320
GCCAATGCTG	CGGCGAGCAA	TGGCTCGGAA	GCAATTTTTG	CCCTTGGCTC	CAACTCTCAC	1380
AAGTGGTTCG	GTCTACTCTC	TTCATTCAAG	AAGAAACTTA	ATAGTTCGCT	GACTTTGACA	1440
GCCGGATACG	ATGGGCGTTA	CTACCGTGGC	GACCACTATG	ACAAGATCAC	CGATCTGCTC	1500
GGCGGTAGCT	ACTACATAGA	GGATCCCAAG	ACAAAGCTCG	CATACCATGC	GGAAGGTCAG	1560
CAACTGAAAG	TGGGTGACAT	TGTAAATCGG	GACTACACAG	GCGAAATCAT	GTGGCACGGC	1620
CTCTTCGCAC	AGATGGAGCA	TTCGTCCGAA	TGGATCGATG	CATTCGTATC	AGGATCTATC	1680
AACTACGAAC	TATACCGCAA	TCACAACTAT	GGCGGTAGCA	AGTCCACCGG	CTACCTGCCC	1740
GGCGTATCGC	CGTGGAAAAG	CTTCCTTCCG	TGGAGTGGCA	AGGCAGGTCT	GAGCTACAAG	1800
TTCGCACAGG	GACACAATGT	ATTCGCCAAT	GGCGGTTTCT	TCACACGTGC	ACCACTCTTT	1860

GGCAATATCT	ATGCTGCGGG	GGCTATCATT	CCCAATGACA	AAGCCAATAT	GGAAAAGGTG	1920
CTTACAGGAG	AGGTCGGCTA	TGGATTCACG	AATCACAAAA	ACTTCGAGTT	CAATATCAAC	1980
GGATACTATA	CGAAGTGGAT	GGATCGCGTG	ACCTCGAAGA	GAATCGGAAA	CGAGTATGTT	2040
TATCTCAATG	GCGTTGATGC	TGTTCACTGT	GGGGTAGAGG	CTGAGGTCAG	CTATCGTCCT	2100
ATTCGTCAGA	TCGACCTTCG	CGGTATGTTC	TCTCTCGGTG	ACTGGACTTG	GCAAAACAAT	2160
GTAAGTTACA	CTTCTTACGA	CGAAGCCGGC	AATGAGACAG	GGCAGGATAT	AACCTATATC	2220
AAGGGTCTTC	ACGTCGGAGA	TGCAGCACAG	ATGACGGCTG	CTGTATCGGC	AGACATAGAG	2280
CTGTTCAAGG	GTTTCCATGT	CATAGGTAAG	TACAACTTCC	TTGGCAAGAA	CTATGCAGGA	2340
TTCAACCCCG	CAACGCGTAA	TGCACAGCAG	TACGAAGCGG	ATGGCAAAGA	AATCGTGGAA	2400
TCATGGAAGT	TGCCCGATGT	AGGTCTGTTC	GATCTGTCTG	CATCCTACAA	TTTCAAGCTT	2460
GGTTCACTCA	GCACCACATT	CTATTTCAAC	ATGGACAACG	TAGCCGACAA	GCGATATGTG	2520
AGCGATGCCG	ACGACAATAT	CATCGGTAAG	AAACACGATG	AGGCTTCGGC	TCTCGTATGG	2580
TACGGTTTCG	GCCGCACTTG	GTCTACCGGT	ATTCGTGTAA	ACTTC		2625

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1380
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65

```
AACAGATGTA ATCCCTCGCG TCAATACTTC CACCTATCGC AGAATGACGT TGGAAGATCT
                                                                       60
CTCCGAGCTT TTCTAATCCA TCTATCTATG AAGTTTTCAA TCCGCCTTTT CCTCTGCATC
                                                                      120
ATCTTTCTCC TCTCTGCATT TATCCTGCCT GCTCTCGGAC AAAAATCCAA GCAGGTACAG
                                                                      180
CGACTTGAGA AGCAACGTAA GGAGGCCCTC AAAGCCATCG AAAAAACCGA TCGCGAACTA
                                                                      240
CGAAATACCA AGAAAGACAA GCAAGACAAA CAAAAGCATC TCAACCTCCT GAACAAGCAG
                                                                      300
GTTGCTCAAC GCAAGCAGAT GGTACAACTC TTGGACAATG AGGTCAAAGA GTTGCAATCC
                                                                      360
GACATTGATT CCATGACGGG TGTATGTCAT CAGCTCTCTG TAGAAGAGAA AGCCCGATCC
                                                                      420
GATGAATATG CCCAAGCTCT ACAGTCTATG CAAAAGCGGA AACGCTCGTT GGATCGCATC
                                                                      480
CTTTTCATTT CATCGGCCAA GAGCTTTGAC GAAGGCATGC GACGGATGCG TTTCTTGGAA
                                                                      540
CAATACGCTT CTGCATACAA GCTGGCATCT GTCCGGCTGC GCGATACACG TAGCAAGTTG
                                                                      600
GAGACTGAAC GTGCGACTGT AGAAGACGCC AAAAAGGAGA AAGGACATCT CTTAGTCATC
                                                                      660
AGAGAAGAG AAAAAAAGAA ACTCGAAGGA CAGCAAGCCG AGCAACGTCG GCAGGTGCAG
                                                                      720
GCTTTGGGAG CCAAACAAAA AGACTTGGAA GCGCAGCTGC GAAAGCAGAA AAAGCAAGCC
                                                                      780
GAAGCTCTGA ACAGAAAGAT CGAGAAACAG ATTGCCAAGG AAATAGAAGC TGCCGAACGT
                                                                      840
CGTGCTCGAG AAGAACGTGA ACGGTTGGCA CGCGAAGCCA AAGCCAAGGG TAAGCCGGTT
                                                                      900
CCTGCCGAAC CGGAACGGAA GGCGGAGACC AAAGGCGGCT ATGCTATGGA TGCCTCTGAG
                                                                      960
CGTGCTCTCT CGGGCAGCTT TGCACAGAAC AAAGGTCGCC TGCCCGGCCC CGTTCGCGGC
                                                                     1020
AGATACCGAA TCGTAAGCGA CTTTGGCGTG CATCAGCACA GTGAGCTGAA AAAAGTACAA
                                                                     1080
GTTAATAATG GAGGTATCGA CATCGCTGTA GCAACAGGAT CCGATGCTAC CAGCGTATTC
                                                                     1140
GATGGTGTAG TGTCCAGTGT ATTCGTGATA CCCGGTTATA ATTCGGCCGT AATGGTTCGT
                                                                     1200
CACGGTAACT ATATCACGGT TTATGCGAAT CTGAGCAAAG TGTATGTAAA TTCCGGCACT
                                                                     1260
CGTGTTAAAA CGGGTCAGGC TCTTGGTCGT GCCTATACGG ATCCTTCCAA CAACCAGACC
                                                                     1320
ATTATTCACT TCGAAATCTG GAAAGAACGC AGCAAACAAA ACCCAAGACT ATGGTTACGA
                                                                     1380
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1026 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1026
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66

AGTTTTTATC	AAGAAATAGA	CAGACTTATG	AAAAAGTATT	TGTTATATGC	CTCGTTGCTA	60
ACGAGTGTTT	TGCTCTTTTC	CTGTTCAAAG	AACAATCCTA	ACGAGCCGGT	GGAAGACAGA	120
TCCATCGAAA	TTTCTATAAG	GGTAGATGAT	TTCACCAAAA	CGGGTGAGGC	AGTACGCTAT	180
GAAAGGAATC	AAGGAAGTGC	TGCCGAAAGG	CTCATTACCA	ATCTTTACCT	CTTGTTGTTC	240
GATCAGTCAG	GGGCGAATCC	GGCGAAATAC	TATATTACCG	GTAACACTTT	CACCGGAGGG	300
ACCTGGCTTC	CTGACGATAT	GAAGGTGAAG	TTGGATATGA	CACAATCCGA	GGCCGGAGAG	360
CGCAAAGTAT	ATGTCGTAGC	CAATGTTGAT	AATGCGGTTA	AAACGGCTCT	TGATGCTGTC	420
GCTAACGAAA	GCGATTTGCA	GACTGTAAAG	AGGACGACTG	CAATGCCGTG	GTCGACCGAT	480
ATAGCCTCTC	CTTTCCTGAT	GTCCGGAAAC	AAGACACACG	ACTTCTTGGC	CAATCGTCTT	540
TTGGACAATG	TGCCCCTTGT	GCGTGCCATT	GCCAAGGTGG	AGCTGAATAT	CTCGCTGAGT	600
GAGAAATTTC	AGATTGTGCC	GATAATTGTC	AATGGTAGTT	TGAGTGAGTT	CAAGTTCAGA	660
TACGTAAACT	TCGACAAGGA	GACCTACGTA	GTGAAGCCAA	CGACCAAGCC	GGACAATCTC	720
ATTAGTTCTG	CTAATGGTGT	TTGGCCTCAG	ATTACAGATT	GGACTGTATG	GGGTGCTTCC	780
TTAAATACTT	CTCCTGCTCC	GGATGCGGGC	ACAGGTTATA	CATTGGATGC	AAATGGCAAG	840
GTAACGGCAC	TACGGATTGT	TACCTATCTG	AATGAGCGCG	ATAGCAAAGG	GGCTACGGTA	900
GAGGTCGCAT	TGCCTCGTGT	GGATGATGGC	ACCCTTCCTC	CTCCGGAATT	CGGTCCGGAG	960
CTTTATCGTT	TGCCTTTGCC	GGACAAGATC	CTGCGCAATC	ATTGGTACAA	GTATGAAGTC	1020
GAGATT						1026

- (2) INFORMATION FOR SEQ ID NO:67
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 987 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...987
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67

AACCTTAGGA	CACAGCCTTT	CTTTTTGGTA	GATTTGCAAT	CTATGATCAG	AACGATACTT	60
TCACGATATG	TATCCTCGAA	CTTTTGGAGT	CGGGGAGCTA	CCTTTTTTTT	CACGATTTTC	120
${\tt CCGGCCTTCA}$	TCCTCGCCGC	TACTGCTTTG	CCGGCTTGTG	GAGGGGGTAC	TGCTTCAGGC	180
${\tt TCCGATCGTA}$	CGCTGGCTGT	GACCATCGAG	CCACAGAAAT	ACTTCATCGA	GTCCATTGCG	240
${\tt GATAAGTCGG}$	TGCAGGTGGT	GGCATTGGTA	CCGGCCGGCA	GCAATCCGGA	GGAATACGAC	300
CCTTCGCCTA	CCGTGATGAA	${\tt GCGTTTGTCC}$	GAAGCAGATG	CCTACTTCTA	TATAGGAGGA	360
${\tt CTGGGGTTCG}$	AGCAAAGAAA	TCTCGCTGCC	ATTCGGGACA	ATAACCCTAA	GCTCCCTCTT	420
${\tt TTCGAAATGG}$	GCAAAGCCTT	GGCGGATGCC	GGAAGTGCAG	ATCTCCACGG	CTCCTGCACA	480
GATCATTCTC	ATACAGACCT	GCATGCCCAT	GATCCGCACT	ATTGGAGCAG	TGTGGTAGGG	540
GCAAAGGCAC	TCAGTCGTGC	TGCATACGAC	GCGCTTGTGG	AGCTTTATCC	GAACGAGAAA	600
GACAAATGGG	ACAAAGGGCA	CGACCGTCTC	AACGGACGTA	TCGACAGCGT	GAAGAGACTC	660
GTCGATACCA	TGTTTGCCAA	TGGCAAAGCA	GACAAAGCCT	TCGTCATATA	TCACCCATCG	720
CTCAGCTTTT	TCGCCCAAGA	GTTCGGCCTG	CGGCAGATCG	TCATAGAGGA	AGATGGGAAA	780
GAGCCTACGG	CTGCCCACCT	TCGTCGTGTG	ATCGATCAGG	CACGTGCCGA	TGGTGTCAGA	840
ATCGTATTTA	TCCAACCCGA	ATTTGAAACG	CGTCAGGCGG	AGGACATCGC	ACGCGAGATC	900
GGTGCTCGTC	CGGTAAGGAT	CAATCCTCTG	CGCAGCTCGT	GGGAGGAGGA	AATTTTACAT	960
ATTGCTCGCG	CTTTGGCTCA	TGAACGG				987

- (2) INFORMATION FOR SEQ ID NO:68
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2634 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2634
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68

GCAGATTCTA	TTCGATATCC	TCTTTACTTT	TTTGGGCGGA	ATCGGAAGAA	ATGCTTTAGG	60
GAACCTATTC	CCACCTTATA	CAATAAAAAC	ATGATCGGAA	AAAAAATCTT	TTTTATCCTG	120
CTGGCGCTCA	TTGCGTTCAG	TGGGCTGAAC	GCAGCGACAG	ACACTGAGTT	CAAGTACCCG	180
ACCGATGCCA	ATATCATCGG	TCACGTCAAA	GACAGCAAGA	CGGGTGAACA	CCTTGTCGGT	240
ATCACTATTG	CTATCAAAGG	CACTACCTTT	GGTACATCTA	CAGATGCAAC	CGGGCACTAC	300
TATCTTCGTA	ACTTGCGTCC	GGGTGAGATC	ACTTTGATTA	TGCGTGGCAT	GGGCTATAAG	360
AGCCAGGAGC	GCGTAGTCCG	CGTAGAAAAG	GACAAGACTA	TCGAGGTGAA	TTTCGAAGCA	420
GAAGAGGATG	CCATCAATCT	GGACGAAGTC	GTGATTTCGG	CCAACCGCGA	ACTGACGCTT	480
CGCCGTCTTG	CTCCTACTCT	GGTAAATGTA	TTGAACGAAA	AAGTCTTCTC	GCAAGTCAAT	540
GCTTCTAACC	TGGCTCAAGG	CTTGTCATTC	CAGCCGGGAG	TTCGTGTAGA	GAACAACTGT	600
CAGAACTGTG	GTTTCAATCA	AGTTCGTATC	AATGGACTGG	ATGGTCGTTA	TGCACAGATC	660
CTCATCGACA	GCCGTCCCAT	CATGAGTGCC	CTTGCCGGTG	TTTACGGTCT	GGAGCAGATC	720
CCTGCCAATA	TGATCGAACG	TGTGGAGGTA	GTACGTGGTG	GAGGATCGGC	CTTGTACGGT	780
TCTTCTGCTA	TTGCCGGAGT	GGTGAATATC	ATCACCAAGG	AACCTTCTCA	CAATTCTTTC	840
ACATTCAATG	AATCTCTGAG	CTTTACCGGT	TTCAGCAAGC	TGGATAACAA	CACGAACTTC	900
AATGCCTCCA	TCGTCAGCGA	TGACAACCGT	GCCGGTGCCA	TGGTATTCGG	GCAGGCTCGT	960
TACCGCAACC	ATTGGGATGC	TAACAATGAC	GGTTATTCCG	AATTGGGTAA	AATAGATGCC	1020
CGCTCGCTGG	GAGCGCATTC	TTATTTGCGC	TTGAGCGACT	ACAGCAAATT	GACGGGAGAG	1080
TTTCACACGA	TCAGTGAATT	CCGCCGTGGT	GGCGATCGTA	TCGATTTGCC	TCCTCACGTA	1140
GTGGGTGTAG	CTGAACAAAC	TGACCATAGC	GTATTTAGCG	GAAACTTGAA	ATACGATCTC	1200
TTCTCTTCCA	ACTATAAACA	CCACTTCCAG	GCTTATACTT	CCGGACAGAT	CGTAAATCGC	1260
AAGAGCTATT	ACGGAGGTAT	CGGAGAGATT	GACGTCAATG	GCCACCCGG	TGGTACGGAA	1320
GGCTACCCTA	TCCCTCAAGA	TCAATACGGC	AATAATTATG	GCGTGACCAA	AGGCAAGACA	1380
TATATGGGCG	GTATCCAGTA	CAGCTACGAC	TTGGACAAAT	TCCTCCTCAT	GCCTTCGCAA	1440
CTTTTGTTCG	GAGCCGAATA	TACGCGTGAT	GAACTCAATG	ACGTGATGCC	CATCCTTTCA	1500
TGGCAGACCG	GCGAGGATGC	CAATGGGAAT	ACCATTCCCC	TCTATCCCGA	ATTGGATCAG	1560
AATATCAACA	ACTACAGCCT	ATTCGGTCAG	AACGAATGGA	AAAATGACAG	ATGGAGCATC	1620
CTTGTTGGCG	CTCGCTTGGA	CAAGCATAGC	GAAGTCAAGG	ATATGATTCT	GAGTCCTCGT	1680
ACCACACTGC	GTTTCAACGT	GAATCCGGAC	ATCAACCTGC	GCGCTACATA	TGCAAAAGGG	1740
TTCCGCGCAC	CGCAGGTATT	CGATGAAGAC	TTGCACGTAG	GGGTTGTAGG	CGGTGAGGCA	1800
CAGAAAGTAT	TCAACGATCC	GAACCTCAAG	CCTGAAATTT	CTCATGCATT	CAGTTTGAGT	1860
GCCGATATGT	ATCATCGTTT	CGGTAACGTC	CAGACCAACT	TCCTTGTGGA	AGGCTTCTAT	1920
ACTCGTTTGC	TGGATGTATT	CACCAACGAG	GAGCAGCCTG	ATCAGCACGA	TGGCATCAAA	1980
CGCTACACGC	GTATCAACGG	TAGCGGAGCC	AAAGTATTCG	GTCTCAATCT	GGAAGGTAAG	2040
GTCGCATACA	AGTCCTTCCA	GCTCCAAGCC	GGTCTTACCC	TGGCCAGCAA	CAAATACGAC	2100
GAAGCACAGG	AGTGGGGTCT	GAATACGGTG	AAAGACACCA	ACGGAGCTTT	TGTTACCGAG	2160
GCCAATGCAA	ATGGACAACA	GGAATACAAG	AACGAATCCA	TGACGGATAC	GCAGATCACC	2220
CGTACCCCCA	GCGTATACGG	TTATTTTACT	TTGGCCTACA	ATCCTGCTCA	CTCATGGAAC	2280
ATAGCCCTTA	CGGGAGCATA	TACCGGTCAG	ATGTATGTAC	CCCACGCTAT	CGAATATGGT	2340
${\tt GTGAAGTCTG}$	CCGAACTGGA	TATTATGCAG	AACAATCCTG	AGATTACCGA	CGAAACCGGA	2400
AAGGCTCCCC	GTATTGATGA	GCTGAAGAAG	ACACCTGCAT	TCTTCGATTT	GGGCTTGAAA	2460
GTGGGTTATG	ACTTCCACGT	ATTCCAGGCT	ACTGAGGTTC	AACTCTATGT	AGGTATGAAC	2520
AATATCTTCA	ACTCTTTCCA	GAAGGACTTC	GATCGTGGAG	CTGCACGTGA	CAGCGGATAT	2580
ATCTATGGTC	CTACGCAGCC	GCGTACAGGC	TACATGGGCT	TGGTAGTGAA	GTTC	2634

- (2) INFORMATION FOR SEQ ID NO:69
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 618 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...618
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69

TTGCAACTAT ACAACAAGAT ACTCTATGGA GAGTCGGCGG CGGATACCGT CGCAGAGAAA ACGGCAGGTG AGTCGGCATT TCCTTTTATA GACAAACTCA TCAATCTCGG CCGCACTTTC CTCGGCAAAC CATATCGCTA TCGCGGTCCT TCCCCATGGC CGATGGACTG CTCGGGCTAT GTGTCTTACC TCTACTCCAA ATTCGACATC AAACTCCCAC GTGGTGCGGC AGCACAGAGC CAATATACGA ATCCTATCGA GCGCGAGGAT GTTCGTCCGG GCGACCTCCT TTTTTTCAAA GGCCGCAATG CACGCAGCAA CCGTATCGGG CATGTAGCTT TGGTCGTATC TGTCGATGAA GATGATATTA CCATGATGCA CAGCCGCAAT TCGCGAGGGA TCGTGATCGA AAAACTCAAT CGCAGTGCAT ACTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCG AGCCAAGAGA 600	AAACAGATAG	TTATGACAGT	AAAGCGCGCA	GTGCGAATAG	CACTTCTCAC	GCTGATAGGC	60
ACGGCAGGTG AGTCGGCATT TCCTTTTATA GACAAACTCA TCAATCTCGG CCGCACTTTC 240 CTCGGCAAAC CATATCGCTA TCGCGGTCCT TCCCCATGGC CGATGGACTG CTCGGGCTAT 300 GTGTCTTACC TCTACTCCAA ATTCGACATC AAACTCCCAC GTGGTGCGGC AGCACAGAGC 360 CAATATACGA ATCCTATCGA GCGCGAGGAT GTTCGTCCGG GCGACCTCCT TTTTTTCAAA 420 GGCCGCAATG CACGCAGCAA CCGTATCGGG CATGTAGCTT TGGTCGTATC TGTCGATGAA 480 GATGATATTA CCATGATGCA CAGCCGCAAT TCGCGAGGGA TCGTGATCGA AAAACTCAAT 540 CGCAGTGCAT ACTTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCGG AGCCAAGAGA 600	ATTCTTTTTT	CCTCACCTTC	TCTTGTTCGG	GCGCAAAGTC	TTTTCAGCAC	CGAACATGTC	120
CTCGGCAAAC CATATCGCTA TCGCGGTCCT TCCCCATGGC CGATGGACTG CTCGGGCTAT 300 GTGTCTTACC TCTACTCCAA ATTCGACATC AAACTCCCAC GTGGTGCGGC AGCACAGAGC 360 CAATATACGA ATCCTATCGA GCGCGAGGAT GTTCGTCCGG GCGACCTCCT TTTTTTCAAA 420 GGCCGCAATG CACGCAGCAA CCGTATCGGG CATGTAGCTT TGGTCGTATC TGTCGATGAA 480 GATGATATTA CCATGATGCA CAGCCGCAAT TCGCGAGGGA TCGTGATCGA AAAACTCAAT 540 CGCAGTGCAT ACTTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCGG AGCCAAGAGA 600	TTGCAACTAT	ACAACAAGAT	ACTCTATGGA	GAGTCGGCGG	CGGATACCGT	CGCAGAGAAA	180
GTGTCTTACC TCTACTCCAA ATTCGACATC AAACTCCCAC GTGGTGCGGC AGCACAGAGC CAATATACGA ATCCTATCGA GCGCGAGGAT GTTCGTCCGG GCGACCTCCT TTTTTTCAAA 420 GGCCGCAATG CACGCAGCAA CCGTATCGGG CATGTAGCTT TGGTCGATGAT TGTCGATGAA GATGATATTA CCATGATGCA CAGCCGCAAT TCGCGAGGGA TCGTGATCGA AAAACTCAAT CGCAGTGCAT ACTTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCGG AGCCAAGAGA 600	ACGGCAGGTG	AGTCGGCATT	TCCTTTTATA	GACAAACTCA	TCAATCTCGG	CCGCACTTTC	240
CAATATACGA ATCCTATCGA GCGCGAGGAT GTTCGTCCGG GCGACCTCCT TTTTTTCAAA 420 GGCCGCAATG CACGCAGCAA CCGTATCGGG CATGTAGCTT TGGTCGATGAA 480 GATGATATTA CCATGATGCA CAGCCGCAAT TCGCGAGGGA TCGTGATCGA AAAACTCAAT 540 CGCAGTGCAT ACTTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCGG AGCCAAGAGA 600	CTCGGCAAAC	CATATCGCTA	TCGCGGTCCT	TCCCCATGGC	CGATGGACTG	CTCGGGCTAT	300
GGCCGCAATG CACGCAGCAA CCGTATCGGG CATGTAGCTT TGGTCGTATC TGTCGATGAA 480 GATGATATTA CCATGATGCA CAGCCGCAAT TCGCGAGGGA TCGTGATCGA AAAACTCAAT 540 CGCAGTGCAT ACTTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCGG AGCCAAGAGA 600	GTGTCTTACC	TCTACTCCAA	ATTCGACATC	AAACTCCCAC	GTGGTGCGGC	AGCACAGAGC	360
GATGATATTA CCATGATGCA CAGCCGCAAT TCGCGAGGGA TCGTGATCGA AAAACTCAAT CGCAGTGCAT ACTTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCGG AGCCAAGAGA 600	CAATATACGA	ATCCTATCGA	GCGCGAGGAT	${\tt GTTCGTCCGG}$	GCGACCTCCT	TTTTTTCAAA	420
CGCAGTGCAT ACTTCTCCCG TCGCTTGGTG AGCTATGGCA GGGTACCCGG AGCCAAGAGA 600	GGCCGCAATG	CACGCAGCAA	CCGTATCGGG	CATGTAGCTT	TGGTCGTATC	TGTCGATGAA	480
	GATGATATTA	CCATGATGCA	CAGCCGCAAT	TCGCGAGGGA	TCGTGATCGA	AAAACTCAAT	540
GTGATCCCAC GAAAAAGT 618	CGCAGTGCAT	ACTTCTCCCG	TCGCTTGGTG	AGCTATGGCA	GGGTACCCGG	AGCCAAGAGA	600
010	GTGATCCCAC	GAAAAAGT					618

- (2) INFORMATION FOR SEQ ID NO:70
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1401 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1401
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70

AAAGGTACGT	GGAATAGAAA	AAACCGAAGA	GAAGAAATGA	AACGGACAAT	CCTCCTGACG	60
GCACTGACCG	TCCTATCTTC	GCTCTCCTTG	CTTCGTGCAC	AAAATGAATC	CGAAGCATCA	120
ACCAATCCGA	TGTCAGGCCT	CTCCCTGGAA	GACTGTATCC	GGATAGCCAA	GGAGCGCAAC	180
CTGAATCTGC	GCAGACAGGA	GATCGAACAA	GAAAACCGAA	TCATTAGTCT	CGATGCAGCA	240
CGACACAGTT	TCCTGCCCTC	GGTCAATGCA	GGCATCGGAC	ACAACTATAG	CTTCGGACGT	300
TCGAAAGACA	AAACGGGAGT	AACCGTAGAT	CGCTCCTCGA	TGAATACCAA	TCTCAGCATC	360
GGAGCTTCGG	TGGAAGTATT	CAGCGGCACA	CGTCGTCTGC	ACGACCTCAA	GCAGCAAAAG	420
TACAACGTGG	AGGATGGTAT	AGCCCGACTT	CAAAAAGCGC	GTGAAGACCT	CAGCCTGCAA	480
ATCGCGGCTC	TCTATATCAA	TTTGCTCTTC	CGTCAGGAAA	TGACTCGTAC	GGCAGAAACA	540
CAGTTGGCAC	TGATTCGCGA	GCAACGCAAT	CGCACGGCCG	AAATGGTTCG	CGTAGGTAAA	600
TGGGCAGAGG	GTAAGCTCCT	CGACATAAAT	GCCCAGATGG	CCAAGGACGA	ACAACTTCTC	660
GTACAATATC	GTTCGGAGGA	GGAGCTGGCT	CGTCTGGACT	TGGGGCAAGC	CCTCGAACTG	720
GAGCACCCCG	AAAGCATTGC	AGTCAAGGCT	CCCGACACAG	ACGTTCTCGT	AGCAGAAAGG	780
TTGGGATCTC	TCCTTGCTCC	CGAAGAGATC	TATCGCACGG	CTCTCGGCTT	GAAACCGGCA	840
CTGCATTCGA	GCGAGCTGCA	AATAGCTTCG	GCACGCGAAG	GTCTGGCCTC	GGCTCGTGCG	900
GCATACTTCC	CGACGCTCAG	CCTCTCTGCC	GGATACAGCA	ACGGTTACTT	CCGCGACCTC	960
GGCAAGGAGT	ATGCCGCCAT	CAACCCCTCC	TTCTCCGAAC	AGTGGAAGAA	CAACGGCAGC	1020
TACAGTATCG			ATCTTCTCTG			1080
			AGCGAGCTTC	GACTCGTCGA	AGAGAAAAA	1140
GCCCTCTATA	AAGAGATCAG	GCAAGCATAC	AGCAATGCCG	TGGCAGCCGA	TAAGGCCATC	1200
GCAGCAGCCG	AAAACAGCAA	GGCCGCTACG	CTCAAGGCAT	ACGAATACGC	TCGCGACAGC	1260
TTCGAGGCAG	GGCGCTTGTC	TGCCTACGAA	TATGCCGAGG	CAAAAACAAA	ATACGCCCTC	1320
AGCCAAGTGG	AAGAACTTCG	TGCCAAGTAT	GACTTCATAT	ACAAAGCCAA	AGTTTTGGAT	1380
TTCTATCAGG	GCAAAGACTT	С				1401

- (2) INFORMATION FOR SEQ ID NO:71
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1353 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1353
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71

AAAACATCAT	ATCGGAATAA	TATGCGTTTC	CAACATTATC	TCATCTGTAC	GGCTGCCGTA	60
GCGGCTTTGG	CTGCGAATCC	CCTTACGGGC	CAATCGAATA	TGACCCTCGA	AGAGTGCATA	120
GACTATGCAC	GCCGGCACAG	TTCGGCCGTG	GCGCTGTCCG	CTGCGGAACT	GGAGCAGTCC	180
AAGGCCGATT	ACCTTCAGGC	CGTCGGCAAT	TTTCTGCCCC	GTGTATCGGC	CGGAACCGGT	240
GCTTCGTGGA	ATTTCGGACG	CGGATTGGAT	GCCGAGACGA	ATACCTACAC	CGACATCAAC	300
AGCTTCAACA	ATTCGTACAG	CATACATGCC	ACGATGACCC	TTTTCGACGG	TTTGCAGAGT	360
GTCTATCGAC	TGCGGATGGC	GCATGCACGC	CGGGAGGCTT	CGCGCCTCTC	CGTTCGCGAG	420
CAGCAGGAGC	TGGCAGCTCT	CGGCACCACG	GAGGCCTACT	ACGACCTCGT	CTATGCGCGC	480
CAAATGCAAG	AGCTGGCCAT	GCAGAAGTAC	GAGGAGAGCA	GCCGCCTCCA	CCGGCAGACG	540
GCTCGAATGG	AAGAGCTGGG	GATGAAGAGT	CGTCCCGATG	TCCTCGAGAT	GCAGTCGCGA	600
ATGGCCGGTG	ACCGTTTGGC	CCTGACTCAA	GCGGACAATC	AGTGCATCAT	CGCTCTGATC	660
CGGCTCAAAG	AAAAAATGAA	CTTCCCCATC	GATGACGAAC	TCGTCGTAGA	CGATATGCCG	720
GCTGACAGTC	TCTCCGCCGA	CATGGCCGAA	TCGGACAGCT	CGGCCGGCGT	CTTCGCCCGT	780
GCTGCCCATC	ATCATCCCGT	CCTCCTCCGT	GCCAAACTCG	ACGAGCAGGC	TGCCACCGAC	840
CGTTTGCGAG	CCGCGCGAGG	TGCATTCCTG	CCGAGTGTGT	CGGTATCCGG	AGGATGGAAC	900
ACGGGATTCT	CACGCTTTTT	GAATGGATCG	GACTATACGC	CCTTCAGCGA	GCAGTTTCGG	960
AACCGTCGGG	GGGAATACGT	CAGTCTGAAT	CTGAGTATCC	CCATCTTTTC	GGGATTCAGC	1020
CTTGTGAGCC	ATCTGCGTCA	GGCGCGTGCC	GAACGCAGGG	CGGCAATCGT	CCGACGGGGC	1080
GAAGCGGAGC	GCAGGCTCTA	CAGCGAGATC	GCCCAAGCCA	TGGCCGACCG	GGATGCCGCT	1140
CTGGCTTCCT	ACCGCCAGGC	GAAGGAGCAT	ACCGACGCCA	TGCAAACCGC	TTACGAAGCC	1200
GTCTTGCAGC	${\tt GTTATGAGGA}$	GGGGCTGAAT	ACGGCCATCG	ACCTGACCAC	TCAGGCCAAT	1260
CGGCTCCTGG	ATGCCCGTGT	GCAGCGACTG	AGAGCGGCCA	TGACCTACCG	GCTCAAATGC	1320
AAACTCATAG	CCTATTACGG	CTGCCTTTCG	GAC			1353

- (2) INFORMATION FOR SEQ ID NO:72
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2886 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...2886
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72

GCCATTTTTG TCGTATCA	TT GCAAATTGAA	AAAATAACAG	AGAATAAGTA	TAATTCAGAC	60
AAGAGCATGA ACAAATTT	TA CAAATCACTT	TTGCAGTCAG	GACTGGCTGC	CTTCGTGTCG	120
ATGGCAACTG CACTGACC	GC TTCTGCACAG	ATTTCGTTCG	GAGGGGAACC	CTTGAGTTTC	180
TCTTCAAGAT CCGCCGGA	AC GCATTCATTC	GACGATGCAA	TGACTATCCG	CCTTACTCCG	240
GATTTCAATC CGGAAGAC	CT GATCGCACAG	AGCCGTTGGC	AATCGCAAAG	AGATGGCCGG	300
CCCGTCCGGA TAGGACAA	GT AATACCGGTG	GATGTGGACT	TTGCATCCAA	GGCTTCGCAC	360
ATCTCTTCCA TCGGAGAC	GT AGATGTATAT	CGCCTGCAAT	TCAAGTTGGA	AGGAGCCAAA	420
GCCATTACGC TTTATTAC	GA TGCATTCAAT	ATTCCGGAGG	GCGGACGCCT	CTATATCTAT	480
ACCCCCGACC ATGAAATT	GT GTTGGGAGCA	TATACGAACG	CCACTCATCG	CCGCAACGGA	540
GCTTTTGCCA CAGAGCCG	GT ACCGGGGAGT	GAGCTTATTA	TGGATTATGA	AGTGTCTCGC	600
GGAGGGACTT TGCCTGAC	AT CAAGATCTCC	GGTGCGGGTT	ATATATTCGA	CAAAGTCGGC	660
GGACGCCCCG TAACGGAT	AA CCATTACGGG	ATCGGTGAGG	ACGATTCCGA	TTCGGATTGC	720

GAGATCAACA	TCAATTGTCC	TGAAGGTGCA	GACTGGCAGG	CAGAGAAGAA	CGGTGTGGTG	780
CAAATGATCA	TGGTAAAAGG	ACAGTATATC	TCAATGTGCT	CAGGCAACCT	GCTCAATAAT	840
ACGAAAGGAG	ACTTTACTCC	GCTGATCATT	TCTGCCGGAC	ACTGTGCTTC	CATAACAACC	900
AATTTCGGTG	TAACGCAATC	CGAGTTGGAT	AAGTGGATCT	TCACTTTCCA	CTATGAAAAA	960
AGAGGATGCA	GCAATGGTAC	ATTGGCCATC	TTCCGTGGCA	ACAGTATCAT	CGGAGCTTCC	1020
ATGAAGGCTT	TCCTCCCGAT	CAAAGGTAAA	TCCGATGGTC	TCTTGCTGCA	ACTCAACGAT	1080
GAAGTCCCTC	TGCGCTATCG	TGTCTATTAC	AATGGATGGG	ACAGTACGCC	CGATATTCCC	1140
TCGAGCGGTG	CCGGTATTCA	TCATCCGGCC	GGAGATGCCA	TGAAGATTTC	CATCCTAAAG	1200
AAGACTCCGG	CTCTGAATAC	ATGGATCTCC	TCCAGTGGTT	CCGGAGGGAC	TGACGATCAC	1260
TTCTATTTCA	AATACGATCA	AGGTGGTACG	GAAGGAGGAT	CGTCCGGTTC	TTCTCTCTTC	1320
AATCAGAATA	AGCACGTGGT	CGGCACACTG	ACCGGAGGTG	CCGGCAATTG	TGGCGGGACG	1380
GAGTTCTACG	GCAGACTGAA	CAGTCATTGG	AACGAGTATG	CATCCGATGG	CAATACGAGC	1440
CGCATGGACA	TCTATCTGGA	TCCCCAAAAC	AATGGCCAGA	CGACCATCCT	CAACGGAACG	1500
TATCGTGACG	GTTATAAGCC	TTTGCCCTCT	GTGCCCCGGC	TATTGTTGCA	GTCTACAGGC	1560
GATCAGGTCG	AATTGAATTG	GACGGCTGTT	CCTGCCGATC	AATATCCATC	ATCTTATCAG	1620
GTCGAATACC	ACATATTCCG	AAATGGAAAG	GAAATAGCTA	CGACAAAGGA	GTTGTCCTAT	1680
TCGGATGCCA	TCGACGAAAG	TATTATCGGT	AGCGGTATCA	TTCGATACGA	AGTAAGCGCA	1740
CGCTTCATTT	ATCCCTCGCC	GTTGGATGGA	GTGGAATCTT	ATAAGGATAC	GGACAAGACT	1800
TCTGCCGACC	TTGCCATAGG	AGACATTCAG	ACCAAGCTGA	AGCCGGACGT	AACACCTCTC	1860
CCCGGAGGAG	GAGTATCATT	AAGCTGGAAA	GTTCCTTTCT	TAAGCCAGTT	GGTTTCCCGA	1920
TTCGGAGAAA	GCCCCAATCC	TGTGTTCAAA	ACCTTTGAAG	TGCCCTATGT	TTCTGCCGCA	1980
GCCGCACAAA	CCCCCAATCC	TCCCGTTGGC	GTAGTCATTG	CAGACAAGTT	TATGGCCGGT	2040
ACATATCCCG	AAAAGGCTGC	TATCGCTGCC	GTTTATGTAA	TGCCATCCGC	TCCGGACTCT	2100
ACTTTCCACC	TCTTCCTCAA	GAGCAACACA	AACAGAAGAT	TGCAGAAGGT	GACAACTCCC	2160
			ATCAATTTGG		CCCGGTGAAT	2220
			ATGCCTAATA			2280
ATCCGTTATG	TAAGAAATCC	GGATAACCTT	TTCTCCATTA	CCGGTAAGAA	GATTTCATAT	2340
		AGGCTACGGA		TCTTGGGCTA		2400
AAATATCTGG	TGGTAAATAC	CGATGCTCCG	AAGATCGATA	TGTCGCTTGT	ACAGGAGCCT	2460
TATGCTAAGG	GAACGAATGT	GGCTCCATTC	CCCGAATTGG		-	2520
AACGGAACAT	TTATCGGCAC	ACAGGATCCA	TCCGTCACAA	CTTATTCGGT	TTCAGACGGA	2580
			GTATATAAGG		TTCGAATGGC	2640
GTTGCTCAGA	TTGAGAATAA	CAATGCTGTC	GTTGCATATC	CGTCTGTTGT	AACAGATCGT	2700
TTCAGCATTA	AGAACGCTCA	TATGGTTCAC	GCTGCCGCCC	TCTACTCATT	GGATGGCAAG	2760
		CCTCCGCAAT		TCAGTGTTCA		2820
GCCGGTACTT	ATATGCTCGT	TATGCAGACG	GCAAACGGCC	CTGTGAGCCA	AAAGATCGTG	2880
AAGCAG						2886

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2106 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2106
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73

TGGAAAAAA	GTAATCCTCA	ATACCGGGGC	AGGACAGCAA	ATTACCGAGA	TCATTATAAT	60
ACAGAAAGCT	ATTTAAGCCT	AAGGAGGAAT	CAAACAATGA	AATATCTTAT	CAGACTCTTC	120
TTATCATTGA	TGTTACTCTC	TCTCTGGACG	GGCTGTACAC	ACGAGGAGCT	CTCTATTTGC	180
GATGGCGAGA	ATACGCTTGT	TTTACGCGTA	GAGACCGGTA	AAGCCCCAAA	TGCTCGTGCC	240
ACAGAACCCG	GTCAGGGCAT	ATACAATGAG	AATAAAGTAG	GCTCCATTTC	TGTGCTCTTC	300
TATTTAGAGG	GACAACTTCG	TTGGCAGGTG	AAGTCTACAG	ACTATCAAAT	CCATGAAGGG	360
GCCTATATCA	TTCCGGTCAA	AGAGCAAATG	CGACCACTAT	TCAATGGCAA	CAACAACTTC	420
AGCATCTATG	TAGTGGCCAA	TCTCGATTTC	AATGCTCCGG	CCACAGAAGC	TGCGCTTTCT	480
CAATTTGTGG	TAGAGAAATC	TATTGAAGTC	TCTTCTACGA	CAGCCCCTGC	CGATTTCGTA	540
ATGCTTGCTC	ATGGCAATAA	GCAGATCAAT	ATGGCTACGA	CAGAAGGGAA	ACTGTTGGGG	600
GATTATAAAC	TCAAACGAGT	GGCAGCAAAG	ATTCGCATGA	TAAAACCCAC	CATCAATGTG	660
CAAGGATATG	AAGTGGTCGG	AAATATACAG	GCAAAGTTTC	GCAATTCGGT	AACGAAGGGG	720
TTCCTTACCA	CAGAAGCTCA	AGAGATCCCA	GCTGCTGCAT	CCTATAAGAC	ATCGGAATAT	780
CTTGATATTG	CAGAGTCGGC	ACCTGCCAAT	TCTATCCATT	TCTATTCTTA	CTATAACAAA	840
TGGACACTCT	CCACACCGGA	GAAGCGACCG	GAATTCTTCA	TCATGGTCAA	ATTCAAAAAG	900

ACAGGACAGC	CGGACAACAC	AGCCAAACCG	TACTACTACA	GAGTGCCCCT	CGAATCTCAG	960
GACAATCAGG	TCAAGAGCAA	TGTCCTCTAT	AATCTGAATG	TGAAAATCGA	AATCTTGGGT	1020
TCTTTACAAG	AGCCGGAAGC	TGTTTCTGTA	AACGGCACAC	TCGCAATAGA	AGAATGGATT	1080
CTCCATCAGG	ATGCATTCAA	TCTGCCTGCC	ACCAATTACT	TGATAGTGGA	ACAGCACGAA	1140
ATCTTCATGA	ATAACGTGAA	CACATACTCG	GTGAAATATC	AAACTTCGCA	GAAACCAATC	1200
AGCATTAGCA	TACAGTCAGT	TACCTTTAGC	TACGTCTCTT	CTGATGGCAC	TCAGCACAAT	1260
GATCTTGTAG	CAAGTAGTAG	CGACCAGTAT	CCTACGATTA	CAAGCGATAA	TACAAGCATC	1320
ATAATCACTT	CCAAGATACC	GGTTAATAAC	GTACCAAAGA	AGATCGTTTT	TGAGGTAACT	1380
AATGGGGTAG	CCGGTTTGAA	AGAGACTGTC	ACAGTACTCC	AATATCCTGC	ACAATTTATT	1440
GTCAATACAC	TTGGCACAGC	ATCGGCATGG	AGACCAGACG	GATCTTTGGC	TCCGGGGCTT	1500
AACAATAAAG	CGATTTACCA	TGTCGTAGTA	CTGGTTCCAC	CCGAGAATTT	ATTTGAAGAT	1560
GGGACACAGA	CAATCATCGG	TTATCCCCCC	ACTGAAACAA	TTTCTTTTCA	TAAGAAAGAG	1620
AACAATACCT	ATCCGATAGT	ATGGTCTGAC	ACAAATACGA	CAAAACAGGA	CCTTGAGACA	1680
TCAAGAATGA	TTTCACCTTC	CTTTGAGTTA	GCCTCCCAAC	TTGGGGCTAC	TCTCCCGATG	1740
CCCTATCTCG	AGTATTGGCC	AGGGACATCA	TATCTCCTTG	ACTATTCGGG	AAACTATAAT	1800
AATAAGAGAT	ACGCCTTGTT	TAATTGCGCT	TTTTACTGGG	AGAAAAGAAA	AGTTAATAAC	1860
GAAGAAATTA	AATTCGATGA	CTGGCGTTTG	CCGACAGAAG	CTGAGATCAA	ATTGATAGAT	1920
AAGCTGCAAC	ATAATGAGCA	GAGTGCTGTC	CAAGCTATCA	TGACAGGGAA	TTATTATTGG	1980
GATAGTTACT	CTGCAAATGG	GTCTTATAAA	ATGCAAGGAG	GAGGGGCCA	AGGAAATTCC	2040
TCCAAAGCCT	ATGTTCGTTG	CGTGCGGGAT	GTGAAAAAGC	CGATTCGTGA	CAAGAAGTCA	2100
GGTAAG						2106

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3936 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...3936
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74

			AAAGCTTGCA		TTGTGTGATA	60
CAAAAATTTA	CTAATGTAAA	ACTAAATGAT	ATGCGAAAAA	TTTTGAGCTT	TTTGATGATG	120
TGCTCTCTGC	ATTTAGGTCT	ACAATCTCAG	ACTTGGCATG	GAGATCCGGA	CTCAGTGGCA	180
GCCCTACCTT	CTATCGGTAT	TCAAGAGTCA	AGTTGTACCC	GAATCACGTT	CGAGGTTGTT	240
TTCCCCGGAT	TTTATAGTGT	GGAAAAACGA	GAAGGCAACC	AAGTCTTTCA	GCGCATTTCC	300
ATGCCGGGTT	GTGGCTCGTT	TGGGAATCTG	GGCGAAGCTG	AATTGCCTGT	TTTGAAAAAG	360
ATGATAGCCG	TTCCGGAATT	TTCAACAGCT	AACGTTGCTG	TAAAAATCAA	AGAGACGGAG	420
ACATTCGACA	ATTATAATAT	CTATCCTAAT	CCTACCTATG	TCGTAGAGGA	GTTGCCTGAG	480
GGGGGGACTT	ATCTGGTAGA	GGCTTTCGCG	ATAAACAATG	ACTATTATAG	CCAAAATGTA	540
AGCCTCCCTT	CTACTCACTA	TGTCTATTCT	CAAGACGGGT	ATTTTCGCTC	ACAAAGATTT	600
ATCGAAGTTA	CCCTGTATCC	TTTTCGATAC	AACCCTGTCC	GACAAGAAAT	TCTATTTGCA	660
AAAAAAATCG	AGGTTACAAT	AACTTTCGAT	AATCCTCAGC	CACCTTTACA	AAAAAACACC	720
GGCATATTTA	ACAAAGTAGC	CTCCTCTGCA	TTTATTAATT	ATGAAGCTGA	TGGCAAATCG	780
GCGATAGAAA	ATGATATGGT	GTTCAGTCGT	GGTACAACAA	CGTACATAAG	CGGAAATGTT	840
GCCAGCAACC	TCCCTCAGAA	CTGTGACTAC	TTGGTTATTT	ACGATGATAT	GTTCAACGTA	900
AATCAACAAC	CACACGACGA	AATCAAACGG	CTGTGCGAAC	ATAGAGCCTT	CTACAACGGC	960
TTTGATGTAG	CTGCTGTAAG	TATAAAGGAC	GTATTGAATA	GCTTCCCATC	AAATGCCACC	1020
TCATACATCA	ACGAAACTAA	ACTGAAAAAT	TTCATTCGCT	CAGTTTACAA	CCAAAGCAAT	1080
GCGAAGAGGA	CTTTAGATGG	CAAACTGGGA	TACGTGCTAC	TGATCGGAAA	ACCATTGAGC	1140
AAATATTTGG	CTGACACTGA	TAATACAAAA	GTCCCAACCT	CTTTTATTCA	TAATGTCTCC	1200
TTAATTCCAA	GTCATCCAAC	TTTTGGTTCC	ATATGCGCCT	CCGACTATTT	TTTTAGTTGT	1260
GTTTCGCCCC	TTGATACTGT	CGGCGATTTG	TTTATCGGTC	GATTTAGCGT	CACCAATGCT	1320
CATGAATTGC	ACAATCTGAT	TGAAAAGACT	ATCAACAAAG	AAATCTCATA	TAATCCTATT	1380
GCACACAAAA	ATATTCTTTA	CGCAGAAGGG	AAAGGCTGCG	ATGCTCCAAT	CTTACGTTTA	1440
TTCTTAAAAG	AAATCGCCTC	TGGTTACACA	GTCAACTCTA	TCTTAAAATC	TAATCAGGTC	1500
TCTGCAATAG	ACTCGATATT	TGACTGCTTG	AATAATGGTT	CCCATCATTT	TTATTTTAAC	1560
ACTCATGGAA	TGCCGACTGT	TTGGGGGATA	GGGCAGGGAC	TCGACGTCAA	TACTCTAACA	1620
GCCCGATTGA	ACAATACATC	TTCGCAGGGA	TTATGTACGA	GTCTATCATG	TAGTTCGGCT	1680
GTAGCAGATT	CAACTATTAG	ATCGCTTGGA	GAAGTCCTGA	CCACATACGC	ACCTAACAAG	1740
GGATTCTCGG	CTTTCTTAGG	AGGAAGCAGA	GCCACCCAAT	ATGCCGTTTA	TTTAGAAGGC	1800
CCCTGTCCTC	CGTCAGAATT	TTATGAATAT	TTACCTTATT	CTTTATATCA	CAATCTCTCG	1860

ACTGTTGTTG	GCGAAATGTT	GCTATCATCC	ATTATCAATA	CTAATTCTGT	TGATACGTAT	1920
TCGAAATTCA	ACTTCAATTT	GCTTGGCGAC	CCTGCACTAA	ACATTATGGC	TCATGGCATG	1980
GAGGTTAGTA	ATTGTATTAC	ACTACCAAAC	AACACCATTA	TAAGCAGTCC	GATAACAATA	2040
AAAAATGGTG	GCTGCCTAAA	AATACCGGAA	AAAGGAGTTT	TGCATTTTAC	TAATAATGGC	2100
TCCATACAAG	TCATGTCCGG	AGGAACTCTG	GAAATAGGCA	ATCAGGCTAA	AATATCCGGA	2160
GAGACCGGTG	CTAACCCCAC	CTTTATTACC	GTTTACGGCG	ATGGTCTTGC	GATTAACAAG	2220
CAGGTAGAGA	TAGACAATAT	AGACCGACTT	AACTTGTTTT	CTACGCATTC	GGTCATGCCC	2280
AAATTTCATT	TTGACAGTGT	GAAATTCAAC	AGTGCCCCGC	TGTATACAAC	GAACTGTATT	2340
GTGGAGATAA	GCAATTGCGA	ATTTACCAAT	CGAAGTGACA	TTATTTCAAA	GAATTGTGAC	2400
CTAAGCGTTG	AAAACAGTAT	GTTTAGCAGT	TCGGGGATAA	CGGTATTCAA	GCCTATGGCT	2460
ACAAGCTCCA	TCACCGGATT	ATCTACAAAA	GCAAAGATTA	CCGACAATAC	TTTTTTTGCG	2520
ACAGGAAACT	TCGCCTACCA	TATCACAAAC	ACGCCAGGCT	TAACAGCAAC	CTCCAATGCT	2580
GCCATCAAGT	TAGACAATAT	TCCTGAGTAT	TACATTTCCG	GTAATAAAAT	AGTCAATTGC	2640
GATGAGGCTC	TTGTACTAAA	TAATAGTGGC	AACAGAACGA	ACAGACTCCA	CAATATCACA	2700
${\tt CGGAATGTGA}$	TAAAAAACTG	TAGGATTGGG	AGCACGCTTT	ATAATTCCTA	TGGTATTTAC	2760
AACCGAAATA	AGATCAGTAA	CAATCATATA	GGAGTACGTC	TCCTCAACAA	CAGTTGTTTT	2820
${\tt TATTTCGATA}$	ATGCTCCTGT	AATCAATGAA	GAAGATAAGC	AGACGTTTAT	TTCTAATAGG	2880
ACTTGGCAGC	TCTATTCATC	AAACGGTACA	TTCCCTCTCA	ACTTCCATTA	CAACAGCTTG	2940
CAGGGGGGAG	ATACAGATAC	ATGGATTTAC	AACGACACGT	ATACGAATCG	CTATATTGAC	3000
GTTTCAAATA	ATCACTGGGG	CAACAATGAT	TTGTTTGATC	CGAATCAGGT	TTTCAATACG	3060
CCAGACTTGT	TCATTTGGAT	ACCTTTTTGG	GATGGATTGC	CAAATGGGAG	ATCGGGCAAT	3120
AGCTCTGCTG	AAGCAGTAGA	ATTCCAAACA	GCATTGGACT	GTATTGGCAA	TAGCGATTAT	3180
${\tt CTTTCGGCAA}$	AAGTGGCTCT	CAAGATGATG	GTTGAAACCT	ACCCGGAATC	CGACTTTGCA	3240
ATAGCTGCTT	TGAAGGAATT	GTTCAGGATA	GAGAAAATGT	CAGGCAACGA	TTACGAAGGC	3300
TTGAAAGATT	ATTTCAGATC	CAATCCAACC	ATCATCTCTT	CCCAGAACTT	GTTCCCGACA	3360
GCTGATTTCC	TGTCTGCGCG	ATGCGATATT	GTGTGTGAAA	ACTATCAGTC	TGCCATCGAT	3420
TGGTACGAAA	ATCGCTTGAA	TAGTGAAATC	TCCTATCAGG	ACAGTGTTTT	TGCAGTCATT	3480
			TTAGACTCAC			3540
			TCGCTCGAAA			3600
			GGTACTCTCC			3660
AAATCAAGCC	TTGATAAATC	CAAGATAATC	TCTATTTCGC	CCAATCCGGC	GAAAGCTGTT	3720
	TCTACTATAC	•	TCCTGTTCTG			3780
			CCCAAACATC			3840
			GGTTTCTACC	TGGTAACGCT	AAATGTTGAT	3900
CAGAAAATTA	TAGATACGGA	AAAATTACGA	ATCAAA			3936

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2814
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75

TCAGAAAATT	ATAGATACGG	AAAAATTACG	AATCAAATAA	TGGCTATCAT	GATGAAAAGT	60
ATTGTTTTTA	GAGCATTTCT	AACGATTTTG	CTCTCGTGGG	CAGCGATCAC	GAATCCGACT	120
GCTCAAGAGA	TCTCAGGCAT	GAATGCATCC	TGTCTGGCTG	CTCCGGCTCA	ACCGGATACT	180
ATCTTATATG	AAAGTTTTGA	GAATGGACCT	GTTCCCAATG	GCTGGCTTGA	GATAGATGCT	240
GATGCTGATG	GTGCCACTTG	GGGAAGCCCA	TCAGGCTCTT	TCTCTGTACC	TTACGGACAC	300
AATGGCCTTT	GCACCTACTC	CCATATACGT	TCCGGTATCT	CAACAGCGGG	CAACTATCTG	360
ATTACACCCA	ATATAGAAGG	AGCCAAACGG	GTCAAGTACT	${\tt GGGTATGCAA}$	TCAGTATAGT	420
ACCAATCCGG	AACATTACGC	AGTAATGGTA	TCGACAACGG	GGACTGCCAT	TGAAGACTTT	480
GTTTTGTTGT	TTGATGATTC	CATAACAGGG	AAACCGACTC	CTCTTGTATG	GCGTAGACGA	540
ATCGTGGACT	TACCGGAAGG	GACCAAATAT	ATTGCATGGC	GACATTACAA	AGTCACCGAC	600
TCACACACAG	AATTCTTGAA	ATTGGATGAT	GTCACTGTGT	ATAGGTCGAT	CGAAGGGCCC	660
GAACCTGCTA	CCGACTTCAC	AGTAATCAAT	ATTGGTCAGA	ATGTGGGACG	ATTGACTTGG	720
AACTATCCGG	AGGATTATCA	ACCGGAAGGA	AAGGGGAATG	AAGAGTTGCA	GCTTAGCGGC	780
TACAACATCT	ATGCGAACGG	TACACTACTG	GCACAAATAA	AAGATGTCTC	CATACTGGAG	840
TATGTGGACA	GCACTTACTC	TTTGCGAGAC	AATCCCTTGC	AAGTGGAGTA	CTGCGTTACA	900
GCCGTTTACG	ATGAAAGCAT	AGAATCTTCG	ACCGTATGTG	GCACGCTGCA	TTACGCCACG	960
GATGCCATCC	TTTATGAAAA	TTTTGAGAAT	GGACCTGTTC	CCAATGGTTG	GCTTGTGATA	1020

GACGCTGATG	GAGATGGATT	TAGCTGGGGA	CACTATTTGA	ATGCATACGA	CGCTTTTCCC	1080
GGCCATAATG	GAGGCCATTG	CTCCTTGTCG	GCTTCTTATG	TTCCGGGTAT	AGGCCCGGTG	1140
ACTCCCGACA	ACTATCTGAT	TACCCCCAAG	GTTGAAGGAG	CCAAACGTGT	CAAGTACTGG	1200
GTAAGCACGC	AGGATGCCAA	TTGGGCAGCG	GAACATTACG	CGGTGATGGC	TTCGACAACG	1260
GGGACTGCTG	TCGGAGATTT	CGTCATATTG	TTCGAAGAAA	CCATGACAGC	GAAGCCGACC	1320
GGCGCATGGT	ATGAAAGAAC	CATCAACTTA	CCTGAAGGGA	CTAAATACAT	CGCATGGCGG	1380
CATTACAACT	GTACCGATAT	ATATTTCTTG	AAGTTGGACG	ATATCACTGT	ATTCGGGACT	1440
CCTGCATCAG	AGCCCGAACC	TGTTACCGAT	TTCGTTGTCT	CGCTTATTGA	AAACAACAAG	1500
GGACGATTAA	AGTGGAATTA	TCCTAACGGC	TACGAACCCG	ATAAGACTGA	TGATAAAGAC	1560
CCATTGCAGC	TTGCCGGCTA	CAATATCTAT	GCAAACGGCT	CGCTCCTTGT	TCACATACAA	1620
GACCCGACTG	TTTTGGAGTA	TATCGATGAG	ACTTATTCTT	CACGAGACGA	TCAGGTGGAA	1680
GTGGAATATT	GTGTCACTGC	CGTTTATAAC	GACAATATCG	AGTCCCAATC	GGTTTGCGAT	1740
AAGCTGATTT	ATGATTCTCA	ATCGGACATT	ATCTTATATG	AAGGCTTTGA	GGCCGGAAGT	1800
ATTCCTGAAG	GCTGGTTGTT	GATTGATGCT	GATGGCGACA	ATGTTAATTG	GGACTATTAT	1860
CCTTGGACTA	TGTATGGACA	TGACAGTGAG	AAGTGTATTG	CATCCCCTTC	GTACTTACCG	1920
ATGATTGGCG	TTTTAACTCC	GGATAACTAT	TTGGTTACAC	CCAGACTCGA	AGGAGCCAAG	1980
CTTGTCAAGT	ATTGGGTAAG	TGCGCAAGAT	GCTGTTTATT	CGGCTGAGCA	TTATGCTGTG	2040
ATGGTTTCTA	CTACGGGAAC	TGCTGTTGAA	GATTTTGTCC	TCTTGTTCGA	AGAGACAATG	2100
ACCGCTAAGG	CTAACGGTGC	ATGGTATGAG	CGAACTATTA	CATTGCCTGC	AGGAACAAAA	2160
${\tt TATATTGCCT}$	GGCGGCATTA	${\tt TGATTGCACC}$	GATATGTTTT	TCTTGCTCTT	GGATGACATT	2220
ACGGTTTATC	GTTCTACTGA	GACTGTTCCC	GAGCCTGTTA	CTGATTTCGT	TGTCTCGCTT	2280
ATTGAGAATA	ACAAGGGTCG	CCTGAAATGG	AATTATCCTA	ACGGCTACGA	ACCCGATAAG	2340
ACTGATGATA	AAAAACCATT	GCAGCTTACC	GGCTACAACA	TCTATGCAAA	TGGCTCGCTC	2400
CTTGTTCACA	TACAAGACCC	GACTGTTTTG	GAGTATATCG	ATGAGACTTA	TTCTTCACGA	2460
GACGGTCAGG	TGGAAATGGA	ATATTGTGTC	ACTGCCGTTT	ATAACGACAA	TATCGAGTCC	2520
CAATCGGTTT	GCGATAAGCT	GAACTATACT	ATCACATCCT	TGGATAATAT	TCAATCTGAT	2580
ACAAGCTTGA	AAATATATCC	TAATCCGGCA	TCGTATGTGG	TAAGGATAGA	GGGATTGAGT	2640
CGGAGCAAGT	CGACAATCGA	GTTGTATAAT	GCGCTGGGAA	TTTGCATATT	AAGGGAAGAG	2700
ACTCATTCAG	AGAAAACGGA	AATCGATGTT	TCACGTCTCA	ATGACGGAGT	CTACTTGATT	2760
AAAGTAGTCG	GTGGAAATAA	AACAACAACC	GAAAAGGTAG	AGATAAAGAG	GCCG	2814

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1818 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1818
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76

ATAATCTTCT	GTACGATTCA	TCACTCTGAG	TTGGAAATAA	TGAACAGCAT	CATGAAATAT	60
CAATTATATA	CGGCCGTCAT	AATGGCTCTC	TCTGTATCAT	CCGTTTGCGG	TCAAACCCCA	120
CGAAATACAG	AAACCAAACG	CCCCGACACG	CTGCGCAGGG	AGCTTACTAT	CGTTAATGAC	180
CAGACTGTGG	AGATGGAGCA	TGCGGATCCG	CTTCCGGCTG	CATACAAGGC	CATCGAACCT	240
CGATTAAAAC	CTTTCCGTCC	GGAATATAAC	AAGCGTACAT	TCGGATTTGT	CCCTGAAGTT	300
TCCTCTTCAG	GCAGGAACAA	TCTTCCGAAT	ATCCTGCCGA	CGGAAGGTCA	TATGAAGCAC	360
CGGGGGTACC	TGAATATCGG	TATCGGCCAT	ACGCTAAACC	AGCGAATGGA	TGCCGGCTAT	420
CGTCTGATAG	ATGCAGAGCA	GGAGAGACTG	AATCTTTTCC	TCTCCTATCG	TGGGATGAAA	480
TCGGCTTTCA	ATACCGGTGA	CTTCGACGGC	GACAGAAAGG	ATAGACGAAT	GATGGCAGGA	540
GTGGACTACG	AGCAGCGCAG	GCCTTCCTTT	GTGCTTGCTA	CCGGCTTGTA	TTATTCGAAC	600
CATTATTTCA	ATAACTACGG	ACGGGGAGCT	ACCACCAATG	TGGGCAGCAT	CCCTCAGCTA	660
TCGACACCTG	TTACTCCTCA	GATGGACAAC	GGGACCCACA	ACGTCCGTGT	ATACTTGGGT	720
GCAAAAAATG	ATGTGATCGA	TGCCAGGATC	GACTATCGTT	TCTTCCGTTC	TATTCCCTAT	780
CTGGGTACCG	ATCCGATGAA	GGCTCTCACA	GAACATACGC	CTGAACTGAA	CGTGACGATG	840
AGTAATGAGT	TGTCCGATGA	TATTAAGCTC	GGTGTCGAAG	TTCGTACGGG	AGGATTGTTT	900
TTTGCCAAAA	ACAGCGAAAT	GATTCAAACG	GGCGTTCTGT	CCGAAACCGA	CCGCAACCTG	960
TATTATGTGG	AGGGCGCCC	CACAATCGGA	TTTGTCGGAG	ACTCGGACAA	TATGCAATGG	1020
AACATACAGG	CCGGAGTAGG	GATTTCTTCC	CATTTCGGAG	CCAAAGGGAG	GTTGTTTTTC	1080
TGGCCTAAAC	TGGATGCTTC	GCTTAGTATC	TTCCCTTCAT	GGCGTGTGTA	TGCGAAAGCC	1140
TTCGGCGGTG	TGATTCGAAA	TGGTCTCGCC	GATGTTATGC	AAGAGGAGAT	GCCCTACCTG	1200
ATGCCCAATA	CGATTGTACT	CCCTTCGCGC	AATGCTTTGA	CCGCCCAATT	AGGGGTGAAG	1260
GGGAATATAG	CCGATGTGGT	ACGTATGGAG	GTTTATGGCG	ACTTCTCCAA	GCTGACAGGT	1320

GTGCCTTTCT	ATACTCCGAC	TCTACCCTTA	TATAATCCAT	CCGACTTGTA	TCAGTATAAT	1380
GTGAGTTTCT	TGCCGATATA	TGCCGACGGC	AGCCGCTGGC	GCGCAGGTGG	TAAGCTGGAA	1440
TACTCTTATC	GCGATATGCT	CCGCTTTCTG	GTAGACGCAT	CCTATGGCAA	GTGGAATTTG	1500
GATGGAGGAC	TTGTCGCCTC	CATGCAGCCC	GATCTTATAT	TGAAGGCAGA	AGTAGGTGTT	1560
CATCCCATTG	CCCCATTGGA	TGTCAGACTC	CGGTATACAC	AGCTGAACGG	ACGGTATCGG	1620
TATTCTTTCG	GCTCGGCTGG	CTCGGAAGCC	TTGGGTATCG	GTAATGTACA	TCTTCTTAGT	1680
GCGGATGTTT	CATACAAGCT	GAAAAAGAAC	TTGAGCCTTT	ATCTCAAAAT	CGATAATATG	1740
CTGGCGGAAA	CGACAGAGCT	TATCGGTTAT	TATCCTATGC	AGCCGTTCCA	TTGTTTCGCC	1800
GGTTTTAGCT	GGACTTTC					1818
CTGGCGGAAA	CGACAGAGCT					1800

- (2) INFORMATION FOR SEQ ID NO:77
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1071 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1071
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77

AACTCCCATG	CAACAGTCTC	${\tt CGTTATATGT}$	${\tt TCAATGATGG}$	AAAAATGTAT	CTTTGCTCAC	60
TATCCACATA	ACCTTGTGTT	CATGATTCGC	AAGCATTTCG	GTATCATTTT	GGGATTTCTT	120
TCTCTTGTGT	TTTCGGCAGG	TGCTCAACAA	GAGAAGCAGG	TGTTTCATTT	TCTGAACCTT	180
CCGGCTACTG	CACAGGCTTT	GGCTGCCGGA	GGCAAAGCTA	TCACCATCGT	AGACGACAAT	240
CCCGGACTGG	${\tt CTTTTGAGAA}$	TCCGGCTCTG	CTCGGATATG	AATCCGGTGG	CCGCGCCTTT	300
CTTTCCTATT	${\tt TATATTATAT}$	GAGTGGTTCG	CATATGGGCA	ATGCCTGTTA	TGCCTCGTCC	360
GTCGGAGAGC	${\tt GTGGCATGTG}$	GGGTGTTGGC	ATGCGTTTCC	TGAACTACGG	GTCTATGCAA	420
GGATACGATC	AGAATGCGAT	TGCCACCGGC	TCTTTTAGTG	CTTCGGATAT	AGCTGTACAA	480
${\tt GGATTTTACA}$	${\tt GCCATGAACT}$	GAGCAACCAC	TTCCGCGGTG	GAGTCAGCCT	AAAAGCATTG	540
${\tt TATTCTTCTA}$	TCGAGACGTA	TAGTTCCTTT	GGCCTTGGTG	TGGATGTCGG	TATCAGTTAT	600
TACGACGATG	ACAAAGGATA	TTCCGCTTCC	GCTCTGTTCA	AGAACGTAGG	GGCGCAACTG	660
AAAGGCTATA	ATGAAGAACG	GGAACCGCTC	GATTGGGATT	TCCAGCTCGG	CTTTTCCCGC	720
AGTTTTATCA	ATGCTCCGTT	TCGCTTGCAC	ATCACGTTGT	TCAATCTGAA	TCCGCACTAT	780
${\tt TTCAAGCGTC}$	${\tt TTGTACCACG}$	CGATCTGTCC	AAGATGCAAA	AGTTCCTCCG	ACACTTCTCG	840
ATAGGAGCAG	AATTTACTCC	TTCCGAGAGG	TTTTGGGTCG	GGCTGGGATA	TACGCCACAG	900
ATTGCACAGG	ATTTCGAGGT	GGAAGGCGGC	AACAAATGGG	GAGGTCTTTC	GGCCGGCGTC	960
GGTTTCACTT	CAGGTGTAGT	ACGTGTAGGC	GTATCTGCTG	CCACCTATCA	TCCTGCAGCT	1020
${\tt CTTTCGTTCA}$	TGTGTTCGGT	AGGTATCCGT	TTGGACGATA	AGAGCATCTT	C	1071

- (2) INFORMATION FOR SEQ ID NO:78
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1011 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1011
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78

CCTCAGCCCG	TCGGCCTTAA	AGAAATAACC	ATTAAACCCA	TGTGCCTCGA	ACCCATAATT	60
GCTCCGATTT	CATCCGAGTT	GCTCGAGCAG	GAGCTGACTG	CCGATCGTTT	TCTGCGGATG	120
ACAAACAAAG	CCGGCAATGA	GATCTATGTT	TTTACGGCCG	AAGAAGCTCC	GCATTGCATG	180
AAAGAAGTAG	GCCGACTGCG	AGAAGAAGCC	TTTCGGCATT	ATGGCGGAGG	TACTGGCAAG	240
GCGATCGATA	TAGACGAGTT	CGACACCATG	CCCGGGAGCT	ACAAACAGCT	GATCGTATGG	300
GATCCGCAAA	ACAAGGCTAT	ACTCGGAGGC	TACCGCTTTA	TCTATGGGCG	GGACGTTGCT	360
TTCGATACCG	ATGGCAAGCC	TTTGCTGGCA	ACGGCAGAGA	TGTTTCGCTT	CAGTGATGCT	420
TTTTTGCACG	ATTATCTCCC	CTACACAGTC	${\tt GAATTGGGAC}$	GTTCGTTCGT	GTCGCTCCAG	480
TACCAATCGA	CACGGATGGG	CACAAAGGCC	ATTTTTGTGC	TGGACAATCT	TTGGGACGGT	540
ATCGGAGCAC	TCACTGTAGT	CAATCCAGAG	GCACTCTATT	TCTATGGCAA	GGTGACCATG	600
TACAAAGACT	ATGATCGGCG	AGCTCGCAAT	CTGATCCTGT	ATTTTCTTCG	CAAGCACTTC	660
TCCGATCCGG	AAGGCTTGGT	CAAGCCTATT	CATCCCCTAC	CGATAGAGAT	CAGTGCGGAG	720
GACGAAGCCT	TGTTCTCCTC	ATCCGACTTT	GACACCAATT	ACAAGACTCT	CAATATAGAA	780
GTGCGCAAGC	TGGGTATCAA	TATCCCTCCT	CTCGTGAGTG	CATATATAGC	TTTGTCTCCG	840
GAGATGCGTG	TTTTCGGCAC	TGCAGTGAAT	GAGTCTTTCG	GAGAGGTGGA	GGAAACCGGC	900
ATATTCATTG	CTGTGGGTAA	GATCCTGGAA	GAGAAAAAAC	AACGGCACAT	AGAGAGCTTC	960
ATCCTCAGCC	GGAACGAAAA	AAAAGGTCTC	GACAGTAGCA	ATGGCCGATC	A	1011

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1698 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1698
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79

TACGACGGAG	CGAGACTGGT	CTATACCCTA	TTTCGGAATA	GAAACGACAT	TCACCCTATG	60
AAAACCATTG	TAAGATACAG	CCGCCTTCCG	GTCGCTCTCT	TCTTTTGCCT	TTTGGGAGCT	120
GTGCACTTGT	CTGTCGAGGC	GCAGATGCTC	AATACTCCTT	TCGAGCTGTC	GGATCAGATC	180
GTCCTGTCTC	CCACCGAAAG	GCAATACAGG	GAGATTTGTG	TGCAAACGAA	AGAAAAAAGG	240
GGGGCCGATC	TTTTCCCGTT	GAGCGATAAG	CTGCGCGATT	CGGCCTATGT	TCGTTTCGGC	300
TCGGCCTATG	GCGATATTGC	GGGCGACTAT	CTTCCGTACA	ACGGCAATAA	CTACTCCTCG	360
$\mathtt{CTCTCGCTCG}$	AATCGGGTGG	TCGCATCAGT	GTCCGTAACT	ATGGCACATT	GCAGGGCAGT	420
GCTTCCTACT	CACGTGGCAT	GCACAAACGC	ATCGGCTGGA	ATGCTCTGCG	CAACGCCGAA	480
GCCTACTATC	CCTATTTGGT	GTCCGATTCG	ACCGGCGGAG	ACTATCATTT	CGAAGACTAT	540
CGGCTTGCCG	GCTACTATTC	TTTTCGCGCC	GGCCGCTTGC	CCCTCGGTAT	AGGCTTCTCA	600
${\tt TACAGGGGCG}$	AAGTTGCTTA	TCGGCTGACC	GATCCGCGTA	CGACCAATAC	GACCGGTGCA	660
${\tt TTGGAGCTTT}$	CTTGTGCTAC	CTCTTTGACG	CTGCCTCGAG	AGAACAGGCT	ATCGCTTTCG	720
${\tt GCTGCGTATC}$	TCTATCATAG	ACAACACCTC	ACACAGTACA	ACTGGCGTCC	CGGGCAGCAG	780
GACAAATTCT	TCGTCAGCTA	CGGTTTCGGT	CAGGTGGATG	TCAGCAACAG	CCCTATCTGG	840
${\tt TTCGGTATCT}$	CCAGAATGAA	CTACGTCAAC	GGATGGAAGC	TTAGCTCCCG	TCTGGATACC	900
${\tt CGTAGGGGCG}$	ATGCCATCGG	TCTCGACTAC	AGCGGCTACT	TCCTCGATAC	CGAaGAGAGG	960
TCGTCCATCA	ATCTCTTTGC	TTTGCTTTAC	AATCGCCTGC	GACTCTATGG	TAGCTGGCAT	1020
${\tt CTGTCGGACT}$	TCGATTTTTC	ATTTTCAGCC	GACTATGCTC	TGCGCCAAGG	GATAGAGCGG	1080
ATATACGAAG	ACTACAAGCC	GGATGATAAT	TATCATATCT	ACGACCTCCG	TATCTTGGCC	1140
ATTCGCCGCT	GGTATATGCT	CAATGAGTTT	TCTGCCCAAG	CCCAAGCCTC	CTACCGTATT	1200
CGCACGGATA	GAGGTTGTGC	CCTGAGAGTG	AGTGCCGGTA	GTGATTTCTA	CGGCTATGAT	1260
GAGACGTATC	GCAAGCATGG	ACATCATACC	ATGAGCGGAA	TGCTACGTCC	TTTTGCCGGT	1320
ATAGCCTATG	ACCATGCCGG	ATCCAAATTG	GATTTTGGAC	TTTCGCTTTC	GGCTGCTTAT	1380
${\tt CGAATGGTGC}$	TGACGCATTC	GTATAAGATT	CGTACCATCC	AGAAAGAGCA	GCTCGACTAT	1440
CAGCTGGCCT	ATTTGCCCTA	TGCCTATCGT	AATAGAGAAG	GCGTGGAGGT	GCGTTCCTCT	1500
CTGTACGTCT	CGATTCCGAT	GCAGAATACC	CACCGCCTGA	TGACAGAGCT	GCGGTTGTAT	1560
GGCGACCTGA	TGAAAAGAAA	${\tt GGACGGTATA}$	GCCTATGGCA	AAACGCCCGG	TGTCATCTCA	1620
CATATCCTGT	CCGATCCGCA	AGCCGAACGA	ACGTCCGGCC	ATACCATCGG	GGCTATCTGC	1680
AATATCTCCT	ACCTCTTC					1698

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2457 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2457
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80

AGGACGAACG	TTTTCTTATC	TTTGTCCCAT	AAAATTGGGA	GAAGGGGTGC	TTCCTGTAGC	60
AATCGGAATG	CGTGGATGGC	TGAGAACAAA	CCCTCATCAC	CTGAACCGGA	TAATACCGGC	120
GTAGGAAACT	CTCCGTCTGA	CTATCTTCAC	GGCGAAGCAA	TCATTCCCCC	TCTCTCTTCT	180
TTGTCCAACT	TCAATGATAA	GAGATTTATG	AAAAAACTTC	ACATGATTGC	CGCCTTAGCC	240
GTCCTGCCTT	TCTGCCTGAC	GGCACAAGCA	CCCGTCTCCA	ACAGCGAGAT	AGATAGTCTT	300
AGCAATGTGC	AGCTCCAGAC	CGTACAGGTC	GTAGCTACTC	GCGCCACGGC	GAAAACCCCT	360
GTCGCTTACA	CCAACGTTCG	CAAGGCCGAA	CTTTCCAAGT	CCAATTATGG	TCGTGACATC	420
CCCTATCTGC	TGATGCTGAC	TCCCTCCGTG	GTAGCCACCA	GCGATGCCGG	TACGGGTATC	480
GGATATTCCG	GCTTTCGCGT	GCGTGGCACC	GATGCCAATC	GCATCAACAT	AACTACCAAT	540
GGAGTACCCC	TCAACGACTC	CGAATCTCAG	TCCGTCTTTT	GGGTGAATAT	GCCCGACTTC	600
GCCTCTTCCA	TCGAAGACCT	TCAGGTGCAG	CGAGGTGTGG	GTACTTCCAC	CAATGGTGCC	660
GGAGCTTTTG	GGGCAAGTGT	CAATATGCGT	ACGGATAATT	TGGGACTGGC	TCCTTATGGC	720
CGTGTCGATT	TGAGCGGAGG	TTCGTTCGGC	ACATTCCGCC	GATCGGTCAA	ACTCGGTAGC	780
GGACGCATCG	GTCGCCATTG	GGCAGTGGAT	GCCCGCCTGT	CCAAAATCGG	TTCGGACGGC	840
TACGTGGATA	GAGGAAGCGT	GGATCTGAAA	TCCTATTTCG	CACAGGTGGG	CTATTTCGGT	900
AGCAACACGG	CTCTCAGGTT	CATCACTTTC	GGAGGAAAAG	AAGTTACGGG	TATCGCATGG	960
AACGGTCTTT	CCAAGGAGGA	TGAAGCCAAA	TATGGCCGCC	GATACAACAG	TGCCGGTCTT	1020
ATGTACGTGG	ACGCGCAAGG	AGTACCGCAC	TACTACCACA	ATACCGACAA	TTACGAGCAG	1080
CGTCACTACC	ATGCCATCAT	GACGCACAGC	TTCTCTCCTT	CCGTTATCCT	CAACCTCACG	1140
GCACACTACA	CGGCCGGATA	TGGCTATACG	GACGAATATC	GTACCGGACG	TAAACTAAAG	1200
GAATATGCAC	TGCAGCCCTA	TGTGGAAAAC	AGTGTGACCG	TGAAGAAAAC	GGATCTCATC	1260
CGTCAGAAGT	ATCTGGACAA	TGACTTCGGA	GGACTCATCG	GTTCGCTTAA	CTGGCACACC	1320
GGTGCATGGG	ATTTGCAGTT	CGGGGCCTCG	GGCAATATCT	ATAAAGGAGA	CCACTTCGGC	1380
CGTATCACTT	ACATCAAAAA	GTACAATCAG	CCCTTAGCTC	CCGACTTCGA	ATATTATCGG	1440
AACAGGGCAG	ACAAAAGAGA	AGGTGCAGCC	TTTGCCAAAG	CCAACTGGCA	GATCACTCCG	1500
GAACTGAACA	TGTATGCCGA	CCTCCAGTAT	CGTACCATCG	GCTACACGAT	AAACGGCATC	1560
ACGGACGAAT	ATGATGAGGT	ACAGGGAAGT	ATGCAGCACA	TCGATTTGGA	CAAGACCTTC	1620
CGCTTCCTCA	ATCCGAAGGC	CGGTCTTACC	TATAGTTTCG	ACGATGCTCA	TACTGCCTAT	1680
GCTTCTGTTG	CGGTAGCACA	CCGCGAGCCT	AACAGAACCA	ATTACACCGA	AGCCGGAATA	1740
GGACAGTATC	CTACGCCTGA	GCGACTGATC	GACTATGAGC	TGGGCTACCG	CTATGCTTCG	1800
CCCCTCTTGT	CGGCCGGAGT	AGGTCTCTAT	TATATGCAAT	ACAAGGACCA	ACTCGTGCTG	1860
GATGGCCGTT	TGAGCGATGT	GGGACAGATG	CTCACAAGCA	ACGTCCCCGA	CAGCTACCGT	1920
ATGGGACTGG	AGCTGACTCT	CGGTTGGCAG	ATCCTTCCTC	GTTTGCTGCG	TTGGGATGCT	1980
TCTTTCACTA	TGAGTCGCAA	CAAAATCGAC	CGCTACGTAC	AATATACATC	CGTATATGAT	2040
GCGGACTACA	ACTGGCTCGA	ACTCAAGGAG	GAGACCCTCG	AAAGCACGGA	TATAGCCTAC	2100
TCGCCCAATG	TCATTGCCGG	CAGCATGCTT	ACCCTCTCTC	ATGCCGGTTT	CGAAATGGCT	2160
TGGACGAGCC	GCTTCGTCAG	CAAGCAATAT	CTGGACAATA	CACAGCGCAG	CGATCGCATG	2220
CTTTCCTCCT	ATTGGGTGAA	CGACCTCCGC	CTCGGCTATG	TGCTGCCGGT	TCACTTCGTT	2280
AAGAGAGTGG	CACTGGGCGT	ACAGCTCAAT	AATCTCTTCA	ACCTCATGTA	TGCGTCCAAT	2340
GCCTACATCT	ACGATGCCGG	TTACGTACAG	GCATCCGGAG	AACTAAGTGC	ATATGCCGAT	2400
CTGCGTTATT	ATCCTCAGGC	${\tt CGGATTTAAT}$	${\tt GCACTGGGTA}$	GTCTGACAAT	CGATTTC	2457

- (2) INFORMATION FOR SEQ ID NO:81
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1596 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1596
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81

TACAGGCGAT	CGGGAAGGGT	TTGTCCTCGT	ATCCTCCGGA	ACAAACGTTC	CTACGCAGAT	60
ACTCGGTTAC	AGCCGAGAAG	AGCGGTTCGA	CTACGAGCCG	GCACCAGAAC	AAAGATGAAA	120
AGAAGGTTTC	TATCGCTGTT	ACTGCTGTAC	ATACTCTCTT	CCATCAGCCT	TTCTGCTCAG	180
CGGTTTCCGA	TGGTGCAGGG	AATCGAGTTG	GATACCGATT	CGCTTTTCTC	TCTGCCCAAG	240
CGTCCTTGGC	GCGCCATCGG	TAAAACGATA	GGCGTCAATC	TGGCCGTATG	GGGCTTCGAT	300
CATTTCATCA	TGAACGAGGA	CTTTGCAGAC	ATCAGTTGGC	AGACTATCAA	GAGCAATTTC	360
CAAACAGGCT	TTGGCTGGGA	CAATGACAAG	TTTGTCACCA	ACCTCTTCGC	ACATCCTTAT	420
CACGGATCGC	TCTATTTCAA	TGCAGCGAGG	TCGAACGGTT	TGAGCTTCAG	GCACTCTGCT	480
CCGTTTGCCT	TCTTTGGCAG	TCTCATGTGG	GAGCTGCTTA	TGGAAAACGA	GCCACCGAGT	540
ATCAACGACC	TCTGTGCCAC	CACCATAGGC	GGTATAGCTT	TGGGGGAGAT	GGGGCACAGG	600
CTGTCGGACC	TGCTCATCGA	CAATCGTACC	ACAGGGTGGG	AACGTATGGG	GCGCGAGGTG	660
GCTATCGCTC	TGATCAATCC	GATGCGCTTT	CTCAACCGTC	TGACAGCAGG	AGAGGTGACT	720
TCTGTCGGGA	GTCGCAGCGG	ACAGATATTT	CAGTCTGTCC	CCATAAACAT	AGTCGTCGAT	780
			CATGCCCGAA			840
CTGAATCTGA			TTCCGAAGCG			900
TTCTTCCAAT	TCAAAGCCGG	ATTGAGTTTC	TCCGAATCGC	AACCTCTGCT	GAGCCAGATC	960
AATCTGATCG	0		CTGCTCGCAC			1020
GGAGGTCTCT			AATTCGGAAA			1080
GAGGAGGTAC			TCGCAAGTGG			1140
ATCTTCCAGC			CGTCCTCTGG			1200
CTGAATGTCG	TCCCGATGGG		TCGGATCACT			1260
TATAACCTCG	GCAGCGGATT	GAGCGGCAAG	CTATACCTTG	GTGCTACGTA	CAATGATCTG	1320
TGGAGCTGGC	TCTTGGGAGT	CGAAAGCTAT		CATGGATCGG		1380
CCGCACCAGA	AAAATACCGA	TGTCAGCTCT		AGGGGGACGA		1440
CGCCTACTGG	TGACGAGTTC	CGAGTTCGCA		GCCCCTGGCA		1500
0	GTTTCATCCG		TATCAATTCT	ACCCTAACGT	ATCATTCGAT	1560
ACCGGCGACA	TACAGCTGCG	TGTCGGATTT	CACTTC			1596

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 900 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...900
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82

AAAAGAAGAA	AAAAACAGAT	GAAACGACTG	ATTGTTTTTC	TGGCAATGGG	TGGCTTGCTG	60
TTCACCCTTG	CGAACGCACA	AGAAGCAAAC	ACTGCATCTG	ACACTCCCAA	AAAGGACTGG	120
ACTATAAAAG	GTGTGACCGG	ACTAAATGCC	TCTCAGACTT	CTCTGACCAA	CTGGGCTGCC	180
GGTGGAGAAA	ACACGGTGGC	AGGTAACCTC	TATTTGAACA	TAGATGCCAA	CTACCTGAAA	240
GATAAATGGA	GTTGGGACAA	CGGTTTGCGT	ACAGACTTCG	GTCTGACCTA	CACAACAGCC	300
AACAAGTGGA	ACAAAAGTGT	AGACAAGATC	GAACTCTTCA	CGAAGGCCGG	CTATGAGATC	360
GGCAAACATT	GGTACGGAAG	TGCGCTTTTC	ACTTTCCTCT	CACAGTATGC	CAAAGGATAT	420
GAGAAGCCCT	CGGATCACTT	GACAGGAGTC	AAGCATATCT	CTAATTTCTT	CGCTCCTGCA	480
TATCTCACTC	TCGGTATTGG	TGCGGACTAT	AAGCCCAATG	AGAAGTTCTC	TCTCTACCTC	540
TCTCCTACAA	CGGGCAAGCT	GACTGTAGTA	GCAGACGACT	ACCTCTCAAG	TTTGGGAGCC	600
${\tt TTCGGGGTGA}$	AAGTTGGTGA	AAAGACAATG	TTCGAACTTG	GTGCTTTGGT	AGTGGGTTCG	660
GCCAATATAA	ATCTGATGGA	GAATGTCAAT	TTGATAACCA	AGGCTTCATT	CTTCTCGGCT	720
TATACGCACG	ACTTTGGCAA	CATTGACATC	AATTGGGAGG	CTATGCTGGC	CATGAAGATC	780
AACAAGTTCC	TCACGGCTAC	GATAGCCACC	AATCTTATCT	ACGACGATGA	TGTGAAGATC	840
AACGATGGCC	CGAAAATCCA	GTTCAAAGAA	GTTGTGGGCG	TGGGTGTTGC	GTACACTTTC	900

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 663 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...663
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83

TGTGTTACA	TTGTAGAACA	AAACTCAAAA	AAGAACGAAA	AATGAAGAAA	60
CAGCTACTAT	GCTGCTCGCA	ACAATCGGTT	TTGCAAATGC	TCAGAGTCGT	120
SACTGGATGC	TAACTTTGTC	GGTAGTAACT	TAATGCAAAA	AGTCGCAAAC	180
CAATAAGAT	GATCGTAGGC	TTACGTGTTG	GTGCTGCTGC	TGAGTTCGCT	240
TGGATTCTA	TCTCGCCCCC	GGATTGGCCT	ATACGATGAG	AGGTGCTAAG	300
AAGTGAAAC	GACAACTCGC	TTGCATTATC	TGCAAATACC	GGTGAATGCC	360
TAGCTTTGC	TGACAACATG	GCTATTTCAT	TGGAAGCAGG	TCCCTATTTC	420
CGCCGGAAC	GATTAAGACT	AAAGTTGCAG	GCGTTACGGC	TTCTGTAGAT	480
TAACGGATA	TAACCGTTTC	GACTTGGGCT	TGGGCTTGTC	TGCTGCCTTG	540
STTATTACGT	ACAAATTGGA	TATGAGCATG	GATTGCTTAA	TATGTTGAAG	600
TAAGACTTC	TTTGCGTAAT	CATGACTTCT	TTGTGGGTCT	CGGTGTTCGC	660
					663
	AGCTACTAT ACTGGATGC CAATAAGAT AGGATTCTA AAGTGAAAC TAGCTTTGC CGCCGGAAC ATAACGGATA ETTATTACGT	AGCTACTAT GCTGCTCGCA ACTGGATGC TAACTTTGTC ACAATAAGAT GATCGTAGGC AGGTGAAAC GACAACTCGC TAGCTTTGC TGACAACATG CCCCGGAAC GATTAAGACT ATAACGGATA TAACCGTTTC ATTATTACGT ACAAATTGGA	AGCTACTAT GCTGCTCGCA ACAATCGGTT ACTGGATGC TAACTTTGTC GGTAGTAACT CAATAAGAT GATCGTAGGC TTACGTGTTG AGGTGAAAC GACAACTCGC TTGCATTATC TAGCTTTGC TGACAACATG GCTATTCAT CCGCCGGAAC GATTAAGACT AAAGTTGCAG ATAACGGATA TAACCGTTTC GACTTGGCCT CTTATTACGT ACAAATTGGA TATGAGCATG	AGCTACTAT GCTGCTCGCA ACAATCGGTT TTGCAAATGC ACTGGATGC TAACTTTGTC GGTAGTAACT TAATGCAAAA ACAATAAGAT GATCGTAGGC TTACGTGTTG GTGCTGCTGC AGGATTCTA TCTCGCCCCC GGATTGGCCT ATACGATGAG AAGTGAAAC GACAACTCGC TTGCATTATC TGCAAATACC TAGCTTTGC TGACAACATG GCTATTTCAT TGGAAGCAGG ACGCCGGAAC GATTAAGACT AAAGTTGCAG GCGTTACGGC ATAACGGATA TAACCGTTTC GACTTGGGCT TGGGCTTGTC ACAAATTGGA TATGAGCATG GATTGCTTAA	TEGTGTTACA TTGTAGAACA AAACTCAAAA AAGAACGAAA AATGAAGAAA CAGCTACTAT GCTGCTCGCA ACAATCGGTT TTGCAAATGC TCAGAGTCGT TAACTTTGTC GGTAGTACT TAATGCAAAA AGTCGCAAAC CAAATAAGAT GATCGTAGGC TTACGTGTTG GTGCTGCTGC TGAGTTCGCT ATACGATGAAC GGATTGCACT TGCAAATACC GGTGAATGCC TTGCATTATC TGCAAATACC GGTGAATGCC TTACGTTTTGC TGACAACACT GCTATTTCAT TGGAAGCAGG TCCCTTATTC TGCAGACGAG TCCCTATTTC TAACGGATA TAACCGTTTC GACTTGGGCT TGGGCTTGTC TCCTGCCTTG TTAACGGATA ACAAATTGGA TATGAGGCATG GATTGCTAA TATGTTGAAG TTATGAGACT ACAAATTGGA TATGAGCATG GATTGCTTAA TATGTTGAAG TTAAGACTTC TTTGCGTAAT CATGACTTCT TTGTGGGTCT CGGTGTTCGC

- (2) INFORMATION FOR SEQ ID NO:84
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 744 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...744
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84

ATCAAACGAA	TAGAAATGAA	AAGGATTTTT	ACTGTAGCCC	TTGTGCTACT	TGCTTCGGTC	60
ACTATGGCCA	TCGGACAAAG	CCGCCCGGCA	CTTCGCGTAG	ATGCCAACTT	CGTAGGCAGC	120
AATCAGAGCA	TGAAAAGAGA	CGGATATGTG	TGGGACACCA	AAATGAATGT	CGGCCTGCGG	180
GTCGGTGCCG	CTGCCGAATT	CATGATCGGA	TCAAGAGGAT	TCTACTTGGC	TCCGGGTCTG	240
AACTATACGA	TGAAGGGCTC	CAAAACCGAA	TGGGATATAC	CCGAAATGGT	TCCTGGTACC	300
TATATTACGA	TGGTTTCCAC	TCGCTTGCAC	TATCTGCAAC	TGCCGATCAA	TGCCGGCATG	360
CGGTTCGACC	TGATGAATGA	CATGGCGGTT	TCGATCGAAG	CGGGTCCTTT	CCTTGCATAC	420
GGTATATATG	GTACATATCG	GCAGAAGTTG	GAAGGATGGA	AGCCGAACAA	CTACAGCACA	480
GAGTTTTTTG	GCCCAACGCT	TGGTGGCCCA	ACAAATATCC	GCTGGGACAT	CGGGGCAAAC	540
ATAATAGCCG	CATTCCACTA	TAAGCGTTAT	TATATACAGA	TAGGCTATGA	ACATGGATTT	600
GTGGATATTG	TGTCAGGTGG	AGGTTCTGAT	ATTCCCCGAC	TGAACGACAA	TAGGCAATCC	660
TCTTCGACGA	CCGCTCTAAG	AGAAAAGGGA	AATAACGAAT	ACGCTTATAA	TCGTGACTTC	720
TTCGTGGGCA	TAGGTTACCG	CTTT				744

```
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 633 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double
```

(D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...633
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85

AAAAGAAAGA	GTATGAAAAG	AATGCTGCTG	CTTCTCGTTG	TATTATTATA	TGGAATTGCA	60
GGCCGATTGG	CTGCACAAGA	CGTTATCAGA	CCATGGTCAT	TGCAGGTCGG	AGCGGGATAC	120
TCCGATACGG	AGAACATCCC	GGGAGGATTC	ACCTATGGTT	TCTATTTGGG	AAAGCGTATG	180
GGGAGCTTTC	TGGAAGTGGG	GCTGTCCATG	TACAACTCCA	CACGTCAAAC	AGCCAACAAT	240
GCAGACTCCT	TTGCATCGAA	CGAAGGAGAC	GGATCTTTTC	AGGTAAATAT	GTCTTCTCCG	300
AATGAGAAGT	GGTCATTCTT	CGATGCAGGC	AGTGCCAACT	GCTATATGAT	CGTCGTCGGA	360
GTCAATCCTC	TCCATCTGTT	TTGGCAGAAT	AGCCGGCACA	ATTTGTTTCT	GGCAGTACAA	420
GCCGGCCTGT	CCAATAAGCA	CAATATTCAT	TTCATCTATG	GAGACAAGGG	AGCCAAAGTC	480
AGTATCTACA	CCAATTCGAA	TACCTACATC	GGTTACGGAG	CACGTGTAGC	CTACGAATAT	540
CAAATTCATA	AAAACGTGGG	GGCGGGTGCC	GCTGTAATGT	ACGACCACGG	CAATAAGATG	600
CTTACGGCCA	TGGCCACGCT	CTCCACTCAT	TTT			633

- (2) INFORMATION FOR SEQ ID NO:86
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2859 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2859
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86

ATCCGAATGA	GAGTATCCGA	TCTCTGTTCC	AGACTTTCAT	GGTTATTACC	CGTAATCCTT	60
GTCGGATTGC	TCTGTGCTAC	TTTGGTCGCT	GCGGAACGTC	CTATGGCCGG	AGCAGTCGGA	120
TTGCACCACC	GTCGGCATGC	TGCGCTGTCT	GATTCTACAG	CGAAAGACAC	GGTGCCTCTC	180
GCAAAACCTA	TTCCTGACAG	TGCTTTTCGA	GATTCCCTTC	CTGCCGATTC	CACCGGATCG	240
ATGCGGCAAG	ATAGCGTGTA	TGACGATGAA	TTCGAATTGG	AAGATATAGT	GGAGTACGAA	300
GCTGCCGATT	CCATCGTTTT	GCTCGGACAG	AATCGTGCCT	ATCTTTTCGG	CAAGAGCTAT	360
GTGAGCTATC	AAAAGAGTCG	CTTGGAGGCA	AACTTCATGT	ATCTCAATAC	CGACAGCAGT	420
ACGGTTTATA	CTCGCTATGT	CCTCGATACG	GCCGGTTATC	CGATGGCCTT	TCCTGTTTTC	480
AAGGATGGAG	AGCAGTCGTT	CGAAGCCAAG	AACTTTACCT	ACAACTTCCG	CACGGAGAAG	540
GGGATTATCA	GCGGAGTGAT	CACGCAGCAG	GGCGAAGGCT	ATCTGACTGC	CGGTAAGACC	600
AAGAAGATGC	CCGACAATAT	CATGTTTATG	CAAGGAGGGC	GTTATACGAC	CTGCGACAAT	660
CACGATCATC	CTCACTTCTA	TATCAATCTT	TCCAAGGCAA	AGGTGCATCC	GGAGAAAGAC	720
ATCGTCACAG	GTCCGGTCAA	TCTGGTTATC	GCCGATATGC	CGCTGCCGAT	AGGTCTTCCT	780
TTCGGCTATT	TTCCCTTTTC	CAACAAATAC	TCTTCCGGTA	TATTGATGCC	CACGTACGGA	840
GAGGACAATC	GCTATGGATT	TTATTTGAGG	AATGGTGGAT	ATTATTTTGC	CTTCAGCGAC	900
TATATCGATT	TGGCATTGCG	TGGGGAGATC	TTTTCCAAAG	GGTCATGGGG	CATTTCAGCC	960
CAATCGAAAT	ATAAGAAGAG	GTATAAGTAC	AACGGCTCGT	TCGAAGCCAA	TTATCTGGTA	1020
TCGAAGTCCG	GCGACAAATA	CGTGCCCGGA	GACTACAGCA	AGACCACCAG	TCTGAATATC	1080
CGATGGACAC	ACAGTCAGGA	TCCGAAGGCC	AATCCTTTGC	AAACGTTGTC	GGCCAATGTC	1140
AATTTTGCCA	CCGGGAGCTA	TTTCCAGAAT	TCGCTGAATA	CCACCTATGA	TGTCAATGCC	1200

CGTACTGCTA	CGACACGAAG	TTCGGCCGTG	AGCTATTCGC	GCAAGTTTCC	GGGTACTCCT	1260
TTTTCGATTA	CGGGTAGCAT	GGATATCAGC	CAGAACATGC	GCGATACGAC	GGTGAGCCTT	1320
ACCTTGCCGA	ATCTTTCGAT	TAATATGTCC	ACGCGTTATC	CTTTCAAGCG	GAAGACCCGT	1380
GTAGGACCGG	AGCGATGGTA	CGAGAAGTTG	AGTGTGGGCT	ATTCCGGTCA	GCTTCGCAAT	1440
AGTATCTTGA	CAAAAGAGAA	AGATTTGCTC	CAGAGCAATC	TCGTGCGCGA	TTGGAAGAAT	1500
GGTATGCGTC	ATTCCGTACC	GATCAGTTTG	ACTGTCCCTT	TGTTGGATTA	TATCAATCTG	1560
ACTATGGGGG	TTAACTACAA	TGAGTGGTGG	TACACGAAAG	GCATACGGAA	GTCGTGGAAT	1620
GAGGATAAGA	AAACATTCCT	GCCTTCGGAC	ACGACCTATA	AATTCCGCAG	ACTGTACGAT	1680
TACAGTCTGT	CGGCAGGCTT	ATCTACCACA	TTGTACGGTA	TGTTCAAGCC	TTGGAAACCT	1740
TTTTCCTTCG	GAGGCAATCT	CATTATGATC	CGTCATCGCT	TCACGCCCAC	TGTCAGTTTC	1800
TCCTATATGC	CGGACTTCAC	GAAACGCCGA	TATGGCTTTT	GGGAGCTTCT	TGAGCATACG	1860
GATCAGAACG	GCAAGCTGCA	TACGCTGCTC	TACTCTCCTT	ATTTCGAGCA	GATATTCGGT	1920
GCTCCCTCCA	TGGGCAATGC	AGGATCTGTC	AATTTCTCTT	TTGACAACAA	CTTAGAGGCC	1980
AAGATCAAAT	CCAAATCGGA	TTCGACAGGG	ATCAAGAAGA	TCAGCCTGAT	AGATCAGTTC	2040
ACATGGTCTA	CATCCTATAA	TATGTTTGCC	GATTCGATCC	GATGGAGCAA	TATCTCGGCT	2100
TCGCTGGCAC	TTCGCCTCTC	CAAGAGCTTT	ACCTTGCGCT	TGTCCGGTCT	GTTCGATCCC	2160
TATTTGACGA	AGTATTATGA	GGGAGAAGAT	$\tt GGGAAGATCA$	TTCCCTATAA	GAGCAACGAC	2220
CTGCGCATTT	TTAACGGCAA	$\tt GGGATTGGCA$	CGCCTGATCA	GTACGGGTAC	TTCTTTCAGC	2280
TATACGCTCA	ACAAAGAGTC	GCTCAGCGGA	TTGATAGCTC	TTTTCAGTGG	CAAAAAGGAG	2340
CGGAGAGATG	AAAAGAAAAA	CACAGGGGCT	ACTCCTCATG	AAGGAGACGA	TGCTGCCGAT	2400
ATACTTGAGG	GAGGAAGACC	GCAAAATGAA	AGTGGGGGGT	CGCTCCTCGA	GCGCAACCGT	2460
CAGGGCGGAG	CAGTGGATCA	GGATGGTTAC	TTCGCATATT	CGATCCCATG	GAGCCTGTCC	2520
TTCGACTATA	GTTGGAATAT	TGCTACCGAC	TACAATAGGT	ACAATGTCAA	TAAGATGGAG	2580
CACTACTACC	GGGTAACGCA	GAATCTGAGC	TTTCGCGGCA	ATATCCAGCC	TACACCGAAC	2640
TGGAGCTTCG	GATTCAATGC	GAACTACAAT	TTCGACTTGA	AGAAAATAAC	ATCGCTTACC	2700
TGCAACGTCA	CTCGCGACAT	GCACTGCTGG	GCTATCTCGG	CCAGTTTCAT	CCCTATAGGA	2760
GCATACAAGT	CCTATAATTT	CGTCATATCG	GTGAAGAGTT	CACTCTTGCA	GGATCTGAAG	2820
TATCAGCAGA	GCAATCGTCC	CATCACGAAT	ACTTGGTAT			2859

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3753 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...3753
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87

AAATGGAAAT	TGGCATGCGC	TTTTGATTGC	GCGTGTTGTT	TCGATCCATT	TGTAGTAACT	60
AACGAGGTAA	TAATAATGAT	GAAACGATAT	ACAATAATTC	TTGCAGTTTT	TCTTTTATTC	120
TGCACGGTAT	TTACCTTTCA	AATAAAAGCT	CGCCCTTATG	AAAGATTTGC	AGATGTAGAG	180
AAGCCTTGGA	TTCAGAAACA	TTCAATGGAT	TCTAAATTGG	TGCCTGCAAA	TAAGGGTAAC	240
TTAATTCAAG	CTGAAATTGT	ATACCAATCT	GTTTCTGAAC	ATAGTGACTT	AGTTATTTCA	300
CCTGTGAACG	AAATAAGGCC	TGCAAATCGT	TTCCCTTCGC	ATAGGAAGTC	TTTTTTTGCA	360
GAAAATCTAC	GGGCATCTCC	CCCCGTAGTT	CCCGTTGCCG	TCGACAAGTA	TGCGGTACCG	420
GTTGCCAATC	CAATGGATCC	TGAAAATCCC	AATGCCTGGG	ATGTGACGCT	AAAAATCACT	480
ACTAAAGCGG	TAACAGTACC	TGTCGATGTG	GTGATGGTTA	TCGACCAGTC	TTCGTCAATG	540
GGAGGGCAAA	ACATTGCCAG	ATTAAAGTCT	GCCATTGCAT	CGGGACAGCG	TTTTGTGAAA	600
AAAATGTTGC	CTAAGGGGAC	GGCTACAGAA	GGGGTGCGTA	TCGCTCTTGT	GAGTTATGAC	660
CATGAGCCTC	ATCGCTTATC	TGATTTTACC	AAAGACACTG	CTTTTCTCTG	TCAAAAAATC	720
CGGGCTTTGA	CTCCTATTTG	GGGAACACAT	ACCCAGGGGG	GGCTTAAAAT	GGCGAGAAAC	780
ATTATGGCCA	CTTCTACTGC	TGTGGATAAG	CATATCATAT	TGATGTCTGA	CGGGTTAGCG	840
ACGGAGCAGT	ATCCTGTTAA	AAATGTAACT	ACTGCAGACT	TCATTGGCAA	AACTGGAAAT	900
GCGAATGATC	CCATTGATTT	GGTTATACAA	GGAGCAATTA	ATTTCCCTAC	AAATTATGTT	960
TCCAACAATC	CATCTACACC	TCTTACCCCA	AATTATCCAA	${\tt CTCATTCTTC}$	TAAAGTTGGA	1020
CGGAGAAATC	TGCCGGAATC	CAAATTCGAT	TATAGTAATC	TGAGTGCAAG	GATTACTTTT	1080
GATGGTGTTG	CTGGCGCATT	GGTCTATGAA	CCGAGGTTTC	$\mathtt{CTCATCCCTA}$	TTATTATTAT	1140
TTCCCTTGTA	ACGCTGCTAT	CAATGAGGCT	CAGTTTGCGA	AAAACTCTGG	TTATACAATC	1200
CATACTATTG	GCTATGACCT	GGGAGATTTT	GCCTTGGCCA	ACAATTCGTT	GAAACTAACC	1260
GCTACAGACG	AGAATCACTT		ACACCGGCCA	ATTTAGCTGC	AGCGTTTGAT	1320
AATATTGCCC	AAACTATTAA	TATAGGTATA	CAGAGGGGGG	AGGTGACGGA	CTTTGTAGCT	1380
CCTGGTTTCA	TCGTTAAAAA	TCTGACGCAA	TCGGGAGATG	TTACTCATTT	GCTAAATGTT	1440

TCAAATGGAA	CGGTGCACTA	TGATGTCTCT	ACTAAAAAAC	TGACATGGAC	TACTGGTACT	1500
ATCCTGAGCT	CATCAGAAGC	TACCATAACT	TATCGTATTT	ATGCCGATTT	GGATTATATA	1560
CAGAACAATG	ATATTCCGGT	AAATACTACT	TCTGCTATCG	GCCCGGATCT	TGGTGGATTC	1620
GATACCAATA	CCGAGGCAAA	ATTGACCTAT	ACCAATTCCA	ATGGCGAACC	GAATCAGCAG	1680
TTAATTTTCC	CACGTCCGAC	GGTTAAGTTA	GGTTATGGTG	TTATTAAGCG	GCACTATGTA	1740
TTGGTAAATA	AAGACGGTCA	ACCCATACAG	GCAAATGGAA	CAGTTGTCAG	TTCCCTAAGC	1800
GAGGCTCATG	TTCTACAGTC	ACAAGATTTC	TTTTTGCCCT	CAGGTGGAGG	TCATATTGTT	1860
CCCAAATGGA	TAAAGTTGGA	CAAAACGACC	GAAGCATTAC	AGTACTATTC	CGTACCGCCG	1920
ACTAACACGG	TCATCACTAC	TGCCGATGGT	AAACGTTATC	GTTTTGTCGA	AGTCCCAGGC	1980
TCCACGCCGA	ATCCGGGCCA	AATCGGTATC	AGTTGGAAAA	AACCGGCAGG	AAACGCTTAC	2040
TTCGCTTACA	AGCTCCTCAA	TTATTGGATG	GGAGGAACAA	CAGACCAACA	GAGTGAATGG	2100
GATGTGACGT	CCAATTGGAC	AGGAGCCCAA	GTACCGCTCA	CAGGAGAAGA	TGTAGAGTTT	2160
GCAACGACAG	AAAATTTCGG	TTCTCCGGCG	GTAGCCGATT	TGCATGTCCC	GACAACCAAC	2220
CCCAAAATTA	TCGGTAACCT	TATCAATAAT	TCCGACAAGG	ATTTAGTTGT	TACCACAAGC	2280
AGTCAATTGA	CGATCAACGG	CGTGGTTGAG	GATAACAATC	CGAATGTCGG	TACGATCGTC	2340
GTGAAGTCGT	CGAAAGACAA	TCCTACGGGG	ACATTGCTTT	TTGCCAATCC	GGGCTATAAT	2400
CAAAATGTAG	GGGGGACCGT	CGAGTTTTAC	AATCAGGGAT	ATGATTGTGC	CGATTGTGGT	2460
ATGTATCGCA	GGAGCTGGCA	GTATTTCGGT	ATCCCTGTCA	ATGAATCAGG	TTTTCCAATT	2520
AATGATGTGG	GCGGAAACGA	GACCGTCAAC	CAATGGGTTG	AGCCTTTCAA	TGGCGATAAG	2580
TGGCGGCCAG	CACCTTATGC	ACCTGATACA	GAGCTTCAAA	AATTCAAGGG	CTACCAGATC	2640
ACGAATGACG	TGCAGGCACA	GCCTACGGGA	GTTTACAGCT	TCAAGGGTAT	GATTTGTGTG	2700
TGCGATGCCT	TCCTGAATCT	GACACGCACG	TCCGGTGTCA	ACTACTCGGG	CGCCAACTTG	2760
ATCGGCAACT	CATACACTGG	AGCCATCGAC	ATCAAGCAGG	GTATTGTCTT	CCCGCCGGAA	2820
GTCGAGCAGA	CGGTGTATCT	GTTCAACACG	GGAACACGCG	ACCAGTGGCG	TAAGCTTAAT	2880
GGAAGCACGG	TTTCAGGCTA	TCGAGCCGGT	CAGTACCTCT	CTGTACCTAA	GAATACAGCG	2940
GGTCAGGACA	ATCTTCCGGA	TCGTATTCCA	TCGATGCATT	CCTTCTTGGT	GAAGATGCAG	3000
AACGGAGCGT	CTTGTACGTT	GCANATCTTG	TACGATAAGC	TGCTCAAGAA	CACGACTGTA	3060
AACAACGGTA	ATGGTACGCA	GATCACATGG	CGATCCGGCA	ACTCCGGATC	GGCGAATATG	3120
CCGTCACTTG	TGATGGATGT	TCTTGGTAAC	GAGTCGGCCG	ACCGTTTGTG	GATCTTTACC	3180
${\tt GATGGGGGTC}$	${\tt TTTCTTTCGG}$	ATTCGACAAC	GGCTGGGATG	GTCGCAAGCT	GACTGAAAAA	3240
${\tt GGTTTGTCAC}$	${\tt AACTTTATGC}$	GATGTCTGAC	ATCGGTAATG	ATAAATTCCA	GGTTGCAGGG	3300
${\tt GTTCCGGAGT}$	TGAATAACCT	GCTGATCGGC	TTCGATGCGG	ATAAGGATGG	TCAATACACG	3360
TTGGAGTTTG	${\tt CTCTTTCGGA}$	${\tt TCATTTTGCG}$	AAAGGGGCTG	TTTACCTGCA	CGATCTTCAG	3420
TCAGGAGCCA	AACACCGTAT	TACGAATTCT	ACGTCGTATT	CATTCGATGC	CAAGCGGGGA	3480
${\tt GATTCCGGGG}$	CTCGTTTCCG	CTTGTCATAT	GGATGTGATG	AGAACGTAGA	TGATTCGCAT	3540
${\tt GTCGTGAGTA}$	CAAATGGCCG	TGAAATTATA	ATTCTGAATC	AAGATGCTCT	TGACTGCACT	3600
${\tt GTAACCTTAT}$	TCACAATAGA	AGGTAAGCTT	CTTCGCCGCT	TGAAAGTATT	AGCTGGTCAT	3660
AGAGAAGTCA	TGAAAGTGCA	GACCGGAGGG	GCCTATATTG	TGCATCTTCA	AAATGCTTTC	3720
ACTAATGATG	${\tt TGCATAAGGT}$	${\tt GCTTGTTGAG}$	TAT			3753

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1278 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1278
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88

ACTATGGAAG	TGAAGAAAA	CACAGTGGTG	CTACGCCTTC	TGATTTGGTT	CGTGGCCATT	60
CTTCTCTTCC	ACTCCTCACG	GCTGTGGGGA	CAGGAAGGGG	AGGGGAGTGC	CCGATACAGA	120
TTCAAAGGAT	TCGTGGATAC	CTACCATGCC	GTACGCAGCT	CTTCTCCTTT	TGATTTCATG	180
AGCTCGCGTA	CGAGAGTGAG	AGGTGAGCTG	GAGAGGTCGT	TCGGTAATTC	GAAAGTAGCC	240
GTATCGGTCA	ATGCCACCTA	CAATGCTCTA	CTGAAAGACG	AGACCGGCTT	ACGTTTACGT	300
GAAGCCTTCT	TCGAGCATCA	GGAAGAGCAT	TGGGGGTTGC	GCCTCGGACG	ACAGATTGTC	360
ATTTGGGGGG	CTGCCGACGG	TGTGCGCATC	ACGGATCTGA	TCTCCCCGAT	GGATATGACC	420
GAGTTTCTGG	CACAGGATTA	CGATGATATT	CGTATGCCGG	TCAATGCATT	GCGTTTCTCT	480
GTCTTCAACG	AATCGATGAA	AGTGGAAGTC	GTGGTACTGC	CTGTATTCGA	GGGGTACCGT	540
CTGCCTGTGG	ATCCTCGCAA	TCCTTGGAAT	ATCTTCTCCC	TTTCGCCCAT	TGCTCAGGGG	600
ATGAATATCG	TCTGGAAAGA	AGAAGCCGGC	AAACCGGCCT	TCAAGGTTGC	CAATATCGAG	660
TACGGTGCGC	GATGGAGCAC	TACGCTCTCC	GGTATCGACT	TCGCTTTGGC	TGCATTGCAT	720
ACATGGAACA	AGATGCCCGT	CATCGAAGTA	CAGGGCATTG	TGCCGACGGA	AATCATCGTT	780

AGCCCTCGCT	ATTATCGTAT	GGGATTTGTC	GGCGGCGACC	TCTCCGTACC	CGTCGGACAG	840
TTTGTTTTCA	GGGGAGAGGC	TGCGTTCAAT	ATCGACAAAC	ACTTCACCTA	TAAGAGTCAT	900
GCCGAGCAAG	AGGGTTTCCA	AACAATCAAT	TGGTTGGCCG	GAGCCGATTG	GTATGCTCCC	960
GGTGAATGGA	TGATCTCAGG	ACAATTCTCA	ATGGAAAGCA	TATTCAGGTA	TAGGGATTTC	1020
ATCTCCCAAA	GACAACATTC	TACCCTGATT	ACTCTCAATG	TTTCCAAGAA	ATTCTTCGGC	1080
AGTACACTCC	AACTTTCGGA	CTTCACCTAC	TACGACCTTA	CGGGCAAAGG	ATGGTTCAGT	1140
CGCTTTGCAG	CTGACTATGC	CTTGAACGAT	CAGATACATC	TGATGGCCGG	ATATGACTGG	1200
TTCAGTAGTA	AGGGCAGCGG	TATATTCGAT	CGCTACAAAG	ACAATTCCGA	ACTCTGGTTC	1260
AAAGCCCGCT	ACAGCTTC					1278

- (2) INFORMATION FOR SEQ ID NO:89
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1392 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1392
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89

TACGGCAAAA	GAAGAAAGCT	CGGAACCTCC	GTCCGACCTT	CCGTTCTAAC	CCAAATCAGA	60
TTTATTTTGG	ACTTACACCT	TATTACTGAT	TTTTTTGAAG	GGCTTCGGGT	CAATCCTATC	120
GGTGCAGCAG	CCATAGTGGC	TTTCATTATC	GACCTGCTTC	TTCTTTGCTG	TTCGGCTTTT	180
ATGTCCTCCT	GTGAGGTGGC	TTATTTTCA	CTAAAGCCGA	TCGATCTGCA	GAACATCCGC	240
GAACGGAATC	ACTCTTCCGA	CATCGCGCTT	TCCAATTTAT	TAGACAATTC	GAATCAGCTA	300
TTAGCTACTA	TTCTGATCGG	GAATAATGTG	ATTAATGTAG	CCATCGTTAT	CCTTTCCAAT	360
TATGCCATCG	AGCAGACATT	CGTTTTCTCT	TCTCCGATCA	TTGGATTTCT	GATCCAGACG	420
ATACTCCTGA	CCACTGTTCT	TTTGCTGTTC	GGAGAGATTC	TGCCGAAAGT	GTATGCGCGG	480
AAGAATCCGC	TGCAATACTC	GCGCTTTTCT	GCTGCAGCTA	TGTCCGTTAT	CTATAAGATA	540
TTGTCACCGT	TTTCAAAATT	GCTGGTCAAA	AGTACCGGCA	TCGTTACCAG	AGGTATCAGC	600
AAGAAGAAAT	ACGATATGTC	CGTGGATGAG	CTCTCGAAAG	CGGTAGCCCT	CACCACTACG	660
GAGGGAGAGC	CGGAGGAGAA	AGAAATGATT	AACGAAATCA	TCAAATTCTA	TAATAAGACA	720
GCCTGCGAAA	TCATGGTTCC	GCGTATCGAT	ATTGTGGATG	TGGATCTGAG	CTGGCCATTT	780
CGTAAGATGC	TTGACTTCGT	TGTTTCGTCG	GGTTATTCCA	GACTTCCCGT	TTCAGAGGGG	840
TCAGAAGACA	ATATCAAAGG	GGTGATTTAC	ATCAAAGATC	TAATCCCACA	CATGGATAAA	900
GGCGATGAAT	TCGACTGGCA	TCCTCTGATT	CGTAAAGCAT	ATTTTGTCCC	CGAAAACAAG	960
CGCATAGATG	ATTTGCTCGA	GGAGTTCAGA	GCCAATAAGG	TGCATGTCTC	CATCGTTGTG	1020
GATGAGTTCG	GTGGCACTTG	CGGACTGATC	ACAATGGAGG	ACATATTGGA	AGAGATCGTC	1080
GGCGAGATTA	CGGACGAGTA	CGATGAGGAA	GAACTCCCCT	TTAAGGTTTT	GGGGGATGGC	1140
AGTTATCTTT	TCGAAGGAAA	AACGTCTCTC	TCCGATGTTC	GACACTATCT	TGACCTTCCG	1200
GAAAATGCTT	TCGGTGAATT	GGGGGACGAG	GTAGATACGC	TAAGTGGGCT	CTTCTTGGAA	1260
ATCAAGCAGG	AACTCCCCCA	TGTGGGCGAT	ACAGCAGTGT	ACGAGCCATT	CCGCTTTCAA	1320
GTGACCCAAA	TGGACAAGCG	CCGAATCATC	GAAATCAAGA	TTTTCCCTTT	CGAGCGCACT	1380
TGGGAGGTCG	AA					1392

- (2) INFORMATION FOR SEQ ID NO:90
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 798 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...798
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90

ATAATTTATA	GATCAACAAT	GAAACTATTA	CTTTATCTCC	TATTGGTCTT	GTCGACTCTA	60
TCCCCGATGT	ATTCGCAAAT	GCTCTTCTCA	GAGAATCTCA	CAATGAATAT	AGACAGCACC	120
AAAACCATAC	AAGGAACGAT	ATTGCCCGTA	CTGGATTTCA	AAACCGAAAA	GGAAAATGTG	180
TTCACCTTCA	AAAATACTGC	CAATCTCAAT	CTGCTGATAA	AGCACGGTCA	AGTAATCAAC	240
TTAATTAATA	AGCTTGAGTT	TTCTACCTAT	GGCAATAAAG	TAACCGTAAG	TGGAGGATAT	300
GTACACACCG	AATACCGCTA	TTTGTTGCAT	CATGTTTTTG	AGGTTTATCC	TTATGTCGAG	360
TCGCAATGGG	CAGAAAGTAG	AGGAATGAAA	TATAAGGTTT	CTACGGGATT	ACAGTCGCGT	420
TATCGGCTGG	TAAATAGTGA	TAACTGTCTC	ATGTTTGCAA	CATTGGGGGT	ATTTTTCGAA	480
TTCGAAAAGT	GGGAACAGCC	AGCCACTAGC	CTCTTTGCAG	GAACGTATGC	ATACAGCCGA	540
AGTATCAAAA	GCCACCTGTC	TATCAGTTTC	AGACATCGGT	TGGGTGAACA	TTGGGAATTT	600
ACAACTACGG	CTATTCACCA	GGGAAAGCCT	GACAGTTATT	TTAAGAAGGC	ACGTTTTGGA	660
GGAGCTATCG	ACCTCAAATA	CCATATCACA	CCTACGATAG	GAATACGCGG	GGCCTATCGG	720
ATCATCTACG	ATACTGCCCC	TATTGTACCT	GTGCGGAAAG	ATTACAACAC	CGTTGATGTT	780
GGTATCGATA	TTTCGTTT					798

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2721 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2721
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91

ACTATATGCG	TTGCCTTCTT	ATCCGCTCCC	GTTGCGGCAT	TGCGCGAGTC	GCCGCCAATG	60
GGGGCGGAGC	GGAAGACTCC	CTCTCTCCTA	CCCCTTCTTT	TCGAGCATTC	TGATAAAGGA	120
AAGGGGTTCG	ACTACAGACT	ATTCACAAGC	AATAAACTTA	AAGTGTTTGC	CACAGGTAAC	180
AGCCGATACA	TACACAATAA	ACCAACAATC	ATCCAAGCAA	TGAAACGAAT	CGTTTTATCA	240
TCTTTCCTGT	TCGTTCTGTC	CATACTTTCT	TTGATGGCAC	AGAACAATAC	CCTCGATGTA	300
CACATATCCG	GTACGATCAA	GGATGCCTCC	TCCGGCGAAC	CAGTGCCCTA	TGCCACTGTA	360
AGCATCCGGC	TGACAGGAGC	AGATACCACA	CAGGTGTTCC	GACAAGTGAC	TGACGGCAAC	420
GGCTACTTCG	TCATAGGCCT	GCCGGCAGCT	CCCTCCTATC	ACCTGACAGC	TTCGTTCGTA	480
GGTATGAAAA	CCCATACCAT	GCAGATTAGT	CGGGGAAATG	GACAGCACGA	CATCAAATCC	540
ATCGACATTT	CTCTCGAATC	CGAGGACAAA	CAACTCTCCA	CCGTCACCGT	ATCGGCAGCA	600
CGACCACTGG	TGAAGATGGA	GATAGACCGC	CTGTCCTATA	ATATGAAAGA	TGACCCCGCA	660
GCCAAGACGA	ACAACCTGCT	CGAAATGCTG	CGCAACGTTC	CTTTGGTAAC	GGTGGATGGT	720
CAGGGCAATA	TCCAGGTGAA	AGGATCTTCC	AACTTCAAAA	TCCACCTCAA	TGGCAGGCCC	780
TCGACCATGG	TGAGCAGCAA	CCCGAAGGAG	GTCTTTCGCT	CCATTCCTGC	CCATACGATC	840
AAACGGGTGG	AGGTCATCAC	CGATCCGGGT	GTAAAGTACG	ATGCGGAAGG	CACAAGTGCC	900
ATCCTGGACA	TCGTCACGGA	AGAAGGTAAG	AAGCTGGAAG	GATATTCAGG	TTCCATCACG	960
GCCAGTGTCA	GCAACAATCC	CACAGCCAAC	GGTAGTATCT	TTCTGACGGC	AAAGTCCGGC	1020
AAAGTCGGGC	TGACTACCAA	CTATAACTAC	TACGGTGGCA	AAAACAAGGG	CTCTCGCTAC	1080
TTTACCGAAC	GTACTACATC	CATGCTCCAA	ACGATAGAAG	AAGGCAAAGG	GCAAGAAACC	1140
TTTGGCGGAC	ACTTCGGCAA	TGCCCTCCTC	TCATTCGAGA	TAGATTCGCT	CAATCTCTTT	1200
ACGGTGGGCG	GCAATGTACG	CCTTTGGGAG	ATGACCACCG	ACCGGAACAG	CGTAGAAAAA	1260
AGCTTTGCCG	GCAGCAACCT	CATGTCCTAC	ATAGACAGAA	AACTCAAAAC	ACAGATGGAT	1320
GCCGGATCAT	ACGAGCTCAA	TGCCGACTAT	CAGCACAGCA	CTCGCCTGCC	GGGCGAATTG	1380
CTCACCGTTT	CCTACCGCTT	CACTCACAAT	CCTAATAATA	GCGAGACCTT	CATTGACCAA	1440
TGGAAGCGCG	ATCCGCTCAA	CACAGCTAAT	ACGATCCAGT	ACGCCGGCCA	GCACTCCAAA	1500
TCCGATGCGG	GCATGGACGA	ACATACGGCA	CAAGTGGACT	ATACACGTCC	CTTAGGACAA	1560
GCACATTCTT	TGGAAGCAGG	GCTGAAGTAC	ATCTATCGTC	ATGCCACGAG	CGATCCTCTC	1620
TATGAGATAC	GACCATCCGA	AGATGCTCCG	TGGCAGCCCG	GCTCTCTATA	TGCACAGAAT	1680
CCGTCGAACG	GAAAGTTCCG	CCACGATCAA	TACATCGGAG	CAGCCTATGC	CGGCTACAAC	1740
TATCGTAAGG	ATCAGTATTC	TTTGCAAACC	GGCCTCCGAG	TGGAAAGCAG	CAGGCTGAAA	1800
GCACTCTTTC	CCGAAAACGC	AGCAGCAGAT	TTCTCCCACA	ACTCGTTCGA	CTGGGTGCCA	1860
CAGCTCACGC	TCGGCTATAC	CCCCTCGCCC	ATGAAGCAGC	TTAAGCTGGC	CTATAACTTC	1920

CGAATCCAAC	GTCCTGCAAT	CGGCCAACTG	AATCCCTACC	GGCTACAGAC	CAACGATTAT	1980
CAAGTACAGT	ATGGTAATCC	CGACCTAAAG	TCGGAGAAGC	GTCACCACGT	CGGTCTCTCC	2040
TATAATCAAT	ACGGAGCCAA	GGTCATGCTT	ACAGCATCGC	TCGACTACGA	CTTCTGCAAC	2100
AACGCCATCC	AGAATTACAC	CTTCTCCGAC	CCGGCCAATC	CCAATCTGTT	CCACCAGACC	2160
TATGGCAATA	TCGGACGAGA	GCATTCTTTC	AGCTTGAATA	CCTATGCCAT	GTACACGCCG	2220
GCCGTATGGG	TCAGGATTAT	GCTCAACGGA	AATATCGATC	GCACATTCCA	AAAGAGCGAA	2280
GCACTCGGCA	TTGATGTCAA	TTCATGGTCC	GGCATGGTAT	ACTCAGGCCT	GATGTTCACC	2340
CTGCCGAAGG	ATTGGACTGT	GAATCTCTTC	GGAGGTTATT	ATCATGGGGG	AAGAAGCTAC	2400
CAGACGAAGT	ATGATGGCAA	TGTATTCAAC	AATATCGGTA	TAGCCAAACA	GCTTTTCGAC	2460
AAAAAATTGA	GAGTCTCGCT	GAGCGCAAAC	AACATTCATG	CGAAGTATTC	GACATGGAAG	2520
AGCCGGACCA	TCGGCAATGG	ATTTACTATT	TATTCGGAAA	ATGCCGGTAT	ACAACGGAGT	2580
GTTTCCCTCA	GCCTCACCTA	CAGCTTCGGT	AAGATGAATA	CACAAGTGCG	CAAGGTAGAG	2640
CGTACGATCG	TCAACGACGA	CCTCAAGCAA	ACCTCATCCC	AAGGACAGCA	GGGTGGCGGA	2700
CAAGGAAATC	CTACCGGCAA	T				2721

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1350 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1350
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92

TGGTGCCAAT	CCGACCCAAT	ACCTCATTGC	CATGCAGTAT	ATCGAAACGC	TCAAGGACAT	60
CAACAAGGGC	GATCAGACCA	AGACCGTTTA	CCTCCCGTTC	GAGGCTACCG	GTATGCTCGG	120
TGCCTTGGGC	GGTATGAAGG	ATTTGGTGAA	AGGATGAGAC	TCTCTGCCAT	TCTTATCGCT	180
TTGATTGTGA	TGCTGCCTGC	TGTGCTTAGC	GGGCAGCATT	ATTATTCCAT	GGCGGGAGAG	240
CGACTGGAGA	CGGACAGCAT	TCGTCCGAAC	GAACTCTCGG	CATCGATCCG	AAGTGCGCTT	300
TTCTTTCGGA	ACAATGAATA	CAATGCACGT	TCGGTCAAAG	GTTATACGTT	GCCGGGTGCA	360
CGGGTTTCCG	CTTTTGCCTC	TTACTCGCTG	CCGGCAGCAC	ATGGTGTGAA	GCTTTCGCTC	420
GGAGTATCTA	CCCTGAACTA	CTGGGGGGCA	AGTCGCTATC	CGGCCGGTAT	CGCTTATTCC	480
GATTTACCTT	ATTGGACGGA	CTATAACGAC	TATGTACGCT	TGCGTATCCT	GCCTTATGTA	540
CAGGCCATGC	TGAAGCCGAC	GGCCACGACT	GCTCTCATGC	TGGGCAATAT	AGCCGGTGGT	600
ACGGCTCACG	GACTGATCGA	ACCGATCTAC	AATCCTGAGT	TGGATTTGAC	GGCTGATCCT	660
GAAGCCGGTG	TGCAATTTCG	GGGTGATTGG	ACACGTTTCC	GAATGGATGT	TTGGGTCAAT	720
TGGATGAGCA	TGATTTTCAA	AAATGACAAT	CATCAGGAGT	CGTTTGTCTT	TGGCTTGTCC	780
ACTACTTCGA	AATTGTTATC	GGGTGAAGGC	AAATGGCGAC	TCGAACTGCC	CTTGCAGGCT	840
ATTGCCACGC	ATCGCGGCGG	GGAATACAAC	TGGGCGCAGC	AGGATACCGT	GCATACATGG	900
GTCAATGGAG	CTGTCGGACT	TAAGCTTTCG	TATCGCCCTC	GTACCGACAA	ACCCATGCAG	960
ATTTGGGGAT	CTGCTTATGG	TGTGGCAGCC	TTGTCAAGCG	GAGGATACTT	CCCTTACGAA	1020
AGAGGGTGGG	GCGGTTATCT	TTCTCTCGGA	ATGGACTTGG	AGCACTTCGC	TTTTCGTACC	1080
GACTATTGGT	ACGGCAGGCA	TTACGTTTCT	CCCTTTGCTG	CACCTTTCGC	CAATTCCCTG	1140
ACGTATGACA	AACAGCCTCT	TACGAACGGT	TGGGGCGATT	ATATTCGTCT	CTATGCCGAC	1200
TATTCGTGGC	GGATGGCACG	AAGTGTTTCG	TTGGCGGCTG	TTGCTCGGGT	ATGGTTCCAG	1260
CCTTCGGATC	GTTTTGCGAT	GAGCCACGCC	TTGGAACTGA	CGATGCGTAT	CGATCCCAAA	1320
${\tt TTCCCAATAG}$	CTTTTCTGAA	AGGCAATCAT				1350

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1341 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1341
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93

CCGTTTTCAC	CGCCATGGGT	ATGTGCTGGA	GCGGCTTCCT	CAGTACGCAC	ACGGCCATGC	60
TCGACAGTCT		CGCCTCATCA		CGGAGCACAT		120
GACTCGTCGC	CGGCATATTC	GCCCATTGGC	TCTTTGTCCT	CATCTCACTC	ATTTGATTCG	180
ATACCCGACC	AACGTATGAA	CAAATCGCTA	TTATCATTGG	CATGCCTCAT	CCTGTGCGGT	240
ATGCCGGCCA	TCGCCCAACA	GACAGGACCG	GCCGAACGCA	GCGGCGAGCC	TTCTCTGGCC	300
GAACGTGTAT	TCGGTCTGGA	GCAGAAGCAG	AAAAAGCTGA	AGGTGTACTT	AGGCATACAG	360
TCGTTCTACG	ACCAGCCGCT	TGTCGATGAC	GAATCCCATA	TCGGACACTT	CAAGGTACAG	420
GAGCTGCGGA	TGTCTGCTCA	TGGCGAACTG	AACCGCCACC	TCAGCTTCGA	CTGGCGACAA	480
CGTCTCAACC	GTGCCGCCGA	CGGCACTTCG	TTTGCCGACA	ATCTCTCCAA	TGCCATCGAC	540
ATCGCAGGTG	TGGACTGGCA	CCCGAACGAC	AAGGTGTCTT	TCTTCTTCGG	ACGTCAGTAC	600
GCGCGTTTCG	GAGGGATAGA	ATACGACATG	AACCCCGTAG	AGATCTACCA	GTACAGCGAC	660
CTTGTGGATT	ACATGACCTG	CTATACTTCG	GGCGTGAACT	TCGCATGGAA	CTTCCACCCC	720
GAACAGCAGC	TGCAGCTACA	GGTACTCAAT	GCTTACAACA	ACCGCTTCGC	CGACCGCTAC	780
CACGTGACAC	CCGATGTCGC	TACCGCCACG	AGCTACCCGC	TCCTCTACTC	GGCACAGTGG	840
AACGGTACCC	TCCTCGGAGG	AGCACTGCAT	ATGCGTTACG	CCGTGTCGAT	GGCTCATCAG	900
GCCCAAGAGC	GTAATATGTG	GTACTTCACT	GCGGGCAACC	TGTTCAATCC	GGGCAAACGG	960
ATCAACGGAT	ACCTCGACCT	CACCTACTCG	ATCGAGGGAT	TGGACGACAA	AGGCATTATG	1020
ACTGCTCGCT	ACGGCAAGGG	CAAGACCCTC	ACGGACGTCA	AGTACTATGC	TCTGGTATCG	1080
AAGTGGAACT	TCCGCATTTT	CGATCAGGTC	AATCTCTTCC	TCAAAGGCAT	GTACGAGAAC	1140
GGCTATGCGC	CTGCCCAATA	CGGCGAGAGC	AGCCACACGC	GCCACTCCTA	CGGCTATATG	1200
GGAGGGGTGG	AATATTACCC	TACGGAGACC	AACTTCCGTC	TGTTCGTCAC	CTACATAGGA	1260
CGGCATTACC	GGTACAGTGC	GACCGAGACG	GAAAGCACCA	ATGCTCTTCG	CGCCGGTCTG	1320
ATCTATCAGA	TACCTTTCTT	A				1341

- (2) INFORMATION FOR SEQ ID NO:94
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 681 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...681
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94

TATAAGCAAG (CTATAATGAA	ACATTTGTTT	AAGTCGACAT	TAGTACTTCT	TTGTGCTCTT	60
TCTTTTTCCG C	GTACCTATAC	CTTTGCACAA	GAAAATAATA	CAGAAAAGTC	ACGATTTGAT	120
TTTTCTGTTA C	GGCTGGGACA	GGGATATATT	GCAGGTTCAA	CTACCAACCT	GATGTATGGG	180
TATACATCTG (CTAACGATAG	ACTTTTGTCT	GGTGCAATTT	ATCTGGGCTT	GACACCAAGT	240
AAGAAAGAAA A	ATGCAACCGG	${\tt CGTAGCATTT}$	${\tt CGTTTCTTAT}$	CNCCCTCTCC	GGGTTATTAT	300
GTCGATATAT C	CCGGCAAAGA	AAATACCTTG	AATTATGCGT	TTTACGTTGT	CGGAGCATAT	360
AATAGAATAG (CCATTCCTAT	ACGCCCTATC	AAAAATTTTA	ATTTCATCTT	CTCTACAGAA	420
GTCGGAATGG (CTTGGATGAG	TCGTCATGAG	CAAATTTACA	ATTCTACTTC	GCAGACTTGG	480
GATAAGCAGC C	GCAAGTCGAG	GTCGGGACTG	GATTTTGGTC	TCGGGATGCA	TCTGCAATNC	540
CACATTAATA A	AGACCGTTTA	CTTTATGGCA	GGAACCGATC	TTACGTCTTG	CATGTTCGGA	600
AAAAGGATCA A	ATGACTACCA	GCAAAAGGAT	CGAACCTTCA	TTGCACTTAT	CGACAACAGT	660
ATTGGCATAG C	GATTAAACCT	С				681

- (2) INFORMATION FOR SEQ ID NO:95
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1218 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1218
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95

ATATTCATAG	ACCCCGATAA	GAATACAAAA	CAAAACGAAC	GAAATATGAT	TATCAAGAAA	60
ATGCTGAAAA	ATAAATTGGC	CCCCTTGGCC	ATACTGTTCC	TTTTTGCTCC	AAAGGCTATG	120
AAGGCTCAGG	AGCAACTGAA	TGTGGTACAC	ACCTCTGTGC	CATCGCTGAA	TATCAGTCCG	180
GATGCACGTG	CGGCCGGTAT	GGGGGATATA	GGTGTGGCAA	CGACGCCGGA	TGCGTATTCA	240
CAGTATTGGA	ATCCGAGTAA	ATATGCTTTC	ATGGATACGA	AAGCCGGTAT	TAGCTTCTCA	300
TATACACCCT	GGCTGTCCAA	GCTGGTCAAT	GATATTGCCC	TGATGCAGAT	GACCGGTTTC	360
TACAAATTGG	GAACAGACGA	GAATCAGGCT	ATTAGTGCTT	CTCTGCGTTA	TTTCACATTA	420
GGAAAGTTGG	AGACTTTCGA	CGAATTGGGC	GAATCCATGG	GAGAGGCCCA	TCCCAATGAA	480
TTTGCTGTCG	ATTTGGGCTA	TAGCCGCCAG	TTGTCGGAGA	ACTTCTCCAT	GGCTGTTGCA	540
CTGCGTTACA	TCCGCTCAGA	CCAAAGCACT	CACAACACCG	GAGAGAATCA	GGCCGGAAAT	600
GCCTTTGCGG	CGGATATAGC	CGGTTATTTG	CAGAAGTATG	TGCTACTGGG	TAATGCGGAG	660
AGCTTGTGGT	CGTTGGGTTT	CAACGTAAAG	AATATCGGAA	CGAAGATCTC	CTATGACGGA	720
GGTGTCACGA	GTTTTTTCAT	CCCTACTTCG	TTGAATCTCG	GGACGGGGCT	GTTGTATCCG	780
ATCGATGACT	ATAACAGCAT	CAATTTCAAC	CTTGAACTTA	GCAAGCTGCT	TGTACCCACT	840
CCTCCTATCA	TGGATCAAAA	CGATCAGGCC	GGGTATGAGG	CTGCACTCAA	GAAATATCAG	900
GAAACTTCTT	CGATCAGCGG	TATATTCTCT	TCTTTCGGTG	ATGCGCCGGG	AGGACTCAAG	960
GAAGAATTCC	GTGAGATTAC	ATGGGGACTT	GGGGCTGAAT	ATAGCTATGA	CGATAAATTT	1020
TTTGTTCGTG	CCGGATATTC	ATACCTGCAC	CCCACCAAAG	GCAATTTGCA	GTACTTCACG	1080
GCCGGTGCCG	GCTTCAAAAT	GAACATATTC	CGTATCGATG	CTTCCTACCT	GTTGTCTACG	1140
ATCCAGAGTA	ATCCGTTGGA	TCAGACTCTG	CGGTTTACGC	TTGCTTTCGA	TATGGATGGA	1200
TTGCGCAATT	TGTTCCAC					1218

- (2) INFORMATION FOR SEQ ID NO:96
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1356 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1356
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96

AGGAAAT GAAAACAACA	GTTCAACAAA	TTATTCTGTG	CCTGGCTTTA	60
TATTGGG CGGAAACGCA	CAGAGCTTTT	GGGAAGAAAT	AGCTCCTCCT	120
AGCCTAA CGTCAAGTAT	ATAATTCCCA	ATATGGGGAT	TGATTCAAAG	180
TAACCGT GACAAAAAGG	ATTCAGCAGG	GAGCAAATTA	TACTTCTGAG	240
ACTATCG ACCATTAGGT	GATAATGAAC	AGTGGTGGAA	ACATGATCCG	300
AGATAGT TGCGGATATT	CAGACAGATG	CATATGGCAG	AGTTTATGTA	360
CTCGAGA TCAAGAGTAT	CAACTTTATA	TAAACGAGCA	GAACGAATGG	420
AAACTTC TGTGTCTAC	TATGAGCATG	GTATGGCTGT	TTTTCGCTCT	480
CTTATAT AGGTACCAGG	CATCACATCT	TCGCATCAGG	TGTAAATGAT	540
CTATCTA TGAAGACTCT	ACACCTATGA	GCTGTCGCTT	TGCAGAGGCT	600
CCATCTA TCTGGCATTG	ATGCATGAAA	CCACAATGTC	TACGACTATC	660
ACGGTGA GTTCGTCGAT	ATCTCGGAAA	GTGAATTGAG	TAACTCGATT	720
GCTCTAA TAAAGAAGGT	GATATAATAG	CTCTTGTTAC	TTCATATACA	780
	TATTGGG CGGAAACGCA AGCCTAA CGTCAAGTAT TAACCGT GACAAAAAGG ACTATCG ACCATTAGGT AGATAGT TGCGGATATT CTCGAGA TCAAGAGTAT AAACTTC TGTGTCTACA CTTATAT AGGTACCAGG CTATCTA TGAAGACTCT CCATCTA TCTGGCATTG ACGGTGA GTTCGTCGAT	TATTGGG CGGAAACGCA CAGAGCTTTT AGCCTAA CGTCAAGTAT ATAATTCCCA TAACCGT GACAAAAAGG ATTCAGCAGG ACTATCG ACCATTAGGT GATAATGAAC AGATAGT TGCGGATATT CAGACAGATG ACACTTTC TGTGTCTACA TATGAGCATG CTTATTAT AGGTACCAGG CATCACATCT CTATCTA TGAAGACTCT ACACCTTATGA CCATCTA TCTGGCATTG ATGCATGAAA ACGGTGA GTTCGTCGAT ATCTCGGAAAA	TATTGGG CGGAAACGCA CAGAGCTTTT GGGAAGAAT AGCCTAA CGTCAAGTAT ATAATTCCCA ATATGGGGAT TAACCGT GACAAAAAGG ATTCAGCAGG GAGCAAATTA AGATAGT TGCGGATATT CAGACAGATG CATATGGCAG ACACTTC TGTGTCTACA TATGACATC GTATGGCTGT CTTATTA AGGTACCAGG CATCACATCT TCGCATCAGG CTATCTA TGAAGACTCT ACACCTATGA GCTGTCGCTT CCATCTA TCTGGCATTG ATGCATGAA CCACAATGTC ACGGTGA GTTCGTCGAT ATCTCGGAAA GTGAATTGAG	CTATCTA TGAAGACTCT ACACCTATGA GCTGTCGCTT TGCAGAGGCT CCATCTA TCTGGCATTG ATGCATGAAA CCACAATGTC TACGACTATC ACGGTGA GTTCGTCGAT ATCTCGGAAA GTGAATTGAG TAACTCGATT

GGATTTATGA	GTGGAACCCT	TGCGATCAGA	AAAGCAGATG	AAGGCAAATG	GCAACTTGTT	840
GGCGGAGATA	TACAGAATGC	GATCGTTCAA	AATATATGCA	TGATGGACGA	CAACAAGATT	900
GCTTGTGAAG	TCTTCGGGAC	TCCTAACGGA	GTAGATGGTC	GGACAAGGGT	TTGTGTTTCT	960
GACGCATCTG	TCTTTGATTT	TGAGTGGTAT	GAAGATGAAA	TATACGGAGG	CCTGATATTT	1020
GACACTTTCT	TCTATAGCCC	TTGGGACAAA	CTTCTTTATG	CGAAATTTGG	TGGGATTATG	1080
CTCAGGAGTA	AAGAGTCTTT	TATAACCTCT	TTCATTTCTC	CGACAGTTGT	ACAAGGAGTG	1140
GATGTCTATA	CTTTGGCCGG	GAAGATAAGG	ATCGAAAGTG	AAACTCCGGT	GTCTGAGGTG	1200
		CAGGATGGTA				1260
TCGGACATAG	ATACTAACGG	ACTAAAGCGA	AGCGGTATTT	ACGTAGTCTC	GGTGCGGCTC	1320
TCTTCCGGAC	AGGTATTCAG	TCATAAGGTG	CAGGTA			1356

- (2) INFORMATION FOR SEQ ID NO:97
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...993
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97

GGCCTGTACG	GTATGTCTGT	TGTACCTATA	ATAATTTATC	TTTGCGGTAT	ATCAAATTAT	60
GCAAGACTCA	TGATAATCCG	GTGTCTTATC	CGTCGTCCGA	GAACCGTCCT	GTTCGGGTTG	120
ATATTCGTGG	TAGGTCTTTT	CTCTGCGATG	GCGCAAGAGA	AAAAGGATAG	TCTCTCTACG	180
GTTCAGCCAG	TGCCGAATAG	CAGCATGGTG	GAGCAGACCC	CTCTTCTCTC	CATTGATCAC	240
CCCGTCCTGC	CCGCTTCTTT	TCAGAATACC	CGTACACTGA	AAAGGTTTAG	AGACAAACAT	300
CTTTCCGATG	CTTTGCTCAA	TGGATTGAAG	CCTCATCGCT	CATCTTTGCA	ATTGAATGAG	360
GAACTCAACT	TCGCGGCAGA	GCGTCGGGAT	TTCGTTTCTC	CCCTCTTGCA	AACTCGCCAC	420
GCTGCCGGTG	TCCTTTCATG	GCGACCGACC	GATAGGATGC	ATTTTTATAC	ATCGGGCAAT	480
ATCGGTCTTG	GCCATGATTT	ATTGACCGGT	GTGCGCAAGG	ACTTCGGATG	GAATGCTGGT	540
GCCGACTTCT	TGCTGAGTCA	AAATCTTACG	GCACATGTCC	AAGGCGGTTG	GCAGCAGAAT	600
TTCGGCTTTA	TACCTATGAC	GGCTGTCAAT	GGCCAACTGC	GTTGGCAAGC	CACCGAGAGA	660
TTGAGTTTTA	CCACCGGTAT	CGATTATCGA	CAGGTACAGT	GGAATGCTTT	CGATAATAGA	720
ACGTTCTCGC	TTAAAGGAAG	TGCTCGATAC	GAAGTGATGG	ACAATGTCTT	TGTCAATGGA	780
TTTGGCAGCT	ATCCTCTCTA	CAGCAGTACG	CGCTCAGGAC	TCAATATGGC	TGTTCCGATG	840
CATGGATTCG	GCCCTCAGTA	CGGTGGATCG	CTTGAGCTGA	AAGTCTCCGA	GCGATTCGGC	900
TTTGCCGTCG	GTATGGAGCG	CGAATACAAT	ATCTGGACTC	GTCGGTGGGA	AACGCATTAC	960
TTTGCTTATC	CTGTATTCTA	TGGCGATAAG	AAG			993

- (2) INFORMATION FOR SEQ ID NO:98
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 987 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...987
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98

GAGACGAACT	CTTGGGTATC	CAGCGATTGC	AATTCGACGA	CGATGAAAAC	GAATAGACGA	60
TACGCATTTG	TTTTGCCGCT	TCTGCTACTC	ACCGGATTGT	TGGCATGGGG	GCAGGATTCT	120
TCCCACGGTA	GCAATACAGC	GTTTGCAACT	GATTCTTCGA	GTAGAGAGTT	GCCCACGGAG	180
CAGTCCGCCT	ACCGCATTCA	TTCTGCCTAT	ATGGTCGGTG	GTGGCGGAAG	CATAACGCGC	240
GACACCTATT	TGTCACCCCT	TCGTTATGGA	GGATGGACAC	TGAATTTGTT	GGGAGAGAAG	300
ACGTTCCCTC	TCAAAGCCTC	CGATTCCCGT	TGGATGATCC	GTACCGGGCA	TGAGCTGGAT	360
TTTGCCCTGA	TGGACAATCC	GGCCAATAAT	GCTCATTTCT	ATTCCCTGCT	GTATAACGGT	420
TCCGCTGCGG	CTCTTTACCG	CCTTGGCGCT	AAGCATCTGC	GAGCCGCGTG	GATGGACAAT	480
CTGCGCTTGG	CATTCGGCCC	GGGCTTGGAA	ATCGGGCTTG	GAGGAATTTA	TAGTACACGC	540
AACGGCAATA	ATCCTGCGAC	ATTGAAGCTC	TACACCAATG	CCATCGCCCA	AGCCTCGATA	600
GGATACTACG	TCCCCTCCGA	AACTTTTCCC	CTGTATTTTC	GGTTGCTCTC	CCAGATCAAT	660
CTCTTCGGTA	TAGCCTATGG	AAATGGTTTT	GGTGAGAGCT	ATTACGAGAA	TTTTTTGCTC	720
AATAACGGCA	TTGCAGGCTC	CCTGCATTTC	ACTTATCCGG	GCAAGTTTAC	TCGGTTCACG	780
ACACTCATAA	CGGCGGATAT	TCCCATTCGG	AACTTCTGTA	CGCTTCGTGT	CGGTTATCGC	840
TATTCCCATT	TGGGCTCTTC	GCTTAACGCA	TTGGATACTC	GAATCCACAG	TCATACGGCT	900
TTTATCGGTT	TCGTCACGGA	GTTTTACCGA	TTCCGTGGGC	GCAAAGCCAT	GAATACCGGT	960
CGGAGAACCA	GTCTTTACTA	TCATGAT				987

- (2) INFORMATION FOR SEQ ID NO:99
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 957 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...957
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99

```
TTTACGTCCG GTACGATATT CGTCCGTATA GCCATATCCG GCCGTGTAGT GTGCCGTGAG
GTTGAGGATA ACGGAAGGAG AGAAGCTGTG CGTCATGATG GCATGGTAGT GACGCTGCTC
                                                                      120
GTAATTGTCG GTATTGTGGT AGTAGTGCGG TACTCCTTGC GCGTCCACGT ACATAAGACC
                                                                      180
GGCACTGTTG TATCGGCGGC CATATTTGGC TTCATCCTCC TTGGAAAGAC CGTTCCATGC
                                                                      240
GATACCCGTA ACTTCTTTTC CTCCGAAAGT GATGAACCTG AGAGCCGTGT TGCTACCGAA
                                                                      300
ATAGCCCACC TGTGCGAAAT AGGATTTCAG ATCCACGCTT CCTCTATCCA CGTAGCCGTC
                                                                      360
CGAACCGATT TTGGACAGGC GGGCATCCAC TGCCCAATGG CGACCGATGC GTCCGCTACC
                                                                      420
GAGTTTGACC GATCGGCGGA ATGTGCCGAA CGAACCTCCG CTCAAATCGA CACGGCCATA
                                                                      480
AGGAGCCAGT CCCAAATTAT CCGTACGCAT ATTGACACTT GCCCCAAAAG CTCCGGCACC
                                                                      540
ATTGGTGGAA GTACCCACAC CTCGCTGCAC CTGAAGGTCT TCGATGGAAG AGGCGAAGTC
                                                                      600
GGGCATATTC ACCCAAAAGA CGGACTGAGA TTCGGAGTCG TTGAGGGGTA CTCCATTGGT
                                                                      660
                                                                      720
AGTTATGTTG ATGCGATTGG CATCGGTGCC ACGCACGCGA AAGCCGGAAT ATCCGATACC
CGTACCGGCA TCGCTGGTGG CTACCACGGA GGGAGTCAGC ATCAGCAGAT AGGGGATGTC
                                                                      780
ACGACCATAA TTGGACTTGG AAAGTTCGGC CTTGCGAACG TTGGTGTAAG CGACAGGGGT
                                                                      840
                                                                      900
TTTCGCCGTG GCGCGAGTAG CTACGACCTG TACGGTCTGG AGCTGCACAT TGCTAAGACT
ATCTATCTCG CTGTTGGAGA CGGGTGCTTG TGCCGTCAGG CAGAAAGGCA GGACGGC
                                                                      957
```

- (2) INFORMATION FOR SEQ ID NO:100
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1842 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1842
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100

CCATATAATG	TCCAATCTAT	TAGCAACAAG	ACGATTAAAA	AACAAATGGA	AAACTTAAAG	60
AACATTCAGC	CCAGAGAGGA	TTTCAACTGG	GAAGAGTTTG	AGGCCGGTGG	CGTCCATGCT	120
GCCGTGAGTC	GTCAGGAGCA	GGAAGCTGCT	TATGACAAAA	CGCTCAATAC	CATCAAGGAA	180
AAGGAAGTGG	TAATGGGTAG	GGTAACTGCT	ATCAACAAGC	GTGAAGTGGT	TATCAATGTA	240
GGGTACAAAT	CGGAAGGTGT	GGTACCTGCA	ACAGAATTCC	GCTACAATCC	CGAACTCAAA	300
GTGGGAGACG	AAGTGGAAGT	TTATATCGAG	AATCAGGAAG	ATAAGAAGGG	CCAGCTCGTC	360
TTGTCTCACC	GCAAGGGTCG	TGCCGCTCGC	TCTTGGGAGC	GCGTGAACGA	GGCTCTCGAA	420
AAAGACGAAA	TCGTAAAGGG	CTATGTGAAG	TGTCGTACCA	AGGGTGGTAT	GATCGTCGAT	480
GTATTCGGTA	TCGAGGCTTT	CCTCCCGGGA	TCACAGATCG	ACGTGCGCCC	CATTCGCGAC	540
TACGATGCAT	TCGTTGAGAA	GACGATGGAG	TTCAAGATTG	TGAAAATCAA	TCAAGAATAT	600
AAGAATGTAG	TTGTTTCCCA	CAAGGTGCTC	ATCGAAGCAG	AGCTCGAACA	ACAGAAGAAA	660
GAAATCATCG	GCAAGCTCGA	AAAAGGGCAG	GTACTCGAAG	GTATCGTCAA	GAATATTACT	720
TCTTACGGAG	TATTTATCGA	CCTCGGTGGA	GTGGATGGTC	TTATCCATAT	CACTGACCTT	780
TCATGGGGTC	GTGTGGCTCA	TCCGGAAGAA	ATCGTACAGC	TGGATCAGAA	GATCAATGTC	840
GTTATCCTCG	ACTTTGATGA	AGATCGCAAG	CGTATCGCTC	TCGGACTCAA	ACAGCTGATG	900
CCTCATCCTT	GGGATGCTCT	CGACAGCGAG	CTTAAGGTAG	GCGATAAGGT	GAAGGGTAAA	960
GTTGTGGTGA	TGGCAGATTA	CGGTGCTTTC	GTTGAGATTG	CACAGGGCGT	TGAGGGTCTT	1020
ATCCACGTAA	GCGAAATGTC	ATGGACACAG	CACTTGCGTT	CTGCTCAGGA	CTTCCTGCAT	1080
GTAGGCGACG	AAGTGGAAGC	CGTGATCCTG	ACGCTCGACC	GCGAAGAACG	CAAAATGTCG	1140
$\mathtt{CTCGGTCTGA}$	AGCAACTCAA	GCCGGATCCT	TGGGCTGATA	TCGAAACTCG	TTTCCCTGTA	1200
$\tt GGCTCTCGTC$	ACCATGCTCG	TGTTCGCAAC	TTCACCAATT	TCGGTGTATT	CGTTGAGATC	1260
GAAGAGGGCG	TAGATGGCCT	TATCCATATT	TCCGACCTTT	CTTGGACGAA	GAAGATCAAA	1320
CACCCCAGCG	AGTTTACGGA	AGTAGGTGCT	GATATCGAAG	TTCAGGTAAT	CGAGATCGAC	1380
AAGGAAAACC	${\tt GTCGTCTCAG}$	CTTGGGTCAC	AAACAGTTGG	AAGAGAATCC	TTGGGATGTA	1440
TTCGAGACGG	TATTCACTGT	AGGATCTATC	CACGAAGGAA	CGGTAATCGA	AGTGATGGAC	1500
AAGGGTGCTG	TCGTTTCTCT	GCCTTACGGT	GTGGAAGGTT	TTGCCACTCC	GAAGCACATG	1560
GTGAAGGAAG	ATGGCTCACA	GGCTGTACTC	GAAGAGAAGT	TACCTTTCAA	GGTTATTGAG	1620
TTCAATAAGG	ATGCCAAGCG	AATCATTGTA	TCTCATAGCC	GTGTATTCGA	AGATGAGCAG	1680
AAAATGGCTC	AGCGTGAAGC	CAATGCAGAG	CGTAAGGCTG	AAGCCAAAGC	GGCTCAGAAA	1740
GAAGCTGCTG	CCGAAGCTGC	CAATCCTGCA	CAGGCTGTAG	AGAAAGCCAC	TCTCGGAGAC	1800
CTCGGCGAGC	${\tt TGGCCGCTTT}$	GAAAGAAAAG	CTTTCAGAAA	AC		1842

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 729 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...729
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101

TCGACAATAA TGAAAAAAGC	TATTCTTTCC	GGAGCGGCCT	TGCTCCTCGG	CCTATGTGCC	60
AACGCACAAA ACGTGCAGTT	GCACTACGAT	TTCGGTCATT	CCATCTACGA	CGAACTAGAT	120
GGACGTCCCA AACTGACTAC	CACAGTGGAA	AACTTCACAC	CCGACAAATG	GGGAAGCACC	180
TTCTTCTTCA TCGACATGGA	TTACACGGGC	AAGGGTATCC	AGTCGGCCTA	TTGGGAGATT	240
TCGCGCGAAC TGAAGTTTTG	GCAAGCTCCC	GTTTCCATTC	ATTTGGAGTA	CAACGGAGGC	300
CTCTCCACAA GCTTTACTTT	CGGACACGAT	GCTCTAATCG	GTGCCACCTA	CACCTACAAC	360
AACCCCTCCT TTACACGTGG	ATTTACGATC	ACGCCCATGT	ACAAGCATCT	GGGTGCGCAC	420
GACTTCCACA CCTATCAGAT	CACCGGCACT	TGGTACATGC	ACTTTCTGGA	CGGTCTGCTT	480
ACCTTCAACG GCTTCCTCGA	TCTTTGGGGT	TTCCCCCAAG	AGAACCCAAT	CGGGGGCCCT	540
GTGCTCAAAG AAGGGGATAA	GTTCGTATTC	CTGTCCGAAC	CGCAGTTCTG	GATCAACCTC	600
AATCGCATCA AAGGCATCGA	CAAGGATTTC	AATCTCAGCA	TAGGGACAGA	GATGGAAATC	660
AGCAGGAACT TCGCTCGCAT	GGACAAATTC	TCCTGCATCC	CTACTCTTGC	GGTCAAATGG	720
ACTTTCAAC					729

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 705 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...705
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102

ATGAAAACAA	TTAGTAAGAA	CCATGCGGCA	CGGATCTGTG	CCGCCATTGC	TTTGTTTGCA	60
GTGTGTAACG	GCCGGATAGC	TGCTCAGGAT	TTTCTCTATG	AAATAGGAGG	AGGTTTTGGT	120
GCTGCTCAGT	ATTTTGGCGA	TGCAAACAGA	GGCTTGTTCG	GTTCATCCGG	AGTAGGTTTG	180
		TTATAATTTT				240
		CGATAAGTCC				300
		TCAGCTCCAC				360
		TGGTACAGCT				420
		TGCTAAAGGT				480
		TAAACCGCGG				540
		GGATGCGCTG				600
		GGTCAAAAAC				660
		GCGTAAGACT				705
ATTACGIATG	WCIICGGCCI	GCGIANGACI	IIIIOIMIN			

- (2) INFORMATION FOR SEQ ID NO:103
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1308 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1308
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103

AATATAATGT	ATAAAGACTA	TAAGGGTTTG	TATGCGTCGC	TTCGGTGGTA	TGCCCTGATC	60
ATTGGGTTGC	TATTTGCAGC	AGACGGTATA	CAGGCTCAGA	ACAACAACTT	TACCGAGTCG	120
CCTTACACTC	GCTTCGGCCT	TGGCCGTCTC	GGAGAACGGA	CGACTATTAG	TGGGCATTCC	180
ATGGGAGGAC	TCGGCGTCGG	TCTGCGTCAG	GGCACATACG	TCAATGCCGT	CAATCCTGCT	240
TCATACTCGG	CTGTGGATTC	GATGACGTTT	ATCTTCGATT	TCGGTGCATC	TACCGGAATT	300
ACGTGGTATG	CCGAGAACGG	GAAAAAGGAC	AATAGGAAAA	TGGGAAACAT	TGAGTATTTC	360
GCCATGCTTT	TTCCTATTTC	CAAATCCATT	GCTATGAGTG	CGGGAGTGCT	TCCTTACTCC	420
GCATCCGGGT	ACCAGTTCGG	ATCCGTTGAT	CAAGTGGAAG	GAGGCAGCGT	CCAGTACACC	480
CGTAAATACT	TGGGGACAGG	CAATCTGAAC	GATCTCTATG	TCGGTATAGG	TGCAACCCCG	540
TTCAAAAACT	TCTCAATAGG	AGCCAATGCT	TCATCCCTTT	TTGGGCGATT	CACACACAGC	600
AGGCAGGTAA	TCTTCTCCAC	GGAGGCTCCT	TACAATCCCG	TACATCTCTC	GACGCTGTAC	660
TTGAAGGCTG	CCAAGTTCGA	CTTCGGTATG	CAGTATCACC	TTCTTCTCAA	ATCAGATCGT	720
TCGCTCGTTA	TCGGTGCCGT	CTATTCTCCG	CGGGTGAAGA	TGCATAGCGA	GCTGACTCAG	7,80
ATAAAGAATC	AGGTTCAGAA	CGGTGTAGTA	GTGGAGAGCG	AAACCCAAGA	ATATATCAAG	840
GGAATGGACT	ATTATACCCT	GCCTCATACA	TTGGGGATAG	GTTTTTCTTA	TGAAAAGAAA	900
GATAAACTTC	TCTTAGGAGC	AGACGTCCAA	TATAGTAAAT	GGAAAGGCGA	GAAATTTTAT	960
AAATCCGATT	GCAAATTCCA	GGACAGAATA	CGGGTATCTC	TCGGCGGAGA	GATCATACCG	1020

			GTTCGCTATC		1080
			GGTGTATATC GACAGACGTT		1140 1200
			ATGATCAAAG		1260
TTCGGCCTCA	CGTTCAACGA	GTCATGGTTT	AAAAAGCTGA	AACTGAAC	1308

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2835 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2835
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104

			${\tt ACCTATTTT}$			60
			CTCCTTGCTT			120
GAAGCCCAAC	AAGCCGGAGT	AGCAGGTAGA	GTATTGGACG	AAGAAGGCAA	CCCCATGATT	180
CAAGCCAACG	TACAGCTTGT	ACAGAGTACC	GGCCAAGTAG	CCGTTGCCGC	AGGTGCCACT	240
AATGAAAAAG	GGTTGTTCAG	CCTGAAAACG	TCACAGGAGG	GTGACTACAT	TCTGCGCGTT	300
TCATATGTAG	GTTACACTAC	CCACGACGAA	AAAATATCTC	TTAGAAACGG	GCAAACCATT	360
ACGCTCAAAG	ATATATCCAT	GAACGAAGAT	GCCCGTCTTC	TACAGAGTGT	GACGGTGCAG	420
GCTAAAGCGG	CAGAGGTCGT	GGTACGCAAC	GATACGCTCG	AATTCAATGC	CGGATCCTAT	480
ACCGTAGCAC	AGGGAGCTTC	TATCGAGGAA	CTGATCAAGA	AGCTACCCGG	AGCAGAGATC	540
GGATCCGATG	GGAAGATCAC	CATCAACGGC	AAGGACATTA	GCAAGATCCT	TGTCGATGGC	600
			GCAATAAAGA			660
AATAAAGTAC	AGGTACTGAA	CAAACTGAGC	GAGCTGTCGC	GGATGAGCGG	TTTCGATGAT	720
			GTGAAGCCCG			780
GGAACGCTTC	AGGCCGGCTA	CGGTACCGAC	CAACGCTATA	TGGCCGGAGG	GAACGTCAAT	840
CGGTTCGATG	GAAATAAGCA	ATGGACATTG	ATCGGTAGTG	CGAACAATAC	GAACAATATG	900
GGCTTTAGCG	AGATGGACAG	CGAGATGGGA	TCCATGACCT	TCTTCTCTCC	CCAAGGCGGT	960
			GTTACGTCTT			1020
			ACAGGAGGCG			1080
			GAAAATATCC			1140
			TCTCACAATG			1200
CAATGGAAAC	CGTCCGAACG	TACCGAAGTG	GTATTCGAGC	CGGATCTTTC	GATATCCAAG	1260
			ACGAAAGATG			1320
			AACAACTTCA			1380
			ACGATCAGTG			1440
ACCGACGAAG	ACGGAGATGG	CATATATCAG	GCTGTGCTCC	AAAGCGTGGA	GACGAATCAA	1500
AAGCAATTCA	ACGACAACTC	CAACCTGCAA	TATCGGCTTC	GCCTCTCGTA	TGTGGAACCG	1560
TTGGGTAAAA	ACTACTTCGC	ACAAGCGATT	CTGAACAGAC	GTTTCTCCCG	TCGCAATTCG	1620
GATCGTGAGG	TGTACCGACT	GGGCGATGAC	GGGCAATACT	CCATATTAGA	CAGTCAGTAC	1680
GGACTCTCCT	ACAGTAACGA	GTTCACCCAG	TATCGCATCG	GACTCAACCT	CAAGAAGATT	1740
			AATGTGGATC			1800
			CTGGCTTTCA			1860
			ACTACCAACC			1920
CGCACGACAC	AACCATCCAT	CAATCAGATC	GCTCCCGTTC	AGGACATCAC	GAATCCGCTA	1980
TTCGTGACGG	AAGGCAATCC	CGGTCTGAAG	CCGAGCTATT	CCAACAATGT	GATGGCCATG	2040
TTCTCGGACT	TCGATGCCAA	AAGTCAGCGA	GCTTTCAACA	TTGTTTTCTT	CGGCAACTAT	2100
ACATTCGACG	ACATCGTCCC	CAATACGCAC	TACGATCCGT	CTACAGGGAT	CCGTACCACT	2160
			GCGAATCTTC			2220
			TCCTTGTTCA			2280
			CTCTCTTTCC			2340
			AGTATCGGTG			2400
			TCTCGCACAT			2460
			CGTATCGACA			2520
AACTCCGGTT	ACAGCGGAGG	ATTCAGTCTG	GACGAATGGC	TTTGGAATGC	TTCGCTTTCA	2580
TACAGCTTCC	TCCGTGACAA	GGCCGGTACA	CTGCGTGTCA	ATGGCTATGA	CATCCTCGGT	2640
CAGCGGTCAA	GTATCAGCCG	TTCTGCTTCG	GCCATCAATA	TAGAAGAGAG	CATGTCCAAT	2700
			ATCTACCGAT			2760
			ATGAATCGTC			2820

GGCAGACGAC CGTCC 2835

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1236 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1236
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105

GGAGAGTATC	CTGCAAACAG	TAACGACAAA	AAAGAGATGG	TTATGAAGCT	GATTAAAAGA	60
AGTTTGCTCC	TGCTTGGAGC	GGTACTGCTG	ATTACGCTTC	CTGCGTACTC	GCAGAATGAT	120
GACATCTTCG	AAGATGACAT	CTATACATCG	CGAAAAGAAA	TACGTAAACA	AAACCAAGTT	180
AAAGACTGGC	AAAACCAAGA	GGACGGATAC	GGCGACGATA	CGGAATATAC	AGTGGCTTCC	240
GATCGGGACA	TTGACGCCTA	CAATCGTAGA	GATGGCCAGT	CCTACGATGG	GAAAAAGTTG	300
TCCAAAGACA	AGAAAAGAGA	CTCCACTCGT	TCTTCTGTTC	CCGGTCGCTA	TAGTCGCCGC	360
TTGGCTCGAT	TCTATAAGCC	GAATACGATC	GTCATTTCAG	GTGCCGACAA	TGTATATGTA	420
ACTGATGATG	GTGAGTATTT	CGTCTATGGA	GACGAATACT	ATGATGACGC	GTCGTCTGTA	480
AACATTTACA	TCAACAGTCC	${\tt TTGGTGCGAT}$	CCGTTCCCTT	ATACGTCATG	GTATCCATCT	540
TTCTCCGGCT	GGTACAACTA	TACGTGGAAC	TATCCATGGT	TCTACTACGG	TAGCCATATC	600
GGATGGGGCG	GTTATTACCC	CGGATATAAT	TGGTATTGGA	GCTACTACTA	TGATCCTTTC	660
TACAATCCCT	ATGGAATCGG	TATGGGTTGG	GGATATCCTT	ATGGCTGGGG	CAGCTATTAC	720
GGTTGGGGTG	GCTATCCGGG	AGTGATACAT	CACTACCACC	ACTACCCCAA	GAAGACCTAT	780
TCCAATGGTC	AGCATTCCGG	AGCTTACTAT	TCTTATGGCC	GACCGAATCG	TATCAAAGGT	840
GGAACGTCCG	GTGCCAAACT	TGGGACAGGA	CGCTACGATA	GAATTCAAAA	TTCGTCTTCG	900
CAAAAAAATA	AGTTCGGATT	GCAGTCGAAC	AAACCCAATA	ATAATCTGCA	AAATGTCAAG	960
TCGGGACGTA	CCGGCCGAGC	CAATAGAGAC	CGAAATATAG	AAACGGTAAC	TCCAAACAAC	1020
GGGCAAAAGC	AGAATCGTCC	CGTATTCCAG	CAGAATCAGT	CCGGCAATGA	CCGACCGACC	1080
GGACGGAATA	TCCGCAGCGA	GAGACAGGGG	GAAAATAACG	ATAGGACATT	TTCGACTCCT	1140
TCTCGTAGCA	ATAGTAACGG	TGGCTTCTCC	ACGCCTTCTC	GCTCTTCTTC	CGGCTCTATG	1200
AGCGGAGGTG	GCGGACGTAG	TGGCCGGGGA	CGCAAT			1236

- (2) INFORMATION FOR SEQ ID NO:106
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1803 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1803
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106

AGTAATAGCA	GCTCCCACAA	GTGGTTAATT	TATTATCATA	TAGAAAAGAC	TAAAAGTATT	60
ATGATCCGCA	AGTTGATCTT	ACTGCTTGCT	CTGATGCCGG	TAGCCTCTGT	GGCTTTTGCG	120
GTACCAACGG	ACAGCACGGA	ATCGAAAGAC	AATCGTATCC	TTACAAGCAT	GCAATCCTCC	180
TCTTTGAATA	GGGATGATGC	TCCGGATAAA	TGGCAACCTA	TGCATGCCAA	TTTCAGTATT	240
CAGAGCGATA	TGCTGCTTTC	TACTGCCCAA	AAGTCCAAGA	ACACCTGGTT	CGGCAACTCC	300

TATATCATGG	GTATAATCAA	GAACAATTAT	CTGGAGTTTG	GTGCCCGTTT	CGAGGATCTC	360
TATAAGCCCC	TGCCCGGACA	TGAACCCGAG	ATGGGGCGTG	GCGTTCCTCA	CATGTATGTG	420
AAGGGAAGCT	ATCATTGGGC	GGAGCTGACT	ATGGGAGACT	TCTACGATCA	GTTCGGTAGC	480
GGTATGGTAT	TCCGCACCTA	TGAAGAGCGC	AACCTCGGTA	TAGACAACGC	GGTTCGCGGC	540
GGACGTATAG	TACTCACTCC	TTTTGATGGA	GTGCGTGTCA	AGGGTATTGC	AGGACAGCAG	600
CGTAACTACT	TCGACCGCAC	GGGCAAGGTA	TTCAATTCCG	GCCGAGGCTA	CCTACTGGGT	660
TCTGATCTGG	AGCTGAATGT	AGAGCGTTGG	AGCAGTGCCA	TGCGCGACAA	TGACTATCAT	720
TTGGCTATCG	GGGGATCGTT	CGTTTCCAAA	CACGAAGCAG	ACGAAGATAT	ATTTGTGGGT	780
GTAGGCGAAG	ATCGCAAGCG	ACTCAACCTG	CCGCTCAATG	TCCCGATTAT	GGGCCTGCGC	840
ACCAACTTTC	AAAAAGGAGG	TCTCGCCCTC	TACGCAGAGT	ATGGATACAA	ATACAACGAT	900
CCCTCGGCAG	ACAATGACTA	TATCTACCAC	GACGGACAGG	CTGCACTCCT	CTCTGCCTCA	960
TACTCCAAAA	AAGGGATGAG	TATCCTGTTG	CAGGCCAAAC	GTTGTGAGAA	CTTTGCTTTC	1020
CGCAGCAAGC	GAAGTGCCCA	GCTCACACCG	CTTATGATCA	ACTATATGCC	GGCTTTTACC	1080
CAAGCTCACA	CTTATACGCT	GGCGGCCATC	TACCCCTATG	CTACTCAGCC	TCAGGGAGAA	1140
TGGGCTTTCC	AAGGTGAACT	GCGTTACAAC	TTTGCTCGCC	GGACAGCTCT	CGGTGGACGC	1200
TACGGTACCG	GCTTGCGTAT	CAACGTTTCG	CATGTGCGTG	GTCTGGACAA	AAAGATGCTC	1260
AAAGAGAATC	CCGACGAACT	GATCGGAACG	GATGGCTACA	CCGTTTCTTT	CTTCGGCATG	1320
GGCGACCTCT	ATTATTCGGA	TATAGATGTG	GAGATTACTA	AAAAGGTAAG	CCCAGGATTC	1380
AACTTTACGC	TCACCTACTT	GAATCAGATC	TACAATAACA	AGGTACTGCA	CGGTGCAGCC	1440
GGAGAGAAGC	CTGAGAAGAT	CTATGCCAAT	ATCTTCGTCT	ATGATGGTAA	GTATAAGCTG	1500
AGTAATAAGG	TAGCCCTCCG	TACCGAACTG	CAATATTTGC	ACACGAAGCA	GGATCAGGGT	1560
GACTGGATCT	ACGGCATGGC	CGAGCTCTCT	ATCCTGCCTT		TTCCCTCTCG	1620
GAGCAGTATA	ATATCGGAGA		CATTATGTCA		CACCTATACT	1680
0.10001100110	ATCGAGTAGC		GGCAAAACCC		GAACTGCTCG	1740
GGAGGTGTAT	GTCGTGTGGT	CCCTGAGACT	CAGGGATTCT	ACCTTTCTTA	TAGCACCAAT	1800
CTG						1803

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 756 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...756
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107

AGGGGGTCGA	GTTCGGGCAT	TTCAGCCCGT	GGACGCGACA	TGCGTTCTTT	ATTTTTGAGC	60
GCGTTGCGCA	GCTCCTCTCT	CCATGGTTCA	GAGCGACGCA	GTCGGATAAG	TTCTTCTGTA	120
GTCATGTCAA	TAAGGCAGAA	AATAAGGTTA	TTCCATCTCT	CGGTATGCGC	CCAAACGCAT	180
GATCATCTCA	TCGAAATCCA	CTTGGTGTGC	ATCGAATTCG	GGGCCATCGA	CACAGACGAA	240
TTTCGTCTGT	CCTCCCACGC	TTATACGACA	AGCCCCACAC	ATACCGGTGC	CATCCACCAT	300
AATTGTATTG	AGAGAAGCTA	TGGTCGGTAT	CTCGTAACGT	TTGGTCAGGA	GAGAAACGAA	360
CTTCATCATC	ACAGCCGGCC	CGATCGTAAC	GCAGAGGTCT	ACCGTTTCCC	GTTTGATAAC	420
GCTTTCCACT	CCATCCGTTA	CGAGGCCTTT	CGTCCCATAA	GACCCATCGT	CTGTCATGAT	480
GATCACTTCA	TCGCTATTGG	CTCGCATTTG	TTCTTCAAGG	ATAACCAGAT	CTTTAGTTCT	540
GGCAGCCAAT	ACGACAATTA	CACGGTTGCC	TGCTTTGTGG	AAAGCCTCCA	CGATCGGGAG	600
CAAAGGAGCC	ACACCCACAC	CGCCTCCGGC	ACAAACCACT	GTGCCGACCT	TTTCGATATG	660
CGTACTCTGT	CCCAGCGGAC	CTACCACATC	CGTGATATAG	TCGCCGACTT	CGAGTTCGGC	720
CAATTTCTTG	GAAGATTTGC	CCACGGCCTG	AACCAC			756

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2370 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2370
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108

COCOOR COCOOR	COOCOO	ACCCCGAATG	GATCGTCCTA	AGCCTTCATA	TATTGTTCGA	60
ATTACCACCCA	TTCTCCTT	CTTTCTCCCC	AGGCCTTTGT	TTGCGCAGAG	CTATGTGGAC	120
ATAGCAGCCA	CCCTCTCTCCC	CACCCTAACT	TCTTTTGAGC	TCACTCCGGG	CAATACCTAT	180
CCCCTCATC	CUCTUALCU	CCCAATGAAT	AGCTGGACAC	CGATGACCGG	TGTACCCGGT	240
CCGGTGATCG	GITIACCGIG	CTCCCCACAC	AAGATTCGCG	CATTCAAACA	GACCCACCAA	300
GACGGCTGGC	AAIAIACCIA	CTCGGCACAC	TTCTCCCTTC	TTCCCCTTAC	GGCACCGCAG	360
CCCAGTCCTT	GGATCAACGA	CATACCTCTC	ACTAAATGGT	CCAACCAACT	CTTTTCGGAC	420
AAGCCATCAT	CGAACGACTC	CCACAAACCC	GAGACGGCGA	CCCCATACTA	TTATAGTGTC	480
GAACAGACCT	CGTGGTTCTC	ACCCURACIO	ATGGCTCCGA	CCCACCCTCC	ACCTATCTTT	540
TATTTGGCCG	ATTACGACAC	ACGCG1GGAG	GGCTCCGGTC	CATCCCTTCC	TCTTCATCCC	600
			GATCCTCACA			660
			GCCTGTTATT			720
AAGAATAGCG	GAGGTGTGCC	GGCTAACTTC	ACCGGCAAGT	CACACCAACC	CACAAGGGCA	780
CCTATGGCCG	ATGTCCTGCT	TGAGACAGAI	ACCGGCAAG1	CAGACGAAGG	TTCTTTTATC	840
TGGGCAGCCT	GTCGCTTCGA	TTCGCAAGAA	GTTACCGTCC	GGGIGGCAIC	CCACCCCATC	900
	AGGCCGAAAG	AAATCTTGCG	GAAGTCAAAG GTGCTCGGAC	GGCAGAGIII	CCAACCAGAIC	960
						1020
			GCACTCTATC			1020
			TTTGTGCATT			1140
GTACTTCCCG	GTTATCTCTA	TACCGATACC	GGATTTTGGG	ACACTTTTCG	AGCCCTITIC	1200
			AACATTAAAA			1260
	AGAGTGGCTT		TGGGCCAGTC			
	ACTCTGCTTC		GATGCCTACC			1320
			CATGCTACGA			1380
TCCTCCACGG	GTCGCAAAGG	TTGGGAGTGG	TACAACTCCT	TAGGTTATGT	TCCGGCTGAT	1440
			CTCGAATATG			1500
CTCCGACTGG	GGCGCACATT	GGGTTGGGAT	AGAGCTGCAT	TGGACACGTT	GGCTCATCGT	1560
TCGATGAACT	ATCGTCATCT		GAAACCAAAC			1620
GATGGTAGTT			TTCAAATGGG			1680
			CATGATGTGC			1740
			GATTCGGTAT		TCCTATGTTC	1800
GATGAGAGCT	ATTACGGATT	TGTCATCCAC	GAAATCAGAG	AGATGCAAAT	AGCGGATATG	1860
			CAGCATATGA			1920
GGTCATCCAT	GGAAAGCTCA	GGAGAGACTA	CGCGAAGTGA	TGGGGCGGCT	CTATCGTCCT	1980
ACTCCGGATG	GGTATTGCGG	CGATGAAGAC	AACGGACAGA	CTTCGGCTTG	GTACGTTTTC	2040
			GCTACGGATC			2100
			GACGGACACA			2160
GCCAACAGTG	CCGATACGCC	TTACATCCGC	TCGATCAGCG	TAGAAGGAAA	AGAATGGAGC	2220
TGCAATTACC	TGACTCACGA	ACAGCTTCGC	TCTTCTGCAT	CCATTCAATG	GATGATGGAC	2280
ACGAAACCCA	ATTATAATCG	TGGTATGAAG	GAAAGTGACA	GACCTTATTC	CTTCTCCACG	2340
	GTCGCGCTAA					2370

- (2) INFORMATION FOR SEQ ID NO:109
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 858 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...858
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109

ATTTGTGGCA	GTAAAATGAA	TCTATCGGGA	TTACAATCTT	TCACTATGAT	GAAATCCATG	60
CGCAGCGTGC	TGTTGCTACT	CTTTCCATTG	TCTTTGATCA	CTGCTTTGGG	CTGTAGCAAT	120
AACAAAGCTG	CCGAATCGAA	GTCTGTCTCT	TTCGATTCGG	CCTATCTCGA	ACGCTACATC	180
CCTCTGCGGG	CAGACATAGA	TACGCCATCG	CTGCATGTGA	TGATCAGCTA	CGTCTATCCT	240
TCGGGAGATG	ATATGCTCAC	AGAGATTTTC	AACGGTTTGC	TCTTCGGCGA	CAGCCTGATG	300
GATTCCTCTT	CGCCGGAGAA	TGCCATGGAA	GGCTATGCAC	AGATGCTGGG	AGAAGACTAT	360
CGCTCTAACA	ATGCCGAAGC	CAATCTGCAA	GGGCTTCCTT	CTGACCTTTT	GGACTATATC	420
TACAAGCAGG	AAAATACCAT	CGCTTATTGC	GATACGGGAT	TGATCTCCAC	GCGCATCAAT	480
ACATATACTT	ACGAAGGCGG	TGCACATACG	GAGAATACAG	TCCGGTTTGC	CAACATCCTT	540
CGCACCACCG	GCAAGGTGCT	CGAAGAGCGA	GATATATTCA	AGATCGACTA	TGCGGAAAGG	600
CTGTCCGCAC	TCATCATAGG	ACAATTGGTG	CACGATTTCG	GCAAGACCAC	ACCTGCCGAA	660
TTGGATGCAA	TAGGTTTCTT	CAACGCAGAA	GAAATACAGC	CCAATGGCAA	TTTTATGATC	720
GATGACAAAG	GTCTCACATA	CTGTTTCAAT	GAGTATCAGA	TAGCTGCTTA	TGCCAGAGGT	780
GCTGTCTATG	TCCGTCTCGG	ATATGACGTA	TTGGCTCCTT	TGCTAAGGGA	TGATTCCCCA	840
CTAAAGCGTT	ACTTGCCG					858

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1134 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1134
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110

```
GGGATAATAT CTGTTCTTTC ACATGTGGTT GACCGTCCAC AATGGGGTGC TTCTCCCGAA
                                                                       60
GCTGCTGGCA CGCATAGTGT GTATTCGATT CTACATCCCT CCGCCGGTAT TATCCGGATC
                                                                       120
AGGTCTATGG GTATTATCTC AGCCTGCCGT ATCGCAATTC TTGCCGGCAA GCACCCCCGT
AGCGGTCTGT CGAGGGCAAA TGTAGGTATT CTTTCGTACA ATCCAGAAAA CACGCCCGAG
                                                                       240
AAAAAGAGAA AACTGCAAGA AAAAAATGTT TTCCTCCAAA TCCGGCTCCG TCAATCATTT
                                                                       300
AATAATTTGA TACCTTCGCT CCCATTTAGA ATCGATAACA CAAAAAAAAT CACTGAAATG
                                                                       360
AAAAAAACTA CTTTGACAGG ATCGATATGT GCTTTACTCC TGTTTTTGGG TCTCTCGGCC
                                                                       420
AATGCCCAAT CGAAGTTAAA GATCAAGAGC ATTGAGGCAG CTACCACTTT CAGTTCGGCC
                                                                       480
ACGGCCGGAA ATGGTTTTGG TGGCAATATC TTCGGCATGG ACATGAGCAT ACGGATGAGG
                                                                       540
GTACACCACA GCATTCTGCC CGAAGGGTTG GATTTTTCGG TAGGAATACA TGAAAGAAGA
                                                                       600
GCACACTGGG AAGAGGCCGG AAGTCCGAAG CTCATGTATA CGAATGTCCC AAGTATCATT
                                                                       660
GGTATTGTTG AAAAGGTAAT AGTCTTCGAA GACGCAGAAG ACTTTTTTGA CAAAAAAGCT
                                                                       720
CTCGGCCGCT TCCTCATCAG TTTGGGGATA TCCTATACCA AGCATCTGGG AGCGTATTGG
GGATGGACCA ATGACGCCCA TATTCTTTTC TCACCGATAC CCAAGAGCAA GGTCCACTAT
                                                                       840
GACACCTACA CAAGAGCTGG CAGTGACCTT GTACTTCAGT CCGAAGATGT TGCCACAGTG
                                                                       900
AGCAATGGCT TTTCACCGGG GATCGGACTC AAAAGTTCTA TTTGGTGGAA AATGCCCATC
                                                                       960
AAGAGCAAAT ATGATTTTCG CCTCGGTTTC AGCCTGGGCT ATGAGTATCT GAACCTGCTA
                                                                      1020
TATCCGTATC GTAATTTCAA GCTGGATGGA AATAAGCCGC TTTCAGCACT ATCTCCTCGC
                                                                      1080
ATGAACCACA TCGGCCATGT GGGCTTCAAC TTTACCGTGG GTCTTTGGAC TAAT
                                                                      1134
```

- (2) INFORMATION FOR SEQ ID NO:111
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...3807

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111

GTAAAATGTA	TGGGCAAGTA	TAAAAGAGCT	AAGTACCGCT	ATTGGCTTTT	TCCTTTCTGT	60
TCGGATTATT	ATACCTTTGA	GGGAGTTACT	TTTTTATGCG	CATCTGACGA	TATGACAACC	120
				ACATTGAAAT		180
						240
				TCAAGCAAGA		
				GCATGACTTG		300
TTTCCTGCTC	TAAAAAAGCT	TGATCTATCG	TATAACCAAA	TCAGTAAGCT	AGAGGGTCTA	360
CAACCTCTTA	СТТССТТААС	ΔΔΔΔСΤΤССΤ	CTAAGAAGTA	ACCAAATCCG	TAAACTAGAG	420
						480
				CCGATAACCA		
CTAGAGGGTC	TGGAACGTCT	CACCTCGTTA	GCGGAGCTTT	ATCTTTTGGA	TAACCAAATC	540
AGTAAACTAG	AGGGTCTGGA	ACGTCTCACG	TCCTTAGCAA	CGCTTGAACT	ATCGGGTAAC	600
СУУУТСССТУ	AGCTGGAGGG	TCTGGAACGT	CTCACGTCCT	TAGCAACGCT	TGAACTATCG	660
				CTTCGTTAAC		720
				GTCTCACGTC		780
CTTGAACTAT	CGGGTAACCA	AATCCGTAAG	CTGGAGGGTC	TGGAACGTCT	CACGTCCTTA	840
GCAACGCTTG	AACTGTCGGG	TAACCAAATC	AGTAAGCTAG	AGGGTCTGGA	ACGTCTCTCT	900
				AACTAGAGGG		960
						1020
				TCAGTAAGCT		
GAACGTCTCA	CCTCGTTAGC	GGAGCTTTAT	CTTTTGGATA	ACCAAATCCG	TAAGCTGGAG	1080
GGCCTGGAAC	GTCTCACCTC	GTTAACAAAG	CTTCGTCTAA	GAAGTAACCA	AATCAGTAAA	1140
				CTCTCTCCGA		1200
						1260
				AGCTTTATCT		
CAAATCCGTA	AGCTGGAGGG	TCTTGATGGT	CTTGCTTCCT	TAACAAGGCT	TAGTCTAAGG	1320
CGCAACCAAA	TCAGTAAGCT	GGAAGGACTA	GACAGACTAA	AGGTTTTGAG	AAAACTTGAT	1380
				TATTGGCTCC		1440
-				TTGCATCATC		1500
_						
				TTCTTGAAAA		1560
AAACAGAAAA	AGACTTCAGT	TGAATATCAC	CCATTTTGCA	AAGTAATGCT	ATTGGGAAAT	1620
CATTCTTCGG	GTAAAACAAC	ATTTCTTAGT	CAATACGATA	CAAATTATAC	GTATCAGAAA	1680
				ATGCGATCTT		1740
						1800
				TTACCACCCA		
CTTCTCTTTT	GGGATGCTAA	GAAGGATCGA	AACTTTGTGA	GCGTAGATGA	TAAAGAATAT	1860
CAGACTCTTA	ATTTCAATCG	CCCCTATTGG	TTAGGACAGA	TAGCCTATGC	CTGCAATCGT	1920
				CACAGACCAC		1980
				AGCAAACCTT		2040
GCCGAGAATG	GAGTATTGGA	AGAAATCTAT	GTATCCTTAG	AGCCCAAGGC	GAATAGTGCC	2100
GTACATGCGC	TCAACTATCT	GAATGAGCGG	GTGCGAGAAG	TTGTCGCAAG	CAGGAGTAAA	2160
TCAATTCAGA	TCACAGAAAA	AGATAAGGGA	TTGTACGAAG	CTCTTCCCAC	AATCGCCGGT	2220
				CTCAATTGAA		2280
						2340
				AATTGAACCA		
CGAGGGGAGG	TGCTTTACTA	TCGTGAGAAT	GAGAAGCTGA	ACAATTATGT	CTGGTTAGAT	2400
CCGGCAGCTT	TTGTCCAAAT	GATTCATGGA	GAAATCCTCC	AAAAAGACAA	CATCAATAGA	2460
GGAACAGTTC	CTAAAGACAT	TTTTGAATGC	AAACTGCATA	ATCTAAGTTC	CGGAAGTATA	2520
				TATTATTGGA		2580
				TCCCTTTGCA		2640
GAAGCCTATA	AATGGCTTAC	TTTGGGATTC	GAGAGGCCCA	ATTTTGTCCT	CAAATTCGAA	2700
CGTTTTATCC	CCTTTGGCCT	GATCAACCAG	ATTATAGCCT	ACTATGGCCG	GGAAGAAGGT	2760
CCTCTAAACC	GGTATTGGCG	AGATCAGGTC	ATCTTCACAG	CAGGCCGTGA	GATGGATAGG	2820
				AGACGAATGC		2880
				CCGTATTCAT		2940
AGAAAGACAT	CAGCTAAGGA	TATGCAGCGG	AAAGAGGCTA	CTATCCTCAG	TGATATGTTG	3000
GATATGTATT	GGAACAATAT	CCCTCCGAGG	GAGCAAATAG	GAGATAAGGA	TACGGAGCAA	3060
					TCTCTACCTC	3120
						3180
					GGGCACGCTG	
				CGTTGAAGAA		3240
GATAAAGAGC	GGGTGCGAGA	AGTATCGACT	CGTCCCTACA	AACATCTTTC	CGTCAATAAA	3300
					GACTGAACTG	3360
				GTCAGATCGA		3420
GAGACCIGIC	IGCUVIIII	TARACCCI IG	CACCACACACA	TANCAR ACCO	TATTO TATO TATE	
GATAAGTTGA	CTAAGTTTGA	AACACCTATT	CACCCTGAAA	TAAGAAAGCG	TATIGICGAA	3480
GCCGACTGTA	TAATCGCTTT	GATCAGCCAA	CGCTATCTGG	CCACGGATTA	CATCCTGGAT	3540
CATGAGTTGC	CTGTATTTCG	GGAGTATAAC	AAGACCATAG	TGCCGATATT	GATCAAGCCT	3600
				TTGCTCAGAA		3660
				ATAGTATTAC		3720
			AGAGAGTTCA	AAGAGAAGAT	ATTAAGAATA	3780
ACAAAACAGG	AGGTAAATAC	AGATGAA				3807

⁽²⁾ INFORMATION FOR SEQ ID NO:112

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 693 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...693
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112

AAGTTTATGA	TGAAAAAAGC	ATTTGTTTTC	GTACTACTGG	TTTGCCTATT	CTCCTCGTTC	60
AGCAGTTCCG	CCCAAACAAC	GACGAACAGT	AGCCGGAGTT	ATTTTACAGG	ACGAATCGAG	120
AAGGTGAGTT	TGAACTTAGG	GGTCCCCCCC	GTAAGCACAG	AGGTTTGGGG	AATGACCCAT	180
GATGCGAACG	GTCTCCCTTT	CGAAATACCT	ATCTCTTTCA	GTCGTTTCAA	CAGCCAGGGA	240
GATATAGCTA	CCACTTATTA	CATAGCGAAT	AGCGAGGCAA	CTTTGAATGA	ATGGTGCGAC	300
TATGCACACC	CGGGCGGCAT	CGTGAGGGTA	GAAGGTCGTT	TTTGGAAAAT	GACTTACAAC	360
ATACCAACCT	ACAATGCAGT	CTGCACCCGG	ATTACATTCG	AAAATCAAGA	AATAGAAGGA	420
ACGATCGTCT	TGATACCCAA	GCCCAAAGTC	TCGCTGCCTC	ATGTGTCGGA	ATCGGTGCCT	480
TGCATCCGAA	CCGAAGCCGG	GAGGGAATTT	ATCCTTTGCG	AAGAAGACGA	CACCTTTGTG	540
TCTCACGATG	GTAACGAAGT	AACGATAGGC	GGTAAACCTT	TCTTGCTCAA	TACCAACGTA	600
AAGATTGTGG	GGGACGTATC	TCAAAAGTAT	GCCGTGGGGG	TAGGAGAAAT	TCGATTCCTG	660
CAGATTTGTG	CCCAAACAGT	ATCACAACAA	AAA			693

- (2) INFORMATION FOR SEQ ID NO:113
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1689 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1689
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113

TCGCTAATCA	ACAATTCAAG	AGACTGGAGG	GCTCCTGTCC	GATTGAGTCT	CAAAAAAAAG	60
ACAAAAACTA	TGAAGACAAA	AGTTTTACGC	AAATTCGTGG	TGGCGGCTTT	CGCCGTCGCA	120
ACCCTCTGTC	CTCTCGCCCA	AGCGCAGACG	ATGGGAGGAG	ATGATGTCAA	GGTGGTCCAG	180
TACAATCAGG	AAAAACTGGT	ACAAACGAGG	ATGAGTGTGG	CGGACAACGG	ATGGATCTAT	240
GTAATGACCC	ACAGTGGATA	CGACACCGGC	AATAGCAATG	TGAAGATCTT	CCGCTCCAAA	300
GACCAAGGTG	CCACATACCA	AAAGTTGAGG	GATTGGGATC	CATCGGATGA	TTATCAGTTT	360
CAAGACTTCG	ATATCGTGGT	AACGGGTAAG	AATGAATCCG	ACATCAAGAT	TTGGTCGGTA	420
GAGCTCATGA	ATAAGCCCGG	AGGATATAAG	AGTAGAGTTG	CGGTCTTCAG	TCGCGATGCC	480
AACGCGCAGA	ATGCGAAACT	CGTGTATAAG	GAAGACTTCT	CCAATGTGCA	GTTGTACGAT	540
GTGGATATAG	CCTCCAACTA	TCGTTCGCCT	TCTTCTCTTA	ACAATGGTGG	CAACCCTTTT	600
GCTTTGGCTT	TCGCTTACAC	CGGCTTCAAC	AATACGCACA	AAATAAGTTT	TGTGGACTAT	660
GTGTTCTCTC	TGAATGGAGG	GCAAAATTTC	AATAAAAACT	TACTCTTCAG	TCAAGATGGA	720
GAGAAGAAAA	TTGACAAGGT	GGATCTCTCA	TTGGGTAGCA	CCTCTGAATC	CATGGGTCAC	780
AATGCCTGGC	CGCTAATGGG	TGTGGTATTC	GAAATGAATA	AACAAGGGGG	AAAAAGCGAT	840
ATCGGTTTCT	TGTCGAACTT	TGTCGACAAT	GATCCCGAAT	TTCAGTGGTC	AGGCCCTATA	900
AAAGTGAGTG	AAAGCGACAT	GTCGTTCAGC	CCCAAAATCC	AAATGTTGCT	GGACGAGGAT	960
AACAATACGA	TCAATGGGGA	GAGTTGCCAC	AACTTCATGA	TTACGTACAG	CGATTATGAT	1020
TCTGAATATT	CGGATTGGGA	CATTCGGTAT	GTATATCCCA	AGAAATCGTT	CAAGTATGAA	1080
AAAGGAAAAA	CTCCGACTAT	GGATGATCTG	GTGGAAGCTT	TCCTTACAGC	TTCGTACCAG	1140
AGTGAGACCA	ACTCGGGGCT	GGGGTATGAC	AAGAACGCCA	ATCACTACCT	GATTACATAT	1200
GCCAAAAAAG	AAGAGAACGG	TACGAACACG	CTGAAATACC	GCTGGGCCAA	TTATGACAAG	1260

1320
1380
440
L500
L560
620
680
L689

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2358 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2358
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114

			AGACGATCAA			60
			ATAGCGTTTG			120
			GTCAATCCCT			180
			AATGGGTTGA			240
			AAAGATTCGC			300
			AGCCATGTGA			360
CCCGAACTGA	GTGGAATACT	GCTGATGGCC	ACTTCCGGCA	CATTCGATCC	TGATTACTGC	420
			GCGCGCCCGG			480
			GTAACCGAGC			540
GCTTTTCCCG	AAGGAGAAGG	CCATATCCTG	CTGAACCTGG	GACAGGCCCT	AAGCAATGAA	600
TCGGGAGCCT	CTGTTCGATT	CTTAAACGAC	TCCACAGTCG	TCGGCAGCAG	GCTGATGGGG	660
			CGTCAGTATT			720
CGACCGATCT	CTGCCGGCTA	TTGGAAGAAG	CAGCCTCCTA	TGACAGTGGA	AGCCCAATGG	780
GATTCGACTG	CAGGGAAATA	TAAGCAGTAC	GACGGCTACA	AGCGTGAGAT	GAGCGGTGAT	840
GACATCGGTG	TCCGATTCTC	GTTCAACTGC	GATCAGGGGG	AAAAGATCTA	TGTACGATCG	900
GCCGTTTCAT	TCGTCAGCGA	AGCCAATGCG	CTCTATAATC	TGGAAGCGGA	GCAAGAAGAG	960
GTGTTCAAAA	GTGTCGGAGG	GAATCCGGCC	AAGGCTTTCT	CCGCTATACG	CTCTCGCGCT	1020
ATAGAGCGTT	GGGAGGAAGC	CCTCGGTACG	GTGGAAGTGG	AAGGAGGCAC	ACCGGATGAA	1080
AAGACGATAT	TCTATACCGC	ACTCTATCAC	CTGCTGATAC	ATCCGAATAT	CCTACAAGAT	1140
GCCAATGGAG	AATATCCTAT	GATGGGCAGT	GGCAAAACGG	GTAATACGGC	TCACGACCGC	1200
TACACCGTGT	TCTCTCTTTG	GGACACGTAC	CGCAATGTAC	ACCCGCTGCT	CTGCCTCCTC	1260
TATCCGGAGA	AGCAGTTGGA	TATGGTACGG	ACACTGATCG	ACATGTACCG	AGAGAGCGGG	1320
TGGCTGCCGA	GATGGGAGCT	GTACGGACAG	GAGACCCTGA	CGATGGAGGG	CGACCCCTCG	1380
CTTATCGTCA	TCAATGACAC	TTGGCAAAGG	GGCCTTCGTG	CTTTCGATAC	GGCAACGGCC	1440
TATGAAGCCA	TGAAAAAAA	TGCTTCTTCG	GCAGGAGCGA	CCCATCCGAT	CCGTCCTGAC	1500
AACGACGACT	ATCTCACCCT	CGGCTTCGTA	CCGCTTCGCG	AACAGTACGA	CAATTCCGTA	1560
TCGCATGCGC	TGGAATACTA	TCTGGCCGAC	TGGAATCTGT	CCCGGTTTGC	CCACGCACTT	1620
GGGCATAAAG	AAGACGCAGC	TCTATTCGGA	AAACGCTCGT	TGGGCTACAG	ACACTATTAT	1680
AATAAGGAGT	ATGGTATGCT	GTGTCCATTG	CTGCCGGATG	GATCATTCCT	CACTCCTTTC	1740
			AATCCCGGTT			1800
AACTATGCCT	TTTTCGTTCC	CCACGATATA	CAAGGGCTTG	CCCGGCTGAT	GGGAGGAGCA	1860
AAGGTTTTTT	CGGAAAGGTT	GCAGAAAGTC	TTCGATGAAG	GATATTATGA	TCCGACCAAC	1920
GAGCCGGACA	TCGCCTATCC	TTACCTCTTC	TCCTATTTCC	CCAAGGAAGC	ATGGCGAACG	1980
CAGAAATTGA	CCCGGGAGTT	GATAGACAAA	CATTTTTGCA	ATGCTCCTAA	CGGCTTGCCC	2040
GGTAATGACG	ATGCCGGTAC	GATGAGTGCT	TGGCTTGTCT	ATTCCATGCT	GGGATTCTAC	2100
CCTGACTGTC	CGGGCAGCCC	CACCTATACA	CTGACCTCGC	CGGTATTCCC	CCGAGTTAGG	2160
ATTCGGCTCA	ATCCGCAGTA	TTATCCTCAG	GGGGAGTTGA	TCATTACGAC	CAATACAGAG	2220
AATCAACCGA	CAGATTCCAT	TTACATCCAT	ACGGTTTCTC	TTGGCAATAA	AACACTTCCG	2280
CATGGAACAA	GGCATATCAG	CCATGCCGAT	TTGGTGCGCT	GCGGTCACCT	CCGTTACGAA	2340
CTAAGCAATC	GTCCTCGA					2358

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2442 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2442
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115

CCCCGTTTTC	ATCCCGGAGG	GACACACGCT	CAGCTTTGCA	GAAATGGGAG	AAGAAACCAA	60
AAATCAAATC	AGTCATCGTG	CTTTGGCGGT	GGCACAGCTC	CGCGATTTTT	TATTATGTGC	120
AAAATAAGAT	TCAGCCTCTT	GCAGGCTCTT	GTCGTCTGCT	TATTGTTCAC	CTCTTTTTCT	180
CTCCAAGCTC	AAGAGGAAGG	TATTTGGAAT	ACCCTCTTGG	CTATCCACAA	GACGGAAAAA	240
GCCGTAGAAA	CGCCCAAGAA	AGTCTTTGCC	GTAGCCAACG	GAGTACTTTA	CTCGGTGGGC	300
AAAGAAGCTC	CCCATGAGGC	AAAGATCTTC	GACCGTATCA	GCGGACTCAG	CGATACATCG	360
GTAAGCAGCA	TAGCCTACTC	CGAGCAACTA	AAATCCTTGG	TCATATACTA	TGCATCAGGC	420
AATATCGACA	TCTTGGACGA	AGCAGGCCGT	GTGACCAACG	TACCTGCATT	GAAAGACAAT	480
ATCGATCTGA	TAGACAAAAC	GCTCAATCGC	CTTTTGATCG	TAGGCAACAG	GGCTTATTTG	540
GCAGGAGGAT	TCGGCCTCTC	CGTTCTGGAT	GTCGCCGAAG	CTCGCATACC	GGCTACCTAC	600
GCCAAGGGAA	CTAAGGTGAC	CGATGTGGCT	AAGTTGGACA	ATGATCGCTT	GCTGATGCTG	660
AAAGAAGGGC	AGCTCTTCAT	CGGAAAAGAG	ACCGATAACC	TGCAAGATCC	GGCCGCATGG	720
ACAGCCTTGT	CTTTGAATTT	GCCGATGGGC	TCGGTCACCG	GTCTGGGCAT	TGTCGGGGAA	780
GACATCTGTT	TCCTGCTCGC	CGATGGCCGT	${\tt GTATATGTCG}$	CTGCAAACCA	ATCGTTTGAG	840
CCGGAGCTAT	TGCTCTCTTC	CTCCGCCGAT	TCACGACTGT	ATGTGACGGA	TCGTGGTCTG	900
TTCATCTGTG	CCGAGAATCG	${\tt AATTTATTTC}$	ATAGAAAAAG	GTCGCAAAAC	GACACAATTT	960
CCTATAGCCG	ACGTCCTTGG	${\tt TGTCGGTGCC}$	ATGAACGAAA	GCAATACGGC	ATACATAGCA	1020
TTGGGAGAAG	AAGGTTTGGC	${\tt TTCACTTCTT}$	CTCGCAGAGG	${\tt GAAGTACGGC}$	CGAAGCCATG	1080
CCTGTAGCAT	TCGACGGACC	${\tt GGGGGACAAT}$	${\tt GATTTCTACG}$	AGATGCGGTT	TAGTCACGGA	1140
CGTCTGTATG	CAGCCAGCGG	${\tt ACTCTGGGGA}$	ACAAACCTGA	TGGGACATGC	CGGTATGGTG	1200
AAGCTATACG	ACGGCAACCG	ATGGACTAAC	TTCGACAAGA	AGACCGTACA	GGAACAGTTG	1260
GGCGGCGGAT	TCAGTTTCAA	TGATGCTATC	GATATAGCTG	TTTCCAACGG	AGACCCCGAT	1320
CACTTTTTTG	TCGGTACATG	GGGAAACGGT	${\tt CTGTTCGAAT}$	TCAAGGATGG	CAAAGCGATA	1380
GCTCGCTATT	CGGGAAACGA	AACTGCTATC	GCAGAATGTA	ATCCCGGAGA	TGCCCGTGTG	1440
AAAGCGATTG	CCTTTGACAA	TAAGGGCAAC	$\mathtt{CTCTGGGGGA}$	CGCTCGGTGC	CGTAGGCAAG	1500
AACATCTTCA	TGTACGATCC	GCAGAGTAGC	ACATGGCATT	CTTTCAGCTA	TCCGGATGTA	1560
GCCAATCTGG	CCTCCTTCGG	CAATATGATT	ATCCTACCCA	ACGGAGACAA	ATGGGTAAAT	1620
			AAAGGTGTCT			1680
ACACCGGAAA	CGACTTCGGA	CGACAGCCAT	CTTTACGTCG	AGCAGTTTGT	CAATCGCCTC	1740
GGGGCAGCCA	TAGGACATAA	GACTATCTAT	GCAATGGCCG	TCGATCATAA	CGGCTCTGTC	1800
TGGATGGGAT	CGGATATAGG	CATTTTCGGC	GTCTACAATG	CAGCCGGAGT	ATTGTCCTCG	1860
ACTTCTACCC	CTATCGCTGT	TCGGCCGGTC	GGAGGAGAAG	AACCCAATTT	GTACTATGTG	1920
CTGGACAAGG	TGACGGTGAC	AGACATCGTC	GTGGACAAAC	TCAATCACAA	ATGGGTTGCC	1980
ACCCAAGGGA	CAGGACTCTA	TCTCCTTTCG	GAAGATTGCA	GTAAGATCCT	CGCGCAATTT	2040
ACCGTAGAAA	ACAGCCCTTT	GCTTTCTAAC	AACATACTAT	CCCTGGCCTT	AAATGACGAT	2100
			GGACTGATGA			2160
AGTGGATCAG	CTTCCGAACT	GGACGGCGTC	TATGTATACC	CCAATCCGCT	AAGGCCGGAA	2220
			CAAGCCGGCT			2280
ACCACCGGCA	GACTGCTATA	CCAGACTGAG	AGCGTAACCA	CCGAAGTCAA	ATGGAATGCT	2340
			GGCGTATATG		GTACGATCCG	2400
GTATCGAAAA	AGTCCAAACT	AATTCGCTTC	GCAGTGATTC	GC		2442

- (2) INFORMATION FOR SEQ ID NO:116
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3486 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...3486
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116

GCTATTTCTC AGATGAAACG AATACTTCCA ATAGTCGCAT TCCTTTCTCT CTTCCTTGCC 60 CTTGCTTTGC CTGCGAAAGC GCAACGAGCT ATGGGGAAGA CGGCCGACCG TTCGCTAATG 120 GCTTCGGGAC ATTGGGTCAA GATACGTGTC GATGCAAGTG GAGTGTATCG CCTTACGGAC 180 GAACAGCTCC GTGCCAATGG CTTCTCCGAT CCGTCCAAGG TAGGTGTGTT CGGTTATGGT 240 GGAGGGGTGC TTCCCGAAGA TCTGAGCCGG ATCACGACAG ACGATTTGCC TCCGGTACCG 300 GTACTCCGTC AGGGCAATGC GCTGTATTTC TATGCCGTGG GCCCGGTGAC ATGGTTCTAC 360 AATCCGGCCA AAACCACCAT GGAGCATACG GTGAATACAT ACAGTACGCA TGGCTACTAC TTCCTGTCGG ATGCTGCCGG AGCACCTTTG CAGATGTCCC AATATACGGG TGGAGGTGCG 480 TCGGCCGAGG CTTTGATCGA CTACTACGAT GAGCTGATGC TCCATGAACA GGAATTGTAT 540 TCGCCCAAAG AATCGGGACG AGATCTGTAT GGCGAGTCTT TCAGTGCAGT CAATACGCGT 600 ACGGTCAAGT TCCCTTTGAG GGGCAACACC CGCTCGTCTG GCGAACTCGG TACCGTATTC 660 TCATACATAG CCAAGGCCAG ATCGGCCGGT GGCGGCCGTG AGATGTCGCT CTCGGCGAAT 720 GGCATTCTGA TCTTCAGCGA TCCTTTTTCC ATGACATCGA ATGACGTCTC CAATTCCTAT 780 TTGGCCGGCA AGAAGCGTCG TCTCTATCAC AGTACGCCGA TGAACAGCTT GGTCAATGAG 840 TTGCGCTTGG ACGCGAACTA TAGCATGACA GGAGATGCGG TCAATCTGGA TTTCATAGAG 900 GTGGCTACAC AGAACGACCT CCGGTACGAT GGCGCACCCA TGCATATCAG GCGGTTTTCC 960 AATTTGCCCG TTTTGGGGGG CGAGTCCTGC CGGTTCGTTA TCAGTGAGGT GCCGGAGTCT CTGGTGGTTT TGCAGGCCAA TTCTTCCCTG ACAGCATCGC TTGTTCCCGT TAAGACTGTC 1080 GGGGATAAGA CCATTGAGTT CGTGGCTCCG CCGAAGGGTC AGGATCGTAG GACTATCAAT 1140 ACGTTTTATG CCGTGGACTT GTCACAGGCT TCTGCTCCGG AGATCCTCGG AGCGGTACCC 1200 AATCAAAACC TGCATGGAGA GGAAATCCCT GATCTGATCA TTGTCTCTAC TCAGGCGCTC 1260 CTCCTTGAGG CTGATCGACT GGCCACCTAT CGTAGAGAGA AAAACGGGCT GAAGGTTTTG GTCGTGTTGC AGGAACAGGT GTTCAACGAG TTTTCGGGTG GAACTCCCGA TGCTACAGCA 1380 TACCGCCTCT TTGCCAAAAT GTTCTACGAC AGATGGAAGG CAAATGCACC TGTGGGAGAG ACCTTCCCGA TGCAAATGCT TCTCTTCGGT GATGGGGCTC ATGACAACAG GAAGGTCTCC 1500 GTAGCTTGGC AGAAACCGTA TCTCCAACAA ACGGAGTTCT TGCTGACATT CCAAGCCGTC 1560 AATTCGACGA ACGTAAACAG TTATGTGACG GATGATTACT TCGGCTTGCT GGATGATCAG CCGGCCTCGG TCAATATCGG TTGGCGCAAT TATAATATGG CTGTAGGGCG ATTCCCCGTA 1680 CGTACTCCGG CCGAAGCTCG CATCGCAGTG GACAAGACCA TCCGATATGA GGAGGATCGA GAGAGTGGTG CCTGGCGTAT TCGTGCCTGT TTTGCGGCAG ACAACGGGGA CAAGCACGCA 1800 ACCGAGACTT CCCGTTTGAT CGATACCGTC AAGCGTTATG CTCCTGCCAT CATGCCGGTA CGCGCCTTTC AGGACGTATA TCCGCATGTC ATCGAGAACG GGTTGCACAG CATTCCGGGT 1920 GCAAAGAAAA AGATGCTGGA AACCCTTCAG TCGGGTATTA TCCTGCTTAA TTATGCTGGT 1980 CATGGCGGTC CTGCCGGATG GTCGGACGAG CATTTGCTGA CGCTCAACGA TATACACAAA TTCAATTATA AGCATATGCC CATTTGGATT ACTGCCACGT GCGACTTTGC CAACTATGAC 2100 AGTCAGACGA CCTCGGCAGG GGAGGAGGTT TTCCTCCATG AGAAGAGTGG CACTCCGATC 2160 ATGTTCTCGA CTACGCGTGT CGTTTACAAT ACGCAGAATG AGAAGATCAA TGGTTTTATG 2220 CTTCGGCGTA TGTTCGAGAA AGCTAAGGAT GGGCGTTATC GTACGATGGG CGAGATTATC 2280 CGATCGGCCA AACAGGGGAT GCTCAGTACT GTTTTCCCCG ATTCGATCAA CCAGTTGAGT 2340 TTCTTTCTGA TGGGTGATCC GTCCGTGCGT ATGAATCTTC CTACCCACAA AGTGCAATTG 2400 ACCGCAATCA ACGGGCAGGA TCCCGAAGGG CAGTATGGAA CTATTATGCT CAAGTCTTTG 2460 GAACGGGTAG CTCTGAAGGG TAAGGTAACC GATGAAAAGG GGACATTCGA CGAGACATTC 2520 AGTGGCAAGG TTTTCCTGAC CGTCTTCGAT GGCAGAAAGA AAATGACAGC TTTGGAAGAG 2580 GAGGGAAACG ATCTCTCTT TGTATATTAT GACTATCCTA ACGTGATGTA TGCCGGTATT GCCGAGGTGA AAGACGGACT CTTCGAAACT TCGTTTATCG TACCCAAGGA TGTGAACTAT 2700 TCCGAGCACG AAGGCCGGAT CAATCTTTAT GCTTATAACG AGAGCACAAA GGCGGAAGCC 2760 ATGGGGGTAG ACTTCTCCAT CAGAGTCCAA CCGGGTATTC CTGATGAGGT AACGGAAGAT 2820 AATACACCGC CTGAAATCAT AAGCTGCTTC CTCAATGACA GTACATTCCG ATCGGGAGAT 2880 GAGGTTAATC CTACTCCTCT GTTTATGGCC GAAGTATTCG ACTTGAATGG AATCAATATC 2940 ACGGGTAGCG GAGTAGGGCA TGATATTACG CTTTGTATCG ATGGCCGTGC CGACCTGACC 3000 TACAACCTCA ATGCATATTT CACAAGTTCG GCTACGGATG CAGGTGTGGG CACTATTCTC TTCATGATAC CGGCTTTGGC CGAAGGAGAT CATACTGCCC GACTGACGGT TTGGGACATT 3120 TTCAATAATG CCGTCCATCA TGACTTTTCA TTCAGAGTGG TAGATGGCAT TGCTCCGGAT 3180 GTGGCTGATG TGATTCTATT CCCGAATCCG GTACGCGAGA GTGCTACGTT CCGAATCTTC 3240 CACAATCGCC CCGGAAGCGA TTTGAACGTG GCCGTGGAGA TCTATGACTT CACCGGTCGT 3300 CTTGTGAACA GTTTGCCAGT CAAGACCTAT TCGTCTTCCT ACGGAGAACC TATAGAGATC 3360 AAGTGGGATC TGACCTCCAA ATACGGAGTG AAGATCGGAA ACGGATTCTA CCTCTATCGT 3420 TGTGTGGTGA ACTCTCCCGG AGGACAGACG GCCTCCATGG CCAAGAAAAT GATCGTGGTA 3480 GGACAA 3486

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2919 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2919
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117

TTTTACACCG	GAATTGACTT	${\tt GCATATAGAA}$	AGCCAAATGA	AGAAACTTTT	CCCATTATTA	60
TTACTCATAT	TGTCGATTTT	GGTCGGATGT	GGAAAAAAAG	AAAAACACTC	TGTAACTGAA	120
ATCGCCCGAG	AGAAAAAGCG	TATTACTGCA	TTGCTGTACG	AAAAAGAACT	CCCCACTGAT	180
TCTGTTAAAC	AGCTTTACGA	GAACAGCGTA	CAGAACAAGA	ACCTTGTGGG	ACAAATGTTA	240
TTCGCGATCG	AGGTCGGCAA	ACGGATGCGT	AATATGTCCC	AATACACAGA	TGCGATGCTA	300
TATCACCAAA	AAGGGTTGAA	CGCTGCATTG	AATCTAAGGG	ACACCATCGT	AGCCGCACAA	360
GCATGGAATC	ATCTCGGAAC	GGATAGCCGT	CGTATCGGTG	CTTTGGCAGA	AGCTTCGGAT	420
TATCATTACA	AGGCTCTTTC	CTTGATAGAA	TCTTTTAGCG	GAAACCAGAA	TAGGCCTGCG	480
ATCAAAGCCA	GATCGGCGGC	CCTGAACGGC	ATCGGCAACA	TCAATCTTGA	GTTAGGATAC	540
CATGATGAGG	CCGAAAAGAA	TTTCCTGAAA	GCACTGCAAG	GTGAGAAAGA	ACTCGACAGT	600
CCTCTCGGGC	AAGCTATCAA	CTATGCGAAC	CTCGGACGTA	TCTATCGACA	ACGCAAAGAA	660
TACGACAAGG	CTCGTACCTA	CTTCCTCTTG	TCTCTGGAGC	AGAACAATAT	GGCAGAGAAT	720
CTGATGGGTA	TCGGACTCTG	TAGCATCAAT	CTCGGAGAAG	TAGACGAAGA	AAAAGGGGAT	780
TATCAAAAGG	CTTTGCAAGA	GTATGCCACG	GCATACAAAC	TGATGGAACA	GTTGTCCGAT	840
CGATGGCACT	GGCTGAATTC	CTGTATCCCG	ATGGCACGTA	TCAATCTCAA	ACAAGGTAAC	900
GAAAGGCTCT	ACCAGCATTT	CATTTCTTTG	GCCGAAGGGA	CTGCGAAAGA	AATTAATTCG	960
ACTTCACATC	TGATAGAAAT	ATACAATCTT	CAATACGAGA	ATCTCGAGCG	TAAAAAAGAA	1020
TACAAACAAG	CCCTCGAAGC	ATTCTGTCTG	AGCAAGACGT	TGAGCGACAG	CATGTCCATT	1080
GCGCACAAGG	TCAGCAGCAT	ACAAGAAACG	CGATTCAACT	ACGAACGAAA	CAAGTCCCAA	1140
AAAGAGCTTG	AAGAAATACA	GCAAGTAAGC	AAGGCAAAAC	AAGAGAAATC	GAAGTTTATC	1200
CTCTTGAGCA	CTCTTTTTGC	CCTTTTCATC	TCGATTCTTT	TGATTTCTGT	TCTGACATAT	1260
GCATACCGTC	AGGGCAAGAA	GCATAACAAG	CTGATCAAAG	AGACGGATAA	ACTTCGCTCC	1320
GGCTTTTTCA	CCGGTATTAC	ACACGAATTT	CGTACGCCTA	TCACCGTCAT	ACAAGGTTTG	1380
			CAAGCATCGG			1440
			AATTTGGTGA			1500
			TGGCGCAATG			1560
			GCACAGGCTC			1620
			TTCGTCCCCT			1680
			TCTTTAGCCG			1740
			ATCATACGCG			1800
			GACATCTTCT			1860
GAAAAGCATG	GATCAGGCGT	CGGACTCTCG	TTTACCAATA	TACTGGTCGA	AAACCTTCGA	1920
			AAAGGAAGTG			1980
			CTTCCTTGGC			2040
			TCACCGACAT			2100
AATCATCGCT	TCGAGGACGA	ACGTCCGACC	ATACTGCTCG	TCGAGGACAA	TAAGGATATC	2160
			CGCTACAATG			2220
			ATTCCCGACA			2280
			ATCCGGATGA			2340
CACATTCCCA	TTGTCGCTTT	GACGGCCAAG	AGTACCGAAC	AGGACAGATT	GGAAGGAATC	2400
			CCATTCTCTC			2460
			CTCAAGAAGT			2520
			CCGATAGATG			2580
			ATCAAACAAA			2640
			TCCCAACTCA			2700
			CAGATCAAGA			2760
			ATTAGCATTG			2820
			ATGAACTGCT			2880
	CCATGCCGGG					2919

- (2) INFORMATION FOR SEQ ID NO:118
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1689 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1689
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118

CATCATAAAA	CATATCAAAC	AATGAAAAAG	CTTTTACAGG	CTAAAGCCTT	GATTCTGGCA	60
TTGGGACTCT	TCCAACTGCC	CGCAATCGCC	CAAACGCAAA	TGCAAGCAGA	CCGAACAAAC	120
GGTCAATTTG	CAACAGAAGA	GATGCAACGA	GCATTCCAGG	AAACGAATCC	CCCTGCAGGT	180
CCTGTGCGTG	CTATCGCTGA	GTACGAACGC	TCTGCAGCCG	TTTTGGTACG	CTACCCGTTC	240
GGTATCCCGA	${\tt TGGAATTGAT}$	CAAAGAGCTG	GCCAAGAACG	ACAAGGTGAT	TACCATTGTG	300
GCGAGTGAAA	GCCAAAAAA	CACCGTTATA	ACCCAGTACA	CCCAAAGCGG	TGTGAATCTC	360
TCTAATTGCG	${\tt ATTTCATCAT}$	TGCGAAAACT	GACTCTTACT	GGACACGCGA	CTATACCGGT	420
TGGTTCGCAA	${\tt TGTACGATAC}$	GAACAAAGTA	$\tt GGTCTCGTGG$	ACTTTATTTA	TAACCGCCCT	480
CGTCCTAACG	${\tt ATGATGAATT}$	CCCCAAATAC	GAAGCACAAT	ATCTGGGCAT	CGAGATGTTC	540
GGGATGAAGC	TCAAGCAGAC	CGGTGGCAAC	TACATGACGG	ACGGATATGG	ATCCGCTGTG	600
CAGTCACATA	TCGCATATAC	GGAGAACTCC	TCTCTGTCTC	AAGCTCAAGT	AAATCAAAAG	660
ATGAAAGACT	ATCTCGGCAT	CACACATCAT	GATGTGGTAC	AAGATCCGAA	CGGCGAATAT	720
ATCAACCATG	${\tt TGGACTGTTG}$	GGGCAAGTAT	TTGGCACCGA	ACAAAATCCT	CATCAGGAAA	780
GTGCCTGACA	ATCACCCTCA	GCACCAAGCC	CTGGAAGATA	TGGCAGCCTA	CTTCGCAGCA	840
CAGACCTGCG	CATGGGGAAC	GAAGTACGAG	GTATATCGCG	CTTTGGCCAC	CAATGAACAA	900
CCGTACACGA	ACTCTCTGAT	TCTGAACAAC	${\tt AGGGTATTTG}$	TTCCTGTCAA	TGGCCCCGCC	960
TCCGTGGACA	ACGATGCTCT	GAACGTCTAT	AAGACGGCAA	TGCCCGGTTA	CGAAATTATA	1020
GGTGTCAAAG	GGGCTTCAGG	AACACCTTGG	TTAGGAACAG	ATGCCCTGCA	TTGTCGTACT	1080
CACGAGGTAG	CGGATAAGGG	CTATCTCTAT	ATCAAGCACT	ACCCGATACT	GGGCGAACAG	1140
GCAGGCCCTG	ATTATAAGAT	CGAAGCAGAT	GTCGTCTCAT	GCGCCAATGC	TACTATCTCG	1200
CCGGTACAAT	${\tt GTTACTATCG}$	TATCAATGGT	TCCGGTAGCT	TTAAGGCTGC	TGATATGACG	1260
ATGGAATCAA	CAGGTCACTA	TACTTATAGC	TTTACAGGTC	TTAACAAGAA	TGATAAGGTA	1320
GAATACTATA	TCTCTGCCGC	TGACAATAGT	GGTCGCAAAG	AGACTTATCC	CTTTATCGGC	1380
GAACCTGATC	CTTTCAAGTT	TACGTGTATG	AACGAAACCA	ATACATGTAC	TGTGACCGGA	1440
GCTGCCAAAG	CTCTTCGTGC	ATGGTTCAAC	GCCGGTCGTT	CAGAACTGGC	TGTTTCGGTA	1500
AGTTTGAATA	${\tt TTGCCGGCAC}$	ATATCGGATA	AAGCTTTATA	ACACCGCAGG	AGAAGAAGTC	1560
GCTGCAATGA	CCAAGGAATT	AGTAGCAGGG	ACGAGTGTCT	TCAGTATGGA	TGTGTATTCT	1620
CAGGCTCCGG	GCACATATGT	TCTGGTTGTT	GAAGGAAATG	GAATCCGTGA	GACAATGAAA	1680
ATTCTCAAA						1689

- (2) INFORMATION FOR SEQ ID NO:119
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1311 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (b) TOPOLOGI: CIICUIAI
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1311
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119

ACCACAAATA	GAAAACCAAA	TACTAATATG	AAACTTTCAT	CTAAGAAAAT	CTTAGCAATC	60
ATTGCATTGC	TGACGATGGG	ACATGCTGTG	CAGGCACAGT	TTGTTCCGGC	TCCCACCACA	120
GGGATTCGCA	TGTCTGTCAC	TACAACCAAG	GCCGTAGGCG	AAAAAATCGA	ATTGTTGGTT	180
CATTCCATAG	AGAAGAAAGG	CATCTGGATC	GATCTCAATG	GGGATGCCAC	TTACCAACAA	240
GGAGAGGAAA	TAACCGTATT	CGATGAGGCA	TACCACGAAT	ACACGATCGG	GACGCAAACC	300
CTCACTATCT	ATGGTAATAC	GACCCGATTG	GGCTGTCGAT	CTACCGGTGC	AACGGCTGTC	360
GATGTAACGA	AAAACCCTAA	TCTGACCTAT	CTCGCATGCC	CGAAAAATAA	TCTGAAATCA	420
TTGGACTTGA	CGCAAAACCC	AAAGCTGCTG	CGAGTTTGGT	GCGACTCTAA	CGAAATAGAA	480
AGTTTGGACC	TGAGTGGCAA	TCCGGCTTTG	ATCATCCTCG	GCTGTGACAG	GAATAAGCTG	540

ACTGAGCTGA	AGACCGATAA	CAACCCCAAG	TTGGCCTCTC	TTTGGTGTTC	TGATAATAAC	600
CTGACGGAGT	TGGAACTCAG	TGCCAATCCT	CGTCTCAATG	ATCTTTGGTG	CTTCGGTAAT	660
CGGATCACGA	AACTCGATCT	GAGTGCCAAT	CCTCTATTGG	TAACACTTTG	GTGCAGTGAC	720
AATGAGCTTT	CGACCTTGGA	TCTTTCCAAG	AATTCGGACG	TTGCTTACCT	TTGGTGTTCA	780
TCGAACAAAC	TTACATCCTT	GAATCTGTCG	GGGGTGAAGG	GACTGAGTGT	TTTGGTTTGT	840
CATTCCAATC	AGATCGCAGG	TGAAGAAATG	ACGAAAGTGG	TGAATGCTTT	GCCCACACTA	900
TCTCCCGGCG	CAGGCGCTCA	GAGCAAGTTC	${\tt GTCGTTGTAG}$	ACCTCAAGGA	CACTGATGAG	960
AAGAATATCT	GTACCGTAAA	${\tt GGATGTGGAA}$	AAAGCTAAAA	GTAAGAACTG	GCGAGTATTT	1020
GACTTCAACG	GTGATTCTGA	CAATATGCTT	CCATACGAAG	GAAGTCCGAC	ATCGAACTTG	1080
GCAGTAGATG	CTCCCACTGT	CAGGATATAT	CCCAATCCGG	TAGGAAGATA	TGCGCTCGTC	1140
GAGATCCCCG	AGTCTCTTTT	AGGGCAGGAA	GCTGCTTTAT	ACGATATGAA	TGGGGTAAAA	1200
GTCTATAGTT	TCGCGGTAGA	${\tt GTCTCTTCGT}$	CAGAACATTG	ACCTGACACA	TCTTCCCGAC	1260
GGCACTTATT	TCTTCCGTCT	CGATAACTAT	ACCACTAAGC	TCATCAAACA	G	1311

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 954 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...954
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120

AATCATTTGA	AGACAAATAT	CAAGATGAGA	AAAACAATAA	TTTTCTGCTT	GTTGCTCGCC	60
CTATTTGGCT	GTTCTTGGGC	ACAAGAAAGA	GTCGATGAAA	AAGTATTCTC	CGCAGGAACA	120
AGTATTTTTA	GGGGCATCCT	TGAAAAGGTG	AAAGCACCGC	TTATGTATGG	AGATCGTGAG	180
GTATGGGGTA	TGGCTCGTGC	GAGCGAGGAT	${\tt TTCTTTTTTA}$	TACTTCCCGT	TACGGATGAC	240
CTCACTCCCG	TGCTTTTCTA	TAACCGTCTT	ACAAACGAAC	CCTGCTTTGT	GTCAGACCAA	300
GGAATAACTG	AGTATTTCAA	ATTCGCTCAA	${\tt GAAGGTGATT}$	ACATTGAAGT	CGAAGGAAGC	360
TCTGTATTCA	TGGCGAATCT	TTTGTACTAT	${\tt CGTTTTTTCC}$	CGACAAGAAT	TACCTCCTAT	420
AATGCTCCCA	TTGAAGGTGT	TGTGAGCAAG	ACGGGAAATC	CTGCTTTTAC	AATCCCGATG	480
CTCCCGGGGG	TTTCTGATTG	CATAGAAATC	TCAAACAACC	GCAAAGTCTT	TCTGACCAAT	540
CAATTAGGGG	TTGTAAACAT	CACTGACGGG	ATGGAACCTC	CGATTATTGC	CGGAGTCTCT	600
GCTTCCTATG	GATCTTCCGT	CCGGGTGTAT	GGTCATGTCT	CACAGCGGTG	GGACATCATA	660
GGCCATTGCT	ATTTGGATAT	CTACCCAACC	AATTGCTATC	CGCTCAGCAC	GAAACCCGTT	720
GCAGGAGACG	ATGAGGTTTT	TGTCAAACAA	CAAGGCAGGC	AAATAGAGAT	CGATAGCAAC	780
AGCCCCATAG	TCCAAGTGGT	CGTATACGAT	CTTGAGGGGA	AAAGTGTTTT	TCGCAAAAGA	840
ATGACCGAAA	ACGCTTATAC	CCTATCCTTT	AGAGCACCCA	TGCTCGGCTT	TATGACCATC	900
ATGATCGAAA	CACAAAATTC	GATTATCAAT	AAAAAACTTA	ATGTTACACA	GCTA	954

- (2) INFORMATION FOR SEQ ID NO:121
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1383 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1383

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121

AGACGGGCAG	TTAAAATCCG	ATCACCTCCC	CATATCCACT	CATTATTTGT	ACGTAAATGT	60
CTTTTTTCAG	ACTTTAAATA	CTTATATTTA	TCCCGAAAAA	TTACCCAAGA	GAGATTGGGT	120
CGATTGTCGA	TCCGTCTTAA	GTCATACAAT	CCAATAATCA	TTATTGAAAT	GAAAAAAACA	180
ACCATTATTT	CTTTGATTGT	CTTCGGTGCT	TTCTTTGCAG	CCGTGGGCCA	AACCAAGGAC	240
AATTCTTCTT	ACAAACCTTT	TTCGAAAGAA	GATATTGCCG	GAGGAGTTTA	CTCTCTCCCG	300
ACTCAAAATC	GTGCGCAGAA	GGACAATGCC	GAGTGGCTTC	TTACAGCGAC	CGTCTCCACA	360
AACCAGTCTG	CAGATACTCA	CTTTATCTTC	GATGAGAACA	ACCGCTATAT	CGCTCGTGAC	420
ATAAAAGCCA	ATGGGGTAAG	AAAATCCACG	GACTCCATTT	ACTACGATGC	CAACGGGCGA	480
ATATCGCATG	TGGATCTTTA	TATCTCGTTC	AGTGGCGGAG	AGCCTGCACT	CGACACCCGA	540
TTCAAGTACA	CCTATGATGA	CGAGGGAAAG	ATGACCGTGA	GGGAAGTATT	CATGCTGGTA	600
ATGGATCCGA	ATACACCTAT	CTCACGCTTG	GAATATCATT	ATGATGCACA	GGGCAGACTG	660
ACCCACTGGA	TTTCTTTTGC	TTTCGGGGCA	GAATCCCAAA	AGAATACGTA	TCACTATAAT	720
GAAAAAGGTC	TGTTGGTCAG	CGAAGTGCTG	AGCAATGCAA	TGGGGACAAC	CTATTCAGAC	780
ACCGGCAAAA	CGGAATACAG	CTATGACGAT	GCAGATAATA	TGGTGAAGGC	CGAGTACTTC	840
GTCGTCCAGC	AAGGAAAGGC	ATGGCAAGTA	CTCAAAAGAG	AGGAATACAC	CTATGAGGAC	900
AATATCTGCA	TACAATATTT	GGCTATTAAC	GGTACCGACA	CAAAGGTGTA	CAAGCGAGAC	960
ATCGAGAGCG	ATAAGTCCAT	CTCCGCAAAT	GTCATTGACA	TTCCGTCAAT	GCCGGAACAG	1020
ACCTGGCCTA	ATATGTACGG	ATTCAACGCA	AAGCGACTGA	AAGAGACTTA	TTCCTCCTAC	1080
GAAGGAGATG	TGGCTACTCC	TATATTCGAC	TATATCTATA	CGTACAAGGC	TCTTACCTCA	1140
ATGGCAACAC	CTTCGACAGA	AGCTCAGGTA	GCAGTCTATC	TCAATCCGTC	AACGGACCGG	1200
TTAGTGATTC	TGGCCAACGG	CATCACACAT	CTGAGCATGT	ACGACTTGCA	GGGTAAGCTT	1260
ATCCGTGATT	GTGCCTTGAG	CGGCGATAAG	${\tt GTGGAAATGG}$	GTGTCGGATC	TTTGACCAAA	1320
GGGACATACC	TGCTTAAAGT	GAATACGGAT	CAGGGAGCCT	TTGTGAGAAA	AGTCGTGATT	1380
CGA						1383

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1353 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1353
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122

ATGGCAAAAG	TTATAAAAAC	AAAAAAAGGC	CTTGCACTTA	ATCTGAAAGG	AAAACCGCTG	60
CCCGAGATGC	TGGCCGAACC	GGCCCAAAGT	CCTACTTACG	CGGTCGTGCC	CGACGATTTT	120
GAAGGTGTTA	TCCCCAAGGT	GACGGCTCGT	CCGGGGGATA	AGGTGCGTGC	CGGCTCAGCA	180
CTGATGCACC	ACAAGGCATA	TCCGGAGATG	AAGTTTACAA	GTCCGGTTAG	CGGCGAAGTG	240
ATCGCGGTGA	ATCGCGGTGC	CAAGCGCAAG	GTGTTGAGCA	TCGAGGTGAA	ACCGGACGGA	300
CTGAACGAAT	ACGAGTCATT	CCCTGTCGGG	GATCCGTCTG	CCCTCTCTGC	CGAACAGATC	360
AAGGAGCTTT	TACTGTCGAG	CGGTATGTGG	GGTTTTATTA	AGCAACGTCC	TTACGACATA	420
GTGGCTACAC	CGGATATAGC	TCCACGCGAC	ATTTATATTA	CTGCCAACTT	TACTGCACCA	480
TTGGCTCCGG	ACTTCGATTT	CATCGTTCGA	GGAGAAGAAC	GCGCCCTGCA	GACTGCCATC	540
GATGCCTTGG	CCAAACTCAC	GACAGGAAAG	GTGTATGTGG	GCCTGAAGCC	GGGTTCATCT	600
CTGGGCTTGC	ACAATGCAGA	AATCGTAGAA	GTACACGGAC	CTCATCCGGC	AGGTAACGTG	660
GGCGTGCTGA	TCAATCATAC	GAAGCCAATC	AATCGGGGCG	AAACGGTGTG	GACGCTCAAG	720
GCTACCGACC	TGATCGTGAT	CGGACGTTTC	CTGCTTACGG	GCAAAGCCGA	TTTTACCAGA	780
ATGATTGCCA	TGACCGGCTC	AGACGCTGCA	GCTCACGGAT	ACGTCCGTAT	TATGCCGGGT	840
TGCAATGTCT	TTGCTTCCTT	CCCCGGCCGA	CTGACAATAA	AGGAATCTCA	CGAGCGTGTG	900
ATCGATGGCA	ATGTGCTGAC	CGGTAAGAAG	CTCTGCGAGA	AGGAGCCTTT	CCTGTCAGCC	960
CGGTGTGACC	AGATCACGGT	GATCCCCGAA	GGCGACGATG	TGGACGAACT	CTTCGGGTGG	1020
GCTGCACCCC	GTCTCGATCA	GTACAGCATG	AGCAGAGCTT	ATTTCTCTTG	GTTGCAGGGG	1080
AAAAACAAAG	AGTACGTACT	CGATGCCCGG	ATCAAGGGTG	GCGAACGTGC	TATGATCATG	1140
AGCAACGAGT	ATGACCGCGT	TTTCCCGATG	GACATCTATC	CGGAGTATTT	GCTCAAGGCT	1200
ATTATAGCAT	TCGACATCGA	CAAGATGGAG	GACTTAGGCA	TATATGAAGT	GGCTCCGGAG	1260
GACTTTGCCA	CTTGCGAATT	TGTGGATACA	TCCAAGATCG	AGCTGCAGCG	TATCGTTCGC	1320
GAGGGCTTGG	ATATGCTCTA	TAAGGAAATG	AAT		•	1353

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 585 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: circular

 (ii) MOLECULE TYPE: DNA (genomic)

 (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...585
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123

ATGGATAAAG	TGAGCTATGC	TCTGGGATTG	AGCATCGGTA	ATAATTTCAA	GTCTTCGGGC	60
ATCGACAGCG	TCGTTATGGA	TGATTTCATG	CAAGGTCTGT	CTGATGTACT	GGAAGAAAA	120
GCCCCTCAGC	TCTCGTATGA	CGAGGCCAAG	CGCGAAATAG	AGGCGTATTT	CATGGATTTG	180
CAGCAGAAGG	CTGTCAAACT	GAACAAAGAG	GCCGGAGAAG	AATTCCTCAA	GATAAATGCA	240
CACAAGGAAG	GTGTGACGAC	CTTACCGAGC	${\tt GGCTTGCAAT}$	ACGAAGTCAT	TAAGATGGGA	300
GAGGGCCCGA	AACCCACCCT	TTCGGACACG	${\tt GTAACCTGTC}$	ATTATCACGG	TACGCTCATC	360
AACGGTATCG	TTTTCGATAG	CTCTATGGAC	AGGGGAGAAC	CGGCCAGTTT	CCCTCTAAGA	420
${\tt GGAGTTATAG}$	CCGGCTGGAC	GGAGATTCTT	CAATTAATGC	CTGTAGGATC	CAAGTGGAAA	480
GTAACTATAC	CGAGCGATCT	${\tt GGCGTATGGA}$	${\tt GATCGTGGTG}$	CCGGCGAACA	TATCAAACCG	540
GGTAGTACGC	TCATTTTTAT	AATCGAATTA	${\tt TTGAGTATCA}$	ACAAA		585

- (2) INFORMATION FOR SEQ ID NO:124
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 819 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...819
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124

ATGAAAAAAG	CATTACTTAT	TGGTGCTGCT	CTTTTGGGAG	CAGTCAGTTT	TGCAAGTGCT	60
CAGTCTTTGA	GCACAATCAA	AGTACAGAAC	AATTCAGTAC	AGCAACCTCG	TGAGGAAGCC	120
ACTATTCAGG	TTTGTGGAGA	ATTGGCAGAG	CAAGTTGACT	GCATTGGGAC	AGGTAATTCT	180
GCAATCATAG	CCGCTGCAGC	GAAATTTGAA	AGCGATGATC	TCGAAAGCTA	TGTTGGCTGG	240
GAGATCATGA	GTGTTGATTT	CTTCCCTGGA	TATAAAGCGT	GCAAGTACAC	ATCTGCAGTC	300
TGGGCTGATG	ATATGACCAT	TTTGGGCCAA	TCAGAAGATA	GTGATCCCGA	AATGCAGACT	360
ATCAACAATC	TTGCTCTCAA	GACTAGTGTC	AAGATTGAAG	CCGGCAAGAA	TTACATAGTT	420
GGTTATATTG	CTAATACCGC	AGGTGGACAT	CCTATCGGAT	GTGATCAGGG	CCCTGCCGTT	480
GATGGTTATG	GAGATTTGGT	TTCTATATCA	GAAGATGGTG	GTGCTACTTT	CCCTCCGTTC	540
GAATCTCTTC	ATCAAGCAGT	TCCTACCTTA	AATTACAACA	TCTATGTCGT	TGTTCATTTG	600
AAGAAGGGTG	AAGGTGTTGA	GGCTGTTCTT	ACCAACGACA	AGGCTAATGC	TTATGTTCAG	660
AATGGCGTTA	TCTATGTAGC	CGGAGCTAAT	GGTCGTCAGG	TATCTCTGTT	CGACATGAAC	720
GGTAAGGTTG	TTTATACCGG	CGTTAGCGAA	ACGATTGCAG	CTCCTCAGAA	GGGCATGTAT	780
ATCCTCCGTG	TAGGTGCTAA	GAGCATCAAG	CTGGCTATC			819

- (2) INFORMATION FOR SEQ ID NO:125
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1662 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1662
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125

ATGCCAAGAA	TTATGAAATT	AAAAATTGCA	CTCAGACTGC	TGCTGGCGAC	TTTTGCCATA	60
GTTTTATTTA	GCCCTCTGGC	CAAGGCCCAG	ATGGATATTG	GTGGAGACGA	TGTATTGATC	120
GAGACGATGT	CCACCCTATC	AGGATATTCA	GAGGATTTTT	ATTACAAGAT	GGCTGTGGCA	180
GACAATGGAT	GGATCTATGT	GATGTTGGAT	TTCTCTCGTA	TTTATTTTGA	TGATGTCAGG	240
CTGTATCGTT	CCAAAGACGG	TGGTGCTACT	TACCAAAAGT	TAGGGTCTTT	GGGGTCTTTG	300
GTGCCTTATG	ACTTCGATGT	CTCGCATTGC	GATTTTATTG	TAACGGGAAA	GGATGAAGAT	360
GATATCAATG	TTTGGACAGT	CATGACAGCA	TTCGAATATG	TAGGTGGTAC	TATTGGCAAT	420
GGCGTTTTGC	TGATGCATCG	CCATGATGCA	GATATCAATA	ATACAGAGTG	TGTGTACAAG	480
AAGGATTTCC	CTAATAATAG	ACTGATGGGT	GTAGCCATCG	CCTCCAACTA	CCGTGCGCCC	540
TCTCCTTACG	GTTTGGGGGG	CGATCCTTTT	GCTCTCGCTG	TCGCCGTTAG	TGGCTCCGGA	600
AGCGATCACA	GCTTCTTGGA	CTATATTTTT	TCGTTAGATG	GTGGAGTACA	CTTTGAGCAA	660
AAGCGTATTT	ACACAAGACC	CCAAAAACTG	ACTATCAATA	GAGTAGACCT	TTCATTAGGC	720
AGTACATCTC	CTTCTCTTGG	ATTTAATACT	TGGCCACTAA	TGGGAGTCGT	ATTCGAAATG	780
AATAAGAACC	TTGATGGCTT	CGACATTGGT	TTCATTTCCA	ACTTTGTGGA	CTATGATCCC	840
CGCTATGCGT	GGTCTGAACC	GATAATAATA	GAAGAAGACT	GTGGATGGAC	TGATTTTAAT	900
CCTTTGGGAG	CACTAAGTAT	AGAGATCCAA	ATGATGTTGG	ATGACAATTC	GGATAATACC	960
GTGGGTGGAG	AACGCTCCCA	TAACTTCCTG	ATCACTTACC	CGGGCCATTA	CGTATATCCG	1020
AAGCAATCTT	TCAATTATTC	TCCCGGACAT	ACACCGACAA	AGAAAGATCT	GGTCTTTAAA	1080
CACTGTATAG	GTATTCCGGC	TTTGGCATAC	GATAAGGAAG	$\tt GCGATCGTTA$	TCTGACTACT	1140
TTTCAAGATC	ACAATCTAAT	GAGATACAGA	TGGATCAAAT	ACGATGACAT	TAACTCTTTT	1200
TATGGTTGGA	GTTGGCCATA	TGTATATGCA	AAAGAAGCTA	AAGATAAAAA	GAGGCGCCGT	1260
CCGCAAGTAG	CACTCAATCC	TACCAATGGA	AAGGCTTGTT	${\tt GGGTATGGCA}$	TACTCGCAAG	1320
AGCCCATATG	ATGAAACCAA	ACCACATCCT	ACTCCTGTAA	TTATTAAACA	TTTCCTATGG	1380
TCCGATACGG	AGTGGGTACA	TGCTCTGGAC	GTGGGGGACG	TATTGCAGAA	GGAGGGTAGC	1440
ATGAAGCTCT	ACCCCAATCC	TGCCAAAGAA	TATGTTCTGA	TCAACCTACC	CAAAGAAGGG	1500
GGGCACGAGG	CAGTCGTATA	CGACATGCAG	$\tt GGCCGAATCG$	TGGAGAAAGT	TTCATTTTCA	1560
GGGAAAGAAT	ATAAGCTGAA	TGTGCAGTAT	CTGTCCAAAG	GTACGTACAT	GCTGAAAGTT	1620
GTAGCGGATA	CGGAGTATTT	CGTGGAAAAA	ATCATTGTAG	AG		1662

- (2) INFORMATION FOR SEQ ID NO:126
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1650 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1650
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126

ATGAAATTAA	AAATTGCACT	CAGACTGCTG	CTGGCGACTT	TTGCCATAGT	TTTATTTAGC	60
CCTCTGGCCA	AGGCCCAGAT	GGATATTGGT	GGAGACGATG	TATTGATCGA	GACGATGTCC	120
ACCCTATCAG	GATATTCAGA	GGATTTTTAT	TACAAGATGG	CTGTGGCAGA	CAATGGATGG	180
ATCTATGTGA	TGTTGGATTT	CTCTCGTATT	TATTTTGATG	ATGTCAGGCT	GTATCGTTCC	240
AAAGACGGTG	GTGCTACTTA	CCAAAAGTTA	GGGTCTTTGG	GGTCTTTGGT	GCCTTATGAC	300

TTCGATGTCT	CGCATTGCGA	TTTTATTGTA	ACGGGAAAGG	ATGAAGATGA	TATCAATGTT	360
TGGACAGTCA	TGACAGCATT	CGAATATGTA	GGTGGTACTA	TTGGCAATGG	CGTTTTGCTG	420
ATGCATCGCC	ATGATGCAGA	TATCAATAAT	ACAGAGTGTG	TGTACAAGAA	GGATTTCCCT	480
AATAATAGAC	TGATGGGTGT	AGCCATCGCC	TCCAACTACC	GTGCGCCCTC	TCCTTACGGT	540
TTGGGGGGCG	ATCCTTTTGC	TCTCGCTGTC	GCCGTTAGTG	GCTCCGGAAG	CGATCACAGC	600
TTCTTGGACT	ATATTTTTC	GTTAGATGGT	GGAGTACACT	TTGAGCAAAA	GCGTATTTAC	660
ACAAGACCCC	AAAAACTGAC	TATCAATAGA	GTAGACCTTT	CATTAGGCAG	TACATCTCCT	720
TCTCTTGGAT	TTAATACTTG	GCCACTAATG	GGAGTCGTAT	TCGAAATGAA	TAAGAACCTT	780
GATGGCTTCG	ACATTGGTTT	CATTTCCAAC	TTTGTGGACT	ATGATCCCCG	CTATGCGTGG	840
TCTGAACCGA	TAATAATAGA	AGAAGACTGT	GGATGGACTG	ATTTTAATCC	TTTGGGAGCA	900
CTAAGTATAG	AGATCCAAAT	GATGTTGGAT	GACAATTCGG	ATAATACCGT	GGGTGGAGAA	960
CGCTCCCATA	ACTTCCTGAT	CACTTACCCG	GGCCATTACG	TATATCCGAA	GCAATCTTTC	1020
AATTATTCTC	CCGGACATAC	ACCGACAAAG	AAAGATCTGG	TCTTTAAACA	CTGTATAGGT	1080
ATTCCGGCTT	TGGCATACGA	TAAGGAAGGC	GATCGTTATC	TGACTACTTT	TCAAGATCAC	1140
AATCTAATGA	GATACAGATG	GATCAAATAC	GATGACATTA	ACTCTTTTTA	TGGTTGGAGT	1200
TGGCCATATG	TATATGCAAA	AGAAGCTAAA	GATAAAAAGA	GGCGCCGTCC	GCAAGTAGCA	1260
CTCAATCCTA	CCAATGGAAA	GGCTTGTTGG	GTATGGCATA	CTCGCAAGAG	CCCATATGAT	1320
GAAACCAAAC	CACATCCTAC	TCCTGTAATT	ATTAAACATT	TCCTATGGTC	CGATACGGAG	1380
TGGGTACATG	CTCTGGACGT	GGGGGACGTA	TTGCAGAAGG	AGGGTAGCAT	GAAGCTCTAC	1440
CCCAATCCTG	CCAAAGAATA	TGTTCTGATC	AACCTACCCA	AAGAAGGGGG	GCACGAGGCA	1500
GTCGTATACG	ACATGCAGGG	CCGAATCGTG	${\tt GAGAAAGTTT}$	CATTTTCAGG	GAAAGAATAT	1560
AAGCTGAATG	TGCAGTATCT	GTCCAAAGGT	ACGTACATGC	TGAAAGTTGT	AGCGGATACG	1620
GAGTATTTCG	TGGAAAAAAT	CATTGTAGAG				1650

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1170 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1170
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127

ATGAAACGAT	TACTCCCCTT	TCTCCTTTTA	GCAGGACTCG	TAGCCGTAGG	AAACGTGTCT	60
GCTCAGTCAC	CCCGAATCCC	TCAAGTGGAT	GTACACACTC	GCATCGCAAG	AAATGCCCGT	120
TATCGACTGG	ACAAGATCAG	TGTCCCGGAT	TCTCGTCAGA	TATTCGATTA	CTTCTATAAA	180
GAAGAAACGA	TACCCACTAA	AATACAAACG	ACCACAGGAG	GTGCAATTAC	AAGCATCGAT	240
TCGCTTTTCT	ATGAAGACGA	CAGGTTGGTT	CAGGTGCGCT	ATTTTGACAA	TAACCTTGAA	300
TTAAAACAAG	CGGAGAAGTA	TGTATACGAC	GGTTCTAAGC	TGGTCCTTCG	AGAAATTCGC	360
AAGTCGCCGA	CAGACGAAAC	GCCAATAAAG	AAAGTTAGCT	ATCACTATCT	CTGTGGCAGC	420
GATATGCCTT	TTGAGATTAC	GACAGAGATG	AGCGATGGCT	ATTTTGAAAG	CCATACGCTT	480
AACTATCTGA	ATGGAAAGAT	TGCCCGAATA	GATATCATGA	CTCAACAGAA	CCCATCGGCC	540
GAATTGATCG	AAACGGGTAG	AATGGTATAT	GAGTTTGATG	CCAATAATGA	TGCTGTACTG	600
CTTCGTGACA	GTGTATTTCT	TCCTCTTCAA	AACAAGTGGG	TAGAAATGTT	TACTCACCGT	660
TATACATACG	ACAATAAGCA	TAATTGTATT	CGTTGGGAAC	AAGACGAATT	CGGCACCCTC	720
ACCCTTGCCA	ACAACTTCGA	ATACGACACC	ACTATCCCTC	TGTCGTCTGT	ATTGTTCCCC	780
ACGCATGAGG	AGTTCTTCCG	TCCTCTTCTT	CCCAATTTTA	TGAAGCATAT	GCGTACGAAG	840
CAAACGTATT	TCAATAACTC	CGGAGAAGGC	TTGTCAGAGG	TATGCGATTA	CAACTACTTC	900
TATACCGATA	${\tt TGCAGGGTAA}$	TGCACTGACC	GATGTTGCCG	TGAACGAATC	GATCAAGATT	960
TATCCTCGTC	CTGCCACGGA	TTTTCTGCGT	ATAGAAGGTT	CGCAACTGCT	TCGCCTTTCG	1020
CTATTCGACA	TGAACGGGAA	GCTCATCAGA	GCTACCGAAT	TGACAGGCGA	TTTGGCCATT	1080
ATCGGAGTTG	CATCTCTTCC	GAGAGGCACT	TACATCGCAG	AAATAACTGC	TGCAAACAGC	1140
AAAACCATAC	GTGCAAAAGT	ATCGCTCAGA				1170

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1233 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1233
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128

ATGAGACAGC	ATTTATCTCT	ATTTCCTTTT	ATCTTGTTTC	TGCTTCTTGC	CTTCTCTTAT	60
GTCGGTTGCA	GAACAGTCCG	ACAAACACCT	AAGCAGTCGG	AACGGTACGT	CGTAGTCCTG	120
TCTTTGGACG	GCTTCCGACC	GGACTATACC	GATCGGGCAC	${\tt GTACACCGGC}$	GTTGGATCGG	180
ATGGCACAGG	AGGGATTGAG	CGGGTCGCTC	CAACCATGCT	TCCCCTCGCT	TACATTTCCC	240
AATCATTACA	GCATGGCTAC	GGGGCTTTAC	CCCGATCATC	ACGGTATCGT	AGCCAATGAG	300
${\tt TTTGTGGATT}$	CGCTACTGGG	CATCTTTCGT	ATATCCGACC	GAAAAGCCGT	GGAGACCCCC	360
${\tt GGATTTTGGG}$	GCGGCGAGCC	GGTTTGGAAT	ACGGCCGCAC	GCCAAGGCAT	CCGTACCGGT	420
GTCTACTTTT	GGGTAGGATC	CGAAACGGCT	GTGAACGGAA	ATCGGCCGTG	GCGGTGGAAA	480
AAATTCTCCT	CCACCGTTCC	GTTTCGTGAC	CGTGCCGACT	CCGTCATCGC	GTGGCTCGGA	540
CTGCCCGAAA	AGGAGCGACC	GCGCTTGCTC	ATGTGGTACA	TCGAGGAGCC	GGATATGATC	600
GGACACAGCC	AAACGCCCGA	AAGCCCGCTG	ACACTGGCAA	TGGTAGAGCG	GTTGGACAGT	660
$\tt GTGGTCGGCT$	ATTTCCGCAA	GCGGTTGGAC	TCTCTGCCCA	TAGCCGCACA	GACCGACTTC	720
ATCATAGTAT	CCGATCACGG	TATGGCCACG	TACGAAAATG	AGAAATGTGT	CAATCTGTCG	780
CATTATCTGC	CTGCGGACAG	TTTCCTCTAC	ATGGCCACCG	${\tt GGGCCTTCAC}$	CCACTTGTAC	840
CCGAAGCCCT	CCTATACCGA	GCGAGCCTAT	GAGATCCTGC	${\tt GGGCCATTCC}$	ACATATATCG	900
GTTTACCGCA	AGGGGGAGGT	GCCCAAGCGT	TTGCGCTGTG	GCACCAATCC	TCGTTTGGGC	960
GAACTGGTCG	TGATTCCGGA	CATAGGCTCC	ACCGTCTTTT	TCGCAATAAA	TGAAGACGTT	1020
CGTCCGGGAG	CGGCACATGG	CTATGACAAC	CAAGCACCGG	AAATGCGGGC	TTTACTCCGG	1080
GCTGTCGGAC	CCGATTTCCG	TCCGGGCAGT	${\tt AGGGTGGAAA}$	ACCTGCCGAA	TATCACCATC	1140
TATCCGCTCA	TATGCAGGCT	${\tt GTTGGGTATA}$	GAGCCTGCAC	CCAACGATGC	GGACGAAACG	1200
TTGCTGAACG	GCCTGATCCG	AGACAAACGA	CCA			1233

- (2) INFORMATION FOR SEQ ID NO:129
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...738
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129

ATGAAAGTAG GTTTGTTCAT	CCCCTGTTAT	GTCAATGCAG	TGTATCCGGA	AGTGGGTATC	60
GCCACGTACA AACTGCTGAA	GAGTTTGGAC	ATAGATGTCG	ACTACCCGAT	GGATCAGACA	120
TGTTGCGGCC AGCCTATGGC	CAATGCCGGA	TTCGAACAGA	AAGCTCAAAA	GCTGGCTTTG	180
CGATTCGAAG AGCTGTTCGA	GTCGTATGAT	GTAGTCGTAG	GGCCATCGGC	CAGTTGCGTT	240
GCTTTCGTGA AAGAAAACTA	TGATCATATC	CTCAGACCGA	CAGGACATGT	CTGCAAGTCG	300
GCAGCCAAGG TTCGGGATAT	ATGCGAGTTC	TTGCACGATG	ACCTGAAGAT	CACCAGCCTC	360
CCCTCCCGAT TCGCCCATAA	GGTGAGCCTG	CACAACAGTT	GCCACGGTGT	GCGCGAACTG	420
CATCTGTCCA CCCCCAGTGA	AGTGCACCGA	CCGTACCACA	ACAAGGTGCG	CCGGCTATTG	480
GAGATGGTGC AGGGCATAGA	GGTATTCGAG	CCGAAGCGAA	TAGACGAATG	CTGCGGTTTC	540
GGCGGTATGT ACTCGGTGGA	GGAGCCGGAG	GTATCCACCT	${\tt GTATGGGGCA}$	TGACAAGGTG	600
CTGGATCACA TATCCACAGG	TGCGGAGTAC	ATCACAGGGC	CGGACAGCTC	GTGCCTCATG	660
CATATGCAGG GAGTGATAGA	CAGAGAGAAA	TTGCCGATCA	AGACAATTCA	TGCAGTAGAA	720
ATTTTAGCAG CAAACTTA					738

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...738
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130

ATGGATATTG TAAGTATGGC CGATAAAGCT CTTGTAGTGG AGATGAGAGA TGTGACGCTC TGTCAGGAGG AAAACGTCAT TTTTCAAAAT TTGAATCTGA CCCTTTCCGC CGGAGACTTC 120 GTCTATCTGA TAGGCTCAGT GGGATCGGGG AAGAGCACTT TGCTGAAGGC TTTGTATGCT 180 GAGGTGCCTA TCTCTGCCGG TTATGCCCGC GTGATAGATT ATGATCTGGC AAAGTTGAAA 240 CGGAAGCAGT TGCCCTATCT GCGCAGGAAT TTGGGCATTG TGTTTCAGGA TTTCCAGTTG 300 CTGAACGGAC GTACTGTTGC GGAGAATTTG GATTTCGTTT TGCGAGCTAC GGACTGGAAA AACCGAGCCG ATCGCGAGCA GCGTATCGAG GAGGTTTTGA CCCGTGTGGG AATGTCTCGG 420 AAGGCTTATA AGAGACCGCA CGAACTGTCC GGAGGGGAGC AACAACGTGT GGGTATAGCC 480 AGAGCTTTGC TGGCGAAGCC TGCGTTGATC CTGGCCGACG AACCCACAGG CAACCTCGAT 540 TCGGTGACCG GATTGCAGAT CGCTTCTCTG CTCTACGAAA TCAGTAAGCA GGGCACTGCA 600 GTACTTATGA GCACGCACAA CAGCAGCCTG CTGTCGCATC TGCCGGCACG GACATTGGCC 660 GTTCGTAAGA ATGGCGATGC CTCCTCTTTG GTCGAGCTGA GTGCAGATGC TGTTTCAAGA 720 AAAAATACGG AAATAGAT 738

- (2) INFORMATION FOR SEQ ID NO:131
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 723 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...723
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131

ATGGCCGATA	AAGCTCTTGT	AGTGGAGATG	AGAGATGTGA	CGCTCTGTCA	GGAGGAAAAC	60
GTCATTTTTC	AAAATTTGAA	TCTGACCCTT	TCCGCCGGAG	ACTTCGTCTA	TCTGATAGGC	120
TCAGTGGGAT	CGGGGAAGAG	CACTTTGCTG	AAGGCTTTGT	ATGCTGAGGT	GCCTATCTCT	180
GCCGGTTATG	CCCGCGTGAT	AGATTATGAT	CTGGCAAAGT	TGAAACGGAA	GCAGTTGCCC	240
TATCTGCGCA	GGAATTTGGG	CATTGTGTTT	CAGGATTTCC	AGTTGCTGAA	CGGACGTACT	300
GTTGCGGAGA	ATTTGGATTT	CGTTTTGCGA	GCTACGGACT	GGAAAAACCG	AGCCGATCGC	360
GAGCAGCGTA	TCGAGGAGGT	TTTGACCCGT	GTGGGAATGT	CTCGGAAGGC	TTATAAGAGA	420
CCGCACGAAC	TGTCCGGAGG	GGAGCAACAA	CGTGTGGGTA	TAGCCAGAGC	TTTGCTGGCG	480
AAGCCTGCGT	TGATCCTGGC	CGACGAACCC	ACAGGCAACC	TCGATTCGGT	GACCGGATTG	540
CAGATCGCTT	CTCTGCTCTA	CGAAATCAGT	AAGCAGGGCA	CTGCAGTACT	TATGAGCACG	600
CACAACAGCA	GCCTGCTGTC	GCATCTGCCG	GCACGGACAT	TGGCCGTTCG	TAAGAATGGC	660
GATGCCTCCT	CTTTGGTCGA	GCTGAGTGCA	GATGCTGTTT	CAAGAAAAA	TACGGAAATA	720
GAT						723

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 696 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...696
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132

ATGAGAGATG	TGACGCTCTG	TCAGGAGGAA	AACGTCATTT	TTCAAAATTT	GAATCTGACC	60
CTTTCCGCCG	GAGACTTCGT	CTATCTGATA	GGCTCAGTGG	GATCGGGGAA	GAGCACTTTG	120
CTGAAGGCTT	TGTATGCTGA	GGTGCCTATC	TCTGCCGGTT	ATGCCCGCGT	GATAGATTAT	180
GATCTGGCAA	AGTTGAAACG	GAAGCAGTTG	CCCTATCTGC	GCAGGAATTT	GGGCATTGTG	240
TTTCAGGATT	TCCAGTTGCT	GAACGGACGT	ACTGTTGCGG	${\bf AGAATTTGGA}$	TTTCGTTTTG	300
CGAGCTACGG	ACTGGAAAAA	CCGAGCCGAT	CGCGAGCAGC	GTATCGAGGA	GGTTTTGACC	360
CGTGTGGGAA	TGTCTCGGAA	GGCTTATAAG	AGACCGCACG	AACTGTCCGG	AGGGGAGCAA	420
CAACGTGTGG	GTATAGCCAG	AGCTTTGCTG	GCGAAGCCTG	CGTTGATCCT	GGCCGACGAA	480
CCCACAGGCA	ACCTCGATTC	GGTGACCGGA	${\tt TTGCAGATCG}$	CTTCTCTGCT	CTACGAAATC	540
AGTAAGCAGG	GCACTGCAGT	ACTTATGAGC	ACGCACAACA	GCAGCCTGCT	GTCGCATCTG	600
CCGGCACGGA	CATTGGCCGT	TCGTAAGAAT	GGCGATGCCT	CCTCTTTGGT	CGAGCTGAGT	660
GCAGATGCTG	TTTCAAGAAA	AAATACGGAA	ATAGAT			696

- (2) INFORMATION FOR SEQ ID NO:133
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 657 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...657
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133

ATGATTGAAA	TCAGCAACCT	CACCAAGGTT	TTCAGAACAG	AAGAAATAGA	GACGGTAGCC	60
CTCGATGGCG	TATCGCTCAA	AGTGGACAAA	GGCGAATTTA	TCGCCATAAT	GGGGCCTTCG	120
GGATGCGGTA	AGTCCACTCT	GCTCAATATC	CTCGGCCTTC	TCGACAATCC	CACTTCCGGT	180
ATCTACAAGC	TCGATGGGGC	AGAAGTGGGC	AACCTCCGGG	AAAAAGACAG	GACTGCCGTC	240
CGTAAGGGCA	ATATCGGCTT	CGTATTCCAG	AGCTTCAACC	TCATCGAAGA	GATGACGGTA	300
AGCGAGAACG	TGGAGTTGCC	GCTCGTCTAT	CTGGGTGTGA	AGGCCTCCGA	GCGGAAAGAG	360
CGAGTGGAGG	AGGCACTGCG	CAAGATGAGC	ATCAGCCACC	GGGCCGGCCA	CTTCCCCAAT	420
CAGCTCTCCG	GAGGACAACA	GCAGCGCGTG	GCTATCGCCC	GTGCCGTGGT	GGCCAATCCG	480
AAGCTCATCC	TCGCCGATGA	ACCCACGGGT	AACCTCGACT	CCAAAAACGG	AGCCGATGTC	540
ATGGAACTGC	TCAGAGGTCT	CAATCGCGAA	GGTGCAACCA	TCGTCATGGT	GACGCACTCC	600
GAGCACGATG	CACGTAGTGC	CGGCCGCATC	ATCAATCTGT	TCGACGGTAA	GATTCGC	657

- (2) INFORMATION FOR SEQ ID NO:134
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1785 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1785
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134

ATGAAAGAAT	TTTTCAAAAT	GTTTTTCGCC	TCGATCCTCG	GGGTTATAAC	GGCAGGAATC	60
ATCTTGTTCT	GTATCTTTCT	ATTTATCTTT	TTCGGCATCG	TAGCCGGTAT	TGCCTCCAAG	120
GCAACGGGAG	GAACCATTCC	GAAGATCGAA	GCAAACTCCA	TCCTACATAT	ANACAATTCT	180
TCTTTCCCTG	AGATCGTATC	GGCCAATCCC	TGGAGCATGC	TCACAGGCAA	AGACGAGTCC	240
GTATCGCTCT	CACAGGCAGT	CGAAGCCATC	GGCCAAGCCA	AAAATAATCC	CAACATAACC	300
GGTATCTTCC	TCGATCTGGA	CAACCTTTCC	${\tt GTCGGTATGG}$	CATCGGCAGA	GGAATTGCGT	360
CGCGCGTTGC	${\tt AGGATTTCAA}$	${\tt GATGTCGGGC}$	AAGTTCGTCG	TATCCTATGC	CGACAGATAC	420
ACCCAAAAGG	${\tt GTTACTACCT}$	CTCCAGTATT	GCAGACAAAC	TCTACCTCAA	TCCGAAAGGA	480
ATGTTGGGGC	${\tt TTATCGGGAT}$	TGCGACCCAA	ACAATGTTCT	ACAAAGATGC	CCTCGACAAA	540
TTCGGCGTGA	${\tt AGATGGAGAT}$	CTTCAAGGTA	GGCACCTACA	AGGCAGCCGT	AGAGCCATTC	600
ATGCTCAACA	${\tt GGATGAGCGA}$	TGCCAATCGC	GAACAAATCA	CCACATACAT	AAACGGGCTT	660
TGGGACAAGA	TCACATCCGA	TATTGCAGAG	TCGCGCAAGA	CGGCAATGGA	TTCCGTGAAA	720
ATGTTTGCCG	ACAAAGGCGA	AATGTTCGGT	CTTGCCGAGA	AAGCGGTGGA	GATGAAGCTC	780
${\tt GTGGATGAGC}$	TGGCTTACCG	TACCGATGTG	GAGAAAGAAC	TCAAAAAGAT	GTCCCAACGC	840
GGAGAGAAAG	ATGAACTTCG	${\tt GTTCGTATCG}$	${\tt CTTTCTCAGG}$	TTCTGGCCAA	TGGCCCGATG	900
AACAAAACGA	AAGGCAGTCG	GATCGCCGTT	CTCTTTGCCG	AAGGTGAAAT	AACGGAAGAA	960
ATAATAAAGA	AGCCGTTCGA	CACTGACGGT	AGCTCCATCA	CACAAGAACT	CGCCAAAGAA	1020
ATCAAGGCAG	CAGCCGATGA	CGATGATATC	AAAGCCGTAG	TACTTCGTGT	CAATTCTCCG	1080
${\tt GGAGGTAGTG}$	CTTTCACTTC	CGAACAGATA	TGGAAGCAGG	TAGCCGATCT	CAAGGCCAAA	1140
AAGCCTATCG	TGGTCTCCAT	GGGCGACGTA	GCAGCCTCGG	GCGGATACTA	CATAGCCTGC	1200
GCAGCCAACA	${\tt GTATCGTGGC}$	AGAGCATACG	ACTCTGACCG	GCTCCATCGG	CATATTCGGC	1260
ATGTTCCCGA	ACTTCGCGGG	CGTAGCCAAG	AAGATAGGAG	${\tt TGAATATGGA}$	CGTCGTACAG	1320
ACATCCAAGT	ATGCAGACTT	GGGCAACACC	TTCGCTCCGA	${\tt TGACGGTCGA}$	AGATCGTGCC	1380
CTCATCCAAC	${\tt GCTACATAGA}$	GCAGGGCTAC	GACCTCTTCC	TCACTCGCGT	ATCGGAAGGC	1440
CGCAACCGCA	CCAAGGCACA	GATCGACAGC	ATCGCTCAAG	GCCGTGTATG	GCTCGGCGAC	1500
AAAGCTCTTG	CACTCGGTTT	GGTGGATGAG	CTTGGAGGTT	TGGACACAGC	TATCAAACGG	1560
GCCGCGAAGC	TGGCTCAGCT	CGGTGGCAAC	TACAGCATAG	AGTATGGCAA	GACCAAGCGC	1620
AACTTCTTCG	AAGAGTTGCT	CTCCTCATCA	GCAGCGGATA	TGAAGTCTGC	CATCCTGAGT	1680
ACCATTCTCT	CCGATCCGGA	AATAGAAGTT	CTGCGCGAAC	TCCGCTCCAT	GCCGCCCGT	1740
CCTTCGGGCA	TACAGGCACG	TCTCCCCTAT	TACTTCATGC	CGTAC		1785

- (2) INFORMATION FOR SEQ ID NO:135
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1767 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1767
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135

ATGTTTTTCG	CCTCGATCCT	CGGGGTTATA	ACGGCAGGAA	TCATCTTGTT	CTGTATCTTT	60
CTATTTATCT	${\tt TTTTCGGCAT}$	CGTAGCCGGT	ATTGCCTCCA	AGGCAACGGG	AGGAACCATT	120
CCGAAGATCG	AAGCAAACTC	CATCCTACAT	ATANACAATT	CTTCTTTCCC	TGAGATCGTA	180

TCGGCCAATC	CCTGGAGCAT	GCTCACAGGC	AAAGACGAGT	CCGTATCGCT	CTCACAGGCA	240
GTCGAAGCCA	TCGGCCAAGC	CAAAAATAAT	CCCAACATAA	CCGGTATCTT	CCTCGATCTG	300
GACAACCTTT	CCGTCGGTAT	GGCATCGGCA	GAGGAATTGC	GTCGCGCGTT	GCAGGATTTC	360
AAGATGTCGG	GCAAGTTCGT	CGTATCCTAT	GCCGACAGAT	ACACCCAAAA	GGGTTACTAC	420
CTCTCCAGTA	TTGCAGACAA	ACTCTACCTC	AATCCGAAAG	${\tt GAATGTTGGG}$	GCTTATCGGG	480
ATTGCGACCC	AAACAATGTT	CTACAAAGAT	GCCCTCGACA	AATTCGGCGT	GAAGATGGAG	540
ATCTTCAAGG	TAGGCACCTA	CAAGGCAGCC	GTAGAGCCAT	TCATGCTCAA	CAGGATGAGC	600
GATGCCAATC	GCGAACAAAT	CACCACATAC	ATAAACGGGC	TTTGGGACAA	GATCACATCC	660
GATATTGCAG	AGTCGCGCAA	GACGGCAATG	GATTCCGTGA	AAATGTTTGC	CGACAAAGGC	720
GAAATGTTCG	GTCTTGCCGA	GAAAGCGGTG	GAGATGAAGC	TCGTGGATGA	GCTGGCTTAC	780
CGTACCGATG	TGGAGAAAGA	ACTCAAAAAG	ATGTCCCAAC	GCGGAGAGAA	AGATGAACTT	840
CGGTTCGTAT	CGCTTTCTCA	GGTTCTGGCC	AATGGCCCGA	TGAACAAAAC	GAAAGGCAGT	900
CGGATCGCCG	TTCTCTTTGC	CGAAGGTGAA	ATAACGGAAG	AAATAATAAA	GAAGCCGTTC	960
GACACTGACG	GTAGCTCCAT	CACACAAGAA	CTCGCCAAAG	AAATCAAGGC	AGCAGCCGAT	1020
GACGATGATA	TCAAAGCCGT	AGTACTTCGT	GTCAATTCTC	CGGGAGGTAG	TGCTTTCACT	1080
TCCGAACAGA	TATGGAAGCA	GGTAGCCGAT	CTCAAGGCCA	AAAAGCCTAT	CGTGGTCTCC	1140
ATGGGCGACG	TAGCAGCCTC	GGGCGGATAC	TACATAGCCT	GCGCAGCCAA	CAGTATCGTG	1200
GCAGAGCATA	${\tt CGACTCTGAC}$	CGGCTCCATC	GGCATATTCG	GCATGTTCCC	GAACTTCGCG	1260
GGCGTAGCCA	AGAAGATAGG	AGTGAATATG	GACGTCGTAC	AGACATCCAA	GTATGCAGAC	1320
TTGGGCAACA	CCTTCGCTCC	GATGACGGTC	GAAGATCGTG	CCCTCATCCA	ACGCTACATA	1380
GAGCAGGGCT	ACGACCTCTT	CCTCACTCGC	GTATCGGAAG	GCCGCAACCG	CACCAAGGCA	1440
CAGATCGACA	$\tt GCATCGCTCA$	AGGCCGTGTA	TGGCTCGGCG	ACAAAGCTCT	TGCACTCGGT	1500
TTGGTGGATG	AGCTTGGAGG	TTTGGACACA	GCTATCAAAC	GGGCCGCGAA	GCTGGCTCAG	1560
CTCGGTGGCA	ACTACAGCAT	AGAGTATGGC	AAGACCAAGC	GCAACTTCTT	CGAAGAGTTG	1620
			GCCATCCTGA			1680
GAAATAGAAG	${\tt TTCTGCGCGA}$	ACTCCGCTCC	ATGCCGCCCC	GTCCTTCGGG	CATACAGGCA	1740
CGTCTCCCCT	ATTACTTCAT	GCCGTAC				1767

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 939 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...939
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136

ATGAGAGCAA	ACATTTGGCA	GATACTTTCC	GTTTCGGTTC	TCTTTTTCTT	CGGGACAGCG	60
ATCGGACAGG	CTCAGAGTCG	AAACCGTACA	TACGAGGCTT	ATGTGAAACA	GTACGCCGAC	120
GAAGCTATCC	GACAGATGAG	CCGCTACAAT	ATACCGGCAA	GCATCACCAT	AGCACAGGCT	180
TTGGTGGAGA	CAGGAGCCGG	AGCCAGTACA	CTGGCCAGCG	TACACAACAA	TCACTTCGGG	240
ATCAAATGCC	ACAAATCGTG	GACGGGCAAG	CGCACCTATC	GTACCGACGA	TGCGCCGAAC	300
GAATGCTTCC	${\tt GCAGCTATTC}$	GGCCGCTCGC	${\tt GAATCGTATG}$	AAGATCATTC	CCGATTTCTG	360
CTCCAACCAC	GCTATCGTCC	CCTGTTCAAA	CTCGACAGAG	AAGACTATCG	GGGCTGGGCT	420
ACGGGGTTGC	AACGCTGTGG	CTATGCCACC	AATCGGGGCT	ATGCCAATCT	GCTGATCAAG	480
ATGGTGGAGC	TGTATGAGCT	ATATGCTTTG	GATCGCGAGA	AGTACCCCTC	ATGGTTCCAC	540
AAGTCTTACC	CCGGGTCCAA	CAAAAAATCC	CATCAAACGA	CCAAGCAGAA	GCAGAGCGGA	600
CTCAAGCACG	AAGCTTACTT	CAGCTACGGA	CTGCTCTACA	TCATAGCCAA	GCAAGGCGAT	660
ACCTTCGATT	CTTTGGCCGA	AGAGTTCGAC	ATGAGAGCCT	CCAAACTGGC	CAAATACAAC	720
GATGCTCCCG	TGGATTTCCC	GATCGAAAAG	GGCGATGTGA	TCTATCTGGA	GAAAAAGCAC	780
GCATGCTCCA	TCTCCAAACA	CACACAGCAC	GTAGTGCGTG	TGGGCGATTC	GATGCACAGT	840
ATCTCCCAAC	GCTATGGCAT	CCGGATGAAG	AACCTCTACA	AGCTCAACGA	CAAGGATGGC	900
GAATATATAC	CCCAAGAGGG	CGATATACTG	CGCTTGCGC			939

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1569 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1569
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137

ATGGACGGAC	GTCGATATTC	GGATGGCCTC	CATCAGGCTA	TCGAAGCCAA	AGAGCATGTG	60
AAAGTAGAGG	CTGCGACACA	GACATTTGCA	ACTATCACTT	TGCAGAACTA	TTTCCGCATG	120
TATCATAAGC	TGGCAGGGAT	GACCGGTACT	GCTGAAACTG	AAGCGGGAGA	GCTTTGGGAC	180
ATCTACAAAC	TGGACGTTGT	AGTTATTCCG	ACAAACAAGC	CTATCGCCCG	TAAGGATATG	240
AATGATCGTA	TCTATAAGAC	GGCACGTGAA	AAATATGCAG	CAGTTATCGA	AGAGATTGTA	300
CGTCTTGTCG	AAGAGGGCAG	ACCTGTACTT	GTCGGTACTA	CTTCGGTGGA	AATATCCGAA	360
TTGTTGAGCC	GTATGTTACG	CTTGCGTGGC	ATCCAACACA	ATGTACTCAA	TGCCAAATTG	420
CATCAGAAGG	AGGCCGAGAT	TGTAGCTCAG	GCCGGTCAGA		TACCATCGCA	480
ACGAACATGG	CCGGTCGTGG	TACCGACATC	AAGCTCTCTG			540
${\tt GGTTTGGCTA}$	TCATTGGTAC	GGAAAGGCAC	GAATCCAGAC	GAGTGGACAG	ACAGCTTCGT	600
${\tt GGTCGTTCCG}$	GCCGTCAGGG	TGATCCCGGT	TCGTCCATAT	TCTATGTTTC	CCTTGAAGAT	660
CATCTGATGC	GCCTCTTTGC	CACAGAAAAG	ATTGCATCAT	TGATGGATCG	TTTAGGTTTC	720
AAGGAAGGAG	AAGTGCTCGA	AAACAACATG	CTGAGTAAGT	CCGTGGAGCG	TGCTCAAAAG	780
AAGGTGGAAG	AGAACAACTT	CGGTATCCGT	AAACATCTGC	TTGAGTACGA	TGATGTAATG	840
AATTCGCAGC	GTGAAGTCAT	TTATACCCGT	CGCCGTCATG	CTTTGATGGG		900
GGTATGGATG	TACTCAATAC	CATATACGAC	GTATGTAAGG	CTCTGATTGA		960
GAAGCCAATG	ATTTCGAAGG	CTTCAAGGAA	GATCTGATGC	GTGCACTCGC	GATAGAATCT	1020
CCTATCACGC	AAGAAATATT	CAGAGGTAAG	AAAGCAGAAG	AGCTGACCGA	TATGCTTTTC	1080
GATGAAGCTT	ACAAGTCTTT	CCAACGTAAG	ATGGATCTGA	TCGCAGAAGT	GGCCCACCCT	1140
GTGGTTCATC	AGGTATTCGA	GACCCAAGCC	GCCGTGTACG	AGCGCATTCT	AATCCCCATT	1200
ACGGATGGTA	AACGTGTCTA	TAACATAGGA	TGCAATTTGC	GTGAAGCGGA	TGAAACTCAA	1260
GGGAAAAGCA	TCATCAAAGA	ATTTGAGAAA			CGATGAGTCT	1320
TGGAAAGAAC	ATCTGCGTGA	GATGGACGAG		CCGTTCAGAA	TGCCAGCTAC	1380
GAAAACAAAG	ATCCACTACT		CTCGAATCTT		CCGCAAGATG	1440
GTAGAAGCCA		GACCGTAGCG				1500
GAGGCTCCTT	CCCAAGAAGA	GCTGGAACAC	AGGCGGCAAA	TAGAAATCCG	ACATGCAACC	1560
CAACAACGT						1569

- (2) INFORMATION FOR SEQ ID NO:138
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1125 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1125
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138

ATGAATTTCT	TAAAAAAAGA	ACCGTTTAAA	ATATTCTCTA	TGATTTATCT	GCTGTTAGAT	60
ACAATAACAA	ACCGTGCCGG	TACAGAACGC	GCCGTGATCA	ACTTGGCTAA	CAACCTGCAT	120
GCCAATGGTC	ATCGCGTATC	ATTAGTCAGC	GTTTGTACAA	AAGAAGGAGA	GCCTTCCTTC	180
CAAGTAGAAA	AAGGAATAGA	AGTACACCAT	CTCGGAATTA	GGCTTTATGG	CAATGCATTA	240
GCCCGCAAAA	CAGTATATTT	CAAGGCTTAT	CGAAGGATAA	AAGCCCTATA	CAAGAAGCGT	300
GAACCGGTTT	TATTGATAGG	GACTAATATT	TTTATCAATA	CAATTTTGTC	TCAGATCAGT	360
AACAGAGGCA	GAATATTTAC	GATCGGATGC	GAACATATCT	CTTATGATAT	TGCCCGCCCT	420
ATTACAAAAC	GCATAAGGGG	GTTTCTGTAT	TCAGGGCTTG	ATGCCGTTGT	AGCACTGACA	480
AAAAGAGATC	AGCAATCGTT	CGAGGCAATC	TTACGTGGAC	GCTCTAAAGC	ATATGTCATA	540

CCCAATCAAG	TTTCATTTAC	TACAGTCCAA	AGAGATGCTA	CTACTCACAA	ACAAATGTTG	600
GCGATTGGCA	GGCTTACCTA	CCAGAAGGGT	TTTGAATTCA	TGATAGAAGA	TGCATCACGA	660
GTGCTGCGAG	AAAGGCCTGA	TTGGAAGCTT	ATCATAGTCG	GAGATGGCGA	AAATGAATCG	720
ATGCTACGTA	AAGAAATTGC	ATCTCGCAAT	ATGGAGTCGC	AAATAGAAAT	ACATCCATCT	780
ACACCGGAAA	TTCGCAAATA	CTACGAATCA	TCTGCTATTT	ATCTAATGAC	GTCCCGTTTC	840
GAAGGACTAC	CAATGGTACT	TCTCGAAGCA	GAAGCATATG	CACTACCTAT	AATCTCATAC	900
GATTGTCCGA	CCGGCCCGAG	GGAACTGATC	GAAAACGGTC	GCAATGGTTT	CCTTGTGCCA	960
ATGGAAGCAC	ATGAAGACTT	CGCGGATAAG	TTACGCTTAT	TGATGGATGA	TGAAACTCTT	1020
CGTAAGAAAA	TGGGACAAGA	ATCAGAGTTG	ATGGTCAAAT	CCTACTCTCC	GGCAAATATC	1080
TATGAATGTT	GGAAGAAACT	ATTCGTCGAA	ATCGGCTACA	TGAAT		1125
	GCGATTGGCA GTGCTGCGAG ATGCTACGTA ACACCGGAAA GAAGGACTAC GATTGTCCGA ATGGAAGCAC CGTAAGAAAA	GCGATTGGCA GGCTTACCTA GTGCTGCGAG AAAGGCCTGA ATGCTACGTA AAGAAATTGC ACACCGGAAA TTCGCAAATA GAAGGACTAC CAATGGTACT GATTGTCCGA CCGGCCCGAG ATGGAAGCAC ATGAAGACTT CGTAAGAAAA TGGGACAAGA	GCGATTGGCA GGCTTACCTA CCAGAAGGGT GTGCTGCGAG AAAGGCCTGA TTGGAAGCTT ATGCTACGTA AAGAAATTGC ATCTCGCAAT ACACCGGAAA TTCGCAAATA CTACGAATCA GAAGGACTAC CAATGGTACT TCTCGAAGCA GATTGTCCGA CCGGCCCGAG GGAACTGATC ATGGAAGCAC ATGAAGACTT CGCGGATAAG CGTAAGAAAA TGGGACAAGA ATCAGAGTTG	GCGATTGGCA GGCTTACCTA CCAGAAGGGT TTTGAATTCA GTGCTGCGAG AAAGGCCTGA TTGGAAGCTT ATCATAGTCG ATGCTACGTA AAGAAATTGC ATCTCGCAAT ATGGAGTCGC ACACCGGAAA TTCGCAAATA CTACGAATCA TCTGCTATTT GAAGGACTAC CAATGGTACT TCTCGAAGCA GAAGCATATG GATTGTCCGA CCGGCCCGAG GGAACTGATC GAAAACGGTC ATGGAAGCAC ATGAAGACTT CGCGGATAAG TTACGCTTAT CCGTAAGAAAA TGGGACAAGA ATCAGAGTTG ATGGTCAAAT	GCGATTGGCA GGCTTACCTA CCAGAAGGGT TTTGAATTCA TGATAGAAGA GTGCTGCGAG AAAGGCCTGA TTGGAAGCTT ATCATAGTCG GAGATGGCGA ATGCTACGTA AAGAAATTGC ATCTCGCAAT ATGGAGTCGC AAATAGAAAT ACACCGGAAA TTCGCAAATA CTACGAATCA TCTGCTATTT ATCTAATGAC GAAGGACTAC CAATGGTACT TCTCGAAGCA GAAGCATATG CACTACCTAT GATTGTCCGA CCGGCCCGAG GGAACTGATC GAAAACGGTC GCAATGGTTT ATGGAAGCAC ATGAAGACTT CGCGGATAAG TTACGCTTAT TGATGGATGA	CCCAATCAAG TTTCATTTAC TACAGTCCAA AGAGATGCTA CTACTCACAA ACAAATGTTG GCGATTGGCA GGCTTACCTA CCAGAAGGGT TTTGAATTCA TGATAGAAGA TGCATCACGA GTGCTGCGAG AAAGGCCTGA TTGGAAGCTT ATCATAGTCG GAGATGGCGA AAATGAATCG ATGCTACGTA AAGAAATTGC ATCTCGCAAT ATCGGATCAC CAATGGTACC CAATGGTACT CTACGAACAC CAATGGTACT CTCCGAAGCA GAAGCATATT ATCTAATGAC GTCCCGTTTC GAATGGTACAC CCGGCCCGAG GGAACTGATC GAAAACGGTC GCAATGGTTT CCTTGCCAA ATGGAAGCAC ATGAAGACTT CCGGGATAAG TTACGCTTAT TGATGGATGA TGAAACTCTT CCGTAAGAAAA TGGGACAAGA ATCAGAGTTG ATGGTCAAAT CCTACTCC GGCAAATATC GTAAGAAAA TGGGACAAGA ATCAGAGTTG ATGGTCAAAT CCTACTCCC GGCAAATATC TATGAATGTT GGAAGAACCT ATTCGTCGAA ATCGCCTACA TGAAT

- (2) INFORMATION FOR SEQ ID NO:139
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1086 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1086
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139

TACAATAACA	AACCGTGCCG	GTACAGAACG	CGCCGTGATC	60
TGCCAATGGT	CATCGCGTAT	CATTAGTCAG	CGTTTGTACA	120
CCAAGTAGAA	AAAGGAATAG	AAGTACACCA	TCTCGGAATT	180
AGCCCGCAAA	ACAGTATATT	TCAAGGCTTA	TCGAAGGATA	240
TGAACCGGTT	TTATTGATAG	GGACTAATAT	TTTTATCAAT	300
TAACAGAGGC	AGAATATTTA	CGATCGGATG	CGAACATATC	360
TATTACAAAA	CGCATAAGGG	GGTTTCTGTA	TTCAGGGCTT	420
AAAAAGAGAT	CAGCAATCGT	TCGAGGCAAT	CTTACGTGGA	480
ACCCAATCAA	GTTTCATTTA	CTACAGTCCA	AAGAGATGCT	540
GGCGATTGGC	AGGCTTACCT	ACCAGAAGGG	TTTTGAATTC	600
AGTGCTGCGA	GAAAGGCCTG	ATTGGAAGCT	TATCATAGTC	660
GATGCTACGT	AAAGAAATTG	CATCTCGCAA	TATGGAGTCG	720
TACACCGGAA	ATTCGCAAAT	ACTACGAATC	ATCTGCTATT	780
CGAAGGACTA	CCAATGGTAC	TTCTCGAAGC	AGAAGCATAT	840
CGATTGTCCG	ACCGGCCCGA	GGGAACTGAT	CGAAAACGGT	900
AATGGAAGCA	CATGAAGACT	TCGCGGATAA	GTTACGCTTA	960
TCGTAAGAAA	ATGGGACAAG	AATCAGAGTT	GATGGTCAAA	1020
CTATGAATGT	TGGAAGAAAC	TATTCGTCGA	AATCGGCTAC	1080
				1086
	TGCCAATGGT CCAAGTAGAA AGCCCGCAAA TGAACCGGTT TAACAGAGGC TATTACAAAA AAAAAGAGAT ACCCAATCAA GGCGATTGGC AGTGCTACGA GATGCTACGT TACACCGGAA CGAAGGACTA CGATTGTCCG AATGGAAGCA TCGTAAGAAA	TGCCAATGGT CATCGCGTAT CCAAGTAGAA AAAGGAATAG AGCCCGCAAA ACAGTATATT TGAACCGGTT TTATTGATAG TAACAGAGGC AGAATATTTA TATTACAAAA CGCATTAATG ACCCAATCAA GTTTCATTTA GGCGATTGGC AGGCCTTACCT AGTGCTGCGA GAAAGGCCTG GATGCTACGT AAAGAAATTG TACACCGGAA ATTCGCAAAT CGAAGGACTA CCCAATGGTAC CGATTGTCCG ACCGGCCCGA AATGGAAGAC ACTGGAAGACT TCGTAAGAAA TCGTAAGAAA	TGCCAATGGT CATCGCGTAT CATTAGTCAG CCAAGTAGAA AAAGGAATAG AAGTACACCA AGCCCGCAAA ACAGTATATT TCAAGGCTTA TGAACCGGTT TTATTGATAG GGACTAATAT TAACAGAGGC AGAATATTTA CGATCGGATG TATTACAAAA CGCATAAGGG GGTTTCTGTA ACACCAATCAA GTTTCATTTA CTACAGTCCA GGCGATTGGC AGGCTTACCT ACCAGAAGGG AGTGCTACGT AAAGACATT CATCTCGCAA TACACCGGAA ATTCGCAAAT CTCCCCAA TACACCGGAA ATTCGCAAAT CTCCCCAA TACACCGGAA ATTCGCAAAT ACTACGAATC CGAAGGACTA CCAATGGTAC TTCTCGAAGC CGATTGTCCG ACCGCCCGA GGGAACTGAT AATGGAAGCA CATGAAGACT TCGCGGATAA TCGTAAGAAA ATGGGACAAG AATCAGAGTT	TGCCAATGGT CATCGCGTAT CATTAGTCAG CGTTTGTACA CCAAGTAGAA AAAGGAATAG AAGTACACCA TCTCGGAATT AGCCCGCAAA ACAGTATATT TCAAGGCTTA TCGAAGGATA TGAACCGGTT TTATTGATAG GGACTAATAT TTTTATCAAT TAACAGAGGC AGAATATTTA CGATCGGATG CGAACATATC TATTACAAAA CGCATAAGGG GGTTTCTGTA TTCAGGGCTT AAAAAGAGAT CAGCAATCGT TCGAGGCAAT CTTACGTGGA ACCCAATCAA GTTTCATTTA ACAGAAGGG TTTTGAATTC AGGGCTTGCGA GAAAGGCCTG ATTGGAAGGT TATCATAGTC AGTGCTACGT AAAGAAATTG CATCTCGCAA TATCGAGTCG TACACCGGAA ATTCGCAAAT ACTACGAATC ATCGCTATT CGAAGGACTA CCAATGGAACC ACCGGACCGA ACCGGCCCGA GGGAACTGAT CGAAAACGGT ATTGGAAGCA TATCGCTATT CGAAGGACA CATGAAGACA TACGGAATAT CCGAAGACA ACCGGCCCGA GGGAACTGAT CGAAAACCGGT AATGGAAGCA CATGAAGACT TCCGCAGATA GTTACGCTTA TCGTAAGAAA ATCGGAAAA ATCGCAAAA ATCAGAAGTT GATGGTCAAA ATCGGAAAA ATCGCAAAA ATCGCAAAA ATCGCATTA GATGGAAGAA ATCGCAAAA ATCAGAAGTT GATGGTCAAA

- (2) INFORMATION FOR SEQ ID NO:140
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1920 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1920

ATGGGAAAAA	TCATTGGAAT	TGACTTAGGC	ACAACGAACT	CTTGTGTCTC	TGTATTGGAA	60
GGTAACGAAC	CTATCGTTAT	TACAAACAGT	GAGGGCAAGC	GCACAACGCC	CTCGGTAGTG	120
GCTTTTGTGG	ATGGTGGCGA	GCGTAAGGTG	GGCGATCCGG	CCAAGCGTCA	GGCCATCACC	180
AATCCGACCA	AGACGATATA	CTCTATCAAA	CGCTTCATGG	GCGAAACTTA	CGATCAGGTT	240
TCCAGAGAAG	TGGAGAGAGT	GCCATTCAAG	GTAGTACGTG	GGGACAATAA	TACTCCGCGC	300
GTAGATATAG	ACGGTCGTCT	CTATACGCCG	CAGGAAATTT	CGGCCATGAT	CCTTCAGAAG	360
ATGAAGAAGA	CGGCCGAAGA	CTACCTCGGT	CAGGAAGTAA	CGGAGGCCGT	GATCACTGTG	420
CCCGCATACT	TCAACGACGC	TCAACGTCAG	GCAACGAAAG	AAGCAGGAGA	GATCGCCGGC	480
CTGAAAGTTC	GCCGTATTGT	GAACGAGCCT	ACGGCAGCTT	CTCTGGCCTA	CGGTCTGGAC	540
AAGTCCAATA	AGGATATGAA	GATCGCTGTC	TTCGACTTGG	GTGGCGGTAC	CTTCGATATC	600
TCTATCTTGG	AATTGGGCGA	CGGCGTTTTC	GAAGTGAAAT	CGACCAACGG	TGATACGCAC	660
CTCGGAGGAG	ACGACTTCGA	CCACGTGATC	ATTGACTGGC	TGGCAGAAGA	GTTCAAGTCT	720
CAGGAAGGTG	TGGATCTTCG	CCAGGATCCT	ATGGCTATGC	AGCGTCTGAA	AGAAGCTGCC	780
GAAAAAGCCA	AGATAGAGCT	CTCCAGCACT	TCATCTACGG	AGATCAACCT	CCCCTATATC	840
ATGCCGGTGA	ACGGCATCCC	CAAGCACTTG	GTGATGACGC	TTACAAGGGC	TAAGTTCGAG	900
CAGTTGGCCG	ATCGTCTGAT	TCAGGCATGT	GTGGCACCCT	GCGAAACGGC	CTTGAAAGAT	960
GCCGGTATGT	CACGTGGCGA	TATCGATGAA	GTGATTCTCG	TAGGTGGTTC	CACACGTATT	1020
CCTGCTATTC	AGGAGATTGT	GGAGAAGATC	TTCGGTAAGG	CTCCGTCCAA	GGGTGTGAAT	1080
CCCGACGAAG	TGGTAGCTGT	GGGTGCCGCT	ATTCAAGGCG	GTGTTCTGAC	CGGTGAGGTA	1140
AAGGATGTCT	TGCTGTTGGA	CGTTACCCCC	TTGTCGCTCG	GTATCGAGAC	TATGGGAGGC	1200
GTGATGACTC	GCTTGATCGA	TGCCAATACC	ACTATCCCGA	CGAAGAAGAG	CGAAATCTTT	1260
ACCACAGCAG	TGGACAATCA	ACCTTCGGTA	GAGATTCATG	TACTTCAGGG	TGAGCGTTCT	1320
TTGGCTAAGG	ACAATAAGAG	CATCGGCCGT	TTCAACTTGG	ACGGTATTGC	TCCGGCGCCC	1380
CGTCAGACAC	CGCAGATCGA	AGTAACGTTT	GACATCGATG	CCAACGGTAT	CCTGAATGTA	1440
ACGGCTCATG	ACAAAGCTAC	CGGCAAGAAG	CAGAATATCC	GCATCGAAGC	CTCCAGCGGT	1500
TTGTCCGATG	ATGAGATCAA	GCGCATGAAG	GAAGAGGCGC	AGGCCAATGC	CGAAGCAGAT	1560
AAGAAAGAGA	AAGAACGTAT	CGACAAGATC	AATCAGGCCG	ACAGCATGAT	CTTCCAGACG	1620
GAAAAGCAGT	TGAAGGAGTT	GGGAGACAAA	TTCCCGGCCG	ACAAGAAGGC	TCCGATCGAT	1680
ACCGCTCTCG	ACAAACTGAA	AGAAGCACAC	AAAGCACAGG	ATGTAGCTGC	TATCGATACA	1740
GCCATGGCCG	AACTGCAAAC	CGCTCTTTCC	GCAGCGGGCG	AAGAGCTTTA	CAAGAATGCC	1800
GGAGCAGCCC	AAGGTGGCGC	ACAACCCGGT	CCGGACTTCG	GCGGTGCTCA	AGGTCCCTCT	1860
GCCGGTGATC	AGCCCTCTGA	CGACAAGAAC	GTCACAGACG	TAGACTTCGA	GGAAGTGAAG	1920

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1347 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1347
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141

ATGCGCTACG	ACTTAGCTAT	CATCGGTGGA	GGGCCGGCCG	GTTATACGGC	TGCCGAACGT	60
GCTGCCAAAG	GTGGCCTGAA	AACCCTCCTA	ATTGAGAAGA	ATGCTCTCGG	TGGTGTATGC	120
CTCAACGAAG	GATGTATACC	GACCAAGACG	CTACTCTACT	CGGCCAAAGT	GCTACATCAA	180
ATTGCTACGG	CATCTAAATA	TGCAGTAAGT	GGAACGGCCG	ATGGACTTGA	CCTCGGCAAG	240
GTGATTGCCA	GAAAAGGTAA	AATCATTCGC	AAGCTGACTG	CAGGCATCCG	TTCACGCCTG	300
ACAGAGGCCG	GAGTAGAGAT	GGTGACGGCA	GAAGCTACCG	TAACGGGATG	CGATGCAGAC	360
GGCATCATCG	GCATTACTGC	GGGCGAAGCA	CAGTACAAAG	CTGCCAACCT	GCTACTATGT	420
ACCGGTTCGG	AGACGTTTAT	TCCACCCATC	CCCGGAGTGG	AGCAGACAGA	GTATTGGACA	480
AACCGTGAAG	CTCTACAGAA	CAAAGAGATT	CCGACCTCTC	TCGTCATCAT	CGGTGGTGGA	540
GTGATCGGAA	TGGAGTTCGC	TTCTTTCTTC	AACGGTATCG	GTACGCAAGT	GCACGTGGTG	600
GAGATGCTGC	CGGAAATACT	CAACGGTATC	GATCCCGAAC	ATGCAGCTAT	GCTACGCGCT	660
CACTATGAAA	AAGAAGGAAT	CAAATTCTAC	CTCGGGCACA	AAGTAACATC	GGTTCGCAAC	720
GGAGCTGTTA	CGGTAGAATA	CGAAGGAGAA	AGCAAAGAGA	TCGAAGGAGA	ACGTATCCTG	780
ATGAGTGTGG	GACGTCGCCC	CGTGCTGCAA	GGATTCGAGT	CGCTCGGATT	GGTGCTTGCC	840
GGCAAAGGTG	TAAAGACTAA	TGAGAGGATG	CAAACTTCCC	TGCCCAATGT	CTATGCTGCA	900
GGTGATATTA	CAGGCTTCTC	GCTTTTGGCA	CATACGGCTG	TACGGGAAGC	AGAGGTAGCA	960
GTAGATCAGA	TTTTGGGCAA	AACAGACGAA	ACGATGAGCT	ACCGTGCCGT	ACCAGGTGTG	1020
GTGTACACCA	ATCCCGAGGT	CGCCGGTGTG	GGAGAGACGG	AAGAATCGCT	TCGCAAAGCA	1080

GGACGTGCCT	ACACTGTTCG	TCGCCTTCCT	ATGGCCTTCT	CCGGTCGATT	TGTAGCAGAA	1140
AACGAACAAG	GCAATGGAGA	GTGCAAACTA	CTACTTGATG	AAGAGAACCG	CTTGATCGGA	1200
GCACACCTCA	TTGGCAATCC	GGCCGGCGAA	CTCATCGTAA	CCGCTGCCAT	GGCCATCGAG	1260
ACCGGCATGA	CGGATCGACA	AATCGAACGA	ATCATATTCC	CTCATCCGAC	TGTAGGCGAA	1320
ATCCTAAAAG	AAACTCTCGC	CGGAGGT				1347

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2823 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

(A) NAME/KEY: misc feature

(B) LOCATION 1...2823

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142

ATGGAATTGA	AAAGATTTTT	ATCACTTGGT	CTTCTGCTTG	TGGGATTCAT	TCCGATGAAG	60
CTTTCTGCCC	AACAGGCTCA	GCCACTCCCT	ACAGATCCGG	CTGTTCGTGT	CGGTAAGTTG	120
GACAACGGAT	TGACTTATTT	CATCCGTCAC	AACGAGAACC	CGAAAGATCG	TGCGGATTTC	180
TTTATCGCAC	AAAAGGTAGG	TTCTATTCTT	GAAGAAGATA	GCCAGTCCGG	TTTGGCTCAC	240
TTCTTGGAAC	ACATGGCTTT	CAACGGTACG	AAGAACTTCC	CCGGTAAGAA	CTTGATCAAC	300
TATCTCGAAA	CGATCGGTGT	ACGTTTCGGT	CAGAACCTGA	ACGCTTCTAC	CGGATTCGAC	360
AAGACGGAAT	ATACGATAAT	GGATGTGCCG	ACTACACGTC	AGGGAATCAT	CGACTCCTGC	420
TTGCTTATCC	TGCATGATTG	GAGTAACAAT	ATTACCCTCG	ACGGGCATGA	GATCGACGAG	480
GAGCGCGGTG	TGATCCAGGA	AGAGTGGCGT	GCTCGTCGCG	ATGCCAACCT	TCGTATGTTC	540
	TTGCCAAGGC					600
	TCGTGCTCAA					660
	ACCTGCAAGG					720
	AAGAACTCTT					780
	TAGAGGACAA					840
	AGCTCTCCAT					900
	GACTTGTGGA					960
	AGATTACTCA					1020
	TGTACATCAC					1080
	CGGAGAAAGC					1140
	CCAAAGGCGA					1200
	ACGAAAGAGA					1260
	ATGGCGGCTA					1320
	AGGTTCCTCT					1380
	CTGTCGTTAC					1440
	TCCTCGCTGC					1500
	CCGACCAAAA					1560
	ATCAGAAGTT					1620
	AGACCGATTT					1680
	CCGGAAAGCA					1740
	GCAACTTCGA					1800
	CCTCTTTGTC					1860
	CTTTCTTCCA					1920
	AGGCCACACA					1980
	CGCTTATGGA					2040
						2100
	AAGCTGCTGA					2160
	TCGCTGATGC					2220
	AGCCATTGAT					
	ATAAGGCTCA					2280 2340
	TGGATACTCC					
	AGAACAGTCT					2400
	TTCGCGAGAA					2460
	CTCAGCCCAA					2520
	TGAATGCTAT					2580
	ACTTTAAGAA					2640
	GTTTCTGGCT					2700 2760
	ACGAATCCGT					2760
GCAGACCTCT	TGAAGCAGCA	GAATCGGGTT	GITGTCATGA	IGGUICUIGI	IGCAAAGGCI	2020

CAA 2823

(2) INFORMATION FOR SEQ ID NO:143

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2052 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...2052
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143

```
60
ATGAGTAAGA AAGGAACAAT CGGGGTAACG AGCGACAATA TATTCCCCGT CATCAAAAAA
TTCCTGTACA GCGACCATGA GATATTCCTG CGTGAGATCG TCTCCAATGC CGTGGATGCT
                                                                       120
ACGCAGAAGC TGAAAACGCT TACATCCGTC GGCGAATTCA AAGGCGAGAC GGGTGACCTC
                                                                      180
CGCGTAACGG TCAGCGTGGA TGAAGTGGCA CGCACGATCA CGGTCAGCGA CCGCGGCGTA
                                                                      240
GGGATGACCG AAGAGGAGGT GGAGAAGTAC ATCAATCAGA TTGCTTTCTC CAGTGCGGAA
GAGTTTCTTG AAAAGTACAA AGACGACAAG GCCGCCATTA TCGGCCACTT CGGACTCGGA
                                                                      360
TTTTACTCGG CTTTCATGGT GTCCGAGCGA GTGGACGTGA TCACGCGCTC TTTCCGAGAA
                                                                       420
GATGCTACGG CGGTGAAATG GAGCTGCGAC GGATCGCCCG AATACACGCT CGAACCTGCG
                                                                      480
GACAAGGCTG ACCGTGGCAC CGACATCGTG ATGCACATCG ATGAGGAGAA TAGCGAGTTC
                                                                      540
CTCAAAAAG AAAAGATAGA GGGGCTCCTC GGCAAATACT GTAAGTTCCT TACCGTGCCG
ATCATTTTCG GCAAGAAGCA GGAATGGAAA GACGGCAAGA TGCAAGATAC GGACGAGGAC
                                                                      660
AATCAGATCA ACGACACAC TCCTGCCTGG ACCAAAAAGC CTGCCGACCT CAAGGACGAA
                                                                      720
GACTATAAGG AATTTTACCG TTCGCTCTAT CCCATGTCCG AAGAGCCTCT CTTCTGGATC
                                                                      780
CACCTCAATG TGGACTATCC GTTCAATCTG ACAGGTATCC TCTATTTCCC GAAGATCAAA
                                                                      840
AACAACTTGG ATCTGCAGCG CAACAAGATT CAGCTCTACT GCAATCAGGT TTACGTCACC
                                                                      900
GATGAAGTAC AGGGTATCGT GCCGGACTTC CTCACCCTCC TGCACGGGGT CATCGATTCG
                                                                      960
CCGGATATTC CCCTCAACGT ATCGCGCTCC TATCTGCAGA GCGATGCCAA TGTGAAGAAG
ATCTCGTCTC ATATCACCAA GAAGGTGGCA GACCGTCTGG AAGAAATTTT CAAAAACGAC
                                                                     1080
CGCCCCACAT TCGAGGAGAA ATGGGATAGT CTGAAGCTCT TCGTCGAATA CGGTATGCTG
                                                                     1140
ACGGATGAGA AGTTCTATGA GCGTGCAGCC AAATTCTTCC TTTTCACCGA TATGGACGGA
                                                                     1200
CACAAGTACA CGTTCGACGA ATACCGAACG CTCGTCGAAG GTGTACAGAC GGATAAGGAC
                                                                     1260
GGACAGGTAG TGTATCTCTA TGCTACGGAC AAGCATGGAC AGTACAGCCA CGTGAAACGT
                                                                     1320
GCATCCGACA AAGGCTACAG CGTGATGCTG TTGGATGGTC AGTTGGATCC GCATATCGTG
                                                                     1380
AGCCTGCTGG AGCAAAAGTT GGAGAAGACA CACTTTGTCC GTGTCGATAG CGATACGATC
                                                                     1440
AACAATCTGA TCCGCAAGGA GGAAAGAGCC GAAGTGAAAC TGTCCGATAC GGAGCGCGCC
                                                                     1500
ACTCTCGTGA AGCTGTTCGA AGCACGCCTG CCACGGGACG AGAAGAAGCA CTTCAATGTA
                                                                     1560
GCTTTCGAAT CGCTCGGAGC CGAAGGTGAA GCCATCCTTA TCACACAAGC CGAATTCATG
                                                                     1620
CGCCGTATGC GCGATATGGC ACAGCTGCAG CCGGGAATGA GCTTCTACGG CGAACTCCCC
                                                                     1680
GATTCGTACA ATCTGGTACT TAATACCGAT CATCCGCTCA TCGACAGGGT ACTCTCCGGT
                                                                     1740
GAGAAAGAAT CGGTAGAGCC TTCGCTCACA GAGCTTAGAG CGAAAATCGC CGAGCTGAAA
                                                                     1800
GCGGAAGAGG CCAAGCTGCT CGATGAGGAA AAAGGGAAGA AACCGGAGGA AATCCCTGTT
                                                                     1860
GCCACGAAGG AAGCCAAGGA GAACAACGCC GTCGAACAGG CCAAAACCGA AGGCAGTATC
                                                                     1920
AACGATCAAC TGACCAAATA TGCTCAGGAC AACGAGCTGA TAGGTCAGCT CATCGACTTG
                                                                     1980
GCTCTGCTCG GAAGCGGATT GCTGACGGGA GAGGCTTTGG CCGAATTCAT TCGTCGCAGC
                                                                     2040
CAGCGTCTTC TC
                                                                     2052
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1392 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1392
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:144

ATGGAAAAAC	TGATCGATAT	TTTGGTCGTA	GACGATGATG	TGGCAGTCTG	TGCCGCACTG	60
CGTCTGGTGC	TCAAGCGAGC	GGGCTATAAT	CCCGTTATAG	CCAACAGTCC	CGACGAAGCT	120
TTGTCCATAA	TGCGGAATCC	TGATGGCGGC	TGTAAGCCGG	CTGTGATTCT	GATGGATATG	180
AATTTCTCCC	TTTCGACCTC	CGGCAGGGAA	GGATTGGAAC	TACTGGAGAA	GATGCAGATA	240
TTCACTTCCT	GCCCTGTCAT	ACTGATGACG	GCTTGGGCTT	CGATTCCACT	GGCAGTGGAG	300
GGAATGAGGC	TTGGAGCTTT	CGACTTCATA	GGCAAGCCAT	GGGACAACGA	TCGGCTCCTT	360
CGTACCATAG	ATACGGCCTT	GCATCTGGCT	GCTCCCTCAG	CTGTGGCGAA	TCCATCGGAA	420
CAGTCTGACA	GAGATACAGC	CCGTCAGCCG	AAAGCTACAG	TCCAAGAGAA	TGACCCCTGT	480
GCCCATATCA	TAGGCCGGAG	CGATGCCATC	TGTAAGATCA	AGGAACGGAT	ACGCCGCATA	540
GCTCCCACCC	ATGCCTCTGT	GCTGATCACG	GGCGAGAGCG	GTACGGGCAA	AGAGTTGATA	600
GCCGAAGCTC	TGCACCGTGG	GAGCAAACGA	GCCTCAGCCC	CATTCGTCAA	GGTCAATTTG	660
GGTGGGATTC	CCGAAAGTTT	${\tt GTTCGAAAGT}$	GAGCTGTTCG	GACATAAGAA	AGGAGCTTTT	720
ACCAATGCTT	TTTCCGACAG	GAAAGGACGG	TTCGAGCTGG	CTGATGGCGG	CACGATCTTT	780
CTGGACGAAA	TAGGCGAACT	ACCGGTCGGC	AACCAAGTAA	AACTGCTGCG	AGTGCTACAG	840
GAACAGACAT	TCGAGCCGTT	GGGCGAGAGC	GTCTCCCACC	GAGTGGACAT	CCGTGTGGTA	900
TCGGCTACGA	ATGCTTCCTT	GGAGCGAATG	GTAGCCGAAG	GACGTTTCAG	AGAGGACCTC	960
TACTATCGAA	TCAACCTGAT	ACATCTGCAT	CTGCCTCCGC	TGCGTGAGCG	TCAGGAGGAT	1020
ATACAGCTGC	TGGTGGAAGC	CTTCAGTGAA	GCCTTTGCCC	AATCGAACGG	ATTGCCCCAT	1080
GCCGTTTGGA	GTGCGGAAGC	TATGCGACGT	ATCTGTGCCA	TGCCCCTACC	GGGCAATGTA	1140
CGCGAACTGA	AAAACGTAGT	GGAGCGTACG	CTATTGCTCT	CGGGATCGAG	AGAAATCAGT	1200
GCCCGGGATG	TGGCTGACTT	CGGTTCGCAG	GTGACGGCAG	CAGACCACTC	CGACGAACGG	1260
GCTTTGACCG	ACATGGAGGA	AGCTGCTATC	CGAGAGACGC	TGACTAAATA	CAACGGCAAC	1320
GTTAGTCGTG	CTGCACGAGC	CTTGGGATTG	AGCCGGGCAG	CTCTTTACCG	GCGAATGGAG	1380
AAATACGGAC	TG					1392

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 750 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...750
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145

ATGCTTAAGA	TAAAGAACCT	CCACGCCACA	GTACAGGGCA	AAGAGATATT	GAAAGGAATC	60
AATCTGGAGA	TCAATGCCGG	AGAGATTCAT	GCTATCATGG	GGCCGAACGG	ATCGGGGAAA	120
AGTACGCTCT	${\tt CTTCCGTTTT}$	GGTGGGACAT	CCCTCCTTTG	AAGTCACGGA	AGGAGAGGTG	180
ACATTCAATG	GAATCGACCT	GCTCGAACTC	GAACCGGAAG	AACGTGCACA	CCTCGGACTC	240
TTTCTCAGTT	TCCAATATCC	GGTCGAGATC	CCGGGCGTCA	${\tt GCATGGTGAA}$	TTTCATGAGG	300
GCAGCTGTCA	ATGAACATAG	GAAAGCGATC	GGAGCAGAAC	CCGTATCGGC	AAGCGACTTC	360
CTCAAGATGA	TGCGAGAGAA	GCGTGCCATT	GTGGAGCTGG	ACAACAAATT	GGCCAGCCGT	420
TCTGTGAACG	AAGGCTTCTC	CGGTGGAGAA	AAAAAGAGGA	ACGAAATCTT	CCAAATGGCT	480
ATGCTCGAAC	CCAAGCTGGC	TATTTTGGAC	GAAACCGATA	$\tt GCGGGCTCGA$	TATCGACGCT	540
CTCCGCATCG	TAGCAGGCGG	GGTAAACCGA	CTCCGCTCTC	CGGAGAATGC	TGCTATTGTG	600
ATCACACACT	ATCAGCGTTT	GCTCGAGTAC	ATCAAGCCGG	ACTTCGTACA	CGTCCTTTAC	660
AAGGGGCGCA	TCGTCAAGTC	GGGAGGAGCC	GAGCTGGCTC	TCACGCTCGA	AGAAAAAGGC	720
TACGACTGGA	TCAAGGAAGA	GATAGGAGAA				750

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1383 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1383
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146

ATGGCTAAGG AG	AAAACGAT	CTACGTCTGC	CGTTCGTGCG	GAACCAAATA	CGCCAAATGG	60
CAAGGCAACT GC	AATGCCTG	TGGAGAGTGG	AACTGCATTG	ATGAGGAGAA	GGTGCCGGCA	120
CCGGCATCGG GC	AAGCATGC	AGCCAAGAGT	TTTATGCCTC	GGGAGCAGGA	CAACCGGCCA	180
AGACTCTTAC AG	GATGTGGA	GTCCGGCGAT	GAAGAGCGTA	TTCGCCTCGG	CGATGAAGAG	240
TTCGACCGCG TA	CTGGGTGG	AGGAATTGTC	AAAGGAGCAT	TTGTCCTGCT	TGGCGGCGAG	300
CCGGGAATCG GT	AAGTCCAC	GCTTATCCTC	CAGACGGTGC	TGCGTCTGCC	GCAGTTGCGC	360
ACGCTCTATG TG	TCGGGCGA	AGAAAGTGCC	CGACAACTGA	AGATGCGCGC	CGAACGACTG	420
GGGCAAGCCA TG	AATGGGTG	CTACGTATAC	TGCGAAACGA	ATATAGAGAG	GATACTCTCC	480
CGTGCAGAAG AA	CTCACACC	CGATCTCCTC	GTGATAGACT	CTATACAGAC	GGTCTATACC	540
GAGGAAATGG AA	AGCTCGGC	CGGCAGCGTG	GGGCAGATCC	GCGAATGTGC	CGCCTTACTG	600
CTCAAATACT GC	AAGACTAC	GGGTATCCCC	GTCATCGTCA	TCGGACACAT	CACCAAAGAA	660
GGTAGCATAG CC	GGACCGAA	GGTGCTGGAG	CATATAGTGG	ATACGGTGCT	TCTCTTCGAC	720
GGGGATAAGC AT	CATCTCTA	CCGGATACTC	CGAGGACAGA	AGAACCGCTA	TGGCAGTACT	780
TCCGAGCTGG GG	ATATACGA	GATGCGGCAG	GACGGTCTGC	${\tt GTGGCGTGGA}$	GAATCCGAGC	840
GAACATCTCA TC	ACACGCAA	TAGGGAAGAC	CTCAGTGGCA	TAGCCATAGC	CGTAGCGATG	900
GAGGGCATTC GC	CCGATACT	CATCGAAGCG	CAGGCTTTGG	TCAGCTCGGC	CATTTATGCC	960
AATCCGCAGC GT	TCGGCCAC	GGGCTTCGAT	ATTCGGCGGA	TGAACATGCT	CTTAGCCGTA	1020
CTGGAGAAAC GT	GCCGGCTT	CAAGCTCATA	CAGAAGGATG	TGTTTCTGAA	CATTGCCGGA	1080
GGTATCAAAA TAG	GCCGATCC	GGCTACGGAT	CTGGCCGTTA	TCTCGGCAGT	GCTGGCGTCG	1140
AGTCTGGACA TC	GTTATCCC	GCCGGCCGTA	TGCATGACGG	GCGAGGTCGG	ACTCTCCGGA	1200
GAGATACGTC CC	GTGAGCCG	CATCGAGCAG	CGCATAACGG	AAGCGCGTCG	CATAGGGTTC	1260
AAAGAGATAT TG	GTACCGGC	${\tt CGATAATTTC}$	CGGCAGGAGG	ATGCCGGCCG	CTTCGGTATT	1320
CGGCTCGTGC CG	GTCAGAAA	GGTGGAGGAA	GCCTTCCGCC	ATCTGTTCTC	GAAAGGAAGA	1380
GAA						1383

- (2) INFORMATION FOR SEQ ID NO:147
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 813 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...813
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147

ATGAATAGCA	GACATCTGAC	AATCACAATC	ATTGCCGGCC	TCTCCCTCTT	TGTACTGACA	60
TTGGGCGGCT	GCTCCGTAGC	CCAACAAGAT	ACGCAGTGGA	CTCTCGGCGG	AAAGCTCTTT	120
ACTTCGGCGT	GGATACAACG	TTCGGCCGAA	TATCAAGCGC	TTTGCATTCA	GGCATACAAC	180
ATCGCTACGG	AAAGAGTGGA	CGCTCTACCG	GCAGAACGTA	AACAAGGAGA	TAGGCCTTAT	240
GCCATCGTAA	CGGACATAGA	CGAAACCATT	TTGGACAATA	CGCCTAACTC	CGTGTATCAG	300
GCTCTCAGGG	GCAAGGATTA	TGATGAAGAG	ACTTGGGGGA	AATGGTGTGC	ACAGGCCGAT	360
GCCGACACAC	TGGCAGGAGC	TTTGTCTTTC	TTCCTCCATG	CAGCGAACAA	GGGGATCGAG	420
GTCTTTTACG	TCACCAACCG	CAGAGACAAT	CTGCGCGAAG	CAACTCTTCA	GAACCTTCAG	480
CGTTACGGAT	TCCCCTTTGC	CGATGAAGAA	CATTTGCTTA	CGACCCATGG	GCCATCCGAC	540

AAAGAACCCC	GTCGGCTCAA	AATACAAGAA	CAGTATGAAA	TAGTATTGCT	CATAGGAGAC	600
AACTTGGGCG	ACTTCCACCA	CTTCTTCAAT	ACGAAAGAAG	AGTCCGGACG	CAAACAGGCT	660
CTGGGCCTGA	CAGCCGGGGA	GTTTGGCCGG	CACTTCATCA	TGCTGCCCAA	TCCCAACTAC	720
GGATCTTGGG	AACCGGCATG	GTACGGCGGG	AAGTATCCGC	CACTGCCCGA	AAGAGACAAA	780
GCACTTAAAC	AACTGCACTC	ACAGAACAGC	AGA			813

- (2) INFORMATION FOR SEQ ID NO:148
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1251 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1251
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148

7	ATGAGCACCA	ATATAGATGT	ACAACAGATC	AAACAGCGTT	TCGGCATCAT	CGGTAGCAGT	60
(CCGCTGATGG	AACATGCCAT	ACGAGTGGCA	GCACAGGTGG	CTCCTACCGA	CATGTCCGTC	120
(CTCGTGACGG	GGGAGAGCGG	TTCGGGGAAA	GAGTTCTTCC	CACAGATAAT	CCACTACTAC	180
7	AGCGCCCGGA	AACATCATAG	CTACATTGCA	GTCAATTGCG	GAGCCATCCC	CGAAGGAACC	240
2	ATCGATTCCG	AGCTGTTCGG	ACACCGCAAA	GGTTCCTTTA	CCGGAGCCGT	ATCGGATCGC	300
7	AAGGGGTACT	TCGAAGAAGC	ATCCGGCGGC	ACGATCTTTC	TGGACGAAGT	GGGCGAACTG	360
(CCTTTGCCCA	CGCAGGCGAG	GCTGCTGAGG	GTGCTGGAGA	CGGGCGAGTT	CATCCCCGTA	420
(GGAGCCAGCC	AGTCGCAGAA	GACGGATGTC	CGTATCGTAG	CGGCGACGAA	TGTGAACCTC	480
2	AAGGAGGCGG	TAGCGAACGG	GAAGTTCCGG	GAAGACCTCT	TCTTCCGGCT	CAATACGGTA	540
(CCGATCGAGG	TGCCTGCGCT	GCGTATGCGA	CCGGACGACG	TGCCCTTGCT	TTTTCGCCGA	600
•	TCGCCGCCG	ACAGCGCCGA	GAAGTATCGG	ATGCCTCCGC	TGCGCCTATC	GGACGAAGCC	660
(CGTACCATAT	TAATGCGTTA	CCGCTGGCCC	GGCAATGTGC	GAGAGCTGCG	CAATATAACC	720
(GACAGGCTGA	GCATCCTGGA	GGAGGAGCGG	ACGGTATCGG	CAGAGACCAT	CACTCGCTAC	780
(CTGGACGCTG	AGGGGATGCA	AGACCTCCAC	CCCGTCGTGA	TCCGACGGAA	CGAAACGACC	840
(GAAGCGGACA	AACAAATCCC	CCATTACGAG	CGCGAAATCA	TCTACCAGGT	GCTATACGAT	900
2	ATGAAGAAAG	AGATAGCCGA	TTTGAAGGGG	ATGATGAACC	${\tt GCCTGGCGCA}$	CCACGAACAG	960
(CCTCATGGC	CTGTAGGGTC	GGACGTCTGG	GGCAACGACG	ACAAGCGCAC	CGCAGATCCG	1020
Ī	AAGTGGGGCG	TCAGCACGCA	CAAGGCCCCC	ATCGCGAACG	CGGCAGAACC	CGTGGAGCCG	1080
Z	ATACAGGAAG	CCAGCGAATA	CACCGAGGAT	CCGGTTTCGC	TGGAGGAGGT	AGAGAAGAAA	1140
1	ATGATTTCCC	TTGCATTGGA	ACGCCACGGC	GGAAGGCGCA	AGCAGACAGC	CGAGGAACTG	1200
Z	AAGATTTCGG	AGCGGACACT	ATACCGTAAA	ATCAAGGAGT	ATGGACTGGA	A	1251

- (2) INFORMATION FOR SEQ ID NO:149
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1806 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1806
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149

GCGGGAAGTC	CGTTTTTCTA	CTCCACCAAA	GGCAATCTGC	AAGAGATCCA	GAGTAGCCAC	120
GGCCATCGTC	TGACAGGAGC	CATGACGGTT	GCCGACATGG	TTTCGTTTTG	TCGGAAAGAA	180
GAGATCCGAC	TGATCGTGGA	CGCCGCTCAT	CCTTTCGCCG	AAGAATTGCA	CGCTTCAGTG	240
GCAGAAGCCT	CTGAACAAAC	AGGTATCCCC	GTAGTAAGAT	ACGAGAGACA	ATACCCTCCA	300
CGCGAAGAAG	GTATCGTCTG	GTGTGCAAAC	TACGATACGG	CTGCCGAGCG	GATGCTTGGC	360
GATGGCGTGC	AGCGTCTGCT	GATGCTCACA	GGAGTGAATA	CGATCCCCAA	GCTGGCTGCT	420
TTCTGGAAAG	AGCGCACCAC	CTTTTGCCGC	ATATTGAAGC	GAGACGAATC	GGTTGCTTTG	480
GCAGAGAAGA	ACGGCTTTCC	TGCGGAGCGC	ATCGTTTTCT	TCGAACCGCA	TGCGGACGAG	540
GAGCTGATGC	AAGCCGTTCG	CCCCGATGCC	ATTATCACAA	AAGAAAGCGG	AGAGAGCGGT	600
TACTTCCGAG	AAAAGATAGA	AGCTGCCCGA	CGGATGGGCA	TCCGTATATA	TGCCGTCGTA	660
CGTCCCCCTT	TGCCTCCTTC	ATTCATTCCC	GTAGGCGGGC	CTGTCGGTTT	GAGACGGGCG	720
GTAGAACGCC	TCGTGCCGGG	ATTCTTTTCA	CTCCGAAGCG	GATTCACTAC	CGGCACCACA	780
GCTACCGCTG	CAGTAGTAGC	AGCCATGTAC	CGATTGATGG	GGCTTGGCTC	TCTCGCCGAA	840
GCTCCCGTAG	AATTGCCTTC	GGGCGAAATA	GTCAGTCTGC	CCATAGCGGA	AATTCGAGAG	900
GAAGAAGATG	CTGTCGTATC	CGCAGTCCTG	AAAGATGCAG	GTGATGATCC	GGATGTGACC	960
AATGGCATGG	CGGTATGCGC	TACGATCAGG	CTCAATCCCG	AACATGAGGA	AGTCCGCTTC	1020
CTGCAGGGTG	AAGGGGTGGG	GGTAGTGACG	CTCCCCGGCC	TCGGTCTGGA	GGTCGGAGGT	1080
CCGGCTATCA	ACCTCGTACC	TCGACGAATG	ATGACAGCAG	AGGTACGCCG	ACTCTATGCG	1140
CAGGGAGGTG	TGGATATTAC	GATTAGCGTA	CCCGAAGGCC	GAGAGGCTGC	TACCCAGACA	1200
TTCAATCCCC	GACTCGGCAT	ACGGGACGGC	ATCTCTATTA	TCGGAACATC	GGGAGTCGTG	1260
AAACCTTTTT	CGGCCGAAGC	GTTCGTTGGT	GCCATCCGTA	AGCAAGTGGG	TATTGCCACC	1320
GCCTTGGGAG	CCAATCATAT	CGTCCTCAAT	TCGGGAGCCA	AGAGTGAGCG	TTATGTAAAA	1380
			TTTGTGCAGT			1440
TCACTCAGTT	GTGTAGCTTC	CTTCCCTTCT	GTCCGTTCGG	TAACGGTAGG	AATCATGCTC	1500
GGCAAAGCAG	TGAAACTCGC	CGAAGGCTAT	CTGGATACGC	ACAGTAAAAA	GGTAGTGATG	1560
AATCGGGATT	TCCTGCACGA	ACTGGCTCGT	CAGGCAGGTT	GTTCGGAAGA	CATCCATGCC	1620
ATAATAGACA	GCCTGAATTT	GGCTCGTGAG	CTATGGACTA	TGCCGAGTGC	GGAGGACAGC	1680
			TCTTGGGAAA			1740
TCGGCCGAAT	TAGAACTCCT	GCTGATCGAT	GAGTCCGGAG	CGATTCGTTT	TCGTATCGGT	1800
GGAGAA						1806

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1329 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1329
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150

ATGTTGAGGA	CTTTCCGAAT	CGGTGGTATT	CACCCCCCG	AAAACAAGTT	GTCGGCAGGC	60
AAGCCCGTAG	AGGTGTTGCC	TATCCCCTCA	CAGGTAGTCA	TCCCTCTTGG	TCAGCACATC	120
GGTGCACCGG	CAACTGCCAC	GGTCAAGAAA	GGGGATGAAG	TTAAGGTCGG	GACTATCATT	180
GCTCAGGCCG	GAGGATTCGT	ATCAGCTAAT	ATCCACTCAT	CTGTGTCGGG	TAAGGTGCTG	240
AAGATCGATA	ACGTATACGA	CTCAAGCGGC	TATCCCAAGC	CCGCAGTCTT	CATTAGCGTA	300
GAAGGTGACG	AATGGGAAGA	GGGCATCGAT	CGCTCACCAG	CCATCGTCAA	AGAATGCAAT	360
CTGGATGCAA	AAGAAATCGT	AGCCAAAATT	TCTGCAGCCG	GTATTGTGGG	TCTTGGCGGT	420
GCTACCTTCC	CTACCCATGT	GAAGCTGTCC	CCTCCTCCGG	GCAACAAAGC	TGAGATCCTG	480
ATCATCAACG	CCGTAGAGTG	CGAGCCTTAT	CTGACGAGCG	ACCATGTCCT	TATGCTGGAG	540
CACGGCGAAG	AGATCATGAT	CGGCGTGAGT	ATCCTGATGA	AAGCCATTCA	GGTAAACAAG	600
GCCGTCATCG	GAGTTGAGAA	TAATAAGAAA	GATGCTATTG	CTCACCTCAC	CAAACTGGCC	660
ACTGCATATC	CGGGCATAGA	GGTAATGCCG	TTGAAGGTGC	AATATCCTCA	AGGCGGTGAG	720
AAGCAGCTGA	TCGATGCAGT	GATCCGCAAG	CAGGTAAAAA	GCGGTGCCTT	GCCTATCAGC	780
ACAGGTGCCG	TAGTACAAAA	CGTGGGTACG	GTATTCGCCG	TGTACGAAGC	AGTACAGAAG	840
AACAAGCCTC	TGGTCGAGCG	CATCGTGACG	GTTACAGGAA	AAAAACTGTC	TCGTCCGTCT	900
AACCTCCTCG	TTCGTATAGG	TACTCCTATT	GCGGCTTTGA	TCGAAGCAGC	AGGTGGCTTG	960
CCGGAGAATA	CGGGCAAGAT	CATCGGCGGA	GGTCCGATGA	TGGGACGCGC	TCTGCTGTCA	1020
CCGGATGTGC	CTGTGACCAA	AGGCAGCTCC	GGAGTATTGA	TTCTCGATAG	AGAAGAGGCA	1080
GTTCGCAAGC	CTATGCGCGA	CTGTATCCGA	TGCGCCAAGT	GCGTCGGAGT	GTGTCCGATG	1140
GGACTCAATC	CGGCTTTCCT	TATGCGCGAC	ACCTTATATA	AGAGCTGGGA	AACAGCGGAA	1200
AAAGGCAACG	TGGTTGACTG	TATCGAATGC	GGTTCGTGCA	GCTTCACCTG	TCCGGCCAAC	1260
CGTCCTCTGC	TGGATTATAT	CCGCCAAGCC	AAGAAGACTG	TGATGGGTAT	CCAAAGAGCA	1320

CGTAAGCAA 1329

(2) INFORMATION FOR SEQ ID NO:151

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1437 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1437
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151

ATGAAAAGAA TACAACTAAC TCTTATCGCT CTCTTCGCCG CTGTTGCCGG TTTGGTCGCT 60 CAAAATGCTT ACGAGGGAGT AATTTCATAT AAAATTTCGT TGGACAAAAC CGGAAACAAG 120 GTTGTACTGA ATGGTGCGGC AGATATGAGT AATTTAAAGC TCAAGAGCAC TCAGATGATC ATTGTTACGC CTATTCTTCG TTCAGAAGAT GGTACCAGCC GGGTGGAATT TCCTTCGGTA 240 GTCATTACAG GCCGCAATAG AACAAAAGCT CTCAAGCGTG AAATCGCATT TAGTTCGGCT 300 TTGCCCCAAG CAAAACATGC AGCTCAATAC ATTCGCCGTC ATAATGGGAA GAGCGAGCAG TTTGCTTTTA CAGGAGAACA TGCTTATGCA TCATGGATGA TGGATGCCAA GTTTGTGGTT 420 CGTGAGGAGG TACGAGGTTG TGCTAAATGC CCTGTAGGTC TCTCGAGTAA TATTGTTCCT 480 TTTGATCCAC TCTTCAATCC GGCAGAGGCT CCTTATTTGT TGGCACACAT TACTCCGGCA 540 GAAGAAGTGG AAAAACAGCG AGAGTCCAGC TTCGATGCTT ATATCAACTT CAAAGTCAAT 600 AAGGCAGATG TCCTTCCTGA GTATCGCAAC AATAAGGCGG AGTTAGAGAA AATCAAAGAA TTTGTAAGCA CCGTTAAGGC TAATCCAAAC TATTCGGTCA ATAAAATGAT CATCGAAGGG 720 TTTGCTTCTC CCGAGGCTTC AATAGCCCAC AATAAGGCTT TGTCGGAGCG CCGTGCTAAA 780 AGACTCGCGG AAGAATTGGT GCGTAAGTAT GGCAAAACAT TGCCGAATAT AACCACTGAA 840 TTCGGCGGTG AAGATTGGAA GGGGCTGAAA CTGGCTATCG AAAAGAGTGA TATAGCCGAT 900 CGTGACCGCG TATTGGAGAT AATCAACTCC GATAAATATG CCGATGATGA TGCACGTGAA CAGGCTCTGA AGCAACTTTC GTCTTATCGT TATATCTTGG ATCAGATCTA TCCGAATTTG 1020 CGTCGCAATA CGATAACCAT GGGGTATATC GTTCGTGATT ATACCCTCGA AGAAGCTCGT 1080 GAAATCATTA AGACTGCTCC GAAAGAACTT AGTGAGGCCG AAATGTACCG TGTGGCAATG 1140 TCTTATCCTG AGGGGCACCA AGAGCGTTTG TTTGCTCTGA ATACGACCCT TAAGTATTTC 1200 CCTGAAAGTG TAACGGGCCG AATCAATTTG GCTGTAGCCG CTTTTAATGG TGGAGACGTT 1260 CAACAGGCAA TTGCTCTGTT GAGTCCGATT CAGACAGAAA AGGGTGTAAG CAATATCCTT 1320 GGAGCTGCTT ATGCTCGTAC GGGAGATTTT GCTCGTGCCG AAACCTTCTT CCGTAAGGCC 1380 GTTGCAGAAG GAGATGCAAA TGCGCAGCGC AACCTCGATA TGCTGCTTGG CAAAAAG 1437

- (2) INFORMATION FOR SEQ ID NO:152
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1149 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1149
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:152

GACAAGGAGG	CCGAAGAGCA	CTTCAAAGAG	GTAGCTGAAG	CCTACGACGT	ATTGAGCGAT	180
CCGCAGAAGC	GCAGTCAATA	TGACCAGTTC	GGCCATGCCG	GATTGGGCGG	AGCTGCCGGT	240
${\tt GGAGGTTTCA}$	GCGGAGGCGG	TATGTCCATG	GAGGATATTT	TCAGTCGCTT	CGGTGATCTA	300
TTCGGTGGGT	TCGGCGGTTT	CGGCGGATTC	TCCGATATGG	GCGGTGGCAG	TCGCAGACGT	360
GTTCGCAGAG	GGTCTGACCT	GCGAGTACGA	GTGAAGCTTT	CTTTGGCCGA	TATAAGTAAA	420
GGTGTGGAGA	AGAAAGTGAA	GGTAAAAAAG	CAGGTAGTGT	GCAGCAAATG	TCGTGGCGAT	480
GGCACGGAAG	AAGCCAATGG	CAAGACTACC	TGCCAGACCT	GCCATGGAAC	CGGCGTGGTT	540
ACACGTGTGA	GCAACACTTT	CCTTGGGGCC	ATGCAGACCC	AGAGCACTTG	TCCCACTTGC	600
CACGGAGAGG	GTGAGATCAT	CACGAAGCCA	TGCTCCAAGT	GTAAGGGCGA	AGGTGTGGAG	660
ATCGGCGAAG	AGGTGATCTC	ATTCCACATC	CCTGCCGGTG	TAGCCGAAGG	AATGCAAATG	720
TCCGTGAACG	GCAAGGGAAA	TGCCGCGCCC	CGAGGAGGCG	TGAATGGCGA	CTTGATAGTC	780
GTGATCGCCG	AGGAACCGGA	TCCGAATCTG	ATCCGCAATG	GCAACGATCT	GATATACAAT	840
CTGCTTATAT	CCGTTCCGTT	GGCTATAAAA	GGAGGTAGTG	TGGAAGTGCC	GACGATAGAC	900
GGACGAGCCA	AGATCCGCAT	CGAGGCGGGG	ACACAACCCG	GCAAGATGCT	GCGTTTGCGC	960
AATAAGGGGT	TGCCCAGCGT	AAACGGCTAT	GGCATGGGAG	ACCAACTGGT	GAATGTCAAT	1020
GTCTATATCC	CCGAATCGAT	CGATGCCAAA	GATGAGCAGG	CTATCGCAGC	GATGGAAAAC	1080
TCGGACAGCT	TCAAACCTAC	CGATGCTGCT	CGTAAGGATA	TAGACAAGAA	ATACAGAGAG	1140
ATGCTGGAT						1149

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 879 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...879
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153

```
ATGAAAAAC TGATTTTAGC GACTTTGGGA CTTATGGCCA TTGCCATGCT CTCATGTTCA
AGCAACAACA AGGATTTGGA GAACAAAGGG GAGGCTACTC TTTTGGTAAC GTTTGGTAGC
                                                                      120
TCCTATAAAG CTCCACGCGA AACCTATGCG AAGATTGAGA AGACTTTTGC CGCAGCTTAT
                                                                      180
CCCGATCAAA GGATAAGCTG GACATACACG TCTTCTATTA TCCGAAAGAA ACTGGCTCAG
                                                                      240
CAGGGTATTT ATATCGATGC TCCGGATGAG GCTTTGGAGA AATTGGCTCG TCTGGGTTAT
                                                                      300
AAGAAGATCA ATGTACAGAG TCTTCATGTG ATTCCCGGCC GAGAATATGA TGAGATGATC
                                                                      360
GACTTTGTCA ATAAGTTTAA GGCAGCACAT AGTGATATTA CTGTGAAGGT AGGGGCTCCG
                                                                      420
CTTTTCGATA CCGATGAAGA TATGCGCGAG GTGGCAGAGA TCTTGCACAA GCGTTTTCAG
                                                                      480
CAAACGATAG AGAAAGGTGA AGCTATTGTA TTCATGGGAC ACGGCACCGA GCATGCTGCC
                                                                      540
AATGACAGGT ATGCCCGTAT CAATAAGATC ATGAAGAACT ATAGCAAGTT CATGATCGTC
                                                                      600
GGAACCGTCG AGTCCGATCC CTCTATCAAT GATGTTATTG CCGAACTGAA AGAAACCGGT
                                                                      660
GCCACGGCCG TAACAATGAT GCCGCTGATG AGTGTGGCAG GCGACCATGC TACGAATGAT
                                                                      720
ATGGCCGGAG ATGAGGACGA TAGCTGGAAG ACGTTGCTGA CCAATGCCGG CTACACAGTT
                                                                      780
TCTATAGACA AGCTGGACAA TGGCAATTTC TCAGCTCTTG GAGATATAGA AGAGATCCGG
                                                                      840
AATATCTGGC TCAAGCATAT GAAAGCCACC TCTGCTCGC
                                                                      879
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1068 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

(A) NAME/KEY: misc_feature

(B) LOCATION 1...1068

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154

ATGACATCCG TCAGCCACTT	ACGTACAATT	TCTGTCGCAG	GTATCCTGGC	TGCGCTGGGA	60
GGGGCTGTAC TCATTCTCTT	CGGGGTTAAT	CTCTTCCTCG	GCTCGGTGGC	TATTCCGATG	120
AGCGAGATCT TCCGACATCT	TTTTTCAGAT	CGTCCCGAAG	GAGGAGAAGC	ACTCGTGCAC	180
TACAATATCC TATGGAAATC	CCGCCTGCCC	GAAGCCCTCA	CGGCTGCTTT	TGCCGGCGCA	240
GGTTTATCCG TTAGTGGCTT	GCAGATGCAG	ACCGTCTTTC	GCAATCCTTT	GGCCGGTCCG	300
TCCGTTCTCG GCATCAGCTC	CGGTGCCAGT	TTGGGTGTTG	CTTTGGTCGT	TCTGCTGAGC	360
GGCTCGCTGG GAGGAGTGGC	ATTGAGTAGC	CTGGGTTATA	TGGGCGAGGT	GGCCATGAAT	420
ATAGCCGCTG CCGTAGGCTC	GCTGGCAGTA	ATGGGGCTGA	TCGTTTTTGT	CAGCACCAAG	480
GTGCGCAGCC ACGTTACGCT	GCTCATTATC	GGCGTTATGA	TCGGATATGT	AGCCACTGCC	540
GTCATCGGGG TATTCAAGTT	TTTCAGTATC	GAAGAAGATA	TTCGGGCATA	CGTAATTTGG	600
GGGTTGGGCA GCTTTTCCCG	TGCCACGGAT	TCGCAACTGA	GTTTCTTTGC	CATTCTGATG	660
TTGATCTTTA TTCCGGCCGG	TATGCTCCTT	GTCAAGCAGT	TGAATCTCTT	ATTGCTGGGA	720
GAAAGCTACG CACGTAATCT	GGGACTGAAT	ACTCGTCGGG	CACGGCTGCT	CGTGATCTCT	780
TCCGCCGGTT TGCTCATCGC	TACCGTCACG	GCCTATTGCG	GTCCCATCGG	CTTTTTGGGG	840
ATGGCTGTGC CACACTTGGC	ACGGGTTATC	TTTCACACAT	CGGATCATCG	GATCCTGATG	900
CCTGCTACCT GTTTGATTGG	AAGTGCTCTG	GCTCTTTTCT	GCAATATCAT	TGCTCGTATG	960
CCGGGGTTTG AGGGGGCTTT	GCCCGTCAAT	TCCGTAACGG	CTTTGGTGGG	AGCACCTATT	1020
ATCGTCACCG TTTTGTTCCG	GCGCAGACGC	TTCAAGGAAG	AAACCGAC		1068

(2) INFORMATION FOR SEQ ID NO:155

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2271 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

(A) NAME/KEY: misc_feature

(B) LOCATION 1...2271

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155

ATGCGGACAA	AAACTATCTT	TTTTGCGATT	ATCTCTTTTA	TTGCTCTATT	GTCGTCTTCT	60
CTGTCGGCTC	AGAGCAAAGC	CGTTTTAACC	GGTAGTGTGT	CGGATGCCGA	AACCGGAGAG	120
CCTCTTGCCG	GTGCTCGAAT	CGAAGTCAAA	CACACCAACA	TAGTAGCCGG	TGCCGATGCC	180
GGCGGACATT	TCGAGATCAA	GAACCTGCCG	GCAGGGCAGC	ATACTATTAT	ATGTTCGTTG	240
GGGGGGTATG	GACAGAAAGA	GGAGGTGGTT	GCCATCGAAG	CCGGACAGAC	CAAAACGATC	300
TCTTTTGCAT	TGCGACTGCG	AACGAACAAC	TTGGAGGAAG	TCGTCGTTAC	CGGTACCGGT	360
ACACGTTACC	GCTTGGTCGA	TGCTCCTGTG	GCAACGGAAG	TCCTTACCGC	TAAGGACATA	420
GCCTCTTTCT	CGGCTCCTAC	TTCCGAGGCC	TTATTGCAGG	GGCTGAGTCC	GTCTTTTGAC	480
TTCGGCCCCA	ATCTGATGGG	CTCTTTCATG	CAGCTGAACG	GCCTTAGCAG	TAAGTATATC	540
CTCATCCTTA	TCGATGGTAA	GCGTGTGTAC	GGCGATGTAG	GCGGTCAGGC	CGATTTGAGT	600
CGTATTTCTC	CTGATCAGAT	CGAACGGATC	GAACTGGTGA	AAGGTGCTTC	GAGTTCGCTC	660
TACGGATCCG	ATGCCATCGC	CGGGGTAATC	AATGTGATCA	CAAAAAAGAA	TACGAATCGA	720
CTGAGTGCAT	ATACGTCACA	TCGCATATCG	AAGTACAACG	ATCGGCAAAC	CAATACTTCG	780
CTCGATATAA	ACATCGGTAA	GTTCAGTAGC	AATACCAACT	ATTTCTTCTA	CCATACGGAT	840
GGCTGGCAGA	ATAGTCCGTT	CGAAATAAAA	AAGAAAAAG	GATCCGGCGA	ACCGGTCTTG	900
GAGGAAACGT	ATAAGAAAAC	TTTTCGTGCA	CAGGAAAATC	AGGGTGTAAG	CCAATCGCTT	960
TCCTATTATG	CAACTAACAA	TCTTAGCTTC	AGCGGAAATG	TGCAGTACAA	TAAACGTCAG	1020
ATCTTCACTC	CGACTTTTTC	CGAAAAGAAG	GCCTATGACA	TGGATTATCG	TGCTTTGACG	1080
GCTTCACTCG	GTACGAACTA	TCTTTTCCCC	AATGGTCTGC	ATACGCTTTC	TTTCGATGCC	1140
GTCTACGATC	GCTTCCGTTT	CGGATATTTG	TATCATGACA	AGGACAGCAG	TGAGAGCCTG	1200
ATCAACAACC	AAGGTCAGAC	CGAGCAACCC	ACATTCTTTC	CGGGTCAGCT	ACGCAATAAA	1260
AACGATCAGA	TCCGATACAC	GGCAGAGGCT	CGCGGTGTAT	TTACACTGCC	TTATGCGCAG	1320
AAACTGACCG	GCGGTTTGGA	GTATTTCCGT	GAGGAATTGA	TCTCTCCCTA	TAATTTGATT	1380
ACCGACAAGG	CAGATGCTTC	CACGCTCTCT	GCTTATGTAC	AAGATGAATG	GAAACCGCTC	1440
GATTGGTTCA	ATATGACAGC	CGGTTTCCGT	CTGGTACACC	ATCAGGAGTT	CGGTACACGA	1500
ATGACGCCTA	AGGTATCCAT	ACTCGCCAAG	TATGGGCCGC	TGAACTTCCG	CGCTACGTAT	1560
GCTAACGGCT	ATAAGACTCC	CACGCTGAAA	GAGCTTTTTG	CACGGAACGA	ACTCACCACT	1620
ATGGGTTCGC	ACAATCTCTA	TCTCGGCAAT	GCGGATCTTA	AGCCACAGAT	GTCGGATTAT	1680

TATGCTTTGG	GCTTGGAGTA	CAATCAAGGC	CCTATCTCGT	TCAGTGCAAC	GGTTTATGAC	1740
AATGAACTTC	GCAATCTGAT	CTCCTTTATG	GATATACCGA	CCTCACCCGA	GCACGAAGCT	1800
CAGGGAATCA	AGAAAACCAA	GCAGTATGCC	AACATAGGAA	AAGCTCGCAG	CCGCGGCCTT	1860
GATGTCCTAT	GTGATGCCTC	TATCGGTTGG	GGTATCAAGT	TAGGAGCCGG	ATACAGCCTC	1920
GTGGAAGCTA	AGAATCTCCA	GACGGATGAG	TGGCTGGAAG	GAGCTGCACG	TCATCGTGCC	1980
AATGTGCACG	CCGATTGGGT	TCACTACTGG	GGTCAGTATA	GACTTGGCGT	GAGCCTTTTC	2040
GGCCGTATTC	AGAGCGAGCG	TTACTACAAA	GACGGCAATG	CTCCGGACTA	TACCTTGTGG	2100
CGACTCGCCA	CATCGCATCG	TTTCGCTCAT	TTCCGCCACA	TCATCCTGGA	TGGAACGCTC	2160
GGTATAGACA	ACCTGTTTGA	CTACGTGGAT	GATCGTCCTA	TGGGTGTCAA	TTATGCTACC	2220
GTAACGCCGG	GACGTACTTT	CTTTGCTCAA	ATAGCGATTC	GATTCAACAA	C	2271

- (2) INFORMATION FOR SEQ ID NO:156
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 993 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...993
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156

ATGACGGACA	ACAAACAACG	TAATATCGTA	TTCCCGGCGT	TTCTCCTCTT	GCTGGGAGTC	60
ATCGCAGTGG	TGACGATCGT	TGGTTTTTTC	ATGCTCAGAC	CGGCCGAGGA	GATTATCCAA	120
GGACAGATAG	AAGTGACCGA	ATACCGAGTG	TCCAGCAAAG	TGCCCGGGCG	CATCAAGGAA	180
CTTAGGGTAT	CCGAGGGACA	GCAGGTGCAG	GCCGGCGATA	CCCTCGCTGT	CATCGAAGCC	240
CCCGACGTAG	CGGCTAAGAT	GGAGCAGGCA	AAGGCTGCCG	AAGCAGCTGC	ACAGGCTCAG	300
AACGCCAAGG	CTCTCAAAGG	AGCACGCAGC	GAACAGATAC	AGGCAGCCTA	TGAGATGTGG	360
CAGAAAGCTC	AGGCCGGCGT	AGCCATAGCG	ACCAAGACAC	ACCAGCGCGT	GCAGAACCTC	420
TATGACCAGG	GAGTGGTACC	GGCTCAGAAG	TTGGACGAAG	CCACTGCCCA	GCGCGATGCG	480
GCCATCGCTA	CGCAAAAAGC	GGCCGAAGCC	CAGTACAATA	TGGCTCGCAA	CGGTGCCGAA	540
CGCGAAGACA	AGCTGGCAGC	TTCTGCCCTC	GTCGATAGAG	CGAGAGGAGC	CGTCGCCGAG	600
GTGGAGTCGT	ACATCAACGA	AACCTACCTC	ATCGCCCCAC	GGGCAGGCGA	AGTGTCGGAG	660
ATATTCCCCA	AAGCCGGCGA	ACTCGTAGGT	ACCGGCGCAC	CTATCATGAA	TATCGCCGAG	720
ATGGGCGATA	TGTGGGCCAG	CTTTGCCGTT	CGTGAGGATT	TCCTCAGCAG	CATGACCATG	780
GGAGCCGTTC	TGGAGACTGT	GGTGCCGGCT	CTGAATGAAG	AAAAAGTACG	CTTCAAGATC	840
ACATTCATCA	AGAACATGGG	TACCTATGCT	GCCTGGAAAG	CGACCAAGAC	AACAGGGCAG	900
TACGACCTGA	AGACCTTCGA	GGTAAAGGCC	ACCCTTGCGG	ATAAAGACAA	GGCACAAAAG	960
CTACGCCCGG	GTATGTCCGT	GATCATACGC	AAG			993

- (2) INFORMATION FOR SEQ ID NO:157
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 801 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...801
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157

ATGCGTATTG	TCAGTAATTT	TTTGTTCGTC	TCTTTTTCGG	TTTTGCTTTT	TGCATCATGC	60
	GAGAAAAGGT					120
	CATATGACGT					180
AGTAGAGACC	CGGAGCTTTC	AACGCCCTAC	AACCAAGTGT	TGACCACTCG	TGCACTGGCC	240
CGCAACGGCT	ATGGAACGAA	CTCGAACGAA	GGCTTCCTGG	TCGATTCGAA	AGGGTACATC	300
AATTATCCTA	TTTTAGGCCA	GATCTATGTA	GAGGGCCTTA	CTCGTACCGA	ACTGGAGAAG	360
GAGATACAGA	AGAGGATTAT	TTCCAGTGGA	TTTATCAAGG	ATCCTACGGT	AACGGTGCAG	420
CTTCAAAATT	TCAAGGTGTC	GGTTTTGGGA	GAGGTGAATC	ATCCGGGTTC	GATGTCGGTA	480
AAAGGAGAGC	GAATAACTCT	TTTGGAAGCG	ATCGGAATGG	CCGGAGACCT	GACAATCTAT	540
GGTCGCCGCG	ATCGGGTTTT	TGTGATTAGA	GAAACCGATG	GGCATCGCGA	GGTTTTCCAG	600
ACGGATCTCA	GAAAGGCCGA	CTTGCTCGCA	AGCCCCGTGT	ACTATCTGCA	TCAGAACGAC	660
GTCATCTATG	TGGAGCCGAA	CGACAAGAAA	ACACAGATGA	GCGAGATCAA	CCAGAATAAT	720
AACGTAAACG	TATGGCTGAG	TGTTACCTCC	ACTTTGGTAT	CCATTTCCAC	GCTGACGATT	780
ACGATAATAG	ATAAGACCAA	A				801

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1707 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1707
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158

ATGAAAAAGA	CCAATCTGTT	TTTATCTCTG	CTGGTGATCT	TTATCACCGG	TAGTTTTATG	60
ACTGCCTGTG	CACAGAAGTC	CAAGACGAAC	AAACTCACCG	AAGAAGATCG	GAGCCGCAAT	120
GAGTATGTAC	AGTCGATGGA	TGTGCTTAGC	AATATTATCG	GTAACGTCAG	GCTGTATTTC	180
	TAAGTATCAA				GTTGGGCGGG	240
CTTGACCCCT	ATACCGAATA	CATTCCTTAC	GAGGAAATGG	ATGAACTGAA	ATTGATGACT	300
ACGGGAGAGT	ATGCCGGAGT	CGGAGCTATC	ATATCGCAGC	GCCCGGATAG	TGCTGTGATT	360
			GACGAAGCAG			420
ATCCTGACTA	TCGATGGGAA	AGACTTCCGC	AAATCCACCA	CACCGAAAGT	AAGCCAAGCA	480
CTGAAAGGGA	TAGCCGGTAC	TGTTGCAAAG	GTGACAGTAA	TGCGCTATGG	CGAAACCAAA	540
CCTCGTACTT			GTGATTATGA			600
ATGCTCGATG	GCTCGATAGG	ATATATCCGC	TTGAACAACT	TTACGGACAA	AAGTGCAGAA	660
GAGGTGCGCA	CGGCCTTGTT	GGATCTTCGT	GACAAACAAG	GAGCGAAAGG	TCTCATTTTG	720
GATTTAAGAG	GCAATGGTGG	CGGACTGATG	CAGGCTGCTA	TCGAGATAGT	CAATCTGTTC	780
GTCCCTAAGG	GCAAAGAGGT	GGTAACGACC	AAAGGTCGCA	TTGCAGAGTC	GGCGTCCGTA	840
TTTCGCACAT	TGACTGAACC					900
CAATCGGCAT			GGAGCACTGC			960
	AAAAGAGCTA					1020
AACGGCGTGA	TCAAATTGAC	TACGGCCAAG	TACTACATCC	CAAGCGGACG	TTGTATTCAG	1080
CGTTTGGACT	ACAGCCGCAC	CAATCGGACA	GGTATGGCAA	CGGCCATTCC	TGACAGTCTG	1140
CACAAAATCT			CGTGTAGAAG			1200
GACATCGAGG			ACATTACTTT			1260
	ATTTCGTCAC					1320
GATTTTTCCA	TAACGAACGA	GGACTATGCA	GCTTTCTGCA	AGATGATGGA	AGAAAAGAAA	1380
TTTGACTATG						1440
GAAGGCTACC	TGCCGGAAGC	CAACTCGGAG	CTTAAAGCAC	TACGCGAAAA	GCTAAAACCC	1500
	GTGATCTGCT					1560
	GCTATTATTA					1620
GTAGTCAAAG	AAGCTATTAA	GCTGCTGAAG	GACCATCCGG	AACAAATTCG	ACAGATCCTT	1680
GCAGCTCCGA	AAGCAGAGAA	TAAAGGG				1707

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2943 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: circular

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2943
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159

ATGCAAAACA	AAGGATTTGT	GATTGTTATC	ACATCGGCTC	TGGCCATCAT	CTGTGCGTTT	60
TACCTGTCAT	TCTCTTTCGT	TACGAACCGT	TACGAAAAGA	AGGCTAAGGC	GATGGGCGAT	120
GTTGCCGGAA	TGGCCTATCT	TGATTCCATG	TCGAATGAGA	AGGTCTGGTT	CGGCTACACG	180
CTGAAAGAAG	CTCAAGCCCA	GCAAATTGGT	CTTGGCCTTG	ACTTAAAGGG	GGGTATGAAC	240
GTTATCTTGA	AACTTAACGC	AAGCGATCTG	CTTCGTAACC	TCTCTAACAA	AAGTTTGGAT	300
CCCAACTTCA	ACAAAGCTCT	GGAGAATGCT	GCCAAGAGCA	CGGAGCAATC	CGACTTCATC	360
GATATTTTCG	TGAAGGAATA	TCGCAAGCTC	GATCCCAACG	GTCGCTTGGC	CGTTATCTTC	420
GGTTCGGGTG	ACCTTCGCGA	CCAGATTACC	GCAAAGTCTA	CGGATGCAGA	CGTAGTGCGT	480
CTGCTCAAAG	AAAAATATAA	TAGTGCTGTA	GAAGCTTCGT	TCAATGTGCT	CCGTGCTCGT	540
ATCGATGCTT	TCGGTGTGGT	TGCACCTAAT	TTGCAGCGAT	TGGAAGGGCA	AGGGCGTATC	600
CTTGTCGAAC	TCCCCGGAGT	GAAAGACCCT	GAGCGTGTTC	GTACCCTTTT	GCAACGCAGT	660
GCCAACCTAC	AGTTCTGGCG	TACATACAAA	TTCGAAGAGG	TCAGCGGAGA	CTTGATCGCT	720
GCCAATGATC	GTCTGAGCGA	ATTGGCTATG	AACAACACGG	ATGCTACCCC	GGAAACAGAG	780
CCTGCAACTA	CTGACTCTGT	AGCTGCAACA	GCCGATTCTG	CTGCTGTACA	AGCTGTAGCT	840
GATTCTGCTA	CTGTAGCACA	AAAAGAGGCC	AAGGATGCTA	CTCGTAAAGA	CGCACTCTTC	900
TCTCTGCTTA	CTCCCGTGAA	TCGTGGCGGT	GCAGTAGTGG	GTGTGGCTCG	TCGTGCTAAT	960
ATGGCTCAGA	TATCTGAAAT	GCTCCAGCAA	GCTCACGATC	TGAAGGTTAC	ACGTGAAGAT	1020
			GAAGACCCCG			1080
CTCTACGAAC	TCTATGCTAT	TCGTACCAAT	CGTACGGGAG	ATCCTGATTT	GGGAGGTGAT	1140
GTAGTGACTT	CCGCCAAGAG	TGATATCCAA	AATGACTTCG	GTCGTTCCGA	ACCGATCGTT	1200
			AAATGGGCGC			1260
GGACGGGCAA	TCGCTATCGT	TTTGGATGGT	GTGGTTTATT	CTGCTCCGAA	CGTGAATGAT	1320
			GGGCACTTCA			1380
CTTGCCAACG	TACTCAACTC	CGGTAAAATG	GATGCTACGG	TAAGCATCGA	ACAGGAAAAC	1440
GTGATTGGTC	CTACGCTGGG	TGCCGAGTCC	ATTAAAGCCG	GATTCTTGTC	GTTCCTGCTC	1500
			CTGGCTTACG			1560
			TTCACATTGG			1620
			TTGGTGCTGA			1680
			GAAGAGCTTC			1740
CGTGCCGTTA	CGGATGGTTA	TGGCAACGCT	TTCTCTGCCA	TCTTCGACTC	GAACGTTACG	1800
ACTATTATTA	CCGGTATCAT	CCTATTCCTC	TACGGGACGG	GGCCGATTCG	CGGTTTTGCC	1860
			TTCATTACGG			1920
			TTGGATAAGA			1980
			AACATCTTGG			2040
			CTTATAGCTT			2100
			TACGTAGTTA			2160
TCCGAAGCCG	TTCGTTCGGC	CTTGTCTTCT	CCCCTGCAGG	AAAAGGTATT	GGTTACCTCC	2220
			TCTACGAACT			2280
			TTGTATCAGA			2340
CAGCAGCCTA	CTGCTGATCA	GTTCTTGGAC	AATATCATTA	GCTCTCAGAA	AGTAAGTCCC	2400
AGTATGTCGA	GTGACATCAC	GAGAGGTGCT	ATTTGGGCTG	TGCTGTTATC	GATGATCTTC	2460
ATGGCCATTT	ATATTCTGAT	TCGCTTCCGT	GACATTTCTT	TCTCTGCCGG	GGTATTCGTA	2520
TCTGTGGCCG	CTACTACATT	CTGCATTATT	GCTCTGTATG	CGTTGCTGTG	GAAGATTCTG	2580
			ATCGCTGCTA			2640
			CGTATCCGAG			2700
			GCCCTTAATT			2760
			TTGGTAATCT			2820
			GGTATCGTTA			2880
			CAAAAGCGCA			2940
AAA						2943

- (2) INFORMATION FOR SEQ ID NO:160
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3051 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...3051
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160

ATGAAAAGAA	TGACGCTATT	CTTCCTTTGC	${\tt TTGCTGACGA}$	GCATTGGGTG	GGCTATGGCC	60
			TCCTCCGAGG			120
GCGAATGTCG	TGGTTGTCGG	AAACACCACT	ATCGGTGCTG	CAACCGACTT	GGATGGCAAC	180
TTCACGCTTA	GCGTGCCTGC	CAATGCCAAA	ATGTTGAGAG	TGTCCTATTC	CGGTATGACT	240
			AAGATCGTAC			300
			ACGGGACAGA			360
			GCGGAAAAGC			420
			GTTATGACTA			480
GTCGCTTCTG	TGGAGATCCA	TGGTACAGGG	${\tt TCGTTGGGGG}$	CAAGCTCTGC	ACCATTGTAT	540
			${\tt GTTGTGGCTA}$			600
GAATCTATGT	CCGTTTTGAA	AGATGCTTCT	GCAACATCTA	TTTATGGAGC	TCGTGCTGCA	660
AACGGAGTCG	TTTTCATTCA	AACGAAGAAA	${\tt GGTAAAATGA}$	GCGAGAGAGG	TCGTATTACC	720
			${\tt CTGAATACTA}$			780
			AAGGCAGGTT			840
			GGAGCTGAAG			900
TCTTTGAAAG	ATGAGTATGG	TAAGACATTG	TTCCCAGTGG	ATTTTAATCA	TGATGCAGAC	960
TGGCTCAAGG	CTTTGTTTAA	AACAGCACCC	ACCAGTCAAG	GTGATATTTC	TTTCTCCGGA	1020
GGGTCTCAGG	GAACTTCATA	TTATGCCTCT	ATAGGCTACT	TCGATCAGGA	AGGTATGGCT	1080
CGTGAACCGG	CAAATTTTAA	GCGCTATAGT	GGCCGGCTCA	ACTTCGAAAG	TCGTATCAAT	1140
GAATGGCTGA	AAGTTGGTGC	AAATTTGTCT	GGTGCGATAG	CGAATAGACG	ATCTGCCGAC	1200
TATTTTGGAA	AGTATTATAT	GGGGTCAGGT	ACTTTCGGTG	TGTTAACGAT	GCCTCGTTAT	1260
TATAACCCTT	TTGATGTGAA	TGGGGATTTA	GCAGATGTCT	ATTACATGTA	TGGAGCTACC	1320
AGACCTTCTA	TGACAGAACC	GTACTTCGCA	AAAATGAGAC	CGTTCAGTTC	CGAATCACAT	1380
CAGGCCAATG	TAAATGGTTT	CGCCCAGATT	ACTCCGATCA	AAGGCCTTAC	TTTAAAGGCA	1440
CAGGCTGGTG	TTGATATTAC	TAATACTCGC	ACTTCTTCTA	AGAGAATGCC	CAATAATCCG	1500
TATGATTCTA	CTCCTCTTGG	GGAAAGAAGA	GAAAGAGCTT	ATCGAGATGT	TAGCAAGTCT	1560
TTTACAAATA	CGGCTGAATA	TAAGTTTTCA	ATTGATGAAA	AACATGATCT	TACAGCATTG	1620
ATGGGGCATG	AATATATTGA	ATATGAAGGG	GATGTTATTG	GGGCATCTTC	TAAAGGATTT	1680
GAAAGTGATA	AGTTGATGTT	ACTGAGCCAG	GGAAAAACCG	GAAATAGTTT	GTCTTTGCCT	1740
GAACACAGAG	TCGCTGAATA	TGCCTATTTG	TCTTTCTTTA	GTCGTTTTAA	TTACGGTTTT	1800
GACAAATGGA	TGTATATAGA	TTTCTCTGTT	CGTAATGACC	AATCCTCTCG	ATTCGGATCC	1860
AATAATAGAA	GCGCGTGGTT	CTATTCTGTC	GGTGGAATGT	TTGACATATA	TAATAAATTC	1920
			CGACTGAAAA			1980
AACTCGGAGA	TTGGTAATTA	CAACCACCAA	GCACTCGTTA	CTGTGAACAA	TTATACTGAA	2040
GATGCTATGG	GGCTTAGCAT	TTCTACAGCA	GGCAATCCCG	ACCTCTCGTG	GGAAAAGCAG	2100
TCTCAGTTCA	ACTTCGGTTT	GGCTGCAGGG	GCTTTCAATA	ATCGCTTATC	TGCAGAGGTA	2160
GATTTCTATG	TCCGCACTAC	GAATGATATG	TTGATTGATG	TCCCGATGCC	TTATATCAGT	2220
GGTTTCTTCT	CACAGTATCA	GAATGTAGGC	TCTATGAAAA	ATACGGGTGT	AGACCTTTCT	2280
CTTAAGGGGA	CGATCTACCA	AAATAAGGAC	TGGAATGTAT	ATGCTTCTGC	GAATTTCAAC	2340
TACAATAGAC	AGGAAATAAC	AAAGCTTTTC	TTCGGTCTCA	ATAAGTACAT	GTTGCCTAAT	2400
ACCGGTACTA	TATGGGAAAT	TGGGTACCCC	AATTCGTTCT	ATATGGCTGA	ATATGCTGGA	2460
ATCGACAAAA	AAACCGGTAA	GCAGTTGTGG	TATGTTCCTG	GTCAAGTCGA	TGCGGATGGT	2520
AATAAAGTTA	CAACAAGCCA	GTACTCAGCT	GACTTGGAGA	CACGAATTGA	TAAGTCTGTT	2580
ACTCCTCCTA	TTACAGGTGG	TTTCTCCTTA	GGTGCTTCTT	GGAAAGGACT	TTCTTTAGAT	2640
GCTGATTTTG	CCTACATCGT	TGGTAAATGG	ATGATCAATA	ATGACCGTTA	CTTTACAGAG	2700
AATGCAGGTG	GATTGATGCA	ATTAAATAAA	GATAAAATGC	TATTGAATGC	CTGGACAGAG	2760
GATAATAAAG	AAACAGATGT	TCCAAAATTG	GGACAGTCTC	CTCAGTTTGA	TACGCATTTG	2820
TTGGAGAATG	CTTCTTTCCT	GCGTTTGAAG	AATCTCAAAC	TCACCTATGT	ACTCCCCAAT	2880
AGTCTTTTTG	CTGGGCAGAA	TGTGATTGGT	GGAGCTCGTG	TCTATTTGAT	GGCGCGCAAT	2940
			GACCCTGAAG			3000
AATCAATATC	CTAATTCTAA	GCAGTACGTT	GCGGGTATTC	AGTTGTCTTT	C	3051

- (2) INFORMATION FOR SEQ ID NO:161
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3042 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...3042
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161

		CTTGCTGACG				60
		CTCCTCCGAG				120
		TATCGGTGCT				180
		AATGTTGAGA				240
		GAAGATCGTA				300
		TACGGGACAG				360
AAAGTGTCCA	GCGAAAAGCT	CGCGGAAAAG	CCCGTTGCCA	ATATCATGGA	TGCCCTCCAA	420
		GGTTATGACT				480
		$\tt GTCGTTGGGG$				540
		TGTTGTGGCT				600
TCCGTTTTGA	AAGATGCTTC	TGCAACATCT	ATTTATGGAG	CTCGTGCTGC	AAACGGAGTC	660
		AGGTAAAATG				720
AGTTACGGGA	TTTCTCAAAT	CCTGAATACT	AAGCCCCTTG	ATAATATGAT	GACTGGAGAT	780
GAATTGCTGG	ATTTTCAGGT	GAAGGCAGGT	TTTTGGGGGA	ACAATCAAAC	CGTTCAGAAG	840
GTTAAAGATA	TGATCCTTGC	CGGAGCTGAA	GATTTGTATG	GCAATTATGA	TTCTTTGAAA	900
GATGAGTATG	GTAAGACATT	GTTCCCAGTG	GATTTTAATC	ATGATGCAGA	CTGGCTCAAG	960
GCTTTGTTTA	AAACAGCACC	CACCAGTCAA	GGTGATATTT	CTTTCTCCGG	AGGGTCTCAG	1020
GGAACTTCAT	ATTATGCCTC	TATAGGCTAC	TTCGATCAGG	AAGGTATGGC	TCGTGAACCG	1080
		TGGCCGGCTC				1140
AAAGTTGGTG	CAAATTTGTC	TGGTGCGATA	GCGAATAGAC	GATCTGCCGA	CTATTTTGGA	1200
AAGTATTATA	TGGGGTCAGG	TACTTTCGGT	GTGTTAACGA	TGCCTCGTTA	TTATAACCCT	1260
TTTGATGTGA	ATGGGGATTT	AGCAGATGTC	TATTACATGT	ATGGAGCTAC	CAGACCTTCT	1320
ATGACAGAAC	CGTACTTCGC	AAAAATGAGA	CCGTTCAGTT	CCGAATCACA	TCAGGCCAAT	1380
GTAAATGGTT	TCGCCCAGAT	TACTCCGATC	AAAGGCCTTA	CTTTAAAGGC	ACAGGCTGGT	1440
GTTGATATTA	CTAATACTCG	CACTTCTTCT	AAGAGAATGC	CCAATAATCC	GTATGATTCT	1500
ACTCCTCTTG	GGGAAAGAAG	AGAAAGAGCT	TATCGAGATG	TTAGCAAGTC	TTTTACAAAT	1560
		AATTGATGAA				1620
GAATATATTG	AATATGAAGG	GGATGTTATT	GGGGCATCTT	CTAAAGGATT	TGAAAGTGAT	1680
		GGGAAAAACC				1740
GTCGCTGAAT	ATGCCTATTT	GTCTTTCTTT	AGTCGTTTTA	ATTACGGTTT	TGACAAATGG	1800
ATGTATATAG	ATTTCTCTGT	TCGTAATGAC	CAATCCTCTC	GATTCGGATC	CAATAATAGA	1860
		CGGTGGAATG				1920
		TCGACTGAAA				1980
ATTGGTAATT	ACAACCACCA	AGCACTCGTT	ACTGTGAACA	ATTATACTGA	AGATGCTATG	2040
GGGCTTAGCA	TTTCTACAGC	AGGCAATCCC	GACCTCTCGT	GGGAAAAGCA	GTCTCAGTTC	2100
AACTTCGGTT	TGGCTGCAGG	GGCTTTCAAT	AATCGCTTAT	CTGCAGAGGT	AGATTTCTAT	2160
GTCCGCACTA	CGAATGATAT	GTTGATTGAT	GTCCCGATGC	CTTATATCAG	TGGTTTCTTC	2220
TCACAGTATC	AGAATGTAGG	CTCTATGAAA	AATACGGGTG	TAGACCTTTC	TCTTAAGGGG	2280
ACGATCTACC	AAAATAAGGA	CTGGAATGTA	TATGCTTCTG	CGAATTTCAA	CTACAATAGA	2340
CAGGAAATAA	CAAAGCTTTT	CTTCGGTCTC	AATAAGTACA	TGTTGCCTAA	TACCGGTACT	2400
ATATGGGAAA	TTGGGTACCC	CAATTCGTTC	TATATGGCTG	AATATGCTGG	AATCGACAAA	2460
		GTATGTTCCT				2520
ACAACAAGCC	AGTACTCAGC	TGACTTGGAG	ACACGAATTG	ATAAGTCTGT	TACTCCTCCT	2580
ATTACAGGTG	GTTTCTCCTT	AGGTGCTTCT	TGGAAAGGAC	TTTCTTTAGA	TGCTGATTTT	2640
		GATGATCAAT				2700
		AGATAAAATG				2760
GAAACAGATG	TTCCAAAATT	GGGACAGTCT	CCTCAGTTTG	ATACGCATTT	GTTGGAGAAT	2820
		GAATCTCAAA				2880
GCTGGGCAGA	ATGTGATTGG	TGGAGCTCGT	GTCTATTTGA	TGGCGCGCAA	TCTGTTAACT	2940
		TGACCCTGAA				3000
CCTAATTCTA	AGCAGTACGT	TGCGGGTATT	CAGTTGTCTT	TC		3042

- (2) INFORMATION FOR SEQ ID NO:162
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2463 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2463
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162

ATGAAGAAA AGAATTTTT GCTTCTGCC ATTTCGTTG CTTTGCTGC TTTCATCGGC AGCATGCAGG CACAACAGGC CAAAGATTAT TTCAACTTTG ACGACCGGG CGAGGCCTAC 120 TCTCTCATTCA AAGTGCCTGA TAGGGCCGTT CTACAAGAGC TTGCCTCTAAT CATGTCCATC 180 GACGAGTTTG ACCCCGTAAC CAATGAAGCC ATTGCCTATG CCAGCGAGAG GGAGTTCGAG 240 GCATTCCTGC GCTATGGGCT CAAGCCTACA TTCTTGACTC CTCCATCCAT GCAGCGCGCT 300 GTCGAGAGTTT TCAGCATGAC CAAGCACAAA AAATACGAAT GGAATGCTATA CCCCACCTAT 360 GAAGCCTATA TCAGCATGAT GGAAGAGTTC CAAACAAAGT ATCCATCACT TTGTACTACT 420 TCCGTCATTG GCAAGTCCGT AAAGGATCGT AAACTGATGA TTTTGCAAGCT GACGATCCAT 480 GCCAATACAG GGAAAAAGCC TCGCGTGCTC TATACTTCTA CGATGACGA GACGAAACG 540 ACCGGATATA AGAACATTCT GGATAAAACG GAACTATGCA CGAATCCGAT CAAGCACACC GTACAAGAG TCTTCGCCTAT GACCAATCCG 660 CCGAGGATTA AGAACATTCT GGATAAAACG GAAGTATGGA CTACCTCCTT GACCAATCCG 660 ACGGGAGCAT ACAGAGCCG AAACCACACC GTACAAGAG CTACTCGCTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTTCAAGGAT GATGTAGCCG GTGATCACCC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAAC TGCATTCATG GATTTGGAAC TACATCCC CGATGGAAAA 900 AGACATGCAG ACGATGAGT GACCATCACC CATGGAACA TAAAAAAGA 900 AGACATGCAG ACGATGAGT GACCATCCCAA ACCAATCCG GAACCACCC CTTCCAAGAAC CCTTTCCAGGAT TAAAAAAAGAA 900 AGACATGCAG ACGATGAGT GACCACCCC ACCAATCCC AATGCCAAC CCTTCCAACTCAAC ACCACCCC CACCTACA ACCACCCC TTTCCATCCC CGCTTCCAAC ACCACCCC ACCACCCC AACCACCCC CTTCAAGACC CCTTCCACAC CCTTCCACAC CCTTCCACAC CCTTCCACAC ACCACCCC CTTCCACAC CCTTCCACAC ACCACCC CCTTCCACAC CCTTCCACAC CCTTCCACAC ACCACCC CCTTCCACAC ACCACCC CCTTCCACAC ACCACCC CCTTCCACAC ACCACCC CCTCCACCTAC ACCACCC CCTCCACCTAC ACCACCC CCTCCACCTAC ACCACCC CCTCCACCTAC ACCACCC CCTCCACCTAC ACCACCC CCTCCACCT
TTCTCATTCA AAGTGCCTGA TAGGGCCGTT CTACAAGAGC TGGCTCTGAT CATGTCCATC GACGAGTTTG ACCCCGTAAC CAATGAAGCC ATTGCCTATG CCAGCGAAGA GAGTTCGAG CAATGCAGCGCGCT TTCTGAGCTC CTCCATCCAT GCAGCGCGCT GCAGCGAGTT TCGACTACA TTCTTGACTC CTCCATCCAT GCAGCGCGCT GCAGCCTATA TCCAGCATCAT TAAACTGATGA TTTTGCAAGCT TTGTACTACT 420 TCCAGTCATG GGAAACAAGC TCGCGTCCT TATACTTCTA CGATGCACG AGACGAAACG ACCGGATATCA GGAACAAACG ACCACCTC TATACTTCTA CGATGCACC AGACCAAACC ACCGGATCATA ACCGGATCATA GACCACACC GAACCAACC TTCCAGCAACAACC TCCAGCAACAACC TCCAGCAACAACC ACCGGAGCATA ACCACACC GAACCAACC GAACCACC GTACAAGGAG CTACTCCCT CAATGCCAAC TCCACCACC ACCCACCACC GATCACAACC CGATGCAAAA 780 CCTTGGCAGC ACCACCACC GTACAAGAGG GAACCACCC CGATGGAAAA 780 CCTTGGCAGC ACCACCACC GTACAACACC CAATGCCACC CGATGAAAAA 780 GAGCACACCAC TCCAGCACC ACCACCACC GTACAACCACC CAATGCCACC CGATGGAAAA 780 ACCACACCAC ACCACCACC GTACAACCACC CAATGCCACC CGATGAAAAA 900 ACCACACCAC ACCACCACC ACCACCACC ACCACCAC
GACGAGTTTG ACCCGTAAC CAATGAAGCC ATTGCCTATG CCAGCGAAGA GGAGTTCGAG GCATTCCTGC GCTATGGGCT CAAGCCTACA TTCTTGACTC CTCCATCCAT GCAGCGCGCT 300 GTCGAGATGT TCAGCATCAC CTCAGGAGAA AAATACGAAT GGAATGCTTA CCCCACCTAT 360 GAAGCCTATA TCAGCATGAT GGAAGAGTTC CAAACAAAGT ATCCATCACT TTGTACTACT 420 GCAATACAG GGAATACGA GAAGAGTC TATACTTCTA CGATGACGC AGACGAAACG AAACGGATAC GGAATACAG GGAATACGAT TTGGACACG AGACGAAACG 540 ACCGGAGTTA AGACATACT GGATACACT TTGTACTCTC TTGTACTCTC TTGCAGACTA ACCGGATATA GACCACACC GAACCAACC GAACCAACCAC GAACCAACC
GCATTCCTGC GCTATGGCT CAAGCCTACA TTCTTGACTC CTCCATCCAT GCAGCGCGCT 300 GTCGAGAGTGT TCGACTACCG CTCAGGAGAA AAATACGAAT GGAATGCTTA CCCCACCTAT 360 GAAGCCTATA TCAGCATGAT GGAAGAGTTC CAAACAAAGT ATCCATCACT TTGTACTACT 420 TCCGTCATTG GCAAGTCCGT AAAGGATCGT AAACTGATGA TTTTGCAAGCT GACGTCCTCT 480 GCCAATACAG GGAAAAAGCC TCGCGTGCTC TATACTTCTA CGATGCACGG AGACGAAACG 540 ACCGGATATG TGGTACTGCT CCGACTCATA GACCATCTGC TGTCGAACCTA CGAATCCGAT GACGAACACG AAACCACACC GTACAAAGGA TCTGCCCTTT GACCAATCCG 660 GACGGAGCAT ACAGAGCCGG AAACCACACC GTACAAAGGAG CTACTCGCTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTCAAGGAT GATTTGGAAG GAAACACCCC TTTCGTGCCC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAC TGCATTCATG GATTTGGAAG GAAACACCCC TTTCGTGCTC 840 AGACATGCCAA ACCACACC GTACAACTC CATGGAACAA 780 AGACATGCCAA ACCACACC GTACAACTCA CATGCCACC CTTTCGTGCTC 840 AGACATGCCAA ACCACACC GTACAACCTC TTTCGTGCTC 840 AGACATGCCAA ACCACACCT ATCAATCCAA ACCACCCC CTTTCCAGGAC ACCACTCC CTTCCAGACAACACCC CTTCCAGACAACACCC CTTCCAGACAACACCC CTTCCAGACAACACCCC CTTCCAGACAACACCCC CTTCCAGACAACACCCC CTCTCCAGACACCCC CTCTCCAGACAACACCCC CTCCTCACCCCCAACACCCC CTCCTCACCCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CCCCTCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CTCCCAACACCCC CCCCCACCCCACCCCCAACACCCCC CTCCCAACACCCC CTCCCCAACACCCCC CTCCCAACACCCC CTCCCCAACACCCCC CTCCCCAACACCCCCCCC
GTCGAGATGT TCGACTACCG CTCAGGAGAA AAATACGAAT GGAATGCTTA CCCCACCTAT 360 GAAGCCTATA TCAGCATGAT GGAAGAGTTC CAAACAAAGT ATCCATCACT TTGTACTACT 420 TCCGTCATTG GCAAGTCCGT AAAGGATCGT AAACTGATGA TTTGCAAGCT GACGTCCTCT 480 GCCAATACAG GGAAAAAGCC TCGCGTGCTC TATACTTCTA CGATGCACG AGACGAAACG 540 ACCGGAGTATG TGGTACTGCT CCGACTCATA GACCACTCGC TGTCGACCTA CGAATCCGAT 600 CCGAGGATTA AGAACATTCT GGATAAAACG GAAGTATGGA TCTGCCCTTT GACCAATCCG 660 GACGGAGCAT ACAGAGCCG AAACCACACC GTACAAGGAG CTACCTCGTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTTCAAGGAT GATTAGACG GTGATCACC CGATGGAAAA 780 CCTTGGCAGC CGGAGCAAC TGCATTCATG GATTAGACG GAAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAG AACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCCA ACGATGAGTG GTACAAACTG ATCAGTCGCA CCCCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATCCG GAATCATCA CGGTTCAGC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1020
GAAGCCTATA TCAGCATGAT GGAAGAGTTC CAAACAAAGT ATCCATCACT TTGTACTACT 420 TCCGTCATTG GCAAGTCCGT AAAGGATCGT AAACTGATGA TTTGCAAGCT GACGTCCTCT 480 GCCAATACAG GGAAAAAGCC TCGCGTGCTC TATACTTCTA CGATGCACG AGACGAAACG 540 ACCGGATATG TGGTACTGCT CCGACTCATA GACCATCTGC TGTCGAACTA CGAATCCGAT GACCAATCCG GACGAGAACG 600 CCGAGGATTA AGAACCATCT GGATAAAACG GAAGTATGGA TCTGCCCTTT GACCAATCCG 660 GACGGAGCAT ACAGAGCCG AAACCACACC GTACAAAGGAG CTACTCGCTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTCCAAGGAT GATTTGGAAG GAAACACCCC TTTCGTGCACC CGATGGAAAA 780 CCTTGGCAGC CGGAGCAAC TGCATTCATG GATTTGGAAG GAAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAG ACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCCA ACGATGAGTG GTACAAACTG ATCAGTCGCA ACTACCCAGC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATCCG GAATCATCA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
TCCGTCATTG GCAAGTCCGT AAAGGATCGT AAACTGATGA TTTGCAAGCT GACGTCCTCT 480 GCCAATACAG GGAAAAAGCC TCGCGTGCTC TATACTTCTA CGATGCACGG AGACGAAACG 540 ACCGGATATG TGGTACTGCT CCGACTCATA GACCATCTGC TGTCGAACTA CGAATCCGAT CCGAGGATTA AGAACATTCT GGATAAAACG GAAGTATGGA TCTGCCCTTT GACCAATCCG 660 GACGGAGCAT ACAGAGCCGG AAACCACACC GTACAAGGAG CTACTCGCTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTCAAGGAT GATTTGGAAG GAAACACCCC TTTCGTGCACC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAAC TGCATTCATG GATTTGGAAG GAAACACCCC TTTCGTGCTC 840 AGGCATGCAGA ACCAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCCG ACGATGAGT GTACAAACTG ATCAGTCGCA ACTACCGC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATCCG GAATCATCA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
GCCAATACAG GGAAAAAGCC TCGCGTGCTC TATACTTCTA CGATGCACGG AGACGAAACG 540 ACCGGATATG TGGTACTGCT CCGACTCATA GACCATCTGC TGTCGAACTA CGAATCCGAT 600 CCGAGGATTA AGAACATTCT GGATAAAACG GAAGTATGGA TCTGCCCTTT GACCAATCCG 660 GACGGAGCAT ACAGAGCCGG AAACCACACC GTACAAGGAG CTACTCGCTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTTCAAGGAT GATTTGGAAG GAAACACCTC TTTCGTGCTC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAAC TGCATTCATG GATTTGGAAG GAAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAGG AACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCCAG ACGATGACT GACCTCCGAA ACCAATTCGG GAATCATCC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
ACCGGATATG TGGTACTGCT CCGACTCATA GACCATCTGC TGTCGAACTA CGAATCCGAT CCGAGGATTA AGAACATTCT GGATAAAACG GAAGTATGGA TCTGCCCTTT GACCAATCCG 660 GACGGAGCAT ACAGAGCCGG AAACCACACC GTACAAGGAG CTACTCGCTA CGATGCCAAC AATGTCGATT TGAACCGTAA CTTCAAGGAT GATTTAGCCG GTGATCACCC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAAC TGCATTCATG GACTATCATG GAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAGG AACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAGAA 900 AGACATGCAG ACGATGAGT GTACAAACTG ATCAGTCGCA ACTACCGCAC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
CCGAGGATTA AGAACATTCT GGATAAAACG GAAGTATGGA TCTGCCCTTT GACCAATCCG 660 GACGGAGCAT ACAGAGCCGG AAACCACACC GTACAAGGAG CTACTCGCTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTTCAAGGAT GATTAGCCG GTGATCACCC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAAC TGCATTCATG GATTTGGAAG GAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAGG ACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCAG ACGATGAGTG GTACAAACTG ATCAGTCGCA ACTACCGCAC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCAA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
GACGGAGCAT ACAGAGCCGG AAACCACACC GTACAAGGAG CTACTCGCTA CAATGCCAAC 720 AATGTCGATT TGAACCGTAA CTTCAAGGAT GATGTAGCCG GTGATCACCC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAAC TGCATTCATG GATTTTGGAAG GAAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAGG AACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCAG ACGATGAGTG GTACAAACTG ATCAGTCGCA ACTACGCAGC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCAA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
AATGTCGATT TGAACCGTAA CTTCAAGGAT GATGTAGCCG GTGATCACCC CGATGGAAAA 780 CCTTGGCAGC CGGAGGCAAC TGCATTCATG GATTTGGAAG GAAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAGG AACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCAG ACGATGAGTG GTACAAACTG ATCAGTCGCA ACTACGCAGC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCAA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
CCTTGGCAGC CGGAGGCAAC TGCATTCATG GATTTGGAAG GAAACACCTC TTTCGTGCTC 840 GGTGCCAATA TACATGGAGG AACAGAGGTG GTGAACTATC CATGGGATA TAAAAAAGAA 900 AGACATGCAG ACGATGAGTG GTACAAACTG ATCAGTCGCA ACTACGCAGC CGCTTGTCAG 960 AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCAA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
GGTGCCAATA TACATGGAGG AACAGAGGTG GTGAACTATC CATGGGATAA TAAAAAAGAA 900 AGACATGCAG ACGATGAGTG GTACAAACTG ATCAGTCGCA ACTACGCAGC CGCTTGTCAG AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCAA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
AGACATGCAG ACGATGAGTG GTACAAACTG ATCAGTCGCA ACTACGCAGC CGCTTGTCAG AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCAA CGGTTCAGAC TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
AGTATTTCCG CCAGCTACAT GACCTCCGAA ACCAATTCGG GAATCATCAA CGGTTCAGAC 1020 TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
TGGTATGTAA TTCGCGGAAG TCGTCAGGAC AATGCAAATT ATTTCCATCG TCTGCGAGAA 1080
ATTACCCTTG AAATCAGCAA CACGAAGTTG GTGCCGGCCT CTGTZGTTGG TZGT
ARICIGARCA ARGARICICI GCIIGCICIO MICCINIGIII CCIIMINGCO CONTOCIONI
ACAGIGACII CCGCIGCGAA CGGACAGCCI CICIUMITGCC MAMICITEMI
GACAAGCGCA ACTCCGATGT TIMETCCGATG
AAAGCCGGCA CTTATACGGT GAAATACAAA GCCGAGGGTT ATCCTGAGGC AACTCGTACC 1380
ATTACGATCA AGGACAAAGA AACCGTCATC ATGGACATTG CATTGGGCAA CTCGGTTCCT 1440
CTGCCTGTAC CCGATTTCAC AGCTTCTCCT ATGACCATCT CAGTAGGCGA AAGCGTCCAA 1500
TTCCAAGATC AAACGACAAA TAACCCCACG AATTGGGAGT GGACGTTCGA AGGCGGACAG 1560
CCTGCCATGA GTACAGAGCA GAATCCGCTC GTATCCTATA GTCATCCCGG TCAGTACGAC 1620
GTTACGCTCA AAGTGTGGAA TGCAAGTGGT TCCAACACGA TTACGAAAGA AAAATTCATC 1680
ACTGTCAATG CCGTTATGCC TGTAGCTGAA TTCGTCGGTA CCCCGACGGA AATAGAAGAG 1740
GGCCAGACGG TATCTTTCCA AAACCAATCC ACCAATGCCA CCAACTACGT ATGGATATTC 1800
GATGGCGGCA CTCCCGCTAC CAGTGAAGAC GAAAACCCGA CTGTGCTTTA CAGCAAAGCC 1860
GGCCAATACG ATGTCACGCT CAAGGCGATC AGTGCTTCCG GTGAAACGGT GAAGACGAAA 1920
GAAAAATACA TCACTGTCAA GAAAGCTCCG GTCCCTGCTC CGGTAGCCGA CTTCGAAGGA 1980
ACACCTCGAA AAGTAAAGAA AGGCGAGACA GTTACTTTCA AAGACTTGTC TACGAACAAT 2040
CCGACTTCAT GGCTTTGGGT GTTCGAAGGC GGCTCTCCTG CCACCAGCAC GGAGCAAAAC 2100
CCGGTGGTCA CCTACAATGA AACAGGCAAG TACGATGTCC AGCTGACTGC CACCAACGAG 2160
GGCGGAAGCA ATGTGAAGAA AGCAGAAGAC TACATTGAGG TTATCCTCGA TGACAGTGTC 2220
GAGGACATAG TGGCACAGAC GGGTATCGTC ATTCGTCCGC AAAACGGAAC GAAGCAGATC 2280
CTCATAGAAG CCAACGCTGC TATCAAAGCG ATCGTTCTCT ATGACATCAA TGGACGGGTC 2340
GTACTCAAAA CTACTCCGAA TCAGCTCCGC TCGACCGTAG ATCTTTCCAT CCTGCCCGAA 2400
GGAATCTACA CCATCAATAT CAAAACGGAA AAATCCGCTC GCACGGAAAA GATCCATATC 2460
GGG 2463

- (2) INFORMATION FOR SEQ ID NO:163
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 228 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...228

ATGCGACTGA	TCAAGGCTTT	TCTCGTGCAA	CTCTTACTGC	TCCCCATTTT	CTTCTACAAG	60
CGGTTTATAT	CGCCGCTTAC	ACCGCCTTCA	TGCCGGTTTA	CCCCCTCATG	TTCGTCCTAT	120
GCCATCGAAG	CCTTACGTAA	ATATGGCCCG	GGCAAAGGAC	TATTGCTGAG	CATCAAGCGT	180
ATTCTCCGCT	GTCACCCGTG	GGGTGGAAGT	GGCTATGACC	CCGTTCCG		228

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2577 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2577
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:164

				AGTACAGCTA		60
ACCCGTCTCG	GCGTCGTAGC	CGTGACGCAA	GATATGCTCG	TACTCGGTAT	CATTCGCGAC	120
				TCAACTTGTA		180
CGGTTGATCG	AGTTGGAAGC	CATCGCCGAG	AGTTTGCCTG	CTTCGCCTGA	GGGATCGCCC	240
ATCTTCACCC	CTTCGGCTCG	GGAGGCTATC	GATGATGCCA	CAGACATCTG	TGCCGACATG	300
GAGGACGAGG	CCGTCAGCCC	GGTCCATCTG	TTGCTGAGTA	TCCTCAACTC	GACACAGGAG	360
				ACGACACCAT		420
				CCGAAATGGA		480
GGGTACCAAG	ACAACGACTT	CGACGACGAA	GAGGACGAAT	CCTCTCCGCC	TTCCGGGAAT	540
				ATACCGGCGG		600
ACCACCACGA	CACGGAGTGG	AGGCGACACG	CCTGCACTGG	ACACCTTCGG	CACCGACATC	660
ACTGCCATGG	CGGCAGCAGG	CAAGCTCGAC	CCGGTAGTGG	GTCGGGAGCA	GGAGATCGAA	720
AGGGTGATAC	AGATACTCAG	CCGGCGCAAA	AAGAACAATC	CGGTGCTCAT	CGGCGAACCC	780
GGTGTAGGCA	AGAGTGCCAT	CGTGGAAGGA	CTGGCCGAAC	GCATCGTGAA	CAGGAAGGTG	840
AGCCGTATTC	TTTTCGACAA	GCGGATCATC	AGCCTCGATT	TGGCTCAGAT	GGTAGCCGGC	900
ACCAAATATC	GCGGACAGTT	CGAAGAGCGG	TTGAAAGCCG	TGCTCGATGA	GCTGAAGAAG	960
				TCGTGGGAGC		1020
GCCGGATCGA	TGGATACGGC	CAATATGCTC	AAACCCGCTC	TTGCCCGTGG	ACAGGTACAG	1080
TGCATCGGAG	CCACTACGCT	GGATGAGTAT	CGTAAGAACA	TAGAAAAGGA	CGGAGCACTC	1140
GAACGCCGCT	TCCAGAAGGT	GCCGATAGCC	CCCTCGACTG	CAGAAGAAAC	GCTGACCATC	1200
CTGCAAAACA	TCAAAGAGAA	ATACGAGGAC	TATCACGGTG	TACGCTATAC	GGACGAAGCG	1260
ATCAAAGCGG	CAGTGGAACT	GACCGATCGC	TATGTATCCG	ATCGTTTCTT	CCCAGATAAG	1320
GCGATAGATG	CCATGGACGA	GGCCGGCGCG	AGCGTCCATA	TCACCAATGT	GGTGGCTCCG	1380
AAAGAAATCG	AGATACTGGA	GGCCGAATTG	GCATCGGTGC	GAGAGAACAA	GCTCTCGGCC	1440
GTAAAGGCTC	AGAACTACGA	ACTGGCTGCC	TCCTTCCGCG	ATCAGGAGCG	GCGCACTCAG	1500
				TGTCCAAGCA		1560
GTGGACGAGA	ATGTAGTGGC	GCATGTAGTG	GCGTTGATGA	CAGGCGTTCC	GGCTGAGCGG	1620
CTGAGCACGG	GCGAAGGCGA	ACGTCTGCGC	ACGATGGCAG	ATGATCTCAA	GACCAAAGTA	1680
GTAGGTCAGG	ACACAGCCAT	CGAAAAGATG	GTGCATGCCA	TCCAGCGCAA	TCGTCTGGGA	1740
CTTCGCAATG	AAAAGAAACC	GATCGGTTCT	TTCCTTTTCC	TCGGCCCCAC	GGGGGTAGGC	1800
				AGGATGAGAA		1860
AGGGTGGATA	TGAGCGAGTA	TATGGAGAAG	TTCTCCGTTT	CGCGTCTCGT	GGGTGCCCCT	1920
CCGGGATATG	TGGGCTATGA	AGAAGGCGGC	CAACTGACGG	AGCGCGTAAG	ACGCAAACCC	1980
TATTCCGTGG	TTCTCTTGGA	TGAGATCGAA	AAGGCGCATG	CCGATGTCTT	CAATCTGCTC	2040
TTACAGGTGA	TGGACGAAGG	TCAGCTGACC	GACAGTCTGG	GACGGCGCGT	GAATTTCAAG	2100
AACACCGTGA	TCATCATCAC	CTCCAACGTG	GGTACACGCC	AGCTCAAAGA	CTTCGGGCAG	2160
GGTATCGGGT	TCCGTTCGGA	AAAAGACGAG	GAAGCGAACA	AGGAGCATAG	CCGTTCCGTG	2220
ATCCAAAAAG	CTCTGAACAA	GACGTTCAGC	CCCGAATTTC	TCAACCGTTT	GGACGATATC	2280
ATCCTCTTCG	ACCAACTGGG	CAAGACGGAG	ATTCGCCGGA	TGGTGGACAT	AGAGCTTAAA	2340
				TCCTTACCGA		2400
				CACGACCGCT		2460
CTCCAGAACG	AAGTGGAGGA	TCGCCTCACG	GATCTTATCC	TCTCCGGACA	GATCGAGAAA	2520
GGGCAGACGC	TTACGCTCTC	TGCTCGCGAT	GGCGAGATCA	TCGTACAAGA	ACAAGCA	2577

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1251 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1251
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165

ATGAATTACC	TGTACATACT	GATTACACTT	TTACTCTCCG	GCTTTTTTTC	CGGTGCTGAG	60
ATTGCTTTCC	${\tt TTTCTTCGGA}$	CAAACTGCGT	CTTGAGTTGG	ACAGGAATAG	AGGCGATCTC	120
ACAGGCAGAG	CGTTAAACTT	GCTGTATCGA	CATCCGGACC	AACTGGTGAC	TACTCTCCTT	180
GTGGGTAATA	ATATCGTTTT	GGTAGTCTAT	GGTCTGCTGA	TGGCGGGATT	GCTGGCCGCA	240
CCTTTGGCGC	AATGGATTGA	TAACGATGCT	ATGATCGTCG	${\tt TTCTCCAATC}$	TGTCTTATCC	300
ACTATCATCA	TACTGTTTAC	CGGGGAATTT	CTACCCAAAG	CCATTTTCAA	GACCAATGCC	360
AATATGATGA	TGAGGGTATT	CGCCCTCCCT	ATCGTAGCGA	TCTATTATCT	GCTTTATCCT	420
CTGTCTAAAC	TCTTCACCGG	TTTATCTCGC	TCTTTTATTC	${\tt GTCTGGTGGA}$	CAAGAATTAT	480
GTGCCTACAA	CAGTAGGGTT	GGGGCGCGTA	GATCTCGATC	ATTATTTGGC	AGAAAATATG	540
TCCGGAGAAA	ACGAACAGAA	CGACTTGACT	ACCGAAGTGA	AAATCATCCA	GAATGCGCTG	600
GATTTTTCCG	GTATTCAGGT	GCGAGACTGC	ATGATCCCAC	GCAATGAGAT	GATAGCATGT	660
GAGTTGCAAA	CGGATATTGA	AGTACTCAAA	ACGACTTTTA	TCGATACCGG	TTTGTCCAAG	720
ATCATTATCT	ACAGACAGAA	CATAGATGAC	GTAGTAGGAT	ATATCCATTC	GAGCGAAATG	780
TTTCGTGGGC	AAGACTGGCA	AAAACGTATC	AATACTACTG	TATTCGTACC	CGAAAGCATG	840
TATGCCAATA	AACTGATGCG	ACTACTCATG	CAGCGCAAGA	AAAGCATTGC	GATCGTCATC	900
GATGAACTTG	GAGGTACGGC	CGGAATGGTC	ACATTAGAGG	ATTTGGTAGA	AGAGATTTTC	960
GGTGACATTG	AGGACGAACA	CGACACTCGC	AAGATCATAG	CCAAACAGCT	CGGCCCTCAT	1020
ACCTATCTGG	TCAGTGGTCG	TATGGAAATA	GATGATGTGA	ACGAACGTTT	TGGGTTGTCC	1080
TTGCCTGAGT	CTGACGACTA	CCTTACCGTG	GCCGGATTTA	TCCTGAATAG	CCATCAAAAT	1140
ATCCCACAGG	CCAATGAGGT	CGTGGAGATT	GCTCCTTATA	CTTTTACCAT	TCTCAGATCT	1200
TCTTCCACCA	AGATCGAACT	GGTGAAAATG	TCCATCGACG	ACCAATCGAA	C	1251

- (2) INFORMATION FOR SEQ ID NO:166
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 879 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...879
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166

ATGAAACAGA	ACTACTTCAA	AAGAGTCTGC	TCACTGCTTT	GGCTGGTTTT	ACCCATGCTT	60
ATTATGCCAT	TGGAAGTAGC	AGCTCAAGAG	ATTATTCCGA	ACGAAGAGGT	GTTGGAATCA	120
TTGACTTTCG	TTGCACCGGT	TGAGGAGACA	GACGCAATAG	AGGCAGAGGT	AGAAGCTCTG	180
CAGGAGATAG	TCGCTACTGA	GGAGATTGCG	GAGCAGGCTG	TTCGTTCTTA	TACCTACACG	240
GTCTATCGTG	ATGGCGTGAA	GATTGCTTCA	GGATTGACTG	AGCCCACTTT	TCTCGATGAA	300
GATGTTCCTG	CCGGCGAACA	TACCTACTGC	GTAGAAGTAC	AGTATCAGGG	AGGCGTATCC	360
GACAAAGTAT	GCGTGGACGT	AGAGGTGAAG	GACTTCAAAC	CGGTTACCAA	TCTCACCGGA	420
ACTGCTTCCA	ATGACGAAGT	TTCTTTGGAC	TGGGACGGTG	TGGAAGAGAA	AGCTGAAGAG	480
CCGGCAAGTG	ATAAAGCAGT	CAGCTACAAC	GTCTACAAGA	ATGGAACCTT	GATCGGTAAT	540

ACAGCTGAAA CTCATTATGT GGAGACCGGT GTAGCCAATG GTACATACAT CTACGAAGTG GAAGTAAAGT ATCCTGACGG TGTATCTCCG AAGGTGGCTG TAACCGTGAC CGTGACCAAC AGCTCATTGA GCAATGTAGA TGGACAGGCT CCTTACACAT TGCGAGTAGA AGGCAAGAAG ATTATTGCGG AAGCCCATGG TATGATCACG CTCTACGACA TCAACGGACG TACCGTGGCC GTAGCCCCGA ATCGATTGGA ATACATGGCG CAAACCGGTT TCTATGCAGT GCGCTTCGAT GTGGGGGAATA AACACCATGT ATCGAAAATA CAAGTAAGA	600 660 720 780 840 879
(2) INFORMATION FOR SEQ ID NO:167	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 936 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(D) TOPOLOGY: circular	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(vi) ORIGINAL SOURCE:(A) ORGANISM: PORYPHYROMONAS GINGIVALIS	
(ix) FEATURE:	
(A) NAME/KEY: misc_feature (B) LOCATION 1936	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167	
ATGATTCCTC TAAGCGAGAG TTTTGAATCA GGTATTCCAG CTATATGGAA GACCATTGAC GCAGATGGCG ATGGCTATAA TTGGATGCAT TTGACCAATT TCACGGGACA GAGTGGTCTC	60 120
TGTGTCTCTT CGGCTTCATA CATAGGCGGC GTCGGAGCTT TGACCCGGA CAATTATCTG	180
ATAACACCCG AATTAAAACT ACCCACAGAC GCGTTGGTGG AAATAATCTA TTGGGTATGT ACTCAAGATC TCACTGCTCC ATCGGAGCAC TATGCCGTTT ATTCCTCTTC TACAGGCAAT	240 300
AATGCTGCTG ACTTTGTTAA TCTCTTATAT GAAGAGACTT TGACTGCCAA ACGGATACAA	360
TCCCCCGAGT TGATCCGCGG AAATCGGACA CAAGGTGTTT GGTATCAAAG AAAGGTGGTA CTCCCTAACG ATACTAAATA TGTTGCTTTC CGCCATTTTA ATTCCACGGA TAATTTCTGG	420 480
CTCAATTTGG ATGAAGTATC TATCCTGTAT ACCCCTCTTC CCCGAAGAGC TCCGTGTCCG	540
CATCCGGGTG GTTACACTTA TTCTGTATTC CGTGATGGAC AAAAGATAGC GAGTGGATTG TCGGCATTGG CATATATCGA TACGGATGTA CCGTATGGGA CTCAAGACTA TTGTGTCCAA	600 660
GTCAATTATC TGCAAGGAGA CTCGTATAAA GTCTGCAAAA ATATAGTGGT GGCAAATTCT	720
GCAAACATCT ATGGGGCGGA TAAGCCTTTT GCGTTGACCG TGGTTGGCAA GACCATTGTA GCGAGTGCTT TCAAAGGAGA GATCACTCTT TATGACATTC GTGGCCGGCT GATAGCTTCC	780 840
GGCTGCGATA CGCTTAGGTA CAAAGCGGAA AATGGTTTTT ACCTCATTAA AATACAGGTA	900
AACGGAACTG TCTATACTGA GAAAATCCAA ATCCAA	936
(2) INFORMATION FOR SEQ ID NO:168	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 2529 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: circular	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: PORYPHYROMONAS GINGIVALIS</pre>	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION 12529</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168	
ATGAAAAAA GTTTTCTTTT AGCCATAGTA ATGCTCTTTG GCATTGCCAT GCAGGGACAT	60
TCTGCTCCGG TTACGAAAGA GCGAGCTTTG AGTCTGGCTC GGCTGGCTTT GCGACAGGTA TCCTTGCGAA TGGGACAAAC AGCAGTATCT GACAAGATTT CCATCGATTA CGTTTATCGG	120 180
CAAGGAGATG CTGAGAGGGG TATCACATCA CAAGAGGAAG GCTCTCCTGC ATATTTTAT	240
GTAGCTAATC GTGGAAATAA TGAGGGCTAT GCTCTTGTAG CAGCAGATGA CAGAATACCG	300

```
ACAATTTTAG CCTATTCACC CATTGGCCGT TTCGACATGG ACAGTATGCC GGACAATCTT
                                                                      360
CGCATGTGGC TACAAATTTA CGATCAGGAA ATAGGCCTGA TACTTTCCGG AAAAGCTCAG
                                                                      420
CTCAATGAAG AGATATTACG TACCGAGGGC GTACCGGCTG AAGTACATGC TCTGATGGAT
                                                                       480
AACGGTCATT TTGCCAACGA TCCCATGCGA TGGAATCAAG GTTACCCATG GAACAATAAG
                                                                       540
GAACCACTGC TTCCTAATGG CAATCATGCC TATACCGGCT GTGTTGCTAC TGCTGCAGCA
                                                                       600
CAAATCATGC GCTACCATAG CTGGCCGCTT CAAGGTGAAG GCTCTTTCGA TTATCATGCA
                                                                       660
GGTTCATTAG TTGGCAACTG GTCCGGCACA TTTGGTGAAA TGTACGACTG GATCAATATG
                                                                       720
CCCGGAAATC CCGACCTTGA TAATCTGACT CAATCTCAAG TGGATGCCTA CGCCACACTG
                                                                      780
ATGCGTGATG TGAGTGCATC TGTTTCGATG AGTTTTTATG AAAATGGAAG TGGTACGTAC
                                                                      840
AGCGTTTATG TAGTAGGAGC CTTGCGAAAC AACTTTCGCT ACAAGCGTTC ACTGCAGCTA
                                                                       900
CATGTACGCG CCTTATATAC CTCACAGGAG TGGCACGATA TGATCCGCGG GGAACTTGCC
                                                                      960
TCCGGAAGGC CGGTCTATTA TGCAGGGAAT AACCAGAGCA TAGGACATGC TTTCGTTTGC
                                                                      1020
GATGGTTATG CTTCGGATGG TACTTTCCAT TTCAACTGGG GTTGGGGAGG TGTTTCCAAC
                                                                      1080
GGCTTCTACA AACTAACACT CCTCTCGCCG ACTTCGTTGG GTATCGGAGG TGAGGGAATA
                                                                      1140
GGTTTTACCA TTTATCAAGA GATCATCACC GGTATCGAAC CGGCTAAGAC TCCCGCTGAA
                                                                     1200
GCCGGTACAG ATGCCTTGCC GATCTTGGCA CTGAAAGACA TAGAAGCCGA GTATAAAAGT
                                                                     1260
GAATCCGGAT TGAACGTAGG GTATTCGATA TATAATACAG GTGAAGAGCA ATCAAATCTT
                                                                      1320
GACCTCGGAT ACAGATTGAA CAAGGCTGAC GGAGAAGTCA TAGAGGTGAA AACTTCATCT
                                                                     1380
ATCAATATCT CTTGGTACGG ATACGGAGAG CATCCCGAGA GTTTCTCATT GGCACCTAAT
                                                                      1440
CAGTTGTCAC AAGGAATCAA CACCATCACC CTACTTTATC GTCGCACAGG CACCGAACAG
                                                                     1500
TGGGAGCCGG TACGGCATGC ACAGGGAGGA TATGTCAATA GCATTAAAGT AAATACGACA
                                                                      1560
GACCCGAACA ATGTCGTAGT CACGGTAGAT AATAACGAAG GCAAGCTCAG TATCGTCCCC
                                                                     1620
                                                                     1680
AACAGCTTTG TCGCAGATCT GAATTCTTAT GAACATAGTA CGATTACAGT ACAGTTCAAT
AGCGACAGCC CTGATGAGAT CCGTACACCC GTAGCCTTTG CTCTATCTAC AGGAGCTACT
                                                                      1740
GCGGACGATG TAATATCTTT GGGCTGGGTA ATGGCTGAAG TTCCGGGCGG TAGCAGCAAC
                                                                     1800
TATCCGGTGG TTTGGTCTAA AGACGTTCTC ACTCTCTCGG AAGGCGACTA TACATTGTGG
                                                                      1860
TATAGATTTT CCATCAACAA CCAAAAGGAT GAATGGAAAA AGATCGGAAG CGTGTCAGTA
                                                                      1920
AAAACACCGA CAGAGTATAC GCACCCCTTA TTCGAAGTGG GCCATAATCA AACTTCTACC
                                                                     1980
TATACGCTGG ATATGGCACA CAACAGAGTA TTGCCCGACT TTACACTCAA AAATCTCGGA
                                                                      2040
TTGCCTTTCA ATGGTGAGTT GGTTGTTGTT TTCCGCCAAA CACAATCCTC ATCGGGGTCT
                                                                      2100
TTATGGGCAG CTCAAGAAAC AGTACATATC AAGCAAGGAG AAACTTTCGT ATATAAACCT
                                                                      2160
GTTGTCGAAG GCCCTATACC TGATGGATCC TATCGTGCGA CCCTCCATGC ATTCGTAAAC
                                                                      2220
GGACAACAAC AGTTGTACCT CAAGGGGAAA AGGAACTACA CGGTGAAGAT CGTCAATGGT
                                                                      2280
ACAGCGGTAG AAGCAATAGA ATCGTCAGAA GAGATCAGAG TATTCCCTAA TCCGGCACGC
                                                                      2340
GATTATGTGG AAATATCGGC ACCTTGCATT CCCCAAGAAA CATCTATCAT TCTTTTCGAT
                                                                      2400
CTGTCAGGCA AGATTGTCAT GAAGAATAGT TTATCAGCGG GGCATGGCAG AATGGATGTC
                                                                      2460
AGCCGACTTC CTAATGGGGC CTACATCCTT AAGGTGGATG GATATACGAC GAAAATAAAT
                                                                      2520
ATAGTGCAC
                                                                      2529
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 870 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...870
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:169

ATGAAAAAGC	TATTTCTCTC	GCTCACGAGT	CTTGTAATGG	TCTTCGCTGT	TGCAAGTTGC	60
GATATAATCG	ACAAGGATCA	AACCCTCTTG	CCGGCTCCGA	CCAATGTGAC	ACCCGATAAT	120
CCGGATGACA	ATCCTTCGGA	GATCGACATT	ACGCAGACGC	ACACAGAAAA	ATATGTTTTG	180
GCTGAAGAAT	TTACCGGCCA	AAAATGTCTC	AACTGTCCGA	AAGGTCATCG	CAAACTGGCG	240
GCTCTCAAGG	AGCAATACGG	TAAGAGATTG	ACTGTTGTCG	GTATACATGC	CGGCCCTGGA	300
TCTCTCGTGC	CACCTCTTTT	CCGTACAGAA	GCCGGAGACG	CATATTATAG	CAAGTTCGCC	360
AATAATACCC	CTCTCCCTGC	GCTGATGGTT	TCGCGCAAAA	AGTTCGGCTC	TTCCTACGTT	420
TATGATAAGA	GCTACAAAAC	GTGGGACGTG	CCTATTGCCG	AGCAGATGGA	GCAAAAGGCG	480
AAGATCAATA	TCTTTGCCGT	GGCCGAATAC	ACCGATACCC	AAAAGATCAA	GGTGACTGTA	540
AAGGGTAAAA	TACTGGAGGG	GAATACACTC	CCGAAGTCCA	TGGTTCAGGT	GTATCTGTTG	600
GAGGATAAGC	TGATCGCTCC	GCAGGTGGAT	GGCAATACGA	CAGTCGAGAA	TTACGAGCAC	660
AATCACGTGT	TGCGTGGAGC	CGTTAATGGT	ATTTGGGGCG	AAGAATTTGT	GAATCTCAAA	720
GATTATTTGT	ATACTTACGC	CGTTGAACCG	CTCTCGGGTA	TGTCCTTCGT	AGCCGAGAAT	780
TATTCGATTG	TGGCTTTTGT	ATACGATGTG	CAGACGTTCG	AAGTGTATGA	CGTTGTGCAT	840

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 669 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...669
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170

ATGAAGAAAT	CAAGTGTAGT	AGCCTCAGTT	TTGGCCGTGG	CTCTCGTGTT	CGCCGGTTGC	60
			ATCGGCGCCG			120
GCCGGAGTAG	GTAACGTAGC	CGGAAATACG	GCTGTCGGTG	CCATCGTCGG	TACTGCAGTC	180
GGTGGAGCAG	CCGGTGCTCT	CATCGGAAAG	AAGATGGACA	AGCAGAAAAA	AGAACTGGAG	240
GCCGCAGTAC	CCGATGCTAC	GATTCAGACA	GTAAATGACG	GAGAGGCTAT	TCTGGTTACT	300
TTCGATAGCG	GTATCCTCTT	TGCGACGAAC	TCCAGCACTC	TGAGTCCCAA	CTCACGCACT	360
GCGCTGACGA	AGTTTGCTGC	AAACATGAAC	AAAAACCCCG	ACACGGATAT	TCGTATCGTA	420
GGCCATACGG	ACAATACCGG	CTCCGACAAG	ATCAACGATC	CTCTGTCTGA	GAGACGTGCA	480
GCCAGCGTAT	ATTCTTTCCT	GAATTCTCAG	GGTGTGAGTA	TGTCGCGCAT	GGCAGCCGAA	540
GGGCGTGGGA	GCCATGAACC	GGTTGCAGAC	AATAGCACAG	TTGCCGGACG	TTCGGCCAAC	600
CGCCGTGTGG	AGGTTTATAT	CTTGCCGAAT	GCCAAGATGA	TCGAACAAGC	ACAGCAAGGT	660
ACGCTGAAG						669

- (2) INFORMATION FOR SEQ ID NO:171
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1011 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1011
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171

ATGTCGAAAA	AATCGATCCT	TCTGCTTTGC	TGTTCGCTGT	GCTTCATTTC	TGCTACGAAG	60
GCTGTGACCC	CCGTCAGAAA	TGTGCGCAAT	AGCCAAGTGA	ACAGCAAAGC	AAAGACCGAA	120
CGTACAAAGC	CCTCGGACTC	TGTACGGTAC	ATTAGCAACA	TGATTGCAGA	TCGGCTGGAG	180
TTCCGCAACA	AGATTTCTTC	CGAAAAAGAG	GTAAGAAAAG	CCGAATATGA	AAATCGGCTG	240
GCGATGGAAG	CACTCAATTA	CCCTGCCATA	GATTTATATG	GTGAAGATTC	TTGGAGCGAG	300
TATGTAAACC	CTTTCGTGGG	TGCAGGAACC	GATGTCGAAA	TTCCGAACTC	CTATGACATT	360
GATTGCTCTT	CGTTCGTGAT	GCCCGTCGAA	GATAAGCAGG	TCACCTCTCA	ATTTGGCTAC	420
CGTCGGCGTT	TCGGACGGAT	GCACTATGGT	ATTGATCTTT	CAGTGAATCG	TGGCGATACG	480
ATACGAGCAG	CCTTTGACGG	GAAAGTTCGT	GTACGCAGCT	ATGAAGCGCG	TGGCTATGGC	540
TACTACATAG	TCTTGCGCCA	TCCGAACGGA	CTGGAGACTG	TGTACGGACA	CATGAGTCGC	600
CAATTGGTAG	ACGAGAATCA	GATCGTTCGA	GCAGGACAAC	CGATCGGATT	AGGAGGCAGC	660
ACGGGTCGAA	GCACCGGTCC	TCATCTTCAC	TTCGAGACCC	GCTTCATGGG	TATTCCCATC	720
AATCCGAGTA	CCATTATAGA	CTTCGATAAC	GGAGTGCCGC	TCCGAGACAT	TTACACATTC	780
AAACGAGGGA	GCAATTCTCG	CTATGCAAAA	GCCTCTAAGA	CTTCTTCTCG	CTATGCAAAA	840

AAAGGGAAGA AAGGCAGACA AGCTTCTTCT CCTATGACCT ATAGAATCAA AAAAGGCGAT 900
ACTTTGGAAA CAATAGCCAA AAGGCACGGC ACTTCTGTTC AGAAACTCTG TGCTACCAAT 960
GGCATTGGCA AGAGTAAAAT TTTGACTCCG GGCAAAGCCT TGAGGATCAA A 1011

- (2) INFORMATION FOR SEQ ID NO:172
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...453
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172

ATGGCAAAAA	TCAATTTCTA	TGCTGAAGGC	GTCAGCCTTC	CTCGGATCAG	AAGACGGATC	60
GTCGGTAAGT	GGATAGCCGA	AGTATGCAGC	CGATATGGGA	AAGCGGTGGG	AGAAATCTCC	120
TATCTTTTCT	GTGATGACGA	ATATATCCTG	AAAGCCAATC	AGGAATTTCT	CGATCATGAC	180
TACTACACCG	ACATCATCAC	CTTCGATTCC	TGCGAAGCGG	ATACGGTGAA	TGGCGACCTG	240
CTTATCAGTC	TCGATACCGT	ACGCTCGAAT	GCCCGTGCTC	TTGATCTTCG	ATACGAAGAC	300
GAACTGCATC	GTGTCATTAT	CCACGGCATA	CTGCATCTTT	GCGGATTGAA	AGACAAGAGC	360
AAAAAGGATG	AAGCCCAAAT	GCGTGCAGCC	GAAGAGAAAG	CCCTTGTCAT	GCTGCGAGAA	420
ACCATCGGAT	CGGAGCTTTC	CCTATTGCAT	ACA			453

- (2) INFORMATION FOR SEQ ID NO:173
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1173 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1173
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173

ATGAAGGTAA	AGTACTTAAT	GCTCACATTG	GTTGGAGCAA	TTGCACTGAA	CGCAAGTGCA	60
CAGGAGAATA	CTGTACCGGC	AACGGGTCAG	TTACCCGCTA	AGAATGTTGC	TTTTGCTCGC	120
AATAAAGCAG	GCAGCAATTG	GTTTGTAACA	CTGCAAGGCG	GTGTTGCAGC	GCAGTTCCTC	180
AATGACAACA	ACAACAAAGA	CCTCATGGAC	CGCTTAGGAG	CCATAGGTTC	TCTTTCTGTC	240
GGAAAGTATC	ACAGCCCTTT	CTTTGCAACT	CGTTTGCAAA	TTAACGGAGG	TCAAGCCCAC	300
ACTTTCCTCG	GAAAAAATGG	CGAACAAGAA	ATCAACACCA	ATTTTGGTGC	AGCTCACTTC	360
						420
TTAATTCCAT	GGGTAGGTGT	TGGCTACCAA	CACAAATTCA	TCGGTAGCGA	ATGGAGCAAA	480
GACAATGTGG	AATCACTGAC	GGCGAATGTA	GGAGTTATGA	TGGCTTTCAG	ATTAGGAAAG	540
CGAGTAGACT	TTGTGATCGA	AGCACAAGCA	GCTCACTCCA	ATCTCAATCT	AAGTCGCGCA	600
			GATCCCGCAG			660
CAGGGGATGG	CTACAGCAGG	TCTTAATTTC	CGCCTGGGAG	CCGTAGGCTT	CAATGCCATT	720
GANCCAATGG	ACTACGCACT	TATCAATGAT	CTGAATGGTC	AGATTAACCG	TTTGCGCAGC	780
GAGGTCGAAG	AACTCTCAAA	ACGTCCTGTA	TCATGCCCCG	AATGTCCTGA	AGTAACTCCT	840
			AAAGCTGTAC		CGACAGCCAC	900
			TATGACGTAG		AAAAGAAACT	960

AACGAGCCGA TTACCGT	IGT TGGTTATGCT	GATCCTACGG	GTAATACTCA	ATACAACGAG	1020
AAATTGTCTG AGCGTCG	GC TAAAGCCGTT	GTTGATGTTC	TGACAGGTAA	ATATGGTGTG	1080
CCTTCCGAAT TAATCTC	TGT AGAATGGAAG	GGCGACTCTA	CGCAACCGTT	CAGCAAGAAA	1140
GCTTGGAATC GTGTTGT	AAT CGTTCGCTCC	AAG			1173

- (2) INFORMATION FOR SEQ ID NO:174
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1155 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1155
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174

ATGACATACA	GAATTATGAA	AGCTAAATCT	${\tt TTATTATTAG}$	CACTTGCGGG	TCTCGCATGC	60
ACATTCAGTG	CAACAGCCCA	AGAAGCTACT	ACACAGAACA	AAGCAGGGAT	GCACACCGCA	120
TTCCAACGTG	ATAAGGCCTC	CGATCATTGG	TTCATTGACA	${\tt TTGCAGGTGG}$	AGCAGGTATG	180
GCTCTCTCGG	GATGGAATAA	TGATGTAGAC	${\tt TTTGTAGATC}$	GTCTAAGTAT	CGTTCCTACT	240
TTCGGTATCG	GTAAATGGCA	TGAGCCTTAT	${\tt TTCGGTACTC}$	GTCTCCAATT	CACAGGATTC	300
GACATCTATG	GATTCCCGCA	AGGGAGCAAG	GAGCGTAACC	ACAATTACTT	TGGAAACGCC	360
CACCTTGACT	TCATGTTCGA	TCTGACGAAC	TATTTCGGTG	TATACCGTCC	CAATCGTGTC	420
TTCCATATCA	TCCCATGGGC	AGGTATAGGA	TTTGGTTATA	AATTCCATAG	CGAAAACGCC	480
AATGGTGAAA	AAGTAGGAAG	TAAAGATGAT	ATGACCGGAA	CAGTTAATGT	CGGTTTGATG	540
CTGAAATTCC	GCCTATCAAG	AGTCGTAGAC	TTCAATATTG	AAGGACAAGC	TTTTGCCGGA	600
AAGATGAACT	TTATCGGGAC	AAAGAGAGGA	AAAGCAGACT	TCCCTGTAAT	GGCTACAGCA	660
GGTCTAACGT	TCAACCTTGG	CAAGACAGAG	TGGACAGAAA	TTGTTCCTAT	GGACTATGCT	720
TTGGTCAATG	ACCTGAACAA	CCAAATCAAC	TCACTTCGCG	GTCAAGTGGA	AGAGTTGAGC	780
CGTCGTCCTG	TTTCATGCCC	TGAATGCCCT	GAGCCTACAC	AGCCTACAGT	TACTCGTGTA	840
GTCGTTGACA	ATGTGGTTTA	CTTCCGTATC	AATAGTGCAA	AGATTGATCG	TAATCAAGAA	900
ATCAATGTTT	ACAATACAGC	TGAATATGCG	AAGACCAACA	ACGCACCGAT	CAAGGTAGTA	960
GGTTACGCTG	ACGAAAAAAC	CGGTACTGCG	GCCTATAACA	TGAAGCTTTC	AGAGCGTCGT	1020
GCAAAAGCGG	TAGCCAAGAT	GCTTGAAAAG	TATGGTGTTT	CTGCGGATCG	CATTACAATT	1080
GAATGGAAGG	GCTCATCAGA	GCAAATCTAT	GAAGAGAACG	CTTGGAATCG	TATTGTAGTA	1140
ATGACTGCAG	CGGAA					1155

- (2) INFORMATION FOR SEQ ID NO:175
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 570 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular

 (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...570
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175

ATGGAATTTT	TCATGTTATT	CATAGCGGCG	GTTTTCGTTA	ATAACGTCGT	GCTGTCGCAG	60
TTCCTCGGTA	TATGCCCATT	CTTAGGCGTA	TCGAAGAAGG	TAGACACCTC	AATCGGTATG	120
GGTGCAGCCG	TGACATTCGT	ATTGGCACTG	GCTACCTTGG	TTACCTTCCT	GATTCAGAAG	180

TTCGTTTTGG ATCGTTTCGG ATTGGGCTTT A	ATGCAGACCA	TTGCATTTAT	TTTGGTCATT	240
GCCGCCTTGG TGCAGATGGT GGAGATCATA C	CTCAAGAAAG	TATCTCCTCC	CCTCTATCAG	300
GCACTGGGTG TATTCTTGCC CTTGATTACG A	ACGAACTGCT	GTGTGCTCGG	TGTGGCTATT	360
TTGGTTATCC AGAAGGATTA TACCCTGCTC C	CAGAGCTTCG	TCTATGCAAT	ATCCACGGCT	420
ATCGGTTTCA CCTTGGCAAT GGTTACTTTC	GCAGGTATTC	GAGAGCAACT	CGATATGACC	480
AATCTCCCCA AAGCTATGAA GGGAATACCT T	CCGCCACTCT	TGGCTGCCGG	TATATTGGCT	540
ATGGCTTTCA TGGGCTTCAG CGGTATCGCC				570
(2) INFORMATION FOR SEQ ID NO:176				
(i) SEQUENCE CHARACTERISTICS:	:			
(A) I ENGRY. EEO bago pai	ira			

- (A) LENGTH: 558 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...558
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176

ATGTTATTCA	TAGCGGCGGT	TTTCGTTAAT	AACGTCGTGC	TGTCGCAGTT	CCTCGGTATA	60
TGCCCATTCT	TAGGCGTATC	GAAGAAGGTA	GACACCTCAA	TCGGTATGGG	TGCAGCCGTG	120
ACATTCGTAT	TGGCACTGGC	TACCTTGGTT	ACCTTCCTGA	TTCAGAAGTT	CGTTTTGGAT	180
CGTTTCGGAT	TGGGCTTTAT	GCAGACCATT	GCATTTATTT	TGGTCATTGC	CGCCTTGGTG	240
CAGATGGTGG	AGATCATACT	CAAGAAAGTA	TCTCCTCCCC	TCTATCAGGC	ACTGGGTGTA	300
TTCTTGCCCT	TGATTACGAC	GAACTGCTGT	GTGCTCGGTG	TGGCTATTTT	GGTTATCCAG	360
AAGGATTATA	CCCTGCTCCA	GAGCTTCGTC	TATGCAATAT	CCACGGCTAT	CGGTTTCACC	420
TTGGCAATGG	TTACTTTCGC	AGGTATTCGA	GAGCAACTCG	ATATGACCAA	TCTCCCCAAA	480
GCTATGAAGG	GAATACCTTC	GGCACTCTTG	GCTGCCGGTA	TATTGGCTAT	GGCTTTCATG	540
GGCTTCAGCG	GTATCGCC					558

- (2) INFORMATION FOR SEQ ID NO:177
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2499
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177

ATGAAACAAC	TAAACATTAT	CAGCTTCATC	ATTGCTTTCC	TATTCTTAGG	AACGAGCGCA	60
TCGGCTCAGC	AATCGGGCGG	ATCCGTTACA	GGTACCGTAG	TGGACAAAAG	CTCAAAAGAA	120
CCTATCGCAT	ACGTACAAGT	ATTCGTCAAA	GGAACCACTC	TCGGAACTTC	CACGGATGCA	180
AACGGAAACT	ACTCGATCAA	GGGAATCCCT	TCGGGTAATC	AAACTATCGT	AGCCCGACTC	240
ATGGGTTACT	CCACTTGCGA	AGAAAAAGTA	CATATAGAAA	AGGGTGGTTC	CCGCCACGTA	300
GACCTCTATC	TGACCGAAGA	GATTCTCTCT	CTCGATGGGG	TAGTGGTATC	TGCCAATAGA	360
AACGAGACTT	TCCGCCGTCA	AGCACCCTCG	TTGGTAACGG	TACTGTCGCC	GGAACTTTTC	420
CTCAAAACCA	ACTCTACCAA	CCTGAGTCAG	GGACTTAAGT	TCCAGCCCGG	TCTGCGCGTG	480
GAGGACAACT	GTCAGAACTG	CGGTTTCAAC	CAAGTTCGTA	TCAATGGACT	CGAAGGAGCC	540
TATTCGCAAA	TTCTTATCGA	CAGCCATCCC	ATCTTCAGTT	CGCTTGCCGG	TGTCTATGGC	600

TTGGAGCAGA	TGCCTGCCAA	TATGATCGAA	CGTGTAGAAG	TAATTCGCGG	TGGAGGTTCG	660
GCTCTGTTCG	GCTCTAATGC	TGTGGGAGGC	GTTATCAACG	TAATTACGAA	AGAACCGCTT	720
CGCAATTCGG	CCGAGATCAG	CCATTCTACG	ATGACCTTCG	ACCACGCGAA	AGGGTGGGGG	780
AGCTTCCAAA	ATACGACCCA	GTTCAACGGT	TCTATGCTGA	CGGAAGACCG	CAAAGCCGGT	840
GTCATGGTAT	TCGGCCAACA	CAACTACCGT	CCCGGACAGG	ATATAGACGG	CGACAACTTT	900
ACCGAACTAC	CCAATCTGCG	CAACCGCTCG	CTCGGTTTCC	GCTCATACTA	TAAGACCGGT	960
CTCTACAGCA	AAGCAACCCT	CGAATATCAC	AGCATGCAGG	AGTACCGTCG	TGGTGGCGAC	1020
AGACTGGACA	${\tt ATCCTCCTTT}$	CGAAGCCCAG	ATAGCGGAAT	ATCTCCAGCA	CTATATCAAT	1080
GGCGGAAGTT	TCAAATTCGA	TCAGGGCTTC	AGCGGTGGCA	AGGATTTCTT	CAGTCTGTAT	1140
GCTTCAGCAC	AAGACGTTCA	GCGTCGTAGC	TACTACGGGG	GTGGCGACTA	TACCGAAAAT	1200
CTGCTGAACG	GAGCAGTTCA	GAGTGGAAGC	ACCGAATCGG	ACGAATACAA	CGATGCTTTC	1260
ACGGCTCTTA	CTTCCTACGG	GACTACCAAG	GGATTCGATT	TGCAAGGAGG	AGGTATGTAC	1320
CGTCATACCT	TCGGAGAAAA	CTGGGACTTT	ACCGGCGGAC	TCGAATATAT	CTACGGCCAA	1380
CTCGATGACA	GAAGCGGCTA	CAGACCGAGC	AAAATAGATC	AGAATACCTC	TACTTTTAGT	1440
CAGTACGACC	AGCTCGAATA	TAAGACGGAG	AAGTTAAGTG	CCCTTATCGG	AGCACGTATC	1500
GACTATGTTC	TCCTCAATCA	GGATGGCAAA	CGCTATATCG	ATCCGCTCTT	CATTTTCAGT	1560
CCTAGAGCCA	ACGTACGATA	CAATCCCAAT	AAGAATCTCA	GCTTCCGACT	CTCATACAGC	1620
GAAGGATTCC	GCGCTCCTCA	GTATTTCGAT	GAAGATCTGC	ACGTAGAGTT	GGCCGGTGGT	1680
ACTCCTATCA	GCCGTGTCCT	TTCCCCCAAT	CTGAAAGAAG	AACGTTCACG	AAGCATCAGT	1740
GCTTCTTTCG	ATTATTACCA	CAGAGCCGAC	GAATGGCAAT	TCAATATCAT	GGGAGAAGCC	1800
TTCTCCACCT	TTATCAGCAA	TCAGTTCAAA	CCATCCGATA	AGGTCGAAAC	CACGAGCGAT	1860
GGCAAAGAAT	GGATCATTCG	TACCATCTAC	AACGACAAGG	ATGGAGTATC	GAAGGTATAT	1920
		AATCGCCTAC				1980
ACATGGCAGA	GAAGCCGCTA	CGGAAGCATC	TATACCGCTG	TGGAAGCGGA	CAAAACAACG	. 2040
GGACAAGCCG	AGATCTCTGT	GAAAGACTAT	GTACGCACTC	CGAATCTGTA	CGGCTATTTC	2100
		CGAGCACTTC				2160
AAAATGGATG	TAGTACACGA	AGCCTATGAA	GGCGATATTC	CCGCAGAACA	CATAGCTCCG	2220
GACGGATCGT	TCGACTTTGA	AATGAATGGT	CAGCAATTCA	AAGGTTTGGC	CGAAGGTCAT	2280
GCCAAGCTCG	TCAAGACTCC	GGCCTTCGCC	GATATAGACC	TCAAGCTGAG	CCACGACTTC	2340
		CTTGGAATTG				2400
TATCAGAAAG	ACACGGACAA	GGGACCGGGT	AGAGCTTCTA	CTTACGTATA	CGGTCCTATG	2460
CAGCCCAGAA	GGATTTTCGT	CGGTACAAAG	ATCAATTTC			2499

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2673 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2673
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178

ATGTACAAAA	AGATTATTGC	CGTAGCAGCT	CTCTTCTGCG	CCAGCATAGG	GATCCTGAAA	60
GGACAGTCCT	CGGATCTGAC	CCCTCAGGAT	ACTATATATA	GCCCTGAAAT	ATCCTATGCC	120
AAGCCTATTC	ATAAGACCAT	AGCATCTATT	GAGATCGAGG	GAATGAGGTC	TTTCGATGAC	180
TTTGTCTTGC	GCAATCTTTC	AGGCTTGGCT	GTAGGTGATG	AAGTCCTGAT	TCCTGGAGAT	240
GCCATGTCTG	CTGCCGTGAA	TAGAATTATG	CGTCAGGGCT	ACTTCTCAAA	TGTGCGAATC	300
ATCGCGGATA	AATATGTCGG	CAATAAAGTC	TATCTGAAAA	TCATTGTCAC	TGAACGTCCT	360
CGCATCAGTA	AGGTTACTTT	TAGCGGGGTA	AAGAAGTCTG	AGAGAGAAGA	TCTTGAAATG	420
AAAATCGGTC	TTCGCGAGGG	GATTCAGATG	ACCAGAAATA	ATGAAGACAA	GGTCAGGCAA	480
ATCGTACAGA	AGTATTTTAG	TGAGAAAGGT	TATCGCGATG	CCAGCATACG	GATAACGCAG	540
GAACCGGATC	TTTCCAAAGA	TGGCTTTGTC	AATGTGCTTA	TCTCGATTGA	GAAGAAAAGC	600
AAAACCAAGG	TGAATGAAAT	TTATTTTTCC	GGCAACAAGG	CCCTTAGCAA	TCATAAGCTA	660
AGAATGGCGA	TGAAGAACAC	CAATGCCAAA	TTCAGTCTTA	GAAAGCATAT	TCGCTCATCT	720
TTCTTGAAAC	TTTTTAGTAC	TCATAAGTTT	GTGGAAGAGA	GCTACCGTGA	AGATTTGGTC	780
CGATTGATAG	AGAAGTATCA	GGAATATGGA	TATCGTGATG	CTGAAATACT	GACCGACAGT	840
GTCGTGAAGG	CTCCTGACGG	CAAAAGAGTG	GATATTTATC	TCAACATCGA	AGAGGGGCAG	900
AAGTATTATA	TTAAGGATGT	CAACTTTGTG	GGCAATTCAC	AATATCCATC	GGAGTATTTG	960
GAACGAGTGC	TCGGAATAAA	ATCCGGAGAT	GTGTACAATC	AGAGACGATT	GGCTAAGCGT	1020
CTCAATGAAG	ATGAAGATGC	TGTGGGGAAC	CTGTACTATA	ACAATGGCTA	TATTTTTGCG	1080
TGGGTCGATC	CCGTGGAAAC	AAATGTAGTG	GGGGATTCTG	TTTCGCTTGA	TATTCGTATA	1140
GCGGAGGGGA	AGCAGGCCAA	TATCAATAAG	GTGATCATCA	AAGGAAATAC	TGTCGTGTAC	1200

GAAGACGTAG	TACGCCGAGA	GCTTTACACA	AAGCCCGGCC	AGCTCTTTAG	TCGCGAGGAT	1260
ATCATTAACT	CTATTCGTCT	CATCAATCAG	CTTGGGCATT	TCGATGCCGA	AAAATCTATT	1320
CCCCGTCCGA	TTCCCAATCC	CGAAACAGGA	ACAGTGGATA	TAGAGTATGA	TTTGGTGCCG	1380
CGTAGCAGTG	ACCAATTGGA	GCTTTCTGTC	GGTTGGAGTC	AGTCCGGACT	TCTGTTCCGA	1440
GGAGCCATTA	AGTTCACGAA	CTTCTCTGTC	GGCAACTTGC	TCCATCCCTC	GATGTATAAG	1500
AAAGGGATCA	TTCCGCAAGG	GGATGGGCAA	ACACTATCAC	TGAGTGCTCA	GACCAATGGA	1560
			ATGGATCCAT			1620
GATATGTTCA	GCTTCAGTGC		AAGACTACGG			1680
AATAGCAATG	CCGGCAACTA	CTATAATGCC	TACTATAATA	GCTACTACAA	CAACTATAAT	1740
AGTTATTACA	ACGGTATGTC	GAACTATACC	GGCGACCTCT	ATACTCAGGC	CAGCGATCCG	1800
GATCGTTCGC	TTCAGATGTT		ATCGGTTACG	=		1860
GACAATTGGT	TCCAGATTTA		AACTACACCT			1920
AGCTACAATA	CCTTCCAAAA	TTTCCATCAT	GGCTCGGCTA	ATGATCTCAA	CTTGGAGCTG	1980
${\tt CGTCTCTCTC}$	GTACTTCCAT	CGATAATCCT	ATTTATACCA	GAAGCGGATC	GGATTTCATG	2040
GTTTCTGTTG	CTGCTACTCT	TCCTTATTCT	TTGTGGGACA	ATCATGACTA	TGCCAGCCAG	2100
AACCTCAGCG	TAAGCGATCG		ATCGAGTATC		-	2160
${\tt CGAGTTTTTA}$	CTCCATTGCT		ACGCATAAAT			2220
CGAGTGGAAG	GAGCAGTTCT	TGGTTCGTAT	AATTCCAATA	AGAAATCTCC	TTTCGGTACT	2280
TTCTATATGG	GAGGTGATGG	TATGTCCAGC		GCTACATGAA		2340
GGTTTGCGTG	GTTATAAGAA	CGGATCTATT	GCCGGTAATA			2400
TATATGCGGC				TTGAAAACTC		2460
TGGCTCTTAG	CTTTTGCCGA		GCGTGGCGCA			2520
	AGCGATCGGC		TTGCGTGTAA			2580
CTCGGTATCG	ATTGGGGATA	TGGCTTTGAC	CGTCCGGACA	ATTCTCTACA	GCGAGGAGGA	2640
AGCAATGTCC	ACTTTGTGCT	CGGACAGGAG	TTC			2673

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 522 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...522
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179

ATGAATGGCG	ATATGAAACG	GTTTTTGATT	TTGATCGGCT	TTGCACTGGC	GGTAGCTTTC	60
TCCGGTTTTT	CCCAAAAGTT	CGCTTTGGTA	GATATGGAAT	ATATCCTCAG	GAATATTCCT	120
GACTATGAGA	TGATGAACGA	ACAGCTGGAA	CAGGTGTCCA	AGAAATGGCA	AAATGAAATC	180
GAAGCTCTCG	AAAATGAAGC	CCAATCTATG	TATAAGAAGT	ATCAGAGCGA	TCTCGTATTC	240
TTGTCTGCTG	CACAGAAGAA	AACCCAAGAA	GAGGCTATCG	TAAAGAAAGA	GCAGCAAGCA	300
TCCGAGCTCA	AGCGGAAGTA	TTTCGGCCCG	GAGGGGGAGC	TGTATAAGAA	ACGCTCCGAT	360
CTGATGAAGC	CTATTCAGGA	TGAGATTTGG	AATGCTATCA	AAGAGATTGC	CAAGCGTAAC	420
AACTATCAGA	TGGTGCTTGA	TAGAGGTACG	TCCGGAATTA	TCTTTGCCAG	TCCGTCTATT	480
GACATTAGCG	ACCTTGTACT	GAGCAAGATG	GGCTTTAGCA	AG		522

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 510 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...510
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180

ATGAAACGGT	TTTTGATTTT	GATCGGCTTT	GCACTGGCGG	TAGCTTTCTC	CGGTTTTTCC	60
CAAAAGTTCG	CTTTGGTAGA	TATGGAATAT	ATCCTCAGGA	ATATTCCTGA	CTATGAGATG	120
ATGAACGAAC	AGCTGGAACA	GGTGTCCAAG	AAATGGCAAA	ATGAAATCGA	AGCTCTCGAA	180
AATGAAGCCC	AATCTATGTA	TAAGAAGTAT	CAGAGCGATC	TCGTATTCTT	GTCTGCTGCA	240
CAGAAGAAAA	CCCAAGAAGA	${\tt GGCTATCGTA}$	AAGAAAGAGC	AGCAAGCATC	CGAGCTCAAG	300
CGGAAGTATT	TCGGCCCGGA	GGGGGAGCTG	TATAAGAAAC	GCTCCGATCT	GATGAAGCCT	360
ATTCAGGATG	AGATTTGGAA	TGCTATCAAA	GAGATTGCCA	AGCGTAACAA	CTATCAGATG	420
${\tt GTGCTTGATA}$	GAGGTACGTC	CGGAATTATC	TTTGCCAGTC	CGTCTATTGA	CATTAGCGAC	480
${\tt CTTGTACTGA}$	GCAAGATGGG	CTTTAGCAAG				510

- (2) INFORMATION FOR SEQ ID NO:181
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 489 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...489
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181

ATGAAGAAAT	TTTTTCTCAT	GCTTCTGATG	GCTCTTCCTT	TGAGCCTCTT	GGCACAAAAG	60
GTGGCAGTGG	TAAACACTGA	GGAGATCATT	TCCAAAATGC	CGGAACAAGT	AGCTGCTACC	120
AAACAGCTCA	ACGAATTGGC	CGAAAAGTAT	CGCCTTGATC	TCAAGAGTAT	GGACGATGAG	180
TTTGCCAAAA	AGACAGAAGA	ATTTGTAAAG	GAAAAAGACT	CTCTACTGGA	GAACATCCGC	240
AATCGTCGTC	AGCAGGAACT	TCAGGATATT	CAAACTCGTT	ATCAGCAGTC	ATACCAAACG	300
ATGCAGGAGG	ATTTGCAAAA	GCGCCAACAA	CAGCTTTTTG	CTCCTATCCA	ACAAAAGGTG	360
GCTGATGCCA	TCAAGAAAGT	GGGTGACGAA	GAAAACTGTG	CCTACATCAT	GGAGGCCGGT	420
ATGATGCTTT	ACACCGGAGC	TACTGCTATT	GACTTGACCG	CAAAGGTAAA	AGCGAAACTC	480
GGAATCAAG						489

- (2) INFORMATION FOR SEQ ID NO:182
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2481 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2481
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182

```
GTATCGGGCT ATGTGCTCGA CCGTGGGGAA AAGCCGATCC CGTTCGCCGG AGTCAAAGTG
                                                                      180
CGTGGTACGG GGACAGGCGC AACGACGAAT CTGAAAGGAT ACTACGAGTT TCGGATGAAG
                                                                      240
GCCACGACGG ACAGCATCAC GATCGAGTTC AGCTCCATGG GGTACCAAGG GGTAAGTCGC
                                                                      300
AGCTTTCCGT CTCTGACCAA GGACACTCGG CTGAATGTTC GTTTGGCAGA GGCCGAGATG
                                                                      360
GAGCTTTCGA GCGTGACGGT ACAGGCCACA AAACGCAGAC TCAACACGAT GGAGCGCGTC
                                                                      420
AATACCCGAG ACCTTCGTGT CAATGCAGGG CCTACGGGAG GGGTGGAATC GCTCATCAGT
                                                                      480
ACCTACGCAG GAGTAACGCA GAACAATGAA CTAAGCTCGC AATACTCGGT TCGCGGAGGA
                                                                      540
AGCTACGATG AGAATATGGT CTATGTAAAC GGAGTGGAGG TTTATCGCCC GCTGCTGGTT
                                                                      600
CGCTCTGCAC AGCAGGAAGG TCTGAGCTTC GTCAATCCGG ATCTGACACA ATCCGTACAG
                                                                      660
TTCTCCGCCG GAGGGTTCAC GGCCGACTAT GGCGACAAGA TGTCCTCCGT ACTGGATATT
CGCTACAAGC AACCGCAGGA GAAGGAAGGA GCGGTACTCC TCGGGATGCT ACAATCGAGT
                                                                      780
GCCTACTATG GCAGCAGTGC CGGAGCCTTC AGCCAAATCA CGGGTGTACG CTACAAGAGT
GCCAAATCGC TCTTGGGCAC TACGGACACG AAAGCCGAAT ACGATCCGAT CTATGCGGAC
                                                                      900
GGACAGACAT TCATGACGTA CCGTTTCAGC CCCAAGCTGT CGGTTAGTTT CCTCGGCAAT
                                                                      960
ATTTCGCAAA CTCGCTACAA GTTTGTCCCT CAGACCCGTG AGACGAGCTT CGGTACACTG
                                                                     1020
AGCGATGCCA AAAAGTTGAA GATCTTTTTC GACGGTCAGG AACAAGATCG TTTCCTGACC
                                                                     1080
TACTTCGGTG CCTTCAGCAT GAACTTCGTG CCGGACGACA AACAGCGGCA TACGGTTACG
                                                                     1140
CTTTCGGCCT TCAACAGTAA CGAACGGGAG ACCTACGATA TTCAGGGAGA ATACTTTCTG
                                                                     1200
AACGATGTGC AGCTGGGGGC GGACGGAACT GCTTCGATGG CTTCGGGCTC AGAGAACTCC
AACGGCTTGG GCATCGGGCG CAATCACGAG CATGCGCGCA ACAGGCTGAG CTACCGCGTG
                                                                     1320
CTGAACATGG GTTACAGAGG GGAGATGAAG CTGAACGAGA AGCATCGCCT GCAAGCCGGC
                                                                     1380
GTATCGGCAC AGATGGAGAA AATAGCCGAC CATATCAGCG AATGGGAACG GAGGGATTCG
                                                                     1440
GTAGGATACA ACCTACCTCA CTCGGAGACC GTATTGCTGA TGTACAATAA CCTATATGCC
                                                                     1500
GATACGCAGA TGAGGGGAAC GCGCTTGTCG GCATTCGTAC AGGATCGATT CAACTTCAGC
ATGGGAGGAG GTACATTTTC TCTCATTCCG GGTATCAGAG CTTCGTGGTG GAGCTTCAAC
                                                                     1620
AAGGAGTTGC TCGTCAGCCC ACGTATCAGC GTGGGTTATT CTCCCGAAAG CAACCCGGCT
                                                                     1680
TTGGTACTGC GTGCAGCCGC CGGACTTTAT TATCAGGCAC CGTTTTACAA AGAGCTAAGG
                                                                     1740
CAGACGCATA AGGATGCCGA AGGCAATAAC GTGGTTGTCC TCAACGAGAA GATCCGCTCT
                                                                     1800
CAGGGAGCTT TTCACATTCT CGCAGGAGCA GACTATACCT TCGAAATGGG GGGGCGAAAA
TACAAGTTTA CGGCAGAGGC TTACTACAAG AGCCTGTTCA ACATCAACCC GTATATAATA
                                                                     1920
GAGAACGTGA AGATCCGCTA TCTGGGCGAA AACATCGGTT CGGGTTATGC TGCGGGTATC
                                                                     1980
GATCTCAAGC TCTTCGGCGA ACTGGTACCC GGAGTGGATT CGTGGCTGAC GGCTTCCATT
                                                                     2040
ATAAAAGCCC GTCAGAAACT GGATGGCTAC GGTTCTTTAC CACTGATGAA CGCACCCACT
                                                                     2100
TACAATTTCT CCTTCTTCCT TCAGGAGTAC GTGCCGGGCA ATAAACGCAT CACAGCCACC
                                                                     2160
CTGCGGGCTG CACTAAGCGG AGGATTGCCC CAGCTCAATC CGAGCAAAGG GCTTAGCTCG
                                                                     2220
CCGGCCTTTA CCGCACCGGC CTATAAGCGT GTCGATCTGG GGGTAATGTA CAAATGGCTC
                                                                     2280
GACCCGGATG ACTCCTTTGC CGGCCGAAGC AAATGGCTAA TGGGAGTAAA AGGGGCCTAC
                                                                     2340
ATAGGGGCTG ACCTCTTCAA TCTGTTCGAC ATGACCAACG TCAATTCTTA CTACTGGGTG
                                                                     2400
TCGGATGCCT ACCAACAGCA ATACGCCGTA CCGAACTACC TGACACGCCG CCAATTCAAC
                                                                     2460
CTGCGTCTCC TCGTCGAATT C
                                                                     2481
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2016 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2016
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183

ATGTACAGCG	GACATCATAA	AATCCATTAT	CCTTTTCTTA	TCCTGTTGGT	ATGCCTTGCT	60
TTTGCTGCCT	GCAAGAGCGT	GAAGTTGAAA	GATGCGGAGA	AGGCACATGA	TCGCCAAGAG	120
TATACCAAGG	CTGCCGATAT	GTACAATACA	TTATACAGGC	GTACCCGACG	AAAGCAGGTG	180
GAGATGAAAG	CTTATACGGC	TTTCCGATCC	GGTGAAAACT	ATCGTGCCGC	CGGCAGACAA	240
GCCAAAGCTT	TGCGTGGCTA	TCTGAATGCC	AGACGCTACG	GGTATCCGGA	TTCTGTGGTA	300
CTGCTCCGTT	TGGCACAGAC	TTATCAGCAA	GGAGGTAACT	ATAAGGAAGC	CGAGGTACTC	360
TTCCGTGGAT	ATCTGGAAGC	TTATCCGAAA	AGTTATTTTG	CAGCTATCGG	TTTGGAGGGG	420
TGTCTCTTTG	CCCGCCAGCA	AAAGGAATAT	CCTACACGTT	ACCGGATACG	GCGAGCTGCC	480
GAGTGGAATT	CGGCACGGGG	CGACTTCGGC	CCGGCCTATG	CACCCGATGC	TTCGGCTCTC	540
TATTTCACAT	CGAGCAGAAG	CAAAGACGAC	GGTTTGGATA	ATAGCAGCAT	AACGGGACTG	600
AAACCCAACG	ACATTTATAT	CATCAAACGA	GATGCACAAG	GACGATGGGG	ACGTCCCGAT	660
AGCGTGTCCG	GAGGAATCAA	CACTCCATGG	GATGAAGGCG	TGCCAACGAT	CACGCCCGAT	720

GGTAGTACCA	TATATTATAC	GTTGGCGCAG	CAAGGAGCCG	ATTACGACCG	TACGGTACAG	780
ATCTATTCCG	CCGCTCGGAG	CGGAGAAGGC	GGTTGGAGCA	ACGGTTCGCT	CGTGGACATT	840
ATGCGCGATT	CGCTCCGTAT	GGCTGCTCAT	CCCTCTATGT	CGGCATCCGG	CGATTACCTG	900
TATTTCGTCA	GCAATATAGG	CGGTAGCTAT	GGCGGCAAGG	ATATTTATCG	TGTCAAGGTG	960
TCGGATCGTT	CTTATGGTTC	ACCGGAGAAT	TTGGGGCCTG	ATATCAATAC	GCCGGGGGAC	1020
GAAATGTTTC	CCTTCATAGA	TGGGGATAGT	ACCCTTTTCT	TCGCTTCGGA	CGGACACGCC	1080
GGTCTGGGAG	GACTGGATAT	TTTCAAAGCC	ACGCTGGACT	CTACCGGCCA	ATGGCATGTA	1140
GTCAATATGG	GACAACCGGT	CAATTCCTCT	GCCGATGATT	TCGGCTTGGC	TGTGGAGCCT	1200
AAAGGCAAAA	ACAAAGAAGA	AGCTTTGCCG	GACAACGGAG	TCAAAGGTGT	ATTTTGTTCC	1260
AACCGAGGCG	ATGCACGCGG	ATGGCCGCAC	CTCTTCCATT	TCGAACTGCC	GGCTATCTAC	1320
ACCGAGATTC	AAGGTTATGT	GATGGACAGA	GAAGAAAATC	CCATAGCCGG	AGCCACTGTC	1380
AGGATCGTAG	GCGAACGCGG	CCCCGTAGGA	CAGGGATTCG	TGACTACTCG	TGACGATGGC	1440
TCCTATAAGA	TGAGCGTGCA	GGGCGATACT	CGCTATGTAA	TGCTTGCCGG	AGCATCGGGT	1500
TATTTGAATC	AGTACGTAGA	ACTCAAGACC	GATACCGCCA	AGCAGAGTGA	GACCTACTAT	1560
GTGGACTTTT	TCCTTGCATC	GCGTGAGAAA	GCCGAGGGCT	TGCAAAATAT	TTTCTATGAT	1620
TTCGATAAAG	CTACTCTTCG	CCCCGAAAGC	ATGAAGAGCT	TGGACGAACT	GATTCGTATC	1680
CTCACGGACA	ATCCGGATAT	TCGGATCGAA	TTGGGTTCGC	ATGCCGACAG	GAAAGGCCCC	1740
GATGCTTACA	ACCTCGGACT	ATCTGACCGC	AGAGCCAAAT	CCGTGGTGGA	TTACCTCACG	1800
AGTCGTGGCA	TAGCGGCCGA	CAGGCTTACG	TGGAAAGGCT	ACGGTAAGTC	TGTCCCCAAG	1860
ACGGTGACAG	CCAAAATTGC	CGAACGGCAC	GATTTCCTGA	AGGAAGGCGA	TGTGCTCACC	1920
GAGGAATTCG	TAGCACCTTT	GACCGAGGAG	CAGCAGTCAG	TCTGCGACCA	ACTGAACCGT	1980
CGTACCGAGT	TCCGTGTGAT	CGAAGAAGAG	TTGCGT			2016

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2124 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2124
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184

ATGAAAAAGT	TTTTCTTCGC	GCTACTATCG	ATTGGTATTT	CAGCGCAGGC	TTTTGCCAAG	60
ACGGACAACG	TCCCGACAGA	TTCGCTACGA	GTACACAATC	TTCAGACCGT	CACGGTCTAT	120
TCTACACGCA	CGGCCGTACC	TCTGAAAAAG	ATACCGGCCA	AGATGGAACT	CATCTCATCG	180
CGCAACATCA	AGCAGTCCGG	CTTTAACAAC	ATGACCGACA	TCCTCAAGAC	GCAAAGTTCG	240
CTCGATGTCA	TACAATACCC	GGGCTTTAGT	TCGAACATCG	GTATCCGCGG	TTTCAAGCCC	300
TCCGGCAAGT	ATGTAACCGT	ATTGGTAAAC	GGCATCCCTG	CGGGAACGGA	CAATATCTCT	360
ACGCTCAACA	CGAGCAACAT	CGAACAAATC	GAGATCCTCA	AAGGCCCGTT	CTCTTCCATC	420
TACGGCACCA	ATGCCATGGG	CGGTGTGGTG	AACATCATCA	CCCACAAATC	CAAGGACAAG	480
ATCCATGGCA	ACGTTTCTCT	$\mathtt{CTTCGGCGGT}$	AGCTACCAGA	CCATGGCCGG	ATCATTCAAC	540
TTGGGTGGCC	GCTTCGAGGA	TATTTTCTCA	TTCGATCTTA	GTCTGGGCTT	GGACAAGCAG	600
AACAAGGACT	ATAAGACCGG	ATCAAACAAT	TTCCTATCCC	TGAGCAAACT	GGAAGAAGCT	660
ATAGTAGATG	TAAATGCTAC	CAAAAACAAG	AAAATGAAGG	GGAGCGACTA	TACTGTAGCA	720
ACGGGACGTC	TGCGTTTCGG	TATCGACTTC	ACGCCCGAAT	GGTCGCTGAA	TCTGTATCAA	780
AACGTATTCC	TCGGAGATGC	GATCCCCGTA	GGAGGATCTA	TATGGGGCGT	TTACGGAGAA	840
TCCAAAAAAA	ATCTGAATCG	TTCTTCGACC	TCTTTCGAGC	TGCTCGGCAA	ACATGGCTGC	900
			ATAGAGAAAT			960
GATCCCACCG	GTTTCATCAA	CTACAAAAGC	GACTACTACA	CCTATGGTGC	CCTACTCCAG	1020
GACAAGATTT	CCTTTGGAGG	ACAAAATATC	GTACTCGGTG	TCGACAGCCG	AAACATGACG	1080
ATGGAGTCAG	AAAGATTCGA	GCAGGCAGGA	GTGAATACAA	AGCCATACAA	CCCCGGATAT	1140
GCCACGAACA	ATATCGGTTT	GTTCGGACAG	GCCAATTTCT	ACCTGCTGAA	CGATGCTCTA	1200
TCGATATCTG	CCGGTGCACG	TGCCGACTTC	ATGTTCTTTG	ACCTGAAAGC	GAACGAGTAT	1260
-			AACGTAATCA			1320
			GGTACATTCG			1380
			GGCCCGTTCG			1440
			GACTTCGGTA			1500
			TATTTCCACA			1560
TTGTCCAGCC			ACCACATACA			1620
			GACTTCGGCA			1680
	_		ATGCTCAATT			1740
ACCGATGCCC	CTTGGAGCGA	AATGTACTAC	GTTCGCAAGC	AGAACATCAC	CTTCGGTATC	1800

GAATATCGTG	GCAAAGAAGG	ACTTGAAGTG	ATGCTCAACG	GTCGCTTCAT	GGGACGCAGG	1860
ATCGAGCAAA	ACTGGTATGC	TTACTACCCC	GAAGTTCGCC	CCGAACTCCA	GCAACTGCTT	1920
GCAGCAGAAG	AGCCTGAATT	GGCTGCTCAG	GGACTGCTCC	GTCATCCGCA	AGCAATGGTG	1980
TTCAATGCCT	CTGCTTACTA	CCACATGAAC	AAGTATCTCA	CCTTCGGTGT	GAACTTGAAC	2040
AACATCTTGG	ATGAGCTTTA	TACGGAGAAA	GACGGCTACC	ACATGCCCGG	ACGTAACATC	2100
ATGGGTAAGG	TTATGGTCAA	CTTC				2124

- (2) INFORMATION FOR SEQ ID NO:185
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1386 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1386
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185

ATGAACAGGT	TTTCAAATCA	TTGGCCCTGC	ATCCTCGTGG	GGTTTGTACT	CTGGTTTGTA	60
TCGGCGAGTC	GGACTGTGGC	ACAAAACGCC	TCCGAAACGA	CGGTATCGTA	CGATACGGAT	120
ACCGCCGTAC	TCTCCGAAGC	CGATGTGCTT	CGGATCGCTC	TTAGTGAGAA	TGCCACAGTG	180
AAAGTGGCCG	ATATGGATGT	GCGCAAACAG	GAATATGCAC	GTAGGGCAGC	ACGTGCCGAT	240
CTCTTCCCGA	AAGTAGACCT	CAATGGCGTT	TACAGCCATA	CGCTAAAGAA	GCAGGTCTTA	300
TATATAGATA	TGCCCGGTTT	CAGCAGTAGC	GAAGGTATCG	AAATGGGGCG	TACACACAAT	360
ACGCAAGGAG	GGGTGAACGT	CTCCATGCCA	TTGGTGTCGG	CACAGCTTTG	GAAAAGCATT	420
GCCATGACCG	GAGAACAGCT	CGATCTGGCT	CTGGAGAAAG	CTCGCAGCTC	CCGAATCGAT	480
TTGGTGGCAG	AGGTGAAGAA	GGCTTACCTC	AGTGTATTGT	TGGCCGAGGA	CTCTTATGGC	540
GTATTCAAGC	GCAGCTATGA	CAATGCTCTG	GCCAATTATA	AGAACATATC	CGACAAGTTC	600
GATCGTGGAC	TTGTGGCCGA	GTATGATAAG	ATTCGAGCCA	ATGTACAGGT	ACGCAACATC	660
GAGCCTAACC	TCTTGCAAGC	GCAGAACTCC	GTAGCCCTTG	CTCTCTGGCA	GCTCAAGGTC	720
CTGATGAGCA	TGGAAGTGGA	AACTCCGATC	AGACTCTCCG	${\tt GTTCATTGTC}$	CGACTATAAA	780
GAACAAGTCT	ATACCGGCTA	TTTTGCCGCC	GATACGCTTA	TTTCCAACAA	CTCCTCCCTG	840
CGTCAGCTCG	ATATACAGCG	TCGTCTGGCT	GTCAGTGCAG	ACAAGCTGAA	CAAGTACAGC	900
TTCCTGCCTA	CACTCAATCT	GGGAGGGCAG	TACACCTATT	CGCTCAACAG	CAACGACATC	960
AAATTCTGGG	GCGAGGGACA	ACGCTGGACG	CCTTTCTCCA	CCATATCGCT	CAGCCTGTAC	1020
ATTCCTATAT	TCAATGGAGG	CAAACGTCTG	TACAACGTGA	AGCAAAGTGC	TTTATCGATC	1080
CGTCAGATCG	ATCTGCAACG	ACGCCACATA	GAGCAATCCA	${\tt TCCGAATGGG}$	AATCAAGAAC	1140
CAAAATGACC	GTCTGCGTAC	CTGTATGCAG	${\tt AGATTTGTGG}$	CCTCGGAAGA	GGCTGTCCGA	1200
AGTGCAGAAA	AGGGCTATCA	GATAGCAGAG	AAACGCTATC	AGACAGGCGA	AGGCACTCTC	1260
GTCGAGCTCA	ACGATGCCGA	TGTGGCTCTT	TTGCAGGCTC	GACTCAATTA	TAATCAGGCC	1320
ATATTCGACT	TTATGACCGC	AAAGGCCGAA	TTGGACAAGA	TGAACGGCAT	GGGGATTCCC	1380
GAACAA						1386

- (2) INFORMATION FOR SEQ ID NO:186
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1476 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1476

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186

ATGTGGGGGG	ACAGCCATGG	AGTGGCGCCG	AACCAAGTGC	GCCGAACGCT	GGTGAAGGTA	60
GCCTTAAGTG	AATCCCTTCC	TCCGGGTGCA	AAACAGATTC	GTATCGGATT	CTCTCTTCCG	120
AAAGAAACGG	AGGAAAAAGT	CACCGCCCTA	TATCTCCTTG	TGAGTGATTC	TTTAGCGGTG	180
CGCGACTTGC	CGGACTACAA	AGGGCGAGTC	TCTTACGATA	GCTTCCCGAT	CTCAAAGGAA	240
GATCGTACCA	CAGCCCTTTC	TGCGGATTCG	GTAGCCGGAC	GCCGCTTCTT	TTATTTGGCT	300
GCGGATATAG	GGCCTGTTGC	TTCTTTTTCC	CGATCCGATA	CGCTGACTGC	CCGTGTGGAA	360
GAGGTGGCTG	TCGATGGCCG	CCCTTTGCCG	TTGAAAGAGC	TGTCGCCTGC	CTCCCGTCGT	420
CTGTATAGGG	GGTATGAGGC	CCTCTTTGTA	CCCGGTGATG	GCGGATCGCG	GAACTATCGT	480
ATCCCGGCCA	TTTTGAAAAC	GGCTAATGGA	ACACTCATAG	CGATGGCCGA	CAGACGAAAA	540
TATAATCAGA	CGGATCTGCC	GGAGGATATA	GATATAGTCA	TGCGGCGCAG	TACGGACGGA	600
GGGAAATCGT	GGAGCGATCC	CAGGATTATC	GTACAGGGAG	AGGGGCGCAA	TCATGGCTTT	660
GGCGATGTAG	CCCTGGTGCA	AACCCAAGCA	GGAAAGCTCC	TGATGATCTT	TGTCGGTGGA	720
GTAGGCCTGT	GGCAGTCTAC	CCCCGATCGT	CCTCAGCGCA	CTTATATATC	GGAAAGTCGG	780
GACGAAGGAC	TGACTTGGTC	GCCTCCTCGG	GATATAACCC	ATTTCATCTT	CGGCAAGGAT	840
TGTGCCGATC	CGGGACGCAG	TCGCTGGTTG	GCCTCCTTTT	GTGCTTCGGG	ACAAGGGCTT	900
GTGCTGCCAT	CCGGTCGTAT	CACGTTTGTG	GCTGCCATCC	GCGAATCAGG	GCAGGAGTAC	960
GTCCTGAACA	ACTATGTCCT	CTATAGCGAC	GATGAGGGCG	ATACATGGCA	GCTTTCCGAC	1020
TGTGCATACC	$\tt GCCGTGGCGA$	TGAGGCAAAG	CTTTCATTGA	TGCCCGATGG	CAGGGTACTG	1080
ATGAGCATAC	GCAATCAGGG	ACGGCAGGAG	AGCCGACAGC	GTTTCTTCGC	TCTCTCCTCC	1140
GACGATGGCC	TTACTTGGGA	GAGAGCCAAG	CAGTTCGAGG	GCATCCATGA	CCCCGGCTGT	1200
AATGGAGCTA	TGCTTCAAGT	GAAAAGGAAC	GGAAGGGATC	AAGTGCTGCA	CTCCCTGCCT	1260
CTCGGCCCGG	ATGGGCGTCG	CGATGGAGCT	GTCTATCTCT	TCGATCATGT	CTCCGGCCGC	1320
TGGTCCGCTC	CCGTTGTTGT	CAATTCAGGA	TCGAGTGCCT	ACTCGGATAT	GACTCTGCTG	1380
GCGGATGGAA	CGATCGGTTA	TTTCGTCGAA	GAGGGCGATG	AGATCTCATT	GGTTTTCATT	1440
CGGTTCGTCC	TTGACGATCT	CTTCGATGTC	CGGCAA			1476

(2) INFORMATION FOR SEQ ID NO:187

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 735 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...735
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187

ATGAAAAAAG	AAAAACTTTG	GATTGCGATC	GTCGCCGGTT	TGGCTTTCGT	ATTGGGCCTT	60
		CGCTCAGCTA				120
		CAAATCCGAT				180
		GGCCTACAAG		-		240
GACTATTTGA	AAAACAAGCA	GCTGCCCGAT	TCGTCTTATA	TCTTCTCAAG	CGTAGCCATC	300
TCTAAAGAAT	ACAACTACTA	TTACGATCCT	CGGCAGGAAC	AAAACGTCAG	GACCTTTGCC	360
GGGTATCTGC	TCAGCCAGAC	AGTTACGGTG	ACCTCACAGG	ACATCGAACA	TGTGGAGAAA	420
ATATCTCGCG	ATATAACGGA	GCTGATCAAT	CAGGGGGTAG	AGATTACCTC	CGACCGTCCG	480
GCCTATTACT	ACACCAAGCT	CAATGATCTG	AAGGTGGAGA	TGCTGCGCAA	TGCCTCCGAA	540
GACGCTTTCA	ATCGTGCTTC	GGTCATTGCG	GAGGGGAGCG	GTTCCTCCGT	GGGTAAGATG	600
CTATCTTCTT	CGATGGGCGT	GTTCCAGATA	GTGGGGCTCA	ACTCGAACGA	AGATTATAGC	660
TGGGGAGGTT	CGTTCAATAC	GTCTTCCAAG	ATGAAGACGG	CAAGCATAAC	GGTTAAGGCT	720
TCTTTCGCTT	TGAAG					735

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...828
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188

ATGAAAAAA	CAATTGCAAT	TATCGCCTCA	GCCCTCTTGG	CTTTAGGAGC	CGTCGGCTGT	60
AAGAAAAATG	CTGACACTAC	CGCTGTCAGT	GAAAAGGATA	GCATAGCCTT	GTCCATGGGT	120
ATTTTGTACG	GACAGGATTT	TGCCAATCAG	TTCGAAATGT	CCCGCTTGCA	AGGCCAGCCG	180
ATTGATTCGG	TAGCTTTCTT	GGACGGTTTC	AAATATGGTA	TCGATACGAC	GCGCTTCTCG	240
TACAATCTGG	GAGCCATCTA	TGCTTCCAAT	ATAGCTCGTC	AGCTGGCTCA	TGATTCCATC	300
GATATCGACA	AGTTCTATGC	AGCCATGCGT	GCGGCTCTTC	TTAAAGACAC	CGTATCTATC	360
GCCATGAAGC	CTGCAGATGC	ACAGGCTTTC	ATGCAACGAA	TCCAAGCCAA	AAAGCAGCGA	420
GAAAACAATA	TGAAGCAGTT	TGGCCAGAAC	ATCGAAAAGG	GTAATGAATA	CATCGATACC	480
TTTAAAAAAG	AAGATGGTGT	AACTGTTACG	ACAACTGGTC	TGGCATACAA	GACTCTTCAG	540
GAAGGTACGG	GAGCTACTCC	CTCTTTGGCC	GATACTGTAC	${\tt GTGTCAAGTA}$	TGTGGGTACT	600
CTGGTCGATG	GTAAAGAGTT	CGACAAAAAC	GAAGAAGGAA	${\tt TCGAATTTGC}$	CGTTACCGGT	660
GTGATTAAAG	GCTGGACGGA	GATGCTCCAA	CTCATGAAGG	TCGGTCAGAA	AGTTCGCGTG	720
GTAATCCCAC	AGGAGCTGGC	TTATGGGGAG	ACCGGCAACT	ATACCATCGA	ACCGTTCTCT	780
ACCCTGACGT	TCGAGATGGA	ACTTATCGGG	ATCAAGCCCG	GGAAAAAG		828

- (2) INFORMATION FOR SEQ ID NO:189
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2325 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2325
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:189

ATGAAAGTAT	TACGGCAAGT	ATTCCTCCCC	ATCCTTTTTG	TCCTACTGAC	AGGTGCCTGC	60
TCCACCACAA	AGAATCTGCC	GGAAGGCGAA	CAGCTGTATA	TCGGAATGGG	CAAGACACAG	120
ATACTCCGGC	AGGACAAGAG	CCACGCCGGC	CAACAGGCTC	TGACCGAAGT	GGAGAGTACA	180
CTGAAAGTTA	CACCCAATGG	AGCTATTTTC	GGCAGTGCAA	GTGCCTCCTT	ACCCAAGATA	240
CCATTCGGGC	TATGGCTATA	CAACAGCTTC	$\tt GTGGGGGATT$	CCACTGTCAT	TTCGAAATGG	300
ATATTCGACA	AGTTTGCAGC	CAAGCCGGTT	TTCATCAGTC	AGGTCAAATC	CGATAGCCGG	360
GCTAAGGTGG	CGACGAACAT	CCTCCGCGAA	CACGGGTACT	TCGATGCTAA	AGTAAAAAGC	420
AGTGTGACCA	CTCTGAAAAA	GGACTCGCTC	AAAGCCAAAA	TCTCCTATAC	GGTGGATATG	480
GCCTCTCCTT	ATCATTACGA	CAGCATCATT	CCCTTACCGA	TCAGCACTTT	CCCCGACAGC	540
ATTCTGGCTT	ACAGGCAGAC	TCCGTCTTTG	ATCAGGAAAG	GAGACCAGTT	CAATTTGGCA	600
AAGCTGCACG	AAGAGCGTCA	GACCATCAGT	GCCCTGCTGA	GAGACAATGG	TTACTACTAC	660
TTCCGCCCAC	AGGATATTAT	CTACGAAGCC	GATACCCTCC	TCGTAAGAGG	TGCCGTATGC	720
CTGCGAGCCA	AGCTCTCGGA	AGATACTCCA	CCCCAAGCCA	TGCGCCCGTG	GAGGATAGGG	780
AAACGGACAG	CAGTCCTGCT	CGGAATGAAC	GGAGAAAGCC	CGACAGACTC	GCTCGAAGTG	840
GAGGATATGA	AAGTCCTTTA	CTATCGTAAA	ATGCCGGTTC	GCCCCAAGAT	TTTGGCCAAA	900
${\tt CGCTTTCGTT}$	TCTTCTCCGG	CAATCTGTAT	CGGCAGAAAG	ACGATGAGAC	GACACGCAAA	960
TCCTTGGCTC			ATCGATCTCA			1020
ATTTCCGGCC	TTTTGGATGT	GCGACTGCTA	ACCACCCTCG	ACAAACCTTG	GGATGCATCA	1080
TTAGAGACCT	TGTTCACGAG	CAAAAGCAAT	GACTTCATCG	GTCCCGGACT	GAATTTTGCT	1140
CTTGCTCGGC	GCAATGTATT	CGGCGGAGGA	GAAAATCTTT	CTTGGAATAT	CGGTGGATCG	1200
TATGAGTGGG	AGACCGGCAA	TCGTCCCGAA	AATAGCAGCA	ATCGGCTGAT	CGATATAAAT	1260
TCGTACAACA	TGAATACGGC	CGTGAACCTC	TCGTTTCCCT	CGATTGTATT	TCCCGGTCTG	1320
CTGGATAAAT	ACTATTACTA	CCCCACGACT	ACGACTTTTC	AGGCTTCTGC	CACCGCGCTG	1380
AACAGGGCAC	ACTACTTTAG	CATGTACTCT	TTCGGCTTTT	CGACCACCTA	CGAATTTCAG	1440

CCCTCCAAGG	AACACCGGCA	TGCTATTTTC	CCGCTCAAGC	TCAACTACAA	CCTCCTGGGG	1500
CATCAGACAG	AAACTTTCCA	GGCCATTACG	GCGAACAATC	CGCCCCTGCT	GCTCAGCCTT	1560
CAGAGTCAGT	TCCTTGCTCA	AATGGGGTAT	ATCTATACGT	TCAACAAATC	CGTTTCAGAG	1620
AAAAGTCCTC	ATCATCTTTG	GATGCAATTC	GGACTATCCG	AGGCAGGCAA	TCTCCTGAAT	1680
CTGATCTATC	TGGCAGCCGG	CAAGAAGTAC	AGCGACACCA	AGAATTTCGT	CGGCGTCCCC	1740
TTCTCTCAGT	TCATCAAAGC	CACGGGAGAA	CTGCGCTATT	CCTATACCAT	AGACCGCAAT	1800
CAGTCACTGG	CAACCCGTTT	CGGGACAGGC	GTGATATATA	GCTATGGCAA	TATGCGAGTG	1860
GCACCCTATA	GCGAGCAGTT	CTATGTAGGC	GGTGCCAATA	GTATCAGAGC	TTTCACCGTC	1920
CGTAGCATCG	GCCCCGGACG	GTTCAATCCG	GATTCCGACA	ATCAGTATTC	CTATTTGGAT	1980
CAGGTGGGCG	AATTCAAACT	CGAAGCCAAC	GTGGAATATA	GAGGCAAGCT	TTTCGGGGAT	2040
CTCCACGCAG	CCGTTTTCCT	CGATGCGGGC	AACGTTTGGC	TCTTGAGGGA	GGATTCTTCC	2100
CGTCCGGGCG	GTGCTCTGTC	CGAAGTGGGA	TCGGTGAGCA	ATTTCCTGAA	TAGCATCGCT	2160
CTCGGCACCG	GTGTCGGCCT	TCGCTACGAT	CTGGCATTTC	TCGTGGTTCG	TGTCGATGTC	2220
GGCTTCGGTC	TCCACCTTCC	TTACAATACG	GGTAAGAAAG	GTTACTACAA	TATCCCACGC	2280
TTTAAGGATG	CCATCGGTTT	CCATTTGGCT	GTCGGCTATC	CCTTC		2325

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2322 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2322
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190

ATGTCCTCGC	ATTCCGTTCG	GTATCTAATC	GGCATTGCCG	GCTGCTTGCT	CCTCATGCTT	60
GCTTCCTCCT	GCTCGGTCAC	CCGTTATGTG	CCGGACGGTA	GCAGACTATT	AGACAGGGTA	120
ACGATCGCAA	GCGAAACGGG	CAGTATCGCT	CTGCCGGAAG	ATATTCGGGA	CTATACCCTC	180
CAGCAACCCA	ATTACAGACT	GTTCGGGATG	ACTCGCTGGC	TACTGCGCGT	CTATAGCAGC	240
TCGAATCCGA	ACAGCAACAG	CTGGTGGAAC	CGTTCGCTCC	GGAAAATGGG	CGAACCGCCT	300
GTCCTCATCG	ATTCTGTCCT	CACCGATCGT	ACTGCCAACC	GTCTGGCAAA	GGCGATGGCC	360
GGCGATGGCT	TTCTCGATGC	TACTGCTCGT	GCCGTGGTAG	ACACCGGCTT	GTACAAGAAA	420
GCTCGCATTA	CTTATCTGAT	TCAGCCCGGA	AGCCGTTATT	ATATACGCAA	TATGGCTTTG	480
GATGTGAAGA	ATCCACTCCT	TCCTCCCGTT	${\tt GCGCTTGGCA}$	ATTCGCTTCC	TTCGGCATAC	540
AAGGTCGGGA	TCAGCGAGGG	TTCTCCCTTG	TCGCCCATCG	TACTCGATGA	AGAGAGAAAG	600
GCGATAGCTC	GTCATATGCG	CAACAACGGC	TTCTGGAAGT	TCTCCGCCGA	GGATGTTTAT	660
	ATACTACCGT					720
	GCATCGGGCG					780
	TCGAATCGGA					840
	ACACTGTTTA					900
	TGTCCGTTAC					960
	TGAATGCGCT					1020
	ATGAGATTGC					1080
	CCAAGAGCAA					1140
	CGGCTTTGTC					1200
	TCAAACTCAA					1260
	GGGTGGAAAG					1320
	GCCGGCGGCT					1380
	AGTTTGATCG					1440
	ATCGTCTGCG					1500
	ATCCCGACTT					1560
	TTATCCTCGG					1620
	TATCCAATCC					1680
	TTTCTTATCT					1740
	ACTATGCTCA					1800
	ACAATACTTT					1860
	ATATACCCTT					1920
	TCCGTACCCT					1980
	TGGGTGATAT					2040
	GCGCAGCAGC					2100
	AGGACGGTCT					2160
TACGGTCTGG	GGCTTCGTCT	CGACTTCGAT	TATTTCCTTG	TGCGGCTGGA	TGCCGGACTG	2220

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2601
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191

ATGAGAAAAA	GAATTCTACA	ACTTTTCCTG	ACCGCATTGC	TGCTGGCATT	AGGCTCCTCT	60
			AAGGTGATCG			120
CTCATCGGTG	TATCCGTAAG	CACCGGTCAG	GGAGCATCCC	TCCGCGGTGT	AACCACCGAT	180
			GCCAAATCTG			240
			AGAGGTTCTC			300
			GAGATTCAGG			360
			AATATCCGTG			420
			AAATCCACTC			480
			AATGTGCGTG			540
			GGTATGGAAG			600
AATTGGAGTG	GTCTGATGAA	TCAAGCCAGT	ACCATTCAGA	TTCAGCGCGG	ACTCGGAGCC	660
TCCAAGCTCG	GTATCAGCTC	GGTAGGTGGT	ACGATGAACA	TTATCACGAA	GACTACGGAC	720
			ATGGGTAATG			780
TTCTCCATTT	CTACGGGTAT	GAACGACGGT	TGGGCTATCA	CCATTGCAGG	CTCCCATATG	840
ACGGGTCTGG	GTTATGTGAA	GGGGCTGAAG	GGACGTGCAT	TCTCTTACTT	CTTCAACGTT	900
TCGAAGAAGT	TCAATGAACG	TCATACCCTC	TCTCTTACCG	GATTCGGTGC	ACCACAATGG	960
CACAACCAAC	GTTCTTCCAA	ATATTCTGTA	GCCGACTATG	ACAAATACGG	CATCCGTCAC	1020
AATCAATCCT	TCGGCTATCT	GCGAGGCGAA	CTGACTCCTA	CGGCTTATGC	TTACAATACG	1080
TACCACAAGC	CCCAGTTCTC	GCTGAACCAC	TTCTGGAAGA	TGGATGAAAA	TACCTCTCTT	1140
TATACcgCAN	CCTACGCATC	TTTGGCTACC	GGTGGAGGTC	GTCGCGCTTA	TGGAAAGAAC	1200
AGTAAGTGGG	TATTGATCAA	CTACAACACC	GGACAACCCT	ATGAACAAAC	AAAGGTGACT	1260
			CTGGCTGCCA			1320
TCGGAAGCAA	TTTTTGCCCT	TGGCTCCAAC	TCTCACAAGT	GGTTCGGTCT	ACTCTCTTCA	1380
TTCAAGAAGA	AACTTAATAG	TTCGCTGACT	TTGACAGCCG	GATACGATGG	GCGTTACTAC	1440
CGTGGCGACC	ACTATGACAA	GATCACCGAT	CTGCTCGGCG	GTAGCTACTA	CATAGAGGAT	1500
			GGTCAGCAAC			1560
AATCGGGACT	ACACAGGCGA	AATCATGTGG	CACGGCCTCT	TCGCACAGAT	GGAGCATTCG	1620
			TCTATCAACT			1680
			CTGCCCGGCG			1740
			TACAAGTTCG			1800
GCCAATGGCG	GTTTCTTCAC	ACGTGCACCA	CTCTTTGGCA	ATATCTATGC	TGCGGGGGCT	1860
			AAGGTGCTTA			1920
			ATCAACGGAT			1980
			TATGTTTATC			2040
			CGTCCTATTC			2100
ATGTTCTCTC	TCGGTGACTG	GACTTGGCAA	AACAATGTAA	GTTACACTTC	TTACGACGAA	2160
			TATATCAAGG			2220
GCACAGATGA	CGGCTGCTGT	ATCGGCAGAC	ATAGAGCTGT	TCAAGGGTTT	CCATGTCATA	2280
GGTAAGTACA	ACTTCCTTGG	CAAGAACTAT	GCAGGATTCA	ACCCCGCAAC	GCGTAATGCA	2340
			GTGGAATCAT			2400
			AAGCTTGGTT			2460
			TATGTGAGCG			2520
GGTAAGAAAC	ACGATGAGGC	TTCGGCTCTC	GTATGGTACG	GTTTCGGCCG	CACTTGGTCT	2580
ACCGGTATTC	GTGTAAACTT	С				2601

- (2) INFORMATION FOR SEQ ID NO:192
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1293 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1293
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192

ATGAAGTTTT	CAATCCGCCT	TTTCCTCTGC	ATCATCTTTC	TCCTCTCTGC	ATTTATCCTG	60
CCTGCTCTCG	GACAAAAATC	CAAGCAGGTA	CAGCGACTTG	AGAAGCAACG	TAAGGAGGCC	120
CTCAAAGCCA	TCGAAAAAAC	CGATCGCGAA	CTACGAAATA	CCAAGAAAGA	CAAGCAAGAC	180
AAACAAAAGC	ATCTCAACCT	CCTGAACAAG	CAGGTTGCTC	AACGCAAGCA	GATGGTACAA	240
CTCTTGGACA	ATGAGGTCAA	AGAGTTGCAA	TCCGACATTG	ATTCCATGAC	GGGTGTATGT	300
CATCAGCTCT	CTGTAGAAGA	GAAAGCCCGA	TCCGATGAAT	ATGCCCAAGC	TCTACAGTCT	360
ATGCAAAAGC	${\tt GGAAACGCTC}$	GTTGGATCGC	ATCCTTTTCA	TTTCATCGGC	CAAGAGCTTT	420
GACGAAGGCA	TGCGACGGAT	GCGTTTCTTG	GAACAATACG	CTTCTGCATA	CAAGCTGGCA	480
TCTGTCCGGC	TGCGCGATAC	ACGTAGCAAG	TTGGAGACTG	AACGTGCGAC	TGTAGAAGAC	540
GCCAAAAAGG	AGAAAGGACA	TCTCTTAGTC	ATCAGAGAAG	AGGAAAAAA	GAAACTCGAA	600
GGACAGCAAG	CCGAGCAACG	TCGGCAGGTG	CAGGCTTTGG	GAGCCAAACA	AAAAGACTTG	660
GAAGCGCAGC	TGCGAAAGCA	GAAAAAGCAA	GCCGAAGCTC	TGAACAGAAA	GATCGAGAAA	720
CAGATTGCCA	AGGAAATAGA	AGCTGCCGAA	CGTCGTGCTC	GAGAAGAACG	TGAACGGTTG	780
GCACGCGAAG	CCAAAGCCAA	GGGTAAGCCG	GTTCCTGCCG	AACCGGAACG	GAAGGCGGAG	840
ACCAAAGGCG	GCTATGCTAT	GGATGCCTCT	GAGCGTGCTC	TCTCGGGCAG	CTTTGCACAG	900
AACAAAGGTC	GCCTGCCCGG	CCCCGTTCGC	GGCAGATACC	GAATCGTAAG	CGACTTTGGC	960
GTGCATCAGC	ACAGTGAGCT	GAAAAAAGTA	CAAGTTAATA	ATGGAGGTAT	CGACATCGCT	1020
GTAGCAACAG	GATCCGATGC	TACCAGCGTA	TTCGATGGTG	TAGTGTCCAG	TGTATTCGTG	1080
ATACCCGGTT	ATAATTCGGC	CGTAATGGTT	CGTCACGGTA	ACTATATCAC	GGTTTATGCG	1140
AATCTGAGCA	AAGTGTATGT	AAATTCCGGC	ACTCGTGTTA	AAACGGGTCA	GGCTCTTGGT	1200
CGTGCCTATA	CGGATCCTTC	CAACAACCAG	ACCATTATTC	ACTTCGAAAT	CTGGAAAGAA	1260
CGCAGCAAAC	AAAACCCAAG	ACTATGGTTA	CGA			1293

- (2) INFORMATION FOR SEQ ID NO:193
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 999 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...999
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:193

ATGAAAAAGT	ATTTGTTATA	TGCCTCGTTG	CTAACGAGTG	TTTTGCTCTT	TTCCTGTTCA	60
AAGAACAATC	CTAACGAGCC	GGTGGAAGAC	AGATCCATCG	AAATTTCTAT	AAGGGTAGAT	120
GATTTCACCA	AAACGGGTGA	GGCAGTACGC	TATGAAAGGA	ATCAAGGAAG	TGCTGCCGAA	180
AGGCTCATTA	CCAATCTTTA	CCTCTTGTTG	TTCGATCAGT	CAGGGGCGAA	TCCGGCGAAA	240
TACTATATTA	CCGGTAACAC	TTTCACCGGA	GGGACCTGGC	TTCCTGACGA	TATGAAGGTG	300
AAGTTGGATA	TGACACAATC	CGAGGCCGGA	GAGCGCAAAG	TATATGTCGT	AGCCAATGTT	360
GATAATGCGG	TTAAAACGGC	TCTTGATGCT	GTCGCTAACG	AAAGCGATTT	GCAGACTGTA	420
AAGAGGACGA	CTGCAATGCC	GTGGTCGACC	GATATAGCCT	CTCCTTTCCT	GATGTCCGGA	480
AACAAGACAC	ACGACTTCTT	GGCCAATCGT	CTTTTGGACA	ATGTGCCCCT	TGTGCGTGCC	540
ATTGCCAAGG	TGGAGCTGAA	TATCTCGCTG	AGTGAGAAAT	TTCAGATTGT	GCCGATAATT	600
GTCAATGGTA	GTTTGAGTGA	GTTCAAGTTC	AGATACGTAA	ACTTCGACAA	GGAGACCTAC	660

GTAGTGAAGC CAACGACCAA GCCGGACAAT CTCATTAGTT CTGCTAATGG TGTTTGGCCT CAGATTACAG ATTGGACTGT ATGGGGTGCT TCCTTAAATA CTTCTCCTGC TCCGGATGCG GGCACAGGTT ATACATTGGA TGCAAATGGC AAGGTAACGG CACTACGGAT TGTTACCTAT CTGAATGAGC GCGATAGCAA AGGGCTACG GTAGAGGTCG CATTGCCTCG TGTGGATGAT GGCACCCTTC CTCCTCCGGA ATTCGGTCCG GAGCTTTATC GTTTGCCTTT GCCGGACAAG ATCCTGCGCA ATCATTGAA GTCGAGATT	720 780 840 900 960 999
(2) INFORMATION FOR SEQ ID NO:194	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 945 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: circular	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: PORYPHYROMONAS GINGIVALIS</pre>	
(ix) FEATURE:	
(A) NAME/KEY: misc_feature (B) LOCATION 1945	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194	
ATGATCAGAA CGATACTTTC ACGATATGTA TCCTCGAACT TTTGGAGTCG GGGAGCTACC	60
TTTTTTTCA CGATTTTCCC GGCCTTCATC CTCGCCGCTA CTGCTTTGCC GGCTTGTGGA	120
GGGGGTACTG CTTCAGGCTC CGATCGTACG CTGGCTGTGA CCATCGAGCC ACAGAAATAC TTCATCGAGT CCATTGCGGA TAAGTCGGTG CAGGTGGTGG CATTGGTACC GGCCGGCAGC	180 240
AATCCGGAGG AATACGACCC TTCGCCTACC GTGATGAAGC GTTTGTCCGA AGCAGATGCC	300
TACTTCTATA TAGGAGGACT GGGGTTCGAG CAAAGAAATC TCGCTGCCAT TCGGGACAAT AACCCTAAGC TCCCTCTTTT CGAAATGGGC AAAGCCTTGG CGGATGCCGG AAGTGCAGAT	360 420
CTCCACGGCT CCTGCACAGA TCATTCTCAT ACAGACCTGC ATGCCCATGA TCCGCACTAT	480
TGGAGCAGTG TGGTAGGGGC AAAGGCACTC AGTCGTGCTG CATACGACGC GCTTGTGGAG CTTTATCCGA ACGAGAAAGA CAAATGGGAC AAAGGGCACG ACCGTCTCAA CGGACGTATC	540 600
GACAGCGTGA AGAGACTCGT CGATACCATG TTTGCCAATG GCAAAGCAGA CAAAGCCTTC	660
GTCATATATC ACCCATCGCT CAGCTTTTTC GCCCAAGAGT TCGGCCTGCG GCAGATCGTC ATAGAGGAAG ATGGGAAAGA GCCTACGGCT GCCCACCTTC GTCGTGTGAT CGATCAGGCA	720 780
CGTGCCGATG GTGTCAGAAT CGTATTTATC CAACCCGAAT TTGAAACGCG TCAGGCGGAG	840
GACATCGCAC GCGAGATCGG TGCTCGTCCG GTAAGGATCA ATCCTCTGCG CAGCTCGTGG GAGGAGGAAA TTTTACATAT TGCTCGCGCT TTGGCTCATG AACGG	900 945
(2) INFORMATION FOR SEQ ID NO:195	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 2544 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: circular	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: PORYPHYROMONAS GINGIVALIS</pre>	
<pre>(ix) FEATURE: (A) NAME/KEY: misc feature</pre>	
(B) LOCATION 12544	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195	
ATGATCGGAA AAAAAATCTT TTTTATCCTG CTGGCGCTCA TTGCGTTCAG TGGGCTGAAC	60
GCAGCGACAG ACACTGAGTT CAAGTACCCG ACCGATGCCA ATATCATCGG TCACGTCAAA GACAGCAAGA CGGGTGAACA CCTTGTCGGT ATCACTATTG CTATCAAAGG CACTACCTTT	120 180
GGTACATCTA CAGATGCAAC CGGGCACTAC TATCTTCGTA ACTTGCGTCC GGGTGAGATC	240
ACTTTGATTA TGCGTGGCAT GGGCTATAAG AGCCAGGAGC GCGTAGTCCG CGTAGAAAAG	300

GACAAGACTA	TCGAGGTGAA	TTTCGAAGCA	GAAGAGGATG	CCATCAATCT	GGACGAAGTC	360
GTGATTTCGG	CCAACCGCGA	ACTGACGCTT	CGCCGTCTTG	CTCCTACTCT	GGTAAATGTA	420
TTGAACGAAA	AAGTCTTCTC	GCAAGTCAAT	GCTTCTAACC	TGGCTCAAGG	CTTGTCATTC	480
CAGCCGGGAG	TTCGTGTAGA	GAACAACTGT	CAGAACTGTG	GTTTCAATCA	AGTTCGTATC	540
AATGGACTGG	ATGGTCGTTA	TGCACAGATC	CTCATCGACA	GCCGTCCCAT	CATGAGTGCC	600
CTTGCCGGTG	${\tt TTTACGGTCT}$	GGAGCAGATC	CCTGCCAATA	TGATCGAACG	TGTGGAGGTA	660
GTACGTGGTG	GAGGATCGGC	CTTGTACGGT	TCTTCTGCTA	TTGCCGGAGT	GGTGAATATC	720
ATCACCAAGG	AACCTTCTCA	CAATTCTTTC	ACATTCAATG	AATCTCTGAG	CTTTACCGGT	780
TTCAGCAAGC	TGGATAACAA	CACGAACTTC	AATGCCTCCA			840
GCCGGTGCCA	TGGTATTCGG	GCAGGCTCGT	TACCGCAACC	ATTGGGATGC	TAACAATGAC	900
GGTTATTCCG	AATTGGGTAA	AATAGATGCC		GAGCGCATTC		960
		GACGGGAGAG	-	TCAGTGAATT		1020
GGCGATCGTA	TCGATTTGCC	TCCTCACGTA	GTGGGTGTAG	CTGAACAAAC	TGACCATAGC	1080
	GAAACTTGAA		TTCTCTTCCA			1140
			AAGAGCTATT			1200
			GGCTACCCTA			1260
			TATATGGGCG			1320
			CTTTTGTTCG			1380
			TGGCAGACCG			1440
			AATATCAACA			1500
			CTTGTTGGCG			1560
			ACCACACTGC			1620
			TTCCGCGCAC			1680
			CAGAAAGTAT			1740
			GCCGATATGT			1800
			ACTCGTTTGC			1860
			CGCTACACGC			1920
			GTCGCATACA			1980
			GAAGCACAGG			2040
			GCCAATGCAA			2100
			CGTACCCCCA			2160
			ATAGCCCTTA			2220
			GTGAAGTCTG			2280
			AAGGCTCCCC			2340
			GTGGGTTATG			2400
			AATATCTTCA			2460
			ATCTATGGTC	CTACGCAGCC	GCGTACAGGC	2520
TACATGGGCT	TGGTAGTGAA	GTTC				2544

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 606 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

(A) NAME/KEY: misc_feature

(B) LOCATION 1...606

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196

ATGACAGTAA AGCGCGCAGT	GCGAATAGCA	CTTCTCACGC	TGATAGGCAT	TCTTTTTTCC	60
TCACCTTCTC TTGTTCGGGC	GCAAAGTCTT	TTCAGCACCG	AACATGTCTT	GCAACTATAC	120
AACAAGATAC TCTATGGAGA	GTCGGCGGCG	GATACCGTCG	CAGAGAAAAC	GGCAGGTGAG	180
TCGGCATTTC CTTTTATAGA	CAAACTCATC	AATCTCGGCC	GCACTTTCCT	CGGCAAACCA	240
TATCGCTATC GCGGTCCTTC	CCCATGGCCG	ATGGACTGCT	CGGGCTATGT	GTCTTACCTC	300
TACTCCAAAT TCGACATCAA	ACTCCCACGT	GGTGCGGCAG	CACAGAGCCA	ATATACGAAT	360
CCTATCGAGC GCGAGGATGT	TCGTCCGGGC	GACCTCCTTT	TTTTCAAAGG	CCGCAATGCA	420
CGCAGCAACC GTATCGGGCA	TGTAGCTTTG	GTCGTATCTG	TCGATGAAGA	TGATATTACC	480
ATGATGCACA GCCGCAATTC	GCGAGGGATC	GTGATCGAAA	AACTCAATCG	CAGTGCATAC	540
TTCTCCCGTC GCTTGGTGAG	CTATGGCAGG	GTACCCGGAG	CCAAGAGAGT	GATCCCACGA	600
AAAAGT					606

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1365 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1365
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:197

ATGAAACGGA	CAATCCTCCT	GACGGCACTG	ACCGTCCTAT	CTTCGCTCTC	CTTGCTTCGT	60
GCACAAAATG	AATCCGAAGC	ATCAACCAAT	CCGATGTCAG	GCCTCTCCCT	GGAAGACTGT	120
ATCCGGATAG	CCAAGGAGCG	CAACCTGAAT	CTGCGCAGAC	AGGAGATCGA	ACAAGAAAAC	180
CGAATCATTA	GTCTCGATGC	AGCACGACAC	AGTTTCCTGC	CCTCGGTCAA	TGCAGGCATC	240
GGACACAACT	ATAGCTTCGG	ACGTTCGAAA	GACAAAACGG	GAGTAACCGT	AGATCGCTCC	300
TCGATGAATA	CCAATCTCAG	CATCGGAGCT	${\tt TCGGTGGAAG}$	TATTCAGCGG	CACACGTCGT	360
CTGCACGACC	TCAAGCAGCA	AAAGTACAAC	GTGGAGGATG	GTATAGCCCG	ACTTCAAAAA	420
GCGCGTGAAG	ACCTCAGCCT	${\tt GCAAATCGCG}$	GCTCTCTATA	TCAATTTGCT	CTTCCGTCAG	480
GAAATGACTC	GTACGGCAGA	AACACAGTTG	GCACTGATTC	GCGAGCAACG	CAATCGCACG	540
GCCGAAATGG	TTCGCGTAGG	TAAATGGGCA	GAGGGTAAGC	TCCTCGACAT	AAATGCCCAG	600
ATGGCCAAGG	ACGAACAACT	TCTCGTACAA	TATCGTTCGG	AGGAGGAGCT	GGCTCGTCTG	660
GACTTGGGGC	AAGCCCTCGA	ACTGGAGCAC	CCCGAAAGCA	TTGCAGTCAA	GGCTCCCGAC	720
ACAGACGTTC	TCGTAGCAGA	AAGGTTGGGA	TCTCTCCTTG	CTCCCGAAGA	GATCTATCGC	780
ACGGCTCTCG	GCTTGAAACC	GGCACTGCAT	TCGAGCGAGC	TGCAAATAGC	TTCGGCACGC	840
GAAGGTCTGG	CCTCGGCTCG	TGCGGCATAC	TTCCCGACGC	TCAGCCTCTC	TGCCGGATAC	900
AGCAACGGTT	ACTTCCGCGA	CCTCGGCAAG	GAGTATGCCG	CCATCAACCC	CTCCTTCTCC	960
GAACAGTGGA	AGAACAACGG	CAGCTACAGT	ATCGGACTCT	CTTTGAATAT	CCCCATCTTC	1020
TCTGCCATGC	AAACGCAAGA	TCGCGTTCGG	AGCAGTCGCC	TGCAAATACG	CTCAAGCGAG	1080
CTTCGACTCG	TCGAAGAGAA	AAAAGCCCTC	TATAAAGAGA	TCAGGCAAGC	ATACAGCAAT	1140
GCCGTGGCAG	CCGATAAGGC	CATCGCAGCA	GCCGAAAACA	GCAAGGCCGC	TACGCTCAAG	1200
GCATACGAAT	ACGCTCGCGA	CAGCTTCGAG	GCAGGGCGCT	TGTCTGCCTA	CGAATATGCC	1260
GAGGCAAAAA	CAAAATACGC	CCTCAGCCAA	GTGGAAGAAC	TTCGTGCCAA	GTATGACTTC	1320
ATATACAAAG	CCAAAGTTTT	GGATTTCTAT	CAGGGCAAAG	ACTTC		1365

- (2) INFORMATION FOR SEQ ID NO:198
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1332 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1332
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198

ATGCGTTTCC AACATTATCT	CATCTGTACG	GCTGCCGTAG	CGGCTTTGGC	TGCGAATCCC	60
CTTACGGGCC AATCGAATAT	GACCCTCGAA	GAGTGCATAG	ACTATGCACG	CCGGCACAGT	120
TCGGCCGTGG CGCTGTCCGC	TGCGGAACTG	GAGCAGTCCA	AGGCCGATTA	CCTTCAGGCC	180
GTCGCCAATT TTCTGCCCCC	TGTATCGGCC	GGAACCGGTG	CTTCGTGGAA	TTTCGGACGC	240
GGATTGGATG CCGAGACGAA	TACCTACACC	GACATCAACA	GCTTCAACAA	TTCGTACAGC	300
ATACATGCCA CGATGACCCT	TTTCGACGGT	TTGCAGAGTG	TCTATCGACT	GCGGATGGCG	360
CATGCACGCC GGGAGGCTTC	GCGCCTCTCC	GTTCGCGAGC	AGCAGGAGCT	GGCAGCTCTC	420

GGCACCACGG	AGGCCTACTA	CGACCTCGTC	TATGCGCGCC	AAATGCAAGA	GCTGGCCATG	480
CAGAAGTACG	AGGAGAGCAG	CCGCCTCCAC	CGGCAGACGG	CTCGAATGGA	AGAGCTGGGG	540
ATGAAGAGTC	GTCCCGATGT	CCTCGAGATG	CAGTCGCGAA	TGGCCGGTGA	CCGTTTGGCC	600
CTGACTCAAG	CGGACAATCA	GTGCATCATC	GCTCTGATCC	GGCTCAAAGA	AAAAATGAAC	660
TTCCCCATCG	ATGACGAACT	CGTCGTAGAC	GATATGCCGG	CTGACAGTCT	CTCCGCCGAC	720
ATGGCCGAAT	CGGACAGCTC	GGCCGGCGTC	TTCGCCCGTG	CTGCCCATCA	TCATCCCGTC	780
CTCCTCCGTG	CCAAACTCGA	CGAGCAGGCT	GCCACCGACC	GTTTGCGAGC	CGCGCGAGGT	840
GCATTCCTGC	CGAGTGTGTC	GGTATCCGGA	GGATGGAACA	CGGGATTCTC	ACGCTTTTTG	900
AATGGATCGG	ACTATACGCC	CTTCAGCGAG	CAGTTTCGGA	ACCGTCGGGG	GGAATACGTC	960
AGTCTGAATC	TGAGTATCCC	CATCTTTTCG	GGATTCAGCC	TTGTGAGCCA	TCTGCGTCAG	1020
GCGCGTGCCG	AACGCAGGGC	GGCAATCGTC	CGACGGGGCG	AAGCGGAGCG	CAGGCTCTAC	1080
AGCGAGATCG	CCCAAGCCAT	GGCCGACCGG	GATGCCGCTC	TGGCTTCCTA	CCGCCAGGCG	1140
AAGGAGCATA	CCGACGCCAT	GCAAACCGCT	TACGAAGCCG	TCTTGCAGCG	TTATGAGGAG	1200
GGGCTGAATA	CGGCCATCGA	CCTGACCACT	CAGGCCAATC	GGCTCCTGGA	TGCCCGTGTG	1260
CAGCGACTGA	GAGCGGCCAT	GACCTACCGG	CTCAAATGCA	AACTCATAGC	CTATTACGGC	1320
TGCCTTTCGG	AC					1332

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2820 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2820
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:199

ATGAACAAAT TTTACAAATC	ACTTTTGCAG	TCAGGACTGG	CTGCCTTCGT	GTCGATGGCA	60
ACTGCACTGA CCGCTTCTGC					120
AGATCCGCCG GAACGCATTC	ATTCGACGAT				180
AATCCGGAAG ACCTGATCGC	ACAGAGCCGT	TGGCAATCGC	AAAGAGATGG	CCGGCCCGTC	240
CGGATAGGAC AAGTAATACC	GGTGGATGTG	GACTTTGCAT	CCAAGGCTTC	GCACATCTCT	300
TCCATCGGAG ACGTAGATGT	ATATCGCCTG	CAATTCAAGT	TGGAAGGAGC	CAAAGCCATT	360
ACGCTTTATT ACGATGCATT	CAATATTCCG	GAGGGCGGAC	GCCTCTATAT	CTATACCCCC	420
GACCATGAAA TTGTGTTGGG	AGCATATACG	AACGCCACTC	ATCGCCGCAA	CGGAGCTTTT	480
GCCACAGAGC CGGTACCGGG					540
ACTTTGCCTG ACATCAAGAT	CTCCGGTGCG	GGTTATATAT	TCGACAAAGT	CGGCGGACGC	600
CCCGTAACGG ATAACCATTA					660
AACATCAATT GTCCTGAAGG	TGCAGACTGG	CAGGCAGAGA	AGAACGGTGT	GGTGCAAATG	720
ATCATGGTAA AAGGACAGTA	TATCTCAATG	TGCTCAGGCA	ACCTGCTCAA	TAATACGAAA	780
GGAGACTTTA CTCCGCTGAT	CATTTCTGCC	GGACACTGTG	CTTCCATAAC	AACCAATTTC	840
GGTGTAACGC AATCCGAGTT	GGATAAGTGG	ATCTTCACTT	TCCACTATGA	AAAAAGAGGA	900
TGCAGCAATG GTACATTGGC	CATCTTCCGT	GGCAACAGTA	TCATCGGAGC	TTCCATGAAG	960
GCTTTCCTCC CGATCAAAGG	TAAATCCGAT	GGTCTCTTGC	TGCAACTCAA	CGATGAAGTC	1020
CCTCTGCGCT ATCGTGTCTA	TTACAATGGA	TGGGACAGTA	CGCCCGATAT	TCCCTCGAGC	1080
GGTGCCGGTA TTCATCATCC	GGCCGGAGAT	GCCATGAAGA	TTTCCATCCT	AAAGAAGACT	1140
CCGGCTCTGA ATACATGGAT	CTCCTCCAGT	GGTTCCGGAG	GGACTGACGA	TCACTTCTAT	1200
TTCAAATACG ATCAAGGTGG	TACGGAAGGA	GGATCGTCCG	GTTCTTCTCT	CTTCAATCAG	1260
AATAAGCACG TGGTCGGCAC	ACTGACCGGA	GGTGCCGGCA	ATTGTGGCGG	GACGGAGTTC	1320
TACGGCAGAC TGAACAGTCA	TTGGAACGAG	TATGCATCCG	ATGGCAATAC	GAGCCGCATG	1380
GACATCTATC TGGATCCCCA	AAACAATGGC	CAGACGACCA	TCCTCAACGG	AACGTATCGT	1440
GACGGTTATA AGCCTTTGCC	CTCTGTGCCC	CGGCTATTGT	TGCAGTCTAC	AGGCGATCAG	1500
GTCGAATTGA ATTGGACGGC	TGTTCCTGCC	GATCAATATC	CATCATCTTA	TCAGGTCGAA	1560
TACCACATAT TCCGAAATGG	AAAGGAAATA	GCTACGACAA	AGGAGTTGTC	CTATTCGGAT	1620
GCCATCGACG AAAGTATTAT	CGGTAGCGGT	ATCATTCGAT	ACGAAGTAAG	CGCACGCTTC	1680
ATTTATCCCT CGCCGTTGGA	TGGAGTGGAA	TCTTATAAGG	ATACGGACAA	GACTTCTGCC	1740
GACCTTGCCA TAGGAGACAT	TCAGACCAAG				1800
GGAGGAGTAT CATTAAGCTG	GAAAGTTCCT	TTCTTAAGCC	AGTTGGTTTC	CCGATTCGGA	1860
GAAAGCCCCA ATCCTGTGTT	CAAAACCTTT	GAAGTGCCCT	ATGTTTCTGC	CGCAGCCGCA	1920
CAAACCCCCA ATCCTCCCGT		ATTGCAGACA			1980
CCCGAAAAGG CTGCTATCGC		GTAATGCCAT			2040
CACCTCTTCC TCAAGAGCAA					2100
TGGCAGGCCG GAACATGGTT	GAGGATCAAT	TTGGATAAGC	CGTTCCCGGT	GAATAATGAC	2160

CATATGCTTT	TTGCCGGTAT	CAGAATGCCT	AATAAGTACA	AGCTCAATCG	TGCTATCCGT	2220
TATGTAAGAA	ATCCGGATAA	CCTTTTCTCC	ATTACCGGTA	AGAAGATTTC	ATATAACAAC	2280
GGAGTCTCTT	TCGAAGGCTA	CGGAATACCC	TCGCTCTTGG	GCTATATGGC	TATCAAATAT	2340
CTGGTGGTAA	ATACCGATGC	TCCGAAGATC	GATATGTCGC	TTGTACAGGA	GCCTTATGCT	2400
AAGGGAACGA	ATGTGGCTCC	ATTCCCCGAA	TTGGTCGGCA	TATATGTCTA	TAAGAACGGA	2460
ACATTTATCG	GCACACAGGA	TCCATCCGTC	ACAACTTATT	CGGTTTCAGA	CGGAACAGAG	2520
AGCGATGAAT	ACGAAATAAA	ACTGGTATAT	AAGGGATCGG	GCATTTCGAA	TGGCGTTGCT	2580
CAGATTGAGA	ATAACAATGC	TGTCGTTGCA	TATCCGTCTG	TTGTAACAGA	TCGTTTCAGC	2640
ATTAAGAACG	CTCATATGGT	TCACGCTGCC	GCCCTCTACT	CATTGGATGG	CAAGCAGGTT	2700
CGTTCTTGGA	ACAACCTCCG	CAATGGCGTG	ACATTCAGTG	TTCAAGGACT	TACGGCCGGT	2760
ACTTATATGC	TCGTTATGCA	GACGGCAAAC	GGCCCTGTGA	GCCAAAAGAT	CGTGAAGCAG	2820

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2010 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2010
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200

ATGAAATATC	TTATCAGACT	CTTCTTATCA	TTGATGTTAC	TCTCTCTCTG	GACGGGCTGT	60
ACACACGAGG	AGCTCTCTAT	TTGCGATGGC	GAGAATACGC	${\tt TTGTTTTACG}$	CGTAGAGACC	120
GGTAAAGCCC	CAAATGCTCG	TGCCACAGAA	CCCGGTCAGG	GCATATACAA	TGAGAATAAA	180
GTAGGCTCCA	TTTCTGTGCT	CTTCTATTTA	GAGGGACAAC	${\tt TTCGTTGGCA}$	GGTGAAGTCT	240
ACAGACTATC	AAATCCATGA	AGGGGCCTAT	ATCATTCCGG	TCAAAGAGCA	AATGCGACCA	300
CTATTCAATG	GCAACAACAA	CTTCAGCATC	${\tt TATGTAGTGG}$	CCAATCTCGA	TTTCAATGCT	360
CCGGCCACAG	AAGCTGCGCT	TTCTCAATTT	GTGGTAGAGA	AATCTATTGA	AGTCTCTTCT	420
ACGACAGCCC	CTGCCGATTT	CGTAATGCTT	GCTCATGGCA	ATAAGCAGAT	CAATATGGCT	480
ACGACAGAAG	GGAAACTGTT	GGGGGATTAT	AAACTCAAAC	GAGTGGCAGC	AAAGATTCGC	540
ATGATAAAAC	CCACCATCAA	TGTGCAAGGA	TATGAAGTGG	TCGGAAATAT	ACAGGCAAAG	600
				CTCAAGAGAT		660
GCATCCTATA	AGACATCGGA	ATATCTTGAT	ATTGCAGAGT	CGGCACCTGC	CAATTCTATC	720
				CGGAGAAGCG		780
				ACACAGCCAA		840
				GCAATGTCCT		900
				AAGCTGTTTC		960
				TCAATCTGCC		1020
				TGAACACATA		1080
				CAGTTACCTT		1140
				GTAGCGACCA		1200
				TACCGGTTAA		1260
				TGAAAGAGAC		1320
				CAGCATCGGC		1380
				ACCATGTCGT		1440
				TCGGTTATCC		1500
				TAGTATGGTC		1560
				CTTCCTTTGA		1620
				GGCCAGGGAC		1680
				TGTTTAATTG		1740
				ATGACTGGCG		1800
				AGCAGAGTGC		1860
				ATGGGTCTTA		1920
			GCCTATGTTC	GTTGCGTGCG	GGATGTGAAA	1980
AAGCCGATTC	GTGACAAGAA	GTCAGGTAAG				2010

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3846 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...3846
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201

ATGCGAAAAA	TTTTGAGCTT	TTTGATGATG	TGCTCTCTGC	ATTTAGGTCT	ACAATCTCAG	60
ACTTGGCATG	GAGATCCGGA	CTCAGTGGCA	GCCCTACCTT	CTATCGGTAT	TCAAGAGTCA	120
AGTTGTACCC	GAATCACGTT	CGAGGTTGTT	TTCCCCGGAT	TTTATAGTGT	GGAAAAACGA	180
GAAGGCAACC	AAGTCTTTCA	GCGCATTTCC	ATGCCGGGTT	GTGGCTCGTT	TGGGAATCTG	240
GGCGAAGCTG	AATTGCCTGT	TTTGAAAAAG	ATGATAGCCG	TTCCGGAATT	TTCAACAGCT	300
AACGTTGCTG	TAAAAATCAA	AGAGACGGAG	ACATTCGACA	ATTATAATAT	CTATCCTAAT	360
CCTACCTATG	TCGTAGAGGA	GTTGCCTGAG	$\tt GGGGGGACTT$	ATCTGGTAGA	GGCTTTCGCG	420
ATAAACAATG	ACTATTATAG	CCAAAATGTA	${\tt AGCCTCCCTT}$	CTACTCACTA	TGTCTATTCT	480
CAAGACGGGT	ATTTTCGCTC	ACAAAGATTT	ATCGAAGTTA	CCCTGTATCC	TTTTCGATAC	540
AACCCTGTCC	GACAAGAAAT	TCTATTTGCA	AAAAAAATCG	AGGTTACAAT	AACTTTCGAT	600
			GGCATATTTA			660
TTTATTAATT	ATGAAGCTGA	TGGCAAATCG	GCGATAGAAA	ATGATATGGT	GTTCAGTCGT	720
GGTACAACAA	CGTACATAAG	CGGAAATGTT	GCCAGCAACC	TCCCTCAGAA	CTGTGACTAC	780
TTGGTTATTT	ACGATGATAT	GTTCAACGTA	AATCAACAAC	CACACGACGA	AATCAAACGG	840
CTGTGCGAAC	ATAGAGCCTT	CTACAACGGC	TTTGATGTAG	CTGCTGTAAG	TATAAAGGAC	900
GTATTGAATA	GCTTCCCATC	AAATGCCACC	TCATACATCA	ACGAAACTAA	ACTGAAAAAT	960
TTCATTCGCT	CAGTTTACAA	CCAAAGCAAT	GCGAAGAGGA	CTTTAGATGG	CAAACTGGGA	1020
TACGTGCTAC	TGATCGGAAA	ACCATTGAGC	AAATATTTGG	CTGACACTGA	TAATACAAAA	1080
GTCCCAACCT	CTTTTATTCA	TAATGTCTCC	TTAATTCCAA	GTCATCCAAC	TTTTGGTTCC	1140
ATATGCGCCT	CCGACTATTT	TTTTAGTTGT	GTTTCGCCCC	TTGATACTGT	CGGCGATTTG	1200
TTTATCGGTC	GATTTAGCGT	CACCAATGCT	CATGAATTGC	ACAATCTGAT	TGAAAAGACT	1260
ATCAACAAAG	AAATCTCATA	TAATCCTATT	GCACACAAAA	ATATTCTTTA	CGCAGAAGGG	1320
AAAGGCTGCG	ATGCTCCAAT	CTTACGTTTA	TTCTTAAAAG	AAATCGCCTC	TGGTTACACA	1380
GTCAACTCTA	TCTTAAAATC	TAATCAGGTC	TCTGCAATAG	ACTCGATATT	TGACTGCTTG	1440
AATAATGGTT	CCCATCATTT	TTATTTTAAC	ACTCATGGAA	TGCCGACTGT	TTGGGGGATA	1500
GGGCAGGGAC	TCGACGTCAA	TACTCTAACA	GCCCGATTGA	ACAATACATC	TTCGCAGGGA	1560
TTATGTACGA	GTCTATCATG	TAGTTCGGCT	GTAGCAGATT	CAACTATTAG	ATCGCTTGGA	1620
GAAGTCCTGA	CCACATACGC	ACCTAACAAG	GGATTCTCGG	CTTTCTTAGG	AGGAAGCAGA	1680
GCCACCCAAT	ATGCCGTTTA	TTTAGAAGGC	CCCTGTCCTC	CGTCAGAATT	TTATGAATAT	1740
TTACCTTATT	CTTTATATCA	CAATCTCTCG	ACTGTTGTTG	GCGAAATGTT	GCTATCATCC	1800
ATTATCAATA	CTAATTCTGT	TGATACGTAT	TCGAAATTCA	ACTTCAATTT	GCTTGGCGAC	1860
CCTGCACTAA	ACATTATGGC	TCATGGCATG	GAGGTTAGTA	ATTGTATTAC	ACTACCAAAC	1920
AACACCATTA	TAAGCAGTCC	GATAACAATA	AAAAATGGTG	GCTGCCTAAA	AATACCGGAA	1980
AAAGGAGTTT	TGCATTTTAC	TAATAATGGC	TCCATACAAG	TCATGTCCGG	AGGAACTCTG	2040
GAAATAGGCA	ATCAGGCTAA	AATATCCGGA	GAGACCGGTG	CTAACCCCAC	CTTTATTACC	2100 2160
GTTTACGGCG	ATGGTCTTGC	GATTAACAAG	CAGGTAGAGA	TAGACAATAT	AGACCGACII	2220
			AAATTTCATT			2280
AGTGCCCCGC	TGTATACAAC	GAACTGTATT	GTGGAGATAA	GCAATTGCGA	CUTTACCAAI	2340
CGAAGTGACA	TTATTTCAAA	GAATTGTGAC	CTAAGCGTTG	MANACAGIAI	ATCTACAAAA	2400
TCGGGGATAA	CGGTATTCAA	GCCTATGGCT	ACAAGCTCCA	TCACCGGAII	TATCACAAAA	2460
GCAAAGATTA	CCGACAATAC	TTTTTTTTGCG	ACAGGAAACT	TUGCUTACUA	TATCACAAAC	2520
ACGCCAGGCT	TAACAGCAAC	CICCAATGCI	GCCATCAAGT GATGAGGCTC	TAGACAATAT	TANTACTCCC	2580
TACATTTCCG	GTAATAAAAT	AGTCAATTGC	CGGAATGTGA	TIGIACIAAA	TACCATTCCC	2640
AACAGAACGA	ACAGACTCCA	TO CHAIR TO CA	AACCGAAATA	ACATCACTA	CAATCATATA	2700
AGCACGCTTT	ATAATTCCTA	GA COMPCONTO	TATTTCGATA	AGAICAGIAA	AATCAATGAA	2760
GGAGTACGTC	TCCTCAACAA	CAGTIGITII	ACTTGGCAGC	TCTATTCATC	AAACCCTACA	2820
GAAGATAAGC	AGACGITIAI	CAACACCTTC	CAGGGGGGAG	ATACAGATAC	ATCCATTAC	2880
TICCCTCTCA	ACTICCATIA	CHACAGCIIG	GTTTCAAATA	ATTACTORGE	CAACAATGAT	2940
AACGACACGT	ATACGAATCG	THE TOTAL TOTAL	CCAGACTTGT	TCATTTGGAT	ACCTTTTTGG	3000
TTGTTTGATC	CGAATCAGGI	AMCCCCCAAAM	AGCTCTGCTG	AACCACTACA	ATTCCAAACA	3060
GATGGATTGC	CAAATGGGAG	TACCCATTAT	CTTTCGGCAA	AAGCAGTAGA	CAAGATGATG	3120
GCATTGGACT	GIAIIGGCAA	CCACTTTCCA	ATAGCTGCTT	TCAACCAATT	GTTCAGGATA	3180
GIIGAAACCI	ACCOGGAATO	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TTGAAAGATT	ATTTCAGATC	CAATCCAACC	3240
ATCARCACC	CCCACAACGA	CTTCCCAAGGC	GCTGATTTCC	TGTCTGCGCG	ATGCGATATT	3300
ATCATCICTT	ACTATCACTC	TGCCCATCA	TGGTACGAAA	ATCGCTTGAA	TAGTGAAATC	3360
TCCTATCACA	ACIMICAGIC	TGCCATCGAT	GACCTTGGTG	ACATTTATTG	GAATATGCAG	3420
TTAGACTCAGG	TCAGIGITII	TCCTATACAT	TTGAACATAC	TTTCCTGTGA	ACAAAGGAAA	3480
TCCCTCCNNN	CCCATCAAAA	TGTAAAAAA	TATTTGTTGT	CAACTCTTCC	CGAATCAACA	3540
1 CGC I CGMAM	. Journal					

GGTACTCTCC	TGCCTCCATT	AGAATGCAAC	AAATCAAGCC	TTGATAAATC	CAAGATAATC	3600
TCTATTTCGC	CCAATCCGGC	GAAAGCTGTT	GTAACAATAA	TCTACTATAC	CGATAACCCT	3660
TCCTGTTCTG	TAATAAAAAT	ATATGGAATA	AATGGAGCCT	CGGCTGATAT	AACCGGGTTG	3720
CCCAAACATC	TATCCGAAGG	TTATTACAGC	ATACAGTTCA	ATACATCCAA	CTTTGATCCC	3780
GGTTTCTACC	TGGTAACGCT	AAATGTTGAT	CAGAAAATTA	TAGATACGGA	AAAATTACGA	3840
ATCAAA						3846

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3822 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 (B) LOCATION 1...3822
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:202

ATGATGTGCT CTCTGCATTT					60
GTGGCAGCCC TACCTTCTAT					120
GTTGTTTTCC CCGGATTTTA					180
ATTTCCATGC CGGGTTGTGG					240
AAAAAGATGA TAGCCGTTCC	GGAATTTTCA	ACAGCTAACG	TTGCTGTAAA	AATCAAAGAG	300
ACGGAGACAT TCGACAATTA	TAATATCTAT	CCTAATCCTA	CCTATGTCGT	AGAGGAGTTG	360
CCTGAGGGGG GGACTTATCT	GGTAGAGGCT	TTCGCGATAA	ACAATGACTA	TTATAGCCAA	420
AATGTAAGCC TCCCTTCTAC	TCACTATGTC	TATTCTCAAG	ACGGGTATTT	TCGCTCACAA	480
AGATTTATCG AAGTTACCCT	GTATCCTTTT	CGATACAACC	CTGTCCGACA	AGAAATTCTA	540
TTTGCAAAAA AAATCGAGGT	TACAATAACT	TTCGATAATC	CTCAGCCACC	TTTACAAAAA	600
AACACCGGCA TATTTAACAA	AGTAGCCTCC	TCTGCATTTA	TTAATTATGA	AGCTGATGGC	660
AAATCGGCGA TAGAAAATGA	TATGGTGTTC	AGTCGTGGTA	CAACAACGTA	CATAAGCGGA	720
AATGTTGCCA GCAACCTCCC	TCAGAACTGT	GACTACTTGG	TTATTTACGA	TGATATGTTC	780
AACGTAAATC AACAACCACA	CGACGAAATC	AAACGGCTGT	GCGAACATAG	AGCCTTCTAC	840
AACGGCTTTG ATGTAGCTGC	TGTAAGTATA	AAGGACGTAT	TGAATAGCTT	CCCATCAAAT	900
GCCACCTCAT ACATCAACGA	AACTAAACTG	AAAAATTTCA	TTCGCTCAGT	TTACAACCAA	960
AGCAATGCGA AGAGGACTTT	AGATGGCAAA	CTGGGATACG	TGCTACTGAT	CGGAAAACCA	1020
TTGAGCAAAT ATTTGGCTGA	CACTGATAAT	ACAAAAGTCC	CAACCTCTTT	TATTCATAAT	1080
GTCTCCTTAA TTCCAAGTCA	TCCAACTTTT	GGTTCCATAT	GCGCCTCCGA	CTATTTTTTT	1140
AGTTGTGTTT CGCCCCTTGA	TACTGTCGGC	GATTTGTTTA	TCGGTCGATT	TAGCGTCACC	1200
AATGCTCATG AATTGCACAA	TCTGATTGAA	AAGACTATCA	ACAAAGAAAT	CTCATATAAT	1260
CCTATTGCAC ACAAAAATAT	TCTTTACGCA	GAAGGGAAAG	GCTGCGATGC	TCCAATCTTA	1320
CGTTTATTCT TAAAAGAAAT	CGCCTCTGGT	TACACAGTCA	ACTCTATCTT	AAAATCTAAT	1380
CAGGTCTCTG CAATAGACTC	GATATTTGAC	TGCTTGAATA	ATGGTTCCCA	TCATTTTTAT	1440
TTTAACACTC ATGGAATGCC	GACTGTTTGG	GGGATAGGGC	AGGGACTCGA	CGTCAATACT	1500
CTAACAGCCC GATTGAACAA	TACATCTTCG	CAGGGATTAT	GTACGAGTCT	ATCATGTAGT	1560
TCGGCTGTAG CAGATTCAAC	TATTAGATCG	CTTGGAGAAG	TCCTGACCAC	ATACGCACCT	1620
AACAAGGGAT TCTCGGCTTT	CTTAGGAGGA	AGCAGAGCCA	CCCAATATGC	CGTTTATTTA	1680
GAAGGCCCCT GTCCTCCGTC	AGAATTTTAT	GAATATTTAC	CTTATTCTTT	ATATCACAAT	1740
CTCTCGACTG TTGTTGGCGA	AATGTTGCTA	TCATCCATTA	TCAATACTAA	TTCTGTTGAT	1800
ACGTATTCGA AATTCAACTT	CAATTTGCTT	GGCGACCCTG	CACTAAACAT	TATGGCTCAT	1860
GGCATGGAGG TTAGTAATTG	TATTACACTA	CCAAACAACA	CCATTATAAG	CAGTCCGATA	1920
ACAATAAAAA ATGGTGGCTG	CCTAAAAATA	CCGGAAAAAG	GAGTTTTGCA	TTTTACTAAT	1980
AATGGCTCCA TACAAGTCAT	GTCCGGAGGA	ACTCTGGAAA	TAGGCAATCA	GGCTAAAATA	2040
TCCGGAGAGA CCGGTGCTAA	CCCCACCTTT	ATTACCGTTT	ACGGCGATGG	TCTTGCGATT	2100
AACAAGCAGG TAGAGATAGA	CAATATAGAC	CGACTTAACT	TGTTTTCTAC	GCATTCGGTC	2160
ATGCCCAAAT TTCATTTTGA	CAGTGTGAAA	TTCAACAGTG	CCCCGCTGTA	TACAACGAAC	2220
TGTATTGTGG AGATAAGCAA	TTGCGAATTT	ACCAATCGAA	GTGACATTAT	TTCAAAGAAT	2280
TGTGACCTAA GCGTTGAAAA	CAGTATGTTT	AGCAGTTCGG	GGATAACGGT	ATTCAAGCCT	2340
ATGGCTACAA GCTCCATCAC	CGGATTATCT	ACAAAAGCAA	AGATTACCGA	CAATACTTTT	2400
TTTGCGACAG GAAACTTCGC	CTACCATATC	ACAAACACGC	CAGGCTTAAC	AGCAACCTCC	2460
AATGCTGCCA TCAAGTTAGA	CAATATTCCT	GAGTATTACA	TTTCCGGTAA	TAAAATAGTC	2520
AATTGCGATG AGGCTCTTGT	ACTAAATAAT	AGTGGCAACA	GAACGAACAG	ACTCCACAAT	2580
ATCACACGGA ATGTGATAAA	AAACTGTAGG	ATTGGGAGCA	CGCTTTATAA	TTCCTATGGT	2640
ATTTACAACC GAAATAAGAT	CAGTAACAAT	CATATAGGAG	TACGTCTCCT	CAACAACAGT	2700
TGTTTTTATT TCGATAATGC	TCCTGTAATC	AATGAAGAAG	ATAAGCAGAC	GTTTATTTCT	2760

AATAGGACTT	GGCAGCTCTA	TTCATCAAAC	GGTACATTCC	CTCTCAACTT	CCATTACAAC	2820
AGCTTGCAGG	GGGGAGATAC	AGATACATGG	ATTTACAACG	ACACGTATAC	GAATCGCTAT	2880
ATTGACGTTT	CAAATAATCA	CTGGGGCAAC	AATGATTTGT	TTGATCCGAA	TCAGGTTTTC	2940
AATACGCCAG	ACTTGTTCAT	TTGGATACCT	TTTTGGGATG	GATTGCCAAA	TGGGAGATCG	3000
GGCAATAGCT	CTGCTGAAGC	AGTAGAATTC	CAAACAGCAT	TGGACTGTAT	TGGCAATAGC	3060
GATTATCTTT	CGGCAAAAGT	GGCTCTCAAG	ATGATGGTTG	AAACCTACCC	GGAATCCGAC	3120
TTTGCAATAG	CTGCTTTGAA	GGAATTGTTC	AGGATAGAGA	AAATGTCAGG	CAACGATTAC	3180
GAAGGCTTGA	AAGATTATTT	CAGATCCAAT	CCAACCATCA	TCTCTTCCCA	GAACTTGTTC	3240
CCGACAGCTG	ATTTCCTGTC	TGCGCGATGC	GATATTGTGT	GTGAAAACTA	TCAGTCTGCC	3300
ATCGATTGGT	ACGAAAATCG	CTTGAATAGT	GAAATCTCCT	ATCAGGACAG	TGTTTTTGCA	3360
GTCATTGACC	TTGGTGACAT	TTATTGGAAT	ATGCAGTTAG	ACTCACTCAG	AGGGACTGGT	3420
ATAGATTTGA	ACATACTTTC	CTGTGAACAA	AGGAAATCGC	TCGAAAGCCA	TCAAAATGTA	3480
AAAAATTATT	TGTTGTCAAC	TCTTCCCGAA	TCAACAGGTA	CTCTCCTGCC	TCCATTAGAA	3540
TGCAACAAAT	CAAGCCTTGA	TAAATCCAAG	ATAATCTCTA	TTTCGCCCAA	TCCGGCGAAA	3600
GCTGTTGTAA	CAATAATCTA	CTATACCGAT	AACCCTTCCT	GTTCTGTAAT	AAAAATATAT	3660
GGAATAAATG	GAGCCTCGGC	TGATATAACC	GGGTTGCCCA	AACATCTATC	CGAAGGTTAT	3720
TACAGCATAC	AGTTCAATAC	ATCCAACTTT	GATCCCGGTT	TCTACCTGGT	AACGCTAAAT	3780
GTTGATCAGA	AAATTATAGA	TACGGAAAAA	TTACGAATCA	AA		3822

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2775 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2775
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:203

ATGGCTATCA	TGATGAAAAG	TATTGTTTTT	AGAGCATTTC	TAACGATTTT	GCTCTCGTGG	60
GCAGCGATCA	CGAATCCGAC	TGCTCAAGAG	ATCTCAGGCA	TGAATGCATC	CTGTCTGGCT	120
GCTCCGGCTC	AACCGGATAC	TATCTTATAT	GAAAGTTTTG	AGAATGGACC	TGTTCCCAAT	180
GGCTGGCTTG	AGATAGATGC	TGATGCTGAT	GGTGCCACTT	GGGGAAGCCC	ATCAGGCTCT	240
TTCTCTGTAC	CTTACGGACA	CAATGGCCTT	TGCACCTACT	CCCATATACG	TTCCGGTATC	300
TCAACAGCGG	GCAACTATCT	GATTACACCC	AATATAGAAG	GAGCCAAACG	GGTCAAGTAC	360
TGGGTATGCA	ATCAGTATAG	TACCAATCCG	GAACATTACG	CAGTAATGGT	ATCGACAACG	420
GGGACTGCCA	TTGAAGACTT	TGTTTTGTTG	${\tt TTTGATGATT}$	CCATAACAGG	GAAACCGACT	480
CCTCTTGTAT	GGCGTAGACG	AATCGTGGAC	TTACCGGAAG	GGACCAAATA	TATTGCATGG	540
CGACATTACA	AAGTCACCGA	CTCACACACA	${\tt GAATTCTTGA}$	AATTGGATGA	TGTCACTGTG	600
TATAGGTCGA	TCGAAGGGCC	CGAACCTGCT	ACCGACTTCA	CAGTAATCAA	TATTGGTCAG	660
AATGTGGGAC	GATTGACTTG	GAACTATCCG	${\tt GAGGATTATC}$	AACCGGAAGG	AAAGGGGAAT	720
GAAGAGTTGC	AGCTTAGCGG	CTACAACATC	TATGCGAACG	GTACACTACT	GGCACAAATA	780
AAAGATGTCT	CCATACTGGA	${\tt GTATGTGGAC}$	AGCACTTACT	CTTTGCGAGA	CAATCCCTTG	840
CAAGTGGAGT	ACTGCGTTAC	AGCCGTTTAC	GATGAAAGCA	TAGAATCTTC	GACCGTATGT	900
GGCACGCTGC	ATTACGCCAC	GGATGCCATC	CTTTATGAAA	ATTTTGAGAA	TGGACCTGTT	960
CCCAATGGTT	GGCTTGTGAT	AGACGCTGAT	GGAGATGGAT	TTAGCTGGGG	ACACTATTTG	1020
AATGCATACG	ACGCTTTTCC	CGGCCATAAT	GGAGGCCATT	GCTCCTTGTC	GGCTTCTTAT	1080
GTTCCGGGTA	TAGGCCCGGT	GACTCCCGAC	AACTATCTGA	TTACCCCCAA	GGTTGAAGGA	1140
GCCAAACGTG	TCAAGTACTG	GGTAAGCACG	CAGGATGCCA	ATTGGGCAGC	GGAACATTAC	1200
GCGGTGATGG	CTTCGACAAC	GGGGACTGCT	GTCGGAGATT	TCGTCATATT	GTTCGAAGAA	1260
ACCATGACAG	CGAAGCCGAC	CGGCGCATGG	TATGAAAGAA	CCATCAACTT	ACCTGAAGGG	1320
ACTAAATACA	TCGCATGGCG	GCATTACAAC	TGTACCGATA	TATATTTCTT	GAAGTTGGAC	1380
GATATCACTG	TATTCGGGAC	TCCTGCATCA	GAGCCCGAAC	CTGTTACCGA	TTTCGTTGTC	1440
TCGCTTATTG	AAAACAACAA	GGGACGATTA	AAGTGGAATT	ATCCTAACGG	CTACGAACCC	1500
GATAAGACTG	ATGATAAAGA	CCCATTGCAG	CTTGCCGGCT	ACAATATCTA	TGCAAACGGC	1560
TCGCTCCTTG	TTCACATACA	AGACCCGACT	GTTTTGGAGT	ATATCGATGA	GACTTATTCT	1620
TCACGAGACG	ATCAGGTGGA	AGTGGAATAT	TGTGTCACTG	CCGTTTATAA	CGACAATATC	1680
GAGTCCCAAT	CGGTTTGCGA	TAAGCTGATT	TATGATTCTC	AATCGGACAT	TATCTTATAT	1740
GAAGGCTTTG	AGGCCGGAAG	TATTCCTGAA	GGCTGGTTGT	TGATTGATGC	TGATGGCGAC	1800
AATGTTAATT	GGGACTATTA	TCCTTGGACT	ATGTATGGAC	ATGACAGTGA	GAAGTGTATT	1860
GCATCCCCTT	CGTACTTACC	GATGATTGGC	GTTTTAACTC	CGGATAACTA	TTTGGTTACA	1920
			${\tt TATTGGGTAA}$			1980
TCGGCTGAGC	ATTATGCTGT	GATGGTTTCT	ACTACGGGAA	CTGCTGTTGA	AGATTTTGTC	2040

CTCTTGTTCG	AAGAGACAAT	GACCGCTAAG	GCTAACGGTG	CATGGTATGA	GCGAACTATT	2100
ACATTGCCTG	CAGGAACAAA	ATATATTGCC	TGGCGGCATT	ATGATTGCAC	CGATATGTTT	2160
TTCTTGCTCT	TGGATGACAT	TACGGTTTAT	CGTTCTACTG	AGACTGTTCC	CGAGCCTGTT	2220
ACTGATTTCG	TTGTCTCGCT	TATTGAGAAT	AACAAGGGTC	GCCTGAAATG	GAATTATCCT	2280
AACGGCTACG	AACCCGATAA	GACTGATGAT	AAAAAACCAT	TGCAGCTTAC	CGGCTACAAC	2340
ATCTATGCAA	ATGGCTCGCT	CCTTGTTCAC	ATACAAGACC	CGACTGTTTT	GGAGTATATC	2400
GATGAGACTT	ATTCTTCACG	AGACGGTCAG	GTGGAAATGG	AATATTGTGT	CACTGCCGTT	2460
TATAACGACA	ATATCGAGTC	CCAATCGGTT	TGCGATAAGC	TGAACTATAC	TATCACATCC	2520
TTGGATAATA	TTCAATCTGA	TACAAGCTTG	AAAATATATC	CTAATCCGGC	ATCGTATGTG	2580
GTAAGGATAG	AGGGATTGAG	TCGGAGCAAG	TCGACAATCG	AGTTGTATAA	TGCGCTGGGA	2640
ATTTGCATAT	TAAGGGAAGA	GACTCATTCA	GAGAAAACGG	AAATCGATGT	TTCACGTCTC	2700
AATGACGGAG	TCTACTTGAT	TAAAGTAGTC	GGTGGAAATA	AAACAACAAC	CGAAAAGGTA	2760
GAGATAAAGA	GGCCG					2775

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2766 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...2766
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204

ATGATGAAAA	GTATTGTTTT	TAGAGCATTT	CTAACGATTT	TGCTCTCGTG	GGCAGCGATC	60
ACGAATCCGA	CTGCTCAAGA	GATCTCAGGC	ATGAATGCAT	CCTGTCTGGC	TGCTCCGGCT	120
CAACCGGATA	CTATCTTATA	TGAAAGTTTT	GAGAATGGAC	CTGTTCCCAA	TGGCTGGCTT	180
GAGATAGATG	CTGATGCTGA	TGGTGCCACT	TGGGGAAGCC	CATCAGGCTC	TTTCTCTGTA	240
CCTTACGGAC	ACAATGGCCT	TTGCACCTAC	TCCCATATAC	GTTCCGGTAT	CTCAACAGCG	300
GGCAACTATC	TGATTACACC	CAATATAGAA	GGAGCCAAAC	GGGTCAAGTA	CTGGGTATGC	360
AATCAGTATA	GTACCAATCC	GGAACATTAC	GCAGTAATGG	TATCGACAAC	GGGGACTGCC	420
ATTGAAGACT	TTGTTTTGTT	GTTTGATGAT	TCCATAACAG	GGAAACCGAC	TCCTCTTGTA	480
TGGCGTAGAC	GAATCGTGGA	CTTACCGGAA	GGGACCAAAT	ATATTGCATG	GCGACATTAC	540
AAAGTCACCG	ACTCACACAC	AGAATTCTTG	AAATTGGATG	ATGTCACTGT	GTATAGGTCG	600
ATCGAAGGGC	CCGAACCTGC	TACCGACTTC	ACAGTAATCA	ATATTGGTCA	GAATGTGGGA	660
CGATTGACTT	GGAACTATCC	GGAGGATTAT	CAACCGGAAG	GAAAGGGGAA	TGAAGAGTTG	720
CAGCTTAGCG	GCTACAACAT	CTATGCGAAC	GGTACACTAC	TGGCACAAAT	AAAAGATGTC	780
TCCATACTGG	AGTATGTGGA	CAGCACTTAC	TCTTTGCGAG	ACAATCCCTT	GCAAGTGGAG	840
TACTGCGTTA	CAGCCGTTTA	CGATGAAAGC	ATAGAATCTT	CGACCGTATG	TGGCACGCTG	900
CATTACGCCA	CGGATGCCAT	CCTTTATGAA	AATTTTGAGA	ATGGACCTGT	TCCCAATGGT	960
TGGCTTGTGA	TAGACGCTGA	TGGAGATGGA	TTTAGCTGGG	GACACTATTT	GAATGCATAC	1020
GACGCTTTTC	CCGGCCATAA	TGGAGGCCAT	TGCTCCTTGT	CGGCTTCTTA	TGTTCCGGGT	1080
ATAGGCCCGG	TGACTCCCGA	CAACTATCTG	ATTACCCCCA	AGGTTGAAGG	AGCCAAACGT	1140
GTCAAGTACT	GGGTAAGCAC	GCAGGATGCC	AATTGGGCAG	CGGAACATTA	CGCGGTGATG	1200
GCTTCGACAA	CGGGGACTGC	TGTCGGAGAT	TTCGTCATAT	TGTTCGAAGA	AACCATGACA	1260
GCGAAGCCGA	CCGGCGCATG	GTATGAAAGA	ACCATCAACT	TACCTGAAGG	GACTAAATAC	1320
ATCGCATGGC	GGCATTACAA	CTGTACCGAT	ATATATTTCT	TGAAGTTGGA	CGATATCACT	1380
GTATTCGGGA	CTCCTGCATC	AGAGCCCGAA	CCTGTTACCG	ATTTCGTTGT	CTCGCTTATT	1440
GAAAACAACA	AGGGACGATT	AAAGTGGAAT	TATCCTAACG	GCTACGAACC	CGATAAGACT	1500
GATGATAAAG	ACCCATTGCA	GCTTGCCGGC	TACAATATCT	ATGCAAACGG	CTCGCTCCTT	1560
GTTCACATAC	AAGACCCGAC	${\tt TGTTTTGGAG}$	TATATCGATG	AGACTTATTC	TTCACGAGAC	1620
GATCAGGTGG	AAGTGGAATA	TTGTGTCACT	GCCGTTTATA	ACGACAATAT	CGAGTCCCAA	1680
TCGGTTTGCG	ATAAGCTGAT	TTATGATTCT	CAATCGGACA	TTATCTTATA	TGAAGGCTTT	1740
GAGGCCGGAA	GTATTCCTGA	AGGCTGGTTG	TTGATTGATG	CTGATGGCGA	CAATGTTAAT	1800
TGGGACTATT	ATCCTTGGAC	TATGTATGGA	CATGACAGTG	AGAAGTGTAT	TGCATCCCCT	1860
TCGTACTTAC	CGATGATTGG	CGTTTTAACT	CCGGATAACT	ATTTGGTTAC	ACCCAGACTC	1920
GAAGGAGCCA	AGCTTGTCAA	GTATTGGGTA	AGTGCGCAAG	ATGCTGTTTA	TTCGGCTGAG	1980
CATTATGCTG	TGATGGTTTC	TACTACGGGA	ACTGCTGTTG	AAGATTTTGT	CCTCTTGTTC	2040
GAAGAGACAA	TGACCGCTAA	GGCTAACGGT	GCATGGTATG	AGCGAACTAT	TACATTGCCT	2100
GCAGGAACAA	AATATATTGC	CTGGCGGCAT	TATGATTGCA	CCGATATGTT	TTTCTTGCTC	2160
TTGGATGACA	TTACGGTTTA	TCGTTCTACT	GAGACTGTTC	CCGAGCCTGT	TACTGATTTC	2220
GTTGTCTCGC	TTATTGAGAA	TAACAAGGGT	CGCCTGAAAT	GGAATTATCC	TAACGGCTAC	2280
GAACCCGATA	AGACTGATGA	TAAAAAACCA	TTGCAGCTTA	CCGGCTACAA	CATCTATGCA	2340

AATGGCTCGC	TCCTTGTTCA	CATACAAGAC	CCGACTGTTT	TGGAGTATAT	CGATGAGACT	2400
TATTCTTCAC	GAGACGGTCA	GGTGGAAATG	GAATATTGTG	TCACTGCCGT	TTATAACGAC	2460
AATATCGAGT	CCCAATCGGT	TTGCGATAAG	CTGAACTATA	CTATCACATC	CTTGGATAAT	2520
ATTCAATCTG	ATACAAGCTT	GAAAATATAT	CCTAATCCGG	CATCGTATGT	GGTAAGGATA	2580
GAGGGATTGA	GTCGGAGCAA	GTCGACAATC	GAGTTGTATA	ATGCGCTGGG	AATTTGCATA	2640
TTAAGGGAAG	AGACTCATTC	AGAGAAAACG	GAAATCGATG	${\tt TTTCACGTCT}$	CAATGACGGA	2700
GTCTACTTGA	TTAAAGTAGT	CGGTGGAAAT	AAAACAACAA	CCGAAAAGGT	AGAGATAAAG	2760
AGGCCG						2766

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2763 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2763
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205

ATGAAAAGTA	${\tt TTGTTTTAG}$	AGCATTTCTA	ACGATTTTGC	TCTCGTGGGC	AGCGATCACG	60
AATCCGACTG	CTCAAGAGAT	CTCAGGCATG	AATGCATCCT	GTCTGGCTGC	TCCGGCTCAA	120
CCGGATACTA	TCTTATATGA	AAGTTTTGAG	AATGGACCTG	TTCCCAATGG	CTGGCTTGAG	180
ATAGATGCTG	ATGCTGATGG	TGCCACTTGG	GGAAGCCCAT	CAGGCTCTTT	CTCTGTACCT	240
TACGGACACA	ATGGCCTTTG	CACCTACTCC	CATATACGTT	CCGGTATCTC	AACAGCGGGC	300
AACTATCTGA	TTACACCCAA	TATAGAAGGA	GCCAAACGGG	TCAAGTACTG	GGTATGCAAT	360
CAGTATAGTA	CCAATCCGGA	ACATTACGCA	GTAATGGTAT	CGACAACGGG	GACTGCCATT	420
GAAGACTTTG	TTTTGTTGTT	TGATGATTCC	ATAACAGGGA	AACCGACTCC	TCTTGTATGG	480
CGTAGACGAA	TCGTGGACTT	ACCGGAAGGG	ACCAAATATA	TTGCATGGCG	ACATTACAAA	540
GTCACCGACT	CACACACAGA	ATTCTTGAAA	TTGGATGATG	TCACTGTGTA	TAGGTCGATC	600
GAAGGGCCCG	AACCTGCTAC	CGACTTCACA	GTAATCAATA	TTGGTCAGAA	TGTGGGACGA	660
TTGACTTGGA	ACTATCCGGA	GGATTATCAA	CCGGAAGGAA	AGGGGAATGA	AGAGTTGCAG	720
CTTAGCGGCT	ACAACATCTA	TGCGAACGGT	ACACTACTGG	CACAAATAAA	AGATGTCTCC	780
ATACTGGAGT	ATGTGGACAG	CACTTACTCT	TTGCGAGACA	ATCCCTTGCA	AGTGGAGTAC	840
TGCGTTACAG	CCGTTTACGA	TGAAAGCATA	GAATCTTCGA	CCGTATGTGG	CACGCTGCAT	900
TACGCCACGG	ATGCCATCCT	TTATGAAAAT	TTTGAGAATG	GACCTGTTCC	CAATGGTTGG	960
CTTGTGATAG	ACGCTGATGG	AGATGGATTT	AGCTGGGGAC	ACTATTTGAA	TGCATACGAC	1020
GCTTTTCCCG	GCCATAATGG	AGGCCATTGC	TCCTTGTCGG	CTTCTTATGT	TCCGGGTATA	1080
GGCCCGGTGA	CTCCCGACAA	CTATCTGATT	ACCCCCAAGG	TTGAAGGAGC	CAAACGTGTC	1140
AAGTACTGGG	TAAGCACGCA	GGATGCCAAT	TGGGCAGCGG	AACATTACGC	GGTGATGGCT	1200
TCGACAACGG	GGACTGCTGT	CGGAGATTTC	GTCATATTGT	TCGAAGAAAC	CATGACAGCG	1260
AAGCCGACCG	GCGCATGGTA	TGAAAGAACC	ATCAACTTAC	CTGAAGGGAC	TAAATACATC	1320
GCATGGCGGC	ATTACAACTG	TACCGATATA	TATTTCTTGA	AGTTGGACGA	TATCACTGTA	1380
TTCGGGACTC	CTGCATCAGA	GCCCGAACCT	GTTACCGATT	TCGTTGTCTC	GCTTATTGAA	1440
AACAACAAGG	GACGATTAAA	GTGGAATTAT	CCTAACGGCT	ACGAACCCGA	TAAGACTGAT	1500
GATAAAGACC	CATTGCAGCT	TGCCGGCTAC	AATATCTATG	CAAACGGCTC	GCTCCTTGTT	1560
CACATACAAG	ACCCGACTGT	TTTGGAGTAT	ATCGATGAGA	CTTATTCTTC	ACGAGACGAT	1620
CAGGTGGAAG	TGGAATATTG	TGTCACTGCC	GTTTATAACG	ACAATATCGA	GTCCCAATCG	1680
GTTTGCGATA	AGCTGATTTA	TGATTCTCAA	TCGGACATTA	TCTTATATGA	AGGCTTTGAG	1740
GCCGGAAGTA	TTCCTGAAGG	CTGGTTGTTG	ATTGATGCTG	ATGGCGACAA	TGTTAATTGG	1800
GACTATTATC	CTTGGACTAT	GTATGGACAT	GACAGTGAGA	AGTGTATTGC	ATCCCCTTCG	1860
TACTTACCGA	TGATTGGCGT	TTTAACTCCG	GATAACTATT	TGGTTACACC	CAGACTCGAA	1920
GGAGCCAAGC	TTGTCAAGTA	TTGGGTAAGT	GCGCAAGATG	CTGTTTATTC	GGCTGAGCAT	1980
			GCTGTTGAAG			2040
GAGACAATGA	CCGCTAAGGC	TAACGGTGCA	TGGTATGAGC	GAACTATTAC	ATTGCCTGCA	2100
GGAACAAAAT	ATATTGCCTG	GCGGCATTAT	GATTGCACCG	ATATGTTTTT	CTTGCTCTTG	2160
			ACTGTTCCCG			2220
GTCTCGCTTA	TTGAGAATAA	CAAGGGTCGC	CTGAAATGGA	ATTATCCTAA	CGGCTACGAA	2280
			CAGCTTACCG			2340
			ACTGTTTTGG			2400
			TATTGTGTCA			2460
ATCGAGTCCC	AATCGGTTTG	CGATAAGCTG	AACTATACTA	TCACATCCTT	GGATAATATT	2520
			AATCCGGCAT			2580
			TTGTATAATG			2640

- (2) INFORMATION FOR SEQ ID NO:206
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1779 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1779
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:206

ATGAACAGCA	TCATGAAATA	TCAATTATAT	ACGGCCGTCA	${\tt TAATGGCTCT}$	CTCTGTATCA	60
TCCGTTTGCG	GTCAAACCCC	ACGAAATACA	GAAACCAAAC	GCCCGACAC	GCTGCGCAGG	120
GAGCTTACTA	TCGTTAATGA	CCAGACTGTG	GAGATGGAGC	ATGCGGATCC	GCTTCCGGCT	180
GCATACAAGG	CCATCGAACC	TCGATTAAAA	CCTTTCCGTC	${\tt CGGAATATAA}$	CAAGCGTACA	240
TTCGGATTTG	TCCCTGAAGT	TTCCTCTTCA	GGCAGGAACA	ATCTTCCGAA	TATCCTGCCG	300
ACGGAAGGTC	ATATGAAGCA	CCGGGGGTAC	CTGAATATCG	${\tt GTATCGGCCA}$	TACGCTAAAC	360
CAGCGAATGG	${\tt ATGCCGGCTA}$	TCGTCTGATA	GATGCAGAGC	AGGAGAGACT	GAATCTTTTC	420
CTCTCCTATC	${\tt GTGGGATGAA}$	ATCGGCTTTC	AATACCGGTG	ACTTCGACGG	CGACAGAAAG	480
GATAGACGAA	${\tt TGATGGCAGG}$	AGTGGACTAC	GAGCAGCGCA	GGCCTTCCTT	TGTGCTTGCT	540
ACCGGCTTGT	ATTATTCGAA	CCATTATTTC	AATAACTACG	GACGGGGAGC	TACCACCAAT	600
GTGGGCAGCA	TCCCTCAGCT	ATCGACACCT	GTTACTCCTC	AGATGGACAA	CGGGACCCAC	660
AACGTCCGTG	${\tt TATACTTGGG}$	TGCAAAAAAT	GATGTGATCG	ATGCCAGGAT	CGACTATCGT	720
TTCTTCCGTT	CTATTCCCTA	TCTGGGTACC	GATCCGATGA	AGGCTCTCAC	AGAACATACG	780
CCTGAACTGA	ACGTGACGAT	GAGTAATGAG	TTGTCCGATG	ATATTAAGCT	CGGTGTCGAA	840
GTTCGTACGG	GAGGATTGTT	TTTTGCCAAA	AACAGCGAAA	TGATTCAAAC	GGGCGTTCTG	900
TCCGAAACCG	ACCGCAACCT	${\tt GTATTATGTG}$	GAGGGCGCGC	CCACAATCGG	ATTTGTCGGA	960
GACTCGGACA	ATATGCAATG	GAACATACAG	GCCGGAGTAG	GGATTTCTTC	CCATTTCGGA	1020
GCCAAAGGGA	${\tt GGTTGTTTTT}$	CTGGCCTAAA	CTGGATGCTT	CGCTTAGTAT	CTTCCCTTCA	1080
TGGCGTGTGT	ATGCGAAAGC	CTTCGGCGGT	GTGATTCGAA	ATGGTCTCGC	CGATGTTATG	1140
CAAGAGGAGA	TGCCCTACCT	GATGCCCAAT	ACGATTGTAC	TCCCTTCGCG	CAATGCTTTG	1200
ACCGCCCAAT	${\tt TAGGGGTGAA}$					1260
GACTTCTCCA	AGCTGACAGG	TGTGCCTTTC	TATACTCCGA	CTCTACCCTT	ATATAATCCA	1320
TCCGACTTGT	ATCAGTATAA	TGTGAGTTTC	TTGCCGATAT	ATGCCGACGG	CAGCCGCTGG	1380
CGCGCAGGTG	GTAAGCTGGA	ATACTCTTAT	CGCGATATGC	TCCGCTTTCT	GGTAGACGCA	1440
TCCTATGGCA	AGTGGAATTT	GGATGGAGGA	CTTGTCGCCT	CCATGCAGCC	CGATCTTATA	1500
TTGAAGGCAG	AAGTAGGTGT	TCATCCCATT	GCCCCATTGG	ATGTCAGACT	CCGGTATACA	1560
CAGCTGAACG	GACGGTATCG	GTATTCTTTC	GGCTCGGCTG	GCTCGGAAGC	CTTGGGTATC	1620
		TGCGGATGTT				1680
TATCTCAAAA	TCGATAATAT	GCTGGCGGAA	ACGACAGAGC	TTATCGGTTA	TTATCCTATG	1740
CAGCCGTTCC	${\tt ATTGTTTCGC}$	CGGTTTTAGC	TGGACTTTC			1779
	TCCGTTTGCG GAGCTTACTA GCATACAAGG TTCGGATTTG ACGGAATGG CTCTCCTATC GATAGACGAA ACCGGCTTGT GTGGGCAGCA AACGTCCGTG TCCTTCCGTT CCTGAACTGA GTCCGAACCG GACTCGGACA GCCAAAGGGA ACCGCCCAAT GACTTCCA TCCGACTGT CAGGAGGGA ACCGCCCAAT GACTTCTCCA TCCGACTGT TCCGACTGT CAGCGCGGTGT TCCGACTGT CAGCGCGGTGT TCCGACTGT CGCCAGTGT CGCACTGT CGCCAGTGT CGCCAGTGT TCCGACTGT CGCCAGTGT TCCTATGGCA TTGAAGGCAG CAGCTGAACG GTAATGTAC TATCTCAAAA	TCCGTTTGCG GTCAAACCCC GAGCTTACTA TCGTTAATGA GCATACAAGG CCATCGAACC TTCGGATTG TCCCTGAAGT ACGGAAGGT ATATGAAGCA CAGCGAATGG ATGCCGGCTA CTCTCCTATC GTGGGATGAA GATAGACGAA TGATGCAGG ACCGGCTTGT ATTATTCGAA GTGGGCAGCA TCCCTCAGCT AACGTCCGTG TATACTTGGG TTCTTCCGTT CTATTCCCTA CCTGAACTGA ACGTGACGAT GTCGCAACCG ACGGCAACCT TCCGAAACGG GAGGATTGTT TCCGAAACGG GGTTGTTTTT TGGCGTGTGT ATGCGAAAGC CAAGAGGAG TGCCCTACCT ACCGCCAAT TAGGGGTGAA GACTTCTCCA AGCTGACAGG TCCGACTTGT ATGCGAAAGC CCGACTTGT ATGCGAAAGC CCGACTTGT ATGCGAAAGC TCCGACTTGT ATCGGTACAG TCCGACTTGT ATCAGTATAA CGCGCAGGTG GTAAGCTGA TCCTATGGCA AGTGGAATTT TTGAAGGCAG AAGTAGGTGT CAGCTGAACG GACGGTATCC GGTAATGTAC ATCTTTAG TTGAAGGCAG GACGGTATCC GGTAATGTAC ATCTTTTAG TATCTCAAAA TCGATAATAT	TCCGTTTGCG GTCAAACCCC ACGAAATACA GAGCTTACTA TCGTTAATGA CCAGACTGTG GCATACAAGG CCATCGAACC TCGATTAAAA TTCGGATTG TCCCTGAAGT TTCCTCTTCA ACGGAAGGTC ATATGAAGCA CCGGGGTAC CAGCGAATGG ATGCCGGCTA TCGTCTGATA CTCTCCTATC GTGGGATGAA ATCGGCTTTC GATAGACGAA TGATGCGGGTA CCATTATTTC GTGGCAGCA TCGTCTGATA ACCGCCTGT ATTATTCGAA CCATTATTTC GTGGCAGCA TCCCTCAGCT ATCGACACCT AACGTCCGTG TATACTTGGG TGCAAAAAAT TTCTTCCGTT CTATTCCCTA TCTGGGTACC CCTGAACTGA ACGTGACGAT TTTTGCAAA TCCGAAACCG ACCGCAACCT GTATTATGTG GACTCGGAA ATATGCAATG GAACATACAG GCCAAAGGGA GGTTGTTTT CTGGCCGAT TGGCGTGTT ATGCGAAACC CTTCCGCGGT CAAGAGGAA TGCCCTACCT GATGCCCAAT ACCGCCCAAT TAGGGGTGAA GGGGAATATA GACTTCTCA AGCTGAAAG GGGGAATATA GACTTCTCA AGCTGACAC TGTGTCTTTC TCCGACTTGT ATCACTACT GATGCCCTAT ACCGCCCAAT TAGGGGTGAA GGGGAATATA GACTTCTCA AGCTGACA TGTGCCTTTC TCCGACTTGT ATCACTATAA TGTGAGTTTC CCGCCAGGTG GTAAGCTGGA ATACTCTTAT TCCTATGGCA AAGTAGAGTG TCATCCCATT TCCTATGGCA AAGTAGGTGT TCATCCCATT CAGCTGAACG GACGGTATCC GTATTCTTTC GGTAATGAC GACGGTATCG GTATTCTTTC GGTAATGAC GACGGTATCG GTATTCTTTC GGTAATGAC GACGGTATCG GTATTCTTTC GGTAATGAC ATCTCTTAG TGCGGATGTT TATCTCAAAA TCGGATATAT TGCGGATGTT TCATGCAAACG GACGGTATCG GTATTCTTTC GGTAATGAC ATCTCTTAG TGCGGATGTT TATCTCAAAA TCGATATAT TGCGGATGTT	TCCGTTTGCGGTCAAACCCCACGAAATACAGAAACCAAACGAGCTTACTATCGTTAATGACCAGACTGTGGAGATGGAGCGCATACAAGGCCATCGAACCTCGATTAAAACCTTTCCGTCTTCGGATTGTCCCTGAAGTTTCCTCTTCAGGCAGGAACAACGGAAGGTCATATGAAGCACCGGGGGTACCTGAATATCGCAGCGAATGGATGCCGGCTATCGTCTGATAGATGCAGAGCCTCTCCTATCGTGGGATGAAATCGGCTTCAATACCGGTGGATAGACGAATGATGGCAGGAGTGGACCCAGAGCAGCCCAACCGGCTTGATTATTCGAACCATTATTCAATACCTACGGTGGGCAGCAACCTCCAGCTATCGACACCTGTTACTCCTCAACGTCCGTGTATACTTGGGTCGAAAAAATGATGTGATCGCTTCTCCGTTCTATTCCCTATCTGGGTACCGATCCGATGACTTGAACTGGACGTGACGATGATAATGAGTTGTCCGATGCTTCGTACGGACGTGACACTTTTTTCCCAAAAACAGCGAACATCCGAAACCGACGCCAACCTGTATATTATGGGAGGGCGCGCGACTCGGACAATTATGCAATGGACATACAGGCCGAAGTAGGCCAAAGGGAAGTGCAAACCGTTCTCCAAAACGATTGTACCGAAAGGGAATTCGCAAAGCCTTCGGCGGTGTGATTCGAACCCGAAGGAATGCCAACCTTTCGGCCTAAACTGGATGCTCAAGAGGAGATGCCCTACCTGATGCCCAATACCGATTGTACACGCCCAATTAGGGAAAGCCTTCGGCGGTGTGATTCGAACACGCCCAATTAGGGTGAAGGGGAATATAGCCGATTGGCACGCACGTGTATCGTATACTGCGATTGCTATACTCCCATCCGACTTGTACTGTATCTACTGGCGATATGCCTGTGTCGCT <t< td=""><td>TCCGTTTGCGGTCAAACCCCACGAAATACAGAAACCAAACGCCCGACACGAGCTTACTATCGTTAATGACCAGACTGTGGAGATGGAGCATGCGGATCCGCATACAAGGCCATCGAACCTCGATTAAAACCTTTCCGTCCGGAATATAATTCGGATTGTCCCTGAAGTTTCCTCTTCAGGCAGGAACAATCTTCCGAAACGGAAGGTCATATGAAGCACCGGGGGTACCTGAATATCGGTATCGGCCACAGCGAATGGATATCGACCAATCGCCTTCCAGTACACGAAGGAGAGCTCTCTCCTATCGTGGGATGAAATCGGCTTCAATACCGGTGACTTCGACGGATGAGCGATGATGCCAGGAGGGGGACCAGACCAGCGCAGCCCTTCCTTACCGGCTTGATTATTCGAACCATTATTCAATAACTACGGACGGGGAGCGTGGGCAGCATCCCTCAGCTATCGACACCTGTTACTCCTCAGATGGACAAACGTCCGTGTATACTTCGGTCCGACACCTGATCGATGAAGGCCTCACACTTCTCCGTTCTATTCCCTATCTGGGTACCGATCGATGAATGTCAACACCTTGAACTGACCGCAACCTGATTATTATGGGAGGCGGCCCCACAATCGGTTCGTACGGACCGCAACCTGTATTATTGGGAGGGCGCCCCACAATCGGGACTCGGACAATATGCAATGGACATACAGGCCGAGTAGGCTTACTTCGCCAAAGGGAATATGCAATCGACATACAGGCCGAGTAGCCACAATCGCGACTGGACAATATCAAAGCCTTCGGCGGTGTGATTCGAAATGGTCTCGCCAAGAGGAGATGCCTTACCTTTTGGCCAAAACGATTGTAACGTTAGTATCGCGCTACTTAGGGAAAGCCTTCGGCGGTGTGATTCGAAATGCTCTCGCCAAGAGGAGATGCCTTACCTTTTTCCGACAATGCTCACTTT</td><td>CAGCGAATGG ATGCCGGCTA TCGTCTGATA GATGCAGAGC AGGAGAGACT GAATCTTTTC CTCTCTATC GTGGGATGAA ATCGGCTTC AATACCGGTG ACTTCGACGG CGACAGAAAG GATAGACGAA TGATGGCAGG AGTGGACTAC GAGCAGCGCA GGCCTTCCTT TGTGCTTGCT ACCGGCTTGT ATTATTCGAA CCATTATTC AATACTACG GACGGGAGC TACCACCAAT GTGGGCAGCA TCCCTCAGCT ATCGACACCT GTTACTCCTC AGATGGACAA CGGGACCAC AACGTCCGT TATACTTGGG TGCAAAAAAAT GATGTATCG ATTATTAGCT CAAACACTG TATACTCCTA ACGTGACACACT TTTTCCCTA ACGTGACACAC ACGTGACACA ACGTGACGAT GAGTAATGAG TTTTCCCATA ACGTGACACAC ACGTGACACAC ACGTGACACA ACGTGACGAA ACGGGACCAC AGAACATACG CACGAAACGG ACCGCAAACCG ACCGCAACCT GTATATATGTG GAGGGCGCGC CCACAATCGG ATTTTCCGGA ACGCCAAACGG AACATACAG GCCGAAACGG ACCGCAACCT GTATTATATG GAGGGCGCGC CCACAATCGG ATTTTCCGGA GACCAAACGG ACCCAAAGGGA ACATACAG GCCGGAGTAG GGATTTCTC CCATTCCGAAACGG ACCTTCTTCTCAAACGGAAAACG ACCGCAAACGGAAA ACAGCGAAA TGATTCAAAC GGCGTTCTG ACCCGAAAGGGA ATTTGCAAAA CGGCGAACTACAG GCCGAAGGGA ACCGCAAACGG ACCTTCACAC ACGACTACAG GCCGAAGGGA ACCCGCAAACGG ACCTTCTC ACGACTGAA ACGATTGACA ACGATTGTAC CCCTTCACACT ACGATATCAG GCCGAAGGGA ACGCCCAAA ACGATTGACA ACGATTGAC TCCCTTCCA ACCCCTACAT ACGATTGAC TCCCTTCCA ACCCCCAAA ACGAATACAG GCCGAAGGAA ACGACTGAC ACCCCAAATCGA ACGATTGAC ACCCCCAAAT ACGATTGAC TCCCTTCCA ACCCTTACCCT AATACAACCA ACGATTGAC ACCCCCAAAT ACGATTGAC TCCCCATTCT ATACACCA ACCCCCAAACCAG ATACCACT ACCCATTACACCT AATACACCA ACCCGCAGGGGGAATATA ACGATTGAC TCCCCATTC ACCCTT ATACACCA ACCCGCCAGAGCA ACGACTGACAG ATACCTCTTAT CCCGATATCA ACCCCATTCCAACCA ACCCGCAGAGC ACCCCCTGCAAACCA ACGATATCAA ACGATTACAC TCCCCATTCA ACCCATTACACCT ATACACCA ACCCGCAGGAG ATACCCATTACACT TCCCCATTCC ACCCT AATACACCA ACCCGCAGAGA ACGAAATACA TCCTATAT ACCCCATT GCCCATTCC ACCCT AATACACAC ACCCCATTGAAACAACAACAACAACAACAACAAAAAAAAA</td></t<>	TCCGTTTGCGGTCAAACCCCACGAAATACAGAAACCAAACGCCCGACACGAGCTTACTATCGTTAATGACCAGACTGTGGAGATGGAGCATGCGGATCCGCATACAAGGCCATCGAACCTCGATTAAAACCTTTCCGTCCGGAATATAATTCGGATTGTCCCTGAAGTTTCCTCTTCAGGCAGGAACAATCTTCCGAAACGGAAGGTCATATGAAGCACCGGGGGTACCTGAATATCGGTATCGGCCACAGCGAATGGATATCGACCAATCGCCTTCCAGTACACGAAGGAGAGCTCTCTCCTATCGTGGGATGAAATCGGCTTCAATACCGGTGACTTCGACGGATGAGCGATGATGCCAGGAGGGGGACCAGACCAGCGCAGCCCTTCCTTACCGGCTTGATTATTCGAACCATTATTCAATAACTACGGACGGGGAGCGTGGGCAGCATCCCTCAGCTATCGACACCTGTTACTCCTCAGATGGACAAACGTCCGTGTATACTTCGGTCCGACACCTGATCGATGAAGGCCTCACACTTCTCCGTTCTATTCCCTATCTGGGTACCGATCGATGAATGTCAACACCTTGAACTGACCGCAACCTGATTATTATGGGAGGCGGCCCCACAATCGGTTCGTACGGACCGCAACCTGTATTATTGGGAGGGCGCCCCACAATCGGGACTCGGACAATATGCAATGGACATACAGGCCGAGTAGGCTTACTTCGCCAAAGGGAATATGCAATCGACATACAGGCCGAGTAGCCACAATCGCGACTGGACAATATCAAAGCCTTCGGCGGTGTGATTCGAAATGGTCTCGCCAAGAGGAGATGCCTTACCTTTTGGCCAAAACGATTGTAACGTTAGTATCGCGCTACTTAGGGAAAGCCTTCGGCGGTGTGATTCGAAATGCTCTCGCCAAGAGGAGATGCCTTACCTTTTTCCGACAATGCTCACTTT	CAGCGAATGG ATGCCGGCTA TCGTCTGATA GATGCAGAGC AGGAGAGACT GAATCTTTTC CTCTCTATC GTGGGATGAA ATCGGCTTC AATACCGGTG ACTTCGACGG CGACAGAAAG GATAGACGAA TGATGGCAGG AGTGGACTAC GAGCAGCGCA GGCCTTCCTT TGTGCTTGCT ACCGGCTTGT ATTATTCGAA CCATTATTC AATACTACG GACGGGAGC TACCACCAAT GTGGGCAGCA TCCCTCAGCT ATCGACACCT GTTACTCCTC AGATGGACAA CGGGACCAC AACGTCCGT TATACTTGGG TGCAAAAAAAT GATGTATCG ATTATTAGCT CAAACACTG TATACTCCTA ACGTGACACACT TTTTCCCTA ACGTGACACAC ACGTGACACA ACGTGACGAT GAGTAATGAG TTTTCCCATA ACGTGACACAC ACGTGACACAC ACGTGACACA ACGTGACGAA ACGGGACCAC AGAACATACG CACGAAACGG ACCGCAAACCG ACCGCAACCT GTATATATGTG GAGGGCGCGC CCACAATCGG ATTTTCCGGA ACGCCAAACGG AACATACAG GCCGAAACGG ACCGCAACCT GTATTATATG GAGGGCGCGC CCACAATCGG ATTTTCCGGA GACCAAACGG ACCCAAAGGGA ACATACAG GCCGGAGTAG GGATTTCTC CCATTCCGAAACGG ACCTTCTTCTCAAACGGAAAACG ACCGCAAACGGAAA ACAGCGAAA TGATTCAAAC GGCGTTCTG ACCCGAAAGGGA ATTTGCAAAA CGGCGAACTACAG GCCGAAGGGA ACCGCAAACGG ACCTTCACAC ACGACTACAG GCCGAAGGGA ACCCGCAAACGG ACCTTCTC ACGACTGAA ACGATTGACA ACGATTGTAC CCCTTCACACT ACGATATCAG GCCGAAGGGA ACGCCCAAA ACGATTGACA ACGATTGAC TCCCTTCCA ACCCCTACAT ACGATTGAC TCCCTTCCA ACCCCCAAA ACGAATACAG GCCGAAGGAA ACGACTGAC ACCCCAAATCGA ACGATTGAC ACCCCCAAAT ACGATTGAC TCCCTTCCA ACCCTTACCCT AATACAACCA ACGATTGAC ACCCCCAAAT ACGATTGAC TCCCCATTCT ATACACCA ACCCCCAAACCAG ATACCACT ACCCATTACACCT AATACACCA ACCCGCAGGGGGAATATA ACGATTGAC TCCCCATTC ACCCTT ATACACCA ACCCGCCAGAGCA ACGACTGACAG ATACCTCTTAT CCCGATATCA ACCCCATTCCAACCA ACCCGCAGAGC ACCCCCTGCAAACCA ACGATATCAA ACGATTACAC TCCCCATTCA ACCCATTACACCT ATACACCA ACCCGCAGGAG ATACCCATTACACT TCCCCATTCC ACCCT AATACACCA ACCCGCAGAGA ACGAAATACA TCCTATAT ACCCCATT GCCCATTCC ACCCT AATACACAC ACCCCATTGAAACAACAACAACAACAACAACAAAAAAAAA

- (2) INFORMATION FOR SEQ ID NO:207
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1767 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1767
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:207

ATGAAATATC AATTATATAC GGCCGTCATA ATGGCTCTCT CTGTATCATC CGTTTGCGGT CAAACCCCAC GAAATACAGA AACCAAACGC CCCGACACGC TGCGCAGGGA GCTTACTATC 120 GTTAATGACC AGACTGTGGA GATGGAGCAT GCGGATCCGC TTCCGGCTGC ATACAAGGCC 180 ATCGAACCTC GATTAAAACC TTTCCGTCCG GAATATAACA AGCGTACATT CGGATTTGTC CCTGAAGTTT CCTCTTCAGG CAGGAACAAT CTTCCGAATA TCCTGCCGAC GGAAGGTCAT 300 ATGAAGCACC GGGGGTACCT GAATATCGGT ATCGGCCATA CGCTAAACCA GCGAATGGAT GCCGGCTATC GTCTGATAGA TGCAGAGCAG GAGAGACTGA ATCTTTTCCT CTCCTATCGT 420 GGGATGAAAT CGGCTTTCAA TACCGGTGAC TTCGACGGCG ACAGAAAGGA TAGACGAATG 480 ATGGCAGGAG TGGACTACGA GCAGCGCAGG CCTTCCTTTG TGCTTGCTAC CGGCTTGTAT 540 TATTCGAACC ATTATTTCAA TAACTACGGA CGGGGAGCTA CCACCAATGT GGGCAGCATC 600 CCTCAGCTAT CGACACCTGT TACTCCTCAG ATGGACAACG GGACCCACAA CGTCCGTGTA TACTTGGGTG CAAAAATGA TGTGATCGAT GCCAGGATCG ACTATCGTTT CTTCCGTTCT 720 780 GTGACGATGA GTAATGAGTT GTCCGATGAT ATTAAGCTCG GTGTCGAAGT TCGTACGGGA 840 GGATTGTTT TTGCCAAAAA CAGCGAAATG ATTCAAACGG GCGTTCTGTC CGAAACCGAC 900 CGCAACCTGT ATTATGTGGA GGGCGCCCC ACAATCGGAT TTGTCGGAGA CTCGGACAAT ATGCAATGGA ACATACAGGC CGGAGTAGGG ATTTCTTCCC ATTTCGGAGC CAAAGGGAGG 1020 TTGTTTTTCT GGCCTAAACT GGATGCTTCG CTTAGTATCT TCCCTTCATG GCGTGTGTAT GCGAAAGCCT TCGGCGGTGT GATTCGAAAT GGTCTCGCCG ATGTTATGCA AGAGGAGATG 1140 CCCTACCTGA TGCCCAATAC GATTGTACTC CCTTCGCGCA ATGCTTTGAC CGCCCAATTA 1200 GGGGTGAAGG GGAATATAGC CGATGTGGTA CGTATGGAGG TTTATGGCGA CTTCTCCAAG 1260 CTGACAGGTG TGCCTTTCTA TACTCCGACT CTACCCTTAT ATAATCCATC CGACTTGTAT 1320 CAGTATAATG TGAGTTTCTT GCCGATATAT GCCGACGGCA GCCGCTGGCG CGCAGGTGGT AAGCTGGAAT ACTCTTATCG CGATATGCTC CGCTTTCTGG TAGACGCATC CTATGGCAAG 1440 TGGAATTTGG ATGGAGGACT TGTCGCCTCC ATGCAGCCCG ATCTTATATT GAAGGCAGAA 1500 GTAGGTGTTC ATCCCATTGC CCCATTGGAT GTCAGACTCC GGTATACACA GCTGAACGGA 1560 CGGTATCGGT ATTCTTTCGG CTCGGCTGGC TCGGAAGCCT TGGGTATCGG TAATGTACAT 1620 CTTCTTAGTG CGGATGTTTC ATACAAGCTG AAAAAGAACT TGAGCCTTTA TCTCAAAATC 1680 GATAATATGC TGGCGGAAAC GACAGAGCTT ATCGGTTATT ATCCTATGCA GCCGTTCCAT 1740 TGTTTCGCCG GTTTTAGCTG GACTTTC 1767

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1038 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...1038
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:208

ATGATGGAAA	AATGTATCTT	TGCTCACTAT	CCACATAACC	TTGTGTTCAT	GATTCGCAAG	60
CATTTCGGTA	TCATTTTGGG	ATTTCTTTCT	CTTGTGTTTT	CGGCAGGTGC	TCAACAAGAG	120
AAGCAGGTGT	TTCATTTTCT	GAACCTTCCG	GCTACTGCAC	AGGCTTTGGC	TGCCGGAGGC	180
AAAGCTATCA	CCATCGTAGA	CGACAATCCC	GGACTGGCTT	TTGAGAATCC	GGCTCTGCTC	240
GGATATGAAT	CCGGTGGCCG	CGCCTTTCTT	TCCTATTTAT	ATTATATGAG	TGGTTCGCAT	300
ATGGGCAATG	CCTGTTATGC	CTCGTCCGTC	GGAGAGCGTG	GCATGTGGGG	TGTTGGCATG	360
${\tt CGTTTCCTGA}$	ACTACGGGTC	TATGCAAGGA	TACGATCAGA	ATGCGATTGC	CACCGGCTCT	420
TTTAGTGCTT	CGGATATAGC	TGTACAAGGA	TTTTACAGCC	ATGAACTGAG	CAACCACTTC	480
CGCGGTGGAG	TCAGCCTAAA	AGCATTGTAT	TCTTCTATCG	AGACGTATAG	TTCCTTTGGC	540
CTTGGTGTGG	ATGTCGGTAT	CAGTTATTAC	GACGATGACA	AAGGATATTC	CGCTTCCGCT	600
CTGTTCAAGA	ACGTAGGGGC	GCAACTGAAA	GGCTATAATG	AAGAACGGGA	ACCGCTCGAT	660
TGGGATTTCC	AGCTCGGCTT	TTCCCGCAGT	TTTATCAATG	CTCCGTTTCG	CTTGCACATC	720
ACGTTGTTCA	ATCTGAATCC	GCACTATTTC	AAGCGTCTTG	TACCACGCGA	TCTGTCCAAG	780
ATGCAAAAGT	TCCTCCGACA	CTTCTCGATA	GGAGCAGAAT	TTACTCCTTC	CGAGAGGTTT	840
TGGGTCGGGC	TGGGATATAC	GCCACAGATT	GCACAGGATT	TCGAGGTGGA	AGGCGGCAAC	900
AAATGGGGAG	GTCTTTCGGC	CGGCGTCGGT	TTCACTTCAG	GTGTAGTACG	TGTAGGCGTA	960

- (2) INFORMATION FOR SEQ ID NO:209
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1035 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: circular

 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1035
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:209

ATGGAAAAAT	GTATCTTTGC	TCACTATCCA	CATAACCTTG	TGTTCATGAT	TCGCAAGCAT	60
TTCGGTATCA	TTTTGGGATT	TCTTTCTCTT	GTGTTTTCGG	CAGGTGCTCA	ACAAGAGAAG	120
CAGGTGTTTC	ATTTTCTGAA	CCTTCCGGCT	ACTGCACAGG	CTTTGGCTGC	CGGAGGCAAA	180
GCTATCACCA	TCGTAGACGA	CAATCCCGGA	CTGGCTTTTG	AGAATCCGGC	TCTGCTCGGA	240
TATGAATCCG	GTGGCCGCGC	CTTTCTTTCC	TATTTATATT	ATATGAGTGG	TTCGCATATG	300
GGCAATGCCT	GTTATGCCTC	GTCCGTCGGA	${\tt GAGCGTGGCA}$	TGTGGGGTGT	TGGCATGCGT	360
TTCCTGAACT	ACGGGTCTAT	GCAAGGATAC	GATCAGAATG	CGATTGCCAC	CGGCTCTTTT	420
AGTGCTTCGG	ATATAGCTGT	ACAAGGATTT	TACAGCCATG	AACTGAGCAA	CCACTTCCGC	480
GGTGGAGTCA	GCCTAAAAGC	ATTGTATTCT	TCTATCGAGA	CGTATAGTTC	CTTTGGCCTT	540
GGTGTGGATG	TCGGTATCAG	TTATTACGAC	GATGACAAAG	GATATTCCGC	TTCCGCTCTG	600
TTCAAGAACG	TAGGGGCGCA	ACTGAAAGGC	TATAATGAAG	AACGGGAACC	GCTCGATTGG	660
GATTTCCAGC	TCGGCTTTTC	CCGCAGTTTT	ATCAATGCTC	CGTTTCGCTT	GCACATCACG	720
TTGTTCAATC	TGAATCCGCA	CTATTTCAAG	CGTCTTGTAC	CACGCGATCT	GTCCAAGATG	780
CAAAAGTTCC	TCCGACACTT	CTCGATAGGA	GCAGAATTTA	CTCCTTCCGA	GAGGTTTTGG	840
GTCGGGCTGG	GATATACGCC	ACAGATTGCA	CAGGATTTCG	AGGTGGAAGG	CGGCAACAAA	900
TGGGGAGGTC	TTTCGGCCGG	CGTCGGTTTC	ACTTCAGGTG	TAGTACGTGT	AGGCGTATCT	960
GCTGCCACCT	ATCATCCTGC	AGCTCTTTCG	TTCATGTGTT	CGGTAGGTAT	CCGTTTGGAC	1020
GATAAGAGCA	TCTTC					1035

- (2) INFORMATION FOR SEQ ID NO:210
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 990 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...990
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:210

ATGATTCGCA	AGCATTTCGG	TATCATTTTG	GGATTTCTTT	CTCTTGTGTT	TTCGGCAGGT	60
			CTGAACCTTC			120
GCTGCCGGAG	GCAAAGCTAT	CACCATCGTA	GACGACAATC	CCGGACTGGC	TTTTGAGAAT	180
CCGGCTCTGC	TCGGATATGA	ATCCGGTGGC	CGCGCCTTTC	TTTCCTATTT	ATATTATATG	240
			GCCTCGTCCG			300
GGTGTTGGCA	TGCGTTTCCT	GAACTACGGG	TCTATGCAAG	GATACGATCA	GAATGCGATT	360
GCCACCGGCT	СТТТТАСТСС	ТТСССАТАТА	GCTGTACAAG	GATTTTACAG	CCATGAACTG	420

AGCAACCACT	TCCGCGGTGG	AGTCAGCCTA	AAAGCATTGT	ATTCTTCTAT	CGAGACGTAT	480
AGTTCCTTTG	GCCTTGGTGT	GGATGTCGGT	ATCAGTTATT	ACGACGATGA	CAAAGGATAT	540
TCCGCTTCCG	CTCTGTTCAA	GAACGTAGGG	GCGCAACTGA	AAGGCTATAA	TGAAGAACGG	600
GAACCGCTCG	ATTGGGATTT	CCAGCTCGGC	TTTTCCCGCA	GTTTTATCAA	TGCTCCGTTT	660
CGCTTGCACA	TCACGTTGTT	CAATCTGAAT	CCGCACTATT	TCAAGCGTCT	TGTACCACGC	720
GATCTGTCCA	AGATGCAAAA	GTTCCTCCGA	CACTTCTCGA	TAGGAGCAGA	ATTTACTCCT	780
TCCGAGAGGT	TTTGGGTCGG	GCTGGGATAT	ACGCCACAGA	TTGCACAGGA	TTTCGAGGTG	840
GAAGGCGGCA	ACAAATGGGG	AGGTCTTTCG	GCCGGCGTCG	GTTTCACTTC	AGGTGTAGTA	900
CGTGTAGGCG	TATCTGCTGC	CACCTATCAT	CCTGCAGCTC	TTTCGTTCAT	GTGTTCGGTA	960
GGTATCCGTT	TGGACGATAA	${\tt GAGCATCTTC}$				990

- (2) INFORMATION FOR SEQ ID NO:211
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 972 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...972
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:211

ATGTGCCTCG	AACCCATAAT	TGCTCCGATT	TCATCCGAGT	TGCTCGAGCA	GGAGCTGACT	60
GCCGATCGTT	TTCTGCGGAT	GACAAACAAA	GCCGGCAATG	AGATCTATGT	TTTTACGGCC	120
GAAGAAGCTC	CGCATTGCAT	GAAAGAAGTA	GGCCGACTGC	GAGAAGAAGC	CTTTCGGCAT	180
TATGGCGGAG	GTACTGGCAA	GGCGATCGAT	ATAGACGAGT	TCGACACCAT	GCCCGGGAGC	240
TACAAACAGC	TGATCGTATG	GGATCCGCAA	AACAAGGCTA	TACTCGGAGG	CTACCGCTTT	300
ATCTATGGGC	GGGACGTTGC	TTTCGATACC	GATGGCAAGC	CTTTGCTGGC	AACGGCAGAG	360
ATGTTTCGCT	TCAGTGATGC	TTTTTTGCAC	GATTATCTCC	CCTACACAGT	CGAATTGGGA	420
CGTTCGTTCG	TGTCGCTCCA	GTACCAATCG	ACACGGATGG	GCACAAAGGC	CATTTTTGTG	480
CTGGACAATC	TTTGGGACGG	TATCGGAGCA	CTCACTGTAG	TCAATCCAGA	GGCACTCTAT	540
TTCTATGGCA	AGGTGACCAT	GTACAAAGAC	TATGATCGGC	GAGCTCGCAA	TCTGATCCTG	600
TATTTTCTTC	GCAAGCACTT	CTCCGATCCG	GAAGGCTTGG	TCAAGCCTAT	TCATCCCCTA	660
CCGATAGAGA	TCAGTGCGGA	GGACGAAGCC	TTGTTCTCCT	CATCCGACTT	TGACACCAAT	720
TACAAGACTC	TCAATATAGA	AGTGCGCAAG	CTGGGTATCA	ATATCCCTCC	TCTCGTGAGT	780
GCATATATAG	CTTTGTCTCC	GGAGATGCGT	GTTTTCGGCA	CTGCAGTGAA	TGAGTCTTTC	840
GGAGAGGTGG	AGGAAACCGG	CATATTCATT	GCTGTGGGTA	AGATCCTGGA	AGAGAAAAA	900
CAACGGCACA	TAGAGAGCTT	CATCCTCAGC	CGGAACGAAA	AAAAAGGTCT	CGACAGTAGC	960
AATGGCCGAT	CA					972

- (2) INFORMATION FOR SEQ ID NO:212
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1641 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1641
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:212

```
ATGAAAACCA TTGTAAGATA CAGCCGCCTT CCGGTCGCTC TCTTCTTTTG CCTTTTGGGA
GCTGTGCACT TGTCTGTCGA GGCGCAGATG CTCAATACTC CTTTCGAGCT GTCGGATCAG
ATCGTCCTGT CTCCCACCGA AAGGCAATAC AGGGAGATTT GTGTGCAAAC GAAAGAAAAA
AGGGGGGCCG ATCTTTTCCC GTTGAGCGAT AAGCTGCGCG ATTCGGCCTA TGTTCGTTTC
GGCTCGGCCT ATGGCGATAT TGCGGGCGAC TATCTTCCGT ACAACGGCAA TAACTACTCC
TCGCTCTCGC TCGAATCGGG TGGTCGCATC AGTGTCCGTA ACTATGGCAC ATTGCAGGGC
AGTGCTTCCT ACTCACGTGG CATGCACAAA CGCATCGGCT GGAATGCTCT GCGCAACGCC
                                                                      420
GAAGCCTACT ATCCCTATTT GGTGTCCGAT TCGACCGGCG GAGACTATCA TTTCGAAGAC
                                                                      480
TATCGGCTTG CCGGCTACTA TTCTTTTCGC GCCGGCCGCT TGCCCCTCGG TATAGGCTTC
                                                                      540
TCATACAGGG GCGAAGTTGC TTATCGGCTG ACCGATCCGC GTACGACCAA TACGACCGGT
                                                                      600
GCATTGGAGC TTTCTTGTGC TACCTCTTTG ACGCTGCCTC GAGAGAACAG GCTATCGCTT
TCGGCTGCGT ATCTCTATCA TAGACAACAC CTCACACAGT ACAACTGGCG TCCCGGGCAG
                                                                      720
CAGGACAAAT TCTTCGTCAG CTACGGTTTC GGTCAGGTGG ATGTCAGCAA CAGCCCTATC
TGGTTCGGTA TCTCCAGAAT GAACTACGTC AACGGATGGA AGCTTAGCTC CCGTCTGGAT
                                                                      840
ACCCGTAGGG GCGATGCCAT CGGTCTCGAC TACAGCGGCT ACTTCCTCGA TACCGAAGAG
                                                                      900
AGGTCGTCCA TCAATCTCTT TGCTTTGCTT TACAATCGCC TGCGACTCTA TGGTAGCTGG
CATCTGTCGG ACTTCGATTT TTCATTTTCA GCCGACTATG CTCTGCGCCA AGGGATAGAG
                                                                     1020
CGGATATACG AAGACTACAA GCCGGATGAT AATTATCATA TCTACGACCT CCGTATCTTG
GCCATTCGCC GCTGGTATAT GCTCAATGAG TTTTCTGCCC AAGCCCAAGC CTCCTACCGT
ATTCGCACGG ATAGAGGTTG TGCCCTGAGA GTGAGTGCCG GTAGTGATTT CTACGGCTAT
GATGAGACGT ATCGCAAGCA TGGACATCAT ACCATGAGCG GAATGCTACG TCCTTTTGCC
                                                                     1260
GGTATAGCCT ATGACCATGC CGGATCCAAA TTGGATTTTG GACTTTCGCT TTCGGCTGCT
                                                                     1320
TATCGAATGG TGCTGACGCA TTCGTATAAG ATTCGTACCA TCCAGAAAGA GCAGCTCGAC
TATCAGCTGG CCTATTTGCC CTATGCCTAT CGTAATAGAG AAGGCGTGGA GGTGCGTTCC
TCTCTGTACG TCTCGATTCC GATGCAGAAT ACCCACCGCC TGATGACAGA GCTGCGGTTG
TATGGCGACC TGATGAAAAG AAAGGACGGT ATAGCCTATG GCAAAACGCC CGGTGTCATC
                                                                     1560
TCACATATCC TGTCCGATCC GCAAGCCGAA CGAACGTCCG GCCATACCAT CGGGGCTATC
                                                                     1620
TGCAATATCT CCTACCTCTT C
```

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2250 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION 1...2250
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:213

ΑT	GAAAAAAC	TTCACATGAT	TGCCGCCTTA	GCCGTCCTGC	CTTTCTGCCT	GACGGCACAA	60
GC	CACCCGTCT	CCAACAGCGA	GATAGATAGT	CTTAGCAATG	TGCAGCTCCA	GACCGTACAG	120
G7	CGTAGCTA	CTCGCGCCAC	GGCGAAAACC	CCTGTCGCTT	ACACCAACGT	TCGCAAGGCC	180
GZ	ACTTTCCA	AGTCCAATTA	TGGTCGTGAC	ATCCCCTATC	TGCTGATGCT	GACTCCCTCC	240
GI	GGTAGCCA	CCAGCGATGC	CGGTACGGGT	ATCGGATATT	CCGGCTTTCG	CGTGCGTGGC	300
AC	CGATGCCA	ATCGCATCAA	CATAACTACC	AATGGAGTAC	CCCTCAACGA	CTCCGAATCT	360
CZ	GTCCGTCT	${\tt TTTGGGTGAA}$	TATGCCCGAC	TTCGCCTCTT	CCATCGAAGA	CCTTCAGGTG	420
CZ	GCGAGGTG	TGGGTACTTC	CACCAATGGT	GCCGGAGCTT	TTGGGGCAAG	TGTCAATATG	480
C	STACGGATA	ATTTGGGACT	GGCTCCTTAT	GGCCGTGTCG	ATTTGAGCGG	AGGTTCGTTC	540
GC	CACATTCC	GCCGATCGGT	CAAACTCGGT	AGCGGACGCA	TCGGTCGCCA	TTGGGCAGTG	600
G.	TGCCCGCC	TGTCCAAAAT	CGGTTCGGAC	GGCTACGTGG	ATAGAGGAAG	CGTGGATCTG	660
A	ATCCTATT	TCGCACAGGT	GGGCTATTTC	GGTAGCAACA	CGGCTCTCAG	GTTCATCACT	720
T	CGGAGGAA	AAGAAGTTAC	GGGTATCGCA	TGGAACGGTC	TTTCCAAGGA	GGATGAAGCC	780
ΑZ	ATATGGCC	GCCGATACAA	CAGTGCCGGT	CTTATGTACG	TGGACGCGCA	AGGAGTACCG	840
C	CTACTACC	ACAATACCGA	CAATTACGAG	CAGCGTCACT	ACCATGCCAT	CATGACGCAC	900
AC	CTTCTCTC	CTTCCGTTAT	CCTCAACCTC	ACGGCACACT	ACACGGCCGG	ATATGGCTAT	960
A	CGGACGAAT	ATCGTACCGG	ACGTAAACTA	AAGGAATATG	CACTGCAGCC	CTATGTGGAA	1020
A.	CAGTGTGA	CCGTGAAGAA	AACGGATCTC	ATCCGTCAGA	AGTATCTGGA	CAATGACTTC	1080
GC	BAGGACTCA	TCGGTTCGCT	TAACTGGCAC	ACCGGTGCAT	GGGATTTGCA	GTTCGGGGCC	1140
T	CGGCCAATA	TCTATAAAGG	AGACCACTTC	GGCCGTATCA	CTTACATCAA	AAAGTACAAT	1200
C	AGCCCTTAG	CTCCCGACTT	CGAATATTAT	CGGAACAGGG	CAGACAAAAG	AGAAGGTGCA	1260
G	CCTTTGCCA	AAGCCAACTG	GCAGATCACT	CCGGAACTGA	ACATGTATGC	CGACCTCCAG	1320
			GATAAACGGC				1380
AC	TATGCAGC	ACATCGATTT	GGACAAGACC	TTCCGCTTCC	TCAATCCGAA	GGCCGGTCTT	1440

ACCTATAGTT	TCGACGATGC	TCATACTGCC	TATGCTTCTG	TTGCGGTAGC	ACACCGCGAG	1500
CCTAACAGAA	CCAATTACAC	CGAAGCCGGA	ATAGGACAGT	ATCCTACGCC	TGAGCGACTG	1560
ATCGACTATG	AGCTGGGCTA	CCGCTATGCT	TCGCCCCTCT	TGTCGGCCGG	AGTAGGTCTC	1620
TATTATATGC	AATACAAGGA	CCAACTCGTG	CTGGATGGCC	GTTTGAGCGA	TGTGGGACAG	1680
ATGCTCACAA	GCAACGTCCC	CGACAGCTAC	CGTATGGGAC	TGGAGCTGAC	TCTCGGTTGG	1740
CAGATCCTTC	CTCGTTTGCT	GCGTTGGGAT	GCTTCTTTCA	CTATGAGTCG	CAACAAAATC	1800
GACCGCTACG	TACAATATAC	ATCCGTATAT	GATGCGGACT	ACAACTGGCT	CGAACTCAAG	1860
GAGGAGACCC	TCGAAAGCAC	GGATATAGCC	TACTCGCCCA	ATGTCATTGC	CGGCAGCATG	1920
CTTACCCTCT	CTCATGCCGG	TTTCGAAATG	GCTTGGACGA	GCCGCTTCGT	CAGCAAGCAA	1980
TATCTGGACA	ATACACAGCG	CAGCGATCGC	ATGCTTTCCT	CCTATTGGGT	GAACGACCTC	2040
CGCCTCGGCT	ATGTGCTGCC	${\tt GGTTCACTTC}$	GTTAAGAGAG	TGGCACTGGG	CGTACAGCTC	2100
AATAATCTCT	TCAACCTCAT	GTATGCGTCC	AATGCCTACA	TCTACGATGC	CGGTTACGTA	2160
CAGGCATCCG	GAGAACTAAG	TGCATATGCC	GATCTGCGTT	ATTATCCTCA	GGCCGGATTT	2220
AATGCACTGG	GTAGTCTGAC	AATCGATTTC				2250

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1482
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214

ATGAAAAGAA	GGTTTCTATC	GCTGTTACTG	CTGTACATAC	TCTCTTCCAT	CAGCCTTTCT	60
GCTCAGCGGT	TTCCGATGGT	GCAGGGAATC	GAGTTGGATA	CCGATTCGCT	TTTCTCTCTG	120
CCCAAGCGTC	CTTGGCGCGC	CATCGGTAAA	ACGATAGGCG	TCAATCTGGC	CGTATGGGGC	180
${\tt TTCGATCATT}$	TCATCATGAA	CGAGGACTTT	GCAGACATCA	GTTGGCAGAC	TATCAAGAGC	240
AATTTCCAAA	CAGGCTTTGG	CTGGGACAAT	GACAAGTTTG	TCACCAACCT	CTTCGCACAT	300
${\tt CCTTATCACG}$	GATCGCTCTA	TTTCAATGCA	GCGAGGTCGA	ACGGTTTGAG	CTTCAGGCAC	360
${\tt TCTGCTCCGT}$	TTGCCTTCTT	TGGCAGTCTC	ATGTGGGAGC	TGCTTATGGA	AAACGAGCCA	420
${\tt CCGAGTATCA}$	ACGACCTCTG	TGCCACCACC	ATAGGCGGTA	TAGCTTTGGG	GGAGATGGGG	480
CACAGGCTGT	CGGACCTGCT	CATCGACAAT	CGTACCACAG	GGTGGGAACG	TATGGGGCGC	540
${\tt GAGGTGGCTA}$	TCGCTCTGAT	CAATCCGATG	CGCTTTCTCA	ACCGTCTGAC	AGCAGGAGAG	600
GTGACTTCTG	TCGGGAGTCG	CAGCGGACAG	ATATTTCAGT	CTGTCCCCAT	AAACATAGTC	660
GTCGATGCCG	GCTTTCGCTT	TTTGGCAGAC	AAGCGGCATG	CCCGAACCGG	TGCCACGGCT	720
CTGACCCTGA	ATCTGAGATT	CGACTACGGC	GATCCATTCC	GAAGCGAGAC	TTTCTCTCCA	780
TACGATTTCT	TCCAATTCAA	AGCCGGATTG	AGTTTCTCCG	AATCGCAACC	TCTGCTGAGC	840
CAGATCAATC	TGATCGGAAT	CCTAAGCGGA	TGCCAACTGC	TCGCACACGA	ACGAACGGTT	900
TTGGTGGGAG	GTCTCTTTCA	GCACTTCGAC	TACTACAATT	CGGAAAAACG	AATAAGCAAA	960
AATTCGGAGG	AGGTACTCGT	CACCCCATAC	CGTATCTCGC	AAGTGGCAGC	TCTGGGAGGC	1020
GGTCTTATCT	TCCAGCACCA	CGGAAAATTT	CGACGACGTC	CTCTGGAGCT	ATATGCCGAG	1080
ACCTACCTGA	ATGTCGTCCC	GATGGGAGCC	AGTCTGTCGG	ATCACTACAA	CGTGGACAAT	1140
CGGGACTATA	ACCTCGGCAG	CGGATTGAGC	GGCAAGCTAT	ACCTTGGTGC	TACGTACAAT	1200
GATCTGTGGA	GCTGGCTCTT	GGGAGTCGAA	AGCTATCGGC	TCTACACATG	GATCGGGTAT	1260
GAAGAGCCGC	ACCAGAAAAA	TACCGATGTC	AGCTCTTTTA	TGGTGCAGGG	GGACGAAAGC	1320
AAGGCGCGCC	TACTGGTGAC	GAGTTCCGAG	TTCGCATTTC	ATCCTGGCCC	CTGGCATGTA	1380
GCCATCGTCG	CTCGCCGTTT	CATCCGCAAA	ACAGCCTATC	AATTCTACCC	TAACGTATCA	1440
TTCGATACCG	GCGACATACA	GCTGCGTGTC	GGATTTCACT	TC		1482

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 882 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...882
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215

ATGAAACGAC	TGATTGTTTT	TCTGGCAATG	GGTGGCTTGC	TGTTCACCCT	TGCGAACGCA	60
CAAGAAGCAA	ACACTGCATC	TGACACTCCC	AAAAAGGACT	GGACTATAAA	AGGTGTGACC	120
GGACTAAATG	CCTCTCAGAC	TTCTCTGACC	AACTGGGCTG	CCGGTGGAGA	AAACACGGTG	180
GCAGGTAACC	TCTATTTGAA	CATAGATGCC	AACTACCTGA	AAGATAAATG	GAGTTGGGAC	240
AACGGTTTGC	GTACAGACTT	CGGTCTGACC	TACACAACAG	CCAACAAGTG	GAACAAAAGT	300
GTAGACAAGA	TCGAACTCTT	CACGAAGGCC	GGCTATGAGA	TCGGCAAACA	TTGGTACGGA	360
AGTGCGCTTT	TCACTTTCCT	CTCACAGTAT	GCCAAAGGAT	ATGAGAAGCC	CTCGGATCAC	420
TTGACAGGAG	TCAAGCATAT	CTCTAATTTC	TTCGCTCCTG	CATATCTCAC	TCTCGGTATT	480
GGTGCGGACT	ATAAGCCCAA	TGAGAAGTTC	TCTCTCTACC	TCTCTCCTAC	AACGGGCAAG	540
CTGACTGTAG	TAGCAGACGA	CTACCTCTCA	AGTTTGGGAG	CCTTCGGGGT	GAAAGTTGGT	600
GAAAAGACAA	TGTTCGAACT	TGGTGCTTTG	${\tt GTAGTGGGTT}$	CGGCCAATAT	AAATCTGATG	660
GAGAATGTCA	ATTTGATAAC	CAAGGCTTCA	TTCTTCTCGG	CTTATACGCA	CGACTTTGGC	720
AACATTGACA	TCAATTGGGA	GGCTATGCTG	GCCATGAAGA	TCAACAAGTT	CCTCACGGCT	780
ACGATAGCCA	CCAATCTTAT	CTACGACGAT	GATGTGAAGA	TCAACGATGG	CCCGAAAATC	840
CAGTTCAAAG	AAGTTGTGGG	CGTGGGTGTT	GCGTACACTT	TC		882

- (2) INFORMATION FOR SEQ ID NO:216
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 612 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...612
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216

ATGAAGAAAA	TGATTTTGGC	AGCTACTATG	CTGCTCGCAA	CAATCGGTTT	TGCAAATGCT	60
CAGAGTCGTC	CTGCTCTTAG	ACTGGATGCT	AACTTTGTCG	GTAGTAACTT	AATGCAAAAA	120
GTCGCAAACA	CGAGCGTGAA	CAATAAGATG	ATCGTAGGCT	TACGTGTTGG	TGCTGCTGCT	180
GAGTTCGCTC	TTAGCAATGA	TGGATTCTAT	CTCGCCCCCG	GATTGGCCTA	TACGATGAGA	240
GGTGCTAAGA	TGGAATCACT	AAGTGAAACG	ACAACTCGCT	TGCATTATCT	GCAAATACCG	300
GTGAATGCCG	GTATGAGATT	TAGCTTTGCT	GACAACATGG	CTATTTCATT	GGAAGCAGGT	360
CCCTATTTCG	CATATGGTGT	CGCCGGAACG	ATTAAGACTA	AAGTTGCAGG	CGTTACGGCT	420
TCTGTAGATG	CCTTTGGTGA	TAACGGATAT	AACCGTTTCG	ACTTGGGCTT	GGGCTTGTCT	480
GCTGCCTTGA	GCTACGACCG	TTATTACGTA	CAAATTGGAT	ATGAGCATGG	ATTGCTTAAT	540
ATGTTGAAGG	ATGCTCCGGA	TAAGACTTCT	TTGCGTAATC	ATGACTTCTT	TGTGGGTCTC	600
GGTGTTCGCT	TC					612

- (2) INFORMATION FOR SEQ ID NO:217
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 729 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...729
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:217

ATGAAAAGGA	TTTTTACTGT	AGCCCTTGTG	CTACTTGCTT	CGGTCACTAT	GGCCATCGGA	60
CAAAGCCGCC	CGGCACTTCG	CGTAGATGCC	AACTTCGTAG	GCAGCAATCA	GAGCATGAAA	120
AGAGACGGAT	ATGTGTGGGA	CACCAAAATG	AATGTCGGCC	TGCGGGTCGG	TGCCGCTGCC	180
GAATTCATGA	TCGGATCAAG	AGGATTCTAC	TTGGCTCCGG	GTCTGAACTA	TACGATGAAG	240
GGCTCCAAAA	CCGAATGGGA	TATACCCGAA	ATGGTTCCTG	GTACCTATAT	TACGATGGTT	300
TCCACTCGCT	TGCACTATCT	GCAACTGCCG	ATCAATGCCG	GCATGCGGTT	CGACCTGATG	360
AATGACATGG	CGGTTTCGAT	CGAAGCGGGT	CCTTTCCTTG	CATACGGTAT	ATATGGTACA	420
TATCGGCAGA	AGTTGGAAGG	ATGGAAGCCG	AACAACTACA	GCACAGAGTT	TTTTGGCCCA	480
ACGCTTGGTG	GCCCAACAAA	TATCCGCTGG	GACATCGGGG	CAAACATAAT	AGCCGCATTC	540
CACTATAAGC	GTTATTATAT	ACAGATAGGC	TATGAACATG	GATTTGTGGA	TATTGTGTCA	600
GGTGGAGGTT	CTGATATTCC	CCGACTGAAC	GACAATAGGC	AATCCTCTTC	GACGACCGCT	660
CTAAGAGAAA	AGGGAAATAA	CGAATACGCT	TATAATCGTG	ACTTCTTCGT	GGGCATAGGT	720
TACCGCTTT						729

- (2) INFORMATION FOR SEQ ID NO:218
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 621 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...621
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218

ATGAAAAGAA	TGCTGCTGCT	TCTCGTTGTA	TTATTATATG	GAATTGCAGG	CCGATTGGCT	60
GCACAAGACG	TTATCAGACC	ATGGTCATTG	CAGGTCGGAG	CGGGATACTC	CGATACGGAG	120
AACATCCCGG	GAGGATTCAC	CTATGGTTTC	${\tt TATTTGGGAA}$	AGCGTATGGG	GAGCTTTCTG	180
GAAGTGGGGC	TGTCCATGTA	CAACTCCACA	CGTCAAACAG	CCAACAATGC	AGACTCCTTT	240
GCATCGAACG	AAGGAGACGG	ATCTTTTCAG	GTAAATATGT	CTTCTCCGAA	TGAGAAGTGG	300
TCATTCTTCG	ATGCAGGCAG	TGCCAACTGC	TATATGATCG	TCGTCGGAGT	CAATCCTCTC	360
CATCTGTTTT	GGCAGAATAG	CCGGCACAAT	${\tt TTGTTTCTGG}$	CAGTACAAGC	CGGCCTGTCC	420
AATAAGCACA	ATATTCATTT	CATCTATGGA	GACAAGGGAG	CCAAAGTCAG	TATCTACACC	480
AATTCGAATA	CCTACATCGG	TTACGGAGCA	CGTGTAGCCT	ACGAATATCA	AATTCATAAA	540
AACGTGGGGG	CGGGTGCCGC	TGTAATGTAC	GACCACGGCA	ATAAGATGCT	TACGGCCATG	600
GCCACGCTCT	CCACTCATTT	T				621

- (2) INFORMATION FOR SEQ ID NO:219
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2853 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2853
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:219

лтсасастат	CCGATCTCTG	ጥጥርር እር እርጥጥ	ጥሮአጥርሮጥጥአጥ	тасссстаат	ССТТСТСССА	60
	CTACTTTGGT					120
	ATGCTGCGCT					180
	ACAGTGCTTT					240
	TGTATGACGA					300
	TTTTGCTCGG					360
	GTCGCTTGGA					420
	ATGTCCTCGA					480
	CGTTCGAAGC					540
	TGATCACGCA					600
	ATATCATGTT					660
	TCTATATCAA					720
						720
	TCAATCTGGT					780 840
	TTTCCAACAA					900
	GATTTTATTT					
	TGCGTGGGGA					960
	AGAGGTATAA					1020
	AATACGTGCC					1080
	AGGATCCGAA					1140
	GCTATTTCCA					1200
	GAAGTTCGGC					1260
	GCATGGATAT					1320
	CGATTAATAT					1380
	GGTACGAGAA					1440
	AGAAAGATTT					1500
	TACCGATCAG					1560
	ACAATGAGTG					1620
	TCCTGCCTTC					1680
CTGTCGGCAG	GCTTATCTAC	CACATTGTAC	GGTATGTTCA	AGCCTTGGAA	ACCTTTTTCC	1740
TTCGGAGGCA	ATCTCATTAT	GATCCGTCAT	CGCTTCACGC	CCACTGTCAG	TTTCTCCTAT	1800
ATGCCGGACT	TCACGAAACG	CCGATATGGC	TTTTGGGAGC	TTCTTGAGCA	TACGGATCAG	1860
AACGGCAAGC	TGCATACGCT	GCTCTACTCT	CCTTATTTCG	AGCAGATATT	CGGTGCTCCC	1920
TCCATGGGCA	ATGCAGGATC	TGTCAATTTC	TCTTTTGACA	ACAACTTAGA	GGCCAAGATC	1980
AAATCCAAAT	CGGATTCGAC	AGGGATCAAG	AAGATCAGCC	TGATAGATCA	GTTCACATGG	2040
TCTACATCCT	ATAATATGTT	TGCCGATTCG	ATCCGATGGA	GCAATATCTC	GGCTTCGCTG	2100
GCACTTCGCC	TCTCCAAGAG	CTTTACCTTG	CGCTTGTCCG	${\tt GTCTGTTCGA}$	TCCCTATTTG	2160
ACGAAGTATT	ATGAGGGAGA	AGATGGGAAG	ATCATTCCCT	ATAAGAGCAA	CGACCTGCGC	2220
ATTTTTAACG	GCAAGGGATT	GGCACGCCTG	ATCAGTACGG	${\tt GTACTTCTTT}$	CAGCTATACG	2280
CTCAACAAAG	AGTCGCTCAG	CGGATTGATA	GCTCTTTTCA	GTGGCAAAAA	GGAGCGGAGA	2340
GATGAAAAGA	AAAACACAGG	GGCTACTCCT	CATGAAGGAG	ACGATGCTGC	CGATATACTT	2400
GAGGGAGGAA	GACCGCAAAA	TGAAAGTGGG	GGGTCGCTCC	TCGAGCGCAA	CCGTCAGGGC	2460
GGAGCAGTGG	ATCAGGATGG	TTACTTCGCA	TATTCGATCC	CATGGAGCCT	GTCCTTCGAC	2520
TATAGTTGGA	ATATTGCTAC	CGACTACAAT	AGGTACAATG	TCAATAAGAT	GGAGCACTAC	2580
TACCGGGTAA	CGCAGAATCT	GAGCTTTCGC	GGCAATATCC	AGCCTACACC	GAACTGGAGC	2640
TTCGGATTCA	ATGCGAACTA	CAATTTCGAC	TTGAAGAAAA	TAACATCGCT	TACCTGCAAC	2700
GTCACTCGCG	ACATGCACTG	CTGGGCTATC	TCGGCCAGTT	TCATCCCTAT	AGGAGCATAC	2760
AAGTCCTATA	ATTTCGTCAT	ATCGGTGAAG	AGTTCACTCT	TGCAGGATCT	GAAGTATCAG	2820
CAGAGCAATC	${\tt GTCCCATCAC}$	${\tt GAATACTTGG}$	TAT			2853

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3678 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220

			GTTTTTCTTT			60
			TTTGCAGATG			120
AAACATTCAA	TGGATTCTAA	ATTGGTGCCT	GCAAATAAGG	GTAACTTAAT	TCAAGCTGAA	180
ATTGTATACC	AATCTGTTTC	TGAACATAGT	GACTTAGTTA	TTTCACCTGT	GAACGAAATA	240
AGGCCTGCAA	ATCGTTTCCC	TTCGCATAGG	AAGTCTTTTT	TTGCAGAAAA	TCTACGGGCA	300
TCTCCCCCCG	TAGTTCCCGT	TGCCGTCGAC	AAGTATGCGG	TACCGGTTGC	CAATCCAATG	360
GATCCTGAAA	ATCCCAATGC	CTGGGATGTG	ACGCTAAAAA	TCACTACTAA	AGCGGTAACA	420
GTACCTGTCG	ATGTGGTGAT	GGTTATCGAC	CAGTCTTCGT	CAATGGGAGG	GCAAAACATT	480
			CAGCGTTTTG			540
			CTTGTGAGTT			600
			CTCTGTCAAA			660
			AAAATGGCGA			720
			TCTGACGGGT			780
			GGCAAAACTG			840
						900
			CCTACAAATT			960
			TCTTCTAAAG			
			GCAAGGATTA			1020
			CCCTATTATT			1080
			TCTGGTTATA			1140
			TCGTTGAAAC			1200
			GCTGCAGCGT			1260
ATTAATATAG	GTATACAGAG	GGGGGAGGTG	ACGGACTTTG	TAGCTCCTGG	TTTCATCGTT	1320
AAAAATCTGA	CGCAATCGGG	AGATGTTACT	CATTTGCTAA	ATGTTTCAAA	TGGAACGGTG	1380
CACTATGATG	TCTCTACTAA	AAAACTGACA	TGGACTACTG	GTACTATCCT	GAGCTCATCA	1440
			GATTTGGATT			1500
			GATCTTGGTG			1560
			GAACCGAATC			1620
			AAGCGGCACT			1680
			GTCAGTTCCC			1740
			GGAGGTCATA			1800
			TATTCCGTAC			1860
			GTCGAAGTCC			1920
			GCAGGAAACG			1980
			CAACAGAGTG			2040
						2100
			GAAGATGTAG			2160
			GTCCCGACAA			
			GTTGTTACCA			2220
			GTCGGTACGA			2280
			AATCCGGGCT			2340
			TGTGCCGATT			2400
			TCAGGTTTTC			2460
			TTCAATGGCG			2520
TATGCACCTG	ATACAGAGCT	TCAAAAATTC	AAGGGCTACC	AGATCACGAA	TGACGTGCAG	2580
GCACAGCCTA	CGGGAGTTTA	CAGCTTCAAG	GGTATGATTT	GTGTGTGCGA	TGCCTTCCTG	2640
AATCTGACAC	GCACGTCCGG	TGTCAACTAC	TCGGGCGCCA	ACTTGATCGG	CAACTCATAC	2700
ACTGGAGCCA	TCGACATCAA	GCAGGGTATT	GTCTTCCCGC	CGGAAGTCGA	GCAGACGGTG	2760
TATCTGTTCA	ACACGGGAAC	ACGCGACCAG	TGGCGTAAGC	TTAATGGAAG	CACGGTTTCA	2820
GGCTATCGAG	CCGGTCAGTA	CCTCTCTGTA	CCTAAGAATA	CAGCGGGTCA	GGACAATCTT	2880
			TTGGTGAAGA			2940
					CGGTAATGGT	3000
ACGCAGATCA	CATGGCGATC	CGGCAACTCC	GGATCGGCGA	ATATGCCGTC	ACTTGTGATG	3060
			TTGTGGATCT			3120
			AAGCTGACTG			3180
					GGAGTTGAAT	3240
					GTTTGCTCTT	3300
MCCCA MCA MM	TTTCCCAAACC	CCCTCTTTT	CTGCACGATC	TTCACTCACC	AGCCAAACAC	3360
						3420
					CGGGGCTCGT	3420
					GAGTACAAAT	
					CTTATTCACA	3540
					AGTCATGAAA	3600
		TATTGTGCAT	CTTCAAAATG	CTTTCACTAA	TGATGTGCAT	3660
AAGGTGCTTG	TTGAGTAT					3678

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3675 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...3675
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221

> ma> > > aa> m	, m, c, a, a, m, a, m	memmee a comm	TTTCTTTTAT	TCTCCACCCT	ልጥጥልሮሮጥጥጥ	60
			GCAGATGTAG			120
CAAATAAAAG	ATTECTAAATT	CCTCCCTCCA	AATAAGGGTA	ΔΟΤΤΔΔΤΤΟΔ	AGCTGAAATT	180
CATTCAATGG	ATTCTAAATT	ACATACTCAC	TTAGTTATTT	CACCTGTGAA	CCADATAACC	240
			TCTTTTTTTG			300
CCTGCAAATC	TTTCCCTTCC	CCTCCACAAG	TATGCGGTAC	CGCTTCCCAA	TCCAATGGAT	360
CCCCCCGTAG	TICCCGIIGC	CGICGACAAG	CTAAAAATCA	CTACTAAACC	CCTAACAGTA	420
			TCTTCGTCAA			480
CCTGTCGATG	TGGTGATGGT	AMCCCCACACAC	CGTTTTGTGA	AAAAAATCTT	CCCTAAGGGG	540
			GTGAGTTATG			600
			TGTCAAAAAA			660
			ATGGCGAGAA			720
TGGGGAACAC	ATACCCAGGG	GGGGCIIAAA	GACGGGTTAG	CCACCCACCA	CHATCCTCTT	780
			AAAACTGGAA			840
AAAAATGTAA	CTACTGCAGA	CTTCATTGGC	ACAAATTATG	TTTCCAACAA	TCCCATCTACA	900
						960
			TCTAAAGTTG AGGATTACTT			1020
						1080
			TATTATTATT			1140
ATCAATGAGG	CTCAGTTTGC	GAAAAACICI	GGTTATACAA	CCCATACTAT	CCACAATCAC	1200
CTGGGAGATT	TTGCCTTGGC	CAACAATTCG	TTGAAACTAA	ATTA ATTA TOTAL	CCAGAGICAC	1260
			GCAGCGTTTG			1320
			GACTTTGTAG			1320
			TTGCTAAATG			1440
			ACTACTGGTA			1500
			TTGGATTATA			
			CTTGGTGGAT			1560
			CCGAATCAGC			1620
			CGGCACTATG			1680
			AGTTCCCTAA			1740
TCACAAGATT	TCTTTTTGCC	CTCAGGTGGA	GGTCATATTG	TTCCCAAATG	GATAAAGTTG	1800
			TCCGTACCGC			1860
			GAAGTCCCAG			1920
			GGAAACGCTT			1980
AATTATTGGA	TGGGAGGAAC	AACAGACCAA	CAGAGTGAAT	GGGATGTGAC	GTCCAATTGG	2040
ACAGGAGCCC	AAGTACCGCT	CACAGGAGAA	GATGTAGAGT	TTGCAACGAC	AGAAAATTTC	2100
			CCGACAACCA			2160
CTTATCAATA	ATTCCGACAA	GGATTTAGTT	GTTACCACAA	GCAGTCAATT	GACGATCAAC	2220
			GGTACGATCG			2280
			CCGGGCTATA			2340
			GCCGATTGTG			2400
			GGTTTTCCAA			2460
			AATGGCGATA			2520
			GGCTACCAGA			2580
			ATGATTTGTG			2640
			GGCGCCAACT			2700
			TTCCCGCCGG			2760
			CGTAAGCTTA			2820
TATCGAGCCG	GTCAGTACCT	CTCTGTACCT	AAGAATACAG	CGGGTCAGGA	CAATCTTCCG	2880
GATCGTATTC	CATCGATGCA	TTCCTTCTTG	GTGAAGATGC	AGAACGGAGC	GTCTTGTACG	2940
TTGCANATCT	TGTACGATAA	GCTGCTCAAG	AACACGACTG	TAAACAACGG	TAATGGTACG	3000
CAGATCACAT	GGCGATCCGG	CAACTCCGGA	TCGGCGAATA	TGCCGTCACT	TGTGATGGAT	3060
GTTCTTGGTA	ACGAGTCGGC	CGACCGTTTG	TGGATCTTTA	CCGATGGGGG	TCTTTCTTTC	3120
GGATTCGACA	ACGGCTGGGA	TGGTCGCAAG	CTGACTGAAA	AAGGTTTGTC	ACAACTTTAT	3180
GCGATGTCTG	ACATCGGTAA	TGATAAATTC	CAGGTTGCAG	GGGTTCCGGA	GTTGAATAAC	3240
CTGCTGATCG	GCTTCGATGC	GGATAAGGAT	GGTCAATACA	CGTTGGAGTT	TGCTCTTTCG	3300
GATCATTTTG	CGAAAGGGGC	TGTTTACCTG	CACGATCTTC	AGTCAGGAGC	CAAACACCGT	3360
ATTACGAATT	CTACGTCGTA	TTCATTCGAT	GCCAAGCGGG	GAGATTCCGG	GGCTCGTTTC	3420
CGCTTGTCAT	ATGGATGTGA	TGAGAACGTA	GATGATTCGC	ATGTCGTGAG	TACAAATGGC	3480
CGTGAAATTA	TAATTCTGAA	TCAAGATGCT	CTTGACTGCA	CTGTAACCTT	ATTCACAATA	3540
GAAGGTAAGC	TTCTTCGCCG	CTTGAAAGTA	TTAGCTGGTC	ATAGAGAAGT	CATGAAAGTG	3600
CAGACCGGAG	GGGCCTATAT	TGTGCATCTT	CAAAATGCTT	TCACTAATGA	TGTGCATAAG	3660
GTGCTTGTTG						3675
	-					

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1275 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1275
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222

ATGGAAGTGA	AGAAAAACAC	AGTGGTGCTA	CGCCTTCTGA	TTTGGTTCGT	GGCCATTCTT	60
CTCTTCCACT	CCTCACGGCT	GTGGGGACAG	GAAGGGGAGG	GGAGTGCCCG	ATACAGATTC	120
AAAGGATTCG	TGGATACCTA	CCATGCCGTA	CGCAGCTCTT	CTCCTTTTGA	TTTCATGAGC	180
TCGCGTACGA	GAGTGAGAGG	TGAGCTGGAG	AGGTCGTTCG	${\tt GTAATTCGAA}$	AGTAGCCGTA	240
TCGGTCAATG	CCACCTACAA	TGCTCTACTG	AAAGACGAGA	CCGGCTTACG	TTTACGTGAA	300
GCCTTCTTCG	AGCATCAGGA	AGAGCATTGG	GGGTTGCGCC	TCGGACGACA	GATTGTCATT	360
TGGGGGGCTG	CCGACGGTGT	GCGCATCACG	GATCTGATCT	CCCCGATGGA	TATGACCGAG	420
TTTCTGGCAC	AGGATTACGA	TGATATTCGT	ATGCCGGTCA	ATGCATTGCG	TTTCTCTGTC	480
TTCAACGAAT	CGATGAAAGT	GGAAGTCGTG	GTACTGCCTG	TATTCGAGGG	GTACCGTCTG	540
CCTGTGGATC	CTCGCAATCC	TTGGAATATC	TTCTCCCTTT	CGCCCATTGC	TCAGGGGATG	600
AATATCGTCT	GGAAAGAAGA	AGCCGGCAAA	CCGGCCTTCA	AGGTTGCCAA	TATCGAGTAC	660
GGTGCGCGAT	GGAGCACTAC	GCTCTCCGGT	ATCGACTTCG	CTTTGGCTGC	ATTGCATACA	720
TGGAACAAGA	TGCCCGTCAT	CGAAGTACAG	GGCATTGTGC	CGACGGAAAT	CATCGTTAGC	780
CCTCGCTATT	ATCGTATGGG	ATTTGTCGGC	GGCGACCTCT	CCGTACCCGT	CGGACAGTTT	840
GTTTTCAGGG	GAGAGGCTGC	GTTCAATATC	GACAAACACT	TCACCTATAA	GAGTCATGCC	900
GAGCAAGAGG	GTTTCCAAAC	AATCAATTGG	TTGGCCGGAG	CCGATTGGTA	TGCTCCCGGT	960
GAATGGATGA	TCTCAGGACA	ATTCTCAATG	GAAAGCATAT	TCAGGTATAG	GGATTTCATC	1020
TCCCAAAGAC	AACATTCTAC	CCTGATTACT	CTCAATGTTT	CCAAGAAATT	CTTCGGCAGT	1080
ACACTCCAAC	TTTCGGACTT	CACCTACTAC	GACCTTACGG	GCAAAGGATG	GTTCAGTCGC	1140
TTTGCAGCTG	ACTATGCCTT	GAACGATCAG	ATACATCTGA	TGGCCGGATA	TGACTGGTTC	1200
AGTAGTAAGG	GCAGCGGTAT	ATTCGATCGC	TACAAAGACA	ATTCCGAACT	CTGGTTCAAA	1260
GCCCGCTACA	GCTTC					1275

- (2) INFORMATION FOR SEQ ID NO:223
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1212 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1212
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223

ATGTCCTCCT	GTGAGGTGGC	TTATTTTTCA	CTAAAGCCGA	TCGATCTGCA	GAACATCCGC	60
GAACGGAATC	ACTCTTCCGA	CATCGCGCTT	TCCAATTTAT	TAGACAATTC	GAATCAGCTA	120
TTAGCTACTA	TTCTGATCGG	GAATAATGTG	ATTAATGTAG	CCATCGTTAT	CCTTTCCAAT	180
TATGCCATCG	AGCAGACATT	CGTTTTCTCT	TCTCCGATCA	TTGGATTTCT	GATCCAGACG	240
ATACTCCTGA	CCACTGTTCT	TTTGCTGTTC	GGAGAGATTC	TGCCGAAAGT	GTATGCGCGG	300
AAGAATCCGC	TGCAATACTC	GCGCTTTTCT	GCTGCAGCTA	TGTCCGTTAT	CTATAAGATA	360

TTGTCACCGT	TTTCAAAATT	GCTGGTCAAA	AGTACCGGCA	TCGTTACCAG	AGGTATCAGC	420
AAGAAGAAAT	ACGATATGTC	CGTGGATGAG	CTCTCGAAAG	CGGTAGCCCT	CACCACTACG	480
GAGGGAGAGC	CGGAGGAGAA	AGAAATGATT	AACGAAATCA	TCAAATTCTA	TAATAAGACA	540
GCCTGCGAAA	TCATGGTTCC	GCGTATCGAT	ATTGTGGATG	TGGATCTGAG	CTGGCCATTT	600
CGTAAGATGC	TTGACTTCGT	TGTTTCGTCG	GGTTATTCCA	GACTTCCCGT	TTCAGAGGGG	660
TCAGAAGACA	ATATCAAAGG	GGTGATTTAC	ATCAAAGATC	TAATCCCACA	CATGGATAAA	720
GGCGATGAAT	TCGACTGGCA	TCCTCTGATT	CGTAAAGCAT	ATTTTGTCCC	CGAAAACAAG	780
CGCATAGATG	ATTTGCTCGA	GGAGTTCAGA	GCCAATAAGG	TGCATGTCTC	CATCGTTGTG	840
GATGAGTTCG	GTGGCACTTG	CGGACTGATC	ACAATGGAGG	ACATATTGGA	AGAGATCGTC	900
GGCGAGATTA	CGGACGAGTA	CGATGAGGAA	GAACTCCCCT	TTAAGGTTTT	GGGGGATGGC	960
AGTTATCTTT	TCGAAGGAAA	AACGTCTCTC	TCCGATGTTC	GACACTATCT	TGACCTTCCG	1020
GAAAATGCTT	TCGGTGAATT	GGGGGACGAG	GTAGATACGC	TAAGTGGGCT	CTTCTTGGAA	1080
ATCAAGCAGG	AACTCCCCCA	TGTGGGCGAT	ACAGCAGTGT	ACGAGCCATT	CCGCTTTCAA	1140
GTGACCCAAA	TGGACAAGCG	CCGAATCATC	GAAATCAAGA	TTTTCCCTTT	CGAGCGCACT	1200
TGGGAGGTCG	AA					1212

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 780 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...780
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:224

ATGAAACTAT	TACTTTATCT	CCTATTGGTC	TTGTCGACTC	TATCCCCGAT	GTATTCGCAA	60
ATGCTCTTCT	CAGAGAATCT	CACAATGAAT	ATAGACAGCA	CCAAAACCAT	ACAAGGAACG	120
ATATTGCCCG	TACTGGATTT	CAAAACCGAA	AAGGAAAATG	TGTTCACCTT	CAAAAATACT	180
GCCAATCTCA	ATCTGCTGAT	AAAGCACGGT	CAAGTAATCA	ACTTAATTAA	TAAGCTTGAG	240
TTTTCTACCT	ATGGCAATAA	AGTAACCGTA	AGTGGAGGAT	ATGTACACAC	CGAATACCGC	300
TATTTGTTGC	ATCATGTTTT	TGAGGTTTAT	CCTTATGTCG	AGTCGCAATG	GGCAGAAAGT	360
AGAGGAATGA	AATATAAGGT	TTCTACGGGA	TTACAGTCGC	GTTATCGGCT	GGTAAATAGT	420
GATAACTGTC	TCATGTTTGC	AACATTGGGG	${\tt GTATTTTCG}$	AATTCGAAAA	GTGGGAACAG	480
CCAGCCACTA	GCCTCTTTGC	AGGAACGTAT	GCATACAGCC	GAAGTATCAA	AAGCCACCTG	540
TCTATCAGTT	TCAGACATCG	GTTGGGTGAA	CATTGGGAAT	TTACAACTAC	GGCTATTCAC	600
CAGGGAAAGC	CTGACAGTTA	TTTTAAGAAG	GCACGTTTTG	GAGGAGCTAT	CGACCTCAAA	660
TACCATATCA	CACCTACGAT	AGGAATACGC	GGGGCCTATC	GGATCATCTA	CGATACTGCC	720
CCTATTGTAC	CTGTGCGGAA	AGATTACAAC	ACCGTTGATG	TTGGTATCGA	TATTTCGTTT	780

- (2) INFORMATION FOR SEQ ID NO:225
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2502 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...2502
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:225

ATGAAACGAA	TCGTTTTATC	ATCTTTCCTG	TTCGTTCTGT	CCATACTTTC	TTTGATGGCA	60
CAGAACAATA	CCCTCGATGT	ACACATATCC	GGTACGATCA	AGGATGCCTC	CTCCGGCGAA	120
CCAGTGCCCT	ATGCCACTGT	AAGCATCCGG	CTGACAGGAG	CAGATACCAC	ACAGGTGTTC	180
CGACAAGTGA	CTGACGGCAA	CGGCTACTTC	GTCATAGGCC	TGCCGGCAGC	TCCCTCCTAT	240
CACCTGACAG	CTTCGTTCGT	AGGTATGAAA	ACCCATACCA	TGCAGATTAG	TCGGGGAAAT	300
GGACAGCACG	ACATCAAATC	CATCGACATT	TCTCTCGAAT	CCGAGGACAA	ACAACTCTCC	360
ACCGTCACCG	TATCGGCAGC	ACGACCACTG	GTGAAGATGG	AGATAGACCG	CCTGTCCTAT	420
AATATGAAAG	ATGACCCCGC	AGCCAAGACG	AACAACCTGC	TCGAAATGCT	GCGCAACGTT	480
CCTTTGGTAA	CGGTGGATGG	TCAGGGCAAT	ATCCAGGTGA	AAGGATCTTC	CAACTTCAAA	540
ATCCACCTCA	ATGGCAGGCC	CTCGACCATG	GTGAGCAGCA	ACCCGAAGGA	GGTCTTTCGC	600
TCCATTCCTG	CCCATACGAT	CAAACGGGTG	GAGGTCATCA	CCGATCCGGG	TGTAAAGTAC	660
GATGCGGAAG	GCACAAGTGC	CATCCTGGAC	ATCGTCACGG	AAGAAGGTAA	GAAGCTGGAA	720
GGATATTCAG	GTTCCATCAC	GGCCAGTGTC	AGCAACAATC	CCACAGCCAA	CGGTAGTATC	780
TTTCTGACGG	CAAAGTCCGG	CAAAGTCGGG	CTGACTACCA	ACTATAACTA	CTACGGTGGC	840
AAAAACAAGG	GCTCTCGCTA	CTTTACCGAA	CGTACTACAT	CCATGCTCCA	AACGATAGAA	900
GAAGGCAAAG	GGCAAGAAAC	CTTTGGCGGA	CACTTCGGCA	ATGCCCTCCT	CTCATTCGAG	960
ATAGATTCGC	TCAATCTCTT	TACGGTGGGC	GGCAATGTAC	GCCTTTGGGA	GATGACCACC	1020
GACCGGAACA	GCGTAGAAAA	AAGCTTTGCC	GGCAGCAACC	TCATGTCCTA	CATAGACAGA	1080
AAACTCAAAA	CACAGATGGA	TGCCGGATCA	TACGAGCTCA	ATGCCGACTA	TCAGCACAGC	1140
ACTCGCCTGC	CGGGCGAATT	GCTCACCGTT	TCCTACCGCT	TCACTCACAA	TCCTAATAAT	1200
AGCGAGACCT	TCATTGACCA	ATGGAAGCGC	GATCCGCTCA	ACACAGCTAA	TACGATCCAG	1260
TACGCCGGCC	AGCACTCCAA	ATCCGATGCG	GGCATGGACG	AACATACGGC	ACAAGTGGAC	1320
TATACACGTC	CCTTAGGACA	AGCACATTCT	TTGGAAGCAG	GGCTGAAGTA	CATCTATCGT	1380
CATGCCACGA	GCGATCCTCT	CTATGAGATA	CGACCATCCG	AAGATGCTCC	GTGGCAGCCC	1440
GGCTCTCTAT	ATGCACAGAA	TCCGTCGAAC	GGAAAGTTCC	GCCACGATCA	ATACATCGGA	1500
${\tt GCAGCCTATG}$	CCGGCTACAA	CTATCGTAAG	GATCAGTATT	CTTTGCAAAC	CGGCCTCCGA	1560
GTGGAAAGCA	GCAGGCTGAA	AGCACTCTTT	CCCGAAAACG	CAGCAGCAGA	TTTCTCCCAC	1620
AACTCGTTCG	ACTGGGTGCC	ACAGCTCACG	CTCGGCTATA	CCCCCTCGCC	CATGAAGCAG	1680
CTTAAGCTGG	CCTATAACTT	CCGAATCCAA	CGTCCTGCAA	TCGGCCAACT	GAATCCCTAC	1740
CGGCTACAGA	CCAACGATTA	TCAAGTACAG	TATGGTAATC	CCGACCTAAA	GTCGGAGAAG	1800
CGTCACCACG	TCGGTCTCTC	CTATAATCAA	TACGGAGCCA	AGGTCATGCT	TACAGCATCG	1860
CTCGACTACG	ACTTCTGCAA	CAACGCCATC	CAGAATTACA	CCTTCTCCGA	CCCGGCCAAT	1920
CCCAATCTGT	TCCACCAGAC	CTATGGCAAT	ATCGGACGAG	AGCATTCTTT	CAGCTTGAAT	1980
ACCTATGCCA	TGTACACGCC	GGCCGTATGG	GTCAGGATTA	TGCTCAACGG	AAATATCGAT	2040
CGCACATTCC	AAAAGAGCGA	AGCACTCGGC	ATTGATGTCA	ATTCATGGTC	CGGCATGGTA	2100
TACTCAGGCC	TGATGTTCAC	CCTGCCGAAG	GATTGGACTG	TGAATCTCTT	CGGAGGTTAT	2160
${\tt TATCATGGGG}$	GAAGAAGCTA	CCAGACGAAG	TATGATGGCA	ATGTATTCAA	CAATATCGGT	2220
ATAGCCAAAC	AGCTTTTCGA	CAAAAAATTG	AGAGTCTCGC	TGAGCGCAAA	CAACATTCAT	2280
GCGAAGTATT	CGACATGGAA	GAGCCGGACC	ATCGGCAATG	GATTTACTAT	TTATTCGGAA	2340
AATGCCGGTA	TACAACGGAG	TGTTTCCCTC	AGCCTCACCT	ACAGCTTCGG	TAAGATGAAT	2400
ACACAAGTGC	GCAAGGTAGA	GCGTACGATC	GTCAACGACG	ACCTCAAGCA	AACCTCATCC	2460
CAAGGACAGC	AGGGTGGCGG	ACAAGGAAAT	CCTACCGGCA	AT		2502

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1197 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1197
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:226

ATGAGACTCT	CTGCCATTCT	TATCGCTTTG	ATTGTGATGC	TGCCTGCTGT	GCTTAGCGGG	60
CAGCATTATT	ATTCCATGGC	GGGAGAGCGA	CTGGAGACGG	ACAGCATTCG	TCCGAACGAA	120
CTCTCGGCAT	CGATCCGAAG	TGCGCTTTTC	TTTCGGAACA	ATGAATACAA	TGCACGTTCG	180
${\tt GTCAAAGGTT}$	ATACGTTGCC	GGGTGCACGG	GTTTCCGCTT	TTGCCTCTTA	CTCGCTGCCG	240
GCAGCACATG	GTGTGAAGCT	TTCGCTCGGA	GTATCTACCC	TGAACTACTG	GGGGGCAAGT	300
CGCTATCCGG	CCGGTATCGC	TTATTCCGAT	TTACCTTATT	GGACGGACTA	TAACGACTAT	360
GTACGCTTGC	GTATCCTGCC	TTATGTACAG	GCCATGCTGA	AGCCGACGGC	CACGACTGCT	420
CTCATGCTGG	GCAATATAGC	CGGTGGTACG	GCTCACGGAC	TGATCGAACC	GATCTACAAT	480
CCTGAGTTGG	ATTTGACGGC	TGATCCTGAA	GCCGGTGTGC	AATTTCGGGG	TGATTGGACA	540

CGTTTCCGAA	TGGATGTTTG	GGTCAATTGG	ATGAGCATGA	TTTTCAAAAA	TGACAATCAT	600
	TTGTCTTTGG					660
	AACTGCCCTT					720
	ATACCGTGCA					780
	CCGACAAACC					840
	GATACTTCCC					900
	ACTTCGCTTT					960
	CTTTCGCCAA					1020
	TTCGTCTCTA					1080
	CTCGGGTATG					1140
	TGCGTATCGA					1197
GUVC I GUCGU	TOCOLATOON					

- (2) INFORMATION FOR SEQ ID NO:227
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1146 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION 1...1146
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227

					~~~~~~~	
ATGAACAAAT	CGCTATTATC	ATTGGCATGC	CTCATCCTGT	GCGGTATGCC	GGCCATCGCC	60
CAACAGACAG	GACCGGCCGA	ACGCAGCGGC	GAGCCTTCTC	TGGCCGAACG	TGTATTCGGT	120
CTGGAGCAGA	AGCAGAAAAA	GCTGAAGGTG	TACTTAGGCA	TACAGTCGTT	CTACGACCAG	180
CCGCTTGTCG	ATGACGAATC	CCATATCGGA	CACTTCAAGG	TACAGGAGCT	GCGGATGTCT	240
GCTCATGGCG	AACTGAACCG	CCACCTCAGC	TTCGACTGGC	GACAACGTCT	CAACCGTGCC	300
GCCGACGGCA	CTTCGTTTGC	CGACAATCTC	TCCAATGCCA	TCGACATCGC	AGGTGTGGAC	360
TGGCACCCGA	ACGACAAGGT	GTCTTTCTTC	TTCGGACGTC	AGTACGCGCG	TTTCGGAGGG	420
ATAGAATACG	ACATGAACCC	CGTAGAGATC	TACCAGTACA	GCGACCTTGT	GGATTACATG	480
ACCTGCTATA	CTTCGGGCGT	GAACTTCGCA	TGGAACTTCC	ACCCCGAACA	GCAGCTGCAG	540
CTACAGGTAC	TCAATGCTTA	CAACAACCGC	TTCGCCGACC	GCTACCACGT	GACACCCGAT	600
GTCGCTACCG	CCACGAGCTA	CCCGCTCCTC	TACTCGGCAC	AGTGGAACGG	TACCCTCCTC	660
GGAGGAGCAC	TGCATATGCG	TTACGCCGTG	TCGATGGCTC	ATCAGGCCCA	AGAGCGTAAT	720
ATGTGGTACT	TCACTGCGGG	CAACCTGTTC	AATCCGGGCA	AACGGATCAA	CGGATACCTC	780
GACCTCACCT	ACTCGATCGA	GGGATTGGAC	GACAAAGGCA	TTATGACTGC	TCGCTACGGC	840
AAGGGCAAGA	CCCTCACGGA	CGTCAAGTAC	TATGCTCTGG	TATCGAAGTG	GAACTTCCGC	900
ATTTTCGATC	AGGTCAATCT	CTTCCTCAAA	GGCATGTACG	AGAACGGCTA	TGCGCCTGCC	960
CAATACGGCG	AGAGCAGCCA	CACGCGCCAC	TCCTACGGCT	ATATGGGAGG	GGTGGAATAT	1020
TACCCTACGG	AGACCAACTT	CCGTCTGTTC	GTCACCTACA	TAGGACGGCA	TTACCGGTAC	1080
AGTGCGACCG	AGACGGAAAG	CACCAATGCT	CTTCGCGCCG	GTCTGATCTA	TCAGATACCT	1140
TTCTTA						1146

- (2) INFORMATION FOR SEQ ID NO:228
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 666 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature

#### (B) LOCATION 1...666

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228

ATGAAACATT TGTT	TAAGTC GACATTAGT	A CTTCTTTGTG	CTCTTTCTTT	TTCCGGTACC	60
TATACCTTTG CACA	AGAAAA TAATACAGA	AAGTCACGAT	TTGATTTTTC	TGTTAGGCTG	120
GGACAGGGAT ATAT	TGCAGG TTCAACTAC	CAACCTGATGT	ATGGGTATAC	ATCTGCTAAC	180
GATAGACTTT TGTC	TGGTGC AATTTATCT	GGCTTGACAC	CAAGTAAGAA	AGAAAATGCA	240
ACCGGCGTAG CATT	TCGTTT CTTATCNCC	C TCTCCGGGTT	ATTATGTCGA	TATATCCGGC	300
AAAGAAAATA CCTT	GAATTA TGCGTTTTA	C GTTGTCGGAG	CATATAATAG	AATAGCCATT	360
CCTATACGCC CTAT	CAAAAA TTTTAATTT	C ATCTTCTCTA	CAGAAGTCGG	AATGGCTTGG	420
ATGAGTCGTC ATGA	GCAAAT TTACAATTC	r acttcgcaga	CTTGGGATAA	GCAGCGCAAG	480
TCGAGGTCGG GACT	GGATTT TGGTCTCGG	ATGCATCTGC	AATNCCACAT	TAATAAGACC	540
GTTTACTTTA TGGC	AGGAAC CGATCTTAC	TCTTGCATGT	TCGGAAAAAG	GATCAATGAC	600
TACCAGCAAA AGGA	TCGAAC CTTCATTGC	A CTTATCGACA	ACAGTATTGG	CATAGGATTA	660
AACCTC					666

#### (2) INFORMATION FOR SEQ ID NO:229

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1173 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1173
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229

ATGATTATCA	AGAAAATGCT	GAAAAATAAA	TTGGCCCCCT	TGGCCATACT	GTTCCTTTTT	60
GCTCCAAAGG	CTATGAAGGC	TCAGGAGCAA	CTGAATGTGG	TACACACCTC	TGTGCCATCG	120
CTGAATATCA	GTCCGGATGC	ACGTGCGGCC	GGTATGGGGG	ATATAGGTGT	GGCAACGACG	180
CCGGATGCGT	ATTCACAGTA	TTGGAATCCG	AGTAAATATG	CTTTCATGGA	TACGAAAGCC	240
GGTATTAGCT	TCTCATATAC	ACCCTGGCTG	TCCAAGCTGG	TCAATGATAT	TGCCCTGATG	300
CAGATGACCG	GTTTCTACAA	ATTGGGAACA	GACGAGAATC	AGGCTATTAG	TGCTTCTCTG	360
CGTTATTTCA	CATTAGGAAA	GTTGGAGACT	TTCGACGAAT	TGGGCGAATC	CATGGGAGAG	420
GCCCATCCCA	ATGAATTTGC	TGTCGATTTG	GGCTATAGCC	GCCAGTTGTC	GGAGAACTTC	480
TCCATGGCTG	TTGCACTGCG	TTACATCCGC	TCAGACCAAA	GCACTCACAA	CACCGGAGAG	540
AATCAGGCCG	GAAATGCCTT	TGCGGCGGAT	ATAGCCGGTT	ATTTGCAGAA	GTATGTGCTA	600
CTGGGTAATG	CGGAGAGCTT	GTGGTCGTTG	GGTTTCAACG	TAAAGAATAT	CGGAACGAAG	660
ATCTCCTATG	ACGGAGGTGT	CACGAGTTTT	TTCATCCCTA	CTTCGTTGAA	TCTCGGGACG	720
GGGCTGTTGT	ATCCGATCGA	TGACTATAAC	AGCATCAATT	TCAACCTTGA	ACTTAGCAAG	780
CTGCTTGTAC	CCACTCCTCC	TATCATGGAT	CAAAACGATC	AGGCCGGGTA	TGAGGCTGCA	840
CTCAAGAAAT	ATCAGGAAAC	TTCTTCGATC	AGCGGTATAT	TCTCTTCTTT	CGGTGATGCG	900
CCGGGAGGAC	TCAAGGAAGA	ATTCCGTGAG	ATTACATGGG	GACTTGGGGC	TGAATATAGC	960
TATGACGATA	AATTTTTTGT	TCGTGCCGGA	TATTCATACC	TGCACCCCAC	CAAAGGCAAT	1020
TTGCAGTACT	TCACGGCCGG	TGCCGGCTTC	AAAATGAACA	TATTCCGTAT	CGATGCTTCC	1080
TACCTGTTGT	CTACGATCCA	GAGTAATCCG	TTGGATCAGA	CTCTGCGGTT	TACGCTTGCT	1140
TTCGATATGG	ATGGATTGCG	CAATTTGTTC	CAC			1173

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1338 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1338
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:230

ATGAAAACAA	CAGTTCAACA	AATTATTCTG	TGCCTGGCTT	TAATGATGTC	AGGTGTATTG	60
GGCGGAAACG	CACAGAGCTT	TTGGGAAGAA	ATAGCTCCTC	CTTTTATCAG	TAATGAGCCT	120
AACGTCAAGT	ATATAATTCC	CAATATGGGG	ATTGATTCAA	AGGGAACAAT	CTATGTAACC	180
GTGACAAAAA	GGATTCAGCA	GGGAGCAAAT	TATACTTCTG	AGCAATTGGG	TATGTACTAT	240
CGACCATTAG	GTGATAATGA	ACAGTGGTGG	AAACATGATC	${\tt CGTATTTTGA}$	TGACAAGATA	300
GTTGCGGATA	TTCAGACAGA	TGCATATGGC	AGAGTTTATG	TATGTACGAC	TTCTTCTCGA	360
GATCAAGAGT	ATCAACTTTA	TATAAACGAG	CAGAACGAAT	GGAGGTGTAT	ATTCAAAACT	420
TCTGTGTCTA	CATATGAGCA	TGGTATGGCT	GTTTTTCGCT	CTTCGACAGG	GGTGACTTAT	480
ATAGGTACCA	GGCATCACAT	CTTCGCATCA	${\tt GGTGTAAATG}$	ATTTCGAGTT	CAACACTATC	540
TATGAAGACT	CTACACCTAT	GAGCTGTCGC	TTTGCAGAGG	CTACGAATAG	TGGCACCATC	600
TATCTGGCAT	TGATGCATGA	AACCACAATG	TCTACGACTA	TCCTTACTTA	TCAAAACGGT	660
GAGTTCGTCG	ATATCTCGGA	AAGTGAATTG	AGTAACTCGA	TTATTGCATC	CATGTGCTCT	720
AATAAAGAAG	GTGATATAAT	AGCTCTTGTT	ACTTCATATA	CAGGATTTAT	GAGTGGAACC	780
CTTGCGATCA	GAAAAGCAGA	TGAAGGCAAA	TGGCAACTTG	TTGGCGGAGA	TATACAGAAT	840
GCGATCGTTC	AAAATATATG	CATGATGGAC	GACAACAAGA	TTGCTTGTGA	AGTCTTCGGG	900
ACTCCTAACG	GAGTAGATGG	TCGGACAAGG	GTTTGTGTTT	CTGACGCATC	TGTCTTTGAT	960
TTTGAGTGGT	ATGAAGATGA	AATATACGGA	GGCCTGATAT	TTGACACTTT	CTTCTATAGC	1020
CCTTGGGACA	AACTTCTTTA	TGCGAAATTT	GGTGGGATTA	TGCTCAGGAG	TAAAGAGTCT	1080
TTTATAACCT	CTTTCATTTC	TCCGACAGTT	GTACAAGGAG	TGGATGTCTA	TACTTTGGCC	1140
GGGAAGATAA	GGATCGAAAG	TGAAACTCCG	GTGTCTGAGG	TGTTGCTTTT	CGACCTGGCT	1200
GGCAGGATGG	TACTTCGGCA	AACCATTGAT	AATAAAATCT	ATTCGGACAT	AGATACTAAC	1260
GGACTAAAGC	GAAGCGGTAT	TTACGTAGTC	TCGGTGCGGC	TCTCTTCCGG	ACAGGTATTC	1320
AGTCATAAGG	TGCAGGTA					1338

- (2) INFORMATION FOR SEQ ID NO:231
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 924 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
      (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...924
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:231

ATGATAATCC	GGTGTCTTAT	CCGTCGTCCG	AGAACCGTCC	TGTTCGGGTT	GATATTCGTG	60
GTAGGTCTTT	TCTCTGCGAT	GGCGCAAGAG	AAAAAGGATA	GTCTCTCTAC	GGTTCAGCCA	120
GTGCCGAATA	GCAGCATGGT	GGAGCAGACC	CCTCTTCTCT	CCATTGATCA	CCCCGTCCTG	180
CCCGCTTCTT	TTCAGAATAC	CCGTACACTG	AAAAGGTTTA	GAGACAAACA	TCTTTCCGAT	240
GCTTTGCTCA	ATGGATTGAA	GCCTCATCGC	TCATCTTTGC	AATTGAATGA	GGAACTCAAC	300
TTCGCGGCAG	AGCGTCGGGA	TTTCGTTTCT	CCCCTCTTGC	AAACTCGCCA	CGCTGCCGGT	360
GTCCTTTCAT	GGCGACCGAC	CGATAGGATG	CATTTTTATA	CATCGGGCAA	TATCGGTCTT	420
GGCCATGATT	TATTGACCGG	TGTGCGCAAG	GACTTCGGAT	GGAATGCTGG	TGCCGACTTC	480
TTGCTGAGTC	AAAATCTTAC	GGCACATGTC	CAAGGCGGTT	GGCAGCAGAA	TTTCGGCTTT	540
ATACCTATGA	CGGCTGTCAA	TGGCCAACTG	CGTTGGCAAG	CCACCGAGAG	ATTGAGTTTT	600
ACCACCGGTA	TCGATTATCG	ACAGGTACAG	TGGAATGCTT	TCGATAATAG	AACGTTCTCG	660
CTTAAAGGAA	GTGCTCGATA	CGAAGTGATG	GACAATGTCT	TTGTCAATGG	ATTTGGCAGC	720
TATCCTCTCT	ACAGCAGTAC	GCGCTCAGGA	CTCAATATGG	CTGTTCCGAT	GCATGGATTC	780
	ACGGTGGATC	GCTTGAGCTG	AAAGTCTCCG	AGCGATTCGG	CTTTGCCGTC	840
GGTATGGAGC	GCGAATACAA	TATCTGGACT	CGTCGGTGGG	AAACGCATTA	CTTTGCTTAT	900
CCTGTATTCT	ATGGCGATAA					924
		-				

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 945 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...945
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232

ATGAAAACGA	ATAGACGATA	CGCATTTGTT	TTGCCGCTTC	TGCTACTCAC	CGGATTGTTG	60
GCATGGGGGC	AGGATTCTTC	CCACGGTAGC	AATACAGCGT	TTGCAACTGA	TTCTTCGAGT	120
AGAGAGTTGC	CCACGGAGCA	GTCCGCCTAC	CGCATTCATT	CTGCCTATAT	GGTCGGTGGT	180
GGCGGAAGCA	TAACGCGCGA	CACCTATTTG	TCACCCCTTC	GTTATGGAGG	ATGGACACTG	240
AATTTGTTGG	GAGAGAAGAC	GTTCCCTCTC	AAAGCCTCCG	ATTCCCGTTG	GATGATCCGT	300
ACCGGGCATG	AGCTGGATTT	TGCCCTGATG	GACAATCCGG	CCAATAATGC	TCATTTCTAT	360
TCCCTGCTGT	ATAACGGTTC	CGCTGCGGCT	${\tt CTTTACCGCC}$	TTGGCGCTAA	GCATCTGCGA	420
GCCGCGTGGA	TGGACAATCT	GCGCTTGGCA	TTCGGCCCGG	GCTTGGAAAT	CGGGCTTGGA	480
GGAATTTATA	GTACACGCAA	CGGCAATAAT	CCTGCGACAT	TGAAGCTCTA	CACCAATGCC	540
ATCGCCCAAG	CCTCGATAGG	ATACTACGTC	CCCTCCGAAA	CTTTTCCCCT	GTATTTTCGG	600
TTGCTCTCCC	AGATCAATCT	CTTCGGTATA	GCCTATGGAA	ATGGTTTTGG	TGAGAGCTAT	660
TACGAGAATT	TTTTGCTCAA	TAACGGCATT	GCAGGCTCCC	TGCATTTCAC	TTATCCGGGC	720
AAGTTTACTC	GGTTCACGAC	ACTCATAACG	GCGGATATTC	CCATTCGGAA	CTTCTGTACG	780
CTTCGTGTCG	GTTATCGCTA	TTCCCATTTG	GGCTCTTCGC	TTAACGCATT	GGATACTCGA	840
ATCCACAGTC	ATACGGCTTT	TATCGGTTTC	GTCACGGAGT	TTTACCGATT	CCGTGGGCGC	900
AAAGCCATGA	ATACCGGTCG	GAGAACCAGT	CTTTACTATC	ATGAT		945

- (2) INFORMATION FOR SEQ ID NO:233
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 855 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...855
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233

ATGGTAGTGA	CGCTGCTCGT	AATTGTCGGT	ATTGTGGTAG	TAGTGCGGTA	CTCCTTGCGC	60
GTCCACGTAC	ATAAGACCGG	CACTGTTGTA	TCGGCGGCCA	TATTTGGCTT	CATCCTCCTT	120
GGAAAGACCG	TTCCATGCGA	TACCCGTAAC	TTCTTTTCCT	CCGAAAGTGA	TGAACCTGAG	180
AGCCGTGTTG	CTACCGAAAT	AGCCCACCTG	TGCGAAATAG	GATTTCAGAT	CCACGCTTCC	240
TCTATCCACG	TAGCCGTCCG	AACCGATTTT	GGACAGGCGG	GCATCCACTG	CCCAATGGCG	300
ACCGATGCGT	CCGCTACCGA	GTTTGACCGA	TCGGCGGAAT	GTGCCGAACG	AACCTCCGCT	360
CAAATCGACA	CGGCCATAAG	GAGCCAGTCC	CAAATTATCC	GTACGCATAT	TGACACTTGC	420
CCCAAAAGCT	CCGGCACCAT	TGGTGGAAGT	ACCCACACCT	CGCTGCACCT	GAAGGTCTTC	480
GATGGAAGAG	GCGAAGTCGG	GCATATTCAC	CCAAAAGACG	GACTGAGATT	CGGAGTCGTT	540
GAGGGGTACT	CCATTGGTAG	TTATGTTGAT	${\tt GCGATTGGCA}$	TCGGTGCCAC	GCACGCGAAA	600
GCCGGAATAT	CCGATACCCG	TACCGGCATC	GCTGGTGGCT	ACCACGGAGG	GAGTCAGCAT	660
CAGCAGATAG	GGGATGTCAC	GACCATAATT	GGACTTGGAA	AGTTCGGCCT	TGCGAACGTT	720
GGTGTAAGCG	ACAGGGGTTT	TCGCCGTGGC	GCGAGTAGCT	ACGACCTGTA	CGGTCTGGAG	780
CTGCACATTG	CTAAGACTAT	CTATCTCGCT	GTTGGAGACG	GGTGCTTGTG	CCGTCAGGCA	840
GAAAGGCAGG	ACGGC					855

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1797 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1797
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:234

ATGGAAAACT	TAAAGAACAT	TCAGCCCAGA	GAGGATTTCA	ACTGGGAAGA	GTTTGAGGCC	60
GGTGGCGTCC	ATGCTGCCGT	GAGTCGTCAG	GAGCAGGAAG	CTGCTTATGA	CAAAACGCTC	120
AATACCATCA	AGGAAAAGGA	AGTGGTAATG	GGTAGGGTAA	CTGCTATCAA	CAAGCGTGAA	180
GTGGTTATCA	ATGTAGGGTA	CAAATCGGAA	GGTGTGGTAC	CTGCAACAGA	ATTCCGCTAC	240
AATCCCGAAC	TCAAAGTGGG	AGACGAAGTG	GAAGTTTATA	TCGAGAATCA	GGAAGATAAG	300
AAGGGCCAGC	TCGTCTTGTC	TCACCGCAAG	GGTCGTGCCG	CTCGCTCTTG	GGAGCGCGTG	360
AACGAGGCTC	TCGAAAAAGA	CGAAATCGTA	AAGGGCTATG	TGAAGTGTCG	TACCAAGGGT	420
GGTATGATCG	TCGATGTATT	CGGTATCGAG	GCTTTCCTCC	CGGGATCACA	GATCGACGTG	480
${\tt CGCCCCATTC}$	GCGACTACGA	TGCATTCGTT	GAGAAGACGA	TGGAGTTCAA	GATTGTGAAA	540
ATCAATCAAG	AATATAAGAA	TGTAGTTGTT	TCCCACAAGG	TGCTCATCGA	AGCAGAGCTC	600
GAACAACAGA	AGAAAGAAAT	CATCGGCAAG	CTCGAAAAAG	GGCAGGTACT	CGAAGGTATC	660
GTCAAGAATA	TTACTTCTTA	CGGAGTATTT	ATCGACCTCG	GTGGAGTGGA	TGGTCTTATC	720
CATATCACTG	ACCTTTCATG	GGGTCGTGTG	GCTCATCCGG	AAGAAATCGT	ACAGCTGGAT	780
CAGAAGATCA	ATGTCGTTAT	CCTCGACTTT	GATGAAGATC	GCAAGCGTAT	CGCTCTCGGA	840
${\tt CTCAAACAGC}$	TGATGCCTCA	TCCTTGGGAT	GCTCTCGACA	GCGAGCTTAA	GGTAGGCGAT	900
AAGGTGAAGG	${\tt GTAAAGTTGT}$	GGTGATGGCA	GATTACGGTG	CTTTCGTTGA	GATTGCACAG	960
GGCGTTGAGG	${\tt GTCTTATCCA}$	CGTAAGCGAA	ATGTCATGGA	CACAGCACTT	GCGTTCTGCT	1020
CAGGACTTCC	TGCATGTAGG	CGACGAAGTG	GAAGCCGTGA	TCCTGACGCT	CGACCGCGAA	1080
GAACGCAAAA	TGTCGCTCGG	TCTGAAGCAA	CTCAAGCCGG	ATCCTTGGGC	TGATATCGAA	1140
ACTCGTTTCC	CTGTAGGCTC	TCGTCACCAT	GCTCGTGTTC	GCAACTTCAC	CAATTTCGGT	1200
GTATTCGTTG	AGATCGAAGA	GGGCGTAGAT	GGCCTTATCC	ATATTTCCGA	CCTTTCTTGG	1260
ACGAAGAAGA	TCAAACACCC	CAGCGAGTTT	ACGGAAGTAG	GTGCTGATAT	CGAAGTTCAG	1320
GTAATCGAGA	TCGACAAGGA	AAACCGTCGT	CTCAGCTTGG	GTCACAAACA	GTTGGAAGAG	1380
AATCCTTGGG	ATGTATTCGA	GACGGTATTC	ACTGTAGGAT	CTATCCACGA	AGGAACGGTA	1440
ATCGAAGTGA	TGGACAAGGG	TGCTGTCGTT	TCTCTGCCTT	ACGGTGTGGA	AGGTTTTGCC	1500
ACTCCGAAGC	ACATGGTGAA	GGAAGATGGC	TCACAGGCTG	TACTCGAAGA	GAAGTTACCT	1560
TTCAAGGTTA	TTGAGTTCAA	TAAGGATGCC	AAGCGAATCA	TTGTATCTCA	TAGCCGTGTA	1620
TTCGAAGATG	AGCAGAAAAT	GGCTCAGCGT	GAAGCCAATG	CAGAGCGTAA	GGCTGAAGCC	1680
AAAGCGGCTC	AGAAAGAAGC	TGCTGCCGAA	GCTGCCAATC	CTGCACAGGC	TGTAGAGAAA	1740
GCCACTCTCG	GAGACCTCGG	CGAGCTGGCC	GCTTTGAAAG	AAAAGCTTTC	AGAAAAC	1797

- (2) INFORMATION FOR SEQ ID NO:235
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1650 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...1650

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235

ATGGGTAGGG	TAACTGCTAT	CAACAAGCGT	GAAGTGGTTA	TCAATGTAGG	GTACAAATCG	60
GAAGGTGTGG	TACCTGCAAC	AGAATTCCGC	TACAATCCCG	AACTCAAAGT	GGGAGACGAA	120
GTGGAAGTTT	ATATCGAGAA	TCAGGAAGAT	AAGAAGGGCC	AGCTCGTCTT	GTCTCACCGC	180
AAGGGTCGTG	CCGCTCGCTC	TTGGGAGCGC	GTGAACGAGG	CTCTCGAAAA	AGACGAAATC	240
GTAAAGGGCT	ATGTGAAGTG	TCGTACCAAG	${\tt GGTGGTATGA}$	TCGTCGATGT	ATTCGGTATC	300
GAGGCTTTCC	TCCCGGGATC	ACAGATCGAC	${\tt GTGCGCCCCA}$	TTCGCGACTA	CGATGCATTC	360
GTTGAGAAGA	CGATGGAGTT	CAAGATTGTG	AAAATCAATC	AAGAATATAA	GAATGTAGTT	420
GTTTCCCACA	AGGTGCTCAT	CGAAGCAGAG	CTCGAACAAC	AGAAGAAAGA	AATCATCGGC	480
AAGCTCGAAA	AAGGGCAGGT	ACTCGAAGGT	ATCGTCAAGA	ATATTACTTC	TTACGGAGTA	540
TTTATCGACC	TCGGTGGAGT	GGATGGTCTT	ATCCATATCA	CTGACCTTTC	ATGGGGTCGT	600
GTGGCTCATC	CGGAAGAAAT	CGTACAGCTG	GATCAGAAGA	TCAATGTCGT	TATCCTCGAC	660
TTTGATGAAG	ATCGCAAGCG	TATCGCTCTC	GGACTCAAAC	AGCTGATGCC	TCATCCTTGG	720
GATGCTCTCG	ACAGCGAGCT	TAAGGTAGGC	GATAAGGTGA	AGGGTAAAGT	TGTGGTGATG	780
GCAGATTACG	GTGCTTTCGT	TGAGATTGCA	CAGGGCGTTG	AGGGTCTTAT	CCACGTAAGC	840
GAAATGTCAT	GGACACAGCA	CTTGCGTTCT	GCTCAGGACT	TCCTGCATGT	AGGCGACGAA	900
GTGGAAGCCG	TGATCCTGAC	GCTCGACCGC	GAAGAACGCA	AAATGTCGCT	CGGTCTGAAG	960
CAACTCAAGC	CGGATCCTTG	GGCTGATATC	GAAACTCGTT	TCCCTGTAGG	CTCTCGTCAC	1020
CATGCTCGTG	${\tt TTCGCAACTT}$	CACCAATTTC	GGTGTATTCG	TTGAGATCGA	AGAGGGCGTA	1080
GATGGCCTTA		CGACCTTTCT		AGATCAAACA		1140
TTTACGGAAG	TAGGTGCTGA	TATCGAAGTT	CAGGTAATCG	AGATCGACAA	GGAAAACCGT	1200
CGTCTCAGCT	TGGGTCACAA	ACAGTTGGAA	GAGAATCCTT	GGGATGTATT	CGAGACGGTA	1260
TTCACTGTAG	GATCTATCCA	CGAAGGAACG	GTAATCGAAG	TGATGGACAA	GGGTGCTGTC	1320
GTTTCTCTGC	CTTACGGTGT	GGAAGGTTTT	GCCACTCCGA	AGCACATGGT	GAAGGAAGAT	1380
GGCTCACAGG	CTGTACTCGA	AGAGAAGTTA	CCTTTCAAGG	TTATTGAGTT	CAATAAGGAT	1440
GCCAAGCGAA	TCATTGTATC	TCATAGCCGT	GTATTCGAAG	ATGAGCAGAA	AATGGCTCAG	1500
			GCCAAAGCGG			1560
GAAGCTGCCA	ATCCTGCACA	GGCTGTAGAG	AAAGCCACTC	TCGGAGACCT	CGGCGAGCTG	1620
GCCGCTTTGA	AAGAAAAGCT	TTCAGAAAAC				1650

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1374 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1374
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:236

ATGATCGTCG	ATGTATTCGG	TATCGAGGCT	TTCCTCCCGG	GATCACAGAT	CGACGTGCGC	60
CCCATTCGCG	ACTACGATGC	ATTCGTTGAG	AAGACGATGG	AGTTCAAGAT	TGTGAAAATC	120
AATCAAGAAT	ATAAGAATGT	AGTTGTTTCC	CACAAGGTGC	TCATCGAAGC	AGAGCTCGAA	180
CAACAGAAGA	AAGAAATCAT	CGGCAAGCTC	GAAAAAGGGC	AGGTACTCGA	AGGTATCGTC	240
AAGAATATTA	CTTCTTACGG	AGTATTTATC	GACCTCGGTG	GAGTGGATGG	TCTTATCCAT	300
ATCACTGACC	TTTCATGGGG	TCGTGTGGCT	CATCCGGAAG	AAATCGTACA	GCTGGATCAG	360
AAGATCAATG	TCGTTATCCT	CGACTTTGAT	GAAGATCGCA	AGCGTATCGC	TCTCGGACTC	420
AAACAGCTGA	TGCCTCATCC	TTGGGATGCT	CTCGACAGCG	AGCTTAAGGT	AGGCGATAAG	480
GTGAAGGGTA	AAGTTGTGGT	GATGGCAGAT	TACGGTGCTT	TCGTTGAGAT	TGCACAGGGC	540
GTTGAGGGTC	TTATCCACGT	AAGCGAAATG	TCATGGACAC	AGCACTTGCG	TTCTGCTCAG	600
GACTTCCTGC	ATGTAGGCGA	CGAAGTGGAA	GCCGTGATCC	TGACGCTCGA	CCGCGAAGAA	660
CGCAAAATGT	CGCTCGGTCT	GAAGCAACTC	AAGCCGGATC	CTTGGGCTGA	TATCGAAACT	720
CGTTTCCCTG	TAGGCTCTCG	TCACCATGCT	CGTGTTCGCA	ACTTCACCAA	TTTCGGTGTA	780
TTCGTTGAGA	TCGAAGAGGG	CGTAGATGGC	CTTATCCATA	TTTCCGACCT	TTCTTGGACG	840
AAGAAGATCA	AACACCCCAG	CGAGTTTACG	GAAGTAGGTG	CTGATATCGA	AGTTCAGGTA	900
ATCGAGATCG	ACAAGGAAAA	CCGTCGTCTC	AGCTTGGGTC	ACAAACAGTT	GGAAGAGAAT	960
CCTTGGGATG	TATTCGAGAC	GGTATTCACT	GTAGGATCTA	TCCACGAAGG	AACGGTAATC	1020
GAAGTGATGG	ACAAGGGTGC	TGTCGTTTCT	CTGCCTTACG	GTGTGGAAGG	TTTTGCCACT	1080
CCGAAGCACA	TGGTGAAGGA	AGATGGCTCA	CAGGCTGTAC	TCGAAGAGAA	GTTACCTTTC	1140
AAGGTTATTG	AGTTCAATAA	GGATGCCAAG	CGAATCATTG	TATCTCATAG	CCGTGTATTC	1200
GAAGATGAGC	AGAAAATGGC	TCAGCGTGAA	GCCAATGCAG	AGCGTAAGGC	TGAAGCCAAA	1260

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1278 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...1278
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:237

ATGGAGTTCA AGATTGTGAA	AATCAATCAA	GAATATAAGA	ATGTAGTTGT	TTCCCACAAG	60
GTGCTCATCG AAGCAGAGCT	CGAACAACAG	AAGAAAGAAA	TCATCGGCAA	GCTCGAAAAA	120
GGGCAGGTAC TCGAAGGTAT	CGTCAAGAAT	ATTACTTCTT	ACGGAGTATT	TATCGACCTC	180
GGTGGAGTGG ATGGTCTTAT	CCATATCACT	GACCTTTCAT	GGGGTCGTGT	GGCTCATCCG	240
GAAGAAATCG TACAGCTGGA	TCAGAAGATC	AATGTCGTTA	TCCTCGACTT	TGATGAAGAT	300
CGCAAGCGTA TCGCTCTCGG	ACTCAAACAG	CTGATGCCTC	ATCCTTGGGA	TGCTCTCGAC	360
AGCGAGCTTA AGGTAGGCGA	TAAGGTGAAG	GGTAAAGTTG	TGGTGATGGC	AGATTACGGT	420
GCTTTCGTTG AGATTGCACA	GGGCGTTGAG	GGTCTTATCC	ACGTAAGCGA	AATGTCATGG	480
ACACAGCACT TGCGTTCTGC	TCAGGACTTC	CTGCATGTAG	GCGACGAAGT	GGAAGCCGTG	540
ATCCTGACGC TCGACCGCGA	AGAACGCAAA	ATGTCGCTCG	GTCTGAAGCA	ACTCAAGCCG	600
GATCCTTGGG CTGATATCGA	AACTCGTTTC	CCTGTAGGCT	CTCGTCACCA	TGCTCGTGTT	660
CGCAACTTCA CCAATTTCGG	TGTATTCGTT	GAGATCGAAG	AGGGCGTAGA	TGGCCTTATC	720
CATATTTCCG ACCTTTCTTG	GACGAAGAAG	ATCAAACACC	CCAGCGAGTT	TACGGAAGTA	780
GGTGCTGATA TCGAAGTTCA	GGTAATCGAG	ATCGACAAGG	AAAACCGTCG	TCTCAGCTTG	840
GGTCACAAAC AGTTGGAAGA	GAATCCTTGG	GATGTATTCG	AGACGGTATT	CACTGTAGGA	900
TCTATCCACG AAGGAACGGT	AATCGAAGTG	ATGGACAAGG	GTGCTGTCGT	TTCTCTGCCT	960
TACGGTGTGG AAGGTTTTGC	CACTCCGAAG	CACATGGTGA	AGGAAGATGG	CTCACAGGCT	1020
GTACTCGAAG AGAAGTTACC	TTTCAAGGTT	ATTGAGTTCA	ATAAGGATGC	CAAGCGAATC	1080
ATTGTATCTC ATAGCCGTGT	ATTCGAAGAT	GAGCAGAAAA	TGGCTCAGCG	TGAAGCCAAT	1140
GCAGAGCGTA AGGCTGAAGC	CAAAGCGGCT	CAGAAAGAAG	CTGCTGCCGA	AGCTGCCAAT	1200
CCTGCACAGG CTGTAGAGAA	AGCCACTCTC	GGAGACCTCG	GCGAGCTGGC	CGCTTTGAAA	1260
GAAAAGCTTT CAGAAAAC					1278

- (2) INFORMATION FOR SEQ ID NO:238
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 720 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...720
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238

ATGAAAAAAG	CTATTCTTTC	CGGAGCGGCC	TTGCTCCTCG	GCCTATGTGC	CAACGCACAA	60
AACGTGCAGT	TGCACTACGA	TTTCGGTCAT	TCCATCTACG	ACGAACTAGA	TGGACGTCCC	120
AAACTGACTA	CCACAGTGGA	AAACTTCACA	CCCGACAAAT	GGGGAAGCAC	CTTCTTCTTC	180

ATCGACATGG	ATTACACGGG	CAAGGGTATC	CAGTCGGCCT	ATTGGGAGAT	TTCGCGCGAA	240
CTGAAGTTTT	GGCAAGCTCC	CGTTTCCATT	CATTTGGAGT	ACAACGGAGG	CCTCTCCACA	300
AGCTTTACTT	TCGGACACGA	TGCTCTAATC	GGTGCCACCT	ACACCTACAA	CAACCCCTCC	360
TTTACACGTG	GATTTACGAT	CACGCCCATG	TACAAGCATC	TGGGTGCGCA	CGACTTCCAC	420
ACCTATCAGA	TCACCGGCAC	TTGGTACATG	CACTTTCTGG	ACGGTCTGCT	TACCTTCAAC	480
GGCTTCCTCG	ATCTTTGGGG	TTTCCCCCAA	GAGAACCCAA	TCGGGGGCCC	TGTGCTCAAA	540
GAAGGGGATA	AGTTCGTATT	CCTGTCCGAA	CCGCAGTTCT	GGATCAACCT	CAATCGCATC	600
AAAGGCATCG	ACAAGGATTT	CAATCTCAGC	ATAGGGACAG	AGATGGAAAT	CAGCAGGAAC	660
TTCGCTCGCA	TGGACAAATT	CTCCTGCATC	CCTACTCTTG	CGGTCAAATG	GACTTTCAAC	720

- (2) INFORMATION FOR SEQ ID NO:239
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1302 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...1302
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239

ATGTATAAAG	ACTATAAGGG	TTTGTATGCG	TCGCTTCGGT	GGTATGCCCT	GATCATTGGG	60
TTGCTATTTG	CAGCAGACGG	TATACAGGCT	CAGAACAACA	ACTTTACCGA	GTCGCCTTAC	120
ACTCGCTTCG	GCCTTGGCCG	TCTCGGAGAA	CGGACGACTA	TTAGTGGGCA	TTCCATGGGA	180
GGACTCGGCG	TCGGTCTGCG	TCAGGGCACA	TACGTCAATG	CCGTCAATCC	TGCTTCATAC	240
TCGGCTGTGG	ATTCGATGAC	GTTTATCTTC	GATTTCGGTG	CATCTACCGG	AATTACGTGG	300
TATGCCGAGA	ACGGGAAAAA	GGACAATAGG	AAAATGGGAA	ACATTGAGTA	TTTCGCCATG	360
CTTTTTCCTA	TTTCCAAATC	CATTGCTATG	AGTGCGGGAG	TGCTTCCTTA	CTCCGCATCC	420
GGGTACCAGT	TCGGATCCGT	TGATCAAGTG	GAAGGAGGCA	GCGTCCAGTA	CACCCGTAAA	480
TACTTGGGGA	CAGGCAATCT	GAACGATCTC	TATGTCGGTA	TAGGTGCAAC	CCCGTTCAAA	540
AACTTCTCAA	TAGGAGCCAA	TGCTTCATCC	CTTTTTGGGC	GATTCACACA	CAGCAGGCAG	600
GTAATCTTCT	CCACGGAGGC	TCCTTACAAT	CCCGTACATC	TCTCGACGCT	GTACTTGAAG	660
GCTGCCAAGT	TCGACTTCGG	TATGCAGTAT	CACCTTCTTC	TCAAATCAGA	TCGTTCGCTC	720
GTTATCGGTG	CCGTCTATTC	TCCGCGGGTG	AAGATGCATA	GCGAGCTGAC	TCAGATAAAG	780
AATCAGGTTC	AGAACGGTGT	AGTAGTGGAG	AGCGAAACCC	AAGAATATAT	CAAGGGAATG	840
GACTATTATA	CCCTGCCTCA	TACATTGGGG	ATAGGTTTTT	CTTATGAAAA	GAAAGATAAA	900
CTTCTCTTAG	GAGCAGACGT	CCAATATAGT	AAATGGAAAG	GCGAGAAATT	TTATAAATCC	960
GATTGCAAAT	TCCAGGACAG	AATACGGGTA	TCTCTCGGCG	GAGAGATCAT	ACCGGATATA	1020
AATGCCGTTG	GGATGTGGCC	TAAAGTTCGC	TATCGCTTCG	GTTTACATGG	TGAAAATTCT	1080
TACCTGAAAG	TGCCGACTAA	AGGCGGTGTA	TATCAAGGAT	ACCATATCGT	AGGTGCTGTA	1140
TTCGGTATAG	GAATCCCGCT	CAATGACAGA	CGTTCGTTCG	TAAATGTCTC	TCTTGAATAT	1200
GACCGATTGA	TCCCGAAGGA	GGGTATGATC	AAAGAAAATG	CTCTGAAATT	GACCTTCGGC	1260
CTCACGTTCA	ACGAGTCATG	GTTTAAAAAG	CTGAAACTGA	AC		1302

- (2) INFORMATION FOR SEQ ID NO:240
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2778 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature

#### (B) LOCATION 1...2778

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240

ATGCGATCGA	TTTATCAATT	ACTGTTGTCA	ATACTCCTTG	CTTCTCTTGG	TTTCGTCGGG	60
CTGGAAGCCC	AACAAGCCGG	AGTAGCAGGT	AGAGTATTGG	ACGAAGAAGG	CAACCCCATG	120
ATTCAAGCCA	ACGTACAGCT	TGTACAGAGT	ACCGGCCAAG	TAGCCGTTGC	CGCAGGTGCC	180
ACTAATGAAA	AAGGGTTGTT	CAGCCTGAAA	ACGTCACAGG	AGGGTGACTA	CATTCTGCGC	240
GTTTCATATG	TAGGTTACAC	TACCCACGAC	GAAAAAATAT	CTCTTAGAAA	CGGGCAAACC	300
ATTACGCTCA	AAGATATATC	CATGAACGAA	GATGCCCGTC	TTCTACAGAG	TGTGACGGTG	360
CAGGCTAAAG	CGGCAGAGGT	CGTGGTACGC	AACGATACGC	TCGAATTCAA	TGCCGGATCC	420
TATACCGTAG	CACAGGGAGC	TTCTATCGAG	GAACTGATCA	AGAAGCTACC	CGGAGCAGAG	480
ATCGGATCCG	ATGGGAAGAT	CACCATCAAC	GGCAAGGACA	TTAGCAAGAT	CCTTGTCGAT	540
GGCAAAGAGT	TTTTCTCCAA	AGATCCACAG	GTGGCAATAA	AGAATCTTCC	GGCCGATATG	600
GTCAATAAAG	TACAGGTACT	GAACAAACTG	AGCGAGCTGT	CGCGGATGAG	CGGTTTCGAT	660
GATGGAGAAG	AGGAGACCGT	AATCAACCTG	ACGGTGAAGC	CCGAAAAAA	GAAAGGCCTC	720
TTCGGAACGC	TTCAGGCCGG	CTACGGTACC	GACCAACGCT	ATATGGCCGG	AGGGAACGTC	780
AATCGGTTCG	ATGGAAATAA	GCAATGGACA	TTGATCGGTA	GTGCGAACAA	TACGAACAAT	840
ATGGGCTTTA	GCGAGATGGA	CAGCGAGATG	GGATCCATGA	CCTTCTTCTC	TCCCCAAGGC	900
GGTGGTCGAC	GCGGCTTCGG	CAATAGTGGA	GGTGTTACGT	CTTCGTCGAT	GCTGGGCGGC	960
AACTTCAGTG	TCGAATTCTC	CTCTGCCCTT	AATACAGGAG	GCGATGCACG	CTACGGATAC	1020
AACGACAAGG	CCATAGAGAC	GACCAAACGC	GTGGAAAATA	TCCTCGCCGA	AGGGAATACT	1080
TATATGGACG	AAAATATATT	GGAACGCTCT	TTCTCTCACA	ATGGTCAGGC	GCGATTTAGG	1140
ATGCAATGGA	AACCGTCCGA	ACGTACCGAA	GTGGTATTCG	AGCCGGATCT	TTCGATATCC	1200
AAGATCGATG	GGTTCTTTAA	CGACACATAC	GAGACGAAAG	ATGCCACCGG	AATCTCTATC	1260
AACAAAGGTT	CTATCCACCA	AACTACACAA	GGAAACAACT	TCAGACTGAA	CGGAGAATTG	1320
GATATCAGTC	ACAAGCTCAA	CGACGAAGGC	CGTACGATCA	GTGCCTCCGT	CAGTGGCGGT	1380
CTGACCGACG	AAGACGGAGA	TGGCATATAT	CAGGCTGTGC	TCCAAAGCGT	GGAGACGAAT	1440
CAAAAGCAAT	TCAACGACAA	CTCCAACCTG	CAATATCGGC	TTCGCCTCTC	GTATGTGGAA	1500
CCGTTGGGTA	AAAACTACTT	CGCACAAGCG	ATTCTGAACA	GACGTTTCTC	CCGTCGCAAT	1560
TCGGATCGTG	AGGTGTACCG	ACTGGGCGAT	GACGGGCAAT	ACTCCATATT	AGACAGTCAG	1620
TACGGACTCT	CCTACAGTAA	CGAGTTCACC	CAGTATCGCA	TCGGACTCAA	CCTCAAGAAG	1680
ATTGCCAAAA	CGTGGGACTA	CACCGTAGGA	TTCAATGTGG	ATCCCAACAG	AACTGTCAGC	1740
TATCGGAGCG	TAGCCGGAGT	AGAGCAGGAC	AAACTGGCTT	TCAATCGTGT	CAATCTCTCC	1800
CCGATGCTCC	GAATCAACTA	CAAACCGAGC	AGGACTACCA	ACCTCCGAGT	GGACTACCGA	1860
GGACGCACGA	CACAACCATC	CATCAATCAG	ATCGCTCCCG	TTCAGGACAT	CACGAATCCG	1920
CTATTCGTGA	CGGAAGGCAA	TCCCGGTCTG	AAGCCGAGCT	ATTCCAACAA	TGTGATGGCC	1980
ATGTTCTCGG	ACTTCGATGC	CAAAAGTCAG	CGAGCTTTCA	ACATTGTTTT	CTTCGGCAAC	2040
TATACATTCG	ACGACATCGT	CCCCAATACG	CACTACGATC	CGTCTACAGG	GATCCGTACC	2100
ACTCGTTACG	AAAACGCCTC	CGGTACGTGG	CAAGCGAATC	TTCATGGGAC	ACTATCGCTT	2160
CCACTCAAGA	ACAGGGCATT	TTCTTTCAGG	ATGTCCTTGT	TCAACAGGTT	GGCCGAAGGA	2220
CAAAGCTTCA	TCAATGACGA	TAAGAACAAA	GCTCTCTCTT	TCCGAACGAG	GGAACGCCTG	2280
ACGCTGACCT	ATCGCAACAA	TTGGATCGAT	ACGAGTATCG	GTGGCAATAT	CGGATTCTAT	2340
ATGGCGAATA	ATAGTCTGAG	CGGACAGAAA	GATTCTCGCA	CATACGATTT	TGGCGGCAAT	2400
			TTCCGTATCG			2460
ACGAACTCCG	GTTACAGCGG	AGGATTCAGT	CTGGACGAAT	GGCTTTGGAA	TGCTTCGCTT	2520
TCATACAGCT	TCCTCCGTGA	CAAGGCCGGT	ACACTGCGTG	TCAATGGCTA	TGACATCCTC	2580
GGTCAGCGGT	CAAGTATCAG	CCGTTCTGCT	TCGGCCATCA	ATATAGAAGA	GAGCATGTCC	2640
AATACGATCG	GACGCTACGT	GATGGTGGAC	TTTATCTACC	GATTCAACGC	CTTCAGTGGT	2700
GGTGGATCTC	GCAGCGATCA	TCAGCGTGGC	AATATGAATC	GTCCGGGCCC	ACCTTTCGGC	2760
GGTGGCAGAC	GACCGTCC					2778

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1200 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1200
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241

CTTCCTGCGT	ACTCGCAGAA	TGATGACATC	TTCGAAGATG	ACATCTATAC	ATCGCGAAAA	120
GAAATACGTA	AACAAAACCA	AGTTAAAGAC	TGGCAAAACC	AAGAGGACGG	ATACGGCGAC	180
GATACGGAAT	ATACAGTGGC	TTCCGATCGG	GACATTGACG	CCTACAATCG	TAGAGATGGC	240
CAGTCCTACG	ATGGGAAAAA	GTTGTCCAAA	GACAAGAAAA	GAGACTCCAC	TCGTTCTTCT	300
GTTCCCGGTC	GCTATAGTCG	CCGCTTGGCT	CGATTCTATA	AGCCGAATAC	GATCGTCATT	360
TCAGGTGCCG	ACAATGTATA	TGTAACTGAT	GATGGTGAGT	ATTTCGTCTA	TGGAGACGAA	420
TACTATGATG	ACGCGTCGTC	TGTAAACATT	TACATCAACA	GTCCTTGGTG	CGATCCGTTC	480
CCTTATACGT	CATGGTATCC	ATCTTTCTCC	GGCTGGTACA	ACTATACGTG	GAACTATCCA	540
TGGTTCTACT	ACGGTAGCCA	TATCGGATGG	GGCGGTTATT	ACCCCGGATA	TAATTGGTAT	600
TGGAGCTACT	ACTATGATCC	TTTCTACAAT	CCCTATGGAA	TCGGTATGGG	TTGGGGATAT	660
CCTTATGGCT	GGGGCAGCTA	TTACGGTTGG	GGTGGCTATC	CGGGAGTGAT	ACATCACTAC	720
CACCACTACC	CCAAGAAGAC	CTATTCCAAT	GGTCAGCATT	CCGGAGCTTA	CTATTCTTAT	780
GGCCGACCGA	ATCGTATCAA	AGGTGGAACG	TCCGGTGCCA	AACTTGGGAC	AGGACGCTAC	840
GATAGAATTC	AAAATTCGTC	TTCGCAAAAA	AATAAGTTCG	GATTGCAGTC	GAACAAACCC	900
AATAATAATC	TGCAAAATGT	CAAGTCGGGA	CGTACCGGCC	GAGCCAATAG	AGACCGAAAT	960
ATAGAAACGG	TAACTCCAAA	CAACGGGCAA	AAGCAGAATC	GTCCCGTATT	CCAGCAGAAT	1020
CAGTCCGGCA	ATGACCGACC	GACCGGACGG	AATATCCGCA	GCGAGAGACA	GGGGGAAAAT	1080
AACGATAGGA	CATTTTCGAC	TCCTTCTCGT	AGCAATAGTA	ACGGTGGCTT	CTCCACGCCT	1140
TCTCGCTCTT	CTTCCGGCTC	TATGAGCGGA	GGTGGCGGAC	GTAGTGGCCG	GGGACGCAAT	1200

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1194 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1194
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242

ATGAAGCTGA	TTAAAAGAAG	TTTGCTCCTG	CTTGGAGCGG	TACTGCTGAT	TACGCTTCCT	60
GCGTACTCGC	AGAATGATGA	CATCTTCGAA	GATGACATCT	ATACATCGCG	AAAAGAAATA	120
CGTAAACAAA	ACCAAGTTAA	AGACTGGCAA	AACCAAGAGG	ACGGATACGG	CGACGATACG	180
GAATATACAG	${\tt TGGCTTCCGA}$	TCGGGACATT	GACGCCTACA	ATCGTAGAGA	TGGCCAGTCC	240
TACGATGGGA	AAAAGTTGTC	CAAAGACAAG	AAAAGAGACT	CCACTCGTTC	TTCTGTTCCC	300
GGTCGCTATA	GTCGCCGCTT	GGCTCGATTC	TATAAGCCGA	ATACGATCGT	CATTTCAGGT	360
GCCGACAATG	TATATGTAAC	TGATGATGGT	GAGTATTTCG	TCTATGGAGA	CGAATACTAT	420
GATGACGCGT	CGTCTGTAAA	CATTTACATC	AACAGTCCTT	GGTGCGATCC	GTTCCCTTAT	480
ACGTCATGGT	ATCCATCTTT	CTCCGGCTGG	TACAACTATA	CGTGGAACTA	TCCATGGTTC	540
TACTACGGTA	GCCATATCGG	ATGGGGCGGT	TATTACCCCG	GATATAATTG	GTATTGGAGC	600
TACTACTATG	ATCCTTTCTA	CAATCCCTAT	${\tt GGAATCGGTA}$	TGGGTTGGGG	ATATCCTTAT	660
GGCTGGGGCA	GCTATTACGG	TTGGGGTGGC	TATCCGGGAG	TGATACATCA	CTACCACCAC	720
TACCCCAAGA	AGACCTATTC	CAATGGTCAG	CATTCCGGAG	CTTACTATTC	TTATGGCCGA	780
CCGAATCGTA	TCAAAGGTGG	AACGTCCGGT	${\tt GCCAAACTTG}$	GGACAGGACG	CTACGATAGA	840
ATTCAAAATT	CGTCTTCGCA	AAAAAATAAG	TTCGGATTGC	AGTCGAACAA	ACCCAATAAT	900
AATCTGCAAA	ATGTCAAGTC	GGGACGTACC	GGCCGAGCCA	ATAGAGACCG	AAATATAGAA	960
ACGGTAACTC	CAAACAACGG	GCAAAAGCAG	AATCGTCCCG	TATTCCAGCA	GAATCAGTCC	1020
GGCAATGACC	GACCGACCGG	ACGGAATATC	CGCAGCGAGA	GACAGGGGGA	AAATAACGAT	1080
AGGACATTTT	CGACTCCTTC	TCGTAGCAAT	AGTAACGGTG	GCTTCTCCAC	GCCTTCTCGC	1140
TCTTCTTCCG	GCTCTATGAG	CGGAGGTGGC	GGACGTAGTG	GCCGGGGACG	CAAT	1194

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1743 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
    (B) LOCATION 1...1743
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:243

ATGATCCGCA	AGTTGATCTT	ACTGCTTGCT	CTGATGCCGG	TAGCCTCTGT	GGCTTTTGCG	60
GTACCAACGG	ACAGCACGGA	ATCGAAAGAC	AATCGTATCC	TTACAAGCAT	GCAATCCTCC	120
TCTTTGAATA	GGGATGATGC	TCCGGATAAA	TGGCAACCTA	TGCATGCCAA	TTTCAGTATT	180
CAGAGCGATA	TGCTGCTTTC	TACTGCCCAA	AAGTCCAAGA	ACACCTGGTT	CGGCAACTCC	240
TATATCATGG	GTATAATCAA	GAACAATTAT	CTGGAGTTTG	GTGCCCGTTT	CGAGGATCTC	300
TATAAGCCCC	TGCCCGGACA	TGAACCCGAG	ATGGGGCGTG	${\tt GCGTTCCTCA}$	CATGTATGTG	360
AAGGGAAGCT	ATCATTGGGC	GGAGCTGACT	ATGGGAGACT	${\tt TCTACGATCA}$	GTTCGGTAGC	420
GGTATGGTAT	TCCGCACCTA	TGAAGAGCGC	AACCTCGGTA	TAGACAACGC	GGTTCGCGGC	480
GGACGTATAG	TACTCACTCC	TTTTGATGGA	GTGCGTGTCA	AGGGTATTGC	AGGACAGCAG	540
CGTAACTACT	TCGACCGCAC	GGGCAAGGTA	TTCAATTCCG	GCCGAGGCTA	CCTACTGGGT	600
TCTGATCTGG	AGCTGAATGT	AGAGCGTTGG	AGCAGTGCCA	TGCGCGACAA	TGACTATCAT	660
TTGGCTATCG	GGGGATCGTT	CGTTTCCAAA	CACGAAGCAG	ACGAAGATAT	ATTTGTGGGT	720
GTAGGCGAAG	ATCGCAAGCG	ACTCAACCTG	CCGCTCAATG	TCCCGATTAT	GGGCCTGCGC	780
ACCAACTTTC	AAAAAGGAGG	TCTCGCCCTC	TACGCAGAGT	ATGGATACAA	ATACAACGAT	840
CCCTCGGCAG	ACAATGACTA	TATCTACCAC	GACGGACAGG	CTGCACTCCT	CTCTGCCTCA	900
TACTCCAAAA	AAGGGATGAG	TATCCTGTTG	CAGGCCAAAC	GTTGTGAGAA	CTTTGCTTTC	960
CGCAGCAAGC	GAAGTGCCCA	GCTCACACCG	CTTATGATCA			1020
CAAGCTCACA	CTTATACGCT	GGCGGCCATC	TACCCCTATG	CTACTCAGCC	TCAGGGAGAA	1080
TGGGCTTTCC	AAGGTGAACT	GCGTTACAAC	TTTGCTCGCC	GGACAGCTCT	CGGTGGACGC	1140
TACGGTACCG	GCTTGCGTAT	CAACGTTTCG	CATGTGCGTG	GTCTGGACAA	AAAGATGCTC	1200
AAAGAGAATC	CCGACGAACT	GATCGGAACG	GATGGCTACA	CCGTTTCTTT	CTTCGGCATG	1260
GGCGACCTCT	ATTATTCGGA	TATAGATGTG	GAGATTACTA	AAAAGGTAAG	CCCAGGATTC	1320
AACTTTACGC	TCACCTACTT	GAATCAGATC	TACAATAACA	AGGTACTGCA	CGGTGCAGCC	1380
GGAGAGAAGC	CTGAGAAGAT	CTATGCCAAT	ATCTTCGTCT	ATGATGGTAA	GTATAAGCTG	1440
AGTAATAAGG	TAGCCCTCCG	TACCGAACTG	CAATATTTGC	ACACGAAGCA	GGATCAGGGT	1500
GACTGGATCT	ACGGCATGGC	CGAGCTCTCT	ATCCTGCCTT	CTCTGATGCT	TTCCCTCTCG	1560
GAGCAGTATA	ATATCGGAGA	GACCAAGAAA	CATTATGTCA	TGGGGTCTGT	CACCTATACT	1620
CACGGAGCAC	ATCGAGTAGC	TTTCTCTGCA	GGCAAAACCC	GTGCAGGGAT	GAACTGCTCG	1680
GGAGGTGTAT	GTCGTGTGGT	CCCTGAGACT	CAGGGATTCT	ACCTTTCTTA	TAGCACCAAT	1740
CTG						1743

- (2) INFORMATION FOR SEQ ID NO:244
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 717 base pairs

    - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...717
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:244

ATGCGTTCTT	TATTTTTGAG	CGCGTTGCGC	AGCTCCTCTC	TCCATGGTTC	AGAGCGACGC	60
AGTCGGATAA	GTTCTTCTGT	AGTCATGTCA	ATAAGGCAGA	AAATAAGGTT	ATTCCATCTC	120
TCGGTATGCG	CCCAAACGCA	TGATCATCTC	ATCGAAATCC	ACTTGGTGTG	CATCGAATTC	180
GGGGCCATCG	ACACAGACGA	ATTTCGTCTG	TCCTCCCACG	CTTATACGAC	AAGCCCCACA	240
CATACCGGTG	CCATCCACCA	TAATTGTATT	GAGAGAAGCT	ATGGTCGGTA	TCTCGTAACG	300
			CACAGCCGGC			360
TACCGTTTCC	CGTTTGATAA	CGCTTTCCAC	TCCATCCGTT	ACGAGGCCTT	TCGTCCCATA	420
AGACCCATCG	TCTGTCATGA	TGATCACTTC	ATCGCTATTG	GCTCGCATTT	GTTCTTCAAG	480
			TACGACAATT			540
GAAAGCCTCC	ACGATCGGGA	GCAAAGGAGC	CACACCCACA	CCGCCTCCGG	CACAAACCAC	600

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 633 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...633
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245

ATGTCAATAA GO	GCAGAAAAT	AAGGTTATTC	CATCTCTCGG	TATGCGCCCA	AACGCATGAT	60
CATCTCATCG AZ	AATCCACTT	GGTGTGCATC	GAATTCGGGG	CCATCGACAC	AGACGAATTT	120
CGTCTGTCCT CC	CCACGCTTA	TACGACAAGC	CCCACACATA	CCGGTGCCAT	CCACCATAAT	180
TGTATTGAGA GA	AAGCTATGG	TCGGTATCTC	GTAACGTTTG	GTCAGGAGAG	AAACGAACTT	240
CATCATCACA GO	CCGGCCCGA	TCGTAACGCA	GAGGTCTACC	GTTTCCCGTT	TGATAACGCT	300
TTCCACTCCA TO	CCGTTACGA	GGCCTTTCGT	CCCATAAGAC	CCATCGTCTG	TCATGATGAT	360
CACTTCATCG C	TATTGGCTC	GCATTTGTTC	TTCAAGGATA	ACCAGATCTT	TAGTTCTGGC	420
AGCCAATACG AG	CAATTACAC	GGTTGCCTGC	TTTGTGGAAA	GCCTCCACGA	TCGGGAGCAA	480
AGGAGCCACA CO	CCACACCGC	CTCCGGCACA	AACCACTGTG	CCGACCTTTT	CGATATGCGT	540
ACTCTGTCCC AG	GCGGACCTA	CCACATCCGT	GATATAGTCG	CCGACTTCGA	GTTCGGCCAA	600
TTTCTTGGAA G	ATTTGCCCA	CGGCCTGAAC	CAC			633

- (2) INFORMATION FOR SEQ ID NO:246
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2343 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...2343
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246

				cmmcmmmcmc	60
	AAGCCTTC ATATATT				
GGCAGGCCTT TG	TTTGCGCA GAGCTAT	GTG GACTACGT	CG ATCCGCTGAT	CGGGACGCTA	120
AGTTCTTTTG AG	CTGAGTGC GGGCAAT	ACC TATCCGGT	GA TCGGTTTACC	GTGGGGAATG	180
AATAGCTGGA CA	CCGATGAC CGGTGTA	CCC GGTGACGG	CT GGCAATATAC	CTACTCGGCA	240
CACAAGATTC GC	GGATTCAA ACAGACC	CAC CAACCCAG	TC CTTGGATCAA	CGACTACGGC	300
CAATTCTCCC TT	CTTCCCCT TACGGCA	CCG CAGAAGCC	AT CATCGAACGA	CTCCATAGCT	360
CTGACTAAAT GG	TGCAAGCA ACTCTTI	TCG GACGAACA	GA CCTCGTGGTT	CTCGCACAAA	420
GCGGAGACGG CG.	ACGCCATA CTATTAT	AGT GTCTATTT	GG CCGATTACGA	CACACGCGTG	480
GAGATGGCTC CG	ACCGAGCG TGCAGCT	ATC TTTCGCAT	AC GTTATTCCGG	CAATACCGAA	540
AGTGGCTCCG GT	CGATGGCT TCGTCTT	GAT GCCTTTAC	CG GTGGTTCGGA	GATTAGCATC	600
GTGGATCCTC AC	ACCGTAGT GGGCATA	TCT CGCAAGAA	TA GCGGAGGTGT	GCCGGCTAAC	660
TTCGCCTGTT AT	TTCATCCT GCAGTCC	GAT ACTCCTAT	GG CCGATGTCCT	GCTTGAGACA	720
GATACCGGCA AG	TCAGACGA AGGCACA	AGG GCATGGGC	AG CCTGTCGCTT	CGATTCGCAA	780
GAAGTTACCG TC	CGGGTGGC ATCTTCT	TTT ATCAGTGT	CG AGCAGGCCGA	AAGAAATCTT	840

GCGGAAGTCA	AAGGGCAGAG					900
AAGGTGCTCG	GACGCATACA	TGTGGAAGGA	GGAACGAAGG			960
TCCGCACTCT	ATCGCTGTCT	GCTTTTTCCC	CGTCGCTTCT	ATGAGGAGGA	TGCTTCCGGC	1020
AATTTTGTGC	ATTACAGCCC	CTACAATGGA	GAGGTACTTC	CCGGTTATCT	CTATACCGAT	1080
ACCGGATTTT	GGGACACTTT	TCGAGCCCTT	TTCCCCCTGC	TCAATCTGCT	GTATCCCGAT	1140
GAAAACATTA	AAATTCAGGA	AGGTCTGCTG	AATGTATATC	GCGAGAGTGG	CTTTTTCCCC	1200
GAATGGGCCA	GTCCGGGCCA	TCGGGATTGT	ATGATAGGCA	ACAACTCTGC	TTCTGTTCTG	1260
GCGGATGCCT	ACCTCAAGGG	TGTTCGGGTA	GAAGATACCC	GTACACTGAT	GAACGGACTC	1320
TTGCATGCTA	CGAAAGCCGT	CCATCCGAAA	ATCTCCTCCA	CGGGTCGCAA	AGGTTGGGAG	1380
TGGTACAACT	CCTTAGGTTA	TGTTCCGGCT	GATGCAGGCA	TCGACGAAAG	TGCTGCCCGT	1440
ACGCTCGAAT	ATGCTTATAA	CGATTGGTGC	ATCCTCCGAC	TGGGGCGCAC	ATTGGGTTGG	1500
GATAGAGCTG	CATTGGACAC	GTTGGCTCAT	CGTTCGATGA	ACTATCGTCA	TCTGTTCGAT	1560
CCGGAAACCA	AACTCATGCG	CGGTAGAAAT	CAGGATGGTA	GTTTCCGGAC	ACCTTTTTCC	1620
CCTTTCAAAT	GGGGAGATGT	ATTCACGGAG	GGCAATGCCT	GGCACTACAC	TTGGTCGGTC	1680
TTTCATGATG	TGCAGGGGCT	TATCGACCTG	ATGGGAGGAG	ATCGCCCGTT	CGTGTCTATG	1740
CTCGATTCGG	TATTCAATAC	TCCTCCTATG	TTCGATGAGA	GCTATTACGG	ATTTGTCATC	1800
CACGAAATCA	GAGAGATGCA	AATAGCGGAT	ATGGGCAATT	ATGCTCATGG	CAATCAACCC	1860
ATACAGCATA	TGATATATCT	GTATAATCAT	GCCGGTCATC	CATGGAAAGC	TCAGGAGAGA	1920
CTACGCGAAG	TGATGGGGCG	GCTCTATCGT	CCTACTCCGG	ATGGGTATTG	CGGCGATGAA	1980
GACAACGGAC	AGACTTCGGC	TTGGTACGTT	TTCTCTGCTT	TAGGCTTCTA	TCCTGTTACA	2040
CCCGCTACGG	ATCAGTATGT	GCTCGGTTCG	CCGATTTTTT	CCAAGGTAAT	ACTCTCTTTT	2100
CCCGACGGAC	ACAAAACGGT	GTTGCATGCT	CCGGCCAACA	GTGCCGATAC	GCCTTACATC	2160
CGCTCGATCA	GCGTAGAAGG	AAAAGAATGG	AGCTGCAATT	ACCTGACTCA	CGAACAGCTT	2220
CGCTCTTCTG	CATCCATTCA	ATGGATGATG	GACACGAAAC	CCAATTATAA	TCGTGGTATG	2280
AAGGAAAGTG	ACAGACCTTA	TTCCTTCTCC	ACGGAGCAAC	AGCGTCGCGC	TAATCACAGT	2340
AAT						2343

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 813 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...813
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:247

ATGATGAAAT	CCATGCGCAG	CGTGCTGTTG	CTACTCTTTC	CATTGTCTTT	GATCACTGCT	60
TTGGGCTGTA	GCAATAACAA	AGCTGCCGAA	TCGAAGTCTG	TCTCTTTCGA	TTCGGCCTAT	120
CTCGAACGCT	ACATCCCTCT	GCGGGCAGAC	ATAGATACGC	CATCGCTGCA	TGTGATGATC	180
AGCTACGTCT	ATCCTTCGGG	AGATGATATG	CTCACAGAGA	TTTTCAACGG	TTTGCTCTTC	240
GGCGACAGCC	TGATGGATTC	CTCTTCGCCG	GAGAATGCCA	TGGAAGGCTA	TGCACAGATG	300
CTGGGAGAAG	ACTATCGCTC	TAACAATGCC	GAAGCCAATC	TGCAAGGGCT	TCCTTCTGAC	360
CTTTTGGACT	ATATCTACAA	GCAGGAAAAT	ACCATCGCTT	ATTGCGATAC	GGGATTGATC	420
TCCACGCGCA	TCAATACATA	TACTTACGAA	GGCGGTGCAC	ATACGGAGAA	TACAGTCCGG	480
TTTGCCAACA	TCCTTCGCAC	CACCGGCAAG	GTGCTCGAAG	AGCGAGATAT	ATTCAAGATC	540
GACTATGCGG	AAAGGCTGTC	CGCACTCATC	ATAGGACAAT	TGGTGCACGA	TTTCGGCAAG	600
ACCACACCTG	CCGAATTGGA	TGCAATAGGT	TTCTTCAACG	CAGAAGAAAT	ACAGCCCAAT	660
GGCAATTTTA	TGATCGATGA	CAAAGGTCTC	ACATACTGTT	TCAATGAGTA	TCAGATAGCT	720
GCTTATGCCA	GAGGTGCTGT	CTATGTCCGT	CTCGGATATG	ACGTATTGGC	TCCTTTGCTA	780
AGGGATGATT	CCCCACTAAA	GCGTTACTTG	CCG			813

- (2) INFORMATION FOR SEQ ID NO:248
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 810 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...810
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:248

ATGAAATCCA	TGCGCAGCGT	GCTGTTGCTA	CTCTTTCCAT	TGTCTTTGAT	CACTGCTTTG	60
GGCTGTAGCA	ATAACAAAGC	TGCCGAATCG	AAGTCTGTCT	CTTTCGATTC	GGCCTATCTC	120
GAACGCTACA	TCCCTCTGCG	GGCAGACATA	GATACGCCAT	CGCTGCATGT	GATGATCAGC	180
TACGTCTATC	CTTCGGGAGA	TGATATGCTC	ACAGAGATTT	${\tt TCAACGGTTT}$	GCTCTTCGGC	240
GACAGCCTGA	TGGATTCCTC	TTCGCCGGAG	AATGCCATGG	AAGGCTATGC	ACAGATGCTG	300
GGAGAAGACT	ATCGCTCTAA	CAATGCCGAA	GCCAATCTGC	AAGGGCTTCC	TTCTGACCTT	360
TTGGACTATA	TCTACAAGCA	GGAAAATACC	ATCGCTTATT	GCGATACGGG	ATTGATCTCC	420
ACGCGCATCA	ATACATATAC	TTACGAAGGC	GGTGCACATA	CGGAGAATAC	AGTCCGGTTT	480
GCCAACATCC	TTCGCACCAC	CGGCAAGGTG	CTCGAAGAGC	GAGATATATT	CAAGATCGAC	540
TATGCGGAAA	GGCTGTCCGC	ACTCATCATA	GGACAATTGG	TGCACGATTT	CGGCAAGACC	600
ACACCTGCCG	AATTGGATGC	AATAGGTTTC	TTCAACGCAG	AAGAAATACA	GCCCAATGGC	660
AATTTTATGA	TCGATGACAA	AGGTCTCACA	TACTGTTTCA	ATGAGTATCA	GATAGCTGCT	720
TATGCCAGAG	GTGCTGTCTA	TGTCCGTCTC	GGATATGACG	TATTGGCTCC	TTTGCTAAGG	780
GATGATTCCC	CACTAAAGCG	TTACTTGCCG				810

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 801 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...801
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:249

» madada saca	TGCTGTTGCT	አርጥርጥጥጥርርን	ጥጥርጥርጥጥጥር እ	<b>ጥር እርጥር ርጥ</b> ሞጥ	CCCCTCTACC	60
AATAACAAAG	CTGCCGAATC	GAAGTCTGTC	TCTTTCGATT	CGGCCTATCT	CGAACGCTAC	120
ATCCCTCTGC	GGGCAGACAT	AGATACGCCA	TCGCTGCATG	TGATGATCAG	CTACGTCTAT	180
CCTTCGGGAG	ATGATATGCT	CACAGAGATT	TTCAACGGTT	TGCTCTTCGG	CGACAGCCTG	240
ATGGATTCCT	CTTCGCCGGA	GAATGCCATG	GAAGGCTATG	CACAGATGCT	GGGAGAAGAC	300
TATCGCTCTA	ACAATGCCGA	AGCCAATCTG	CAAGGGCTTC	CTTCTGACCT	TTTGGACTAT	360
ATCTACAAGC	AGGAAAATAC	CATCGCTTAT	TGCGATACGG	GATTGATCTC	CACGCGCATC	420
AATACATATA	CTTACGAAGG	CGGTGCACAT	ACGGAGAATA	CAGTCCGGTT	TGCCAACATC	480
CTTCGCACCA	CCGGCAAGGT	GCTCGAAGAG	CGAGATATAT	TCAAGATCGA	CTATGCGGAA	540
AGGCTGTCCG	CACTCATCAT	AGGACAATTG	GTGCACGATT	TCGGCAAGAC	CACACCTGCC	600
GAATTGGATG	CAATAGGTTT	CTTCAACGCA	GAAGAAATAC	AGCCCAATGG	CAATTTTATG	660
ATCGATGACA	AAGGTCTCAC	ATACTGTTTC	AATGAGTATC	AGATAGCTGC	TTATGCCAGA	720
GGTGCTGTCT	ATGTCCGTCT	CGGATATGAC	GTATTGGCTC	CTTTGCTAAG	GGATGATTCC	780
CCACTAAAGC	GTTACTTGCC	G				801

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 777 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...777
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:250

ATGAAAAAAA CTACTTT	GAC AGGATCGATA	TGTGCTTTAC	TCCTGTTTTT	GGGTCTCTCG	60
GCCAATGCCC AATCGAA	GTT AAAGATCAAG	AGCATTGAGG	CAGCTACCAC	TTTCAGTTCG	120
GCCACGGCCG GAAATGG	TTT TGGTGGCAAT	ATCTTCGGCA	TGGACATGAG	CATACGGATG	180
AGGGTACACC ACAGCAT	TCT GCCCGAAGGG	TTGGATTTTT	CGGTAGGAAT	ACATGAAAGA	240
AGAGCACACT GGGAAGA	GGC CGGAAGTCCG	AAGCTCATGT	ATACGAATGT	CCCAAGTATC	300
ATTGGTATTG TTGAAAA	GGT AATAGTCTTC	GAAGACGCAG	AAGACTTTTT	TGACAAAAA	360
GCTCTCGGCC GCTTCCT	CAT CAGTTTGGGG	ATATCCTATA	CCAAGCATCT	GGGAGCGTAT	420
TGGGGATGGA CCAATGA	CGC CCATATTCTT	TTCTCACCGA	TACCCAAGAG	CAAGGTCCAC	480
TATGACACCT ACACAAG	AGC TGGCAGTGAC	CTTGTACTTC	AGTCCGAAGA	TGTTGCCACA	540
GTGAGCAATG GCTTTTC	ACC GGGGATCGGA	CTCAAAAGTT	CTATTTGGTG	GAAAATGCCC	600
ATCAAGAGCA AATATGA	TTT TCGCCTCGGT	TTCAGCCTGG	GCTATGAGTA	TCTGAACCTG	660
CTATATCCGT ATCGTAA	TTT CAAGCTGGAT	GGAAATAAGC	CGCTTTCAGC	ACTATCTCCT	720
CGCATGAACC ACATCGG	CCA TGTGGGCTTC	AACTTTACCG	TGGGTCTTTG	GACTAAT	777

- (2) INFORMATION FOR SEQ ID NO:251
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 3798 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...3798
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:251

ATGGGCAAGT	ATAAAAGAGC	TAAGTACCGC	TATTGGCTTT	TTCCTTTCTG	TTCGGATTAT	60
TATACCTTTG	AGGGAGTTAC	TTTTTTATGC	GCATCTGACG	ATATGACAAC	CAAGAAACCC	120
CAAGCCATTT	TAGACTTAGA	GAAGGCCTAT	AACATTGAAA	TTCCTGATCT	CTCCTCACAA	180
GAAGGGATAA	GCTGGTCGGT	AAATAGATAT	TTCAAGCAAG	ATTCCTCCGG	TGCAGTCGTT	240
GAGCTTTGCT	TGCGAGAATG	TCAGATAGAA	AGCATGACTT	${\tt GGCTTATTGA}$	TTTTCCTGCT	300
CTAAAAAAGC	TTGATCTATC	GTATAACCAA	ATCAGTAAGC	TAGAGGGTCT	AGAACGTCTT	360
ACTTCGTTAA	CAAAACTTCG	TCTAAGAAGT	AACCAAATCC			420
AGTCTCACCT	CGCTAACAAA	ACTTTCTCTC	TCCGATAACC	AAATCAGTAA	GCTAGAGGGT	480
CTGGAACGTC	TCACCTCGTT	AGCGGAGCTT	TATCTTTTGG	ATAACCAAAT	CAGTAAACTA	540
GAGGGTCTGG	AACGTCTCAC	GTCCTTAGCA	ACGCTTGAAC	TATCGGGTAA	CCAAATCCGT	600
AAGCTGGAGG	GTCTGGAACG	TCTCACGTCC	TTAGCAACGC	TTGAACTATC	GGGTAACCAA	660
ATCCGTAAGC	TAGAGGGTCT	GGAACGTCTC	ACTTCGTTAA	CAAAGCTTCG	TCTAAGAAGT	720
AACCAAATCA	GTAAGCTAGA	${\tt GGGTCTGGAA}$	CGTCTCACGT	CCTTAGCAAC	GCTTGAACTA	780
TCGGGTAACC	AAATCCGTAA	GCTGGAGGGT	CTGGAACGTC	TCACGTCCTT	AGCAACGCTT	840
GAACTGTCGG	GTAACCAAAT	CAGTAAGCTA	GAGGGTCTGG	AACGTCTCTC	TTCGTTAACA	900
AAGCTTCGTC	TAAGAAGTAA	CCAGATCAGT	AAACTAGAGG	GCCTGGAACG	TCTCACCTCG	960
CTAACAAAAC	TTTCTCTCTC	CGATAACCAA	ATCAGTAAGC	TAGAGGGTCT	GGAACGTCTC	1020
ACCTCGTTAG	CGGAGCTTTA	TCTTTTGGAT	AACCAAATCC	GTAAGCTGGA	GGGCCTGGAA	1080
CGTCTCACCT	CGTTAACAAA	GCTTCGTCTA	AGAAGTAACC	AAATCAGTAA	ACTAGAGGGC	1140
CTGGATAGTC	TCACCTCGCT	AACAAAACTT	TCTCTCTCCG	ATAACCAAAT	CAGTAAACTA	1200
GAGGGCCTGG	AACGTCTCAC	GTCCTTAGCG	GAGCTTTATC	TTTTGGATAA	CCAAATCCGT	1260
AAGCTGGAGG	GTCTTGATGG	TCTTGCTTCC	TTAACAAGGC	TTAGTCTAAG	GCGCAACCAA	1320
ATCAGTAAGC	TGGAAGGACT	AGACAGACTA	AAGGTTTTGA	GAAAACTTGA	TGTTTCGGGC	1380
	AATCTATTGA		CTATTGGCTC		GCAAACTTTA	1440
GAAAAACTGA	GAATCCATGA	CAATCCATTT	GTTGCATCAT	CAGGCTTGAT	ACTCTCTCCT	1500

TATGATAATC	ATTTGCCGGA	GATTAAAGCT	CTTCTTGAAA	AAGAAAAAGA	AAAACAGAAA	1560
AAGACTTCAG	TTGAATATCA	CCCATTTTGC	AAAGTAATGC	TATTGGGAAA	TCATTCTTCG	1620
GGTAAAACAA	CATTTCTTAG	TCAATACGAT	ACAAATTATA	CGTATCAGAA	AAATACACAT	1680
GTGTTGTCGA	TACATCGAAG	CAATAACCCT	AATGCGATCT	TTTACGACTT	TGGGGGACAG	1740
GACTATTATC	ATGGGATTTA	CCAAGCCTTT	TTTACCACCC	AATCGTTATA	CCTTCTCTTT	1800
TGGGATGCTA	AGAAGGATCG	AAACTTTGTG	AGCGTAGATG	ATAAAGAATA	TCAGACTCTT	1860
AATTTCAATC	GCCCCTATTG	GTTAGGACAG	ATAGCCTATG	CCTGCAATCG	TTGTATGTCC	1920
GTTGGAGGAA	ATCCTGATGG	CAAGGACACA	CCACAGACCA	CAGACGATAC	AATTATCATT	1980
CAGACTCATG	CCGATGAAAC	GGGCGCTAAG	CAGCAAACCT	TAGGCTGTGC	AGCCGAGAAT	2040
GGAGTATTGG	AAGAAATCTA	TGTATCCTTA	GAGCCCAAGG	CGAATAGTGC	CGTACATGCG	2100
CTCAACTATC	TGAATGAGCG	GGTGCGAGAA	GTTGTCGCAA	GCAGGAGTAA	ATCAATTCAG	2160
ATCACAGAAA	AAGATAAGGG	ATTGTACGAA	GCTCTTCCCA	CAATCGCCGG	TGATAATAAA	2220
CACATCCCTA	TCTCTCTCGA	AGCTCTTGCG	GCTCAATTGA	ATAAGGGAAG	AGCTGAAAAT	2280
GATCTTTACA	CCATAGAGTA	TCTACAGACC	GAATTGAACC	AGCTTAGTCT	GCGAGGGGAG	2340
GTGCTTTACT	ATCGTGAGAA	TGAGAAGCTG	AACAATTATG	TCTGGTTAGA	TCCGGCAGCT	2400
TTTGTCCAAA	TGATTCATGG	AGAAATCCTC	CAAAAAGACA	ACATCAATAG	AGGAACAGTT	2460
CCTAAAGACA	TTTTTGAATG	CAAACTGCAT	AATCTAAGTT	CCGGAAGTAT	ATTTGAAGAA	2520
GATGGCCAAA	ATGGTAATAT	GATCTTGCAG	CTATTATTGG	AAGAGCTGAT	CGTATATGAA	2580
GATAAGGACT	GCTATGTGAT	ACCGGGCTAT	CTCCCTTTGC	ATTCCGATGA	CGAAGCCTAT	2640
AAATGGCTTA	CTTTGGGATT	CGAGAGGCCC	AATTTTGTCC	TCAAATTCGA	ACGTTTTATC	2700
CCCTTTGGCC	TGATCAACCA	GATTATAGCC	TACTATGGCC	GGGAAGAAGG	TGCTCTAAAG	2760
CGGTATTGGC	GAGATCAGGT	CATCTTCACA	GCAGGCCGTG	AGATGGATAG	GCAAACGCTT	2820
GAGCAAGAAG	AAGAGAAAGA	GGGTTTGCCC	AAGACGAATG	CCGAGGATTA	TCAGATCTGG	2880
ATCAAGCTCG	ACTTTACCGA	CTTGGCCATA	TCCGTATTCA	TCAAAGAGCA	GAGAAAGACA	2940
TCAGCTAAGG	ATATGCAGCG	GAAAGAGGCT	ACTATCCTCA	GTGATATGTT	GGATATGTAT	3000
TGGAACAATA	TCCCTCCGAG	GGAGCAAATA	GGAGATAAGG	ATACGGAGCA	AACGAGAAGC	3060
ACTATTCGTG	AAACAAACAG	AAAGAAGAGA	CCCATCCAGG	ATCTCTACCT	CTCCTGTGCC	3120
CAAGCGGATA	AAGATTTGAC	GGAGTCTCAT	TATATCCATT	TGGGCACGCT	GGACGATGAA	3180
AGCAAGACTA	CGGCGAGGAT	TGCAGCCTAT	CCGTTGAAGA	ACGGCGTTAT	CGATAAAGAG	3240
CGGGTGCGAG	AAGTATCGAC	TCGTCCCTAC	AAACATCTTT	CCGTCAATAA	AAATCTGGCT	3300
ACTGCAAAAC	AGATCTTTAT	TTCCTATTCC	AAAGAGGATC	AGACTGAACT	GGAGACCTGT	3360
CTGCAATTTT	TCAAACCCTT	GGAGAAGAAT	GGTCAGATCG	AGATCTACTA	TGATAAGTTG	3420
ACTAAGTTTG	AAACACCTAT	TCACCCTGAA	ATAAGAAAGC	GTATTGTCGA	AGCCGACTGT	3480
ATAATCGCTT	TGATCAGCCA	ACGCTATCTG	GCCACGGATT	ACATCCTGGA	TCATGAGTTG	3540
CCTGTATTTC	GGGAGTATAA	CAAGACCATA	GTGCCGATAT	TGATCAAGCC	TTGTACATTC	3600
GAAGACGATG	AGTTCCTTCG	GGAGAAATAT	TTTGCTCAGA	AAGCTCAAAT	AATCAATCTT	3660
GGAAAAGAGG	GAAAAACCAT	TAAAGCTTAT	GATAGTATTA	CGGCATCAGC	CCATCGTGAT	3720
GAAAATTGGG	TGGCAGTAGT	CAGAGAGTTC	AAAGAGAAGA	TATTAAGAAT	AACAAAACAG	3780
GAGGTAAATA	CAGATGAA					3798

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3696 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...3696
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:252

ATGACAACCA	AGAAACCCCA	AGCCATTTTA	GACTTAGAGA	AGGCCTATAA	CATTGAAATT	60
CCTGATCTCT	CCTCACAAGA	AGGGATAAGC	TGGTCGGTAA	ATAGATATTT	CAAGCAAGAT	120
TCCTCCGGTG	CAGTCGTTGA	GCTTTGCTTG	CGAGAATGTC	AGATAGAAAG	CATGACTTGG	180
CTTATTGATT	TTCCTGCTCT	AAAAAAGCTT	GATCTATCGT	ATAACCAAAT	CAGTAAGCTA	240
GAGGGTCTAG	AACGTCTTAC	TTCGTTAACA	AAACTTCGTC	TAAGAAGTAA	CCAAATCCGT	300
AAACTAGAGG	GCCTGGATAG	TCTCACCTCG	CTAACAAAAC	TTTCTCTCTC	CGATAACCAA	360
ATCAGTAAGC	TAGAGGGTCT	GGAACGTCTC	ACCTCGTTAG	CGGAGCTTTA	TCTTTTGGAT	420
AACCAAATCA	GTAAACTAGA	GGGTCTGGAA	CGTCTCACGT	CCTTAGCAAC	GCTTGAACTA	480
TCGGGTAACC	AAATCCGTAA	GCTGGAGGGT	CTGGAACGTC	TCACGTCCTT	AGCAACGCTT	540
GAACTATCGG	GTAACCAAAT	CCGTAAGCTA	GAGGGTCTGG	AACGTCTCAC	TTCGTTAACA	600
AAGCTTCGTC	TAAGAAGTAA	CCAAATCAGT	AAGCTAGAGG	GTCTGGAACG	TCTCACGTCC	660
TTAGCAACGC	TTGAACTATC	GGGTAACCAA	ATCCGTAAGC	TGGAGGGTCT	GGAACGTCTC	720
ACGTCCTTAG	CAACGCTTGA	ACTGTCGGGT	AACCAAATCA	GTAAGCTAGA	GGGTCTGGAA	780

CGTCTCTCTT	CGTTAACAAA	GCTTCGTCTA	AGAAGTAACC	AGATCAGTAA	ACTAGAGGGC	840
CTGGAACGTC	TCACCTCGCT	AACAAAACTT	TCTCTCTCCG	ATAACCAAAT	CAGTAAGCTA	900
GAGGGTCTGG	AACGTCTCAC	CTCGTTAGCG	GAGCTTTATC	TTTTGGATAA	CCAAATCCGT	960
AAGCTGGAGG	GCCTGGAACG	TCTCACCTCG	TTAACAAAGC	TTCGTCTAAG	AAGTAACCAA	1020
ATCAGTAAAC	TAGAGGGCCT	GGATAGTCTC	ACCTCGCTAA	CAAAACTTTC	TCTCTCCGAT	1080
AACCAAATCA	GTAAACTAGA	GGGCCTGGAA	CGTCTCACGT	CCTTAGCGGA	GCTTTATCTT	1140
TTGGATAACC	AAATCCGTAA	GCTGGAGGGT	CTTGATGGTC	TTGCTTCCTT	AACAAGGCTT	1200
AGTCTAAGGC	GCAACCAAAT	CAGTAAGCTG	GAAGGACTAG	ACAGACTAAA	GGTTTTGAGA	1260
AAACTTGATG	TTTCGGGCAA	TGATATTCAA	TCTATTGATG	ATATTAAGCT	ATTGGCTCCG	1320
			ATCCATGACA			1380
			TTGCCGGAGA			1440
GAAAAAGAAA	AACAGAAAAA	GACTTCAGTT	GAATATCACC	CATTTTGCAA	AGTAATGCTA	1500
TTGGGAAATC	ATTCTTCGGG	TAAAACAACA	TTTCTTAGTC	AATACGATAC	AAATTATACG	1560
TATCAGAAAA	ATACACATGT	GTTGTCGATA	CATCGAAGCA	ATAACCCTAA	TGCGATCTTT	1620
TACGACTTTG	GGGGACAGGA	CTATTATCAT	GGGATTTACC	AAGCCTTTTT	TACCACCCAA	1680
TCGTTATACC	TTCTCTTTTG	GGATGCTAAG	AAGGATCGAA	ACTTTGTGAG	CGTAGATGAT	1740
AAAGAATATC	AGACTCTTAA	TTTCAATCGC	CCCTATTGGT	TAGGACAGAT	AGCCTATGCC	1800
			CCTGATGGCA			1860
GACGATACAA	TTATCATTCA	GACTCATGCC	GATGAAACGG	GCGCTAAGCA	GCAAACCTTA	1920
			GAAATCTATG			1980
AATAGTGCCG	TACATGCGCT	CAACTATCTG	AATGAGCGGG	TGCGAGAAGT	TGTCGCAAGC	2040
AGGAGTAAAT	CAATTCAGAT	CACAGAAAAA	GATAAGGGAT	TGTACGAAGC	TCTTCCCACA	2100
ATCGCCGGTG	ATAATAAACA	CATCCCTATC	TCTCTCGAAG	CTCTTGCGGC	TCAATTGAAT	2160
AAGGGAAGAG	CTGAAAATGA	TCTTTACACC	ATAGAGTATC	TACAGACCGA	ATTGAACCAG	2220
CTTAGTCTGC	GAGGGGAGGT	GCTTTACTAT	CGTGAGAATG	AGAAGCTGAA	CAATTATGTC	2280
TGGTTAGATC	CGGCAGCTTT	TGTCCAAATG	ATTCATGGAG	AAATCCTCCA	AAAAGACAAC	2340
ATCAATAGAG	GAACAGTTCC	TAAAGACATT	TTTGAATGCA	AACTGCATAA	TCTAAGTTCC	2400
GGAAGTATAT	TTGAAGAAGA	TGGCCAAAAT	GGTAATATGA	TCTTGCAGCT	ATTATTGGAA	2460
GAGCTGATCG	TATATGAAGA	TAAGGACTGC	TATGTGATAC	CGGGCTATCT	CCCTTTGCAT	2520
TCCGATGACG	AAGCCTATAA	ATGGCTTACT	TTGGGATTCG	AGAGGCCCAA	TTTTGTCCTC	2580
AAATTCGAAC	GTTTTATCCC	CTTTGGCCTG	ATCAACCAGA	TTATAGCCTA	CTATGGCCGG	2640
GAAGAAGGTG	CTCTAAAGCG	GTATTGGCGA	GATCAGGTCA	TCTTCACAGC	AGGCCGTGAG	2700
ATGGATAGGC	AAACGCTTGA	GCAAGAAGAA	GAGAAAGAGG	GTTTGCCCAA	GACGAATGCC	2760
GAGGATTATC	AGATCTGGAT	CAAGCTCGAC	TTTACCGACT	TGGCCATATC	CGTATTCATC	2820
AAAGAGCAGA	GAAAGACATC	AGCTAAGGAT	ATGCAGCGGA	AAGAGGCTAC	TATCCTCAGT	2880
GATATGTTGG	ATATGTATTG	GAACAATATC	CCTCCGAGGG	AGCAAATAGG	AGATAAGGAT	2940
ACGGAGCAAA	CGAGAAGCAC	TATTCGTGAA	ACAAACAGAA	AGAAGAGACC	CATCCAGGAT	3000
CTCTACCTCT	CCTGTGCCCA	AGCGGATAAA	GATTTGACGG	AGTCTCATTA	TATCCATTTG	3060
GGCACGCTGG	ACGATGAAAG	CAAGACTACG	GCGAGGATTG	CAGCCTATCC	GTTGAAGAAC	3120
			GTATCGACTC			3180
			ATCTTTATTT			3240
ACTGAACTGG	AGACCTGTCT	GCAATTTTTC	AAACCCTTGG	AGAAGAATGG	TCAGATCGAG	3300
ATCTACTATG	ATAAGTTGAC	TAAGTTTGAA	ACACCTATTC	ACCCTGAAAT	AAGAAAGCGT	3360
			ATCAGCCAAC			3420
			GAGTATAACA			3480
			TTCCTTCGGG			3540
			AAAACCATTA			3600
GCATCAGCCC	ATCGTGATGA	AAATTGGGTG	GCAGTAGTCA	GAGAGTTCAA	AGAGAAGATA	3660
TTAAGAATAA	CAAAACAGGA	GGTAAATACA	GATGAA			3696

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 3525 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...3525
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:253

ATGACTTGGC TTATTGATTT TCCTGCTCTA AAAAAGCTTG ATCTATCGTA TAACCAAATC AGTAAGCTAG AGGTCTAGA ACGTCTTACT TCGTTAACAA AACTTCGTCT AAGAAGTAAC CAAATCCGTA AACTAGAGGG CCTGGATAGT CTCACCTCGC TAACAAAACT TTCTCTCTCC

60

120

180

			GAACGTCTCA			240
CTTTTGGATA	ACCAAATCAG	TAAACTAGAG	${\tt GGTCTGGAAC}$	GTCTCACGTC	CTTAGCAACG	300
CTTGAACTAT	CGGGTAACCA	AATCCGTAAG	${\tt CTGGAGGGTC}$	TGGAACGTCT	CACGTCCTTA	360
GCAACGCTTG	AACTATCGGG	TAACCAAATC	CGTAAGCTAG	AGGGTCTGGA	ACGTCTCACT	420
TCGTTAACAA	AGCTTCGTCT	AAGAAGTAAC	CAAATCAGTA	AGCTAGAGGG	TCTGGAACGT	480
			GGTAACCAAA			540
			CTGTCGGGTA			600
GGTCTGGAAC	GTCTCTCTTC	GTTAACAAAG	CTTCGTCTAA	GAAGTAACCA	GATCAGTAAA	660
CTAGAGGGCC	TGGAACGTCT	CACCTCGCTA	ACAAAACTTT	CTCTCTCCGA	TAACCAAATC	720
AGTAAGCTAG	AGGGTCTGGA	ACGTCTCACC	TCGTTAGCGG	AGCTTTATCT	TTTGGATAAC	780
CAAATCCGTA	AGCTGGAGGG	CCTGGAACGT	CTCACCTCGT	TAACAAAGCT	TCGTCTAAGA	840
			GATAGTCTCA			900
			GGCCTGGAAC			960
			CTGGAGGGTC			1020
			AGTAAGCTGG			1080
			GATATTCAAT			1140
			AAACTGAGAA			1200
CCATCATCAG	GCTTGATACT	CTCTCCTTAT	GATAATCATT	TGCCGGAGAT	TAAAGCTCTT	1260
			ACTTCAGTTG			1320
			AAAACAACAT			1380
AATTATACCT	ATCAGAAAA	TACACATGTG	TTGTCGATAC	ATCGAAGCAA	TAACCCTAAT	1440
			TATTATCATG			1500
			GATGCTAAGA			1560
CTACATCATA	AACAATATCA	CACTCTTAAT	TTCAATCGCC	CCTATTGGTT	AGGACAGATA	1620
			GGAGGAAATC			1680
GCCIAIGCCI	ACCAMACAAM	TATCATTCAC	ACTCATGCCG	ATCAAACGCG	CGCTAAGCAG	1740
CAGACCACAG	CCTCTCCACA	CCACAATCCA	GTATTGGAAG	AAATCTATCT	ATCCTTAGAG	1800
CAAACCIIAG	A TRACTICA COCT	ACATTCCCCTC	AACTATCTGA	ATCACCCCCT	CCCACAAGTT	1860
			ACAGAAAAAG			1920
			ACAGAAAAAG			1980
CTTCCCACAA	TCGCCGGTGA	TAATAAACAC	ATCCCTATCT	TACACTATCT	ACACACCCAA	2040
			CTTTACACCA			2100
			CTTTACTATC			2160
			GTCCAAATGA			2220
			AAAGACATTT			2220
CTAAGTTCCG	GAAGTATATT	TGAAGAAGAT	GGCCAAAATG	GTAATATGAT	CIIGCAGCIA	2340
			AAGGACTGCT			
			TGGCTTACTT			2400
			TTTGGCCTGA			2460
TATGGCCGGG	AAGAAGGTGC	TCTAAAGCGG	TATTGGCGAG	ATCAGGTCAT	CTTCACAGCA	2520
			CAAGAAGAAG			2580
			AAGCTCGACT			2640
			GCTAAGGATA			2700
			AACAATATCC			2760
			ATTCGTGAAA			2820
			GCGGATAAAG			2880
			AAGACTACGG			2940
			GTGCGAGAAG			3000
CATCTTTCCG	TCAATAAAAA	TCTGGCTACT	GCAAAACAGA	TCTTTATTTC	CTATTCCAAA	3060
			CAATTTTTCA			3120
			AAGTTTGAAA			3180
AGAAAGCGTA	TTGTCGAAGC	CGACTGTATA	ATCGCTTTGA	TCAGCCAACG	CTATCTGGCC	3240
ACGGATTACA	TCCTGGATCA	TGAGTTGCCT	GTATTTCGGG	AGTATAACAA	GACCATAGTG	3300
CCGATATTGA	TCAAGCCTTG	TACATTCGAA	GACGATGAGT	TCCTTCGGGA	GAAATATTTT	3360
			AAAGAGGGAA			3420
AGTATTACGG	CATCAGCCCA	TCGTGATGAA	AATTGGGTGG	CAGTAGTCAG	AGAGTTCAAA	3480
GAGAAGATAT	TAAGAATAAC	AAAACAGGAG	GTAAATACAG	ATGAA		3525

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 687 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature

### (B) LOCATION 1...687

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:254

ATGATGAAAA AAG	GCATTTGT TTTCGTAC	TA CTGGTTTGCC	TATTCTCCTC	GTTCAGCAGT	60
TCCGCCCAAA CAA	ACGACGAA CAGTAGCO	GG AGTTATTTA	CAGGACGAAT	CGAGAAGGTG	120
AGTTTGAACT TAG	GGGTCCC CCCCGTAA	GC ACAGAGGTTT	GGGGAATGAC	CCATGATGCG	180
AACGGTCTCC CTT	TTCGAAAT ACCTATCT	CT TTCAGTCGTT	TCAACAGCCA	GGGAGATATA	240
GCTACCACTT ATT	FACATAGC GAATAGCG	AG GCAACTTTGA	ATGAATGGTG	CGACTATGCA	300
CACCCGGGCG GCF	ATCGTGAG GGTAGAAG	GT CGTTTTTGGA	AAATGACTTA	CAACATACCA	360
ACCTACAATG CAC	STCTGCAC CCGGATTA	CA TTCGAAAATC	AAGAAATAGA	AGGAACGATC	420
GTCTTGATAC CCA	AAGCCCAA AGTCTCGC	TG CCTCATGTGT	CGGAATCGGT	GCCTTGCATC	480
CGAACCGAAG CCC	GGGAGGGA ATTTATCC	TT TGCGAAGAAG	ACGACACCTT	TGTGTCTCAC	540
GATGGTAACG AAC	STAACGAT AGGCGGTA	AA CCTTTCTTGC	TCAATACCAA	CGTAAAGATT	600
GTGGGGGACG TAT	CTCAAAA GTATGCCG	TG GGGGTAGGAG	AAATTCGATT	CCTGCAGATT	660
TGTGCCCAAA CAC	GTATCACA ACAAAAA				687

### (2) INFORMATION FOR SEQ ID NO:255

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 684 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...684
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:255

ATGAAAAAG CATTTGTTTT	CGTACTACTG	GTTTGCCTAT	TCTCCTCGTT	CAGCAGTTCC	60
GCCCAAACAA CGACGAACAG	TAGCCGGAGT	TATTTTACAG	GACGAATCGA	GAAGGTGAGT	120
TTGAACTTAG GGGTCCCCCC	CGTAAGCACA	GAGGTTTGGG	GAATGACCCA	TGATGCGAAC	180
GGTCTCCCTT TCGAAATACC	TATCTCTTTC	AGTCGTTTCA	ACAGCCAGGG	AGATATAGCT	240
ACCACTTATT ACATAGCGAA	TAGCGAGGCA	ACTTTGAATG	AATGGTGCGA	CTATGCACAC	300
CCGGGCGCA TCGTGAGGGT	AGAAGGTCGT	TTTTGGAAAA	TGACTTACAA	CATACCAACC	360
TACAATGCAG TCTGCACCCG	GATTACATTC	GAAAATCAAG	AAATAGAAGG	AACGATCGTC	420
TTGATACCCA AGCCCAAAGT	CTCGCTGCCT	CATGTGTCGG	AATCGGTGCC	TTGCATCCGA	480
ACCGAAGCCG GGAGGGAATT	TATCCTTTGC	GAAGAAGACG	ACACCTTTGT	GTCTCACGAT	540
GGTAACGAAG TAACGATAGG	CGGTAAACCT	TTCTTGCTCA	ATACCAACGT	AAAGATTGTG	600
GGGGACGTAT CTCAAAAGTA	TGCCGTGGGG	GTAGGAGAAA	TTCGATTCCT	GCAGATTTGT	660
GCCCAAACAG TATCACAACA	AAAA				684

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1620 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1620
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:256

ATGAAGACAA	AAGTTTTACG	CAAATTCGTG	GTGGCGGCTT	TCGCCGTCGC	AACCCTCTGT	60
CCTCTCGCCC	AAGCGCAGAC	GATGGGAGGA	GATGATGTCA	AGGTGGTCCA	GTACAATCAG	120
GAAAAACTGG	TACAAACGAG	GATGAGTGTG	GCGGACAACG	GATGGATCTA	TGTAATGACC	180
CACAGTGGAT	ACGACACCGG	CAATAGCAAT	GTGAAGATCT	TCCGCTCCAA	AGACCAAGGT	240
GCCACATACC	AAAAGTTGAG	GGATTGGGAT	CCATCGGATG	ATTATCAGTT	TCAAGACTTC	300
			GACATCAAGA			360
AATAAGCCCG	GAGGATATAA	GAGTAGAGTT	GCGGTCTTCA	GTCGCGATGC	CAACGCGCAG	420
AATGCGAAAC	TCGTGTATAA	GGAAGACTTC	TCCAATGTGC	AGTTGTACGA	TGTGGATATA	480
GCCTCCAACT	ATCGTTCGCC	TTCTTCTCTT	AACAATGGTG	GCAACCCTTT	TGCTTTGGCT	540
TTCGCTTACA	CCGGCTTCAA	CAATACGCAC	AAAATAAGTT	TTGTGGACTA	TGTGTTCTCT	600
CTGAATGGAG	GGCAAAATTT	CAATAAAAAC	TTACTCTTCA	GTCAAGATGG	AGAGAAGAAA	660
ATTGACAAGG	TGGATCTCTC	ATTGGGTAGC	ACCTCTGAAT	CCATGGGTCA	CAATGCCTGG	720
CCGCTAATGG	GTGTGGTATT	CGAAATGAAT	AAACAAGGGG	GAAAAAGCGA	TATCGGTTTC	780
TTGTCGAACT	TTGTCGACAA	TGATCCCGAA	TTTCAGTGGT	CAGGCCCTAT	AAAAGTGAGT	840
GAAAGCGACA	TGTCGTTCAG	CCCCAAAATC	CAAATGTTGC	TGGACGAGGA	TAACAATACG	900
ATCAATGGGG	AGAGTTGCCA	CAACTTCATG	ATTACGTACA	GCGATTATGA	TTCTGAATAT	960
TCGGATTGGG	ACATTCGGTA	TGTATATCCC	AAGAAATCGT	TCAAGTATGA	AAAAGGAAAA	1020
ACTCCGACTA	TGGATGATCT	GGTGGAAGCT	TTCCTTACAG	CTTCGTACCA	GAGTGAGACC	1080
AACTCGGGGC	TGGGGTATGA	CAAGAACGCC	AATCACTACC	TGATTACATA	TGCCAAAAAA	1140
GAAGAGAACG	GTACGAACAC	GCTGAAATAC	CGCTGGGCCA	ATTATGACAA	GATTCATAAC	1200
AAAGATTTGT	GGAGCGACAC	ATTTACGTAT	ACATCATCTG	CCAATGCTCT	CTACACACCT	1260
CAAGTAGACA	TCAATCCGAC	CAAGGGTCTC	GTGTGCTGGT	CATGGGTGGA	ATATCTGCCG	1320
GGCAAACGGA	TCGTTTGGTC	TGATACGCAG	TGGACCCATG	CCAACGGTGT	AGAAGACATC	1380
GTAATGCAAG	AAGGCAGCAT	GAAGCTCTAC	CCGAATCCGG	CTCAAGAATA	TGCTGTGATT	1440
AGCCTGCCGA	CGGCAGCAAA	CTGCAAGGCT	GTTGTTTACG	ATATGCAGGG	CAGAGTAGTC	1500
GCTGAGGCTT			AGGCTGAACG		GGCTAAGGGT	1560
ACGTACATAC	TCAAGGTCGT	ATCCGATACG	GAGCGTTTCG	TAGAGAAGCT	CATCGTGGAA	1620

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2313 base pairs

  - (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...2313
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:257

ATGCTGACGA	TCCGAAACTT	CCTCCTCTTT	TGTTGTCTGT	CGCTGATAGC	GTTTGCTGCC	60
GATGCACAAA	GCTCTGTCTC	TTCGGGTAGA	CGACTGACAG	AATATGTCAA	TCCCTTTATC	120
GGAACGGCCA	ATTACGGTAC	CACGAATCCG	GGAGCAGTAT	TGCCCAATGG	GTTGATGAGC	180
GTTACCCCTT	TCAATGTCAG	CGGATCGACA	GAGAATCGCT	TCGACAAAGA	TTCGCGTTGG	240
TGGAGTGCGC	CTTATTCGGC	CGACAATAGT	TACTGCATCG	GTTTCAGCCA	TGTGAATCTG	300
AGTGGAGTAG	GCTGTCCCGA	ACTGAGTGGA	ATACTGCTGA	TGGCCACTTC	CGGCACATTC	360
GATCCTGATT	ACTGCTGCTA	TGGCTCTTCG	CTCAGTCGAG	AATATGCGCG	CCCGGGAGAA	420
TACAAGGCTG	TATTGGACAA	ATACGGTATA	GATGCAGCCG	TGACCGTAAC	CGAGCGGACT	480
GCTTTGACCG	AATTTGCTTT	TCCCGAAGGA	GAAGGCCATA	TCCTGCTGAA	CCTGGGACAG	540
GCCCTAAGCA	ATGAATCGGG	AGCCTCTGTT	CGATTCTTAA	ACGACTCCAC	AGTCGTCGGC	600
AGCAGGCTGA	TGGGGACGTT	CTGCTACAAT	CCGCAAGCAG	TTTTTCGTCA	GTATTTCGTA	660
CTTCAGGTGA	GTCGGCGACC	GATCTCTGCC	GGCTATTGGA	AGAAGCAGCC	TCCTATGACA	720
GTGGAAGCCC	AATGGGATTC	GACTGCAGGG	AAATATAAGC	AGTACGACGG	CTACAAGCGT	780
GAGATGAGCG	GTGATGACAT	CGGTGTCCGA	TTCTCGTTCA	ACTGCGATCA	GGGGGAAAAG	840
ATCTATGTAC	GATCGGCCGT	TTCATTCGTC	AGCGAAGCCA	ATGCGCTCTA	TAATCTGGAA	900
GCGGAGCAAG	AAGAGGTGTT	CAAAAGTGTC	GGAGGGAATC	CGGCCAAGGC	TTTCTCCGCT	960
ATACGCTCTC	GCGCTATAGA	GCGTTGGGAG	GAAGCCCTCG	GTACGGTGGA	AGTGGAAGGA	1020
GGCACACCGG	ATGAAAAGAC	GATATTCTAT	ACCGCACTCT	ATCACCTGCT	GATACATCCG	1080
AATATCCTAC	AAGATGCCAA	TGGAGAATAT	CCTATGATGG	GCAGTGGCAA	AACGGGTAAT	1140
ACGGCTCACG	ACCGCTACAC	CGTGTTCTCT	CTTTGGGACA	CGTACCGCAA	TGTACACCCG	1,200
CTGCTCTGCC	TCCTCTATCC	GGAGAAGCAG	TTGGATATGG	TACGGACACT	GATCGACATG	1260
TACCGAGAGA	GCGGGTGGCT	GCCGAGATGG	GAGCTGTACG	GACAGGAGAC	CCTGACGATG	1320
GAGGGCGACC	CCTCGCTTAT	CGTCATCAAT	GACACTTGGC	AAAGGGGCCT	TCGTGCTTTC	1380
GATACGGCAA	CGGCCTATGA	AGCCATGAAA	AAAAATGCTT	CTTCGGCAGG	AGCGACCCAT	1440

CCGATCCGTC	CTGACAACGA	CGACTATCTC	ACCCTCGGCT	TCGTACCGCT	TCGCGAACAG	1500
TACGACAATT	CCGTATCGCA	TGCGCTGGAA	TACTATCTGG	CCGACTGGAA	TCTGTCCCGG	1560
TTTGCCCACG	CACTTGGGCA	TAAAGAAGAC	GCAGCTCTAT	TCGGAAAACG	CTCGTTGGGC	1620
TACAGACACT	ATTATAATAA	GGAGTATGGT	ATGCTGTGTC	CATTGCTGCC	GGATGGATCA	1680
TTCCTCACTC	CTTTCGATCC	CAAACAGGGT	GAAAACTTCG	AGCCTAATCC	CGGTTTCCAC	1740
GAGGGCAGTG	CTTATAACTA	TGCCTTTTTC	GTTCCCCACG	ATATACAAGG	GCTTGCCCGG	1800
CTGATGGGAG	GAGCAAAGGT	TTTTTCGGAA	AGGTTGCAGA	AAGTCTTCGA	TGAAGGATAT	1860
TATGATCCGA	CCAACGAGCC	GGACATCGCC	TATCCTTACC	TCTTCTCCTA	TTTCCCCAAG	1920
GAAGCATGGC	GAACGCAGAA	ATTGACCCGG	GAGTTGATAG	ACAAACATTT	TTGCAATGCT	1980
CCTAACGGCT	TGCCCGGTAA	TGACGATGCC	GGTACGATGA	GTGCTTGGCT	TGTCTATTCC	2040
ATGCTGGGAT	TCTACCCTGA	CTGTCCGGGC	AGCCCCACCT	ATACACTGAC	CTCGCCGGTA	2100
TTCCCCCGAG	TTAGGATTCG	GCTCAATCCG	CAGTATTATC	CTCAGGGGGA	GTTGATCATT	2160
ACGACCAATA	CAGAGAATCA	ACCGACAGAT	TCCATTTACA	TCCATACGGT	TTCTCTTGGC	2220
AATAAAACAC	TTCCGCATGG	AACAAGGCAT	ATCAGCCATG	CCGATTTGGT	GCGCTGCGGT	2280
CACCTCCGTT	ACGAACTAAG	CAATCGTCCT	CGA			2313

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2328 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...2328
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258

ATGTGCAAAA	TAAGATTCAG	CCTCTTGCAG	GCTCTTGTCG	TCTGCTTATT	GTTCACCTCT	60
TTTTCTCTCC	AAGCTCAAGA	GGAAGGTATT	TGGAATACCC	TCTTGGCTAT	CCACAAGACG	120
GAAAAAGCCG	TAGAAACGCC	CAAGAAAGTC	TTTGCCGTAG	CCAACGGAGT	ACTTTACTCG	180
GTGGGCAAAG	AAGCTCCCCA	TGAGGCAAAG	ATCTTCGACC	GTATCAGCGG	ACTCAGCGAT	240
ACATCGGTAA	GCAGCATAGC	CTACTCCGAG	CAACTAAAAT	CCTTGGTCAT	ATACTATGCA	300
TCAGGCAATA	TCGACATCTT	GGACGAAGCA	GGCCGTGTGA	CCAACGTACC	TGCATTGAAA	360
GACAATATCG	ATCTGATAGA	CAAAACGCTC	AATCGCCTTT	TGATCGTAGG	CAACAGGGCT	420
TATTTGGCAG	GAGGATTCGG	CCTCTCCGTT	CTGGATGTCG	CCGAAGCTCG	CATACCGGCT	480
ACCTACGCCA	AGGGAACTAA	GGTGACCGAT	GTGGCTAAGT	TGGACAATGA	TCGCTTGCTG	540
ATGCTGAAAG	AAGGGCAGCT	CTTCATCGGA	AAAGAGACCG	ATAACCTGCA	AGATCCGGCC	600
GCATGGACAG	CCTTGTCTTT	GAATTTGCCG	ATGGGCTCGG	TCACCGGTCT	GGGCATTGTC	660
GGGGAAGACA	TCTGTTTCCT	GCTCGCCGAT	GGCCGTGTAT	ATGTCGCTGC	AAACCAATCG	720
TTTGAGCCGG	AGCTATTGCT	CTCTTCCTCC	GCCGATTCAC	GACTGTATGT	GACGGATCGT	780
GGTCTGTTCA	TCTGTGCCGA	GAATCGAATT	TATTTCATAG	AAAAAGGTCG	CAAAACGACA	840
CAATTTCCTA	TAGCCGACGT	CCTTGGTGTC	GGTGCCATGA	ACGAAAGCAA	TACGGCATAC	900
ATAGCATTGG	GAGAAGAAGG	TTTGGCTTCA	CTTCTTCTCG	CAGAGGGAAG	TACGGCCGAA	960
GCCATGCCTG	TAGCATTCGA	CGGACCGGGG	GACAATGATT	TCTACGAGAT	GCGGTTTAGT	1020
CACGGACGTC	TGTATGCAGC	CAGCGGACTC	TGGGGAACAA	ACCTGATGGG	ACATGCCGGT	1080
ATGGTGAAGC	TATACGACGG	CAACCGATGG	ACTAACTTCG	ACAAGAAGAC	CGTACAGGAA	1140
CAGTTGGGCG	GCGGATTCAG	TTTCAATGAT	GCTATCGATA	TAGCTGTTTC	CAACGGAGAC	1200
CCCGATCACT	TTTTTGTCGG	TACATGGGGA	AACGGTCTGT	TCGAATTCAA	GGATGGCAAA	1260
GCGATAGCTC	GCTATTCGGG	AAACGAAACT	GCTATCGCAG	AATGTAATCC	CGGAGATGCC	1320
CGTGTGAAAG	CGATTGCCTT	TGACAATAAG	GGCAACCTCT	GGGGGACGCT	CGGTGCCGTA	1380
GGCAAGAACA	TCTTCATGTA	CGATCCGCAG	AGTAGCACAT	GGCATTCTTT	CAGCTATCCG	1440
GATGTAGCCA	ATCTGGCCTC	CTTCGGCAAT	ATGATTATCC	TACCCAACGG	AGACAAATGG	1500
GTAAATATCC	TTCACCGTAG	TGGCGGATCC	ACGCGCAAAG	GTGTCTTGAT	CTTCAACGAT	1560
CGGGGTACAC	CGGAAACGAC	TTCGGACGAC	AGCCATCTTT	ACGTCGAGCA	GTTTGTCAAT	1620
CGCCTCGGGG	CAGCCATAGG	ACATAAGACT	ATCTATGCAA	TGGCCGTCGA	TCATAACGGC	1680
TCTGTCTGGA	TGGGATCGGA	TATAGGCATT	TTCGGCGTCT	ACAATGCAGC	CGGAGTATTG	1740
TCCTCGACTT	CTACCCCTAT	CGCTGTTCGG	CCGGTCGGAG	GAGAAGAACC	CAATTTGTAC	1800
TATGTGCTGG	ACAAGGTGAC	GGTGACAGAC	ATCGTCGTGG	ACAAACTCAA	TCACAAATGG	1860
GTTGCCACCC	AAGGGACAGG	ACTCTATCTC	CTTTCGGAAG	ATTGCAGTAA	GATCCTCGCG	1920
CAATTTACCG	TAGAAAACAG	CCCTTTGCTT	TCTAACAACA	TACTATCCCT	GGCCTTAAAT	1980
GACGATAACG	GACTGCTGTA	CATCGGTACG	GCGGACGGAC	TGATGACGTT	CCAAACGGGT	2040
ACGGGGAGTG	GATCAGCTTC	CGAACTGGAC	GGCGTCTATG	TATACCCCAA	TCCGCTAAGG	2100
CCGGAATATC	CCGATGGCGT	CACCATTGCC	GGACTGCAAG	CCGGCTGTAG	TGTCAAAATC	2160
ACCGATACCA	CCGGCAGACT	GCTATACCAG	ACTGAGAGCG	TAACCACCGA	AGTCAAATGG	2220

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3474 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: PORYPHYROMONAS GINGIVALIS

(ix) FEATURE:

(A) NAME/KEY: misc feature

(B) LOCATION 1...3474

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:259

ATGAAACGAA TACTTCCAAT AGTCGCATTC CTTTCTCTCT TCCTTGCCCT TGCTTTGCCT 60 GCGAAAGCGC AACGAGCTAT GGGGAAGACG GCCGACCGTT CGCTAATGGC TTCGGGACAT 120 TGGGTCAAGA TACGTGTCGA TGCAAGTGGA GTGTATCGCC TTACGGACGA ACAGCTCCGT 180 GCCAATGGCT TCTCCGATCC GTCCAAGGTA GGTGTGTTCG GTTATGGTGG AGGGGTGCTT CCCGAAGATC TGAGCCGGAT CACGACAGAC GATTTGCCTC CGGTACCGGT ACTCCGTCAG 300 GGCAATGCGC TGTATTTCTA TGCCGTGGGC CCGGTGACAT GGTTCTACAA TCCGGCCAAA 360 ACCACCATGG AGCATACGGT GAATACATAC AGTACGCATG GCTACTACTT CCTGTCGGAT 420 GCTGCCGGAG CACCTTTGCA GATGTCCCAA TATACGGGTG GAGGTGCGTC GGCCGAGGCT 480 TTGATCGACT ACTACGATGA GCTGATGCTC CATGAACAGG AATTGTATTC GCCCAAAGAA TCGGGACGAG ATCTGTATGG CGAGTCTTTC AGTGCAGTCA ATACGCGTAC GGTCAAGTTC 600 CCTTTGAGGG GCAACACCCG CTCGTCTGGC GAACTCGGTA CCGTATTCTC ATACATAGCC 660 AAGGCCAGAT CGGCCGGTGG CGGCCGTGAG ATGTCGCTCT CGGCGAATGG CATTCTGATC 720 TTCAGCGATC CTTTTTCCAT GACATCGAAT GAAGTCTCCA ATTCCTATTT GGCCGGCAAG 780 AAGCGTCGTC TCTATCACAG TACGCCGATG AACAGCTTGG TCAATGAGTT GCGCTTGGAC 840 GCGAACTATA GCATGACAGG AGATGCGGTC AATCTGGATT TCATAGAGGT GGCTACACAG 900 AACGACCTCC GGTACGATGG CGCACCCATG CATATCAGGC GGTTTTCCAA TTTGCCCGTT TTGGGGGGCG AGTCCTGCCG GTTCGTTATC AGTGAGGTGC CGGAGTCTCT GGTGGTTTTG 1020 CAGGCCAATT CTTCCCTGAC AGCATCGCTT GTTCCCGTTA AGACTGTCGG GGATAAGACC 1080 ATTGAGTTCG TGGCTCCGCC GAAGGGTCAG GATCGTAGGA CTATCAATAC GTTTTATGCC 1140 GTGGACTTGT CACAGGCTTC TGCTCCGGAG ATCCTCGGAG CGGTACCCAA TCAAAACCTG 1200 CATGGAGAGG AAATCCCTGA TCTGATCATT GTCTCTACTC AGGCGCTCCT CCTTGAGGCT GATCGACTGG CCACCTATCG TAGAGAGAAA AACGGGCTGA AGGTTTTGGT CGTGTTGCAG 1320 GAACAGGTGT TCAACGAGTT TTCGGGTGGA ACTCCCGATG CTACAGCATA CCGCCTCTTT 1380 GCCAAAATGT TCTACGACAG ATGGAAGGCA AATGCACCTG TGGGAGAGAC CTTCCCGATG 1440 CAAATGCTTC TCTTCGGTGA TGGGGCTCAT GACAACAGGA AGGTCTCCGT AGCTTGGCAG 1500 AAACCGTATC TCCAACAAAC GGAGTTCTTG CTGACATTCC AAGCCGTCAA TTCGACGAAC 1620 GTAAACAGTT ATGTGACGGA TGATTACTTC GGCTTGCTGG ATGATCAGCC GGCCTCGGTC AATATCGGTT GGCGCAATTA TAATATGGCT GTAGGGCGAT TCCCCGTACG TACTCCGGCC 1680 GAAGCTCGCA TCGCAGTGGA CAAGACCATC CGATATGAGG AGGATCGAGA GAGTGGTGCC 1740 TGGCGTATTC GTGCCTGTTT TGCGGCAGAC AACGGGGACA AGCACGCAAC CGAGACTTCC 1800 CGTTTGATCG ATACCGTCAA GCGTTATGCT CCTGCCATCA TGCCGGTACG CGCCTTTCAG GACGTATATC CGCATGTCAT CGAGAACGGG TTGCACAGCA TTCCGGGTGC AAAGAAAAAG 1920 ATGCTGGAAA CCCTTCAGTC GGGTATTATC CTGCTTAATT ATGCTGGTCA TGGCGGTCCT 1980 GCCGGATGGT CGGACGAGCA TTTGCTGACG CTCAACGATA TACACAAATT CAATTATAAG 2040 CATATGCCCA TTTGGATTAC TGCCACGTGC GACTTTGCCA ACTATGACAG TCAGACGACC 2100 TCGGCAGGGG AGGAGGTTTT CCTCCATGAG AAGAGTGGCA CTCCGATCAT GTTCTCGACT 2160 ACGCGTGTCG TTTACAATAC GCAGAATGAG AAGATCAATG GTTTTATGCT TCGGCGTATG 2220 TTCGAGAAAG CTAAGGATGG GCGTTATCGT ACGATGGGCG AGATTATCCG ATCGGCCAAA CAGGGGATGC TCAGTACTGT TTTCCCCGAT TCGATCAACC AGTTGAGTTT CTTTCTGATG 2340 GGTGATCCGT CCGTGCGTAT GAATCTTCCT ACCCACAAAG TGCAATTGAC CGCAATCAAC 2400 GGGCAGGATC CCGAAGGGCA GTATGGAACT ATTATGCTCA AGTCTTTGGA ACGGGTAGCT 2460 CTGAAGGGTA AGGTAACCGA TGAAAAGGGG ACATTCGACG AGACATTCAG TGGCAAGGTT 2520 TTCCTGACCG TCTTCGATGG CAGAAAGAAA ATGACAGCTT TGGAAGAGGA GGGAAACGAT CTCTCTCTTG TATATTATGA CTATCCTAAC GTGATGTATG CCGGTATTGC CGAGGTGAAA 2640 GACGGACTCT TCGAAACTTC GTTTATCGTA CCCAAGGATG TGAACTATTC CGAGCACGAA 2700 GGCCGGATCA ATCTTTATGC TTATAACGAG AGCACAAAGG CGGAAGCCAT GGGGGTAGAC 2760 TTCTCCATCA GAGTCCAACC GGGTATTCCT GATGAGGTAA CGGAAGATAA TACACCGCCT 2820 2880 GAAATCATAA GCTGCTTCCT CAATGACAGT ACATTCCGAT CGGGAGATGA GGTTAATCCT ACTCCTCTGT TTATGGCCGA AGTATTCGAC TTGAATGGAA TCAATATCAC GGGTAGCGGA 2940 GTAGGGCATG ATATTACGCT TTGTATCGAT GGCCGTGCCG ACCTGACCTA CAACCTCAAT 3000

GCATATTTCA	CAAGTTCGGC	TACGGATGCA	GGTGTGGGCA	CTATTCTCTT	CATGATACCG	3060
GCTTTGGCCG	AAGGAGATCA	TACTGCCCGA	CTGACGGTTT	GGGACATTTT	CAATAATGCC	3120
GTCCATCATG	ACTTTTCATT	CAGAGTGGTA	GATGGCATTG	CTCCGGATGT	GGCTGATGTG	3180
ATTCTATTCC	CGAATCCGGT	ACGCGAGAGT	GCTACGTTCC	GAATCTTCCA	CAATCGCCCC	3240
GGAAGCGATT	TGAACGTGGC	CGTGGAGATC	TATGACTTCA	CCGGTCGTCT	TGTGAACAGT	3300
TTGCCAGTCA	AGACCTATTC	GTCTTCCTAC	GGAGAACCTA	TAGAGATCAA	GTGGGATCTG	3360
ACCTCCAAAT	ACGGAGTGAA	GATCGGAAAC	GGATTCTACC	TCTATCGTTG	TGTGGTGAAC	3420
TCTCCCGGAG	GACAGACGGC	CTCCATGGCC	AAGAAAATGA	TCGTGGTAGG	ACAA	3474

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2883 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...2883
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:260

ATGAAGAAAC	TTTTCCCATT	ATTATTACTC	ATATTGTCGA	TTTTGGTCGG	ATGTGGAAAA	60
AAAGAAAAAC	ACTCTGTAAC	TGAAATCGCC	CGAGAGAAAA	AGCGTATTAC	TGCATTGCTG	120
TACGAAAAAG	AACTCCCCAC	TGATTCTGTT	AAACAGCTTT	ACGAGAACAG	CGTACAGAAC	180
AAGAACCTTG	TGGGACAAAT	GTTATTCGCG	ATCGAGGTCG	GCAAACGGAT	GCGTAATATG	240
TCCCAATACA	CAGATGCGAT	GCTATATCAC	CAAAAAGGGT	TGAACGCTGC	ATTGAATCTA	300
AGGGACACCA	TCGTAGCCGC	ACAAGCATGG	AATCATCTCG	GAACGGATAG	CCGTCGTATC	360
GGTGCTTTGG	CAGAAGCTTC	GGATTATCAT	TACAAGGCTC	TTTCCTTGAT	AGAATCTTTT	420
AGCGGAAACC	AGAATAGGCC	TGCGATCAAA	GCCAGATCGG	CGGCCCTGAA	CGGCATCGGC	480
AACATCAATC	TTGAGTTAGG	ATACCATGAT	GAGGCCGAAA	AGAATTTCCT	GAAAGCACTG	540
CAAGGTGAGA	AAGAACTCGA	CAGTCCTCTC	GGGCAAGCTA	TCAACTATGC	GAACCTCGGA	600
			AAGGCTCGTA			660
			GGTATCGGAC			720
GAAGTAGACG	AAGAAAAAGG	GGATTATCAA	AAGGCTTTGC	AAGAGTATGC	CACGGCATAC	780
AAACTGATGG	AACAGTTGTC	CGATCGATGG	CACTGGCTGA	ATTCCTGTAT	CCCGATGGCA	840
CGTATCAATC	TCAAACAAGG	TAACGAAAGG	CTCTACCAGC	ATTTCATTTC	TTTGGCCGAA	900
GGGACTGCGA	AAGAAATTAA	TTCGACTTCA	CATCTGATAG	AAATATACAA	TCTTCAATAC	960
GAGAATCTCG	AGCGTAAAAA	AGAATACAAA	CAAGCCCTCG	AAGCATTCTG	TCTGAGCAAG	1020
ACGTTGAGCG	ACAGCATGTC	CATTGCGCAC	AAGGTCAGCA	GCATACAAGA	AACGCGATTC	1080
AACTACGAAC	GAAACAAGTC	CCAAAAAGAG	CTTGAAGAAA	TACAGCAAGT	AAGCAAGGCA	1140
AAACAAGAGA	AATCGAAGTT	TATCCTCTTG	AGCACTCTTT	TTGCCCTTTT	CATCTCGATT	1200
CTTTTGATTT	CTGTTCTGAC	ATATGCATAC	CGTCAGGGCA	AGAAGCATAA	CAAGCTGATC	1260
AAAGAGACGG	ATAAACTTCG	CTCCGGCTTT	TTCACCGGTA	TTACACACGA	ATTTCGTACG	1320
CCTATCACCG	TCATACAAGG	TTTGAATGAG	AAAATGAGTT	CAAGTCCTGA	TCTCCAAGCA	1380
TCGGACAGAA	CCGAGCTGCA	CAAGATAATA	GACAGACAGA	GTAGCCATAT	GCTGAATTTG	1440
GTGAACCAGC	TGTTGGATAT	TTGCAAGATC	AGAAGCGGAG	TATCCACGCC	CGAATGGCGC	1500
AATGGCGACA	TCGTCTCCTT	CGTACAGATT	CTCATCGATT	CGTTTGCACC	ATACGCACAG	1560
GCTCAAGACA	TAACCTTGGA	GCTACAACCC	GAGAGCAAAC	CTATTGTCGT	GGACTTCGTC	1620
CCCTCCTACT	TGCAAAAAAT	CATATCCAAT	CTTTTGTCCA	ATGCCATCAA	GTATTCTTTA	1680
GCCGGAGGGA	GAGTGGTCAT	ATCTCTGGCA	AAAACCAAGA	ATGAAAAAAA	TCTGATCATA	1740
CGCGTTGCAG	ACAATGGCAT	AGGAATAGAT	AAAACTGATC	AGGCTCATAT	CTTCGACATC	1800
TTCTATCGAG	GACAGTCCGC	TACCGAAAAG	CATGGATCAG	GCGTCGGACT	CTCGTTTACC	1860
AATATACTGG	TCGAAAACCT	TCGAGGTACG	ATCAAAGTGG	AAAGCCAGCC	GGGGAAAGGA	1920
AGTGCCTTCA	CCATCAGTAT	TCCTACACAA	AACCAGTCCT	CTTCGGCAGA	GATTCTTCCT	1980
TGGCTACCCT	CCTCCGATGA	CATTGTCATG	CCTGTCCACA	TCGCGCCCGA	TGACTCACCG	2040
ACATCTCCGA	TGGTAGCAGC	TCTGAATCAT	CGCTTCGAGG	ACGAACGTCC	GACCATACTG	2100
CTCGTCGAGG	ACAATAAGGA	TATCAACCTG	CTCGTCAAAC	TACTCCTTTG	CGATCGCTAC	2160
AATGTGCTAT	CCGCCGCAAA	CGGAAAAGAG	GGTATAGCCC	TCGCTACCGA	GCATATTCCC	2220
GACATTATCA	TTACGGATAT	TATGATGCCG	ATAATGGATG	GGATAGAAAT	GACAATCCGG	2280
ATGAAGCAAT	CGCCTCTGCT	CTGTCACATT	CCCATTGTCG	CTTTGACGGC	CAAGAGTACC	2340
			GGTGTAGTCT			2400
			CAGCTTCTGA			2460
			CGGAAGCCGG			2520
			GCCAAAGATG			2580
CAAAATCCGG	ATTTTTCCGC	TCAAGACTTG	GCCGAAAAA	TGTGCATGAG	TCCATCCCAA	2640

CTCAACAGAA AGCTCACGAG TGTCGTAGGT TGCTCCACCA TCGGCTACAT ACAGCAGATC 2700
AAGATAAAAT TGGCCTGCAA GCTCCTTGCC GATGAGAGCA AAAACATCTC CGACATTAGC 2760
ATTGAGGCAG GCTTTTCGGA TCCGGCTTAC TTCTCTCGCA CCTTCAAACG CTACATGAAC 2820
TGCTCTCCCT CCCAATATCG GCAAAAACTC CTTGCCATGC CGGGGAGCGA CAAGGAGACA 2880
GTT 2883

- (2) INFORMATION FOR SEQ ID NO:261
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1668 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
  - (ix) FEATURE:
    - (A) NAME/KEY: misc feature
    - (B) LOCATION 1...1668
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:261

ATGAAAAGC TTTTACAGGC TAAAGCCTTG ATTCTGGCAT TGGGACTCTT CCAACTGCCC 60 GCAATCGCCC AAACGCAAAT GCAAGCAGAC CGAACAAACG GTCAATTTGC AACAGAAGAG 120 ATGCAACGAG CATTCCAGGA AACGAATCCC CCTGCAGGTC CTGTGCGTGC TATCGCTGAG 180 TACGAACGCT CTGCAGCCGT TTTGGTACGC TACCCGTTCG GTATCCCGAT GGAATTGATC 240 AAAGAGCTGG CCAAGAACGA CAAGGTGATT ACCATTGTGG CGAGTGAAAG CCAAAAAAAAC 300 ACCGTTATAA CCCAGTACAC CCAAAGCGGT GTGAATCTCT CTAATTGCGA TTTCATCATT 420 GCGAAAACTG ACTCTTACTG GACACGCGAC TATACCGGTT GGTTCGCAAT GTACGATACG AACAAAGTAG GTCTCGTGGA CTTTATTTAT AACCGCCCTC GTCCTAACGA TGATGAATTC 480 CCCAAATACG AAGCACAATA TCTGGGCATC GAGATGTTCG GGATGAAGCT CAAGCAGACC 540 GGTGGCAACT ACATGACGGA CGGATATGGA TCCGCTGTGC AGTCACATAT CGCATATACG 600 GAGAACTCCT CTCTGTCTCA AGCTCAAGTA AATCAAAAGA TGAAAGACTA TCTCGGCATC 660 ACACATCATG ATGTGGTACA AGATCCGAAC GGCGAATATA TCAACCATGT GGACTGTTGG 720 GGCAAGTATT TGGCACCGAA CAAAATCCTC ATCAGGAAAG TGCCTGACAA TCACCCTCAG CACCAAGCCC TGGAAGATAT GGCAGCCTAC TTCGCAGCAC AGACCTGCGC ATGGGGAACG 840 AAGTACGAGG TATATCGCGC TTTGGCCACC AATGAACAAC CGTACACGAA CTCTCTGATT 900 CTGAACAACA GGGTATTTGT TCCTGTCAAT GGCCCCGCCT CCGTGGACAA CGATGCTCTG 960 AACGTCTATA AGACGGCAAT GCCCGGTTAC GAAATTATAG GTGTCAAAGG GGCTTCAGGA 1020 ACACCTTGGT TAGGAACAGA TGCCCTGCAT TGTCGTACTC ACGAGGTAGC GGATAAGGGC 1140 TATCTCTATA TCAAGCACTA CCCGATACTG GGCGAACAGG CAGGCCCTGA TTATAAGATC GAAGCAGATG TCGTCTCATG CGCCAATGCT ACTATCTCGC CGGTACAATG TTACTATCGT 1200 ATCAATGGTT CCGGTAGCTT TAAGGCTGCT GATATGACGA TGGAATCAAC AGGTCACTAT 1260 ACTTATAGCT TTACAGGTCT TAACAAGAAT GATAAGGTAG AATACTATAT CTCTGCCGCT 1320 GACAATAGTG GTCGCAAAGA GACTTATCCC TTTATCGGCG AACCTGATCC TTTCAAGTTT 1440 ACGTGTATGA ACGAAACCAA TACATGTACT GTGACCGGAG CTGCCAAAGC TCTTCGTGCA 1500 TGGTTCAACG CCGGTCGTTC AGAACTGGCT GTTTCGGTAA GTTTGAATAT TGCCGGCACA TATCGGATAA AGCTTTATAA CACCGCAGGA GAAGAAGTCG CTGCAATGAC CAAGGAATTA 1560 GTAGCAGGGA CGAGTGTCTT CAGTATGGAT GTGTATTCTC AGGCTCCGGG CACATATGTT 1620 CTGGTTGTTG AAGGAAATGG AATCCGTGAG ACAATGAAAA TTCTCAAA 1668

- (2) INFORMATION FOR SEQ ID NO:262
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1284 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: circular
  - (ii) MOLECULE TYPE: DNA (genomic)
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS

- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1284
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:262

ATGAAACTTT CATCTAAGAA	AATCTTAGCA	ATCATTGCAT	TGCTGACGAT	GGGACATGCT	60
GTGCAGGCAC AGTTTGTTCC	GGCTCCCACC	ACAGGGATTC	GCATGTCTGT	CACTACAACC	120
AAGGCCGTAG GCGAAAAAAT	CGAATTGTTG	GTTCATTCCA	TAGAGAAGAA	AGGCATCTGG	180
ATCGATCTCA ATGGGGATGC	CACTTACCAA	CAAGGAGAGG	AAATAACCGT	ATTCGATGAG	240
GCATACCACG AATACACGAT	CGGGACGCAA	ACCCTCACTA	TCTATGGTAA	TACGACCCGA	300
TTGGGCTGTC GATCTACCGG	TGCAACGGCT	GTCGATGTAA	CGAAAAACCC	TAATCTGACC	360
TATCTCGCAT GCCCGAAAAA	TAATCTGAAA	TCATTGGACT	TGACGCAAAA	CCCAAAGCTG	420
CTGCGAGTTT GGTGCGACTC	TAACGAAATA	GAAAGTTTGG	ACCTGAGTGG	CAATCCGGCT	480
TTGATCATCC TCGGCTGTGA	CAGGAATAAG	CTGACTGAGC	TGAAGACCGA	TAACAACCCC	540
AAGTTGGCCT CTCTTTGGTG	TTCTGATAAT	AACCTGACGG	AGTTGGAACT	CAGTGCCAAT	600
CCTCGTCTCA ATGATCTTTG	GTGCTTCGGT	AATCGGATCA	CGAAACTCGA	TCTGAGTGCC	660
AATCCTCTAT TGGTAACACT	TTGGTGCAGT	GACAATGAGC	TTTCGACCTT	GGATCTTTCC	720
AAGAATTCGG ACGTTGCTTA	CCTTTGGTGT	TCATCGAACA	AACTTACATC	CTTGAATCTG	780
TCGGGGGTGA AGGGACTGAG	TGTTTTGGTT	TGTCATTCCA	ATCAGATCGC	AGGTGAAGAA	840
ATGACGAAAG TGGTGAATGC	TTTGCCCACA	CTATCTCCCG	GCGCAGGCGC	TCAGAGCAAG	900
TTCGTCGTTG TAGACCTCAA	GGACACTGAT	GAGAAGAATA	TCTGTACCGT	AAAGGATGTG	960
GAAAAAGCTA AAAGTAAGAA	CTGGCGAGTA	TTTGACTTCA	ACGGTGATTC	TGACAATATG	1020
CTTCCATACG AAGGAAGTCC	GACATCGAAC	TTGGCAGTAG	ATGCTCCCAC	TGTCAGGATA	1080
TATCCCAATC CGGTAGGAAG	ATATGCGCTC	GTCGAGATCC	CCGAGTCTCT	TTTAGGGCAG	1140
GAAGCTGCTT TATACGATAT	GAATGGGGTA	AAAGTCTATA	GTTTCGCGGT	AGAGTCTCTT	1200
CGTCAGAACA TTGACCTGAC	ACATCTTCCC	GACGGCACTT	ATTTCTTCCG	TCTCGATAAC	1260
TATACCACTA AGCTCATCAA	ACAG				1284

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 930 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...930
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:263

GAAAGAGTCG ATGAAAAAGT ATTCTCCGCA GGAACAAGTA TTTTTAGGGG CATCCTTGAA AAGGTGAAAG CACCGCTTAT GTATGGAGAT CGTGAGGTAT GGGGTATGGC TCGTGCGAGC 180 GAGGATTTCT TTTTATACT TCCCGTAC GATGACCTCA CTCCCGTGCT TTTCTATAAC 240 CGTCTACAA ACGAACCCTG CTTTGTGTCA GACCAAGGAA TAACTGAGTA TTTCAAATTC 300 GCTCAAGAAG GTGATTACAT TGAAGTCGAA GGAAGCCTG TATTCATGGC GAATCTTTTG 360 AGCAAGACGG GAAATCCTGC TTTTACAATC CCGATGCTC CTCCCGTTCT TGATTGCTG 420 AGCAAGAGAGG GAAATCCTGC TTTTACAATC CCGATGCTC CGGGGGTTTC TGATTGCATA 480 GAAATCTCAA ACAACCGCAA AGTCTTTCTG ACCAATCAAT TAGGGGTTGT AAACATCACT 540 GACGGGATGG AACCTCCGAT TATTGCCGGA GTCTCTGCTT CCTATGGATC TCCCGTCCG 600 GTGTATGGTC ATGTCCACA GCGGTGGGAC ATCATAGGCC ATTGCTATTT GGATATCTAC 660 CCAACCAATT GCTATCCGCT CAGCACAGAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAA AGAGATCAAT AGCAACAGC CCAATAGTCA AGTGGTCGTA 780 TCCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATG TCGAAACACA AAATTCGATT 900 ATCAATAAAA AACTTAATGT TACACAGCTA TACACAGCTA TCGAAACACA AAATTCGATT 930	ATGAGAAAAA	CAATAATTTT	CTGCTTGTTG	CTCGCCCTAT	TTGGCTGTTC	TTGGGCACAA	60
GAGGATTTCT TTTTTATACT TCCCGTTACG GATGACCTCA CTCCCGTGCT TTTCTATAAC 240 CGTCTACAA ACGAACCCTG CTTTGTGTCA GACCAAGGAA TAACTGAGTA TTTCAAATTC 300 GCTCAAGAAG GTGATTACAT TGAAGTCGAA GGAAGCTCTG TATTCATGGC GAATCTTTTG 360 TACTATCGTT TTTTCCCGAC AAGAATTACC TCCTATAATG CTCCCATTGA AGGTGTTGTG 420 AGCAAGACGG GAATCCTGC TTTTACAATC CCGATGCTC CGGGGGTTC TGATTGCATA 480 GAAAATCTCAA ACACCGCAA AGTCTTTCTG ACCAATCAAT TAGGGGTTGT AAACATCACT 540 GCTGATGGTC ATGTCCACA GCGGTGGGAC ATCATAGGCC ATTGCTATT GGATATCTC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCGTTGCAG GAGACCATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAG TGTTTTCGC AAAAGAATGA CCGGAAACCAC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	GAAAGAGTCG	ATGAAAAAGT	ATTCTCCGCA	GGAACAAGTA	TTTTTAGGGG	CATCCTTGAA	120
CGTCTACAA ACGAACCCTG CTTTGTGTCA GACCAAGGAA TAACTGAGTA TTTCAAATTC 300 GCTCAAGAAG GTGATTACAT TGAAGTCGAA GGAAGCTCTG TATTCATGC GAATCTTTTG 360 TACTATCGTT TTTTCCCGAC AAGAATTACC TCCTATAATG CTCCCATTGA AGGTGTTGTG 420 AGCAAGACGG GAAATCCTGC TTTTACAATC CCGATGCTCC CGGGGGTTTC TGATTGCATA 480 GAAATCTCAA ACACCGCAA AGTCTTTCTG ACCAATCAAT TAGGGGTTGT AAACATCACT 540 GTGTATGGTC ATGTCTCACA GCGGTGGGAC ATCATAGGCC ATTGCTATTT GGATATCAC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCGGTTGCAG GAGACGATGA GGTTTTTTGC AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGGAAACCAC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	AAGGTGAAAG	CACCGCTTAT	GTATGGAGAT	CGTGAGGTAT	GGGGTATGGC	TCGTGCGAGC	180
GCTCAAGAAG GTGATTACAT TGAAGTCGAA GGAAGCTCTG TATTCATGGC GAATCTTTTG 360 TACTATCGTT TTTTCCCGAC AAGAATTACC TCCTATAATG CTCCCATTGA AGGTGTTGTG 420 AGCAAGACGG GAAATCCTGC TTTTACAATC CCGATGCTCC CGGGGGTTTC TGATTGCATA 480 GAAATCTCAA ACAACCGCAA AGTCTTTCTG ACCAATCAAT TAGGGGTTGT AAACATCACT 540 GACGGGATGG AACCTCCGAT TATTGCCGGA GTCTCTGCTT CCTATGGATC TTCCGTCCGG 600 GTGTATGGTC ATGTCTCACA GCGGTGGAC ATCATAGGCC ATTGCTATTT GGATATCTAC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCCGAAAACGC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	GAGGATTTCT	TTTTTATACT	TCCCGTTACG	GATGACCTCA	CTCCCGTGCT	TTTCTATAAC	240
TACTATCGTT TTTTCCCGAC AAGAATTACC TCCTATAATG CTCCCATTGA AGGTGTTGTG 420 AGCAAGACGG GAAATCCTGC TTTTACAATC CCGATGCTCC CGGGGGTTTC TGATTGCATA 480 GAAATCTCAA ACAACCGCAA AGTCTTTCTG ACCAATCAAT TAGGGGTTGT AAACATCACT 540 GACGGGATGG AACCTCCGAT TATTGCCGGA GTCTCTGCTT CCTATGGATC TTCCGTCCGG 600 GTGTATGGTC ATGTCTCACA GCGGTGGAC ATCATAGGCC ATTGCTATTT GGATATCTAC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGAAAACGC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	CGTCTTACAA	ACGAACCCTG	CTTTGTGTCA	GACCAAGGAA	TAACTGAGTA	TTTCAAATTC	300
AGCAAGACGG GAAATCCTGC TTTTACAATC CCGATGCTC CGGGGGTTTC TGATTGCATA 480 GAAATCTCAA ACAACCGCAA AGTCTTCTG ACCAATCAAT TAGGGGTTGT AAACATCACT 540 GACGGGATGG AACCTCCGAT TATTGCCGGA GTCTCTGCTT CCTATGGATC TTCCGTCCGG 600 GTGTATGGTC ATGTCTCACA GCGGTGGAC ATCATAGGCC ATTGCTATTT GGATATCTAC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGGAAACGC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	GCTCAAGAAG	GTGATTACAT	TGAAGTCGAA	GGAAGCTCTG	TATTCATGGC	GAATCTTTTG	360
GAAATCTCAA ACAACGCAA AGTCTTTCTG ACCAATCAAT TAGGGGTTGT AAACATCACT 540 GACGGGATGG AACCTCCGAT TATTGCCGGA GTCTCTGCTT CCTATGGATC TTCCGTCCGG 600 GTGTATGGTC ATGTCTCACA GCGGTGGAC ATCATAGGCC ATTGCTATTT GGATATCTAC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGAAAACGC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	TACTATCGTT	TTTTCCCGAC	AAGAATTACC	TCCTATAATG	CTCCCATTGA	AGGTGTTGTG	420
GACGGATGG AACCTCCGAT TATTGCCGGA GTCTCTGCTT CCTATGGATC TTCCGTCCGG 600 GTGTATGGTC ATGTCTCACA GCGGTGGGAC ATCATAGGCC ATTGCTATTT GGATATCTAC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGAAAACGC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	AGCAAGACGG	GAAATCCTGC	TTTTACAATC	CCGATGCTCC	CGGGGGTTTC	TGATTGCATA	480
GTGTATGGTC ATGTCTCACA GCGGTGGGAC ATCATAGGCC ATTGCTATTT GGATATCTAC 660 CCAACCAATT GCTATCCGCT CAGCACGAAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGAAAACGC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	GAAATCTCAA	ACAACCGCAA	AGTCTTTCTG	ACCAATCAAT	TAGGGGTTGT	AAACATCACT	540
CCAACCAATT GCTATCCGCT CAGCACGAAA CCCGTTGCAG GAGACGATGA GGTTTTTGTC 720 AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA 780 TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGAAAACGC TTATACCCTA 840 TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	GACGGGATGG	AACCTCCGAT	TATTGCCGGA	GTCTCTGCTT	CCTATGGATC	TTCCGTCCGG	600
AAACAACAAG GCAGGCAAAT AGAGATCGAT AGCAACAGCC CCATAGTCCA AGTGGTCGTA TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGAAAACGC TTATACCCTA TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	GTGTATGGTC	ATGTCTCACA	GCGGTGGGAC	ATCATAGGCC	ATTGCTATTT	GGATATCTAC	660
TACGATCTTG AGGGGAAAAG TGTTTTTCGC AAAAGAATGA CCGAAAACGC TTATACCCTA TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	CCAACCAATT	GCTATCCGCT	CAGCACGAAA	CCCGTTGCAG	GAGACGATGA	GGTTTTTGTC	720
TCCTTTAGAG CACCCATGCT CGGCTTTATG ACCATCATGA TCGAAACACA AAATTCGATT 900	AAACAACAAG	GCAGGCAAAT	AGAGATCGAT	AGCAACAGCC	CCATAGTCCA	AGTGGTCGTA	780
Teerrings checkfool edecriffe heartenant resize and the second	TACGATCTTG	AGGGGAAAAG	TGTTTTTCGC	AAAAGAATGA	CCGAAAACGC	TTATACCCTA	840
ATCAATAAAA AACTTAATGT TACACAGCTA 930	TCCTTTAGAG	CACCCATGCT	CGGCTTTATG	ACCATCATGA	TCGAAACACA	AAATTCGATT	900
	ATCAATAAAA	AACTTAATGT	TACACAGCTA				930

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1215 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double

- (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: PORYPHYROMONAS GINGIVALIS
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1215
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:264

ATGAAAAAA	CAACCATTAT	TTCTTTGATT	GTCTTCGGTG	CTTTCTTTGC	AGCCGTGGGC	60
CAAACCAAGG	ACAATTCTTC	TTACAAACCT	TTTTCGAAAG	AAGATATTGC	CGGAGGAGTT	120
TACTCTCTCC	CGACTCAAAA	TCGTGCGCAG	AAGGACAATG	CCGAGTGGCT	TCTTACAGCG	180
ACCGTCTCCA	CAAACCAGTC	TGCAGATACT	CACTTTATCT	TCGATGAGAA	CAACCGCTAT	240
ATCGCTCGTG	ACATAAAAGC	CAATGGGGTA	AGAAAATCCA	CGGACTCCAT	TTACTACGAT	300
GCCAACGGGC	GAATATCGCA	TGTGGATCTT	TATATCTCGT	TCAGTGGCGG	AGAGCCTGCA	360
CTCGACACCC	GATTCAAGTA	CACCTATGAT	GACGAGGGAA	AGATGACCGT	GAGGGAAGTA	420
TTCATGCTGG	TAATGGATCC	GAATACACCT	ATCTCACGCT	TGGAATATCA	TTATGATGCA	480
CAGGGCAGAC	TGACCCACTG	GATTTCTTTT	GCTTTCGGGG	CAGAATCCCA	AAAGAATACG	540
TATCACTATA	ATGAAAAAGG	TCTGTTGGTC	AGCGAAGTGC	TGAGCAATGC	AATGGGGACA	600
ACCTATTCAG	ACACCGGCAA	AACGGAATAC	AGCTATGACG	ATGCAGATAA	TATGGTGAAG	660
GCCGAGTACT	TCGTCGTCCA	GCAAGGAAAG	GCATGGCAAG	TACTCAAAAG	AGAGGAATAC	720
ACCTATGAGG	ACAATATCTG	CATACAATAT	TTGGCTATTA	ACGGTACCGA	CACAAAGGTG	780
TACAAGCGAG	ACATCGAGAG	CGATAAGTCC	ATCTCCGCAA	ATGTCATTGA	CATTCCGTCA	840
ATGCCGGAAC	AGACCTGGCC	TAATATGTAC	GGATTCAACG	CAAAGCGACT	GAAAGAGACT	900
TATTCCTCCT	ACGAAGGAGA	TGTGGCTACT	CCTATATTCG	ACTATATCTA	TACGTACAAG	960
GCTCTTACCT	CAATGGCAAC	ACCTTCGACA	GAAGCTCAGG	TAGCAGTCTA	TCTCAATCCG	1020
TCAACGGACC	GGTTAGTGAT	TCTGGCCAAC	GGCATCACAC	ATCTGAGCAT	GTACGACTTG	1080
CAGGGTAAGC	TTATCCGTGA	TTGTGCCTTG	AGCGGCGATA	AGGTGGAAAT	GGGTGTCGGA	1140
TCTTTGACCA	AAGGGACATA	CCTGCTTAAA	GTGAATACGG	ATCAGGGAGC	CTTTGTGAGA	1200
AAAGTCGTGA	TTCGA					1215

- (2) INFORMATION FOR SEQ ID NO:265
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 454 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...454
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:265

Phe Cys Val Met Ala Lys Val Ile Lys Thr Lys Lys Gly Leu Ala Leu 10 Asn Leu Lys Gly Lys Pro Leu Pro Glu Met Leu Ala Glu Pro Ala Gln 20 25 Ser Pro Thr Tyr Ala Val Val Pro Asp Asp Phe Glu Gly Val Ile Pro 45 40 Lys Val Thr Ala Arg Pro Gly Asp Lys Val Arg Ala Gly Ser Ala Leu 50 55 Met His His Lys Ala Tyr Pro Glu Met Lys Phe Thr Ser Pro Val Ser 75 Gly Glu Val Ile Ala Val Asn Arg Gly Ala Lys Arg Lys Val Leu Ser 90 Ile Glu Val Lys Pro Asp Gly Leu Asn Glu Tyr Glu Ser Phe Pro Val 105 110 100 Gly Asp Pro Ser Ala Leu Ser Ala Glu Gln Ile Lys Glu Leu Leu 120 125 Ser Ser Gly Met Trp Gly Phe Ile Lys Gln Arg Pro Tyr Asp Ile Val

130 135 Ala Thr Pro Asp Ile Ala Pro Arg Asp Ile Tyr Ile Thr Ala Asn Phe 150 155 Thr Ala Pro Leu Ala Pro Asp Phe Asp Phe Ile Val Arg Gly Glu Glu 165 170 175 Arg Ala Leu Gln Thr Ala Ile Asp Ala Leu Ala Lys Leu Thr Thr Gly 185 190 180 Lys Val Tyr Val Gly Leu Lys Pro Gly Ser Ser Leu Gly Leu His Asn 200 195 Ala Glu Ile Val Glu Val His Gly Pro His Pro Ala Gly Asn Val Gly 220 210 215 Val Leu Ile Asn His Thr Lys Pro Ile Asn Arg Gly Glu Thr Val Trp 225 230 235 Thr Leu Lys Ala Thr Asp Leu Ile Val Ile Gly Arg Phe Leu Leu Thr 245 250 Gly Lys Ala Asp Phe Thr Arg Met Ile Ala Met Thr Gly Ser Asp Ala 260 265 270 Ala Ala His Gly Tyr Val Arg Ile Met Pro Gly Cys Asn Val Phe Ala 280 285 275 Ser Phe Pro Gly Arg Leu Thr Ile Lys Glu Ser His Glu Arg Val Ile 300 295 290 Asp Gly Asn Val Leu Thr Gly Lys Lys Leu Cys Glu Lys Glu Pro Phe 310 315 Leu Ser Ala Arg Cys Asp Gln Ile Thr Val Ile Pro Glu Gly Asp Asp 335 325 330 Val Asp Glu Leu Phe Gly Trp Ala Ala Pro Arg Leu Asp Gln Tyr Ser 340 345 350 Met Ser Arg Ala Tyr Phe Ser Trp Leu Gln Gly Lys Asn Lys Glu Tyr 365 360 355 Val Leu Asp Ala Arg Ile Lys Gly Glu Arg Ala Met Ile Met Ser 370 375 380 375 Asn Glu Tyr Asp Arg Val Phe Pro Met Asp Ile Tyr Pro Glu Tyr Leu 385 390 395 Leu Lys Ala Ile Ile Ala Phe Asp Ile Asp Lys Met Glu Asp Leu Gly 405 410 415 Ile Tyr Glu Val Ala Pro Glu Asp Phe Ala Thr Cys Glu Phe Val Asp 425 430 Thr Ser Lys Ile Glu Leu Gln Arg Ile Val Arg Glu Gly Leu Asp Met 440 445 435 Leu Tyr Lys Glu Met Asn

#### (2) INFORMATION FOR SEQ ID NO:266

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 201 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...201
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266

Glu Leu Ser Lys Cys Tyr Met Asp Lys Val Ser Tyr Ala Leu Gly Leu 10 Ser Ile Gly Asn Asn Phe Lys Ser Ser Gly Ile Asp Ser Val Val Met 25 Asp Asp Phe Met Gln Gly Leu Ser Asp Val Leu Glu Glu Lys Ala Pro 45 35 40 Gln Leu Ser Tyr Asp Glu Ala Lys Arg Glu Ile Glu Ala Tyr Phe Met 55 60 Asp Leu Gln Gln Lys Ala Val Lys Leu Asn Lys Glu Ala Gly Glu Glu 70 Phe Leu Lys Ile Asn Ala His Lys Glu Gly Val Thr Thr Leu Pro Ser 90 Gly Leu Gln Tyr Glu Val Ile Lys Met Gly Glu Gly Pro Lys Pro Thr 105 Leu Ser Asp Thr Val Thr Cys His Tyr His Gly Thr Leu Ile Asn Gly

### (2) INFORMATION FOR SEQ ID NO: 267

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 279 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...279
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:267

Gln Lys Asn Lys Arg Lys Met Lys Lys Ala Leu Leu Ile Gly Ala Ala 10 15 Leu Leu Gly Ala Val Ser Phe Ala Ser Ala Gln Ser Leu Ser Thr Ile 20 25 Lys Val Gln Asn Asn Ser Val Gln Gln Pro Arg Glu Glu Ala Thr Ile 40 35 Gln Val Cys Gly Glu Leu Ala Glu Gln Val Asp Cys Ile Gly Thr Gly 50 55 Asn Ser Ala Ile Ile Ala Ala Ala Ala Lys Phe Glu Ser Asp Asp Leu 75 70 Glu Ser Tyr Val Gly Trp Glu Ile Met Ser Val Asp Phe Phe Pro Gly 90 Tyr Lys Ala Cys Lys Tyr Thr Ser Ala Val Trp Ala Asp Asp Met Thr 105 100 Ile Leu Gly Gln Ser Glu Asp Ser Asp Pro Glu Met Gln Thr Ile Asn 115 120 125 Asn Leu Ala Leu Lys Thr Ser Val Lys Ile Glu Ala Gly Lys Asn Tyr 135 140 Ile Val Gly Tyr Ile Ala Asn Thr Ala Gly Gly His Pro Ile Gly Cys 150 155 145 Asp Gln Gly Pro Ala Val Asp Gly Tyr Gly Asp Leu Val Ser Ile Ser 170 175 Glu Asp Gly Gly Ala Thr Phe Pro Pro Phe Glu Ser Leu His Gln Ala 185 190 180 Val Pro Thr Leu Asn Tyr Asn Ile Tyr Val Val Val His Leu Lys Lys 200 205 195 Gly Glu Gly Val Glu Ala Val Leu Thr Asn Asp Lys Ala Asn Ala Tyr 215 220 210 Val Gln Asn Gly Val Ile Tyr Val Ala Gly Ala Asn Gly Arg Gln Val 230 235 Ser Leu Phe Asp Met Asn Gly Lys Val Val Tyr Thr Gly Val Ser Glu 245 250 255 Thr Ile Ala Ala Pro Gln Lys Gly Met Tyr Ile Leu Arg Val Gly Ala 265 270 Lys Ser Ile Lys Leu Ala Ile

### (2) INFORMATION FOR SEQ ID NO:268

275

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 157 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...157
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:268

Arg Unk Phe Leu Pro Glu Lys Ala Leu Tyr Ile Gly Cys Arg Val Glu 10 Thr Gln Glu Gly His Ala Val Gly Phe Gly Leu Asp Asp Gly Pro Ala 20 25 Met Lys Gly Lys Gly Asp Leu Val Gly Ser Tyr Leu Pro Gly Ala Ala 40 45 35 Pro Met Pro Phe Val Pro Leu Ser Asp Ile Pro Ala Arg Ser Met Asp 55 60 Ala Asn Phe Tyr Ile Tyr Ser Arg Ile Ser Leu Gly Ser Gly Thr Gln 75 70 Asp Val Leu Gln His Arg Met Lys Val Tyr Pro Asn Pro Ala Thr Thr 90 85 Glu Leu His Val Glu Ala Leu Ser Ala Trp Val Gly Glu Gln Ala Ala 100 105 Val Tyr Asp Met Arg Gly Arg Arg Val Ser Ala Arg Thr Val Asp Ser 115 120 125 Glu Lys Leu Cys Ile Asp Ile Ala Ser Leu Pro Val Gly Val Tyr Met

- 135 140 Leu Arg Ile Gly Ser Tyr Ser Ala Lys Phe Glu Lys Arg 150
- (2) INFORMATION FOR SEQ ID NO:269
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 562 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...562
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269

Thr Arg Asn Val Ser Leu Ile Lys Met Pro Arg Ile Met Lys Leu Lys 10 Ile Ala Leu Arg Leu Leu Leu Ala Thr Phe Ala Ile Val Leu Phe Ser 25 Pro Leu Ala Lys Ala Gln Met Asp Ile Gly Gly Asp Asp Val Leu Ile 35 40 45 Glu Thr Met Ser Thr Leu Ser Gly Tyr Ser Glu Asp Phe Tyr Tyr Lys 55 60 Met Ala Val Ala Asp Asn Gly Trp Ile Tyr Val Met Leu Asp Phe Ser 70 75 Arg Ile Tyr Phe Asp Asp Val Arg Leu Tyr Arg Ser Lys Asp Gly Gly 85 90 Ala Thr Tyr Gln Lys Leu Gly Ser Leu Gly Ser Leu Val Pro Tyr Asp 105 100 Phe Asp Val Ser His Cys Asp Phe Ile Val Thr Gly Lys Asp Glu Asp 120 125 Asp Ile Asn Val Trp Thr Val Met Thr Ala Phe Glu Tyr Val Gly Gly 135 140 Thr Ile Gly Asn Gly Val Leu Leu Met His Arg His Asp Ala Asp Ile

145 150 155

Asn Asn Thr Glu Cys Val Tyr Lys Lys Asp Phe Pro Asn Asn Arg Leu 165 170 175

Met Gly Val Ala Ile Ala Ser Asn Tyr Arg Ala Pro Ser Pro Tyr Gly 180 185

Leu Gly Gly Asp Pro Phe Ala Leu Ala Val Ala Val Ser Gly Ser Gly 195 200 205 Ser Asp His Ser Phe Leu Asp Tyr Ile Phe Ser Leu Asp Gly Gly Val 210 215 220 His Phe Glu Gln Lys Arg Ile Tyr Thr Arg Pro Gln Lys Leu Thr Ile 230 235 Asn Arg Val Asp Leu Ser Leu Gly Ser Thr Ser Pro Ser Leu Gly Phe 245 250 Asn Thr Trp Pro Leu Met Gly Val Val Phe Glu Met Asn Lys Asn Leu 260 265 270 Asp Gly Phe Asp Ile Gly Phe Ile Ser Asn Phe Val Asp Tyr Asp Pro 275 280 285 Arg Tyr Ala Trp Ser Glu Pro Ile Ile Ile Glu Glu Asp Cys Gly Trp 290 295 300 Thr Asp Phe Asn Pro Leu Gly Ala Leu Ser Ile Glu Ile Gln Met Met 305 310 315 Leu Asp Asp Asn Ser Asp Asn Thr Val Gly Glu Arg Ser His Asn 325 330 335 Phe Leu Ile Thr Tyr Pro Gly His Tyr Val Tyr Pro Lys Gln Ser Phe 340 345 350 Asn Tyr Ser Pro Gly His Thr Pro Thr Lys Lys Asp Leu Val Phe Lys 355 360 His Cys Ile Gly Ile Pro Ala Leu Ala Tyr Asp Lys Glu Gly Asp Arg 375 380 Tyr Leu Thr Thr Phe Gln Asp His Asn Leu Met Arg Tyr Arg Trp Ile 385 390 395 400 Lys Tyr Asp Asp Ile Asn Ser Phe Tyr Gly Trp Ser Trp Pro Tyr Val 405 410 415 Tyr Ala Lys Glu Ala Lys Asp Lys Lys Arg Arg Arg Pro Gln Val Ala 425 430 Leu Asn Pro Thr Asn Gly Lys Ala Cys Trp Val Trp His Thr Arg Lys
435 440 445 Ser Pro Tyr Asp Glu Thr Lys Pro His Pro Thr Pro Val Ile Ile Lys 450 455 460 His Phe Leu Trp Ser Asp Thr Glu Trp Val His Ala Leu Asp Val Gly 475 470 Asp Val Leu Gln Lys Glu Gly Ser Met Lys Leu Tyr Pro Asn Pro Ala 490 495 485 Lys Glu Tyr Val Leu Ile Asn Leu Pro Lys Glu Gly Gly His Glu Ala 500 505 510 Val Val Tyr Asp Met Gln Gly Arg Ile Val Glu Lys Val Ser Phe Ser 520 Gly Lys Glu Tyr Lys Leu Asn Val Gln Tyr Leu Ser Lys Gly Thr Tyr 535 540 Met Leu Lys Val Val Ala Asp Thr Glu Tyr Phe Val Glu Lys Ile Ile 545 550 555 Val Glu

## (2) INFORMATION FOR SEQ ID NO:270

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 391 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...391
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270

Ile Pro Thr Lys Ile Gln Thr Thr Gly Gly Ala Ile Thr Ser Ile 70 75 Asp Ser Leu Phe Tyr Glu Asp Asp Arg Leu Val Gln Val Arg Tyr Phe  $85 \hspace{1cm} 90 \hspace{1cm} 95$ Asp Asn Asn Leu Glu Leu Lys Gln Ala Glu Lys Tyr Val Tyr Asp Gly 100 105 Ser Lys Leu Val Leu Arg Glu Ile Arg Lys Ser Pro Thr Asp Glu Thr 115 120 125 Pro Ile Lys Lys Val Ser Tyr His Tyr Leu Cys Gly Ser Asp Met Pro 130 135 140 Phe Glu Ile Thr Thr Glu Met Ser Asp Gly Tyr Phe Glu Ser His Thr 145 150 155 Leu Asn Tyr Leu Asn Gly Lys Ile Ala Arg Ile Asp Ile Met Thr Gln 165 170 175 Gln Asn Pro Ser Ala Glu Leu Ile Glu Thr Gly Arg Met Val Tyr Glu 190 180 185 Phe Asp Ala Asn Asn Asp Ala Val Leu Leu Arg Asp Ser Val Phe Leu 200 205 Pro Leu Gln Asn Lys Trp Val Glu Met Phe Thr His Arg Tyr Thr Tyr 215 220 Asp Asn Lys His Asn Cys Ile Arg Trp Glu Gln Asp Glu Phe Gly Thr 230 235 Leu Thr Leu Ala Asn Asn Phe Glu Tyr Asp Thr Thr Ile Pro Leu Ser \$245\$ \$250\$ \$255\$Ser Val Leu Phe Pro Thr His Glu Glu Phe Phe Arg Pro Leu Leu Pro 260 265 270 Asn Phe Met Lys His Met Arg Thr Lys Gln Thr Tyr Phe Asn Asn Ser 280 285 Gly Glu Gly Leu Ser Glu Val Cys Asp Tyr Asn Tyr Phe Tyr Thr Asp 295 300 Met Gln Gly Asn Ala Leu Thr Asp Val Ala Val Asn Glu Ser Ile Lys 315 305 310 Ile Tyr Pro Arg Pro Ala Thr Asp Phe Leu Arg Ile Glu Gly Ser Gln 325 330 335 Leu Leu Arg Leu Ser Leu Phe Asp Met Asn Gly Lys Leu Ile Arg Ala 340 345 350 Thr Glu Leu Thr Gly Asp Leu Ala Ile Ile Gly Val Ala Ser Leu Pro 360 365 355 Arg Gly Thr Tyr Ile Ala Glu Ile Thr Ala Ala Asn Ser Lys Thr Ile 370 375 Arg Ala Lys Val Ser Leu Arg

### (2) INFORMATION FOR SEQ ID NO:271

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 428 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...428
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:271

Lys Arg Asn Pro Leu Pro Leu Thr Ala Ser Asn Arg Lys Ile Phe Ile 5 10 Lys Met Arg Gln His Leu Ser Leu Phe Pro Phe Ile Leu Phe Leu Leu 20 25 Leu Ala Phe Ser Tyr Val Gly Cys Arg Thr Val Arg Gln Thr Pro Lys 40 Gln Ser Glu Arg Tyr Val Val Leu Ser Leu Asp Gly Phe Arg Pro 55 Asp Tyr Thr Asp Arg Ala Arg Thr Pro Ala Leu Asp Arg Met Ala Gln 70 75 Glu Gly Leu Ser Gly Ser Leu Gln Pro Cys Phe Pro Ser Leu Thr Phe 85 90 95 Pro Asn His Tyr Ser Met Ala Thr Gly Leu Tyr Pro Asp His His Gly 105

Ile Val Ala Asn Glu Phe Val Asp Ser Leu Leu Gly Ile Phe Arg Ile 120 125 Ser Asp Arg Lys Ala Val Glu Thr Pro Gly Phe Trp Gly Gly Glu Pro 130 135 140 Val Trp Asn Thr Ala Ala Arg Gln Gly Ile Arg Thr Gly Val Tyr Phe 145 150 155 Trp Val Gly Ser Glu Thr Ala Val Asn Gly Asn Arg Pro Trp Arg Trp 165 170 Lys Lys Phe Ser Ser Thr Val Pro Phe Arg Asp Arg Ala Asp Ser Val 185 180 190 Ile Ala Trp Leu Gly Leu Pro Glu Lys Glu Arg Pro Arg Leu Leu Met 195 200 205 Trp Tyr Ile Glu Glu Pro Asp Met Ile Gly His Ser Gln Thr Pro Glu 215 220 Ser Pro Leu Thr Leu Ala Met Val Glu Arg Leu Asp Ser Val Val Gly 230 235 Tyr Phe Arg Lys Arg Leu Asp Ser Leu Pro Ile Ala Ala Gln Thr Asp 245 250 255 Phe Ile Ile Val Ser Asp His Gly Met Ala Thr Tyr Glu Asn Glu Lys 260 265 Cys Val Asn Leu Ser His Tyr Leu Pro Ala Asp Ser Phe Leu Tyr Met 275 280 285 Ala Thr Gly Ala Phe Thr His Leu Tyr Pro Lys Pro Ser Tyr Thr Glu 290 295 300 Arg Ala Tyr Glu Ile Leu Arg Ala Ile Pro His Ile Ser Val Tyr Arg 310 315 Lys Gly Glu Val Pro Lys Arg Leu Arg Cys Gly Thr Asn Pro Arg Leu 325 330 335 Gly Glu Leu Val Val Ile Pro Asp Ile Gly Ser Thr Val Phe Phe Ala 340 345 Ile Asn Glu Asp Val Arg Pro Gly Ala Ala His Gly Tyr Asp Asn Gln 355 360 365 Ala Pro Glu Met Arg Ala Leu Leu Arg Ala Val Gly Pro Asp Phe Arg 370 375 380 Pro Gly Ser Arg Val Glu Asn Leu Pro Asn Ile Thr Ile Tyr Pro Leu 390 395 Ile Cys Arg Leu Leu Gly Ile Glu Pro Ala Pro Asn Asp Ala Asp Glu 405 410 Thr Leu Leu Asn Gly Leu Ile Arg Asp Lys Arg Pro

### (2) INFORMATION FOR SEQ ID NO:272

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 282 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...282
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:272

Leu Ser Arg Gly Val Phe Pro Leu Met Tyr Gly Arg Arg Gly Ser Ile 10 Arg Ala Ser Ser Gly His Arg Asp Lys Ile Phe Lys Asn Thr Ile Ile 20 25 30 Arg Phe Ile Thr Met Lys Val Gly Leu Phe Ile Pro Cys Tyr Val Asn 40 45 Ala Val Tyr Pro Glu Val Gly Ile Ala Thr Tyr Lys Leu Leu Lys Ser 55 Leu Asp Ile Asp Val Asp Tyr Pro Met Asp Gln Thr Cys Cys Gly Gln 65 70 75 80 70 75 Pro Met Ala Asn Ala Gly Phe Glu Gln Lys Ala Gln Lys Leu Ala Leu 85 90 Arg Phe Glu Glu Leu Phe Glu Ser Tyr Asp Val Val Gly Pro Ser 100 105 110 Ala Ser Cys Val Ala Phe Val Lys Glu Asn Tyr Asp His Ile Leu Arg 120 125

Pro Thr Gly His Val Cys Lys Ser Ala Ala Lys Val Arg Asp Ile Cys 135 140 Glu Phe Leu His Asp Asp Leu Lys Ile Thr Ser Leu Pro Ser Arg Phe 145 150 155 Ala His Lys Val Ser Leu His Asn Ser Cys His Gly Val Arg Glu Leu 165 170 His Leu Ser Thr Pro Ser Glu Val His Arg Pro Tyr His Asn Lys Val 180 185 Arg Arg Leu Leu Glu Met Val Gln Gly Ile Glu Val Phe Glu Pro Lys 195 200 205 Arg Ile Asp Glu Cys Cys Gly Phe Gly Gly Met Tyr Ser Val Glu Glu 215 220 Pro Glu Val Ser Thr Cys Met Gly His Asp Lys Val Leu Asp His Ile 230 235 Ser Thr Gly Ala Glu Tyr Ile Thr Gly Pro Asp Ser Ser Cys Leu Met 245 250 His Met Gln Gly Val Ile Asp Arg Glu Lys Leu Pro Ile Lys Thr Ile 260 265 270 His Ala Val Glu Ile Leu Ala Ala Asn Leu 280

#### (2) INFORMATION FOR SEQ ID NO:273

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 251 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...251
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273

Pro Leu Lys Lys Arg Met Asp Ile Val Ser Met Ala Asp Lys Ala Leu 5 10 Val Val Glu Met Arg Asp Val Thr Leu Cys Gln Glu Glu Asn Val Ile 2.0 25 Phe Gln Asn Leu Asn Leu Thr Leu Ser Ala Gly Asp Phe Val Tyr Leu 35 40 45 Ile Gly Ser Val Gly Ser Gly Lys Ser Thr Leu Leu Lys Ala Leu Tyr 55 60 Ala Glu Val Pro Ile Ser Ala Gly Tyr Ala Arg Val Ile Asp Tyr Asp 70 75 Leu Ala Lys Leu Lys Arg Lys Gln Leu Pro Tyr Leu Arg Arg Asn Leu 85 90 Gly Ile Val Phe Gln Asp Phe Gln Leu Leu Asn Gly Arg Thr Val Ala 105 100 Glu Asn Leu Asp Phe Val Leu Arg Ala Thr Asp Trp Lys Asn Arg Ala 120 125 Asp Arg Glu Gln Arg Ile Glu Glu Val Leu Thr Arg Val Gly Met Ser 135 140 Arg Lys Ala Tyr Lys Arg Pro His Glu Leu Ser Gly Gly Glu Gln Gln 150 155 Arg Val Gly Ile Ala Arg Ala Leu Leu Ala Lys Pro Ala Leu Ile Leu 165 170 Ala Asp Glu Pro Thr Gly Asn Leu Asp Ser Val Thr Gly Leu Gln Ile 180 190 185 Ala Ser Leu Leu Tyr Glu Ile Ser Lys Gln Gly Thr Ala Val Leu Met 200 205 Ser Thr His Asn Ser Ser Leu Leu Ser His Leu Pro Ala Arg Thr Leu 215 220 Ala Val Arg Lys Asn Gly Asp Ala Ser Ser Leu Val Glu Leu Ser Ala 230 235 Asp Ala Val Ser Arg Lys Asn Thr Glu Ile Asp 245

- (2) INFORMATION FOR SEQ ID NO:274
  - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 238 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...238
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:274

Thr Arg His Cys Pro Ala Cys Arg Ser Ser Phe His Leu Ile Lys Thr Ser Lys Thr Met Ile Glu Ile Ser Asn Leu Thr Lys Val Phe Arg Thr 2.0 25 Glu Glu Ile Glu Thr Val Ala Leu Asp Gly Val Ser Leu Lys Val Asp 35 40 45 Lys Gly Glu Phe Ile Ala Ile Met Gly Pro Ser Gly Cys Gly Lys Ser 55 60 Thr Leu Leu Asn Ile Leu Gly Leu Leu Asp Asn Pro Thr Ser Gly Ile 70 Tyr Lys Leu Asp Gly Ala Glu Val Gly Asn Leu Arg Glu Lys Asp Arg Thr Ala Val Arg Lys Gly Asn Ile Gly Phe Val Phe Gln Ser Phe Asn 100 105 Leu Ile Glu Glu Met Thr Val Ser Glu Asn Val Glu Leu Pro Leu Val 115 120 125 Tyr Leu Gly Val Lys Ala Ser Glu Arg Lys Glu Arg Val Glu Glu Ala 135 140 Leu Arg Lys Met Ser Ile Ser His Arg Ala Gly His Phe Pro Asn Gln 150 155 Leu Ser Gly Gly Gln Gln Arg Val Ala Ile Ala Arg Ala Val Val 165 170 Ala Asn Pro Lys Leu Ile Leu Ala Asp Glu Pro Thr Gly Asn Leu Asp 180 185 190 Ser Lys Asn Gly Ala Asp Val Met Glu Leu Leu Arg Gly Leu Asn Arg 200 205 Glu Gly Ala Thr Ile Val Met Val Thr His Ser Glu His Asp Ala Arg 210 215 Ser Ala Gly Arg Ile Ile Asn Leu Phe Asp Gly Lys Ile Arg

235

- (2) INFORMATION FOR SEQ ID NO:275
  - (i) SEQUENCE CHARACTERISTICS:

230

- (A) LENGTH: 604 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...604
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275

 Ser
 Thr
 Glu
 Thr
 Asn
 Ser
 Lys
 Ser
 Glu
 Met
 Lys
 Glu
 Phe
 Phe
 Lys
 Met

 1
 1
 5
 1
 10
 1
 15
 15
 15
 15
 15
 16
 15
 15
 15
 16
 15
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16

65					70					75					80
Ser	Met	Leu	Thr	_	Lys	Asp	Glu	Ser	Val	Ser	Leu	Ser	Gln		Val
Glu	Ala	Ile	_	85 Gln	Ala	Lys	Asn	Asn	90 Pro	Asn	Ile	Thr	_	95 Ile	Phe
_			100	_	_	_		105			_		110	~-	_
Leu	Asp	ьеи 115	Asp	Asn	Leu	ser	Val 120	GIY	Met	Ala	Ser	125	GIu	GIu	Leu
Arg	Arg 130	Ala	Leu	Gln	Asp	Phe 135	Lys	Met	Ser	Gly	Lys 140	Phe	Val	Val	Ser
Tyr 145	Ala	Asp	Arg	Tyr	Thr 150	Gln	Lys	Gly	Tyr	Tyr 155	Leu	Ser	Ser	Ile	Ala 160
	Lys	Leu	Tyr	Leu 165		Pro	Lys	Gly	Met 170		Gly	Leu	Ile	Gly 175	
Ala	Thr	Gln	Thr 180		Phe	Tyr	Lys	Asp 185	Ala	Leu	Asp	Lys	Phe 190		Val
Lys	Met	Glu 195		Phe	Lys	Val	Gly 200		Tyr	Lys	Ala	Ala 205		Glu	Pro
Phe	Met 210		Asn	Arg	Met	Ser 215		Ala	Asn	Arg	Glu 220		Ile	Thr	Thr
Tyr 225		Asn	Gly	Leu	Trp 230		Lys	Ile	Thr	Ser 235		Ile	Ala	Glu	Ser 240
_	Lvs	Thr	Ala	Met		Ser	Val	Lvs	Met		Ala	Asp	Lvs	Glv	
	•			245					250			-	1	255	
Met	Phe	Gly	Leu 260	Ala	Glu	Lys	Ala	Val 265	Glu	Met	Lys	Leu	Val 270	Asp	Glu
Leu	Ala	Tyr 275	Arg	Thr	Asp	Val	Glu 280	Lys	Glu	Leu	Lys	Lys 285	Met	Ser	Gln
Arg	Gly 290	Glu	Lys	Asp	Glu	Leu 295	Arg	Phe	Val	Ser	Leu 300	Ser	Gln	Val	Leu
	Asn	Gly	Pro	Met		Lys	Thr	Lys	Gly		Arg	Ile	Ala	Val	
305	7 l s	Glu	Glv	Glu	310	Thr	Glu	Glu	Ile	315	Luc	Tare	Pro	Dhe	320 Agn
			_	325					330		_	_		335	
	_	_	340					345	Leu		_		350	_	
		355		_	_		360		Val			365			
	370					375			Gln		380				
385	Leu	Lys	Ala	Lys	Lys 390	Pro	Ile	Val	Val	Ser 395	Met	Gly	Asp	Val	Ala 400
	Ser	Gly	Gly	Tyr 405		Ile	Ala	Cys	Ala 410		Asn	Ser	Ile	Val 415	
Glu	His	Thr	Thr 420		Thr	Gly	Ser	Ile 425	Gly	Ile	Phe	Gly	Met 430		Pro
Asn	Phe	Ala		Val	Ala	Lys	Lys		Gly	Val	Asn	Met		Val	Val
		435	_	_			440					445	_		
GIn	Thr 450	Ser	Lys	Tyr	Ala	455	Leu	GIY	Asn	Thr	Phe 460	Ala	Pro	Met	Thr
	Glu	Asp	Arg	Ala		Ile	Gln	Arg	Tyr		Glu	Gln	Gly	${\tt Tyr}$	Asp
465 Leu	Phe	T.e.u	Thr	Ara	470 Val	Ser	Glu	Glv	Arg	475 Asn	Ara	Thr	Lvs	Δla	480 Gln
				485					490					495	
116	АБР	Ser	500	Ala	GIII	Gry	ALG	505	Trp	ьеu	Gly	мър	510	AIA	ьец
Ala	Leu	Gly 515	Leu	Val	Asp	Glu	Leu 520	Gly	Gly	Leu	Asp	Thr 525	Ala	Ile	Lys
Arg	Ala 530	Ala	Lys	Leu	Ala	Gln 535	Leu	Gly	Gly	Asn	Tyr 540	Ser	Ile	Glu	Tyr
_	Lys	Thr	Lys	Arg		Phe	Phe	Glu	Glu		Leu	Ser	Ser	Ser	
545	7 an	Mot	Lvo	Cor	550	T10	Lou	Cor	Thr	555	Lou	Cor	7 an	Dro	560
uid	rah	rie L	пуs	565	vrq	116	neu	2CI	Thr 570	116	neu	SET	vab	575	GIU
Ile	Glu	Val	Leu 580	Arg	Glu	Leu	Arg	Ser 585	Met	Pro	Pro	Arg	Pro 590	Ser	Gly
Ile	Gln	Ala 595		Leu	Pro	Tyr	Tyr 600		Met	Pro	Tyr				

# (2) INFORMATION FOR SEQ ID NO:276

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 324 amino acids
  - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...324
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:276

Leu Thr Leu Phe Cys Cys Asn Tyr Phe Lys Gln Met Arg Ala Asn Ile 5 10 Trp Gln Ile Leu Ser Val Ser Val Leu Phe Phe Phe Gly Thr Ala Ile 20 25 30 Gly Gln Ala Gln Ser Arg Asn Arg Thr Tyr Glu Ala Tyr Val Lys Gln 35 40 45 Tyr Ala Asp Glu Ala Ile Arg Gln Met Ser Arg Tyr Asn Ile Pro Ala 50 55 60 Ser Ile Thr Ile Ala Gln Ala Leu Val Glu Thr Gly Ala Gly Ala Ser 70 75 Thr Leu Ala Ser Val His Asn Asn His Phe Gly Ile Lys Cys His Lys 85 90 Ser Trp Thr Gly Lys Arg Thr Tyr Arg Thr Asp Asp Ala Pro Asn Glu 100 105 Cys Phe Arg Ser Tyr Ser Ala Ala Arg Glu Ser Tyr Glu Asp His Ser 115 120 125 Arg Phe Leu Leu Gln Pro Arg Tyr Arg Pro Leu Phe Lys Leu Asp Arg 135 140 Glu Asp Tyr Arg Gly Trp Ala Thr Gly Leu Gln Arg Cys Gly Tyr Ala 155 150 Thr Asn Arg Gly Tyr Ala Asn Leu Leu Ile Lys Met Val Glu Leu Tyr 165 170 Glu Leu Tyr Ala Leu Asp Arg Glu Lys Tyr Pro Ser Trp Phe His Lys 180 185 190 Ser Tyr Pro Gly Ser Asn Lys Lys Ser His Gln Thr Thr Lys Gln Lys 195 200 205 195 200 205 Gln Ser Gly Leu Lys His Glu Ala Tyr Phe Ser Tyr Gly Leu Leu Tyr 210 215 220 Ile Ile Ala Lys Gln Gly Asp Thr Phe Asp Ser Leu Ala Glu Glu Phe 230 235 Asp Met Arg Ala Ser Lys Leu Ala Lys Tyr Asn Asp Ala Pro Val Asp 250 245 255 Phe Pro Ile Glu Lys Gly Asp Val Ile Tyr Leu Glu Lys Lys His Ala 260 265 270 Cys Ser Ile Ser Lys His Thr Gln His Val Val Arg Val Gly Asp Ser 275 280 Met His Ser Ile Ser Gln Arg Tyr Gly Ile Arg Met Lys Asn Leu Tyr 295 300 Lys Leu Asn Asp Lys Asp Gly Glu Tyr Ile Pro Gln Glu Gly Asp Ile 305 310 315 Leu Arg Leu Arg

- (2) INFORMATION FOR SEQ ID NO:277
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 533 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...533
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:277

Arg Ile Pro Asp Glu Gln Thr Gly Arg Ile Met Asp Gly Arg Tyr

1 10 15

Ser Asp Gly Leu His Gln Ala Ile Glu Ala Lys Glu His Val Lys Val

20 25 Glu Ala Ala Thr Gln Thr Phe Ala Thr Ile Thr Leu Gln Asn Tyr Phe 40 35 45 Arg Met Tyr His Lys Leu Ala Gly Met Thr Gly Thr Ala Glu Thr Glu 55 60 Ala Gly Glu Leu Trp Asp Ile Tyr Lys Leu Asp Val Val Ile Pro 70 75 Thr Asn Lys Pro Ile Ala Arg Lys Asp Met Asn Asp Arg Ile Tyr Lys 85 90 Thr Ala Arg Glu Lys Tyr Ala Ala Val Ile Glu Glu Ile Val Arg Leu 100 105 Val Glu Glu Gly Arg Pro Val Leu Val Gly Thr Thr Ser Val Glu Ile 115 120 125 Ser Glu Leu Leu Ser Arg Met Leu Arg Leu Arg Gly Ile Gln His Asn 135 140 Val Leu Asn Ala Lys Leu His Gln Lys Glu Ala Glu Ile Val Ala Gln 145 150 155 Ala Gly Gln Lys Gly Thr Val Thr Ile Ala Thr Asn Met Ala Gly Arg 165 170 175 Gly Thr Asp Ile Lys Leu Ser Ala Glu Val Lys Lys Ala Gly Gly Leu 180 185 190 Ala Ile Ile Gly Thr Glu Arg His Glu Ser Arg Arg Val Asp Arg Gln 195 200 Leu Arg Gly Arg Ser Gly Arg Gln Gly Asp Pro Gly Ser Ser Ile Phe 210 215 220 Tyr Val Ser Leu Glu Asp His Leu Met Arg Leu Phe Ala Thr Glu Lys 225 230 230 235 240 Ile Ala Ser Leu Met Asp Arg Leu Gly Phe Lys Glu Gly Glu Val Leu 245 250 Glu Asn Asn Met Leu Ser Lys Ser Val Glu Arg Ala Gln Lys Lys Val 265 270 Glu Glu Asn Asn Phe Gly Ile Arg Lys His Leu Leu Glu Tyr Asp Asp 275 280 285 Val Met Asn Ser Gln Arg Glu Val Ile Tyr Thr Arg Arg Arg His Ala 290 295 300 Leu Met Gly Glu Arg Ile Gly Met Asp Val Leu Asn Thr Ile Tyr Asp 310 315 Val Cys Lys Ala Leu Ile Asp Asn Tyr Ala Glu Ala Asn Asp Phe Glu 325 330 335 Gly Phe Lys Glu Asp Leu Met Arg Ala Leu Ala Ile Glu Ser Pro Ile 340 345 350 Thr Gln Glu Ile Phe Arg Gly Lys Lys Ala Glu Glu Leu Thr Asp Met 360 365 Leu Phe Asp Glu Ala Tyr Lys Ser Phe Gln Arg Lys Met Asp Leu Ile 375 380 Ala Glu Val Ala His Pro Val Val His Gln Val Phe Glu Thr Gln Ala 390 395 Ala Val Tyr Glu Arg Ile Leu Ile Pro Ile Thr Asp Gly Lys Arg Val 405 410 Tyr Asn Ile Gly Cys Asn Leu Arg Glu Ala Asp Glu Thr Gln Gly Lys 425 420 430 Ser Ile Ile Lys Glu Phe Glu Lys Ala Ile Val Leu His Thr Ile Asp 435 440 445 Glu Ser Trp Lys Glu His Leu Arg Glu Met Asp Glu Leu Arg Asn Ser 455 460 Val Gln Asn Ala Ser Tyr Glu Asn Lys Asp Pro Leu Leu Ile Tyr Lys 470 475 Leu Glu Ser Tyr Glu Leu Phe Arg Lys Met Val Glu Ala Met Asn Arg 485 490 Lys Thr Val Ala Ile Leu Met Arg Ala Arg Ile Pro Val Pro Glu Ala 500 505 510 Pro Ser Gln Glu Glu Leu Glu His Arg Arg Gln Ile Glu Ile Arg His 515 520 Ala Thr Gln Gln Arg

## (2) INFORMATION FOR SEQ ID NO:278

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 720 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...720
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:278

Lys Ser Cys Arg Val Ile Gly Gln Thr Arg Arg Tyr Gly Cys Cys Pro 10 Val Gly Leu Arg Pro Cys His Gln Ser Leu Ser Gly Val Cys Arg Cys 20 25 3.0 Leu Phe Gln Ser Arg Pro Ala Val Ala Phe Ala Arg Lys Gly Gln Arg 40 Arg His Arg Arg Ser Glu Ser Gly Arg Arg Ile Arg Ala Leu Gln Gly 55 60 Val Gln His His Gln Thr Asn Glu His Glu Val Met Ile Ser Val Asn 70 75 Asn Leu Thr Val Asp Phe Gly Thr Arg Leu Leu Phe Asp Gln Val Ser 8.5 90 Phe Val Ile Asn Arg Arg Asp Arg Ile Ala Leu Val Gly Lys Asn Gly 100 105 110 Ala Gly Lys Ser Thr Leu Leu Lys Leu Ile Ala Gly Met Glu Glu Pro 115 120 125 Thr Ser Gly His Ile Ala Arg Pro Lys Gly Ile Arg Ile Gly Tyr Leu 135 140 Pro Gln Val Met Arg Leu Gln Asp Gly His Thr Val Tyr Glu Glu Val 145 150 155 Glu Gln Ala Phe Asn Asp Ile Arg Gln Ile Glu Glu Glu Ile Arg Arg 165 170 175 Leu Ser Asp Glu Met Ala Gly Arg Thr Asp Tyr Glu Ser Asp Asp Tyr 180 185 190 Ile Arg Leu Ile Glu His Tyr Thr Asn Met Ser Glu Thr Leu Ser Leu 195 200 Met Gln Gln Gly Asn Tyr His Ala Ala Ile Glu Gln Thr Leu Ile Gly 210 215 220 Leu Gly Phe Gly Arg Glu Asp Phe His Arg Pro Thr Ala Asp Phe Ser 230 235 Gly Gly Trp Arg Met Arg Ile Glu Leu Ala Lys Leu Leu Leu Gln Arg 245 250 255 Pro Glu Val Leu Leu Leu Asp Glu Pro Thr Asn His Leu Asp Ile Glu 260 265 270 Ser Ile Gly Trp Leu Glu Gln Phe Ile Ala Thr Asn Ala Gly Ala Val 275 280 Ile Leu Val Ser His Asp Arg Ala Phe Ile Asp Asn Thr Thr Arg 295 300 Thr Ile Glu Ile Glu Leu Gly His Ile Tyr Asp Tyr Lys Thr Asn Tyr 310 315 Ser His Tyr Val Glu Leu Arg Glu Glu Arg Leu Arg Gln Gln Met Arg 325 330 Ala Tyr Glu Asn Gln Gln Lys Met Ile Arg Asp Thr Glu Asp Phe Ile 340 345 Glu Arg Phe Arg Tyr Lys Ala Thr Lys Ser Val Gln Val Gln Ser Arg 355 360 365 365 Ile Lys Gln Leu Glu Lys Val Glu Arg Val Glu Ile Asp Glu Arg Asp 375 380 Arg Ser Ala Phe His Phe Arg Phe Ile Pro Ala Gln Pro Ser Gly Ser 390 395 Tyr Pro Leu Ile Val Asp Asp Leu Ala Lys Ala Tyr Gly Asp His Gln 405 410 415 Val Phe Ser Gly Ala Thr Tyr Thr Ile Glu Arg Gly Glu Lys Val Ala 420 425 430 Phe Val Gly Lys Asn Gly Ala Gly Lys Ser Thr Met Val Lys Cys Ile 435 440 445 Met Gly Glu Leu Thr Asp Tyr Thr Gly Lys Leu Glu Leu Gly His Asn 455 460 Val Gln Leu Gly Tyr Phe Ala Gln Asn Glu Ala Gln Glu Leu Arg Gly 470 475 Asp Leu Thr Val Phe Asp Thr Ile Asp Arg Glu Ala Val Gly Asp Ile 485 490 Arg Leu Arg Leu Asn Asp Leu Leu Gly Ala Phe Leu Phe Gly Gly Glu 505 500 510 Ala Ser Glu Lys Lys Val Ser Val Leu Ser Gly Gly Glu Arg Ala Arg 520 525 Leu Ala Ile Ile Arg Leu Leu Gln Pro Ala Asn Phe Leu Ile Leu 530

535

540

Asp Glu Pro Thr Asn His Leu Asp Met Arg Ser Lys Asp Val Leu Lys 555 550 Glu Ala Ile Lys Asn Phe Asp Gly Thr Val Ile Val Val Ser His Asp 565 570 Arg Glu Phe Leu Asp Gly Leu Val Ser Lys Val Tyr Glu Phe Ala Asp 580 585 Gly Gln Val Asn Glu His Leu Gly Gly Ile Tyr Asp Tyr Leu Arg Thr 595 600 605 Arg Arg Met Gln Thr Leu Thr Glu Leu Glu Arg Thr Thr Thr Ile Glu 610 615 620 Thr Lys Thr Thr Arg Glu Ala Ile Pro Glu Thr Glu Ala Lys Ala Asp 625 630 635 Tyr Arg Arg Gln Lys Glu Val Ala Lys Gln Leu Arg Thr Leu Glu Arg 645 650 655 Thr Val Ala Thr Cys Glu Glu Arg Ile Gly Lys Leu Glu Ser Glu Leu 665 670 Gln Ala Ile Glu Met Leu Leu Gln Asp Pro Lys His Ala Thr Asp Ala 675 680 685 Asn Leu Phe Glu Arg Tyr Ala Gly Met Lys Gln Glu Leu Glu Lys Ala 695 700 Met Glu Asp Trp Glu Gln Ala Ser Glu Ala Leu Ser Glu Ala Gln Gly 705 710 715

#### (2) INFORMATION FOR SEQ ID NO:279

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 386 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...386
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:279

Tyr Leu Lys Leu Leu Ile Leu Gln Ile Ala Leu Met Asn Phe Leu Lys 5 10 Lys Glu Pro Phe Lys Ile Phe Ser Met Ile Tyr Leu Leu Leu Asp Thr 20 25 Ile Thr Asn Arg Ala Gly Thr Glu Arg Ala Val Ile Asn Leu Ala Asn 40 Asn Leu His Ala Asn Gly His Arg Val Ser Leu Val Ser Val Cys Thr 55 60 Lys Glu Gly Glu Pro Ser Phe Gln Val Glu Lys Gly Ile Glu Val His 70 75 His Leu Gly Ile Arg Leu Tyr Gly Asn Ala Leu Ala Arg Lys Thr Val 90 Tyr Phe Lys Ala Tyr Arg Arg Ile Lys Ala Leu Tyr Lys Lys Arg Glu 100 105 Pro Val Leu Leu Ile Gly Thr Asn Ile Phe Ile Asn Thr Ile Leu Ser 120 Gln Ile Ser Asn Arg Gly Arg Ile Phe Thr Ile Gly Cys Glu His Ile 130 135 140 Ser Tyr Asp Ile Ala Arg Pro Ile Thr Lys Arg Ile Arg Gly Phe Leu 150 155 Tyr Ser Gly Leu Asp Ala Val Val Ala Leu Thr Lys Arg Asp Gln Gln 165 170 175 Ser Phe Glu Ala Ile Leu Arg Gly Arg Ser Lys Ala Tyr Val Ile Pro 185 190 Asn Gln Val Ser Phe Thr Thr Val Gln Arg Asp Ala Thr Thr His Lys 195 200 Gln Met Leu Ala Ile Gly Arg Leu Thr Tyr Gln Lys Gly Phe Glu Phe 210 215 220 220 Met Ile Glu Asp Ala Ser Arg Val Leu Arg Glu Arg Pro Asp Trp Lys 225 230 235 Leu Ile Ile Val Gly Asp Gly Glu Asn Glu Ser Met Leu Arg Lys Glu 245 250 255 Ile Ala Ser Arg Asn Met Glu Ser Gln Ile Glu Ile His Pro Ser Thr 265

Pro Glu Ile Arg Lys Tyr Tyr Glu Ser Ser Ala Ile Tyr Leu Met Thr 275 280 285 Ser Arg Phe Glu Gly Leu Pro Met Val Leu Leu Glu Ala Glu Ala Tyr 290 295 300 Ala Leu Pro Ile Ile Ser Tyr Asp Cys Pro Thr Gly Pro Arg Glu Leu 305 310 315 Ile Glu Asn Gly Arg Asn Gly Phe Leu Val Pro Met Glu Ala His Glu 325 330 Asp Phe Ala Asp Lys Leu Arg Leu Leu Met Asp Asp Glu Thr Leu Arg 340 345 Lys Lys Met Gly Gln Glu Ser Glu Leu Met Val Lys Ser Tyr Ser Pro 360 365 Ala Asn Ile Tyr Glu Cys Trp Lys Lys Leu Phe Val Glu Ile Gly Tyr 375 Met Asn 385

#### (2) INFORMATION FOR SEQ ID NO:280

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 655 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...655
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280

Thr Thr Lys Glu Asn Glu Thr Thr Thr Lys Asn Glu Tyr Arg Ile Met 10 Gly Lys Ile Ile Gly Ile Asp Leu Gly Thr Thr Asn Ser Cys Val Ser 20 25 30 Val Leu Glu Gly Asn Glu Pro Ile Val Ile Thr Asn Ser Glu Gly Lys 40 45 Arg Thr Thr Pro Ser Val Val Ala Phe Val Asp Gly Glu Arg Lys 50 60 Val Gly Asp Pro Ala Lys Arg Gln Ala Ile Thr Asn Pro Thr Lys Thr 70 75 Ile Tyr Ser Ile Lys Arg Phe Met Gly Glu Thr Tyr Asp Gln Val Ser 85 90 Arg Glu Val Glu Arg Val Pro Phe Lys Val Val Arg Gly Asp Asn Asn 105 100 110 Thr Pro Arg Val Asp Ile Asp Gly Arg Leu Tyr Thr Pro Gln Glu Ile 120 125 Ser Ala Met Ile Leu Gln Lys Met Lys Lys Thr Ala Glu Asp Tyr Leu 135 140 Gly Gln Glu Val Thr Glu Ala Val Ile Thr Val Pro Ala Tyr Phe Asn 150 155 160 Asp Ala Gln Arg Gln Ala Thr Lys Glu Ala Gly Glu Ile Ala Gly Leu 165 170 Lys Val Arg Arg Ile Val Asn Glu Pro Thr Ala Ala Ser Leu Ala Tyr 180 185 Gly Leu Asp Lys Ser Asn Lys Asp Met Lys Ile Ala Val Phe Asp Leu 195 200 205 Gly Gly Gly Thr Phe Asp Ile Ser Ile Leu Glu Leu Gly Asp Gly Val 215 220 Phe Glu Val Lys Ser Thr Asn Gly Asp Thr His Leu Gly Gly Asp Asp 230 235 Phe Asp His Val Ile Ile Asp Trp Leu Ala Glu Glu Phe Lys Ser Gln 245 250 255 Glu Gly Val Asp Leu Arg Gln Asp Pro Met Ala Met Gln Arg Leu Lys 260 265 270 Glu Ala Ala Glu Lys Ala Lys Ile Glu Leu Ser Ser Thr Ser Ser Thr 275 280 285 Glu Ile Asn Leu Pro Tyr Ile Met Pro Val Asn Gly Ile Pro Lys His 290 295 300 Leu Val Met Thr Leu Thr Arg Ala Lys Phe Glu Gln Leu Ala Asp Arg 315 320

Leu Ile Gln Ala Cys Val Ala Pro Cys Glu Thr Ala Leu Lys Asp Ala 325 330 Gly Met Ser Arg Gly Asp Ile Asp Glu Val Ile Leu Val Gly Gly Ser 340 345 350 Thr Arg Ile Pro Ala Ile Gln Glu Ile Val Glu Lys Ile Phe Gly Lys 355 360 365 Ala Pro Ser Lys Gly Val Asn Pro Asp Glu Val Val Ala Val Gly Ala 375 380 Ala Ile Gln Gly Gly Val Leu Thr Gly Glu Val Lys Asp Val Leu Leu 390 385 395 Leu Asp Val Thr Pro Leu Ser Leu Gly Ile Glu Thr Met Gly Gly Val 405 410 415 Met Thr Arg Leu Ile Asp Ala Asn Thr Thr Ile Pro Thr Lys Lys Ser 420 425 430 Glu Ile Phe Thr Thr Ala Val Asp Asn Gln Pro Ser Val Glu Ile His 440 445 Val Leu Gln Gly Glu Arg Ser Leu Ala Lys Asp Asn Lys Ser Ile Gly 455 460 Arg Phe Asn Leu Asp Gly Ile Ala Pro Ala Pro Arg Gln Thr Pro Gln 470 475 Ile Glu Val Thr Phe Asp Ile Asp Ala Asn Gly Ile Leu Asn Val Thr 485 490 Ala His Asp Lys Ala Thr Gly Lys Lys Gln Asn Ile Arg Ile Glu Ala 500 505 510 Ser Ser Gly Leu Ser Asp Asp Glu Ile Lys Arg Met Lys Glu Glu Ala 515 520 525 Gln Ala Asn Ala Glu Ala Asp Lys Lys Glu Lys Glu Arg Ile Asp Lys 530 535 540 Ile Asn Gln Ala Asp Ser Met Ile Phe Gln Thr Glu Lys Gln Leu Lys 545 555 550 560 Glu Leu Gly Asp Lys Phe Pro Ala Asp Lys Lys Ala Pro Ile Asp Thr 565 570 Ala Leu Asp Lys Leu Lys Glu Ala His Lys Ala Gln Asp Val Ala Ala 580 585 590 Ile Asp Thr Ala Met Ala Glu Leu Gln Thr Ala Leu Ser Ala Ala Gly 595 600 605 Glu Glu Leu Tyr Lys Asn Ala Gly Ala Ala Gln Gly Gly Ala Gln Pro 615 620 Gly Pro Asp Phe Gly Gly Ala Gln Gly Pro Ser Ala Gly Asp Gln Pro 625 630 635 640 Ser Asp Asp Lys Asn Val Thr Asp Val Asp Phe Glu Glu Val Lys 645 650

## (2) INFORMATION FOR SEQ ID NO:281

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 467 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...467
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:281

Lys Trp Ala Arg Thr Thr Thr Leu Arg Ile Ser Asn Ala Thr Ile Tyr 5 10 15 Lys Thr Met Arg Tyr Asp Leu Ala Ile Ile Gly Gly Gly Pro Ala Gly 25 30 Tyr Thr Ala Ala Glu Arg Ala Ala Lys Gly Gly Leu Lys Thr Leu Leu 35 40 45 Ile Glu Lys Asn Ala Leu Gly Gly Val Cys Leu Asn Glu Gly Cys Ile 55 Pro Thr Lys Thr Leu Leu Tyr Ser Ala Lys Val Leu His Gln Ile Ala 70 75 Thr Ala Ser Lys Tyr Ala Val Ser Gly Thr Ala Asp Gly Leu Asp Leu 85 90 95 Gly Lys Val Ile Ala Arg Lys Gly Lys Ile Ile Arg Lys Leu Thr Ala 105

Gly Ile Arg Ser Arg Leu Thr Glu Ala Gly Val Glu Met Val Thr Ala 120 125 Glu Ala Thr Val Thr Gly Cys Asp Ala Asp Gly Ile Ile Gly Ile Thr 130 135 140 Ala Gly Glu Ala Gln Tyr Lys Ala Ala Asn Leu Leu Leu Cys Thr Gly 145 150 155 Ser Glu Thr Phe Ile Pro Pro Ile Pro Gly Val Glu Gln Thr Glu Tyr 165 170 Trp Thr Asn Arg Glu Ala Leu Gln Asn Lys Glu Ile Pro Thr Ser Leu 185 180 Val Ile Ile Gly Gly Gly Val Ile Gly Met Glu Phe Ala Ser Phe Phe 200 205 Asn Gly Ile Gly Thr Gln Val His Val Val Glu Met Leu Pro Glu Ile 215 220 Leu Asn Gly Ile Asp Pro Glu His Ala Ala Met Leu Arg Ala His Tyr 230 235 Glu Lys Glu Gly Ile Lys Phe Tyr Leu Gly His Lys Val Thr Ser Val 245 250 255 Arg Asn Gly Ala Val Thr Val Glu Tyr Glu Gly Glu Ser Lys Glu Ile 260 265 Glu Gly Glu Arg Ile Leu Met Ser Val Gly Arg Arg Pro Val Leu Gln 280 285 Gly Phe Glu Ser Leu Gly Leu Val Leu Ala Gly Lys Gly Val Lys Thr 295 300 Asn Glu Arg Met Gln Thr Ser Leu Pro Asn Val Tyr Ala Ala Gly Asp 310 315 Ile Thr Gly Phe Ser Leu Leu Ala His Thr Ala Val Arg Glu Ala Glu 325 330 335 Val Ala Val Asp Gln Ile Leu Gly Lys Thr Asp Glu Thr Met Ser Tyr 340 345 350 Arg Ala Val Pro Gly Val Val Tyr Thr Asn Pro Glu Val Ala Gly Val 365 355 360 Gly Glu Thr Glu Glu Ser Leu Arg Lys Ala Gly Arg Ala Tyr Thr Val 375 380 Arg Arg Leu Pro Met Ala Phe Ser Gly Arg Phe Val Ala Glu Asn Glu 390 395 Gln Gly Asn Gly Glu Cys Lys Leu Leu Leu Asp Glu Glu Asn Arg Leu 410 415 Ile Gly Ala His Leu Ile Gly Asn Pro Ala Gly Glu Leu Ile Val Thr 420 425 430 Ala Ala Met Ala Ile Glu Thr Gly Met Thr Asp Arg Gln Ile Glu Arg 435 440 445 Ile Ile Phe Pro His Pro Thr Val Gly Glu Ile Leu Lys Glu Thr Leu 450 455 460 Ala Gly Gly 465

## (2) INFORMATION FOR SEQ ID NO:282

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 945 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...945
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:282

 Pro
 Lys
 Ile
 Leu
 Met
 Glu
 Leu
 Lys
 Arg
 Phe
 Leu
 Ser
 Leu
 Gly
 Leu
 Leu
 Leu
 Ser
 Ala
 Gln
 Gln
 Ala
 Gln
 Pro
 Pro
 Pro
 Leu
 Leu
 Ser
 Ala
 Gln
 Gln
 Ala
 Gln
 Pro
 Pro
 Pro
 Ala
 Val
 Arg
 Val
 Glu
 Asn
 Pro
 Leu
 Asp
 Asp
 Asp
 Pro
 Asp
 Asp
 Pro
 Asp
 Asp
 Asp
 Pro
 Asp
 Asp
 Asp
 Pro
 Asp
 Asp
 Pro
 Asp
 Asp
 Asp
 Pro</tr

```
Gly Leu Ala His Phe Leu Glu His Met Ala Phe Asn Gly Thr Lys Asn
             85
 Phe Pro Gly Lys Asn Leu Ile Asn Tyr Leu Glu Thr Ile Gly Val Arg
          100
                  105
                                          110
 Phe Gly Gln Asn Leu Asn Ala Ser Thr Gly Phe Asp Lys Thr Glu Tyr
       115
           120
                                      125
 Thr Ile Met Asp Val Pro Thr Thr Arg Gln Gly Ile Ile Asp Ser Cys
         135
                           140
Leu Leu Ile Leu His Asp Trp Ser Asn Asn Ile Thr Leu Asp Gly His
145
        150
                        155
Glu Ile Asp Glu Glu Arg Gly Val Ile Gln Glu Glu Trp Arg Ala Arg
          165
                           170
Arg Asp Ala Asn Leu Arg Met Phe Glu Ala Ile Leu Ala Lys Ala Met
        180
                  185
                                          190
 Pro Gly Asn Lys Tyr Ala Glu Arg Met Pro Ile Gly Leu Met Asp Val
      195
              200
                               205
Val Leu Asn Phe Lys His Asp Glu Leu Arg Asn Tyr Tyr Lys Lys Trp
  210 215 220
Tyr Arg Pro Asp Leu Gln Gly Leu Val Ile Val Gly Asp Ile Asp Val
             230
                              235
Asp Tyr Val Glu Asn Lys Ile Lys Glu Leu Phe Lys Asp Val Pro Ala
         245
                     250
Pro Val Asn Pro Ala Glu Arg Ile Tyr Thr Pro Val Glu Asp Asn Asp
       260
                       265
Glu Pro Ile Val Ala Ile Ala Thr Asp Ala Glu Ala Thr Thr Gln
              280
                                285
Leu Ser Ile Ser Phe Lys Ser Asp Pro Thr Pro Gln Glu Val Arg Gly
                 295
                           300
Ser Ile Phe Gly Leu Val Glu Asp Tyr Met Lys Gln Val Ile Thr Thr
305 310 315
Ala Val Asn Glu Arg Leu Ser Glu Ile Thr His Lys Pro Asn Ala Pro
          325 330
Phe Leu Ser Ala Gly Ala Phe Phe Ser Asn Phe Met Tyr Ile Thr Gln
       340 345 350
Thr Lys Asp Ala Phe Asn Phe Val Ala Thr Val Arg Glu Gly Glu Ala
              360
                              365
Glu Lys Ala Met Asn Ala Leu Val Ala Glu Ile Glu Ser Leu Arg Gln
          375
                          380
Phe Gly Ile Thr Lys Gly Glu Tyr Asp Arg Ala Arg Thr Asn Val Leu
         390
                               395
Lys Arg Tyr Glu Asn Gln Tyr Asn Glu Arg Asp Lys Arg Lys Asn Asn
          405
                     410
Ala Tyr Ala Asn Glu Tyr Ser Thr Tyr Phe Thr Asp Gly Gly Tyr Ile
        420
                 425 430
Pro Gly Ile Glu Val Glu Tyr Gln Thr Val Asn Ala Phe Ala Pro Gln
      435
                     440
                                      445
Val Pro Leu Glu Ala Phe Asn Gln Ala Ile Ala Gln Met Ile Asp Pro
           455
Val Lys Asn Ala Val Val Thr Leu Thr Gly Pro Ser Lys Ala Glu Ala
465 470 475
Lys Ile Pro Ser Glu Ala Asp Phe Leu Ala Ala Phe Lys Ala Ala Arg
            485
                     490
                                             495
Gln Gln Lys Val Glu Ala Lys Lys Asp Glu Val Ser Asp Gln Lys Leu
         500
                        505
                                         510
Met Glu Lys Ala Pro Lys Ala Gly Lys Ile Val Ser Glu Lys Lys Asp
515 520 525
Gln Lys Phe Gly Thr Thr Glu Leu Thr Leu Ser Asn Gly Ile Lys Val
 530 535 540
Tyr Leu Lys Lys Thr Asp Phe Lys Ser Asn Glu Ile Leu Met Ser Ala
            550
                       555
Leu Ser Pro Gly Gly Ile Leu Ser Gly Lys His Ala Pro Asn Gln Ser
            565
                            570
Val Met Asn Ser Phe Met Asn Val Gly Gly Leu Gly Asn Phe Asp Ala
        580
                         585
Ile Gln Leu Asp Lys Val Leu Thr Gly Arg Ser Ala Ser Val Ser Pro
   595 600
                                    605
Ser Leu Ser Leu Leu Ser Glu Gly Leu Ser Gly Lys Thr Thr Val Glu 610 615 620
Asp Met Glu Thr Phe Phe Gln Leu Ile Tyr Leu Gln Met Thr Ala Asn
   630
                             635
Arg Lys Asp Pro Glu Ala Phe Lys Ala Thr Gln Glu Lys Leu Tyr Asn
         645
                            650
Asn Leu Lys Asn Gln Glu Ala Asn Pro Met Ala Ala Leu Met Asp Ser
        660
                 665
                                  670
Ile Arg His Thr Met Tyr Gly Asp Asn Pro Met Met Lys Pro Met Lys
                     680 685
Ala Ala Asp Val Glu Lys Val Asn Tyr Asp Gln Val Met Ala Phe Tyr
```

690 695 Asn Glu Arg Phe Ala Asp Ala Gly Asp Phe Met Phe Phe Phe Ile Gly 710 715 Asn Leu Asp Glu Ala Lys Met Lys Pro Leu Ile Glu Thr Tyr Leu Ala 725 730 735 Ser Leu Pro Asn Leu Lys Arg Gly Asp Lys Met Asn Lys Ala Gln Val 740 745 750 Pro Ala Ala Arg Ser Gly Lys Ile Asp Cys Lys Phe Glu Lys Glu Met 755 760 765 Asp Thr Pro Ser Thr Thr Ile Phe Asp Val Val Ser Gly Asn Val Glu 775 780 Tyr Thr Leu Lys Asn Ser Leu Leu Leu Glu Val Phe Ser Ala Val Met 790 795 Asp Gln Val Tyr Thr Ala Thr Val Arg Glu Lys Glu Gly Gly Ala Tyr 805 810 Ser Val Ala Ala Phe Gly Gly Leu Glu Gln Tyr Pro Gln Pro Lys Ala 820 825 Leu Met Gln Ile Tyr Phe Pro Thr Asp Pro Ala Arg Ala Glu Glu Met 840 845 Asn Ala Ile Val Phe Ala Glu Leu Glu Lys Leu Ala Lys Glu Gly Pro 855 860 Asn Val Glu Tyr Phe Lys Lys Thr Ile Glu Asn Leu Asn Lys Gln His 870 875 Lys Glu Ser Leu Arg Glu Asn Arg Phe Trp Leu Glu Ala Met Lys Ala 885 890 895 Ser Phe Phe Glu Gly Asn Asp Phe Ile Thr Asp Tyr Glu Ser Val Leu 900 905 910 Asn Gly Leu Thr Pro Ala Glu Leu Gln Lys Phe Ala Ala Asp Leu Leu 920 925 Lys Gln Gln Asn Arg Val Val Wet Met Ala Pro Val Ala Lys Ala 945

#### (2) INFORMATION FOR SEQ ID NO:283

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 686 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...686
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:283

Tyr Thr Met Ser Lys Lys Gly Thr Ile Gly Val Thr Ser Asp Asn Ile 10 Phe Pro Val Ile Lys Lys Phe Leu Tyr Ser Asp His Glu Ile Phe Leu 25 30 Arg Glu Ile Val Ser Asn Ala Val Asp Ala Thr Gln Lys Leu Lys Thr 40 45 Leu Thr Ser Val Gly Glu Phe Lys Gly Glu Thr Gly Asp Leu Arg Val 60 Thr Val Ser Val Asp Glu Val Ala Arg Thr Ile Thr Val Ser Asp Arg 70 Gly Val Gly Met Thr Glu Glu Glu Val Glu Lys Tyr Ile Asn Gln Ile 85 90 Ala Phe Ser Ser Ala Glu Glu Phe Leu Glu Lys Tyr Lys Asp Asp Lys 100 105 Ala Ala Ile Ile Gly His Phe Gly Leu Gly Phe Tyr Ser Ala Phe Met 115 120 125 Val Ser Glu Arg Val Asp Val Ile Thr Arg Ser Phe Arg Glu Asp Ala 130 135 140 Thr Ala Val Lys Trp Ser Cys Asp Gly Ser Pro Glu Tyr Thr Leu Glu 150 155 Pro Ala Asp Lys Ala Asp Arg Gly Thr Asp Ile Val Met His Ile Asp 165 170 Glu Glu Asn Ser Glu Phe Leu Lys Lys Glu Lys Ile Glu Gly Leu Leu

			180	1				185					190	)	
Gly	Lys	Tyr 195		Lys	Phe	Leu	Thr 200		Pro	Ile	Ile	Phe 205	_	Lys	Lys
Gln	Glu 210		Lys	Asp	Gly	Lys 215		Gln	Asp	Thr	Asp 220		Asp	Asn	Gln
Ile 225		. Asp	Thr	His	230		Trp	Thr	Lys	Lys 235	Pro		Asp	Leu	Lys 240
Asp	Glu	Asp	Tyr	Lys 245		Phe	Tyr	Arg	Ser 250	Leu		Pro	Met	Ser 255	Glu
Glu	Pro	Leu	Phe 260		Ile	His	Leu	Asn 265		Asp	Tyr	Pro	Phe 270	Asn	
Thr	Gly	Ile 275		Туг	Phe	Pro	Lys 280		Lys	Asn	Asn	Leu 285		Leu	Gln
	290					295				Val	300				
305					310					Leu 315					320
				325					330					335	
			340					345		Ile			350		
		355					360			Arg		365			
	370					375				Tyr	380				
Glu 385	Lys	Phe	Tyr	Glu	Arg 390	Ala	Ala	Lys	Phe	Phe 395	Leu	Phe	Thr	Asp	Met 400
Asp	Gly	His	Lys	Tyr 405	Thr	Phe	Asp	Glu	Tyr 410	Arg	Thr	Leu	Val	Glu 415	Gly
Val	Gln	Thr	Asp 420	Lys	Asp	Gly	Gln	Val 425	Val	Tyr	Leu	Tyr	Ala 430	Thr	Asp
		435					440			Ala		445			
	450					455				Pro	460				
465					470					Val 475					480
				485					490	Arg				495	
			500					505		Leu			510		
		515					520			Ala		525			_
	530					535				Ala	540				
545					550					Met 555					560
				565					570	Thr				575	
			580					585		Val			590		
		595					600			Ala		605			
	610					615				Glu	620				
Lys 625	Glu	Ala	Lys	Glu	Asn 630	Asn	Ala	Val	Glu	Gln 635	Ala	Lys	Thr	Glu	Gly 640
Ser	Ile	Asn	Asp	Gln 645		Thr	Lys		Ala 650	Gln	Asp	Asn	Glu		
Gly	Gln	Leu	Ile 660		Leu	Ala				Ser	Gly	Leu	Leu 670	655 Thr	Gly
Glu	Ala	Leu 675		Glu	Phe				Ser	Gln	Arg	Leu 685			

## (2) INFORMATION FOR SEQ ID NO:284

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 482 amino acids
    (B) TYPE: amino acid

  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis

#### (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...482

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:284

Asp Ile Arg Gln Lys Arg Pro Cys Phe Asn Ala Asn Leu Tyr Phe Tyr 10 Arg Ala Met Glu Lys Leu Ile Asp Ile Leu Val Val Asp Asp Asp Val 25 30 Ala Val Cys Ala Ala Leu Arg Leu Val Leu Lys Arg Ala Gly Tyr Asn 40 Pro Val Ile Ala Asn Ser Pro Asp Glu Ala Leu Ser Ile Met Arg Asn 55 Pro Asp Gly Gly Cys Lys Pro Ala Val Ile Leu Met Asp Met Asn Phe 65 70 75 80 Ser Leu Ser Thr Ser Gly Arg Glu Gly Leu Glu Leu Glu Lys Met 85 90 Gln Ile Phe Thr Ser Cys Pro Val Ile Leu Met Thr Ala Trp Ala Ser 100 105 110 Ile Pro Leu Ala Val Glu Gly Met Arg Leu Gly Ala Phe Asp Phe Ile 115 120 125 Gly Lys Pro Trp Asp Asn Asp Arg Leu Leu Arg Thr Ile Asp Thr Ala 135 140 Leu His Leu Ala Ala Pro Ser Ala Val Ala Asn Pro Ser Glu Gln Ser 150 155 Asp Arg Asp Thr Ala Arg Gln Pro Lys Ala Thr Val Gln Glu Asn Asp 165 170 Pro Cys Ala His Ile Ile Gly Arg Ser Asp Ala Ile Cys Lys Ile Lys 180 185 190 Glu Arg Ile Arg Arg Ile Ala Pro Thr His Ala Ser Val Leu Ile Thr 195 200 205 Gly Glu Ser Gly Thr Gly Lys Glu Leu Ile Ala Glu Ala Leu His Arg 215 220 Gly Ser Lys Arg Ala Ser Ala Pro Phe Val Lys Val Asn Leu Gly Gly 235 230 Ile Pro Glu Ser Leu Phe Glu Ser Glu Leu Phe Gly His Lys Lys Gly 245 250 Ala Phe Thr Asn Ala Phe Ser Asp Arg Lys Gly Arg Phe Glu Leu Ala 260 265 270 Asp Gly Gly Thr Ile Phe Leu Asp Glu Ile Gly Glu Leu Pro Val Gly 280 275 285 Asn Gln Val Lys Leu Leu Arg Val Leu Gln Glu Gln Thr Phe Glu Pro 295 300 Leu Gly Glu Ser Val Ser His Arg Val Asp Ile Arg Val Val Ser Ala 305 310 315 320 Thr Asn Ala Ser Leu Glu Arg Met Val Ala Glu Gly Arg Phe Arg Glu 325 330 335 Asp Leu Tyr Tyr Arg Ile Asn Leu Ile His Leu His Leu Pro Pro Leu 345 340 Arg Glu Arg Gln Glu Asp Ile Gln Leu Leu Val Glu Ala Phe Ser Glu 355 360 365 Ala Phe Ala Gln Ser Asn Gly Leu Pro His Ala Val Trp Ser Ala Glu 370 375 380 Ala Met Arg Arg Ile Cys Ala Met Pro Leu Pro Gly Asn Val Arg Glu 395 390 Leu Lys Asn Val Val Glu Arg Thr Leu Leu Leu Ser Gly Ser Arg Glu 410 415 Ile Ser Ala Arg Asp Val Ala Asp Phe Gly Ser Gln Val Thr Ala Ala 420 425 Asp His Ser Asp Glu Arg Ala Leu Thr Asp Met Glu Glu Ala Ala Ile 435 440 445 Arg Glu Thr Leu Thr Lys Tyr Asn Gly Asn Val Ser Arg Ala Ala Arg 450 455 460 Ala Leu Gly Leu Ser Arg Ala Ala Leu Tyr Arg Arg Met Glu Lys Tyr 470 475 Gly Leu

## (2) INFORMATION FOR SEQ ID NO:285

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 263 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...263
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:285

Arg Ser Leu Gln Ser Phe Gln Asn Lys Lys His Ser Ser Met Leu Lys 10 Ile Lys Asn Leu His Ala Thr Val Gln Gly Lys Glu Ile Leu Lys Gly Ile Asn Leu Glu Ile Asn Ala Gly Glu Ile His Ala Ile Met Gly Pro 35 40 Asn Gly Ser Gly Lys Ser Thr Leu Ser Ser Val Leu Val Gly His Pro 50 55 60 Ser Phe Glu Val Thr Glu Gly Glu Val Thr Phe Asn Gly Ile Asp Leu 70 75 Leu Glu Leu Glu Pro Glu Glu Arg Ala His Leu Gly Leu Phe Leu Ser 85 90 Phe Gln Tyr Pro Val Glu Ile Pro Gly Val Ser Met Val Asn Phe Met 100 105 Arg Ala Ala Val Asn Glu His Arg Lys Ala Ile Gly Ala Glu Pro Val 115 120 125 Ser Ala Ser Asp Phe Leu Lys Met Met Arg Glu Lys Arg Ala Ile Val 135 Glu Leu Asp Asn Lys Leu Ala Ser Arg Ser Val Asn Glu Gly Phe Ser 150 155 Gly Gly Glu Lys Lys Arg Asn Glu Ile Phe Gln Met Ala Met Leu Glu 165 170 Pro Lys Leu Ala Ile Leu Asp Glu Thr Asp Ser Gly Leu Asp Ile Asp 180 185 190 Ala Leu Arg Ile Val Ala Gly Gly Val Asn Arg Leu Arg Ser Pro Glu 195 200 205 Asn Ala Ala Ile Val Ile Thr His Tyr Gln Arg Leu Leu Glu Tyr Ile 215 220 Lys Pro Asp Phe Val His Val Leu Tyr Lys Gly Arg Ile Val Lys Ser 225 230 230 230 Gly Gly Ala Glu Leu Ala Leu Thr Leu Glu Glu Lys Gly Tyr Asp Trp 245 250 Ile Lys Glu Glu Ile Gly Glu

(2) INFORMATION FOR SEQ ID NO:286

260

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 462 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...462
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:286

70 Glu Phe Asp Arg Val Leu Gly Gly Gly Ile Val Lys Gly Ala Phe Val Leu Leu Gly Gly Glu Pro Gly Ile Gly Lys Ser Thr Leu Ile Leu Gln 100 105 110 Thr Val Leu Arg Leu Pro Gln Leu Arg Thr Leu Tyr Val Ser Gly Glu 120 125 Glu Ser Ala Arg Gln Leu Lys Met Arg Ala Glu Arg Leu Gly Gln Ala 130 135 140 Met Asn Gly Cys Tyr Val Tyr Cys Glu Thr Asn Ile Glu Arg Ile Leu 145 150 155 Ser Arg Ala Glu Glu Leu Thr Pro Asp Leu Leu Val Ile Asp Ser Ile 165 170 Gln Thr Val Tyr Thr Glu Glu Met Glu Ser Ser Ala Gly Ser Val Gly 185 190 Gln Ile Arg Glu Cys Ala Ala Leu Leu Leu Lys Tyr Cys Lys Thr Thr 195 200 205 Gly Ile Pro Val Ile Val Ile Gly His Ile Thr Lys Glu Gly Ser Ile 210 215 Ala Gly Pro Lys Val Leu Glu His Ile Val Asp Thr Val Leu Leu Phe 230 235 Asp Gly Asp Lys His His Leu Tyr Arg Ile Leu Arg Gly Gln Lys Asn 245 250 255 Arg Tyr Gly Ser Thr Ser Glu Leu Gly Ile Tyr Glu Met Arg Gln Asp 260 265 270 Gly Leu Arg Gly Val Glu Asn Pro Ser Glu His Leu Ile Thr Arg Asn 280 Arg Glu Asp Leu Ser Gly Ile Ala Ile Ala Val Ala Met Glu Gly Ile 295 300 Arg Pro Ile Leu Ile Glu Ala Gln Ala Leu Val Ser Ser Ala Ile Tyr 310 315 Ala Asn Pro Gln Arg Ser Ala Thr Gly Phe Asp Ile Arg Arg Met Asn 325 330 335 Met Leu Leu Ala Val Leu Glu Lys Arg Ala Gly Phe Lys Leu Ile Gln 340 345 350 Lys Asp Val Phe Leu Asn Ile Ala Gly Gly Ile Lys Ile Ala Asp Pro 355 360 Ala Thr Asp Leu Ala Val Ile Ser Ala Val Leu Ala Ser Ser Leu Asp 375 380 Ile Val Ile Pro Pro Ala Val Cys Met Thr Gly Glu Val Gly Leu Ser 390 395 Gly Glu Ile Arg Pro Val Ser Arg Ile Glu Gln Arg Ile Thr Glu Ala 405 410 Arg Arg Ile Gly Phe Lys Glu Ile Leu Val Pro Ala Asp Asn Phe Arg 420 425 Gln Glu Asp Ala Gly Arg Phe Gly Ile Arg Leu Val Pro Val Arg Lys 435 440 445 Val Glu Glu Ala Phe Arg His Leu Phe Ser Lys Gly Arg Glu 455

## (2) INFORMATION FOR SEQ ID NO:287

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 373 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...373
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:287

55 Pro Arg Arg Ser Ala Ser Asp Ala Gly Arg Thr Glu Arg Ile Gln Ser 65 70 75 80 Pro Leu Gln Asn Leu Leu Gln Glu Met Gln Phe Ser Pro Thr Asn Arg 85 90 95 Arg Asn Pro Phe Asp Asn Met Asn Ser Arg His Leu Thr Ile Thr Ile 100 105 110 Ile Ala Gly Leu Ser Leu Phe Val Leu Thr Leu Gly Gly Cys Ser Val 120 125 Ala Gln Gln Asp Thr Gln Trp Thr Leu Gly Gly Lys Leu Phe Thr Ser 130 135 140 Ala Trp Ile Gln Arg Ser Ala Glu Tyr Gln Ala Leu Cys Ile Gln Ala 145 150 155 Tyr Asn Ile Ala Thr Glu Arg Val Asp Ala Leu Pro Ala Glu Arg Lys 165 170 Gln Gly Asp Arg Pro Tyr Ala Ile Val Thr Asp Ile Asp Glu Thr Ile 180 185 190 190 Leu Asp Asn Thr Pro Asn Ser Val Tyr Gln Ala Leu Arg Gly Lys Asp 195 200 205 Tyr Asp Glu Glu Thr Trp Gly Lys Trp Cys Ala Gln Ala Asp Ala Asp 215 220 Thr Leu Ala Gly Ala Leu Ser Phe Phe Leu His Ala Ala Asn Lys Gly 230 235 Ile Glu Val Phe Tyr Val Thr Asn Arg Arg Asp Asn Leu Arg Glu Ala 245 250 255 Thr Leu Gln Asn Leu Gln Arg Tyr Gly Phe Pro Phe Ala Asp Glu Glu 260 265 270 His Leu Leu Thr Thr His Gly Pro Ser Asp Lys Glu Pro Arg Arg Leu 280 285 Lys Ile Gln Glu Gln Tyr Glu Ile Val Leu Leu Ile Gly Asp Asn Leu 300 295 Gly Asp Phe His His Phe Phe Asn Thr Lys Glu Glu Ser Gly Arg Lys 305 310 315 320 Gln Ala Leu Gly Leu Thr Ala Gly Glu Phe Gly Arg His Phe Ile Met 325 330 335 Leu Pro Asn Pro Asn Tyr Gly Ser Trp Glu Pro Ala Trp Tyr Gly Gly 340 345 Lys Tyr Pro Pro Leu Pro Glu Arg Asp Lys Ala Leu Lys Gln Leu His 355 360 365 Ser Gln Asn Ser Arg 370

### (2) INFORMATION FOR SEQ ID NO:288

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...426
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:288

Arg Trp Gly Phe Ser Asn Phe Val Ala Met Ser Thr Asn Ile Asp Val 10 Gln Gln Ile Lys Gln Arg Phe Gly Ile Ile Gly Ser Ser Pro Leu Met 20 25 Glu His Ala Ile Arg Val Ala Ala Gln Val Ala Pro Thr Asp Met Ser 35 40 45 Val Leu Val Thr Gly Glu Ser Gly Ser Gly Lys Glu Phe Phe Pro Gln 55 60 Ile Ile His Tyr Tyr Ser Ala Arg Lys His His Ser Tyr Ile Ala Val 70 75 Asn Cys Gly Ala Ile Pro Glu Gly Thr Ile Asp Ser Glu Leu Phe Gly 85 90 His Arg Lys Gly Ser Phe Thr Gly Ala Val Ser Asp Arg Lys Gly Tyr 100 105 Phe Glu Glu Ala Ser Gly Gly Thr Ile Phe Leu Asp Glu Val Gly Glu

115 120 Leu Pro Leu Pro Thr Gln Ala Arg Leu Leu Arg Val Leu Glu Thr Gly 130 135 140 Glu Phe Ile Pro Val Gly Ala Ser Gln Ser Gln Lys Thr Asp Val Arg 145 150 155 Ile Val Ala Ala Thr Asn Val Asn Leu Lys Glu Ala Val Ala Asn Gly 165 170 175 Lys Phe Arg Glu Asp Leu Phe Phe Arg Leu Asn Thr Val Pro Ile Glu 180 185 190 Val Pro Ala Leu Arg Met Arg Pro Asp Asp Val Pro Leu Leu Phe Arg 195 200 205 Arg Phe Ala Ala Asp Ser Ala Glu Lys Tyr Arg Met Pro Pro Leu Arg 210 215 220 Leu Ser Asp Glu Ala Arg Thr Ile Leu Met Arg Tyr Arg Trp Pro Gly 225 230 230 235 Asn Val Arg Glu Leu Arg Asn Ile Thr Asp Arg Leu Ser Ile Leu Glu 245 250 255Glu Glu Arg Thr Val Ser Ala Glu Thr Ile Thr Arg Tyr Leu Asp Ala 260 265 270 Glu Gly Met Gln Asp Leu His Pro Val Val Ile Arg Arg Asn Glu Thr 275 280 285 Thr Glu Ala Asp Lys Gln Ile Pro His Tyr Glu Arg Glu Ile Ile Tyr 295 300 Gln Val Leu Tyr Asp Met Lys Lys Glu Ile Ala Asp Leu Lys Gly Met 305 310 315 320 Met Asn Arg Leu Ala His His Glu Gln Pro Ser Trp Pro Val Gly Ser 325 330 335 Asp Val Trp Gly Asn Asp Asp Lys Arg Thr Ala Asp Pro Lys Trp Gly 340 345 350 Val Ser Thr His Lys Ala Pro Ile Ala Asn Ala Ala Glu Pro Val Glu 360 355 365 Pro Ile Gln Glu Ala Ser Glu Tyr Thr Glu Asp Pro Val Ser Leu Glu 370 375 380 Glu Val Glu Lys Lys Met Ile Ser Leu Ala Leu Glu Arg His Gly Gly 390 395 Arg Arg Lys Gln Thr Ala Glu Glu Leu Lys Ile Ser Glu Arg Thr Leu 405 410 Tyr Arg Lys Ile Lys Glu Tyr Gly Leu Glu 420

# (2) INFORMATION FOR SEQ ID NO:289

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 653 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...653
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:289

Lys Asn Leu Pro Arg Tyr Ala Pro Ala Phe Gly Arg Asn Arg Lys Arg 10 15 Glu Gln Pro Asp Pro Asp Asn Asp Asp Ser Arg Gly Arg Ser His Arg Gln Ser Gly Arg Ala Val Thr Val Val Cys Arg Arg Ile Gln Thr Pro 35 40 Leu Pro His Met Ile Leu Leu Phe Gly Gly Thr Thr Glu Gly Arg Ala 50 55 60 Ala Ala Arg Val Leu Asp Glu Ala Gly Ser Pro Phe Phe Tyr Ser Thr 65 70 75 Lys Gly Asn Leu Gln Glu Ile Gln Ser Ser His Gly His Arg Leu Thr 90 85 Gly Ala Met Thr Val Ala Asp Met Val Ser Phe Cys Arg Lys Glu Glu 105 Ile Arg Leu Ile Val Asp Ala Ala His Pro Phe Ala Glu Glu Leu His 120 125 Ala Ser Val Ala Glu Ala Ser Glu Gln Thr Gly Ile Pro Val Val Arg

	130			_	_	135	_	~1	<b>~</b> 1	<b>a</b> 1	140	**- 1	m	C	77-
145					150				Glu	155					160
Asn	Tyr	Asp	Thr	Ala 165	Ala	Glu	Arg	Met	Leu 170	Gly	Asp	Gly	Val	Gln 175	Arg
Leu	Leu	Met	Leu 180	Thr	Gly	Val	Asn	Thr 185	Ile	Pro	Lys	Leu	Ala 190	Ala	Phe
Trp	Lys	Glu 195		Thr	Thr	Phe	Cys 200		Ile	Leu	Lys	Arg 205	Asp	Glu	Ser
Val	Ala 210		Ala	Glu	Lys	Asn 215		Phe	Pro	Ala	Glu 220		Ile	Val	Phe
		Pro	His	Ala			Glu	Leu	Met	Gln 235		Val	Arg	Pro	Asp 240
225 Ala	Ile	Ile	Thr		230 Glu	Ser	Gly	Glu	Ser		Tyr	Phe	Arg	Glu 255	
Ile	Glu	Ala		245 Arg	Arg	Met	Gly		250 Arg	Ile	Tyr	Ala			Arg
Pro	Pro	Leu	260 Pro	Pro	Ser	Phe		265 Pro	Val	Gly	Gly		270 Val	Gly	Leu
Arg	Arg	275 Ala	Val	Glu	Arg	Leu	280 Val	Pro	Gly	Phe	Phe	285 Ser	Leu	Arg	Ser
	290					295					300		_		
	Phe	Thr	Thr	Gly		Thr	Ala	Thr	Ala	Ala 315	Val	Val	Ala	Ala	Met 320
305 Tyr	Arg	Leu	Met	Gly 325	310 Leu	Gly	Ser	Leu	Ala 330		Ala	Pro	Val	Glu 335	
Pro	Ser	Gly	Glu 340		Val	Ser	Leu	Pro	Ile	Ala	Glu	Ile	Arg 350		Glu
Glu	Asp	Ala 355		Val	Ser	Ala	Val 360		Lys	Asp	Ala	Gly 365		Asp	Pro
Asp			Asn	Gly	Met	Ala 375		Cys	Ala	Thr	Ile 380		Leu	Asn	Pro
	370 His	Glu	Glu	Val			Leu	Gln	Gly	Glu 395		Val	Gly	Val	Val 400
385 Thr	Leu	Pro	Gly		390 Gly	Leu	Glu	Val	Gly		Pro	Ala	Ile	Asn 415	
Val	Pro	Arg		405 Met	Met	Thr	Ala		410 Val	Arg	Arg	Leu	Tyr 430		Gln
Gly	Gly		420 Asp	Ile	Thr	Ile		425 Val	Pro	Glu	Gly	Arg		Ala	Ala
Thr		435 Thr	Phe	Asn	Pro		440 Leu	Gly	Ile	Arg			Ile	Ser	Ile
	450 Gly	Thr	Ser	Gly		455 Val	Lys	Pro	Phe		460 Ala	Glu	Ala	Phe	
465	77-	т1.	7~~	T	470	นาไ	Cly	Tle	Ala	475	Δla	T.e.11	Glv	Δla	480
GIY	Ala	ııe	AIG	485	GIII	vai	GLY	116	490	1111	AIG	Вси	O ₁	495	11011
His	Ile	Val	Leu 500		Ser	Gly	Ala	Lys 505	Ser	Glu	Arg	Tyr	Val 510	Lys	Gly
		515	Ala				520		Phe			525			
Val	Gly 530	Glu	Ser	Leu	Ser	Cys 535		Ala	Ser	Phe	Pro 540		Val	Arg	Ser
Val 545			Gly	Ile	Met 550	Leu		Lys	Ala	Val 555	Lys	Leu	Ala	Glu	Gly 560
	Leu	Asp	Thr	His 565			Lys	Val	Val 570		Asn	Arg	Asp	Phe 575	
His	Glu	Leu	Ala 580	Arg	Gln	Ala	Gly	Cys 585	Ser		Asp	Ile	His 590		Ile
Ile	Asp	Ser 595	Leu		Leu	Ala	Arg 600	Glu	Leu	Trp	Thr	Met 605		Ser	Ala
Glu	Asp	Ser		Arg	Leu	Leu 615	Arg		Ile	Ala	Glu 620	Arg		Trp	Glu
Thr			Pro	Ser	Val			Ala	Glu	Leu	Glu	Leu	Leu	Leu	
625					630					635					640
Asp	Glu	Ser	Gly	Ala 645		Arg	Phe	Arg	Ile 650		Gly	Glu			

# (2) INFORMATION FOR SEQ ID NO:290

- (i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 451 amino acids
   (B) TYPE: amino acid

  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...451
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:290

Gln Gln Arg Pro His Arg Ile Ile Met Leu Arg Thr Phe Arg Ile Gly 10 Gly Ile His Pro Pro Glu Asn Lys Leu Ser Ala Gly Lys Pro Val Glu 25 20 Val Leu Pro Ile Pro Ser Gln Val Val Ile Pro Leu Gly Gln His Ile 35 40 Gly Ala Pro Ala Thr Ala Thr Val Lys Lys Gly Asp Glu Val Lys Val 55 Gly Thr Ile Ile Ala Gln Ala Gly Gly Phe Val Ser Ala Asn Ile His 75 70 Ser Ser Val Ser Gly Lys Val Leu Lys Ile Asp Asn Val Tyr Asp Ser 90 85 Ser Gly Tyr Pro Lys Pro Ala Val Phe Ile Ser Val Glu Gly Asp Glu 100 105 110 Trp Glu Glu Gly Ile Asp Arg Ser Pro Ala Ile Val Lys Glu Cys Asn 120 125 115 Leu Asp Ala Lys Glu Ile Val Ala Lys Ile Ser Ala Ala Gly Ile Val 130 135 140 Gly Leu Gly Gly Ala Thr Phe Pro Thr His Val Lys Leu Ser Pro Pro 155 150 Pro Gly Asn Lys Ala Glu Ile Leu Ile Ile Asn Ala Val Glu Cys Glu 165 170 175 Pro Tyr Leu Thr Ser Asp His Val Leu Met Leu Glu His Gly Glu Glu 180 185 190 Ile Met Ile Gly Val Ser Ile Leu Met Lys Ala Ile Gln Val Asn Lys 200 195 Ala Val Ile Gly Val Glu Asn Asn Lys Lys Asp Ala Ile Ala His Leu 210 215 220 Thr Lys Leu Ala Thr Ala Tyr Pro Gly Ile Glu Val Met Pro Leu Lys 225 230 235 240 Val Gln Tyr Pro Gln Gly Gly Glu Lys Gln Leu Ile Asp Ala Val Ile 245 250 255 Arg Lys Gln Val Lys Ser Gly Ala Leu Pro Ile Ser Thr Gly Ala Val 270 260 265 Val Gln Asn Val Gly Thr Val Phe Ala Val Tyr Glu Ala Val Gln Lys 280 285 275 Asn Lys Pro Leu Val Glu Arg Ile Val Thr Val Thr Gly Lys Lys Leu 290 295 Ser Arg Pro Ser Asn Leu Leu Val Arg Ile Gly Thr Pro Ile Ala Ala 315 310 Leu Ile Glu Ala Ala Gly Gly Leu Pro Glu Asn Thr Gly Lys Ile Ile 325 330 335 Gly Gly Gly Pro Met Met Gly Arg Ala Leu Leu Ser Pro Asp Val Pro 340 345 350 Val Thr Lys Gly Ser Ser Gly Val Leu Ile Leu Asp Arg Glu Glu Ala 360 365 355 Val Arg Lys Pro Met Arg Asp Cys Ile Arg Cys Ala Lys Cys Val Gly 380 370 375 Val Cys Pro Met Gly Leu Asn Pro Ala Phe Leu Met Arg Asp Thr Leu 390 395 Tyr Lys Ser Trp Glu Thr Ala Glu Lys Gly Asn Val Val Asp Cys Ile 405 410 415 Glu Cys Gly Ser Cys Ser Phe Thr Cys Pro Ala Asn Arg Pro Leu Leu 420 425 430 Asp Tyr Ile Arg Gln Ala Lys Lys Thr Val Met Gly Ile Gln Arg Ala 435 440 Arg Lys Gln 450

- (2) INFORMATION FOR SEQ ID NO:291
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 489 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein

- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...489
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:291

Met Asn Ser Gln Lys Lys Glu Ala Phe Asn Met Lys Arg Ile Gln Leu 10 Thr Leu Ile Ala Leu Phe Ala Ala Val Ala Gly Leu Val Ala Gln Asn 20 Ala Tyr Glu Gly Val Ile Ser Tyr Lys Ile Ser Leu Asp Lys Thr Gly 40 45 Asn Lys Val Val Leu Asn Gly Ala Ala Asp Met Ser Asn Leu Lys Leu 55 60 Lys Ser Thr Gln Met Ile Ile Val Thr Pro Ile Leu Arg Ser Glu Asp 75 70 Gly Thr Ser Arg Val Glu Phe Pro Ser Val Val Ile Thr Gly Arg Asn 90 85 Arg Thr Lys Ala Leu Lys Arg Glu Ile Ala Phe Ser Ser Ala Leu Pro 105 110 100 Gln Ala Lys His Ala Ala Gln Tyr Ile Arg Arg His Asn Gly Lys Ser 115 120 125 Glu Gln Phe Ala Phe Thr Gly Glu His Ala Tyr Ala Ser Trp Met Met 135 140 Asp Ala Lys Phe Val Val Arg Glu Glu Val Arg Gly Cys Ala Lys Cys 145 150 150 155 160 Pro Val Gly Leu Ser Ser Asn Ile Val Pro Phe Asp Pro Leu Phe Asn 165 170 175 Pro Ala Glu Ala Pro Tyr Leu Leu Ala His Ile Thr Pro Ala Glu Glu 185 180 Val Glu Lys Gln Arg Glu Ser Ser Phe Asp Ala Tyr Ile Asn Phe Lys 195 200 205 Val Asn Lys Ala Asp Val Leu Pro Glu Tyr Arg Asn Asn Lys Ala Glu 210 215 220 Leu Glu Lys Ile Lys Glu Phe Val Ser Thr Val Lys Ala Asn Pro Asn 230 235 Tyr Ser Val Asn Lys Met Ile Ile Glu Gly Phe Ala Ser Pro Glu Ala 245 250 Ser Ile Ala His Asn Lys Ala Leu Ser Glu Arg Arg Ala Lys Arg Leu 260 265 270 Ala Glu Glu Leu Val Arg Lys Tyr Gly Lys Thr Leu Pro Asn Ile Thr 275 280 Thr Glu Phe Gly Gly Glu Asp Trp Lys Gly Leu Lys Leu Ala Ile Glu 290 295 300 Lys Ser Asp Ile Ala Asp Arg Asp Arg Val Leu Glu Ile Ile Asn Ser 310 315 Asp Lys Tyr Ala Asp Asp Asp Ala Arg Glu Gln Ala Leu Lys Gln Leu 330 335 325 Ser Ser Tyr Arg Tyr Ile Leu Asp Gln Ile Tyr Pro Asn Leu Arg Arg 340 345 350 Asn Thr Ile Thr Met Gly Tyr Ile Val Arg Asp Tyr Thr Leu Glu Glu 360 365 355 Ala Arg Glu Ile Ile Lys Thr Ala Pro Lys Glu Leu Ser Glu Ala Glu 375 Met Tyr Arg Val Ala Met Ser Tyr Pro Glu Gly His Gln Glu Arg Leu 395 390 Phe Ala Leu Asn Thr Thr Leu Lys Tyr Phe Pro Glu Ser Val Thr Gly 405 410 Arg Ile Asn Leu Ala Val Ala Ala Phe Asn Gly Gly Asp Val Gln Gln 420 425 430 Ala Ile Ala Leu Leu Ser Pro Ile Gln Thr Glu Lys Gly Val Ser Asn 435 440 445 Ile Leu Gly Ala Ala Tyr Ala Arg Thr Gly Asp Phe Ala Arg Ala Glu 455 460 450 Thr Phe Phe Arg Lys Ala Val Ala Glu Gly Asp Ala Asn Ala Gln Arg 475 470 Asn Leu Asp Met Leu Leu Gly Lys Lys

(2) INFORMATION FOR SEQ ID NO:292

485

(i) SEOUENCE CHARACTERISTICS:

- (A) LENGTH: 384 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...384
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:292

Asp Met Ala Glu Lys Arg Asp Tyr Tyr Glu Val Leu Gly Val Ser Lys 5 10 Asn Ala Thr Asp Asp Glu Leu Lys Lys Ala Tyr Arg Lys Lys Ala Ile 20 25 30 Gln Tyr His Pro Asp Lys Asn Pro Gly Asp Lys Glu Ala Glu Glu His 4.5 40 35 Phe Lys Glu Val Ala Glu Ala Tyr Asp Val Leu Ser Asp Pro Gln Lys 55 60 50 Arg Ser Gln Tyr Asp Gln Phe Gly His Ala Gly Leu Gly Gly Ala Ala 70 75 Gly Gly Gly Phe Ser Gly Gly Gly Met Ser Met Glu Asp Ile Phe Ser 85 90 Arg Phe Gly Asp Leu Phe Gly Gly Phe Gly Gly Phe Gly Gly Phe Ser Asp Met Gly Gly Gly Ser Arg Arg Arg Val Arg Arg Gly Ser Asp Leu 125 120 115 Arg Val Arg Val Lys Leu Ser Leu Ala Asp Ile Ser Lys Gly Val Glu 135 140 130 Lys Lys Val Lys Val Lys Lys Gln Val Val Cys Ser Lys Cys Arg Gly 150 155 Asp Gly Thr Glu Glu Ala Asn Gly Lys Thr Thr Cys Gln Thr Cys His 170 175 165 Gly Thr Gly Val Val Thr Arg Val Ser Asn Thr Phe Leu Gly Ala Met 180 185 190 Gln Thr Gln Ser Thr Cys Pro Thr Cys His Gly Glu Gly Glu Ile Ile 195 200 205 Thr Lys Pro Cys Ser Lys Cys Lys Gly Glu Gly Val Glu Ile Gly Glu 210 215 220 Glu Val Ile Ser Phe His Ile Pro Ala Gly Val Ala Glu Gly Met Gln 225 230 235 Met Ser Val Asn Gly Lys Gly Asn Ala Ala Pro Arg Gly Gly Val Asn 250 255 245 Gly Asp Leu Ile Val Val Ile Ala Glu Glu Pro Asp Pro Asn Leu Ile 265 270 Arg Asn Gly Asn Asp Leu Ile Tyr Asn Leu Leu Ile Ser Val Pro Leu 275 280 285 Ala Ile Lys Gly Gly Ser Val Glu Val Pro Thr Ile Asp Gly Arg Ala 290 295 300 Lys Ile Arg Ile Glu Ala Gly Thr Gln Pro Gly Lys Met Leu Arg Leu 305 310 315 320 Arg Asn Lys Gly Leu Pro Ser Val Asn Gly Tyr Gly Met Gly Asp Gln 325 330 335 Leu Val Asn Val Asn Val Tyr Ile Pro Glu Ser Ile Asp Ala Lys Asp 345 350 Glu Gln Ala Ile Ala Ala Met Glu Asn Ser Asp Ser Phe Lys Pro Thr 360 365 Asp Ala Ala Arg Lys Asp Ile Asp Lys Lys Tyr Arg Glu Met Leu Asp 380 375

- (2) INFORMATION FOR SEQ ID NO:293
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 309 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...309
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:293

Arg Phe Asp Ser Thr Thr Asn Val Ser Gln Ile Asn Leu Arg Thr Glu 10 Met Lys Lys Leu Ile Leu Ala Thr Leu Gly Leu Met Ala Ile Ala Met 20 25 Leu Ser Cys Ser Ser Asn Asn Lys Asp Leu Glu Asn Lys Gly Glu Ala 35 40 Thr Leu Leu Val Thr Phe Gly Ser Ser Tyr Lys Ala Pro Arg Glu Thr 55 60 Tyr Ala Lys Ile Glu Lys Thr Phe Ala Ala Ala Tyr Pro Asp Gln Arg 70 75 Ile Ser Trp Thr Tyr Thr Ser Ser Ile Ile Arg Lys Lys Leu Ala Gln 95 90 85 Gln Gly Ile Tyr Ile Asp Ala Pro Asp Glu Ala Leu Glu Lys Leu Ala 105 110 100 Arg Leu Gly Tyr Lys Lys Ile Asn Val Gln Ser Leu His Val Ile Pro 115 120 125 120 115 Gly Arg Glu Tyr Asp Glu Met Ile Asp Phe Val Asn Lys Phe Lys Ala 135 140 Ala His Ser Asp Ile Thr Val Lys Val Gly Ala Pro Leu Phe Asp Thr 150 155 Asp Glu Asp Met Arg Glu Val Ala Glu Ile Leu His Lys Arg Phe Gln 165 170 175Gln Thr Ile Glu Lys Gly Glu Ala Ile Val Phe Met Gly His Gly Thr 180 185 190 Glu His Ala Ala Asn Asp Arg Tyr Ala Arg Ile Asn Lys Ile Met Lys 200 205 195 Asn Tyr Ser Lys Phe Met Ile Val Gly Thr Val Glu Ser Asp Pro Ser 215 220 Ile Asn Asp Val Ile Ala Glu Leu Lys Glu Thr Gly Ala Thr Ala Val 230 235 Thr Met Met Pro Leu Met Ser Val Ala Gly Asp His Ala Thr Asn Asp 255 245 250 Met Ala Gly Asp Glu Asp Asp Ser Trp Lys Thr Leu Leu Thr Asn Ala 265 270 260 Gly Tyr Thr Val Ser Ile Asp Lys Leu Asp Asn Gly Asn Phe Ser Ala 280 285 275 Leu Gly Asp Ile Glu Glu Ile Arg Asn Ile Trp Leu Lys His Met Lys 290 295 Ala Thr Ser Ala Arg

- (2) INFORMATION FOR SEQ ID NO:294
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 491 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...491
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:294

Gly Val Arg Leu Arg Ser Phe Glu Ser Arg Arg Gln Pro Ile Cys Arg 65 70 75 80 Phe Gln Gly Ile Gln Gly Lys Arg Arg Asp Ile Leu Gln Pro Glu Gly 90 95 85 Asn Ser Leu Leu Arg Thr His Ala His Ala Ser Arg Leu Gly Ala Gly 100 105 110 Arg Ser Tyr Arg Tyr Leu Ala Pro Arg Thr Thr Ser Arg Pro Pro Thr 120 125 115 Ala Phe Leu Leu Phe Ala Pro Met Thr Ser Val Ser His Leu Arg Thr 135 140 Ile Ser Val Ala Gly Ile Leu Ala Ala Leu Gly Gly Ala Val Leu Ile 145 150 155 Leu Phe Gly Val Asn Leu Phe Leu Gly Ser Val Ala Ile Pro Met Ser 165 170 175 Glu Ile Phe Arg His Leu Phe Ser Asp Arg Pro Glu Gly Glu Ala 185 190 Leu Val His Tyr Asn Ile Leu Trp Lys Ser Arg Leu Pro Glu Ala Leu 205 195 200 Thr Ala Ala Phe Ala Gly Ala Gly Leu Ser Val Ser Gly Leu Gln Met 215 220 Gln Thr Val Phe Arg Asn Pro Leu Ala Gly Pro Ser Val Leu Gly Ile 235 230 Ser Ser Gly Ala Ser Leu Gly Val Ala Leu Val Val Leu Leu Ser Gly 245 250 255 Ser Leu Gly Gly Val Ala Leu Ser Ser Leu Gly Tyr Met Gly Glu Val 265 270 Ala Met Asn Ile Ala Ala Ala Val Gly Ser Leu Ala Val Met Gly Leu 280 285 Ile Val Phe Val Ser Thr Lys Val Arg Ser His Val Thr Leu Leu Ile 300 290 295 Ile Gly Val Met Ile Gly Tyr Val Ala Thr Ala Val Ile Gly Val Phe 305 310 315 Lys Phe Phe Ser Ile Glu Glu Asp Ile Arg Ala Tyr Val Ile Trp Gly 330 325 Leu Gly Ser Phe Ser Arg Ala Thr Asp Ser Gln Leu Ser Phe Phe Ala 340 345 350 Ile Leu Met Leu Ile Phe Ile Pro Ala Gly Met Leu Leu Val Lys Gln 360 365 355 Leu Asn Leu Leu Leu Gly Glu Ser Tyr Ala Arg Asn Leu Gly Leu 370 375 380 Asn Thr Arg Arg Ala Arg Leu Leu Val Ile Ser Ser Ala Gly Leu Leu 395 390 Ile Ala Thr Val Thr Ala Tyr Cys Gly Pro Ile Gly Phe Leu Gly Met 415 405 410 Ala Val Pro His Leu Ala Arg Val Ile Phe His Thr Ser Asp His Arg 425 420 Ile Leu Met Pro Ala Thr Cys Leu Ile Gly Ser Ala Leu Ala Leu Phe 435 440 445 Cys Asn Ile Ile Ala Arg Met Pro Gly Phe Glu Gly Ala Leu Pro Val 450 455 460 455 Asn Ser Val Thr Ala Leu Val Gly Ala Pro Ile Ile Val Thr Val Leu 470 475 Phe Arg Arg Arg Phe Lys Glu Glu Thr Asp 485

#### (2) INFORMATION FOR SEQ ID NO:295

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 763 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...763
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:295

His Phe Leu Val Thr Ile Met Arg Thr Lys Thr Ile Phe Phe Ala Ile

1 Ile	Ser	Phe	Ile	5 Ala	Leu	Leu	Ser	Ser	10 Ser	Leu	Ser	Ala	Gln	15 Ser	Lys	
			20		Ser			25					30			
מות	Gl v	35 31 a	Ara	Tla	Glu	Val	40 Lvg	Иie	Thr	Δan	Tle	45 Val	Δla	Glv	Δla	
	50		_			55	_				60					
Asp 65	Ala	Gly	Gly	His	Phe 70	Glu	Ile	Lys	Asn	Leu 75	Pro	Ala	Gly	Gln	His 80	
	Ile	Ile	Cys	Ser 85	Leu	Gly	Gly	Tyr	Gly 90	Gln	Lys	Glu	Glu	Val 95	Val	
Ala	Ile	Glu	Ala 100	Gly	Gln	Thr	Lys	Thr 105	Ile	Ser	Phe	Ala	Leu 110	Arg	Leu	
Arg	Thr	Asn 115	Asn	Leu	Glu	Glu	Val 120	Val	Val	Thr	Gly	Thr 125	Gly	Thr	Arg	
Tyr	Arg 130	Leu	Val	Asp	Ala	Pro 135	Val	Ala	Thr	Glu	Val 140	Leu	Thr	Ala	Lys	
Asp		Ala	Ser	Phe	Ser 150		Pro	Thr	Ser	Glu 155	Ala	Leu	Leu	Gln	Gly 160	
	Ser	Pro	Ser		Asp	Phe	Gly	Pro			Met	Gly	Ser	Phe		
Gln	Leu	Asn		165 Leu	Ser	Ser	Lys	Tyr 185	170 Ile	Leu	Ile	Leu	Ile 190		Gly	
Lys	Arg		180 Tyr	Gly	Asp	Val			Gln	Ala	Asp			Arg	Ile	
Ser	Pro	195 Asp	Gln	Ile	Glu	Arq	200 Ile	Glu	Leu	Val	Lys	205 Gly	Ala	Ser	Ser	
	210	_				215					220					
225	ьeu	Tyr	GIY	ser	Asp 230	AIA	шe	АІА	GIÀ	235	116	ASII	vai	116	240	
Lys	Lys	Asn	Thr	Asn 245	Arg	Leu	Ser	Ala	Tyr 250	Thr	Ser	His	Arg	Ile 255	Ser	
Lys	Tyr	Asn	Asp 260	Arg	Gln	Thr	Asn	Thr 265	Ser	Leu	Asp	Ile	Asn 270	Ile	Gly	
Lys	Phe	Ser 275	Ser	Asn	Thr	Asn	Tyr 280	Phe	Phe	Tyr	His	Thr 285	Asp	Gly	Trp	
Gln	Asn 290	Ser	Pro	Phe	Glu	Ile 295	Lys	Lys	Lys	Lys	Gly 300	Ser	Gly	Glu	Pro	
Val 305	Leu	Glu	Glu	Thr	Tyr 310	Lys	Lys	Thr	Phe	Arg 315	Ala	Gln	Glu	Asn	Gln 320	
	Val	Ser	Gln	Ser 325	Leu	Ser	Tyr	Tyr	Ala 330		Asn	Asn	Leu	Ser		
Ser	Gly	Asn	Val		Tyr	Asn	Lys	Arg		Ile	Phe	Thr	Pro 350		Phe	
Ser	Glu	Lys 355		Ala	Tyr	Asp	Met 360		Tyr	Arg	Ala	Leu 365		Ala	Ser	
Leu	Gly 370		Asn	Tyr	Leu	Phe 375		Asn	Gly	Leu	His 380		Leu	Ser	Phe	
	Ala				Arg	Phe					Leu		His	Asp	Lys 400	
385 Asp					Leu								Glu	Gln 415		
Thr	Phe	Phe			Gln	Leu	Arg			Asn	Asp	Gln			Tyr	
Thr	Ala	Glu	420 Ala	Arg	Gly	Val	Phe	425 Thr	Leu	Pro	Tyr	Ala	430 Gln	Lys	Leu	
Thr	Glv	435 Glv	Len	Glu	Tyr	Phe	440 Arq	Glu	Glu	Leu	Ile	445 Ser	Pro	Tyr	Asn	
	450	•			Ala	455	_				460				_	
465			_	-	470	_				475					480	
				485	Leu				490					495		
			500		Glu			505					510			
Ile	Leu	Ala 515	Lys	Tyr	Gly	Pro	Leu 520	Asn	Phe	Arg	Ala	Thr 525	Tyr	Ala	Asn	
Gly	Tyr 530	Lys	Thr	Pro	Thr	Leu 535	Lys	Glu	Leu	Phe	Ala 540	Arg	Asn	Glu	Leu	
Thr 545	Thr	Met	Gly	Ser	His 550	Asn	Leu	Tyr	Leu	Gly 555	Asn	Ala	Asp	Leu	Lys 560	
	Gln	Met	Ser	Asp 565	Tyr	Tyr	Ala	Leu	Gly 570		Glu	Tyr	Asn	Gln 575		
Pro	Ile	Ser	Phe 580		Ala	Thr	Val	Tyr 585		Asn	Glu	Leu	Arg 590		Leu	
Ile	Ser	Phe		Asp	Ile	Pro	Thr 600		Pro	Glu	His	Glu 605		Gln	Gly	
Ile	Lys 610		Thr	Lys	Gln	Tyr 615		Asn	Ile	Gly	Lys 620		Arg	Ser	Arg	

Gly Leu Asp Val Leu Cys Asp Ala Ser Ile Gly Trp Gly Ile Lys Leu 635 630 Gly Ala Gly Tyr Ser Leu Val Glu Ala Lys Asn Leu Gln Thr Asp Glu 650 645 Trp Leu Glu Gly Ala Ala Arg His Arg Ala Asn Val His Ala Asp Trp 665 670 Val His Tyr Trp Gly Gln Tyr Arg Leu Gly Val Ser Leu Phe Gly Arg 685 680 Ile Gln Ser Glu Arg Tyr Tyr Lys Asp Gly Asn Ala Pro Asp Tyr Thr 690 695 700 695 Leu Trp Arg Leu Ala Thr Ser His Arg Phe Ala His Phe Arg His Ile 710 715 Ile Leu Asp Gly Thr Leu Gly Ile Asp Asn Leu Phe Asp Tyr Val Asp 725 730 Asp Arg Pro Met Gly Val Asn Tyr Ala Thr Val Thr Pro Gly Arg Thr 740 745 Phe Phe Ala Gln Ile Ala Ile Arg Phe Asn Asn

### (2) INFORMATION FOR SEQ ID NO:296

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 365 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...365
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:296

Cys Cys Ala Arg Leu Arg Asp Thr Ser Pro Arg Lys Lys Ser Phe Arg 15 10 Asn Asp Thr Val Phe Pro Tyr Phe Val Ile His Leu Ile Lys His Ile 25 20 Ile Ile Met Thr Asp Asn Lys Gln Arg Asn Ile Val Phe Pro Ala Phe 35 40 Leu Leu Leu Gly Val Ile Ala Val Val Thr Ile Val Gly Phe Phe Met Leu Arg Pro Ala Glu Glu Ile Ile Gln Gly Gln Ile Glu Val Thr 70 75 Glu Tyr Arg Val Ser Ser Lys Val Pro Gly Arg Ile Lys Glu Leu Arg 95 85 90 Val Ser Glu Gly Gln Gln Val Gln Ala Gly Asp Thr Leu Ala Val Ile 110 100 105 Glu Ala Pro Asp Val Ala Ala Lys Met Glu Gln Ala Lys Ala Ala Glu 115 120 Ala Ala Ala Gln Ala Gln Asn Ala Lys Ala Leu Lys Gly Ala Arg Ser 135 140 Glu Gln Ile Gln Ala Ala Tyr Glu Met Trp Gln Lys Ala Gln Ala Gly 150 155 160 Val Ala Ile Ala Thr Lys Thr His Gln Arg Val Gln Asn Leu Tyr Asp 165 170 175 Gln Gly Val Val Pro Ala Gln Lys Leu Asp Glu Ala Thr Ala Gln Arg 190 180 185 Asp Ala Ala Ile Ala Thr Gln Lys Ala Ala Glu Ala Gln Tyr Asn Met 200 205 195 Ala Arg Asn Gly Ala Glu Arg Glu Asp Lys Leu Ala Ala Ser Ala Leu 210 215 Val Asp Arg Ala Arg Gly Ala Val Ala Glu Val Glu Ser Tyr Ile Asn 230 235 Glu Thr Tyr Leu Ile Ala Pro Arg Ala Gly Glu Val Ser Glu Ile Phe 245 250 255 Pro Lys Ala Gly Glu Leu Val Gly Thr Gly Ala Pro Ile Met Asn Ile 260 265 270 Ala Glu Met Gly Asp Met Trp Ala Ser Phe Ala Val Arg Glu Asp Phe 280 285 275 Leu Ser Ser Met Thr Met Gly Ala Val Leu Glu Thr Val Val Pro Ala 290 295

 Leu Asn Glu Glu Lys Val Arg Phe Lys Ile Thr Phe Ile Lys Asn Met

 305
 310

 Gly Thr Tyr Ala Ala Trp Lys Ala Thr Lys Thr Thr Gly Gln Tyr Asp

 325
 330

 Leu Lys Thr Phe Glu Val Lys Ala Thr Leu Ala Asp Lys Asp Lys Ala

 340

 Gln Lys Leu Arg Pro Gly Met Ser Val Ile Ile Arg Lys

 360

 360

## (2) INFORMATION FOR SEQ ID NO:297

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 320 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...320
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:297

Pro Gln Ser Ser Pro Asp Arg Arg Ser Phe Gln Asn Val Met Asn Lys 5 10 Tyr His Ser Gln Ser Val Leu Glu Val Gly Lys Ile Gly Ile Val Ile 25 20 Ile Phe Ala Pro Ile Val Arg Asn Val His Gln Gln Pro Pro Phe Leu 40 45 35 Ser His Lys Ser Ile Met Arg Ile Val Ser Asn Phe Leu Phe Val Ser 55 60 Phe Ser Val Leu Leu Phe Ala Ser Cys Arg Ser Gln Arg Glu Lys Val 75 70 Val Tyr Leu Gln Asp Ile Gln Thr Phe Asn Arg Glu Ile Ile Ala Lys 90 85 Pro Tyr Asp Val Lys Ile Glu Lys Asp Asp Val Leu Asn Ile Leu Val 100 105 Ser Ser Arg Asp Pro Glu Leu Ser Thr Pro Tyr Asn Gln Val Leu Thr 120 125 Thr Arg Ala Leu Ala Arg Asn Gly Tyr Gly Thr Asn Ser Asn Glu Gly 140 135 Phe Leu Val Asp Ser Lys Gly Tyr Ile Asn Tyr Pro Ile Leu Gly Gln 145 150 150 165 Ile Tyr Val Glu Gly Leu Thr Arg Thr Glu Leu Glu Lys Glu Ile Gln 165 170 175 Lys Arg Ile Ile Ser Ser Gly Phe Ile Lys Asp Pro Thr Val Thr Val 185 190 Gln Leu Gln Asn Phe Lys Val Ser Val Leu Gly Glu Val Asn His Pro 205 195 200 Gly Ser Met Ser Val Lys Gly Glu Arg Ile Thr Leu Leu Glu Ala Ile 215 Gly Met Ala Gly Asp Leu Thr Ile Tyr Gly Arg Arg Asp Arg Val Phe 230 235 225 Val Ile Arg Glu Thr Asp Gly His Arg Glu Val Phe Gln Thr Asp Leu 245 250 255 Arg Lys Ala Asp Leu Leu Ala Ser Pro Val Tyr Tyr Leu His Gln Asn 265 270 260 Asp Val Ile Tyr Val Glu Pro Asn Asp Lys Lys Thr Gln Met Ser Glu 285 280 275 Ile Asn Gln Asn Asn Val Asn Val Trp Leu Ser Val Thr Ser Thr 300 295 Leu Val Ser Ile Ser Thr Leu Thr Ile Thr Ile Ile Asp Lys Thr Lys 310 315

- (2) INFORMATION FOR SEQ ID NO:298
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 582 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...582
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:298

Ser Lys Ile Val Leu Arg Lys Phe Cys Thr Leu Ala Arg Met Lys Lys 10 Thr Asn Leu Phe Leu Ser Leu Leu Val Ile Phe Ile Thr Gly Ser Phe 20 25 Met Thr Ala Cys Ala Gln Lys Ser Lys Thr Asn Lys Leu Thr Glu Glu 40 45 Asp Arg Ser Arg Asn Glu Tyr Val Gln Ser Met Asp Val Leu Ser Asn 60 55 Ile Ile Gly Asn Val Arg Leu Tyr Phe Val Asp Thr Ile Ser Ile Lys 70 75 His Met Thr Arg Arg Gly Ile Asp Ala Met Leu Gly Gly Leu Asp Pro 85 90 95 90 Tyr Thr Glu Tyr Ile Pro Tyr Glu Glu Met Asp Glu Leu Lys Leu Met 100 105 110 Thr Thr Gly Glu Tyr Ala Gly Val Gly Ala Ile Ile Ser Gln Arg Pro 120 125 Asp Ser Ala Val Ile Ile Gln Arg Pro Met Glu Gly Met Pro Ala Asp 130 135 140 Glu Ala Gly Leu Ile Ala Gly Asp Arg Ile Leu Thr Ile Asp Gly Lys 145 150 155 Asp Phe Arg Lys Ser Thr Thr Pro Lys Val Ser Gln Ala Leu Lys Gly 170 165 Ile Ala Gly Thr Val Ala Lys Val Thr Val Met Arg Tyr Gly Glu Thr 180 185 Lys Pro Arg Thr Phe Ser Val Lys Arg Gln Lys Val Ile Met Asn Ser 200 205 195 Val Thr Tyr Ser Gly Met Leu Asp Gly Ser Ile Gly Tyr Ile Arg Leu 215 220 Asn Asn Phe Thr Asp Lys Ser Ala Glu Glu Val Arg Thr Ala Leu Leu 230 235 Asp Leu Arg Asp Lys Gln Gly Ala Lys Gly Leu Ile Leu Asp Leu Arg 245 250 255 Gly Asn Gly Gly Leu Met Gln Ala Ala Ile Glu Ile Val Asn Leu 260 265 Phe Val Pro Lys Gly Lys Glu Val Val Thr Thr Lys Gly Arg Ile Ala 285 275 280 Glu Ser Ala Ser Val Phe Arg Thr Leu Thr Glu Pro Ile Asp Thr Lys 295 300 Leu Pro Ile Val Val Leu Ile Asp Gly Gln Ser Ala Ser Ser Glu 310 315 320 Ile Val Ala Gly Ala Leu Gln Asp Met Asp Arg Ala Val Leu Met Gly 325 330 335 Gln Lys Ser Tyr Gly Lys Gly Leu Val Gln Thr Thr Arg Gln Leu Pro 345 340 Tyr Asn Gly Val Ile Lys Leu Thr Thr Ala Lys Tyr Tyr Ile Pro Ser 360 355 Gly Arg Cys Ile Gln Arg Leu Asp Tyr Ser Arg Thr Asn Arg Thr Gly 380 375 Met Ala Thr Ala Ile Pro Asp Ser Leu His Lys Ile Phe Tyr Thr Ala 390 395 Ala Gly Arg Arg Val Glu Asp Ala Gly Gly Ile Leu Pro Asp Ile Glu
405 410 415 405 Val Lys Gln Asp Thr Ala Ala Thr Leu Leu Tyr Tyr Met Ala Ile Asn 420 425 430 Asn Asp Val Phe Asp Phe Val Thr Gly Tyr Val Leu Lys His Lys Thr 445 435 440 Ile Ala Lys Pro Glu Asp Phe Ser Ile Thr Asn Glu Asp Tyr Ala Ala 455 460 450 Phe Cys Lys Met Met Glu Glu Lys Lys Phe Asp Tyr Asp Arg Gln Ser 470 475 Gly Lys Met Leu Asp Lys Leu Glu Glu Leu Ala Lys Ile Glu Gly Tyr 490 495 485 Leu Pro Glu Ala Asn Ser Glu Leu Lys Ala Leu Arg Glu Lys Leu Lys 505 510 500

#### (2) INFORMATION FOR SEQ ID NO:299

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 985 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...985
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:299

Val Thr Asp Lys Met Gln Asn Lys Gly Phe Val Ile Val Ile Thr Ser 5 10 Ala Leu Ala Ile Ile Cys Ala Phe Tyr Leu Ser Phe Ser Phe Val Thr 2.0 25 30 Asn Arg Tyr Glu Lys Lys Ala Lys Ala Met Gly Asp Val Ala Gly Met 35 40 45 Ala Tyr Leu Asp Ser Met Ser Asn Glu Lys Val Trp Phe Gly Tyr Thr 50 55 60 Leu Lys Glu Ala Gln Ala Gln Gln Ile Gly Leu Gly Leu Asp Leu Lys 70 Gly Gly Met Asn Val Ile Leu Lys Leu Asn Ala Ser Asp Leu Leu Arg 90 Asn Leu Ser Asn Lys Ser Leu Asp Pro Asn Phe Asn Lys Ala Leu Glu 100 105 Asn Ala Ala Lys Ser Thr Glu Gln Ser Asp Phe Ile Asp Ile Phe Val 115 120 125 Lys Glu Tyr Arg Lys Leu Asp Pro Asn Gly Arg Leu Ala Val Ile Phe 135 140 Gly Ser Gly Asp Leu Arg Asp Gln Ile Thr Ala Lys Ser Thr Asp Ala 150 155 Asp Val Val Arg Leu Leu Lys Glu Lys Tyr Asn Ser Ala Val Glu Ala 165 170 Ser Phe Asn Val Leu Arg Ala Arg Ile Asp Ala Phe Gly Val Val Ala 180 185 190 Pro Asn Leu Gln Arg Leu Glu Gly Gln Gly Arg Ile Leu Val Glu Leu 195 200 205 Pro Gly Val Lys Asp Pro Glu Arg Val Arg Thr Leu Leu Gln Arg Ser 215 220 Ala Asn Leu Gln Phe Trp Arg Thr Tyr Lys Phe Glu Glu Val Ser Gly 230 235 Asp Leu Ile Ala Ala Asn Asp Arg Leu Ser Glu Leu Ala Met Asn Asn 245 250 Thr Asp Ala Thr Pro Glu Thr Glu Pro Ala Thr Thr Asp Ser Val Ala 260 265 270 Ala Thr Ala Asp Ser Ala Ala Val Gln Ala Val Ala Asp Ser Ala Thr 275 280 285 Val Ala Gln Lys Glu Ala Lys Asp Ala Thr Arg Lys Asp Ala Leu Phe 295 300 Ser Leu Leu Thr Pro Val Asn Arg Gly Gly Ala Val Val Gly Val Ala 310 315 Arg Arg Ala Asn Met Ala Gln Ile Ser Glu Met Leu Gln Gln Ala His 325 330 Asp Leu Lys Val Thr Arg Glu Asp Val Leu Phe Leu Trp Gly Ala Lys 345 Ala Ile Glu Asp Pro Glu Thr Lys Lys Glu Thr Asp Leu Tyr Glu Leu 360

Tyr Ala Ile Arg Thr Asn Arg Thr Gly Asp Pro Asp Leu Gly Gly Asp Val Val Thr Ser Ala Lys Ser Asp Ile Gln Asn Asp Phe Gly Arg Ser Glu Pro Ile Val Ser Met Thr Met Asn Glu Glu Gly Ala Arg Lys Trp Ala Arg Ile Thr Lys Asp Asn Val Gly Arg Ala Ile Ala Ile Val Leu Asp Gly Val Val Tyr Ser Ala Pro Asn Val Asn Asp Glu Ile Thr Gly Gly Arg Ser Gln Ile Ser Gly His Phe Thr Val Glu Glu Ala Gly Asp 450 455 Leu Ala Asn Val Leu Asn Ser Gly Lys Met Asp Ala Thr Val Ser Ile Glu Glu Asn Val Ile Gly Pro Thr Leu Gly Ala Glu Ser Ile Lys Ala Gly Phe Leu Ser Phe Leu Leu Ala Leu Val Ile Leu Met Cys Tyr Met Cys Leu Ala Tyr Gly Phe Leu Pro Gly Leu Ile Ala Asn Gly Ala Leu Ile Val Asn Ser Phe Phe Thr Leu Gly Val Leu Ala Ser Phe His Ala Val Leu Thr Leu Ser Gly Ile Ala Gly Leu Val Leu Thr Leu Gly Met Ala Val Asp Ala Asn Val Leu Ile Phe Glu Arg Ile Lys Glu Glu Leu Arg Ala Gly Lys Thr Pro Ile Arg Ala Val Thr Asp Gly Tyr Gly Asn Ala Phe Ser Ala Ile Phe Asp Ser Asn Val Thr Thr Ile Ile Thr Gly Ile Ile Leu Phe Leu Tyr Gly Thr Gly Pro Ile Arg Gly Phe Ala 610 615 Thr Thr Leu Ile Ile Gly Leu Ile Ala Ser Phe Ile Thr Ala Val Phe Leu Thr Arg Ile Val Phe Glu Lys Leu Ala Lys Lys Gly Arg Leu Asp 645 650 Lys Ile Thr Phe Thr Thr Ser Ile Thr Arg Asn Leu Leu Val Asn Pro Ser Tyr Asn Ile Leu Gly Lys Arg Lys Thr Gly Phe Ile Ile Pro Val Ile Ile Ile Val Leu Gly Leu Ile Ala Ser Phe Thr Ile Gly Leu Asn Arg Gly Ile Glu Phe Ser Gly Gly Arg Asn Tyr Val Val Lys Phe Asp Gln Pro Val Ser Ser Glu Ala Val Arg Ser Ala Leu Ser Ser Pro Leu 725 730 735 Gln Glu Lys Val Leu Val Thr Ser Ile Gly Thr Glu Gly Thr Glu Val Arg Ile Ser Thr Asn Tyr Lys Ile Gln Glu Glu Ser Glu Glu Thr Glu Ala Glu Ile Thr Asp Lys Leu Tyr Gln Ser Leu Lys Gly Phe Tyr Thr Gln Gln Pro Thr Ala Asp Gln Phe Leu Asp Asn Ile Ile Ser Ser Gln Lys Val Ser Pro Ser Met Ser Ser Asp Ile Thr Arg Gly Ala Ile Trp 805 810 Ala Val Leu Leu Ser Met Ile Phe Met Ala Ile Tyr Ile Leu Ile Arg Phe Arg Asp Ile Ser Phe Ser Ala Gly Val Phe Val Ser Val Ala Ala Thr Thr Phe Cys Ile Ile Ala Leu Tyr Ala Leu Leu Trp Lys Ile Leu Pro Phe Thr Met Glu Ile Asp Gln Asn Phe Ile Ala Ala Ile Leu Ala Ile Ile Gly Tyr Ser Leu Asn Asp Thr Val Val Phe Asp Arg Ile 885 890 Arg Glu Thr Met Lys Leu Tyr Pro Asn Arg Asp Arg Tyr Gln Val Ile Asn Asp Ala Leu Asn Ser Thr Leu Gly Arg Thr Leu Asn Thr Ser Leu Thr Thr Phe Ile Val Met Leu Val Ile Phe Ile Phe Gly Gly Ala Thr Met Arg Ser Phe Thr Phe Ser Ile Leu Leu Gly Ile Val Ile Gly Thr Tyr Ser Thr Leu Phe Val Ala Thr Pro Leu Ala Tyr Glu Ile Gln Lys Arg Lys Leu Asn Lys Ala Ala Lys Lys

980 985

#### (2) INFORMATION FOR SEO ID NO:300

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1046 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...1046
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:300

Asp Phe Pro Trp Val Arg Val Lys Pro Glu Lys Lys Arg Lys Gln His 5 10 Asn Ser Asn Asn Phe Lys Phe Asn Ala Lys Glu Lys Ser Met Lys Arg 20 25 30 Met Thr Leu Phe Phe Leu Cys Leu Leu Thr Ser Ile Gly Trp Ala Met 35 40 45 Ala Gln Asn Arg Thr Val Lys Gly Thr Val Ile Ser Ser Glu Asp Asn 55 60 Glu Pro Leu Ile Gly Ala Asn Val Val Val Gly Asn Thr Thr Ile 70 75 Gly Ala Ala Thr Asp Leu Asp Gly Asn Phe Thr Leu Ser Val Pro Ala 90 85 Asn Ala Lys Met Leu Arg Val Ser Tyr Ser Gly Met Thr Thr Lys Glu 100 105 110 Val Ala Ile Ala Asn Val Met Lys Ile Val Leu Asp Pro Asp Ser Lys 115 120 125 Val Leu Glu Gln Val Val Leu Gly Tyr Gly Thr Gly Gln Lys Leu 130 135 140 Ser Thr Val Ser Gly Ser Val Ala Lys Val Ser Ser Glu Lys Leu Ala 145 150 150 155 160 Glu Lys Pro Val Ala Asn Ile Met Asp Ala Leu Gln Gly Gln Val Ala 165 170 175 Gly Met Gln Val Met Thr Thr Ser Gly Asp Pro Thr Ala Val Ala Ser 180 185 190 Val Glu Ile His Gly Thr Gly Ser Leu Gly Ala Ser Ser Ala Pro Leu 195 200 Tyr Ile Val Asp Gly Met Gln Thr Ser Leu Asp Val Val Ala Thr Met 215 220 Asn Pro Asn Asp Phe Glu Ser Met Ser Val Leu Lys Asp Ala Ser Ala 230 235 Thr Ser Ile Tyr Gly Ala Arg Ala Ala Asn Gly Val Val Phe Ile Gln 245 250 255 Thr Lys Lys Gly Lys Met Ser Glu Arg Gly Arg Ile Thr Phe Asn Ala 260 265 Ser Tyr Gly Ile Ser Gln Ile Leu Asn Thr Lys Pro Leu Asp Asn Met 275 280 285 Met Thr Gly Asp Glu Leu Leu Asp Phe Gln Val Lys Ala Gly Phe Trp 295 300 Gly Asn Asn Gln Thr Val Gln Lys Val Lys Asp Met Ile Leu Ala Gly 305 310 315 320 Ala Glu Asp Leu Tyr Gly Asn Tyr Asp Ser Leu Lys Asp Glu Tyr Gly 325 330 Lys Thr Leu Phe Pro Val Asp Phe Asn His Asp Ala Asp Trp Leu Lys 340 345 Ala Leu Phe Lys Thr Ala Pro Thr Ser Gln Gly Asp Ile Ser Phe Ser 360 365 Gly Gly Ser Gln Gly Thr Ser Tyr Tyr Ala Ser Ile Gly Tyr Phe Asp 370 375 380 Gln Glu Gly Met Ala Arg Glu Pro Ala Asn Phe Lys Arg Tyr Ser Gly 390 395 Arg Leu Asn Phe Glu Ser Arg Ile Asn Glu Trp Leu Lys Val Gly Ala 405 410 Asn Leu Ser Gly Ala Ile Ala Asn Arg Arg Ser Ala Asp Tyr Phe Gly 420 425 430

Lys Tyr Tyr Met Gly Ser Gly Thr Phe Gly Val Leu Thr Met Pro Arg

Tyr	Tyr	435 Asn	Pro	Phe	Asp	Val	440 Asn	Gly	Asp	Leu	Ala	445 Asp	Val	Tyr	Tyr
Met	450 Tyr	Gly	Ala	Thr	Arg	455 Pro	Ser	Met	Thr	Glu	460 Pro	Tyr	Phe	Ala	Lys
465	-	_			470					475	_				480
Met	Arg	Pro	Phe	Ser 485	Ser	Glu	Ser	His	Gln 490	Ala	Asn	Val	Asn	G1y 495	Phe
Ala	Gln	Ile	Thr 500		Ile	Lys	Gly	Leu 505	Thr	Leu	Lys	Ala	Gln 510	Ala	Gly
Val	Asp	Ile 515		Asn	Thr	Arg	Thr 520		Ser	Lys	Arg	Met 525		Asn	Asn
Pro	Tyr 530		Ser	Thr	Pro	Leu 535		Glu	Arg	Arg	Glu 540		Ala	Tyr	Arg
Asp		Ser	Lys	Ser	Phe 550		Asn	Thr	Ala	Glu 555		Lys	Phe	Ser	Ile 560
	Glu	Lys	His	Asp 565		Thr	Ala	Leu	Met 570		His	Glu	Tyr	Ile 575	
Tyr	Glu	Gly			Ile	Gly	Ala		Ser	Lys	Gly	Phe			Asp
Lys	Leu		580 Leu	Leu	Ser	Gln	_	585 Lys	Thr	Gly	Asn		590 Leu	Ser	Leu
Pro		595 His	Arg	Val	Ala		600 Tyr	Ala	Tyr	Leu		605 Phe	Phe	Ser	Arg
Phe	610 Asn	Tyr	Gly	Phe	Asp	615 Lys	Trp	Met	Tyr	Ile	620 Asp	Phe	Ser	Val	Arg
625					630					635					640
				645					Asn 650					655	
_			660					665	Tyr				670		
		675			_		680		Lys			685			_
_	690				_	695	_		His		700				
Asn 705	Asn	Tyr	Thr	Glu	Asp 710	Ala	Met	Gly	Leu	Ser 715	Ile	Ser	Thr	Ala	Gly 720
	Pro	Asp	Leu	Ser 725		Glu	Lys	Gln	Ser 730		Phe	Asn	Phe	Gly 735	Leu
Ala	Ala	Gly	Ala 740		Asn	Asn	Arg	Leu 745	Ser	Ala	Glu	Val	Asp 750		Tyr
Val	Arg	Thr 755		Asn	Asp	Met	Leu 760		Asp	Val	Pro	Met 765	Pro	Tyr	Ile
Ser	Gly 770	Phe	Phe	Ser	Gln	Tyr 775	Gln	Asn	Val	Gly	Ser 780	Met	Lys	Asn	Thr
Gly 785	Val	Asp	Leu	Ser	Leu 790	Lys	Gly	Thr	Ile	Tyr 795	Gln	Asn	Lys	Asp	Trp 800
Asn	Val	Tyr	Ala	Ser 805	Ala	Asn	Phe	Asn	Tyr 810	Asn	Arg	Gln	Glu	Ile 815	Thr
Lys	Leu	Phe	Phe 820	Gly	Leu	Asn	Lys	Tyr 825	Met	Leu	Pro	Asn	Thr 830	Gly	Thr
Ile	Trp	Glu 835		Gly	Tyr	Pro	Asn 840		Phe	Tyr	Met	Ala 845	_	Tyr	Ala
Gly	Ile 850		Lys	Lys	Thr	Gly 855		Gln	Leu	Trp	Tyr 860	Val	Pro	Gly	Gln
Val 865		Ala	Asp	Gly	Asn 870		Val	Thr	Thr	Ser 875		Tyr	Ser	Ala	Asp 880
	Glu	Thr	Arg	Ile 885		Lys	Ser	Val	Thr 890		Pro	Ile	Thr	Gly 895	
Phe	Ser	Leu	Gly 900		Ser	Trp	Lys	Gly 905	Leu	Ser	Leu	Asp	Ala 910		Phe
Ala	Tyr	Ile 915		Gly	Lys	Trp	Met 920	-	Asn	Asn	Asp	Arg 925		Phe	Thr
Glu	Asn 930		Gly	Gly	Leu	Met 935		Leu	Asn	Lys	Asp 940		Met	Leu	Leu
Asn 945	Ala	Trp	Thr	Glu	Asp 950	Asn	Lys	Glu	Thr	Asp 955	Val	Pro	Lys	Leu	Gly 960
	Ser	Pro	Gln	Phe 965		Thr	His	Leu	Leu 970		Asn	Ala	Ser	Phe 975	
Arg	Leu	Lys	Asn 980		Lys	Leu	Thr	Tyr 985	Val	Leu	Pro	Asn	Ser 990		Phe
Ala	Gly	Gln 995		Val	Ile	Gly	Gly 1000	Ala	Arg	Val	Tyr	Leu 100	Met	Ala	Arg
Asn	Leu 1010	Leu	Thr	Val	Thr	Lys 101	Tyr		Gly	Phe				Ala	Gly
	Asn		Gly	Lys		Gln		Pro	Asn		Lys	_	Tyr	Val	
Gly	Ile	Gln	Leu	Ser		30				10	35				1040

#### (2) INFORMATION FOR SEQ ID NO:301

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 869 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...869
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:301

Trp His Arg Asn Ile Phe Ile Phe Ala Ser Thr Phe Ser Pro Lys Asn Met Leu Pro Leu Pro Tyr Arg Tyr Ala Lys Thr Glu His Leu Phe Leu 25 30 Ala Lys Gly Tyr Cys Lys Asn Pro Ile Thr Asn Ile Ile Ile Leu Phe 40 45 Met Lys Lys Lys Asn Phe Leu Leu Leu Gly Ile Phe Val Ala Leu Leu 55 60 Thr Phe Ile Gly Ser Met Gln Ala Gln Gln Ala Lys Asp Tyr Phe Asn 75 70 Phe Asp Glu Arg Gly Glu Ala Tyr Phe Ser Phe Lys Val Pro Asp Arg 90 85 Ala Val Leu Gln Glu Leu Ala Leu Ile Met Ser Ile Asp Glu Phe Asp 100 105 110 Pro Val Thr Asn Glu Ala Ile Ala Tyr Ala Ser Glu Glu Glu Phe Glu 120 125 Ala Phe Leu Arg Tyr Gly Leu Lys Pro Thr Phe Leu Thr Pro Pro Ser 140 135 Met Gln Arg Ala Val Glu Met Phe Asp Tyr Arg Ser Gly Glu Lys Tyr 145 150 155 Glu Trp Asn Ala Tyr Pro Thr Tyr Glu Ala Tyr Ile Ser Met Met Glu 165 170 Glu Phe Gln Thr Lys Tyr Pro Ser Leu Cys Thr Thr Ser Val Ile Gly 185 180 Lys Ser Val Lys Asp Arg Lys Leu Met Ile Cys Lys Leu Thr Ser Ser 205 200 Ala Asn Thr Gly Lys Lys Pro Arg Val Leu Tyr Thr Ser Thr Met His 215 220 Gly Asp Glu Thr Thr Gly Tyr Val Val Leu Leu Arg Leu Ile Asp His 225 230 235 240 Leu Leu Ser Asn Tyr Glu Ser Asp Pro Arg Ile Lys Asn Ile Leu Asp 245 250 255 Lys Thr Glu Val Trp Ile Cys Pro Leu Thr Asn Pro Asp Gly Ala Tyr 260 265 Arg Ala Gly Asn His Thr Val Gln Gly Ala Thr Arg Tyr Asn Ala Asn 285 275 280 Asn Val Asp Leu Asn Arg Asn Phe Lys Asp Asp Val Ala Gly Asp His 295 300 Pro Asp Gly Lys Pro Trp Gln Pro Glu Ala Thr Ala Phe Met Asp Leu 310 315 Glu Gly Asn Thr Ser Phe Val Leu Gly Ala Asn Ile His Gly Gly Thr 325 330 Glu Val Val Asn Tyr Pro Trp Asp Asn Lys Lys Glu Arg His Ala Asp 340 345 350 Asp Glu Trp Tyr Lys Leu Ile Ser Arg Asn Tyr Ala Ala Ala Cys Gln 355 360 Ser Ile Ser Ala Ser Tyr Met Thr Ser Glu Thr Asn Ser Gly Ile Ile 380 375 Asn Gly Ser Asp Trp Tyr Val Ile Arg Gly Ser Arg Gln Asp Asn Ala 390 395 Asn Tyr Phe His Arg Leu Arg Glu Ile Thr Leu Glu Ile Ser Asn Thr 405 410 415 Lys Leu Val Pro Ala Ser Gln Leu Pro Lys Tyr Trp Asn Leu Asn Lys 420 425 430 Glu Ser Leu Leu Ala Leu Ile Glu Glu Ser Leu Tyr Gly Ile His Gly

440

435

Thr Val Thr Ser Ala Ala Asn Gly Gln Pro Leu Lys Cys Gln Ile Leu 455 460 450 Ile Glu Asn His Asp Lys Arg Asn Ser Asp Val Tyr Ser Asp Ala Thr 475 470 465 Thr Gly Tyr Tyr Val Arg Pro Ile Lys Ala Gly Thr Tyr Thr Val Lys 485 490 Tyr Lys Ala Glu Gly Tyr Pro Glu Ala Thr Arg Thr Ile Thr Ile Lys 505 500 Asp Lys Glu Thr Val Ile Met Asp Ile Ala Leu Gly Asn Ser Val Pro 515 520 525 Leu Pro Val Pro Asp Phe Thr Ala Ser Pro Met Thr Ile Ser Val Gly 535 540 Glu Ser Val Gln Phe Gln Asp Gln Thr Thr Asn Asn Pro Thr Asn Trp 555 550 Glu Trp Thr Phe Glu Gly Gly Gln Pro Ala Met Ser Thr Glu Gln Asn 570 575 565 Pro Leu Val Ser Tyr Ser His Pro Gly Gln Tyr Asp Val Thr Leu Lys 585 590 580 Val Trp Asn Ala Ser Gly Ser Asn Thr Ile Thr Lys Glu Lys Phe Ile 595 600 Thr Val Asn Ala Val Met Pro Val Ala Glu Phe Val Gly Thr Pro Thr 615 620 Glu Ile Glu Glu Gly Gln Thr Val Ser Phe Gln Asn Gln Ser Thr Asn 630 635 Ala Thr Asn Tyr Val Trp Ile Phe Asp Gly Gly Thr Pro Ala Thr Ser 645 650 Glu Asp Glu Asn Pro Thr Val Leu Tyr Ser Lys Ala Gly Gln Tyr Asp 670 665 660 Val Thr Leu Lys Ala Ile Ser Ala Ser Gly Glu Thr Val Lys Thr Lys 680 675 Glu Lys Tyr Ile Thr Val Lys Lys Ala Pro Val Pro Ala Pro Val Ala 695 700 690 Asp Phe Glu Gly Thr Pro Arg Lys Val Lys Lys Gly Glu Thr Val Thr 715 705 710 Phe Lys Asp Leu Ser Thr Asn Asn Pro Thr Ser Trp Leu Trp Val Phe 725 730 Glu Gly Gly Ser Pro Ala Thr Ser Thr Glu Gln Asn Pro Val Val Thr 750 745 740 Tyr Asn Glu Thr Gly Lys Tyr Asp Val Gln Leu Thr Ala Thr Asn Glu 765 755 760 Gly Gly Ser Asn Val Lys Lys Ala Glu Asp Tyr Ile Glu Val Ile Leu 770 775 780 Asp Asp Ser Val Glu Asp Ile Val Ala Gln Thr Gly Ile Val Ile Arg 795 790 Pro Gln Asn Gly Thr Lys Gln Ile Leu Ile Glu Ala Asn Ala Ala Ile 810 815 805 Lys Ala Ile Val Leu Tyr Asp Ile Asn Gly Arg Val Val Leu Lys Thr 830 825 820 Thr Pro Asn Gln Leu Arg Ser Thr Val Asp Leu Ser Ile Leu Pro Glu 845 840 Gly Ile Tyr Thr Ile Asn Ile Lys Thr Glu Lys Ser Ala Arg Thr Glu 855 850 Lys Ile His Ile Gly

## (2) INFORMATION FOR SEQ ID NO:302

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 106 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

865

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...106
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:302

Leu Ser Tyr Ser Gly Glu Ser Asp Ala Lys Glu Ser Asp Gln Asn Cys 1 5 10 15

 Arg
 Lys
 Cys
 Thr
 Phe
 Ile
 Gly
 Phe
 Glu
 Lys
 Arg
 Val
 Asn
 Thr
 Met
 Arg

 Leu
 Ile
 Lys
 Ala
 Phe
 Leu
 Val
 Gln
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Pro
 Ile
 Phe
 Phe
 Phe
 Phe
 Arg
 Phe
 Thr
 Pro
 Leu
 Leu
 Leu
 Phe
 Thr
 P

#### (2) INFORMATION FOR SEQ ID NO:303

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 861 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...861
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:303

Leu Glu Met Ala Tyr Asp Phe Thr Gln Thr Phe Arg Asn Ser Leu Glu 10 Tyr Ser Tyr Gln Glu Ala Thr Arg Leu Gly Val Val Ala Val Thr Gln 25 20 30 Asp Met Leu Val Leu Gly Ile Ile Arg Asp Gly Asp Asn Gly Ala Ile 3.5 4.0 45 Asp Ile Met Arg His Tyr Gly Ile Asn Leu Tyr Glu Leu Lys Arg Leu 60 55 Ile Glu Leu Glu Ala Ile Ala Glu Ser Leu Pro Ala Ser Pro Glu Gly 65 70 75 Ser Pro Ile Phe Thr Pro Ser Ala Arg Glu Ala Ile Asp Asp Ala Thr 90 Asp Ile Cys Ala Asp Met Glu Asp Glu Ala Val Ser Pro Val His Leu 100 105 110 Leu Leu Ser Ile Leu Asn Ser Thr Gln Glu Ser Leu Val Gln Lys Ile 120 125 115 Phe Met Lys Gln Gly Ile Lys Tyr Asp Thr Ile Leu Ser Asp Tyr Phe 130 135 140 135 Gly Gln Arg Asn Pro Ser Glu Gly Lys Ser Pro Ser Glu Met Glu Ile 145 150 155 Leu Asp Gly Tyr Gln Asp Asn Asp Phe Asp Asp Glu Glu Asp Glu Ser 165 170 Ser Pro Pro Ser Gly Asn Ser Gly Thr Gly Gly Gly Ser Gly Asp Ala 180 185 190 185 Pro Glu Gln Asn Thr Gly Gly Gly Asp Thr Thr Thr Thr Arg Ser 195 200 205 Gly Gly Asp Thr Pro Ala Leu Asp Thr Phe Gly Thr Asp Ile Thr Ala 215 220 Met Ala Ala Ala Gly Lys Leu Asp Pro Val Val Gly Arg Glu Gln Glu 230 235 240 Val Leu Ile Gly Glu Pro Gly Val Gly Lys Ser Ala Ile Val Glu Gly 265 Leu Ala Glu Arg Ile Val Asn Arg Lys Val Ser Arg Ile Leu Phe Asp 280 285 Lys Arg Ile Ile Ser Leu Asp Leu Ala Gln Met Val Ala Gly Thr Lys 290 295 300 Tyr Arg Gly Gln Phe Glu Glu Arg Leu Lys Ala Val Leu Asp Glu Leu 305 310 315 320 Lys Lys Asn Pro Gln Ile Ile Leu Phe Ile Asp Glu Ile His Thr Ile 325 330 335 Val Gly Ala Gly Ser Ala Ala Gly Ser Met Asp Thr Ala Asn Met Leu 345

Lys Pro Ala Leu Ala Arg Gly Gln Val Gln Cys Ile Gly Ala Thr Thr 365 355 360 Leu Asp Glu Tyr Arg Lys Asn Ile Glu Lys Asp Gly Ala Leu Glu Arg 375 380 370 Arg Phe Gln Lys Val Pro Ile Ala Pro Ser Thr Ala Glu Glu Thr Leu 385 390 395 Thr Ile Leu Gln Asn Ile Lys Glu Lys Tyr Glu Asp Tyr His Gly Val 410 405 Arg Tyr Thr Asp Glu Ala Ile Lys Ala Ala Val Glu Leu Thr Asp Arg 420 425 430 425 Tyr Val Ser Asp Arg Phe Phe Pro Asp Lys Ala Ile Asp Ala Met Asp 435 440 445 Glu Ala Gly Ala Ser Val His Ile Thr Asn Val Val Ala Pro Lys Glu 460 455 Ile Glu Ile Leu Glu Ala Glu Leu Ala Ser Val Arg Glu Asn Lys Leu 470 475 Ser Ala Val Lys Ala Gln Asn Tyr Glu Leu Ala Ala Ser Phe Arg Asp 485 490 495Gln Glu Arg Arg Thr Gln Gln Gln Ile Ala Glu Glu Lys Lys Trp 500 505 510 Glu Glu Gln Met Ser Lys His Arg Glu Thr Val Asp Glu Asn Val Val 525 520 Ala His Val Val Ala Leu Met Thr Gly Val Pro Ala Glu Arg Leu Ser 530 535 540 535 Thr Gly Glu Gly Glu Arg Leu Arg Thr Met Ala Asp Asp Leu Lys Thr 555 550 Lys Val Val Gly Gln Asp Thr Ala Ile Glu Lys Met Val His Ala Ile 570 565 Gln Arg Asn Arg Leu Gly Leu Arg Asn Glu Lys Lys Pro Ile Gly Ser 585 590 580 Phe Leu Phe Leu Gly Pro Thr Gly Val Gly Lys Thr Tyr Leu Ala Lys 595 600 605 Lys Leu Ala Glu Tyr Leu Phe Glu Asp Glu Asn Ala Met Ile Arg Val 615 620 Asp Met Ser Glu Tyr Met Glu Lys Phe Ser Val Ser Arg Leu Val Gly 625 630 635 640 Ala Pro Pro Gly Tyr Val Gly Tyr Glu Glu Gly Gly Gln Leu Thr Glu 645 650 655 Arg Val Arg Arg Lys Pro Tyr Ser Val Val Leu Leu Asp Glu Ile Glu 660 665 Lys Ala His Ala Asp Val Phe Asn Leu Leu Gln Val Met Asp Glu 675 680 Gly Gln Leu Thr Asp Ser Leu Gly Arg Arg Val Asn Phe Lys Asn Thr 700 695 Val Ile Ile Ile Thr Ser Asn Val Gly Thr Arg Gln Leu Lys Asp Phe 710 715 Gly Gln Gly Ile Gly Phe Arg Ser Glu Lys Asp Glu Glu Ala Asn Lys 730 735 725 Glu His Ser Arg Ser Val Ile Gln Lys Ala Leu Asn Lys Thr Phe Ser 745 750 740 Pro Glu Phe Leu Asn Arg Leu Asp Asp Ile Ile Leu Phe Asp Gln Leu 755 760 Gly Lys Thr Glu Ile Arg Arg Met Val Asp Ile Glu Leu Lys Ala Val 770 775 780 Leu Ala Arg Ile His Arg Ala Gly Tyr Asp Leu Val Leu Thr Asp Glu 790 795 Ala Lys Asp Val Ile Ala Thr Lys Gly Tyr Asp Leu Gln Tyr Gly Ala 805 810 815 Arg Pro Leu Lys Arg Thr Leu Gln Asn Glu Val Glu Asp Arg Leu Thr 825 830 820 Asp Leu Ile Leu Ser Gly Gln Ile Glu Lys Gly Gln Thr Leu Thr Leu 835 840 Ser Ala Arg Asp Gly Glu Ile Ile Val Gln Glu Gln Ala 855

# (2) INFORMATION FOR SEQ ID NO:304

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 456 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:

# (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...456

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:304

Arg Gly Gly Gln Ile Arg Arg His His Thr Asp Ser Ser Arg Gly Ser 10 Asp Ser Lys Ala Cys Arg Phe Ser Phe His Ala Glu Thr Ile Gly Phe 25 20 Ser Asn His Gln Arg Ala Lys Met Asn Tyr Leu Tyr Ile Leu Ile Thr 40 45 Leu Leu Leu Ser Gly Phe Phe Ser Gly Ala Glu Ile Ala Phe Leu Ser 55 60 Ser Asp Lys Leu Arg Leu Glu Leu Asp Arg Asn Arg Gly Asp Leu Thr 70 75 Gly Arg Ala Leu Asn Leu Leu Tyr Arg His Pro Asp Gln Leu Val Thr 85 90 Thr Leu Leu Val Gly Asn Asn Ile Val Leu Val Val Tyr Gly Leu Leu 100 105 Met Ala Gly Leu Leu Ala Ala Pro Leu Ala Gln Trp Ile Asp Asn Asp 120 115 Ala Met Ile Val Val Leu Gln Ser Val Leu Ser Thr Ile Ile Ile Leu 130 135 140 Phe Thr Gly Glu Phe Leu Pro Lys Ala Ile Phe Lys Thr Asn Ala Asn 145 150 155 Met Met Met Arg Val Phe Ala Leu Pro Ile Val Ala Ile Tyr Tyr Leu 165 170 Leu Tyr Pro Leu Ser Lys Leu Phe Thr Gly Leu Ser Arg Ser Phe Ile 180 185 Arg Leu Val Asp Lys Asn Tyr Val Pro Thr Thr Val Gly Leu Gly Arg 195 200 205 Val Asp Leu Asp His Tyr Leu Ala Glu Asn Met Ser Gly Glu Asn Glu 220 210 215 Gln Asn Asp Leu Thr Thr Glu Val Lys Ile Ile Gln Asn Ala Leu Asp 235 240 230 Phe Ser Gly Ile Gln Val Arg Asp Cys Met Ile Pro Arg Asn Glu Met 250 255 245 Ile Ala Cys Glu Leu Gln Thr Asp Ile Glu Val Leu Lys Thr Thr Phe 270 260 265 Ile Asp Thr Gly Leu Ser Lys Ile Ile Ile Tyr Arg Gln Asn Ile Asp 280 285 275 Asp Val Val Gly Tyr Ile His Ser Ser Glu Met Phe Arg Gly Gln Asp 290 295 300 Trp Gln Lys Arg Ile Asn Thr Thr Val Phe Val Pro Glu Ser Met Tyr 305 310 315 Ala Asn Lys Leu Met Arg Leu Leu Met Gln Arg Lys Lys Ser Ile Ala 325 330 Ile Val Ile Asp Glu Leu Gly Gly Thr Ala Gly Met Val Thr Leu Glu 350 340 345 Asp Leu Val Glu Glu Ile Phe Gly Asp Ile Glu Asp Glu His Asp Thr 355 360 Arg Lys Ile Ile Ala Lys Gln Leu Gly Pro His Thr Tyr Leu Val Ser 375 380 370 Gly Arg Met Glu Ile Asp Asp Val Asn Glu Arg Phe Gly Leu Ser Leu 395 390 Pro Glu Ser Asp Asp Tyr Leu Thr Val Ala Gly Phe Ile Leu Asn Ser 410 405 His Gln Asn Ile Pro Gln Ala Asn Glu Val Val Glu Ile Ala Pro Tyr 420 425 430 Thr Phe Thr Ile Leu Arg Ser Ser Ser Thr Lys Ile Glu Leu Val Lys 435 440 Met Ser Ile Asp Asp Gln Ser Asn 450

# (2) INFORMATION FOR SEQ ID NO:305

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 299 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...299
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:305

Leu Lys Lys Glu Ile Thr Met Lys Gln Asn Tyr Phe Lys Arg Val Cys 5 10 Ser Leu Leu Trp Leu Val Leu Pro Met Leu Ile Met Pro Leu Glu Val 25 20 Ala Ala Gln Glu Ile Ile Pro Asn Glu Glu Val Leu Glu Ser Leu Thr 45 40 35 Phe Val Ala Pro Val Glu Glu Thr Asp Ala Ile Glu Ala Glu Val Glu 55 60 Ala Leu Gln Glu Ile Val Ala Thr Glu Glu Ile Ala Glu Gln Ala Val 70 75 Arg Ser Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Val Lys Ile Ala Ser 90 85 Gly Leu Thr Glu Pro Thr Phe Leu Asp Glu Asp Val Pro Ala Gly Glu 105 100 His Thr Tyr Cys Val Glu Val Gln Tyr Gln Gly Gly Val Ser Asp Lys 120 125 115 Val Cys Val Asp Val Glu Val Lys Asp Phe Lys Pro Val Thr Asn Leu 135 140 Thr Gly Thr Ala Ser Asn Asp Glu Val Ser Leu Asp Trp Asp Gly Val 145 150 155 160 150 Glu Glu Lys Ala Glu Glu Pro Ala Ser Asp Lys Ala Val Ser Tyr Asn 165 170 175 Val Tyr Lys Asn Gly Thr Leu Ile Gly Asn Thr Ala Glu Thr His Tyr 185 190 180 Val Glu Thr Gly Val Ala Asn Gly Thr Tyr Ile Tyr Glu Val Glu Val
195 200 205 Lys Tyr Pro Asp Gly Val Ser Pro Lys Val Ala Val Thr Val Thr Val 220 210 215 Thr Asn Ser Ser Leu Ser Asn Val Asp Gly Gln Ala Pro Tyr Thr Leu 230 235 Arg Val Glu Gly Lys Lys Ile Ile Ala Glu Ala His Gly Met Ile Thr 250 245 Leu Tyr Asp Ile Asn Gly Arg Thr Val Ala Val Ala Pro Asn Arg Leu 260 265 Glu Tyr Met Ala Gln Thr Gly Phe Tyr Ala Val Arg Phe Asp Val Gly 280 275 Asn Lys His His Val Ser Lys Ile Gln Val Arg

- (2) INFORMATION FOR SEQ ID NO:306
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 377 amino acids

295

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...377
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:306

Pro Met Ile Pro Leu Ser Glu Ser Phe Glu Ser Gly Ile Pro Ala Ile 70 Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly Tyr Asn Trp Met His Leu 85 90 Thr Asn Phe Thr Gly Gln Ser Gly Leu Cys Val Ser Ser Ala Ser Tyr 100 105 110 Ile Gly Gly Val Gly Ala Leu Thr Pro Asp Asn Tyr Leu Ile Thr Pro 125 120 Glu Leu Lys Leu Pro Thr Asp Ala Leu Val Glu Ile Ile Tyr Trp Val 130 135 140 Cys Thr Gln Asp Leu Thr Ala Pro Ser Glu His Tyr Ala Val Tyr Ser 145 150 155 160 Ser Ser Thr Gly Asn Asn Ala Ala Asp Phe Val Asn Leu Leu Tyr Glu 165 170 175 Glu Thr Leu Thr Ala Lys Arg Ile Gln Ser Pro Glu Leu Ile Arg Gly 180 185 190 Asn Arg Thr Gln Gly Val Trp Tyr Gln Arg Lys Val Val Leu Pro Asn 195 200 205 Asp Thr Lys Tyr Val Ala Phe Arg His Phe Asn Ser Thr Asp Asn Phe 210 215 220 Trp Leu Asn Leu Asp Glu Val Ser Ile Leu Tyr Thr Pro Leu Pro Arg 230 235 Arg Ala Pro Cys Pro His Pro Gly Gly Tyr Thr Tyr Ser Val Phe Arg 250 245 255 Asp Gly Gln Lys Ile Ala Ser Gly Leu Ser Ala Leu Ala Tyr Ile Asp 265 270 Thr Asp Val Pro Tyr Gly Thr Gln Asp Tyr Cys Val Gln Val Asn Tyr 275 280 Leu Gln Gly Asp Ser Tyr Lys Val Cys Lys Asn Ile Val Val Ala Asn 295 300 Ser Ala Asn Ile Tyr Gly Ala Asp Lys Pro Phe Ala Leu Thr Val Val 305 310 315 Gly Lys Thr Ile Val Ala Ser Ala Phe Lys Gly Glu Ile Thr Leu Tyr 325 330 335 Asp Ile Arg Gly Arg Leu Ile Ala Ser Gly Cys Asp Thr Leu Arg Tyr 345 350 Lys Ala Glu Asn Gly Phe Tyr Leu Ile Lys Ile Gln Val Asn Gly Thr 360 Val Tyr Thr Glu Lys Ile Gln Ile Gln 375

#### (2) INFORMATION FOR SEQ ID NO:307

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 849 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...849
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:307

Phe Gly Ile Ser Pro Ser Met Lys Lys Ser Phe Leu Leu Ala Ile Val 10 Met Leu Phe Gly Ile Ala Met Gln Gly His Ser Ala Pro Val Thr Lys 20 25 30 Glu Arg Ala Leu Ser Leu Ala Arg Leu Ala Leu Arg Gln Val Ser Leu 35 40 Arg Met Gly Gln Thr Ala Val Ser Asp Lys Ile Ser Ile Asp Tyr Val 55 Tyr Arg Gln Gly Asp Ala Glu Arg Gly Ile Thr Ser Gln Glu Gly 70 75 Ser Pro Ala Tyr Phe Tyr Val Ala Asn Arg Gly Asn Asn Glu Gly Tyr 85 90 Ala Leu Val Ala Ala Asp Asp Arg Ile Pro Thr Ile Leu Ala Tyr Ser 105 110 Pro Ile Gly Arg Phe Asp Met Asp Ser Met Pro Asp Asn Leu Arg Met 120

```
Trp Leu Gln Ile Tyr Asp Gln Glu Ile Gly Leu Ile Leu Ser Gly Lys
                    135
                                      140
Ala Gln Leu Asn Glu Glu Ile Leu Arg Thr Glu Gly Val Pro Ala Glu
145
                150
                                   155
Val His Ala Leu Met Asp Asn Gly His Phe Ala Asn Asp Pro Met Arg
              165
                           170
Trp Asn Gln Gly Tyr Pro Trp Asn Asn Lys Glu Pro Leu Leu Pro Asn
         180
                   185
                                          190
Gly Asn His Ala Tyr Thr Gly Cys Val Ala Thr Ala Ala Ala Gln Ile
     195
                200
                                 205
Met Arg Tyr His Ser Trp Pro Leu Gln Gly Glu Gly Ser Phe Asp Tyr
                  215 220
His Ala Gly Ser Leu Val Gly Asn Trp Ser Gly Thr Phe Gly Glu Met
              230
                                 235
Tyr Asp Trp Ile Asn Met Pro Gly Asn Pro Asp Leu Asp Asn Leu Thr
            245
                             250
Gln Ser Gln Val Asp Ala Tyr Ala Thr Leu Met Arg Asp Val Ser Ala
         260
                         265
Ser Val Ser Met Ser Phe Tyr Glu Asn Gly Ser Gly Thr Tyr Ser Val
      275
                280
                                 285
Tyr Val Val Gly Ala Leu Arg Asn Asn Phe Arg Tyr Lys Arg Ser Leu
                             300
              295
Gln Leu His Val Arg Ala Leu Tyr Thr Ser Gln Glu Trp His Asp Met
               310 315
Ile Arg Gly Glu Leu Ala Ser Gly Arg Pro Val Tyr Tyr Ala Gly Asn
             325
                              330
                                               335
Asn Gln Ser Ile Gly His Ala Phe Val Cys Asp Gly Tyr Ala Ser Asp
          340
                          345
Gly Thr Phe His Phe Asn Trp Gly Trp Gly Gly Val Ser Asn Gly Phe
    355
               360
                                       365
Tyr Lys Leu Thr Leu Leu Ser Pro Thr Ser Leu Gly Ile Gly Glu
  370 375
                             380
Gly Ile Gly Phe Thr Ile Tyr Gln Glu Ile Ile Thr Gly Ile Glu Pro
           390
                         395
Ala Lys Thr Pro Ala Glu Ala Gly Thr Asp Ala Leu Pro Ile Leu Ala
            405
                            410
Leu Lys Asp Ile Glu Ala Glu Tyr Lys Ser Glu Ser Gly Leu Asn Val
                           425
Gly Tyr Ser Ile Tyr Asn Thr Gly Glu Glu Gln Ser Asn Leu Asp Leu
      435
                       440
Gly Tyr Arg Leu Asn Lys Ala Asp Gly Glu Val Ile Glu Val Lys Thr
            455
                                     460
Ser Ser Ile Asn Ile Ser Trp Tyr Gly Tyr Gly Glu His Pro Glu Ser
        470
                                 475
Phe Ser Leu Ala Pro Asn Gln Leu Ser Gln Gly Ile Asn Thr Ile Thr
           485 490
Leu Leu Tyr Arg Arg Thr Gly Thr Glu Gln Trp Glu Pro Val Arg His
                         505
                                            510
Ala Gln Gly Gly Tyr Val Asn Ser Ile Lys Val Asn Thr Thr Asp Pro
                       520
Asn Asn Val Val Val Thr Val Asp Asn Asn Glu Gly Lys Leu Ser Ile
 530 535
Val Pro Asn Ser Phe Val Ala Asp Leu Asn Ser Tyr Glu His Ser Thr
              550
                           555
Ile Thr Val Gln Phe Asn Ser Asp Ser Pro Asp Glu Ile Arg Thr Pro
            565
                             570
Val Ala Phe Ala Leu Ser Thr Gly Ala Thr Ala Asp Asp Val Ile Ser
                            585
                                            590
Leu Gly Trp Val Met Ala Glu Val Pro Gly Gly Ser Ser Asn Tyr Pro
      595
                       600
Val Val Trp Ser Lys Asp Val Leu Thr Leu Ser Glu Gly Asp Tyr Thr
                   615
                                     620
Leu Trp Tyr Arg Phe Ser Ile Asn Asn Gln Lys Asp Glu Trp Lys Lys
625
              630
                                  635
Ile Gly Ser Val Ser Val Lys Thr Pro Thr Glu Tyr Thr His Pro Leu
            645
                      650
Phe Glu Val Gly His Asn Gln Thr Ser Thr Tyr Thr Leu Asp Met Ala
         660
                        665
                                         670
His Asn Arg Val Leu Pro Asp Phe Thr Leu Lys Asn Leu Gly Leu Pro
                       680
                                       685
Phe Asn Gly Glu Leu Val Val Val Phe Arg Gln Thr Gln Ser Ser
  690
                    695
Gly Ser Leu Trp Ala Ala Gln Glu Thr Val His Ile Lys Gln Gly Glu
              710
                                 715
Thr Phe Val Tyr Lys Pro Val Val Glu Gly Pro Ile Pro Asp Gly Ser
             725
                              730
Tyr Arg Ala Thr Leu His Ala Phe Val Asn Gly Gln Gln Gln Leu Tyr
```

745 740 Leu Lys Gly Lys Arg Asn Tyr Thr Val Lys Ile Val Asn Gly Thr Ala 755 760 765 Val Glu Ala Ile Glu Ser Ser Glu Glu Ile Arg Val Phe Pro Asn Pro 770 775 780 Ala Arg Asp Tyr Val Glu Ile Ser Ala Pro Cys Ile Pro Gln Glu Thr 785 790 795 Ser Ile Ile Leu Phe Asp Leu Ser Gly Lys Ile Val Met Lys Asn Ser 805 810 Leu Ser Ala Gly His Gly Arg Met Asp Val Ser Arg Leu Pro Asn Gly 825 820 Ala Tyr Ile Leu Lys Val Asp Gly Tyr Thr Thr Lys Ile Asn Ile Val 840

# (2) INFORMATION FOR SEQ ID NO:308

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 295 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...295
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:308

Thr Lys Lys Thr Leu Met Lys Lys Leu Phe Leu Ser Leu Thr Ser Leu 1 5 10 Val Met Val Phe Ala Val Ala Ser Cys Asp Ile Ile Asp Lys Asp Gln 25 Thr Leu Leu Pro Ala Pro Thr Asn Val Thr Pro Asp Asn Pro Asp Asp 40 45 Asn Pro Ser Glu Ile Asp Ile Thr Gln Thr His Thr Glu Lys Tyr Val 55 60 Leu Ala Glu Glu Phe Thr Gly Gln Lys Cys Leu Asn Cys Pro Lys Gly 65 70 75 His Arg Lys Leu Ala Ala Leu Lys Glu Gln Tyr Gly Lys Arg Leu Thr 90 85 Val Val Gly Ile His Ala Gly Pro Gly Ser Leu Val Pro Pro Leu Phe 100 105 Arg Thr Glu Ala Gly Asp Ala Tyr Tyr Ser Lys Phe Ala Asn Asn Thr 120 Pro Leu Pro Ala Leu Met Val Ser Arg Lys Lys Phe Gly Ser Ser Tyr 135 140 Val Tyr Asp Lys Ser Tyr Lys Thr Trp Asp Val Pro Ile Ala Glu Gln 155 150 Met Glu Gln Lys Ala Lys Ile Asn Ile Phe Ala Val Ala Glu Tyr Thr 165 170 175 Asp Thr Gln Lys Ile Lys Val Thr Val Lys Gly Lys Ile Leu Glu Gly 180 185 190 Asn Thr Leu Pro Lys Ser Met Val Gln Val Tyr Leu Leu Glu Asp Lys 195 200 Leu Ile Ala Pro Gln Val Asp Gly Asn Thr Thr Val Glu Asn Tyr Glu 215 220 His Asn His Val Leu Arg Gly Ala Val Asn Gly Ile Trp Gly Glu Glu 225 230 235 240 Phe Val Asn Leu Lys Asp Tyr Leu Tyr Thr Tyr Ala Val Glu Pro Leu 250 255 245 Ser Gly Met Ser Phe Val Ala Glu Asn Tyr Ser Ile Val Ala Phe Val 260 265 270 Tyr Asp Val Gln Thr Phe Glu Val Tyr Asp Val Val His Val Lys Ile 275 280 Asn Pro Gln Ser Asp Gly Lys

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 230 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...230
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:309

Thr Asn Lys Lys Glu Glu Thr Met Lys Lys Ser Ser Val Val Ala Ser 10 Val Leu Ala Val Ala Leu Val Phe Ala Gly Cys Gly Leu Asn Asn Met 20 25 Ala Lys Gly Gly Leu Ile Gly Ala Gly Val Gly Gly Ala Ile Gly Ala 35 40 45 Gly Val Gly Asn Val Ala Gly Asn Thr Ala Val Gly Ala Ile Val Gly 55 Thr Ala Val Gly Gly Ala Ala Gly Ala Leu Ile Gly Lys Lys Met Asp Lys Gln Lys Lys Glu Leu Glu Ala Ala Val Pro Asp Ala Thr Ile Gln 85 90 Thr Val Asn Asp Gly Glu Ala Ile Leu Val Thr Phe Asp Ser Gly Ile 100 105 110 Leu Phe Ala Thr Asn Ser Ser Thr Leu Ser Pro Asn Ser Arg Thr Ala 125 115 120 Leu Thr Lys Phe Ala Ala Asn Met Asn Lys Asn Pro Asp Thr Asp Ile 135 140 Arg Ile Val Gly His Thr Asp Asn Thr Gly Ser Asp Lys Ile Asn Asp 150 155 160 145 Pro Leu Ser Glu Arg Arg Ala Ala Ser Val Tyr Ser Phe Leu Asn Ser 165 170 Gln Gly Val Ser Met Ser Arg Met Ala Ala Glu Gly Arg Gly Ser His 180 185 190 Glu Pro Val Ala Asp Asn Ser Thr Val Ala Gly Arg Ser Ala Asn Arg 200 205 195 Arg Val Glu Val Tyr Ile Leu Pro Asn Ala Lys Met Ile Glu Gln Ala 220 215

(2) INFORMATION FOR SEQ ID NO:310

Gln Gln Gly Thr Leu Lys

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 342 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...342
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:310

Asn Arg Asn Arg Asn Met Ser Lys Lys Ser Ile Leu Leu Leu Cys Cys

1 5 10 15

Ser Leu Cys Phe Ile Ser Ala Thr Lys Ala Val Thr Pro Val Arg Asn
20 25 30

Val Arg Asn Ser Gln Val Asn Ser Lys Ala Lys Thr Glu Arg Thr Lys
35 40 45

Pro Ser Asp Ser Val Arg Tyr Ile Ser Asn Met Ile Ala Asp Arg Leu
50 60

Glu Phe Arg Asn Lys Ile Ser Ser Glu Lys Glu Val Arg Lys Ala Glu 70 75 Tyr Glu Asn Arg Leu Ala Met Glu Ala Leu Asn Tyr Pro Ala Ile Asp 85 90 95 Leu Tyr Gly Glu Asp Ser Trp Ser Glu Tyr Val Asn Pro Phe Val Gly 100 105 Ala Gly Thr Asp Val Glu Ile Pro Asn Ser Tyr Asp Ile Asp Cys Ser 115 120 125 Ser Phe Val Met Pro Val Glu Asp Lys Gln Val Thr Ser Gln Phe Gly 130 135 140 Tyr Arg Arg Arg Phe Gly Arg Met His Tyr Gly Ile Asp Leu Ser Val 145 150 155 Asn Arg Gly Asp Thr Ile Arg Ala Ala Phe Asp Gly Lys Val Arg Val 165 170 175 Arg Ser Tyr Glu Ala Arg Gly Tyr Gly Tyr Tyr Ile Val Leu Arg His 180 185 190 Pro Asn Gly Leu Glu Thr Val Tyr Gly His Met Ser Arg Gln Leu Val 200 205 195 Asp Glu Asn Gln Ile Val Arg Ala Gly Gln Pro Ile Gly Leu Gly Gly 215 220 Ser Thr Gly Arg Ser Thr Gly Pro His Leu His Phe Glu Thr Arg Phe 230 235 Met Gly Ile Pro Ile Asn Pro Ser Thr Ile Ile Asp Phe Asp Asn Gly 245 250 Val Pro Leu Arg Asp Ile Tyr Thr Phe Lys Arg Gly Ser Asn Ser Arg 260 265 270 Tyr Ala Lys Ala Ser Lys Thr Ser Ser Arg Tyr Ala Lys Lys Gly Lys 280 285 Lys Gly Arg Gln Ala Ser Ser Pro Met Thr Tyr Arg Ile Lys Lys Gly 295 300 Asp Thr Leu Glu Thr Ile Ala Lys Arg His Gly Thr Ser Val Gln Lys 305 310 315 Leu Cys Ala Thr Asn Gly Ile Gly Lys Ser Lys Ile Leu Thr Pro Gly 325 330 Lys Ala Leu Arg Ile Lys 340

#### (2) INFORMATION FOR SEQ ID NO:311

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 159 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...159
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:311

Pro Ser Lys Thr Ile Ile Lys Thr Met Ala Lys Ile Asn Phe Tyr Ala 10 Glu Gly Val Ser Leu Pro Arg Ile Arg Arg Arg Ile Val Gly Lys Trp 20 25 Ile Ala Glu Val Cys Ser Arg Tyr Gly Lys Ala Val Gly Glu Ile Ser 40 35 45 Tyr Leu Phe Cys Asp Asp Glu Tyr Ile Leu Lys Ala Asn Gln Glu Phe 50 60Leu Asp His Asp Tyr Tyr Thr Asp Ile Ile Thr Phe Asp Ser Cys Glu 70 75 Ala Asp Thr Val Asn Gly Asp Leu Leu Ile Ser Leu Asp Thr Val Arg 90 Ser Asn Ala Arg Ala Leu Asp Leu Arg Tyr Glu Asp Glu Leu His Arg 100 105 Val Ile Ile His Gly Ile Leu His Leu Cys Gly Leu Lys Asp Lys Ser 115 120 125 Lys Lys Asp Glu Ala Gln Met Arg Ala Ala Glu Glu Lys Ala Leu Val 130 135 140 Met Leu Arg Glu Thr Ile Gly Ser Glu Leu Ser Leu Leu His Thr 145 150 155

## (2) INFORMATION FOR SEQ ID NO:312

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 395 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...395
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:312

Lys Ser Lys Thr Met Lys Val Lys Tyr Leu Met Leu Thr Leu Val Gly 10 Ala Ile Ala Leu Asn Ala Ser Ala Gln Glu Asn Thr Val Pro Ala Thr 20 25 Gly Gln Leu Pro Ala Lys Asn Val Ala Phe Ala Arg Asn Lys Ala Gly 35 40 45 Ser Asn Trp Phe Val Thr Leu Gln Gly Gly Val Ala Ala Gln Phe Leu 55 Asn Asp Asn Asn Lys Asp Leu Met Asp Arg Leu Gly Ala Ile Gly 65 70 75 80 Ser Leu Ser Val Gly Lys Tyr His Ser Pro Phe Phe Ala Thr Arg Leu 90 95 Gln Ile Asn Gly Gly Gln Ala His Thr Phe Leu Gly Lys Asn Gly Glu 100 105 110 Gln Glu Ile Asn Thr Asn Phe Gly Ala Ala His Phe Asp Phe Met Phe 120 115 125 Asp Val Val Asn Tyr Phe Ala Pro Tyr Arg Glu Asn Arg Phe Phe His 130 135 140 Glu Trp Ser Lys Asp Asn Val Glu Ser Leu Thr Ala Asn Val Gly Val 165 170 175 Met Met Ala Phe Arg Leu Gly Lys Arg Val Asp Phe Val Ile Glu Ala 185 190 Gln Ala Ala His Ser Asn Leu Asn Leu Ser Arg Ala Tyr Asn Ala Lys 195 200 Lys Thr Pro Val Phe Glu Asp Pro Ala Gly Arg Tyr Tyr Asn Gly Phe 210 215 220 Gln Gly Met Ala Thr Ala Gly Leu Asn Phe Arg Leu Gly Ala Val Gly 225 230 235 240 Phe Asn Ala Ile Unk Pro Met Asp Tyr Ala Leu Ile Asn Asp Leu Asn 245 250 255 Gly Gln Ile Asn Arg Leu Arg Ser Glu Val Glu Glu Leu Ser Lys Arg 260 265 270 Pro Val Ser Cys Pro Glu Cys Pro Glu Val Thr Pro Val Thr Lys Thr 275 280 285 Glu Asn Ile Leu Thr Glu Lys Ala Val Leu Phe Arg Phe Asp Ser His 290 295 300 Val Val Asp Lys Asp Gln Leu Ile Asn Leu Tyr Asp Val Ala Gln Phe 305 310 315 Val Lys Glu Thr Asn Glu Pro Ile Thr Val Val Gly Tyr Ala Asp Pro 325 330 335 Thr Gly Asn Thr Gln Tyr Asn Glu Lys Leu Ser Glu Arg Arg Ala Lys 340 345 350 340 345 Ala Val Val Asp Val Leu Thr Gly Lys Tyr Gly Val Pro Ser Glu Leu 360 365 Ile Ser Val Glu Trp Lys Gly Asp Ser Thr Gln Pro Phe Ser Lys Lys 375 Ala Trp Asn Arg Val Val Ile Val Arg Ser Lys 390

- (2) INFORMATION FOR SEQ ID NO:313
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 387 amino acids
    - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...387
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:313

Tyr Lys Met Thr Tyr Arg Ile Met Lys Ala Lys Ser Leu Leu Ala 1 5 10 15 Leu Ala Gly Leu Ala Cys Thr Phe Ser Ala Thr Ala Gln Glu Ala Thr 20 25 Thr Gln Asn Lys Ala Gly Met His Thr Ala Phe Gln Arg Asp Lys Ala 40 45 35 Ser Asp His Trp Phe Ile Asp Ile Ala Gly Gly Ala Gly Met Ala Leu 55 60 Ser Gly Trp Asn Asn Asp Val Asp Phe Val Asp Arg Leu Ser Ile Val 65 70 75 80 70 Pro Thr Phe Gly Ile Gly Lys Trp His Glu Pro Tyr Phe Gly Thr Arg 85 90 Leu Gln Phe Thr Gly Phe Asp Ile Tyr Gly Phe Pro Gln Gly Ser Lys
100 105 110 100 Glu Arg Asn His Asn Tyr Phe Gly Asn Ala His Leu Asp Phe Met Phe 115 120 125 120 Asp Leu Thr Asn Tyr Phe Gly Val Tyr Arg Pro Asn Arg Val Phe His 130 135 140 Ile Ile Pro Trp Ala Gly Ile Gly Phe Gly Tyr Lys Phe His Ser Glu 145 150 155 Asn Ala Asn Gly Glu Lys Val Gly Ser Lys Asp Asp Met Thr Gly Thr 165 170 175 Val Asn Val Gly Leu Met Leu Lys Phe Arg Leu Ser Arg Val Val Asp 190 180 185 Phe Asn Ile Glu Gly Gln Ala Phe Ala Gly Lys Met Asn Phe Ile Gly 205 195 200 Thr Lys Arg Gly Lys Ala Asp Phe Pro Val Met Ala Thr Ala Gly Leu 210 215 220 Thr Phe Asn Leu Gly Lys Thr Glu Trp Thr Glu Ile Val Pro Met Asp 225 230 235 240 Tyr Ala Leu Val Asn Asp Leu Asn Asn Gln Ile Asn Ser Leu Arg Gly 245 250 255 Gln Val Glu Glu Leu Ser Arg Arg Pro Val Ser Cys Pro Glu Cys Pro 265 270 260 Glu Pro Thr Gln Pro Thr Val Thr Arg Val Val Val Asp Asn Val Val 275 280 285 Tyr Phe Arg Ile Asn Ser Ala Lys Ile Asp Arg Asn Gln Glu Ile Asn 295 300 Val Tyr Asn Thr Ala Glu Tyr Ala Lys Thr Asn Asn Ala Pro Ile Lys 310 315 Val Val Gly Tyr Ala Asp Glu Lys Thr Gly Thr Ala Ala Tyr Asn Met 325 330 Lys Leu Ser Glu Arg Arg Ala Lys Ala Val Ala Lys Met Leu Glu Lys 340 345 Tyr Gly Val Ser Ala Asp Arg Ile Thr Ile Glu Trp Lys Gly Ser Ser 360 365 Glu Gln Ile Tyr Glu Glu Asn Ala Trp Asn Arg Ile Val Val Met Thr 370 375 380 Ala Ala Glu 385

- (2) INFORMATION FOR SEQ ID NO:314
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 195 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...195
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314

Val Ile Gly Ile Ile Met Glu Phe Phe Met Leu Phe Ile Ala Ala Val 10 Phe Val Asn Asn Val Val Leu Ser Gln Phe Leu Gly Ile Cys Pro Phe 20 25 30 Leu Gly Val Ser Lys Lys Val Asp Thr Ser Ile Gly Met Gly Ala Ala 35 40 Val Thr Phe Val Leu Ala Leu Ala Thr Leu Val Thr Phe Leu Ile Gln 55 Lys Phe Val Leu Asp Arg Phe Gly Leu Gly Phe Met Gln Thr Ile Ala 70 75 Phe Ile Leu Val Ile Ala Ala Leu Val Gln Met Val Glu Ile Ile Leu 95 90 85 Lys Lys Val Ser Pro Pro Leu Tyr Gln Ala Leu Gly Val Phe Leu Pro 105 110 100 Leu Ile Thr Thr Asn Cys Cys Val Leu Gly Val Ala Ile Leu Val Ile 120 125 115 Gln Lys Asp Tyr Thr Leu Leu Gln Ser Phe Val Tyr Ala Ile Ser Thr 135 130 140 Ala Ile Gly Phe Thr Leu Ala Met Val Thr Phe Ala Gly Ile Arg Glu 150 155 Gln Leu Asp Met Thr Asn Leu Pro Lys Ala Met Lys Gly Ile Pro Ser 170 175 165 Ala Leu Leu Ala Ala Gly Ile Leu Ala Met Ala Phe Met Gly Phe Ser 185 Gly Ile Ala

- (2) INFORMATION FOR SEQ ID NO:315
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 876 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:

195

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...876
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315

Tyr Arg Ser Tyr Arg Gly Ile Gly Ser Gly Thr His Ser Pro Asn Leu 10 15 Lys Asn Arg Leu Lys Arg Ile Gly Ile Arg Ile Pro Asn Arg His Tyr 25 30 20 Ile His Ile Lys Pro Ile Lys Pro Lys Asn Lys Met Lys Gln Leu Asn 35 40 45 Ile Ile Ser Phe Ile Ile Ala Phe Leu Phe Leu Gly Thr Ser Ala Ser 55 Ala Gln Gln Ser Gly Gly Ser Val Thr Gly Thr Val Val Asp Lys Ser 75 70 Ser Lys Glu Pro Ile Ala Tyr Val Gln Val Phe Val Lys Gly Thr Thr 90 95 85 Leu Gly Thr Ser Thr Asp Ala Asn Gly Asn Tyr Ser Ile Lys Gly Ile 100 105 110 Pro Ser Gly Asn Gln Thr Ile Val Ala Arg Leu Met Gly Tyr Ser Thr 120 125 115 Cys Glu Glu Lys Val His Ile Glu Lys Gly Gly Ser Arg His Val Asp 140 130 135 Leu Tyr Leu Thr Glu Glu Ile Leu Ser Leu Asp Gly Val Val Val Ser 155 150 Ala Asn Arg Asn Glu Thr Phe Arg Arg Gln Ala Pro Ser Leu Val Thr

				165	;				170	1				175	
Val	Leu	Ser	Pro	Glu		Phe	Leu	185	Thr		Ser	Thr	Asr 190	ı Leı	Ser
Gln	Gly	Leu 195	Lys		Gln	Pro	Gly 200	Leu		Val	. Glu		Asn		Gln
Asn		Gly		Asn	Gln		Arg		Asn	Gly				Ala	Tyr
			Leu	Ile				Pro	Ile				Leu	Ala	Gly
225 Val		Gly	Leu				Pro	Ala				Glu	Arg	ı Val	240 Glu
Val	Ile	Arg				Ser	Ala				Ser	Asn	Ala	255 Val	Gly
Gly	Val				Ile	Thr				Leu	Arg	Asn	270 Ser		Glu
Ile		275 His		Thr	Met		280 Phe		His	Ala	Lys	285 Gly		Gly	Ser
		Asn	Thr	Thr	Gln	295 Phe	Asn	Gly	Ser	Met	300 Leu		Glu	Asp	Arg
305 Lys		Gly	Val	Met	310 Val	Phe	Gly	Gln	His	315 Asn		Arg	Pro	Gly	320 Gln
				325					330					335	
Ser	Leu		340 Phe		Ser	Tyr	Tyr	345 Lys		Gly	Leu	Tyr	350 Ser		Ala
		355					360					365			Arg
	370				Phe	375					380				
385 Tyr		Asn	Gly	Gly	390 Ser	Phe	Lys	Phe	Asp	395 Gln		Phe	Ser	Gly	400 Gly
Lys	Asp	Phe	Phe	405 Ser	Leu	Tyr	Ala	Ser	410 Ala	Gln	Asp	Val	Gln	415 Arg	Arg
Ser	Tyr	Tyr	420 Gly	Gly	Gly	Asp	Tyr	425 Thr	Glu	Asn	Leu	Leu	430 Asn	Gly	Ala
Val		435 Ser	Gly	Ser	Thr		440 Ser	Asp	Glu	Tyr	Asn	445 Asp	Ala	Phe	Thr
Ala	450 Leu	Thr	Ser	Tyr	Gly	455 Thr	Thr	Lys	Gly	Phe	460 Asp	Leu	Gln	Gly	Gly
465 Gly	Met	Tyr	Arg		470 Thr	Phe	Gly	Glu	Asn	475 Trp	Asp	Phe	Thr	Gly	480 Gly
Leu	Glu	Tyr		485 Tyr	Gly	Gln	Leu		490 Asp	Arg	Ser	Gly	Tyr	495 Arg	Pro
Ser	Lys		500 Asp	Gln	Asn	Thr		505 Thr	Phe	Ser	Gln		510 Asp	Gln	Leu
Glu		515 Lys	Thr	Glu	Lys		520 Ser	Ala	Leu	Ile	_	525 Ala	Arg	Ile	Asp
	530 Val	Leu	Leu	Asn	Gln	535 Asp	Gly	Lys	Arg		540 Ile	Asp	Pro	Leu	
545 Ile	Phe	Ser	Pro		550 Ala	Asn	Val	Arg		555 Asn	Pro	Asn	Lys		560 Leu
Ser	Phe	Arg		565 Ser	Tyr	Ser	Glu		570 Phe	Arg	Ala	Pro		575 Tyr	Phe
Asp	Glu		580 Leu	His	Val	Glu		585 Ala	Gly	Gly	Thr		590 Ile	Ser	Arg
Val		595 Ser	Pro	Asn	Leu		600 Glu	Glu	Arg	Ser		605 Ser	Ile	Ser	Ala
	610 Phe	Asp	Tyr	Tyr	His	615 Arg	Ala	Asp	Glu		620 Gln	Phe	Asn	Ile	
625 Gly	Glu	Ala	Phe		630 Thr	Phe	Ile	Ser		635 Gln	Phe	Lys	Pro		640 Asp
Lys	Val	Glu	Thr	645 Thr	Ser	Asp	Gly		650 Glu	Trp	Ile	Ile	_	655 Thr	Ile
Tyr	Asn			Asp	Gly			665 Lys	Val	Tyr	Gly		670 Asn	Leu	Glu
		67"					680	Phe	Asp	Leu	Gln	685 Len	Gly	Gly	Thr
Gly	Arg	675 Ile	Ala	Tyr	Asn		ser						-	_	
Trp	Arg 690	Ile			Tyr	695				Thr	700		_	_	Asp
Trp 705	Arg 690 Gln	Ile Arg	Ser	Arg Gln		695 Gly	Ser	Ile	Tyr Val	Thr 715	700 Ala	Val	Glu	Ala Arg	Asp 720
Trp 705 Lys	Arg 690 Gln Thr	Ile Arg Thr	Ser Gly Tyr	Arg Gln 725	Tyr 710	695 Gly Glu	Ser Ile	Ile Ser Ala	Tyr Val 730	Thr 715 Lys	700 Ala Asp	Val Tyr	Glu Val Thr	Ala Arg 735	Asp 720 Thr
Trp 705 Lys Pro	Arg 690 Gln Thr Asn	Ile Arg Thr Leu	Ser Gly Tyr 740	Arg Gln 725 Gly	Tyr 710 Ala	695 Gly Glu Phe Gly	Ser Ile Val	Ile Ser Ala 745	Tyr Val 730 Thr	Thr 715 Lys Val	700 Ala Asp Arg	Val Tyr Pro	Glu Val Thr 750	Ala Arg 735 Glu	Asp 720 Thr His

Gly Ser Phe Asp Phe Glu Met Asn Gly Gln Gln Phe Lys Gly Leu Ala 790 795 Glu Gly His Ala Lys Leu Val Lys Thr Pro Ala Phe Ala Asp Ile Asp 805 810 815 Leu Lys Leu Ser His Asp Phe His Leu Ala Ser Thr Met Thr Leu Glu 820 825 Leu Asn Ala Gly Ile Gln Asn Ile Phe Asn Ser Tyr Gln Lys Asp Thr 835 840 845 Asp Lys Gly Pro Gly Arg Ala Ser Thr Tyr Val Tyr Gly Pro Met Gln 855 850 860 Pro Arg Arg Ile Phe Val Gly Thr Lys Ile Asn Phe 870

#### (2) INFORMATION FOR SEQ ID NO:316

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 899 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...899
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:316

Ile Leu Asn His Leu Arg Lys Thr Met Tyr Lys Lys Ile Ile Ala Val Ala Ala Leu Phe Cys Ala Ser Ile Gly Ile Leu Lys Gly Gln Ser Ser 20 25 Asp Leu Thr Pro Gln Asp Thr Ile Tyr Ser Pro Glu Ile Ser Tyr Ala 40 Lys Pro Ile His Lys Thr Ile Ala Ser Ile Glu Ile Glu Gly Met Arg 50 55 60 Ser Phe Asp Asp Phe Val Leu Arg Asn Leu Ser Gly Leu Ala Val Gly 70 75 Asp Glu Val Leu Ile Pro Gly Asp Ala Met Ser Ala Ala Val Asn Arg 90 Ile Met Arg Gln Gly Tyr Phe Ser Asn Val Arg Ile Ile Ala Asp Lys 100 105 Tyr Val Gly Asn Lys Val Tyr Leu Lys Ile Ile Val Thr Glu Arg Pro 115 120 125 Arg Ile Ser Lys Val Thr Phe Ser Gly Val Lys Lys Ser Glu Arg Glu Asp Leu Glu Met Lys Ile Gly Leu Arg Glu Gly Ile Gln Met Thr Arg 145 150 155 Asn Asn Glu Asp Lys Val Arg Gln Ile Val Gln Lys Tyr Phe Ser Glu 165 170 175 Lys Gly Tyr Arg Asp Ala Ser Ile Arg Ile Thr Gln Glu Pro Asp Leu 180 185 190 Ser Lys Asp Gly Phe Val Asn Val Leu Ile Ser Ile Glu Lys Lys Ser 195 200 Lys Thr Lys Val Asn Glu Ile Tyr Phe Ser Gly Asn Lys Ala Leu Ser 210 215 220 Asn His Lys Leu Arg Met Ala Met Lys Asn Thr Asn Ala Lys Phe Ser 225 230 235 Leu Arg Lys His Ile Arg Ser Ser Phe Leu Lys Leu Phe Ser Thr His 245 250 Lys Phe Val Glu Glu Ser Tyr Arg Glu Asp Leu Val Arg Leu Ile Glu 260 265 270 Lys Tyr Gln Glu Tyr Gly Tyr Arg Asp Ala Glu Ile Leu Thr Asp Ser 275 280 Val Val Lys Ala Pro Asp Gly Lys Arg Val Asp Ile Tyr Leu Asn Ile 295 300 Glu Glu Gly Gln Lys Tyr Tyr Ile Lys Asp Val Asn Phe Val Gly Asn 305 310 315 Ser Gln Tyr Pro Ser Glu Tyr Leu Glu Arg Val Leu Gly Ile Lys Ser 325 330 335 Gly Asp Val Tyr Asn Gln Arg Arg Leu Ala Lys Arg Leu Asn Glu Asp 345 350

Glu Asp Ala Val Gly Asn Leu Tyr Tyr Asn Asn Gly Tyr Ile Phe Ala 360 Trp Val Asp Pro Val Glu Thr Asn Val Val Gly Asp Ser Val Ser Leu 370 375 Asp Ile Arg Ile Ala Glu Gly Lys Gln Ala Asn Ile Asn Lys Val Ile 385 390 395 Ile Lys Gly Asn Thr Val Val Tyr Glu Asp Val Val Arg Arg Glu Leu 405 415 405 410 Tyr Thr Lys Pro Gly Gln Leu Phe Ser Arg Glu Asp Ile Ile Asn Ser 420 425 430 Ile Arg Leu Ile Asn Gln Leu Gly His Phe Asp Ala Glu Lys Ser Ile 435 440 445 Pro Arg Pro Ile Pro Asn Pro Glu Thr Gly Thr Val Asp Ile Glu Tyr 455 460 Asp Leu Val Pro Arg Ser Ser Asp Gln Leu Glu Leu Ser Val Gly Trp 470 475 Ser Gln Ser Gly Leu Leu Phe Arg Gly Ala Ile Lys Phe Thr Asn Phe 485 490 495 Ser Val Gly Asn Leu Leu His Pro Ser Met Tyr Lys Lys Gly Ile Ile 500 505 510 Pro Gln Gly Asp Gly Gln Thr Leu Ser Leu Ser Ala Gln Thr Asn Gly 515 520 525 Lys Tyr Tyr Gln Gln Tyr Ser Val Thr Phe Met Asp Pro Trp Phe Gly 540 535 Gly Lys Arg Pro Asp Met Phe Ser Phe Ser Ala Phe Tyr Ser Lys Thr 545 550 555 560 Thr Ala Ile Asp Ser Lys Phe Tyr Asn Ser Asn Ala Gly Asn Tyr Tyr 565 570 575 Asn Ala Tyr Tyr Asn Ser Tyr Tyr Asn Asn Tyr Asn Ser Tyr Tyr Asn 580 585 Gly Met Ser Asn Tyr Thr Gly Asp Leu Tyr Thr Gln Ala Ser Asp Pro 595 600 605 Asp Arg Ser Leu Gln Met Leu Gly Thr Ser Ile Gly Tyr Gly Lys Arg 610 615 620 Leu Thr Trp Pro Asp Asn Trp Phe Gln Ile Tyr Thr Ser Leu Asn Tyr 630 635 Thr Tyr Tyr Arg Leu Arg Asn Trp Ser Tyr Asn Thr Phe Gln Asn Phe 645  $\phantom{0}655$ His His Gly Ser Ala Asn Asp Leu Asn Leu Glu Leu Arg Leu Ser Arg 660 665 Thr Ser Ile Asp Asn Pro Ile Tyr Thr Arg Ser Gly Ser Asp Phe Met 675 680 685 Val Ser Val Ala Ala Thr Leu Pro Tyr Ser Leu Trp Asp Asn His Asp 690 695 700 Tyr Ala Ser Gln Asn Leu Ser Val Ser Asp Arg Tyr Arg Phe Ile Glu 705 710 715 720 Tyr His Lys Trp Lys Phe Arg Gly Arg Val Phe Thr Pro Leu Leu Asn 725 730 735 Pro Ala Thr His Lys Tyr Thr Pro Val Leu Met Ser Arg Val Glu Gly 740 745 750 Ala Val Leu Gly Ser Tyr Asn Ser Asn Lys Lys Ser Pro Phe Gly Thr 755 760 765 Phe Tyr Met Gly Gly Asp Gly Met Ser Ser Tyr Tyr Gly Gly Tyr Met 770 785 Asn Glu Thr Ile Gly Leu Arg Gly Tyr Lys Asn Gly Ser Ile Ala Gly 785 790 795 800 Asn Asn Tyr Asp Tyr Ala Tyr Ala Tyr Met Arg Leu Thr Met Glu Leu 810 815 805 Arg Phe Pro Ile Leu Phe Glu Asn Ser Phe Asn Ala Trp Leu Leu Ala 820 825 830 Phe Ala Glu Ala Gly Asn Ala Trp Arg Ser Ile Asp Asn Tyr Asn Pro 835 840 845 Phe Asn Leu Lys Arg Ser Ala Gly Val Gly Leu Arg Val Thr Leu Pro 850 855 860 Met Val Gly Met Leu Gly Ile Asp Trp Gly Tyr Gly Phe Asp Arg Pro 865 870 875 880 Asp Asn Ser Leu Gln Arg Gly Gly Ser Asn Val His Phe Val Leu Gly 885 890 Gln Glu Phe

### (2) INFORMATION FOR SEQ ID NO:317

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 177 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...177
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:317

Gln Ile Asn Met Asn Gly Asp Met Lys Arg Phe Leu Ile Leu Ile Gly 10 Phe Ala Leu Ala Val Ala Phe Ser Gly Phe Ser Gln Lys Phe Ala Leu 20 25 30 Val Asp Met Glu Tyr Ile Leu Arg Asn Ile Pro Asp Tyr Glu Met Met 35 40 45 Asn Glu Gln Leu Glu Gln Val Ser Lys Lys Trp Gln Asn Glu Ile Glu 55 Ala Leu Glu Asn Glu Ala Gln Ser Met Tyr Lys Lys Tyr Gln Ser Asp 65 70 75 Leu Val Phe Leu Ser Ala Ala Gln Lys Lys Thr Gln Glu Glu Ala Ile 85 90 Val Lys Lys Glu Gln Gln Ala Ser Glu Leu Lys Arg Lys Tyr Phe Gly 105 110 Pro Glu Gly Glu Leu Tyr Lys Lys Arg Ser Asp Leu Met Lys Pro Ile 115 120 Gln Asp Glu Ile Trp Asn Ala Ile Lys Glu Ile Ala Lys Arg Asn Asn 130 135 140 Tyr Gln Met Val Leu Asp Arg Gly Thr Ser Gly Ile Ile Phe Ala Ser 150 145 155 Pro Ser Ile Asp Ile Ser Asp Leu Val Leu Ser Lys Met Gly Phe Ser 165 170 Lys

- (2) INFORMATION FOR SEQ ID NO:318
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 170 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc feature
    - (B) LOCATION 1...170
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:318

Arg Ile Asn Lys Gln His Glu Met Lys Lys Phe Phe Leu Met Leu Leu 5 10 Met Ala Leu Pro Leu Ser Leu Leu Ala Gln Lys Val Ala Val Val Asn 20 25 3.0 Thr Glu Glu Ile Ile Ser Lys Met Pro Glu Gln Val Ala Ala Thr Lys 35 40 45 Gln Leu Asn Glu Leu Ala Glu Lys Tyr Arg Leu Asp Leu Lys Ser Met 55 60 Asp Asp Glu Phe Ala Lys Lys Thr Glu Glu Phe Val Lys Glu Lys Asp 70 Ser Leu Leu Glu Asn Ile Arg Asn Arg Arg Gln Glu Leu Gln Asp 85 90 Ile Gln Thr Arg Tyr Gln Gln Ser Tyr Gln Thr Met Gln Glu Asp Leu 100 105 Gln Lys Arg Gln Gln Gln Leu Phe Ala Pro Ile Gln Gln Lys Val Ala 115 120 125 Asp Ala Ile Lys Lys Val Gly Asp Glu Glu Asn Cys Ala Tyr Ile Met 135 140

# (2) INFORMATION FOR SEQ ID NO:319

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 828 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...828
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:319

Ile Met Lys Glu Ala Ile Pro Arg Lys Asn Lys Tyr Ile Lys Leu Asn 10 Gly Ile Tyr Arg Leu Ser Phe Ile Leu Leu Cys Cys Leu Leu Cys Ser 20 25 Gln Ala Ala Met Ala Gln Gly Val Arg Val Ser Gly Tyr Val Leu Asp 35 40 45 Arg Gly Glu Lys Pro Ile Pro Phe Ala Gly Val Lys Val Arg Gly Thr 55 60 Gly Thr Gly Ala Thr Thr Asn Leu Lys Gly Tyr Tyr Glu Phe Arg Met 70 75 Lys Ala Thr Thr Asp Ser Ile Thr Ile Glu Phe Ser Ser Met Gly Tyr 85 90 Gln Gly Val Ser Arg Ser Phe Pro Ser Leu Thr Lys Asp Thr Arg Leu 100 105 Asn Val Arg Leu Ala Glu Ala Glu Met Glu Leu Ser Ser Val Thr Val 115 120 125 Gln Ala Thr Lys Arg Arg Leu Asn Thr Met Glu Arg Val Asn Thr Arg 135 140 Asp Leu Arg Val Asn Ala Gly Pro Thr Gly Gly Val Glu Ser Leu Ile 150 155 Ser Thr Tyr Ala Gly Val Thr Gln Asn Asn Glu Leu Ser Ser Gln Tyr 170 175 Ser Val Arg Gly Gly Ser Tyr Asp Glu Asn Met Val Tyr Val Asn Gly 180 185 Val Glu Val Tyr Arg Pro Leu Leu Val Arg Ser Ala Gln Gln Glu Gly 200 195 205 Leu Ser Phe Val Asn Pro Asp Leu Thr Gln Ser Val Gln Phe Ser Ala 210 215 220 Gly Gly Phe Thr Ala Asp Tyr Gly Asp Lys Met Ser Ser Val Leu Asp 230 235 Ile Arg Tyr Lys Gln Pro Gln Glu Lys Glu Gly Ala Val Leu Leu Gly 245 250 Met Leu Gln Ser Ser Ala Tyr Tyr Gly Ser Ser Ala Gly Ala Phe Ser 260 265 Gln Ile Thr Gly Val Arg Tyr Lys Ser Ala Lys Ser Leu Leu Gly Thr 275 280 285 Thr Asp Thr Lys Ala Glu Tyr Asp Pro Ile Tyr Ala Asp Gly Gln Thr 295 300 Phe Met Thr Tyr Arg Phe Ser Pro Lys Leu Ser Val Ser Phe Leu Gly 310 315 320 Asn Ile Ser Gln Thr Arg Tyr Lys Phe Val Pro Gln Thr Arg Glu Thr 325 330 Ser Phe Gly Thr Leu Ser Asp Ala Lys Lys Leu Lys Ile Phe Phe Asp 340 345 350 Gly Gln Glu Gln Asp Arg Phe Leu Thr Tyr Phe Gly Ala Phe Ser Met 355 360 Asn Phe Val Pro Asp Asp Lys Gln Arg His Thr Val Thr Leu Ser Ala 380 370 375 Phe Asn Ser Asn Glu Arg Glu Thr Tyr Asp Ile Gln Gly Glu Tyr Phe 390 395 Leu Asn Asp Val Gln Leu Gly Ala Asp Gly Thr Ala Ser Met Ala Ser 410

Gly Ser Glu Asn Ser Asn Gly Leu Gly Ile Gly Arg Asn His Glu His 425 Ala Arg Asn Arg Leu Ser Tyr Arg Val Leu Asn Met Gly Tyr Arg Gly 435 440 445 Glu Met Lys Leu Asn Glu Lys His Arg Leu Gln Ala Gly Val Ser Ala 455 460 Gln Met Glu Lys Ile Ala Asp His Ile Ser Glu Trp Glu Arg Arg Asp 470 475 Ser Val Gly Tyr Asn Leu Pro His Ser Glu Thr Val Leu Leu Met Tyr 485 490 495 Asn Asn Leu Tyr Ala Asp Thr Gln Met Arg Gly Thr Arg Leu Ser Ala 500 505 510 Phe Val Gln Asp Arg Phe Asn Phe Ser Met Gly Gly Gly Thr Phe Ser 515 520 525 Leu Ile Pro Gly Ile Arg Ala Ser Trp Trp Ser Phe Asn Lys Glu Leu 535 540 Leu Val Ser Pro Arg Ile Ser Val Gly Tyr Ser Pro Glu Ser Asn Pro 545 550 555 Ala Leu Val Leu Arg Ala Ala Gly Leu Tyr Tyr Gln Ala Pro Phe 565 570 Tyr Lys Glu Leu Arg Gln Thr His Lys Asp Ala Glu Gly Asn Asn Val 580 585 Val Val Leu Asn Glu Lys Ile Arg Ser Gln Gly Ala Phe His Ile Leu 595 600 605 Ala Gly Ala Asp Tyr Thr Phe Glu Met Gly Gly Arg Lys Tyr Lys Phe 615 620 Thr Ala Glu Ala Tyr Tyr Lys Ser Leu Phe Asn Ile Asn Pro Tyr Ile 630 635 Ile Glu Asn Val Lys Ile Arg Tyr Leu Gly Glu Asn Ile Gly Ser Gly 645 650 Tyr Ala Ala Gly Ile Asp Leu Lys Leu Phe Gly Glu Leu Val Pro Gly 660 665 670 Val Asp Ser Trp Leu Thr Ala Ser Ile Ile Lys Ala Arg Gln Lys Leu 680 675 685 Asp Gly Tyr Gly Ser Leu Pro Leu Met Asn Ala Pro Thr Tyr Asn Phe 695 700 Ser Phe Phe Leu Gln Glu Tyr Val Pro Gly Asn Lys Arg Ile Thr Ala 710 715 Thr Leu Arg Ala Ala Leu Ser Gly Gly Leu Pro Gln Leu Asn Pro Ser 725 730 Lys Gly Leu Ser Ser Pro Ala Phe Thr Ala Pro Ala Tyr Lys Arg Val 750 740 745 Asp Leu Gly Val Met Tyr Lys Trp Leu Asp Pro Asp Asp Ser Phe Ala 755 760 765 Gly Arg Ser Lys Trp Leu Met Gly Val Lys Gly Ala Tyr Ile Gly Ala 770 775 780 Asp Leu Phe Asn Leu Phe Asp Met Thr Asn Val Asn Ser Tyr Tyr Trp 790 795 Val Ser Asp Ala Tyr Gln Gln Gln Tyr Ala Val Pro Asn Tyr Leu Thr 805 810 Arg Arg Gln Phe Asn Leu Arg Leu Leu Val Glu Phe 820 825

## (2) INFORMATION FOR SEQ ID NO:320

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 679 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...679
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:320

Pro Ile Pro Phe Leu Leu Asn Met Tyr Ser Gly His His Lys Ile His 1 5 10 15

Tyr Pro Phe Leu Ile Leu Leu Val Cys Leu Ala Phe Ala Ala Cys Lys

```
Ser Val Lys Leu Lys Asp Ala Glu Lys Ala His Asp Arg Gln Glu Tyr
                      40
Thr Lys Ala Ala Asp Met Tyr Asn Thr Leu Tyr Arg Arg Thr Arg Arg
  50
                  55
                                     60
Lys Gln Val Glu Met Lys Ala Tyr Thr Ala Phe Arg Ser Gly Glu Asn
                 70
                                  75
Tyr Arg Ala Ala Gly Arg Gln Ala Lys Ala Leu Arg Gly Tyr Leu Asn
           85
                              90
Ala Arg Arg Tyr Gly Tyr Pro Asp Ser Val Val Leu Leu Arg Leu Ala
        100
                          105
Gln Thr Tyr Gln Gln Gly Gly Asn Tyr Lys Glu Ala Glu Val Leu Phe
     115
                                125
               120
Arg Gly Tyr Leu Glu Ala Tyr Pro Lys Ser Tyr Phe Ala Ala Ile Gly
                  135
                              140
Leu Glu Gly Cys Leu Phe Ala Arg Gln Gln Lys Glu Tyr Pro Thr Arg
             150
                                155
Tyr Arg Ile Arg Arg Ala Ala Glu Trp Asn Ser Ala Arg Gly Asp Phe
             165
                              170
                                               175
Gly Pro Ala Tyr Ala Pro Asp Ala Ser Ala Leu Tyr Phe Thr Ser Ser
         180
                  185
Arg Ser Lys Asp Asp Gly Leu Asp Asn Ser Ser Ile Thr Gly Leu Lys
  195
              200
                                      205
Pro Asn Asp Ile Tyr Ile Ile Lys Arg Asp Ala Gln Gly Arg Trp Gly
           215
                              220
Arg Pro Asp Ser Val Ser Gly Gly Ile Asn Thr Pro Trp Asp Glu Gly
              230
                         235
Val Pro Thr Ile Thr Pro Asp Gly Ser Thr Ile Tyr Tyr Thr Leu Ala
             245
                            250
                                             255
Gln Gln Gly Ala Asp Tyr Asp Arg Thr Val Gln Ile Tyr Ser Ala Ala
         260
                  265
Arg Ser Gly Glu Gly Gly Trp Ser Asn Gly Ser Leu Val Asp Ile Met
    275
              280
                                 285
Arg Asp Ser Leu Arg Met Ala Ala His Pro Ser Met Ser Ala Ser Gly
  290
           295
                                    300
Asp Tyr Leu Tyr Phe Val Ser Asn Ile Gly Gly Ser Tyr Gly Gly Lys
        310
                        315
Asp Ile Tyr Arg Val Lys Val Ser Asp Arg Ser Tyr Gly Ser Pro Glu
             325
                              330
                                            335
Asn Leu Gly Pro Asp Ile Asn Thr Pro Gly Asp Glu Met Phe Pro Phe
         340
                         345
Ile Asp Gly Asp Ser Thr Leu Phe Phe Ala Ser Asp Gly His Ala Gly
      355
                     360
Leu Gly Gly Leu Asp Ile Phe Lys Ala Thr Leu Asp Ser Thr Gly Gln
  370
           375
                              380
Trp His Val Val Asn Met Gly Gln Pro Val Asn Ser Ser Ala Asp Asp
385 390
                       395
Phe Gly Leu Ala Val Glu Pro Lys Gly Lys Asn Lys Glu Glu Ala Leu
            405
                             410
                                              415
Pro Asp Asn Gly Val Lys Gly Val Phe Cys Ser Asn Arg Gly Asp Ala
                          425
                                  430
Arg Gly Trp Pro His Leu Phe His Phe Glu Leu Pro Ala Ile Tyr Thr
              440
    435
Glu Ile Gln Gly Tyr Val Met Asp Arg Glu Glu Asn Pro Ile Ala Gly
  450
                455
                                   460
Ala Thr Val Arg Ile Val Gly Glu Arg Gly Pro Val Gly Gln Gly Phe
              470
                                 475
Val Thr Thr Arg Asp Asp Gly Ser Tyr Lys Met Ser Val Gln Gly Asp
             485
                             490
Thr Arg Tyr Val Met Leu Ala Gly Ala Ser Gly Tyr Leu Asn Gln Tyr
                         505
                                         510
Val Glu Leu Lys Thr Asp Thr Ala Lys Gln Ser Glu Thr Tyr Tyr Val
                      520
                                        525
Asp Phe Phe Leu Ala Ser Arg Glu Lys Ala Glu Gly Leu Gln Asn Ile
            535
                             540
Phe Tyr Asp Phe Asp Lys Ala Thr Leu Arg Pro Glu Ser Met Lys Ser
      550 555
Leu Asp Glu Leu Ile Arg Ile Leu Thr Asp Asn Pro Asp Ile Arg Ile
                     570
           565
                                            575
Glu Leu Gly Ser His Ala Asp Arg Lys Gly Pro Asp Ala Tyr Asn Leu
        580
                 585
                                    590
Gly Leu Ser Asp Arg Arg Ala Lys Ser Val Val Asp Tyr Leu Thr Ser 595 600 605
                    600
Arg Gly Ile Ala Ala Asp Arg Leu Thr Trp Lys Gly Tyr Gly Lys Ser
            615
                                    620
Val Pro Lys Thr Val Thr Ala Lys Ile Ala Glu Arg His Asp Phe Leu
                630
                                 635
Lys Glu Gly Asp Val Leu Thr Glu Glu Phe Val Ala Pro Leu Thr Glu
```

645 650 655

Glu Gln Gln Ser Val Cys Asp Gln Leu Asn Arg Arg Thr Glu Phe Arg
660 665 670

Val Ile Glu Glu Glu Leu Arg

Val Ile Glu Glu Leu Arg 675

## (2) INFORMATION FOR SEQ ID NO:321

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 772 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...772
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:321

Pro Ala Gln Pro Lys Thr Tyr Cys Ile Arg Tyr Phe Arg Arg Glu Val 10 Ser Pro Arg Arg Gln Thr Glu Arg Thr Leu Tyr Ala Asp Lys Met Arg 20 25 Arg His Ile Val Lys Cys Cys Pro Ser Ala Ser Ile Leu Leu Gln Glu 35 40 45 Tyr Ser Thr Thr Glu Leu Phe Ile His His Phe Asn Ile Ser Ile Ile 50 55 60 Met Lys Lys Phe Phe Phe Ala Leu Leu Ser Ile Gly Ile Ser Ala Gln 70 75 Ala Phe Ala Lys Thr Asp Asn Val Pro Thr Asp Ser Leu Arg Val His 90 Asn Leu Gln Thr Val Thr Val Tyr Ser Thr Arg Thr Ala Val Pro Leu 100 105 Lys Lys Ile Pro Ala Lys Met Glu Leu Ile Ser Ser Arg Asn Ile Lys 115 120 125 Gln Ser Gly Phe Asn Asn Met Thr Asp Ile Leu Lys Thr Gln Ser Ser 135 140 Leu Asp Val Ile Gln Tyr Pro Gly Phe Ser Ser Asn Ile Gly Ile Arg 145 150 155 Gly Phe Lys Pro Ser Gly Lys Tyr Val Thr Val Leu Val Asn Gly Ile 165 170 175 Pro Ala Gly Thr Asp Asn Ile Ser Thr Leu Asn Thr Ser Asn Ile Glu 180 185 Gln Ile Glu Ile Leu Lys Gly Pro Phe Ser Ser Ile Tyr Gly Thr Asn 195 200 Ala Met Gly Gly Val Val Asn Ile Ile Thr His Lys Ser Lys Asp Lys 210 215 220 Ile His Gly Asn Val Ser Leu Phe Gly Gly Ser Tyr Gln Thr Met Ala 230 235 Gly Ser Phe Asn Leu Gly Gly Arg Phe Glu Asp Ile Phe Ser Phe Asp 245 250 255 Leu Ser Leu Gly Leu Asp Lys Gln Asn Lys Asp Tyr Lys Thr Gly Ser 265 Asn Asn Phe Leu Ser Leu Ser Lys Leu Glu Glu Ala Ile Val Asp Val 275 280 Asn Ala Thr Lys Asn Lys Lys Met Lys Gly Ser Asp Tyr Thr Val Ala 290 295 300 295 300 Thr Gly Arg Leu Arg Phe Gly Ile Asp Phe Thr Pro Glu Trp Ser Leu 305 310 315 Asn Leu Tyr Gln Asn Val Phe Leu Gly Asp Ala Ile Pro Val Gly Gly 325 330 335 Ser Ile Trp Gly Val Tyr Gly Glu Ser Lys Lys Asn Leu Asn Arg Ser 340 345 350 Ser Thr Ser Phe Glu Leu Leu Gly Lys His Gly Cys His Thr Leu Gln 360 Phe Ser Pro Tyr Phe Asn Ile Glu Lys Ser Glu Asn Tyr Asn Asn Ala 370 375 380 Asp Pro Thr Gly Phe Ile Asn Tyr Lys Ser Asp Tyr Tyr Thr Tyr Gly 390 395

Ala Leu Leu Gln Asp Lys Ile Ser Phe Gly Gly Gln Asn Ile Val Leu

405 410 Gly Val Asp Ser Arg Asn Met Thr Met Glu Ser Glu Arg Phe Glu Gln 420 425 430 Ala Gly Val Asn Thr Lys Pro Tyr Asn Pro Gly Tyr Ala Thr Asn Asn 440 445 Ile Gly Leu Phe Gly Gln Ala Asn Phe Tyr Leu Leu Asn Asp Ala Leu 455 460 Ser Ile Ser Ala Gly Ala Arg Ala Asp Phe Met Phe Phe Asp Leu Lys 470 475 Ala Asn Glu Tyr Leu Asn Asn Glu Ala Lys Gln Glu Thr His Asn Val 485 490 Ile Asn Pro Asn Val Gly Ile Lys Tyr Glu Phe Val Lys Gly Leu Thr 500 505 Ala His Gly Thr Phe Gly Ser Ala Phe Ser Ala Pro Asp Ala Phe Gln 515 520 525 Lys Ala Gly Gln Tyr Val Gly Pro Phe Gly Thr Thr Ile Gly Asn Pro 540 535 Asp Leu Lys Pro Glu Lys Ser Met Thr Trp Asp Phe Gly Ile Gly Tyr 545 550 555 Ser Asn Ala Arg Cys Gly Ile Gln Ala Asp Val Thr Leu Thr Tyr Phe 565 570 575 His Thr Asp His Lys Asp Leu Ile Leu Ser Ser Pro Asp Tyr Ala Asn 580 585 590 Asn Ile Thr Thr Tyr Ile Asn Ala Asp Lys Ala Arg Met Ser Gly Ile 595 600 Glu Ala Leu Leu Ser Tyr Asp Phe Gly Ser Leu Phe Ala Asn Lys Phe 610 615 620 Ser Leu Arg Ala Phe Ala Asn Ala Thr Ile Met Leu Asn Ser Glu Met 630 635 Lys Lys Ser Gln Thr Asp Ala Pro Trp Ser Glu Met Tyr Tyr Val Arg 645 650 655 Lys Gln Asn Ile Thr Phe Gly Ile Glu Tyr Arg Gly Lys Glu Gly Leu 665 Glu Val Met Leu Asn Gly Arg Phe Met Gly Arg Arg Ile Glu Gln Asn 675 680 Trp Tyr Ala Tyr Tyr Pro Glu Val Arg Pro Glu Leu Gln Gln Leu Leu 690 695 700 Ala Ala Glu Glu Pro Glu Leu Ala Ala Gln Gly Leu Leu Arg His Pro 705 710 715 Gln Ala Met Val Phe Asn Ala Ser Ala Tyr Tyr His Met Asn Lys Tyr 725 730 735 Leu Thr Phe Gly Val Asn Leu Asn Asn Ile Leu Asp Glu Leu Tyr Thr 740 745 750 Glu Lys Asp Gly Tyr His Met Pro Gly Arg Asn Ile Met Gly Lys Val 755 760 Met Val Asn Phe 770

# (2) INFORMATION FOR SEQ ID NO:322

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 484 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...484
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:322

Gly Arg Ala Ser Ser Pro Tyr Arg Gln Met Asp Gly Ile Leu Asn Asp 1 5 10 15 15 Glu Tyr Arg Gln Ala Ser Met Asn Arg Phe Ser Asn His Trp Pro Cys 20 25 30 30 11e Leu Val Gly Phe Val Leu Trp Phe Val Ser Ala Ser Arg Thr Val 35 40 45 Ala Gln Asn Ala Ser Glu Thr Thr Val Ser Tyr Asp Thr Asp Thr Ala 50 55 60 Val Leu Ser Glu Ala Asp Val Leu Arg Ile Ala Leu Ser Glu Asn Ala

70 65 Thr Val Lys Val Ala Asp Met Asp Val Arg Lys Gln Glu Tyr Ala Arg . 95 85 90 Arg Ala Arg Ala Asp Leu Phe Pro Lys Val Asp Leu Asn Gly Val 100 105 110 Tyr Ser His Thr Leu Lys Lys Gln Val Leu Tyr Ile Asp Met Pro Gly 120 125 Phe Ser Ser Ser Glu Gly Ile Glu Met Gly Arg Thr His Asn Thr Gln 135 140 Gly Gly Val Asn Val Ser Met Pro Leu Val Ser Ala Gln Leu Trp Lys 145 150 155 Ser Ile Ala Met Thr Gly Glu Gln Leu Asp Leu Ala Leu Glu Lys Ala 165 170 175 Arg Ser Ser Arg Ile Asp Leu Val Ala Glu Val Lys Lys Ala Tyr Leu 180 185 190 Ser Val Leu Ala Glu Asp Ser Tyr Gly Val Phe Lys Arg Ser Tyr 195 200 205 Asp Asn Ala Leu Ala Asn Tyr Lys Asn Ile Ser Asp Lys Phe Asp Arg 215 220 Gly Leu Val Ala Glu Tyr Asp Lys Ile Arg Ala Asn Val Gln Val Arg 230 235 Asn Ile Glu Pro Asn Leu Leu Gln Ala Gln Asn Ser Val Ala Leu Ala 245 250 Leu Trp Gln Leu Lys Val Leu Met Ser Met Glu Val Glu Thr Pro Ile 260 265 270 Arg Leu Ser Gly Ser Leu Ser Asp Tyr Lys Glu Gln Val Tyr Thr Gly 275 280 285 Tyr Phe Ala Ala Asp Thr Leu Ile Ser Asn Asn Ser Ser Leu Arg Gln 295 300 Leu Asp Ile Gln Arg Arg Leu Ala Val Ser Ala Asp Lys Leu Asn Lys 310 315 Tyr Ser Phe Leu Pro Thr Leu Asn Leu Gly Gly Gln Tyr Thr Tyr Ser 325 330 Leu Asn Ser Asn Asp Ile Lys Phe Trp Gly Glu Gly Gln Arg Trp Thr 340 345 350 Pro Phe Ser Thr Ile Ser Leu Ser Leu Tyr Ile Pro Ile Phe Asn Gly 360 355 365 Gly Lys Arg Leu Tyr Asn Val Lys Gln Ser Ala Leu Ser Ile Arg Gln 375 380 Ile Asp Leu Gln Arg Arg His Ile Glu Gln Ser Ile Arg Met Gly Ile 390 395 Lys Asn Gln Asn Asp Arg Leu Arg Thr Cys Met Gln Arg Phe Val Ala 405 410 Ser Glu Glu Ala Val Arg Ser Ala Glu Lys Gly Tyr Gln Ile Ala Glu 425 Lys Arg Tyr Gln Thr Gly Glu Gly Thr Leu Val Glu Leu Asn Asp Ala 435 440 445 Asp Val Ala Leu Leu Gln Ala Arg Leu Asn Tyr Asn Gln Ala Ile Phe 455 460 Asp Phe Met Thr Ala Lys Ala Glu Leu Asp Lys Met Asn Gly Met Gly 465 470 475 Ile Pro Glu Gln

## (2) INFORMATION FOR SEQ ID NO:323

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 540 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...540
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:323

Phe His Asn Phe Asp Phe Leu Asn Gly Ile Lys Leu Phe Ser Met Ala 1 5 10 15 Asn Asn Thr Leu Leu Ala Lys Thr Arg Arg Tyr Val Cys Leu Val Gly

25 Phe Cys Trp Leu Met Ala Met Met His Leu Ser Gly Gln Glu Val Thr 40 35 45 Met Trp Gly Asp Ser His Gly Val Ala Pro Asn Gln Val Arg Arg Thr 55 60 Leu Val Lys Val Ala Leu Ser Glu Ser Leu Pro Pro Gly Ala Lys Gln 75 Ile Arg Ile Gly Phe Ser Leu Pro Lys Glu Thr Glu Glu Lys Val Thr 85 90 Ala Leu Tyr Leu Leu Val Ser Asp Ser Leu Ala Val Arg Asp Leu Pro 100 105 Asp Tyr Lys Gly Arg Val Ser Tyr Asp Ser Phe Pro Ile Ser Lys Glu 115 120 125 Asp Arg Thr Thr Ala Leu Ser Ala Asp Ser Val Ala Gly Arg Arg Phe 135 140 Phe Tyr Leu Ala Ala Asp Ile Gly Pro Val Ala Ser Phe Ser Arg Ser 145 150 155 160 Asp Thr Leu Thr Ala Arg Val Glu Glu Val Ala Val Asp Gly Arg Pro 165 170 175 Leu Pro Leu Lys Glu Leu Ser Pro Ala Ser Arg Arg Leu Tyr Arg Gly 185 190 Tyr Glu Ala Leu Phe Val Pro Gly Asp Gly Gly Ser Arg Asn Tyr Arg 195 200 Ile Pro Ala Ile Leu Lys Thr Ala Asn Gly Thr Leu Ile Ala Met Ala 210 215 220 Asp Arg Arg Lys Tyr Asn Gln Thr Asp Leu Pro Glu Asp Ile Asp Ile 230 235 Val Met Arg Arg Ser Thr Asp Gly Gly Lys Ser Trp Ser Asp Pro Arg 245 250 Ile Ile Val Gln Gly Glu Gly Arg Asn His Gly Phe Gly Asp Val Ala 265 270 Leu Val Gln Thr Gln Ala Gly Lys Leu Leu Met Ile Phe Val Gly Gly 275 280 Val Gly Leu Trp Gln Ser Thr Pro Asp Arg Pro Gln Arg Thr Tyr Ile 295 300 Ser Glu Ser Arg Asp Glu Gly Leu Thr Trp Ser Pro Pro Arg Asp Ile 305 310 315 320 Thr His Phe Ile Phe Gly Lys Asp Cys Ala Asp Pro Gly Arg Ser Arg 325 330 335 Trp Leu Ala Ser Phe Cys Ala Ser Gly Gln Gly Leu Val Leu Pro Ser 340 345 350 Gly Arg Ile Thr Phe Val Ala Ala Ile Arg Glu Ser Gly Gln Glu Tyr 360 365 Val Leu Asn Asn Tyr Val Leu Tyr Ser Asp Asp Glu Gly Asp Thr Trp 375 Gln Leu Ser Asp Cys Ala Tyr Arg Arg Gly Asp Glu Ala Lys Leu Ser 385 390 395 Leu Met Pro Asp Gly Arg Val Leu Met Ser Ile Arg Asn Gln Gly Arg 405 410 415 Gln Glu Ser Arg Gln Arg Phe Phe Ala Leu Ser Ser Asp Asp Gly Leu 425 420 430 Thr Trp Glu Arg Ala Lys Gln Phe Glu Gly Ile His Asp Pro Gly Cys 440 445 Asn Gly Ala Met Leu Gln Val Lys Arg Asn Gly Arg Asp Gln Val Leu 455 His Ser Leu Pro Leu Gly Pro Asp Gly Arg Arg Asp Gly Ala Val Tyr 465 470 475 480 Leu Phe Asp His Val Ser Gly Arg Trp Ser Ala Pro Val Val Val Asn 485 490 Ser Gly Ser Ser Ala Tyr Ser Asp Met Thr Leu Leu Ala Asp Gly Thr 500 505 510 Ile Gly Tyr Phe Val Glu Glu Gly Asp Glu Ile Ser Leu Val Phe Ile 520 525 Arg Phe Val Leu Asp Asp Leu Phe Asp Val Arg Gln

### (2) INFORMATION FOR SEQ ID NO:324

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 293 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...293
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:324

Lys Ser Pro Ser Asp Ser Ala Leu Pro Ser Val Trp Ser Ala Asn Thr 10 15 Ile Ser Gly Leu Val Gly Gly Lys Arg Ile Thr Leu Leu Ile Leu Tyr 20 25 Ser Met Ala Ile Arg Ser Ser Asn Ile Glu Ser Ile Gln Cys Phe Val 40 Met Lys Lys Glu Lys Leu Trp Ile Ala Ile Val Ala Gly Leu Ala Phe 55 60 Val Leu Gly Leu Tyr Ala Leu Gly Arg Ser Val Ala Gln Leu Arg Arg 65 70 75 Ser Gln Pro Ser Val Thr Val Thr Gly Met Ala Glu Arg Asn Phe Lys 85 90 95 Ser Asp Leu Ile Val Trp Thr Ala Ser Tyr Gln Leu Gln Met Met Asp 100 105 110 Leu Glu Ser Ala Tyr Lys Ala Leu Lys Glu Lys Gln Ile Leu Val Ala 115 120 125 Asp Tyr Leu Lys Asn Lys Gln Leu Pro Asp Ser Ser Tyr Ile Phe Ser 130 135 140 Ser Val Ala Ile Ser Lys Glu Tyr Asn Tyr Tyr Tyr Asp Pro Arg Gln 150 155 Glu Gln Asn Val Arg Thr Phe Ala Gly Tyr Leu Leu Ser Gln Thr Val 165 175 170 Thr Val Thr Ser Gln Asp Ile Glu His Val Glu Lys Ile Ser Arg Asp 185 190 Ile Thr Glu Leu Ile Asn Gln Gly Val Glu Ile Thr Ser Asp Arg Pro 195 200 205 Ala Tyr Tyr Tyr Thr Lys Leu Asn Asp Leu Lys Val Glu Met Leu Arg 210 215 220 Asn Ala Ser Glu Asp Ala Phe Asn Arg Ala Ser Val Ile Ala Glu Gly 225 230 235 Ser Gly Ser Ser Val Gly Lys Met Leu Ser Ser Ser Met Gly Val Phe 245 250 255 Gln Ile Val Gly Leu Asn Ser Asn Glu Asp Tyr Ser Trp Gly Gly Ser 260 265 270 Phe Asn Thr Ser Ser Lys Met Lys Thr Ala Ser Ile Thr Val Lys Ala 275 280 Ser Phe Ala Leu Lys 290

# (2) INFORMATION FOR SEQ ID NO:325

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 280 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...280
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:325

65 70 Thr Arg Phe Ser Tyr Asn Leu Gly Ala Ile Tyr Ala Ser Asn Ile Ala 85 90 95 Arg Gln Leu Ala His Asp Ser Ile Asp Ile Asp Lys Phe Tyr Ala Ala 100 105 110 Met Arg Ala Ala Leu Leu Lys Asp Thr Val Ser Ile Ala Met Lys Pro 115 120 125 Ala Asp Ala Gln Ala Phe Met Gln Arg Ile Gln Ala Lys Lys Gln Arg 135 140 Glu Asn Asn Met Lys Gln Phe Gly Gln Asn Ile Glu Lys Gly Asn Glu 145 150 155 Tyr Ile Asp Thr Phe Lys Lys Glu Asp Gly Val Thr Val Thr Thr 165 170 175 Gly Leu Ala Tyr Lys Thr Leu Gln Glu Gly Thr Gly Ala Thr Pro Ser 185 180 Leu Ala Asp Thr Val Arg Val Lys Tyr Val Gly Thr Leu Val Asp Gly 200 195 205 Lys Glu Phe Asp Lys Asn Glu Glu Gly Ile Glu Phe Ala Val Thr Gly 210 215 220 Val Ile Lys Gly Trp Thr Glu Met Leu Gln Leu Met Lys Val Gly Gln 230 235 Lys Val Arg Val Val Ile Pro Gln Glu Leu Ala Tyr Gly Glu Thr Gly 245 250 255 Asn Tyr Thr Ile Glu Pro Phe Ser Thr Leu Thr Phe Glu Met Glu Leu 260 265 Ile Gly Ile Lys Pro Gly Lys Lys 275

#### (2) INFORMATION FOR SEQ ID NO:326

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 803 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...803
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:326

Cys Arg Lys Gln Lys Leu Ser Asn Pro Lys Arg Ser Arg Tyr Pro Cys 10 Arg Arg Ile Ser Phe Arg Gln Ser Asp Lys Asn Pro Met Lys Val Leu 20 25 Arg Gln Val Phe Leu Pro Ile Leu Phe Val Leu Leu Thr Gly Ala Cys 35 40 Ser Thr Thr Lys Asn Leu Pro Glu Gly Glu Gln Leu Tyr Ile Gly Met 55 60 Gly Lys Thr Gln Ile Leu Arg Gln Asp Lys Ser His Ala Gly Gln Gln 70 75 Ala Leu Thr Glu Val Glu Ser Thr Leu Lys Val Thr Pro Asn Gly Ala 90 95 Ile Phe Gly Ser Ala Ser Ala Ser Leu Pro Lys Ile Pro Phe Gly Leu 100 105 110 Trp Leu Tyr Asn Ser Phe Val Gly Asp Ser Thr Val Ile Ser Lys Trp 115 120 Ile Phe Asp Lys Phe Ala Ala Lys Pro Val Phe Ile Ser Gln Val Lys 130 135 Ser Asp Ser Arg Ala Lys Val Ala Thr Asn Ile Leu Arg Glu His Gly 145 150 155 Tyr Phe Asp Ala Lys Val Lys Ser Ser Val Thr Thr Leu Lys Lys Asp 165 170 Ser Leu Lys Ala Lys Ile Ser Tyr Thr Val Asp Met Ala Ser Pro Tyr 185 190 His Tyr Asp Ser Ile Ile Pro Leu Pro Ile Ser Thr Phe Pro Asp Ser 200 Ile Leu Ala Tyr Arg Gln Thr Pro Ser Leu Ile Arg Lys Gly Asp Gln 215 220 Phe Asn Leu Ala Lys Leu His Glu Glu Arg Gln Thr Ile Ser Ala Leu

225					230					235					240
				245					250	)		_		255	
Glu	Ala	Asp	Thr 260		Leu	Val	Arg	Gly 265		Val	Сув	Let	270		Lys
Leu	Ser	Glu 275		Thr	Pro	Pro	Gln 280		Met	Arg	Pro	285	_	Ile	Gly
Lys	Arg 290		Ala	Val	Leu	Leu 295		Met	Asn	Gly	Glu 300		Pro	Thr	Asp
Ser 305		Glu	Val	Glu	Asp 310		Lys	Val	Leu	Tyr 315	_	Arg	Lys	Met	Pro 320
Val	Arg	Pro	Lys	1le 325		Ala	Lys	Arg	Phe	Arg		Phe	Ser	Gly 335	Asn
Leu	Tyr	Arg	Gln 340		Asp	Asp	Glu	Thr 345			Lys	Ser	Leu 350	Ala	Arg
Leu	Gly	Ala 355		Ser	Val	Ile	Asp 360	Leu	Asn	Phe	Leu	Gln 365	Arg		Ser
Ile	Ser 370	Gly	Leu	Leu	Asp	Val 375			Leu	Thr	Thr 380	Leu		Lys	Pro
Trp 385	Asp	Ala	Ser	Leu	Glu 390		Leu	Phe	Thr	Ser 395	Lys		Asn	Asp	Phe 400
Ile	Gly	Pro	Gly	Leu 405	Asn	Phe	Ala	Leu	Ala 410	Arg		Asn	Val	Phe 415	
Gly	Gly	Glu	Asn 420		Ser	Trp	Asn	Ile 425	Gly	Gly	Ser	Tyr	Glu 430		Glu
Thr	Gly	Asn 435	Arg	Pro	Glu	Asn	Ser 440	Ser	Asn	Arg	Leu	Ile 445	Asp	Ile	Asn
Ser	Tyr 450	Asn	Met	Asn	Thr	Ala 455	Val	Asn	Leu	Ser	Phe 460	Pro	Ser	Ile	Val
Phe 465	Pro	Gly	Leu	Leu	Asp 470	Lys	Tyr	Tyr	Tyr	Tyr 475	Pro	Thr	Thr	Thr	Thr 480
Phe	Gln	Ala	Ser	Ala 485	Thr	Ala	Leu	Asn	Arg 490	Ala	His	Tyr	Phe	Ser 495	Met
Tyr	Ser	Phe	Gly 500		Ser	Thr	Thr	Tyr 505	Glu	Phe	Gln	Pro	Ser 510	Lys	Glu
His	Arg	His 515	Ala	Ile	Phe	Pro	Leu 520	Lys	Leu	Asn	Tyr	Asn 525	Leu	Leu	Gly
His	Gln 530	Thr	Glu	Thr	Phe	Gln 535	Ala	Ile	Thr	Ala	Asn 540	Asn	Pro	Pro	Leu
Leu 545	Leu	Ser	Leu	Gln	Ser 550	Gln	Phe	Leu	Ala	Gln 555	Met	Gly	Tyr	Ile	Tyr 560
				565	Val				570					575	
			580		Glu			585					590		
Ala	Ala	Gly 595	Lys	Lys	Tyr	Ser	Asp 600	Thr	Lys	Asn	Phe	Val 605	Gly	Val	Pro
Phe	Ser 610	Gln	Phe	Ile	Lys			Gly			Arg 620	_	Ser	Tyr	Thr
11e 625	Asp	Arg	Asn	Gln	Ser 630	Leu	Ala	Thr	Arg	Phe 635	Gly	Thr	Gly	Val	Ile 640
				645	Met				650	_				655	-
			660		Ser			665				_	670		-
		675			Pro		680					685	-		_
	690				Lys	695					700	_	_	-	-
705					His 710					715					720
				725	Asp				730					735	
			740		Asn			745					750		_
		755			Asp		760					765		_	
	770					775					780				
785			Arg	Phe	Lys 790	Asp	Ala	Ile	Gly	Phe 795	His	Leu	Ala	Val	Gly 800
Tyr	Pro	Phe													

# (2) INFORMATION FOR SEQ ID NO:327

- (A) LENGTH: 783 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...783
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:327

0	•	<b>~</b> - · · ·			-1-	<b>-</b>	D1	<b>-</b>				**! =		**- 7	_
ser 1	Leu	ser	Pro	Tyr 5	He	Arg	Pne	Pro	Met 10	ser	Ser	His	Ser	Val 15	Arg
Tyr	Leu	Ile	Gly 20	Ile	Ala	Gly	Cys	Leu 25	Leu	Leu	Met	Leu	Ala 30	Ser	Ser
Cys	Ser	Val 35	Thr	Arg	Tyr	Val	Pro 40	Asp	Gly	Ser	Arg	Leu 45	Leu	Asp	Arg
Val	Thr 50	Ile	Ala	Ser	Glu	Thr 55	Gly	Ser	Ile	Ala	Leu 60	Pro	Glu	Asp	Ile
Arg 65	Asp	Tyr	Thr	Leu	Gln 70		Pro	Asn	Tyr	Arg 75		Phe	Gly	Met	Thr 80
Arg	Trp	Leu	Leu	Arg 85	Val	Tyr	Ser	Ser	Ser 90		Pro	Asn	Ser	Asn 95	
Trp	Trp	Asn	Arg		Leu	Arg	Lys	Met 105		Glu	Pro	Pro	Val 110		Ile
Asp	Ser	Val 115	Leu	Thr	Asp	Arg	Thr 120		Asn	Arg	Leu	Ala 125		Ala	Met
Ala	Gly 130		Gly	Phe	Leu	Asp 135		Thr	Ala	Arg	Ala 140		Val	Asp	Thr
Gly 145		Tyr	Lys	Lys	Ala 150		Ile	Thr	Tyr	Leu 155		Gln	Pro	Gly	Ser 160
	Tyr	Tyr	Ile	Arg 165		Met	Ala	Leu	Asp 170		Lys	Asn	Pro	Leu 175	
Pro	Pro	Val	Ala 180		Gly	Asn	Ser	Leu 185		Ser	Ala	Tyr	Lys 190		Gly
Ile	Ser	Glu 195	Gly	Ser	Pro	Leu	Ser 200	Pro	Ile	Val	Leu	Asp 205	Glu	Glu	Arg
Lys	Ala 210	Ile	Ala	Arg	His	Met 215	Arg	Asn	Asn	Gly	Phe 220	Trp	Lys	Phe	Ser
Ala 225	Glu	Asp	Val	Tyr	Tyr 230	Glu	Ala	Asp	Thr	Thr 235	Val	Ser	Gly	Gly	Ser 240
Gly	Thr	Lys	Ser	Ala 245	Asp	Leu	Lys	Leu	Val 250	Val	Asn	Gly	Ile	Gly 255	Arg
Tyr	Pro	Tyr	Arg 260	Ile	Gly	Arg	Val	Phe 265	Phe	His	Ala	Asp	Tyr 270	Asp	Pro
Leu	Glu	Ser 275	Asp	Phe	Arg	Val	Gln 280	Glu	Leu	Pro	Arg	Ile 285	Asp	Ser	Ile
Ser	Arg 290	Gly	Asp	Tyr	Thr	Val 295	Tyr	Tyr	Gly	Ser	Arg 300	Gly	Arg	Tyr	Ile
Arg 305	Ala	Ser	Ala	Leu	Thr 310	Arg	Ser	Val	Ser	Val 315	Thr	Pro	Gly	Ala	Phe 320
Phe	Cys	Glu	Asp	Asp 325	Val	Glu	Arg	Ser	Tyr 330	Ile	Lys	Leu	Asn	Ala 335	Leu
Pro	Ile	Val	Arg 340	Asn	Val	Asn	Ile	Arg 345	Phe	Val	Glu	His	Asn 350	Gly	Lys
Asp	Glu	Ile 355	Ala	Leu	Ala	Asp	Ser 360	Ser	Arg	Leu	Val	Asp 365	Cys	Tyr	Ile
Leu	Thr 370	Val	Pro	Ala	Lys	Ser 375	Lys	Ser	Phe	Glu	Ala 380	Glu	Val	Leu	Gly
Thr 385	Asn	Ser	Ala	Gly	Asp 390	Phe	Gly	Ala	Ala	Leu 395	Ser	Leu	Gly	Phe	Thr 400
Asp	Arg	Asn	Leu	Phe 405	Arg	Gly	Ala	Glu	Met 410	Phe	Asn	Ile	Lys	Leu 415	ГÀЗ
Gly	Ala	Tyr	Glu 420	Ala	Ile	Arg	Lys	Gly 425	Ser	His	Ser	Phe	Met 430	Glu	Tyr
Gly	Val	Glu 435	Ser	Ser	Leu	Arg	Phe 440	Pro	Arg	Leu	Leu	Phe 445	Pro	Phe	Ile
Ser	Asp 450	Glu	Thr	Arg	Arg	Arg 455	Leu	Arg	Ala	Ser	Thr 460	Glu	Trp	Lys	Ile
Gly 465	Tyr	Asn	Tyr	Gln	Thr 470	Arg	Pro	Glu	Phe	Asp 475	Arg	Val	Ile	Leu	Ser 480

Ala Gln Leu Asn Tyr Ser Trp Gln Thr Tyr Leu His Asn Arg Leu Arg 490 His Thr Ile Arg Leu Leu Asp Val Asp Tyr Leu His Leu Pro Tyr Ile 510 500 505 Asp Pro Asp Phe Ala Gln Ser Leu Pro Pro Thr Thr Ala Leu Tyr Asn 515 520 525 Tyr Thr Glu Gln Phe Ile Leu Gly Ser Ala Tyr Ile Leu Asn Tyr Thr 535 540 Thr Ala Ser Ser Met Glu Arg Thr Val Ser Asn Pro Phe Thr Ala Arg 545 550 560 Phe Ser Ile Gln Thr Ala Gly Asn Leu Leu Gln Ala Ile Ser Tyr Leu 565 570 575 Thr Asp Ser Pro Lys Asp Glu His Gly Leu Tyr Lys Met Phe Gly Leu 580 585 590 His Tyr Ala Gln Phe Val Lys Leu Asp Leu Asp Leu Ala Lys Thr Val 600 605 Leu Leu Glu Lys Asp Asn Thr Leu Ala Leu His Leu Gly Phe Gly Leu 615 Ala Phe Pro Tyr Gly Asn Ala Arg His Ile Pro Phe Glu Leu Arg Tyr 630 635 Phe Ala Gly Gly Ser Asn Ser Val Arg Gly Trp Ser Val Arg Thr Leu 645 650 Gly Pro Gly Ser Met Lys Met Thr Pro Asp Lys Thr Phe Phe Asp Gln 665 670 660 Met Gly Asp Ile Arg Leu Asp Leu Asn Val Glu Tyr Arg Thr Lys Leu 680 685 Phe Trp Lys Phe Arg Ala Ala Ala Phe Val Asp Ala Gly Asn Val Trp 695 700 Thr Ile Lys Glu Tyr Glu Asn Gln Glu Asp Gly Leu Phe Arg Phe Asp 710 715 Arg Phe Tyr Lys Glu Ile Ala Leu Ala Tyr Gly Leu Gly Leu Arg Leu 725 730 735 Asp Phe Asp Tyr Phe Leu Val Arg Leu Asp Ala Gly Leu Lys Ala Tyr 745 740 750 Asp Pro Gln Gln Thr Gly Arg Tyr Lys Trp Ala Ile Thr Arg Pro Asn 755 760 765 Leu Ser Ser Asn Phe Ala Trp His Ile Ala Val Gly Tyr Pro Phe 770 775

## (2) INFORMATION FOR SEQ ID NO:328

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 875 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...875
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:328

Val Glu Ser Lys Leu Leu Cys Leu Met Arg Lys Arg Ile Leu Gln Leu 5 10 Phe Leu Thr Ala Leu Leu Leu Ala Leu Gly Ser Ser Leu Ala Ile Ala 20 25 30 Gln Thr Val Val Thr Gly Lys Val Ile Asp Ser Glu Thr Ser Glu Pro 35 40 45 Leu Ile Gly Val Ser Val Ser Thr Gly Gln Gly Ala Ser Leu Arg Gly Val Thr Thr Asp Met Asp Gly Gly Phe Arg Phe Glu Val Pro Ala Lys 70 75 Ser Val Leu Thr Phe Arg Cys Val Gly Tyr Ala Thr Val Thr Arg Ser 85 90 Ile Gly Arg Gly Ser Gln Glu Asp Leu Gly Thr Ile Leu Leu Asp Pro 100 105 Gln Ala Ile Gly Leu Asp Glu Ile Gln Val Ile Ala Ser Val Val Pro 115 120 125 Lys Asp Arg Met Thr Pro Val Pro Val Ser Asn Ile Arg Val Ala Asp

```
Ile Gln Ala Ala Ser Leu Asn Val Glu Phe Pro Glu Leu Val Lys Ser
               150
                                155
 Thr Pro Ser Thr Tyr Thr Thr Lys Gly Ser Gly Gly Phe Gly Asp Gly
             165
                              170
                                              175
Arg Thr Asn Val Arg Gly Phe Asp Thr Tyr Asn Phe Gly Val Leu Ile
         180
                     185
                                          190
Asn Gly Val Pro Val Asn Gly Met Glu Asp Gly Lys Val Tyr Trp Ser
 195
               200
 Asn Trp Ser Gly Leu Met Asn Gln Ala Ser Thr Ile Gln Ile Gln Arg
          215
                           220
Gly Leu Gly Ala Ser Lys Leu Gly Ile Ser Ser Val Gly Gly Thr Met
225 230
                        235
Asn Ile Ile Thr Lys Thr Thr Asp Ala Asn Thr Gly Gly Ser Ala Tyr
           245
                     250
Val Gly Met Gly Asn Asp Gly Leu His Lys Glu Ser Phe Ser Ile Ser
        260
                        265
                                   270
Thr Gly Met Asn Asp Gly Trp Ala Ile Thr Ile Ala Gly Ser His Met
       275
                     280
                               285
Thr Gly Leu Gly Tyr Val Lys Gly Leu Lys Gly Arg Ala Phe Ser Tyr
                295
                         300
Phe Phe Asn Val Ser Lys Lys Phe Asn Glu Arg His Thr Leu Ser Leu
                        315
         310
Thr Gly Phe Gly Ala Pro Gln Trp His Asn Gln Arg Ser Ser Lys Tyr
             325
                   330
Ser Val Ala Asp Tyr Asp Lys Tyr Gly Ile Arg His Asn Gln Ser Phe
        340
               345
Gly Tyr Leu Arg Gly Glu Leu Thr Pro Thr Ala Tyr Ala Tyr Asn Thr
                  360
                                      365
Tyr His Lys Pro Gln Phe Ser Leu Asn His Phe Trp Lys Met Asp Glu
           375
                            380
Asn Thr Ser Leu Tyr Thr Ala Unk Tyr Ala Ser Leu Ala Thr Gly Gly
                        395
385 390
Gly Arg Arg Ala Tyr Gly Lys Asn Ser Lys Trp Val Leu Ile Asn Tyr
          405
                     410
Asn Thr Gly Gln Pro Tyr Glu Gln Thr Lys Val Thr Pro Asp Gly Leu
    420
                 425
                                        430
Ile Asp Tyr Asp Ala Val Leu Ala Ala Asn Ala Ala Ala Ser Asn Gly
      435
              440 445
Ser Glu Ala Ile Phe Ala Leu Gly Ser Asn Ser His Lys Trp Phe Gly
          455
                           460
Leu Leu Ser Ser Phe Lys Lys Leu Asn Ser Ser Leu Thr Leu Thr
              470
                               475
Ala Gly Tyr Asp Gly Arg Tyr Tyr Arg Gly Asp His Tyr Asp Lys Ile
          485
                     490
Thr Asp Leu Leu Gly Gly Ser Tyr Tyr Ile Glu Asp Pro Lys Thr Lys
       500
                       505
                                        510
Leu Ala Tyr His Ala Glu Gly Gln Gln Leu Lys Val Gly Asp Ile Val
    515
                      520
                                    525
Asn Arg Asp Tyr Thr Gly Glu Ile Met Trp His Gly Leu Phe Ala Gln
          535 540
Met Glu His Ser Ser Glu Trp Ile Asp Ala Phe Val Ser Gly Ser Ile
                              555
Asn Tyr Glu Leu Tyr Arg Asn His Asn Tyr Gly Gly Ser Lys Ser Thr
            565
                    570
Gly Tyr Leu Pro Gly Val Ser Pro Trp Lys Ser Phe Leu Pro Trp Ser
        580
                585
Gly Lys Ala Gly Leu Ser Tyr Lys Phe Ala Gln Gly His Asn Val Phe
     595
                     600
                                      605
Ala Asn Gly Gly Phe Phe Thr Arg Ala Pro Leu Phe Gly Asn Ile Tyr
           615
                           620
Ala Ala Gly Ala Ile Ile Pro Asn Asp Lys Ala Asn Met Glu Lys Val
                630
                                635
Leu Thr Gly Glu Val Gly Tyr Gly Phe Thr Asn His Lys Asn Phe Glu
                           650 655
Phe Asn Ile Asn Gly Tyr Tyr Thr Lys Trp Met Asp Arg Val Thr Ser
        660
                   665
Lys Arg Ile Gly Asn Glu Tyr Val Tyr Leu Asn Gly Val Asp Ala Val
     675
                     680
His Cys Gly Val Glu Ala Glu Val Ser Tyr Arg Pro Ile Arg Gln Ile
                 695
                               700
Asp Leu Arg Gly Met Phe Ser Leu Gly Asp Trp Thr Trp Gln Asn Asn
                710
                               715
Val Ser Tyr Thr Ser Tyr Asp Glu Ala Gly Asn Glu Thr Gly Gln Asp
          725
                          730
                                             735
Ile Thr Tyr Ile Lys Gly Leu His Val Gly Asp Ala Ala Gln Met Thr
         740
                         745
Ala Ala Val Ser Ala Asp Ile Glu Leu Phe Lys Gly Phe His Val Ile
```

755 760 Gly Lys Tyr Asn Phe Leu Gly Lys Asn Tyr Ala Gly Phe Asn Pro Ala 770 780 Thr Arg Asn Ala Gln Gln Tyr Glu Ala Asp Gly Lys Glu Ile Val Glu 785 790 795 800 Ser Trp Lys Leu Pro Asp Val Gly Leu Phe Asp Leu Ser Ala Ser Tyr 805 810 815 Asn Phe Lys Leu Gly Ser Leu Ser Thr Thr Phe Tyr Phe Asn Met Asp 820 825 830 Asn Val Ala Asp Lys Arg Tyr Val Ser Asp Ala Asp Asp Asn Ile Ile 835 840 845 Gly Lys Lys His Asp Glu Ala Ser Ala Leu Val Trp Tyr Gly Phe Gly 850 855 Arg Thr Trp Ser Thr Gly Ile Arg Val Asn Phe 870

# (2) INFORMATION FOR SEQ ID NO:329

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 460 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...460
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:329

Asn Arg Cys Asn Pro Ser Arg Gln Tyr Phe His Leu Ser Gln Asn Asp 10 Val Gly Arg Ser Leu Arg Ala Phe Leu Ile His Leu Ser Met Lys Phe 20 Ser Ile Arg Leu Phe Leu Cys Ile Ile Phe Leu Leu Ser Ala Phe Ile 35 40 Leu Pro Ala Leu Gly Gln Lys Ser Lys Gln Val Gln Arg Leu Glu Lys 55 Gln Arg Lys Glu Ala Leu Lys Ala Ile Glu Lys Thr Asp Arg Glu Leu 65 70 75 Arg Asn Thr Lys Lys Asp Lys Gln Asp Lys Gln Lys His Leu Asn Leu 85 90 95 Leu Asn Lys Gln Val Ala Gln Arg Lys Gln Met Val Gln Leu Leu Asp 105 Asn Glu Val Lys Glu Leu Gln Ser Asp Ile Asp Ser Met Thr Gly Val 115 120 125 Cys His Gln Leu Ser Val Glu Glu Lys Ala Arg Ser Asp Glu Tyr Ala 130 135 140 Gln Ala Leu Gln Ser Met Gln Lys Arg Lys Arg Ser Leu Asp Arg Ile 150 155 Leu Phe Ile Ser Ser Ala Lys Ser Phe Asp Glu Gly Met Arg Arg Met 165 170 175 Arg Phe Leu Glu Gln Tyr Ala Ser Ala Tyr Lys Leu Ala Ser Val Arg 185 190 Leu Arg Asp Thr Arg Ser Lys Leu Glu Thr Glu Arg Ala Thr Val Glu 195 200 205 Asp Ala Lys Lys Glu Lys Gly His Leu Leu Val Ile Arg Glu Glu Glu 210 215 220 Lys Lys Lys Leu Glu Gly Gln Gln Ala Glu Gln Arg Arg Gln Val Gln 225 230 235 240 Ala Leu Gly Ala Lys Gln Lys Asp Leu Glu Ala Gln Leu Arg Lys Gln 245 250 Lys Lys Gln Ala Glu Ala Leu Asn Arg Lys Ile Glu Lys Gln Ile Ala 260 265 270 Lys Glu Ile Glu Ala Ala Glu Arg Arg Ala Arg Glu Glu Arg Glu Arg 280 285 Leu Ala Arg Glu Ala Lys Ala Lys Gly Lys Pro Val Pro Ala Glu Pro 295 300 Glu Arg Lys Ala Glu Thr Lys Gly Gly Tyr Ala Met Asp Ala Ser Glu 310 315 Arg Ala Leu Ser Gly Ser Phe Ala Gln Asn Lys Gly Arg Leu Pro Gly

325 330 Pro Val Arg Gly Arg Tyr Arg Ile Val Ser Asp Phe Gly Val His Gln 340 345 350 His Ser Glu Leu Lys Lys Val Gln Val Asn Asn Gly Gly Ile Asp Ile 355 360 365 Ala Val Ala Thr Gly Ser Asp Ala Thr Ser Val Phe Asp Gly Val Val 375 380 Ser Ser Val Phe Val Ile Pro Gly Tyr Asn Ser Ala Val Met Val Arg 390 395 His Gly Asn Tyr Ile Thr Val Tyr Ala Asn Leu Ser Lys Val Tyr Val 405 410 Asn Ser Gly Thr Arg Val Lys Thr Gly Gln Ala Leu Gly Arg Ala Tyr 420 425 Thr Asp Pro Ser Asn Asn Gln Thr Ile Ile His Phe Glu Ile Trp Lys 435 440 Glu Arg Ser Lys Gln Asn Pro Arg Leu Trp Leu Arg 455

#### (2) INFORMATION FOR SEQ ID NO:330

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 342 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...342
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:330

Ser Phe Tyr Gln Glu Ile Asp Arg Leu Met Lys Lys Tyr Leu Leu Tyr 5 Ala Ser Leu Leu Thr Ser Val Leu Leu Phe Ser Cys Ser Lys Asn Asn 20 25 Pro Asn Glu Pro Val Glu Asp Arg Ser Ile Glu Ile Ser Ile Arg Val 35 40 4.5 Asp Asp Phe Thr Lys Thr Gly Glu Ala Val Arg Tyr Glu Arg Asn Gln 50 55 60 Gly Ser Ala Ala Glu Arg Leu Ile Thr Asn Leu Tyr Leu Leu Leu Phe 70 75 Asp Gln Ser Gly Ala Asn Pro Ala Lys Tyr Tyr Ile Thr Gly Asn Thr 90 Phe Thr Gly Gly Thr Trp Leu Pro Asp Asp Met Lys Val Lys Leu Asp 100 105 Met Thr Gln Ser Glu Ala Gly Glu Arg Lys Val Tyr Val Val Ala Asn 115 120 125 Val Asp Asn Ala Val Lys Thr Ala Leu Asp Ala Val Ala Asn Glu Ser 135 130 140 Asp Leu Gln Thr Val Lys Arg Thr Thr Ala Met Pro Trp Ser Thr Asp 150 155 Ile Ala Ser Pro Phe Leu Met Ser Gly Asn Lys Thr His Asp Phe Leu 165 170 Ala Asn Arg Leu Leu Asp Asn Val Pro Leu Val Arg Ala Ile Ala Lys 180 185 Val Glu Leu Asn Ile Ser Leu Ser Glu Lys Phe Gln Ile Val Pro Ile 195 200 205 Ile Val Asn Gly Ser Leu Ser Glu Phe Lys Phe Arg Tyr Val Asn Phe 210 215 220 Asp Lys Glu Thr Tyr Val Val Lys Pro Thr Thr Lys Pro Asp Asn Leu 225 230 235 Ile Ser Ser Ala Asn Gly Val Trp Pro Gln Ile Thr Asp Trp Thr Val 245 250 255 Trp Gly Ala Ser Leu Asn Thr Ser Pro Ala Pro Asp Ala Gly Thr Gly 260 265 Tyr Thr Leu Asp Ala Asn Gly Lys Val Thr Ala Leu Arg Ile Val Thr 275 280 285 Tyr Leu Asn Glu Arg Asp Ser Lys Gly Ala Thr Val Glu Val Ala Leu 295 300 Pro Arg Val Asp Asp Gly Thr Leu Pro Pro Pro Glu Phe Gly Pro Glu

305 310 Leu Tyr Arg Leu Pro Leu Pro Asp Lys Ile Leu Arg Asn His Trp Tyr 325 330 Lys Tyr Glu Val Glu Ile

340

- (2) INFORMATION FOR SEQ ID NO:331
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 329 amino acids
    - (B) TYPE: amino acid (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...329
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:331

Asn Leu Arg Thr Gln Pro Phe Phe Leu Val Asp Leu Gln Ser Met Ile 10 Arg Thr Ile Leu Ser Arg Tyr Val Ser Ser Asn Phe Trp Ser Arg Gly 20 25 Ala Thr Phe Phe Phe Thr Ile Phe Pro Ala Phe Ile Leu Ala Ala Thr 35 40 Ala Leu Pro Ala Cys Gly Gly Gly Thr Ala Ser Gly Ser Asp Arg Thr 50 55 60 Leu Ala Val Thr Ile Glu Pro Gln Lys Tyr Phe Ile Glu Ser Ile Ala 70 75 Asp Lys Ser Val Gln Val Val Ala Leu Val Pro Ala Gly Ser Asn Pro 85 90 Glu Glu Tyr Asp Pro Ser Pro Thr Val Met Lys Arg Leu Ser Glu Ala 100 105 110 Asp Ala Tyr Phe Tyr Ile Gly Gly Leu Gly Phe Glu Gln Arg Asn Leu 120 125 Ala Ala Ile Arg Asp Asn Asn Pro Lys Leu Pro Leu Phe Glu Met Gly 130 135 Lys Ala Leu Ala Asp Ala Gly Ser Ala Asp Leu His Gly Ser Cys Thr 145 150 155 Asp His Ser His Thr Asp Leu His Ala His Asp Pro His Tyr Trp Ser 165 170 175 Ser Val Val Gly Ala Lys Ala Leu Ser Arg Ala Ala Tyr Asp Ala Leu 180 185 190 Val Glu Leu Tyr Pro Asn Glu Lys Asp Lys Trp Asp Lys Gly His Asp 195 200 205 Arg Leu Asn Gly Arg Ile Asp Ser Val Lys Arg Leu Val Asp Thr Met 215 Phe Ala Asn Gly Lys Ala Asp Lys Ala Phe Val Ile Tyr His Pro Ser 230 235 Leu Ser Phe Phe Ala Gln Glu Phe Gly Leu Arg Gln Ile Val Ile Glu 245 250 255 250 Glu Asp Gly Lys Glu Pro Thr Ala Ala His Leu Arg Arg Val Ile Asp 260 265 270 Gln Ala Arg Ala Asp Gly Val Arg Ile Val Phe Ile Gln Pro Glu Phe 280 285 Glu Thr Arg Gln Ala Glu Asp Ile Ala Arg Glu Ile Gly Ala Arg Pro 295 300 Val Arg Ile Asn Pro Leu Arg Ser Ser Trp Glu Glu Glu Ile Leu His 310 315 Ile Ala Arg Ala Leu Ala His Glu Arg 325

- (2) INFORMATION FOR SEQ ID NO:332
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 878 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein

# (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...878
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:332

Ala 1	Asp	Ser	Ile	Arg 5	Tyr	Pro	Leu	Туг	Phe 10	Phe	Gly	Arg	Asn	Arg	Lys
Lys	Cys	Phe	Arg 20	Glu	Pro	Ile	Pro	Thr 25	Leu	Tyr	Asn	Lys	Asn 30	Met	Ile
Gly	Lys	Lys 35	Ile	Phe	Phe	Ile	Leu 40	Leu	Ala	Leu	Ile	Ala 45	Phe	Ser	Gly
Leu	Asn 50	Ala	Ala	Thr	Asp	Thr	Glu	Phe	Lys	туг	Pro 60	Thr	Asp	Ala	Asn
Ile 65	Ile	Gly	His	Val	Lys 70	Asp	Ser	Lys	Thr	Gly 75	Glu	His	Leu	Val	Gly 80
Ile	Thr	Ile	Ala	Ile 85	Lys	Gly	Thr	Thr	Phe 90	Gly	Thr	Ser	Thr	Asp 95	Ala
			100					105					Ile 110		
		115					120					125			
Glu	Lys 130	Asp	Lys	Thr	Ile	Glu 135		Asn	Phe	Glu	Ala 140	Glu	Glu	Asp	Ala
145					150					155	_		Leu		160
				165					170				Lys	175	
			180					185					Phe 190		
		195					200					205	Asn		
	210					215					220		Ile	_	
Arg 225	Pro	Ile	Met	Ser	Ala 230	Leu	Ala	Gly	Val	Tyr 235	Gly	Leu	Glu	Gln	Ile 240
Pro	Ala	Asn	Met	Ile 245	Glu	Arg	Val	Glu	Val 250	Val	Arg	Gly	Gly	Gly 255	Ser
Ala	Leu	Tyr	Gly 260	Ser	Ser	Ala	Ile	Ala 265	Gly	Val	Val	Asn	Ile 270	Ile	Thr
Lys	Glu	Pro 275	Ser	His	Asn	Ser	Phe 280	Thr	Phe	Asn	Glu	Ser 285	Leu	Ser	Phe
Thr	Gly 290	Phe	Ser	Lys	Leu	Asp 295	Asn	Asn	Thr	Asn	Phe 300	Asn	Ala	Ser	Ile
305					310		_			315		-	Gln		320
				325					330				Glu	335	
			340					345					Arg 350		
		355					360					365	Glu		_
	370					375					380		Gly		
385					390					395			Tyr		400
				405					410				Ser	415	
			420					425					Ile 430 Gln		
		435					440					445			
	450					455					460		Met		
465	GIII	TYL	361	IYI	470	Deu	Asp	цуъ	Pile	475	Leu	Mec	Pro	ser	480
				485					490				Asp	495	
			500					505					Asn 510		
Pro	Leu	Tyr	Pro	Glu	Leu	Asp	Gln	Asn	Ile	Asn	Asn	Tyr	Ser	Leu	Phe

520 Gly Gln Asn Glu Trp Lys Asn Asp Arg Trp Ser Ile Leu Val Gly Ala 535 540 Arg Leu Asp Lys His Ser Glu Val Lys Asp Met Ile Leu Ser Pro Arg 545 550 555 560 Thr Thr Leu Arg Phe Asn Val Asn Pro Asp Ile Asn Leu Arg Ala Thr 565 570 Tyr Ala Lys Gly Phe Arg Ala Pro Gln Val Phe Asp Glu Asp Leu His 585 590 Val Gly Val Val Gly Gly Glu Ala Gln Lys Val Phe Asn Asp Pro Asn 605 600 Leu Lys Pro Glu Ile Ser His Ala Phe Ser Leu Ser Ala Asp Met Tyr 615 620 His Arg Phe Gly Asn Val Gln Thr Asn Phe Leu Val Glu Gly Phe Tyr 635 630 Thr Arg Leu Leu Asp Val Phe Thr Asn Glu Glu Gln Pro Asp Gln His
645 650 655 Asp Gly Ile Lys Arg Tyr Thr Arg Ile Asn Gly Ser Gly Ala Lys Val 665 660 Phe Gly Leu Asn Leu Glu Gly Lys Val Ala Tyr Lys Ser Phe Gln Leu 675 680 685 Gln Ala Gly Leu Thr Leu Ala Ser Asn Lys Tyr Asp Glu Ala Gln Glu 700 695 Trp Gly Leu Asn Thr Val Lys Asp Thr Asn Gly Ala Phe Val Thr Glu 705 710 715 720 Ala Asn Ala Asn Gly Gln Gln Glu Tyr Lys Asn Glu Ser Met Thr Asp 725 730 Thr Gln Ile Thr Arg Thr Pro Ser Val Tyr Gly Tyr Phe Thr Leu Ala 740 745 Tyr Asn Pro Ala His Ser Trp Asn Ile Ala Leu Thr Gly Ala Tyr Thr 755 760 765Gly Gln Met Tyr Val Pro His Ala Ile Glu Tyr Gly Val Lys Ser Ala 770 775 780 Glu Leu Asp Ile Met Gln Asn Asn Pro Glu Ile Thr Asp Glu Thr Gly 790 795 Lys Ala Pro Arg Ile Asp Glu Leu Lys Lys Thr Pro Ala Phe Phe Asp 805 810 815 Leu Gly Leu Lys Val Gly Tyr Asp Phe His Val Phe Gln Ala Thr Glu 820 825 Val Gln Leu Tyr Val Gly Met Asn Asn Ile Phe Asn Ser Phe Gln Lys 835 845 840 Asp Phe Asp Arg Gly Ala Ala Arg Asp Ser Gly Tyr Ile Tyr Gly Pro 850 855 860 Thr Gln Pro Arg Thr Gly Tyr Met Gly Leu Val Val Lys Phe 870

## (2) INFORMATION FOR SEQ ID NO:333

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 206 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...206
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:333

Lys Gln Ile Val Met Thr Val Lys Arg Ala Val Arg Ile Ala Leu Leu 5 10 Thr Leu Ile Gly Ile Leu Phe Ser Ser Pro Ser Leu Val Arg Ala Gln 20 25 30 Ser Leu Phe Ser Thr Glu His Val Leu Gln Leu Tyr Asn Lys Ile Leu 40 45 Tyr Gly Glu Ser Ala Ala Asp Thr Val Ala Glu Lys Thr Ala Gly Glu 55 60 Ser Ala Phe Pro Phe Ile Asp Lys Leu Ile Asn Leu Gly Arg Thr Phe 70 Leu Gly Lys Pro Tyr Arg Tyr Arg Gly Pro Ser Pro Trp Pro Met Asp

90 Cys Ser Gly Tyr Val Ser Tyr Leu Tyr Ser Lys Phe Asp Ile Lys Leu 100 105 110 Pro Arg Gly Ala Ala Ala Gln Ser Gln Tyr Thr Asn Pro Ile Glu Arg 115 120 125 Glu Asp Val Arg Pro Gly Asp Leu Leu Phe Phe Lys Gly Arg Asn Ala 130 135 140 Arg Ser Asn Arg Ile Gly His Val Ala Leu Val Val Ser Val Asp Glu 150 155 Asp Asp Ile Thr Met Met His Ser Arg Asn Ser Arg Gly Ile Val Ile 165 170 175 Glu Lys Leu Asn Arg Ser Ala Tyr Phe Ser Arg Arg Leu Val Ser Tyr 180 185 190 Gly Arg Val Pro Gly Ala Lys Arg Val Ile Pro Arg Lys Ser 195 200

#### (2) INFORMATION FOR SEQ ID NO:334

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 467 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...467
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:334

Lys Gly Thr Trp Asn Arg Lys Asn Arg Glu Glu Met Lys Arg Thr 5 10 Ile Leu Leu Thr Ala Leu Thr Val Leu Ser Ser Leu Ser Leu Leu Arg 20 25 30 Ala Gln Asn Glu Ser Glu Ala Ser Thr Asn Pro Met Ser Gly Leu Ser 35 40 4.5 Leu Glu Asp Cys Ile Arg Ile Ala Lys Glu Arg Asn Leu Asn Leu Arg 50 55 60 Arg Gln Glu Ile Glu Gln Glu Asn Arg Ile Ile Ser Leu Asp Ala Ala 65 70 75 Arg His Ser Phe Leu Pro Ser Val Asn Ala Gly Ile Gly His Asn Tyr 85 90 Ser Phe Gly Arg Ser Lys Asp Lys Thr Gly Val Thr Val Asp Arg Ser 100 105 Ser Met Asn Thr Asn Leu Ser Ile Gly Ala Ser Val Glu Val Phe Ser 120 125 Gly Thr Arg Arg Leu His Asp Leu Lys Gln Gln Lys Tyr Asn Val Glu 130 135 140 Asp Gly Ile Ala Arg Leu Gln Lys Ala Arg Glu Asp Leu Ser Leu Gln 155 150 Ile Ala Ala Leu Tyr Ile Asn Leu Leu Phe Arg Gln Glu Met Thr Arg 165 170 175 170 Thr Ala Glu Thr Gln Leu Ala Leu Ile Arg Glu Gln Arg Asn Arg Thr 185 Ala Glu Met Val Arg Val Gly Lys Trp Ala Glu Gly Lys Leu Leu Asp 195 200 Ile Asn Ala Gln Met Ala Lys Asp Glu Gln Leu Leu Val Gln Tyr Arg 210 215 220 Ser Glu Glu Glu Leu Ala Arg Leu Asp Leu Gly Gln Ala Leu Glu Leu 235 240 225 230 Glu His Pro Glu Ser Ile Ala Val Lys Ala Pro Asp Thr Asp Val Leu 245 250 255 Val Ala Glu Arg Leu Gly Ser Leu Leu Ala Pro Glu Glu Ile Tyr Arg 260 265 Thr Ala Leu Gly Leu Lys Pro Ala Leu His Ser Ser Glu Leu Gln Ile 275 280 Ala Ser Ala Arg Glu Gly Leu Ala Ser Ala Arg Ala Ala Tyr Phe Pro 290 295 300 Thr Leu Ser Leu Ser Ala Gly Tyr Ser Asn Gly Tyr Phe Arg Asp Leu 315 310 Gly Lys Glu Tyr Ala Ala Ile Asn Pro Ser Phe Ser Glu Gln Trp Lys

325 330 Asn Asn Gly Ser Tyr Ser Ile Gly Leu Ser Leu Asn Ile Pro Ile Phe 345 350 340 Ser Ala Met Gln Thr Gln Asp Arg Val Arg Ser Ser Arg Leu Gln Ile 355 360 365 Arg Ser Ser Glu Leu Arg Leu Val Glu Glu Lys Lys Ala Leu Tyr Lys 375 380 Glu Ile Arg Gln Ala Tyr Ser Asn Ala Val Ala Ala Asp Lys Ala Ile 390 395 Ala Ala Ala Glu Asn Ser Lys Ala Ala Thr Leu Lys Ala Tyr Glu Tyr 415 405 410 Ala Arg Asp Ser Phe Glu Ala Gly Arg Leu Ser Ala Tyr Glu Tyr Ala 420 425 430 Glu Ala Lys Thr Lys Tyr Ala Leu Ser Gln Val Glu Glu Leu Arg Ala 440 445 Lys Tyr Asp Phe Ile Tyr Lys Ala Lys Val Leu Asp Phe Tyr Gln Gly 455 450 Lys Asp Phe 465

## (2) INFORMATION FOR SEQ ID NO:335

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 451 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...451
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:335

Lys Thr Ser Tyr Arg Asn Asn Met Arg Phe Gln His Tyr Leu Ile Cys 10 15 Thr Ala Ala Val Ala Ala Leu Ala Ala Asn Pro Leu Thr Gly Gln Ser 25 3.0 20 Asn Met Thr Leu Glu Glu Cys Ile Asp Tyr Ala Arg Arg His Ser Ser 35 40 45 Ala Val Ala Leu Ser Ala Ala Glu Leu Glu Gln Ser Lys Ala Asp Tyr 55 60 Leu Gln Ala Val Gly Asn Phe Leu Pro Arg Val Ser Ala Gly Thr Gly 70 75 Ala Ser Trp Asn Phe Gly Arg Gly Leu Asp Ala Glu Thr Asn Thr Tyr 85 90 Thr Asp Ile Asn Ser Phe Asn Asn Ser Tyr Ser Ile His Ala Thr Met 105 110 100 Thr Leu Phe Asp Gly Leu Gln Ser Val Tyr Arg Leu Arg Met Ala His 120 125 115 Ala Arg Arg Glu Ala Ser Arg Leu Ser Val Arg Glu Gln Gln Glu Leu 130 135 140 135 140 Ala Ala Leu Gly Thr Thr Glu Ala Tyr Tyr Asp Leu Val Tyr Ala Arg 150 155 Gln Met Gln Glu Leu Ala Met Gln Lys Tyr Glu Glu Ser Ser Arg Leu 165 170 175 His Arg Gln Thr Ala Arg Met Glu Glu Leu Gly Met Lys Ser Arg Pro 180 185 190 Asp Val Leu Glu Met Gln Ser Arg Met Ala Gly Asp Arg Leu Ala Leu 195 200 205 Thr Gln Ala Asp Asn Gln Cys Ile Ile Ala Leu Ile Arg Leu Lys Glu 210 215 220 Lys Met Asn Phe Pro Ile Asp Asp Glu Leu Val Val Asp Asp Met Pro 230 235 Ala Asp Ser Leu Ser Ala Asp Met Ala Glu Ser Asp Ser Ser Ala Gly 245 250 Val Phe Ala Arg Ala Ala His His His Pro Val Leu Leu Arg Ala Lys 260 265 270 Leu Asp Glu Gln Ala Ala Thr Asp Arg Leu Arg Ala Ala Arg Gly Ala 280 275 285 Phe Leu Pro Ser Val Ser Val Ser Gly Gly Trp Asn Thr Gly Phe Ser

290 295 300 Arg Phe Leu Asn Gly Ser Asp Tyr Thr Pro Phe Ser Glu Gln Phe Arg 305 310 315 320 Asn Arg Arg Gly Glu Tyr Val Ser Leu Asn Leu Ser Ile Pro Ile Phe 325 330 335 Ser Gly Phe Ser Leu Val Ser His Leu Arg Gln Ala Arg Ala Glu Arg 340 345 350 Arg Ala Ala Ile Val Arg Arg Gly Glu Ala Glu Arg Arg Leu Tyr Ser 360 365 Glu Ile Ala Gln Ala Met Ala Asp Arg Asp Ala Ala Leu Ala Ser Tyr 375 380 Arg Gln Ala Lys Glu His Thr Asp Ala Met Gln Thr Ala Tyr Glu Ala 385 390 395 Val Leu Gln Arg Tyr Glu Glu Gly Leu Asn Thr Ala Ile Asp Leu Thr 405 410 Thr Gln Ala Asn Arg Leu Leu Asp Ala Arg Val Gln Arg Leu Arg Ala 420 425 Ala Met Thr Tyr Arg Leu Lys Cys Lys Leu Ile Ala Tyr Tyr Gly Cys 440 Leu Ser Asp 450

#### (2) INFORMATION FOR SEQ ID NO:336

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 962 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...962
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:336

Ala Ile Phe Val Val Ser Leu Gln Ile Glu Lys Ile Thr Glu Asn Lys 10 Tyr Asn Ser Asp Lys Ser Met Asn Lys Phe Tyr Lys Ser Leu Leu Gln 20 25 30 Ser Gly Leu Ala Ala Phe Val Ser Met Ala Thr Ala Leu Thr Ala Ser 35 40 45 Ala Gln Ile Ser Phe Gly Gly Glu Pro Leu Ser Phe Ser Ser Arg Ser 55 Ala Gly Thr His Ser Phe Asp Asp Ala Met Thr Ile Arg Leu Thr Pro 70 75 Asp Phe Asn Pro Glu Asp Leu Ile Ala Gln Ser Arg Trp Gln Ser Gln 85 90 Arg Asp Gly Arg Pro Val Arg Ile Gly Gln Val Ile Pro Val Asp Val 100 105 110 Asp Phe Ala Ser Lys Ala Ser His Ile Ser Ser Ile Gly Asp Val Asp 120 115 125 Val Tyr Arg Leu Gln Phe Lys Leu Glu Gly Ala Lys Ala Ile Thr Leu 130 135 140 Tyr Tyr Asp Ala Phe Asn Ile Pro Glu Gly Gly Arg Leu Tyr Ile Tyr 150 155 Thr Pro Asp His Glu Ile Val Leu Gly Ala Tyr Thr Asn Ala Thr His 165 170 Arg Arg Asn Gly Ala Phe Ala Thr Glu Pro Val Pro Gly Ser Glu Leu 185 190 180 Ile Met Asp Tyr Glu Val Ser Arg Gly Gly Thr Leu Pro Asp Ile Lys 195 200 205 Ile Ser Gly Ala Gly Tyr Ile Phe Asp Lys Val Gly Gly Arg Pro Val 215 220 Thr Asp Asn His Tyr Gly Ile Gly Glu Asp Asp Ser Asp Cys 230 235 Glu Ile Asn Ile Asn Cys Pro Glu Gly Ala Asp Trp Gln Ala Glu Lys 245 250 Asn Gly Val Val Gln Met Ile Met Val Lys Gly Gln Tyr Ile Ser Met 260 265 270 Cys Ser Gly Asn Leu Leu Asn Asn Thr Lys Gly Asp Phe Thr Pro Leu

		275					280					285			
Ile	Ile 290	Ser	Ala	Gly	His	Cys 295	Ala		Ile	Thr	Thr	Asn		Gly	Val
Thr 305	Gln	Ser	Glu	Leu	Asp	Lys		Ile	Phe		Phe		Tyr	Glu	_
_		Cys	Ser	Asn 325	Gly		Leu	Ala	Ile 330			Gly	Asn	Ser	320 Ile
Ile	Gly	Ala	Ser 340		Lys	Ala	Phe	Leu 345		Ile	Lys	Gly	Lys 350		Asp
Gly	Leu	Leu 355	Leu	Gln	Leu	Asn	Asp 360	Glu		Pro	Leu	Arg 365	Tyr		Val
Tyr	Tyr 370	Asn	Gly	Trp	Asp	Ser 375	Thr		Asp	Ile	Pro 380			Gly	Ala
Gly 385	Ile	His	His	Pro	Ala 390		Asp	Ala	Met	Lys 395		Ser	Ile	Leu	Lys 400
Lys	Thr	Pro	Ala	Leu 405	Asn	Thr	Trp	Ile	Ser 410		Ser	Gly	Ser	Gly 415	Gly
Thr	Asp	Asp	His 420	Phe	Tyr	Phe	Lys	Tyr 425	Asp	Gln	Gly	Gly	Thr 430	Glu	Gly
Gly	Ser	Ser 435	Gly	Ser	Ser	Leu	Phe 440		Gln	Asn	Lys	His 445	Val	Val	Gly
Thr	Leu 450	Thr	Gly	Gly	Ala	Gly 455		Cys	Gly	Gly	Thr 460	Glu	Phe	Tyr	Gly
Arg 465	Leu	Asn	Ser	His	Trp 470	Asn	Glu	Tyr	Ala	Ser 475	-	Gly	Asn	Thr	Ser 480
Arg	Met	Asp	Ile	Tyr 485	Leu	Asp	Pro	Gln	Asn 490	Asn	Gly	Gln	Thr	Thr 495	Ile
		Gly	500			_	_	505	_				510		
		Leu 515					520	_				525		_	
	530	Pro				535				_	540			_	
545		Arg			550					555					560
		Ala		565					570		_			575	_
		Ser	580					585				_	590		
		Lys 595					600					605		_	_
	610	Thr				615					620				
625		Leu			630					635					640
		Glu		645					650					655	_
_	_	Ala	660					665					670		
		Asp 675					680					685			
	690	Val				695				_	700				
705		Lys			710					715	_				720
		Val		725					730					735	
		Tyr	740					745			_		750		
		755 Phe					760		_	_		765			_
	770	Glu				775					780			_	
785					790					795					800
		Leu Glu		805					810	_		_		815	
			820					825					830		
		Gly 835 Ser					840		-			845	_		
	850	Glu				855				_	860				_
865					870					875					880
val	viq	Gln	*16	885	ASII	Vall	vall	vig	890	val	итg	ıyr	FIO	895	vai

Val Thr Asp Arg Phe Ser Ile Lys Asn Ala His Met Val His Ala Ala 900

Ala Leu Tyr Ser Leu Asp Gly Lys Gln Val Arg Ser Trp Asn Asn Leu 915

Arg Asn Gly Val Thr Phe Ser Val Gln Gly Leu Thr Ala Gly Thr Tyr 930

Met Leu Val Met Gln Thr Ala Asn Gly Pro Val Ser Gln Lys Ile Val 945

Lys Gln

#### (2) INFORMATION FOR SEQ ID NO:337

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 702 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...702
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:337

Trp Lys Lys Ser Asn Pro Gln Tyr Arg Gly Arg Thr Ala Asn Tyr Arg 10 5 15 Asp His Tyr Asn Thr Glu Ser Tyr Leu Ser Leu Arg Arg Asn Gln Thr 25 30 20 Met Lys Tyr Leu Ile Arg Leu Phe Leu Ser Leu Met Leu Leu Ser Leu 40 45 35 Trp Thr Gly Cys Thr His Glu Glu Leu Ser Ile Cys Asp Gly Glu Asn 50 55 60 Thr Leu Val Leu Arg Val Glu Thr Gly Lys Ala Pro Asn Ala Arg Ala Thr Glu Pro Gly Gln Gly Ile Tyr Asn Glu Asn Lys Val Gly Ser Ile 85 90 Ser Val Leu Phe Tyr Leu Glu Gly Gln Leu Arg Trp Gln Val Lys Ser 100 105 110 Thr Asp Tyr Gln Ile His Glu Gly Ala Tyr Ile Ile Pro Val Lys Glu 115 120 125 Gln Met Arg Pro Leu Phe Asn Gly Asn Asn Asn Phe Ser Ile Tyr Val 130 135 140 Val Ala Asn Leu Asp Phe Asn Ala Pro Ala Thr Glu Ala Ala Leu Ser 150 155 Gln Phe Val Val Glu Lys Ser Ile Glu Val Ser Ser Thr Thr Ala Pro 165 170 175 Ala Asp Phe Val Met Leu Ala His Gly Asn Lys Gln Ile Asn Met Ala 180 185 190 Thr Thr Glu Gly Lys Leu Leu Gly Asp Tyr Lys Leu Lys Arg Val Ala 195 200 205 Ala Lys Ile Arg Met Ile Lys Pro Thr Ile Asn Val Gln Gly Tyr Glu 210 215 220 Val Val Gly Asn Ile Gln Ala Lys Phe Arg Asn Ser Val Thr Lys Gly 225 230 235 Phe Leu Thr Thr Glu Ala Gln Glu Ile Pro Ala Ala Ala Ser Tyr Lys 250 245 Thr Ser Glu Tyr Leu Asp Ile Ala Glu Ser Ala Pro Ala Asn Ser Ile 260 265 270 His Phe Tyr Ser Tyr Tyr Asn Lys Trp Thr Leu Ser Thr Pro Glu Lys 275 280 285 Arg Pro Glu Phe Phe Ile Met Val Lys Phe Lys Lys Thr Gly Gln Pro 300 290 295 Asp Asn Thr Ala Lys Pro Tyr Tyr Tyr Arg Val Pro Leu Glu Ser Gln 305 310 315 320 Asp Asn Gln Val Lys Ser Asn Val Leu Tyr Asn Leu Asn Val Lys Ile 325 330 Glu Ile Leu Gly Ser Leu Gln Glu Pro Glu Ala Val Ser Val Asn Gly 345 350 Thr Leu Ala Ile Glu Glu Trp Ile Leu His Gln Asp Ala Phe Asn Leu 360 365

Pro Ala Thr Asn Tyr Leu Ile Val Glu Gln His Glu Ile Phe Met Asn 375 380 Asn Val Asn Thr Tyr Ser Val Lys Tyr Gln Thr Ser Gln Lys Pro Ile 385 390 395 Ser Ile Ser Ile Gln Ser Val Thr Phe Ser Tyr Val Ser Ser Asp Gly 405 410 415 Thr Gln His Asn Asp Leu Val Ala Ser Ser Ser Asp Gln Tyr Pro Thr 420 425 Ile Thr Ser Asp Asn Thr Ser Ile Ile Ile Thr Ser Lys Ile Pro Val 435 440 445 Asn Asn Val Pro Lys Lys Ile Val Phe Glu Val Thr Asn Gly Val Ala 450 455 460 Gly Leu Lys Glu Thr Val Thr Val Leu Gln Tyr Pro Ala Gln Phe Ile 470 475 Val Asn Thr Leu Gly Thr Ala Ser Ala Trp Arg Pro Asp Gly Ser Leu 485 490 495 Ala Pro Gly Leu Asn Asn Lys Ala Ile Tyr His Val Val Leu Val 500 505 510 Pro Pro Glu Asn Leu Phe Glu Asp Gly Thr Gln Thr Ile Ile Gly Tyr 515 520 Pro Pro Thr Glu Thr Ile Ser Phe His Lys Lys Glu Asn Asn Thr Tyr 535 540 Pro Ile Val Trp Ser Asp Thr Asn Thr Thr Lys Gln Asp Leu Glu Thr 545 550 555 Ser Arg Met Ile Ser Pro Ser Phe Glu Leu Ala Ser Gln Leu Gly Ala 565 570 575 Thr Leu Pro Met Pro Tyr Leu Glu Tyr Trp Pro Gly Thr Ser Tyr Leu 580 585 590 Leu Asp Tyr Ser Gly Asn Tyr Asn Asn Lys Arg Tyr Ala Leu Phe Asn 595 600 605 Cys Ala Phe Tyr Trp Glu Lys Arg Lys Val Asn Asn Glu Glu Ile Lys 620 610 615 Phe Asp Asp Trp Arg Leu Pro Thr Glu Ala Glu Ile Lys Leu Ile Asp 625 630 635 Lys Leu Gln His Asn Glu Gln Ser Ala Val Gln Ala Ile Met Thr Gly 645 650 655 Asn Tyr Tyr Trp Asp Ser Tyr Ser Ala Asn Gly Ser Tyr Lys Met Gln 660 665 670 Gly Gly Gly Gln Gly Asn Ser Ser Lys Ala Tyr Val Arg Cys Val 675 680 685 Arg Asp Val Lys Lys Pro Ile Arg Asp Lys Lys Ser Gly Lys 695

## (2) INFORMATION FOR SEQ ID NO:338

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1312 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1312
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:338

Lys Arg Val Asp Ser Tyr Glu Cys Arg Gln Lys Ala Cys Lys Cys Ala 5 10 Ile Cys Val Ile Gln Lys Phe Thr Asn Val Lys Leu Asn Asp Met Arg 25 30 Lys Ile Leu Ser Phe Leu Met Met Cys Ser Leu His Leu Gly Leu Gln 40 45 Ser Gln Thr Trp His Gly Asp Pro Asp Ser Val Ala Ala Leu Pro Ser 55 Ile Gly Ile Gln Glu Ser Ser Cys Thr Arg Ile Thr Phe Glu Val Val 65 70 75 80 Phe Pro Gly Phe Tyr Ser Val Glu Lys Arg Glu Gly Asn Gln Val Phe 85 90 95 Gln Arg Ile Ser Met Pro Gly Cys Gly Ser Phe Gly Asn Leu Gly Glu 105

Ala Glu Leu Pro Val Leu Lys Lys Met Ile Ala Val Pro Glu Phe Ser Thr Ala Asn Val Ala Val Lys Ile Lys Glu Thr Glu Thr Phe Asp Asn Tyr Asn Ile Tyr Pro Asn Pro Thr Tyr Val Val Glu Glu Leu Pro Glu Gly Gly Thr Tyr Leu Val Glu Ala Phe Ala Ile Asn Asn Asp Tyr Tyr Ser Gln Asn Val Ser Leu Pro Ser Thr His Tyr Val Tyr Ser Gln Asp Gly Tyr Phe Arg Ser Gln Arg Phe Ile Glu Val Thr Leu Tyr Pro Phe Arg Tyr Asn Pro Val Arg Gln Glu Ile Leu Phe Ala Lys Lys Ile Glu Val Thr Ile Thr Phe Asp Asn Pro Gln Pro Pro Leu Gln Lys Asn Thr 230 235 Gly Ile Phe Asn Lys Val Ala Ser Ser Ala Phe Ile Asn Tyr Glu Ala Asp Gly Lys Ser Ala Ile Glu Asn Asp Met Val Phe Ser Arg Gly Thr 265 270 Thr Thr Tyr Ile Ser Gly Asn Val Ala Ser Asn Leu Pro Gln Asn Cys Asp Tyr Leu Val Ile Tyr Asp Asp Met Phe Asn Val Asn Gln Gln Pro His Asp Glu Ile Lys Arg Leu Cys Glu His Arg Ala Phe Tyr Asn Gly 305 310 Phe Asp Val Ala Ala Val Ser Ile Lys Asp Val Leu Asn Ser Phe Pro Ser Asn Ala Thr Ser Tyr Ile Asn Glu Thr Lys Leu Lys Asn Phe Ile Arg Ser Val Tyr Asn Gln Ser Asn Ala Lys Arg Thr Leu Asp Gly Lys Leu Gly Tyr Val Leu Leu Ile Gly Lys Pro Leu Ser Lys Tyr Leu Ala Asp Thr Asp Asn Thr Lys Val Pro Thr Ser Phe Ile His Asn Val Ser Leu Ile Pro Ser His Pro Thr Phe Gly Ser Ile Cys Ala Ser Asp Tyr Phe Phe Ser Cys Val Ser Pro Leu Asp Thr Val Gly Asp Leu Phe Ile Gly Arg Phe Ser Val Thr Asn Ala His Glu Leu His Asn Leu Ile Glu Lys Thr Ile Asn Lys Glu Ile Ser Tyr Asn Pro Ile Ala His Lys Asn Ile Leu Tyr Ala Glu Gly Lys Gly Cys Asp Ala Pro Ile Leu Arg Leu 470 475 Phe Leu Lys Glu Ile Ala Ser Gly Tyr Thr Val Asn Ser Ile Leu Lys Ser Asn Gln Val Ser Ala Ile Asp Ser Ile Phe Asp Cys Leu Asn Asn 500 505 Gly Ser His His Phe Tyr Phe Asn Thr His Gly Met Pro Thr Val Trp Gly Ile Gly Gln Gly Leu Asp Val Asn Thr Leu Thr Ala Arg Leu Asn Asn Thr Ser Ser Gln Gly Leu Cys Thr Ser Leu Ser Cys Ser Ser Ala Val Ala Asp Ser Thr Ile Arg Ser Leu Gly Glu Val Leu Thr Thr Tyr Ala Pro Asn Lys Gly Phe Ser Ala Phe Leu Gly Gly Ser Arg Ala Thr 580 585 Gln Tyr Ala Val Tyr Leu Glu Gly Pro Cys Pro Pro Ser Glu Phe Tyr Glu Tyr Leu Pro Tyr Ser Leu Tyr His Asn Leu Ser Thr Val Val Gly Glu Met Leu Leu Ser Ser Ile Ile Asn Thr Asn Ser Val Asp Thr Tyr Ser Lys Phe Asn Phe Asn Leu Leu Gly Asp Pro Ala Leu Asn Ile Met Ala His Gly Met Glu Val Ser Asn Cys Ile Thr Leu Pro Asn Asn Thr Ile Ile Ser Ser Pro Ile Thr Ile Lys Asn Gly Gly Cys Leu Lys Ile Pro Glu Lys Gly Val Leu His Phe Thr Asn Asn Gly Ser Ile Gln Val Met Ser Gly Gly Thr Leu Glu Ile Gly Asn Gln Ala Lys Ile Ser Gly Glu Thr Gly Ala Asn Pro Thr Phe Ile Thr Val Tyr Gly Asp Gly Leu

				725					730					735	
Ala	Ile	Asn	Lys 740		Val	Glu	Ile	Asp 745		Ile	Asp	Arg	Leu 750	Asn	Leu
		755					760				Phe	765			
Phe	Asn 770		Ala	Pro	Leu	Tyr 775		Thr	Asn	Cys	Ile 780	Val	Glu	Ile	Ser
Asn 785		Glu	Phe	Thr	Asn 790	_	Ser	Asp	Ile	Ile 795	Ser	Lys	Asn	Cys	Asp 800
Leu	Ser	Val	Glu	Asn 805		Met	Phe	Ser	Ser 810	Ser	Gly	Ile	Thr	Val 815	Phe
Lys	Pro	Met	Ala 820		Ser	Ser	Ile	Thr 825	Gly	Leu	Ser	Thr	Lys 830	Ala	Lys
		835					840		_		Phe	845	-		
Thr	Asn 850	Thr	Pro	Gly	Leu	Thr 855	Ala	Thr	Ser	Asn	Ala 860	Ala	Ile	Lys	Leu
Asp 865		Ile	Pro	Glu	Tyr 870	Tyr	Ile	Ser	Gly	Asn 875	Lys	Ile	Val	Asn	Cys 880
Asp	Glu	Ala	Leu	Val 885	Leu	Asn	Asn	Ser	Gly 890	Asn	Arg	Thr	Asn	Arg 895	Leu
			900					905			Arg		910		
		915					920				Lys	925			
	930					935					Phe 940				
945					950		_	_		955	Phe				960
				965				_	970		Pro			975	
			980					985			Trp		990		
		995					1000	)			Asn	100	)5		
	1010	)				101	.5					20			
1029	5				103	30				10	Gly 035			_	1040
ser	ser	Ald	GIU	1045		GIU	Pne	GII	105		Leu	Asp	Cys		G1Y 055
Asn	Ser	Asp	Tyr 1060	Leu		Ala	Lys	Val	Ala		Lys	Met			
Thr	Tyr	Pro 1075	Glu		Asp	Phe	Ala 108	Ile		Ala	Leu	_			Phe
Arg	Ile 1090		Lys	Met	Ser	Gly 109	Asn		Tyr	Glu	Gly 11			Asp	Tyr
Phe 1109		Ser	Asn	Pro	Thr 111	Ile		Ser	Ser		Asn 15		Phe	Pro	Thr 1120
Ala	Asp	Phe	Leu	Ser	Ala	Arg	Cys	Asp	Ile	Val	Cys	Glu	Asn	Tyr	Gln
_			_	1125			_	_	113		_				.35
			1140	)				114	5		Ser		11	50	
		1155	5				116	0			Asp	11	65		
	1170	)				117	5				Asp 11	80			
1185	;				119	0				11	Gln .95			_	1200
				1205					121	0	Thr Lys			12	15
			1220	)				122	5				12	30	
		1235					124	0			Ile Ile	12	45		
	1250	1				125	5				11e 12 Glu	60			
1265				1	127		_, _		u		75	- <b>y</b>	-1-	-1-	1280
		Phe		Thr 1285	Ser		Phe	Asp	Pro	Gly	Phe	Tyr	Leu	Val 12	Thr
Leu	Asn			Gln		Ile	Ile	Asp 130	Thr		Lys	Leu	Arg 13	Ile	

## (2) INFORMATION FOR SEQ ID NO:339

- (A) LENGTH: 938 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
    (B) LOCATION 1...938
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:339

1				5					10					15	Ile
Met	Met	Lys	Ser 20	Ile	· Val	Phe	Arg	Ala 25	Phe	Leu	Thr	Ile	Leu 30	Leu	Ser
Trp	Ala	Ala 35	ılle	Thr	Asn	Pro	Thr	Ala	Gln	Glu	Ile	Ser	Gly	Met	Asn
Ala	Ser 50	Сув	Leu	Ala	Ala	Pro	Ala	Gln	Pro	Asp	Thr 60		Leu	Tyr	Glu
Ser 65	Phe	Glu	Asn	Gly	Pro		Pro	Asn	Gly	Trp		Glu	Ile	Asp	Ala 80
Asp	Ala	Asp	Gly	Ala 85	-	Trp	Gly	Ser	Pro		Gly	Ser	Phe	Ser	Val
Pro	Tyr	Gly	His	Asn	Gly	Leu	Cys	Thr	Tyr	Ser	His	Ile	Arg	Ser	Gly
Ile	Ser	Thr	Ala		Asn	Tyr	Leu 120	Ile		Pro	Asn	Ile 125			Ala
Lys	Arg 130	Val		Tyr	Trp	Val 135	Cys		Gln	Tyr	Ser 140		Asn	Pro	Glu
His 145			Val	Met	Val 150			Thr	Gly	Thr 155		Ile	Glu	Asp	Phe 160
	Leu	Leu	Phe	Asp	Asp	Ser	Ile	Thr	Gly 170	Lys	Pro	Thr	Pro		
Trp	Arg	Arg	Arg		Val	Asp	Leu	Pro			Thr	Lys		175 Ile	Ala
Trp	Arg	His 195	Tyr	Lys	Val	Thr	Asp		His	Thr	Glu		190 Leu	Lys	Leu
Asp	Asp 210			Val	Tyr	Arg 215		Ile	Glu	Gly	Pro 220	205 Glu	Pro	Ala	Thr
Asp 225		Thr	Val	Ile	Asn 230		Gly	Gln	Asn	Val 235		Arg	Leu	Thr	
	Tyr	Pro	Glu	Asp 245	Tyr	Gln	Pro	Glu			Gly	Asn	Glu		240 Leu
Gln	Leu	Ser	Gly 260		Asn	Ile	Tyr		250 Asn	Gly	Thr	Leu		255 Ala	Gln
Ile	Lys	Asp 275		Ser	Ile	Leu	Glu 280	265 Tyr	Val	Asp	Ser		270 Tyr	Ser	Leu
Arg	Asp 290		Pro	Leu	Gln			Tyr	Cys	Val		285 Ala	Val	Tyr	Asp
Glu 305		Ile	Glu	Ser	Ser	295 Thr	Val	Cys	Gly		300 Leu	His	Tyr	Ala	
	Ala	Ile	Leu	Tyr 325	310 Glu	Asn	Phe	Glu		315 Gly	Pro	Val	Pro		320 Gly
Trp	Leu	Val	Ile 340		Ala	Asp	Gly		330 Gly	Phe	Ser	Trp		335 His	Tyr
Leu	Asn			Asp	Ala	Phe		345 Gly	His	Asn	Gly		350 His	Cys	Ser
Leu		355 Ala	Ser	Tyr	Val		360 Gly	Ile	Gly	Pro		365 Thr	Pro	Asp	Asn
	370 Leu	Ile	Thr	Pro	Lys	375 Val	Glu	Gly	Ala		380 Arg	Val	Lys	Tyr	
385 Val	Ser	Thr	Gln		390 Ala	Asn	Trp	Ala		395 Glu	His	Tyr	Ala	Val	400 Met
Ala	Ser	Thr		405 Gly	Thr	Ala	Val		410 Asp	Phe	Val	Ile		415 Phe	Glu
Glu	Thr		420 Thr	Ala	Lys	Pro		425 Gly	Ala	Trp			430 Arg	Thr	Ile
Asn		435 Pro	Glu	Gly	Thr		440 Tyr	Ile	Ala	Trp	Arg	445 His	Tyr	Asn	Сув
	450 Asp	Ile	Tyr	Phe	Leu	455 Lys	Leu	Asp	Asp	Ile	460 Thr	Val	Phe	Gly	Thr
465					470					475					480

Pro Ala Ser Glu Pro Glu Pro Val Thr Asp Phe Val Val Ser Leu Ile 485 490 Glu Asn Asn Lys Gly Arg Leu Lys Trp Asn Tyr Pro Asn Gly Tyr Glu 505 510 500 Pro Asp Lys Thr Asp Asp Lys Asp Pro Leu Gln Leu Ala Gly Tyr Asn 515 520 525 Ile Tyr Ala Asn Gly Ser Leu Leu Val His Ile Gln Asp Pro Thr Val 535 540 Leu Glu Tyr Ile Asp Glu Thr Tyr Ser Ser Arg Asp Asp Gln Val Glu 545 550 555 560 Val Glu Tyr Cys Val Thr Ala Val Tyr Asn Asp Asn Ile Glu Ser Gln 570 575 Ser Val Cys Asp Lys Leu Ile Tyr Asp Ser Gln Ser Asp Ile Ile Leu 580 585 590 Tyr Glu Gly Phe Glu Ala Gly Ser Ile Pro Glu Gly Trp Leu Leu Ile 595 600 Asp Ala Asp Gly Asp Asn Val Asn Trp Asp Tyr Tyr Pro Trp Thr Met 610 615 620 Tyr Gly His Asp Ser Glu Lys Cys Ile Ala Ser Pro Ser Tyr Leu Pro 625 630 635 Met Ile Gly Val Leu Thr Pro Asp Asn Tyr Leu Val Thr Pro Arg Leu 645 650 Glu Gly Ala Lys Leu Val Lys Tyr Trp Val Ser Ala Gln Asp Ala Val 670 665 Tyr Ser Ala Glu His Tyr Ala Val Met Val Ser Thr Thr Gly Thr Ala 675 680 685 Val Glu Asp Phe Val Leu Leu Phe Glu Glu Thr Met Thr Ala Lys Ala 690 695 700 Asn Gly Ala Trp Tyr Glu Arg Thr Ile Thr Leu Pro Ala Gly Thr Lys
705 710 715 720 Tyr Ile Ala Trp Arg His Tyr Asp Cys Thr Asp Met Phe Phe Leu Leu 725 730 735 Leu Asp Asp Ile Thr Val Tyr Arg Ser Thr Glu Thr Val Pro Glu Pro 740 745 750 Val Thr Asp Phe Val Val Ser Leu Ile Glu Asn Asn Lys Gly Arg Leu 760 765 Lys Trp Asn Tyr Pro Asn Gly Tyr Glu Pro Asp Lys Thr Asp Asp Lys 770 780 Lys Pro Leu Gln Leu Thr Gly Tyr Asn Ile Tyr Ala Asn Gly Ser Leu 785 790 795 Leu Val His Ile Gln Asp Pro Thr Val Leu Glu Tyr Ile Asp Glu Thr 805 810 Tyr Ser Ser Arg Asp Gly Gln Val Glu Met Glu Tyr Cys Val Thr Ala 825 820 830 Val Tyr Asn Asp Asn Ile Glu Ser Gln Ser Val Cys Asp Lys Leu Asn 835 840 845 Tyr Thr Ile Thr Ser Leu Asp Asn Ile Gln Ser Asp Thr Ser Leu Lys 855 860 Ile Tyr Pro Asn Pro Ala Ser Tyr Val Val Arg Ile Glu Gly Leu Ser865870875880 Arg Ser Lys Ser Thr Ile Glu Leu Tyr Asn Ala Leu Gly Ile Cys Ile 885 890 Leu Arg Glu Glu Thr His Ser Glu Lys Thr Glu Ile Asp Val Ser Arg 900 905 910 Leu Asn Asp Gly Val Tyr Leu Ile Lys Val Val Gly Gly Asn Lys Thr 915 920 925 Thr Thr Glu Lys Val Glu Ile Lys Arg Pro 930

## (2) INFORMATION FOR SEQ ID NO:340

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 606 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...606

Ile Ile Phe Cys Thr Ile His His Ser Glu Leu Glu Ile Met Asn Ser Ile Met Lys Tyr Gln Leu Tyr Thr Ala Val Ile Met Ala Leu Ser Val Ser Ser Val Cys Gly Gln Thr Pro Arg Asn Thr Glu Thr Lys Arg Pro Asp Thr Leu Arg Arg Glu Leu Thr Ile Val Asn Asp Gln Thr Val Glu Met Glu His Ala Asp Pro Leu Pro Ala Ala Tyr Lys Ala Ile Glu Pro Arg Leu Lys Pro Phe Arg Pro Glu Tyr Asn Lys Arg Thr Phe Gly Phe Val Pro Glu Val Ser Ser Ser Gly Arg Asn Asn Leu Pro Asn Ile Leu Pro Thr Glu Gly His Met Lys His Arg Gly Tyr Leu Asn Ile Gly Ile Gly His Thr Leu Asn Gln Arg Met Asp Ala Gly Tyr Arg Leu Ile Asp Ala Glu Gln Glu Arg Leu Asn Leu Phe Leu Ser Tyr Arg Gly Met Lys Ser Ala Phe Asn Thr Gly Asp Phe Asp Gly Asp Arg Lys Asp Arg Arg Met Met Ala Gly Val Asp Tyr Glu Gln Arg Arg Pro Ser Phe Val Leu Ala Thr Gly Leu Tyr Tyr Ser Asn His Tyr Phe Asn Asn Tyr Gly Arg Gly Ala Thr Thr Asn Val Gly Ser Ile Pro Gln Leu Ser Thr Pro Val Thr Pro Gln Met Asp Asn Gly Thr His Asn Val Arg Val Tyr Leu Gly 225 230 Ala Lys Asn Asp Val Ile Asp Ala Arg Ile Asp Tyr Arg Phe Phe Arg Ser Ile Pro Tyr Leu Gly Thr Asp Pro Met Lys Ala Leu Thr Glu His Thr Pro Glu Leu Asn Val Thr Met Ser Asn Glu Leu Ser Asp Asp Ile Lys Leu Gly Val Glu Val Arg Thr Gly Gly Leu Phe Phe Ala Lys Asn Ser Glu Met Ile Gln Thr Gly Val Leu Ser Glu Thr Asp Arg Asn Leu Tyr Tyr Val Glu Gly Ala Pro Thr Ile Gly Phe Val Gly Asp Ser Asp Asn Met Gln Trp Asn Ile Gln Ala Gly Val Gly Ile Ser Ser His Phe 345 350 Gly Ala Lys Gly Arg Leu Phe Phe Trp Pro Lys Leu Asp Ala Ser Leu Ser Ile Phe Pro Ser Trp Arg Val Tyr Ala Lys Ala Phe Gly Gly Val Ile Arg Asn Gly Leu Ala Asp Val Met Gln Glu Glu Met Pro Tyr Leu Met Pro Asn Thr Ile Val Leu Pro Ser Arg Asn Ala Leu Thr Ala Gln Leu Gly Val Lys Gly Asn Ile Ala Asp Val Val Arg Met Glu Val Tyr Gly Asp Phe Ser Lys Leu Thr Gly Val Pro Phe Tyr Thr Pro Thr Leu Pro Leu Tyr Asn Pro Ser Asp Leu Tyr Gln Tyr Asn Val Ser Phe Leu Pro Ile Tyr Ala Asp Gly Ser Arg Trp Arg Ala Gly Gly Lys Leu Glu Tyr Ser Tyr Arg Asp Met Leu Arg Phe Leu Val Asp Ala Ser Tyr Gly Lys Trp Asn Leu Asp Gly Gly Leu Val Ala Ser Met Gln Pro Asp Leu Ile Leu Lys Ala Glu Val Gly Val His Pro Ile Ala Pro Leu Asp Val Arg Leu Arg Tyr Thr Gln Leu Asn Gly Arg Tyr Arg Tyr Ser Phe Gly Ser Ala Gly Ser Glu Ala Leu Gly Ile Gly Asn Val His Leu Leu Ser Ala Asp Val Ser Tyr Lys Leu Lys Lys Asn Leu Ser Leu Tyr Leu Lys Ile Asp Asn Met Leu Ala Glu Thr Thr Glu Leu Ile Gly Tyr Tyr Pro Met Gln Pro Phe His Cys Phe Ala Gly Phe Ser Trp Thr Phe

595 600 605

#### (2) INFORMATION FOR SEQ ID NO:341

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 357 amino acids
  - (B) TYPE: amino acid(D) TOPOLOGY: linear
  - (b) TOPOLOGI: IIIIear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...357
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:341

Asn Ser His Ala Thr Val Ser Val Ile Cys Ser Met Met Glu Lys Cys 10 Ile Phe Ala His Tyr Pro His Asn Leu Val Phe Met Ile Arg Lys His 20 25 Phe Gly Ile Ile Leu Gly Phe Leu Ser Leu Val Phe Ser Ala Gly Ala 35 40 45 Gln Gln Glu Lys Gln Val Phe His Phe Leu Asn Leu Pro Ala Thr Ala 55 60 Gln Ala Leu Ala Ala Gly Gly Lys Ala Ile Thr Ile Val Asp Asp Asn 70 75 Pro Gly Leu Ala Phe Glu Asn Pro Ala Leu Leu Gly Tyr Glu Ser Gly 85 90 Gly Arg Ala Phe Leu Ser Tyr Leu Tyr Tyr Met Ser Gly Ser His Met 100 105 Gly Asn Ala Cys Tyr Ala Ser Ser Val Gly Glu Arg Gly Met Trp Gly 115 120 125 Val Gly Met Arg Phe Leu Asn Tyr Gly Ser Met Gln Gly Tyr Asp Gln 130 135 140 Asn Ala Ile Ala Thr Gly Ser Phe Ser Ala Ser Asp Ile Ala Val Gln 150 155 Gly Phe Tyr Ser His Glu Leu Ser Asn His Phe Arg Gly Gly Val Ser 165 170 175 Leu Lys Ala Leu Tyr Ser Ser Ile Glu Thr Tyr Ser Ser Phe Gly Leu 180 185 190 Gly Val Asp Val Gly Ile Ser Tyr Tyr Asp Asp Asp Lys Gly Tyr Ser 200 Ala Ser Ala Leu Phe Lys Asn Val Gly Ala Gln Leu Lys Gly Tyr Asn 210 215 220 Glu Glu Arg Glu Pro Leu Asp Trp Asp Phe Gln Leu Gly Phe Ser Arg 225 230 235 240 Ser Phe Ile Asn Ala Pro Phe Arg Leu His Ile Thr Leu Phe Asn Leu 245 250 255 Asn Pro His Tyr Phe Lys Arg Leu Val Pro Arg Asp Leu Ser Lys Met 260 265 Gln Lys Phe Leu Arg His Phe Ser Ile Gly Ala Glu Phe Thr Pro Ser 275 280 Glu Arg Phe Trp Val Gly Leu Gly Tyr Thr Pro Gln Ile Ala Gln Asp 290 295 300 Phe Glu Val Glu Gly Gly Asn Lys Trp Gly Gly Leu Ser Ala Gly Val 305 310 315 320 Gly Phe Thr Ser Gly Val Val Arg Val Gly Val Ser Ala Ala Thr Tyr 330 325 His Pro Ala Ala Leu Ser Phe Met Cys Ser Val Gly Ile Arg Leu Asp 340 345 350 Asp Lys Ser Ile Phe 355

- (2) INFORMATION FOR SEQ ID NO:342
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 337 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein

- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...337
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:342

Pro Gln Pro Val Gly Leu Lys Glu Ile Thr Ile Lys Pro Met Cys Leu 10 15 Glu Pro Ile Ile Ala Pro Ile Ser Ser Glu Leu Leu Glu Gln Glu Leu 20 25 Thr Ala Asp Arg Phe Leu Arg Met Thr Asn Lys Ala Gly Asn Glu Ile 35 40 45 Tyr Val Phe Thr Ala Glu Glu Ala Pro His Cys Met Lys Glu Val Gly 50 55 60 Arg Leu Arg Glu Glu Ala Phe Arg His Tyr Gly Gly Gly Thr Gly Lys 70 75 Ala Ile Asp Ile Asp Glu Phe Asp Thr Met Pro Gly Ser Tyr Lys Gln 90 85 95 Leu Ile Val Trp Asp Pro Gln Asn Lys Ala Ile Leu Gly Gly Tyr Arg 100 105 110 Phe Ile Tyr Gly Arg Asp Val Ala Phe Asp Thr Asp Gly Lys Pro Leu 115 120 125 Leu Ala Thr Ala Glu Met Phe Arg Phe Ser Asp Ala Phe Leu His Asp 130 135 140 Tyr Leu Pro Tyr Thr Val Glu Leu Gly Arg Ser Phe Val Ser Leu Gln 145 150 155 Tyr Gln Ser Thr Arg Met Gly Thr Lys Ala Ile Phe Val Leu Asp Asn 165 170 175 Leu Trp Asp Gly Ile Gly Ala Leu Thr Val Val Asn Pro Glu Ala Leu 180 185 190 Tyr Phe Tyr Gly Lys Val Thr Met Tyr Lys Asp Tyr Asp Arg Arg Ala 195 200 205 Arg Asn Leu Ile Leu Tyr Phe Leu Arg Lys His Phe Ser Asp Pro Glu 215 220 Gly Leu Val Lys Pro Ile His Pro Leu Pro Ile Glu Ile Ser Ala Glu 230 235 Asp Glu Ala Leu Phe Ser Ser Ser Asp Phe Asp Thr Asn Tyr Lys Thr 245 250 255 Leu Asn Ile Glu Val Arg Lys Leu Gly Ile Asn Ile Pro Pro Leu Val 260 265 270 Ser Ala Tyr Ile Ala Leu Ser Pro Glu Met Arg Val Phe Gly Thr Ala 275 280 285 Val Asn Glu Ser Phe Gly Glu Val Glu Glu Thr Gly Ile Phe Ile Ala 295 300 Val Gly Lys Ile Leu Glu Glu Lys Lys Gln Arg His Ile Glu Ser Phe 310 315 Ile Leu Ser Arg Asn Glu Lys Lys Gly Leu Asp Ser Ser Asn Gly Arg 325 330

- (2) INFORMATION FOR SEQ ID NO:343
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 566 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc feature
    - (B) LOCATION 1...566
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:343

Tyr	Asp	Gly	Ala	Arg	Leu	Val	Tyr	Thr	Leu 10	Phe	Arg	Asn	Arg	Asn 15	Asp
Ile	His	Pro	Met 20	Lys	Thr	Ile	Val	Arg 25	Tyr	Ser	Arg	Leu	Pro 30		Ala
Leu	Phe	Phe 35		Leu	Leu	Gly	Ala 40		His	Leu	Ser	Val 45		Ala	Gln
Met	Leu 50	Asn	Thr	Pro	Phe	Glu 55	Leu	Ser	Asp	Gln	Ile 60	Val	Leu	Ser	Pro
Thr 65	Glu	Arg	Gln	Tyr	Arg 70	Glu	Ile	Сув	Val	Gln 75	Thr	Lys	Glu	Lys	Arg 80
Gly	Ala	Asp	Leu	Phe 85	Pro	Leu	Ser	Asp	Lys	Leu	Arg	Asp	Ser	Ala 95	Tyr
Val	Arg	Phe	Gly 100	Ser	Ala	Tyr	Gly	Asp 105	Ile	Ala	Gly	Asp	Tyr 110	Leu	Pro
		115					120		Ser			125		_	_
Ile	Ser 130	Val	Arg	Asn	Tyr	Gly 135	Thr	Leu	Gln	Gly	Ser 140	Ala	Ser	Tyr	Ser
Arg 145	Gly	Met	His	Lys	Arg 150	Ile	Gly	Trp	Asn	Ala 155	Leu	Arg	Asn	Ala	Glu 160
Ala	Tyr	Tyr	Pro	Tyr 165	Leu	Val	Ser	Asp	Ser 170	Thr	Gly	Gly	Asp	Tyr 175	His
Phe	Glu	Asp	Tyr 180	Arg	Leu	Ala	Gly	Tyr 185	Tyr	Ser	Phe	Arg	Ala 190	Gly	Arg
		195	_		_		200	-	Arg	_		205		_	_
	210					215			Thr	_	220				
Cys 225	Ala	Thr	Ser	Leu	Thr 230	Leu	Pro	Arg	Glu	Asn 235	Arg	Leu	Ser	Leu	Ser 240
Ala	Ala	Tyr	Leu	Tyr 245	His	Arg	Gln	His	Leu 250	Thr	Gln	Tyr	Asn	Trp 255	Arg
			260					265	Ser	-	_		270		
Asp	Val	Ser 275	Asn	Ser	Pro	Ile	Trp 280	Phe	Gly	Ile	Ser	Arg 285	Met	Asn	Tyr
Val	Asn 290	Gly	Trp	Lys	Leu	Ser 295	Ser	Arg	Leu	Asp	Thr 300	Arg	Arg	Gly	Asp
Ala 305	Ile	Gly	Leu	Asp	Tyr 310	Ser	Gly	Tyr	Phe	Leu 315	Asp	Thr	Glu	Glu	Arg 320
Ser	Ser	Ile	Asn	Leu 325	Phe	Ala	Leu	Leu	Tyr 330	Asn	Arg	Leu	Arg	Leu 335	Tyr
Gly	Ser	Trp	His 340	Leu	Ser	Asp	Phe	Asp 345	Phe	Ser	Phe	Ser	Ala 350	Asp	Tyr
Ala	Leu	Arg 355	Gln	Gly	Ile	Glu	Arg 360	Ile	Tyr	Glu	Asp	Tyr 365	Lys	Pro	Asp
	370					375		_	Ile		380		_		
Tyr 385	Met	Leu	Asn	Glu	Phe 390	Ser	Ala	Gln	Ala	Gln 395	Ala	Ser	Tyr	Arg	Ile 400
Arg	Thr	Asp	Arg	Gly 405	Cys	Ala	Leu	Arg	Val 410	Ser	Ala	Gly	Ser	Asp 415	Phe
Tyr	Gly	Tyr	Asp 420	Glu	Thr	Tyr	Arg	Lys 425	His	Gly	His	His	Thr 430	Met	Ser
Gly	Met	Leu 435	Arg	Pro	Phe	Ala	Gly 440	Ile	Ala	Tyr	Asp	His 445	Ala	Gly	Ser
Lys	Leu 450	Asp	Phe	Gly	Leu	Ser 455	Leu	Ser	Ala	Ala	Tyr 460	Arg	Met	Val	Leu
Thr 465	His	Ser	Tyr	Lys	Ile 470	Arg	Thr	Ile	Gln	Lys 475	Glu	Gln	Leu	Asp	Tyr 480
Gln	Leu	Ala	Tyr	Leu 485	Pro	Tyr	Ala	Tyr	Arg 490	Asn	Arg	Glu	Gly	Val 495	Glu
Val	Arg	Ser	Ser 500	Leu	Tyr	Val	Ser	Ile 505	Pro	Met	Gln	Asn	Thr 510	His	Arg
Leu	Met	Thr 515	Glu	Leu	Arg	Leu	Tyr 520	Gly	Asp	Leu	Met	Lys 525	Arg	Lys	Asp
Gly	Ile 530	Ala	Tyr	Gly	Lys	Thr 535	Pro	Gly	Val	Ile	Ser 540	His	Ile	Leu	Ser
Asp 545	Pro	Gln	Ala	Glu	Arg 550	Thr	Ser	Gly	His	Thr 555	Ile	Gly	Ala	Ile	Cys 560
Asn	Ile	Ser	Tyr	Leu 565	Phe										

- (2) INFORMATION FOR SEQ ID NO:344
  - (i) SEQUENCE CHARACTERISTICS:
    (A) LENGTH: 819 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...819
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:344

Arg Thr Asn Val Phe Leu Ser Leu Ser His Lys Ile Gly Arg Arg Gly 10 Ala Ser Cys Ser Asn Arg Asn Ala Trp Met Ala Glu Asn Lys Pro Ser 20 25 30 Ser Pro Glu Pro Asp Asn Thr Gly Val Gly Asn Ser Pro Ser Asp Tyr 35 40 Leu His Gly Glu Ala Ile Ile Pro Pro Leu Ser Ser Leu Ser Asn Phe 55 60 Asn Asp Lys Arg Phe Met Lys Lys Leu His Met Ile Ala Ala Leu Ala 65 70 75 Val Leu Pro Phe Cys Leu Thr Ala Gln Ala Pro Val Ser Asn Ser Glu 85 90 Ile Asp Ser Leu Ser Asn Val Gln Leu Gln Thr Val Gln Val Val Ala 100 105 Thr Arg Ala Thr Ala Lys Thr Pro Val Ala Tyr Thr Asn Val Arg Lys 115 120 125 Ala Glu Leu Ser Lys Ser Asn Tyr Gly Arg Asp Ile Pro Tyr Leu Leu 140 130 135 Met Leu Thr Pro Ser Val Val Ala Thr Ser Asp Ala Gly Thr Gly Ile 145 150 155 Gly Tyr Ser Gly Phe Arg Val Arg Gly Thr Asp Ala Asn Arg Ile Asn 170 165 175 Ile Thr Thr Asn Gly Val Pro Leu Asn Asp Ser Glu Ser Gln Ser Val 185 190 Phe Trp Val Asn Met Pro Asp Phe Ala Ser Ser Ile Glu Asp Leu Gln 195 200 205 Val Gln Arg Gly Val Gly Thr Ser Thr Asn Gly Ala Gly Ala Phe Gly 215 220 Ala Ser Val Asn Met Arg Thr Asp Asn Leu Gly Leu Ala Pro Tyr Gly 225 230 235 Arg Val Asp Leu Ser Gly Gly Ser Phe Gly Thr Phe Arg Arg Ser Val 250 245 255 Lys Leu Gly Ser Gly Arg Ile Gly Arg His Trp Ala Val Asp Ala Arg 260 265 Leu Ser Lys Ile Gly Ser Asp Gly Tyr Val Asp Arg Gly Ser Val Asp  $275 \\ 280 \\ 285$ Leu Lys Ser Tyr Phe Ala Gln Val Gly Tyr Phe Gly Ser Asn Thr Ala 290 295 300 Leu Arg Phe Ile Thr Phe Gly Gly Lys Glu Val Thr Gly Ile Ala Trp 305 310 315 Asn Gly Leu Ser Lys Glu Asp Glu Ala Lys Tyr Gly Arg Arg Tyr Asn 330 325 335 Ser Ala Gly Leu Met Tyr Val Asp Ala Gln Gly Val Pro His Tyr Tyr 340 345 350 His Asn Thr Asp Asn Tyr Glu Gln Arg His Tyr His Ala Ile Met Thr 360 365 His Ser Phe Ser Pro Ser Val Ile Leu Asn Leu Thr Ala His Tyr Thr 375 380 Ala Gly Tyr Gly Tyr Thr Asp Glu Tyr Arg Thr Gly Arg Lys Leu Lys 385 390 395 Glu Tyr Ala Leu Gln Pro Tyr Val Glu Asn Ser Val Thr Val Lys Lys 415 405 410 Thr Asp Leu Ile Arg Gln Lys Tyr Leu Asp Asn Asp Phe Gly Gly Leu 420 425 430 Ile Gly Ser Leu Asn Trp His Thr Gly Ala Trp Asp Leu Gln Phe Gly 435 440 445 Ala Ser Gly Asn Ile Tyr Lys Gly Asp His Phe Gly Arg Ile Thr Tyr 450 455 Ile Lys Lys Tyr Asn Gln Pro Leu Ala Pro Asp Phe Glu Tyr Tyr Arg 470 475 Asn Arg Ala Asp Lys Arg Glu Gly Ala Ala Phe Ala Lys Ala Asn Trp

490 485 Gln Ile Thr Pro Glu Leu Asn Met Tyr Ala Asp Leu Gln Tyr Arg Thr 500 505 510Ile Gly Tyr Thr Ile Asn Gly Ile Thr Asp Glu Tyr Asp Glu Val Gln 520 525 Gly Ser Met Gln His Ile Asp Leu Asp Lys Thr Phe Arg Phe Leu Asn 535 540 Pro Lys Ala Gly Leu Thr Tyr Ser Phe Asp Asp Ala His Thr Ala Tyr 550 555 Ala Ser Val Ala Val Ala His Arg Glu Pro Asn Arg Thr Asn Tyr Thr 565 570 575 Glu Ala Gly Ile Gly Gln Tyr Pro Thr Pro Glu Arg Leu Ile Asp Tyr 580 585 590 Glu Leu Gly Tyr Arg Tyr Ala Ser Pro Leu Leu Ser Ala Gly Val Gly 595 600 605 Leu Tyr Tyr Met Gln Tyr Lys Asp Gln Leu Val Leu Asp Gly Arg Leu 610 615 620 Ser Asp Val Gly Gln Met Leu Thr Ser Asn Val Pro Asp Ser Tyr Arg 625 630 635 Met Gly Leu Glu Leu Thr Leu Gly Trp Gln Ile Leu Pro Arg Leu Leu 650 645 Arg Trp Asp Ala Ser Phe Thr Met Ser Arg Asn Lys Ile Asp Arg Tyr 660 665 670 Val Gln Tyr Thr Ser Val Tyr Asp Ala Asp Tyr Asn Trp Leu Glu Leu 675 680 685 Lys Glu Glu Thr Leu Glu Ser Thr Asp Ile Ala Tyr Ser Pro Asn Val 690 695 700 Ile Ala Gly Ser Met Leu Thr Leu Ser His Ala Gly Phe Glu Met Ala 710 715 Trp Thr Ser Arg Phe Val Ser Lys Gln Tyr Leu Asp Asn Thr Gln Arg 725 730 Ser Asp Arg Met Leu Ser Ser Tyr Trp Val Asn Asp Leu Arg Leu Gly 740 745 750 Tyr Val Leu Pro Val His Phe Val Lys Arg Val Ala Leu Gly Val Gln 760 765 755 Leu Asn Asn Leu Phe Asn Leu Met Tyr Ala Ser Asn Ala Tyr Ile Tyr 775 780 Asp Ala Gly Tyr Val Gln Ala Ser Gly Glu Leu Ser Ala Tyr Ala Asp 785 790 795 Leu Arg Tyr Tyr Pro Gln Ala Gly Phe Asn Ala Leu Gly Ser Leu Thr 805 810 Ile Asp Phe

#### (2) INFORMATION FOR SEQ ID NO:345

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 532 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...532
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:345

Tyr Arg Arg Ser Gly Arg Val Cys Pro Arg Ile Leu Arg Asn Lys Arg 5 10 Ser Tyr Ala Asp Thr Arg Leu Gln Pro Arg Arg Ala Val Arg Leu Arg 20 25 30 Ala Gly Thr Arg Thr Lys Met Lys Arg Arg Phe Leu Ser Leu Leu Leu 40 Leu Tyr Ile Leu Ser Ser Ile Ser Leu Ser Ala Gln Arg Phe Pro Met 55 60 Val Gln Gly Ile Glu Leu Asp Thr Asp Ser Leu Phe Ser Leu Pro Lys 70 75 Arg Pro Trp Arg Ala Ile Gly Lys Thr Ile Gly Val Asn Leu Ala Val 85 90 Trp Gly Phe Asp His Phe Ile Met Asn Glu Asp Phe Ala Asp Ile Ser

105 Trp Gln Thr Ile Lys Ser Asn Phe Gln Thr Gly Phe Gly Trp Asp Asn 115 120 125 Asp Lys Phe Val Thr Asn Leu Phe Ala His Pro Tyr His Gly Ser Leu 130 135 140 Tyr Phe Asn Ala Ala Arg Ser Asn Gly Leu Ser Phe Arg His Ser Ala 150 155 Pro Phe Ala Phe Phe Gly Ser Leu Met Trp Glu Leu Leu Met Glu Asn 165 170 175 Glu Pro Pro Ser Ile Asn Asp Leu Cys Ala Thr Thr Ile Gly Gly Ile 185 190 Ala Leu Gly Glu Met Gly His Arg Leu Ser Asp Leu Leu Ile Asp Asn 195 200 205 Arg Thr Thr Gly Trp Glu Arg Met Gly Arg Glu Val Ala Ile Ala Leu 215 220 Ile Asn Pro Met Arg Phe Leu Asn Arg Leu Thr Ala Gly Glu Val Thr 230 235 Ser Val Gly Ser Arg Ser Gly Gln Ile Phe Gln Ser Val Pro Ile Asn 245 250 255 Ile Val Val Asp Ala Gly Phe Arg Phe Leu Ala Asp Lys Arg His Ala 260 265 270 Arg Thr Gly Ala Thr Ala Leu Thr Leu Asn Leu Arg Phe Asp Tyr Gly 275 280 285 Asp Pro Phe Arg Ser Glu Thr Phe Ser Pro Tyr Asp Phe Phe Gln Phe 295 300 Lys Ala Gly Leu Ser Phe Ser Glu Ser Gln Pro Leu Leu Ser Gln Ile 310 315 Asn Leu Ile Gly Ile Leu Ser Gly Cys Gln Leu Leu Ala His Glu Arg 325 330 335 Thr Val Leu Val Gly Gly Leu Phe Gln His Phe Asp Tyr Tyr Asn Ser 340 345 350 Glu Lys Arg Ile Ser Lys Asn Ser Glu Glu Val Leu Val Thr Pro Tyr 355 360 365 Arg Ile Ser Gln Val Ala Ala Leu Gly Gly Gly Leu Ile Phe Gln His 375 380 His Gly Lys Phe Arg Arg Pro Leu Glu Leu Tyr Ala Glu Thr Tyr 390 395 Leu Asn Val Val Pro Met Gly Ala Ser Leu Ser Asp His Tyr Asn Val 405 410 415 Asp Asn Arg Asp Tyr Asn Leu Gly Ser Gly Leu Ser Gly Lys Leu Tyr 420 425 Leu Gly Ala Thr Tyr Asn Asp Leu Trp Ser Trp Leu Leu Gly Val Glu 435 440 445 Ser Tyr Arg Leu Tyr Thr Trp Ile Gly Tyr Glu Glu Pro His Gln Lys 455 460 Asn Thr Asp Val Ser Ser Phe Met Val Gln Gly Asp Glu Ser Lys Ala 470 475 Arg Leu Leu Val Thr Ser Ser Glu Phe Ala Phe His Pro Gly Pro Trp 485 490 His Val Ala Ile Val Ala Arg Arg Phe Ile Arg Lys Thr Ala Tyr Gln 500 505 510 Phe Tyr Pro Asn Val Ser Phe Asp Thr Gly Asp Ile Gln Leu Arg Val 515 520 Gly Phe His Phe 530

# (2) INFORMATION FOR SEQ ID NO:346

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 300 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein .
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...300
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:346

Lys Arg Arg Lys Lys Gln Met Lys Arg Leu Ile Val Phe Leu Ala Met

Gly Gly Leu Leu Phe Thr Leu Ala Asn Ala Gln Glu Ala Asn Thr Ala 20 25 30 Ser Asp Thr Pro Lys Lys Asp Trp Thr Ile Lys Gly Val Thr Gly Leu 40 Asn Ala Ser Gln Thr Ser Leu Thr Asn Trp Ala Ala Gly Gly Glu Asn 55 60 Thr Val Ala Gly Asn Leu Tyr Leu Asn Ile Asp Ala Asn Tyr Leu Lys 70 75 Asp Lys Trp Ser Trp Asp Asn Gly Leu Arg Thr Asp Phe Gly Leu Thr 85 90 95 90 Tyr Thr Thr Ala Asn Lys Trp Asn Lys Ser Val Asp Lys Ile Glu Leu 100 105 Phe Thr Lys Ala Gly Tyr Glu Ile Gly Lys His Trp Tyr Gly Ser Ala 115 120 125 Leu Phe Thr Phe Leu Ser Gln Tyr Ala Lys Gly Tyr Glu Lys Pro Ser 135 Asp His Leu Thr Gly Val Lys His Ile Ser Asn Phe Phe Ala Pro Ala 145 150 155 Tyr Leu Thr Leu Gly Ile Gly Ala Asp Tyr Lys Pro Asn Glu Lys Phe 165 170 175 Ser Leu Tyr Leu Ser Pro Thr Thr Gly Lys Leu Thr Val Val Ala Asp 190 180 185 Asp Tyr Leu Ser Ser Leu Gly Ala Phe Gly Val Lys Val Gly Glu Lys 195 200 205 Thr Met Phe Glu Leu Gly Ala Leu Val Val Gly Ser Ala Asn Ile Asn 210 215 Leu Met Glu Asn Val Asn Leu Ile Thr Lys Ala Ser Phe Phe Ser Ala 230 235 Tyr Thr His Asp Phe Gly Asn Ile Asp Ile Asn Trp Glu Ala Met Leu 245 250 255 Ala Met Lys Ile Asn Lys Phe Leu Thr Ala Thr Ile Ala Thr Asn Leu 260 265 270 Ile Tyr Asp Asp Asp Val Lys Ile Asn Asp Gly Pro Lys Ile Gln Phe 280 285 Lys Glu Val Val Gly Val Gly Val Ala Tyr Thr Phe 295

## (2) INFORMATION FOR SEQ ID NO:347

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 221 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...221
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:347

Thr Arg Glu Ser Val Leu His Cys Arg Thr Lys Leu Lys Lys Glu Arg 10 Lys Met Lys Lys Met Ile Leu Ala Ala Thr Met Leu Leu Ala Thr Ile 20 25 3.0 Gly Phe Ala Asn Ala Gln Ser Arg Pro Ala Leu Arg Leu Asp Ala Asn 40 4.5 Phe Val Gly Ser Asn Leu Met Gln Lys Val Ala Asn Thr Ser Val Asn 55 Asn Lys Met Ile Val Gly Leu Arg Val Gly Ala Ala Ala Glu Phe Ala 65 70 75 Leu Ser Asn Asp Gly Phe Tyr Leu Ala Pro Gly Leu Ala Tyr Thr Met 85 90 Arg Gly Ala Lys Met Glu Ser Leu Ser Glu Thr Thr Thr Arg Leu His 100 105 110 Tyr Leu Gln Ile Pro Val Asn Ala Gly Met Arg Phe Ser Phe Ala Asp 120 125 Asn Met Ala Ile Ser Leu Glu Ala Gly Pro Tyr Phe Ala Tyr Gly Val 135 140 Ala Gly Thr Ile Lys Thr Lys Val Ala Gly Val Thr Ala Ser Val Asp

## (2) INFORMATION FOR SEQ ID NO:348

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 248 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...248
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:348

Ile Lys Arg Ile Glu Met Lys Arg Ile Phe Thr Val Ala Leu Val Leu Leu Ala Ser Val Thr Met Ala Ile Gly Gln Ser Arg Pro Ala Leu Arg 20 25 30 Val Asp Ala Asn Phe Val Gly Ser Asn Gln Ser Met Lys Arg Asp Gly 40 Tyr Val Trp Asp Thr Lys Met Asn Val Gly Leu Arg Val Gly Ala Ala 55 Ala Glu Phe Met Ile Gly Ser Arg Gly Phe Tyr Leu Ala Pro Gly Leu 65 70 75 Asn Tyr Thr Met Lys Gly Ser Lys Thr Glu Trp Asp Ile Pro Glu Met 85 90 Val Pro Gly Thr Tyr Ile Thr Met Val Ser Thr Arg Leu His Tyr Leu 100 105 110 Gln Leu Pro Ile Asn Ala Gly Met Arg Phe Asp Leu Met Asn Asp Met 115 120 125 Ala Val Ser Ile Glu Ala Gly Pro Phe Leu Ala Tyr Gly Ile Tyr Gly 130 135 140 Thr Tyr Arg Gln Lys Leu Glu Gly Trp Lys Pro Asn Asn Tyr Ser Thr 150 155 Glu Phe Phe Gly Pro Thr Leu Gly Gly Pro Thr Asn Ile Arg Trp Asp 165 170 175 Ile Gly Ala Asn Ile Ile Ala Ala Phe His Tyr Lys Arg Tyr Tyr Ile 180 185 Gln Ile Gly Tyr Glu His Gly Phe Val Asp Ile Val Ser Gly Gly Gly 195 200 205 Ser Asp Ile Pro Arg Leu Asn Asp Asn Arg Gln Ser Ser Ser Thr Thr 210 215 220 Ala Leu Arg Glu Lys Gly Asn Asn Glu Tyr Ala Tyr Asn Arg Asp Phe 230 235 Phe Val Gly Ile Gly Tyr Arg Phe 245

## (2) INFORMATION FOR SEQ ID NO:349

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 211 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...211
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:349

Lys Arg Lys Ser Met Lys Arg Met Leu Leu Leu Leu Val Val Leu Leu 10 Tyr Gly Ile Ala Gly Arg Leu Ala Ala Gln Asp Val Ile Arg Pro Trp 20 25 Ser Leu Gln Val Gly Ala Gly Tyr Ser Asp Thr Glu Asn Ile Pro Gly 40 45 Gly Phe Thr Tyr Gly Phe Tyr Leu Gly Lys Arg Met Gly Ser Phe Leu 55 60 Glu Val Gly Leu Ser Met Tyr Asn Ser Thr Arg Gln Thr Ala Asn Asn 70 75 Ala Asp Ser Phe Ala Ser Asn Glu Gly Asp Gly Ser Phe Gln Val Asn 85 90 Met Ser Ser Pro Asn Glu Lys Trp Ser Phe Phe Asp Ala Gly Ser Ala 105 100 Asn Cys Tyr Met Ile Val Val Gly Val Asn Pro Leu His Leu Phe Trp 125 115 120 Gln Asn Ser Arg His Asn Leu Phe Leu Ala Val Gln Ala Gly Leu Ser 135 140 Asn Lys His Asn Ile His Phe Ile Tyr Gly Asp Lys Gly Ala Lys Val 145 150 155 Ser Ile Tyr Thr Asn Ser Asn Thr Tyr Ile Gly Tyr Gly Ala Arg Val 165 170 175 Ala Tyr Glu Tyr Gln Ile His Lys Asn Val Gly Ala Gly Ala Ala Val 180 185 190 Met Tyr Asp His Gly Asn Lys Met Leu Thr Ala Met Ala Thr Leu Ser 195 200 205 Thr His Phe 210

- (2) INFORMATION FOR SEQ ID NO:350
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 953 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...953
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:350

Ile Arg Met Arg Val Ser Asp Leu Cys Ser Arg Leu Ser Trp Leu Leu 10 Pro Val Ile Leu Val Gly Leu Leu Cys Ala Thr Leu Val Ala Ala Glu 20 25 Arg Pro Met Ala Gly Ala Val Gly Leu His His Arg Arg His Ala Ala 35 40 45 Leu Ser Asp Ser Thr Ala Lys Asp Thr Val Pro Leu Ala Lys Pro Ile 55 60 Pro Asp Ser Ala Phe Arg Asp Ser Leu Pro Ala Asp Ser Thr Gly Ser 75 70 Met Arg Gln Asp Ser Val Tyr Asp Asp Glu Phe Glu Leu Glu Asp Ile 90 Val Glu Tyr Glu Ala Ala Asp Ser Ile Val Leu Leu Gly Gln Asn Arg 100 105 110 Ala Tyr Leu Phe Gly Lys Ser Tyr Val Ser Tyr Gln Lys Ser Arg Leu 115 120 Glu Ala Asn Phe Met Tyr Leu Asn Thr Asp Ser Ser Thr Val Tyr Thr 130 135 140 Arg Tyr Val Leu Asp Thr Ala Gly Tyr Pro Met Ala Phe Pro Val Phe 145 150 155 160 Lys Asp Gly Glu Gln Ser Phe Glu Ala Lys Asn Phe Thr Tyr Asn Phe 170

```
Arg Thr Glu Lys Gly Ile Ile Ser Gly Val Ile Thr Gln Gln Gly Glu
        180
                          185
Gly Tyr Leu Thr Ala Gly Lys Thr Lys Lys Met Pro Asp Asn Ile Met
      195
                       200
                                205
Phe Met Gln Gly Gly Arg Tyr Thr Thr Cys Asp Asn His Asp His Pro
                 215
                           220
His Phe Tyr Ile Asn Leu Ser Lys Ala Lys Val His Pro Glu Lys Asp
           230
                               235
Ile Val Thr Gly Pro Val Asn Leu Val Ile Ala Asp Met Pro Leu Pro
             245
                     250
Ile Gly Leu Pro Phe Gly Tyr Phe Pro Phe Ser Asn Lys Tyr Ser Ser
        260
              265
Gly Ile Leu Met Pro Thr Tyr Gly Glu Asp Asn Arg Tyr Gly Phe Tyr
     275
              280
                                285
Leu Arg Asn Gly Gly Tyr Tyr Phe Ala Phe Ser Asp Tyr Ile Asp Leu
  290 295
                           300
Ala Leu Arg Gly Glu Ile Phe Ser Lys Gly Ser Trp Gly Ile Ser Ala
305 310 315 320
Gln Ser Lys Tyr Lys Lys Arg Tyr Lys Tyr Asn Gly Ser Phe Glu Ala
           325 330 335
Asn Tyr Leu Val Ser Lys Ser Gly Asp Lys Tyr Val Pro Gly Asp Tyr
        340
                          345
Ser Lys Thr Thr Ser Leu Asn Ile Arg Trp Thr His Ser Gln Asp Pro
 355
              360
                                      365
Lys Ala Asn Pro Leu Gln Thr Leu Ser Ala Asn Val Asn Phe Ala Thr
  370 375
                           380
Gly Ser Tyr Phe Gln Asn Ser Leu Asn Thr Thr Tyr Asp Val Asn Ala
        390 395
Arg Thr Ala Thr Thr Arg Ser Ser Ala Val Ser Tyr Ser Arg Lys Phe
          405
                           410
                                     415
Pro Gly Thr Pro Phe Ser Ile Thr Gly Ser Met Asp Ile Ser Gln Asn
         420
                       425
Met Arg Asp Thr Thr Val Ser Leu Thr Leu Pro Asn Leu Ser Ile Asn
    435
                    440
Met Ser Thr Arg Tyr Pro Phe Lys Arg Lys Thr Arg Val Gly Pro Glu
             455
                             460
Arg Trp Tyr Glu Lys Leu Ser Val Gly Tyr Ser Gly Gln Leu Arg Asn
       470 475
Ser Ile Leu Thr Lys Glu Lys Asp Leu Leu Gln Ser Asn Leu Val Arg
           485
                 490 495
Asp Trp Lys Asn Gly Met Arg His Ser Val Pro Ile Ser Leu Thr Val
         500
                        505
Pro Leu Leu Asp Tyr Ile Asn Leu Thr Met Gly Val Asn Tyr Asn Glu
    515
               520
                                     525
Trp Trp Tyr Thr Lys Gly Ile Arg Lys Ser Trp Asn Glu Asp Lys Lys
  530 535
                                   540
Thr Phe Leu Pro Ser Asp Thr Thr Tyr Lys Phe Arg Arg Leu Tyr Asp
545 550
                              555
Tyr Ser Leu Ser Ala Gly Leu Ser Thr Thr Leu Tyr Gly Met Phe Lys
    565
                     570
Pro Trp Lys Pro Phe Ser Phe Gly Gly Asn Leu Ile Met Ile Arg His
         580
                         585
                               590
Arg Phe Thr Pro Thr Val Ser Phe Ser Tyr Met Pro Asp Phe Thr Lys
                      600
Arg Arg Tyr Gly Phe Trp Glu Leu Leu Glu His Thr Asp Gln Asn Gly
  610
                 615
Lys Leu His Thr Leu Leu Tyr Ser Pro Tyr Phe Glu Gln Ile Phe Gly
       630
                                635
Ala Pro Ser Met Gly Asn Ala Gly Ser Val Asn Phe Ser Phe Asp Asn
    645 650 655
Asn Leu Glu Ala Lys Ile Lys Ser Lys Ser Asp Ser Thr Gly Ile Lys
        660
                       665
                                        670
Lys Ile Ser Leu Ile Asp Gln Phe Thr Trp Ser Thr Ser Tyr Asn Met
                    680
                                     685
Phe Ala Asp Ser Ile Arg Trp Ser Asn Ile Ser Ala Ser Leu Ala Leu
Arg Leu Ser Lys Ser Phe Thr Leu Arg Leu Ser Gly Leu Phe Asp Pro
       710
                            715
Tyr Leu Thr Lys Tyr Tyr Glu Gly Glu Asp Gly Lys Ile Ile Pro Tyr
           725
                           730
Lys Ser Asn Asp Leu Arg Ile Phe Asn Gly Lys Gly Leu Ala Arg Leu
       740
                   745
                                   750
Ile Ser Thr Gly Thr Ser Phe Ser Tyr Thr Leu Asn Lys Glu Ser Leu
                    760 765
Ser Gly Leu Ile Ala Leu Phe Ser Gly Lys Lys Glu Arg Arg Asp Glu
                   775
                                   780
Lys Lys Asn Thr Gly Ala Thr Pro His Glu Gly Asp Asp Ala Ala Asp
```

785 790 795 Ile Leu Glu Gly Gly Arg Pro Gln Asn Glu Ser Gly Gly Ser Leu Leu 805 810 815 Glu Arg Asn Arg Gln Gly Gly Ala Val Asp Gln Asp Gly Tyr Phe Ala 820 825 830 Tyr Ser Ile Pro Trp Ser Leu Ser Phe Asp Tyr Ser Trp Asn Ile Ala 835 840 845 Thr Asp Tyr Asn Arg Tyr Asn Val Asn Lys Met Glu His Tyr Tyr Arg 855 860 Val Thr Gln Asn Leu Ser Phe Arg Gly Asn Ile Gln Pro Thr Pro Asn 870 875 Trp Ser Phe Gly Phe Asn Ala Asn Tyr Asn Phe Asp Leu Lys Lys Ile 885 890 Thr Ser Leu Thr Cys Asn Val Thr Arg Asp Met His Cys Trp Ala Ile 900 905 Ser Ala Ser Phe Ile Pro Ile Gly Ala Tyr Lys Ser Tyr Asn Phe Val 915 920 925 Ile Ser Val Lys Ser Ser Leu Leu Gln Asp Leu Lys Tyr Gln Gln Ser 935 940 Asn Arg Pro Ile Thr Asn Thr Trp Tyr 950

#### (2) INFORMATION FOR SEQ ID NO:351

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1251 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1251

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:351

Lys Trp Lys Leu Ala Cys Ala Phe Asp Cys Ala Cys Cys Phe Asp Pro 10 Phe Val Val Thr Asn Glu Val Ile Ile Met Met Lys Arg Tyr Thr Ile 30 20 25 Ile Leu Ala Val Phe Leu Leu Phe Cys Thr Val Phe Thr Phe Gln Ile 35 40 45 Lys Ala Arg Pro Tyr Glu Arg Phe Ala Asp Val Glu Lys Pro Trp Ile 55 60 Gln Lys His Ser Met Asp Ser Lys Leu Val Pro Ala Asn Lys Gly Asn 70 75 Leu Ile Gln Ala Glu Ile Val Tyr Gln Ser Val Ser Glu His Ser Asp 85 90 Leu Val Ile Ser Pro Val Asn Glu Ile Arg Pro Ala Asn Arg Phe Pro 100 105 110 Ser His Arg Lys Ser Phe Phe Ala Glu Asn Leu Arg Ala Ser Pro Pro 120 115 125 Val Val Pro Val Ala Val Asp Lys Tyr Ala Val Pro Val Ala Asn Pro 130 135 140 Met Asp Pro Glu Asn Pro Asn Ala Trp Asp Val Thr Leu Lys Ile Thr 150 155 Thr Lys Ala Val Thr Val Pro Val Asp Val Val Met Val Ile Asp Gln 170 Ser Ser Ser Met Gly Gly Gln Asn Ile Ala Arg Leu Lys Ser Ala Ile 185 180 Ala Ser Gly Gln Arg Phe Val Lys Lys Met Leu Pro Lys Gly Thr Ala 195 200 205 Thr Glu Gly Val Arg Ile Ala Leu Val Ser Tyr Asp His Glu Pro His 215 220 Arg Leu Ser Asp Phe Thr Lys Asp Thr Ala Phe Leu Cys Gln Lys Ile 225 230 235 240 Arg Ala Leu Thr Pro Ile Trp Gly Thr His Thr Gln Gly Gly Leu Lys 250 Met Ala Arg Asn Ile Met Ala Thr Ser Thr Ala Val Asp Lys His Ile 260 265 Ile Leu Met Ser Asp Gly Leu Ala Thr Glu Gln Tyr Pro Val Lys Asn

Val Thr Thr Ala Asp Phe Ile Gly Lys Thr Gly Asn Ala Asn Asp Pro Ile Asp Leu Val Ile Gln Gly Ala Ile Asn Phe Pro Thr Asn Tyr Val Ser Asn Asn Pro Ser Thr Pro Leu Thr Pro Asn Tyr Pro Thr His Ser Ser Lys Val Gly Arg Arg Asn Leu Pro Glu Ser Lys Phe Asp Tyr Ser Asn Leu Ser Ala Arg Ile Thr Phe Asp Gly Val Ala Gly Ala Leu Val Tyr Glu Pro Arg Phe Pro His Pro Tyr Tyr Tyr Tyr Phe Pro Cys Asn Ala Ala Ile Asn Glu Ala Gln Phe Ala Lys Asn Ser Gly Tyr Thr Ile His Thr Ile Gly Tyr Asp Leu Gly Asp Phe Ala Leu Ala Asn Asn Ser Leu Lys Leu Thr Ala Thr Asp Glu Asn His Phe Phe Thr Ala Thr Pro Ala Asn Leu Ala Ala Ala Phe Asp Asn Ile Ala Gln Thr Ile Asn Ile Gly Ile Gln Arg Gly Glu Val Thr Asp Phe Val Ala Pro Gly Phe Ile Val Lys Asn Leu Thr Gln Ser Gly Asp Val Thr His Leu Leu Asn Val Ser Asn Gly Thr Val His Tyr Asp Val Ser Thr Lys Lys Leu Thr Trp Thr Thr Gly Thr Ile Leu Ser Ser Ser Glu Ala Thr Ile Thr Tyr Arg Ile Tyr Ala Asp Leu Asp Tyr Ile Gln Asn Asn Asp Ile Pro Val Asn Thr Thr Ser Ala Ile Gly Pro Asp Leu Gly Gly Phe Asp Thr Asn Thr 530 535 Glu Ala Lys Leu Thr Tyr Thr Asn Ser Asn Gly Glu Pro Asn Gln Gln Leu Ile Phe Pro Arg Pro Thr Val Lys Leu Gly Tyr Gly Val Ile Lys Arg His Tyr Val Leu Val Asn Lys Asp Gly Gln Pro Ile Gln Ala Asn 580 585 Gly Thr Val Val Ser Ser Leu Ser Glu Ala His Val Leu Gln Ser Gln Asp Phe Phe Leu Pro Ser Gly Gly His Ile Val Pro Lys Trp Ile 610 615 Lys Leu Asp Lys Thr Thr Glu Ala Leu Gln Tyr Tyr Ser Val Pro Pro Thr Asn Thr Val Ile Thr Thr Ala Asp Gly Lys Arg Tyr Arg Phe Val Glu Val Pro Gly Ser Thr Pro Asn Pro Gly Gln Ile Gly Ile Ser Trp Lys Lys Pro Ala Gly Asn Ala Tyr Phe Ala Tyr Lys Leu Leu Asn Tyr Trp Met Gly Gly Thr Thr Asp Gln Gln Ser Glu Trp Asp Val Thr Ser Asn Trp Thr Gly Ala Gln Val Pro Leu Thr Gly Glu Asp Val Glu Phe Ala Thr Thr Glu Asn Phe Gly Ser Pro Ala Val Ala Asp Leu His Val Pro Thr Thr Asn Pro Lys Ile Ile Gly Asn Leu Ile Asn Asn Ser Asp Lys Asp Leu Val Val Thr Thr Ser Ser Gln Leu Thr Ile Asn Gly Val Val Glu Asp Asn Asn Pro Asn Val Gly Thr Ile Val Val Lys Ser Ser 770 775 Lys Asp Asn Pro Thr Gly Thr Leu Leu Phe Ala Asn Pro Gly Tyr Asn Gln Asn Val Gly Gly Thr Val Glu Phe Tyr Asn Gln Gly Tyr Asp Cys 805 810 Ala Asp Cys Gly Met Tyr Arg Arg Ser Trp Gln Tyr Phe Gly Ile Pro Val Asn Glu Ser Gly Phe Pro Ile Asn Asp Val Gly Gly Asn Glu Thr Val Asn Gln Trp Val Glu Pro Phe Asn Gly Asp Lys Trp Arg Pro Ala Pro Tyr Ala Pro Asp Thr Glu Leu Gln Lys Phe Lys Gly Tyr Gln Ile Thr Asn Asp Val Gln Ala Gln Pro Thr Gly Val Tyr Ser Phe Lys Gly 

```
Met Ile Cys Val Cys Asp Ala Phe Leu Asn Leu Thr Arg Thr Ser Gly
        900
                       905
Val Asn Tyr Ser Gly Ala Asn Leu Ile Gly Asn Ser Tyr Thr Gly Ala
              920
     915
                            925
Ile Asp Ile Lys Gln Gly Ile Val Phe Pro Pro Glu Val Glu Gln Thr
  930 935
                     940
Val Tyr Leu Phe Asn Thr Gly Thr Arg Asp Gln Trp Arg Lys Leu Asn
       950
                      955
Gly Ser Thr Val Ser Gly Tyr Arg Ala Gly Gln Tyr Leu Ser Val Pro
         965
                  970 975
Lys Asn Thr Ala Gly Gln Asp Asn Leu Pro Asp Arg Ile Pro Ser Met
       980
               985
                                    990
His Ser Phe Leu Val Lys Met Gln Asn Gly Ala Ser Cys Thr Leu Unk
   995 1000
Ile Leu Tyr Asp Lys Leu Leu Lys Asn Thr Thr Val Asn Asn Gly Asn
 1010 1015
                         1020
Gly Thr Gln Ile Thr Trp Arg Ser Gly Asn Ser Gly Ser Ala Asn Met
            1030
                       1035
Pro Ser Leu Val Met Asp Val Leu Gly Asn Glu Ser Ala Asp Arg Leu
        1045 1050 1055
Trp Ile Phe Thr Asp Gly Gly Leu Ser Phe Gly Phe Asp Asn Gly Trp
        1060
                     1065 1070
Asp Gly Arg Lys Leu Thr Glu Lys Gly Leu Ser Gln Leu Tyr Ala Met
 1075
          1080
                            1085
Ser Asp Ile Gly Asn Asp Lys Phe Gln Val Ala Gly Val Pro Glu Leu
 1090 1095 1100
Asn Asn Leu Leu Ile Gly Phe Asp Ala Asp Lys Asp Gly Gln Tyr Thr
1105 1110 1115
Leu Glu Phe Ala Leu Ser Asp His Phe Ala Lys Gly Ala Val Tyr Leu
          1125
                  1130
                                   1135
His Asp Leu Gln Ser Gly Ala Lys His Arg Ile Thr Asn Ser Thr Ser
       1140
                       1145
                              1150
Tyr Ser Phe Asp Ala Lys Arg Gly Asp Ser Gly Ala Arg Phe Arg Leu
   1155 1160 1165
Ser Tyr Gly Cys Asp Glu Asn Val Asp Asp Ser His Val Val Ser Thr
1170 1175
                          1180
Asn Gly Arg Glu Ile Ile Ile Leu Asn Gln Asp Ala Leu Asp Cys Thr
1185 1190 1195 1
Val Thr Leu Phe Thr Ile Glu Gly Lys Leu Leu Arg Arg Leu Lys Val
       1205 1210 1215
Leu Ala Gly His Arg Glu Val Met Lys Val Gln Thr Gly Gly Ala Tyr
        1220 1225 1230
Ile Val His Leu Gln Asn Ala Phe Thr Asn Asp Val His Lys Val Leu
     1235
             1240
                                    1245
Val Glu Tyr
  1250
```

## (2) INFORMATION FOR SEQ ID NO:352

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...426
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:352

Val Ser Val Asn Ala Thr Tyr Asn Ala Leu Leu Lys Asp Glu Thr Gly 85 90 Leu Arg Leu Arg Glu Ala Phe Phe Glu His Gln Glu Glu His Trp Gly 100 105 110 Leu Arg Leu Gly Arg Gln Ile Val Ile Trp Gly Ala Ala Asp Gly Val 120 125 Arg Ile Thr Asp Leu Ile Ser Pro Met Asp Met Thr Glu Phe Leu Ala 135 140 Gln Asp Tyr Asp Asp Ile Arg Met Pro Val Asn Ala Leu Arg Phe Ser 145 150 155 Val Phe Asn Glu Ser Met Lys Val Glu Val Val Leu Pro Val Phe 165 170 Glu Gly Tyr Arg Leu Pro Val Asp Pro Arg Asn Pro Trp Asn Ile Phe 180 185 Ser Leu Ser Pro Ile Ala Gln Gly Met Asn Ile Val Trp Lys Glu Glu 195 200 205 Ala Gly Lys Pro Ala Phe Lys Val Ala Asn Ile Glu Tyr Gly Ala Arg 210 215 220 Trp Ser Thr Thr Leu Ser Gly Ile Asp Phe Ala Leu Ala Ala Leu His 225 230 235 Thr Trp Asn Lys Met Pro Val Ile Glu Val Gln Gly Ile Val Pro Thr 245 250 Glu Ile Ile Val Ser Pro Arg Tyr Tyr Arg Met Gly Phe Val Gly Gly 260 265 Asp Leu Ser Val Pro Val Gly Gln Phe Val Phe Arg Gly Glu Ala Ala 275 280 285 Phe Asn Ile Asp Lys His Phe Thr Tyr Lys Ser His Ala Glu Gln Glu 290 295 300 Gly Phe Gln Thr Ile Asn Trp Leu Ala Gly Ala Asp Trp Tyr Ala Pro 310 315 Gly Glu Trp Met Ile Ser Gly Gln Phe Ser Met Glu Ser Ile Phe Arg 325 330 335 Tyr Arg Asp Phe Ile Ser Gln Arg Gln His Ser Thr Leu Ile Thr Leu 340 345 Asn Val Ser Lys Lys Phe Phe Gly Ser Thr Leu Gln Leu Ser Asp Phe 355 360 Thr Tyr Tyr Asp Leu Thr Gly Lys Gly Trp Phe Ser Arg Phe Ala Ala 375 370 380 Asp Tyr Ala Leu Asn Asp Gln Ile His Leu Met Ala Gly Tyr Asp Trp 385 390 395 Phe Ser Ser Lys Gly Ser Gly Ile Phe Asp Arg Tyr Lys Asp Asn Ser 405 410 Glu Leu Trp Phe Lys Ala Arg Tyr Ser Phe 420

#### (2) INFORMATION FOR SEQ ID NO:353

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 464 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION  $1...4\overline{64}$
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:353

Tyr Gly Lys Arg Arg Lys Leu Gly Thr Ser Val Arg Pro Ser Val Leu 10 Thr Gln Ile Arg Phe Ile Leu Asp Leu His Leu Ile Thr Asp Phe Phe 20 25 30 Glu Gly Leu Arg Val Asn Pro Ile Gly Ala Ala Ala Ile Val Ala Phe 40 45 Ile Ile Asp Leu Leu Leu Cys Cys Ser Ala Phe Met Ser Ser Cys 50 55 60 Glu Val Ala Tyr Phe Ser Leu Lys Pro Ile Asp Leu Gln Asn Ile Arg 70 75 Glu Arg Asn His Ser Ser Asp Ile Ala Leu Ser Asn Leu Leu Asp Asn 85 90

Ser Asn Gln Leu Leu Ala Thr Ile Leu Ile Gly Asn Asn Val Ile Asn 100 105 110 Val Ala Ile Val Ile Leu Ser Asn Tyr Ala Ile Glu Gln Thr Phe Val 120 115 125 Phe Ser Ser Pro Ile Ile Gly Phe Leu Ile Gln Thr Ile Leu Leu Thr 130 135 140 Thr Val Leu Leu Phe Gly Glu Ile Leu Pro Lys Val Tyr Ala Arg 150 155 Lys Asn Pro Leu Gln Tyr Ser Arg Phe Ser Ala Ala Ala Met Ser Val 170 165 Ile Tyr Lys Ile Leu Ser Pro Phe Ser Lys Leu Leu Val Lys Ser Thr 180 185 Gly Ile Val Thr Arg Gly Ile Ser Lys Lys Lys Tyr Asp Met Ser Val 195 200 205 Asp Glu Leu Ser Lys Ala Val Ala Leu Thr Thr Thr Glu Gly Glu Pro 215 220 Glu Glu Lys Glu Met Ile Asn Glu Ile Ile Lys Phe Tyr Asn Lys Thr 225 230 235 Ala Cys Glu Ile Met Val Pro Arg Ile Asp Ile Val Asp Val Asp Leu 245 250 255 Ser Trp Pro Phe Arg Lys Met Leu Asp Phe Val Val Ser Ser Gly Tyr 260 265 Ser Arg Leu Pro Val Ser Glu Gly Ser Glu Asp Asn Ile Lys Gly Val 275 280 285 Ile Tyr Ile Lys Asp Leu Ile Pro His Met Asp Lys Gly Asp Glu Phe 290 295 300 Asp Trp His Pro Leu Ile Arg Lys Ala Tyr Phe Val Pro Glu Asn Lys 310 315 Arg Ile Asp Asp Leu Leu Glu Glu Phe Arg Ala Asn Lys Val His Val 325 330 335 Ser Ile Val Val Asp Glu Phe Gly Gly Thr Cys Gly Leu Ile Thr Met 345 350 Glu Asp Ile Leu Glu Glu Ile Val Gly Glu Ile Thr Asp Glu Tyr Asp 355 360 Glu Glu Glu Leu Pro Phe Lys Val Leu Gly Asp Gly Ser Tyr Leu Phe 380 375 Glu Gly Lys Thr Ser Leu Ser Asp Val Arg His Tyr Leu Asp Leu Pro 385 390 395 400 Glu Asn Ala Phe Gly Glu Leu Gly Asp Glu Val Asp Thr Leu Ser Gly 405 410 Leu Phe Leu Glu Ile Lys Gln Glu Leu Pro His Val Gly Asp Thr Ala 420 425 430 Val Tyr Glu Pro Phe Arg Phe Gln Val Thr Gln Met Asp Lys Arg Arg 440 445 Ile Ile Glu Ile Lys Ile Phe Pro Phe Glu Arg Thr Trp Glu Val Glu 455 460

## (2) INFORMATION FOR SEQ ID NO:354

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 266 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...266
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:354

 Ile
 Ile
 Tyr
 Arg
 Ser
 Thr
 Met
 Lys
 Leu
 Leu
 Leu
 Tyr
 Leu
 Tyr
 Leu
 Tyr
 Leu
 Tyr
 Leu
 Tyr
 Leu
 Leu
 Tyr
 Leu
 L

Leu Ile Asn Lys Leu Glu Phe Ser Thr Tyr Gly Asn Lys Val Thr Val 85 90 Ser Gly Gly Tyr Val His Thr Glu Tyr Arg Tyr Leu Leu His His Val 100 105 110 Phe Glu Val Tyr Pro Tyr Val Glu Ser Gln Trp Ala Glu Ser Arg Gly 115 120 125 Met Lys Tyr Lys Val Ser Thr Gly Leu Gln Ser Arg Tyr Arg Leu Val 135 140 Asn Ser Asp Asn Cys Leu Met Phe Ala Thr Leu Gly Val Phe Phe Glu 145 150 155 Phe Glu Lys Trp Glu Gln Pro Ala Thr Ser Leu Phe Ala Gly Thr Tyr 165 170 Ala Tyr Ser Arg Ser Ile Lys Ser His Leu Ser Ile Ser Phe Arg His 180 185 190 Arg Leu Gly Glu His Trp Glu Phe Thr Thr Ala Ile His Gln Gly 195 200 205 Lys Pro Asp Ser Tyr Phe Lys Lys Ala Arg Phe Gly Gly Ala Ile Asp 210 215 220 Leu Lys Tyr His Ile Thr Pro Thr Ile Gly Ile Arg Gly Ala Tyr Arg 225 230 235 240 Ile Ile Tyr Asp Thr Ala Pro Ile Val Pro Val Arg Lys Asp Tyr Asn 245 250 Thr Val Asp Val Gly Ile Asp Ile Ser Phe 260

#### (2) INFORMATION FOR SEQ ID NO:355

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 907 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...907
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:355

Thr Ile Cys Val Ala Phe Leu Ser Ala Pro Val Ala Ala Leu Arg Glu 10 Ser Pro Pro Met Gly Ala Glu Arg Lys Thr Pro Ser Leu Leu Pro Leu 20 25 30 Leu Phe Glu His Ser Asp Lys Gly Lys Gly Phe Asp Tyr Arg Leu Phe 35 40 Thr Ser Asn Lys Leu Lys Val Phe Ala Thr Gly Asn Ser Arg Tyr Ile 50 55 60 His Asn Lys Pro Thr Ile Ile Gln Ala Met Lys Arg Ile Val Leu Ser 65 70 75 Ser Phe Leu Phe Val Leu Ser Ile Leu Ser Leu Met Ala Gln Asn Asn 85 90 Thr Leu Asp Val His Ile Ser Gly Thr Ile Lys Asp Ala Ser Ser Gly 100 105 Glu Pro Val Pro Tyr Ala Thr Val Ser Ile Arg Leu Thr Gly Ala Asp 115 120 125 Thr Thr Gln Val Phe Arg Gln Val Thr Asp Gly Asn Gly Tyr Phe Val 130 135 140 Ile Gly Leu Pro Ala Ala Pro Ser Tyr His Leu Thr Ala Ser Phe Val 145 150 155 160 Gly Met Lys Thr His Thr Met Gln Ile Ser Arg Gly Asn Gly Gln His 165 170 175 Asp Ile Lys Ser Ile Asp Ile Ser Leu Glu Ser Glu Asp Lys Gln Leu 180 185 190 Ser Thr Val Thr Val Ser Ala Ala Arg Pro Leu Val Lys Met Glu Ile 200 205 Asp Arg Leu Ser Tyr Asn Met Lys Asp Asp Pro Ala Ala Lys Thr Asn 220 210 215 Asn Leu Leu Glu Met Leu Arg Asn Val Pro Leu Val Thr Val Asp Gly 225 230 235 Gln Gly Asn Ile Gln Val Lys Gly Ser Ser Asn Phe Lys Ile His Leu 245 250 255

```
Asn Gly Arg Pro Ser Thr Met Val Ser Ser Asn Pro Lys Glu Val Phe
          260
                          265
                                           270
 Arg Ser Ile Pro Ala His Thr Ile Lys Arg Val Glu Val Ile Thr Asp
       275
               280
                                      285
 Pro Gly Val Lys Tyr Asp Ala Glu Gly Thr Ser Ala Ile Leu Asp Ile
                 295
                            300
 Val Thr Glu Glu Gly Lys Lys Leu Glu Gly Tyr Ser Gly Ser Ile Thr
                310
                           315
Ala Ser Val Ser Asn Asn Pro Thr Ala Asn Gly Ser Ile Phe Leu Thr
            325
                     330
Ala Lys Ser Gly Lys Val Gly Leu Thr Thr Asn Tyr Asn Tyr Tyr Gly
       340
                 345
 Gly Lys Asn Lys Gly Ser Arg Tyr Phe Thr Glu Arg Thr Thr Ser Met
     355
                360
                               365
Leu Gln Thr Ile Glu Glu Gly Lys Gly Gln Glu Thr Phe Gly Gly His
           375
                              380
Phe Gly Asn Ala Leu Leu Ser Phe Glu Ile Asp Ser Leu Asn Leu Phe
        390
                        395
Thr Val Gly Gly Asn Val Arg Leu Trp Glu Met Thr Thr Asp Arg Asn
                 410 415
Ser Val Glu Lys Ser Phe Ala Gly Ser Asn Leu Met Ser Tyr Ile Asp
         420
                          425
                                         430
Arg Lys Leu Lys Thr Gln Met Asp Ala Gly Ser Tyr Glu Leu Asn Ala
  435
              440
Asp Tyr Gln His Ser Thr Arg Leu Pro Gly Glu Leu Leu Thr Val Ser
 450 455
Tyr Arg Phe Thr His Asn Pro Asn Asn Ser Glu Thr Phe Ile Asp Gln
       470
                        475
Trp Lys Arg Asp Pro Leu Asn Thr Ala Asn Thr Ile Gln Tyr Ala Gly
           485
                     490
Gln His Ser Lys Ser Asp Ala Gly Met Asp Glu His Thr Ala Gln Val
                          505
                                         510
Asp Tyr Thr Arg Pro Leu Gly Gln Ala His Ser Leu Glu Ala Gly Leu
    515
              520
Lys Tyr Ile Tyr Arg His Ala Thr Ser Asp Pro Leu Tyr Glu Ile Arg
           535
Pro Ser Glu Asp Ala Pro Trp Gln Pro Gly Ser Leu Tyr Ala Gln Asn
545 550
                                555
Pro Ser Asn Gly Lys Phe Arg His Asp Gln Tyr Ile Gly Ala Ala Tyr
           565 570
Ala Gly Tyr Asn Tyr Arg Lys Asp Gln Tyr Ser Leu Gln Thr Gly Leu
         580
                    585
                                  590
Arg Val Glu Ser Ser Arg Leu Lys Ala Leu Phe Pro Glu Asn Ala Ala
                    600
                               605
Ala Asp Phe Ser His Asn Ser Phe Asp Trp Val Pro Gln Leu Thr Leu
 610 615
                                  620
Gly Tyr Thr Pro Ser Pro Met Lys Gln Leu Lys Leu Ala Tyr Asn Phe
       630
                             635
Arg Ile Gln Arg Pro Ala Ile Gly Gln Leu Asn Pro Tyr Arg Leu Gln
       645
                    650
Thr Asn Asp Tyr Gln Val Gln Tyr Gly Asn Pro Asp Leu Lys Ser Glu 660 665 670
Lys Arg His His Val Gly Leu Ser Tyr Asn Gln Tyr Gly Ala Lys Val
                    680
                           685
Met Leu Thr Ala Ser Leu Asp Tyr Asp Phe Cys Asn Asn Ala Ile Gln
                 695
                                   700
Asn Tyr Thr Phe Ser Asp Pro Ala Asn Pro Asn Leu Phe His Gln Thr
        710
                        715
Tyr Gly Asn Ile Gly Arg Glu His Ser Phe Ser Leu Asn Thr Tyr Ala
       725 730
Met Tyr Thr Pro Ala Val Trp Val Arg Ile Met Leu Asn Gly Asn Ile
        740
                         745 750
Asp Arg Thr Phe Gln Lys Ser Glu Ala Leu Gly Ile Asp Val Asn Ser
              760 765
Trp Ser Gly Met Val Tyr Ser Gly Leu Met Phe Thr Leu Pro Lys Asp 770 780
Trp Thr Val Asn Leu Phe Gly Gly Tyr Tyr His Gly Gly Arg Ser Tyr
      790
Gln Thr Lys Tyr Asp Gly Asn Val Phe Asn Asn Ile Gly Ile Ala Lys
            805
                           810
Gln Leu Phe Asp Lys Lys Leu Arg Val Ser Leu Ser Ala Asn Asn Ile
                 825
       820
                                  830
His Ala Lys Tyr Ser Thr Trp Lys Ser Arg Thr Ile Gly Asn Gly Phe
    835 840
                             845
Thr Ile Tyr Ser Glu Asn Ala Gly Ile Gln Arg Ser Val Ser Leu Ser
                  855
                                   860
Leu Thr Tyr Ser Phe Gly Lys Met Asn Thr Gln Val Arg Lys Val Glu
```

865 870 875 880
Arg Thr Ile Val Asn Asp Asp Leu Lys Gln Thr Ser Ser Gln Gly Gln
885 890 895
Gln Gly Gly Gly Gln Gly Asn Pro Thr Gly Asn
900 905

## (2) INFORMATION FOR SEQ ID NO:356

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 450 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...450
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:356

Trp Cys Gln Ser Asp Pro Ile Pro His Cys His Ala Val Tyr Arg Asn 10 Ala Gln Gly His Gln Gln Gly Arg Ser Asp Gln Asp Arg Leu Pro Pro 20 25 Val Arg Gly Tyr Arg Tyr Ala Arg Cys Leu Gly Arg Tyr Glu Gly Phe 40 45 Gly Glu Arg Met Arg Leu Ser Ala Ile Leu Ile Ala Leu Ile Val Met 55 Leu Pro Ala Val Leu Ser Gly Gln His Tyr Tyr Ser Met Ala Gly Glu 70 75 Arg Leu Glu Thr Asp Ser Ile Arg Pro Asn Glu Leu Ser Ala Ser Ile 85 90 Arg Ser Ala Leu Phe Phe Arg Asn Asn Glu Tyr Asn Ala Arg Ser Val 100 105 Lys Gly Tyr Thr Leu Pro Gly Ala Arg Val Ser Ala Phe Ala Ser Tyr 115 120 125 Ser Leu Pro Ala Ala His Gly Val Lys Leu Ser Leu Gly Val Ser Thr 135 140 Leu Asn Tyr Trp Gly Ala Ser Arg Tyr Pro Ala Gly Ile Ala Tyr Ser 150 155 Asp Leu Pro Tyr Trp Thr Asp Tyr Asn Asp Tyr Val Arg Leu Arg Ile 165 170 Leu Pro Tyr Val Gln Ala Met Leu Lys Pro Thr Ala Thr Thr Ala Leu 185 180 190 Met Leu Gly Asn Ile Ala Gly Gly Thr Ala His Gly Leu Ile Glu Pro 195 200 205 Ile Tyr Asn Pro Glu Leu Asp Leu Thr Ala Asp Pro Glu Ala Gly Val 210 215 220 Gln Phe Arg Gly Asp Trp Thr Arg Phe Arg Met Asp Val Trp Val Asn 230 235 Trp Met Ser Met Ile Phe Lys Asn Asp Asn His Gln Glu Ser Phe Val 245 250 Phe Gly Leu Ser Thr Thr Ser Lys Leu Leu Ser Gly Glu Gly Lys Trp 260 265 270 Arg Leu Glu Leu Pro Leu Gln Ala Ile Ala Thr His Arg Gly Gly Glu 275 280 285 Tyr Asn Trp Ala Gln Gln Asp Thr Val His Thr Trp Val Asn Gly Ala 290 295 300 Val Gly Leu Lys Leu Ser Tyr Arg Pro Arg Thr Asp Lys Pro Met Gln 310 315 Ile Trp Gly Ser Ala Tyr Gly Val Ala Ala Leu Ser Ser Gly Gly Tyr 325 330 335 Phe Pro Tyr Glu Arg Gly Trp Gly Gly Tyr Leu Ser Leu Gly Met Asp 340 345 Leu Glu His Phe Ala Phe Arg Thr Asp Tyr Trp Tyr Gly Arg His Tyr 355 360 365 Val Ser Pro Phe Ala Ala Pro Phe Ala Asn Ser Leu Thr Tyr Asp Lys 370 375 380 Gln Pro Leu Thr Asn Gly Trp Gly Asp Tyr Ile Arg Leu Tyr Ala Asp 390 395 Tyr Ser Trp Arg Met Ala Arg Ser Val Ser Leu Ala Ala Val Ala Arg

- (2) INFORMATION FOR SEQ ID NO:357
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 447 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...447
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:357

Pro Phe Ser Pro Pro Trp Val Cys Ala Gly Ala Ala Ser Ser Val Arg 10 15 Thr Arg Pro Cys Ser Thr Val Ser Ser Thr Ala Ala Ser Ser His Arg 20 25 3.0 Arg Ser Glu His Met Arg Ser Ala Asp Ser Ser Pro Ala Tyr Ser Pro 40 4.5 Ile Gly Ser Leu Ser Ser Ser His Ser Phe Asp Ser Ile Pro Asp Gln 55 Arg Met Asn Lys Ser Leu Leu Ser Leu Ala Cys Leu Ile Leu Cys Gly 65 70 75 Met Pro Ala Ile Ala Gln Gln Thr Gly Pro Ala Glu Arg Ser Gly Glu 85 90 Pro Ser Leu Ala Glu Arg Val Phe Gly Leu Glu Gln Lys Gln Lys Lys 100 105 110 Leu Lys Val Tyr Leu Gly Ile Gln Ser Phe Tyr Asp Gln Pro Leu Val 115 120 125 Asp Asp Glu Ser His Ile Gly His Phe Lys Val Gln Glu Leu Arg Met 135 140 Ser Ala His Gly Glu Leu Asn Arg His Leu Ser Phe Asp Trp Arg Gln 150 155 Arg Leu Asn Arg Ala Ala Asp Gly Thr Ser Phe Ala Asp Asn Leu Ser 165 170 Asn Ala Ile Asp Ile Ala Gly Val Asp Trp His Pro Asn Asp Lys Val Ser Phe Phe Phe Gly Arg Gln Tyr Ala Arg Phe Gly Gly Ile Glu Tyr 200 205 Asp Met Asn Pro Val Glu Ile Tyr Gln Tyr Ser Asp Leu Val Asp Tyr 210 215 220 Met Thr Cys Tyr Thr Ser Gly Val Asn Phe Ala Trp Asn Phe His Pro 230 235 Glu Gln Gln Leu Gln Leu Gln Val Leu Asn Ala Tyr Asn Asn Arg Phe 245 250 Ala Asp Arg Tyr His Val Thr Pro Asp Val Ala Thr Ala Thr Ser Tyr 260 265 270 Pro Leu Leu Tyr Ser Ala Gln Trp Asn Gly Thr Leu Leu Gly Gly Ala 275 280 285 Leu His Met Arg Tyr Ala Val Ser Met Ala His Gln Ala Gln Glu Arg 295 300 Asn Met Trp Tyr Phe Thr Ala Gly Asn Leu Phe Asn Pro Gly Lys Arg 310 315 Ile Asn Gly Tyr Leu Asp Leu Thr Tyr Ser Ile Glu Gly Leu Asp Asp 325 330 335 Lys Gly Ile Met Thr Ala Arg Tyr Gly Lys Gly Lys Thr Leu Thr Asp 340 345 Val Lys Tyr Tyr Ala Leu Val Ser Lys Trp Asn Phe Arg Ile Phe Asp 360 355 365 Gln Val Asn Leu Phe Leu Lys Gly Met Tyr Glu Asn Gly Tyr Ala Pro 375 380 Ala Gln Tyr Gly Glu Ser Ser His Thr Arg His Ser Tyr Gly Tyr Met

385 390 395 400

Gly Gly Val Glu Tyr Tyr Pro Thr Glu Thr Asn Phe Arg Leu Phe Val
405 410 415

Thr Tyr Ile Gly Arg His Tyr Arg Tyr Ser Ala Thr Glu Thr Glu Ser
420 425 430

Thr Asn Ala Leu Arg Ala Gly Leu Ile Tyr Gln Ile Pro Phe Leu
435 440

- (2) INFORMATION FOR SEQ ID NO:358
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 227 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc feature
    - (B) LOCATION 1...227
  - (xi) SEQUENCE DESCRIPTION: SEO ID NO:358

Tyr Lys Gln Ala Ile Met Lys His Leu Phe Lys Ser Thr Leu Val Leu 10 Leu Cys Ala Leu Ser Phe Ser Gly Thr Tyr Thr Phe Ala Gln Glu Asn 20 25 3.0 Asn Thr Glu Lys Ser Arg Phe Asp Phe Ser Val Arg Leu Gly Gln Gly 40 45 Tyr Ile Ala Gly Ser Thr Thr Asn Leu Met Tyr Gly Tyr Thr Ser Ala 60 Asn Asp Arg Leu Leu Ser Gly Ala Ile Tyr Leu Gly Leu Thr Pro Ser 70 Lys Lys Glu Asn Ala Thr Gly Val Ala Phe Arg Phe Leu Ser Pro Ser 85 90 Pro Gly Tyr Tyr Val Asp Ile Ser Gly Lys Glu Asn Thr Leu Asn Tyr 100 105 Ala Phe Tyr Val Val Gly Ala Tyr Asn Arg Ile Ala Ile Pro Ile Arg 115 120 125 Pro Ile Lys Asn Phe Asn Phe Ile Phe Ser Thr Glu Val Gly Met Ala 130 135 140 Trp Met Ser Arg His Glu Gln Ile Tyr Asn Ser Thr Ser Gln Thr Trp 150 155 Asp Lys Gln Arg Lys Ser Arg Ser Gly Leu Asp Phe Gly Leu Gly Met 165 170 His Leu Gln Unk His Ile Asn Lys Thr Val Tyr Phe Met Ala Gly Thr 180 185 190 Asp Leu Thr Ser Cys Met Phe Gly Lys Arg Ile Asn Asp Tyr Gln Gln 200 205 Lys Asp Arg Thr Phe Ile Ala Leu Ile Asp Asn Ser Ile Gly Ile Gly 210 215 Leu Asn Leu 225

- (2) INFORMATION FOR SEQ ID NO:359
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 406 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...406

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:359

Ile Phe Ile Asp Pro Asp Lys Asn Thr Lys Gln Asn Glu Arg Asn Met 10 Ile Ile Lys Lys Met Leu Lys Asn Lys Leu Ala Pro Leu Ala Ile Leu 20 25 Phe Leu Phe Ala Pro Lys Ala Met Lys Ala Gln Glu Gln Leu Asn Val 40 45 Val His Thr Ser Val Pro Ser Leu Asn Ile Ser Pro Asp Ala Arg Ala 55 Ala Gly Met Gly Asp Ile Gly Val Ala Thr Thr Pro Asp Ala Tyr Ser 65 70 75 Gln Tyr Trp Asn Pro Ser Lys Tyr Ala Phe Met Asp Thr Lys Ala Gly 85 90 Ile Ser Phe Ser Tyr Thr Pro Trp Leu Ser Lys Leu Val Asn Asp Ile 100 105 110 Ala Leu Met Gln Met Thr Gly Phe Tyr Lys Leu Gly Thr Asp Glu Asn 115 120 125 Gln Ala Ile Ser Ala Ser Leu Arg Tyr Phe Thr Leu Gly Lys Leu Glu 135 140 Thr Phe Asp Glu Leu Gly Glu Ser Met Gly Glu Ala His Pro Asn Glu 150 155 Phe Ala Val Asp Leu Gly Tyr Ser Arg Gln Leu Ser Glu Asn Phe Ser 165 170 Met Ala Val Ala Leu Arg Tyr Ile Arg Ser Asp Gln Ser Thr His Asn 180 185 Thr Gly Glu Asn Gln Ala Gly Asn Ala Phe Ala Ala Asp Ile Ala Gly 195 200 205 Tyr Leu Gln Lys Tyr Val Leu Leu Gly Asn Ala Glu Ser Leu Trp Ser 215 220 Leu Gly Phe Asn Val Lys Asn Ile Gly Thr Lys Ile Ser Tyr Asp Gly 230 235 Gly Val Thr Ser Phe Phe Ile Pro Thr Ser Leu Asn Leu Gly Thr Gly 245 250 255 Leu Leu Tyr Pro Ile Asp Asp Tyr Asn Ser Ile Asn Phe Asn Leu Glu 260 265 Leu Ser Lys Leu Leu Val Pro Thr Pro Pro Ile Met Asp Gln Asn Asp 280 275 285 Gln Ala Gly Tyr Glu Ala Ala Leu Lys Lys Tyr Gln Glu Thr Ser Ser 295 300 Ile Ser Gly Ile Phe Ser Ser Phe Gly Asp Ala Pro Gly Gly Leu Lys 310 315 Glu Glu Phe Arg Glu Ile Thr Trp Gly Leu Gly Ala Glu Tyr Ser Tyr 325 330 335 Asp Asp Lys Phe Phe Val Arg Ala Gly Tyr Ser Tyr Leu His Pro Thr 350 340 345 Lys Gly Asn Leu Gln Tyr Phe Thr Ala Gly Ala Gly Phe Lys Met Asn 355 360 Ile Phe Arg Ile Asp Ala Ser Tyr Leu Leu Ser Thr Ile Gln Ser Asn 375 380 Pro Leu Asp Gln Thr Leu Arg Phe Thr Leu Ala Phe Asp Met Asp Gly 390 395 Leu Arg Asn Leu Phe His

#### (2) INFORMATION FOR SEQ ID NO:360

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 452 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...452
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:360

Leu Ile Ile Glu Lys Glu Met Lys Thr Thr Val Gln Gln Ile Ile Leu 1 5 10 15

Cys Leu Ala Leu Met Met Ser Gly Val Leu Gly Gly Asn Ala Gln Ser 20 25 Phe Trp Glu Glu Ile Ala Pro Pro Phe Ile Ser Asn Glu Pro Asn Val 35 40 45 Lys Tyr Ile Ile Pro Asn Met Gly Ile Asp Ser Lys Gly Thr Ile Tyr 55 60 Val Thr Val Thr Lys Arg Ile Gln Gln Gly Ala Asn Tyr Thr Ser Glu 75 Gln Leu Gly Met Tyr Tyr Arg Pro Leu Gly Asp Asn Glu Gln Trp Trp 90 Lys His Asp Pro Tyr Phe Asp Asp Lys Ile Val Ala Asp Ile Gln Thr 100 105 Asp Ala Tyr Gly Arg Val Tyr Val Cys Thr Thr Ser Ser Arg Asp Gln 115 120 125 Glu Tyr Gln Leu Tyr Ile Asn Glu Gln Asn Glu Trp Arg Cys Ile Phe 130 135 140 Lys Thr Ser Val Ser Thr Tyr Glu His Gly Met Ala Val Phe Arg Ser 145 150 155 160 Ser Thr Gly Val Thr Tyr Ile Gly Thr Arg His His Ile Phe Ala Ser 165 170 175 Gly Val Asn Asp Phe Glu Phe Asn Thr Ile Tyr Glu Asp Ser Thr Pro 180 185 190 Met Ser Cys Arg Phe Ala Glu Ala Thr Asn Ser Gly Thr Ile Tyr Leu 195 200 Ala Leu Met His Glu Thr Thr Met Ser Thr Thr Ile Leu Thr Tyr Gln 210 215 220 Asn Gly Glu Phe Val Asp Ile Ser Glu Ser Glu Leu Ser Asn Ser Ile 230 235 240 Ile Ala Ser Met Cys Ser Asn Lys Glu Gly Asp Ile Ile Ala Leu Val 245 250 Thr Ser Tyr Thr Gly Phe Met Ser Gly Thr Leu Ala Ile Arg Lys Ala 265 270 Asp Glu Gly Lys Trp Gln Leu Val Gly Gly Asp Ile Gln Asn Ala Ile 275 280 285 Val Gln Asn Ile Cys Met Met Asp Asp Asn Lys Ile Ala Cys Glu Val 295 300 Phe Gly Thr Pro Asn Gly Val Asp Gly Arg Thr Arg Val Cys Val Ser 305 310 315 320 310 Asp Ala Ser Val Phe Asp Phe Glu Trp Tyr Glu Asp Glu Ile Tyr Gly 325 330 335 Gly Leu Ile Phe Asp Thr Phe Phe Tyr Ser Pro Trp Asp Lys Leu Leu 340 345 350 Tyr Ala Lys Phe Gly Gly Ile Met Leu Arg Ser Lys Glu Ser Phe Ile 360 365 Thr Ser Phe Ile Ser Pro Thr Val Val Gln Gly Val Asp Val Tyr Thr 370 375 380 Leu Ala Gly Lys Ile Arg Ile Glu Ser Glu Thr Pro Val Ser Glu Val 390 395 Leu Leu Phe Asp Leu Ala Gly Arg Met Val Leu Arg Gln Thr Ile Asp 410 405 Asn Lys Ile Tyr Ser Asp Ile Asp Thr Asn Gly Leu Lys Arg Ser Gly 420 425 430 Ile Tyr Val Val Ser Val Arg Leu Ser Ser Gly Gln Val Phe Ser His 440 Lys Val Gln Val 450

## (2) INFORMATION FOR SEQ ID NO:361

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 331 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...331
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:361

Gly Leu Tyr Gly Met Ser Val Val Pro Ile Ile Ile Tyr Leu Cys Gly 10 Ile Ser Asn Tyr Ala Arg Leu Met Ile Ile Arg Cys Leu Ile Arg Arg 20 25 Pro Arg Thr Val Leu Phe Gly Leu Ile Phe Val Val Gly Leu Phe Ser 40 4.5 Ala Met Ala Gln Glu Lys Lys Asp Ser Leu Ser Thr Val Gln Pro Val 55 60 Pro Asn Ser Ser Met Val Glu Gln Thr Pro Leu Leu Ser Ile Asp His 70 Pro Val Leu Pro Ala Ser Phe Gln Asn Thr Arg Thr Leu Lys Arg Phe 85 90 95 Arg Asp Lys His Leu Ser Asp Ala Leu Leu Asn Gly Leu Lys Pro His 100 105 Arg Ser Ser Leu Gln Leu Asn Glu Glu Leu Asn Phe Ala Ala Glu Arg 115 120 125 Arg Asp Phe Val Ser Pro Leu Leu Gln Thr Arg His Ala Ala Gly Val 130 135 140 Leu Ser Trp Arg Pro Thr Asp Arg Met His Phe Tyr Thr Ser Gly Asn 155 145 150 Ile Gly Leu Gly His Asp Leu Leu Thr Gly Val Arg Lys Asp Phe Gly 165 170 175 Trp Asn Ala Gly Ala Asp Phe Leu Leu Ser Gln Asn Leu Thr Ala His 185 190 Val Gln Gly Gly Trp Gln Gln Asn Phe Gly Phe Ile Pro Met Thr Ala 195 200 Val Asn Gly Gln Leu Arg Trp Gln Ala Thr Glu Arg Leu Ser Phe Thr 215 220 Thr Gly Ile Asp Tyr Arg Gln Val Gln Trp Asn Ala Phe Asp Asn Arg 230 235 Thr Phe Ser Leu Lys Gly Ser Ala Arg Tyr Glu Val Met Asp Asn Val 245 250 255 Phe Val Asn Gly Phe Gly Ser Tyr Pro Leu Tyr Ser Ser Thr Arg Ser 260 265 270 Gly Leu Asn Met Ala Val Pro Met His Gly Phe Gly Pro Gln Tyr Gly 280 Gly Ser Leu Glu Leu Lys Val Ser Glu Arg Phe Gly Phe Ala Val Gly 290 295 300 Met Glu Arg Glu Tyr Asn Ile Trp Thr Arg Arg Trp Glu Thr His Tyr 305 310 315 Phe Ala Tyr Pro Val Phe Tyr Gly Asp Lys Lys 325

# (2) INFORMATION FOR SEQ ID NO:362

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 329 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...329
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:362

Glu Thr Asn Ser Trp Val Ser Ser Asp Cys Asn Ser Thr Thr Met Lys Thr Asn Arg Arg Tyr Ala Phe Val Leu Pro Leu Leu Leu Thr Gly 20 25 Leu Leu Ala Trp Gly Gln Asp Ser Ser His Gly Ser Asn Thr Ala Phe 35 40 Ala Thr Asp Ser Ser Ser Arg Glu Leu Pro Thr Glu Gln Ser Ala Tyr 55 60 Arg Ile His Ser Ala Tyr Met Val Gly Gly Gly Ser Ile Thr Arg 70 75 Asp Thr Tyr Leu Ser Pro Leu Arg Tyr Gly Gly Trp Thr Leu Asn Leu 85 90 Leu Gly Glu Lys Thr Phe Pro Leu Lys Ala Ser Asp Ser Arg Trp Met 100 105

Ile Arg Thr Gly His Glu Leu Asp Phe Ala Leu Met Asp Asn Pro Ala 120 Asn Asn Ala His Phe Tyr Ser Leu Leu Tyr Asn Gly Ser Ala Ala Ala 130 135 140 Leu Tyr Arg Leu Gly Ala Lys His Leu Arg Ala Ala Trp Met Asp Asn 150 155 Leu Arg Leu Ala Phe Gly Pro Gly Leu Glu Ile Gly Leu Gly Gly Ile 170 165 Tyr Ser Thr Arg Asn Gly Asn Asn Pro Ala Thr Leu Lys Leu Tyr Thr 180 185 Asn Ala Ile Ala Gln Ala Ser Ile Gly Tyr Tyr Val Pro Ser Glu Thr 195 200 205 Phe Pro Leu Tyr Phe Arg Leu Leu Ser Gln Ile Asn Leu Phe Gly Ile 215 220 Ala Tyr Gly Asn Gly Phe Gly Glu Ser Tyr Tyr Glu Asn Phe Leu Leu 235 230 Asn Asn Gly Ile Ala Gly Ser Leu His Phe Thr Tyr Pro Gly Lys Phe 245 250 255 Thr Arg Phe Thr Thr Leu Ile Thr Ala Asp Ile Pro Ile Arg Asn Phe 260 265 270 Cys Thr Leu Arg Val Gly Tyr Arg Tyr Ser His Leu Gly Ser Ser Leu 280 Asn Ala Leu Asp Thr Arg Ile His Ser His Thr Ala Phe Ile Gly Phe 295 300 Val Thr Glu Phe Tyr Arg Phe Arg Gly Arg Lys Ala Met Asn Thr Gly 305 310 315 Arg Arg Thr Ser Leu Tyr Tyr His Asp 325

## (2) INFORMATION FOR SEQ ID NO:363

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 319 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...319
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:363

Phe Thr Ser Gly Thr Ile Phe Val Arg Ile Ala Ile Ser Gly Arg Val 10 Val Cys Arg Glu Val Glu Asp Asn Gly Arg Arg Glu Ala Val Arg His 20 25 Asp Gly Met Val Val Thr Leu Leu Val Ile Val Gly Ile Val Val Val 35 40 45 Val Arg Tyr Ser Leu Arg Val His Val His Lys Thr Gly Thr Val Val 55 60 Ser Ala Ala Ile Phe Gly Phe Ile Leu Leu Gly Lys Thr Val Pro Cys 65 70 75 80 Asp Thr Arg Asn Phe Phe Ser Ser Glu Ser Asp Glu Pro Glu Ser Arg 85 90 Val Ala Thr Glu Ile Ala His Leu Cys Glu Ile Gly Phe Gln Ile His 100 105 Ala Ser Ser Ile His Val Ala Val Arg Thr Asp Phe Gly Gln Ala Gly 115 120 125 Ile His Cys Pro Met Ala Thr Asp Ala Ser Ala Thr Glu Phe Asp Arg 130 135 140 Ser Ala Glu Cys Ala Glu Arg Thr Ser Ala Gln Ile Asp Thr Ala Ile 150 155 Arg Ser Gln Ser Gln Ile Ile Arg Thr His Ile Asp Thr Cys Pro Lys 165 170 Ser Ser Gly Thr Ile Gly Gly Ser Thr His Thr Ser Leu His Leu Lys 180 185 Val Phe Asp Gly Arg Gly Glu Val Gly His Ile His Pro Lys Asp Gly 195 200 205 Leu Arg Phe Gly Val Val Glu Gly Tyr Ser Ile Gly Ser Tyr Val Asp 210 215 220

Ala Ile Gly Ile Gly Ala Thr His Ala Lys Ala Gly Ile Ser Asp Thr 230 235 Arg Thr Gly Ile Ala Gly Gly Tyr His Gly Gly Ser Gln His Gln Gln 245 250 255 Ile Gly Asp Val Thr Thr Ile Ile Gly Leu Gly Lys Phe Gly Leu Ala 260 265 270 Asn Val Gly Val Ser Asp Arg Gly Phe Arg Arg Gly Ala Ser Ser Tyr 275 280 Asp Leu Tyr Gly Leu Glu Leu His Ile Ala Lys Thr Ile Tyr Leu Ala 295 300 Val Gly Asp Gly Cys Leu Cys Arg Gln Ala Glu Arg Gln Asp Gly 310 315

#### (2) INFORMATION FOR SEQ ID NO:364

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 614 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...614
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:364

Pro Tyr Asn Val Gln Ser Ile Ser Asn Lys Thr Ile Lys Lys Gln Met 10 15 Glu Asn Leu Lys Asn Ile Gln Pro Arg Glu Asp Phe Asn Trp Glu Glu 20 25 Phe Glu Ala Gly Gly Val His Ala Ala Val Ser Arg Gln Glu Gln Glu 35 40 Ala Ala Tyr Asp Lys Thr Leu Asn Thr Ile Lys Glu Lys Glu Val Val 50 55 60 Met Gly Arg Val Thr Ala Ile Asn Lys Arg Glu Val Val Ile Asn Val 70 75 Gly Tyr Lys Ser Glu Gly Val Val Pro Ala Thr Glu Phe Arg Tyr Asn 85 90 95 Pro Glu Leu Lys Val Gly Asp Glu Val Glu Val Tyr Ile Glu Asn Gln 100 105 110 Glu Asp Lys Lys Gly Gln Leu Val Leu Ser His Arg Lys Gly Arg Ala 115 120 125 Ala Arg Ser Trp Glu Arg Val Asn Glu Ala Leu Glu Lys Asp Glu Ile 130 135 140 Val Lys Gly Tyr Val Lys Cys Arg Thr Lys Gly Gly Met Ile Val Asp 150 155 Val Phe Gly Ile Glu Ala Phe Leu Pro Gly Ser Gln Ile Asp Val Arg 165 170 175 Pro Ile Arg Asp Tyr Asp Ala Phe Val Glu Lys Thr Met Glu Phe Lys 185 190 Ile Val Lys Ile Asn Gln Glu Tyr Lys Asn Val Val Val Ser His Lys 195 200 Val Leu Ile Glu Ala Glu Leu Glu Gln Gln Lys Lys Glu Ile Ile Gly 210 215 220 Lys Leu Glu Lys Gly Gln Val Leu Glu Gly Ile Val Lys Asn Ile Thr 225 230 235 Ser Tyr Gly Val Phe Ile Asp Leu Gly Gly Val Asp Gly Leu Ile His 250 245 255 Ile Thr Asp Leu Ser Trp Gly Arg Val Ala His Pro Glu Glu Ile Val 265 270 Gln Leu Asp Gln Lys Ile Asn Val Val Ile Leu Asp Phe Asp Glu Asp 275 280 285 Arg Lys Arg Ile Ala Leu Gly Leu Lys Gln Leu Met Pro His Pro Trp 290 295 Asp Ala Leu Asp Ser Glu Leu Lys Val Gly Asp Lys Val Lys Gly Lys 305 310 315 Val Val Val Met Ala Asp Tyr Gly Ala Phe Val Glu Ile Ala Gln Gly 325 330 335 Val Glu Gly Leu Ile His Val Ser Glu Met Ser Trp Thr Gln His Leu 345 350

Arg Ser Ala Gln Asp Phe Leu His Val Gly Asp Glu Val Glu Ala Val 355 360 Ile Leu Thr Leu Asp Arg Glu Glu Arg Lys Met Ser Leu Gly Leu Lys 370 375 380 Gln Leu Lys Pro Asp Pro Trp Ala Asp Ile Glu Thr Arg Phe Pro Val 390 395 Gly Ser Arg His His Ala Arg Val Arg Asn Phe Thr Asn Phe Gly Val 405 410 415 Phe Val Glu Ile Glu Glu Gly Val Asp Gly Leu Ile His Ile Ser Asp 420 425 430 Leu Ser Trp Thr Lys Lys Ile Lys His Pro Ser Glu Phe Thr Glu Val 435 440 Gly Ala Asp Ile Glu Val Gln Val Ile Glu Ile Asp Lys Glu Asn Arg 455 460 Arg Leu Ser Leu Gly His Lys Gln Leu Glu Glu Asn Pro Trp Asp Val 470 475 Phe Glu Thr Val Phe Thr Val Gly Ser Ile His Glu Gly Thr Val Ile 485 490 495 Glu Val Met Asp Lys Gly Ala Val Val Ser Leu Pro Tyr Gly Val Glu 500 505 510 Gly Phe Ala Thr Pro Lys His Met Val Lys Glu Asp Gly Ser Gln Ala 520 525 Val Leu Glu Glu Lys Leu Pro Phe Lys Val Ile Glu Phe Asn Lys Asp 535 Ala Lys Arg Ile Ile Val Ser His Ser Arg Val Phe Glu Asp Glu Gln 545 550 555 Lys Met Ala Gln Arg Glu Ala Asn Ala Glu Arg Lys Ala Glu Ala Lys 565 570 575 Ala Ala Gln Lys Glu Ala Ala Ala Glu Ala Ala Asn Pro Ala Gln Ala 580 585 590 Val Glu Lys Ala Thr Leu Gly Asp Leu Gly Glu Leu Ala Ala Leu Lys 595 600 Glu Lys Leu Ser Glu Asn

## (2) INFORMATION FOR SEQ ID NO:365

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 243 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

610

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...243
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:365

Ser Thr Ile Met Lys Lys Ala Ile Leu Ser Gly Ala Ala Leu Leu 10 Gly Leu Cys Ala Asn Ala Gln Asn Val Gln Leu His Tyr Asp Phe Gly 25 His Ser Ile Tyr Asp Glu Leu Asp Gly Arg Pro Lys Leu Thr Thr Thr 45 Val Glu Asn Phe Thr Pro Asp Lys Trp Gly Ser Thr Phe Phe Phe Ile 55 60 Asp Met Asp Tyr Thr Gly Lys Gly Ile Gln Ser Ala Tyr Trp Glu Ile 65 70 75 Ser Arg Glu Leu Lys Phe Trp Gln Ala Pro Val Ser Ile His Leu Glu 85 90 Tyr Asn Gly Gly Leu Ser Thr Ser Phe Thr Phe Gly His Asp Ala Leu 100 105 110 Ile Gly Ala Thr Tyr Thr Tyr Asn Asn Pro Ser Phe Thr Arg Gly Phe 120 125 Thr Ile Thr Pro Met Tyr Lys His Leu Gly Ala His Asp Phe His Thr 130 135 140 Tyr Gln Ile Thr Gly Thr Trp Tyr Met His Phe Leu Asp Gly Leu Leu 145 150 155 160 Thr Phe Asn Gly Phe Leu Asp Leu Trp Gly Phe Pro Gln Glu Asn Pro 165 170

 Ille
 Gly
 Gly
 Pro
 Val
 Leu
 Lys
 Glu
 Gly
 Asp
 Lys
 Phe
 Val
 Phe
 Leu
 Ser
 185
 Lys
 Lys
 Gly
 Ile
 Asp
 Lys
 190
 Lys
 Phe
 Lys
 Lys
 Phe
 Lys
 Lys
 Phe
 Lys
 Phe
 Lys
 Lys
 Lys
 Lys
 Trp
 Lys
 Lys
 Trp
 Lys
 Lys
 Lys
 Trp
 Lys
 Lys
 Lys
 Trp
 Lys
 Lys

# (2) INFORMATION FOR SEQ ID NO:366

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 235 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...235
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:366

Met Lys Thr Ile Ser Lys Asn His Ala Ala Arg Ile Cys Ala Ala Ile 1 5 10 Ala Leu Phe Ala Val Cys Asn Gly Arg Ile Ala Ala Gln Asp Phe Leu 20 25 30 Tyr Glu Ile Gly Gly Phe Gly Ala Ala Gln Tyr Phe Gly Asp Ala 40 45 Asn Arg Gly Leu Phe Gly Ser Ser Gly Val Gly Leu Glu Leu Val Gly 55 60 Arg Tyr Asn Tyr Asn Phe Arg Trp Ala Phe Ser Thr Met Leu Asp Trp 70 75 Arg Thr Leu Arg Gly Asp Thr Asp Lys Ser Gly Asn Val Phe Pro Asp 85 90 Phe Ala Gln Ala Asp Phe Lys Val Gly Leu Thr Gln Leu His Val Arg 105 100 110 Ser Glu Phe Asn Phe Leu Pro Tyr Ser Asp Gly Tyr Lys Tyr Leu Gly 115 120 125 Thr Ala Arg Leu Ser Pro Tyr Val Ala Ala Gly Leu Ser Leu Gly Phe 135 140 Ala Ser Gly Ala Lys Gly Ser Ala Phe Ala Pro Gly Ile Thr Ala Gly 155 150 Met Gly Val Lys Tyr Lys Leu Lys Pro Arg Ile Asn Val Gly Ile Glu 165 170 Tyr Ser Phe Thr Gly Leu Leu Thr Asp Ala Leu Asp Ala Leu Thr Asp 185 180 190 Lys Ser Val Trp Leu Glu Asp Pro Tyr Lys Ile Asn Asp Ser Trp Val 195 200 205 Lys Asn Lys Asp Ala Thr Gly Ala Leu Val Leu Arg Ile Thr Tyr Asp 215 220 Phe Gly Leu Arg Lys Thr Phe Cys Asn Lys Gln

- (2) INFORMATION FOR SEQ ID NO:367
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 436 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION 1...436

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:367

Asn Ile Met Tyr Lys Asp Tyr Lys Gly Leu Tyr Ala Ser Leu Arg Trp 10 15 Tyr Ala Leu Ile Ile Gly Leu Leu Phe Ala Ala Asp Gly Ile Gln Ala 25 Gln Asn Asn Asn Phe Thr Glu Ser Pro Tyr Thr Arg Phe Gly Leu Gly 40 45 Arg Leu Gly Glu Arg Thr Thr Ile Ser Gly His Ser Met Gly Gly Leu 55 60 Gly Val Gly Leu Arg Gln Gly Thr Tyr Val Asn Ala Val Asn Pro Ala 70 75 Ser Tyr Ser Ala Val Asp Ser Met Thr Phe Ile Phe Asp Phe Gly Ala 85 90 95 Ser Thr Gly Ile Thr Trp Tyr Ala Glu Asn Gly Lys Lys Asp Asn Arg 100 105 110 Lys Met Gly Asn Ile Glu Tyr Phe Ala Met Leu Phe Pro Ile Ser Lys 115 120 125 Ser Ile Ala Met Ser Ala Gly Val Leu Pro Tyr Ser Ala Ser Gly Tyr 135 140 Gln Phe Gly Ser Val Asp Gln Val Glu Gly Gly Ser Val Gln Tyr Thr 145 150 155 Arg Lys Tyr Leu Gly Thr Gly Asn Leu Asn Asp Leu Tyr Val Gly Ile 165 170 Gly Ala Thr Pro Phe Lys Asn Phe Ser Ile Gly Ala Asn Ala Ser Ser 185 180 190 Leu Phe Gly Arg Phe Thr His Ser Arg Gln Val Ile Phe Ser Thr Glu 195 200 205 Ala Pro Tyr Asn Pro Val His Leu Ser Thr Leu Tyr Leu Lys Ala Ala 210 215 220 Lys Phe Asp Phe Gly Met Gln Tyr His Leu Leu Leu Lys Ser Asp Arg 230 235 Ser Leu Val Ile Gly Ala Val Tyr Ser Pro Arg Val Lys Met His Ser 245 250 Glu Leu Thr Gln Ile Lys Asn Gln Val Gln Asn Gly Val Val Val Glu 260 265 270 Ser Glu Thr Gln Glu Tyr Ile Lys Gly Met Asp Tyr Tyr Thr Leu Pro 275 280 285 His Thr Leu Gly Ile Gly Phe Ser Tyr Glu Lys Lys Asp Lys Leu Leu 300 295 Leu Gly Ala Asp Val Gln Tyr Ser Lys Trp Lys Gly Glu Lys Phe Tyr 315 310 Lys Ser Asp Cys Lys Phe Gln Asp Arg Ile Arg Val Ser Leu Gly Gly 325 330 Glu Ile Ile Pro Asp Ile Asn Ala Val Gly Met Trp Pro Lys Val Arg 340 345 Tyr Arg Phe Gly Leu His Gly Glu Asn Ser Tyr Leu Lys Val Pro Thr 360 355 365 Lys Gly Gly Val Tyr Gln Gly Tyr His Ile Val Gly Ala Val Phe Gly 370 375 380 Ile Gly Ile Pro Leu Asn Asp Arg Arg Ser Phe Val Asn Val Ser Leu 390 395 Glu Tyr Asp Arg Leu Ile Pro Lys Glu Gly Met Ile Lys Glu Asn Ala 405 410 Leu Lys Leu Thr Phe Gly Leu Thr Phe Asn Glu Ser Trp Phe Lys Lys 420 425 430 Leu Lys Leu Asn 435

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 945 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...945

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:368

Asn Thr Ile Ser Glu Asn Gly Asn Asp Ser Thr Tyr Phe Ser Phe Gln 10 Thr Phe Leu Met Arg Ser Ile Tyr Gln Leu Leu Leu Ser Ile Leu Leu 25 3.0 Ala Ser Leu Gly Phe Val Gly Leu Glu Ala Gln Gln Ala Gly Val Ala 35 40 Gly Arg Val Leu Asp Glu Glu Gly Asn Pro Met Ile Gln Ala Asn Val 55 60 Gln Leu Val Gln Ser Thr Gly Gln Val Ala Val Ala Ala Gly Ala Thr 70 75 Asn Glu Lys Gly Leu Phe Ser Leu Lys Thr Ser Gln Glu Gly Asp Tyr 85 90 95 Ile Leu Arg Val Ser Tyr Val Gly Tyr Thr Thr His Asp Glu Lys Ile 100 105 Ser Leu Arg Asn Gly Gln Thr Ile Thr Leu Lys Asp Ile Ser Met Asn 115 120 125 Glu Asp Ala Arg Leu Leu Gln Ser Val Thr Val Gln Ala Lys Ala Ala 135 140 Glu Val Val Arg Asn Asp Thr Leu Glu Phe Asn Ala Gly Ser Tyr 150 155 Thr Val Ala Gln Gly Ala Ser Ile Glu Glu Leu Ile Lys Lys Leu Pro 165 170 Gly Ala Glu Ile Gly Ser Asp Gly Lys Ile Thr Ile Asn Gly Lys Asp 180 185 190 Ile Ser Lys Ile Leu Val Asp Gly Lys Glu Phe Phe Ser Lys Asp Pro 200 195 205 Gln Val Ala Ile Lys Asn Leu Pro Ala Asp Met Val Asn Lys Val Gln 210 215 Val Leu Asn Lys Leu Ser Glu Leu Ser Arg Met Ser Gly Phe Asp Asp 230 235 Gly Glu Glu Glu Thr Val Ile Asn Leu Thr Val Lys Pro Glu Lys Lys 245 250 255 Lys Gly Leu Phe Gly Thr Leu Gln Ala Gly Tyr Gly Thr Asp Gln Arg 260 265 270 Tyr Met Ala Gly Gly Asn Val Asn Arg Phe Asp Gly Asn Lys Gln Trp 275 280 285 Thr Leu Ile Gly Ser Ala Asn Asn Thr Asn Asn Met Gly Phe Ser Glu 295 300 Met Asp Ser Glu Met Gly Ser Met Thr Phe Phe Ser Pro Gln Gly Gly 310 315 Gly Arg Arg Gly Phe Gly Asn Ser Gly Gly Val Thr Ser Ser Ser Met 325 330 Leu Gly Gly Asn Phe Ser Val Glu Phe Ser Ser Ala Leu Asn Thr Gly 340 345 Gly Asp Ala Arg Tyr Gly Tyr Asn Asp Lys Ala Ile Glu Thr Thr Lys 360 355 365 Arg Val Glu Asn Ile Leu Ala Glu Gly Asn Thr Tyr Met Asp Glu Asn 370 375 380 Ile Leu Glu Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Arg Met 390 395 Gln Trp Lys Pro Ser Glu Arg Thr Glu Val Val Phe Glu Pro Asp Leu 405 410 Ser Ile Ser Lys Ile Asp Gly Phe Phe Asn Asp Thr Tyr Glu Thr Lys 420 425 Asp Ala Thr Gly Ile Ser Ile Asn Lys Gly Ser Ile His Gln Thr Thr 435 440 445 Gln Gly Asn Asn Phe Arg Leu Asn Gly Glu Leu Asp Ile Ser His Lys 450 455 460 Leu Asn Asp Glu Gly Arg Thr Ile Ser Ala Ser Val Ser Gly Gly Leu 475 470 Thr Asp Glu Asp Gly Asp Gly Ile Tyr Gln Ala Val Leu Gln Ser Val 490 Glu Thr Asn Gln Lys Gln Phe Asn Asp Asn Ser Asn Leu Gln Tyr Arg 500 505 Leu Arg Leu Ser Tyr Val Glu Pro Leu Gly Lys Asn Tyr Phe Ala Gln 515 520 525 Ala Ile Leu Asn Arg Arg Phe Ser Arg Arg Asn Ser Asp Arg Glu Val 530 535 540 Tyr Arg Leu Gly Asp Asp Gly Gln Tyr Ser Ile Leu Asp Ser Gln Tyr 550 555 560 Gly Leu Ser Tyr Ser Asn Glu Phe Thr Gln Tyr Arg Ile Gly Leu Asn 570

Leu Lys Lys Ile Ala Lys Thr Trp Asp Tyr Thr Val Gly Phe Asn Val 580 585 Asp Pro Asn Arg Thr Val Ser Tyr Arg Ser Val Ala Gly Val Glu Gln 595 600 605 Asp Lys Leu Ala Phe Asn Arg Val Asn Leu Ser Pro Met Leu Arg Ile 610 615 620 Asn Tyr Lys Pro Ser Arg Thr Thr Asn Leu Arg Val Asp Tyr Arg Gly 630 635 Arg Thr Thr Gln Pro Ser Ile Asn Gln Ile Ala Pro Val Gln Asp Ile 645 650 Thr Asn Pro Leu Phe Val Thr Glu Gly Asn Pro Gly Leu Lys Pro Ser 660 665 Tyr Ser Asn Asn Val Met Ala Met Phe Ser Asp Phe Asp Ala Lys Ser 675 680 Gln Arg Ala Phe Asn Ile Val Phe Phe Gly Asn Tyr Thr Phe Asp Asp 690 695 700 Ile Val Pro Asn Thr His Tyr Asp Pro Ser Thr Gly Ile Arg Thr Thr 705 710 715 720 Arg Tyr Glu Asn Ala Ser Gly Thr Trp Gln Ala Asn Leu His Gly Thr 725 730 735 Leu Ser Leu Pro Leu Lys Asn Arg Ala Phe Ser Phe Arg Met Ser Leu 745 750 Phe Asn Arg Leu Ala Glu Gly Gln Ser Phe Ile Asn Asp Asp Lys Asn 755 760 765 Lys Ala Leu Ser Phe Arg Thr Arg Glu Arg Leu Thr Leu Thr Tyr Arg 770 775 Asn Asn Trp Ile Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met 785 790 795 Ala Asn Asn Ser Leu Ser Gly Gln Lys Asp Ser Arg Thr Tyr Asp Phe 805 810 815 Gly Gly Asn Tyr Gln Val Ala Leu Thr Leu Pro Tyr Gly Phe Arg Ile 825 830 Asp Ser Asp Val Glu Tyr Asn Thr Asn Ser Gly Tyr Ser Gly Gly Phe 835 840 845 Ser Leu Asp Glu Trp Leu Trp Asn Ala Ser Leu Ser Tyr Ser Phe Leu 855 860 Arg Asp Lys Ala Gly Thr Leu Arg Val Asn Gly Tyr Asp Ile Leu Gly 865 870 875 880 Gln Arg Ser Ser Ile Ser Arg Ser Ala Ser Ala Ile Asn Ile Glu Glu 885 890 Ser Met Ser Asn Thr Ile Gly Arg Tyr Val Met Val Asp Phe Ile Tyr 900 905 910 Arg Phe Asn Ala Phe Ser Gly Gly Gly Ser Arg Ser Asp His Gln Arg 915 920 925 Gly Asn Met Asn Arg Pro Gly Pro Pro Phe Gly Gly Gly Arg Arg Pro 935 945

# (2) INFORMATION FOR SEQ ID NO:369

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 412 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...412
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:369

Asn Gln Glu Asp Gly Tyr Gly Asp Asp Thr Glu Tyr Thr Val Ala Ser 70 75 Asp Arg Asp Ile Asp Ala Tyr Asn Arg Arg Asp Gly Gln Ser Tyr Asp 85 90 Gly Lys Lys Leu Ser Lys Asp Lys Lys Arg Asp Ser Thr Arg Ser Ser 100 105 110 Val Pro Gly Arg Tyr Ser Arg Arg Leu Ala Arg Phe Tyr Lys Pro Asn 120 125 Thr Ile Val Ile Ser Gly Ala Asp Asn Val Tyr Val Thr Asp Asp Gly 130 135 140 Glu Tyr Phe Val Tyr Gly Asp Glu Tyr Tyr Asp Asp Ala Ser Ser Val 145 150 155 160 Asn Ile Tyr Ile Asn Ser Pro Trp Cys Asp Pro Phe Pro Tyr Thr Ser 165 170 Trp Tyr Pro Ser Phe Ser Gly Trp Tyr Asn Tyr Thr Trp Asn Tyr Pro 185 180 190 Trp Phe Tyr Tyr Gly Ser His Ile Gly Trp Gly Gly Tyr Tyr Pro Gly 195 200 205 Tyr Asn Trp Tyr Trp Ser Tyr Tyr Tyr Asp Pro Phe Tyr Asn Pro Tyr 215 220 Gly Ile Gly Met Gly Trp Gly Tyr Pro Tyr Gly Trp Gly Ser Tyr Tyr 230 235 Gly Trp Gly Gly Tyr Pro Gly Val Ile His His Tyr His His Tyr Pro 245 250 255 Lys Lys Thr Tyr Ser Asn Gly Gln His Ser Gly Ala Tyr Tyr Ser Tyr 260 265 Gly Arg Pro Asn Arg Ile Lys Gly Gly Thr Ser Gly Ala Lys Leu Gly 275 280 285 Thr Gly Arg Tyr Asp Arg Ile Gln Asn Ser Ser Ser Gln Lys Asn Lys 295 300 Phe Gly Leu Gln Ser Asn Lys Pro Asn Asn Asn Leu Gln Asn Val Lys 315 310 Ser Gly Arg Thr Gly Arg Ala Asn Arg Asp Arg Asn Ile Glu Thr Val 325 330 335 Thr Pro Asn Asn Gly Gln Lys Gln Asn Arg Pro Val Phe Gln Gln Asn 340 345 Gln Ser Gly Asn Asp Arg Pro Thr Gly Arg Asn Ile Arg Ser Glu Arg 355 360 365 Gln Gly Glu Asn Asn Asp Arg Thr Phe Ser Thr Pro Ser Arg Ser Asn 370 375 380 Ser Asn Gly Gly Phe Ser Thr Pro Ser Arg Ser Ser Ser Gly Ser Met 390 395 Ser Gly Gly Gly Arg Ser Gly Arg Gly Arg Asn 405

#### (2) INFORMATION FOR SEQ ID NO:370

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 601 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...601
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:370

Ser Asn Ser Ser Ser His Lys Trp Leu Ile Tyr Tyr His Ile Glu Lys 5 10 Thr Lys Ser Ile Met Ile Arg Lys Leu Ile Leu Leu Ala Leu Met 20 25 Pro Val Ala Ser Val Ala Phe Ala Val Pro Thr Asp Ser Thr Glu Ser 40 45 Lys Asp Asn Arg Ile Leu Thr Ser Met Gln Ser Ser Ser Leu Asn Arg 55 60 Asp Asp Ala Pro Asp Lys Trp Gln Pro Met His Ala Asn Phe Ser Ile 65 70 75 Gln Ser Asp Met Leu Leu Ser Thr Ala Gln Lys Ser Lys Asn Thr Trp 85 90

Phe Gly Asn Ser Tyr Ile Met Gly Ile Ile Lys Asn Asn Tyr Leu Glu 100 105 Phe Gly Ala Arg Phe Glu Asp Leu Tyr Lys Pro Leu Pro Gly His Glu 125 115 120 Pro Glu Met Gly Arg Gly Val Pro His Met Tyr Val Lys Gly Ser Tyr 135 140 His Trp Ala Glu Leu Thr Met Gly Asp Phe Tyr Asp Gln Phe Gly Ser 150 155 Gly Met Val Phe Arg Thr Tyr Glu Glu Arg Asn Leu Gly Ile Asp Asn 165 170 Ala Val Arg Gly Gly Arg Ile Val Leu Thr Pro Phe Asp Gly Val Arg 185 180 190 Val Lys Gly Ile Ala Gly Gln Gln Arg Asn Tyr Phe Asp Arg Thr Gly 195 200 Lys Val Phe Asn Ser Gly Arg Gly Tyr Leu Leu Gly Ser Asp Leu Glu 215 220 Leu Asn Val Glu Arg Trp Ser Ser Ala Met Arg Asp Asn Asp Tyr His 225 230 235 240 Leu Ala Ile Gly Gly Ser Phe Val Ser Lys His Glu Ala Asp Glu Asp 245 250 255 Ile Phe Val Gly Val Gly Glu Asp Arg Lys Arg Leu Asn Leu Pro Leu 260 265 270 Asn Val Pro Ile Met Gly Leu Arg Thr Asn Phe Gln Lys Gly Gly Leu 275 280 285 Ala Leu Tyr Ala Glu Tyr Gly Tyr Lys Tyr Asn Asp Pro Ser Ala Asp 290 295 300 Asn Asp Tyr Ile Tyr His Asp Gly Gln Ala Ala Leu Leu Ser Ala Ser 310 315 320 Tyr Ser Lys Lys Gly Met Ser Ile Leu Leu Gln Ala Lys Arg Cys Glu 325 330 Asn Phe Ala Phe Arg Ser Lys Arg Ser Ala Gln Leu Thr Pro Leu Met 340 345 350 Ile Asn Tyr Met Pro Ala Phe Thr Gln Ala His Thr Tyr Thr Leu Ala 355 360 365 Ala Ile Tyr Pro Tyr Ala Thr Gln Pro Gln Gly Glu Trp Ala Phe Gln 375 380 Gly Glu Leu Arg Tyr Asn Phe Ala Arg Arg Thr Ala Leu Gly Gly Arg 385 390 395 400 Tyr Gly Thr Gly Leu Arg Ile Asn Val Ser His Val Arg Gly Leu Asp 405 410 Lys Lys Met Leu Lys Glu Asn Pro Asp Glu Leu Ile Gly Thr Asp Gly 420 425 430 Tyr Thr Val Ser Phe Phe Gly Met Gly Asp Leu Tyr Tyr Ser Asp Ile 440 445 Asp Val Glu Ile Thr Lys Lys Val Ser Pro Gly Phe Asn Phe Thr Leu 455 460 Thr Tyr Leu Asn Gln Ile Tyr Asn Asn Lys Val Leu His Gly Ala Ala 470 475 Gly Glu Lys Pro Glu Lys Ile Tyr Ala Asn Ile Phe Val Tyr Asp Gly 485 490 Lys Tyr Lys Leu Ser Asn Lys Val Ala Leu Arg Thr Glu Leu Gln Tyr 500 505 510 Leu His Thr Lys Gln Asp Gln Gly Asp Trp Ile Tyr Gly Met Ala Glu 520 525 Leu Ser Ile Leu Pro Ser Leu Met Leu Ser Leu Ser Glu Gln Tyr Asn 530 535 540 Ile Gly Glu Thr Lys Lys His Tyr Val Met Gly Ser Val Thr Tyr Thr 545 550 555 560 His Gly Ala His Arg Val Ala Phe Ser Ala Gly Lys Thr Arg Ala Gly 565 570 Met Asn Cys Ser Gly Gly Val Cys Arg Val Val Pro Glu Thr Gln Gly 580 585 Phe Tyr Leu Ser Tyr Ser Thr Asn Leu

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 252 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:

#### (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...252

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:371

Arg Gly Ser Ser Ser Gly Ile Ser Ala Arg Gly Arg Asp Met Arg Ser Leu Phe Leu Ser Ala Leu Arg Ser Ser Ser Leu His Gly Ser Glu Arg 20 25 Arg Ser Arg Ile Ser Ser Ser Val Val Met Ser Ile Arg Gln Lys Ile 35 45 40 Arg Leu Phe His Leu Ser Val Cys Ala Gln Thr His Asp His Leu Ile 55 60 Glu Ile His Leu Val Cys Ile Glu Phe Gly Ala Ile Asp Thr Asp Glu 70 75 Phe Arg Leu Ser Ser His Ala Tyr Thr Thr Ser Pro Thr His Thr Gly 85 90 Ala Ile His His Asn Cys Ile Glu Arg Ser Tyr Gly Arg Tyr Leu Val 100 105 110 Thr Phe Gly Gln Glu Arg Asn Glu Leu His His His Ser Arg Pro Asp 115 120 125 Arg Asn Ala Glu Val Tyr Arg Phe Pro Phe Asp Asn Ala Phe His Ser 130 135 140 Ile Arg Tyr Glu Ala Phe Arg Pro Ile Arg Pro Ile Val Cys His Asp 150 155 Asp His Phe Ile Ala Ile Gly Ser His Leu Phe Phe Lys Asp Asn Gln 165 170 175 Ile Phe Ser Ser Gly Ser Gln Tyr Asp Asn Tyr Thr Val Ala Cys Phe 180 185 190 Val Glu Ser Leu His Asp Arg Glu Gln Arg Ser His Thr His Thr Ala 195 200 205 Ser Gly Thr Asn His Cys Ala Asp Leu Phe Asp Met Arg Thr Leu Ser 215 220 Gln Arg Thr Tyr His Ile Arg Asp Ile Val Ala Asp Phe Glu Phe Gly 230 235 Gln Phe Leu Gly Arg Phe Ala His Gly Leu Asn His 245 250

# (2) INFORMATION FOR SEQ ID NO:372

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 790 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...790
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:372

Leu Leu Phe Ser Ser Pro Leu Pro Arg Met Asp Arg Pro Lys Pro Ser 10 Tyr Ile Val Arg Ile Ala Ala Ile Leu Cys Leu Phe Val Gly Arg Pro 20 25 Leu Phe Ala Gln Ser Tyr Val Asp Tyr Val Asp Pro Leu Ile Gly Thr 40 Leu Ser Ser Phe Glu Leu Ser Ala Gly Asn Thr Tyr Pro Val Ile Gly 55 60 Leu Pro Trp Gly Met Asn Ser Trp Thr Pro Met Thr Gly Val Pro Gly 70 75 Asp Gly Trp Gln Tyr Thr Tyr Ser Ala His Lys Ile Arg Gly Phe Lys 85 90 95 Gln Thr His Gln Pro Ser Pro Trp Ile Asn Asp Tyr Gly Gln Phe Ser 100 105 Leu Leu Pro Leu Thr Ala Pro Gln Lys Pro Ser Ser Asn Asp Ser Ile 115 120 125

```
Ala Leu Thr Lys Trp Cys Lys Gln Leu Phe Ser Asp Glu Gln Thr Ser
                    135
                                    140
Trp Phe Ser His Lys Ala Glu Thr Ala Thr Pro Tyr Tyr Tyr Ser Val
                150
                                155
 Tyr Leu Ala Asp Tyr Asp Thr Arg Val Glu Met Ala Pro Thr Glu Arg
                            170 175
Ala Ala Ile Phe Arg Ile Arg Tyr Ser Gly Asn Thr Glu Ser Gly Ser
          180
                          185
                                          190
Gly Arg Trp Leu Arg Leu Asp Ala Phe Thr Gly Gly Ser Glu Ile Ser
       195
               200
 Ile Val Asp Pro His Thr Val Val Gly Ile Ser Arg Lys Asn Ser Gly
          215
                              220
Gly Val Pro Ala Asn Phe Ala Cys Tyr Phe Ile Leu Gln Ser Asp Thr
        230
                          235
Pro Met Ala Asp Val Leu Leu Glu Thr Asp Thr Gly Lys Ser Asp Glu
         245
                      250
                                        255
Gly Thr Arg Ala Trp Ala Ala Cys Arg Phe Asp Ser Gln Glu Val Thr
          260
                         265
                                        270
Val Arg Val Ala Ser Ser Phe Ile Ser Val Glu Gln Ala Glu Arg Asn
              280 285
Leu Ala Glu Val Lys Gly Gln Ser Phe Asp Arg Ile Arg Leu Ala Gly
              295
                                    300
Arg Glu Ala Trp Asn Lys Val Leu Gly Arg Ile His Val Glu Gly Gly 305 310 315 320
Thr Lys Asp Glu Arg Thr Thr Phe Tyr Ser Ala Leu Tyr Arg Cys Leu
          325 330
Leu Phe Pro Arg Arg Phe Tyr Glu Glu Asp Ala Ser Gly Asn Phe Val
        340
                 345
                                  350
His Tyr Ser Pro Tyr Asn Gly Glu Val Leu Pro Gly Tyr Leu Tyr Thr
               360
                               365
Asp Thr Gly Phe Trp Asp Thr Phe Arg Ala Leu Phe Pro Leu Leu Asn
                   375
                                   380
Leu Leu Tyr Pro Asp Glu Asn Ile Lys Ile Gln Glu Gly Leu Leu Asn
             390
                              395
Val Tyr Arg Glu Ser Gly Phe Phe Pro Glu Trp Ala Ser Pro Gly His
          405
                    410
Arg Asp Cys Met Ile Gly Asn Asn Ser Ala Ser Val Leu Ala Asp Ala
                 425
                                  430
        420
Tyr Leu Lys Gly Val Arg Val Glu Asp Thr Arg Thr Leu Met Asn Gly
    435
                     440
Leu Leu His Ala Thr Lys Ala Val His Pro Lys Ile Ser Ser Thr Gly
                  455
                                   460
Arg Lys Gly Trp Glu Trp Tyr Asn Ser Leu Gly Tyr Val Pro Ala Asp
             470
                         475
Ala Gly Ile Asp Glu Ser Ala Ala Arg Thr Leu Glu Tyr Ala Tyr Asn
         485
                             490
Asp Trp Cys Ile Leu Arg Leu Gly Arg Thr Leu Gly Trp Asp Arg Ala
        500 505
                                         510
Ala Leu Asp Thr Leu Ala His Arg Ser Met Asn Tyr Arg His Leu Phe
  515 520
                                      525
Asp Pro Glu Thr Lys Leu Met Arg Gly Arg Asn Gln Asp Gly Ser Phe
           535
                             540
Arg Thr Pro Phe Ser Pro Phe Lys Trp Gly Asp Val Phe Thr Glu Gly
       550
                               555
Asn Ala Trp His Tyr Thr Trp Ser Val Phe His Asp Val Gln Gly Leu
           565
                      570
Ile Asp Leu Met Gly Gly Asp Arg Pro Phe Val Ser Met Leu Asp Ser
       580
                585
                                  590
Val Phe Asn Thr Pro Pro Met Phe Asp Glu Ser Tyr Tyr Gly Phe Val
    595 600
                                      605
Ile His Glu Ile Arg Glu Met Gln Ile Ala Asp Met Gly Asn Tyr Ala
  610
                  615
                                   620
His Gly Asn Gln Pro Ile Gln His Met Ile Tyr Leu Tyr Asn His Ala
       630
                        635
Gly His Pro Trp Lys Ala Gln Glu Arg Leu Arg Glu Val Met Gly Arg
            645
                             650
Leu Tyr Arg Pro Thr Pro Asp Gly Tyr Cys Gly Asp Glu Asp Asn Gly
         660
                         665
Gln Thr Ser Ala Trp Tyr Val Phe Ser Ala Leu Gly Phe Tyr Pro Val
   675
                   680
                                       685
Thr Pro Ala Thr Asp Gln Tyr Val Leu Gly Ser Pro Ile Phe Ser Lys
  690 695
                            700
Val Ile Leu Ser Phe Pro Asp Gly His Lys Thr Val Leu His Ala Pro
                       715
             710
Ala Asn Ser Ala Asp Thr Pro Tyr Ile Arg Ser Ile Ser Val Glu Gly
            725
                             730
Lys Glu Trp Ser Cys Asn Tyr Leu Thr His Glu Gln Leu Arg Ser Ser
```

Ala Ser Ile Gln Trp Met Met Asp Thr Lys Pro Asn Tyr Asn Arg Gly
755 - 760 - 760 - 765 - 765

Met Lys Glu Ser Asp Arg Pro Tyr Ser Phe Ser Thr Glu Gln Arg
770 - 775 - 775 - 775

Arg Ala Asn His Ser Asn
780 - 790 - 790

- (2) INFORMATION FOR SEQ ID NO:373
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 286 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc feature
    - (B) LOCATION 1...286
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:373

Ile Cys Gly Ser Lys Met Asn Leu Ser Gly Leu Gln Ser Phe Thr Met 10 Met Lys Ser Met Arg Ser Val Leu Leu Leu Phe Pro Leu Ser Leu 20 25 30 Ile Thr Ala Leu Gly Cys Ser Asn Asn Lys Ala Ala Glu Ser Lys Ser 35 40 45 Val Ser Phe Asp Ser Ala Tyr Leu Glu Arg Tyr Ile Pro Leu Arg Ala 55 Asp Ile Asp Thr Pro Ser Leu His Val Met Ile Ser Tyr Val Tyr Pro 75 70 Ser Gly Asp Asp Met Leu Thr Glu Ile Phe Asn Gly Leu Leu Phe Gly 85 90 Asp Ser Leu Met Asp Ser Ser Ser Pro Glu Asn Ala Met Glu Gly Tyr 100 105 Ala Gln Met Leu Gly Glu Asp Tyr Arg Ser Asn Asn Ala Glu Ala Asn 120 125 Leu Gln Gly Leu Pro Ser Asp Leu Leu Asp Tyr Ile Tyr Lys Gln Glu 130 135 140 Asn Thr Ile Ala Tyr Cys Asp Thr Gly Leu Ile Ser Thr Arg Ile Asn 145 150 155 160 Thr Tyr Thr Tyr Glu Gly Gly Ala His Thr Glu Asn Thr Val Arg Phe 165 170 Ala Asn Ile Leu Arg Thr Thr Gly Lys Val Leu Glu Glu Arg Asp Ile 185 180 190 Phe Lys Ile Asp Tyr Ala Glu Arg Leu Ser Ala Leu Ile Ile Gly Gln 200 205 Leu Val His Asp Phe Gly Lys Thr Thr Pro Ala Glu Leu Asp Ala Ile 210 215 220 Gly Phe Phe Asn Ala Glu Glu Ile Gln Pro Asn Gly Asn Phe Met Ile 230 235 Asp Asp Lys Gly Leu Thr Tyr Cys Phe Asn Glu Tyr Gln Ile Ala Ala 245 250 Tyr Ala Arg Gly Ala Val Tyr Val Arg Leu Gly Tyr Asp Val Leu Ala 260 265 270 Pro Leu Leu Arg Asp Asp Ser Pro Leu Lys Arg Tyr Leu Pro 280

- (2) INFORMATION FOR SEQ ID NO:374
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 378 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:

#### (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...378

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:374

Gly Ile Ile Ser Val Leu Ser His Val Val Asp Arg Pro Gln Trp Gly 5 Ala Ser Pro Glu Ala Ala Gly Thr His Ser Val Tyr Ser Ile Leu His 25 Pro Ser Ala Gly Ile Ile Arg Ile Arg Ser Met Gly Ile Ile Ser Ala 40 45 Cys Arg Ile Ala Ile Leu Ala Gly Lys His Pro Arg Ser Gly Leu Ser 55 60 Arg Ala Asn Val Gly Ile Leu Ser Tyr Asn Pro Glu Asn Thr Pro Glu 65 70 75 Lys Lys Arg Lys Leu Gln Glu Lys Asn Val Phe Leu Gln Ile Arg Leu 85 90 Arg Gln Ser Phe Asn Asn Leu Ile Pro Ser Leu Pro Phe Arg Ile Asp 100 105 Asn Thr Lys Lys Ile Thr Glu Met Lys Lys Thr Thr Leu Thr Gly Ser 115 125 120 Ile Cys Ala Leu Leu Phe Leu Gly Leu Ser Ala Asn Ala Gln Ser 135 140 Lys Leu Lys Ile Lys Ser Ile Glu Ala Ala Thr Thr Phe Ser Ser Ala 150 155 Thr Ala Gly Asn Gly Phe Gly Gly Asn Ile Phe Gly Met Asp Met Ser 165 170 175Ile Arg Met Arg Val His His Ser Ile Leu Pro Glu Gly Leu Asp Phe 180 185 190 Ser Val Gly Ile His Glu Arg Arg Ala His Trp Glu Glu Ala Gly Ser 195 200 205 Pro Lys Leu Met Tyr Thr Asn Val Pro Ser Ile Ile Gly Ile Val Glu 210 215 Lys Val Ile Val Phe Glu Asp Ala Glu Asp Phe Phe Asp Lys Lys Ala 230 235 Leu Gly Arg Phe Leu Ile Ser Leu Gly Ile Ser Tyr Thr Lys His Leu 245 250 Gly Ala Tyr Trp Gly Trp Thr Asn Asp Ala His Ile Leu Phe Ser Pro 260 265 270 Ile Pro Lys Ser Lys Val His Tyr Asp Thr Tyr Thr Arg Ala Gly Ser 280 285 Asp Leu Val Leu Gln Ser Glu Asp Val Ala Thr Val Ser Asn Gly Phe 295 300 Ser Pro Gly Ile Gly Leu Lys Ser Ser Ile Trp Trp Lys Met Pro Ile 310 315 Lys Ser Lys Tyr Asp Phe Arg Leu Gly Phe Ser Leu Gly Tyr Glu Tyr 325 330 Leu Asn Leu Leu Tyr Pro Tyr Arg Asn Phe Lys Leu Asp Gly Asn Lys 340 345 350 Pro Leu Ser Ala Leu Ser Pro Arg Met Asn His Ile Gly His Val Gly 355 360 Phe Asn Phe Thr Val Gly Leu Trp Thr Asn

- (2) INFORMATION FOR SEQ ID NO:375
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1269 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...1269
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:375

```
Val Lys Cys Met Gly Lys Tyr Lys Arg Ala Lys Tyr Arg Tyr Trp Leu
                                10
 Phe Pro Phe Cys Ser Asp Tyr Tyr Thr Phe Glu Gly Val Thr Phe Leu
           20
                           25
 Cys Ala Ser Asp Asp Met Thr Thr Lys Lys Pro Gln Ala Ile Leu Asp
        35
                        40
                                    45
 Leu Glu Lys Ala Tyr Asn Ile Glu Ile Pro Asp Leu Ser Ser Gln Glu
           55
                                      60
 Gly Ile Ser Trp Ser Val Asn Arg Tyr Phe Lys Gln Asp Ser Ser Gly
           70
 Ala Val Val Glu Leu Cys Leu Arg Glu Cys Gln Ile Glu Ser Met Thr
            85
                       90
 Trp Leu Ile Asp Phe Pro Ala Leu Lys Lys Leu Asp Leu Ser Tyr Asn
           100
                      105
 Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys
       115
                        120
                                       125
 Leu Arg Leu Arg Ser Asn Gln Ile Arg Lys Leu Glu Gly Leu Asp Ser
  130 135
                                 140
 Leu Thr Ser Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys
          150
                        155
 Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu
             165
                      170
 Asp Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu
                    185
         180
 Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu Glu Gly Leu
     195
                       200
                                 205
 Glu Arg Leu Thr Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile
            215
                                     220
 Arg Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys Leu Arg
 225
                 230
                                235
 Leu Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr
           245 250
 Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu Glu
        260
                          265
                                   270
 Gly Leu Glu Arg Leu Thr Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn
     275 280
                                285
 Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Ser Ser Leu Thr Lys
        295
 Leu Arg Leu Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg
              310 315
 Leu Thr Ser Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys
           325
                            330
                                                335
Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu
         340
                          345
                                    350
Asp Asn Gln Ile Arg Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu
      355
              360
Thr Lys Leu Arg Leu Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu
              375
                                 380
Asp Ser Leu Thr Ser Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile
385 390
                               395
Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr
             405
                             410
Leu Leu Asp Asn Gln Ile Arg Lys Leu Glu Gly Leu Asp Gly Leu Ala
         420
                          425
                                            430
Ser Leu Thr Arg Leu Ser Leu Arg Arg Asn Gln Ile Ser Lys Leu Glu
                     440
                                      445
Gly Leu Asp Arg Leu Lys Val Leu Arg Lys Leu Asp Val Ser Gly Asn
                  455
                            460
Asp Ile Gln Ser Ile Asp Asp Ile Lys Leu Leu Ala Pro Ile Leu Glu
              470
                                475
Gln Thr Leu Glu Lys Leu Arg Ile His Asp Asn Pro Phe Val Ala Ser
            485
                      490
Ser Gly Leu Ile Leu Ser Pro Tyr Asp Asn His Leu Pro Glu Ile Lys
                         505
Ala Leu Leu Glu Lys Glu Lys Glu Lys Gln Lys Lys Thr Ser Val Glu
     515
                       520
                                       525
Tyr His Pro Phe Cys Lys Val Met Leu Leu Gly Asn His Ser Ser Gly
  530
          535
                                540
Lys Thr Thr Phe Leu Ser Gln Tyr Asp Thr Asn Tyr Thr Tyr Gln Lys
       550
                                 555
Asn Thr His Val Leu Ser Ile His Arg Ser Asn Asn Pro Asn Ala Ile
            565
                      570
Phe Tyr Asp Phe Gly Gly Gln Asp Tyr Tyr His Gly Ile Tyr Gln Ala
         580
                        585
                                         590
Phe Phe Thr Thr Gln Ser Leu Tyr Leu Leu Phe Trp Asp Ala Lys Lys
   595
                      600
                                       605
Asp Arg Asn Phe Val Ser Val Asp Asp Lys Glu Tyr Gln Thr Leu Asn
```

```
615
Phe Asn Arg Pro Tyr Trp Leu Gly Gln Ile Ala Tyr Ala Cys Asn Arg
        630
                       635
Cys Met Ser Val Gly Gly Asn Pro Asp Gly Lys Asp Thr Pro Gln Thr
         645
                   650
Thr Asp Asp Thr Ile Ile Ile Gln Thr His Ala Asp Glu Thr Gly Ala
         660
                 665
                                     670
Lys Gln Gln Thr Leu Gly Cys Ala Ala Glu Asn Gly Val Leu Glu Glu
    675
             680
                              685
Ile Tyr Val Ser Leu Glu Pro Lys Ala Asn Ser Ala Val His Ala Leu
 690 695
                          700
Asn Tyr Leu Asn Glu Arg Val Arg Glu Val Val Ala Ser Arg Ser Lys
705 710 715
Ser Ile Gln Ile Thr Glu Lys Asp Lys Gly Leu Tyr Glu Ala Leu Pro
            725
                           730
Thr Ile Ala Gly Asp Asn Lys His Ile Pro Ile Ser Leu Glu Ala Leu
        740
              745
Ala Ala Gln Leu Asn Lys Gly Arg Ala Glu Asn Asp Leu Tyr Thr Ile
  755 760
                              765
Glu Tyr Leu Gln Thr Glu Leu Asn Gln Leu Ser Leu Arg Gly Glu Val
 770 775
                            780
Leu Tyr Tyr Arg Glu Asn Glu Lys Leu Asn Asn Tyr Val Trp Leu Asp
        790
                             795
Pro Ala Ala Phe Val Gln Met Ile His Gly Glu Ile Leu Gln Lys Asp
          805
                     810
Asn Ile Asn Arg Gly Thr Val Pro Lys Asp Ile Phe Glu Cys Lys Leu
        820
                825
                                830
His Asn Leu Ser Ser Gly Ser Ile Phe Glu Glu Asp Gly Gln Asn Gly
             840
Asn Met Ile Leu Gln Leu Leu Glu Glu Leu Ile Val Tyr Glu Asp
 850 855
                         860
Lys Asp Cys Tyr Val Ile Pro Gly Tyr Leu Pro Leu His Ser Asp Asp
865 870 875 880
Glu Ala Tyr Lys Trp Leu Thr Leu Gly Phe Glu Arg Pro Asn Phe Val
           885
                           890
                                           895
Leu Lys Phe Glu Arg Phe Ile Pro Phe Gly Leu Ile Asn Gln Ile Ile
                       905
Ala Tyr Tyr Gly Arg Glu Glu Gly Ala Leu Lys Arg Tyr Trp Arg Asp
             920
                                     925
Gln Val Ile Phe Thr Ala Gly Arg Glu Met Asp Arg Gln Thr Leu Glu
 930 935
                                  940
Gln Glu Glu Lys Glu Gly Leu Pro Lys Thr Asn Ala Glu Asp Tyr
     950
                       955
Gln Ile Trp Ile Lys Leu Asp Phe Thr Asp Leu Ala Ile Ser Val Phe
965 970 975
Ile Lys Glu Gln Arg Lys Thr Ser Ala Lys Asp Met Gln Arg Lys Glu
      980 985
                             990
Ala Thr Ile Leu Ser Asp Met Leu Asp Met Tyr Trp Asn Asn Ile Pro
                   1000
                                      1005
Pro Arg Glu Gln Ile Gly Asp Lys Asp Thr Glu Gln Thr Arg Ser Thr
                  1015
                                   1020
Ile Arg Glu Thr Asn Arg Lys Lys Arg Pro Ile Gln Asp Leu Tyr Leu
1025 1030 1035
Ser Cys Ala Gln Ala Asp Lys Asp Leu Thr Glu Ser His Tyr Ile His
        1045 1050 1055
Leu Gly Thr Leu Asp Asp Glu Ser Lys Thr Thr Ala Arg Ile Ala Ala
       1060 1065
                                         1070
Tyr Pro Leu Lys Asn Gly Val Ile Asp Lys Glu Arg Val Arg Glu Val
                      1080
                                      1085
Ser Thr Arg Pro Tyr Lys His Leu Ser Val Asn Lys Asn Leu Ala Thr
                  1095
Ala Lys Gln Ile Phe Ile Ser Tyr Ser Lys Glu Asp Gln Thr Glu Leu
1105 1110
                        1115
Glu Thr Cys Leu Gln Phe Phe Lys Pro Leu Glu Lys Asn Gly Gln Ile
1125 1130 1135
Glu Ile Tyr Tyr Asp Lys Leu Thr Lys Phe Glu Thr Pro Ile His Pro
        1140 1145 1150
Glu Ile Arg Lys Arg Ile Val Glu Ala Asp Cys Ile Ile Ala Leu Ile
    1155 1160
                                      1165
Ser Gln Arg Tyr Leu Ala Thr Asp Tyr Ile Leu Asp His Glu Leu Pro
                             1180
           1175
Val Phe Arg Glu Tyr Asn Lys Thr Ile Val Pro Ile Leu Ile Lys Pro
1185 1190 1195 1200
Cys Thr Phe Glu Asp Asp Glu Phe Leu Arg Glu Lys Tyr Phe Ala Gln
         1205 1210
                                   1215
Lys Ala Gln Ile Ile Asn Leu Gly Lys Glu Gly Lys Thr Ile Lys Ala
                         1225
                                          1230
        1220
```

Tyr Asp Ser Ile Thr Ala Ser Ala His Arg Asp Glu Asn Trp Val Ala 1235 1240 1245

Val Val Arg Glu Phe Lys Glu Lys Ile Leu Arg Ile Thr Lys Gln Glu 1250 1255 1260

Val Asn Thr Asp Glu

- (2) INFORMATION FOR SEQ ID NO:376
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 231 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...231
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:376

Lys Phe Met Met Lys Lys Ala Phe Val Phe Val Leu Leu Val Cys Leu

1 5 10 15

Phe Ser Ser Phe Ser Ser Ser Ala Gln Thr Thr Thr Asn Ser Ser Arg
20 25 30

Ser Tyr Phe Thr Gly Arg Ile Glu Lys Val Ser Leu Asn Leu Gly Val 35 40 45

Pro Pro Val Ser Thr Glu Val Trp Gly Met Thr His Asp Ala Asn Gly
50 55 60

Leu Pro Phe Glu Ile Pro Ile Ser Phe Ser Arg Phe Asn Ser Gln Gly 65 70 75 80
Asp Ile Ala Thr Thr Tyr Tyr Ile Ala Asn Ser Glu Ala Thr Leu Asn

85 90 95
Glu Trp Cys Asp Tyr Ala His Pro Gly Gly Ile Val Arg Val Glu Gly

100 105 110

Arg Phe Trp Lys Met Thr Tyr Asn Ile Pro Thr Tyr Asn Ala Val Cys

115 120 125
Thr Arg Ile Thr Phe Glu Asn Gln Glu Ile Glu Gly Thr Ile Val Leu
130 135 140

Ile Pro Lys Pro Lys Val Ser Leu Pro His Val Ser Glu Ser Val Pro 145 150 155 160

Cys Ile Arg Thr Glu Ala Gly Arg Glu Phe Ile Leu Cys Glu Glu Asp 165 170 175

Asp Thr Phe Val Ser His Asp Gly Asn Glu Val Thr Ile Gly Gly Lys 180 185 190

Pro Phe Leu Leu Asn Thr Asn Val Lys Ile Val Gly Asp Val Ser Gln 195 200 205

Lys Tyr Ala Val Gly Val Gly Glu Ile Arg Phe Leu Gln Ile Cys Ala 210 215 220

Gln Thr Val Ser Gln Gln Lys 225 230

- (2) INFORMATION FOR SEQ ID NO:377
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 563 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...563
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:377

Ser Leu Ile Asn Asn Ser Arg Asp Trp Arg Ala Pro Val Arg Leu Ser Leu Lys Lys Lys Thr Lys Thr Met Lys Thr Lys Val Leu Arg Lys Phe Val Val Ala Ala Phe Ala Val Ala Thr Leu Cys Pro Leu Ala Gln Ala Gln Thr Met Gly Gly Asp Asp Val Lys Val Val Gln Tyr Asn Gln Glu Lys Leu Val Gln Thr Arg Met Ser Val Ala Asp Asn Gly Trp Ile Tyr Val Met Thr His Ser Gly Tyr Asp Thr Gly Asn Ser Asn Val Lys Ile Phe Arg Ser Lys Asp Gln Gly Ala Thr Tyr Gln Lys Leu Arg Asp Trp Asp Pro Ser Asp Asp Tyr Gln Phe Gln Asp Phe Asp Ile Val Val Thr Gly Lys Asn Glu Ser Asp Ile Lys Ile Trp Ser Val Glu Leu Met Asn Lys Pro Gly Gly Tyr Lys Ser Arg Val Ala Val Phe Ser Arg Asp Ala Asn Ala Gln Asn Ala Lys Leu Val Tyr Lys Glu Asp Phe Ser Asn Val 165 170 175 Gln Leu Tyr Asp Val Asp Ile Ala Ser Asn Tyr Arg Ser Pro Ser Ser Leu Asn Asn Gly Gly Asn Pro Phe Ala Leu Ala Phe Ala Tyr Thr Gly Phe Asn Asn Thr His Lys Ile Ser Phe Val Asp Tyr Val Phe Ser Leu Asn Gly Gly Gln Asn Phe Asn Lys Asn Leu Leu Phe Ser Gln Asp Gly Glu Lys Lys Ile Asp Lys Val Asp Leu Ser Leu Gly Ser Thr Ser Glu Ser Met Gly His Asn Ala Trp Pro Leu Met Gly Val Val Phe Glu Met Asn Lys Gln Gly Gly Lys Ser Asp Ile Gly Phe Leu Ser Asn Phe Val Asp Asn Asp Pro Glu Phe Gln Trp Ser Gly Pro Ile Lys Val Ser Glu Ser Asp Met Ser Phe Ser Pro Lys Ile Gln Met Leu Leu Asp Glu Asp Asn Asn Thr Ile Asn Gly Glu Ser Cys His Asn Phe Met Ile Thr Tyr Ser Asp Tyr Asp Ser Glu Tyr Ser Asp Trp Asp Ile Arg Tyr Val Tyr Pro Lys Lys Ser Phe Lys Tyr Glu Lys Gly Lys Thr Pro Thr Met Asp Asp Leu Val Glu Ala Phe Leu Thr Ala Ser Tyr Gln Ser Glu Thr Asn Ser Gly Leu Gly Tyr Asp Lys Asn Ala Asn His Tyr Leu Ile Thr Tyr 390 395 Ala Lys Lys Glu Glu Asn Gly Thr Asn Thr Leu Lys Tyr Arg Trp Ala Asn Tyr Asp Lys Ile His Asn Lys Asp Leu Trp Ser Asp Thr Phe Thr Tyr Thr Ser Ser Ala Asn Ala Leu Tyr Thr Pro Gln Val Asp Ile Asn Pro Thr Lys Gly Leu Val Cys Trp Ser Trp Val Glu Tyr Leu Pro Gly Lys Arg Ile Val Trp Ser Asp Thr Gln Trp Thr His Ala Asn Gly Val Glu Asp Ile Val Met Gln Glu Gly Ser Met Lys Leu Tyr Pro Asn Pro Ala Gln Glu Tyr Ala Val Ile Ser Leu Pro Thr Ala Ala Asn Cys Lys Ala Val Val Tyr Asp Met Gln Gly Arg Val Val Ala Glu Ala Ser Phe Ser Gly Asn Glu Tyr Arg Leu Asn Val Gln His Leu Ala Lys Gly Thr Tyr Ile Leu Lys Val Val Ser Asp Thr Glu Arg Phe Val Glu Lys Leu Ile Val Glu

# (2) INFORMATION FOR SEQ ID NO:378

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 786 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...786
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:378

	(111	, 55	QUIII	CL D	Bock	1111	OIV.	SEQ	ID IV	0.37	0				
Ile 1	Val	Tyr	Leu	Cys 5	His	Суз	Met	Asn	His 10	Arg	Arg	Ser	Lys	Thr 15	Met
Leu	Thr	Ile	Arg 20	Asn	Phe	Leu	Leu	Phe 25	Cys	Cys	Leu	Ser	Leu 30	Ile	Ala
		35					40		Ser			45			
Glu	Tyr 50	Val	Asn	Pro	Phe	Ile 55	Gly	Thr	Ala	Asn	Tyr 60	Gly	Thr	Thr	Asn
Pro 65	Gly	Ala	Val	Leu	Pro 70	Asn	Gly	Leu	Met	Ser 75	Val	Thr	Pro	Phe	Asn 80
				85					Asp 90				_	95	_
			100					105	Tyr			-	110		
		115					120		Glu			125			
	130					135			Asp		140				
145					150				Gly	155					160
_	_	_	_	165	_				Thr 170				_	175	
			180					185	Glu	_			190		
		195					200		Gly			205			
	210					215			Leu		220			_	-
225					230	_		_	Phe -	235					240
				245			_	-	Lys 250					255	
			260					265	Lys				270		
		275					280		Ile Val	_		285			
	290					295			Leu		300				
305	DCI	GIU	ALG	A311	310	Бец	1 y 1	ASII	Бец	315	AIA	Giu	GIII	GIU	320
Val	Phe	Lys	Ser	Val 325	Gly	Gly	Asn	Pro	Ala 330	Lys	Ala	Phe	Ser	Ala 335	Ile
Arg	Ser	Arg	Ala 340	Ile	Glu	Arg	Trp		Glu	Ala	Leu	Gly		Val	Glu
Val	Glu	Gly 355		Thr	Pro	Asp	Glu 360	345 Lys	Thr	Ile	Phe	Tyr 365	350 Thr	Ala	Leu
Tyr	His 370		Leu	Ile	His	Pro 375		Ile	Leu	Gln	Asp 380		Asn	Gly	Glu
Tyr 385	Pro	Met	Met	Gly	Ser 390	Gly	Lys	Thr	Gly	Asn 395	Thr	Ala	His	Asp	Arg 400
Tyr	Thr	Val	Phe	Ser 405	Leu	Trp	Asp	Thr	Tyr 410	Arg	Asn	Val	His	Pro 415	Leu
			420				_	425	Leu	_			430		
		435					440		Leu			445			
	450					455			Asp		460				
Asn 465	Asp	Thr	Trp	Gln	Arg 470	Gly	Leu	Arg	Ala	Phe 475	Asp	Thr	Ala	Thr	Ala 480

Tyr Glu Ala Met Lys Lys Asn Ala Ser Ser Ala Gly Ala Thr His Pro 485 490 Ile Arg Pro Asp Asn Asp Asp Tyr Leu Thr Leu Gly Phe Val Pro Leu 500 505 510 Arg Glu Gln Tyr Asp Asn Ser Val Ser His Ala Leu Glu Tyr Tyr Leu 520 525 Ala Asp Trp Asn Leu Ser Arg Phe Ala His Ala Leu Gly His Lys Glu 535 Asp Ala Ala Leu Phe Gly Lys Arg Ser Leu Gly Tyr Arg His Tyr Tyr 545 550 555 560 Asn Lys Glu Tyr Gly Met Leu Cys Pro Leu Leu Pro Asp Gly Ser Phe 565 570 Leu Thr Pro Phe Asp Pro Lys Gln Gly Glu Asn Phe Glu Pro Asn Pro 580 585 590 Gly Phe His Glu Gly Ser Ala Tyr Asn Tyr Ala Phe Phe Val Pro His 595 600 605 Asp Ile Gln Gly Leu Ala Arg Leu Met Gly Gly Ala Lys Val Phe Ser 610 615 620 615 Glu Arg Leu Gln Lys Val Phe Asp Glu Gly Tyr Tyr Asp Pro Thr Asn 625 630 635 Glu Pro Asp Ile Ala Tyr Pro Tyr Leu Phe Ser Tyr Phe Pro Lys Glu 645 650 Ala Trp Arg Thr Gln Lys Leu Thr Arg Glu Leu Ile Asp Lys His Phe 660 665 Cys Asn Ala Pro Asn Gly Leu Pro Gly Asn Asp Asp Ala Gly Thr Met 675 680 685 Ser Ala Trp Leu Val Tyr Ser Met Leu Gly Phe Tyr Pro Asp Cys Pro 690 695 700 Gly Ser Pro Thr Tyr Thr Leu Thr Ser Pro Val Phe Pro Arg Val Arg 710 715 Ile Arg Leu Asn Pro Gln Tyr Tyr Pro Gln Gly Glu Leu Ile Ile Thr 725 730 Thr Asn Thr Glu Asn Gln Pro Thr Asp Ser Ile Tyr Ile His Thr Val 740 745 750 Ser Leu Gly Asn Lys Thr Leu Pro His Gly Thr Arg His Ile Ser His 760 765 Ala Asp Leu Val Arg Cys Gly His Leu Arg Tyr Glu Leu Ser Asn Arg 775 Pro Arg 785

# (2) INFORMATION FOR SEQ ID NO:379

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 814 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...814
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:379

Pro Arg Phe His Pro Gly Gly Thr His Ala Gln Leu Cys Arg Asn Gly 10 Arg Arg Asn Gln Lys Ser Asn Gln Ser Ser Cys Phe Gly Gly Thr 30 20 25 Ala Pro Arg Phe Phe Ile Met Cys Lys Ile Arg Phe Ser Leu Leu Gln 35 40 45 Ala Leu Val Val Cys Leu Leu Phe Thr Ser Phe Ser Leu Gln Ala Gln 55 60 Glu Glu Gly Ile Trp Asn Thr Leu Leu Ala Ile His Lys Thr Glu Lys 75 70 Ala Val Glu Thr Pro Lys Lys Val Phe Ala Val Ala Asn Gly Val Leu 90 Tyr Ser Val Gly Lys Glu Ala Pro His Glu Ala Lys Ile Phe Asp Arg 100 105 Ile Ser Gly Leu Ser Asp Thr Ser Val Ser Ser Ile Ala Tyr Ser Glu 120 115 125

```
Gln Leu Lys Ser Leu Val Ile Tyr Tyr Ala Ser Gly Asn Ile Asp Ile
                  135
                                   140
Leu Asp Glu Ala Gly Arg Val Thr Asn Val Pro Ala Leu Lys Asp Asn
145
                150
                        155
Ile Asp Leu Ile Asp Lys Thr Leu Asn Arg Leu Leu Ile Val Gly Asn
           165
                  170 175
Arg Ala Tyr Leu Ala Gly Gly Phe Gly Leu Ser Val Leu Asp Val Ala
                       185
                                          190
Glu Ala Arg Ile Pro Ala Thr Tyr Ala Lys Gly Thr Lys Val Thr Asp
     195
               200
Val Ala Lys Leu Asp Asn Asp Arg Leu Leu Met Leu Lys Glu Gly Gln
           215
                           220
Leu Phe Ile Gly Lys Glu Thr Asp Asn Leu Gln Asp Pro Ala Ala Trp
225 230 235
Thr Ala Leu Ser Leu Asn Leu Pro Met Gly Ser Val Thr Gly Leu Gly
        245 250
Ile Val Gly Glu Asp Ile Cys Phe Leu Leu Ala Asp Gly Arg Val Tyr
         260
                        265
                                         270
Val Ala Ala Asn Gln Ser Phe Glu Pro Glu Leu Leu Ser Ser Ser
    275 280
                           285
Ala Asp Ser Arg Leu Tyr Val Thr Asp Arg Gly Leu Phe Ile Cys Ala
                   295
Glu Asn Arg Ile Tyr Phe Ile Glu Lys Gly Arg Lys Thr Thr Gln Phe
               310
                         315
Pro Ile Ala Asp Val Leu Gly Val Gly Ala Met Asn Glu Ser Asn Thr
            325 330
Ala Tyr Ile Ala Leu Gly Glu Glu Gly Leu Ala Ser Leu Leu Leu Ala
       340
                   345
                                     350
Glu Gly Ser Thr Ala Glu Ala Met Pro Val Ala Phe Asp Gly Pro Gly
                     360
                                      365
Asp Asn Asp Phe Tyr Glu Met Arg Phe Ser His Gly Arg Leu Tyr Ala
                  375
                                   380
Ala Ser Gly Leu Trp Gly Thr Asn Leu Met Gly His Ala Gly Met Val
               390
                       395
Lys Leu Tyr Asp Gly Asn Arg Trp Thr Asn Phe Asp Lys Lys Thr Val
          405
                      410
Gln Glu Gln Leu Gly Gly Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile
        420
                  425
                                       430
Ala Val Ser Asn Gly Asp Pro Asp His Phe Phe Val Gly Thr Trp Gly
    435
                           445
               440
Asn Gly Leu Phe Glu Phe Lys Asp Gly Lys Ala Ile Ala Arg Tyr Ser
                 455
                             460
Gly Asn Glu Thr Ala Ile Ala Glu Cys Asn Pro Gly Asp Ala Arg Val
             470
                              475
Lys Ala Ile Ala Phe Asp Asn Lys Gly Asn Leu Trp Gly Thr Leu Gly
          485
                             490
Ala Val Gly Lys Asn Ile Phe Met Tyr Asp Pro Gln Ser Ser Thr Trp
         500
                 505
                                 510
His Ser Phe Ser Tyr Pro Asp Val Ala Asn Leu Ala Ser Phe Gly Asn
              520
                              525
Met Ile Ile Leu Pro Asn Gly Asp Lys Trp Val Asn Ile Leu His Arg
          535
                                  540
Ser Gly Gly Ser Thr Arg Lys Gly Val Leu Ile Phe Asn Asp Arg Gly
                               555
Thr Pro Glu Thr Thr Ser Asp Asp Ser His Leu Tyr Val Glu Gln Phe
            565
                           570
Val Asn Arg Leu Gly Ala Ala Ile Gly His Lys Thr Ile Tyr Ala Met
         580
                        585
                                        590
Ala Val Asp His Asn Gly Ser Val Trp Met Gly Ser Asp Ile Gly Ile
    595 600
                                    605
Phe Gly Val Tyr Asn Ala Ala Gly Val Leu Ser Ser Thr Ser Thr Pro
  610
                 615
                                620
Ile Ala Val Arg Pro Val Gly Gly Glu Glu Pro Asn Leu Tyr Tyr Val
              630
                               635 640
Leu Asp Lys Val Thr Val Thr Asp Ile Val Val Asp Lys Leu Asn His
                             650
Lys Trp Val Ala Thr Gln Gly Thr Gly Leu Tyr Leu Leu Ser Glu Asp
         660
                         665
Cys Ser Lys Ile Leu Ala Gln Phe Thr Val Glu Asn Ser Pro Leu Leu
    675
               680
                                    685
Ser Asn Asn Ile Leu Ser Leu Ala Leu Asn Asp Asp Asn Gly Leu Leu
 690
            695
                                   700
Tyr Ile Gly Thr Ala Asp Gly Leu Met Thr Phe Gln Thr Gly Thr Gly
          710 715
Ser Gly Ser Ala Ser Glu Leu Asp Gly Val Tyr Val Tyr Pro Asn Pro
                             730
Leu Arg Pro Glu Tyr Pro Asp Gly Val Thr Ile Ala Gly Leu Gln Ala
```

| Table | Tabl

#### (2) INFORMATION FOR SEQ ID NO:380

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1162 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1162
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:380

Ala Ile Ser Gln Met Lys Arg Ile Leu Pro Ile Val Ala Phe Leu Ser 10 Leu Phe Leu Ala Leu Ala Leu Pro Ala Lys Ala Gln Arg Ala Met Gly 20 25 Lys Thr Ala Asp Arg Ser Leu Met Ala Ser Gly His Trp Val Lys Ile 40 Arg Val Asp Ala Ser Gly Val Tyr Arg Leu Thr Asp Glu Gln Leu Arg 50 55 Ala Asn Gly Phe Ser Asp Pro Ser Lys Val Gly Val Phe Gly Tyr Gly 65 70 75 Gly Gly Val Leu Pro Glu Asp Leu Ser Arg Ile Thr Thr Asp Asp Leu 85 90 Pro Pro Val Pro Val Leu Arg Gln Gly Asn Ala Leu Tyr Phe Tyr Ala 105 110 Val Gly Pro Val Thr Trp Phe Tyr Asn Pro Ala Lys Thr Thr Met Glu 120 125 His Thr Val Asn Thr Tyr Ser Thr His Gly Tyr Tyr Phe Leu Ser Asp 130 135 140 Ala Ala Gly Ala Pro Leu Gln Met Ser Gln Tyr Thr Gly Gly Gly Ala 150 155 Ser Ala Glu Ala Leu Ile Asp Tyr Tyr Asp Glu Leu Met Leu His Glu 165 170 175 Gln Glu Leu Tyr Ser Pro Lys Glu Ser Gly Arg Asp Leu Tyr Gly Glu 185 Ser Phe Ser Ala Val Asn Thr Arg Thr Val Lys Phe Pro Leu Arg Gly 195 200 205 Asn Thr Arg Ser Ser Gly Glu Leu Gly Thr Val Phe Ser Tyr Ile Ala 215 220 Lys Ala Arg Ser Ala Gly Gly Gly Arg Glu Met Ser Leu Ser Ala Asn 225 230 235 Gly Ile Leu Ile Phe Ser Asp Pro Phe Ser Met Thr Ser Asn Glu Val 245 250 255 Ser Asn Ser Tyr Leu Ala Gly Lys Lys Arg Arg Leu Tyr His Ser Thr 260 265 Pro Met Asn Ser Leu Val Asn Glu Leu Arg Leu Asp Ala Asn Tyr Ser 280 285 Met Thr Gly Asp Ala Val Asn Leu Asp Phe Ile Glu Val Ala Thr Gln 295 300 Asn Asp Leu Arg Tyr Asp Gly Ala Pro Met His Ile Arg Arg Phe Ser 310 315 Asn Leu Pro Val Leu Gly Gly Glu Ser Cys Arg Phe Val Ile Ser Glu 325 330 Val Pro Glu Ser Leu Val Val Leu Gln Ala Asn Ser Ser Leu Thr Ala 340 345 350 Ser Leu Val Pro Val Lys Thr Val Gly Asp Lys Thr Ile Glu Phe Val 360 365 Ala Pro Pro Lys Gly Gln Asp Arg Arg Thr Ile Asn Thr Phe Tyr Ala

	370		_			375				_	380				
Val 385		Leu	ı Seı	Glr	n Ala 390		Ala	Pro	Glu	1 Ile 395		ı Gly	/ Ala	a Val	Pro 400
Asn	Glr	Asr	ı Leı	His 405	3 Gly		Glu	Ile	Pro 410	) Asr		ı Ile	e Ile	• Val	l Ser
Thr	Glr	Ala	420	ı Leı		ı Glu	Ala	Asp 425	Arg		a Ala	a Thi	r Tyı 430	Arg	, Arg
Glu	Lys	435	ı Gly		ı Lys	Val	Leu 440	Val		Leu	ı Glr	1 Glu 445	ı Glr		Phe
Asn	Glu 450	Phe		Gly	/ Gly	Thr 455	Pro		Ala	Thr	Ala 460	туг		J Leu	ı Phe
Ala 465	Lys		Phe	туг	470	Arg		Lys	Ala	475	Ala		val	Gly	Glu
		Pro	Met	Glr 485	Met		Leu	Phe	Gly	Asp		Ala	a His		480 Asn
Arg	Lys	Val	. Ser	Val		Trp	Gln	Lys 505	Pro		Leu	Glr	Glr 510		Glu
Phe	Leu	Leu 515	Thr		Gln	Ala	Val 520			Thr	Asn	Val	Asn		Tyr
Val	Thr 530	Asp		Tyr	Phe	Gly 535		Leu	Asp	Asp	Gln 540	Pro		Ser	Val
Asn 545	Ile		Trp	Arg	Asn 550	Tyr	Asn	Met	Ala	Val 555	Gly		, Phe	Pro	Val 560
		Pro	Ala	Glu 565	Ala		Ile	Ala	Val	Asp		Thr	Ile	Arg 575	Tyr
Glu	Glu	Asp	Arg 580	Glu		Gly	Ala	Trp 585	Arg		Arg	Ala	Cys 590	Phe	Ala
Ala	Asp	Asn 595		Asp	Lys	His	Ala 600			Thr	Ser	Arg	Leu		Asp
Thr	Val 610	Lys	Arg	Tyr	Ala	Pro 615	Ala	Ile	Met	Pro	Val 620	Arg		Phe	Gln
625					630					635	His	Ser			Gly 640
				645					650	Ser	Gly			655	Leu
Asn	Tyr	Ala	Gly 660	His	Gly	Gly	Pro	Ala 665	Gly	Trp	Ser	Asp	Glu 670		
Leu	Thr	Leu 675		Asp	Ile	His	Lys 680	Phe	Asn	Tyr	Lys	His 685		Pro	Ile
	690				Cys	695					700				
705					Val 710					715					720
				725	Arg				730					735	
			740		Arg			745					750		
		755			Glu		760					765			
	770				Asp	775					780				
785					Arg 790					795					800
				805	Gln -				810					815	
			820		Arg			825					830		
		835			Glu		840					845			
	850				Lys	855					860				_
865					Tyr 870					875					880
				885	Gly				890					895	
			900		Glu			905					910		
		915			Ala		920					925			
	930				Pro Phe	935					940				
945					950 Pro					955					960
				965	Gly				970					975	
•	-		980	=	1			985	1				990		-10

Ile Asp Gly Arg Ala Asp Leu Thr Tyr Asn Leu Asn Ala Tyr Phe Thr 995 1000 1005 Ser Ser Ala Thr Asp Ala Gly Val Gly Thr Ile Leu Phe Met Ile Pro 1010 1015 1020 Ala Leu Ala Glu Gly Asp His Thr Ala Arg Leu Thr Val Trp Asp Ile 1025 1030 1035 Phe Asn Asn Ala Val His His Asp Phe Ser Phe Arg Val Val Asp Gly 1045 1050 1055 Ile Ala Pro Asp Val Ala Asp Val Ile Leu Phe Pro Asn Pro Val Arg 1060 1065 1070 Glu Ser Ala Thr Phe Arg Ile Phe His Asn Arg Pro Gly Ser Asp Leu 1075 1080 1085 Asn Val Ala Val Glu Ile Tyr Asp Phe Thr Gly Arg Leu Val Asn Ser 1090 1095 1100 Leu Pro Val Lys Thr Tyr Ser Ser Ser Tyr Gly Glu Pro Ile Glu Ile 1105 1110 1115 Lys Trp Asp Leu Thr Ser Lys Tyr Gly Val Lys Ile Gly Asn Gly Phe 1125 1130 1135 Tyr Leu Tyr Arg Cys Val Val Asn Ser Pro Gly Gly Gln Thr Ala Ser 1140 1145 Met Ala Lys Lys Met Ile Val Val Gly Gln 1155 1160

#### (2) INFORMATION FOR SEQ ID NO:381

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 973 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...973
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:381

Phe Tyr Thr Gly Ile Asp Leu His Ile Glu Ser Gln Met Lys Lys Leu 10 1 5 Phe Pro Leu Leu Leu Ile Leu Ser Ile Leu Val Gly Cys Gly Lys 20 25 Lys Glu Lys His Ser Val Thr Glu Ile Ala Arg Glu Lys Lys Arg Ile 35 40 4.5 Thr Ala Leu Leu Tyr Glu Lys Glu Leu Pro Thr Asp Ser Val Lys Gln 50 55 60 Leu Tyr Glu Asn Ser Val Gln Asn Lys Asn Leu Val Gly Gln Met Leu 70 75 Phe Ala Ile Glu Val Gly Lys Arg Met Arg Asn Met Ser Gln Tyr Thr 85 90 Asp Ala Met Leu Tyr His Gln Lys Gly Leu Asn Ala Ala Leu Asn Leu 100 105 Arg Asp Thr Ile Val Ala Ala Gln Ala Trp Asn His Leu Gly Thr Asp 115 120 125 125 Ser Arg Arg Ile Gly Ala Leu Ala Glu Ala Ser Asp Tyr His Tyr Lys 130 135 140 Ala Leu Ser Leu Ile Glu Ser Phe Ser Gly Asn Gln Asn Arg Pro Ala 145 150 155 Ile Lys Ala Arg Ser Ala Ala Leu Asn Gly Ile Gly Asn Ile Asn Leu 165 170 175 Glu Leu Gly Tyr His Asp Glu Ala Glu Lys Asn Phe Leu Lys Ala Leu 180 185 Gln Gly Glu Lys Glu Leu Asp Ser Pro Leu Gly Gln Ala Ile Asn Tyr 195 200 205 Ala Asn Leu Gly Arg Ile Tyr Arg Gln Arg Lys Glu Tyr Asp Lys Ala 210 215 220 Arg Thr Tyr Phe Leu Leu Ser Leu Glu Gln Asn Asn Met Ala Glu Asn 225 230 230 235 240 Leu Met Gly Ile Gly Leu Cys Ser Ile Asn Leu Gly Glu Val Asp Glu 245 250 255 Glu Lys Gly Asp Tyr Gln Lys Ala Leu Gln Glu Tyr Ala Thr Ala Tyr 260 265

```
Lys Leu Met Glu Gln Leu Ser Asp Arg Trp His Trp Leu Asn Ser Cys
                        280
Ile Pro Met Ala Arg Ile Asn Leu Lys Gln Gly Asn Glu Arg Leu Tyr
   290
                  295
                                     300
Gln His Phe Ile Ser Leu Ala Glu Gly Thr Ala Lys Glu Ile Asn Ser
        310
                               315
Thr Ser His Leu Ile Glu Ile Tyr Asn Leu Gln Tyr Glu Asn Leu Glu
             325
                             330
Arg Lys Lys Glu Tyr Lys Gln Ala Leu Glu Ala Phe Cys Leu Ser Lys
         340
                          345
Thr Leu Ser Asp Ser Met Ser Ile Ala His Lys Val Ser Ser Ile Gln
               360
Glu Thr Arg Phe Asn Tyr Glu Arg Asn Lys Ser Gln Lys Glu Leu Glu
           375
                                   380
Glu Ile Gln Gln Val Ser Lys Ala Lys Gln Glu Lys Ser Lys Phe Ile
        390
                             395
Leu Leu Ser Thr Leu Phe Ala Leu Phe Ile Ser Ile Leu Leu Ile Ser
           405
                            410
Val Leu Thr Tyr Ala Tyr Arg Gln Gly Lys Lys His Asn Lys Leu Ile
        420 425 430
Lys Glu Thr Asp Lys Leu Arg Ser Gly Phe Phe Thr Gly Ile Thr His
                       440
                                     445
Glu Phe Arg Thr Pro Ile Thr Val Ile Gln Gly Leu Asn Glu Lys Met
            455
Ser Ser Ser Pro Asp Leu Gln Ala Ser Asp Arg Thr Glu Leu His Lys
465
       470
                               475
Ile Ile Asp Arg Gln Ser Ser His Met Leu Asn Leu Val Asn Gln Leu
            485
                          490
Leu Asp Ile Cys Lys Ile Arg Ser Gly Val Ser Thr Pro Glu Trp Arg
        500
                  505
                                      510
Asn Gly Asp Ile Val Ser Phe Val Gln Ile Leu Ile Asp Ser Phe Ala
      515
                    520
                                  525
Pro Tyr Ala Gln Ala Gln Asp Ile Thr Leu Glu Leu Gln Pro Glu Ser
           535
                                   540
Lys Pro Ile Val Val Asp Phe Val Pro Ser Tyr Leu Gln Lys Ile Ile
         550
                           555
Ser Asn Leu Leu Ser Asn Ala Ile Lys Tyr Ser Leu Ala Gly Gly Arg
          565
                  570
                                               575
Val Val Ile Ser Leu Ala Lys Thr Lys Asn Glu Lys Asn Leu Ile Ile
       580 585
                                   590
Arg Val Ala Asp Asn Gly Ile Gly Ile Asp Lys Thr Asp Gln Ala His
    595 600
                                      605
Ile Phe Asp Ile Phe Tyr Arg Gly Gln Ser Ala Thr Glu Lys His Gly
                 615
                                620
Ser Gly Val Gly Leu Ser Phe Thr Asn Ile Leu Val Glu Asn Leu Arg
              630
                                 635
Gly Thr Ile Lys Val Glu Ser Gln Pro Gly Lys Gly Ser Ala Phe Thr
           645
                           650
Ile Ser Ile Pro Thr Gln Asn Gln Ser Ser Ser Ala Glu Ile Leu Pro
       660
                         665
Trp Leu Pro Ser Ser Asp Asp Ile Val Met Pro Val His Ile Ala Pro
              680
  675
Asp Asp Ser Pro Thr Ser Pro Met Val Ala Ala Leu Asn His Arg Phe
        695
                                    700
Glu Asp Glu Arg Pro Thr Ile Leu Leu Val Glu Asp Asn Lys Asp Ile
              710
                                 715
Asn Leu Leu Val Lys Leu Leu Cys Asp Arg Tyr Asn Val Leu Ser
           725
                             730
Ala Ala Asn Gly Lys Glu Gly Ile Ala Leu Ala Thr Glu His Ile Pro
        740
                        745
Asp Ile Ile Ile Thr Asp Ile Met Met Pro Ile Met Asp Gly Ile Glu
    755
                     760
                               765
Met Thr Ile Arg Met Lys Gln Ser Pro Leu Leu Cys His Ile Pro Ile
  770 775
                            780
Val Ala Leu Thr Ala Lys Ser Thr Glu Gln Asp Arg Leu Glu Gly Ile
                        795
                790
Lys Ser Gly Val Val Ser Tyr Leu Cys Lys Pro Phe Ser Pro Glu Glu
            805
                            810
Leu Leu Met Arg Ile Glu Gln Leu Leu Lys Asp Arg Glu Leu Leu Lys
         820
                          825
Lys Phe Tyr Met Gln Lys Leu Met Leu Asp Arg Lys Pro Glu Glu Glu
     835
                      840
                                        845
Pro Gln Pro Ile Asp Asp Ser Ser Met Gln Phe Leu Leu Ala Ala Lys
 850 855
                            860
Asp Ala Val Ser Gly Gly Ile Lys Gln Asn Pro Asp Phe Ser Ala Gln
                870
                                875
Asp Leu Ala Glu Lys Met Cys Met Ser Pro Ser Gln Leu Asn Arg Lys
```

| Record | R

#### (2) INFORMATION FOR SEQ ID NO:382

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 563 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...563
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:382

His His Lys Thr Tyr Gln Thr Met Lys Lys Leu Leu Gln Ala Lys Ala 10 Leu Ile Leu Ala Leu Gly Leu Phe Gln Leu Pro Ala Ile Ala Gln Thr 20 25 Gln Met Gln Ala Asp Arg Thr Asn Gly Gln Phe Ala Thr Glu Glu Met 35 40 45 Gln Arg Ala Phe Gln Glu Thr Asn Pro Pro Ala Gly Pro Val Arg Ala 50 55 60 Ile Ala Glu Tyr Glu Arg Ser Ala Ala Val Leu Val Arg Tyr Pro Phe 70 75 Gly Ile Pro Met Glu Leu Ile Lys Glu Leu Ala Lys Asn Asp Lys Val 85 90 Ile Thr Ile Val Ala Ser Glu Ser Gln Lys Asn Thr Val Ile Thr Gln 105 100 Tyr Thr Gln Ser Gly Val Asn Leu Ser Asn Cys Asp Phe Ile Ile Ala 115 120 125 Lys Thr Asp Ser Tyr Trp Thr Arg Asp Tyr Thr Gly Trp Phe Ala Met 130 135 140 135 Tyr Asp Thr Asn Lys Val Gly Leu Val Asp Phe Ile Tyr Asn Arg Pro 150 155 145 Arg Pro Asn Asp Asp Glu Phe Pro Lys Tyr Glu Ala Gln Tyr Leu Gly 165 170 Ile Glu Met Phe Gly Met Lys Leu Lys Gln Thr Gly Gly Asn Tyr Met 185 180 190 Thr Asp Gly Tyr Gly Ser Ala Val Gln Ser His Ile Ala Tyr Thr Glu 195 200 205 Asn Ser Ser Leu Ser Gln Ala Gln Val Asn Gln Lys Met Lys Asp Tyr 210 215 220 Leu Gly Ile Thr His His Asp Val Val Gln Asp Pro Asn Gly Glu Tyr 230 235 Ile Asn His Val Asp Cys Trp Gly Lys Tyr Leu Ala Pro Asn Lys Ile 245 250 Leu Ile Arg Lys Val Pro Asp Asn His Pro Gln His Gln Ala Leu Glu 260 265 Asp Met Ala Ala Tyr Phe Ala Ala Gln Thr Cys Ala Trp Gly Thr Lys 280 285 Tyr Glu Val Tyr Arg Ala Leu Ala Thr Asn Glu Gln Pro Tyr Thr Asn 290 295 300 Ser Leu Ile Leu Asn Asn Arg Val Phe Val Pro Val Asn Gly Pro Ala 305 310 315 320 Ser Val Asp Asn Asp Ala Leu Asn Val Tyr Lys Thr Ala Met Pro Gly 325 330 Tyr Glu Ile Ile Gly Val Lys Gly Ala Ser Gly Thr Pro Trp Leu Gly 340 345 Thr Asp Ala Leu His Cys Arg Thr His Glu Val Ala Asp Lys Gly Tyr

360 Leu Tyr Ile Lys His Tyr Pro Ile Leu Gly Glu Gln Ala Gly Pro Asp 375 380 Tyr Lys Ile Glu Ala Asp Val Val Ser Cys Ala Asn Ala Thr Ile Ser 385 390 395 400 Pro Val Gln Cys Tyr Tyr Arg Ile Asn Gly Ser Gly Ser Phe Lys Ala 415 405 410 Ala Asp Met Thr Met Glu Ser Thr Gly His Tyr Thr Tyr Ser Phe Thr 420 425 430 Gly Leu Asn Lys Asn Asp Lys Val Glu Tyr Tyr Ile Ser Ala Ala Asp 435 440 445 Asn Ser Gly Arg Lys Glu Thr Tyr Pro Phe Ile Gly Glu Pro Asp Pro 455 460 Phe Lys Phe Thr Cys Met Asn Glu Thr Asn Thr Cys Thr Val Thr Gly 470 475 Ala Ala Lys Ala Leu Arg Ala Trp Phe Asn Ala Gly Arg Ser Glu Leu 485 490 495 Ala Val Ser Val Ser Leu Asn Ile Ala Gly Thr Tyr Arg Ile Lys Leu 500 505 510 Tyr Asn Thr Ala Gly Glu Glu Val Ala Ala Met Thr Lys Glu Leu Val 520 525 515 Ala Gly Thr Ser Val Phe Ser Met Asp Val Tyr Ser Gln Ala Pro Gly 535 540 Thr Tyr Val Leu Val Val Glu Gly Asn Gly Ile Arg Glu Thr Met Lys 555 Ile Leu Lys

#### (2) INFORMATION FOR SEQ ID NO:383

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 437 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...437
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:383

Thr Thr Asn Arg Lys Pro Asn Thr Asn Met Lys Leu Ser Ser Lys Lys 10 Ile Leu Ala Ile Ile Ala Leu Leu Thr Met Gly His Ala Val Gln Ala 20 25 Gln Phe Val Pro Ala Pro Thr Thr Gly Ile Arg Met Ser Val Thr Thr 40 45 Thr Lys Ala Val Gly Glu Lys Ile Glu Leu Leu Val His Ser Ile Glu 55 60 Lys Lys Gly Ile Trp Ile Asp Leu Asn Gly Asp Ala Thr Tyr Gln Gln 70 75 Gly Glu Glu Ile Thr Val Phe Asp Glu Ala Tyr His Glu Tyr Thr Ile 90 85 Gly Thr Gln Thr Leu Thr Ile Tyr Gly Asn Thr Thr Arg Leu Gly Cys 100 105 110 Arg Ser Thr Gly Ala Thr Ala Val Asp Val Thr Lys Asn Pro Asn Leu 120 125 115 Thr Tyr Leu Ala Cys Pro Lys Asn Asn Leu Lys Ser Leu Asp Leu Thr 140 130 135 Gln Asn Pro Lys Leu Leu Arg Val Trp Cys Asp Ser Asn Glu Ile Glu 145 150 155 Ser Leu Asp Leu Ser Gly Asn Pro Ala Leu Ile Ile Leu Gly Cys Asp 165 170 175 Arg Asn Lys Leu Thr Glu Leu Lys Thr Asp Asn Asn Pro Lys Leu Ala 185 190 180 Ser Leu Trp Cys Ser Asp Asn Asn Leu Thr Glu Leu Glu Leu Ser Ala 195 200 205 Asn Pro Arg Leu Asn Asp Leu Trp Cys Phe Gly Asn Arg Ile Thr Lys 215 220 Leu Asp Leu Ser Ala Asn Pro Leu Leu Val Thr Leu Trp Cys Ser Asp

230 Asn Glu Leu Ser Thr Leu Asp Leu Ser Lys Asn Ser Asp Val Ala Tyr 245 250 255 Leu Trp Cys Ser Ser Asn Lys Leu Thr Ser Leu Asn Leu Ser Gly Val 260 265 270 Lys Gly Leu Ser Val Leu Val Cys His Ser Asn Gln Ile Ala Gly Glu 285 275 280 Glu Met Thr Lys Val Val Asn Ala Leu Pro Thr Leu Ser Pro Gly Ala 290 295 300 Gly Ala Gln Ser Lys Phe Val Val Val Asp Leu Lys Asp Thr Asp Glu 305 310 315 Lys Asn Ile Cys Thr Val Lys Asp Val Glu Lys Ala Lys Ser Lys Asn 325 330 335 Trp Arg Val Phe Asp Phe Asn Gly Asp Ser Asp Asn Met Leu Pro Tyr 345 350 Glu Gly Ser Pro Thr Ser Asn Leu Ala Val Asp Ala Pro Thr Val Arg 360 365 Ile Tyr Pro Asn Pro Val Gly Arg Tyr Ala Leu Val Glu Ile Pro Glu 380 370 375 Ser Leu Leu Gly Gln Glu Ala Ala Leu Tyr Asp Met Asn Gly Val Lys 395 385 390 Val Tyr Ser Phe Ala Val Glu Ser Leu Arg Gln Asn Ile Asp Leu Thr 405 410 415 His Leu Pro Asp Gly Thr Tyr Phe Phe Arg Leu Asp Asn Tyr Thr Thr 420 425 Lys Leu Ile Lys Gln

#### (2) INFORMATION FOR SEQ ID NO:384

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 318 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...318
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:384

Asn His Leu Lys Thr Asn Ile Lys Met Arg Lys Thr Ile Ile Phe Cys 10 Leu Leu Leu Ala Leu Phe Gly Cys Ser Trp Ala Gln Glu Arg Val Asp 20 25 Glu Lys Val Phe Ser Ala Gly Thr Ser Ile Phe Arg Gly Ile Leu Glu 40 Lys Val Lys Ala Pro Leu Met Tyr Gly Asp Arg Glu Val Trp Gly Met 55 60 Ala Arg Ala Ser Glu Asp Phe Phe Phe Ile Leu Pro Val Thr Asp Asp 70 75 Leu Thr Pro Val Leu Phe Tyr Asn Arg Leu Thr Asn Glu Pro Cys Phe 85 90 95 Val Ser Asp Gln Gly Ile Thr Glu Tyr Phe Lys Phe Ala Gln Glu Gly 100 105 110 Asp Tyr Ile Glu Val Glu Gly Ser Ser Val Phe Met Ala Asn Leu Leu 125 120 115 Tyr Tyr Arg Phe Phe Pro Thr Arg Ile Thr Ser Tyr Asn Ala Pro Ile 135 Glu Gly Val Val Ser Lys Thr Gly Asn Pro Ala Phe Thr Ile Pro Met 150 155 Leu Pro Gly Val Ser Asp Cys Ile Glu Ile Ser Asn Asn Arg Lys Val 165 170 175 Phe Leu Thr Asn Gln Leu Gly Val Val Asn Ile Thr Asp Gly Met Glu 190 180 185 Pro Pro Ile Ile Ala Gly Val Ser Ala Ser Tyr Gly Ser Ser Val Arg 195 200 205 Val Tyr Gly His Val Ser Gln Arg Trp Asp Ile Ile Gly His Cys Tyr 220 215 Leu Asp Ile Tyr Pro Thr Asn Cys Tyr Pro Leu Ser Thr Lys Pro Val 

## (2) INFORMATION FOR SEQ ID NO:385

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 461 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...461
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:385

Arg Arg Ala Val Lys Ile Arg Ser Pro Pro His Ile His Ser Leu Phe 10 Val Arg Lys Cys Leu Phe Ser Asp Phe Lys Tyr Leu Tyr Leu Ser Arg 20 25 Lys Ile Thr Gln Glu Arg Leu Gly Arg Leu Ser Ile Arg Leu Lys Ser 40 35 45 Tyr Asn Pro Ile Ile Ile Glu Met Lys Lys Thr Thr Ile Ile Ser 55 60 Leu Ile Val Phe Gly Ala Phe Phe Ala Ala Val Gly Gln Thr Lys Asp 70 75 Asn Ser Ser Tyr Lys Pro Phe Ser Lys Glu Asp Ile Ala Gly Gly Val 85 90 Tyr Ser Leu Pro Thr Gln Asn Arg Ala Gln Lys Asp Asn Ala Glu Trp 100 105 Leu Leu Thr Ala Thr Val Ser Thr Asn Gln Ser Ala Asp Thr His Phe 115 120 125 Ile Phe Asp Glu Asn Asn Arg Tyr Ile Ala Arg Asp Ile Lys Ala Asn 130 135 140 Gly Val Arg Lys Ser Thr Asp Ser Ile Tyr Tyr Asp Ala Asn Gly Arg 150 155 Ile Ser His Val Asp Leu Tyr Ile Ser Phe Ser Gly Gly Glu Pro Ala 165 170 Leu Asp Thr Arg Phe Lys Tyr Thr Tyr Asp Asp Glu Gly Lys Met Thr 180 185 Val Arg Glu Val Phe Met Leu Val Met Asp Pro Asn Thr Pro Ile Ser 195 200 205 Arg Leu Glu Tyr His Tyr Asp Ala Gln Gly Arg Leu Thr His Trp Ile 210 215 220 Ser Phe Ala Phe Gly Ala Glu Ser Gln Lys Asn Thr Tyr His Tyr Asn 230 235 Glu Lys Gly Leu Leu Val Ser Glu Val Leu Ser Asn Ala Met Gly Thr 245 250 255 Thr Tyr Ser Asp Thr Gly Lys Thr Glu Tyr Ser Tyr Asp Asp Ala Asp 260 265 Asn Met Val Lys Ala Glu Tyr Phe Val Val Gln Gln Gly Lys Ala Trp 275 280 285 Gln Val Leu Lys Arg Glu Glu Tyr Thr Tyr Glu Asp Asn Ile Cys Ile 290 295 300 Gln Tyr Leu Ala Ile Asn Gly Thr Asp Thr Lys Val Tyr Lys Arg Asp 315 310 Ile Glu Ser Asp Lys Ser Ile Ser Ala Asn Val Ile Asp Ile Pro Ser 325 330 335 Met Pro Glu Gln Thr Trp Pro Asn Met Tyr Gly Phe Asn Ala Lys Arg 345 350 Leu Lys Glu Thr Tyr Ser Ser Tyr Glu Gly Asp Val Ala Thr Pro Ile

## (2) INFORMATION FOR SEQ ID NO:386

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 451 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...451
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:386

Met Ala Lys Val Ile Lys Thr Lys Lys Gly Leu Ala Leu Asn Leu Lys 10 Gly Lys Pro Leu Pro Glu Met Leu Ala Glu Pro Ala Gln Ser Pro Thr 20 25 Tyr Ala Val Val Pro Asp Asp Phe Glu Gly Val Ile Pro Lys Val Thr 40 45 Ala Arg Pro Gly Asp Lys Val Arg Ala Gly Ser Ala Leu Met His His 55 60 Lys Ala Tyr Pro Glu Met Lys Phe Thr Ser Pro Val Ser Gly Glu Val 70 75 Ile Ala Val Asn Arg Gly Ala Lys Arg Lys Val Leu Ser Ile Glu Val 85 90 Lys Pro Asp Gly Leu Asn Glu Tyr Glu Ser Phe Pro Val Gly Asp Pro 105 100 110 Ser Ala Leu Ser Ala Glu Gln Ile Lys Glu Leu Leu Leu Ser Ser Gly 115 120 125 Met Trp Gly Phe Ile Lys Gln Arg Pro Tyr Asp Ile Val Ala Thr Pro 135 140 Asp Ile Ala Pro Arg Asp Ile Tyr Ile Thr Ala Asn Phe Thr Ala Pro 145 150 155 Leu Ala Pro Asp Phe Asp Phe Ile Val Arg Gly Glu Glu Arg Ala Leu 165 170 175 Gln Thr Ala Ile Asp Ala Leu Ala Lys Leu Thr Thr Gly Lys Val Tyr 180 185 190Val Gly Leu Lys Pro Gly Ser Ser Leu Gly Leu His Asn Ala Glu Ile 195 200 205 Val Glu Val His Gly Pro His Pro Ala Gly Asn Val Gly Val Leu Ile 215 220 Asn His Thr Lys Pro Ile Asn Arg Gly Glu Thr Val Trp Thr Leu Lys 230 235 Ala Thr Asp Leu Ile Val Ile Gly Arg Phe Leu Leu Thr Gly Lys Ala 245 250 Asp Phe Thr Arg Met Ile Ala Met Thr Gly Ser Asp Ala Ala Ala His 260 265 Gly Tyr Val Arg Ile Met Pro Gly Cys Asn Val Phe Ala Ser Phe Pro 275 280 285 Gly Arg Leu Thr Ile Lys Glu Ser His Glu Arg Val Ile Asp Gly Asn 295 300 Val Leu Thr Gly Lys Lys Leu Cys Glu Lys Glu Pro Phe Leu Ser Ala 310 315 320 Arg Cys Asp Gln Ile Thr Val Ile Pro Glu Gly Asp Asp Val Asp Glu 325 330 335 Leu Phe Gly Trp Ala Ala Pro Arg Leu Asp Gln Tyr Ser Met Ser Arg

340 345 Ala Tyr Phe Ser Trp Leu Gln Gly Lys Asn Lys Glu Tyr Val Leu Asp 355 360 365 Ala Arg Ile Lys Gly Glu Arg Ala Met Ile Met Ser Asn Glu Tyr 370 375 380 Asp Arg Val Phe Pro Met Asp Ile Tyr Pro Glu Tyr Leu Leu Lys Ala 390 395 Ile Ile Ala Phe Asp Ile Asp Lys Met Glu Asp Leu Gly Ile Tyr Glu 405 410 415 . Val Ala Pro Glu Asp Phe Ala Thr Cys Glu Phe Val Asp Thr Ser Lys 420 425 430 Ile Glu Leu Gln Arg Ile Val Arg Glu Gly Leu Asp Met Leu Tyr Lys 435 440 Glu Met Asn 450

#### (2) INFORMATION FOR SEQ ID NO:387

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 195 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...195
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:387

Met Asp Lys Val Ser Tyr Ala Leu Gly Leu Ser Ile Gly Asn Asn Phe 10 15 Lys Ser Ser Gly Ile Asp Ser Val Val Met Asp Asp Phe Met Gln Gly 20 Leu Ser Asp Val Leu Glu Glu Lys Ala Pro Gln Leu Ser Tyr Asp Glu 35 40 Ala Lys Arg Glu Ile Glu Ala Tyr Phe Met Asp Leu Gln Gln Lys Ala 55 60 Val Lys Leu Asn Lys Glu Ala Gly Glu Glu Phe Leu Lys Ile Asn Ala 70 75 His Lys Glu Gly Val Thr Thr Leu Pro Ser Gly Leu Gln Tyr Glu Val 85 90 95 Ile Lys Met Gly Glu Gly Pro Lys Pro Thr Leu Ser Asp Thr Val Thr 105 110 Cys His Tyr His Gly Thr Leu Ile Asn Gly Ile Val Phe Asp Ser Ser 115 120 Met Asp Arg Gly Glu Pro Ala Ser Phe Pro Leu Arg Gly Val Ile Ala 130 135 140 Gly Trp Thr Glu Ile Leu Gln Leu Met Pro Val Gly Ser Lys Trp Lys 155 150 Val Thr Ile Pro Ser Asp Leu Ala Tyr Gly Asp Arg Gly Ala Gly Glu 165 170 175 His Ile Lys Pro Gly Ser Thr Leu Ile Phe Ile Ile Glu Leu Leu Ser 185 190 Ile Asn Lvs 195

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 273 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...273
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:388

Met Lys Lys Ala Leu Leu Ile Gly Ala Ala Leu Leu Gly Ala Val Ser Phe Ala Ser Ala Gln Ser Leu Ser Thr Ile Lys Val Gln Asn Asn Ser 25 Val Gln Gln Pro Arg Glu Glu Ala Thr Ile Gln Val Cys Gly Glu Leu 40 4.5 Ala Glu Gln Val Asp Cys Ile Gly Thr Gly Asn Ser Ala Ile Ile Ala 55 60 Ala Ala Ala Lys Phe Glu Ser Asp Asp Leu Glu Ser Tyr Val Gly Trp 75 70 Glu Ile Met Ser Val Asp Phe Phe Pro Gly Tyr Lys Ala Cys Lys Tyr 85 90 95 Thr Ser Ala Val Trp Ala Asp Asp Met Thr Ile Leu Gly Gln Ser Glu 100 105 Asp Ser Asp Pro Glu Met Gln Thr Ile Asn Asn Leu Ala Leu Lys Thr 115 120 125 Ser Val Lys Ile Glu Ala Gly Lys Asn Tyr Ile Val Gly Tyr Ile Ala 135 140 Asn Thr Ala Gly Gly His Pro Ile Gly Cys Asp Gln Gly Pro Ala Val 145 150 155 Asp Gly Tyr Gly Asp Leu Val Ser Ile Ser Glu Asp Gly Gly Ala Thr 165 170 175 Phe Pro Pro Phe Glu Ser Leu His Gln Ala Val Pro Thr Leu Asn Tyr 180 185 190 Asn Ile Tyr Val Val Val His Leu Lys Lys Gly Glu Gly Val Glu Ala 200 205 195 Val Leu Thr Asn Asp Lys Ala Asn Ala Tyr Val Gln Asn Gly Val Ile 210 215 220 Tyr Val Ala Gly Ala Asn Gly Arg Gln Val Ser Leu Phe Asp Met Asn 230 235 Gly Lys Val Val Tyr Thr Gly Val Ser Glu Thr Ile Ala Ala Pro Gln 245 250 255 Lys Gly Met Tyr Ile Leu Arg Val Gly Ala Lys Ser Ile Lys Leu Ala 265 260

# (2) INFORMATION FOR SEQ ID NO:389

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 554 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...554
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:389

Met Pro Arg Ile Met Lys Leu Lys Ile Ala Leu Arg Leu Leu Leu Ala 10 Thr Phe Ala Ile Val Leu Phe Ser Pro Leu Ala Lys Ala Gln Met Asp 20 25 Ile Gly Gly Asp Asp Val Leu Ile Glu Thr Met Ser Thr Leu Ser Gly 40 45 35 Tyr Ser Glu Asp Phe Tyr Tyr Lys Met Ala Val Ala Asp Asn Gly Trp 55 Ile Tyr Val Met Leu Asp Phe Ser Arg Ile Tyr Phe Asp Asp Val Arg 70 75 Leu Tyr Arg Ser Lys Asp Gly Gly Ala Thr Tyr Gln Lys Leu Gly Ser 85 90 95 Leu Gly Ser Leu Val Pro Tyr Asp Phe Asp Val Ser His Cys Asp Phe 100 105

Ile Val Thr Gly Lys Asp Glu Asp Asp Ile Asn Val Trp Thr Val Met 115 120 Thr Ala Phe Glu Tyr Val Gly Gly Thr Ile Gly Asn Gly Val Leu Leu 130 135 140 Met His Arg His Asp Ala Asp Ile Asn Asn Thr Glu Cys Val Tyr Lys 145 150 155 Lys Asp Phe Pro Asn Asn Arg Leu Met Gly Val Ala Ile Ala Ser Asn 165 170 Tyr Arg Ala Pro Ser Pro Tyr Gly Leu Gly Gly Asp Pro Phe Ala Leu 185 180 Ala Val Ala Val Ser Gly Ser Gly Ser Asp His Ser Phe Leu Asp Tyr 200 205 Ile Phe Ser Leu Asp Gly Gly Val His Phe Glu Gln Lys Arg Ile Tyr 210 215 220 Thr Arg Pro Gln Lys Leu Thr Ile Asn Arg Val Asp Leu Ser Leu Gly 235 230 Ser Thr Ser Pro Ser Leu Gly Phe Asn Thr Trp Pro Leu Met Gly Val Val Phe Glu Met Asn Lys Asn Leu Asp Gly Phe Asp Ile Gly Phe Ile 260 265 270 Ser Asn Phe Val Asp Tyr Asp Pro Arg Tyr Ala Trp Ser Glu Pro Ile 275 280 Ile Ile Glu Glu Asp Cys Gly Trp Thr Asp Phe Asn Pro Leu Gly Ala 295 300 Leu Ser Ile Glu Ile Gln Met Met Leu Asp Asp Asn Ser Asp Asn Thr 310 315 320 Val Gly Gly Glu Arg Ser His Asn Phe Leu Ile Thr Tyr Pro Gly His 325 330 335 Tyr Val Tyr Pro Lys Gln Ser Phe Asn Tyr Ser Pro Gly His Thr Pro 340 345 350 Thr Lys Lys Asp Leu Val Phe Lys His Cys Ile Gly Ile Pro Ala Leu 360 355 Ala Tyr Asp Lys Glu Gly Asp Arg Tyr Leu Thr Thr Phe Gln Asp His 370 375 380 Asn Leu Met Arg Tyr Arg Trp Ile Lys Tyr Asp Asp Ile Asn Ser Phe 390 395 Tyr Gly Trp Ser Trp Pro Tyr Val Tyr Ala Lys Glu Ala Lys Asp Lys 405 410 415 Lys Arg Arg Arg Pro Gln Val Ala Leu Asn Pro Thr Asn Gly Lys Ala 420 425 430 Cys Trp Val Trp His Thr Arg Lys Ser Pro Tyr Asp Glu Thr Lys Pro 440 445 435 His Pro Thr Pro Val Ile Ile Lys His Phe Leu Trp Ser Asp Thr Glu 455 460 Trp Val His Ala Leu Asp Val Gly Asp Val Leu Gln Lys Glu Gly Ser 470 475 Met Lys Leu Tyr Pro Asn Pro Ala Lys Glu Tyr Val Leu Ile Asn Leu 490 485 495 Pro Lys Glu Gly Gly His Glu Ala Val Val Tyr Asp Met Gln Gly Arg 505 510 500 Ile Val Glu Lys Val Ser Phe Ser Gly Lys Glu Tyr Lys Leu Asn Val 520 525 515 Gln Tyr Leu Ser Lys Gly Thr Tyr Met Leu Lys Val Val Ala Asp Thr 530 535 Glu Tyr Phe Val Glu Lys Ile Ile Val Glu

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 550 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...550
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:390

Met Lys Leu Lys Ile Ala Leu Arg Leu Leu Leu Ala Thr Phe Ala Ile 10 Val Leu Phe Ser Pro Leu Ala Lys Ala Gln Met Asp Ile Gly Gly Asp 25 30 20 Asp Val Leu Ile Glu Thr Met Ser Thr Leu Ser Gly Tyr Ser Glu Asp 40 45 Phe Tyr Tyr Lys Met Ala Val Ala Asp Asn Gly Trp Ile Tyr Val Met 55 Leu Asp Phe Ser Arg Ile Tyr Phe Asp Asp Val Arg Leu Tyr Arg Ser Lys Asp Gly Gly Ala Thr Tyr Gln Lys Leu Gly Ser Leu Gly Ser Leu 90 95 90 Val Pro Tyr Asp Phe Asp Val Ser His Cys Asp Phe Ile Val Thr Gly 100 105 110 Lys Asp Glu Asp Asp Ile Asn Val Trp Thr Val Met Thr Ala Phe Glu 115 120 125 Tyr Val Gly Gly Thr Ile Gly Asn Gly Val Leu Leu Met His Arg His 130 135 140 Asp Ala Asp Ile Asn Asn Thr Glu Cys Val Tyr Lys Lys Asp Phe Pro 145 150 155 Asn Asn Arg Leu Met Gly Val Ala Ile Ala Ser Asn Tyr Arg Ala Pro 165 170 Ser Pro Tyr Gly Leu Gly Gly Asp Pro Phe Ala Leu Ala Val Ala Val 180 185 190 Ser Gly Ser Gly Ser Asp His Ser Phe Leu Asp Tyr Ile Phe Ser Leu 200 205 195 Asp Gly Gly Val His Phe Glu Gln Lys Arg Ile Tyr Thr Arg Pro Gln 220 215 Lys Leu Thr Ile Asn Arg Val Asp Leu Ser Leu Gly Ser Thr Ser Pro 230 235 Ser Leu Gly Phe Asn Thr Trp Pro Leu Met Gly Val Val Phe Glu Met 245 250 255 Asn Lys Asn Leu Asp Gly Phe Asp Ile Gly Phe Ile Ser Asn Phe Val 260 265 Asp Tyr Asp Pro Arg Tyr Ala Trp Ser Glu Pro Ile Ile Glu Glu 280 Asp Cys Gly Trp Thr Asp Phe Asn Pro Leu Gly Ala Leu Ser Ile Glu 290 295 300 295 Ile Gln Met Met Leu Asp Asp Asn Ser Asp Asn Thr Val Gly Glu 305 310 315 Arg Ser His Asn Phe Leu Ile Thr Tyr Pro Gly His Tyr Val Tyr Pro 330 325 335 Lys Gln Ser Phe Asn Tyr Ser Pro Gly His Thr Pro Thr Lys Lys Asp 340 345 Leu Val Phe Lys His Cys Ile Gly Ile Pro Ala Leu Ala Tyr Asp Lys 360 Glu Gly Asp Arg Tyr Leu Thr Thr Phe Gln Asp His Asn Leu Met Arg 375 380 Tyr Arg Trp Ile Lys Tyr Asp Asp Ile Asn Ser Phe Tyr Gly Trp Ser 385 390 395 400 Trp Pro Tyr Val Tyr Ala Lys Glu Ala Lys Asp Lys Lys Arg Arg Arg 405 410 415 Pro Gln Val Ala Leu Asn Pro Thr Asn Gly Lys Ala Cys Trp Val Trp 420 425 His Thr Arg Lys Ser Pro Tyr Asp Glu Thr Lys Pro His Pro Thr Pro 435 440 Val Ile Ile Lys His Phe Leu Trp Ser Asp Thr Glu Trp Val His Ala 455 460 Leu Asp Val Gly Asp Val Leu Gln Lys Glu Gly Ser Met Lys Leu Tyr 470 475 480 Pro Asn Pro Ala Lys Glu Tyr Val Leu Ile Asn Leu Pro Lys Glu Gly
485 490 495 Gly His Glu Ala Val Val Tyr Asp Met Gln Gly Arg Ile Val Glu Lys 500 505 510 Val Ser Phe Ser Gly Lys Glu Tyr Lys Leu Asn Val Gln Tyr Leu Ser 515 520 525 Lys Gly Thr Tyr Met Leu Lys Val Val Ala Asp Thr Glu Tyr Phe Val Glu Lys Ile Ile Val Glu 550

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 390 amino acids
  - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...390
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:391

Met Lys Arg Leu Leu Pro Phe Leu Leu Leu Ala Gly Leu Val Ala Val 10 Gly Asn Val Ser Ala Gln Ser Pro Arg Ile Pro Gln Val Asp Val His 20 25 Thr Arg Ile Ala Arg Asn Ala Arg Tyr Arg Leu Asp Lys Ile Ser Val 35 45 40 Pro Asp Ser Arg Gln Ile Phe Asp Tyr Phe Tyr Lys Glu Glu Thr Ile 55 60 Pro Thr Lys Ile Gln Thr Thr Gly Gly Ala Ile Thr Ser Ile Asp 70 75 Ser Leu Phe Tyr Glu Asp Asp Arg Leu Val Gln Val Arg Tyr Phe Asp 85 90 Asn Asn Leu Glu Leu Lys Gln Ala Glu Lys Tyr Val Tyr Asp Gly Ser 100 105 110 Lys Leu Val Leu Arg Glu Ile Arg Lys Ser Pro Thr Asp Glu Thr Pro 115 120 125 Ile Lys Lys Val Ser Tyr His Tyr Leu Cys Gly Ser Asp Met Pro Phe 130 135 140 Glu Ile Thr Thr Glu Met Ser Asp Gly Tyr Phe Glu Ser His Thr Leu 155 145 150 Asn Tyr Leu Asn Gly Lys Ile Ala Arg Ile Asp Ile Met Thr Gln Gln 165 170 Asn Pro Ser Ala Glu Leu Ile Glu Thr Gly Arg Met Val Tyr Glu Phe 185 190 180 Asp Ala Asn Asn Asp Ala Val Leu Leu Arg Asp Ser Val Phe Leu Pro 205 195 200 Leu Gln Asn Lys Trp Val Glu Met Phe Thr His Arg Tyr Thr Tyr Asp 215 220 210 Asn Lys His Asn Cys Ile Arg Trp Glu Gln Asp Glu Phe Gly Thr Leu 225 230 230 235 240 Thr Leu Ala Asn Asn Phe Glu Tyr Asp Thr Thr Ile Pro Leu Ser Ser 245 250 255 Val Leu Phe Pro Thr His Glu Glu Phe Phe Arg Pro Leu Leu Pro Asn 27Ò 260 265 Phe Met Lys His Met Arg Thr Lys Gln Thr Tyr Phe Asn Asn Ser Gly 275 280 285 Glu Gly Leu Ser Glu Val Cys Asp Tyr Asn Tyr Phe Tyr Thr Asp Met 290 295 300 Gln Gly Asn Ala Leu Thr Asp Val Ala Val Asn Glu Ser Ile Lys Ile 315 305 310 Tyr Pro Arg Pro Ala Thr Asp Phe Leu Arg Ile Glu Gly Ser Gln Leu 330 325 Leu Arg Leu Ser Leu Phe Asp Met Asn Gly Lys Leu Ile Arg Ala Thr 340 345 Glu Leu Thr Gly Asp Leu Ala Ile Ile Gly Val Ala Ser Leu Pro Arg 360 365 Gly Thr Tyr Ile Ala Glu Ile Thr Ala Ala Asn Ser Lys Thr Ile Arg 380 Ala Lys Val Ser Leu Arg 390

- (2) INFORMATION FOR SEQ ID NO:392
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 411 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...411
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:392

Met Arg Gln His Leu Ser Leu Phe Pro Phe Ile Leu Phe Leu Leu 10 Ala Phe Ser Tyr Val Gly Cys Arg Thr Val Arg Gln Thr Pro Lys Gln 20 25 30 Ser Glu Arg Tyr Val Val Val Leu Ser Leu Asp Gly Phe Arg Pro Asp 45 40 35 Tyr Thr Asp Arg Ala Arg Thr Pro Ala Leu Asp Arg Met Ala Gln Glu 55 Gly Leu Ser Gly Ser Leu Gln Pro Cys Phe Pro Ser Leu Thr Phe Pro 70 75 65 Asn His Tyr Ser Met Ala Thr Gly Leu Tyr Pro Asp His His Gly Ile 90 Val Ala Asn Glu Phe Val Asp Ser Leu Leu Gly Ile Phe Arg Ile Ser 105 110 100 Asp Arg Lys Ala Val Glu Thr Pro Gly Phe Trp Gly Gly Glu Pro Val 115 120 Trp Asn Thr Ala Ala Arg Gln Gly Ile Arg Thr Gly Val Tyr Phe Trp 140 135 Val Gly Ser Glu Thr Ala Val Asn Gly Asn Arg Pro Trp Arg Trp Lys 145 150 155 Lys Phe Ser Ser Thr Val Pro Phe Arg Asp Arg Ala Asp Ser Val Ile 175 165 170 Ala Trp Leu Gly Leu Pro Glu Lys Glu Arg Pro Arg Leu Leu Met Trp 185 190 180 Tyr Ile Glu Glu Pro Asp Met Ile Gly His Ser Gln Thr Pro Glu Ser 195 200 205 Pro Leu Thr Leu Ala Met Val Glu Arg Leu Asp Ser Val Val Gly Tyr 215 220 210 Phe Arg Lys Arg Leu Asp Ser Leu Pro Ile Ala Ala Gln Thr Asp Phe 225 230 230 240 Ile Ile Val Ser Asp His Gly Met Ala Thr Tyr Glu Asn Glu Lys Cys 245 250 Val Asn Leu Ser His Tyr Leu Pro Ala Asp Ser Phe Leu Tyr Met Ala 260 265 270 Thr Gly Ala Phe Thr His Leu Tyr Pro Lys Pro Ser Tyr Thr Glu Arg 275 280 285 280 Ala Tyr Glu Ile Leu Arg Ala Ile Pro His Ile Ser Val Tyr Arg Lys 295 300 Gly Glu Val Pro Lys Arg Leu Arg Cys Gly Thr Asn Pro Arg Leu Gly 310 315 Glu Leu Val Val Ile Pro Asp Ile Gly Ser Thr Val Phe Phe Ala Ile 325 330 Asn Glu Asp Val Arg Pro Gly Ala Ala His Gly Tyr Asp Asn Gln Ala 345 340 Pro Glu Met Arg Ala Leu Leu Arg Ala Val Gly Pro Asp Phe Arg Pro 360 365 Gly Ser Arg Val Glu Asn Leu Pro Asn Ile Thr Ile Tyr Pro Leu Ile 375 380 Cys Arg Leu Leu Gly Ile Glu Pro Ala Pro Asn Asp Ala Asp Glu Thr 385 390 395 400 Leu Leu Asn Gly Leu Ile Arg Asp Lys Arg Pro 405

- (2) INFORMATION FOR SEQ ID NO:393
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 246 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...246

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:393

Met Lys Val Gly Leu Phe Ile Pro Cys Tyr Val Asn Ala Val Tyr Pro Glu Val Gly Ile Ala Thr Tyr Lys Leu Leu Lys Ser Leu Asp Ile Asp 20 25 30 Val Asp Tyr Pro Met Asp Gln Thr Cys Cys Gly Gln Pro Met Ala Asn 40 Ala Gly Phe Glu Gln Lys Ala Gln Lys Leu Ala Leu Arg Phe Glu Glu 55 60 Leu Phe Glu Ser Tyr Asp Val Val Val Gly Pro Ser Ala Ser Cys Val 70 75 Ala Phe Val Lys Glu Asn Tyr Asp His Ile Leu Arg Pro Thr Gly His 90 85 Val Cys Lys Ser Ala Ala Lys Val Arg Asp Ile Cys Glu Phe Leu His 105 110 100 Asp Asp Leu Lys Ile Thr Ser Leu Pro Ser Arg Phe Ala His Lys Val 115 120 Ser Leu His Asn Ser Cys His Gly Val Arg Glu Leu His Leu Ser Thr 140 135 Glu Met Val Gln Gly Ile Glu Val Phe Glu Pro Lys Arg Ile Asp Glu 175 165 170 Cys Cys Gly Phe Gly Gly Met Tyr Ser Val Glu Glu Pro Glu Val Ser 185 190 180 Thr Cys Met Gly His Asp Lys Val Leu Asp His Ile Ser Thr Gly Ala 200 195 Glu Tyr Ile Thr Gly Pro Asp Ser Ser Cys Leu Met His Met Gln Gly 215 220 Val Ile Asp Arg Glu Lys Leu Pro Ile Lys Thr Ile His Ala Val Glu 230 Ile Leu Ala Ala Asn Leu 245

## (2) INFORMATION FOR SEQ ID NO:394

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 246 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...246
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:394

Met Asp Ile Val Ser Met Ala Asp Lys Ala Leu Val Val Glu Met Arg Asp Val Thr Leu Cys Gln Glu Glu Asn Val Ile Phe Gln Asn Leu Asn 25 3.0 Leu Thr Leu Ser Ala Gly Asp Phe Val Tyr Leu Ile Gly Ser Val Gly 40 Ser Gly Lys Ser Thr Leu Leu Lys Ala Leu Tyr Ala Glu Val Pro Ile 55 60 Ser Ala Gly Tyr Ala Arg Val Ile Asp Tyr Asp Leu Ala Lys Leu Lys 75 70 Arg Lys Gln Leu Pro Tyr Leu Arg Arg Asn Leu Gly Ile Val Phe Gln 90 85 Asp Phe Gln Leu Leu Asn Gly Arg Thr Val Ala Glu Asn Leu Asp Phe 110 100 105 Val Leu Arg Ala Thr Asp Trp Lys Asn Arg Ala Asp Arg Glu Gln Arg 120 125 Ile Glu Glu Val Leu Thr Arg Val Gly Met Ser Arg Lys Ala Tyr Lys 135 140 Arg Pro His Glu Leu Ser Gly Gly Glu Gln Gln Arg Val Gly Ile Ala

150 155 145 Arg Ala Leu Leu Ala Lys Pro Ala Leu Ile Leu Ala Asp Glu Pro Thr 170 . 175 165 Gly Asn Leu Asp Ser Val Thr Gly Leu Gln Ile Ala Ser Leu Leu Tyr 180 185 Glu Ile Ser Lys Gln Gly Thr Ala Val Leu Met Ser Thr His Asn Ser 200 205 Ser Leu Leu Ser His Leu Pro Ala Arg Thr Leu Ala Val Arg Lys Asn 215 220 Gly Asp Ala Ser Ser Leu Val Glu Leu Ser Ala Asp Ala Val Ser Arg 230 235 Lys Asn Thr Glu Ile Asp

## (2) INFORMATION FOR SEQ ID NO:395

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 241 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...241
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:395

Met Ala Asp Lys Ala Leu Val Val Glu Met Arg Asp Val Thr Leu Cys Gln Glu Glu Asn Val Ile Phe Gln Asn Leu Asn Leu Thr Leu Ser Ala 25 Gly Asp Phe Val Tyr Leu Ile Gly Ser Val Gly Ser Gly Lys Ser Thr 35 40 45 Leu Leu Lys Ala Leu Tyr Ala Glu Val Pro Ile Ser Ala Gly Tyr Ala 60 55 Arg Val Ile Asp Tyr Asp Leu Ala Lys Leu Lys Arg Lys Gln Leu Pro 70 75 Tyr Leu Arg Arg Asn Leu Gly Ile Val Phe Gln Asp Phe Gln Leu Leu 85 90 Asn Gly Arg Thr Val Ala Glu Asn Leu Asp Phe Val Leu Arg Ala Thr 105 110 Asp Trp Lys Asn Arg Ala Asp Arg Glu Gln Arg Ile Glu Glu Val Leu 120 125 Thr Arg Val Gly Met Ser Arg Lys Ala Tyr Lys Arg Pro His Glu Leu 130 135 140 Ser Gly Gly Glu Gln Gln Arg Val Gly Ile Ala Arg Ala Leu Leu Ala 155 145 150 Lys Pro Ala Leu Ile Leu Ala Asp Glu Pro Thr Gly Asn Leu Asp Ser 170 175 165 Val Thr Gly Leu Gln Ile Ala Ser Leu Leu Tyr Glu Ile Ser Lys Gln 190 180 185 Gly Thr Ala Val Leu Met Ser Thr His Asn Ser Ser Leu Leu Ser His 200 205 Leu Pro Ala Arg Thr Leu Ala Val Arg Lys Asn Gly Asp Ala Ser Ser 220 215 Leu Val Glu Leu Ser Ala Asp Ala Val Ser Arg Lys Asn Thr Glu Ile 235 225 230 Asp

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 232 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...232
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:396

Met Arg Asp Val Thr Leu Cys Gln Glu Glu Asn Val Ile Phe Gln Asn 1 5 Leu Asn Leu Thr Leu Ser Ala Gly Asp Phe Val Tyr Leu Ile Gly Ser 25 Val Gly Ser Gly Lys Ser Thr Leu Leu Lys Ala Leu Tyr Ala Glu Val 40 45 Pro Ile Ser Ala Gly Tyr Ala Arg Val Ile Asp Tyr Asp Leu Ala Lys 55 60 Leu Lys Arg Lys Gln Leu Pro Tyr Leu Arg Arg Asn Leu Gly Ile Val 75 70 Phe Gln Asp Phe Gln Leu Leu Asn Gly Arg Thr Val Ala Glu Asn Leu 90 85 Asp Phe Val Leu Arg Ala Thr Asp Trp Lys Asn Arg Ala Asp Arg Glu 105 100 Gln Arg Ile Glu Glu Val Leu Thr Arg Val Gly Met Ser Arg Lys Ala 125 115 120 Tyr Lys Arg Pro His Glu Leu Ser Gly Gly Glu Gln Gln Arg Val Gly 135 140 Ile Ala Arg Ala Leu Leu Ala Lys Pro Ala Leu Ile Leu Ala Asp Glu 150 155 Pro Thr Gly Asn Leu Asp Ser Val Thr Gly Leu Gln Ile Ala Ser Leu 165 170 175 Leu Tyr Glu Ile Ser Lys Gln Gly Thr Ala Val Leu Met Ser Thr His 180 185 Asn Ser Ser Leu Leu Ser His Leu Pro Ala Arg Thr Leu Ala Val Arg 205 195 200

Lys Asn Gly Asp Ala Ser Ser Leu Val Glu Leu Ser Ala Asp Ala Val 215 220

Ser Arg Lys Asn Thr Glu Ile Asp 230

(2) INFORMATION FOR SEQ ID NO:397

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 219 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...219
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:397

Met Ile Glu Ile Ser Asn Leu Thr Lys Val Phe Arg Thr Glu Glu Ile 10 Glu Thr Val Ala Leu Asp Gly Val Ser Leu Lys Val Asp Lys Gly Glu 20 25 Phe Ile Ala Ile Met Gly Pro Ser Gly Cys Gly Lys Ser Thr Leu Leu 40 Asn Ile Leu Gly Leu Leu Asp Asn Pro Thr Ser Gly Ile Tyr Lys Leu 55 60 Asp Gly Ala Glu Val Gly Asn Leu Arg Glu Lys Asp Arg Thr Ala Val 70 75 Arg Lys Gly Asn Ile Gly Phe Val Phe Gln Ser Phe Asn Leu Ile Glu 90 85 Glu Met Thr Val Ser Glu Asn Val Glu Leu Pro Leu Val Tyr Leu Gly 105 Val Lys Ala Ser Glu Arg Lys Glu Arg Val Glu Glu Ala Leu Arg Lys

120

125

Met Ser Ile Ser His Arg Ala Gly His Phe Pro Asn Gln Leu Ser Gly 140 135 Gly Gln Gln Gln Arg Val Ala Ile Ala Arg Ala Val Val Ala Asn Pro 155 150 Lys Leu Ile Leu Ala Asp Glu Pro Thr Gly Asn Leu Asp Ser Lys Asn 165 170 175 Gly Ala Asp Val Met Glu Leu Leu Arg Gly Leu Asn Arg Glu Gly Ala 180 190 185 Thr Ile Val Met Val Thr His Ser Glu His Asp Ala Arg Ser Ala Gly 195 200 205 Arg Ile Ile Asn Leu Phe Asp Gly Lys Ile Arg 210 215

## (2) INFORMATION FOR SEQ ID NO:398

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 595 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...595
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:398

Met Lys Glu Phe Phe Lys Met Phe Phe Ala Ser Ile Leu Gly Val Ile 5 10 Thr Ala Gly Ile Ile Leu Phe Cys Ile Phe Leu Phe Ile Phe Phe Gly 30 25 20 Ile Val Ala Gly Ile Ala Ser Lys Ala Thr Gly Gly Thr Ile Pro Lys 40 45 35 Ile Glu Ala Asn Ser Ile Leu His Ile Unk Asn Ser Ser Phe Pro Glu 60 50 55 Ile Val Ser Ala Asn Pro Trp Ser Met Leu Thr Gly Lys Asp Glu Ser 70 75 Val Ser Leu Ser Gln Ala Val Glu Ala Ile Gly Gln Ala Lys Asn Asn 90 Pro Asn Ile Thr Gly Ile Phe Leu Asp Leu Asp Asn Leu Ser Val Gly 105 110 100 Met Ala Ser Ala Glu Glu Leu Arg Arg Ala Leu Gln Asp Phe Lys Met 120 125 115 Ser Gly Lys Phe Val Val Ser Tyr Ala Asp Arg Tyr Thr Gln Lys Gly 130 135 140 Tyr Tyr Leu Ser Ser Ile Ala Asp Lys Leu Tyr Leu Asn Pro Lys Gly 150 155 Met Leu Gly Leu Ile Gly Ile Ala Thr Gln Thr Met Phe Tyr Lys Asp 165 170 175 Ala Leu Asp Lys Phe Gly Val Lys Met Glu Ile Phe Lys Val Gly Thr 190 180 185 Tyr Lys Ala Ala Val Glu Pro Phe Met Leu Asn Arg Met Ser Asp Ala 200 205 195 Asn Arg Glu Gln Ile Thr Thr Tyr Ile Asn Gly Leu Trp Asp Lys Ile 210 215 220 Thr Ser Asp Ile Ala Glu Ser Arg Lys Thr Ala Met Asp Ser Val Lys 230 235 225 Met Phe Ala Asp Lys Gly Glu Met Phe Gly Leu Ala Glu Lys Ala Val 245 250 255 Glu Met Lys Leu Val Asp Glu Leu Ala Tyr Arg Thr Asp Val Glu Lys 265 270 Glu Leu Lys Lys Met Ser Gln Arg Gly Glu Lys Asp Glu Leu Arg Phe 280 285 275 Val Ser Leu Ser Gln Val Leu Ala Asn Gly Pro Met Asn Lys Thr Lys 295 300 Gly Ser Arg Ile Ala Val Leu Phe Ala Glu Gly Glu Ile Thr Glu Glu 310 315 Ile Ile Lys Lys Pro Phe Asp Thr Asp Gly Ser Ser Ile Thr Gln Glu 325 330 335 Leu Ala Lys Glu Ile Lys Ala Ala Ala Asp Asp Asp Ile Lys Ala 345 350

Val Val Leu Arg Val Asn Ser Pro Gly Gly Ser Ala Phe Thr Ser Glu 355 360 Gln Ile Trp Lys Gln Val Ala Asp Leu Lys Ala Lys Lys Pro Ile Val 370 375 380 Val Ser Met Gly Asp Val Ala Ala Ser Gly Gly Tyr Tyr Ile Ala Cys 385 390 395 Ala Ala Asn Ser Ile Val Ala Glu His Thr Thr Leu Thr Gly Ser Ile 405 410 415 Gly Ile Phe Gly Met Phe Pro Asn Phe Ala Gly Val Ala Lys Lys Ile 425 430 Gly Val Asn Met Asp Val Val Gln Thr Ser Lys Tyr Ala Asp Leu Gly 435 440 445 Asn Thr Phe Ala Pro Met Thr Val Glu Asp Arg Ala Leu Ile Gln Arg 450 455 Tyr Ile Glu Gln Gly Tyr Asp Leu Phe Leu Thr Arg Val Ser Glu Gly 470 475 Arg Asn Arg Thr Lys Ala Gln Ile Asp Ser Ile Ala Gln Gly Arg Val 485 490 495 Trp Leu Gly Asp Lys Ala Leu Ala Leu Gly Leu Val Asp Glu Leu Gly 500 505 510 Gly Leu Asp Thr Ala Ile Lys Arg Ala Ala Lys Leu Ala Gln Leu Gly 515 520 525 Gly Asn Tyr Ser Ile Glu Tyr Gly Lys Thr Lys Arg Asn Phe Phe Glu 535 540 Glu Leu Leu Ser Ser Ala Ala Asp Met Lys Ser Ala Ile Leu Ser 555 545 550 Thr Ile Leu Ser Asp Pro Glu Ile Glu Val Leu Arg Glu Leu Arg Ser 565 570 575 Met Pro Pro Arg Pro Ser Gly Ile Gln Ala Arg Leu Pro Tyr Tyr Phe 580 585 590 Met Pro Tyr

### (2) INFORMATION FOR SEQ ID NO:399

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 589 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...589
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:399

Met Phe Phe Ala Ser Ile Leu Gly Val Ile Thr Ala Gly Ile Ile Leu 5 10 Phe Cys Ile Phe Leu Phe Ile Phe Phe Gly Ile Val Ala Gly Ile Ala 20 25 30 Ser Lys Ala Thr Gly Gly Thr Ile Pro Lys Ile Glu Ala Asn Ser Ile 35 40 45 Leu His Ile Unk Asn Ser Ser Phe Pro Glu Ile Val Ser Ala Asn Pro 55 60 Trp Ser Met Leu Thr Gly Lys Asp Glu Ser Val Ser Leu Ser Gln Ala 70 75 Val Glu Ala Ile Gly Gln Ala Lys Asn Asn Pro Asn Ile Thr Gly Ile 85 90 Phe Leu Asp Leu Asp Asn Leu Ser Val Gly Met Ala Ser Ala Glu Glu 100 105 Leu Arg Arg Ala Leu Gln Asp Phe Lys Met Ser Gly Lys Phe Val Val 115 120 125 Ser Tyr Ala Asp Arg Tyr Thr Gln Lys Gly Tyr Tyr Leu Ser Ser Ile 130 135 140 Ala Asp Lys Leu Tyr Leu Asn Pro Lys Gly Met Leu Gly Leu Ile Gly 145 150 150 160 155 150 160 Ile Ala Thr Gln Thr Met Phe Tyr Lys Asp Ala Leu Asp Lys Phe Gly 165 170 175 Val Lys Met Glu Ile Phe Lys Val Gly Thr Tyr Lys Ala Ala Val Glu 180 185

Pro Phe Met Leu Asn Arg Met Ser Asp Ala Asn Arg Glu Gln Ile Thr 195 200 205 Thr Tyr Ile Asn Gly Leu Trp Asp Lys Ile Thr Ser Asp Ile Ala Glu 220 210 215 Ser Arg Lys Thr Ala Met Asp Ser Val Lys Met Phe Ala Asp Lys Gly 225 230 235 Glu Met Phe Gly Leu Ala Glu Lys Ala Val Glu Met Lys Leu Val Asp 250 245 Glu Leu Ala Tyr Arg Thr Asp Val Glu Lys Glu Leu Lys Lys Met Ser 260 265 270 Gln Arg Gly Glu Lys Asp Glu Leu Arg Phe Val Ser Leu Ser Gln Val 275 280 285 Leu Ala Asn Gly Pro Met Asn Lys Thr Lys Gly Ser Arg Ile Ala Val 300 290 295 Leu Phe Ala Glu Gly Glu Ile Thr Glu Glu Ile Ile Lys Lys Pro Phe 310 315 Asp Thr Asp Gly Ser Ser Ile Thr Gln Glu Leu Ala Lys Glu Ile Lys 330 325 335 Ala Ala Asp Asp Asp Ile Lys Ala Val Leu Arg Val Asn 340 345 350 Ser Pro Gly Gly Ser Ala Phe Thr Ser Glu Gln Ile Trp Lys Gln Val 360 Ala Asp Leu Lys Ala Lys Lys Pro Ile Val Val Ser Met Gly Asp Val 370 375 380 Ala Ala Ser Gly Gly Tyr Tyr Ile Ala Cys Ala Ala Asn Ser Ile Val 385 390 395 400 Ala Glu His Thr Thr Leu Thr Gly Ser Ile Gly Ile Phe Gly Met Phe 405 410 415 Pro Asn Phe Ala Gly Val Ala Lys Lys Ile Gly Val Asn Met Asp Val 425 430 420 Val Gln Thr Ser Lys Tyr Ala Asp Leu Gly Asn Thr Phe Ala Pro Met 440 Thr Val Glu Asp Arg Ala Leu Ile Gln Arg Tyr Ile Glu Gln Gly Tyr 455 460 Asp Leu Phe Leu Thr Arg Val Ser Glu Gly Arg Asn Arg Thr Lys Ala 470 475 Gln Ile Asp Ser Ile Ala Gln Gly Arg Val Trp Leu Gly Asp Lys Ala 485 490 495 Leu Ala Leu Gly Leu Val Asp Glu Leu Gly Gly Leu Asp Thr Ala Ile 500 505 510 Lys Arg Ala Ala Lys Leu Ala Gln Leu Gly Gly Asn Tyr Ser Ile Glu 515 520 525 Tyr Gly Lys Thr Lys Arg Asn Phe Phe Glu Glu Leu Leu Ser Ser Ser 535 540 Ala Ala Asp Met Lys Ser Ala Ile Leu Ser Thr Ile Leu Ser Asp Pro 550 555 Glu Ile Glu Val Leu Arg Glu Leu Arg Ser Met Pro Pro Arg Pro Ser 565 570 Gly Ile Gln Ala Arg Leu Pro Tyr Tyr Phe Met Pro Tyr 580 585

### (2) INFORMATION FOR SEQ ID NO:400

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 313 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...313
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:400

 Met Arg Ala Asn Ile Trp Gln Ile Leu Ser Val Ser Val Leu Phe Phe
 1
 15

 Phe Gly Thr Ala Ile Gly Gln Ala Gln Ser Arg Asn Arg Thr Tyr Glu
 20
 30

 Ala Tyr Val Lys Gln Tyr Ala Asp Glu Ala Ile Arg Gln Met Ser Arg
 40
 45

Tyr Asn Ile Pro Ala Ser Ile Thr Ile Ala Gln Ala Leu Val Glu Thr 55 60 Gly Ala Gly Ala Ser Thr Leu Ala Ser Val His Asn Asn His Phe Gly 70 75 Ile Lys Cys His Lys Ser Trp Thr Gly Lys Arg Thr Tyr Arg Thr Asp 85 90 95 Asp Ala Pro Asn Glu Cys Phe Arg Ser Tyr Ser Ala Ala Arg Glu Ser 100 105 Tyr Glu Asp His Ser Arg Phe Leu Leu Gln Pro Arg Tyr Arg Pro Leu 115 120 125 Phe Lys Leu Asp Arg Glu Asp Tyr Arg Gly Trp Ala Thr Gly Leu Gln 130 135 140 Arg Cys Gly Tyr Ala Thr Asn Arg Gly Tyr Ala Asn Leu Leu Ile Lys 145 150 155 Met Val Glu Leu Tyr Glu Leu Tyr Ala Leu Asp Arg Glu Lys Tyr Pro 165 170 175 Ser Trp Phe His Lys Ser Tyr Pro Gly Ser Asn Lys Lys Ser His Gln 180 185 190 Thr Thr Lys Gln Lys Gln Ser Gly Leu Lys His Glu Ala Tyr Phe Ser 195 200 205 Tyr Gly Leu Leu Tyr Ile Ile Ala Lys Gln Gly Asp Thr Phe Asp Ser 215 220 Leu Ala Glu Glu Phe Asp Met Arg Ala Ser Lys Leu Ala Lys Tyr Asn 225 230 230 230 235 240 Asp Ala Pro Val Asp Phe Pro Ile Glu Lys Gly Asp Val Ile Tyr Leu 245 250 255 Glu Lys Lys His Ala Cys Ser Ile Ser Lys His Thr Gln His Val Val 260 265 270 Arg Val Gly Asp Ser Met His Ser Ile Ser Gln Arg Tyr Gly Ile Arg 275 280 285 Met Lys Asn Leu Tyr Lys Leu Asn Asp Lys Asp Gly Glu Tyr Ile Pro
290 295 300 Gln Glu Gly Asp Ile Leu Arg Leu Arg 310

### (2) INFORMATION FOR SEQ ID NO:401

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 523 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...523
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:401

Met Asp Gly Arg Arg Tyr Ser Asp Gly Leu His Gln Ala Ile Glu Ala 10 Lys Glu His Val Lys Val Glu Ala Ala Thr Gln Thr Phe Ala Thr Ile 20 25 Thr Leu Gln Asn Tyr Phe Arg Met Tyr His Lys Leu Ala Gly Met Thr 45 35 40 Gly Thr Ala Glu Thr Glu Ala Gly Glu Leu Trp Asp Ile Tyr Lys Leu 55 60 Asp Val Val Ile Pro Thr Asn Lys Pro Ile Ala Arg Lys Asp Met 75 70 Asn Asp Arg Ile Tyr Lys Thr Ala Arg Glu Lys Tyr Ala Ala Val Ile 85 90 Glu Glu Ile Val Arg Leu Val Glu Glu Gly Arg Pro Val Leu Val Gly 100 105 Thr Thr Ser Val Glu Ile Ser Glu Leu Leu Ser Arg Met Leu Arg Leu 115 120 125 Arg Gly Ile Gln His Asn Val Leu Asn Ala Lys Leu His Gln Lys Glu 130 135 140 Ala Glu Ile Val Ala Gln Ala Gly Gln Lys Gly Thr Val Thr Ile Ala 145 150 155 160 Thr Asn Met Ala Gly Arg Gly Thr Asp Ile Lys Leu Ser Ala Glu Val 165 170

Lys Lys Ala Gly Gly Leu Ala Ile Ile Gly Thr Glu Arg His Glu Ser 180 185 Arg Arg Val Asp Arg Gln Leu Arg Gly Arg Ser Gly Arg Gln Gly Asp 205 195 200 Pro Gly Ser Ser Ile Phe Tyr Val Ser Leu Glu Asp His Leu Met Arg 210 215 220 Leu Phe Ala Thr Glu Lys Ile Ala Ser Leu Met Asp Arg Leu Gly Phe 230 235 Lys Glu Gly Glu Val Leu Glu Asn Asn Met Leu Ser Lys Ser Val Glu 245 250 Arg Ala Gln Lys Lys Val Glu Glu Asn Asn Phe Gly Ile Arg Lys His 265 270 260 Leu Leu Glu Tyr Asp Asp Val Met Asn Ser Gln Arg Glu Val Ile Tyr 275 280 285 Thr Arg Arg Arg His Ala Leu Met Gly Glu Arg Ile Gly Met Asp Val 295 300 Leu Asn Thr Ile Tyr Asp Val Cys Lys Ala Leu Ile Asp Asn Tyr Ala 305 310 315 320 310 Glu Ala Asn Asp Phe Glu Gly Phe Lys Glu Asp Leu Met Arg Ala Leu 325 330 335 Ala Ile Glu Ser Pro Ile Thr Gln Glu Ile Phe Arg Gly Lys Lys Ala 340 345 Glu Glu Leu Thr Asp Met Leu Phe Asp Glu Ala Tyr Lys Ser Phe Gln 365 360 Arg Lys Met Asp Leu Ile Ala Glu Val Ala His Pro Val Val His Gln 370 375 380 Val Phe Glu Thr Gln Ala Ala Val Tyr Glu Arg Ile Leu Ile Pro Ile 385 390 395 Thr Asp Gly Lys Arg Val Tyr Asn Ile Gly Cys Asn Leu Arg Glu Ala 410 405 Asp Glu Thr Gln Gly Lys Ser Ile Ile Lys Glu Phe Glu Lys Ala Ile 420 425 Val Leu His Thr Ile Asp Glu Ser Trp Lys Glu His Leu Arg Glu Met 435 440 445 Asp Glu Leu Arg Asn Ser Val Gln Asn Ala Ser Tyr Glu Asn Lys Asp 455 460 Pro Leu Leu Ile Tyr Lys Leu Glu Ser Tyr Glu Leu Phe Arg Lys Met 465 470 480 Val Glu Ala Met Asn Arg Lys Thr Val Ala Ile Leu Met Arg Ala Arg 485 490 495 Ile Pro Val Pro Glu Ala Pro Ser Gln Glu Glu Leu Glu His Arg Arg 500 505 Gln Ile Glu Ile Arg His Ala Thr Gln Gln Arg

#### (2) INFORMATION FOR SEQ ID NO:402

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 375 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...375
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:402

 Met Asn Phe Leu Lys Lys Glu Pro Phe Lys Ile Phe Ser Met Ile Tyr

 1
 5
 10
 15
 15

 Leu Leu Leu Asp Thr Ile Thr Asn Arg Ala Gly Thr Glu Arg Ala Val 20
 25
 30
 30

 Ile Asn Leu Ala Asn Asn Leu His Ala Asn Gly His Arg Val Ser Leu 35
 40
 45

 Val Ser Val Cys Thr Lys Glu Gly Glu Pro Ser Phe Gln Val Glu Lys 50
 50
 60

 Gly Ile Glu Val His His Leu Gly Ile Arg Leu Tyr Gly Asn Ala Leu 70
 80

 Ala Arg Lys Thr Val Tyr Phe Lys Ala Tyr Arg Arg Ile Lys Ala Leu 85
 90
 95

Tyr Lys Lys Arg Glu Pro Val Leu Leu Ile Gly Thr Asn Ile Phe Ile 100 105 110 Asn Thr Ile Leu Ser Gln Ile Ser Asn Arg Gly Arg Ile Phe Thr Ile 115 120 125 Gly Cys Glu His Ile Ser Tyr Asp Ile Ala Arg Pro Ile Thr Lys Arg 130 135 140 Ile Arg Gly Phe Leu Tyr Ser Gly Leu Asp Ala Val Val Ala Leu Thr 150 155 Lys Arg Asp Gln Gln Ser Phe Glu Ala Ile Leu Arg Gly Arg Ser Lys 165 170 Ala Tyr Val Ile Pro Asn Gln Val Ser Phe Thr Thr Val Gln Arg Asp 180 185 Ala Thr Thr His Lys Gln Met Leu Ala Ile Gly Arg Leu Thr Tyr Gln 205 195 200 Lys Gly Phe Glu Phe Met Ile Glu Asp Ala Ser Arg Val Leu Arg Glu 210 215 220 Arg Pro Asp Trp Lys Leu Ile Ile Val Gly Asp Gly Glu Asn Glu Ser 225 230 235 240 Met Leu Arg Lys Glu Ile Ala Ser Arg Asn Met Glu Ser Gln Ile Glu 245 250 255 Ile His Pro Ser Thr Pro Glu Ile Arg Lys Tyr Tyr Glu Ser Ser Ala 260 265 270 Ile Tyr Leu Met Thr Ser Arg Phe Glu Gly Leu Pro Met Val Leu Leu 275 280 Glu Ala Glu Ala Tyr Ala Leu Pro Ile Ile Ser Tyr Asp Cys Pro Thr 290 295 300 Gly Pro Arg Glu Leu Ile Glu Asn Gly Arg Asn Gly Phe Leu Val Pro 305 310 315 Met Glu Ala His Glu Asp Phe Ala Asp Lys Leu Arg Leu Leu Met Asp 325 330 335 Asp Glu Thr Leu Arg Lys Lys Met Gly Gln Glu Ser Glu Leu Met Val 345 350 Lys Ser Tyr Ser Pro Ala Asn Ile Tyr Glu Cys Trp Lys Lys Leu Phe 355 Val Glu Ile Gly Tyr Met Asn 370

### (2) INFORMATION FOR SEQ ID NO:403

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 362 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...362
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:403

Met Ile Tyr Leu Leu Leu Asp Thr Ile Thr Asn Arg Ala Gly Thr Glu 5 10 Arg Ala Val Ile Asn Leu Ala Asn Asn Leu His Ala Asn Gly His Arg 20 Val Ser Leu Val Ser Val Cys Thr Lys Glu Gly Glu Pro Ser Phe Gln 35 40 Val Glu Lys Gly Ile Glu Val His His Leu Gly Ile Arg Leu Tyr Gly 55 60 Asn Ala Leu Ala Arg Lys Thr Val Tyr Phe Lys Ala Tyr Arg Arg Ile 65 70 75 80 Lys Ala Leu Tyr Lys Lys Arg Glu Pro Val Leu Leu Ile Gly Thr Asn 90 85 Ile Phe Ile Asn Thr Ile Leu Ser Gln Ile Ser Asn Arg Gly Arg Ile 100 105 110 Phe Thr Ile Gly Cys Glu His Ile Ser Tyr Asp Ile Ala Arg Pro Ile 120 125 Thr Lys Arg Ile Arg Gly Phe Leu Tyr Ser Gly Leu Asp Ala Val 130 135 140 Ala Leu Thr Lys Arg Asp Gln Gln Ser Phe Glu Ala Ile Leu Arg Gly 150 155 160

Arg Ser Lys Ala Tyr Val Ile Pro Asn Gln Val Ser Phe Thr Thr Val 165 170 Gln Arg Asp Ala Thr Thr His Lys Gln Met Leu Ala Ile Gly Arg Leu 180 185 190 Thr Tyr Gln Lys Gly Phe Glu Phe Met Ile Glu Asp Ala Ser Arg Val 195 200 205 Leu Arg Glu Arg Pro Asp Trp Lys Leu Ile Ile Val Gly Asp Gly Glu 215 220 Asn Glu Ser Met Leu Arg Lys Glu Ile Ala Ser Arg Asn Met Glu Ser 230 235 Gln Ile Glu Ile His Pro Ser Thr Pro Glu Ile Arg Lys Tyr Tyr Glu 245 250 255 Ser Ser Ala Ile Tyr Leu Met Thr Ser Arg Phe Glu Gly Leu Pro Met 260 265 270 Val Leu Leu Glu Ala Glu Ala Tyr Ala Leu Pro Ile Ile Ser Tyr Asp 280 275 285 Cys Pro Thr Gly Pro Arg Glu Leu Ile Glu Asn Gly Arg Asn Gly Phe 290 295 300 Leu Val Pro Met Glu Ala His Glu Asp Phe Ala Asp Lys Leu Arg Leu 305 310 315 Leu Met Asp Asp Glu Thr Leu Arg Lys Lys Met Gly Gln Glu Ser Glu 325 330 Leu Met Val Lys Ser Tyr Ser Pro Ala Asn Ile Tyr Glu Cys Trp Lys 340 345 Lys Leu Phe Val Glu Ile Gly Tyr Met Asn 355 360

#### (2) INFORMATION FOR SEQ ID NO:404

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 640 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...640
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:404

Met Gly Lys Ile Ile Gly Ile Asp Leu Gly Thr Thr Asn Ser Cys Val 10 Ser Val Leu Glu Gly Asn Glu Pro Ile Val Ile Thr Asn Ser Glu Gly 25 Lys Arg Thr Thr Pro Ser Val Val Ala Phe Val Asp Gly Glu Arg 35 40 45 Lys Val Gly Asp Pro Ala Lys Arg Gln Ala Ile Thr Asn Pro Thr Lys 55 60 Thr Ile Tyr Ser Ile Lys Arg Phe Met Gly Glu Thr Tyr Asp Gln Val 70 75 Ser Arg Glu Val Glu Arg Val Pro Phe Lys Val Val Arg Gly Asp Asn 90 85 Asn Thr Pro Arg Val Asp Ile Asp Gly Arg Leu Tyr Thr Pro Gln Glu 105 Ile Ser Ala Met Ile Leu Gln Lys Met Lys Lys Thr Ala Glu Asp Tyr 120 115 125 Leu Gly Gln Glu Val Thr Glu Ala Val Ile Thr Val Pro Ala Tyr Phe 135 140 Asn Asp Ala Gln Arg Gln Ala Thr Lys Glu Ala Gly Glu Ile Ala Gly 150 155 Leu Lys Val Arg Arg Ile Val Asn Glu Pro Thr Ala Ala Ser Leu Ala 165 170 175 Tyr Gly Leu Asp Lys Ser Asn Lys Asp Met Lys Ile Ala Val Phe Asp 185 180 190 Leu Gly Gly Gly Thr Phe Asp Ile Ser Ile Leu Glu Leu Gly Asp Gly 200 Val Phe Glu Val Lys Ser Thr Asn Gly Asp Thr His Leu Gly Gly Asp 215 220 Asp Phe Asp His Val Ile Ile Asp Trp Leu Ala Glu Glu Phe Lys Ser 230 235

Gln Glu Gly Val Asp Leu Arg Gln Asp Pro Met Ala Met Gln Arg Leu 245 250 Lys Glu Ala Ala Glu Lys Ala Lys Ile Glu Leu Ser Ser Thr Ser Ser 260 265 Thr Glu Ile Asn Leu Pro Tyr Ile Met Pro Val Asn Gly Ile Pro Lys 275 280 285 His Leu Val Met Thr Leu Thr Arg Ala Lys Phe Glu Gln Leu Ala Asp 295 300 Arg Leu Ile Gln Ala Cys Val Ala Pro Cys Glu Thr Ala Leu Lys Asp 305 310 315 320 Ala Gly Met Ser Arg Gly Asp Ile Asp Glu Val Ile Leu Val Gly Gly 325 330 Ser Thr Arg Ile Pro Ala Ile Gln Glu Ile Val Glu Lys Ile Phe Gly 340 345 350 Lys Ala Pro Ser Lys Gly Val Asn Pro Asp Glu Val Val Ala Val Gly 355 360 365 Ala Ala Ile Gln Gly Gly Val Leu Thr Gly Glu Val Lys Asp Val Leu 375 380 Leu Leu Asp Val Thr Pro Leu Ser Leu Gly Ile Glu Thr Met Gly Gly 385 390 395 Val Met Thr Arg Leu Ile Asp Ala Asn Thr Thr Ile Pro Thr Lys Lys 405 410 Ser Glu Ile Phe Thr Thr Ala Val Asp Asn Gln Pro Ser Val Glu Ile 425 430 420 His Val Leu Gln Gly Glu Arg Ser Leu Ala Lys Asp Asn Lys Ser Ile 435 440 445 Gly Arg Phe Asn Leu Asp Gly Ile Ala Pro Ala Pro Arg Gln Thr Pro 455 460 Gln Ile Glu Val Thr Phe Asp Ile Asp Ala Asn Gly Ile Leu Asn Val 470 475 Thr Ala His Asp Lys Ala Thr Gly Lys Lys Gln Asn Ile Arg Ile Glu 485 490 495 Ala Ser Ser Gly Leu Ser Asp Asp Glu Ile Lys Arg Met Lys Glu Glu 500 505 510 Ala Gln Ala Asn Ala Glu Ala Asp Lys Lys Glu Lys Glu Arg Ile Asp 515 520 525 Lys Ile Asn Gln Ala Asp Ser Met Ile Phe Gln Thr Glu Lys Gln Leu 530 535 540 Lys Glu Leu Gly Asp Lys Phe Pro Ala Asp Lys Lys Ala Pro Ile Asp 545 550 555 Thr Ala Leu Asp Lys Leu Lys Glu Ala His Lys Ala Gln Asp Val Ala 565 570 Ala Ile Asp Thr Ala Met Ala Glu Leu Gln Thr Ala Leu Ser Ala Ala 580 585 590 Gly Glu Glu Leu Tyr Lys Asn Ala Gly Ala Ala Gln Gly Gly Ala Gln 595 600 605 Pro Gly Pro Asp Phe Gly Gly Ala Gln Gly Pro Ser Ala Gly Asp Gln 610 615 620 Pro Ser Asp Asp Lys Asn Val Thr Asp Val Asp Phe Glu Glu Val Lys 630 635

### (2) INFORMATION FOR SEQ ID NO:405

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 449 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...449
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:405

 Met Arg Tyr Asp Leu Ala Ile Ile Gly Gly Gly Pro Ala Gly Tyr Thr

 1
 5
 10
 15

 Ala Ala Glu Arg Ala Ala Lys Gly Gly Leu Lys Thr Leu Leu Ile Glu 20
 25
 30

 Lys Asn Ala Leu Gly Gly Val Cys Leu Asn Glu Gly Cys Ile Pro Thr 35
 40
 45

Lys Thr Leu Leu Tyr Ser Ala Lys Val Leu His Gln Ile Ala Thr Ala 55 60 Ser Lys Tyr Ala Val Ser Gly Thr Ala Asp Gly Leu Asp Leu Gly Lys 70 75 Val Ile Ala Arg Lys Gly Lys Ile Ile Arg Lys Leu Thr Ala Gly Ile 90 95 Arg Ser Arg Leu Thr Glu Ala Gly Val Glu Met Val Thr Ala Glu Ala 100 105 110 Thr Val Thr Gly Cys Asp Ala Asp Gly Ile Ile Gly Ile Thr Ala Gly 115 120 Glu Ala Gln Tyr Lys Ala Ala Asn Leu Leu Cys Thr Gly Ser Glu 135 140 Thr Phe Ile Pro Pro Ile Pro Gly Val Glu Gln Thr Glu Tyr Trp Thr 145 150 155 Asn Arg Glu Ala Leu Gln Asn Lys Glu Ile Pro Thr Ser Leu Val Ile 165 170 175 Ile Gly Gly Val Ile Gly Met Glu Phe Ala Ser Phe Phe Asn Gly 190 180 185 Ile Gly Thr Gln Val His Val Val Glu Met Leu Pro Glu Ile Leu Asn 200 205 Gly Ile Asp Pro Glu His Ala Ala Met Leu Arg Ala His Tyr Glu Lys 215 220 Glu Gly Ile Lys Phe Tyr Leu Gly His Lys Val Thr Ser Val Arg Asn 225 230 235 240 Gly Ala Val Thr Val Glu Tyr Glu Gly Glu Ser Lys Glu Ile Glu Gly 245 250 Glu Arg Ile Leu Met Ser Val Gly Arg Arg Pro Val Leu Gln Gly Phe 260 265 270 Glu Ser Leu Gly Leu Val Leu Ala Gly Lys Gly Val Lys Thr Asn Glu 280 285 Arg Met Gln Thr Ser Leu Pro Asn Val Tyr Ala Ala Gly Asp Ile Thr 290 295 300 Gly Phe Ser Leu Leu Ala His Thr Ala Val Arg Glu Ala Glu Val Ala 305 310 315 Val Asp Gln Ile Leu Gly Lys Thr Asp Glu Thr Met Ser Tyr Arg Ala 325 330 Val Pro Gly Val Val Tyr Thr Asn Pro Glu Val Ala Gly Val Gly Glu
340 345 350 Thr Glu Glu Ser Leu Arg Lys Ala Gly Arg Ala Tyr Thr Val Arg Arg 355 360 365 Leu Pro Met Ala Phe Ser Gly Arg Phe Val Ala Glu Asn Glu Gln Gly 375 380 Asn Gly Glu Cys Lys Leu Leu Leu Asp Glu Glu Asn Arg Leu Ile Gly 390 395 Ala His Leu Ile Gly Asn Pro Ala Gly Glu Leu Ile Val Thr Ala Ala 405 410 Met Ala Ile Glu Thr Gly Met Thr Asp Arg Gln Ile Glu Arg Ile Ile 420 425 430 Phe Pro His Pro Thr Val Gly Glu Ile Leu Lys Glu Thr Leu Ala Gly 440 445 Gly

#### (2) INFORMATION FOR SEQ ID NO:406

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 941 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...941
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:406

Met Glu Leu Lys Arg Phe Leu Ser Leu Gly Leu Leu Leu Val Gly Phe 1 5 10 15 Ile Pro Met Lys Leu Ser Ala Gln Gln Ala Gln Pro Leu Pro Thr Asp 20 25 30

```
Pro Ala Val Arg Val Gly Lys Leu Asp Asn Gly Leu Thr Tyr Phe Ile
      35
                         40
Arg His Asn Glu Asn Pro Lys Asp Arg Ala Asp Phe Phe Ile Ala Gln
                    55
                                       60
Lys Val Gly Ser Ile Leu Glu Glu Asp Ser Gln Ser Gly Leu Ala His
                 70
                                  75
Phe Leu Glu His Met Ala Phe Asn Gly Thr Lys Asn Phe Pro Gly Lys
              85
                                90
Asn Leu Ile Asn Tyr Leu Glu Thr Ile Gly Val Arg Phe Gly Gln Asn
          100
                           105
Leu Asn Ala Ser Thr Gly Phe Asp Lys Thr Glu Tyr Thr Ile Met Asp
                       120
Val Pro Thr Thr Arg Gln Gly Ile Ile Asp Ser Cys Leu Leu Ile Leu
           135
                                140
His Asp Trp Ser Asn Asn Ile Thr Leu Asp Gly His Glu Ile Asp Glu
          150
                              155
Glu Arg Gly Val Ile Gln Glu Glu Trp Arg Ala Arg Arg Asp Ala Asn
            165
                               170
                                                 175
Leu Arg Met Phe Glu Ala Ile Leu Ala Lys Ala Met Pro Gly Asn Lys
                           185
                                  190
Tyr Ala Glu Arg Met Pro Ile Gly Leu Met Asp Val Val Leu Asn Phe
     195
                        200
Lys His Asp Glu Leu Arg Asn Tyr Tyr Lys Lys Trp Tyr Arg Pro Asp
                     215
                                      220
Leu Gln Gly Leu Val Ile Val Gly Asp Ile Asp Val Asp Tyr Val Glu
          230
                           235
Asn Lys Ile Lys Glu Leu Phe Lys Asp Val Pro Ala Pro Val Asn Pro
             245
                               250
                                        255
Ala Glu Arg Ile Tyr Thr Pro Val Glu Asp Asn Asp Glu Pro Ile Val
          260
                           265
                                     270
Ala Ile Ala Thr Asp Ala Glu Ala Thr Thr Thr Gln Leu Ser Ile Ser
      275
                        280
                                          285
Phe Lys Ser Asp Pro Thr Pro Gln Glu Val Arg Gly Ser Ile Phe Gly
  290
              295
Leu Val Glu Asp Tyr Met Lys Gln Val Ile Thr Thr Ala Val Asn Glu
                310
                                 315
Arg Leu Ser Glu Ile Thr His Lys Pro Asn Ala Pro Phe Leu Ser Ala
            325
                      330
Gly Ala Phe Phe Ser Asn Phe Met Tyr Ile Thr Gln Thr Lys Asp Ala
         340
                   345
Phe Asn Phe Val Ala Thr Val Arg Glu Gly Glu Ala Glu Lys Ala Met
                        360
                                         365
Asn Ala Leu Val Ala Glu Ile Glu Ser Leu Arg Gln Phe Gly Ile Thr
  370
                   375
                                      380
Lys Gly Glu Tyr Asp Arg Ala Arg Thr Asn Val Leu Lys Arg Tyr Glu
385
                 390
                                   395
Asn Gln Tyr Asn Glu Arg Asp Lys Arg Lys Asn Asn Ala Tyr Ala Asn
                               410
            405
Glu Tyr Ser Thr Tyr Phe Thr Asp Gly Gly Tyr Ile Pro Gly Ile Glu
       420
                   425
Val Glu Tyr Gln Thr Val Asn Ala Phe Ala Pro Gln Val Pro Leu Glu
      435
                       440
                                  445
Ala Phe Asn Gln Ala Ile Ala Gln Met Ile Asp Pro Val Lys Asn Ala
                    455
                                     460
Val Val Thr Leu Thr Gly Pro Ser Lys Ala Glu Ala Lys Ile Pro Ser
               470
                                   475
Glu Ala Asp Phe Leu Ala Ala Phe Lys Ala Ala Arg Gln Gln Lys Val
           485
                              490
Glu Ala Lys Lys Asp Glu Val Ser Asp Gln Lys Leu Met Glu Lys Ala
         500 505
                                     510
Pro Lys Ala Gly Lys Ile Val Ser Glu Lys Lys Asp Gln Lys Phe Gly
      515
                       520
                                          525
Thr Thr Glu Leu Thr Leu Ser Asn Gly Ile Lys Val Tyr Leu Lys Lys
                   535
                             540
Thr Asp Phe Lys Ser Asn Glu Ile Leu Met Ser Ala Leu Ser Pro Gly
                                   555
Gly Ile Leu Ser Gly Lys His Ala Pro Asn Gln Ser Val Met Asn Ser
             565
                              570
Phe Met Asn Val Gly Gly Leu Gly Asn Phe Asp Ala Ile Gln Leu Asp
         580
                           585
Lys Val Leu Thr Gly Arg Ser Ala Ser Val Ser Pro Ser Leu Ser Leu
     595
                      600
                                          605
Leu Ser Glu Gly Leu Ser Gly Lys Thr Thr Val Glu Asp Met Glu Thr
           615
                             620
Phe Phe Gln Leu Ile Tyr Leu Gln Met Thr Ala Asn Arg Lys Asp Pro
                 630
                                  635
Glu Ala Phe Lys Ala Thr Gln Glu Lys Leu Tyr Asn Asn Leu Lys Asn
```

645 Gln Glu Ala Asn Pro Met Ala Ala Leu Met Asp Ser Ile Arg His Thr 660 665 Met Tyr Gly Asp Asn Pro Met Met Lys Pro Met Lys Ala Ala Asp Val 675 680 Glu Lys Val Asn Tyr Asp Gln Val Met Ala Phe Tyr Asn Glu Arg Phe 695 700 Ala Asp Ala Gly Asp Phe Met Phe Phe Phe Ile Gly Asn Leu Asp Glu 710 715 Ala Lys Met Lys Pro Leu Ile Glu Thr Tyr Leu Ala Ser Leu Pro Asn 725 730 735 730 Leu Lys Arg Gly Asp Lys Met Asn Lys Ala Gln Val Pro Ala Ala Arg 740 745 750 Ser Gly Lys Ile Asp Cys Lys Phe Glu Lys Glu Met Asp Thr Pro Ser 760 Thr Thr Ile Phe Asp Val Val Ser Gly Asn Val Glu Tyr Thr Leu Lys 775 780 Asn Ser Leu Leu Glu Val Phe Ser Ala Val Met Asp Gln Val Tyr 785 790 795 Thr Ala Thr Val Arg Glu Lys Glu Gly Gly Ala Tyr Ser Val Ala Ala 805 810 815 Phe Gly Gly Leu Glu Gln Tyr Pro Gln Pro Lys Ala Leu Met Gln Ile 820 825 830 Tyr Phe Pro Thr Asp Pro Ala Arg Ala Glu Glu Met Asn Ala Ile Val 835 840 845 Phe Ala Glu Leu Glu Lys Leu Ala Lys Glu Gly Pro Asn Val Glu Tyr 855 860 Phe Lys Lys Thr Ile Glu Asn Leu Asn Lys Gln His Lys Glu Ser Leu 870 875 Arg Glu Asn Arg Phe Trp Leu Glu Ala Met Lys Ala Ser Phe Phe Glu 890 885 Gly Asn Asp Phe Ile Thr Asp Tyr Glu Ser Val Leu Asn Gly Leu Thr 900 905 910 Pro Ala Glu Leu Gln Lys Phe Ala Ala Asp Leu Leu Lys Gln Gln Asn 920 Arg Val Val Wet Met Ala Pro Val Ala Lys Ala Gln 935

### (2) INFORMATION FOR SEQ ID NO:407

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 684 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...684
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:407

Met Ser Lys Lys Gly Thr Ile Gly Val Thr Ser Asp Asn Ile Phe Pro Val Ile Lys Lys Phe Leu Tyr Ser Asp His Glu Ile Phe Leu Arg Glu 20 25 30 Ile Val Ser Asn Ala Val Asp Ala Thr Gln Lys Leu Lys Thr Leu Thr 40 Ser Val Gly Glu Phe Lys Gly Glu Thr Gly Asp Leu Arg Val Thr Val 55 Ser Val Asp Glu Val Ala Arg Thr Ile Thr Val Ser Asp Arg Gly Val 75 70 Gly Met Thr Glu Glu Glu Val Glu Lys Tyr Ile Asn Gln Ile Ala Phe 90 85 Ser Ser Ala Glu Glu Phe Leu Glu Lys Tyr Lys Asp Asp Lys Ala Ala 100 105 110 Ile Ile Gly His Phe Gly Leu Gly Phe Tyr Ser Ala Phe Met Val Ser 120 125 Glu Arg Val Asp Val Ile Thr Arg Ser Phe Arg Glu Asp Ala Thr Ala 135 140 Val Lys Trp Ser Cys Asp Gly Ser Pro Glu Tyr Thr Leu Glu Pro Ala

145 Asp		Ala	Asp	Arg			Asp	Ile	Val			Ile	e Asp		160 Glu
Asn	Ser	Glu	Phe	Lev		Lys	Glu	Lys 185	Ile		Gly	Let	Lev		, Tàs
		195	i				200					205	Lys	Glr	Glu
	210					215	i				220				Asn
225					230					235					Glu 240
				245					250					255	
			260					265					270	1	Gly
		275					280					285			Asn
	290					295					300				Gln
305			Pro		310					315					320
			Pro Lys	325					330					335	
			340 Ile					345					350		
		355	Lys				360					365			
	370		Arg			375					380				
385	-		_		390	_4 -				395				тор	400
			Thr	405					410					415	
			Asp 420					425					430		
		435	Ser				440					445			
	450		Asp			455					460				
465			Glu		470					475					480
			Ile	485					490					495	
			Ala 500					505					510		
		515	Lys				520					525			
	530		Ile Gln			535					540				
545			0111	Deu	550		Gry	Mec	361	555	ıyı	GIY	GIU	Leu	560
			Asn	565					570					575	Arg
			Gly 580					585					590		
		595	Ile				600					605			
	610		Gly			615					620				
Ala 625					630					635					640
Asn -				645					650					655	
Leu			660					665				Thr	Gly 670	Glu	Ala
Leu		Glu 675	Phe	île	Arg		Ser 680	Gln	Arg	Leu	Leu				

# (2) INFORMATION FOR SEQ ID NO:408

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 464 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

#### (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...464
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:408

Met Glu Lys Leu Ile Asp Ile Leu Val Val Asp Asp Asp Val Ala Val 10 Cys Ala Ala Leu Arg Leu Val Leu Lys Arg Ala Gly Tyr Asn Pro Val 20 Ile Ala Asn Ser Pro Asp Glu Ala Leu Ser Ile Met Arg Asn Pro Asp 40 Gly Gly Cys Lys Pro Ala Val Ile Leu Met Asp Met Asn Phe Ser Leu 55 Ser Thr Ser Gly Arg Glu Gly Leu Glu Leu Leu Glu Lys Met Gln Ile 70 75 Phe Thr Ser Cys Pro Val Ile Leu Met Thr Ala Trp Ala Ser Ile Pro 85 90 Leu Ala Val Glu Gly Met Arg Leu Gly Ala Phe Asp Phe Ile Gly Lys 105 110 Pro Trp Asp Asn Asp Arg Leu Leu Arg Thr Ile Asp Thr Ala Leu His 115 120 125 Leu Ala Ala Pro Ser Ala Val Ala Asn Pro Ser Glu Gln Ser Asp Arg 135 140 Asp Thr Ala Arg Gln Pro Lys Ala Thr Val Gln Glu Asn Asp Pro Cys 145 150 155 160 Ala His Ile Ile Gly Arg Ser Asp Ala Ile Cys Lys Ile Lys Glu Arg 165 170 Ile Arg Arg Ile Ala Pro Thr His Ala Ser Val Leu Ile Thr Gly Glu 180 185 190 Ser Gly Thr Gly Lys Glu Leu Ile Ala Glu Ala Leu His Arg Gly Ser 195 200 205 Lys Arg Ala Ser Ala Pro Phe Val Lys Val Asn Leu Gly Gly Ile Pro 210 215 Glu Ser Leu Phe Glu Ser Glu Leu Phe Gly His Lys Lys Gly Ala Phe 225 230 235 Thr Asn Ala Phe Ser Asp Arg Lys Gly Arg Phe Glu Leu Ala Asp Gly 245 250 255 Gly Thr Ile Phe Leu Asp Glu Ile Gly Glu Leu Pro Val Gly Asn Gln 260 265 270 Val Lys Leu Leu Arg Val Leu Gln Glu Gln Thr Phe Glu Pro Leu Gly 280 285 Glu Ser Val Ser His Arg Val Asp Ile Arg Val Val Ser Ala Thr Asn 290 295 300 Ala Ser Leu Glu Arg Met Val Ala Glu Gly Arg Phe Arg Glu Asp Leu 310 315 Tyr Tyr Arg Ile Asn Leu Ile His Leu His Leu Pro Pro Leu Arg Glu 325 330 Arg Gln Glu Asp Ile Gln Leu Leu Val Glu Ala Phe Ser Glu Ala Phe 340 345 350 Ala Gln Ser Asn Gly Leu Pro His Ala Val Trp Ser Ala Glu Ala Met 360 365 Arg Arg Ile Cys Ala Met Pro Leu Pro Gly Asn Val Arg Glu Leu Lys 375 380 Asn Val Val Glu Arg Thr Leu Leu Leu Ser Gly Ser Arg Glu Ile Ser 390 395 Ala Arg Asp Val Ala Asp Phe Gly Ser Gln Val Thr Ala Ala Asp His 405 410 Ser Asp Glu Arg Ala Leu Thr Asp Met Glu Glu Ala Ala Ile Arg Glu 420 425 430 Thr Leu Thr Lys Tyr Asn Gly Asn Val Ser Arg Ala Ala Arg Ala Leu 435 440 445 Gly Leu Ser Arg Ala Ala Leu Tyr Arg Arg Met Glu Lys Tyr Gly Leu 455 460

### (2) INFORMATION FOR SEQ ID NO:409

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 250 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...250
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:409

Met Leu Lys Ile Lys Asn Leu His Ala Thr Val Gln Gly Lys Glu Ile Leu Lys Gly Ile Asn Leu Glu Ile Asn Ala Gly Glu Ile His Ala Ile 25 Met Gly Pro Asn Gly Ser Gly Lys Ser Thr Leu Ser Ser Val Leu Val 35 40 4.5 Gly His Pro Ser Phe Glu Val Thr Glu Gly Glu Val Thr Phe Asn Gly 55 60 Ile Asp Leu Leu Glu Leu Glu Pro Glu Glu Arg Ala His Leu Gly Leu 70 75 Phe Leu Ser Phe Gln Tyr Pro Val Glu Ile Pro Gly Val Ser Met Val 90 Asn Phe Met Arg Ala Ala Val Asn Glu His Arg Lys Ala Ile Gly Ala 100 105 Glu Pro Val Ser Ala Ser Asp Phe Leu Lys Met Met Arg Glu Lys Arg 115 120 125 Ala Ile Val Glu Leu Asp Asn Lys Leu Ala Ser Arg Ser Val Asn Glu 130 135 140 Gly Phe Ser Gly Gly Glu Lys Lys Arg Asn Glu Ile Phe Gln Met Ala 145 150 155 160 Met Leu Glu Pro Lys Leu Ala Ile Leu Asp Glu Thr Asp Ser Gly Leu 165 170 175 Asp Ile Asp Ala Leu Arg Ile Val Ala Gly Gly Val Asn Arg Leu Arg 180 185 Ser Pro Glu Asn Ala Ala Ile Val Ile Thr His Tyr Gln Arg Leu Leu 195 200 Glu Tyr Ile Lys Pro Asp Phe Val His Val Leu Tyr Lys Gly Arg Ile 215 220 Val Lys Ser Gly Gly Ala Glu Leu Ala Leu Thr Leu Glu Glu Lys Gly 235 225 230 Tyr Asp Trp Ile Lys Glu Glu Ile Gly Glu 245

- (2) INFORMATION FOR SEQ ID NO:410
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 461 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...461
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:410

 Met
 Ala
 Lys
 Glu
 Lys
 Thr
 Ile
 Tyr
 Val
 Cys
 Arg
 Ser
 Cys
 Gly
 Thr
 Lys

 Tyr
 Ala
 Lys
 Trp
 Gln
 Gly
 Asn
 Cys
 Asn
 Ala
 Cys
 Gly
 Gly
 Trp
 Asn
 Cys
 Cys
 Gly
 Gly
 Trp
 Asn
 Cys
 Cys
 Gly
 Gly
 Trp
 Asn
 Cys
 Cys
 Gly
 Lys
 Gly
 Asn
 Cys
 Cys
 Gly
 Lys
 Gly
 Asn
 Cys
 Cys
 Gly
 Asn
 Cys
 Cys
 Gly
 Lys
 His
 Asn
 Asn
 Asn
 Asn
 Pro
 Pro
 Asn
 Asn
 Asn
 Asn
 Pro
 Pro
 Asn
 Cys
 Asn
 Asn
 Asn
 Fro
 Asn
 Asn
 Fro
 Asn
 Asn
 Cys
 Leu
 Cys
 Leu
 Cys
 Cys
 Cys
 Cys
 Cys

90 Leu Gly Gly Glu Pro Gly Ile Gly Lys Ser Thr Leu Ile Leu Gln Thr Val Leu Arg Leu Pro Gln Leu Arg Thr Leu Tyr Val Ser Gly Glu Glu 115 120 125 Ser Ala Arg Gln Leu Lys Met Arg Ala Glu Arg Leu Gly Gln Ala Met 135 140 Asn Gly Cys Tyr Val Tyr Cys Glu Thr Asn Ile Glu Arg Ile Leu Ser 150 155 Arg Ala Glu Glu Leu Thr Pro Asp Leu Leu Val Ile Asp Ser Ile Gln 170 175 Thr Val Tyr Thr Glu Glu Met Glu Ser Ser Ala Gly Ser Val Gly Gln 180 185 Ile Arg Glu Cys Ala Ala Leu Leu Leu Lys Tyr Cys Lys Thr Thr Gly 195 200 205 Ile Pro Val Ile Val Ile Gly His Ile Thr Lys Glu Gly Ser Ile Ala 210 215 220 Gly Pro Lys Val Leu Glu His Ile Val Asp Thr Val Leu Leu Phe Asp 225 230 235 240 Gly Asp Lys His His Leu Tyr Arg Ile Leu Arg Gly Gln Lys Asn Arg 245 250 255 Tyr Gly Ser Thr Ser Glu Leu Gly Ile Tyr Glu Met Arg Gln Asp Gly 265 270 Leu Arg Gly Val Glu Asn Pro Ser Glu His Leu Ile Thr Arg Asn Arg 275 280 Glu Asp Leu Ser Gly Ile Ala Ile Ala Val Ala Met Glu Gly Ile Arg 295 300 Pro Ile Leu Ile Glu Ala Gln Ala Leu Val Ser Ser Ala Ile Tyr Ala 310 315 Asn Pro Gln Arg Ser Ala Thr Gly Phe Asp Ile Arg Arg Met Asn Met 325 330 335 Leu Leu Ala Val Leu Glu Lys Arg Ala Gly Phe Lys Leu Ile Gln Lys 345 350 Asp Val Phe Leu Asn Ile Ala Gly Gly Ile Lys Ile Ala Asp Pro Ala 355 360 365 Thr Asp Leu Ala Val Ile Ser Ala Val Leu Ala Ser Ser Leu Asp Ile 370 375 380 Val Ile Pro Pro Ala Val Cys Met Thr Gly Glu Val Gly Leu Ser Gly 385 390 395 Glu Ile Arg Pro Val Ser Arg Ile Glu Gln Arg Ile Thr Glu Ala Arg 405 410 Arg Ile Gly Phe Lys Glu Ile Leu Val Pro Ala Asp Asn Phe Arg Gln 425 420 430 Glu Asp Ala Gly Arg Phe Gly Ile Arg Leu Val Pro Val Arg Lys Val 440 445 Glu Glu Ala Phe Arg His Leu Phe Ser Lys Gly Arg Glu

## (2) INFORMATION FOR SEQ ID NO:411

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 271 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...271
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:411

65 70 75 Ala Ile Val Thr Asp Ile Asp Glu Thr Ile Leu Asp Asn Thr Pro Asn 85 90 95 Ser Val Tyr Gln Ala Leu Arg Gly Lys Asp Tyr Asp Glu Glu Thr Trp 100 105 Gly Lys Trp Cys Ala Gln Ala Asp Ala Asp Thr Leu Ala Gly Ala Leu 115 120 125 Ser Phe Phe Leu His Ala Ala Asn Lys Gly Ile Glu Val Phe Tyr Val 135 140 Thr Asn Arg Arg Asp Asn Leu Arg Glu Ala Thr Leu Gln Asn Leu Gln 145 150 155 Arg Tyr Gly Phe Pro Phe Ala Asp Glu Glu His Leu Leu Thr Thr His 165 170 175 Gly Pro Ser Asp Lys Glu Pro Arg Arg Leu Lys Ile Gln Glu Gln Tyr 180 185 190 Glu Ile Val Leu Leu Ile Gly Asp Asn Leu Gly Asp Phe His His Phe 195 200 Phe Asn Thr Lys Glu Glu Ser Gly Arg Lys Gln Ala Leu Gly Leu Thr 215 220 Ala Gly Glu Phe Gly Arg His Phe Ile Met Leu Pro Asn Pro Asn Tyr 230 235 Gly Ser Trp Glu Pro Ala Trp Tyr Gly Gly Lys Tyr Pro Pro Leu Pro 245 250 Glu Arg Asp Lys Ala Leu Lys Gln Leu His Ser Gln Asn Ser Arg 260

# (2) INFORMATION FOR SEQ ID NO:412

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 417 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...417
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:412

Met Ser Thr Asn Ile Asp Val Gln Gln Ile Lys Gln Arg Phe Gly Ile 10 Ile Gly Ser Ser Pro Leu Met Glu His Ala Ile Arg Val Ala Ala Gln 25 Val Ala Pro Thr Asp Met Ser Val Leu Val Thr Gly Glu Ser Gly Ser 35 40 45 Gly Lys Glu Phe Phe Pro Gln Ile Ile His Tyr Tyr Ser Ala Arg Lys 50 55 His His Ser Tyr Ile Ala Val Asn Cys Gly Ala Ile Pro Glu Gly Thr 70 75 Ile Asp Ser Glu Leu Phe Gly His Arg Lys Gly Ser Phe Thr Gly Ala 85 90 95 90 Val Ser Asp Arg Lys Gly Tyr Phe Glu Glu Ala Ser Gly Gly Thr Ile 105 110 Phe Leu Asp Glu Val Gly Glu Leu Pro Leu Pro Thr Gln Ala Arg Leu 115 120 125 Leu Arg Val Leu Glu Thr Gly Glu Phe Ile Pro Val Gly Ala Ser Gln 130 135 140 Ser Gln Lys Thr Asp Val Arg Ile Val Ala Ala Thr Asn Val Asn Leu 145 150 155 Lys Glu Ala Val Ala Asn Gly Lys Phe Arg Glu Asp Leu Phe Phe Arg 165 170 Leu Asn Thr Val Pro Ile Glu Val Pro Ala Leu Arg Met Arg Pro Asp 180 185 190 Asp Val Pro Leu Leu Phe Arg Arg Phe Ala Ala Asp Ser Ala Glu Lys 200 205 Tyr Arg Met Pro Pro Leu Arg Leu Ser Asp Glu Ala Arg Thr Ile Leu 210 215 220 Met Arg Tyr Arg Trp Pro Gly Asn Val Arg Glu Leu Arg Asn Ile Thr 230 235 Asp Arg Leu Ser Ile Leu Glu Glu Glu Arg Thr Val Ser Ala Glu Thr

Ile Thr Arg Tyr Leu Asp Ala Glu Gly Met Gln Asp Leu His Pro Val 260 265 Val Ile Arg Arg Asn Glu Thr Thr Glu Ala Asp Lys Gln Ile Pro His 275 280 285 Tyr Glu Arg Glu Ile Ile Tyr Gln Val Leu Tyr Asp Met Lys Lys Glu 295 300 Ile Ala Asp Leu Lys Gly Met Met Asn Arg Leu Ala His His Glu Gln 310 315 Pro Ser Trp Pro Val Gly Ser Asp Val Trp Gly Asn Asp Asp Lys Arg 325 330 Thr Ala Asp Pro Lys Trp Gly Val Ser Thr His Lys Ala Pro Ile Ala 345 350 Asn Ala Ala Glu Pro Val Glu Pro Ile Gln Glu Ala Ser Glu Tyr Thr 360 365 Glu Asp Pro Val Ser Leu Glu Glu Val Glu Lys Lys Met Ile Ser Leu 375 Ala Leu Glu Arg His Gly Gly Arg Arg Lys Gln Thr Ala Glu Glu Leu 385 390 395 Lys Ile Ser Glu Arg Thr Leu Tyr Arg Lys Ile Lys Glu Tyr Gly Leu 405 410

### (2) INFORMATION FOR SEQ ID NO:413

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 602 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...602
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:413

Met Ile Leu Leu Phe Gly Gly Thr Thr Glu Gly Arg Ala Ala Arg 10 Val Leu Asp Glu Ala Gly Ser Pro Phe Phe Tyr Ser Thr Lys Gly Asn 20 25 Leu Gln Glu Ile Gln Ser Ser His Gly His Arg Leu Thr Gly Ala Met 40 Thr Val Ala Asp Met Val Ser Phe Cys Arg Lys Glu Glu Ile Arg Leu 55 60 Ile Val Asp Ala Ala His Pro Phe Ala Glu Glu Leu His Ala Ser Val 70 Ala Glu Ala Ser Glu Gln Thr Gly Ile Pro Val Val Arg Tyr Glu Arg 85 90 Gln Tyr Pro Pro Arg Glu Glu Gly Ile Val Trp Cys Ala Asn Tyr Asp 100 105 Thr Ala Ala Glu Arg Met Leu Gly Asp Gly Val Gln Arg Leu Leu Met 115 120 125 Leu Thr Gly Val Asn Thr Ile Pro Lys Leu Ala Ala Phe Trp Lys Glu 135 140 Arg Thr Thr Phe Cys Arg Ile Leu Lys Arg Asp Glu Ser Val Ala Leu 150 155 Ala Glu Lys Asn Gly Phe Pro Ala Glu Arg Ile Val Phe Phe Glu Pro 165 170 His Ala Asp Glu Glu Leu Met Gln Ala Val Arg Pro Asp Ala Ile Ile 180 185 Thr Lys Glu Ser Gly Glu Ser Gly Tyr Phe Arg Glu Lys Ile Glu Ala 195 200 205 Ala Arg Arg Met Gly Ile Arg Ile Tyr Ala Val Val Arg Pro Pro Leu 215 220 Pro Pro Ser Phe Ile Pro Val Gly Gly Pro Val Gly Leu Arg Arg Ala 225 230 235 Val Glu Arg Leu Val Pro Gly Phe Phe Ser Leu Arg Ser Gly Phe Thr 245 250 Thr Gly Thr Thr Ala Thr Ala Ala Val Val Ala Ala Met Tyr Arg Leu

260 265 Met Gly Leu Gly Ser Leu Ala Glu Ala Pro Val Glu Leu Pro Ser Gly 275 280 285 Glu Ile Val Ser Leu Pro Ile Ala Glu Ile Arg Glu Glu Glu Asp Ala 290 295 300 Val Val Ser Ala Val Leu Lys Asp Ala Gly Asp Asp Pro Asp Val Thr 310 305 315 Asn Gly Met Ala Val Cys Ala Thr Ile Arg Leu Asn Pro Glu His Glu 325 330 335 Glu Val Arg Phe Leu Gln Gly Glu Gly Val Gly Val Val Thr Leu Pro 350 340 345 Gly Leu Gly Leu Glu Val Gly Gly Pro Ala Ile Asn Leu Val Pro Arg 360 365 Arg Met Met Thr Ala Glu Val Arg Arg Leu Tyr Ala Gln Gly Gly Val 375 Asp Ile Thr Ile Ser Val Pro Glu Gly Arg Glu Ala Ala Thr Gln Thr 390 395 Phe Asn Pro Arg Leu Gly Ile Arg Asp Gly Ile Ser Ile Ile Gly Thr 405 410 415 Ser Gly Val Val Lys Pro Phe Ser Ala Glu Ala Phe Val Gly Ala Ile 420 425 430 Arg Lys Gln Val Gly Ile Ala Thr Ala Leu Gly Ala Asn His Ile Val 435 440 445 Leu Asn Ser Gly Ala Lys Ser Glu Arg Tyr Val Lys Gly Ala Tyr Pro 455 460 Ala Leu Ile Pro Gln Ala Phe Val Gln Tyr Gly Asn Phe Val Gly Glu 465 470 475 Ser Leu Ser Cys Val Ala Ser Phe Pro Ser Val Arg Ser Val Thr Val 485 490 495 Gly Ile Met Leu Gly Lys Ala Val Lys Leu Ala Glu Gly Tyr Leu Asp 505 510 500 Thr His Ser Lys Lys Val Val Met Asn Arg Asp Phe Leu His Glu Leu 515 520 525 Ala Arg Gln Ala Gly Cys Ser Glu Asp Ile His Ala Ile Ile Asp Ser 535 540 Leu Asn Leu Ala Arg Glu Leu Trp Thr Met Pro Ser Ala Glu Asp Ser 550 555 Asp Arg Leu Leu Arg Lys Ile Ala Glu Arg Ser Trp Glu Thr Cys Arg 565 570 Pro Ser Val Pro Ser Ala Glu Leu Glu Leu Leu Leu Ile Asp Glu Ser 580 585 Gly Ala Ile Arg Phe Arg Ile Gly Glu 595 600

### (2) INFORMATION FOR SEQ ID NO:414

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 443 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...443
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:414

 Met
 Leu
 Arg
 Thr
 Phe
 Arg
 Ile
 Gly
 Gly
 Ile
 His
 Pro
 Pro
 Glu
 Asn
 Lys

 Leu
 Ser
 Ala
 Gly
 Lys
 Pro
 Val
 Glu
 Val
 Leu
 Pro
 Ile
 Pro
 Ser
 Gln
 Val

 Val
 Ile
 Pro
 Leu
 Gly
 Gln
 His
 Ile
 Gly
 Ala
 Pro
 Ala
 Thr
 Ala
 Thr
 Ala
 Thr
 Ala
 Thr
 Ala
 Gly
 Thr
 Ala
 Ile
 Ala
 Gly
 Thr
 Ile
 Ile
 Ala
 Gly
 Ile
 Ala
 Gly
 Ile
 Ala
 Ile
 Ala
 Ile
 Ile

100 105 Pro Ala Ile Val Lys Glu Cys Asn Leu Asp Ala Lys Glu Ile Val Ala 115 120 125 Lys Ile Ser Ala Ala Gly Ile Val Gly Leu Gly Gly Ala Thr Phe Pro 130 135 140 Thr His Val Lys Leu Ser Pro Pro Pro Gly Asn Lys Ala Glu Ile Leu 145 150 155 Ile Ile Asn Ala Val Glu Cys Glu Pro Tyr Leu Thr Ser Asp His Val Leu Met Leu Glu His Gly Glu Glu Ile Met Ile Gly Val Ser Ile Leu 180 185 190 Met Lys Ala Ile Gln Val Asn Lys Ala Val Ile Gly Val Glu Asn Asn 195 200 Lys Lys Asp Ala Ile Ala His Leu Thr Lys Leu Ala Thr Ala Tyr Pro 215 Gly Ile Glu Val Met Pro Leu Lys Val Gln Tyr Pro Gln Gly Glu 235 230 Lys Gln Leu Ile Asp Ala Val Ile Arg Lys Gln Val Lys Ser Gly Ala 245 250 255 Leu Pro Ile Ser Thr Gly Ala Val Val Gln Asn Val Gly Thr Val Phe 260 265 270 Ala Val Tyr Glu Ala Val Gln Lys Asn Lys Pro Leu Val Glu Arg Ile 280 285 275 Val Thr Val Thr Gly Lys Lys Leu Ser Arg Pro Ser Asn Leu Leu Val 290 295 300 295 300 Arg Ile Gly Thr Pro Ile Ala Ala Leu Ile Glu Ala Ala Gly Gly Leu 305 310 315 Pro Glu Asn Thr Gly Lys Ile Ile Gly Gly Gly Pro Met Met Gly Arg 325 330 335 Ala Leu Leu Ser Pro Asp Val Pro Val Thr Lys Gly Ser Ser Gly Val 340 345 350 Leu Ile Leu Asp Arg Glu Glu Ala Val Arg Lys Pro Met Arg Asp Cys 355 360 365 Ile Arg Cys Ala Lys Cys Val Gly Val Cys Pro Met Gly Leu Asn Pro 370 375 380 Ala Phe Leu Met Arg Asp Thr Leu Tyr Lys Ser Trp Glu Thr Ala Glu 390 395 Lys Gly Asn Val Val Asp Cys Ile Glu Cys Gly Ser Cys Ser Phe Thr \$405\$ \$410\$ \$415Cys Pro Ala Asn Arg Pro Leu Leu Asp Tyr Ile Arg Gln Ala Lys Lys 420 425 Thr Val Met Gly Ile Gln Arg Ala Arg Lys Gln 435 440

#### (2) INFORMATION FOR SEQ ID NO:415

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 479 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...479
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:415

Met Lys Arg Ile Gln Leu Thr Leu Ile Ala Leu Phe Ala Ala Val Ala 10 Gly Leu Val Ala Gln Asn Ala Tyr Glu Gly Val Ile Ser Tyr Lys Ile 20 25 Ser Leu Asp Lys Thr Gly Asn Lys Val Val Leu Asn Gly Ala Ala Asp 35 40 45 Met Ser Asn Leu Lys Leu Lys Ser Thr Gln Met Ile Ile Val Thr Pro 55 60 Ile Leu Arg Ser Glu Asp Gly Thr Ser Arg Val Glu Phe Pro Ser Val 65 70 75 Val Ile Thr Gly Arg Asn Arg Thr Lys Ala Leu Lys Arg Glu Ile Ala 90 Phe Ser Ser Ala Leu Pro Gln Ala Lys His Ala Ala Gln Tyr Ile Arg

100 105 Arg His Asn Gly Lys Ser Glu Gln Phe Ala Phe Thr Gly Glu His Ala 115 120 125 Tyr Ala Ser Trp Met Met Asp Ala Lys Phe Val Val Arg Glu Glu Val 130 135 140 Arg Gly Cys Ala Lys Cys Pro Val Gly Leu Ser Ser Asn Ile Val Pro 150 155 Phe Asp Pro Leu Phe Asn Pro Ala Glu Ala Pro Tyr Leu Leu Ala His 165 170 Ile Thr Pro Ala Glu Glu Val Glu Lys Gln Arg Glu Ser Ser Phe Asp 190 185 Ala Tyr Ile Asn Phe Lys Val Asn Lys Ala Asp Val Leu Pro Glu Tyr 195 200 205 Arg Asn Asn Lys Ala Glu Leu Glu Lys Ile Lys Glu Phe Val Ser Thr 215 220 Val Lys Ala Asn Pro Asn Tyr Ser Val Asn Lys Met Ile Ile Glu Gly 225 230 235 Phe Ala Ser Pro Glu Ala Ser Ile Ala His Asn Lys Ala Leu Ser Glu 245 250 Arg Arg Ala Lys Arg Leu Ala Glu Glu Leu Val Arg Lys Tyr Gly Lys 260 265 270 Thr Leu Pro Asn Ile Thr Thr Glu Phe Gly Gly Glu Asp Trp Lys Gly 280 285 Leu Lys Leu Ala Ile Glu Lys Ser Asp Ile Ala Asp Arg Asp Arg Val 295 300 Leu Glu Ile Ile Asn Ser Asp Lys Tyr Ala Asp Asp Asp Ala Arg Glu 310 315 Gln Ala Leu Lys Gln Leu Ser Ser Tyr Arg Tyr Ile Leu Asp Gln Ile 325 330 Tyr Pro Asn Leu Arg Arg Asn Thr Ile Thr Met Gly Tyr Ile Val Arg 340 345 350 Asp Tyr Thr Leu Glu Glu Ala Arg Glu Ile Ile Lys Thr Ala Pro Lys 360 365 Glu Leu Ser Glu Ala Glu Met Tyr Arg Val Ala Met Ser Tyr Pro Glu 370 375 380 Gly His Gln Glu Arg Leu Phe Ala Leu Asn Thr Thr Leu Lys Tyr Phe 390 395 Pro Glu Ser Val Thr Gly Arg Ile Asn Leu Ala Val Ala Ala Phe Asn 405 410 415 Gly Gly Asp Val Gln Gln Ala Ile Ala Leu Leu Ser Pro Ile Gln Thr 420 425 Glu Lys Gly Val Ser Asn Ile Leu Gly Ala Ala Tyr Ala Arg Thr Gly 435 440 445 Asp Phe Ala Arg Ala Glu Thr Phe Phe Arg Lys Ala Val Ala Glu Gly 455 460 Asp Ala Asn Ala Gln Arg Asn Leu Asp Met Leu Leu Gly Lys Lys 470

### (2) INFORMATION FOR SEQ ID NO:416

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 383 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...383
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:416

 Met
 Ala
 Glu
 Lys
 Arg
 Asp
 Tyr
 Tyr
 Glu
 Val
 Leu
 Gly
 Lys
 Asp
 Lys
 Asp
 Lys
 Lys
 Lys
 Ala
 Tyr
 Arg
 Lys
 Lys
 Ala
 Tyr
 Arg
 Lys
 Lys
 Ala
 Tyr
 Arg
 Lys
 Lys
 Ala
 Ile
 I

Gly Gly Phe Ser Gly Gly Gly Met Ser Met Glu Asp Ile Phe Ser Arg 90 85 Phe Gly Asp Leu Phe Gly Gly Phe Gly Gly Phe Gly Gly Phe Ser Asp 100 105 Met Gly Gly Gly Ser Arg Arg Arg Val Arg Arg Gly Ser Asp Leu Arg 115 120 125 Val Arg Val Lys Leu Ser Leu Ala Asp Ile Ser Lys Gly Val Glu Lys 135 140 Lys Val Lys Val Lys Gln Val Val Cys Ser Lys Cys Arg Gly Asp 145 150 155 160 150 Gly Thr Glu Glu Ala Asn Gly Lys Thr Thr Cys Gln Thr Cys His Gly 165 170 Thr Gly Val Val Thr Arg Val Ser Asn Thr Phe Leu Gly Ala Met Gln 185 190 Thr Gln Ser Thr Cys Pro Thr Cys His Gly Glu Gly Glu Ile Ile Thr 200 Lys Pro Cys Ser Lys Cys Lys Gly Glu Gly Val Glu Ile Gly Glu Glu 210 215 220 Val Ile Ser Phe His Ile Pro Ala Gly Val Ala Glu Gly Met Gln Met 230 235 Ser Val Asn Gly Lys Gly Asn Ala Ala Pro Arg Gly Gly Val Asn Gly 245 250 Asp Leu Ile Val Val Ile Ala Glu Glu Pro Asp Pro Asn Leu Ile Arg 265 270 Asn Gly Asn Asp Leu Ile Tyr Asn Leu Leu Ile Ser Val Pro Leu Ala 275 280 Ile Lys Gly Gly Ser Val Glu Val Pro Thr Ile Asp Gly Arg Ala Lys 295 300 Ile Arg Ile Glu Ala Gly Thr Gln Pro Gly Lys Met Leu Arg Leu Arg 305 310 315 320 Asn Lys Gly Leu Pro Ser Val Asn Gly Tyr Gly Met Gly Asp Gln Leu 325 330 Val Asn Val Asn Val Tyr Ile Pro Glu Ser Ile Asp Ala Lys Asp Glu 340 345 350 Gln Ala Ile Ala Ala Met Glu Asn Ser Asp Ser Phe Lys Pro Thr Asp 360 365 Ala Ala Arg Lys Asp Ile Asp Lys Lys Tyr Arg Glu Met Leu Asp 375

### (2) INFORMATION FOR SEQ ID NO:417

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 293 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...293
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417

Met Lys Lys Leu Ile Leu Ala Thr Leu Gly Leu Met Ala Ile Ala Met 10 Leu Ser Cys Ser Ser Asn Asn Lys Asp Leu Glu Asn Lys Gly Glu Ala 25 Thr Leu Leu Val Thr Phe Gly Ser Ser Tyr Lys Ala Pro Arg Glu Thr 40 45 Tyr Ala Lys Ile Glu Lys Thr Phe Ala Ala Ala Tyr Pro Asp Gln Arg 55 Ile Ser Trp Thr Tyr Thr Ser Ser Ile Ile Arg Lys Lys Leu Ala Gln 70 75 Gln Gly Ile Tyr Ile Asp Ala Pro Asp Glu Ala Leu Glu Lys Leu Ala 85 90 95 Arg Leu Gly Tyr Lys Lys Ile Asn Val Gln Ser Leu His Val Ile Pro 100 105 110 Gly Arg Glu Tyr Asp Glu Met Ile Asp Phe Val Asn Lys Phe Lys Ala 120 125 Ala His Ser Asp Ile Thr Val Lys Val Gly Ala Pro Leu Phe Asp Thr

135 Asp Glu Asp Met Arg Glu Val Ala Glu Ile Leu His Lys Arg Phe Gln 150 155 Gln Thr Ile Glu Lys Gly Glu Ala Ile Val Phe Met Gly His Gly Thr 165 170 175 Glu His Ala Ala Asn Asp Arg Tyr Ala Arg Ile Asn Lys Ile Met Lys 180 185 190 Asn Tyr Ser Lys Phe Met Ile Val Gly Thr Val Glu Ser Asp Pro Ser 195 200 205 Ile Asn Asp Val Ile Ala Glu Leu Lys Glu Thr Gly Ala Thr Ala Val 215 220 Thr Met Met Pro Leu Met Ser Val Ala Gly Asp His Ala Thr Asn Asp 225 230 235 Met Ala Gly Asp Glu Asp Asp Ser Trp Lys Thr Leu Leu Thr Asn Ala 245 250 Gly Tyr Thr Val Ser Ile Asp Lys Leu Asp Asn Gly Asn Phe Ser Ala 260 265 270 Leu Gly Asp Ile Glu Glu Ile Arg Asn Ile Trp Leu Lys His Met Lys 275 280 285 Ala Thr Ser Ala Arg 290

(2) INFORMATION FOR SEQ ID NO:418

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 356 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...356
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:418

Met Thr Ser Val Ser His Leu Arg Thr Ile Ser Val Ala Gly Ile Leu 10 Ala Ala Leu Gly Gly Ala Val Leu Ile Leu Phe Gly Val Asn Leu Phe 20 25 Leu Gly Ser Val Ala Ile Pro Met Ser Glu Ile Phe Arg His Leu Phe 35 40 4.5 Ser Asp Arg Pro Glu Gly Gly Glu Ala Leu Val His Tyr Asn Ile Leu 50 55 60 Trp Lys Ser Arg Leu Pro Glu Ala Leu Thr Ala Ala Phe Ala Gly Ala 70 75 Gly Leu Ser Val Ser Gly Leu Gln Met Gln Thr Val Phe Arg Asn Pro 85 90 Leu Ala Gly Pro Ser Val Leu Gly Ile Ser Ser Gly Ala Ser Leu Gly 100 105 110 Val Ala Leu Val Val Leu Leu Ser Gly Ser Leu Gly Gly Val Ala Leu 120 115 125 Ser Ser Leu Gly Tyr Met Gly Glu Val Ala Met Asn Ile Ala Ala Ala 130 135 140 Val Gly Ser Leu Ala Val Met Gly Leu Ile Val Phe Val Ser Thr Lys 150 155 Val Arg Ser His Val Thr Leu Leu Ile Ile Gly Val Met Ile Gly Tyr 165 170 175 Val Ala Thr Ala Val Ile Gly Val Phe Lys Phe Phe Ser Ile Glu Glu 180 185 Asp Ile Arg Ala Tyr Val Ile Trp Gly Leu Gly Ser Phe Ser Arg Ala 195 200 Thr Asp Ser Gln Leu Ser Phe Phe Ala Ile Leu Met Leu Ile Phe Ile 210 215 220 Pro Ala Gly Met Leu Leu Val Lys Gln Leu Asn Leu Leu Leu Gly 230 235 Glu Ser Tyr Ala Arg Asn Leu Gly Leu Asn Thr Arg Arg Ala Arg Leu 245 250 255 Leu Val Ile Ser Ser Ala Gly Leu Leu Ile Ala Thr Val Thr Ala Tyr 265 Cys Gly Pro Ile Gly Phe Leu Gly Met Ala Val Pro His Leu Ala Arg

275 280 Val Ile Phe His Thr Ser Asp His Arg Ile Leu Met Pro Ala Thr Cys 290 295 300 Leu Ile Gly Ser Ala Leu Ala Leu Phe Cys Asn Ile Ile Ala Arq Met 305 310 315 Pro Gly Phe Glu Gly Ala Leu Pro Val Asn Ser Val Thr Ala Leu Val 325 330 335 Gly Ala Pro Ile Ile Val Thr Val Leu Phe Arg Arg Arg Phe Lys 340 345 Glu Glu Thr Asp 355

### (2) INFORMATION FOR SEQ ID NO:419

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 757 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...757
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:419

Met Arg Thr Lys Thr Ile Phe Phe Ala Ile Ile Ser Phe Ile Ala Leu 10 Leu Ser Ser Ser Leu Ser Ala Gln Ser Lys Ala Val Leu Thr Gly Ser 20 25 Val Ser Asp Ala Glu Thr Gly Glu Pro Leu Ala Gly Ala Arg Ile Glu 35 40 45 Val Lys His Thr Asn Ile Val Ala Gly Ala Asp Ala Gly Gly His Phe 50 55 60 Glu Ile Lys Asn Leu Pro Ala Gly Gln His Thr Ile Ile Cys Ser Leu 70 75 Gly Gly Tyr Gly Gln Lys Glu Glu Val Val Ala Ile Glu Ala Gly Gln 85 90 Thr Lys Thr Ile Ser Phe Ala Leu Arg Leu Arg Thr Asn Asn Leu Glu 100 105 Glu Val Val Val Thr Gly Thr Gly Thr Arg Tyr Arg Leu Val Asp Ala 115 120 125 Pro Val Ala Thr Glu Val Leu Thr Ala Lys Asp Ile Ala Ser Phe Ser 130 135 140 Ala Pro Thr Ser Glu Ala Leu Leu Gln Gly Leu Ser Pro Ser Phe Asp 150 155 160 Phe Gly Pro Asn Leu Met Gly Ser Phe Met Gln Leu Asn Gly Leu Ser 165 170 Ser Lys Tyr Ile Leu Ile Leu Ile Asp Gly Lys Arg Val Tyr Gly Asp 180 185 Val Gly Gly Gln Ala Asp Leu Ser Arg Ile Ser Pro Asp Gln Ile Glu 195 200 205 Arg Ile Glu Leu Val Lys Gly Ala Ser Ser Ser Leu Tyr Gly Ser Asp 210 215 220 Ala Ile Ala Gly Val Ile Asn Val Ile Thr Lys Lys Asn Thr Asn Arg 230 235 Leu Ser Ala Tyr Thr Ser His Arg Ile Ser Lys Tyr Asn Asp Arg Gln 250 Thr Asn Thr Ser Leu Asp Ile Asn Ile Gly Lys Phe Ser Ser Asn Thr 260 Asn Tyr Phe Phe Tyr His Thr Asp Gly Trp Gln Asn Ser Pro Phe Glu 275 280 285 Ile Lys Lys Lys Gly Ser Gly Glu Pro Val Leu Glu Glu Thr Tyr 290 295 300 Lys Lys Thr Phe Arg Ala Gln Glu Asn Gln Gly Val Ser Gln Ser Leu 310 315 Ser Tyr Tyr Ala Thr Asn Asn Leu Ser Phe Ser Gly Asn Val Gln Tyr 325 330 335 Asn Lys Arg Gln Ile Phe Thr Pro Thr Phe Ser Glu Lys Lys Ala Tyr 345 340 350 Asp Met Asp Tyr Arg Ala Leu Thr Ala Ser Leu Gly Thr Asn Tyr Leu

360 365 Phe Pro Asn Gly Leu His Thr Leu Ser Phe Asp Ala Val Tyr Asp Arg 370 375 380 Phe Arg Phe Gly Tyr Leu Tyr His Asp Lys Asp Ser Ser Glu Ser Leu 390 395 Ile Asn Asn Gln Gly Gln Thr Glu Gln Pro Thr Phe Phe Pro Gly Gln 405 410 Leu Arg Asn Lys Asn Asp Gln Ile Arg Tyr Thr Ala Glu Ala Arg Gly 420 425 Val Phe Thr Leu Pro Tyr Ala Gln Lys Leu Thr Gly Gly Leu Glu Tyr 440 445 Phe Arg Glu Glu Leu Ile Ser Pro Tyr Asn Leu Ile Thr Asp Lys Ala 455 460 Asp Ala Ser Thr Leu Ser Ala Tyr Val Gln Asp Glu Trp Lys Pro Leu 470 475 Asp Trp Phe Asn Met Thr Ala Gly Phe Arg Leu Val His His Gln Glu 485 490 Phe Gly Thr Arg Met Thr Pro Lys Val Ser Ile Leu Ala Lys Tyr Gly 500 505 510 Pro Leu Asn Phe Arg Ala Thr Tyr Ala Asn Gly Tyr Lys Thr Pro Thr 515 520 Leu Lys Glu Leu Phe Ala Arg Asn Glu Leu Thr Thr Met Gly Ser His 530 535 540 Asn Leu Tyr Leu Gly Asn Ala Asp Leu Lys Pro Gln Met Ser Asp Tyr 545 550 550 555 560 Tyr Ala Leu Gly Leu Glu Tyr Asn Gln Gly Pro Ile Ser Phe Ser Ala 565 570 575 Thr Val Tyr Asp Asn Glu Leu Arg Asn Leu Ile Ser Phe Met Asp Ile 580 585 590 Pro Thr Ser Pro Glu His Glu Ala Gln Gly Ile Lys Lys Thr Lys Gln 595 600 Tyr Ala Asn Ile Gly Lys Ala Arg Ser Arg Gly Leu Asp Val Leu Cys 610 615 620 Asp Ala Ser Ile Gly Trp Gly Ile Lys Leu Gly Ala Gly Tyr Ser Leu 630 635 Val Glu Ala Lys Asn Leu Gln Thr Asp Glu Trp Leu Glu Gly Ala Ala 645 650 Arg His Arg Ala Asn Val His Ala Asp Trp Val His Tyr Trp Gly Gln 660 665 670 Tyr Arg Leu Gly Val Ser Leu Phe Gly Arg Ile Gln Ser Glu Arg Tyr 675 680 685 Tyr Lys Asp Gly Asn Ala Pro Asp Tyr Thr Leu Trp Arg Leu Ala Thr 695 690 Ser His Arg Phe Ala His Phe Arg His Ile Ile Leu Asp Gly Thr Leu 710 715 Gly Ile Asp Asn Leu Phe Asp Tyr Val Asp Asp Arg Pro Met Gly Val 725 730 735 Asn Tyr Ala Thr Val Thr Pro Gly Arg Thr Phe Phe Ala Gln Ile Ala 740 745 Ile Arg Phe Asn Asn 755

# (2) INFORMATION FOR SEQ ID NO:420

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 331 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...331
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:420

 Met
 Thr
 Asp
 Asn
 Lys
 Gln
 Arg
 Asn
 Ile
 Val
 Phe
 Pro
 Ala
 Phe
 Leu
 Leu

 Leu
 Gly
 Val
 Ile
 Ala
 Val
 Val
 Thr
 Ile
 Val
 Gly
 Phe
 Phe
 Met
 Leu

 Leu
 20
 25
 30

 Arg
 Pro
 Ala
 Glu
 Glu
 Ile
 Ile
 Gly
 Gln
 Ile
 Glu
 Val
 Thr
 Glu
 Tyr

35 40 45 Arg Val Ser Ser Lys Val Pro Gly Arg Ile Lys Glu Leu Arg Val Ser 55 60 Glu Gly Gln Gln Val Gln Ala Gly Asp Thr Leu Ala Val Ile Glu Ala 70 Pro Asp Val Ala Ala Lys Met Glu Gln Ala Lys Ala Ala Glu Ala Ala 85 90 Ala Gln Ala Gln Asn Ala Lys Ala Leu Lys Gly Ala Arg Ser Glu Gln 100 105 110 Ile Gln Ala Ala Tyr Glu Met Trp Gln Lys Ala Gln Ala Gly Val Ala 115 120 125 Ile Ala Thr Lys Thr His Gln Arg Val Gln Asn Leu Tyr Asp Gln Gly 130 135 140 Val Val Pro Ala Gln Lys Leu Asp Glu Ala Thr Ala Gln Arg Asp Ala 150 155 Ala Ile Ala Thr Gln Lys Ala Ala Glu Ala Gln Tyr Asn Met Ala Arg 165 170 Asn Gly Ala Glu Arg Glu Asp Lys Leu Ala Ala Ser Ala Leu Val Asp 180 185 Arg Ala Arg Gly Ala Val Ala Glu Val Glu Ser Tyr Ile Asn Glu Thr 200 195 205 Tyr Leu Ile Ala Pro Arg Ala Gly Glu Val Ser Glu Ile Phe Pro Lys 215 220 Ala Gly Glu Leu Val Gly Thr Gly Ala Pro Ile Met Asn Ile Ala Glu 230 235 Met Gly Asp Met Trp Ala Ser Phe Ala Val Arg Glu Asp Phe Leu Ser 245 250 Ser Met Thr Met Gly Ala Val Leu Glu Thr Val Val Pro Ala Leu Asn 260 265 Glu Glu Lys Val Arg Phe Lys Ile Thr Phe Ile Lys Asn Met Gly Thr 275 280 285 Tyr Ala Ala Trp Lys Ala Thr Lys Thr Thr Gly Gln Tyr Asp Leu Lys 290 295 300 Thr Phe Glu Val Lys Ala Thr Leu Ala Asp Lys Asp Lys Ala Gln Lys 310 315 Leu Arg Pro Gly Met Ser Val Ile Ile Arg Lys 325

### (2) INFORMATION FOR SEQ ID NO:421

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 267 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...267
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:421

Met Arg Ile Val Ser Asn Phe Leu Phe Val Ser Phe Ser Val Leu Leu 10 Phe Ala Ser Cys Arg Ser Gln Arg Glu Lys Val Val Tyr Leu Gln Asp 20 25 Ile Gln Thr Phe Asn Arg Glu Ile Ile Ala Lys Pro Tyr Asp Val Lys 40 Ile Glu Lys Asp Asp Val Leu Asn Ile Leu Val Ser Ser Arg Asp Pro 55 60 Glu Leu Ser Thr Pro Tyr Asn Gln Val Leu Thr Thr Arg Ala Leu Ala 65 70 Arg Asn Gly Tyr Gly Thr Asn Ser Asn Glu Gly Phe Leu Val Asp Ser 85 90 Lys Gly Tyr Ile Asn Tyr Pro Ile Leu Gly Gln Ile Tyr Val Glu Gly 100 105 110 Leu Thr Arg Thr Glu Leu Glu Lys Glu Ile Gln Lys Arg Ile Ile Ser 115 120 125 Ser Gly Phe Ile Lys Asp Pro Thr Val Thr Val Gln Leu Gln Asn Phe 135 140 Lys Val Ser Val Leu Gly Glu Val Asn His Pro Gly Ser Met Ser Val

145 150 155 Lys Gly Glu Arg Ile Thr Leu Leu Glu Ala Ile Gly Met Ala Gly Asp 165 170 175 Leu Thr Ile Tyr Gly Arg Arg Asp Arg Val Phe Val Ile Arg Glu Thr 180 185 190 Asp Gly His Arg Glu Val Phe Gln Thr Asp Leu Arg Lys Ala Asp Leu 195 200 205 Leu Ala Ser Pro Val Tyr Tyr Leu His Gln Asn Asp Val Ile Tyr Val 215 220 Glu Pro Asn Asp Lys Lys Thr Gln Met Ser Glu Ile Asn Gln Asn Asn 225 235 230 Asn Val Asn Val Trp Leu Ser Val Thr Ser Thr Leu Val Ser Ile Ser 245 250 255 Thr Leu Thr Ile Thr Ile Ile Asp Lys Thr Lys 260 265

#### (2) INFORMATION FOR SEQ ID NO:422

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 569 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...569
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:422

Met Lys Lys Thr Asn Leu Phe Leu Ser Leu Leu Val Ile Phe Ile Thr 1 5 10 Gly Ser Phe Met Thr Ala Cys Ala Gln Lys Ser Lys Thr Asn Lys Leu 20 25 3.0 Thr Glu Glu Asp Arg Ser Arg Asn Glu Tyr Val Gln Ser Met Asp Val 40 45 Leu Ser Asn Ile Ile Gly Asn Val Arg Leu Tyr Phe Val Asp Thr Ile 50 55 60 Ser Ile Lys His Met Thr Arg Arg Gly Ile Asp Ala Met Leu Gly Gly 70 75 Leu Asp Pro Tyr Thr Glu Tyr Ile Pro Tyr Glu Glu Met Asp Glu Leu 85 90 Lys Leu Met Thr Thr Gly Glu Tyr Ala Gly Val Gly Ala Ile Ile Ser 105 110 Gln Arg Pro Asp Ser Ala Val Ile Ile Gln Arg Pro Met Glu Gly Met 115 120 125 Pro Ala Asp Glu Ala Gly Leu Ile Ala Gly Asp Arg Ile Leu Thr Ile 130 135 140 Asp Gly Lys Asp Phe Arg Lys Ser Thr Thr Pro Lys Val Ser Gln Ala 145 150 155 160 Leu Lys Gly Ile Ala Gly Thr Val Ala Lys Val Thr Val Met Arg Tyr 165 170 175 Gly Glu Thr Lys Pro Arg Thr Phe Ser Val Lys Arg Gln Lys Val Ile 180 185 190 Met Asn Ser Val Thr Tyr Ser Gly Met Leu Asp Gly Ser Ile Gly Tyr 195 200 205 Ile Arg Leu Asn Asn Phe Thr Asp Lys Ser Ala Glu Glu Val Arg Thr 210 215 220 Ala Leu Leu Asp Leu Arg Asp Lys Gln Gly Ala Lys Gly Leu Ile Leu 230 235 Asp Leu Arg Gly Asn Gly Gly Gly Leu Met Gln Ala Ala Ile Glu Ile 245 250 255 Val Asn Leu Phe Val Pro Lys Gly Lys Glu Val Val Thr Thr Lys Gly 260 265 Arg Ile Ala Glu Ser Ala Ser Val Phe Arg Thr Leu Thr Glu Pro Ile 280 285 Asp Thr Lys Leu Pro Ile Val Val Leu Ile Asp Gly Gln Ser Ala Ser 295 300 Ser Ser Glu Ile Val Ala Gly Ala Leu Gln Asp Met Asp Arg Ala Val 310 315 Leu Met Gly Gln Lys Ser Tyr Gly Lys Gly Leu Val Gln Thr Thr Arg

325 330 Gln Leu Pro Tyr Asn Gly Val Ile Lys Leu Thr Thr Ala Lys Tyr Tyr 340 345 350 Ile Pro Ser Gly Arg Cys Ile Gln Arg Leu Asp Tyr Ser Arg Thr Asn 355 360 Arg Thr Gly Met Ala Thr Ala Ile Pro Asp Ser Leu His Lys Ile Phe 370 375 380 Tyr Thr Ala Ala Gly Arg Arg Val Glu Asp Ala Gly Gly Ile Leu Pro 395 390 Asp Ile Glu Val Lys Gln Asp Thr Ala Ala Thr Leu Leu Tyr Tyr Met 410 405 415 Ala Ile Asn Asn Asp Val Phe Asp Phe Val Thr Gly Tyr Val Leu Lys 425 430 His Lys Thr Ile Ala Lys Pro Glu Asp Phe Ser Ile Thr Asn Glu Asp 440 445 Tyr Ala Ala Phe Cys Lys Met Met Glu Glu Lys Lys Phe Asp Tyr Asp 455 460 Arg Gln Ser Gly Lys Met Leu Asp Lys Leu Glu Glu Leu Ala Lys Ile 475 465 470 Glu Gly Tyr Leu Pro Glu Ala Asn Ser Glu Leu Lys Ala Leu Arg Glu 485 490 Lys Leu Lys Pro Asn Leu Ser Arg Asp Leu Leu Arg Phe Lys Lys Glu 500 505 510 Ile Thr Asn Tyr Leu Asn Asn Glu Ile Val Thr Arg Tyr Tyr Glu 520 525 Arg Gly Ser Ile Arg Gln Ser Leu Pro Glu Asp Lys Val Val Lys Glu 530 535 540 Ala Ile Lys Leu Leu Lys Asp His Pro Glu Gln Ile Arg Gln Ile Leu 550 555 Ala Ala Pro Lys Ala Glu Asn Lys Gly 565

### (2) INFORMATION FOR SEQ ID NO:423

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 981 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...981
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:423

Met Gln Asn Lys Gly Phe Val Ile Val Ile Thr Ser Ala Leu Ala Ile 10 Ile Cys Ala Phe Tyr Leu Ser Phe Ser Phe Val Thr Asn Arg Tyr Glu 20 25 30 Lys Lys Ala Lys Ala Met Gly Asp Val Ala Gly Met Ala Tyr Leu Asp 35 40 Ser Met Ser Asn Glu Lys Val Trp Phe Gly Tyr Thr Leu Lys Glu Ala 55 60 Gln Ala Gln Gln Ile Gly Leu Gly Leu Asp Leu Lys Gly Gly Met Asn 70 75 Val Ile Leu Lys Leu Asn Ala Ser Asp Leu Leu Arg Asn Leu Ser Asn 85 90 Lys Ser Leu Asp Pro Asn Phe Asn Lys Ala Leu Glu Asn Ala Ala Lys 100 105 110 Ser Thr Glu Gln Ser Asp Phe Ile Asp Ile Phe Val Lys Glu Tyr Arg 120 125 Lys Leu Asp Pro Asn Gly Arg Leu Ala Val Ile Phe Gly Ser Gly Asp 135 140 Leu Arg Asp Gln Ile Thr Ala Lys Ser Thr Asp Ala Asp Val Val Arg 145 150 155 160 Leu Leu Lys Glu Lys Tyr Asn Ser Ala Val Glu Ala Ser Phe Asn Val 165 170 175 Leu Arg Ala Arg Ile Asp Ala Phe Gly Val Val Ala Pro Asn Leu Gln 185 190 Arg Leu Glu Gly Gln Gly Arg Ile Leu Val Glu Leu Pro Gly Val Lys

Asp Pro Glu Arg Val Arg Thr Leu Leu Gln Arg Ser Ala Asn Leu Gln Phe Trp Arg Thr Tyr Lys Phe Glu Glu Val Ser Gly Asp Leu Ile Ala Ala Asn Asp Arg Leu Ser Glu Leu Ala Met Asn Asn Thr Asp Ala Thr Pro Glu Thr Glu Pro Ala Thr Thr Asp Ser Val Ala Ala Thr Ala Asp Ser Ala Ala Val Gln Ala Val Ala Asp Ser Ala Thr Val Ala Gln Lys Glu Ala Lys Asp Ala Thr Arg Lys Asp Ala Leu Phe Ser Leu Leu Thr Pro Val Asn Arg Gly Gly Ala Val Val Gly Val Ala Arg Arg Ala Asn Met Ala Gln Ile Ser Glu Met Leu Gln Gln Ala His Asp Leu Lys Val Thr Arg Glu Asp Val Leu Phe Leu Trp Gly Ala Lys Ala Ile Glu Asp 340 345 Pro Glu Thr Lys Lys Glu Thr Asp Leu Tyr Glu Leu Tyr Ala Ile Arg Thr Asn Arg Thr Gly Asp Pro Asp Leu Gly Gly Asp Val Val Thr Ser Ala Lys Ser Asp Ile Gln Asn Asp Phe Gly Arg Ser Glu Pro Ile Val 385 390 Ser Met Thr Met Asn Glu Glu Gly Ala Arg Lys Trp Ala Arg Ile Thr Lys Asp Asn Val Gly Arg Ala Ile Ala Ile Val Leu Asp Gly Val Val Tyr Ser Ala Pro Asn Val Asn Asp Glu Ile Thr Gly Gly Arg Ser Gln Ile Ser Gly His Phe Thr Val Glu Glu Ala Gly Asp Leu Ala Asn Val Leu Asn Ser Gly Lys Met Asp Ala Thr Val Ser Ile Glu Gln Glu Asn Val Ile Gly Pro Thr Leu Gly Ala Glu Ser Ile Lys Ala Gly Phe Leu Ser Phe Leu Leu Ala Leu Val Ile Leu Met Cys Tyr Met Cys Leu Ala Tyr Gly Phe Leu Pro Gly Leu Ile Ala Asn Gly Ala Leu Ile Val Asn Ser Phe Phe Thr Leu Gly Val Leu Ala Ser Phe His Ala Val Leu Thr Leu Ser Gly Ile Ala Gly Leu Val Leu Thr Leu Gly Met Ala Val Asp 550 555 Ala Asn Val Leu Ile Phe Glu Arg Ile Lys Glu Glu Leu Arg Ala Gly Lys Thr Pro Ile Arg Ala Val Thr Asp Gly Tyr Gly Asn Ala Phe Ser Ala Ile Phe Asp Ser Asn Val Thr Thr Ile Ile Thr Gly Ile Ile Leu 595 600 Phe Leu Tyr Gly Thr Gly Pro Ile Arg Gly Phe Ala Thr Thr Leu Ile Ile Gly Leu Ile Ala Ser Phe Ile Thr Ala Val Phe Leu Thr Arg Ile Val Phe Glu Lys Leu Ala Lys Lys Gly Arg Leu Asp Lys Ile Thr Phe Thr Thr Ser Ile Thr Arg Asn Leu Leu Val Asn Pro Ser Tyr Asn Ile Leu Gly Lys Arg Lys Thr Gly Phe Ile Ile Pro Val Ile Ile Ile Val Leu Gly Leu Ile Ala Ser Phe Thr Ile Gly Leu Asn Arg Gly Ile Glu Phe Ser Gly Gly Arg Asn Tyr Val Val Lys Phe Asp Gln Pro Val Ser Ser Glu Ala Val Arg Ser Ala Leu Ser Ser Pro Leu Gln Glu Lys Val Leu Val Thr Ser Ile Gly Thr Glu Gly Thr Glu Val Arg Ile Ser Thr Asn Tyr Lys Ile Gln Glu Glu Ser Glu Glu Thr Glu Ala Glu Ile Thr Asp Lys Leu Tyr Gln Ser Leu Lys Gly Phe Tyr Thr Gln Gln Pro Thr Ala Asp Gln Phe Leu Asp Asn Ile Ile Ser Ser Gln Lys Val Ser Pro Ser Met Ser Ser Asp Ile Thr Arg Gly Ala Ile Trp Ala Val Leu Leu 

Ser Met Ile Phe Met Ala Ile Tyr Ile Leu Ile Arg Phe Arg Asp Ile 820 825 Ser Phe Ser Ala Gly Val Phe Val Ser Val Ala Ala Thr Thr Phe Cys 840 845 Ile Ile Ala Leu Tyr Ala Leu Leu Trp Lys Ile Leu Pro Phe Thr Met 850 855 860 Glu Ile Asp Gln Asn Phe Ile Ala Ala Ile Leu Ala Ile Ile Gly Tyr 870 Ser Leu Asn Asp Thr Val Val Val Phe Asp Arg Ile Arg Glu Thr Met 885 890 Lys Leu Tyr Pro Asn Arg Asp Arg Tyr Gln Val Ile Asn Asp Ala Leu 900 905 910 Asn Ser Thr Leu Gly Arg Thr Leu Asn Thr Ser Leu Thr Thr Phe Ile 920 925 Val Met Leu Val Ile Phe Ile Phe Gly Gly Ala Thr Met Arg Ser Phe 935 940 Thr Phe Ser Ile Leu Leu Gly Ile Val Ile Gly Thr Tyr Ser Thr Leu 945 950 955 Phe Val Ala Thr Pro Leu Ala Tyr Glu Ile Gln Lys Arg Lys Leu Asn 965 970 Lys Ala Ala Lys Lys 980

### (2) INFORMATION FOR SEQ ID NO:424

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1017 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1017
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:424

Met Lys Arg Met Thr Leu Phe Phe Leu Cys Leu Leu Thr Ser Ile Gly 10 Trp Ala Met Ala Gln Asn Arg Thr Val Lys Gly Thr Val Ile Ser Ser 20 25 30 Glu Asp Asn Glu Pro Leu Ile Gly Ala Asn Val Val Val Gly Asn 35 40 Thr Thr Ile Gly Ala Ala Thr Asp Leu Asp Gly Asn Phe Thr Leu Ser 50 55 60 Val Pro Ala Asn Ala Lys Met Leu Arg Val Ser Tyr Ser Gly Met Thr 70 75 Thr Lys Glu Val Ala Ile Ala Asn Val Met Lys Ile Val Leu Asp Pro 85 Asp Ser Lys Val Leu Glu Gln Val Val Leu Gly Tyr Gly Thr Gly 100 105 Gln Lys Leu Ser Thr Val Ser Gly Ser Val Ala Lys Val Ser Ser Glu 115 120 125 Lys Leu Ala Glu Lys Pro Val Ala Asn Ile Met Asp Ala Leu Gln Gly 135 140 Gln Val Ala Gly Met Gln Val Met Thr Thr Ser Gly Asp Pro Thr Ala 150 155 Val Ala Ser Val Glu Ile His Gly Thr Gly Ser Leu Gly Ala Ser Ser 165 170 Ala Pro Leu Tyr Ile Val Asp Gly Met Gln Thr Ser Leu Asp Val Val 180 185 Ala Thr Met Asn Pro Asn Asp Phe Glu Ser Met Ser Val Leu Lys Asp 200 205 Ala Ser Ala Thr Ser Ile Tyr Gly Ala Arg Ala Ala Asn Gly Val Val 215 220 Phe Ile Gln Thr Lys Lys Gly Lys Met Ser Glu Arg Gly Arg Ile Thr 230 235 Phe Asn Ala Ser Tyr Gly Ile Ser Gln Ile Leu Asn Thr Lys Pro Leu 245 250 255 255 Asp Asn Met Met Thr Gly Asp Glu Leu Leu Asp Phe Gln Val Lys Ala

265

270

```
Gly Phe Trp Gly Asn Asn Gln Thr Val Gln Lys Val Lys Asp Met Ile
                        280
 Leu Ala Gly Ala Glu Asp Leu Tyr Gly Asn Tyr Asp Ser Leu Lys Asp
                     295
                                      300
 Glu Tyr Gly Lys Thr Leu Phe Pro Val Asp Phe Asn His Asp Ala Asp
               310
                          315
 Trp Leu Lys Ala Leu Phe Lys Thr Ala Pro Thr Ser Gln Gly Asp Ile
           325
                              330
                                                335
 Ser Phe Ser Gly Gly Ser Gln Gly Thr Ser Tyr Tyr Ala Ser Ile Gly
         340
                           345
                                    350
 Tyr Phe Asp Gln Glu Gly Met Ala Arg Glu Pro Ala Asn Phe Lys Arg
     355
               360
 Tyr Ser Gly Arg Leu Asn Phe Glu Ser Arg Ile Asn Glu Trp Leu Lys
              375
                                     380
Val Gly Ala Asn Leu Ser Gly Ala Ile Ala Asn Arg Arg Ser Ala Asp
         390
                                395
Tyr Phe Gly Lys Tyr Tyr Met Gly Ser Gly Thr Phe Gly Val Leu Thr
           405
                      410
                                                415
Met Pro Arg Tyr Tyr Asn Pro Phe Asp Val Asn Gly Asp Leu Ala Asp
                  425 430
Val Tyr Tyr Met Tyr Gly Ala Thr Arg Pro Ser Met Thr Glu Pro Tyr
      435
                      440
                                       445
Phe Ala Lys Met Arg Pro Phe Ser Ser Glu Ser His Gln Ala Asn Val
            455
                                     460
Asn Gly Phe Ala Gln Ile Thr Pro Ile Lys Gly Leu Thr Leu Lys Ala
        470
                                475
Gln Ala Gly Val Asp Ile Thr Asn Thr Arg Thr Ser Ser Lys Arg Met
            485
                     490
Pro Asn Asn Pro Tyr Asp Ser Thr Pro Leu Gly Glu Arg Arg Glu Arg
                         505
                                            510
Ala Tyr Arg Asp Val Ser Lys Ser Phe Thr Asn Thr Ala Glu Tyr Lys
       515
                       520
                                       525
Phe Ser Ile Asp Glu Lys His Asp Leu Thr Ala Leu Met Gly His Glu
           535
                                     540
Tyr Ile Glu Tyr Glu Gly Asp Val Ile Gly Ala Ser Ser Lys Gly Phe
545 550
                                  555
Glu Ser Asp Lys Leu Met Leu Leu Ser Gln Gly Lys Thr Gly Asn Ser
                  570
            565
Leu Ser Leu Pro Glu His Arg Val Ala Glu Tyr Ala Tyr Leu Ser Phe
        580
                         585
Phe Ser Arg Phe Asn Tyr Gly Phe Asp Lys Trp Met Tyr Ile Asp Phe
                       600
                                      605
Ser Val Arg Asn Asp Gln Ser Ser Arg Phe Gly Ser Asn Asn Arg Ser
                   615
                                620
Ala Trp Phe Tyr Ser Val Gly Gly Met Phe Asp Ile Tyr Asn Lys Phe
             630
                                 635
Ile Gln Glu Ser Asn Trp Leu Ser Asp Leu Arg Leu Lys Met Ser Tyr
             645
                              650
Gly Thr Thr Gly Asn Ser Glu Ile Gly Asn Tyr Asn His Gln Ala Leu
       660 665
Val Thr Val Asn Asn Tyr Thr Glu Asp Ala Met Gly Leu Ser Ile Ser
              680
                                         685
Thr Ala Gly Asn Pro Asp Leu Ser Trp Glu Lys Gln Ser Gln Phe Asn
                   695
                         700
Phe Gly Leu Ala Ala Gly Ala Phe Asn Asn Arg Leu Ser Ala Glu Val
               710
                                 715
Asp Phe Tyr Val Arg Thr Thr Asn Asp Met Leu Ile Asp Val Pro Met
           725
                             730
Pro Tyr Ile Ser Gly Phe Phe Ser Gln Tyr Gln Asn Val Gly Ser Met
       740 745
                                             750
Lys Asn Thr Gly Val Asp Leu Ser Leu Lys Gly Thr Ile Tyr Gln Asn
      755
                 760
                                       765
Lys Asp Trp Asn Val Tyr Ala Ser Ala Asn Phe Asn Tyr Asn Arg Gln
                  775
                            780
Glu Ile Thr Lys Leu Phe Phe Gly Leu Asn Lys Tyr Met Leu Pro Asn
                           795
Thr Gly Thr Ile Trp Glu Ile Gly Tyr Pro Asn Ser Phe Tyr Met Ala
             805
                             810
Glu Tyr Ala Gly Ile Asp Lys Lys Thr Gly Lys Gln Leu Trp Tyr Val
         820
                          825
Pro Gly Gln Val Asp Ala Asp Gly Asn Lys Val Thr Thr Ser Gln Tyr
      835
                     840
                                       845
Ser Ala Asp Leu Glu Thr Arg Ile Asp Lys Ser Val Thr Pro Pro Ile
           855
                              860
Thr Gly Gly Phe Ser Leu Gly Ala Ser Trp Lys Gly Leu Ser Leu Asp
                870
                                 875
Ala Asp Phe Ala Tyr Ile Val Gly Lys Trp Met Ile Asn Asn Asp Arg
```

890 Tyr Phe Thr Glu Asn Ala Gly Gly Leu Met Gln Leu Asn Lys Asp Lys 905 910 Met Leu Leu Asn Ala Trp Thr Glu Asp Asn Lys Glu Thr Asp Val Pro 915 920 Lys Leu Gly Gln Ser Pro Gln Phe Asp Thr His Leu Leu Glu Asn Ala 930 935 940 Ser Phe Leu Arg Leu Lys Asn Leu Lys Leu Thr Tyr Val Leu Pro Asn 955 950 Ser Leu Phe Ala Gly Gln Asn Val Ile Gly Gly Ala Arg Val Tyr Leu 965 970 975 Met Ala Arg Asn Leu Leu Thr Val Thr Lys Tyr Lys Gly Phe Asp Pro 980 985 990 Glu Ala Gly Gly Asn Val Gly Lys Asn Gln Tyr Pro Asn Ser Lys Gln 1000 Tyr Val Ala Gly Ile Gln Leu Ser Phe 1010

### (2) INFORMATION FOR SEQ ID NO:425

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1014 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1014
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:425

Met Thr Leu Phe Phe Leu Cys Leu Leu Thr Ser Ile Gly Trp Ala Met 1 5 10 Ala Gln Asn Arg Thr Val Lys Gly Thr Val Ile Ser Ser Glu Asp Asn 20 25 3.0 Glu Pro Leu Ile Gly Ala Asn Val Val Val Gly Asn Thr Thr Ile 40 45 Gly Ala Ala Thr Asp Leu Asp Gly Asn Phe Thr Leu Ser Val Pro Ala 55 60 Asn Ala Lys Met Leu Arg Val Ser Tyr Ser Gly Met Thr Thr Lys Glu 70 Val Ala Ile Ala Asn Val Met Lys Ile Val Leu Asp Pro Asp Ser Lys 85 90 Val Leu Glu Gln Val Val Leu Gly Tyr Gly Thr Gly Gln Lys Leu 100 105 110 Ser Thr Val Ser Gly Ser Val Ala Lys Val Ser Ser Glu Lys Leu Ala 120 125 Glu Lys Pro Val Ala Asn Ile Met Asp Ala Leu Gln Gly Gln Val Ala 130 135 140 Gly Met Gln Val Met Thr Thr Ser Gly Asp Pro Thr Ala Val Ala Ser 150 155 Val Glu Ile His Gly Thr Gly Ser Leu Gly Ala Ser Ser Ala Pro Leu 165 170 Tyr Ile Val Asp Gly Met Gln Thr Ser Leu Asp Val Val Ala Thr Met 180 185 Asn Pro Asn Asp Phe Glu Ser Met Ser Val Leu Lys Asp Ala Ser Ala 200 205 Thr Ser Ile Tyr Gly Ala Arg Ala Ala Asn Gly Val Val Phe Ile Gln 210 215 220 Thr Lys Lys Gly Lys Met Ser Glu Arg Gly Arg Ile Thr Phe Asn Ala 230 235 Ser Tyr Gly Ile Ser Gln Ile Leu Asn Thr Lys Pro Leu Asp Asn Met 245 250 255 Met Thr Gly Asp Glu Leu Leu Asp Phe Gln Val Lys Ala Gly Phe Trp
260 265 270 265 270 Gly Asn Asn Gln Thr Val Gln Lys Val Lys Asp Met Ile Leu Ala Gly 280 285 Ala Glu Asp Leu Tyr Gly Asn Tyr Asp Ser Leu Lys Asp Glu Tyr Gly 295 300 Lys Thr Leu Phe Pro Val Asp Phe Asn His Asp Ala Asp Trp Leu Lys

305		. Dho		. mb	310		mb			315		<b>-1</b> -			320
				325	;				330	)	Asp			335	;
			340	1				345	,		Ile		350	1	
		355					360				Lys	365			
	370	)				375					380				
385					390					395					400
				405					410	)	Leu			415	
Tyr	Tyr	Asn	Pro 420		Asp	Val	Asn	Gly 425		Leu	Ala	Asp	Val 430		Tyr
Met	туг	Gly 435		Thr	Arg	Pro	Ser 440		Thr	Glu	Pro	Tyr 445		Ala	Lys
Met	Arg 450		Phe	Ser	Ser	Glu 455		His	Gln	Ala	Asn 460	Val	Asn	Gly	Phe
Ala 465	Gln	Ile	Thr	Pro	11e 470		Gly	Leu	Thr	Leu 475	Lys	Ala	Gln	Ala	Gly 480
Val	Asp	Ile	Thr	Asn 485		Arg	Thr	Ser	Ser 490	Lys	Arg	Met	Pro	Asn 495	
Pro	Tyr	Asp	Ser 500	Thr	Pro	Leu	Gly	Glu 505		Arg	Glu	Arg	Ala 510	Tyr	Arg
Asp	Val	Ser 515	Lys	Ser	Phe	Thr	Asn 520	Thr	Ala	Glu	Tyr	Lys 525			Ile
Asp	Glu 530		His	Asp	Leu	Thr 535		Leu	Met	Gly	His 540		Tyr	Ile	Glu
Tyr 545	Glu	Gly	Asp	Val	Ile 550	Gly	Ala	Ser	Ser	Lys 555	Gly	Phe	Glu	Ser	Asp 560
	Leu	Met	Leu	Leu 565		Gln	Gly	Lys	Thr 570		Asn	Ser	Leu	Ser 575	
Pro	Glu	His	Arg 580		Ala	Glu	Tyr	Ala 585		Leu	Ser	Phe	Phe 590		Arg
Phe	Asn	Tyr 595		Phe	Asp	Lys	Trp		Tyr	Ile	Asp	Phe 605		Val	Arg
Asn	Asp 610		Ser	Ser	Arg	Phe 615		Ser	Asn	Asn	Arg 620		Ala	Trp	Phe
Tyr 625		Val	Gly	Gly	Met 630		Asp	Ile	Tyr	Asn 635	Lys	Phe	Ile	Gln	Glu 640
	Asn	Trp	Leu	Ser 645		Leu	Arg	Leu	Lys 650		Ser	Tyr	Gly	Thr 655	
Gly	Asn	Ser	Glu 660		Gly	Asn	Tyr	Asn 665		Gln	Ala	Leu	Val 670		Val
Asn	Asn	Tyr 675	Thr	Glu	Asp	Ala	Met 680		Leu	Ser	Ile	Ser 685		Ala	Gly
Asn		Asp				Glu 695			Ser		Phe 700	Asn	Phe	Gly	Leu
Ala 705	Ala	Gly	Ala	Phe	Asn 710	Asn	Arg	Leu	Ser	Ala 715	Glu	Val	Asp	Phe	Tyr 720
Val	Arg	Thr	Thr	Asn 725		Met	Leu	Ile	Asp 730		Pro	Met	Pro	Tyr 735	
Ser	Gly	Phe	Phe 740	Ser	Gln	Tyr	Gln	Asn 745		Gly	Ser	Met	Lys 750		Thr
Gly	Val	Asp 755	Leu	Ser	Leu	Lys	Gly 760		Ile	Tyr	Gln	Asn 765		Asp	Trp
Asn	Val 770	Tyr	Ala	Ser	Ala	Asn 775		Asn	Tyr	Asn	Arg 780		Glu	Ile	Thr
Lys 785		Phe	Phe	Gly	Leu 790	Asn	Lys	Tyr	Met	Leu 795	Pro	Asn	Thr	Gly	Thr 800
_	Trp	Glu	Ile	Gly 805		Pro	Asn	Ser	Phe 810		Met	Ala	Glu	Tyr 815	
Gly	Ile	Asp	Lys 820		Thr	Gly	Lys	Gln 825		Trp	Tyr	Val	Pro 830		Gln
Val	Asp	Ala 835		Gly	Asn	Lys	Val 840		Thr	Ser	Gln	Tyr 845		Ala	Asp
Leu	Glu 850		Arg	Ile	Asp	Lys 855		Val	Thr	Pro	Pro 860		Thr	Gly	Gly
Phe 865		Leu	Gly	Ala	Ser 870		Lys	Gly	Leu	Ser 875	Leu	Asp	Ala	Asp	Phe 880
	Tyr	Ile	Val	Gly 885		Trp	Met		Asn 890		Asp	Arg	Tyr	Phe 895	
31u	Asn	Ala	Gly 900		Leu	Met	Gln			Lys	Asp	Lys	Met 910		Leu
Asn	Ala	Trp 915		Glu	Asp		Lys 920		Thr	Asp	Val	Pro 925		Leu	Gly
							220					J E 3			

Gln Ser Pro Gln Phe Asp Thr His Leu Leu Glu Asn Ala Ser Phe Leu 935 940 Arg Leu Lys Asn Leu Lys Leu Thr Tyr Val Leu Pro Asn Ser Leu Phe 950 955 Ala Gly Gln Asn Val Ile Gly Gly Ala Arg Val Tyr Leu Met Ala Arg 965 970 975 Asn Leu Leu Thr Val Thr Lys Tyr Lys Gly Phe Asp Pro Glu Ala Gly 980 985 990 Gly Asn Val Gly Lys Asn Gln Tyr Pro Asn Ser Lys Gln Tyr Val Ala 995 1000 Gly Ile Gln Leu Ser Phe 1010

#### (2) INFORMATION FOR SEQ ID NO:426

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 821 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...821
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:426

Met Lys Lys Asn Phe Leu Leu Gly Ile Phe Val Ala Leu Leu 10 Thr Phe Ile Gly Ser Met Gln Ala Gln Gln Ala Lys Asp Tyr Phe Asn 20 25 30 Phe Asp Glu Arg Gly Glu Ala Tyr Phe Ser Phe Lys Val Pro Asp Arg 35 40 45 Ala Val Leu Gln Glu Leu Ala Leu Ile Met Ser Ile Asp Glu Phe Asp 55 60 Pro Val Thr Asn Glu Ala Ile Ala Tyr Ala Ser Glu Glu Glu Phe Glu 70 75 Ala Phe Leu Arg Tyr Gly Leu Lys Pro Thr Phe Leu Thr Pro Pro Ser 90 95 Met Gln Arg Ala Val Glu Met Phe Asp Tyr Arg Ser Gly Glu Lys Tyr 100 105 110 Glu Trp Asn Ala Tyr Pro Thr Tyr Glu Ala Tyr Ile Ser Met Met Glu 115 120 125 Glu Phe Gln Thr Lys Tyr Pro Ser Leu Cys Thr Thr Ser Val Ile Gly 135 140 Lys Ser Val Lys Asp Arg Lys Leu Met Ile Cys Lys Leu Thr Ser Ser 150 155 Ala Asn Thr Gly Lys Lys Pro Arg Val Leu Tyr Thr Ser Thr Met His 165 170 Gly Asp Glu Thr Thr Gly Tyr Val Val Leu Leu Arg Leu Ile Asp His 180 185 Leu Leu Ser Asn Tyr Glu Ser Asp Pro Arg Ile Lys Asn Ile Leu Asp 195 200 205 Lys Thr Glu Val Trp Ile Cys Pro Leu Thr Asn Pro Asp Gly Ala Tyr 215 220 Arg Ala Gly Asn His Thr Val Gln Gly Ala Thr Arg Tyr Asn Ala Asn 225 230 235 Asn Val Asp Leu Asn Arg Asn Phe Lys Asp Asp Val Ala Gly Asp His 245 250 Pro Asp Gly Lys Pro Trp Gln Pro Glu Ala Thr Ala Phe Met Asp Leu 260 265 270 Glu Gly Asn Thr Ser Phe Val Leu Gly Ala Asn Ile His Gly Gly Thr 275 280 285 Glu Val Val Asn Tyr Pro Trp Asp Asn Lys Lys Glu Arg His Ala Asp 290 295 300 Asp Glu Trp Tyr Lys Leu Ile Ser Arg Asn Tyr Ala Ala Ala Cys Gln 310 315 Ser Ile Ser Ala Ser Tyr Met Thr Ser Glu Thr Asn Ser Gly Ile Ile 330 325 335 Asn Gly Ser Asp Trp Tyr Val Ile Arg Gly Ser Arg Gln Asp Asn Ala 345

350

Asn Tyr Phe His Arg Leu Arg Glu Ile Thr Leu Glu Ile Ser Asn Thr 360 365 Lys Leu Val Pro Ala Ser Gln Leu Pro Lys Tyr Trp Asn Leu Asn Lys 375 380 Glu Ser Leu Leu Ala Leu Ile Glu Glu Ser Leu Tyr Gly Ile His Gly 390 395 Thr Val Thr Ser Ala Ala Asn Gly Gln Pro Leu Lys Cys Gln Ile Leu 405 410 Ile Glu Asn His Asp Lys Arg Asn Ser Asp Val Tyr Ser Asp Ala Thr 420 425 Thr Gly Tyr Tyr Val Arg Pro Ile Lys Ala Gly Thr Tyr Thr Val Lys 435 440 445 Tyr Lys Ala Glu Gly Tyr Pro Glu Ala Thr Arg Thr Ile Thr Ile Lys 450 455 460 Asp Lys Glu Thr Val Ile Met Asp Ile Ala Leu Gly Asn Ser Val Pro 475 470 Leu Pro Val Pro Asp Phe Thr Ala Ser Pro Met Thr Ile Ser Val Gly 490 495 485 Glu Ser Val Gln Phe Gln Asp Gln Thr Thr Asn Asn Pro Thr Asn Trp 500 505 Glu Trp Thr Phe Glu Gly Gly Gln Pro Ala Met Ser Thr Glu Gln Asn 515 520 Pro Leu Val Ser Tyr Ser His Pro Gly Gln Tyr Asp Val Thr Leu Lys 535 540 Val Trp Asn Ala Ser Gly Ser Asn Thr Ile Thr Lys Glu Lys Phe Ile 545 550 555 Thr Val Asn Ala Val Met Pro Val Ala Glu Phe Val Gly Thr Pro Thr 565 570 575 Glu Ile Glu Glu Gly Gln Thr Val Ser Phe Gln Asn Gln Ser Thr Asn 585 590 Ala Thr Asn Tyr Val Trp Ile Phe Asp Gly Gly Thr Pro Ala Thr Ser 595 600 Glu Asp Glu Asn Pro Thr Val Leu Tyr Ser Lys Ala Gly Gln Tyr Asp 610 615 620 Val Thr Leu Lys Ala Ile Ser Ala Ser Gly Glu Thr Val Lys Thr Lys 630 635 Glu Lys Tyr Ile Thr Val Lys Lys Ala Pro Val Pro Ala Pro Val Ala 645 650 655 Asp Phe Glu Gly Thr Pro Arg Lys Val Lys Lys Gly Glu Thr Val Thr 660 665 670 Phe Lys Asp Leu Ser Thr Asn Asn Pro Thr Ser Trp Leu Trp Val Phe 680 685 Glu Gly Gly Ser Pro Ala Thr Ser Thr Glu Gln Asn Pro Val Val Thr 695 700 Tyr Asn Glu Thr Gly Lys Tyr Asp Val Gln Leu Thr Ala Thr Asn Glu 705 710 715 720 Gly Gly Ser Asn Val Lys Lys Ala Glu Asp Tyr Ile Glu Val Ile Leu 725 730 Asp Asp Ser Val Glu Asp Ile Val Ala Gln Thr Gly Ile Val Ile Arg 740 745 750 Pro Gln Asn Gly Thr Lys Gln Ile Leu Ile Glu Ala Asn Ala Ala Ile 765 760 Lys Ala Ile Val Leu Tyr Asp Ile Asn Gly Arg Val Val Leu Lys Thr 775 Thr Pro Asn Gln Leu Arg Ser Thr Val Asp Leu Ser Ile Leu Pro Glu 790 795 Gly Ile Tyr Thr Ile Asn Ile Lys Thr Glu Lys Ser Ala Arg Thr Glu 805 810 Lys Ile His Ile Gly 820

## (2) INFORMATION FOR SEQ ID NO:427

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 76 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature

#### (B) LOCATION 1...76

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:427

 Met
 Arg
 Leu
 Ile
 Lys
 Ala
 Phe
 Leu
 Val
 Gln
 Leu
 Leu
 Leu
 Pro
 Ile
 Ile</th

### (2) INFORMATION FOR SEQ ID NO:428

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 859 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...859
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:428

Met Ala Tyr Asp Phe Thr Gln Thr Phe Arg Asn Ser Leu Glu Tyr Ser 10 Tyr Gln Glu Ala Thr Arg Leu Gly Val Val Ala Val Thr Gln Asp Met 20 25 Leu Val Leu Gly Ile Ile Arg Asp Gly Asp Asn Gly Ala Ile Asp Ile 35 40 Met Arg His Tyr Gly Ile Asn Leu Tyr Glu Leu Lys Arg Leu Ile Glu 55 Leu Glu Ala Ile Ala Glu Ser Leu Pro Ala Ser Pro Glu Gly Ser Pro 65 70 75 80 Ile Phe Thr Pro Ser Ala Arg Glu Ala Ile Asp Asp Ala Thr Asp Ile 85 90 Cys Ala Asp Met Glu Asp Glu Ala Val Ser Pro Val His Leu Leu 100 105 110 Ser Ile Leu Asn Ser Thr Gln Glu Ser Leu Val Gln Lys Ile Phe Met 115 120 Lys Gln Gly Ile Lys Tyr Asp Thr Ile Leu Ser Asp Tyr Phe Gly Gln 130 135 140 Arg Asn Pro Ser Glu Gly Lys Ser Pro Ser Glu Met Glu Ile Leu Asp 145 150 155 Gly Tyr Gln Asp Asn Asp Phe Asp Asp Glu Glu Asp Glu Ser Ser Pro 165 170 175 Pro Ser Gly Asn Ser Gly Thr Gly Gly Gly Ser Gly Asp Ala Pro Glu 190 185 Gln Asn Thr Gly Gly Gly Asp Thr Thr Thr Thr Arg Ser Gly Gly 195 200 Asp Thr Pro Ala Leu Asp Thr Phe Gly Thr Asp Ile Thr Ala Met Ala 215 210 220 Ala Ala Gly Lys Leu Asp Pro Val Val Gly Arg Glu Gln Glu Ile Glu 225 230 235 240 Arg Val Ile Gln Ile Leu Ser Arg Arg Lys Lys Asn Asn Pro Val Leu 245 250 255 Ile Gly Glu Pro Gly Val Gly Lys Ser Ala Ile Val Glu Gly Leu Ala 265 260 270 Glu Arg Ile Val Asn Arg Lys Val Ser Arg Ile Leu Phe Asp Lys Arg 280 285 Ile Ile Ser Leu Asp Leu Ala Gln Met Val Ala Gly Thr Lys Tyr Arg 290 295 Gly Gln Phe Glu Glu Arg Leu Lys Ala Val Leu Asp Glu Leu Lys Lys 305 310 315 320 Asn Pro Gln Ile Ile Leu Phe Ile Asp Glu Ile His Thr Ile Val Gly 325 330 335

Ala Gly Ser Ala Ala Gly Ser Met Asp Thr Ala Asn Met Leu Lys Pro 340 345 Ala Leu Ala Arg Gly Gln Val Gln Cys Ile Gly Ala Thr Thr Leu Asp 355 360 Glu Tyr Arg Lys Asn Ile Glu Lys Asp Gly Ala Leu Glu Arg Arg Phe 375 380 Gln Lys Val Pro Ile Ala Pro Ser Thr Ala Glu Glu Thr Leu Thr Ile 395 390 Leu Gln Asn Ile Lys Glu Lys Tyr Glu Asp Tyr His Gly Val Arg Tyr 410 405 415 Thr Asp Glu Ala Ile Lys Ala Ala Val Glu Leu Thr Asp Arg Tyr Val 425 Ser Asp Arg Phe Phe Pro Asp Lys Ala Ile Asp Ala Met Asp Glu Ala 435 440 445 Gly Ala Ser Val His Ile Thr Asn Val Val Ala Pro Lys Glu Ile Glu 455 460 Ile Leu Glu Ala Glu Leu Ala Ser Val Arg Glu Asn Lys Leu Ser Ala 465 470 475 Val Lys Ala Gln Asn Tyr Glu Leu Ala Ala Ser Phe Arg Asp Gln Glu 485 490 Arg Arg Thr Gln Gln Gln Ile Ala Glu Glu Lys Lys Lys Trp Glu Glu 500 505 Gln Met Ser Lys His Arg Glu Thr Val Asp Glu Asn Val Val Ala His 520 525 Val Val Ala Leu Met Thr Gly Val Pro Ala Glu Arg Leu Ser Thr Gly 535 540 Glu Gly Glu Arg Leu Arg Thr Met Ala Asp Asp Leu Lys Thr Lys Val 555 550 Val Gly Gln Asp Thr Ala Ile Glu Lys Met Val His Ala Ile Gln Arg 565 570 Asn Arg Leu Gly Leu Arg Asn Glu Lys Lys Pro Ile Gly Ser Phe Leu 580 585 590 Phe Leu Gly Pro Thr Gly Val Gly Lys Thr Tyr Leu Ala Lys Lys Leu 600 605 Ala Glu Tyr Leu Phe Glu Asp Glu Asn Ala Met Ile Arg Val Asp Met 615 620 Ser Glu Tyr Met Glu Lys Phe Ser Val Ser Arg Leu Val Gly Ala Pro 625 630 635 Pro Gly Tyr Val Gly Tyr Glu Glu Gly Gly Gln Leu Thr Glu Arg Val 645 650 Arg Arg Lys Pro Tyr Ser Val Val Leu Leu Asp Glu Ile Glu Lys Ala 660 665 His Ala Asp Val Phe Asn Leu Leu Leu Gln Val Met Asp Glu Gly Gln 675 680 685 Leu Thr Asp Ser Leu Gly Arg Arg Val Asn Phe Lys Asn Thr Val Ile 690 695 700 Ile Ile Thr Ser Asn Val Gly Thr Arg Gln Leu Lys Asp Phe Gly Gln 710 715 Gly Ile Gly Phe Arg Ser Glu Lys Asp Glu Glu Ala Asn Lys Glu His 725 730 Ser Arg Ser Val Ile Gln Lys Ala Leu Asn Lys Thr Phe Ser Pro Glu 740 745 750 Phe Leu Asn Arg Leu Asp Asp Ile Ile Leu Phe Asp Gln Leu Gly Lys 755 760 765 Thr Glu Ile Arg Arg Met Val Asp Ile Glu Leu Lys Ala Val Leu Ala 775 780 Arg Ile His Arg Ala Gly Tyr Asp Leu Val Leu Thr Asp Glu Ala Lys 790 795 Asp Val Ile Ala Thr Lys Gly Tyr Asp Leu Gln Tyr Gly Ala Arg Pro 805 810 Leu Lys Arg Thr Leu Gln Asn Glu Val Glu Asp Arg Leu Thr Asp Leu 820 825 Ile Leu Ser Gly Gln Ile Glu Lys Gly Gln Thr Leu Thr Leu Ser Ala 835 840 Arg Asp Gly Glu Ile Ile Val Gln Glu Gln Ala 855

## (2) INFORMATION FOR SEQ ID NO:429

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 417 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...417
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:429

Met Asn Tyr Leu Tyr Ile Leu Ile Thr Leu Leu Ser Gly Phe Phe 10 Ser Gly Ala Glu Ile Ala Phe Leu Ser Ser Asp Lys Leu Arg Leu Glu 20 25 30 Leu Asp Arg Asn Arg Gly Asp Leu Thr Gly Arg Ala Leu Asn Leu Leu 40 45 Tyr Arg His Pro Asp Gln Leu Val Thr Thr Leu Leu Val Gly Asn Asn 50 55 Ile Val Leu Val Val Tyr Gly Leu Leu Met Ala Gly Leu Leu Ala Ala 70 75 Pro Leu Ala Gln Trp Ile Asp Asn Asp Ala Met Ile Val Val Leu Gln 85 90 Ser Val Leu Ser Thr Ile Ile Ile Leu Phe Thr Gly Glu Phe Leu Pro 100 105 110 Lys Ala Ile Phe Lys Thr Asn Ala Asn Met Met Arg Val Phe Ala 115 120 125 Leu Pro Ile Val Ala Ile Tyr Tyr Leu Leu Tyr Pro Leu Ser Lys Leu 135 140 Phe Thr Gly Leu Ser Arg Ser Phe Ile Arg Leu Val Asp Lys Asn Tyr 150 155 Val Pro Thr Thr Val Gly Leu Gly Arg Val Asp Leu Asp His Tyr Leu 165 170 175 Ala Glu Asn Met Ser Gly Glu Asn Glu Gln Asn Asp Leu Thr Thr Glu 180 185 190 Val Lys Ile Ile Gln Asn Ala Leu Asp Phe Ser Gly Ile Gln Val Arg 200 205 195 Asp Cys Met Ile Pro Arg Asn Glu Met Ile Ala Cys Glu Leu Gln Thr 215 220 Asp Ile Glu Val Leu Lys Thr Thr Phe Ile Asp Thr Gly Leu Ser Lys 230 235 Ile Ile Ile Tyr Arg Gln Asn Ile Asp Asp Val Val Gly Tyr Ile His 245 250 Ser Ser Glu Met Phe Arg Gly Gln Asp Trp Gln Lys Arg Ile Asn Thr 260 265 270 Thr Val Phe Val Pro Glu Ser Met Tyr Ala Asn Lys Leu Met Arg Leu 275 280 285 Leu Met Gln Arg Lys Lys Ser Ile Ala Ile Val Ile Asp Glu Leu Gly 295 300 Gly Thr Ala Gly Met Val Thr Leu Glu Asp Leu Val Glu Glu Ile Phe 310 315 Gly Asp Ile Glu Asp Glu His Asp Thr Arg Lys Ile Ile Ala Lys Gln 325 330 335 Leu Gly Pro His Thr Tyr Leu Val Ser Gly Arg Met Glu Ile Asp Asp 340 345 350 Val Asn Glu Arg Phe Gly Leu Ser Leu Pro Glu Ser Asp Asp Tyr Leu 355 360 365 Thr Val Ala Gly Phe Ile Leu Asn Ser His Gln Asn Ile Pro Gln Ala 370 380 Asn Glu Val Val Glu Ile Ala Pro Tyr Thr Phe Thr Ile Leu Arg Ser 390 395 400 Ser Ser Thr Lys Ile Glu Leu Val Lys Met Ser Ile Asp Asp Gln Ser 405 410 Asn

#### (2) INFORMATION FOR SEQ ID NO:430

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 293 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:

#### (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...293
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:430

Met Lys Gln Asn Tyr Phe Lys Arg Val Cys Ser Leu Leu Trp Leu Val 10 Leu Pro Met Leu Ile Met Pro Leu Glu Val Ala Ala Gln Glu Ile Ile 20 25 Pro Asn Glu Glu Val Leu Glu Ser Leu Thr Phe Val Ala Pro Val Glu 35 40 45 Glu Thr Asp Ala Ile Glu Ala Glu Val Glu Ala Leu Gln Glu Ile Val 55 60 Ala Thr Glu Glu Ile Ala Glu Gln Ala Val Arg Ser Tyr Thr Tyr Thr 70 75 Val Tyr Arg Asp Gly Val Lys Ile Ala Ser Gly Leu Thr Glu Pro Thr 85 90 Phe Leu Asp Glu Asp Val Pro Ala Gly Glu His Thr Tyr Cys Val Glu 100 105 Val Gln Tyr Gln Gly Gly Val Ser Asp Lys Val Cys Val Asp Val Glu 115 120 125 120 Val Lys Asp Phe Lys Pro Val Thr Asn Leu Thr Gly Thr Ala Ser Asn 135 130 140 Asp Glu Val Ser Leu Asp Trp Asp Gly Val Glu Glu Lys Ala Glu Glu 150 155 Pro Ala Ser Asp Lys Ala Val Ser Tyr Asn Val Tyr Lys Asn Gly Thr 165 170 175 Leu Ile Gly Asn Thr Ala Glu Thr His Tyr Val Glu Thr Gly Val Ala 180 185 190 Asn Gly Thr Tyr Ile Tyr Glu Val Glu Val Lys Tyr Pro Asp Gly Val 195 200 205 Ser Pro Lys Val Ala Val Thr Val Thr Val Thr Asn Ser Ser Leu Ser 220 215 Asn Val Asp Gly Gln Ala Pro Tyr Thr Leu Arg Val Glu Gly Lys Lys 225 230 235 240 Ile Ile Ala Glu Ala His Gly Met Ile Thr Leu Tyr Asp Ile Asn Gly 245 250 255 Arg Thr Val Ala Val Ala Pro Asn Arg Leu Glu Tyr Met Ala Gln Thr 265 270 Gly Phe Tyr Ala Val Arg Phe Asp Val Gly Asn Lys His His Val Ser 275 280 Lys Ile Gln Val Arq 290

- (2) INFORMATION FOR SEQ ID NO:431
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 312 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...312
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:431

 Met
 Ile
 Pro
 Leu
 Ser
 Glu
 Ser
 Phe
 Glu
 Ser
 Gly
 Ile
 Ile
 Pro
 Ala
 Ile
 Trp
 Ile
 Ile
 Trp
 Ile
 Asp
 Ala
 Asp
 Gly
 Asp
 Gly
 Trp
 Asp
 Ile
 Ile
 Thr
 Ile
 Ile
 Ile
 Trp
 Ile
 Ile</th

Thr Gln Asp Leu Thr Ala Pro Ser Glu His Tyr Ala Val Tyr Ser Ser 85 90 Ser Thr Gly Asn Asn Ala Ala Asp Phe Val Asn Leu Leu Tyr Glu Glu 100 105 110 Thr Leu Thr Ala Lys Arg Ile Gln Ser Pro Glu Leu Ile Arg Gly Asn 115 120 125 Arg Thr Gln Gly Val Trp Tyr Gln Arg Lys Val Val Leu Pro Asn Asp 135 140 Thr Lys Tyr Val Ala Phe Arg His Phe Asn Ser Thr Asp Asn Phe Trp 150 155 Leu Asn Leu Asp Glu Val Ser Ile Leu Tyr Thr Pro Leu Pro Arg Arg 165 170 175 Ala Pro Cys Pro His Pro Gly Gly Tyr Thr Tyr Ser Val Phe Arg Asp 190 180 185 Gly Gln Lys Ile Ala Ser Gly Leu Ser Ala Leu Ala Tyr Ile Asp Thr 200 195 205 Asp Val Pro Tyr Gly Thr Gln Asp Tyr Cys Val Gln Val Asn Tyr Leu 210 215 220 Gln Gly Asp Ser Tyr Lys Val Cys Lys Asn Ile Val Val Ala Asn Ser 230 235 Ala Asn Ile Tyr Gly Ala Asp Lys Pro Phe Ala Leu Thr Val Val Gly 245 250 Lys Thr Ile Val Ala Ser Ala Phe Lys Gly Glu Ile Thr Leu Tyr Asp \$260\$ \$265\$ \$270\$Ile Arg Gly Arg Leu Ile Ala Ser Gly Cys Asp Thr Leu Arg Tyr Lys 280 275 285 Ala Glu Asn Gly Phe Tyr Leu Ile Lys Ile Gln Val Asn Gly Thr Val 290 295 300 Tyr Thr Glu Lys Ile Gln Ile Gln 310

#### (2) INFORMATION FOR SEQ ID NO:432

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 843 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...843
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:432

Met Lys Lys Ser Phe Leu Leu Ala Ile Val Met Leu Phe Gly Ile Ala 10 Met Gln Gly His Ser Ala Pro Val Thr Lys Glu Arg Ala Leu Ser Leu 20 25 3.0 Ala Arg Leu Ala Leu Arg Gln Val Ser Leu Arg Met Gly Gln Thr Ala 40 45 Val Ser Asp Lys Ile Ser Ile Asp Tyr Val Tyr Arg Gln Gly Asp Ala 60 Glu Arg Gly Ile Thr Ser Gln Glu Glu Gly Ser Pro Ala Tyr Phe Tyr 70 75 Val Ala Asn Arg Gly Asn Asn Glu Gly Tyr Ala Leu Val Ala Ala Asp 85 90 Asp Arg Ile Pro Thr Ile Leu Ala Tyr Ser Pro Ile Gly Arg Phe Asp 100 105 110 Met Asp Ser Met Pro Asp Asn Leu Arg Met Trp Leu Gln Ile Tyr Asp 115 120 125 Gln Glu Ile Gly Leu Ile Leu Ser Gly Lys Ala Gln Leu Asn Glu Glu 135 140 Ile Leu Arg Thr Glu Gly Val Pro Ala Glu Val His Ala Leu Met Asp 150 155 Asn Gly His Phe Ala Asn Asp Pro Met Arg Trp Asn Gln Gly Tyr Pro 165 170 Trp Asn Asn Lys Glu Pro Leu Leu Pro Asn Gly Asn His Ala Tyr Thr 180 185 190 Gly Cys Val Ala Thr Ala Ala Ala Gln Ile Met Arg Tyr His Ser Trp 200 195 205

```
Pro Leu Gln Gly Glu Gly Ser Phe Asp Tyr His Ala Gly Ser Leu Val
                                     220
                    215
Gly Asn Trp Ser Gly Thr Phe Gly Glu Met Tyr Asp Trp Ile Asn Met
               230
                         235
Pro Gly Asn Pro Asp Leu Asp Asn Leu Thr Gln Ser Gln Val Asp Ala
                 250 255
          245
Tyr Ala Thr Leu Met Arg Asp Val Ser Ala Ser Val Ser Met Ser Phe
                  265
       260
Tyr Glu Asn Gly Ser Gly Thr Tyr Ser Val Tyr Val Val Gly Ala Leu
             280
Arg Asn Asn Phe Arg Tyr Lys Arg Ser Leu Gln Leu His Val Arg Ala
                  295
Leu Tyr Thr Ser Gln Glu Trp His Asp Met Ile Arg Gly Glu Leu Ala
305 310 315
Ser Gly Arg Pro Val Tyr Tyr Ala Gly Asn Asn Gln Ser Ile Gly His
            325
                              330
                                              335
Ala Phe Val Cys Asp Gly Tyr Ala Ser Asp Gly Thr Phe His Phe Asn
                                    350
                   345
Trp Gly Trp Gly Gly Val Ser Asn Gly Phe Tyr Lys Leu Thr Leu Leu 355 360 360
Ser Pro Thr Ser Leu Gly Ile Gly Gly Glu Gly Ile Gly Phe Thr Ile
                                    380
          375
Tyr Gln Glu Ile Ile Thr Gly Ile Glu Pro Ala Lys Thr Pro Ala Glu
                                395
        390
Ala Gly Thr Asp Ala Leu Pro Ile Leu Ala Leu Lys Asp Ile Glu Ala
             405
Glu Tyr Lys Ser Glu Ser Gly Leu Asn Val Gly Tyr Ser Ile Tyr Asn
                        425
                                     430
Thr Gly Glu Glu Gln Ser Asn Leu Asp Leu Gly Tyr Arg Leu Asn Lys
                                       445
                440
      435
Ala Asp Gly Glu Val Ile Glu Val Lys Thr Ser Ser Ile Asn Ile Ser
450 455 460
Trp Tyr Gly Tyr Gly Glu His Pro Glu Ser Phe Ser Leu Ala Pro Asn
465 470 475
Gln Leu Ser Gln Gly Ile Asn Thr Ile Thr Leu Leu Tyr Arg Arg Thr
           485
                            490
Gly Thr Glu Gln Trp Glu Pro Val Arg His Ala Gln Gly Gly Tyr Val
                                           510
                  505
Asn Ser Ile Lys Val Asn Thr Thr Asp Pro Asn Asn Val Val Thr
              520
                               525
Val Asp Asn Asn Glu Gly Lys Leu Ser Ile Val Pro Asn Ser Phe Val
                           540
  530 535
Ala Asp Leu Asn Ser Tyr Glu His Ser Thr Ile Thr Val Gln Phe Asn
                        555
       550
Ser Asp Ser Pro Asp Glu Ile Arg Thr Pro Val Ala Phe Ala Leu Ser 565 570 575
           565
                           570
Thr Gly Ala Thr Ala Asp Asp Val Ile Ser Leu Gly Trp Val Met Ala
       580 585
Glu Val Pro Gly Gly Ser Ser Asn Tyr Pro Val Val Trp Ser Lys Asp
                     600
                                      605
Val Leu Thr Leu Ser Glu Gly Asp Tyr Thr Leu Trp Tyr Arg Phe Ser
                            620
                   615
Ile Asn Asn Gln Lys Asp Glu Trp Lys Lys Ile Gly Ser Val Ser Val
       630 635
Lys Thr Pro Thr Glu Tyr Thr His Pro Leu Phe Glu Val Gly His Asn
                     650
             645
Gln Thr Ser Thr Tyr Thr Leu Asp Met Ala His Asn Arg Val Leu Pro
                         665
        660
Asp Phe Thr Leu Lys Asn Leu Gly Leu Pro Phe Asn Gly Glu Leu Val
                                685
                680
Val Val Phe Arg Gln Thr Gln Ser Ser Ser Gly Ser Leu Trp Ala Ala
              695
                                     700
Gln Glu Thr Val His Ile Lys Gln Gly Glu Thr Phe Val Tyr Lys Pro
           710
                        715
Val Val Glu Gly Pro Ile Pro Asp Gly Ser Tyr Arg Ala Thr Leu His
725 730 735
Ala Phe Val Asn Gly Gln Gln Leu Tyr Leu Lys Gly Lys Arg Asn
         740 745
Tyr Thr Val Lys Ile Val Asn Gly Thr Ala Val Glu Ala Ile Glu Ser
                      760
     755
Ser Glu Glu Ile Arg Val Phe Pro Asn Pro Ala Arg Asp Tyr Val Glu
                  775
                             780
Ile Ser Ala Pro Cys Ile Pro Gln Glu Thr Ser Ile Ile Leu Phe Asp
                         795
               790
Leu Ser Gly Lys Ile Val Met Lys Asn Ser Leu Ser Ala Gly His Gly
             805
                            810
                                               815
Arg Met Asp Val Ser Arg Leu Pro Asn Gly Ala Tyr Ile Leu Lys Val
```

Asp Gly Tyr Thr Thr Lys Ile Asn Ile Val His 835 840

# (2) INFORMATION FOR SEQ ID NO:433

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 290 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...290
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:433

Met Lys Lys Leu Phe Leu Ser Leu Thr Ser Leu Val Met Val Phe Ala 5 10 Val Ala Ser Cys Asp Ile Ile Asp Lys Asp Gln Thr Leu Leu Pro Ala 20 25 30 Pro Thr Asn Val Thr Pro Asp Asn Pro Asp Asn Pro Ser Glu Ile 40 45 Asp Ile Thr Gln Thr His Thr Glu Lys Tyr Val Leu Ala Glu Glu Phe 55 60 Thr Gly Gln Lys Cys Leu Asn Cys Pro Lys Gly His Arg Lys Leu Ala 70 75 Ala Leu Lys Glu Gln Tyr Gly Lys Arg Leu Thr Val Val Gly Ile His 85 90 Ala Gly Pro Gly Ser Leu Val Pro Pro Leu Phe Arg Thr Glu Ala Gly
100 105 110 Asp Ala Tyr Tyr Ser Lys Phe Ala Asn Asn Thr Pro Leu Pro Ala Leu 115 120 125 Met Val Ser Arg Lys Lys Phe Gly Ser Ser Tyr Val Tyr Asp Lys Ser 135 140 Tyr Lys Thr Trp Asp Val Pro Ile Ala Glu Gln Met Glu Gln Lys Ala 150 155 Lys Ile Asn Ile Phe Ala Val Ala Glu Tyr Thr Asp Thr Gln Lys Ile 165 170 175 Lys Val Thr Val Lys Gly Lys Ile Leu Glu Gly Asn Thr Leu Pro Lys 180 185 Ser Met Val Gln Val Tyr Leu Leu Glu Asp Lys Leu Ile Ala Pro Gln 195 200 205 Val Asp Gly Asn Thr Thr Val Glu Asn Tyr Glu His Asn His Val Leu 215 220 Arg Gly Ala Val Asn Gly Ile Trp Gly Glu Glu Phe Val Asn Leu Lys 230 235 Asp Tyr Leu Tyr Thr Tyr Ala Val Glu Pro Leu Ser Gly Met Ser Phe 245 250 255 Val Ala Glu Asn Tyr Ser Ile Val Ala Phe Val Tyr Asp Val Gln Thr 260 265 Phe Glu Val Tyr Asp Val Val His Val Lys Ile Asn Pro Gln Ser Asp

(2) INFORMATION FOR SEQ ID NO:434

Gly Lys 290

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 223 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis

280

285

- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...223

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:434

Met Lys Lys Ser Ser Val Val Ala Ser Val Leu Ala Val Ala Leu Val 10 Phe Ala Gly Cys Gly Leu Asn Asn Met Ala Lys Gly Gly Leu Ile Gly 20 25 Ala Gly Val Gly Gly Ala Ile Gly Ala Gly Val Gly Asn Val Ala Gly 40 Asn Thr Ala Val Gly Ala Ile Val Gly Thr Ala Val Gly Gly Ala Ala 55 60 Gly Ala Leu Ile Gly Lys Lys Met Asp Lys Gln Lys Lys Glu Leu Glu 70 75 Ala Ala Val Pro Asp Ala Thr Ile Gln Thr Val Asn Asp Gly Glu Ala 85 90 Ile Leu Val Thr Phe Asp Ser Gly Ile Leu Phe Ala Thr Asn Ser Ser 100 105 110 Thr Leu Ser Pro Asn Ser Arg Thr Ala Leu Thr Lys Phe Ala Ala Asn 115 120 125 Met Asn Lys Asn Pro Asp Thr Asp Ile Arg Ile Val Gly His Thr Asp 130 135 140 Asn Thr Gly Ser Asp Lys Ile Asn Asp Pro Leu Ser Glu Arg Arg Ala 145 150 155 160 Ala Ser Val Tyr Ser Phe Leu Asn Ser Gln Gly Val Ser Met Ser Arg 165 170 175 Met Ala Ala Glu Gly Arg Gly Ser His Glu Pro Val Ala Asp Asn Ser 180 185 Thr Val Ala Gly Arg Ser Ala Asn Arg Arg Val Glu Val Tyr Ile Leu 195 200 205 Pro Asn Ala Lys Met Ile Glu Gln Ala Gln Gln Gly Thr Leu Lys 210 215

- (2) INFORMATION FOR SEQ ID NO:435
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 337 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc feature
    - (B) LOCATION 1...337
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:435

Met Ser Lys Lys Ser Ile Leu Leu Cys Cys Ser Leu Cys Phe Ile 5 10 Ser Ala Thr Lys Ala Val Thr Pro Val Arg Asn Val Arg Asn Ser Gln 20 25 Val Asn Ser Lys Ala Lys Thr Glu Arg Thr Lys Pro Ser Asp Ser Val 35 40 45 Arg Tyr Ile Ser Asn Met Ile Ala Asp Arg Leu Glu Phe Arg Asn Lys 55 60 Ile Ser Ser Glu Lys Glu Val Arg Lys Ala Glu Tyr Glu Asn Arg Leu 70 75 Ala Met Glu Ala Leu Asn Tyr Pro Ala Ile Asp Leu Tyr Gly Glu Asp 85 90 Ser Trp Ser Glu Tyr Val Asn Pro Phe Val Gly Ala Gly Thr Asp Val 100 105 Glu Ile Pro Asn Ser Tyr Asp Ile Asp Cys Ser Ser Phe Val Met Pro 115 120 Val Glu Asp Lys Gln Val Thr Ser Gln Phe Gly Tyr Arg Arg Arg Phe 130 135 140 Gly Arg Met His Tyr Gly Ile Asp Leu Ser Val Asn Arg Gly Asp Thr 150 155 160 Ile Arg Ala Ala Phe Asp Gly Lys Val Arg Val Arg Ser Tyr Glu Ala

170

Arg Gly Tyr Gly Tyr Tyr Ile Val Leu Arg His Pro Asn Gly Leu Glu 180 185 Thr Val Tyr Gly His Met Ser Arg Gln Leu Val Asp Glu Asn Gln Ile 205 200 195 Val Arg Ala Gly Gln Pro Ile Gly Leu Gly Gly Ser Thr Gly Arg Ser 215 220 Thr Gly Pro His Leu His Phe Glu Thr Arg Phe Met Gly Ile Pro Ile 230 235 Asn Pro Ser Thr Ile Ile Asp Phe Asp Asn Gly Val Pro Leu Arg Asp 245 250 Ile Tyr Thr Phe Lys Arg Gly Ser Asn Ser Arg Tyr Ala Lys Ala Ser 260 265 Lys Thr Ser Ser Arg Tyr Ala Lys Lys Gly Lys Lys Gly Arg Gln Ala 280 275 285 Ser Ser Pro Met Thr Tyr Arg Ile Lys Lys Gly Asp Thr Leu Glu Thr 295 300 Ile Ala Lys Arg His Gly Thr Ser Val Gln Lys Leu Cys Ala Thr Asn 305 310 315 320 Gly Ile Gly Lys Ser Lys Ile Leu Thr Pro Gly Lys Ala Leu Arg Ile 330 Lys

### (2) INFORMATION FOR SEQ ID NO:436

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 151 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...151
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:436

Met Ala Lys Ile Asn Phe Tyr Ala Glu Gly Val Ser Leu Pro Arg Ile 1 5 10 Arg Arg Ile Val Gly Lys Trp Ile Ala Glu Val Cys Ser Arg Tyr 25 Gly Lys Ala Val Gly Glu Ile Ser Tyr Leu Phe Cys Asp Asp Glu Tyr 40 45 Ile Leu Lys Ala Asn Gln Glu Phe Leu Asp His Asp Tyr Tyr Thr Asp 55 Ile Ile Thr Phe Asp Ser Cys Glu Ala Asp Thr Val Asn Gly Asp Leu 70 75 Leu Ile Ser Leu Asp Thr Val Arg Ser Asn Ala Arg Ala Leu Asp Leu 85 90 Arg Tyr Glu Asp Glu Leu His Arg Val Ile Ile His Gly Ile Leu His 100 105 Leu Cys Gly Leu Lys Asp Lys Ser Lys Lys Asp Glu Ala Gln Met Arg 115 120 125 Ala Ala Glu Glu Lys Ala Leu Val Met Leu Arg Glu Thr Ile Gly Ser Glu Leu Ser Leu Leu His Thr 145 150

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 391 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis

#### (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...391

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:437

Met Lys Val Lys Tyr Leu Met Leu Thr Leu Val Gly Ala Ile Ala Leu 10 Asn Ala Ser Ala Gln Glu Asn Thr Val Pro Ala Thr Gly Gln Leu Pro 20 25 30 Ala Lys Asn Val Ala Phe Ala Arg Asn Lys Ala Gly Ser Asn Trp Phe 40 45 Val Thr Leu Gln Gly Gly Val Ala Ala Gln Phe Leu Asn Asp Asn Asn 55 60 Asn Lys Asp Leu Met Asp Arg Leu Gly Ala Ile Gly Ser Leu Ser Val Gly Lys Tyr His Ser Pro Phe Phe Ala Thr Arg Leu Gln Ile Asn Gly 90 85 Gly Gln Ala His Thr Phe Leu Gly Lys Asn Gly Glu Gln Glu Ile Asn 100 105 110 Thr Asn Phe Gly Ala Ala His Phe Asp Phe Met Phe Asp Val Val Asn 120 115 125 Tyr Phe Ala Pro Tyr Arg Glu Asn Arg Phe Phe His Leu Ile Pro Trp 135 140 130 Val Gly Val Gly Tyr Gln His Lys Phe Ile Gly Ser Glu Trp Ser Lys 150 155 160 Asp Asn Val Glu Ser Leu Thr Ala Asn Val Gly Val Met Met Ala Phe 165 170 Arg Leu Gly Lys Arg Val Asp Phe Val Ile Glu Ala Gln Ala Ala His 180 185 Ser Asn Leu Asn Leu Ser Arg Ala Tyr Asn Ala Lys Lys Thr Pro Val 195 200 205 Phe Glu Asp Pro Ala Gly Arg Tyr Tyr Asn Gly Phe Gln Gly Met Ala 215 210 220 Thr Ala Gly Leu Asn Phe Arg Leu Gly Ala Val Gly Phe Asn Ala Ile 230 235 Unk Pro Met Asp Tyr Ala Leu Ile Asn Asp Leu Asn Gly Gln Ile Asn 245 250 255 Arg Leu Arg Ser Glu Val Glu Glu Leu Ser Lys Arg Pro Val Ser Cys 260 265 Pro Glu Cys Pro Glu Val Thr Pro Val Thr Lys Thr Glu Asn Ile Leu 275 280 285 Thr Glu Lys Ala Val Leu Phe Arg Phe Asp Ser His Val Val Asp Lys 295 300 Asp Gln Leu Ile Asn Leu Tyr Asp Val Ala Gln Phe Val Lys Glu Thr 305 310 315 320 Asn Glu Pro Ile Thr Val Val Gly Tyr Ala Asp Pro Thr Gly Asn Thr 325 330 335 Gln Tyr Asn Glu Lys Leu Ser Glu Arg Arg Ala Lys Ala Val Val Asp 345 350 Val Leu Thr Gly Lys Tyr Gly Val Pro Ser Glu Leu Ile Ser Val Glu 355 360 365 Trp Lys Gly Asp Ser Thr Gln Pro Phe Ser Lys Lys Ala Trp Asn Arg 375 370 380 Val Val Ile Val Arg Ser Lys 390

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 385 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...385
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:438

Met Thr Tyr Arg Ile Met Lys Ala Lys Ser Leu Leu Leu Ala Leu Ala 10 Gly Leu Ala Cys Thr Phe Ser Ala Thr Ala Gln Glu Ala Thr Thr Gln 20 Asn Lys Ala Gly Met His Thr Ala Phe Gln Arg Asp Lys Ala Ser Asp 35 40 His Trp Phe Ile Asp Ile Ala Gly Gly Ala Gly Met Ala Leu Ser Gly 55 60 Trp Asn Asn Asp Val Asp Phe Val Asp Arg Leu Ser Ile Val Pro Thr 70 75 Phe Gly Ile Gly Lys Trp His Glu Pro Tyr Phe Gly Thr Arg Leu Gln 85 90 Phe Thr Gly Phe Asp Ile Tyr Gly Phe Pro Gln Gly Ser Lys Glu Arg 100 105 110 Asn His Asn Tyr Phe Gly Asn Ala His Leu Asp Phe Met Phe Asp Leu 120 125 Thr Asn Tyr Phe Gly Val Tyr Arg Pro Asn Arg Val Phe His Ile Ile 135 140 Pro Trp Ala Gly Ile Gly Phe Gly Tyr Lys Phe His Ser Glu Asn Ala 150 155 Asn Gly Glu Lys Val Gly Ser Lys Asp Asp Met Thr Gly Thr Val Asn 165 170 Val Gly Leu Met Leu Lys Phe Arg Leu Ser Arg Val Val Asp Phe Asn 185 180 190 Ile Glu Gly Gln Ala Phe Ala Gly Lys Met Asn Phe Ile Gly Thr Lys 195 200 205 Arg Gly Lys Ala Asp Phe Pro Val Met Ala Thr Ala Gly Leu Thr Phe 210 215 220 Asn Leu Gly Lys Thr Glu Trp Thr Glu Ile Val Pro Met Asp Tyr Ala 230 235 Leu Val Asn Asp Leu Asn Asn Gln Ile Asn Ser Leu Arg Gly Gln Val 245 250 Glu Glu Leu Ser Arg Arg Pro Val Ser Cys Pro Glu Cys Pro Glu Pro 260 265 270 Thr Gln Pro Thr Val Thr Arg Val Val Val Asp Asn Val Val Tyr Phe 275 280 285 Arg Ile Asn Ser Ala Lys Ile Asp Arg Asn Gln Glu Ile Asn Val Tyr 295 300 Asn Thr Ala Glu Tyr Ala Lys Thr Asn Asn Ala Pro Ile Lys Val Val 305 310 315 Gly Tyr Ala Asp Glu Lys Thr Gly Thr Ala Ala Tyr Asn Met Lys Leu 325 330 335 Ser Glu Arg Arg Ala Lys Ala Val Ala Lys Met Leu Glu Lys Tyr Gly 340 345 Val Ser Ala Asp Arg Ile Thr Ile Glu Trp Lys Gly Ser Ser Glu Gln 355 360 365 Ile Tyr Glu Glu Asn Ala Trp Asn Arg Ile Val Val Met Thr Ala Ala 375 385

# (2) INFORMATION FOR SEQ ID NO:439

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 190 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...190
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:439

 Met Glu Phe Phe Met Leu Phe Ile Ala Ala Val Phe Val Asn Asn Val

 1
 5
 10
 15

 Val Leu Ser Gln Phe Leu Gly Ile Cys Pro Phe Leu Gly Val Ser Lys
 20
 25
 30

 Lys Val Asp Thr Ser Ile Gly Met Gly Ala Ala Val Thr Phe Val Leu

40 45 Ala Leu Ala Thr Leu Val Thr Phe Leu Ile Gln Lys Phe Val Leu Asp 55 Arg Phe Gly Leu Gly Phe Met Gln Thr Ile Ala Phe Ile Leu Val Ile 65 70 75 Ala Ala Leu Val Gln Met Val Glu Ile Ile Leu Lys Lys Val Ser Pro 85 90 Pro Leu Tyr Gln Ala Leu Gly Val Phe Leu Pro Leu Ile Thr Thr Asn 105 100 110 Cys Cys Val Leu Gly Val Ala Ile Leu Val Ile Gln Lys Asp Tyr Thr 115 120 125 Leu Leu Gln Ser Phe Val Tyr Ala Ile Ser Thr Ala Ile Gly Phe Thr 130 135 140 Leu Ala Met Val Thr Phe Ala Gly Ile Arg Glu Gln Leu Asp Met Thr 150 155 Asn Leu Pro Lys Ala Met Lys Gly Ile Pro Ser Ala Leu Leu Ala Ala 165 170 Gly Ile Leu Ala Met Ala Phe Met Gly Phe Ser Gly Ile Ala 180 185

#### (2) INFORMATION FOR SEQ ID NO:440

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 186 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...186
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:440

Met Leu Phe Ile Ala Ala Val Phe Val Asn Asn Val Val Leu Ser Gln 10 Phe Leu Gly Ile Cys Pro Phe Leu Gly Val Ser Lys Lys Val Asp Thr 25 30 Ser Ile Gly Met Gly Ala Ala Val Thr Phe Val Leu Ala Leu Ala Thr 35 40 45 Leu Val Thr Phe Leu Ile Gln Lys Phe Val Leu Asp Arg Phe Gly Leu 55 60 Gly Phe Met Gln Thr Ile Ala Phe Ile Leu Val Ile Ala Ala Leu Val 70 75 Gln Met Val Glu Ile Ile Leu Lys Lys Val Ser Pro Pro Leu Tyr Gln 90 85 Ala Leu Gly Val Phe Leu Pro Leu Ile Thr Thr Asn Cys Cys Val Leu 105 110 Gly Val Ala Ile Leu Val Ile Gln Lys Asp Tyr Thr Leu Leu Gln Ser 115 120 125 Phe Val Tyr Ala Ile Ser Thr Ala Ile Gly Phe Thr Leu Ala Met Val 130 135 140 Thr Phe Ala Gly Ile Arg Glu Gln Leu Asp Met Thr Asn Leu Pro Lys 150 155 Ala Met Lys Gly Ile Pro Ser Ala Leu Leu Ala Ala Gly Ile Leu Ala 165 170 Met Ala Phe Met Gly Phe Ser Gly Ile Ala 180

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 833 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:

#### (ix) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION 1...833

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:441

Met Lys Gln Leu Asn Ile Ile Ser Phe Ile Ile Ala Phe Leu Phe Leu Gly Thr Ser Ala Ser Ala Gln Gln Ser Gly Gly Ser Val Thr Gly Thr Val Val Asp Lys Ser Ser Lys Glu Pro Ile Ala Tyr Val Gln Val Phe Val Lys Gly Thr Thr Leu Gly Thr Ser Thr Asp Ala Asn Gly Asn Tyr Ser Ile Lys Gly Ile Pro Ser Gly Asn Gln Thr Ile Val Ala Arg Leu Met Gly Tyr Ser Thr Cys Glu Glu Lys Val His Ile Glu Lys Gly Gly Ser Arg His Val Asp Leu Tyr Leu Thr Glu Glu Ile Leu Ser Leu Asp Gly Val Val Val Ser Ala Asn Arg Asn Glu Thr Phe Arg Arg Gln Ala Pro Ser Leu Val Thr Val Leu Ser Pro Glu Leu Phe Leu Lys Thr Asn Ser Thr Asn Leu Ser Gln Gly Leu Lys Phe Gln Pro Gly Leu Arg Val Glu Asp Asn Cys Gln Asn Cys Gly Phe Asn Gln Val Arg Ile Asn Gly Leu Glu Gly Ala Tyr Ser Gln Ile Leu Ile Asp Ser His Pro Ile Phe Ser Ser Leu Ala Gly Val Tyr Gly Leu Glu Gln Met Pro Ala Asn Met Ile Glu Arg Val Glu Val Ile Arg Gly Gly Gly Ser Ala Leu Phe Gly Ser Asn Ala Val Gly Gly Val Ile Asn Val Ile Thr Lys Glu Pro Leu 225 230 Arg Asn Ser Ala Glu Ile Ser His Ser Thr Met Thr Phe Asp His Ala Lys Gly Trp Gly Ser Phe Gln Asn Thr Thr Gln Phe Asn Gly Ser Met Leu Thr Glu Asp Arg Lys Ala Gly Val Met Val Phe Gly Gln His Asn Tyr Arg Pro Gly Gln Asp Ile Asp Gly Asp Asn Phe Thr Glu Leu Pro Asn Leu Arg Asn Arg Ser Leu Gly Phe Arg Ser Tyr Tyr Lys Thr Gly Leu Tyr Ser Lys Ala Thr Leu Glu Tyr His Ser Met Gln Glu Tyr Arg Arg Gly Gly Asp Arg Leu Asp Asn Pro Pro Phe Glu Ala Gln Ile Ala Glu Tyr Leu Gln His Tyr Ile Asn Gly Gly Ser Phe Lys Phe Asp Gln Gly Phe Ser Gly Gly Lys Asp Phe Phe Ser Leu Tyr Ala Ser Ala Gln Asp Val Gln Arg Arg Ser Tyr Tyr Gly Gly Gly Asp Tyr Thr Glu Asn Leu Leu Asn Gly Ala Val Gln Ser Gly Ser Thr Glu Ser Asp Glu Tyr Asn Asp Ala Phe Thr Ala Leu Thr Ser Tyr Gly Thr Thr Lys Gly Phe Asp Leu Gln Gly Gly Met Tyr Arg His Thr Phe Gly Glu Asn Trp Asp Phe Thr Gly Gly Leu Glu Tyr Ile Tyr Gly Gln Leu Asp Asp Arg Ser Gly Tyr Arg Pro Ser Lys Ile Asp Gln Asn Thr Ser Thr Phe Ser Gln Tyr Asp Gln Leu Glu Tyr Lys Thr Glu Lys Leu Ser Ala Leu Ile Gly Ala Arg Ile Asp Tyr Val Leu Leu Asn Gln Asp Gly Lys Arg Tyr Ile Asp Pro Leu Phe Ile Phe Ser Pro Arg Ala Asn Val Arg Tyr Asn Pro Asn Lys Asn Leu Ser Phe Arg Leu Ser Tyr Ser Glu Gly Phe Arg 530 535 Ala Pro Gln Tyr Phe Asp Glu Asp Leu His Val Glu Leu Ala Gly Gly

545 550 Thr Pro Ile Ser Arg Val Leu Ser Pro Asn Leu Lys Glu Glu Arg Ser 565 570 575 Arg Ser Ile Ser Ala Ser Phe Asp Tyr Tyr His Arg Ala Asp Glu Trp 580 585 590 Gln Phe Asn Ile Met Gly Glu Ala Phe Ser Thr Phe Ile Ser Asn Gln 595 600 605 Phe Lys Pro Ser Asp Lys Val Glu Thr Thr Ser Asp Gly Lys Glu Trp 615 610 620 Ile Ile Arg Thr Ile Tyr Asn Asp Lys Asp Gly Val Ser Lys Val Tyr 625 630 635 640 Gly Val Asn Leu Glu Gly Arg Ile Ala Tyr Asn Lys Ser Phe Asp Leu 645 650 Gln Leu Gly Gly Thr Trp Gln Arg Ser Arg Tyr Gly Ser Ile Tyr Thr 665 Ala Val Glu Ala Asp Lys Thr Thr Gly Gln Ala Glu Ile Ser Val Lys 675 680 685 Asp Tyr Val Arg Thr Pro Asn Leu Tyr Gly Tyr Phe Val Ala Thr Val 690 695 700 Arg Pro Thr Glu His Phe Ala Ile Asn Leu Ser Gly Thr Phe Thr Gly 705 710 715 Lys Met Asp Val Val His Glu Ala Tyr Glu Gly Asp Ile Pro Ala Glu 725 730 735 His Ile Ala Pro Asp Gly Ser Phe Asp Phe Glu Met Asn Gly Gln Gln 740 745 Phe Lys Gly Leu Ala Glu Gly His Ala Lys Leu Val Lys Thr Pro Ala 760 Phe Ala Asp Ile Asp Leu Lys Leu Ser His Asp Phe His Leu Ala Ser 770 775 780 Thr Met Thr Leu Glu Leu Asn Ala Gly Ile Gln Asn Ile Phe Asn Ser 785 790 795 800 Tyr Gln Lys Asp Thr Asp Lys Gly Pro Gly Arg Ala Ser Thr Tyr Val 805 810 815 Tyr Gly Pro Met Gln Pro Arg Arg Ile Phe Val Gly Thr Lys Ile Asn 820 825

## (2) INFORMATION FOR SEQ ID NO:442

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 891 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...891
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:442

Met Tyr Lys Lys Ile Ile Ala Val Ala Ala Leu Phe Cys Ala Ser Ile 10 Gly Ile Leu Lys Gly Gln Ser Ser Asp Leu Thr Pro Gln Asp Thr Ile 20 25 30 Tyr Ser Pro Glu Ile Ser Tyr Ala Lys Pro Ile His Lys Thr Ile Ala 40 Ser Ile Glu Ile Glu Gly Met Arg Ser Phe Asp Asp Phe Val Leu Arg 55 Asn Leu Ser Gly Leu Ala Val Gly Asp Glu Val Leu Ile Pro Gly Asp 70 75 Ala Met Ser Ala Ala Val Asn Arg Ile Met Arg Gln Gly Tyr Phe Ser 85 90 95 Asn Val Arg Ile Ile Ala Asp Lys Tyr Val Gly Asn Lys Val Tyr Leu 100 105 110 Lys Ile Ile Val Thr Glu Arg Pro Arg Ile Ser Lys Val Thr Phe Ser 115 120 125 Gly Val Lys Lys Ser Glu Arg Glu Asp Leu Glu Met Lys Ile Gly Leu 135 140 Arg Glu Gly Ile Gln Met Thr Arg Asn Asn Glu Asp Lys Val Arg Gln

	_														
145 Ile		l Glr	ı Lys	. Tyr	150 Phe		Glu	ı Lys	Gly	15! y Ty:		g Ası	o Ala	a Sei	160 Ile
				165	5				170	)				179	
			180	)				185	5				190	)	e Tyr
		195	5				200	)				209	5		
	210	)				215					220	)			Met
Lys 225		1 Thr	Asn	Ala	Lys 230		Ser	Let	Arg	J Lys 235		3 Ile	e Arg	g Ser	Ser 240
Phe	Leu	ı Lys	Leu	Phe 245		Thr	His	Lys	250		Glu	ı Glu	ı Ser	Tyr 255	Arg
Glu	Asp	Leu	Val 260	Arg		Ile	Glu	Lys 265	Туг		ı Glu	туг	Gl _y	туг туг	Arg
Asp	Ala	Glu 275	Ile		Thr	Asp	Ser 280	Val		Lys	a Ala	285	Asp		Lys
Arg	Val	. Asp		Tyr	Leu		Ile		Glu	ı Gly		Lys		туг	Ile
	Asp		Asn	Phe		295 Gly		Ser	Gln				Glu	Туг	Leu
305 Glu		Val	Leu	Gly	310 Ile	Lys	Ser	Gly	Asp	315 Val		Asn	Gln	Arg	320 Arg
				325					330	)				335	
			340					345					350		Asn
		355					360					365			
	370				Val	375					380			_	=
Gln 385		Asn	Ile	Asn	Lys 390	Val	Ile	Ile	Lys	Gly 395		Thr	Val	Val	Tyr 400
Glu	Asp	Val	Val	Arg 405	Arg	Glu	Leu	Tyr	Thr 410		Pro	Gly	Gln	Leu 415	Phe
Ser	Arg	Glu	Asp 420	Ile	Ile	Asn	Ser	Ile 425			Ile	Asn	Gln 430		Gly
His	Phe	Asp		Glu	Lys	Ser	Ile 440		Arg	Pro	Ile			Pro	Glu
Thr			Val	Asp	Ile			Asp	Leu	Val		445 Arg	Ser	Ser	Asp
	450 Leu	Glu	Leu	Ser	Val	455 Gly	Trp	Ser	Gln	Ser	460 Gly	Leu	Leu	Phe	Arg
465 Gly	Ala	Ile	Lys	Phe	470 Thr	Asn	Phe	Ser	Val	475 Gly		Leu	Leu	His	480 Pro
Ser	Met	Tyr	Lys	485 Lys	Gly	Ile	Ile	Pro	490 Gln	Gly	Asp	Gly	Gln	495 Thr	Leu
Ser	Leu	Ser	500 Ala	Gln	Thr	Asn	Gly	505 Lys	Tyr	Tyr	Gln	Gln	510 Tyr	Ser	Val
		515			Trp		520					525			
	530				Ser	535					540				
545					550					555					560
				565	Asn				570					575	
			580		Tyr			585					590		_
Leu	Tyr	Thr 595	Gln	Ala	Ser	Asp	Pro 600	Asp	Arg	Ser	Leu	Gln 605	Met	Leu	Gly
Thr	Ser 610	Ile	Gly	Tyr	Gly	Lys 615	Arg	Leu	Thr	Trp	Pro 620		Asn	Trp	Phe
Gln 625	Ile	Tyr	Thr	Ser	Leu 630		Tyr	Thr	Tyr			Leu	Arg	Asn	
	Tyr	Asn	Thr		Gln	Asn	Phe	His		635 Gly	Ser	Ala	Asn	_	640 Leu
Asn	Leu	Glu		645 Arg	Leu	Ser	Arg	Thr	650 Ser	Ile	Asp	Asn	Pro	655 Ile	Tyr
Thr	Arg	Ser	660 Gly	Ser	Asp	Phe	Met	665 Val	Ser	Val	Ala	Ala	670 Thr	Leu	Pro
Tyr	Ser	675 Leu	Trp	Asp	Asn :		680 Asp	Tyr	Ala	Ser	Gln	685 Asn	Leu	Ser	Val
	690					695					700				
705					710 Leu :					715					720
				725					730					735	
			740		Val (			745					750		
Asn	ŗàs	Lys 755	Ser	Pro	Phe (		Thr 760	Phe	Tyr	Met	Gly	Gly 765	Asp	Gly	Met

Ser Ser Tyr Tyr Gly Gly Tyr Met Asn Glu Thr Ile Gly Leu Arg Gly 775 780 Tyr Lys Asn Gly Ser Ile Ala Gly Asn Asn Tyr Asp Tyr Ala Tyr Ala 785 790 795 Tyr Met Arg Leu Thr Met Glu Leu Arg Phe Pro Ile Leu Phe Glu Asn 805 810 815 Ser Phe Asn Ala Trp Leu Leu Ala Phe Ala Glu Ala Gly Asn Ala Trp 820 825 Arg Ser Ile Asp Asn Tyr Asn Pro Phe Asn Leu Lys Arg Ser Ala Gly 835 840 Val Gly Leu Arg Val Thr Leu Pro Met Val Gly Met Leu Gly Ile Asp 850 855 860 Trp Gly Tyr Gly Phe Asp Arg Pro Asp Asn Ser Leu Gln Arg Gly Gly 870 875 Ser Asn Val His Phe Val Leu Gly Gln Glu Phe 885 890

### (2) INFORMATION FOR SEQ ID NO:443

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...174
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:443

Met Asn Gly Asp Met Lys Arg Phe Leu Ile Leu Ile Gly Phe Ala Leu Ala Val Ala Phe Ser Gly Phe Ser Gln Lys Phe Ala Leu Val Asp Met 20 25 Glu Tyr Ile Leu Arg Asn Ile Pro Asp Tyr Glu Met Met Asn Glu Gln 40 Leu Glu Gln Val Ser Lys Lys Trp Gln Asn Glu Ile Glu Ala Leu Glu 55 60 Asn Glu Ala Gln Ser Met Tyr Lys Lys Tyr Gln Ser Asp Leu Val Phe 70 75 Leu Ser Ala Ala Gln Lys Lys Thr Gln Glu Glu Ala Ile Val Lys Lys 85 90 95 Glu Gln Gln Ala Ser Glu Leu Lys Arg Lys Tyr Phe Gly Pro Glu Gly 100 105 110 105 Glu Leu Tyr Lys Lys Arg Ser Asp Leu Met Lys Pro Ile Gln Asp Glu 115 120 125 Ile Trp Asn Ala Ile Lys Glu Ile Ala Lys Arg Asn Asn Tyr Gln Met 135 140 Val Leu Asp Arg Gly Thr Ser Gly Ile Ile Phe Ala Ser Pro Ser Ile 150 155 Asp Ile Ser Asp Leu Val Leu Ser Lys Met Gly Phe Ser Lys 165

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 170 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...170

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:444

Met Lys Arg Phe Leu Ile Leu Ile Gly Phe Ala Leu Ala Val Ala Phe 10 Ser Gly Phe Ser Gln Lys Phe Ala Leu Val Asp Met Glu Tyr Ile Leu 20 25 30 Arg Asn Ile Pro Asp Tyr Glu Met Met Asn Glu Gln Leu Glu Gln Val 40 45 Ser Lys Lys Trp Gln Asn Glu Ile Glu Ala Leu Glu Asn Glu Ala Gln 55 60 Ser Met Tyr Lys Lys Tyr Gln Ser Asp Leu Val Phe Leu Ser Ala Ala 70 75 Gln Lys Lys Thr Gln Glu Glu Ala Ile Val Lys Lys Glu Gln Gln Ala 85 90 Ser Glu Leu Lys Arg Lys Tyr Phe Gly Pro Glu Gly Glu Leu Tyr Lys Lys Arg Ser Asp Leu Met Lys Pro Ile Gln Asp Glu Ile Trp Asn Ala 120 115 Ile Lys Glu Ile Ala Lys Arg Asn Asn Tyr Gln Met Val Leu Asp Arg 130 135 140 Gly Thr Ser Gly Ile Ile Phe Ala Ser Pro Ser Ile Asp Ile Ser Asp 150 155 Leu Val Leu Ser Lys Met Gly Phe Ser Lys 165

## (2) INFORMATION FOR SEQ ID NO:445

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 163 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...163
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:445

Met Lys Lys Phe Phe Leu Met Leu Leu Met Ala Leu Pro Leu Ser Leu 10 Leu Ala Gln Lys Val Ala Val Val Asn Thr Glu Glu Ile Ile Ser Lys 20 25 Met Pro Glu Gln Val Ala Ala Thr Lys Gln Leu Asn Glu Leu Ala Glu 40 45 Lys Tyr Arg Leu Asp Leu Lys Ser Met Asp Asp Glu Phe Ala Lys Lys 55 60 Thr Glu Glu Phe Val Lys Glu Lys Asp Ser Leu Leu Glu Asn Ile Arg 70 75 Asn Arg Arg Gln Gln Glu Leu Gln Asp Ile Gln Thr Arg Tyr Gln Gln 85 90 Ser Tyr Gln Thr Met Gln Glu Asp Leu Gln Lys Arg Gln Gln Gln Leu 100 105 110 Phe Ala Pro Ile Gln Gln Lys Val Ala Asp Ala Ile Lys Lys Val Gly 115 120 125 Asp Glu Glu Asn Cys Ala Tyr Ile Met Glu Ala Gly Met Met Leu Tyr 135 140 Thr Gly Ala Thr Ala Ile Asp Leu Thr Ala Lys Val Lys Ala Lys Leu 145 150 Gly Ile Lys

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 827 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

## (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...827

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:446

Met Lys Glu Ala Ile Pro Arg Lys Asn Lys Tyr Ile Lys Leu Asn Gly 5 10 Ile Tyr Arg Leu Ser Phe Ile Leu Leu Cys Cys Leu Leu Cys Ser Gln 30 20 25 Ala Ala Met Ala Gln Gly Val Arg Val Ser Gly Tyr Val Leu Asp Arg 35 40 45 Gly Glu Lys Pro Ile Pro Phe Ala Gly Val Lys Val Arg Gly Thr Gly 55 Thr Gly Ala Thr Thr Asn Leu Lys Gly Tyr Tyr Glu Phe Arg Met Lys 70 75 Ala Thr Thr Asp Ser Ile Thr Ile Glu Phe Ser Ser Met Gly Tyr Gln 85 90 95 Gly Val Ser Arg Ser Phe Pro Ser Leu Thr Lys Asp Thr Arg Leu Asn 100 105 110 Val Arg Leu Ala Glu Ala Glu Met Glu Leu Ser Ser Val Thr Val Gln 120 115 125 Ala Thr Lys Arg Arg Leu Asn Thr Met Glu Arg Val Asn Thr Arg Asp 135 140 Leu Arg Val Asn Ala Gly Pro Thr Gly Gly Val Glu Ser Leu Ile Ser 150 155 Thr Tyr Ala Gly Val Thr Gln Asn Asn Glu Leu Ser Ser Gln Tyr Ser 165 170 175 Val Arg Gly Gly Ser Tyr Asp Glu Asn Met Val Tyr Val Asn Gly Val 180 185 190 Glu Val Tyr Arg Pro Leu Leu Val Arg Ser Ala Gln Gln Glu Gly Leu 200 195 205 Ser Phe Val Asn Pro Asp Leu Thr Gln Ser Val Gln Phe Ser Ala Gly 210 215 220 Gly Phe Thr Ala Asp Tyr Gly Asp Lys Met Ser Ser Val Leu Asp Ile 230 235 Arg Tyr Lys Gln Pro Gln Glu Lys Glu Gly Ala Val Leu Leu Gly Met 245 250 Leu Gln Ser Ser Ala Tyr Tyr Gly Ser Ser Ala Gly Ala Phe Ser Gln 260 265 270 Ile Thr Gly Val Arg Tyr Lys Ser Ala Lys Ser Leu Leu Gly Thr Thr 280 275 285 Asp Thr Lys Ala Glu Tyr Asp Pro Ile Tyr Ala Asp Gly Gln Thr Phe 290 295 300 Met Thr Tyr Arg Phe Ser Pro Lys Leu Ser Val Ser Phe Leu Gly Asn 310 315 Ile Ser Gln Thr Arg Tyr Lys Phe Val Pro Gln Thr Arg Glu Thr Ser 325 330 Phe Gly Thr Leu Ser Asp Ala Lys Lys Leu Lys Ile Phe Phe Asp Gly 340 345 350 Gln Glu Gln Asp Arg Phe Leu Thr Tyr Phe Gly Ala Phe Ser Met Asn 360 355 365 Phe Val Pro Asp Asp Lys Gln Arg His Thr Val Thr Leu Ser Ala Phe 370 375 380 Asn Ser Asn Glu Arg Glu Thr Tyr Asp Ile Gln Gly Glu Tyr Phe Leu 390 395 Asn Asp Val Gln Leu Gly Ala Asp Gly Thr Ala Ser Met Ala Ser Gly 405 410 Ser Glu Asn Ser Asn Gly Leu Gly Ile Gly Arg Asn His Glu His Ala 425 Arg Asn Arg Leu Ser Tyr Arg Val Leu Asn Met Gly Tyr Arg Gly Glu 435 440 Met Lys Leu Asn Glu Lys His Arg Leu Gln Ala Gly Val Ser Ala Gln 450 455 460 Met Glu Lys Ile Ala Asp His Ile Ser Glu Trp Glu Arg Arg Asp Ser 465 470 475 Val Gly Tyr Asn Leu Pro His Ser Glu Thr Val Leu Leu Met Tyr Asn 485 490 Asn Leu Tyr Ala Asp Thr Gln Met Arg Gly Thr Arg Leu Ser Ala Phe 505 Val Gln Asp Arg Phe Asn Phe Ser Met Gly Gly Gly Thr Phe Ser Leu

515 520 Ile Pro Gly Ile Arg Ala Ser Trp Trp Ser Phe Asn Lys Glu Leu Leu 535 540 Val Ser Pro Arg Ile Ser Val Gly Tyr Ser Pro Glu Ser Asn Pro Ala 545 550 555 Leu Val Leu Arg Ala Ala Gly Leu Tyr Tyr Gln Ala Pro Phe Tyr 565 570 575 Lys Glu Leu Arg Gln Thr His Lys Asp Ala Glu Gly Asn Asn Val Val 580 585 Val Leu Asn Glu Lys Ile Arg Ser Gln Gly Ala Phe His Ile Leu Ala 595 600 605 600 605 Gly Ala Asp Tyr Thr Phe Glu Met Gly Gly Arg Lys Tyr Lys Phe Thr 610 615 620 Ala Glu Ala Tyr Tyr Lys Ser Leu Phe Asn Ile Asn Pro Tyr Ile Ile 625 630 635 640 Glu Asn Val Lys Ile Arg Tyr Leu Gly Glu Asn Ile Gly Ser Gly Tyr
645 650 655 Ala Ala Gly Ile Asp Leu Lys Leu Phe Gly Glu Leu Val Pro Gly Val 665 670 Asp Ser Trp Leu Thr Ala Ser Ile Ile Lys Ala Arg Gln Lys Leu Asp 675 680 685 Gly Tyr Gly Ser Leu Pro Leu Met Asn Ala Pro Thr Tyr Asn Phe Ser 690 695 700 Phe Phe Leu Gln Glu Tyr Val Pro Gly Asn Lys Arg Ile Thr Ala Thr 705 710 715 Leu Arg Ala Ala Leu Ser Gly Gly Leu Pro Gln Leu Asn Pro Ser Lys 725 730 735 Gly Leu Ser Ser Pro Ala Phe Thr Ala Pro Ala Tyr Lys Arg Val Asp 740 745 750 Leu Gly Val Met Tyr Lys Trp Leu Asp Pro Asp Asp Ser Phe Ala Gly 755 760 Arg Ser Lys Trp Leu Met Gly Val Lys Gly Ala Tyr Ile Gly Ala Asp 770 775 780 Leu Phe Asn Leu Phe Asp Met Thr Asn Val Asn Ser Tyr Tyr Trp Val 790 795 Ser Asp Ala Tyr Gln Gln Gln Tyr Ala Val Pro Asn Tyr Leu Thr Arg 805 810 Arg Gln Phe Asn Leu Arg Leu Leu Val Glu Phe 820

## (2) INFORMATION FOR SEQ ID NO:447

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 672 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...672
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:447

Met Tyr Ser Gly His His Lys Ile His Tyr Pro Phe Leu Ile Leu Leu 5 10 Val Cys Leu Ala Phe Ala Ala Cys Lys Ser Val Lys Leu Lys Asp Ala 25 30 Glu Lys Ala His Asp Arg Gln Glu Tyr Thr Lys Ala Ala Asp Met Tyr 40 45 Asn Thr Leu Tyr Arg Arg Thr Arg Arg Lys Gln Val Glu Met Lys Ala 55 60 Tyr Thr Ala Phe Arg Ser Gly Glu Asn Tyr Arg Ala Ala Gly Arg Gln 70 75 Ala Lys Ala Leu Arg Gly Tyr Leu Asn Ala Arg Arg Tyr Gly Tyr Pro 85 90 Asp Ser Val Val Leu Leu Arg Leu Ala Gln Thr Tyr Gln Gln Gly Gly 100 105 110 Asn Tyr Lys Glu Ala Glu Val Leu Phe Arg Gly Tyr Leu Glu Ala Tyr 115 120 125 Pro Lys Ser Tyr Phe Ala Ala Ile Gly Leu Glu Gly Cys Leu Phe Ala

135 Arg Gln Gln Lys Glu Tyr Pro Thr Arg Tyr Arg Ile Arg Arg Ala Ala 150 155 Glu Trp Asn Ser Ala Arg Gly Asp Phe Gly Pro Ala Tyr Ala Pro Asp 165 170 175 Ala Ser Ala Leu Tyr Phe Thr Ser Ser Arg Ser Lys Asp Asp Gly Leu 180 185 190 Asp Asn Ser Ser Ile Thr Gly Leu Lys Pro Asn Asp Ile Tyr Ile Ile 195 205 200 Lys Arg Asp Ala Gln Gly Arg Trp Gly Arg Pro Asp Ser Val Ser Gly 215 220 Gly Ile Asn Thr Pro Trp Asp Glu Gly Val Pro Thr Ile Thr Pro Asp 225 230 235 Gly Ser Thr Ile Tyr Tyr Thr Leu Ala Gln Gln Gly Ala Asp Tyr Asp 245 250 Arg Thr Val Gln Ile Tyr Ser Ala Ala Arg Ser Gly Glu Gly Gly Trp 260 265 Ser Asn Gly Ser Leu Val Asp Ile Met Arg Asp Ser Leu Arg Met Ala 275 280 285 Ala His Pro Ser Met Ser Ala Ser Gly Asp Tyr Leu Tyr Phe Val Ser 295 300 Asn Ile Gly Gly Ser Tyr Gly Gly Lys Asp Ile Tyr Arg Val Lys Val 310 315 Ser Asp Arg Ser Tyr Gly Ser Pro Glu Asn Leu Gly Pro Asp Ile Asn 325 330 335 Thr Pro Gly Asp Glu Met Phe Pro Phe Ile Asp Gly Asp Ser Thr Leu 340 345 Phe Phe Ala Ser Asp Gly His Ala Gly Leu Gly Gly Leu Asp Ile Phe 355 360 365 Lys Ala Thr Leu Asp Ser Thr Gly Gln Trp His Val Val Asn Met Gly 375 380 Gln Pro Val Asn Ser Ser Ala Asp Asp Phe Gly Leu Ala Val Glu Pro 385 390 395 400 Lys Gly Lys Asn Lys Glu Glu Ala Leu Pro Asp Asn Gly Val Lys Gly 405 410 415 Val Phe Cys Ser Asn Arg Gly Asp Ala Arg Gly Trp Pro His Leu Phe 420 425 430 His Phe Glu Leu Pro Ala Ile Tyr Thr Glu Ile Gln Gly Tyr Val Met 435 440 Asp Arg Glu Glu Asn Pro Ile Ala Gly Ala Thr Val Arg Ile Val Gly 450 455 460 Glu Arg Gly Pro Val Gly Gln Gly Phe Val Thr Thr Arg Asp Asp Gly 465 470 475 Ser Tyr Lys Met Ser Val Gln Gly Asp Thr Arg Tyr Val Met Leu Ala 490 Gly Ala Ser Gly Tyr Leu Asn Gln Tyr Val Glu Leu Lys Thr Asp Thr 500 505 510 Ala Lys Gln Ser Glu Thr Tyr Tyr Val Asp Phe Phe Leu Ala Ser Arg 515 520 525 Glu Lys Ala Glu Gly Leu Gln Asn Ile Phe Tyr Asp Phe Asp Lys Ala 530 535 540 Thr Leu Arg Pro Glu Ser Met Lys Ser Leu Asp Glu Leu Ile Arg Ile 545 550 555 Leu Thr Asp Asn Pro Asp Ile Arg Ile Glu Leu Gly Ser His Ala Asp 565 570 575 Arg Lys Gly Pro Asp Ala Tyr Asn Leu Gly Leu Ser Asp Arg Arg Ala 580 590 585 Lys Ser Val Val Asp Tyr Leu Thr Ser Arg Gly Ile Ala Ala Asp Arg 595 600 Leu Thr Trp Lys Gly Tyr Gly Lys Ser Val Pro Lys Thr Val Thr Ala 615 Lys Ile Ala Glu Arg His Asp Phe Leu Lys Glu Gly Asp Val Leu Thr 630 635 Glu Glu Phe Val Ala Pro Leu Thr Glu Glu Gln Gln Ser Val Cys Asp 645 650 655 Gln Leu Asn Arg Arg Thr Glu Phe Arg Val Ile Glu Glu Glu Leu Arg 665 670

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 708 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

# (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
    (B) LOCATION 1...708
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:448

1				5					10					15	a Gln
			20					25					30		l His
		35					40					45			Leu
	50					55					60				e Lys
65					70					75					Ser 80
				85					90					95	arg
			100	)				105					110		Ile
		115	;				120					125			Glu
	130	)				135					140				Asn
145					150					His 155					160
				165					170					175	
			180					185		Asp			190		_
		195					200			Asp		205			
	210					215				Glu	220				
Asn 225	Ala	Thr	Lys	Asn	Lys 230	Lys	Met	Lys	Gly	Ser 235	Asp	Tyr	Thr	Val	Ala 240
Thr	Gly	Arg	Leu	Arg 245		Gly	Ile	Asp	Phe 250	Thr	Pro	Glu	Trp	Ser 255	
			260					265		Ala			270		
		275					280			Lys		285			
	290					295				Gly	300				
Phe 305	Ser	Pro	Tyr	Phe	Asn 310	Ile	Glu	Lys	Ser	Glu 315	Asn	Tyr	Asn	Asn	Ala 320
Asp	Pro	Thr	Gly	Phe 325		Asn	Tyr	Lys	Ser 330	Asp	Tyr	Tyr	Thr	Tyr 335	Gly
			340					345		Gly			350		
		355					360			Ser		365			
	370					375				Gly	380				
11e 385	Gly	Leu	Phe		Gln 390	Ala	Asn	Phe		Leu 395	Leu	Asn	Asp	Ala	Leu 400
	Ile	Ser	Ala			Arg	Ala	Asp		Met	Phe	Phe	Asp	Leu 415	Lys
Ala	Asn	Glu	Tyr 420	Leu	Asn	Asn		Ala 425		Gln	Glu	Thr	His 430	Asn	Val
Ile	Asn	Pro 435	Asn	Val	Gly				Glu	Phe	Val	Lys 445		Leu	Thr
Ala	His 450	Gly	Thr	Phe				Phe	Ser	Ala	Pro 460		Ala	Phe	Gln
Lys 465	Ala	Gly	Gln	Tyr	Val 470	Gly	Pro	Phe		Thr 475		Ile	Gly	Asn	Pro 480
Asp	Leu	Lys	Pro	Glu 485		Ser	Met			Asp	Phe	Gly		Gly 495	
			500	Сув				Ala 505	Asp	Val			Thr 510	Tyr	
His	Thr	Asp 515	His	Lys	Asp				Ser	Ser		Asp 525	Tyr	Ala	Asn

Asn Ile Thr Thr Tyr Ile Asn Ala Asp Lys Ala Arg Met Ser Gly Ile 535 540 Glu Ala Leu Leu Ser Tyr Asp Phe Gly Ser Leu Phe Ala Asn Lys Phe 545 550 555 Ser Leu Arg Ala Phe Ala Asn Ala Thr Ile Met Leu Asn Ser Glu Met 565 570 575 Lys Lys Ser Gln Thr Asp Ala Pro Trp Ser Glu Met Tyr Tyr Val Arg 580 585 590 Lys Gln Asn Ile Thr Phe Gly Ile Glu Tyr Arg Gly Lys Glu Gly Leu 595 600 Glu Val Met Leu Asn Gly Arg Phe Met Gly Arg Arg Ile Glu Gln Asn 610 615 620 Trp Tyr Ala Tyr Tyr Pro Glu Val Arg Pro Glu Leu Gln Gln Leu Leu 625 630 635 Ala Ala Glu Glu Pro Glu Leu Ala Ala Gln Gly Leu Leu Arg His Pro 650 645 Gln Ala Met Val Phe Asn Ala Ser Ala Tyr Tyr His Met Asn Lys Tyr 660 665 670 Leu Thr Phe Gly Val Asn Leu Asn Asn Ile Leu Asp Glu Leu Tyr Thr 680 685 Glu Lys Asp Gly Tyr His Met Pro Gly Arg Asn Ile Met Gly Lys Val 690 695 Met Val Asn Phe 705

#### (2) INFORMATION FOR SEQ ID NO:449

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 462 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...462
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:449

Met Asn Arg Phe Ser Asn His Trp Pro Cys Ile Leu Val Gly Phe Val 10 Leu Trp Phe Val Ser Ala Ser Arg Thr Val Ala Gln Asn Ala Ser Glu 20 25 30 Thr Thr Val Ser Tyr Asp Thr Asp Thr Ala Val Leu Ser Glu Ala Asp 35 40 4.5 Val Leu Arg Ile Ala Leu Ser Glu Asn Ala Thr Val Lys Val Ala Asp 50 55 Met Asp Val Arg Lys Gln Glu Tyr Ala Arg Arg Ala Ala Arg Ala Asp 70 75 Leu Phe Pro Lys Val Asp Leu Asn Gly Val Tyr Ser His Thr Leu Lys 85 90 Lys Gln Val Leu Tyr Ile Asp Met Pro Gly Phe Ser Ser Ser Glu Gly 105 110 Ile Glu Met Gly Arg Thr His Asn Thr Gln Gly Gly Val Asn Val Ser 115 120 125 Met Pro Leu Val Ser Ala Gln Leu Trp Lys Ser Ile Ala Met Thr Gly 135 140 Glu Gln Leu Asp Leu Ala Leu Glu Lys Ala Arg Ser Ser Arg Ile Asp 150 155 Leu Val Ala Glu Val Lys Lys Ala Tyr Leu Ser Val Leu Leu Ala Glu 165 170 175 Asp Ser Tyr Gly Val Phe Lys Arg Ser Tyr Asp Asn Ala Leu Ala Asn 180 185 190 Tyr Lys Asn Ile Ser Asp Lys Phe Asp Arg Gly Leu Val Ala Glu Tyr 200 205 Asp Lys Ile Arg Ala Asn Val Gln Val Arg Asn Ile Glu Pro Asn Leu 210 215 220 Leu Gln Ala Gln Asn Ser Val Ala Leu Ala Leu Trp Gln Leu Lys Val 225 230 235 240 Leu Met Ser Met Glu Val Glu Thr Pro Ile Arg Leu Ser Gly Ser Leu 245 250 255

Ser Asp Tyr Lys Glu Gln Val Tyr Thr Gly Tyr Phe Ala Ala Asp Thr 260 265 Leu Ile Ser Asn Asn Ser Ser Leu Arg Gln Leu Asp Ile Gln Arg Arg 275 280 285 Leu Ala Val Ser Ala Asp Lys Leu Asn Lys Tyr Ser Phe Leu Pro Thr 295 300 Leu Asn Leu Gly Gly Gln Tyr Thr Tyr Ser Leu Asn Ser Asn Asp Ile 310 315 Lys Phe Trp Gly Glu Gly Gln Arg Trp Thr Pro Phe Ser Thr Ile Ser 325 330 335 Leu Ser Leu Tyr Ile Pro Ile Phe Asn Gly Gly Lys Arg Leu Tyr Asn 340 345 350 Val Lys Gln Ser Ala Leu Ser Ile Arg Gln Ile Asp Leu Gln Arg Arg 355 360 365 His Ile Glu Gln Ser Ile Arg Met Gly Ile Lys Asn Gln Asn Asp Arg 375 380 Leu Arg Thr Cys Met Gln Arg Phe Val Ala Ser Glu Glu Ala Val Arg 390 395 Ser Ala Glu Lys Gly Tyr Gln Ile Ala Glu Lys Arg Tyr Gln Thr Gly 405 410 Glu Gly Thr Leu Val Glu Leu Asn Asp Ala Asp Val Ala Leu Leu Gln 420 425 Ala Arg Leu Asn Tyr Asn Gln Ala Ile Phe Asp Phe Met Thr Ala Lys 435 440 445 Ala Glu Leu Asp Lys Met Asn Gly Met Gly Ile Pro Glu Gln 450 455

## (2) INFORMATION FOR SEQ ID NO:450

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 492 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...492
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:450

Met Trp Gly Asp Ser His Gly Val Ala Pro Asn Gln Val Arg Arg Thr Leu Val Lys Val Ala Leu Ser Glu Ser Leu Pro Pro Gly Ala Lys Gln 20 25 Ile Arg Ile Gly Phe Ser Leu Pro Lys Glu Thr Glu Glu Lys Val Thr 40 45 Ala Leu Tyr Leu Leu Val Ser Asp Ser Leu Ala Val Arg Asp Leu Pro 55 60 Asp Tyr Lys Gly Arg Val Ser Tyr Asp Ser Phe Pro Ile Ser Lys Glu 75 Asp Arg Thr Thr Ala Leu Ser Ala Asp Ser Val Ala Gly Arg Arg Phe 85 90 Phe Tyr Leu Ala Ala Asp Ile Gly Pro Val Ala Ser Phe Ser Arg Ser 100 105 Asp Thr Leu Thr Ala Arg Val Glu Glu Val Ala Val Asp Gly Arg Pro 115 120 125 Leu Pro Leu Lys Glu Leu Ser Pro Ala Ser Arg Arg Leu Tyr Arg Gly
130 135 140 135 130 140 Tyr Glu Ala Leu Phe Val Pro Gly Asp Gly Gly Ser Arg Asn Tyr Arg 150 155 Ile Pro Ala Ile Leu Lys Thr Ala Asn Gly Thr Leu Ile Ala Met Ala 165 170 175 Asp Arg Arg Lys Tyr Asn Gln Thr Asp Leu Pro Glu Asp Ile Asp Ile 180 185 190 Val Met Arg Arg Ser Thr Asp Gly Gly Lys Ser Trp Ser Asp Pro Arg 200 195 205 Ile Ile Val Gln Gly Glu Gly Arg Asn His Gly Phe Gly Asp Val Ala 215 220 Leu Val Gln Thr Gln Ala Gly Lys Leu Leu Met Ile Phe Val Gly Gly 230 235 240

Val Gly Leu Trp Gln Ser Thr Pro Asp Arg Pro Gln Arg Thr Tyr Ile 245 250 Ser Glu Ser Arg Asp Glu Gly Leu Thr Trp Ser Pro Pro Arg Asp Ile 260 265 270 Thr His Phe Ile Phe Gly Lys Asp Cys Ala Asp Pro Gly Arg Ser Arg 275 280 285 Trp Leu Ala Ser Phe Cys Ala Ser Gly Gln Gly Leu Val Leu Pro Ser 295 300 Gly Arg Ile Thr Phe Val Ala Ala Ile Arg Glu Ser Gly Gln Glu Tyr 305 310 315 320 Val Leu Asn Asn Tyr Val Leu Tyr Ser Asp Asp Glu Gly Asp Thr Trp 325 330 Gln Leu Ser Asp Cys Ala Tyr Arg Arg Gly Asp Glu Ala Lys Leu Ser 340 345 350 Leu Met Pro Asp Gly Arg Val Leu Met Ser Ile Arg Asn Gln Gly Arg 355 360 365 Gln Glu Ser Arg Gln Arg Phe Phe Ala Leu Ser Ser Asp Asp Gly Leu 375 380 Thr Trp Glu Arg Ala Lys Gln Phe Glu Gly Ile His Asp Pro Gly Cys 385 390 395 Asn Gly Ala Met Leu Gln Val Lys Arg Asn Gly Arg Asp Gln Val Leu 405 410 415 His Ser Leu Pro Leu Gly Pro Asp Gly Arg Arg Asp Gly Ala Val Tyr 425 420 Leu Phe Asp His Val Ser Gly Arg Trp Ser Ala Pro Val Val Val Asn 440 445 Ser Gly Ser Ser Ala Tyr Ser Asp Met Thr Leu Leu Ala Asp Gly Thr 450 455 460 Ile Gly Tyr Phe Val Glu Glu Gly Asp Glu Ile Ser Leu Val Phe Ile 470 475 Arg Phe Val Leu Asp Asp Leu Phe Asp Val Arg Gln 485 490

# (2) INFORMATION FOR SEQ ID NO:451

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 245 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...245
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:451

Met Lys Lys Glu Lys Leu Trp Ile Ala Ile Val Ala Gly Leu Ala Phe 10 Val Leu Gly Leu Tyr Ala Leu Gly Arg Ser Val Ala Gln Leu Arg Arg 20 30 Ser Gln Pro Ser Val Thr Val Thr Gly Met Ala Glu Arg Asn Phe Lys 35 40 4.5 Ser Asp Leu Ile Val Trp Thr Ala Ser Tyr Gln Leu Gln Met Met Asp 50 55 Leu Glu Ser Ala Tyr Lys Ala Leu Lys Glu Lys Gln Ile Leu Val Ala 70 75 Asp Tyr Leu Lys Asn Lys Gln Leu Pro Asp Ser Ser Tyr Ile Phe Ser 85 90 95 Ser Val Ala Ile Ser Lys Glu Tyr Asn Tyr Tyr Tyr Asp Pro Arg Gln 100 105 110 Glu Gln Asn Val Arg Thr Phe Ala Gly Tyr Leu Leu Ser Gln Thr Val 115 120 125 Thr Val Thr Ser Gln Asp Ile Glu His Val Glu Lys Ile Ser Arg Asp 130 135 140 Ile Thr Glu Leu Ile Asn Gln Gly Val Glu Ile Thr Ser Asp Arg Pro 145 150 155 Ala Tyr Tyr Tyr Thr Lys Leu Asn Asp Leu Lys Val Glu Met Leu Arg 165 170 175 Asn Ala Ser Glu Asp Ala Phe Asn Arg Ala Ser Val Ile Ala Glu Gly 185 190

 Ser
 Gly
 Ser
 Val
 Gly
 Lys
 Met
 Leu
 Ser
 Ser
 Ser
 Val
 Phe

 195
 195
 195
 200
 200
 205
 205
 205

 Gln
 Ile
 Val
 Gly
 Leu
 Asn
 Ser
 Asn
 Glu
 Asp
 Tyr
 Ser
 Trp
 Gly
 Gly
 Ser

 Phe
 Asn
 Thr
 Ser
 Ser
 Lys
 Met
 Lys
 Thr
 Ala
 Ser
 Ile
 Thr
 Val
 Lys
 Ala

 Ser
 Phe
 Ala
 Leu
 Lys
 Lys
 Thr
 Ala
 Ser
 Ile
 Thr
 Val
 Lys
 Ala

# (2) INFORMATION FOR SEQ ID NO:452

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 276 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...276
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:452

Met Lys Lys Thr Ile Ala Ile Ile Ala Ser Ala Leu Leu Ala Leu Gly 5 10 Ala Val Gly Cys Lys Lys Asn Ala Asp Thr Thr Ala Val Ser Glu Lys 20 30 25 Asp Ser Ile Ala Leu Ser Met Gly Ile Leu Tyr Gly Gln Asp Phe Ala 40 4.5 Asn Gln Phe Glu Met Ser Arg Leu Gln Gly Gln Pro Ile Asp Ser Val 55 60 Ala Phe Leu Asp Gly Phe Lys Tyr Gly Ile Asp Thr Thr Arg Phe Ser 70 75 Tyr Asn Leu Gly Ala Ile Tyr Ala Ser Asn Ile Ala Arg Gln Leu Ala 85 90 His Asp Ser Ile Asp Ile Asp Lys Phe Tyr Ala Ala Met Arg Ala Ala 100 105 110 Leu Leu Lys Asp Thr Val Ser Ile Ala Met Lys Pro Ala Asp Ala Gln 115 120 125 Ala Phe Met Gln Arg Ile Gln Ala Lys Lys Gln Arg Glu Asn Asn Met 130 135 140 Lys Gln Phe Gly Gln Asn Ile Glu Lys Gly Asn Glu Tyr Ile Asp Thr 145 150 155 Phe Lys Lys Glu Asp Gly Val Thr Val Thr Thr Thr Gly Leu Ala Tyr 165 170 Lys Thr Leu Gln Glu Gly Thr Gly Ala Thr Pro Ser Leu Ala Asp Thr 180 185 190 Val Arg Val Lys Tyr Val Gly Thr Leu Val Asp Gly Lys Glu Phe Asp 195 200 205 Lys Asn Glu Glu Gly Ile Glu Phe Ala Val Thr Gly Val Ile Lys Gly 210 215 220 Trp Thr Glu Met Leu Gln Leu Met Lys Val Gly Gln Lys Val Arg Val 230 235 Val Ile Pro Gln Glu Leu Ala Tyr Gly Glu Thr Gly Asn Tyr Thr Ile 245 250 255 Glu Pro Phe Ser Thr Leu Thr Phe Glu Met Glu Leu Ile Gly Ile Lys 260 265 Pro Gly Lys Lys 275

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 775 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...775
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:453

Met Lys Val Leu Arg Gln Val Phe Leu Pro Ile Leu Phe Val Leu Leu Thr Gly Ala Cys Ser Thr Thr Lys Asn Leu Pro Glu Gly Glu Gln Leu Tyr Ile Gly Met Gly Lys Thr Gln Ile Leu Arg Gln Asp Lys Ser His Ala Gly Gln Gln Ala Leu Thr Glu Val Glu Ser Thr Leu Lys Val Thr Pro Asn Gly Ala Ile Phe Gly Ser Ala Ser Ala Ser Leu Pro Lys Ile Pro Phe Gly Leu Trp Leu Tyr Asn Ser Phe Val Gly Asp Ser Thr Val Ile Ser Lys Trp Ile Phe Asp Lys Phe Ala Ala Lys Pro Val Phe Ile Ser Gln Val Lys Ser Asp Ser Arg Ala Lys Val Ala Thr Asn Ile Leu Arg Glu His Gly Tyr Phe Asp Ala Lys Val Lys Ser Ser Val Thr Thr Leu Lys Lys Asp Ser Leu Lys Ala Lys Ile Ser Tyr Thr Val Asp Met Ala Ser Pro Tyr His Tyr Asp Ser Ile Ile Pro Leu Pro Ile Ser Thr Phe Pro Asp Ser Ile Leu Ala Tyr Arg Gln Thr Pro Ser Leu Ile Arg Lys Gly Asp Gln Phe Asn Leu Ala Lys Leu His Glu Glu Arg Gln Thr Ile Ser Ala Leu Leu Arg Asp Asn Gly Tyr Tyr Tyr Phe Arg Pro Gln Asp Ile Ile Tyr Glu Ala Asp Thr Leu Leu Val Arg Gly Ala Val Cys Leu Arg Ala Lys Leu Ser Glu Asp Thr Pro Pro Gln Ala Met Arg Pro Trp Arg Ile Gly Lys Arg Thr Ala Val Leu Leu Gly Met Asn Gly Glu Ser Pro Thr Asp Ser Leu Glu Val Glu Asp Met Lys Val Leu Tyr Tyr Arg Lys Met Pro Val Arg Pro Lys Ile Leu Ala Lys Arg Phe Arg Phe Phe Ser Gly Asn Leu Tyr Arg Gln Lys Asp Asp Glu Thr Thr Arg Lys Ser Leu Ala Arg Leu Gly Ala Phe Ser Val Ile Asp Leu Asn Phe Leu Gln Arg Asp Ser Ile Ser Gly Leu Leu Asp Val Arg Leu Leu Thr Thr Leu Asp Lys Pro Trp Asp Ala Ser Leu Glu Thr Leu Phe Thr Ser Lys Ser Asn Asp Phe Ile Gly Pro Gly Leu Asn Phe Ala Leu Ala Arg Arg Asn Val Phe Gly Gly Gly Glu Asn Leu Ser Trp Asn Ile Gly Gly Ser Tyr Glu Trp Glu Thr Gly Asn Arg Pro Glu Asn Ser Ser Asn Arg Leu Ile Asp Ile Asn Ser Tyr Asn Met Asn Thr Ala Val Asn Leu Ser Phe Pro Ser Ile Val Phe Pro Gly Leu Leu Asp Lys Tyr Tyr Tyr Pro Thr Thr Thr Thr Phe Gln Ala Ser Ala Thr Ala Leu Asn Arg Ala His Tyr Phe Ser Met Tyr Ser Phe Gly Phe Ser Thr Thr Tyr Glu Phe Gln Pro Ser Lys Glu His Arg His Ala Ile Phe Pro Leu Lys Leu Asn Tyr Asn Leu Leu Gly His Gln Thr Glu Thr Phe Gln Ala Ile Thr Ala Asn Asn Pro Pro Leu Leu Ser Leu Gln Ser Gln Phe Leu Ala Gln Met Gly Tyr Ile Tyr Thr Phe Asn Lys Ser Val Ser Glu Lys Ser Pro His

His Leu Trp Met Gln Phe Gly Leu Ser Glu Ala Gly Asn Leu Leu Asn 550 555 Leu Ile Tyr Leu Ala Ala Gly Lys Lys Tyr Ser Asp Thr Lys Asn Phe 565 570 575 Val Gly Val Pro Phe Ser Gln Phe Ile Lys Ala Thr Gly Glu Leu Arg 580 585 590 Tyr Ser Tyr Thr Ile Asp Arg Asn Gln Ser Leu Ala Thr Arg Phe Gly 595 600 605 Thr Gly Val Ile Tyr Ser Tyr Gly Asn Met Arg Val Ala Pro Tyr Ser 610 615 620 Glu Gln Phe Tyr Val Gly Gly Ala Asn Ser Ile Arg Ala Phe Thr Val 630 635 Arg Ser Ile Gly Pro Gly Arg Phe Asn Pro Asp Ser Asp Asn Gln Tyr 645 650 Ser Tyr Leu Asp Gln Val Gly Glu Phe Lys Leu Glu Ala Asn Val Glu 660 665 Tyr Arg Gly Lys Leu Phe Gly Asp Leu His Ala Ala Val Phe Leu Asp 675 680 685 Ala Gly Asn Val Trp Leu Leu Arg Glu Asp Ser Ser Arg Pro Gly Gly 690 695 700 Ala Leu Ser Glu Val Gly Ser Val Ser Asn Phe Leu Asn Ser Ile Ala 710 715 Leu Gly Thr Gly Val Gly Leu Arg Tyr Asp Leu Ala Phe Leu Val Val 725 730 735 Arg Val Asp Val Gly Phe Gly Leu His Leu Pro Tyr Asn Thr Gly Lys 740 745 750 Lys Gly Tyr Tyr Asn Ile Pro Arg Phe Lys Asp Ala Ile Gly Phe His 755 760 Leu Ala Val Gly Tyr Pro Phe

## (2) INFORMATION FOR SEQ ID NO:454

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 774 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...774
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:454

Met Ser Ser His Ser Val Arg Tyr Leu Ile Gly Ile Ala Gly Cys Leu 10 Leu Leu Met Leu Ala Ser Ser Cys Ser Val Thr Arg Tyr Val Pro Asp 20 Gly Ser Arg Leu Leu Asp Arg Val Thr Ile Ala Ser Glu Thr Gly Ser 35 40 Ile Ala Leu Pro Glu Asp Ile Arg Asp Tyr Thr Leu Gln Gln Pro Asn 55 60 Tyr Arg Leu Phe Gly Met Thr Arg Trp Leu Leu Arg Val Tyr Ser Ser 70 75 Ser Asn Pro Asn Ser Asn Ser Trp Trp Asn Arg Ser Leu Arg Lys Met 85 90 95 Gly Glu Pro Pro Val Leu Ile Asp Ser Val Leu Thr Asp Arg Thr Ala 100 105 110 Asn Arg Leu Ala Lys Ala Met Ala Gly Asp Gly Phe Leu Asp Ala Thr 115 120 125 Ala Arg Ala Val Val Asp Thr Gly Leu Tyr Lys Lys Ala Arg Ile Thr 135 140 Tyr Leu Ile Gln Pro Gly Ser Arg Tyr Tyr Ile Arg Asn Met Ala Leu 150 155 Asp Val Lys Asn Pro Leu Leu Pro Pro Val Ala Leu Gly Asn Ser Leu 165 170 175 Pro Ser Ala Tyr Lys Val Gly Ile Ser Glu Gly Ser Pro Leu Ser Pro 180 185 190 Ile Val Leu Asp Glu Glu Arg Lys Ala Ile Ala Arg His Met Arg Asn 200 205

Asn Gly Phe Trp Lys Phe Ser Ala Glu Asp Val Tyr Tyr Glu Ala Asp Thr Thr Val Ser Gly Gly Ser Gly Thr Lys Ser Ala Asp Leu Lys Leu Val Val Asn Gly Ile Gly Arg Tyr Pro Tyr Arg Ile Gly Arg Val Phe 250 255 Phe His Ala Asp Tyr Asp Pro Leu Glu Ser Asp Phe Arg Val Gln Glu Leu Pro Arg Ile Asp Ser Ile Ser Arg Gly Asp Tyr Thr Val Tyr Tyr Gly Ser Arg Gly Arg Tyr Ile Arg Ala Ser Ala Leu Thr Arg Ser Val Ser Val Thr Pro Gly Ala Phe Phe Cys Glu Asp Asp Val Glu Arg Ser Tyr Ile Lys Leu Asn Ala Leu Pro Ile Val Arg Asn Val Asn Ile Arg Phe Val Glu His Asn Gly Lys Asp Glu Ile Ala Leu Ala Asp Ser Ser Arg Leu Val Asp Cys Tyr Ile Leu Thr Val Pro Ala Lys Ser Lys Ser Phe Glu Ala Glu Val Leu Gly Thr Asn Ser Ala Gly Asp Phe Gly Ala Ala Leu Ser Leu Gly Phe Thr Asp Arg Asn Leu Phe Arg Gly Ala Glu Met Phe Asn Ile Lys Leu Lys Gly Ala Tyr Glu Ala Ile Arg Lys Gly 405 410 Ser His Ser Phe Met Glu Tyr Gly Val Glu Ser Ser Leu Arg Phe Pro Arg Leu Leu Phe Pro Phe Ile Ser Asp Glu Thr Arg Arg Arg Leu Arg Ala Ser Thr Glu Trp Lys Ile Gly Tyr Asn Tyr Gln Thr Arg Pro Glu Phe Asp Arg Val Ile Leu Ser Ala Gln Leu Asn Tyr Ser Trp Gln Thr Tyr Leu His Asn Arg Leu Arg His Thr Ile Arg Leu Leu Asp Val Asp Tyr Leu His Leu Pro Tyr Ile Asp Pro Asp Phe Ala Gln Ser Leu Pro Pro Thr Thr Ala Leu Tyr Asn Tyr Thr Glu Gln Phe Ile Leu Gly Ser Ala Tyr Ile Leu Asn Tyr Thr Thr Ala Ser Ser Met Glu Arg Thr Val Ser Asn Pro Phe Thr Ala Arg Phe Ser Ile Gln Thr Ala Gly Asn Leu Leu Gln Ala Ile Ser Tyr Leu Thr Asp Ser Pro Lys Asp Glu His Gly 565 570 Leu Tyr Lys Met Phe Gly Leu His Tyr Ala Gln Phe Val Lys Leu Asp 580 585 Leu Asp Leu Ala Lys Thr Val Leu Leu Glu Lys Asp Asn Thr Leu Ala Leu His Leu Gly Phe Gly Leu Ala Phe Pro Tyr Gly Asn Ala Arg His Ile Pro Phe Glu Leu Arg Tyr Phe Ala Gly Gly Ser Asn Ser Val Arg 625 630 Gly Trp Ser Val Arg Thr Leu Gly Pro Gly Ser Met Lys Met Thr Pro Asp Lys Thr Phe Phe Asp Gln Met Gly Asp Ile Arg Leu Asp Leu Asn 660 665 Val Glu Tyr Arg Thr Lys Leu Phe Trp Lys Phe Arg Ala Ala Ala Phe Val Asp Ala Gly Asn Val Trp Thr Ile Lys Glu Tyr Glu Asn Gln Glu Asp Gly Leu Phe Arg Phe Asp Arg Phe Tyr Lys Glu Ile Ala Leu Ala Tyr Gly Leu Gly Leu Arg Leu Asp Phe Asp Tyr Phe Leu Val Arg Leu 725 730 735 Asp Ala Gly Leu Lys Ala Tyr Asp Pro Gln Gln Thr Gly Arg Tyr Lys Trp Ala Ile Thr Arg Pro Asn Leu Ser Ser Asn Phe Ala Trp His Ile Ala Val Gly Tyr Pro Phe

## (2) INFORMATION FOR SEQ ID NO:455

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 867 amino acids

- (B) TYPE: amino acid
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...867
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:455

Met Arg Lys Arg Ile Leu Gln Leu Phe Leu Thr Ala Leu Leu Leu Ala 10 Leu Gly Ser Ser Leu Ala Ile Ala Gln Thr Val Val Thr Gly Lys Val 20 25 3.0 Ile Asp Ser Glu Thr Ser Glu Pro Leu Ile Gly Val Ser Val Ser Thr 40 45 Gly Gln Gly Ala Ser Leu Arg Gly Val Thr Thr Asp Met Asp Gly Gly 55 Phe Arg Phe Glu Val Pro Ala Lys Ser Val Leu Thr Phe Arg Cys Val 65 70 75 Gly Tyr Ala Thr Val Thr Arg Ser Ile Gly Arg Gly Ser Gln Glu Asp 85 90 Leu Gly Thr Ile Leu Leu Asp Pro Gln Ala Ile Gly Leu Asp Glu Ile 100 105 110 Gln Val Ile Ala Ser Val Val Pro Lys Asp Arg Met Thr Pro Val Pro 120 125 Val Ser Asn Ile Arg Val Ala Asp Ile Gln Ala Ala Ser Leu Asn Val 130 135 Glu Phe Pro Glu Leu Val Lys Ser Thr Pro Ser Thr Tyr Thr Thr Lys 155 145 150 Gly Ser Gly Gly Phe Gly Asp Gly Arg Thr Asn Val Arg Gly Phe Asp 165 170 Thr Tyr Asn Phe Gly Val Leu Ile Asn Gly Val Pro Val Asn Gly Met 180 185 Glu Asp Gly Lys Val Tyr Trp Ser Asn Trp Ser Gly Leu Met Asn Gln 195 200 205 Ala Ser Thr Ile Gln Ile Gln Arg Gly Leu Gly Ala Ser Lys Leu Gly 215 220 Ile Ser Ser Val Gly Gly Thr Met Asn Ile Ile Thr Lys Thr Thr Asp 225 230 235 Ala Asn Thr Gly Gly Ser Ala Tyr Val Gly Met Gly Asn Asp Gly Leu 245 250 His Lys Glu Ser Phe Ser Ile Ser Thr Gly Met Asn Asp Gly Trp Ala 260 265 270 Ile Thr Ile Ala Gly Ser His Met Thr Gly Leu Gly Tyr Val Lys Gly 280 275 285 Leu Lys Gly Arg Ala Phe Ser Tyr Phe Phe Asn Val Ser Lys Lys Phe 295 300 Asn Glu Arg His Thr Leu Ser Leu Thr Gly Phe Gly Ala Pro Gln Trp 310 315 His Asn Gln Arg Ser Ser Lys Tyr Ser Val Ala Asp Tyr Asp Lys Tyr 325 330 Gly Ile Arg His Asn Gln Ser Phe Gly Tyr Leu Arg Gly Glu Leu Thr 340 345 350 Pro Thr Ala Tyr Ala Tyr Asn Thr Tyr His Lys Pro Gln Phe Ser Leu 355 360 365 Asn His Phe Trp Lys Met Asp Glu Asn Thr Ser Leu Tyr Thr Ala Unk 375 380 Tyr Ala Ser Leu Ala Thr Gly Gly Gly Arg Arg Ala Tyr Gly Lys Asn 390 395 Ser Lys Trp Val Leu Ile Asn Tyr Asn Thr Gly Gln Pro Tyr Glu Gln 405 410 Thr Lys Val Thr Pro Asp Gly Leu Ile Asp Tyr Asp Ala Val Leu Ala 420 425 Ala Asn Ala Ala Ala Ser Asn Gly Ser Glu Ala Ile Phe Ala Leu Gly 435 440 445 Ser Asn Ser His Lys Trp Phe Gly Leu Leu Ser Ser Phe Lys Lys 450 455 460 Leu Asn Ser Ser Leu Thr Leu Thr Ala Gly Tyr Asp Gly Arg Tyr Tyr 470 475 Arg Gly Asp His Tyr Asp Lys Ile Thr Asp Leu Leu Gly Gly Ser Tyr

485 490 Tyr Ile Glu Asp Pro Lys Thr Lys Leu Ala Tyr His Ala Glu Gly Gln 500 505 510 Gln Leu Lys Val Gly Asp Ile Val Asn Arg Asp Tyr Thr Gly Glu Ile 515 520 Met Trp His Gly Leu Phe Ala Gln Met Glu His Ser Ser Glu Trp Ile 530 535 540 Asp Ala Phe Val Ser Gly Ser Ile Asn Tyr Glu Leu Tyr Arg Asn His 555 545 550 Asn Tyr Gly Gly Ser Lys Ser Thr Gly Tyr Leu Pro Gly Val Ser Pro 565 570 575 Trp Lys Ser Phe Leu Pro Trp Ser Gly Lys Ala Gly Leu Ser Tyr Lys 585 590 Phe Ala Gln Gly His Asn Val Phe Ala Asn Gly Gly Phe Phe Thr Arg 600 605 Ala Pro Leu Phe Gly Asn Ile Tyr Ala Ala Gly Ala Ile Ile Pro Asn 615 620 Asp Lys Ala Asn Met Glu Lys Val Leu Thr Gly Glu Val Gly Tyr Gly 625 630 Phe Thr Asn His Lys Asn Phe Glu Phe Asn Ile Asn Gly Tyr Tyr Thr 650 645 Lys Trp Met Asp Arg Val Thr Ser Lys Arg Ile Gly Asn Glu Tyr Val 665 660 670 Tyr Leu Asn Gly Val Asp Ala Val His Cys Gly Val Glu Ala Glu Val 680 685 Ser Tyr Arg Pro Ile Arg Gln Ile Asp Leu Arg Gly Met Phe Ser Leu 695 700 Gly Asp Trp Thr Trp Gln Asn Asn Val Ser Tyr Thr Ser Tyr Asp Glu 710 Ala Gly Asn Glu Thr Gly Gln Asp Ile Thr Tyr Ile Lys Gly Leu His 725 730 Val Gly Asp Ala Ala Gln Met Thr Ala Ala Val Ser Ala Asp Ile Glu 740 745 750 Leu Phe Lys Gly Phe His Val Ile Gly Lys Tyr Asn Phe Leu Gly Lys 755 760 765 Asn Tyr Ala Gly Phe Asn Pro Ala Thr Arg Asn Ala Gln Gln Tyr Glu 775 780 Ala Asp Gly Lys Glu Ile Val Glu Ser Trp Lys Leu Pro Asp Val Gly 785 790 795 Leu Phe Asp Leu Ser Ala Ser Tyr Asn Phe Lys Leu Gly Ser Leu Ser 805 810 815 Thr Thr Phe Tyr Phe Asn Met Asp Asn Val Ala Asp Lys Arg Tyr Val 820 825 Ser Asp Ala Asp Asp Asn Ile Ile Gly Lys Lys His Asp Glu Ala Ser 840 835 845 Ala Leu Val Trp Tyr Gly Phe Gly Arg Thr Trp Ser Thr Gly Ile Arg 855 860 Val Asn Phe 865

## (2) INFORMATION FOR SEQ ID NO:456

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 431 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...431
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:456

 Met
 Lys
 Phe
 Ser
 Ile
 Arg
 Leu
 Phe
 Leu
 Cys
 Ile
 Ile
 Phe
 Leu
 Leu
 Ser
 10
 15
 15

 Ala
 Phe
 Ile
 Leu
 Pro
 Ala
 Leu
 Gln
 Lys
 Ser
 Lys
 Gln
 Val
 Gln
 Arg

 Leu
 Glu
 Lys
 Gln
 Ala
 Leu
 Lys
 Ala
 Ile
 Glu
 Lys
 Thr
 Asp

 Arg
 Glu
 Lys
 Thr
 Lys
 Lys
 Asp
 Lys
 Gln
 Asp
 Lys
 Gln
 Lys
 His

55 Leu Asn Leu Leu Asn Lys Gln Val Ala Gln Arg Lys Gln Met Val Gln 70 75 Leu Leu Asp Asn Glu Val Lys Glu Leu Gln Ser Asp Ile Asp Ser Met 85 90 Thr Gly Val Cys His Gln Leu Ser Val Glu Glu Lys Ala Arg Ser Asp 100 105 110 Glu Tyr Ala Gln Ala Leu Gln Ser Met Gln Lys Arg Lys Arg Ser Leu 120 125 Asp Arg Ile Leu Phe Ile Ser Ser Ala Lys Ser Phe Asp Glu Gly Met 130 135 140 Arg Arg Met Arg Phe Leu Glu Gln Tyr Ala Ser Ala Tyr Lys Leu Ala 150 155 Ser Val Arg Leu Arg Asp Thr Arg Ser Lys Leu Glu Thr Glu Arg Ala 165 170 175 Thr Val Glu Asp Ala Lys Lys Glu Lys Gly His Leu Leu Val Ile Arg Glu Glu Lys Lys Lys Leu Glu Gly Gln Gln Ala Glu Gln Arq Arq 200 205 Gln Val Gln Ala Leu Gly Ala Lys Gln Lys Asp Leu Glu Ala Gln Leu 210 215 220 Arg Lys Gln Lys Lys Gln Ala Glu Ala Leu Asn Arg Lys Ile Glu Lys 225 230 235 240 Gln Ile Ala Lys Glu Ile Glu Ala Ala Glu Arg Arg Ala Arg Glu Glu 245 250 255 Arg Glu Arg Leu Ala Arg Glu Ala Lys Ala Lys Gly Lys Pro Val Pro 260 265 270 Ala Glu Pro Glu Arg Lys Ala Glu Thr Lys Gly Gly Tyr Ala Met Asp 275 280 285 Ala Ser Glu Arg Ala Leu Ser Gly Ser Phe Ala Gln Asn Lys Gly Arg 290 295 Leu Pro Gly Pro Val Arg Gly Arg Tyr Arg Ile Val Ser Asp Phe Gly 305 310 315 Val His Gln His Ser Glu Leu Lys Lys Val Gln Val Asn Asn Gly Gly 325 330 335 Ile Asp Ile Ala Val Ala Thr Gly Ser Asp Ala Thr Ser Val Phe Asp 340 345 350 Gly Val Val Ser Ser Val Phe Val Ile Pro Gly Tyr Asn Ser Ala Val 355 360 365 Met Val Arg His Gly Asn Tyr Ile Thr Val Tyr Ala Asn Leu Ser Lys 370 375 380 Val Tyr Val Asn Ser Gly Thr Arg Val Lys Thr Gly Gln Ala Leu Gly 390 395 Arg Ala Tyr Thr Asp Pro Ser Asn Asn Gln Thr Ile Ile His Phe Glu 405 410 415 Ile Trp Lys Glu Arg Ser Lys Gln Asn Pro Arg Leu Trp Leu Arg 420 425

# (2) INFORMATION FOR SEQ ID NO:457

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 333 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...333
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:457

65 70 Tyr Tyr Ile Thr Gly Asn Thr Phe Thr Gly Gly Thr Trp Leu Pro Asp 85 90 Asp Met Lys Val Lys Leu Asp Met Thr Gln Ser Glu Ala Gly Glu Arg 100 105 110 Lys Val Tyr Val Val Ala Asn Val Asp Asn Ala Val Lys Thr Ala Leu 115 120 125 Asp Ala Val Ala Asn Glu Ser Asp Leu Gln Thr Val Lys Arg Thr Thr 140 135 Ala Met Pro Trp Ser Thr Asp Ile Ala Ser Pro Phe Leu Met Ser Gly 155 145 150 Asn Lys Thr His Asp Phe Leu Ala Asn Arg Leu Leu Asp Asn Val Pro 165 170 175 Leu Val Arg Ala Ile Ala Lys Val Glu Leu Asn Ile Ser Leu Ser Glu 180 185 190 Lys Phe Gln Ile Val Pro Ile Ile Val Asn Gly Ser Leu Ser Glu Phe 195 200 Lys Phe Arg Tyr Val Asn Phe Asp Lys Glu Thr Tyr Val Val Lys Pro 215 Thr Thr Lys Pro Asp Asn Leu Ile Ser Ser Ala Asn Gly Val Trp Pro 230 235 Gln Ile Thr Asp Trp Thr Val Trp Gly Ala Ser Leu Asn Thr Ser Pro 245 250 255 Ala Pro Asp Ala Gly Thr Gly Tyr Thr Leu Asp Ala Asn Gly Lys Val 260 265 270 Thr Ala Leu Arg Ile Val Thr Tyr Leu Asn Glu Arg Asp Ser Lys Gly 275 280 285 Ala Thr Val Glu Val Ala Leu Pro Arg Val Asp Asp Gly Thr Leu Pro 295 300 Pro Pro Glu Phe Gly Pro Glu Leu Tyr Arg Leu Pro Leu Pro Asp Lys 310 315 320 Ile Leu Arg Asn His Trp Tyr Lys Tyr Glu Val Glu Ile 325 330

### (2) INFORMATION FOR SEQ ID NO:458

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 315 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...315
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:458

Met Ile Arg Thr Ile Leu Ser Arg Tyr Val Ser Ser Asn Phe Trp Ser 10 15 Arg Gly Ala Thr Phe Phe Phe Thr Ile Phe Pro Ala Phe Ile Leu Ala 20 25 Ala Thr Ala Leu Pro Ala Cys Gly Gly Gly Thr Ala Ser Gly Ser Asp 40 Arg Thr Leu Ala Val Thr Ile Glu Pro Gln Lys Tyr Phe Ile Glu Ser 55 60 Ile Ala Asp Lys Ser Val Gln Val Val Ala Leu Val Pro Ala Gly Ser 75 Asn Pro Glu Glu Tyr Asp Pro Ser Pro Thr Val Met Lys Arg Leu Ser 85 90 Glu Ala Asp Ala Tyr Phe Tyr Ile Gly Gly Leu Gly Phe Glu Gln Arg 100 105 110 Asn Leu Ala Ala Ile Arg Asp Asn Asn Pro Lys Leu Pro Leu Phe Glu 115 120 Met Gly Lys Ala Leu Ala Asp Ala Gly Ser Ala Asp Leu His Gly Ser 135 140 Cys Thr Asp His Ser His Thr Asp Leu His Ala His Asp Pro His Tyr 155 150 160 Trp Ser Ser Val Val Gly Ala Lys Ala Leu Ser Arg Ala Ala Tyr Asp 165 170 175 Ala Leu Val Glu Leu Tyr Pro Asn Glu Lys Asp Lys Trp Asp Lys Gly

185 His Asp Arg Leu Asn Gly Arg Ile Asp Ser Val Lys Arg Leu Val Asp 195 200 205 Thr Met Phe Ala Asn Gly Lys Ala Asp Lys Ala Phe Val Ile Tyr His 210 215 220 Pro Ser Leu Ser Phe Phe Ala Gln Glu Phe Gly Leu Arg Gln Ile Val 230 235 Ile Glu Glu Asp Gly Lys Glu Pro Thr Ala Ala His Leu Arg Arg Val 250 255 Ile Asp Gln Ala Arg Ala Asp Gly Val Arg Ile Val Phe Ile Gln Pro 260 270 265 Glu Phe Glu Thr Arg Gln Ala Glu Asp Ile Ala Arg Glu Ile Gly Ala 275 280 285 Arg Pro Val Arg Ile Asn Pro Leu Arg Ser Ser Trp Glu Glu Glu Ile 295 Leu His Ile Ala Arg Ala Leu Ala His Glu Arg 310

## (2) INFORMATION FOR SEQ ID NO:459

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 848 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...848
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:459

Met Ile Gly Lys Lys Ile Phe Phe Ile Leu Leu Ala Leu Ile Ala Phe 10 15 Ser Gly Leu Asn Ala Ala Thr Asp Thr Glu Phe Lys Tyr Pro Thr Asp 20 25 30 Ala Asn Ile Ile Gly His Val Lys Asp Ser Lys Thr Gly Glu His Leu 35 40 Val Gly Ile Thr Ile Ala Ile Lys Gly Thr Thr Phe Gly Thr Ser Thr 50 55 60 Asp Ala Thr Gly His Tyr Tyr Leu Arg Asn Leu Arg Pro Gly Glu Ile 70 75 Thr Leu Ile Met Arg Gly Met Gly Tyr Lys Ser Gln Glu Arg Val Val 85 90 Arg Val Glu Lys Asp Lys Thr Ile Glu Val Asn Phe Glu Ala Glu Glu 100 105 110 Asp Ala Ile Asn Leu Asp Glu Val Val Ile Ser Ala Asn Arg Glu Leu 115 120 125 Thr Leu Arg Arg Leu Ala Pro Thr Leu Val Asn Val Leu Asn Glu Lys 130 135 140 Val Phe Ser Gln Val Asn Ala Ser Asn Leu Ala Gln Gly Leu Ser Phe 150 155 Gln Pro Gly Val Arg Val Glu Asn Asn Cys Gln Asn Cys Gly Phe Asn 165 170 175 Gln Val Arg Ile Asn Gly Leu Asp Gly Arg Tyr Ala Gln Ile Leu Ile 180 185 190 Asp Ser Arg Pro Ile Met Ser Ala Leu Ala Gly Val Tyr Gly Leu Glu 200 205 Gln Ile Pro Ala Asn Met Ile Glu Arg Val Glu Val Val Arg Gly Gly 210 215 220 Gly Ser Ala Leu Tyr Gly Ser Ser Ala Ile Ala Gly Val Val Asn Ile 225 230 235 Ile Thr Lys Glu Pro Ser His Asn Ser Phe Thr Phe Asn Glu Ser Leu 245 250 Ser Phe Thr Gly Phe Ser Lys Leu Asp Asn Asn Thr Asn Phe Asn Ala 260 265 270 Ser Ile Val Ser Asp Asp Asn Arg Ala Gly Ala Met Val Phe Gly Gln 275 285 280 Ala Arg Tyr Arg Asn His Trp Asp Ala Asn Asn Asp Gly Tyr Ser Glu 290 295 300 Leu Gly Lys Ile Asp Ala Arg Ser Leu Gly Ala His Ser Tyr Leu Arg

Leu Ser Asp Tyr Ser Lys Leu Thr Gly Glu Phe His Thr Ile Ser Glu 325 330 335 Phe Arg Arg Gly Gly Asp Arg Ile Asp Leu Pro Pro His Val Val Gly 340 350 345 Val Ala Glu Gln Thr Asp His Ser Val Phe Ser Gly Asn Leu Lys Tyr 355 360 365 Asp Leu Phe Ser Ser Asn Tyr Lys His His Phe Gln Ala Tyr Thr Ser 380 375 Gly Gln Ile Val Asn Arg Lys Ser Tyr Tyr Gly Gly Ile Gly Glu Ile 385 390 395 400 Asp Val Asn Gly His Pro Gly Gly Thr Glu Gly Tyr Pro Ile Pro Gln 405 410 Asp Gln Tyr Gly Asn Asn Tyr Gly Val Thr Lys Gly Lys Thr Tyr Met 420 425 430 Gly Gly Ile Gln Tyr Ser Tyr Asp Leu Asp Lys Phe Leu Met Pro 435 440 445 Ser Gln Leu Leu Phe Gly Ala Glu Tyr Thr Arg Asp Glu Leu Asn Asp 455 460 Val Met Pro Ile Leu Ser Trp Gln Thr Gly Glu Asp Ala Asn Gly Asn 470 475 Thr Ile Pro Leu Tyr Pro Glu Leu Asp Gln Asn Ile Asn Asn Tyr Ser 485 490 495 Leu Phe Gly Gln Asn Glu Trp Lys Asn Asp Arg Trp Ser Ile Leu Val 500 505 Gly Ala Arg Leu Asp Lys His Ser Glu Val Lys Asp Met Ile Leu Ser 520 525 Pro Arg Thr Thr Leu Arg Phe Asn Val Asn Pro Asp Ile Asn Leu Arg 535 540 Ala Thr Tyr Ala Lys Gly Phe Arg Ala Pro Gln Val Phe Asp Glu Asp 545 550 555 Leu His Val Gly Val Val Gly Gly Glu Ala Gln Lys Val Phe Asn Asp 565 570 Pro Asn Leu Lys Pro Glu Ile Ser His Ala Phe Ser Leu Ser Ala Asp 580 585 590 Met Tyr His Arg Phe Gly Asn Val Gln Thr Asn Phe Leu Val Glu Gly 600 605 Phe Tyr Thr Arg Leu Leu Asp Val Phe Thr Asn Glu Glu Gln Pro Asp 615 620 Gln His Asp Gly Ile Lys Arg Tyr Thr Arg Ile Asn Gly Ser Gly Ala 630 635 Lys Val Phe Gly Leu Asn Leu Glu Gly Lys Val Ala Tyr Lys Ser Phe 645 650 655 650 Gln Leu Gln Ala Gly Leu Thr Leu Ala Ser Asn Lys Tyr Asp Glu Ala 660 665 670 Gln Glu Trp Gly Leu Asn Thr Val Lys Asp Thr Asn Gly Ala Phe Val 675 680 685 Thr Glu Ala Asn Ala Asn Gly Gln Gln Glu Tyr Lys Asn Glu Ser Met 690 695 700 Thr Asp Thr Gln Ile Thr Arg Thr Pro Ser Val Tyr Gly Tyr Phe Thr 705 710 715 Leu Ala Tyr Asn Pro Ala His Ser Trp Asn Ile Ala Leu Thr Gly Ala 725 730 735 Tyr Thr Gly Gln Met Tyr Val Pro His Ala Ile Glu Tyr Gly Val Lys 740 745 Ser Ala Glu Leu Asp Ile Met Gln Asn Asn Pro Glu Ile Thr Asp Glu 755 760 Thr Gly Lys Ala Pro Arg Ile Asp Glu Leu Lys Lys Thr Pro Ala Phe 770 775 780 Phe Asp Leu Gly Leu Lys Val Gly Tyr Asp Phe His Val Phe Gln Ala 790 795 Thr Glu Val Gln Leu Tyr Val Gly Met Asn Asn Ile Phe Asn Ser Phe 805 810 815 Gln Lys Asp Phe Asp Arg Gly Ala Ala Arg Asp Ser Gly Tyr Ile Tyr 820 825 830 Gly Pro Thr Gln Pro Arg Thr Gly Tyr Met Gly Leu Val Val Lys Phe 840

310

315

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 202 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...202
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:460

Met Thr Val Lys Arg Ala Val Arg Ile Ala Leu Leu Thr Leu Ile Gly 10 Ile Leu Phe Ser Ser Pro Ser Leu Val Arg Ala Gln Ser Leu Phe Ser 20 25 30 Thr Glu His Val Leu Gln Leu Tyr Asn Lys Ile Leu Tyr Gly Glu Ser 40 45 Ala Ala Asp Thr Val Ala Glu Lys Thr Ala Gly Glu Ser Ala Phe Pro 55 Phe Ile Asp Lys Leu Ile Asn Leu Gly Arg Thr Phe Leu Gly Lys Pro 70 75 Tyr Arg Tyr Arg Gly Pro Ser Pro Trp Pro Met Asp Cys Ser Gly Tyr 85 90 Val Ser Tyr Leu Tyr Ser Lys Phe Asp Ile Lys Leu Pro Arg Gly Ala 100 105 110 105 110 Ala Ala Gln Ser Gln Tyr Thr Asn Pro Ile Glu Arg Glu Asp Val Arg 120 125 Pro Gly Asp Leu Leu Phe Phe Lys Gly Arg Asn Ala Arg Ser Asn Arg 130 135 140 Ile Gly His Val Ala Leu Val Val Ser Val Asp Glu Asp Asp Ile Thr 145 150 150 155 Met Met His Ser Arg Asn Ser Arg Gly Ile Val Ile Glu Lys Leu Asn 165 170 Arg Ser Ala Tyr Phe Ser Arg Arg Leu Val Ser Tyr Gly Arg Val Pro 180 185 Gly Ala Lys Arg Val Ile Pro Arg Lys Ser 200

- (2) INFORMATION FOR SEQ ID NO:461
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 455 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...455
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:461

Met Lys Arg Thr Ile Leu Leu Thr Ala Leu Thr Val Leu Ser Ser Leu Ser Leu Leu Arg Ala Gln Asn Glu Ser Glu Ala Ser Thr Asn Pro Met 20 25 3.0 Ser Gly Leu Ser Leu Glu Asp Cys Ile Arg Ile Ala Lys Glu Arg Asn 40 Leu Asn Leu Arg Arg Gln Glu Ile Glu Gln Glu Asn Arg Ile Ile Ser 55 60 Leu Asp Ala Ala Arg His Ser Phe Leu Pro Ser Val Asn Ala Gly Ile 70 75 Gly His Asn Tyr Ser Phe Gly Arg Ser Lys Asp Lys Thr Gly Val Thr 85 90 Val Asp Arg Ser Ser Met Asn Thr Asn Leu Ser Ile Gly Ala Ser Val 100 105 Glu Val Phe Ser Gly Thr Arg Arg Leu His Asp Leu Lys Gln Gln Lys 115 120 125 Tyr Asn Val Glu Asp Gly Ile Ala Arg Leu Gln Lys Ala Arg Glu Asp 135 140 Leu Ser Leu Gln Ile Ala Ala Leu Tyr Ile Asn Leu Leu Phe Arg Gln

145 150 155 Glu Met Thr Arg Thr Ala Glu Thr Gln Leu Ala Leu Ile Arg Glu Gln 165 170 Arg Asn Arg Thr Ala Glu Met Val Arg Val Gly Lys Trp Ala Glu Gly 180 185 Lys Leu Leu Asp Ile Asn Ala Gln Met Ala Lys Asp Glu Gln Leu Leu 195 200 205 Val Gln Tyr Arg Ser Glu Glu Glu Leu Ala Arg Leu Asp Leu Gly Gln 215 220 Ala Leu Glu Leu Glu His Pro Glu Ser Ile Ala Val Lys Ala Pro Asp 230 225 235 Thr Asp Val Leu Val Ala Glu Arg Leu Gly Ser Leu Leu Ala Pro Glu 245 250 255 Glu Ile Tyr Arg Thr Ala Leu Gly Leu Lys Pro Ala Leu His Ser Ser 260 265 270 Glu Leu Gln Ile Ala Ser Ala Arg Glu Gly Leu Ala Ser Ala Arg Ala 275 280 Ala Tyr Phe Pro Thr Leu Ser Leu Ser Ala Gly Tyr Ser Asn Gly Tyr 290 295 300 Phe Arg Asp Leu Gly Lys Glu Tyr Ala Ala Ile Asn Pro Ser Phe Ser 310 315 Glu Gln Trp Lys Asn Asn Gly Ser Tyr Ser Ile Gly Leu Ser Leu Asn 325 330 335 Ile Pro Ile Phe Ser Ala Met Gln Thr Gln Asp Arg Val Arg Ser Ser 340 345 350 Arg Leu Gln Ile Arg Ser Ser Glu Leu Arg Leu Val Glu Glu Lys Lys 355 360 365 Ala Leu Tyr Lys Glu Ile Arg Gln Ala Tyr Ser Asn Ala Val Ala Ala 375 380 Asp Lys Ala Ile Ala Ala Ala Glu Asn Ser Lys Ala Ala Thr Leu Lys 385 390 395 400 Ala Tyr Glu Tyr Ala Arg Asp Ser Phe Glu Ala Gly Arg Leu Ser Ala 405 410 415 Tyr Glu Tyr Ala Glu Ala Lys Thr Lys Tyr Ala Leu Ser Gln Val Glu 420 425 430 Glu Leu Arg Ala Lys Tyr Asp Phe Ile Tyr Lys Ala Lys Val Leu Asp 435 440 445 Phe Tyr Gln Gly Lys Asp Phe 450

# (2) INFORMATION FOR SEQ ID NO:462

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 444 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...444
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:462

Met Arg Phe Gln His Tyr Leu Ile Cys Thr Ala Ala Val Ala Ala Leu 10 Ala Ala Asn Pro Leu Thr Gly Gln Ser Asn Met Thr Leu Glu Glu Cys 20 25 Ile Asp Tyr Ala Arg Arg His Ser Ser Ala Val Ala Leu Ser Ala Ala 35 40 Glu Leu Glu Gln Ser Lys Ala Asp Tyr Leu Gln Ala Val Gly Asn Phe 55 Leu Pro Arg Val Ser Ala Gly Thr Gly Ala Ser Trp Asn Phe Gly Arg 70 75 Gly Leu Asp Ala Glu Thr Asn Thr Tyr Thr Asp Ile Asn Ser Phe Asn
85 90 95 85 90 95 Asn Ser Tyr Ser Ile His Ala Thr Met Thr Leu Phe Asp Gly Leu Gln 105 110 Ser Val Tyr Arg Leu Arg Met Ala His Ala Arg Arg Glu Ala Ser Arg 115 120 125 Leu Ser Val Arg Glu Gln Gln Leu Ala Ala Leu Gly Thr Thr Glu

135 140 Ala Tyr Tyr Asp Leu Val Tyr Ala Arg Gln Met Gln Glu Leu Ala Met 150 155 Gln Lys Tyr Glu Glu Ser Ser Arg Leu His Arg Gln Thr Ala Arg Met 165 170 Glu Glu Leu Gly Met Lys Ser Arg Pro Asp Val Leu Glu Met Gln Ser 180 185 190 Arg Met Ala Gly Asp Arg Leu Ala Leu Thr Gln Ala Asp Asn Gln Cys 200 205 Ile Ile Ala Leu Ile Arg Leu Lys Glu Lys Met Asn Phe Pro Ile Asp 215 220 Asp Glu Leu Val Val Asp Asp Met Pro Ala Asp Ser Leu Ser Ala Asp 230 235 Met Ala Glu Ser Asp Ser Ser Ala Gly Val Phe Ala Arg Ala Ala His 250 255 His His Pro Val Leu Leu Arg Ala Lys Leu Asp Glu Gln Ala Ala Thr 260 265 Asp Arg Leu Arg Ala Ala Arg Gly Ala Phe Leu Pro Ser Val Ser Val 275 280 Ser Gly Gly Trp Asn Thr Gly Phe Ser Arg Phe Leu Asn Gly Ser Asp 290 295 300 Tyr Thr Pro Phe Ser Glu Gln Phe Arg Asn Arg Arg Gly Glu Tyr Val 310 315 Ser Leu Asn Leu Ser Ile Pro Ile Phe Ser Gly Phe Ser Leu Val Ser 325 330 335 His Leu Arg Gln Ala Arg Ala Glu Arg Arg Ala Ala Ile Val Arg Arg 340 345 Gly Glu Ala Glu Arg Arg Leu Tyr Ser Glu Ile Ala Gln Ala Met Ala 355 360 Asp Arg Asp Ala Ala Leu Ala Ser Tyr Arg Gln Ala Lys Glu His Thr 375 380 Asp Ala Met Gln Thr Ala Tyr Glu Ala Val Leu Gln Arg Tyr Glu Glu 385 390 395 Gly Leu Asn Thr Ala Ile Asp Leu Thr Thr Gln Ala Asn Arg Leu Leu 405 410 Asp Ala Arg Val Gln Arg Leu Arg Ala Ala Met Thr Tyr Arg Leu Lys 420 425 Cys Lys Leu Ile Ala Tyr Tyr Gly Cys Leu Ser Asp

# (2) INFORMATION FOR SEQ ID NO:463

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 940 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...940
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:463

Met Asn Lys Phe Tyr Lys Ser Leu Leu Gln Ser Gly Leu Ala Ala Phe 10 Val Ser Met Ala Thr Ala Leu Thr Ala Ser Ala Gln Ile Ser Phe Gly 20 25 Gly Glu Pro Leu Ser Phe Ser Ser Arg Ser Ala Gly Thr His Ser Phe 40 45 Asp Asp Ala Met Thr Ile Arg Leu Thr Pro Asp Phe Asn Pro Glu Asp 55 Leu Ile Ala Gln Ser Arg Trp Gln Ser Gln Arg Asp Gly Arg Pro Val 70 75 Arg Ile Gly Gln Val Ile Pro Val Asp Val Asp Phe Ala Ser Lys Ala 85 90 Ser His Ile Ser Ser Ile Gly Asp Val Asp Val Tyr Arg Leu Gln Phe 100 105 110 Lys Leu Glu Gly Ala Lys Ala Ile Thr Leu Tyr Tyr Asp Ala Phe Asn 120 125 Ile Pro Glu Gly Gly Arg Leu Tyr Ile Tyr Thr Pro Asp His Glu Ile

Val Leu Gly Ala Tyr Thr Asn Ala Thr His Arg Arg Asn Gly Ala Phe Ala Thr Glu Pro Val Pro Gly Ser Glu Leu Ile Met Asp Tyr Glu Val Ser Arg Gly Gly Thr Leu Pro Asp Ile Lys Ile Ser Gly Ala Gly Tyr Ile Phe Asp Lys Val Gly Gly Arg Pro Val Thr Asp Asn His Tyr Gly Ile Gly Glu Asp Asp Ser Asp Ser Asp Cys Glu Ile Asn Ile Asn Cys Pro Glu Gly Ala Asp Trp Gln Ala Glu Lys Asn Gly Val Val Gln Met Ile Met Val Lys Gly Gln Tyr Ile Ser Met Cys Ser Gly Asn Leu Leu Asn Asn Thr Lys Gly Asp Phe Thr Pro Leu Ile Ile Ser Ala Gly His Cys Ala Ser Ile Thr Thr Asn Phe Gly Val Thr Gln Ser Glu Leu Asp Lys Trp Ile Phe Thr Phe His Tyr Glu Lys Arg Gly Cys Ser Asn Gly Thr Leu Ala Ile Phe Arg Gly Asn Ser Ile Ile Gly Ala Ser Met Lys Ala Phe Leu Pro Ile Lys Gly Lys Ser Asp Gly Leu Leu Leu Gln Leu 325 330 Asn Asp Glu Val Pro Leu Arg Tyr Arg Val Tyr Tyr Asn Gly Trp Asp Ser Thr Pro Asp Ile Pro Ser Ser Gly Ala Gly Ile His His Pro Ala Gly Asp Ala Met Lys Ile Ser Ile Leu Lys Lys Thr Pro Ala Leu Asn 370 375 Thr Trp Ile Ser Ser Ser Gly Ser Gly Gly Thr Asp Asp His Phe Tyr Phe Lys Tyr Asp Gln Gly Gly Thr Glu Gly Gly Ser Ser Gly Ser Ser Leu Phe Asn Gln Asn Lys His Val Val Gly Thr Leu Thr Gly Gly Ala Gly Asn Cys Gly Gly Thr Glu Phe Tyr Gly Arg Leu Asn Ser His Trp Asn Glu Tyr Ala Ser Asp Gly Asn Thr Ser Arg Met Asp Ile Tyr Leu Asp Pro Gln Asn Asn Gly Gln Thr Thr Ile Leu Asn Gly Thr Tyr Arg 470 475 Asp Gly Tyr Lys Pro Leu Pro Ser Val Pro Arg Leu Leu Gln Ser Thr Gly Asp Gln Val Glu Leu Asn Trp Thr Ala Val Pro Ala Asp Gln Tyr Pro Ser Ser Tyr Gln Val Glu Tyr His Ile Phe Arg Asn Gly Lys Glu Ile Ala Thr Thr Lys Glu Leu Ser Tyr Ser Asp Ala Ile Asp Glu Ser Ile Ile Gly Ser Gly Ile Ile Arg Tyr Glu Val Ser Ala Arg Phe Ile Tyr Pro Ser Pro Leu Asp Gly Val Glu Ser Tyr Lys Asp Thr Asp Lys Thr Ser Ala Asp Leu Ala Ile Gly Asp Ile Gln Thr Lys Leu Lys Pro Asp Val Thr Pro Leu Pro Gly Gly Gly Val Ser Leu Ser Trp Lys Val Pro Phe Leu Ser Gln Leu Val Ser Arg Phe Gly Glu Ser Pro Asn Pro Val Phe Lys Thr Phe Glu Val Pro Tyr Val Ser Ala Ala Ala Ala Gln Thr Pro Asn Pro Pro Val Gly Val Val Ile Ala Asp Lys Phe Met Ala Gly Thr Tyr Pro Glu Lys Ala Ala Ile Ala Ala Val Tyr Val Met Pro Ser Ala Pro Asp Ser Thr Phe His Leu Phe Leu Lys Ser Asn Thr Asn Arg Arg Leu Gln Lys Val Thr Thr Pro Ser Asp Trp Gln Ala Gly Thr Trp Leu Arg Ile Asn Leu Asp Lys Pro Phe Pro Val Asn Asn Asp His Met Leu Phe Ala Gly Ile Arg Met Pro Asn Lys Tyr Lys Leu Asn Arg Ala Ile Arg Tyr Val Arg Asn Pro Asp Asn Leu Phe Ser Ile Thr 

Gly Lys Lys Ile Ser Tyr Asn Asn Gly Val Ser Phe Glu Gly Tyr Gly 760 765 Ile Pro Ser Leu Leu Gly Tyr Met Ala Ile Lys Tyr Leu Val Val Asn 770 775 780 Thr Asp Ala Pro Lys Ile Asp Met Ser Leu Val Gln Glu Pro Tyr Ala 785 790 795 Lys Gly Thr Asn Val Ala Pro Phe Pro Glu Leu Val Gly Ile Tyr Val 805 810 815 Tyr Lys Asn Gly Thr Phe Ile Gly Thr Gln Asp Pro Ser Val Thr Thr 820 825 830 Tyr Ser Val Ser Asp Gly Thr Glu Ser Asp Glu Tyr Glu Ile Lys Leu 840 845 Val Tyr Lys Gly Ser Gly Ile Ser Asn Gly Val Ala Gln Ile Glu Asn 855 860 Asn Asn Ala Val Val Ala Tyr Pro Ser Val Val Thr Asp Arg Phe Ser 865 870 875 Ile Lys Asn Ala His Met Val His Ala Ala Ala Leu Tyr Ser Leu Asp 885 890 895 Gly Lys Gln Val Arg Ser Trp Asn Asn Leu Arg Asn Gly Val Thr Phe 900 905 Ser Val Gln Gly Leu Thr Ala Gly Thr Tyr Met Leu Val Met Gln Thr 920 925 Ala Asn Gly Pro Val Ser Gln Lys Ile Val Lys Gln 930 935

# (2) INFORMATION FOR SEQ ID NO:464

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 670 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...670
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:464

Met Lys Tyr Leu Ile Arg Leu Phe Leu Ser Leu Met Leu Leu Ser Leu 10 15 Trp Thr Gly Cys Thr His Glu Glu Leu Ser Ile Cys Asp Gly Glu Asn 20 25 Thr Leu Val Leu Arg Val Glu Thr Gly Lys Ala Pro Asn Ala Arg Ala 40 45 Thr Glu Pro Gly Gln Gly Ile Tyr Asn Glu Asn Lys Val Gly Ser Ile 55 60 Ser Val Leu Phe Tyr Leu Glu Gly Gln Leu Arg Trp Gln Val Lys Ser 65 70 75 80 Thr Asp Tyr Gln Ile His Glu Gly Ala Tyr Ile Ile Pro Val Lys Glu 85 90 Gln Met Arg Pro Leu Phe Asn Gly Asn Asn Asn Phe Ser Ile Tyr Val 105 110 Val Ala Asn Leu Asp Phe Asn Ala Pro Ala Thr Glu Ala Ala Leu Ser 115 120 125 Gln Phe Val Val Glu Lys Ser Ile Glu Val Ser Ser Thr Thr Ala Pro 130 135 140 Ala Asp Phe Val Met Leu Ala His Gly Asn Lys Gln Ile Asn Met Ala 150 155 Thr Thr Glu Gly Lys Leu Leu Gly Asp Tyr Lys Leu Lys Arg Val Ala Ala Lys Ile Arg Met Ile Lys Pro Thr Ile Asn Val Gln Gly Tyr Glu 185 190 Val Val Gly Asn Ile Gln Ala Lys Phe Arg Asn Ser Val Thr Lys Gly 195 200 205 Phe Leu Thr Thr Glu Ala Gln Glu Ile Pro Ala Ala Ala Ser Tyr Lys 215 220 Thr Ser Glu Tyr Leu Asp Ile Ala Glu Ser Ala Pro Ala Asn Ser Ile 230 235 His Phe Tyr Ser Tyr Tyr Asn Lys Trp Thr Leu Ser Thr Pro Glu Lys 245 250 255

Arg Pro Glu Phe Phe Ile Met Val Lys Phe Lys Lys Thr Gly Gln Pro 265 270 Asp Asn Thr Ala Lys Pro Tyr Tyr Tyr Arg Val Pro Leu Glu Ser Gln 275 285 280 Asp Asn Gln Val Lys Ser Asn Val Leu Tyr Asn Leu Asn Val Lys Ile 295 300 Glu Ile Leu Gly Ser Leu Gln Glu Pro Glu Ala Val Ser Val Asn Gly 310 315 Thr Leu Ala Ile Glu Glu Trp Ile Leu His Gln Asp Ala Phe Asn Leu 325 330 Pro Ala Thr Asn Tyr Leu Ile Val Glu Gln His Glu Ile Phe Met Asn 340 345 Asn Val Asn Thr Tyr Ser Val Lys Tyr Gln Thr Ser Gln Lys Pro Ile 360 365 Ser Ile Ser Ile Gln Ser Val Thr Phe Ser Tyr Val Ser Ser Asp Gly 375 380 Thr Gln His Asn Asp Leu Val Ala Ser Ser Ser Asp Gln Tyr Pro Thr 385 390 395 Ile Thr Ser Asp Asn Thr Ser Ile Ile Ile Thr Ser Lys Ile Pro Val 405 410 415 Asn Asn Val Pro Lys Lys Ile Val Phe Glu Val Thr Asn Gly Val Ala 420 425 430 Gly Leu Lys Glu Thr Val Thr Val Leu Gln Tyr Pro Ala Gln Phe Ile 440 445 435 Val Asn Thr Leu Gly Thr Ala Ser Ala Trp Arg Pro Asp Gly Ser Leu 455 460 Ala Pro Gly Leu Asn Asn Lys Ala Ile Tyr His Val Val Leu Val 470 475 Pro Pro Glu Asn Leu Phe Glu Asp Gly Thr Gln Thr Ile Ile Gly Tyr 485 490 495 Pro Pro Thr Glu Thr Ile Ser Phe His Lys Lys Glu Asn Asn Thr Tyr 500 505 Pro Ile Val Trp Ser Asp Thr Asn Thr Thr Lys Gln Asp Leu Glu Thr 515 520 525 Ser Arg Met Ile Ser Pro Ser Phe Glu Leu Ala Ser Gln Leu Gly Ala 535 540 Thr Leu Pro Met Pro Tyr Leu Glu Tyr Trp Pro Gly Thr Ser Tyr Leu 545 550 555 560 Leu Asp Tyr Ser Gly Asn Tyr Asn Asn Lys Arg Tyr Ala Leu Phe Asn 565 570 575 Cys Ala Phe Tyr Trp Glu Lys Arg Lys Val Asn Asn Glu Glu Ile Lys 580 585 590 Phe Asp Asp Trp Arg Leu Pro Thr Glu Ala Glu Ile Lys Leu Ile Asp 595 600 605 Lys Leu Gln His Asn Glu Gln Ser Ala Val Gln Ala Ile Met Thr Gly 610 615 620 Asn Tyr Tyr Trp Asp Ser Tyr Ser Ala Asn Gly Ser Tyr Lys Met Gln 630 635 Gly Gly Gly Gln Gly Asn Ser Ser Lys Ala Tyr Val Arg Cys Val 645 650 655 Arg Asp Val Lys Lys Pro Ile Arg Asp Lys Lys Ser Gly Lys 660 665

# (2) INFORMATION FOR SEQ ID NO:465

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1282 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1282
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:465

 Met Arg Lys Ile Leu Ser Phe Leu Met Met Cys Ser Leu His Leu Gly

 1
 5
 10
 15

 Leu Gln Ser Gln Thr Trp His Gly Asp Pro Asp Ser Val Ala Ala Leu
 20
 25
 30

```
Pro Ser Ile Gly Ile Gln Glu Ser Ser Cys Thr Arg Ile Thr Phe Glu
                        40
 Val Val Phe Pro Gly Phe Tyr Ser Val Glu Lys Arg Glu Gly Asn Gln
    50
                     55
                                      60
 Val Phe Gln Arg Ile Ser Met Pro Gly Cys Gly Ser Phe Gly Asn Leu
                 70
                                  75
 Gly Glu Ala Glu Leu Pro Val Leu Lys Lys Met Ile Ala Val Pro Glu
             85
                               90
 Phe Ser Thr Ala Asn Val Ala Val Lys Ile Lys Glu Thr Glu Thr Phe
          100 105
 Asp Asn Tyr Asn Ile Tyr Pro Asn Pro Thr Tyr Val Val Glu Glu Leu
                120
                                     125
 Pro Glu Gly Gly Thr Tyr Leu Val Glu Ala Phe Ala Ile Asn Asn Asp
   130
                     135
                                     140
 Tyr Tyr Ser Gln Asn Val Ser Leu Pro Ser Thr His Tyr Val Tyr Ser
 145
          150
                                  155
 Gln Asp Gly Tyr Phe Arg Ser Gln Arg Phe Ile Glu Val Thr Leu Tyr
           165
                               170
                                                 175
 Pro Phe Arg Tyr Asn Pro Val Arg Gln Glu Ile Leu Phe Ala Lys Lys
           180
                   185
                                             190
 Ile Glu Val Thr Ile Thr Phe Asp Asn Pro Gln Pro Pro Leu Gln Lys
                200
                                 205
 Asn Thr Gly Ile Phe Asn Lys Val Ala Ser Ser Ala Phe Ile Asn Tyr
            215
                                220
 Glu Ala Asp Gly Lys Ser Ala Ile Glu Asn Asp Met Val Phe Ser Arg
 225
              230
                            235
 Gly Thr Thr Thr Tyr Ile Ser Gly Asn Val Ala Ser Asn Leu Pro Gln
            245
                             250
 Asn Cys Asp Tyr Leu Val Ile Tyr Asp Asp Met Phe Asn Val Asn Gln
          260
                           265
                                       270
 Gln Pro His Asp Glu Ile Lys Arg Leu Cys Glu His Arg Ala Phe Tyr
      275
                       280
                                 285
Asn Gly Phe Asp Val Ala Ala Val Ser Ile Lys Asp Val Leu Asn Ser
             295
                                      300
Phe Pro Ser Asn Ala Thr Ser Tyr Ile Asn Glu Thr Lys Leu Lys Asn
        310
                           315
Phe Ile Arg Ser Val Tyr Asn Gln Ser Asn Ala Lys Arg Thr Leu Asp
             325
                      330
Gly Lys Leu Gly Tyr Val Leu Leu Ile Gly Lys Pro Leu Ser Lys Tyr
         340
                          345
                                            350
Leu Ala Asp Thr Asp Asn Thr Lys Val Pro Thr Ser Phe Ile His Asn
      355
                360
                                       365
Val Ser Leu Ile Pro Ser His Pro Thr Phe Gly Ser Ile Cys Ala Ser
  370 375
                                      380
Asp Tyr Phe Phe Ser Cys Val Ser Pro Leu Asp Thr Val Gly Asp Leu
               390
                           395
Phe Ile Gly Arg Phe Ser Val Thr Asn Ala His Glu Leu His Asn Leu
             405
                             410
Ile Glu Lys Thr Ile Asn Lys Glu Ile Ser Tyr Asn Pro Ile Ala His
         420
                                           430
Lys Asn Ile Leu Tyr Ala Glu Gly Lys Gly Cys Asp Ala Pro Ile Leu
      435
                        440
Arg Leu Phe Leu Lys Glu Ile Ala Ser Gly Tyr Thr Val Asn Ser Ile
                   455
                                      460
Leu Lys Ser Asn Gln Val Ser Ala Ile Asp Ser Ile Phe Asp Cys Leu
465
                 470
                             475
Asn Asn Gly Ser His His Phe Tyr Phe Asn Thr His Gly Met Pro Thr
           485
                              490
Val Trp Gly Ile Gly Gln Gly Leu Asp Val Asn Thr Leu Thr Ala Arg
         500
                          505
Leu Asn Asn Thr Ser Ser Gln Gly Leu Cys Thr Ser Leu Ser Cys Ser
                       520
                                  525
Ser Ala Val Ala Asp Ser Thr Ile Arg Ser Leu Gly Glu Val Leu Thr
  530
                  535
                            540
Thr Tyr Ala Pro Asn Lys Gly Phe Ser Ala Phe Leu Gly Gly Ser Arg
              550
                                  555
Ala Thr Gln Tyr Ala Val Tyr Leu Glu Gly Pro Cys Pro Pro Ser Glu
             565
                             570
                                               575
Phe Tyr Glu Tyr Leu Pro Tyr Ser Leu Tyr His Asn Leu Ser Thr Val
        580 585
Val Gly Glu Met Leu Leu Ser Ser Ile Ile Asn Thr Asn Ser Val Asp
                      600
                                      605
Thr Tyr Ser Lys Phe Asn Phe Asn Leu Leu Gly Asp Pro Ala Leu Asn
  610
             615
                                 620
Ile Met Ala His Gly Met Glu Val Ser Asn Cys Ile Thr Leu Pro Asn 625 630 635 640
                                 635
Asn Thr Ile Ile Ser Ser Pro Ile Thr Ile Lys Asn Gly Gly Cys Leu
```

```
645
                             650
 Lys Ile Pro Glu Lys Gly Val Leu His Phe Thr Asn Asn Gly Ser Ile
         660
                   665
                                  670
 Gln Val Met Ser Gly Gly Thr Leu Glu Ile Gly Asn Gln Ala Lys Ile
    675
                    680
 Ser Gly Glu Thr Gly Ala Asn Pro Thr Phe Ile Thr Val Tyr Gly Asp
                695
                           700
Gly Leu Ala Ile Asn Lys Gln Val Glu Ile Asp Asn Ile Asp Arg Leu
                        715
        710
Asn Leu Phe Ser Thr His Ser Val Met Pro Lys Phe His Phe Asp Ser 725 730 735
Val Lys Phe Asn Ser Ala Pro Leu Tyr Thr Thr Asn Cys Ile Val Glu
        740
              745 750
Ile Ser Asn Cys Glu Phe Thr Asn Arg Ser Asp Ile Ile Ser Lys Asn
                 760
                              765
Cys Asp Leu Ser Val Glu Asn Ser Met Phe Ser Ser Ser Gly Ile Thr
         775
Val Phe Lys Pro Met Ala Thr Ser Ser Ile Thr Gly Leu Ser Thr Lys
785 790
                       795
Ala Lys Ile Thr Asp Asn Thr Phe Phe Ala Thr Gly Asn Phe Ala Tyr
          805
                 810
His Ile Thr Asn Thr Pro Gly Leu Thr Ala Thr Ser Asn Ala Ala Ile
        820
                 825
                                  830
Lys Leu Asp Asn Ile Pro Glu Tyr Tyr Ile Ser Gly Asn Lys Ile Val
              840
                             845
Asn Cys Asp Glu Ala Leu Val Leu Asn Asn Ser Gly Asn Arg Thr Asn
          855
                           860
Arg Leu His Asn Ile Thr Arg Asn Val Ile Lys Asn Cys Arg Ile Gly
865
       870
                             875
Ser Thr Leu Tyr Asn Ser Tyr Gly Ile Tyr Asn Arg Asn Lys Ile Ser
885 890 895
Asn Asn His Ile Gly Val Arg Leu Leu Asn Asn Ser Cys Phe Tyr Phe
        900
                 905
                                       910
Asp Asn Ala Pro Val Ile Asn Glu Glu Asp Lys Gln Thr Phe Ile Ser
     915
                    920
                                   925
Asn Arg Thr Trp Gln Leu Tyr Ser Ser Asn Gly Thr Phe Pro Leu Asn
           935
                           940
Phe His Tyr Asn Ser Leu Gln Gly Gly Asp Thr Asp Thr Trp Ile Tyr
         950
                            955
Asn Asp Thr Tyr Thr Asn Arg Tyr Ile Asp Val Ser Asn Asn His Trp
          965 970
Gly Asn Asn Asp Leu Phe Asp Pro Asn Gln Val Phe Asn Thr Pro Asp
        980
              985
Leu Phe Ile Trp Ile Pro Phe Trp Asp Gly Leu Pro Asn Gly Arg Ser
            1000
                              1005
Gly Asn Ser Ser Ala Glu Ala Val Glu Phe Gln Thr Ala Leu Asp Cys
  1010 1015 1020
Ile Gly Asn Ser Asp Tyr Leu Ser Ala Lys Val Ala Leu Lys Met Met
             1030
                                1035
Val Glu Thr Tyr Pro Glu Ser Asp Phe Ala Ile Ala Ala Leu Lys Glu
          1045 1050 1055
Leu Phe Arg Ile Glu Lys Met Ser Gly Asn Asp Tyr Glu Gly Leu Lys
       1060 1065
                                          1070
Asp Tyr Phe Arg Ser Asn Pro Thr Ile Ile Ser Ser Gln Asn Leu Phe
    1075 1080 1085
Pro Thr Ala Asp Phe Leu Ser Ala Arg Cys Asp Ile Val Cys Glu Asn
          1095
                           1100
Tyr Gln Ser Ala Ile Asp Trp Tyr Glu Asn Arg Leu Asn Ser Glu Ile
1105 1110
                       1115
Ser Tyr Gln Asp Ser Val Phe Ala Val Ile Asp Leu Gly Asp Ile Tyr
           1125 1130 1135
Trp Asn Met Gln Leu Asp Ser Leu Arg Gly Thr Gly Ile Asp Leu Asn
       1140 1145
                                          1150
Ile Leu Ser Cys Glu Gln Arg Lys Ser Leu Glu Ser His Gln Asn Val
   1155 1160
Lys Asn Tyr Leu Leu Ser Thr Leu Pro Glu Ser Thr Gly Thr Leu Leu
 1170 1175
                                  1180
Pro Pro Leu Glu Cys Asn Lys Ser Ser Leu Asp Lys Ser Lys Ile Ile
              1190
                               1195
Ser Ile Ser Pro Asn Pro Ala Lys Ala Val Val Thr Ile Ile Tyr Tyr
         1205
                          1210
Thr Asp Asn Pro Ser Cys Ser Val Ile Lys Ile Tyr Gly Ile Asn Gly
                1225
       1220
Ala Ser Ala Asp Ile Thr Gly Leu Pro Lys His Leu Ser Glu Gly Tyr
   1235
                     1240
                              1245
Tyr Ser Ile Gln Phe Asn Thr Ser Asn Phe Asp Pro Gly Phe Tyr Leu
                1255
                                   1260
```

Val Thr Leu Asn Val Asp Gln Lys Ile Ile Asp Thr Glu Lys Leu Arg 1265 1270 1275 1280 Ile Lys

# (2) INFORMATION FOR SEQ ID NO:466

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1274 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1274
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:466

Met Met Cys Ser Leu His Leu Gly Leu Gln Ser Gln Thr Trp His Gly 10 15 Asp Pro Asp Ser Val Ala Ala Leu Pro Ser Ile Gly Ile Gln Glu Ser 20 Ser Cys Thr Arg Ile Thr Phe Glu Val Val Phe Pro Gly Phe Tyr Ser 40 Val Glu Lys Arg Glu Gly Asn Gln Val Phe Gln Arg Ile Ser Met Pro 55 60 Gly Cys Gly Ser Phe Gly Asn Leu Gly Glu Ala Glu Leu Pro Val Leu 70 75 Lys Lys Met Ile Ala Val Pro Glu Phe Ser Thr Ala Asn Val Ala Val 85 90 95 Lys Ile Lys Glu Thr Glu Thr Phe Asp Asn Tyr Asn Ile Tyr Pro Asn 100 105 110 Pro Thr Tyr Val Val Glu Glu Leu Pro Glu Gly Gly Thr Tyr Leu Val 120 125 Glu Ala Phe Ala Ile Asn Asn Asp Tyr Tyr Ser Gln Asn Val Ser Leu 130 135 140 Pro Ser Thr His Tyr Val Tyr Ser Gln Asp Gly Tyr Phe Arg Ser Gln 145 150 155 Arg Phe Ile Glu Val Thr Leu Tyr Pro Phe Arg Tyr Asn Pro Val Arg 165 170 175 Gln Glu Ile Leu Phe Ala Lys Lys Ile Glu Val Thr Ile Thr Phe Asp 180 185 190 Asn Pro Gln Pro Pro Leu Gln Lys Asn Thr Gly Ile Phe Asn Lys Val 195 200 205 Ala Ser Ser Ala Phe Ile Asn Tyr Glu Ala Asp Gly Lys Ser Ala Ile 215 220 Glu Asn Asp Met Val Phe Ser Arg Gly Thr Thr Thr Tyr Ile Ser Gly 230 235 240 Asn Val Ala Ser Asn Leu Pro Gln Asn Cys Asp Tyr Leu Val Ile Tyr 245 250 Asp Asp Met Phe Asn Val Asn Gln Gln Pro His Asp Glu Ile Lys Arg 260 265 270 Leu Cys Glu His Arg Ala Phe Tyr Asn Gly Phe Asp Val Ala Ala Val 275 280 285 Ser Ile Lys Asp Val Leu Asn Ser Phe Pro Ser Asn Ala Thr Ser Tyr 290 295 300 Ile Asn Glu Thr Lys Leu Lys Asn Phe Ile Arg Ser Val Tyr Asn Gln 310 315 Ser Asn Ala Lys Arg Thr Leu Asp Gly Lys Leu Gly Tyr Val Leu Leu 330 335 Ile Gly Lys Pro Leu Ser Lys Tyr Leu Ala Asp Thr Asp Asn Thr Lys 340 345 350 Val Pro Thr Ser Phe Ile His Asn Val Ser Leu Ile Pro Ser His Pro 355 360 365 Thr Phe Gly Ser Ile Cys Ala Ser Asp Tyr Phe Phe Ser Cys Val Ser 375 380 Pro Leu Asp Thr Val Gly Asp Leu Phe Ile Gly Arg Phe Ser Val Thr 395 390 Asn Ala His Glu Leu His Asn Leu Ile Glu Lys Thr Ile Asn Lys Glu 405 410 415

```
Ile Ser Tyr Asn Pro Ile Ala His Lys Asn Ile Leu Tyr Ala Glu Gly
           420
                            425
 Lys Gly Cys Asp Ala Pro Ile Leu Arg Leu Phe Leu Lys Glu Ile Ala
       435
                                        445
                        440
 Ser Gly Tyr Thr Val Asn Ser Ile Leu Lys Ser Asn Gln Val Ser Ala
    450
                   455
 Ile Asp Ser Ile Phe Asp Cys Leu Asn Asn Gly Ser His His Phe Tyr
             470
                           475
 Phe Asn Thr His Gly Met Pro Thr Val Trp Gly Ile Gly Gln Gly Leu
                        490
                                          495
 Asp Val Asn Thr Leu Thr Ala Arg Leu Asn Asn Thr Ser Ser Gln Gly
        500
                          505
 Leu Cys Thr Ser Leu Ser Cys Ser Ser Ala Val Ala Asp Ser Thr Ile
      515
                       520
                                         525
 Arg Ser Leu Gly Glu Val Leu Thr Thr Tyr Ala Pro Asn Lys Gly Phe
         535
                                      540
 Ser Ala Phe Leu Gly Gly Ser Arg Ala Thr Gln Tyr Ala Val Tyr Leu
        550
                          555
 Glu Gly Pro Cys Pro Pro Ser Glu Phe Tyr Glu Tyr Leu Pro Tyr Ser
             565
                              570
                                         575
 Leu Tyr His Asn Leu Ser Thr Val Val Gly Glu Met Leu Leu Ser Ser
          580
                           585
                                            590
 Ile Ile Asn Thr Asn Ser Val Asp Thr Tyr Ser Lys Phe Asn Phe Asn
      595
                     600
 Leu Leu Gly Asp Pro Ala Leu Asn Ile Met Ala His Gly Met Glu Val
                  615
                                      620
 Ser Asn Cys Ile Thr Leu Pro Asn Asn Thr Ile Ile Ser Ser Pro Ile
                630
                          635
 Thr Ile Lys Asn Gly Gly Cys Leu Lys Ile Pro Glu Lys Gly Val Leu
          645
                               650
                                                 655
 His Phe Thr Asn Asn Gly Ser Ile Gln Val Met Ser Gly Gly Thr Leu
          660
                          665
 Glu Ile Gly Asn Gln Ala Lys Ile Ser Gly Glu Thr Gly Ala Asn Pro
               680
                                         685
Thr Phe Ile Thr Val Tyr Gly Asp Gly Leu Ala Ile Asn Lys Gln Val
                   695
                                      700
Glu Ile Asp Asn Ile Asp Arg Leu Asn Leu Phe Ser Thr His Ser Val
          710
                          715
Met Pro Lys Phe His Phe Asp Ser Val Lys Phe Asn Ser Ala Pro Leu
           725
                             730
                                              735
Tyr Thr Thr Asn Cys Ile Val Glu Ile Ser Asn Cys Glu Phe Thr Asn
        740
                  745
Arg Ser Asp Ile Ile Ser Lys Asn Cys Asp Leu Ser Val Glu Asn Ser
              760
                                 765
Met Phe Ser Ser Ser Gly Ile Thr Val Phe Lys Pro Met Ala Thr Ser
                    775
                                     780
Ser Ile Thr Gly Leu Ser Thr Lys Ala Lys Ile Thr Asp Asn Thr Phe
              790
                                  795
Phe Ala Thr Gly Asn Phe Ala Tyr His Ile Thr Asn Thr Pro Gly Leu
           805
                              810
                                                815
Thr Ala Thr Ser Asn Ala Ala Ile Lys Leu Asp Asn Ile Pro Glu Tyr
          820
                           825
                                             830
Tyr Ile Ser Gly Asn Lys Ile Val Asn Cys Asp Glu Ala Leu Val Leu
      835
                       840
                                     845
Asn Asn Ser Gly Asn Arg Thr Asn Arg Leu His Asn Ile Thr Arg Asn
             855
                                     860
Val Ile Lys Asn Cys Arg Ile Gly Ser Thr Leu Tyr Asn Ser Tyr Gly
               870
                                875
Ile Tyr Asn Arg Asn Lys Ile Ser Asn Asn His Ile Gly Val Arg Leu
             885
                      890
Leu Asn Asn Ser Cys Phe Tyr Phe Asp Asn Ala Pro Val Ile Asn Glu
         900
                          905
                                            910
Glu Asp Lys Gln Thr Phe Ile Ser Asn Arg Thr Trp Gln Leu Tyr Ser
      915
                       920
                                 925
Ser Asn Gly Thr Phe Pro Leu Asn Phe His Tyr Asn Ser Leu Gln Gly
  930
           935
                                     940
Gly Asp Thr Asp Thr Trp Ile Tyr Asn Asp Thr Tyr Thr Asn Arg Tyr
              950
                         955
Ile Asp Val Ser Asn Asn His Trp Gly Asn Asn Asp Leu Phe Asp Pro
            965
                     970
                                               975
Asn Gln Val Phe Asn Thr Pro Asp Leu Phe Ile Trp Ile Pro Phe Trp
         980
                           985
                                           990
Asp Gly Leu Pro Asn Gly Arg Ser Gly Asn Ser Ser Ala Glu Ala Val
      995
              1000
                                        1005
Glu Phe Gln Thr Ala Leu Asp Cys Ile Gly Asn Ser Asp Tyr Leu Ser
           1015
                                   1020
Ala Lys Val Ala Leu Lys Met Met Val Glu Thr Tyr Pro Glu Ser Asp
```

1035 1030 1025 Phe Ala Ile Ala Ala Leu Lys Glu Leu Phe Arg Ile Glu Lys Met Ser 1045 1050 Gly Asn Asp Tyr Glu Gly Leu Lys Asp Tyr Phe Arg Ser Asn Pro Thr 1060 1065 Ile Ile Ser Ser Gln Asn Leu Phe Pro Thr Ala Asp Phe Leu Ser Ala 1080 1085 Arg Cys Asp Ile Val Cys Glu Asn Tyr Gln Ser Ala Ile Asp Trp Tyr 1095 1100 Glu Asn Arg Leu Asn Ser Glu Ile Ser Tyr Gln Asp Ser Val Phe Ala 1105 1110 1115 1120 1110 Val Ile Asp Leu Gly Asp Ile Tyr Trp Asn Met Gln Leu Asp Ser Leu 1125 1130 1135 Arg Gly Thr Gly Ile Asp Leu Asn Ile Leu Ser Cys Glu Gln Arg Lys 1140 1145 1150 Ser Leu Glu Ser His Gln Asn Val Lys Asn Tyr Leu Leu Ser Thr Leu 1155 1160 1165 Pro Glu Ser Thr Gly Thr Leu Leu Pro Pro Leu Glu Cys Asn Lys Ser 1170 1175 1180 Ser Leu Asp Lys Ser Lys Ile Ile Ser Ile Ser Pro Asn Pro Ala Lys 1185 1190 1195 Ala Val Val Thr Ile Ile Tyr Tyr Thr Asp Asn Pro Ser Cys Ser Val 1215 1205 1210 Ile Lys Ile Tyr Gly Ile Asn Gly Ala Ser Ala Asp Ile Thr Gly Leu 1225 1230 1220 Pro Lys His Leu Ser Glu Gly Tyr Tyr Ser Ile Gln Phe Asn Thr Ser 1235 1240 1245 Asn Phe Asp Pro Gly Phe Tyr Leu Val Thr Leu Asn Val Asp Gln Lys 1255 Ile Ile Asp Thr Glu Lys Leu Arg Ile Lys 1265 1270

#### (2) INFORMATION FOR SEQ ID NO:467

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 925 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...925
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:467

Met Ala Ile Met Met Lys Ser Ile Val Phe Arg Ala Phe Leu Thr Ile 10 1 5 Leu Leu Ser Trp Ala Ala Ile Thr Asn Pro Thr Ala Gln Glu Ile Ser 25 20 Gly Met Asn Ala Ser Cys Leu Ala Ala Pro Ala Gln Pro Asp Thr Ile 45 40 Leu Tyr Glu Ser Phe Glu Asn Gly Pro Val Pro Asn Gly Trp Leu Glu 60 55 Ile Asp Ala Asp Ala Asp Gly Ala Thr Trp Gly Ser Pro Ser Gly Ser 75 70 Phe Ser Val Pro Tyr Gly His Asn Gly Leu Cys Thr Tyr Ser His Ile 85 90 95 85 Arg Ser Gly Ile Ser Thr Ala Gly Asn Tyr Leu Ile Thr Pro Asn Ile 100 105 110 Glu Gly Ala Lys Arg Val Lys Tyr Trp Val Cys Asn Gln Tyr Ser Thr 120 115 Asn Pro Glu His Tyr Ala Val Met Val Ser Thr Thr Gly Thr Ala Ile 135 140 130 Glu Asp Phe Val Leu Leu Phe Asp Asp Ser Ile Thr Gly Lys Pro Thr 150 155 Pro Leu Val Trp Arg Arg Ile Val Asp Leu Pro Glu Gly Thr Lys 165 170 175 Tyr Ile Ala Trp Arg His Tyr Lys Val Thr Asp Ser His Thr Glu Phe 190 180 185 Leu Lys Leu Asp Asp Val Thr Val Tyr Arg Ser Ile Glu Gly Pro Glu

		105					200					205			
Pro	Ala	195 Thr	Asp	Phe	Thr	Val	200 Ile	Asn	Ile	Gly	Gln		Val	Gly	Arg
	210					215					220				
	Thr	Trp	Asn	Tyr	Pro 230	Glu	Asp	Tyr	Gln	Pro 235	Glu	Gly	Lys	Gly	Asn 240
225 Glu	Glu	Leu	Gln	Leu	Ser	Gly	Tyr	Asn	Ile		Ala	Asn	Gly	Thr	
				245					250					255	
Leu	Ala	Gln		Lys	Asp	Val	Ser		Leu	Glu	Tyr	Val	Asp 270	Ser	Thr
Tvr	Ser	Leu	260 Arq	Asp	Asn	Pro	Leu	265 Gln	Val	Glu	Tyr	Cys		Thr	Ala
		275					280					285			
Val		Asp	Glu	Ser	Ile		Ser	Ser	Thr	Val		Gly	Thr	Leu	His
Tur	290 Ala	Thr	Asp	Ala	Ile	295 Leu	Tvr	Glu	Asn	Phe	300 Glu	Asn	Gly	Pro	Val
305					310					315					320
Pro	Asn	Gly	Trp		Val	Ile	Asp	Ala		Gly	Asp	Gly	Phe		Trp
G1 v	ніе	ጥነታ	Len	325 Asn	Ala	Tvr	Asp	Ala	330 Phe	Pro	Glv	His	Asn	335 Gly	Gly
			340					345					350		
His	Cys		Leu	Ser	Ala	Ser		Val	Pro	Gly	Ile		Pro	Val	Thr
D	A	355	т	Low	Ile	Th∽	360 Pro	T.ve	٧э٦	G1.,	Glv	365 Ala	Lve	Ara	Val
Pro	370	ASD	ryr	ьeu	тте	375	FIO	пЛя	val	GIU	380	нта	- Ly -	9	
Lys		Trp	Val	Ser	Thr		Asp	Ala	Asn			Ala	Glu	His	
385	**- *	N/ - ·	7.7 -	C ~	390	mh	G1	mp~~	- ומ	395 Val	G1++	∆ o∽	Dhe	Val	400 Tle
Ala	Val	Met	АІА	Ser	Thr	ınr	стХ	inr	410	val	стА	veb	FIIG	vai 415	7.T.C
Leu	Phe	Glu	Glu		Met	Thr	Ala	Lys		Thr	Gly	Ala			Glu
			420					425					430		
Arg	Thr	11e 435	Asn	Leu	Pro	GIU	G1y 440	ınr	гÀв	ıyr	тте	445	rrp	AIG	UIS
Tyr	Asn		Thr	Asp	Ile	Tyr		Leu	Lys	Leu			Ile	Thr	Val
_	450					455					460				
Phe 465	Gly	Thr	Pro	Ala	Ser 470	GIU	Pro	GIU	Pro	Val 475	inr	Asp	Fue	val	vai 480
	Leu	Ile	Glu	Asn	Asn	Lys	Gly	Arg	Leu		Trp	Asn	Tyr	Pro	
				485					490					495	
Gly	Tyr	Glu		Asp	Lys	Thr	Asp	Asp 505		Asp	Pro	Leu	Gln 510	ьeu	Ala
Glv	Tyr	Asn	500 Ile	Tyr	Ala	Asn	Gly			Leu	Val	His		Gln	Asp
_		515					520					525			
Pro		Val	Leu	Glu	Tyr		Asp	Glu	Thr	Tyr	Ser 540	Ser	Arg	Asp	Asp
Gln	530 Val	G] 11	Val	Glu	Tyr	535 Cys	Val	Thr	Ala	Val	_	Asn	Asp	Asn	Ile
545					550					555					560
Glu	Ser	Gln	Ser		Cys	Asp	Lys	Leu			Asp	Ser	Gln	Ser 575	
Tle	Jle	Len	Tvr	565 Glu	Gly	Phe	Glu	Ala	570 Gly		Ile	Pro	Glu		
			580					585					590		
Leu	Leu			Ala	Asp	Gly			Val	Asn	Trp			Tyr	Pro
Trn	Thr	595 Met		Glv	His	Asn	600 Ser		Lvs	Cvs	Ile	605 Ala		Pro	Ser
	610					615					620				
_		Pro	Met	Ile	Gly		Leu	Thr	Pro			Tyr	Leu	Val	
625 Pro		Ţ.e.ı	Glu	Glv	630 Ala		Leu	Val	Lvs	635 Tyr		Val	Ser	Ala	640 Gln
				645					650					655	
Asp	Ala	Val			Ala	Glu	His			Val	Met	Val			Thr
<b>61.</b> .	Th~	- 1 ב	660 Val		Asp	Phe	Val	665 Leu		Phe	Glu	Glu	670 Thr		Thr
_		675					680					685			
Ala		Ala		Gly	Ala			Glu	Arg	Thr			Leu	Pro	Ala
C1	690		т	т1.	-ומ	695		เมเล	ጥኒንም	Δαν	700 Cvs		Agr	Met	Phe
705					710					715					720
		Leu	Leu	Asp	Asp		Thr	Val		Arg		Thr	Glu		
				725					730					735	
Pro	Glu	Pro	Val 740		Asp	rne	val	. Val 745		ьeu	тте	GLU	750		Lys
Gly	Arg	Leu			Asn	Tyr		Asn		туг	Glu	Pro			Thr
		755	<b>i</b>				760	)				765			
Asp	Asp 770		Lys	Pro	Leu	Gln 775		Thr	GIY	Tyr	780 Asn		Tyr	AIS	Asn
Gly			Lev	Val	His			Asp	Pro	Thr			Glu	Туг	Ile
785	•				790					795	,				800
Asp	Glu	Thr	Туг	Ser 805		Arg	Asp	Gly	61n 810		. Glu	. met	GIU	815	Cys
				503	•										

.

Val Thr Ala Val Tyr Asn Asp Asn Ile Glu Ser Gln Ser Val Cys Asp 820 Lys Leu Asn Tyr Thr Ile Thr Ser Leu Asp Asn Ile Gln Ser Asp Thr 840 845 835 Ser Leu Lys Ile Tyr Pro Asn Pro Ala Ser Tyr Val Val Arg Ile Glu 855 860 Gly Leu Ser Arg Ser Lys Ser Thr Ile Glu Leu Tyr Asn Ala Leu Gly 870 875 Ile Cys Ile Leu Arg Glu Glu Thr His Ser Glu Lys Thr Glu Ile Asp 890 885 Val Ser Arg Leu Asn Asp Gly Val Tyr Leu Ile Lys Val Val Gly Gly 900 905 910 Asn Lys Thr Thr Glu Lys Val Glu Ile Lys Arg Pro

### (2) INFORMATION FOR SEQ ID NO:468

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 922 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...922
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:468

Met Met Lys Ser Ile Val Phe Arg Ala Phe Leu Thr Ile Leu Leu Ser 10 Trp Ala Ala Ile Thr Asn Pro Thr Ala Gln Glu Ile Ser Gly Met Asn 30 20 25 Ala Ser Cys Leu Ala Ala Pro Ala Gln Pro Asp Thr Ile Leu Tyr Glu 35 40 45 Ser Phe Glu Asn Gly Pro Val Pro Asn Gly Trp Leu Glu Ile Asp Ala 60 55 Asp Ala Asp Gly Ala Thr Trp Gly Ser Pro Ser Gly Ser Phe Ser Val 65 70 Pro Tyr Gly His Asn Gly Leu Cys Thr Tyr Ser His Ile Arg Ser Gly 90 Ile Ser Thr Ala Gly Asn Tyr Leu Ile Thr Pro Asn Ile Glu Gly Ala 105 110 Lys Arg Val Lys Tyr Trp Val Cys Asn Gln Tyr Ser Thr Asn Pro Glu 125 115 120 His Tyr Ala Val Met Val Ser Thr Thr Gly Thr Ala Ile Glu Asp Phe 135 140 130 Val Leu Leu Phe Asp Asp Ser Ile Thr Gly Lys Pro Thr Pro Leu Val 145 150 155 Trp Arg Arg Ile Val Asp Leu Pro Glu Gly Thr Lys Tyr Ile Ala 170 175 165 Trp Arg His Tyr Lys Val Thr Asp Ser His Thr Glu Phe Leu Lys Leu 185 190 Asp Asp Val Thr Val Tyr Arg Ser Ile Glu Gly Pro Glu Pro Ala Thr 205 200 195 Asp Phe Thr Val Ile Asn Ile Gly Gln Asn Val Gly Arg Leu Thr Trp 215 220 Asn Tyr Pro Glu Asp Tyr Gln Pro Glu Gly Lys Gly Asn Glu Glu Leu 230 235 Ile Lys Asp Val Ser Ile Leu Glu Tyr Val Asp Ser Thr Tyr Ser Leu 265 270 Arg Asp Asn Pro Leu Gln Val Glu Tyr Cys Val Thr Ala Val Tyr Asp 280 285 Glu Ser Ile Glu Ser Ser Thr Val Cys Gly Thr Leu His Tyr Ala Thr 295 300 Asp Ala Ile Leu Tyr Glu Asn Phe Glu Asn Gly Pro Val Pro Asn Gly 305 310 315 Trp Leu Val Ile Asp Ala Asp Gly Asp Gly Phe Ser Trp Gly His Tyr 330

Leu Asn Ala Tyr Asp Ala Phe Pro Gly His Asn Gly Gly His Cys Ser Leu Ser Ala Ser Tyr Val Pro Gly Ile Gly Pro Val Thr Pro Asp Asn Tyr Leu Ile Thr Pro Lys Val Glu Gly Ala Lys Arg Val Lys Tyr Trp 370 375 380 Val Ser Thr Gln Asp Ala Asn Trp Ala Ala Glu His Tyr Ala Val Met Ala Ser Thr Thr Gly Thr Ala Val Gly Asp Phe Val Ile Leu Phe Glu Glu Thr Met Thr Ala Lys Pro Thr Gly Ala Trp Tyr Glu Arg Thr Ile Asn Leu Pro Glu Gly Thr Lys Tyr Ile Ala Trp Arg His Tyr Asn Cys Thr Asp Ile Tyr Phe Leu Lys Leu Asp Asp Ile Thr Val Phe Gly Thr Pro Ala Ser Glu Pro Glu Pro Val Thr Asp Phe Val Val Ser Leu Ile Glu Asn Asn Lys Gly Arg Leu Lys Trp Asn Tyr Pro Asn Gly Tyr Glu 485 490 495 Pro Asp Lys Thr Asp Asp Lys Asp Pro Leu Gln Leu Ala Gly Tyr Asn Ile Tyr Ala Asn Gly Ser Leu Leu Val His Ile Gln Asp Pro Thr Val Leu Glu Tyr Ile Asp Glu Thr Tyr Ser Ser Arg Asp Asp Gln Val Glu Val Glu Tyr Cys Val Thr Ala Val Tyr Asn Asp Asn Ile Glu Ser Gln Ser Val Cys Asp Lys Leu Ile Tyr Asp Ser Gln Ser Asp Ile Ile Leu Tyr Glu Gly Phe Glu Ala Gly Ser Ile Pro Glu Gly Trp Leu Leu Ile Asp Ala Asp Gly Asp Asn Val Asn Trp Asp Tyr Tyr Pro Trp Thr Met Tyr Gly His Asp Ser Glu Lys Cys Ile Ala Ser Pro Ser Tyr Leu Pro Met Ile Gly Val Leu Thr Pro Asp Asn Tyr Leu Val Thr Pro Arg Leu Glu Gly Ala Lys Leu Val Lys Tyr Trp Val Ser Ala Gln Asp Ala Val 650 655 Tyr Ser Ala Glu His Tyr Ala Val Met Val Ser Thr Thr Gly Thr Ala Val Glu Asp Phe Val Leu Leu Phe Glu Glu Thr Met Thr Ala Lys Ala Asn Gly Ala Trp Tyr Glu Arg Thr Ile Thr Leu Pro Ala Gly Thr Lys Tyr Ile Ala Trp Arg His Tyr Asp Cys Thr Asp Met Phe Phe Leu Leu Leu Asp Asp Ile Thr Val Tyr Arg Ser Thr Glu Thr Val Pro Glu Pro Val Thr Asp Phe Val Val Ser Leu Ile Glu Asn Asn Lys Gly Arg Leu Lys Trp Asn Tyr Pro Asn Gly Tyr Glu Pro Asp Lys Thr Asp Asp Lys Lys Pro Leu Gln Leu Thr Gly Tyr Asn Ile Tyr Ala Asn Gly Ser Leu Leu Val His Ile Gln Asp Pro Thr Val Leu Glu Tyr Ile Asp Glu Thr Tyr Ser Ser Arg Asp Gly Gln Val Glu Met Glu Tyr Cys Val Thr Ala Val Tyr Asn Asp Asn Ile Glu Ser Gln Ser Val Cys Asp Lys Leu Asn 820 825 Tyr Thr Ile Thr Ser Leu Asp Asn Ile Gln Ser Asp Thr Ser Leu Lys 835 840 Ile Tyr Pro Asn Pro Ala Ser Tyr Val Val Arg Ile Glu Gly Leu Ser Arg Ser Lys Ser Thr Ile Glu Leu Tyr Asn Ala Leu Gly Ile Cys Ile Leu Arg Glu Glu Thr His Ser Glu Lys Thr Glu Ile Asp Val Ser Arg Leu Asn Asp Gly Val Tyr Leu Ile Lys Val Val Gly Gly Asn Lys Thr Thr Thr Glu Lys Val Glu Ile Lys Arg Pro 

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 921 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...921
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:469

Met 1	Lys	Ser	Ile	Val 5	Phe	Arg	Ala	Phe	Leu 10	Thr	Ile	Leu	Leu	Ser 15	Trp
	Ala	Ile	Thr 20	Asn	Pro	Thr	Ala	Gln 25		Ile	Ser	Gly	Met 30		Ala
Ser	Cys	Leu 35	Ala	Ala	Pro	Ala	Gln 40	Pro	Asp	Thr	Ile	Leu 45	Tyr	Glu	Ser
Phe	Glu 50		Gly	Pro	Val	Pro 55		Gly	Trp	Leu	Glu 60		Asp	Ala	Asp
Ala 65	Asp	Gly	Ala	Thr	Trp		Ser	Pro	Ser	Gly 75		Phe	Ser	Val	Pro 80
Tyr	Gly	His	Asn	Gly 85	Leu	Сув	Thr	Tyr	Ser 90	His	Ile	Arg	Ser	Gly 95	Ile
Ser	Thr	Ala	Gly 100	Asn	Tyr	Leu	Ile	Thr 105	Pro	Asn	Ile	Glu	Gly 110	Ala	Lys
Arg	Val	Lys 115	Tyr	Trp	Val	Cys	Asn 120	Gln	Tyr	Ser	Thr	Asn 125	Pro	Glu	His
Tyr	Ala 130	Val	Met	Val	Ser	Thr 135	Thr	Gly	Thr	Ala	Ile 140	Glu	Asp	Phe	Val
Leu 145	Leu	Phe	Asp	Asp	Ser 150	Ile	Thr	Gly	Lys	Pro 155	Thr	Pro	Leu	Val	Trp 160
Arg	Arg	Arg	Ile	Val 165	Asp	Leu	Pro	Glu	Gly 170	Thr	Lys	Tyr	Ile	Ala 175	Trp
Arg	His	Tyr	Lys 180	Val	Thr	Asp	Ser	His 185	Thr	Glu	Phe	Leu	Lys 190	Leu	Asp
Asp	Val	Thr 195	Val	Tyr	Arg	Ser	Ile 200	Glu	Gly	Pro	Glu	Pro 205	Ala	Thr	Asp
Phe	Thr 210	Val	Ile	Asn	Ile	Gly 215	Gln	Asn	Val	Gly	Arg 220	Leu	Thr	Trp	Asn
Tyr 225	Pro	Glu	Asp	Tyr	Gln 230	Pro	Glu	Gly	Lys	Gly 235	Asn	Glu	Glu	Leu	Gln 240
Leu	Ser	Gly	Tyr	Asn 245	Ile	Tyr	Ala	Asn	Gly 250	Thr	Leu	Leu	Ala	Gln 255	Ile
Lys	Asp	Val	Ser 260	Ile	Leu	Glu	Tyr	Val 265	Asp	Ser	Thr	Tyr	Ser 270	Leu	Arg
Asp	Asn	Pro 275	Leu	Gln	Val	Glu	Tyr 280	Cys	Val	Thr	Ala	Val 285	Tyr	Asp	Glu
Ser	Ile 290	Glu	Ser	Ser	Thr	Val 295	Cys	Gly	Thr	Leu	His 300	Tyr	Ala	Thr	Asp
Ala 305	Ile	Leu	Tyr	Glu	Asn 310	Phe	Glu	Asn	Gly	Pro 315	Val	Pro	Asn	Gly	Trp 320
Leu	Val	Ile	Asp	Ala 325	Asp	Gly	Asp	Gly	Phe 330	Ser	Trp	Gly	His	Tyr 335	Leu
Asn	Ala	Tyr	Asp 340	Ala	Phe	Pro	Gly	His 345	Asn	Gly	Gly	His	Cys 350	Ser	Leu
Ser	Ala	Ser 355	Tyr	Val	Pro	Gly	Ile 360	Gly	Pro	Val	Thr	Pro 365	Asp	Asn	Tyr
Leu	Ile 370	Thr	Pro	Lys	Val	Glu 375	Gly	Ala	ГÀв	Arg	Val 380	Lys	Tyr	Trp	Val
Ser 385	Thr	Gln	Asp	Ala	Asn 390	Trp	Ala	Ala	Glu	His 395	Tyr	Ala	Val	Met	Ala 400
Ser	Thr	Thr	Gly	Thr 405	Ala	Val	Gly	Asp	Phe 410	Val	Ile	Leu	Phe	Glu 415	Glu
Thr	Met	Thr	Ala 420	Lys	Pro	Thr	Gly	Ala 425	Trp	Tyr	Glu	Arg	Thr 430	Ile	Asn
Leu	Pro	Glu 435	Gly	Thr	Lys	Tyr	Ile 440	Ala	Trp	Arg	His	Tyr 445	Asn	Cys	Thr
Asp	Ile 450	Tyr	Phe	Leu	Lys	Leu 455	Asp	Asp	Ile	Thr	Val 460	Phe	Gly	Thr	Pro
Ala	Ser	Glu	Pro	Glu	Pro	Val	Thr	Asp	Phe	Val	Val	Ser	Leu	Ile	Glu

470 475 465 Asn Asn Lys Gly Arg Leu Lys Trp Asn Tyr Pro Asn Gly Tyr Glu Pro 485 490 495 Asp Lys Thr Asp Asp Lys Asp Pro Leu Gln Leu Ala Gly Tyr Asn Ile 505 510 Tyr Ala Asn Gly Ser Leu Leu Val His Ile Gln Asp Pro Thr Val Leu 515 520 525 Glu Tyr Ile Asp Glu Thr Tyr Ser Ser Arg Asp Asp Gln Val Glu Val 530 535 540 Glu Tyr Cys Val Thr Ala Val Tyr Asn Asp Asn Ile Glu Ser Gln Ser 545 550 560 550 Val Cys Asp Lys Leu Ile Tyr Asp Ser Gln Ser Asp Ile Ile Leu Tyr 565 570 575 Glu Gly Phe Glu Ala Gly Ser Ile Pro Glu Gly Trp Leu Leu Ile Asp 580 585 590 Ala Asp Gly Asp Asn Val Asn Trp Asp Tyr Tyr Pro Trp Thr Met Tyr 595 600 Gly His Asp Ser Glu Lys Cys Ile Ala Ser Pro Ser Tyr Leu Pro Met 615 Ile Gly Val Leu Thr Pro Asp Asn Tyr Leu Val Thr Pro Arg Leu Glu 625 630 635 Gly Ala Lys Leu Val Lys Tyr Trp Val Ser Ala Gln Asp Ala Val Tyr 645 650 Ser Ala Glu His Tyr Ala Val Met Val Ser Thr Thr Gly Thr Ala Val 660 665 670Glu Asp Phe Val Leu Leu Phe Glu Glu Thr Met Thr Ala Lys Ala Asn 675 680 685 Gly Ala Trp Tyr Glu Arg Thr Ile Thr Leu Pro Ala Gly Thr Lys Tyr 695 700 Ile Ala Trp Arg His Tyr Asp Cys Thr Asp Met Phe Phe Leu Leu Leu 705 710 715 715 720 Asp Asp Ile Thr Val Tyr Arg Ser Thr Glu Thr Val Pro Glu Pro Val 725 730 735 Thr Asp Phe Val Val Ser Leu Ile Glu Asn Asn Lys Gly Arg Leu Lys 740 745 750 Trp Asn Tyr Pro Asn Gly Tyr Glu Pro Asp Lys Thr Asp Asp Lys Lys 755 760 765 Pro Leu Gln Leu Thr Gly Tyr Asn Ile Tyr Ala Asn Gly Ser Leu Leu 770 775 780 Val His Ile Gln Asp Pro Thr Val Leu Glu Tyr Ile Asp Glu Thr Tyr 785 790 795 Ser Ser Arg Asp Gly Gln Val Glu Met Glu Tyr Cys Val Thr Ala Val 810 805 Tyr Asn Asp Asn Ile Glu Ser Gln Ser Val Cys Asp Lys Leu Asn Tyr 820 825 830 Thr Ile Thr Ser Leu Asp Asn Ile Gln Ser Asp Thr Ser Leu Lys Ile 835 840 845 Tyr Pro Asn Pro Ala Ser Tyr Val Val Arg Ile Glu Gly Leu Ser Arg 850 855 860 Ser Lys Ser Thr Ile Glu Leu Tyr Asn Ala Leu Gly Ile Cys Ile Leu 870 875 Arg Glu Glu Thr His Ser Glu Lys Thr Glu Ile Asp Val Ser Arg Leu 890 885 Asn Asp Gly Val Tyr Leu Ile Lys Val Val Gly Gly Asn Lys Thr Thr 900 905 Thr Glu Lys Val Glu Ile Lys Arg Pro 915

## (2) INFORMATION FOR SEQ ID NO:470

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 593 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...593
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:470

```
Met Asn Ser Ile Met Lys Tyr Gln Leu Tyr Thr Ala Val Ile Met Ala
                         10
Leu Ser Val Ser Ser Val Cys Gly Gln Thr Pro Arg Asn Thr Glu Thr
                           25
Lys Arg Pro Asp Thr Leu Arg Arg Glu Leu Thr Ile Val Asn Asp Gln
                       40
Thr Val Glu Met Glu His Ala Asp Pro Leu Pro Ala Ala Tyr Lys Ala
                    55
                                      60
Ile Glu Pro Arg Leu Lys Pro Phe Arg Pro Glu Tyr Asn Lys Arg Thr
                                75
               70
Phe Gly Phe Val Pro Glu Val Ser Ser Ser Gly Arg Asn Asn Leu Pro
           85
                            90
Asn Ile Leu Pro Thr Glu Gly His Met Lys His Arg Gly Tyr Leu Asn
                  105
                                             110
        100
Ile Gly Ile Gly His Thr Leu Asn Gln Arg Met Asp Ala Gly Tyr Arg
               120
Leu Ile Asp Ala Glu Gln Glu Arg Leu Asn Leu Phe Leu Ser Tyr Arg
  130
                   135
Gly Met Lys Ser Ala Phe Asn Thr Gly Asp Phe Asp Gly Asp Arg Lys
                           155
145 150
Asp Arg Arg Met Met Ala Gly Val Asp Tyr Glu Gln Arg Arg Pro Ser
                                                175
                        170
           165
Phe Val Leu Ala Thr Gly Leu Tyr Tyr Ser Asn His Tyr Phe Asn Asn
                     185
        180
Tyr Gly Arg Gly Ala Thr Thr Asn Val Gly Ser Ile Pro Gln Leu Ser
    195
                     200
                                         205
Thr Pro Val Thr Pro Gln Met Asp Asn Gly Thr His Asn Val Arg Val
                  215
                                    220
Tyr Leu Gly Ala Lys Asn Asp Val Ile Asp Ala Arg Ile Asp Tyr Arg
                         235
        230
Phe Phe Arg Ser Ile Pro Tyr Leu Gly Thr Asp Pro Met Lys Ala Leu
                              250
           245
Thr Glu His Thr Pro Glu Leu Asn Val Thr Met Ser Asn Glu Leu Ser
         260
                           265
                                           270
Asp Asp Ile Lys Leu Gly Val Glu Val Arg Thr Gly Gly Leu Phe Phe
                     280
                                  285
Ala Lys Asn Ser Glu Met Ile Gln Thr Gly Val Leu Ser Glu Thr Asp
          295
                             300
Arg Asn Leu Tyr Tyr Val Glu Gly Ala Pro Thr Ile Gly Phe Val Gly
                                315
305 310
Asp Ser Asp Asn Met Gln Trp Asn Ile Gln Ala Gly Val Gly Ile Ser
                             330
            325
Ser His Phe Gly Ala Lys Gly Arg Leu Phe Phe Trp Pro Lys Leu Asp
         340
                            345
Ala Ser Leu Ser Ile Phe Pro Ser Trp Arg Val Tyr Ala Lys Ala Phe
                                         365
               360
Gly Gly Val Ile Arg Asn Gly Leu Ala Asp Val Met Gln Glu Glu Met
                                    380
            375
   370
Pro Tyr Leu Met Pro Asn Thr Ile Val Leu Pro Ser Arg Asn Ala Leu
               390
                                  395
Thr Ala Gln Leu Gly Val Lys Gly Asn Ile Ala Asp Val Val Arg Met
                             410
                                                 415
Glu Val Tyr Gly Asp Phe Ser Lys Leu Thr Gly Val Pro Phe Tyr Thr
                                             430
                          425
          420
Pro Thr Leu Pro Leu Tyr Asn Pro Ser Asp Leu Tyr Gln Tyr Asn Val
               440
       435
Ser Phe Leu Pro Ile Tyr Ala Asp Gly Ser Arg Trp Arg Ala Gly Gly
  450 455
Lys Leu Glu Tyr Ser Tyr Arg Asp Met Leu Arg Phe Leu Val Asp Ala
                470
                                  475
Ser Tyr Gly Lys Trp Asn Leu Asp Gly Gly Leu Val Ala Ser Met Gln
                                                 495
             485
                               490
Pro Asp Leu Ile Leu Lys Ala Glu Val Gly Val His Pro Ile Ala Pro
         500 505
Leu Asp Val Arg Leu Arg Tyr Thr Gln Leu Asn Gly Arg Tyr Arg Tyr
                       520
       515
Ser Phe Gly Ser Ala Gly Ser Glu Ala Leu Gly Ile Gly Asn Val His
                     535
Leu Leu Ser Ala Asp Val Ser Tyr Lys Leu Lys Lys Asn Leu Ser Leu
                550
                           555
Tyr Leu Lys Ile Asp Asn Met Leu Ala Glu Thr Thr Glu Leu Ile Gly
                          570
             565
Tyr Tyr Pro Met Gln Pro Phe His Cys Phe Ala Gly Phe Ser Trp Thr
                          585
          580
```

#### (2) INFORMATION FOR SEQ ID NO:471

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 589 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

435

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...589
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:471

Met Lys Tyr Gln Leu Tyr Thr Ala Val Ile Met Ala Leu Ser Val Ser 10 Ser Val Cys Gly Gln Thr Pro Arg Asn Thr Glu Thr Lys Arg Pro Asp 25 20 Thr Leu Arg Arg Glu Leu Thr Ile Val Asn Asp Gln Thr Val Glu Met 40 Glu His Ala Asp Pro Leu Pro Ala Ala Tyr Lys Ala Ile Glu Pro Arg 55 Leu Lys Pro Phe Arg Pro Glu Tyr Asn Lys Arg Thr Phe Gly Phe Val 65 70 75 80 Pro Glu Val Ser Ser Ser Gly Arg Asn Asn Leu Pro Asn Ile Leu Pro 90 95 85 Thr Glu Gly His Met Lys His Arg Gly Tyr Leu Asn Ile Gly Ile Gly 100 105 110 His Thr Leu Asn Gln Arg Met Asp Ala Gly Tyr Arg Leu Ile Asp Ala 115 120 125 Glu Gln Glu Arg Leu Asn Leu Phe Leu Ser Tyr Arg Gly Met Lys Ser 135 140 Ala Phe Asn Thr Gly Asp Phe Asp Gly Asp Arg Lys Asp Arg Arg Met 145 150 155 Met Ala Gly Val Asp Tyr Glu Gln Arg Arg Pro Ser Phe Val Leu Ala 170 165 175 Thr Gly Leu Tyr Tyr Ser Asn His Tyr Phe Asn Asn Tyr Gly Arg Gly 180 185 190 Ala Thr Thr Asn Val Gly Ser Ile Pro Gln Leu Ser Thr Pro Val Thr 195 200 205 Pro Gln Met Asp Asn Gly Thr His Asn Val Arg Val Tyr Leu Gly Ala 210 215 220 Lys Asn Asp Val Ile Asp Ala Arg Ile Asp Tyr Arg Phe Phe Arg Ser 230 235 Ile Pro Tyr Leu Gly Thr Asp Pro Met Lys Ala Leu Thr Glu His Thr 245 250 255 Pro Glu Leu Asn Val Thr Met Ser Asn Glu Leu Ser Asp Asp Ile Lys 260 265 270 Leu Gly Val Glu Val Arg Thr Gly Gly Leu Phe Phe Ala Lys Asn Ser 280 285 275 Glu Met Ile Gln Thr Gly Val Leu Ser Glu Thr Asp Arg Asn Leu Tyr 290 295 Tyr Val Glu Gly Ala Pro Thr Ile Gly Phe Val Gly Asp Ser Asp Asn 315 305 310 Met Gln Trp Asn Ile Gln Ala Gly Val Gly Ile Ser Ser His Phe Gly 325 330 335 Ala Lys Gly Arg Leu Phe Phe Trp Pro Lys Leu Asp Ala Ser Leu Ser 340 345 350 Ile Phe Pro Ser Trp Arg Val Tyr Ala Lys Ala Phe Gly Gly Val Ile 355 360 365 Arg Asn Gly Leu Ala Asp Val Met Gln Glu Met Pro Tyr Leu Met 375 380 Pro Asn Thr Ile Val Leu Pro Ser Arg Asn Ala Leu Thr Ala Gln Leu 390 395 Gly Val Lys Gly Asn Ile Ala Asp Val Val Arg Met Glu Val Tyr Gly 405 410 Asp Phe Ser Lys Leu Thr Gly Val Pro Phe Tyr Thr Pro Thr Leu Pro 420 425 430 Leu Tyr Asn Pro Ser Asp Leu Tyr Gln Tyr Asn Val Ser Phe Leu Pro

440

Ile Tyr Ala Asp Gly Ser Arg Trp Arg Ala Gly Gly Lys Leu Glu Tyr 450 455 460 Ser Tyr Arg Asp Met Leu Arg Phe Leu Val Asp Ala Ser Tyr Gly Lys 470 465 475 Trp Asn Leu Asp Gly Gly Leu Val Ala Ser Met Gln Pro Asp Leu Ile 485 490 495 Leu Lys Ala Glu Val Gly Val His Pro Ile Ala Pro Leu Asp Val Arg 505 510 Leu Arg Tyr Thr Gln Leu Asn Gly Arg Tyr Arg Tyr Ser Phe Gly Ser 515 520 Ala Gly Ser Glu Ala Leu Gly Ile Gly Asn Val His Leu Leu Ser Ala 530 535 Asp Val Ser Tyr Lys Leu Lys Lys Asn Leu Ser Leu Tyr Leu Lys Ile 550 545 555 Asp Asn Met Leu Ala Glu Thr Thr Glu Leu Ile Gly Tyr Tyr Pro Met 565 570 Gln Pro Phe His Cys Phe Ala Gly Phe Ser Trp Thr Phe 580 585

## (2) INFORMATION FOR SEQ ID NO:472

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 346 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

290

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...346
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:472

Met Met Glu Lys Cys Ile Phe Ala His Tyr Pro His Asn Leu Val Phe Met Ile Arg Lys His Phe Gly Ile Ile Leu Gly Phe Leu Ser Leu Val 20 25 Phe Ser Ala Gly Ala Gln Gln Glu Lys Gln Val Phe His Phe Leu Asn 35 40 45 Leu Pro Ala Thr Ala Gln Ala Leu Ala Ala Gly Gly Lys Ala Ile Thr 50 55 60 Ile Val Asp Asp Asn Pro Gly Leu Ala Phe Glu Asn Pro Ala Leu Leu 70 75 Gly Tyr Glu Ser Gly Gly Arg Ala Phe Leu Ser Tyr Leu Tyr Tyr Met 90 Ser Gly Ser His Met Gly Asn Ala Cys Tyr Ala Ser Ser Val Gly Glu 100 105 Arg Gly Met Trp Gly Val Gly Met Arg Phe Leu Asn Tyr Gly Ser Met 120 115 125 Gln Gly Tyr Asp Gln Asn Ala Ile Ala Thr Gly Ser Phe Ser Ala Ser 135 140 Asp Ile Ala Val Gln Gly Phe Tyr Ser His Glu Leu Ser Asn His Phe 155 150 Arg Gly Gly Val Ser Leu Lys Ala Leu Tyr Ser Ser Ile Glu Thr Tyr 170 Ser Ser Phe Gly Leu Gly Val Asp Val Gly Ile Ser Tyr Tyr Asp Asp 180 185 Asp Lys Gly Tyr Ser Ala Ser Ala Leu Phe Lys Asn Val Gly Ala Gln 195 200 205 Leu Lys Gly Tyr Asn Glu Glu Arg Glu Pro Leu Asp Trp Asp Phe Gln 210 215 220 Leu Gly Phe Ser Arg Ser Phe Ile Asn Ala Pro Phe Arg Leu His Ile 230 235 Thr Leu Phe Asn Leu Asn Pro His Tyr Phe Lys Arg Leu Val Pro Arg 245 250 Asp Leu Ser Lys Met Gln Lys Phe Leu Arg His Phe Ser Ile Gly Ala 265 Glu Phe Thr Pro Ser Glu Arg Phe Trp Val Gly Leu Gly Tyr Thr Pro 275 280 285 Gln Ile Ala Gln Asp Phe Glu Val Glu Gly Gly Asn Lys Trp Gly Gly

300

Leu Ser Ala Gly Val Gly Phe Thr Ser Gly Val Val Arg Val Gly Val 315 310 Ser Ala Ala Thr Tyr His Pro Ala Ala Leu Ser Phe Met Cys Ser Val 325 330 Gly Ile Arg Leu Asp Asp Lys Ser Ile Phe 340

#### (2) INFORMATION FOR SEQ ID NO:473

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 345 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...345
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:473

Met Glu Lys Cys Ile Phe Ala His Tyr Pro His Asn Leu Val Phe Met 10 15 Ile Arg Lys His Phe Gly Ile Ile Leu Gly Phe Leu Ser Leu Val Phe 25 20 Ser Ala Gly Ala Gln Gln Glu Lys Gln Val Phe His Phe Leu Asn Leu 35 40 Pro Ala Thr Ala Gln Ala Leu Ala Ala Gly Gly Lys Ala Ile Thr Ile 55 60 50 Val Asp Asp Asn Pro Gly Leu Ala Phe Glu Asn Pro Ala Leu Leu Gly 70 75 Tyr Glu Ser Gly Gly Arg Ala Phe Leu Ser Tyr Leu Tyr Tyr Met Ser 90 85 Gly Ser His Met Gly Asn Ala Cys Tyr Ala Ser Ser Val Gly Glu Arg 105 110 100 Gly Met Trp Gly Val Gly Met Arg Phe Leu Asn Tyr Gly Ser Met Gln 120 125 115 Gly Tyr Asp Gln Asn Ala Ile Ala Thr Gly Ser Phe Ser Ala Ser Asp 135 140 Ile Ala Val Gln Gly Phe Tyr Ser His Glu Leu Ser Asn His Phe Arg 145 150 155 Gly Gly Val Ser Leu Lys Ala Leu Tyr Ser Ser Ile Glu Thr Tyr Ser 170 165 Ser Phe Gly Leu Gly Val Asp Val Gly Ile Ser Tyr Tyr Asp Asp Asp 185 190 180 Lys Gly Tyr Ser Ala Ser Ala Leu Phe Lys Asn Val Gly Ala Gln Leu 200 195 205 Lys Gly Tyr Asn Glu Glu Arg Glu Pro Leu Asp Trp Asp Phe Gln Leu 220 215 Gly Phe Ser Arg Ser Phe Ile Asn Ala Pro Phe Arg Leu His Ile Thr 225 230 235 240 Leu Phe Asn Leu Asn Pro His Tyr Phe Lys Arg Leu Val Pro Arg Asp 245 250 Leu Ser Lys Met Gln Lys Phe Leu Arg His Phe Ser Ile Gly Ala Glu 260 265 270 Phe Thr Pro Ser Glu Arg Phe Trp Val Gly Leu Gly Tyr Thr Pro Gln 285 280 Ile Ala Gln Asp Phe Glu Val Glu Gly Gly Asn Lys Trp Gly Gly Leu 290 295 300 Ser Ala Gly Val Gly Phe Thr Ser Gly Val Val Arg Val Gly Val Ser 315 310 Ala Ala Thr Tyr His Pro Ala Ala Leu Ser Phe Met Cys Ser Val Gly 325 330 Ile Arg Leu Asp Asp Lys Ser Ile Phe 345

# (2) INFORMATION FOR SEQ ID NO:474

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 330 amino acids
  - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...330
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:474

Met Ile Arg Lys His Phe Gly Ile Ile Leu Gly Phe Leu Ser Leu Val 15 10 Phe Ser Ala Gly Ala Gln Gln Glu Lys Gln Val Phe His Phe Leu Asn 25 20 Leu Pro Ala Thr Ala Gln Ala Leu Ala Ala Gly Gly Lys Ala Ile Thr 35 40 Ile Val Asp Asp Asn Pro Gly Leu Ala Phe Glu Asn Pro Ala Leu Leu 60 55 Gly Tyr Glu Ser Gly Gly Arg Ala Phe Leu Ser Tyr Leu Tyr Tyr Met 75 70 Ser Gly Ser His Met Gly Asn Ala Cys Tyr Ala Ser Ser Val Gly Glu 8.5 90 95 Arg Gly Met Trp Gly Val Gly Met Arg Phe Leu Asn Tyr Gly Ser Met 100 105 110 Gln Gly Tyr Asp Gln Asn Ala Ile Ala Thr Gly Ser Phe Ser Ala Ser 120 125 115 Asp Ile Ala Val Gln Gly Phe Tyr Ser His Glu Leu Ser Asn His Phe 130 135 Arg Gly Gly Val Ser Leu Lys Ala Leu Tyr Ser Ser Ile Glu Thr Tyr 145 150 155 Ser Ser Phe Gly Leu Gly Val Asp Val Gly Ile Ser Tyr Tyr Asp Asp 170 165 175 Asp Lys Gly Tyr Ser Ala Ser Ala Leu Phe Lys Asn Val Gly Ala Gln 180 185 190 Leu Lys Gly Tyr Asn Glu Glu Arg Glu Pro Leu Asp Trp Asp Phe Gln 195 200 205 Leu Gly Phe Ser Arg Ser Phe Ile Asn Ala Pro Phe Arg Leu His Ile 210 215 220 Thr Leu Phe Asn Leu Asn Pro His Tyr Phe Lys Arg Leu Val Pro Arg 235 225 230 Asp Leu Ser Lys Met Gln Lys Phe Leu Arg His Phe Ser Ile Gly Ala 250 255 245 Glu Phe Thr Pro Ser Glu Arg Phe Trp Val Gly Leu Gly Tyr Thr Pro 260 265 270 Gln Ile Ala Gln Asp Phe Glu Val Glu Gly Gly Asn Lys Trp Gly Gly 275 280 285 Leu Ser Ala Gly Val Gly Phe Thr Ser Gly Val Val Arg Val Gly Val 295 300 290 Ser Ala Ala Thr Tyr His Pro Ala Ala Leu Ser Phe Met Cys Ser Val 310 315 Gly Ile Arg Leu Asp Asp Lys Ser Ile Phe 325

- (2) INFORMATION FOR SEQ ID NO:475
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 324 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION  $1...3\overline{24}$
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:475

Met Cys Leu Glu Pro Ile Ile Ala Pro Ile Ser Ser Glu Leu Leu Glu 10 15 Gln Glu Leu Thr Ala Asp Arg Phe Leu Arg Met Thr Asn Lys Ala Gly 25 20 Asn Glu Ile Tyr Val Phe Thr Ala Glu Glu Ala Pro His Cys Met Lys 40 45 Glu Val Gly Arg Leu Arg Glu Glu Ala Phe Arg His Tyr Gly Gly Gly 55 60 Thr Gly Lys Ala Ile Asp Ile Asp Glu Phe Asp Thr Met Pro Gly Ser 75 70 Tyr Lys Gln Leu Ile Val Trp Asp Pro Gln Asn Lys Ala Ile Leu Gly 90 95 85 Gly Tyr Arg Phe Ile Tyr Gly Arg Asp Val Ala Phe Asp Thr Asp Gly 100 110 105 Lys Pro Leu Leu Ala Thr Ala Glu Met Phe Arg Phe Ser Asp Ala Phe 125 120 115 Leu His Asp Tyr Leu Pro Tyr Thr Val Glu Leu Gly Arg Ser Phe Val 135 140 Ser Leu Gln Tyr Gln Ser Thr Arg Met Gly Thr Lys Ala Ile Phe Val 145 150 155 Leu Asp Asn Leu Trp Asp Gly Ile Gly Ala Leu Thr Val Val Asn Pro 170 165 Glu Ala Leu Tyr Phe Tyr Gly Lys Val Thr Met Tyr Lys Asp Tyr Asp 190 180 185 Arg Arg Ala Arg Asn Leu Ile Leu Tyr Phe Leu Arg Lys His Phe Ser 200 205 195 Asp Pro Glu Gly Leu Val Lys Pro Ile His Pro Leu Pro Ile Glu Ile 210 215 220 Ser Ala Glu Asp Glu Ala Leu Phe Ser Ser Ser Asp Phe Asp Thr Asn 225 230 235 Tyr Lys Thr Leu Asn Ile Glu Val Arg Lys Leu Gly Ile Asn Ile Pro 250 255 245 Pro Leu Val Ser Ala Tyr Ile Ala Leu Ser Pro Glu Met Arg Val Phe 265 270 Gly Thr Ala Val Asn Glu Ser Phe Gly Glu Val Glu Glu Thr Gly Ile 285 275 280 Phe Ile Ala Val Gly Lys Ile Leu Glu Glu Lys Lys Gln Arg His Ile 300 295 Glu Ser Phe Ile Leu Ser Arg Asn Glu Lys Lys Gly Leu Asp Ser Ser 315 305 310 Asn Gly Arg Ser

# (2) INFORMATION FOR SEQ ID NO:476

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 547 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...547
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:476

Met Lys Thr Ile Val Arg Tyr Ser Arg Leu Pro Val Ala Leu Phe Phe 10 Cys Leu Leu Gly Ala Val His Leu Ser Val Glu Ala Gln Met Leu Asn 20 25 Thr Pro Phe Glu Leu Ser Asp Gln Ile Val Leu Ser Pro Thr Glu Arg 40 35 Gln Tyr Arg Glu Ile Cys Val Gln Thr Lys Glu Lys Arg Gly Ala Asp 60 Leu Phe Pro Leu Ser Asp Lys Leu Arg Asp Ser Ala Tyr Val Arg Phe 70 75 Gly Ser Ala Tyr Gly Asp Ile Ala Gly Asp Tyr Leu Pro Tyr Asn Gly 85 90 Asn Asn Tyr Ser Ser Leu Ser Leu Glu Ser Gly Gly Arg Ile Ser Val

105 Arg Asn Tyr Gly Thr Leu Gln Gly Ser Ala Ser Tyr Ser Arg Gly Met 120 125 115 His Lys Arg Ile Gly Trp Asn Ala Leu Arg Asn Ala Glu Ala Tyr Tyr 135 130 Pro Tyr Leu Val Ser Asp Ser Thr Gly Gly Asp Tyr His Phe Glu Asp 145 150 155 Tyr Arg Leu Ala Gly Tyr Tyr Ser Phe Arg Ala Gly Arg Leu Pro Leu 170 175 165 Gly Ile Gly Phe Ser Tyr Arg Gly Glu Val Ala Tyr Arg Leu Thr Asp 180 185 190 180 185 Pro Arg Thr Thr Asn Thr Thr Gly Ala Leu Glu Leu Ser Cys Ala Thr 200 205 195 Ser Leu Thr Leu Pro Arg Glu Asn Arg Leu Ser Leu Ser Ala Ala Tyr 215 220 Leu Tyr His Arg Gln His Leu Thr Gln Tyr Asn Trp Arg Pro Gly Gln 230 235 Gln Asp Lys Phe Phe Val Ser Tyr Gly Phe Gly Gln Val Asp Val Ser 250 255 245 Asn Ser Pro Ile Trp Phe Gly Ile Ser Arg Met Asn Tyr Val Asn Gly 265 270 260 Trp Lys Leu Ser Ser Arg Leu Asp Thr Arg Arg Gly Asp Ala Ile Gly 280 275 Leu Asp Tyr Ser Gly Tyr Phe Leu Asp Thr Glu Glu Arg Ser Ser Ile 290 295 300 Asn Leu Phe Ala Leu Leu Tyr Asn Arg Leu Arg Leu Tyr Gly Ser Trp 305 310 315 His Leu Ser Asp Phe Asp Phe Ser Phe Ser Ala Asp Tyr Ala Leu Arg 330 325 Gln Gly Ile Glu Arg Ile Tyr Glu Asp Tyr Lys Pro Asp Asp Asn Tyr 340 345 350His Ile Tyr Asp Leu Arg Ile Leu Ala Ile Arg Arg Trp Tyr Met Leu 360 365 355 Asn Glu Phe Ser Ala Gln Ala Gln Ala Ser Tyr Arg Ile Arg Thr Asp 370 375 380 Arg Gly Cys Ala Leu Arg Val Ser Ala Gly Ser Asp Phe Tyr Gly Tyr 385 390 395 400 Asp Glu Thr Tyr Arg Lys His Gly His His Thr Met Ser Gly Met Leu 405 410 Arg Pro Phe Ala Gly Ile Ala Tyr Asp His Ala Gly Ser Lys Leu Asp 425 420 Phe Gly Leu Ser Leu Ser Ala Ala Tyr Arg Met Val Leu Thr His Ser 435 440 445 Tyr Lys Ile Arg Thr Ile Gln Lys Glu Gln Leu Asp Tyr Gln Leu Ala 455 460 Tyr Leu Pro Tyr Ala Tyr Arg Asn Arg Glu Gly Val Glu Val Arg Ser 475 465 470 Ser Leu Tyr Val Ser Ile Pro Met Gln Asn Thr His Arg Leu Met Thr 495 485 490 Glu Leu Arg Leu Tyr Gly Asp Leu Met Lys Arg Lys Asp Gly Ile Ala 510 500 505 Tyr Gly Lys Thr Pro Gly Val Ile Ser His Ile Leu Ser Asp Pro Gln 525 520 Ala Glu Arg Thr Ser Gly His Thr Ile Gly Ala Ile Cys Asn Ile Ser 535 530 Tyr Leu Phe 545

## (2) INFORMATION FOR SEQ ID NO:477

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 750 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...750
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:477

Met Lys Lys Leu His Met Ile Ala Ala Leu Ala Val Leu Pro Phe Cys Leu Thr Ala Gln Ala Pro Val Ser Asn Ser Glu Ile Asp Ser Leu Ser Asn Val Gln Leu Gln Thr Val Gln Val Val Ala Thr Arg Ala Thr Ala Lys Thr Pro Val Ala Tyr Thr Asn Val Arg Lys Ala Glu Leu Ser Lys Ser Asn Tyr Gly Arg Asp Ile Pro Tyr Leu Leu Met Leu Thr Pro Ser Val Val Ala Thr Ser Asp Ala Gly Thr Gly Ile Gly Tyr Ser Gly Phe 85 90 Arg Val Arg Gly Thr Asp Ala Asn Arg Ile Asn Ile Thr Thr Asn Gly 100 105 Val Pro Leu Asn Asp Ser Glu Ser Gln Ser Val Phe Trp Val Asn Met Pro Asp Phe Ala Ser Ser Ile Glu Asp Leu Gln Val Gln Arg Gly Val Gly Thr Ser Thr Asn Gly Ala Gly Ala Phe Gly Ala Ser Val Asn Met Arg Thr Asp Asn Leu Gly Leu Ala Pro Tyr Gly Arg Val Asp Leu Ser Gly Gly Ser Phe Gly Thr Phe Arg Arg Ser Val Lys Leu Gly Ser Gly Arg Ile Gly Arg His Trp Ala Val Asp Ala Arg Leu Ser Lys Ile Gly Ser Asp Gly Tyr Val Asp Arg Gly Ser Val Asp Leu Lys Ser Tyr Phe Ala Gln Val Gly Tyr Phe Gly Ser Asn Thr Ala Leu Arg Phe Ile Thr Phe Gly Gly Lys Glu Val Thr Gly Ile Ala Trp Asn Gly Leu Ser Lys 250 255 Glu Asp Glu Ala Lys Tyr Gly Arg Arg Tyr Asn Ser Ala Gly Leu Met Tyr Val Asp Ala Gln Gly Val Pro His Tyr Tyr His Asn Thr Asp Asn Tyr Glu Gln Arg His Tyr His Ala Ile Met Thr His Ser Phe Ser Pro Ser Val Ile Leu Asn Leu Thr Ala His Tyr Thr Ala Gly Tyr Gly Tyr 305 310 Thr Asp Glu Tyr Arg Thr Gly Arg Lys Leu Lys Glu Tyr Ala Leu Gln Pro Tyr Val Glu Asn Ser Val Thr Val Lys Lys Thr Asp Leu Ile Arg 340 345 Gln Lys Tyr Leu Asp Asn Asp Phe Gly Gly Leu Ile Gly Ser Leu Asn 355 360 Trp His Thr Gly Ala Trp Asp Leu Gln Phe Gly Ala Ser Gly Asn Ile Tyr Lys Gly Asp His Phe Gly Arg Ile Thr Tyr Ile Lys Lys Tyr Asn Gln Pro Leu Ala Pro Asp Phe Glu Tyr Tyr Arg Asn Arg Ala Asp Lys Arg Glu Gly Ala Ala Phe Ala Lys Ala Asn Trp Gln Ile Thr Pro Glu Leu Asn Met Tyr Ala Asp Leu Gln Tyr Arg Thr Ile Gly Tyr Thr Ile Asn Gly Ile Thr Asp Glu Tyr Asp Glu Val Gln Gly Ser Met Gln His Ile Asp Leu Asp Lys Thr Phe Arg Phe Leu Asn Pro Lys Ala Gly Leu 465 470 Thr Tyr Ser Phe Asp Asp Ala His Thr Ala Tyr Ala Ser Val Ala Val Ala His Arg Glu Pro Asn Arg Thr Asn Tyr Thr Glu Ala Gly Ile Gly Gln Tyr Pro Thr Pro Glu Arg Leu Ile Asp Tyr Glu Leu Gly Tyr Arg Tyr Ala Ser Pro Leu Leu Ser Ala Gly Val Gly Leu Tyr Tyr Met Gln 530 535 Tyr Lys Asp Gln Leu Val Leu Asp Gly Arg Leu Ser Asp Val Gly Gln 545 550 Met Leu Thr Ser Asn Val Pro Asp Ser Tyr Arg Met Gly Leu Glu Leu Thr Leu Gly Trp Gln Ile Leu Pro Arg Leu Leu Arg Trp Asp Ala Ser Phe Thr Met Ser Arg Asn Lys Ile Asp Arg Tyr Val Gln Tyr Thr Ser 

Val Tyr Asp Ala Asp Tyr Asn Trp Leu Glu Leu Lys Glu Glu Thr Leu 615 620 Glu Ser Thr Asp Ile Ala Tyr Ser Pro Asn Val Ile Ala Gly Ser Met 630 635 625 Leu Thr Leu Ser His Ala Gly Phe Glu Met Ala Trp Thr Ser Arg Phe 650 655 645 Val Ser Lys Gln Tyr Leu Asp Asn Thr Gln Arg Ser Asp Arg Met Leu 660 665 670 Ser Ser Tyr Trp Val Asn Asp Leu Arg Leu Gly Tyr Val Leu Pro Val 680 675 685 His Phe Val Lys Arg Val Ala Leu Gly Val Gln Leu Asn Asn Leu Phe 690 695 700 Asn Leu Met Tyr Ala Ser Asn Ala Tyr Ile Tyr Asp Ala Gly Tyr Val 710 715 Gln Ala Ser Gly Glu Leu Ser Ala Tyr Ala Asp Leu Arg Tyr Tyr Pro 725 730 735 Gln Ala Gly Phe Asn Ala Leu Gly Ser Leu Thr Ile Asp Phe

## (2) INFORMATION FOR SEQ ID NO:478

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 494 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...494
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:478

Met Lys Arg Arg Phe Leu Ser Leu Leu Leu Tyr Ile Leu Ser Ser 10 Ile Ser Leu Ser Ala Gln Arg Phe Pro Met Val Gln Gly Ile Glu Leu 20 25 Asp Thr Asp Ser Leu Phe Ser Leu Pro Lys Arg Pro Trp Arg Ala Ile 35 40 45 Gly Lys Thr Ile Gly Val Asn Leu Ala Val Trp Gly Phe Asp His Phe 55 Ile Met Asn Glu Asp Phe Ala Asp Ile Ser Trp Gln Thr Ile Lys Ser 70 75 Asn Phe Gln Thr Gly Phe Gly Trp Asp Asn Asp Lys Phe Val Thr Asn 85 90 Leu Phe Ala His Pro Tyr His Gly Ser Leu Tyr Phe Asn Ala Ala Arg 100 105 110 Ser Asn Gly Leu Ser Phe Arg His Ser Ala Pro Phe Ala Phe Phe Gly 115 120 125 Ser Leu Met Trp Glu Leu Leu Met Glu Asn Glu Pro Pro Ser Ile Asn 130 135 140 Asp Leu Cys Ala Thr Thr Ile Gly Gly Ile Ala Leu Gly Glu Met Gly 150 155 His Arg Leu Ser Asp Leu Leu Ile Asp Asn Arg Thr Thr Gly Trp Glu 165 170 175 Arg Met Gly Arg Glu Val Ala Ile Ala Leu Ile Asn Pro Met Arg Phe 180 185 190 Leu Asn Arg Leu Thr Ala Gly Glu Val Thr Ser Val Gly Ser Arg Ser 195 200 205 Gly Gln Ile Phe Gln Ser Val Pro Ile Asn Ile Val Val Asp Ala Gly 210 215 220 Phe Arg Phe Leu Ala Asp Lys Arg His Ala Arg Thr Gly Ala Thr Ala 230 235 Leu Thr Leu Asn Leu Arg Phe Asp Tyr Gly Asp Pro Phe Arg Ser Glu 250 Thr Phe Ser Pro Tyr Asp Phe Phe Gln Phe Lys Ala Gly Leu Ser Phe 260 265 270 Ser Glu Ser Gln Pro Leu Leu Ser Gln Ile Asn Leu Ile Gly Ile Leu 275 280 285 Ser Gly Cys Gln Leu Leu Ala His Glu Arg Thr Val Leu Val Gly Gly 290 295 300

Leu Phe Gln His Phe Asp Tyr Tyr Asn Ser Glu Lys Arg Ile Ser Lys 310 315 Asn Ser Glu Glu Val Leu Val Thr Pro Tyr Arg Ile Ser Gln Val Ala 325 330 335 Ala Leu Gly Gly Leu Ile Phe Gln His His Gly Lys Phe Arg Arg 340 345 Arg Pro Leu Glu Leu Tyr Ala Glu Thr Tyr Leu Asn Val Val Pro Met 355 360 365 Gly Ala Ser Leu Ser Asp His Tyr Asn Val Asp Asn Arg Asp Tyr Asn 380 375 Leu Gly Ser Gly Leu Ser Gly Lys Leu Tyr Leu Gly Ala Thr Tyr Asn 390 395 Asp Leu Trp Ser Trp Leu Leu Gly Val Glu Ser Tyr Arg Leu Tyr Thr 405 410 415 Trp Ile Gly Tyr Glu Glu Pro His Gln Lys Asn Thr Asp Val Ser Ser 420 425 430 Phe Met Val Gln Gly Asp Glu Ser Lys Ala Arg Leu Leu Val Thr Ser 435 440 Ser Glu Phe Ala Phe His Pro Gly Pro Trp His Val Ala Ile Val Ala 450 455 460 Arg Arg Phe Ile Arg Lys Thr Ala Tyr Gln Phe Tyr Pro Asn Val Ser 465 470 475 Phe Asp Thr Gly Asp Ile Gln Leu Arg Val Gly Phe His Phe 485

#### (2) INFORMATION FOR SEQ ID NO:479

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 294 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...294
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:479

Met Lys Arg Leu Ile Val Phe Leu Ala Met Gly Gly Leu Leu Phe Thr 5 10 Leu Ala Asn Ala Gln Glu Ala Asn Thr Ala Ser Asp Thr Pro Lys Lys 20 25 Asp Trp Thr Ile Lys Gly Val Thr Gly Leu Asn Ala Ser Gln Thr Ser 35 40 45 Leu Thr Asn Trp Ala Ala Gly Gly Glu Asn Thr Val Ala Gly Asn Leu 55 60 Tyr Leu Asn Ile Asp Ala Asn Tyr Leu Lys Asp Lys Trp Ser Trp Asp 70 75 Asn Gly Leu Arg Thr Asp Phe Gly Leu Thr Tyr Thr Thr Ala Asn Lys 85 90 Trp Asn Lys Ser Val Asp Lys Ile Glu Leu Phe Thr Lys Ala Gly Tyr 100 105 Glu Ile Gly Lys His Trp Tyr Gly Ser Ala Leu Phe Thr Phe Leu Ser 115 120 125 Gln Tyr Ala Lys Gly Tyr Glu Lys Pro Ser Asp His Leu Thr Gly Val 135 140 Lys His Ile Ser Asn Phe Phe Ala Pro Ala Tyr Leu Thr Leu Gly Ile 150 155 160 Gly Ala Asp Tyr Lys Pro Asn Glu Lys Phe Ser Leu Tyr Leu Ser Pro 165 170 175 Thr Thr Gly Lys Leu Thr Val Val Ala Asp Asp Tyr Leu Ser Ser Leu 180 185 Gly Ala Phe Gly Val Lys Val Gly Glu Lys Thr Met Phe Glu Leu Gly 200 195 205 Ala Leu Val Val Gly Ser Ala Asn Ile Asn Leu Met Glu Asn Val Asn 210 215 220 Leu Ile Thr Lys Ala Ser Phe Phe Ser Ala Tyr Thr His Asp Phe Gly 230 235 240 Asn Ile Asp Ile Asn Trp Glu Ala Met Leu Ala Met Lys Ile Asn Lys 245 250

 Phe
 Leu
 Thr
 Ala
 Thr
 Ile
 Ala
 Thr
 Asn
 Leu
 Ile
 Tyr
 Asp
 Asp
 Asp
 Val

 Lys
 Ile
 Asn
 Asp
 Gly
 Pro
 Lys
 Ile
 Gln
 Phe
 Lys
 Glu
 Val
 Val
 Gly
 Val
 Gly
 Val
 Val
 Asp
 Thr
 Phe
 Phe

- (2) INFORMATION FOR SEQ ID NO:480
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 204 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...204
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:480

Met Lys Lys Met Ile Leu Ala Ala Thr Met Leu Leu Ala Thr Ile Gly Phe Ala Asn Ala Gln Ser Arg Pro Ala Leu Arg Leu Asp Ala Asn Phe 25 3.0 Val Gly Ser Asn Leu Met Gln Lys Val Ala Asn Thr Ser Val Asn Asn 35 40 45 Lys Met Ile Val Gly Leu Arg Val Gly Ala Ala Ala Glu Phe Ala Leu 60 55 Ser Asn Asp Gly Phe Tyr Leu Ala Pro Gly Leu Ala Tyr Thr Met Arg 70 Gly Ala Lys Met Glu Ser Leu Ser Glu Thr Thr Thr Arg Leu His Tyr 85 90 Leu Gln Ile Pro Val Asn Ala Gly Met Arg Phe Ser Phe Ala Asp Asn 105 110 100 Met Ala Ile Ser Leu Glu Ala Gly Pro Tyr Phe Ala Tyr Gly Val Ala 120 125 Gly Thr Ile Lys Thr Lys Val Ala Gly Val Thr Ala Ser Val Asp Ala 130 135 140 Phe Gly Asp Asn Gly Tyr Asn Arg Phe Asp Leu Gly Leu Gly Leu Ser 150 155 145 Ala Ala Leu Ser Tyr Asp Arg Tyr Tyr Val Gln Ile Gly Tyr Glu His 170 165 Gly Leu Leu Asn Met Leu Lys Asp Ala Pro Asp Lys Thr Ser Leu Arg 185 180 Asn His Asp Phe Phe Val Gly Leu Gly Val Arg Phe 200

- (2) INFORMATION FOR SEQ ID NO:481
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 243 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...243
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:481

Met Lys Arg Ile Phe Thr Val Ala Leu Val Leu Leu Ala Ser Val Thr 1 5 10 15 Met Ala Ile Gly Gln Ser Arg Pro Ala Leu Arg Val Asp Ala Asn Phe

20 25 Val Gly Ser Asn Gln Ser Met Lys Arg Asp Gly Tyr Val Trp Asp Thr 40 45 Lys Met Asn Val Gly Leu Arg Val Gly Ala Ala Ala Glu Phe Met Ile 55 60 Gly Ser Arg Gly Phe Tyr Leu Ala Pro Gly Leu Asn Tyr Thr Met Lys 70 75 Gly Ser Lys Thr Glu Trp Asp Ile Pro Glu Met Val Pro Gly Thr Tyr 90 85 Ile Thr Met Val Ser Thr Arg Leu His Tyr Leu Gln Leu Pro Ile Asn 105 110 100 Ala Gly Met Arg Phe Asp Leu Met Asn Asp Met Ala Val Ser Ile Glu 115 120 125 Ala Gly Pro Phe Leu Ala Tyr Gly Ile Tyr Gly Thr Tyr Arg Gln Lys 130 135 140 Leu Glu Gly Trp Lys Pro Asn Asn Tyr Ser Thr Glu Phe Phe Gly Pro 150 155 Thr Leu Gly Gly Pro Thr Asn Ile Arg Trp Asp Ile Gly Ala Asn Ile 165 170 Ile Ala Ala Phe His Tyr Lys Arg Tyr Tyr Ile Gln Ile Gly Tyr Glu 180 185 190 His Gly Phe Val Asp Ile Val Ser Gly Gly Gly Ser Asp Ile Pro Arg 205 200 195 Leu Asn Asp Asn Arg Gln Ser Ser Ser Thr Thr Ala Leu Arg Glu Lys 210 215 220 Gly Asn Asn Glu Tyr Ala Tyr Asn Arg Asp Phe Phe Val Gly Ile Gly 235 Tyr Arg Phe

#### (2) INFORMATION FOR SEQ ID NO:482

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 207 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...207
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:482

Met Lys Arg Met Leu Leu Leu Val Val Leu Leu Tyr Gly Ile Ala 10 5 Gly Arg Leu Ala Ala Gln Asp Val Ile Arg Pro Trp Ser Leu Gln Val 20 25 Gly Ala Gly Tyr Ser Asp Thr Glu Asn Ile Pro Gly Gly Phe Thr Tyr 45 35 40 Gly Phe Tyr Leu Gly Lys Arg Met Gly Ser Phe Leu Glu Val Gly Leu 55 60 Ser Met Tyr Asn Ser Thr Arg Gln Thr Ala Asn Asn Ala Asp Ser Phe 70 75 Ala Ser Asn Glu Gly Asp Gly Ser Phe Gln Val Asn Met Ser Ser Pro 85 90 95 Asn Glu Lys Trp Ser Phe Phe Asp Ala Gly Ser Ala Asn Cys Tyr Met 100 105 110 Ile Val Val Gly Val Asn Pro Leu His Leu Phe Trp Gln Asn Ser Arg 120 125 115 His Asn Leu Phe Leu Ala Val Gln Ala Gly Leu Ser Asn Lys His Asn 135 140 Ile His Phe Ile Tyr Gly Asp Lys Gly Ala Lys Val Ser Ile Tyr Thr 150 155 Asn Ser Asn Thr Tyr Ile Gly Tyr Gly Ala Arg Val Ala Tyr Glu Tyr 170 175 165 Gln Ile His Lys Asn Val Gly Ala Gly Ala Ala Val Met Tyr Asp His 180 185 190 Gly Asn Lys Met Leu Thr Ala Met Ala Thr Leu Ser Thr His Phe 200 195

## (2) INFORMATION FOR SEQ ID NO:483

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 951 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...951
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:483

Met 1	Arg	Val	Ser	Asp 5	Leu	Cys	Ser	Arg	Leu 10	Ser	Trp	Leu	Leu	Pro 15	Val
Ile	Leu	Val	Gly 20	Leu	Leu	Cys	Ala	Thr 25	Leu	Val	Ala	Ala	Glu 30	Arg	Pro
Met	Ala	Gly 35	Ala	Val	Gly	Leu	His 40	His	Arg	Arg	His	Ala 45	Ala	Leu	Ser
Asp	Ser 50	Thr	Ala	Lys	Asp	Thr 55	Val	Pro	Leu	Ala	Lys 60	Pro	Ile	Pro	Asp
Ser 65	Ala	Phe	Arg	Asp	Ser 70	Leu	Pro	Ala	Asp	Ser 75	Thr	Gly	Ser	Met	Arg 80
Gln	Asp	Ser	Val	Tyr 85	Asp	Asp	Glu	Phe	Glu 90	Leu	Głu	Asp	Ile	Val 95	Glu
Tyr	Glu	Ala	Ala 100	Asp	Ser	Ile	Val	Leu 105	Leu	Gly	Gln	Asn	Arg 110	Ala	Tyr
Leu	Phe	Gly 115	Lys	Ser	Tyr	Val	Ser 120	Tyr	Gln	Lys	Ser	Arg 125	Leu	Glu	Ala
Asn	Phe 130	Met	Tyr	Leu	Asn	Thr 135	Asp	Ser	Ser	Thr	Val 140	Tyr	Thr	Arg	Tyr
Val	Leu	Asp	Thr	Ala	Gly	Tyr	Pro	Met	Ala	Phe	Pro	Val	Phe	Lys	Asp
145					150					155					160
				165					170		Tyr			175	Thr
			180					185			Gln		190		Tyr
Leu	Thr	Ala 195	Gly	Lys	Thr	Lys	Lys 200	Met	Pro	Asp	Asn	11e 205	Met	Phe	Met
Gln	Gly 210	Gly	Arg	Tyr	Thr	Thr 215	Cys	Asp	Asn	His	Asp 220	His	Pro	His	Phe
Tyr 225	Ile	Asn	Leu	Ser	Lys 230	Ala	Lys	Val	His	Pro 235	Glu	Lys	Asp	Ile	Val 240
Thr	Gly	Pro	Val	Asn 245	Leu	Val	Ile	Ala	Asp 250	Met	Pro	Leu	Pro	Ile 255	Gly
Leu	Pro	Phe	Gly 260	Tyr	Phe	Pro	Phe	Ser 265	Asn	Lys	Tyr	Ser	Ser 270	Gly	Ile
		275					280				Gly	285			
Asn	Gly 290	Gly	Tyr	Tyr	Phe	Ala 295	Phe	Ser	Asp	Tyr	11e 300	Asp	Leu	Ala	Leu
Arg 305	Gly	Glu	Ile	Phe	Ser 310	Lys	Gly	Ser	Trp	Gly 315	Ile	Ser	Ala	Gln	Ser 320
Lys	Tyr	Lys	Lys	Arg 325	Tyr	Lys	Tyr	Asn	Gly 330	Ser	Phe	Glu	Ala	Asn 335	Tyr
Leu	Val	Ser	Lys 340	Ser	Gly	Asp	Lys	Tyr 345	Val	Pro	Gly	Asp	Tyr 350	Ser	Lys
Thr	Thr	Ser 355	Leu	Asn	Ile	Arg	Trp 360	Thr	His	Ser	Gln	Asp 365	Pro	Lys	Ala
Asn	Pro 370	Leu	Gln	Thr	Leu	Ser 375	Ala	Asn	Val	Asn	Phe 380	Ala	Thr	Gly	Ser
Tyr 385	Phe	Gln	Asn	Ser	Leu 390	Asn	Thr	Thr	Tyr	Asp 395	Val	Asn	Ala	Arg	Thr 400
Ala	Thr	Thr	Arg	Ser 405	Ser	Ala	Val	Ser	Tyr 410	Ser	Arg	Lys	Phe	Pro 415	Gly
Thr	Pro	Phe	Ser 420	Ile	Thr	Gly	Ser	Met 425	Asp	Ile	Ser	Gln	Asn 430	Met	Arg
Asp	Thr	Thr 435	Val	Ser	Leu	Thr	Leu 440	Pro	Asn	Leu	Ser	Ile 445	Asn	Met	Ser
Thr	Arg	Tyr	Pro	Phe	Lys	Arg	Lys	Thr	Arg	Val	Gly	Pro	Glu	Arg	Trp

455 Tyr Glu Lys Leu Ser Val Gly Tyr Ser Gly Gln Leu Arg Asn Ser Ile 465 470 475 480 Leu Thr Lys Glu Lys Asp Leu Leu Gln Ser Asn Leu Val Arg Asp Trp 485 490 495 Lys Asn Gly Met Arg His Ser Val Pro Ile Ser Leu Thr Val Pro Leu 500 505 510 Leu Asp Tyr Ile Asn Leu Thr Met Gly Val Asn Tyr Asn Glu Trp Trp 520 525 Tyr Thr Lys Gly Ile Arg Lys Ser Trp Asn Glu Asp Lys Lys Thr Phe 530 535 540Leu Pro Ser Asp Thr Thr Tyr Lys Phe Arg Arg Leu Tyr Asp Tyr Ser 545 550 555 Leu Ser Ala Gly Leu Ser Thr Thr Leu Tyr Gly Met Phe Lys Pro Trp 565 570 575 Lys Pro Phe Ser Phe Gly Gly Asn Leu Ile Met Ile Arg His Arg Phe 580 585 Thr Pro Thr Val Ser Phe Ser Tyr Met Pro Asp Phe Thr Lys Arg Arg 595 600 605 Tyr Gly Phe Trp Glu Leu Leu Glu His Thr Asp Gln Asn Gly Lys Leu 610 615 620 His Thr Leu Leu Tyr Ser Pro Tyr Phe Glu Gln Ile Phe Gly Ala Pro 635 630 Ser Met Gly Asn Ala Gly Ser Val Asn Phe Ser Phe Asp Asn Asn Leu 645 650 655 Glu Ala Lys Ile Lys Ser Lys Ser Asp Ser Thr Gly Ile Lys Lys Ile 660 665 Ser Leu Ile Asp Gln Phe Thr Trp Ser Thr Ser Tyr Asn Met Phe Ala 675 680 685 Asp Ser Ile Arg Trp Ser Asn Ile Ser Ala Ser Leu Ala Leu Arg Leu 695 700 Ser Lys Ser Phe Thr Leu Arg Leu Ser Gly Leu Phe Asp Pro Tyr Leu 705 710 715 Thr Lys Tyr Tyr Glu Gly Glu Asp Gly Lys Ile Ile Pro Tyr Lys Ser 725 730 735 Asn Asp Leu Arg Ile Phe Asn Gly Lys Gly Leu Ala Arg Leu Ile Ser 740 745 Thr Gly Thr Ser Phe Ser Tyr Thr Leu Asn Lys Glu Ser Leu Ser Gly 755 760 Leu Ile Ala Leu Phe Ser Gly Lys Lys Glu Arg Arg Asp Glu Lys Lys 770 775 780 Asn Thr Gly Ala Thr Pro His Glu Gly Asp Asp Ala Ala Asp Ile Leu 790 795 Glu Gly Gly Arg Pro Gln Asn Glu Ser Gly Gly Ser Leu Leu Glu Arg 805 810 815 Asn Arg Gln Gly Gly Ala Val Asp Gln Asp Gly Tyr Phe Ala Tyr Ser 820 825 830 Ile Pro Trp Ser Leu Ser Phe Asp Tyr Ser Trp Asn Ile Ala Thr Asp 835 840 Tyr Asn Arg Tyr Asn Val Asn Lys Met Glu His Tyr Tyr Arg Val Thr 860 855 850 Gln Asn Leu Ser Phe Arg Gly Asn Ile Gln Pro Thr Pro Asn Trp Ser 865 870 875 Phe Gly Phe Asn Ala Asn Tyr Asn Phe Asp Leu Lys Lys Ile Thr Ser 885 . 890 895 Leu Thr Cys Asn Val Thr Arg Asp Met His Cys Trp Ala Ile Ser Ala 900 905 910 Ser Phe Ile Pro Ile Gly Ala Tyr Lys Ser Tyr Asn Phe Val Ile Ser 915 920 Val Lys Ser Ser Leu Leu Gln Asp Leu Lys Tyr Gln Gln Ser Asn Arg 930 935 Pro Ile Thr Asn Thr Trp Tyr 945 950

### (2) INFORMATION FOR SEQ ID NO:484

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1226 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis

# (ix) FEATURE:

- (A) NAME/KEY: misc_feature
  (B) LOCATION 1...1226

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:484

Met 1	Met	Lys	Arg	Tyr 5	Thr	Ile	Ile	Leu	Ala 10	Val	Phe	Leu	Leu	Phe 15	Сув
Thr	Val	Phe	Thr 20	Phe	Gln	Ile	Lys	Ala 25	Arg	Pro	Tyr	Glu	Arg	Phe	Ala
Asp	Val	Glu 35	Lys	Pro	Trp	Ile	Gln 40	Lys	His	Ser	Met	Asp 45	Ser	Lys	Leu
Val	Pro 50	Ala	Asn	ГÀЗ	Gly	Asn 55	Leu	Ile	Gln	Ala	Glu 60	Ile	Val	Tyr	Gln
Ser 65	Val	Ser	Glu	His	Ser 70	Asp	Leu	Val	Ile	Ser 75	Pro	Val	Asn	Glu	Ile 80
Arg	Pro	Ala	Asn	Arg 85	Phe	Pro	Ser	His	Arg 90	Lys	Ser	Phe	Phe	Ala 95	Glu
Asn	Leu	Arg	Ala 100		Pro	Pro	Val	Val 105	Pro	Val	Ala	Val	Asp 110	Lys	Tyr
Ala	Val	Pro 115	Val	Ala	Asn	Pro	Met 120	_	Pro	Glu	Asn	Pro 125	Asn	Ala	Trp
	130			-	Ile	135		_			140				-
145					Asp 150					155					160
				165	Ala				170					175	
			180		Thr			185					190		
Ser	Tyr	Asp 195	His	Glu	Pro	His	Arg 200	Leu	Ser	Asp	Phe	Thr 205	Lys	Asp	Thr
	210				Lys	215					220		_	_	
225					Leu 230	_			_	235					240
				245	His				250		_	_		255	
			260		Lys			265			_		270	_	-
		275			Asp		280	_				285	_		
	290				Tyr	295					300				
305					His 310			-		315	_	_			320
				325	Tyr				330					335	
			340		Leu			345		_			350		_
		355			Cys		360					365			
	370				Thr	375					380			_	
385	Ата	Leu	АТА	ASII	Asn 390	ser	Leu	гÀг	Leu	395	Ата	Inr	Asp	GIU	Asn 400
His	Phe	Phe	Thr	Ala 405	Thr	Pro	Ala	Asn	Leu 410	Ala	Ala	Ala	Phe	Asp 415	Asn
Ile	Ala	Gln	Thr 420	Ile	Asn	Ile	Gly	Ile 425	Gln	Arg	Gly	Glu	Val 430	Thr	Asp
Phe	Val	Ala 435	Pro	Gly	Phe	Ile	Val 440	ГÀЗ	Asn	Leu	Thr	Gln 445	Ser	Gly	Asp
	450				Asn	455					460				
465					Thr 470					475					480
				485	Tyr				490					495	
			500		Val			505					510		
		515			Asn		520					525			
	530					535					540				_
Leu 545	Gly	Tyr	Gly	Val	Ile 550	Lys	Arg	His	Tyr	Val 555	Leu	Val	Asn		Asp 560

```
Gly Gln Pro Ile Gln Ala Asn Gly Thr Val Val Ser Ser Leu Ser Glu
            565
                            570
Ala His Val Leu Gln Ser Gln Asp Phe Phe Leu Pro Ser Gly Gly Gly
                          585
                                           590
His Ile Val Pro Lys Trp Ile Lys Leu Asp Lys Thr Thr Glu Ala Leu
     595
                     600
Gln Tyr Tyr Ser Val Pro Pro Thr Asn Thr Val Ile Thr Thr Ala Asp
           615
                              620
Gly Lys Arg Tyr Arg Phe Val Glu Val Pro Gly Ser Thr Pro Asn Pro 625 630 635 640
Gly Gln Ile Gly Ile Ser Trp Lys Lys Pro Ala Gly Asn Ala Tyr Phe
        645 650 655
Ala Tyr Lys Leu Leu Asn Tyr Trp Met Gly Gly Thr Thr Asp Gln Gln
        660
                 665
                                    670
Ser Glu Trp Asp Val Thr Ser Asn Trp Thr Gly Ala Gln Val Pro Leu
                 680
                                     685
Thr Gly Glu Asp Val Glu Phe Ala Thr Thr Glu Asn Phe Gly Ser Pro
                 695
                                    700
Ala Val Ala Asp Leu His Val Pro Thr Thr Asn Pro Lys Ile Ile Gly
         710
                        715
Asn Leu Ile Asn Asn Ser Asp Lys Asp Leu Val Val Thr Thr Ser Ser
          725
                      730
Gln Leu Thr Ile Asn Gly Val Val Glu Asp Asn Asn Pro Asn Val Gly
                 745
         740
Thr Ile Val Val Lys Ser Ser Lys Asp Asn Pro Thr Gly Thr Leu Leu
     755 760
                              765
Phe Ala Asn Pro Gly Tyr Asn Gln Asn Val Gly Gly Thr Val Glu Phe
                 775
                                  780
Tyr Asn Gln Gly Tyr Asp Cys Ala Asp Cys Gly Met Tyr Arg Arg Ser
              790
                               795
Trp Gln Tyr Phe Gly Ile Pro Val Asn Glu Ser Gly Phe Pro Ile Asn
                   810
          805
Asp Val Gly Gly Asn Glu Thr Val Asn Gln Trp Val Glu Pro Phe Asn
         820
              825
                                 830
Gly Asp Lys Trp Arg Pro Ala Pro Tyr Ala Pro Asp Thr Glu Leu Gln
              840
                              845
Lys Phe Lys Gly Tyr Gln Ile Thr Asn Asp Val Gln Ala Gln Pro Thr
          855
                            860
Gly Val Tyr Ser Phe Lys Gly Met Ile Cys Val Cys Asp Ala Phe Leu
                      875
             870
Asn Leu Thr Arg Thr Ser Gly Val Asn Tyr Ser Gly Ala Asn Leu Ile
            885
                           890
Gly Asn Ser Tyr Thr Gly Ala Ile Asp Ile Lys Gln Gly Ile Val Phe
         900
                  905
Pro Pro Glu Val Glu Gln Thr Val Tyr Leu Phe Asn Thr Gly Thr Arg
 915 920
                              925
Asp Gln Trp Arg Lys Leu Asn Gly Ser Thr Val Ser Gly Tyr Arg Ala
  930
          935
                                   940
Gly Gln Tyr Leu Ser Val Pro Lys Asn Thr Ala Gly Gln Asp Asn Leu
       950 955
Pro Asp Arg Ile Pro Ser Met His Ser Phe Leu Val Lys Met Gln Asn
                             970
Gly Ala Ser Cys Thr Leu Unk Ile Leu Tyr Asp Lys Leu Leu Lys Asn
         980
               985
                                      990
Thr Thr Val Asn Asn Gly Asn Gly Thr Gln Ile Thr Trp Arg Ser Gly
    995
              1000
                                        1005
Asn Ser Gly Ser Ala Asn Met Pro Ser Leu Val Met Asp Val Leu Gly
 1010 1015
                             1020
Asn Glu Ser Ala Asp Arg Leu Trp Ile Phe Thr Asp Gly Gly Leu Ser
1025 1030 1035
Phe Gly Phe Asp Asn Gly Trp Asp Gly Arg Lys Leu Thr Glu Lys Gly
            1045 1050
                                               1055
Leu Ser Gln Leu Tyr Ala Met Ser Asp Ile Gly Asn Asp Lys Phe Gln
                 1065
        1060
Val Ala Gly Val Pro Glu Leu Asn Asn Leu Leu Ile Gly Phe Asp Ala
    1075 1080
Asp Lys Asp Gly Gln Tyr Thr Leu Glu Phe Ala Leu Ser Asp His Phe
                  1095
                                    1100
Ala Lys Gly Ala Val Tyr Leu His Asp Leu Gln Ser Gly Ala Lys His
    1110
                                 1115
Arg Ile Thr Asn Ser Thr Ser Tyr Ser Phe Asp Ala Lys Arg Gly Asp 1125 1130 1135
Ser Gly Ala Arg Phe Arg Leu Ser Tyr Gly Cys Asp Glu Asn Val Asp
        1140 1145
                                        1150
Asp Ser His Val Val Ser Thr Asn Gly Arg Glu Ile Ile Ile Leu Asn
              1160
Gln Asp Ala Leu Asp Cys Thr Val Thr Leu Phe Thr Ile Glu Gly Lys
```

1170

Leu Leu Arg Arg Leu Lys Val Leu Ala Gly His Arg Glu Val Met Lys

1185

1190

Val Gln Thr Gly Gly Ala Tyr Ile Val His Leu Gln Asn Ala Phe Thr

1205

Asn Asp Val His Lys Val Leu Val Glu Tyr

1220

1225

#### (2) INFORMATION FOR SEQ ID NO:485

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1225 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...1225
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:485

Met Lys Arg Tyr Thr Ile Ile Leu Ala Val Phe Leu Leu Phe Cys Thr 10 Val Phe Thr Phe Gln Ile Lys Ala Arg Pro Tyr Glu Arg Phe Ala Asp 20 25 Val Glu Lys Pro Trp Ile Gln Lys His Ser Met Asp Ser Lys Leu Val 35 40 45 Pro Ala Asn Lys Gly Asn Leu Ile Gln Ala Glu Ile Val Tyr Gln Ser 55 60 Val Ser Glu His Ser Asp Leu Val Ile Ser Pro Val Asn Glu Ile Arg 65 70 75 80 Pro Ala Asn Arg Phe Pro Ser His Arg Lys Ser Phe Phe Ala Glu Asn 90 Leu Arg Ala Ser Pro Pro Val Val Pro Val Ala Val Asp Lys Tyr Ala 100 105 110 Val Pro Val Ala Asn Pro Met Asp Pro Glu Asn Pro Asn Ala Trp Asp 115 120 125 125 Val Thr Leu Lys Ile Thr Thr Lys Ala Val Thr Val Pro Val Asp Val 130 135 140 Val Met Val Ile Asp Gln Ser Ser Met Gly Gly Gln Asn Ile Ala 145 150 155 Arg Leu Lys Ser Ala Ile Ala Ser Gly Gln Arg Phe Val Lys Lys Met 165 170 175 Leu Pro Lys Gly Thr Ala Thr Glu Gly Val Arg Ile Ala Leu Val Ser 180 185 190 Tyr Asp His Glu Pro His Arg Leu Ser Asp Phe Thr Lys Asp Thr Ala 195 200 205 Phe Leu Cys Gln Lys Ile Arg Ala Leu Thr Pro Ile Trp Gly Thr His 215 220 Thr Gln Gly Gly Leu Lys Met Ala Arg Asn Ile Met Ala Thr Ser Thr 225 230 230 235 240 Ala Val Asp Lys His Ile Ile Leu Met Ser Asp Gly Leu Ala Thr Glu 245 . 250 255 Gln Tyr Pro Val Lys Asn Val Thr Thr Ala Asp Phe Ile Gly Lys Thr 260 265 270 Gly Asn Ala Asn Asp Pro Ile Asp Leu Val Ile Gln Gly Ala Ile Asn 275 280 285 Phe Pro Thr Asn Tyr Val Ser Asn Asn Pro Ser Thr Pro Leu Thr Pro 290 295 300 Asn Tyr Pro Thr His Ser Ser Lys Val Gly Arg Arg Asn Leu Pro Glu 305 310 315 320 315 Ser Lys Phe Asp Tyr Ser Asn Leu Ser Ala Arg Ile Thr Phe Asp Gly 325 330 335 Val Ala Gly Ala Leu Val Tyr Glu Pro Arg Phe Pro His Pro Tyr Tyr 345 350 Tyr Tyr Phe Pro Cys Asn Ala Ala Ile Asn Glu Ala Gln Phe Ala Lys 355 360 365 Asn Ser Gly Tyr Thr Ile His Thr Ile Gly Tyr Asp Leu Gly Asp Phe 375 380 Ala Leu Ala Asn Asn Ser Leu Lys Leu Thr Ala Thr Asp Glu Asn His

38					39					39	5				400
				40	5				41	0				41	n Ile 5
Ala	a Gl	n Th	r Il 42	e As	n Ile	e Gl	y Ile	e Gl:		g Gl	y Gl	u Va	1 Th	ır As	p Phe
Va.	l Al	a Pr 43	o G1	y Ph	e Ile	e Vai	l Lys	s Ası		u Th	r Gl	n Se	r Gl	y As	p Val
Th	r Hi	s Le		u As	n Val	l Sei	r Ası		y Th	r Va		в Ту		p Va	l Ser
Th:	r Ly		s Le	u Th	r Trp	Thi		Gly	y Th			u Se	r Se	r Se	r Glu
		r Il	e Th	r Ty	r Arç		э Туг	Ala			ı As	р Ту	r Il		480 n Asn
Ası	ı Ası	o Il	e Pr	o Va		Thi	Thr				e G1	y Pr			5 u Gly
Gl	/ Phe	e As 51	p Th		n Thr	Glu	1 Ala 520			ı Thi	с Ту				r Asn
Gly	/ Glu	ı Pr		n Gli	n Glr	Leu 535	ı Ile		Pro	o Arg			s r Va	l Ly:	s Leu
Gly	ту1	_	y Va	1 Ile	e Lys			Туг	· Val	l Leu	540 1 Va:		n Ly	s As	o Gly
545	5				550					555	5				560 ı Ala
				569	5				570	)				579	5
			58	0				585	i				596	0	/ His
		59	5				600					609	5		ı Gln
	610	)				615					620	)			Gly
625					630					635					Gly 640
				645					650					655	;
			660	)	Tyr			665					670	ı Glr	Ser
		675	5		Ser		680					685	5		
	690				Phe	695					700				
Val 705	Ala	Asp	Let	His	Val 710	Pro	Thr	Thr	Asn	Pro 715	Lys	Ile	: Ile	Gly	Asn 720
Leu	Ile	Asr	n Asr	Ser 725	Asp	Lys	Asp	Leu	Val 730	Val	Thr	Thr	Ser	Ser 735	Gln
			740	1	Val			745					750	Gly	Thr
		755	5		Ser		760					765			
	770				Asn	775					780				
Asn 785	Gln	Gly	Tyr	Asp	Cys 790	Ala	Asp	Cys	Gly	Met 795	Tyr	Arg	Arg	Ser	Trp 800
Gln	Tyr	Phe	Gly		Pro	Val	Asn	Glu			Phe	Pro	Ile	Asn	Asp
Val	Gly	Gly	Asn 820		Thr	Val	Asn		810 Trp	Val	Glu	Pro		815 Asn	Gly
Asp	Lys	Trp 835	Arg		Ala	Pro	Tyr 840	825 Ala	Pro	Asp	Thr		830 Leu	Gln	Lys
Phe	Lys 850			Gln	Ile	Thr 855		Asp	Val	Gln		845 Gln	Pro	Thr	Gly
Val 865		Ser	Phe	Lys	Gly 870		Ile	Сув	Val	Cys 875	860 Asp	Ala	Phe	Leu	
	Thr	Arg	Thr	Ser 885	Gly	Val	Asn	Tyr	Ser 890	Gly	Ala	Asn	Leu	Ile 895	880 Gly
Asn	Ser	Tyr	Thr 900		Ala	Ile		Ile 905		Gln	Gly	Ile	Val 910	Phe	Pro
Pro	Glu	Val 915		Gln	Thr				Phe	Asn	Thr	Gly 925	Thr	Arg	Asp
Gln	Trp 930		Lys	Leu	Asn			Thr	Val		Gly 940	Tyr	Arg	Ala	Gly
Gln 945	Tyr	Leu	Ser	Val	Pro		Asn	Thr	Ala	Gly		Asp	Asn	Leu	
	Arg	Ile	Pro	Ser	950 Met	His	Ser	Phe	Leu	955 Val	Lys	Met	Gln	Asn	960 Gly
				965	Unk				970					975	
			980		Asn (		:	985					990		
_		995		1			1000				ħ	100		GΙΆ	ASII

Ser Gly Ser Ala Asn Met Pro Ser Leu Val Met Asp Val Leu Gly Asn 1010 1015 1020 Glu Ser Ala Asp Arg Leu Trp Ile Phe Thr Asp Gly Gly Leu Ser Phe 1035 1030 1040 Gly Phe Asp Asn Gly Trp Asp Gly Arg Lys Leu Thr Glu Lys Gly Leu 1045 1050 1055 Ser Gln Leu Tyr Ala Met Ser Asp Ile Gly Asn Asp Lys Phe Gln Val 1060 1065 1070 Ala Gly Val Pro Glu Leu Asn Asn Leu Leu Ile Gly Phe Asp Ala Asp 1075 1080 Lys Asp Gly Gln Tyr Thr Leu Glu Phe Ala Leu Ser Asp His Phe Ala 1090 1095 1100 Lys Gly Ala Val Tyr Leu His Asp Leu Gln Ser Gly Ala Lys His Arg 1110 1115 Ile Thr Asn Ser Thr Ser Tyr Ser Phe Asp Ala Lys Arg Gly Asp Ser 1125 1130 1135 Gly Ala Arg Phe Arg Leu Ser Tyr Gly Cys Asp Glu Asn Val Asp Asp 1140 1145 1150 Ser His Val Val Ser Thr Asn Gly Arg Glu Ile Ile Leu Asn Gln 1155 1160 1165 Asp Ala Leu Asp Cys Thr Val Thr Leu Phe Thr Ile Glu Gly Lys Leu 1175 1180 Leu Arg Arg Leu Lys Val Leu Ala Gly His Arg Glu Val Met Lys Val 1185 1190 1195 1200 Gln Thr Gly Gly Ala Tyr Ile Val His Leu Gln Asn Ala Phe Thr Asn 1205 1210 Asp Val His Lys Val Leu Val Glu Tyr 1220 1225

#### (2) INFORMATION FOR SEQ ID NO:486

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 425 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...425
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:486

Met Glu Val Lys Lys Asn Thr Val Val Leu Arg Leu Leu Ile Trp Phe 10 Val Ala Ile Leu Leu Phe His Ser Ser Arg Leu Trp Gly Gln Glu Gly 20 25 30 Glu Gly Ser Ala Arg Tyr Arg Phe Lys Gly Phe Val Asp Thr Tyr His 35 40 45 Ala Val Arg Ser Ser Ser Pro Phe Asp Phe Met Ser Ser Arg Thr Arg 50 55 60 Val Arg Gly Glu Leu Glu Arg Ser Phe Gly Asn Ser Lys Val Ala Val 70 75 Ser Val Asn Ala Thr Tyr Asn Ala Leu Leu Lys Asp Glu Thr Gly Leu 85 90 Arg Leu Arg Glu Ala Phe Phe Glu His Gln Glu Glu His Trp Gly Leu 100 105 110 Arg Leu Gly Arg Gln Ile Val Ile Trp Gly Ala Ala Asp Gly Val Arg 115 120 Ile Thr Asp Leu Ile Ser Pro Met Asp Met Thr Glu Phe Leu Ala Gln 130 135 140 Asp Tyr Asp Asp Ile Arg Met Pro Val Asn Ala Leu Arg Phe Ser Val 145 150 150 155 160 Phe Asn Glu Ser Met Lys Val Glu Val Val Leu Pro Val Phe Glu 165 175 170 Gly Tyr Arg Leu Pro Val Asp Pro Arg Asn Pro Trp Asn Ile Phe Ser 180 185 Leu Ser Pro Ile Ala Gln Gly Met Asn Ile Val Trp Lys Glu Glu Ala 195 200 205 Gly Lys Pro Ala Phe Lys Val Ala Asn Ile Glu Tyr Gly Ala Arg Trp 220

Ser Thr Thr Leu Ser Gly Ile Asp Phe Ala Leu Ala Ala Leu His Thr 230 235 Trp Asn Lys Met Pro Val Ile Glu Val Gln Gly Ile Val Pro Thr Glu 245 250 Ile Ile Val Ser Pro Arg Tyr Tyr Arg Met Gly Phe Val Gly Gly Asp 265 270 Leu Ser Val Pro Val Gly Gln Phe Val Phe Arg Gly Glu Ala Ala Phe 275 280 285 Asn Ile Asp Lys His Phe Thr Tyr Lys Ser His Ala Glu Gln Glu Gly 290 295 300 Phe Gln Thr Ile Asn Trp Leu Ala Gly Ala Asp Trp Tyr Ala Pro Gly 305 310 315 Glu Trp Met Ile Ser Gly Gln Phe Ser Met Glu Ser Ile Phe Arg Tyr 325 330 Arg Asp Phe Ile Ser Gln Arg Gln His Ser Thr Leu Ile Thr Leu Asn 340 345 350 Val Ser Lys Lys Phe Phe Gly Ser Thr Leu Gln Leu Ser Asp Phe Thr 355 365 360 Tyr Tyr Asp Leu Thr Gly Lys Gly Trp Phe Ser Arg Phe Ala Ala Asp 370 375 380 Tyr Ala Leu Asn Asp Gln Ile His Leu Met Ala Gly Tyr Asp Trp Phe 390 395 Ser Ser Lys Gly Ser Gly Ile Phe Asp Arg Tyr Lys Asp Asn Ser Glu 405 410 Leu Trp Phe Lys Ala Arg Tyr Ser Phe

# (2) INFORMATION FOR SEQ ID NO:487

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 404 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...404
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:487

Met Ser Ser Cys Glu Val Ala Tyr Phe Ser Leu Lys Pro Ile Asp Leu 10 15 Gln Asn Ile Arg Glu Arg Asn His Ser Ser Asp Ile Ala Leu Ser Asn 20 25 Leu Leu Asp Asn Ser Asn Gln Leu Leu Ala Thr Ile Leu Ile Gly Asn 35 40 45 Asn Val Ile Asn Val Ala Ile Val Ile Leu Ser Asn Tyr Ala Ile Glu 55 60 Gln Thr Phe Val Phe Ser Ser Pro Ile Ile Gly Phe Leu Ile Gln Thr 65 70 Ile Leu Leu Thr Thr Val Leu Leu Phe Gly Glu Ile Leu Pro Lys 85 90 Val Tyr Ala Arg Lys Asn Pro Leu Gln Tyr Ser Arg Phe Ser Ala Ala 100 105 110 Ala Met Ser Val Ile Tyr Lys Ile Leu Ser Pro Phe Ser Lys Leu Leu 120 125 Val Lys Ser Thr Gly Ile Val Thr Arg Gly Ile Ser Lys Lys Lys Tyr 130 135 140 Asp Met Ser Val Asp Glu Leu Ser Lys Ala Val Ala Leu Thr Thr 150 155 Glu Gly Glu Pro Glu Glu Lys Glu Met Ile Asn Glu Ile Ile Lys Phe 170 165 Tyr Asn Lys Thr Ala Cys Glu Ile Met Val Pro Arg Ile Asp Ile Val 180 190 185 Asp Val Asp Leu Ser Trp Pro Phe Arg Lys Met Leu Asp Phe Val Val 195 200 205 Ser Ser Gly Tyr Ser Arg Leu Pro Val Ser Glu Gly Ser Glu Asp Asn 210 215 220 Ile Lys Gly Val Ile Tyr Ile Lys Asp Leu Ile Pro His Met Asp Lys 230 235

Gly Asp Glu Phe Asp Trp His Pro Leu Ile Arg Lys Ala Tyr Phe Val 245 250 Pro Glu Asn Lys Arg Ile Asp Asp Leu Leu Glu Glu Phe Arg Ala Asn 260 265 270 Lys Val His Val Ser Ile Val Val Asp Glu Phe Gly Gly Thr Cys Gly 280 285 Leu Ile Thr Met Glu Asp Ile Leu Glu Glu Ile Val Gly Glu Ile Thr 295 300 Asp Glu Tyr Asp Glu Glu Glu Leu Pro Phe Lys Val Leu Gly Asp Gly 310 315 Ser Tyr Leu Phe Glu Gly Lys Thr Ser Leu Ser Asp Val Arg His Tyr 325 330 335 Leu Asp Leu Pro Glu Asn Ala Phe Gly Glu Leu Gly Asp Glu Val Asp 340 345 Thr Leu Ser Gly Leu Phe Leu Glu Ile Lys Gln Glu Leu Pro His Val 360 355 365 Gly Asp Thr Ala Val Tyr Glu Pro Phe Arg Phe Gln Val Thr Gln Met 375 380 Asp Lys Arg Arg Ile Ile Glu Ile Lys Ile Phe Pro Phe Glu Arg Thr 390 395 Trp Glu Val Glu

#### (2) INFORMATION FOR SEQ ID NO:488

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 260 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...260
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:488

Met Lys Leu Leu Tyr Leu Leu Leu Val Leu Ser Thr Leu Ser Pro 1 5 10 Met Tyr Ser Gln Met Leu Phe Ser Glu Asn Leu Thr Met Asn Ile Asp 25 Ser Thr Lys Thr Ile Gln Gly Thr Ile Leu Pro Val Leu Asp Phe Lys 40 45 Thr Glu Lys Glu Asn Val Phe Thr Phe Lys Asn Thr Ala Asn Leu Asn 55 60 Leu Leu Ile Lys His Gly Gln Val Ile Asn Leu Ile Asn Lys Leu Glu 70 75 Phe Ser Thr Tyr Gly Asn Lys Val Thr Val Ser Gly Gly Tyr Val His 85 90 Thr Glu Tyr Arg Tyr Leu Leu His His Val Phe Glu Val Tyr Pro Tyr 100 105 110 Val Glu Ser Gln Trp Ala Glu Ser Arg Gly Met Lys Tyr Lys Val Ser 115 120 125 120 Thr Gly Leu Gln Ser Arg Tyr Arg Leu Val Asn Ser Asp Asn Cys Leu 130 135 140 Met Phe Ala Thr Leu Gly Val Phe Phe Glu Phe Glu Lys Trp Glu Gln 150 155 160 Pro Ala Thr Ser Leu Phe Ala Gly Thr Tyr Ala Tyr Ser Arg Ser Ile 165 170 Lys Ser His Leu Ser Ile Ser Phe Arg His Arg Leu Gly Glu His Trp 180 185 190 Glu Phe Thr Thr Ala Ile His Gln Gly Lys Pro Asp Ser Tyr Phe 195 200 205 Lys Lys Ala Arg Phe Gly Gly Ala Ile Asp Leu Lys Tyr His Ile Thr 215 220 Pro Thr Ile Gly Ile Arg Gly Ala Tyr Arg Ile Ile Tyr Asp Thr Ala 225 230 235 240 Pro Ile Val Pro Val Arg Lys Asp Tyr Asn Thr Val Asp Val Gly Ile 250

Asp Ile Ser Phe

## (2) INFORMATION FOR SEQ ID NO:489

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 834 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

435

- (A) NAME/KEY: misc feature
- (B) LOCATION 1...834
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:489

Met Lys Arg Ile Val Leu Ser Ser Phe Leu Phe Val Leu Ser Ile Leu 5 10 Ser Leu Met Ala Gln Asn Asn Thr Leu Asp Val His Ile Ser Gly Thr 20 25 30 Ile Lys Asp Ala Ser Ser Gly Glu Pro Val Pro Tyr Ala Thr Val Ser 35 40 45 Ile Arg Leu Thr Gly Ala Asp Thr Thr Gln Val Phe Arg Gln Val Thr 50 55 Asp Gly Asn Gly Tyr Phe Val Ile Gly Leu Pro Ala Ala Pro Ser Tyr 70 75 His Leu Thr Ala Ser Phe Val Gly Met Lys Thr His Thr Met Gln Ile 85 90 Ser Arg Gly Asn Gly Gln His Asp Ile Lys Ser Ile Asp Ile Ser Leu 100 105 110 Glu Ser Glu Asp Lys Gln Leu Ser Thr Val Thr Val Ser Ala Ala Arg 115 120 125 Pro Leu Val Lys Met Glu Ile Asp Arg Leu Ser Tyr Asn Met Lys Asp 130 135 140 Asp Pro Ala Ala Lys Thr Asn Asn Leu Leu Glu Met Leu Arg Asn Val 150 155 Pro Leu Val Thr Val Asp Gly Gln Gly Asn Ile Gln Val Lys Gly Ser 170 175 Ser Asn Phe Lys Ile His Leu Asn Gly Arg Pro Ser Thr Met Val Ser 180 185 190 Ser Asn Pro Lys Glu Val Phe Arg Ser Ile Pro Ala His Thr Ile Lys 195 200 Arg Val Glu Val Ile Thr Asp Pro Gly Val Lys Tyr Asp Ala Glu Gly Thr Ser Ala Ile Leu Asp Ile Val Thr Glu Glu Gly Lys Lys Leu Glu 230 235 Gly Tyr Ser Gly Ser Ile Thr Ala Ser Val Ser Asn Asn Pro Thr Ala 245 250 255 Asn Gly Ser Ile Phe Leu Thr Ala Lys Ser Gly Lys Val Gly Leu Thr 260 265 Thr Asn Tyr Asn Tyr Tyr Gly Gly Lys Asn Lys Gly Ser Arg Tyr Phe 280 285 Thr Glu Arg Thr Thr Ser Met Leu Gln Thr Ile Glu Glu Gly Lys Gly 290 295 300 Gln Glu Thr Phe Gly Gly His Phe Gly Asn Ala Leu Leu Ser Phe Glu 310 315 Ile Asp Ser Leu Asn Leu Phe Thr Val Gly Gly Asn Val Arg Leu Trp 325 330 335 Glu Met Thr Thr Asp Arg Asn Ser Val Glu Lys Ser Phe Ala Gly Ser 340 345 350 Asn Leu Met Ser Tyr Ile Asp Arg Lys Leu Lys Thr Gln Met Asp Ala 360 365 Gly Ser Tyr Glu Leu Asn Ala Asp Tyr Gln His Ser Thr Arg Leu Pro 370 375 380 Gly Glu Leu Leu Thr Val Ser Tyr Arg Phe Thr His Asn Pro Asn Asn 390 395 Ser Glu Thr Phe Ile Asp Gln Trp Lys Arg Asp Pro Leu Asn Thr Ala 405 410 Asn Thr Ile Gln Tyr Ala Gly Gln His Ser Lys Ser Asp Ala Gly Met 425 430 Asp Glu His Thr Ala Gln Val Asp Tyr Thr Arg Pro Leu Gly Gln Ala

440

His Ser Leu Glu Ala Gly Leu Lys Tyr Ile Tyr Arg His Ala Thr Ser 450 455 460 Asp Pro Leu Tyr Glu Ile Arg Pro Ser Glu Asp Ala Pro Trp Gln Pro 465 470 475 Gly Ser Leu Tyr Ala Gln Asn Pro Ser Asn Gly Lys Phe Arg His Asp 485 490 495 Gln Tyr Ile Gly Ala Ala Tyr Ala Gly Tyr Asn Tyr Arg Lys Asp Gln 500 505 510 Tyr Ser Leu Gln Thr Gly Leu Arg Val Glu Ser Ser Arg Leu Lys Ala 515 520 Leu Phe Pro Glu Asn Ala Ala Ala Asp Phe Ser His Asn Ser Phe Asp 535 530 540 Trp Val Pro Gln Leu Thr Leu Gly Tyr Thr Pro Ser Pro Met Lys Gln 545 550 555 Leu Lys Leu Ala Tyr Asn Phe Arg Ile Gln Arg Pro Ala Ile Gly Gln 565 570 575 Leu Asn Pro Tyr Arg Leu Gln Thr Asn Asp Tyr Gln Val Gln Tyr Gly 585 580 590 Asn Pro Asp Leu Lys Ser Glu Lys Arg His His Val Gly Leu Ser Tyr 595 600 605 Asn Gln Tyr Gly Ala Lys Val Met Leu Thr Ala Ser Leu Asp Tyr Asp 615 620 Phe Cys Asn Asn Ala Ile Gln Asn Tyr Thr Phe Ser Asp Pro Ala Asn 625 630 635 Pro Asn Leu Phe His Gln Thr Tyr Gly Asn Ile Gly Arg Glu His Ser 645 650 Phe Ser Leu Asn Thr Tyr Ala Met Tyr Thr Pro Ala Val Trp Val Arg 660 665 670 Ile Met Leu Asn Gly Asn Ile Asp Arg Thr Phe Gln Lys Ser Glu Ala 675 680 685 Leu Gly Ile Asp Val Asn Ser Trp Ser Gly Met Val Tyr Ser Gly Leu 695 690 700 Met Phe Thr Leu Pro Lys Asp Trp Thr Val Asn Leu Phe Gly Gly Tyr 705 710 715 Tyr His Gly Gly Arg Ser Tyr Gln Thr Lys Tyr Asp Gly Asn Val Phe 725 730 735 Asn Asn Ile Gly Ile Ala Lys Gln Leu Phe Asp Lys Lys Leu Arg Val Ser Leu Ser Ala Asn Asn Ile His Ala Lys Tyr Ser Thr Trp Lys Ser 755 760 Arg Thr Ile Gly Asn Gly Phe Thr Ile Tyr Ser Glu Asn Ala Gly Ile 775 780 Gln Arg Ser Val Ser Leu Ser Leu Thr Tyr Ser Phe Gly Lys Met Asn 790 795 Thr Gln Val Arg Lys Val Glu Arg Thr Ile Val Asn Asp Asp Leu Lys 805 810 815 Gln Thr Ser Ser Gln Gly Gln Gln Gly Gly Gln Gly Asn Pro Thr 820 825 Gly Asn

# (2) INFORMATION FOR SEQ ID NO:490

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 399 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...399
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:490

Leu Phe Phe Arg Asn Asn Glu Tyr Asn Ala Arg Ser Val Lys Gly Tyr 55 60 Thr Leu Pro Gly Ala Arg Val Ser Ala Phe Ala Ser Tyr Ser Leu Pro 70 75 Ala Ala His Gly Val Lys Leu Ser Leu Gly Val Ser Thr Leu Asn Tyr 85 90 Trp Gly Ala Ser Arg Tyr Pro Ala Gly Ile Ala Tyr Ser Asp Leu Pro 100 105 110 Tyr Trp Thr Asp Tyr Asn Asp Tyr Val Arg Leu Arg Ile Leu Pro Tyr 120 125 115 Val Gln Ala Met Leu Lys Pro Thr Ala Thr Thr Ala Leu Met Leu Gly 140 135 Asn Ile Ala Gly Gly Thr Ala His Gly Leu Ile Glu Pro Ile Tyr Asn 150 155 Pro Glu Leu Asp Leu Thr Ala Asp Pro Glu Ala Gly Val Gln Phe Arg 165 170 Gly Asp Trp Thr Arg Phe Arg Met Asp Val Trp Val Asn Trp Met Ser 185 190 Met Ile Phe Lys Asn Asp Asn His Gln Glu Ser Phe Val Phe Gly Leu 195 200 205 Ser Thr Thr Ser Lys Leu Leu Ser Gly Glu Gly Lys Trp Arg Leu Glu 215 220 Leu Pro Leu Gln Ala Ile Ala Thr His Arg Gly Gly Glu Tyr Asn Trp 225 230 235 Ala Gln Gln Asp Thr Val His Thr Trp Val Asn Gly Ala Val Gly Leu 245 250 Lys Leu Ser Tyr Arg Pro Arg Thr Asp Lys Pro Met Gln Ile Trp Gly 260 265 270 Ser Ala Tyr Gly Val Ala Ala Leu Ser Ser Gly Gly Tyr Phe Pro Tyr 280 275 285 Glu Arg Gly Trp Gly Gly Tyr Leu Ser Leu Gly Met Asp Leu Glu His 295 300 Phe Ala Phe Arg Thr Asp Tyr Trp Tyr Gly Arg His Tyr Val Ser Pro 310 315 Phe Ala Ala Pro Phe Ala Asn Ser Leu Thr Tyr Asp Lys Gln Pro Leu 325 330 335 Thr Asn Gly Trp Gly Asp Tyr Ile Arg Leu Tyr Ala Asp Tyr Ser Trp 340 345 350 Arg Met Ala Arg Ser Val Ser Leu Ala Ala Val Ala Arg Val Trp Phe 355 360 365 Gln Pro Ser Asp Arg Phe Ala Met Ser His Ala Leu Glu Leu Thr Met 375 380 Arg Ile Asp Pro Lys Phe Pro Ile Ala Phe Leu Lys Gly Asn His 390 395

## (2) INFORMATION FOR SEQ ID NO:491

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 382 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...382
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:491

 Met
 Asn
 Lys
 Ser
 Leu
 Leu
 Ser
 Leu
 Ser
 Leu
 Ala
 Cys
 Leu
 Ile
 Leu
 Cys
 Gly
 Met

 Pro
 Ala
 Ile
 Ala
 Gln
 Gln
 Thr
 Gly
 Pro
 Ala
 Glu
 Arg
 Ser
 Gly
 Pro
 Ala
 Glu
 Arg
 Ser
 Gly
 Pro
 Ala
 Glu
 Arg
 Ser
 Gly
 Pro
 Ala
 Glu
 Arg
 Arg
 Bro
 Pro
 Ala
 Glu
 Arg
 Arg
 Bro
 Arg
 Arg

Leu Asn Arg Ala Ala Asp Gly Thr Ser Phe Ala Asp Asn Leu Ser Asn 100 105 Ala Ile Asp Ile Ala Gly Val Asp Trp His Pro Asn Asp Lys Val Ser 115 120 125 Phe Phe Phe Gly Arg Gln Tyr Ala Arg Phe Gly Gly Ile Glu Tyr Asp 135 140 Met Asn Pro Val Glu Ile Tyr Gln Tyr Ser Asp Leu Val Asp Tyr Met 150 155 Thr Cys Tyr Thr Ser Gly Val Asn Phe Ala Trp Asn Phe His Pro Glu 170 165 Gln Gln Leu Gln Leu Gln Val Leu Asn Ala Tyr Asn Asn Arg Phe Ala 180 185 190 Asp Arg Tyr His Val Thr Pro Asp Val Ala Thr Ala Thr Ser Tyr Pro 195 200 205 Leu Leu Tyr Ser Ala Gln Trp Asn Gly Thr Leu Leu Gly Gly Ala Leu 210 215 220 His Met Arg Tyr Ala Val Ser Met Ala His Gln Ala Gln Glu Arg Asn 225 230 235 Met Trp Tyr Phe Thr Ala Gly Asn Leu Phe Asn Pro Gly Lys Arg Ile 245 250 Asn Gly Tyr Leu Asp Leu Thr Tyr Ser Ile Glu Gly Leu Asp Asp Lys 265 270 Gly Ile Met Thr Ala Arg Tyr Gly Lys Gly Lys Thr Leu Thr Asp Val 275 280 285 Lys Tyr Tyr Ala Leu Val Ser Lys Trp Asn Phe Arg Ile Phe Asp Gln 290 295 300 Val Asn Leu Phe Leu Lys Gly Met Tyr Glu Asn Gly Tyr Ala Pro Ala 310 315 Gln Tyr Gly Glu Ser Ser His Thr Arg His Ser Tyr Gly Tyr Met Gly 325 330 335 Gly Val Glu Tyr Tyr Pro Thr Glu Thr Asn Phe Arg Leu Phe Val Thr 340 345 350 Tyr Ile Gly Arg His Tyr Arg Tyr Ser Ala Thr Glu Thr Glu Ser Thr 355 360 Asn Ala Leu Arg Ala Gly Leu Ile Tyr Gln Ile Pro Phe Leu 370 375

## (2) INFORMATION FOR SEQ ID NO:492

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 222 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...222
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:492

Met Lys His Leu Phe Lys Ser Thr Leu Val Leu Leu Cys Ala Leu Ser 10 Phe Ser Gly Thr Tyr Thr Phe Ala Gln Glu Asn Asn Thr Glu Lys Ser 20 25 30 Arg Phe Asp Phe Ser Val Arg Leu Gly Gln Gly Tyr Ile Ala Gly Ser 35 40 Thr Thr Asn Leu Met Tyr Gly Tyr Thr Ser Ala Asn Asp Arg Leu Leu 55 60 Ser Gly Ala Ile Tyr Leu Gly Leu Thr Pro Ser Lys Lys Glu Asn Ala 70 75 Thr Gly Val Ala Phe Arg Phe Leu Ser Pro Ser Pro Gly Tyr Tyr Val 90 Asp Ile Ser Gly Lys Glu Asn Thr Leu Asn Tyr Ala Phe Tyr Val Val 100 105 Gly Ala Tyr Asn Arg Ile Ala Ile Pro Ile Arg Pro Ile Lys Asn Phe 115 120 125 Asn Phe Ile Phe Ser Thr Glu Val Gly Met Ala Trp Met Ser Arg His 135 140 Glu Gln Ile Tyr Asn Ser Thr Ser Gln Thr Trp Asp Lys Gln Arg Lys 150 155 160

Ser Arg Ser Gly Leu Asp Phe Gly Leu Gly Met His Leu Gln Unk His Cln Intervelope Cln Intervelop

# (2) INFORMATION FOR SEQ ID NO:493

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 391 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...391
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:493
- Met Ile Ile Lys Lys Met Leu Lys Asn Lys Leu Ala Pro Leu Ala Ile 10 Leu Phe Leu Phe Ala Pro Lys Ala Met Lys Ala Gln Glu Gln Leu Asn 25 Val Val His Thr Ser Val Pro Ser Leu Asn Ile Ser Pro Asp Ala Arg 40 45 Ala Ala Gly Met Gly Asp Ile Gly Val Ala Thr Thr Pro Asp Ala Tyr 55 60 Ser Gln Tyr Trp Asn Pro Ser Lys Tyr Ala Phe Met Asp Thr Lys Ala 65 70 75 Gly Ile Ser Phe Ser Tyr Thr Pro Trp Leu Ser Lys Leu Val Asn Asp 85 90 Ile Ala Leu Met Gln Met Thr Gly Phe Tyr Lys Leu Gly Thr Asp Glu 105 100 110 Asn Gln Ala Ile Ser Ala Ser Leu Arg Tyr Phe Thr Leu Gly Lys Leu 120 125 Glu Thr Phe Asp Glu Leu Gly Glu Ser Met Gly Glu Ala His Pro Asn 135 140 Glu Phe Ala Val Asp Leu Gly Tyr Ser Arg Gln Leu Ser Glu Asn Phe 150 155 Ser Met Ala Val Ala Leu Arg Tyr Ile Arg Ser Asp Gln Ser Thr His 165 170 Asn Thr Gly Glu Asn Gln Ala Gly Asn Ala Phe Ala Ala Asp Ile Ala 180 185 190 Gly Tyr Leu Gln Lys Tyr Val Leu Leu Gly Asn Ala Glu Ser Leu Trp 200 205 Ser Leu Gly Phe Asn Val Lys Asn Ile Gly Thr Lys Ile Ser Tyr Asp 215 220 Gly Gly Val Thr Ser Phe Phe Ile Pro Thr Ser Leu Asn Leu Gly Thr 225 230 235 Gly Leu Leu Tyr Pro Ile Asp Asp Tyr Asn Ser Ile Asn Phe Asn Leu 245 250 Glu Leu Ser Lys Leu Leu Val Pro Thr Pro Pro Ile Met Asp Gln Asn 260 265 270 Asp Gln Ala Gly Tyr Glu Ala Ala Leu Lys Lys Tyr Gln Glu Thr Ser 280 285 Ser Ile Ser Gly Ile Phe Ser Ser Phe Gly Asp Ala Pro Gly Gly Leu 290 295 300 Lys Glu Glu Phe Arg Glu Ile Thr Trp Gly Leu Gly Ala Glu Tyr Ser 310 315 Tyr Asp Asp Lys Phe Phe Val Arg Ala Gly Tyr Ser Tyr Leu His Pro 325 330 Thr Lys Gly Asn Leu Gln Tyr Phe Thr Ala Gly Ala Gly Phe Lys Met 340 345 Asn Ile Phe Arg Ile Asp Ala Ser Tyr Leu Leu Ser Thr Ile Gln Ser 355 360 365 Asn Pro Leu Asp Gln Thr Leu Arg Phe Thr Leu Ala Phe Asp Met Asp

### (2) INFORMATION FOR SEQ ID NO:494

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 446 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...446
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:494

Met Lys Thr Thr Val Gln Gln Ile Ile Leu Cys Leu Ala Leu Met Met 10 Ser Gly Val Leu Gly Gly Asn Ala Gln Ser Phe Trp Glu Glu Ile Ala 20 25 30 Pro Pro Phe Ile Ser Asn Glu Pro Asn Val Lys Tyr Ile Ile Pro Asn 35 40 45 Met Gly Ile Asp Ser Lys Gly Thr Ile Tyr Val Thr Val Thr Lys Arg 50 55 Ile Gln Gln Gly Ala Asn Tyr Thr Ser Glu Gln Leu Gly Met Tyr Tyr 70 75 Arg Pro Leu Gly Asp Asn Glu Gln Trp Trp Lys His Asp Pro Tyr Phe 90 Asp Asp Lys Ile Val Ala Asp Ile Gln Thr Asp Ala Tyr Gly Arg Val 100 105 110 Tyr Val Cys Thr Thr Ser Ser Arg Asp Gln Glu Tyr Gln Leu Tyr Ile 115 120 Asn Glu Gln Asn Glu Trp Arg Cys Ile Phe Lys Thr Ser Val Ser Thr 135 140 Tyr Glu His Gly Met Ala Val Phe Arg Ser Ser Thr Gly Val Thr Tyr 150 155 Ile Gly Thr Arg His His Ile Phe Ala Ser Gly Val Asn Asp Phe Glu 165 170 175 Phe Asn Thr Ile Tyr Glu Asp Ser Thr Pro Met Ser Cys Arg Phe Ala 180 185 190 Glu Ala Thr Asn Ser Gly Thr Ile Tyr Leu Ala Leu Met His Glu Thr 200 195 205 Thr Met Ser Thr Thr Ile Leu Thr Tyr Gln Asn Gly Glu Phe Val Asp 215 220 Ile Ser Glu Ser Glu Leu Ser Asn Ser Ile Ile Ala Ser Met Cys Ser 230 235 Asn Lys Glu Gly Asp Ile Ile Ala Leu Val Thr Ser Tyr Thr Gly Phe 245 250 Met Ser Gly Thr Leu Ala Ile Arg Lys Ala Asp Glu Gly Lys Trp Gln 260 265 270 Leu Val Gly Gly Asp Ile Gln Asn Ala Ile Val Gln Asn Ile Cys Met 275 280 285 Met Asp Asp Asn Lys Ile Ala Cys Glu Val Phe Gly Thr Pro Asn Gly 290 295 300 Val Asp Gly Arg Thr Arg Val Cys Val Ser Asp Ala Ser Val Phe Asp 305 310 315 320 310 Phe Glu Trp Tyr Glu Asp Glu Ile Tyr Gly Gly Leu Ile Phe Asp Thr 325 330 Phe Phe Tyr Ser Pro Trp Asp Lys Leu Leu Tyr Ala Lys Phe Gly Gly 340 345 Ile Met Leu Arg Ser Lys Glu Ser Phe Ile Thr Ser Phe Ile Ser Pro 360 365 Thr Val Val Gln Gly Val Asp Val Tyr Thr Leu Ala Gly Lys Ile Arg 370 375 380 Ile Glu Ser Glu Thr Pro Val Ser Glu Val Leu Leu Phe Asp Leu Ala 390 395 Gly Arg Met Val Leu Arg Gln Thr Ile Asp Asn Lys Ile Tyr Ser Asp 405 410 415 Ile Asp Thr Asn Gly Leu Lys Arg Ser Gly Ile Tyr Val Val Ser Val 425

Arg Leu Ser Ser Gly Gln Val Phe Ser His Lys Val Gln Val
435 440 445

## (2) INFORMATION FOR SEQ ID NO:495

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 308 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...308
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:495

Met Ile Ile Arg Cys Leu Ile Arg Arg Pro Arg Thr Val Leu Phe Gly 10 Leu Ile Phe Val Val Gly Leu Phe Ser Ala Met Ala Gln Glu Lys Lys 20 25 3.0 Asp Ser Leu Ser Thr Val Gln Pro Val Pro Asn Ser Ser Met Val Glu 40 45 Gln Thr Pro Leu Leu Ser Ile Asp His Pro Val Leu Pro Ala Ser Phe 55 Gln Asn Thr Arg Thr Leu Lys Arg Phe Arg Asp Lys His Leu Ser Asp 70 75 Ala Leu Leu Asn Gly Leu Lys Pro His Arg Ser Ser Leu Gln Leu Asn 85 90 Glu Glu Leu Asn Phe Ala Ala Glu Arg Arg Asp Phe Val Ser Pro Leu 100 105 110 Leu Gln Thr Arg His Ala Ala Gly Val Leu Ser Trp Arg Pro Thr Asp 115 120 125 Arg Met His Phe Tyr Thr Ser Gly Asn Ile Gly Leu Gly His Asp Leu 135 140 Leu Thr Gly Val Arg Lys Asp Phe Gly Trp Asn Ala Gly Ala Asp Phe 145 150 155 160 Leu Leu Ser Gln Asn Leu Thr Ala His Val Gln Gly Gly Trp Gln Gln 170 175 Asn Phe Gly Phe Ile Pro Met Thr Ala Val Asn Gly Gln Leu Arg Trp 180 185 190 Gln Ala Thr Glu Arg Leu Ser Phe Thr Thr Gly Ile Asp Tyr Arg Gln 195 200 Val Gln Trp Asn Ala Phe Asp Asn Arg Thr Phe Ser Leu Lys Gly Ser 210 215 220 Ala Arg Tyr Glu Val Met Asp Asn Val Phe Val Asn Gly Phe Gly Ser 230 235 Tyr Pro Leu Tyr Ser Ser Thr Arg Ser Gly Leu Asn Met Ala Val Pro 245 250 Met His Gly Phe Gly Pro Gln Tyr Gly Gly Ser Leu Glu Leu Lys Val 260 265 Ser Glu Arg Phe Gly Phe Ala Val Gly Met Glu Arg Glu Tyr Asn Ile 275 280 285 Trp Thr Arg Arg Trp Glu Thr His Tyr Phe Ala Tyr Pro Val Phe Tyr 290 295 300 Gly Asp Lys Lys

(2) INFORMATION FOR SEQ ID NO:496

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 315 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...315
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:496

Met Lys Thr Asn Arg Arg Tyr Ala Phe Val Leu Pro Leu Leu Leu 10 Thr Gly Leu Leu Ala Trp Gly Gln Asp Ser Ser His Gly Ser Asn Thr 20 25 30 Ala Phe Ala Thr Asp Ser Ser Ser Arg Glu Leu Pro Thr Glu Gln Ser 35 40 Ala Tyr Arg Ile His Ser Ala Tyr Met Val Gly Gly Gly Ser Ile 55 Thr Arg Asp Thr Tyr Leu Ser Pro Leu Arg Tyr Gly Gly Trp Thr Leu 70 75 Asn Leu Leu Gly Glu Lys Thr Phe Pro Leu Lys Ala Ser Asp Ser Arg 90 95 Trp Met Ile Arg Thr Gly His Glu Leu Asp Phe Ala Leu Met Asp Asn 100 105 110 Pro Ala Asn Asn Ala His Phe Tyr Ser Leu Leu Tyr Asn Gly Ser Ala 115 120 125 Ala Ala Leu Tyr Arg Leu Gly Ala Lys His Leu Arg Ala Ala Trp Met 130 135 140 Asp Asn Leu Arg Leu Ala Phe Gly Pro Gly Leu Glu Ile Gly Leu Gly 150 155 Gly Ile Tyr Ser Thr Arg Asn Gly Asn Asn Pro Ala Thr Leu Lys Leu 165 170 175 Tyr Thr Asn Ala Ile Ala Gln Ala Ser Ile Gly Tyr Tyr Val Pro Ser 180 185 Glu Thr Phe Pro Leu Tyr Phe Arg Leu Leu Ser Gln Ile Asn Leu Phe 195 200 205 Gly Ile Ala Tyr Gly Asn Gly Phe Gly Glu Ser Tyr Tyr Glu Asn Phe 215 220 Leu Leu Asn Asn Gly Ile Ala Gly Ser Leu His Phe Thr Tyr Pro Gly 225 230 235 Lys Phe Thr Arg Phe Thr Thr Leu Ile Thr Ala Asp Ile Pro Ile Arg 245 250 255 Asn Phe Cys Thr Leu Arg Val Gly Tyr Arg Tyr Ser His Leu Gly Ser 260 265 270 Ser Leu Asn Ala Leu Asp Thr Arg Ile His Ser His Thr Ala Phe Ile 275 280 285 Gly Phe Val Thr Glu Phe Tyr Arg Phe Arg Gly Arg Lys Ala Met Asn 290 295 300 Thr Gly Arg Arg Thr Ser Leu Tyr Tyr His Asp 310

- (2) INFORMATION FOR SEQ ID NO:497
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 285 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...285
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:497

65 70 Ser Ile His Val Ala Val Arg Thr Asp Phe Gly Gln Ala Gly Ile His 85 90 95 Cys Pro Met Ala Thr Asp Ala Ser Ala Thr Glu Phe Asp Arg Ser Ala 100 105 110 Glu Cys Ala Glu Arg Thr Ser Ala Gln Ile Asp Thr Ala Ile Arg Ser 115 120 125 Gln Ser Gln Ile Ile Arg Thr His Ile Asp Thr Cys Pro Lys Ser Ser 130 135 140 Gly Thr Ile Gly Gly Ser Thr His Thr Ser Leu His Leu Lys Val Phe 155 160 Asp Gly Arg Gly Glu Val Gly His Ile His Pro Lys Asp Gly Leu Arg 165 170 Phe Gly Val Val Glu Gly Tyr Ser Ile Gly Ser Tyr Val Asp Ala Ile 180 185 190 Gly Ile Gly Ala Thr His Ala Lys Ala Gly Ile Ser Asp Thr Arg Thr 195 200 205 Gly Ile Ala Gly Gly Tyr His Gly Gly Ser Gln His Gln Gln Ile Gly 210 215 220 Asp Val Thr Thr Ile Ile Gly Leu Gly Lys Phe Gly Leu Ala Asn Val 230 235 Gly Val Ser Asp Arg Gly Phe Arg Arg Gly Ala Ser Ser Tyr Asp Leu 245 250 255 Tyr Gly Leu Glu Leu His Ile Ala Lys Thr Ile Tyr Leu Ala Val Gly 260 265 270 Asp Gly Cys Leu Cys Arg Gln Ala Glu Arg Gln Asp Gly 275 280

## (2) INFORMATION FOR SEQ ID NO:498

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 599 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...599
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:498

Met Glu Asn Leu Lys Asn Ile Gln Pro Arg Glu Asp Phe Asn Trp Glu 1 5 Glu Phe Glu Ala Gly Gly Val His Ala Ala Val Ser Arg Gln Glu Gln 20 25 Glu Ala Ala Tyr Asp Lys Thr Leu Asn Thr Ile Lys Glu Lys Glu Val 40 4.5 Val Met Gly Arg Val Thr Ala Ile Asn Lys Arg Glu Val Val Ile Asn 50 55 60 Val Gly Tyr Lys Ser Glu Gly Val Val Pro Ala Thr Glu Phe Arg Tyr 70 Asn Pro Glu Leu Lys Val Gly Asp Glu Val Glu Val Tyr Ile Glu Asn 85 90 Gln Glu Asp Lys Lys Gly Gln Leu Val Leu Ser His Arg Lys Gly Arg 100 105 110 110 Ala Ala Arg Ser Trp Glu Arg Val Asn Glu Ala Leu Glu Lys Asp Glu 115 120 125 Ile Val Lys Gly Tyr Val Lys Cys Arg Thr Lys Gly Gly Met Ile Val 135 140 Asp Val Phe Gly Ile Glu Ala Phe Leu Pro Gly Ser Gln Ile Asp Val 145 150 155 160 Arg Pro Ile Arg Asp Tyr Asp Ala Phe Val Glu Lys Thr Met Glu Phe 165 170 175 Lys Ile Val Lys Ile Asn Gln Glu Tyr Lys Asn Val Val Ser His 180 185 190 Lys Val Leu Ile Glu Ala Glu Leu Glu Gln Gln Lys Lys Glu Ile Ile 195 200 205 Gly Lys Leu Glu Lys Gly Gln Val Leu Glu Gly Ile Val Lys Asn Ile 210 215 220 220 Thr Ser Tyr Gly Val Phe Ile Asp Leu Gly Gly Val Asp Gly Leu Ile

225 230 His Ile Thr Asp Leu Ser Trp Gly Arg Val Ala His Pro Glu Glu Ile 245 250 255 Val Gln Leu Asp Gln Lys Ile Asn Val Val Ile Leu Asp Phe Asp Glu 260 265 270 Asp Arg Lys Arg Ile Ala Leu Gly Leu Lys Gln Leu Met Pro His Pro 275 280 285 Trp Asp Ala Leu Asp Ser Glu Leu Lys Val Gly Asp Lys Val Lys Gly 290 295 300 Lys Val Val Val Met Ala Asp Tyr Gly Ala Phe Val Glu Ile Ala Gln 310 315 Gly Val Glu Gly Leu Ile His Val Ser Glu Met Ser Trp Thr Gln His 325 330 Leu Arg Ser Ala Gln Asp Phe Leu His Val Gly Asp Glu Val Glu Ala 340 345 350 Val Ile Leu Thr Leu Asp Arg Glu Glu Arg Lys Met Ser Leu Gly Leu 355 360 365 Lys Gln Leu Lys Pro Asp Pro Trp Ala Asp Ile Glu Thr Arg Phe Pro 370 375 380 Val Gly Ser Arg His His Ala Arg Val Arg Asn Phe Thr Asn Phe Gly 390 395 Val Phe Val Glu Ile Glu Glu Gly Val Asp Gly Leu Ile His Ile Ser 405 410 415 410 Asp Leu Ser Trp Thr Lys Lys Ile Lys His Pro Ser Glu Phe Thr Glu 420 425 430 Val Gly Ala Asp Ile Glu Val Gln Val Ile Glu Ile Asp Lys Glu Asn 435 440 445 Arg Arg Leu Ser Leu Gly His Lys Gln Leu Glu Glu Asn Pro Trp Asp 450 455 460 Val Phe Glu Thr Val Phe Thr Val Gly Ser Ile His Glu Gly Thr Val 470 475 Ile Glu Val Met Asp Lys Gly Ala Val Val Ser Leu Pro Tyr Gly Val 485 490 495 Glu Gly Phe Ala Thr Pro Lys His Met Val Lys Glu Asp Gly Ser Gln 500 505 510 Ala Val Leu Glu Glu Lys Leu Pro Phe Lys Val Ile Glu Phe Asn Lys 515 520 Asp Ala Lys Arg Ile Ile Val Ser His Ser Arg Val Phe Glu Asp Glu 530 535 540 Gln Lys Met Ala Gln Arg Glu Ala Asn Ala Glu Arg Lys Ala Glu Ala 550 555 Lys Ala Ala Gln Lys Glu Ala Ala Ala Glu Ala Ala Asn Pro Ala Gln 565 570 575 Ala Val Glu Lys Ala Thr Leu Gly Asp Leu Gly Glu Leu Ala Ala Leu 580 585 Lys Glu Lys Leu Ser Glu Asn 595

# (2) INFORMATION FOR SEQ ID NO:499

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 550 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...550
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:499

 Met Gly Arg
 Val Thr Ala Ile Asn Lys Arg Glu Val Val Ile Asn Val

 1
 5
 10
 15

 Gly Tyr Lys Ser Glu Gly Val Val Pro Ala Thr Glu Phe Arg Tyr Asn 20
 25
 30

 Pro Glu Leu Lys Val Gly Asp Glu Val Glu Val Tyr Ile Glu Asn Gln 35
 40
 45

 Glu Asp Lys Lys Gly Gln Leu Val Leu Ser His Arg Lys Gly Arg Ala 50
 55
 60

 Ala Arg Ser Trp Glu Arg Val Asn Glu Ala Leu Glu Lys Asp Glu Ile

65 70 Val Lys Gly Tyr Val Lys Cys Arg Thr Lys Gly Gly Met Ile Val Asp 85 90 95 Val Phe Gly Ile Glu Ala Phe Leu Pro Gly Ser Gln Ile Asp Val Arg 100 105 110 Pro Ile Arg Asp Tyr Asp Ala Phe Val Glu Lys Thr Met Glu Phe Lys 120 125 Ile Val Lys Ile Asn Gln Glu Tyr Lys Asn Val Val Val Ser His Lys 130 135 140 Val Leu Ile Glu Ala Glu Leu Glu Gln Gln Lys Lys Glu Ile Ile Gly 145 150 155 Lys Leu Glu Lys Gly Gln Val Leu Glu Gly Ile Val Lys Asn Ile Thr 165 170 175 Ser Tyr Gly Val Phe Ile Asp Leu Gly Gly Val Asp Gly Leu Ile His 180 185 190 Ile Thr Asp Leu Ser Trp Gly Arg Val Ala His Pro Glu Glu Ile Val 195 200 205 Gln Leu Asp Gln Lys Ile Asn Val Val Ile Leu Asp Phe Asp Glu Asp 215 220 Arg Lys Arg Ile Ala Leu Gly Leu Lys Gln Leu Met Pro His Pro Trp 230 235 Asp Ala Leu Asp Ser Glu Leu Lys Val Gly Asp Lys Val Lys Gly Lys 245 250 255 Val Val Val Met Ala Asp Tyr Gly Ala Phe Val Glu Ile Ala Gln Gly 260 265 270 Val Glu Gly Leu Ile His Val Ser Glu Met Ser Trp Thr Gln His Leu 275 280 285 Arg Ser Ala Gln Asp Phe Leu His Val Gly Asp Glu Val Glu Ala Val 295 Ile Leu Thr Leu Asp Arg Glu Glu Arg Lys Met Ser Leu Gly Leu Lys 305 310 315 Gln Leu Lys Pro Asp Pro Trp Ala Asp Ile Glu Thr Arg Phe Pro Val 325 330 335 Gly Ser Arg His His Ala Arg Val Arg Asn Phe Thr Asn Phe Gly Val 340 345 350 Phe Val Glu Ile Glu Glu Gly Val Asp Gly Leu Ile His Ile Ser Asp 355 360 365 Leu Ser Trp Thr Lys Lys Ile Lys His Pro Ser Glu Phe Thr Glu Val 375 380 Gly Ala Asp Ile Glu Val Gln Val Ile Glu Ile Asp Lys Glu Asn Arg 395 390 Arg Leu Ser Leu Gly His Lys Gln Leu Glu Glu Asn Pro Trp Asp Val 405 410 415 Phe Glu Thr Val Phe Thr Val Gly Ser Ile His Glu Gly Thr Val Ile 420 425 Glu Val Met Asp Lys Gly Ala Val Val Ser Leu Pro Tyr Gly Val Glu 435 440 Gly Phe Ala Thr Pro Lys His Met Val Lys Glu Asp Gly Ser Gln Ala 455 460 Val Leu Glu Glu Lys Leu Pro Phe Lys Val Ile Glu Phe Asn Lys Asp 470 475 Ala Lys Arg Ile Ile Val Ser His Ser Arg Val Phe Glu Asp Glu Gln 485 490 495 Lys Met Ala Gln Arg Glu Ala Asn Ala Glu Arg Lys Ala Glu Ala Lys 500 505 510 Ala Ala Gln Lys Glu Ala Ala Ala Glu Ala Ala Asn Pro Ala Gln Ala 520 525 Val Glu Lys Ala Thr Leu Gly Asp Leu Gly Glu Leu Ala Ala Leu Lys Glu Lys Leu Ser Glu Asn 550

# (2) INFORMATION FOR SEQ ID NO:500

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 458 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...458

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:500

Met Ile Val Asp Val Phe Gly Ile Glu Ala Phe Leu Pro Gly Ser Gln 10 Ile Asp Val Arg Pro Ile Arg Asp Tyr Asp Ala Phe Val Glu Lys Thr 25 30 Met Glu Phe Lys Ile Val Lys Ile Asn Gln Glu Tyr Lys Asn Val Val 40 4.5 Val Ser His Lys Val Leu Ile Glu Ala Glu Leu Glu Gln Gln Lys Lys 55 60 Glu Ile Ile Gly Lys Leu Glu Lys Gly Gln Val Leu Glu Gly Ile Val 70 75 Lys Asn Ile Thr Ser Tyr Gly Val Phe Ile Asp Leu Gly Gly Val Asp 85 90 95 Gly Leu Ile His Ile Thr Asp Leu Ser Trp Gly Arg Val Ala His Pro 100 105 Glu Glu Ile Val Gln Leu Asp Gln Lys Ile Asn Val Val Ile Leu Asp 115 120 125 Phe Asp Glu Asp Arg Lys Arg Ile Ala Leu Gly Leu Lys Gln Leu Met 135 140 Pro His Pro Trp Asp Ala Leu Asp Ser Glu Leu Lys Val Gly Asp Lys 145 150 155 Val Lys Gly Lys Val Val Met Ala Asp Tyr Gly Ala Phe Val Glu 170 175 165 Ile Ala Gln Gly Val Glu Gly Leu Ile His Val Ser Glu Met Ser Trp 180 185 190 Thr Gln His Leu Arg Ser Ala Gln Asp Phe Leu His Val Gly Asp Glu 200 195 205 Val Glu Ala Val Ile Leu Thr Leu Asp Arg Glu Glu Arg Lys Met Ser 210 215 220 Leu Gly Leu Lys Gln Leu Lys Pro Asp Pro Trp Ala Asp Ile Glu Thr 230 235 Arg Phe Pro Val Gly Ser Arg His His Ala Arg Val Arg Asn Phe Thr 245 250 255 Asn Phe Gly Val Phe Val Glu Ile Glu Glu Gly Val Asp Gly Leu Ile 260 265 270 His Ile Ser Asp Leu Ser Trp Thr Lys Lys Ile Lys His Pro Ser Glu 275 280 Phe Thr Glu Val Gly Ala Asp Ile Glu Val Gln Val Ile Glu Ile Asp 295 300 Lys Glu Asn Arg Arg Leu Ser Leu Gly His Lys Gln Leu Glu Glu Asn 305 310 315 320 Pro Trp Asp Val Phe Glu Thr Val Phe Thr Val Gly Ser Ile His Glu 325 330 335 Gly Thr Val Ile Glu Val Met Asp Lys Gly Ala Val Val Ser Leu Pro 340 345 350 Tyr Gly Val Glu Gly Phe Ala Thr Pro Lys His Met Val Lys Glu Asp 355 360 365 Gly Ser Gln Ala Val Leu Glu Glu Lys Leu Pro Phe Lys Val Ile Glu 370 375 380 Phe Asn Lys Asp Ala Lys Arg Ile Ile Val Ser His Ser Arg Val Phe 390 395 Glu Asp Glu Gln Lys Met Ala Gln Arg Glu Ala Asn Ala Glu Arg Lys 405 410 415 Ala Glu Ala Lys Ala Ala Gln Lys Glu Ala Ala Ala Glu Ala Ala Asn 425 420 430 Pro Ala Gln Ala Val Glu Lys Ala Thr Leu Gly Asp Leu Gly Glu Leu 435 440 Ala Ala Leu Lys Glu Lys Leu Ser Glu Asn 450 455

- (2) INFORMATION FOR SEQ ID NO:501
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 426 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis

### (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...426

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:501

Met Glu Phe Lys Ile Val Lys Ile Asn Gln Glu Tyr Lys Asn Val Val 10 Val Ser His Lys Val Leu Ile Glu Ala Glu Leu Glu Gln Gln Lys Lys 20 25 30 Glu Ile Ile Gly Lys Leu Glu Lys Gly Gln Val Leu Glu Gly Ile Val 35 40 Lys Asn Ile Thr Ser Tyr Gly Val Phe Ile Asp Leu Gly Gly Val Asp 55 Gly Leu Ile His Ile Thr Asp Leu Ser Trp Gly Arg Val Ala His Pro 70 75 Glu Glu Ile Val Gln Leu Asp Gln Lys Ile Asn Val Val Ile Leu Asp 85 90 Phe Asp Glu Asp Arg Lys Arg Ile Ala Leu Gly Leu Lys Gln Leu Met 100 105 110 Pro His Pro Trp Asp Ala Leu Asp Ser Glu Leu Lys Val Gly Asp Lys 115 120 125 Val Lys Gly Lys Val Val Met Ala Asp Tyr Gly Ala Phe Val Glu 135 140 Ile Ala Gln Gly Val Glu Gly Leu Ile His Val Ser Glu Met Ser Trp 150 155 Thr Gln His Leu Arg Ser Ala Gln Asp Phe Leu His Val Gly Asp Glu 170 165 Val Glu Ala Val Ile Leu Thr Leu Asp Arg Glu Glu Arg Lys Met Ser 185 190 Leu Gly Leu Lys Gln Leu Lys Pro Asp Pro Trp Ala Asp Ile Glu Thr 195 200 205 Arg Phe Pro Val Gly Ser Arg His His Ala Arg Val Arg Asn Phe Thr 215 220 Asn Phe Gly Val Phe Val Glu Ile Glu Glu Gly Val Asp Gly Leu Ile 225 230 235 His Ile Ser Asp Leu Ser Trp Thr Lys Lys Ile Lys His Pro Ser Glu 245 250 Phe Thr Glu Val Gly Ala Asp Ile Glu Val Gln Val Ile Glu Ile Asp 260 265 270 Lys Glu Asn Arg Arg Leu Ser Leu Gly His Lys Gln Leu Glu Glu Asn 280 285 Pro Trp Asp Val Phe Glu Thr Val Phe Thr Val Gly Ser Ile His Glu 290 295 300 Gly Thr Val Ile Glu Val Met Asp Lys Gly Ala Val Val Ser Leu Pro 310 315 320 Tyr Gly Val Glu Gly Phe Ala Thr Pro Lys His Met Val Lys Glu Asp 325 330 335 Gly Ser Gln Ala Val Leu Glu Glu Lys Leu Pro Phe Lys Val Ile Glu 340 345 Phe Asn Lys Asp Ala Lys Arg Ile Ile Val Ser His Ser Arg Val Phe 360 365 Glu Asp Glu Gln Lys Met Ala Gln Arg Glu Ala Asn Ala Glu Arg Lys 375 380 Ala Glu Ala Lys Ala Ala Gln Lys Glu Ala Ala Ala Glu Ala Ala Asn 390 395 Pro Ala Gln Ala Val Glu Lys Ala Thr Leu Gly Asp Leu Gly Glu Leu 405 Ala Ala Leu Lys Glu Lys Leu Ser Glu Asn 420

## (2) INFORMATION FOR SEQ ID NO:502

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 240 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION 1...240

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:502

Met Lys Lys Ala Ile Leu Ser Gly Ala Ala Leu Leu Leu Gly Leu Cys 10 Ala Asn Ala Gln Asn Val Gln Leu His Tyr Asp Phe Gly His Ser Ile 20 25 3.0 Tyr Asp Glu Leu Asp Gly Arg Pro Lys Leu Thr Thr Thr Val Glu Asn 35 40 45 Phe Thr Pro Asp Lys Trp Gly Ser Thr Phe Phe Phe Ile Asp Met Asp 50 55 Tyr Thr Gly Lys Gly Ile Gln Ser Ala Tyr Trp Glu Ile Ser Arg Glu 70 Leu Lys Phe Trp Gln Ala Pro Val Ser Ile His Leu Glu Tyr Asn Gly 85 90 Gly Leu Ser Thr Ser Phe Thr Phe Gly His Asp Ala Leu Ile Gly Ala 100 105 110 Thr Tyr Thr Tyr Asn Asn Pro Ser Phe Thr Arg Gly Phe Thr Ile Thr 115 120 125 Pro Met Tyr Lys His Leu Gly Ala His Asp Phe His Thr Tyr Gln Ile 135 130 140 Thr Gly Thr Trp Tyr Met His Phe Leu Asp Gly Leu Leu Thr Phe Asn 145 150 155 Gly Phe Leu Asp Leu Trp Gly Phe Pro Gln Glu Asn Pro Ile Gly Gly 165 170 175 Pro Val Leu Lys Glu Gly Asp Lys Phe Val Phe Leu Ser Glu Pro Gln 180 185 190 Phe Trp Ile Asn Leu Asn Arg Ile Lys Gly Ile Asp Lys Asp Phe Asn 195 200 205 Leu Ser Ile Gly Thr Glu Met Glu Ile Ser Arg Asn Phe Ala Arg Met 215 220 Asp Lys Phe Ser Cys Ile Pro Thr Leu Ala Val Lys Trp Thr Phe Asn 230 235

### (2) INFORMATION FOR SEQ ID NO:503

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 434 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...434
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:503

Met Tyr Lys Asp Tyr Lys Gly Leu Tyr Ala Ser Leu Arg Trp Tyr Ala 10 Leu Ile Ile Gly Leu Leu Phe Ala Ala Asp Gly Ile Gln Ala Gln Asn 20 25 Asn Asn Phe Thr Glu Ser Pro Tyr Thr Arg Phe Gly Leu Gly Arg Leu 35 40 45 Gly Glu Arg Thr Thr Ile Ser Gly His Ser Met Gly Gly Leu Gly Val 55 60 Gly Leu Arg Gln Gly Thr Tyr Val Asn Ala Val Asn Pro Ala Ser Tyr 70 75 Ser Ala Val Asp Ser Met Thr Phe Ile Phe Asp Phe Gly Ala Ser Thr 85 90 Gly Ile Thr Trp Tyr Ala Glu Asn Gly Lys Lys Asp Asn Arg Lys Met 100 105 Gly Asn Ile Glu Tyr Phe Ala Met Leu Phe Pro Ile Ser Lys Ser Ile 120 125 Ala Met Ser Ala Gly Val Leu Pro Tyr Ser Ala Ser Gly Tyr Gln Phe 130 135 140 Gly Ser Val Asp Gln Val Glu Gly Gly Ser Val Gln Tyr Thr Arg Lys 145 150 155 160 150 155 Tyr Leu Gly Thr Gly Asn Leu Asn Asp Leu Tyr Val Gly Ile Gly Ala

170 Thr Pro Phe Lys Asn Phe Ser Ile Gly Ala Asn Ala Ser Ser Leu Phe 180 185 190 Gly Arg Phe Thr His Ser Arg Gln Val Ile Phe Ser Thr Glu Ala Pro 195 200 205 Tyr Asn Pro Val His Leu Ser Thr Leu Tyr Leu Lys Ala Ala Lys Phe 215 220 Asp Phe Gly Met Gln Tyr His Leu Leu Leu Lys Ser Asp Arg Ser Leu 230 235 Val Ile Gly Ala Val Tyr Ser Pro Arg Val Lys Met His Ser Glu Leu 245 250 255 Thr Gln Ile Lys Asn Gln Val Gln Asn Gly Val Val Val Glu Ser Glu 260 265 Thr Gln Glu Tyr Ile Lys Gly Met Asp Tyr Tyr Thr Leu Pro His Thr 275 280 285 Leu Gly Ile Gly Phe Ser Tyr Glu Lys Lys Asp Lys Leu Leu Gly 290 295 300 Ala Asp Val Gln Tyr Ser Lys Trp Lys Gly Glu Lys Phe Tyr Lys Ser 310 315 Asp Cys Lys Phe Gln Asp Arg Ile Arg Val Ser Leu Gly Gly Glu Ile 325 330 335 Ile Pro Asp Ile Asn Ala Val Gly Met Trp Pro Lys Val Arg Tyr Arg 340 345 350 Phe Gly Leu His Gly Glu Asn Ser Tyr Leu Lys Val Pro Thr Lys Gly 355 360 365 Gly Val Tyr Gln Gly Tyr His Ile Val Gly Ala Val Phe Gly Ile Gly 370 375 380 Ile Pro Leu Asn Asp Arg Arg Ser Phe Val Asn Val Ser Leu Glu Tyr 390 395 Asp Arg Leu Ile Pro Lys Glu Gly Met Ile Lys Glu Asn Ala Leu Lys 405 410 Leu Thr Phe Gly Leu Thr Phe Asn Glu Ser Trp Phe Lys Lys Leu Lys 420 425 Leu Asn

### (2) INFORMATION FOR SEQ ID NO:504

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 926 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...926
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:504

Met Arg Ser Ile Tyr Gln Leu Leu Leu Ser Ile Leu Leu Ala Ser Leu 5 10 Gly Phe Val Gly Leu Glu Ala Gln Gln Ala Gly Val Ala Gly Arg Val 20 25 Leu Asp Glu Glu Gly Asn Pro Met Ile Gln Ala Asn Val Gln Leu Val 35 40 Gln Ser Thr Gly Gln Val Ala Val Ala Ala Gly Ala Thr Asn Glu Lys 55 60 Gly Leu Phe Ser Leu Lys Thr Ser Gln Glu Gly Asp Tyr Ile Leu Arg 70 75 Val Ser Tyr Val Gly Tyr Thr Thr His Asp Glu Lys Ile Ser Leu Arg 85 90 Asn Gly Gln Thr Ile Thr Leu Lys Asp Ile Ser Met Asn Glu Asp Ala 100 105 Arg Leu Leu Gln Ser Val Thr Val Gln Ala Lys Ala Ala Glu Val Val 120 125 Val Arg Asn Asp Thr Leu Glu Phe Asn Ala Gly Ser Tyr Thr Val Ala 135 140 Gln Gly Ala Ser Ile Glu Glu Leu Ile Lys Lys Leu Pro Gly Ala Glu 145 150 155 160 155 Ile Gly Ser Asp Gly Lys Ile Thr Ile Asn Gly Lys Asp Ile Ser Lys

The Leu Val Asp Gly Lys Glu Phe Phe Ser Lys Asp Pro Gln Val Ala   180   180   180   180   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190					16	5				17	^				1.7	_
The Lys Ann Leu Pro Ala Asp Met Val Asn Lys Val Cln Val Leu Asn 195	Ile	e Le	ı Va		p Gl		s Glu	ı Pho		e Se		s As	p Pr	o Gl	n Va	5 l Ala
Lays Leu Ser Glu Leu Ser Arg Met Ser Gly Phe Asp Asp Gly Glu Glu 210 215 220 Glu Thr Val Ile Asn Leu Thr Val Lys Pro Glu Lys Lys Lys Gly Leu 225 Phe Gly Thr Leu Gln Ala Gly Tyr Gly Thr Asp Gln Arg Tyr Met Ala 245 Gly Gly Asn Val Asn Arg Phe Asp Gly Asn Lys Gly Clu 225 Glu Gly Ser Ala Asn Asn Thr Asn Asn Met Gly Phe Ser Glu Met Asp Ser 275 Glu Met Gly Ser Wet Thr Phe Phe Ser Pro Gln Gly Gly Gly Arg Arg 300 Glu Met Gly Ser Wet Thr Phe Phe Ser Pro Gln Gly Gly Gly Arg Arg 300 Gly Phe Gly Asn Ser Gly Gly Val Thr Ser Ser Ser Met Leu Gly Gly 305 Asn Phe Ser Val Glu Phe Ser Ser Ala Leu Asn Thr Gly Gly Asp 330 Asn Phe Ser Val Glu Phe Ser Ser Ala Leu Asn Thr Gly Gly Asp 335 Arg Tyr Gly Tyr Asn Asp Lys Ala Ile Glu Thr Thr Lys Arg Val Glu 335 Asn Phe Ser Wet Ile Phe Ser Ser Ala Leu Asn Thr Gly Gly Asp Arg 320 Asn Phe Ser His Asn Gly Gln Ala Arg Phe Arg Met Gln Trp Lys 335 Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Arg Met Gln Trp Lys 337 Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Arg Met Gln Trp Lys 330 Arg Ser Glu Arg Thr Glu Val Val Phe Glu Pro Asp Leu Ser Ile Ser 330 Arg Ser Glu Arg Thr Glu Val Val Phe Glu Pro Asp Leu Ser Ile Ser 405 Asn Phe Arg Leu Asn Gly Glu Leu Asp Thr Tyr Glu Thr Lys Asp Ala Ile Glu Gly Asn Arg 400 Asn Phe Arg Leu Asn Gly Glu Leu Asp Ile Ser His Lys Leu Asn Asp 404 Asn Glu Gly Asn Gly Glu Leu Asp Ile Ser His Lys Leu Asn Asp 445 Asn Gly Arg Thr Ile Ser Ala Ser Val Ser Gly Gly Leu Thr Asp Glu Asp Glu Asn Gly Glu Leu Asp Ile Ser His Lys Leu Asp Glu Asn Asp Asn Ser Asn Leu Gln Tyr Arg Leu Asp Glu Asp Glu Asp Asp Glu Asn Asp Asn Ser Asn Leu Gln Tyr Arg Leu Asp Glu Asp Asp Glu Asp Asp Glu Asn Asp Asn Ser Asn Leu Gln Tyr Asp Leu Asp Glu Asp Tyr Arg Glu Asp Tyr Arg G	Ile	e Lys		n Le		o Ala	a Asp		t Va		n Ly	s Va		n Va		u Asr
Glu Thr Val I le Asn Leu Thr Val Lys Pro Glu Lys Lys Lys Gly Leu 225	Lys	Let	ı Se		u Le	u Sei		g Met		r Gl	y Ph		p As		y Gl	u Glu
Phe Gly Thr Leu Gln Ala Gly Tyr Gly Thr Asp Gln Arg Tyr Met Ala	Glu	ı Thi		1 Il	e As		ı Thr		L Ly:	s Pro		u Ly		s Ly	s Gl	
Gly Gly Asn Val Asn Arg Phe Asp Gly Asn Lys Gln Trp Thr Leu Ile 260  Gly Ser Ala Asn Asn Thr Asn Asn Met Gly Phe Ser Glu Met Asp Ser 275  Glu Met Gly Ser Wet Thr Phe Phe Ser Pro Gln Gly Gly Gly Arg Arg 295  Gly Phe Gly Asn Ser Gly Gly Val Thr Ser Ser Ser Met Leu Gly Gly 305  Asn Phe Ser Val Glu Phe Ser Ala Leu Asn Thr Gly Gly Asp Arg 320  Asn Phe Ser Val Glu Phe Ser Ser Ala Leu Asn Thr Gly Gly Asp Arg 320  Asn Phe Ser Val Glu Phe Ser Ser Ala Leu Asn Thr Gly Gly Asp Arg 320  Asn Phe Ser Val Glu Gly Asn Ser Gly Gly Asp Arg 320  Asn Jac Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Gly Gln Ala Arg Phe Asp Met Gln Trp Lys 370  Arg Ser Phe Ser His Asn Cys Gly Ser Ile His Gln Thr Lys Asp Ala Thr 400  Gly Ile Ser Ile Asn Lys Gly Ser Ile His Gln Thr Thr Gln Gly Asn 435  Arg Gly Arg Thr Ile Ser Ala Ser Val Ser Gly Gly Leu Thr Asp Glu 435  Asp Gly Apg Gly Ile Tyr Gln Ala Val Leu Gln Try Arg Leu Arg Asp 440  Glu Gly Arg Thr 12 Ser Ala Ser Val Ser Gly Gly Leu Thr Asp Glu 485  Asp Gly Apg Gly Ile Tyr Gln Ala Val Leu Gln Try Arg Leu Arg Leu 485  Arg Arg Phe Asp Asp Gly Gly Lys Asn Try Phe Ala Gln Ala Cln Lys Gly Ser Ile Leu Asp Ser Gly Gly Leu Thr Asp Glu 485  Arg Arg Phe Asp Asp Gly Gln Try Ser Ile Leu Asp Asp Arg Glu Val Tyr Arg Leu 550  Asp Asp Asp Gly Gln Try Ser Ile Leu Asp Asp Arg Glu Val Tyr Arg Leu 550  Arg Arg Phe Asn Gly Phe Asn Asp Arg Ser Gln Mrg Arg Phe Asp Arg Gly Arg Thr Thr Gly Gly Asp Asp Gly Arg Thr Try Arg Ile Gly Leu Asp Leu 198 Leu 560  Arg Arg Phe Asn Arg Val Asn Leu Ser Pro Met Leu Arg Ile Asn Tyr Lys Glo Glo Gly Try Arg Ser Val Ala Gly Asp Try Arg Gly A			7 Th	r Le		n Ala		туз	r Gly		r As		n Ar	д Ту		t Ala
Gly Ser Ala Aan Asn Thr Asn Asn Met Gly Phe Ser Glu Met Asp Ser 275	Gly	/ Gly	/ As:		l Ası		g Phe	a Ası		y Ası		s Gl	n Tr		r Le	
Glu Met Gly Ser Met Thr Phe Phe Ser Pro Gln Gly Gly Gly Arg Arg 295	Gly	ser,		a Ası		n Thr	Asn		ı Met		Ph	e Se		u Mei		p Ser
State	Glu			y Sei	r Met	Thr		Phe		r Pro	Gl:		y Gl		y Ar	g Arg
1325   330   335   340   340   340   340   340   345   345   340   345   345   345   345   350   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365	305	;				310	)				31!	5				320
340   345   350   361   362   365   367   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368   368					325	5				330	)				339	5
355				340	)				345	5				350	)	
370			355	5				360	1				365	5		
390   395   400   415   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416   416		370					375					380	)			
10	385					390					395	5				400
Ash Phe Arg Leu Ash Slow Glu Leu Asp Ser Gly Gly Leu Thr Asp Glu Ash					405	•				410					415	,
435				420	1				425					430	1	
450			435	,				440					445	•		_
465		450					455					460	)			
Ser         Tyr         Val         Glu         Pro         Leu         Gly         Lys         Asn         Tyr         Phe         Ala         Gln         Arg         Arg         Leu         Gly         Lys         Asn         Tyr         Phe         Ala         Gln         Arg         Arg         Leu         Solo         Solo         Solo         Solo         Solo         Solo         Solo         Tyr         Arg         Leu         Solo         Solo         Solo         Tyr         Arg         Leu         Solo	465					470					475					480
Ash Arg Arg Phe Ser Arg Arg Ser Asp Ser Asp Arg Glu Val Tyr Arg Leu 520 525 525 525 525 525 525 525 525 525					485					490					495	
S15				500					505					510		
S30			515					520					525			
550		530					535					540				
Tile   Ala   Lys   Thr   Trp   Asp   Tyr   Thr   Val   Gly   Phe   Asn   Val   Asp   Pro   Asn   565   565   570   570   570   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575   575	1yr 545	ser	Asn	Glu	Phe		GIn	Tyr	Arg	Ile			Asn	Leu	Lys	
Arg Thr Val Ser Tyr Arg Ser Val Ala Gly Val Glu Gln Asp Lys Leu 580					565	Asp				570	Phe	Asn			575	Asn
Pro   Ser   Arg   Thr   Thr   Asn   Leu   Arg   Val   Asp   Tyr   Arg   Gly   Arg   Thr   Thr   Asn   Pro   610   610   615   620   630   635   640   645   635   645   655   640   645   655   640   655   640   655   645   655   645   655   645   655   645   655   645   655   645   655   645   655   645   655   645   655   645   655   645   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655   655				580					585					590	Lys	
610 Fro Ser Ile Asn Gln Ile Ala Pro Val Gln Asp Ile Thr Asn Pro 625 630 630 635 640  Leu Phe Val Thr Glu Gly Asn Pro Gly Leu Lys Pro Ser Tyr Ser Asn 655  Asn Val Met Ala Met Phe Ser Asp Phe Asp Ala Lys Ser Gln Arg Ala 660 665 665 665  Asn Ile Val Phe Phe Gly Asn Tyr Thr Phe Asp Asp Ile Val Pro 675  Asn Thr His Tyr Asp Pro Ser Thr Gly Ile Arg Thr Thr Arg Tyr Glu 690 695 700  Asn Ala Ser Gly Thr Trp Gln Ala Asn Leu His Gly Thr Leu Ser Leu 710 710 720  Pro Leu Lys Asn Arg Ala Phe Ser Phe Arg Met Ser Leu Phe Asn Arg 725  Leu Ala Glu Gly Gln Ser Phe Ile Asn Asp Asp Lys Asn Lys Ala Leu 740 745 755  The Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met Ala Asn Asn Asn Asn Ile Gly Phe Tyr Met Ala Asn			595					600					605			
625		610					615					620				
Leu         Phe         Val         Thr         Glu         Gly         Asn         Pro         Gly         Leu         Lys         Pro         Ser         Tyr         Ser         Asn         Asn         Fro         Gly         Leu         Lys         Pro         Ser         Tyr         Asn         Asn <td>625</td> <td></td> <td></td> <td></td> <td></td> <td>630</td> <td></td> <td></td> <td></td> <td></td> <td>635</td> <td></td> <td></td> <td></td> <td></td> <td>640</td>	625					630					635					640
Phe Asn Ile Val Phe Phe Gly Asn Tyr Thr Phe Asp Asp Ile Val Pro 675					645					650	Lys				655	Asn
Asn Thr His Tyr Asp Pro Ser Thr Gly Ile Arg Thr Thr Arg Tyr Glu 690 695 700  Asn Ala Ser Gly Thr Trp Gln Ala Asn Leu His Gly Thr Leu Ser Leu 705 710 720  Pro Leu Lys Asn Arg Ala Phe Ser Phe Arg Met Ser Leu Phe Asn Arg 725 730 735  Leu Ala Glu Gly Gln Ser Phe Ile Asn Asp Asp Lys Asn Lys Ala Leu 740 745 755  Ser Phe Arg Thr Arg Glu Arg Leu Thr Leu Thr Tyr Arg Asn Asn Trp 755 760 765  Ile Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met Ala Asn Asn				660					665					670		
690 695 700  Asa Ala Ser Gly Thr Trp Gln Ala Asn Leu His Gly Thr Leu Ser Leu 715 720  Pro Leu Lys Asn Arg Ala Phe Ser Phe Arg Met Ser Leu Phe Asn Arg 725  Leu Ala Glu Gly Gln Ser Phe Ile Asn Asp Asp Lys Asn Lys Ala Leu 740 745 750  Ser Phe Arg Thr Arg Glu Arg Leu Thr Leu Thr Tyr Arg Asn Asn Trp 755  Tle Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met Ala Asn Asn			675					680					685			
710 720 Pro Leu Lys Asn Arg Ala Phe Ser Phe Arg Met Ser Leu Phe Asn Arg 725 730 735  Leu Ala Glu Gly Gln Ser Phe Ile Asn Asp Asp Lys Asn Lys Ala Leu 740 745 750  Ser Phe Arg Thr Arg Glu Arg Leu Thr Leu Thr Tyr Arg Asn Asn Trp 755 760 765  Ile Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met Ala Asn Asn		690					695					700				
Pro Leu Lys Asn Arg Ala Phe Ser Phe Arg Met Ser Leu Phe Asn Arg 725 730 735  Leu Ala Glu Gly Gln Ser Phe Ile Asn Asp Asp Lys Asn Lys Ala Leu 740 745 750  Ser Phe Arg Thr Arg Glu Arg Leu Thr Leu Thr Tyr Arg Asn Asn Trp 755 760 765  Ile Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met Ala Asn Asn	705					710					715					720
Leu Ala Glu Gly Gln Ser Phe Ile Asn Asp Asp Lys Asn Lys Ala Leu       740       745       750         Ser Phe Arg Thr Arg Glu Arg Leu Thr Leu Thr Tyr Arg Asn Asn Trp       765       765         Ile Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met Ala Asn Asn       760       765					725	Ala				Arg 730	Met				735	Arg
755 760 765 Ile Asp Thr Ser Ile Gly Gly Asn Ile Gly Phe Tyr Met Ala Asn Asn				740					Asn 745	Asp				750	Ala	
			755					760					765			
	тте	770	Thr	ser	11 <b>e</b>			Asn	Ile	Gly	Phe		Met	Ala	Asn	Asn

Ser Leu Ser Gly Gln Lys Asp Ser Arg Thr Tyr Asp Phe Gly Gly Asn 790 795 Tyr Gln Val Ala Leu Thr Leu Pro Tyr Gly Phe Arg Ile Asp Ser Asp 805 810 815 Val Glu Tyr Asn Thr Asn Ser Gly Tyr Ser Gly Gly Phe Ser Leu Asp 820 825 830 Glu Trp Leu Trp Asn Ala Ser Leu Ser Tyr Ser Phe Leu Arg Asp Lys 840 Ala Gly Thr Leu Arg Val Asn Gly Tyr Asp Ile Leu Gly Gln Arg Ser 850 855 860 Ser Ile Ser Arg Ser Ala Ser Ala Ile Asn Ile Glu Glu Ser Met Ser 870 875 Asn Thr Ile Gly Arg Tyr Val Met Val Asp Phe Ile Tyr Arg Phe Asn 885 890 Ala Phe Ser Gly Gly Gly Ser Arg Ser Asp His Gln Arg Gly Asn Met 900 905 910 Asn Arg Pro Gly Pro Pro Phe Gly Gly Arg Arg Pro Ser 920

### (2) INFORMATION FOR SEQ ID NO:505

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 400 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...400
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:505

Met Val Met Lys Leu Ile Lys Arg Ser Leu Leu Leu Leu Gly Ala Val 10 Leu Leu Ile Thr Leu Pro Ala Tyr Ser Gln Asn Asp Asp Ile Phe Glu 20 25 Asp Asp Ile Tyr Thr Ser Arg Lys Glu Ile Arg Lys Gln Asn Gln Val 35 40 45 Lys Asp Trp Gln Asn Gln Glu Asp Gly Tyr Gly Asp Asp Thr Glu Tyr 55 Thr Val Ala Ser Asp Arg Asp Ile Asp Ala Tyr Asn Arg Arg Asp Gly 65 70 75 80 75 Gln Ser Tyr Asp Gly Lys Lys Leu Ser Lys Asp Lys Lys Arg Asp Ser 85 90 Thr Arg Ser Ser Val Pro Gly Arg Tyr Ser Arg Arg Leu Ala Arg Phe 100 105 110 Tyr Lys Pro Asn Thr Ile Val Ile Ser Gly Ala Asp Asn Val Tyr Val 115 120 125 Thr Asp Asp Gly Glu Tyr Phe Val Tyr Gly Asp Glu Tyr Tyr Asp Asp 135 140 Ala Ser Ser Val Asn Ile Tyr Ile Asn Ser Pro Trp Cys Asp Pro Phe 150 155 Pro Tyr Thr Ser Trp Tyr Pro Ser Phe Ser Gly Trp Tyr Asn Tyr Thr 165 170 Trp Asn Tyr Pro Trp Phe Tyr Tyr Gly Ser His Ile Gly Trp Gly Gly 180 185 190 Tyr Tyr Pro Gly Tyr Asn Trp Tyr Trp Ser Tyr Tyr Tyr Asp Pro Phe 195 200 205 Tyr Asn Pro Tyr Gly Ile Gly Met Gly Trp Gly Tyr Pro Tyr Gly Trp 215 220 Gly Ser Tyr Tyr Gly Trp Gly Gly Tyr Pro Gly Val Ile His His Tyr
225 230 235 240 230 235 His His Tyr Pro Lys Lys Thr Tyr Ser Asn Gly Gln His Ser Gly Ala 245 250 Tyr Tyr Ser Tyr Gly Arg Pro Asn Arg Ile Lys Gly Gly Thr Ser Gly 260 265 Ala Lys Leu Gly Thr Gly Arg Tyr Asp Arg Ile Gln Asn Ser Ser Ser 275 285 280 Gln Lys Asn Lys Phe Gly Leu Gln Ser Asn Lys Pro Asn Asn Asn Leu

295

Gln Asn Val Lys Ser Gly Arg Thr Gly Arg Ala Asn Arg Asp Arg Asn Ile Glu Thr Val Thr Pro Asn Asn Gly Gln Lys Gln Asn Arg Pro Val Phe Gln Gln Asn Gln Ser Gly Asn Asp Arg Pro Thr Gly Arg Asn Ile Arg Ser Glu Arg Gln Gly Glu Asn Asn Asp Arg Thr Phe Ser Thr Pro Ser Arg Ser Asn Ser Asn Gly Gly Phe Ser Thr Pro Ser Arg Ser Ser Ser Gly Ser Met Ser Gly Gly Gly Gly Arg Ser Gly Arg Gly Arg Asn 

- (2) INFORMATION FOR SEQ ID NO:506
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 398 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION 1...398
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:506

Met Lys Leu Ile Lys Arg Ser Leu Leu Leu Leu Gly Ala Val Leu Leu Ile Thr Leu Pro Ala Tyr Ser Gln Asn Asp Asp Ile Phe Glu Asp Asp Ile Tyr Thr Ser Arg Lys Glu Ile Arg Lys Gln Asn Gln Val Lys Asp 4.5 Trp Gln Asn Gln Glu Asp Gly Tyr Gly Asp Asp Thr Glu Tyr Thr Val Ala Ser Asp Arg Asp Ile Asp Ala Tyr Asn Arg Arg Asp Gly Gln Ser Tyr Asp Gly Lys Lys Leu Ser Lys Asp Lys Lys Arg Asp Ser Thr Arg Ser Ser Val Pro Gly Arg Tyr Ser Arg Arg Leu Ala Arg Phe Tyr Lys Pro Asn Thr Ile Val Ile Ser Gly Ala Asp Asn Val Tyr Val Thr Asp Asp Gly Glu Tyr Phe Val Tyr Gly Asp Glu Tyr Tyr Asp Asp Ala Ser 130 135 140 Ser Val Asn Ile Tyr Ile Asn Ser Pro Trp Cys Asp Pro Phe Pro Tyr Thr Ser Trp Tyr Pro Ser Phe Ser Gly Trp Tyr Asn Tyr Thr Trp Asn Tyr Pro Trp Phe Tyr Tyr Gly Ser His Ile Gly Trp Gly Gly Tyr Tyr Pro Gly Tyr Asn Trp Tyr Trp Ser Tyr Tyr Tyr Asp Pro Phe Tyr Asn Pro Tyr Gly Ile Gly Met Gly Trp Gly Tyr Pro Tyr Gly Trp Gly Ser Tyr Tyr Gly Trp Gly Gly Tyr Pro Gly Val Ile His His Tyr His His Tyr Pro Lys Lys Thr Tyr Ser Asn Gly Gln His Ser Gly Ala Tyr Tyr Ser Tyr Gly Arg Pro Asn Arg Ile Lys Gly Gly Thr Ser Gly Ala Lys Leu Gly Thr Gly Arg Tyr Asp Arg Ile Gln Asn Ser Ser Gln Lys 275 280 285 Asn Lys Phe Gly Leu Gln Ser Asn Lys Pro Asn Asn Asn Leu Gln Asn Val Lys Ser Gly Arg Thr Gly Arg Ala Asn Arg Asp Arg Asn Ile Glu Thr Val Thr Pro Asn Asn Gly Gln Lys Gln Asn Arg Pro Val Phe Gln Gln Asn Gln Ser Gly Asn Asp Arg Pro Thr Gly Arg Asn Ile Arg Ser

Glu Arg Gln Gly Glu Asn Asn Asp Arg Thr Phe Ser Thr Pro Ser Arg 365

Ser Asn Ser Asn Gly Gly Phe Ser Thr Pro Ser Arg 580

Ser Met Ser Gly Gly Gly Gly Arg Ser Gly Arg Gly Arg Asn 385

Ser Met Ser Gly Gly Gly Gly Gly Arg Ser Gly Arg Gly Arg Asn 395

- (2) INFORMATION FOR SEQ ID NO:507
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 581 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...581
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:507

Met Ile Arg Lys Leu Ile Leu Leu Leu Ala Leu Met Pro Val Ala Ser 5 10 15 Val Ala Phe Ala Val Pro Thr Asp Ser Thr Glu Ser Lys Asp Asn Arg 20 25 Ile Leu Thr Ser Met Gln Ser Ser Ser Leu Asn Arg Asp Asp Ala Pro 35 40 45 Asp Lys Trp Gln Pro Met His Ala Asn Phe Ser Ile Gln Ser Asp Met 55 60 Leu Leu Ser Thr Ala Gln Lys Ser Lys Asn Thr Trp Phe Gly Asn Ser 70 75 Tyr Ile Met Gly Ile Ile Lys Asn Asn Tyr Leu Glu Phe Gly Ala Arg 85 90 Phe Glu Asp Leu Tyr Lys Pro Leu Pro Gly His Glu Pro Glu Met Gly 100 105 Arg Gly Val Pro His Met Tyr Val Lys Gly Ser Tyr His Trp Ala Glu 115 120 125 Leu Thr Met Gly Asp Phe Tyr Asp Gln Phe Gly Ser Gly Met Val Phe 135 140 Arg Thr Tyr Glu Glu Arg Asn Leu Gly Ile Asp Asn Ala Val Arg Gly 150 155 Gly Arg Ile Val Leu Thr Pro Phe Asp Gly Val Arg Val Lys Gly Ile 165 170 175 170 Ala Gly Gln Gln Arg Asn Tyr Phe Asp Arg Thr Gly Lys Val Phe Asn 180 185 190 Ser Gly Arg Gly Tyr Leu Leu Gly Ser Asp Leu Glu Leu Asn Val Glu 195 200 205 Arg Trp Ser Ser Ala Met Arg Asp Asn Asp Tyr His Leu Ala Ile Gly 215 220 Gly Ser Phe Val Ser Lys His Glu Ala Asp Glu Asp Ile Phe Val Gly 225 230 235 Val Gly Glu Asp Arg Lys Arg Leu Asn Leu Pro Leu Asn Val Pro Ile 245 250 Met Gly Leu Arg Thr Asn Phe Gln Lys Gly Gly Leu Ala Leu Tyr Ala 260 265 Glu Tyr Gly Tyr Lys Tyr Asn Asp Pro Ser Ala Asp Asn Asp Tyr Ile 275 280 285 Tyr His Asp Gly Gln Ala Ala Leu Leu Ser Ala Ser Tyr Ser Lys Lys 290 295 300 Gly Met Ser Ile Leu Leu Gln Ala Lys Arg Cys Glu Asn Phe Ala Phe 305 310 315 320 Arg Ser Lys Arg Ser Ala Gln Leu Thr Pro Leu Met Ile Asn Tyr Met 330 325 335 Pro Ala Phe Thr Gln Ala His Thr Tyr Thr Leu Ala Ala Ile Tyr Pro 340 345 350 Tyr Ala Thr Gln Pro Gln Gly Glu Trp Ala Phe Gln Gly Glu Leu Arg 355 360 365 Tyr Asn Phe Ala Arg Arg Thr Ala Leu Gly Gly Arg Tyr Gly Thr Gly 370 375 380 Leu Arg Ile Asn Val Ser His Val Arg Gly Leu Asp Lys Lys Met Leu 390 395

Lys Glu Asn Pro Asp Glu Leu Ile Gly Thr Asp Gly Tyr Thr Val Ser 405 410 Phe Phe Gly Met Gly Asp Leu Tyr Tyr Ser Asp Ile Asp Val Glu Ile 420 425 430 Thr Lys Lys Val Ser Pro Gly Phe Asn Phe Thr Leu Thr Tyr Leu Asn 435 440 445 Gln Ile Tyr Asn Asn Lys Val Leu His Gly Ala Ala Gly Glu Lys Pro 455 Glu Lys Ile Tyr Ala Asn Ile Phe Val Tyr Asp Gly Lys Tyr Lys Leu 465 470 475 Ser Asn Lys Val Ala Leu Arg Thr Glu Leu Gln Tyr Leu His Thr Lys 485 490 Gln Asp Gln Gly Asp Trp Ile Tyr Gly Met Ala Glu Leu Ser Ile Leu 500 505 510 Pro Ser Leu Met Leu Ser Leu Ser Glu Gln Tyr Asn Ile Gly Glu Thr 515 520 525 Lys Lys His Tyr Val Met Gly Ser Val Thr Tyr Thr His Gly Ala His 530 535 540 Arg Val Ala Phe Ser Ala Gly Lys Thr Arg Ala Gly Met Asn Cys Ser 545 550 555 Gly Gly Val Cys Arg Val Val Pro Glu Thr Gln Gly Phe Tyr Leu Ser 565 570 Tyr Ser Thr Asn Leu 580

## (2) INFORMATION FOR SEQ ID NO:508

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 239 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...239
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:508

Met Arg Ser Leu Phe Leu Ser Ala Leu Arg Ser Ser Ser Leu His Gly 10 Ser Glu Arg Arg Ser Arg Ile Ser Ser Ser Val Val Met Ser Ile Arg 20 25 Gln Lys Ile Arg Leu Phe His Leu Ser Val Cys Ala Gln Thr His Asp 40 His Leu Ile Glu Ile His Leu Val Cys Ile Glu Phe Gly Ala Ile Asp 55 60 Thr Asp Glu Phe Arg Leu Ser Ser His Ala Tyr Thr Thr Ser Pro Thr 70 His Thr Gly Ala Ile His His Asn Cys Ile Glu Arg Ser Tyr Gly Arg 85 90 Tyr Leu Val Thr Phe Gly Gln Glu Arg Asn Glu Leu His His His Ser 100 105 Arg Pro Asp Arg Asn Ala Glu Val Tyr Arg Phe Pro Phe Asp Asn Ala 120 125 Phe His Ser Ile Arg Tyr Glu Ala Phe Arg Pro Ile Arg Pro Ile Val 130 135 140 Cys His Asp Asp His Phe Ile Ala Ile Gly Ser His Leu Phe Phe Lys 150 155 Asp Asn Gln Ile Phe Ser Ser Gly Ser Gln Tyr Asp Asn Tyr Thr Val 165 170 Ala Cys Phe Val Glu Ser Leu His Asp Arg Glu Gln Arg Ser His Thr 185 190 His Thr Ala Ser Gly Thr Asn His Cys Ala Asp Leu Phe Asp Met Arg 195 200 205 Thr Leu Ser Gln Arg Thr Tyr His Ile Arg Asp Ile Val Ala Asp Phe 215 220 Glu Phe Gly Gln Phe Leu Gly Arg Phe Ala His Gly Leu Asn His 230 235

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 211 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...211
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:509

Met Ser Ile Arg Gln Lys Ile Arg Leu Phe His Leu Ser Val Cys Ala 10 15 Gln Thr His Asp His Leu Ile Glu Ile His Leu Val Cys Ile Glu Phe 20 25 Gly Ala Ile Asp Thr Asp Glu Phe Arg Leu Ser Ser His Ala Tyr Thr 40 45 Thr Ser Pro Thr His Thr Gly Ala Ile His His Asn Cys Ile Glu Arg 50 55 60 Ser Tyr Gly Arg Tyr Leu Val Thr Phe Gly Gln Glu Arg Asn Glu Leu 70 His His His Ser Arg Pro Asp Arg Asn Ala Glu Val Tyr Arg Phe Pro 85 90 Phe Asp Asn Ala Phe His Ser Ile Arg Tyr Glu Ala Phe Arg Pro Ile 100 105 110 Arg Pro Ile Val Cys His Asp Asp His Phe Ile Ala Ile Gly Ser His 115 120 125 Leu Phe Phe Lys Asp Asn Gln Ile Phe Ser Ser Gly Ser Gln Tyr Asp 135 140 Asn Tyr Thr Val Ala Cys Phe Val Glu Ser Leu His Asp Arg Glu Gln 145 150 155 Arg Ser His Thr His Thr Ala Ser Gly Thr Asn His Cys Ala Asp Leu 165 170 Phe Asp Met Arg Thr Leu Ser Gln Arg Thr Tyr His Ile Arg Asp Ile 185 190 Val Ala Asp Phe Glu Phe Gly Gln Phe Leu Gly Arg Phe Ala His Gly

Leu Asn His 210

195

- (2) INFORMATION FOR SEO ID NO:510
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 781 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis

200

205

- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...781
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:510

 Met
 Asp
 Arg
 Pro
 Lys
 Pro
 Ser
 Tyr
 Ile
 Val
 Arg
 Ile
 Leu

 1
 1
 5
 10
 15
 15

 Cys
 Leu
 Phe
 Val
 Gly
 Arg
 Pro
 Leu
 Phe
 Ala
 Gln
 Ser
 Tyr
 Val
 Asp
 Tyr

 Val
 Asp
 Pro
 Gly
 Thr
 Leu
 Ser
 Ser
 Pro
 Glu
 Leu
 Ser
 Ala

 Asn
 Thr
 Tyr
 Pro
 Val
 Ile
 Gly
 Leu
 Pro
 Trp
 Gly
 Met
 Asn
 Ser
 Trp
 Thr

 Asn
 Thr
 Tyr
 Val
 Ile
 Gly
 Leu
 Pro
 Trp
 Gly
 Met
 Asn
 Ser
 Trp
 Thr

 Asn
 Thr
 Gly
 Val
 Pro
 Gly
 Asn
 Gly
 Trp

```
70
                                   75
 His Lys Ile Arg Gly Phe Lys Gln Thr His Gln Pro Ser Pro Trp Ile
             85
                              90
                                        95
 Asn Asp Tyr Gly Gln Phe Ser Leu Leu Pro Leu Thr Ala Pro Gln Lys
         100
                          105
 Pro Ser Ser Asn Asp Ser Ile Ala Leu Thr Lys Trp Cys Lys Gln Leu
       115
                       120
                                         125
 Phe Ser Asp Glu Gln Thr Ser Trp Phe Ser His Lys Ala Glu Thr Ala
            135
                             140
 Thr Pro Tyr Tyr Tyr Ser Val Tyr Leu Ala Asp Tyr Asp Thr Arg Val
                           155
               150
 Glu Met Ala Pro Thr Glu Arg Ala Ala Ile Phe Arg Ile Arg Tyr Ser
        165
                         170 175
 Gly Asn Thr Glu Ser Gly Ser Gly Arg Trp Leu Arg Leu Asp Ala Phe
        180
                           185
                                             190
 Thr Gly Gly Ser Glu Ile Ser Ile Val Asp Pro His Thr Val Val Gly
       195
               200
                                      205
 Ile Ser Arg Lys Asn Ser Gly Gly Val Pro Ala Asn Phe Ala Cys Tyr
            215
                             220
 Phe Ile Leu Gln Ser Asp Thr Pro Met Ala Asp Val Leu Leu Glu Thr
         230
                                235
Asp Thr Gly Lys Ser Asp Glu Gly Thr Arg Ala Trp Ala Ala Cys Arg
            245
                             250
                                               255
Phe Asp Ser Gln Glu Val Thr Val Arg Val Ala Ser Ser Phe Ile Ser
                  265
        260
Val Glu Gln Ala Glu Arg Asn Leu Ala Glu Val Lys Gly Gln Ser Phe
                      280
                                 285
Asp Arg Ile Arg Leu Ala Gly Arg Glu Ala Trp Asn Lys Val Leu Gly
            295
                                     300
Arg Ile His Val Glu Gly Gly Thr Lys Asp Glu Arg Thr Thr Phe Tyr
305
        310
Ser Ala Leu Tyr Arg Cys Leu Leu Phe Pro Arg Arg Phe Tyr Glu Glu
             325
                        330
Asp Ala Ser Gly Asn Phe Val His Tyr Ser Pro Tyr Asn Gly Glu Val
         340
                  345
                                    350
Leu Pro Gly Tyr Leu Tyr Thr Asp Thr Gly Phe Trp Asp Thr Phe Arg
     355
                    360
                                   365
Ala Leu Phe Pro Leu Leu Asn Leu Leu Tyr Pro Asp Glu Asn Ile Lys
  370
          375
                                    380
Ile Gln Glu Gly Leu Leu Asn Val Tyr Arg Glu Ser Gly Phe Phe Pro
        390
                            395
Glu Trp Ala Ser Pro Gly His Arg Asp Cys Met Ile Gly Asn Asn Ser 405 410 415
Ala Ser Val Leu Ala Asp Ala Tyr Leu Lys Gly Val Arg Val Glu Asp
                         425
                                          430
Thr Arg Thr Leu Met Asn Gly Leu Leu His Ala Thr Lys Ala Val His
     435
                       440
                                        445
Pro Lys Ile Ser Ser Thr Gly Arg Lys Gly Trp Glu Trp Tyr Asn Ser
 450
           455
                                    460
Leu Gly Tyr Val Pro Ala Asp Ala Gly Ile Asp Glu Ser Ala Ala Arg
        470
                               475
Thr Leu Glu Tyr Ala Tyr Asn Asp Trp Cys Ile Leu Arg Leu Gly Arg
             485
                              490
                                               495
Thr Leu Gly Trp Asp Arg Ala Ala Leu Asp Thr Leu Ala His Arg Ser
         500
                          505
                                          510
Met Asn Tyr Arg His Leu Phe Asp Pro Glu Thr Lys Leu Met Arg Gly
    515
              520
Arg Asn Gln Asp Gly Ser Phe Arg Thr Pro Phe Ser Pro Phe Lys Trp
                   535
                                    540
Gly Asp Val Phe Thr Glu Gly Asn Ala Trp His Tyr Thr Trp Ser Val
               550
                         555
Phe His Asp Val Gln Gly Leu Ile Asp Leu Met Gly Gly Asp Arg Pro
             565
                              570
                                               575
Phe Val Ser Met Leu Asp Ser Val Phe Asn Thr Pro Pro Met Phe Asp
         580
                          585
Glu Ser Tyr Tyr Gly Phe Val Ile His Glu Ile Arg Glu Met Gln Ile
   595
              600
                                        605
Ala Asp Met Gly Asn Tyr Ala His Gly Asn Gln Pro Ile Gln His Met
                   615
                              620
Ile Tyr Leu Tyr Asn His Ala Gly His Pro Trp Lys Ala Gln Glu Arg
      630
                           635
Leu Arg Glu Val Met Gly Arg Leu Tyr Arg Pro Thr Pro Asp Gly Tyr
            645
                              650
                                               655
Cys Gly Asp Glu Asp Asn Gly Gln Thr Ser Ala Trp Tyr Val Phe Ser
         660
                         665
                                           670
Ala Leu Gly Phe Tyr Pro Val Thr Pro Ala Thr Asp Gln Tyr Val Leu
                       680
                                        685
```

Gly Ser Pro Ile Phe Ser Lys Val Ile Leu Ser Phe Pro Asp Gly His 695 700 Lys Thr Val Leu His Ala Pro Ala Asn Ser Ala Asp Thr Pro Tyr Ile 705 710 715 Arg Ser Ile Ser Val Glu Gly Lys Glu Trp Ser Cys Asn Tyr Leu Thr 725 730 735 His Glu Gln Leu Arg Ser Ser Ala Ser Ile Gln Trp Met Met Asp Thr 745 Lys Pro Asn Tyr Asn Arg Gly Met Lys Glu Ser Asp Arg Pro Tyr Ser 760 765 Phe Ser Thr Glu Gln Gln Arg Arg Ala Asn His Ser Asn 775

### (2) INFORMATION FOR SEQ ID NO:511

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 271 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...271
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:511

Met Met Lys Ser Met Arg Ser Val Leu Leu Leu Phe Pro Leu Ser 10 Leu Ile Thr Ala Leu Gly Cys Ser Asn Asn Lys Ala Ala Glu Ser Lys 20 25 3.0 Ser Val Ser Phe Asp Ser Ala Tyr Leu Glu Arg Tyr Ile Pro Leu Arg 40 45 Ala Asp Ile Asp Thr Pro Ser Leu His Val Met Ile Ser Tyr Val Tyr 55 60 Pro Ser Gly Asp Asp Met Leu Thr Glu Ile Phe Asn Gly Leu Leu Phe 70 Gly Asp Ser Leu Met Asp Ser Ser Ser Pro Glu Asn Ala Met Glu Gly 85 90 Tyr Ala Gln Met Leu Gly Glu Asp Tyr Arg Ser Asn Asn Ala Glu Ala 100 105 Asn Leu Gln Gly Leu Pro Ser Asp Leu Leu Asp Tyr Ile Tyr Lys Gln 115 120 125 Glu Asn Thr Ile Ala Tyr Cys Asp Thr Gly Leu Ile Ser Thr Arg Ile 135 140 Asn Thr Tyr Thr Tyr Glu Gly Gly Ala His Thr Glu Asn Thr Val Arg 150 155 Phe Ala Asn Ile Leu Arg Thr Thr Gly Lys Val Leu Glu Glu Arg Asp 165 170 Ile Phe Lys Ile Asp Tyr Ala Glu Arg Leu Ser Ala Leu Ile Ile Gly 180 185 190 Gln Leu Val His Asp Phe Gly Lys Thr Thr Pro Ala Glu Leu Asp Ala 195 200 205 Ile Gly Phe Phe Asn Ala Glu Glu Ile Gln Pro Asn Gly Asn Phe Met 210 215 220 Ile Asp Asp Lys Gly Leu Thr Tyr Cys Phe Asn Glu Tyr Gln Ile Ala 230 235 Ala Tyr Ala Arg Gly Ala Val Tyr Val Arg Leu Gly Tyr Asp Val Leu 245 250 Ala Pro Leu Leu Arg Asp Asp Ser Pro Leu Lys Arg Tyr Leu Pro 260 265 270

# (2) INFORMATION FOR SEQ ID NO:512

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 270 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

#### (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...270
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:512

Met Lys Ser Met Arg Ser Val Leu Leu Leu Phe Pro Leu Ser Leu 10 Ile Thr Ala Leu Gly Cys Ser Asn Asn Lys Ala Ala Glu Ser Lys Ser 20 Val Ser Phe Asp Ser Ala Tyr Leu Glu Arg Tyr Ile Pro Leu Arg Ala 35 40 Asp Ile Asp Thr Pro Ser Leu His Val Met Ile Ser Tyr Val Tyr Pro 50 55 60 Ser Gly Asp Asp Met Leu Thr Glu Ile Phe Asn Gly Leu Leu Phe Gly 70 75 Asp Ser Leu Met Asp Ser Ser Ser Pro Glu Asn Ala Met Glu Gly Tyr 85 90 Ala Gln Met Leu Gly Glu Asp Tyr Arg Ser Asn Asn Ala Glu Ala Asn 105 110 Leu Gln Gly Leu Pro Ser Asp Leu Leu Asp Tyr Ile Tyr Lys Gln Glu 115 120 Asn Thr Ile Ala Tyr Cys Asp Thr Gly Leu Ile Ser Thr Arg Ile Asn 135 140 Thr Tyr Thr Tyr Glu Gly Gly Ala His Thr Glu Asn Thr Val Arg Phe 145 150 155 160 Ala Asn Ile Leu Arg Thr Thr Gly Lys Val Leu Glu Glu Arg Asp Ile 165 170 175 Phe Lys Ile Asp Tyr Ala Glu Arg Leu Ser Ala Leu Ile Ile Gly Gln 180 185 190 Leu Val His Asp Phe Gly Lys Thr Thr Pro Ala Glu Leu Asp Ala Ile 200 Gly Phe Phe Asn Ala Glu Glu Ile Gln Pro Asn Gly Asn Phe Met Ile 215 220 Asp Asp Lys Gly Leu Thr Tyr Cys Phe Asn Glu Tyr Gln Ile Ala Ala 230 235 Tyr Ala Arg Gly Ala Val Tyr Val Arg Leu Gly Tyr Asp Val Leu Ala 245 250 Pro Leu Leu Arg Asp Asp Ser Pro Leu Lys Arg Tyr Leu Pro 260 265

- (2) INFORMATION FOR SEQ ID NO:513
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 267 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (iii) HYPOTHETICAL: YES
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Porphyromonas gingivalis
  - (ix) FEATURE:
    - (A) NAME/KEY: misc_feature
    - (B) LOCATION 1...267
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:513

Met Arg Ser Val Leu Leu Leu Phe Pro Leu Ser Leu Ile Thr Ala 5 Leu Gly Cys Ser Asn Asn Lys Ala Ala Glu Ser Lys Ser Val Ser Phe 20 25 3.0 Asp Ser Ala Tyr Leu Glu Arg Tyr Ile Pro Leu Arg Ala Asp Ile Asp 35 40 4.5 Thr Pro Ser Leu His Val Met Ile Ser Tyr Val Tyr Pro Ser Gly Asp 55 60 Asp Met Leu Thr Glu Ile Phe Asn Gly Leu Leu Phe Gly Asp Ser Leu 70 75 Met Asp Ser Ser Pro Glu Asn Ala Met Glu Gly Tyr Ala Gln Met

85 Leu Gly Glu Asp Tyr Arg Ser Asn Asn Ala Glu Ala Asn Leu Gln Gly 100 105 110 Leu Pro Ser Asp Leu Leu Asp Tyr Ile Tyr Lys Gln Glu Asn Thr Ile 120 125 Ala Tyr Cys Asp Thr Gly Leu Ile Ser Thr Arg Ile Asn Thr Tyr Thr 130 135 140 Tyr Glu Gly Gly Ala His Thr Glu Asn Thr Val Arg Phe Ala Asn Ile 145 150 155 Leu Arg Thr Thr Gly Lys Val Leu Glu Glu Arg Asp Ile Phe Lys Ile 165 170 175 Asp Tyr Ala Glu Arg Leu Ser Ala Leu Ile Ile Gly Gln Leu Val His 180 185 190 Asp Phe Gly Lys Thr Thr Pro Ala Glu Leu Asp Ala Ile Gly Phe Phe 200 205 Asn Ala Glu Glu Ile Gln Pro Asn Gly Asn Phe Met Ile Asp Asp Lys 215 220 Gly Leu Thr Tyr Cys Phe Asn Glu Tyr Gln Ile Ala Ala Tyr Ala Arg 230 235 Gly Ala Val Tyr Val Arg Leu Gly Tyr Asp Val Leu Ala Pro Leu Leu 245 250 Arg Asp Asp Ser Pro Leu Lys Arg Tyr Leu Pro 260 265

### (2) INFORMATION FOR SEQ ID NO:514

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 259 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...259
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:514

Met Lys Lys Thr Thr Leu Thr Gly Ser Ile Cys Ala Leu Leu Leu Phe 10 Leu Gly Leu Ser Ala Asn Ala Gln Ser Lys Leu Lys Ile Lys Ser Ile 20 25 Glu Ala Ala Thr Thr Phe Ser Ser Ala Thr Ala Gly Asn Gly Phe Gly 40 45 Gly Asn Ile Phe Gly Met Asp Met Ser Ile Arg Met Arg Val His His 55 Ser Ile Leu Pro Glu Gly Leu Asp Phe Ser Val Gly Ile His Glu Arg 75 70 Arg Ala His Trp Glu Glu Ala Gly Ser Pro Lys Leu Met Tyr Thr Asn 85 90 Val Pro Ser Ile Ile Gly Ile Val Glu Lys Val Ile Val Phe Glu Asp 100 105 Ala Glu Asp Phe Phe Asp Lys Lys Ala Leu Gly Arg Phe Leu Ile Ser 115 120 Leu Gly Ile Ser Tyr Thr Lys His Leu Gly Ala Tyr Trp Gly Trp Thr 130 135 140 Asn Asp Ala His Ile Leu Phe Ser Pro Ile Pro Lys Ser Lys Val His 150 155 Tyr Asp Thr Tyr Thr Arg Ala Gly Ser Asp Leu Val Leu Gln Ser Glu 165 170 175 Asp Val Ala Thr Val Ser Asn Gly Phe Ser Pro Gly Ile Gly Leu Lys 180 185 190 Ser Ser Ile Trp Trp Lys Met Pro Ile Lys Ser Lys Tyr Asp Phe Arg Leu Gly Phe Ser Leu Gly Tyr Glu Tyr Leu Asn Leu Leu Tyr Pro Tyr 215 220 Arg Asn Phe Lys Leu Asp Gly Asn Lys Pro Leu Ser Ala Leu Ser Pro 230 235 Arg Met Asn His Ile Gly His Val Gly Phe Asn Phe Thr Val Gly Leu 245 250 Trp Thr Asn

## (2) INFORMATION FOR SEQ ID NO:515

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1266 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...1266
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:515

Met Gly Lys Tyr Lys Arg Ala Lys Tyr Arg Tyr Trp Leu Phe Pro Phe 10 Cys Ser Asp Tyr Tyr Thr Phe Glu Gly Val Thr Phe Leu Cys Ala Ser 20 25 Asp Asp Met Thr Thr Lys Lys Pro Gln Ala Ile Leu Asp Leu Glu Lys 35 40 Ala Tyr Asn Ile Glu Ile Pro Asp Leu Ser Ser Gln Glu Gly Ile Ser 50 55 60 Trp Ser Val Asn Arg Tyr Phe Lys Gln Asp Ser Ser Gly Ala Val Val 70 75 Glu Leu Cys Leu Arg Glu Cys Gln Ile Glu Ser Met Thr Trp Leu Ile 85 90 95 Asp Phe Pro Ala Leu Lys Lys Leu Asp Leu Ser Tyr Asn Gln Ile Ser 100 105 110 Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys Leu Arg Leu 125 120 Arg Ser Asn Gln Ile Arg Lys Leu Glu Gly Leu Asp Ser Leu Thr Ser 130 135 140 Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys Leu Glu Gly 150 155 Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu Asp Asn Gln 165 170 175 Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Thr Leu 180 185 190 Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu Glu Gly Leu Glu Arg Leu 195 200 205 Thr Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu 210 215 220 Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys Leu Arg Leu Arg Ser 230 235 240 Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala 245 250 255 Thr Leu Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu Glu Gly Leu Glu 260 265 270 Arg Leu Thr Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Ser 275 280 285 Lys Leu Glu Gly Leu Glu Arg Leu Ser Ser Leu Thr Lys Leu Arg Leu 295 300 Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser 310 315 Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys Leu Glu Gly 325 330 335 Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu Asp Asn Gln 345 350 Ile Arg Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys Leu 355 360 365 Arg Leu Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu Asp Ser Leu 370 375 380 Thr Ser Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys Leu 390 395 Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu Asp 410 Asn Gln Ile Arg Lys Leu Glu Gly Leu Asp Gly Leu Ala Ser Leu Thr 420 425 Arg Leu Ser Leu Arg Arg Asn Gln Ile Ser Lys Leu Glu Gly Leu Asp

```
440
Arg Leu Lys Val Leu Arg Lys Leu Asp Val Ser Gly Asn Asp Ile Gln
              455
                            460
Ser Ile Asp Asp Ile Lys Leu Leu Ala Pro Ile Leu Glu Gln Thr Leu
         470
Glu Lys Leu Arg Ile His Asp Asn Pro Phe Val Ala Ser Ser Gly Leu
           485
                   490
Ile Leu Ser Pro Tyr Asp Asn His Leu Pro Glu Ile Lys Ala Leu Leu
        500
                 505
                                   510
Glu Lys Glu Lys Glu Lys Gln Lys Lys Thr Ser Val Glu Tyr His Pro
              520
                               525
Phe Cys Lys Val Met Leu Leu Gly Asn His Ser Ser Gly Lys Thr Thr
           535
                           540
Phe Leu Ser Gln Tyr Asp Thr Asn Tyr Thr Tyr Gln Lys Asn Thr His
               550
                             555
Val Leu Ser Ile His Arg Ser Asn Asn Pro Asn Ala Ile Phe Tyr Asp
         565 570
Phe Gly Gly Gln Asp Tyr Tyr His Gly Ile Tyr Gln Ala Phe Phe Thr
       580
                      585
Thr Gln Ser Leu Tyr Leu Leu Phe Trp Asp Ala Lys Lys Asp Arg Asn
      595
              600
                                      605
Phe Val Ser Val Asp Asp Lys Glu Tyr Gln Thr Leu Asn Phe Asn Arg
          615
                           620
Pro Tyr Trp Leu Gly Gln Ile Ala Tyr Ala Cys Asn Arg Cys Met Ser 625 630 635 635
Val Gly Gly Asn Pro Asp Gly Lys Asp Thr Pro Gln Thr Thr Asp Asp
           645
                     650
Thr Ile Ile Ile Gln Thr His Ala Asp Glu Thr Gly Ala Lys Gln Gln
         660
                        665
Thr Leu Gly Cys Ala Ala Glu Asn Gly Val Leu Glu Glu Ile Tyr Val
 675
             680
Ser Leu Glu Pro Lys Ala Asn Ser Ala Val His Ala Leu Asn Tyr Leu
 690 695
                           700
Asn Glu Arg Val Arg Glu Val Val Ala Ser Arg Ser Lys Ser Ile Gln
             710
                       715
Ile Thr Glu Lys Asp Lys Gly Leu Tyr Glu Ala Leu Pro Thr Ile Ala
           725 730
Gly Asp Asn Lys His Ile Pro Ile Ser Leu Glu Ala Leu Ala Ala Gln
       740
                  745
                                 750
Leu Asn Lys Gly Arg Ala Glu Asn Asp Leu Tyr Thr Ile Glu Tyr Leu
   755
              760
                                     765
Gln Thr Glu Leu Asn Gln Leu Ser Leu Arg Gly Glu Val Leu Tyr Tyr
           775
                                   780
Arg Glu Asn Glu Lys Leu Asn Asn Tyr Val Trp Leu Asp Pro Ala Ala
785 790 795 800
Phe Val Gln Met Ile His Gly Glu Ile Leu Gln Lys Asp Asn Ile Asn
            805
                           810
Arg Gly Thr Val Pro Lys Asp Ile Phe Glu Cys Lys Leu His Asn Leu
         820
                         825
                                        830
Ser Ser Gly Ser Ile Phe Glu Glu Asp Gly Gln Asn Gly Asn Met Ile
     835
                    840
                                     845
Leu Gln Leu Leu Glu Glu Leu Ile Val Tyr Glu Asp Lys Asp Cys
 850 855
Tyr Val Ile Pro Gly Tyr Leu Pro Leu His Ser Asp Asp Glu Ala Tyr
865 870 875
Lys Trp Leu Thr Leu Gly Phe Glu Arg Pro Asn Phe Val Leu Lys Phe
           885
                    890
                                           895
Glu Arg Phe Ile Pro Phe Gly Leu Ile Asn Gln Ile Ile Ala Tyr Tyr
                905 910
Gly Arg Glu Glu Gly Ala Leu Lys Arg Tyr Trp Arg Asp Gln Val Ile
     915
                920
                          925
Phe Thr Ala Gly Arg Glu Met Asp Arg Gln Thr Leu Glu Gln Glu Glu
                935
                                  940
Glu Lys Glu Gly Leu Pro Lys Thr Asn Ala Glu Asp Tyr Gln Ile Trp
       950
                      955
Ile Lys Leu Asp Phe Thr Asp Leu Ala Ile Ser Val Phe Ile Lys Glu
          965 970
Gln Arg Lys Thr Ser Ala Lys Asp Met Gln Arg Lys Glu Ala Thr Ile
        980
             985
                                990
Leu Ser Asp Met Leu Asp Met Tyr Trp Asn Asn Ile Pro Pro Arg Glu
              1000
                              1005
Gln Ile Gly Asp Lys Asp Thr Glu Gln Thr Arg Ser Thr Ile Arg Glu
1010 1015 1020
Thr Asn Arg Lys Lys Arg Pro Ile Gln Asp Leu Tyr Leu Ser Cys Ala
 1010 1015
1025 1030
                                1035 1040
Gln Ala Asp Lys Asp Leu Thr Glu Ser His Tyr Ile His Leu Gly Thr
           1045
                             1050
                                              1055
```

Leu Asp Asp Glu Ser Lys Thr Thr Ala Arg Ile Ala Ala Tyr Pro Leu 1060 1065 Lys Asn Gly Val Ile Asp Lys Glu Arg Val Arg Glu Val Ser Thr Arg 1075 1080 1085 Pro Tyr Lys His Leu Ser Val Asn Lys Asn Leu Ala Thr Ala Lys Gln 1090 1095 1100 Ile Phe Ile Ser Tyr Ser Lys Glu Asp Gln Thr Glu Leu Glu Thr Cys 1105 1110 1115 Leu Gln Phe Phe Lys Pro Leu Glu Lys Asn Gly Gln Ile Glu Ile Tyr 1125 1130 1135 Tyr Asp Lys Leu Thr Lys Phe Glu Thr Pro Ile His Pro Glu Ile Arg 1140 1145 1150 Lys Arg Ile Val Glu Ala Asp Cys Ile Ile Ala Leu Ile Ser Gln Arg 1155 1160 1165 Tyr Leu Ala Thr Asp Tyr Ile Leu Asp His Glu Leu Pro Val Phe Arg 1170 1175 1180 Glu Tyr Asn Lys Thr Ile Val Pro Ile Leu Ile Lys Pro Cys Thr Phe 1190 1185 1195 Glu Asp Asp Glu Phe Leu Arg Glu Lys Tyr Phe Ala Gln Lys Ala Gln 1205 1210 Ile Ile Asn Leu Gly Lys Glu Gly Lys Thr Ile Lys Ala Tyr Asp Ser 1220 1225 Ile Thr Ala Ser Ala His Arg Asp Glu Asn Trp Val Ala Val Val Arg 1240 1245 Glu Phe Lys Glu Lys Ile Leu Arg Ile Thr Lys Gln Glu Val Asn Thr 1250 1255 Asp Glu 1265

## (2) INFORMATION FOR SEQ ID NO:516

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1232 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...1232
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:516

Met Thr Thr Lys Lys Pro Gln Ala Ile Leu Asp Leu Glu Lys Ala Tyr 10 Asn Ile Glu Ile Pro Asp Leu Ser Ser Gln Glu Gly Ile Ser Trp Ser 20 25 Val Asn Arg Tyr Phe Lys Gln Asp Ser Ser Gly Ala Val Val Glu Leu 35 40 Cys Leu Arg Glu Cys Gln Ile Glu Ser Met Thr Trp Leu Ile Asp Phe 50 55 60 Pro Ala Leu Lys Lys Leu Asp Leu Ser Tyr Asn Gln Ile Ser Lys Leu 70 75 Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys Leu Arg Leu Arg Ser 90 Asn Gln Ile Arg Lys Leu Glu Gly Leu Asp Ser Leu Thr Ser Leu Thr 100 110 105 Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu 115 120 125 Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu Asp Asn Gln Ile Ser 130 135 140 Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Thr Leu Glu Leu 145 150 155 160 Ser Gly Asn Gln Ile Arg Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser 165 170 175 Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu Glu Gly 180 185 190 Leu Glu Arg Leu Thr Ser Leu Thr Lys Leu Arg Leu Arg Ser Asn Gln 195 200 205 Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Thr Leu 220

```
Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu Glu Gly Leu Glu Arg Leu
                230
                                   235
 Thr Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Ser Lys Leu
              245
                             250
                                                255
 Glu Gly Leu Glu Arg Leu Ser Ser Leu Thr Lys Leu Arg Leu Arg Ser
          260
                           265
 Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr
                 280
                                 285
 Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu
           295
 Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu Asp Asn Gln Ile Arg
         310
                                315
 Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys Leu Arg Leu
             325
                     330
 Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu Asp Ser Leu Thr Ser
         340 345
                                     350
 Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile Ser Lys Leu Glu Gly
                360
                                 365
 Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr Leu Leu Asp Asn Gln
  370
                  375
                             380
 Ile Arg Lys Leu Glu Gly Leu Asp Gly Leu Ala Ser Leu Thr Arg Leu
           390
                                 395
 Ser Leu Arg Arg Asn Gln Ile Ser Lys Leu Glu Gly Leu Asp Arg Leu
             405
                               410
 Lys Val Leu Arg Lys Leu Asp Val Ser Gly Asn Asp Ile Gln Ser Ile
         420
               425
 Asp Asp Ile Lys Leu Leu Ala Pro Ile Leu Glu Gln Thr Leu Glu Lys
               440
                                       445
Leu Arg Ile His Asp Asn Pro Phe Val Ala Ser Ser Gly Leu Ile Leu
  450
                  455
                                 460
Ser Pro Tyr Asp Asn His Leu Pro Glu Ile Lys Ala Leu Leu Glu Lys
465
          470
                                  475
Glu Lys Glu Lys Gln Lys Lys Thr Ser Val Glu Tyr His Pro Phe Cys
        485
                     490
Lys Val Met Leu Leu Gly Asn His Ser Ser Gly Lys Thr Thr Phe Leu
        500
                    505
Ser Gln Tyr Asp Thr Asn Tyr Thr Tyr Gln Lys Asn Thr His Val Leu
      515
           520
                                         525
Ser Ile His Arg Ser Asn Asn Pro Asn Ala Ile Phe Tyr Asp Phe Gly
                  535
                                    540
Gly Gln Asp Tyr Tyr His Gly Ile Tyr Gln Ala Phe Phe Thr Thr Gln
               550
                             555
Ser Leu Tyr Leu Leu Phe Trp Asp Ala Lys Lys Asp Arg Asn Phe Val
           565
                             570
                                         575
Ser Val Asp Asp Lys Glu Tyr Gln Thr Leu Asn Phe Asn Arg Pro Tyr
         580
                       585
                                          590
Trp Leu Gly Gln Ile Ala Tyr Ala Cys Asn Arg Cys Met Ser Val Gly
     595
                     600
                                        605
Gly Asn Pro Asp Gly Lys Asp Thr Pro Gln Thr Thr Asp Asp Thr Ile
                   615
                             620
Ile Ile Gln Thr His Ala Asp Glu Thr Gly Ala Lys Gln Gln Thr Leu
                630
                                  635
Gly Cys Ala Ala Glu Asn Gly Val Leu Glu Glu Ile Tyr Val Ser Leu
             645
                             650
Glu Pro Lys Ala Asn Ser Ala Val His Ala Leu Asn Tyr Leu Asn Glu
         660
                           665
                                           670
Arg Val Arg Glu Val Val Ala Ser Arg Ser Lys Ser Ile Gln Ile Thr
     675
              680
Glu Lys Asp Lys Gly Leu Tyr Glu Ala Leu Pro Thr Ile Ala Gly Asp
           695
                             700
Asn Lys His Ile Pro Ile Ser Leu Glu Ala Leu Ala Ala Gln Leu Asn
                710
                                 715
Lys Gly Arg Ala Glu Asn Asp Leu Tyr Thr Ile Glu Tyr Leu Gln Thr
            725
                     730
Glu Leu Asn Gln Leu Ser Leu Arg Gly Glu Val Leu Tyr Tyr Arg Glu
                           745
                                           750
Asn Glu Lys Leu Asn Asn Tyr Val Trp Leu Asp Pro Ala Ala Phe Val
      755
                       760
Gln Met Ile His Gly Glu Ile Leu Gln Lys Asp Asn Ile Asn Arg Gly
           775
                                     780
Thr Val Pro Lys Asp Ile Phe Glu Cys Lys Leu His Asn Leu Ser Ser
                790
                                  795
Gly Ser Ile Phe Glu Glu Asp Gly Gln Asn Gly Asn Met Ile Leu Gln
           805
                           810
Leu Leu Glu Glu Leu Ile Val Tyr Glu Asp Lys Asp Cys Tyr Val
         820
                           825
                                            830
Ile Pro Gly Tyr Leu Pro Leu His Ser Asp Asp Glu Ala Tyr Lys Trp
```

835 840 845 Leu Thr Leu Gly Phe Glu Arg Pro Asn Phe Val Leu Lys Phe Glu Arg 850 855 860 Phe Ile Pro Phe Gly Leu Ile Asn Gln Ile Ile Ala Tyr Tyr Gly Arg 865 870 875 Glu Glu Gly Ala Leu Lys Arg Tyr Trp Arg Asp Gln Val Ile Phe Thr 885 890 895 Ala Gly Arg Glu Met Asp Arg Gln Thr Leu Glu Gln Glu Glu Glu Lys 900 905 910 Glu Gly Leu Pro Lys Thr Asn Ala Glu Asp Tyr Gln Ile Trp Ile Lys 915 920 925 Leu Asp Phe Thr Asp Leu Ala Ile Ser Val Phe Ile Lys Glu Gln Arg 930 935 940 Lys Thr Ser Ala Lys Asp Met Gln Arg Lys Glu Ala Thr Ile Leu Ser 955 950 Asp Met Leu Asp Met Tyr Trp Asn Asn Ile Pro Pro Arg Glu Gln Ile 970 975 965 Gly Asp Lys Asp Thr Glu Gln Thr Arg Ser Thr Ile Arg Glu Thr Asn 980 985 990 Arg Lys Lys Arg Pro Ile Gln Asp Leu Tyr Leu Ser Cys Ala Gln Ala 995 1000 1005 Asp Lys Asp Leu Thr Glu Ser His Tyr Ile His Leu Gly Thr Leu Asp 1010 1015 1020 Asp Glu Ser Lys Thr Thr Ala Arg Ile Ala Ala Tyr Pro Leu Lys Asn 1030 1035 Gly Val Ile Asp Lys Glu Arg Val Arg Glu Val Ser Thr Arg Pro Tyr 1045 1050 1055 Lys His Leu Ser Val Asn Lys Asn Leu Ala Thr Ala Lys Gln Ile Phe 1060 1065 1070 Ile Ser Tyr Ser Lys Glu Asp Gln Thr Glu Leu Glu Thr Cys Leu Gln 1075 1080 1085 Phe Phe Lys Pro Leu Glu Lys Asn Gly Gln Ile Glu Ile Tyr Tyr Asp 1095 1100 Lys Leu Thr Lys Phe Glu Thr Pro Ile His Pro Glu Ile Arg Lys Arg 1115 1110 Ile Val Glu Ala Asp Cys Ile Ile Ala Leu Ile Ser Gln Arg Tyr Leu 1125 1130 1135 Ala Thr Asp Tyr Ile Leu Asp His Glu Leu Pro Val Phe Arg Glu Tyr 1140 1145 1150 Asn Lys Thr Ile Val Pro Ile Leu Ile Lys Pro Cys Thr Phe Glu Asp 1155 1160 Asp Glu Phe Leu Arg Glu Lys Tyr Phe Ala Gln Lys Ala Gln Ile Ile 1170 1175 1180 Asn Leu Gly Lys Glu Gly Lys Thr Ile Lys Ala Tyr Asp Ser Ile Thr 1185 1190 1195 1200 Ala Ser Ala His Arg Asp Glu Asn Trp Val Ala Val Val Arg Glu Phe 1205 1210 1215 Lys Glu Lys Ile Leu Arg Ile Thr Lys Gln Glu Val Asn Thr Asp Glu 1220 1225

## (2) INFORMATION FOR SEQ ID NO:517

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1175 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1175
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:517

 Met
 Thr
 Trp
 Leu
 Ile
 Asp
 Phe
 Pro
 Ala
 Leu
 Lys
 Lys
 Leu
 Asp
 Leu
 Ser

 1
 5
 10
 15
 15

 Tyr
 Asn
 Gln
 Ile
 Ser
 Leu
 Thr
 Ser
 Leu
 Glu
 Gly
 Leu
 Thr
 Ser
 Leu
 Asg
 Leu
 Thr
 Ser
 Leu
 Thr
 Leu
 Ser
 Leu
 Thr
 Leu
 Ser
 Asp
 <

```
Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr
                   70
 Leu Leu Asp Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr
             85
                              90
 Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Arg Lys Leu Glu
           100
                           105
 Gly Leu Glu Arg Leu Thr Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn
                        120
                                          125
 Gln Ile Arg Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Thr Lys
             135
                                     140
 Leu Arg Leu Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg
         150
                                   155
 Leu Thr Ser Leu Ala Thr Leu Glu Leu Ser Gly Asn Gln Ile Arg Lys
          165
                                170
 Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Thr Leu Glu Leu Ser
           180
                            185
 Gly Asn Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Ser Ser Leu
               200
Thr Lys Leu Arg Leu Arg Ser Asn Gln Ile Ser Lys Leu Glu Gly Leu
                     215
                                      220
Glu Arg Leu Thr Ser Leu Thr Lys Leu Ser Leu Ser Asp Asn Gln Ile
               230
                                   235
 Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Glu Leu Tyr
        245 250
Leu Leu Asp Asn Gln Ile Arg Lys Leu Glu Gly Leu Glu Arg Leu Thr
                           265
                                              270
Ser Leu Thr Lys Leu Arg Leu Arg Ser Asn Gln Ile Ser Lys Leu Glu
                        280
                                         285
Gly Leu Asp Ser Leu Thr Ser Leu Thr Lys Leu Ser Leu Ser Asp Asn
            295
Gln Ile Ser Lys Leu Glu Gly Leu Glu Arg Leu Thr Ser Leu Ala Glu
           310
                           315
Leu Tyr Leu Leu Asp Asn Gln Ile Arg Lys Leu Glu Gly Leu Asp Gly
            325
                      330
                                                  335
Leu Ala Ser Leu Thr Arg Leu Ser Leu Arg Arg Asn Gln Ile Ser Lys
         340
                          345
                                        350
Leu Glu Gly Leu Asp Arg Leu Lys Val Leu Arg Lys Leu Asp Val Ser
   355
                       360
                                        365
Gly Asn Asp Ile Gln Ser Ile Asp Asp Ile Lys Leu Leu Ala Pro Ile
             375
                                       380
Leu Glu Gln Thr Leu Glu Lys Leu Arg Ile His Asp Asn Pro Phe Val
         390
                          395
Ala Ser Ser Gly Leu Ile Leu Ser Pro Tyr Asp Asn His Leu Pro Glu
                             410
Ile Lys Ala Leu Leu Glu Lys Glu Lys Glu Lys Gln Lys Lys Thr Ser
        420
                                              430
                         425
Val Glu Tyr His Pro Phe Cys Lys Val Met Leu Leu Gly Asn His Ser
      435
                       440
Ser Gly Lys Thr Thr Phe Leu Ser Gln Tyr Asp Thr Asn Tyr Thr Tyr
            455
                                      460
Gln Lys Asn Thr His Val Leu Ser Ile His Arg Ser Asn Asn Pro Asn
                470
                                  475
Ala Ile Phe Tyr Asp Phe Gly Gly Gln Asp Tyr Tyr His Gly Ile Tyr
             485
Gln Ala Phe Phe Thr Thr Gln Ser Leu Tyr Leu Leu Phe Trp Asp Ala
        500
                          505
Lys Lys Asp Arg Asn Phe Val Ser Val Asp Asp Lys Glu Tyr Gln Thr
      515
                      520
                                          525
Leu Asn Phe Asn Arg Pro Tyr Trp Leu Gly Gln Ile Ala Tyr Ala Cys
                   535
                                    540
Asn Arg Cys Met Ser Val Gly Gly Asn Pro Asp Gly Lys Asp Thr Pro
         550
                                   555
Gln Thr Thr Asp Asp Thr Ile Ile Ile Gln Thr His Ala Asp Glu Thr
             565
                               570
Gly Ala Lys Gln Gln Thr Leu Gly Cys Ala Ala Glu Asn Gly Val Leu
         580
                           585
Glu Glu Ile Tyr Val Ser Leu Glu Pro Lys Ala Asn Ser Ala Val His
                        600
                                          605
Ala Leu Asn Tyr Leu Asn Glu Arg Val Arg Glu Val Val Ala Ser Arg
             615
                                 620
Ser Lys Ser Ile Gln Ile Thr Glu Lys Asp Lys Gly Leu Tyr Glu Ala
               630
                                   635
Leu Pro Thr Ile Ala Gly Asp Asn Lys His Ile Pro Ile Ser Leu Glu
            645
                              650
Ala Leu Ala Ala Gln Leu Asn Lys Gly Arg Ala Glu Asn Asp Leu Tyr
                            665
```

```
Thr Ile Glu Tyr Leu Gln Thr Glu Leu Asn Gln Leu Ser Leu Arq Gly
                    680
                                     685
Glu Val Leu Tyr Tyr Arg Glu Asn Glu Lys Leu Asn Asn Tyr Val Trp
                  695
                                 700
Leu Asp Pro Ala Ala Phe Val Gln Met Ile His Gly Glu Ile Leu Gln
       710
                             715
Lys Asp Asn Ile Asn Arg Gly Thr Val Pro Lys Asp Ile Phe Glu Cys
        725
                   730
Lys Leu His Asn Leu Ser Ser Gly Ser Ile Phe Glu Glu Asp Gly Gln
        740 745
                                        750
Asn Gly Asn Met Ile Leu Gln Leu Leu Glu Glu Leu Ile Val Tyr
          760 765
Glu Asp Lys Asp Cys Tyr Val Ile Pro Gly Tyr Leu Pro Leu His Ser
                 775
                                780
Asp Asp Glu Ala Tyr Lys Trp Leu Thr Leu Gly Phe Glu Arg Pro Asn
       790
                        795
Phe Val Leu Lys Phe Glu Arg Phe Ile Pro Phe Gly Leu Ile Asn Gln
        805 810
Ile Ile Ala Tyr Tyr Gly Arg Glu Glu Gly Ala Leu Lys Arg Tyr Trp
         820
                825
                                830
Arg Asp Gln Val Ile Phe Thr Ala Gly Arg Glu Met Asp Arg Gln Thr
              840
                             845
Leu Glu Gln Glu Glu Glu Lys Glu Gly Leu Pro Lys Thr Asn Ala Glu 850 855 860
Asp Tyr Gln Ile Trp Ile Lys Leu Asp Phe Thr Asp Leu Ala Ile Ser
865
       870
                     875
Val Phe Ile Lys Glu Gln Arg Lys Thr Ser Ala Lys Asp Met Gln Arg
          885
                   890
                                       895
Lys Glu Ala Thr Ile Leu Ser Asp Met Leu Asp Met Tyr Trp Asn Asn
         900
                        905
                                      910
Ile Pro Pro Arg Glu Gln Ile Gly Asp Lys Asp Thr Glu Gln Thr Arg
   915 920 925
Ser Thr Ile Arg Glu Thr Asn Arg Lys Lys Arg Pro Ile Gln Asp Leu
                           940
         935
Tyr Leu Ser Cys Ala Gln Ala Asp Lys Asp Leu Thr Glu Ser His Tyr
     950 955
Ile His Leu Gly Thr Leu Asp Asp Glu Ser Lys Thr Thr Ala Arg Ile
          965 970 975
Ala Ala Tyr Pro Leu Lys Asn Gly Val Ile Asp Lys Glu Arg Val Arg
                985
        980
                               990
Glu Val Ser Thr Arg Pro Tyr Lys His Leu Ser Val Asn Lys Asn Leu
   995 1000
                                   1005
Ala Thr Ala Lys Gln Ile Phe Ile Ser Tyr Ser Lys Glu Asp Gln Thr
 1010 1015
Glu Leu Glu Thr Cys Leu Gln Phe Phe Lys Pro Leu Glu Lys Asn Gly
             1030 1035
Gln Ile Glu Ile Tyr Tyr Asp Lys Leu Thr Lys Phe Glu Thr Pro Ile
          1045 1050 1055
His Pro Glu Ile Arg Lys Arg Ile Val Glu Ala Asp Cys Ile Ile Ala
        1060
                         1065
                                        1070
Leu Ile Ser Gln Arg Tyr Leu Ala Thr Asp Tyr Ile Leu Asp His Glu
   1075 1080
Leu Pro Val Phe Arg Glu Tyr Asn Lys Thr Ile Val Pro Ile Leu Ile
                1095 1100
Lys Pro Cys Thr Phe Glu Asp Asp Glu Phe Leu Arg Glu Lys Tyr Phe
1105
            1110
                            1115
Ala Gln Lys Ala Gln Ile Ile Asn Leu Gly Lys Glu Gly Lys Thr Ile
        1125 1130
Lys Ala Tyr Asp Ser Ile Thr Ala Ser Ala His Arg Asp Glu Asn Trp
        1140 1145
Val Ala Val Val Arg Glu Phe Lys Glu Lys Ile Leu Arg Ile Thr Lys
     1155 1160
                             1165
Gln Glu Val Asn Thr Asp Glu
  1170 1175
```

# (2) INFORMATION FOR SEQ ID NO:518

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 229 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:

### (A) ORGANISM: Porphyromonas gingivalis

- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...229

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:518

Met Met Lys Lys Ala Phe Val Phe Val Leu Leu Val Cys Leu Phe Ser 5 10 Ser Phe Ser Ser Ser Ala Gln Thr Thr Thr Asn Ser Ser Arg Ser Tyr 20 25 Phe Thr Gly Arg Ile Glu Lys Val Ser Leu Asn Leu Gly Val Pro Pro 35 40 Val Ser Thr Glu Val Trp Gly Met Thr His Asp Ala Asn Gly Leu Pro 55 60 Phe Glu Ile Pro Ile Ser Phe Ser Arg Phe Asn Ser Gln Gly Asp Ile 70 75 Ala Thr Thr Tyr Tyr Ile Ala Asn Ser Glu Ala Thr Leu Asn Glu Trp 85 · 90 95 Cys Asp Tyr Ala His Pro Gly Gly Ile Val Arg Val Glu Gly Arg Phe 100 105 110 Trp Lys Met Thr Tyr Asn Ile Pro Thr Tyr Asn Ala Val Cys Thr Arg 115 120 125 Ile Thr Phe Glu Asn Gln Glu Ile Glu Gly Thr Ile Val Leu Ile Pro 130 135 Lys Pro Lys Val Ser Leu Pro His Val Ser Glu Ser Val Pro Cys Ile 150 155 Arg Thr Glu Ala Gly Arg Glu Phe Ile Leu Cys Glu Glu Asp Asp Thr 165 170 175 Phe Val Ser His Asp Gly Asn Glu Val Thr Ile Gly Gly Lys Pro Phe 180 185 190 Leu Leu Asn Thr Asn Val Lys Ile Val Gly Asp Val Ser Gln Lys Tyr 195 200 205 Ala Val Gly Val Gly Glu Ile Arg Phe Leu Gln Ile Cys Ala Gln Thr 215 220 Val Ser Gln Gln Lys 225

## (2) INFORMATION FOR SEO ID NO:519

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 228 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...228
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:519

Met Lys Lys Ala Phe Val Phe Val Leu Leu Val Cys Leu Phe Ser Ser 5 10 Phe Ser Ser Ser Ala Gln Thr Thr Thr Asn Ser Ser Arg Ser Tyr Phe 20 25 30 Thr Gly Arg Ile Glu Lys Val Ser Leu Asn Leu Gly Val Pro Pro Val 35 40 Ser Thr Glu Val Trp Gly Met Thr His Asp Ala Asn Gly Leu Pro Phe 55 60 Glu Ile Pro Ile Ser Phe Ser Arg Phe Asn Ser Gln Gly Asp Ile Ala 70 75 Thr Thr Tyr Tyr Ile Ala Asn Ser Glu Ala Thr Leu Asn Glu Trp Cys 90 Asp Tyr Ala His Pro Gly Gly Ile Val Arg Val Glu Gly Arg Phe Trp 100 105 110 Lys Met Thr Tyr Asn Ile Pro Thr Tyr Asn Ala Val Cys Thr Arg Ile 115 120 Thr Phe Glu Asn Gln Glu Ile Glu Gly Thr Ile Val Leu Ile Pro Lys 135 140

Pro Lys Val Ser Leu Pro His Val Ser Glu Ser Val Pro Cys Ile Arg 150 155 Thr Glu Ala Gly Arg Glu Phe Ile Leu Cys Glu Glu Asp Asp Thr Phe 165 170 175 Val Ser His Asp Gly Asn Glu Val Thr Ile Gly Gly Lys Pro Phe Leu 180 185 Leu Asn Thr Asn Val Lys Ile Val Gly Asp Val Ser Gln Lys Tyr Ala 195 200 205 Val Gly Val Gly Glu Ile Arg Phe Leu Gln Ile Cys Ala Gln Thr Val 210 215 220 Ser Gln Gln Lys 225

### (2) INFORMATION FOR SEQ ID NO:520

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 540 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...540
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:520

Met Lys Thr Lys Val Leu Arg Lys Phe Val Val Ala Ala Phe Ala Val 10 Ala Thr Leu Cys Pro Leu Ala Gln Ala Gln Thr Met Gly Gly Asp Asp 20 25 Val Lys Val Val Gln Tyr Asn Gln Glu Lys Leu Val Gln Thr Arg Met 35 40 45 Ser Val Ala Asp Asn Gly Trp Ile Tyr Val Met Thr His Ser Gly Tyr 55 60 Asp Thr Gly Asn Ser Asn Val Lys Ile Phe Arg Ser Lys Asp Gln Gly 75 70 Ala Thr Tyr Gln Lys Leu Arg Asp Trp Asp Pro Ser Asp Asp Tyr Gln 85 90 95 Phe Gln Asp Phe Asp Ile Val Val Thr Gly Lys Asn Glu Ser Asp Ile 100 105 110 Lys Ile Trp Ser Val Glu Leu Met Asn Lys Pro Gly Gly Tyr Lys Ser 115 120 Arg Val Ala Val Phe Ser Arg Asp Ala Asn Ala Gln Asn Ala Lys Leu 135 130 140 Val Tyr Lys Glu Asp Phe Ser Asn Val Gln Leu Tyr Asp Val Asp Ile 145 150 155 Ala Ser Asn Tyr Arg Ser Pro Ser Ser Leu Asn Asn Gly Gly Asn Pro 165 170 175 Phe Ala Leu Ala Phe Ala Tyr Thr Gly Phe Asn Asn Thr His Lys Ile 180 185 190 Ser Phe Val Asp Tyr Val Phe Ser Leu Asn Gly Gly Gln Asn Phe Asn 195 200 Lys Asn Leu Leu Phe Ser Gln Asp Gly Glu Lys Lys Ile Asp Lys Val 210 215 220 Asp Leu Ser Leu Gly Ser Thr Ser Glu Ser Met Gly His Asn Ala Trp 225 230 235 Pro Leu Met Gly Val Val Phe Glu Met Asn Lys Gln Gly Gly Lys Ser 245 250 255 Asp Ile Gly Phe Leu Ser Asn Phe Val Asp Asn Asp Pro Glu Phe Gln 265 270 Trp Ser Gly Pro Ile Lys Val Ser Glu Ser Asp Met Ser Phe Ser Pro 275 280 285 Lys Ile Gln Met Leu Leu Asp Glu Asp Asn Asn Thr Ile Asn Gly Glu 295 300 Ser Cys His Asn Phe Met Ile Thr Tyr Ser Asp Tyr Asp Ser Glu Tyr 305 310 315 Ser Asp Trp Asp Ile Arg Tyr Val Tyr Pro Lys Lys Ser Phe Lys Tyr 325 330 335 Glu Lys Gly Lys Thr Pro Thr Met Asp Asp Leu Val Glu Ala Phe Leu 345 350

Thr Ala Ser Tyr Gln Ser Glu Thr Asn Ser Gly Leu Gly Tyr Asp Lys 355 360 Asn Ala Asn His Tyr Leu Ile Thr Tyr Ala Lys Lys Glu Glu Asn Gly 375 380 Thr Asn Thr Leu Lys Tyr Arg Trp Ala Asn Tyr Asp Lys Ile His Asn 390 395 Lys Asp Leu Trp Ser Asp Thr Phe Thr Tyr Thr Ser Ser Ala Asn Ala 405 410 415 Leu Tyr Thr Pro Gln Val Asp Ile Asn Pro Thr Lys Gly Leu Val Cys 420 425 Trp Ser Trp Val Glu Tyr Leu Pro Gly Lys Arg Ile Val Trp Ser Asp 435 440 Thr Gln Trp Thr His Ala Asn Gly Val Glu Asp Ile Val Met Gln Glu 450 455 460 Gly Ser Met Lys Leu Tyr Pro Asn Pro Ala Gln Glu Tyr Ala Val Ile 470 475 Ser Leu Pro Thr Ala Ala Asn Cys Lys Ala Val Val Tyr Asp Met Gln 485 490 495 Gly Arg Val Val Ala Glu Ala Ser Phe Ser Gly Asn Glu Tyr Arg Leu 500 505 510 Asn Val Gln His Leu Ala Lys Gly Thr Tyr Ile Leu Lys Val Val Ser 520 Asp Thr Glu Arg Phe Val Glu Lys Leu Ile Val Glu 530 535

### (2) INFORMATION FOR SEQ ID NO:521

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 771 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...771
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:521

Met Leu Thr Ile Arg Asn Phe Leu Leu Phe Cys Cys Leu Ser Leu Ile 5 10 Ala Phe Ala Ala Asp Ala Gln Ser Ser Val Ser Ser Gly Arg Arg Leu 20 25 30 Thr Glu Tyr Val Asn Pro Phe Ile Gly Thr Ala Asn Tyr Gly Thr Thr 35 40 45 Asn Pro Gly Ala Val Leu Pro Asn Gly Leu Met Ser Val Thr Pro Phe 50 55 60 Asn Val Ser Gly Ser Thr Glu Asn Arg Phe Asp Lys Asp Ser Arg Trp 70 75 Trp Ser Ala Pro Tyr Ser Ala Asp Asn Ser Tyr Cys Ile Gly Phe Ser 85 90 His Val Asn Leu Ser Gly Val Gly Cys Pro Glu Leu Ser Gly Ile Leu 100 105 110 Leu Met Ala Thr Ser Gly Thr Phe Asp Pro Asp Tyr Cys Cys Tyr Gly 115 120 125 Ser Ser Leu Ser Arg Glu Tyr Ala Arg Pro Gly Glu Tyr Lys Ala Val 130 135 140 Leu Asp Lys Tyr Gly Ile Asp Ala Ala Val Thr Val Thr Glu Arg Thr 145 150 150 160 155 Ala Leu Thr Glu Phe Ala Phe Pro Glu Gly Glu Gly His Ile Leu Leu 165 170 Asn Leu Gly Gln Ala Leu Ser Asn Glu Ser Gly Ala Ser Val Arg Phe 180 185 190 Leu Asn Asp Ser Thr Val Val Gly Ser Arg Leu Met Gly Thr Phe Cys 200 205 Tyr Asn Pro Gln Ala Val Phe Arg Gln Tyr Phe Val Leu Gln Val Ser 210 215 220 Arg Arg Pro Ile Ser Ala Gly Tyr Trp Lys Lys Gln Pro Pro Met Thr 230 235 240 Val Glu Ala Gln Trp Asp Ser Thr Ala Gly Lys Tyr Lys Gln Tyr Asp 245 250 255

Gly Tyr Lys Arg Glu Met Ser Gly Asp Asp Ile Gly Val Arg Phe Ser 260 265 Phe Asn Cys Asp Gln Gly Glu Lys Ile Tyr Val Arg Ser Ala Val Ser 275 280 285 Phe Val Ser Glu Ala Asn Ala Leu Tyr Asn Leu Glu Ala Glu Gln Glu 295 300 Glu Val Phe Lys Ser Val Gly Gly Asn Pro Ala Lys Ala Phe Ser Ala 310 315 Ile Arg Ser Arg Ala Ile Glu Arg Trp Glu Glu Ala Leu Gly Thr Val 325 330 335 Glu Val Glu Gly Gly Thr Pro Asp Glu Lys Thr Ile Phe Tyr Thr Ala 340 345 350 Leu Tyr His Leu Leu Ile His Pro Asn Ile Leu Gln Asp Ala Asn Gly 355 360 365 Glu Tyr Pro Met Met Gly Ser Gly Lys Thr Gly Asn Thr Ala His Asp 370 375 380 Arg Tyr Thr Val Phe Ser Leu Trp Asp Thr Tyr Arg Asn Val His Pro 385 390 395 Leu Leu Cys Leu Leu Tyr Pro Glu Lys Gln Leu Asp Met Val Arg Thr 405 410 415 Leu Ile Asp Met Tyr Arg Glu Ser Gly Trp Leu Pro Arg Trp Glu Leu 425 430 Tyr Gly Gln Glu Thr Leu Thr Met Glu Gly Asp Pro Ser Leu Ile Val 440 Ile Asn Asp Thr Trp Gln Arg Gly Leu Arg Ala Phe Asp Thr Ala Thr 450 455 Ala Tyr Glu Ala Met Lys Lys Asn Ala Ser Ser Ala Gly Ala Thr His 470 475 Pro Ile Arg Pro Asp Asn Asp Asp Tyr Leu Thr Leu Gly Phe Val Pro 485 490 495 Leu Arg Glu Gln Tyr Asp Asn Ser Val Ser His Ala Leu Glu Tyr Tyr 500 505 510 Leu Ala Asp Trp Asn Leu Ser Arg Phe Ala His Ala Leu Gly His Lys 520 515 Glu Asp Ala Ala Leu Phe Gly Lys Arg Ser Leu Gly Tyr Arg His Tyr 535 540 Tyr Asn Lys Glu Tyr Gly Met Leu Cys Pro Leu Leu Pro Asp Gly Ser 545 550 555 Phe Leu Thr Pro Phe Asp Pro Lys Gln Gly Glu Asn Phe Glu Pro Asn 565 570 575 Pro Gly Phe His Glu Gly Ser Ala Tyr Asn Tyr Ala Phe Phe Val Pro 580 585 590 His Asp Ile Gln Gly Leu Ala Arg Leu Met Gly Gly Ala Lys Val Phe 595 600 Ser Glu Arg Leu Gln Lys Val Phe Asp Glu Gly Tyr Tyr Asp Pro Thr 615 620 Asn Glu Pro Asp Ile Ala Tyr Pro Tyr Leu Phe Ser Tyr Phe Pro Lys 630 635 Glu Ala Trp Arg Thr Gln Lys Leu Thr Arg Glu Leu Ile Asp Lys His 645 650 655 Phe Cys Asn Ala Pro Asn Gly Leu Pro Gly Asn Asp Asp Ala Gly Thr 660 665 Met Ser Ala Trp Leu Val Tyr Ser Met Leu Gly Phe Tyr Pro Asp Cys 680 685 Pro Gly Ser Pro Thr Tyr Thr Leu Thr Ser Pro Val Phe Pro Arg Val 690 695 700 Arg Ile Arg Leu Asn Pro Gln Tyr Tyr Pro Gln Gly Glu Leu Ile Ile 710 715 Thr Thr Asn Thr Glu Asn Gln Pro Thr Asp Ser Ile Tyr Ile His Thr 725 730 Val Ser Leu Gly Asn Lys Thr Leu Pro His Gly Thr Arg His Ile Ser 745 740 750 His Ala Asp Leu Val Arg Cys Gly His Leu Arg Tyr Glu Leu Ser Asn 755 760 765 Arg Pro Arg 770

# (2) INFORMATION FOR SEQ ID NO:522

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 776 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
    (B) LOCATION 1...776
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:522

Leu Phe Thr Ser Phe Ser Leu Gln Ala Gln Glu Glu Gly 11e Trp Asn 20 25 30 30 30 20 25 30 30 30 30 30 30 30 30 30 30 30 45 45 45 45 45 45 45 45 45 45 45 45 45		Met 1	Сув	Lys	ıle	Arg	J Ph∈	e Sei	. Lei	ı Lev	ı Glr 10	n Ala	a Lei	ı Va	l Vai	L Cys	s Leu
The Leu Leu Ala Ile His Lys Thr Glu Lys Ala Val Glu Thr Pro Lys		Leu	Phe	Thr		Phe	Ser	Leu	ı Glr			ı Glı	ı Glu	ı Gly			naA o
50		Thr	Leu		ı Ala	Ile	His	Lys			Lys	a Ala	a Val			Pro	Lys
## Ser Val Ser Jie Ala Tyr Ser Glu Gln Leu Lys Ser Leu Val 85			50					55					60			_	
Ser Gly Asn Ile Asp Ile Leu Asp Glu Ala Gly Arg 100   105   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110   110		65					70					75					80
100						85					90					95	
115 Thr Leu Aan Arg Leu Leu 11e Val Gly Asn Arg Ala Tyr Leu Ala Gly 130 Gly Phe Gly Leu Ser Val Leu Asp Val Ala Glu Ala Arg Ile Pro Ala 145 Thr Leu Aan Arg Leu Ser Val Leu Asp Val Ala Glu Ala Arg Ile Pro Ala 145 Thr Tyr Ala Lys Gly Thr Lys Val Thr Asp Val Ala Lys Leu Asp Asn 165 Thr Tyr Ala Lys Gly Thr Lys Val Thr Asp Val Ala Lys Leu Asp Asn 180 Thr Asp Arg Leu Leu Met Leu Lys Glu Gly Gln Leu Phe Ile Gly Lys Glu 180 Thr Asp Asn Leu Gln Asp Pro Ala Ala Trp Thr Ala Leu Ser Leu Asn 205 Leu Pro Met Gly Ser Val Thr Gly Leu Gly Ile Val Gly Glu Asp Ile 210 Cys Phe Leu Leu Ala Asp Gly Arg Val Tyr Val Ala Ala Asn Gln Ser 225 Cys Phe Leu Leu Ala Asp Gly Arg Val Tyr Val Ala Ala San Gln 240 Phe Glu Pro Glu Leu Leu Ser Ser Ser Ala Asp Ser Arg Leu Tyr 260 Tle Glu Lys Gly Arg Lys Thr Thr Gln Phe Pro Ile Ala Asp Val Leu 275 Gly Val Gly Ala Met Asn Glu Ser Asn Thr Ala Tyr Ile Ala Leu Gly 290 Glu Glu Gly Leu Ala Ser Leu Leu Leu Ala Glu Gly Ser Thr Ala Glu 305 Ala Met Pro Val Ala Phe Asp Gly Pro Gly Asp Asn Asp Phe Tyr Glu 325 Met Arg Phe Ser His Gly Arg Leu Leu Leu Leu Ala Glu Gly Ser Thr Ala Glu 305 Arg Trp Thr Asn Phe Asp Clys Lys Thr Val Ala Val Gln Clu Gln Leu Gly 340 Thr Asn Leu Met Gly His Ala Gly Met Val Lys Leu Tyr Asp Gly Asn 355 Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Gln Leu Gly Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Ala Val Glr Gln Leu Gly 375 Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Ala Val Ser Asn Gly Asp 385 Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Gln Leu Gly Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Ala Val Gly Fir Ala Ala Ser Gly Leu Thr Gly Asp 365 Arg Trp Thr Asn Phe Asp Cly Thr Trp Gly Asn Gly Leu Phe Glu Phe 405 Lys Asp Gly Lys Ala Ile Ala Arg Tyr Ser Gly Asn Gly Leu Phe Glu Phe 405 Ala Glu Cys Asn Pro Gly Asp Ala Arg Val Lys Ala Ile Ala Phe Asp 445 Asn Lys Gly Asn Leu Trp Gly Thr Leu Gly Ala Val Gly Lys Asn Ile 420 Ala Glu Cys Asn Pro Glo Ser Ser Thr Trp His Ser Phe Ser Tyr Pro 465 Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asp 485 Asn Lys Gly Asn Leu Ala Ser Phe Gly Asn Met I					100					105					110	)	
130				115					120					125	;		
150			130					135					140				_
Asp Arg Leu Leu Met Leu Lys Glu Gly Gln Leu Phe Ile Gly Lys Glu 180  Thr Asp Asn Leu Gln Asp Pro Ala Ala Trp Thr Ala Leu Ser Leu Asn 195  Leu Pro Met Gly Ser Val Thr Gly Leu Gly Ile Val Gly Glu Asp Ile 210  225  Cys Phe Leu Leu Ala Asp Gly Arg Val Tyr Val Ala Ala Asn Gln Ser 240  Phe Glu Pro Glu Leu Leu Ser Ser Ser Ala Asp Ser Arg Leu Tyr 265  Val Thr Asp Arg Gly Leu Phe Ile Cys Ala Glu Asn Arg Ile Tyr Phe 260  Ile Glu Lys Gly Arg Lys Thr Thr Gln Phe Pro Ile Ala Asp Val Leu 275  Gly Val Gly Ala Met Asn Glu Ser Asn Thr Ala Tyr Ile Ala Leu Gly 290  Glu Glu Glu Gly Ala Met Asn Glu Ser Asn Thr Ala Tyr Ile Ala Leu Gly 305  Ala Met Pro Val Ala Phe Asp Gly Pro Gly Asp Asn Asp Phe Tyr Glu 325  Met Arg Phe Ser His Gly Arg Leu Tyr Ala Ala Ser Gly Leu Trp Gly 340  Thr Asn Leu Met Gly His Ala Gly Met Val Lys Leu Tyr Asp Gly Asn 355  Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Glu Glu Leu Trp Gly 370  Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Asp Ile Ala Val Ser Asn Gly Asp 385  Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Glu Glu Leu Gly Gly 370  Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Ala Val Ser Asn Gly Asp 385  Arg Trp Thr Asn Phe Val Gly Thr Trp Gly Asp Gly Leu Phe Glu Phe 405  Ala Glu Cys Asn Pro Gly Asp Ala Ile Asp Ile Ala Val Ser Asn Gly Asp 385  Arg Trp Thr Asn Phe Val Gly Thr Trp Gly Asn Gly Leu Phe Glu Phe 405  Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Gln Leu Gly Gly 370  Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Ala Val Ser Asn Gly Asp 385  Asp Lys Ala Ile Ala Arg Tyr Ser Gly Asn Glu Thr Ala Ile 420  Ala Glu Cys Asn Pro Gln Ser Ser Thr Trp His Ser Phe Ser Tyr Pro 485  Ash Lys Gly Asn Leu Trp Gly Asp Ala Arg Val Lys Ala Ile Ala Phe Asp 445  Ash Lys Gly Asn Leu Trp Gly Asn Met Ile Ile Leu Pro Asn 485  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Gly Asp Lys Trp Val Asn Ile Leu His Asp Arg Gly Thr Pro Glu Thr Thr Ser 505		145					150					155					160
Thr Asp Asn Leu Gln Asp Pro Ala Ala Trp Thr Ala Leu Ser Leu Asn 195						165					170					175	
Leu Pro Met Gly Ser Val Thr Gly Leu Gly Ile Val Gly Glu Asp Ile 210					180					185					190		
210				195					200					205			
225			210					215					220				
Val Thr Asp Arg Gly Leu Phe Ile Cys Ala Glu Asn Arg Ile Tyr Phe 260		225					230					235					240
Second						245					250					255	
Gly Val Gly Ala Met Asn Glu Ser Asn Thr Ala Tyr Ile Ala Leu Gly 290					260					265					270		
Glu Glu Gly Leu Ala Ser Leu Leu Leu Ala Glu Gly Ser Thr Ala Glu 305  Ala Met Pro Val Ala Phe Asp Gly Pro Gly Asp Asn Asp Phe Tyr Glu 325  Met Arg Phe Ser His Gly Arg Leu Tyr Ala Ala Ser Gly Leu Trp Gly 340  Thr Asn Leu Met Gly His Ala Gly Met Val Lys Leu Tyr Asp Gly Asn Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Gln Leu Gly Gly 370  Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Gln Leu Gly Gly 370  Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Ala Val Ser Asn Gly Asp 385  Arg Trp Thr Asn Phe Val Gly Thr Trp Gly Asn Gly Leu Phe Glu Phe 370  Ala Glu Cys Asn Pro Gly Asp Ala Arg Val Lys Ala Ile Ala Ile 405  Ala Glu Cys Asn Pro Gly Asp Ala Arg Val Lys Ala Ile Ala Phe Asp 435  Asn Lys Gly Asn Leu Trp Gly Thr Leu Gly Ala Val Gly Lys Asn Ile 450  Phe Met Tyr Asp Pro Gln Ser Ser Thr Trp His Ser Phe Ser Tyr Pro 465  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Gly Asp Lys Trp Val Asn Ile Leu His Arg Ser Gly Gly Ser Thr Arg 500  Lys Gly Val Leu Ile Phe Asn Asp Arg Gly Thr Pro Glu Thr Thr Ser				275					280					285			
310 315 320  Ala Met Pro Val Ala Phe Asp Gly Pro Gly Asp Asn Asp Phe Tyr Glu 325 330 335  Met Arg Phe Ser His Gly Arg Leu Tyr Ala Ala Ser Gly Leu Trp Gly 340 355  Thr Asn Leu Met Gly His Ala Gly Met Val Lys Leu Tyr Asp Gly Asn 355  Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Gln Leu Gly Gly 370 375 380  Gly Phe Ser Phe Asn Asp Ala Ile Asp Ile Ala Val Ser Asn Gly Asp 385  Pro Asp His Phe Phe Val Gly Thr Trp Gly Asn Gly Leu Phe Glu Phe 405 415  Lys Asp Gly Lys Ala Ile Ala Arg Tyr Ser Gly Asn Glu Thr Ala Ile 420 425  Asn Lys Gly Asn Leu Trp Gly Asp Ala Arg Val Lys Ala Ile Ala Phe Asp 450  Phe Met Tyr Asp Pro Gln Ser Ser Thr Trp His Ser Phe Ser Tyr Pro 450  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485  Cly Gly Val Leu Ile Phe Asn Asp Arg Gly Thr Pro Glu Thr Thr Ser 520			290					295					300				
Met   Arg   Phe   Ser   His   Gly   Arg   Leu   Tyr   Ala   Ala   Ser   Gly   Leu   Trp   Gly   345   345   350   350   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365   365	3	305					310					315					320
Thr Asn Leu Met Gly His Ala Gly Met Val Lys Leu Tyr Asp Gly Asn 355						325					330					335	
Arg Trp Thr Asn Phe Asp Lys Lys Thr Val Gln Glu Gln Leu Gly Gly 370					340					345					350	_	_
370				355					360					365			
385			370					375					380				
A15	3	885					390					395					400
Ala Glu Cys Asn Pro Gly Asp Ala Arg Val Lys Ala Ile Ala Phe Asp 435						405					410					415	
Asn Lys Gly Asn Leu Trp Gly Thr Leu Gly Ala Val Gly Lys Asn Ile 450					420					425					430		
450				435					440					445			
465 470 475 480  Asp Val Ala Asn Leu Ala Ser Phe Gly Asn Met Ile Ile Leu Pro Asn 485 490 495  Gly Asp Lys Trp Val Asn Ile Leu His Arg Ser Gly Gly Ser Thr Arg 500 505 505  Lys Gly Val Leu Ile Phe Asn Asp Arg Gly Thr Pro Glu Thr Thr Ser 515 520 520 525			450					455					460				
Gly Asp Lys Trp Val Asn Ile Leu His Arg Ser Gly Gly Ser Thr Arg 500 505 510  Lys Gly Val Leu Ile Phe Asn Asp Arg Gly Thr Pro Glu Thr Thr Ser 515 520 525	4	65			Asn	Leu	470					475					480
Lys Gly Val Leu Ile Phe Asn Asp Arg Gly Thr Pro Glu Thr Thr Ser 515 520 525	G	ly .	Asp	Lys	Trp		Asn	Ile	Leu			Ser	Gly	Gly	Ser		Arg
	L	ys (				Ile	Phe				Gly	Thr	Pro			Thr	Ser
	A	sp /			His	Leu	Tyr			Gln	Phe	Val	Asn		Leu	Gly	Ala

535 Ala Ile Gly His Lys Thr Ile Tyr Ala Met Ala Val Asp His Asn Gly 550 555 Ser Val Trp Met Gly Ser Asp Ile Gly Ile Phe Gly Val Tyr Asn Ala 565 570 Ala Gly Val Leu Ser Ser Thr Ser Thr Pro Ile Ala Val Arg Pro Val 580 585 590 Gly Gly Glu Glu Pro Asn Leu Tyr Tyr Val Leu Asp Lys Val Thr Val 600 605 Thr Asp Ile Val Val Asp Lys Leu Asn His Lys Trp Val Ala Thr Gln 615 620 Gly Thr Gly Leu Tyr Leu Leu Ser Glu Asp Cys Ser Lys Ile Leu Ala 630 635 Gln Phe Thr Val Glu Asn Ser Pro Leu Leu Ser Asn Asn Ile Leu Ser 645 650 Leu Ala Leu Asn Asp Asp Asn Gly Leu Leu Tyr Ile Gly Thr Ala Asp 660 665 Gly Leu Met Thr Phe Gln Thr Gly Thr Gly Ser Gly Ser Ala Ser Glu 675 680 Leu Asp Gly Val Tyr Val Tyr Pro Asn Pro Leu Arg Pro Glu Tyr Pro 690 695 700 Asp Gly Val Thr Ile Ala Gly Leu Gln Ala Gly Cys Ser Val Lys Ile 710 715 Thr Asp Thr Thr Gly Arg Leu Leu Tyr Gln Thr Glu Ser Val Thr Thr 725 730 735 Glu Val Lys Trp Asn Ala Arg Gly Ala Asp Gly Asn Arg Val Ala Ser 740 745 Gly Val Tyr Ala Val Ala Val Tyr Asp Pro Val Ser Lys Lys Ser Lys 760 755 Leu Ile Arg Phe Ala Val Ile Arg

## (2) INFORMATION FOR SEQ ID NO:523

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1158 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...1158
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:523

Met Lys Arg Ile Leu Pro Ile Val Ala Phe Leu Ser Leu Phe Leu Ala 5 10 Leu Ala Leu Pro Ala Lys Ala Gln Arg Ala Met Gly Lys Thr Ala Asp 20 25 Arg Ser Leu Met Ala Ser Gly His Trp Val Lys Ile Arg Val Asp Ala 35 40 45 Ser Gly Val Tyr Arg Leu Thr Asp Glu Gln Leu Arg Ala Asn Gly Phe 50 55 60 Ser Asp Pro Ser Lys Val Gly Val Phe Gly Tyr Gly Gly Gly Val Leu 70 75 Pro Glu Asp Leu Ser Arg Ile Thr Thr Asp Asp Leu Pro Pro Val Pro 90 Val Leu Arg Gln Gly Asn Ala Leu Tyr Phe Tyr Ala Val Gly Pro Val 100 105 110 Thr Trp Phe Tyr Asn Pro Ala Lys Thr Thr Met Glu His Thr Val Asn 115 120 Thr Tyr Ser Thr His Gly Tyr Tyr Phe Leu Ser Asp Ala Ala Gly Ala 130 135 140 Pro Leu Gln Met Ser Gln Tyr Thr Gly Gly Gly Ala Ser Ala Glu Ala 150 155 Leu Ile Asp Tyr Tyr Asp Glu Leu Met Leu His Glu Gln Glu Leu Tyr 165 170 175 Ser Pro Lys Glu Ser Gly Arg Asp Leu Tyr Gly Glu Ser Phe Ser Ala 185 190 Val Asn Thr Arg Thr Val Lys Phe Pro Leu Arg Gly Asn Thr Arg Ser

		195					200					205			
Ser		Glu		Gly	Thr		Phe		Tyr	Ile				Arg	g Ser
			Gly	Arg		215 Met		Leu	Ser				Ile	Lev	ı Ile
225 Phe		Asp	Pro	Phe		Met	Thr	Ser				Ser	Asn		240 Tyr
Leu	Ala	Gly	Lys 260	Lys		Arg	Leu	_			Thr	Pro			s Ser
Leu	Val	Asn 275	Glu		Arg	Leu	Asp 280			Tyr	Ser	Met 285			/ Asp
Ala	Val 290	Asn		Asp	Phe	Ile 295			Ala	Thr	Gln 300	Asn		Leu	Arg
Tyr 305	Ąsp		Ala	Pro	Met 310		Ile	Arg	Arg	Phe	Ser		Leu	Pro	Val 320
		Gly	Glu	Ser 325	Cys	Arg	Phe	Val	Ile 330	Ser		Val	Pro	Glu 335	Ser
Leu	Val	Val	Leu 340		Ala	Asn	Ser	Ser 345		Thr	Ala	Ser	Leu 350	Val	
Val	Lys	Thr 355	Val	Gly	Asp	Lys	Thr 360	Ile	Glu	Phe	Val	Ala 365		Pro	Lys
	370				Thr	375					380				
385					Glu 390					395					400
				405	Pro				410					415	
			420		Arg			425	_	_	_		430		-
		435			Val Ala		440					445			
	450				Ala	455					460				
465					470 Gly					475					480
				485	Pro				490				_	495	
Phe	Gln	Ala	500 Val	Asn	Ser	Thr	Asn	505 Val	Asn	Ser	Tyr	Val	510 Thr	Asp	Asp
туr		515 Gly	Leu	Leu	Asp		520 Gln	Pro	Ala	Ser		525 Asn	Ile	Gly	Trp
	530 Asn	Tyr	Asn	Met	Ala	535 Val	Gly	Arg	Phe		540 Val	Arg	Thr	Pro	
545 Glu	Ala	Arg	Ile	Ala 565	550 Val	Asp	Lys	Thr	Ile 570	555 Arg	Tyr	Glu	Glu		
Glu	Ser	Gly	Ala 580		Arg	Ile	Arg	Ala 585	Cys	Phe	Ala	Ala	Asp 590	575 Asn	
Asp	Lys	His 595	_	Thr	Glu	Thr	Ser 600			Ile	Asp	Thr 605		Lys	Arg
	610					615	Val				620	Asp			
625					Gly 630					635					640
				645	Gln				650					655	
			660		Gly			665					670		
		675	_	_	Asn		680					685			
	690				Asn Glu	695					700			_	
705					710 Asn			_		715					720
				725	Glu				730					735	
		Ile	740		Ser	Ala	Lys	745					750		
Pro		755 Ser	Ile	Asn	Gln	Leu	760 Ser	Phe	Phe	Leu		765 Gly	Asp	Pro	Ser
Val 785	770 Arg	Met	Asn	Leu	Pro '	775 Thr	His	Lys			780 Leu	Thr	Ala	Ile	
			D	<b>~1</b>		Gln '	T1	G1 v		795 Tla	Mot	Len	Lys	602	800

Glu Arg Val Ala Leu Lys Gly Lys Val Thr Asp Glu Lys Gly Thr Phe 825 830 Asp Glu Thr Phe Ser Gly Lys Val Phe Leu Thr Val Phe Asp Gly Arg 835 840 845 Lys Lys Met Thr Ala Leu Glu Glu Glu Gly Asn Asp Leu Ser Leu Val 850 855 860 Tyr Tyr Asp Tyr Pro Asn Val Met Tyr Ala Gly Ile Ala Glu Val Lys 870 875 Asp Gly Leu Phe Glu Thr Ser Phe Ile Val Pro Lys Asp Val Asn Tyr 885 890 Ser Glu His Glu Gly Arg Ile Asn Leu Tyr Ala Tyr Asn Glu Ser Thr 900 905 Lys Ala Glu Ala Met Gly Val Asp Phe Ser Ile Arg Val Gln Pro Gly 915 920 925 Ile Pro Asp Glu Val Thr Glu Asp Asn Thr Pro Pro Glu Ile Ile Ser 935 940 Cys Phe Leu Asn Asp Ser Thr Phe Arg Ser Gly Asp Glu Val Asn Pro 945 955 950 Thr Pro Leu Phe Met Ala Glu Val Phe Asp Leu Asn Gly Ile Asn Ile 965 970 975 Thr Gly Ser Gly Val Gly His Asp Ile Thr Leu Cys Ile Asp Gly Arg 985 980 990 Ala Asp Leu Thr Tyr Asn Leu Asn Ala Tyr Phe Thr Ser Ser Ala Thr 1000 995 Asp Ala Gly Val Gly Thr Ile Leu Phe Met Ile Pro Ala Leu Ala Glu 1010 1015 1020 Gly Asp His Thr Ala Arg Leu Thr Val Trp Asp Ile Phe Asn Asn Ala 1030 1035 Val His His Asp Phe Ser Phe Arg Val Val Asp Gly Ile Ala Pro Asp 1045 1050 Val Ala Asp Val Ile Leu Phe Pro Asn Pro Val Arg Glu Ser Ala Thr 1060 1065 1070 Phe Arg Ile Phe His Asn Arg Pro Gly Ser Asp Leu Asn Val Ala Val 1075 1080 1085 Glu Ile Tyr Asp Phe Thr Gly Arg Leu Val Asn Ser Leu Pro Val Lys 1090 1095 1100 Thr Tyr Ser Ser Ser Tyr Gly Glu Pro Ile Glu Ile Lys Trp Asp Leu 1105 1110 1115 1 1120 Thr Ser Lys Tyr Gly Val Lys Ile Gly Asn Gly Phe Tyr Leu Tyr Arg 1125 1130 1135 Cys Val Val Asn Ser Pro Gly Gly Gln Thr Ala Ser Met Ala Lys Lys 1140 1145 Met Ile Val Val Gly Gln 1155

# (2) INFORMATION FOR SEQ ID NO:524

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 961 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...961
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:524

 Met
 Lys
 Lye
 Leu
 Phe
 Pro
 Leu
 Leu
 Leu
 Ile
 Leu
 Ser
 Ile
 Leu
 Ser
 Ile
 Leu
 Ser
 Ile
 Leu
 Ile
 Leu
 Ile
 Leu
 Ile
 Ile
 Ala
 Arg
 Glu
 Leu
 Thr
 Ala
 Leu
 Thr
 Glu
 Lys
 Glu
 Leu
 Pro
 Thr
 Asp
 Asp
 Asp
 Ile
 Ile</th

```
Ala Leu Asn Leu Arg Asp Thr Ile Val Ala Ala Gln Ala Trp Asn His
                           105
 Leu Gly Thr Asp Ser Arg Arg Ile Gly Ala Leu Ala Glu Ala Ser Asp
       115
                         120
                                         125
 Tyr His Tyr Lys Ala Leu Ser Leu Ile Glu Ser Phe Ser Gly Asn Gln
   130
                    135
                                     140
 Asn Arg Pro Ala Ile Lys Ala Arg Ser Ala Ala Leu Asn Gly Ile Gly
         150
                            155
 Asn Ile Asn Leu Glu Leu Gly Tyr His Asp Glu Ala Glu Lys Asn Phe
            165
                        170
 Leu Lys Ala Leu Gln Gly Glu Lys Glu Leu Asp Ser Pro Leu Gly Gln
        180
                          185
                                      190
 Ala Ile Asn Tyr Ala Asn Leu Gly Arg Ile Tyr Arg Gln Arg Lys Glu
       195
                200
                                      205
 Tyr Asp Lys Ala Arg Thr Tyr Phe Leu Leu Ser Leu Glu Gln Asn Asn
                   215
                              220
 Met Ala Glu Asn Leu Met Gly Ile Gly Leu Cys Ser Ile Asn Leu Gly
                230
                                 235
Glu Val Asp Glu Glu Lys Gly Asp Tyr Gln Lys Ala Leu Gln Glu Tyr
             245
                              250
Ala Thr Ala Tyr Lys Leu Met Glu Gln Leu Ser Asp Arg Trp His Trp
        260
                  265
Leu Asn Ser Cys Ile Pro Met Ala Arg Ile Asn Leu Lys Gln Gly Asn
    275
                280
                                   285
Glu Arg Leu Tyr Gln His Phe Ile Ser Leu Ala Glu Gly Thr Ala Lys
            295
                             300
Glu Ile Asn Ser Thr Ser His Leu Ile Glu Ile Tyr Asn Leu Gln Tyr
               310
                            315
Glu Asn Leu Glu Arg Lys Lys Glu Tyr Lys Gln Ala Leu Glu Ala Phe
           325
                             330
                                                335
Cys Leu Ser Lys Thr Leu Ser Asp Ser Met Ser Ile Ala His Lys Val
       340
                           345
Ser Ser Ile Gln Glu Thr Arg Phe Asn Tyr Glu Arg Asn Lys Ser Gln
     355
                360
                                         365
Lys Glu Leu Glu Glu Ile Gln Gln Val Ser Lys Ala Lys Gln Glu Lys
            375
                                     380
Ser Lys Phe Ile Leu Leu Ser Thr Leu Phe Ala Leu Phe Ile Ser Ile
                 390 395
Leu Leu Ile Ser Val Leu Thr Tyr Ala Tyr Arg Gln Gly Lys Lys His
             405
                             410
Asn Lys Leu Ile Lys Glu Thr Asp Lys Leu Arg Ser Gly Phe Phe Thr
          420
                           425
                                             430
Gly Ile Thr His Glu Phe Arg Thr Pro Ile Thr Val Ile Gln Gly Leu
      435
               440
Asn Glu Lys Met Ser Ser Ser Pro Asp Leu Gln Ala Ser Asp Arg Thr
  450 455
                                    460
Glu Leu His Lys Ile Ile Asp Arg Gln Ser Ser His Met Leu Asn Leu
               470
                                  475
Val Asn Gln Leu Leu Asp Ile Cys Lys Ile Arg Ser Gly Val Ser Thr
            485
                          490
Pro Glu Trp Arg Asn Gly Asp Ile Val Ser Phe Val Gln Ile Leu Ile
          500
                           505
                                           510
Asp Ser Phe Ala Pro Tyr Ala Gln Ala Gln Asp Ile Thr Leu Glu Leu
   515
                       520
Gln Pro Glu Ser Lys Pro Ile Val Val Asp Phe Val Pro Ser Tyr Leu
  530 535
                                   540
Gln Lys Ile Ile Ser Asn Leu Leu Ser Asn Ala Ile Lys Tyr Ser Leu
        550
                         555
Ala Gly Gly Arg Val Val Ile Ser Leu Ala Lys Thr Lys Asn Glu Lys
            565
                     570
Asn Leu Ile Ile Arg Val Ala Asp Asn Gly Ile Gly Ile Asp Lys Thr
          580
                           585
                                            590
Asp Gln Ala His Ile Phe Asp Ile Phe Tyr Arg Gly Gln Ser Ala Thr
    595
                       600
Glu Lys His Gly Ser Gly Val Gly Leu Ser Phe Thr Asn Ile Leu Val
  610 615
Glu Asn Leu Arg Gly Thr Ile Lys Val Glu Ser Gln Pro Gly Lys Gly
                630
                                  635
Ser Ala Phe Thr Ile Ser Ile Pro Thr Gln Asn Gln Ser Ser Ser Ala
           645
                            650
Glu Ile Leu Pro Trp Leu Pro Ser Ser Asp Asp Ile Val Met Pro Val
                         665
                                            670
His Ile Ala Pro Asp Asp Ser Pro Thr Ser Pro Met Val Ala Ala Leu
      675
                     680
                                    685
Asn His Arg Phe Glu Asp Glu Arg Pro Thr Ile Leu Leu Val Glu Asp
                    695
Asn Lys Asp Ile Asn Leu Leu Val Lys Leu Leu Cys Asp Arg Tyr
```

705 710 715 Asn Val Leu Ser Ala Ala Asn Gly Lys Glu Gly Ile Ala Leu Ala Thr 730 Glu His Ile Pro Asp Ile Ile Ile Thr Asp Ile Met Met Pro Ile Met 745 750 Asp Gly Ile Glu Met Thr Ile Arg Met Lys Gln Ser Pro Leu Leu Cys 755 760 765 His Ile Pro Ile Val Ala Leu Thr Ala Lys Ser Thr Glu Gln Asp Arg 775 780 Leu Glu Gly Ile Lys Ser Gly Val Val Ser Tyr Leu Cys Lys Pro Phe 785 790 795 800 Ser Pro Glu Glu Leu Leu Met Arg Ile Glu Gln Leu Leu Lys Asp Arg 805 810 815 Glu Leu Leu Lys Lys Phe Tyr Met Gln Lys Leu Met Leu Asp Arg Lys 820 825 830 Pro Glu Glu Glu Pro Gln Pro Ile Asp Asp Ser Ser Met Gln Phe Leu 840 Leu Ala Ala Lys Asp Ala Val Ser Gly Gly Ile Lys Gln Asn Pro Asp 855 860 Phe Ser Ala Gln Asp Leu Ala Glu Lys Met Cys Met Ser Pro Ser Gln 865 870 875 Leu Asn Arg Lys Leu Thr Ser Val Val Gly Cys Ser Thr Ile Gly Tyr 885 890 Ile Gln Gln Ile Lys Ile Lys Leu Ala Cys Lys Leu Leu Ala Asp Glu 905 910 900 Ser Lys Asn Ile Ser Asp Ile Ser Ile Glu Ala Gly Phe Ser Asp Pro 915 920 Ala Tyr Phe Ser Arg Thr Phe Lys Arg Tyr Met Asn Cys Ser Pro Ser 940 935 Gln Tyr Arg Gln Lys Leu Leu Ala Met Pro Gly Ser Asp Lys Glu Thr 950 955

## (2) INFORMATION FOR SEQ ID NO:525

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 556 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...556
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:525

Met Lys Lys Leu Gln Ala Lys Ala Leu Ile Leu Ala Leu Gly Leu 10 Phe Gln Leu Pro Ala Ile Ala Gln Thr Gln Met Gln Ala Asp Arg Thr 20 25 30 Asn Gly Gln Phe Ala Thr Glu Glu Met Gln Arg Ala Phe Gln Glu Thr 35 40 45 Asn Pro Pro Ala Gly Pro Val Arg Ala Ile Ala Glu Tyr Glu Arg Ser 50 55 60 Ala Ala Val Leu Val Arg Tyr Pro Phe Gly Ile Pro Met Glu Leu Ile 70 75 Lys Glu Leu Ala Lys Asn Asp Lys Val Ile Thr Ile Val Ala Ser Glu 85 90 Ser Gln Lys Asn Thr Val Ile Thr Gln Tyr Thr Gln Ser Gly Val Asn 105 Leu Ser Asn Cys Asp Phe Ile Ile Ala Lys Thr Asp Ser Tyr Trp Thr 115 120 125 Arg Asp Tyr Thr Gly Trp Phe Ala Met Tyr Asp Thr Asn Lys Val Gly
130 135 140 Leu Val Asp Phe Ile Tyr Asn Arg Pro Arg Pro Asn Asp Asp Glu Phe 145 150 155 160 Pro Lys Tyr Glu Ala Gln Tyr Leu Gly Ile Glu Met Phe Gly Met Lys 165 170 175 Leu Lys Gln Thr Gly Gly Asn Tyr Met Thr Asp Gly Tyr Gly Ser Ala

180 185 190 Val Gln Ser His Ile Ala Tyr Thr Glu Asn Ser Ser Leu Ser Gln Ala 195 200 205 Gln Val Asn Gln Lys Met Lys Asp Tyr Leu Gly Ile Thr His His Asp 210 215 220 Val Val Gln Asp Pro Asn Gly Glu Tyr Ile Asn His Val Asp Cys Trp 225 230 235 Gly Lys Tyr Leu Ala Pro Asn Lys Ile Leu Ile Arg Lys Val Pro Asp 245 250 255 Asn His Pro Gln His Gln Ala Leu Glu Asp Met Ala Ala Tyr Phe Ala 260 265 270 Ala Gln Thr Cys Ala Trp Gly Thr Lys Tyr Glu Val Tyr Arg Ala Leu 275 280 285 Ala Thr Asn Glu Gln Pro Tyr Thr Asn Ser Leu Ile Leu Asn Asn Arg 290 295 300 Val Phe Val Pro Val Asn Gly Pro Ala Ser Val Asp Asn Asp Ala Leu 305 310 315 Asn Val Tyr Lys Thr Ala Met Pro Gly Tyr Glu Ile Ile Gly Val Lys 325 330 335 Gly Ala Ser Gly Thr Pro Trp Leu Gly Thr Asp Ala Leu His Cys Arg 340 345 350 Thr His Glu Val Ala Asp Lys Gly Tyr Leu Tyr Ile Lys His Tyr Pro 355 360 Ile Leu Gly Glu Gln Ala Gly Pro Asp Tyr Lys Ile Glu Ala Asp Val 370 375 380 Val Ser Cys Ala Asn Ala Thr Ile Ser Pro Val Gln Cys Tyr Tyr Arg 390 395 Ile Asn Gly Ser Gly Ser Phe Lys Ala Ala Asp Met Thr Met Glu Ser 405 410 Thr Gly His Tyr Thr Tyr Ser Phe Thr Gly Leu Asn Lys Asn Asp Lys 420 425 Val Glu Tyr Tyr Ile Ser Ala Ala Asp Asn Ser Gly Arg Lys Glu Thr 435 440 445 Tyr Pro Phe Ile Gly Glu Pro Asp Pro Phe Lys Phe Thr Cys Met Asn 455 460 Glu Thr Asn Thr Cys Thr Val Thr Gly Ala Ala Lys Ala Leu Arg Ala 470 475 Trp Phe Asn Ala Gly Arg Ser Glu Leu Ala Val Ser Val Ser Leu Asn 485 490 Ile Ala Gly Thr Tyr Arg Ile Lys Leu Tyr Asn Thr Ala Gly Glu Glu 500 505 Val Ala Ala Met Thr Lys Glu Leu Val Ala Gly Thr Ser Val Phe Ser 515 520 525 Met Asp Val Tyr Ser Gln Ala Pro Gly Thr Tyr Val Leu Val Val Glu 530 535 540 Gly Asn Gly Ile Arg Glu Thr Met Lys Ile Leu Lys 545 550

# (2) INFORMATION FOR SEQ ID NO:526

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 428 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...428
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:526

Ala Tyr His Glu Tyr Thr Ile Gly Thr Gln Thr Leu Thr Ile Tyr Gly 90 Asn Thr Thr Arg Leu Gly Cys Arg Ser Thr Gly Ala Thr Ala Val Asp 100 105 Val Thr Lys Asn Pro Asn Leu Thr Tyr Leu Ala Cys Pro Lys Asn Asn 115 120 125 Leu Lys Ser Leu Asp Leu Thr Gln Asn Pro Lys Leu Leu Arg Val Trp 135 140 Cys Asp Ser Asn Glu Ile Glu Ser Leu Asp Leu Ser Gly Asn Pro Ala 150 155 145 Leu Ile Ile Leu Gly Cys Asp Arg Asn Lys Leu Thr Glu Leu Lys Thr 165 170 175 Asp Asn Asn Pro Lys Leu Ala Ser Leu Trp Cys Ser Asp Asn Asn Leu 180 185 190 Thr Glu Leu Glu Leu Ser Ala Asn Pro Arg Leu Asn Asp Leu Trp Cys 200 205 Phe Gly Asn Arg Ile Thr Lys Leu Asp Leu Ser Ala Asn Pro Leu Leu 210 215 Val Thr Leu Trp Cys Ser Asp Asn Glu Leu Ser Thr Leu Asp Leu Ser 225 230 235 Lys Asn Ser Asp Val Ala Tyr Leu Trp Cys Ser Ser Asn Lys Leu Thr 250 245 255 Ser Leu Asn Leu Ser Gly Val Lys Gly Leu Ser Val Leu Val Cys His 260 265 270 260 Ser Asn Gln Ile Ala Gly Glu Glu Met Thr Lys Val Val Asn Ala Leu 275 280 285 Pro Thr Leu Ser Pro Gly Ala Gly Ala Gln Ser Lys Phe Val Val 295 Asp Leu Lys Asp Thr Asp Glu Lys Asn Ile Cys Thr Val Lys Asp Val 315 320 Glu Lys Ala Lys Ser Lys Asn Trp Arg Val Phe Asp Phe Asn Gly Asp 325 330 335 Ser Asp Asn Met Leu Pro Tyr Glu Gly Ser Pro Thr Ser Asn Leu Ala 340 350 345 Val Asp Ala Pro Thr Val Arg Ile Tyr Pro Asn Pro Val Gly Arg Tyr 360 365 Ala Leu Val Glu Ile Pro Glu Ser Leu Leu Gly Gln Glu Ala Ala Leu 375 380 Tyr Asp Met Asn Gly Val Lys Val Tyr Ser Phe Ala Val Glu Ser Leu 385 390 395 Arg Gln Asn Ile Asp Leu Thr His Leu Pro Asp Gly Thr Tyr Phe Phe 405 410 Arg Leu Asp Asn Tyr Thr Thr Lys Leu Ile Lys Gln 420

## (2) INFORMATION FOR SEQ ID NO:527

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 310 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...310
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:527

 Met
 Arg
 Lys
 Thr
 Ile
 Ile
 Phe
 Cys
 Leu
 Leu
 Leu
 Ala
 Leu
 Phe
 Gly
 Cys

 Ser
 Trp
 Ala
 Glu
 Arg
 Val
 Asp
 Glu
 Lys
 Val
 Phe
 Ser
 Ala
 Gly
 Thr
 Arg
 Ala
 Lys
 Val
 Pro
 Leu
 Met
 Try
 Arg
 Ala
 Pro
 Leu
 Met
 Try
 Arg
 Ala
 Arg
 Phe
 Phe

90 Tyr Phe Lys Phe Ala Gln Glu Gly Asp Tyr Ile Glu Val Glu Gly Ser 105 110 Ser Val Phe Met Ala Asn Leu Leu Tyr Tyr Arg Phe Phe Pro Thr Arg 115 120 125 Ile Thr Ser Tyr Asn Ala Pro Ile Glu Gly Val Val Ser Lys Thr Gly 135 140 Asn Pro Ala Phe Thr Ile Pro Met Leu Pro Gly Val Ser Asp Cys Ile 150 155 Glu Ile Ser Asn Asn Arg Lys Val Phe Leu Thr Asn Gln Leu Gly Val Val Asn Ile Thr Asp Gly Met Glu Pro Pro Ile Ile Ala Gly Val Ser 180 185 190 Ala Ser Tyr Gly Ser Ser Val Arg Val Tyr Gly His Val Ser Gln Arg 200 205 Trp Asp Ile Ile Gly His Cys Tyr Leu Asp Ile Tyr Pro Thr Asn Cys 215 220 Tyr Pro Leu Ser Thr Lys Pro Val Ala Gly Asp Asp Glu Val Phe Val 225 230 235 Lys Gln Gln Gly Arg Gln Ile Glu Ile Asp Ser Asn Ser Pro Ile Val 245 250 255 Gln Val Val Val Tyr Asp Leu Glu Gly Lys Ser Val Phe Arg Lys Arg 265 260 270 Met Thr Glu Asn Ala Tyr Thr Leu Ser Phe Arg Ala Pro Met Leu Gly 280 285 Phe Met Thr Ile Met Ile Glu Thr Gln Asn Ser Ile Ile Asn Lys Lys 290 295 300 Leu Asn Val Thr Gln Leu 310

# (2) INFORMATION FOR SEQ ID NO:528

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 405 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc feature
  - (B) LOCATION 1...405
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:528

Met Lys Lys Thr Thr Ile Ile Ser Leu Ile Val Phe Gly Ala Phe Phe 10 Ala Ala Val Gly Gln Thr Lys Asp Asn Ser Ser Tyr Lys Pro Phe Ser 20 25 Lys Glu Asp Ile Ala Gly Gly Val Tyr Ser Leu Pro Thr Gln Asn Arg 35 40 45 Ala Gln Lys Asp Asn Ala Glu Trp Leu Leu Thr Ala Thr Val Ser Thr 55 60 Asn Gln Ser Ala Asp Thr His Phe Ile Phe Asp Glu Asn Asn Arg Tyr 65 70 75 Ile Ala Arg Asp Ile Lys Ala Asn Gly Val Arg Lys Ser Thr Asp Ser 85 90 Ile Tyr Tyr Asp Ala Asn Gly Arg Ile Ser His Val Asp Leu Tyr Ile 105 110 Ser Phe Ser Gly Gly Glu Pro Ala Leu Asp Thr Arg Phe Lys Tyr Thr 115 120 125 Tyr Asp Asp Glu Gly Lys Met Thr Val Arg Glu Val Phe Met Leu Val 130 135 140 Met Asp Pro Asn Thr Pro Ile Ser Arg Leu Glu Tyr His Tyr Asp Ala 145 150 155 Gln Gly Arg Leu Thr His Trp Ile Ser Phe Ala Phe Gly Ala Glu Ser 165 170 Gln Lys Asn Thr Tyr His Tyr Asn Glu Lys Gly Leu Leu Val Ser Glu 180 185 190 Val Leu Ser Asn Ala Met Gly Thr Thr Tyr Ser Asp Thr Gly Lys Thr 200 205 Glu Tyr Ser Tyr Asp Asp Ala Asp Asn Met Val Lys Ala Glu Tyr Phe

215 Val Val Gln Gln Gly Lys Ala Trp Gln Val Leu Lys Arg Glu Glu Tyr 230 235 Thr Tyr Glu Asp Asn Ile Cys Ile Gln Tyr Leu Ala Ile Asn Gly Thr 245 250 Asp Thr Lys Val Tyr Lys Arg Asp Ile Glu Ser Asp Lys Ser Ile Ser 260 265 270 Ala Asn Val Ile Asp Ile Pro Ser Met Pro Glu Gln Thr Trp Pro Asn 280 285 Met Tyr Gly Phe Asn Ala Lys Arg Leu Lys Glu Thr Tyr Ser Ser Tyr 290 295 300 Glu Gly Asp Val Ala Thr Pro Ile Phe Asp Tyr Ile Tyr Thr Tyr Lys 310 315 Ala Leu Thr Ser Met Ala Thr Pro Ser Thr Glu Ala Gln Val Ala Val 325 330 335 Tyr Leu Asn Pro Ser Thr Asp Arg Leu Val Ile Leu Ala Asn Gly Ile 340 345 Thr His Leu Ser Met Tyr Asp Leu Gln Gly Lys Leu Ile Arg Asp Cys 355 360 Ala Leu Ser Gly Asp Lys Val Glu Met Gly Val Gly Ser Leu Thr Lys 370 375 380 Gly Thr Tyr Leu Leu Lys Val Asn Thr Asp Gln Gly Ala Phe Val Arg 390 395 400 Lys Val Val Ile Arq

### (2) INFORMATION FOR SEQ ID NO:529

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2037 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...2037
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:529

GTAATGGACT ACAAACTCAC TTCTCGATTC AAGCCCACGG GCGACCAGCC GGAAGCCATT 60 CGCCAACTCG TACAGGGCAT CAACGAAGGG ATGCCGGCTC AGACGCTGCT CGGCGTAACG 120 GGTTCGGCCA AAACTTTTAC GGTGGCTAAC GTGGTGGCGG CGGTCAATCG TCCGACCCTT 180 GTCCTGAGTC ACAACAAGAC CTTGGCAGCA CAGCTATACG GAGAGTTCAA AGCCTTCTTC CCCGAGAATG CGGTGGAGTA TTTCGTCAGC TACTACGACT ACTATCAGCC CGAGGCCTAC 300 CTCCCCGTCA CAGACACCTA TATCGAAAAG GACATGGCCA TCAACGCGGA GATCGAAAAA CTGCGATTGA GGGCCACGGC TTCGCTCCTG TCAGGGCGGA AAGATGTGCT TGTGGTCAGC 420 TCCGTATCCT GTCTCTACGG TATGGCCAAT CCTGAAGCTT TTTCCGAAAA GGTGATCAGC 480 CTGCACACGG GACAAAGGGC AGACAGGGAT CATTTTATCC GCCTGCTGGT AGAGAGCTAC TACACGAACA ATAAAGTAGA GTTCGAGAGC GGCAACTTCC GTGTCAAAGG CGACAGCGTG 600 GACATATTCC CCGCCGTAGA AGGTTATGAC GGCGTGGCAT ACAGGGTGGA GTTTTGGGAT 660 GGAGAGGTCG AGCGGCTGAG TACCTTCGAT CCGCGAACGG GACGGGAATA CGGCCTGCTG 720 TCGGAGCTGA AGATATATCC GGCCAATCTC TTCGTGACGA CTAAGGAGCA GGTGGATCGG 780 GCAGTAGGGA AAATCGATGT GGATCTGGGC GCACAGGTCG ATTTTCTGAA AGAAATCGGC 840 AAACCATATG AAGCCAAACG CTTGTATGAG CGGGTCACGT ATGACTTGGA AATGATCCGT 900 GAGTTGGGTT ATTGTTCCGG TATAGAGAAC TATTCGCGCT ACTTCGACGG CCGTGACGCG GGCGAACGTC CTTTCTGTCT GTTGGATTAT TTCCCGGAGG ATTTCCTGTT GGTCATAGAC 1020 GAAAGCCATG TAACGATACC GCAGATACGT GCCATGTACG GAGGCGATCG TTCGCGCAAG 1080 GAGAATCTGG TCGAATACGG ATTCCGCCTG CCTGCCGCTC TCGACAATCG GCCGCTTCGC 1140 TTCGACGAGT TCGAAGCTCT CACCCCCGG ACCCTTTATA TCAGTGCCAC GCCTGCCGAC 1200 TATGAGCTGA ACAGAAGCGA AGGCGTGATC GTCGAGCAGC TGATCCGTCC GACCGGACTG CTGGATCCCA TCATCGACGT CAAGCCGACG GCAAACCAAG TGGACGATCT GATGGAGGAG 1320 ATAGCACGCT GCATCGAAAA GAAAGAGCGC GTACTGGTAA CGACCCTGAC CAAACGTATG 1380 GCAGAGGAGC TTAGCGAATA CCTGCTACGC CACGGTATCA GCACCGGCTA CATACACAGC 1440 GATGTGGACA CGCTGGAGCG TGTGCGTATC ATGGAAGACC TGCGCAAGGG GGTCTACGAT 1500 GCACTCATCG GGGTGAATCT GCTCCGCGAA GGATTGGACT TGCCGGAAGT TTCGCTTGTG GCTATTCTGG ATGCGGATAA GGAAGGATTC CTGCGCTCGC ATCGTTCGCT CACGCAGACT 1620 GCAGGACGTG CCGCCCGGCA CATTCATGGG CGTGTCATCT TCTACGCGGA CAAGATCACC 1680

GACAGTATGC	AGCTCACCAT	GGACGAGACT	GCACGCCGAC	GCGCAAAGCA	ACTGGCCTAC	1740
AACGAAGCGC	ACGGCATCAC	CCCCCAACAG	ATAGTGAAGA	ACAGTGCTGC	CATTTGGGGA	1800
GAAGGCGATG	TGTCGGCCTT	GCAATCCGAT	ACAGAATCCG	GTGCGTACAT	AGAAGAGAGC	1860
AGCATGGTGG	CTGCCGATCC	TTTGGCCGAC	TATCTGAGCA	AACCCAAGCT	GGAAGCACTC	1920
ATTGCTTCGA	CCAAGAAGCA	AATGCTGGCA	GCAGCCAAAG	AGCTGGACTT	TCTGGAAGCG	1980
GCACGACTTC	GGGACGAAGC	CGCACGATTG	GAAAAGAAAC	TGGAGCAACT	CACAGCC	2037

### (2) INFORMATION FOR SEQ ID NO:530

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2034 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...2034
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:530

```
ATGGACTACA AACTCACTTC TCGATTCAAG CCCACGGGCG ACCAGCCGGA AGCCATTCGC
                                                                      60
CAACTCGTAC AGGGCATCAA CGAAGGGATG CCGGCTCAGA CGCTGCTCGG CGTAACGGGT
                                                                     120
TCGGGCAAAA CTTTTACGGT GGCTAACGTG GTGGCGGCGG TCAATCGTCC GACCCTTGTC
                                                                     180
CTGAGTCACA ACAAGACCTT GGCAGCACAG CTATACGGAG AGTTCAAAGC CTTCTTCCCC
                                                                     240
GAGAATGCGG TGGAGTATTT CGTCAGCTAC TACGACTACT ATCAGCCCGA GGCCTACCTC
                                                                     300
CCCGTCACAG ACACCTATAT CGAAAAGGAC ATGGCCATCA ACGCGGAGAT CGAAAAACTG
                                                                     360
CGATTGAGGG CCACGGCTTC GCTCCTGTCA GGGCGGAAAG ATGTGCTTGT GGTCAGCTCC
GTATCCTGTC TCTACGGTAT GGCCAATCCT GAAGCTTTTT CCGAAAAGGT GATCAGCCTG
                                                                     480
CACACGGGAC AAAGGGCAGA CAGGGATCAT TTTATCCGCC TGCTGGTAGA GAGCTACTAC
                                                                     540
ACGAACAATA AAGTAGAGTT CGAGAGCGGC AACTTCCGTG TCAAAGGCGA CAGCGTGGAC
                                                                     600
ATATTCCCCG CCGTAGAAGG TTATGACGGC GTGGCATACA GGGTGGAGTT TTGGGATGGA
                                                                     660
GAGGTCGAGC GGCTGAGTAC CTTCGATCCG CGAACGGGAC GGGAATACGG CCTGCTGTCG
                                                                     720
GAGCTGAAGA TATATCCGGC CAATCTCTTC GTGACGACTA AGGAGCAGGT GGATCGGGCA
                                                                     780
GTAGGGAAAA TCGATGTGGA TCTGGGCGCA CAGGTCGATT TTCTGAAAGA AATCGGCAAA
                                                                     840
CCATATGAAG CCAAACGCTT GTATGAGCGG GTCACGTATG ACTTGGAAAT GATCCGTGAG
                                                                     900
TTGGGTTATT GTTCCGGTAT AGAGAACTAT TCGCGCTACT TCGACGGCCG TGACGCGGGC
                                                                     960
GAACGTCCTT TCTGTCTGTT GGATTATTTC CCGGAGGATT TCCTGTTGGT CATAGACGAA
AGCCATGTAA CGATACCGCA GATACGTGCC ATGTACGGAG GCGATCGTTC GCGCAAGGAG
                                                                    1080
1140
GACGAGTTCG AAGCTCTCAC CCCCCGGACC CTTTATATCA GTGCCACGCC TGCCGACTAT
                                                                    1200
GAGCTGAACA GAAGCGAAGG CGTGATCGTC GAGCAGCTGA TCCGTCCGAC CGGACTGCTG
                                                                    1260
GATCCCATCA TCGACGTCAA GCCGACGGCA AACCAAGTGG ACGATCTGAT GGAGGAGATA
                                                                    1320
GCACGCTGCA TCGAAAAGAA AGAGCGCGTA CTGGTAACGA CCCTGACCAA ACGTATGGCA
                                                                    1380
GAGGAGCTTA GCGAATACCT GCTACGCCAC GGTATCAGCA CCGGCTACAT ACACAGCGAT
                                                                    1440
GTGGACACGC TGGAGCGTGT GCGTATCATG GAAGACCTGC GCAAGGGGGT CTACGATGCA
                                                                    1500
CTCATCGGGG TGAATCTGCT CCGCGAAGGA TTGGACTTGC CGGAAGTTTC GCTTGTGGCT
                                                                    1560
ATTCTGGATG CGGATAAGGA AGGATTCCTG CGCTCGCATC GTTCGCTCAC GCAGACTGCA
                                                                    1620
GGACGTGCCG CCCGGCACAT TCATGGGCGT GTCATCTTCT ACGCGGACAA GATCACCGAC
                                                                    1680
AGTATGCAGC TCACCATGGA CGAGACTGCA CGCCGACGCG CAAAGCAACT GGCCTACAAC
                                                                    1740
GAAGCGCACG GCATCACCCC CCAACAGATA GTGAAGAACA GTGCTGCCAT TTGGGGAGAA
                                                                    1800
GGCGATGTGT CGGCCTTGCA ATCCGATACA GAATCCGGTG CGTACATAGA AGAGAGCAGC
                                                                    1860
ATGGTGGCTG CCGATCCTTT GGCCGACTAT CTGAGCAAAC CCAAGCTGGA AGCACTCATT
                                                                    1920
GCTTCGACCA AGAAGCAAAT GCTGGCAGCA GCCAAAGAGC TGGACTTTCT GGAAGCGGCA
                                                                    1980
CGACTTCGGG ACGAAGCCGC ACGATTGGAA AAGAAACTGG AGCAACTCAC AGCC
                                                                    2034
```

### (2) INFORMATION FOR SEQ ID NO:531

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 679 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES

- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...679
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:531

Val	Met	Asp	туг	Lys	Leu	Thr	Ser	Arg	Phe	Lys	Pro	Thi	c Gly	/ Asp	Gln
1 Pro	C1,,	אות	т1.	5		. Tou		<i>α</i> 1	10		. 3	. a1.		15	
FIO	GIU	. AIC	20	Arg	GIII	ьес	ı vaı	25	. Сту	, 116	ASI	GIL	30 1 GT	/ met	Pro
Ala	Gln	Thi 35	Leu	Leu	Gly	Val	Thr	Gly	Ser	Gly	Lys	Thr 45		Thi	Val
Ala	Asn 50	Va]	. Val	Ala	Ala	Val 55	Asn	Arg	Pro	Thr	Leu 60	. Val	. Leu	ı Ser	His
65					70				_	75		-			Phe 80
				85					90					95	Gln
Pro	Glu	Ala	Tyr 100		Pro	Val	Thr	Asp 105		Tyr	Ile	Glu	Lys 110		Met
		115					120					125	;		Ser
	130					135					140				Cys
Leu 145	Tyr	Gly	Met	Ala	Asn 150		Glu	Ala	Phe	Ser 155		Lys	Val	Ile	Ser 160
	His	Thr	Gly	Gln 165			Asp	Arg	Asp	His		Ile	Arg	Leu 175	Leu
Val	Glu	Ser	Tyr 180	Tyr	Thr	Asn	Asn	Lys 185			Phe	Glu	Ser	Gly	Asn
Phe	Arg	Val 195		Gly	Asp	Ser	Val 200		Ile	Phe	Pro	Ala 205		Glu	Gly
	210					215					220				Glu
225					230					235					Leu 240
				245				Asn	250					255	
Gln	Val	Asp	Arg 260	Ala	Val	Gly	Lys	Ile 265	Asp	Val	Asp	Leu	Gly 270		Gln
		275					280	Lys		_		285	_	_	
	290					295		Glu			300				
Cys 305	Ser	Gly	Ile	Glu	Asn 310	Tyr	Ser	Arg	Tyr	Phe 315	Asp	Gly	Arg	Asp	Ala 320
				325				Asp	330					335	Leu
			340					Thr 345					350		
		355					360	Glu				365			
	370					375		Arg			380		_		
385					390			Tyr		395					400
				405				Val	410					415	
			420					Ile 425					430		
Gln		435					440					445		_	_
	450					455		Thr			460				
Ser 465	Glu	Tyr	Leu	Leu	Arg 470	His	Gly	Ile	Ser	Thr 475	Gly	Tyr	Ile	His	Ser 480
Asp	Val	Asp	Thr	Leu 485		Arg	Val		Ile 490		Glu	Asp	Leu	Arg 495	
Gly			500					Val 505	Asn				510	Gly	
Asp		515					520					525	Asp		
Gly	Phe	Leu	Arg	Ser	His	Arg	Ser	Leu	Thr	Gln	Thr	Ala	Gly	Arg	Ala

530 535 540 Ala Arg His Ile His Gly Arg Val Ile Phe Tyr Ala Asp Lys Ile Thr 550 555 Asp Ser Met Gln Leu Thr Met Asp Glu Thr Ala Arg Arg Arg Ala Lys 565 570 Gln Leu Ala Tyr Asn Glu Ala His Gly Ile Thr Pro Gln Gln Ile Val 580 585 590 Lys Asn Ser Ala Ala Ile Trp Gly Glu Gly Asp Val Ser Ala Leu Gln 595 600 605 Ser Asp Thr Glu Ser Gly Ala Tyr Ile Glu Glu Ser Ser Met Val Ala 615 620 Ala Asp Pro Leu Ala Asp Tyr Leu Ser Lys Pro Lys Leu Glu Ala Leu 630 635 Ile Ala Ser Thr Lys Lys Gln Met Leu Ala Ala Ala Lys Glu Leu Asp 645 650 655 Phe Leu Glu Ala Ala Arg Leu Arg Asp Glu Ala Ala Arg Leu Glu Lys 660 665 Lys Leu Glu Gln Leu Thr Ala 675

# (2) INFORMATION FOR SEQ ID NO:532

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 678 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: YES
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Porphyromonas gingivalis
- (ix) FEATURE:
  - (A) NAME/KEY: misc_feature
  - (B) LOCATION 1...678
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:532

Met Asp Tyr Lys Leu Thr Ser Arg Phe Lys Pro Thr Gly Asp Gln Pro 10 Glu Ala Ile Arg Gln Leu Val Gln Gly Ile Asn Glu Gly Met Pro Ala 20 25 30 Gln Thr Leu Leu Gly Val Thr Gly Ser Gly Lys Thr Phe Thr Val Ala 35 40 45 Asn Val Val Ala Ala Val Asn Arg Pro Thr Leu Val Leu Ser His Asn 50 55 60 Lys Thr Leu Ala Ala Gln Leu Tyr Gly Glu Phe Lys Ala Phe Phe Pro 70 75 Glu Asn Ala Val Glu Tyr Phe Val Ser Tyr Tyr Asp Tyr Tyr Gln Pro 85 90 Glu Ala Tyr Leu Pro Val Thr Asp Thr Tyr Ile Glu Lys Asp Met Ala 100 105 110 Ile Asn Ala Glu Ile Glu Lys Leu Arg Leu Arg Ala Thr Ala Ser Leu 115 120 125 Leu Ser Gly Arg Lys Asp Val Leu Val Val Ser Ser Val Ser Cys Leu 130 135 140 Tyr Gly Met Ala Asn Pro Glu Ala Phe Ser Glu Lys Val Ile Ser Leu 145 150 155 His Thr Gly Gln Arg Ala Asp Arg Asp His Phe Ile Arg Leu Leu Val 165 170 175 Glu Ser Tyr Tyr Thr Asn Asn Lys Val Glu Phe Glu Ser Gly Asn Phe 185 190 Arg Val Lys Gly Asp Ser Val Asp Ile Phe Pro Ala Val Glu Gly Tyr 200 205 195 Asp Gly Val Ala Tyr Arg Val Glu Phe Trp Asp Gly Glu Val Glu Arg 210 215 220 Leu Ser Thr Phe Asp Pro Arg Thr Gly Arg Glu Tyr Gly Leu Leu Ser 230 235 Glu Leu Lys Ile Tyr Pro Ala Asn Leu Phe Val Thr Thr Lys Glu Gln 250 245 255 Val Asp Arg Ala Val Gly Lys Ile Asp Val Asp Leu Gly Ala Gln Val 265 270 Asp Phe Leu Lys Glu Ile Gly Lys Pro Tyr Glu Ala Lys Arg Leu Tyr 275 280 285 Glu Arg Val Thr Tyr Asp Leu Glu Met Ile Arg Glu Leu Gly Tyr Cys

295 Ser Gly Ile Glu Asn Tyr Ser Arg Tyr Phe Asp Gly Arg Asp Ala Gly 310 315 Glu Arg Pro Phe Cys Leu Leu Asp Tyr Phe Pro Glu Asp Phe Leu Leu 325 . 330 Val Ile Asp Glu Ser His Val Thr Ile Pro Gln Ile Arg Ala Met Tyr 340 345 350 Gly Gly Asp Arg Ser Arg Lys Glu Asn Leu Val Glu Tyr Gly Phe Arg 355 360 365 Leu Pro Ala Ala Leu Asp Asn Arg Pro Leu Arg Phe Asp Glu Phe Glu 370 375 380 Ala Leu Thr Pro Arg Thr Leu Tyr Ile Ser Ala Thr Pro Ala Asp Tyr 385 390 395 Glu Leu Asn Arg Ser Glu Gly Val Ile Val Glu Gln Leu Ile Arg Pro 405 410 Thr Gly Leu Leu Asp Pro Ile Ile Asp Val Lys Pro Thr Ala Asn Gln 425 Val Asp Asp Leu Met Glu Glu Ile Ala Arg Cys Ile Glu Lys Lys Glu 435 440 445 Arg Val Leu Val Thr Thr Leu Thr Lys Arg Met Ala Glu Glu Leu Ser 450 455 460 Glu Tyr Leu Leu Arg His Gly Ile Ser Thr Gly Tyr Ile His Ser Asp 465 470 475 480 475 Val Asp Thr Leu Glu Arg Val Arg Ile Met Glu Asp Leu Arg Lys Gly 490 495 485 Val Tyr Asp Ala Leu Ile Gly Val Asn Leu Leu Arg Glu Gly Leu Asp 500 505 510 Leu Pro Glu Val Ser Leu Val Ala Ile Leu Asp Ala Asp Lys Glu Gly 515 520 Phe Leu Arg Ser His Arg Ser Leu Thr Gln Thr Ala Gly Arg Ala Ala 530 535 540 Arg His Ile His Gly Arg Val Ile Phe Tyr Ala Asp Lys Ile Thr Asp 550 555 Ser Met Gln Leu Thr Met Asp Glu Thr Ala Arg Arg Arg Ala Lys Gln 565 570 575 Leu Ala Tyr Asn Glu Ala His Gly Ile Thr Pro Gln Gln Ile Val Lys 580 585 590 Asn Ser Ala Ala Ile Trp Gly Glu Gly Asp Val Ser Ala Leu Gln Ser 595 600 605 Asp Thr Glu Ser Gly Ala Tyr Ile Glu Glu Ser Ser Met Val Ala Ala 620 615 Asp Pro Leu Ala Asp Tyr Leu Ser Lys Pro Lys Leu Glu Ala Leu Ile 625 630 635 640 Ala Ser Thr Lys Lys Gln Met Leu Ala Ala Ala Lys Glu Leu Asp Phe 645 650 655 Leu Glu Ala Ala Arg Leu Arg Asp Glu Ala Ala Arg Leu Glu Lys Lys 660 665 Leu Glu Gln Leu Thr Ala

BICON