中国科学技术大学六系研究生课程《数字图像分析》

第九章:图像特征表达

中国科学技术大学 电子工程与信息科学系

图像特征表达的必要性

- □ 语义目标在不同图像中像素差异大
 - 空间变换
 - ✓ 常见变换: 平移, 旋转, 缩放
 - ✓ 复杂的几何畸变
 - 颜色变换
- □ 图像特征特征的目标
 - 以不变应万变,即对于相同语义目标的不同图像,其特征表达 是相同的或相似的

图像特征表达

- □ 基于全局特征的图像表达
 - Histogram
 - Color Name
 - GIST
- □ 基于局部特征的图像表达

直方图 (Histogram)

□ 什么是直方图

- 将数据的<mark>取值空间</mark>划分为一系列的子空间,对每个子空间进行 编号(bin),然后统计落在各个子空间的样本数量(或比例)
- 直方图就是对数据进行统计的一种方法,并且将统计值组织到 一系列实现定义好的 bin 当中
- 如下图所示: bin 即直方图中的纵向条带, 其数值是从数据中 计算出的特征统计量, 这些数据可以是诸如梯度方向、色彩或 任何其他特征

灰度直方图

- □ 一幅图像由不同灰度值的像素组成,图像中<mark>灰度的分布</mark> 情况是该图像的一个重要特征。
 - 灰度直方图对图像几何变换具有不变性

1	7	8	9	10	11	14
5	2	6	7	14	12	15
3	4	7	8	6	9	11
2	1	4	7	8	8	9
8	4	5	9	11	12	10
8	10	11	15	16	10	13
13	6	9	16	13	12	10

灰度直方图

直方图统计表

	\wedge	
4		_

灰度级	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
像元数	2	2	1	3	2	3	4	6	5	5	4	3	3	2	2	2
比例值																
	0.04	0.04	0.02	0.06	0.04 0	. 06 0.	. 08 (0. 12	0. 10	0.10	0.08	0.06	0.06	0.04	0.04	0.04

灰度直方图

□ 根据直方图的形态可以大致推断图像质量的好坏

灰度直方图的比较计算

- □ 直方图的相关系数(事先对直方图进行归一化)
 - 值越高则越匹配

$$s(H_1, H_2) = \frac{\sum_{I} (H_1(I) - \bar{H_1})(H_2(I) - \bar{H_2})}{\sqrt{\sum_{I} (H_1(I) - \bar{H_1})^2 \sum_{I} (H_2(I) - \bar{H_2})^2}}$$

其中 $ar{H_k} = rac{1}{N} \sum_J H_k(J)$,N 为直方图 bins 的个数

- □ 直方图相交(intersection), 度量其相似性
 - 事先对直方图进行归一化

$$s(H_1, H_2) = \sum_{n} \min(H_1(n), H_2(n))$$

图像特征表达

- □ 基于全局特征的图像表达
 - Histogram
 - Color Name
 - GIST
- □ 基于局部特征的图像表达

Color Name: 一种颜色描述的方法

- □ 定义:人们交流时用于描述颜色的词汇
 - e.g. 蓝色、红色、绿色 ...
- □ Basic color terms (word):基本颜色术语
 - 无统一可操作的定义,一般可指
 - ✓ 可应用于描述绝大部分种类的物体
 - ✓ 不包含于其它基本颜色
 - ➤ 深红(crimson), 鲜红(scarlet)不是基本颜色, 同属于红色(red)
 - ✓ 该语言的绝大部分使用者对这些词汇的使用都是一致的
 - ✓ 不同的语言间基本颜色的描述通常是共享的
 - ▶ 中文里有红色,英语也有 red
 - ✓ ...
- □ 不同语言的 Basic color terms 的数量是不一致的
 - 原始:黑白2种
 - Russian: 12种, English: 11种

Color Name

□ 语言学研究表明:不同语言中 Color Name 的发展都遵循一种相似的模式

- □ 英语中包含 11 种基本颜色术语
 - black, blue, brown, grey, green, orange, pink, purple, red, white, and yellow

Computational Color Naming

□ 学习如何将像素值映射为color name标签

- □ 问题:大量图片中物体的颜色并 未明确标注,是否可以自动对这 些图片用 color name 进行标注?
 - Find me all yellow cars?

Color Names学习

false positives

- □ 使用搜索引擎收集一组弱标记图片(weakly labeled)
- □ 利用话题模型 (topic model) 学习图像的color name特 征表达

使用 Google图片 检索出的图片

Color Names学习

图像特征表达

- □ 基于全局特征的图像表达
 - Histogram
 - Color Name
 - GIST
- □ 基于局部特征的图像表达

- □ 在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器
- □ 二维 Gabor 滤波器:正弦平面波调制的高斯核函数
 - 加窗短时 Fourier 变换

$$g(x,y) = s_c(x,y)w_r(x,y)$$

其中
$$S_c(x,y) = e^{j(2\pi(u_0x+v_0y)+P)}$$
 $w_r(x,y) = Ke^{\left(-\pi(a^2(x-x_0)_r^2+b^2(y-y_0)_r^2)\right)}$

- \checkmark u_0 和 v_0 分别表示空间中水平和垂直方向的频率
- ✓ P 是正弦函数的相位
- \checkmark x_0 和 y_0 分别表示高斯函数的中心
- Gabor滤波器的频率和方向表达同人类视觉系统类似
- Gabor滤波器十分适合纹理表达和分离

□ 不同方向的 gabor 滤波器

□ Gabor 滤波示例

□ GIST特征提取一般流程

gabor filter

☐ GIST-512

- 32个 gabor 滤波器: 8个方向, 4个尺度
 - ✓ 得到 32 个与原图等大的 feature map。
- 将每个 feature map 分为 4x4 block, 计算每个block内的均值
- 将 32 个 feature map 的所有 block 的均值合并
 - ✓ 共 16x32=512 个均值,即 512 维 GIST 特征

$$\bar{x} = \frac{\sum x}{n}$$

feature map 中每个 block 计算均值

□ GIST 特征提取算法

Algorithm: Extraction algorithm of global GIST feature

Input: Image I(x,y) with the size of $M \times N$

Out put: Feature vector G^G

- 1: for $j=1, \dots, m$ do
- 2: for $k=1, \dots, n do$
- 3: Calculate $m \times n$ Gabor filters $g_{jk}(x, y)$
- 4: end for
- 5: end for
- 6: Divide I(x,y) into $n_g = n_b \times n_b$ blocks and label those different blocks with B_i
- 7: for $i=1, \dots, n_q$ do
- 8: Calculate $G_i^B(x,y)$
- 9: Calculate G_i^B
- 10: end for

11:
$$G^G = \{\overline{G_1^B}, \overline{G_2^B}, \dots, \overline{G_{n_q}^B}\}$$

$$G_i^B(x,y) = cat(I(x,y) * g_{mn}(x,y)), (x,y) \in B_i$$
$$\overline{G_i^B} = \frac{1}{M' \times N'} \sum_{(x,y) \in B_i} G_i^B(x,y)$$

图像表达

- □ 基于全局特征的图像表达
- □ 基于局部特征的图像表达
 - 简单的局部视觉特征
 - ✓ 局部二值模式 (LBP)
 - ✓ 梯度方向直方图 (HOG)
 - ✓ 形状上下文 (Shape Context)
 - 基于关键点检测的局部视觉特征
 - ✓ 图像表达基本框架
 - ✓ 局部视觉特征描述
 - ✓ 特征编码与聚合

局部二值模式 (Local Binary Pattern)

□ 图像特点

■ 在不同光照条件下,同一场景的图像像素亮度变化显著,但局部区域的像素亮度相对大小关系是稳定的

□ LBP特征描述

- 在3x3的窗口内,以中心像素为阈值,将相邻8个像素的灰度值 与中心像素比较
 - ✓ 周围像素值 ≥ 中心像素值:标记为 1
 - ✓ 周围像素值 < 中心像素值:标记为 0</p>
- 领域8个点经比较可产生8位二进制数
 - ✓ 种类: 256种(2⁸)
 - ✓ 转换为十进制数: LBP值

							٠.	
1	2	2		0	0	0	1	
9	5	6	Threshold	1		1		Binary: 00010011 Decimal: 19
5	3	1		1	0	0		

局部二值模式 (Local Binary Pattern)

- □ 函数表示
 - LBP操作可定义为

$$LBP(x_c, y_c) = \sum_{p=0}^{P-1} 2^p \cdot s(i_p - i_c)$$

其中 (x_c, y_c) 为中心像素,其亮度为 i_c , i_p 是周围像素亮度,s为符号函数。

- □ 小结
 - LBP可以很好地捕捉图像细节,其值可反映不同的纹理

- 但由于近邻区域大小固定,不能满足不同尺寸和频率纹理需要
- 对图像的亮度变化具有较好的鲁棒性/不变性
 - ✓ 不变性(invariance): 以不变应万变

LBP的扩展(环状LBP)

□ 改进

- 3x3邻域扩展为任意邻域
- 圆形邻域代替正方形邻域
- 非整数点像素的灰度值可通过插值得到

 \square LBP^R_P: 表示在半径为 R 的圆内有 P 个像素点

LBP的扩展(环状LBP)

- □ 对于一个给定的点 (x_c, y_c) ,其近邻点为 (x_p, y_p) , $p \in P$
 - 可以由如下公式计算坐标

$$x_p = x_c + R\cos(rac{2\pi p}{P}) \hspace{1cm} y_p = y_c - R\sin(rac{2\pi p}{P})$$

其中 R 为圆的半径, P 为样本点的数目

■ 如果近邻点不在图像的整数坐标上,如何确定该点的像素值?

✓ 双线性插值:

$$f(x,y)pprox egin{bmatrix} 1-x & x\end{bmatrix}egin{bmatrix} f(0,0) & f(0,1) \ f(1,0) & f(1,1) \end{bmatrix}egin{bmatrix} 1-y \ y \end{bmatrix}$$

半径越小,纹理越细

原始LBP 圆形 LBP_8^1 圆形 LBP_8^3 圆形 LBP_6^3

局部二值模式: 光照不变性

□ 由定义可见, LBP 对光照变化非常鲁棒

原图

LBP图

局部二值模式:旋转不变性

- □ 旋转不变性:图像发生旋转变换后,图像特征保持不变
- □ LBP本身不是旋转不变的,同一幅图像,进行旋转后,其特征会有 很大的差别
- □ 改进:不断旋转圆形邻域得到一系列初始定义的LBP值,取最小值 作为该邻域的值
 - 下图 8 种LBP模式,对应旋转不变的LBP模式均为 00001111
 - 代价: 牺牲了特征对不同模式的区分性

LBP等价模式 (Uniform Pattern LBP)

- □ 问题:二进制模式过多
 - 一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子 (LBP_P^R)将会产生 2^P 种模式。(3x3邻域内采8个点,则有 2^8 种模式, 7x7邻域内采36个点,则有 2^{36} 种模式)
- □ 解决方法:等价模式
 - 作用:对LBP算子的模式种类进行归并
 - 定义: 当某个LBP所对应的循环二进制数从0到1或从1到0最多 有两次跳变时,该LBP所对应的二进制就称为一个等价模式类
- □ 示例
 - 等价模式类:
 - ✓ 00000000 (0次跳变),00000111 (2次跳变),10001111 (2次跳变), ...
 - 除等价模式类以外的模式均归为一类,称作混合模式类:
 - ✓ 10010111 (4次跳变)

LBP等价模式 (Uniform Pattern LBP)

- □ 模式数量降维
 - 等价模式类数量: $2^P \rightarrow P(P-1) + 2$
- □ 示例
 - 3x3邻域8个采样点
 - ✓ 总模式由 256 种减少为 59 种
 - ✓ 等价模式的值从小到大编码为 1-58, 混合模式类编码为 0
 - 等价模式LBP特征图整体偏暗,特征向量维数更少,还可以减少高频噪声带来的影响。

圆形 LBP₈

旋转不变 LBP³

等价模式 LBP₈³

LBP的应用: LBP Histograms

- □ LBP特征统计直方图(LBPH)
 - 将LBP特征与图像的空间信息结合。
 - 首先将LBP特征图像分成m个局部块,并提取每个局部块的直方图,然后将这些直方图依次连接在一起形成LBP特征的统计直方图,即LBPH。
- □ 应用: OpenCV人脸识别
 - 计算图像的LBP图像
 - 将LBP特征图像进行分块(如分成8行8列64块区域)
 - 计算每块区域特征图像的直方图,将直方图进行归一化,直方 图大小为: 1 × NumPatterns
 - 将每块区域的直方图按空间顺序依次排列成一行,形成LBP特征向量,大小为: $1 \times (NumPatterns \times 64)$
 - 用机器学习的方法对LBP特征向量进行训练,用于检测和识别 目标

LBP: 小结

口 优点

- 一定程度上消除了光照变化的影响
- 通过改进,可具有旋转不变性
- 纹理特征维度低,计算速度快

□ 缺点

- 当光照变化不均匀导致局部邻域像素间的灰度大小关系被破坏, 对应的LBP结果可能也发生变化
- 通过引入旋转不变的定义,使LBP算子更具鲁棒性。但这也使得LBP结果丢失了方向信息

图像表达

- □ 基于全局特征的图像表达
- □ 基于局部特征的图像表达
 - 简单的局部视觉特征
 - ✓ 局部二值模式 (LBP)
 - ✓ 梯度方向直方图 (HOG)
 - ✓ 形状上下文 (Shape Context)
 - 基于关键点检测的局部视觉特征
 - ✓ 图像表达基本框架
 - ✓ 局部视觉特征描述
 - ✓ 特征编码与聚合

梯度方向直方图

(Histogram of Oriented Gradient, HOG)

- □ HOG 特征
 - 通过计算和统计图像局部区域的梯度方向直方图来构成特征
 - 主要思想
 - ✓ 在一副图像中,局部目标的外观和形状(appearance and shape) 能够被梯度或边缘的方向密度分布很好地描述。
 - ✓ 本质:梯度的统计信息,而梯度主要存在于边缘的地方
- □ 主要步骤
 - 梯度计算
 - 直方图统计
 - 块(block)描述子

梯度方向直方图:梯度计算

- □ 图像预处理(可选)
 - 灰度化
 - 伽马校正:调节图像的对比度,降低光照因素的影响
- □ 梯度计算
 - 计算水平梯度 g_x 和竖直梯度 g_y
 - 计算总的梯度强度和梯度方向

$$g = \sqrt{g_x^2 + g_y^2} \qquad \quad heta = arctanrac{g_x}{g_y}$$

水平梯度

竖直梯度

梯度强度

梯度方向直方图: 直方图统计-I

- 对每个 cell 统计梯度直方图
 - Cell size: 8x8
 - 对于灰度图,每个 8x8 的 cell 包含 64 个像素,每个像素包含 2个值(梯度大小和方向)
 - 使用 9-bins 的直方图对梯度进行统计

梯度大小

梯度方向

Gradient Magnitude

Gradient Direction

梯度方向直方图:直方图统计-11

- □ 将 0-180 度分为 9 个 bins
 - 统计: [0, 20, 40, ..., 160]

Histogram of Gradients

梯度方向直方图:直方图统计-III

- □ 将 0-180 度分为 9 个 bins
 - 统计: [0, 20, 40, ..., 160]

梯度方向直方图:直方图统计-IV

- □ 每个 8x8 cell 的梯度方向直方图
 - 所有像素贡献的累加
 - 此处,0度表示y轴方向,在140-160-0(180)度附近直方图的值较大,说明在这个cell中梯度方向朝上下的分量较多,有着较为明显的横向边缘。

块描述 (block descriptor)

- □ block 归一化
 - 大小: 16x16 (包含4个cell)
 - 目的:降低光照的影响
 - 每个block由4个维度为9的向量组成,对block进行归一化即对 该36维向量进行归一化
 - block间有重叠
- □ 获取HOG特征向量
 - 整合所有blcok的向量即可
 - 思考:图像(64x128)的HOG特征维度?
 - ✓ block 数: 7x15
 - ✓ HOG特征维度: 7x15x36=3780

思考: 若一个block中所有像素的灰度值都经历相同参数 (a, b)的线性变换: $f(x) = a \times b$, 变换前后的HOG特征是否有变化?

HOG特征可视化

□ 对每个 cell, 画出经过block归一化后的直方图

HOG: 示例

图像表达

- □ 基于全局特征的图像表达
- □ 基于局部特征的图像表达
 - 简单的局部视觉特征
 - ✓ 局部二值模式 (LBP)
 - ✓ 梯度方向直方图 (HOG)
 - ✓ 形状上下文 (Shape Context)
 - 基于关键点检测的局部视觉特征
 - ✓ 图像表达基本框架
 - ✓ 局部视觉特征描述
 - ✓ 特征编码与聚合

形状上下文(Shape Context)

□ 动机:如何读量两个二值图像中的目标相似性

形状上下文: 形状比较

□ 提取二值图像中的物体轮廓,比较轮廓点的相似性,以 及匹配关系

形状上下文

□ 以某一个轮廓点为参考原点,统计其他轮廓点的分布

形状上下文

 \square 极坐标空间划分涉及两个变量r和 θ ,轮廓点分布的直方 图可以用二维矩阵表示

形状上下文: 性质

- □ 对平移变换具有不变性
- □ 通过选择合适的半径,可对缩放变换具有不变性
- □ 通过选择局部切向作为bin编号的参考方向,可对旋转 具有不变性
- □ 可容忍小的仿射畸变

形状上下文: 距离度量

基于Chi Squared distance, 计算两个轮廓的距离::

$$C_{ij} = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$$

■ 利用匹配代价 $C_{i,j}$,通过求解线性分配问题,得到两组轮廓点的对应关系:

$$H(\pi) = \sum_i Cig(p_i, q_{\pi(i)}ig)$$

二分图匹配算法: 匈牙利算法

形状上下文的应用-I

• S. Belongie, J. Malik, and J. Puzicha, "Shape matching and object recognition using shape contexts", IEEE TPAMI 2002.

形状上下文的应用-II: 商标检索

• S. Belongie, J. Malik, and J. Puzicha, "Shape matching and object recognition using shape contexts", IEEE TPAMI 2002.