

Data Structure

Lecture#1: Introduction

U Kang Seoul National University

In This Lecture

- Motivation to study data structure
- Administrative information for this course

Outline

- **→ □** Motivation
 - ☐ Course Information

Why do we use Computer?

Is a computer just a faster and bigger calculator?

Why do we use Computer?

- In addition to quickly computing numbers, we use computers to access, manipulate and organize data
 - Store PPT file
 - □ Sort 1 million records to look for top-10 best records
 - Online shopping mall
 - Bank account
 - Social Network Services (SNS)
 - Web

What is Data Structure?

- Data structure
 - Any data representation and its associated operations
 - Organization or structuring for a collection of data items
 - E.g., an array containing a sorted list of exam scores
 - Using proper data structure can make a program super fast (e.g., few days => few seconds)
 - We learn data structure to design efficient algorithms to do tasks efficiently in terms of time and space

What about using fast computers?

- Ill-designed algorithms may require super-linear running time which grows much faster than the CPU's growth rate
- E.g., an algorithm may require $O(n^2)$ running time
 - □ This means if the input size increases 10 times, the running time increases 100 times.
 - □ To achieve the same running time, you need 100 times faster (expensive) computer to handle 10 times larger input
 - □ If you design an O(n) algorithm, then you need only 10 times faster computer to handle the same input!

Goals of this Course

- 1. Reinforce the concept that costs and benefits exist for every data structure.
- 2. Learn the commonly used data structures.
 - □ These form a programmer's basic data structure "toolkit".
- 3. Understand how to measure the cost of a data structure or program.
 - □ These techniques also allow you to judge the merits of new data structures that you or others might invent.

Outline

✓ Motivation

Course Information

URL:

http://datalab.snu.ac.kr/~ukang/courses/17F-DS

- □ Some materials and notices will be in eTL
- Office hour
 - □ Tue, 13:00-14:00 (also, by appointment)
 - □ Room 301-502
- TA: Beunguk Ahn, Junki Jang, Hyeonsik Jeon
 - Office Hour : see the course homepage

Course Information

- Class meets:
 - Lecture: Tue, Thu 14:00 15:15 (Room 302-105)
 - □ Lab: Mon 18:30 20:20 (Room 302-105)
 - (*) You need to prepare a laptop for the lab
 - If you don't have a laptop, you can borrow one in CS department office (10 laptops available)
 - If you have a special reason that you cannot prepare a laptop for the lab, let us know immediately

Textbook

- Cliff A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Edition 3.2 (Java version), Mar/28/2013.
- (The e-book is freely available at http://people.cs.vt.edu/~shaffer/Book/)

Prerequisites

■ M1522.000600 (Computer Programming) or consent of instructor

 Knowledge of the Java programming language enough to be able to design, code, and debug programs

Grading

- 10% Attendance and Quiz
 - Quiz: at the beginning of the class (5 minutes),
 without notice
- 30% Homework
- 25% Midterm
- 35% Final
- +(5% Participation)

Homework

- Written assignment
 - □ ~1 per week
 - May require 2~4 hours
- Programming assignment
 - □ ~1 per every two weeks
 - May require 4~8 hours

Late Policy

For all homeworks

- No delay penalties, for medical etc emergencies (bring doctor's note)
- Each person has 4 'slip days' total, for the whole semester. 10% per day of delay, after that

Plagiarism

- Do not copy other people's works (e.g., homeworks, exams, etc.)
 - □ Then everyone involved in the plagiarism will get 0 score
- It is fine to discuss ideas about homework with your colleagues, but the homework should be finished independently
 - Write down the names of your colleagues that you discussed your homework with, if any
- Use office hours (of TAs and/or instructor) to ask about homework

Override Form (Choangi)

- We allow only ~30 students using override form due to limited resources
- We already mailed ~30 students who are permitted to get instructor's sign on the override form
- We will send final emails to another group of students who are permitted of the override form tonight
- After that, the only way to get registered in this course is through sugang.snu.ac.kr
- Send your request email to Hyeonsik Jeon (jeon185@gmail.com) so that you are in the waiting list if you haven't done so
 - □ Check out http://cse.snu.ac.kr/node/27265
 - No need to talk to me after this class

Schedule (Tentative)

Week	Schedule
1 (Sep. 5 ~)	Chapter 1
2	Chapter 2
3	Chapter 3
4	Chapter 4
5	Chapter 4
6	Chapter 5
7	Chapter 6
8 (Oct. 24 ~)	Midterm Exam
9	Chapter 7
10	Chapter 7
11	Chapter 7
12	Chapter 9
13	Chapter 11
14	Chapter 11
15 (Dec. 12 ~)	Final Exam

Advice

- This is an extremely important course in Computer Science and Engineering
 - □ The time devoted for this course will be fruitful
- If possible, read each chapter before class
 - It is ok to encounter something you don't understand. Just mark it, and later you will understand it when you come back.
- Active participation encouraged
- Use office hours (instructor and/or TA)

Questions?