

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y

TECNOLOGÍAS AVANZADAS.

PROGRAMA ACADÉMICO:

Ingeniería Mecatrónica.

UNIDAD DE APRENDIZAJE:

Electrónica de Potencia

NIVEL:

IV

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL

DIRECCIÓN

DE EDUCACIÓN SUPERIOR

PROPÓSITO DE LA UNIDAD DE APRENIDIZAJE:

Construye sistemas de conversión y control de energía eléctrica con base en dispositivos semiconductores.

CONTENIDOS:

- I. Introducción y fundamentos matemáticos
- II. Semiconductores de Potencia
- III. Convertidores de Corriente Continua-Corriente Continua y Corriente Continua-Corriente Alterna
- IV. Convertidores de Corriente Alterna-Corriente Alterna y Corriente Alterna-Corriente Continua

ORIENTACIÓN DIDÁCTICA:

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje orientado a proyectos (POL). El (la) facilitador (a) aplicará los métodos de enseñanza: analítico e inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes; desarrollo del proyecto, organizadores gráficos, programación de algoritmos computacionales, indagación bibliográfica y desarrollo de prácticas.

EVALUACIÓN Y ACREDITACIÓN:

La presente Unidad de Aprendizaje se evaluará a partir del esquema de portafolio de evidencias, el cual se conforma de: evaluación diagnóstica, evaluación formativa, sumativa y rúbricas de autoevaluación, coevaluación y heteroevaluación.

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos, con base en los criterios establecidos por la Academia de Mecatrónica.
- Acreditación en otra unidad académica del IPN u otra institución educativa, nacional o internacional, externa al IPN, con la cual se tenga convenio.

BIBLIOGRAFÍA:

- Barrado, B. A. (2007). Problemas de electrónica de potencia (1ª Edición). España: Pearson Prentice Hall. ISBN: 978-84-205-4652-0.
- Chapman, S. J. (2005). Máquinas eléctricas (4ª Edición). México: Mc Graw Hill. ISBN: 13: 978-970-10-4947-1.
- Maloney, T. (2006). Electrónica industrial moderna (5ª Edición). México: Pearson Educación. ISBN: 970-26-0669-1.
- Rashid, M. H. (2004). Electrónica de potencia, circuitos, dispositivos y aplicaciones (3ª Edición). México: Prentice Hall/Pearson, ISBN: 970-26-0532-6
- Vukosavić, S. (2007). Digital control of Electrical Drives (Power Electronics and Power Systems). (1st Edition). USA: Springer. ISBN: 978-0-387-25985-7

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA: Unidad Profesional

Interdisciplinaria en Ingeniería Y Tecnologías Avanzadas.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica.

PROFESIONAL ASOCIADO: N/A.

ÁREA FORMATIVA: Profesional.

MODALIDAD: Escolarizada.

UNIDAD DE APRENDIZAJE: Electrónica de Potencia

TIPO DE UNIDAD DE APRENDIZAJE: Teórico-

Práctica / Obligatoria.

VIGENCIA: Enero 2013

NIVEL: IV

CRÉDITOS: 4.5 Tepic – 2.9 SATCA

INTENCIÓN EDUCATIVA

Esta unidad de aprendizaje contribuye al perfil de egreso del Ingeniero en Mecatrónica, debido a que proporciona los fundamentos teóricos y experimentales del funcionamiento de los sistemas de conversión y control de energía eléctrica usando dispositivos semiconductores. Asimismo se, fomentan las siguientes competencias: resolución de problemas, toma de decisiones, trabajo en equipo, desarrollo de habilidades de argumentación y presentación de la información; fomenta la comunicación y la creatividad.

Las unidades de aprendizaje precedentes son: Máquinas Eléctricas; Control Clásico; Señales y Sistemas; Microprocesadores, Microcontroladores e Interfaz; Electrónica Analógica y Circuitos Eléctricos Avanzados. Las consecuentes son: Control de Máquinas Eléctricas.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Construye sistemas de conversión y control de energía eléctrica con base en dispositivos semiconductores.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 1.5

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 27.0

HORAS PRÁCTICA/SEMESTRE: 27.0

HORAS TOTALES/SEMESTRE: 54.0

UNIDAD DE APRENDIZAJE DISEÑADA
POR: Academia de Mecatrónica.

REVISADA POR: Subdirección
Académico

APROBADA POR:

M. en C. MACONAL

Presidente del Consejó Tecnico
Consultivo Escolar
19 de diciembre de 2012

AUTORIZADO POR: Comisión de Programas Académicos del Consejo General Consultivo del IPN.

NSTITUTO POLITÉCNICO NACIONAL

Emmanual (Alaja i dro Merchár Cruz

Secretario Técnico de la Comisión de Programas Académicos.
22 de Mayo 2013

SECRETARÍA ACADÉMICA

N° UNIDAD TEMÁTICA: I

UNIDAD DE APRENDIZAJE: Electrónica de Potencia

NOMBRE: Introducción y fundamentos matemáticos

UNIDAD DE COMPETENCIA

Analiza los sistemas eléctricos de potencia a partir de sus fundamentos matemáticos.

No.	CONTENIDOS		HORAS AD Actividades de Docencia		S TAA ades de dizaje nomo	CLAVE BIBLIOGRÁFICA
		T	Р	T	Р	
1.1	Valores medios y eficaces	0.5	0.5	0.5	0.5	2B,4C,7B
1.2	Series de Fourier	0.5	0.5	0.5	0.5	
1.3	Calculo de potencias	0.5	0.5	0.5	0.5	
	Subtotales:	1.5	1.5	1.5	1.5	

ESTRATEGIAS DE APRENDIZAJE

Encuadre del curso.

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El (la) facilitador (a) aplicará el método de enseñanza analítico. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: indagación bibliográfica y desarrollo de la práctica 1.

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica Portafolio de evidencias:

Reporte práctica 50% Reporte del análisis de las fuentes bibliográficas 10% 40% Evaluación escrita

Rúbricas de las autoevaluación y coevaluación

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Electrónica de Potencia

HOJA:

Nº UNIDAD TEMÁTICA: II

NOMBRE: Semiconductores de Potencia

UNIDAD DE COMPETENCIA

Clasifica los diferentes dispositivos de potencia y sus aplicaciones con base en las requisiciones de consumo de potencia eléctrica.

No.	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA	
		T	P	T	Р		
2.1	Diodos de potencia y de marcha libre	0.5	0.5	0.5	0.5	1B,2B,3C,	
2.1.1	Parámetros de rendimiento Rectificadores Monofásicos de onda					9C,10C	
2.1.2	completa y media onda					·	
2.1.3	Rectificadores Polifásicos en estrella y puente						
2.2	Transistores de potencia TBJ y MOSFET	0.5	0.5	1.5	1.5		
2.2.1	Características en estado permanente						
2.2.2							
2.2.3	Límites de conmutación						
2.3	Semiconductores de cuatro capas	0.5	0.5	1.5	1.5		
2.3.1	SCR	0.0	0.0	1.0	1,0		
2.3.2	DIAC						
2.3.3		}					
2.3.4	Semiconductores Híbridos: GTO y IGBT.						
	Subtotales:	1.5	1.5	3.5	3.5		

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El (la) facilitador (a) aplicará el método de enseñanza inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: desarrollo del proyecto, programación de simulaciones electrónicas y desarrollo de las prácticas 2, 3, 4 y 5.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Propuesta de proyecto 10% Reporte práctica 50% Programación de simulaciones electrónicas 20% Evaluación escrita 20%

Rúbricas de las autoevaluación y coevaluación

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE:

Electrónica de Potencia

HOJA: 5

Nº UNIDAD TEMÁTICA: III

NOMBRE: Convertidores de corriente continua-corriente continua y

corriente continua-corriente alterna

UNIDAD DE COMPETENCIA

Relaciona los diferentes dispositivos de electrónica de potencia con los convertidores de corriente continua-corriente

continua y corriente continua-corriente alterna a partir de los principios de la teoría de los circuitos.

No.	CONTENIDOS HORAS AD Actividades de Docencia		dades	HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA	
		T	Р	T	Р		
3.1	Reguladores conmutados	0.5	0.5	3.0	3.0	1B,2B,4C,	
3.1.1 3.1.2	Principio de operación Parámetros de funcionamiento					6B,7B,8B	
3.1.3	Reguladores conmutados reductores, elevadores, inversores						
3.2	Inversores modulados por ancho de pulso	1.0	1.0	2.0	2.0		
3.2.1 3.2.2 3.2.3	Principio de operación y parámetros de rendimiento Puentes inversores monofásicos y polifásicos Reducción de armónicos						
3.3 3.3.1 3.3.2 3.3.3	Inversores de pulso resonante Inversor resonante serie y paralelo Control de voltaje en inversores resonantes Inversor resonante clase E	1.0	1.0	2.0	2.0		
3.3,3	Subtotales:	2.5	2.5	7.0	7.0		

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El (la) facilitador (a) aplicará el método de enseñanza inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes. Desarrollo del proyecto, programación de simulaciones electrónicas y desarrollo de las prácticas 6, 7, 8, 9 y 10.

EVALUACIÓN DE LOS APRENDIZAJES

10

50%

20%

20%

Portafolio de evidencias:

Rúbricas de coevaluación

Avance de proyecto (1)

Reporte práctica

Programación de simulaciones electrónicas

Evaluación escrita

Rúbricas de las autoevaluación y coevaluación

SECRETARIA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL

DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Electrónica de Potencia

HOJA: 6

N° UNIDAD TEMÁTICA: IV

NOMBRE: Convertidores de corriente alterna-corriente alterna y

corriente alterna-corriente continua

UNIDAD DE COMPETENCIA

Relaciona los diferentes dispositivos de electrónica de potencia con los convertidores de Corriente Alterna/Corriente Continua y Corriente Alterna/Corriente alterna, a partir de los principios de la teoría de los circuitos.

No.	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA
	· · · · · · · · · · · · · · · · · · ·	T T	Р	T	Р	
4.1	Convertidores de CA/CA	0.5	0.5	3.0	3.0	2B,4C,5C,
4.1.1	Reguladores monofásicos y trifásicos totales y diferenciales					6B,7B,8B
4.1.2	Control de conducción por ángulo de fase					
4.1.3	Cicloconvertidores					
4.2 4.2.1 4.2.2	Convertidores de CA/CD Rectificadores no controlados monofásicos y trifásicos Rectificadores con modulación por ancho de pulso.	1.0	1.0	2.0	2.0	
4.3 4.3.1 4.3.2	Protección Protección contra sobre corriente Interferencia electromagnética	1.0	1.0	2.0	2.0	
	Subtotales:	2.5	2.5	7.0	7.0	

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El (la) facilitador (a) aplicará el método de enseñanza inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: Presentación del proyecto, programación de simulaciones electrónicas y desarrollo de las prácticas 11, 12, 13 y 14.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Presentación de Proyecto Programación de simulaciones electrónicas

40% 40%

Evaluación escrita

20%

Rúbricas de las autoevaluación y coevaluación

DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Electrónica de Potencia

HOJA: 7

DE

9

RELACIÓN DE PRÁCTICAS

PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN
1	Factor de potencia	I	3.0	
2	Diodo de marcha libre	11	1.5	
3	Rectificador polifásico con diodos	11	1.5	
4	Transistor como conmutador	11	1.0	
5	Aplicaciones de los dispositivos de cuatro capas	II	1.0	
6	Regulador conmutado reductor	III	1.5	
7	Regulador conmutado elevador	111	2.0	Laboratorio de Neumática y
8	Regulador conmutado inversor	111	2.0	control de Procesos
9	Inversor Monofásico controlado por voltaje	111	2.0	
10	Inversor Monofásico de pulso resonante	Ш	2.0	
11	Control de conducción señal de corriente alterna por ángulo de fase	IV	3.0	
12	Ciclo convertidores	IV.	3.0	
13	Fuentes de alimentación conmutada			
14	Circuitos de Protección Eléctrica	IV	2.0	
		IV	1.5	
		TOTAL DE HORAS	27.0 .	

EVALUACIÓN Y ACREDITACIÓN:

Las prácticas se consideran requisito indispensable para acreditar esta unidad de aprendizaje.

Las prácticas aportan el 50% de la calificación en las unidades temáticas I, II, III; el 45% en la unidad temática IV, y el 30% en la unidad temática V. Esta evaluación se considera dentro de la evaluación continua.

SECRETARÍA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL DIRECCIÓN DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Electrónica de Potencia

HOJA:

8

E

PERÍODO	UNIDAD	PROCEDIMIENTO DE EVALUACIÓN				
1		Evaluación continua	60%			
		Evaluación escrita	40%	SUNIDOS ME.		
2	11	Evaluación continua	80%	S. J. A. A.		
		Evaluación escrita	20%			
3	III	Evaluación continua	80%			
	£	Evaluación escrita	20%	SECRETARÍA DE EDUCACIÓN PÚBLICA		
4	IV	Evaluación continua	80%	INSTITUTO POLITÉCNICO NACIONAL		
		Evaluación escrita	20%	DIRECCIÓN DE EDITICACIÓN SUPERIOR		

Los porcentajes con los que cada unidad temática contribuyen a la evaluación final son:

La unidad I aporta el 10% de la calificación final.

La unidad II aporta el 30% de la calificación final.

La unidad III aporta el 30% de la calificación final.

La unidad IV aporta el 30% de la calificación final.

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos con base en los lineamientos que establezca la Academia de Mecatrónica.
- Acreditación en otra unidad académica del IPN u otra institución educativa, nacional o internacional, externa al IPN, con la cual se tenga convenio.

CLAVE	В	С	BIBLIOGRAFÍA
1	Х		Barrado, B. A. (2007). Problemas de Electrónica de Potencia (1ª Edición). España: Pearson Prentice Hall. ISBN: 978-84-205-4652-0.
2	Х		Bose, B. K. (2002). Modern Power Electronics and Ac Drives. USA: Prentice Hall. ISBN: 0130167436
3		х	Chapman, S. J. (2005). Máquinas Eléctricas (4ª Edición). México. Mc Graw Hill. ISBN: 13: 978-970-10-4947-1
4		х	Maloney, T. (2006). Electrónica industrial moderna (5ª Edición). México: Pearson Educación. ISBN: 970-26-0669-1.
5		х	Martínez, S. (2006). Electrónica de Potencia: Componentes, topologías y equipos. España :Thomson. ISBN: 84-205-3179-0
6	х		Mohan, N. (2003).Power Electronics: Converters, applications and design (3 ^a Edition). USA: John Wiley & Sons, Inc. ISBN: 0-471-22693-9
7	Х		Mohan, N. (2009). First Course on Power Electronics and Drives. USA: MNPERE, Minnesota Power Electronics Research & Education. ISBN: 0971529280
8	Х		Rashid, M. H. (2004). Electrónica de potencia, circuitos, dispositivos y aplicaciones (3ª Edición). México: Prentice Hall/Pearson. ISBN: 970-26-0532-6.
9		х	Shepherd,W. (2004). Power Converter Circuits. USA: Marcel Dekker, Inc. ISBN: 978-0824750541
10		х	Vukosavić, S.(2007). Digital control of Electrical Drives (Power Electronics and Power Systems (1 st Edition). USA: Springer. ISBN: 978-0-387-25985-7

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

1. DATOS GENERALES

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

NIVEL IV

ÁREA DE **FORMACIÓN:**

Institucional

Científica Básica

Terminal y de Integración

ACADEMIA:

Mecatrónica

UNIDAD DE APRENDIZAJE:

Electrónica de Potencia

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO:

Ingeniero en Mecatrónica o en electrónica o áreas afines

con Maestría en Ciencias o Doctorado.

2. PROPÓSITO DE LA UNIDAD DE APRENDIZAJE:

Construye sistemas de conversión y control de energía eléctrica con base en dispositivos semiconductores.

3. PERFIL DOCENTE:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
En uso rectificadores trifásicos Uso de IGBT Manejo convertidores El manejo de equipo de medición y de prueba. Modelo Educativo Institucional (MEI)	experiencia docente en el nivel superior en el área de Mecatrónica o afín.	Capacidad de análisis y	Vocación por la docencia Responsabilidad Tolerancia Honestidad Respeto Compromiso Secretaría DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONA DIRECCIÓN DE EDUCACIÓN SUPERIOR

ELABORÓ

REVISÓ

Afg. M en C., الم

M. en C. Arodi Rafae **Director**

FIL INGELIKEBERIA Y TEEMPLOGIAS AVANZASAS SUBDIRECCION ACADEMICA

Dr. Leonel Germán Corona Ramírez Presidente de Academia