https://github.com/axgib/Classes/tree/main/MAE144

```
Q1
   %% MT1 MAE 144 redo - HW 3
                                                                                             G =
   clear; clc;
                                                                                                             0.1
   s = tf('s');
                                                                                               exp(-6*s) * -----
                                                                                                           s + 0.1
  % dy(t)/dt + a0*y(t) = b0 * u(t - d)
                                                                                             Continuous-time transfer function.
  % s*Y(s) + a0*Y(s) = b0 * U(s - d)
                                                                                             Model Properties
  a0 = 0.1;
                                                                                          f_{x} >>
  b0 = 0.1;
  G = tf(b0, [1 a0], 'InputDelay', 6)%Y(s)/U(s) = e^{-6s}*(b0)/(s-a)
  G = pade(G, 2);
```


Q2

```
%% Find the Ku and omega_u (critical K and omega)
figure;
Ku = 3.3
rlocus(Ku*G)
w_u = 0.317; %rad/s
```

```
%% P2 GM
% GM = 0.6*Ku
para = [0.6, inf, 0]; %PID parameters

GM = 0.6*Ku %This is the amount of gain margin from stable we have to work
%with given the ZP conditions

%Dpid = Kp*(1 + 1/(Ti*s) + Td*s) too tough to calc
```

GM = 1.98

Q3

%% P3 Dial down beta para(1), Dial up gamma para(3)

%We build a PID controller with real parameters once the parameter % give us our PID control constants of K, Ti, Tp.
%With PID control we can automatically control the temperature of the cell % bath with our 2 temperature system by bringing water in and out to get % our desired temperature.
% If the frequency is too high or too low our controller can act with %a higher response to get our temperature back to the target

Q4 %% P4a Z-N PID Bode G(s)D(s),

```
para = [0.6, 0.5, 0.125];
Tu = 1/w_u;

Kp = para(1) * Ku;
Ti = para(2) * Tu;
Tp = para(3) * Tu;

w_i = 1/Ti;
w_d = 1/Tp;

D = Kp * (1 + 1/(Ti*s) + (Tp * s))
figure;
bode(G*D)
title("4a: Bode G(s)D(s)")
figure;
rlocus(G*D)
```



```
Q4b

%% P4b Profile:

% 35C for 1hr

% 45C for 3hr

% 20C for 1hr

% assume PM is 70deg and crossover is 0.2rad/s

t = linspace(0, 300, 300); %300min in 5hours
u(1:1*60 - 1) = 35;
u(1*60: 4*60) = 45;
u(4*60: 5*60) = 20;

figure;
lsim(G, u , t)
```


there will be a strong deloy when we cattempt to change temps because for 3 hrs the controller was trying to reach a temp that: toold not. Integrator got very large over a long time and thus will take time to get down again so that the system

and thus will take time toget down again so that the system con change temperature.

0.5

%% 5a What controller is better than a PID

- % Lead lag cuz you 1)dont get integrator windup as we saw in exercise 4c if
- $\ensuremath{\text{\%}}$ the controller is not meeting it's target temperature it will try to
- % keep building so when it is time to come down again there is a large
- % delay before the system is able to change temperature
- % 2) dont amplify high freq PIDs also amplify high frequencies which is
- % bad for things like noise amplification. usually noise operates at the
- % higher frequencies so we making this worse with a PID.

%more detail

%% 5b Change to the physical system

- % Getting rid of the delay would allow us to control the system faster and
- % with greater accuracy. Maybe we more directly change the water
- % temperatuer with a shorter pipe from the valve source to the bath so
- % there is less convective transport delay. Maybe we also suppliment the
- $\ensuremath{\text{\%}}$ bath with additional heating elements so we can reach our desired
- % temperature too.

06

```
%% 6a DAC - G(s) - ADC
```

h = 2; %sec

Gz = c2d(G, 2, 'zoh')

figure;

bode(Gz)

figure;

rlocus(Gz)

% Degree of denominator is larger than the degree on the numerator therfore

% the system is causal. System is unstable because of the many zero outside

% the unit circle.

%% 6b Deadbeat control

z = tf('z');

 $Tz = 1/z^{(3 - 2)};$

Dz = (Tz/Gz)/(1 - Tz)

%This is a deadbeat controller.

%Yes we expect a significant amount of intersample ripple because of the %unsteady pole/zero cancellation. Deadbeat control is based on the idea of %using the inverse of plant to cancel it's own dynamics. It does this by %canceling the pole/zeros. But we have a zero outside of the unit circle %thus our system isn't stable. We do have minimal phase.

%I propose that we use a ripple free deadbeat controller

%% 6c

%Given our untable system and the temperature control, this controller %would not be a suitable fit because of the large amount of oscilitory %behavior in the continous time domain. While it may look like we are under %control in the discrete time, we might not be sampling to show the true %behavior of the continous time conditions of our cell plant. And with are %high and low water temperature baths it would be even harder to fix %becuase finer adjustments are hard with that large of a temperature range. %Further, the delay compounds the stability.


```
Dz =

-z^4 + 1.435 z^3 - 0.6401 z^2 + 0.1108 z

-----
0.009627 z^4 + 0.002259 z^3 - 0.1274 z^2 + 0.1156 z
```

Extra Credit - ran out of time >:(

```
%% Extra Credit
clc;
syms y(t) u(t)
ode = diff(y,t) == -0.1*y(t) + 0.1*u(t - 6)

cond1 = y(0) == 25;
cond2 = u(t) == 50;

conds = [cond1, cond2]
ySol(t) = dsolve(ode == 35, conds)
```