Inertia in optimization

Optimization and geometry

uniqueness of the minimizers

Conclusion

Inertial methods beyond minimizer uniqueness

Hippolyte Labarrière

Joint work with Jean-François Aujol, Charles Dossal and Aude Rondepierre

Journées SMAI-MODE 2024 Université de Lyon March 29, 2024

Framework

Inertia in

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Minimization problem

$$\min_{x \in \mathbb{R}^N} F(x) = f(x) + h(x),$$

where:

f is a convex differentiable function having a L-Lipschitz gradient,

- h is a convex proper lower semicontinuous function,
- F has a non-empty set of minimizers X^* .

Framework

Inertia in optimization

Optimization and geometry

uniqueness of the minimizers

Conclusio

Motivations

$$\min_{x \in \mathbb{R}^N} F(x),$$

Which algorithm is the most efficient according to the **assumptions** satisfied by F and the **expected** accuracy?

→ Convergence analysis of the numerical schemes:

How fast does $F(x_k) - F^*$ decreases?

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

$$\forall k > 0, \ x_k = \operatorname{prox}_{sh} \left(x_{k-1} - s \nabla f(x_{k-1}) \right).$$

Composite version of the **Gradient Descent method**:

$$\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).$$

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

$$\forall k > 0, \ x_k = \operatorname{prox}_{sh} (x_{k-1} - s \nabla f(x_{k-1})).$$

Composite version of the **Gradient Descent method**:

$$\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).$$

Convergence guarantees

If F is convex and s is sufficiently small:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-1}\right)$$

 \rightarrow Simple but slow!

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

A classical algorithm: the proximal gradient method

$$\forall k > 0, \ \underline{x_k} = \operatorname{prox}_{sh} (\underline{x_{k-1}} - s\nabla f(\underline{x_{k-1}})).$$

- - - - - -

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

A classical algorithm: the proximal gradient method

$$\forall k > 0, \ \underline{x_k} = \operatorname{prox}_{sh} (\underline{x_{k-1}} - s\nabla f(\underline{x_{k-1}})).$$

- - - - - -

Inertia in optimization

Optimization and

Inertia without uniqueness of the minimizers

Conclusio

A classical algorithm: the proximal gradient method

$$\forall k > 0, \ \underline{x_k} = \operatorname{prox}_{sh} (\underline{x_{k-1}} - s\nabla f(\underline{x_{k-1}})).$$

Inertia in optimization

Optimization and

Inertia without uniqueness of the minimizers

Conclusio

A classical algorithm: the proximal gradient method

$$\forall k > 0, \ \underline{x_k} = \operatorname{prox}_{sh} (\underline{x_{k-1}} - s\nabla f(\underline{x_{k-1}})).$$

Inertia in optimization

Optimization and

Inertia without uniqueness of the minimizers

Conclusio

A classical algorithm: the proximal gradient method

$$\forall k > 0, \ \underline{x_k} = \operatorname{prox}_{sh} (\underline{x_{k-1}} - s\nabla f(\underline{x_{k-1}})).$$

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k>0, \begin{cases} \mathbf{x_k} = \operatorname{prox}_{sh}\left(y_{k-1} - s\nabla f(y_{k-1})\right), \\ y_k = \mathbf{x_k} + \alpha_k(\mathbf{x_k} - \mathbf{x_{k-1}}), \end{cases}$$

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k>0, \begin{cases} \frac{x_k}{} = \operatorname{prox}_{sh}\left(y_{k-1} - s\nabla f(y_{k-1})\right), \\ y_k = \frac{x_k}{} + \alpha_k(\frac{x_k}{} - \frac{x_{k-1}}{}), \end{cases}$$

Inertia in optimization

Optimization and

Inertia without uniqueness of the minimizers

Conclusio

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = \boldsymbol{x_k} + \alpha_k (\boldsymbol{x_k} - \boldsymbol{x_{k-1}}), \end{cases}$$

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k>0, \begin{cases} \mathbf{x_k} = \operatorname{prox}_{sh}\left(y_{k-1} - s\nabla f(y_{k-1})\right), \\ y_k = \mathbf{x_k} + \alpha_k(\mathbf{x_k} - \mathbf{x_{k-1}}), \end{cases}$$

Inertia in optimization

Optimization and

Inertia without uniqueness of the minimizers

Conclusio

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k>0, \begin{cases} \mathbf{x_k} = \operatorname{prox}_{sh}\left(y_{k-1} - s\nabla f(y_{k-1})\right), \\ y_k = \mathbf{x_k} + \alpha_k(\mathbf{x_k} - \mathbf{x_{k-1}}), \end{cases}$$

Inertia in optimization

Optimization and

Inertia without uniqueness of the minimizers

Conclusio

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k>0, \begin{cases} \mathbf{x_k} = \operatorname{prox}_{sh}\left(y_{k-1} - s\nabla f(y_{k-1})\right), \\ y_k = \mathbf{x_k} + \alpha_k(\mathbf{x_k} - \mathbf{x_{k-1}}), \end{cases}$$

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = \boldsymbol{x_k} + \alpha_k (\boldsymbol{x_k} - \boldsymbol{x_{k-1}}), \end{cases}$$

Rising question

How to chose α_k ?

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Introducing inertia

→ Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = \boldsymbol{x_k} + \alpha_k (\boldsymbol{x_k} - \boldsymbol{x_{k-1}}), \end{cases}$$

Rising question

How to chose α_k ?

- **Heavy-Ball schemes** (Polyak, '64, Nesterov, '03, ...): constant friction $\rightarrow \alpha_k = \alpha$.
- **FISTA** (Beck and Teboulle, '09, Nesterov, '83): vanishing friction $\rightarrow \alpha_k = \frac{k-1}{k+\alpha-1}$.

Framework

Inertia in

Optimization and geometry

Inertia without uniqueness of th minimizers

Conclusio

Strong convexity (SC_{μ})

F is μ -strongly convex if for all $x \in \mathbb{R}^N$, $g: x \mapsto F(x) - \frac{\mu}{2} ||x||^2$ is convex.

Convergence rate of $F(x_k) - F^*$

Algorithm	Convex	\mathcal{SC}_{μ}
Proximal gradient method	$\mathcal{O}\left(k^{-1}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$
Heavy-Ball (constant friction)	$\mathcal{O}\left(k^{-1}\right)$	$\mathcal{O}\left(e^{-2\sqrt{\frac{\mu}{L}}k}\right)$
FISTA (vanishing friction)	$\mathcal{O}\left(k^{-2}\right)$	$\mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)$

Classical geometry assumptions

Inertia in

Optimization and

Inertia without uniqueness of the minimizers

Conclusio

• Quadratic growth condition (\mathcal{G}^2_{μ}) : F has a quadratic growth around its set of minimizers if

$$\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ \frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.$$

Practical example: LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.$$

Inertia in

Optimization and geometry

Inertia without uniqueness of th minimizers

Conclusio

Classical geometry assumptions

• Quadratic growth condition (\mathcal{G}^2_{μ}) : F has a quadratic growth around its set of minimizers if

$$\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ \frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.$$

Practical example: LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.$$

• Hölderian error bound (\mathcal{H}^{γ}): F has a γ -Hölderian growth around its set of minimizers (with $\gamma > 2$) if

$$\exists K > 0, \ \forall x \in \mathbb{R}^N, \ Kd(x, X^*)^\gamma \leqslant F(x) - F^*.$$

Framework

Inertia in

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Problem statement

Most improved convergence results for first-order inertial methods (and corresponding dynamical systems) rely on the assumption that F has a unique minimizer:

Algorithm	\mathcal{SC}_{μ}	\mathcal{G}_{μ}^2 and unique minimizer	\mathcal{G}_{μ}^{2}
Proximal gradient method	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$
Heavy-Ball methods	$\mathcal{O}\left(e^{-2\sqrt{\frac{\mu}{L}}k}\right)$	$\mathcal{O}\left(e^{-(2-\sqrt{2})\sqrt{\frac{\mu}{L}}k}\right)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$
FISTA	$\mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)$	$\mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)$	$\mathcal{O}\left(k^{-2}\right)$

ightarrow FISTA restart schemes for \mathcal{G}_{μ}^{2} : $\mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}\right)$ without an uniqueness assumption!

Is this hypothesis necessary to get fast convergence rates?

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Our strategy

Consider V-FISTA (Beck, '17, Nesterov, '03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_k = s(F(x_k) - F^*) + \frac{1}{2} ||\lambda(x_k - x^*) + x_k - x_{k-1}||^2$$

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Our strategy

Consider V-FISTA (Beck, '17, Nesterov, '03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_k = s(F(x_k) - F^*) + \frac{1}{2} \|\lambda(x_k - \frac{\mathbf{x}_k^*}{k}) + x_k - x_{k-1}\|^2$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Our strategy

Consider V-FISTA (Beck, '17, Nesterov, '03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_k = s(F(x_k) - F^*) + \frac{1}{2} \|\lambda(x_k - \frac{x_k^*}{k}) + x_k - x_{k-1}\|^2$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

ightarrow Trickier calculations ightarrow No assumption on X^* required!

Framework

Inertia in

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusio

Main results: V-FISTA

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F satisfies \mathcal{G}^2_μ , $s=rac{1}{L}$ and $lpha=1-rac{5}{3\sqrt{3}}\sqrt{rac{\mu}{L}}$:

$$F(x_k) - F^* = \mathcal{O}\left(e^{-\frac{2}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}k}\right)$$

- Uniqueness of the minimizer is not required.
- Theoretical guarantees for non optimal values of α .
- Better worst-case bound than any FISTA restart scheme: $\mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}\right)$.
- α depends on $\frac{\mu}{L}!$

Framework

Inertia in

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Main results: FISTA for \mathcal{G}^2_{μ}

$$\forall k>0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F satisfies \mathcal{G}_{μ}^2 , $s=\frac{1}{L}$ and $\alpha\geqslant 3+\frac{3}{\sqrt{2}}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)$$

- Uniqueness of the minimizer is not required.
- Finite time bound available.
- ullet lpha can be parametrized according to the expected accuracy to get improved performance.

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusi

Main results: FISTA for \mathcal{H}^{γ}

$$\forall k>0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If there exists $\varepsilon > 0$, K > 0 and $\gamma > 2$ such that F satisfies the following inequality for any minimizer x^*

$$\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*,$$

then for $\alpha > 5 + \frac{8}{\gamma - 2}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma - 2}}\right) \text{ and } \|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma - 2}}\right)$$

Framework

Inertia in

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusi

Main results: FISTA for \mathcal{H}^{γ}

$$\forall k>0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If there exists $\varepsilon > 0$, K > 0 and $\gamma > 2$ such that F satisfies the following inequality for any minimizer x^*

$$\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*,$$

then for $\alpha > 5 + \frac{8}{\gamma - 2}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma-2}}\right)$$
 and $\|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma-2}}\right)$

Corollary: Under the same assumptions, for any $\alpha > 5$, the sequence $(x_k)_{k \in \mathbb{N}}$ converges **strongly** to a minimizer of F.

Conclusion

ramework

Inertia in

Optimization and geometry

uniqueness of th minimizers

Conclusion

Take-away message

In the convex setting, inertia is still relevant for functions having multiple minimizers!

	\mathcal{SC}_{μ}	\mathcal{G}_{μ}^{2}	\mathcal{H}^{γ}	Convexity
Best option	HB	HB	FISTA	FISTA

Pending questions:

- Heavy Ball methods require to know the growth parameter of F: could an adaptive strategy be applied to avoid this issue?
- Could the Performance Estimation Problem approach (Drori and Teboulle, '14, Taylor, Hendrickx and Glineur, '17, Taylor and Drori, '22) allow to find tighter bounds?
- How do inertial methods behave in a non-convex setting?

Conclusion

Framework

Inertia in

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Thank you for your attention!

Preprints:

- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.
- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of FISTA under a Weak Growth Condition, currently in writing.

My thesis manuscript (in french!):

• Hippolyte Labarrière, 2023, Étude de méthodes inertielles en optimisation et leur comportement sous conditions de géométrie.

Website:

https://hippolytelbrrr.github.io/

References I

J.-F. Aujol, C. Dossal, and A. Rondepierre.

Convergence rates of the heavy-ball method under the łojasiewicz property.

Mathematical Programming, pages 1-60, 2022.

J.-F. Aujol, C. Dossal, and A. Rondepierre.

Fista is an automatic geometrically optimized algorithm for strongly convex functions.

Mathematical Programming, Apr 2023.

A. Beck.

First-order methods in optimization.

SIAM, 201

A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM journal on imaging sciences, 2(1):183-202, 2009.

Y. Drori and M. Teboulle.

Performance of first-order methods for smooth convex minimization: a novel approach.

Mathematical Programming, 145(1):451-482, Jun 2014.

G. Garrigos, L. Rosasco, and S. Villa.

Convergence of the forward-backward algorithm: beyond the worst-case with the help of geometry. *Mathematical Programming*, pages 1–60, 2022.

J. J. Maulén and J. Peypouquet.

A speed restart scheme for a dynamics with hessian-driven damping.

Journal of Optimization Theory and Applications, Sep 2023.

References II

I. Necoara, Y. Nesterov, and F. Glineur.

Linear convergence of first order methods for non-strongly convex optimization.

Mathematical Programming, 175(1):69–107, 2019.

Y. Nesterov.

A method of solving a convex programming problem with convergence rate $o(1/k^2)$. In Sov. Math. Dokl, volume 27, 1983.

B. Shi, S. S. Du, M. I. Jordan, and W. J. Su.

Understanding the acceleration phenomenon via high-resolution differential equations. *Mathematical Programming*, 195(1):79–148. Sep 2022.

W. Su, S. Boyd, and E. Candes.

A differential equation for modeling nesterov's accelerated gradient method: theory and insights. Advances in neural information processing systems, 27, 2014.

→ **Key tool in convergence analysis**: Link numerical schemes to dynamical systems.

Gradient descent→ **Gradient flow**

$$x_k = x_{k-1} - s\nabla F(x_{k-1})$$

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent→ **Gradient flow**

$$x_k = x_{k-1} - s\nabla F(x_{k-1})$$

$$\iff \frac{x_k - x_{k-1}}{s} = -\nabla F(x_{k-1})$$

→ **Key tool in convergence analysis**: Link numerical schemes to dynamical systems.

Gradient descent→ **Gradient flow**

$$x_k = x_{k-1} - s\nabla F(x_{k-1})$$

$$\iff \frac{x_k - x_{k-1}}{s} = -\nabla F(x_{k-1})$$

$$\downarrow$$

$$\dot{x}(t) + \nabla F(x(t)) = 0.$$

Nesterov's accelerated gradient→Asymptotic vanishing damping system (Su, Boyd and Candès,2014)

$$\forall k>0, \begin{cases} x_k = \operatorname{prox}_{sh}\left(y_{k-1} - s\nabla f(y_{k-1})\right), \\ y_k = x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}) \\ \downarrow \\ \ddot{x}(t) + \frac{\alpha}{t}\dot{x}(t) + \nabla F(x(t)) = 0 \end{cases}$$

Heavy-Ball schemes→ Heavy-Ball Friction system

$$\begin{split} \forall k > 0, \begin{cases} x_k &= \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k &= x_k + \alpha (x_k - x_{k-1}), \\ &\downarrow \\ \ddot{x}(t) + \alpha_C \dot{x}(t) + \nabla F(x(t)) = 0 \end{split}$$

Why is this relevant?

- easier computations (derivatives),
- most of the time, convergence properties of the trajectories can be extended to the iterates
 of the related scheme.

Back to the discrete setting

Challenging for the following reasons:

- no more derivative,
- several possible discretization choices,
- which condition on the stepsize?

The continuous setting

Consider the Heavy-Ball friction system:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} ||\lambda(x(t) - x^*) + \dot{x}(t)||^2$$

The continuous setting

Consider the **Heavy-Ball friction system**:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - \mathbf{x}^*(t)) + \dot{x}(t)\|^2$$

where $x^*(t)$ is the projection of x(t) onto the set of minimizers of F denoted X^* .

The continuous setting

Consider the **Heavy-Ball friction system**:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - \mathbf{x}^*(t)) + \dot{x}(t)\|^2$$

where $x^*(t)$ is the projection of x(t) onto the set of minimizers of F denoted X^* .

 \rightarrow The differentiability of \mathcal{E} depends on the regularity of X^* !

If X^* is sufficiently regular (e.g. polyhedral), several convergence results can be extended without the uniqueness assumption (e.g. Siegel, '19, Aujol, Dossal and Rondepierre, '23).

An ugly bound

Main results: V-FISTA

If F satisfies \mathcal{G}_{μ}^2 , $s=\frac{1}{L}$ $\alpha=1-\omega\sqrt{\kappa}$ where $\kappa=\frac{\mu}{L}$, $\omega\in\left(0,\frac{1}{\sqrt{\kappa}}\right)$. Then, for any $k\in\mathbb{N}$:

$$F(x_k) - F^* \leqslant \left(1 + (\omega - \tau)^2 + (\omega - \tau)\omega\tau\sqrt{\kappa}\right) \left(1 - \tau\sqrt{\kappa} + \tau^2\kappa\right)^k (F(x_0) - F^*),$$

if

$$(1 - \omega\sqrt{\kappa}) \tau^3 - \omega (2 - \omega\sqrt{\kappa}) \tau^2 + (\omega^2 + 2)\tau - \omega \leq 0.$$

An other ugly bound

Main results: FISTA

If F satisfies \mathcal{G}_{μ}^2 , $s=\frac{1}{L}$, $\alpha\geqslant 3+\frac{3}{\sqrt{2}}$, then

$$\forall k \geqslant \frac{3\alpha}{\sqrt{\kappa}}, \ F(x_k) - F^* \leqslant \frac{9}{4}e^{-2}M_0 \left(\frac{8e}{3\sqrt{\kappa}}\alpha\right)^{\frac{2\alpha}{3}}k^{-\frac{2\alpha}{3}},$$

where $M_0 = F(x_0) - F^*$ denotes the potential energy of the system at initial time.