Q1. CAPM 模型中的 alpha 值,经常被投资者用来作为投资决策的依据,一般来讲投资者会选择持有 alpha 较大的股票,现在,假设市场投资组合的收益率为 10%,无风险利率为 4%,A 公司的 β 值为 1.2,预期收益率为 9%,而 B 公司的 β 值为 1.3,预期收益率为 12%,那么投资者应该选择那只股票?

```
A 公司的 alpha 值:
9 = alphaA + 4 + 1.2 x (10 - 4)
alphaA = - 2.2

B 公司的 alpha 值:
12 = alphaB + 4 + 1.3 x (10 - 9)
alphaB = 6.7

alphaB> alpha
投资者应该选 B 公司的 股票。
```

Q2. 获取中国农业银行 2014 年的股票数据,并建立 CAPM 模型,市场组合收益率用本次课程的数据,无风险利率为 3.6%。

下载农业银行的数据代码为:

import pandas_datareader.data as web
nyyh = web.DataReader('601288.SS','yahoo',
dt.datetime(2014,1,1),dt.datetime(2014,12,31))

```
In [3]: #飛報數稱
mysh = web.DataReader('601288.SS','yahoo', datetime.datetime(2014,1,1),datetime.datetime(2014,12,31))
mysh = web.DataReader('601288.SS','yahoo', datetime.datetime(2014,1,1),datetime.datetime(2014,12,31))
mysh = mysh [mysh.volume !-0]
mysh = mysh[mysh.volume !-0]
mysh = mysh[mysh.volume !-0]
mysh = mysh[mysh.volume !-0]
mysh = mysh[mysh.volume]

2. 获得市场组合收益数据:

In [4]: indexcd = pd.read_csv("TRD_Index.csv", index_col = 'Trddt')
mktcd = indexcd[indexcd.indexcd.solume]
mktret = pd.Series(mktcd.Retindex.values,index = pd.to_datetime(mktcd.index))
mktret = mktret['2014-01-01':'2014']

3. 数据合并

In [5]: Ret = pd.merge(pd.DataFrame(mktret),pd.DataFrame(mysh),left_index=True,right_index=True, how = 'inner')

4. 计算无风险收益率

In [6]: rf = 1.036**(1/365) -1
Ret['risk_premium'] = Ret['market'] - rf
```

```
In [7]:
plt.scatter(Ret['return'],Ret['market'])
plt.xlabel('nyyh return'); plt.ylabel('market')
plt.title('nyyh return VS market return')
```

Out[7]: Text(0.5,1,'nyyh return VS market return')

6、拟合曲线,找到 beta

```
In [8]: import statsmodels.api as sm
                    Ret['constant'] = 1 #操即概距项
X = Ret[['constant', 'risk_premium']]
Y = Ret['return']
model= sm.OLS(Y,X)
result =model.fit()
print(result.summary())
```

		OLS Regre	ssion Resul	lts		
Dep. Variable:		return	R-square	R-squared:		
Model:		OLS	Adj. R-9	squared:		0.114
Method:	L	east Squares.	F-statis	F-statistic:		
Date:	Sun,	28 Oct 2018	Prob (F-	Prob (F-statistic):		
Time:		20:12:14	Log-Like	elihood:		658.47
No. Observations:		244	AIC:			-1313.
Df Residuals:		242	BIC:			-1306.
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975
constant	0 0010	9 991	A 962	0 337	-0 001	a aa

	coef	std err	t	P> t	[0.025	0.975]	
constant	0.0010	0.001	0.962	0.337	-0.001	0.003	
risk_premium	0.5341	0.094	5.685	0.000	0.349	0.719	
==========							
Omnibus:		129.964	Durbin-Watson:		1.955		
Prob(Omnibus):		0.000 Jarque-Bera (JB)		Bera (JB):	2107.676		
Skew:		1.681	Prob(JB):		0.00		
Kurtosis:		17.000	Cond. No			89.7	

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

/home/testuser/anaconda3/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead. from pandas.core import datetools

斜率 为 0.5341,p值小于0.05,判定为显著 截距为 0.001, p值小于0.05, 判定为不显著

农业银行的 capm 模型为: r-rf=0.001+rf+0.5341 x (rm-rf)

Q3

假设某股票的三因子模型为:

$$R_i - R_f = 0.01 + 1.2(R_M - R_f) + 0.5SMB + 0.1HML$$

- (1) 该股票的异常收益率为多少?
- (2) 当 R_f 为0.5%且 R_M 、 R_{SMB} 、 R_{HML} 分别为2%、2.4%、1.8%时,该股票的预期 收益率为多少?

假设某股票的三因子模型为:

$$R_i - R_f = 0.01 + 1.2(R_M - R_f) + 0.5SMB + 0.1HML$$

- (1) 该股票的异常收益率为多少?
- (2) 当 R_f 为 0.5% 且 R_M 、 R_{SMB} 、 R_{HML} 分别为 2%、2.4%、1.8% 时,该股票的预期收益率为多少?
- (1) 股票异常收益为 0.01
- (2) Ri-0.5%=0.01+1.2 x (2%-0.5%)+0.5 x 2.4% ++0.1 x 1.8% Ri=3.69%

Q4.

读取 problem21.txt 文件中中远航运 2014 年股价数据以及 ThreeFactors.txt 文件中的 2014 年三因子数据,按照相关步骤建立三因子模型。

```
In [10]: plt.figure(figsize=(10,8))
            plt.subplot(3,1,1)
plt.scatter(zyThrFac['return'], zyThrFac.RiskPremium2)
            plt.subplot(3,1,2)
plt.scatter(zyThrFac['return'], zyThrFac.SMB2)
            plt.subplot(3,1,3)
plt.scatter(zyThrFac['return'], zyThrFac.HML2)
            plt.show()
              0.05
                                                                                                        ;
              0.00
             -0.05
                            -0.050
                                        -0.025
                                                                  0.025
                                                                              0.050
                                                                                          0.075
                                                                                                       0.100
                                                     0.000
              0.10
              0.05
                                                                                                        :
              0.00
             -0.05
                            -0.050
                                                                                          0.075
                                                                                                       0.100
              0.10
              0.05
                                                                                                        0.00
             -0.05
                            -0.050
                                        -0.025
                                                     0.000
                                                                  0.025
                                                                              0.050
                                                                                          0.075
                                                                                                       0.100
```

```
In [11]: #@/#
import statsmodels.api as sm

regThrFac=sm.OLS(zyThrFac['return'], sm.add_constant(zyThrFac.iloc[:,1:4]))
    result=regThrFac.fit()
    result.summary()
```

Out[11]: OLS Regression Results

Dep. Variable	e:	return		R-squared:		0.22	3
Mode	el:	O	LS A	dj. R-so	quared:	0.21	3
Metho	d: Lea	st Squa	res	F-st	atistic:	23.0	1
Date	e: Sun, 2	8 Oct 20)18 Pro	ob (F-sta	atistic):	3.94e-1	3
Time	e:	20:12	:14 L	og-Like	lihood:	598.7	5
No. Observation	s:	2	245		AIC:	-1190)
Df Residual	s:	2	241		BIC:	-1175	5
Df Mode	el:		3				
Covariance Type	e:	nonrob	ust				
	coef	std err	t	P> t	[0.025	0.975]	
const	0.0021	0.001	1.507	0.133	-0.001	0.005	
RiskPremium2	0.9948	0.126	7.893	0.000	0.746	1.243	
SMB2	-0.7332	0.223	-3.288	0.001	-1.172	-0.294	
HML2	0.7493	0.211	3.559	0.000	0.335	1.164	
Omnibus:	105.816	Dur	bin-Wats	son:	1.766		
Prob(Omnibus):	0.000	Jarqu	e-Bera (JB): 4	40.407		
Skew:	1.763		Prob(JB): 2	33e-96		
Kurtosis:	8.542		Cond.	No.	220.		

结论:

const 的 p值为0.133,大于0.05,判定为不显著 RiskPremium2 的 p值为0.000,小于0.05,判定为显著 SMB2 的 p值为0.001,小于0.05,判定为显著 HML2 的 p值为0.000,小于0.05,判定为显著