Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to contact me (mgabrie@nyu.edu) or to stop at the office hours.

Problem 1.1 (3 points). Are the following sets subspaces of \mathbb{R}^2 ? Draw a picture and justify your answer using the definition of a subspace. If yes, indicate the dimension of the subspace and a basis, add the basis vectors on your drawing.

- (a) $E_1 = \{(x, y) \in \mathbb{R}^2 \mid x + 5y = 2\}.$
- (b) $E_2 = \{(x, y) \in \mathbb{R}^2 \mid x + 5y = 0\}.$
- (c) $E_3 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 2\}.$

Problem 1.2 (2 points). Are the following sets subspaces of \mathbb{R}^3 ? Justify your answer using the definition of a subspace. If yes, indicate the dimension of the subspace and a basis.

- (a) $E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}.$
- (b) $E_5 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0 \text{ and } -y + 3z = 0\}.$

Problem 1.3 (2 points). Let us define the vectors $e_1, \ldots, e_n \in \mathbb{R}^n$ by

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- (a) Verify that the family (e_1, \ldots, e_n) is a basis of \mathbb{R}^n . This basis is called the "canonical basis" of \mathbb{R}^n . What is the dimension of \mathbb{R}^n ?
- (b) Give an example of hyperplane and an example of a line of \mathbb{R}^n using spans of subsets of (e_1, \ldots, e_n) .

Problem 1.4 (2 points). Consider $v_1, \ldots, v_q \in \mathbb{R}^n$ linearly independent vectors and $u_1, \ldots, u_p \in \mathbb{R}^n$ such that $\operatorname{Span}(u_1, \ldots, u_p) = \mathbb{R}^n$

(a) Show that $q \leq n$ (hint: remember what is the dimension of \mathbb{R}^n , you can use a lemma from the lecture).

- (b) Using that $dim(\operatorname{Span}(u_1, \dots, u_p)) \leq p$ (you should convinve yourself that it is true), show that $p \geq n$.
- (c) Assuming that q < n, one can show that there exists k $(1 \le k \le p)$ such that (v_1, \ldots, v_q, u_k) is linearly independent. From there, allowing a renumbering of the indices of u_i -s, there actually exists an interger m such that
 - (i) $(v_1, \ldots, v_q, u_1, \ldots, u_{m-q})$ is linearly independent.
 - (ii) $\forall i \ (v_1, \ldots, v_q, u_1, \ldots, u_{m-q}, u_i)$ is linearly dependent.

Assuming the above stated properties (i) and (ii), show that m = n.

That shows that $(v_1, \ldots, v_q, u_1, \ldots, u_{n-q})$ is a base of \mathbb{R}^n and that given a spanning family of a vector space, it is always possible to complement a family of linearly independent vectors to form a base. Let's apply that in \mathbb{R}^4 .

(d) We have $\operatorname{Span}(u_1, \dots u_5) = \mathbb{R}^4$ for $u_1 = (1, 2, 0, 0)$, $u_2 = (2, 1, 0, 0)$, $u_3 = (1, 0, 0, 1)$, $u_4 = (1, 1, 1, 0)$ and $u_5 = (0, 1, 1, 0)$ (again no need to prove it, but you should convince yourself it is true). Using vectors in the sets $(u_1, \dots u_5)$ give a basis of \mathbb{R}^4 including the canonical basis vectors $e_1 = (1, 0, 0, 0)$ and $e_3 = (0, 0, 1, 0)$. Justify your answer.

Problem 1.5 (\star) . Consider V and G two vector spaces of finite dimension. Show the equivalence:

$$V = G \Longleftrightarrow \begin{cases} \dim(V) = \dim(G) \\ V \subset G. \end{cases}$$