Assignment Project Exam Help Foundations of Computer Science UNSWITTER: 4: Letter CS. COM

WeChat: cstutorcs

Assignment Project Exam Help

Laws of Set Operations
Derivations://tutorcs.com

Two Useful Results

Assignment Project Exam Help

Laws of Set Operations

Derivhttps://tutorcs.com

Two Useful Results

Assignment Project Exam Help

- Explicitly list elements
- 2 Take top Set of the source Sy emina the elements
- 3 Build up from existing sets using Set Operations

WeChat: cstutorcs

Set Operations

Definition

Assignment Project Exam Help $A \subseteq \{x : x \in A \text{ or } x \in B\}.$

```
 \begin{array}{c} A \cap B \text{ --intersection, (a and b):} \\ \mathbf{ntps:} / \mathbf{tutorcs.com} \\ A \cap B = \{x : x \in A \text{ and } x \in B\}. \end{array}
```

```
A^c - complement (with respect to a universal set \mathcal{U}): A^c = \{x : x \in \mathcal{U} \text{ and } x \notin A\}.
```

We say that A, B are **disjoint** if $A \cap B = \emptyset$

Set Operations

Other set operations

Assignment Project Exam Help A B set difference, relative complement (a but not b):

https://tutorcs.com

 $A \oplus B$ – symmetric difference (a and not b or b and not a; also

known as a or beaclusively; a xor,b):
$$CStutorcs$$

$$A \oplus B = (A \setminus B) \cup (B \setminus A)$$

A Venn Diagram is a simple graphical approach to visualize the ssignment Project Exam Help https://tutorcs.com WeChat: cstutorcs

A Venn Diagram is a simple graphical approach to visualize the ssignment Project Exam Help https://tutorcs.com WeChat: estutores $A \cup B$

A Venn Diagram is a simple graphical approach to visualize the ssignment Project Exam Help https://tutorcs.com WeChat: estutores $A \cap B$

A Venn Diagram is a simple graphical approach to visualize the Assignment Project Exam Help https://tutorcs.com WeChat: cstutorcs A^{c}

A **Venn Diagram** is a simple graphical approach to visualize the ssignment Project Exam Help https://tutorcs.com WeChat: cstutorcs $A \setminus B$

A Venn Diagram is a simple graphical approach to visualize the ssignment Project Exam Help https://tutorcs.com WeChat: cstutorcs $A \oplus B$

Assignment Project Exam Help

Laws of Set Operations

Derivhttps://tutorcs.com

Two Useful Results

Set Equality

As significant Projection The same elemental p

To show equality:

- Examine all the elements
 https://dutorcs.com
- Use the Laws of Set Operations

Venn diagrams can help visualize, but are not rigorous.

Example

Assignment Project Exam Help

Example

Show https: %/tutorcs.com

 $(0,4) = \{1,2,3\} = \{3,2,1\}.$

WeChat: cstutorcs

Examples

Assignment Project Exam Help Show $\{n : n \in \mathbb{Z} \text{ and } n^2 < 5\} = \{n : n \in \mathbb{Z} \text{ and } |n| \le 2\}$

https://tutorcs.com ${n: n \in \mathbb{Z} \text{ and } n^2 < 5} = {-2, -1, 0, 1, 2}$

WeChat: cstutorcs and $|n| \le 2$

Examples

Ssignment Project Exam Help

Show:

- Interest in the second of t

That is, show:

We Chat; cstutorcs |n| > 2

Assignment Project Exam Help

Laws of Set Operations
Derivations://tutorcs.com

Two Useful Results

Laws of Set Operations

Associativity Associativity $Project \cup Exam Help$ Associativity $Project \cup Exam Help$ $A \cap B = B \cap A$

https://tutorcs.com

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

We Chat: Cstutors

 $A \cap (A^c) = \emptyset$

Substitution

Assignment Project Exam Help expressions for each set symbol.

```
Example to S. //tutores.com
```

Therefore: $(C \cap D) \cup (D \oplus E) = (D \oplus E) \cup (C \cap D)$ We Chat: CSUITORCS

Example

Assignment Project Exam Help

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 [Associativity]
 $https://tuto(A \cap B) \cap C$ [Commutativity]

(Aim to) limit each step to a non-overlapping applications of a

(Aim to) limit each step to a non-overlapping applications of a single rule

Assignment Project Exam Help

Laws of Set Operations

Derivation Derivation

Two Useful Results

Other useful set laws

Assigning calleriable where Exam Help Idempotence $A \cap A = A$ $A \cup A = A$ Double complementation $C_{A}^{c}C_{$

Assignmente Project Exam Help

```
http = A \cup \emptyset  (Identity)
= A \cup (A \cap A^c)  (Complementation)
http = (A \cup A)  (Complementation)
= (A \cup A)  (Identity)
= (A \cup A)  (Identity)
```

WeChat: cstutorcs

Assignment Project Exam Help

Laws of Set Operations

Derivhttps://tutorcs.com

Two Useful Results

Two useful results

Definition

If A is a set defined using A, A and A, then A is the Selection A is the Selection A and A (and A are lading) with A (and vice-versa).

The prove $A_1 = A_2$ using the Laws of Set Operations then

If you can prove $A_1 = A_2$ using the Laws of Set Operations then you can prove $dual(A_1) = dual(A_2)$

Exam We Chat: cstutores

Absorption law: $A \cup (A \cap B) = A$

Dual: $A \cap (A \cup B) = A$

Assignment Project Exam Help

```
\begin{array}{ll} A &= A \cup \emptyset & \text{(Identity)} \\ \textbf{https:}(A) & \text{(Complementation)} \\ &= (A \cup A) \cap \mathcal{U} & \text{(Complementation)} \\ &= (A \cup A) & \text{(Identity)} \\ \textbf{WeChat: cstutorcs} \end{array}
```

Assignment Project Exam Help

```
\begin{array}{ll} A &= A \cap \mathcal{U} & \text{(Identity)} \\ \textbf{https:} (A \cap A) \cup (A \cap A) \cup (Complementation) \\ &= (A \cap A) \cup \emptyset & \text{(Complementation)} \\ &= (A \cap A) & \text{(Identity)} \\ \textbf{WeChat: cstutorcs} \end{array}
```

Two useful results

Theorem (Uniqueness of complement)

 $A \cap B = \emptyset$ and $A \cup B = \mathcal{U}$ if, and only if, $B = A^c$.

Assignment Project Exam Help

$$\begin{array}{ll} B &= B \cap \mathcal{U} & \text{(Identity)} \\ \textbf{https://AutoAcs.complement)} \\ &= B \cap (A \cup A^c) & \text{(Complement)} \\ &= (A \cap B) \cup (A^c \cap B) & \text{(Commutativity)} \\ &= \emptyset \cup (A^c \cap B) & \text{(Given)} \\ \textbf{Wetalack} \cup (A^c \cap B) & \text{(Distributivity)} \\ &= A^c \cap (A \cup B) & \text{(Distributivity)} \\ &= A^c \cap \mathcal{U} & \text{(Given)} \\ &= A^c & \text{(Identity)} \end{array}$$

Assignment Project Exam Help

```
 \begin{array}{ll} X^c \cap X &= X \cap X^c & \text{(Commutativity)} \\ \textbf{https://tutorcs.com}^{\text{(Identity)}} \\ X^c \cup X &= \mathcal{U} & \text{(Principle of duality)} \end{array}
```

By the uniqueness of complement, $(X^c)^c = X$. CSTUTOTCS

Exercises

Exercises

Assignment Project Exam Help

- $\bullet \ (C \cup A) \cap (B \cup A) = A \cup (B \cap C)$
- (A \cap B) \cup (A \cup B^c)^c = B https://tutorcs.com

Exercises

Give counterexamples to show the following do not hold for all

 $\overset{\text{sets:}}{\underset{\bullet}{\mathsf{N}}} \underbrace{WeChat:}_{\mathcal{B} \setminus \mathcal{C}} \underbrace{cstutorcs}$

- $(A \cup B) \setminus C = A \cup (B \setminus C)$
- $(A \setminus B) \cup B = A$

Assignment Project Exam Help

Laws of Set Operations

Derivhttps://tutorcs.com

Two Useful Results

Assing the metal Project Exam Help

