MPEG transport stream

MPEG transport stream (MPEG-TS, MTS) or simply transport stream (TS) is a standard <u>digital container format</u> for transmission and storage of <u>audio</u>, <u>video</u>, and <u>Program and System Information Protocol</u> (PSIP) data. [5] It is used in broadcast systems such as DVB, ATSC and IPTV.

Transport stream specifies a container format encapsulating packetized elementary streams, with error correction and synchronization pattern features for maintaining transmission integrity when the communication channel carrying the stream is degraded.

Transport streams differ from the similarly-named MPEG program stream in several important ways: program streams are designed for reasonably reliable media, such as discs (like DVDs), while transport streams are designed for less reliable transmission, namely terrestrial or satellite broadcast. Further, a transport stream may carry multiple programs.

Transport stream is specified in <u>MPEG-2</u> Part 1, Systems, formally known as ISO/IEC standard 13818-1 or ITU-T Rec. H.222.0.^[3]

Contents

Overview

Elements

Packet

Packet identifier (PID)

Programs

Program specific information

PCR

Null packets

Use in digital video cameras

Use in Blu-ray

See also

Notes

References

External links

MPEG Transport Stream

Filename extension .tsa, .tsv, .tsa, .m2t[1] Internet video/MP2T[2] Developed by MPEG Initial release 10 July 1995[3] Latest ISO/IEC 13818-1:2019 June 2019 Type of Container format Container for Audio, video, data Extended to M2TS, TOD Standard ISO/IEC 13818-1, ITU-T Recommendation H.222.0[3] Open format? Yes Free format? Yes		•
media type Developed by MPEG Initial release 10 July 1995 ^[3] Latest ISO/IEC 13818- 1:2019 June 2019 Type of Container format Container for Audio, video, data Extended to M2TS, TOD Standard ISO/IEC 13818-1, ITU-T Recommendation H.222.0 ^[3] Open format? Yes		
Initial release Latest release ISO/IEC 13818- 1:2019 June 2019 Type of Container format Container for Audio, video, data Extended to M2TS, TOD Standard ISO/IEC 13818-1, ITU-T Recommendation H.222.0[3] Open format? Yes		video/MP2T ^[2]
Latest releaseISO/IEC 13818- 1:2019 June 2019Type of formatContainer formatContainer forAudio, video, dataExtended toM2TS, TODStandardISO/IEC 13818-1, ITU-T Recommendation H.222.0[3]Open format?Yes	Developed by	MPEG
release 1:2019 June 2019 Type of Container format Container for Audio, video, data Extended to M2TS, TOD Standard ISO/IEC 13818-1, ITU-T Recommendation H.222.0[3] Open format? Yes	Initial release	10 July 1995 ^[3]
format Container for Audio, video, data Extended to M2TS, TOD Standard ISO/IEC 13818-1, ITU-T Recommendation H.222.0[3] Open format? Yes		1:2019
Extended to M2TS, TOD Standard ISO/IEC 13818-1, ITU-T Recommendation H.222.0[3] Open format? Yes		Container format
Standard ISO/IEC 13818-1, ITU-T Recommendation H.222.0 ^[3] Open format? Yes	Container for	Audio, video, data
ITU-T Recommendation H.222.0 ^[3] Open format? Yes	Extended to	M2TS, TOD
	Standard	ITU-T Recommendation
Free format? Yes ^[4]	Open format?	Yes
	Free format?	Yes ^[4]

Overview

A transport stream encapsulates a number of other substreams, often packetized elementary streams (PESs) which in turn wrap the main data stream using the MPEG codec or any number of non-MPEG codecs (such as AC3 or DTS audio, and MJPEG or JPEG 2000 video), text and pictures for subtitles, tables identifying the streams, and even broadcaster-specific information such as an electronic program guide. Many streams often mixed together, such as several different television channels. or multiple angles of a movie.

Multiple MPEG programs are combined then sent to a transmitting antenna. The receiver parses and decodes one of the streams.

Each stream is chopped into (at most) 188-byte sections and interleaved together; because of the tiny packet size, streams can be interleaved with less latency and greater error resilience compared to <u>program streams</u> and other common containers such as <u>AVI</u>, <u>MOV/MP4</u>, and <u>MKV</u>, which generally wrap each frame into one packet. This is particularly important for videoconferencing, where large frames may introduce unacceptable audio delay.

Transport streams tend to be broadcast as <u>constant bitrate</u> (CBR) and filled with padding bytes when not enough data exists. [a]

Elements

Packet

A <u>network packet</u> is the basic unit of data in a transport stream, and a transport stream is merely a sequence of packets. Each packet starts with a <u>sync byte</u> and a <u>header</u>, that may be followed with optional additional headers; the rest of the packet consists of <u>payload</u>. All header fields are read as <u>big-endian</u>. Packets are 188 bytes in length, but the communication medium may add additional information. The 188-byte packet size was originally chosen for compatibility with Asynchronous Transfer Mode (ATM) systems.

Partial transport stream packet format

Name	Number of bits	Bitmask (big-endian)	Description	
		4-byt	e Transport Stream Header	
Sync byte	8	0xff000000	Bit pattern of 0x47 (ASCII char 'G')	
Transport error indicator (TEI)	1	0×800000	Set when a <u>demodulator</u> can't correct errors from FEC data; indicating the packet is corrupt. [9]	
Payload unit start indicator (PUSI)	1	0×400000	Set when this packet contains the first byte of a new payload unit. The first byte of the payload will indicate where this new payload unit starts. This field allows a receiver that started reading mid transmission to know when it can start extracting data.	
Transport priority	1	0×200000	Set when the current packet has a higher priority than other packets with the same PID.	
PID	13	0x1fff00	Packet Identifier, describing the payload data.	
Transport scrambling control (TSC)	2	0xc0	'00' = Not scrambled. For <u>DVB-CSA</u> and <u>ATSC DES</u> only: [10] '01' (0x40) = Reserved for future use '10' (0x80) = Scrambled with even key '11' (0xC0) = Scrambled with odd key	
Adaptation field control	2	0x30	01 – no adaptation field, payload only, 10 – adaptation field only, no payload, 11 – adaptation field followed by payload, 00 – RESERVED for future use [11]	
Continuity counter	4	0xf	Sequence number of payload packets (0x00 to 0x0F) within each stream (except PID 8191) Incremented per-PID, only when a payload flag is set.	
	Optional fields			
Adaptation field	variable		Present if adaptation field control is 10 or 11. See below for format.	
Payload data	variable		Present if <i>adaptation field control</i> is 01 or 11. Payload may be PES packets, program specific information (below), or other data.	

Adaptation field format

Name	Number of bits	Bitmask	Description		
Adaptation field length	8		Number of bytes in the adaptation field immediately following this byte		
Discontinuity indicator	1	0×80	Set if current TS packet is in a discontinuity state with respect to either the continuity counter or the program clock reference		
Random access indicator	1	0×40	Set when the stream may be decoded without errors from this point		
Elementary stream priority indicator	1	0x20	Set when this stream should be considered "high priority"		
PCR flag	1	0x10	Set when PCR field is present		
OPCR flag	1	0x08	Set when OPCR field is present		
Splicing point flag	1	0x04	Set when splice countdown field is present		
Transport private data flag	1	0x02	Set when transport private data is present		
Adaptation field extension flag	1	0x01	Set when adaptation extension data is present		
	Optional fields				
PCR	48		Program clock reference, stored as 33 bits base, 6 bits reserved, 9 bits extension. The value is calculated as base * 300 + extension.		
OPCR	48		Original Program clock reference. Helps when one TS is copied into another		
Splice countdown	8		Indicates how many TS packets from this one a splicing point occurs (Two's complement signed; may be negative)		
Transport private data length	8		The length of the following field		
Transport private data	variable		Private data		
Adaptation extension	variable		See below		
Stuffing bytes	variable		Always 0xFF		

Adaptation extension format

Name	Number of bits	Bitmask	Description	
Adaptation extension length	8	0xff00	The length of the header	
Legal time window (LTW) flag	1	0×0080		
Piecewise rate flag	1	0×0040		
Seamless splice flag	1	0x0020		
Reserved	5	0x001f		
	-		Optional fields	
LTW flag set (2	2 bytes)			
LTW valid flag	1	0×8000		
LTW offset	15	0x7fff	Extra information for rebroadcasters to determine the state of buffers when packets may be missing.	
Piecewise flag	Piecewise flag set (3 bytes)			
Reserved	2	0xc00000		
Piecewise rate	22	0x3fffff	The rate of the stream, measured in 188-byte packets, to define the end-time of the LTW.	
Seamless splice flag set (5 bytes)				
Splice type	4	0xf000000000	Indicates the parameters of the H.262 splice.	
DTS next access unit	36	0x0efffefffe	The PES DTS of the splice point. Split up as multiple fields, 1 marker bit (0x1), 15 bits, 1 marker bit, 15 bits, and 1 marker bit, for 33 data bits total.	

Payload format

Name	Number of bits	Bitmask	Description
Payload Pointer (optional)	8	Oxff	Present only if the Payload Unit Start Indicator (PUSI) flag is set. It gives the index after this byte at which the new payload unit starts. Any payload byte before the index is part of the previous payload unit.
Actual Payload	variable		The content of the payload.

Packet identifier (PID)

Each table or elementary stream in a transport stream is identified by a 13-bit packet identifier (PID). A <u>demultiplexer</u> extracts elementary streams from the transport stream in part by looking for packets identified by the same PID. In most applications, <u>time-division multiplexing</u> will be used to decide how often a

Packet identifiers in use

Decimal	Hexadecimal	Description	
0	0x0000	Program association table (PAT) contains a directory listing of all program map tables	
1	0x0001	Conditional access table (CAT) contains a directory listing of all ITU-T Rec. H.222 entitlement management message streams used by program map tables	
2	0x0002	Transport stream description table (TSDT) contains descriptors relating to the overall transport stream	
3	0x0003	IPMP control information table contains a directory listing of all ISO/IEC 14496-13 control streams used by program map tables	
4–15	0x0004- 0x000F	Reserved for future use	
16–31	0x0010- 0x001F	Used by DVB metadata ^[12] Ox0010: NIT, ST Ox0011: SDT, BAT, ST Ox0012: EIT, ST, CIT Ox0013: RST, ST Ox0014: TDT, TOT, ST Ox0015: network synchronization Ox0016: RNT Ox0017-0x001B: reserved for future use Ox001C: inband signalling Ox001D: measurement Ox001E: DIT Ox001F: SIT	
32-8186	0x0020- 0x1FFA	May be assigned as needed to program map tables, elementary streams and other data tables	
8187	0x1FFB	Used by DigiCipher 2/ATSC MGT metadata	
8188– 8190	0x1FFC- 0x1FFE	May be assigned as needed to program map tables, elementary streams and other data tables	
8191	0x1FFF	Null Packet (used for fixed bandwidth padding)	

Programs

Transport stream has a concept of *programs*. Every program is described by a program map table (PMT). The elementary streams associated with that program have PIDs listed in the PMT. Another PID is associated with the PMT itself. For instance, a transport stream used in digital television might contain three programs, to represent three television channels. Suppose each channel consists of one video stream, one or two audio streams, and any necessary metadata. A <u>receiver</u> wishing to decode one of the three channels merely has to decode the payloads of each PID associated with its program. It can discard the contents of all other PIDs. A transport stream with more than one program is referred to as a multi-program transport stream (MPTS). A single program transport stream is referred to as a single-program transport stream (SPTS).

Program specific information

There are 4 program specific information (PSI) tables: program association (PAT), program map (PMT), conditional access (CAT), and network information (NIT). The MPEG-2 specification does not specify the format of the CAT and NIT.

PCR

To enable a decoder to present synchronized content, such as audio tracks matching the associated video, at least once each 100 ms, a *program clock reference* (PCR) is transmitted in the adaptation field of an MPEG-2 transport stream packet. The PID with the PCR for an MPEG-2 program is identified by the *pcr_pid* value in the associated PMT. The value of the PCR, when properly used, is employed to generate a *system_timing_clock* in the decoder. The system time clock (STC) decoder, when properly implemented, provides a highly accurate time base that is used to synchronize audio and video elementary streams. Timing in MPEG-2 references this clock. For example, the presentation time stamp (PTS) is intended to be relative to the PCR. The first 33 bits are based on a 90 kHz clock. The last 9 bits are based on a 27 MHz clock. The maximum jitter permitted for the PCR is +/- 500 ns.

Null packets

Some transmission schemes, such as those in \underline{ATSC} and \underline{DVB} , impose strict constant bitrate requirements on the transport stream. In order to ensure that the stream maintains a constant bitrate, a multiplexer may need to insert some additional packets. The PID 0x1FFF is reserved for this purpose. The payload of null packets is all zeroes, and the receiver is expected to ignore its contents. [13]

Use in digital video cameras

Transport Stream was originally designed for broadcast. Later it was adapted for use with digital video cameras, recorders and players by adding a 4-byte timecode (TC) field to the standard 188-byte packets, resulting in a 192-byte packet. This is what is informally called M2TS stream. The Blu-ray Disc Association calls it "BDAV MPEG-2 transport stream". It is also used in HDD-based camcorders like $\underline{GZ-HD7}$. The timecode allows quick access to any part of the stream either from a media player, or from a non-linear video editing system. It is also used to synchronize video streams from several cameras in a multiple-camera setup.

Use in Blu-ray

Blu-ray Disc video titles authored with menu support are in the <u>Blu-ray Disc Movie</u> (BDMV) format and contain audio, video, and other streams in a BDAV container, which is based on the MPEG-2 transport stream format. [19][20] Blu-ray Disc video uses these modified MPEG-2 transport streams, compared to DVD's program streams that don't have the extra transport overhead.

There is also the BDAV (Blu-ray Disc Audio/Visual) format, the consumer-oriented alternative to the BDMV format used for movie releases. The BDAV format is used on <u>Blu-ray Disc recordable</u> for audio/video recording. [20][d] Blu-ray Disc employs the MPEG-2 transport stream recording method. This enables transport streams of a BDAV converted digital broadcast to be recorded as they are with minimal alteration of the packets. [15] It also enables simple stream cut style editing of a BDAV converted digital broadcast that is recorded as is and where the data can be edited just by discarding unwanted packets from the stream. Although it is quite natural, a function for high-speed and easy-to-use retrieval is built in. [15][22]

See also

- MPEG media transport (MMT)
- Real-time Transport Protocol (RTP)
- Unidirectional Lightweight Encapsulation (ULE)

Notes

- a. The Blu-ray format does not require CBR.
- b. <u>Forward error correction</u> is added by <u>ISDB</u> & <u>DVB</u> (16 bytes) and <u>ATSC</u> (20 bytes), [6] while the M2TS format prefixes packets with a 4-byte copyright and timestamp tag.
- c. Possibly an abbreviation for "Transport stream on disc".
- d. Filename extension <u>.m2ts</u> is used on Blu-ray Disc video files which contain an incompatible BDAV MPEG-2 transport stream due to the four additional octets added to every packet.[14][21]

References

- 1. "TVNT.net" (http://www.tvnt.net/forum/akira-dhb-b31hdr-double-tuner-enregistreur-tnt-hd-mkv-divx-dts-t26336.html).
- 2. MIME Type Registration of RTP Payload Formats (https://datatracker.ietf.org/doc/html/rfc355 5). July 2003. doi:10.17487/RFC3555 (https://doi.org/10.17487%2FRFC3555). RFC 3555 (https://datatracker.ietf.org/doc/html/rfc3555).
- 3. ITU-T (October 2014). "Recommendation H.222.0 (10/14)" (http://www.itu.int/rec/T-REC-H.2 22.0-201410-l/en).
- MPEG-2 Encoding Family (https://www.loc.gov/preservation/digital/formats/fdd/fdd000335.s html) (Full draft). Sustainability of Digital Formats. Washington, D.C.: Library of Congress. 14 February 2012. Retrieved 13 December 2021. "Licenses pertain to tools and not to streams or files per se."
- "MPEG-2 Transport Stream" (http://www.afterdawn.com/glossary/term.cfm/mpeg2_transport_ stream). AfterDawn.com. Retrieved 8 June 2010.
- 6. "ATSC transmission" (http://broadcastengineering.com/infrastructure/Atsc-transmission-digit al-20050620/). *Broadcastengineering.com*. 20 June 2005. Retrieved 17 May 2012.
- 7. "MPEG Systems FAQ" (http://mpeg.chiariglione.org/faq/mp2-sys/mp2-sys.htm#mp2-12). *Mpeg.chiariglione.org*. Retrieved 17 May 2012.
- 8. "ATSC MPEG Transport Stream Monitor" (http://www.tek.com/datasheet/atsc-mpeg-transport -stream-monitor). *Tek.com*. Retrieved 17 May 2012.
- 9. "TSReader" (https://web.archive.org/web/20100327060631/http://www.coolstf.com/tsreader/support.html). Coolstf.com. 7 April 2008. Archived from the original (http://www.coolstf.com/tsreader/support.html) on 27 March 2010. Retrieved 17 May 2012.
- 10. "Standards DVB" (https://web.archive.org/web/20110313135150/http://www.dvb.org/technology/standards/a125_CSA3_dTR101289.v1.2.1.pdf) (PDF). Dvb.org. Archived from the original (http://www.dvb.org/technology/standards/a125_CSA3_dTR101289.v1.2.1.pdf) (PDF) on 13 March 2011. Retrieved 11 September 2012.
- 11. Fairhurst, Gorry. "MPEG-2 Transmission" (https://web.archive.org/web/20170813122328/htt p://www.abdn.ac.uk/erg/research/future-net/digital-video/mpeg2-trans.html). Archived from the original (http://www.abdn.ac.uk/erg/research/future-net/digital-video/mpeg2-trans.html) on 13 August 2017. Retrieved 30 November 2018.

- 12. "5.1.3 Coding of PID and table_id fields". *Digital Video Broadcasting (DVB); Specification for Service Information (SI) in DVB systems* (http://www.etsi.org/deliver/etsi_en/300400_300499/300468/01.13.01_40/en_300468v011301o.pdf) (PDF). *Etsi.org*. EN. Vol. 300 468 (v1.13.1 ed.). 2012. p. 20. Retrieved 13 October 2016.
- 13. A Guide to MPEG Fundamentals and Protocol Analysis (http://www.img.lx.it.pt/~fp/cav/Additional_material/MPEG2_overview.pdf) (PDF), Tektronix, p. 37, retrieved 23 April 2020
- 14. BD ROM Audio Visual Application Format Specifications (http://www.blu-raydisc.com/Ass ets/Downloadablefile/2b_bdrom_audiovisualapplication_0305-12955-15269.pdf) (PDF), Blu-ray Disc Association, March 2005, p. 15-16, retrieved 26 July 2009
- 15. BD-RE Audiovisual Application Format Specification for BD-RE 2.1 (https://web.archive.org/web/20090206111829/http://www.blu-raydisc.com/Assets/Downloadablefile/BD-RE_Part3_V2.1_WhitePaper_080406-15271.pdf) (PDF), Blu-ray Disc Association, March 2008, archived from the original (http://www.blu-raydisc.com/Assets/Downloadablefile/BD-RE_Part3_V2.1_WhitePaper_080406-15271.pdf) (PDF) on 6 February 2009
- 16. "Steve Mullen, M2TS primer" (http://dvinfo.net/conf/showthread.php?t=105486). Dvinfo.net.
- 18. "How MPEG-TS works" (http://forum.videohelp.com/threads/306126-HFS10-AVCHD-how-to -maintain-quality?p=1881643&viewfull=1#post1881643). Forum.videohelp.com. Retrieved 17 May 2012.
- 19. Afterdawn.com Glossary BD-MV (Blu-ray Movie) and BDAV container (http://www.afterdawn.com/glossary/terms/bd-mv.cfm) Archived (https://web.archive.org/web/20090218234755/http://www.afterdawn.com/glossary/terms/bd-mv.cfm) 18 February 2009 at the Wayback Machine, Retrieved on 26 July 2009
- 20. Afterdawn.com Glossary BDAV container (http://www.afterdawn.com/glossary/terms/bdav.c fm), Retrieved on 26 July 2009
- 21. Videohelp.com What is Blu-ray Disc and HD DVD? (http://www.videohelp.com/hd) Archived (https://web.archive.org/web/20091224035325/http://www.videohelp.com/hd) 24 December 2009 at the Wayback Machine, Retrieved on 26 July 2009
- 22. Blu-ray Disc Association (August 2004) Blu-ray Disc Format, White paper (http://www.blu-raydisc.com/Assets/Downloadablefile/general_bluraydiscformat-15263.pdf) (PDF) Page 22, Retrieved on 28 July 2009

External links

- ITU-T H.222.0 | ISO/IEC 13818-1 Systems Spec Documents (http://www.itu.int/rec/T-REC-H. 222.0)
- Latest free copy of the spec, October 2014 (http://www.itu.int/rec/T-REC-H.222.0-201410-S/en)
- MPEG-4 Systems FAQ (http://mpeg.chiariglione.org/faq/mp4-sys/mp4-sys.htm)
- TSDuck (https://tsduck.io/) Free open-source tool to manipulate MPEG transport streams.

Retrieved from "https://en.wikipedia.org/w/index.php?title=MPEG_transport_stream&oldid=1092524567"

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.