

FEBRUARY 27

ChAIr: Driven by thought

Contributor Martí Recalde **Contributor**Bruno Sánchez

ContributorZachary Parent

Agenda

on Wheelchair Mobility

o2 State of the Art

03 Our Approach

04 Organization

Wheelchair Mobility

accessibility, inaccessible for some

Wheelchair mobility

There is a high coincidence of wheelchair usership and quadriplegia globally.

- 65 million wheelchair users globally
- 5 million quadriplegic people globally
- existing options:
 - hand control
 - head control
 - sip-and-puff control
 - chin control

Quadriplegia Causes

Trauma

- Car crashes
- <u>Falls</u>
- Violence-related injuries
- Sports-related injuries

Ailments at birth

- <u>Myelomeningocele</u>
- Spina bifida
- Cerebral palsy

Illness

- Spine tumors
- Spinal cord cysts
- Spinal cord infections
- Lack of blood flow

Journal of NeuroEngineering and Rehabilitation:

"Chin controls is also an available control schema but may not be effective for someone with a neuromuscular disease that has progressed beyond their ability to control chin movement"

State of the Art

Ch**Ai**r SOTA

Existing Controls

Wheelchair Control

- 1. Advanced Joystick Control
- 2. Voice Control and Artificial Intelligence
- 3. Brain-Computer Interfaces (BCI)
- 4. Head or Facial Movement Control
- 5. Haptic Sensors and EMG (Electromyography) Control
- 6. Autonomous Control and Intelligent Navigation

Brain Computer Interface

- 1. Motor imagery (MI)
- 2. Methods based on auditory/visual stimuli (P300 & SSVEP)

Ch**Al**r SOTA 9

Brain Computer Interface

- 1. Acquisition and Preprocessing: Noise removal, normalization.
- 2. Feature Extraction: Common Spatial Patterns (CSP), Fast Fourier Transform (FFT).
- 3. Classification: SVMs, LDAs, CNNs and deep learning.

Ch**Al**r SOTA 10

Brain Computer Interface

- 1. Inter and Intra-Subject Variability: Differences in EEG signals between individuals and across sessions.
- 2. Noise and Artifacts: Eye movements, muscle interference, and external electrical noise affect signal quality.
- 3. Calibration Time: Lengthy calibration sessions. Practical applications limited.

BCI for wheelchair control

BCI unlocks novel control avenues for wheelchair users

Brain Computer Interface

Wheelchair Controller

By integrating cutting-edge BCI with wheelchairs, we're expanding mobility to a wider range of users with more restricted capabilities.

BCI Hardware Options

OpenBCI

The most open-source and customizable EEG platform with access to full raw data.

NeuroSky MindWave

The most affordable EEG device. Great entry-level option for simple applications and educational purposes.

Muse

The most user-friendly and accessible EEG headset. Perfect for beginners.

Neurosity

The best developer-focused experience. Seamless integration with applications and cloud-based computing.

Unicorn Hybrid Black

Research-grade EEG quality in a compact and easy-to-use design. Ideal for professional applications.

Emotiv

The best balance between research and consumer usability. High-quality EEG data with a polished, wireless design.

What is ChAIr?

Personalized Al Training

Choose 4 custom movements to control your wheelchair.

Adaptable to individual users—no fixed presets.

Fast & Easy Setup

Train your Al classifier in under 1 hour.

Intuitive interface—no technical expertise required.

Seamless Integration

We handle the connection to the wheelchair for a smooth experience.

Focus on usability, not complexity.

Bringing ChAIr to reality

Meet the team

Martí Recalde

Computer Science Philosophy

Bruno Sánchez

Mathematics

Zachary Parent

Aerospace Engineering Computer Science

ChAIr is uniquely positioned to bring the advances in Brain Computer Interfaces to those who can benefit most, elevating the mobility of quadriplegics like never before

Bringing ChAIr to reality

Timeline

By **parallelizing** information gathering tasks, and working as a team to develop the Al training **backend** and **interface**, the team behind ChAlr intends to go to market by <u>Summer 2025</u>

FEBRUARY 27

ChAIr: Driven by thought

Contributor Martí Recalde **Contributor** Bruno Sánchez **Contributor**Zachary Parent

https://www.who.int/publications/i/item/guidelines-on-the-provision-of-manual-wheel chairs-in-less-resourced-settings

https://www.nature.com/articles/sc2012158

https://www.quantumrehab.com/resources/consumer-article-power-wheelchairs-for-quadriplegia.asp

https://www.freedomhme.com/blog/post/wheelchairs-for-quadriplegics

https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2022.885610/full

https://my.clevelandclinic.org/health/symptoms/23974-quadriplegia-tetraplegia

