考试科目:《高等代数》(B卷)

学年学期: 2020 学年第1学期	姓	名:	
学 院/系:	学	号: _	
考试方式: 闭卷			
考试时长: 120 分钟			
警示			
以下为试题区域, 共 4 道大题, 总分	100分,	,考生记	青在答题纸上作答
Notes: we use lowercase letter (e.g. a, b, c) to represent scalar, lowercase letter with arrow			
above (e.g. $\vec{\alpha}, \vec{b}, \vec{c}$) to represent vector and uppercase letter (e.g. A, B, C) to represent matrix.			
$rank(A)$ is the rank of the matrix A , $det(A)$ is the determinant of A , and A^T is the transpose of A . The trace of a square matrix A is the sum of the diagonal elements.			
一、填空题(共2小题,第1小题18分,第2小题6分,共24分)			
1. (18 $\%$) Let $A = \begin{bmatrix} 7 & 0 & 2 & 4 \\ 7 & 1 & 3 & 6 \\ 14 & -1 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	7 0 0 1 0 0	$\begin{bmatrix} 2 & 4 \\ 1 & 2 \\ 0 & 0 \end{bmatrix}$.
(a) The basis of $Col A$ (the column space of A) is	š	·	
(b) The basis of Row A (the row space of A) is _		_•	
(c) The dimension of Nul A (the null space of A) is			
(d) The dimension of Nul A^T (the null space of A^T) is			
(e) Express row 3 of A as a combination of the basis vectors in (b), i.e., row $3 = \underline{\hspace{1cm}}$.			
(f) Express column 3 of A as a combination of the basis vectors in (a), i.e., column $3 = $			
2. (6 分) If $A = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 3 & 0 \\ 0 & 2 & 3 \end{bmatrix}$, please compute the	determ	inants	of the following matrices:

(a) $\det(A) = ____.$

(b) Let O and I_3 be the 3×3 zero matrix and the 3×3 identity matrix, respectively. If $B = \begin{bmatrix} A & I_3 \\ -I_3 & O \end{bmatrix}$, then $\det(B) = \underline{\qquad}$.

二、选择题(共2小题,每小题5分,共10分)

- 1. (5 $\dot{\pi}$) If A is an $n \times n$ real positive definite matrix, then which of the following statements may be incorrect? _____.
- (A) A has n orthonormal eigenvectors. (B) A has determinant larger than trace.
- (C) For any $\vec{x} \in \mathbb{R}^n$, $\vec{x}^T A \vec{x} \ge 0$. (D) A has n positive eigenvalues counting multiplicity.
- 2. (5 %) Let A be an $m \times n$ matrix. The matrix transformation A is one-to-one if and only if
- (A) The columns of A are linearly dependent. (B) The rows of A are linearly dependent.
- (C) A has full row rank, i.e., rank(A) = m. (D) A has full column rank i.e., rank(A) = n.
- 三、计算题(共4小题,第1小题10分,第2、3小题各12分,第4小题15分,共49分)

1. (10
$$\%$$
) Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$.

- (a) Find the general (complete) solution to the equation $A\vec{x} = \vec{b}$.
- (b) Find a basis for the column space of the 3×9 block matrix $\begin{bmatrix} A & 2A & A^2 \end{bmatrix}$.
- 2. (12分) Let T be a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 satisfying

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}-4\\3\end{bmatrix}$$
 and $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}-10\\8\end{bmatrix}$.

- (a) Find $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$.
- (b) Find the matrix A for T relative to the standard basic $\mathcal{B} = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$.
- (c) Is A diagonalizable? If so, please find the eigenvector basis C and the matrix B for T relative to C.
- 3. (12分) Suppose $\vec{q}_1, \dots, \vec{q}_5$ are orthonormal vectors in \mathbb{R}^5 . The 5×3 matrix A has columns $\vec{q}_1, \dots, \vec{q}_3$, i.e., $A = [\vec{q}_1, \dots, \vec{q}_3]$. Let $\vec{b} = \vec{q}_1 + 2\vec{q}_2 + 3\vec{q}_3 + 4\vec{q}_4 + 5\vec{q}_5$.
- (a) Is the matrix equation $A\vec{x} = \vec{b}$ consistent? If the answer is "yes", please find the general solution. Otherwise, please find the least-squares solution.

(b) Please compute the distance from \vec{b} to Col A (i.e., the column space of A).

4. (15分) Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - c \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. Answer the following questions.

- (a) Find all the values of c such that A is a projection matrix, i.e., $A^2 = A$.
- (b) Find all the values of c such that A is an orthogonal matrix.
- (c) Find all the values of c such that A is diagonalizable.
- (d) Find all the values of c such that A is invertible.
- (e) Find all the values of c such that A is positive definite.

四、证明题(共2小题,第1小题7分,第2小题10分,共17分)

- 1. (7 %) Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that $rank(AB) \le min\{rank(A), rank(B)\}$.
- 2. (10分) Let A be an $n \times n$ matrix.
- (a) Prove that there is a non-negative integer k between 0 and n such that $rank(A^{k+1}) = rank(A^k)$.
- (b) Prove that $rank(A^{k+1}) = rank(A^k)$ if and only if there is an $n \times n$ matrix X such that $A^{k+1}X = A^k$.