# AMIA Joint Summits 2017 Data Science Training Workshop: Using Jupyter Notebook and R (with a little Spark)

Leslie D. McIntosh, PhD, MPH
Connie Zabarovskaya, MITM
Lorinette S. Wirth, MPH

## **Funding Support**

- Washington University Institute of Clinical and Translational Sciences: NIH CTSA Grant Number UL1TR000448 and UL1TR000448-09S1
- Saint Louis University Center for Health Outcomes Research (SLUCOR)





## **Special Thanks**

## Michael Yingling

Statistical Data Analyst

Washington University in St. Louis

## **An Informatics Perspective**







## **BDaaS**

## Biomedical Data as a Service









## **Challenges**

Clinical recommendations based upon restricted use data pose challenges for research transparency and accessibility.

Given the protected nature of much biomedical research, what is needed to call our research reproducible?

# How do we as biomedical researchers facilitate research reproducibility?

# What *is* reproducibility research anyway?

### **Definitions**

Replicable - independent people, collecting new data, and using same methods

Reproducible - independent people analyzing the same data

V. Stodden, "Trust Your Science? Open Your Data and Code," Amstat News, 1 July 2011; http://magazine. amstat.org/blog/2011/07/01/trust-your-science/

## Why do we care?

# Climategate 2009



# Duke's Precision Medicine Bust

2007 - 2011+



(Lack of)

# Reproducibility of Psychological Science

2015



## Reproducibility of Cancer Biology

2017



https://cos.io/our-services/research/rpcb-overview/?imm\_mid=0eceb8&cmp=em-data-newsltr\_20170201

https://elifesciences.org/collections/reproduc ibility-project-cancer-biology

| Paper                                                                          | Conclusion                                                                            | Focus of key experiment                                     | Replication results      | Citations     |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|---------------|
| Sirota, M. <i>et al. Sci. Transl. Med.</i> <b>3</b> , 96ra77 (2011)            | Public gene expression data can identify unintuitive uses for old drugs               | Growth of tumours treated with an anti-ulcer drug           | Substantially reproduced | 334           |
| Sugahara, K. N. <i>et al.</i> Science <b>328</b> , 1031–1035 (2010)            | A tumour-penetrating peptide enhances the effects of cancer drugs                     | Growth of peptide-treated tumours                           | Not reproduced           | 495           |
| Willingham, S. B. et al.<br>Proc. Natl Acad. Sci. USA<br>109, 6662–6667 (2012) | Blocking contact between CD47 and another protein inhibits tumour                     | Growth and metastasis of treated tumours                    | Uninterpretable          | 290           |
| Delmore, J. E. <i>et al. Cell</i> <b>146,</b> 904–917 (2011)                   | Blocking a protein sequence damps down pro-cancer genes                               | Gene expression in treated cells; growth of treated tumours | Substantially reproduced | 1059          |
| Berger, M. F. <i>et al. Nature</i> <b>485</b> , 502–506 (2012)                 | Sequencing reveals gene that is frequently mutated in melanoma and accelerates growth | Tumour formation in cells carrying mutations                | Uninterpretable          | <b>428</b> 23 |

## How does this training address any of these problems?



## **Notebooks in Reproducible Research**

# Interweave and save notes, codes, outputs, and graphics as one document

- Data Management
- Pick-up where you left off months later (R&Rs)...Effortlessly!

## Export document as .pdf, .doc, .html with ease

- Great for consulting!
- More efficient than copying/pasting into Word

## Easy to attach as supplement for manuscript publication

- Transparency

### **Jupyter Notebooks Overview**



### **How Does it Work?**

















## How do you share Jupyter Notebooks?



## How do you install Jupyter Notebooks?

Installation Options:

Install Python and R
Install Anaconda

conda install jupyter

conda install -c r r-irkernel=0.7.1

conda install -c r r-essentials

jupyter notebook

Install Docker
Pull Image
Start Jupyter

or

## **Case Study**

Bellaachia, A., & Guven, E. (2006). Predicting Breast Cancer Survivability Using Data Mining Techniques. Society for Industrial and Applied Mathematics Conference on Data Mining 2006.

## **Case Study**

- 1. Evaluate reproducibility of case study
- 2. Demonstrate Jupyter Notebook as tool to boost reproducibility
- 3. Learn Data Mining techniques

### Predicting Breast Cancer Survivability Using Data Mining Techniques

Abdelghani Bellaachia, Erhan Guven

Department of Computer Science The George Washington University Washington DC 20052 {bell, eguven}@gwu.edu

#### Abstract

In this paper we present an analysis of the prediction of survivability rate of breast cancer patients using data mining techniques. The data used is the SEER Public-Use Data. The preprocessed data set consists of 151,886 records, which have all the available 16 fields from the SEER database. We have investigated three data mining techniques: the Naïve Bayes, the back-propagated neural network, and the C4.5 decision tree algorithms. Several experiments were conducted using these algorithms. The achieved prediction performances are comparable to existing techniques. However, we found out that C4.5 algorithm has a much better performance than the other two techniques.

**Keywords**: Breast cancer survivability, data mining, SEER, Weka.

relationship of the association. Data driven statistical research is becoming a common complement to many scientific areas like medicine and biotechnology. This trend is becoming more and more visible as in the studies of Houston et al. [5] and Cios et al. [6].

In this paper, we present data mining techniques to predict the survivability rate of breast cancer patients. In our study, we have used the SEER data and have introduced a pre-classification approach that take into account three variables: Survival Time Recode (STR), Vital Status Recode (VSR), and Cause of Death (COD).

This paper is organized as follows. The next section reviews related work. Section 3 gives the methodology used to conduct the prediction analysis. Experimental results are presented in Section 4. Conclusion and future work are given in the last section.

## Methodology (Bellaachia & Guven, 2006)

Objective: Compare data mining techniques' ability to predict breast cancer survivability

Dataset: Surveillance, Epidemiology, and End Results (SEER)

"Breast.txt" Ascii file, 1973-2002

## Methodology (Bellaachia & Guven, 2006)

#### Covariates

- Nominal: Race, Marital Status, Primary site code,
   Histologic type, Behavior code, Grade, Extension of tumor, Lymph node involvement, Site specific surgery code, Radiation, Stage of Cancer
- Numeric: Age, Tumor size, # of Positive nodes, # of Nodes, # of primaries

#### **Outcome: Breast Cancer Survival**



## Methodology (Bellaachia & Guven, 2006)

- Data Cleaning
  - Extension of tumor and Site Specific Surgery fields had missing for ~50% of records
    - data gathered prior to 1988 were heavily missing
      - Removed records from the test data set
  - SEER 1998+ for Site Specific Surgery are coded differently compared to pre-1998
    - Split information across 5 fields to account for variation in coding?



## Methodology (Bellaachia & Guven, 2006)

- Data Mining Techniques
  - Naïve Bayes
  - Artificial neural networks
  - C4.5 decision-tree generating algorithm
  - Cross Validation; k=10 folds
  - Testing:Training Ratio?

- Software
  - Weka toolkit

## **Decision Tree Algorithm**

1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.

- 2. Apply **cost complexity pruning** to the large tree in order to obtain a sequence of best subtrees, as a function of  $\alpha$ .
  - Use **K-fold cross-validation** to choose α.

## Our Methodology: Data Cleaning

- Dataset: Surveillance, Epidemiology, and End Results (SEER)
  - "Breast.txt" for 1973 2013
  - Filtered to 1973 2002

Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Research Data (1973-2013), National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems

Branch, released April 2016, based on the November 2015 submission.

## Our Methodology: Data Cleaning

#### Covariates

- Mostly same as Bellaachia & Guven, 2006
- Combined 2 Site Specific Surgery variables into one
- Derived binary variable for Presence of Positive Nodes
- Outcome: Breast Cancer Survival (Bellaachia & Guven, 2006)
- Data Cleaning
  - Recoded missing codes to NA, but didn't drop records

## **Our Methodology: Data Analysis**

- C5.0 decision-tree generating algorithm
  - Extended version of C4.5
  - Solves problem of over fitting and error pruning
  - C5.0 algorithm gives the acknowledge on noise and missing data
  - Uses recursive binary splitting to grow a large tree on the training data
    - Stops at *node purity*

## **Our Methodology: Data Analysis**

#### Statistical Software

- Python
  - create dataset from SEER ascii file
- $\circ$  R
  - Package "C50"
    - Training data: 80%

# **Break Setup of Jupyter**

## **Prep for Hands-On Jupyter Demo**

- Install Jupyter as explained here: http://bit.ly/2mLNGCW
- 2) Download from same link (go to notebooks folder):
  - a) data files from GitHub
  - b) notebook files from GitHub
- 3) Start up Jupyter Notebooks application
- 4) Open "amia\_data\_cleaning\_training.ipynb"

## Walkthrough of Methodology in Jupyter Notebooks

## **Comparing Models**

|                            | Bellaachia et al.                  | McIntosh et al.                                        |
|----------------------------|------------------------------------|--------------------------------------------------------|
| Data period                | 1973—2002                          | 1973—2002                                              |
| Original Count of records  | 482,052 records                    | 483,489 records                                        |
| Original Variables         | Most likely around 80<br>variables | Current SEER database has over 130 variables           |
| Final Count of records     | 151,886 records                    | Full Dataset - 238,457<br>Complete Cases Data - 92,518 |
| Survivability<br>Breakdown | 23% not survived, 77% survived     | Full Dataset: 28% not survived,<br>72% survived        |

|                            | Bellaachia et al.                                                                       | McIntosh et al.                                                                   |
|----------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Final Variables            | 17 variables (16<br>predictor variables and<br>1 dependent variable)                    | 18 variables (17 predictor<br>variables and 1 dependent<br>variable)              |
| Pre-classification<br>base | Survival Time Recode<br>(STR);<br>Vital Status Recode<br>(VSR);<br>Cause of Death (COD) | Survival Time Recode (STR);<br>Vital Status Recode (VSR);<br>Cause of Death (COD) |

|                             | Bellaachia et al                                              | McIntosh et al                                                     |  |
|-----------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--|
| Accuracy of<br>Predictions  | C4.5 Decision Tree with<br>86.7% Accuracy                     | C5.0 Decision Tree with<br>86.1% Accuracy                          |  |
| Sensitivity/Recall          | 96%                                                           | 94.2%                                                              |  |
| Precision                   | 88%                                                           | 87.4%                                                              |  |
| Information Gain<br>(Top 4) | Extension, Stage, LN<br>Involvement, Site<br>Specific Surgery | Behavior, Site Specific<br>Surgery, Age, Positive<br>Node Presence |  |
| Analysis Tools<br>Used      | Weka (Open-source Java<br>tool)                               | R; Python; Jupyter<br>Notebooks                                    |  |

## **Performance Metrics Summary**

Full dataset accuracy - 86.1%

Complete-cases dataset accuracy - 88.5%

#### **Comparing Full Dataset Models with Different Confidence Levels**

| Technique | Accuracy | Error_Rate | Sensitivity | Specificity |
|-----------|----------|------------|-------------|-------------|
| CF 0.10   | 85.9%    | 14.1%      | 94.3%       | 64.7%       |
| CF 0.15   | 86%      | 14%        | 94.4%       | 64.6%       |
| CF 0.25   | 86.1%    | 13.9%      | 94.2%       | 65.4%       |
| CF 0.30   | 86.1%    | 13.9%      | 94.2%       | 65.4%       |

#### **Comparing Full Dataset Models with Different Confidence Levels (Cont'd)**

| Technique | Prevalence | PPV   | NPV   | Карра |
|-----------|------------|-------|-------|-------|
| CF 0.10   | 71.7%      | 87.1% | 81.6% | 62.9% |
| CF 0.15   | 71.7%      | 87.1% | 82%   | 63.1% |
| CF 0.25   | 71.7%      | 87.4% | 81.6% | 63.4% |
| CF 0.30   | 71.7%      | 87.4% | 81.7% | 63.5% |

## Why Jupyter Notebooks?

# THE PURPOSE OF THIS PRESENTATION IS NOT TO ENDORSE A PARTICULAR NOTEBOOK

- All notebooks have their pros and cons
- Explore for yourself!

## Why Jupyter Notebook?

- Strong community support and publicly available documentation compared to other Notebook software (e.g. Zeppelin, R Notebooks)
- Run as many as 40 programming languages

## Multicursor Support Alt+mouse selection; Ctrl+ mouse clicks

```
In []: 1 c(this
2 is
3 an
4 example
5 of
6 multicursor
7 support)
```

```
In []: 1 c(this| 2 is 3 an 4 example 5 of 6 multicursor 5 support)
```

## Rpy2

Use both R and Python programming languages simultaneously within the Python Kernel



See <a href="http://stackoverflow.com/search?q=rpy2">http://stackoverflow.com/search?q=rpy2</a>

#### No Console



## **Graphics in Jupyter Notebooks**

Use an abundance of graphics packages, static and interactive

Render tables, just by calling the data.frame or table object

Save images to use in publications

## **Graphics in Jupyter Notebooks**

R example:

```
png("resources/image1.png", width = 4, height = 4, units =
'in', res = 300)
plot(data)
graphics.off()
```

## **How to Cite Jupyter Notebooks?**

Option 1: Attach notebook file as supplement to electronically published paper.

Option 2: Include link to notebook file and data shared on public hosting service as part of electronically published paper.

## **Spark ... Finally**

Spark Spark Streaming MLlib (machine learning) GraphX (graph)

Apache Spark



Courtesy of http://spark.apache.org/

## **Spark with Jupyter Notebooks**

Communicate with Spark through backend process.

Options to connect to Spark:

- 1.
- Install Docker
- Pull image with Spark and Jupyter Notebooks
- Use some library to start Spark context (e.g. SparkR)

- 2.
- Install Anaconda and Spark
- Link Spark with Jupyter
- Use pyspark to run scripts

### SparkR architecture



databricks

## **Our Review of SparkR**

Great for "computing" map, reduce, filter, aggregate operations

Not all common R functions have SparkR equivalents

Common R functions may take longer on SparkR DataFrames

Use magrittr package to perform data wrangling with friendly pipe-symbol syntax

## THANK YOU! Questions?