

Evaluation

Vitor Hug ?

Date:

Nom: Prénom:

1 Objectifs et Consignes

1.1 Objectifs

Au cours de cette évaluation, nous aurons pour objectif de programmer la fonction x^y de la calculatrice (x, y entiers relatifs). Afin d'y parvenir, nous progresserons au travers de plusieurs étapes.

1.2 Consignes

- Les programmes seront réalisés à l'aide de l'IDLE Python.
- Vous livrerez vos algorithmes libellés avec les noms de fichier indiqués dans le texte du document (ex : « deuxPuissance_algo.py »).
- Vous livrerez vos programmes libellés avec les noms de fichier indiqués dans le texte du document (ex : « deuxPuissance.py »).
- Chaque programme sera réalisé en insérant directement les lignes de code sous les lignes de langage algorithmique qui apparaissent en commentaire (symbole #)

Exemple:

AUTREMENT SI a<b ALORS ← ligne de langage algorithmique

elif a < b: ← ligne de code Python

Une ligne de code est insérée sous une ligne de langage algorithmique

NSI: Evaluation Terminale générale Page 1 | 7

Evaluation

2 Les puissances de l'entier 2

- 1. Ouvrir le fichier « deuxPuissance algo.py »
- 2. Compléter l'algorithme ci-dessous :

```
# coding: utf-8
# nom du programme : deuxPuissance algo.py
# rôle : calculer et afficher les puissances de l'entier 2
# Initilisation des variables et constantes
# exposant <-- 0
# ... code ...
# résultat <-- ?
# ... code ...
# Entrée clavier de l'exposant
# ... code ...
# Pour i allant de 0 à l'exposant exclu
# ... code ...
    # ...?
    # ... code ...
# Afficher le résultat (sortie écran)
# ... code ...
```

Sauvegardez votre fichier « deuxPuissance_algo.py » car il sera à livrer dans une archive.

3. En partant de l'algorithme « deuxPuissance_algo.py », insérer les lignes de code sous les lignes de langage algorithmique (ajoutées au 2.) et sauvegardez votre programme avec le nom de fichier « deuxPuissance.py ». A livrer.

Evaluation

3 Puissance signée de l'entier 2

1. Modifier l'algorithme « deuxPuissance_algo.py » afin qu'il permette le calcul de 2^γ avec y entier relatif. Sauvegardez vos modifications avec le libellé «deuxpuissance_signée_algo.py». <u>Aide</u>: Vous pourrez éventuellement vous inspirer de l'algorithme incomplet suivant :

```
# coding: utf-8
# nom du programme : deuxPuissance_signée_algo
# rôle : calculer et afficher les puissances de l'entier 2
# propriété : l'exposant est un entier relatif
# Initilisation des variables et constantes
# exposant <-- 0
# ... code ...
# résultat <-- ?
# ... code ...
# signe de l'exposant <-- ?. Par défaut, l'exposant est un entier naturel
# ... code ...
# Entrée clavier de l'exposant
# ... code ...
# Traitement du signe de l'exposant
# Si l'exposant est négatif
# ... code ...
    # ... code ...
    # .?.
    # ... code ...
# Pour i allant de 0 à l'exposant exclu
# ... code ...
    # .?.
    # ... code ...
# Afficher le résultat (sortie écran)
# .?.
# ... code ...
   # .?.
    # ... code ...
# .?.
# ... code ...
    # .?.
    # ... code ...
```

Sauvegardez votre fichier « deuxPuissance_signée_algo.py » car il sera à livrer dans une archive.

NSI: Evaluation Terminale générale P a g e 3 | 7

2 puissance -5 = 0.03125

Langages et programmation

Evaluation

- 2. En partant du fichier « deuxPuissance_signée_algo.py », insérer les lignes de code sous les lignes de langage algorithmique (ajoutées au 1.) et sauvegardez votre programme avec le nom de fichier «deuxPuissance_signée.py»
- 3. Testez l'exécution de votre programme. Le résultat doit être similaire à :

```
>>>
```

= RESTART: D:\Mes doc synchronisés\LIVH\NSI\Terminale\Langages et programmation\ évaluation\sources\puissance 2 signée.py Entrez la valeur de l'exposant : 5 2 puissance 5 = 32>>> = RESTART: D:\Mes doc synchronisés\LIVH\NSI\Terminale\Langages et programmation\ évaluation\sources\puissance 2 signée.py Entrez la valeur de l'exposant : -5

NSI: Evaluation Terminale générale Page 4 | 7

Evaluation

4 Fonction 2^y

1. Modifiez l'algorithme « deuxPuissance_signée_algo.py » afin qu'il permette le calcul de 2^y avec y entier relatif et qu'il inclue la fonction deuxPuissance(). Cette fonction prend un entier relatif comme argument. Sauvegardez vos modifications avec le libellé «deuxPuissance_signée_fonction_algo.py». <u>Aide</u>: Vous pourrez éventuellement vous inspirer de l'algorithme incomplet suivant:

```
# coding: utf-8
# nom du programme : deuxPuissance_signée_fonction_algo
# rôle : calculer et afficher les puissances de l'entier 2
# propriété : l'exposant est un entier relatif
             le programme appelle la fonction deuxPuissance(exposant)
# Initilisation des variables et constantes
# exposant <-- 0
# ... code ...
# résultat <-- ?
# ... code ...
# signe de l'exposant <-- ?. Par défaut, l'exposant est un entier naturel
# déclaration de la fonction deuxPuissance
# ... code ...
    # .?.
    # ... code ...
    # Pour i allant de 0 à l'exposant exclu
    # ... code ...
        # .?.
        # ... code ...
    # .?.
    # ... code ...
# Entrée clavier de l'exposant
# ... code ...
# Traitement du signe de l'exposant
# Si l'exposant est négatif
# ... code ...
    # .?.
    # ... code ...
    # ... code ...
# Afficher le résultat (sortie écran)
 .?.
# ... code ...
    # .?.
    # ... code ...
# .2.
# ... code ...
    # ... code ...
```

Sauvegardez votre fichier «deuxPuissance_signée_fonction_algo.py» car il sera à livrer dans une archive.

Evaluation

- 2. En partant du fichier « deuxPuissance_signée_fonction_algo.py », insérer les lignes de code sous les lignes de langage algorithmique (ajoutées au 1.) et sauvegardez votre travail avec le nom de fichier «deuxPuissance_signée_fonction.py»
- 3. Testez l'exécution de votre programme. Le résultat doit être similaire au résultat obtenu en exécutant le programme précédent « deuxPuissance_signée.py »

5 Fonction x^y

1. Modifiez l'algorithme « deuxPuissance_signée_fonction_algo.py » afin qu'il permette le calcul de x^y , x et y étant des entiers relatifs. Votre algorithme doit inclure la fonction récursive nPuissance().

Vous veillerez à respecter la spécification située dans la première partie de l'algorithme.

Sauvegardez vos modifications avec le libellé «nPuissance signée fonction récursive algo.py».

<u>Aide</u>: Vous pourrez éventuellement vous inspirer de l'algorithme incomplet fourni « nPuissance_signée_fonction_récursive_algo.py »

- 2. En partant du fichier « deuxPuissance_signée_fonction_récursive_algo.py », insérer les lignes de code sous les lignes de langage algorithmique (ajoutées au 1.) et sauvegardez votre travail avec le nom de fichier «deuxPuissance_signée_fonction_récursive.py»
- 3. Testez l'exécution de votre programme. Le résultat doit être similaire à :

```
Calcul de x puissance y, x et y entiers relatifs

Entrez la valeur de l'entier x : 5

Entrez la valeur de l'exposant y : 6

5 puissance 6 = 15625

Calcul de x puissance y, x et y entiers relatifs

Entrez la valeur de l'entier x : 6

Entrez la valeur de l'exposant y : -7

6 puissance -7 = 3.5722450845907635e-06

Calcul de x puissance y, x et y entiers relatifs

Entrez la valeur de l'entier x : -3

Entrez la valeur de l'entier x : -3

Entrez la valeur de l'exposant y : -7

-3 puissance -7 = -0.0004572473708276177
```

NSI: Evaluation Terminale générale Page 6 | 7

Evaluation

```
Calcul de x puissance y, x et y entiers relatifs

Entrez la valeur de l'entier x : 7

Entrez la valeur de l'exposant y : -3.2

Erreur de saisie : l'entier et l'exposant sont des entiers relatifs

Calcul de x puissance y, x et y entiers relatifs

Entrez la valeur de l'entier x : -4.15

Erreur de saisie : l'entier et l'exposant sont des entiers relatifs

Calcul de x puissance y, x et y entiers relatifs

Entrez la valeur de l'entier x : -4

Entrez la valeur de l'exposant y : 5

-4 puissance 5 = -1024
```

Liste des fichiers à livrer dans une archive libellée « nom_evaluation_TNSI_LP » :

deuxPuissance
deuxPuissance_algo
deuxPuissance_signée
deuxPuissance_signée_algo
deuxPuissance_signée_fonction
deuxPuissance_signée_fonction_algo
nPuissance_signée_fonction_récursive
nPuissance_signée_fonction_récursive_algo

Tous les fichiers possèdent l'extension « *.py »

**** Fin du document ****

NSI: Evaluation Terminale générale Page 7 | 7