

A Method to Import an FMU to a Hardware Description Language

Min Zhang

Agenda

- Introduction
- FMI/FMU vs MAST Model
- FMU2MAST conversion
- Bouncingball Example
- Motor Drive Example
- Q&A

Introduction FMI/FMU

http://fmi-standard.org

Import an FMU to an HDL(MAST)

MAST Modeling Language

- Invented in earlier of 80's
- 2. Multi-domain technolody
- 3. Mixed-Mode signal
- 4. Used in automible and aerospace industries for more than 30 years.

Advantage

- 1. Reduce significant amount work in simulator engine.
- 2. Avoid duplicated work to import FMU in another simulator.
- 3. Reuse all the advanced HDL features and Simulator features.
- 4. Can be used with models written in other HDL to study more complex system.

FMI/FMU vs MAST (Data Types)

				FMI 2.0					
				causality	variability	derivative			
	connection	input		input	continuous				
		output		output	continuous				
		state	(in)	input	discrete				
		sta	(out)	output	discrete				
	variable	Parameter		parameter	fixed				
		Constant		calculatedParameter	fixed				
F				local	fixed				
MAST				local	constant				
Σ		State		parameter	tunable				
				independent					
				local	discrete				
				local	tunable				
		Val		local	continuous				
		Var		local	continuous	yes			

FMI/FMU vs MAST (Simulation flow)

Elaboration: Parameters Section

Analog Engine: Values + Equations Section

Digital Engine: When Sections

Interface between MAST and FMI

Parameter Section


```
Parameters {
  fmiHandle = saberfmi(initialization...) {
    fmi2Instantiate();
  saberfmi(setValues,fmiHandle,...) {
    fmi2setReal/Integer/Boolean();
   saberfmi(updateValues,fmiHandle...) {
     fmi2EnterInitializationMode();
     fmi2ExitInitializationMode();
   h_ic = saberfmi(getValues,fmiHandle...) {
      fmi2GetReal/Integer/Boolean();
```

Values Section


```
Values {
  saberfmi(timeValue,fmiHandle,input...) {
     fmi2setReal ();
  xIndicator=saberfmi(checkCrosss,fmiHandle,time...) {
     fmi2getEventIndicators();
   der_h=saberfmi(nonlinear,fmiHandle,time,h,v) {
     fmi2setReal();
     fmi2completedIntegratorStep();
     fmi2getReal();
Equations {
  h: d_by_dt(h) = der_h
  v0: d_by_dt(v0) = der_v
  v: v = v_{init} + delta_{v0}
```

When Sections


```
When(event_on(in1)) {
  saberfmi(setEvent,fmiHandle,...) {
    fmi2enterEventMode();
    fmi2setReal/Integer();
  nextEvent=saberfmi(checkEvents,fmiHandle,...) {
    while(newDiscreteStatesNeeded) {
      fmi2newDiscreteStates();
    fmi2enterContinuousTimeMode();
  schedule_next_time(nextEvent)
```

FMU2MAST Conversion

FMU2MAST conversion

• Verified by 44 different tests, 5 different tools.

	vendor	input	output	discrete	state	others
Controlledtanks	OpenModelica	0	0	246	4	535
Motor_drive2	Dymola	0	1	39	15	253
MixtureGases	Dymola	0	2	4	16	76
DFFREG	Dymola	0	2	40	0	44
CoupledClutches	Dymola	1	4	50	18	123
Rectifier	Mworks	0	8	6	4	177
ControlledTemp	Mworks	0	2	4	1	64
BooleanNetwork	Mworks	1	9	57	0	29
FullRobot	Mworks	0	6	109	36	5259
BouncingBall	FMUSDK	0	0	1	2	3
vanderpol	FMUSDK	0	0	0	2	3

BouncingBall Example (Accurate Event Detection)

$$\frac{dv}{dt} = -g \tag{1}$$

$$\frac{dh}{dt} = v \tag{2}$$

$$v = -e * v_0 \tag{3}$$


```
values {
  xIndicators = saberfmi(checkCross, fmiHandle, time)
when(threshold(xIndicators, 0.5, before, after) & after >0) {
  schedule event(time,cross,1.0)
when(event on(cross)) {
  stateErr = saberfmi(updateCross,fmiHandle,time)
  nextEvent = saberfmi(checkEvents,fmiHandle,time)
  hasBreak = saberfmi(valuesChanged,fmiHandle)
  v init = saberfmi(timeValues,fmiHandle,time,v id,fmiReal)
  prev v 0 = v 0
  schedule_next_time(time)
```

BouncingBall Example (Re-Initialization)

$$\frac{dv_0}{dt} = -g \tag{1}$$

$$v = v_{init} + \Delta v_0 \tag{2}$$

Figure 9 Solution for State Variable with reinit

```
values {
  xIndicators = saberfmi(checkCross, fmiHandle, time)
  delta v = 0 = v = 0 - prev = 0 = 0
when(threshold(xIndicators, 0.5, before, after) & after >0) {
  schedule event(time,cross,1.0)
when(event on(cross)) {
  nextEvent = saberfmi(checkEvents,fmiHandle,time)
  hasBreak = saberfmi(valuesChanged,fmiHandle)
  v init = saberfmi(timeValues,fmiHandle,time,v id,fmiReal)
  prev v 0 = v 0
  schedule next time(time)
equations {
  v : 0: d : by : dt(v : 0) = -g : \# eqn. (1)
  v: v = v \text{ init} + \text{delta } v + 0 \text{ # eqn. (2)}
```

BouncingBall Example (Results)

Figure 10 Bouncing Ball Results

Motor Drive Example (Equations)

Motor Drive Example (DAE formulation)

$$Ax + E\dot{x} = B(t)$$

$$F'(X_{k-1})X_k = -F(X_{k-1}) + X_{k-1}F'(X_{k-1})$$

$$= \begin{pmatrix} u_{1}(t) \\ u_{2}(t) \\ \vdots \\ -f_{1}(v_{k-1}, i_{k-1}, \omega) & 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} v_{k} + \frac{\partial f_{1}}{\partial \omega} \omega_{k-1}$$

Motor Drive Example (Results)

Figure 12 Motor Drive Results

Other Examples (Van der Pol oscillator)

$$\begin{cases} \frac{dx_0}{dt} = x_1 \\ \frac{dx_1}{dt} = mu * ((1 - x_0 * x_0) * x_1) - x_0 \end{cases}$$

Other Examples (booleanNetwork1)

Other Examples (Three Phase Rectifier)

Other Example: Controlled Tank System (OpenModelica)

Other Example: Controlled Tank System (saberRD)

Thank You

