(e) an infinite ring R that is not an integral domain

Bossy

- (f) a ring R and a prime ideal I such that I is not maximal
- (g) a Euclidean domain that is not field

Z, FEX]

(3) (6 points) List all group homomorphisms from $\mathbb{Z}/24\mathbb{Z}$ to $\mathbb{Z}/60\mathbb{Z}$ For $\varphi. \mathbb{Z}/24\mathbb{Z} \to \mathbb{Z}/60\mathbb{Z}$ to φ a group homomorphism, we must find conditions on $\alpha \in \mathbb{Z}/60\mathbb{Z}$ such that if $\varphi(1) = a$, then φ is a group homomorphism. In particular, we need $\phi = \varphi(24.1) = \varphi(1+...+1) = 24.a$ or 24 times

(*) $24a \equiv 0 \mod 60$. Let $d = 12 = \gcd(24,60)$, then we note that if $a = \frac{60}{d}$. k = 5k k = 1,2,...,12, then we have solutions to (*). That is, a = 5,19...,55,0 $\mod 60$ are all five values of a.

For more detail, note that $24a \equiv 0 \mod 60 \iff 2 \cdot da \equiv 0 \mod 5 \cdot d \iff 2 \cdot 12 \cdot a \equiv 0 \mod 5 \cdot 12$ $24a \equiv 0 \mod 60 \iff a \equiv 0 \mod 5 \iff 5 \mid a \mid \text{ Then find all }$ $2a \equiv 0 \mod 5 \iff a \equiv 0 \mod 5 \iff 5 \mid a \mid \text{ Then find all }$ $a \text{ with } 0 \leq a \leq 60 \pmod 5 \mid a \mid .$

- (4) (8 points) Determine whether the polynomial $f(x) = x^3 + x^2 + x + 2$ is reducible in each of the following rings. Briefly justify your answer.
 - (a) $\mathbb{Z}/2\mathbb{Z}[x]$

reducible, x=1 is a not

(b)
$$\mathbb{Z}/3\mathbb{Z}[x]$$
 $\int_{(1)} = 2 \neq 0$ $\int_{(0)} \neq 0$. Irreducible by $\int_{(2)} = 8 + 4 + 2 + 2 = 12 + 4 \neq 0 \mod 3$ Dedekind Criterio

irreducible.

(c)
$$\mathbb{Q}[x]$$
 Check $\pm 1, \pm 2$
 $f(x) = 5$ $f(x) > 0$
 $f(-1) = 1$ $f(-2) = -8 + 4 - 2 + 2 + 0$

(5) (6 points) Observe that the polynomial $3x^2 + 4x + 3 \in \mathbb{Z}/5\mathbb{Z}[x]$ factors both as (3x+2)(x+4) and as (4x+1)(2x+3). Explain whether or not this illustrates that $\mathbb{Z}/5\mathbb{Z}[x]$ is not a UFD.

Does Not. Note 3/54 is a field at 3/52 [7] is a UFD.

The point is that 3,1,4,2 are all units in \$20 Ex]. In particular, 3.2=1 in 2/5%.

$$(3x+2)(x+4)$$

= $[3(3x+2)][2(x+4)]$ Since $3.2=1$
= $(4x+1)(2x+3)$

(3x+2) and (4x+1) are associates

(x+4) and (2x+3) are associates

Thom Answer: Dakota did a great job! Look up a proof to Lagrange's Thm in book. See you Monday.