Word2Vec using Negative Constrastive Estimation

Julina Maharjan, jmaharja@kent.edu

Kent State University – KSU

November 25, 2019

Content

- Introduction
 - Motivation
 - Word2Vec Methodology
 - Model
- 2 Limitation
 - Limitations
 - NCE
- Noise Constrastive Estimation
 - Negative Contrastive Estimation
 - Estimators
- 4 Conclusion

Content

- Introduction
 - Motivation
 - Word2Vec Methodology
 - Model
- 2 Limitation
 - Limitations
 - NCE
- Noise Constrastive Estimation
 - Negative Contrastive Estimation
 - Estimators
- 4 Conclusion

Motivation

Key Idea in NLP

- is how can we efficiently convert words into numeric vectors
- such that it can then be fed into various machine learning models to perform predictions

Technique

Word2Vec

Motivation

Why do we need Word2Vec?

Convert the words into some set of numeric vectors

A straight-forward way

To use a "one-hot" vector i.e converting the word into a sparse representation with only one element of the vector set to 1, the rest being zero.

Example: For the sentence " the cat sat on the mat" would have the following vector representation.

$$\begin{bmatrix} the\\ cat\\ sat\\ on\\ the\\ mat \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Motivation

Dimension of the new matrix is $\mathbf{6} \times \mathbf{5}$ and, the size of the vocabulary = 5

what if words are huge?

the input layer into NN will have at least 10,000 nodes such that it will strips away any local context of the words - information about closely appearing words will be loss

Therefore, an efficient way that conserves information is word2Vec

Word2Vec- Information preserving

Figure: Similar words clustering in the same space

Neural Network Perspective

Figure: The architecture of word2vec Neural network

2 Components

I. Word Embedding

The first is the mapping of a high dimensional one-hot style representation of words to a lower dimensional vector.

for instance, transforming a 10,000 columned matrix into a 200 columned matrix

II. Finding the probability of each word

The second is to maintain the word context i.e meaning Two way of doing this:

- CBOW approach
- ② Skip-gram approach (more famous because it produces more accurate results on large datasets)

Embedding and Probability layer

jmaharja@kent.edu (KSU)

Layers in Mathematical notation

$$e = (Ex_1, Ex_2, ..., Ex)$$

 $h = \sigma(We + b)$
 $z = Uh$
 $y = \text{softmax}(z)$

Word's context

Skip-Gram Model

Skip-gram

This model predicts the probabilities of a word being a context word for the given target

Figure: The Skip-Gram Model

Skip-gram Model Example

Example

"The man who passes the sentence should swing the sword. Ned Stark

Sliding window (size =5)	Target Word	Context
[The man who]	the	man,who
[The man who passes]	man	the,who,passes
[The man who passes the]	who	the,man,passes,the
[man who passes the sentence]	passes	who, the, sentence
[should swing the sword]	the	should,swing,sword
[swing the sword]	sword	swing,the

Continuous Bag-of-Words (CBOW

predicts the target word (i.e "swing") from source context words.

Figure: The CBOW Model

Content

- Introduction
 - Motivation
 - Word2Vec Methodology
 - Model
- 2 Limitation
 - Limitations
 - NCE
- Noise Constrastive Estimation
 - Negative Contrastive Estimation
 - Estimators
- 4 Conclusion

Limitations

Softmax Function

In skip gram model, the probability of a word ${\bf w}$ given context ${\bf c}$ is

$$p(w_{O}|w_{I}) = \frac{exp(v_{w_{O}}'T_{v_{w_{I}}})}{\sum_{w=1}^{W} exp(v_{w_{O}}'T_{v_{w_{I}}})}$$

Short Comings in Softmax function

Have to compute probabilistic expression over the corpus – a computationally intensive task

Solutions

- noise contrastive estimation
- negative sampling

both avoid the full summation over the corpus

NCE

 Instead of calculating a probability distribution over all possible target words, NCE uses logistic regression to distinguish a target from samples from a noise distribution.

Negative Sampling

 Negative sampling (used in word2vec code), also learns the parameters of the model as a binary classification problem (every time a word is tugged closer to its neighbors, it is also tugged away from k samples picked from a unigram distribution).

Content

- Introduction
 - Motivation
 - Word2Vec Methodology
 - Model
- 2 Limitation
 - Limitations
 - NCE
- Noise Constrastive Estimation
 - Negative Contrastive Estimation
 - Estimators
- 4 Conclusion

NCE

- a new estimation principle for parameterized statistical models
- the idea is to perform logistic regression to discriminate between the observed data and some artificially generated noise
- works well for unnormalized models, i.e models where the density function does not integrate to one.
- simulations show that NCE offers the best trade-off between computational and statistical efficiency

Review of Logistic Regression

 Logistic regression can be used to obtain a classifier which discriminates between the data sets

$$X = x(1), ..., x(T)$$
 and $Y = y(1), ..., y(T)$

• Logistic regression uses the model

$$P(\mathbf{u} \in \mathbf{X}; \theta) = \frac{1}{1 + \exp(-G(\mathbf{u}; \theta))}$$
$$P(\mathbf{u} \in \mathbf{Y}; \theta) = 1 - P(\mathbf{u} \in \mathbf{X}; \theta)$$

where $G(\mathbf{u}; \theta)$ is a function parameterized by θ

For

$$G(\mathbf{u}; \theta) > 0, P(\mathbf{u} \in \mathbf{X}; \theta) > 0.5$$

and the input u is classified to belong to X.

• For a linear classifier: $G(\mathbf{u}; \theta) = w_0 + \mathbf{w}^T \mathbf{u}$ Parameters θ are $\{w_0, \mathbf{w}\}$

Learning By Comparison

- Assume we know the properties of Y (noise).
- We let classifier to learn the difference between X and Y.
- From the learned difference between X and Y, we can thus deduce properties of X.
- This can be formalized using estimation theory

NCE

- Observe data $\mathbf{X} = (\mathbf{x}(1), \dots, \mathbf{x}(T))$ with unknown pdf p_d
- Generated noise $\mathbf{X} = (\mathbf{y}(1), \dots, \mathbf{y}(T))$ with known pdf p_n
- Define a parameterized function $f(\mathbf{u}; \theta)$, which models the data log-density log $p_d(\mathbf{u})$
- Use logistic regression with the non linearity

$$G(\mathbf{u};\theta) = f(\mathbf{u};\theta) - \log p_n(\mathbf{u})$$

Conditional likelihood leads to the objective function

$$J(\theta) = \sum_{t} \log[h(\mathbf{x}(t); \theta)] + \log[1 - h(\mathbf{y}(t); \theta)]$$

where
$$h(\mathbf{u}; \theta) = \frac{1}{1 + \exp[-G(\mathbf{u}; \theta)]}$$

ullet The estimator is defined as $\hat{ heta} = \operatorname{argmax} J(heta)$

Properties of Estimators

• Assume the parametric model $f(u; \theta)$ can approximate any function. Then, the maximum of objective J is attained when

$$f(\mathbf{u};\theta) = \log p_d(\mathbf{u})$$

where $p_d(u)$ is the pdf of the observed data

Corollary:

For data generated according to model, i.e.

$$\log p_d(\mathbf{u}) = \log p_m(\mathbf{u}; \theta^*)$$

we can show that the estimator is statistically consistent.

• Supervised learning thus leads to unsupervised estimation of a probabilistic model given by log-density $f(u; \theta)$

Content

- Introduction
 - Motivation
 - Word2Vec Methodology
 - Model
- 2 Limitation
 - Limitations
 - NCE
- Noise Constrastive Estimation
 - Negative Contrastive Estimation
 - Estimators
- 4 Conclusion

Conclusion

- Instead of predicting the next word (the "standard" training technique), the optimized classifier simply predicts whether a pair of words is good or bad.
- Consistent nature of NCE gives the best approximation of softmax for word2Vec
- \bullet Simulations shows that NCE is very ${\bf fast}$ and converges to accurate solution by $1/\sqrt{n}$

References I

Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(35):695–709, 2005.

Gutmann Michael and Hyvarinen Aapo.

Noise-contrastive estimation: A new estimation principle for unnormalized statistical models.

Journal of Machine Learning Research, 135(35):13096-13106, 2013.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. Journal of Machine Learning Research, 135(35):13096–13106, 2013.

Word2Vec using Negative Constrastive Estimation

Julina Maharjan, jmaharja@kent.edu

Kent State University – KSU

November 25, 2019