Zastosowanie technologii big data w uczeniu maszynowym

Filip Wójcik

Senior Data Scientist

http://maddatascientist.eu

filip.wojcik@outlook.com

filip.wojcik@ue.wroc.pl

- 1. Rola i znaczenie technologii big data
- 2. Znaczenie Big Data dla uczenia maszynowego i przypadki użycia
- 3. Najpopularniejsze platformy big data

Historia i zarys technologii

ROLA I ZNACZENIE TECHNOLOGII BIG DATA

Rola i znaczenie technologii big data 1/6

- Technologie Big data nabrały znaczenia w miarę jak przestrzeń dyskowa zaczęła tanieć
- Złożoność procesów decyzyjnych i ilość produkowanych danych rosła wykładniczo
- Utrzymanie infrastruktury zdolnej do przetwarzania takich zbiorów stawało się coraz droższe
- Rozwój dostawców usług chmurowych (ang. cloud computing)

Rola i znaczenie technologii big data 2/6

A Brief History of Hadoop

Rola i znaczenie technologii big data 3/6

Source: http://andego.hu/files/2013/01/timeline2.png

Rola i znaczenie technologii big data 4/6

Typowe problemy z danymi, motywujące do używania technologii Big Data

Rola i znaczenie technologii big data 5/6

- Algorytm Map Reduce od Google pozwolił zrównoleglić obliczenia na tzw. commodity hardware czyli maszyny powszechnego użytku
- Dzięki temu możliwe stało się budowanie lokalnych klastrów z danymi wewnątrz firm i organizacji
- Takie skalowanie też ma swoje limity stąd operatorzy chmurowi ©

Rola i znaczenie technologii big data 6/6

Koordynacja operacji na klastrach Big Data za pomocą przesyłu sieciowego. Operacje są wykonywane lokalnie

Dlaczego uczenie maszynowe i big data często przedstawiane są razem?

ZNACZENIE BIG DATA DLA UCZENIA MASZYNOWEGO

Znaczenie Big Data dla uczenia maszynowego 1/5

- Operacje uczenia maszynowego zazwyczaj są bardzo kosztowne obliczeniowo
- Nierzadko potrzebują wyliczyć własności danych w oparciu o cały zbiór (np. Entropia Shannona)
- Obok statystycznej analizy danych podstawą uczenia maszynowego są operacje na wektorach i macierzach – przy dużych zbiorach danych to nie zdaje egzaminu

Znaczenie Big Data dla uczenia maszynowego 2/5

Problematyczne operacje algebry liniowej mnożenie dużych wektorów i macierzy

Iloczyn wektorowy

Produkt diadyczny (ang. outer product)

A B C
$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Znaczenie Big Data dla uczenia maszynowego 3/5

Przykładem mogą być **systemy rekomendacyjne** oparte na rozkładzie macierzy (SVD, NNMF). Wymagają rozkładu **całej** macierzy na składowe.

Znaczenie Big Data dla uczenia maszynowego 4/5

Kolejny przykład – **klasyczna regresja liniowa.** Wymaga mnożenie przez siebie macierzy wag *w* oraz macierzy zmiennych egzogenicznych *x*

$$y \approx \hat{y} = w_0 + w^T X$$

$$w = (X^T X)^{-1} X^T y$$

Kilka operacji matematycznych o dużej złożoności:

- Iloczyn macierzy $O(nd^2)$
- Odwracanie macierzy (włącznie z liczeniem wyznacznika): $O(d^3)$

Znaczenie Big Data dla uczenia maszynowego 5/5

Ostatni przykład – rozkład macierzy na składowe główne (**PCA**) obejmujący wyliczanie najważniejszych jej komponentów w oparciu o macierz kowariancji.

Jakie platformy chmurowe Big Data są najpopularniejsze i dlaczego?

CHMUROWE PLATFORMY BIG DATA

Chmurowe platformy Big Data 1/3

- Okazało się, że założenie o tzw. commodity hardware nie do końca jest takie idealne
- Można mieć infrastrukturę złożoną z powszechnych komponentów, ale ktoś musi je utrzymywać w fizycznej lokalizacji
- Stąd rosnąca popularność dostawców platform chmurowych
- Oferowane są w połączeniu z usługami uczenia maszynowego i sztucznej inteligencji (AIAS –AI as a service)

Chmurowe platformy Big Data 2/3

- •Microsoft Azure jest jedną z najdynamiczniej rozwijających się platform
- •MS oferuje rozwiązania własne oraz Open Source
- Chmura ma charakter "umiarkowanie zaawansowany" w miarę prosty interfejs użytkownika i prosta konfiguracja

- AWS jest największą platformą chmurową
- ·Najczęściej wybierane rozwiązanie przez startupy
- •Uważane za niskopoziomowe i wymagające dużej konfiguracji
- •Oferowane są produkty zarówno własne jak i open source

Google Cloud Platform

- Google stawia głównie na własne rozwiązania, nawet jeśli są po prostu odmianą istniejących technologii open source
- ·Najprostsze rozwiązanie w konfiguracji i zarządzaniu

- •Słynna platforma AI, która nauczyła się grać w GO oraz gry komputerowe
- Uważana za najbardziej zaawansowaną sztuczną inteligencję oferowaną jako usługa
- Jednocześnie najdroższa ze wszystkich

Chmurowe platformy Big Data

3/3

CLOUD MACHINE LEARNING SERVICES COMPARISON

	Amazon ML	Amazon SageMaker*	Azure ML Studio	Google Prediction API	Google ML Engine**
Classification	J	J	1	1	J
Regression	J	J	1	J	1
Clustering		1	J		1
Anomaly detection		J	J		J
Recommendation		J	1		1
Ranking		J	1		J
Algorithms	unknown	10 built-in + custom available	100+ algorithms and modules	unknown	TensorFlow-based
Frameworks		TensorFlow, MXNet			TensorFlow
Graphical interface			1		
Automation level	high	medium	low	high	low

*Both out-of-the-box features and possible custom-built features are marked as available in Amazon SageMaker

 $^{{}^{\}star\star}\mathsf{The}\,\mathsf{features}\,\mathsf{available}\,\mathsf{in}\,\mathsf{TensorFlow}\,\mathsf{are}\,\mathsf{respectively}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{marked}\,\mathsf{as}\,\mathsf{available}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{Available}\,\mathsf{in}\,\mathsf{Google}\,\mathsf{ML}\,\mathsf{Engine}\,\mathsf{Available}\,\mathsf{Available}\,\mathsf{in}\,\mathsf{Available}\,\mathsf$

Dziękuję za uwagę