

ARMY RESEARCH LABORATORY

Surface Analysis of Reactive Ion Etched PZT Thin Films in SF₆ Plasma

by Eugene Zakar

ARL-TR-4284

September 2007

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-TR-4284

September 2007

Surface Analysis of Reactive Ion Etched PZT Thin Films In SF₆ Plasma

Eugene Zakar
Sensors and Electron Devices Directorate, ARL

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188	
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>					
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.					
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)	
September 2007	Final			October 2005 to September 2006	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Surface Analysis of Reactive Ion Etched PZT Thin Films in SF ₆ Plasma				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
				5d. PROJECT NUMBER	
6. AUTHOR(S)				5e. TASK NUMBER	
Eugene Zakar				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT NUMBER	
U.S. Army Research Laboratory ATTN: AMSRD-ARL-SE-RL 2800 Powder Mill Road Adelphi, MD 20783-1197				ARL-TR-4284	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
U.S. Army Research Laboratory 2800 Powder Mill Road Adelphi, MD 20783-1197				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT					
Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
Reactive ion etching of sol-gel deposited Pb(Zr _{0.52} Ti _{0.48})O ₃ thin films was performed in SF ₆ plasmas. Etch rate was determined as a function of cathode power and chamber pressure, attaining a value of 65 nm/min at 300 W. Auger electron spectroscopy measurements revealed an excess Pb 10 nm thin layer on as-deposited film surfaces. X-ray photoelectron spectroscopy measurements showed the existence of ZrF ₄ and PbS _{0.4} species on etched surfaces, in addition to traces of S and F. These measurements also indicated that Ti is relatively easy to remove while Pb removal is the rate limiting step in the etch process.					
15. SUBJECT TERMS					
Reactive ion etching, PZT, SF ₆					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
			SAR	16	Eugene Zakar
a. REPORT	b. ABSTRACT	c. THIS PAGE	19b. TELEPHONE NUMBER (Include area code)		
Unclassified	Unclassified	Unclassified	301-394-1628		

Contents

List of Figures	iv
List of Tables	iv
1. Introduction	1
2. Experiment	1
3. Results	2
4. Conclusion	7
5. References	8
Distribution List	10

List of Figures

Figure 1. PZT etch rate as a function of power for pressures of 30 mT (■) and 50 mT (●), with 100 sccm SF ₆ flow rate and 10 min. etch duration.....	3
Figure 2. XPS scan showing appearance of ZrF ₄ on PZT sample etched in SF ₆ plasma.....	4
Figure 3. XPS scans of O _{1S} data performed on (a) PZT control, and (b) SF ₆ plasma etched samples.....	5
Figure 4. Pb concentration of 0.25 μm thick PZT sample determined from AES measurements as film was sputtered through to the Pt layer with 8 kV, 12 mA, Ar ion beam over a 200 μm square.....	6

List of Tables

Table 1. XPS measurements of relative atomic percentages of Pb, Zr, and Ti for control and etched PZT samples.....	7
--	---

1. Introduction

Lead zirconate titanate $[Pb(Zr_xTi_{1-x})O_3]$ (PZT) thin films usher in a new generation of sensor, actuator, memory, and microelectromechanical systems (MEMS) due to their superior piezoelectric properties. To incorporate/integrate these materials into silicon IC technology it is necessary to develop anisotropic dry etch processes to etch desired, precisely accurate and defect free PZT structures in the micrometer size range. One of the widely used dry etching processes is halogen plasmas - chlorine and fluorine based gases which have shown high potential to achieve the desired results (1-14, 20). However, selection of fluorine (1) or chlorine (13) chemistry requires extensive experimental analysis to understand the basic reaction chemistry. Most recently a mixture of fluorine and chlorine gases have been proposed for a clean etch profile of PZT films with a fast etch rate using high plasma density sources ECR (21), EDCR (22), and ICP (23, 24).

One of the simplest ways to understand the reactions underlying the plasma etching mechanism is the study of etching by-products on the surface of PZT. Analysis of PZT surfaces etched in various single halogen (e.g: Cl and F) molecules has been performed in the past using techniques such as x-ray photoelectron spectroscopy (XPS) (3, 8-10, 13, 15) to determine the presence and composition of surface reactant species. Recently SF₆ plasmas have been used successfully to etch PZT (5, 6, 25-30), since it is a non-toxic, stable gas and is widely used in IC manufacturing. To date, very little surface studies have been reported on PZT etched with SF₆. We report here about XPS, Auger electron spectroscopy (AES), and etch rate measurements performed on sol-gel deposited PZT films reactive ion etched (RIE) in SF₆ plasmas.

2. Experiment

Sol-gel Pb(Zr_{0.52}Ti_{0.48})O₃ solutions were spin coated onto the platinized Pt(170 nm)/Ta(20 nm)/SiO₂/Si wafers followed by crystallization using rapid thermal annealing at 700 °C to get the thin films 250-1000 nm. This is a very common structure used for PZT MEMS devices, where the Pt layer is the bottom electrode. Etching was performed in a PlasmaTherm 720 Shuttlelock RIE system with a standard parallel plate reactor design. Samples were patterned with AZ4330 photoresist and mounted on a liquid cooled cathode surrounded by an Ardel annular ring electrode shield material to enhance etch uniformity. XPS measurements were performed using a Physical Electronics model PHI 5800 system. AES measurements were performed using a Physical Electronics model PHI 600 scanning Auger microprobe.

3. Results

Constituents of PZT are comprised of heavy metals (Pb, Zr, Ti), and produce halide byproducts having low volatilities under normal SF₆ RIE conditions which may redeposit attributing to physical sputtering rather than chemical etching (16). Since etching of PZT films to low energy (30-40 eV) was found to produce etch yields that were greater than the expected sputter yields under the same conditions (16), this indicates that some chemical reaction may also be occurring in the fluorine plasmas. Figure 1 shows PZT etch rate as a function of cathode power for 30 mTorr and 50 mTorr chamber pressures. As power was increased from 100 W to 300 W, the etch rate increased from 15 nm to 65 nm/min, cathode bias increased from 25 V to 225 V. The rate increase with power is probably due to higher associated ion bombardment energies, which induce ion-assisted surface effects such as breaking of chemical bonds. This results in enhanced formation of reactant species, and the lowering of the desorption energy of these species. Etch rate increase could also be partly due to increased production of reactant fluorine species, although this is probably a secondary effect. Etch rate also increased as pressure was reduced. Since induced bias voltage is a measure of ion bombardment energy, the etch rate increase from the lower operating pressures further indicates that the etch process is dependent on ion bombardment effects.

Figure 1. PZT etch rate as a function of power for pressures of 30 mT (■) and 50 mT (●), with 100 sccm SF₆ flow rate and 10 min. etch duration.

Figure 2 shows XPS data obtained on a PZT sample surface etched in SF₆ at a cathode power of 300W for 30 mT chamber pressure. The peak shown at 685.5 eV was not present prior to etching and corresponds to the formation of ZrF₄. This is a surface reactant species that would be expected to appear when etching PZT in fluorine-based plasmas. However, no evidence was seen of Pb or Ti based reactant species such as PbF₂ or TiF₄. Figure 3(a) shows the oxygen 0_{1S} peak at 531 eV from a PZT control sample, while figure 3(b) shows the same scan from a PZT sample etched in SF₆. The figure 3(b) data can be resolved into the sum of two peaks centered at 530.7 eV and 532.5 eV as shown. The peak at 530.7 eV corresponds to TiO₂ and ZrO₂ species, while the additional 532.5 eV peak indicates the presence of PbSO₄, a nonfluorine based chemical compound.

Figure 2. XPS scan showing appearance of ZrF_4 on PZT sample etched in SF_6 plasma.

Figure 3. XPS scans of O_{1S} data performed on (a) PZT control, and (b) SF₆ plasma etched samples.

AES measurements were performed on a control 0.25 μm PZT film sample sputtered with a 8 kV, 12 mA, Ar ion beam over a 200 μm square. Figure 4 shows the Pb atomic percent concentration as the film was sputtered through to the Pt under layer after about a 400s time duration. The film exhibited a Pb-rich surface region having an estimated thickness of 10 nm

and a concentration more than twice that of the bulk region. The Pb-rich surface regions similar to that observed here have been reported by others on PZT layers (17-19), and are thought to be an inherent result of thermal cycling of the deposited material, independent of the specific film deposition process. This non-ferroelectric surface region artifact can result in a reduced dielectric constant for the sample and may be detrimental to the operation of devices fabricated from PZT films.

Figure 4. Pb concentration of 0.25 μm thick PZT sample determined from AES measurements as film was sputtered through to the Pt layer with 8 kV, 12 mA, Ar ion beam over a 200 μm square.

It is instructive to compare the Pb, Zr, and Ti components upon etching to provide an understanding of the etching mechanism. The relative atomic percentages of Pb, Zr, Ti, S, and F were estimated from XPS analysis for a control and an etched sample. The etched sample exhibited residual sulfur and fluorine compositions of 4.7% and 4.0%, respectively. Table 1 shows the relative atomic percentages of Pb, Zr, and Ti for both control and etched samples. Prior to performing XPS measurements on the control sample, the Pb-rich surface region was first sputtered through using an Ar ion beam so that a more valid initial surface composition could be obtained for comparison purposes. Table 1 shows that while the relative atomic percentages of Zr and Ti both decreased upon etching, the percentage of Pb increased, suggesting that Pb is the most difficult PZT component to remove. Other workers (9,13,15,16) have also reported that the removal of Pb is the rate limiting step for PZT etching in fluorine based plasmas. The formation of PbSO_4 during the etching process may add to the difficulty of Pb removal. In addition, table 1 shows that both the Ti/Pb and Ti/Zr ratios decreased upon etching, indicating that the Ti component of PZT is more easily removed than Pb or Zr in SF_6 plasmas. Similarly, Lin, et al. (3) found that Ti by-products were completely volatilized for RIE of PZT in

CHF_3 plasmas, while the fluorides of Pb and Zr were more difficult to remove. The above results are consistent with the fact that PbF_2 has a melting point of 855 °C, while ZrF_4 and TiF_4 sublime at 600 °C and 284 °C, respectively, (16) leading to the expectation that for PZT the Pb species would be most difficult to etch with the Ti species being most readily etched in SF_6 plasmas. In contrast, An, et al., (10) found that the Pb component etched faster than Zr and Ti in chlorine based plasmas.

Table 1. XPS measurements of relative atomic percentages of Pb, Zr, and Ti for control and etched PZT samples.

	Pb	Zr	Ti
Control	10.1	10.9	8.5
SF_6 Etched	10.9	10.4	4.5

4. Conclusion

XPS and AES were used to analyze surface reaction and the by-products of the PZT RIE in SF_6 . XPS measurements revealed the presence of ZrF_4 and PbSO_4 , along with residual amounts of S and F. XPS measurements also indicated that Ti is readily removed from the PZT surface, while Pb removal is the rate limiting step in this etching process. AES measurements showed the presence of a Pb-rich surface region approximately 10 nm thick on as-deposited PZT material.

RIE rates of PZT in SF_6 plasma measured up to 65 nm/min at 300 W power. Conventional photoresist masking materials were used during the patterning and etch process, but more durable materials such as Pt, Ni, or Si_3N_4 can be used as a mask to improve the selectivity, etch rate, and may favorably influence the sidewall angle profiles of the etched PZT. There is a need to carefully monitor and control the amount of residual Pb and S that can redeposit on etched sidewalls of fabricated PZT thin film capacitor micro cells for Ferroelectric Random Access Memory (FRAM) applications.

5. References

1. Archard, H.; Mace, H.; Peccoud, L. *Microelectron. Eng.* **1995**, *29*, 19.
2. Zeto, R.; Rod, B. J.; et al. *Proc. 11th IEEE Int. Symp. on Applications of Ferroelectrics* **1998**, *8*, 89.
3. Lin, Y.; Liu, Q.; Tang, T.; Yao, X.; Huang, W. *Jap. J. Appl. Phys.* **2000**, *39*, 320.
4. Van Glabbeek, J. J.; Spierings, G.A.C.M.; et al. *Mat. Res. Soc. Symp. Proc.* **1993**, *310*, 127.
5. Wang, S.; Li, X.; Wakabayashi, K.; Esaski, M. *J. Am. Ceram. Soc.* **1999**, *82*, 1339.
6. Bale, M.; Palmer, R. E. *J. Vac. Sci. Technol.* **1999**, *A17*, 2467.
7. Pan, W.; Thio, C. L.; Desu, S. B. *J. Mater. Res.* **1998**, *13*, 362.
8. Chung, C. *J. Vac. Sci. Technol.* **1998**, *B16*, 1894.
9. Pan, W.; Desu, S. B.; Yoo, I.K.; Vijay, D. *J. Mater. Res.* **1994**, *9*, 2976.
10. An, T.; Park, J.; Yeom, G.; Chang, E.; Kim, C. *Vac. Sci. Technol.* **2000**, *A18*, 1373.
11. Chung, C.; Kim, C. *Jap. J. Appl. Phys.* **1997**, *36*, 2747.
12. Yokoyama, S.; Ito, Y.; Ishihara, K.; et al. *Jap. J. Appl. Phys.* **1995**, *34*, 767.
13. Vijay, D.; Desu, S. B.; Pan, W. *J. Electrochem. Soc.* **1993**, *140*, 2635.
14. Saito, K.; Choi, J.; Fukuda, T.; Ohue, M. *Jap. J. Appl. Phys.* **1992**, *31*, L1260.
15. Lin, Y.; Liu, Q.; Tang, T.; Yao, X. *Appl. Surf. Sci.* **2000**, *165*, 34.
16. Lau, W. M.; Bello, I.; Sayer, M.; Zou, L. *Appl. Phys. Lett.* **1994**, *64*, 300.
17. Dana, S.S.; Etzold, K.F.; Clabes, J. *J. Appl. Phys.* **1991**, *69*, 4398.
18. Vasco, E.; Bohme, O.; Roman, E.; Zaldo, C. *Appl. Phys. Lett.* **2001**, *78*, 2037.
19. Qian, Z.; Xiao, D.; Zhu, J.; Li, Z.; Zuo, C. *J. Appl. Phys.* **1993**, *74*, 224.
20. Efremov, A. M.; Kim, D. P.; et al. *Plasma Chem.* **2004** *24* (1), 13-28.
21. Baborowski, J.; Muralt, P.; et al. *Integrated Ferroelectrics* **2000** *31* (1-4), 261-271.
22. Mace, H.; Achard, H.; Peccoud, L. *Microelectronic Eng.* **1995** *29* (1-4), 45-48.
23. Chung, C. W.; Byun, Y. H.; Kim, H. I. *Korean J. Chem. Eng.* **2002** *19* (3), 524-528.
24. Efremov, A. M.; Kim, D. P.; Kim, C. I. *Thin Solid Films* **2005** *474* (1-2), 267-274.

25. Tang, T.A.; Chen, Z.; Li, N.; et al. *Ferroelectrics* **1999**, *232* (1-4), 927-932.
26. McLane, G.; Polcawich, R.; et al. *Integrated Ferroelectrics* **2001**, *37* (1-4), 397-404.
27. Bale, M.; Palmer, R. E. *J. Vac. Sci. Tech. (B)* **2001**, *19* (6), 2020-2025.
28. Kim, S. J.; Hong, K. I.; Choi, D. K. *Jap. J. Appl. Phys.* **2003**, *42* (3), 1475-1478.
29. Shibata, T.; Unno, K.; et al. *Sensors and Actuators (A)* **2004**, *114* (2-3), 398-405.
30. Whatmore, R. W.; Landi, S.; Shaw, C. P.; et al. *Ferroelectrics* **2005**, *318*, 11-22.

Distribution List

ADMNSTR
DEFNS TECHL INFO CTR
ATTN DTIC-OCP (ELECTRONIC COPY)
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

DARPA
ATTN IXO S WELBY
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

OFC OF THE SECY OF DEFNS
ATTN ODDRE (R&AT)
THE PENTAGON
WASHINGTON DC 20301-3080

US ARMY RSRCH DEV AND ENGRG CMND
ARMAMENT RSRCH DEV AND ENGRG CTR
ARMAMENT ENGRG AND TECHNLGY CTR
ATTN AMSRD-AAR-AEF-T J MATTES
BLDG 305
ABERDEEN PROVING GROUND MD 21005-5001

US ARMY TRADOC
BATTLE LAB INTEGRATION & TECHL
DIRCTR
ATTN ATCD-B
10 WHISTLER LANE
FT MONROE VA 23651-5850

PM TIMS, PROFILER (MMS-P) AN/TMQ-52
ATTN B GRIFFIES
BUILDING 563
FT MONMOUTH NJ 07703

SMC/GPA
2420 VELA WAY STE 1866
EL SEGUNDO CA 90245-4659

US ARMY INFO SYS ENGRG CMND
ATTN AMSEL-IE-TD F JENIA
FT HUACHUCA AZ 85613-5300

COMMANDER
US ARMY RDECOM
ATTN AMSRD-AMR W C MCCORKLE
5400 FOWLER RD
REDSTONE ARSENAL AL 35898-5000

US ARMY RSRCH LAB
ATTN AMSRD-ARL-CI-OK-TP TECHL LIB
T LANDFRIED
BLDG 4600
ABERDEEN PROVING GROUND MD 21005-5066

US GOVERNMENT PRINT OFF
DEPOSITORY RECEIVING SECTION
ATTN MAIL STOP IDAD J TATE
732 NORTH CAPITOL ST., NW
WASHINGTON DC 20402

DIRECTOR
US ARMY RSRCH LAB
ATTN AMSRD-ARL-RO-EV W D BACH
PO BOX 12211
RESEARCH TRIANGLE PARK NC 27709

US ARMY RSRCH LAB
ATTN AMSRD-ARL-CI-OK-T
TECHL PUB (2 COPIES)
ATTN AMSRD-ARL-CI-OK-TL
TECHL LIB (2 COPIES)
ATTN AMSRD-ARL-D J M MILLER
ATTN AMSRD-ARL-SE-RL
E ZAKAR (10 COPIES)
ATTN AMSRD-ARL-SE-RL J COSTANZA
ATTN AMSRD-ARL-SE-RL M DUBEY
ATTN IMNE-ALC-IMS
MAIL & RECORDS MGMT
ADELPHI MD 20783-1197