# **DATA**

# **SCALING**

#### A Numerical Dataset

| object  | Height | Weight | Foot | Label                                                          |
|---------|--------|--------|------|----------------------------------------------------------------|
| $ x_i $ | (H)    | (W)    | (F)  | $\left  \begin{array}{c} \left( L \right) \end{array} \right $ |
| $x_1$   | 5.00   | 100    | 6    | green                                                          |
| $ x_2 $ | 5.50   | 150    | 8    | green                                                          |
| $x_3$   | 5.33   | 130    | 7    | green                                                          |
| $ x_4 $ | 5.75   | 150    | 9    | green                                                          |
| $x_5$   | 6.00   | 180    | 13   | red                                                            |
| $ x_6 $ | 5.92   | 190    | 11   | red                                                            |
| $x_7$   | 5.58   | 170    | 12   | red                                                            |
| $x_8$   | 5.92   | 165    | 10   | red                                                            |

- N = 8 items
- M = 3 (unscaled) attributes

7 8 5.92

#### Code for the Dataset

```
import pandas as pd
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label": ["green", "green", "green", "green",
                   "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                         "Foot", "Label"])
ipdb> data
 id Height Weight Foot Label
0 1 5.00
            100
                 6 green
1 2 5.50
            150
                 8 green
           130 7 green
2 3 5.33
           150 9 green
3 4 5.75
4 5 6.00
           180 13
                      red
5 6 5.92
           190 11 red
           170 12 red
6 7 5.58
```

165 10 red

# Need For Scaling

• features have different statistical distributions

```
>> features=data[["eight", "Weight", "Foot"]]
```

>> features.describe()

|       | Height   | Weight     | Foot     |  |
|-------|----------|------------|----------|--|
| count | 8.000000 | 8.000000   | 8.00000  |  |
| mean  | 5.625000 | 154.375000 | 9.50000  |  |
| std   | 0.343428 | 28.962722  | 2.44949  |  |
| min   | 5.000000 | 100.000000 | 6.00000  |  |
| 25%   | 5.457500 | 145.000000 | 7.75000  |  |
| 50%   | 5.665000 | 157.500000 | 9.50000  |  |
| 75%   | 5.920000 | 172.500000 | 11.25000 |  |
| max   | 6.000000 | 190.000000 | 13.00000 |  |

#### A Dataset Illustration



• many methods use "distance"

### A New Instance



$$(H=6, W=160, F=10) \rightarrow ?$$

### No Scaling

```
import pandas as pd
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label": ["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                           "Foot", "Label"])
X = data[["Height", "Weight"]].values
ipdb> X
array([[ 5. , 6. ],
      [ 5.5 , 8. ],
      [ 5.33, 7. ],
      [ 5.75, 9. ],
      [ 6. , 13. ],
      [ 5.92, 11. ],
      [ 5.58, 12. ],
      [ 5.92, 10. ]])
```

# No Scaling



- >> import numpy as np
  >> np.linalg.norm(X[1,:] X[2,:])
  1.01434708064
  >> np.linalg.norm(X[5,:] X[6,:])
- 1.05621967412
- unscaled  $d(x_2, x_3) \approx d(x_6, x_7)$

# Min-Max Scaling

```
import pandas as pd
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label":["green", "green", "green", "green",
                    "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                          "Foot", "Label"])
X = data[["Height", "Weight"]].values
Z = MinMaxScaler().fit_transform(X)
ipdb> Z
array([[ 0.
                , 0.
                , 0.28571429],
      Γ 0.5
                , 0.14285714],
      [ 0.33
      [0.75, 0.42857143],
           , 1.
      Γ1.
                           ],
      [0.92, 0.71428571],
             , 0.85714286],
      [ 0.58
      Γ 0.92
             , 0.57142857]])
```

# Min-Max Scaling



- >> import numpy as np
- >> np.linalg.norm(Z[1,:] Z[2,:])
- 0.2220544151
- >> np.linalg.norm(Z[5,:] Z[6,:])
- 0.368792846006

• min-max 
$$d(x_2^*, x_3^*) < d(x_6^*, x_7^*)$$

# Standard Scaling

```
import pandas as pd
data = pd.DataFrame(
 {"id":[1,2,3,4,5,6,7,8],}
  "Label":["green", "green", "green", "green",
                     "red", "red", "red", "red"],
  "Height": [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
  "Weight": [100,150,130,150,180,190,170,165],
  "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
  columns = ["id", "Height", "Weight",
                            "Foot"."Label"])
X = data[["Height", "Weight"]].values
Z = StandardScaler().fit_transform(X)
ipdb> Z
array([[-1.94554002, -1.52752523],
      [-0.389108, -0.65465367],
      [-0.91829489, -1.09108945],
      [0.389108, -0.21821789],
      [ 1.16732401, 1.52752523],
      [ 0.91829489, 0.65465367],
      [-0.14007888, 1.09108945],
      [ 0.91829489, 0.21821789]])
```

# Standard Scaling



- >> import numpy as np
  >> np.linalg.norm(Z[1,:] Z[2,:])
  0.685940923233
  >> np.linalg.norm(Z[5,:] Z[6,:])
- 1.14482803479
- standard  $d(x_2^{**}, x_3^{**}) < d(x_6^{**}, x_7^{**})$

# Effect of Scaling





- no scaling:  $d(x_2, x_3) \approx d(x_6, x_7)$
- scaled:  $d(x_2, x_3) > d(x_6, x_7)$

# Concepts Check:

- (a) need for scaling
- (b) min-max scaling
- (c) standard scaling