Models of Sequential Data 2023

Final project

Adversarial Attack on Time Series

Alina Bogdanova, Nikita Ligostaev, Anastasia Sozykina, Matvey Skripkin

<u>TA</u>:

Petr Sokerin

October 17, 2023

Problem Statement

Problem we solve: developing a concealed adversarial attack for time series classification models to evade easy detection by discriminators

Fig 1. Example of adversarial attack that can be easily detected by discriminator

Adversarial attacks in different domains

 Adversarial attacks include a wide range of techniques that perturb input data in order to cause misclassification or degrade model performance.

Fig 2. Adversarial attacks on image classification 1

Fig 3. Adversarial attacks on time series classification ${\scriptstyle 2}$

¹ https://arxiv.org/abs/1412.6572

² https://link.springer.com/article/10.1007/s10618-019-00619-1

Motivation

- Adversarial attacks in time-series domain is not well-studied.
- Time series classification might have crucial impact in industry.

Idea description

- How to apply special hidden method of adversarial attacks to different time series
 Neural Networks that it could not be easily detected by special classificator model?
- Goal of the project is to apply such hidden method of adversarial attacks to time series models and estimate the hiddenness and effectiveness of the attack.

Effectiveness:

1 - accuracy of attacked model on perturbed data

- Concealability:
- 1 accuracy of discriminator

Adversarial attack methods

IFGSM

Algorithm 1 Iterative Fast Gradient Sign Method (IFGSM) for Binary Classifier (Kurakin et al., 2018) ¹

Require: Time series X, classifier f, maximum iterations T, step size α .

Ensure: Perturbation \hat{r} .

- 1: Initialize $X_0 \leftarrow X$, $i \leftarrow 0$.
- 2: while i < T do
- 3: Compute gradient: $\nabla J(X_i, Y)$ where J is the loss function and Y is the target class.
- 4: Perturb time series: $X_{i+1} \leftarrow X_i + \alpha \cdot \operatorname{sign}(\nabla J(X_i, Y))$.
- 5: Clip perturbation: $X_{i+1} \leftarrow \text{clip}(X_{i+1}, X \epsilon, X + \epsilon)$, where ϵ is a bound on the perturbation.
- 6: $i \leftarrow i+1$
- 7: end while
- 8: **return:** $\hat{r} = X_T X$.

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \epsilon \operatorname{sign}\left(\nabla_{\mathbf{x}}J(\theta, \mathbf{x}^{(t)}, y)\right)$$

¹ https://arxiv.org/pdf/1607.02533.pdf

Adversarial attack methods

DeepFool

Algorithm 2 DeepFool for Binary Classifier (Moosavi-Dezfooli et al., 2016) ¹

Require: Time series X, classifier f.

Ensure: Perturbation \hat{r} .

1: Initialize $X_0 \leftarrow X$, $i \leftarrow 0$.

2: while $sign(f(X_i)) = sign(f(X_0))$ do

3: $\|\nabla f(X_i)\|^2$

4: $X_{i+1} \leftarrow X_i + r_i$

5: $i \leftarrow i + 1$

6: end while

7: **return:** $\hat{r} = \Pi r_i$.

$$f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^T (\boldsymbol{x} - \boldsymbol{x}_0)$$

¹ https://arxiv.org/pdf/1511.04599.pdf

Proposed method

Add regularization

IFGSM with regularization:

$$\boldsymbol{x}^{(t+1)} = \boldsymbol{x}^{(t)} + \epsilon \operatorname{sign} \left(\nabla_{\boldsymbol{x}} (J(\theta, \boldsymbol{x}^{(t)}, y) - \frac{\lambda}{k} \sum_{i=1}^{k} \log(D_i(\boldsymbol{x}^{(t)}))) \right)$$

Where:

Regularization with **discriminator models**

 λ – regularization parameter

Di - Discriminator i

k – number of discriminators

Deepfool with regularization:

Iteration of Deepfool attack -> Step of gradient descent for discriminator loss

Pipeline

Conducted experiments

Ford-A dataset

Task: binary classification

Background: sounds of automobiles

Class balanced: balanced

Number of dims: single dimension

time-series

Number objects: 3601 train, 1320 test

Length of sequence: 500

Fig 4. Sample of FordA dataset.

Orange time series - 1 class, dark blue time series - 0 class.

Obtained Results. Adversarial attack methods

The relationship between accuracy and the epsilon parameter in TimesNet model with applied IFGSM adversarial attack. As epsilon increases, more perturbations are introduced into the data. Consequently, the quality of the model decreases due to the greater impact of these perturbations on its performance.

The relationship between accuracy and the epsilon parameter in TimesNet model with applied DeepFool adversarial attack. Increasing the value of epsilon in DeepFool does not necessarily make the adversarial attack more potent as in IFGSM.

Obtained Results. Adversarial attack methods DeepFool

The relationship between accuracy and the epsilon parameter in TimesNet and LSTM FCN models with applied DeepFool adversarial attack.

Obtained Results. IFGSM, different epsilon

Obtained Results. DeepFool, different epsilon

Obtained Results. IFGSM, no regularization

Table 1. Series of experiments on IFGSM adversarial attack without regularization.

MODEL	DISCRIMINATOR	ϵ	MAX_ITER	CONCEALABILITY	EFFECTIVENESS
TIMESNET	TIMESNET	0.9	10	0.008	1.0000
TIMESNET	TIMESNET	0.8	10	0.0174	1.0000
TIMESNET	TIMESNET	0.7	10	0.1030	1.0000
TIMESNET	TIMESNET	0.6	10	0.4197	1.0000
TIMESNET	TIMESNET	0.5	10	0.8750	1.0000
LSTM FCN	LSTM FCN	0.9	10	0.000	0.9871
LSTM FCN	LSTM FCN	0.8	10	0.000	0.9864
LSTM FCN	LSTM FCN	0.7	10	0.0182	0.9856
LSTM FCN	LSTM FCN	0.6	10	0.1515	0.9848
LSTM FCN	LSTM FCN	0.5	10	0.3212	0.9818

Obtained Results. IFGSM, with regularization

Table 2. Series of experiments on IFGSM adversarial attack with regularization.

MODEL	DISCRIMINATOR	$ $ ϵ	MAX_ITER	λ	CONCEALABILITY	EFFECTIVENESS
TIMESNET	TIMESNET	0.9	10	0.005	0.7402	0.7409
TIMESNET	TIMESNET	0.8	10	0.005	0.8780	0.7591
TIMESNET	TIMESNET	0.7	10	0.005	0.9432	0.7530
TIMESNET	TIMESNET	0.6	10	0.005	0.9909	0.7455
TIMESNET	TIMESNET	0.5	10	0.005	0.9992	0.7182
LSTM FCN	LSTM FCN	0.9	10	0.01	0.7750	0.9061
LSTM FCN	LSTM FCN	0.8	10	0.01	0.7962	0.9061
LSTM FCN	LSTM FCN	0.7	10	0.01	0.8008	0.9197
LSTM FCN	LSTM FCN	0.6	10	0.01	0.8061	0.9288
LSTM FCN	LSTM FCN	0.5	10	0.01	0.8447	0.9326

 Proposed regularization allowed to increase concealability with a slight decrease in effectiveness.

Obtained Results. IFGSM, with regularization, different number of discriminators

Table 3. Series of experiments on IFGSM adversarial attack with regularization using different number of discriminators.

MODEL	DISCRIMINATOR	ϵ	NUMBER OF DISCRIMI- NATORS	λ	CONCEALABILITY	Effectiveness
TIMESNET	TIMESNET	0.9	5	0.005	0.7492	0.7553
TIMESNET	TIMESNET	0.8	5	0.005	0.8386	0.7576
TIMESNET	TIMESNET	0.9	4	0.005	0.7515	0.7492
TIMESNET	TIMESNET	0.8	4	0.005	0.8439	0.7508
TIMESNET	TIMESNET	0.9	3	0.005	0.7394	0.7409
TIMESNET	TIMESNET	0.8	3	0.005	0.8235	0.7402
TIMESNET	TIMESNET	0.9	2	0.005	0.7720	0.7583
TIMESNET	TIMESNET	0.8	2	0.005	0.8508	0.7583
TIMESNET	TIMESNET	0.9	1	0.005	0.7894	0.7568
TIMESNET	TIMESNET	0.8	1 1	0.005	0.8780	0.7591
LSTM FCN	LSTM FCN	0.9	3	0.01	0.7750	0.9061
LSTM FCN	LSTM FCN	0.9	2	0.03	0.8841	0.9227
LSTM FCN	LSTM FCN	0.9	1	0.05	0.8417	0.8894

Obtained Results. DeepFool, no regularization

Table 4. Series of experiments on DeepFool adversarial attack without regularization.

MODEL	DISCRIMINATOR	ϵ	MAX_ITER	CONCEALABILITY	EFFECTIVENESS
TIMESNET	TIMESNET	0.001	10	0.112	0.9114
TIMESNET	TIMESNET	0.005	10	0.205	0.9174
TIMESNET	TIMESNET	0.01	10	0.172	0.9273
TIMESNET	TIMESNET	0.02	10	0.210	0.9098
TIMESNET	TIMESNET	0.04	10	0.263	0.9136
LSTM FCN	LSTM FCN	0.001	10	0.1424	0.7515
LSTM FCN	LSTM FCN	0.005	10	0.1523	0.7644
LSTM FCN	LSTM FCN	0.01	10	0.1598	0.7652
LSTM FCN	LSTM FCN	0.02	10	0.1341	0.7477
LSTM FCN	LSTM FCN	0.04	10	0.1371	0.7485

Obtained Results. DeepFool, with regularization

Table 5. Series of experiments on DeepFool adversarial attack with regularization.

MODEL	DISCRIMINATOR	ϵ	MAX_ITER	λ	CONCEALABILITY	EFFECTIVENESS
TIMESNET	TIMESNET	0.001	10	0.005	0.6349	0.7342
TIMESNET	TIMESNET	0.005	10	0.005	0.6389	0.6293
TIMESNET	TIMESNET	0.01	10	0.005	0.8255	0.6365
TIMESNET	TIMESNET	0.02	10	0.005	0.6010	0.5237
TIMESNET	TIMESNET	0.04	10	0.005	0.5290	0.5382
LSTM FCN	LSTM FCN	0.001	10	0.01	0.5382	0.4299
LSTM FCN	LSTM FCN	0.005	10	0.01	0.6200	0.3726
LSTM FCN	LSTM FCN	0.01	10	0.01	0.5038	0.3845
LSTM FCN	LSTM FCN	0.02	10	0.01	0.4638	0.4583
LSTM FCN	LSTM FCN	0.04	10	0.01	0.4227	0.3673

Obtained Results. DeepFool, with regularization, different number of discriminators

Table 6. Series of experiments on DeepFool adversarial attack with regularization using different number of discriminators.

MODEL	DISCRIMINATOR	ϵ	NUMBER OF DISCRIMI- NATORS	λ	CONCEALABILITY	EFFECTIVENESS
TIMESNET	TIMESNET	0.01	5	0.005	0.6273	0.4280
TIMESNET	TIMESNET	0.01	4	0.005	0.5923	0.4733
TIMESNET	TIMESNET	0.01	3	0.005	0.5977	0.4956
LSTM FCN	LSTM FCN	0.01	5	0.01	0.6378	0.4037
LSTM FCN	LSTM FCN	0.01	4	0.01	0.6239	0.3929
LSTM FCN	LSTM FCN	0.01	3	0.01	0.6328	0.3446

Obtained Results. Comparison of data samples TimesNet - TimesNet without regularization

Obtained Results. Comparison of data samples TimesNet - TimesNet with regularization

Obtained Results. Comparison of data samples LSTM FCN - LSTM FCN without regularization

Obtained Results. Comparison of data samples LSTM FCN - LSTM FCN with regularization

Conclusion

- A method of adversarial attack on time series classification was developed,
- Adversarial attack on time series models with regularization improved concealability with remaining high effectiveness,
- Deepfool performs better with TimesNet architecture than LSTM-FCN (with and without regularization),
- IFGSM performs better on TimesNet without regularization and on LSTM-FCN with regularization,
- Extensive simulations on real-world dataset confirm effectiveness of proposed method,
- To achieve good quality extensive search of hyperparameters is required

Contributions

Alina Bogdanova

- Implemented DeepFool on Pytorch
- Implemented discriminator regularization procedure for DeepFool on Pytorch
- Prepared the Final Report
- Prepared the presentation
- Prepared GitHub repository

Nikita Ligostaev

- Implemented FGSM, IFGSM on PyTorch
- Prepared the Final Report
- Prepared the presentation
- Prepared GitHub repository

Anastasia Sozykina

- Conducting experiments with TimeNet and LSTM-FCN models
- -Preparing the Final Report
- Preparing the presentation
- Preparing GitHub repository

Matvey Skripkin

- Implemented pipeline for experiments on PyTorch
- Implemented LSTM FCN on PyTorch
- Implemented discriminator regularization procedure for IFGSM on Pytorch
- Preparing GitHub repository