Combo 6

2 de julio de 2024

1. Lema 11: Efectivamente computable implica efectivamente enumerable

1.1. Enunciado

Si $S\subseteq \omega^n\times \Sigma^{*m}$ es Σ -efectivamente computable entonces S es Σ -efectivamente enumerable.

1.2. Demostración

El caso $S = \emptyset$ es trivial. Supongamos $S \neq \emptyset$.

Sea $(\vec{z}, \vec{\gamma}) \in S$, fijo. Sea $\mathbb P$ un procedimiento efectivo que compute a $\chi_S^{\omega^n \times \Sigma^{*m}}$. Sea $\mathbb P_1$ un procedimiento efectivo que enumere a $\omega^n \times \Sigma^{*m}$. Entonces el siguiente procedimiento $\mathbb Q$ enumera a S:

Etapa1 Realizar \mathbb{P}_1 con x de entrada para obtener como salida un $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$.

Etapa2 Realizar \mathbb{P} con $(\vec{x}, \vec{\alpha})$ de entrada para obtener el valor Booleano e de salida.

Etapa3 Si e = 1 dar como dato de salida $(\vec{x}, \vec{\alpha})$. Si e = 0 dar como dato de salida $(\vec{z}, \vec{\gamma})$.

Luego, solo nos queda demostrar que $\mathbb Q$ enumera a S. Para ello, por lema sabemos que se tiene que cumplir que:

- (1) El conjunto de datos de entrada de \mathbb{Q} es ω
- (2) \mathbb{Q} se detiene para cada $x \in \omega$
- (3) El conjunto de datos de salida de \mathbb{Q} es igual a S. (Es decir, siempre que \mathbb{Q} se detiene, da como salida un elemento de S, y para cada elemento $(\vec{x}, \vec{\alpha}) \in S$, hay un $x \in \omega$ tal que \mathbb{Q} da como salida a $(\vec{x}, \vec{\alpha})$ cuando lo corremos con x como dato de entrada)

Veamos cada punto:

- (1) Es trivial de ver.
- (2) Es trivial de ver dado que \mathbb{P}_1 y \mathbb{P} siempre se detienen.
- (3) Para este punto, tenemos que ver los dos casos:
 - a) Sea $x \in \omega$, entonces \mathbb{Q} se detiene y da como salida $s \in S$ cuando se corre con x como entrada: Esto se puede comprobar notando que si se devuelve $(\vec{x}, \vec{\alpha})$, entonces e = 1, lo que significa que $\chi_S^{\omega^n \times \Sigma^{*m}}((\vec{x}, \vec{a})) = 1$, lo que implica que $(\vec{x}, \vec{\alpha}) \in S$. Caso contrario, se da como salida $(\vec{z}, \vec{\gamma})$, el cual está en S por cómo lo definimos.
 - b) Sea $s \in S, \exists x \in \omega$ tal que \mathbb{Q} da como salida a s cuando lo corremos con x como dato de entrada: Como \mathbb{P}_1 enumera a $\omega^n \times \Sigma^{*m}$, entonces $\exists y \in \omega$ tal que \mathbb{P}_1 se detiene y da como salida s cuando se corre con y como dato de entrada. Luego, es claro notar que si se corre \mathbb{Q} con y como dato de entrada, e = 1 y, por lo tanto, se detiene y devuelve

Luego, entonces, por Lema tenemos que $\mathbb Q$ enumera a S, por lo que S es Σ -efectivamente enumerable. \blacksquare

2. Teorema 12 (Caracterización de conjuntos r.e.)

2.1. Enunciado

Dado $S \subseteq \omega^n \times \Sigma^{*m}$, son equivalentes

- (1) S es Σ -recursivamente enumerable
- (2) $S=I_F$, para alguna $F:D_F\subseteq\omega^k\times\Sigma^{*l}\to\omega^n\times\Sigma^{*m}$ tal que cada $F_{(i)}$ es Σ -recursiva.
- (3) $S = D_f$, para alguna funcion Σ -recursiva f

Nota: haga solo la prueba de $(2) \Rightarrow (3)$, caso k = l = 1 y n = m = 2.

2.2. Demostración de $(2) \Rightarrow (3)$ con k = l = 1 y n = m = 2

Tenemos que $S\subseteq \omega^2\times \Sigma^{*2}$ y $F:D_F\subseteq \omega\times \Sigma^*\to \omega^2\times \Sigma^{*2}$ es tal que $I_F=S$ y $F_{(1)},\ F_{(2)},\ F_{(3)},\ F_{(4)}$ son Σ -recursivas. Para cada $i\in\{1,2,3,4\}$, sea \mathcal{P}_i un programa el cual computa a $F_{(i)}$. Sea \leq un orden total sobre Σ . Definamos

$$H_i = \lambda t x_1 \alpha_1 \left[\neg Halt^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Notar que $D_{H_i} = \omega^2 \times \Sigma^*$ y que H_i es Σ -mixta. Ademas sabemos que la funcion $Halt^{1,1}$ es $(\Sigma \cup \Sigma_p)$ -p.r. por lo cual resulta facilmente que H_i es $(\Sigma \cup \Sigma_p)$ -p.r.. Por la Proposicion de Independencia del Alfabeto tenemos que H_i es Σ -p.r.. Entonces H_i es Σ -computable por lo cual tenemos que hay un macro:

[IF
$$H_i(V2, V1, W1)$$
 GOTO A1]

Para hacer mas intuitivo el uso de este macro lo escribiremos de la siguiente manera

[IF
$$\neg Halt^{1,1}(V2, V1, W1, \mathcal{P}_i)$$
 GOTO A1]

Para i = 1, 2, definamos

$$E_i = \lambda x t x_1 \alpha_1 \left[x \neq E_{\#1}^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Para i = 3, 4, definamos

$$E_i = \lambda t x_1 \alpha_1 \alpha \left[\alpha \neq E_{*1}^{1,1}(t, x_1, \alpha_1, \mathcal{P}_i) \right]$$

Como estas son iguales a:

$$E_i = \lambda xy \left[x \neq y \right] \circ \left[p_1^{3,1}, E_{\#1}^{1,1} \circ \left[p_2^{3,1}, p_3^{3,1}, p_4^{3,1}, C_{\mathcal{P}_i}^{3,1} \right] \right]$$

$$E_i = \lambda \alpha \beta \left[\alpha \neq \beta \right] \circ \left[p_4^{2,2}, E_{*1}^{1,1} \circ \left[p_1^{2,2}, p_2^{2,2}, p_3^{2,2}, C_{\mathcal{P}_i}^{2,2} \right] \right]$$

Y como $E_{\#1}^{1,1}$, $E_{*1}^{1,1}$, $C_{\mathcal{P}_i}^{3,1}$ y $C_{\mathcal{P}_i}^{2,2}$ son $(\Sigma \cup \Sigma_p)$ -p.r., tenemos que las funciones E_i son $(\Sigma \cup \Sigma_p)$ -p.r.. Ahora, por independencia del alfabeto, tenemos que son Σ -p.r.. Esto significa que son Σ -computables por lo cual para cada $i \in \{1,2\}$ hay un macro

[IF
$$E_i(V2, V3, V1, W1)$$
 GOTO A1]

y para cada $i \in \{3, 4\}$ hay un macro

[IF
$$E_i(V2, V1, W1, W2)$$
 GOTO A1]

Haremos mas intuitiva la forma de escribir estos macros, por ejemplo para i=1, lo escribiremos de la siguiente manera

Ya que la funcion $f = \lambda x[(x)_1]$ es Σ -p.r., ella es Σ -computable por lo cual hay un macro

$$[\text{V2} \leftarrow f(\text{V1})]$$

el cual escribiremos de la siguiente manera:

$$[V2 \leftarrow (V1)_1]$$

Similarmente hay macros:

$$[W1 \leftarrow *^{\leq}(V1)_3]$$

$$[V2 \leftarrow (V1)_2]$$

Sea \mathcal{P} el siguiente programa de \mathcal{S}^{Σ} :

```
\begin{array}{l} \text{L1 N20} \leftarrow \text{N20} + 1 \\ [\text{N10} \leftarrow (\text{N20})_1] \\ [\text{N3} \leftarrow (\text{N20})_2] \\ [\text{P3} \leftarrow *^{\leq} (\text{N20})_3] \\ [\text{IF} \neg Halt^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_1) \text{ GOTO L1}] \\ [\text{IF} \neg Halt^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_2) \text{ GOTO L1}] \\ [\text{IF} \neg Halt^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_3) \text{ GOTO L1}] \\ [\text{IF} \neg Halt^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_4) \text{ GOTO L1}] \\ [\text{IF} \text{N1} \neq E_{\#1}^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_4) \text{ GOTO L1}] \\ [\text{IF} \text{N2} \neq E_{\#1}^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_2) \text{ GOTO L1}] \\ [\text{IF} \text{P1} \neq E_{*1}^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_3) \text{ GOTO L1}] \\ [\text{IF} \text{P2} \neq E_{*1}^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_4) \text{ GOTO L1}] \\ [\text{IF} \text{P2} \neq E_{*1}^{1,1}(\text{N10}, \text{N3}, \text{P3}, \mathcal{P}_4) \text{ GOTO L1}] \\ \end{array}
```

Tenemos que demostrar que este programa computa a $p_1^{2,2}|_S$, lo que es equivalente a demostrar que $p_1^{2,2}|_S = \Psi_{\mathcal{P}}^{2,2,\#}$, Para ello, veamos los casos:

- $D_{p_1^{2,2}|_S} = D_{\Psi_{\mathcal{P}}^{2,2,\#}}$: Es fácil de ver notando que $D_{p_1^{2,2}|_S} = S$ por la clausura y $D_{\Psi_{\mathcal{P}}^{2,2,\#}} = S$ dado que, en otro caso, no se detiene porque \mathcal{P}_i computa $F_{(i)}$ y siempre algún predicado daría 1 (Halt).
- $\forall (x,y,\alpha,\beta) \in S, p_1^{2,2}|_S((x,y,\alpha,\beta)) = \Psi_{\mathcal{P}}^{2,2,\#}((x,y,\alpha,\beta))$: Claramente $p_1^{2,2}|_S((x,y,\alpha,\beta)) = x$, por lo que se reduce a comprobar que $\Psi_{\mathcal{P}}^{2,2,\#}((x,y,\alpha,\beta)) = x$. Para ello, nos concentremos en el programa \mathcal{P} . Como $(x,y,\alpha,\beta) \in S$, entonces sabemos que $\exists k \in N : F((k)_1, *\leq (k)_2) = (x,y,\alpha,\beta)$, Digamos, ahora, que con p pasos todos los programas \mathcal{P}_i se detuvieron para el estado inicial $||(k)_1, *\leq (k)_2||$, entonces se puede notar que \mathcal{P} se detiene y el valor almacenado en N1 será x para el estado inicial $||2^p3^{(k)_1}5^{(k)_2}||$.

Luego, se demuestra que \mathcal{P} computa a $p_1^{2,2}|_S$, por lo que es Σ -computable. Esto implica que es Σ -recursiva, lo cual prueba (3) dado que $Dom(p_1^{2,2}|_S) = S$.