

of brazed metal. This alloy becomes very fine and the amount of gases released from the brazed metal when solidifying can be reduced by adding Si, Pb or Mg. The roughness of the surface of the brazed metal is also reduced.

FS CPI GMPI
FA AB
MC CPI: M23-A01; M26-B01; M26-B01C

L1 ANSWER 4 OF 5 WPIDS COPYRIGHT 1997 DERWENT INFORMATION LTD
AN 81-80793D [44] WPIDS
TI Silver based electrical contact - is eutectic alloy contg. silicon and/or germanium, pref. together with other metals.
DC L03 M26
PA (NITE) NIPPON TELEGRAPH & TELEPHONE CORP
CYC 1
PI JP 56119747 A 810919 (8144)* 8 pp <--
PRAI JP 80-21576 800225
IC C22C005-06; C22F001-14; H01H001-02
AB JP56119747 A UPAB: 930915

An electric contact material is prepared by internal oxidn. in a high pressure O₂-contg. atmosphere of a eutectic Ag alloy containing Si and/or Ge 1-17 atom %. The Ag alloy may contain one or more of Au, Pt, Pd, Rh, Ru, Os and Ir 1-10 atom % in total. The Ag alloy may also contain one or more of Re, Ti, V, Ta, Mo, Nb and Zr 1-5 atom % in total. The Ag alloy may also contain one or more of Fe, Co, Ni and Cu 1-5 atom % in total. The Ag alloy is hot or cold worked, and then heated to a temp. from 250 deg.C to the eutectic point in a high pressure O₂-contg. atmosphere.

The electric contact material shows extremely stable contact resistance properties under conditions of low contact pressure and slight load for communication use, and also shows excellent resistance to fusion, corrosion and abrasion caused by spark discharge. The heating in the high pressure O₂-contg. atmosphere assures complete internal oxidn. of the Ag alloy, so that the internally oxidised alloy does not deteriorate in properties even after being plastically deformed.

FS CPI
FA AB
MC CPI: L03-A01A; M26-B01; M29-D

L1 ANSWER 5 OF 5 WPIDS COPYRIGHT 1997 DERWENT INFORMATION LTD
AN 77-24286Y [14] WPIDS
TI Wear-resistant silver oxide system electrical contact compsn. - obtd. by internal oxidn. of silver-indium-tin-copper-zinc alloy contg. one or more other given metals.
DC L03 M26 X12 X13
PA (TANI) TANAKA KIKINZOKU KK
CYC 1
PI JP 52023660 A 770222 (7714)* <--
PRAI JP 75-93947- 750818
IC C22C005-06; H01B001-02; H01H001-02
AB JP52023660 A UPAB: 930901
The contact, for use in an electromagnetic switch, is formed by internal oxidn. of Ag-In-Sn-Cu-Zn alloy which contains (wt.%) 1-7 In, 1-7 Cu, 1-5 Sn, 1-4 Zn, and the rest of Ag, where the total of In, Cu, Sn and Zn is below 15. The alloy further contains 0.7 of at least one metal from Ca, Ce, Co, Fe, Ga, La, Al, Sr, Ti, Li, Mg, Ni, Mn and Ge.

The contact has high wear durability and high fusion resistance.

FS CPI EPI
FA AB
MC CPI: L03-A01A; L03-B04; M26-B01; M29-D

BEST AVAILABLE COPY

⑫ 公開特許公報 (A)

昭56-119747

⑬ Int. Cl.³
 C 22 C 5/06
 C 22 F 1/14
 // H 01 H 1/02

識別記号

序内整理番号
 7920-4K
 7109-4K
 6708-5G

⑭ 公開 昭和56年(1981)9月19日
 発明の数 12
 審査請求 有
 (全 8 頁)

⑮ 電気接点材料及びその製造法

⑯ 特 願 昭55-21576

⑰ 出 願 昭55(1980)2月25日

⑱ 発明者 鶴見重行

茨城県那珂郡東海村大字白方字
 白根162番地日本電信電話公社
 茨城電気通信研究所内

⑲ 発明者 山内五郎

武蔵野市緑町3丁目9番11号日
 本電信電話公社武蔵野電気通信
 研究所内

⑳ 発明者 有田紀史雄

茨城県那珂郡東海村大字白方字

白根162番地日本電信電話公社
 茨城電気通信研究所内

㉑ 発明者 藤原幸一

茨城県那珂郡東海村大字白方字
 白根162番地日本電信電話公社
 茨城電気通信研究所内

㉒ 発明者 竹内善明

茨城県那珂郡東海村大字白方字
 白根162番地日本電信電話公社
 茨城電気通信研究所内

㉓ 出願人 日本電信電話公社

㉔ 代理人 弁理士 光石士郎 外1名
 最終頁に続く

明細書

1. 発明の名称

電気接点材料及びその製造法

2. 特許請求の範囲

(1) Si, Geの一種以上を全浴質濃度で1~17原子%含有する銀系共晶合金に副添加元素としてAu, Pt, Pd, Rh, Ru, Os, Irの一種以上を1~10原子%添加し、更に行加元素としてRe, Ti, V, W, Ta, Mo, Nb, Zrの一種以上を1~5原子%添加し、高圧酸素雰囲気中で内部酸化したことを特徴とする電気接点材料。

(2) Si, Geの一種以上を全浴質濃度で1~17原子%含有する銀系共晶合金に副添加元素としてAu, Pt, Pd, Rh, Ru, Os, Irの一種以上を1~10原子%添加し、高圧酸素雰囲気中で内部酸化したことを特徴とする電気接点材料。

(3) Si, Geの一種以上を全浴質濃度で1~17原子%含有する銀系共晶合金に付加元素としてRe, Ti, V, W, Ta, Mo, Nb, Zrの一種以上を1~5原子%添加し、高圧酸素雰囲気中で内部酸化したことを特徴とする電気接点材

料。

(4) Si, Geの一種以上を全浴質濃度で1~17原子%含有する銀系共晶合金に副添加元素としてAu, Pt, Pd, Rh, Ru, Os, Irの一種以上を1~10原子%添加し、更に行加元素としてRe, Ti, V, W, Ta, Mo, Nb, Zrの一種以上を1~5原子%添加し、高圧酸素雰囲気中で内部酸化したことを特徴とする電気接点材料。

(5) Si, Geの一種以上を全浴質濃度で1~17原子%含有する銀系共晶合金に付加元素としてFe, Co, Ni, Cuの一種を1~5原子%添加し、高圧酸素雰囲気中で内部酸化したことを特徴とする電気接点材料。

(6) Si, Geの一種以上を全浴質濃度で1~17原子%含有する銀系共晶合金に副添加元素としてAu, Pt, Pd, Rh, Ru, Os, Irの一種以上を1~10原子%添加し、更に行加元素としてFe, Co, Ni, Cuの一種を1~5原子%添加し、高圧酸素雰囲気中で内部酸化したことを

共晶温度までの温度範囲にて高圧酸素雰囲気中で内部酸化させることを特徴とする電気接点材料の製造法。

(7) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金を熱間あるいは冷間で加工し、次いで 250°C から共晶温度までの温度範囲にて高圧酸素雰囲気中で内部酸化させることを特徴とする電気接点材料の製造法。

(8) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金に副添加元素として $\text{Au}, \text{Pt}, \text{Pd}, \text{Rh}, \text{Ru}, \text{Os}, \text{Ir}$ の一種以上を $1 \sim 10$ 原子%添加してなる合金材料を熱間あるいは冷間で加工し、次いで 250°C から共晶温度までの温度範囲にて高圧酸素雰囲気中で内部酸化させることを特徴とする電気接点材料の製造法。

(9) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金に付加元素として $\text{Re}, \text{Ti}, \text{V}, \text{W}, \text{Ta}, \text{Mo}, \text{Nb}, \text{Zr}$ の一種以上を $1 \sim 5$ 原子%添加してなる合金材料を熱間あるいは冷間で加工し、次いで 250°C から

(10) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金に付加元素として $\text{Fe}, \text{Co}, \text{Ni}, \text{Cu}$ の一種を $1 \sim 5$ 原子%添加してなる合金材料を熱間あるいは冷間で加工し、次いで 250°C から共晶温度までの温度範囲にて高圧酸素雰囲気中で内部酸化させることを特徴とする電気接点材料の製造法。

これらの接点では、低接觸力条件下で使用する場合には純酸素中でも接触抵抗が 1Ω 以上に増大する欠点があり、しかも Rh, Au が高価な材料であることからスイッチのコストも高いという欠点があつた。

これに対し、内部酸化型接点材料として α 型固溶合金が知られており典型的なものとして $\text{Ag}-\text{CdO}$ 接点があるが、これは接触抵抗が不安定であるという欠点があつた。また α 型固溶合金では、内部酸化が材料表面からの酸素の拡散と、溶質元素の材料表面方向への拡散により行なわれるため、酸化物の分散状態は材料表面が密で材料内部が粗となる結果、機械的摩耗や放電消耗により接点性能が劣化してしまうのである。なお、酸化物を均一に分散させることをねらいとした焼結接点材料も知られているが、数mm以下の微細分散が困難であり、接觸抵抗特性や耐粘着性等が不安定であるという欠点があつた。

そこで従来、上記欠点を改善した接点材料として大気中で内部酸化して得られる共晶型の Ag

特徴とする電気接点材料。

(7) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金を熱間あるいは冷間で加工し、次いで 250°C から共晶温度までの温度範囲にて高圧酸素雰囲気中で内部酸化させることを特徴とする電気接点材料の製造法。

(8) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金に副添加元素として $\text{Au}, \text{Pt}, \text{Pd}, \text{Rh}, \text{Ru}, \text{Os}, \text{Ir}$ の一種以上を $1 \sim 10$ 原子%添加してなる合金材料を熱間あるいは冷間で加工し、次いで 250°C から共晶温度までの温度範囲にて高圧酸素雰囲気中で内部酸化させることを特徴とする電気接点材料の製造法。

(9) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金に付加元素として $\text{Re}, \text{Ti}, \text{V}, \text{W}, \text{Ta}, \text{Mo}, \text{Nb}, \text{Zr}$ の一種以上を $1 \sim 5$ 原子%添加してなる合金材料を熱間あるいは冷間で加工し、次いで 250°C から

(10) $81, Ge$ の一種以上を全溶質濃度で $1 \sim 17$ 原子%含有する銀系共晶合金に付加元素として $\text{Fe}, \text{Co}, \text{Ni}, \text{Cu}$ の一種を $1 \sim 5$ 原子%添加してなる合金材料を熱間あるいは冷間で加工し、次いで 250°C から共晶温度までの温度範囲にて高圧酸素雰囲気中で内部酸化させることを特徴とする電気接点材料の製造法。

3. 詳説を説明

本発明は、従来の電気接点材料に比べ、通信用の低接觸力及び軽負荷の条件下で極めて安定な接觸抵抗特性を有する電気接点材料及びその製造法に関するものである。また、上記特性を有しながら、更に耐粘着性、耐食性、耐放電消耗性、大電流用の負荷条件下での耐溶着性についても優れた特性を有する電気接点材料及びその製造法に関するものである。

通信用の封入スイッチとして、従来から Rh メッキ接点、 Au メッキ拡散接点がある。しかしこ

性、耐食性を維持せることにある。以下、本発明を詳細に説明する。

ところで、一般に接点材料は何らかの形状に加工して使用する場合が多い。株式会社日立製作所の接点は、Pd系合金等の接点材料をベース材の上に薄膜化してクラッドして用いることが多い。そこで大気中で均器酸化したAg-Bi系内部酸化接点材料をベース材にクラッドした場合には、前述の如く薄いBi₁₀で表面が覆われたBiが分散していることから、加工によつてBi₁₀が磨かれてしまい内部酸化効果が減少するのである。この欠点を解消するためには、分散されているBiをその均一分散状態を変えることなく、全てBi₁₀に変えれば良い。これは大気中における内部酸化処理では達成できなかつたのであり、本発明にて明らかになつた如く高圧の酸素雰囲気中での内部酸化処理によりはじめて達成できる。

したがつてAg-Bi系合金を高圧酸素雰囲気中で内部酸化処理を施したことにより、塑性加工によつても内部酸化効果が減少しない接点材料

一Bi系内部酸化接点が開発された。この接点材料では、表面部分がBi₁₀となつた平均直径1mm程度のBi粒子が均一な状態で分散されているため、耐粘着性、耐放電消耗性、耐溶着性が安定しており、更には、純銀或るは銀等の不活性ガス中や大気中での1億回に及ぶ開閉動作においても安定な接触抵抗が得られている。ところが、このように優れた特性を有する大気中内部酸化によるAg-Bi系内部酸化接点では、分散物であるBiの表面のみがBi₁₀となつてゐるだけで大部分は未酸化状態のBiであるため、圧延加工等の塑性加工を行うとBiの表面にあるBi₁₀が破壊されてしまう。そのため塑性加工後の材料は内部酸化効果が減少するという欠点があつた。

本発明はこれらの欠点を解決するため、Ag-Bi系内部酸化接点を高圧酸素雰囲気中で内部酸化して得ることを技術的の思想の基礎とするものであり、その目的は、圧延加工等の塑性加工を受けても内部酸化効果を良好に保ち、良好な接触抵抗特性、耐粘着性、耐放電消耗性、耐溶着

となり、良好な接触抵抗特性を有し、また耐粘着性、耐溶着性、耐放電消耗性、耐食性を夫々良好に有することとなる。この場合、Ag-Bi系合金の定義並びに接触抵抗特性、耐粘着性、耐溶着性、耐放電消耗性及び耐食性の各評価については次のように定める。

(a) Ag-Bi系合金とは：(1) Bi(シリコン)、Ge(ゲルマニウム)の一種以上を全溶質濃度で1～17原子%含有する銀系共晶合金、(2) Bi、Geの一種以上を全溶質濃度で1～17原子%含有する銀系共晶合金に副添加元素としてAu(金)、Pt(白金)、Pd(パラジウム)、Rh(ロジウム)、Ru(ルテニウム)、Os(オスミウム)、Ir(イリジウム)の一種以上を1～10原子%添加してなる合金、(3) Bi、Geの一種以上を1～17原子%含有する銀系共晶合金に付加元素としてRe(レニウム)、Ti(チタン)、V(バナジウム)、Ta(タンクスデン)、Ta(タンタル)、Mo(モリブデン)、Nb(ニオブ)、Zr(ジルコニウム)の一種以

上を1～5原子%添加してなる合金、(4) Bi、Geの一種以上を全溶質濃度で1～17原子%含有する銀系共晶合金に副添加元素としてAu、Pt、Pd、Rh、Ru、Os、Irの一種以上を添加し更に付加元素としてRe、Ti、V、W、Ta、Mo、Nb、Zrの一種以上を添加してなる合金、(5) Bi、Geの一種以上を全溶質濃度で1～17原子%含有する銀系共晶合金に付加元素としてPd(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)の一種を1～5原子%添加してなる合金、並びに(6) Bi、Geの一種以上を全溶質濃度で1～17原子%含有する銀系共晶合金に副添加元素としてAu、Pt、Pd、Rh、Ru、Os、Irの一種以上を1～10原子%添加し更に付加元素としてPd、Co、Ni、Cuの一種を1～5原子%添加してなる合金の総称とする。

(b) 接触抵抗特性とは：接点材料をスイッチやリレーに搭載して大気中の無負荷条件下で数百万回から数千万回駆動後の接触抵抗で表わすことにする。

(c) 耐粘着性とは：アルゴンイオーン衝撃により清浄表面を作製した後に、 10^{-5} Torr以上の超高真空中での粘着係数（ $\frac{\text{引離力}}{\text{接觸力}}$ ）で表わすこととする。

(d) 耐溶着性とは：接点に 30 V, 30 A を通電中に開閉動作を行い、10⁴回の開閉動作数までの接触不能障害の有無で表わすこととする。

(e) 耐放電消耗性とは：接点材料をスイッチやリレーに搭載して印加電圧 4.8 V の RC 放電回路 ($R = 20 \Omega$, $C = 0.22 \mu F$) で閉成時放電を生じさせ、10万回後の開極の消耗深さで表わすこととする。

(f) 耐食性とは：接点材料を 10 ppm の H₂S 又は SO₂ を含む温度 90 ℃ 以上の人工空気中に 3 時間放置した後、半径 0.5 mm の半球状の金リベットを接觸力 5 g で静的に接觸させた場合の接触抵抗で表わすこととする。以下、本発明の実施例を示す。

実施例 1

表 1

試料番号	組成(原子%)			初期RC (mΩ)	8000万回後の RC(mΩ)
	Ag	Si	Ge		
1	99	1	0	4	4
2	95	5	0	6	7.5
3	83	17	0	10	11
4	99	0	1	4	6
5	95	0	5	7	20
6	83	0	17	12	32
7	98	1	1	5	8.5
8	90	5	5	10	15.5
9	84	8	8	15	35

本実施例 1 では、高圧内部酸化処理を施す前に各合金を熱間及び冷間で適宜加工してあるため、この加工により Si や Ge が良好に分散し全体的な内部酸化が一層促進されている。なお高圧内部酸化処理前の加工は熱間だけあるいは冷間だけの加工でも同じ効果を得る。また高圧内部酸化処理をしたのちに塑性加工を行つても内部酸化は全体にゆきわたつてるので内部酸化効

果は確実に維持される。ところで、Si, Ge の一種以上を含有させる場合、含有率が結合 1 原子%未満と少なくしたものは Si や Ge の分散が不足し内部酸化効果は十分に得られず、また含有率を結合 17 原子%超と大きくしたものは Si や Ge が初晶として析出するため加工性が悪いとともに接觸抵抗が増大してしまう。また、高圧酸素雰囲気中で内部酸化処理をする場合、その温度条件については各合金が共晶合金であることから、共晶温度が当然上限となるが、その下限は内部酸化の進行から 250 ℃ となる。

実施例 2

実施例 1 における各組成(表 1 参照)の合金を熱間鍛ロールにより 4 mm 角に加工した後、スクエージングマシンにより 2 mm × 20 mm の棒に加工し、200 気圧、600 ℃ の純酸素中で 10 時間に亘り高圧内部酸化処理を行つた。この高圧内部酸化処理済の棒どうしを十字交叉させ、高真空中で耐粘着性を測定した。この結果、従来の Ag - 6.0 Pd vs Au - 6.0 Pd 接点(異種対向

接点)では粘着係数が0.5であるに対し、表1の各合金よりなる接点材料では粘着係数が0.05以下であり良好な耐粘着性を示した。

実施例3

表2に示す各組成の合金を真空溶解炉で溶解し、 $10 \text{ mm} \times 200 \text{ mm}$ のインゴットを作製した。各インゴットを面削抜、500℃の熱間スクエージにより 3 mm の線材にし、更に冷間で繊引して 1.5 mm の線材に加工した。この線材を導付きの圧延機で 1 mm のかまぼこ状に圧延したのち、1気圧、450℃の純鐵素中で48時間に亘って高圧内部酸化した。このように得た高圧内部酸化の接点材料をFe系のベース材料に溶接したのち圧延矯正を行つて、第1図に示す断面形状の接点テープを作製した。この接点テープを中心部に沿つて円形に打ち抜き、接触力5gで開閉するリレーに搭載して大気中での1000万回駆動後の接触抵抗特性並びにHgS中の耐食性を測定した。この結果は、表2に示すように各接点とも1000万回駆動後も初期値とほとんど変ら

ない優れた抵抗を示し、また極めて良好な耐食性を示した。なお、Au, Pt, Pd, Rh, Ru, Os, Ir等の貴金属元素を組合10原子%超と過大に添加した場合は内部酸化がじだいに進み難くなり特に接触抵抗特性上好ましくない。また1原子%未満と組合の添加率が少ないと耐食性向上の効果が無添加とあまり変わらなくなる。なお、第1図において符号1はベース材料、符号2は接点材料である。またRは半径である。

表 2

試料番号	組成(原子%)										初期RC (mΩ)	1000万回後 のRC(mΩ)	HgS(10ppm) 放置後のRC(mΩ)
	Ag	Si	Au	Pt	Pd	Rh	Ru	Os	Ir				
10	98	1	1	0	0	0	0	0	0	4.0	4.2	175	
11	98	1	0	1	0	0	0	0	0	5.1	5.5	190	
12	98	1	0	0	1	0	0	0	0	5.2	5.1	85	
13	98	1	0	0	0	1	0	0	0	5.2	5.0	160	
14	98	1	0	0	0	0	1	0	0	5.2	5.0	160	
15	98	1	0	0	0	0	0	1	0	5.1	6.5	210	
16	98	1	0	0	0	0	0	0	1	5.3	5.8	280	
17	96	2	1	1	0	0	0	0	0	6.0	6.0	110	
18	96	2	1	0	1	0	0	0	0	6.3	6.5	60	
19	96	2	1	0	0	1	0	0	0	6.2	6.9	75	
20	96	2	1	0	0	0	1	0	0	6.2	6.9	75	
21	96	2	1	0	0	0	0	1	0	6.3	7.3	80	
22	96	2	1	0	0	0	0	0	1	6.1	8.2	130	
23	80	10	10	0	3	0	0	0	0	15.3	15.5	42	
24	80	10	0	10	0	0	0	0	0	25.1	28.8	45	
25	80	10	0	0	10	0	0	0	0	26.5	35.5	38	
26	80	10	8	2	0	0	0	0	0	17.5	20.1	40	
27	80	10	0	2	8	0	0	0	0	19.3	34.2	52	
28	80	10	6	0	4	0	0	0	0	15.8	17.1	55	

実施例 4

表 3 に示す各組成の合金を実施例 1 と同様な
製法（溶解インゴット及び熱間、冷間の加工）
で厚さ 0.5 mm, 幅 5 mm の帯材を作製した。この
帯材を 100 気圧, 400 °C の純酸素中で 24 時間
に亘って高圧内部酸化処理を行つた。これを厚
さ 1 mm, 幅 10 mm で中心部に幅さ 0.5 mm, 幅 5
mm の溝を留めた Fe-Ni 合金のベース材料の試験
内に搭載したのち圧延矯正を行つて第 2 図に示
す接点テープを作製した。なお、第 2 図において、
符号 1 はベース材料、符号 2 は接点材料、
 w_1 は幅、 w_2 は導幅、 t_1 は厚さ、 t_2 は導深さであ
る。この接点テープから接点片を打ち抜き、中
電流用のリレーに搭載して耐浴着性を調べた。
接觸力 20 g, 開離力 20 g の条件下で 30 V,
30 A 通電中に開閉し、浴着が生じるまでの接
触回数を同表 3 に示す。この結果、純銀の場合
はほとんど 10^6 回で浴着することが知られている
のに対し、表 3 に示す上記高圧内部酸化処理
をした接点材料は 50 以上が 3×10^6 回以上

まで浴着しないと、著しく安定した浴着性を
有していると言える。ところで、Re, Ti, V,
W, Ta, Mo, Nb, Zr の付加元素を結合 5 原子
超と過大に添加した場合は接触抵抗増大とい
う問題が生ずる。反面、1 原子多未満と少ない場
合は浴着性の向上がみられない。

表 3

試料番号	組成 (原子 %)												50 以上接点が浴着 するまでの開閉動作回数
	Ag	Si	Au	Pd	Re	Ti	V	W	Ta	Mo	Nb	Zr	
29	94	5	0	0	1	0	0	0	0	0	0	0	5.32×10^6
30	94	5	0	0	0	1	0	0	0	0	0	0	4.66×10^6
31	94	5	0	0	0	0	1	0	0	0	0	0	3.25×10^6
32	94	5	0	0	0	0	0	1	0	0	0	0	4.88×10^6
33	94	5	0	0	0	0	0	0	1	0	0	0	3.22×10^6
34	94	5	0	0	0	0	0	0	0	1	0	0	3.15×10^6
35	94	5	0	0	0	0	0	0	0	0	1	0	4.68×10^6
36	94	5	0	0	0	0	0	0	0	0	0	1	4.12×10^6
37	75	10	10	0	5	0	0	0	0	0	0	0	8.59×10^6
38	75	10	10	0	0	5	0	0	0	0	0	0	7.01×10^6
39	75	10	10	0	0	0	5	0	0	0	0	0	6.88×10^6
40	75	10	10	0	0	0	0	5	0	0	0	0	9.85×10^6
41	75	10	10	0	0	0	0	0	5	0	0	0	6.33×10^6
42	75	10	10	0	0	0	0	0	0	5	0	0	7.25×10^6
43	75	10	10	0	0	0	0	0	0	0	5	0	5.98×10^6
44	75	10	10	0	0	0	0	0	0	0	0	5	6.24×10^6
45	75	10	5	5	5	0	0	0	0	0	0	0	9.32×10^6
46	75	10	5	5	0	5	0	0	0	0	0	0	8.85×10^6

る問題があり、反面、1原子多未鋼と少ない場合は耐放電消耗性の悪者を向上がみられなくなる。

実施例 5

表4に示した各組成の合金を真空溶解炉を用いて $10 \text{ mm} \times 200 \text{ mm}$ のインゴットに作製した。

各インゴットを実施例1と同様に 600°C の熱間加工さらに冷間加工を行つたのち実施例6と同様第2図の形状の接点テープを作製した。即ち、インゴットより作製した厚さ 0.5 mm 、幅 5 mm の帯材を 100 気圧、 400°C の焼酸素中で $2\frac{1}{2}$ 時間に亘つて高圧内部酸化処理したものと、厚さ 1 mm 、幅 10 mm の Fe-Ni合金ベース材料の牌（厚さ 0.5 mm 、幅 5 mm ）内に接着してこれを圧延矯正して第2図の接点テープとした。この接点テープから打ち抜いた接点片をリレーに搭載し前述のRC放電回路により耐放電消耗性について調べた。10万回の開閉動作後の端極の消耗深さを表4に示す。表4に示す如く、既存のAg接点及びAg-Pd接点に比べ、各試料の消耗深さは著しく改善されていることが明らかとなつた。ところで、Fe, Co, Ni, Cuの付加元素を5原子多超と過大に添加した場合は接触抵抗が増大す

表 4

試料番号	組 成 (原子 %)									端極の放電消耗深さ (mm)
	Ag	Si	Au	Pd	Pt	Fe	Co	Ni	Cu	
47	97	2	0	0	0	1	0	0	0	25 ± 5
48	97	2	0	0	0	0	1	0	0	27 ± 5
49	97	2	0	0	0	0	0	1	0	28 ± 5
50	97	2	0	0	0	0	0	0	1	26 ± 5
51	90	7	0	0	0	3	0	0	0	18 ± 5
52	90	7	0	0	0	0	3	0	0	17 ± 5
53	90	7	0	0	0	0	0	3	0	18 ± 5
54	90	7	0	0	0	0	0	0	3	17 ± 5
55	80	10	5	0	0	5	0	0	0	8 ± 5
56	80	10	5	0	0	0	5	0	0	5 ± 5
57	80	10	5	0	0	0	0	5	0	5 ± 5
58	80	10	5	0	0	0	0	0	5	3 ± 2
59	73	17	5	0	0	0	0	0	5	5 ± 2
60	77	17	3	2	0	0	0	0	1	5 ± 2
61	77	17	3	0	2	0	0	0	1	5 ± 2
Ag	100	0	0	0	0	0	0	0	0	80 ± 10
Ag-Pd	40	0	0	60	0	0	0	0	0	60 ± 10

以上説明したように本発明によれば、 $Ag-Si$ 系合金を高圧の酸素雰囲気中で250°Cから共晶温度までの温度範囲にて高圧内部酸化したことにより、内部酸化が大気中のそれに比べて極めて強化され、内部酸化形成後に加工を行つても内部酸化効果は減少しない。また高圧内部酸化処理の前に $Ag-Si$ 系合金を予め熱間あるいは冷間で加工しておくと、 Si や Ge が分散されて内部酸化が良好に進行する。

4. 図面の簡単な説明

第1図及び第2図は夫々本発明の電気接点材料の特性を調べるために加工した接点テープの形状を示す断面図である。

図面中、

1はベース材料、

2は電気接点材料である。

特許出願人

日本電信電話公社

代理人

井理士 光石士郎(他1名)

第一図

第二図

第1頁の続き

②発明者 竹中久貴

茨城県那珂郡東海村大字白方字

白根162番地日本電信電話公社

茨城電気通信研究所内

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.