M4GB: An Efficient Gröbner Basis Algorithm

Rusydi H. Makarim^{1,2} Marc Stevens²

¹Mathematics Institute, University Leiden

²Cryptology Group, Centrum Wiskunde en Informatica (CWI)

ALGANT-DOC Meeting, 15th May 2017

- Introduction
- Gröbner Basis
- M4GB Algorithm
- 4 Performance Comparison
- Solving MQ Challenges

Table of Contents

- Introduction
- 2 Gröbner Basis
- M4GB Algorithm
- 4 Performance Comparisor
- 5 Solving MQ Challenges

- F A Field
- n number of variables
- *m* number of equations

- F A Field
- n number of variables
- m number of equations

Problem (Multivariate Quadratic(MQ) problem)

- F A Field
- n number of variables
- m number of equations

Problem (Multivariate Quadratic(MQ) problem)

• Given: $f_1, ..., f_m \in \mathbb{F}[x_1, ..., x_n], \deg(f_i) = 2$

- F A Field
- n number of variables
- m number of equations

Problem (Multivariate Quadratic(MQ) problem)

- Given: $f_1, ..., f_m \in \mathbb{F}[x_1, ..., x_n], \deg(f_i) = 2$
- Problem : Find a $(v_1, \ldots, v_n) \in \mathbb{F}^n$ such that

$$f_1(v_1,\ldots,v_n)=0$$
:

$$f_m(v_1,\ldots,v_n)=0$$

• MQ-problem is NP-complete

- MQ-problem is NP-complete
- Candidate for post-quantum public-key and digital-signature scheme

- MQ-problem is NP-complete
- Candidate for post-quantum public-key and digital-signature scheme
- Need to understand its practical difficulty (How ?)

- MQ-problem is NP-complete
- Candidate for post-quantum public-key and digital-signature scheme
- Need to understand its practical difficulty (How ?)

Open Public Challenge - MQChallenge

- Initiated at 2015
- Random and dense system
- Various parameters

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n			
111 — 211			
$m \approx 2/3n$			
$ m \approx 2/3n$			

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n			
111 — 211			
$m \approx 2/3n$			
$ m \sim 2/3n$			

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n		l II	III
111 — 211	<i>n</i> ≥ 55	<i>n</i> ≥ 35	<i>n</i> ≥ 34
$m \approx 2/3n$			
$ m \approx 2/3n$			

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n		l II	III
111 — 211	<i>n</i> ≥ 55	<i>n</i> ≥ 35	<i>n</i> ≥ 34
$m \approx 2/3n$	IV	V	VI
$ m \approx 2/3n$			

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n		II	
	<i>n</i> ≥ 55	<i>n</i> ≥ 35	<i>n</i> ≥ 34
$m \approx 2/3n$	IV	V	VI
	$m \ge 55$	$m \ge 16$	$m \ge 16$

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n			
	<i>n</i> ≥ 55	<i>n</i> ≥ 35	<i>n</i> ≥ 34
$m \approx 2/3n$	IV	V	VI
$m \approx 2/30$	<i>m</i> ≥ 55	<i>m</i> ≥ 16	<i>m</i> ≥ 16

Parameter Choice

Require at least one month for Magma 2.19-9 to solve using Four 6-cores Intel(R) Xeon(R) CPU E5-4617 @ 2.9GHz and 1TB of RAM.

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n			
	<i>n</i> ≥ 55	<i>n</i> ≥ 35	<i>n</i> ≥ 34
$m \approx 2/3n$	IV	V	VI
$m \approx 2/30$	<i>m</i> ≥ 55	<i>m</i> ≥ 16	<i>m</i> ≥ 16

Parameter Choice

Require at least one month for Magma 2.19-9 to solve using Four 6-cores Intel(R) Xeon(R) CPU E5-4617 @ 2.9GHz and 1TB of RAM.

https://www.mqchallenge.org

Solving MQ-problem

Linearization

Solving MQ-problem

- Linearization
- Extended Linearization (XL)

Solving MQ-problem

- Linearization
- Extended Linearization (XL)

This talk

Gröbner basis

Table of Contents

- Introduction
- Gröbner Basis
- M4GB Algorithm
- 4 Performance Comparisor
- 5 Solving MQ Challenges

Definition (Monomial Ordering)

> is a monomial ordering if

Definition (Monomial Ordering)

- > is a monomial ordering if
 - **1** Total (or linear) ordering on $\mathbb{Z}_{>0}^n$

Definition (Monomial Ordering)

- > is a monomial ordering if
 - **1** Total (or linear) ordering on $\mathbb{Z}_{>0}^n$
 - 2 Let $\alpha, \beta, \gamma \in \mathbb{Z}^n_{>0}$ and $x = (x_1, \dots, x_n)$

$$x^{\alpha} > x^{\beta} \Rightarrow x^{\gamma}x^{\alpha} > x^{\gamma}x^{\beta}$$

Definition (Monomial Ordering)

- > is a monomial ordering if
 - **1** Total (or linear) ordering on $\mathbb{Z}_{>0}^n$
 - 2 Let $\alpha, \beta, \gamma \in \mathbb{Z}_{>0}^n$ and $x = (x_1, \dots, x_n)$

$$x^{\alpha} > x^{\beta} \Rightarrow x^{\gamma} x^{\alpha} > x^{\gamma} x^{\beta}$$

 $|\mathfrak{S}|$ > is a well-ordering on $\mathbb{Z}_{>0}^n$

Lexicographic

 $x^{\alpha}>_{\text{lex}}x^{\beta}\Leftrightarrow$ the leftmost nonzero entry of $\alpha-\beta$ is positive

Lexicographic

 $x^{\alpha}>_{\mathrm{lex}}x^{\beta}\Leftrightarrow$ the leftmost nonzero entry of $\alpha-\beta$ is positive

Degree-Reverse Lexicographic (degrevlex)

$$x^{\alpha} >_{\text{degrevlex}} x^{\beta} \Leftrightarrow$$

Lexicographic

$$x^{\alpha}>_{\mathrm{lex}}x^{\beta}\Leftrightarrow$$
 the leftmost nonzero entry of $\alpha-\beta$ is positive

Degree-Reverse Lexicographic (degrevlex)

$$x^{\alpha} >_{\text{degrevlex}} x^{\beta} \Leftrightarrow$$

•
$$\sum_{i} \alpha_{i} > \sum_{i} \beta_{i}$$
 OR

Lexicographic

 $x^{\alpha} >_{\text{lev}} x^{\beta} \Leftrightarrow \text{the leftmost nonzero entry of } \alpha - \beta \text{ is positive}$

Degree-Reverse Lexicographic (degrevlex)

$$x^{\alpha} >_{\text{degrevlex}} x^{\beta} \Leftrightarrow$$

- $\sum_{i} \alpha_{i} > \sum_{i} \beta_{i}$ OR
- $\sum_i \alpha_i = \sum_i \beta_i$ and the rightmost nonzero entry of $\alpha \beta$ is negative

 $\mathbb{F}[x_1,\ldots,x_n]$ together with >

$$\mathbb{F}[x_1,\ldots,x_n]$$
 together with $>$

$$f \in \mathbb{F}[x_1,\ldots,x_n], f \neq 0$$

$$\mathbb{F}[x_1,\ldots,x_n]$$
 together with $>$

Notations

$$f \in \mathbb{F}[x_1,\ldots,x_n], f \neq 0$$

• LM(f) (the largest monomial of f w.r.t >)

$$\mathbb{F}[x_1,\ldots,x_n]$$
 together with $>$

$$f \in \mathbb{F}[x_1,\ldots,x_n], f \neq 0$$

- LM(f) (the largest monomial of f w.r.t >)
- LC(f) (the coefficient correspond to LM(f))

$$\mathbb{F}[x_1,\ldots,x_n]$$
 together with $>$

$$f \in \mathbb{F}[x_1,\ldots,x_n], f \neq 0$$

- LM(f) (the largest monomial of f w.r.t >)
- LC(f) (the coefficient correspond to LM(f))
- $LT(f) = LC(f) \cdot LM(f)$

$$\mathbb{F}[x_1,\ldots,x_n]$$
 together with $>$

$$f \in \mathbb{F}[x_1,\ldots,x_n], f \neq 0$$

- LM(f) (the largest monomial of f w.r.t >)
- LC(f) (the coefficient correspond to LM(f))
- $LT(f) = LC(f) \cdot LM(f)$
- Tail(f) = f LT(f)

Notations

$$\mathbb{F}[x_1,\ldots,x_n]$$
 together with $>$

Notations

$$f \in \mathbb{F}[x_1,\ldots,x_n], f \neq 0$$

- LM(f) (the largest monomial of f w.r.t >)
- LC(f) (the coefficient correspond to LM(f))
- $LT(f) = LC(f) \cdot LM(f)$
- Tail(f) = f LT(f)
- Term(f), Mono(f)

Notations

$$\mathbb{F}[x_1,\ldots,x_n]$$
 together with $>$

Notations

$$f \in \mathbb{F}[x_1,\ldots,x_n], f \neq 0$$

- LM(f) (the largest monomial of f w.r.t >)
- LC(f) (the coefficient correspond to LM(f))
- $LT(f) = LC(f) \cdot LM(f)$
- Tail(f) = f LT(f)
- Term(f), Mono(f)

$$F \subseteq \mathbb{F}[x_1, \dots, x_n] \begin{cases} \mathsf{Tail}(F) = \cup_{f \in F} \{\mathsf{Tail}(f)\} \\ \mathsf{Term}(F) = \cup_{f \in F} \mathsf{Term}(f) \\ \mathsf{Mono}(F) = \cup_{f \in F} \mathsf{Mono}(f) \end{cases}$$

Definition

Definition

 $I \neq \{0\}$ be an ideal of $\mathbb{F}[x_1,\ldots,x_n]$

Definition

 $I \neq \{0\}$ be an ideal of $\mathbb{F}[x_1, \dots, x_n]$

 $G \subseteq I$, $|G| < \infty$ that generates I is a Gröbner basis of I if,

Definition

 $I \neq \{0\}$ be an ideal of $\mathbb{F}[x_1, \dots, x_n]$ $G \subseteq I$, $|G| < \infty$ that generates I is a Gröbner basis of I if,

for any $f \in I$, $\exists g \in G$ s.t. $\mathsf{LT}(g) \mid \mathsf{LT}(f)$

Gröbner Basis and Solving System of Equations

Gröbner Basis and Solving System of Equations

Lexicographic Ordering

$$g_1(x_1), \ldots,$$

 $g_2(x_1, x_2), \ldots, g_{k_1}(x_1, x_2)$
 $g_{k_1+1}(x_1, x_2, x_3), \ldots,$
 $g_{k_n}(x_1, \ldots, x_n)$

Gröbner Basis and Solving System of Equations

Lexicographic Ordering

$$g_1(x_1), \ldots,$$

 $g_2(x_1, x_2), \ldots, g_{k_1}(x_1, x_2)$
 $g_{k_1+1}(x_1, x_2, x_3), \ldots,$
 $g_{k_n}(x_1, \ldots, x_n)$

Unique Solution in the Base Field

$$g_1 = x_1 + c_1,$$

 \vdots
 $g_n = x_n + c_n$

Given $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$, how to compute the Gröbner basis G of $\langle f_1, \ldots, f_m \rangle$?

Given $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$, how to compute the Gröbner basis G of $\langle f_1, \ldots, f_m \rangle$?

How to obtain new element in the ideal?

Given $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$, how to compute the Gröbner basis G of $\langle f_1, \ldots, f_m \rangle$?

How to obtain new element in the ideal?

Generate polynomials of higher degree

Given $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$, how to compute the Gröbner basis G of $\langle f_1, \ldots, f_m \rangle$?

How to obtain new element in the ideal?

- Generate polynomials of higher degree
- ② Division algorithm in $\mathbb{F}[x_1,\ldots,x_n]$ (computing remainder)

Generate higher degree polynomial: S-Polynomial

Generate higher degree polynomial: S-Polynomial

• $f, g \in \mathbb{F}[x_1, \dots, x_n]$ with $f \neq 0, g \neq 0$

Generate higher degree polynomial : S-Polynomial

- $f, g \in \mathbb{F}[x_1, \dots, x_n]$ with $f \neq 0, g \neq 0$
- $x^{\gamma} = LCM(LM(f), LM(g))$

Generate higher degree polynomial: S-Polynomial

- $f, g \in \mathbb{F}[x_1, \dots, x_n]$ with $f \neq 0, g \neq 0$
- $x^{\gamma} = LCM(LM(f), LM(g))$

Definition

$$\mathsf{Spoly}(f,g) = \frac{x^{\gamma}}{\mathsf{LT}(f)} \cdot f - \frac{x^{\gamma}}{\mathsf{LT}(g)} \cdot g.$$

xy + z	$x^2y^2 + z^4 + xy$

	xy
xy + z	$xy \over x^2y^2 + z^4 + xy$
	,

$$xy + z \overline{\smash)x^2y^2 + z^4 + xy}$$

$$x^2y^2 + xyz$$

$$xy + z \overline{\smash)x^2y^2 + z^4 + xy}$$

$$x^2y^2 + xyz$$

$$z^4 - xyz + xy$$

$$xy + z \overline{\smash)x^2y^2 + z^4 + xy}$$

$$\underline{x^2y^2 + xyz}$$

$$\overline{z^4 - xyz + xy}$$

Division Algorithm in $\mathbb{F}[x_1,\ldots,x_n]$: Example

Division Algorithm in $\mathbb{F}[x_1,\ldots,x_n]$: Example

Division Algorithm / Polynomial Reduction

$$G = (g_1, \ldots, g_t) \subseteq \mathbb{F}[x_1, \ldots, x_n]$$

Division Algorithm / Polynomial Reduction

$$G = (g_1, \ldots, g_t) \subseteq \mathbb{F}[x_1, \ldots, x_n]$$

Theorem (Division Algorithm)

Every $f \in \mathbb{F}[x_1, \dots, x_n]$ can be written as

$$f = q_1g_1 + \ldots + q_tg_t + r$$

and

$$r = \begin{cases} 0 \\ \text{none of terms of } r \text{ is divisible by any of } \mathsf{LT}(g_i) \end{cases}$$

Division Algorithm / Polynomial Reduction

$$G = (g_1, \ldots, g_t) \subseteq \mathbb{F}[x_1, \ldots, x_n]$$

Theorem (Division Algorithm)

Every $f \in \mathbb{F}[x_1, \dots, x_n]$ can be written as

$$f = q_1g_1 + \ldots + q_tg_t + r$$

and

$$r = \begin{cases} 0 \\ \text{none of terms of } r \text{ is divisible by any of } \mathsf{LT}(g_i) \end{cases}$$

$$r \leftarrow \text{FullReduce}(f, G)$$

Buchberger's Algorithm

return G

```
Input: A finite ordered subset F \subseteq \mathbb{F}[x_1, \dots, x_n]
Result: A Gröbner basis G such that \langle G \rangle = \langle F \rangle
G \leftarrow F
repeat
    G' \leftarrow G
    forall (p,q) \in G' \times G', p \neq q do
         r \leftarrow \text{FullReduce}(\text{Spoly}(p, q), G')
      until G = G':
```

Table of Contents

- Introduction
- 2 Gröbner Basis
- M4GB Algorithm
- 4 Performance Comparisor
- 5 Solving MQ Challenges

• Gröbner bases algorithms follows the same principle

- Gröbner bases algorithms follows the same principle
- Differs in reduction techniques

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2$$

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$f = \mathbf{x}_{1}^{2} \mathbf{x}_{2}^{3} + x_{1} x_{2}^{3} x_{4} + x_{1} x_{3}^{3} + x_{1}^{3} x_{4} + x_{2} x_{3}^{2} + x_{4}^{2}$$

$$g_{1} = \mathbf{x}_{1}^{2} \mathbf{x}_{2}^{3} + x_{1} x_{3}^{3} + x_{4}^{2}$$

$$g_{2} = \mathbf{x}_{2}^{3} x_{4} + x_{2} x_{3} + x_{3} + 1$$

$$g_{3} = x_{1} x_{2} x_{3} + x_{1} x_{3}$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$\begin{array}{c} f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \\ f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \\ \\ g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2 \\ \\ g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1 \\ \\ g_3 = x_1 x_2 x_3 + x_1 x_3 \\ \\ x_1 g_2 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 \end{array}$$

ALGANT-DOC Meeting, 15th May 2017

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$x_1g_2 = x_1x_2^3x_4 + x_1x_2x_3 + x_1x_3 + x_1$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$x_1g_2 = x_1x_2^3x_4 + x_1x_2x_3 + x_1x_3 + x_1$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$\begin{array}{c} f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \\ f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \\ \\ g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2 \\ \\ g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1 \\ \\ g_3 = x_1 x_2 x_3 + x_1 x_3 \\ \\ g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1 \\ \\ x_1 g_2 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 \end{array}$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1$$

$$x_1 g_2 = x_1 x_3^3 x_4 + x_1 x_2 x_2 + x_1 x_2 + x_3 x_3 + x_4 x_4 x_5 + x_5 x_5 +$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$\begin{array}{l} f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \\ f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \\ \\ g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2 \\ \\ g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1 \\ \\ g_3 = x_1 x_2 x_3 + x_1 x_3 \\ \\ g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1 \\ \\ x_1 g_2 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 \end{array}$$

$$g_{2} = x_{2}^{3}x_{4} + x_{2}x_{3} + x_{3} + 1$$

$$g_{3} = x_{1}x_{2}x_{3} + x_{1}x_{3}$$

$$g_{4} = x_{1}g_{2} - g_{3} = x_{1}x_{2}^{3}x_{4} + 1$$

$$x_{1}g_{2} = x_{1}x_{3}^{3}x_{4} + x_{1}x_{2}x_{2} + x_{1}x_{2} + x_{2}$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$\begin{array}{l} f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \\ f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \\ f = f - g_4 = x_1^3 x_4 + x_2 x_3^2 + 1 \\ \end{array} \quad \begin{array}{l} G = \{g_1, g_2, g_3, g_4\} \\ g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2 \\ g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1 \\ g_3 = x_1 x_2 x_3 + x_1 x_3 \\ g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1 \end{array}$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1$$

$$x_1 g_2 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1$$

$$\mathbb{F}_2[x_1, x_2, x_3, x_4]$$
 with *degrevlex* ordering

$$\begin{array}{c} f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \\ f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \\ f = f - g_4 = x_1^3 x_4 + x_2 x_3^2 + 1 \end{array} \\ \begin{array}{c} G = \{g_1, g_2, g_3, g_4\} \\ g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2 \\ g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1 \\ g_3 = x_1 x_2 x_3 + x_1 x_3 \\ g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1 \end{array}$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1$$

$$x_1 g_2 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_2 x_3 + x_1 x_3 + x_3 +$$

$$r = x_1^3 x_4 + x_2 x_3^2 + 1$$

M4GB Main Strategy

Maintain tail-reduced polynomials

M4GB Reduction

```
MulFullReduce(G, u, f)
r \leftarrow 0
forall t \in Term(f) do
t' \leftarrow u \cdot t
if \exists g \in G : LT(g) \mid t' \text{ then}
(G, g) \leftarrow GetReductor(G, t')
r \leftarrow r - (t'/LT(g)) \cdot Tail(g)
else
r \leftarrow r + t'
return(G, r)
```

M4GB Reduction

```
MulFullReduce(G, u, f)
r \leftarrow 0
forall t \in Term(f) do
t' \leftarrow u \cdot t
if \exists g \in G : LT(g) \mid t' \text{ then}
(G, g) \leftarrow GetReductor(G, t')
r \leftarrow r - (t'/LT(g)) \cdot Tail(g)
else
t \leftarrow r \leftarrow r + t'
return (G, r)
```

Getreductor(G, t)

UPDATEREDUCE (G, f)

```
Q \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)
while \exists u \in Q : LM(f) \mid u \text{ do}
       u \leftarrow \max\{\mathfrak{m} \in Q : \mathsf{LM}(f) \mid \mathfrak{m}\}\
       (G, h) \leftarrow \text{MULFULLREDUCE}(G, u/\text{LT}(f), \text{Tail}(f))
       H \leftarrow H \cup \{u+h\}
       Q \leftarrow \mathsf{Mono}(\mathsf{Tail}(G \cup H)) \setminus \mathsf{LM}(H)
while H \neq \{\} do
       Select h \in H such that LM(h) = min LM(H)
       H \leftarrow H \setminus \{h\}
       H \leftarrow \{g - ch : g \in H, c \text{ is a coefficient of } LM(h) \text{ in } Tail(g)\}
      G \leftarrow \{g - ch : g \in G, c \text{ is a coefficient of } \mathsf{LM}(h) \text{ in } \mathsf{Tail}(g)\}
      G \leftarrow G \cup \{h\}
```

 $H \leftarrow \{\mathsf{LC}(f)^{-1} \cdot f\}$

Table of Contents

- Introduction
- ② Gröbner Basis
- M4GB Algorithm
- Performance Comparison
- 5 Solving MQ Challenges

• Implemented using C++11

- Implemented using C++11
- Comparison with existing implementations
 - FGb C Interface Implementation by Jean Charles Faugere¹
 - Magma v2.20-6
 - OpenF4 v1.0.1 Open source implementation by Coladon, Vitse and Joux².

¹Available at http://www-polsys.lip6.fr/~jcf/FGb/C/index.html

²Available at https://github.com/nauotit/openf4 ALGANT-DOC Meeting, 15th May 2017

- Implemented using C++11
- Comparison with existing implementations
 - FGb C Interface Implementation by Jean Charles Faugere¹
 - Magma v2.20-6
 - OpenF4 v1.0.1 Open source implementation by Coladon, Vitse and Joux².
- Test cases
 - **1** Dense polynomials with coefficients in \mathbb{F}_{31}
 - **2** m = 2n and m = n + 1.

¹Available at http://www-polsys.lip6.fr/~jcf/FGb/C/index.html

²Available at https://github.com/nauotit/openf4 ALGANT-DOC Meeting, 15th May 201 Rusydi H. Makarim, Marc Stevens (Mathema M4GB: An Efficient Gröbner Basis Algorithm

Benchmark for m = 2n

		Total CPU time (sec)			
n	m	M4GB	OpenF4	Magma	FGb
20	40	57	206	232	470
21	42	170	472	500	1002
22	44	424	1145	1617	3118
23	46	1060	2274	3185	6849
24	48	2556	10293	31168	64700
25	50	5575	-	77679	151653
26	52	15517	-	183629	360055
27	54	46548	-	409452	767543

		Memory (MB)			
n	m	M4GB	FGb	Magma	OpenF4
20	40	73	112	362	4240
21	42	121	165	577	6640
22	44	226	525	859	14368
23	46	395	918	1324	26135
24	48	663	1561	8873	161945
25	50	1471	2765	19719	-
26	52	3328	4607	25197	-
27	54	6799	8180	39845	-

Graph for m = 2n

Benchmark for m = n + 1

		Total CPU time (sec)			
n	m	M4GB	OpenF4	Magma	FGb
10	11	0.98	2.99	3.29	5
11	12	2.6	8.73	11.172	21
12	13	13.92	36.76	59.08	134
13	14	58.18	172.49	286.4	642
14	15	393.19	1258	2810.75	5850
15	16	2424	7225	17265.5	36361

		Memory (MB)			
n	m	M4GB	FGb	Magma	OpenF4
10	11	17	33	32	101
11	12	16	50	64	341
12	13	31	112	114	1463
13	14	74	323	281	7622
14	15	250	1098	1104	33460
15	16	837	4118	3320	117396

Graph for m = n + 1

Table of Contents

- Introduction
- Gröbner Basis
- M4GB Algorithm
- Performance Comparisor
- Solving MQ Challenges

Solved MQ Challenges

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n		l II	III
111 — 211	<i>n</i> ≥ 55	<i>n</i> ≥ 35	<i>n</i> ≥ 34
$m \sim 2/3n$	IV	V	VI
$m \approx 2/3n$	$m \ge 55$	<i>m</i> ≥ 16	<i>m</i> ≥ 16

Solved MQ Challenges

	\mathbb{F}_2	\mathbb{F}_{2^8}	\mathbb{F}_{31}
m=2n		l II	III
111 — 211	<i>n</i> ≥ 55	<i>n</i> ≥ 35	<i>n</i> ≥ 34
$m \sim 2/3n$	IV	V	VI
$m \approx 2/3n$	$m \ge 55$	<i>m</i> ≥ 16	<i>m</i> ≥ 16

Hybrid approach

- Hybrid approach
- Idea :

- Hybrid approach
- Idea :
 - **1** Randomly select $(a_1, \ldots, a_{n-m}) \in \mathbb{F}_q^{n-m}$

- Hybrid approach
- Idea :
 - **1** Randomly select $(a_1, \ldots, a_{n-m}) \in \mathbb{F}_a^{n-m}$
 - Construct

$$\tilde{F} = \{f(x_1, \ldots, x_m, a_1, \ldots, a_{n-m}) : \forall f \in F\}$$

- Hybrid approach
- Idea :
 - **1** Randomly select $(a_1, \ldots, a_{n-m}) \in \mathbb{F}_a^{n-m}$
 - Construct

$$\tilde{F} = \{f(x_1, \ldots, x_m, a_1, \ldots, a_{n-m}) : \forall f \in F\}$$

Select small positive integer k (e.g. 1 or 2)

- Hybrid approach
- Idea :
 - **1** Randomly select $(a_1, \ldots, a_{n-m}) \in \mathbb{F}_a^{n-m}$
 - Construct

$$\tilde{F} = \{f(x_1, \dots, x_m, a_1, \dots, a_{n-m}) : \forall f \in F\}$$

- Select small positive integer k (e.g. 1 or 2)
- Generate q^k subsystems

$$\{\tilde{F}(x_1,\ldots,x_{n-k},v_1,\ldots,v_k):(v_1,\ldots,v_k)\in\mathbb{F}_q^k\}$$

- Hybrid approach
- Idea :
 - **1** Randomly select $(a_1, \ldots, a_{n-m}) \in \mathbb{F}_q^{n-m}$
 - Construct

$$\tilde{F} = \{f(x_1, \dots, x_m, a_1, \dots, a_{n-m}) : \forall f \in F\}$$

- Select small positive integer k (e.g. 1 or 2)
- 4 Generate q^k subsystems

$$\{\tilde{F}(x_1,\ldots,x_{n-k},v_1,\ldots,v_k):(v_1,\ldots,v_k)\in\mathbb{F}_q^k\}$$

Compute Gröbner basis of each subsystem

Туре	n/m	Machine Used	# Node	Duration

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

Туре	n/m	Machine Used	# Node	Duration
V	24/16			
V	25/17			
V	27/18			

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

Туре	n/m	Machine Used	# Node	Duration
V	24/16	А	1	pprox 9.3 hours
V	25/17			
V	27/18			

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

Туре	n/m	Machine Used	# Node	Duration
V	24/16	Α	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

Туре	n/m	Machine Used	# Node	Duration
V	24/16	Α	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days
VI	24/16			
VI	25/17			
VI	27/18			
VI	28/19			

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

Туре	n/m	Machine Used	# Node	Duration
V	24/16	Α	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days
VI	24/16	А	1	pprox 1.2 hours
VI	25/17			
VI	27/18			
VI	28/19			

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

Туре	n/m	Machine Used	# Node	Duration
V	24/16	Α	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days
VI	24/16	А	1	pprox 1.2 hours
VI	25/17	В	1	pprox 9.87 hours
VI	27/18	В	1	pprox 31.48 hours
VI	28/19	В	2	pprox 7.61 days

- A) Intel(R) Core(TM) i7-2600K CPU @3.40GHz and 16GB RAM (Desktop)
- B) Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM (NUMA)

https://github.com/cr-marcstevens/m4gb

Question?