

Departamento de Matemática, Universidade de Aveiro

Cálculo II-Agrupamento 3 — Exame Final da Época Normal (VERSÃO 1)

27 de junho de 2022 Duração: **2h45**

	N.º Mec.:			_ No	me:								
	(Declaro que desisto:)			N. folhas suplementares:					
	Questão [Cotação]	1 [60pts]	2 [15pts]	3 [15pts]	4 [10pts]	5 [20pts]	6 [20pts]	7 [20pts]	8a [10pts]	8b [10pts]	9a [10pts]	9b [10pts]	Classificação (valores)
		·		-						-			efetuados –
60pts]	segu (i) re (ii) r	alíneas inte: esposta esposta ausênci	correta: errada:	10 por -3 pon	ntos; itos;				correta.	A cota	ıção a a	itribuir a	cada resposta é
	(a) Com base num dos seguintes desenvolvimentos em série de MacLaurin: $\cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \text{para } x \in \mathbb{R}$ $\sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \text{para } x \in \mathbb{R}$ $\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}, \text{para } x \in]-1,1[$												
	$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}, \text{para } x \in]-1,1[$ podemos concluir que a série numérica $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n} \text{ tem soma igual a}$												
	(b)	$\frac{\pi}{2}$ Seja f	uma fu $n \geq 3$	ınção q	$\frac{2}{\pi}$ ue satis:	faz as c	condiçõe	$\left[\frac{4}{\pi} \right]$ es: $f(2)$) = 3, j		$\frac{\pi}{4}$ 5, $f''(2)$	(2) = 6, e	$f^{(n)}(2) = 0$ par oncluir que $f(4)$
		25	i		22			12			30		.) / (0, 0)
	(c)	Relativ	vamente	e à funç	eão $f:\mathbb{I}$	$\mathbb{R}^2 o \mathbb{R}$	R defini	da por j	f(x,y)	$=\begin{cases} \overline{\sqrt{2}} \\ 0 \end{cases}$	$\frac{1}{x^2+y^2}$	se $(x, x, y) = 0$	$y) \neq (0,0)$ $0,0)$
		$ \begin{array}{c} $	$\lim_{y) o (0,0} \lim_{y) o (0,0} \lim_{y) o (0,0} \exp(-ix) = 0$	nar que $f(x,y)$ $f(x,y)$ nua em	$\begin{aligned} & : \\ () &= -1 \\ () &= 1 \end{aligned}$					(0		-, 9) = (~, ~)

	(d) Uma equação do plano tangente à superfície de equação $x^2 - 2y^2 + xz^2 = 5$ no ponto $(1,0,2)$ é:
	(e) Considere a função $f(x,y)=y^2$ definida no conjunto
	$\{(x,y) \in \mathbb{R}^2 : -2 < x \le 2 \land -2 < y \le 1\}.$
	Podemos afirmar que: a função admite máximo global mas não mínimo global. a função admite mínimo global mas não máximo global. a função não admite máximo ou mínimo globais. pelo Teorema de Weierstrass, a função admite máximo e mínimo globais uma vez que f é contínua.
	(f) Sabendo que $y=\ln x$ é uma solução da equação diferencial $x^2y''+xy'+y=\ln x$ e que $\{\cos(\ln x), \sin(\ln x)\}$ é um sistema fundamental de soluções da equação homogénea associada, qual é a solução geral da EDO completa?
	$y = \ln x + C_1 \cos(\ln x) + C_2 \sin(\ln x), C_1, C_2 \in \mathbb{R}.$
	$ y = C_1 \cos(\ln x) + C_2 \sin(\ln x), C_1, C_2 \in \mathbb{R}. $
	$ y = C \ln x, C \in \mathbb{R}. $
15pts]	2. Considere a série de potências $\sum_{n=1}^{+\infty} \frac{(x-1)^n}{(n^2+n)3^n}$. Indique o maior intervalo onde a série é
Г	absolutamente convergente.

N° Mec:	Nome:	
11 11100.		

[15pts]

3. Mostre que o erro absoluto cometido ao aproximar $f(x)=\sqrt[3]{x}$ pelo seu polinómio de Taylor de ordem 2 no ponto 1, $T_1^2f(x)$, no intevalo [1,1.2], é inferior a $\frac{1}{2}\times 10^{-3}$.

Continua na folha suplementar Nol

4. Seja $f(x)=\frac{1}{1-x}$. Determine a série de MacLaurin da função xf'(x), indicando o respetivo [10pts] (Nota: $\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, |x| < 1$). intervalo de convergência.

[20pts]

5. Seja f a função 2π -periódica, definida em $[-\pi,\pi[$ por

$$f(x) = \begin{cases} 0, & -\pi \le x < 0 \\ \pi, & 0 \le x < \pi \end{cases}.$$

Determine a série de Fourier de f e esboce o gráfico da sua soma no intervalo $[-3\pi, 3\pi]$.

[2	20	pts

6. Encontre os possíveis pontos de máximo e mínimo locais da função $f:\mathbb{R}^2\to\mathbb{R}$ definida por $f(x,y)=\frac{x^3}{3}+y^2+2xy-6x-3y+4.$

Continua na folha suplementar Nº

[20pts] 7. Resolva a seguinte equação diferencial de Bernoulli:

$$y' + 4\frac{y}{x} = x^3y^2, \quad x > 0.$$

	8.	Cons	sidere a EDO $y'' + y' - 6y = 6e^{2x}$.
[10pts]		(a)	Resolva a EDO homogénea associada.
l			Continua na folha suplementar N°
[10pts]		(b)	Sabendo que a EDO completa admite uma solução do tipo $y=Ax\mathrm{e}^{2x}$, onde A é uma
[constante, determine a solução geral da EDO completa.

9. Considere o seguinte problema de valores iniciais:

$$\begin{cases} y'' + y' = \frac{1}{4} e^{-t} \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

[10pts]

(a) Mostre que $\mathcal{L}\{y(t)\}(s)=\frac{1}{4s(s+1)^2}, \quad s>0.$

Continua na folha suplementar Nº

[10pts]

(b) Usando a Transformada de Laplace inversa, resolva o problema de valores iniciais.

Formulário Transformada de Laplace

Função	Transformada	Função	Transformada	Função	Transformada
$\begin{cases} t^n \\ (n \in \mathbb{N}_0) \end{cases}$	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$		$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ cos(at) (a \in \mathbb{R}) $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$ senh(at) (a \in \mathbb{R}) $	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

Propriedades da transformada de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \text{com } s > s_f$$

$$\mathcal{L}\{f(t)+g(t)\}(s) = F(s)+G(s) , \ s > \max\{s_f,s_g\}$$

$$\mathcal{L}\{\alpha f(t)\}(s) = \alpha F(s) , \ s > s_f \in \alpha \in \mathbb{R}$$

$$\mathcal{L}\{e^{\lambda t}f(t)\}(s) = F(s-\lambda) , \ s > s_f + \lambda \in \mathbb{R}$$

$$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s) , \ s > s_f \in n \in \mathbb{N}$$

$$\mathcal{L}\{H_a(t) \cdot f(t-a)\}(s) = e^{-as}F(s) , \ s > s_f \in a > 0$$

$$\mathcal{L}\{f(at)\}(s) = \frac{1}{a} F\left(\frac{s}{a}\right) , \ s > a s_f \in a > 0$$

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$
$$\cos s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$$

Função	Primitiva	Função	Primitiva	Função	Primitiva
$u^r u'$ $(r \neq -1)$	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\sin u$	$u'\sin u$	$-\cos u$
$u'\sec^2 u$	$\tan u$	$u'\csc^2 u$	$-\cot u$	$u' \sec u$	$ \ln \sec u + \tan u $
$u'\csc u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$

Algumas fórmulas trigonométricas

$$sec x = \frac{1}{\cos x}$$

$$cos(x \pm y) = sen x cos y \pm cos x sen y$$

$$cos^{2} x = \frac{1 + cos (2x)}{2}$$

$$sec x = \frac{1}{\cos x}$$

$$cos(x \pm y) = cos x cos y \mp sen x sen y$$

$$sin^{2} x = \frac{1 - cos (2x)}{2}$$

$$cos x = \frac{1}{\sin x}$$

$$sin(2x) = 2 \sin x cos x$$

$$1 + tan^{2} x = sec^{2} x$$

$$cos(2x) = cos^{2} x - sin^{2} x$$

$$1 + cot^{2} x = csc^{2} x$$