# **FCC REPORT**

Applicant: Worldex International Ltd

Address of Applicant: 3A-8A, Mont Orchid Riverlet, Gongye 3rd Rd, Nanshan,

Shenzhen, China

**Equipment Under Test (EUT)** 

Product Name: Tablet PC

SP6601, MW6617, MID6617, MW6625, MID6625, MW6617D,

Model No.: MW6617Q, MW6625D, MW6625Q, MID6617Q, MID6617D,

MID6625Q, MID6625D

Trade mark: Touch+

**FCC ID:** 2ACZ2-MW6617

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Aug., 2014

**Date of Test:** 14 Aug., to 27 Aug., 2014

Date of report issued: 27 Aug., 2014

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



#### 2 **Version**

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 27 Aug., 2014 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Luna Gao Report Clerk Prepared by: 27 Aug., 2014 Date:

Reviewed by: 27 Aug., 2014 Date:

**Project Engineer** 



### 3 Contents

|   |              |                                         | Page |
|---|--------------|-----------------------------------------|------|
| 1 | C            | OVER PAGE                               | 1    |
| 2 | V            | 'ERSION                                 | 2    |
|   |              | ONTENTS                                 |      |
| 3 | _            |                                         | _    |
| 4 | T            | EST SUMMARY                             | 4    |
| 5 | G            | ENERAL INFORMATION                      | 5    |
|   | 5.1          | CLIENT INFORMATION                      | 5    |
| • | 5.2          | GENERAL DESCRIPTION OF E.U.T.           | _    |
| į | 5.3          | TEST MODE                               |      |
| ! | 5.4          | LABORATORY FACILITY                     | 7    |
| ! | 5.5          | LABORATORY LOCATION                     | 7    |
|   | 5.6          | TEST INSTRUMENTS LIST                   | 8    |
| 6 | TI           | EST RESULTS AND MEASUREMENT DATA        | 9    |
| ( | 6.1          | ANTENNA REQUIREMENT                     | 9    |
| ( | 6.2          | CONDUCTED EMISSIONS                     | 10   |
| ( | 6.3          | CONDUCTED OUTPUT POWER                  |      |
|   | 6.4          | 20dB Occupy Bandwidth                   |      |
|   | 6.5          | CARRIER FREQUENCIES SEPARATION          |      |
|   | 6.6          | HOPPING CHANNEL NUMBER                  |      |
|   | 6.7          | DWELL TIME                              |      |
|   | 6.8          | PSEUDORANDOM FREQUENCY HOPPING SEQUENCE | _    |
| ( | 6.9          | .9.1 Conducted Emission Method          |      |
|   |              | 9.2 Radiated Emission Method            |      |
|   | 6.10<br>6.10 |                                         |      |
| , | 00           | .10.1 Conducted Emission Method.        |      |
|   | _            | .10.2 Radiated Emission Method          |      |
| 7 | Ti           | EST SETUP PHOTO                         | 61   |
| 8 | F            | UT CONSTRUCTIONAL DETAILS.              | 62   |



### 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna Requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)     | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)     | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)     | Pass   |
| Hopping Channel Number           | 15.247 (a)(1)     | Pass   |
| Dwell Time                       | 15.247 (a)(1)     | Pass   |
| Radiated Emission                | 15.205/15.209     | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |

Pass: The EUT complies with the essential requirements in the standard.



### 5 General Information

### 5.1 Client Information

| Applicant:               | Worldex International Ltd                                            |
|--------------------------|----------------------------------------------------------------------|
| Address of Applicant:    | 3A-8A, Mont Orchid Riverlet, Gongye 3rd Rd, Nanshan, Shenzhen, China |
| Manufacturer:            | Hena Digital Techonlogy (shenzhen)Co.Ltd.                            |
| Address of Manufacturer: | 13F, BlockB, Tairan Building, Futian District, Shenzhen, China       |

# 5.2 General Description of E.U.T.

| Product Name:          | Tablet PC                                                                                                                                                                                                                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | SP6601,MW6617,MID6617,MW6625,MID6625,MW6617D,MW6617Q,<br>MW6625D, MW6625Q, MID6617Q, MID6617D, MID6625Q, MID6625D                                                                                                                                                  |
| Operation Frequency:   | 2402MHz~2480MHz                                                                                                                                                                                                                                                    |
| Transfer rate:         | 1/2/3 Mbits/s                                                                                                                                                                                                                                                      |
| Number of channel:     | 79                                                                                                                                                                                                                                                                 |
| Modulation type:       | GFSK, π/4-DQPSK, 8DPSK                                                                                                                                                                                                                                             |
| Modulation technology: | FHSS                                                                                                                                                                                                                                                               |
| Antenna Type:          | Internal Antenna                                                                                                                                                                                                                                                   |
| Antenna gain:          | 0 dBi                                                                                                                                                                                                                                                              |
| Power supply:          | Rechargeable Li-ion Battery DC3.7V-1800mAh                                                                                                                                                                                                                         |
| AC adapter:            | Model:STC-A515A-Z<br>Input:100-240V AC,50/60Hz 0.3A<br>Output:5.0V DC MAX1500mA                                                                                                                                                                                    |
| Remark:                | Item No.: SP6601, MW6617, MID6617, MW6625, MID6625, MW6617D, MW6617Q, MW6625D, MW6625Q, MID6617Q, MID6617D, MID6625Q, MID6625D were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being color |



| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 0       | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1       | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2       | 2404MHz   | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3       | 2405MHz   | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4       | 2406MHz   | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5       | 2407MHz   | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
| 6       | 2408MHz   | 26      | 2428MHz   | 46      | 2448MHz   | 66      | 2468MHz   |
| 7       | 2409MHz   | 27      | 2429MHz   | 47      | 2449MHz   | 67      | 2469MHz   |
| 8       | 2410MHz   | 28      | 2430MHz   | 48      | 2450MHz   | 68      | 2470MHz   |
| 9       | 2411MHz   | 29      | 2431MHz   | 49      | 2451MHz   | 69      | 2471MHz   |
| 10      | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11      | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
| 12      | 2414MHz   | 32      | 2434MHz   | 52      | 2454MHz   | 72      | 2474MHz   |
| 13      | 2415MHz   | 33      | 2435MHz   | 53      | 2455MHz   | 73      | 2475MHz   |
| 14      | 2416MHz   | 34      | 2436MHz   | 54      | 2456MHz   | 74      | 2476MHz   |
| 15      | 2417MHz   | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16      | 2418MHz   | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17      | 2419MHz   | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18      | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19      | 2421MHz   | 39      | 2441MHz   | 59      | 2461MHz   |         |           |



#### 5.3 Test mode

| Transmitting mode: | Keep the EUT in transmitting mode with worst case data rate. |
|--------------------|--------------------------------------------------------------|
| Remark             | GFSK (1 Mbps) is the worst case mode.                        |

The sample was placed 0.8m above the ground plane of 3m chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

### 5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### ● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### ● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### ● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

### 5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366



### 5.6 Test Instruments list

| Radiated Emission: |                                      |                                                 |                             |                  |                         |                             |  |
|--------------------|--------------------------------------|-------------------------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|--|
| Item               | Test Equipment                       | Manufacturer                                    | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1                  | 3m Semi- Anechoic<br>Chamber         | SAEMC                                           | 9(L)*6(W)* 6(H)             | CCIS0001         | June 09 2014            | June 08 2015                |  |
| 2                  | BiConiLog Antenna                    | SCHWARZBECK MESS-ELEKTRONIK  VULB9163  CCIS0005 |                             | May 25 2014      | May 24 2015             |                             |  |
| 3                  | Double -ridged waveguide horn        | SCHWARZBECK<br>MESS-ELEKTRONIK                  | BBHA9120D                   | CCIS0006         | May 25 2014             | May 24 2015                 |  |
| 4                  | EMI Test Software                    | AUDIX                                           | E3                          | N/A              | N/A                     | N/A                         |  |
| 5                  | Coaxial Cable                        | CCIS                                            | N/A                         | CCIS0016         | Apr. 01 2014            | Mar. 31 2015                |  |
| 6                  | Coaxial Cable                        | CCIS                                            | N/A                         | CCIS0017         | Apr. 01 2014            | Mar. 31 2015                |  |
| 7                  | Coaxial cable                        | CCIS                                            | N/A                         | CCIS0018         | Apr. 01 2014            | Mar. 31 2015                |  |
| 8                  | Coaxial Cable                        | CCIS                                            | N/A CCIS00                  |                  | Apr. 01 2014            | Mar. 31 2015                |  |
| 9                  | Coaxial Cable                        | CCIS                                            | N/A                         | CCIS0087         | Apr. 01 2014            | Mar. 31 2015                |  |
| 10                 | Amplifier(10kHz-<br>1.3GHz)          | HP 8447D CCIS0003                               |                             | CCIS0003         | Apr. 01 2014            | Mar. 31 2015                |  |
| 11                 | Amplifier(1GHz-<br>18GHz)            | Compliance Direction Systems Inc.               | PAP-1G18   CCIS0011         |                  | June 09 2014            | June 08 2015                |  |
| 12                 | Pre-amplifier<br>(18-26GHz)          | Rohde & Schwarz                                 | AFS33-18002<br>650-30-8P-44 | GTS218           | Apr. 01 2014            | Mar. 31 2015                |  |
| 13                 | Horn Antenna                         | ETS-LINDGREN                                    | 3160                        | GTS217           | Mar. 30 2014            | Mar. 29 2015                |  |
| 14                 | Printer                              | HP                                              | HP LaserJet P1007           | N/A              | N/A                     | N/A                         |  |
| 15                 | Positioning Controller               | UC                                              | UC3000                      | CCIS0015         | N/A                     | N/A                         |  |
| 16                 | Spectrum analyzer<br>9k-30GHz        | Rohde & Schwarz                                 | FSP                         | CCIS0023         | May. 25 2014            | May. 24 2015                |  |
| 17                 | EMI Test Receiver                    | Rohde & Schwarz                                 | ESPI                        | CCIS0022         | Apr 01 2014             | Mar. 31 2015                |  |
| 18                 | Loop antenna                         | Laplace instrument                              | RF300                       | EMC0701          | Aug. 12 2014            | Aug. 11 2015                |  |
| 19                 | Universal radio communication tester | Rhode & Schwarz                                 | CMU200                      | CCIS0069         | May. 25 2014            | May. 24 2015                |  |
| 20                 | Signal Analyzer                      | Rohde & Schwarz                                 | FSIQ3                       | CCIS0088         | May. 25 2014            | May. 24 2015                |  |

| Conducted Emission: |                   |                    |                       |                  |                         |                             |  |  |
|---------------------|-------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|--|
| Item                | Test Equipment    | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |
| 1                   | Shielding Room    | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | June 09 2014            | June 08 2015                |  |  |
| 2                   | EMI Test Receiver | Rohde & Schwarz    | ESCI                  | CCIS0002         | May 25 2014             | May 24 2015                 |  |  |
| 3                   | LISN              | CHASE              | MN2050D               | CCIS0074         | Apr 01 2014             | Mar. 31 2015                |  |  |
| 4                   | Coaxial Cable     | CCIS               | N/A                   | CCIS0086         | Apr. 01 2014            | Mar. 31 2015                |  |  |
| 5                   | EMI Test Software | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |  |



### 6 Test results and Measurement Data

### 6.1 Antenna requirement

### Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0 dBi.





# 6.2 Conducted Emissions

| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|--|--|--|
| Test Method:          | ANSI C63.4:2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz, Sweep time=auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |  |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (d   | BuV)      |  |  |  |
|                       | Frequency range (MH2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quasi-peak | Average   |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 to 56*  | 56 to 46* |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56         | 46        |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60         | 50        |  |  |  |
| Test setup:           | * Decreases with the logarithm of<br>Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •          |           |  |  |  |
|                       | LISN  40cm  80cm  Filter  AC power  Equipment  Test table/Insulation plane  Remark  E.U.T. Equipment Under Test  LISN Line Impedence Stabilization Network  Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           |  |  |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.</li> </ol> |            |           |  |  |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |  |  |  |
| Test mode:            | Bluetooth (Continuous transmittin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g) mode    |           |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -          |           |  |  |  |
|                       | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           |  |  |  |

#### **Measurement Data**



#### Line:



Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

Job No. EUT : 676RF : Tablet PC : SP6601 Model Test Mode : BT mode Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Wendell

Remark

|                                           | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                           | MHz   | dBu∜          | ₫B             | dB            | dBu₹  | dBu∀          | dB            |         |
| 1                                         | 0.158 | 38.57         | 0.27           | 10.78         | 49.62 | 65.56         | -15.94        | QP      |
| 2                                         | 0.158 | 21.26         | 0.27           | 10.78         | 32.31 | 55.56         | -23.25        | Average |
| 3                                         | 0.182 | 35.50         | 0.28           | 10.77         | 46.55 | 64.42         | -17.87        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.182 | 18.94         | 0.28           | 10.77         | 29.99 | 54.42         | -24.43        | Average |
| 5                                         | 0.313 | 32.90         | 0.26           | 10.74         | 43.90 | 59.88         | -15.98        | QP      |
| 6                                         | 0.435 | 33.94         | 0.28           | 10.73         | 44.95 | 57.15         | -12.20        | QP      |
| 7                                         | 0.435 | 19.48         | 0.28           | 10.73         | 30.49 | 47.15         | -16.66        | Average |
| 8                                         | 0.481 | 18.84         | 0.29           | 10.75         | 29.88 | 46.32         | -16.44        | Average |
| 9                                         | 0.601 | 27.35         | 0.25           | 10.77         | 38.37 | 56.00         | -17.63        | QP      |
| 10                                        | 0.611 | 14.26         | 0.25           | 10.77         | 25.28 | 46.00         | -20.72        | Average |
| 11                                        | 1.878 | 10.80         | 0.26           | 10.95         | 22.01 | 46.00         | -23.99        | Average |
| 12                                        | 1.939 | 24.89         | 0.26           | 10.96         | 36.11 |               | -19.89        |         |



#### Neutral:



Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 676RF Job No. EUT : Tablet PC Model SP6601 Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Wendell

Remark

| Freq  | Read<br>Level                                                                    | LISN<br>Factor                                                                                                                                | Cable<br>Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz   | dBu∜                                                                             |                                                                                                                                               | ₫B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dBu₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBu⊽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.150 | 23.85                                                                            | 0.25                                                                                                                                          | 10.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -21.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.158 | 38.29                                                                            | 0.25                                                                                                                                          | 10.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -16.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.178 | 35.80                                                                            | 0.25                                                                                                                                          | 10.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -17.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.182 | 22.54                                                                            | 0.25                                                                                                                                          | 10.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -20.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.310 | 32.44                                                                            | 0.26                                                                                                                                          | 10.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -16.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.310 | 18.56                                                                            | 0.26                                                                                                                                          | 10.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -20.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.334 | 32.14                                                                            | 0.26                                                                                                                                          | 10.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -16.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.449 | 32.69                                                                            | 0.27                                                                                                                                          | 10.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -13.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.461 | 20.50                                                                            | 0.28                                                                                                                                          | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.527 | 27.37                                                                            | 0.27                                                                                                                                          | 10.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -17.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.111 | 11.30                                                                            | 0.23                                                                                                                                          | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -23.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.088 | 12.70                                                                            | 0.29                                                                                                                                          | 10.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -22.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | MHz 0. 150 0. 158 0. 178 0. 182 0. 310 0. 310 0. 334 0. 449 0. 461 0. 527 1. 111 | MHz dBuV  0.150 23.85 0.158 38.29 0.178 35.80 0.182 22.54 0.310 32.44 0.310 18.56 0.334 32.14 0.449 32.69 0.461 20.50 0.527 27.37 1.111 11.30 | MHz         dBuV         dB           0.150         23.85         0.25           0.158         38.29         0.25           0.178         35.80         0.25           0.182         22.54         0.25           0.310         32.44         0.26           0.310         18.56         0.26           0.334         32.14         0.26           0.449         32.69         0.27           0.461         20.50         0.28           0.527         27.37         0.27           1.111         11.30         0.23 | MHz         dBuV         dB         dB           0.150         23.85         0.25         10.78           0.158         38.29         0.25         10.78           0.178         35.80         0.25         10.77           0.182         22.54         0.25         10.77           0.310         32.44         0.26         10.74           0.310         18.56         0.26         10.74           0.334         32.14         0.26         10.73           0.449         32.69         0.27         10.74           0.461         20.50         0.28         10.75           0.527         27.37         0.27         10.76           1.111         11.30         0.23         10.88 | MHz         dBuV         dB         dB         dBuV           0.150         23.85         0.25         10.78         34.88           0.158         38.29         0.25         10.78         49.32           0.178         35.80         0.25         10.77         46.82           0.182         22.54         0.25         10.77         33.56           0.310         32.44         0.26         10.74         43.44           0.310         18.56         0.26         10.74         29.56           0.334         32.14         0.26         10.73         43.13           0.449         32.69         0.27         10.74         43.70           0.461         20.50         0.28         10.75         31.53           0.527         27.37         0.27         10.76         38.40           1.111         11.30         0.23         10.88         22.41 | MHz         dBuV         dB         dB         dBuV         dBuV           0.150         23.85         0.25         10.78         34.88         56.00           0.158         38.29         0.25         10.78         49.32         65.56           0.178         35.80         0.25         10.77         46.82         64.59           0.182         22.54         0.25         10.77         33.56         54.42           0.310         32.44         0.26         10.74         43.44         59.97           0.310         18.56         0.26         10.74         29.56         49.97           0.334         32.14         0.26         10.73         43.13         59.35           0.449         32.69         0.27         10.74         43.70         56.89           0.461         20.50         0.28         10.75         31.53         46.67           0.527         27.37         0.27         10.76         38.40         56.00           1.111         11.30         0.23         10.88         22.41         46.00 | MHz         dBuV         dB         dB         dBuV         dBuV         dB           0.150         23.85         0.25         10.78         34.88         56.00         -21.12           0.158         38.29         0.25         10.78         49.32         65.56         -16.24           0.178         35.80         0.25         10.77         46.82         64.59         -17.77           0.182         22.54         0.25         10.77         33.56         54.42         -20.86           0.310         32.44         0.26         10.74         43.44         59.97         -16.53           0.310         18.56         0.26         10.74         43.44         59.97         -16.53           0.334         32.14         0.26         10.74         29.56         49.97         -20.41           0.349         32.69         0.27         10.74         43.70         56.89         -13.19           0.461         20.50         0.28         10.75         31.53         46.67         -15.14           0.527         27.37         0.27         10.76         38.40         56.00         -17.60           1.111         11.30         0.23 | MHz         dBuV         dB         dB         dBuV         dBuV         dB           0.150         23.85         0.25         10.78         34.88         56.00         -21.12         Average           0.158         38.29         0.25         10.78         49.32         65.56         -16.24         QP           0.178         35.80         0.25         10.77         46.82         64.59         -17.77         QP           0.182         22.54         0.25         10.77         33.56         54.42         -20.86         Average           0.310         32.44         0.26         10.74         43.44         59.97         -16.53         QP           0.310         18.56         0.26         10.74         43.44         59.97         -20.41         Average           0.334         32.14         0.26         10.73         43.13         59.35         -16.22         QP           0.449         32.69         0.27         10.74         43.70         56.89         -13.19         QP           0.461         20.50         0.28         10.75         31.53         46.67         -15.14         Average           0.527         27.37 |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss



# 6.3 Conducted Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                                                                       |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2003 and DA00-705                                                                                             |  |
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz) |  |
| Limit:            | 125 mW(21 dBm)                                                                                                           |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                    |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                         |  |
| Test mode:        | Non-hopping mode                                                                                                         |  |
| Test results:     | Pass                                                                                                                     |  |

#### **Measurement Data**

| weasurement Data |                         |             |        |  |
|------------------|-------------------------|-------------|--------|--|
|                  | GFSK mode               |             |        |  |
| Test channel     | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest           | 4.17                    | 21.00       | Pass   |  |
| Middle           | 5.08                    | 21.00       | Pass   |  |
| Highest          | 5.55                    | 21.00       | Pass   |  |
|                  | π/4-DQPSK               | mode        |        |  |
| Test channel     | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest           | 3.93                    | 21.00       | Pass   |  |
| Middle           | 4.90                    | 21.00       | Pass   |  |
| Highest          | 5.01                    | 21.00       | Pass   |  |
|                  | 8DPSK mode              |             |        |  |
| Test channel     | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest           | 3.58 21.00              |             | Pass   |  |
| Middle           | 4.67 21.00 Pass         |             | Pass   |  |
| Highest          | 4.80                    | 21.00       | Pass   |  |



Test plot as follows:

Modulation mode:



#### Lowest channel



### Middle channel



Highest channel



Modulation mode: π/4-DQPSK



#### Lowest channel



#### Middle channel



Highest channel



Modulation mode: 8DPSK



#### Lowest channel



#### Middle channel



Highest channel



# 6.4 20dB Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2003 and DA00-705                                          |  |
| Receiver setup:   | RBW=30 kHz, VBW=100 kHz, detector=Peak                                |  |
| Limit:            | NA                                                                    |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Non-hopping mode                                                      |  |
| Test results:     | Pass                                                                  |  |

#### **Measurement Data**

| Toot showned | 20dB Occupy Bandwidth (kHz) |           |         |
|--------------|-----------------------------|-----------|---------|
| Test channel | GFSK                        | π/4-DQPSK | 8DPSK   |
| Lowest       | 841.68                      | 1142.28   | 1170.34 |
| Middle       | 841.68                      | 1130.26   | 1174.35 |
| Highest      | 841.68                      | 1142.28   | 1174.35 |

### Test plot as follows:



Modulation mode: GFSK



#### Lowest channel



### Middle channel



Highest channel



Modulation mode: π/4-DQPSK



#### Lowest channel



#### Middle channel



Highest channel



Modulation mode: 8DPSK



#### Lowest channel



#### Middle channel



Highest channel



# 6.5 Carrier Frequencies Separation

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2003 and DA00-705                                          |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, detector=Peak                               |  |
| Limit:            | 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)          |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Hopping mode                                                          |  |
| Test results:     | Pass                                                                  |  |

#### **Measurement Data**



|              | GFSK mode                            |             |        |  |
|--------------|--------------------------------------|-------------|--------|--|
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |  |
| Lowest       | 1002                                 | 561.12      | Pass   |  |
| Middle       | 1002                                 | 561.12      | Pass   |  |
| Highest      | 1002                                 | 561.12      | Pass   |  |
|              | π/4-DQPSK mod                        | le          |        |  |
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |  |
| Lowest       | 1002                                 | 761.52      | Pass   |  |
| Middle       | 1002                                 | 761.52      | Pass   |  |
| Highest      | 1002                                 | 761.52      | Pass   |  |
|              | 8DPSK mode                           |             |        |  |
| Test channel | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |  |
| Lowest       | 1002                                 | 782.90      | Pass   |  |
| Middle       | 1002 782.90 Pass                     |             | Pass   |  |
| Highest      | 1002 782.90 Pass                     |             | Pass   |  |

Note: According to section 6.4

| Mode      | 20dB bandwidth (kHz)<br>(worse case) | Limit (kHz)<br>(Carrier Frequencies Separation) |
|-----------|--------------------------------------|-------------------------------------------------|
| GFSK      | 841.68                               | 561.12                                          |
| π/4-DQPSK | 1142.28                              | 761.52                                          |
| 8DPSK     | 1174.35                              | 782.90                                          |

Test plot as follows:



Modulation mode: GFSK



#### Lowest channel



### Middle channel



Highest channel



Modulation mode: π/4-DQPSK



#### Lowest channel



### Middle channel



Highest channel



Modulation mode: 8DPSK



#### Lowest channel



#### Middle channel



Highest channel



# 6.6 Hopping Channel Number

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                         |  |
|-------------------|----------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2003 and DA00-705                                               |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |  |
| Limit:            | 15 channels                                                                |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane      |  |
| Test Instruments: | Refer to section 5.7 for details                                           |  |
| Test mode:        | Hopping mode                                                               |  |
| Test results:     | Pass                                                                       |  |

#### **Measurement Data:**

| Mode                   | Hopping channel numbers | Limit | Result |
|------------------------|-------------------------|-------|--------|
| GFSK, π/4-DQPSK, 8DPSK | 79                      | 15    | Pass   |









#### 6.7 Dwell Time

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                    |  |
|-------------------|-----------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2003 and KDB DA00-705                                      |  |
| Receiver setup:   | RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak                        |  |
| Limit:            | 0.4 Second                                                            |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |
| Test mode:        | Hopping mode                                                          |  |
| Test results:     | Pass                                                                  |  |

### **Measurement Data (Worse case)**

| Mode       | Packet | Dwell time (second) | Limit (second) | Result |
|------------|--------|---------------------|----------------|--------|
|            | DH1    | 0.12896             |                |        |
| GFSK       | DH3    | 0.26640             | 0.4            | Pass   |
|            | DH5    | 0.31211             |                |        |
|            | 2-DH1  | 0.12576             |                |        |
| π /4-DQPSK | 2-DH3  | 0.26832             | 0.4            | Pass   |
|            | 2-DH5  | 0.31211             |                |        |
|            | 3-DH1  | 0.12768             |                |        |
| 8DPSK      | 3-DH3  | 0.26640             | 0.4            | Pass   |
|            | 3-DH5  | 0.31125             |                |        |

For GFSK,  $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.403\*(1600/(2\*79))\*31.6=128.96ms DH3 time slot=1.665\*(1600/(4\*79))\*31.6=266.40ms DH5 time slot=2.926(1600/(6\*79))\*31.6=312.11ms

2-DH1 time slot=0.393\*(1600/ (2\*79))\*31.6=125.76ms

2-DH3 time slot=1.677\*(1600/ (4\*79))\*31.6=268.32ms

2-DH5 time slot=2.926(1600/ (6\*79))\*31.6=312.11ms

3-DH1 time slot=0.399\*(1600/ (2\*79))\*31.6=127.68ms

3-DH3 time slot=1.665\*(1600/ (4\*79))\*31.6=266.40ms

3-DH5 time slot=2.918(1600/ (6\*79))\*31.6=311.25ms



#### Test plot as follows:



DH5



π/4-DQPSK Modulation mode: 1 MHz 1 MHz 1 ms Ref Lvl 16.5 dBm VBW SWT 14.AUG.2014 16:16:24 2-DH1 1 MHz 1 MHz 3 ms 14.AUG.2014 16:17:19 2-DH3 Ref Lvl 16.5 dBm RF Att 1 MHz 4 ms VBW SWT Unit

Date:

Center 2.441 GHz

14.AUG.2014 16:18:20

2-DH5



8DPSK Modulation mode: 1 MHz 1 MHz 1 ms Ref Lvl 16.5 dBm VBW SWT 14.AUG.2014 16:19:12 3-DH1 1 MHz 1 MHz 3 ms 14.AUG.2014 16:19:52 3-DH3 Ref Lvl 16.5 dBm RF Att 1 MHz 4 ms VBW SWT Unit

Date:

Center 2.441 GHz

14.AUG.2014 16:20:34

3-DH5



### 6.8 Pseudorandom Frequency Hopping Sequence

### Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

#### **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:  $2^9 1 = 511$  bits
- Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



# 6.9 Band Edge

### 6.9.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.4:2003 and DA00-705                                                                                                                                                                                                                                                                                                                                                            |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                 |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |
| Test mode:        | Non-hopping mode and hopping mode                                                                                                                                                                                                                                                                                                                                                       |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |

Test plot as follows:





















# 6.9.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ection 15.209 an                                                                                                                                                                                                                                                       | d 15.205                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:          | ANSI C63.4: 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| Test Frequency Range: | 2.3GHz to 2.5GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| Test site:            | Measurement Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                               | RBW                                                                                                                                                                                                                        | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                               |
| receiver detap.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak                                                                                                                                                                                                                                                                   | 1MHz                                                                                                                                                                                                                       | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Value                                                                                                                           |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                   | 1MHz                                                                                                                                                                                                                       | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                                                                                                                        |
| Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        | Limit (dBuV/                                                                                                                                                                                                               | m @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remark                                                                                                                               |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH-z                                                                                                                                                                                                                                                                   | 54.0                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average Value                                                                                                                        |
|                       | Above i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GHZ                                                                                                                                                                                                                                                                    | 74.0                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak Value                                                                                                                           |
| Test setup:           | EUT Turn Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | → 3m ← 4m                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                            | Antenna Horn Ant Spectrum Analyzer  Ampli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tenna                                                                                                                                |
| Test Procedure:       | at a 3 meter or position of the position of the 2. The EUT was was mounted 3. The antenna hadetermine the polarizations of 4. For each susp the antenna was turned from 5. The test-receive Bandwidth with 6. If the emission specified, there had be reported. Or re-tested one in the position of the positi | amber. The table highest radiation set 3 meters awon the top of a valeight is varied for maximum value of the antenna and ected emission, as tuned to heigh modegrees to ever system was high Maximum Hole level of the EU to testing could be otherwise the emission. | e was rotated in.  yay from the in yariable-height rom one metel of the field stire set to make the EUT was ghts from 1 me 360 degrees to set to Peak Dod Mode.  T in peak mode stopped and hissions that diak, quasi-peak | terference-re antenna tow r to four meter rength. Both the measure arranged to find the mater to 4 meter to 4 meter to 10 mete | ers above the ground to<br>horizontal and vertical<br>ement.<br>its worst case and then<br>ers and the rota table<br>eximum reading. |
| Test Instruments:     | Refer to section 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| Test mode:            | Non-hopping mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
|                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |

#### Remark:

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.



GFSK mode

Test channel: Lowest

Horizontal:



Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Job No. : 676RF EUT : Tablet PC Model : SP6601 Test mode : DH1-L mode Power Rating : AC 120V/60Hz

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Wendell

Remark :

|   | Freq     |       | Antenna<br>Factor |      |           |        |       |        | Remark  |  |
|---|----------|-------|-------------------|------|-----------|--------|-------|--------|---------|--|
|   | MHz      | dBm   | dB/m              | ₫B   | <u>dB</u> | _dBm/m | dBm/m | dB     |         |  |
| 1 | 2390.000 | 23.32 | 27.58             | 5.67 | 0.00      | 56.57  | 74.00 | -17.43 | Peak    |  |
| 2 | 2390.000 | 11.30 | 27.58             | 5.67 | 0.00      | 44.55  | 54.00 | -9.45  | Average |  |



#### Vertical:



Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Job No. : 676RF EUT : Tablet PC Model : SP6601 Test mode : DH1-L mode Power Rating : AC 120V/60Hz

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Wendell

Remark

| JAC LE | 57                   |     |              | Preamp<br>Factor |        |        | Over<br>Limit | Remark |
|--------|----------------------|-----|--------------|------------------|--------|--------|---------------|--------|
| Ī      | MHz                  | dBm | <u>dB</u> /m | <br><u>ab</u>    | _dBm/m | _dBm/m |               | 1      |
|        | 2390.000<br>2390.000 |     |              |                  |        |        |               |        |



Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. : 676RF EUT : Tablet PC Model : SP6601 Test mode : DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Wendell

Reл

| mar. | K :      | Read  | Ant enna | Cable      | Preamo    |        | Limit  | Over      |         |  |
|------|----------|-------|----------|------------|-----------|--------|--------|-----------|---------|--|
|      | Freq     |       | Factor   |            |           |        |        |           | Remark  |  |
| •    | MHz      | dBm   | —dB/m    | <u>d</u> B | <u>ab</u> | _dBm/m | _dBm/m | <u>dB</u> |         |  |
| 1    | 2483.500 | 28.21 | 27.52    | 5.70       | 0.00      | 61.43  | 74.00  | -12.57    | Peak    |  |
| 2    | 2483 500 | 14 34 | 27 52    | 5 70       | 0.00      | 47.56  | 54 00  | -6 44     | Average |  |



#### Vertical:



Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 676RF Condition

Job No. EUT : Tablet PC Model : SP6601 : DH1-H mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Wendell

Remark

|   | i        | Read  | Antenna | Cable | Preamo    |       | Limit | Over      |         |  |
|---|----------|-------|---------|-------|-----------|-------|-------|-----------|---------|--|
|   | Freq     |       | Factor  |       |           |       |       |           |         |  |
| ā | MHz      | dBm   | —dB/m   | dB    | <u>dB</u> | dBm/m | dBm/m | <u>dB</u> |         |  |
| 1 | 2483.500 | 34.49 | 27.52   | 5.70  | 0.00      | 67.71 | 74.00 | -6.29     | Peak    |  |
| 2 | 2483.500 | 16.72 | 27.52   | 5.70  | 0.00      | 49.94 | 54.00 | -4.06     | Average |  |



π/4-DQPSK mode Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. : 676RF : Tablet PC EUT Model : SP6601 Test mode : 2DH1-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Wendell

Remark :

|     | Freq                 |     | Antenna<br>Factor |    |              |        |        |           | Remark          |
|-----|----------------------|-----|-------------------|----|--------------|--------|--------|-----------|-----------------|
| ,   | MHz                  | dBm | <u>dB</u> /m      | dB | dB           | _dBm/m | _dBm/m | <u>dB</u> |                 |
| 1 2 | 2390.000<br>2390.000 |     |                   |    | 0.00<br>0.00 |        |        |           | Peak<br>Average |



#### Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 676RF Condition

Job No. : Tablet PC EUT : SP6601 Model Test mode : 2DH1-L mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Wendell

Re

| lemarl | ĸ :      | Read  | Antenna | Cable | Preamp    |        | Limit | Over      |         |
|--------|----------|-------|---------|-------|-----------|--------|-------|-----------|---------|
|        | Freq     |       | Factor  |       |           | Level  | Line  | Limit     | Remark  |
| -      | MHz      | dBm   | dB/m    | dB    | <u>dB</u> | _dBm/m | dBm/m | <u>dB</u> |         |
| 1      | 2390.000 | 23.75 | 27.58   | 5.67  | 0.00      | 57.00  | 74.00 | -17.00    | Peak    |
| 2      | 2390.000 | 11.31 | 27.58   | 5.67  | 0.00      | 44.56  | 54.00 | -9.44     | Average |



Test channel: Highest

Horizontal:



Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. : 676RF : Tablet PC : SP6601 EUT Model Test mode : 2DH1-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Wendell

Remark

1 2

|   | (B)                  |     | Antenna<br>Factor |            |            |                | Limit<br>Line | Remark          |  |
|---|----------------------|-----|-------------------|------------|------------|----------------|---------------|-----------------|--|
|   | MHz                  | dBm | <u>dB</u> /m      | <u>d</u> B | <u>d</u> B |                |               | <br>            |  |
| 2 | 2483.500<br>2483.500 |     | 27.52<br>27.52    |            |            | 59.96<br>47.58 |               | Peak<br>Average |  |



#### Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 676RF Job No. : Tablet PC : SP6601 EUT Model Test mode : 2DH1-H mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Wendell
Remark:

| emari | K :       |       |                   |       |           |        |        |            |         |
|-------|-----------|-------|-------------------|-------|-----------|--------|--------|------------|---------|
|       | Freq      |       | Antenna<br>Factor |       |           | Level  |        |            | Remark  |
|       | MHz       | dBm   |                   | dB    | <u>ab</u> | _dBm/m | _dBm/m | <u>d</u> B |         |
| 1     | 2483.500  | 32.71 | 27.52             | 5.70  | 0.00      | 65.93  | 74.00  | -8.07      | Peak    |
| 2     | 2483, 500 | 16.54 | 27. 52            | 5, 70 | 0.00      | 49.76  | 54,00  | -4.24      | Average |



8DPSK mode

Test channel: Lowest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 676RF Job No. EUT : Tablet PC Model : SP6601 : 3DH1-L mode Test mode Power Rating: AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Wendell

Remark

|   | Freq     | ReadAntenna<br>Level Factor |       |      |           |       | Limit<br>Line |           | Remark  |
|---|----------|-----------------------------|-------|------|-----------|-------|---------------|-----------|---------|
|   | MHz      | dBm                         | dB/m  | ₫B   | <u>dB</u> | dBm/m | dBm/m         | <u>dB</u> |         |
| 1 | 2390.000 | 23.10                       | 27.58 | 5.67 | 0.00      | 56.35 | 74.00         | -17.65    | Peak    |
| 2 | 2390.000 | 11.31                       | 27.58 | 5.67 | 0.00      | 44.56 | 54.00         | -9.44     | Average |



#### Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 676RF Condition

Job No. : Tablet PC : SP6601 EUT Model Test mode

: 3DH1-L mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Wendell

| xemar. | 51. (3).             |     |              |            | Preamp<br>Factor |        | Limit<br>Line | Over<br>Limit | Remark          |  |
|--------|----------------------|-----|--------------|------------|------------------|--------|---------------|---------------|-----------------|--|
|        | MHz                  | dBm | <u>dB</u> /m | <u>d</u> B | āB               | _dBm/m | _dBm/m        | dB            |                 |  |
| 1 2    | 2390.000<br>2390.000 |     |              |            |                  |        |               |               | Peak<br>Average |  |



Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 676RF Job No. : Tablet PC : SP6601 EUT Model Test mode : 3DH1-H mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Wendell
Remark:

|      | Read       | intenna               | C-11-                            | -                                        |                                                  |                                                              |                                                                          |                                                                                    |                                                                                                                                                                                                    |
|------|------------|-----------------------|----------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq |            |                       |                                  |                                          | Level                                            |                                                              |                                                                          | Remark                                                                             |                                                                                                                                                                                                    |
| MHz  | dBm        | dB/m                  | dB                               | <u>dB</u>                                | dBm/m                                            | dBm/m                                                        | dB                                                                       |                                                                                    | -                                                                                                                                                                                                  |
|      |            |                       |                                  |                                          |                                                  |                                                              |                                                                          |                                                                                    |                                                                                                                                                                                                    |
|      | MHz<br>500 | MHz dBm<br>.500 27.72 | MHz dBm dB/m<br>.500 27.72 27.52 | MHz dBm dB/m dB<br>.500 27.72 27.52 5.70 | MHz dBm dB/m dB dB<br>.500 27.72 27.52 5.70 0.00 | MHz dBm dB/m dB dB dBm/m<br>.500 27.72 27.52 5.70 0.00 60.94 | MHz dBm dB/m dB dB dBm/m dBm/m<br>.500 27.72 27.52 5.70 0.00 60.94 74.00 | MHz dBm dB/m dB dB dBm/m dBm/m dB<br>.500 27.72 27.52 5.70 0.00 60.94 74.00 -13.06 | Freq Level Factor Loss Factor Level Line Limit Remark  MHz dBm dB/m dB dB dBm/m dBm/m dB  .500 27.72 27.52 5.70 0.00 60.94 74.00 -13.06 Peak  .500 14.20 27.52 5.70 0.00 47.42 54.00 -6.58 Average |



#### Vertical:



Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Job No. EUT : 676RF : Tablet PC Model : SP6601 Test mode : 3DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Wendell

Remark

| CMari |          |       | Antenna<br>Factor |           |           |        | Limit<br>Line | Over<br>Limit | Remark  |
|-------|----------|-------|-------------------|-----------|-----------|--------|---------------|---------------|---------|
|       | MHz      | dBm   | <u>dB</u> /m      | <u>dB</u> | <u>dB</u> | _dBm/m | _dBm/m        | <u>dB</u>     |         |
| 1     | 2483.500 | 32.97 | 27.52             | 5.70      | 0.00      | 66.19  | 74.00         | -7.81         | Peak    |
| 2     | 2483.500 | 16.31 | 27.52             | 5.70      | 0.00      | 49.53  | 54.00         | -4.47         | Average |



# 6.10 Spurious Emission

# 6.10.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2003 and DA00-705                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |



# **GFSK**





Date: 21.AHG.2014 19:59:09

30MHz~25GHz

# Middle channel



Date: 21.AUG.2014 20:00:29

30MHz~25GHz

# Highest channel



Date: 21.AUG.2014 20:01:19

30MHz~25GHz



# $\pi/4$ -DQPSK

# Lowest channel



Date: 21.AUG.2014 20:05:00

30MHz~25GHz

# Middle channel



Date: 21.AUG.2014 20:05:00

30MHz~25GHz

#### Highest channel



Date: 21.AUG.2014 20:02:32

30MHz~25GHz



# 8DPSK





Date: 21.AHG.2014 20:05:50

30MHz~25GHz

# Middle channel



Date: 21.AUG.2014 20:06:30

30MHz~25GHz

# Highest channel



Date: 21.AUG.2014 20:08:01

30MHz~25GHz





# 6.10.2 Radiated Emission Method

| 6.10.2 Radiated Emission Me | tillou                               |                  |              |                                                                                    |                  |  |  |  |  |  |  |  |
|-----------------------------|--------------------------------------|------------------|--------------|------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|--|
| Test Requirement:           | FCC Part15 C Section 15.209          |                  |              |                                                                                    |                  |  |  |  |  |  |  |  |
| Test Method:                | ANSI C63.4: 2003                     | ANSI C63.4: 2003 |              |                                                                                    |                  |  |  |  |  |  |  |  |
| Test Frequency Range:       | 9 kHz to 25 GHz                      |                  |              |                                                                                    |                  |  |  |  |  |  |  |  |
| Test site:                  | Measurement Dis                      | stance: 3m       |              |                                                                                    |                  |  |  |  |  |  |  |  |
| Receiver setup:             | Frequency                            | Detector         | RBW          | VBW                                                                                | Remark           |  |  |  |  |  |  |  |
|                             | 30MHz-1GHz                           |                  |              |                                                                                    |                  |  |  |  |  |  |  |  |
|                             | Above 1GHz                           | Peak             | 1MHz         | 3MHz                                                                               | Peak Value       |  |  |  |  |  |  |  |
|                             | Peak 1MHz 10Hz Average Value         |                  |              |                                                                                    |                  |  |  |  |  |  |  |  |
| Limit:                      | Freque                               | ncy              | Limit (dBuV/ | m @3m)                                                                             | Remark           |  |  |  |  |  |  |  |
|                             | 30MHz-8                              | 8MHz             | 40.0         | )                                                                                  | Quasi-peak Value |  |  |  |  |  |  |  |
|                             | 88MHz-21                             | I6MHz            | 43.5         | 5                                                                                  | Quasi-peak Value |  |  |  |  |  |  |  |
|                             | 216MHz-960MHz 46.0 Quasi-peak Value  |                  |              |                                                                                    |                  |  |  |  |  |  |  |  |
|                             | 960MHz-                              | 1GHz             | 54.0         | )                                                                                  | Quasi-peak Value |  |  |  |  |  |  |  |
|                             | Above 1                              | CH <sub>7</sub>  | 54.0         | )                                                                                  | Average Value    |  |  |  |  |  |  |  |
|                             | Above i                              | GHZ              | 74.0         | )                                                                                  | Peak Value       |  |  |  |  |  |  |  |
|                             | Turn Table  Ground Plane  Above 1GHz | 3m               |              | Antenra Sear Anter RF Test Receiver  Antenna Tower  Horn Antenna Spectrum Analyzer |                  |  |  |  |  |  |  |  |



| Test Procedure:   | 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                             |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                        |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                     |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                            |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |

#### Remark:

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

#### Measurement data:



#### **Below 1GHz**

Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 676RF Condition

Job No. EUT : Tablet PC Model : SP6601 : BT mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Wendell Remark :

| CHILLY |         |       |                   |      |           |                     |                     |               |        |
|--------|---------|-------|-------------------|------|-----------|---------------------|---------------------|---------------|--------|
|        | Freq    |       | Antenna<br>Factor |      |           |                     |                     | Over<br>Limit | Remark |
| -      | MHz     | dBu∜  | d <u>B</u> /m     |      | <u>dB</u> | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u>     |        |
| 1      | 35.005  | 47.96 | 12.30             | 0.48 | 29.95     | 30.79               | 40.00               | -9.21         | QP     |
| 2      | 55.415  | 49.32 | 13.01             | 0.65 | 29.80     | 33.18               | 40.00               | -6.82         | QP     |
| 3      | 131.758 | 54.44 | 8.82              | 1.21 | 29.32     | 35.15               | 43.50               | -8.35         | QP     |
| 4      | 210.786 | 52.58 | 10.90             | 1.44 | 28.76     | 36.16               | 43.50               | -7.34         | QP     |
| 5      | 292.058 | 49.58 | 12.89             | 1.75 | 28.46     | 35.76               | 46.00               | -10.24        | QP     |
| 6      | 515.437 | 46.37 | 16.89             | 2.45 | 29.00     | 36.71               | 46.00               | -9.29         | QP     |



#### Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Job No. : 676RF Tablet PC EUT Model : SP6601 Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Wendell

Remark

| CHICALE |         |       |                   |      |        |        |        |        |        |
|---------|---------|-------|-------------------|------|--------|--------|--------|--------|--------|
|         | Erec    |       | Antenna<br>Factor |      |        |        |        |        |        |
|         | rreq    | rever | ractor            | F022 | ractor | rever  | Line   | LIMIT  | Kemark |
| 750     | MHz     | dBu∜  | dB/m              | ₫B   | ₫B     | dBu∜/m | dBuV/m | ₫B     |        |
| 1       | 55.415  | 43.97 | 13.01             | 0.65 | 29.80  | 27.83  | 40.00  | -12.17 | QP     |
| 2       | 87.725  | 45.53 | 11.18             | 0.90 | 29.58  | 28.03  | 40.00  | -11.97 | QP     |
|         | 131.758 | 49.02 | 8.82              | 1.21 | 29.32  | 29.73  | 43.50  | -13.77 | QP     |
| 4<br>5  | 210.786 | 52.85 | 10.90             | 1.44 | 28.76  | 36.43  | 43.50  | -7.07  | QP     |
| 5       | 292.058 | 53.55 | 12.89             | 1.75 | 28.46  | 39.73  | 46.00  | -6.27  | QP     |
|         | 403.250 | 52.76 | 15.14             | 2.13 | 28.79  | 41.24  | 46.00  | -4.76  | QP     |
|         |         |       |                   |      |        |        |        |        |        |



# **Above 1GHz:**

| Test channel: |        |         | owest |        | Level:      |             | Peak   |              |
|---------------|--------|---------|-------|--------|-------------|-------------|--------|--------------|
|               |        |         |       |        |             |             |        |              |
| Frequency     | Read   | Antenna | Cable | Preamp | Level       | Limit Line  | Over   |              |
| (MHz)         | Level  | Factor  | Loss  | Factor | (dBuV/m)    | (dBuV/m)    | Limit  | Polarization |
| (1011 12)     | (dBuV) | (dB/m)  | (dB)  | (dB)   | (ubu v/III) | (ubu v/III) | (dB)   |              |
| 4804.00       | 46.28  | 31.53   | 8.90  | 40.24  | 46.47       | 74.00       | -27.53 | Vertical     |
| 7206.00       | 46.07  | 36.47   | 10.59 | 41.24  | 51.89       | 74.00       | -22.11 | Vertical     |
| 4804.00       | 45.85  | 31.53   | 8.90  | 40.24  | 46.04       | 74.00       | -27.96 | Horizontal   |
| 7206.00       | 46.06  | 36.47   | 10.59 | 41.24  | 51.88       | 74.00       | -22.12 | Horizontal   |

| Test channe | l:     | I       | Lowest |        | Level:      | Level:      |        | Average      |  |
|-------------|--------|---------|--------|--------|-------------|-------------|--------|--------------|--|
|             |        |         |        |        |             |             |        |              |  |
| Frequency   | Read   | Antenna | Cable  | Preamp | Level       | Limit Line  | Over   |              |  |
| (MHz)       | Level  | Factor  | Loss   | Factor | (dBuV/m)    | (dBuV/m)    | Limit  | Polarization |  |
| (IVII IZ)   | (dBuV) | (dB/m)  | (dB)   | (dB)   | (ubu v/III) | (ubu v/III) | (dB)   |              |  |
| 4804.00     | 36.48  | 31.53   | 8.90   | 40.24  | 36.67       | 54.00       | -17.33 | Vertical     |  |
| 7206.00     | 36.63  | 36.47   | 10.59  | 41.24  | 42.45       | 54.00       | -11.55 | Vertical     |  |
| 4804.00     | 35.45  | 31.53   | 8.90   | 40.24  | 35.64       | 54.00       | -18.36 | Horizontal   |  |
| 7206.00     | 36.98  | 36.47   | 10.59  | 41.24  | 42.80       | 54.00       | -11.20 | Horizontal   |  |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channe        | l:                      | M                           | 1iddle                |                          | Level:            |                        | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
|                    |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4882.00            | 45.70                   | 31.58                       | 8.98                  | 40.15                    | 46.11             | 74.00                  | -27.89                | Vertical     |
| 7323.00            | 46.11                   | 36.47                       | 10.69                 | 41.15                    | 52.12             | 74.00                  | -21.88                | Vertical     |
| 4882.00            | 45.48                   | 31.58                       | 8.98                  | 40.15                    | 45.89             | 74.00                  | -28.11                | Horizontal   |
| 7323.00            | 46.75                   | 36.47                       | 10.69                 | 41.15                    | 52.76             | 74.00                  | -21.24                | Horizontal   |

| Test channe | l:     | N       | 1iddle |        | Level:   |            | Average |              |  |
|-------------|--------|---------|--------|--------|----------|------------|---------|--------------|--|
|             |        |         | T      |        |          |            |         |              |  |
| Eroguenov   | Read   | Antenna | Cable  | Preamp | Lovol    | Limit Line | Over    |              |  |
| Frequency   | Level  | Factor  | Loss   | Factor | Level    |            | Limit   | Polarization |  |
| (MHz)       | (dBuV) | (dB/m)  | (dB)   | (dB)   | (dBuV/m) | (dBuV/m)   | (dB)    |              |  |
| 4882.00     | 35.89  | 31.58   | 8.98   | 40.15  | 36.30    | 54.00      | -17.70  | Vertical     |  |
| 7323.00     | 36.78  | 36.47   | 10.69  | 41.15  | 42.79    | 54.00      | -11.21  | Vertical     |  |
| 4882.00     | 35.96  | 31.58   | 8.98   | 40.15  | 36.37    | 54.00      | -17.63  | Horizontal   |  |
| 7323.00     | 36.94  | 36.47   | 10.69  | 41.15  | 42.95    | 54.00      | -11.05  | Horizontal   |  |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test channe        | l:                      | ŀ                           | Highest               |                          | Level:            | Level:                 |                       | Peak         |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
|                    |                         |                             |                       |                          |                   |                        |                       |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4960.00            | 45.51                   | 31.69                       | 9.08                  | 40.03                    | 46.25             | 74.00                  | -27.75                | Vertical     |  |
| 7440.00            | 46.74                   | 36.60                       | 10.80                 | 41.05                    | 53.09             | 74.00                  | -20.91                | Vertical     |  |
| 4960.00            | 47.87                   | 31.69                       | 9.08                  | 40.03                    | 48.61             | 74.00                  | -25.39                | Horizontal   |  |
| 7440.00            | 46.11                   | 36.60                       | 10.80                 | 41.05                    | 52.46             | 74.00                  | -21.54                | Horizontal   |  |

| Test channe | l:     | ŀ       | Highest |        | Level:   |            | Average |              |  |
|-------------|--------|---------|---------|--------|----------|------------|---------|--------------|--|
|             |        |         |         |        |          |            |         |              |  |
| Fraguenav   | Read   | Antenna | Cable   | Preamp | Level    | Limit Line | Over    |              |  |
| Frequency   | Level  | Factor  | Loss    | Factor |          |            | Limit   | Polarization |  |
| (MHz)       | (dBuV) | (dB/m)  | (dB)    | (dB)   | (dBuV/m) | (dBuV/m)   | (dB)    |              |  |
| 4960.00     | 35.35  | 31.69   | 9.08    | 40.03  | 36.09    | 54.00      | -17.91  | Vertical     |  |
| 7440.00     | 36.35  | 36.60   | 10.80   | 41.05  | 42.70    | 54.00      | -11.30  | Vertical     |  |
| 4960.00     | 37.11  | 31.69   | 9.08    | 40.03  | 37.85    | 54.00      | -16.15  | Horizontal   |  |
| 7440.00     | 36.42  | 36.60   | 10.80   | 41.05  | 42.77    | 54.00      | -11.23  | Horizontal   |  |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.