Relaciones - IIC1253

Marcelo Arenas

Dado: conjuntos A y B

Dado: conjuntos A y B

R es una relación binaria de A en B si $R \subseteq A \times B$.

Dado: conjuntos A y B

R es una relación binaria de A en B si $R \subseteq A \times B$.

Para indicar que $a \in A$ y $b \in B$ están relacionados a través de R usamos las notaciones: R(a,b), aRb y $(a,b) \in R$.

Dado: conjuntos A y B

R es una relación binaria de A en B si $R \subseteq A \times B$.

Para indicar que $a \in A$ y $b \in B$ están relacionados a través de R usamos las notaciones: R(a,b), aRb y $(a,b) \in R$.

En este capítulo sólo vamos a considerar relaciones binarias, usamos el termino relación para referirnos a ellas.

R es una relación sobre A si R es una relación de A en A.

R es una relación sobre A si R es una relación de A en A.

► Tenemos que $R \subseteq A \times A$.

R es una relación sobre A si R es una relación de A en A.

► Tenemos que $R \subseteq A \times A$.

Ejemplo

Si $A = \mathbb{N}$, las siguientes son relaciones sobre A:

$$R_1 = \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid i=j\}$$

$$R_2 = \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid i < j\}$$

Definición

Una relación R sobre A es:

Definición

Una relación R sobre A es:

 $ightharpoonup Refleja: Para cada <math>a \in A$, se tiene R(a, a)

Definición

Una relación R sobre A es:

- ightharpoonup Refleja: Para cada $a \in A$, se tiene R(a, a)
- ▶ Irrefleja: Para cada $a \in A$, no se tiene R(a, a)

Definición

Una relación R sobre A es:

- $ightharpoonup Refleja: Para cada <math>a \in A$, se tiene R(a, a)
- ▶ Irrefleja: Para cada $a \in A$, no se tiene R(a, a)

Ejercicio

De ejemplos de relaciones reflejas e irreflejas sobre N.

Definición

Una relación R sobre A es:

▶ Simétrica: Para cada $a, b \in A$, si R(a, b) entonces R(b, a)

Definición

Una relación R sobre A es:

- ▶ Simétrica: Para cada $a, b \in A$, si R(a, b) entonces R(b, a)
- Asimétrica: Para cada $a, b \in A$, si R(a, b) entonces no es cierto R(b, a)

Definición

Una relación R sobre A es:

- ▶ Simétrica: Para cada $a, b \in A$, si R(a, b) entonces R(b, a)
- Asimétrica: Para cada $a, b \in A$, si R(a, b) entonces no es cierto R(b, a)
- Antisimétrica: Para cada $a, b \in A$, si R(a, b) y R(b, a), entonces a = b

Definición

Una relación R sobre A es:

- ightharpoonup Simétrica: Para cada $a, b \in A$, si R(a, b) entonces R(b, a)
- Asimétrica: Para cada $a, b \in A$, si R(a, b) entonces no es cierto R(b, a)
- Antisimétrica: Para cada $a, b \in A$, si R(a, b) y R(b, a), entonces a = b

Ejercicio

De ejemplos de relaciones simétricas, asimétricas y antisimétricas sobre \mathbb{N} .

Definición

Una relación R sobre A es:

Definición

Una relación R sobre A es:

Transitiva: Para cada $a, b, c \in A$, si R(a, b) y R(b, c), entonces R(a, c)

Definición

Una relación R sobre A es:

- ► Transitiva: Para cada $a, b, c \in A$, si R(a, b) y R(b, c), entonces R(a, c)
- ightharpoonup Conexa: Para cada $a, b \in A$, se tiene R(a, b) o R(b, a)

Definición

Una relación R sobre A es:

- ► Transitiva: Para cada $a, b, c \in A$, si R(a, b) y R(b, c), entonces R(a, c)
- ightharpoonup Conexa: Para cada $a, b \in A$, se tiene R(a, b) o R(b, a)

Ejercicio

De ejemplos de relaciones transitivas y conexas sobre \mathbb{N} .

1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.

- 1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.
- 2. De una relación refleja, simétrica y no transitiva sobre \mathbb{N} .

- 1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.
- 2. De una relación refleja, simétrica y no transitiva sobre \mathbb{N} .

Respuesta:
$$\{(i,i) \mid i \in \mathbb{N}\} \cup \{(1,2),(2,1),(2,3),(3,2)\}$$

- 1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.
- 2. De una relación refleja, simétrica y no transitiva sobre \mathbb{N} .

Respuesta:
$$\{(i,i) \mid i \in \mathbb{N}\} \cup \{(1,2),(2,1),(2,3),(3,2)\}$$

3. De una relación refleja, transitiva y no simétrica sobre \mathbb{N} .

- 1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.
- 2. De una relación refleja, simétrica y no transitiva sobre \mathbb{N} .

Respuesta:
$$\{(i,i) \mid i \in \mathbb{N}\} \cup \{(1,2),(2,1),(2,3),(3,2)\}$$

3. De una relación refleja, transitiva y no simétrica sobre \mathbb{N} .

Respuesta: $\{(a, b) \mid a \text{ divide a } b\}$

- 1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.
- 2. De una relación refleja, simétrica y no transitiva sobre \mathbb{N} .

Respuesta:
$$\{(i,i) \mid i \in \mathbb{N}\} \cup \{(1,2),(2,1),(2,3),(3,2)\}$$

3. De una relación refleja, transitiva y no simétrica sobre \mathbb{N} .

Respuesta:
$$\{(a, b) \mid a \text{ divide a } b\}$$

4. De una relación simétrica, transitiva y no refleja sobre \mathbb{N} .

- 1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.
- 2. De una relación refleja, simétrica y no transitiva sobre \mathbb{N} .

Respuesta:
$$\{(i,i) \mid i \in \mathbb{N}\} \cup \{(1,2),(2,1),(2,3),(3,2)\}$$

3. De una relación refleja, transitiva y no simétrica sobre \mathbb{N} .

Respuesta:
$$\{(a, b) \mid a \text{ divide a } b\}$$

4. De una relación simétrica, transitiva y no refleja sobre \mathbb{N} .

Respuesta:
$$\{(1,1),(1,2),(2,1),(2,2)\}$$

- 1. Escriba todas las propiedades anteriores en lógica de predicados sobre el vocabulario $\{R\}$.
- 2. De una relación refleja, simétrica y no transitiva sobre \mathbb{N} .

Respuesta:
$$\{(i,i) \mid i \in \mathbb{N}\} \cup \{(1,2),(2,1),(2,3),(3,2)\}$$

3. De una relación refleja, transitiva y no simétrica sobre \mathbb{N} .

Respuesta:
$$\{(a, b) \mid a \text{ divide a } b\}$$

4. De una relación simétrica, transitiva y no refleja sobre \mathbb{N} .

Respuesta:
$$\{(1,1),(1,2),(2,1),(2,2)\}$$

5. De un conjunto A y una relación R sobre A tal que R sea refleja, antisimétrica, transitiva y no conexa.

Relaciones de equivalencia

Definición

Una relación R sobre A es una relación de equivalencia si R es refleja, simétrica y transitiva.

Relaciones de equivalencia

Definición

Una relación R sobre A es una relación de equivalencia si R es refleja, simétrica y transitiva.

Ejemplo

Sea $A = \mathbb{N} \times \mathbb{N}$ y \sim una relación definida de la siguiente forma:

$$(a,b) \sim (c,d) \Leftrightarrow a+d=c+b$$

Demuestre que \sim es una relación de equivalencia.

Clases de equivalencia

Definición

Dada una relación de equivalencia R sobre A y un elemento $b \in A$, la clase de equivalencia de b bajo R se define como:

$$[b]_R = \{c \in A \mid R(b,c)\}$$

Clases de equivalencia

Definición

Dada una relación de equivalencia R sobre A y un elemento $b \in A$, la clase de equivalencia de b bajo R se define como:

$$[b]_R = \{c \in A \mid R(b,c)\}$$

Ejercicio

Suponga que \sim es definida como en la lámina anterior. Para cada $(a,b)\in A$, ¿que representa $[(a,b)]_{\sim}$?

1. Sea n un número natural y \sim_n una relación sobre \mathbb{Z} definida como $a \sim_n b$ si y sólo si (a - b) es divisible por n.

- 1. Sea n un número natural y \sim_n una relación sobre \mathbb{Z} definida como $a \sim_n b$ si y sólo si (a b) es divisible por n.
 - ightharpoonup Demuestre que \sim_n es una relación de equivalencia

- 1. Sea n un número natural y \sim_n una relación sobre \mathbb{Z} definida como $a \sim_n b$ si y sólo si (a b) es divisible por n.
 - ightharpoonup Demuestre que \sim_n es una relación de equivalencia
 - ▶ Dado $a \in \mathbb{Z}$, ¿qué representa $[a]_{\sim_n}$?

- 1. Sea n un número natural y \sim_n una relación sobre \mathbb{Z} definida como $a \sim_n b$ si y sólo si (a b) es divisible por n.
 - ightharpoonup Demuestre que \sim_n es una relación de equivalencia
 - ▶ Dado $a \in \mathbb{Z}$, ¿qué representa $[a]_{\sim_n}$?
- 2. Sea \sim una relación de equivalencia (arbitraria) sobre un conjunto A. Demuestre que:

- 1. Sea n un número natural y \sim_n una relación sobre \mathbb{Z} definida como $a \sim_n b$ si y sólo si (a b) es divisible por n.
 - ightharpoonup Demuestre que \sim_n es una relación de equivalencia
 - ▶ Dado $a \in \mathbb{Z}$, ¿qué representa $[a]_{\sim_n}$?
- 2. Sea \sim una relación de equivalencia (arbitraria) sobre un conjunto A. Demuestre que:
 - Para cada $a \in A$: $[a]_{\sim} \neq \emptyset$

- 1. Sea n un número natural y \sim_n una relación sobre \mathbb{Z} definida como $a \sim_n b$ si y sólo si (a b) es divisible por n.
 - lacktriangle Demuestre que \sim_n es una relación de equivalencia
 - ▶ Dado $a \in \mathbb{Z}$, ¿qué representa $[a]_{\sim_n}$?
- 2. Sea \sim una relación de equivalencia (arbitraria) sobre un conjunto A. Demuestre que:
 - Para cada $a \in A$: $[a]_{\sim} \neq \emptyset$
 - Para cada $a, b \in A$: si $a \sim b$, entonces $[a]_{\sim} = [b]_{\sim}$

- 1. Sea n un número natural y \sim_n una relación sobre \mathbb{Z} definida como $a \sim_n b$ si y sólo si (a b) es divisible por n.
 - ightharpoonup Demuestre que \sim_n es una relación de equivalencia
 - ▶ Dado $a \in \mathbb{Z}$, ¿qué representa $[a]_{\sim_n}$?
- 2. Sea \sim una relación de equivalencia (arbitraria) sobre un conjunto A. Demuestre que:
 - Para cada $a \in A$: $[a]_{\sim} \neq \emptyset$
 - Para cada $a, b \in A$: si $a \sim b$, entonces $[a]_{\sim} = [b]_{\sim}$
 - Para cada $a, b \in A$: si es falso que $a \sim b$, entonces $[a]_{\sim} \cap [b]_{\sim} = \emptyset$

Dado: Una relación de equivalencia \sim sobre un conjunto A.

Dado: Una relación de equivalencia \sim sobre un conjunto A.

Conjunto cociente de A dado \sim :

$$A/\sim = \{[a]_{\sim} \mid a \in A\}$$

Dado: Una relación de equivalencia \sim sobre un conjunto A.

Conjunto cociente de A dado \sim :

$$A/\sim = \{[a]_{\sim} \mid a \in A\}$$

Un conjunto cociente agrupa los elementos indistinguibles.

Dado: Una relación de equivalencia \sim sobre un conjunto A.

Conjunto cociente de A dado \sim :

$$A/\sim = \{[a]_{\sim} \mid a \in A\}$$

Un conjunto cociente agrupa los elementos indistinguibles.

Algunos conjuntos fundamentales son definidos usando esta noción: \mathbb{Z} y \mathbb{Q}

Un primer ejemplo: \mathbb{Z}

Sea \sim una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma:

$$(a,b) \sim (c,d) \Leftrightarrow a+d=c+b$$

Un primer ejemplo: \mathbb{Z}

Sea \sim una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma:

$$(a,b) \sim (c,d) \Leftrightarrow a+d=c+b$$

Definimos $\mathbb{Z} = \{ [(a, b)]_{\sim} \mid (a, b) \in \mathbb{N} \times \mathbb{N} \}$

Un primer ejemplo: \mathbb{Z}

Sea \sim una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma:

$$(a,b) \sim (c,d) \Leftrightarrow a+d=c+b$$

Definimos $\mathbb{Z} = \{ [(a, b)]_{\sim} \mid (a, b) \in \mathbb{N} \times \mathbb{N} \}$

Para $n \in \mathbb{N}$:

- ightharpoonup n es representado por $[(n,0)]_{\sim}$
- -n es representado por $[(0, n)]_{\sim}$

Primero vamos a definir la suma sobre \mathbb{Z} :

$$[(a,b)]_{\sim} + [(c,d)]_{\sim} = [(a+c,b+d)]_{\sim}$$

Primero vamos a definir la suma sobre \mathbb{Z} :

$$[(a,b)]_{\sim} + [(c,d)]_{\sim} = [(a+c,b+d)]_{\sim}$$

Tenemos que demostrar que esta operación está bien definida:

▶ Si
$$[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$$
 y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} + [(c_1,d_1)]_{\sim} = [(a_2,b_2)]_{\sim} + [(c_2,d_2)]_{\sim}$

Primero vamos a definir la suma sobre \mathbb{Z} :

$$[(a,b)]_{\sim} + [(c,d)]_{\sim} = [(a+c,b+d)]_{\sim}$$

Tenemos que demostrar que esta operación está bien definida:

▶ Si
$$[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$$
 y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} + [(c_1,d_1)]_{\sim} = [(a_2,b_2)]_{\sim} + [(c_2,d_2)]_{\sim}$

Ejercicio

Demuestre que la suma está bien definida.

Ahora vamos a definir la multiplicación sobre \mathbb{Z} :

$$[(a,b)]_{\sim} \cdot [(c,d)]_{\sim} = [(ac+bd,ad+bc)]_{\sim}$$

Ahora vamos a definir la multiplicación sobre \mathbb{Z} :

$$[(a,b)]_{\sim} \cdot [(c,d)]_{\sim} = [(ac+bd,ad+bc)]_{\sim}$$

Tenemos que demostrar que esta operación está bien definida:

▶ Si
$$[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$$
 y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} \cdot [(c_1,d_1)]_{\sim} = [(a_2,b_2)]_{\sim} \cdot [(c_2,d_2)]_{\sim}$

Ahora vamos a definir la multiplicación sobre \mathbb{Z} :

$$[(a,b)]_{\sim} \cdot [(c,d)]_{\sim} = [(ac+bd,ad+bc)]_{\sim}$$

Tenemos que demostrar que esta operación está bien definida:

▶ Si $[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$ y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} \cdot [(c_1,d_1)]_{\sim} = [(a_2,b_2)]_{\sim} \cdot [(c_2,d_2)]_{\sim}$

Ejercicio

Demuestre que la multiplicación está bien definida.

Relaciones sobre \mathbb{Z}

Concluimos definiendo la relación < para \mathbb{Z} :

$$[(a,b)]_{\sim} < [(c,d)]_{\sim}$$
 si y sólo si $a+d < c+b$

Relaciones sobre \mathbb{Z}

Concluimos definiendo la relación < para \mathbb{Z} :

$$[(a,b)]_{\sim} < [(c,d)]_{\sim}$$
 si y sólo si $a+d < c+b$

Tenemos que demostrar que esta relación está bien definida:

▶ Si
$$[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$$
 y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} < [(c_1,d_1)]_{\sim}$ si y sólo si $[(a_2,b_2)]_{\sim} < [(c_2,d_2)]_{\sim}$

Relaciones sobre \mathbb{Z}

Concluimos definiendo la relación < para \mathbb{Z} :

$$[(a,b)]_{\sim} < [(c,d)]_{\sim}$$
 si y sólo si $a+d < c+b$

Tenemos que demostrar que esta relación está bien definida:

▶ Si $[(a_1,b_1)]_{\sim} = [(a_2,b_2)]_{\sim}$ y $[(c_1,d_1)]_{\sim} = [(c_2,d_2)]_{\sim}$, entonces $[(a_1,b_1)]_{\sim} < [(c_1,d_1)]_{\sim}$ si y sólo si $[(a_2,b_2)]_{\sim} < [(c_2,d_2)]_{\sim}$

Ejercicio

Demuestre que < está bien definida.

- 1. Defina $\mathbb Q$ a partir de $\mathbb Z$ utilizando una relación de equivalencia y la noción de espacio cociente.
- 2. Defina las operaciones de suma y multiplicación para Q, y demuestre que estas operaciones están bien definidas.