N.T.			
Name			

Period		
renoa		

Roadmap Problems #2 Excess and Limiting Reactants

Perform the following conversions. Show all of your work. You must use dimensional analysis. Using units and significant figures count!

1. Consider the following reaction:

$$_$$
 AgNO₃+ $_$ KI \rightarrow $_$ AgI + $_$ KNO₃

- a. What mass of AgI can be made by reacting 75.0 g of AgNO₃?
- b. What mass of AgI can be made by reacting 50.0 g of KI?
- c. What is the limiting reactant?
- d. What mass of excess reactant remains after the reaction?
- e. What is the percent yield of AgI if 68 g are formed?
- 2. Let's look at a reaction that forms gold:

$$Au_2S_3 + H_2 \rightarrow Au + H_2S$$

- a. What mass of Au can be made by reacting 50.00 g Au_2S_3 ?
- b. What mass of Au can be made by reacting 50.00 g of H₂?
- c. What is the limiting reactant?
- d. If 30.23 g of Au is formed what is the % yield of Au?
- e. How much of the limiting reactant is left over?

3. This is a classic acid base reaction:
$\underline{\qquad} HCl + \underline{\qquad} Mg(OH)_2 \rightarrow \underline{\qquad} MgCl_2 + \underline{\qquad} H_2O$
a. What mass of MgCl ₂ can be made by reacting 100.0 g of HCl?
b. What mass of MgCl ₂ can be made by reacting 100.0 g of Mg(OH) ₂ ?
c. What is the limiting reactant?
d. What is the excess reactant?
e. What mass of excess reactant remains after the reaction?
f. What is the percent yield if 125.0 g of MgCl ₂ are formed?
4 The following is a double replacement reaction:
$\underline{\qquad} Br_2 + \underline{\qquad} KI \rightarrow \underline{\qquad} KBr + \underline{\qquad} I_2$ a. What mass of I_2 can be made by reacting 20.00 g of Br_2 ?
b. What mass of I_2 can be made by reacting 10.0 g of KI
c. What is the limiting reactant?
d. If 5.0 g of I_2 are formed what is the % yield?
e. How much of the KI is left over?
f. How much of the Br ₂ is left over?