Introduction to Machine Learning

Bananas Anyone?

Machine Learning Pipeline

Intro to Machine Learning

What is Machine Learning?

The study and construction of algorithms that can learn from and make predictions on data.

- Types of tasks (by feedback):
 - * Supervised learning: Example inputs and desired outputs
 - * Unsupervised learning: No labels
 - * Reinforcement learning: Interact with a dynamic environment in which a certain goal must be performed

Types of tasks (by desired output):

- Regression: Continuous output
- Classification: Discrete classes
- Clustering: Divide inputs into groups
- And a couple of other minor ones...

Table 1. Example data.

Х	Y
1.00	1.00
2.00	2.00
3.00	1.30
4.00	3.75
5.00	2.25

Figure 1. A scatter plot of the example data.

Minimise the sum of squared residuals of the model

Figure 3. University GPA as a function of High School GPA.

Classification

Classification Pipeline

Algorithms:

- K-nearest neighbors
- Decision Tree
- SVM

K Nearest Neighbors

- Given set of items
- Find k nearest neighbors of a new item
- Use these items to predict the class of the new item

Decision Tree

Support Vector Machines

Unsupervised example: clustering

 Objective: given a set of examples, we want to divide them into groups such that similar examples will be in the same group and dissimilar examples will be in different groups

K-means

