...Machine Learning...

Artur Ezequiel Nelson

Universidade do Minho

26 de Abril

Indice

- Nelson
- 2 Categorias
- Fork e Join
- Operacoes Numericas
- 5 Exemplos
- 6 Generalizar

titulo

- Queremos calcular \mathcal{D}^+ .
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

- Queremos calcular \mathcal{D}^+ .
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

- Queremos calcular \mathcal{D}^+ .
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Corolário 1.1

NOTA: adicionar definição do corolário 1.1 aqui

Corolário 2.1

NOTA: adicionar definição do corolário 2.1 aqui

Corolário 3.1

NOTA: adicionar definição do corolário 3.1 aqui

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos). Uma categoria tem definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

•
$$id \circ f = id \circ f = f - (C.1)$$

•
$$f \circ (g \circ h) = (f \circ g) \circ h$$
 —- (C.2)

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos). Uma categoria tem definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

•
$$id \circ f = id \circ f = f - (C.1)$$

•
$$f \circ (g \circ h) = (f \circ g) \circ h$$
 —- (C.2)

Categorias clássicas

class Category k where

$$(\circ) :: (b'k'c) \rightarrow (a'k'b) \rightarrow (a'k'c)$$

instance *Category* (\rightarrow) where

$$id = \lambda a \rightarrow a$$

$$g \circ f = \lambda a \rightarrow g$$
 (f a)

Nota

Funções lineares e funções diferenciáveis também formam uma categoria própria

Nota

Para os efeitos deste papel, objetos são tipos de dados e morfismos são funções

Functores clássicos

Para converter entre categorias necessitamos de uma nova estrutura: o Functor

Um functor F entre categorias \mathcal{U} e \mathcal{V} é tal que:

- para qualquer objeto $t \in \mathcal{U}$ temos que F $t \in \mathcal{V}$
- para qualquer morfismo m :: $a \rightarrow b \in \mathcal{U}$ temos que F m :: F $a \rightarrow F$ $b \in \mathcal{V}$
- F id $(\in \mathcal{U})$ = id $(\in \mathcal{V})$
- $F(f \circ g) = F f \circ F g$

Devido à definição de categoria deste papel(objetos são tipos de dados) os functores mapeiam tipos neles próprios.

Objetivo

Observando as definições dos corolários podemos ver que não só as funções diferenciáveis formam uma categoria mas que é possível criar uma categoria para o qual \mathcal{D}^+ é functor.

Esta categoria é o tipo de dados produzidos por \mathcal{D}^+ :

$$a \rightarrow b \times (a \multimap b)$$

Para tornar mais explicita a categoria começamos por definir um novo tipo de dados: newtype \mathcal{D} a b = $\mathcal{D}(a \rightarrow b \times (a \multimap b))$

Objetivo

Depois adaptamos \mathcal{D}^+ para usar este tipo de dados:

Definição adaptada

$$\hat{\mathcal{D}}$$
 :: $(a \rightarrow b) \rightarrow \mathcal{D}$ a b $\hat{\mathcal{D}}$ f = $\mathcal{D}(\mathcal{D}^+ f)$

O nosso objetivo é assim deduzir uma instância de categoria para $\mathcal D$ onde $\hat{\mathcal D}$ seja functor.

Recordando os corolários 3.1 e 1.1 deduzimos que

•
$$\mathcal{D}^+id = \lambda a \rightarrow (id \ a,id) \longrightarrow (DP.1)$$

•
$$\mathcal{D}^+(g \circ f) = \lambda a \rightarrow let\{(b, f') = \mathcal{D}^+ \text{ f a; } (c, g') = \mathcal{D}^+ \text{ g b } \}$$
 in $(c, g' \circ f')$ — (DP.2)

 $\hat{\mathcal{D}}$ ser functor é equivalente a dizer que, para todas as funções f e g de tipos apropriados:

•
$$id = \hat{\mathcal{D}} id = \mathcal{D}(\mathcal{D}^+ id)$$

•
$$\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D}(\mathcal{D}^+(g \circ f))$$

Com base em (DP.1) e (DP.2) podemos reescrever como sendo:

- id = $\mathcal{D}(\lambda a \rightarrow (id \ a,id))$
- $\hat{\mathcal{D}}$ g \circ $\hat{\mathcal{D}}$ f = \mathcal{D} ($\lambda a \rightarrow let\{(b, f') = \mathcal{D}^+$ f a; $(c, g') = \mathcal{D}^+$ g b } in $(c, g' \circ f')$)

Resolver a primeira equação é trivial(definir id como sendo $\mathcal{D}(\lambda a \to (\text{id a,id})))$.

A segunda equação será resolvida resolvendo uma condição mais geral:

 $\mathcal{D}g\circ\mathcal{D}f=\mathcal{D}(\lambda a\to let\{(b,f')=f\ a;\ (c,g')=g\ b\ \}\ in\ (c,g'\circ f')).$ A resolução desta equação é imediata, levando à seguinte definição da instância:

Definição de $\hat{\mathcal{D}}$ para funções lineares

linearD ::
$$(a \rightarrow b) \rightarrow \mathcal{D}$$
 a b linearD f = $\mathcal{D}(\lambda a \rightarrow (f a, f))$

Instância da categoria que deduzimos

instance Category \mathcal{D} where

$$\mathcal{D}g \circ \mathcal{D}f = \mathcal{D}(\lambda a \to let\{(b, f') = f \text{ a}; (c, g') = g \text{ b}\} \text{ in } (c, g' \circ f'))$$

Antes de continuarmos devemos verificar se esta instância obedece às leis (C.1) e (C.2).

Se considerarmos apenas morfismos $\hat{f}::\mathcal{D}$ a b tal que $\hat{f}=\mathcal{D}^+$ f para $f::a\to b$ (o que podemos garantir se transformarmos \mathcal{D} a b em tipo abstrato) podemos garantir que \mathcal{D}^+ é functor.

```
Prova de (C.1): id \circ \hat{\mathcal{D}} = \hat{\mathcal{D}} id \circ \hat{\mathcal{D}} f -lei functor de id (especificação de \hat{\mathcal{D}}) = \hat{\mathcal{D}} (id \circ f) - lei functor para (\circ) = \hat{\mathcal{D}} f - lei de categoria
```

```
Prova de (C.2):

\hat{\mathcal{D}} \ h \circ (\hat{\mathcal{D}} \ g \circ \hat{\mathcal{D}} \ f)

= \hat{\mathcal{D}} \ h \circ \hat{\mathcal{D}} \ (g \circ f) - lei functor para (\circ)

= \hat{\mathcal{D}} \ (h \circ (g \circ f)) - lei functor para (\circ)

= \hat{\mathcal{D}} \ ((h \circ g) \circ f) - lei de categoria

= \hat{\mathcal{D}} \ (h \circ g) \circ \hat{\mathcal{D}} \ f - lei functor para (\circ)

= (\hat{\mathcal{D}} \ h \circ \hat{\mathcal{D}} \ g) \circ \hat{\mathcal{D}} \ f - lei functor para (\circ)
```

Nota

Estas provas não requerem nada de \mathcal{D} e $\hat{\mathcal{D}}$ para além das leis do functor.

Isto é importante porque sabendo isto não precisaremos mais de voltar a realizar estas provas para instâncias deduzidas a partir de um functor.

Categorias monoidais

Anteriormente definimos composição paralela, identificando-a como importante para o nosso problema. Definiremos a versão generalizada desta através de uma categoria monoidal:

class Category $k \Rightarrow Monoidal \ k$ instance $Monoidal \ (\rightarrow)$ where where

$$(\times)::(a'k'c)\rightarrow(b'k'd)\rightarrow((a\times b)'k'(c\times d)) \qquad f\times g=\lambda(a,b)\rightarrow(fa,gb)$$

Nota

Note-se que é possível uma categoria ser monoidal sobre outras operações, mas que para este papel a definição anterior é suficiente.

Functores monoidais

Do mesmo modo que relacionamos 2 categorias com um functor relacionamos duas categorias monoidais com um functor monoidal.

Um functor F monoidal entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor clássico
- $F(f \times g) = Ff \times Fg$

A dedução da instância passará agora pelo corolário 2.1, de onde deduzimos:

$$\mathcal{D}^+$$
 (f \times g) = $\lambda(a,b)$ \rightarrow let{(c,f')= \mathcal{D}^+ f a; (d,g') = \mathcal{D}^+ g b } in ((c,d),f'×g')

Seja F equivalente a $\hat{\mathcal{D}}$ sob sua definição expandida e invertamos a segunda condição do functor monoidal. Então ficamos com:

$$\mathcal{D}(\mathcal{D}^+ \mathsf{f}) \times \mathcal{D}(\mathcal{D}^+ \mathsf{g}) = \mathcal{D}(\mathcal{D}^+ \mathsf{(f} \times \mathsf{g}))$$

Substituindo e fortalecendo a condição que tínhamos anteriormente obtemos:

$$\mathcal{D} \ f \times \mathcal{D} \ g = \mathcal{D}(\lambda(a,b) \to \text{let}\{(c,f') = f \ a; \ (d,g') = g \ b \ \} \ \text{in} \ ((c,d),f'\times g'))$$

e esta condição é suficiente para a nossa instância:

Instância da categoria que deduzimos

instance *Monoidal* \mathcal{D} where

$$\mathcal{D} \ f \times \mathcal{D} \ g = \mathcal{D}(\lambda(a,b) \to \text{let}\{(c,f') = f \ a; \ (d,g') = g \ b \ \} \ \text{in} \ ((c,d),f'\times g'))$$

Categorias cartesianas

As categoria monoidais permitem-nos combinar funções mas não separar os dados obtidos. Para termos tal funcionalidade necessitamos de uma nova classe de categorias: a categoria cartesiana.

class *Monoidal* $k \Rightarrow Cartesean k$ where

exl :: (a×b)'k'a

exr :: (a×b)'k'b

dup :: $a'k'(a\times a)$

instance *Cartesean* (\rightarrow) where

$$exl = \lambda(a,b) \rightarrow a$$

 $exr = \lambda(a,b) \rightarrow b$

$$\mathsf{exr} = \lambda(\mathsf{a},\mathsf{b}) \to \mathsf{b}$$

$$\mathsf{dup} = \lambda \mathsf{a} \to (\mathsf{a}, \mathsf{a})$$

Functores cartesianos

Do mesmo modo que relacionamos 2 categorias com um functor relacionamos duas categorias cartesianas com um functor cartesiano.

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor monoidal
- F exl = exl
- $F \exp = \exp$
- F dup = dup

A dedução da instância requer primeiro que pelo corolário 3.1 deduzamos(note-se que exl,exr e dup são lineares) que:

$$\mathcal{D}^+$$
 exl $\lambda p \rightarrow (\exp p, exl)$

$$\mathcal{D}^+ \operatorname{exr} \lambda \operatorname{p} \to (\operatorname{exr} \operatorname{p}, \operatorname{exr})$$

$$\mathcal{D}^+$$
 dup $\lambda a \rightarrow$ (dup a, dup)

Após esta dedução podemos continuar a determinar a instância:

$$exl = \mathcal{D}(\mathcal{D}^+ exl)$$

$$exr = \mathcal{D}(\mathcal{D}^+ exr)$$

$$\mathsf{dup} = \mathcal{D}(\mathcal{D}^+ \, \mathsf{dup})$$

Substituindo e usando a definição de linearD obtemos:

exl = linearD exl

exr = linearD exr

dup = linearD dup

E podemos converter a dedução acima diretamente em instância:

Instância da categoria que deduzimos

instance Cartesian \mathcal{D} where

exl = linearD exl

exr = linearD exr

dup = linearD dup

Categorias cocartesianas

São o dual das categorias cartesianas.

Normalmente todas as categorias têm a noção de coproduto definida(somatório de tipos para a categoria (\rightarrow)). No entanto para este papel os coprodutos coincidem com os produtos de categorias, i.e., estamos a usar categorias de biprodutos.

class Category $k \Rightarrow Cocartesian k$ where:

```
inl :: a'k'(a \times b)
inlr:: b'k'(a \times b)
jam :: (a \times a)'k'a
```

Categorias cocartesianas

Nota

Devido ás limitações que definimos para este tipo de categorias não conseguimos definir uma instância para a categoria (\rightarrow) . Em vez disso definiremos mais tarde uma instância para (\rightarrow^+) de funções aditivas que terá uma instância para este tipo de categorias.

Functores cocartesianos

Do mesmo modo que relacionamos 2 categorias com um functor relacionamos duas categorias cocartesianas com um functor cocartesiano.

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor
- F inl = inl
- F inr = inr
- F jam = jam

Fork e Join

```
• (\triangle) :: Cartesian k \Rightarrow (a 'k' c) \rightarrow (a 'k' d) \rightarrow (a 'k' (c \times d))
• (\nabla) :: Cartesian k \Rightarrow (c'k'a) \rightarrow (d'k'a) \rightarrow ((c \times d)'k'a)
• instance Cocartesian (\rightarrow^+) where
```

Fork e Join

```
\bullet \ (\triangle) :: Cartesian \ k \Rightarrow (a \ 'k' \ c) \rightarrow (a \ 'k' \ d) \rightarrow (a \ 'k' \ (c \times d))
```

•
$$(\nabla)$$
 :: Cartesian $k \Rightarrow (c \ 'k' \ a) \rightarrow (d \ 'k' \ a) \rightarrow ((c \times d) \ 'k' \ a)$

instance Cocartesian (→⁺) where

```
inl = AddFun inlF
```

inIF :: Additive b
$$\Rightarrow$$
 a \rightarrow a \times b

inrF :: Additive
$$a \Rightarrow b \rightarrow a \times b$$

jamF :: Additive
$$a \Rightarrow a \times a \rightarrow a$$

$$inlF = \lambda a \rightarrow (a, 0)$$

inrF =
$$\lambda$$
b \rightarrow (0, b)

$$jamF = \lambda(a, b) \rightarrow a + b$$

Operações Numéricas

ola

Exemplos

Generalizar