Canonical neural net construction (reference sheet)

1 Neural network models

Definition 1. A neural network model is $\mathcal{N} = \langle N, E, W, A, V \rangle$, where

- *N* is a finite nonempty set (the set of *neurons*)
- Each $E \subseteq N \times N$ (the *edge relation*)
- $W: E \to \mathbb{Q}$ (the *edge weights*)
- $A: \mathbb{Q} \to \{0,1\}$ (the binary activation function)
- $V: \mathcal{L}_{prop} \to \mathcal{P}(N)$ (the valuation function)

Each choice of E, W, A specifies a transition function from state $S \in \text{State}$ to the next state. Given an initial state S_0 , this transition function F_{S_0} : State_N $\rightarrow \text{State}_N$ is given by

$$F_{S_0}(S) = S_0 \cup \left\{ n \mid A \left(\sum_{m \in \text{preds}(n)} W(m, n) \cdot \chi_S(m) \right) = 1 \right\}$$

Postulate 2. I assume that for all states S_0 , F_{S_0} applied repeatedly to S_0 , i.e.

$$S_0, F_{S_0}(S_0), F_{S_0}(F_{S_0}(S_0)), \dots, F_{S_0}^k(S_0), \dots$$

eventually reaches a finite fixed point, and moreover this state is the *only* fixed point under S_0 . Formally, this means that for all $S_0 \in \text{State}_{\mathcal{N}}$ there is some $k \in \mathbb{N}$ such that:

- 1. $F_{S_0}(F_{S_0}^k(S_0)) = F_{S_0}^k(S_0)$. That is, the activation pattern under F_{S_0} will eventually stabilize.
- 2. $F_{S_0}^k(S_0)$ is the only state $S \in \text{State}_{\mathcal{N}}$ such that $F_{S_0}(S) = S$. In other words, the final state is unique for each initial state S_0 .

Let the closure Clos: State_N \rightarrow State_N be the function that produces that least fixed point: Clos(S) = $F_{S_0}^k(S_0)$ for that $k \in \mathbb{N}$ above. Finally, let **Net** be the class of all binary neural network models that satisfy this postulate.

Definition 3. Reach: State_N \rightarrow State_N, where $n \in \text{Reach}(S)$ iff there exists $m \in S$ with an E-path from m to n.

2 SECTION 2

Basic definitions for the logic 2

The main underlying language is $\mathcal{L}_{\mathbf{C}}: \varphi, \psi \coloneqq p \mid \neg \varphi \mid \varphi \land \psi \mid \mathbf{A}\varphi \mid \Box \varphi \mid \mathbf{C}\varphi$

iff

iff

 $n \in \mathsf{Clos}(\llbracket \varphi \rrbracket)$

Definitions from [1]: The *height* of a formula tracks the maximum nesting level of modal operators. The *order* of a formula is the highest proposition p_i occurring. Let $\mathcal{L}_{h,n}$ be the set of formulas of max height *h* and max order *n*: $\mathcal{L}_{h,n} = \{ \varphi \in \mathcal{L}_{\mathbb{C}} \mid \text{height}(\varphi) \leq h \text{ and } \text{ord}(\varphi) \leq n \}.$

Semantics. Let $\mathcal{N} \in \mathbf{Net}$, $n \in \mathbb{N}$. **Note:** $\llbracket \varphi \rrbracket = \{ n \in N \mid \mathcal{N}, n \Vdash \varphi \}$ $\mathcal{N}, n \Vdash p$ iff $n \in V(p)$ $\mathcal{N}, n \not\models \varphi$ $\mathcal{N}, n \Vdash \neg \varphi$ iff $\mathcal{N}, n \Vdash \varphi \wedge \psi$ iff $\mathcal{N}, n \Vdash \varphi$ and $\mathcal{N}, n \Vdash \psi$ $\mathcal{N}, n \Vdash \mathbf{E} \varphi$ iff $\llbracket \boldsymbol{\varphi} \rrbracket \neq \emptyset$ $\mathcal{N}, n \Vdash \Diamond \varphi$ $n \in \text{Reach}(\llbracket \varphi \rrbracket)$

 $\mathcal{N}, n \Vdash \langle \mathbf{C} \rangle \varphi$

Axioms for □: Axioms for A: (Dual) (**Dual**) $\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$ $\mathbf{E}\varphi \leftrightarrow \neg \mathbf{A}\neg \varphi$ **(Distr)** $\Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi)$ $A(\varphi \rightarrow \psi) \rightarrow (A\varphi \rightarrow A\psi)$ (Distr) $\mathbf{A} \varphi \rightarrow \varphi$ (Refl) $\Box \varphi \rightarrow \varphi$ (Refl) **(Trans)** $\Box \varphi \rightarrow \Box \Box \varphi$ **(5)** $\mathbf{E}\boldsymbol{\varphi} \to \mathbf{A}(\mathbf{E}\boldsymbol{\varphi})$ (Interact) $\mathbf{A}\varphi \rightarrow \Box \varphi$ **Axioms for C: Rules of Inference:** (Dual) $\langle \mathbf{C} \rangle \varphi \leftrightarrow \neg \mathbf{C} \neg \varphi$ (MP) From $\vdash \varphi \rightarrow \psi$ and $\vdash \varphi$ we can infer $\vdash \psi$ (Refl) $\mathbf{C}\varphi \to \varphi$ (Trans) $\mathbf{C}\varphi \to \mathbf{C}\mathbf{C}\varphi$ (A-Nec) From $\vdash \varphi$, we can infer $\vdash A\varphi$ $A(C\varphi \rightarrow \psi) \rightarrow$ (CM) (\square -**Rep**) From $\vdash \varphi \leftrightarrow \psi$, infer $(\mathbf{C}(\varphi \wedge \psi) \rightarrow \mathbf{C}\varphi)$ $\vdash \Box \varphi \leftrightarrow \Box \psi$ (Interact) $\Box \varphi \rightarrow C\varphi$ (**C-Rep**) From $\vdash \varphi \leftrightarrow \psi$, infer $\vdash \mathbf{C}\varphi \leftrightarrow \mathbf{C}\psi$

Figure 1. Sound axioms and rules of inference

Definition 4. The proof system \vdash is as follows: $\vdash \varphi$ iff either φ is valid in propositional logic, or φ is one of the axioms listed above, or φ follows from some previous formulas by one of the inference rules.

Definition 5. $\varphi \in \mathcal{L}_{\mathbf{C}}$ is *consistent* iff $\not\vdash \neg \varphi$ (alternatively, iff $\vdash \varphi \rightarrow \bot$)

REFERENCES 3

3 The canonical neural net construction

Canonical formulas. The set of canonical formulas $C_{h,n}$ is from [1], though we might have to make modifications to this definition.

Definition 6. Let the canonical neural network model (of formulas of height h and order n) be

$$\mathcal{N}_{h,n}^c = \langle N_{h,n}^c, E^c, W^c, A^c, V^c \rangle$$

- $N_{h,n}^c = \{\alpha \in \mathcal{C}_{h,n} \mid \alpha \text{ is consistent}\}$. Let's fix an order on these nodes: $\alpha_1, \alpha_2, \alpha_3, \dots$
- $\beta E^c \alpha$ iff $\alpha \land \Diamond \beta$ is consistent.
- Suppose $\alpha_i \in N_{h,n}^c$ has predecessors $\beta_{i1}, \beta_{i2}, \dots, \beta_{ik}$. For each $\beta_{ij}E^c\alpha_i$, let

$$W^c(\beta_{ii}, \alpha_i) = (p_i)^j$$

where p_i is the i^{th} prime number. **Intuition:** Each prime p_i uniquely codes for the node α_i , and the weight between α_i and its predecessor β_{ij} is a power of p_i that uniquely codes for β_{ij} . So any activation value x we care about is going to be a sum of powers of p_i , from which we can reconstruct precisely the α_i being activated and the predecessors β_{ij} that were used to activate it.

• Let $x \in \mathbb{Q}$, and suppose x uniquely identifies the subset of predecessors $\{\beta_{ij} | \beta_{ij}E^c\alpha_i \text{ and } j \in X\}$, for some $X \subseteq \{1, ..., k\}$. I.e., $x = \sum_{j \in X} (p_i)^j$ for some choice of i. Let the activation function $A^c(x)$ be defined as follows:

$$A^{c}(x) = 1$$
 iff [This is what I need help with!]

(If x does not code for any valid subset X, then simply set $A^{c}(x) = 0$.)

• $\alpha \in V^c(p)$ iff $\vdash \alpha \to p$

Some ideas: $A^c(x) = 1$ should be true exactly when the model *says* the β_{ij} 's activate α_i . We have access to α_i and the β_{ij} 's, as well as the set X. So we can state conditions such as:

$$A^{c}(x) = 1$$
 iff $\alpha_{i} \wedge \langle \mathbf{C} \rangle \left(\bigwedge_{\beta_{ij} E^{c} \alpha_{i} \text{ and } i \in X} \beta_{ij} \right)$ is consistent

Check that $\mathcal{N}_{h,n}^c$ is in Net. There is some $k \in \mathbb{N}$ such that $F_{S_0}(F_{S_0}^k(S_0)) = F_{S_0}^k(S_0)$, and for all other states S, if $F_{S_0}(S) = S$, then $S = F_{S_0}^k(S_0)$.

Proof. [I'm having a lot of trouble starting, but I think a proof should use the (CM) rule...]

The Truth Lemma I need, $\langle \mathbf{C} \rangle$ case. $\mathcal{N}_{h,n}^c$, $\alpha \Vdash \langle \mathbf{C} \rangle \varphi$ iff $\vdash \alpha \to \langle \mathbf{C} \rangle \varphi$

Proof Sketch. Observe that the claim is equivalent to:

$$\mathsf{Clos}_{\mathcal{N}_{b,n}^c}(\llbracket \varphi \rrbracket) = \{\alpha \mid \vdash \alpha \to \langle \mathbf{C} \rangle \varphi \}$$

By definition, $\mathsf{Clos}_{\mathcal{N}_{h,n}^c}(\llbracket \varphi \rrbracket)$ is the unique fixed point of the transition function $F_{\llbracket \varphi \rrbracket}$ under $\llbracket \varphi \rrbracket$. I will show here that the set $\{\alpha \mid \vdash \alpha \to \langle \mathbb{C} \rangle \varphi\}$ is *also* such a fixed point.

[GOAL:]
$$F_{\llbracket \varphi \rrbracket}(\{\alpha \mid \vdash \alpha \to \langle \mathbf{C} \rangle \varphi \}) = \{\alpha \mid \vdash \alpha \to \langle \mathbf{C} \rangle \varphi \}$$

Since $Clos_{\mathcal{N}_{b,n}^c}(\llbracket \varphi \rrbracket)$ is the *unique* fixed point under $\llbracket \varphi \rrbracket$, it will follow that these two states are the same. \Box

References

[1] Lawrence S Moss. Finite models constructed from canonical formulas. *Journal of Philosophical Logic*, 36:605–640, 2007.