Score: 108.35 out of 160 points (67.72%)

_	award:
1.	0 out of
٠.	2.71 points

The negation of the statement "Kwame will take a job in industry or go to graduate school." using De Morgan's law is "Kwame will not take a job in industry or will not go to graduate school."

True

False

The negation of the statement "Kwame will take a job in industry or go to graduate school." using De Morgan's law is "Kwame will not take a job in industry and will not go to graduate school."

True / False

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

2. award: 0 out of 2.71 points

Find the negation of the statement "Yoshiko knows Java and calculus" using De Morgan's law.

- Yoshiko does not know Java and does not know calculus.
- Yoshiko knows Java and does not know calculus.
- → Yoshiko does not know Java or does not know calculus.
- O Yoshiko knows Java or knows calculus.

The De Morgan law to be used is $\neg(p \land q) \equiv \neg p \lor \neg q$.

Multiple Choice

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

3. award: 0 out of 2.71 points

The negation of the statement "James is young and strong" using De Morgan's law is "James is not young, or he is not strong." Is it true?

Yes

⊗ No

The negation of the statement "James is young and strong" using De Morgan's law is "James is not young, or he is not strong."

Yes / No Chapter: 01 The Foundations: Logic and Proofs Section: 01.03 Propositional Equivalences

award: 0 out of 2.71 points

Find the negation of the statement "Rita will move to Oregon or Washington" using De Morgan's law.

- Rita will not move to Oregon or will not move to Washington.
- Rita will move to Oregon and will not move to Washington.
- $\rightarrow\!\!\!\bigcirc$ Rita will not move to Oregon and will not move to Washington.
- Rita will not move to Oregon or will move to Washington.

The De Morgan's Law used is $\neg(p \lor q) \equiv \neg p \land \neg q$.

Multiple Choice Chapter: 01 The Foundations: Logic and Proofs Section: 01.03 Propositional Equivalences

2.71 out of 2.71 points

The truth table of the conditional statement, $(p \land q) \rightarrow p$ is,

р	q	$p \wedge q$	$(p \land q) \rightarrow p$
Т	Т	T	Т
Т	F	F	F
F	T	F	T
F	F	F	F

Is the conditional statement $(p \land q) \rightarrow p$ a tautology?

Yes

No

The actual truth table of the conditional statement, $(p \land q) \rightarrow p$ is,

р	q	p ∧ q	$(p \land q) \rightarrow p$
T	Т	Т	Т
T	F	F	Т
F	Т	F	Т
F	F	F	Т

6. 2.71 out of 2.71 points

Identify the missing truth values from the following truth table of the conditional statement $p \to (p \lor q)$.

р	q	p∨q	$p \rightarrow (p \lor q)$		
Т	T		Т		
T	F		Т		
F	T		Т		
F	F		Т		

\odot	p∨q
	T
	Т
	Т

_	
	p∨q
	F
	Т
	T
	F

_	
	p∨q
	Т
	F
	Т
	F

_	
\odot	p∨q
	T
	F
	F
	F

7. award: 2.71 out of 2.71 points

The following truth table of the conditional statement $\neg p \rightarrow (p \rightarrow q)$ is tautology.

р	q	¬p	$p \rightarrow q$	$\neg p \rightarrow (p \rightarrow q)$
Т	Т	F	Т	Т
Т	F	F	F	T
F	Т	Т	Т	Т
F	F	Т	A	Т

In the above truth table the truth value of variable A is ______
T

8. award: 2.71 out of 2.71 points

In the following truth table the truth value of the conditional statement $(p \land q) \rightarrow (p \rightarrow q)$ of missing term is _____.

	in the length ing that table the trained of the container attention (p // q) -/ q) of micening term is				
	р	q	p∧q	$p \rightarrow q$	$(p \land q) \rightarrow (p \rightarrow q)$
	Т	Т	Т	Т	T
ſ	T	F	F	F	Т
	F	Т	F	Т	T
Γ	F	F		Т	Т

F

9. award: 2.71 out of 2.71 points

Is all the truth values of the following truth table of the conditional statement $\neg(p \to q) \to p$ represents tautology is correct.

sail the truth values of the following truth table of the conditional statement $(p \rightarrow q) \rightarrow p$ represents tautology is confeet.				
p	q	$p \rightarrow q$	$\neg(p \rightarrow q)$	$\neg(p \rightarrow q) \rightarrow p$
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

✓ Yes
 ✓ No

Identify the missing truth values from the following truth table of the conditional statement $\neg(p \rightarrow q) \rightarrow \neg q$.

activity the timesting that transcent and temesting that table of the contraction outcoment (p + q) + q.					
р	q	$p \rightarrow q$	$\neg(p \rightarrow q)$	79	$\neg(p \to q) \to \neg q$
Т	Т		F	F	Т
Т	F		Т	Т	Т
F	Т		F	F	Т
F	F		F	Т	Т

_	
\rightarrow	$p \rightarrow q$
	Т
	F
	Т
	Т

_	
	$p \rightarrow q$
	Т
	Т
	Т
	Т

\otimes	$p \rightarrow q$
	T
	F
	F
	Т

-	
	$p \rightarrow q$
	F
	F
	T
	T

11. award: 2.71 out of 2.71 points

Complete the truth table given below to verify the equivalence of p and $p \wedge T$.

р	<i>p</i> ∧ T
Т	<u>T</u> 🗸
F	<u>F</u> 🗸

Worksheet Chapter: 01 The Foundations: Logic and Proofs Section: 01.03 Propositional Equivalences

Complete the truth ta	ble given below	to verify the equivalence of p and $p \wedge T$.
l n	l n∧T	
	P /	
I I	1 <i>T</i>	I
	'	I

Explanation:

The output of the given truth table is

F	F
T	Т
р	<i>p</i> ∧ T
The output of the given truth table is,	

Complete the truth table given below to verify the equivalence of $p \vee F$ and p.

<i>p</i> ∨ F	р
Т	I 🕖
F	T 🔕

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Complete the truth table given below to verify the equivalence of $p \vee F$ and p.

<i>p</i> ∨ F	р
Т	T
F	F

Explanation:

The output is as follows:

The carpatic action one.	
<i>p</i> ∨ F	p
Т	Т
F	F

13. award: 1.36 out of 2.71 points

Complete the following truth table to verify the equivalence of $p \land F$ and p.

<i>p</i> ∧ F	р
F	<u>F</u> 🚳
F	F 🔮

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Complete the following truth table to verify the equivalence of $p \land F$ and p.

<i>p</i> ∧ F	р
F	T
F	F

Explanation:

The output of the given truth table is:

The output of the given truth table is.					
<i>p</i> ∧ F	р				
F	Т				
F	F				

Hence $p \wedge \mathbf{F}$ and p are not equivalent.

14. award: 1.36 out of 2.71 points

Complete the following truth table to verify the equivalence of $p \vee T$ and p.

Complete the lonewin	ing truth table to veri				
<i>p</i> ∨ T	р				
Т	<u>I</u> 🗸				
T	T 🔕				

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Complete the following truth table to verify the equivalence of $p \vee T$ and p.

complete the following truth table to verify					
<i>p</i> ∨ T	р				
Т	T				
T	F				

Explanation:

The output of the given table is:

The output of the given table is.				
<i>p</i> ∨ T	p			
Т	T			
T	F			

Hence, $p \vee \mathbf{T}$ and p are not equivalent.

15. 2.71 out of 2.71 points

Complete the following truth table to verify the equivalence of p and $p \vee p$.

р	p∨p
T	<u>I</u> 🕖
F	<u>F</u> 🕖

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Complete the following truth table to verify the equivalence of p and $p \vee p$.

р	р∨р		
Т	T		
F	F		

Explanation:

The out put of the given truth table is:

p	p∨p	
Т	T	
F	F	

Hence, p and $p \vee p$ are equivalent.

16. 2.71 out of 2.71 points

Complete the following truth table to verify the equivalence of p and $p \wedge p$.

р	p∧p	
T	<u>T</u> 🔮	
F	<u>F</u> 🗸	

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Complete the following truth table to verify the equivalence of p and $p \wedge p$.

р	p∧p		
Т	T		
F	F		

Explanation:

The output of the given truth table is:

The output of the given truth table is.				
р	<i>p</i> ∧ <i>p</i>			
T	T			
F	F			

Hence, p and $p \wedge p$ are equivalent.

17. award: 2.71 out of 2.71 points

Complete the truth table given below to verify the associative laws.

р	q	r	p∨q	(p ∨ q) ∨ r	$q \lor r$	p ∨ (q ∨ r)
T	T	T	Т	Т	Т	Т
T	T	F	Т	Т	Т	Т
T	F	T	Т	Т	Т	Т
T	F	F	Т	Т	F	Т
F	T	T	T	<u>T</u> 🔮	T	<u>T</u> 🗸
F	Т	F	Т	<u>T</u> 🔮	Т	<u>T</u> 🗸
F	F	T	F	<u>T</u> 🔮	T	<u>T</u> 🔮
F	F	F	F	<u>F</u> 🔮	F	<u>F</u> 🗸

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Complete the truth table given below to verify the associative laws.						
р	q	r	p∨q	(p ∨ q) ∨ r	g∨r	p ∨ (q ∨ r)
Т	Т	T	Т	Т	Т	Т
Т	Т	F	T	Т	T	T
T	F	T	T	T	Т	Т
T	F	F	Т	Т	F	Т
F	Т	Т	Т	T	Т	T
F	Т	F	Т	T	Т	T
F	F	Т	F	T	Т	T
F	F	F	F	F	F	F

18. 0 out of 2.71 points Complete the truth table given below to verify the associative laws.

р	q	r	p∧q	(p ∧ q) ∧ r	g∧r	p ∧ (q ∧ r)
Т	Т	Т	Т	Т	T	Т
Т	Т	F	Т	F	F	F
T	F	Т	F	F	F	F
T	F	F	F	F	F	F
F	Т	T	F	<u>F</u> 🚳	T	<u>F</u> 🚳
F	Т	F	F	<u>F</u> 🚳	F	<u>F</u> 🚳
F	F	T	F	<u>F</u> 😵	F	<u>F</u> ⊗
F	F	F	F	<u>F</u> 🚳	F	<u>F</u> 🚳

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Comple	Complete the truth table given below to verify the associative laws.							
р	q	r	p∧q	(p ∧ q) ∧ r	q∧r	$p \wedge (q \wedge r)$		
T	Т	Т	Т	T	Т	T		
T	T	F	Т	F	F	F		
T	F	Т	F	F	F	F		
T	F	F	F	F	F	F		
F	T	T	F	T	Т	T		
F	T	F	F	T	F	T		
F	F	T	F	T	F	T		
F	F	F	F	T	F	T		

award: 2.71 out of 2.71 points

Show that $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology by completing the below truth tables.

р	q	¬р	p∨q	¬p ∧ (p ∨ q)	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	<u>T</u> 🔮	F	Т
Т	F	F	Т	<u>F</u> 🕖	Т
F	Т	Т	Т	Т	Т
F	F	T	F	<u>F</u> 🕖	<u>I</u> 🕖

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Show that $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology by completing the below truth tables.

р	q	¬р	p∨q	¬p ∧ (p ∨ q)	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	T	F	Т
Т	F	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	T

20. award: 1.55 out of 2.71 points

Complete the truth table given below for the conditional statement $[(p \to q) \land (q \to r)] \to (p \to r)$.

р	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$(p \rightarrow q) \land (q \rightarrow r)$	$(p \rightarrow r)$	$[(p \to q) \land (q \to r)] \to (p \to r)$
T	Т	Т	T	T	T	T	T
Т	Т	F	T	<u>T</u> 😵	<u>F</u> ⊘	F	Т
Т	F	Т	F	Т	F	Т	Т
T	F	F	F	T	F	<u>T</u> ⊗	<u>I</u> 🗸
F	T	Т	Т	Т	Т	Т	Т
F	T	F	Т	F	F	Т	Т
F	F	T	<u>I</u> 🗸	T	<u>F</u> 🚳	T	Т
F	F	F	Т	Т	Т	Т	Т

The given conditional statement is a tautology

true 🥝

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

Complete the truth table given below for the conditional statement $[(p \to q) \land (q \to r)] \to (p \to r)$.

	somplete the trust able given below for the conditional statement (ip > 4)// (q > 7)/ > (p > 7).							
р	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$(p \rightarrow q) \land (q \rightarrow r)$	$(p \rightarrow r)$	$[(p \to q) \land (q \to r)] \to (p \to r)$	
T	Т	Т	Т	Т	T	Т	T	
T	Т	F	Т	F	F	F	Т	
T	F	Т	F	T	F	T	T	
T	F	F	F	Т	F	F	T	
F	Т	Т	Т	Т	T	Т	T	
F	Т	F	Т	F	F	Т	T	
F	F	T	T	Т	Τ	T	Т	
F	F	F	T	T	T	T	Т	

The given conditional statement is a tautology

award: 0.68 out of 2.71 points

Complete the truth table given below for the conditional statement $[p \land (p \rightarrow q)] \rightarrow q$.

р	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$[p \land (p \rightarrow q)] \rightarrow q$
T	Т	T	Т	<u>T</u> ⊘
T	F	<u>T</u> ⊗	F	T
F	Т	<u>F</u> ⊗	<u>F</u> 🗸	<u>F</u> 😵
F	F	T	<u>T</u> 😵	<u>F</u> 😵

The given conditional statement is not a tautology.

true 😵

Worksheet

Chapter: 01 The Foundations: Logic and Proofs

Section: 01.03 Propositional Equivalences

 $\underline{\text{Complete}} \ \underline{\text{the truth table given below for the conditional statement}} \ [\underline{p} \land (\underline{p} \rightarrow q)] \rightarrow q.$

р	q	$p \rightarrow q$	$p \wedge (p \rightarrow q)$	$[p \land (p \rightarrow q)] \rightarrow q$
Т	Т	Т	Т	T
Т	F	F	F	Т
F	T	T	F	T
F	F	Т	F	T

The given conditional statement is not a tautology. false

Complete the truth table given below for the conditional statement $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$.

р	q	r	(p ∨ q)	$(p \rightarrow r)$	$(p \lor q) \land (p \rightarrow r)$	$(q \rightarrow r)$	$(p \lor q) \land (p \rightarrow r) \land (q \rightarrow r)$	$[(p \lor q) \land (p \to r) \land (q \to q) \land (q $
Т	T	Т	Т	Т	Т	Т	T	Т
T	T	F	T	<u>T</u> ⊗	F	F	F	Т
T	F	T	T	<u>T</u> 🔮	<u>I</u> 📀	<u>T</u> 🔮	<u>T</u> 🔮	<u>I</u> 🔮
Т	F	F	Т	F	F	Т	F	Т
F	T	T	Т	T	<u>T</u> 📀	Т	<u>I</u> 🔮	<u>I</u> ❷
F	T	F	Т	Т	Т	F	F	T
F	F	T	<u>T</u> 😵	T	F	Т	F	<u>I</u> 🔮
F	F	F	<u>I</u> 😵	Т	F	Т	F	Т

The given conditional statement is a tautology.

true 🕏

Section: 01.03 Propositional Equivalences Worksheet Chapter: 01 The Foundations: Logic and Proofs

Complete th	Complete the truth table given below for the conditional statement $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$.							
р	q	r	(p ∨ q)	$(p \rightarrow r)$	$(p \lor q) \land (p \rightarrow r)$	$(q \rightarrow r)$	$(p \lor q) \land (p \rightarrow r) \land (q \rightarrow r)$	$[(p \lor q) \land (p \to r) \land (q $
Т	T	Т	Т	Т	Т	Т	Т	T
Т	Т	F	Т	F	F	F	F	Т
Т	F	T	Т	T	T	T	T	T
Т	F	F	Т	F	F	T	F	Т
F	Т	Т	Т	Т	T	Т	T	T
F	T	F	Т	Т	Т	F	F	Т
F	F	T	F	Т	F	Т	F	T
F	F	F	F	Т	F	Т	F	Т
The given o	he given conditional statement in a tautalogy							

The given conditional statement is a tautology.

true

award: 2.71 out of 2.71 points

Identify the compound proposition involving the propositional variables p, q, and r that is true when p and q are true and r is false, but is false otherwise.

- \bigcirc $p \land q \lor \neg r$
- - $\bigcirc \ p \lor q \land \neg r$
 - \bigcirc $p \lor q \lor \neg r$

The compound proposition involving the propositional variables p,q, and r that is true when p and q are true and r is false, but is false otherwise is $p \land q \land \neg r$.

Multiple Choice Chapter: 01 The Foundations: Logic and Proofs Section: 01.03 Propositional Equivalences

award: 2.71 out of 2.71 points

Let P(x) be the statement "the word x contains the letter a."

What is the truth value of P(orange)?

True

False

The word "orange" contains the letter "a."

True / False Section: 01.04 Predicates and Quantifiers Chapter: 01 The Foundations: Logic and Proofs

2.71 out of

2.71 points 😵 Your answer(s) received credit but don't exactly match the correct answer(s).

Let P(x) be the statement "the word x contains the letter a." The truth value of P(lemon) is _____.

The word "lemon" does not contain the letter "a."

Fill in the Blank Chapter: 01 The Foundations: Logic and Proofs Section: 01.04 Predicates and Quantifiers

award: 0 out of 2.71 points

Let P(x) be the statement "the word x contains the letter a."

What is the truth value of P(true)?

True

False

The word "true" does not contain the letter "a".

True / False Chapter: 01 The Foundations: Logic and Proofs Section: 01.04 Predicates and Quantifiers

27.	award: 0 out of 2.71 points		
	Let <i>P</i> (<i>x</i>) be the statement "the word <i>x</i> contains the letter <i>a</i> ."		
	The truth value of <i>P</i> (false) is false. Is the above statement true?		
	⊗ Yes		
	○ No		
	The word "false" contains the letter "a."		
	Yes / No	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
28.	award: 2.71 out of 2.71 points		
	Let Q(x, y) denote the statement "x is the capital of y." What is the truth value of Q(Denver, Colorado)?		
	✓ True		
	○ False		
	Denver is the capital of Colorado.		
	True / False	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
29.	award: 2.71 out of		
29 .	2.71 points		
	Let $Q(x,y)$ denote the statement "x is the capital of y." The truth value of $Q(Detroit, Michigan)$ is true. Is the above statement false?		
	⊘ Yes		
	○ No		
	Detroit is not the capital of Michigan.		
	Yes / No	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
20	award:		
30.	2.71 out of2.71 points Your answer(s) received credit but don't exactly match to	he correct answer(s).	
	Let Q(x,y) denote the statement "x is the capital of y." The truth value of Q(Massachusetts, Boston) is		
	False		
	Massachusetts is not the capital of Boston.		
	Fill in the Plant	Chapter 01 The Foundational Legis and Dreefs	Coation A4 A4 Dradicates and Quantificus
	Fill in the Blank	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
0.4	award:		
31.	2.71 out of 2.71 points		
	Let Q(x,y) denote the statement "x is the capital of y." What is the truth value of Q(NewYork, NewYork).		
	○ True		
	NewYork is not the capital of NewYork.		
	True / False	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
32.	award: 2.71 out of		
~ _ .	2.71 points State the value of x after the statement if $P(x)$ then $x := 1$ is execute	d where P(x) is the statement "x > 1"	
	The value of x when the statement $x = 0$ is reached is 1.	u, whole r (A) is the statement x < 1.	
	○ True		
	⊘ ● False		
	Since $x = 0 < 1$, x does not satisfy the condition $P(x)$. Hence, the	value of x remains 0.	
	True / False	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers

33.	award: 2.71 out of 2.71 points		
	State the value of x after the statement if $P(x)$ then $x := 1$ is executed. The value of x when the statement $x = 1$ is reached is 1. Is the above statement true?	d, where $P(x)$ is the statement " $x > 1$,"	
	⊘ Yes ○ No		
	Since the $x = 1$ does not satisfy the condition $x > 1$, the value of x	remains 1.	
	Yes / No	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
0.4	award:		
34.	2.71 out of 2.71 points State the value of x after the statement if P(x) then x := 1 is executed	where $P(x)$ is the statement " $x > 1$."	
	The value of x when the statement $x = 2$ is reached is 0	, ,	
	© 2 © 3		
	⊘ ● 1		
	Since $x = 2$ satisfies the condition $x > 1$, the statement $x := 1$ is ex		Section: 01.04 Predicates and Quantifiers
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section, 01.04 Fredicates and Quantillers
35.	award: 0.91 out of		
		omain consists of the students in your school. Identify the expression t	for the quantification $\exists x N(x)$.
	 Some student in the school has visited North Dakota. 	rth Dakota.	
		ota	
	All the students in the school have visited North Dakota.		
	The quantification means there are students who visited North D	akota. Hence, expressions similar to "There exist a student who has v	risited North Dakota" are correct.
	Check All That Apply	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
	award:		
36.	2.71 out of 2.71 points		
	Vær Every student in the school has visited North Dakota.	omain consists of the students in your school. Identify the expressions	for the quantifications $\forall xN(x)$.
	⊘ All students in the school have visited North Dakota.⊘ No student has visited North Dakota.		
	Some students have visited North Dakota.		
	The expressions that mean every student of the school has visite	ed North Dakota are correct.	
	Check All That Apply	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
	award:		
37.	2.71 out of 2.71 points		
	Let $N(x)$ be the statement 'x has visited North Dakota,' where the or Dakota' and "There does not exist a student in the school who has is the above statement false?		quantification ¬∃xN(x) are "No student in the school has visited North
	Yes✓ ● No		
		nt in the school has visited North Dakota," the expressions that mean	no student in the school has visited North Dakota are correct.
	Yes / No	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers
	award:		
38.	1.36 out of 2.71 points		
	Let N(x) be the statement "x has visited North Dakota," where the do	omain consists of the students in your school. Identify the expressions	for the quantification $\exists x \neg N(x)$.
	All the students in the school has not visited North Dakot	а.	
	 ✓ There exists a student in the school who has not visited N ✓ There exists a student in the school who has visited North 		
	 Every student in the school has not visited North Dakota. 		
	Since the quantification is the negation of the statement "Some s	student in the school has visited North Dakota," the statements that me	an "Some student in the school has not visited North Dakota" are correct.
	Check All That Apply	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers

39.	award: 2.71 out of 2.71 points			
	Let N(x) be the statement "x has visited North Dakota," where the d North Dakota."	omain consists of the students in your school. The expression for the	quantification $\neg orall x N(x)$ is "It is not true that every student in the school	
	has visited			
	ry student in the school has visited North Dakota" is the correct answer.			
	Fill in the Blank	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
40	award: 2.71 out of			
40.	2.71 points			
	Let $N(x)$ be the statement "x has visited North Dakota," where the d Dakota."	omain consists of the students in your school. The expression for the	quantification $\forall x \neg N(x)$ is "All students in the school have visited North	
	○ True			
	⊘ False			
	The expression for the quantification $\forall x\neg N(x)$ is "All students in	the school have not visited North Dakota".		
	True / False	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
	award:			
41.	1.36 out of 2.71 points			
		is " x is a rabbit" and $H(x)$ is " x hops" where the domain consists of all	animals.	
	If an animal is a rabbit, then that animal hops.			
	 ✓ ☐ Every animal is a rabbit and hops. ✓ → ☐ Every rabbit hops. 			
	If an animal hops, then that is a rabbit.			
	The statement "every rabbit hops" is correct.			
	Check All That Apply	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
42.	award: 0 out of 2.71 points			
		isists of all animals. Identify the expression of the quantification $orall x(R($	x) ∧ H(x)).	
Every animal is a rabbit and hops.An animal is a rabbit if and only if it hops.				
	→ Every animal is a rabbit and hops.			
	Section 2 Se			
	Since the quantification is the conjunction of two propositions is	true for all animals, the expression is "Every animal is a rabbit and it h	ops."	
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
	award:			
43.	2.71 out of 2.71 points			
	et $R(x)$ is "x is a rabbit" and $H(x)$ is "x hops" where the domain consists of all animals. The expression of the quantification $\exists x(R(x) \to H(x))$ is "There exists an animal such that if it is a rabbit, then it hops."			
	⊘ True			
	False	if it is a rabbit than it have the averaging of the quartification $\exists u/D/D$	(
	·	intris a rabbit, then it hops, the expression of the quantification ⊐x(∧(.	 A(x)) is "There exists an animal such that if it is a rabbit, then it hops. 	
	True / False	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
	and the second s			
44.	award: 1.36 out of 2.71 points			
		isists of all animals. Identify the expressions of the quantification $\exists x (R)$	$P(x) \wedge H(x)$.	
	There exists an animal that is a rabbit and hops.			
	 ☑ Every animal is a rabbit and every rabbit hops. ☑ Some hopping animals are rabbits. 			
	 Some nopping animals are rappits. An animal is a rabbit if it hops. 			
	Since the quantification means that there exists an animal that satisfies both conditions, the statement similar to "There exists an animal that is a rabbit and hops" are correct.			
	Check All That Apply	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
	** ***	,		

45.	award: 2.71 out of 2.71 points			
	Let $C(x)$ be the statement "x has a cat," let $D(x)$ be the state statement "A student in your class has a cat, a dog, and a form $\exists x (C(x) \land D(x) \land F(x))$ $\forall \exists x (C(x) \lor D(x) \lor F(x))$ $\exists x (C(x) \lor D(x) \lor F(x))$ $\forall x (C(x) \land D(x) \land F(x))$		the domain consist of all students in your class. Identify the quantification for the	
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
46.	award: 2.71 out of 2.71 points			
	Let $C(x)$ be the statement "x has a cat," let $D(x)$ be the state statement "All students in your class have a cat, a dog, or a		the domain consist of all students in your class. The quantification for the	
	✓ True False			
		class have a cat, a dog, or a ferret" is $\forall x(C(x) \lor D(x) \lor F(x))$.		
	True / False	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
		· · · · · · · · · · · · · · · · · · ·		
47.	award: 2.71 out of 2.71 points			
	-		the domain consist of all students in your class. Identify the quantification for the	
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
48.	8. 2.71 out of 2.71 points Let $C(x)$ be the statement "x has a cat," let $D(x)$ be the statement "x has a dog," and let $F(x)$ be the statement "x has a ferret," where the domain consist of all students in your class. Identify the quantification for the statement "No student in your class has a cat, a dog, and a ferret" is $\exists x (\neg C(x) \land \neg D(x) \land \neg F(x))$. True Place The quantification for the statement "No student in your class has a cat, a dog, and a ferret" is $\neg \exists x (C(x) \land D(x) \land F(x))$.			
	True / False	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
49.	award: 2.71 out of 2.71 points			
	Let $C(x)$ be the statement "x has a cat," let $D(x)$ be the statement "x has a dog," and let $F(x)$ be the statement "x has a ferret," where the domain consist of all students in your class. Identify the quantification statement "For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet." $(\exists x(C(x)) \lor (\exists x(D(x)) \lor (\exists x(F(x)))$ $\exists x(C(x) \land (D(x) \land (F(x)))$ $(\exists x(C(x)) \land (\exists x(D(x)) \land (\exists x(F(x)))$			
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
	Multiple Choice	Chapter, 01 The Foundations, Logic and Proofs	Section, 01.04 Predicates and Quantillers	
50.	award: 2.71 out of 2.71 points			
	Identify the statements that have the truth value "true" if the $\Im X(x^2 = 2)$	domain of each variable consists of all real numbers.		
	$\exists x(x^2 = -1)$			
	$\forall x(x^2 + 2 \ge 1)$ $\forall x(x^2 \ne x)$			
	→ ∨ λ(λ + λ)			
	Check All That Apply	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers	
	·			

51.	award: 0 out of 2.71 points				
	Let $F(x)$ be "x has fleas," and let the domain of $G(x)$. The expression is $\exists x F(x)$, its	discourse be dogs. Identify the expression for the statement "All dogs have fleas" and the sentence is "There is a dog that has fleas."	d its negation and the English sentence for the negation.		
	- 0	negation is $\exists x \neg F(x)$ and the sentence is "There is a dog that does not have fleas."			
		egation is $\forall x \neg F(x)$ and the sentence is "There is no dog that does not have fleas." s negation is $\exists x F(x)$ and the sentence is "There is a dog that does not have fleas."			
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers		
52	award: 0 out of				
	negation.	scourse be horses. Identify the expression for the statement "There is a horse that c	an add" and its negaion" and its negation and the English sentence for the		
		s negation is $\forall x F(x)$ and the sentence is "All horse can add." negation is $\neg \forall x F(x)$ and the sentence is "No horse can add."			
		negation is $\forall x \neg F(x)$ and the sentence is "No horse can add."			
		negation is $\forall x \neg F(x)$ and the sentence is "No horse cannot add."			
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers		
53	award: 2.71 out of				
JJ.	2.71 points				
		discourse be koalas. Identify the expression for the statement "Every koala can climinegation is $\exists x \neg F(x)$ and the sentence is "There is a koala that cannot climb."	b" and its negation and the English sentence for the negation.		
		s negation is $\exists x F(x)$ and the sentence is "There is a koala that cannot climb."			
		negation is $\exists x \neg F(x)$ and the sentence is "There is a koala that can climb."			
	\bigcirc The expression is $\exists x \neg F(x)$, its	negation is $\exists x F(x)$ and the sentence is "There is a koala that can climb."			
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers		
54	award: 0 out of				
J⊤.	2.71 points				
		main of discourse be monkeys. Identify the expression for the statement "No monke negation is $\exists x F(x)$ and the sentence is "There is a monkey that can speak French."			
		negation is $\exists x F(x)$ and the sentence is "There is a monkey that cannot speak French			
		negation is $\forall x F(x)$ and the sentence is "There is a monkey that can speak French."			
	\bigcirc The expression is $\forall x F(x)$, its r	egation is $\exists x \ \neg F(x)$ and the sentence is "There is a monkey that can speak French."			
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers		
		, <u> </u>			
	award:				
55.	2.71 out of 2.71 points				
		ch fish," and let the domain of discourse be pigs. Identify the expression for the state	ement "There exists a pig that can swim and catch fish" and its negation and the		
	English sentence for the negation.	anti- Tu/F(A) V C(A) and its assertion in W. (F(A) & C(A) and the assertion in White	ania and hall arrive and astable fall II		
	The expression for the statement is $\exists x (F(x) \lor G(x))$, and its negation is $\forall x \neg (F(x) \land G(x))$ and the sentence is "No pig can both swim and catch fish." The expression for the statement is $\exists x (F(x) \land G(x))$, and its negation is $\forall x \neg (F(x) \land G(x))$ and the sentence is "No pig can both swim and catch fish."				
		ent is $\exists x \ (F(x) \land G(x))$, and its negation is $\forall x \neg (F(x) \land G(x))$ and the sentence is "All			
	· ·	ent is $\exists x \ (F(x) \land G(x))$, and its negation is $\forall x \neg (F(x) \lor G(x))$ and the sentence is "No	• •		
	Multiple Chaice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers		
	Multiple Choice	Chapter: 01 The Foundations. Logic and Proofs	Section, 01.04 Predicates and Quantiliers		
	Translate these specifications into English whe	re $F(p)$ is "Printer p is out of service," $B(p)$ is "Printer p is busy," $L(j)$ is "Print job j is lo	ost," and Q(i) is "Print lob i is queued."		
	Section Break	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers		
56.	award: 0 out of				
<i>-</i>	2.71 points				
	a) $\exists p(F(p) \land B(p)) \rightarrow \exists jL(j)$ S If all printers are both out of se	rvice and busy, then all jobs have been lost.			
		there is a printer that is both out of service and busy.			
		r out of service or busy, then some job has been lost.			
	A printer is both out of service	·			
	\rightarrow If there is a printer that is both	out of service and busy, then some job has been lost.			
	Multiple Choice	Chanter: 01 The Foundations: Logic and Proofs	Section: 01 04 Predicates and Quantifiers		

57.	award: 2.71 out of 2.71 points						
	b) $\forall pB(p) \rightarrow \exists jQ(j)$						
	If every printer is busy, then all jobs are in the queue.						
	If there is a job in the queue, then some printer is busy.						
	If there is a printer that is busy, then all jobs are in the queue.						
	✓ If every printer is busy, then there is a job in the queue.						
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers				
58.	award: 0 out of 2.71 points						
	c) $\exists j(Q(j) \land L(j)) \rightarrow \exists pF(p)$						
	8 If there is a job that is either queued or lost, then some printer is out of service.						
	 If all printers are out of servi 	ce, then all jobs are both queued and lost.					
	 If all jobs are either queued 	or lost, then all printers are out of service.					
	 If some printer is out of serv 	ice, then there is a job that is either queued or lost.					
	→ If there is a job that is both queued and lost, then some printer is out of service.						
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers				
59.	award: 2.82 out of 2.82 points						
	$d)\left(\forall \rho B(\rho) \land \forall j Q(j)\right) \to \exists j L(j)$						
	If some printer is busy and some job is queued, then all jobs are lost.						
	If every printer is busy or every job is queued, then some job is lost.						
	If some job is lost, then some printer is busy and every job is queued.						
		every job is queued, then some job is lost.					
	If some job is lost, then every printer is busy or every job is queued.						
	Multiple Choice	Chapter: 01 The Foundations: Logic and Proofs	Section: 01.04 Predicates and Quantifiers				