SERIE NUMERICHE A TERMINI DI SEGNO COSTANTE

1. Determinare il carattere delle seguenti serie

$$\sum_{n=1}^{+\infty} 2^{\frac{1}{n}}$$
 (diverge)

$$\sum_{n=1}^{+\infty} 3^{-\frac{n}{2}} \text{ (converge)}$$

c)
$$\sum_{n=1}^{+\infty} \frac{1}{n + \ln n}$$
 (diverge)

$$\int_{n=0}^{+\infty} \frac{e^{-n}}{n+e^n} \text{ (converge)}$$

e)
$$\sum_{n=1}^{+\infty} \frac{n^k + 2}{n^k + 3} \qquad k \in R \text{ (diverge } \forall k)$$

$$\int_{n=0}^{+\infty} \frac{n^2 + 2n}{n^2 + 1} - 1 \text{ (diverge)}$$

$$\sum_{n=1}^{+\infty} \frac{n + \ln n}{\sqrt[3]{n}}$$
 (diverge)

$$\mathbf{h} \qquad \sum_{n=1}^{+\infty} \left(\frac{n+1}{2n+1} \right)^n \text{ (converge)}$$

i)
$$\sum_{n=2}^{+\infty} \left(\frac{n^2 - 3}{n^2} \right)^n \text{ (diverge)}$$

$$\sum_{n=1}^{+\infty} \frac{n!}{3^{2n}} \text{ (diverge)}$$

k)
$$\sum_{n=1}^{+\infty} \frac{n2^n}{e^{n/2}}$$
 (diverge)

1)
$$\sum_{n=1}^{+\infty} \frac{n^2}{2^n}$$
 (converge)

m)
$$\sum_{n=1}^{+\infty} \frac{n!}{(2n)^n}$$
 (converge)

n)
$$\sum_{n=1}^{+\infty} \frac{(n!)^3}{(3n)!}$$
 (converge)

o)
$$\sum_{n=1}^{+\infty} \frac{(n!)^4}{(3n)!}$$
 (diverge)

1

p)
$$\sum_{n=0}^{+\infty} \frac{3^n}{2^n + 5^n}$$
 (converge)

q)
$$\sum_{n=1}^{+\infty} \frac{1+\sin n}{3^n}$$
 (converge)

r)
$$\sum_{n=2}^{+\infty} \frac{\sin(1/n)}{\sqrt{n} \ln n} \text{ (converge)}$$

s)
$$\sum_{n=2}^{+\infty} \frac{n + \cos^2 n}{(n^2 - 1)4^n}$$
 (converge)

t)
$$\sum_{n=1}^{+\infty} \ln \left(1 + \frac{1}{n^2}\right) \text{ (converge)}$$

u)
$$\sum_{n=1}^{+\infty} \frac{1}{n} \ln \left(\frac{n}{n+1} \right)$$
 (converge)

v)
$$\sum_{n=2}^{+\infty} \frac{\ln(\ln n)}{n \ln^2 n} \text{ (converge)}$$

w)
$$\sum_{n=1}^{+\infty} \frac{e^{1/n}}{n^2}$$
 (converge)

x)
$$\sum_{n=4}^{+\infty} \left(\frac{n}{n-3} \right)^{n^2}$$
 (diverge)

y)
$$\sum_{n=0}^{+\infty} \left(\frac{2 + \sin n}{4} \right)^n \text{ (converge)}$$

z)
$$\sum_{n=0}^{+\infty} \frac{\ln(1+n)}{n+1} \text{ (diverge)}$$

aa)
$$\sum_{n=1}^{+\infty} \frac{1}{n2^n + 2n^3}$$
 (converge)

bb)
$$\sum_{n=0}^{+\infty} \frac{n\sqrt{n}}{n^4 + 4}$$
 (converge)

$$cc) \qquad \sum_{n=1}^{+\infty} n^{-\ln n} \quad (converge)$$

dd)
$$\sum_{n=1}^{+\infty} \sin(\sin(1/n)) \text{ (diverge)}$$

ee)
$$\sum_{n=2}^{+\infty} \frac{(\ln n)^{\sqrt{n}}}{3^n (1 + \ln n)} \text{ (converge)}$$

ff)
$$\sum_{n=1}^{+\infty} \frac{n^{\sqrt{n}}}{e^{n^2}} \text{ (converge)}$$

gg)
$$\sum_{n=1}^{+\infty} \frac{n!}{n^n}$$
 (converge)

hh)
$$\sum_{n=1}^{+\infty} \frac{n^n}{n!3^n}$$
 (converge)

ii)
$$\sum_{n=1}^{+\infty} \frac{n^n}{n!2^n} \text{ (diverge)}$$

$$\sum_{n=1}^{+\infty} \frac{n^n}{n! e^n}$$
 (diverge)

kk)
$$\sum_{n=1}^{+\infty} \sqrt{n+1} - \sqrt{n} \text{ (diverge)}$$

11)
$$\sum_{n=1}^{+\infty} \left(\sqrt{n+1} - \sqrt{n} \right)^2 \text{ (diverge)}$$

mm)
$$\sum_{n=1}^{+\infty} \left(\sqrt{n+1} - \sqrt{n} \right)^3 \text{ (converge)}$$

nn)
$$\sum_{n=1}^{+\infty} e^{nx}$$
 (converge per $x < 0$, altrimenti diverge)

oo)
$$\sum_{n=1}^{+\infty} \frac{a^n}{2^n + a^n}$$
 (converge per $|a| < 2$, altrimenti diverge)

2. Dopo aver stabilito la convergenza delle seguenti serie, calcolarne la somma:

a)
$$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n}{2^{2n}} \qquad \left(\text{somma} = \frac{4}{5}\right)$$

b)
$$\sum_{n=1}^{+\infty} \frac{2^n}{3^{n+1}}$$
 (somma = $\frac{2}{3}$)

c)
$$\sum_{n=0}^{+\infty} \frac{2^n}{e^{2n}}$$
 somma = $\frac{e^2}{e^2 - 2}$

3. Risolvere le seguenti equazioni:

a)
$$\sum_{n=1}^{+\infty} (2x)^{2n} = 1$$
 sol. $\left(x = \pm \frac{1}{2\sqrt{2}}\right)$

b)
$$\sum_{n=2}^{+\infty} \left(\frac{x}{x+1} \right)^n = 3 \quad \text{sol. } \left(x = \frac{3 + \sqrt{21}}{2} \right)$$

c)
$$\sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n = \frac{32}{81}$$
 sol. $(k=5)$

SERIE NUMERICHE A TERMINI DI SEGNO NON COSTANTE

a)
$$\sum_{n=1}^{+\infty} (-)^n \frac{n+1}{2n}$$
 (non conv.: oscillante)

b)
$$\sum_{n=1}^{+\infty} (-)^n \frac{2^n}{2^n + 3^n}$$
 (converge)

c)
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n + \cos n\pi}$$
 (converge)

d)
$$\sum_{n=1}^{+\infty} \sin n\pi \cdot \sin \frac{1}{n}$$
 (converge)

e)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{3n + (-1)^n \cdot n}$$
 (diverge)

f)
$$\sum_{n=2}^{+\infty} (-1)^n \frac{n + (-1)^{n+1} \ln n}{n \ln n}$$
 (diverge)

g)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n+n^2(1+(-1)^n)}$$
 (non conv.: oscillante)

h)
$$\sum_{n=1}^{+\infty} (-)^n a_n$$
, ove a_n è tale che : $a_{2n} = \frac{1}{2^n}$; $a_{2n+1} = \frac{1}{n}$. (converge)

i)
$$\sum_{n=2}^{+\infty} \frac{\sin n}{n^2}$$
 (converge)

j)
$$\sum_{n=2}^{+\infty} \frac{(-1)^n \cos n}{2^n + n}$$
 (converge)

k)
$$\sum_{n=1}^{+\infty} \frac{\sin n \frac{\pi}{4}}{2n + (-1)^n \cdot n}$$
 (converge)

1)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+2)\cdot(x-2)^n}$$
, con $x \in R \setminus \{2\}$ (converge per $x < 1$ oppure $x \ge 3$, altrimenti non converge)

m)
$$\sum_{n=1}^{+\infty} \left(\frac{kn^2 - n}{3n^2 + 5} \right)^n$$
, $k \in \mathbb{R}$ (converge per $-3 < k < 3$, altrimenti non converge)

n)
$$\sum_{n=1}^{+\infty} \frac{a^n}{2^n + a^n}$$
, $a \in R \setminus \{-2\}$ (converge per $-2 < k < 2$, altrimenti non converge)