Supplementary Material: Proof Appendix

Proposition 3 Let φ be a CTL formula, then $\varphi \equiv_{\langle V',I \rangle} T_{\varphi}$.

Proof. (sketch) This can be proved from T_i to T_{i+1} (0 \leq i < n) by using one transformation rule on T_i . We will prove this proposition from the following several aspects:

- (1) $\varphi \equiv_{\langle \{p\},\emptyset \rangle} T_0$.
- (\Rightarrow) For all $(\mathcal{M}_1, s_1) \in Mod(\varphi)$, i.e. $(\mathcal{M}_1, s_1) \models \varphi$. We can construct an Ind-model structure \mathcal{M}_2 is identical to \mathcal{M}_1 except $L_2(s_2) = L_1(s_1) \cup \{p\}$. It is apparent that $(\mathcal{M}_2, s_2) \models T_0 \text{ and } (\mathcal{M}_1, s_1) \leftrightarrow_{\langle \{p\}, \emptyset \rangle} (\mathcal{M}_2, s_2).$
- (\Leftarrow) For all $(\mathcal{M}_1, s_1) \in Mod(T_0)$, it is apparent that $(\mathcal{M}_1, s_1) \models \varphi$ by the sematic of **start**.

By $\psi \to_t R_i$ we mean using transformation rules t on formula ψ (the formulae ψ as the premises of rule t) and obtaining the set R_i of transformation results. Let X be a set of formulas we will show $T_i \equiv_{\langle V',I \rangle} T_{i+1}$ by using the transformation rule t. Where $T_i = X \cup \{\psi\}, T_{i+1} = X \cup R_i$, V' is the set of atoms introduced by t and I is the set of indexes introduced by t. (We will prove this result in $t \in$ {Trans(1), Trans(4), Trans(6)}, other cases can be proved similarly.)

- (2) For t=Trans(1):
- (\Rightarrow) For all $(\mathcal{M}_1, s_1) \in Mod(T_i)$ i.e. $(\mathcal{M}_1, s_1) \models X \land$ $AG(q \supset EX\varphi)$
- $\Rightarrow (\mathcal{M}_1, s_1) \models X$ and for every π starting from s_1 and every state $s_1^j \in \pi$, $(\mathcal{M}, s_1^j) \models \neg q$ or there exists a path π' starting from s_1^j such that there exists a state s_1^{j+1} such that $(s_1^j, s_1^{j+1}) \in R_1 \text{ and } (\mathcal{M}, s_1^{j+1}) \models \varphi$

We can construct an Ind-model structure \mathcal{M}_2 is identical to \mathcal{M}_1 except $[ind]_2 = \bigcup_{s \in S} R_s \cup R_y$, where $R_{s_1^j} = \{(s_1^j, s_1^{j+1}), (s_1^{j+1}, s_1^{j+2}), \dots\}$ and $R_y = \{(s_1^j, s_1^{j+1}), (s_1^{j+1}, s_1^{j+2}), \dots\}$ $\{(s_x, s_y) | \text{ for all } s_x \in S \text{ if for all } (s_1', s_2') \in \bigcup_{s \in S} R_s, s_1' \neq S \}$ s_x then find a unique $s_y \in S$ such that $(s_x, s_y) \in R$. It is apparent that $(\mathcal{M}_1, s_1) \leftrightarrow_{\langle \emptyset, \{ind\} \rangle} (\mathcal{M}_2, s_2)$ (let $s_2 = s_1$).

- \Rightarrow for every path starting from s_1 and every state s_1^j in this path, $(\mathcal{M}_2, s_1^j) \models \neg q \text{ or } (\mathcal{M}_2, s_1^j) \models \text{EX}\varphi_{\langle ind \rangle}$ (by the semantic of EX)
- $\Rightarrow (\mathcal{M}_2, s_1) \models AG(q \supset E_{\langle ind \rangle} X \varphi)$
- $\Rightarrow (\mathcal{M}_2, s_1) \models X \land AG(q \supset E_{\langle ind \rangle} X \varphi)$
- (\Leftarrow) For all $(\mathcal{M}_1, s_1) \in Mod(T_{i+1})$ i.e. $(\mathcal{M}_1, s_1) \models$ $X \wedge AG(q \supset E_{\langle ind \rangle} X \varphi)$
- $\Rightarrow (\mathcal{M}_1, s_1) \models X \text{ and } (\mathcal{M}_1, s_1) \models AG(q \supset E_{\langle ind \rangle} X \varphi)$
- \Rightarrow for every path starting from s_1 and every state s_1^j in this path, $(\mathcal{M}_1, s_1^j) \models \neg q$ or there exits a state s' such that $(s_1^j, s') \in [ind]_1 \text{ and } (\mathcal{M}_1, s') \models \varphi$ (by the semantic of
- \Rightarrow for every path starting from s_1 and every state s_1^j in this path, $(\mathcal{M}_1, s_1^j) \models \neg q \text{ or } (\mathcal{M}_1, s_1^j) \models \text{EX}\varphi$ (by the semantic
- $\Rightarrow (\mathcal{M}_1, s_1) \models \mathrm{AG}(q \supset \mathrm{EX}\varphi)$ $\Rightarrow (\mathcal{M}_1, s_1) \models X \land \mathrm{AG}(q \supset \mathrm{EX}\varphi)$
- It is apparent that $(\mathcal{M}_1, s_1) \leftrightarrow_{\langle \emptyset, \{ind\} \rangle} (\mathcal{M}_1, s_1)$.
 - (3) For t=Trans(4):
- (\Rightarrow) For all $(\mathcal{M}_1, s_1) \in Mod(T_i)$, i.e. $(\mathcal{M}_1, s_1) \models X \land$

 $AG(q \supset \varphi_1 \lor \varphi_2)$ $\Rightarrow (\mathcal{M}_1, s_1) \models X \text{ and } \forall s_1' \in S, (\mathcal{M}_1, s_1') \models q \supset \varphi_1 \lor \varphi_2$ $\Rightarrow (\mathcal{M}_1, s_1') \models \neg q \text{ or } (\mathcal{M}_1, s_1') \models \varphi_1 \lor \varphi_2$

The we can construct an Ind-model structure \mathcal{M}_2 as follows. \mathcal{M}_2 is the same with \mathcal{M}_1 when $(\mathcal{M}_1, s_1') \models \neg q$. When $(\mathcal{M}_1, s_1') \models q, \mathcal{M}_2$ is identical to \mathcal{M}_1 except if $(\mathcal{M}_1, s_1') \models$ φ_1 then $L_2(s_1') = L_1(s_1')$ else $L_2(s_1') = L_1(s_1') \cup \{p\}$. It is apparent that $(\mathcal{M}_2, s_1') \models (q \supset \varphi_1 \lor p) \land (p \supset \varphi_2)$, then $(\mathcal{M}_2, s_1) \models T_{i+1} \text{ and } (\mathcal{M}_1, s_1) \leftrightarrow_{\langle \{p\}, \emptyset \rangle} (\mathcal{M}_2, s_2).$

 (\Leftarrow) For all $(\mathcal{M}_1, s_1) \in Mod(T_{i+1})$, i.e. $(\mathcal{M}_1, s_1) \models$ $X \wedge AG(q \supset \varphi_1 \vee p) \wedge AG(p \supset \varphi_2)$. It is apparent that $(\mathcal{M}_1, s_1) \models T_i.$

(4) For *t*=Trans(6):

We prove for $E_{(ind)}X$, while for the AX can be proved similarly.

 (\Rightarrow) For all $(\mathcal{M}_1, s_1) \in Mod(T_i)$, i.e. $(\mathcal{M}_1, s_1) \models$ $X \wedge AG(q \supset E_{\langle ind \rangle} X \varphi)$

 $\Rightarrow (\mathcal{M}_1, s_1) \models X$ and for all $s'_1 \in S, (\mathcal{M}_1, s'_1) \models q \supset$ $E_{\langle ind \rangle} X \varphi$

 $\Rightarrow (\mathcal{M}_1, s_1') \models \neg q$ or there exists a state s' such that $(s'_1, s') \in [ind] \text{ and } (\mathcal{M}_1, s') \models \varphi$

We can construct an Ind-model structure \mathcal{M}_2 as follows. \mathcal{M}_2 is the same with \mathcal{M}_1 when $(\mathcal{M}_1, s_1') \models \neg q$. When $(\mathcal{M}_1, s_1') \models q, \mathcal{M}_2$ is identical to \mathcal{M}_1 except for s' there is $L_2(s') = L_1(s') \cup \{p\}$. It is apparent that $(\mathcal{M}_2, s_1) \models$ $AG(q \supset E_{\langle ind \rangle}Xp) \land AG(p \supset \varphi), (\mathcal{M}_2, s_2) \models T_{i+1} \text{ and }$ $(\mathcal{M}_1, s_1) \leftrightarrow_{\langle \{p\}, \emptyset \rangle} (\mathcal{M}_2, s_2) (s_2 = s_1).$

 (\Leftarrow) For all $(\mathcal{M}_1, s_1) \in Mod(T_{i+1})$, i.e. $(\mathcal{M}_1, s_1) \models$ $X \wedge AG(q \supset E_{(ind)}Xp) \wedge AG(p \supset \varphi)$. It is apparent that $(\mathcal{M}_1, s_1) \models T_i$.

Proposition 4 Let φ be a CTL formula, then $T_{\varphi} \equiv_{\langle V \cup V', \emptyset \rangle}$

Proof. (sketch) This can be proved from T_i to T_{i+1} (0 \leq i < n) by using one resolution rule on T_i .

By $\psi \to_r R_i$ we mean using resolution rules r on set ψ (the formulae in ψ as the premises of rule r) and obtaining the set R_i of resolution results. we will show $T_i \equiv_{\langle V,I \rangle} T_{i+1}$ by using the resolution rule r. Where $T_i = X \cup \psi$, $T_{i+1} = X \cup R_i$, X be a set of SNF $_{\text{CTL}}^g$ clauses, p be the proposition corresponding with literal l used to do resolution in r.

(1) If $\psi \rightarrow_r R_i$ by an application of $r \in$ $\{(SRES1), \ldots, (SRES8), RW1, RW2\}, \text{ then } T_i \equiv_{\langle \{p\},\emptyset\rangle}$

On one hand, it is apparent that $\psi \models R_i$ and then $T_i \models$ T_{i+1} . On the other hand, $T_i \subseteq T_{i+1}$ and then $T_{i+1} \models T_i$.

(2) If $\psi \to_r R_i$ by an application of r = (ERES1), then $T_i \equiv_{\langle \{l, w_{-i}^A\}, \emptyset \rangle} T_{i+1}.$

It has been proved that $\psi \models R_i$ in (Bolotov 2000), then there is $T_{i+1} = T_i \cup \Lambda^{A}_{\neg l}$ and then for all $(\mathcal{M}_1, s_1) \in$ $Mod(T_i = X \cup \psi)$ there is a $(\mathcal{M}_2, s_2) \in Mod(T_{i+1} =$ $T_i \cup \Lambda^{\text{A}}_{\neg l}) \text{ s.t. } (\mathcal{M}_1, s_1) \leftrightarrow_{\langle \{p, w^{\text{A}}_{\neg l}\}, \mathcal{O} \rangle} (\mathcal{M}_2, s_2) \text{ and vice}$ versa by Proposition 3.

For rule (ERES2) we have the same result.

Proposition 6 Let $V'' = V \cup V'$, $\Gamma = Instantiate(Res, V')$ and $\Gamma_1 = Removing_atoms$ ($Connect(\Gamma), \Gamma$), then $\Gamma_1 \equiv_{\langle V'', \emptyset \rangle} Res$ and $\Gamma_1 \equiv_{\langle V'', I \rangle} \varphi$.

Proof. Take note the fact that for each clause $C = T \supset H$ in $Connect(\Gamma)$, if $\Gamma \cap Var(C) \neq \emptyset$ then there must be an atom $p \in \Gamma \cap Var(H)$. It is apparent that $Connect(\Gamma) \models \Gamma_1$, we will show for all $(\mathcal{M}, s_0) \in Mod(\Gamma_1)$ there is a (\mathcal{M}', s_0) such that $(\mathcal{M}', s_0) \models Connect(\Gamma)$ and $(\mathcal{M}, s_0) \leftrightarrow_{\langle \Gamma, \emptyset \rangle} (\mathcal{M}', s_0)$. Let $C = T \supset H$ in $Connect(\Gamma)$ with $\Gamma \cap Var(C) \neq \emptyset$, for all $(\mathcal{M}, s_0) \in Mod(\Gamma_1)$ we construct (\mathcal{M}', s_0) as (\mathcal{M}, s_0) except for each $s \in S$, if $(\mathcal{M}, s) \nvDash T$ then L'(s) = L(s), else:

- (i) if $(\mathcal{M}, s) \models H$, then L'(s) = L(s);
- (ii) else if $(\mathcal{M},s)\models T$ with $p\in Var(H)\cap \Gamma$, then if p appearing in H negatively, then if C is a global (or an initial) clause then let $L'(s)=L(s)\setminus \{p\}$ else let $L'(s^*)=L(s^*)\setminus \{p\}$ for (each (if C is an A-step or A-sometime clause)) $s^*\in \pi_s$, else if C is a global (or an initial) clause then let $L'(s)=L(s)\cup \{p\}$ else let $L'(s^*)=L(s^*)\cup \{p\}$ for (each (if C is a A-step or A-sometime clause)) $s^*\in \pi_s$. Where s^* is a next or future state of s (it depends on the type of the clause: if the clause is a S-step (S=1) clause then S=1 is the next state, else if the clause is a S-sometime clause then S=1 is a future state).

It is apparent that $(\mathcal{M}, s_0) \leftrightarrow_{\langle \Gamma, \emptyset \rangle} (\mathcal{M}', s_0)$, we will show that $(\mathcal{M}', s_0) \models Connect(\Gamma)$ from the following two points:

- (1) For (i), it is apparent $(\mathcal{M}', s_0) \models C$;
- (2) For (ii) talked-above, we show it from the form of SNF_{CTL}^g clauses. Supposing C_1 and C_2 are instantiate formula of Γ :
 - (a) If C is a global clause, i.e. $C = \top \supset p \lor C_1$ with C_1 is a disjunction of literals (we suppose p appearing in C positively). If there is a $C' = \top \supset \neg p \lor C_2 \in Connect(\Gamma)$, then there is $\top \supset C_1 \lor C_2 \in Connect(\Gamma)$ by the resolution $((\mathcal{M}, s) \models C_2$ due to we have suppose $(\mathcal{M}, s) \nvDash C$). It is apparent that $(\mathcal{M}', s_0) \models C \land C'$.
 - (b) If $C = T \supset \mathbb{E}_{\langle ind \rangle} \mathsf{X}(p \lor C_1)$. If there is a $C' = T' \supset \mathbb{E}_{\langle ind \rangle} \mathsf{X}(\neg p \lor C_2) \in Connect(\Gamma)$, then there is $T \land T' \supset \mathbb{E}_{\langle ind \rangle} \mathsf{X}(C_1 \lor C_2) \in Connect(\Gamma)$ by the resolution $((\mathcal{M},s) \models \mathbb{E}_{\langle ind \rangle} \mathsf{X}C_2$ due to we have suppose $(\mathcal{M},s) \nvDash C$. It is apparent that $(\mathcal{M}',s_0) \models C \land C'$.
 - (c) Other cases can be proved similarly.

Therefore, we have $\Gamma_1 \equiv_{\langle V'',\emptyset\rangle} Res$ by Proposition 2 and Proposition 5.

And then
$$\Gamma_1 \equiv_{\langle V'',I \rangle} \varphi$$
 follows. \square

proposition 10 Let φ be a CTL formula and $V \subseteq \mathcal{A}$. The time and space complexity of Algorithm 1 are $O((m+1)2^{4(n+n')})$. Where $|Var(\varphi)|=n$, |V'|=n' (V' is set of atoms introduced in transformation) and m is the number of indices introduced during transformation.

Proof. It follows from the lines 19-31 of the algorithm 1, which is to compute all the possible resolution. The possible number of SNF_{CTL}^g clauses under the give V, V' and Ind is $(m+1)2^{4(n+n')}+(m*(n+n')+n+n'+1)2^{2(n+n')+1})$. \square