Piotr Bury MDT

Rodzaje dowodów

Przypomnijmy, że wyróżniamy 4 główne metody dowodzenia prawdziwości twierdzeń:

- a) wprost rozpoczynamy od założeń lub wcześniej udowodnionych twierdzeń, a następnie przeprowadzając logiczne rozumowanie dochodzimy do tezy,
- b) nie wprost polega on na zaprzeczeniu tezy dowodzonego twierdzenia i wykazaniu, że przyjęcie takiego zaprzeczenia prowadzi do sprzeczności. Zatem dane twierdzenie należy uznać za prawdziwe,
- c) **przez kontrapozycję**¹ stosujemy prawo kontrapozycji, czyli zamiast dowodzić implikacji $p \Rightarrow q$ dowodzimy implikację $\neg q \Rightarrow \neg p$,
- d) **przez indukcję** stosujemy zasadę indukcji matematycznej. Tą metodą dowodzimy twierdzeń dotyczących liczb naturalnych.

¹Warto zwrócić uwagę, że dowód przez kontrapozycję jest tak naprawdę dowodem nie wprost, w którym sprzeczność uzyskuje się bezpośrednio z założeniem.

Aby udowodnić, że twierdzenie jest fałszywe, wystarczy wskazać jeden kontrprzykład, czyli przykład, który spełnia założenia twierdzenia, ale nie spełnia jego tezy.

Poniżej znajdują się 4 zadania na dowodzenie. W każdym przypadku zapisz założenie i tezę, a następnie rozwiąż zadanie wskazaną metodą.

Zadanie 1 (Wprost).

Udowodnij, że sześcian dowolnej liczby całkowitej dającej resztę 3 z dzielenia przez 8 daje resztę 3 z dzielenia przez 4.

Zadanie 2 (Nie Wprost).

Udowodnij, że liczba log₂ 7 jest niewymierna.

Zadanie 3 (Przez Kontrapozycje).

Niech $n \in \mathbb{Z}$. Udowodnij, że jeśli n^2 jest nieparzyste, to n też.

Zadanie 4 (Przez Indukcję).

Udowodnij, że dla $n \in \mathbb{N}$, $n \ge 3$ zachodzi nierówność: $2^{n-1} < n!$.

Zadanie domowe

Zadanie 5 (Wprost).

Udowodnij, że suma sześcianów trzech kolejnych liczb nieparzystych daje resztę 3 z dzielenia przez 6.

Zadanie 6 (Nie Wprost).

Udowodnij, że liczba log₃ 13 jest niewymierna.²

Zadanie 7 (Przez Kontrapozycję).

Niech $n \in \mathbb{Z}$. Udowodnij, że dla n^2 jest parzyste, to n też.

Zadanie 8 (Przez Indukcję).

Udowodnij, że dla $n \in \mathbb{N}$, $n \ge 10$ zachodzi nierówność: $2^n > n^3$.

Zadanie 2025.

Używając dowodzenia wprost i nie odwołując się do monotoniczności funkcji $t \mapsto t^3$ (czyli nie podnosząc po prostu obustronnie do potęgi trzeciej), uzasadnij, że jeśli $x \leq y$, to $x^3 \leq y^3$.

Piotr Bury

²Zastanowić się, jak zmieni się rozumowanie, gdy podstawa logarytmu będzie ułamkiem.