Genetische Statistik

Präsenzübung 1 - Grundlagen

Dr. Janne Pott (janne.pott@uni-leipzig.de)

November 02, 2021

Fragen

Gibt es bereits Fragen zu

- Vorlesung,
- Übung,
- Seminar?

Plan heute

Besprechung der ersten beiden Übungsblätter

- Biologische Grundlagen
- Einführung in R

Ein paar weitere Aufgaben zu

- Stammbäumen
- SNPs Crossing-Over Blutgruppen

Abschnitt 1

Biologische Grundlagen

Aufgabe 1: Definitionen

Definieren Sie **SNP**, **CNV** und **Chromosomen-Mutationen** und geben Sie je ein Beispiel dafür an.

Aufgabe 1: Lösung

 ${f SNP}={f single}$ nucleotid polymorphism = Einzelnukleotid Polymorphismus = Punktmutation

- Variation eines Basenpaares an einer Stelle im Genom
- Bsp.: SNP in MCM6 führt zu Laktoseintoleranz

CNV = copy number variation = Kopienzahlvariation

- Form der strukturellen Variation (Chromosomen-Mutation)
- Deletion oder Duplikation von ganzen Genen
- \bullet Bsp.: Walters et al (2010), Deletion von ~ 600 kb auf 16p11.2 ist assoziiert mit Übergewicht
- \bullet Bsp.: Jacquemont et al. (2011), Duplikation von \sim 600 kb auf 16p11.2 ist assoziiert mit Untergewicht

Chromosomen-Mutation = Deletion, Duplikation, Inversion (intra), oder Insertion, Translokation (inter) von Genen aber auch ganzen Chromosomen

• Bsp.: Translokations-Trisomie 21: Chr 21 3x vorhanden, eines davon hat sich an Chr. 13, 14,15 oder 22 angelagert

Aufgabe 2: Transkription & Translation

DNA-Sequenz: 5' ATGCTTAAGC AGCATGCCGA GTAA 3'

- Antisense-Strang, mRNA, tRNA
- Aminosäuren, Polarität und Basizität, Sekundärstruktur?
- Insertion bzw. zwei Mutationen?
 - 5' ATGCTCTAAG CAGCATGCCG AGTAA 3'
 - 5' ATGCTTACGC AGCATCCCGA GTAA 3'

Aufgabe 2: Lösung (1)

Tabelle 1: Anti-Sense, mRNA und tRNA zu der gegebenen Sense-Sequenz.

Sense 5'	ATG	CTT	AAG	CAG	CAT	GCC	GAG	TAA
Anti 3'	TAC	GAA	TTC	GTC	GTA	CGG	СТС	ATT
mRNA	AUG	CUU	AAG	CAG	CAU	GCC	GAG	UAA
tRNA	UAC	GAA	UUC	GUC	GUA	CGG	CUC	AUU
	_	_	_	_	_	_	_	
AS	Met	Leu	Lys	Gln	His	Ala	Glu	Stp
Тур	unp	unp	bas	pol	bas	unp	sau	-
Indel	Met	Leu	Stp					
SNPs	Met	Leu	Thr	Gln	His	Pro	Glu	Stp

Aufgabe 2: Lösung (2)

Abbildung 1: Transkription. Modifiziert aus wikipedia

Aufgabe 3: SNP-Recherche

- Recherche zu rs8176719 und rs8176747
 - Chromosom und Basenposition
 - Allele (Major, Minor) und MAF
 - das Gen und mögliche Auswirkungen der SNPs
- Def. dominant, rezessiv, und kodominant!
- Tabelle mit Merkmalen von autosomal dominant, autosomal rezessiv, X dominant. X rezessiv und Y

Aufgabe 3: Lösung (1)

Tabelle 2: Recherche zu den zwei SNPs rs8176719 und rs8176747

Kriterium	rs8176719	rs8176747
Chromosom Basenposition Allele MAF Gen Auswirkung	9 133257521 (hg19) -/G (-Strang) 0.349 ABO Gen (-Strang) Deletion Frameshift inaktives Protein D-Galaktose bleibt frei	9 133255928 (hg19) G/C (-Strang) 0.123 ABO Gen (-Strang) AS-Tausch G -> Blutgruppe A möglich C -> Blutgruppe B möglich
	Blutgruppe 0 möglich	

Aufgabe 3: Lösung (2)

- Rezessiv: zeigt nur einen Effekt, wenn homozygot (Blutgruppe 0)
- Dominant: zeigt einen Effekt, wenn mindestens ein Allel vorliegt (Blutgruppe AA & AO, Blutgruppe BB & BO)
- Kodominant: Beide Alleleffekte beobachtbar (Blutgruppe AB)

Abbildung 2: Blutgruppen im Menschen

Aufgabe 3: Lösung (3)

	Geschlechter- verteilung	Generationen- häufigkeit	Kind-Eltern-Beziehung	Geschwister- beziehung
autosomal dominant	50/50	In jeder Generation	Ist ein Kind betroffen, ist auch mind. ein Elter betroffen	1/2 der Kinder von Eltern, wo nur einer betroffen ist, sind auch betroffen.
autosomal rezessiv	50/50	Generationen werden übersprungen		Wenn es Betroffene gibt, dann 1/4 all seiner Geschwister betroffen
X dominant	Häufiger in Frauen	In jeder Generation	lst ein Vater betroffen, dann alle Töchter, aber keine Söhne betroffen	Ist eine Mutter betroffen, dann 1/2 aller Kinder betroffen, unabhängig vom Geschlecht
X rezessiv	Fast nur in Generationen Männern Werden Übersprungen		Wenn Vater betroffen ist, dann ist die Tochter betroffen, wenn Mutter ein Carrier ist, ansonsten wird die Tochter Carrier. Söhne betroffener Väter bekommen nie väterliches Krankheitsgen	Wenn Sohn betroffen ist, war die Mutter Carrier, dann 1/2 der Söhne krank, 1/2 Töchter Carrier
Y	Nur in Männern	In jeder Generation	Wenn ein Sohn betroffen ist, dann auch der Vater, wenn ein Vater betroffen ist, dann auch sein Sohn	

Abbildung 3: Tabelle der Vererbungsschema

Aufgabe 4: Crossing-over

- Definition Crossing-over
- Definieren Sie geeignete Segmente in Abbildung 1! Zwischen welchen Segmenten beobachtet man eine Rekombination? Zwischen welchen nicht?
- Rekombinationshotspot?
- Warum ist das Crossing-over relevant für die genetische Statistik?

Aufgabe 4: Lösung (1)

- gegenseitigen Austausches von einander entsprechenden Abschnitten zweier homologer Chromosomen
- 4 Segmente, getrennt durch 3 Rekombinationsereignisse
 - von Chromatiden 1 & 3 zwischen A & B,
 - von Chromatiden 2 & 4 zwischen B & C, und
 - von Chromatiden 2 & 3 zwischen C & D statt.
- **Rekombinationshotspots**: Bereiche in der DNA, bei denen vermehrt Rekombinationen stattfinden.
- Bezug zur genetischen Statistik: Austausch von genetischen Material; bestimmte Genbereiche mit hoher Wahrscheinlichkeit gemeinsam vererbt werden. Diese (Un-)Abhängigkeitsstruktur muss in statistischen Analysen berücksichtigt werden (Stichwort Linkage Disequilibrium, LD).

Aufgabe 4: Lösung (2)

Abbildung 4: Crossing-over eines Chromosoms. A) Elektronenmikroskopische Aufnahme. B) Schematische Darstellung. Modifiziert aus Alberts et al.; Molecular Biology of the Cell; 2008

Aufgabe 5: Stammbäume

- Definition Penetranz
- Angabe:
 - eine Legende,
 - die Träger/in,
 - wahrscheinlichstes Segregationsmuster
- Welche Entscheidung würden Sie ohne Berücksichtigung von eingeschränkter Penetranz treffen?

 $\begin{tabular}{lll} \textbf{Abbildung 5:} & Zwei Stammb\"{a}ume. & Aus Ziegler/K\"{o}nig. & Statistical Approach to Genetic Epidemiology. & 2006 \end{tabular}$

Aufgabe 5: Lösung (1)

Penetranz: prozentuale Wahrscheinlichkeit, mit der ein bestimmter Genotyp den ihm zugehörigen Phänotyp ausbildet

- Kreis/Quadrat: Frau/Mann
- Keine Füllung/Füllung/Punkt: gesund/krank/Anlageträger
- Träger/in: s. Abbildung ??
- Wahrscheinlichstes Segregationsmuster:
 - Autosomal dominant
 - x-chromosomal rezessiv
- autosomal-rezessiv

Aufgabe 5: Lösung (2)

Abbildung 6: Stammbäume mit eingeschränkter Penetranz. Aus Ziegler/König. A Statistical Approach to Genetic Epidemiology. 2006

Aufgabe 5: Lösung (3)

Abbildung 7: Stammbaum A mit vollständiger Penetranz. Aus Ziegler/König. A Statistical Approach to Genetic Epidemiology. 2006

Abschnitt 2

Einführung in R

Aufgabe 1: R als Taschenrechner

Berechnen Sie folgende Terme:

- $|3^5 2^{10}|$
- $sin(\frac{3}{4}\pi)$
- 16! 51111
- $\sqrt{37-8} + \sqrt{11}$
- $e^{-2.7}/0.1$
- $2.3^8 + \ln(7.4) \tan(0.3\pi)$
- $\log_{10}(27)$
- $ln(\pi)$
- ln(-1)

Aufgabe 1: Lösung

```
abs(3^5 - 2^10)

sin((3/4)*pi)

factorial(16)/(factorial(5)*factorial(11))

sqrt(37-8) + sqrt(11)

exp(-2.7)/0.1

2.3^8 + log(7.4) - tan(0.3*pi)

log10(27)

log(pi)

log(-1)
```

Aufgabe 2: Variablen und Folgen

Erzeugen Sie für n = 1, ..., 10:

- $a_n = 3^n$
- $b_n = e^{-n}$
- $c_n = (1 + \frac{1}{n})^n$
- $\bullet \ d_n = \sin(n \frac{\pi}{10})$

Aufgabe 2: Lösung

```
n<-seq(1:10)
a<-3^n
a
b<-exp(-n)
b
c<-(1 + 1/n)^n
c
d<-sin(n*pi/10)
d</pre>
```

Aufgabe 3: Funktionen

- $h(x) = \sin(\sqrt{x})$ an 0, 0.1, 0.2, ..., 0.9, und 1.
- $g_1(a,b,c) = \frac{a*b}{a*b+(1-c)*(1-a)}$ und $g_2(a,b,c) = \frac{c*(1-a)}{c*(1-a)+(1-b)*a}$ für $a \in [0,1], b = 0.7$ und c = 0.95
- Plot von g_1 und g_2 für $a \in [0, 1]$, b = 0.7 und c = 0.95.

Aufgabe 3: Lösung (1)

```
h<-function(x){sin(sqrt(x))}
x<-seq(0,1,0.1)
options(width = 60)
h(x)</pre>
```

```
## [1] 0.0000000 0.3109836 0.4324548 0.5207443 0.5911271
## [6] 0.6496369 0.6994279 0.7424097 0.7798507 0.8126489
## [11] 0.8414710
```

Aufgabe 3: Lösung (2)

```
g1 \leftarrow function(a,b,c) \{return(b*a/(b*a+(1-c)*(1-a)))\}
g2 \leftarrow function(a,b,c) \{return(c*(1-a)/(c*(1-a)+(1-b)*a))\}
g1(x,0.7,0.95)
    [1] 0.0000000 0.6086957 0.7777778 0.8571429 0.9032258
##
##
    [6] 0.9333333 0.9545455 0.9702970 0.9824561 0.9921260
   [11] 1.0000000
g2(x,0.7,0.95)
##
    [1] 1.0000000 0.9661017 0.9268293 0.8807947 0.8260870
    [6] 0.7600000 0.6785714 0.5757576 0.4418605 0.2602740
##
```

[11] 0.0000000

##

Aufgabe 3: Lösung (3)

```
curve(g1(x,0.7,0.95),0,1,
    main = "Plot for g_1 and g_2",
    xlab = "a",
    ylab = "g_i(a,0.7,0.95)")
curve(g2(x,0.7,0.95),add=TRUE,col="red",lty="dashed")
legend(0.88, 0.65, legend=c("g_1", "g_2"),
    col=c("black", "red"), lty=1:2, cex=0.8)
```

Aufgabe 3: Lösung (3)

Plot for g_1 and g_2

Aufgabe 4: Vektoren & Matrizen

- Vektor A mit den Quadratzahlen 1, 4, 9, ..., 400
- Vektoren B und C aus den ersten bzw. letzten zehn Einträgen von A.
- Vektor D mit 50 Einträgen mit Muster ACCB
- Erzeugen Sie aus D die 10x5 Matrix M.

Aufgabe 4: Lösung

```
options(width = 50)
n < -c(1:20)
n
##
    [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## [16] 16 17 18 19 20
A < -n^2
Α
    [1] 1 4 9 16 25 36 49 64 81 100 121
##
## [12] 144 169 196 225 256 289 324 361 400
B<-A[1:10]
C<-A[11:20]
D < -c(A,C,C,B)
M < -matrix(D, nrow = 10)
```

Aufgabe 5: Schleifen

- Erstellen Sie einen Vektor **iters** für Anzahl der Iterationen, beginnend bei 10, endend bei 100, und in 10er Schritten.
- Erstellen Sie einen Outputvektor times, in dem die Zeit eingetragen werden soll.
- Definieren Sie die erste for-Schleife von 1 bis zur Länge von iters, die
 - sich die Anzahl der gewünschten Iterationen aus iters zieht
 - die Zeitmessung startet (x=Sys.time())
 - pro Iteration eine normalverteilte Zufallsvariable mit n=10000
 Ziehungen erstellt (dummy=rnorm(1e5), zweite Schleife) und die
 Summary davon bestimmt (dummy2<-summary(dummy), entspricht
 Min., Max., Quantile)
 - die Zeit in der Variablen times abspeichert
- Plotten Sie iters gegen times!

Aufgabe 5: Lösung (1)

```
#iterations to time
iters<-seq(10,100,by=10)

#output time vector for iteration sets
times<-numeric(length(iters))</pre>
```

Aufgabe 5: Lösung (2)

```
#loop over iteration sets
for(val in 1:length(iters)){
  cat(val, ' of ', length(iters), '\n')
  to.iter<-iters[val]
  #start time
  strt<-Sys.time()
  #same for loop as before
  for(i in 1:to.iter){
    to.ls<-rnorm(1e5)
    to.ls<-summary(to.ls)
  }
  #end time
  times[val] <- Sys.time()-strt
```

Aufgabe 5: Lösung (3)

```
#plot the times
to.plot<-data.frame(iters,times)
ggplot2::ggplot(to.plot,aes(x=iters,y=times)) +
    geom_point() +
    geom_smooth() +
    theme_bw() +
    scale_x_continuous('No. of loop iterations') +
    scale_y_continuous ('Time in seconds')</pre>
```

Aufgabe 5: Lösung (4)

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Aufgabe 6: Dateneingabe

- Laden Sie den Datensatz iris.
- Ändern Sie die Klasse von data.frame zu data.table.
- Wie viele Einträge sind pro Spezies vorhanden?
- Wie lang und breit sind im Mittel die Blätter pro Spezie? Nutzen Sie dazu die Funktion lapply().
- Definieren Sie eine neue Spalte als Produkt der Kelchblattlänge und -breite.
- Wie groß ist die mittlere Differenz der Blattlänge (Kelch Blüte) in der Spezies *setosa*?

Aufgabe 6: Lösung (1)

```
data(iris)
head(iris)
```

```
##
     Sepal.Length Sepal.Width Petal.Length
              5.1
                           3.5
                                         1.4
## 1
              4.9
                           3.0
                                         1.4
## 2
              4.7
## 3
                           3.2
                                         1.3
## 4
              4.6
                           3.1
                                         1.5
              5.0
                           3.6
                                         1.4
## 5
## 6
              5.4
                           3.9
                                         1.7
##
     Petal.Width Species
## 1
             0.2
                   setosa
## 2
             0.2
                   setosa
             0.2
## 3
                   setosa
             0.2
## 4
                   setosa
## 5
             0.2 setosa
## 6
             0.4
                   setosa
```

Aufgabe 6: Lösung (2)

```
getDTthreads()
## [1] 4
setDTthreads(1)
setDT(iris)
iris[,.N,Species]
```

```
## Species N
## 1: setosa 50
## 2: versicolor 50
## 3: virginica 50
```

Aufgabe 6: Lösung (3)

```
iris[,lapply(.SD,mean),Species]
```

```
##
      Species Sepal.Length Sepal.Width
## 1:
       setosa
                  5.006 3.428
## 2: versicolor
                         2.770
                  5.936
                  6.588 2.974
## 3:
    virginica
    Petal.Length Petal.Width
##
         1.462 0.246
## 1:
## 2: 4.260 1.326
## 3:
       5.552
                   2.026
```

Aufgabe 6: Lösung (4)

```
iris[,test := Sepal.Length*Sepal.Width]
iris[,hist(test)]
```

Histogram of test

Aufgabe 6: Lösung (5)

```
iris[Species=="setosa", mean(Sepal.Length - Petal.Length)]
## [1] 3.544
iris[,mean(Sepal.Length - Petal.Length),Species]
##
        Species V1
## 1:
         setosa 3.544
## 2: versicolor 1.676
```

3: virginica 1.036

Abschnitt 3

Präsenzübungen zu Stammbäume

Aufgabe P1: Stammbäume - WDH

- \bullet Kreis/Quadrat = Frau/Mann
- Keine Füllung/Füllung/Punkt = gesund/erkrankt/Anlageträger

	Geschlechter- verteilung	Generationen- häufigkeit	Kind-Eltern-Beziehung	Geschwister- beziehung
autosomal dominant	50/50	In jeder Generation	Ist ein Kind betroffen, ist auch mind. ein Elter betroffen	1/2 der Kinder von Eltern, wo nur einer betroffen ist, sind auch betroffen.
autosomal rezessiv	50/50	Generationen werden übersprungen		Wenn es Betroffene gibt, dann 1/4 all seiner Geschwister betroffen
X dominant	Häufiger in Frauen	In jeder Generation	lst ein Vater betroffen, dann alle Töchter, aber keine Söhne betroffen	lst eine Mutter betroffen, dann 1/2 aller Kinder betroffen, unabhängig vom Geschlecht
X rezessiv	Fast nur in Männern	Generationen werden übersprungen	Wenn Vater betroffen ist, dann ist die Tochter betroffen, wenn Mutter ein Carrier ist, ansonsten wird die Tochter Carrier. Söhne betroffener Väter bekommen nie väterliches Krankheitsgen	Wenn Sohn betroffen ist, war die Mutter Carrier, dann 1/2 der Söhne krank, 1/2 Töchter Carrier
Υ	Nur in Männern	In jeder Generation	Wenn ein Sohn betroffen ist, dann auch der Vater, wenn ein Vater betroffen ist, dann auch sein Sohn	

Abbildung 8: Tabelle der Vererbungsschema

Stammbäume - BSP 1

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder!

Abbildung 9: Beispiel 1

Stammbäume - BSP 1 - LSG

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder!

Lösung: Autosomal rezessiv (zwei Gesunde habe eine erkrankte Tochter)

Abbildung 10: Beispiel 1 - Lösung

Stammbäume - BSP 2

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder!

Abbildung 11: Beispiel 2

Stammbäume - BSP 2 - LSG

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder!

Lösung: Autosomal rezessiv (zwei Gesunde habe eine erkrankten Sohn; erkrankte Mutter hat gesunde Kinder) – z.B. Morbus Wilson

Abbildung 12: Beispiel 2 - Lösung

Stammbäume - BSP 3

Kinderwunsch in der dritten Generation. Bestimmen Sie den Erbgang und den Genotypen der Mutter. Mit welcher Wahrscheinlichkeit werden die Kinder dieses Paares erkranken?

Abbildung 13: Beispiel 3

Stammbäume - BSP 3 - LSG

Lösung: X-chromosomal rezessiv (fast nur Männer, kann Generationen überspringen) – z.B. Fischschuppenkrankheit Ichthyosis vulgaris

Mutter hat 50% Chance Trägerin zu sein

- Keine Tochter wird erkranken (höchsten Trägerin)
- Söhne werden zu 25% erkranken (WSK(Mutter Trägerin) *
 WSK(rezessives Allel wird vererbt) = 0.5 * 0.5 = 0.25)

Stammbäume - BSP 4

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder

Abbildung 15: Beispiel 4

Stammbäume - BSP 4 - LSG

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder

Lösung: autosomal-rezessiv (beide Geschlechter betroffen) – z.B. Galaktosämie

Abbildung 16: Beispiel 4 - Lösung

Stammbäume - BSP 5

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder

Abbildung 17: Beispiel 5

Stammbäume - BSP 5 - LSG

Bestimmen Sie den Erbgang des vorliegenden Stammbaumes und den Genotyp aller Mitglieder

Lösung: autosomal-dominant (beide Geschlechter betroffen) – z.B. Brachydaktylie (Penetranz etwa 62%)

Abbildung 18: Beispiel 5 - Lösung

Abschnitt 4

Präsenzübungen zu SNPs, Crossing-Over und Blutgruppen

Blutgruppen - WDH

- ABO liegt auf 9q34 (langer Arm von Chr 9); ist eine Glycosyltransferase;
- "O"-Allel: Vorläuferprotein wird nicht modifiziert
- "A"-Allel: Anbau von N-Acetylgalactosamin
- "B"-Allel: Anbau von Galactose

Abbildung 19: Blutgruppen im Menschen

Blutgruppen - SNPs (1)

Tabelle 3: Recherche zu den drei Blutgruppen-SNPs. MAF aus UCSC (gemischte Population).

SNP	MAF	Art	Konsequenz
rs8176719	0.375	Deletion, Frameshift	Protein ohne Enzymaktivität
rs8176747	0.132	Basenaustausch, AS-Austausch	Unterschiedliche Glycosyle werden gebunden
rs8176750	0.098	Deletion, Frameshift	keine funktionelle Änderung

Frage: Wie häufig müssten die Blutgruppen laut dieser MAFs sein?

Blutgruppen - SNPs (2)

Wie häufig müssten die Blutgruppen laut dieser MAFs sein?

- Allel "O": 0.625
- Allel "A": $0.375 \cdot (1 0.132) = 0.3255$
- Allel "B": 0.375 ⋅ 0.132 = 0.0495
- Blutgruppe A = AA, AO, OA = $A^2 + 2 \cdot O \cdot A = 0.513$, in BRD: 43%
- Blutgruppe B = BB, BO, OB = $B^2 + 2 \cdot O \cdot B = 0.064$, in BRD: 11%
- Blutgruppe AB = AB, BA = $2 \cdot A \cdot B = 0.032$, in BRD: 5%
- Blutgruppe O = OO = $O^2 = 0.391$, in BRD: 41%

Blutgruppen - SNPs - Crossing-over (1)

Tabelle 4: Recherche zu den drei Blutgruppen-SNPs. MAF aus UCSC (gemischte Population).

SNP	MAF	Art	Konsequenz
rs8176719 (exon 6)	0.375	Deletion, Frameshift	Protein ohne Enzymaktivität
rs8176747 (exon 7)	0.132	Basenaustausch, AS-Austausch	Unterschiedliche Glycosyle werden
rs8176750 (exon 7)	0.098	Deletion, Frameshift	gebunden keine funktionelle Änderung

Frage: Es gibt viele SNPs in *ABO* Gen – warum reichen die ersten zwei zur Blutgruppenbestimmung aus?

Blutgruppen - SNPs - Crossing-over (2)

- Allel "O": Frameshift ist die relevante Mutation
- Allel "A" & "B": nur eine von vielen Mutationen, die zur Substratspezifität führt
- Diese SNPs werden aber "im Block" vererbt -> keine Rekombination, es reicht tatsächlich ein SNP aus dem Block aus
- Deswegen auch "fixe" Blutgruppen der Kinder

Abbildung 20: Crossing-over eines Chromosoms. A) Elektronenmikroskopische Aufnahme. B) Schematische Darstellung. Modifiziert aus Alberts et al.; Molecular Biology of the Cell; 2008

Abschnitt 5

Zusammenfassung

Zusammenfassung

- Warum sind Segregationsmuster wichtig in der funktionellen Genomanalyse?
- Warum ist LD wichtig in der funktionellen Genomanalyse?