Feuille d'exercices n. 3 : Fonctions holomorphes.

Equation de Cauchy-Riemann.

Exercice 1 Pour z = x + iy on pose $f(z) := x + iy^2$.

- (a) Vérifier que f est \mathbb{R} -différentiable sur \mathbb{C} ;
- (b) En quels points f est \mathbb{C} -différentiable? Existe-t-il un ouvert non vide U de \mathbb{C} où f soit holomorphe?

Exercice 2 Montrer que $z \mapsto |z|^2$ n'est pas holomorphe, de même que Re(z) et Im(z).

Exercice 3 Soit f = u + iv une fonction holomorphe sur un ouvert $U \subset \mathbb{C}$. Montrer que u et v sont harmoniques, i.e.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}.$$

Exercice 4 Soit $U \subset \mathbb{C}$ un ouvert et f une fonction holomorphe sur U. Soit $V := \{z \in \mathbb{C} : \overline{z} \in U\}$. Pour tout $z \in V$ on pose $g(z) := \overline{f(\overline{z})}$. Montrer que g est holomorphe sur V.

Exercice 5 Soit $U \subset \mathbb{C}$ un ouvert connexe et f une fonction holomorphe sur U. Ecrivons f = u + iv. Montrer que les propriétés suivantes sont équivalentes :

- (a) f est constante;
- (b) u est constante;
- (c) v est constante;
- (d) \bar{f} est holomorphe;
- (e) |f| est constante.

Grands théorèmes sur les fonctions holomorphes.

Exercice 6 Soit $U \subset \mathbb{C}$ un ouvert connexe et f une fonction holomorphe non constante sur U. On suppose que |f| admet un minimum local sur U. Montrer que f s'annule dans U.

Exercice 7 Soit $U \subset \mathbb{C}$ un ouvert connexe contenant le disque unité fermé et f et g deux fonctions holomorphes ne s'annulant pas sur U. On suppose que |f(z)| = |g(z)| pour tout z tel que |z| = 1. Montrer qu'il existe $\lambda \in \mathbb{C}$, avec $|\lambda| = 1$ tel que $f = \lambda g$ sur U. La conclusion est-elle encore vraie si on ne suppose plus que f et g ne s'annulent pas?

Exercice 8 Soit f une fonction entière de périodes 1 et i. Montrer que f est constante.

Exercice 9 Soit f une fonction entière de dont la partie réelle est bornée. Montrer que f est constante.

Exercice 10 Soit f une fonction entière non constante. Montrer que $f(\mathbb{C})$ est dense dans \mathbb{C} .

Exercice 11 Soit D le disque de rayon 1 centré en 0 et $f(z) = \sum a_n z^n$ une fonction holomorphe dans D. On suppose que pour tout $z \in D$ on a

$$|f(z)| \le \frac{1}{1 - |z|}.$$

A l'aide des inégalités de Cauchy montrer que

$$|a_n| \le (1 + 1/n)^n (n+1).$$