http://www.rgpvonline.com

Total No. of Questions: 8]

[Total No. of Printed Pages: 2

Roll No

CS/IT-224 B.E., III Semester

Examination, December 2016

Choice Based Credit System (CBCS) Discrete Structure

Time: Three Hours

Maximum Marks: 60

- Note: i) Attempt any five questions.
 - ii) All questions carry equal marks.
- 1. a) Let A, B, C be any three sets, then prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - b) Show that if R_1 and R_2 are equivalence relations on A, then $R_1 \cap R_2$ is an equivalence relation on A.
- 2. a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x + 4, show that f is one-one and onto. Give a formula that defines f^{-1} .
 - b) Prove by the method of mathematical induction that $7^{2n} + 2^{3n-3} \cdot 3^{n-1}$ is divisible by 25 for all $n \in \mathbb{N}$.
- 3. a) Show that the algebraic structure $(\{a+b\sqrt{2}:a,b\in I\},+)$ forms a group.
 - b) Prove that every field is an integral domain.
- 4. a) Obtain disjunctive normal form of $P \lor (\sim P \rightarrow (q \lor (q \rightarrow \sim r)))$
 - b) Show that $((p \lor q) \land \sim (\sim p \land (\sim q \lor \sim r))) \lor (\sim p \land \sim q) \lor (\sim p \land \sim r)$ is a tautology.
- a) Find a deterministic Finite-State Machine that recognizes the set:

$$L = \left\{ (01)^{i} 1^{2j} \mid i \ge 1, j \ge 1 \right\}$$

CS/IT-224

PTO

http://www.rgpvonline.com

[2

b) For the finite state machine shown below, find all equivalent states and obtain an equivalent finite state machine with the smallest number of states:

State	Input		Output
	0	1	77.2
A	F	В	0
В	D	C	0
C	G	В	0
D	E	A	1
E	D	A	0
F	A	G	1
G	C	H	1
H	A	H	1

- 6. a) Write a short note on:
 - i) Isomorphism of groups
 - ii) Universal and existential quantifiers
 - b) Explain:
 - i) Hamiltonian paths and circuits
 - ii) Graph coloring
- a) Determine shortest path between vertices 'a' and 'z' in the graph shown below:

- b) Prove that every chain is a distributive lattice.
- 8. a) Find total solution for the recurrence relation

$$a_r - 4a_{r-1} + 4a_{r-2} = (r+1)2^r$$

Given $a_0 = 1, a_1 = 2, a_2 = 3$

- b) Describe:
 - i) Hasse diagram
- ii) Binomial theorem

http://www.rgpvonline.com

CS/IT-224

266