

Rechnernetze

Kapitel 4: Die Internetschicht

Hochschule Ulm Prof. Dr. F. Steiper

Rechnernetze, INF2, 2022

Urheberrechte

- Die Vorlesungsmaterialien und Vorlesungsaufzeichnungen zum Kurs "Rechnernetze (INF2)" dürfen nur für private Zwecke im Rahmen Ihres Studiums an der Technischen Hochschule Ulm genutzt werden.
- Eine Vervielfältigung und Weitergabe dieser Materialien in jeglicher Form an andere Personen ist untersagt.
- © Copyright. Frank Steiper. 2022. All rights reserved

Prof. Dr. F. Steiper Seite 2 Rechnernetze (INF2)

Aufgaben der Internetschicht

Wegfindung (Routing)

[Ref 2] Kapitel 5, Seite 413-417

- Ende-zu-Ende-Kommunikation
 - → Weiterleitung der Pakete, auch über verschiedene Teilnetze hinweg
- Bereitstellung eines globalen Adressierungsschemas
 - → Unabhängig von spezifischen Adressierungsmethoden in physikalischen Teilnetzen
- Ermittlung eines optimalen Pfads zwischen Quell- und Ziel-Rechner
- Abstraktion
 - Dienste der Vermittlungsschicht verbergen Eigenschaften physikalischer Teilnetze vor der Transportschicht
 - → Anzahl, Art, Topologie...
- Überlastkontrolle (→ hier nicht weiter behandelt)
 - Die Anzahl der von Quellrechnern generierten Pakete kann größer als die Übertragungskapazität eines Routers/einer Verbindung sein

Prof. Dr. F. Steiper Seite 3 Rechnernetze (INF2)

• Dienstmodelle

[Ref 1] Kapitel 4, Seite 346-360

- Verbindungslose Dienste
 - Individuelle Weiterleitung von Einzelpaketen auf Grund der Zieladresse

- Verbindungsorientierte Dienste
 - Konfiguration, Aufbau und Abbau von virtuellen Kanälen

- Verbindungslose Dienste (Datagram Services)
 - Minimalistischer Ansatz: unzuverlässiger Dienst
 - Jedes Einzelpaket enthält die gesamte Adressinformation um es über Vermittlungsknoten an das Ziel leiten zu können
 - Im Internet vorherrschend: IP implementiert verbindungslosen Dienst!

Merkmale

- Ein Quellrechner versieht jedes Paket mit der Zieladresse
- Der Quellrechner hat keine Möglichkeit festzustellen, ob das Paket zugestellt wurde oder der Zielrechner in Betrieb ist
- Zwei aufeinander folgende Pakete mit gleichem Ziel können unterschiedliche Wege durchlaufen
- Der Ausfall eines Vermittlungsknotens hat keine schwerwiegenden Konsequenzen, so lange redundante Pfade existieren

Prof. Dr. F. Steiper Seite 5 Rechnernetze (INF2)

• Verbindungslose Dienste (Datagram Services)

Weiterleitungstabelle für Router 2:

Ziel	Port
A	3
В	0
С	3
D	3
E	2
F	1
G	0
Н	0

4.2 Routing-Algorithmen

Routing vs. Weiterleitung

Routing

 Prozess, durch den in einem Router die Inhalte der lokalen Weiterleitungstabelle erzeugt werden

Weiterleitung

 Prozess, bei dem durch den Vergleich der Zieladresse zi eines Pakets mit den Einträgen der Weiterleitungs-Tabelle ermittelt wird, über welche Verbindungsleitung ein Paket weiter geleitet wird

4.2 Routing-Algorithmen

- Routing als graphentheoretisches Problem [Ref 1] Kapitel 4, Seite 404-407
 - **▶** *Graph G=(N,E)*
 - N ist eine Menge von Routern {u,v, ...}
 - E ist eine Menge von Verbindungsleitungen { (u,v), (u,x), ...}

 Ein Pfad ist eine Sequenz von Verbindungsleitungen

- Kosten
 - C(X,X') sind die Kosten einer Verbindungsleitung zwischen den Routern X und X'
- Least Cost Path:
 - Routing-Algorithmen minimieren die Gesamtkosten für den Pfad zwischen Quelle und Ziel

4.2 Routing-Algorithmen

- Klassifizierung von Routing-Algorithmen (RA)
 - Globaler RA
 - Benötigt vorab die vollständige Information über das Gesamtnetzwerk
 - → Die Routenberechnung selbst könnte irgendwo im Netz an zentraler Stelle durchgeführt werden
 - In der Praxis werden diese Protokolle oft als "Link State"-Algorithmen bezeichnet
 - Dezentraler RA
 - Berechnung des "optimalen" Pfades mit verteiltem Algorithmus
 - Kein Knoten verfügt über die vollständige Information des Gesamtnetzes
 - → Jeder Knoten kennt nur die Kosten für die direkt angeschlossenen Verbindungsleitungen
 - → Direkt benachbarte Router tauschen ihre aktuellen Routing-Informationen aus
 - "Distance-Vector"-Algorithmen gehören zu den dezentralen RA

Prof. Dr. F. Steiper Seite 9 Rechnernetze (INF2)

- Ein Link-State-Algorithmus: Der Dijkstra-Algorithmus
 - Voraussetzung

[Ref 1] Kapitel 4, Seite 407-412

- Die Kosten aller Verbindungsleitungen des Netzwerks sind bekannt
- Ergebnis
 - Berechnet iterativ die optimalen Pfade von einer Quelle zu allen anderen Knoten im Netz
- Beispiel-Graph:

Definitionen

- c(i,j) Verbindungskosten von Knoten i zu Knoten j;
 Wenn keine Verbindung zwischen i und j besteht,
 wird c(i,j)=∞ gesetzt
- D(v) Kosten des Pfads vom Quell-Knoten zum Ziel v, der momentan die geringsten Kosten

besitzt (vom Stand der

Iteration abhängig)

- p(v) Vorheriger Knoten m C(m,n) = 1 n C(m,n) = 1 n (Nachbar von v) auf dem momentan optimalen Pfad von der Quelle zum Knoten v
- N´ Menge der Knoten, zu denen der optimale Pfad mit den geringsten Kosten bereits bekannt ist

Der Algorithmus

```
Initialization /* for source node u */
         N' = \{u\}
3
         for all nodes v
                  if v adjacent to u
5
                            then D(v) = c(u, v)
6
                            D(v) = \infty
                   else
         Loop
8
                   find w not in N' such that D(w) is a minimum
                   add w to N'
                   update D(v) for all v adjacent to w and not in N':
10
11
                   D(v) = min (D(v), D(w) + c(w,v))
12
                  / * new cost to v is either old cost to v or
13
                     known shortest path cost to w + cost from w to v */
14
         until all nodes n \in N'
```

Prof. Dr. F. Steiper Seite 12 Rechnernetze (INF2)

- Initialisierungsschritt
 - Annahme: Der Quellknoten sei A
 - ► *D*(*v*) wird initialisiert
 - Die Kosten momentan bekannter Pfade mit geringsten Kosten von A zu direkten Nachbarn C,B,D werden auf 5,2,1 initialisiert
 - Es wird N'={A} gesetzt

Fs ist
$$D(B) = c(A,B) = 2$$
$$D(C) = c(A,C) = 5$$
$$D(D) = c(A,D) = 1$$
$$D(E) = c(A,E) = \infty$$
$$D(F) = c(A,F) = \infty$$

1. Iterationsschritt

- Suche nach jenen Knoten, die noch nicht zur Menge N´ gehören
 (→ also B,D,C,E,F)
- Ermittle daraus Knoten mit geringsten Kosten bei vorheriger Iteration
 (→ also **D** mit **D(D)=1**)
- Dieser Knoten wird zur Menge N hinzugefügt: (→ also N´={A,D})
- D(v) wird jetzt für alle Nachbarn von D (die nicht zu N´ gehören) nach folgender Vorschrift aktualisiert:
 D(v) = min (D(v), D(w) + c(w,v))
 - w ist oben ermittelter Knoten (-> also w=D)
 - Dabei wird Vorgängerknoten p(v) mit geringsten Kosten zum Ziel v gespeichert!
 - Es werden alle direkten Nachbarn von D betrachtet

- Ergebnis des 1. Iterationsschrittes
 - ► Für D(v) ergibt sich:

$$D(B) = min (2, D(D) + c(D,B)) = min(2,3) = 2$$

 $D(C) = min (5, D(D) + c(D,C)) = min(5,4) = 4$
 $D(E) = min (\infty, D(D) + c(D,E)) = min(\infty,2) = 2$

► In Knoten A wird folgende Tabelle aufgebaut:

Iter Schritt	Menge N'	D(B), p(B)	D(C), p(C)	D(D), p(D)	D(E), p(E)	D(F), p(F)
0	Α	2,A	5,A	1,A	∞,?	∞,?
1	A,D	2,A	4,D		2,D	∞,?
2		***	•••		•••	

Prof. Dr. F. Steiper Seite 15 Rechnernetze (INF2)

• Endergebnis beim 5. Iterationsschritt für Quelle A

Iter Schritt	Menge N'	D(B), p(B)	D(C), p(C)	D(D), p(D)	D(E), p(E)	D(F), p(F)
0	A	2,A	<i>5,A</i>	1,A	∞,?	∞,?
1	A,D	2,A	4,D		2,D	∞,?
2						
3						
4						

- Wenn LSA endet,
 - ist für jeden Knoten sein Vorläufer auf dem Pfad mit den geringsten Kosten bekannt
 - Für jeden Vorläufer ist dessen Vorläufer bekannt usw.

- Endergebnis für den Quellrechner A
 - "Least-cost path"- Baum

Weiterleitungstabelle des Rechners A:

destination	link
В	(A,B)
D	(A,D)
E	(A,D)
С	(A,D)
F	(A,D)

Prof. Dr. F. Steiper Seite 17 Rechnernetze (INF2)

- Zuverlässiges Fluten
 - Für LSA ist vorab die vollständige Information über das Gesamtnetz nötig
 - Diese wird durch "zuverlässiges Fluten" ermittelt
 - Prinzip
 - Jeder Knoten sendet LS (Link State)-Pakete zu direkten Nachbarn
 - Diese übertragen die LS-Pakete wiederum an ihre nächsten Nachbarn, nur nicht über die Leitung, wo die Information her kam
 - ▶ LS-Pakete enthalten
 - 1. Die Kennung des Knotens, der LS-Paket erzeugt hat
 - 2. Die Liste der direkten Nachbarn inkl. zugehöriger Verbindungskosten
 - 3. Eine Sequenznummer
 - 4. Eine Lebensdauer für das LS-Paket

- Beispiel-Ablauf: Zuverlässiges Fluten
 - a) Ein LS-Paket (LSP) kommt bei Knoten X an
 - b) X flutet das LSP nach A und B
 - c) A und B fluten das LSP zu C, aber nicht mehr zu X
 - d) C flutet das LSP zu D; Wie wird das Fluten nach B und A verhindert?

Prof. Dr. F. Steiper Seite 19 Rechnernetze (INF2)

- Ein Distance-Vector Algorithmus: Bellman-Ford-Algorithmus
 - Verteilter Routing-Algorithmus

[Ref 1] Kapitel 4, Seite 412-419 [Ref 2] Kapitel 5, Seite 428-430

- Jeder Router kennt zu Beginn nur die Kosten der Verbindungsleitungen zu direkten Nachbarn
 - → Einer ausgefallenen Verbindung werden unendlich hohe Kosten zugeordnet
- Jeder Router speichert einen Distanz-Vektor, der die momentan bekannten, besten Pfade zu allen übrigen Routern enthält
- Der Distanz-Vektor wird nur zwischen direkten Nachbarn ausgetauscht
- Aufgrund ausgetauschter Informationen aktualisieren Router ihre Weiterleitungstabellen
- Kein Knoten hat die globale Kenntnis der Verbindungen und Kosten im Gesamtnetzwerk
 - Prinzip: "Gerüchteverbreitung"

Prof. Dr. F. Steiper Seite 20 Rechnernetze (INF2)

- Bellmann-Ford-Gleichung
 - d_X(Y) bezeichne die Kosten auf dem Least-Cost-Pfad von X nach Y

Dann gilt:
$$d_X(Y) = min_V \{ c(X,V) + d_V(Y) \}$$

- Das Minimum wird über alle direkten Nachbarn V vom Knoten X bestimmt
- Beispiel:
 - Aus der Zeichnung folgt: $d_B(F)=5$, $d_D(F)=3$, $d_C(F)=3$

– Aus der Bellmann-Ford-Gleichung folgt:

$$d_A(F) = min \{ c(A,B) + d_B(F), c(A,D) + d_D(F), c(A,C) + d_C(F) = min \{2+5, 1+3, 5+3\} = 4$$

Definitionen

- ► N = {X,Y,....} sei die Menge aller Knoten im betrachteten Netz
- \triangleright $D_X(Y)$ sind die momentan bekannten geringsten Kosten von X nach Y
- ▶ Der Distanz-Vektor $D_X = [D_X(Y): Y \in N]$ wird von jedem Knoten X beim Empfang von Distanz-Vektoren aktualisiert
- Für jeden Nachbarn V speichert X auch den Vektor $D_V = [D_V(Y): Y \in N]$ (aktueller Distanz-Vektor, den X vom Nachbarn V erhalten hat)

Methode

- Jeder Knoten sendet seinen Distanz-Vektor an direkte Nachbarn
- Wenn ein Knoten X einen Distanz-Vektor D_v vom Knoten V erhält, wird sein eigener Distanz-Vektor D_X gemäß der B-F-Gleichung aktualisiert:

$$D_X(Y) = min_v \{ c(X, V) + D_V(Y) \}$$
 für jeden Knoten $Y \in N$

Minimum über alle direkten Nachbarn V

Prof. Dr. F. Steiper Seite 22 Rechnernetze (INF2)

• DVA (1)

At each node, x:

```
Initialization
for all destinations y in N:

D_{x}(y) = \infty \qquad \text{if } y \text{ is not a neighbor}
D_{x}(y) = c(x,y) \qquad \text{if } y \text{ is a neighbor}
for each neighbor w
D_{w}(y) = \infty \text{ for all destinations } y \text{ in } N
for each neighbor w
send distance vector D_{x} = [D_{x}(y): y \text{ in } N] \text{ to } w
```

Prof. Dr. F. Steiper Seite 23 Rechnernetze (INF2)

• DVA (2)

At each node, x:

```
9
    loop
10
          wait (until I see a link cost change to some neighbor w
11
                or I receive a distance vector from some neighbor w)
12
13
          for each y in N:
14
                    D_{x}(y) = \min_{v} \{ c(x,v) + D_{v}(y) \}
15
          if D_{x}(y) changed for any destination y
16
                    send dist. vector D_x = [D_x(y): y \text{ in } N] to all neighbors
17
18
19
    forever
```

Prof. Dr. F. Steiper Seite 24 Rechnernetze (INF2)

Ablaufbeispiel

- Wann werden Nachrichten ausgetauscht?
 - Getriggerte Aktualisierung
 - Nachrichten werden immer dann gesendet, wenn sich der lokale Distanz-Vektor ändert
 - Periodische Nachrichtenmeldungen
 - Knoten senden periodisch Nachrichten an Nachbarn, auch wenn sich nichts geändert hat
 - Dadurch wird auch signalisiert: Sendeknoten ist aktiv!
 - Stellt sicher, dass ein Knoten gültige Info erhält, wenn er nach einem Ausfall seine Weiterleitungstabelle neu aufbauen muss!
 - Typische Wiederholrate: mehrere Minuten

Prof. Dr. F. Steiper Seite 26 Rechnernetze (INF2)

4.2.3 Hierarchisches Routing

Problemstellungen

[Ref 1] Kapitel 4, Seite 421-424 [Ref 2] Kapitel 5, Seite 437-438

Skalierung:

- Mit wachsender Anzahl von Routern steigen Aufwände für Berechnung,
 Speicherung und Übermittlung von Routing-Informationen
- Das Internet beinhaltet Millionen von Routern
- Die bisher besprochenen Routing-Algorithmen würden nie konvergieren
- Administrative Autonomie:
 - Eine Organisation sollte in der Lage sein, ihr eigenes Netz nach eigenem Ermessen zu verwalten und zu betreiben
 - Trotzdem muss es möglich sein, diese "autonomen" Teilnetze wieder optimal miteinander zu verbinden

• Lösung:

Hierarchisches Routing

4.2.3 Hierarchisches Routing

- Autonome Systeme (AS)
 - Router, die zu einer administrativen Gruppe gehören, werden in einem Autonomen System (AS) zusammengefasst
 - Router innerhalb eines AS verwenden den gleichen Routing-Algorithmus (z.B. LS- oder DV-Algorithmus); Das im AS verwendete Routing-Protokoll wird Intra-AS-Routing-Protokoll genannt
 - Mehrere AS können miteinander durch Gateway-Router (GR) verbunden werden
 - GR sind ausgewählte Router eines AS, die für das Weiterleiten von Paketen außerhalb der AS zuständig sind
 - Routen zu Zielen außerhalb eines AS sind nur den GR bekannt
 - Die Gateway-Router der verschiedenen AS kommunizieren über das Inter-AS-Routing-Protokoll

Prof. Dr. F. Steiper Seite 28 Rechnernetze (INF2)

4.2.3 Hierarchisches Routing

Beispiel: Hierarchisches Routing

Prof. Dr. F. Steiper Seite 29 Rechnernetze (INF2)

4.3 Internet Protocol (IP)

• Die Vermittlungsschicht im Internet

[Ref 1] Kapitel 4, Seite 371-372

Prof. Dr. F. Steiper Seite 30 Rechnernetze (INF2)

IPv4-Paket-Format

[Ref 1] Kapitel 4, Seite 372-375

IP-Protokoll-Version

Header-Länge in Bytes (min. 20 Bytes, max. 60 Bytes)

Zuordnung zu best. Prioritäten oder Dienst-Klassen (Multimedia)

Max. Anzahl von / Routern, über die ein Paket noch weitergeleitet werden kann

Gesamtlänge des IP-Pakets in Bytes (max. 2¹⁶-1 Bytes)

Für das Fragmentieren und Reassemblieren von Paketen benötigt

Prüfsumme (berücksichtigt nur Header-Einträge)

Optionale Header-Einträge (z.B. Zeitstempel, Liste zu durchlaufender Router…)

IP-Adressen und Netzwerk-Klassen

[Ref 1] Kapitel 4, Seite 378-382 [Ref 2] Kapitel 5, Seite 507-516

- ▶ IP-Adressen wurden in Klassen aufgeteilt
- Die Klassenzugehörigkeit einer Internet-Adresse hängt von dem Wert der ersten 4 Bits ab.

Prof. Dr. F. Steiper Seite 32 Rechnernetze (INF2)

IP-Subnetting

- Eine Beispiel-Firma hat das Klasse-C-Netz "194.5.5" zugeordnet bekommen
 - Intern ist das Netz in die logischen Netze "Buchhaltung", "Entwicklung", "Verkauf" usw. strukturiert
 - Die Kommunikation zwischen logischen Netzen soll geregelt werden
 - Diese Subnetzbildung ist im Internet nicht sichtbar
- Problem
 - Einteilung in Netzklassen zu starr und unflexibel
- Lösung
 - Grenze zwischen Bits für Netz- und Host-Anteil auf Kosten des Host-Anteils nach rechts verschieben
- Folgeproblem
 - Woher kennt ein Rechner jetzt die Länge von Netz- und Host-Anteil einer IP-Adresse?

Prof. Dr. F. Steiper Seite 33 Rechnernetze (INF2)

• IP-Subnetting ...

http://www.netplanet.org/adressierung/subnetting.shtml Applet: http://www.subnet-calculator.com/

Netzmasken

- Eingeführt, damit ein Rechner erkennen kann, wie lang der Netzanteil seiner IP-Adresse ist
 - Eine 32 Bit lange Netzmaske wird durch bitweises AND mit der IP-Adresse verknüpft
- Ist ein Bit der Netzmaske gesetzt: entsprechendes Bit der IP-Adresse gehört zu Netzadresse
- Ist ein Bit der Netzmaske nicht gesetzt: entsprechendes Bit der IP-Adresse gehört zu Host-Adresse

Prof. Dr. F. Steiper Seite 35 Rechnernetze (INF2)

- Subnetz-Bildung im Detail
 - ► Klasse C Netz: 192.5.5.X (X=0,1,...,255): 254 nutzbare Adressen
 - Reservierte Adressen: alle Host-Bits=1 → ger. Broadcast: 192.5.5.255
 alle Host-Bits=0 → Netzadresse: 192.5.5.0

Prof. Dr. F. Steiper Seite 36 Rechnernetze (INF2)

- Ableitung der Subnetz-Adresse aus einer IP-Adresse
 - Beispiel für Klasse-C-Netz: 192.147.1.0 bzw. "11000000.10010011.00000001.00000000"
 - Das Netz wird in 4 Subnetze aufgeteilt
 - $-4 = 2^2 \rightarrow Es$ werden 2 zusätzliche "Netz-Bits" gebraucht
 - ▶ In welchem Teilnetz liegt die IP-Adresse 192.147.1.129?

⇒ Subnetz 11000000.10010011.00000001.10000000 (=192.147.1.128)

Antwort: Im 3. Subnetz!

Prof. Dr. F. Steiper Seite 37 Rechnernetze (INF2)

Reservierte IP-Adressen und IP-Adressen mit besonderer Bedeutung

Netzadresse

- Netzadressen dienen in Verbindung mit Netzmasken ausschließlich zu Routing-Zwecken
 - Sie werden von Routern/Rechnern in Weiterleitungstabellen benötigt
- Die Netzadresse wird gebildet
 - in dem alle Host-Bits auf 0 gesetzt werden und
 - der Adress-Präfix voran gestellt wird
- Gerichtete Broadcast-Adresse
 - ▶ Ein IP-Paket mit der gerichteten Broadcast-Adresse als Ziel reist so lange als Einzelpaket durchs Internet, bis das Zielnetz erreicht wird.
 - Erst im Zielnetz wird das Paket von allen Endgeräten gelesen
 - Die gerichtete Broadcast-Adresse wird gebildet
 - in dem alle Host-Bits auf 1 gesetzt werden und
 - der Adress-Präfix voran gestellt wird

Prof. Dr. F. Steiper Seite 38 Rechnernetze (INF2)

• Beispiele: Netzadressen und gerichtete Broadcast-Adressen

Präfix	Klasse	Netzmaske	Netzadresse	Ger. BC-Adresse
194.95.60	C	255.255.255.0	194.95.60.0	194.95.60.255
129.247.0	В	255.255.192.0	129.247.0.0	129.247.63.255
129.247.64	В	"	129.247.64.0	129.247.127.255
129.247.128	В	"	129.247.128.0	129.247.191.255
129.247.192	В	"	129.247.192.0	129.247.255.255

Prof. Dr. F. Steiper Seite 39 Rechnernetze (INF2)

- Lokale Broadcast-Adresse
 - Besteht nur aus 1-Bits: 255.255.255.255
 - Gebraucht für Versendung eines Broadcast-Pakets, wenn eigene IP-Adresse des Rechners noch nicht bekannt ist (z.B. benötigt in der Startphase eines Rechners)
- "This Computer"-Adresse
 - ▶ Besteht nur aus 0-Bits: 0.0.0.0
 - Gebraucht als Quell-Adresse für Rechner, die ihre eigne IP-Adresse noch nicht kennen
- "Loopback"-Adresse
 - Auch ohne phys. Netzwerk-Interfaces sind in Rechnern interne Netzschleifen aktiv.
 - ▶ IP-Standard reserviert dazu Netzpräfix 127 der Klasse A. Konvention ist die Verwendung der Schleifenadr.: 127.0.0.1 (\rightarrow 1. Intf, 127.0.0.2 \rightarrow 2. Intf....)

Prof. Dr. F. Steiper Seite 40 Rechnernetze (INF2)

- Private Adressbereiche
 - ▶ IP-Pakete mit IP-Adressen aus den privaten Adressbereichen
 - werden nicht in das Internet weitergeleitet!
 - dürfen nur innerhalb eines privaten Netzes genutzt werden
 - Vorteil
 - Jede Einrichtung kann intern private Adressbereiche nutzen, die Kommunikation zur Rechnern im Internet ist damit jedoch nicht möglich
 - Festgelegte private Adressbereiche sind:
 - Klasse A: 10.0.0.0 10.255.255.255
 - Klasse B: 172.16.0.0 172.31.255.255
 - Klasse C: 192.168.0.0 192.168.255.255

Prof. Dr. F. Steiper Seite 41 Rechnernetze (INF2)

Einschub: Network Address Translation (NAT)

Prof. Dr. F. Steiper Seite 42 Rechnernetze (INF2)

- Klassenlose IP-Adressierung
 - ▶ Bisher: Klassenbasierte IP-Adressierung + "Subnetting"-Ansatz
 - In IP-Netzen der Klasse A/B/C werden Subnetz-Kennungen definiert
 - → Erweitertes Netzwerkpräfix und Einführung von Subnetzmasken
 - Innerhalb eines Netzes nur gleich große Subnetze möglich
 - Jetzt: Klassenlose IP-Adressierung
 - Verallgemeinerung: Grenze zwischen Netzwerk- und Host-Anteil wird variabel definierbar, unabhängig von der Netzklasse
 - Verwendung klassenloser IP-Adressierung im Intranet:
 Variable Length Subnet Masks (VLSM)
 - Verwendung klassenloser IP-Adressierung im Internet:
 Classless Interdomain Routing (CIDR)

→ früher "Supernetting"

- Notation einer CIDR-Netzadresse
 - a.b.c.d/x , wobei x die Anzahl der führenden Bits angibt, die den Netzanteil darstellen

Prof. Dr. F. Steiper Seite 43 Rechnernetze (INF2)

- Zuordnung und Kopplung von IP-Netzen
 - Grundregeln
 - Rechner in unterschiedlichen IP-(Sub)Netzen können nur über Router hinweg kommunizieren
 - In verbindungslosen LANs ist ein IP-(Sub)Netz deckungsgleich mit (oder eine Untermenge von) einer Broadcast-Domäne
 - Beispiel: Kopplung zweier Ethernet-LANs

Prof. Dr. F. Steiper Seite 44 Rechnernetze (INF2)

- Struktur von Weiterleitungstabellen
 - Zielnetz: repräsentiert Ziel des Routen-Eintrags; kann ein IP-Netz, IP-Subnetz (→ "Netz/Subnetz-Route") oder ein einzelner Host sein (→ "Host-Route")
 - Netzwerk-Maske: Netzmaske bzw. Länge der Netzmaske bei Verwendung von CIDR/VLSM Bei Host-Routen immer: 255.255.255.255
 - Gateway: IP-Adresse des n\u00e4chsten Routers auf dem Weg zum Netzziel
 - Schnittstelle: Angabe der Router-Schnittstelle (entweder logische Bezeichnung oder IP-Adresse der Schnittstelle)
 - Metrik: Enthält die "Kosten" einer Route; Dient zu "Bewertung" von Routen-Einträgen, die zum gleichen Ziel führen

Prof. Dr. F. Steiper Seite 45 Rechnernetze (INF2)

• Beispiel-Netz zu Weiterleitungstabellen

Prof. Dr. F. Steiper Seite 46 Rechnernetze (INF2)

- Weiterleitungstabellen zum Beispielnetz auf Seite 43
 - Weiterleitungstabelle von Rechner A

Zielnetz	Netzmaske	Gateway	Schnittstelle	Metril	K
192.1.1.0	255.255.255.192	-	192.1.1.1	1	(lokales Netz)
0.0.0.0	0.0.0.0	192.1.1.4	192.1.1.1	2	(Default-Route)

Weiterleitungstabelle des Routers

Zielnetz	Netzmaske	Gateway	Schnittstelle	Metrik
192.1.1.0	255.255.255.192	-	192.1.1.4	1
192.1.1.64	255.255.255.192	-	192.1.1.67	1
223.1.2.0	255.255.255.0	-	223.1.2.9	1
223.1.4.0	255.255.255.0	-	223.1.4.1	1
0.0.0.0	0.0.0.0	223.1.4.2	223.1.4.1	2

Prof. Dr. F. Steiper Seite 47 Rechnernetze (INF2)

- Bestimmung des besten Routen-Eintrags
 - 1. Für jede Zeile in Routing-Tabelle wird Bitweises_AND zwischen Ziel-IP-Adresse des IP-Pakets und der angegebenen Netzwerk-Maske ausgeführt:
 - Das Ergebnis wird mit "Zielnetz" dieser Zeile verglichen.
 - Stimmt Ergebnis mit "Zielnetz" überein, ist entsprechender Eintrag eine mögliche Route.
 - 2. Eine Liste der möglichen Routen wird erstellt und ausgewertet:
 - Die Route mit l\u00e4ngstem Netzpr\u00e4fix wird ausgew\u00e4hlt (also der Eintrag mit l\u00e4ngster, spezifischster Netzmaske)
 - Falls immer noch mehrere mögliche Routen existieren, wird der Eintrag "Metrik" ausgewertet.
 Der Eintrag mit dem niedrigsten Wert wird verwendet.
 - Falls immer noch keine eindeutig "beste" Route gefunden ist, kann der Router eine der übrig gebliebenen Routen beliebig auswählen.

Prof. Dr. F. Steiper Seite 48 Rechnernetze (INF2)

Routen-Aggregation

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organisation 0	11001000	00010111	0001000	00000000	200.23.16.0/23
Organisation 1	11001000	00010111	00010010	00000000	200.23.18.0/23
Organisation 2	11001000	00010111	00010100	00000000	200.23.20.0/23
355					****
Organisation 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Prof. Dr. F. Steiper Seite 49 Rechnernetze (INF2)

Das IPv4 Adress-Dilemma

[Ref 1] Kapitel 4, Seite 396-402 [Ref 2] Kapitel 5, Seite 520-530

Verfügbaren IPv4-Adressräume von regionalen Internet-Registries:

- Ziele der Einführung von IPv6
 - Im Juli 1994 wurde IPv6 von der IETF als Nachfolger von IPv4 ausgewählt
 - IETF = Internet Engineering Task Force
 - Ziele von IPv6
 - Vergrößerung des IP-Adressraums
 - Effizientere Routing-Möglichkeiten
 - "Quality of Service"-Unterstützung
 - Verbesserte Security-Unterstützung
 - Bessere Unterstützung von Autokonfiguration und Mobilität
 - Schrittweisen Migration des IPv4basierten Internets nach IPv6

- → 128 Bit Adresslänge statt 32 Bit
- → Routen-Aggregation
- → Vereinfachtes Header-Format
- → "Extension Headers"
- → "Traffic Class", Flow Labels"
- → "Privacy Extensions" , IPsec …
- → "Stateless Autoconfiguration"
- → "Dual Stack"-Ansatz , Tunneling…

Prof. Dr. F. Steiper Seite 51 Rechnernetze (INF2)

Neues IP-Header-Format

IPv6-Header _____

fast alle anderen Header-Felder umbenannt und ggf. inhaltlich angepasst ... Quelle: "IP version 6", Guido Wessendorf, Westfälische Wilhelms-Universität Münster, Dez. 2011

- Die IPv6-Erweiterungs-Header
 - ▶ Einem IPv6-Header können "Extension Header" folgen
 - Mögliche Typen: Hop-by-Hop Options-, Routing-, Fragment-, Destination
 Options-, Authentication-, Encapsulation Security- und Mobility-Header
 - Jeder Erweiterungs Header besitzt "Next Header"-Feld als Verweis auf folgenden Header

Minimaler IPv6 -Header ohne Extension Header

IPv6 Header Next Header	TCP Header + Data	
= TCP [6]		

IPv6-Header, erweitert durch Routing-Header

IPv6 Header	Routing Header	TCP Header	
Next Header	Next Header	+ Data	
= Routing [43]	= TCP [6]		

IPv6-Header, erweitert durch Routing - und Fragment - Header

IPv6 Header	Routing Header	Fragment Header	TCP Header	
Next Header	Next Header	Next Header	+ Data Fragment	
= Routing [43]	= Fragment [44]	= TCP [6]		

- Migrationskonzept von IPv4 nach IPv6
 - ► Der "Dual IP-Stack"-Ansatz
 - IPv4-Hosts und -Router werden nach und nach um IPv6-Stack ergänzt
 - Software/Applikationen müssen ggf. angepasst werden!

Quelle: "IP version 6", Guido Wessendorf, Westfälische Wilhelms-Universität Münster, Dez. 2011

Prof. Dr. F. Steiper Seite 54 Rechnernetze (INF2)

- Kopplung von IPv6-Netzen über existierende IPv4-Netze
 - Nutzung eines IPv4-Tunnels als Transitnetz
 - IPv6-Pakete werden in IPv4-Pakete eingebettet und als Nutzlast transportiert
 - Der Quell-Router (Q-R) muss eine Adressermittlungstabelle für die Zuordnung "Ziel-IPv6-Adresse ⇔ IPv4-Adresse des Tunnelendes" erhalten
 - Alternativ: Nutzung von 6to4-Adressen zur automatischen Tunnel-Konfiguration auf Bedarf

Prof. Dr. F. Steiper Seite 55 Rechnernetze (INF2)