

Deliverable 7:

Testing the Centers of Weekday

Rebekah Sander

Research Question

Does day of the week predict number of casual bike rentals per day?

Research Variables

WHO	WHAT measurem	ent is made on each	TYPE OF MEASURE			
WHO	Name of Variable Question Asked	Question Asked	I TPE OF WIEASURE			
A day in 2011 and 2012	Day of the Week	What day of the week is it?	Categorical Variable levels: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday			
	Casual Counts	How many casual bike rentals per day?	Quantitative Variable Unit: Casual Bike Rentals			
One categorical variable with K levels predicting one quantitative variable.						
1. One-way ANOVA	3. Kruskal Wallis					
2. Welch's Test on Raw Data	ta 4. Welch's Test on Ranked Data					

SAS Code: Examining the Data

```
/*Keeping what we want*/
data work.bike;
    set work.bike (keep = weekday casual);
    rename casual='Casual Counts'n;
run;
/* Check for and fix miscoding/missing values */
PROC FREQ DATA=WORK.bike;
TABLE weekday 'Casual Counts'n;
run;
Proc Contents data=work.bike varnum;
run;
Proc Means data = work.bike MAXDEC=2 n mean stddev median Qrange RANGE min Q1 Q3 max;
    var 'Casual Counts'n;
run;
```


SAS Code: Examining the Data

```
/*fixing weekday*/
*0=sunday,1=monday,2=tuesday,3=wednesday,4=thursday,5=friday,6=saturday;
data work.bike;
set work.bike;
   if weekday = 0 then 'weekday category'n='A';
   else if weekday = 1 then 'weekday category'n='B';
   else if weekday = 2 then 'weekday category'n='C';
   else if weekday = 3 then 'weekday category'n='D';
   else if weekday = 4 then 'weekday category'n='E';
   else if weekday = 5 then 'weekday category'n='F';
   else if weekday = 6 then 'weekday category'n='G';
run;
```



```
Proc format;
```

```
Value $weekdayformat
'A'="Sunday"
'B'="Monday"
'C'="Tuesday"
'D'="Wednesday"
'E'="Thursday"
'F'="Friday"
'G'="Saturday";
run;
```

```
data work.bike;
set work.bike;
format 'weekday category'n weekdayformat.;
rename 'weekday category'n='Day of the Week'n;
drop weekday;
run;
```

SAS Code: Assessing Normality and Homogeneity

```
/*assessing normality and homogeneity*/
TITLE "Table 1: Table to Compare Standard Deviations for Homogeneity";
PROC MEANS DATA = work.bike mean stddev VAR maxdec=4;
    class 'Day of the Week'n;
    VAR 'Casual Counts'n;
```

RUN; TITLE;

The MEANS Procedure

Analy	Analysis Variable : Casual Counts casual				
Day of the Week	N Obs	Mean	Std Dev	Variance	
Sunday	105	1338.2952	809.3248	655008.5947	
Monday	105	674.1333	493.7773	243816.0205	
Tuesday	104	558.1827	342.7487	117476.6750	
Wednesday	104	551.1442	401.8090	161450.4353	
Thursday	104	590.9815	371.6803	138148.2509	
Friday	104	752.2885	483.4224	233697.2170	
Saturday	105	1465.2571	927.0829	859482.6736	

Assessing Normality

- \blacktriangleright H_0 : The data came from a population where the number of casual rentals are normally distributed
- \blacktriangleright H_A : The data came from a population where the number of casual rentals are not normally distributed.
- $\alpha = 0.05$

Analy	Analysis Variable : Casual Counts casual				
Day of the Week	N Obs	Mean	Std Dev	Variance	
Sunday	105	1338.2952	809.3248	655008.5947	
Monday	105	674.1333	493.7773	243816.0205	
Tuesday	104	558.1827	342.7487	117476.6750	
Wednesday	104	551.1442	401.8090	161450.4353	
Thursday	104	590.9615	371.6803	138146.2509	
Friday	104	752.2885	483.4224	233697.2170	
Saturday	105	1465.2571	927.0829	859482.6736	

The sample sizes for all seven categories are greater than 30 observations. Therefore, normality is supported.

Assessing Homogeneity

 $H_0: \sigma_{Sunday}^2 = \sigma_{Monday}^2 = \sigma_{Tuesday}^2 = \sigma_{Wednesday}^2 \sigma_{Thursday}^2 = \sigma_{Friday}^2 = \sigma_{Saturday}^2$

 H_A : At least one variance is different than the rest

The ratio is greater than 2. Thus, the standard deviations are not close enough to use a test that requires homogeneity. The data is

Analysis Variable: Casual Counts casual

Ratio of standard deviations:

Analy	Analysis Variable : Casual Counts casual				
Day of the Week	N Obs Mean		Std Dev	Variance	
Sunday	105	1338.2952	809.3248	655006.5947	
Monday	105	674.1333	493.7773	243816.0205	
Tuesday	104	558.1827	342.7487	117478.6750	
Wednesday	104	551.1442	401.8090	161450.4353	
Thursday	104	590.9815	371.6803	138148.2509	
Friday	104	752.2885	483.4224	233697.2170	
Saturday	105	1465.2571	927.0829	859482.6736	

$$=\frac{SD_{Saturday}}{SD_{Tuesday}}$$

$$=\frac{927.0829}{342.7487}$$

$$= 2.7048 > 2$$

Choosing Hypothesis Test: Welch's Test on Raw Data

- Since the data is normal and heterogeneous, we will perform Welch's Test on Raw Data.
- ► The null hypothesis is that all weekdays have the same mean number casual bike rentals sent each month for the populations each weekday.

 H_0 : $\mu_{Sunday} = \mu_{Monday} = \mu_{Tuesday} = \mu_{Wednesday} = \mu_{Thursday} = \mu_{Friday} = \mu_{Saturday}$

- The alternative hypothesis is,
- H_A : At least one day of the week has a different average number of casual bike rentals per day.
- The level of significance, $\alpha = 0.05$, tells us that 5% of the time the analysis will conclude that at least one mean is different when all means are equal for all days of the week.

SAS Code: Welch Test on Raw Data

```
/*Welch's Test on Data*/
TITLE "Welch Nonparametric Test for Mean Casual Counts across Days of the Week";
PROC GLM data=work.bike order=internal;
    class 'Day of the Week'n;
    model 'Casual Counts'n = 'Day of the Week'n;
    means 'Day of the Week'n / hovtest=levene(TYPE=square) welch;
run;
```


Proc Means data=work.bike n mean std;
var 'Casual Counts'n;
run;
title;

quit;

Welch's ANOVA for Casual Counts				
Source DF F Value Pr >				
Day of the Week	6.0000	29.22	<.0001	
Error	319.4			

The MEANS Procedure Analysis Variable : Casual Counts casual N Mean Std Dev 731 848.1764706 688.6224883

Level of		Casual Counts		
Day of the Week	N	Mean	Std Dev	
Sunday	105	1338.29524	809.324777	
Monday	105	674.13333	493.777298	
Tuesday	104	556.18269	342.748705	
Wednesday	104	551.14423	401.808954	
Thursday	104	590.96154	371.680307	
Friday	104	752.28846	483.422400	
Saturday	105	1465.25714	927.082884	

Performing Welch's Test on Raw Data

- F Statistic: The variance between each day of the week's average amount of casual bike rentals from the overall average (848 Casual Rentals) for all 731 days recorded is 29.22 times the variance within the seven days of the week combined.
- ▶ P-value: There is a less than 0.01% chance of getting an F-value of 29.22 or more when the average amount of casual bike rentals is the same for all days of the week.
- ▶ Conclusion: Since less than 0.01% is less than 5%, we reject H_0 . We are 95% confident that at least one day of the week has a different amount of casual bike rentals per day.

Welch's ANOVA for Casual Counts						
Source DF F Value Pr > 1						
Day of the Week	6.0000	29.22	<.0001			
Error 319.4						

The MEANS Procedure			
Analysis Variable : Casual Counts casual			
Mean Std Dev			
848.1764	686	.6224883	

Post-hoc Conclusions: PROC MEANS Table

► Conclusion: We know at the minimum, that the largest mean (1465.3 casual bike rentals) is different from the smallest mean (551.1 casual bike rentals). Thus, Saturdays have a significantly higher amount of casual bike rentals than Wednesdays.

Level of		Casual Counts		
Day of the Week	N	Mean	Std Dev	
Sunday	105	1338.29524	809.324777	
Monday	105	674.13333	493.777298	
Tuesday	104	556.18269	342.748705	
Wednesday	104	551.14423	401.808954	
Thursday	104	590.96154	371.680307	
Friday	104	752.28846	483.422400	
Saturday	105	1465.25714	927.082884	

SAS Code: Stratified Box Plot

Supporting Graphic: Stratified Box Plot

Taking Action

▶ Benefit to Companies: Bike Sharing companies may be interested in which days get more casual bike rentals on average as it helps them gain insight on how to price, when and how to promote, and upkeeping resources.

SAS Code: Screen Recording

