Assignment 9

Group 1

December 27, 2023

1 Exercise 12.4.4

Problem Let (X, dist) be a metric space and let $K \subseteq X$ be a compact subset. Let $a : \mathbb{N} \to X$ be a sequence with values in X, such that

for all
$$N \in \mathbb{N}$$
,
there exists $\ell \ge N$,
 $a_{\ell} \in K$ (*)

- 1. Use (*) to inductively define an index sequence $n: \mathbb{N} \to \mathbb{N}$ such that for every $k \in \mathbb{N}$, $a_{n_k} \in K$.
- 2. Use the fact that K is compact to show that there is a point $p \in K$ and a subsequence of $a : \mathbb{N} \to X$ converging to p.

Proof. 1. We define an index sequence $n: \mathbb{N} \to \mathbb{N}$ inductively as follows: Base:

Choose N=0 in (*), then there exists $\ell \geq 0$, such that $a_{\ell} \in K$.

Obtain such ℓ

Set $n_0 = \ell$

Inductive step:

Suppose we have defined n_0, n_1, \ldots, n_k for some $k \in \mathbb{N}$, such that for all $0 \le i \le k$, $a_{n_i} \in K$.

Choose $N = n_k + 1$ in (*), then there exists $\ell \geq N$, such that $a_\ell \in K$.

Obtain such ℓ

Set $n_{k+1} = \ell$

Then it holds that $n_k < n_{k+1}$ and $a_{n_{k+1}} \in K$.

2. Since K is compact, it holds that

for all sequences $b: \mathbb{N} \to \mathbb{K}$, there exists a subsequence $b': \mathbb{N} \to \mathbb{K}$, such that b' converges to a point $p \in K$

Choose $b = a \circ n$ in (**), then there exists a subsequence $b' : \mathbb{N} \to \mathbb{K}$, such that b' converges to a point $p \in K$.

I.e. there exists an index sequence $m: \mathbb{N} \to \mathbb{N}$, such that $b \circ m$ converges to p.

The the subsequence $a \circ n \circ m$ converges to $p \in K$.

$\mathbf{2}$ Exercise 12.4.5

Problem Consider the sets

$$A := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 - x_2 = 1\}$$

and

$$B := \{(x_1, x_2) \in \mathbb{R}^2 \mid (x_1)^2 + (x_2)^2 \le 1\}$$

Prove that the set $A \cap B$ is compact (as a subset of the normed vector space $(\mathbb{R}^2, \|\cdot\|_2)$).

Proof. Note: B is the closed unit ball in $(\mathbb{R}^2, \|\cdot\|_2)$.

Since $A \cap B \subseteq (\mathbb{R}^2, \|\cdot\|_2)$ by the Heine-Borel Theorem, it suffices to show that $A \cap B$ is closed and bounded.

Note: $A \cap B = \{(x_1, x_2) \mid x_1 - x_2 = 1 \land x_1^2 + x_2^2 \le 1\}$ which is the closed line segment from (0,-1) to (1,0).

Closed:

By the sequence characterization of closedness, it suffices to show that

for all sequences
$$a: \mathbb{N} \to A \cap B$$
,
if a converges to a point $p \in \mathbb{R}^2$,
then $p \in A \cap B$

Let $a: \mathbb{N} \to A \cap B$ be a sequence, such that a converges to a point $p \in \mathbb{R}^2$.

We need to show that $p \in A \cap B$.

Since $a_n \in A \cap B$ for all $n \in \mathbb{N}$, it holds that $p = \lim_{n \to \infty} a_n \in A \cap B$.

Hence $A \cap B$ is closed.

Bounded:

Need to show that $A \cap B$ is bounded, i.e.

there exists
$$q \in A \cap B$$
,
there exists $M > 0$,
for all $p \in A \cap B$,
 $||p - q|| \le M$

Choose q = (1, 0), then $q \in A \cap B$,

Choose M=2, then M>0,

Let $p = (p_1, p_2) \in A \cap B$,

Need to show that
$$\|p-q\| \le M$$
 $\|p-q\| = \sqrt{(p_1-1)^2 + p_2^2} = \sqrt{p_1^2 + p_2^2 - 2p_1 + 1} \le \sqrt{2-2p_1} \le \sqrt{2} < 2 = M$

Since $A \cap B$ is closed and bounded, by the Heine-Borel Theorem, $A \cap B$ is compact.

3 **Exercise 13.11.1**

Problem Let $(X, \operatorname{dist}_X) := (\mathbb{R}^2, \operatorname{dist}_{\|\cdot\|_2})$ and $(Y, \operatorname{dist}_Y) := (\mathbb{R}, \operatorname{dist}_{\mathbb{R}})$. Let D = $B(0,1) \subseteq \mathbb{R}^2$. Let $f: D \to \mathbb{R}$ be defined as

$$f(x) := \begin{cases} x_1^2 + x_2^2 & \text{if } x \neq (0,0) \\ 185 & \text{if } x = (0,0). \end{cases}$$

Show that

$$\lim_{x \to (0,0)} f(x) = 0$$

Proof. Method 1: $(\epsilon - \delta \text{ proof})$

We need to show that

for all
$$\epsilon > 0$$
,
there exists $\delta > 0$,
for all $x \in D$,
 $0 < ||x - (0,0)|| < \delta \implies |f(x) - 0| < \epsilon$

Let $\epsilon > 0$,

Choose $\delta = \sqrt{\epsilon}$,

Let $x \in D$,

Assume
$$0 < ||x - (0,0)|| < \delta$$
, i.e. $0 < \sqrt{x_1^2 + x_2^2} < \delta$

Then $x \neq (0,0)$ and $f(x) = x_1^2 + x_2^2$

Need to show that $|f(x) - 0| < \epsilon$

Indeed $|f(x) - 0| = |x_1^2 + x_2^2| < \delta^2 = \epsilon$

Therefore,

$$\lim_{x \to (0,0)} f(x) = 0$$

Method 2: (Sequence characterization proof)

By the sequence characterization of limits, it suffices to show that,

for all sequences
$$(x^n)$$
 in $D \setminus \{(0,0)\}$ converging to $(0,0)$, $\lim_{n\to\infty} f(x^n) = 0$

Let (x^n) be a sequence in $D \setminus \{(0,0)\}$ converging to (0,0).

It holds that $\lim_{n\to\infty} x^n = (0,0)$.

Since $x^n \neq (0,0)$ for all $n \in \mathbb{N}$, we know $f(x^n) = (x^n)_1^2 + (x^n)_2^2$ for all $n \in \mathbb{N}$. Hence $\lim_{n \to \infty} f(x^n) = \lim_{n \to \infty} (x^n)_1^2 + (x^n)_2^2 = 0^2 + 0^2 = 0$.

Since $\lim_{n\to\infty} f(x^n) = 0$ for all (x^n) in $D \setminus \{(0,0)\}$ converging to (0,0),

$$\lim_{x \to (0,0)} f(x) = 0$$

4 Exercise 13.11.2

Problem Consider the function $f: D \to \mathbb{R}$ defined by

$$f(x) = x \quad \text{for } x \in \mathbb{R}$$

where $D = \mathbb{R}$.

Prove that for every $a \in D$, the function f is continuous at a.

Proof. We need to show that for every $a \in D, f$ is continuous at a. Take $a \in D$.

By the sequence chracterization of continuity, it suffices to show that

for all sequences
$$x_n$$
 in D converging to $a \in D$, $\lim_{n\to\infty} f(x_n) = f(a)$

Let $x_n : \mathbb{N} \to D$ be a sequence converging to $a \in D$.

It holds that $f(x_n) = x_n$ for all $n \in \mathbb{N}$.

Therefore, $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} x_n = a = f(a)$.

Thus, f is continuous at a.