A Gemcitabine Intracellular Model, Parameter Estimation and ML workflow Sample Work

Christian D. Basile, MS - Last Updated July 20, 2022

GEMCITABINE PATHWAY: MODELING RATIONALE

- How Well understood is Gemcitabine pathway?
- Is it possible to build a generalized model that can explain different cell line's behavior?

MODELING RATIONALE

- ☐ Gemcitabine strong In vitro and in vivo antitumor activity.
- Inhibition of DNA Synthesis, specifically it inhibits ribonucleotide reductase and it inhenders DNA synthesis and thus cell dies.
- Typically is given weekly for 3 weeks

Enzymes:

dCK(Deoxycytidine kinase)
RR(Ribonucleotide Reductase)
dCMPD(Deoxycytidylate Deaminase)
5'-NT(5'-Nucleotidase)
CDA(Cytidine Deaminase)
NDPK(ucleoside Diphosphate Kinase)
NMPK(Nucleoside Monophosphate Kinase)

Metabolites:

- dCTP(Deoxycytidine triphosphate)
- **CDP**(Cytidine Diphosphate)
- **dCTP(**Deoxycytidine diphosphate)

DATA 1 Heinemann V, 1(1992)

- CCRF-CEM Human T- Lymphoblast cell line dFdCTP and its metabolites.
- □ **dFdC** was incubated in vitro for 2 hrs. in RPMI at $(uM) = [0.1 \ 0.3 \ 1 \ 10]$.
- Cells washed in drug free medium after 2hrs.
- Intracellular and Extracellular Concentrations are measured after 2hrs.

Physical Properties of the experiment:

Mean Cell Volume = 9.43 x 10 ^-11 L/cell Number of Cells Incubated = 2 x 10 ^6 Cells Volume medium = Unknown(Extracellular)

Sparse data

DATA 1 continued

Heinemann V, 1(1992)

Intracellular uM dFdCTP after 2 hrs

dFdCe incubation

[0.1, 0.3, 1.0 or 10 uM] after 2hrs.

Extracellular dFdU(White)and dFdC(Black) after 2 hrs

DATA 2: VELTKMAN Study(Veltkamp 2008)

HepG2, A549, and MDCK cells were incubated with dFdC or dFdU

HepG2 cells:

- ☐ 5 nmol/L dFdC + THU,☐ dFdC 0.5 uM + THU
- dFdU 500 uM and
- 0.5 uM dFdU for 24 hr.

Physical Properties of Experiment:

Tetrahydrouridine (THU) is a CDA competitive inhibitor $Ki \sim 110 \text{ nM}$ HepG2 (12 x 10^6 cells) 1 mg protein activity -> uM = pmol/mg *4.90 HepG2 Volume~ 17 fL Parameter "a" (Vmedium/Vcells) in the in vitro study experiment -> a =49000 (Vm/Vcells)

Note: "a" for Heinemann study is not known because Vmedium is not known

Sparse data

DATA 2: VELTKMAN STUDY Veltkamp 2008)

Metabolite Concentrations (pmol/mg protein). Decoupling the system.

dFdC 0.5 uM 24 hr incubation + THU

DATA 2: VELTKMAN STUDY

	dFdC	dFdU	dFdC-MP	dFdC-DP	dFdC-TP	dFdU-MP	dFdU-DP	dFdU-TP
HepG2								
5 nmol/L dFdC + THU								
C _{max} (pmol/mg protein)	0.2 ± 0.01	0.03 ± 0.01	0.5 ± 0.05	1.4 ± 0.2	2.1 ± 0.1	0.3 ± 0.1	0.2 ± 0.04	0.3 ± 0.03
AUC (h pmol/mg protein)	6.3 ± 0.5	1.0 ± 0.1	14 ± 0.7	44 ± 5.4	45 ± 5.4	6.7 ± 1.4	4.0 ± 0.7	5.0 ± 0.4
0.5 μmol/L dFdC + THU								
C _{max} (pmol/mg protein)	2.5 ± 0.4	0.1 ± 0.01	8.2 ± 0.3	59 ± 1.0	121 ± 13	1.1 ± 0.04	0.7 ± 0.04	1.3 ± 0.1
AUC (h pmol/mg protein)	38 ± 0.2	1.2 ± 0.2	148 ± 2.3	$1,090 \pm 64$	$1,687 \pm 253$	19 ± 0.7	8.6 ± 0.4	16 ± 2.2
$t_{1/2}$ (h)	n.d.	13 ± 1.9	10 ± 2.1	33 ± 18	12 ± 0.7	6.0 ± 0.5	6.0 ± 0.6	7.0 ± 0.9
DNA (pmol/μmol)	n.a.	n.a.	n.a.	n.a.	$1,600 \pm 300$	n.a.	n.a.	20 ± 1.0
RNA (pmol/µmol)	n.a.	n.a.	n.a.	n.a.	400 ± 30	n.a.	n.a.	10 ± 2.0
0.5 μmol/L dFdU								
C _{max} (pmol/mg protein)	n.d.	0.1 ± 0.01	n.d.	n.d.	n.d.	0.04 ± 0.01	0.04 ± 0.01	0.05 ± 0.01
AUC_{0-24}	n.d.	1.9 ± 0.2	n.d.	n.d.	n.d.	0.7 ± 0.1	0.5 ± 0.1	0.5 ± 0.1
(h pmol/mg protein)								
$t_{1/2}$ (h)	n.d.	10 ± 0.9	n.d.	n.d.	n.d.	21 ± 7.0	8.0 ± 0.8	9.0 ± 2.0
DNA (pmol/μmol)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	10 ± 2.0
RNA (pmol/µmol)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	6.0 ± 1.0
500 μmol/L dFdU								
C _{max} (pmol/mg protein)	n.d.	74 ± 9.0	n.d.	n.d.	n.d.	45 ± 3.0	21 ± 2.6	15 ± 3.4
AUC_{0-24}	n.d.	$2,090 \pm 167$	n.d.	n.d.	n.d.	$1,098 \pm 58$	557 ± 45	309 ± 63
(h pmol/mg protein)								
A549								
0.5 μmol/L dFdC + THU								
C _{max} (pmol/mg protein)	0.8 ± 0.1	0.3 ± 0.1	4.6 ± 1.0	26 ± 4.6	64 ± 13	0.1 ± 0.03	0.2 ± 0.06	0.3 ± 0.03

CELL ENTRY

1 Cell Entry

$$uM = \frac{pmol}{mg} * \frac{(CellsIncubated) (1mg)}{12*10^6} * \left(\frac{1umol}{10^6 pmol}\right) * \left(\frac{1cell}{17*10^{-15}}\right)$$

$$uM \approx \frac{pmol}{mg} * 4.90$$

$$a = \frac{Vmedium}{VCell} \approx 49000$$

$$\frac{dFdC_e}{dt} = -\frac{1}{a} * \frac{VmaxdFdC_e \frac{dFdC_e}{KmdFdC_e}}{\left(1 + \frac{dFdC_e}{KmdFdC_e} + \frac{dFdC}{KmdFdC} + \frac{dFdU_e}{KmdFdU_e} + \frac{dFdU}{KmdFdU}\right)} + (Pcflux)$$

$$\frac{dFdC}{dt} = \frac{a}{1} * \frac{VmaxdFdC * \frac{dFdC}{KmdFdC}}{\left(1 + \frac{dFdC_e}{KmdFdC_e} + \frac{dFdC}{KmdFdC} + \frac{dFdU_e}{KmdFdU_e} + \frac{dFdU}{KmdFdU}\right)} + (Pcflux)$$

$$\frac{dFdU_e}{dt} = -\frac{1}{a} * \frac{VmaxdFdC_e * \frac{dFdC}{KmdFdC_e} + \frac{dFdU_e}{KmdFdC_e} + \frac{dFdU_e}{KmdFdC_e}}{\left(1 + \frac{dFdC_e}{KmdFdC_e} + \frac{dFdC}{KmdFdC_e} + \frac{dFdU_e}{KmdFdC} + \frac{dFdU_e}{KmdFdU_e} + \frac{dFdU}{KmdFdU_e}\right)} + (Puflux)$$

$$\frac{dFdU}{dt} = \frac{a}{1} * \frac{VmaxdFdU * \frac{dFdC}{KmdFdC}}{\left(1 + \frac{dFdC_e}{KmdFdC} + \frac{dFdC}{KmdFdC} + \frac{dFdU}{KmdFdU} + \frac{dFdU}{KmdFdU}\right)} + (Puflux)$$

Vmaxcda	360 uM/hr	
Kmcda	95.7 uM	
VdCK	8.94 uM/hr	1)
KmdCK	4.2 uM	
Km dFdCMP to dFdCDP	581 uM	
Ki dFdCTP on dCMPD	460 uM	
Ki dCTP on dCK	2 to 5 uM	
Ki dFdCDP on RR	0.3 to 4 uM	- 72

dFdCTP elimination

2 DNA Elimination

$$\frac{dFdCTP}{dt} = (FluxdFdCTP) - \frac{\frac{VmaxdFdCTP*dFdCTP}{KmdFdCTP}}{\left(1 + \frac{dFdCTP}{KmdFdCTP} + \frac{dFdUTP}{KmdFdUTP} + \frac{dCTP}{KmdCTP}\right)}$$

$$\frac{dFdUTP}{dt} = (FluxdFdUTP) - \frac{\frac{VmaxdFdUTP*dFdUTP}{KmdFdUTP}}{\left(1 + \frac{dFdCTP}{KmdFdCTP} + \frac{dFdUTP}{KmdFdUTP} + \frac{dCTP}{KmdCTP}\right)}$$

CELL ENTRY

```
#state dfdce lpositive 1 negative
dx[4] = ((1/a)*((vmhout*x[5]/kmhout)/(1.0 + x[4]/kmhin + x[5]/kmhout + x[10]/kmuhout + x[9]/kmuhin )) - #dfdce
                             ( (vmhin*x[4]/kmhin) /(1.0 + x[4]/kmhin + x[5]/kmhout+ x[10]/kmuhout + x[9]/kmuhin )) ) ; #dfdce -> dfc
#state dfdc 2positive 3 negative
dx[5] = (a*((vmhin*x[4]/kmhin)/(1.0 + x[4]/kmhin + x[5]/kmhout + x[10]/kmuhout + x[9]/kmuhin)) + #dfdce -> dfc
                                 ((vmaxdfdcmp2dfdc*x[6])/(kmdfdcmp2dfdc + x[6])) - #dfdcmp -> dfdc
                             ((\text{vmhout} \times [5]/\text{kmhout})/(1.0 + x[4]/\text{kmhin} + x[5]/\text{kmhout} + x[10]/\text{kmuhout} + x[9]/\text{kmuhin})) - \#dfdc > dfdce
                                ((v_{maxdfdc2dfdcmp*x[5]})/(k_{mdfdc2dfdcmp*(1.0 + x[3]/k_{inhdctp}) + x[5])) - \#dfdc \rightarrow dfdcmp
                             ((\sqrt{x})/(\sqrt{x}))/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x})/(\sqrt{x}
                                    ): #dfdc-> dfdce
#state dfdcmp 2positive 3 negative
dx[6] = (((vmaxdfdc2dfcmp*x[5])/(kmdfdc2dfdcmp*(1.0 + x[3]/kinhdctp) + x[5])) + #dfdc -> dfdcmp
                                    ( (ymaxdfdcdp2dfdcmp*x[7] ) /( kmdfdcdp2dfdcmp + x[7] ) ) - #dfdcdp -> dfdcmp
                                ((vmaxdfdcmp2dfdcdp*x[6])/(kmdfdcmp2dfdcdp + x[6])) - #dfdcmp -> dfdcdp
                                ((vmaxdfdcmp2dfdump*x[6])/(kmdfdcmp2dfdump*(kinhdfdctp/(kinhdfdctp + x[8])))) - #dfdcmp ->dfdump
                                 ((vmaxdfdcmp2dfdc*x[6])/(kmdfdcmp2dfdc + x[6]) ) #dfdcmp ->dfdc
#state dfdcdp 2positive 2 negative
```

2 DNA Elimination

```
\frac{dFdCTP}{dt} = (FluxdFdCTP) - \frac{VmaxdFdCTP + dFdCTP}{\left(1 + \frac{dFdCTP}{kmdFdCTP} + \frac{dGCTP}{kmdFdCTP} + \frac{dGCTP}{kmdCTT}\right)} \\ \frac{dFdUTP}{dt} = (FluxdFdUTP) - \frac{VmaxdFdUTP + dFdUTP}{\left(1 + \frac{dFdUTP}{kmdFdCTP} + \frac{dGCTP}{kmdCTT} + \frac{dGCTP}{kmdCTT}\right)} \\ \frac{dFdUTP}{(T + \frac{dFdUTP}{kmdFdCTP} + \frac{dGCTP}{kmdFdCTP} + \frac{dGCTP}{kmdCTT})} \\ \frac{dFdCTP}{kmdFdCTP} + \frac{dGCTP}{kmdFdCTP} + \frac{dGCTP}{kmdCTT} \\ \frac{dFdCTP}{kmdFdCTP} + \frac{dGCTP}{kmdFdCTP} + \frac{dGCTP}{kmdCTT} \\ \frac{dFdCTP}{kmdFdCTP} + \frac{dGCTP}{kmdFdCTP} + \frac{dGCTP}{kmdCTT} \\ \frac{dFdCTP}{kmdCTT} + \frac{dGCTP}{kmdCTT} + \frac{dGCTP}{kmdCTT} \\ \frac{dFdCTP}{kmdCTT} + \frac{dGCTP}{kmdCTT} + \frac{dGCTP}{kmdCTT} \\ \frac{dGCTP}{kmdCTT} + \frac{dGCTP}{
```

Julia Representation

dFdCTP, dCTP, dFdCTP ELIMINATION

DATA 1: 0.1 uM dFdC incubation

x-axis = hours

dFdCe decrement explains Maximum Concentration reached before 2 hrs(incubation time)

DATA 1: 0.3 uM dFdC incubation

DATA 1: 1 uM dFdC incubation

DATA 1: 10 uM dFdC incubation

x-axis = hours

DATA 2: dFdU 0.5 uM

DATA 2: 500 uM dFdU

x-axis = hours

DATA 2: dFdCe 0.5 uM

x-axis = hours

DATA 2: 5 nM dFdC

x-axis = hours

Good Solutions

	Y65I	Y73I	В
	Float64	Float64	String
1	49000.0	49000.0	а
2	0.005	0.0001	kcdp2dcdp
3	0.01	0.0100767	kinhbydfdcdp
4	0.1	1.97201	kdcdp2dctp
5	0.0001	10.0	kdctpelim
6	505.857	0.793568	vmhin
7	290.76	852.684	vmhout
8	686.142	709.147	kmhin
9	2.0	476.271	kmhout
10	964.366	1047.57	vmuhin
11	1000.0	259.096	vmuhout
12	329.446	387.285	kmuhin
13	900.0	917.727	kmuhout
14	806.652	638.749	vmaxdfdcmp2dfdcv
15	564.806	855.233	kmdfdcmp2dfdc
16	928.309	1000.0	vmaxdfdc2dfdcmp
17	5.0	5.0	kmdfdc2dfdcmp
18	500.0	5.0	kinhdctp
19	0.01224	400.0	vmaxdfdc2dfdu
20	95.7	95.7	kmdfdc2dfdu
21	343.436	573.129	kinhdfdu
22	561.647	1000.0	vmaxdfdc2dfcmp
23	0.235061	0.119926	vmaxdfdcdp2dfdcmp
24	400.0	400.0	kmdfdcdp2dfdcmp
25	998.497	1000.0	vmaxdfdcmp2dfdcdp
26	100.18	580.365	kmdfdcmp2dfdcdp

SPEEDING UP ODE

Speeding up processes

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^{\mathrm{T}} f_1 \\ \vdots \\ \nabla^{\mathrm{T}} f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

F 0 c	or I	$\left\lceil \left. abla^{\mathrm{T}} f_1 \right. ight ceil$	$\frac{\partial f_1}{\partial x_1}$	•••	$\left.rac{\partial f_1}{\partial x_n}\right $
$\mathbf{J} = \left[egin{array}{cc} rac{\partial \mathbf{f}}{\partial x_1} & \cdots \end{array} ight.$	$\left. rac{\partial \mathbf{f}}{\partial x_n} \right] =$	$\left[egin{array}{c} abla^{\mathrm{T}} f_1 \ dots \ abla^{\mathrm{T}} f_m \end{array} ight] =$	$\left\{egin{array}{l} dots \ rac{\partial f_m}{\partial x_1} \end{array} ight.$	·	$\left[egin{array}{c} dots \ rac{\partial f_m}{\partial x_n} \end{array} ight]$

SymPy in Python outputs the Jacobian; Similarly Modeling ToolKit in Julia can as well

- SIMULATION FAILS DUE TO PARAMETER CHOSEN
- ODE OPTION /studying cases.

PROPOSED FRAMEWORK

- 1. Mechanistic models vs less Complex Models
- 2. Parameter Sampling
- 3. Local Sensitivity Analysis vs. Global Sensitivity analysis (i.e Variance Methods)

Multiple inputs can affect a state different than other Collect states data that is sensitive

Model defined in terms of ODEs

$$\left| rac{dy}{dt} = f(y,p)
ight| egin{array}{c} y \in \mathbb{R}^n & ext{state vector} \ p \in \mathbb{R}^m & ext{parameter vector} \end{array}$$

dose-response relationship (drr): change in output as a function of a parameter

$$y_i(p_k) \qquad \qquad \text{keep remaining parameters at a fixed value} \quad p_{j\neq k} \quad \text{(local drr)}$$

$$\text{average over remaining parameters} \quad \longrightarrow \quad \text{conditional expectation} \quad E_{p_{j\neq k}}(y_i|p_k)$$

PRCC at 10 uM for dFdCTP % reduction from Cmax

Cmax→ C | t= 24 h % Decrease

PRCC at 0.1 uM for dFdCTP % reduction from Cmax

Cmax→ C | t= 24 h % Decrease

DOSE RESPONSE % dFdCTP Reduction

Coefficient of Variation of Dose Response sorted at 10 uM

