DE FORMULE VAN EULER

De formule van Euler legt een relatie tussen de goniometrische functies en de complex exponentiële functie. Voor elk reëel getal α geldt:

$$e^{j\alpha} = \cos\alpha + j\sin\alpha \tag{1}$$

Hierin is e de grondtal van de natuurlijk logaritme, j de imaginaire eenheid en zijn cos en sin de functies cosinus en sinus met het argument in radialen.

De formule geldt ook voor complexe getallen:

$$e^{\beta + j\alpha} = e^{\beta} \cdot e^{j\alpha} = e^{\beta} (\cos \alpha + j \sin \alpha)$$
 (2)

UITBEELDING VAN DE FORMULE VAN EULER

DE IDENTITEIT VAN EULER

Als we bij de formule van Euler voor de hoek α het getal π invullen, krijgen we een bijzondere vergelijking:

$$e^{j\pi} + 1 = 0 \tag{3}$$

Deze vergelijking legt de relatie tussen de vijf constanten e, π , 0, 1 en j en de operaties optellen, vermenigvuldigen, machtsverheffen en gelijkstellen. Deze identiteit wordt ook wel "de mooiste vergelijking van het universum" genoemd.

BEWIJS VAN DE FORMULE VAN EULER

We kunnen de formule van Euler bewijzen door gebruik te maken van de reeksontwikkeling van e^x :

$$e^{x} = \frac{x^{0}}{0!} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \frac{x^{7}}{7!} + \cdots$$
(4)

Vullen we voor $x = j\alpha$ in, dan krijgen we:

$$e^{j\alpha} = \frac{(j\alpha)^{0}}{0!} + \frac{(j\alpha)^{1}}{1!} + \frac{(j\alpha)^{2}}{2!} + \frac{(j\alpha)^{3}}{3!} + \frac{(j\alpha)^{4}}{4!} + \frac{(j\alpha)^{5}}{5!} + \frac{(j\alpha)^{6}}{6!} + \frac{(j\alpha)^{7}}{7!} + \cdots$$

$$= 1 + j\alpha + j^{2} \frac{\alpha^{2}}{2!} + j^{3} \frac{\alpha^{3}}{3!} + j^{4} \frac{\alpha^{4}}{4!} + j^{5} \frac{\alpha^{5}}{5!} + j^{6} \frac{\alpha^{6}}{6!} + j^{7} \frac{\alpha^{7}}{7!} + \cdots$$

$$= 1 + j\alpha - \frac{\alpha^{2}}{2!} - j\frac{\alpha^{3}}{3!} + \frac{\alpha^{4}}{4!} + j\frac{\alpha^{5}}{5!} - \frac{\alpha^{6}}{6!} - j\frac{\alpha^{7}}{7!} + \cdots$$

$$= \underbrace{\left(1 - \frac{\alpha^{2}}{2!} + \frac{\alpha^{4}}{4!} - \frac{\alpha^{6}}{6!} + \cdots\right)}_{\cos \alpha} + j\underbrace{\left(\alpha - \frac{\alpha^{3}}{3!} + \frac{\alpha^{5}}{5!} - \frac{\alpha^{7}}{7!} + \cdots\right)}_{\sin \alpha}$$

$$(5)$$

 $=\cos\alpha + \mathrm{j}\sin\alpha$

We gaan stilzwijgend ervan uit dat alle rekenkundige operaties ook gelden voor complexe getallen. Euler heeft zijn stelling op deze manier aangetoond.

Wrong, so wrong ...

In veel boeken wordt geschreven dat j gelijk is aan de wortel van -1:

$$j = \sqrt{-1} \tag{6}$$

Dit is absoluut fout. De wortel uit een getal x is gedefinieerd als een niet-negatief getal y waarvoor geldt dat het kwadraat van y gelijk is aan x. De enige juiste definitie is:

$$j^2 = -1 \tag{7}$$

DE STELLLING VAN DE MOIVRE

Voor elke geheel getal n geldt:

$$(\cos \alpha + j \sin \alpha)^n = \cos n\alpha + j \sin n\alpha \tag{8}$$

We kunnen dat eenvoudig aantonen:

$$(\cos \alpha + j \sin \alpha)^n = e^{jn\alpha} = \cos n\alpha + j \sin n\alpha$$
(9)

Zoals gezegd geldt dit echter voor een geheel getal n.

HOEKEN, HOEKEN EN MEER HOEKEN

Volgens de stelling van De Moivre moet gelden dat:

$$\cos 2\alpha + j\sin 2\alpha = (\cos \alpha + j\sin \alpha)^2 \tag{10}$$

De gelijkheid is alleen waar als de reële en imaginaire delen links en rechts van het isgelijkteken aan elkaar gelijk zijn. We vermenigvuldigen het rechterlid uit:

$$\cos 2\alpha + j \sin 2\alpha = (\cos \alpha + j \sin \alpha)^{2}$$

$$= \cos^{2} \alpha + 2j \cos \alpha \sin \alpha + j^{2} \sin^{2} \alpha$$

$$= \cos^{2} \alpha - \sin^{2} \alpha + 2j \cos \alpha \sin \alpha$$

$$= \cos^{2} \alpha - (1 - \cos^{2} \alpha) + 2j \cos \alpha \sin \alpha$$

$$= 2 \cos^{2} \alpha - 1 + 2j \cos \alpha \sin \alpha$$
(11)

Nu splitsen we de reële en imaginaire delen:

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$
 en $\sin 2\alpha = 2\cos \alpha \sin \alpha$ (12)

Dit zijn de zogenoemde dubbele hoekformules van sinus en cosinus. We kunnen de machten uitbreiden en vinden dan:

$$\cos 3\alpha = 3\cos^3 \alpha - 3\cos \alpha \qquad \text{en} \quad \sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha \cos 4\alpha = 8\cos^4 \alpha - 8\cos^2 \alpha + 1 \quad \text{en} \quad \sin 4\alpha = 4\sin \alpha\cos \alpha - 8\sin^3 \alpha\cos \alpha$$
 (13)

Voor de cosinus volgen de expansies de zogenoemde Tsjebysjev-polynomen^a:

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$$
(14)

waarbij in het linkerlid $T_n(x)$ staat voor $\cos n\alpha$ en het rechterlid x staat voor $\cos \alpha$. Tsjebysjev-polynomen spelen een belangrijke rol bij het ontwerpen van elektronische filters.

^aOok wel geschreven als: Chebyshev, Chebyshov, Tschebyschow, Tchebichef of Tchebycheff

RELATIE MET HYPERBOLISCHE FUNCTIES

De hyperbolische sinus- en cosinusfuncties zijn gedefinieerd als:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 en $\sinh x = \frac{e^x - e^{-x}}{2}$ (15)

Vervangen we x door j α dan volgt:

$$\cosh j\alpha = \frac{e^{j\alpha} + e^{-j\alpha}}{2} = \frac{\cos \alpha + j\sin \alpha + \cos \alpha - j\sin \alpha}{2} = \frac{2\cos \alpha}{2} = \cos \alpha \tag{16}$$

en

$$\sinh j\alpha = \frac{e^{j\alpha} - e^{-j\alpha}}{2} = \frac{\cos \alpha + j\sin \alpha - (\cos \alpha - j\sin \alpha)}{2} = \frac{2j\sin \alpha}{2} = j\sin \alpha \qquad (17)$$

Verder geldt:

$$sinh \alpha = -j sin(j\alpha)
cosh \alpha = cos(j\alpha)$$
(18)

Het is dus mogelijk om de sinus en cosinus van een imaginair getal te berekenen.

Complex toegevoegde getal

Als voor een complex getal z geldt dat:

$$z = a + ib ag{19}$$

dan is het complex toegevoegde of complex geconjungeerde getal z^* :

$$z^* = a - jb \tag{20}$$

Dan geldt vervolgens:

$$z + z^* = a + jb + a - jb = 2a$$

$$z - z^* = a + jb - (a - jb) = 2jb$$

$$z \cdot z^* = (a + jb)(a - jb) = a^2 + b^2$$
(21)

REKENEN MET COMPLEXE GETALLEN

Optellen en aftrekken van complexe getallen gaat als volgt:

$$(a+jb) + (c+jd) = (a+c) + j(b+d) (a+jb) - (c+jd) = (a-c) + j(b-d)$$
(22)

Vermenigvuldigen van twee complexe getallen gaat als volgt:

$$(a+jb) \cdot (c+jd) = ac + jad + jbc + j^2bd$$

= $(ac-bd) + j(ad+bc)$ (23)

Delen van complexe getallen gaat als volgt:

$$\frac{a+jb}{c+jd} = \frac{a+jb}{c+jd} \cdot \frac{c-jd}{c-jd} = \frac{(ac+bd)+j(bc-ad)}{c^2-d^2} \qquad (\text{met } c^2-d^2 \neq 0)$$