# SIL EDUCATION

4/1

සියලු ම හිමිකම් ඇවිරිණි / (மුழுப் பதிப்புரிமையுடையது /All Rights Reserved)

රසායන විදහව - අම්ල දසනායක - රසායන විදහව - අම්ල දසනයක් - ලසනයක් - ලසන

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023 සහ්ඛා්ධ பொதுத் தராதப் பத்திர (உயர் தர)ப் பரீட்சை, 2023 General Certificate of Education (Adv. Level) Examination, 2023

Amila Dasanayake

MBBS (Undergraduate) University of Colombo

රසායන විදසාව I இரசாயனவியல் I Chemistry I 02 S I

2023 Final Paper 04 - MCQ

சැக **දෙකයි** இரண்டு மணித்தியாலம் Two hours

# උපදෙස් :

- 🛠 ආවර්තිතා වගුවක් සපයා ඇත.
- 🛠 මෙම පුශ්න පතුය පිටු 08 කින් යුක්ත වේ.
- 💥 සියලු ම පුශ්න වලට පිළිතුරු සපයන්න.
- 🕸 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- \* උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ **විභාග අංකය** ලියන්න.
- 🛪 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
- \* 1 සිට 50 තෙක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්  $(\times)$  යොදා දක්වන්න.

සාර්වනු වායු නියතය  $R = 8.314 \, \mathrm{J \, K^{-1} mol^{-1}}$ 

ප්ලෑන්ක්ගේ නියතය  $h = 6.626 \times 10^{-34} \, \mathrm{J \, s}$ ආලෝකයේ පුවේගය  $c = 3 \times 10^8 \mathrm{m \, s^{-1}}$ 

- ඇවගාඩ්රෝ නියතය  $N_A = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
- 1. පහත දැක්වෙන I සහ II පුකාශ සලකන්න.
  - I. පරමාණුවලින් ශක්තිය වීමෝචනය හෝ අවශෝෂණය වන්නේ යම් අවමයකින් යුත් විවික්ත පුමාණ වශයෙන් බවයි.
  - II. ආලෝකයට තරංගමය ගුණ මෙන්ම අංශුමය ගුණ ද පවතී.

මෙම I සහ II පුකාශවලින් දෙනු ලබන වාද ඉදිරිපත් කළ විදාාඥයන් දෙදෙනා පිළිවෙලින්,

- (1) නීල්ස් බෝර් සහ ඇල්බට් අයින්ස්ටයින්
- (4) බාමර් සහ නීල්ස් බෝර්
- (2) ඇල්බට් අයින්ස්ටයින් සහ ලුවී ඩී බොග්ලී
- (5) මැක්ස්වෙල් ප්ලාන්ක් සහ ඇල්බට් අයින්ස්ටයින්
- (3) තීල්ස් බෝර් සහ ලුවී ඩී බොග්ලී
- ${f 2.}$  කාක්ෂික තුල පවතින ඉලෙක්ටෝනයකට **නොගැලපෙන** කොන්ටම් කුලකය වන්නේ,  $({f n},\,{f l},\,{f m}_{f l}\,\,,\,{f m}_{f s}$  ලෙස)
  - (1)  $2, 1, 0, {}^{+1}/_{2}$

- (2) 3, 1, +1, +1/2
- (3)  $1, 1, 0, -\frac{1}{2}$

- (4)  $3, 1, -1, -\frac{1}{2}$
- (5) 5, 1, 0, +1/2
- 3. පහත දැක්වෙන සංයෝග අතුරින් තාපයට වැඩිම ස්ථායීතාවයක් දක්වන කාබනේටය වනුයේ,
  - (1)  $Li_2CO_3$
- (2)  $BaCO_3$
- (3) MgCO<sub>3</sub>
- (4) BeCO<sub>3</sub>
- (5) Na<sub>2</sub>CO<sub>3</sub>
- 4. ස්වභාවිකව පවතින ක්ලෝරීන් හි  $^{35}_{17}{
  m Cl}$  සමස්ථානිකය 75% ද  $^{37}_{17}{
  m Cl}$  සමස්ථානිකය 25% ද තිබේ. ස්වභාවිකව පවතින ක්ලෝරීන් හි සාපේක්ෂ පරමාණුක ස්කන්ධය,
  - (1) 36
- (2) 35.50
- (3) 35.47
- (4) 36.5
- (5) 36.8

5.

(1) 2-methyl-3-formylhex-4-enoic acid

(4) 3- formylhex-2-en-2-oic acid

(2) 2-methyl-3-formylhex-4-enoic acid

(5) 2-methyl-3-oxohex-4-enoic acid

- (3) 3-methyl-4-hexenoic acid
- $\mathrm{SO}_7$  හා  $\mathrm{H}_2\mathrm{S}$  වෙන්කර හඳුනා ගැනීමට භාවිතා කළ **නොහැක්කේ,** 
  - (1) වර්ණවත් මල්පෙති
- (2)  $Pb(CH_3COO)_2$

 $(3) N_2O_5$ 

(4)  $As(NO_3)_5$ 

- (5) KMnO<sub>4</sub>
- 7. පරිපූර්ණ නම් කාමර උෂ්ණත්වයේ දී වර්ග මධාන මූල වේගය වැඩිම වායුව වන්නේ,
  - (1) SO<sub>2</sub>
- (2)  $I_2$
- $(3) N_2$
- (4) NaO<sub>2</sub>
- (5) CO<sub>2</sub>

- 8. s ගොනුවේ ලෝහ සියල්ලම සම්බන්ධයෙන් පහත කුමක් **අසතා** වේද?
  - (1) හයිඩුජන් වායුව සමඟ පුතිකිුයා කර හයිඩුයිඩ සාදයි.
  - (2) උණු ජලය සමඟ පුතිකියා කර හයිඩොක්සයිඩ් සාදයි.
  - (3) කාබනේට වල තාප ස්ථයිතාව කාණ්ඩය ඔස්සේ පහළට යනවිට වැඩිවේ.
  - (4) ලෝහ අයනයේ ධුැවීකරණ බලය කාණ්ඩය ඔස්සේ පහළට යනවිට අඩුවේ.
  - (5) නයිටෙුට් තාප වියෝජනය වී ඔක්සිජන් වායුව මුදාහරී.
- 9. He, Li, O, N, K යන මූලදුවායන්ගේ පළමු අයනීකරණ ශක්තිය වැඩි වීමේ නිවැරදි අනුපිළිවෙල වනුයේ,
  - (1) He < Li < O < N < K
- (2) K < Li < O < N < He
- (3) Li < K < O < N < He

- (4) K < Li < N < O < He
- (5) He < O < N < Li < K
- 10.  $PH_3(g)$  සහ HI(g) අතර පුතිකිුයාව පහත දැක්වේ.

$$PH_3(g) + HI(g) \longrightarrow PH_4I(s)$$

 $\Delta H = -101.8 \text{ kJ mol}^{-1}$ 

 $\mathrm{PH}_3(\mathrm{g})$  සහ  $\mathrm{HI}(\mathrm{g})$  වල සම්මත උත්පාදන තාප එන්තැල්පි අගයන් පිළිවෙලින්  $+5.4~\mathrm{kJ}~\mathrm{mol}^{-1}$  හා  $6.5~\mathrm{kJ}~\mathrm{mol}^{-1}$ වේ.  $\mathrm{PH_4I}$  වල සම්මත උත්පාදන එන්තැල්පිය කොපමණද?

(1) -133.7 kJ mol<sup>-1</sup>

- (2) -69.9 kJ mol<sup>-1</sup>
- (3)  $+69.9 \text{ kJ mol}^{-1}$

(4) +133.7 kJ mol<sup>-1</sup>

- (5) -122.9 kJ mol<sup>-1</sup>
- 11.  $SiO_2$  අපදවා ලෙස ඇති ඝන  $NH_4Cl$  නිදර්ශකයක් lg වැඩිපුර NaOH සමඟ පුතිකියා කර වූ විට පිට වූ  $NH_3$ සියල්ල සාන්දුණය  $0.05 \text{ mol dm}^{-3} \text{ H}_2 \text{SO}_4$  දාවණයක් සමඟ පුතිකියා කරවන ලදී. මෙහි දී වැය වූ  $\text{H}_2 \text{SO}_4$ පරිමාව  $20.00~\mathrm{cm}^3$  ක් විය. ඝන නිදර්ශකයේ අඩංගු  $\mathrm{NH_4Cl}$  පුතිශතය ගණනය කරන්න.

(N = 14, H = 1, C1 = 35.5)

- (1) 10.7%
- (2) 21.4%
- (3) 42.8%
- (4) 53.5%
- (5) 78.5%

12. 🔾 අණුව සඳහා වඩාත් පිළිගත හැකි ලුවිස් වාූහය වනුයේ,











13. පහත දී ඇති A,B,C හා D සංයෝගවලින් කුමන ඒවා රත් කිරීමේ දී වායුමය ඵල පමණක් පිට කරයිද?

 $A-(NH_4)_2SO_{3(s)}$ 

 $B-NH_4Cl_{(s)}$ 

 $C-(NH_4)_3CO_{3(s)}$ 

 $D-(NH_4)_2Cr_2O_{7(s)}$ 

(1) A හා D

(2) B හා C

(3) A, B හා C

(4) A හා B

(5) B හා D

14. තාත්වික වායුවක හැසිරීම, පරිපූර්ණ වායුවක හැසිරීමට වඩාත් ම ආසන්න වනුයේ පහත සඳහන් කුමන තත්ත්ව යටතේද?

|     | උෂ්ණත්වය /K | පීඩනය /10 <sup>5</sup> Pa |
|-----|-------------|---------------------------|
| (1) | 50          | 7000                      |
| (2) | 50          | 8                         |
| (3) | 1500        | 140000                    |
| (4) | 1500        | 8                         |
| (5) | 500         | 300                       |

15. ආරම්භයේ දී  $SO_2$  හා  $O_2$ , 1 mol බැගින්  $6\ dm^3$  ක පරිමාවක් තුළ මිශු කර සමතුලිතතාවයට එළඹීමට තැබූ විට  $SO_3\ 0.8\ mol$  ක් සෑදී ඇති බව සොයා ගන්නා ලදී. පද්ධතිය තුළ සිදුවන මෙම පුතිකියාව සඳහා අදාළ උෂ්ණත්වයේ දී  $K_{\rm C}$  අගය වනුයේ,

(1)  $160 \text{ mol}^{-1} \text{dm}^3$ 

(2)  $26.7 \text{ mol}^{-1} \text{dm}^3$ 

(3)  $15 \text{ mol}^{-1} \text{dm}^3$ 

(4) 20 mol<sup>-1</sup>dm<sup>3</sup>

 $(5) 120 \text{ mol}^{-1} \text{dm}^3$ 

16.  $NO_2, N_2O, NH_3, NH_2OH, N_2H_4$  යන අණුවල N පරමාණුවේ ඔක්සිකරණ අංකය **වැඩිවන** පිළිවෙල වනුයේ,

- (1)  $NO_2 < N_2O < NH_3 < NH_2OH < N_2H_4$
- (4)  $N_2O < NO_2 < NH_2OH < N_2H_4 < NH_3$
- (2)  $NH_3 < N_2H_4 < NH_2OH < N_2O < NO_2$
- (5)  $NO_2 \le N_2O \le NH_2OH \le N_2H_4 \le NH_3$
- $(3) \quad NH_3\!<\!NH_2OH\!<\!N_2O\!<\!N_2H_4\!<\!NO_2$

17. Zingiberone හා Vanillin යනු පිළිවෙලින් ඉඟුරු හා වැනිලා වියලි බීජවලින් ලබා ගන්නා සගන්ධ තෙල්වල අඩංගු සංඝටක වේ.
OH



OH O OCH<sub>3</sub> CHO

Zingiberone

Vanillin

මේ සංඝටක එකිනෙකින් වෙන්කර හඳුනාගැනීම සඳහා පහත සඳහන් ඒවායින් භාවිතා කළ හැකිද?

- (1) බේඩි පුතිකාරකය
- (2) Br<sub>2</sub> දියර

(3) Na

(4) තනුක NaOH

(5) ටොලන් පුතිකාරකය

18.  $25^{0}$ C දී  ${\rm Mg}^{2^{+}}$ වලට සාපේක්ෂව සාන්දුණය  $0.02~{\rm moldm}^{-3}$  වූ දාවණයකින්  ${\rm Mg(OH)}_{2}$  ලෙස අවක්ෂේප නොවීමට දාවණයේ තිබිය හැකි ඉහළම pH අගය වනුයේ,  $(25^{\circ}{\rm C}~\xi~{\rm Mg(OH)}_{2}~{\rm s}~K_{\rm sp}{\rm =}4.0{\times}10^{-12}{\rm mol}^{3}{\rm dm}^{-9})$ 

- (1) 4.8
- (2) 9.2
- (3) 7.0
- (4) 9.7
- (5) 12.3

19. XeF<sub>4</sub> අණුවට සමාන හැඩයක් ඇත්තේ,

- (1) PCl<sub>4</sub>
- (2)  $SO_4^{2-}$
- (3) SF<sub>4</sub>
- (4) ICl<sub>4</sub>
- (5) CH<sub>4</sub>

- ${f 20.}$   ${
  m H}_2$  සහ  ${
  m N}_2$  හි සම්මත බන්ධන විඝටන එන්තැල්පි අගයන් පිළිවෙලින්  ${
  m 432~kJmol}^{-1}$  හා  ${
  m 946kJmol}^{-1}$  වන අතර  $m NH_3$  හි සම්මත උත්පාදන එන්තැල්පිය  $-46~{
  m kJmol}^{-1}$  වේ. m N-H සම්මත බන්ධන විඝටන එන්තැල්පිය  $kJmol^{-1}$  වලින් කොපමණද ?
  - +389
- (2) +778
- (3) 389
- (4) -778
- (5) + 381.3

21. පහත සංයෝග 3 සලකන්න.



ඉහත සංයෝග උතුරින් පහත දැක්වෙන පුතිකිුයා තුනම සිදුකරන්නේ කවර සංයෝග/ය ද?

- ජලීය  $NaHCO_3$  සමග පුතිකිුයා කර  $CO_2$  මුදා හරී.
- ullet ජලීය  $\mathrm{HNO}_2$  සමග පුතිකිුයා කර  $\mathrm{N}_2$  මුදා හරී.
- ජලීය NaOH සමග පුතිකිුයා කර NH3 මුදා හරී.
- (1) (A) පමණි

(2) (B) පමණි

(3) (C) පමණි

- (4) (A) සහ (B) පමණි
- (5) ඉහත කිසිවක් නොවේ
- **22.**  $2AB_{2(g)} + B_{2(g)} \rightleftharpoons 2AB_{3(g)}$
- $; K_{p} = K_{1}$
- $AB_{3(g)} \rightleftharpoons AB_{2(g)} + \frac{1}{2}B_{2(g)}$
- $; K_{\rm p} = K_{\rm 1}$

යන සමතුලිත පුතිකිුිිිිිිිිිි දෙක සම්බන්ධයෙන් සතා වන්නේ,

- (1)  $K_1 = \frac{1}{K_2^2}$  (2)  $K_1^2 = K_2$  (3)  $K_1 = K_2^2$  (4)  $K_1 = \frac{1}{K_2}$  (5)  $K_1^2 = \frac{1}{K_2}$
- 23. 25°C දී සිදුවන පහත පුතිකියාව සලකන්න.

$$Ag_2O(s) \longrightarrow 2Ag(s) + \frac{1}{2}O_2(g)$$

මෙම පුතිකිුයාවේ සම්මත එන්තැල්පි විපර්යාසය  $+30.5~{
m kJ}~{
m mol}^{-1}$ ද සම්මත එන්ටොපි විපර්යාසය  $+66~{
m JK}^{-1}{
m mol}^{-1}$ වේ. මෙම පුතිකිුයාව සම්බන්ධයෙන් පහත පුකාශ අතුරින් අසකා වන්නේ,

- (1) පුතිකියාවේ සම්මත ගිබ්ස් මුක්ත ශක්ති වෙනස  $+10.8~{
  m kJ~mol}^{-1}$  වේ.
- (2) පුතිකියාව සිදුවීමේ දී එන්ටොපිය වැඩි වුනද පුතිකියාව ස්වයංසිද්ධ නොවේ.
- (3) මෙම පුතිකිුයාව ස්වයංසිද්ධ වන්නේ  $189^{\circ}\mathrm{C}$  ට ඉහළ උස්ණත්වවල දී පමණි.
- (4) මෙම පුතිකිුයාව  $462 \mathrm{K}$  ට පහළ උස්ණත්වවල දී ස්වයංසිද්ධ නොවේ.
- (5)  $25^{\circ}$ C දී  $Ag_{\gamma}O$  වියෝජනය නොවුණ ද  $100^{\circ}$ C දී වියෝජනය වේ.
- **24.** 2A(g) + 2B(g)  $\longrightarrow$  C(g) + 2D(g) යන පුතිකියාවේ යාන්තුණය පහත වේ.

2B(g) \_\_\_\_\_  $B_{2(g)}$  (සමතුලිකතා නියතය K ) පියවර I

පියවර II  $B_2(g) + A(g) \xrightarrow{K_1} P(g) + D(g)$ 

පියවර III  $P(g) + A(g) \xrightarrow{K_2} C(g) + D(g)$ 

ඉහත දෙවන පියවර වේග ණීර්ණායක පියවර නම්, සමස්ථ පුතිකිුිිියාවේ ශීඝුතා පුකාශනය නිවැරදිව දක්වා ඇත්තේ,

- (1)  $R = K_1K[B_2(g)][A(g)]$
- (2)  $R = \frac{K_1}{K} [B_2(g)][A(g)]$
- (3)  $R = K_1 K[B(g)]^2 [A(g)]$

- (4)  $R = K[B(g)]^2[A(g)]^2$
- (5)  $R = K[B(g)]^2$
- 25. කාමර උෂ්ණත්වයේ දී ජල වාෂ්ප සහිත  $N_2, O_2$  අඩංගු වායු සාම්පලයක පීඩනය  $640~{
  m torr}$  වේ. මෙම වායු සාම්පලයේ අඩංගු  $N_2: O_2$  මවුල අනුපාතය 3:1 වේ නම් එම උෂ්ණත්වයේ දී  $N_2$  හි ආංශික පීඩනය කවරේද?
  - (1) 480 torr
- (2) 540 torr
- (3) 300 torr
- (4) 450 torr
- (5) 510 torr
- 26. කඨින ජලය  $100.0 \, \mathrm{cm}^3$  සමඟ සම්පූර්ණයෙන් පුතිකිුයා කිරීමට  $0.02 \, \mathrm{moldm}^{-3}$  HCl දාවණ  $16 \, \mathrm{cm}^3$  අවශා වූ අතර දර්ශකය ලෙස මෙතිල් ඔරේන්ජ් භාවිතා කරන ලදී. ජලයේ තාවකාලික කඨිනත්වය  $\mathrm{mgdm}^{-3} \, \mathrm{CaCO}_3$  ලෙස පුකාශ කල විට එහි අගය වනුයේ,  $(\mathrm{CaCO}_3 = 100)$ 
  - (1) 80
- (2) 160
- (3) 320
- (4) 260
- (5) 100

- **27.** 17 වන කාණ්ඩයේ සම්බන්ධව පහත ඒවායින් **අසතා** වන්නේ,
  - (1) කාණ්ඩයේ පහළට යැමේදී හයිඩුයිඩ වල ආම්ලිකතාවය වැඩිවේ.
  - (2) කාණ්ඩයේ පහළට  $F_2 > Cl_2 > Br_2 > I_2$  ලෙස බන්ධන විඝටන එන්තැල්පිය අඩුවේ.
  - (3) හයිඩුයිඩ සැලකූ විට වැඩිම තාපාංකය ඇත්තේ HF වලට වේ.
  - (4) HF හි උත්පාදන එන්තැල්පිය තාපදායක වුවද HI උත්පාදන එන්තැල්පිය අවශෝෂක වේ.
  - (5) HF සහ HCl සාන්දු  $H_2SO_4$  මගින් ඔක්සිකරණය නොවන අතර HBr හා HI ඔක්සිකරණය වී පිළිවෙලින්  $Br_2$  හා  $I_2$  සාදයි.
- 28. නියත උෂ්ණත්වයේ දී සිදුවන රසායනික පුතිකියාවක කාලයත් සමඟ පුතිකියා ශීඝුතාව අඩු වීමට හේතු වන්නේ පහත කුමක් ද?
  - (1) පුතිකිුයාවේ සකිුයන ශක්තිය වැඩි වීමයි.
- (4) පුතිකියාවේ එන්තැල්පි විපර්යාසය අඩු වීමයි.
- (2) පුතිකියක වල සාන්දුණය අඩු වීමයි.
- (5) පුතිකියක අණු ගැටුම් වල ශක්ති අඩු වීමයි.
- (3) පුතිකිුයාව සමතුලිතාවයට ළඟා වීමයි.
- 29. පියවර I Na ලෝහයේ හයිඩුජන් හා ඩියුටීරියම් මිශුණයක් සමග රත් කෙරේ. එවිට සම මවුලික ඵල මිශුණයක් ලැබේ.

පියවර - II ලැබෙන ඵල මිශුණය  $H_2O$  තුළ දිය කරන ලදී,

- මේ සම්බන්ධ **සතා** පුකාශය තෝරන්න.
- (1) I පියවරේ දී NaH, NaD,  $H_2$  හා  $D_2$  ඵල ලෙස ලැබේ.
- (2) II පියවරේ දී ලැබෙන එල NaOH, NaOD හා  $H_2$  පමණි.
- (3) NaD ජලය සමග සැදෙන ඵලය ෆිනොප්තලින් රෝස පැහැ කරයි.
- (4) NaD ජලය සමග  $OD^+$ සාදයි.
- (5) 1 වන පියවරේ දී ලැබෙන HD හා  $H_2$  අතර අනුපාතය 1:2 වේ.
- **30.** පහත සඳහන් කුමන වගන්ති **සතා** වේ ද?
  - (1)  $(NH_4)_2CO_3$  ජලීය දාවණයක්  $CaSO_4$  සමඟ පුතිකියා කරවීමෙන්  $(NH_4)_2SO_4$  සැදිය හැකිය.
  - (2) ස්වභාවික වායුවේ ඇති  $H_2S$  වලින් සල්ෆර් නිෂ්පාදනය කිරීම සඳහා  $SO_2$  හා  $H_2$  වායු භවිතා කෙරේ.
  - (3) KOH භාවිතා කර ළදරු සබන් නිපදවයි.
  - (4) ස්පර්ශ කිුයාවලියේ දී  $SO_3$  ලබා ගැනීමට  $SO_2$  හා  $O_2$  අතර පුතිකිුයාව සඳහා අඩු පීඩන තත්ත්ව අනුගුහය දක්වයි.
  - (5) සොල්වේ කුමයෙන්  $\mathrm{K}_2\mathrm{CO}_3$  සංශ්ලේෂණය කළ හැක.

- අංක 31 සිට 40 තෙක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන පුතිවාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිවාරය/ පුතිවාර කවරේ දැ යි තෝරා ගන්න.
  - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
  - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
  - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
  - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

පිළිතුරු පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

### ඉහත උපදෙස් සම්පිණ්ඩනය

| (1)                              | (2)                                                | (3)                              | (4)                                                | (5)                                                          |
|----------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------|--------------------------------------------------------------|
| (a) සහ (b)<br>පමණක්<br>නිවැරදියි | ( <i>b</i> ) සහ ( <i>c</i> )<br>පමණක්<br>නිවැරදියි | (c) සහ (d)<br>පමණක්<br>නිවැරදියි | ( <i>d</i> ) සහ ( <i>a</i> )<br>පමණක්<br>නිවැරදියි | <b>වෙනත්</b> පුතිචාර සංඛ්‍යාවක් හෝ<br>සංයෝජනයක් හෝ නිවැරදියි |

- 31. Li වල රසායනය සම්බන්ධයෙන් මින් කුමන පුකාශ / පුකාශය **සතා** වේද?
  - (a) 1 වන කාණ්ඩයේ මූල දුවාවලින් ඉහළම දුවාංකය ඇත.
  - (b) වාතයේ රත් කළ විට ඔක්සයිඩය මෙන්ම නයිටුයිඩය ද සාදයි.
  - (c) නයිටේටය රත් කළ විට වායුවක් වශයෙන්  $\mathrm{O}_2$  පමණක් පිට කරයි.
  - (d) 1 වන කාණ්ඩයේ ලෝහ කැටායන අතරින් අධිකම සජලන එන්තැල්පිය ඇත.
- 32. NaHCO3 නිපදවීමේ සෝලවේ කුමය පිළිබඳව පහත දැක්වෙන කුමන පුකාශ/පුකාශය **අසකා** වේද?
  - (a) ඇමෝනීකරණ අටළුව තුල  $35~^{\circ}{
    m C}$  පමණ උෂ්ණත්වයක් පවත්වා ගනියි.
  - (b) පොදු අයන ආචරණ මූලධර්මය අනුව  $\mathrm{NaHCO}_3$  අවක්ෂේප වීම අවසාන අටළුවේදි සිදු වේ.
  - (c) ආරම්භක දුවා ලෙස NaOH හා  $CaCO_3$  යොදා ගනියි.
  - (d) NaCl ජලීය දාවණය  $\mathrm{NH}_3$  වලින් සංකෘප්ත කිරීමට පෙර  $\mathrm{CO}_2$  වලින් සංකෘප්ත කිරීම සිදු කරයි.
- **33.** d ගොනුවේ මූලදුවායෙන් සම්බන්ධව **සතා** වන්නේ පහත කවර පුකාශද/පුකාශයද?
  - (a) 3d ගොනුවේ මූලදුවා අතුරෙන් ඉහළ පළමු අයනීකරණ ශක්තිය Zn වලට ඇත.
  - (b) Sc සිට Cu දක්වා වූ ලෝහ මූලදුවා වල විදහුත් සෘණතා අගය ඉහළ යයි.
  - (c) සංයෝගවල +1 ඔක්සිකරණ අවස්ථාව පෙන්වන්නේ  $\mathrm{Cu}$  හා  $\mathrm{Cr}$  පමණි.
  - (d)  $MnO_2$ ,  $Cr_2O_3$  හා  $V_2O_3$  ආම්ලික ඔක්සයිඩ වේ.
- 34. රසායනික පුතිකිුියාවක් පිළිබඳව පහත සඳහන් කුමන පුකාශය/පුකාශ **සතා** වේ ද?
  - (a) පුතිකියා ශීඝුතාවයේ ඒකක  $\operatorname{mol} \operatorname{dm}^{-3} \operatorname{s}^{-1}$  වන අතර එය සමස්ත පුතිකියාවේ පෙළ මත රඳා පවතී.
  - (b) ශීඝුතා නියතයේ ඒකක මගින් සමස්ත පුතිකිුයාවේ පෙළ නිර්ණය කළ හැකිය.
  - (c) ශීඝුතා නියතය උෂ්ණත්වය මෙන්ම උත්පේුරක මඟින් ද වෙනස් වේ.
  - (d) පුතිකියකවල සාන්දුණය වෙනස් කිරීමෙන් පුතිකියාවේ පෙළ වෙනස් කළ හැකිය.
- 35. පොටෑසියම් අයඩයිඩ් හා පොටෑසියම් ක්ලෝරයිඩ් වෙන් කර හඳුනා ගැනීමට භාවිතා කළ හැකි ප්‍රතිකාරකය / ප්‍රතිකාරක වන්නේ,
  - (a) ජලීය NH3
- (b) සාන්දු  $\mathrm{H}_2\mathrm{SO}_4$
- (c) (CH<sub>3</sub>COO)<sub>2</sub>PB<sub>(aq)</sub>
- (d)  $FeSO_{4(aq)}$

- 36. පහත දී ඇති දැලිස අතරින් නිර්ධැවීය අණුක දැලිසක් නොවන්නේ,
  - $(a) I_2(s)$
- (b)  $SiO_2(s)$
- (c) H<sub>2</sub>O(s)

(d) නැප්තලීන්

O OH 37.  $CH_3 - C - CH_3$  $C - CH_3$ CH<sub>3</sub> (A) (B) OH Cl  $CH_2 - \ddot{C} - CH_2 - \ddot{C} - CH_3$  $C - CH_3$  $CH_3$  $CH_3$ (C) (D)

- (a) A,D බවට පත් වීම නියුක්ලියෝෆිලික ආකලන පුතිකිුයාවක් ආශුයෙන් සිදුවේ.
- (b) B, C බවට පරිවර්ථනයට  $PCl_3$  හෝ  $PCl_5$  හෝ නිර්ජල  $ZnCl_2$ /සාන්දු HCl හාවිතා කල හැක.
- (c) A,  $\langle \overline{\circ} \rangle$  MgCl වියලි ඊතර මාධායේදී පුතිකියා කරවූ විට B ලබා දේ.
- (d) A තනුක NaOH සමග සංගණන පුතිකිුයාවකින් D ලැබෙන අතර D කාමර උෂ්ණත්වයට වඩා ඉහළ උෂ්ණත්වවල දී ආම්ලික මාධායේ ස්ථායීව පවතියි.
- 38. දෙන ලද උෂ්ණත්වයකදී යම් මොහොතක N අණු සංඛ්‍යාවක් ඇති වායුමය පද්ධතියක වායු අණු වල වේග වාාප්තිය a වකුයෙන් පෙන්නුම් කරයි නම් පහත කුමන පුකාශ/පුකාශය **සතා** වේද?



- (a) ඉහළ උෂ්ණත්වයක්දී පුස්ථාරයේ හැඩය  ${f c}$  වකුයෙන් පෙන්නුම් කරයි.
- (b) අණු සංඛාාව දෙගුණ කළ විට පුස්ථාරයේ හැඩය b හෝ d විය හැකිය.
- (c) පහළ උෂ්ණත්වයකදී පුස්තාරයේ හැඩය c හෝ d විය හැකිය.
- (d) He වායුව c වකුයෙන් පෙන්නුම් කළහොත්  $\operatorname{Ar}$  වායුව  $\operatorname{d}$  වකුයෙන් පෙන්නුම් කළ හැකිය.
- **39.**  $A_{(g)}+B_{(g)}\longrightarrow 2C_{(g)}+D_{(g)}$  යන පුතිකිුයාවේ සම්මත එන්තැල්පි විපර්යාසය  $-300~{
  m kJmol}^{-1}$  වේ. මෙම පුතිකිුයාව පිළිබඳ **සතා** වනුයේ පහත කුමන පුකාශය/පුකාශ ද ?
  - (a) සම්මත ගිබ්ස් ශක්ති විපර්යාසය ඍණ අගයක් ගනී.
  - (b) සම්මත එන්ටොපි විපර්යාසය ධන අගයක් ගනී.
  - (c) සම්මත ගිබ්ස් ශක්ති විපර්යාසය ධන අගයක් ගනී.
  - (d) පුතිකියාව පහත් උෂ්ණත්ව වලදී ස්වයංසිද්ධ නොවේ.
- 40. පහත දැක්වෙන ඒවායින් බන්ධන පිළිබඳ නිවැරදි පුකාශය/පුකාශ තෝරන්න.
  - (a) HCl අණුවක H හා Cl අතර අයනික බන්ධන ඇත.
  - (b) බන්ධනයට සහභාගී වන පරමාණුවල විදයුත් සෘණතා වෙනස අනුව බන්ධනවල ධුැවීයතාව පිළිබඳව පුකාශ කළ හැකිය.
  - (c) අයනික සංයෝගයක ඇනායනවල ධුැවණශීලතාව වැඩි වීම නිසා අයනික බන්ධනයේ සහසංයුජ ලක්ෂණ වැඩි වේ.
  - (d) අයනික සංයෝගයක කැටායනවල ධුැවීකරණ බලය වැඩි වන විට අයනික ලක්ෂණ වැඩිවේ.

• අංක 41 සිට 50 තෙක් එක් පක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට **හොඳින්** ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාර දැයි තෝරා පිළිතුරු පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

| පුතිචාරය | පළමුවැනි පුකාශය | දෙවැනි පුකාශය                                              |
|----------|-----------------|------------------------------------------------------------|
| (1)      | සතා වේ.         | සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.           |
| (2)      | සතා වේ.         | සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා <b>නොදෙයි.</b> |
| (3)      | සතා වේ.         | අසතා වේ.                                                   |
| (4)      | අසතා වේ.        | සතා වේ.                                                    |
| (5)      | අසතා වේ.        | අසතා වේ.                                                   |

|     | පළමුවැනි පුකාශය                                                                                                                        | දෙවැනි පුකාශය                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 41. | SrCrO <sub>4</sub> තනුක HNO <sub>3</sub> අම්ලයේ දිය වේ. ලැබෙන<br>දාවණය තැඹිලි පාට වේ.                                                  | ආම්ලික මාධායේදී ${ m CrO}_4^{2^-}$ අයනය ${ m Cr}_2{ m O}_7^{2^-}$ බවට පත් වේ.                                                |
| 42. | $\mathrm{Al}_{(\mathrm{aq})}^{3+}$ සහ $\mathrm{Zn}_{(\mathrm{aq})}^{2+}$ සාන්ද $\mathrm{NH}_3$ දාවණයක් මඟින්<br>හඳුනාගත නොහැකිය.       | $\mathrm{Al}_{(\mathrm{aq})}^{3+}$ සහ $\mathrm{Zn}_{(\mathrm{aq})}^{2+}$ සාන්ද $\mathrm{NH}_3$ හි දියවේ.                     |
| 43. | පොපීන් සමග HBr පුතිකියාවෙන් පුකාශ සකිීය<br>සංයෝග ලැබේ.                                                                                 | පොපීන් තිුමාණ සමාවයවිකතාව දක්වයි.                                                                                            |
| 44. | $ m H_{2(g)}$ හා $ m N_{2(g)}$ මගින් ඇමෝනියා නිපදවීමේ දී $ m Pt$ උත්පේුරකයක ලෙස කිුයා කරයි.                                            | උත්පේුරකයක මගින් මෙම පුතිකිුයාවේ පුතිකිුයා<br>එන්තැල්පිය අඩු කර නව අඩු ශක්ති පුතිකිුයා<br>මාර්ගයක් හඳුන්වා දෙයි.             |
| 45. | ඉහල වේග වලින් ගමන් කරන නියුටෝන වල<br>ගමන් මාර්ගය කෙරෙහි චුම්භක ක්ෂේතු<br>බලපාන්නේ නැත.                                                 | නියුටුෝන ආරෝපිත අංශු විශේෂයක් නොවේ.                                                                                          |
| 46. | උපරිම සම්භාවා චේගයට වඩා අඩු වේග ඇති අණු<br>සංඛාාව උෂ්ණත්වයේ වැඩි වීමත් සමග අඩු වේ.                                                     | අණුවල මධාායන චාලක ශක්තිය $\sqrt{T}$ වලට සමානුපාතික වේ. ( $T$ - නිරපේක්ෂ උෂ්ණත්වය)                                            |
| 47. | ${ m Fe}^{3+}$ , ආම්ලික ${ m KI}$ සමග මිශු කර එයට වැඩිපුර ${ m Na}_2 { m S}_2 { m O}_3$ එකතු කළ විට ලැබෙන පද්ධතිය අවර්ණවේ.             | වැඩිපුර $\mathrm{Na_2S_2O_3}$ ඇති විට $\mathrm{Fe}^{3+}$ අවර්ණ<br>සංකීර්ණයක් සාදයි.                                          |
| 48. | $2\mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)}$ $\longrightarrow$ $2\mathrm{SO}_{3(g)}$ යන පුතිකිුයාව,<br>ඉහළ පීඩන යේදීමෙන් ඉදිරියට නැඹුරු වේ. | $2{ m SO}_{2({ m g})}+{ m O}_{2({ m g})}$ $\longrightarrow$ $2{ m SO}_{3({ m g})}$ යන පුතිකිුයාවේ දී වායු අණු සංඛාහව අඩු වේ. |
| 49. | දුාවණයක පරිමාව උෂ්ණත්වය මත රඳා පවතින<br>නිසා, සාන්දුණය ද උෂ්ණත්වය මත රඳා පවතී.                                                         | පරිමාව විත්ති ගුණයක් වන අතර සාන්දුණය සටනා<br>ගුණයකි.                                                                         |
| 50. | AgCl පුබල විද <b>ු</b> ත් විච්ජේදායකි.                                                                                                 | පුබල විදයුත් විච්ජේදායක් යනු ජලීය දාවණයක දී<br>පූර්ණ වශයෙන් අයනීකරණය වන දුවා වේ.                                             |

### සියලු ම හිමිකම් ඇවිරිණි / (மුழுப் பதிப்புரிமையுடையது /All Rights Reserved

රසායන විදහව - අම්ල දසනායක - රසායන විදහව - අම්ල දසනයක - රසායන - රසායන විදහව - අම්ල දසනයක - රසායන -

රසායන විදුනවIIஇரசாயனவியல்IIChemistryII



Amila Dasanayake

MBBS (Undergraduate) University of Colombo

# 2023 Final Paper 04 - Essay

**පැය තුනයි** மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு தேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

විභාග අංකය : .....

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිලිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදා ගන්න.

- \* ආවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- 🗚 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- \* සාර්වනු වායු නියතය,  $R=8.314\,\mathrm{J\,K^{-1}mol^{-1}}$
- st ඇවගාඩ්රෝ නියතය,  $N_A=6.022 imes 10^{23} \mathrm{mol}^{-1}$
- 🛞 මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේ දී ඇල්කයිඩ කාණ්ඩ සංකෂිප්ත ආකාරයකින් නිරූපණය කළ හැකි ය.

- A කොටස වනුහගත රචනා (පිටු 02-08)
- \* සියලුම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- \* ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බවද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බවද සලකන්න.
  - $\square$  B කොටස සහ C කොටස් රචනා (පිටු 09-15)
- \* එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ගනිමින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- st සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු  ${f A},{f B}$  සහ  ${f C}$  කොටස් තුනට පිළිතුරු  ${f A}$  කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.

### පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

| කොටස | පුශ්න අංකය | ලැබූ ලකුණු |
|------|------------|------------|
|      | 1          |            |
| A    | 2          |            |
| A    | 3          |            |
|      | 4          |            |
|      | 5          |            |
| В    | 6          |            |
|      | 7          |            |
|      | 8          |            |
| С    | 9          |            |
|      | 10         |            |
|      | එකතුව      |            |

|           | එකතුව |
|-----------|-------|
| ඉලක්කමෙන් |       |
| අකුරෙන්   |       |

# සංකේත අංක උත්තර පතු පරීක්ෂක 1 උත්තර පතු පරීක්ෂක 2

පරීක්ෂා කළේ : අධීක්ෂණය කළේ :

### A කොටස - වපුහගත රචනා

පුශ්න **හතරටම** මෙම පතුයේම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය **100** කි.)

මෙම තී්රයේ කිසිවක් නො ලියන්න.

- 1. (a) පහත සඳහන් පුශ්න ආවර්තිතා වගුවේ තුන්වන ආවර්තයේ මූලදුවා හා සම්බන්ධ වේ. (i) සිට (vi) පුශ්න වලට පිළිතුරු සැපයීමේදී මූලදුවායේ සංකේතය ලියන්න.
  - (i) පුමාණයෙන් කුඩාම ඒක පරමාණුක අයනය සාදන මූලදුවාය ......
  - (ii) උදාසීන හයිඩුයිඩයක් සාදන මූලදුවා
  - (iii) පුබල ඔක්සිකාරකයක් වන වායුමය මූලදුවාසය ......
  - (iv) බහුරෑපිතාව දක්වන මූලදවාය/මූලදවා
  - (v) කාමර උෂ්ණත්වයේදී ජලය සමග පුතිකිුයාවක් නොදක්වන මූලදුවා/මූලදුවාය

(ලකුණු 30 යි)

(b) අණුක සූතුය  ${
m CINO_3}$  වන ක්ලෝරීන් නයිටේට් නම් රසායනික දුවාය ඕසෝන් ස්ථරය ක්ෂය වීමට සම්බන්ධ වේ යැයි විශ්වාස කෙරේ. එහි සැකිල්ල පහත පරිදි වේ.

(i) මෙම අණුව සඳහා වඩාත් පිළිගත හැකි ලුවිස් වයුහය අදින්න.

(ii) ඉහත අදින ලද ලුවිස් ව\හුහය සඳහා තිබිය හැකි සම්පුයුක්ත ව\හුහ අදින්න.

- (iii) ඉහත (ii) හි දී අඳින ලද සම්පුයුක්ත වයුහවල ස්ථායිතාව පුරෝකථනය කරන්න.
- (iv) පහත සඳහන් ලූවිස් වූහුගය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති පරමාණු වල,
  - I. පරමාණුව වටා VSEPR යුගල්
  - II. පරමාණුව වටා ඉලෙක්ටෝන යුගල ජාාමිතිය
  - III. පරමාණුව වටා හැඩය
  - IV. පරමාණුවේ මුහුම්කරණය සඳහන් කරන්න.

නො ලියන්න.

$$\begin{matrix} O \\ \parallel \\ H_2N-C- \overset{\centerdot}{O}-CH_2-C \equiv C-H \end{matrix}$$

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

$$O_7$$
 $I$ 
 $N_1 - C_2 - O_3 - C_4 - C_5 - C_6$ 

|      |                           | $N_1$ | C <sub>2</sub> | O <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> |
|------|---------------------------|-------|----------------|----------------|----------------|----------------|
| I.   | VSEPR යුගල්               |       |                |                |                |                |
| II.  | ඉලෙක්ටෝන<br>යුගල ජාාමිතිය |       |                |                |                |                |
| III. | හැඩය                      |       |                |                |                |                |
| IV.  | මුහුම්කරණය                |       |                |                |                |                |

(v) ඉහත (iv) කොටසෙහි දෙන ලද ලුවිස් වූහයෙහි පහත සඳහන්  $\sigma$  බන්ධන සෑදීමට සහභාගි වන පරමාණුක/මුහුම්කාක්ෂික හඳුනාගන්න.

 $N_1 - C_2 \qquad N_1 \qquad \dots$ 

C<sub>2</sub> .....

II.  $C_2 - O_7 C_2$ 

O<sub>7</sub> .....

III.  $C_2 - O_3 C_2$ 

O<sub>3</sub> .....

V.  $C_4 - C_5$   $C_4$  .....

C<sub>5</sub> .....

(ලකුණු 50 යි)

- පහත වරහන් තුළ අඩංගු ගුණය වැඩිවන පිළිවෙලට සකස් කරන්න.
  - (i) CH<sub>3</sub> ,OH , NH<sub>2</sub> , F (භාෂ්මිකතාව)

.....

.....

(iii) LiCl ,LiBr ,LiI (අයනික ලක්ෂණ)

.....<.....<......

(iv) Li, Be, B, C (දෙවන අයනීකරණ ශක්තිය)

<

100

(ලකුණු 20 යි)

මෙම තීරයේ කිසිවක් නො ලියන්න.

| <b>2.</b> (a) |       | යනු P ගොනුවට අයත් මූලදුවායකි. මෙය බහුරූපීතාවය දක්වයි. මෙම මූලදුවා දිලීර නාශකවල<br>ංගුය. තවද කෂාලක තුල ද මෙම මූලදුවාය අන්තර්ගත වේ.                                                                                                                           |
|---------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | (i)   | A හඳුනාගන්න.                                                                                                                                                                                                                                                |
|               | (ii)  | A වල ඉලෙක්ටුෝන විතාහසය ලියන්න.                                                                                                                                                                                                                              |
|               | (iii) | A වල උපරිම සහ අවම ඔක්සිකරණ අවස්ථා හා තවත් ඔක්සිකරණ අවස්ථා 2ක් ලියා ඒවාට                                                                                                                                                                                     |
|               | (111) | උදාහරණය බැගින් ලියන්න.                                                                                                                                                                                                                                      |
|               |       |                                                                                                                                                                                                                                                             |
|               |       |                                                                                                                                                                                                                                                             |
|               | (iv)  | A වල බහුලම බහුරූපී ආකාරය දක්වා එහි අණුක ව <b>හුහය අදි</b> ත්ත.                                                                                                                                                                                              |
|               |       |                                                                                                                                                                                                                                                             |
|               |       |                                                                                                                                                                                                                                                             |
|               | (v)   | ඉහත බහුරූපී ආකාරයට අමතරව තවත් බහුරූපී ආකාර 3 ක් දක්වන්න.                                                                                                                                                                                                    |
|               |       |                                                                                                                                                                                                                                                             |
|               |       | (cm = 50 S)                                                                                                                                                                                                                                                 |
|               |       | (ලකුණු 50 යි)                                                                                                                                                                                                                                               |
| (b)           | ලේ    | පහක ජලීය කැටායන 5 ක් ඇත. ඒවා නම් $\mathrm{Al}^{3+},~\mathrm{Zn}^{2+},~\mathrm{Pb}^{2+},~\mathrm{Ag}^+$ සහ $\mathrm{Mg}^{2+}$ වේ. මේවා බල් කිරීමට අමතක වී ඇත. ඒවා හඳුනාගැනීමට සිදු කළ පරීක්ෂණ 5 ක් හා නිරීක්ෂණ පහත ශ්වේ. (මේවා සියලු දුාවණ වලට සිදුකරන ලදි.) |
|               | (i)   | NaOH යෙදූ විට ජෙලටිනීමය අවක්ෂේපයක් ඇතිවීම. වැඩිපුර NaOH යෙදූවිට එය දිය<br>නොවීම.                                                                                                                                                                            |
|               | (ii)  | m NaOH යෙදූ විට ජෙලටිනීමය අවක්ෂේපයක් ඇතිවීම. ලැබෙන අවක්ෂේපය වැඩිපුර $ m NaOH$ යෙදූ විට දියවීම.                                                                                                                                                              |
|               | (iii) | NaOH යෙදූ විට ජෙලටිනීමය සුදු අවක්ෂේපයක් ලැබී වැඩිපුර NaOH යෙදූවිට දිය විය. මෙම<br>අවක්ෂේපය ඇමෝනියාවල දිය නොවීය.                                                                                                                                             |

(iv) HCl යෙදූ විට සුදු අවක්ෂේපයක් ලැබෙන අතර එය වැඩිපුර ඇමෝනියාවල දියවීම. (v) HCl යෙදූ විට සුදු අවක්ෂේපයක් ලැබෙන අතර එය වැඩිපුර  $NH_3$  වල දිය නොවීම.

| මෙම   | තීරයේ<br>ක්<br>ලියන්න. |
|-------|------------------------|
| කිසිව | ක්                     |
| නො    | ලියන්න.                |

|     |     | පරීක්ෂණ අංකය     | 3               |              | කැටායන      | / කැටායන     | ාය          |
|-----|-----|------------------|-----------------|--------------|-------------|--------------|-------------|
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
| II. | ඉහත | පරීක්ෂණ පහේදී    | සිදුවන පුතිකිුය | ාවල දී අවක්ම | ෂ්පය ඇති වී | ාීමට අදාළ තු | ාුලිත සමීකර |
|     |     | යවීමට අදාල තුලි  |                 |              |             |              |             |
|     |     | G000 GC1(* D)(*) | TO TOWN (P)     | 122121       |             |              |             |
|     | 7   | 4 (-6-           |                 | <b></b>      |             |              |             |
|     |     | 4 (10 -50        |                 | <b></b>      |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |
|     |     |                  |                 |              |             |              |             |

| / |     |   |
|---|-----|---|
| - | 100 | - |
| ( |     |   |

 ${f 3.}$   ${\it (a)}$   ${\it (i)}$  පහත පුතිකිුයාවේ පෙළ නිර්ණය කිරීම සඳහා  ${\it 25^{\circ}C}$  දී සිදු කරන ලද පරීක්ෂණ  ${\it 5}$  ක පුතිඵල පහත පරිදි වේ.

$$BrO_{3 (aq)}^{-} + 6I_{(aq)}^{-} + 6H_{(aq)}^{+} \longrightarrow 3I_{2(s)} + 3H_{2}O_{(l)} + Br_{(aq)}^{-}$$

| පරික්ෂණය | BrO ් සාන්දුණය<br>(mol dm - 3) | I⁻ සාන්දුණය<br>(mol dm <sup>-3</sup> ) | H <sup>+</sup> සාන්දුණය<br>(mol dm <sup>-3</sup> ) | ආරම්භක සීඝුතාවය<br>(mol dm <sup>-3</sup> s <sup>-1</sup> ) |
|----------|--------------------------------|----------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| 1        | 0.10                           | 0.60                                   | 0.60                                               | $1 \times 10^{-3}$                                         |
| 2        | 0.20                           | 0.60                                   | 0.60                                               | $2 \times 10^{-3}$                                         |
| 3        | 0.20                           | 1.20                                   | 0.60                                               | $4 \times 10^{-3}$                                         |
| 4        | 0.20                           | 0.60                                   | 1.20                                               | 8 × 10 <sup>-3</sup>                                       |
| 5        | 0.40                           | 1.20                                   | 0.30                                               | R                                                          |

| (i) | පුතිකිුයාවේ | සීඝුතාව | සඳහා ( | වේග | නියතය | ඇතුළත් | පුකාශනයක් | ලියන්න. |  |
|-----|-------------|---------|--------|-----|-------|--------|-----------|---------|--|
|     |             |         |        |     |       |        |           |         |  |
|     |             |         |        |     |       |        |           |         |  |

| (ii)  | ඉහත පුතිකිුයාවේ සමස්ථ පෙළ සොයන්න.                                                                                              |
|-------|--------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
| (iii) | ඉහත පුතිකිුයාවට අදාළ සීඝුතා නියතය (k) හි අගය ගණනය කරන්න.                                                                       |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       | පස්වන පරීක්ෂණයට අදාල දත්ත වගුවේ පරිදි වේ නම් එම පරීක්ෂණයට අදාළව ආරම්භක<br>සීඝුතාව (R) සොයන්න.                                  |
|       |                                                                                                                                |
| (v)   | පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි                                                                                       |
|       |                                                                                                                                |
|       |                                                                                                                                |
| (:\)  | 999 . 0                                                                                                                        |
|       | ඉහත පුතිකිුයාව සඳහා ඔබ ලබා ගත් පාඨාංක භාවිතා කර ${ m BrO}_3^-$ සාන්දුණය කාලය සමඟ වෙනස් වන ආකාරය දළ පුස්තාරයකින් නිරූපණය කරන්න. |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |
|       |                                                                                                                                |

(ලකුණු 70 යි)

| <b>Š</b>         | බේමැරින් තුළ දී ගම2<br>ාවණයක් අන්තර්ගත<br>මෙඟ පුතිකිුියාව පහතු                                                                   | කරයි. මේ                                                               | අනුව සබ්මැරීනයක ව                                                                                                    | - '                                                    | ,                                                                                      | . CO <sub>2</sub> LiOH                                                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                  |                                                                                                                                  | •                                                                      | → Li <sub>2</sub> CO <sub>3(a</sub>                                                                                  | $_{\rm a)} + \rm H_2O_{\rm (l)}$                       |                                                                                        |                                                                                                   |
| æ                |                                                                                                                                  |                                                                        | ු වායුවේ පීඩනය 790<br>-                                                                                              | ()                                                     |                                                                                        |                                                                                                   |
|                  | •                                                                                                                                |                                                                        | ා පරිමාව $2.4 	imes 10^3 	ext{dn}$                                                                                   |                                                        | nes 312 K e a                                                                          | ลิ                                                                                                |
|                  |                                                                                                                                  |                                                                        | LiOH ඇතුළු කිරීමෙ:                                                                                                   |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        | $\mathcal{L}$ iOTI ඇතුව කර්මේ.<br>වී ඇති $\mathrm{Li}_2\mathrm{CO}_3$ ස්කන්                                          | _ •                                                    | -                                                                                      |                                                                                                   |
| •                |                                                                                                                                  | •                                                                      | ා ඇත E12CO3 සක්පා<br>තාවේ යැයි උපකල්පන                                                                               | •                                                      | (2000)                                                                                 | තුළ ඇත ශන                                                                                         |
| _                | Li = 6, C = 12, O =                                                                                                              |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  | ,                                                                                                                                | ,                                                                      |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        |                                                                                                   |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        | (ලකුණු 30 යි)                                                                                     |
|                  |                                                                                                                                  |                                                                        |                                                                                                                      |                                                        |                                                                                        | (ලකුණු 30 යි)                                                                                     |
|                  |                                                                                                                                  |                                                                        | C නමැති වහුහ සමාවය<br>කේවයේ දී පතිනියා ක                                                                             |                                                        |                                                                                        | තාව පෙන්වයි.                                                                                      |
| ඒ                | ්ටා HNO <sub>2</sub> සමඟ ස                                                                                                       | තාමර උෂ්ණ                                                              | _<br>ාත්වයේ දී පුතිකිුයා ක                                                                                           | ාළ විට පිළි <u>ෙ</u>                                   | ාවලින් D, E, I                                                                         | තාව පෙන්වයි.<br>F යන පුකාශ                                                                        |
| ඒ<br>ස           | ්වා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගෙ                                                                                    | තාමර උෂ්ණ<br>ග්ග තුනක් ල                                               | _<br>ත්වයේ දී පුතිකිුයා ක<br><sub>ලි</sub> බා දේ. ඒවා KMnO <sub>4</sub>                                              | ාළ විට පිළි<br>ෙසමඟ පුතිකිග                            | වෙලින් D, E, I<br>යා කර වූ විට l                                                       | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්                                                        |
| ඒ<br>ස           | ඒවා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගේ<br>ලැබෙන ඵල වලින් ප                                                                | තාමර උෂ්ණ<br>හ්ග තුනක් (<br>මණක් 2,4-I                                 | ු<br>තේවයේ දී පුතිකිුයා ක<br><sub>ව</sub> බා දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්                            | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>ෂේපයක් ලබා              | වෙලින් D, E, I<br>සා කර වූ විට l<br>ා දේ. D,E, F ස                                     | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub>               |
| ඒ<br>ස<br>ල<br>ස | ඒවා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට වි                                            | තාමර උෂ්ණ<br>හ්ග තුනක් (<br>මණක් 2,4-1<br>පීළිවෙලින් (                 | ිත්වයේ දී පුතිකියා ක<br>ලබා දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ශ<br>G, H, I සංයෝග ලැසේ                      | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>යා කර වූ විට l<br>ා දේ. D,E, F ස<br>ත් ජාහාමිතික ස                   | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| ඒ<br>ස<br>ල<br>ස | ව්වා $\mathrm{HNO}_2$ සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට වි<br>පෙන්වයි. A, B, C, D                    | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | ු<br>තේවයේ දී පුතිකිුයා ක<br><sub>ව</sub> බා දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්                            | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>යා කර වූ විට l<br>ා දේ. D,E, F ස<br>ත් ජාහාමිතික ස                   | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| ඒ<br>ස<br>ල<br>ස | ඒවා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට වි                                            | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | ිත්වයේ දී පුතිකියා ක<br>ලබා දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ශ<br>G, H, I සංයෝග ලැසේ                      | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>යා කර වූ විට l<br>ා දේ. D,E, F ස<br>ත් ජාහාමිතික ස                   | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| ඒ<br>ස<br>ල<br>ස | ව්වා $\mathrm{HNO}_2$ සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට වි<br>පෙන්වයි. A, B, C, D                    | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | ිත්වයේ දී පුතිකියා ක<br>ලබා දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ශ<br>G, H, I සංයෝග ලැසේ                      | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>යා කර වූ විට l<br>ා දේ. D,E, F ස<br>ත් ජාහාමිතික ස                   | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| ඒ<br>ස<br>ල<br>ස | ්වා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට දි<br>පෙන්වයි. A, B, C, D<br>ආකාර පෙන්වීමට අව | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | තේවයේ දී පුතිකියා ක<br>බො දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ර<br>G, H, I සංයෝග ලැසේ<br>ි සහ I හි වයුහ පහත  | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>සා කර වූ විට l<br>ා දේ. D,E, F ද<br>ත් ජහාමිතික ස<br>අඳින්න. (තිුමාව | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| ඒ<br>ස<br>ල<br>ස | ්වා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට දි<br>පෙන්වයි. A, B, C, D<br>ආකාර පෙන්වීමට අව | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | තේවයේ දී පුතිකියා ක<br>බො දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ර<br>G, H, I සංයෝග ලැසේ<br>ි සහ I හි වයුහ පහත  | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>සා කර වූ විට l<br>ා දේ. D,E, F ද<br>ත් ජහාමිතික ස<br>අඳින්න. (තිුමාව | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| ඒ<br>ස<br>ල<br>ස | ්වා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට දි<br>පෙන්වයි. A, B, C, D<br>ආකාර පෙන්වීමට අව | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | තේවයේ දී පුතිකියා ක<br>බො දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ර<br>G, H, I සංයෝග ලැසේ<br>ි සහ I හි වයුහ පහත  | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>සා කර වූ විට l<br>ා දේ. D,E, F ද<br>ත් ජහාමිතික ස<br>අඳින්න. (තිුමාව | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| # C # C          | ්වා HNO <sub>2</sub> සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට දි<br>පෙන්වයි. A, B, C, D<br>ආකාර පෙන්වීමට අව | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | තේවයේ දී පුතිකියා ක<br>බො දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ර<br>G, H, I සංයෝග ලැසේ<br>ි සහ I හි වයුහ පහත  | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>සා කර වූ විට l<br>ා දේ. D,E, F ද<br>ත් ජහාමිතික ස<br>අඳින්න. (තිුමාව | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |
| # C # C          | ව්වා HNO2 සමඟ ස<br>මොවයවිකතාව සංගේ<br>ඇබෙන ඵල වලින් ප<br>මෙඟ රත් කළ විට දි<br>පෙන්වයි. A, B, C, D<br>ආකාර පෙන්වීමට අව            | තාමර උෂ්ණ<br>හ්ග තුනක් ල<br>මණක් 2,4-1<br>පිළිවෙලින් C<br>, E, F, G, H | ත්වයේ දී පුතිකිුයා ක<br>ඉබා දේ. ඒවා KMnO <sub>4</sub><br>DNP සමඟ කහ අවක්ශ<br>G, H, I සංයෝග ලැබේ<br>සහ I හි වාපුහ පහත | ාළ විට පිළි<br>ෙසමඟ පුතිකිං<br>මේපයක් ලබා<br>බ. H පමණක | වෙලින් D, E, I<br>යා කර වූ විට l<br>ලේ. D,E, F ද<br>ත් ජපාමිතික ස<br>අඳින්න. (තිුමාන්  | තාව පෙන්වයි.<br>F යන පුකාශ<br>E හා F මඟින්<br>සාන්දු H <sub>2</sub> SO <sub>4</sub><br>මොවයවිකතාව |

(b)

G Η නො ලියන්න. (ලකුණු 45 යි) (i) පහත පුතිකිුයා පටිපාටිය සලකන්න.  $\mathrm{CH_3} - \mathrm{CH} = \mathrm{CH_2} - \underbrace{\frac{\mathrm{X}}{\mathrm{SS}}}_{\mathrm{SS}} + \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_3}$   $\underbrace{\frac{\mathrm{Y}}{\mathrm{SS}}}_{\mathrm{SS}} + \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_3}$ පුතිකිුයාව 3 PCC  $X,\,Y$  පුතිකාරක සහ Z ඵලයේ වහුහය පහත දී ඇති කොටු තුළ අඳින්න. Z X (ii) පහත සඳහන් ෆීනෝල් හි පුතිකිුයා දෙක සලකන්න. J සහ K වාූහ පහත කොටු තුළ අඳින්න. K (ii) ඉහත (i) හා (ii) හි සඳහන් 1,2,3,4 සහ 5 යන එක් එක් පුතිකිුයා කුමන පුතිකිුයා වර්ගයට අයත් දැයි දක්වන්න. I. පුතිකියාව 1 -II. පුතිකියාව 2 -III. පුතිකිුයාව 3 -IV. පුතිකිුයාව 4 -V. පුතිකිුයාව 5 -

(ලකුණු 25 යි)

(c) පහත දක්වෙන වගුව සම්පූර්ණ කරන්න.

| П |                       |
|---|-----------------------|
|   | මෙම තීරයේ             |
|   | මෙම තී්රයේ<br>කිසිවක් |
|   | නො ලියන්න.            |

100

|       | පුතිකිුයකය                         | පුතිකාරකය                                                     | සකිුය විශේෂය | පුධාන ඵලය |
|-------|------------------------------------|---------------------------------------------------------------|--------------|-----------|
| (i)   | 0                                  | O<br>  <br>  CH <sub>3</sub> – C – Cl/නිර්. AlCl <sub>3</sub> |              |           |
| (ii)  | $CH_3 - C = CH_2$                  | HBr                                                           |              |           |
| (iii) | O    CH <sub>3</sub> – C – H       | තනුක NaOH                                                     |              |           |
| (iv)  | CH₃                                | Br <sub>2</sub> / FeBr <sub>3</sub>                           |              |           |
| (v)   | CH <sub>3</sub> CH <sub>2</sub> Cl | CH <sub>3</sub> C≡C⁻Na <sup>+</sup>                           |              |           |

(ලකුණු 30 යි)

## සියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved

රසායන විදහව - අම්ල දසනායක - රසායන විදහව - அமில தசநாயக்க - இரசாயனவியல் - இரசாயனவியல் - இரசாயனவியல் - இரசாயனவியல் - மான் විදහව - අම්ල දසනායක - රසායන විදහව - අම්ල දසනයක් - ඉඩව - අම්ල දසනායක - රසායන විදහව - අම්ල දසනායක - රසායන විදහව - අම්ල දසනායක - රසායන විදහව - අම්ල දසනයක් - ඉඩව - අම්ල දසනයක් - ඉ

රසායන විදහාව II இரசாயனவியல் II Chemistry II

# 2023 Final Paper 04 - Essay



\* සාර්වනු වායු නියනය,  $R = 8.314 \, \mathrm{J \, K^{-1} mol^{-1}}$ 

\* ඇවගාඩ්රෝ නියතය,  $N_A=6.022 imes 10^{23} 
m mol^{-1}$ 

### B කොටස - රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

5. (a) (i) I. පහත වගුවේ දී ඇති තාපගතික දත්ත භාවිත කරමින් මෙහි දක්වෙන පුතිකිුයාව සඳහා  $300~{
m K}$  දී සහ  $800~{
m K}$  දී ගිබ්ස් ශක්ති වෙනස් වීම ගණනය කරන්න. එම උෂ්ණත්වවල දී පුතිකිුයාවේ ස්වයංසිද්ධතාව ගැන අදහස් දක්වන්න.

$$Cr_2O_{3(s)}$$
 + 3  $H_2(g)$   $\longrightarrow$  2  $Cr_{(s)}$  + 3  $H_2O_{(g)}$ 

|                                                       | $Cr_2O_{3(s)}$ | $H_{2(g)}$ | $Cr_{(s)}$ | $H_2O_{(g)}$ |
|-------------------------------------------------------|----------------|------------|------------|--------------|
| සම්මත උත්පාදන එන්තැල්පිය<br>/ kJ mol <sup>-1</sup>    | -822           | 0          | 0          | -242         |
| සම්මත එන්ටුෝපිය / J mol <sup>-1</sup> K <sup>-1</sup> | 90             | 131        | 27         | 189          |

- II. ගණනයේ දී කරනු ලබන උපකල්පනයක් වේ නම් එය කුමක් ද?
- (ii) පහත දක්වෙන පුතිකිුයා සිදුවීමේ දී පද්ධතිය තුළ එන්ටොපිය අඩු වේ ද, වැඩි වේ ද, නොවෙනස්ව පවතී ද යන්න සඳහන් කරන්න.
  - $I. N_2O_{4(g)} \ 1 \ mol \ s NO_{2(g)} \ බවට පත් කිරීම.$
  - II.  $O_{2(g)}$  2 mol ක් සහ  $N_{2(g)}$  1 mol ක් මඟින්  $NO_{(g)}$  සෑදීම.
  - III.  $O_{2(g)}$  0.5 mol ක් සහ  $Cu_{(s)}$  1 mol ක් මඟින්  $CuO_{(s)}$  සැදීම.

(ලකුණු 60 යි)

- (b) (i) ඩොල්ටන්ගේ ආංශික පීඩන නියමය ලියා දක්වන්න.
  - (ii) පරිපූර්ණ වායු සමීකරණය ලියා එහි පද හඳුන්වා දී ඒ ඇසුරෙන් ඩෝල්ටන්ගේ ආංශික පිඩන නියමය වුනුත්පන්න කරන්න.
  - (iii) සිලින්ඩරාකාර සංවෘත දෘඪ බඳුනක් වලනය විය හැකි සැහැල්ලු සුමට පිස්ටනයකින් කුටීර දෙකකට බෙදා ඇත. A කුටීරය පරිමාව  $300~{\rm dm}^3$  වන අතර එහි  $H_2$  වායුව අඩංගු වේ. B කුටීරය  $500~{\rm dm}^3$  වන අතර එහි  $CH_4$  සහ  $CH_$



- (1) B කුටීරය තුළ පීඩනය ගණනය කරන්න.
- (2) B කුටීරය තුළ මීතේන් සහ හීලියම් හි ආංශික පීඩන ගණනය කරන්න.
- (3) A කුටිරය තුළ  $H_2$  මවුල ගණන ගණනය කරන්න.
- (4) A කුටිරය තුළට ඝන  $I_2$  254 g ඇතුල් කර 448  $^{\circ}$ C ට පත් කරන ලදී. එවිට සියලු  $I_2$  හයිඩුජන් සමග පුතිකියා කර HI වායුව සැදුනි යැයි උපකල්පනය කරන්න. B කුටීරයේ උෂ්ණත්වය  $27^{\circ}$ C හිම පවත්වා ගනී. (I=127)
  - I. පිස්ටනය A කුටීරයේ සිට B කුටීරය දෙසට කුමන දුරක් ගමන් කරන ලද්දේ ද?
  - II. A කුටීරය තුළ 448  $^{\circ}C$  දී පවතින එක් එක් වායුවල ආංශික පීඩන ගණනය කරන්න.

(ලකුණු 90 යි)

**6.** (a) පරිමාව  $V \, m^3$  ක් වන දෘඪ බඳුනක් තුළට වායුමය  $PCl_5 \, 1.00 \, mol$  ක් ඇතුළු කරන ලද අතර  $T_1$  උෂ්ණත්වයේ දී එය පහත සමතුලිතය කරා එළඹිනි.

$$PCl_5(g)$$
  $\longrightarrow$   $PCl_3(g) + Cl_2(g)$ 

 $ext{PCl}_5$  හි 0.2 mol ක් සමතුලිත අවස්ථාවේ දී විඝටනය වූ අතර, පද්ධතියේ මුළු පීඩනය  $1.00 imes 10^5$   $ext{Pa}$  විය.

- (i) අාංශික පීඩන ඇසුරින් සමතුලිතා නියතය  $(K_P)$  ගණනය කරන්න.
- (ii) සාන්දුණය ඇසුරින් සමතුලිතතා නියතය ( $K_{
  m C}$ ) ගණනය කරන්න. ( $T_1$ = $500~{
  m K}$ )
- (iii) මෙම උෂ්ණත්වයේ දී ම ඉහත සමතුලිත පද්ධතියට  ${
  m Cl}_2$  වායුවෙන්  $0.3~{
  m mol}$  ක් ඇතුලු කොට පද්ධතිය නැවත සමතුලිතතාවයට එළඹීමට සලස්වන ලදී. සමතුලිතතාවයට එළඹුනු පසු පද්ධතියේ ඇති  ${
  m PCl}_{5(g)}$  මවුල ගණන  ${
  m x}~{
  m mol}$  මවුල පුමාණයකින් ඉහළ යන ලදී.  ${
  m x}~{
  m q}$  ඇසුරෙන්  ${
  m PCl}_5({
  m g})$  හි නව අාංශික පීඩනය සඳහා ගණිතමය පුකාශනයක් ගොඩනගන්න. ( ${
  m x}~{
  m v}$  හැර වෙතත් සංකේත භාවිතා කළ නොහැක.)

(ලකුණු 85 යි)

$$(b)$$
 A දාවණය  $ightarrow 0.1 \ mol \ dm^{-3}$  වූ NaOH B දාවණය  $ightarrow 0.1 \ mol \ dm^{-3}$  වූ HCl

ඉහත දුාවණ සුදුසු පරිදි භාවිතයෙන් අම්ල - භෂ්ම අනුමාපනයක්  $25^{\circ}\mathrm{C}$  දී සිදු කිරීමට සැරසෙයි.

- (i) අනුමාපනයේ දී අනුමාපන ප්ලාස්කුවට භාවිතා කරන දුාවණය හේතු සහිතව දක්වන්න.
- (ii) මෙම අනුමාපණයේ දී ලැබෙන pH විචලන වකුය දළ වශයෙන් ඇඳ දක්වන්න.
- (iii) ඉහත අනුමාපනයේ දී සමකතා ලක්ෂය අසල සීසු pH විචලන පරාසය ලියන්න.

- (iv) ඉහත දුාවණ වෙනුවට  $0.01~{
  m mol~dm^{-3}}$  වන දුාවණ භාවිතා කරයි නම්, එහි දී සමකතා ලක්ෂය අසල ශීඝ pH විචලන පරාසය දක්වන්න.
- (v) ඉහත B දුාවණය වෙනුවට එම සාන්දුණයම සහිත  $CH_3COOH$  යොදන්නේ නම්,
  - I. අනුමාපකය (බියුරෙට්ටුව තුල ඇති දාවණය) විය යුත්තේ කුමක් ද?
  - II. සමකතා ලක්ෂයේ දී pH 7ට වඩා වැඩි විය යුතු ද අඩු විය යුතු ද යන්න හේතු සහිතව දක්වන්න.
  - III. මෙම අනුමාපනයට යෝගා දර්ශකය වන්නේ කුමක් දැයි හේතු සහිතව පැහැදිලි කරන්න.

(ලකුණු 65 යි)

7. (a) A,B,C,D යනු කෝමියම් හි සංගත සංයෝග වේ. ඒවාට අෂ්ටතලීය ජාහාමිතියක් ඇත. කෝමියම් එකම ඔක්සිකරණ අවස්ථාවේ පවතී. එක් එක් සංයෝගයෙ හි ලිගන වර්ග දෙකක් ලෝහ අයනයට සංගත වී ඇත. සංයෝග වල අණුක සූතු පහත පරිදි වේ. (පිළිවෙලින් නොවේ.)

සංයෝග වල ජලීය දුාවණ වලට  ${
m AgNO}_3$  එකතු කර  ${
m NH}_3$  සමඟ පරීක්ෂා කළවිට නිරීක්ෂණ පහත පරිදි වේ.

| සංයෝගය | AgNO <sub>3</sub> සමඟ පරීක්ෂාව                                     |
|--------|--------------------------------------------------------------------|
| A      | තනුක $\mathrm{NH}_{3(\mathrm{aq})}$ වල දුංචා සුදු අවක්ෂේපයක් ලැබේ. |
| В      | සාන්දු $\mathrm{NH_3}$ වල දාවා කහ පාට අවක්ෂේපයක් ලැබේ.             |
| C      | අවක්ෂේපයක් නැත.                                                    |
| D      | අවක්ෂේපයක් නැත. සා.HCl හමුවේ වායු පිටකරයි.                         |

- (i) A,B,C,D හි වයුහ ලියන්න.
- (ii) සංගත සංයෝග වල Cr හි ඔක්සිකරණ අවස්ථාව කුමක්ද?
- (iii) මෙම සංයෝග වල Cr හි ඉලෙක්ටෝනික විනහාසය ලියන්න.
- (iv) A,B,C,D හි IUPAC නාම ලියන්න.
- (v)  $\operatorname{AgNO}_3$  සමග පිරියම් කළවිට ලැබෙන අවක්ෂේපවල රසායනික සූතු ලියන්න.
- (vi) A,B,C,D සංගත සංයෝග වල ලෝහ අයනය හා සංගත වී නොමැති අයන තිබේ නම් එම එක් එක් අයනය හඳුනාගැනීම සඳහා රසායනික පරික්ෂාවක් බැගින් දෙන්න. (**සැ.යු:** මෙහි සඳහන් පරික්ෂා නොවිය යුතුයි.)

(ලකුණු 75 යි)

(b) පහත දී ඇති තාප රසායනික දත්ත උපයෝගී කර ගනිමින් දී ඇති පුශ්න වලට පිළිතුරු සපයන්න.

 ${
m KCl}_{(s)}$  හි සම්මත දැලිස් එන්තැල්පිය =  $-717~{
m kJ~mol}^{-1}$   ${
m Cl}_{2(g)}$  හි සම්මත බන්ධන එන්තැල්පිය =  $242~{
m kJ~mol}^{-1}$   ${
m Cl}_{(g)}$  හි පුථම ඉලෙක්ටෝනකරණ එන්තැල්පිය =  $-349~{
m kJ~mol}^{-1}$   ${
m K}_{(s)}$  හි සම්මත ඌර්ධවපාතන එන්තැල්පිය =  $+89~{
m kJ~mol}^{-1}$   ${
m K}_{(g)}$  හි සම්මත පුථම අයනීකරණ එන්තැල්පිය =  $+419~{
m kJ~mol}^{-1}$   ${
m K}_{(aq)}^+$  හි සම්මත උත්පාදන එන්තැල්පිය =  $204~{
m kJ~mol}^{-1}$   ${
m Cl}_{(aq)}$  හි සම්මත උත්පාදන එන්තැල්පිය =  $164~{
m kJ~mol}^{-1}$ 

- (i) බෝන් හේබර් චකුයක් ආධාරයෙන්  $\mathrm{KCl}_{(s)}$  හි සම්මත උත්පාදන එන්තැල්පිය ගණනය කරන්න.
- (ii)  $\mathrm{KCl}_{(s)}$  හි සම්මත දුාවණ එන්තැල්පිය සොයන්න.
- (iii)  $K^+_{(g)}$  හි සම්මත සජලන එන්තැල්පිය සොයන්න.
- (iv)  $\mathrm{KCl}_{(\mathrm{s})}$  මවුල 1 ක් ජලයේ දියවීමේ දී සිදුවන සම්මත එන්ටොපි විපර්යාසය  $43\ \mathrm{J}\ \mathrm{mol}^{-1}\mathrm{K}^{-1}$  නම් එහි දී සිදුවන සම්මත ගිබස් ශක්ති විපර්යාසය ගණනය කරන්න.
- (v)  $KCl_{(s)}$  ජලයේ දියවීම තාප අවශෝෂක කිුිිියාවලියක් වුවද ජලයේ පහසුවෙන් දියවන්නේ මන්දැයි පහදන්න.

(ලකුණු 75 යි)

### C කොටස - රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

8. (a) CH₃CH₂CHO → C₃H₂ − N=C (CH₃)₂ යන පරිවර්තනය පහත පුතිකාරක පමණක් භාවිතයෙන් සිදු කරන්න. පියවර 8 කට නොවැඩි විය යුතුය.

(NH<sub>3</sub>, H<sub>2</sub>O, LiAlH<sub>4</sub>, Mg, ඊකර, PCl<sub>5</sub>, සාන්දු H<sub>2</sub>SO<sub>4</sub>, KMnO<sub>4</sub>, P.C.C.)

(ලකුණු 50 යි)

(b) පහත කාබනික සංශ්ලේෂණය සිදු කරන්න. ආරම්භක සංයෝගය හැර පිටතින් කාබනික සංයෝග භාවිතා කළ නොහැක. (P.C.C භාවිතා කිරීමට අවස්ථාව ඇත.)

$$\bigcirc \text{COO} \longrightarrow \text{HO} \longrightarrow \text{N}_2 \longrightarrow \text{CHO}$$

$$\text{NH}_2$$

(ලකුණු 50 යි)

- (c)  $\mathrm{CH_3CH_2CONHCH_3}$  යන සංයෝගය සංශ්ලේෂණයේ දී එකිනෙකට වෙනස් මාර්ග දෙකකින් සිදු කළ හැක.
  - (i) එක් එක් මාර්ග සඳහා පුතිකියක ලියන්න.
  - (ii) මින් එක් පුතිකිුයකයක් NaOH හමුවේ රත්කරන විට කටුක ඝන්ධයක් සහිත Q වායුව පිටකරයි. එම පුතිකිුයකය හා Q වායුව හඳුනාගන්න.

(ලකුණු 25 යි)

(*d*)

- (i) ඇල්කයිල් හේලයිඩ OH¯ සමඟ නියුක්ලියෝෆිලික ආදේශ පුතිකිුයා වලට සහභාගී වීමට අමතරව වෙනත් වර්ගයේ පුතිකිුයාවකට ද භාජනය විය හැකි ය. එම පුතිකිුයා වර්ගය කුමක් ද?
- (ii) එතිල් ක්ලෝරයිඩ් සහ  $OH^-$  අතර සිදුවන ඔබ ඉහත සඳහන් කළ පුතිකියාවේ යාන්තුණය ලියන්න.

(ලකුණු 25 යි)

- 9. (a) A යනු වර්ණවත් ඝනයකි. එයට තනුක  $H_2SO_4$  අම්ලය එකතු කළ විට B නම් අවර්ණ වායුව හා C නම් දාවණය සාදයි. C දාවණයට තනුක  $NH_3$  එකතු කළ විට පළමුව D අවක්ෂේපය සාදයි. වැඩිපුර ජලීය  $NH_3$  එකතු කළ විට එම අවක්ෂේපය දිය වී තද නිල් පාට දාවණයක් වන E සාදයි. C දාවණයට තනුක HCl එකතු කර  $H_2S$  වායුව යැවූ විට අවක්ෂේපයක් නොසෑදේ. B වායුව ආම්ලික  $K_2Cr_2O_7$  සමග ආවිලතාවයකින් යුත් කොළ පාට දාවණයක් ලබාදේ.
  - (i) **A** , **B** , **C** , **D** හා **E** හි රසායනික සූතු ලියන්න.
  - (ii)  $A + H_2SO_4$  යන පුතිකිුයාව සඳහා තුලිත රසායනික සූතු ලියන්න.
  - (iii)  ${f B}+{f K}_2{f Cr}_2{f O}_7$  යන පුතිකිුයාව සඳහා අර්ධ අයනික සමීකරණ ඇසුරින් තුලිත රසායනික සමීකරණය ලියන්න.

(ලකුණු 40 යි)

(b)  ${f R}$  යනු ජලයේ හොඳින් දියවන ඉහළ තාපාංකයක් (1304 °C) හා ඉහළ දුවාංකයක් (661 °C) ඇති සුදු පැහැති ස්එටිකරූපී සංයෝගයකි.  ${f R}$  හි ජලීය දුාවණයක් යොදා සිදුකළ පරීකෘණ හා ඒවායේ නිරීකෘණ පහත වගුවේ දුක්වේ.

|    | පරීකෂණය                                                         | නිරීකෂණය                                             |
|----|-----------------------------------------------------------------|------------------------------------------------------|
| 1. | ආම්ලික KIO3 දුාවණයක් එකතු කිරීම.                                | දුඹුරු පාට දුාවණය                                    |
| 2. | ජලීය $\mathrm{Cu(NO_3)}_2$ දාවණයක් එකතු කිරීම.                  | රතු දුඹුරු පාට අපැහැදිලි දුාවණය, S ලෙස<br>නම් කර ඇත. |
| 3. | ${ m S}$ දාවණයට ${ m Na}_2{ m S}_2{ m O}_3$ දාවණයක් එකතු කිරීම. | රතු දුඹුරු පාට නැතිවී සුදු අවක්ෂේපයක්<br>සෑදේ.       |
| 4. | R ඝනයට පහන්සිළු පරීකෂාව සිදු කිරීම.                             | දැල්ලේ කහ වර්ණය                                      |

- (i) **R** හඳුනාගන්න. (හේතු දැක්වීම අවශා නොවේ)
- (ii) ඉහත  $1\,,2\,,3$  පරීක්ෂණවලට අදාළ තුලිත රසායනික/අයනික සමීකරණ ලියන්න.
- (iii) සන  ${f R}$  සඳහා ඉහළ දුවාංක හා තාපාංක පැවතීමට හේතුව ඉතා කෙටියෙන් දක්වන්න.

(ලකුණු 35 යි)

(c) P නම් දාවණයක  $\mathrm{Fe}^{2^+}$ ,  $\mathrm{Fe}^{3^+}$ හා  $\mathrm{Ba}^{2^+}$ යන අයන පමණක් අඩංගු වේ. ඒවායේ සාන්දුණ සෙවීම සඳහා පහත කියාවලි අනුගමනය කරන ලදී.

### කිුයාවලිය I

P දුාවණයෙන්  $200.00~{
m cm}^3$  ට වැඩිපුර  $K_2SO_4$  දුාවණයක් එකතු කර ලැබෙන අවක්ෂේපය පෙරා සෝදා වියළා ගන්නා ලදී. අවක්ෂේපයේ ස්කන්ධය 5.825g ක් විය.

### කිුයාවලිය II

P දුාවණයේ  $100.00~{
m cm}^3$ අනුමාපන ප්ලාස්කුවට ගෙන එයට වැඩිපුර KI දුාවණයක් එක් කරන ලදී. පිටවන  $I_2$  දර්ශකය ලෙස පිෂ්ඨය භාවිත කර  $0.2~{
m mol~dm}^{-3}~Na_2S_2O_3$  දුාවණයක් සමඟ අනුමාපන කරන ලදී. වැය වූ  $Na_2S_2O_3$  පරිමාව  $200.00~{
m cm}^3$  ක් විය.

# කුියාවලිය III

දාවණයෙන්  $100.00~\mathrm{cm}^3$  ක් පිරිසිදු යකඩ කුඩු සමඟ බොහෝ වෙලාවක් සොලවන ලදී. ඉතිරි වූ යකඩ කුඩු දාවණය පෙරීමෙන් ඉවත් කරන ලදී. පෙරනය ආම්ලික කර  $0.1~\mathrm{mol~dm}^{-3}~\mathrm{KMnO_4}$  දාවණයක් සමඟ අනුමාපනය කළවිට වැය වූ පරිමාව  $50.00~\mathrm{cm}^3$  ක් විය.

- (i) කියාවලිය II හා III හි දී සිදුවන සියළු පුතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) P දාවණයේ අඩංගු  $Fe^{2+}$ ,  $Fe^{3+}$ හා  $Ba^{2+}$ අයන සාන්දුණ  $mol\ dm^{-3}$  වලින් ගණනය කරන්න.

(ලකුණු 75 යි)

- **10.** (a) හේබර් කුමය භාවිතයෙන් ඇමෝනියා නිෂ්පාදනය පුධාන රසායනික කර්මාන්තවලින් එකකි.
  - (i) හේබර් කිුියාවලියේ දී භාවිත කරන පුධාන අමුදවා සඳහන් කරන්න.
  - (ii) මෙහිදී සිදුවන පුතිකිුයාව සඳහා තුලිත සමීකරණය සුදුසු තත්ත්ව සමග ලියා දක්වන්න.
  - (iii) මෙම කර්මාන්තයේ දී පුශස්ත තත්ත්ව යොදා ගත්තද අමුදුවා පුතිකිුයා කුටීරය තුළදී මුළුමනින්ම  $m NH_3$  බවට පත් නොවේ. හේතු දක්වන්න.
  - (iv) ඵලදායක ලෙස ඇමෝනියා නිෂ්පාදනයේ දී පුතිකිුිිිිියා නොකළ අමුදුවා කෙසේ භාවිත කරයි ද?
  - (v) උෂ්ණත්වය වැඩිකරන විටදී  $NH_3$  ඵලදාව අඩුවේ. ලේ චැට්ලියර් මූලධර්මය ඇසුරින් මෙය පහදන්න.
  - (vi) මෙම කියාවලිය සඳහා අවශා බලශක්ති ජනනය පිණිස යොදාගත හැකි එක් පුනර්ජනනීය පුභවයක් නම් කරන්න. එහි වාසියක් සඳහන් කරන්න.
  - $({
    m vii})$  පොහොර නිෂ්පාදනය හැර  ${
    m NH_3}$  හි වෙනත් එක් පුයෝජනයක් සඳහන් කරන්න.

(ලකුණු 75 යි)

- (b) විවිධ කර්මාන්තවලින් වායුගෝලයට එකතුවන ඇතැම් අපවායු අම්ල වැසි ඇති කිරීමට දායක වේ.
  - (i) අම්ල වැසි ඇති කිරීමට දායක වන වායු පුභේද දෙකක් නම් කරන්න.
  - (ii) ඉහත (i) සඳහා නම් කළ එම වායුමය පුභේද දෙක අම්ල වැසි ඇතිවීමට දායකවන ආකාරය තුලිත රසායනික සමීකරණ ආශුයෙන් පහදා දෙන්න.
  - (iii) අම්ල වැසි සඳහා දායක වන වායුමය පුභේද දෙක නිපදවීමට අදාළ කර්මාන්ත දෙකක් හඳුනාගන්න.
  - (iv) ඉහත (i) හි සඳහන් කළ වායුමය පුභේද මෙම කර්මාන්ත මගින් වායුගෝලයට එකතු වන ආකාරය කෙටියෙන් පහදන්න.
  - (v) අම්ල වැස්ස මගින් පස කෙරෙහි ඇති කරන බලපෑම් දෙකක් ලියා දක්වන්න.

(ලකුණු 75 යි)

\*\*\*

### අවර්තිතා වගුව

| 1 | 1<br>H   |          |          |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |                       |                       |                       | 2<br>He               |
|---|----------|----------|----------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 2 | 3<br>Li  | 4<br>Be  |          |                      |                      |                      |                     |                      |                      |                      |                      |                      | 5<br>B               | 6<br>C               | 7<br>N                | 8<br>O                | 9<br>F                | 10<br>Ne              |
| 3 | 11<br>Na | 12<br>Mg |          |                      |                      |                      |                     |                      |                      |                      |                      |                      | 13<br>Al             | 14<br>Si             | 15<br>P               | 16<br>S               | 17<br>Cl              | 18<br>Ar              |
| 4 | 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti             | 23<br>V              | 24<br>Cr             | 25<br>Mn            | 26<br>Fe             | 27<br>Co             | 28<br>Ni             | 29<br>Cu             | 30<br>Zn             | 31<br>Ga             | 32<br>Ge             | 33<br>As              | 34<br>Se              | 35<br>Br              | 36<br>Kr              |
| 5 | 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr             | 41<br>Nb             | 42<br>Mo             | 43<br>Tc            | 44<br>Ru             | 45<br>Rh             | 46<br>Pd             | 47<br>Ag             | 48<br>Cd             | 49<br>In             | 50<br>Sn             | 51<br>Sb              | 52<br>Te              | 53<br>I               | 54<br>Xe              |
| 6 | 55<br>Cs | 56<br>Ba |          | 72<br>Hf             | 73<br>Ta             | 74<br>W              | 75<br>Re            | 76<br>Os             | 77<br>Ir             | 78<br>Pt             | 79<br>Au             | 80<br>Hg             | 81<br>Tl             | 82<br>Pb             | 83<br>Bi              | 84<br>Po              | 85<br>At              | 86<br>Rn              |
| 7 | 87<br>Fr | 88<br>Ra |          | 104<br>Rf            | 105<br>Db            | 106<br>Sg            | 107<br>Bh           | 108<br>Hs            | 109<br>Mt            | 110<br>Ds            | 111<br>Rg            | 112<br>Cn            | 113<br>Uut           | 114<br>Uuq           | 115<br>Uup            | 116<br>Uuh            | 117<br>Uus            | 118<br>Uuo            |
|   |          |          |          | 57<br>La<br>89<br>Ac | 58<br>Ce<br>90<br>Th | 59<br>Pr<br>91<br>Pa | 60<br>Nd<br>92<br>U | 61<br>Pm<br>93<br>Np | 62<br>Sm<br>94<br>Pu | 63<br>Eu<br>95<br>Am | 64<br>Gd<br>96<br>Cm | 65<br>Tb<br>97<br>Bk | 66<br>Dy<br>98<br>Cf | 67<br>Ho<br>99<br>Es | 68<br>Er<br>100<br>Fm | 69<br>Tm<br>101<br>Md | 70<br>Yb<br>102<br>No | 71<br>Lu<br>103<br>Lr |

| Einal | Paper | OLL - | MCQ |
|-------|-------|-------|-----|
| ,     |       |       |     |

|    |     |     | ` |     |     |     |  |
|----|-----|-----|---|-----|-----|-----|--|
| 01 | 5   | C   |   | 26  | 2   | C   |  |
| 02 | 3   | S   |   | 27  | 2   | C   |  |
| 03 | 5   | S   |   | 28  | 2   | S   |  |
| 04 | 2   | S   |   | 29  | 3   | A/B |  |
| 05 | 1/2 | C   |   | 30  | 3   | S   |  |
| 06 | 3   | C   |   | 31  | 5   | A/B |  |
| 07 | 3   | S   |   | 32  | 5   | A/B |  |
| 08 | 2   | C   |   | 33  | 5   | A/B |  |
| 09 | 2   | S   |   | 34  | 2   | A/B |  |
| 10 | All |     |   | 35  | 2   | A/B |  |
| 11 | 1   | C   |   | 36  | 2   | A/B |  |
| 12 | 2   | S   |   | 37  | 1   | C   |  |
| 13 | 3   | С   |   | 38  | -3  | С   |  |
| 14 | 4   | S   |   | 39  | - 1 | S   |  |
| 15 | 1   | S   |   | 40  | 2   | С   |  |
| 16 | 2   | S   |   | 41  | 1   | С   |  |
| 17 | 4   | С   |   | 42  | 5   | S   |  |
| 18 | 2   | A/B |   | 43  | 5   | S   |  |
| 19 | 4   | S   |   | 44  | 5   | S   |  |
| 20 | 1   | C   |   | 45  | 1   | S   |  |
| 21 | 2   | A/B |   | 46  | 5   | A/B |  |
| 22 |     | S   |   | 4.7 | 5   | A/B |  |
| 23 | 5   | S   |   | 48  | 1   | S   |  |
| 24 | 3   | S   |   | 49  | 2   | S   |  |
| 25 | 1   | S   |   | 50  | 1   | С   |  |