Чем лучше бустить? Тестируем алгоритмы бустинга в бою.

```
from google.colab import drive
drive.mount('/content/drive')
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force remount=True).
!pip install catboost
     Requirement already satisfied: catboost in /usr/local/lib/python3.7/dist-packages (0.25)
     Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.7/dist-packages (from catboost) (1.19.5)
     Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.7/dist-packages (from catboost) (1.1.5)
     Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-packages (from catboost) (4.4.1)
     Requirement already satisfied: graphviz in /usr/local/lib/python3.7/dist-packages (from catboost) (0.10.1)
     Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from catboost) (1.4.1)
     Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from catboost) (3.2.2)
     Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from catboost) (1.15.0)
     Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.24.0->catboost) (2018.9)
     Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.24.0->catboost) (2.8.1)
     Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.7/dist-packages (from plotly->catboost) (1.3.3)
     Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (0.10.0)
     Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catbo
     Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (1.3.1)
```

Часть 1. EDA, Часть 2. Preprocessing & Feature Engineering

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
```

```
from sklearn.preprocessing import LabelEncoder
```

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split,cross_val_score, StratifiedKFold, GridSearchCV

from sklearn.metrics import accuracy_score,confusion_matrix,roc_auc_score,roc_curve,classification_report, precision_score, recall_score, f1_score,

from xgboost.sklearn import XGBClassifier

from catboost import CatBoostClassifier

from lightgbm import LGBMClassifier

%matplotlib inline
plt.rcParams["figure.figsize"] = (12,8)

data = pd.read_csv('/content/drive/MyDrive/STUDY/otus/HW/3/WA_Fn-UseC_-Telco-Customer-Churn.csv')

data.head()

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBa
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	

проверка на дубликаты

data.describe()

	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

data.columns

data.info()

```
customerID
                       7043 non-null
                                       object
 0
    gender
                       7043 non-null
                                       object
 1
    SeniorCitizen
                       7043 non-null
                                       int64
 2
    Partner
                       7043 non-null
                                       object
 4
    Dependents
                       7043 non-null
                                       object
    tenure
                       7043 non-null
                                       int64
 5
    PhoneService
                       7043 non-null
                                       object
 6
                       7043 non-null
 7
    MultipleLines
                                       object
    InternetService
                       7043 non-null
                                       object
 8
    OnlineSecurity
                       7043 non-null
                                       object
 9
 10 OnlineBackup
                       7043 non-null
                                       object
    DeviceProtection
                      7043 non-null
                                       object
 11
12 TechSupport
                       7043 non-null
                                       object
    StreamingTV
                       7043 non-null
                                       object
 13
 14 StreamingMovies
                      7043 non-null
                                       object
    Contract
                       7043 non-null
                                       object
 15
 16
    PaperlessBilling
                      7043 non-null
                                       object
    PaymentMethod
                       7043 non-null
                                       object
 17
 18 MonthlyCharges
                       7043 non-null
                                       float64
19 TotalCharges
                       7043 non-null
                                       object
 20 Churn
                       7043 non-null
                                       object
dtypes: float64(1), int64(2), object(18)
```

memory usage: 1.1+ MB

data.tail()

проверим на пропуски 1000 ıvıaıc 100 100 4 100 100 DOL 100 **RESVB** data.isnull().sum() customerID 0 gender 0 SeniorCitizen 0 Partner 0 Dependents 0 tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0

удалим лишнюю колонку

TotalCharges

dtype: int64

Churn

data.drop(columns=['customerID'], inplace = True)
data.hist()

0

0

sns.pairplot(data)

Target: Churn

2°18 13555555555555555

data['Churn'].value_counts().plot(kind='bar', label='Churn').legend()
plt.title('Распределение оттока клиентов')

Text(0.5, 1.0, 'Распределение оттока клиентов')

sns.countplot(x='gender', hue='Churn', data=data);

data.SeniorCitizen = le.fit_transform(data.SeniorCitizen)

Partneer

```
data.Partner.value_counts()
```

No 3641 Yes 3402

Name: Partner, dtype: int64

sns.countplot(x='Partner', hue='Churn', data=data);

интересный признак, люди без партнера чаще уходят от оператора, возможно это связано с тем, что одному проще сменить оператора. В паре нужно менять всем,т.к. звонки между одним и тем же оператором - дешевле

data.Partner = le.fit_transform(data.Partner)

Dependents

data Denendents value counts()

aaca.pepenaenes.varae_coanes()

No 4933 Yes 2110

Name: Dependents, dtype: int64

sns.countplot(x='Dependents', hue='Churn', data=data);

клиенты без иждивенцев чаще уходят

data.Dependents = le.fit_transform(data.Dependents)

tenure

data.tenure.hist(bins = 100)

<matplotlib.axes._subplots.AxesSubplot at 0x7f743a2dd190>

sns.boxplot(x='Churn', y='tenure', data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x7f743a145050>

видим, что иим что уходящие пользуются связью не так долго как постоянные клиенты

Churn

PhoneService

```
data.PhoneService.value_counts()

Yes 6361
No 682
Name: PhoneService, dtype: int64

sns.countplot(x='PhoneService', hue='Churn', data=data);
```


data.PhoneService = le.fit_transform(data.PhoneService)

MultipleLines

```
data.MultipleLines.value_counts()
```

No 3390 Yes 2971 No phone service 682

Name: MultipleLines, dtype: int64

```
sns.countplot(x='MultipleLines'. hue='Churn'. data=data):
```

The second secon

data.MultipleLines = le.fit_transform(data.MultipleLines)

InternetService

data.InternetService.value_counts()

Fiber optic 3096 DSL 2421 No 1526
Name: InternetService dtype: int64
sns.countplot(x='InternetService', hue='Churn', data=data);

интересное замечание, клиенты с оптоволокном лидируют по оттоку..

data.InternetService = le.fit_transform(data.InternetService)

OnlineSecurity

data.OnlineSecurity.value_counts()

No		3498
Yes		2019
No internet	service	1526

Name: OnlineSecurity, dtype: int64

sns.countplot(x='OnlineSecurity', hue='Churn', data=data);

data.OnlineSecurity = le.fit_transform(data.OnlineSecurity)

OnlineBackup

```
data.OnlineBackup.value_counts()
```

No 3088
Yes 2429
No internet service 1526
Name: OnlineBackup, dtype: int64

sns.countplot(x='OnlineBackup', hue='Churn', data=data);


```
data.OnlineBackup = le.fit_transform(data.OnlineBackup)
```

DeviceProtection

data.head()

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	Device
0	0	0	1	0	1	0	1	0	0	2	
1	1	0	0	0	34	1	0	0	2	0	
2	1	0	0	0	2	1	0	0	2	2	
3	1	0	0	0	45	0	1	0	2	0	
4	0	0	0	0	2	1	0	1	0	0	

Contract

data.Contract.value_counts()

Month-to-month 3875 Two year 1695 One year 1473 Name: Contract, dtype: int64

sns.countplot(x='Contract', hue='Churn', data=data);

крутой признак, месячники уходят чаще

data.Contract = le.fit_transform(data.Contract)

PaperlessBilling

```
data.PaperlessBilling.value_counts()
```

Yes 4171 No 2872

Name: PaperlessBilling, dtype: int64

sns.countplot(x='PaperlessBilling', hue='Churn', data=data);

data.PaperlessBilling = le.fit_transform(data.PaperlessBilling)

PaymentMethod

электронные чеки это плохо...

data.PaymentMethod = le.fit_transform(data.PaymentMethod)

data.head()

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	Device
0	0	0	1	0	1	0	1	0	0	2	_
1	1	0	0	0	34	1	0	0	2	0	
2	1	0	0	0	2	1	0	0	2	2	
3	1	0	0	0	45	0	1	0	2	0	
4	0	0	0	0	2	1	0	1	0	0	

MonthlyCharges TotalCharges

```
__, axes = plt.subplots(1, 2, sharey=True, figsize=(16,6))

sns.boxplot(x='Churn', y='MonthlyCharges', data=data, ax=axes[0]);
sns.violinplot(x='Churn', y='MonthlyCharges', data=data, ax=axes[1]);
```


data['TotalCharges']

0	29.85				
1	1889.5				
2	108.15				
3	1840.75				
4	151.65				
	• • •				
7038	1990.5				
7039	7362.9				
7040	346.45				
7041	306.6				
7042	6844.5				
Name:	TotalCharges,	Length:	7043,	dtype:	ob

data[data['TotalCharges'].str.match(' ') == False]

		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	Dev
	0	0	0	1	0	1	0	1	0	0	2	
	1	1	0	0	0	34	1	0	0	2	0	
	2	1	0	0	0	2	1	0	0	2	2	
	3	1	0	0	0	45	0	1	0	2	0	
	4	0	0	0	0	2	1	0	1	0	0	
	7038	1	0	1	1	24	1	2	0	2	0	
	7039	0	0	1	1	72	1	2	1	0	2	
data['Total	Charges'] = data['Total	.Charges']	.apply(lambo	la x: 0 i	if x == ' ' els	se x)				
				4	•			^		^	^	

data[data['TotalCharges'] == 0]

gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup Dev

```
data['TotalCharges'] = data['TotalCharges'].astype('float64')
```

_, axes = plt.subplots(1, 2, sharey=True, figsize=(16,6))

sns.boxplot(x='Churn', y='TotalCharges', data=data, ax=axes[0]);
sns.violinplot(x='Churn', y='TotalCharges', data=data, ax=axes[1]);

data.TotalCharges.corr(data.MonthlyCharges)

0.6511738315787841

data.MonthlyCharges.hist(bins = 100)

<matplotlib.axes._subplots.AxesSubplot at 0x7f743a3aa7d0>

data.TotalCharges.hist(bins = 100)

<matplotlib.axes._subplots.AxesSubplot at 0x7f744513d050>

sns.heatmap(corr_matrix);

Часть 3.Who's the mightiest of them all?

plt.xlabel('False Positive Rate')

```
функция качества модели
      StreamingMovies -
def quality(prediction v, true v):
    accuracy = accuracy score(prediction y, true y)
   precision = precision score(prediction y, true y)
   recall = recall score(prediction y, true y)
   f1 = f1 score(prediction y, true y)
   print("Accuracy: {:.3f}\nPrecision: {:.3f}\nRecall: {:.3f}\nF1-score: {:.3f}\".format(
        accuracy, precision, recall, f1
   ))
функция построения кривой roc_auc
def plot roc curve(prob prediction, actual):
    fpr, tpr, thresholds = roc curve(y test, prob prediction)
    auc score = roc auc score(y test, prob prediction)
   plt.plot(fpr, tpr, label='ROC curve ')
   plt.plot([0, 1], [0, 1])
   plt.xlim([0.0, 1.0])
   plt.ylim([0.0, 1.05])
```

```
plt.ylabel('True Positive Rate')
plt.title('ROC AUC: {:.3f}'.format(auc_score))
plt.show()
```

sklearn RandomForest

```
X train, X test, y train, y test = train test split(
    data.drop(['Churn'], axis = 1), data.Churn, test size=0.3, random state=2021, stratify=data.Churn.values)
clfRF = RandomForestClassifier(random state=2021)
clfRF.fit(X train, v train)
     RandomForestClassifier(bootstrap=True, ccp alpha=0.0, class weight=None,
                            criterion='gini', max depth=None, max features='auto',
                            max leaf nodes=None, max_samples=None,
                            min impurity decrease=0.0, min impurity split=None,
                            min samples leaf=1, min samples split=2,
                            min weight fraction leaf=0.0, n estimators=100,
                            n jobs=None, oob score=False, random state=2021,
                            verbose=0, warm start=False)
predRF = clfRF.predict(X_test)
print("Train quality:")
quality(clfRF.predict(X train), y train)
print("\nTest quality:")
quality(predRF, y test)
     Train quality:
     Accuracy: 0.998
     Precision: 0.995
     Recall: 0.995
     F1-score: 0.995
     Test quality:
     Accuracy: 0.787
     Precision: 0.506
```

Recall: 0.621 F1-score: 0.558

plot_roc_curve(predRF, y_test)

XGBoost

```
clfXGB = XGBClassifier(random_state=2021)
clfXGB.fit(X_train, y_train)
```

```
predXGB = clfXGB.predict(X_test)
print("Train quality:")
quality(clfXGB.predict(X_train), y_train)
print("\nTest quality:")
quality(predXGB, y_test)
    Train quality:
    Accuracy: 0.828
    Precision: 0.573
    Recall: 0.722
    F1-score: 0.639
    Test quality:
    Accuracy: 0.799
    Precision: 0.542
    Recall: 0.644
    F1-score: 0.589
plot_roc_curve(predXGB, y_test)
```

```
1.0
          0.8
CatBost
        2 ...
  clfcat = CatBoostClassifier(eval_metric='AUC', random_state = 2021)
  clfcat.fit(X train, y train, silent= True)
  predcat = clfcat.predict(X test)
  print("Train quality:")
  quality(clfcat.predict(X_train), y_train)
  print("\nTest quality:")
  quality(predcat, y_test)
       Train quality:
       Accuracy: 0.878
       Precision: 0.687
       Recall:
                  0.825
       F1-score: 0.750
       Test quality:
       Accuracy: 0.786
       Precision: 0.512
       Recall:
                  0.617
       F1-score: 0.559
  plot_roc_curve(predcat, y_test)
```


LightGBM

```
clfLBM = LGBMClassifier(random_state = 2021)
clfLBM.fit(X_train, y_train)
predLBM = clfLBM.predict(X_test)

print("Train quality:")
quality(clfLBM.predict(X_train), y_train)
print("\nTest quality:")
quality(predLBM, y_test)

    Train quality:
    Accuracy: 0.886
    Precision: 0.729
```

Recall: 0.822 F1-score: 0.773

Test quality:
Accuracy: 0.789
Precision: 0.533
Recall: 0.619
F1-score: 0.573

plot_roc_curve(predLBM, y_test)

sklearn GradientBoosting

```
clfGB = GradientBoostingClassifier(random_state=2021)
clfGB.fit(X_train, y_train)
predGB = clfGB.predict(X test)
print("Train quality:")
quality(clfGB.predict(X_train), y_train)
print("\nTest quality:")
quality(predGB, y test)
    Train quality:
    Accuracy: 0.834
    Precision: 0.589
    Recall: 0.731
    F1-score: 0.653
    Test quality:
    Accuracy: 0.796
    Precision: 0.529
    Recall: 0.640
    F1-score: 0.580
plot_roc_curve(predGB, y_test)
```


sklearn RandomForest, XGBoost, CatBost, LightGBM, skrearn.GradientBoosting (настройка гиперпараметров)

```
Инициализируем страифицированную разбивку нашего датасета для валидации
skf = StratifiedKFold(n_splits=5, shuffle=True, random state=42)
          1/
sklearn RandomForest
         0.0
                           0.2
                                            0.4
                                                              0.6
                                                                               0.8
                                                                                                1.0
parameters = {'max features': [4, 7, 10, 13], 'min samples leaf': [1, 3, 5, 7], 'max depth': [5,10,15,20]}
rfc = RandomForestClassifier(n estimators=100, random state=2021,
                            n jobs=-1, oob score=True)
gcv rf = GridSearchCV(rfc, parameters, n jobs=-1, cv=skf, verbose=1)
gcv rf.fit(X train, y train)
     Fitting 5 folds for each of 64 candidates, totalling 320 fits
     [Parallel(n jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n jobs=-1)]: Done 46 tasks
                                                elapsed: 19.4s
     [Parallel(n jobs=-1)]: Done 196 tasks
                                                | elapsed: 1.7min
     [Parallel(n jobs=-1)]: Done 320 out of 320 | elapsed: 2.9min finished
     GridSearchCV(cv=StratifiedKFold(n splits=5, random state=42, shuffle=True),
                  error_score=nan,
                  estimator=RandomForestClassifier(bootstrap=True, ccp alpha=0.0,
```

```
class weight=None,
                                                  criterion='gini', max depth=None,
                                                  max features='auto',
                                                  max leaf nodes=None,
                                                  max samples=None,
                                                  min impurity decrease=0.0,
                                                  min impurity split=None,
                                                  min samples leaf=1,
                                                  min samples split=2,
                                                  min weight fraction leaf=0.0,
                                                  n estimators=100, n jobs=-1,
                                                  oob score=True, random state=2021,
                                                  verbose=0, warm start=False),
                  iid='deprecated', n jobs=-1,
                  param grid={'max depth': [5, 10, 15, 20],
                              'max features': [4, 7, 10, 13],
                              'min samples leaf': [1, 3, 5, 7]},
                  pre dispatch='2*n jobs', refit=True, return train score=False,
                  scoring=None, verbose=1)
print("Train quality:")
quality(gcv rf.predict(X train), y train)
print("\nTest quality:")
quality(gcv rf.predict(X test), y test)
    Train quality:
    Accuracy: 0.866
    Precision: 0.641
     Recall: 0.815
     F1-score: 0.718
    Test quality:
    Accuracy: 0.788
     Precision: 0.501
     Recall: 0.627
     F1-score: 0.557
plot_roc_curve(gcv_rf.predict(X_test), y_test)
```


XGBoost

```
estimator=XGBClassifier(base score=0.5, booster='gbtree',
                                          colsample bylevel=1, colsample bynode=1,
                                          colsample bytree=1, gamma=0,
                                         learning rate=0.1, max delta step=0,
                                         max depth=3, min child weight=1,
                                         missing=None, n estimators=100, n jobs=-1,
                                         nthread=None, objective='binary:logistic',
                                         oob score=True, random state=2021,
                                          reg alpha=0, reg lambda=1,
                                          scale pos weight=1, seed=None, silent=None,
                                          subsample=1, verbosity=1),
                  iid='deprecated', n jobs=-1,
                  param grid={'max depth': [5, 10, 15, 20],
                              'max features': [4, 7, 10, 13],
                              'min samples leaf': [1, 3, 5, 7]},
                  pre dispatch='2*n jobs', refit=True, return train score=False,
                  scoring=None, verbose=1)
print("Train quality:")
quality(gcv x.predict(X train), y train)
print("\nTest quality:")
quality(gcv x.predict(X test), y test)
    Train quality:
    Accuracy: 0.858
     Precision: 0.645
     Recall: 0.782
    F1-score: 0.707
    Test quality:
    Accuracy: 0.789
     Precision: 0.526
     Recall:
               0.621
     F1-score: 0.569
plot roc curve(gcv x.predict(X test), y test)
```

```
1.0
        0.8
      True Positive Rate
        0.4
        0.2
CatBost
param_cat = {'iterations': [1,5,10,20,50], 'subsample': [0.66, 0.8,1], 'max_depth': [5,10,15,20]}
catc = CatBoostClassifier(random state=2021,
                             eval metric='AUC')
gcv_c = GridSearchCV(catc, param_cat, n_jobs=-1, cv=skf, verbose=1)
gcv c.fit(X train, y train)
     Fitting 5 folds for each of 60 candidates, totalling 300 fits
     [Parallel(n jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     /usr/local/lib/python3.7/dist-packages/joblib/externals/loky/process_executor.py:691: UserWarning: A worker stopped while some jobs were
       "timeout or by a memory leak.", UserWarning
     [Parallel(n_jobs=-1)]: Done 84 tasks
                                                   elapsed:
                                                               5.4s
     [Parallel(n_jobs=-1)]: Done 252 tasks
                                                  elapsed: 2.1min
     Learning rate set to 0.5
             total: 3.15ms remaining: 28.3ms
     0:
```

```
total: 10.1ms
                           remaining: 40.4ms
     1:
                           remaining: 38.1ms
     2:
            total: 16.3ms
     3:
                           remaining: 31.7ms
            total: 21.1ms
                           remaining: 23.2ms
     4:
            total: 23.2ms
     5:
            total: 24.6ms
                           remaining: 16.4ms
                           remaining: 11.4ms
            total: 26.7ms
     6:
     7:
            total: 28.8ms
                           remaining: 7.2ms
     8:
            total: 30.9ms remaining: 3.43ms
            total: 32.7ms
                          remaining: Ous
     9:
     [Parallel(n jobs=-1)]: Done 300 out of 300 | elapsed: 5.3min finished
    GridSearchCV(cv=StratifiedKFold(n splits=5, random state=42, shuffle=True),
                 error score=nan,
                 estimator=<catboost.core.CatBoostClassifier object at 0x7f7439e96a10>,
                 iid='deprecated', n jobs=-1,
                 param grid={'iterations': [1, 5, 10, 20, 50],
                             'max depth': [5, 10, 15, 20],
                             'subsample': [0.66, 0.8, 1]},
                 pre_dispatch='2*n_jobs', refit=True, return train score=False.
                 scoring=None, verbose=1)
print("Train quality:")
quality(gcv c.predict(X train), y train)
print("\nTest quality:")
quality(gcv c.predict(X test), y test)
    Train quality:
    Accuracy: 0.818
    Precision: 0.545
     Recall: 0.702
    F1-score: 0.614
    Test quality:
    Accuracy: 0.792
    Precision: 0.504
    Recall: 0.637
    F1-score: 0.563
plot_roc_curve(gcv_c.predict(X_test), y_test)
```


LightGBM

```
error score=nan,
                  estimator=LGBMClassifier(boosting type='gbdt', class weight=None,
                                           colsample bytree=1.0,
                                           importance type='split',
                                           learning rate=0.1, max depth=-1,
                                          min child samples=20,
                                          min child weight=0.001,
                                          min split gain=0.0, n estimators=100,
                                          n jobs=-1, num leaves=31, objective=None,
                                          oob score=True, random state=2021,
                                           reg alpha=0.0, reg lambda=0.0,
                                           silent=True, subsample=1.0,
                                           subsample for bin=200000,
                                           subsample freq=0),
                  iid='deprecated', n jobs=-1,
                  param grid={'max depth': [5, 10, 15, 20],
                              'max features': [4, 7, 10, 13],
                              'min samples leaf': [1, 3, 5, 7]},
                  pre dispatch='2*n jobs', refit=True, return train score=False,
                  scoring=None, verbose=1)
print("Train quality:")
quality(gcv l.predict(X train), y train)
print("\nTest quality:")
quality(gcv l.predict(X test), y test)
     Train quality:
    Accuracy: 0.849
     Precision: 0.628
     Recall: 0.760
     F1-score: 0.688
    Test quality:
    Accuracy: 0.792
     Precision: 0.529
     Recall: 0.628
     F1-score: 0.574
plot_roc_curve(gcv_l.predict(X_test), y_test)
```


sklearn Gradient Boosting

```
error_score=nan.
                  estimator=GradientBoostingClassifier(ccp alpha=0.0,
                                                       criterion='friedman mse',
                                                       init=None, learning rate=0.1,
                                                       loss='deviance', max depth=3,
                                                       max features=None,
                                                       max leaf nodes=None,
                                                       min impurity decrease=0.0,
                                                       min impurity split=None,
                                                       min samples leaf=1,
                                                       min samples split=2,
                                                       mi...
                                                       n estimators=100,
                                                       n_iter_no_change=None,
                                                       presort='deprecated',
                                                       random state=2021,
                                                       subsample=1.0, tol=0.0001,
                                                       validation fraction=0.1,
                                                       verbose=0, warm start=False),
                 iid='deprecated', n jobs=-1,
                  param grid={'max depth': [5, 10, 15, 20],
                              'max features': [4, 7, 10, 13],
                              'min samples leaf': [1, 3, 5, 7]},
                  pre dispatch='2*n jobs', refit=True, return train score=False,
                  scoring=None, verbose=1)
print("Train quality:")
quality(gcv_s.predict(X_train), y_train)
print("\nTest quality:")
quality(gcv s.predict(X_test), y_test)
    Train quality:
     Accuracy: 0.854
     Precision: 0.641
     Recall: 0.769
     F1-score: 0.699
    Test quality:
    Accuracy: 0.788
     Precision: 0.520
                0.621
     F1-score: 0.566
```

Recall:

Выводы

• без настроек гимперпараметров победила модель XGBOOST auc = 0,717, 2 место - GradientBoosting от sklearn auc = 0,711 (если смотреть по метрике ROC_AUC)

• с настройками гиперпараметров на кросс валидации победила также модель LightGBM auc = 0,708, 2 место XGBOOST auc = 0,705. ✓ 0s completed at 7:58 PM