

PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

SISTEMAS EMBARCADOS

PROTÓTIPO DE AUTOMATIZAÇÃO DE CHÃO DE FÁBRICA

ALUNOS:

THIAGO VIEIRA CAMARA - 2021000697 SHELLY DA COSTA LEAL - 2020001671

> Dezembro de 2023 Boa Vista/Roraima

PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

SISTEMAS EMBARCADOS

PROTÓTIPO DE AUTOMATIZAÇÃO DE CHÃO DE FÁBRICA COM ARDUINO

Resumo

Este documento descreve um projeto de automação de chão de fábrica usando Arduino, apresentando uma maquete demonstrativa para ilustrar a implementação prática. O objetivo é fornecer uma visão geral do sistema, seus componentes e a lógica de funcionamento, permitindo que outras pessoas reproduzam e compreendam o projeto.

1. Visão Geral do Projeto

1.1 Introdução

A automação de chão de fábrica é vital para a eficiência e produtividade na indústria moderna. Este projeto visa demonstrar a implementação prática da automação por meio de uma maquete que reflete os benefícios tangíveis dessa abordagem.

1.2 Objetivos

- Automatizar processos específicos na linha de produção, reduzindo intervenções manuais.
- Proporcionar uma visão clara dos ganhos em eficiência e redução de custos.

2. Big Picture do Projeto

3. Maquete Demonstrativa

3.1 Componentes

A maquete é composta por uma variedade de componentes, incluindo:

ID_ITEM	NOME_ITEM	QUANTIDADE_ITEM	VALOR_UNITARIO_ITEM	VALOR_TOTAL_ITEM
1	Micro Servo Motor SG90 9G	5	R\$11,90	R\$59,50
2	Motor DC 3-6v com Caixa de Redução e eixo duplo.	1	R\$9,40	R\$9,40
3	Arduino Uno	2	R\$84,00	R\$168,00
4	Braço Robótico em MDF	2	R\$ 57,67	R\$115,34
5	Sensor de Distância Ultrassônico HC-SR04	2	R\$10,34	R\$20,68
6	Jumpers - Macho/Fême a	Pacote de x40 (1x UNIDADE)	R\$9,50	R\$9,50
7	Jumpers - Macho/Macho	Pacote de x40 (1x UNIDADE)	R\$9,50	R\$9,50
8	Protoboard Grande	1	R\$14,80	R\$14,80
9	Chave Táctil Push-Button	1	R\$0,18	R\$0,18
10	Pilha de 9v	1	R\$24,00	R\$24,00
11	Micro Servo Motor SG92R	3	R\$28,41	R\$85,23

3.2 Esquema de Ligação.

3.3 Lógica de Funcionamento

Para iniciar as operações, é necessário acionar o botão "start". Nessa fase, a primeira garra mecânica entra em ação, incumbida da tarefa de capturar o objeto inicial e posicioná-lo de maneira precisa na esteira.

A esteira, por sua vez, desempenha um papel essencial no transporte do objeto ao longo do sistema. Equipada com um sensor estrategicamente posicionado, a esteira detecta a presença do objeto, acionando uma sequência de eventos.

O sensor na esteira é ativado assim que detecta o objeto, desencadeando um mecanismo que reduz gradativamente a velocidade da esteira. Esse processo é fundamental para preparar o terreno para a próxima fase operacional.

A segunda garra mecânica é acionada quando a esteira atinge a velocidade reduzida. Sua função primordial é realizar a transferência do objeto a partir da esteira. Uma vez em sua posse, a segunda garra mecânica direciona o objeto para um local predefinido, completando assim o ciclo de manipulação.

Com a conclusão do ciclo, o sistema está novamente pronto para iniciar um novo conjunto de operações. Essa abordagem automatizada, que integra eficazmente a esteira e as garras mecânicas, demonstra ser um método eficiente para a manipulação de objetos em processos industriais ou logísticos.

4. Esquema de Conexão dos Pinos

Modelagem Formal: Redes de Petri

Link arquivos da Rede de Petri:

Rede de Petri - Braço Robótico 1

https://drive.google.com/file/d/18kCsgLHzCsxxFC3CyZXq80ql2QvzlMoF/view?usp=s haring

Rede de Petri - Braço Robótico 2

https://drive.google.com/file/d/1rpeerOdUe_nuDnJAVAGoP0FF89DoXQqk/view?usp=sharing

6. Configuração do Arduino

6.1 Programação

Por hora, temos apenas os códigos dos testes realizados com cada componente do projeto, sendo eles:

- Braço Robótico 1
- Braço Robótico 2
- Sensor Ultrasónico
- Motor DC

Os testes foram realizados e estão disponiveis neste repositório: https://github.com/ShellyLeal05/Automation_Factory_FinalProject_rr_ES_2023

6.2 Configuração do Ambiente de Desenvolvimento

Instruções passo a passo detalhadas sobre como configurar o ambiente de desenvolvimento, incluindo versões específicas de software e quaisquer bibliotecas necessárias.

Para a programação deste projeto foi utilizada a plataforma arduino que possui uma IDE própria chamado de arduino IDE. Para fazer a instalação é necessário seguir os seguintes passos:

Obs: Atualmente, a versão utilizada da IDE é a 2.2.1

Windows:

- Ir para o site: https://www.arduino.cc/en/software
- Fazer download do instalador (Escolha a opção mais confortável de instalação)
- Seguir os passos fornecidos pelo instalador

Linux:

Escreva no terminal do linux os seguintes comandos:

- sudo apt update
- sudo apt upgrade
- sudo apt install arduino

-

MacOS:

- Ir para o site: https://www.arduino.cc/en/software
- Extrair arquivo ZIP
- Copiar os arquivos de aplicação para a pasta de aplicações(ou qualquer outro lugar)

Para o projeto foram usadas a biblioteca "Servo.h" para as garras. No código, para adicionar essa biblioteca é só utilizar #include <Servo.h> no começo para que seja habilitada, uma vez que já tenha instalado a biblioteca.

7. Montagem da Maquete

7.1 Instruções de Montagem

Nesse caso, a montagem dos braços robóticos foram feitas seguindo as instruções que vieram com elas no seguinte link (Instruções podem mudar dependendo do local e da marca escolhida):

Link: https://www.dropbox.com/sh/r9voldhmuagg89z/AACGnOr5907324hXOElhlXwya/Manuais%20de%20montagem?dl=0&preview=Manual+Bra%C3%A7o+Rob%C3%B3tico+V1.0.pdf&subfolder_nav_tracking=1

A esteira foi construída utilizando um vídeo como base, apenas modificando certas partes de acordo com o projeto.

Link: https://www.youtube.com/watch?v=8Vnoso8rhaw

7.2 Testes e Calibração

- Foram realizados testes para detectar quais eram os ângulos "base" de cada servo motor das duas garras mecânicas. E também, foram feitos testes para localizar os ângulos necessários para a movimentação das garras para os objetivos do chão de fábrica.
- Foram realizados testes de limitação de energia para que o motor da esteira diminuísse a velocidade após detecção feita pelo sensor.
- Teste de captação de sinais feitos usando o sensor ultrassônico para testar as distâncias ideais de uso.

8. Considerações Finais

8.1 Desafios Encontrados

- Configuração de cada servo motor das garras mecânicas, pois a angulação não é setada em 0°.
- Os ângulos, porque os servos motores não possuem boa precisão, usados durante a programação não correspondem ao valor real (Ex.: é escolhido 120° mas o braço se mexe 140°)
- Programação para fazer o sensor parar a esteira e o outro braço mecânico por um tempo.
- Sincronização do sensor ultrassônico com as outras partes desse sistema.
- Em alguns testes, os motores podem forçar demais e podem queimar ou quebrar a engrenagem. Para isso é importante fazer testes individuais de cada motor e calibrar a sua precisão e velocidade. Depois disso é importante entender o impacto que aquela movimentação faz no braço robótico ou se influencia de alguma forma a posição de outro motor.

8.2 Possíveis Melhorias

- Adição de um carrinho automatizado para um loop de carregamento de objetos, onde ele transporta o objeto do ponto final para o inicial.
- Utilização de um Arduino com mais portas digitais.
- Definição de graus precisamente para melhor execução do braço robótico.
- Cronograma de Atividades a serem realizadas e seu nível de dificuldade.