# (12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro



# 1 BANG BRIGOR IN BURNI BANG IDA 1 IN 18 BANG BURN BURN BURN BURN BURNI BANG BANG BANG BANG

(43) Internationales Veröffentlichungsdatum 17. Januar 2002 (17.01.2002)

**PCT** 

## (10) Internationale Veröffentlichungsnummer WO 02/04583 A1

(51) Internationale Patentklassifikation7: C11D 3/37, 1/66

(21) Internationales Aktenzeichen:

PCT/EP01/07383

(22) Internationales Anmeldedatum:

28. Juni 2001 (28.06.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

DE DE

7. Juli 2000 (07.07.2000) 100 32 612.9 12. Oktober 2000 (12.10.2000) 100 50 622.4

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN [DE/DE]; Henkelstrasse 67, 40589 Düsseldorf (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (mar für US): KESSLER, Arnd [DE/DE], Am Borsberg 44, 51375 Leverkusen (DE). BAYERSDÖRFER, Rolf [DE/DE]; Am Nettchesfeld 17, 40589 Düsseldorf (DE). SORG, Rainer [DE/DE]; Donkwall 9b, 47906 Kempen (DE). NITSCH, Christian [DE/DE]; Otto-Hahn-Strasse 185, 40591 Düsseldorf (DE). BAUMANN, Melanie [DE/DE]; Königstr. 125, 47178 Duisburg (DE).

(81) Bestimmungsstaaten (national): AU, BR, CA, CN, CZ, DZ, HU, ID, IL, IN, JP, KR, MX, PL, RO, RU, SG, SI, SK, UA, US, ZA.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

#### Veröffentlicht:

mit internationalem Recherchenbericht

vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: MACHINE DISHWASHER RINSING AGENT

(54) Bezeichnung: MASCHINELLES GESCHIRRSPÜLMITTEL

(57) Abstract: The application of co-polymers of i) unsaturated carboxylic acids, ii) monomers containing a sulphonic acid group and iii) optionally further ionic or non-ionic monomers in cleaning agents for machine dishwashing, in combination with builders and non-ionic detergents and/or homo- and/or co-polymers of acrylic acid and/or methacrylic acid, or the salts thereof gives rise to advantageous effects, even when the co-polymer is used in the main cleaning cycle.

(57) Zusammenfassung: Der Einsatz von Copolymeren aus i) ungesättigten Carbonsäuren, ii) Sulfonsäuregruppen-haltigen Monomeren und iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren in Reinigungsmitteln für das maschinelle Geschirrspülen in Kombination mit Gerüststoffen und nichtionischen Tensiden und/oder Homo- und/oder Copolymeren der Acrylsäure und/oder Methacrylsäure bzw. deren Salze bewirkt vorteilhalfte Effekte auch wenn die Copolymere im Hauptreinigungsgang zur Anwendung gelangen



#### MASCHINELLES GESCHIRRSPÜLMITTEL

Gegenstand der vorliegenden Erfindung sind maschinelle Geschirrspülmittel, welche einen Gehalt an Sulfonsäuregruppen-haltigen Polymeren aufweisen und darüberhinaus einen Zusatznutzen bewirken. Die Sulfonsäuregruppen-haltigen Polymere sind dabei Copolymere aus i) ungesättigten Carbonsäuren, ii) Sulfonsäuregruppen-haltigen Monomeren und iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren. Die Mittel können in fester oder flüssiger Form, z.B. als Pulver, Granulate, Extrudate, Tabletten, Flüssigkeiten oder Gele bereitgestellt werden.

An maschinell gespültes Geschirr werden heute häufig höhere Anforderungen gestellt als an manuell gespültes Geschirr. So wird auch ein von Speiseresten völlig gereinigtes Geschirr dann als nicht einwandfrei bewertet, wenn es nach dem maschinellen Geschirrspülen noch weißliche, auf Wasserhärte oder anderen mineralischen Salzen beruhende Flecken aufweist, die mangels Netzmittel aus eingetrockneten Wassertropfen stammen.

Um glasklares und fleckenloses Geschirr zu erhalten, setzt man daher heute mit Erfolg Klarspüler ein. Der Zusatz von Klarspüler am Ende des Spülprogramms sorgt dafür, daß das Wasser möglichst vollständig vom Spülgut abläuft, so daß die unterschiedlichen Oberflächen am Ende des Spülprogramms rückstandsfrei und makellos glänzend sind.

Das maschinelle Reinigen von Geschirr in Haushaltsgeschirrspülmaschinen umfaßt üblicherweise einen Vorspülgang, einen Hauptspülgang und einen Klarspülgang, die von Zwischenspülgängen unterbrochen werden. Bei den meisten Maschinen ist der Vorspülgang für stark verschmutztes Geschirr zuschaltbar, wird aber nur in Ausnahmefällen vom Verbraucher gewählt, so daß in den meisten Maschinen ein Hauptspülgang, ein Zwischenspülgang mit reinem Wasser und ein Klarspülgang durchgeführt werden. Die Temperatur des Hauptspülgangs variiert dabei je nach Maschinentyp und Programmstufenwahl zwischen 40 und 65°C. Im Klarspülgang werden aus einem Dosiertank in der Maschine Klarspülmittel zugegeben, die üblicherweise als Hauptbestandteil nichtionische Tenside enthalten. Solche Klarspüler liegen in flüssiger Form vor und sind im Stand der Technik breit beschrieben. Ihre Aufgabe besteht vornehmlich darin, Kalkflecken und Beläge auf dem gereinigten Geschirr zu verhindern. Neben Wasser und schwachschäumenden Niotensiden enthalten diese Klarspüler oft auch Hydrotope, pH-Stellmittel wie Citronensäure oder belagsinhibierende Polymere.

2

Aus der EP-B1 0 197 434 (Henkel) sind flüssige Klarspüler bekannt, die als nichtionische Tenside Mischether enthalten. In der Geschirrspülmaschine wird eine Vielzahl unterschiedlicher Materialien (Glas, Metall, Silber, Kunststoff, Porzellan) gereinigt. Diese Materialvielfalt muß im Klarspülgang möglichst gut benetzt werden. Klarspülerformulierungen, die als Tensidkomponente ausschließlich Mischether enthalten, erfüllen diese Anforderungen nicht oder nur in geringem Umfang, so daß der Klarspül- bzw. Trocknungseffekt insbesondere bei Kunststoffoberflächen nicht zufriedenstellend ist.

Der Vorratstank in der Geschirrspülmaschine muß in regelmäßigen Abständen mit Klarspüler aufgefüllt werden, wobei eine Füllung je nach Maschinentyp für 10 bis 50 Spülgänge ausreicht. Wird das Auffüllen des Tanks vergessen, so werden insbesondere Gläser durch Kalkflecken und Beläge unansehnlich. Im Stand der Technik existieren daher einige Lösungsvorschläge, einen Klarspüler in das Reinigungsmittel für das maschinelle Geschirrspülen zu Integrieren. Diese Lösungsvorschläge sind an die Angebotsform des kompakten Formkörpers gebunden.

So beschreibt die europäische Patentanmeldung EP-A-0 851 024 (Unilever) zweischichtige Reinigungsmitteltabletten, deren erste Schicht Peroxy-Bleichmittel, Builder und Enzym enthält, während die zweite Schicht Acidifizierungsmittel und ein kontinuierliches Medium mit einem Schmelzpunkt zwischen 55 und 70°C sowie Belagsinhibitoren enthält. Durch das hochschmelzende kontinuierliche Medium sollen die Säure(n) und Belagsinhibitor(en) verzögert freigesetzt werden und einen Klarspüleffekt bewirken. Pulverförmige maschinelle Geschirrspülmittel oder tensidhaltige Klarspülsysteme werden in dieser Schrift nicht erwähnt.

Die Aufgabe der vorliegenden Erfindung hat darin bestanden, neue Mittel für das maschinelle Spülen von Geschirr bereitzustellen, die bezüglich der anwendungstechnischen Eigenschaften mindestens gleiche Resultate liefern wie marktgängige Mittel und die darüber hinaus weitere Leistungsvorteile erbringen. Dabei sollten die neuen Mittel sowohl als herkömmliche Reiniger als auch in Form von Kombinationsprodukten einsetzbar sein und unabhängig von der Zubereitungsform ihre vorteilhaften Eigenschaften entfalten.

Es wurde nun gefunden, daß der Einsatz von Sulfonsäuregruppen-haltigen Polymeren in Reinigungsmitteln für das maschinelle Geschirrspülen vorteilhafte Effekte bewirkt, wenn zusätzlich zu den Sulfonsäuregruppen-haltigen Polymeren große Mengen an nichtionischen Tensiden in den Mitteln enthalten sind. Bei erfindungsgemäßen Mitteln dieser Ausführungsform bewirkt die nach dem Hauptspülgang und den Zwischenspülgängen in der Maschine verbleibende Mengen an Tensiden ein adäquates Ablaufverhalten im Klarspülgang, so daß das vom Spülgut ablaufende Wasser beim Trocknen keine Flecken hinterläßt. Der Klarspülgang braucht bei Einsatz dieser erfindungsgemäßen Mittel nicht mit zusätzlichen absichtlich hinzugefügten Klarspülmitteln beschickt zu werden.

Ein Gegenstand dieser Anmeldung sind somit maschinelle Geschirrspülmittel, welche

- a) 1 bis 94,9 Gew.-% Gerüststoff(e),
- b) 0,1 bis 70 Gew.-% an Copolymeren aus
  - i) ungesättigten Carbonsäuren
  - ii) Sulfonsäuregruppen-haltigen Monomeren
  - iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
- c) 5 bis 30 Gew.-% nichtionische(s) Tensid(e) enthalten, wobei sich die genannten Mengenangaben jeweils auf das gesamte Mittel beziehen.

Wie weiter unten ausführlich beschrieben, lassen sich diese Mittel in jeder denkbaren Angebotsform bereitstellen, beispielsweise als flüssige oder gelförmige Reiniger, als Pulver, Granulate, Extrudate, Schuppen, Pellets oder in Form von Blöcken oder Tabletten. Bei der Angebotsform der Reinigungsmitteltabletten können sowohl einphasige als auch mehrphasige Tabletten hergestellt werden. Bei mehrphasigen (z.B. mehrschichtigen) Tabletten können sich die vorstehend genannten Mengenangaben auch auf eine einzelne Phase (Schicht) beziehen, während die andere(n) Phasen(n) eine unterschiedliche Zusammensetzung aufweist. Hiermit lassen sich Mehrfunktionssysteme realisieren, die beispielsweise eine schnellösliche Vorreinigerschicht mit einem erfindungsgemäß zusammengesetzten Restformkörper verbinden.

Neben der Kombination der Sulfonsäuregruppen-haltigen Polymere mit Niotensiden in hohen Mengen haben sich auch Mittel als besonders geeignet herausgestellt, die neben den Copolymeren b) weitere homo- und/oder copolymere Polycarbonsäuren bzw. Polycarboxylate enthalten.

Ein weiterer Gegenstand dieser Anmeldung sind damit auch maschinelle Geschirrspülmittel, die

- a) 1 bis 98,8 Gew.-% Gerüststoff(e),
- b) 0,1 bis 70 Gew.-% an Copolymeren aus
  - i) ungesättigten Carbonsäuren
  - ii) Sulfonsäuregruppen-haltigen Monomeren
  - iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
- c) 0,1 bis 30 Gew.-% homo- und/oder copolymere Polycarbonsäuren bzw. deren Salze enthalten.

Die entsprechenden homo- bzw. copolymeren Polycarbonsäuren bzw. Polycarboxylate werden weiter unten ausführlich beschrieben. Die Kombination der beiden Polymere b) und c) in diesem erfindungsgemäßen Mitteln ist besonders effektiv, da die Polymere b) insbesondere phosphathaltige Ablagerungen entgegenwirken, während die Polymere c) die Ausfällung von Calciumcarbonat vernindern. In der Kombination zeigen beide Polymertypen eine synergistische Wirkung gegen

Beläge auf dem Geschirr und den Maschinenteilen. Die zum Betrieb einer Haushaltsgeschirrspülmaschine in Zeitabständen erforderlichen zwei Dosiervorgänge (nach einer bestimmten Anzahl von Spülvorgängen muß das Regeneriersalz im Wasserenthärtungssystem der Maschine nachgefüllt werden), lassen sich mit den vorstehend beschriebenen erfindungsgemäßen Mitteln zu einem einzigen Vorgang zusammenfassen, da auch nach einer höheren Anzahl von Spülzyklen die Dosierung eines anderen Produkts (Regeneriersalz) und damit ein zweifacher Dosiervorgang nicht notwendig ist.

Dieser Effekt der verringerten Belagsbildung und damit der Verhinderung von "Kalkflecken" auf dem Geschirr kann noch weiter ergänzt werden durch den Zusatz von nichtionischen Tensiden, die ein verbessertes Ablaufverhalten bewirken und damit zusätzlich der Schlieren- oder Streifenbildung insbesondere auf Glasoberflächen entgegenwirken. Solche erfindungsgemäßen Mittel machen die zusätzliche Dosierung von Klarspülmitteln überflüssig und stellen damit echte "3in1"-Produkte dar, da sie die bisherigen Produkte Regeneriersalz, Reiniger und Klarspüler in einem Mittel vereinen.

Ein weiterer Gegenstand der vorliegenden Anmeldung sind somit maschinelle Geschirrspülmittel, die

- a) 1 bis 93,8 Gew.-% Gerüststoff(e),
- b) 0,1 bis 70 Gew.-% an Copolymeren aus
  - i) ungesättigten Carbonsäuren
  - ii) Sulfonsäuregruppen-haltigen Monomeren
  - iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
- c) 0,1 bis 30 Gew.-% homo- und/oder copolymere Polycarbonsäuren bzw. deren Salze,
- d) 5 bis 30 Gew.-% nichtlonische(s) Tensid(e) enthalten.

Alle vorstehend genannten erfindungsgemäßen Mittel haben den Vorteil, daß die mit solchen Mitteln behandelten Geschirrteile bei nachfolgenden Reinigungsvorgängen deutlich sauberer werden, als Geschirrteile, die mit herkömmlichen Mitteln gespült wurden. Dabei ist der Effekt unabhängig davon, ob die maschinellen Geschirrspülmittel flüssig, pulverförmig oder in Tablettenform vorliegen.

Als zusätzlicher positiver Effekt tritt eine Verkürzung der Trocknungszeit der mit dem Reinigungsmittel behandelten Geschirrteile auf, d.h. der Verbraucher kann nach dem Ablauf des Reinigungsprogramms das Geschirr früher aus der Maschine nehmen und wiederbenutzen.

Die Erfindung zeichnet sich durch eine verbesserte "Reinigbarkeit" der behandelten Substrate bei späteren Reinigungsvorgängen und durch ein erhebliche Verkürzung der Trocknungszeit gegenüber vergleichbaren Mitteln ohne den Einsatz Sulfonsäuregruppen-haltiger Polymere aus.

5

Unter *Trocknungszeit* wird im Rahmen der erfindungsgemäßen Lehre im allgemeinen die wortsinngemäße Bedeutung verstanden, also die Zeit, die verstreicht, bis eine in einer Geschirrspülmaschlne behandelte Geschirroberfläche getrocknet ist, im besonderen aber die Zeit, die verstreicht, bis 90 % einer mit einem Reinigungs- oder Klarspülmittel in konzentrierter oder verdünnter Form behandelten Oberfläche getrocknet ist.

Als Inhaltsstoff a) enthalten die erfindungsgemäßen Mittel einen oder mehrere Gerüststoff(e). Diese werden nachstehend beschrieben. Besonders bevorzugte Gerüststoffe sind im Rahmen der vorliegenden Erfindung Phosphate und/oder Citrate.

In den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und – wenn keine ökologischen Bedenken gegen ihren Einsatz bestehen - auch die Phosphate. Die nachstehend genannten Gerüststoffe sind allesamt als Trägermaterialien für die erfindungsgemäßen Klarspülerpartikel geeignet, wie bereits weiter oben ausgeführt wurde.

Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSi $_xO_{2x+1}$  ' $H_2O$ , wobel M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl G- als auch  $\delta$ -Natriumdisilikate  $Na_2Si_2O_5$  ' $yH_2O$  bevorzugt.

Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na<sub>2</sub>O: SiO<sub>2</sub> von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Ratentanmeldung DE-A- 44 00 024 beschrieben. Insbe-

6

sondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.

Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP<sup>®</sup> (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX<sup>®</sup> vertrieben wird und durch die Formel

$$nNa_2O^{-}(1-n)K_2O^{-}Al_2O_3^{-}(2-2,5)SiO_2^{-}(3,5-5,5)H_2O^{-}$$

beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, Insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.

Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.

Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO<sub>3</sub>)<sub>n</sub> und Orthophosphorsäure H<sub>3</sub>PO<sub>4</sub> neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.

Natriumdihydrogenphosphat, NaH<sub>2</sub>PO<sub>4</sub>, existiert als Dihydrat (Dichte 1,91 gcm<sup>-3</sup>, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm<sup>-3</sup>). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>), bei höherer Temperatur in Natiumtrimetaphosphat (Na<sub>3</sub>P<sub>3</sub>O<sub>9</sub>) und Maddrellsches Salz (siehe unten), übergehen. NaH<sub>2</sub>PO<sub>4</sub> reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH<sub>2</sub>PO<sub>4</sub>, ist ein weißes Salz der Dichte 2,33 gcm<sup>-3</sup>, hat einen Schmelz-

7

punkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO<sub>3</sub>)<sub>x</sub>] und ist leicht löslich in Wasser.

Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na<sub>2</sub>HPO<sub>4</sub>, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm<sup>-3</sup>, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm<sup>-3</sup>, Schmelzpunkt 48° unter Verlust von 5 H<sub>2</sub>O) und 12 Mol. Wasser (Dichte 1,52 gcm<sup>-3</sup>, Schmelzpunkt 35° unter Verlust von 5 H<sub>2</sub>O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K<sub>2</sub>HPO<sub>4</sub>, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.

Trinatriumphosphat, tertiäres Natriumphosphat, Na<sub>3</sub>PO<sub>4</sub>, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm<sup>-3</sup> und einen Schmelzpunkt von 73–76°C (Zersetzung), als Decahydrat (entsprechend 19–20% P<sub>2</sub>O<sub>5</sub>) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39–40% P<sub>2</sub>O<sub>5</sub>) eine Dichte von 2,536 gcm<sup>-3</sup> aufwelsen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K<sub>3</sub>PO<sub>4</sub>, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm<sup>-3</sup>, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.

Tetranatriumdiphosphat (Natriumpyrophosphat),  $Na_4P_2O_7$ , existiert in wasserfreier Form (Dichte 2,534 gcm<sup>-3</sup>, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815–1,836 gcm<sup>-3</sup>, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle.  $Na_4P_2O_7$  entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat),  $K_4P_2O_7$ , existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm<sup>-3</sup> dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.

Durch Kondensation des NaH<sub>2</sub>PO<sub>4</sub> bzw. des KH<sub>2</sub>PO<sub>4</sub> entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Gra-

hamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kallumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.

Das technisch wichtige Pentanatriumtriphosphat,  $Na_5P_3O_{10}$  (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6  $H_2O$  kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]<sub>n</sub>-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat,  $K_6P_3O_{10}$  (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%igen Lösung (> 23%  $P_2O_5$ , 25%  $K_2O$ ) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

$$(NaPO_3)_3 + 2 KOH \rightarrow Na_3K_2P_3O_{10} + H_2O$$

Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.

Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.

Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.

9

Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.

Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.

Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen M<sub>w</sub> der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.

Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.

Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.

Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.

Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.

Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.

Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.

Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, die neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.

Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit. Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.

Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.

Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an  $C_6$  des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.

Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.

Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.

Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.

Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.

Die erfindungsgemäß als Inhaltsstoff b) einsetzbaren Sulfonsäuregruppen-haltigen Polymere werden nachstehend ausführlich beschrieben.

Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel I als Monomer bevorzugt,

$$R^{1}(R^{2})C=C(R^{3})COOH$$
 (I),

in der R<sup>1</sup> bis R<sup>3</sup> unabhängig voneinander für –H –CH<sub>3</sub>, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit –NH<sub>2</sub>, -OH oder –COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für –COOH oder –COOR<sup>4</sup> steht, wobei R<sup>4</sup> ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.

12

Unter den ungesättigten Carbonsäuren, die sich durch die Formel I beschreiben lassen, sind insbesondere Acrylsäure ( $R^1 = R^2 = R^3 = H$ ), Methacrylsäure ( $R^1 = R^2 = H$ ;  $R^3 = CH_3$ ) und/oder Maleinsäure ( $R^1 = COOH$ ;  $R^2 = R^3 = H$ ) bevorzugt.

Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel II bevorzugt,

$$R^{5}(R^{6})C=C(R^{7})-X-SO_{3}H$$
 (II),

in der  $R^5$  bis  $R^7$  unabhängig voneinander für -H  $-CH_3$ , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, einoder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit  $-NH_2$ , -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder  $-COOR^4$  steht, wobei  $R^4$  ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus  $-(CH_2)_n$ - mit n=0 bis 4,  $-COO-(CH_2)_k$ - mit n=1 bis 6,  $-COO-(CH_3)_2$ - und  $-COO-(CH_3)_2$ - und  $-COO-(CH_3)_3$ - und  $-COO-(CH_3)_3$ -.

Unter diesen Monomeren bevorzugt sind solche der Formeln IIa, IIb und/oder IIc,

$$H_2C=CH-X-SO_3H$$
 (IIa),  
 $H_2C=C(CH_3)-X-SO_3H$  (IIb),  
 $HO_3S-X-(R^6)C=C(R^7)-X-SO_3H$  (IIc),

in denen  $R^6$  und  $R^7$  unabhängig voneinander ausgewählt sind aus  $-H_1$  - $CH_3$ , - $CH_2CH_3$ , - $CH_2CH_3$ CH<sub>2</sub>CH<sub>3</sub>CH<sub>3</sub>, - $CH(CH_3)_2$  und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus  $-(CH_2)_n$ - mit n = 0 bis 4, - $COO-(CH_2)_k$ - mit k = 1 bis 6, - $C(O)-NH-C(CH_3)_2$ - und - $C(O)-NH-C(CH_2CH_3)$ -.

Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansulfonsäure ( $X = -C(O)NH-CH(CH_2CH_3)$ ) in Formel IIa), 2-Acrylamido-2-propansulfonsäure ( $X = -C(O)NH-C(CH_3)_2$  in Formel IIa), 2-Acrylamido-2-methyl-1-propansulfonsäure ( $X = -C(O)NH-CH(CH_3)CH_2$ - in Formel IIa), 2-Methacrylamido-2-methyl-1-propansulfonsäure ( $X = -C(O)NH-CH(CH_3)CH_2$ - in Formel IIb), 3-Methacrylamido-2-hydroxy-propansulfonsäure ( $X = -C(O)NH-CH_2CH(OH)CH_2$ - in Formel IIb), Allylsulfonsäure ( $X = CH_2$  in Formel IIa), Methallylsulfonsäure ( $X = CH_2$  in Formel IIb), Methallyloxybenzolsulfonsäure ( $X = -CH_2-O-C_6H_4$ - in Formel IIa), Methallyloxybenzolsulfonsäure ( $X = -CH_2-O-C_6H_4$ - in Formel IIb), 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure ( $X = CH_2$  in Formel IIb), Styrolsulfonsäure ( $X = C_6H_4$  in Formel IIa), Vinylsulfonsäure ( $X = CH_2$  in Formel IIa), 3-Sulfopropylacrylat ( $X = -C(O)NH-CH_2CH_2$ - in Formel IIa), 3-Sulfopropylmethacrylat ( $X = -C(O)NH-CH_2CH_2$ - in Formel IIb),

Sulfomethacrylamid (X = -C(O)NH- in Formel IIb), Sulfomethylmethacrylamid (X = -C(O)NH-CH<sub>2</sub>- in Formel IIb) sowie wasserlösliche Salze der genannten Säuren.

Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß eingesetzten Polymere an Monomeren der Gruppe iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).

Zusammenfassend ist die Verwendung von einem oder mehreren Copolymeren aus

i) ungesättigten Carbonsäuren der Formel I.

$$R^{1}(R^{2})C=C(R^{3})COOH$$
 (I),

in der R<sup>1</sup> bis R<sup>3</sup> unabhängig voneinander für –H –CH<sub>3</sub>, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit –NH<sub>2</sub>, -OH oder –COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für –COOH oder –COOR<sup>4</sup> steht, wobei R<sup>4</sup> ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen lst,

ii) Sulfonsäuregruppen-haltigen Monomeren der Formel II

$$R^{5}(R^{6})C=C(R^{7})-X-SO_{3}H$$
 (II),

in der  $R^5$  bis  $R^7$  unabhängig voneinander für -H  $-CH_3$ , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, einoder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit  $-NH_2$ , -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder  $-COOR^4$  steht, wobei  $R^4$  ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus  $-(CH_2)_n$ - mit n=0 bis 4,  $-COO-(CH_2)_k$ - mit k=1 bis 6,  $-COO-(CH_3)_2$ - und  $-COO-(CH_3)_2$ - und  $-COO-(CH_3)_3$ -

iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren

besonders bevorzugt.

Eine insbesondere bevorzugte Verwendung ist dadurch gekennzeichnet, daß ein oder mehrere Copolymere aus

- i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
- ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln IIa, IIb und/oder IIc:

$$H_2C=CH-X-SO_3H$$
 (IIa),  
 $H_2C=C(CH_3)-X-SO_3H$  (IIb),  
 $HO_3S-X-(R^9)C=C(R^7)-X-SO_3H$  (IIc),

in der  $R^6$  und  $R^7$  unabhängig voneinander ausgewählt sind aus –H, -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)<sub>2</sub> und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus –(CH<sub>2</sub>)<sub>n</sub>-mit n = 0 bis 4, -COO-(CH<sub>2</sub>)<sub>k</sub>- mit k = 1 bis 6, -C(O)-NH-C(CH<sub>3</sub>)<sub>2</sub>- und -C(O)-NH-CH(CH<sub>2</sub>CH<sub>3</sub>)-

iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren

verwendet werden.

Die erfindungsgemäß verwendeten Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.

So ist beispielsweise eine erfindungsgemäße Verwendung bevorzugt, die dadurch gekennzeichnet ist, daß ein oder mehrere Copolymere verwendet werden, die Struktureinheiten der Formel III

$$-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (III),$$

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O--( $CH_2$ )<sub>n</sub>- mit n = 0 bis 4, für -O--( $CH_4$ )-, für -NH-C( $CH_3$ )<sub>z</sub>- oder -NH-CH( $CH_2$ CH<sub>3</sub>)- steht, bevorzugt sind.

Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppenhaltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Verwendung ebenfalls bevorzugt und dadurch gekennzeichnet ist , daß ein oder mehrere Copolymere verwendet werden, die Struktureinheiten der Formel IV

$$-[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (IV),$$

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH<sub>2</sub>)<sub>n</sub>- mit n = 0 bis 4, für -O-(C<sub>8</sub>H<sub>4</sub>)-, für -NH-C(CH<sub>3</sub>)<sub>2</sub>- oder - NH-CH(CH<sub>2</sub>CH<sub>3</sub>)- steht, bevorzugt sind.

Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppenhaltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So ist die erfindungsgemäße Verwendung von einem oder mehreren Copolymeren, die Struktureinheiten der Formel V

$$-[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (V),$$

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-( $CH_2$ )<sub>n</sub>- mit n = 0 bis 4, für -O-( $C_6H_4$ )-, für -NH-C( $CH_3$ )<sub>2</sub>- oder -NH-CH( $CH_2CH_3$ )- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Verwendungen bevorzugt sind, die dadurch gekennzeichnet sind, daß ein oder mehrere Copolymere verwendet werden, die Struktureinheiten der Formel VI

$$-[CH_2-C(CH_3)COOH]_{m}-[CH_2-C(CH_3)C(O)-Y-SO_3H]_{p}-$$
 (VI),

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-( $CH_2$ )<sub>n</sub>- mit n = 0 bis 4, für -O-( $CH_4$ )-, für -NH-C( $CH_3$ )<sub>2</sub>- oder -NH-CH( $CH_2$ CH<sub>3</sub>)- steht, bevorzugt sind.

Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese

16

Weise zu erfindungsgemäß bevorzugten Verwendungen, die dadurch gekennzeichnet sind, daß ein oder mehrere Copolymere verwendet werden, die Struktureinheiten der Formel VII

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten allphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O- $(CH_2)_n$ - mit n = 0 bis 4, für -O- $(C_8H_4)$ -, für -NH-C( $CH_3)_2$ - oder -NH-CH( $CH_2CH_3$ )- steht, bevorzugt sind und zu Verwendungen, welche dadurch gekennzeichnet sind, daß ein oder mehrere Copolymere verwendet werden, die Struktureinheiten der Formel VIII

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder arallphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatornen, wobei Spacergruppen, in denen Y für -O-(CH<sub>2</sub>)<sub>n</sub>- mit n = 0 bis 4, für -O-(C<sub>8</sub>H<sub>4</sub>)-, für -NH-C(CH<sub>3</sub>)<sub>2</sub>- oder - NH-CH(CH<sub>2</sub>CH<sub>3</sub>)- steht, bevorzugt sind.

In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Verwendungen, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erfindungsgemäß bevorzugt.

Die Monomerenverteilung in den erfindungsgemäß eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.

Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.

Die Molmasse der erfindungsgemäß eingesetzten Polymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Verwendungen sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.008

gmol<sup>-1</sup>, vorzugsweise von 4000 bis 25.000 gmol<sup>-1</sup> und insbesondere von 5000 bis 15.000 gmol<sup>-1</sup> aufweisen.

Besonders bevorzugt sind zusammenfassend maschinelle Geschirrspülmittel, die als Inhaltsstoff b) ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formeln III und/oder IV und/oder VI und/oder VII und/oder VIII

| -[CH <sub>2</sub> -CHCOOH] <sub>m</sub> -[CH <sub>2</sub> -CHC(O)-Y-SO <sub>3</sub> H] <sub>p</sub> -                                                                 | (111), |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| -[CH <sub>2</sub> -C(CH <sub>3</sub> )COOH] <sub>m</sub> -[CH <sub>2</sub> -CHC(O)-Y-SO <sub>3</sub> H] <sub>p</sub> -                                                | (IV),  |
| $-[\mathrm{CH_2\text{-}C}(\mathrm{CH_3})\mathrm{COOH}]_{\mathfrak{m}}-[\mathrm{CH_2\text{-}C}(\mathrm{CH_3})\mathrm{C}(\mathrm{O})-\mathrm{Y-SO_3H}]_{\mathfrak{p}}-$ | (VI),  |
| -[HOOCCH-CHCOOH] <sub>m</sub> -[CH <sub>2</sub> -CHC(O)-Y-SO <sub>3</sub> H] <sub>p</sub> -                                                                           | (VII), |
| -[HOOCCH-CHCOOH] <sub>m</sub> -[CH <sub>2</sub> -C(CH <sub>3</sub> )C(O)O-Y-SO <sub>3</sub> H] <sub>n</sub> -                                                         | (VIII) |

enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O--( $CH_2$ )<sub>n</sub>- mit n = 0 bis 4, für -O--( $C_6H_4$ )-, für -NH-C( $CH_3$ )- oder -NH-CH( $CH_2CH_3$ )- steht, bevorzugt sind.

Die Mengen, in denen die Copolymere b) in den erfindungsgemäßen Mitteln enthalten sind, können je nach gewünschtem Produkt (Dosierempfehlung) variieren. Allgemein sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die das/die sulfonierte(n) Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthalten.

Neben den sulfonierten Copolymeren b) können die erfindungsgemäßen Mittel Polycarbonsäuren bzw. deren Salze enthalten. Im Rahmen der vorliegenden Erfindung besonders geeignete Homooder Copolymere c) sind Polyacrylate, Polymethacrylate, Copolymere von Acrylsäure und/oder Methacrylsäure mit Maleinsäure sowie Copolymere von Maleinsäure mit Olefinen. Bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel nach sind daher dadurch gekennzeichnet, daß sie als homo- und/oder copolymere Polycarbonsäuren bzw. deren Salze Homo- und/oder Copolymere der Acrylsäure und/oder Methacrylsäure und/oder Maleinsäure enthalten.

Enthalten die maschinellen Geschirrspülmittel der vorliegenden Erfindung (co)polymere Polycarboxylate, so sind die vorstehend bei den Cobuildern beschriebenen Polycarboxylate besonders bevorzugt.

Zusammenfassend sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als Inhaltsstoff c) weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit

Methacrylsäure und/oder der Acrylsäure oder Methacrylsäure mit Maleinsäure enthalten, wobei Copolymere der Acrylsäure mit Maleinsäure, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten, bevorzugt und Polymere mit relativen Molekülmassen, bezogen auf freie Säuren, von 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol besonders bevorzugt sind.

In besonders bevorzugten maschinelle Geschirrspülmitteln beträgt das Gewichtsverhältnis von sulfonierten Copolymeren b) zu (Meth)Acrylat-Copolymeren c) 100:1 bis 1:100, vorzugsweise 25:1 bis 1:50, besonders bevorzugt 10:1 bis 1:25 und insbesondere 5:1 bis 1:10.

Zusätzlich zu den Inhaltsstoffen a) bis c) bzw. a) bis d) können die erfindungsgemäßen Mittel weitere Inhaltsstoffe enthalten. Wichtige Inhaltsstoffe aus den Gruppen der Bleichmittel, Bleichaktivatoren, Enzyme, Silberschutzmittel, Cobuilder, Farb- und Duftstoffe usw. sind weiter unten ausführlich beschrieben. Im Rahmen der vorliegenden Erfindung ist es besonders bevorzugt, wenn die maschinellen Geschirrspülmittel zusätzlich einen oder mehrere Stoffe aus der Gruppe der Acidifizierungsmittel, Chelatkomplexbildner oder der belagsinhibierenden Polymere enthalten.

Stoffe aus der Gruppe der Acidifizierungsmittel sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan<sup>®</sup> DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).

Eine weitere mögliche Gruppe von Inhaltsstoffen stellen die Chelatkomplexbildner dar. Chelatkomplexbildner sind Stoffe, die mit Metallionen cyclische Verbindungen bilden, wobei ein einzelner Ligand mehr als eine Koordinationsstelle an einem Zentralatom besetzt, d. h. mind. "zweizähnig" ist. In diesem Falle werden also normalerweise gestreckte Verbindungen durch Komplexbildung über ein Ion zu Ringen geschlossen. Die Zahl der gebundenen Liganden hängt von der Koordinationszahl des zentralen Ions ab.

Gebräuchliche und im Rahmen der vorliegenden Erfindung bevorzugte Chelatkomplexbilder sind beispielsweise Polyoxycarbonsäuren, Polyaminen, Ethylendiamintetraessigsäure (EDTA) und Nitrilotriessigsäure (NTA). Auch komplexbildende Polymere, also Polymere, die entweder in der Hauptkette selbst oder seitenständig zu dieser funktionalle Gruppen tragen, die als Liganden wir-

ken können und mit geeigneten Metall-Atomen in der Regel unter Bildung von Chelat-Komplexen reagieren, sind erfindungsgemäß einsetzbar. Die Polymer-gebundenen Liganden der entstehenden Metall-Komplexe können dabei aus nur einem Makromolekül stammen oder aber zu verschiedenen Polymerketten gehören. Letzteres führt zur Vernetzung des Materials, sofern die komplexbildenden Polymere nicht bereits zuvor über kovalente Bindungen vernetzt waren.

Komplexierende Gruppen (Liganden) üblicher komplexbildender Polymere sind Iminodiessigsäure-, Hydroxychinolin-, Thiohamstoff-, Guanidin-, Dithiocarbamat-, Hydroxamsäure-, Amidoxim-, Aminophosphorsäure-, (cycl.) Polyamino-, Mercapto-, 1,3-Dicarbonyl- und Kronenether-Reste mit z. T. sehr spezif. Aktivitäten gegenüber Ionen unterschiedlicher Metalle. Basispolymere vieler auch kommerziell bedeutender komplexbildender Polymere sind Polystyrol, Polyacrylate, Polyacrylnitrile, Polyvinylalkohole, Polyvinylpyridine und Polyethylenimine. Auch natürliche Polymere wie Cellulose, Stärke od. Chitin sind komplexbildende Polymere. Darüber hinaus können diese durch polymeranaloge Umwandlungen mit weiteren Ligand-Funktionalitäten versehen werden.

Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung maschinelle Geschirrspülmittel, die ein oder mehrere Chelatkomplexbildner aus den Gruppen der

- Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt,
- (ii) stickstoffhaltigen Mono- oder Polycarbonsäuren,
- (iii) geminalen Diphosphonsäuren,
- (iv) Aminophosphonsäuren,
- (v) Phosphonopolycarbonsäuren.
- (vi) Cyclodextrine

in Mengen oberhalb von 0,1 Gew.-%, vorzugsweise oberhalb von 0,5 Gew.-%, besonders bevorzugt oberhalb von 1 Gew.-% und insbesondere oberhalb von 2,5 Gew.-%, jeweils bezogen auf das Gewicht des Geschirrspülmittels, enthalten.

Im Rahmen der vorliegenden Erfindung können alle Komplexbildner des Standes der Technik eingesetzt werden. Diese können unterschiedlichen chemischen Gruppen angehören. Vorzugsweise werden einzeln oder im Gemisch miteinander eingesetzt:

- Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt wie Gluconsäure,
- b) stickstoffhaltige Mono- oder Polycarbonsäuren wie Ethylendiamintetraessigsäure (EDTA), N-Hydroxyethylethylendiamintriessigsäure, Diethylentriaminpentaessigsäure, Hydroxyethyliminodiessigsäure, Nitridodiessigsäure-3-propionsäure, Isoserindiessigsäure, Nitridodiessigsäure-3-propionsäure, Isoserindiessigsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-propionsäure-3-

20

- ethyl)-glycin, N-(1,2-Dicarboxy-2-hydroxyethyl)-glycin, N-(1,2-Dicarboxy-2-hydroxyethyl)-asparaginsäure oder Nitrilotriessigsäure (NTA),
- c) geminale Diphosphonsäuren wie 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), deren h\u00f6herre Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon und 1-Aminoethan-1,1-diphosphons\u00e4ure, deren h\u00f6here Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon,
- d) Aminophosphonsäuren wie Ethylendiamintetra(methylenphosphonsäure), Diethylentriaminpenta(methylenphosphonsäure) oder Nitrilotri(methylenphosphonsäure),
- e) Phosphonopolycarbonsäuren wie 2-Phosphonobutan-1,2,4-tricarbonsäure sowie
- f) Cyclodextrine.

Als Polycarbonsäuren a) werden im Rahmen dieser Patentanmeldung Carbonsäuren -auch Mono-carbonsäuren- verstanden, bei denen die Summe aus Carboxyl- und den im Molekül enthaltenen Hydroxylgruppen mindestens 5 beträgt. Komplexbildner aus der Gruppe der stickstoffhaltigen Polycarbonsäuren, insbesondere EDTA, sind bevorzugt. Bei den erfindungsgemäß erforderlichen alkalischen pH-Werten der Behandlungslösungen liegen diese Komplexbildner zumindest teilwelse als Anionen vor. Es ist unwesentlich, ob sie in Form der Säuren oder in Form von Salzen eingebracht werden. Im Falle des Einsatzes als Salze sind Alkali-, Ammonium- oder Alkylammoniumsalze, insbesondere Natriumsalze, bevorzugt.

Die Niotenside, die in den maschinellen Geschirrspülmitteln der vorliegenden Anmeldung eingesetzt werden können, sind nachstehend ausführlich beschrieben. Die Mengen, in denen die nichtionischen Tenside eingesetzt werden, liegen erfindungsgemäß zwischen 5 und 30 Gew.-%, wobei maschinelle Geschirrspülmittel bevorzugt sind, die 5 bis 25 Gew.-%, vorzugsweise 6 bis 22,5 Gew.-%, besonders bevorzugt 7,5 bis 20 Gew.-% und insbesondere 8 bis 17,5 Gew.-% nichtionische(s) Tensid(e) enthalten.

Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C<sub>12-14</sub>-Alkohole mit 3 EO oder 4 EO, C<sub>9-11</sub>-Alkohol mit 7 EO, C<sub>13-15</sub>-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C<sub>12-18</sub>-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C<sub>12-14</sub>-Alkohol mit 3 EO und C<sub>12-18</sub>-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein

können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Belspiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)<sub>x</sub> eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden anglbt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.

Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.

Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (IX),

in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R<sup>1</sup> für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (X),

22

in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R¹ für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R² für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C₁₄-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.

[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispiels-weise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substitulerten Verbindungen können durch Umsetzung mit Fettsäuremethylestem in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten die erfindungsgemäßen Reinigungsmittel für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise  $C_{12-14}$ -Alkohole mit 3 EO oder 4 EO,  $C_{9-11}$ -Alkohol mit 7 EO,  $C_{13-15}$ -Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO,  $C_{12-18}$ -Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C<sub>12-14</sub>-Alkohol mit 3 EO und C<sub>12-18</sub>-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

23

Insbesondere bevorzugt sind erfindungsgemäße Mittel, die ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge sind bevorzugte Mittel dadurch gekennzeichnet, daß sie nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, enthalten.

Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.

Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tenside mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.

Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C<sub>18-20</sub>-Alkohol), vorzugsweise einem C<sub>18</sub>-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.

Demnach enthalten besonders bevorzugte erfindungsgemäße Klarspülmittel ethoxylierte(s) Niotensid(e), das/die aus  $C_{\theta-20}$ -Monohydroxyalkanolen oder  $C_{\theta-20}$ -Alkylphenolen oder  $C_{1\theta-20}$ -Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n).

Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtonischen

Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Klarspülmittel sind dadurch gekennzeichnet, daß sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthalten.

Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Block-polymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initilert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.

Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent<sup>®</sup> SLF-18 von der Firma Olin Chemicals erhältlich.

Ein weiter bevorzugtes erfindungsgemäßes Klarspülmittel enthält nichtionische Tenside der Formel

$$R^{1}O[CH_{2}CH(CH_{3})O]_{x}[CH_{2}CH_{2}O]_{y}[CH_{2}CH(OH)R^{2}],$$

in der  $R^1$  für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht,  $R^2$  einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.

Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel

# $\mathsf{R}^1\mathsf{O}[\mathsf{CH}_2\mathsf{CH}(\mathsf{R}^3)\mathsf{O}]_x[\mathsf{CH}_2]_k\mathsf{CH}(\mathsf{OH})[\mathsf{CH}_2]_j\mathsf{OR}^2$

in der  $R^1$  und  $R^2$  für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen,  $R^3$  für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert  $x \ge 2$  ist, kann jedes  $R^3$  in der obenstehenden Formel unterschiedlich sein.  $R^1$  und  $R^2$  sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aro-

matische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest  $R^3$  sind H, -CH<sub>3</sub> oder --CH<sub>2</sub>CH<sub>3</sub> besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.

Wie vorstehend beschrieben, kann jedes  $R^3$  in der obenstehenden Formel unterschiedlich sein, falls  $x \ge 2$  ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest  $R^3$  ausgewählt werden, um Ethylenoxid-  $(R^3 = H)$  oder Propylenoxid-  $(R^3 = CH_3)$  Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(PO), und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.

Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu

# R<sup>1</sup>O[CH<sub>2</sub>CH(R<sup>3</sup>)O]<sub>x</sub>CH<sub>2</sub>CH(OH)CH<sub>2</sub>OR<sup>2</sup>

vereinfacht. In der letztgenannten Formel sind  $R^1$ ,  $R^2$  und  $R^3$  wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonders von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste  $R^1$  und  $R^2$  9 bis 14 C-Atome aufweisen,  $R^3$  für H steht und x Werte von 6 bis 15 annimmt.

Faßt man die letztgenannten Aussagen zusammen, sind erfindungsgemäße Mittel bevorzugt, die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel

# $\mathsf{R}^1\mathsf{O}[\mathsf{CH}_2\mathsf{CH}(\mathsf{R}^3)\mathsf{O}]_x[\mathsf{CH}_2]_k\mathsf{CH}(\mathsf{OH})[\mathsf{CH}_2]_j\mathsf{OR}^2$

enthalten, in der R<sup>1</sup> und R<sup>2</sup> für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R<sup>3</sup> für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs

## R<sup>1</sup>O[CH<sub>2</sub>CH(R<sup>3</sup>)O]<sub>x</sub>CH<sub>2</sub>CH(OH)CH<sub>2</sub>OR<sup>2</sup>

in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonder von 6 bis 18 steht, besonders bevorzugt sind.

26

An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden. Zusammenfassend sind erfindungsgemäße Mittel bevorzugt, die Tensid(e), vorzugsweise nichtionische(s) Tensid(e) und insbesondere nichtionische(s) Tensid(e) aus der Gruppe der alkoxylierten Alkohole, in Mengen von 0,1 bis 60 Gew.-%, vorzugsweise von 0,5 bis 50 Gew.-%, besonders bevorzugt von 1 bis 40 Gew.-%, und insbesondere von 2 bis 30 Gew.-%, jeweils bezogen auf das Mittel, enthalten.

Neben den Gerüststoffen sind insbesondere Stoffe aus den Gruppen der Tenside (siehe oben), der Bleichmittel, der Bleichaktivatoren, der Enzyme, der Polymere sowie der Farb- und Duftstoffe wichtige Inhaltsstoffe von Reinigungsmitteln. Wichtige Vertreter aus den genannten Substanzklassen werden nachstehend beschrieben.

Unter den als Bleichmittel dienenden, in Wasser H<sub>2</sub>O<sub>2</sub> liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H<sub>2</sub>O<sub>2</sub> liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy- $\alpha$ -Naphtoesaure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsaure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.

Als Bleichmittel in den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.

Bleichaktivatoren, die die Wirkung der Bleichmittel unterstützen, sind weitere wichtige Inhaltsstoffe. Bekannte Bleichaktivatoren sind Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen

enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Belspiele sind Tetraacetylethylendiamin TAED, Tetraacetylmethylendiamin TAMD und Tetraacetylhexylendiamin TAHD, aber auch Pentaacetylglucose PAG, 1,5-Diacetyl-2,2-dioxo-hexahydro-1,3,5-triazin DADHT und Isatosäureanhydrid ISA.

Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylgiykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triace-Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.

Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Klarspülerpartikel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu-und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.

Bevorzugt werden Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezogen auf das gesamte Mittel, eingesetzt.

Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsal-

ze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.

Als Enzyme kommen in den erfindungsgemäßen Reinigungsmitteln insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verflekkungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.

Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.

Farb- und Duftstoffe können den erfindungsgemäßen maschinellen Geschirrspülmitteln zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat,

Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.

Die Duftstoffe können direkt in die erfindungsgemäßen Reinigungsmittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können. Auch eine Inkorporation der Duftstoffe in die erfindungsgemäßen Klarspülerpartikel ist möglich und führt zu einem Dufteindruck beim Öffnen der Maschine (siehe oben).

Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, kann es (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den Mitteln zu behandelnden Substraten wie Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.

Die erfindungsgemäßen Reinigungsmittel können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser

Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.

Wie bereits vorstehend erwähnt, lassen sich die erfindungsgemäßen Mittel in jeder gewünschten Form konfektionieren. In Abhängigkeit von der Wahl der weiteren Inhaltsstoffe und der "Matrix" sind sowohl flüssige als auch feste Mittel ohne weiteres herstellbar. Bei den flüssigen Mitteln können flüssige Geschirrspülmittel mit Viskositäten von wenigen Pas bis hin zu gelförmigen Mitteln oder gar schnittfesten Pasten hergestellt werden. Bei den festen Mitteln lassen sich sowohl teilchenförmige Mittel wie Pulver, Granulate, Extrudate, Schuppen, Pellets, Flocken usw. herstellen, als auch kompakte Formkörper wie Blöcke oder Tabletten, wobei letztere aufgrund ihrer hohen Verbraucherakzeptanz deutlich bevorzugt sind.

Reinigungsmitteltabletten für das maschinelle Geschirrspülen können dabei aus einem einzigen Vorgemisch verpreßt und somit in Form einer einphasigen Tablette bereitgestellt werden. Es ist aber auch möglich, mehrere unterschiedlich zusammengesetzte Vorgemische nacheinander zu verpressen, wobei im einfachsten Fall Tabletten mit einem Schichtaufbau resultieren. Ja nach Zahl der Vorgemische erhält man zweischichtige, dreischichtige oder vierschichtige Tabletten. Die unterschiedlichen Schichten eröffnen dabei die Möglichkeit, Wirkstoffe voneinander zu trennen, wobei sowohl die erfindungsgemäß zwingend enthaltenen Inhaltsstoffe voneinander getrennt werden können, als auch andere optionale Inhaltsstoffe wie beispielsweise Bleichmittel und Bleichaktivatoren.

Die einzelnen Phasen des Formkörpers können im Rahmen der vorliegenden Erfindung unterschiedliche Raumformen aufweisen. Die einfachste Realisierungsmöglichkeit liegt dabei in zweioder mehrschichtigen Tabletten, wobei jede Schicht des Formkörpers eine Phase darstellt. Es ist
aber erfindungsgemäß auch möglich, mehrphasige Formkörper herzustellen, in denen einzelne
Phasen die Form von Einlagerungen in (eine) andere Phase(n) aufweisen. Neben sogenannten
"Ring-Kern-Tabletten" sind dabei beispielsweise Manteltabletten oder Kombinationen der genannten Ausführungsformen möglich. Die technisch derzeit verbreitetste Raumform mehrphasiger
Formkörper ist die Zwei- oder Mehrschichttablette. Im Rahmen der vorliegenden Erfindung ist es
daher bevorzugt, daß die Phasen des Formkörpers die Form von Schichten aufweisen und der
Formkörper 2-, 3- oder 4-phasig ist.

31

Die erfindungsgemäßen Formkörper können jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weisen die erfindungsgemäßen Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.

Eine weitere Möglichkeit, Wirkstoffe in einzelnen Bereichen voneinander zu trennen, besteht darin, eine Tablette bereitzustellen, welche eine Kavität aufweist (z.B. eine Mulde oder ein durchgehendes Loch) und diese Kavität mit einem weiteren Teil zu befüllen, beispielsweise durch Ausgießen mit einer Schmelze oder Befüllen mit Pulver. Auch ein An- oder Einkleben eines separat hergestellten Formkörpers oder einer Tablette ist möglich, wobei auf den Klebstoff bei bestimmten geometrischen Gegebenheiten (mechanische Haftung) verzichtet werden kann. Diese Variante hat den Vorteil, daß der zweite Teil zum einen auf den unterschiedlichsten Wegen hergestellt werden kann (z.B. durch Tablettierung, Sintern, Gießen, Strangpressen usw.) und zum anderen vor dem Einoder Anfügen durch geeignete Maßnahmen (beispielsweise durch Coating) so konfektioniert werden kann, daß er sich zu einem vorbestimmten Zeitpunkt im Programmablauf der Geschirrspülmaschine auflöst und die Inhaltsstoffe freisetzt.

Die Kavität im verpreßten Teil solcher erfindungsgemäßen Formkörper kann dabei jedwede Form aufweisen. Sie kann den Formkörper durchteilen, d.h. eine Öffnung an verschiedenen Seiten, beispielsweise an Ober- und Unterseite des Formkörpers aufweisen, sie kann aber auch eine nicht durch den gesamten Formkörper gehende Kavität sein, deren Öffnung nur an einer Formkörperseite sichtbar ist. Auch die Form der Kavität kann in weiten Grenzen frei gewählt werden. Aus Gründen der Verfahrensökonomie haben sich durchgehende Löcher, deren Öffnungen an einander gegenüberliegenden Flächen der Formkörper liegen, und Mulden mit einer Öffnung an einer Formkörperseite bewährt. In bevorzugten Wasch- und Reinigungsmittelformkörpern weist die Kavität die Form eines durchgehenden Loches auf, dessen Öffnungen sich an zwei gegenüberliegenden Formkörperflächen befinden. Die Form eines solchen durchgehenden Lochs kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen das durchgehende Loch kreisrunde, ellipsenförmige, dreieckige, rechteckige, quadratische, fünfeckige, sechseckige, siebeneckige oder achteckige Horizontalschnitte aufweist. Auch völlig irreguläre Lochformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind im Falle von eckigen Löchern solche mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.

32

Die vorstehend genannten geometrischen Realisierungsformen lassen sich beliebig mitelnander kombinieren. So können Formkörper mit rechteckiger oder quadratischer Grundfläche und kreisrunden Löchern ebenso hergestellt werden wie runde Formkörper mit achteckigen Löchern, wobei der Vielfalt der Kombinationsmöglichkeiten keine Grenzen gesetzt sind. Aus Gründen der Verfahrensökonomie und des ästhetischen Verbraucherempfindens sind Formkörper mit Loch besonders bevorzugt, bei denen die Formkörpergrundfläche und der Lochquerschnitt die gleiche geometrische Form haben, beispielsweise Formkörper mit quadratischer Grundfläche und zentral eingearbeitetem quadratischem Loch. Besonders bevorzugt sind hierbei Ringformkörper, d.h. kreisrunde Formkörper mit kreisrundem Loch.

Wenn das o.g. Prinzip des an zwei gegenüberliegenden Formkörperseiten offenen Lochs auf eine Öffnung reduziert wird, gelangt man zu Muldenformkörpern. Erfindungsgemäße Wasch- und Reinigungsmittelformkörper, bei denen die Kavität die Form einer Mulde aufweist, sind ebenfalls bevorzugt. Wie bei den "Lochformkörpern" können die erfindungsgemäßen Formkörper auch bei dieser Ausführungsform jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weist der Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.

Auch die Form der Mulde kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen mindestens eine Mulde eine konkave, konvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Form annehmen kann. Auch völlig irreguläre Muldenformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind Mulden mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.

Die Größe der Mulde oder des durchgehenden Loches im Vergleich zum gesamten Formkörper richtet sich nach dem gewünschten Verwendungszweck der Formkörper. Je nachdem, mit wieviel weiterer Aktivsubstanz das verbleibende Hohlvolumen befüllt werden soll und ob eine geringere oder größere Menge an Reinigungsmittelkomponente enthalten sein soll, kann die Größe der Kavität variieren. Unabhängig vom Verwendungszweck sind Reinigungsmittelformkörper bevorzugt, bei denen das Volumenverhältnis von verpreßtem Teil ("Basisformkörper") zum "Kern" 2:1 bis 100:1, vorzugsweise 3:1 bis 80:1, besonders bevorzugt 4:1 bis 50:1 und insbesondere 5:1 bis 30:1, beträgt.

33

Neben dem genannten Volumenverhältnis kann auch ein Massenverhältnis der beiden Teile angegeben werden, wobei die beiden Werte über die Dichten des Basisformkörpers bzw. des "Kerns" miteinander korrelieren. Unabhängig von der Dichte der einzelnen Teile sind erfindungsgemäße Reinigungsmittelformkörper bevorzugt, bei denen das Gewichtsverhältnis von Basisformkörper zu "Kern" 1:1 bis 100:1, vorzugsweise 2:1 bis 80:1, besonders bevorzugt 3:1 bis 50:1 und insbesondere 4:1 bis 30:1 beträgt.

Analoge Angaben lassen sich auch für die Oberflächen machen, die jeweils vom Basisformkörper bzw. vom "Kern" sichtbar sind. Hier sind Reinigungsmittelformkörper bevorzugt, bei denen die nach außen sichtbare Oberfläche des "Kerns" 1 bis 25 %, vorzugsweise 2 bis 20 %, besonders bevorzugt 3 bis 15 % und insbesondere 4 bis 10 % der Gesamtoberfläche des Formkörpers ausmacht

Der Kern und der Basisformkörper sind vorzugsweise optisch unterscheidbar eingefärbt. Neben der optischen Differenzierung können anwendungstechnische Vorteile durch unterschiedliche Löslichkeiten der verschiedenen Formkörperbereiche erzielt werden. Reinigungsmittelformkörper, bei denen sich der Kern schneller löst als der Basisformkörper, sind erfindungsgemäß bevorzugt. Durch Inkorporation bestimmter Bestandteile kann einerseits die Löslichkeit der Kerne gezielt beschleunigt werden, andererseits kann die Freisetzung bestimmter Inhaltsstoffe aus den Kernen zu Vorteilen im Reinigungsprozeß führen.

Selbstverständlich sind auch erfindungsgemäße Reinigungsmittelformkörper bevorzugt, bei denen sich der Kern später im Spülprogramm löst als der Basisformkörper. Leistungsvorteile aus dieser verzögerten Freisetzung lassen sich beispielsweise dadurch erreichen, daß mit Hilfe eines langsamer löslichen Kerns Aktivsubstanz(en) erst in späteren Spülgängen freigesetzt werden. So kann beispielsweise beim maschinellen Geschirrspülen durch langsamer lösliche Kerne erreicht werden, daß im Klarspülgang weitere Aktivsubstanz(en) zur Verfügung steht/stehen. Durch zusätzliche Stoffe wie nichtionische Tenside, Acidifizierungsmittel, soil-release-Polymere usw. lassen sich so die Klarspülergebnisse verbessern. Auch eine Inkorporation von Parfüm ist problemlos möglich; durch dessen verzögerte Freisetzung kann bei Geschirrspülmaschinen der oft auftretende "Laugengeruch" beim Öffnen der Maschine beseitigt werden.

Der Basisformkörper besitzt in bevorzugten Ausführungsformen der vorliegenden Erfindung ein hohes spezifisches Gewicht. Wasch- und Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß der Basisformkörper eine Dichte oberhalb von 1000 kgdm³, vorzugsweise oberhalb von 1025 kgdm³, besonders bevorzugt oberhalb von 1050 kgdm³ und insbesondere oberhalb von 1100 kgdm³ aufweist, sind erfindungsgemäß bevorzugt.

Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkür-

34

zen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.

Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.

Bevorzugte Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jewells bezogen auf das Formkörpergewicht. Enthält nur der Basisformkörper Desintegrationshilfsmittel, so beziehen sich die genannten Angaben nur auf das Gewicht des Basisformkörpers. Bei der Inkorporation von Desintegrationshilfsmitteln in die erfindungsgemäßen Reinigungsmittelkomponenten zählen jene als Inhaltsstoff d).

Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung  $(C_6H_{10}O_5)_n$  auf und stellt formal betrachtet ein  $\beta$ -1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew -%, besonders bevorzugt unterhalb 20 Gew.-%,

35

bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.

Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.

Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.

Im Rahmen der vorliegenden Erfindung bevorzugte Reinigungsmittelformkörper enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht.

Die erfindungsgemäßen Reinigungsmittelformkörper können darüber hinaus sowohl im Basisformkörper als auch in der Reinigungsmittelkomponente ein gasentwickelndes Brausesystem enthalten. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizie-

36

rungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.

Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate aus waschtechnischem Interesse bevorzugt sein.

In bevorzugten Reinigungsmittelformkörpern werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder - hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbesondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen auf den gesamten Formkörper, eingesetzt.

Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).

Bevorzugt sind im Rahmen der vorliegenden Erfindung Reingungsmittelformkörper, bei denen als Acidifizierungsmittel im Brausesystem ein Stoff aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische aus diesen eingesetzt werden.

#### Patentansprüche:

- 1. Maschinelles Geschirrspülmittel, enthaltend
  - a) 1 bis 94,9 Gew.-% Gerüststoff(e),
  - b) 0,1 bis 70 Gew.-% an Copolymeren aus
    - i) ungesättigten Carbonsäuren
    - ii) Sulfonsäuregruppen-haltigen Monomeren
    - iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
  - c) 5 bis 30 Gew.-% nichtionische(s) Tensid(e).
- 2. Maschinelles Geschirrspülmittel, enthaltend
  - a) 1 bis 98,8 Gew.-% Gerüststoff(e),
  - b) 0,1 bis 70 Gew.-% an Copolymeren aus
    - i) ungesättigten Carbonsäuren
    - ii) Sulfonsäuregruppen-haltigen Monomeren
    - iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
  - c) 0,1 bis 30 Gew.-% homo- und/oder copolymere Polycarbonsäuren bzw. deren Salze.
- 3. Maschinelles Geschirrspülmittel, enthaltend
  - a) 1 bis 93,8 Gew.-% Gerüststoff(e),
  - b) 0,1 bis 70 Gew.-% an Copolymeren aus
    - i) ungesättigten Carbonsäuren
    - ii) Sulfonsäuregruppen-haltigen Monomeren
    - iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
  - c) 0,1 bis 30 Gew.-% homo- und/oder copolymere Polycarbonsäuren bzw. deren Salze,
  - d) 5 bis 30 Gew.-% nichtionische(s) Tensid(e).
- 4. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es als Inhaltsstoff b) ein oder mehrere Copolymere enthält, die Struktureinheiten der Formeln III und/oder IV und/oder V und/oder VI und/oder VIII

| -[CH <sub>2</sub> -CHCOOH] <sub>m</sub> -[CH <sub>2</sub> -CHC(O)-Y-SO <sub>3</sub> H] <sub>p</sub> -         | (HI),   |
|---------------------------------------------------------------------------------------------------------------|---------|
| $\hbox{-[CH$_2$-C(CH$_3)COOH]$_m$-[CH$_2$-CHC(O)-Y-SO$_3$H]$_p$-}$                                            | (IV),   |
| $\hbox{-[CH$_2$-C(CH$_3)COOH]$_m$-[CH$_2$-C(CH$_3)C(O)-Y-SO$_3H]$_p$-}$                                       | (VI),   |
| -[HOOCCH-CHCOOH] <sub>m</sub> -[CH <sub>2</sub> -CHC(O)-Y-SO <sub>3</sub> H] <sub>p</sub> -                   | (VII),  |
| -[HOOCCH-CHCOOH] <sub>m</sub> -[CH <sub>2</sub> -C(CH <sub>3</sub> )C(O)O-Y-SO <sub>3</sub> H] <sub>p</sub> - | (VIII), |

enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-( $CH_2$ )<sub>n</sub>- mit n = 0 bis 4, für -O-( $C_8H_4$ )-, für -NH-C( $CH_3$ )<sub>2</sub>- oder -NH-CH( $CH_2CH_3$ )- steht, bevorzugt sind.

- 5. Maschinelles Geschirrspülmittel nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß es als homo- und/oder copolymere Polycarbonsäuren bzw. deren Salze Homo- und/oder Copolymere der Acrylsäure und/oder Methacrylsäure und/oder Maleinsäure enthält.
- 6. Maschinelles Geschirrspülmittel nach Anspruch 5, dadurch gekennzeichnet, daß es als Inhaltsstoff c) copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und/oder der Acrylsäure oder Methacrylsäure mit Maleinsäure enthält, wobei Copolymere der Acrylsäure mit Maleinsäure, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten, bevorzugt und Polymere mit relativen Molekülmassen, bezogen auf freie Säuren, von 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol besonders bevorzugt sind.
- 7. Maschinelles Geschirrspülmittel nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß das Gewichtsverhältnis von sulfonierten Copolymeren b) zu (Meth)Acrylat-Copolymeren c) 100:1 bis 1:100, vorzugsweise 25:1 bis 1:50, besonders bevorzugt 10:1 bis 1:25 und insbesondere 5:1 bis 1:10 beträgt.
- Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es zusätzlich einen oder mehrere Stoffe aus der Gruppe der Acidifizierungsmittel, Chelatkomplexbildner oder der belagsinhibierenden Polymere enthält.
- 9. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 oder 3 bis 8, dadurch gekennzeichnet, daß es 5 bis 25 Gew.-%, vorzugsweise 6 bis 22,5 Gew.-%, besonders bevorzugt 7,5 bis 20 Gew.-% und insbesondere 8 bis 17,5 Gew.-% nichtionische(s) Tensid(e) enthält.
- 10. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß es das/die sulfonierte(n) Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthält.
- 11. Verwendung von Copolymeren aus

39

- i) ungesättigten Carbonsäuren
- ii) Sulfonsäuregruppen-haltigen Monomeren
- iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren

im Hauptspülgang beim maschinellen Geschirrspülen.

#### INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/EP 01/07383

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C11D3/37 C11D1/66 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C11D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X US 5 958 855 A (BINSTOCK GARY ET AL) 1,10,11 28 September 1999 (1999-09-28) Α claims 1-8; examples 2-4 column 5, line 12 -column 6, line 27 Α EP 0 851 024 A (UNILEVER) 1 - 111 July 1998 (1998-07-01) cited in the application claims 1-10 Α EP 0 851 022 A (UNILEVER) 1-11 1 July 1998 (1998-07-01) claims 1-9; examples EP 0 182 600 A (ALLIED COLLOIDS LTD) 1-10 28 May 1986 (1986-05-28) page 2, line 14 -page 3, line 22 page 7, line 19 -page 8, line 16 X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: \*T\* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention \*A\* document defining the general state of the art which is not considered to be of particular relevance \*E\* earlier document but published on or after the international filling date "X" document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone \*L\* document which may throw doubts on priority daim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the International filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 7 November 2001 14/11/2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Bertran Nadal. J

 $\cdot 1$ 

## INTERNATIONAL SEARCH REPORT

Int tional Application No
PCT/EP 01/07383

| Continu   | New poolinging concentrate to be per access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PC1/EP 01/0/383       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ategory ° | ation) DOCUMENTS CONSIDERED TO BE RELEVANT  Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Relevant to claim No. |
|           | The second secon | пережи о сили мо.     |
|           | WO 01 72941 A (NAT STARCH CHEM INVEST) 4 October 2001 (2001-10-04) page 1, last paragraph -page 3, paragraph 3 page 4, line 29 -page 6, line 16 claims; examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1–11                  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| - 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| ļ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| }         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| ł         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |

## INTERNATIONAL SEARCH REPORT

nformation on patent family members

Int Ional Application No PCT/EP 01/07383

| Patent document<br>cited in search report |   | Publication date |      | Patent family<br>member(s) | Publication date |
|-------------------------------------------|---|------------------|------|----------------------------|------------------|
| US 5958855                                | Α | 28-09-1999       | US   | 6191088 B1                 | 20-02-2001       |
| EP 0851024                                | A | 01-07-1998       | US . | 5783540 A                  | 21-07-1998       |
|                                           |   |                  | CA   | 2223467 A1                 | 23-06-1998       |
|                                           | • |                  | EP   | 0851024 A2                 | 01-07-1998       |
| EP 0851022                                |   | 01-07-1998       | BR   | 9706393 A                  | 23-11-1999       |
| <b></b>                                   |   |                  | CA   | 2223559 A1                 | 23-06-1998       |
|                                           |   |                  | EP   | 0851022 A2                 | 01-07-1998       |
|                                           |   |                  | ÜS   | 6210600 B1                 | 03-04-2001       |
|                                           |   |                  | ZA   | 9711160 A                  | 11-06-1999       |
| EP 0182600                                | A | 28-05-1986       | AT   | 79383 T                    | 15-08-1992       |
| <b>.</b> , • <b>.</b>                     |   |                  | CA   | 1265528 A1                 | 06-02-1990       |
|                                           |   |                  | DE   | 3586483 D1                 | 17-09-1992       |
|                                           |   |                  | DE   | 3586483 T2                 | 14-01-1993       |
|                                           |   |                  | EP   | 0182600 A2                 | 28-05-1986       |
|                                           |   |                  | JP   | 61159406 A                 | 19-07-1986       |
|                                           |   |                  | NO   | 854582 A                   | 20-05-1986       |
| WO 0172941                                | A | 04-10-2001       | WO   | 0172941 A1                 | 04-10-2001       |

# BEST AVAILABLE COPY

#### INTERNATIONALER RECHERCHENRERICHT

Int tionales Aktenzeichen

| •                                                                                                          | WILLIAM ONALEN NEONEMONEMBERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCT/I                                                                                                                                                                                                                                                                                                                               | EP 01/07383                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. KLASSI<br>IPK 7                                                                                         | FIZIERUNG DES ANMELDUNGSGEGENSTANDES<br>C11D3/37 C11D1/66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |
| Aloch dec Inc                                                                                              | olomostonning Patentitiesalliseting (ISM) adas mak das matienning Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | contilection and don 1014                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |
|                                                                                                            | iternationalen Patentkiassifikation (IPK) oder nach der nationalen Kla<br>RCHIERTE GEBIETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ISSUITATION UND OUT IT                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             |
|                                                                                                            | rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iole )                                                                                                                                                                                                                                                                                                                              | ·                                                                                                                                                                                           |
| IPK 7                                                                                                      | C11D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |
| Recherchie                                                                                                 | rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oweit diese unter die recherchierte                                                                                                                                                                                                                                                                                                 | n Gebiete fallen                                                                                                                                                                            |
| Während de<br>EPO-In                                                                                       | er internationalen Recherche konsultierle elektronische Datenbank (i<br>ternal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name der Datenbank und evtl. ver                                                                                                                                                                                                                                                                                                    | wendete Suchbegriffe)                                                                                                                                                                       |
| C. ALS WE                                                                                                  | ESENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |
| Kategorie*                                                                                                 | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | be der in Betracht kommenden Teil                                                                                                                                                                                                                                                                                                   | e Betr. Anspruch Nr.                                                                                                                                                                        |
| X                                                                                                          | US 5 958 855 A (BINSTOCK GARY ET 28. September 1999 (1999-09-28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL)                                                                                                                                                                                                                                                                                                                                 | 1,10,11                                                                                                                                                                                     |
| A                                                                                                          | Ansprüche 1-8; Beispiele<br>Spalte 5, Zeile 12 -Spalte 6, Ze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11e 27                                                                                                                                                                                                                                                                                                                              | 2-4                                                                                                                                                                                         |
| A                                                                                                          | EP 0 851 024 A (UNILEVER) 1. Juli 1998 (1998-07-01) in der Anmeldung erwähnt Ansprüche 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                     | 1-11                                                                                                                                                                                        |
| A                                                                                                          | EP 0 851 022 A (UNILEVER) 1. Juli 1998 (1998-07-01) Ansprüche 1-9; Beispiele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     | 1-11                                                                                                                                                                                        |
| A                                                                                                          | EP 0 182 600 A (ALLIED COLLOIDS 28. Mai 1986 (1986-05-28) Seite 2, Zeile 14 -Seite 3, Zeile Seite 7, Zeile 19 -Seite 8, Zeile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e 22                                                                                                                                                                                                                                                                                                                                | 1-10                                                                                                                                                                                        |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -/                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |
|                                                                                                            | lere Veröffentlichungen sind der Fortsetzung von Feld C zu<br>lehmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X Siehe Anhang Patentfar                                                                                                                                                                                                                                                                                                            | nilie                                                                                                                                                                                       |
| "A" Veröffe aber n "E" ålteres Anmel "L" Veröffe schein andern soll od ausge "O" Veröffe eine B"P" Veröffe | e Kategorien von angegebenen Veröffentlichungen : intlichung, die den allgemeinen Stand der Technik definiert, sicht als besonders bedeutsam anzusehen ist Dolcument, das jedoch erst am oder nach dem internationalen kledatum veröffentlicht worden ist ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- nen zu lassen, oder durch die das Veröffentlichungsdatum einer ein im Recherchenbericht genannten Veröffentlichung belegi werden der die aus einem anderen besonderen Grund angegeben ist (wie führt) mitlichung, die sich auf eine mündliche Offenbarung, lenutzung, eine Ausstellung oder andere Maßnahmen bezieht ntlichung, die vor dem Internationalen Annetbedatum, aber nach elenspruchten Prioritätsdatum veröffentlicht worden ist | oder dem Prioritätsdatum ver<br>Anmeldung nicht kollidiert, se<br>Erfindung zugrundeliegender<br>Theorie ängegeben ist<br>"X" Veröffentlichung von besonde<br>kann allein aufgrund dieser \<br>erfinderischer Tätigkeit berul<br>"Y" Veröffentlichung von besonde<br>kann nicht als auf erfinderisc<br>werden, wenn die Veröffentli | erer Bedeutung; die beanspruchte Erfindung<br>cher Täligkeit beruhend betrachtet<br>die einer oder mehreren anderen<br>ategorie in Verbindung gebracht wird und<br>Fachmann naheliegend ist |
|                                                                                                            | Abschlusses der Internationalen Recherche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Absendedatum des internation                                                                                                                                                                                                                                                                                                        | onalen Recherchenberichts                                                                                                                                                                   |
| 7                                                                                                          | . November 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14/11/2001                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |
| Name und F                                                                                                 | Postanschrift der Internationalen Recherchenbehörde<br>Europäisches Palentarni, P.B. 5818 Palentiaan 2<br>Nil. – 2280 HV Rijswijk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bevolimächtigter Bedienstel                                                                                                                                                                                                                                                                                                         | er                                                                                                                                                                                          |
|                                                                                                            | Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bertran Nada                                                                                                                                                                                                                                                                                                                        | 1, J                                                                                                                                                                                        |

Formblett PC1/LSA/210 (Bleft 2) (Juli 1992)

1

## INTERNATIONALER RECHERCHENBERICHT

Int tionales Aktenzeichen
PCT/EP 01/07383

|            |                                                                                                                                                                          | FC1/EF 01/0/383 |                    |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--|
|            | ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                |                 |                    |  |
| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm                                                                                  | enden Teile     | Betr. Anspruch Nr. |  |
| E          | WO 01 72941 A (NAT STARCH CHEM INVEST) 4. Oktober 2001 (2001-10-04) Seite 1, letzter Absatz -Seite 3, Absatz 3 Seite 4, Zeile 29 -Seite 6, Zeile 16 Ansprüche; Beispiele |                 | 1-11               |  |
|            |                                                                                                                                                                          |                 |                    |  |
|            |                                                                                                                                                                          |                 |                    |  |
|            |                                                                                                                                                                          |                 |                    |  |
|            |                                                                                                                                                                          |                 |                    |  |
|            |                                                                                                                                                                          |                 |                    |  |
|            |                                                                                                                                                                          |                 |                    |  |

1

### INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlic

n, die zur selben Patentfamilie gehören

Int lionales Aldenzelchen
PCT/EP 01/07383

|     | echerchenbericht<br>rtes Patentdokum | ent | Datum der<br>Veröffentlichung |    | Mitglied(er) der<br>Patentfamilie | Datum der<br>Veröffentlichung |
|-----|--------------------------------------|-----|-------------------------------|----|-----------------------------------|-------------------------------|
| US  | 5958855                              | Α   | 28-09-1999                    | US | 6191088 B1                        | 20-02-2001                    |
| EP  | 0851024                              | A   | 01-07-1998                    | US | 5783540 A                         | 21-07-1998                    |
|     |                                      |     |                               | CA | 2223467 A1                        | 23-06-1998                    |
|     |                                      |     |                               | EP | 0851024 A2                        | 01-07-1998                    |
| EP  | 0851022                              | A   | 01-07-1998                    | BR | 9706393 A                         | 23-11-1999                    |
|     |                                      |     |                               | CA | 2223559 A1                        | 23-06-1998                    |
|     |                                      |     |                               | EP | 0851022 A2                        | 01-07-1998                    |
|     |                                      |     |                               | US | 6210600 B1                        | 03-04-2001                    |
|     |                                      |     |                               | ZA | 9711160 A                         | 11-06-1999                    |
| EP. | 0182600                              | A   | 28-05-1986                    | AT | 79383 T                           | 15-08-1992                    |
|     |                                      |     |                               | CA | 1265528 A1                        | 06-02-1990                    |
|     |                                      |     |                               | DE | 3586483 D1                        | 17-09-1992                    |
|     |                                      |     |                               | DE | 3586483 T2                        | 14-01-1993                    |
|     |                                      |     |                               | EP | 0182600 A2                        | 28-05-1986                    |
|     |                                      |     |                               | JP | 61159406 A                        | 19-07-1986                    |
|     |                                      |     |                               | NO | 854582 A                          | 20-05-1986                    |
| WO  | 0172941                              | A   | 04-10-2001                    | WO | 0172941 A1                        | 04-10-2001                    |