Exam Optique

Ilyas Zanan

2014/2015

1ère partie : Un dioptre sphérique

On considère un dioptre sphérique de sommet S_1 , de foyers objet et image F_1 et F'_1 , séparant deux milieux transparents d'indices de réfraction $n_1 = 1$ et $n_2 = 1, 5$.

1) Vergence, distances focales et rayon de courbure

Calcul de la vergence V_1 La vergence (ou puissance) V_1 d'un dioptre sphérique est liée à sa distance focale image $f_1' = \overline{S_1 F_1'}$ et à l'indice de réfraction du milieu image n_2 par la relation :

$$V_1 = \frac{n_2}{f_1'}$$

Il faut exprimer la distance focale en mètres pour obtenir une vergence en dioptries (D).

$$f_1' = +6 \text{ cm} = 0,06 \text{ m}$$

Application numérique:

$$V_1 = \frac{1,5}{0,06} = 25 \text{ D}$$

La vergence du dioptre est de 25 dioptries.

Distance focale objet f_1 La distance focale objet $f_1 = \overline{S_1F_1}$ peut être déduite de la vergence :

$$V_1 = -\frac{n_1}{f_1} \implies f_1 = -\frac{n_1}{V_1}$$

Application numérique:

$$f_1 = -\frac{1}{25} = -0.04 \text{ m} = -4 \text{ cm}$$

La distance focale objet est de -4 cm.

Rayon de courbure $\overline{S_1C}$ La vergence est également définie par la formule des opticiens pour un dioptre sphérique :

$$V_1 = \frac{n_2 - n_1}{\overline{S_1 C}} \implies \overline{S_1 C} = \frac{n_2 - n_1}{V_1}$$

Application numérique :

$$\overline{S_1C} = \frac{1,5-1}{25} = \frac{0,5}{25} = 0,02 \text{ m} = +2 \text{ cm}$$

Le rayon de courbure est de +2 cm.

Nature du dioptre La vergence $V_1 = +25$ D est positive. Le dioptre est donc **convergent**.

2) Formation d'une image A'B'

On utilise la relation de conjugaison de Descartes pour un dioptre sphérique, en utilisant la vergence :

$$\frac{n_2}{\overline{S_1 A'}} - \frac{n_1}{\overline{S_1 A}} = V_1$$

Ou, avec les distances en cm, la forme équivalente :

$$\frac{n_2}{\overline{S_1 A'}} - \frac{n_1}{\overline{S_1 A}} = \frac{n_2 - n_1}{\overline{S_1 C}}$$

Position de l'image $\overline{S_1A'}$ Avec les données $\overline{S_1A}=-6$ cm, $n_1=1, n_2=1, 5$ et $\overline{S_1C}=+2$ cm :

$$\frac{1,5}{\overline{S_1A'}} - \frac{1}{-6} = \frac{1,5-1}{2} \implies \frac{1,5}{\overline{S_1A'}} + \frac{1}{6} = \frac{0,5}{2} = \frac{1}{4}$$

$$\frac{1,5}{\overline{S_1A'}} = \frac{1}{4} - \frac{1}{6} = \frac{3-2}{12} = \frac{1}{12} \implies \overline{S_1A'} = 1,5 \times 12 = 18 \text{ cm}$$

La position de l'image est $\overline{\mathbf{S_1}\mathbf{A'}} = +18$ cm.

Taille de l'image $\overline{A'B'}$ Le grandissement transversal γ est donné par :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{n_1 \cdot \overline{S_1 A'}}{n_2 \cdot \overline{S_1 A}} = \frac{1 \times (+18)}{1, 5 \times (-6)} = \frac{18}{-9} = -2$$

On en déduit la taille de l'image $\overline{A'B'}$ sachant que $\overline{AB}=2$ cm :

$$\overline{A'B'} = \gamma \times \overline{AB} = -2 \times 2 = -4 \text{ cm}$$

La taille de l'image est de -4 cm.

Caractéristiques de l'image

- $\overline{S_1A'} > 0$: L'image est **réelle**.
- $\gamma < 0$: L'image est **renversée** (inversée).
- $|\gamma| > 1$: L'image est **agrandie** d'un facteur 2.

3) Construction graphique à l'échelle

Figure 1: Construction de l'image A'B' à travers le dioptre D_1 . La construction confirme les résultats du calcul.

2ème partie : Association avec un second dioptre

Le dioptre D_1 est associé à un second dioptre D_2 de même centre C. L'association des deux dioptres forme une lentille épaisse. On donne $\overline{S_1S_2}=1$ cm. Pour D_2 , la lumière passe du milieu d'indice $n_2=1,5$ au milieu d'indice $n_2'=1$.

Note sur les données : Il y a une incohérence dans l'énoncé. La donnée géométrique "de même centre C" et la valeur de la vergence " $V_2 = 15\delta$ " sont contradictoires.

- Le rayon de courbure de D_2 est $\overline{S_2C} = \overline{S_1C} \overline{S_1S_2} = 2 1 = 1$ cm.
- La vergence calculée à partir de ce rayon est $V_2 = \frac{n_2' n_2}{S_2 \overline{C}} = \frac{1 1.5}{0.01 \text{ m}} = -50 \text{ D}.$

Nous baserons la suite de la résolution sur la donnée géométrique, en utilisant $V_2 = -50$ D.

1) Vergence et distance focale du système

On utilise la formule de Gullstrand pour un système de deux composants :

$$V = V_1 + V_2 - \frac{e}{n_2} V_1 V_2$$

où $e = \overline{S_1 S_2} = 0,01$ m est l'interstice entre les sommets et $n_2 = 1,5$ est l'indice de réfraction du milieu entre les deux dioptres.

$$V = 25 + (-50) - \frac{0.01}{1.5}(25)(-50) = -25 - \frac{-12.5}{1.5} = -25 + \frac{25}{3} = \frac{-75 + 25}{3} = -\frac{50}{3}$$
 D

La vergence du système est $V \approx -16,67$ D.

La distance focale image f' du système est donnée par $f' = \frac{n'_2}{V}$, où $n'_2 = 1$ est l'indice du milieu de sortie.

$$f' = \frac{1}{-50/3} = -\frac{3}{50} \text{ m} = -0.06 \text{ m} = -6 \text{ cm}$$

La distance focale image du système est de -6 cm.

2) Position du foyer image F'

La position du foyer image F' du système est $\overline{S_2F'}$. Elle se calcule à partir de la position du plan principal image H' et de la distance focale image $f' = \overline{H'F'}$. La position de H' par rapport à S_2 est :

$$\overline{S_2H'} = -\frac{e}{n_2} \frac{V_1}{V} n_2' = -\frac{0.01}{1.5} \frac{25}{-50/3} \times 1 = \frac{0.01 \times 25 \times 3}{1.5 \times 50} = \frac{0.75}{75} = 0.01 \text{ m} = +1 \text{ cm}$$

La position de F' est donc :

$$\overline{S_2F'} = \overline{S_2H'} + \overline{H'F'} = 1 \text{ cm} + (-6 \text{ cm}) = -5 \text{ cm}$$

L'énoncé demande de calculer la distance $\overline{F_2'F'}$. Pour cela, il faut d'abord localiser le foyer image F_2' du dioptre D_2 seul :

$$f_2' = \overline{S_2 F_2'} = \frac{n_2'}{V_2} = \frac{1}{-50} = -0,02 \text{ m} = -2 \text{ cm}$$

Ainsi, la distance demandée est :

$$\overline{F_2'F'} = \overline{F_2'S_2} + \overline{S_2F'} = -\overline{S_2F_2'} + \overline{S_2F'} = -(-2 \text{ cm}) + (-5 \text{ cm}) = -3 \text{ cm}$$

La distance est $\overline{\mathbf{F_2'F'}} = -3$ cm.

3) Position de l'image finale

Pour trouver l'image finale (notée A") de l'objet AB de la première partie, on procède en deux étapes (calcul de proche en proche) :

- 1. **Image par** D_1 : On a déjà calculé dans la partie 1 que l'image intermédiaire A'B' se forme en $\overline{S_1A'} = +18$ cm.
- 2. Image par D_2 : Cette image A' sert d'objet pour le second dioptre D_2 . Sa position par rapport au sommet S_2 est :

$$\overline{S_2A'} = \overline{S_2S_1} + \overline{S_1A'} = (-1 \text{ cm}) + (18 \text{ cm}) = +17 \text{ cm}$$

On applique la relation de conjugaison pour D_2 pour trouver l'image finale A":

$$\frac{n_2'}{\overline{S_2 A''}} - \frac{n_2}{\overline{S_2 A'}} = \frac{n_2' - n_2}{\overline{S_2 C}}$$

$$\frac{1}{\overline{S_2 A''}} - \frac{1,5}{17} = \frac{1-1,5}{1} = -0,5$$

$$\frac{1}{\overline{S_2 A''}} = \frac{1,5}{17} - 0,5 = \frac{1,5-8,5}{17} = \frac{-7}{17}$$

$$\overline{S_2 A''} = -\frac{17}{7} \text{ cm}$$

La position de l'image finale donnée par l'association est $\overline{\mathbf{S_2A''}} \approx -2,43$ cm.

EXERCICE 2 : Fibre optique

Un faisceau laser pénètre dans une fibre optique depuis l'air $(n_{air} \approx 1)$ avec un angle d'incidence $i_1 = 10^{\circ}$. Le cœur a un indice $n_c = 1,48$ et la gaine un indice $n_g = 1,46$.

1) Angle de réfraction dans le cœur

On applique la loi de Snell-Descartes à l'interface air-cœur :

$$n_{air} \sin(i_1) = n_c \sin(i_2)$$

$$1 \times \sin(10^\circ) = 1,48 \times \sin(i_2)$$

$$\sin(i_2) = \frac{\sin(10^\circ)}{1,48} \approx \frac{0,1736}{1,48} \approx 0,1173$$

$$i_2 = \arcsin(0,1173) \approx 6,74^\circ$$

2) Angle d'incidence sur la gaine

Le rayon réfracté i_2 frappe l'interface cœur-gaine. Par construction géométrique (en considérant que la face d'entrée de la fibre est perpendiculaire à son axe), l'angle d'incidence i sur l'interface cœur-gaine est le complémentaire de l'angle de réfraction i_2 .

$$i = 90^{\circ} - i_2$$

 $i = 90^{\circ} - 6.74^{\circ} = 83.26^{\circ}$

3) Phénomène de réflexion totale

Pour qu'il y ait un faisceau réfracté dans la gaine, il faut que l'angle d'incidence i soit inférieur à l'angle critique (ou angle limite) θ_{lim} de l'interface cœur-gaine. Cet angle limite est défini par :

$$\sin(\theta_{lim}) = \frac{n_g}{n_c} = \frac{1,46}{1,48} \approx 0,9865$$

$$\theta_{lim} = \arcsin(0,9865) \approx \mathbf{80}, \mathbf{57}^{\circ}$$

On compare l'angle d'incidence i avec l'angle limite θ_{lim} :

$$i = 83,26^{\circ}$$
 et $\theta_{lim} = 80,57^{\circ}$

Comme $i > \theta_{\text{lim}}$, le rayon lumineux ne peut pas être réfracté dans la gaine. Il subit une **réflexion totale interne**. C'est ce phénomène qui permet de guider la lumière dans le cœur de la fibre.

4) Avantages des fibres optiques

Les fibres optiques présentent de nombreux avantages par rapport aux câbles en cuivre traditionnels :

- Très large bande passante : Elles peuvent transporter une quantité d'information beaucoup plus importante.
- Faible atténuation : Le signal s'affaiblit moins avec la distance, ce qui réduit le besoin de répéteurs.
- Insensibilité aux interférences électromagnétiques : La lumière n'est pas affectée par les champs électriques ou magnétiques environnants.
- Sécurité des données : Il est très difficile d'intercepter le signal sans être détecté.
- Légèreté et petite taille : Elles sont beaucoup plus légères et moins encombrantes que les câbles métalliques.
- Ressources abondantes : La silice, matière première du verre, est très abondante.

5) Propagation de la lumière dans une fibre optique

Une onde lumineuse se propage dans une fibre optique en étant "guidée" à l'intérieur du cœur. Cela est possible grâce au phénomène de **réflexion totale interne**. Le cœur de la fibre a un indice de réfraction (n_c) légèrement supérieur à celui de la gaine (n_g) . Lorsque la lumière, voyageant dans le cœur, arrive sur la surface de séparation avec la gaine avec un angle d'incidence supérieur à l'angle critique, elle est entièrement réfléchie et reste piégée dans le cœur. Elle se propage ainsi en "rebondissant" d'un côté à l'autre de l'interface cœur-gaine sur de très longues distances.

Figure 2: Schéma de la propagation d'un rayon lumineux dans une fibre optique par réflexions totales internes.