Informatik II: Algorithmen und Datenstrukturen SS 2017

Vorlesung 10b, Mittwoch, 5. Juli 2017 (Dijkstras Algorithmus)

Prof. Dr. Hannah Bast
Lehrstuhl für Algorithmen und Datenstrukturen
Institut für Informatik
Universität Freiburg

Blick über die Vorlesung heute

Drumherum

Evolution Homo Sapiens die entscheidende Mutation?

Inhalt

– Dijkstras Algorithmus– Algorithmus+ Beispiel

Korrektheitsbeweis endlich wieder Mathe :-)

Laufzeit + ImplementierungAnalyse + Tipps

 – ÜB10: Implementieren Sie Dijkstras Algorithmus zur (einfachen) Routenplanung auf Baden-Württemberg

Evolution zum Homo Sapiens 1/5

Entscheidende Mutation? Ihre Kommentare

- Die Entstehung von Mehrzellern vor 2-3 Milliarden Jahren
- Aufrechter Gang + Hände frei, vor 5-7 Millionen Jahren
- Zunahme des Gehirnvolumen durch erhöhten Fleischkonsum
- Entdeckungsdrang, im Gegensatz zu den Neanderthalern
- Entwicklung zu sprechendem sozialen Wesen / von Kultur
- "Die Erfindung von TrapRap bei Lil Waynes Geburt"
- "Da ich Informatiker bin: die Erfindung der Pornografie"
- "Der Moment als die Frauen kompliziert wurden und die Männer sie nicht mehr verstanden"

Evolution zum Homo Sapiens 2/5

Ein paar wichtige Stationen

- Sauerstoffkatastrophe
- Erste Wirbeltiere
- Übergang Wasser → Land
- Perm-Trias-Massensterben
- Erste Säugetiere
- Dinosaurier futsch
- Erste Primaten
- Aufrechter Gang
- Homo Sapiens

- ~ 2.4 Milliarden Jahre
- ~ 525 Millionen Jahre
- ~ 400 Millionen Jahre
- ~ 252 Millionen Jahre
- ~ 225 Millionen Jahre
- ~ 65 Millionen Jahre
- ~ 50 Millionen Jahre
- ~ 4 Millionen Jahre
- ~ 200 Tausend Jahre

Evolution zum Homo Sapiens 3/5

- Analogie: ein Menschenleben
 - Schauen Sie sich an, wie Sie heute sind und aussehen
 - Wann war der entscheidende Moment in Ihrem Leben der diesen Zustand hervorgebracht hat?

Geburt 0 Jahre

Laufen ~ 1.5 Jahre

Sprechen ~ 2 Jahre

Ich-Bewusstein ∼ 3 Jahre

Erstes Smartphone ?

Einsetzen der Pubertät 12 – 50 Jahre

Evolution zum Homo Sapiens 4/5

Menschenleben Zeitraffer

- Es gibt zwar Zeiten, in denen in relativ kurzer Zeit relativ viel passiert
- Aber insgesamt ist es ein fließender Übergang

Es ändert sich in jedem Augenblick und diese kontinuierliche Änderung von Augenblick zu Augenblick kann über einen längeren Zeitraum beliebig viel verändern

https://www.youtube.com/watch?v=iVEiAU F2qw

Evolution zum Homo Sapiens 5/5

- Übergangsformen ("Transitional Forms")
 - In der Evolution ist es tatsächlich ganz genauso
 - Wenn man sich das ganze in Zeitraffer anschauen würde, sähe man eine kontinuierliche Veränderung, wie beim Altern
 - Schlagender Beweis dafür sind Fossilien von Übergangsformen zwischen Lebewesen und ihren ganz andersartigen Ahnen, z.B.

```
Pakicetus (wolfsähnlich) → Wal
```

Reptilkiefer + Ohr → Säugetierkiefer + Ohr

<u>Dinosaurier</u> → Vögel

Gorilla → aufrechter Gang

Dijkstras Algorithmus 1/4

Ursprung

Benannt nach Edsger Dijkstra (1930 – 2002)

Niederländischer Informatiker, einer der wenigen Europäer, die den Turing-Award gewonnen haben

(für seine Arbeiten zur strukturierten Programmierung)

Der Algorithmus ist aus dem Jahr 1959

Dijkstras Algorithmus 2/4

Grundidee und Terminologie

- Sei s der Startknoten und sei dist(s, u) die Länge des kürzesten Pfades von s nach u, für alle Knoten u
- Besuche die Knoten in der Reihenfolge der dist(s, u)
- Für jeden Knoten wird während der Ausführung eine vorläufige Distanz dist[u] gespeichert, zu Beginn ∞
- Es gibt dann drei Arten von Knoten

unerreicht: $dist[u] = \infty$

aktiv: $dist[u] \ge dist(s, u)$ aber nicht ∞

gelöst: siehe nächste Folie

Auf Englisch: unreached, active, settled

Dijkstras Algorithmus 3/4

Algorithmus

- Zu Beginn nur s aktiv, mit dist[s] = 0 und dist[v] = ∞
- In jeder Runde holen wir uns den <u>aktiven</u> Knoten u mit dem <u>kleinsten</u> Wert für dist[u]
- Den Knoten u betrachten wir dann als gelöst
- Für alle (u, v) ∈ E: prüfe ob dist[u] + cost(u, v) < dist[v] und falls ja, setze dist[v] = dist[u] + cost(u, v)</p>
 - Das nennt man **Relaxieren** von (u, v)
- Wiederhole, bis es keine aktiven Knoten mehr gibt
 Alle gelösten Knoten kennen dann ihre Entfernung von s
 Falls alle Kantenkosten 1 sind, ist das genau BFS

Dijkstras Algorithmus 4/4

I # gelast in Samth i

1 Kanten Easten in LILA

6 START

2 it L or schenber mir nicht 2 112

Beispiel

#4 niere auch für den Zuländen gegongen (auch Kasten 3 » freie Wall)

Annahmen

- Annahme 1: Alle Kantenlängen sind > 0
- Annahme 2: Die dist(s, u) sind alle verschieden Es gibt dann eine Anordnung u_1 , u_2 , u_3 , ... der Knoten so dass gilt dist(s, u_1) < dist(s, u_2) < dist(s, u_3) < ...
- Es geht auch mit Kantenlängen ≥ 0 und ohne Annahme 2
 Beweis dazu siehe Referenzen (Mehlhorn/Sanders)

Mit den Annahmen ist der Beweis einfacher und intuitiver und enthält trotzdem alles Wesentliche

Korrektheitsbeweis 2/6

- Argumentationslinie

 Argumentationslinie

 Aug Folie 11

 Aug Folie 11

 Aug Folie 11
 - Wir wollen zeigen, dass am Ende von Dijkstras Algorithmus $dist[u_i] = dist(s, u_i)$ für jeden Knoten u_i
 - Im Folgenden zeigen wir, durch Induktion über i
 - In der i-ten Runde gilt dist[u_i] = dist(s, u_i)
 - In der i-ten Runde wird Knoten ui gelöst

Korrektheitsbeweis 3/6

- Induktionsanfang: i = 1
 - In Runde 1 ist nur $u_1 = s$ aktiv
 - $-\operatorname{dist}[u_1] = 0 = \operatorname{dist}(s, u_1)$
 - u₁ wird als einziger aktiver Knoten gelöst

Korrektheitsbeweis 4/6

- Induktionsschritt: $i \rightarrow i + 1$ für $i \ge 1$
 - Wir betrachten einen kürzesten Weg von s nach u_{i+1}
 Wir nehmen nicht an, dass unser Algorithmus diesen Weg kennt, aber wir können ihn im Beweis trotzdem betrachten
 - Sei v der Knoten direkt vor u_{i+1} auf diesem Weg ... dann: dist(s, u_{i+1}) = dist(s, v) + $cost(v, u_{i+1})$ > dist(s, v) Das benutzt Annahme 1: alle Kantenkosten sind positiv
 - v muss also einer von u_1 , ..., u_i sein (aber nicht unbedingt u_i)

Das benutzt Annahme 2: $dist(s, u_1) < dist(s, u_2) < ...$

Korrektheitsbeweis 5/6

- Induktionsschritt: $i \rightarrow i + 1$ für $i \ge 1$... Fortsetzung
 - Es ist also $v = u_j$ wobei $j \in 1 ... i$
 - Nach Induktionsvoraussetzung gilt seit spätestens Runde j
 dist[u_j] = dist(s, u_j)
 - In der Runde hat man dann, nach Relaxieren von (u_j, u_{i+1}) $dist[u_{i+1}] = dist(s, u_i) + cost(u_i, u_{i+1}) = dist(s, u_{i+1})$

Das gilt schon seit Runde j, aber erst in Runde i + 1 kann sich der Algorithmus sicher sein, dass es nicht besser geht

Korrektheitsbeweis (

- Induktionsschritt: i → i + 1 für i ≥ 1 ... Fortsetzung 2
 - Wir müssen noch zeigen, dass in Runde i + 1 auch u_{i+1} gelöst wird, und nicht u_k mit k > i+1
 - Aber für k > i + 1 gilt nach Annahme 2 (Monotonie): $dist[u_k] \ge dist(s, u_k) > dist(s, u_{i+1})$
 - Also ist u_{i+1} in Runde i+1 der aktive Knoten mit dem kleinsten dist Wert und wird also in der Runde gelöst

Implementierung 1/9

UNI FREIBURG

Grundprinzip

- Wir müssen die Menge der aktiven Knoten verwalten
- Ganz am Anfang ist das nur der Startknoten
- Am Anfang jeder Runde brauchen wir den aktiven Knoten u mit dem <u>kleinsten</u> Wert für dist[u]
- Es bietet sich also an, die aktiven Knoten in einer
 Prioritätswürgeschlange zu verwalten

Mit Schlüssel dist[u] und Wert u

- Update von dist[u]
 - Beobachtung: der dist Wert eines aktiven Knotens kann sich mehrmals ändern, bevor er schließlich gelöst wird
 - Wir müssen dann seinen Wert in der PW verkleinern, ohne dass wir den Knoten rausnehmen
 - Genau dafür gibt es die Operation changeKey
 - Allerdings steht diese Operation nicht bei allen PWs zur Verfügung, z.B. bei der std::priority_queue von C++

Implementierung 3/9

- Implementierung ohne changeKey
 - Statt changeKey macht man einfach ein insert mit dem neuen (niedrigeren) dist Wert
 - Den Eintrag mit dem alten Wert lässt man einfach drin Bei gleichen oder höheren dist Wert macht man nichts
 - Wenn der Knoten gelöst wird, dann mit dem niedrigsten
 Wert mit dem er in die PW eingefügt wurde
 - Wenn man dann später nochmal auf den Knoten trifft, mit höherem dist Wert, nimmt man ihn einfach heraus und macht **nichts**

Implementierung 4/9 $\frac{dist(s,u_4)=0}{dist(s,u_2)=1}$ and $\frac{dist(s,u_4)=0}{dist(s,u_4)=2}$ and $\frac{dist(s,u_4)=0}{dist(s,u_4)=3}$

Beispiel für Dijkstra mit PW ohne changeKey

ZUSTAND DER PW IGNORIEREN IGNORIEREN

das ist leiert weil mom em Feld für die dist werte Jat

Implementierung 5/9

Berechnung der kürzesten Pfade

- So wie wir Dijkstras Algorithmus bisher beschrieben haben, berechnet er nur die **Länge** des kürzesten Weges
- Wenn man sich bei jeder Relaxierung den Vorgängerknoten auf dem aktuell kürzesten Pfad merkt, kriegt man aber auch leicht die tatsächlichen **Pfade**
- Es reicht für jeden Knoten ein Zeiger, weil jeder Präfix eines kürzesten Weges selber ein kürzester Weg ist
- Um den kürzesten Weg zu bekommen, kann man dann einfach die Zeiger bis zum Startknoten zurückverfolgen

Implementierung 6/9

UNI FREIBURG

■ Berechnung der kürzesten Pfade, Beispiel

Implementierung 7/9

- Visualisierung eines Pfades mit MapBBCode
 - Für das ÜB10 bekommen Sie einen Datensatz mit Geo-Koordinaten für jeden Knoten
 - Man kann einen Pfad dann also auf einer Karte malen
 - Das geht sehr einfach mit MapBBCode

http://share.mapbbcode.org

Ich mache das jetzt mal an einem einfachen Beispiel vor

Implementierung 8/9

Abbruchkriterium

Sobald der Zielknoten t gelöst wird kann man aufhören
 Aber nicht vorher, dann kann noch dist[t] > dist(s, t) sein

ZIEU

117

START

- Bevor Dijkstras Algorithmus t erreicht, hat er die kürzesten
 Wege zu **allen** Knoten u mit dist(s, u) < dist(s, t) berechnet
- Das hört sich verschwenderisch an, es gibt aber für allgemeine Graphen keine (viel) bessere Methode
 Grund: erst wenn man alles im Umkreis von dist(s, t) um den Startknoten s abgesucht hat, kann man sicher sein, dass es keinen kürzeren Weg zum Ziel t gibt

Laufzeit dieser Implementierung

- Jeder der n Knoten wird genau einmal gelöst
- Genau dann werden seine ausgehenden Kanten betrachtet
- Jede der m Kanten führt also zu höchstens einem insert
- Die Anzahl der Operationen auf der PW ist also O(m)
- Die Laufzeit von Dijkstras Algorithmus ist also O(m · log n)
- Mit einer komplizierteren PW geht auch O(m + n · log n)
- In der Praxis ist aber oft m = O(n)

Dann ist die asymptotische Laufzeit für die kompliziertere PW nicht besser und man nimmt besser die einfachere PW

Literatur / Links

- Kürzeste Wege und Dijkstras Algorithmus
 - In Mehlhorn/Sanders:

10 Shortest Paths

In Wikipedia

http://en.wikipedia.org/wiki/Shortest path problem

http://en.wikipedia.org/wiki/Dijkstra's algorithm