BLM442 Keşif aktivitesi-2: SQLite üzerinde veri analizi

İsim/Soyisim: Sinan ÇALIŞIR

Öğrenci Numarası: 170201098

E-mail: sinancalisir001@gmail.com

Kullanılan dataset adı: House Prices

Dataset url: https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

Verisetinde 82 sütun olduğu için ekrana sığması amacıyla, yalnızca problemde istenilen sütunları SELECT statementi içine yazdım. Ayrıca bütün veriyle işlem yaptığım sorguları da yine ekrana sığması ve çıktı da bütün veriyi yazmaması için sorgulara LIMIT 20 ekledim.

İntihal:

Netten alınacak kısmi kod parçaları önceden kod içinde/raporda belirtilmek ve soru sorulduğunda cevaplanması durumunda sıkıntı çıkarmayacaktır. (i) Internet kaynağını belirtmeyen/açıklayamayan/üzerinde geliştirme yapmayan veya (ii) birbirleriyle benzer/aynı çalışma teslim edenlerin aktiviteleri sıfır üzerinden değerlendirilecektir.

KA-2 Gönderim şekli

1-pdf olarak "ogrenciNo.pdf" dokumanını gonderme -calisma dosyasında (File -> Print Preview) sonrası olusan html dosyasını yazdır deyip pdf olarak kaydetme veya -(File -> Download as -> HTML) seklinde indirip pdf'e cevirme http://html2pdf.com/

2-(File -> Download as -> Notebook) indirip "ogrenciNo.ipynb" dokumanını gonderme

suleyman.eken@kocaeli.edu.tr

Problemlerinizin SELECT, WHERE, ORDER BY, SELECT TOP, LIKE, IN, BETWEEN, AS, INTERSECT, GROUP BY, HAVING, COUNT(), MIN() and MAX(), AVG(), SUM(), INNER JOIN, RIGHT (OUTER) JOIN, LEFT (OUTER) JOIN vs. keyword'lerinden birkaçını içermesini sağlayınız.

Bu notebook Python3 kerneli ile çalıştırıldığı için öncelikle csv dosyasından veritabanı oluşturuyoruz.

Asagida ekledigim kütüphaneleri yalnızca veritabanını olusturmak için ekledim.

```
In [1]:
```

```
%load_ext sql
```

In [2]:

```
import sqlite3 # Veritabanını oluşturmak için
import pandas as pd # csv dosyasını okumak ve veritabanına yazmak için

# Veritabanı yoksa olustur, varsa baglan.
db_name = "odev2.db3"
con = sqlite3.connect(db_name)

# Csv dosyasını oku
data = pd.read_csv("./competitions/house-prices-advanced-regression-techniques/train.csv")

# house_prices tablosuna csv dosyasının içeriğini yaz.
table_name = "house_prices"
data.to_sql(table_name, con, index=False)
con.close()
```

In [3]:

%sql sqlite:///odev2.db3

Out[3]:

'Connected: @odev2.db3'

Problem 1: Verinin ilk 10 satırını listeleyin.

In [4]:

 $\$ \textbf{sql} \texttt{ SELECT * FROM house_prices LIMIT 10}$

* sqlite:///odev2.db3

Done.

Out[4]:

ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	I
1	60	RL	65.0	8450	Pave	None	Reg	Lvl	AllPub	Inside	Gtl	(
2	20	RL	80.0	9600	Pave	None	Reg	Lvl	AllPub	FR2	Gtl	١
3	60	RL	68.0	11250	Pave	None	IR1	Lvl	AllPub	Inside	GtI	(
4	70	RL	60.0	9550	Pave	None	IR1	LvI	AllPub	Corner	Gtl	(
5	60	RL	84.0	14260	Pave	None	IR1	Lvl	AllPub	FR2	Gtl	1
6	50	RL	85.0	14115	Pave	None	IR1	LvI	AllPub	Inside	Gtl	1
7	20	RL	75.0	10084	Pave	None	Reg	Lvl	AllPub	Inside	Gtl	(
8	60	RL	None	10382	Pave	None	IR1	Lvl	AllPub	Corner	GtI	1
9	50	RM	51.0	6120	Pave	None	Reg	Lvl	AllPub	Inside	Gtl	(
10	190	RL	50.0	7420	Pave	None	Reg	LvI	AllPub	Corner	Gtl	ŀ
4								-			1	

Problem 2: 2000 yılından sonra yapılmış evleri fiyatlarına göre azalan sırada sıralayın.

In [5]:

%sql SELECT Id, YearBuilt, SalePrice FROM house_prices WHERE YearBuilt >= 2000 ORDER BY SalePrice DESC LIMIT 20

* sqlite:///odev2.db3 Done.

Out[5]:

ld	YearBuilt	SalePrice
899	2009	611657
804	2008	582933
1047	2005	556581
441	2008	555000
770	2003	538000
179	2008	501837
799	2008	485000
1374	2001	466500
1244	2006	465000
592	2008	451950
E00	2000	116061

o∠o	∠∪∪ŏ	440Z0 I	
474	2006	440000	
59	2006	438780	
350	2005	437154	
390	2007	426000	
1143	2006	424870	
665	2005	423000	
279	2006	415298	
162	2003	412500	
516	2009	402861	

Problem 3: Fiyatı 500k \$ dan yüksek toplam ev sayısını bulun.

In [6]:

%sql SELECT COUNT(Id) AS Ttl_HsNum_Abv_500k FROM house_prices WHERE SalePrice >= 500000

* sqlite:///odev2.db3 Done.

Out[6]:

Ttl_HsNum_Abv_500k

Problem 4: Fiyatı 100k-120k arasındaki evlerin ortalama kalitesini(OverallQual) bulun.

In [7]:

%sql SELECT Id, OverallQual, SalePrice FROM house_prices WHERE SalePrice BETWEEN 100000 AND 120000 LIMIT 20

* sqlite:///odev2.db3 Done.

Out[7]:

ld	OverallQual	SalePrice
10	5	118000
39	5	109000
49	4	113000
52	6	114500
53	5	110000
62	5	101000
75	3	107400
80	5	110000
91	4	109900
103	5	118964
107	4	100000
108	5	115000
109	5	115000
122	4	100000
141	4	115000

171	7	110000
147	5	105000
150	5	115000
157	5	109500
164	4	103200
180	5	100000

Problem 5: Ortalama kalitesi 8 ve üzeri olan evlerin ortalama fiyatını bulun.

In [8]:

```
%sql SELECT AVG(SalePrice) AS Avg_SalePrice FROM house_prices WHERE OverallQual >= 8
```

* sqlite:///odev2.db3 Done.

Out[8]:

Avg_SalePrice

305035.89956331876

http://blogs.lessthandot.com/index.php/datamgmt/datadesign/title-1/

Problem 6: Garaj tipi(GarageType) sütununun yüzde kaçı NULL değerlerden oluşuyor?

In [9]:

```
%sql SELECT 100.0 * SUM( \
CASE WHEN GarageType IS NULL THEN 1 ELSE 0 END) / \
COUNT(*) AS Grg_Type_NULL_Percent \
FROM house_prices
```

* sqlite:///odev2.db3 Done.

Out[9]:

 ${\bf Grg_Type_NULL_Percent}$

5.5479452054794525

Problem 7: Garaj tipindeki(GarageType) değerlerin toplam sayısını ve yüzdesini bulun.

In [10]:

```
%sql SELECT GarageType AS Value, COUNT(GarageType) AS ValueCount, 100.0 * COUNT(*) / \
    (SELECT COUNT(*) FROM house_prices ) AS Percentage \
    FROM house_prices GROUP BY GarageType ORDER BY Percentage DESC;
```

* sqlite:///odev2.db3 Done.

Out[10]:

Value	ValueCount	Percentage
Attchd	870	59.58904109589041
Detchd	387	26.506849315068493
BuiltIn	88	6.027397260273973
None	0	5.5479452054794525
	4.0	

Basment	19	1.3013698630136987
CarPort	9	0.6164383561643836
2Types	6	0.410958904109589

Problem 8: Ortalama kalitesi en yüksek olan evlerden fiyatı en düşük olan evi bulun.

In [11]:

```
%sql SELECT Id, OverallQual, MIN(SalePrice) FROM house_prices \
WHERE OverallQual == (SELECT MAX(OverallQual) AS max_overall_qual FROM house_prices)
```

* sqlite:///odev2.db3 Done.

Out[11]:

ld	OverallQual	MIN(SalePrice)
1299	10	160000

Problem 9: Satış fiyatının(SalePrice) en küçük, en büyük değerlerini ve ilk ceyrekliğin ortalamasını bulun.

In [12]:

```
%sql SELECT MIN(SalePrice), \
ROUND((SELECT AVG(SalePrice) FROM \
(SELECT * FROM house_prices ORDER BY SalePrice \
LIMIT (SELECT COUNT(*) * 0.25 FROM house_prices))), 3) AS Quarter_1st, \
MAX(SalePrice) FROM house_prices
```

* sqlite:///odev2.db3

Out[12]:

MIN(SalePrice)	Quarter_1st	MAX(SalePrice)
34900	105831.595	755000

Problem 10: 2000 yılından sonra yapılmış evlerin toplam sayısını ve ortalama satış fiyatını bulun.

In [13]:

```
%sql SELECT YearBuilt, COUNT(*) AS Count, ROUND(AVG(SalePrice), 2) AS SalePrice \
FROM house_prices GROUP BY YearBuilt HAVING YearBuilt >= 2000
```

* sqlite:///odev2.db3 Done.

Out[13]:

YearBuilt	Count	SalePrice
2000	24	210766.67
2001	20	242630.0
2002	23	226869.57
2003	45	227408.58
2004	54	210347.72
2005	64	229680.95
2006	67	251775.45
2007	49	255362.73

1			
	2008	23	348849.13
	2009	18	269220.0
	2010	1	394432.0

Problem 11: Oturmaya elverişli(Residential-MSZoning) bölgelerde bulunan evleri satış yıllarına göre sıralayın.

In [14]:

%sql SELECT Id, MsZoning, YrSold, SalePrice FROM house_prices WHERE MSZoning LIKE "R%" ORDER BY Yr Sold LIMIT 20

* sqlite:///odev2.db3
Done.

Out[14]:

ld	MSZoning	YrSold	SalePrice
4	RL	2006	140000
12	RL	2006	345000
18	RL	2006	90000
21	RL	2006	325300
29	RL	2006	207500
36	RL	2006	309000
41	RL	2006	160000
45	RL	2006	141000
52	RM	2006	114500
54	RL	2006	385000
58	RL	2006	196500
59	RL	2006	438780
61	RL	2006	158000
70	RL	2006	225000
82	RM	2006	153500
86	RL	2006	260000
91	RL	2006	109900
92	RL	2006	98600
97	RL	2006	214000
111	RL	2006	136900

Problem 12: 1stFlrSF(İlk katın büyüklüğü(SF)), 2ndFlrSF (İkinci katın büyüklüğü(SF)) ve LowQualFinSF (Düşük kaliteli) sütunlarının toplamının GrLivArea(Evin büyüklüğü) sütununa eşit olduğunu gösterin(Veriden yapılan çıkarım sonucu bu bilgiyi elde ettim).

```
In [15]:
```

```
%sql SELECT * FROM (SELECT GrLivArea - Total_Area AS diff FROM \
  (SELECT GRLivArea, "1stFlrSF" + "2ndFlrSF" + LowQualFinSF AS Total_Area \
  FROM house_prices)) WHERE diff != 0
```

* sqlite:///odev2.db3
Done.

Out[15]:

Problem 13: Kış mevsiminde satılan evlerin aylara göre satış fiyatlarını gösterin.

In [16]:

```
%sql SELECT MoSold, ROUND(AVG(SalePrice), 3) AS AVG_SalePrice \
FROM house_prices WHERE MoSold IN (12, 1, 2) GROUP BY MoSold
```

* sqlite:///odev2.db3 Done.

Out[16]:

MoSold	AVG_SalePrice
1	183256.259
2	177882.0
12	186518.966

Problem 14: Satış fiyatının ortalama(mean) ve ortanca(median) değerlerini bulun.

In [17]:

```
%sql SELECT DISTINCT (SELECT SalePrice FROM house_prices ORDER BY SalePrice \
LIMIT 1 OFFSET (SELECT COUNT(*) / 2 FROM house_prices)) AS Median, \
ROUND((SELECT AVG(SalePrice) FROM house_prices), 3) AS Mean \
FROM house_prices
```

* sqlite:///odev2.db3 Done.

Out[17]:

Median	Mean
163000	180921.196

Problem 15: Bodrum kalitesinin(BsmtQual) yüksekliğe çevrilmiş halini gösterin.

In [18]:

```
%sql SELECT Id, BsmtQual, \
CASE WHEN BsmtQual=="Ex" THEN '100+' \
WHEN BsmtQual=="Gd" THEN '90-99' \
WHEN BsmtQual=="TA" THEN '80-89' \
WHEN BsmtQual=="Fa" THEN '70-79' \
WHEN BsmtQual=="Po" THEN '<70' \
END AS "Height(inches)" FROM house_prices LIMIT 20
```

* sqlite:///odev2.db3 Done.

Out[18]:

ld	BsmtQual	Height(inches)
1	Gd	90-99
2	Gd	90-99
3	Gd	90-99
4	TA	80-89
5	Gd	90-99
6	Gd	90-99

1	ı	Ī
7	Ex	100+
8	Gd	90-99
9	TA	80-89
10	TA	80-89
11	TA	80-89
12	Ex	100+
13	TA	80-89
14	Gd	90-99
15	TA	80-89
16	TA	80-89
17	TA	80-89
18	None	None
19	TA	80-89
20	TA	80-89