데이콘 이미지 프로젝트 성능 향상 방안 조사

성균관대학교 인공지능융합연구실 손재원

1. 현재 상황 및 문제점

① 현재 상황

- (1) Test 데이터셋 구성 파악 = 원본 이미지(1077) + 변형 이미지(1077)
- (2) 학습 방향 설정:원본 이미지 분류 -> 변형 이미지 분류
- (3) Augmentation 적용
- (4) GAN 적용

② 문제점

- (1) 원본 이미지 분류 실패
- (2) 시간적 제약 (대회 일정, 접근법 문제)

③ 해결 방안

- (1) 효율적인 Augmentation 기법 사전 조사 필요
- (2) 데이터셋 불균형에 대한 다른 접근 방향 필요

① Augmentation 기법에 따른 성능 향상 조사

- (1) Augmentation 목록
- (a) original (b) flipping (c) rotation
- (d) cropping (e) random-cropping (f) shifting
- (g) noise (h) color-jittering (i) PCA-jittering + GAN, WGAN (GAN 기법)
- (2) 데이터셋
- (i) 사용 데이터셋: CIFAR-10, ImageNet (10개 클래스)
- (ii) 데이터셋 구성
- 1번 학습 데이터셋: 2000 (클래스별 200)
- 2번 학습 데이터셋: 10000 (클래스별 1000)
- 3번 학습 데이터셋: 50000 (클래스별 5000)
- (iii) Augmentation 적용
- No Augmentation (\times 1)
- Original + One Augmentation (\times 2)
- Original + Double Augmentation (\times 3)

① Augmentation 기법에 따른 성능 향상 조사 (One Augmentation)

WGAN, Flip, Rotation, Cropping -> 가장 좋은 성능을 보인 Augmentation

① Augmentation 기법에 따른 성능 향상 조사 (Double Augmentation)

CIFAR-10 ImageNet

Flip+Cropping, Flipping+WGAN -> 가장 좋은 성능을 보인 조합

① Augmentation 기법에 따른 성능 향상 조사 (Triple Augmentation)

CIFAR-10

Flip+Cropping+Rotation -> 가장 좋은 성능을 보인 조합

ImageNet

① Category Center

(1) 불균일한 데이터셋

TABLE I. THREE IMBALANCE DATASETS SAMPLED FROM CIFAR-10 TABLE II. THREE IMBALANCE DATASETS SAMPLED FROM CIFAR-100

Label	Imbalance A r=10, u=5		Imbalance B r=20, u=9		Imbalance C r=m, u=9		Test
	Train	Valid	Train	Valid	Train	Valid	Set
0	400	100	200	50	200	50	1000
1	400	100	200	50	600	150	1000
2	400	100	200	50	1000	250	1000
3	400	100	400	100	1400	350	1000
4	400	100	400	100	1800	450	1000
5	4000	1000	400	100	2200	550	1000
6	4000	1000	2000	500	2600	650	1000
7	4000	1000	2000	500	3000	750	1000
8	4000	1000	2000	500	3500	870	1000
9	4000	1000	4000	1000	4000	1000	1000

Label Range ^a	Imbalance A r=10, u=5		Imbalance B r=20, u=9		Imbalance C r=m, u=9		Test
	Train	Valid	Train	Valid	Train	Valid	Set
0~9	40	10	20	5	20	5	100
10~19	40	10	20	5	60	15	100
20~29	40	10	20	5	100	25	100
30~39	40	10	40	10	140	35	100
40~49	40	10	40	10	180	45	100
50~59	400	100	40	10	220	55	100
60~69	400	100	200	50	260	65	100
70~79	400	100	200	50	300	75	100
80~89	400	100	200	50	350	87	100
90~99	400	100	400	100	400	100	100

- **① Category Center**
- (2) 기존 이미지 분류 방식 Image 중심 Classification

- ① Category Center
- (3) Feature Vector 중심 Classification

- (1) 전체 데이터셋의 Deep Feature Vector 추출 (ex. 4277개의 Deep Feature Vector)
- (2) Class별로 Feature Vector 분류 (ex. Bottle: 241, Cable: 271 ...)
- (3) 각 Class 별로 Category Center 계산

$$C_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N_{k}} \frac{f_{i}}{\|f_{i}\|_{2}}$$

(4) 새로운 데이터를 Category Center에 대해 Support Vector Machine로 분류

① Category Center

(4) 데이터셋 비율에 따른 Support Vector Machine

균일한 데이터셋 (SVM)

불균일한 데이터셋 (SVM)

불균일한 데이터셋 (Category Center)

① Category Center

(5) 실험 결과

TABLE V. MEAN PRECISION IN CIFAR-10 WITH VGG-16

	Mean Precision in Cifar-10					
Classification	Imbalance A r=10, u=5	Imbalance B r=20, u=9	Imbalance C r=m, u=9			
D	0.779	0.747	0.857			
C	0.824	0.775	0.859			
F	0.826	0.772	0.865			
OD	0.787	0.770	0.850			
OC	0.831	0.792	0.861			
OF	0.830	0.796	0.862			

TABLE VI. MEAN PRECISION IN CIFAR-100 WITH VGG-16

	Mean Precision in Cifar-100					
Classification	Imbalance A r=10, u=50	Imbalance B r=20, u=90	Imbalance C r=m, u=90			
D	0.511	0.430	0.575			
С	0.558	0.482	0.583			
F	0.555	0.476	0.577			
OD	0.524	0.434	0.573			
OC	0.555	0.476	0.563			
OF	0.555	0.468	0.565			

D: CNN 이미지 분류 | C: Category Center 이미지 분류 (마지막 CNN Layer) | F: Category Center 이미지 분류 (마지막 FC Layer)

O-: Augmentation이 추가된 이미지 분류

3. 결론

① 원본 이미지 분류 학습 방향

- (1) Flip+Cropping+Rotation을 이용한 Augmentation 먼저 실행
- (2) WGAN을 비롯한 다른 Augmentation 적용
- (3) Category Center를 이용한 Classification 진행

② 추후 보완할 점

- (1) 다른 Augmentation 기법 및 효율성 조사
- (2) 현재 데이터셋에 필요한 Augmentation 방법 조사
- (3) Over Sampling이 아닌 Under Sampling 방법 조사
- (4) 불균일한 데이터셋에 적용 가능한 Classification 기법 조사

VI. Reference

- [1] J. Shijie, W. Ping, J. Peiyei, H. Siping, Research on Data Augmentation for Image Classification Based on Convolution Neural Networks, 2017
- [2] https://learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/
- [3] Y. Zhang, L. Shuai, Y. Ren, H. Chen, Image Classification with Category Centers in Class Imbalance Situation, 2018