34. Riemann sums and sigma notation

- 1. Write out the terms for the sum $\sum_{n=1}^{8} (-1)^n 2^{n-2}$. Then evaluate the sum.
- 2. Compute each of the sums:

(a)
$$\sum_{n=1}^{8} (n - (n-1))$$

(b)
$$\sum_{n=1}^{17} (n - (n-1))$$

- (c) Based on your answers to (a) and (b), try to determine the value of the sum $\sum_{n=1}^{2017} (n-(n-1))$.
- 3. If r_1 , $r_2...r_{50}$ represent the revenues earned from a company's sales force in each state, interpret the expression $\sum_{k=1}^{50} r_k$.
- 4. (a) A car's velocity increases, and we measure it at two second intervals:

Time (sec)	0	2	4	6	8	10
Velocity (ft/sec)	20	30	38	44	48	50

We don't know how fast the car was moving at every instant, so we can't find it exactly. Give an overestimate and underestimate of the distance, using a left/right sampled Riemann sum. How big is the spread?

(b) Measuring the velocity at one second intervals instead gives:

	0										
Velocity (ft/sec)	20	26	30	34	38	41	44	46	48	49	50

Answer the same questions as (a).

(c) How much has the spread narrowed?

5. The rate at which a tank leaks depends on how much is in it (more fluid \Rightarrow more pressure \Rightarrow faster loss). Suppose the leak in a specific tank is described by the following measured data:

Time (sec)	0	1.3	4.1	6	7.2	8
Rate (L/sec)	20	14	12	9	7	6

- (a) Use right-sampling to estimate the amount of fluid leaked in the first 8 seconds.
- (b) Is your answer from part (a) an overestimate or an underestimate? Explain how you can tell.
- 6. Suppose a car traveling at 90 kph slows to a full stop in 9 seconds. During that time, its velocity is v(t) = 90 36000t kilometers per hour, where t is measured in hours. Estimate the distance the car traveled while stopping by using a left-sampled Riemann sum with 10 intervals.

- 7. Suppose f is a positive-valued, decreasing function over [a, b]. Chris calculates a left-sampled Riemann sum with 10 subintervals, and Pat calculates a right-sampled Riemann sum with 10 subintervals. Who has the larger number, and why?
- 8. Consider the integral $\int_{1}^{2} (4-2x) dx$.
 - (a) Write down the Riemann sum that approximates this integral using n = 4 subintervals, sampled at the right endpoints.
 - (b) Write down the Riemann sum that approximates this integral using n=4 subintervals, sampled at the left endpoints.

- (c) Which of these is larger?
- (d) Decide based on the graph of f(x) = 4 2x whether LEFT(n) and RIGHT(n) are greater or smaller than that actual value of the integral $\int_{1}^{2} (4 2x) dx$.
- 9. The figure below depicts the heart rate (beats per minute) of a person during a workout.
 - (a) Use a right-sampled Riemann sum with 4 subintervals to estimate the number of heartbeats that occurred between 10 and 18 minutes into the workout.

(b) Use a left-sampled Riemann sum with 10 subintervals to estimate the number of heartbeats that occurred between 10 and 20 minutes into the workout.

