2019/1/3 Udacity Reviews

PROJECT SPECIFICATION

DNN Speech Recognizer

STEP 2: Model 0: RNN

CRITERIA	MEETS SPECIFICATIONS
Trained Model 0	The submission trained the model for at least 20 epochs, and none of the loss values in model_0.pickle are undefined. The trained weights for the model specified in simple_rnn_model are stored in model_0.h5.

STEP 2: Model 1: RNN + TimeDistributed Dense

Completed The submission includes a sample_models.py file with a completed rnn_model module containing the correct architecture.	CRITERIA	MEETS SPECIFICATIONS
	rnn_model	completed rnn_model module containing the correct

and hone of the loss values in model_1.pickle are undefined. The trained weights for the model specified in
rnn_model are stored in model_1.h5.

STEP 2: Model 2: CNN + RNN + TimeDistributed Dense

CRITERIA	MEETS SPECIFICATIONS
Completed cnn_rnn_model Module	The submission includes a sample_models.py file with a completed cnn_rnn_model module containing the correct architecture.
Trained Model 2	The submission trained the model for at least 20 epochs, and none of the loss values in model_2.pickle are undefined. The trained weights for the model specified in cnn_rnn_model are stored in model_2.h5.

STEP 2: Model 3: Deeper RNN + TimeDistributed Dense

CRITERIA	MEETS SPECIFICATIONS
Completed deep_rnn_model Module	The submission includes a sample_models.py file with a completed deep_rnn_model module containing the correct architecture.

Trained Model 3 CRITERIA	The submission trained the model for at least 20 epochs, MEETS SECTIFICATIONS values in model_3.pickle are undefined. The trained weights for the model specified in
	deep_rnn_model are stored in model_3.h5.

STEP 2: Model 4: Bidirectional RNN + TimeDistributed Dense

CRITERIA	MEETS SPECIFICATIONS
Completed bidirectional_rnn_model Module	The submission includes a sample_models.py file with a completed bidirectional_rnn_model module containing the correct architecture.
Trained Model 4	The submission trained the model for at least 2 epochs, and none of the loss values in model_4.pickle are undefined. The trained weights for the model specified in bidirectional_rnn_model are stored in model_4.h5.

STEP 2: Compare the Models

CRITERIA	MEETS SPECIFICATIONS
Question 1	The submission includes a detailed analysis of why different models might perform better than others.

STEP 2: Final Model

CRITERIA	MEETS SPECIFICATIONS

2019/1/3 Udacity Reviews

CRITERIA	MEETS SPECIFICATIONS
Trained Final	The submission trained the model for at least 20 epochs,
Model	and none of the loss values in model_end.pickle are undefined. The trained weights for the model specified in final_model are stored in model_end.h5.
Completed final_model Module	The submission includes a sample_models.py file with a completed final_model module containing a final architecture that is not identical to any of the previous architectures.
Question 2	The submission includes a detailed description of how the final model architecture was designed.

Suggestions to Make Your Project Stand Out!

(1) Add a Language Model to the Decoder

The performance of the decoding step can be greatly enhanced by incorporating a language model. Build your own language model from scratch, or leverage a repository or toolkit that you find online to improve your predictions.

(2) Train on Bigger Data

In the project, you used some of the smaller downloads from the LibriSpeech corpus. Try training your model on some larger datasets - instead of using dev-clean.tar.gz , download one of the larger training sets on the website.

(3) Try out Different Audio Features

2019/1/3 Udacity Reviews

In this project, you had the choice to use *either* spectrogram or MFCC features. Take the time to test the performance of *both* of these features. For a special challenge, train a network that uses raw audio waveforms!