Hochschule München University of Applied Sciences

Faculty of Computer Science and Mathematics

parSAT: Parallel Solving of Floating-Point Satisfiability

FROM 2025

Markus Krahl, Matthias Güdemann, and Stefan Wallentowitz

Motivation

- Embedded Systems control safety-critical processes by calculations of Floating Point (FP) numbers
- Most often FP-Implementations based on the IEEE 754 Standard are used
- FP numbers only approximate real values and do not fulfill mathematical rules (associativity, addition)
- Due to this behavior, FP algorithms might produce unexpected or incorrect results
- SMT solvers play a crucial role in verifying FP computations
- Current state-of-the-art SMT solvers convert FP arithmetic into propositional logic through bit- or word-blasting
- This overhead may result in limited capacity for reasoning about non-linear FP constraints
- Ideas for parSAT:
 - Exploit dedicated hardware support for FP computations (FP Units in CPUs)
 - Improve parallel solving of FP SMT equations

Related Work

- parSAT extends the concepts presented in XSat and goSAT:
 - XSat:
 - Foundations for translating FP constraints into Global Optimization (GO) problem
 - Emits the optimization function as C-code, compiles it, and it reloads it as Python-Module
 - Applies Basin Hopping (BH) from the Scipy-Package to find the global minimum
 - goSAT:
 - Based on XSat
 - Applies De-Morgan's Law when translating an SMT equation into a GO problem
 - Performs a Just-In-Time compilation of the optimization function
 - Employs various GO routines of the NLOpt library for finding the global minimum
- Research investigating portfolio-settings with SMT solvers

Contributions

- *parSAT*, an integrated tool that
 - represents a semi-decision procedure for SMT equations in FP theory
 - supports a broader scope of the SMTLIB2-standard
 - models the effect of infinite FP numbers in the generated optimization function
 - performs a portfolio-based minimization by using a multicore implementation
 - enables the integration of any GO algorithm
- Evaluation of parSAT with current state-of-the-art SMT solvers on different benchmarks

Theoretical Background

- Convert a quantifier-free FP SMT equation F into an optimization function G
 - If x corresponds to a satisfiable assignment of F than G(x) must be zero
 - Otherwise, **G** returns a positive distance value to the global minimum at zero
- Translation of negated comparison operators for FP numbers must be considered:

$$\neg (r_a < r_b)$$
 $(r_a \ge r_b)$ $\neg (f_a < f_b)$ $(f_a \ge f_b)$ where $f_b = NaN$

• **F** in conjunctive normal form with removed negations (De-Morgan) is translated to **G**:

$$F_{CD}(\overrightarrow{x}) = \bigwedge_{i \in I} \bigvee_{j \in J} e_{i,j} \bowtie_{i,j,n} e'_{i,j}$$

$$G(\overrightarrow{x}) = \sum_{i \in I} \prod_{j \in J} d(\bowtie_{i,j,n}, e_{i,j}, e'_{i,j})$$

Subscript n indicates if a negation of comparison operator (bowtie) occurred

Theoretical Background

• Definitions for $d(\bowtie_{i,j,n}, e_{i,j}, e'_{i,j})$

$$\begin{split} d(==_0,e_1,e_2) &= d(\neq_1,e_1,e_2) = \theta(e_1,e_2) \\ d(\neq_0,e_1,e_2) &= d(==_1,e_1,e_2) = e_1 \neq e_2 ? 0 : 1 \\ d(<_0,e_1,e_2) &= e_1 < e_2 ? 0 : \theta(e_1,e_2) + 1 \\ d(<_1,e_1,e_2) &= isnan(e_1) \lor isnan(e_2) ? 0 : d(\geq_0,e_1,e_2) \\ d(\leq_0,e_1,e_2) &= e_1 \leq e_2 ? 0 : \theta(e_1,e_2) \\ d(\leq_1,e_1,e_2) &= isnan(e_1) \lor isnan(e_2) ? 0 : d(>_0,e_1,e_2) \\ d(>_0,e_1,e_2) &= e_1 > e_2 ? 0 : \theta(e_1,e_2) + 1 \\ d(>_1,e_1,e_2) &= isnan(e_1) \lor isnan(e_2) ? 0 : d(\leq_0,e_1,e_2) \\ d(\geq_0,e_1,e_2) &= e_1 \geq e_2 ? 0 : \theta(e_1,e_2) \\ d(\geq_0,e_1,e_2) &= isnan(e_1) \lor isnan(e_2) ? 0 : d(<_0,e_1,e_2) \\ d(\geq_1,e_1,e_2) &= isnan(e_1) \lor isnan(e_2) ? 0 : d(<_0,e_1,e_2) \\ d(\geq_1,e_1,e_2) &= isnan(e_1) \lor isnan(e_2) ? 0 : d(<_0,e_1,e_2) \\ d(\geq_1,e_1,e_2) &= isnan(e_1) \lor isnan(e_2) ? 0 : d(<_0,e_1,e_2) \\ \end{pmatrix}$$

where

$$\theta(e_1, e_2) = isnan(e_1) \vee isnan(e_2) ? 1 : (e_1 == e_2 ? 0 : (|bits(e_1) - bits(e_2)|))$$

Example

$$t(x) = -1(x+2)^2 - 2$$

ExP(1): *x* ∈ *FP* \wedge *t*(*x*) \geq −2.

Incompleteness of parSAT

- If parSAT finds a global minimum at zero, these coordinates represent a satisfiable solution to the initial SMT equation
- If *parSAT* reaches an evaluation limit (maximal number of calling the evaluation function exceeded) it is unknown whether the optimization function has a global minimum at zero (satisfiable) or not (unsatisfiable)
- The generated optimization function may not be smooth and therefore not differentiable
- Only derivative-free GO methods can be used
- Only when all possible inputs were evaluated and no solution was found, parSAT could safely determine UNSAT

Distribution of fastest GO methods when evaluating the Griggio Benchmark

	BH	CRS2	ISRES
parsat BH_1 , $CRS2_1$, $ISRES_1$	46.6%	27.9%	25.5%
parsat BH_2 , $CRS2_2$, $ISRES_2$	59.1%	25.2%	15.7%
parsat BH ₃ , CRS2 ₃ , ISRES ₃	71.6%	17.3%	11.1%
parsat BH ₄ , CRS2 ₄ , ISRES ₄	74.0%	17.3%	8.7%
parsat BH ₅ , CRS2 ₅ , ISRES ₅	77.5%	15.5%	7.0%
parsat BH ₆ , CRS2 ₆ , ISRES ₆	83.6%	10.0%	6.4%
parsat BH ₇ , CRS2 ₇ , ISRES ₇	87.0%	7.7%	5.3%
parsat BH ₈ , CRS2 ₈ , ISRES ₈	87.5%	7.0%	5.5%
parsat BH ₉ , CRS2 ₉ , ISRES ₉	89.6%	5.1%	5.3%
parsat BH_{10} , $CRS2_{10}$, $ISRES_{10}$	91.2%	4.1%	4.7%

Full comparison of parSAT with state-of-the-art SMT solvers (Griggio Benchmark)

	SAT	UNSAT	timeout / evaluation limit	errors	average SAT runtime
$parSAT_{best}BH_{14}, CRS2_3, ISRES_3$	102	0	112	0	0.1
bitwuzla	108	76	30	0	32.71
cvc5	104	76	30	4	34.01
MathSAT	100	69	45	0	25.86
Z3	75	56	54	29	88.7

Solving time of parSAT and state-of-the-art SMT solvers for SAT equations (Griggio Benchmark)

Introduction to the 2019-Guedemann Benchmark

- Re-Implementation of natural logarithm (In') and exeponential (exp') function
- The 2019-Guedemann Benchmark includes SMT equations to verify that the following properties hold for the re-implemented algorithms

$$\forall x \in \mathbb{R}: \quad x > 0 \implies \exp'(\ln' x) \approx x$$

$$\forall x \in \mathbb{R}: \quad x > 0 \implies \ln'(\exp' x) \approx x$$

$$\forall x, y \in \mathbb{R}: \quad x, y \in [0, 1] \implies \exp'(x + y) \approx \exp'(x) \cdot \exp'(y)$$

$$\forall x \in \mathbb{R}: \quad x, y > 0 \implies \ln'(x \cdot y) \approx \ln'(x) \cdot \ln'(y)$$

$$\forall x \in \mathbb{R}: \quad x, y \in [0, 1] \implies img(x^y) = img(\exp'(y \cdot \ln'(x))) \approx [0, 1]$$

Full comparison of parSAT with state-of-the-art SMT solvers (2019-Guedemann Benchmark)

	SAT	UNSAT	timeout / evaluation limit	errors	average SAT runtime
$parSAT_{best}BH_{14}, CRS2_3, ISRES_3$	10	0	3	0	0.1
bitwuzla	10	2	1	0	37.88
cvc5	4	1	8	0	180.09
MathSAT	4	1	8	0	22.8
Z3	0	0	4	9	-

Potential effect of combining parSAT with bitwuzla (Griggio Benchmark)

	SAT	UNSAT	timeout / evaluation limit	errors	average SAT runtime
$parSAT_{best}BH_{14}, CRS2_3, ISRES_3$	102	0	112	0	0.1
bitwuzla	108	76	30	0	32.71
$parSAT_{best}$ + bitwuzla	113	76	25	0	12.75

Conclusion and Outlook

- parSAT presents a considerable complementary alternative to current state-of-the-art SMT solvers
- parSAT was able to handle a variety of SMT equations from commonly used, representative benchmarks
- The modular architecture of parSAT enables integration of further GO algorithms
- Due to the necessary evaluation limit for the optimization function, *parSAT* is a semi-decision procedure that underapproximates the search space and cannot prove *UNSAT*
- parSAT is limited to only find solutions consisting of finite FP values
- Extend parSAT to utilize other platforms for running concurrent GO methods such as GPUs or (cloud) computing clusters
- Enable information sharing between *parSAT* with SMT solvers in a complementary setting
- Investigate parSAT's potential in the problem domain of SMT model counting

