DORU ARFIRE

Papers We Love, April 11th 2016

The Plan

- Gaussian Mixture Models example
- History
- Formal definition
- Usage in practice
- Applications
- GMM demonstration
- Q&A

A simple problem

- We draw $X_1, X_2, ..., X_n$ samples from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma})$
- We need to estimate μ and σ
- Simple

$$\mu = \frac{1}{N} \sum_{k=1}^{N} X_k$$

$$\sigma^2 = \frac{1}{N} \sum_{k=1}^{N} (X_k - \mu)^2$$

Maximum Likelihood Estimation

- Given $X_1, X_2, ...$ from a distribution $\mathcal{D}(\boldsymbol{\theta})$
- The Likelihood Function: $\mathcal{L}(\boldsymbol{\theta} \mid \mathbf{X}) = P(\mathbf{X} \mid \boldsymbol{\theta}) = \prod P(X_k \mid \boldsymbol{\theta}) = \prod P_{\boldsymbol{\theta}}(X_k)$
 - We usually work with $\log \mathcal{L}(\theta \mid \mathbf{X})$
 - \circ For exponential family distributions $\log \mathcal{L}(\theta \mid X)$ is strictly concave
- A function of the parameter θ , not X
- Maximum Likelihood Estimation
 - \circ Find $\boldsymbol{\theta}$ that maximizes $\square \mathcal{L}(\boldsymbol{\theta} \mid \mathbf{X})$
 - Depending on distribution, optimize using:
 - Shortcut estimator formulas
 - Derivatives, then solve equations for θ
 - Numeric optimization (Gradient Descent & friends)
 - Monte-Carlo methods

- We draw $X_1, X_2, ..., X_n$ from either \mathcal{N}_{1} 0.6 $(\boldsymbol{\mu}_1, \boldsymbol{\sigma}_1)$ or $\mathcal{N}_2(\boldsymbol{\mu}_2, \boldsymbol{\sigma}_2)$
- We don't know
 - which distribution each point came from 0.4
 - the parameters $\theta = (\boldsymbol{\mu}_1, \boldsymbol{\sigma}_1, \boldsymbol{\mu}_2, \boldsymbol{\sigma}_2)$
- We need to find θ
- Bonus Points: figure out what distribution each point comes from
- Basically clustering

- Model X_i belonging to each distribution using a *latent* random variable Y_i
 - \circ P(Y_i=j) is probability that X_i came from \mathcal{N}_i
- Likelihood becomes expected likelihood
- No pretty closed form, not concave anymore

- Model X_i belonging to each distribution using a *latent* random variable Y_i
 - \circ P(Y_i=j) is probability that X_i came from \mathcal{N}_i
- Likelihood becomes expected likelihood
- No pretty closed form, not concave anymore
- Couldn't we use Gradient Descent?

- Model X_i belonging to each distribution using a *latent* random variable Y_i
 - \circ P(Y_i=j) is probability that X_i came from \mathcal{N}_i
- Likelihood becomes expected likelihood
- No pretty closed form, not concave anymore
- Couldn't we use Gradient Descent? Of course, but:
 - Many parameters: $O(|X| + |\theta|)$
 - Slow to converge, in practice
- Can use a faster method, specific for likelihood functions

- Chicken and Egg problem
 - If we know $Y_1, Y_2, ...$ it's easy to calculate θ (do MLE)
 - o If we know θ it's easy to calculate $P(Y_k)$: $P(Y_k=1) \sim \mathcal{L}(\mu_1, \sigma_1 \mid X_k) = P(X_k \mid \mu_1, \sigma_1)$
- Expectation Maximization algorithm intuition
 - Start with a guess for θ
 - \circ E-step: Using current θ estimate, compute $P(Y_k)$
 - M-step: Using current $P(Y_{\nu})$ estimate θ (MLE)
 - Repeat E-step and M-step until convergence
- Guaranteed to converge to a stationary point
 - Most likely a local maximum

E-step:

$$P(Y_{k} = j) = \frac{P(Y_{k} = j \mid \mu_{j}, \sigma_{j})}{\sum_{i} P(Y_{k} = i \mid \mu_{i}, \sigma_{i})} = \frac{\frac{1}{\sigma_{j} \sqrt{2\pi}} exp(-\frac{(X_{k} - \mu_{j})^{2}}{2\sigma_{j}^{2}})}{\sum_{i} \frac{1}{\sigma_{i} \sqrt{2\pi}} exp(-\frac{(X_{k} - \mu_{i})^{2}}{2\sigma_{i}^{2}})}$$

M-step: expected log likelihood

$$E_{Y}[log\mathcal{L}(\theta|X)] = -\frac{1}{2} \sum_{k=1}^{N} \sum_{j=1,2} P(Y_{k}=j) [ln\sigma_{j}^{2} + ln2\pi + \frac{(X_{k}-\mu_{j})^{2}}{\sigma_{j}}]$$

M-step

$$E_{Y}[log\mathcal{L}(\theta|X)] = -\frac{1}{2} \sum_{k=1}^{N} \sum_{j=1,2} P(Y_{k}=j) [ln\sigma_{j}^{2} + ln2\pi + \frac{(X_{k}-\mu_{j})^{2}}{\sigma_{j}}]$$

• Taking derivatives and solving equations we get

$$\mu_{j} = \frac{\sum_{k} P(Y_{k}=j)X_{k}}{\sum_{k} P(Y_{k}=j)} \qquad \sigma_{j}^{2} = \frac{\sum_{k} P(Y_{k}=j)(X_{k}-\mu_{j})^{2}}{\sum_{k} P(Y_{k}=j)}$$

- Similar to K-Means
 - 2-step iteration
- Uses a *soft* assignment to clusters
- Supports multiple parameters (μ and θ)
- Can find clusters of different *radius*

GMM: EM vs K-Means

- Invented independently by multiple authors
- Estimation of parameters when we have incomplete data
 - We never observe some variables
 - We sometimes don't observe variables
- Hartley, H.O. Maximum Likelihood Estimation From Incomplete Data(1958)
- Dempster, Laird, Rubin Maximum Likelihood Estimation From Incomplete Data Via the EM Algorithm(1977)
 - Introduced the EM name
 - Incorrect convergence proof
- Wu, C. F. Jeff On the Convergence Properties of the EM Algorithm (1983)
 - Proof of convergence

- Given observed data X, unobserved data Z and parameters θ
- We need to find $\boldsymbol{\theta}$ and \mathbf{Z} that maximize $\mathcal{L}(\theta;X) = P(X|\theta) = \sum_{Z} P(X,Z|\theta)$ • E-step
 - \circ Keeps θ constant
 - Computes the coefficients for the expected value for the log likelihood
 - $\circ \quad Q(\theta|\theta^t) = E_{Z|X,\theta^t}(log\mathcal{L}(\theta;X,Z))$
- M-step
 - Choose parameters that maximize Q: $\theta^{t+1} = \underset{\theta}{argmax} Q(\theta|\theta^t)$
- ullet Actual implementation depends on the distributions involved

Expectation Maximization: Why it works?

- Guarantees that
 - Each iteration improves the expected likelihood
 - $\bigcirc \mathcal{L}(\mathbf{\theta}^{t+1}; X) \ge \mathcal{L}(\mathbf{\theta}^t; X)$
 - \circ If $\theta^{t+1} = \theta^t$ then we have reached a stationary point
- Faster convergence than Gradient Descent
 - Each step solves MLE problem => faster convergence
 - MLE optimizes a simpler function: $|\mathbf{\theta}|$ vs. $|\mathbf{X}| + |\mathbf{\theta}|$
 - Specific algorithm for likelihood functions

EM in practice

- Not all local-maxima are the same
 - The more missing data we have the more local maxima we find
- Can be combined with simulated annealing for probing for global maxima
- Sensitive to initialization
 - Multiple restarts, choose best local maximum
 - Initialize using domain knowledge
 - Initialize using a simpler algorithm (K-Means)

EM in practice: Overfitting

- Running it to convergence may overfit data
 - Use a separate data set to decide when to stop

Applications: Missing Data Imputation

- When some samples miss values for certain features
 - Recording error
 - Non-replies in surveys
 - Too expensive to record
- Suboptimal methods of handling missing data
 - Dropping rows with missing data
 - Mean imputation

Applications: Missing Data Imputation

- Different patterns of missing data
 - Missing Completely At Random; includes unobserved variables
 - Income missing at random
 - Missing At Random
 - Prob of missing an observation depends on other observed variables
 - Income missing depending on age, but we know age
 - Missing Not At Random
 - Depends on both observed and unobserved variables
 - Income missing depending on the income level

Applications: Missing Data Imputation

- Applicable to MAR (MCAR \subseteq MAR)
- E-step
 - \circ We know current means and covariance matrix (θ)
 - Impute missing data using linear models
 - Unobserved variables as a linear combination of the observed variables (regression analysis)
- M-step
 - Recompute parameters based on complete data

Applications: Bayesian Clustering

- Learning with latent variables
 - Variables that we never observe (a form of MCAR)
 - Can simplify our model
 - Often encode the most interesting information
- Bayesian clustering
 - Unsupervised learning of classes from data
 - Cluster examples based on shared feature values
 - News-site users segmentation based on viewed articles
 - Unsupervised or Semi-supervised Naïve Bayes

Applications: Semi-supervised Naïve Bayes

Kamal Nigam, Andrew McCallum and Tom Mitchell. Semisupervised Text Classification Using EM

- We have both labeled and unlabeled data
- Train classifier on labeled data
- E-step:
 - Use classifier to find P(C_i | X_j) for all classes and all unlabeled examples
- M-step:
 - Train classifier on both labeled and unlabelled data
- Repeat EM while likelihood increases
- Gives better performance than using only labeled data

Other applications

- Hidden Markov Models
 - Generative probabilistic graphical model: P(Y, X) = P(Y | X) P(X)
 - Used in speech recognition, natural language processing
 - Baum-Welch algorithm is a variation of EM
- Conditional Random Fields
 - Discriminative probabilistic graphical model: P(Y | X)
 - Sequential logistic regression
 - Used in spoken language understanding, POS tagging, NLP chunking
 - Trained using EM
- Many many other applications

References

- Further study
 - Chuong B.D., Batzoglou S. -- What is the expectation maximization algorithm?
 (the infamous coins example)
 - Daphne Koller -- "Probabilistic Graphical Models" Coursera course, week 21
- Implementations
 - Mostly for Gaussian Mixtures
 - Python -- sklearn.mixture.GMM
 - R -- mclust, EMCluster
 - Apache Spark -- org.apache.spark.mllib.clustering.GaussianMixture
 - Apache Mahout

