Chapitre 3. Combinaison linéaire et SEV

§1. Reconnaitre une combinaison linéaire.

Etant donné deux vecteurs $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, par exemple $\begin{pmatrix} 1\\0\\2 \end{pmatrix}$ et $\begin{pmatrix} 2\\3\\1 \end{pmatrix}$, ainsi que deux coefficients s et t, il est très facile de calculer leur combinaison linéaire $\vec{s}\vec{v}_1 + t\vec{v}_2$. Par exemple

$$2\begin{pmatrix}1\\0\\2\end{pmatrix}+(-1)\begin{pmatrix}2\\3\\1\end{pmatrix}=(facile...).$$

Chapitre 3. Combinaison linéaire et SEV

§1. Reconnaitre une combinaison linéaire.

Etant donné deux vecteurs $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, par exemple $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, ainsi

que deux coefficients s et t, il est très facile de calculer leur combinaison linéaire $s\vec{\mathbf{v}}_1 + t\vec{\mathbf{v}}_2$. Par exemple

$$2\begin{pmatrix}1\\0\\2\end{pmatrix}+(-1)\begin{pmatrix}2\\3\\1\end{pmatrix}=(facile...).$$

Question réciproque : Etant donné un troisième vecteur \vec{b} , par exemple $\begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$, est-il une combinaison linéaire de \vec{v}_1 et \vec{v}_2 ?

Chapitre 3. Combinaison linéaire et SEV

§1. Reconnaitre une combinaison linéaire.

Etant donné deux vecteurs $\vec{\mathbf{v}}_1$, $\vec{\mathbf{v}}_2$, par exemple $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, ainsi que deux coefficients s et t, il est très facile de calculer leur

combinaison linéaire $s\vec{\mathbf{v}}_1 + t\vec{\mathbf{v}}_2$. Par exemple

$$2\begin{pmatrix}1\\0\\2\end{pmatrix}+(-1)\begin{pmatrix}2\\3\\1\end{pmatrix}=(facile...).$$

Question réciproque : Etant donné un troisième vecteur \vec{b} , par

exemple $\begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$, est-il une combinaison linéaire de $\vec{\mathbf{v}}_1$ et $\vec{\mathbf{v}}_2$?

Une méthode naïve est de tester avec toutes sortes de coefficients s, t pour tenter de retrouver $\vec{\mathbf{b}}$ avec $s\vec{\mathbf{v}}_1 + t\vec{\mathbf{v}}_2$.

Est-ce la bonne méthode?

Question réciproque : Etant donné un troisième vecteur $\vec{\mathbf{b}}$, par exemple $\begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$, est-il une combinaison linéaire de $\vec{\mathbf{v}}_1$ et $\vec{\mathbf{v}}_2$?

Une méthode naïve est de tester avec toutes sortes de coefficients s, t pour tenter de retrouver $\vec{\mathbf{b}}$ avec $s\vec{\mathbf{v}}_1 + t\vec{\mathbf{v}}_2$. Est-ce la bonne méthode? Question réciproque : Etant donné un troisième vecteur $\vec{\mathbf{b}}$, par

exemple $\begin{pmatrix} 8\\9\\7 \end{pmatrix}$, est-il une combinaison linéaire de $\vec{\mathbf{v}}_1$ et $\vec{\mathbf{v}}_2$?

Une méthode naïve est de tester avec toutes sortes de coefficients s, t pour tenter de retrouver $\vec{\mathbf{b}}$ avec $s\vec{\mathbf{v}}_1 + t\vec{\mathbf{v}}_2$.

Est-ce la bonne méthode? **NON**, il y a trop (une infinité) de coefficients à tester.

La bonne méthode est de : poser des coefficients comme des inconnues, et traduire la question en :

Est-ce que le système $x\vec{\mathbf{v}}_1 + y\vec{\mathbf{v}}_2 = \vec{\mathbf{b}}$ admet une solution?

Dans notre exemple concret, la question devient :

Est-ce que le système $x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$ admet une solution?

Est-ce que le système
$$x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$$
 admet une solution?

Est-ce que le système
$$x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$$
 admet une solution?

Ainsi, la réponse de la question initiale est :

Est-ce que le système
$$x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$$
 admet une solution?

Ainsi, la réponse de la question initiale est :

oui,
$$\begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$$
 s'exprime bien en combinaison linéaire de $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, en effet $\begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$.

Question similaire : En dimension 4, le vecteur \vec{e}_4 est-il une combinaison linéaire de \vec{e}_1 , \vec{e}_2 et \vec{e}_3 ?

Justifier votre réponse.

Est-ce que le système
$$x \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$$
 admet une solution?

Ainsi, la réponse de la question initiale est :

oui,
$$\begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix}$$
 s'exprime bien en combinaison linéaire de $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, en effet $\begin{pmatrix} 8 \\ 9 \\ 7 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$.

Question similaire : En dimension 4, le vecteur \vec{e}_4 est-il une combinaison linéaire de \vec{e}_1 , \vec{e}_2 et \vec{e}_3 ?

Justifier votre réponse.

Non. Car le système $x\vec{e}_1 + y\vec{e}_2 + z\vec{e}_3 = \vec{e}_4$ n'a pas de solution.

§2. Sous espace vectoriel engendré

L'équation x - y - 2z = 0 a pour solution x = y + 2z, où y, zpeuvent prendre n'importe quelles valeurs réelles. Sous forme vectorielle, l'ensemble des solutions s'écrit

$$S = \left\{ \begin{pmatrix} y + 2z \\ y \\ z \end{pmatrix}, y, z \in \mathbb{R} \right\} = \left\{ y \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, y, z \in \mathbb{R} \right\}$$

$$= \left\{ a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, a, b \in \mathbb{R} \right\} \text{ (on a remplacé } y, z \text{ par } a, b)$$

$$= \left\{ \text{toutes les combinaisons linéaires de } \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ et } \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$\text{nouvelle notation } \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \right\rangle$$

nouvelle notation
$$\left\langle \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix} \right\rangle$$

$$=\left\{aegin{pmatrix}1\\1\\0\end{pmatrix}+begin{pmatrix}2\\0\\1\end{pmatrix},a,b\in\mathbb{R}
ight\}$$
 (on a remplacé y,z par a,b)

$$= \left\{ \text{toutes les combinaisons linéaires de } \begin{pmatrix} 1\\1\\0 \end{pmatrix} \text{ et } \begin{pmatrix} 2\\0\\1 \end{pmatrix} \right\}$$

$$\stackrel{\text{nouvelle notation}}{=} \langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \rangle$$

Définition et Notation. On utilise $\langle \vec{\mathbf{v}}_1, \cdots, \vec{\mathbf{v}}_m \rangle$ pour désigner l'ensemble de toutes les combinaisons linéaires des $\vec{\mathbf{v}}_i$, ou bien, en écriture ensembliste : $\langle \vec{\mathbf{v}}_1, \cdots, \vec{\mathbf{v}}_m \rangle = \{ \sum_k a_k \vec{\mathbf{v}}_k, a_k \in \mathbb{R} \} = \{ a_1 \vec{\mathbf{v}}_1 + a_2 \vec{\mathbf{v}}_2 + \cdots + a_m \vec{\mathbf{v}}_m \mid a_1, \cdots, a_m \in \mathbb{R} \}$. On appelle cet ensemble le **sous espace vectoriel engendré** (SEV) par les vecteurs $\vec{\mathbf{v}}_1, \cdots, \vec{\mathbf{v}}_m$.

$$= \left\{ a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, a, b \in \mathbb{R} \right\}$$
 (on a remplacé y, z par a, b)

$$= \left\{ \text{toutes les combinaisons linéaires de } \begin{pmatrix} 1\\1\\0 \end{pmatrix} \text{ et } \begin{pmatrix} 2\\0\\1 \end{pmatrix} \right\}$$

$$\stackrel{\text{nouvelle notation}}{=} \langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \rangle$$

Définition et Notation. On utilise $\langle \vec{\mathbf{v}}_1, \cdots, \vec{\mathbf{v}}_m \rangle$ pour désigner l'ensemble de toutes les combinaisons linéaires des $\vec{\mathbf{v}}_i$, ou bien, en écriture ensembliste : $\langle \vec{\mathbf{v}}_1, \cdots, \vec{\mathbf{v}}_m \rangle = \{ \sum_k a_k \vec{\mathbf{v}}_k, a_k \in \mathbb{R} \} = \{ a_1 \vec{\mathbf{v}}_1 + a_2 \vec{\mathbf{v}}_2 + \cdots + a_m \vec{\mathbf{v}}_m \mid a_1, \cdots, a_m \in \mathbb{R} \}$. On appelle cet ensemble le **sous espace vectoriel engendré** (SEV) par les vecteurs $\vec{\mathbf{v}}_1, \cdots, \vec{\mathbf{v}}_m$.

Ainsi, demander si $\vec{\mathbf{b}}$ est une combinaison linéaire des $\vec{\mathbf{v}}_i$ revient à demander si $\vec{\mathbf{b}}$ est un élément de l'ensemble $\langle \vec{\mathbf{v}}_1, \cdots, \vec{\mathbf{v}}_m \rangle$, revient à demander si un système (lequel?) admet une solution (ou plus).

§3. Réduction suivant les colonnes

On peut résoudre un système $A\vec{x} = \vec{b}$ en cinq étapes suivantes :

- 1. On forme la matrice compagnon verticale $\left(\frac{A}{Id}\right)$.

 2. On l'échelonne suivant les colonnes pour obtenir $\left(\frac{B}{H}\right)$.

Exemple : Résoudre
$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 3 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_2 \leadsto C_2 + C_1} \begin{pmatrix} \textcircled{1} & 0 & 0 \\ 1 & 1 \\ \hline 1 & 2 \\ \hline \hline 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_3 \leadsto C_3 - C_2} \begin{pmatrix} \textcircled{1} & 0 & 0 \\ 1 & \textcircled{1} & 0 \\ \hline 1 & 2 & 0 \\ \hline \hline 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Alors
$$B = ??$$
, $H = ??$, $\vec{\mathbf{b}} = ??$

Dans notre exemple
$$B = \begin{pmatrix} \textcircled{1} & 0 & 0 \\ 1 & \textcircled{1} & 0 \\ 1 & 2 & 0 \end{pmatrix}$$
, $H = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et

$$\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Dans notre exemple
$$B = \begin{pmatrix} \textcircled{1} & 0 & 0 \\ 1 & \textcircled{1} & 0 \\ 1 & 2 & 0 \end{pmatrix}$$
, $H = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et

$$\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}. \quad \begin{array}{l} \text{Soit } \vec{\mathbf{u}} \text{ un nouveau vecteur inconnu} \\ \text{en dimension 3 qu'on donne un} \\ \text{nom à chaque entrée, par exemple} \\ \end{array} \vec{\mathbf{u}} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}.$$

Dans notre exemple
$$B = \begin{pmatrix} \textcircled{1} & 0 & 0 \\ 1 & \textcircled{1} & 0 \\ 1 & 2 & 0 \end{pmatrix}$$
, $H = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et

$$\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}. \quad \begin{array}{l} \text{Soit } \vec{\mathbf{u}} \text{ un nouveau vecteur inconnu} \\ \text{en dimension 3 qu'on donne un} \\ \text{nom à chaque entrée, par exemple} \\ \vec{\mathbf{u}} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}.$$

3. On résout $B\vec{\mathbf{u}} = \vec{\mathbf{b}}$ et on trouve $\vec{\mathbf{u}} =$

Dans notre exemple
$$B = \begin{pmatrix} \textcircled{1} & 0 & 0 \\ 1 & \textcircled{1} & 0 \\ 1 & 2 & 0 \end{pmatrix}$$
, $H = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et

$$\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}. \quad \text{Soit } \vec{\mathbf{u}} \text{ un nouveau vecteur inconnu} \\ \quad \text{en dimension 3 qu'on donne un} \\ \quad \text{nom à chaque entrée, par exemple} \qquad \vec{\mathbf{u}} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}.$$

3. On résout $B\vec{\mathbf{u}} = \vec{\mathbf{b}}$ et on trouve $\vec{\mathbf{u}} = \begin{pmatrix} 1 \\ 1 \\ w \end{pmatrix}$, avec w pouvant prendre n'importe quelle valeur.

4. Multiplication par H :
$$H\vec{\mathbf{u}} = \begin{pmatrix} 2 - 2w \\ 1 - w \\ w \end{pmatrix}$$
. Ou bien, sous forme

vectorielle :
$$\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix} + w \begin{pmatrix} -2\\-1\\1 \end{pmatrix}, w \in \mathbb{R} \right\} \stackrel{\text{sous forme}}{\underset{SEV}{=}} \begin{pmatrix} 2\\1\\0 \end{pmatrix} + \langle \begin{pmatrix} -2\\-1\\1 \end{pmatrix} \rangle.$$

5. Vérification.

Etant donné une matrice A (non nécessairement carrée), lorsqu'on réduit la matrice compagnon verticale $\left(\frac{A}{Id}\right)$ à une matrice

$$\left(\frac{B}{H}\right)$$
 par des opérations des colonnes,

1. la matrice H est carrée et inversible,

$$\left(\frac{B}{H}\right)$$
 par des opérations des colonnes,

- 1. la matrice H est carrée et inversible,
- 2. la matrice B n'est rien d'autre que AH,

$$\left(\frac{B}{H}\right)$$
 par des opérations des colonnes,

- 1. la matrice H est carrée et inversible,
- 2. la matrice B n'est rien d'autre que AH,
- 3. l'ensemble $\{\vec{x}, A\vec{x} = \vec{b}\}$ est égale à $\{H\vec{u}, B\vec{u} = \vec{b}\}$,

$$\left(\frac{B}{H}\right)$$
 par des opérations des colonnes,

- 1. la matrice H est carrée et inversible,
- 2. la matrice B n'est rien d'autre que AH,
- 3. l'ensemble $\{\vec{x}, A\vec{x} = \vec{b}\}$ est égale à $\{H\vec{u}, B\vec{u} = \vec{b}\}$,
- 4. la matrice A est inversible ssi $\left(\frac{A}{Id}\right)$ se réduit à $\left(\frac{Id}{H}\right)$, et dans ce cas $H=A^{-1}$,

$$\left(\frac{B}{H}\right)$$
 par des opérations des colonnes,

- 1. la matrice H est carrée et inversible,
- 2. la matrice B n'est rien d'autre que AH,
- 3. l'ensemble $\{\vec{x}, A\vec{x} = \vec{b}\}$ est égale à $\{H\vec{u}, B\vec{u} = \vec{b}\}$,
- 4. la matrice A est inversible ssi $\left(\frac{A}{Id}\right)$ se réduit à $\left(\frac{Id}{H}\right)$, et dans ce cas $H=A^{-1}$,
- 5. Un vecteur $\vec{\mathbf{b}}$ est dans le SEV engendré par les vecteurs colonnes de A ssi $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ admet une solution (ou plus), ssi le nouveau système avec des nouvelles inconnues $B\vec{\mathbf{u}} = \vec{\mathbf{b}}$ admet une solution (ou plus). et bien plus d'autres propriétés...

Preuve du théorème

Chaque opération élémentaire suivant les colonnes correspond à multiplier la matrice à droite par une matrice (dite élémentaire) *E* qui est inversible. Ainsi la suite de réduction se lit

$$\left(\frac{A}{Id}\right) \rightsquigarrow \left(\frac{AE_1}{E_1}\right) \rightsquigarrow \left(\frac{AE_1E_2}{E_1E_2}\right) \rightsquigarrow \cdots \rightsquigarrow \left(\frac{AE_1E_2 \cdots E_m}{E_1E_2 \cdots E_m}\right) = \left(\frac{AH}{H}\right).$$

Ceci montre que si $\left(\frac{A}{Id}\right)$ se réduit à $\left(\frac{B}{H}\right)$, alors B=AH et H est toujours inversible.

De plus, si B = id alors AH = Id, donc $H = A^{-1}$, et $B\vec{\mathbf{u}} = \vec{\mathbf{b}} \Rightarrow (AH)\vec{\mathbf{u}} = \vec{\mathbf{b}} \Rightarrow A(H\vec{\mathbf{u}}) = \vec{\mathbf{b}} \Rightarrow H\vec{\mathbf{u}}$ est solution de $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Réciproquement, si $\vec{\mathbf{x}}$ est une solution de $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$, alors, par l'invisibilité de H, on peut former $\vec{\mathbf{u}} = H^{-1}\vec{\mathbf{x}}$. Ainsi $B\vec{\mathbf{u}} = B(H^{-1}\vec{\mathbf{x}}) = AHH^{-1}\vec{\mathbf{x}} = A\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Interprétation géométrique et applications