ESTATÍSTICA II

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

REGRESSÃO LINEAR SIMPLES

Introdução

- É a relação entre duas ou mais variáveis quantitativas: uma variável dependente, cujo valor deverá ser previsto e uma variável (ou variáveis) independente(s) ou explicativa(s), sobre a(s) qual(is) existe conhecimento teórico disponível.
- Estimar uma equação é geometricamente equivalente a ajustar uma curva aos dados dispersos = REGRESSÃO.

Introdução

Regressão Linear Múltipla

- A análise de uma regressão múltipla segue, basicamente, os mesmos critérios da análise de uma regressão simples.
- A regressão múltipla envolve três ou mais variáveis, portanto, estimadores. Ou seja, ainda uma única variável dependente, porém duas ou mais variáveis independentes.
- A finalidade das variáveis independentes adicionais é melhorar a capacidade de predição em confronto com a regressão linear simples.

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + E$$

 X_1, \ldots, X_k – variáveis explicativas ou independentes medidas sem erro (não aleatórias);

E – variável aleatória residual na qual se procuram incluir todas as influências no comportamento da variável Y que não podem ser explicadas linearmente pelo comportamento das variáveis X_1, \ldots, X_k e os possíveis erros de medição;

 β_0, \ldots, β_k – parâmetros desconhecidos do modelo (a estimar);

Y – variável explicada ou dependente (aleatória).

Num estudo de regressão temos *n* observações de cada variável independente:

Para cada i, i.e., para x_{1i}, \ldots, x_{ki} fixos, Y_i é uma variável aleatória.

Temos então *n* variáveis aleatórias: Y_1, Y_2, \ldots, Y_n :

$$Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + E_i$$
 $i = 1, ..., n$

$$Y_1 = \beta_0 + \beta_1 X_{11} + \ldots + \beta_k X_{k1} + E_1$$

 \vdots
 $Y_n = \beta_0 + \beta_1 X_{1n} + \ldots + \beta_k X_{kn} + E_n$

Admite-se que E_1, \ldots, E_n são variáveis aleatórias independentes de média zero e variância σ^2

Então, para quaisquer valores x_{1i}, \ldots, x_{ki} fixos, Y_i é uma variável aleatória de média

$$\mu_{Y_i} = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki}$$

e variância σ^2 .

Os dados para a análise de regressão e de correlação múltipla são da forma:

$$(y_1, X_{11}, X_{21}, \ldots, X_{k1}), (y_2, X_{12}, X_{22}, \ldots, X_{k2}), \ldots, (y_n, X_{1n}, X_{2n}, \ldots, X_{kn})$$

Cada observação obedece à seguinte relação:

$$y_i = \underbrace{\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_k X_{ki}}_{\mu Y_i} + \varepsilon_i, \qquad i = 1, \ldots, n.$$

Temos então o seguinte sistema escrito em notação matricial:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{k1} \\ 1 & x_{12} & x_{22} & \dots & x_{k2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & x_{2n} & \dots & x_{kn} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix} \Leftrightarrow y = X\beta + \varepsilon$$

- y Vector das observações da variável dependente;
- X Matriz significativa do modelo;
- β Vector dos parâmetros do modelo;
- ε Vector das realizações da variável aleatória residual.

A partir dos dados disponíveis estimamos $\beta_0, \beta_1, \ldots, \beta_k$ e substituímos estes parâmetros pelas suas estimativas b_0, b_1, \ldots, b_k para obter a equação de regressão estimada.

$$\hat{y} = \hat{\mu}_{Y|X_1,X_2,...,X_k} = b_0 + b_1 x_1 + b_2 x_2 + ... + b_k x_k$$

Esta equação estima o valor médio de Y para um dado conjunto de valores x_1, x_2, \ldots, x_k fixo, mas é usada para estimar o próprio valor de Y.

• O problema então é estimar o valor dos coeficientes β_i a partir de um conjunto de dados do tipo:

Y	X_{I}	X_2	 X_k	
y_1	x_{11}	x_{12}	 x_{1k}	
y_1 y_2	x_{21}	x_{22}	 x_{2k}	
y_n	x_{nI}	x_{n2}	 x_{nk}	

 Novamente, o método dos Mínimos Quadrados é usado para minimizar a soma dos quadrados dos resíduos.

$$SSE = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_{1i} - b_2 x_{2i} - \dots - b_k x_{ki})^2$$

Para determinar b_0, b_1, \ldots, b_k , de modo a minimizar SSE resolve-se o seguinte sistema de equações:

$$\frac{\partial SSE}{\partial b_0} = 0 \quad \wedge \quad \frac{\partial SSE}{\partial b_1} = 0 \quad \wedge \quad \dots \quad \wedge \quad \frac{\partial SSE}{\partial b_k} = 0$$

Obtém-se
$$b = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} = (X^T X)^{-1} X^T y$$
 estimativa para $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}$

O estimador é
$$\hat{\beta} = \begin{bmatrix} \beta_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_k \end{bmatrix} = (X^T X)^{-1} X^T Y.$$

Cada coeficiente de regressão estimado b_i , i = 1, ..., k (estimativa de β_i), estima o efeito sobre o valor médio da variável dependente Y de uma alteração unitária da variável independente X_i , mantendo-se constantes todas as restantes variáveis independentes.

No caso k = 1 (regressão simples) temos:

$$b = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = (X^T X)^{-1} X^T y,$$

onde X tem apenas duas colunas.

Como já vimos, b_0 e b_1 podem também ser determinados pelas relações:

$$b_1 = \frac{\sum_{i=1}^n x_i y_i - n \, \overline{x} \, \overline{y}}{\sum_{i=1}^n x_i^2 - n \, \overline{x}^2} \qquad \text{e} \qquad b_0 = \overline{y} - b_1 \overline{x}.$$

Assim, temos:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_3 \end{bmatrix} = \begin{bmatrix} 1 & X_1 & X_{21} & X_{k1} \\ 1 & X_2 & X_{22} & X_{k2} \\ \dots & \dots & \dots & \dots \\ 1 & X_n & X_{2n} & X_{kn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_k \end{bmatrix}$$

Que escrevendo ainda em outra em sua forma mais compacta temos:

$$Y = bX + \varepsilon$$

O estimador para b será dado por:

$$\hat{b} = (X'X)^{-1}(X'Y)$$

Há necessidade que o produto X'X, tenha uma matriz inversa, o que implica na condição obrigatória que nenhuma coluna da matriz X seja

Os dados apresentados no quadro seguinte representam as vendas, Y, em milhares de Euros, efectuadas por 10 empregados de uma dada empresa, o nº de anos de experiência de cada vendedor, X_1 e o respectivo score no teste de inteligência, X_2 .

Vendedor	Vendas (Y)	Anos de experiência(X_1)	Score no teste de inteligência (X_2)
1	9	6	3
2	6	5	2
3	4	3	2
4	3	1	1
5	3	4	1
6	5	3	3
7	8	6	3
8	2	2	1
9	7	4	2
10	4	2	2

Pretende-se determinar se o sucesso das vendas pode ser medido em função das duas variáveis explicativas X_1 e X_2 através de um modelo linear.

```
Matriz significativa do modelo: X = \begin{bmatrix} 1 & 6 & 3 \\ 1 & 5 & 2 \\ 1 & 3 & 2 \\ 1 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 3 & 3 \\ 1 & 6 & 3 \\ 1 & 2 & 1 \\ 1 & 4 & 2 \\ 1 & 2 & 2 \end{bmatrix}
```

Vector das estimativas dos coeficientes de regressão:

$$b = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = (X^T X)^{-1} X^T y = \begin{bmatrix} -0.262712 \\ 0.745763 \\ 1.338983 \end{bmatrix}$$

Equação de regressão estimada:

$$\hat{\mathbf{y}} = \hat{\mu}_{Y|X_1,X_2} = -0.262712 + 0.745763X_1 + 1.338983X_2$$

Estima-se que o volume médio de vendas de um vendedor (em milhares de Euros) é igual a 0.745763 vezes os seus anos de experiência mais 1.338983 vezes o seu score no teste de inteligência menos 0.262712.

Por exemplo, o volume médio de vendas para vendedores com 4 anos de experiência e com score 3 no teste de inteligência é estimado por:

$$\hat{y} = -0.262712 + 0.745763 \times 4 + 1.338983 \times 3 = 6.737289$$

b₁ = 0.745763 → Em média, um ano extra de experiência entre vendedores com o mesmo score no teste de inteligência, conduz a um aumento no volume de vendas de uma quantidade que pode ser estimada em 745.763 Euros.

b₂ = 1.338983 → Em média, um vendedor com score no teste de inteligência igual a 2 vende mais 1338.983 Euros (valor estimado) do que um vendedor com a mesma experiência e score 1, e menos 1338.983 Euros do que um vendedor com a mesma experiência e com score 3.

Atenção:

- ▶ b₀ = -0.262712 não pode ser interpretado como sendo o volume médio de vendas de um vendedor hipotético sem experiência prévia e com score zero no teste de inteligência. Com efeito, vendas negativas são impossíveis. Note que valores nulos de X₁ e X₂ encontram-se fora do âmbito dos dados.
- Trata-se de uma relação média, assim um vendedor com determinados anos de experiência e determinado score no teste de inteligência não obterá necessariamente o volume de vendas exacto indicado pela equação.

Pretende-se investigar a utilização de um modelo de regressão linear múltiplo para se tentar explicar a variação da viscosidade de um polímero (Y) em função da temperatura de reação, x_1 , e da taxa de alimentação do catalisador, x_2 . Realizando-se uma experiência, para os diferentes valores de x_1 e x_2 , obtiveram-se os valores de Y, respectivos, conforme tabela abaixo:

N.º da	Viscosidade	Temperatura	Catalisador
observação	(y)	$(x_1, {}^{\mathrm{o}}\mathrm{C})$	$(x_2, lb/h)$
1	2256	80	8
2	2340	93	9
3	2426	100	10
4	2293	82	12
5	2330	90	11
6	2368	99	8
7	2250	81	8
8	2409	96	10
9	2364	94	12
10	2379	93	11
11	2440	97	13
12	2364	95	11
13	2404	100	8
14	2317	85	12
15	2309	86	9
16	2328	87	12

O modelo a ser ajustado é do tipo $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$, onde se deve estimar os coeficientes de regressão. Em notação matricial, $\hat{\beta} = (X^T X)^{-1} X^T Y$, considerando a amostra obtém-se

$$X^T X = \begin{bmatrix} 16 & 1458 & 164 \\ 1458 & 133560 & 14946 \\ 164 & 14946 & 1726 \end{bmatrix}$$
 (matriz é simétrica),

$$\begin{pmatrix} \boldsymbol{X}^T\boldsymbol{X} \end{pmatrix}^{-1} = \begin{bmatrix} 14,176004 & -0,129746 & -0,223453 \\ -0,129746 & 1,429184 \times 10^{-3} & -4,763947 \times 10^{-5} \\ -0,223453 & -4,763947 \times 10^{-5} & 2,222381 \times 10^{-2} \end{bmatrix} \text{ e } \boldsymbol{X}^T\boldsymbol{Y} = \begin{bmatrix} 37577 \\ 3429550 \\ 385562 \end{bmatrix}, \text{ donde }$$

$$\hat{\boldsymbol{\beta}}_0 = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 1566,07777 \\ 7,62129 \\ 8,58485 \end{bmatrix}.$$

Assim, o modelo de regressão ajustado aos dados é, com quatro casas decimais,

$$y = 1566,0777 + 7,6213x_1 + 8,5848x_2$$
.

A partir desta equação é possível obter os valores estimados (esperados através do modelo) de Y e predizer observações futuras para a mesma variável. Por exemplo, para a primeira observação $x_{11} = 80$ e $x_{12} = 8$, o valor ajustado será $\hat{y}_1 = 1566,00777 + 7,6213x_{11} + 8,5848x_{12} = 2244,46$, o valor observado correspondente é $y_1 = 2256$, o resíduo para esta observação é $e_1 = y_1 - \hat{y}_1 = 11,54$.

Apresentam-se na tabela seguinte os valores ajustados (estimativas) da variável resposta a partir deste modelo de regressão e os respectivos erros de ajustamento para cada observação.

N.º da observação	y_i	$\hat{\mathcal{Y}}_i$	e_{i}	
1	2256	2244,46	11,54	
2	2340	2352,12	-12,12	
3	2426	2414,06	11,94	
4	2293	2294,04	-1,04	
5	2330	2346,43	-16,43	
6	2368	2389,26	-21,26	
7	2250	2252,08	-2,08	
8	2409	2383,57	25,43	
9	2364	2385,50	-21,50	
10	2379	2369,29	9,71	
11	2440	2416,95	23,05	
12	2364	2384,53	-20,53	
13	2404	2396,89	7,11	
14	2317	2316,91	0,09	
15	2309	2298,77	10,23	
16	2328	2332,15	-4,15	

Tabela2.3 - Observações e estimativas da variável resposta e respectivos resíduos

Qualidade do Ajustamento do Modelo

A equação de regressão estimada pode ser vista como uma tentativa para explicar as variações na variável dependente Y que resultam das alterações nas variáveis independentes X_1, X_2, \ldots, X_k .

Seja \overline{y} a média dos valores observados para a variável dependente.

Uma medida útil associada ao modelo de regressão é o grau em que as predições baseadas na equação, \hat{y}_i , superam as predições baseadas em \overline{y} .

Se a dispersão (erro) associada à equação é muito menor que a dispersão (erro) associada a \overline{y} , as predições baseadas no modelo serão melhores que as baseadas em \overline{y} .

Qualidade do Ajustamento do Modelo

Dispersão em torno de y - Variação total:

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 (Soma dos quadrados totais)

Dispersão em torno da equação de regressão - Variação não explicada:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (Soma dos quadrados dos resíduos)

O ajustamento será tanto melhor quanto mais pequeno for SSE relativamente a SST.

Qualidade do Ajustamento do Modelo

Pode-se mostrar que:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$\downarrow \qquad \qquad \downarrow$$

$$SST = SSE + SSR$$

 $SST \longmapsto$ Soma dos quadrados totais - Variação total $SSE \longmapsto$ Soma dos quadrados dos resíduos - Variação não explicada $SSR \longmapsto$ Soma dos quadrados da regressão - Variação explicada

Isto é:

Coeficiente de Determinação

O quociente entre SSR e SST dá-nos uma medida da proporção da variação total que é explicada pelo modelo de regressão. A esta medida dá-se o nome de coeficiente de determinação (r^2),

$$r^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = \frac{SST}{SST} - \frac{SSE}{SST} = 1 - \frac{SSE}{SST}$$

Note que:

- ▶ $0 \le r^2 \le 1$;
- r² ≅ 1 (próximo de 1) significa que grande parte da variação de Y é explicada linearmente pelas variáveis independentes;
- $r^2 \cong 0$ (próximo de 0) significa que grande parte da variação de Y não é explicada linearmente pelas variáveis independentes.

Coeficiente de Determinação

Este coeficiente pode ser utilizado como uma medida da qualidade do ajustamento, ou como medida da confiança depositada na equação de regressão como instrumento de previsão:

- $ightharpoonup r^2 \cong 0 \longmapsto \text{modelo linear muito pouco adequado};$
- $ightharpoonup r^2 \cong 1 \longmapsto \text{modelo linear bastante adequado.}$

Coeficiente de Correlação Múltiplo

É uma medida do grau de associação linear entre Y e o conjunto de variáveis X_1, X_2, \ldots, X_k .

- r varia entre 0 e 1;
- r = 1 indica a existência de uma associação linear perfeita, ou seja, Y pode ser expresso como uma combinação linear de X₁, X₂,..., X_k;
- ▶ r = 0 indica a inexistência de qualquer relação linear entre a variável dependente Y e o conjunto de variáveis independentes X_1, X_2, \ldots, X_k .

Para o exemplo em estudo temos a seguinte tabela

i	Уi	X _{1i}	X _{2i}	\hat{y}_i	d_i	d_i^2	$(y_i - \overline{y})^2$	$(\hat{y}_i - \overline{y})^2$
					$= y_i - \hat{y}_i$			
1	9	6	3	8,22881	0,77119	0,59473		
2	6	5	2	6,14407	-0,14407	0,02076		
3	4	3	2	4,65254	-0,65254	0,42581		
4	3	1	1	1,82203	1,17797	1,38760		
5	3	4	1	4,05932	-1,05932	1,12216		
6	5	3	3	5,99153	-0,99153	0,98312		
7	8	6	3	8,22881	-0,22881	0,05236		
8	2	2	1	2,56780	-0,56780	0,32239		
9	7	4	2	5,39831	1,60169	2,56543		
10	4	2	2	3,90678	0,09322	0,00869		
Total	51					SSE	SST	SSR
						=7.48305	=48.9	=41.41695

Coeficiente de determinação:

 $r^2 = \frac{SSR}{SST} = \frac{41.41695}{48.9} = 0.84697 \longrightarrow 84.7\%$ da variação nas vendas está relacionada linearmente com variações nos anos de experiência e no QI. Por outras palavras, as duas variáveis independentes utilizadas no modelo linear ajudam a explicar cerca de 84.7% da variação nas vendas. Ficam por explicar 15.3% das variações no volume de vendas, que se devem a outros factores não considerados, como por exemplo:

- a simpatia do vendedor;
- a reputação do vendedor;
- etc.

Outros Tipos de Modelagem

Modelo Quadrático

Modelo Logarítmico

Outros Tipos de Modelagem

Modelo Exponencial

Modelo Potencial

Regressão Polinomial

 Existem muitos casos em que o modelo obedece a um comportamento polinomial. Para tais modelos é necessário adaptar o ajuste para uma função polinomial de grau superior.

Regressão Polinomial

 A regressão polinomial pode ser tida como uma generalização da regressão linear. Para isso, podemos ver a regressão linear simples como a regressão polinomial de um polinômio de grau um. Assim, ao invés de ajustarmos a função

$$y = \alpha_0 + \alpha_1 x + \epsilon$$

Utilizamos

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \cdots + \alpha_m x^m + \epsilon$$

Regressão Polinomial

Para ajustarmos os parâmetros dessa função, basta que resolvamos um sistema de m+1 equações lineares simultâneas, tal o desenvolvimento da regressão linear múltipla. Assim, no caso da regressão polinomial, o erro padrão pode ser formulado como polinomial, o erro padrão pode ser formulado como:

$$s = \sqrt{\frac{S_r}{n-(m+1)}}$$

Modelos de Regressão Polinomial

- As variáveis explanatórias devem ser quantitativas.
- Servem para representar modelos com resposta curvilínea.
- São fáceis de serem ajustados, pois são um caso especial do modelo de regressão linear múltipla.

Quando Utilizar Regressão Polinomial

- Se a função de resposta curvilínea verdadeira é realmente uma função polinomial.
- Se a função de resposta curvilínea verdadeira é desconhecida (ou complexa), porém, uma função polinomial é uma boa aproximação para a verdadeira função.
- O principal problema com o uso de modelos polinomiais é com a extrapolação

- Uma variável preditora Modelo de segunda ordem
- A variável preditora, xi, é dada como desvio em relação a sua média. A razão para usar uma variável preditora centrada no modelo de regressão polinomial é que X e X2 são altamente correlacionadas.
- Isto pode causar sérias dificuldades para inverter a matriz X'X para estimar os coeficientes de regressão.

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$
 onde $x_i = X_i - \overline{X}$

- Uma variável preditora Modelo de segunda ordem
- A variável preditora, xi, é dada como desvio em relação a sua média. A razão para usar uma variável preditora centrada no modelo de regressão polinomial é que X e X2 são altamente correlacionadas.
- Isto pode causar sérias dificuldades para inverter a matriz X'X para estimar os coeficientes de regressão.

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$
 onde $x_i = X_i - \overline{X}$

Exemplo:

$$Y_i = \beta_0 + \beta_1 x_i + \beta_{11} x_i^2 + \varepsilon_i$$

O gráfico desta função é uma parábola e denominada de função de resposta quadrática.

Duas variáveis preditoras - Modelo de segunda ordem

Mostra as várias combinações dos níveis das 2 variáveis preditoras que resultam na mesma resposta

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{11} x_{i1}^2 + \beta_{22} x_{i2}^2 + \beta_{12} x_{i1} x_{i2} + \varepsilon_i$$
 Linear quadrático

Modelos de regressão polinomial

 Os modelos de regressão polinomial são casos especiais do modelo de regressão linear múltipla geral, assim, todos os resultados vistos para o ajuste de modelos e para inferência estatística são válidos.