Communication Langagière

Ingénierie des langues et de la parole

- Introduction générale
- 2. Ingénierie des langues
 - 2.1. Représentation et codage des textes
 - 2.2. Applications du TALN:
 - 2.2.1. Dictionnaire et étiquetage de surface
 - 2.2.2. Traduction automatique statistique
 - 2.3. Introduction à l'apprentissage profond
 - 2.4. Encodeur/Décodeur
 - 2.5. BERT
- 3. Ingénierie de la parole
 - 3.1. Rappels de traitement numérique du signal
 - 3.2. Codage et représentation de la parole
 - 3.3. Approches auto-supervisées

Les mots et leur structure

- Aspect morpho-lexical
- Notion de mot
- -Représentation d'un dictionnaire (ou lexique) dans le monde numérique
- Morphologie
- -Structure des mots
- •Estimer automatiquement le rôle grammatical (ou syntaxique) d'un mot
- -Etiquetage de surface (Part-of-speech Tagging POS)

–B. SCHWISCHAY, Introduction à la lexicologie (hiver 2001/02) Dernière mise à jour : 18-11-01

https://www.home.uni-osnabrueck.de/bschwisc/archives/formation.htm

- Mots Simples : non décomposable
 - boire
- Mots Construits : décomposable en éléments significatifs plus petits (mots – morphèmes)
 - boisson, buvable, buvard, buvette, buveur, imbu, imbuvable, pourboire

- Construction par composition
 - *pourboire* < *pour* (préposition) + *boire*
- Construction par dérivation, c.-à-d. par adjonction d'un suffixe ou d'un préfixe à l'un des radicaux de ce verbe

- dérivation suffixale
 - boisson
 - < (je) bois + -son « (ce) qui subit l'action (exprimé par la base) ». « Liquide qui se boit. » Cf. cuisson, nourrisson.
 - buvable
 - < (nous) buv-(ons) + -able « possibilité ». « Qui peut se boire. » Cf. abordable, faisable.
- dérivation préfixale
 - imbuvable
 - < im- (in1-) « élément négatif » + buvable. « Qui n'est pas buvable.
 - » Cf. imbattable, inabordable

- Construction par dérivation impropre
 - sourire (v.) ® sourire (n.)
- Construction par troncation
 - auto[mobile], radio[phonie] et radio[graphie],
 fac[ulté], catho[lique], cinéma[tographe], cine[ma]

- Construction par siglaison
 - Sigle V. T. T. Vélo Tout-Terrain
 - Acronyme T. I. R. « Transit International Routier »
 - Sigle et Acronyme comme base dérivée
 - P. D. G. n. « président-directeur général » ® pédégère n. f. « femme qui exerce les fonctions de P. D. G. »

Lexique

- Définition
- -Liste de mots (ou formes) permettant de
- •les identifier dans un texte
- ·les classer
- Cette liste est dépendante du domaine d'application (tâche)
- -Chaque mot non présent dans le lexique est considéré comme un mot « hors vocabulaire »

Organisation d'un lexique

- Liste de champs de différents types
- –« forme de surface » (le mot lui-même)
- Ex: livres
- –Étiquette syntaxique (POS)
- •Ex : nom au pluriel
- Lemme (forme normalisée du mot)
- •Ex : livre/Ns
- –Scores ou probabilités
- •Ex: 2.4e-05
- -Prononciation
- •Ex: [l i v R]

- Méthodes pour un lexique
- -Insertion et suppression
- -Tests d'existence (pour différents champs)
- -Liste du contenu du lexique
- -Extraction d'éléments dont le champ correspond à une certaine requête

- Représentation
- -Listes et tableaux
- -Tables de hachage
- -Arbres
- -Automates d'états finis

- Représentation
- -Listes et tableaux
- -Tables de hachage
- -Arbres
- -Automates d'états finis

Listes et tableaux

- Accès par valeur : mapping de chaîne vers nombre
- -Requiert que la table soit triée par ordre alphabétique
- –Accès en O(log(N))
- •Cf: recherche dichotomique dans un tableau trié
- -Insertion en O(log(N))
- •Cf : recherche de la position souhaitée puis insertion
- Pb pour les gros lexiques (>100000 mots)

- Représentation
- –Listes et tableaux
- -Tables de hachage
- -Arbres
- -Automates d'états finis

Tables de hachage

- Structure de données qui permet une association cléélément
- L'accès à un élément se fait en transformant la clé en une valeur de hachage
- -par l'intermédiaire d'une fonction de hachage
- Le hachage est un nombre qui permet la localisation des éléments dans le tableau
- -C'est l'index de l'élément dans le tableau
- •La complexité dépend de la fonction de hachage mais est généralement faible (pour l'accès par valeur)

Tables de hachage

- Représentation
- -Listes et tableaux
- -Tables de hachage
- -Arbres
- -Automates d'états finis

Arbres

- •Chaque chemin (de la racine à une feuille) représente un mot
- Optimisation en terme de taille
- Besoin de marquer la fin d'un mot

Arbres

•Tout arbre n-aire peut être transformé en arbre binaire

```
typedef struct ARBRE {
        char lettre;
        bool_t mot;
        struct ARBRE* fils;
        struct ARBRE* frere;
}arbre_t;
```


- Représentation
- -Listes et tableaux
- -Tables de hachage
- -Arbres
- -Automates d'états finis

Automates d'état finis

- Théoriquement la meilleure implémentation pour coder les formes de surface
- -Optimisation en terme de taille de stockage
- Cf expressions régulières en perl

Etiquetage de surface (syntaxique)

- Part-of-speech (POS) tags
- Etiquettes
- -Liste fermée
- •Pronoms, déterminants, prépositions, ...
- Liste ouverte
- Noms, verbes, adjectifs, adverbes
- -Moins de 100 étiquettes possibles
- •But : obtenir ces étiquettes automatiquement à partir d'une suite de mots
- Problème : ambiguïté
- -Ex: like
- verbe: I like the class.
- •preposition: He is like me.

Exemples d'étiquettes

Penn POS Tag Set (from University of Pennsylvania)

•	Adjective:	JJ
	Adverb:	RB
	Cardinal Number:	CD
	Determiner:	DT
	Preposition:	IN
	Coordinating Conjunction	CC
	Subordinating Conjunction:	IN
	Singular Noun:	NN
	Plural Noun:	NNS
	Personal Pronoun:	PP
	Proper Noun: NP	
	Verb base form:	VB
	Modal verb:	MD
	Verb (3sa Pres):	VBZ
	Verb (3sg Pres): Wh-determiner:	WDT
	Wh-pronoun:	WP.

Ambiguïté

- •Ex: « Time flies like an arrow »
- Interpretation-1
- -"One cannot find enough time"
- -"flies" est le verbe principal et "Time" est le sujet
- -"Time flies like an arrow" NVPArt N
- Interpretation-2
- -"There is a race amongst flies, and one is asked to take their timing"
- -"Time" est le verbe principal
- -"Time flies like an arrow" V N P Art N
- Interpretation-3
- -"There is a special kind of flies called Time Flies, and they like an arrow"
- -"like" est le verbe principal
- -"Time flies like an arrow" N N V Art N

Étiquetage « POS tagging »

- Connaissances utiles
- -Les mots eux-mêmes
- Certains mots ne peuvent être que des noms
- -Ex: arrow
- D'autres sont ambigüs
- -Ex: like, flies
- Les probabilités peuvent être utiles (certaines étiquettes plus probables que d'autres)
- -Contexte
- •On trouve très rarement deux verbes l'un à la suite de l'autre
- Un déterminant est presque toujours suivi par un adjectif ou un nom

Règle de Bayes

 On veut trouver la meilleure séquence d'étiquettes T pour une phrase S

$$\operatorname{argmax}_T p(T|S)$$

·La règle de Bayes nous donne

$$p(T|S) = \frac{p(S|T) \ p(T)}{p(S)}$$

Et finalement

$$\operatorname{argmax}_T p(T|S) = \operatorname{argmax}_T p(S|T) p(T)$$

Décomposition du modèle

p(S/T) peut être décomposé en

$$p(S|T) = \prod p(w_i|t_i)$$

•p(T) est le modèle de langage d'étiquettes ; nous pouvons utiliser un modèle de langage n-gramme

$$p(T) = p(t_1) \ p(t_2|t_1) \ p(t_3|t_1, t_2) ... p(t_n|t_{n-2}, t_{n-1})$$

 Nous pouvons estimer p(S/T) et p(T) par maximum de vraisemblance

Apprendre les probabilités

From [Allen, 95]

Category	Count at i	Pair	Count at i,i+1	Bigram	Estimate
4	300	ф,ART	213	P(ART Φ)	.71
Ф	300	Ф,N	87	P(N Φ)	.29
ART	558	ART,N	558	P(N ART)	1
N	833	N,V	358	P(VIN)	.43
N	833	N,N	108	P(NN)	.13
N	833	N,P	366	P(PIN)	.44
V	300	V,N	75	P(N V)	.35
V	300	V,ART	194	P(ART/V)	.65
P	307	P,ART	226	P(ARTP)	.74
P	307	P,N	81	P(N P)	.26

Apprendre les probabilités

•From [Allen, 95]

P(the ART)	.54	P(a ART)	.360
P(flies N)	.025	P(a N)	.001
P(flies V)	.076	P(flower N)	.063
P(like V)	.1	P(flower V)	.05
P(like P)	.068	P(birds N)	.076
P(like N)	.012		

Modèle de Markov Caché

- Le modèle décrit précédemment est un Modèle de Markov Caché (*HMM ou Hidden Markov Model*)
- Eléments d'un HMM
- –Un ensemble d'états (ici : les étiquettes)
- –Un alphabet de sortie (ici : les mots)
- -Un état initial (ici : le début de la phrase à analyser)
- —Des probabilités de transition entre états (ici : p(tn|tn−2, tn−1))
- –Des probabilités d'émission (ici : p(wi|ti))

Représentation graphique

•En étiquetant une phrase, on parcours le graphe suivant

Probabilités de transition entre états (p(tn|tn−1)

Représentation graphique

Chaque état émet un mot

probabilités d'émission (p(wi|ti)

Décodage

- •Trouver la meilleure séquence d'étiquettes T* étant donnée une phrase S=w1,w2,...,wN
- Algorithme naïf : calculer, pour toutes les séquences T possibles

$$p(S|T) \ p(T) = \prod_{i} p(w_i|t_i) \ p(t_i|t_{i-2}, t_{i-1})$$

- Et choisir la séquence T la plus probable (argmax)
- •Si on a en moyenne *c* étiquettes possible pour chacun des *n* mots de la phrase à étiqueter, on aura au total *c*^*n* séquences possibles
- -Problématique pour des longues phrases (*n* grand)

Illustration graphique

time

Illustration graphique

Illustration graphique

Beaucoup de chemins possibles !!!

Algorithme de Viterbi

•Complexité : nc² au lieu de cⁿ

Algorithme de Viterbi

- La transition d'un état à un autre ne dépend que de l'état courant
- –On peut conserver, pour chaque état j, à l'étape s, le chemin optimal menant à cet état et le coût associé $\delta_j(s)$.
- Pour chaque nouvelle étape, on calcule

$$\begin{split} \delta_j(s+1) &= \max_{1 \leq i \leq N} \, \delta_i(s) \; p(t_i|t_j) \; p(w_s|t_j) \\ \psi_j(s+1) &= \operatorname{argmax}_{1 \leq i \leq N} \, \delta_i(s) \; p(t_i|t_j) \; p(w_s|t_j) \end{split}$$

- •Le meilleur état final est alors $\underset{1 \le i \le N}{\operatorname{argmax}} \delta_i(S+1)$
- Le chemin optimal est obtenu ensuite par retour en arrièr à partir de cet état final

Remplacer p(ti/tj) par p(tj/ti)

Pseudo-code

Input: word sequence w_p , w_2 , ..., w_T

Output: Tag sequence $C = C_1, C_2, ..., C_T$

Given:

- Lexical categories, L= L_I, L₂, ..., L_N
- Lexical probabilities, P(w_t|L_t)
- Bigram probabilities, P(L_i|L_j)

Data Structures:

- Seqscore: an NXT array
- Backptr: another NXT array

Pseudo-code

Initialization

For
$$i=1$$
 to N do
 $Seqscore[i,1] = P(w_i|L_i) * P[L_i|\Phi]$
 $Backptr[I,1]=0$

Iteration

For
$$t=2$$
 to T
For $i=1$ to N
 $Seqscore[i,t]=MAX_{j=1,M}(Seqscore[j,t-1]*$
 $P(L_i|L_j))*P(w_i|L_i)$

Backptr[i,t]=index of j that gave the max score

Sequence identification

C[T]=i that maximizes Seqscore[i,T]

For i=T-1 to 1 do

$$C[i]=backptr(C[i+1],i+1)$$

Autres problèmes d'étiquetage

- Peuvent être résolus avec des algorithmes similaires
- Détection d'entités nommées
- Noms de personnes, d'organisations (ex: Tony Blair, World Trade Center)
- Restauration d'accents
- Restauration de la casse
- -Cf: http://www-clips.imag.fr/geod/User/laurent.besacier/NEW-TPs/TP-CL/tp4.html

Autres algorithmes

- Beam-search
- •A*
- On en reparlera dans le cours sur la « reconnaissance automatique de la parole »

MERCI!

Table de Hachage

Résolution des collisions

- par chainage
- par adressage ouvert

Table de Hachage

- Résolution des collisions
 - par chainage

Table de Hachage

Résolution des collisions

