## On the Property F Conjecture

Paul Gustafson Texas A&M University

#### Outline

- The Property F Conjecture
- Similar conjecture for mapping class groups
- Proof of the modified conjecture in  $Vect_G^{\omega}$ -case
- Progress on Property F in the metaplectic case

## The Property F conjecture

#### Conjecture (Rowell)

Let  $\mathcal C$  be a braided fusion category and let X be a simple object in  $\mathcal C$ . The braid group representations  $\mathcal B_n$  on  $\operatorname{End}(X^{\otimes n})$  have finite image for all n>0 if and only if X is weakly integral (i.e.  $\operatorname{FPdim}(X)^2\in \mathbf Z$ ).

 Verified for modular categories from quantum groups (Rowell, Naidu, Freedman, Larsen, Wang, Wenzl, Jones, Goldschmidt)

## A similar conjecture for mapping class groups

#### Conjecture

The Turaev-Viro-Barrett-Westbury (TVBW) mapping class group representation associated to a compact surface  $\Sigma$  and spherical fusion category  $\mathcal A$  has finite image iff  $\mathcal A$  is weakly integral.

## A similar conjecture for mapping class groups

#### Conjecture

The Turaev-Viro-Barrett-Westbury (TVBW) mapping class group representation associated to a compact surface  $\Sigma$  and spherical fusion category  $\mathcal A$  has finite image iff  $\mathcal A$  is weakly integral.

- In this talk:  $\mathcal{A}=\mathrm{Vect}_G^\omega$  the category of G-graded vector spaces with associativity twisted by a 3-cocycle  $\omega$
- This is the same as the twisted Dijkgraaf-Witten TQFT

#### Related Work

### Theorem (Etingof–Rowell–Witherspoon)

The braid group representation associated to the modular category  $Mod(D^{\omega}(G))$  has finite image.

### Theorem (Fjelstad–Fuchs)

Every mapping class group representation of a closed surface with at most one marked point associated to Mod(D(G)) has finite image.

### Theorem (Ng–Schauenberg)

Every modular representation associated to a modular category has finite image.

#### Main result

#### Theorem (G.)

The image of any  ${\sf Vect}_G^\omega$  TVBW representation  $\rho$  of a mapping class group of an orientable, compact surface  $\Sigma$  with boundary is finite.

#### Idea of proof:

- ullet Find a good finite spanning set S for the representation space
- Calculate the action of each Birman generator on S
- Show that the representation of each Birman generator lies in a quotient of a finite group of monomial matrices.

## The TVBW space associated to a 2-manifold

• Kirillov: The TVBW representation space is canonically isomorphic to

$$\mathcal{H}:=\frac{\text{formal linear combinations of }\mathcal{A}\text{-colored graphs in }\Sigma}{\text{local relations}}$$

• Let  $\Gamma \subset \Sigma$  be an undirected finite graph embedded in  $\Sigma$ .

- Let  $\Gamma \subset \Sigma$  be an undirected finite graph embedded in  $\Sigma$ .
- Define E<sup>or</sup> to be the set of orientation edges of Γ, i.e. pairs
  e = (e, orientation of e); for such an oriented edge e, we denote by ē
  the edge with opposite orientation.

- Let  $\Gamma \subset \Sigma$  be an undirected finite graph embedded in  $\Sigma$ .
- Define E<sup>or</sup> to be the set of orientation edges of Γ, i.e. pairs
  e = (e, orientation of e); for such an oriented edge e, we denote by ē
  the edge with opposite orientation.
- A *coloring* of  $\Gamma$  is the following data:
  - Choice of an object  $V(\mathbf{e}) \in \text{Obj } \mathcal{A}$  for every oriented edge  $\mathbf{e} \in E^{or}$  so that  $V(\bar{\mathbf{e}}) = V(\mathbf{e})^*$ .

- Let  $\Gamma \subset \Sigma$  be an undirected finite graph embedded in  $\Sigma$ .
- Define E<sup>or</sup> to be the set of orientation edges of Γ, i.e. pairs
  e = (e, orientation of e); for such an oriented edge e, we denote by ē
  the edge with opposite orientation.
- A *coloring* of  $\Gamma$  is the following data:
  - Choice of an object  $V(\mathbf{e}) \in \text{Obj } \mathcal{A}$  for every oriented edge  $\mathbf{e} \in E^{or}$  so that  $V(\bar{\mathbf{e}}) = V(\mathbf{e})^*$ .
  - Choice of a vector  $\varphi(v) \in \operatorname{Hom}_{\mathcal{A}}(1, V_1 \otimes \cdots \otimes V_n)$  for every interior vertex v, where  $\mathbf{e}_1, \ldots, \mathbf{e}_n$  are edges incident to v, taken in counterclockwise order and with outward orientation.

#### Local relations

- Isotopy of the graph embedding
- Linearity in the vertex colorings



Figure: The remaining local relations.

## Consequences of the local relations



Figure: Additivity in edge colorings. Here  $\varphi_1, \varphi_2$  are compositions of  $\varphi$  with projector  $X_1 \oplus X_2 \to X_1$  (respectively,  $X_1 \oplus X_2 \to X_2$ ), and similarly for  $\psi_1, \psi_2$ .

Additivity in edge colorings

### Theorem (Kirillov, Reshitikhin–Turaev)

A colored graph  $\Gamma$  may be evaluated on any disk  $D \subset \Sigma$ , giving an equivalent colored graph  $\Gamma'$  such that  $\Gamma'$  is identical to  $\Gamma$  outside of D, has the same colored edges crossing  $\partial D$ , and contains at most one colored vertex within D.

# Basis for the representation space

By applying the local moves and the preceding theorem, any such representation space has a finite spanning set of "simple" colored graphs with a single vertex, loops for each of the standard generators of  $\pi_1(\Sigma)$ , and a leg from the vertex to each of the boundary components.



Figure: Element of the spanning set for a genus 2 surface. Here [g, h][k, l] = 1, and the vertex is labeled by a "simple" morphism (a |G|-th root of unity times a canonical morphism)

# Applying the Birman generators to the spanning set

- The next step of the proof is to apply each Birman generator to each element of the spanning set.
- In each case, we relate the resulting colored graph to another element of the spanning set by means of local moves
- The local moves map simple colored graphs to simple colored graphs
- Hence, the Birman generators preserve the finite spanning set.

#### First Dehn twist



TABLE 1. First type of Dehn twist. Unlabeled interior edges are colored by the group identity element.

### Second Dehn twist



TABLE 2. Second type of Dehn twist.

# Braid generator



TABLE 3. A braid generator. Unlabeled interior edges are colored by the group identity element.

# Dragging a point



TABLE 4. Pulling a boundary component along a generator for the fundamental group of the corresponding closed surface. Unlabeled interior edges are colored by the group identity element.

### Next step: Metaplectic modular categories

A metaplectic modular category is a unitary modular category with the fusion rules of  $SO(N)_2$  for odd N>1. It has 2 simple objects  $X_1,X_2$  of dimension  $\sqrt{N}$ , two simple objects 1,Z of dimension 1, and  $\frac{N-1}{2}$  objects  $Y_i,\ i=1,\ldots,\frac{N-1}{2}$  of dimension 2.

The fusion rules are:

- $2 X_i^{\otimes 2} \cong 1 \oplus \bigoplus_i Y_i,$
- $3 X_1 \otimes X_2 \cong Z \oplus \bigoplus_i Y_i,$
- $Y_i \otimes Y_j \cong Y_{\min\{i+j,N-i-j\}} \oplus Y_{|i-j|}, \text{ for } i \neq j \text{ and }$   $Y_i^{\otimes 2} = 1 \oplus Z \oplus Y_{\min\{2i,N-2i\}}.$

#### Related Work

### Theorem (Rowell–Wenzl)

The images of the braid group representations on  $\operatorname{End}_{SO(N)_2}(S^{\otimes n})$  for N odd are isomorphic to images of braid groups in Gaussian representations; in particular, they are finite groups.

### Theorem (Ardonne–Cheng–Rowell–Wang)

- **1** Suppose C is a metaplectic modular category with fusion rules  $SO(N)_2$ , then C is a gauging of the particle-hole symmetry of a  $\mathbb{Z}_N$ -cyclic modular category.
- ② For  $N = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$  with distinct odd primes  $p_i$ , there are exactly  $2^{s+1}$  many inequivalent metaplectic modular categories.

Ardonne–Finch–Titsworth classify metaplectic fusion categories up to monoidal equivalence and give modular data for low-rank cases.

### Current problem

- Can we modify the standard quantum group construction to construct other metaplectic modular categories?
- In particular, can we flip the signs of the Frobenius-Schur indicators  $\nu_2(X_i)$  for the spin objects  $X_i$ ?
- Conjugating/flipping the sign of  $q^{1/2}$  don't work.
- Modify the trace construction?

### **Thanks**

Thanks for listening!