The Molecular basis of Inheritance

- Griffith called the phenomenon transformation
 - Now defined as a change in genotype and phenotype due to the assimilation of external DNA by a cell

Bacteriophages

re 16.3

The Hershey-Chase Experiment

Alfred Hershey and Martha Chase studied viruses—nonliving particles smaller than a cell that can infect living organisms.

The Hershey-Chase Experiment

- •Hershey and Chase studied viruses that infect bacteria, or bacteriophages. They performed 2 experiments.
 - Experiment 1: They tagged viral DNA with radioactive Phosphurus.

The Hershey-Chase Experiment

- Hershey and Chase studied viruses that infect bacteria, or bacteriophages. They performed 2 experiments.
 - Experiment 2: They tagged viral proteins with radioactive Sulphur.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Additional Evidence That DNA Is the Genetic Material

Figure 16.5

Rosalind Franklin

(a) Rosalind Franklin

(b) Franklin's X-ray diffraction Photograph of DNA

a, b

Figure 16.7a, c

(a) Key features of DNA structure

(c) Space-filling model

Figure 16.7b

(b) Partial chemical structure

5' end

In DNA replication

 The parent molecule unwinds, and two new daughter strands are built based on basepairing rules

Figure 16.9 a-d

DNA replication is semiconservative

Meselson-Stahl Experiment

- ▶ E. coli were grown for several generations in a medium with ¹5N.
- ►The DNA of the resuling cells had a higher density (was heavier).
- ►E. coli cells with only ¹⁵N in their DNA were put back into a ¹⁴N medium and were allowed to divide only once.
- ►DNA was then extracted from a cell and was compared to DNA from ¹⁴N DNA and ¹⁵N DNA.
- ▶It was found to have exactly an intermediate density. This supported the idea of semiconservative replication.
- ►The DNA was intermediate in density because it had an all ¹⁵N DNA strand and an all ¹⁴N DNA strand. The all ¹⁵N strand was one of the original strands in the original cell. The all ¹⁴N strand was a newly synthesized strand.

Elongating a New DNA Strand

phosphate backbone with a free 3' end.

igure 16.16

of the fifth fragment primer.

Proofreading and Repairing DNA

- DNA polymerases proofread newly made DNA
 - Replacing any incorrect nucleotides
- In mismatch repair of DNA
 - Repair enzymes correct errors in base pairing

nucleotide excision repair

Figure 16.17

Replicating the Ends of DNA Molecules

The ends of eukaryotic chromosomal DNA

Get shorter with each round of replication

- Eukaryotic chromosomal DNA molecules
 - Have at their ends nucleotide sequences, called telomeres, that postpone the erosion of genes near the ends of DNA molecules

Figure 16.19

- If the chromosomes of germ cells became shorter in every cell cycle
 - Essential genes would eventually be missing from the gametes they produce
- An enzyme called telomerase
 - Catalyzes the lengthening of telomeres in germ cells