Transverse Light Bounce (used to derive time dilation)

Direction of motion of S' wrt S at speed v is from source event to destination event Let mirror M_{\perp} be offset from source event perpendicular to direction of motion Let point P be midway between source and destination events Let $\Delta t(\Delta t')$ be S(S') time from source event to destination event (one tick) S distance in direction of motion from source to P: $v \Delta t/2$ S' (proper) distance from source to mirror M_{\perp} : $\Delta y' = c \Delta t'/2$ S and S' transverse distances Δy and $\Delta y'$ are equal (no length contraction), so S transverse distance from P to mirror M_{\perp} at S time of bounce: $\Delta y = \Delta y' = c \Delta t'/2$ S light path (diagonal) distance from source to mirror M_{\perp} at time of bounce = $c \Delta t/2$

Pythagorean formula: $(c \Delta t/2)^2 = (v \Delta t/2)^2 + (c \Delta t'/2)^2$

$$c^{2}\Delta t^{2} = v^{2}\Delta t^{2} + c^{2}\Delta t'^{2}$$

$$\Delta t^{2}(c^{2} - v^{2}) = c^{2}\Delta t'^{2}$$

$$\Delta t^{2} = \frac{c^{2}}{c^{2} - v^{2}}\Delta t'^{2} = \left(1 - \frac{v^{2}}{c^{2}}\right)^{-1}\Delta t'^{2}$$

$$\Delta t = \left(1 - \frac{v^{2}}{c^{2}}\right)^{-1/2}\Delta t'$$

$$\Delta t = \gamma \Delta t'$$

 $\gamma > 1$: S time duration Δt is greater (by a factor of γ) than S' time duration $\Delta t'$ time dilation: S sees S'clock ticks slower than S clock