

37.6 * If V is a subspace of IRM, then a fet {x, x2, ... xm} 3 is a basis of V if 1 {x, x, x, xm} are linearly independent (V = Span & x, x, ... X } # If V is a subspace of IR" and {x1, x2, ... xm} is any basis of V if the dimension of V is the number of basis redors. (dim V = m) Ex. Art the vectors [:] [:] a basis for 123? 1 Check for linear independence (no free variable). . . the matrix is invertible) det = 1 \$0 : Linearly in dependent! -1 -1 45 Lower mangalar .. det = product of diagonal @ Check that the vectors opan the space of R3 is True as long as there's no zero row 45 True if the matrix is invertible (already proved:) .. The vectors span iR and they are a basis Invertible Marix Theorem The following is equivalent for an Nxn matrix A: () A is invertible 1) The homogenous system Ax = 0 has only the trival solution 6 A is row-equivalent to the identity @ AX = 6 has at least I colution for all 6 6) There exists a matrix C such that 4C= I @ A is a product of elementary matrices @ Columns of A are linearly independent 8 Columns of A span R" O Colymns of A are a basis for IRM 1 Rows of A are linearly independent because the matrix transpose has the same @ Rows of A span Rn * octuminant .. A is invertible ... (Rows of A are a basis fir IR"

* Let VC W be subspaces of R^	
5 dim V & dim W	
*If dim V = dim W then V=W	
# 203 is a subspace with no basis vectors	
5 dim & 03 = 0 (no dimensions)	
* IRM (S. d. CVI)	
4 RM is a subspace of RM 4 dim (RM) = N	
s aim (ik) = n	
* Every other subspace V of R" satisfies o < dim(V) < n	
5 These are proper subspaces	