Полярные преобразования

Определение. Полярой точки P относительно окружности ω называется прямая, проходящая через точку P' инверсную точке P относительно окружности, и перпендикулярная прямой PP'. **Определение.** Полюсом прямой l относительно окружности ω называется точка, являющаяся инверсным образом относительно этой окружности основания перпендикуляра, опущенного из центра ω на l. **Определение.** Полярным преобразованием относительно окружности ω называется преобразование, которое ставит каждой точке в соответствие её поляру, а каждой прямой в соответствие её полюс.

Упраженение. Докажите, что три точки лежат на одной прямой тогда и только тогда, когда их поляры проходят через одну точку.

- 1. Треугольник ABC вписан в окружность. Касательные к каждой его вершине пересекают продолжения противоположных сторон в точках A_1 , B_1 , C_1 . Доказать, что эти точки лежат на одной прямой.
- 2. а) Представим, что мы доказали, теорему Паскаля. Докажите теорему Брианшона. b) Представим, что мы доказали теорему Дезарга в одну из сторон. Докажите её теперь в обратную сторону. c) А что если применить полярное преобразование к теореме Паппа?
- 3. Дан полукруг S с центром O и диаметром AB. На AB выбрана точка произвольная точка P. Пусть M и N такие точки полукруга S, что $\angle APM = \angle BPN = \alpha$. Докажите, что точки пересечения прямых MN и AB не зависят от α .
- **4.** Дан четырёхугольник ABCD, вписанный в окружность ω . Прямые AB и CD пересекаются в точке P, а прямые AD и BC пересекаются в точке Q. а) Пользуясь теоремой Паскаля докажите, что касательные в точках A и C пересекаются на прямой PQ. b) Докажите, что поляра точки пересечения диагоналей ABCD есть прямая PQ.
- **5.** В треугольнике ABC вписанная окружность касается его сторон в точках A_1 , B_1 и C_1 . Прямая AA_1 вторично пересекает вписанную окружность в точке A_2 . Касательная, проведённая в точке A_2 к вписанной окружности, пересекает прямую BC в точке A'. Аналогично определяются точки B' и C'. Докажите, что A', B' и C' коллинеарны.
- **6.** Дан треугольник ABC. Через центр вписанной окружности M проведём перпендикуляры к прямым MA, MB и MC. а) Докажите, что точки пересечения этих прямых с соответствующими сторонами лежат на одной прямой. b) Докажите это же утверждение, если M произвольная точка плоскости.
- 7. Пусть O центр описанной окружности ω треугольника ABC. Точка E определяется как пересечение касательной к ω в точке A и прямой, проходящей через O параллельно AC. Точка F определяется как пересечения касательной к ω в точке B и прямой, проходящей через O параллельно BC. Докажите, что EF касается ω .
- **8.** Окружность, вписанная в четырёхугольник ABCD, касается его сторон в точках M, N, K и L. Докажите, что точки пересечения диагоналей четырёхугольников ABCD и MNKL совпадают.
- **9.** На окружности даны точки A, B, C, U и V. Прямые AU и BV пересекаются в точке C_1 , а прямые AV и BU в точке C_2 . Аналогично определяются точки B_1 , B_2 и A_1 , A_2 . Докажите, что прямые A_1A_2 , B_1B_2 и C_1C_2 пересекаются в одной точке.
- 10. На описанной окружности ω треугольника ABC выбрана точка P. Через произвольную точку M проведены прямые AM, BM и CM. Они пересекают ω в точках A_1 , B_1 и C_1 соответственно, отличных от точек A, B и C. Докажите, что точки пересечения прямых A_1P , B_1P и C_1P с соответственными сторонами треугольника ABC лежат на одной прямой, проходящей через точку M.