King Saud University College of Sciences

Department of Mathematics

Math-244 (Linear Algebra); Final Exam; Semester 441

Max. Marks: 40 Time: 3 hours

Note:	Attemn	t all th	e five	auestions.	Scientific	c calculators	are not all	owed
11016.	ιιιςπιρ	ı uıı ın	live	quesilons.	Sciencific	· cuicuiuioi s	are not an	oncu.

I. (Choose the	correct answer:	
------	------------	-----------------	--

If W is the subspace $\{(a, b, c, d) \in \mathbb{R}^4 : b = a - c\}$ of Euclidean space \mathbb{R}^4 , then dim(W) is: (i) b) 2

If rank(A) = 3 where A is a matrix of size 5×9 , then $nullity(A^T)$ is: (ii)

b) 2 d) 6.

If θ is the angle between A and B with respect to the standard inner product on M_{22} where (iii) If θ is the angle between A and B and $A = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 1 \\ 4 & 2 \end{bmatrix}$, then $\cos \theta$ is:

The values of k for which the vectors $\mathbf{u} = (u_1 = 2, u_2 = -4)$ and $\mathbf{v} = (v_1 = 1, v_2 = 3)$ (iv)

in \mathbb{R}^2 are orthogonal with respect to the inner product $\langle u,v \rangle = 2u_1v_1 + ku_2v_2$: a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{2}$ c) $\frac{15}{2\sqrt{30}}$ d) $\frac{1}{3}$. If $B = \{(2,1), (-3,4)\}$ and $C = \{(1,1), (0,3)\}$ are bases of \mathbb{R}^2 , then the transition

matrix ${}_{B}P_{C}$ is:

a) $\begin{bmatrix} 7/_{11} & 1/_{11} \\ 9/_{11} & 6/_{11} \end{bmatrix}$ b) $\begin{bmatrix} 7/_{11} & 9/_{11} \\ 1/_{11} & 6/_{11} \end{bmatrix}$ c) $\begin{bmatrix} 7/_{11} & 9/_{11} \\ 6/_{11} & 1/_{11} \end{bmatrix}$ d) $\begin{bmatrix} 9/_{11} & 7/_{11} \\ 1/_{11} & 6/_{11} \end{bmatrix}$

Determine whether the following statements are true or false; justify your answer. II.

If $A, B \in M_n(\mathbb{R})$, then $det(A^TB) = det(B^TA)$. True: $det(A^{T}B) = det(A)det(B) = det(B^{T}A)$.

A basis for solution space of the following linear system is $\{(4,1,0,0), (-3,0,1,0)\}$:

$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$

$$2x_1 - 8x_2 + 6x_3 - 3x_4 = 0.$$

True: the solution space = $\{(4s - 3t, s, t, 0): s, t \in \mathbb{R}\}$; (4s - 3t, s, t, 0) = s(4, 1, 0, 0) + t(-3, 0, 1, 0)and $\{(4,1,0,0), (-3,0,1,0)\}$ is linearly independent.

(iii) If $W = \{A \in M_2(\mathbb{R}) : A \text{ is singular}\}\$, then W is vector subspace of $M_2(\mathbb{R})$. **False:** $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ are singular matrices but their sum $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is not singular.

(iv) If u, v and w are vectors in an inner product space such that $\langle u,v\rangle=3$, $\langle v,w\rangle=-5$, $\langle u,w\rangle = -1$ and ||u|| = 2, then $\langle u - 2w, 3u + v\rangle = 25$. **False:** $25 \neq 31$ (: $\langle u - 2w, 3u + v \rangle = 3(2^2) + 3 + (-2)(3)(-1) + (-2)(-5) = 31$)

(v) If the characteristic polynomial of 2×2 matrix A is $q_A(\lambda) = \lambda^2 - 1$, then A is diagonalizable. **True:** ± 1 are two different eigen-values of the 2 × 2 matrix A.

Question 2 [Marks: 2+2+2]: Consider the matrices
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & -2 \end{bmatrix}$. Then:

a) Find A^{-1} by the elementary matrix method.

b) Show that $nullity(A) \neq nullity(B)$.

Solution: Since
$$RREF(B) = \begin{bmatrix} 1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 8 \\ 0 & 0 & 0 & 1 & -6 \end{bmatrix}$$
, $nullity(B) = 1$; but $nullity(A) = 0$ because A is invertible.

c) Find a basis for the null space spaces N(B).

Solution: Since
$$N(B) = \{(-5t, 3t, -8t, 6t, t) : t \in \mathbb{R}\}, \{(-5, 3, -8, 6, 1)\}$$
 is a basis for $N(B)$.

Question 3 [Marks: 3+3]:

a) Find the values of x so that the set $\{(1,-2,x),(1,-x,2),(1,-4,2x)\}$ is linearly independent in the Euclidean space \mathbb{R}^3 .

Solution:
$$\alpha(1,-2,x)$$
, $+\beta(1,-x,2)$ + $\gamma(1,-4,2x)$ = $(0,0,0)$ \Longrightarrow
$$\begin{cases} \alpha + \beta + \gamma = 0 \\ -2\alpha - x\beta - 4\gamma = 0 \\ x\alpha + 2\beta + 2x\gamma = 0. \end{cases}$$

$$\therefore \text{ The given set would be linearly independent } \text{ iff } \begin{vmatrix} 1 & 1 & 1 \\ -2 & -x & -4 \\ x & 2 & 2x \end{vmatrix} \neq 0 \text{ iff } x \in \mathbb{R} \setminus \{\mp 2\}.$$

b) Let $\mathbf{F} = span(\{(1,-1,0,1),(0,1,0,-1),(-1,2,0,-1)\})$ in \mathbb{R}^4 . Find a basis for \mathbf{F} and show that $(0,1,0,0) \in \mathbf{F}$.

Solution: Since $\{(1,-1,0,1), (0,1,0,-1), (-1,2,0,-1)\}$ is linearly independent in \mathbb{R}^4 , the same set is a basis of F. Next, we observe that $(0,1,0,0) = (-1,2,0,-1) + (1,-1,0,1) \in F$.

Question 4: [Marks: 2+4]

a) Let u and v be any two vectors in an inner product space. Show that:

$$2(||u||^2 + ||v||^2) = ||u + v||^2 + ||u - v||^2.$$

Solution:
$$||u+v||^2 + ||u-v||^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = 2 \langle u, u \rangle + 2 \langle v, v \rangle = 2(||u||^2 + ||v||^2).$$

b) Let the set $B = \{u_1 = (1,0,0), u_2 = (3,1,-1), u_3 = (0,3,1)\}$ be linearly independent in the Euclidean inner product space \mathbb{R}^3 . Construct an orthonormal basis for \mathbb{R}^3 by applying the Gram-Schmidt algorithm on B.

Solution: Put $e_1 = v_1 = u_1 = (1,0,0)$. Then $v_2 = u_2 - \langle u_2, e_1 \rangle e_1 = u_2 - 3e_1 = (0,1,-1)$ and so $e_2 = \frac{1}{||v_2||} v_2 = \left(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Finally, $v_3 = u_3 - \langle u_3, e_2 \rangle e_2 - \langle u_3, e_1 \rangle e_1 = u_3 - \sqrt{2}e_2 = (0,2,2)$ and so $e_3 = \frac{1}{||v_3||} v_3 = \left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$. Thus, $\{e_1 = (1,0,0), e_2 = \left(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right), e_3 = \left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\}$ is the required orthonoral basis of the inner product space \mathbb{R}^3 .

Question 5: [Marks: (4+2) + (2+2+1)]

- a) Let $\mathbf{B} = \{ (1,1,0), (0,1,1), (1,0,1) \}$ be a basis for \mathbb{R}^3 , $\mathbf{C} = \{ x+1, x-1, x^2+1 \}$ be a basis for P_2 (the vector space of all real polynomials (in variable x) of degree ≤ 2 . Let $\mathbf{T} : \mathbb{R}^3 \to P_2$ be the linear transformation: $\mathbf{T}(a,b,c) = (a+b) + (b+c)x + (a+c)x^2$, $\forall (a,b,c) \in \mathbb{R}^3$.
 - (i) Find the values of q, r, s in the transformation matrix $[T]_B^C = \begin{bmatrix} 1 & q & 0 \\ r & 1 & 1 \\ 1 & 1 & s \end{bmatrix}$ with respect to the bases B and C.

Solution: Since
$$[T]_B^C = \begin{bmatrix} 1 & q & 0 \\ r & 1 & 1 \\ 1 & 1 & s \end{bmatrix}$$
, we get $[T(1,1,0)]_C = \begin{bmatrix} 1 \\ r \\ 1 \end{bmatrix}$, $[T(0,1,1)]_C = \begin{bmatrix} q \\ 1 \\ 1 \end{bmatrix}$ and $[T(1,0,1)]_C = \begin{bmatrix} 0 \\ 1 \\ s \end{bmatrix}$.
Now, $T(1,1,0) = 2 + x + x^2 = 1(x+1) + 0(x-1) + 1(x^2+1)$ gives $\begin{bmatrix} 1 \\ r \\ 1 \end{bmatrix} = [T(1,1,0)]_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; hence, $r = 0$.
Similarly, $q = 1$ and $s = 2$.

(ii) Find the coordinate vector $[T(1,1,1)]_C$.

Solution: Since
$$[T]_B^C = \begin{bmatrix} 1 & q & 0 \\ r & 1 & 1 \\ 1 & 1 & s \end{bmatrix}$$
 and $[(1,1,1)]_B = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, we get $[T(1,1,1)]_C = [T]_B^C[(1,1,1)]_B = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.

- b) Consider the matrix $A = \begin{bmatrix} 1 & 7 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$ is diagonalizable.
 - (i) Show that the matrix A is diagonalizable.

Solution: The given matrix $A = \begin{bmatrix} 1 & 7 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$ being upper triangular has eigen-values -1, 1 and 2; so, it is diagonalizable.

(ii) Find an invertible matrix P and a diagonal matrix D satisfying $P^{-1}AP = D$.

Solution:
$$P = \begin{bmatrix} 1 & 7 & \frac{17}{32} \\ 0 & 1 & \frac{-2}{3} \\ 0 & 0 & 1 \end{bmatrix}$$
 with $P^{-1} = \begin{bmatrix} 1 & -7 & \frac{-7}{10} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

(iii) Find A^7 .

Solution:
$$A^7 = P D^7 P^{-1} = \begin{bmatrix} \mathbf{1} & \mathbf{7} & \frac{-7}{2} \\ 0 & 1 & \frac{-2}{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 2^7 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & -\mathbf{7} & \frac{-7}{6} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix}.$$