

A Statistical approach to adult census income level prediction

Probability and Statistics

Flow of the Presentation

Introduction

The prominent inequality of wealth and income prevalent in the United States is a huge concern for the government. The likelihood of diminishing poverty is one valid reason to reduce the world's surging level of economic inequality. The principle of universal moral equality ensures sustainable development and improve the economic stability of a nation. This study aims to show the usage of machine learning and data mining techniques in providing a solution to the income equality problem.

Insights

The UCI Adult Dataset has been used for the purpose. Classification has been done to predict whether a person's yearly income in US falls in the income category of either greater than 50K Dollars or less equal to 50K Dollars category based on a certain set of attributes

Attributes included

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours-per- week	native- country	income
0	25	Private	226802	11th	7	Never-married	Machine-op- inspct	Own-child	Black	Male	0	0	40	United- States	<=50K
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming-fishing	Husband	White	Male	0	0	50	United- States	<=50K
2	28	Local-gov	336951	Assoc-acdm	12	Married-civ- spouse	Protective-serv	Husband	White	Male	0	0	40	United- States	>50K
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine-op- inspct	Husband	Black	Male	7688	0	40	United- States	>50K
4	18	?	103497	Some- college	10	Never-married	?	Own-child	White	Female	0	0	30	United- States	<=50K

Distribution of people's income

With 95% Confidence Interval

Income V/S Other Categorical Features

Two columns are independent H0

Chi Square Test Two columns are dependent

H1

```
{'workclass': [7.502170429307795e-145, 'Reject H0'],
'education': [0.0, 'Reject H0'],
'marital-status': [0.0, 'Reject H0'],
'occupation': [0.0, 'Reject H0'],
'relationship': [0.0, 'Reject H0'],
'race': [1.6578176146497785e-84, 'Reject H0'],
'gender': [0.0, 'Reject H0'],
'native-country': [1.5099071570211737e-16, 'Reject H0'],
'income': [0.0, 'Reject H0']}
```

Checking dependency of Income on Numerical features

Two Sample t-test

The difference between the means of two sample is 0.

The difference between the means of two sample mean is not equal to 0.

```
{'age': [0.0, 'Reject H0'],
'fnlwgt': [0.1224230703562435, 'Fails to Reject H0'],
'educational-num': [0.0, 'Reject H0'],
'capital-gain': [0.0, 'Reject H0'],
'capital-loss': [7.594015921975305e-222, 'Reject H0'],
'hours-per-week': [0.0, 'Reject H0']}
```


Accuracy and F1 score

Following are the f1 scores we got for each one of them:

XGBoost: 0.6943

Light GBM: 0.7011

Cat Boost: 0.6894

Adaboost:- 0.7042

Stacking classifier: 0.6988

XGBoost

Light GBM

Catboost

Stacking classifier

Conclusion

Here, we have used several ensemble methods to increase the efficiency of the model, and got the highest efficiency of approximately 86.2% for the stacking classifier, which is very close to what is achieved in the original paper.

References

- A Statistical Approach to Adult Census Income Level Prediction
- A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set
- XGBoost: A Scalable Tree Boosting System
- CatBoost: gradient boosting with categorical features support
- <u>LightGBM: A Highly Efficient Gradient Boosting Decision Tree</u>
- <u>Dataset Source</u>

Thank you

This project is presented by:

Amulya Tiwari (2K19/ME/032)

Gaurav Kumar (2K19/ME/090)