

Welcome to

9. Network Forensics

Communication and Network Security 2024

Henrik Kramselund he/him han/ham hlk@zencurity.com @kramse

Slides are available as PDF, kramse@Codeberg 9-Network-Forensics.tex in the repo security-courses

Goals for today

Todays goals:

- Talk about centralized logging using syslog as example
- We already used Elastisearch and Kibana, a bit
- See and develop small pattern matching Grok expressions

Plan for today

Subjects

- Centralized syslog
- Netflow data
- Collect Network Evidence
- Analyze Network data
- Network Forensics
- (Create Incident Reports)

Exercises

- Run Zui a desktop security tool
- Indicator of Compromise
- Syslog configuration
- Bonus: Create a Kibana dashboard for looking at logs
- Look at forensics exercises from ENISA)

Reading Summary

ANSM chapter 4,(5,6 moved) - 24 pages

- 4. Session Data
- 5. Full Packet Capture
- 6. Packet String Data

Reading Summary, continued

The Zeek Network Security Monitor

ANSM chapter 4: Session Data

- Netflow and IPFIX described on more detail
- Introduce and mentions another tool SiLK https://tools.netsa.cert.org/silk/ If we end up having time today, or another day, we should look into this tool chain also!

IP reputation

Zeek documentation Intel framework https://docs.zeek.org/en/stable/frameworks/intel.html

Suricata reputation support https://suricata.readthedocs.io/en/latest/reputation/index.html

Exercise

Now lets do the exercise

1 Zui desktop app 20 min

which is number **61** in the exercise PDF.

Exercise

Now lets do the exercise

▲ Indicators of Compromise 30min

which is number 62 in the exercise PDF.

Logging today

Log analysis is required today - and we have many logs Gather logs, parse logs, explain logs - fix stuff Search your logs with the Elastic stack Show sample logs from Suricata, Sudo, SSH, ... what we have

How to get started

How to get started searching for security events?

Collect basic data from your devices and networks

- Netflow data from routers
- Session data from firewalls
- Logging from applications: email, web, proxy systems

Centralize!

Process data

- Top 10: interesting due to high frequency, occurs often, brute-force attacks
- ignore
- Bottom 10: least-frequent messages are interesting

Centralized syslog

Logfiler er en nødvendighed for at have et transaktionsspor

Logfiler giver mulighed for statistik

Logfiler er desuden nødvendige for at fejlfinde

Det kan være relevant at sammenholde logfiler fra:

- routere
- firewalls
- webservere
- intrusion detection systemer
- adgangskontrolsystemer
- ...

Husk - tiden er vigtig! Network Time Protocol (NTP) anbefales Husk at logfilerne typisk kan slettes af en angriber - hvis denne får kontrol med systemet

syslog

syslog er system loggen på UNIX og den er effektiv

- man kan definere hvad man vil se og hvor man vil have det dirigeret hen
- man kan samle det i en fil eller opdele alt efter programmer og andre kriterier
- man kan ligeledes bruge named pipes dvs filer i filsystemet som tunneller fra chroot'ed services til syslog i det centrale system!
- man kan nemt sende data til andre systemer
 - Man bør lave en centraliseret løsning

syslogd.conf eksempel


```
*.err; kern.debug; auth.notice; authpriv.none; mail.crit
                                                          /dev/console
*.notice; auth, authpriv, cron, ftp, kern, lpr, mail, user.none /var/log/messages
kern.debug;user.info;syslog.info
                                                          /var/log/messages
                                                          /var/log/authlog
auth.info
                                                          /var/log/secure
authpriv.debug
# Uncomment to log to a central host named "loghost".
#*.notice;auth,authpriv,cron,ftp,kern,lpr,mail,user.none
                                                                  @loghost
#kern.debug,user.info,syslog.info
                                                                  @loghost
#auth.info,authpriv.debug,daemon.info
                                                                  @loghost
```

Andre syslogs syslog-ng

- der findes andre syslog systemer eksempelvis syslog-ng
- konfigureres gennem /etc/syslog-ng/syslog-ng.conf

```
options {
    long_hostnames(off);
    sync(0);
    stats(43200);
};

source src unix-stream("/dev/log"); internal(); pipe("/proc/kmsg");;
destination messages file("/var/log/messages");;
destination console_all file("/dev/console");;
log source(src); destination(messages);;
log source(src); destination(console_all);;
```

Kan eksempelvis TCP og garanteret aflevering af beskeder

Web server access log


```
root# tail -f access log
::1 - - [19/Feb/2004:09:05:33 +0100] "GET /images/IPv6ready.png
HTTP/1.1" 304 0
::1 - - [19/Feb/2004:09:05:33 +0100] "GET /images/valid-html401.png
HTTP/1.1" 304 0
::1 - - [19/Feb/2004:09:05:33 +0100] "GET /images/snowflake1.png
HTTP/1.1" 304 0
::1 - - [19/Feb/2004:09:05:33 +0100] "GET /~hlk/security6.net/images/logo-1.png
HTTP/1.1" 304 0
2001:1448:81:beef:20a:95ff:fef5:34df - - [19/Feb/2004:09:57:35 +0100]
"GET / HTTP/1.1" 200 1456
2001:1448:81:beef:20a:95ff:fef5:34df - - [19/Feb/2004:09:57:35 +0100]
"GET /apache pb.gif HTTP/1.1" 200 2326
2001:1448:81:beef:20a:95ff:fef5:34df - - [19/Feb/2004:09:57:36 +0100]
"GET /favicon.ico HTTP/1.1" 404 209
2001:1448:81:beef:20a:95ff:fef5:34df - - [19/Feb/2004:09:57:36 +0100]
"GET /favicon.ico HTTP/1.1" 404 209
```

Web server logs are pretty standardized, common log format.

Exercise

Now lets do the exercise

1 Logning med syslogd og syslog.conf 10min

which is number 63 in the exercise PDF.

Big Data tools: Elasticsearch

elasticsearch

Book: the definitive guide

http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/index.html

http://www.elasticsearch.org/overview/kibana/

http://www.elasticsearch.org/overview/logstash/

We are all Devops now, even security people!

Ansible configuration management


```
- apt: name= item state=latest
 with items:
        - unzip
       - elasticsearch
        - logstash
        - redis-server
        - nginx
- lineinfile: "dest=/etc/elasticsearch/elasticsearch.yml state=present
 regexp='script.disable_dynamic: true' line='script.disable dynamic: true'"
- lineinfile: "dest=/etc/elasticsearch/elasticsearch.yml state=present
 regexp='network.host: localhost' line='network.host: localhost'"
- name: Move elasticsearch data into /data
  command: creates=/data/elasticsearch mv /var/lib/elasticsearch /data/
- name: Make link to /data/elasticsearch
 file: state=link src=/data/elasticsearch path=/var/lib/elasticsearch
                             only requires SSH+python http://www.ansible.com
```

Kibana

Highly recommended for a lot of data visualisation

Non-programmers can create, save, and share dashboards

Source: https://www.elastic.co/products/kibana

Logstash pipeline

Logstash is an open source, server-side data processing pipeline that ingests data from a multitude of sources simultaneously, transforms it, and then sends it to your favorite "stash." (Ours is Elasticsearch, naturally.) https://www.elastic.co/products/logstash

```
input { stdin { } }
output {
  elasticsearch { host => localhost }
  stdout { codec => rubydebug }
}
```

- Logstash receives via input
- Processes with **filters** grok
- Forward events with **output**

Logstash as SNMPtrap and syslog server


```
input {
    snmptrap {
        host => "0.0.0.0"
        type => "snmptrap"
        port => 1062
        community => "xxxxx"      }
    tcp {
        port => 5000
        type => syslog      }
    udp {
        port => 5000
        type => syslog    }
}
```

- We run logstash on port 5000 but use IPtables port forwarding
- Have you even configured SNMP traps?
- Maybe you have a device sending SNMP traps right now ...

IPtables forwarding


```
*nat
:PREROUTING ACCEPT [0:0]

# redirect all incoming requests on port 514 to port 5000
-A PREROUTING -p tcp --dport 514 -j REDIRECT --to-port 5000
-A PREROUTING -p udp --dport 514 -j REDIRECT --to-port 5000
-A PREROUTING -p udp --dport 162 -j REDIRECT --to-port 1062
COMMIT
```

Inserted near beginning of /etc/ufw/before.rules on Ubuntu

Remember defense in depth, dont run a privileged Java VM process as root ©

Grok expresssions


```
filter {
  if [type] == "syslog" {
    grok {
     match => { "message" => "%{SYSLOGTIMESTAMP:syslog_timestamp}}
    %{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}
    (?:\[%{POSINT:syslog_pid}\])?: %{GREEDYDATA:syslog_message}" }
    add_field => [ "received_at", "%{@timestamp}" ]
    add_field => [ "received_from", "%{host}" ]
  }
  syslog_pri { }
  date {
    match => [ "syslog_timestamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss" ]
  }
}
```

• Logstash filter expressions grok can normalize and split data into fields

Source: Config snippet from recommended link http://logstash.net/docs/1.4.1/tutorials/getting-started-with-logstash

Grok expresssions, sample from my archive


```
filter {
# decode some SSHD
if [syslog program] == "sshd" {
 grok {
# May 20 10:27:08 odn1-nsm-01 sshd[4554]: Accepted publickey for hlk from
10.50.11.17 port 50365 ssh2: DSA 9e:fd:3b:3d:fc:11:0e:b9:bd:22:71:a9:36:d8:06:c7
match => { "message" => "%{SYSLOGTIMESTAMP:timestamp} %{HOSTNAME:host target}
sshd\[%{BASE10NUM}\]: Accepted publickey for %{USERNAME:username} from
 %{IP:src ip} port %{BASE10NUM:port} ssh2" }
# "May 20 10:27:08 odn1-nsm-01 sshd[4554]: pam unix(sshd:session):
session opened for user hlk by (uid=0)"
match => { "message" => "%{SYSLOGTIMESTAMP:timestamp} %{HOSTNAME:host target}
sshd\[%{BASE10NUM}\]: pam unix\(sshd:session\): session opened for user
%{USERNAME:username}" }
```

Logstash filter expressions grok can normalize and split data into fields

View data efficiently

View data by digging into it easily - must be fast Logstash and Kibana are just examples, but use indexing to make it fast! Other popular examples include Graylog and Grafana

Suricata with Dashboards

Picture from Twitter https://twitter.com/nullthreat/status/445969209840128000

http://suricata-ids.org/

Exercise

Now lets do the exercise

15 Create Kibana Dashboard 15min

which is number 64 in the exercise PDF.

Collect Network Evidence from the network

Network Flows

Cisco standard NetFlow version 5 defines a flow as a unidirectional sequence of packets that all share the following 7 values:

- Ingress interface (SNMP ifIndex)
- Source IP address
- Destination IP address
- IP protocol
- Source port for UDP or TCP, 0 for other protocols
- Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols
- IP Type of Service

Source: https://en.wikipedia.org/wiki/NetFlow

Netflow

Netflow is getting more important, more data share the same links

Accounting is important

Detecting DoS/DDoS and problems is essential

Netflow sampling is vital information - 123Mbit, but what kind of traffic

NFSen is an old but free application http://nfsen.sourceforge.net/

Currently also investigating sFlow - hopefully more fine grained

sFlow, short for "sampled flow", is an industry standard for packet export at Layer 2 of the OSI model,

https://en.wikipedia.org/wiki/SFlow

Netflow using NFSen

Netflow NFSen

An extra 100k packets per second from this netflow source (source is a router)

Netflow processing from the web interface

ck Forward	Reload	Stop	New Tab	Home	S http:	://nfsen	-demo/nfsen	-demo/nfse	n.php#proc	essing	⊕ ▼ ▶	(₩ • Car	mbridge Dictio	narie Q
▽ peer2	3.3 k/s	76.2 k/s	66.9 k/s	7.0 k/s 6	21.0 /s	1.7 k/s	484.6 Mb/s	459.9 Mb/s	12.5 Mb/s	437.3 kb/s	11.7 Mb/s			
√ gateway	1.0 /s	651.0 /s	600.8 /s	46.6 /s	0 /s	3.7 /s	6.2 Mb/s	6.1 Mb/s	36.4 kb/s	0 b/s	4.4 kb/s			
√ site	467.1 /s	8.9 k/s	6.1 k/s	2.0 k/s 1	81.7 /s	613.3 /s	38.8 Mb/s	28.3 Mb/s	7.4 Mb/s	104.0 kb/s	2.9 Mb/s			
upstream	6.4 k/s	94.2 k/s	84.3 k/s	8.2 k/s 8	96.4 /s	766.7 /s	588.4 Mb/s	568.2 Mb/s	16.7 Mb/s	685.1 kb/s	2.8 Mb/s			
None	Display:	○ Sum 《	Rate											
tflow Proc urce:	essing Filter:							Options	:					
eer1								○ List	Flows © S	Stat TopN				
eer2 ateway								Top:	10	~				
te								Stat:	Flor	w Records	order b	flows	-	
All Sources	and <no< td=""><td>ne> 💌</td><td></td><td></td><td></td><td></td><td></td><td>Aggreg</td><td>ate 🗸 s</td><td>lstPort 🔽</td><td>srcIP _</td><td><u> </u></td><td>-</td><td></td></no<>	ne> 💌						Aggreg	ate 🗸 s	lstPort 🔽	srcIP _	<u> </u>	-	
								Limit:		Packets 💌	> 💌 0	- 1	•	
								Output	: line	•	☐ / IPv	6 long		
nfdump -M lump filter		√0/nfsen	-demo/pr	rofile-c	iata/l	ive/pe	er1:peer2:	gateway:s	ite:upst	ream -T	Clear Fo		nfcapd.2007	053104
	art	by flow Dur 045 29	78: Tation Pr 19.034 UI 18.174 UI 18.206 UI	OP :	116.1 116.14 117.1	47.95.8 7.249.2 96.44.6	52:1031 -	> 188.1 > 188.1 > 188.1	t IP Add 42.64.16 42.64.16 42.64.16 42.64.16	2:27014 3:27014 6:27014 7:27014	Packets 68 67 67 67	Bytes F. 5508 5427 5427 5427 3720	10ws 68 67 67 67 62 61	
0 10 flows ce flow sta 17-05-31 04 17-05-31 04 17-05-31 04 17-05-31 04 17-05-31 04 17-05-31 04 17-05-31 04 17-05-31 04 17-05-31 04	4:39:56.2 4:39:57.5 4:39:57.6 4:39:53.7 4:39:55.3 4:39:58.9 4:39:54.3	330 29 319 29 787 29 354 30 936 29 329 30 916 30	08.112 UI 07.216 UI 00.833 UI 08.977 UI 03.585 UI 00.734 UI	OP OP OP OP	60. 60. 120.15	.235.13 9.138.3 9.138.3 0.194.7 9.138.3	32:4121 - 37:2121 - 36:2121 - 76:2121 - 37:2121 -	> 60 > 118 > 119.18 > 60 > 125.1	.9.138.3 .25.93.9 2.123.16 .9.138.3 67.25.12	5:2121 6:2121 7:2121 8:2121	62 61 61 61 61	3660 3660 3660 3660	61 61 61	
0 10 flows te flow str 07-05-31 00 07-05-31 00	4:39:56.2 4:39:57.5 4:39:57.3 4:39:55.3 4:39:55.3 4:39:58.9 4:39:57.9 anonymiz al flows: 2007-05- processed	330 29 319 29 787 29 787 30 936 29 936 30 946 30 946 30 946 30 946 30	08.112 UI 17.216 UI 10.833 UI 10.833 UI 10.774 UI 10.353 UI 11.49 - 2 124, skip	DP DP DP DP DP L bytes:	60. 60. 120.15 60. 60. 120.15 60. 60.	.235.13 9.138.3 9.138.3 9.138.3 9.138.3 9.138.3 6 G, to:44:58 s read:	32:4121 - 37:2121 - 36:2121 - 37:2121 - 37:2121 - 36:2121 - 36:2121 - 5tal packe	> 60 > 118 > 119.18 > 60 > 125.1 > 121.	.9.138.3 .25.93.9 2.123.16 .9.138.3 67.25.12 135.4.18	5:2121 6:2121 7:2121 8:2121 6:2121	61 61 61 61	3660 3660 3660 3660 3660	61 61	929

Bringing the power of the command line forward

How to get started

How to get started searching for security events?

Collect basic data from your devices and networks

- Netflow data from routers
- Session data from firewalls
- Logging from applications: email, web, proxy systems

Centralize!

Process data

- Top 10: interesting due to high frequency, occurs often, brute-force attacks
- ignore
- Bottom 10: least-frequent messages are interesting

View data efficiently

View data by digging into it easily - must be fast Logstash and Kibana are just examples, but use indexing to make it fast! Other popular examples include Graylog and Grafana

Big Data tools: Elasticsearch

Elasticsearch is an open source distributed, RESTful search and analytics engine capable of solving a growing number of use cases.

https://www.elastic.co

We are all Devops now, even security people!

Kibana

Highly recommended for a lot of data visualisation

Non-programmers can create, save, and share dashboards

Source: https://www.elastic.co/products/kibana

Ansible configuration management


```
- apt: name= item    state=latest
    with_items:
```

- unzip
- elasticsearch
- logstash
- redis-server
- nginx
- lineinfile: "dest=/etc/elasticsearch/elasticsearch.yml state=present regexp='script.disable_dynamic: true' line='script.disable_dynamic: true'"
- lineinfile: "dest=/etc/elasticsearch/elasticsearch.yml state=present regexp='network.host: localhost' line='network.host: localhost'"

only requires SSH+python http://www.ansible.com

I have a set of files that can install a mostly complete Elastic stack on Debian: https://github.com/kramse/kramse-labs/tree/master/suricatazeek

Next steps

Always improving things:

Suricata IDS http://www.openinfosecfoundation.org/
More graphs, with automatic identification of IPs under attack
Identification of short sessions without data - spoofed addresses
Alerting from existing devices
Dashboards with key measurements

Conclusion: Combine tools!

Network Security Through Data Analysis

Low page count, but high value! Recommended.

Network Security through Data Analysis, 2nd Edition by Michael S Collins Publisher: O'Reilly Media, Second release, 428 pages, 2017

And we have the ANSM book

Network tools - more examples

Using PacketQ

Let's have a practical look at how PacketQ works by trying to figure out what kind of DNS ANY queries are being sent towards our name-server.

DNS ANY traffic is currently commonly abused for DNS amplification attacks (See Blog post "DDoS-Angriffe durch Reflektierende DNS-Amplifikation vermeiden" in German). The first thing I want to know is what are the IP addresses of the victims of this potential DNS amplification attack:

```
packetq -t -s "select src_addr,count(*) as count from dns where qtype=255 group
by src_addr order by count desc limit 3" lolo.20130118.070000.000179
"src_addr" ,"count"
"216.245.221.243",933825
"85.126.233.70" ,16802
"80.74.130.55" ,91
```

- DNS: DSC and PacketQ https://github.com/DNS-OARC/PacketQ
- Packetbeat https://www.elastic.co/products/beats/packetbeat
- http://securityblog.switch.ch/2013/01/22/using-packetq/
- http://jpmens.net/2013/05/27/server-agnostic-logging-of-dns-queries-responses/

Network Forensics ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of expertise for cyber security in Europe.

ENISA is contributing to a high level of network and information security (NIS) within the European Union, by developing and promoting a culture of NIS in society to assist in the proper functioning of the internal market.

https://www.enisa.europa.eu/

ENISA has published a number of network forensics documents which are free to use, so these are our basics.

Forensic analysis

Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection 5.

Systems used to collect network data for forensics use usually come in three forms:

- Packet capture: All packets passing through a certain traffic point are captured and written to storage
- Intrusion detection systems
- Network flow sensors

The acronym OSCAR 8 stands for: Obtain information, Strategize, Collect evidence, Analyse, Report

Source: Forensic analysis Network Incident Response Handbook, Document for teachers 1.0 DECEMBER 2016, ENISA EXE2_Forensic_analysis_II-Handbook.pdf

ENISA exercises

- We will use these as examples:
- ENISA Presenting, correlating and filtering various feeds Handbook, Document for teachers
 https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/presenting
- ENISA Forensic analysis, Network Incident Response https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/2016-rese exe2_forensic_analysis_ii-handbook
- ENISA Network Forensics, Handbook, Document for teachers https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/network-

How realistic are they?

Would you be able to perform an investigation now?

For Next Time

Think about the subjects from this time, write down questions Check the plan for chapters to read in the books Visit web sites and download papers if needed Retry the exercises to get more confident using the tools