Improving Performance of PRIDE Algorithm through Advanced Methods

Team 1 2018250028 Younsuk Yeom 2018250034 Donghyeon Ki 2020250028 Chaehyeon Kim

1. Introduction

Relationship Extracting Tasks

- Identification & Classification of relationships between entities from sentences
 - recognizing the entities involved
 - understanding the interactions between them
- Utilizes NLP techniques
 - to analyze text
 - to infer meaningful relationships
- Applications: social network analysis, product recommendation systems, etc.

Figure 1: Example of conversation in social media.

2. Related Work

PRIDE (ACL 2021)

- neural multi-label classifier for Predicting Relationships In DialoguE
- Makes inference among 12 fine-grained directed speaker's relationships from dialogue

Figure 1: PRIDE model

2. Related Work

Limitations

- splits input sequence of utterances into chunks, and runs BERT for each chunk
- do not make good use of BERT in identifying relationship between chunks
- 3. assumption that each chunk has maximal possible length

Figure 1: PRIDE model

3. Approach

3.1. Random shuffling utterances in utterance chunks

- PRIDE vs Ours
 - PRIDE : Create utterance chunks and Run BERT for each chunk
 - → making word representation by fragment of a conversation
 - **Ours**: randomly shuffle the order of utterances
 - →run BERT for each random combination of utterances
 - → exchange information between words without considering order of utterances

Figure 2: Randomly shuffled utterances before constructing utterance chunks.

3. Approach

3.2. Enhancing conversational context of PRIDE by overlapping chunks

- PRIDE vs. Ours
 - PRIDE : creates chunks and runs BERT several times
 - → no connection between chunks at word level
 - Ours : creates overlapped chunks
 - → takes full advantage of BERT & understand "smooth" context between chunks

Figure 3: Comparison between original PRIDE and our method over running BERT on each chunk.

4. Experiments

FiRe - a Film Relationship dataset presented by Tigunova et al. [2019]

model	cross-val on FiRe		
	F1	P	R
RNN	0.11	0.11	0.15
BERT_{ddrel}	0.2	0.25	0.2
HAM	0.23	0.25	0.22
BERT_{conv}	0.27	0.25	0.33
PRIDE (ours)	0.36	0.37	0.38
PRIDE-shuffle	0.35	0.34	0.39
PRIDE-overlap	0.34	0.35	0.38
PRIDE-shuffle-overlap	0.32	0.35	0.34

Table 3: Performance of our algorithms compared to previous algorithms.

4. Experiments

class	PRIDE (ours)	PRIDE -shuffle	PRIDE -overlap	PRIDE -shuffle-overlap
friend	0.466	0.517	0.505	0.505
lover	0.622	0.611	0.621	0.588
spouse	0.354	0.391	0.403	0.316
colleague	0.222	0.263	0.142	0.125
child	0.606	0.5	0.517	0.529
parent	0.621	0.566	0.588	0.622
sibling	0.3	0.419	0.346	0.333
employee	0.267	0.296	0.262	0.185
boss	0.136	0.179	0.2	0.172
enemy	0.122	0.086	0.034	0.167
medical	0.467	0.276	0.483	0.25
commercial	0.077	0.08	0.065	0.071

Table 4: Class F1 scores of our algorithms compare to PRIDE.

5. Analysis

Purpose: make BERT identifying conversation context at word level → Improve Performance

Expectation: Conversational understanding would help model create contextual word embedding

5. Analysis

class	PRIDE (ours)	PRIDE -shuffle	PRIDE -overlap	PRIDE -shuffle-overlap
friend	0.466	0.517	0.505	0.505
lover	0.622	0.611	0.621	0.588
spouse	0.354	0.391	0.403	0.316
colleague	0.222	0.263	0.142	0.125
child	0.606	0.5	0.517	0.529
parent	0.621	0.566	0.588	0.622
sibling	0.3	0.419	0.346	0.333
employee	0.267	0.296	0.262	0.185
boss	0.136	0.179	0.2	0.172
enemy	0.122	0.086	0.034	0.167
medical	0.467	0.276	0.483	0.25
commercial	0.077	0.08	0.065	0.071

Table 4: Class F1 scores of our algorithms compare to PRIDE.

1. Friend, Colleague, Sibling, Commercial and Employee

- → PRIDE-shuffle shows improvement
- → Selected words in each script are crucial
- → Good for catching specific words in conversation

2. Lover, Spouse, Boss and Medical

- → PRIDE-overlap shows similar or higher performance
- → Sequence of utterances works more importantly
- ightarrow Good for relationship extraction in specific situation

3. Child and Parent

- → PRIDE performs better or similarly with others
- → Hierarchically understanding is more important
- → Good for fundamental relationship

4. Enemy

- → PRIDE-shuffle-overlap shows highest performance
- → Just mere coincidence

6. Conclusion

Contrary to our expectation... the overall Performance Comparison was

Random Shuffling & Overlapping ≤ Hierarchically representation [Word → Utterance → Conversation]

BUT...

According to each relationship label, It may differ which method performs better

Our Contribution

- 1. Experiments for Two methods : Shuffling & Overlapping to add additional context
- 2. Comparing each method's performance for each relationship label
- 3. Observing which method helps to classify specific relationship
- 4. Examining the effectiveness of PRIDE's hierarchical representation of conversation

Thank you

5. Analysis

Effect of each Method

Multi Class Binary Classification → "Methods' performances differ according to each label"