Tiling Problems

Daniel Litt

Stanford University

April 12, 2011

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Introduction

Tiles:

Definition (Tile)

A tile is a (closed) plane polygon.

Introduction (cont.)

Tiling:

Definition (Region)

A region is a (closed) plane polygon.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Introduction (cont.)

Tiling:

Definition (Tiling)

A tiling of a region R is a decomposition of R into tiles, $R = \bigcup_i T_i$, such that if x is a point in the interior of a tile T_i , then it is not contained in any T_j for $j \neq i$.

Introduction (cont.)

Tiling Problems:

- Counting Problems: How many ways are there to tile a region with a fixed set of tiles?
- Feasibility Problems: Can a region be tiled with a fixed set of tiles?
- Tiling problems are hard:
 - Counting is #*P*-complete.
 - Feasibility of tiling bounded regions is NP-complete.
 - Given a set of tiles, can one tile the plane with them? This is undecidable.

Region: $1 \times n$ grid.

Counting Problems (warmup)

Let T_n be the number of tilings of a $1 \times n$ grid by dominos.

$$T_n = T_{n-2}$$

$$T_1 = 0, T_2 = 1$$

$$T_n = \begin{cases} 0, & \text{if } n \text{ is odd} \\ 1, & \text{if } n \text{ is even} \end{cases}$$

We'll return to this example.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Counting Problems (trickier example)

Tiles: 2×1 rectangles (dominos):

Region: $2 \times n$ grid.

Counting Problems (tricker example)

Let T_n be the number of tilings of a $2 \times n$ grid by dominos. There are two ways to cover the leftmost column:

$$T_n = T_{n-1} + T_{n-2}$$

$$T_1 = 1, T_2 = 2$$

Fibonacci numbers!

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Applications (Fibonacci identities)

•
$$\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots = f_n$$
:

•
$$\sum_{i\geq 0}\sum_{j\geq 0}\binom{n-i}{j}\binom{n-j}{i}=f_{2n+1}$$

- For $m \ge 1$, $n \ge 0$, if m|n then $f_{m-1}|f_{n-1}$.

Counting Problems (dominos, $m \times n$ case)

Tiles: 2×1 rectangles (dominos):

Region: $m \times n$ grid.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Counting Problems (dominos, $m \times n$ case)

Let $T_{m,n}$ be the number of tilings of a $m \times n$ grid by dominos. As you might expect:

$$T_{m,n} = 2^{mn/2} \prod_{i=1}^{m} \prod_{k=1}^{n} \left(\cos^2 \frac{\pi j}{m+1} + \cos^2 \frac{\pi k}{n+1} \right)^{1/4}$$

Kasteleyn (1961)

Q: How does one prove this?

A: Pfaffians!

Matrices and Counting

Let $A = a_{ij}$ be a $2n \times 2n$ skew-symmetric matrix, i.e. $a_{ij} = -a_{ji}$.

Definition (Pfaffian)

Let Π be the set of partitions of $\{1, 2, ..., 2n\}$ into pairs

$$\alpha = \{(i_1, j_1), (i_2, j_2), ..., (i_n, j_n)\}$$

with $i_k < j_k$ and $i_1 < i_2 < i_3 < \cdots < i_n$. The **Pfaffian** of A is defined to be

$$\mathsf{pf}(A) = \sum_{\alpha \in \Pi} \mathsf{sign}(\alpha) a_{i_1 j_1} a_{i_2 j_2} \cdots a_{i_n j_n}.$$

Theorem

$$pf(A) = \pm \sqrt{\det(A)}$$

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Matrices and Counting

$$\operatorname{pf}(A) = \sum_{\alpha \in \Pi} \operatorname{sign}(\alpha) a_{i_1 j_1} a_{i_2 j_2} \cdots a_{i_n j_n}.$$

Label the squares of a grid from 1 to mn. If square i is next to square j, let $a_{ij}=\pm 1$, with $a_{ji}=-a_{ij}$. Let $a_{ij}=0$ otherwise.

$$|a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n}|=1\iff (i_1,j_1),\cdots,(i_n,j_n)$$
 is a tiling!

Have to pick signs right.

Remark

If A is the adjacency matrix of an oriented graph, pf(A) counts oriented perfect matchings.

Daniel Litt

Tiling Problems

Counting Problems (dominos, $m \times n$ case)

Let $a_{ij}=1$ if there is an edge $i \to j$, with $a_{ij}=-a_{ji}$. Let $a_{ij}=0$ otherwise. Then $\operatorname{sign}(\alpha)a_{i_1j_1}a_{i_2j_2}\cdots a_{i_nj_n}$ is always positive! So $T_{m,n}=\operatorname{sqrt}(\det(A))$. Compute by diagonalizing A.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Counting Problems (dominos)

Remark

In general, any planar graph has a "Pfaffian Orientation," which makes the above argument work.

But this isn't the end of the story. Consider the aztec diamond:

Number of tilings is $2^{(n+1)n/2}$. But add one more row in the middle, and the number of tilings only grows exponentially.

Feasibility Problems

- Special case of counting problems (Is the number of tilings equal to zero?)
- But still hard, even if we can count: Given a sequence (x_n) defined via an integer linear recurrence, is the truth of the statement " $x_n \neq 0$ for all n" decidable in finite time? This is an **open problem**.
- Given a set of tiles, can they tile the plane? This is undecidable.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

A Classical Example

Can this region be tiled by dominos?

Each domino covers exactly one black square and one white square; but there are more white squares than black squares.

A Classical Example

But is this the only obstruction? What if we remove two squares of different colors?

(Gomory)

Of course, if we remove more than 2 squares, a lot can go wrong.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Rectangle Tilings (Toy Example)

Let's return to tiling a $1 \times n$ rectangle R_n by dominos.

1
$$x \quad x^2 \quad x^3 \quad x^4 \quad x^5$$

$$p_n(x) = 1 + x + x^2 + x^3 + \dots + x^{n-1}$$

 $d(x) = 1 + x$

Note that d(-1) = 0.

$$p_{2n}(-1) = 0.$$

$$p_{2n}(x) = (1 + x^2 + x^4 + \dots + x^{2n-2})(1+x)$$

But $p_{2n+1}(x)$ is not a multiple of d(x):

$$p_{2n+1}(-1)=1$$

Rectangle Tilings

Label the upper-right quadrant of the plane as follows:

÷	:	:	:	
y^2	xy^2	x^2y^2	x^3y^2	
У	xy	x^2y	x^3y	• • •
1	X	x^2	x^3	

If R is a region consisting of unit squares (α, β) with non-negative integer coordinates, let

$$p_R(x,y) = \sum_{(\alpha,\beta)\in R} x^{\alpha} y^{\beta}.$$

If T_i are tiles made from unit squares, translate them so one square is at the origin, and let

$$p_{T_i}(x,y) = \sum_{(\alpha,\beta)\in T_i} x^{\alpha} y^{\beta}.$$

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Rectangle Tilings

If R may be tiled by the T_i then there exist polynomials $a_i(x, y)$ with integer coefficients such that

$$p_R(x,y) = \sum_i a_i(x,y) p_{T_i}(x,y).$$

Definition

If there exist polynomials $a_i(x, y)$ with coefficients in a ring k, such that

$$p_R(x,y) = \sum_i a_i(x,y) p_{T_i}(x,y),$$

we say that the T_i can tile R over k.

Rectangle Tilings

$\mathsf{Theorem}$

Let T_i be a (possibly infinite) set of tiles. Then there exists a finite subset T_{i_j} such that a region R may be tiled by the T_i over the integers if and only if it may be tiled by the T_{i_j} .

Proof.

Hilbert Basis Theorem.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Rectangle Tilings

Let $k=\mathbb{C}$, the complex numbers. Let $V\subset\mathbb{C}^2$ be the set

$$V = \{(x, y) \mid T_i(x, y) = 0 \text{ for all } i\}.$$

lf

$$p_R(x,y) = \sum_i a_i(x,y) p_{T_i}(x,y), \qquad (*)$$

then $p_R(x,y) = 0$ if $(x,y) \in V$.

Theorem

Let I_T be the set of all polynomials that can be written as in (*). If I_T is **radical**, and $p_R(x,y) = 0$ for all $(x,y) \in V$, then the T_i may tile R over \mathbb{C} .

Rectangle Tilings

Theorem

Let I_T be the set of all polynomials that can be written as in (*). If I_T is **radical**, and $p_R(x,y) = 0$ for all $(x,y) \in V$, then the T_i tile R over \mathbb{C} .

Proof.

Nullstellensatz.

Theorem (Barnes)

Let T be a finite set of rectangular tiles, and R a rectangular region. There exists a constant K such that if the lengths of the sides of R are greater than K, then R is tileable by T if and only if it is tileable over \mathbb{C} .

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Rectangle Tilings

Theorem

Let I_T be the set of all polynomials that can be written as in (*). If I_T is **radical**, and $p_R(x,y) = 0$ for all $(x,y) \in V$, then the T_i may tile R over \mathbb{C} .

Example

If T = (1 + x, 1 + y), then I_T is radical. So one may detect domino tilings over \mathbb{C} by evaluating $p_R(-1, -1)$.

:	:	:	:	
		+1		
-1	+1	-1	+1	
+1	-1	+1	+1	

Lozenge Tilings

This is a lozenge:

This is a lozenge tiling:

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Squint a little:

Pick a direction for each edge. Does the outline of a region lift to a loop?

This condition is necessary but not sufficient; there is a sufficient geometric condition (Conway, Thurston).

This method generalizes, but is difficult to analyze except in special cases.

Daniel Litt

Tiling Problems

Introduction Counting Problems Feasibility Problems

Open Problems

- Can the plane be tiled by tiles with five-fold symmetry? (Kepler)
- Strengthen the algebra-geometric methods of Barnes.
- Find more sensitive obstructions to tiling.
- Characterize when coloring arguments forbid tilings.
- And more...