UML

(Unified Modeling Language)

Définition

- UML est un langage de modélisation graphique à base de pictogrammes. Il est apparu dans le monde du génie logiciel, dans le cadre de la « conception orientée objet ».
- UML n'est pas une méthode.

Diagramme de Cas d'Utilisation

- Déjà vu dans le cours d'UML en S3.
- Exemple pour raffraîchir la mémoire :

Diagramme d'Etats-Transitions

Notation

Etats et Attributs

Etats et Liens

Evénements

Transitions

Actions

Activités

Transition Automatique

Imbrication des Etats

Imbrication des Etats avec un Historique

Convention Graphique

Les actions

- entry : action exécutée à l'entrée de l'état.
- exit : action exécutée à la sortie de l'état.
- on <événement> : action exécutée à chaque fois que l'événement cité survient.
- do : action récurrente dans l'état.

Etat Composite (Super-Etat)

Etat Concurrent

Exemple:

Diagramme d'Activité

Notation

Exemple

Diagramme de Classes

• Déjà vu dans le cours d'UML en S3.

Diagramme d'Objets

- Déjà vu dans le cours d'UML en S3.
- C'est une photographie à un instant précis du diagramme de classes.

Diagramme de Composants

• Il décrit l'architecture physique et statique d'une application en termes de modules : fichiers sources, librairies, exécutables, ... et montre la mise en œuvre physique des modèles de la vue logique avec l'environnement de développement.

Trois catégories principales de composants :

- Les composants de déploiement : nécessaires pour faire fonctionner le système.
- Les composants de travail : englobent les modèles, le code source et les fichiers de données utilisés pour créer les composants de déploiement.
- Les composants d'exécution : sont des composants créés pendant le fonctionnement de l'application.

Notation d'un composant :

Notation d'une interface :

- La réalisation (interface implémentée) :

- L'utilisation (interface utilisée) :

Dépendance de composants :

Stéréotypes de composants : <<executable>>, <ibrary>>, <<table>>, <<file>>>, <<source>>, <<document>>, <<script>>.

Diagramme de Déploiement

Un diagramme de déploiement est une vue statique qui sert à représenter l'utilisation de l'infrastructure physique par le systèmeet la manière dont les composants du système sont répartis ainsi que leurs relations entre eux.

Noeuds et Composants

Exemple

Diagramme de Paquetages

- Le diagramme de packages permet de décomposer le système en catégories ou parties plus facilement observables, appelés « packages ». Cela permet également d'indiquer les acteurs qui interviennent dans chacun des packages.
- Un package peut contenir la plupart des éléments UML: classes, objets, cas d'utilisations, composantes, etc.

Représentation Simple

Représentation Détaillée

Représentation Eclatée

Import des Paquets

Exemple

Diagramme de Structure Composite

• Le diagramme de structure composite expose la structure interne d'une classe ainsi que les collaborations que cette dernière rend possible.

Diagramme de Séquence

- Déjà vu dans le cours d'UML en S3.
- Convention graphique:

• Exemple :

Diagramme de Communication (ou de Collaboration)

- Version simplifiée du diagramme de séquence.
- Exemple :

Diagramme de Temps

- Forme spéciale du diagramme de séquence.
- Exemple :
 - 1) Diagramme avec un seul axe temporel

2) Diagramme avec axe temporel par état

Diagramme d'Interaction Globale

- Il définit les interactions au travers d'une variante du diagramme d'activités et cherche à mettre en évidence une vue globaledu flux de contrôle.
- Exemple:

