

Complex Numbers and Function of a Complex Variable

1. 1 Introduction

In the opening unit we shall present an account of complex numbers very shortly. We shall also introduce a function of complex variable.

A complex number is an ordered pair (x, y) of real numbers x and y. It is denoted by z. Thus, z = (x, y).

Here, x is the real part and y the imaginary part of z.

Two complex numbers $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ are equal if and only if $x_1 = x_2$ and $y_1 = y_2$.

1.2 Sum, Product and Quotient of Two Complex Numbers.

Let $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y)$ be two complex numbers. Then

1. The sum of two complex numbers is a complex number, and is defined by

$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

2. The product of two complex numbers is also a complex number, and is defined by

$$z_1 z_2 = (x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$$

3. The quotient of two complex numbers is defined by

$$\frac{z_1}{z_2} = \frac{(x_1, y_1)}{(x_2, y_2)} = (\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}, \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2})$$

Imaginary Unit

A complex number whose real part is zero and imaginary part one, is called an imaginary unit. It is denoted by i. Thus, i = (0, 1) We observe that

(i)
$$i^2 = -1$$
 and (ii) $(x, y) = x + iy$.

1.3 Representation of a Complex Number

We can represent the complex number z = x + iy by a point whose Cartesian coordinates are (x, y) referred to rectangular axes X'OX and YOY'.

A plane whose points are represented by complex numbers is called a complex plane, and the horizontal and vertical axes are known as Real and Imaginary axes.

1.4 Complex Number in Polar Form

Let z = x + iy be a complex number. It is located at a point P.

Let OP = r, $\angle POQ = \theta$. Then $x = r\cos\theta$, and $y = r\sin\theta$

$$\therefore$$
 r = $\sqrt{x^2 + y^2}$, and $\tan \theta = \frac{y}{x}$ (1)

Now, $x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta)$, where r and θ are given by (1). Thus,

 $x + iy = r(\cos\theta + i\sin\theta)$, which is the polar form.

Here, θ is called the **amplitude or argument of z**, and r the modulus of z.

The value of θ that lies in the interval $-\pi < x \le \pi$ is called the **principal value** of z.

1.5 Conjugate Complex Numbers

Let z = x + iy, then the complex number x - iy is called the conjugate of the complex number z = x + iy. The conjugate of z is denoted by \overline{z} . Thus $\overline{z} = x - iy$.

The complex conjugates enjoy the following properties.

- 1. $z + \overline{z} = 2Rez$
- 2. $z \overline{z} = 2i \text{ Im.} z$
- 3. $\overline{z_1} + \overline{z_2} = \overline{z_1} + \overline{z_2}$
- $4. \quad \overline{z_1}\overline{z_2} = \overline{z_1}.\overline{z_2}.$

1.6 Modulus of a Complex Number

If z = x + iy is a complex number, then its modulus (or absolute value) is defined by a non-negative number $\sqrt{x^2 + y^2}$. The modulus of z is denoted by |z|. Thus, $|z| = \sqrt{x^2 + y^2}$.

The modulus of a complex number enjoys the following properties.

1.
$$|z_1z_2| = |z_1| |z_2|$$

2.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, provided $|z_2| \neq 0$

3.
$$|z| = |\overline{z}|$$

4.
$$|z|^2 = z \overline{z}$$
.

5.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

1.7 Multiplication and Division in Polar Form

Let
$$z_1 = x_1 + iy_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$

 $z_2 = x_2 + iy_2 = r_2(\cos\theta_2 + i\sin\theta_2)$

where θ_1 is the argument of z_1 and θ_2 the argument of z_2 .

Now,
$$z_1z_2 = r_1r_2[\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2)]$$

or,
$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$$

Clearly, arg
$$(z_1z_2) = \theta_1 + \theta_2$$

$$arg(z_1z_2) = Argz_1 + Argz_2$$

Also,
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\frac{\cos\theta_1 + i\sin\theta_1}{\cos\theta_2 + i\sin\theta_2} \right)$$

$$= \frac{r_1}{r_2} \left[\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 + i (\sin \theta_1 \cos \theta_2 - \cos \theta_1 \sin \theta_2) \right]$$

or
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2) \right]$$

$$\therefore \arg\left(\frac{z_1}{z_2}\right) = \theta_1 - \theta_2$$

$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$$

Remark: The notion of ordering (greater than or less than) does not apply to complex numbers. Thus the statements $z_1 > z_2$ and $z_1 < z_2$ have no meaning unless z_1 and z_2 are both real.

1.8 De Movire's Theorem

If n is a positive integer or a negative integer or a fraction, then $[(\cos\theta + i\sin\theta)]^n = [\cos n\theta + i\sin \theta]$

Proof.

Case 1. When n is a positive integer.

By actual multiplication, we have

$$(\cos\theta_1 + i\sin\theta_1). (\cos\theta_2 + i\sin\theta_2)$$

$$= (\cos\theta_1.\cos\theta_2 - \sin\theta_1.\sin\theta_2) + i(\sin\theta_1.\cos\theta_2 + \cos\theta_1\sin\theta_2)$$

$$= \cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2).$$

Similarly,
$$(\cos\theta_1 + i\sin\theta_1) (\cos\theta_2 + i\sin\theta_2) (\cos\theta_3 + i\sin\theta_3)$$

= $\{\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)\} (\cos\theta_3 + i\sin\theta_3)$
= $\cos(\theta_1 + \theta_2 + \theta_3) + i\sin(\theta_1 + \theta_2 + \theta_3)$

Proceeding in this way, we have

$$\begin{split} (\cos\theta_1 + i\sin\theta_1) & (\cos\theta_2 + i\sin\theta_2) \left(\cos\theta_3 + i\sin\theta_3\right) \dots \left(\cos\theta_n + i\sin\theta_n\right) \\ & = \cos(\theta_1 + \theta_2 + \theta_3 + \dots + \theta_n) + i\sin(\theta_1 + \theta_2 + \theta_3 + \dots + \theta_n) \\ \text{Let } \theta_1 = \theta_2 = \theta_3 = \dots = \theta_n = \theta \text{. then} \\ & (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta. \end{split}$$

Case 2. When n is a negative integer.

Let n=-m, where m is a positive integer. Then

$$(\cos\theta + i\sin\theta)^{n} = (\cos\theta + i\sin\theta)^{-m} = \frac{1}{(\cos\theta + i\sin\theta)^{m}}$$

$$= \frac{1}{\cos m\theta + i\sin m\theta}$$

$$= \frac{\cos m\theta - i\sin m\theta}{(\cos m\theta + i\sin m\theta)(\cos m\theta - i\sin m\theta)}$$
5

$$= \frac{\cos m\theta - i\sin m\theta}{\cos^2 m\theta + \sin^2 m\theta}$$
$$= \cos m\theta - i\sin m\theta.$$
$$= \cos(-m)\theta + i\sin(-m)\theta$$
$$= \cos \theta + i\sin \theta$$

Case 3. When n is a fraction, positive or negative

Let $n = \frac{p}{q}$ where q is a positive integer and p is any integer, positive or negative. Now,

$$(\cos\frac{\theta}{q} + i\sin\frac{\theta}{q})^q = (\cos q \cdot \frac{\theta}{q} + i\sin q \cdot \frac{\theta}{q}) = \cos\theta + i\sin\theta$$

Taking qth root, we have

$$\cos\frac{\theta}{q} + i\sin\frac{\theta}{q} = (\cos\theta + i\sin\theta)^{1/q}$$

(This is one of the values of $(\cos\theta + i\sin\theta)^{1/q}$) Raising to the pth power, we get

$$(\cos\theta + i\sin\theta)^{p/q} = (\cos\frac{\theta}{q} + i\sin\frac{\theta}{q})^p = \cos\left(\frac{p}{q}\theta\right) + i\sin\left(\frac{p}{q}\theta\right)$$

$$\therefore (\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta.$$

Remarks:

1.
$$(\cos\theta + i\sin\theta)^{-n} = \cos n\theta - i\sin n\theta$$

2.
$$(\cos\theta - i\sin\theta)^n = \cos\theta - i\sin\theta$$

3.
$$(\cos\theta - i\sin\theta)^{-n} = \cos n\theta + i\sin n\theta$$

To find the qth root of a complex number.

We know that $\cos \frac{\theta}{q} + i \sin \frac{\theta}{q}$ is one of the values of $(\cos \theta + i \sin \theta)^{1/q}$ Of course, $(\cos \theta + i \sin \theta)^{1/q}$ has q different values. We observe that

$$\cos\theta + i\sin\theta = \cos(2n\pi + \theta) + i\sin(2n\pi + \theta)$$

$$\therefore (\cos\theta + i\sin\theta)^{1/q} = [\cos(2n\pi + \theta) + i\sin(2n\pi + \theta)^{1/q}]$$

$$= \cos\frac{2n\pi + \theta}{q} + i\sin\frac{2n\pi + \theta}{q}.$$

Replacing n by 0, 1, 2, ..., q - 1, we shall obtain the following q values:

i.
$$\cos \frac{\theta}{q} + i \sin \frac{\theta}{q}$$
 $(n = 0)$

ii.
$$\cos \frac{2\pi + \theta}{q} + i\sin \frac{2\pi + \theta}{q}$$
 (n=1)

iii.
$$\cos \frac{4\pi + \theta}{q} + i\sin \frac{4\pi + \theta}{q}$$
 (n=2)

......

$$\cos \frac{2(q-1)\pi}{q} + i\sin \frac{2(q-1)\pi}{q} \quad (n = q-1)$$

and each of the above q quantities is equal to one of the values of $(\cos\theta + i\sin\theta)^{1/q}$.

Examples

1. Show that
$$\left(\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right)^4 = \cos 8\theta + i\sin 8\theta$$
.

Here,
$$\left(\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right)^4 = \frac{(\cos\theta + i\sin\theta)^4}{[\cos(\pi/2 - \theta) + i\sin(\pi/2 - \theta)]^4}$$

$$= \frac{\cos 4\theta + i\sin 4\theta}{\cos(2\pi - 4\theta) + i\sin(2\pi - 4\theta)}$$

$$= \frac{\cos 4\theta + i\sin 4\theta}{\cos 4\theta - i\sin 4\theta}$$

$$= \frac{(\cos 4\theta + i\sin 4\theta)(\cos 4\theta + i\sin 4\theta)}{(\cos 4\theta - i\sin 4\theta)(\cos 4\theta + i\sin 4\theta)}$$

$$= (\cos 4\theta + i\sin 4\theta)^2$$
$$= \cos 8\theta + i\sin 8\theta.$$

2. Prove that
$$\left(\frac{1+\sin\phi+i\cos\phi}{1+\sin\phi-i\cos\phi}\right)^n = \cos(\frac{n\pi}{2}-n\phi) + i\sin(\frac{n\pi}{2}-n\phi)$$

Let
$$1+\sin\phi + i\cos\phi = r(\cos\theta + i\sin\theta)$$
. Then $r\cos\theta = 1 + \sin\phi$, and $r\sin\theta = \cos\phi$
 $1 + \sin\phi - i\cos\phi = r(\cos\theta - i\sin\theta)$, and $\tan\theta = \frac{\cos\phi}{1 + \sin\phi}$

$$= \frac{\sin(90-\phi)}{1 + \cos(90-\phi)}$$

$$= \frac{2\sin(\frac{90-\phi}{2})\cos(\frac{90-\phi}{2})}{2\cos^2(\frac{90-\phi}{2})}$$

$$= \tan(\frac{90-\phi}{2})$$

$$\therefore \theta = (\frac{90-\phi}{2})$$

LHS =
$$\frac{\left[r(\cos\theta + i\sin\theta)\right]^n}{\left[r(\cos\theta - i\sin\theta)\right]^n} = \frac{\cos n\theta + \sin n\theta}{\cos n\theta - i\sin n\theta}$$

$$= (\cos n\theta + i\sin n\theta)(\cos n\theta + i\sin n\theta)$$

$$= \cos 2n\theta + i\sin 2n\theta$$

$$= \cos 2n\left(\frac{90-\phi}{2}\right) + i\sin 2n\left(\frac{90-\phi}{2}\right)$$

$$= \cos(n\pi/2 - n\phi) + i\sin(n\pi/2 - n\phi).$$

3. Finds all values of $(1+i)^{1/3}$

Let
$$1 + i = r(\cos\theta + i\sin\theta)$$
., Then $r = \sqrt{2}$, $\theta = \pi/4$.

$$\therefore (1 + i) = \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

$$(1+i)^{1/3} = \left[\sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^{1/3}$$

$$= \left[\sqrt{2} \left\{\cos(2n\pi + \frac{\pi}{4}) + i\sin(2n\pi + \frac{\pi}{4})\right\}\right]^{1/3}$$

$$= 2^{1/6} \left[\cos\frac{(8n+1)\pi}{12} + i\sin\frac{(8n+1)\pi}{12}\right]$$

Replacing n by 0, 1, 2 we obtain the required values:

$$2^{1/6}(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}), 2^{1/6}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}), 2^{1/6}(\cos\frac{17\pi}{12} + i\sin\frac{17\pi}{12}).$$

1.9 Function of a Complex Variable

Let S be a set of complex numbers. A function f defined on S is a rule which assigns to every z(=x + iy) in S, a complex number w(=u+iv). We say that w is the function of z, and we write w = f(z).

Here, z is called a **complex variable**. And the set S is the domain of the function. The set of all the outputs is called the range of the function.

Since z = x + iy, so f(z) will be of the form u + iv where u and v are functions of two real variables x and y. We may then write

$$w = u(x, y) + iv(x, y)$$

Examples

1. Find u and v if $f(z) = z^3$. Also find the value of f at z = 1 + i

Let
$$w = f(z) = z^3$$

= $(x + iy)^3$

$$= x^{3} + 3x^{2}iy + 3xi^{2}y^{2} + i^{3}y^{3}$$

$$= (x^{3} - 3xy^{2}) + i(3x^{2}y - y^{3})$$
or, $u + iv = x^{3} - 3xy^{2} + i(3x^{2}y - y^{3})$

Equating real and imaginary part, we get

$$u = x^3 - 3xy^2$$
$$y = 3x^2y - y^3$$

The value of f at z = 1 + i is

$$f(1+i) = (1+i)^{3}$$

$$= 1 + 3i + 3i^{2} + i^{3}$$

$$= 1 + 3i - 3 - i$$

$$= -2 + 2i$$

2. If $f(z) = \frac{1}{z}$, find u and v. Also find the value of f at z = 1 - i.

Let
$$w = f(z) = \frac{1}{x + iy}$$

$$= \frac{1}{x + iy} \times \frac{x - iy}{x - iy} = \frac{x - iy}{x^2 + y^2}$$
or, $u + iv = \frac{x}{x^2 + y^2} = i\frac{y}{x^2 + y^2}$

Equating real and imaginary parts,

$$u = \frac{x}{x^2 + y^2} \text{ and } v = -\frac{y}{x^2 + y^2}$$
Also, $f(1-i) = \frac{1}{1-i} = \frac{1+i}{(1-i)(1+i)} = \frac{1+i}{2} = \frac{1}{2}(1+i)$

Exercise 1.1

- Express the following in polar form
- (ii) -1 + i (iii) 1 i
- 2. Determine the principal value of the following arguments.

(i)
$$1 - i$$

(i)
$$1 - i$$
 (ii) $1 + i$

(iii)
$$\sqrt{3}$$
 +i

(iv)
$$1 + \sqrt{3}$$
 i (v) $1 - \sqrt{3}$ i

(v)
$$1 - \sqrt{3}$$
 i

3. Show that
$$\frac{(\cos\theta + i\sin\theta)^4}{(\sin\theta + i\cos\theta)^5} = \sin \theta - i\cos \theta$$

Show that

$$\frac{(\cos 3\theta + i\sin \theta)^4 (\cos \theta - i\sin \theta)^3}{(\cos 5 + i\sin 5\theta)^7 (\cos 2\theta + i\sin 2\theta)^5} = \sin 13\theta - i\sin 13\theta$$

5. Find all the values

a.
$$1^{1/3}$$

b.
$$(1+i)^{1/7}$$
 c. $(-1)^{1/6}$

6. If
$$(x + \frac{1}{x}) = 2\cos\theta$$
, show that $x^n + \frac{1}{x^n} = 2\cos\theta$

7. Find the values of the following functions at the indicated points

a.
$$f(z) = z^2 - 2z$$
, $z = 1 + i$

b.
$$f(z) = z + \overline{z}, z = 3 + i$$

8. If $w = f(z) = z^2$, find Re f and Im f.

9. If
$$w = f(z) = z^2 + 3z$$
, find u and v.

10. If $w = f(z) = 3iz + 5\overline{z}$, find u and v. Also, find the value of f at $z = \frac{1}{2} + i$.

11. If $w = f(z) = z^2$, find u and v. Also, find the value of f at z = i.

Answers

1. (i)
$$\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$$
 (ii) $\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)$

$$(ii)\sqrt{2}\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$$

(iii)
$$\sqrt{2} \left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$
 (iv) $3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$

(iv)
$$3(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$$

2. (i)
$$-\frac{\pi}{4}$$

(ii)
$$\frac{\pi}{4}$$

2. (i)
$$-\frac{\pi}{4}$$
 (ii) $\frac{\pi}{4}$ (iii) $\frac{\pi}{6}$ (iv) $\frac{\pi}{3}$ (v) $-\frac{\pi}{3}$

$$(v) - \frac{\pi}{3}$$

5. a.
$$1, \frac{1}{2}(-1 + \sqrt{-3}), \frac{1}{2}(-1 - \sqrt{-3})$$

b.
$$2^{1/14} \left[\cos \frac{1}{7} \left(2n\pi + \frac{\pi}{4}\right) + i\sin \frac{1}{7} \left(2n\pi + \frac{\pi}{4}\right)\right], n = 0, 1, 2, 3, 4, 5$$

c.
$$\cos \frac{2n\pi + \pi}{6} + i \sin \frac{2n\pi + \pi}{6}$$
, $n = 0, 1, 2, 3, 4, 5$

8.
$$x^2 - y^2$$
, 2xy

9.
$$x^2 + 3x - y^2$$
, $(2x + 3)y$

10.
$$5x - 3y$$
, $3x - 5y$, $-\frac{1}{2}(1 + 7i)$

11.
$$x^2 - y^2$$
, $2xy$, -1