MARS via LASSO

Dohyeong Ki

Department of Statistics, UC Berkeley

Jun 1, 2023

Ki, D., Fang, B., and Guntuboyina, A. (2021+) MARS via LASSO. Available at https://arxiv.org/abs/2111.11694.

R package: https://github.com/DohyeongKi/regmdc

MARS (Multivariate Adaptive Regression Splines)

MARS (Friedman [1991]) is a regression technique that can fit models with non-linearity and interaction between variables.

MARS (Multivariate Adaptive Regression Splines)

MARS (Friedman [1991]) is a regression technique that can fit models with non-linearity and interaction between variables.

Given data $(x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)$ where $x^{(i)} \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, MARS fits a linear combination of products of the hinge (ReLU) functions

$$(x_j - t_j)_+ := \max\{x_j - t_j, 0\}$$
 and $(t_j - x_j)_+$.

MARS (Multivariate Adaptive Regression Splines)

MARS (Friedman [1991]) is a regression technique that can fit models with non-linearity and interaction between variables.

Given data $(x^{(1)}, y_1), \ldots, (x^{(n)}, y_n)$ where $x^{(i)} \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, MARS fits a linear combination of products of the hinge (ReLU) functions

$$(x_j - t_j)_+ := \max\{x_j - t_j, 0\}$$
 and $(t_j - x_j)_+$.

Example:
$$5.3 + 2.3(x_1 - 2)_+ - 1.4(-2 - x_3)_+ + 4.7(x_1 + 3)_+(1 - x_2)_+$$

The Usual Algorithm for MARS

Model building strategy:

Greedy algorithm (like stepwise regression)

- forward selection
- backward elimination

The Usual Algorithm for MARS

Model building strategy:

Greedy algorithm (like stepwise regression)

- forward selection
- backward elimination

 \longrightarrow Difficult to guarantee optimality and study theoretical properties

Our Method

We propose and study a LASSO variant of the MARS method.

Data: $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ where $x^{(i)} \in [0, 1]^d$ and $y_i \in \mathbb{R}$

Data: $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ where $x^{(i)} \in [0, 1]^d$ and $y_i \in \mathbb{R}$

Two simplifications:

- We only consider $(x_j t_j)_+$. $(\because (t_j - x_j)_+ = (x_j - t_j)_+ - (x_j - 0)_+ + t_j)$ $(x_j - t_j)_+$ is linear if $t_j = 0$.
- We assume $t_i \in [0,1)$.

We use LASSO to fit a sparse linear combination of basis functions of the form:

$$\prod_{i \in S} (x_j - t_j)_+$$
 where $S \subseteq \{1, \dots, d\}$ and $t_j \in [0, 1)$.

We use LASSO to fit a sparse linear combination of basis functions of the form:

$$\prod_{i \in S} (x_j - t_j)_+$$
 where $S \subseteq \{1, \dots, d\}$ and $t_j \in [0, 1)$.

We restrict S to have no more than s (pre-specified) elements.

We use LASSO to fit a sparse linear combination of basis functions of the form:

$$\prod_{j\in S}(x_j-t_j)_+$$
 where $S\subseteq \{1,\ldots,d\}$ and $t_j\in [0,1).$

We restrict S to have no more than s (pre-specified) elements.

We need an infinite-dimensional version of LASSO (Rosset et al. [2007], Bredies and Pikkarainen [2013], Condat [2020], ...).

- Parametrize infinite linear combinations with (signed) measures
- Measure complexity in terms of the (total) variation of the involved signed measures

Our Function Class

 $\mathcal{F}_{\infty-\mathsf{mars}}^{d,s}$ is the collection of all the functions of the form

$$f(x_1,\ldots,x_d) = c + \sum_{\substack{\varnothing \neq S \subseteq \{1,\ldots,d\}\\|S| \leq s}} \int_{[0,1)^{|S|}} \prod_{j \in S} (x_j - t_j)_+ d\nu_{S}(t_j,j \in S)$$

 u_S is a signed measure on $[0,1)^{|S|}$ for each $\varnothing \neq S \subseteq \{1,\ldots,d\}$ with $|S| \leq s$

Examples) (1) d = s = 1

$$f(x_1) = c + \int_{[0,1)} (x_1 - t_1)_+ d\nu_1(t_1)$$

Examples) (1) d = s = 1

$$f(x_1) = c + \int_{[0,1)} (x_1 - t_1)_+ d\nu_1(t_1)$$

(2)
$$d = s = 2$$

$$egin{aligned} f(x_1,x_2) &= c + \int_{[0,1)} (x_1-t_1)_+ \, d
u_1(t_1) + \int_{[0,1)} (x_2-t_2)_+ \, d
u_2(t_2) \ &+ \int_{[0,1)^2} (x_1-t_1)_+ (x_2-t_2)_+ \, d
u_{1,2}(t_1,t_2) \end{aligned}$$

• The usual MARS functions are special cases.

If ν_S is supported on a finite set $\{(t_{\ell_j}^S, j \in S) : \ell = 1, \dots, k_S\}$ with

$$u_{\mathcal{S}}ig(ig\{ig(t_{\ell j}^{\mathcal{S}}, j \in \mathcal{S}ig)ig\}ig) = b_{\ell}^{\mathcal{S}} \qquad ext{for } \ell = 1, \dots, k_{\mathcal{S}},$$

then the function becomes

$$f(x_1,\ldots,x_d)=c+\sum_{\substack{\varnothing\neq S\subseteq\{1,\ldots,d\}\\|S|< s}}\sum_{\ell=1}^{k_S}b_\ell^S\cdot\prod_{j\in S}\left(x_j-t_{\ell j}^S\right)_+.$$

Complexity Measure

Complexity measure for $f \in \mathcal{F}^{d,s}_{\infty-\text{mars}}$:

$$V_{\mathsf{mars}}(f) := \sum_{\substack{\varnothing
eq S \subseteq \{1,\ldots,d\} \ |S| < s}} |
u_S| ig([0,1)^{|S|} \setminus \{(0,\ldots,0)\}ig).$$

- The sum of the variation of the involved signed measures
- (0,...,0) is excluded; the products of linear functions are not penalized

If $\nu_{\mathcal{S}}$ is supported on a finite set $\{(t_{\ell j}^{\mathcal{S}}, j \in \mathcal{S}) : \ell = 1, \dots, k_{\mathcal{S}}\}$ with

$$u_{\mathcal{S}}ig(ig\{ig(t_{\ell j}^{\mathcal{S}}, j \in \mathcal{S}ig)ig\}ig) = b_{\ell}^{\mathcal{S}} \qquad ext{for } \ell = 1, \dots, k_{\mathcal{S}},$$

then

$$V_{\mathsf{mars}}(f) = \sum_{\substack{\varnothing
eq S \subseteq \{1,...,d\} \ |S| \leq s}} \sum_{\ell=1}^{k_{\mathcal{S}}} |b^{\mathcal{S}}_{\ell}| \cdot \mathbf{1} ig\{ ig(t^{\mathcal{S}}_{\ell j}, j \in S ig)
eq (0,\ldots,0) ig\},$$

which is the sum of the absolute values of the coefficients (the coefficients of the product of linear functions are excluded).

Our Estimator

Our infinite-dimensional LASSO estimator for MARS fitting:

$$\hat{f}_{n,V}^{d,s} \in \operatorname*{argmin}_{f} \left\{ \sum_{i=1}^{n} \left(y_i - f(x^{(i)}) \right)^2 : f \in \mathcal{F}_{\infty-\mathsf{mars}}^{d,s} \text{ and } V_{\mathsf{mars}}(f) \leq V \right\}$$

V > 0 is a single tuning parameter

Existence and Computation

 $\hat{f}_{n,V}^{d,s}$ exists and can be computed by applying finite-dimensional LASSO algorithms to the finite basis of functions

$$\left\{\prod_{j\in S}(x_j-t_j)_+:S\subseteq\{1,\ldots,d\} \text{ with } |S|\leq s$$
 and $t_j\in\{0\}\cup\left\{x_j^{(1)},\ldots,x_j^{(n)}\right\}\right\}$

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})$$
 for the i^{th} design point $x^{(i)}$

Existence and Computation

 $\hat{f}_{n,V}^{d,s}$ exists and can be computed by applying finite-dimensional LASSO algorithms to the finite basis of functions

$$\left\{ \prod_{j \in S} (x_j - t_j)_+ : S \subseteq \{1, \dots, d\} \text{ with } |S| \le s$$

$$\text{and } t_j \in \{0\} \cup \left\{x_j^{(1)}, \dots, x_j^{(n)}\right\} \right\}$$

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})$$
 for the i^{th} design point $x^{(i)}$

- We can find $\hat{f}_{n,V}^{d,s}$ that is a sparse linear combination of the basis functions.
- The usual MARS algorithm also works with the same finite basis although no theoretical justification is provided for this reduction.

Jun 1, 2023

Approximation

The number of basis functions in the worst case: $O(n^s)$ (ignoring a multiplicative factor in d)

Approximation

The number of basis functions in the worst case: $O(n^s)$ (ignoring a multiplicative factor in d)

We also consider the approximate version $\tilde{f}_{n,V}^{d,s}$ that is obtained by restricting the knots t_i as

$$t_j \in \left\{0, \frac{1}{N_j}, \frac{2}{N_j}, \dots, 1\right\}$$

for some pre-specified integers N_1, \ldots, N_d .

Under the assumptions:

• data $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ are generated according to the model

$$y_i = f^*(x^{(i)}) + \xi_i$$
 where $\xi_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$,

Under the assumptions:

• data $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ are generated according to the model

$$y_i = f^*(x^{(i)}) + \xi_i$$
 where $\xi_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$,

• $x^{(i)}$ are i.i.d. RVs on $[0,1]^d$ with pdf p_0 bounded by B,

Under the assumptions:

• data $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ are generated according to the model

$$y_i = f^*(x^{(i)}) + \xi_i$$
 where $\xi_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$,

- $x^{(i)}$ are i.i.d. RVs on $[0,1]^d$ with pdf p_0 bounded by B,
- $f^* \in \mathcal{F}^{d,s}_{\infty-\mathsf{mars}}$ with $V_{\mathsf{mars}}(f^*) \leq V$ and $\|f^*\|_{\infty} \leq M$,

Under the assumptions:

• data $(x^{(1)}, y_1), \dots, (x^{(n)}, y_n)$ are generated according to the model

$$y_i = f^*(x^{(i)}) + \xi_i$$
 where $\xi_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$,

- $x^{(i)}$ are i.i.d. RVs on $[0,1]^d$ with pdf p_0 bounded by B,
- $f^* \in \mathcal{F}^{d,s}_{\infty-\mathsf{mars}}$ with $V_{\mathsf{mars}}(f^*) \leq V$ and $\|f^*\|_{\infty} \leq M$,
- the loss function is

$$\mathcal{L}(\hat{f}_{n,V,\mathbf{M}}^{d,s},f^*):=\int \left(\hat{f}_{n,V,\mathbf{M}}^{d,s}(x)-f^*(x)\right)^2 p_0(x)\,dx,$$

we prove that

$$\mathbb{E}\mathcal{L}(\hat{f}_{n,V,M}^{d,s},f^*) = O_{d,\sigma,V,B,M}(n^{-\frac{4}{5}}(\log n)^{\frac{8(s-1)}{5}}).$$

Remark) d=1 It was proved the rate is $n^{-\frac{4}{5}}$ (see, e.g., Mammen and van de Geer [1997]).

 \longrightarrow Similar results can be proved for the approximate version $\tilde{f}_{n,V,M}^{d,s}$

Minimax Lower Bound

Under the same assumption, we prove that the minimax rate under the loss function $\mathcal L$ over the class

$$\left\{f \in \mathcal{F}_{\infty-\mathsf{mars}}^{d,s} : V_{\mathsf{mars}}(f) \leq V \text{ and } \|f^*\|_{\infty} \leq M \right\}$$

is bounded from below by

$$n^{-\frac{4}{5}}(\log n)^{\frac{8(s-1)}{5}}.$$

Connection to Smoothness Constrained Estimation

$$d = s = 1$$

The **total variation** of a function $g:[0,1] \to \mathbb{R}$ is defined by

$$V(g) := \sup_{0=u_0 < u_1 < \dots < u_k=1} \sum_{i=0}^{\kappa-1} |g(u_{i+1}) - g(u_i)|$$

where the supremum is over all $k \ge 1$ and partitions $0 = u_0 < u_1 < \cdots < u_k = 1$ of [0, 1].

Connection to Smoothness Constrained Estimation

$$d = s = 1$$

The **total variation** of a function $g:[0,1] \to \mathbb{R}$ is defined by

$$V(g) := \sup_{0=u_0 < u_1 < \dots < u_k=1} \sum_{i=0}^{k-1} |g(u_{i+1}) - g(u_i)|$$

where the supremum is over all $k \ge 1$ and partitions $0 = u_0 < u_1 < \cdots < u_k = 1$ of [0, 1].

Then, somewhat loosely, we can describe the estimator $\hat{f}_{n,V}^{1,1}$ as

$$\hat{f}_{n,V}^{1,1} \in \underset{f}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} (y_i - f(x^{(i)}))^2 : V(f') \leq V \right\}.$$

Corresponding penalized version:

$$\underset{f}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(y_{i} - f(x^{(i)}) \right)^{2} + \lambda V(f') \right\}$$

The piecewise linear **locally adaptive regression spline** (LARS) estimator of Mammen and van de Geer [1997]

Example

A function with locally varying smoothness (Doppler function):

$$y_i = 5 \cdot \sin \left(4 / \left(\sqrt{(x_1^{(i)})^2 + (x_2^{(i)})^2} + 0.001 \right) \right) + 7.5 + \xi_i$$

for i = 1, ..., n, where $\xi_i \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$.

n = 800, s = 2, $N_i = 25$, V is chosen by 10-fold cross validation

Average loss over 25 repetitions

	Usual Method	Our Method
Average loss (Standard error)	3.28 (0.07)	1.51 (0.06)

More examples (simulated data and real data) are in https://github.com/DohyeongKi/mars-lasso-paper

Conclusion

- We propose and study an infinite-dimensional LASSO estimator for MARS.
- Our estimator can be computed with finite dimensional LASSO algorithms.
- Our estimator achieves the rate $n^{-\frac{4}{5}}(\log n)^{\frac{8(s-1)}{5}}$ under the standard nonparametric regression setting.

- The dependence on the dimension of the exponent of the log factor is inevitable.
- It can be considered as a multivariate generalization of the piecewise linear locally adaptive regression spline estimator of Mammen and van de Geer [1997].

- K. Bredies and H. K. Pikkarainen. Inverse problems in spaces of measures. *ESAIM: Control, Optimisation and Calculus of Variations*, 19(1):190–218, 2013.
- L. Condat. Atomic norm minimization for decomposition into complex exponentials and optimal transport in Fourier domain. *Journal of Approximation Theory*, 258:105456, 2020.
- J. H. Friedman. Multivariate adaptive regression splines. *Annals of Statistics*, 19(1):1–67, 1991.
- E. Mammen and S. van de Geer. Locally adaptive regression splines. *Annals of Statistics*, 25(1):387–413, 1997.
- S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. ℓ_1 regularization in infinite dimensional feature spaces. In *International Conference on Computational Learning Theory*, volume 4539 of *Lecture Notes in Computer Science*, pages 544–558. Springer, Berlin, 2007.