ACIDEZ DE CAFÉ MEDIANTE UN DISEÑO DE EXPERIMENTO FACTORIAL DE TRES FACTORES

PROYECTO INTEGRADOR DE APRENDIZAJE

DISEÑO DE EXPERIMENTOS

DOCTORA: AZUCENA YOLOXÓCHITL RÍOS MERCADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

FACULTAD DE CIENCIA FÍSICO-MATEMÁTICAS

1. Planteamiento del caso

Se realizó un experimento en casa para investigar si influye el tipo preparación (Olla, cafetera y prensa), el tipo de lácteo usado (leche entera, crema coffee mate, y sin lácteo), y la marca de café (Los Portales, Punta del Cielo y Kirkland) en el nivel de acidez del café. El nivel de acidez del café se mide con la escala de pH, usando un medidor digital. Para este experimento se darán tres réplicas.

2. Variable respuesta: Nivel de pH.

3. Factores:

FACTOR A: Modo de preparación del café.

Niveles de A: Prensa, Olla, Cafetera.

FACTOR B: Marca de café

Niveles de B: Café Punta del Cielo, Los Portales, Kirkland.

FACTOR C: Lácteos.

Niveles de C: Leche Entera Lala, Crema Coffee Mate, sin lácteo.

4. Tipo de diseño

Se trabajará un diseño factorial de tres factores con tres réplicas. Por lo que el modelo a trabajar es:

$$y_{ij} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha \beta)_{ij} + (\alpha \gamma)_{ik} + (\beta \gamma)_{jk} + (\alpha \beta \gamma)_{ijk} + e_{ijkl}$$

Donde

 $y_{ij} \rightarrow \text{ es el nivel de pH.}$

 $\mu \rightarrow \text{ es el nivel de pH promedio.}$

 $\alpha_i \rightarrow \text{es el efecto del método de preparación de café.}$

 $\beta_i \rightarrow$ es el efecto de la marca de café.

 $\gamma_k \rightarrow$ es el efecto del lácteo.

 $(\alpha\beta)_{ij} \rightarrow \text{ es el efecto de la interacción doble (Método y marca de café)}.$

 $(\alpha \gamma)_{ik} \rightarrow$ es el efecto de la interacción doble (Método y tipo de lácteo).

 $(\beta \gamma)_{ik} \rightarrow$ es el efecto de la interacción doble (Marca de café y tipo de lácteo).

 $(\alpha\beta\gamma)_{ijk} \rightarrow$ es el efecto de la interacción triple (Método, marca de café y tipo de lácteo).

 $e_{i,ikl} \rightarrow \text{ es el error aleatorio}$

5. Organizar el trabajo experimental.

Se utilizarán instrumentos de cocina, un recipiente medidor de un litro para estar transportando el agua, con una cafetera que tiene como límite un litro, una olla en donde se vaciará un litro de agua y una prensa de medio litro (a la que se le pondrá medio litro de agua y la mitad de cantidad de café a diferencia de la olla y la cafetera.

Para medir el café estaremos usando cucharas soperas, se le añadirán tres cucharadas soperas por cada litro de agua (a la olla y a la cafetera), y una cucharada y media a la prensa por cada medio litro de agua. Además de que se usarán filtros de la marca HEB para filtrar el café.

Las marcas de café a utilizar serán Café Punta del Cielo, Café Los Portales y Café Kirkland (la marca tradicional de Costco), elegidos por ser los más consumidos en casa.

Como lácteos se usará leche entera Lala (presentación de 1.8 litros) y coffee mate original líquido (presentación de 530 gramos), y para medir dichos lácteos se estarán utilizando dos cucharadas soperas (que equivalen a 1 onza líquida).

El café se vaciará en vasitos de plástico desechables de tamaño de 4 onzas, para posteriormente añadir el lácteo.

Se usará un medidor de pH de la marca LxTek, modelo ARSDJ04 con pantalla digital, que mide el pH hasta en dos decimales.

6. Croquis del Experimento

	Nivel del Factor A	Nivel del Factor B	Nivel del Factor C
T1	A1	B1	C1
T2	A1	B1	C2
T3	A1	B1	C3
T4	A1	B2	C1
T5	A1	B2	C2
Т6	A1	B2	C3
T7	A1	B3	C1
T8	A1	B3	C2
Т9	A1	B3	C3
T10	A2	B1	C1
T11	A2	B1	C2
T12	A2	B1	C3
T13	A2	B2	C1
T14	A2	B2	C2
T15	A2	B2	C3
T16	A2	B3	C1
T17	A2	B3	C2
T18	A2	B3	C3
T19	A3	B1	C1
T20	A3	B1	C2
T21	A3	B1	C3
T22	A3	B2	C1
T23	A3	B2	C2
T24	A3	B2	C3
T25	A3	B3	C1
T26	A3	B3	C2
T27	A3	B3	C3

1 T2	2 T24	3 T21	4 T20	5 T25	6 T27	7 T9	8 T4	9 T2
10 T18	11 T15	12 T20	13 T27	14 T9	15 T22	16 T19	17 T8	18 T3
19 T23	20 T10	21 T12	22 T24	23 T9	24 T14	25 T1	26 T16	27 T5
28 T23	29 T26	30 T1	31 T17	32 T15	33 T17	34 T10	35 T5	36 T3
37 T10	38 T6	39 T17	40 T16	41 T18	42 T16	43 T8	44 T22	45 T8
46 T26	47 T18	48 T12	49 T3	50 T20	51 T22	52 T2	53 T5	54 T7
55 T23	56 T15	57 T6	58 T25	59 T26	60 T4	61 T6	62 T27	63 T1
64 T12	65 T25	66 T3	67 T13	68 T14	69 T11	70 T7	71 T4	72 T13
73 T19	74 T14	75 T21	76 T11	77 T13	78 T21	79 T11	80 T7	81 T19

Para este proceso de aleatorización se utilizó un generador de números aleatorios de Google.

7. Realizar el experimento.

Se comenzó a hacer el café, el experimento se hizo en casa, y tuve la ayuda de una compañera gastrónoma y con habilidades de barista, se adjuntarán fotografías de la realización del experimento.

8. Recopilar y organizar los datos.

	,	A1 CAFETERA	4	A2 PRENSA		A3 OLLA			
	B1 PTA	B2	В3						
	CIELO	PORTALES	KIRKLAND	B1	B2	В3	B1	B2	В3
	6.16	6.16	6.26	6.26	6.36	6.56	6.46	6.36	6.46
C1 LALA ENTERA	6.26	6.06	6.26	6.26	6.46	6.46	6.36	6.36	6.46
	6.36	5.96	6.36	6.26	6.36	6.46	6.46	6.36	6.36
C2 COFFE MATE	6.56	6.26	6.86	6.46	6.66	6.86	6.76	6.86	6.76
OG	6.66	6.46	6.76	6.36	6.66	6.86	6.66	6.76	6.86
Od	6.56	6.36	6.76	6.56	6.56	6.76	6.76	6.76	6.76
	5.76	5.36	6.56	5.76	6.06	6.46	5.86	6.16	6.46
C3 SIN LÁCTEO	5.66	5.26	6.36	5.86	6.16	6.46	5.86	6.16	6.56
	5.66	5.16	6.26	5.86	5.86	6.56	5.76	6.26	6.46

9. Establecer hipótesis y realizar ANOVA, y demás pruebas estadísticas.

Se establecerán las siguientes hipótesis:

 H_1 : $\alpha_i = 0 \ \forall i$

 H_0 : $\alpha_i \neq 0$ al menos para un i.

 $H_1: \beta_j = 0 \ \forall j$

 H_0 : $\beta_j \neq 0$ al menos para un j.

 $H_1{:}\,\gamma_k=0\,\forall k$

 $H_0: \gamma_k \neq 0$ al menos para un k.

 H_1 : $(\alpha\beta)_{ij} = 0 \ \forall i,j$

 $H_0: (\alpha \beta)_{ij} \neq 0$ al menos para un ij.

 $H_1: (\alpha \gamma)_{ik} = 0 \ \forall ik$

 $H_0: (\alpha \gamma)_{ik} \neq 0$ al menos para un ik.

 $H_1: (\beta \gamma)_{jk} = 0 \ \forall jk$

 $H_0: (\beta \gamma)_{jk} \neq 0$ al menos para un jk.

 H_1 : $(\alpha\beta\gamma)_{ijk} = 0 \ \forall ijk$

 H_0 : $(\alpha\beta\gamma)_{ijk} \neq 0$ al menos para un ijk.

Por lo que nuestra tabla de Análisis de Varianza quedará como se muestra a continuación.

FV	SC	GL	CM	EP	P-VALOR
FACTOR A	0.97061728	2	0.48530864	83.6382979	2.89317E-17
FACTOR B	1.91209877	2	0.95604938	164.765957	1.02799E-23
FACTOR C	5.5454321	2	2.77271605	477.851064	4.58578E-35
INT AB	0.79160494	4	0.19790123	34.106383	3.39216E-14
INT AC	0.21160494	4	0.05290123	9.11702128	1.05733E-05
INT BC	1.02567901	4	0.25641975	44.1914894	2.01879E-16
INT ABC	0.28395062	8	0.03549383	6.11702128	1.34013E-05
ERROR	0.31333333	54	0.00580247		
TOTAL	11.054321	80		-	

Al observar los p-valores podemos concluir que existen diferencias significativas en la interacción triple, por lo que procederemos a hacer pruebas de comparaciones múltiples para las interacciones triple.

Nos estaremos anclando a la media más pequeña, pues estaremos buscando el café más ácido (pH más bajo, significa mayor acidez).

Primero ordenaremos nuestras medias de menor a mayor, desde un inicio, para mayor comodidad, pues se están trabajando 27 medias.

media	
5.26	y123.
5.69333333	y113
5.82666667	y313.
5.826667	y213.
6.02666667	y223
6.06	y121.
6.19333333	y323.
6.26	y211.
6.26	y111.
6.29333333	y131.
6.36	y122.
6.36	y321.
6.39333333	y221.
6.393333	y133,
6.42666667	y311.
6.42666667	y331
6.46	y212.
6.49333333	y333.

6.493333	y231.
6.493333	y233
6.59333333	y112
6.62666667	y222.
6.72666667	y312
6.793333	y132.
6.793333	y322.
6.793333	y332.
6.82666667	y232.

Prueba de LSD

 $Sy_{ij} = 0.62195762$

 $t_{0.025,54} = 2.004879288$

LSD = 0.124694994

Por lo que al calcular rangos tenemos que

$$|\overline{y123} - \overline{y113}| = 0.4333 \ge 0.124694994$$

Por lo que notamos que sí hay diferencia en ambas medias.

Por lo que concluimos que la marca Los Portales, sin lácteos y hecho en cafetera me da mayor acidez en mi café.

Prueba de Duncan.

$$Sy = 0.043979$$

	2	3	4
rp	2.839	2.989	3.086
Rp	0.124857	0.131453365	0.135719

Para encontrar los valores de rp, dado que no se encontraban disponibles en la tabla de Duncan, se procedió a interpolar los datos usando la siguiente fórmula:

$$y=y_0+(x-x_0)rac{y_1-y_0}{x_1-x_0}$$

Tomando dos datos de mi tabla y aproximando una recta para posteriormente evaluar en 54 grados de libertad. La ecuación de dicha interpolación se calculó en GeoGebra simplemente graficando los dos puntos y trazando la recta que pasa por ellos.

Calculando los rangos obtenemos que:

$$|\overline{y123} - \overline{y113}| = 0.4333 \ge 0.12485$$

Por lo que notamos que sí hay diferencias en ambas medias.

Por lo que concluimos que la marca Los Portales, sin lácteos y hecho en cafetera me da mayor acidez en mi café.

Prueba de Tukey

$$Sy = 0.043979$$

 $q_{0.05}(27,54)=5.468$ Para encontrar este valor se procedió a interpolar datos, tomando dos datos de mi tabla y aproximando una recta para posteriormente evaluar en 54 grados de libertad, la ecuación de dicha interpolación se calculó en GeoGebra simplemente graficando los dos puntos y trazando la recta que pasa por ellos.

$$T = 0.240477$$

$$|\overline{y123} - \overline{y113}| = 0.4333 \ge 0.240477$$

Por lo que notamos que sí hay diferencias en ambas medias.

Por lo que concluimos que la marca Los Portales, sin lácteos y hecho en cafetera me da mayor acidez en mi café.

Método Analítico-Gráfico

$$t_{0.025.54} = 2.004879288$$

$$\sqrt{\frac{CME}{ni}} = 0.043979$$

$$t_{0.025,54} \sqrt{\frac{CME}{ni}} = 0.088173$$

Por lo que mis intervalos de confianza quedarían como a continuación:

	l	1	
superior	inferior	media	
5.34817268	5.17182732	5.26	y123.
5.78150601	5.60516066	5.69333333	y113
5.91483934	5.73849399	5.82666667	y313.
5.91483968	5.73849432	5.826667	y213.
6.11483934	5.93849399	6.02666667	y223
6.14817268	5.97182732	6.06	y121.
6.28150601	6.10516066	6.19333333	y323.
6.34817268	6.17182732	6.26	y211.
6.34817268	6.17182732	6.26	y111.
6.38150601	6.20516066	6.29333333	y131.
6.44817268	6.27182732	6.36	y122.

6.44817268	6.27182732	6.36	y321.
6.48150601	6.30516066	6.39333333	y221.
6.48150568	6.30516032	6.393333	y133,
6.51483934	6.33849399	6.42666667	y311.
6.51483934	6.33849399	6.42666667	y331
6.54817268	6.37182732	6.46	y212.
6.58150601	6.40516066	6.49333333	y333.
6.58150568	6.40516032	6.493333	y231.
6.58150568	6.40516032	6.493333	y233
6.68150601	6.50516066	6.59333333	y112
6.71483934	6.53849399	6.62666667	y222.
6.81483934	6.63849399	6.72666667	y312
6.88150568	6.70516032	6.793333	y132.
6.88150568	6.70516032	6.793333	y322.
6.88150568	6.70516032	6.793333	y332.
6.91483934	6.73849399	6.82666667	y232.

Y mi gráfica quedaría de la siguiente manera:

Donde podemos apreciar que en el intervalo marcado como 1 se trata de el intervalo de nuestra media más pequeña, y notamos que este intervalo no se solapa con ningún otro, por lo que concluimos que la marca Los Portales, sin lácteos y hecho en cafetera me da mayor acidez en mi café.

Conclusiones:

Una vez terminados los métodos de comparaciones múltiples llegamos a la conclusión de que la marca Los Portales, sin lácteos y hecho en cafetera me da mayor acidez en mi café, en todos mis métodos de comparación, y sólo se un nivel por tratamiento (para los tres tratamientos).

10. Referencias.

- The Concise Encyclopedia of Statistics. (2009). Least Significant Test,
 23(2), 302–304. https://doi.org/10.1108/09504120910935282
- *Design and Analysis of Experiments* (8. a ed.). (2013). Wiley.
- Salomon, D. (2005). Curves and Surfaces for Computer Graphics by David Salomon (2005–09-08) (1.^a ed.). Springer.