Université Internationale de Casablanca

3ème année GE

Composants pour asservissement

PLAN 1ère Partie

- 1) Introduction
- 2) Chaine de mesure
- 3) Capteurs Transmetteurs et Convertisseurs
- 4) Instrumentation industrielle: normes ISA
- 5) Vannes de régulation
- 6) Autres composants : MCC, Moteur pas à pas

Introduction

Composants de la régulation industrielle

CNA: convertisseur Numérique Analogique

CAN: convertisseur Analogique Numérique

Chaine de mesure

Grandeurs physique:

- Capteurs de mesure physiques : position,
 vitesse, force, masse, débit, pression, niveau,
 etc...-
- Thermique : température
- Chimique : PH, concentration, humidité, etc

Corps d'épreuve

Chaine de mesure

Principe d'un capteur

Signal électrique de l'ordre du mV ou du µA

Signal électrique de l'ordre du V ou du mA

Signal électrique normé (+/- 10V, 0..20 mA, 4..20 mA) interprétable par le circuit de contrôle commande

Transmetteur de signal 4-20mA

→ la boucle de courant 4-20 mA est la transmission analogique la plus utilisée depuis longtemps

→ le capteur module le courant en fonction de la grandeur mesurée (ex. : un débit)

Chaîne de mesure :

Assure un conditionnement du signal exempt de bruit Équipements et linéaire: usuels Conditionneur de signal : Comporte la linéarisation l'amplification bas niveau, ou le traitement du bruit. Procédé Équipements Conditionneur de Amplificateur Transmetteur Capteur dinstrumentation 4-20mA variable. mesurée Amplificateur d'instrumentation : utilisé pour amplifier les signaux. **Transmetteur 4-20mA:** conditionne, amplifie et transmet un signal électrique normalisé, en général Équipements un courant 4-20mA.

Le transmetteur détecte la rupture de ligne et transporte sur une grande distance sans perte de signal.

C'est un standard reconnu par tous les fabricants.

Le transport d'un signal analogique de tension, sur une grande distance, subit une atténuation, contrairement à un signal de courant.

résistance du conducteur

- → la résistance des fils n'influence pas le courant
- → le courant qui correspond à un débit nul est de 4 mA
- → ce qui permet d'assurer son alimentation
- → une panne donne 0 mA facile à détecter
- → il est facile de connecter plusieurs récepteurs

Le transmetteur intelligent

Le module de communication permet :

- De régler le transmetteur à distance;
- De brancher plusieurs transmetteurs en réseau.

Le microcontrôleur permet d'effectuer des calculs Par exemple, il peut convertir une mesure de différence de pression en niveau

Fonction de transfert d'un transmetteur

La fonction de transfert exprime la relation mathématique existant entre le signal d'entrée et le signal de sortie.

Io: courant,

tx: température

Fonction de transfert d'un transmetteur de température

Io = m(tx-li) + b

Avec li la limite inférieur, m la sensibilité et b le décalage.

Capteur de pression Mesure de la pression

- . La mesure de pression est fondamentale, car plusieurs techniques de mesure de débit, niveau utilisent la mesure de pression.
- La pression d'un fluide est la force que celui-ci exerce, par unité de surface, perpendiculairement à cette surface.
- . Cette pression est dite pression statique $P_{\rm S}$

$$P = \frac{F'}{A}$$

- . Si le fluide est en mouvement P_D Pression dynamique
- La pression totale est la somme des pressions statique et $P_T = P_S + P_D$ dynamique:

Unité de mesure de pression

- $I \, bar = 100 \, 000 \, Pa$
- I atm. = 101 325 Pa

1 bar
$$\approx 10^5 \text{ Pa}$$

1 Pa = 1 N/m²

$$1 \text{ Pa} = 1 \text{ N/m}^2$$

La pression dynamique

Manomètre à section uniforme

 La différence de pression
 entre P₁ et P₂ dépend de la hauteur h:

•
$$P_1 - P_2 = \rho gh = \Delta P$$

 ρ = m / V : masse volumique

m: masse

V = A.h; avec A: section

g : accélération terrestrec F = m.g

P = F / A ave

Mesure de niveau avec transmetteur de pression

- Le choix dépend de:
 - □ Type d'installation: Cuve, Réservoir, Extérieur.
 - Nature du produit: Fluide, Solide.
 - Liaison avec le liquide: Avec ou sans contacts.

Capteurs de pression : Mesure avec réservoir ouvert

Capteurs de pression : Mesure avec réservoir fermé

$$\Delta P = P_{HP} - P_{BP} = \rho g(H - h)$$

Convertisseur P/I (pression/courant)

Un convertisseur pression - courant converti un signal pneumatique en un signal électrique.

P: pression d'entrée (0,2 à 1 bar); I: courant de sortie 4 - 20 mA

No : noyau mobile (ferromagnétique) ; Bo : bobinage

DI: détecteur inductif ; Me: membrane

Boucle de régulation - Boucle imbriquée :

Pour être plus efficace on place une boucle de positionnement complémentaire qui à partir d'un signal du régulateur (4-20mA) positionne le servomoteur proportionnellement à ce signal. L'ensemble vanne servomoteur devient une vanne motorisée commandée en 4-20mA et incorpore un positionneur.

C : capteur transmetteur de débit

Positionneur électropneumatique

Le positionneurs détermine une position précise de la vanne (grandeur réglée x) correspondant au signal de commande.

Ils comparent le signal de commande venant d'un dispositif de réglage avec la course de l'organe de réglage et émettent comme grandeur de sortie une pression d'air de commande du servomoteur.

Positionneur électropneumatique

Avec positionneur:

$$\Delta F = 10r(-\Delta l) + \Delta P_s A_m$$

$$\Delta P_s = k\Delta x$$
(18)

 Δx représente le changement de la distance entre le levier, qui joue le rôle de la palette, et la buse de l'amplificateur.

Commande pneumatique par ordinateur:

- □ Pour piloter des composants électromécaniques, on utilise un convertisseur Courant/Pression (I/P) qui converti le signal électrique en signal pneumatique.
- ☐ Pour acquérir un signal pneumatique et le convertir en signal électrique, nous utilisons un convertisseur Pression/Courant (P/I).

 I_C : courant de consigne (4 - 20 mA); I_m : courant de mesure (4 - 20 mA)

 I_S : courant de sortie du régulateur (4 – 20 mA);

P_S: pression de commande; P_m: pression de mesure

O.R : organe de réglage (vanne + actionneur pneumatique + positionneur)

PID : régulateur ; P/I & I/P : convertisseurs

Réglage d'un transmetteur pneumatique

Le réglage consiste :

- ☐ à régler l'étendu de mesure par déplacement de la molette fixant le point de fonctionnement.
- ☐ à fixer le zéro d'échelle par la vis de réglage de tension du ressort.

Exemple: mesure du niveau dans un ballon de 6 m.

zéro: 0 ou 2 m

étendus de mesure : 1,2 ou

4 m

Indication:

Zéro correspond à 0,2 bar 100% correspond à 1 bar

Variation du signal pneumatique par rapport aux différents réglages

Instrumentation industrielle

NORME I.S.A. « Instrument Society of America » est une norme de présentation des procédés.

Exemple d'utilisation de la norme ISA pour un régulateur de débit

Notation selon la norme ISA

Alimentation de l'instrument ou connection au procédé		
Signal non définit		
Signal pneumatique		
Signal électrique		
ou		
Signal hydraulique		
Tube capillaire	\rightarrow \times	

Exemple de symbole graphique

Convertisseur courant / pression

- F = débit « flow »
- Y = « relay »

Appareil extracteur de racine carrée pour une boucle de débit

Abréviations et de conversion		
Abréviation	Fonction	
I/P	convertisseur courant à pression	
P/I	convertisseur pression à courant	

Vanne pneumatique

- F = débit « flow »
- C = régulation « control »
- V = vanne

Détecteur de température excessive

- T = température
- S = commutateur « switch »
- A = alarme

Indicateur lumineux

- L = lumière
- I = indicateur
- $H = haut \ll high \gg$

Régulateur

- $F = d\acute{e}bit \ll flow \gg$
- C = régulateur « controller »

Enregistreur

- T = température
- $R = \text{enregistreur} \ll \text{recorder} \gg \overline{+}$


```
FT:
           un transmetteur (T) de débit (F) (flow);
TT:
           un transmetteur de température;
FQT:
           un transmetteur de débit totalisé;
FIT:
           un transmetteur – indicateur de débit;
FIR:
          un enregistreur – indicateur de débit;
TDRC:
          un régulateur – enregistreur de température différentielle;
FIC:
           un régulateur – indicateur de débit;
           une vanne de régulation de débit.
FCV:
```

Schémas d'instrumentation Exemple de schéma en norme ISA

Représentation du procédé suivant la norme ISA

Lettres les plus utilisées dans la norme ISA				
	Première lettre	Deuxième lettre	Troisième lettre	
	(Variable commandée)	(Fonction de l'instrument)	(Fonction de la sortie)	
A	Analyse	Alarme	Alarme	
В	Brûleur	Choix de l'utilisateur	Choix de l'utilisateur	
\mathbf{C}	Conductivité électrique		Régulation ou contrôle	
D	Densité ou différentiel			
E	Tension	Élément primaire		
F	Débit - « flow » ou			
	rapport			
\mathbf{H}	Commande manuelle -		Haute - « high »	
	« hand »			
I	Courant	Indicateur		
L	Niveau - « level »	Lumière	Basse - « low »	
M	Humidité - « moisture »		Intermédiaire	
Ο	Choix de l'utilisateur	Choix de l'utilisateur	Choix de l'utilisateur	
P	Pression - « pressure »	Point de test		
R	Radioactivité	Enregistreur - « recorder »		
w	Vitesse - « speed »	Sécurité	Commutateur -	
			« switch »	
Τ	Température		Transmetteur	
\mathbf{V}	Viscosité		Vanne - « valve »	
Y	Choix de l'utilisateur	Fonction de conversion et de calcul	Calculateur ou relais	

Vannes de régulation

Vannes de régulation

Orifice à surface variable. Si l'ouverture est automatisée, on obtient un robinet de réglage
(ou valve de régulation).

33

Vannes de régulation Le corps de valve (body)

- Est divisé en 2 chambres au travers desquelles le liquide s'écoule.
- Fournit les points de branchement des conduites.

L'obturateur (plug)

• Élément qui délimite avec le siège l'espace dans lequel passe le liquide.

Le siège (seat)

- Partie du corps de la valve sur lequel vient reposer l'obturateur quand la valve est fermée.
- Selon la valve, il peut y avoir un ou deux sièges.

Simple siège

Double siège

Vannes de régulation

Vannes de régulation

Mouvement angulaire de l'obturateur

Les robinets à papillon (butterfly valve)

- . Obturateur déplacé par un mouvement angulaire.
- . L'obturateur est un disque.
- L'angle entre la normale du disque et la conduite définit la section de l'orifice.

Source: www.pro-techvalve.com

Les actionneurs pneumatiques

Les actionneurs électriques

Les actionneurs pneumatiques à diaphragame

. Deux configurations:

- « Fluid-to-extend stem » :
 - il faut envoyer de l'air pour provoquer l'extension de la tige.

- « Fluid-to-retract stem » :

il faut envoyer de l'air pour provoquer la rétraction de la tige.

Les actionneurs pneumatiques à diaphragme

Les actionneurs pneumatiques à piston

CARACTERISTIQUES DES VANNES DE REGULATION

- ☐ C'est la relation entre le débit Q et le signal de commande de vanne V.
- ☐ Deux principaux types de caractéristiques de débit :
 - 1) Linéaire;
 - 2) Égal pourcentage;

CARACTERISTIQUES DES VANNES DE REGULATION

Modélisation de la relation EQP: débit et commande de vanne

C'est la relation entre le débit d'une vanne et sa commande, lorsque sa caractéristique est de type égal pourcentage. On peut écrire :

$$\frac{y - y_{min}}{y_{max}-y_{min}} = \frac{(Q - Qmin)/(Q + Qmin)}{(Qmax-Qmin)/(Qmax+Qmin)}$$

Rappel: Mesure des débits

Débit volumique:

$$\square Q = \vee \cdot A$$

- □ Unités: m³/s,
- Débit massique:

$$\square Qm = \rho \cdot v \cdot A$$

□ Unités: kg/s,...

- Dynamique des fluides:
 - □ Fluide parfait: Fluide n'offrant pas de résistance à l'écoulement, i.e., ayant une viscosité nulle.
 - Le fluide réel: Fluide visqueux qui résiste à l'écoulement.

Rappel: Mesure de débit par organe déprimogène L'une des techniques les plus utilisées.

Dimensionnement d'une valve

Écoulement idéal (turbulent). Le débit théorique idéal est :

Dimensionnement d'une valve

- En pratique, il y a toujours une perte de charge
- . La section minimale du débit n'est pas A_2 , mais A_{VC} la section du \ll vena contracta \gg
- . En utilisant C₁ pour identifier le coefficient de décharge (perte) :

$$Q = C_1 F A_{VC} \sqrt{2g(H_1 - H_{VC})}$$

$$F = \sqrt{\frac{1}{1 - m^2}} \qquad Pression statique au vena contracta$$

Dimensionnement d'une valve

Le coefficient de contraction C est :

$$C = C_1 \begin{pmatrix} A_{VC} / A_2 \end{pmatrix}$$

• Le facteur de récupération de pression F₁ est:

$$F_L = \sqrt{\frac{\left(H_1 - H_2\right)}{\left(H_1 - H_{VC}\right)}}$$

Le débit (en po³/s) se calcule par : 1 po = 2,54 cm

$$Q = \frac{CFA_2}{F_L} \sqrt{2g(H_1 - H_2)}$$

• Si le débit est en GPM plutôt qu'en po³/s :

$$Q(GPM) = 38.0 \frac{CFA_2}{F_L} \sqrt{\frac{\Delta p}{G}}$$

$$GPM: Gallon per minute$$

$$1 GPM = 6,31x10-5 m3/s$$
Chute de pression

Chute de pression

Densité relative

• En posant :

Coefficient de valve
$$C_v = 38.0 \frac{CI}{F_L}$$

• On peut écrire : $Q(GPM) = C_v \sqrt{\frac{\Delta p}{G}}$

Dimensionnement d'une valve

$$C_d = \frac{C_v}{d^2}$$

 C_d exprime la capacité relative d'une valve, car C_v dépend de la grosseur de la conduite.

d: grosseur de la vanne (diamètare)

- Representative values of valve capacity factors

Figure 4.13 Venturi seat ring design. (Courtesy of Fisher Controls International, Inc.)

							C_d
Valve Type	Trim Type	Flow Direction*	x _T	FL	Fs	F _d **	
GLOBE Single port	Ported plug	Either	0.75	0.9	1.0	1.0	9.5
	Contoured plug	Open	0.72	0.9	1.1	1.0	11
	Compared ping	Close	0.55	0.8	1.1	1.0	11
	Characterized cage	Open	0.75	0.9	1.1	1.0	14
	Official Control of the Control of t	Close	0.70	0.85	1.1	1.0	16
	Wing guided	Either	0.75	0.9	1.1	1.0	11
Double port	Ported plug	Either	0.75	0.9	0.84	0.7	12.5
	Contoured plug	Either	0.70	0.85	0.85	0.7	13
	Wing guided	Either	0.75	0.9	0.84	0.7	14
Rotary	Eccentric spherical plug	Open	0.61	0.85	1.1	1.0	12
	Eddelinio Sprinish proj	Close	0.40	0.68	1.2	1.0	13.5
ANGLE	Contoured plug	Open	0.72	0.9	1.1	1.0	17
		Close	0.65	0.8	1.1	1.0	20
	Characterized cage	Open	0.65	0.85	1.1	1.0	12
	Ondiadonia or organization	Close	0.60	0.8	1.1	1.0	12
	Venturi	Close	0.20	0.5	1.3	1.0	22
BALL	Segmented	Open	0.25	0.6	1.2	1.0	25
	Standard port (diameter @ 0.8d)	Either	0.15	0.55	1.3	1.0	30
BUTTERFLY	60-Degree aligned	Either	0.38	0.68	0.95	0.7	17.
	Fluted vane	Either	0.41	0.7	0.93	0.7	25
	90-Degree offset seat	Either	0.35	0.60	0.98	0.7	29

Exemple de dimensionnement d'une valve

- Liquide: eau
- Débit maximal: 1600 GPM
- Conduite: 8 po.
- Pression en amont : 42.6 psi (1 psi = 6,9 kPa)
- Pression en aval : 34,7 psi

Question:

Supposons que l'on choisisse une valve papillon de 60°, quelle devrait être la grosseur de la valve ?

Exemple de dimensionnement d'une valve Étape 1: Calculer le produit C_V requis

- Pour une valve papillon de 60°
 - Le coefficient C_d = 17. Dépend du type de la valve et conduite

$$C_d = \frac{C_v}{d^2}$$

C_d exprime la capacité relative d'une valve, $C_d = \frac{C_v}{d^2}$ car C_v dépend de la grosseur de la conduite.

d : diamètre de la vanne

$$Q(GPM) = C_v \sqrt{\frac{\Delta p}{G}}$$

$$1600 = C_{\nu} \sqrt{(42.6 - 34.7)/1.0}$$

$$C_v = 569$$
 (valeur requise)

Exemple de dimensionnement d'une valve

Étape 2: Évaluer le diamètre requis de l'orifice de la valve

• alors:

$$d = \sqrt{\frac{C_v}{C_d}} = \sqrt{\frac{569}{17}} = 5.79 \ pouces$$

- Choisir une valve de 6 pouces (>5.79)
 - Dont le C_V serait 612 (soit 6²X17)