Predictions of heat and neutron loads onto FPP first walls in FUSE

G. Dose*,a, G. Avdeevaa, T. Cotea, A.G. Ghiozzib, J. Guterla, J. Harveya, B.C. Lyonsa, J. McClenaghana, K. McLaughlina, O. Meneghinia, T.F. Neisera, N. Shi^a, T. Slendebroek^b, D. Weisberg^a and B.A. Grierson^a

^aGeneral Atomics, San Diego, CA 92121, USA

^bOak Ridge Associated Universities, 100 ORAU Way, Oak Ridge, TN 37830, USA

*doseg@fusion.gat.com

Abstract

Computational modules have been implemented in the FUsion Synthesis Engine (FUSE), General Atomics' framework for reactor design, to evaluate heat and neutron loads onto the first wall of a Fusion Pilot Plant (FPP). Three modules have been developed which compute respectively: the neutron wall loading (NWL), the core radiative wall **loading (CRWL)** and the **boundary plasma wall loading (PWL)**. These modules allow for a quick evaluation (< 10 s) of the NWL, the CRWL and the PWL for different FPP designs.

CX build

The FUsion Synthesis Engine (FUSE)

FUSE integrates first-principle models, machine learning, and reduced models into a unified framework, enabling comprehensive simulations that go beyond traditional OD systems studies.

Reference:

Use cases:

- Integrated design of a FPP
- Pulse design (future)
- Plant flight simulator (future)

Heating and Stability **Current Drive OD Parameters:** Stresses Initialization: Radial Build PF coils • Equilibrium Equilibrium **Neutronics** Sources Equilibrium Current **Profiles**

Methods: Mapping of the heat flux for the PWL

Magnetic equilibrium Assumption of the parallel heat flux decay at the OMP $q_{OMP}(r) = \frac{P_{sep}}{4\pi R_{OMP} \lambda_q \sin\left(\frac{B_{pol}}{B}\right)} \exp\left(-\frac{r}{\lambda_q}\right) + \frac{P_{sep} f_{ELMs}}{4\pi R_{OMP} \lambda_{q,ELMs} \sin\left(\frac{B_{pol}}{B}\right)} \exp\left(-\frac{r}{\lambda_{q,ELMs}}\right)$ λ_a : Eich scaling [1] Generally, a user-defined function. $\lambda_{q,ELMS}$: [2] In this case, one uses a double exponential accounting for the heat flux decay in both near-SOL -2.5 and far-SOL r - r_{sep} [m] 7.5

Profiles

choices

Design

Total flux expansion F(R,Z) = -(Alfven Theorem)

normal vector n_{wall} is computed as: $q_{wall}(R,Z) = q_{pol}(R,Z) \cdot n_{wall}$

The heat flux on a wall segment with

$q_{wall}(R,Z) = -q_R(R,Z)dz + q_Z(R,Z)dr$

Results: Application for FPP design

Core

Transport

Example of a FPP design workflow

a result of the FUSE workflow, one gets integrated solution, such the one reported here

The Wall Loading is computed both in the 2D cross-section and along the curvilinear abscissa.

particles

Pedestal

1.750×10⁵

 $1.500 \times 10^{\circ}$

__ 1.250×10

1.000×10

7.500×10

5.000×10

2.500×10

Methods: Particle tracker for the CRWL and NWL

2D source in axisymmetric geometry

Particles are generated in all directions and Ballistic trajectories for: tracked in the toroidal space up to the FW

- Neutrons
- Photons

Each particle deposits the same power. The flux is obtained dividing by the wall surface.

Caveats:

- depends only streaming neutrons
 - No surface reflection

Conclusions and next steps

- The FUSE code has modules for the computation of the wall loading due to: neutrons, core radiation and plasma.
- Roughest approximation is for the divertor loads, due to the lack of neutral particles. For the same reason, radiation in the SOL is not computed.
- Next steps: 1. Fluid 1D SOL (onion skin); 2. Neutrals 2D; 3. Engineering: Does the wall survive due to this loads?

Acknowledgments and references

Work supported by General Atomics corporate funding.

- [1] T. Eich et al., 2013 Nucl. Fusion 53 093031
- [2] A. Loarte et al., IAEA FEC 2008
- [3] O. Meneghini et al., arXiv:2409.05894v1 [physics.plasm-ph]