

15: Seguridad

Sistemas Operativos 2 Ing. Alejandro León Liu

- Seguridad
- Principios
- Amenazas de programas
- Amenazas de red
- Criptografía
- Autenticación de usuarios
- Defensas de seguridad

SEGURIDAD

- Protección: problema interno
 - Permisos
 - Privilegios
- Seguridad
 - Ambiente externo
 - Resguardar un sistema de acceso, uso, modificación y eliminación de información por usuarios no autorizados.

Un sistema seguro garantiza

- Confidencialidad
 - Asegurar que únicamente usuarios autorizados tengan acceso a la información
- Integridad
 - Asegurar que la información sea modificada únicamente por usuarios autorizados
- Disponibilidad
 - Asegurar que la información está disponible a usuarios autorizados cuando lo necesiten
 - Proteger contra un Denial of service

▶ El gran problema de seguridad

- "A chain is only as strong as its weakest link"
- Proveer seguridad en varios niveles
 - Nivel de aplicaciones
 - Nivel de red y comunicaciones
 - Nivel de Sistema Operativo
 - Nivel físico
 - Data centers seguros
 - Nivel humano
 - "Social engineering"
 - Phishing

¿De quién nos debemos proteger?

- Virus, trojans, otros programas
- Crimen organizado
- Corporaciones: competencia
- Desastres naturales
- Humanos
 - Intensionalmente
 - Accidentalmente
- Ex empleados
- Más difícil que seguridad física
 - Automatizar ataques
 - Ataques remotos
 - Copia de información

- Seguridad
- Principios
- Amenazas de programas
- Amenazas de red
- Criptografía
- Autenticación de usuarios
- Defensas de seguridad

PRINCIPIOS

- Principio de menos privilegios
 - Ejecución con el mínimo número de privilegios y recursos
 - Separación de responsabilidades
 - Evitar uso de usuarios administradores
 - Minimizar consecuencias
- Minimizar la superficie de ataque
 - Cada "feature" en un sistema aumenta el riesgo de un ataque
 - Reducir riesgo, reduciendo superficie de ataque
 - Agregar un "feature"
 - Funcionalidad vrs. Riesgo

Mantener la seguridad simple

- Menos errores
- Ejecución más rápida
- Evitar errores en
 - Código de manejo de errores
 - Escribir a logs
- Detección de intrusos
 - Registrar accesos (o intentos)
 - Protección de bitácoras y logs
 - Auditar accesos
 - Procedimiento para responder a un intruso

Defensa en profundidad

- Diversidad de mecanismos de seguridad
- Si un mecanismo falla, los otros mecanismos pueden proteger el sitema
- No confiar en un firewall para la seguridad de un sistema
 - Usuarios y permisos
 - Seguridad física a data center
 - Cifrado de datos en la comunicación
- "No poner todos los huevos en un mismo cesto"

Modelo de seguridad Positivo

- Default deny
- Secure defaults
- Regresar a un estado seguro después de una falla
- Whitelist vrs. Blacklist
 - Whitelist: define lo válido. Lo demás es inválido
 - Blacklist: define lo inválido. Lo demás es válido.

```
isAdmin = true;
try {
  codeWhichMayFail();
  isAdmin = isUserInRole( "Administrator" );
}
catch (Exception ex) {
  log.write(ex.toString());
}
```



```
While (true)
{
   transaction = getNextTransaction();
   transaction.process();
   transaction.markAsProcessed();
}
```


Evitar seguridad por obscuridad

- Secreto es bueno, pero no lo suficiente
- Cambiar el puerto default de algún servicio
- En aplicaciones:
 - > Permisos: Únicamente ocultar opciones en menú
- Spiders
 - Brute force
 - Port scans

- Seguridad
- Principios
- Amenazas de programas
- Amenazas de red
- Criptografía
- Autenticación de usuarios
- Defensas de seguridad

AMENAZAS DE PROGRAMAS

Trojans

- Abuso de su ambiente de trabajo
- Programa malicioso, se esconde detrás de una aplicación confiable

Trap door

- Desarrollador deja un acceso al sistema que solo él puede usar
- "Salami technique"
- Difícil detectar: analizar código fuente

Logic Bomb

- Programa que inicia una vez se de cierto escenario
- Difícil detectar previo a que se active
- Stack y buffer overflow
 - Explotar bug en programa
 - Overflow de un campo de entrada
 - Escribe en memoria hasta llegar a la pila
 - Sobreescribir la dirección de retorno en la pila con el código escrito (input)
 - Escribir el código de un programa malicioso
 - Ejecutar un shell

Virus

- Segmento de código en algún programa
- Replica e infecta otros programas
- Algún programa, como un trojan instala el virus en el sistema
- Varios tipos
 - En programas
 - En boot
 - En macros (office por ejemplo)
 - Ocultos
 - □ Modificar el sistema para evitar ser detectados
- Windows: más vulnerable
 - Uso de usuarios administrativos
- Rootkits

Worms

- Replicarse
- Consumir recursos del sistema
- Impedir que otros procesos se ejecuten

- Seguridad
- Principios
- Amenazas de programas
- Amenazas de red
- Criptografía
- Autenticación de usuarios
- Defensas de seguridad

AMENAZAS DE RED

- Port scan
 - Detectar vulnerabilidades de un sistema
 - Automatizado
- Denial of service
 - Robar recursos
 - Imposible prevenir
- Masquerading
 - Pretender ser alguien más
- Man in the middle

- Seguridad
- Principios
- Amenazas de programas
- Amenazas de red
- Criptografía
- Autenticación de usuarios
- Defensas de seguridad

- Paquetes de red
 - Contienen dirección fuente falsificable
 - No solo el destinatario recibe un paquete
- Routers: reciben y transmiten paquetes
- Criptografía: "Hiding information"
 - Basado en llaves secretadas, distribuidas previamente
 - Identificar quién envía un mensaje
 - Cifrar el mensaje de forma que únicamente el destinatario lo pueda leer
 - Limitar el número de receptores de un mensaje

Algoritmo de cifrado:

- Conjunto K de llaves
- Conjunto M de mensajes
- Conjunto C de cifrados (mensajes cifrados)
- Función E (cifrar): $K \rightarrow (M \rightarrow C)$
- Función D (descifrar): $K \rightarrow (C \rightarrow M)$
- m se puede calcular de E(k)(m) = c si y solo si, se posee D(k)

Cifrado simétrico

- Misma llave para cifrar y descifrar
- DES
- > 3DES
- AES
- Transformaciones: eficiente

Cifrado asimétrico

- Llave privada
- Llave pública
- Cálculo matemático: más costoso que cifrado simétrico
 - Mensajes cortos
 - Intercambio de llaves de algoritmos simétricos

RSA

- ▶ Llave pública: E(k_e, N)
- ▶ Llave privada: $D(k_d, N)$
- N: producto de q y p primos
- Algoritmo cifrar: $E(k_e, N)(m) = m^{k_e} \mod N$,
 - $\neg k_e \text{ tal que } k_e k_d \mod (p-1)(q-1) = 1$
- Algoritmo descifrar: $D(k_d, N)(c) = c^{k_d} \mod N$

- p = 7, q = 13
- N = 7*13 = 91
- (p-1)(q-1) = 72
- Llave pública: $k_{e_i} N = 5$, 91
- Llave privada: k_d , N = 29, 91

Ing. Alejandro León Liu

Autenticación

- Verificar que el emisor es quién dice ser
- Verificar que mensaje no sea modificado
- Limitar el número de emisores de un mensaje
- No repudio: prueba de que el emisor emitió el mensaje
- Algoritmo de autenticación:
 - Conjunto K de llaves
 - Conjunto M de mensajes
 - Conjunto A de autenticadores
 - ▶ Función Firmar: $S: K \rightarrow (M \rightarrow A)$
 - ▶ Función Validar: $V: K \rightarrow (M \times A \rightarrow \{\text{true, false}\})$

Funciones Hash

- □ Crea un hash (digest) de tamaño n bits a partir de un mensaje.
- \square Si H(m) = H(m'), then m = m', el mensaje no ha sido modificado
- □ MD5
- □ SHA-1

Message Authentication Code (MAC)

- Cifrado simétrico
- - □ Hash de un mensaje especificado
- $V(k)(m, a) \equiv (f(k, H(m)) = a)$
 - Comparar el autenticador (recibido) con el hash del mensaje especificado

Firmas digitales

- Cifrado asimétrico
- Autenticadores son firmas digitales
- ▶ RSA
 - Usando llaves al revez
 - $\Box S(k_s)(m) = H(m)^{k_s} \mod N$
 - $\Box V(k_{\nu})(m, a) \equiv (a^{k_{\nu}} \mod N = H(m))$
- En ocasiones no es necesario la confidencialidad
 - Empresas firman parches
 - Usuarios pueden garantizar que parches provienen de la empresa

Distribución de llaves

- Usar cifrado asimétrico para compartir llaves de algoritmos simétricos
- Certificados digitales
 - Llave pública firmada por un tercero de confianza (trusted party)
 - Tercero de confianza recibe pruebas para otorgar llave pública
 - ¿Cómo confiar en tercero en confianza?
 - □ Las autoridades certificadoras incluyen sus llaves públicas en browsers, etc..

SSL

- Estándar para comunicación segura entre web browsers y web servers
- http: texto claro
- Cliente se conecta a servidor web por medio de https (puerto 443)
- Servidor se identifica (envía llave pública)
 - Cliente valida que llave pertenezca a servidor
 - Cliente valida que la llave no esté expirada
 - Cliente valida llave con tercero en confianza

- Cliente envía su llave pública
- Servidor cifra un mensaje (llave de sesión) con su llave privada y la llave pública del cliente
- Cliente descifra mensaje con su llave privada y la llave pública del servidor
- Comunicación entre cliente y servidor cifrada con una llave de sesión

PKI

 Software, hardware y políticas para crear, manejar, distribuir, usar y revocar certificados digitales

Declaración Única Aduanera (DUA-GT)

- PKI
- SAT: Autoridad certificadora
- Ebclosion: Autoridad de registro
- Autoridad validadora
- Certificado digital: smartcard
- Beneficios
 - Autenticación de agentes aduaneros
 - Cifrado de mensajes
 - No repudio

- Seguridad
- Principios
- Amenazas de programas
- Amenazas de red
- Criptografía
- Autenticación de usuarios
- Defensas de seguridad

AUTENTICACIÓN DE USUARIOS

Contraseñas

- Modelo sencillo
- Adivinados o divulgados
 - Ingeniería social
 - Brute force (programa que adivina contraseñas usando diccionarios)
 - Sniffing: ver cuando se digitan
 - Key logger
 - Cámaras
- Almacenadas cifradas
- Función compleja de invertir, fácil de calcular

- One time passwords
 - Eliminar problema de snifffing
 - Challenge & response
 - La contraseña es una función
 - ▶ F(challenge) = response
- Two factor authentication
 - Smartcards & pin
- Biométricos

- Seguridad
- Principios
- Amenazas de programas
- Amenazas de red
- Criptografía
- Autenticación de usuarios
- Defensas de seguridad

DEFENSAS DE SEGURIDAD

- Defensa en profundidad
- Políticas de seguridad
 - Usuarios
 - Contratos, Non disclosure Agreement (NDA)
 - Políticas de contraseñas
 - Política de baja de empleados
 - Política de instalación de programas
 - Políticas de navegación
 - Desarrollo
 - Estándares de desarrollo
 - Quality Assurance (QA). Pruebas
 - Configuraciones de servidores aceptadas
 - Infraestructura
 - Análisis de riesgos

Análisis de Vulnerabilidades

- Contraseñas fáciles
- Programas no autorizados
- Procesos de larga ejecución (demonios sospechosos)
- Cambios en programas del sistema
- Port scan (puertos escuchando)

Firewalls

- Permitir (prohibir) tráfico de una red a otra
- Permitir (prohibir) tráfico de cierto protocolo
- Inspección de paquetes
 - Revisa estado (paquetes anteriores)
 - Denial of service
 - Virus, ataques de red

Intrusion detection

- IDS (Intrusion detection systems)
- Detectar intrusos
 - Comandos de usuarios sospechosos
 - Llamadas al sistema sospechosas
 - Encabezados de paquetes de red
- Alarmas
 - Correos / Mensajes
 - Bloquear
- Protección anti-virus