

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Exercise No. 3					
Topic:	Module 2.0: Probabilistic Reasoning in AI	Week No.	5-6		
Course Code:	CSST101	Term:	1st		
			Semester		
Course Title:	Advance Representation and Reasoning	Academic Year:	2024-2025		
Student Name		Section			
Due date		Points			

oue uate		1 Ullits	
Instruct Complete	tions: e the following tasks by hand. Show all calculations and exp	lanations where ap	oplicable.
Part 1:	Defining the Problem and System Design		
Choo	ct a Disease for Diagnosis ose a disease that your AI system will predict (e.g., diabetes, tion).	, heart disease, or a	ı viral
	Question: What disease did you choose, and what factors (s contribute to diagnosing this disease?	symptoms, test res	ults)
	Answer:		
1	Disease:		
(Contributing Factors:		

Republic of the Philippines Laguna State Polytechnic University Province of Laguna

Part 2: Basic Probability Calculations

2. Bayesian Inference Calculation

Imagine that a patient has undergone a diagnostic test for the disease. Use the following information:

- Prior probability (prevalence of the disease): P(Disease) = 0.02
- Test sensitivity (probability of a positive result given disease): P(Positive|Disease) = 0.95
- False positive rate (probability of a positive result given no disease): P(Positive|NoDisease) = 0.05
- ullet Probability of a positive result in the population: P(Positive) = 0.06
- Task: Calculate the posterior probability that the patient has the disease given that they
 tested positive.

Formula (Bayes' Theorem):

Answer:

$$P(Disease|Positive) = \frac{P(Positive|Disease) \times P(Disease)}{P(Positive)}$$

Posterior Probability: _____

Republic of the Philippines Laguna State Polytechnic University Province of Laguna

Part 3: Decision-Making Simulation

3. Simulate a Decision with Uncertain Outcomes

Suppose a doctor must decide whether to treat a patient based on test results. Treatment has a 70% chance of success and provides a benefit of 100 points to the patient's health, but it also carries a 30% risk of failure, leading to a 50-point reduction.

 Task: Calculate the expected health improvement for the patient based on these probabilities.

Formula:
$\texttt{Expected Health Improvement} = P(Success) \times Benefit + P(Failure) \times Loss$
Answer:
Expected Improvement:

Part 4: Visualize a Probability Distribution

4. Visualize a Binomial Distribution

Consider a scenario where you flip a coin 5 times, where each flip has a 50% chance of landing heads.

• Task: Draw a probability distribution showing the chances of getting 0 to 5 heads.

Republic of the Philippines Laguna State Polytechnic University Province of Laguna

R

e	flection Question:
5.	Reflection: In 3-4 sentences, explain how understanding probability theory helps in making decisions in medical diagnosis systems.
	Answer:

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Rubric: Handwritten Exercise - AI-Powered Medical Diagnosis System

Criteria	Excellent (10 points)	Good (8 points)	Fair (5 points)	Poor (2 points)
Definition and	disease, with detailed and accurate	clear, but contributing factors lack detail or	Disease is selected, but contributing factors are vague or unclear.	No disease selected, or missing contributing factors.
Bayesian Inference Calculation	using Bayes' Theorem with all steps shown	Calculation mostly correct, with minor mistakes or missing steps.	Significant errors in calculation or steps not clearly explained.	Incorrect or incomplete calculation, no explanation.
Decision-Making Simulation	improvement calculation with clear	Calculation mostly correct, with minor errors or unclear explanation.	Some attempt at calculating expected improvement, but steps are unclear or incorrect.	No attempt to calculate expected improvement or incorrect without explanation.
Vicualization of	distribution, showing	distribution, with	Attempt at drawing the distribution, but contains major inaccuracies or missing parts.	No attempt or severely incorrect distribution.
		Clear explanation of the role of probability theory, but lacks depth or examples.	Basic explanation with little detail, missing how probability directly impacts decision-making.	Reflection missing or very unclear.
Neatness and Clarity of Work	leasy to read	Work is mostly neat and readable, with only minor disorganization.	Work is somewhat disorganized or difficult to read.	Work is very disorganized or unreadable.