Consequências do teorema da razão

Aula 9 - 22/03/2019

Sumário

- ▶ Teorema da razão
- Combinações afins
- Consequências do teorema da razão

Teorema da razão

Recordemos que se A e B são dois pontos e $X \in AB$, então existem $\alpha, \beta \in \mathbb{R}$ tais que $\alpha\overrightarrow{AX} = \beta\overrightarrow{XB}$. Observemos que $\alpha + \beta \neq 0$. De facto, se $\alpha = -\beta$, teríamos

$$\overrightarrow{XB} = -\overrightarrow{AX} = \overrightarrow{XA},$$

contra o facto de $A \neq B$.

Teorema. (*Teorema da razão*) Suponhamos que O é a origem de S e sejam A, B pontos tais que $\overrightarrow{OA} = u$ e $\overrightarrow{OB} = v$. Então o ponto X da recta AB tal que $AX : XB = \beta : \alpha$ tem vector posição

$$\overrightarrow{OX} = \frac{\alpha}{\alpha + \beta} u + \frac{\beta}{\alpha + \beta} v.$$

Nota. Se A, B, X forem pontos tais que

$$\overrightarrow{OX} = \frac{\alpha}{\alpha + \beta} \overrightarrow{OA} + \frac{\beta}{\alpha + \beta} \overrightarrow{OB},$$

então $\alpha \overrightarrow{AX} = \beta \overrightarrow{XB}$ e portanto os pontos A, B, X são colineares.

Demostração do teorema da razão

Observemos que

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = v - u.$$

Como $AX : XB = \beta : \alpha$, temos que

$$AX : AB = \beta : \alpha + \beta = \frac{\beta}{\alpha + \beta} : 1$$

e portanto

$$\overrightarrow{AX} = \left(\frac{\beta}{\alpha + \beta}\right) \overrightarrow{AB} = \frac{\beta}{\alpha + \beta} (v - u).$$

Assim

$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX} = u + \frac{\beta}{\alpha + \beta}(v - u) = \frac{\alpha u + \beta v}{\alpha + \beta} = \frac{\alpha}{\alpha + \beta}u + \frac{\beta}{\alpha + \beta}v.$$

Combinações afins

Definição. Uma expressão $\lambda u + \mu v$, com $\lambda + \mu = 1$ diz-se combinação afim de u e v.

O teorema da razão equivale a afirmar que o vector posição de qualquer ponto na recta \overrightarrow{AB} é combinação afim dos vectores \overrightarrow{OA} e \overrightarrow{OB} , ou seja,

$$P \in AB$$
 se e só existe $\lambda \in \mathbb{R}$ tal que $\overrightarrow{OP} = \lambda \overrightarrow{OA} + (1 - \lambda)\overrightarrow{OB}$.

Nota. Por vezes, com abuso de linguagem, escrevemos $P = \lambda A + (1 - \lambda)B$.

Exemplo. Sejam A e B dois pontos e sejam $X, Y, Z, M \in AB$ tais que

$$AX : XB = -1 : 6, AY : YB = 1 : 2, AM : MB = 1 : 1, AZ : ZB = 3 : -1.$$

Se $A\mapsto 0$ e $B\mapsto 1$, então $X\mapsto -1/5$; $Y\mapsto 2/3$; $Z\mapsto 3/2$, $M\mapsto 1/2$

Pontos colineares num espaço afim

Corolário 1. Sejam A,B,C três pontos de um espaço afim com vectores posição u,v,w, respectivamente. Então A,B,C são colineares se e só se existem números reais α,β,γ não todos nulos tais que

$$\alpha + \beta + \gamma = 0$$
 e $\alpha u + \beta v + \gamma w = \vec{0}$.

Dem. Supondo que $A \neq B$ e $C \in AB$, com $AC : CB = \beta : \alpha$, pelo teorema da razão, temos que

$$w = \frac{\alpha}{\alpha + \beta} u + \frac{\beta}{\alpha + \beta} v.$$

Portanto $\alpha u + \beta v - (\alpha + \beta)w = \vec{0}$. Tomando $\gamma = -(\alpha + \beta)$, obtemos $\alpha + \beta + \gamma = 0$.

Este argumento pode ser revertido, tendo em conta a nota ao teorema da razão.

Pontos complanares num espaço afim

Proposição. Sejam A,B,C,D pontos de um espaço afim com vectores posição u,v,w,z, respectivamente. Então A,B,C,D são complanares se e só se existem números reais $\alpha,\beta,\gamma,\delta$ não todos nulos tais que

$$\alpha + \beta + \gamma + \delta = 0$$
 e $\alpha u + \beta v + \gamma w + \delta z = \vec{0}$.

Dem. Como os planos são os subespaços afins de dimensão 2, temos que os pontos A,B,C,D são complanares se e só se os vectores $\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}$ forem linearmente dependentes, ou seja, se existirem escalares β,γ,δ não todos nulos tais que

$$\beta \overrightarrow{AB} + \gamma \overrightarrow{AC} + \delta \overrightarrow{AD} = \vec{0}.$$

Temos assim que $\beta(\overrightarrow{OB} - \overrightarrow{OA}) + \gamma(\overrightarrow{OC} - \overrightarrow{OA}) + \delta(\overrightarrow{OD} - \overrightarrow{OA}) = \vec{0}$. Portanto

$$-(\beta + \gamma + \delta)\overrightarrow{OA} + \beta \overrightarrow{OB} + \gamma \overrightarrow{OC} + \delta \overrightarrow{OD} = \vec{0}.$$

Tomando
$$\alpha = -(\beta + \gamma + \delta)$$
, obtemos $\alpha + \beta + \gamma + \delta = 0$.