

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

CONTEÚDO DA AULA

ANÁLISE DE TENSÕES EM ENGRENANGENS

- 1. Tensão de flexão no dente.
- 2. Tensão admissível de flexão no dente
- 3. Tensão de contato no dente.
- Tensão admissível de contato no dente

Por FEM:

- Análise das Tensões
- Análise do fator de segurança
- Análise das Deformações
- Análise dos deslocamentos

Tensões de Flexão

Tensões de Compressão

- Pitting
- Lascamento / Desplacamento
- Desintegração

Pitting

ANÁLISE DE FALHAS - AGMA

A AGMA (American Gear Manufacturers Association) fornece um **método** recomendado para o projeto de engrenagens.

- Leva em conta dois modos de falha:
 - Tensões de contato (desgaste)
 - Tensões de flexão

- A AGMA Incorpora uma série de fatores modificadores para levar em conta diversas situações.
- Fornece muito dos detalhes em tabelas e figuras.

ANÁLISE DE FALHAS - AGMA 2001-D04

Tensão de Flexão no Dente

$$\sigma = \begin{cases} W^t K_o K_v K_s \frac{P_d}{F} \frac{K_m K_B}{J} \\ W^t K_o K_v K_s \frac{1}{bm_t} \frac{K_H K_B}{Y_J} \end{cases}$$

(unidades dos sistema americano)

(unidades SI)

US

 σ (lbf/pol2) - Tensão de flexão

Wt (lbf) - Força tangencial transmitida

Ko - Fator de sobrecarga

Kv - Fator dinâmico

Ks - Fator de tamanho

Pd (dentes/pol) - Passo Diametral transversal

F (pol) - Largura da face mais estreita

Km - Fator de distribuição de carga

KB - Fator de espessura de aro

J - Fator geométrico para flexão

SI

 σ (N/mm2) - Tensão de flexão

Wt(N) - Força tangencial transmitida

Ko - Fator de sobrecarga

Kv - Fator dinâmico

Ks - Fator de tamanho

b (mm) - Largura da face mais estreita

KH - Fator de distribuição de carga

KB - Fator de espessura de aro

YJ - Fator geométrico para flexão

mt (mm) - Módulo métrico transversal

Fator de Sobrecarga Ko

- Leva em conta a probabilidade de aumento da carga tangencial nominal devido a uma aplicação específica.
- Valores recomendados:

94	rabeia de fatores de sobrecarga, κ_o					
	Máquina acionada					
Fonte de potência	Uniforme	Choques moderados	Choques intensos			
Uniforme	1,00	1,25	1,75			
Choques leves	1,25	1,50	2,00			
Choques médios	1,50	1,75	2,25			

Tabala da fatores de cabracarea V

TENSÃO DE FLEXÃO NO DENTE - AGMA 2001-D04/ PPR

Fator Dinâmico Kv

- Leva em conta o aumento da força com a velocidade
- Afetado pela qualidade de fabricação das engrenagens
- Um conjunto de números de qualidade, Qv define tolerâncias para engrenagens fabricadas para uma precisão especificada.
- Números de qualidade de 3 a 7 incluem a maioria das engrenagens comerciais.
- Números de qualidade de 8 a 12 se referem a engrenagens de precisão.

$$K_{v} = \begin{cases} \left(\frac{A + \sqrt{V}}{A}\right)^{B} & V \text{ em ft/min} \\ \left(\frac{A + \sqrt{200V}}{A}\right)^{B} & V \text{ em m/s} \end{cases}$$

TENSÃO DE FLEXÃO NO DENTE - AGMA 2001-DO LIPR

Fator Dinâmico Kv

Equação do Fator Dinâmico

$$K_{v} = \begin{cases} \left(\frac{A + \sqrt{V}}{A}\right)^{B} & V \text{ em ft/min} \\ \left(\frac{A + \sqrt{200V}}{A}\right)^{B} & V \text{ em m/s} \end{cases}$$

$$A = 50 + 56(1 - B)$$

$$B = 0.25(12 - Q_{v})^{2/3}$$

- Ou retirado diretamente da Fig. 14–9
- Velocidade máxima recomendada para um dado número de qualidade,

$$(V_t)_{\text{max}} = \begin{cases} [A + (Q_v - 3)]^2 & \text{em ft/min} \\ [A + (Q_v - 3)]^2 & \text{em m/s} \end{cases}$$

Fator Dinâmico Kv

AGMA 2001-D04 – ANEXO A

Fator de Tamanho Ks

- Leva em conta o efeito de tamanho na fadiga e a não uniformidade do material em peças maiores.
- AGMA n\u00e3o estabelece fatores de tamanho.
- Para engrenagens normais: K_s = 1.

Fator de Distribuição de Carga $K_m(K_H)$

- Leva em conta a distribuição não uniforme de carga em toda a linha de contato.
- Depende da montagem e da largura da face.
- Atualmente é definido somente para:
 - ➤ Relação entre a largura do pinhão e o diâmetro primitivo, F/d_p ≤ 2
 - > Engrenagens montadas entre mancais.
 - ➤ Larguras até 40 polegadas ou 1016 mm
 - Contato em toda a largura do membro mais estreito.

Fator de Distribuição de Carga K_m (K_H)

• Fator de correção de carga:

$$K_m = C_{mf} = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e)$$

$$C_{mc} = \begin{cases} 1 & \text{para dentes sem coroamento} \\ 0.8 & \text{para dentes coroados} \end{cases}$$

TENSÃO DE FLEXÃO NO DENTE - AGMA 2001-D0 LIPR

Fator de Distribuição de Carga Km (KH)

Fator de proporção do pinhão:

$$C_{pf} = \begin{cases} \frac{F}{10d} - 0,025 & F \le 1 \text{ in} \\ \frac{F}{10d} - 0,0375 + 0,0125F & 1 < F \le 17 \text{ in} & \text{US} \\ \frac{F}{10d} - 0,1109 + 0,0207F - 0,000 228F^2 & 17 < F \le 40 \text{ in} \\ \frac{b}{10d} - 0,025 & b \le 25 \text{ mm} \\ \frac{b}{10d} - 0,0375 + 4,92(10^{-4})b & 25 < b \le 425 \text{ mm} & \text{SI} \\ \frac{b}{10d} - 0,1109 + 8,15(10^{-4})b - 3,53(10^{-7})b^2 & 425 < b \le 1000 \text{ mm} \end{cases}$$

Fator de Distribuição de Carga Km (KH)

Modificador da proporção do pinhão:

$$C_{pm} = \begin{cases} 1 & \text{para pinhão montado no intervalo entre mancais com } S_1/S < 0,175 \\ 1,1 & \text{para pinhão montado no intervalo entre mancais com } S_1/S \ge 0,175 \end{cases}$$

Fator de Distribuição de Carga K_m (K_H)

- Fator de alinhamento do engrenamento, C_{ma}
 - Pode ser obtido pela equação com a Tabela 14–9

$$C_{ma} = A + BF + CF^2$$

(ver Tabela 14–9 para valores A, B e C)

Tabela 14-9 Constantes empíricas A, B e C para a Equação (14-34). Largura de face F em polegadas (in).*

Condição	A	В	C
Engrenamento aberto	0,247	0,0167	$-0,765(10^{-4})$
Unidades fechadas, comerciais	0,127	0,0158	$-0.930(10^{-4})$
Unidades fechadas, de precisão	0,0675	0,0128	$-0.926(10^{-4})$
Unidades de engrenagens fechadas, extraprecisas.	0,00360	0,0102	$-0.822(10^{-4})$

Fonte: ANSI/AGMA 2001-D04.

^{*}Ver ANSI/AGMA 2101-D04, p. 20-22, para formulação SI.

Fator de Distribuição de Carga K_m (K_H)

• Fator de alinhamento do engrenamento, C_{ma}

TENSÃO DE FLEXÃO NO DENTE - AGMA 2101-D04 PR

Fator de Distribuição de Carga K_m (K_H)

- Fator de alinhamento do engrenamento, C_{ma}
 - Pode ser obtido pela equação com a Tabela 2

$$K_{\mathsf{Hma}} = A + B(b) + C(b)^2$$

Table 2 - Empirical constants; A, B, and C

Curve	A	В	C
Curve 1 Open gearing	2.47 x 10 ⁻¹	0.657 x 10 ⁻³	-1.186 x 10 ⁻⁷
Curve 2 Commercial enclosed gear units	1.27 x 10 ⁻¹	0.622 x 10 ⁻³	-1.69 x 10 ⁻⁷
Curve 3 Precision enclosed gear units	0.675 x 10 ⁻¹	0.504 x 10 ⁻³	-1.44 x 10 ⁻⁷
Curve 4 Extra precision enclosed gear units	0.380×10^{-1}	0.402 x 10 ⁻³	-1.27 x 10 ⁻⁷

TENSÃO DE FLEXÃO NO DENTE - AGMA 2101-D04 CORNÉLIO PROCÓPIO

Fator de Distribuição de Carga K_m (K_H)

Fator de alinhamento do engrenamento, C_{ma}

Fator de Distribuição de Carga K_m (K_H)

Fator de correção do alinhamento do engrenamento, C_e

$$C_e = \begin{cases} 0.8 & \text{para engrenamento ajustado na montagem, ou quando a} \\ & \text{compatibilidade \'e melhorada por lapidação, ou ambos} \\ 1 & \text{para todas as outras condições} \end{cases}$$

TENSÃO DE FLEXÃO NO DENTE - AGMA 2001-D04 FPR

Fator de Espessura do Aro K_B

Leva em conta a flexão do aro, quando aplicável.

$$K_B = \begin{cases} 1.6 \ln \frac{2.242}{m_B} & m_B < 1.2\\ 1 & m_B \ge 1.2 \end{cases}$$

$$m_B = \frac{t_R}{h_t}$$

Razão de esforço:

TENSÃO DE FLEXÃO NO DENTE - AGMA 2001-DO LIPR

Fator Geométrico J (Y₁)

- Leva em conta a forma do dente na equação de tensão de flexão
- Para o Sistema Inglês:
 - modificação no fator de forma de Lewis Y;
 - fator de concentração de tensão à fadiga K_f ;
 - razão de compartilhamento de carga do dente m_N (módulo normal)
 - A equação AGMA para o fator geométrico é

$$J = \frac{Y}{K_f m_N} \qquad m_N = \frac{p_N}{0.95Z}$$

- Valores para Y e Z são obtidos nas normas AGMA.
- Para os casos comuns de engrenagens de dentes retos, com ângulo de pressão 20°, $J = Y_J$ e pode ser lido diretamente da Fig. 14–6.
- Para engrenagens de dentes helicoidais com ângulo de pressão normal 20°, utilize as Figuras 14–7 e 14–8.

Número de dentes para o qual o fator geométrico é desejado

Fator Geométrico $J(Y_i)$

Dentes retos com ângulo de pressão 20º

Número de dentes para o qual Y, é desejado

Figura 14–6

- Obtenha J' da Fig. 14–7, que assume que a outra engrenagem possui 75 dentes.
- Obtenha o fator multiplicador da Fig. 14–8 para outra engrenagem
 - com número de dentes diferente de 75.
- Obtenha Y_J multiplicando J' pelo fator multiplicador.

Dentes helicoidais com ângulo de pressão 20º

Fatores referem-se a dentes cortados com fresa caracol de adoçamento completo.

Fig. 14-7

Fator multiplicador de J'**Dentes helicoidais** com ângulo de pressão 20º

Número de dentes no elemento acoplante

Figura 14-8 Multiplicadores de fatores J' para uso com a Figura 14-7 na determinação de

ANÁLISE DE FALHAS - AGMA 2001-D04

Tensão admissível de Flexão no Dente – Resistente a Fadiga

$$\sigma_{\text{adm}} = \begin{cases} \frac{S_t}{S_F} & \frac{Y_N}{K_T K_R} \\ \frac{S_t}{S_F} & \frac{Y_N}{Y \theta Y_Z} \end{cases} \quad \text{(unidades dos sistema americano)}$$

US

 σ_{adm} (lbf/pol2) - Tensão de flexão admissível St (lbf/pol2) - Resistência à fadiga na flexão

YN - Fator de ciclagem para tensões de flexão

KT - Fator de temperatura

KR - Fator de confiabilidade

SF - Fator de segurança AGMA (razão de tensão)

SI

 σ_{adm} (N/mm2) - Tensão de flexão admissível

St (N/mm2) - Resistência à fadiga na flexão

YN - Fator de ciclagem para tensões de flexão

 $Y\theta$ - Fator de temperatura

YZ - Fator de confiabilidade

SF - Fator de segurança AGMA (razão de tensão)

Resistência à Fadiga em Flexão - S_t

- A AGMA utiliza números de tensão admissível (allowable stress numbers) no lugar da resistência (strengths).
- Vamos nos referir a eles como resistência por coerência com o texto do livro.
- Os valores de resistência das engrenagens devem ser utilizados somente para engrenagens e não devem ser comparados com outro tipo de resistência de material.
- Valores representativos de resistência à flexão estão apresentados na Tabela 14-3 para engrenagens de aço e na Tabela 14-4 para engrenagens de ferro fundido e bronze..
- Figuras 14–2, 14–3 e 14–4 são usadas conforme indicado nas tabelas.
- As tabelas assumem cargas repetidas aplicadas em 10⁷ ciclos e 0.99 de confiabilidade.

Resistência à Flexão para Engrenagen s de Aço

Tabela 14-3 Resistência à flexão S, aplicada repetidamente a 107 ciclos e confiabilidade de 0,99 para engrenagens de aço.

Designação		Dureza superficial	Número de tensão de flexão admissível S_p^2 psi (MPa)		
do material	Tratamento térmico	mínima ¹	Grau 1	Grau 2	Grau 3
Aço ³	Endurecido por completo	Ver Figura 14–2	Ver Figura 14–2	Ver Figura 14-2	報 <u>一</u> 審
	Endurecido ⁴ por chama ⁴ ou indução com padrão ⁵ tipo A	Ver Tabela 8*	45 000 (310)	55 000 (380)	sa sa
	Endurecido ⁴ por chama ⁴ ou indução com padrão ⁵ tipo B	Ver Tabela 8*	22 000 (151)	22 000 (151)	
	Carbonetado e endurecido	Ver Tabela 9*	55 000 (380)	65 000 ou 70 000 ⁶ (448 ou 482)	75 000 (517)
	Nitretado ^{4,7} (aços endure- cidos por completo)	83,5 HR 15N	Ver Figura 14–3	Ver Figura 14–3	s
Nitralloy 134M, Nitrallo N, e 2,5% de cromo (sem alumínio)	Nitretado ^{4,7}	87,5 HR 15N	Ver Figura 14–4	Ver Figura 14–4	Ver Figura 14–4

Fonte: ANSI/AGMA 2001-D04.

Resistência à Flexão para Engrenagens de Aço

Notas da tabela 14.3

- 1 A dureza deve ser equivalente aquela do diâmetro de raiz no centro do espaço do dente e largura da face
- 2 Ver tabelas 7 e 10 no que concerne aos fatores metalúrgicos principais para cada grau de tensão de engrenagem de aço.
- 3 O aço selecionado deve ser compatível com o processo selecionado de tratamento térmico e dureza requerida
- 4 Os números de tensões admissíveis indicados podem ser utilizados com as profundidades de camada prescritas em 16.1
- 5 Ver Figura 12 para os padrões de dureza tipo A e B.
- 6 Se a bainita e as microfissuras estão limitadas a nível de grau 3, 70000 psi pode ser utilizado.
- 7 A capacidade de sobrecarga de engrenagens nitretadas é pequena. Como a forma da curva efetiva S-N é nivelada, a sensitividade a choques deve ser investigada antes de dar prosseguimento ao projeto.

As tabelas 8 e 9 da AGMA 2001-d04 são tabulações claras dos fatores metalúrgicos principais a afetar St e Se de engrenagens de aço endurecidas por chama e por indução (Tb. 8) carbonetadas e endurecidas (Tb.9)

Resistência à Flexão para Engrenagens de Ferro Fundido e Bronze

Tabela 14-4 Resistência à flexão S₁ aplicada repetidamente a engrenagens de ferro e engrenagens de bronze a 10⁷ ciclos com 0,99 de confiabilidade.

Material	Designação do material ¹	Tratamento térmico	Dureza superficial mínima típica ²	Número de tensão de flexão admissível, S_r , 3 psi (MPa)
Ferro fundido cinza	Classe 20	Como fundido	-	5000
ASTM A48	Classe 30	Como fundido	174 HB	8500
	Classe 40	Como fundido	201 HB	13 000
Ferro dúctil (nodular)	Grau 60-40-18	Recozido	140 HB	22 000-33 000 (151-227)
ASTM A536	Grau 80-55-06	Temperado e revenido	179 HB	22 000-33 000 (151-227)
	Grau 100-70-03	Temperado e revenido	229 HB	27000-40000 (186-275)
	Grau 120-90-02	Temperado e revenido	269 HB	31 000-44 000 (213-275)
Bronze		Fundido em areia	Resistência mínima à tração 40 000 psi	5700 (39)
	ASTM B–148 Liga 954	Tratado termicamente	Resistência mínima à tração 90 000 psi	23 600 (163)

Fonte: ANSI/AGMA 2001-D04.

Resistência à Flexão para Engrenagens de Aço

Notas da tabela 14.4

- 1 Ver AGMA 2004-B89 Gear Materials and Heat Treatment Manual
- 2 A dureza medida deve ser equivalente aquela que seria medida no diâmetro de raiz no centro do espaço do dente e largura de face.
- 3 Os valores menores devem ser utilizados para propósitos gerais de projeto. Os valores superiores podem ser utilizados quando:
 - É usado material de alta qualidade
 - O tamanho da seção e o projeto permitem máxima resposta ao tratamento térmico.
 - É efetuado controle de qualidade apropriado por meio de inspeção adequada
 - A experiencia de operação justifica os seus usos`

Temperatura de Nitretação e Dureza Obtida

Tabela 14-5 Temperatura nominal utilizada na nitretação e durezas obtidas.

	Temperatura antes	Nitretação,	Dureza, escala Rockwell C	
Aço	da nitretação, °F	°F	Superfície	Núcleo
Nitralloy 135*	1150	975	62–65	30–35
Nitralloy 135M	1150	975	62–65	32-36
Nitralloy N	1000	975	62–65	40–44
AISI 4340	1100	975	48-53	27–35
AISI 4140	1100	975	49–54	27–35
31 Cr Mo V9	1100	975	58-62	27–33

Resistência à Flexão para Aços Endurecidos por Completo

Figura 14-2 Número de tensão de flexão admissível para aços endurecidos por completo.

Resistência à Flexão para Engrenagens de Aço Endurecidas totalmente por Nitretação (AISI 4140 e 4340)

Resistência à Flexão para Engrenagens de Aço Nitretado

Figura 14-4 Números de tensão de flexão admissíveis para engrenagens de aço nitretado, S_{r} .

Fator de Ciclagem para Tensões de Flexão - YN

- Resistências AGMA são para 10⁷ ciclos
- Leva em conta outros ciclos de projeto
- Fig. 14–14 fornece Y_N para flexão

Fator de Ciclagem para Tensões de Flexão – Y_N

Figura 14–14 Fator de ciclagem de tensão Y_N para a resistência de flexão sob carregamento repetido. Fonte: ANSI/AGMA 2001-D04.

Fator de Temperatura $K_T(Y_\theta)$

- AGMA n\u00e3o estabelace valores para este fator.
- Para temperaturas até 250°F (120°C), $Y_{\theta} = 1$.

Fator de Condição da Superfície Cf (Z_R)

- Leva em conta defeitos no acabamento superficial
- Nenhum valor atualmente dado pela AGMA
- Para engrenagens comerciais normais, Cf e $Z_R = 1$

Fator de Confiabilidade $K_R(Y_Z)$

 Leva em conta distribuições estatísticas de falhas de fadiga do material.

$$K_R = \begin{cases} 0.658 - 0.0759 \ln(1 - R) & 0.5 < R < 0.99 \\ 0.50 - 0.109 \ln(1 - R) & 0.99 \le R \le 0.9999 \end{cases}$$

- Não leva em conta variação de carga.
- Use Tabela 14–10
- Sendo a confiabilidade R altamente não-linear, use as expressões (14-38) para interpolação,

Confiabilidade	K _R (Y _Z)
0.9999	1.50
0.999	1.25
0.99	1.00
0.90	0.85
0.50	0.70

ANÁLISE DE FALHAS – AGMA 2001-D04

AGMA - Tensões de Contato

$$\sigma_c = \begin{cases} C_p \sqrt{W^t K_o K_v K_s \frac{K_m}{d_P F} \frac{C_f}{I}} & \text{(unidades dos)} \\ Z_E \sqrt{W^t K_o K_v K_s \frac{K_H}{d_{w1} b} \frac{Z_R}{Z_I}} & \text{(unidades SI)} \end{cases}$$

(unidades dos sistema americano)

US

 $\sigma_{\mathcal{C}}(lbf/pol2)$ - Tensão de contato Cp (Raiz(lbf/pol2)) - Coeficiente elástico Cf - Fator de condição superficial dp (pol) - Diâmetro primitivo do pinhão *I* - Fator geométrico para contato

SI

 $\sigma_{\mathcal{C}}$ (N/mm2) - Tensão de contato ZE (Raiz(N/mm2)) - Coeficiente elástico ZR - Fator de condição superficial dw1 - Diâmetro primitivo do pinhão ZI - Fator geométrico para contato

Os demais parâmetros já foram definidos na equação de flexão.

Coeficiente Elástico - C_p (Z_E)

Convertendo para termos das engrenagens, obtem-se a tensão superficial de compressão (tensão de Hertz)

$$\sigma_C^2 = \frac{W^t}{\pi F \cos \phi} \frac{1/r_1 + 1/r_2}{(1 - \nu_1^2)/E_1 + (1 - \nu_2^2)/E_2}$$

• Localização crítica: Inha primitiva, sendo
$$r_1 = \frac{d_P \sin \phi}{2}$$
 $r_2 = \frac{d_G \sin \phi}{2}$ Wt – Carga Transmitida no dente F – Largura da face do dente

Definindo coeficiente elástico do denominador da Eq. (14–11),

$$C_{p} = \sqrt{\frac{1}{\pi \left(\frac{1 - v_{P}^{2}}{E_{P}} + \frac{1 - v_{G}^{2}}{E_{G}}\right)}} \quad \text{v - Coeficiente de poison}$$

$$E - Módulo de elasticidade$$

Tabela A-5 Constantes físicas de materiais

Tabela A-5 Constantes físicas de materiais.

Material	Módulo de elasticidade E		Módulo de rigidez G		Coeficiente	Peso unitário w		
	Mpsi	GPa	Mpsi	GPa	de Poisson v	lbf/in ³	lbf/ft ³	kN/m ³
Aluminio (todas as ligas)	10,4	71,7	3,9	26,9	0,333	0,098	169	26,6
Berílio – cobre	18,0	124,0	7,0	48,3	0,285	0,297	513	80,6
Bronze	15,4	106,0	5,82	40,1	0,324	0,309	534	83,8
Aço carbono	30,0	207,0	11,5	79,3	0,292	0,282	487	76,5
Ferro fundido (cinza)	14,5	100,0	6,0	41,4	0,211	0,260	450	70,6
Cobre	17,2	119,0	6,49	44,7	0,326	0,322	556	87,3
Madeira de pinheiro (pseudotsuga)	1,6	11,0	0,6	4,1	0,33	0,016	28	4,3
Vidro	6,7	46,2	2,7	18,6	0,245	0,094	162	25,4
Inconel	31,0	214,0	11,0	75,8	0,290	0,307	530	83,3
Chumbo	5,3	36,5	1,9	13,1	0,425	0,411	710	111,5
Magnésio	6,5	44,8	2,4	16,5	0,350	0,065	112	17,6
Molibdênio	48,0	331,0	17,0	117,0	0,307	0,368	636	100,0
Metal de Monel	26,0	179,0	9,5	65,5	0,320	0,319	551	86,6
Níquel – prata	18,5	127,0	7,0	48,3	0,322	0,316	546	85,8
Aço niquel	30,0	207,0	11,5	79,3	0,291	0,280	484	76,0
Bronze – fósforo	16,1	111,0	6,0	41,4	0,349	0,295	510	80,1
Aço inoxidável (18-8)	27,6	190,0	10,6	73,1	0,305	0,280	484	76,0
Ligas de titânio	16,5	114,0	6,2	42,4	0,340	0,160	276	43,4

Coeficiente Elástico – $C_p(Z_E)$

• Obtido da Eq. (14–13) ou da Tabela 14–8.

$$C_{p} = \left[\frac{1}{\pi \left(\frac{1 - \nu_{P}^{2}}{E_{P}} + \frac{1 - \nu_{G}^{2}}{E_{G}} \right)} \right]^{1/2}$$

Tabela 14–8 Coeficiente elástico $C_p(Z_E)$, $\sqrt{\text{psi}}$ ($\sqrt{\text{MPa}}$).

		Matærial da coroa e módulo de elastiicidade E_G , lbf/in 2 (MPa) *					
Material do pinhão	Módulo de elasticidade do pinhão E_p psi (MPa)*	Aço 30×10^6 (2×10^5)	Ferro maleável 25×10^6 (1.7×10^5)	Ferro nodular 24×10^6 $(1,7 \times 10^5)$	Ferro fundido 22×10^6 (1.5×10^5)	Bronze alumínio 17.5×10^6 (1.2×10^5)	Bronze estanho 16×10^6 (1.1×10^5)
Aço	30×10^{6}	2300	2 180	2 160	2100	1 950	1 900
	(2×10^5)	(191)	(181)	(179)	(174)	(162)	(158)
Ferro maleável	25×10^{6}	2180	2090	2 0 7 0	2020	1 900	1 850
	$(1,7 \times 10^5)$	(181)	(174)	(172)	(168)	(158)	(154)
Ferro nodular	24×10^{6}	2160	2070	2050	2000	1 880	1 830
	$(1,7 \times 10^5)$	(179)	(172)	(170)	(166)	(156)	(152)
Ferro fundido	22×10^{6}	2100	2020	2 000	1960	1 850	1 800
	$(1,5 \times 10^5)$	(174)	(168)	(166)	(163)	(154)	(149)
Bronze alumínio	$17,5 \times 10^{6}$	1950	1 900	1 880	1850	1 750	1 700
	$(1,2 \times 10^5)$	(162)	(158)	(156)	(154)	(145)	(141)
Bronze estanho	16×10^{6}	1900	1850	1 830	1800	1 700	1 650
	(1.1×10^5)	(159)	(154)	(152)	(140)	71/11	(137)

Fator Geométrico para Resistência ao Desgaste I (Z_i)

 Denominado pela AGMA de: fator geométrico de resistência ao crateramento

$$I = \begin{cases} \frac{\cos \phi_t \sec \phi_t}{2m_N} \frac{m_G}{m_G + 1} & \text{engrenagens externas} \\ \frac{\cos \phi_t \sec \phi_t}{2m_N} \frac{m_G}{m_G - 1} & \text{engrenagens internas} \end{cases}$$

- razão de transmissão: $m_G = \frac{N_G}{N_R} = \frac{d_G}{d_R}$
- razão de compartilhamento de carga m_N: dentes retos - $m_N = 1$ dentes helicoidais $m_N = \frac{p_N}{0.957}$ $p_N = p_n \cos \phi_n$

p_N - Passo normal de base p_n - Passo circular

passo normal de base: comprimento de ação transversal:

$$Z = \left[(r_P + a)^2 - r_{bP}^2 \right]^{1/2} + \left[(r_G + a)^2 - r_{bG}^2 \right]^{1/2} - (r_P + r_G) \operatorname{sen} \phi_t$$

raio de base: $r_b = r \cos \phi_t$

ANÁLISE DE FALHAS - AGMA 2001-D04

Tensão de Contato Admissível

$$\sigma_{c,\text{adm}} = \begin{cases} \frac{S_c}{S_H} & \frac{Z_N C_H}{K_T K_R} \\ \frac{S_c}{S_H} & \frac{Z_N Z_W}{Y_\theta Y_Z} \end{cases}$$
 (unidades dos (unidades SI)

(unidades dos sistema americano)

US

 $\sigma c \ adm \ (lbf/pol2)$ - Tensão de contato admissível Sc (lbf/pol2) - Resistência à fadiga na compressão

ZN - Fator de ciclagem para tensões de contato

CH - Fator de razão de dureza

KT - Fator de temperatura

KR - Fator de confiabilidade

SH - Fator de segurança AGMA (razão de tensão)

SI

 $\sigma c \ adm \ (N/mm2)$ - Tensão de contato admissível Sc(N/mm2) - Resistência à fadiga na compressão

ZN - Fator de ciclagem para tensões de contato

ZW - Fator de razão de dureza

 $Y\theta$ - Fator de temperatura

YZ - Fator de confiabilidade

SH - Fator de segurança AGMA (razão de tensão)

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 UT

Resistência à Fadiga de Contato $-S_c$ – Engrenagens de Aço

Tabela 14-6 Resistência ao contato S_c aplicado repetidamente a 10^7 ciclos de carga com 0,99 de confiabilidade para engrenagens de aço.

Designação do		Dureza superficial	Número de	tensão de contato a S_c , psi (σ_{HP} , MPa)	idmissível, ²
material	Tratamento térmico	mínima ¹	Grau 1	Grau 2	Grau 3
Aço ³	Endurecido ⁴ por completo	Ver Figura 14–5	Ver Figura 14-5	Ver Figura 14–5	_
	Endurecido por chama ⁵	50 HRC	170 000 (1172)	190 000 (1310)	_
	ou indução⁵	54 HRC	175 000 (1206)	195 000 (1344))
	Carbonetado e endurecido ⁵	Ver Tabela 9*	180 000 (1240)	225 000 (1551)	275 000 (1896
	Nitretado5 (aços endureci-	83.5 HR15N	150 000 (1035)	163 000 (1123)	175 000 (1206
	dos por completo)	84.5 HR15N	155 000 (1068)	168 000 (1158)	180 000 (1240
2,5% de cromo (sem alumínio)	Nitretado ⁵	87.5 HR15N	155 000 (1068)	172 000 (1186)	189 000 (1303
Nitralloy 135M	Nitretado ⁵	90.0 HR15N	170 000 (1172)	183 000 (1261)	195 000 (1344
Nitralloy N	Nitretado ⁵	90.0 HR15N	172 000 (1186)	188 000 (1296)	205 000 (1413
2,5% de cromo (sem alumínio)	Nitretado ⁵	90.0 HR15N	176 000 (1213)	196 000 (1351)	216 000 (1490

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 UITPR

Resistência à Fadiga de Contato $-S_c$. Engrenagens de Ferro Fundido e Bronze

Tabela 14-7 Resistência de contato S_c correspondente a 10^7 ciclos de carga aplicada repetidamente com 0,99 de confiabilidade para engrenagens de ferro e bronze.

Material	Designação do material ¹	Tratamento térmico	Dureza superficial mínima típica ²	Número de tensão de contato admissível, ³ S _c , psi (σ _{HP} , MPa)
Ferro fundido cinza	Classe 20	Como fundido		50000-60000 (344-415)
ASTM A48	Classe 30	Como fundido	174 HB	65 000-75 000 (448-517)
	Classe 40	Como fundido	201 HB	75 000-85 000 (517-586)
Ferro dúctil	Grau 60-40-18	Recozido	140 HB	77 000-92 000 (530-634)
(nodular) ASTM A536	Grau 80-55-03	Temperado e revenido	179 HB	77 000-92 000 (530-634)
	Grau 120-90-02	Temperado e revenido	229 HB	92000-112000 (634-772)
		Temperado e revenido	269 HB	103 000-126 000 (710-868)
Bronze	=	Fundido em areia	Resistência à tração mínima 40 000 psi	30 000 (206)
	ASTM B–148 Liga 954	Tratado termicamente	Resistência à tração mínima 90 000 psi	65 000 (448)

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 **UTP**PR

Resistência à Fadiga de Contato - S_c

Engrenagens de Aço **Endurecidas por** Completo

Figura 14-5 Resistência à fadiga de contato S_c a 10⁷ ciclos e com 0,99 de confiabilidade para engrenagens de aço endurecidas por completo.

Fator de Ciclagem para Tensões de Flexão – YN

- Resistências AGMA são para 10⁷ ciclos
- Leva em conta outros ciclos de projeto
- Fig. 14–15 fornece ZN para tensões de contato

TENSÃO DE CONTATO ADM. – AGMA 2001-D04 UTEPR CORNÉLIO PROCÓPIO

Fator de Ciclagem para tensões de contato - Z_N

Figura 14–15 Fator de ciclagem de tensão para a resistência ao crateramento, Z_N . Fonte: ANSI/AGMA 2001-D04.

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 UITPR

Fator de Razão de Dureza – $C_H(Z_W)$

- Uma vez que o pinhão é submetido a mais ciclos do que a coroa, muitas vezes é endurecido mais do que a coroa.
- Leva em conta a diferença entre a dureza do pinhão e da coroa.
- $C_{H}Z_{W}$ é aplicado somente à coroa e $C_{H}Z_{W}$ = 1 para o pinhão.
- Para a coroa,

$$C_H = 1.0 + A'(m_G - 1.0)$$

m_G - razão de engrenamento

$$A' = 8,98(10^{-3}) \left(\frac{H_{BP}}{H_{BG}}\right) - 8,29(10^{-3})$$
 $1,2 \le \frac{H_{BP}}{H_{BG}} \le 1,7$ $A' = 0$ $\frac{H_{BP}}{H_{BG}} < 1,2,$ $\frac{H_{BP}}{H_{BG}} > 1,7$

Eq. (14–36) é apresentada na Fig. 14–12 na forma de gráfico

TENSÃO DE CONTATO ADM. – AGMA 2001-D04 UTEPR CORNÉLIO PROCÓPIO

Fator de Razão de Dureza – $C_{H_{\cdot}}Z_{W}$

Razão de engrenamento em redução de um estágio m_G

Figura 14–12 Fator de razão de dureza C_H (aço endurecido por completo).

TENSÃO DE CONTATO ADM. – AGMA 2001-D04 UTEPR CORNÉLIO PROCÓPIO

Fator de Razão de Dureza – $C_H(Z_W)$

 Pinhões com superfície endurecida a 48 Rockwell C ou maior, engrenados com engrenagens endurecidas por completo, causam encruamento na coroa. Neste caso

$$C_H = 1 + B'(450 - H_{BG})$$

$$B' = 0.00075e^{-0.0112 f_p}$$

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 UIFPR

Fator de Razão de Dureza – $C_H(Z_W)$

 Pinhões com superfície endurecida a 48 Rockwell C ou maior, engrenados com engrenagens endurecidas por completo, causam encruamento na coroa. Neste caso

$$Z_W = 1 + B'(450 - H_{BG})$$

$$B' = 0.00075e^{-0.0448 \, \text{Rz}_1}$$

Figure 3 - Hardness ratio factor, Z_W (surface hardened pinions)

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 UTPR

Fator de Temperatura $K_T(Y_{\theta})$

- AGMA não estabelace valores para este fator.
- Para temperaturas até 250°F (120°C), $Y_{\theta} = 1$.

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 UITPR

Fator de Confiabilidade $K_R(Y_Z)$

- Leva em conta distribuições estatísticas de falhas de fadiga do material.
- Não leva em conta variação de carga.
- Use Tabela 14–10
- Sendo a confiabilidade R altamente nãolinear, use as expressões (14-38) para interpolação,

$$K_R = \begin{cases} 0.658 - 0.0759 \ln(1 - R) & 0.5 < R < 0.99 \\ 0.50 - 0.109 \ln(1 - R) & 0.99 \le R \le 0.9999 \end{cases}$$

Confiabilidade	K _R (Y _Z)
0.9999	1.50
0.999	1.25
0.99	1.00
0.90	0.85
0.50	0.70

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 **UIF**PR

Fatores de Segurança S_F e S_H

- Incluídos como fatores de projeto nas equações das resistências
- Podem ser calculados e usados como fator de segurança.

$$S_F = \frac{S_t Y_N / (K_T K_R)}{\sigma} = \frac{\text{resistência à flexão corrigida por completo}}{\text{tensão de flexão}}$$

$$S_H = \frac{S_c Z_N C_H / (K_T K_R)}{\sigma_c} = \frac{\text{resistência de contato corrigida por completo}}{\text{tensão de contato}}$$

 Ou podem ser igualados à unidade e utilizar a solução pelo fator de segurança tradicional $n = \sigma_{all}/\sigma$

TENSÃO DE CONTATO ADM.- AGMA 2001-D04 U

Comparação dos Fatores de Segurança

- A tensão de flexão é linear com a força transmitida.
- A tensão de contato não é linear com a força transmitida.
- Para comparar os fatores de segurança dos diferentes modos de falha, para determinar qual deles é o crítico,
 - Compare S_F com S_H para contato linear ou helicoidal
 - Compare S_F com S_H para contato esférico

ANÁLISE DE FALHAS - AGMA 2001-D04

Sumário para flexão do dente

FLEXÃO DE ENGRENAGEM DE DENTES RETOS Com base na ANSI/AGMA 2001-D04 (unidades do sistema americano)

Tabela de fatores de sobrecarga, K_o

Máquina acionada						
Fonte de potência	Uniforme	Choques moderados	Choques intensos			
Uniforme	1,00	1,25	1,75			
Choque leve	1,25	1,50	2,00			
Choque médio	1,50	1,75	2,25			

Fator de segurança de flexão $S_F = \frac{S_t Y_N / (K_T K_R)}{\sigma}$ Equação (14–41)

Lembre-se de comparar S_F com S_H^2 ao decidir se a flexão ou o desgaste é o fator de risco para o funcionamento. Para engrenagens com coroa, compare S_F com S_H^3 .

ANÁLISE DE FALHAS - AGMA 2001-D04

Sumário para desgaste superficial

DESGASTE DE ENGRENAGENS DE DENTES RETOS Com base no ANSI/AGMA 2001-D04 (unidades do sistema americano)

Tabela de fatores de sobrecarga, K_0

Máquina acionada							
Fonte de potência	Uniforme	Choques moderados	Choques intensos				
Uniforme	1,00	1,25	1,75				
Choques leves	1,25	1,50	2,00				
Choques médios	1,50	1,75	2,25				

Lembre-se de comparar S_F com S_H^2 ao decidir se a flexão ou o desgaste é o fator de risco para o funcionamento. Para engrenagens com coroa, compare S_F com S_H^3 .

Exemplo 14-4 no SI – livro do Shigley.

Um pinhão cilíndrico de dentes retos com 17 dentes, ângulo de pressão de 20 graus, roda a 1800 rpm e transmite 3 kW a uma engrenagem de disco de 52 dentes. O módulo normal é 2,5 mm, a largura de face é 38 mm e o padrão de qualidade é 6. As engrenagens são montadas entre mancais imediatamente adjacentes. O pinhão é feito de aço Grau 1 com dureza superficial de 240 Brinell e núcleo totalmente endurecido. A coroa é de aço Grau 1, também endurecida por completo, com dureza Brinell de 200 Brinell para ambos, superfície e núcleo. O coeficiente de Poisson vale 0,3, os fatores geométricos para flexão valaem Y_JP=0,3 e Y_JG=0,4 e o módulo de Young vale 207 GPa. Assuma uma vida para o pinhão de 10^8 ciclos e confiabilidade de 0,90. Utilize Y_N=1,3558N^-0,0178 e Z_N=1,4488N^-0,023. O perfil do dente é sem coroamento. Trata-se de uma unidade redutora de engrenagem comercial fechada.

- (a) Encontre o fator de segurança das engrenagens em flexão.
- (b) Encontre o fator de segurança das engrenagens com relação ao desgaste.
- (c) Examinando os fatores de segurança, identifique a ameaça para o engrenamento


```
número de dentes do pinhão:
                                                        N_p := 17
ângulo de pressão:
                                                        \varphi_t := 20 \deg
rotação do pinhão:
                                                        n_p := 1800 \text{ rpm}
potência:
                                                        H := 3 \text{ kW}
número de dentes da coroa:
                                                        N_G := 52
módulo transversal:
                                                        m_{\pm} := 2,5 \text{ mm}
                                                        b := 38 \text{ mm}
largura:
indice de qualidade:
                                                        Q_{..} := 6
montagem := "entre mancais imediatamente adjacentes, sem ajuste na montagem"
aro := "sem aro"
temperatura := "<120 C"
acabamento superficial := "engrenagem comercial normal"
material pinhao := "aço Grau 1"
dureza superficial do pinhão:
                                          HB_p := 240
                                           tratamento pinhao:= "totalmente endurecido"
```


material_coroa:= "aço Grau 1"

dureza superficial da coroa:

 $HB_G := 200$

tratamento_coroa := "totalmente endurecido"

 $v_p := 0,3$

 $v_G := 0,3$

módulo de elasticidade:

coeficiente de Poisson:

fonte de potencia:= "suave"

maquina acionada := "uniforme"

vida para o pinhão:

 $E_p := 207 \text{ GPa}$

 $E_G := 207 \text{ GPa}$

 $N_{CP} := 10^{8}$

R := 0,9

confiabilidade:

fator de ciclagemm para resistência à fleão:

 $Y_N = 1,3558 \cdot N^{-0,0178}$

fator de ciclagem para resistência ao desgaste:

 $Z_N = 1,4488 \cdot N^{-0,023}$

coroamento:= "sem coroa"

construcao := "unidade redutora comercial fechada"

 $K_o := 1$

CÁLCULO DA TENSÃO DE FLEXÃO DE TRABALHO:

diâmetros primitivos:

velocidade tangencial:

força tangencial:

fator de sobrecarga (tabela):

 $d_p := m_t \cdot N_p = 42,5 \text{ mm}$

 $d_G := m_{\pm} \cdot N_G = 130 \text{ mm}$

 $V := \frac{d_p}{2} \cdot n_p = 4,01 \frac{m}{s}$

 $W_t := \frac{H}{V} = 748,96 \text{ N}$

fonte_de_potencia = "suave"

maquina acionada = "uniforme"

fator dinâmico (eq. 14-27):

 $B := 0,25 \cdot \sqrt[3]{(12 - Q_v)^2} = 0,8255$

 $A := 50 + 56 \cdot (1 - B) = 59,7730$

fator dinâmico (eq. 14-27):

velocidade tangencial máxima:

 $K_{v} := \left(\frac{A + \sqrt{200 \cdot \frac{V}{\frac{m}{s}}}}{A}\right)^{B} = 1,3771$

$$V_{max} := \frac{\left(A + \left(Q_v - 3\right)\right)^2}{200} \frac{m}{s} = 19,702 \frac{m}{s}$$

$$V = 4,006 \frac{m}{s}$$

fator de tamanho: Para engrenagens métricas padronizadas

$$K_s := 1$$

fator de distribuição de carga:

fator de correção de carga (Eq. 14-31):

fator de proporção do pinhão (Eq. 14-32):

$$b = 38 \text{ mm}$$
 $\frac{b}{d_p} = 0,89$ $C_{pf} := \frac{b}{10 \cdot d_p} - 0,0375 + 4,92 \cdot 10^{-4} \cdot \frac{b}{\text{mm}} = 0,0706$

modificador de proporção do pinhão (Eq. 41-33):

 $C_{pm} := 1$

montagem = "entre mancais imediatamente adjacentes, sem ajuste na montagem"

fator de alinhamento (Eq. 14-34):

construcao = "unidade redutora comercial fechada"

$$A := 0,127$$

$$B := 0,0158$$

$$C := -0,930 \cdot 10^{-4}$$

$$C_{ma} := A + B \cdot \frac{b}{in} + C \cdot \left(\frac{b}{in}\right)^2 = 0,1504$$

fator de correção do alinhamento (Eq. 14-35): $C_{\perp} := 1$

montagem = "entre mancais imediatamente adjacentes, sem ajuste na montagem"

fator de distribuição de carga (Eq. 14-30)

$$K_{H} := 1 + C_{mc} \cdot (C_{pf} \cdot C_{pm} + C_{ma} \cdot C_{e}) = 1,221$$

fator de espessura do aro (Eq. 14-40):

aro = "sem aro"

 $K_{R} := 1$

fator geométrico (Fig. 14-6):

 $N_p = 17$ $N_G = 52$ $Y_{TP} := 0,295$

 $N_G = 52$ $N_P = 17$ $Y_{.7G} := 0,39$

tensão de flexão (Eq. 14-15)

$$\sigma_{\mathit{fP}} := \mathit{W}_{\mathit{t}} \cdot \mathit{K}_{o} \cdot \mathit{K}_{\mathit{v}} \cdot \mathit{K}_{\mathit{s}} \cdot \frac{1}{b \cdot \mathit{m}_{\mathit{t}}} \cdot \frac{\mathit{K}_{\mathit{H}} \cdot \mathit{K}_{\mathit{B}}}{\mathit{Y}_{\mathit{JP}}} = 44,94 \; \mathit{MPa}$$

$$\sigma_{\mathrm{fG}} := \mathbf{W}_{\mathrm{t}} \cdot \mathbf{K}_{\mathrm{o}} \cdot \mathbf{K}_{\mathrm{v}} \cdot \mathbf{K}_{\mathrm{s}} \cdot \frac{1}{b \cdot \mathbf{m}_{\mathrm{t}}} \cdot \frac{\mathbf{K}_{\mathrm{H}} \cdot \mathbf{K}_{\mathrm{B}}}{\mathbf{Y}_{\mathrm{JG}}} = 33,99 \; \mathrm{MPa}$$

CÁLCULO DA TENSÃO DE FLEXÃO ADMISSÍVEL:

```
resistência à flexão (Fig. 14-2):
      material pinhao = "aço Grau 1"
      tratamento pinhao = "totalmente endurecido"
                                                   S_{tP} := (0,533 \cdot HB_P + 88,3) \text{ MPa} = 216,22 \text{ MPa}
      HB_{p} = 240
      material_coroa = "aço Grau 1"
      tratamento coroa = "totalmente endurecido"
                                                    S_{tG} := (0,533 \cdot HB_G + 88,3) \text{ MPa} = 194,9 \text{ MPa}
      HB_{G} = 200
```


fator de cilclagem (Fig. 14-14):

$$N_{CP} = 1 \cdot 10^8$$

$$Y_{NP} := 1,3558 \cdot N_{CP} - 0,0178 = 0,977$$

$$N_{CG} := N_{CP} \cdot \frac{N_P}{N_C} = 3,27 \cdot 10^{7}$$

$$Y_{NG} := 1,3558 \cdot N_{CG}^{-0,0178} = 0,996$$

fator de temperatura:

temperatura = "<120 C"

 $Y_{\theta} := 1$

fator de confiabilidade (Tab. 14-10):

$$R = 0,9$$

$$Y_z := 0,85$$

tensão de flexão admissível (Eq. 14-17):

$$\sigma_{fadmP} := S_{tP} \cdot \frac{Y_{NP}}{Y_{\theta} \cdot Y_{Z}} = 248,47 \text{ MPa}$$

$$\sigma_{fadmG} := S_{tG} \cdot \frac{Y_{NG}}{Y_{\theta} \cdot Y_{Z}} = 228,47 \text{ MPa}$$

CÁLCULO DA TENSÃO DE CONTATO DE TRABALHO

coeficiente elástico (Tab. 14-8 ou Eq. 14-13):

material_pinhao = "aço Grau 1"

material_coroa = "aço Grau 1"

$$v_p = 0,3$$

$$v_{c} = 0,3$$

$$v_p = 0,3$$
 $E_p = 207 \text{ GPa}$

$$v_G = 0,3$$
 $E_G = 207 \text{ GPa}$

$$Z_{E} := \sqrt{\frac{1}{\pi \cdot \left(\frac{1 - v_{p}^{2}}{E_{p}} + \frac{1 - v_{G}^{2}}{E_{G}}\right)}} = 190, 27 \sqrt{\text{MPa}}$$

fator de condição da superfície:

para engrenagens normais

 $Z_p := 1$

fator geométrico para desgaste (Eq. 14-23):

razão de engrenamento:

$$m_G := \frac{N_G}{N_P} = 3,06$$

razão de compartilhamento de carga:

$$m_{N} := 1$$

fator geométrico para desgaste:

$$Z_{I} := \frac{\cos\left(\varphi_{t}\right) \cdot \sin\left(\varphi_{t}\right)}{2 \cdot m_{N}} \cdot \frac{m_{G}}{m_{G} + 1} = 0,12$$

tensão de contato de trabalho:

$$\sigma_{cP} := Z_E \cdot \sqrt{W_t \cdot K_o \cdot K_v \cdot K_s \cdot \frac{K_H}{d_P \cdot b} \cdot \frac{Z_R}{Z_I}} = 482,83 \text{ MPa}$$

$$\sigma_{cG} := Z_E \cdot \sqrt{W_t \cdot K_o \cdot K_v \cdot K_s \cdot \frac{K_H}{d_P \cdot b} \cdot \frac{Z_R}{Z_I}} = 482,83 \text{ MPa}$$

CÁLCULO DA TENSÃO DE CONTATO ADMISSÍVEL:

resistência ao contato (Fig. 14-5): material pinhao = "aço Grau 1" tratamento pinhao = "totalmente endurecido" $S_{cP} := (2,22 \cdot HB_P + 200) \text{ MPa} = 732,8 \text{ MPa}$ $HB_{p} = 240$ material coroa = "aço Grau 1" tratamento coroa = "totalmente endurecido" $S_{cG} := (2,22 \cdot HB_G + 200) \text{ MPa} = 644 \text{ MPa}$

 $HB_{c} = 200$

fator de cilclagem (Fig. 14-15):

$$N_{CP} = 1 \cdot 10^{8}$$
 $N_{CG} := N_{CP} \cdot \frac{N_{P}}{N_{C}} = 3,27 \cdot 10^{7}$

$$Z_{NP} := 1,4488 \cdot N_{CP} - 0,023 = 0,948$$

$$Z_{NG} := 1,4488 \cdot N_{CG}^{-0,023} = 0,973$$

fator de razão de dureza (Eq. 14-36):

pinhão: $Z_{wp} := 1$

$$Z_{WP} := 1$$

$$\frac{HB_p}{HB_G} = 1, 2$$

coroa:
$$\frac{HB_p}{HB_G} = 1,2 \qquad A' := 8,98 \cdot 10^{-3} \cdot \frac{HB_p}{HB_G} - 8,29 \cdot 10^{-3} = 0,0025$$

$$Z_{WG} := 1 + A' \cdot (m_G - 1) = 1,005$$

tensão de contato admissível:

$$\sigma_{cadmP} := S_{cP} \cdot \frac{Z_{NP} \cdot Z_{WP}}{Y_{\theta} \cdot Y_{Z}} = 817,66 \text{ MPa}$$

$$\sigma_{\operatorname{cadmG}} \coloneqq s_{\operatorname{cG}} \cdot \frac{z_{\operatorname{NG}} \cdot z_{\operatorname{WG}}}{Y_{\operatorname{G}} \cdot Y_{\operatorname{Z}}} = 741,07 \, \operatorname{MPa}$$

CÁLCULO DO FATOR DE SEGURANÇA PARA FLEXÃO

fator de segurança para flexão:

$$S_{FP} := \frac{\sigma_{fadmP}}{\sigma_{fP}} = 5,53$$

$$S_{FG} := \frac{\sigma_{fadmG}}{\sigma_{fG}} = 6,72$$

CÁLCULO DO FATOR DE SEGURANÇA PARA CONTATO

fator de segurança para contato:

$$S_{HP} := \frac{\sigma_{cadmP}}{\sigma_{cP}} = 1,69$$

$$S_{HG} := \frac{\sigma_{cadmG}}{\sigma_{cG}} = 1,53$$

$$S_{HP}^{2} = 2,87$$

$$s_{HG}^{2} = 2,36$$

EXERCÍCIO PARA ENTREGAR

Crie um programa em python que resolva o exemplo 1 Adicione o enunciado do exercício e crie funções.

O programa deve imprimir as tensões e fatores de segurança.

