

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: Gaurav Kumar Mobile No: 8529143452

Roll Number: B20197 Branch:EE

1 a.

	Prediction	o Outcome
Label	93	25
True	19	200

Figure 1 KNN Confusion Matrix for K = 1

	Prediction	Outcome
Label	92	26
True	9	210

Figure 2 KNN Confusion Matrix for K = 3

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction	Outcome
Label	92	26
True	10	209

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

	Classification
K	Accuracy (in %)
1	86.943
3	89.614
4	89.318

Inferences:

- 1. The highest classification accuracy is obtained with K = 3.
- 2. Increasing the value of K decreases the prediction accuracy.
- 3. By increasing the value of K we are actually considering the Euclidian distances of K points from the test point that's why we get low accuracy on increasing the K value.
- 4. As the classification accuracy decreases with the increase in value of K infer the number of diagonal element decreases.
- 5. As accuracy is percentage of sum of diagonal element and total no. of test sample. So, as accuracy decreases diagonal element also decreases.
- 6. As the classification accuracy decreases with the increase in value of K infer the number of off-diagonal elements increase.
- 7. Due to decrease in accuracy as K increases cause increase in off-diagonal element.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2 a.

	Prediction	Outcome
Label	111	7
True	6	213

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction	n Outcome
Label	112	6
True	4	215

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction	n Outcome
Label	112	6
True	3	216

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

b.

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	96.142
3	97.033
5	97.330

Inferences:

- 1. Data normalization increases classification accuracy.
- 2. Due to normalization, we are getting true Euclidian distance. Hence, K-NN classification becomes more accurate.
- 3. The highest classification accuracy is obtained with K = 5.
- 4. Increasing the value of k actually decreases the prediction accuracy for large value of K. But, for lower value of k, increasing the value of k cause increase in classification accuracy.

5.

- 6. State a suitable reason why increasing the value of K increases/decreases the prediction accuracy.
- 7. As the classification accuracy increases/decreases with the increase in value of K infer does the number of diagonal elements increase/decrease.
- 8. State the reason for increase/decrease in diagonal elements.
- 9. As the classification accuracy increases/decreases with the increase in value of K infer does the number of off-diagonal elements increase/decrease.
- 10. State the reason for increase/decrease in off-diagonal elements.

3

	Prediction	n Outcome
Label	102	3
True	16	214

Figure 7 Confusion Matrix obtained from Bayes Classifier

The classification accuracy obtained from Bayes Classifier is 94.362%.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 3 Mean for class 0 and class 1

S. No.	Attribute Name	Me	ean
		Class 0	Class 1
1.	X_Minimum	124.388	695.350
2.	X_Maximum	273.418	723.656
3.	Y_Minimum	1583013.432	1431553.132
4.	Y_Maximum	1583169.659	1431588.690
5.	Pixels_Areas	7779.663	585.967
6.	X_Perimeter	393.835	54.491
7.	Y_Perimeter	273.183	45.658
8.	Sum_of_Luminosity	843350.275	62191.126
9.	Minimum_of_Luminosity	53.326	96.236
10.	Maximum_of_Luminosity	135.762	130.452
11.	Length_of_Conveyer	1382.762	1480.018
12.	TypeOfSteel_A300		
13.	TypeOfSteel_A400		
14.	Steel_Plate_Thickness	40.073	104.214
15.	Edges_Index	0.123	0.385
16.	Empty_Index	0.459	0.427
17.	Square_Index	0.592	0.513
18.	Outside_X_Index	0.108	0.020
19.	Edges_X_Index	0.550	0.608
20.	Edges_Y_Index	0.523	0.831
21.	Outside_Global_Index	0.288	0.608
22.	LogOfAreas	3.623	2.287
23.	Log_X_Index	2.057	1.227
24.	Log_Y_Index	1.848	1.318
25.	Orientation_Index	-0.314	0.136
26.	Luminosity_Index	-0.115	-0.116
27.	SigmoidOfAreas	0.925	0.540

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	X_Maximu	/_Maximu	Pixels_Are	X_Perime	Y_Perimet	Sum_of_L	Minimum	Maximum	Length_of	Steel_Plat	Edges_Ind	Empty_Inc	Square_In	Outside_X	Edges_X_I	Edges_Y_I	Outside_0	LogOfArea	Log_X_Inc	Log_Y_Ind	Orientatic	Luminosit	SigmoidOfA
X_Maximi	46733.8	-6E+07	-320672	-15751	-12944	-3E+07	3686.07	2040.9	1237.64	16.734	25.3602	-6.9293	4.69619	-1.5159	16.6535	22.5046	30.839	-76.32	-47.782	-31.147	27.6788	18.0829	-30.093
Y_Maximu	-6E+07	1.8E+12	1E+09	8.3E+07	1.6E+08	4.9E+10	-6E+06	-6E+06	-8E+06	-114611	-47711	21948.3	-59251	4294.74	-19166	-35306	-86404	168070	111448	73014.4	-82047	-50711	73811.6
Pixels_Are	-320672	1E+09	1E+08	6692649	1E+07	9E+09	-154934	6294.46	10070.2	547.01	-492.11	585.231	200.195	223.056	-1121.2	-354.57	556.075	3456.88	1427.03	2840.74	980.333	-300.21	575.04
X_Perime	-15751	8.3E+07	6692649	442771	706257	5.6E+08	-7764	769.586	771.604	31.9239	-24.093	38.1611	10.5958	10.9942	-67.824	-13.284	45.3417	183.057	68.4117	169.129	72.4357	-15.703	28.5211
Y_Perimet	-12944	1.6E+08	1E+07	706257	1206391	8.1E+08	-6894.5	1492.07	-1364.2	10.2071	-17.571	44.1824	-16.55	6.49598	-65.417	13.4106	63.2505	176.64	44.0548	207.792	105.12	-21.062	19.5057
Sum_of_L	-3E+07	4.9E+10	9E+09	5.6E+08	8.1E+08	8.2E+11	-2E+07	777671	2214134	49759.9	-53267	58474.6	44601.8	25470.5	-123181	-50985	60033.1	361545	157341	278177	96509.5	-22291	62063.3
Minimum	3686.07	-6E+06	-154934	-7764	-6894.5	-2E+07	1458.21	439.236	-153.83	-1.9725	3.93151	-1.75	1.07774	-1.4553	3.73884	4.62332	4.75885	-22.187	-12.861	-10.747	3.81665	4.44827	-6.5574
Maximum	2040.9	-6E+06	6294.46	769.586	1492.07	777671	439.236	333.381	2.28501	-0.7913	1.76868	-0.2216	2.0577	-0.353	-0.1424	1.57515	4.20658	-5.8594	-4.3584	-1.5292	4.13638	2.71617	-2.7371
Length_of	1237.64	-8E+06	10070.2	771.604	-1364.2	2214134	-153.83	2.28501	2521.56	-1.8207	1.32196	0.80637	3.92598	-0.1925	-2.6967	-0.5342	4.53563	2.03005	-0.0019	2.64493	4.36984	-0.4847	0.21099
Steel_Plat	16.734	-114611	547.01	31.9239	10.2071	49759.9	-1.9725	-0.7913	-1.8207	0.72991	-0.0087	0.0147	-0.0155	0.01905	0.00318	-0.0154	-0.0211	0.0411	0.04137	0.01927	-0.0225	-0.0077	0.00548
Edges_Ind	25.3602	-47711	-492.11	-24.093	-17.571	-53267	3.93151	1.76868	1.32196	-0.0087	0.02932	-0.0093	0.00715	-0.006	0.01469	0.02242	0.02636	-0.084	-0.0535	-0.0376	0.0243	0.01598	-0.0276
Empty_Inc	-6.9293	21948.3	585.231	38.1611	44.1824	58474.6	-1.75	-0.2216	0.80637	0.0147	-0.0093	0.0153	0.00472	0.00494	-0.0177	-0.0116	0.00302	0.05167	0.03041	0.03616	0.00516	-0.0035	0.01527
Square_In	4.69619	-59251	200.195	10.5958	-16.55	44601.8	1.07774	2.0577	3.92598	-0.0155	0.00715	0.00472	0.06449	-0.0041	-0.0363	-0.0007	0.0703	0.00133	-0.0197	0.02319	0.06865	0.01634	-0.0097
Outside X	-1.5159	4294.74	223.056	10.9942	6.49598	25470.5	-1.4553	-0.353	-0.1925	0.01905	-0.006	0.00494	-0.0041	0.00474	-0.0022	-0.0073	-0.0098	0.02915	0.02089	0.01388	-0.0095	-0.0038	0.00748
Edges X I	16.6535	-19166	-1121.2	-67.824	-65.417	-123181	3.73884	-0.1424	-2.6967	0.00318	0.01469	-0.0177	-0.0363	-0.0022	0.05691	0.02285	-0.0386	-0.0984	-0.0393	-0.0731	-0.0445	0.00278	-0.0257
Edges Y I	22.5046	-35306	-354.57	-13.284	13.4106	-50985	4.62332	1.57515	-0.5342	-0.0154	0.02242	-0.0116	-0.0007	-0.0073	0.02285	0.03068	0.02494	-0.0993	-0.0626	-0.0447	0.02302	0.01438	-0.0311
Outside (30.839	-86404	556.075	45.3417	63.2505	60033.1	4.75885	4.20658	4.53563	-0.0211	0.02636	0.00302	0.0703	-0.0098	-0.0386	0.02494	0.20286	-0.0578	-0.0728	0.01926	0.13807	0.03302	-0.0325
LogOfArea	-76.32	168070	3456.88	183.057	176.64	361545	-22.187	-5.8594	2.03005	0.0411	-0.084	0.05167	0.00133	0.02915	-0.0984	-0.0993	-0.0578	0.47146	0.2669	0.2469	-0.0439	-0.067	0.13522
Log X Inc	-47.782	111448	1427.03	68.4117	44.0548	157341	-12.861	-4.3584	-0.0019	0.04137	-0.0535	0.03041	-0.0197	0.02089	-0.0393	-0.0626	-0.0728	0.2669	0.16787	0.12411	-0.0663	-0.0441	0.08164
Log Y Ind		73014.4	2840.74	169.129	207.792	278177	-10.747	-1.5292	2.64493	0.01927	-0.0376	0.03616	0.02319	0.01388	-0.0731	-0.0447	0.01926	0.2469	0.12411	0.15685	0.02918	-0.0255	0.06457
		-82047	980.333	72.4357	105.12	96509.5	3.81665	4.13638	4.36984	-0.0225	0.0243	0.00516	0.06865	-0.0095	-0.0445	0.02302	0.13807	-0.0439	-0.0663	0.02918	0.13317	0.0309	-0.0277
Luminosit	18.0829	-50711	-300.21	-15.703	-21.062	-22291	4.44827	2.71617	-0.4847	-0.0077	0.01598	-0.0035	0.01634	-0.0038	0.00278	0.01438	0.03302	-0.067	-0.0441	-0.0255	0.0309	0.02744	-0.0264
SigmoidO		73811.6	575.04	28.5211	19.5057	62063.3	-6.5574	-2.7371	0.21099		-0.0276	0.01527	-0.0097	0.00748	-0.0257	-0.0311	-0.0325	0.13522	0.08164		-0.0277	-0.0264	
2.0			2.0101				2.507 1	0 / 1		2.230 10				2.237 10	2.3207		5020					5201	

Figure 8: Covariance matrix for class 0

У	(_Maximi	Y_Maximu	Pixels_Are	X_Perime	Y_Perimet	Sum_of_L	Minimum	Maximum	Length_of	Steel_Plat	Edges_Ind	Empty_Inc	Square_In	Outside_>	Edges_X_I	Edges_Y_I	Outside_0	LogOfArea	Log_X_Inc	Log_Y_Ind	Orientatic	Luminosit	SigmoidOfAreas
X_Maxim	256526	1.1E+08	-22255	1101.08	-1973.6	-2E+06	-1224.8	-744.04	13220.1	-1932.6	8.91392	-3.8064	10.8927	1.50433	6.69479	-5.0184	-16.564	-13.781	5.30599	-21.204	-25.896	-8.452	-14.221
Y_Maximu	1.1E+08	3.1E+12	3.2E+08	2E+07	4659662	3.3E+10	-4E+06	-43296	3999506	-4E+07	23556.3	-19251	-38010	13457.3	64533	-22199	-74705	15298.1	64300.3	-63427	-119870	-14718	-37675
Pixels_Are	-22255	3.2E+08	4714217	178492	129451	4.9E+08	-15632	-300.3	-23835	4262.21	-47.646	35.6195	-90.634	52.9086	-101.64	-96.057	55.1778	653.051	330.779	355.115	65.4194	-32.384	218.948
X_Perime	1101.08	2E+07	178492	9807.2	5546.9	1.9E+07	-570.12	30.1497	-1446.9	282.113	-1.3317	4.1556	-7.3181	3.9719	-4.8499	-9.1761	-2.1516	36.6199	23.5571	16.8636	-3.7576	-1.1186	15.5083
Y_Perimet	-1973.6	4659662	129451	5546.9	5000.65	1.3E+07	-557.42	-79.146	-1139.3	438.56	-2.2442	2.95169	-6.496	1.20447	-8.6115	-2.3674	7.10985	29.0276	10.6809	21.0247	11.0455	-1.5564	13.014
Sum_of_L	-2E+06	3.3E+10	4.9E+08	1.9E+07	1.3E+07	5.1E+10	-1E+06	84723	-3E+06	343512	-4688.9	3985.08	-9652.6	5577.97	-10535	-10272	5462.3	67782.7	34740.3	36734.8	6364.12	-2282.4	22864.8
Minimum	-1224.8	-4E+06	-15632	-570.12	-557.42	-1E+06	733.909	348.045	-993.31	-204.84	1.06637	0.59107	0.77518	-0.1515	0.42721	-0.8333	-2.2243	-5.0426		-3.2866	-2.503	3.68376	-1.9836
Maximum	-744.04	-43296	-300.3		-79.146			406.461	-381.09							-1.0897	-2.0184		0.0.00	-2.1652			-0.96
Length_of	13220.1	3999506	-23835	-1446.9	-1139.3	-3E+06	-993.31	-381.09	23100.8	1243.44	-0.0905	-5.1595	2.46817	-0.6978	6.59105	1.97125	-3.1377	-7.9532	-1.4397	-10.567	-7.4308	-4.5468	-5.9668
Steel_Plat	-1932.6	-4E+07	4262.21	282.113	438.56	343512	-204.84	-205.39	1243.44	5645.31	-1.3306	0.69919	-1.1338	-0.1655		2.05813	6.62347	3.62663	-1.3764	5.40272	7.84601	-1.6621	2.39033
Edges_Ind			-47.646		-2.2442			0.42912											0.00465	-0.0165			-0.004
Empty_Inc		-19251		4.1556	2.95169	3985.08	0.59107	-0.0245		0.69919					-0.0125	-0.011			0.02169	0.02161	-0.0041		0.02383
Square_In		-38010	-90.634	-7.3181	-6.496			-0.267	2.46817			-0.002		-0.0029		0.01488			-0.0205	-0.0333	-0.0206	0.00137	-0.0283
Outside_X						5577.97		0.04392			6.45E-05				0.00175			0.01162		0.00132	-0.0084		0.00464
Edges_X_I			-101.64	-4.8499						-3.4426						-0.0139				-0.0863		0.00434	-0.0449
0	-5.0184	-22199	-96.057	-9.1761			-0.8333							-0.0053				-0.0252				-0.0072	-0.0169
Outside_0						5462.3	-2.2243	-2.0184			-0.0166			-0.0052				0.04766					
							-5.0426	-1.5043		3.62663		0.02634	-0.0531	0.01162	-0.0662					0.17702	0.0729		0.14744
Log_X_Inc								0.67825	-1.4397					0.0115							-0.1007		0.06466
0						36734.8	-3.2866	-2.1652		5.40272												-0.0172	0.1025
Orientatic							-2.503	-2.8738					-0.0206	-0.0084			0.22928			0.16863		-0.0187	0.0412
Luminosit	-8.452	-14718		-1.1186								0.0021		-0.0002	0.00434				-0.0004	-0.0172	-0.0187	0.02452	-0.009
SigmoidO	-14.221	-37675	218.948	15.5083	13.014	22864.8	-1.9836	-0.96	-5.9668	2.39033	-0.004	0.02383	-0.0283	0.00464	-0.0449	-0.0169	0.02182	0.14744	0.06466	0.1025	0.0412	-0.009	0.10227

Figure 9: Covariance matrix for class 1

Inferences:

- 1. The accuracy of Bayes Classifier is 94.362%. Naive Bayes is an eager learning classifier. That is why its easy, fast and best accuracy classifier.
- 2. The nature of values along the diagonal for some attribute is high and for some other its low because some attribute follow standard normal distribution.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

3. The off-diagonal values have varied values. The two pair of attributes having maximum covariance is (Y_Mximum, Sum of Luminosity) and (Y_Maximum,Pixel_Area). The two pair of attribute with minimum covariance is (Outside_X,Edges_X) and (Outside_X, Empty_index).

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	89.614
2.	KNN on normalized data	97.330
3.	Bayes	94.362

Inferences:

- 1. classifier with highest accuracy is Classifier KNN Bayes.
- 2. classifier with lowest accuracy is KNN Classifier.
- 3. Classifier KNN< Classifier Bayes < Classifier KNN on normalized data .