Цель урока

Никто не запрещает нам тестировать сразу много гипотез, но тут можно допустить и много ошибок. Обсудим тонкости множественного тестирования.

Задачи урока

- Узнаем, как применять A/B/N-, или множественное тестирование
- Научимся применять поправку Бонферрони
- ✓ Посмотрим на идею дисперсионного анализа
- Разберём, что делать, если распределение ненормальное, и изучим критерий Краскела Уоллиса

А/В/N-тестирование и А/В-тестирование

А/В-тестирование не ограничивается сравнением 2 групп. Можно сравнить N групп, но потребуется больше трафика для надёжности информации.

А/В/N-тестирование и А/В-тестирование

А/В/N-тестирование позволяет протестировать группу изменений. Например, изменение не только надписи, но и цвета кнопки. Тогда каждый вариант содержит уникальное сочетание текста и оформления кнопки, что позволяет выделить оптимальный вариант.

А/В/N-тестирование и А/В-тестирование

Так, ну здорово, давайте тогда одновременно будем проверять сразу много гипотез, чтобы экономить время!

Не спешите! Тут есть несколько тонкостей, на которых можно споткнуться. Давайте разбираться!

A/B/N-тестирование и A/В-тестирование

Допустим, мы тестируем сразу 3 гипотезы для какой-нибудь витрины продуктов.

Мы знаем, что вероятность неверно отклонить нулевую гипотезу — это α = 5 % для одного случая.

Тогда при тестировании сразу трёх гипотез:

Р (неверно отклонить нулевую гипотезу хотя бы для одного случая) = 1 – Р (неверно отклонить нулевую гипотезу для 3-х случаев) = $1 - (1 - \alpha)^3 = 14,3\%$.

И это только для трёх гипотез!

Множественное тестирование

Получается, что при тестировании одновременно нескольких гипотез хотя бы по одной метрике вероятность маловероятных событий (например, различие между двумя группами при условии нулевой гипотезы) увеличивается!

Следовательно, увеличивается вероятность ошибки 1-го рода, то велика вероятность найти значимые результаты там, где их нет.

Посмотрим, что будет, если мы продолжим увеличивать количество одновременно проверяемых гипотез.

Множественное тестирование и гипотезы

Р (неверно отклонить нулевую гипотезу хотя бы для одного случая) = $1 - (1 - \alpha)n$.

Для α = 5 % график роста ошибки от количества тестируемых гипотез следующий.

Вероятность ошибки

	Количество тестируемых гипотез						
alpha	1	2	3	4	5	6	7
1%	1%	2%	3%	4%	5%	6%	7%
5%	5%	10%	14%	19%	23%	26%	30%

Множественное тестирование и метрики

Обратите внимание, что, если у вас может быть всего **одна гипотеза**, но при этом вы отслеживаете сразу **много метрик** для этой гипотезы, что тогда?

Множественное тестирование и метрики

Тогда задачу легко переформулировать в предыдущую и получить на выходе ту же ситуацию: по сути у вас много одинаковых гипотез, но для разных метрик. Тогда ошибка ведётся себя также:

• Р (неверно отклонить нулевую гипотезу хотя бы для **одного метрики**) = 1 – (1 – α)n. Для α = 5 % график роста ошибки от **количества тестируемых метрик**

Вероятность неверно отклонить нулевую гипотезу хотя бы для одного случая

Вероятность ошибки

	Количество тестируемых метрик						
alpha	1	2	3	4	5	6	7
1%	1%	2%	3%	4%	5%	6%	7%
5%	5%	10%	14%	19%	23%	26%	30%

Множественное тестирование: решение

Увеличивая α, мы негативно влияем на мощность, отсюда имеется больший риск назвать неоднородные группы однородными.

Вывод: сравнивайте по меньшему **количеству метрик**, но с приемлемыми вероятностями ошибок 1-го и 2-го рода.

И что тогда делать, если проверять сразу много гипотез хочется, а ошибаться не хочется?

Ответ прост: использовать поправку на уровень значимости, например, поправку Бонферрони,

Множественное тестирование: поправка Бонферрони

Пусть

V — количество ложных отклонений нулевых гипотез.

FWER — вероятность хотя бы одной ошибки первого рода.

т — количество тестируемых гипотез.

Будем отвергать нулевую гипотезу, если p-value < α /m

$$egin{equation} ext{Тогда: FWER} = P(V \geq 1) = P\left\{igcup_{i=1}^m \left(p_i \leq rac{lpha}{m}
ight)
ight\} \leq \sum_{i=1}^m P\left(p_i \leq rac{lpha}{m}
ight) \leq mrac{lpha}{m} = lpha \end{pmatrix}$$

Получили то, что хотели в самом начале для вероятности хотя бы одной ошибки первого рода.

Рассмотрим случай, когда мы проверим n гипотез.

	Верных H_{Oi}	Неверных H_{Oi}
He отвергнутых H_{Oi}	U	Τ
Отвергнутых H_{Oi}	V	S

Множественное тестирование: поправка Бонферрони

Вывод и смысл:

- проверять все гипотезы по критерию на уровне значимости α/\mathbf{m}
- в таком случае FWER < α , что нам и нужно
- это простая, но грубая поправка, т. к. мощность критерия падает с увеличением числа m
- для небольшого количества групп такая поправка обычно работает

Множественное тестирование и другие поправки

Для общности скажем, что существуют и другие поправки, с помощью которых мы можем ограничить число ошибок первого рода. Для каждой из них используются определённые статистики. То есть, помимо FWER = P (V ≥ 1) (вероятность хотя бы одной ошибки первого рода), есть ещё:

- FDP = V/D (D > 0) (доля ошибок первого рода среди всех отклонённых гипотез)
- RDR = E(FDP) (средняя доля ошибок первого рода) и другие

На практике часто используют **FWER**.

Множественное тестирование

Затронем теперь такую тему, как независимость между тестами.

Зададимся вопросом: «А можем ли мы тестировать сразу **несколько гипотез** на **одном пользователе?»**

Если да, то мы сможем **ещё сильнее увеличить количество гипотез**, которое проверяем одновременно, а значит быстрее улучшать наш сервис!

Разберём пару примеров.

Гипотеза, связанная с верхнимбаннером
Гипотеза, связанная с нижним баннером

Множественное тестирование: один пользователь

Может ли один пользователь участвовать в двух тестах?

- **Тест 1**. Первичные метрики конверсия в покупку пакета
- **Тест 2**. Первичные метрики конверсия в подписку на обновления

Множественное тестирование: один пользователь

Может ли один пользователь участвовать в двух тестах?

- **Тест 1**. Первичные метрики конверсия в покупку пакета
- **Тест 2**. Первичные метрики конверсия в подписку на обновления

Ответ: может, так как пакет не влияет на желание отслеживать обновления.

Множественное тестирование: один пользователь

Курьеру предлагается заказ. У него есть 5 минут на то, чтобы его принять, отклонить или проигнорировать. Если заказ был принят, то курьер может его отменить.

- **Фича 1**: предлагаем курьерам из тестовой группы 10 минут
 - Ожидание 1: увеличение доли принятых заказов
- Фича 2: увеличиваем штраф за отмену заказа в 2 раза
 - Ожидание 2: уменьшение отмен

Вопрос: может ли один пользователь участвовать в двух тестах?

Множественное тестирование: один пользователь

Курьеру предлагается заказ. У него есть 5 минут на то, чтобы его принять, отклонить или проигнорировать. Если заказ был принят, то курьер может его отменить.

- Фича 1: предлагаем курьерам из тестовой группы 10 минут
 - Ожидание 1: увеличение доли принятых заказов
- Фича 2: увеличиваем штраф за отмену заказа в 2 раза
 - Ожидание 2: уменьшение отмен
- **Bonpoc**: может ли один пользователь участвовать в двух тестах?
 - Ответ: нет. Фича 1 увеличивает долю принятых заказов, а фича 2 понижает, курьеры принимают осторожнее, отсюда вывод: эффект от фичи 1 невозможно определить

Не допускайте пересекающихся тестовых выборок.

Множественное тестирование: изменение вариаций

Тестируем три вариации цвета кнопки. После первой недели конверсия по розовому цвету была ниже всех, и поэтому решили заменить его на коричневый.

Можем ли сравнить три вариации?

	неделя 1	неделя 2	неделя з	неделя 4
желтый				
ЗЕЛЕНЫЙ				
РОЗОВЫЙ				
КОРИЧНЕВЫЙ				

Множественное тестирование: изменение вариаций

Ответ: нет.

Данных по первой неделе коричневого цвета нет.

Отсюда результаты этой недели имеют меньший вес в результатах. Отсюда невалидные выводы.

Вдруг на первой неделе был аномально высокий спрос. Отсюда цены выше. Отсюда конверсии уменьшились у всех вариантов одинаково? Коричневый цвет этого уменьшения не учитывает.

Хорошо, ясно теперь, что надо снижать уровень значимости. А есть ли какие-то критерии, но не для двух групп, а сразу для нескольких?

Да, такие есть! Так же, как для двух групп у нас параметрический критерий Стьюдента и непараметрический критерий Манна — Уитни, как и для нескольких групп есть ещё непараметрический критерий Крускала — Уоллиса и параметрический дисперсионный анализ.

Далее подробнее поговорим про эти критерии. А пока только скажем, что эти критерии позволяют смотреть наличие статистически значимого различия без накопления ошибки при множественном тестировании.

```
# Используем дисперсионнай анализ
statistic, pvalue = stats.f_oneway(A, B, C, D, F)

# Теперь вычисляем Крускал Уоллис тест
statistic, pvalue = stats.kruskal(A, B, C, D, F)
```

Дисперсионный анализ

Допустим, мы хотим определить, какой способ выращивания арбузов лучше.

Дисперсионный анализ

Идея дисперсионного анализа

А что теперь можно сказать про эффективность удобрений? Какое лучше?

А что изменилось?

Идея дисперсионного анализа

Это и есть ключевая идея дисперсионного анализа!

Идея дисперсионного анализа

выборки

Идея дисперсионного анализа

Идеи дисперсионного анализа

Чем больше F, тем проще различить выборки

Критерий Краскела— Уоллиса

Дисперсионный анализ по Краскелу — Уоллису относится к группе непараметрических методов статистики. Это значит, что он не зависит от распределения. В нём используются ранги исходных значений и их суммы в сравниваемых группах. В частности, метод Краскела — Уоллиса основан на вычислении т. н. *H*-критерия:

$$H = rac{12}{N(N+1)} \sum_{i=1}^m rac{R_i^2}{n_i} - 3(N+1),$$

Критерий Краскела— Уоллиса

$$H = rac{12}{N(N+1)} \sum_{i=1}^m rac{R_i^2}{n_i} - 3(N+1),$$

Где n' — число наблюдений в группе i, N = общее число наблюдений во всех m-группах, а R' — сумма рангов наблюдений в группе i. Ранг представляет собой порядковый номер конкретного наблюдения в ряду упорядоченных по возрастанию наблюдений. Аналогично F-критерию, чем больше значение H-критерия, тем больше у нас оснований отклонить нулевую гипотезу об отсутствии разницы между сравниваемыми группами.

Итоги и выводы урока

Множественное A/B-тестирование может сильно ускорить количество гипотез, тем самым ускорить развитие вашего сервиса.

- Помните, чем больше гипотез вы одновременно проверяете, тем более строгие условия должны быть на уровне значимости. Например, можно использовать уровень значимости, делённый на количество тестирований
- Задавайтесь вопросом, являются ли ваши тестирования зависимыми, так вы сможете либо ускорить ваше тестирование рамках одного пользователя, либо исключить возможные ошибки
- В случае множественного тестирования могут помочь специальные критерии, решающие проблему роста ошибки