Identifying Suitable CG Formulations of Some Fundamental Optimization Problems

OeGOR Summer-School 2024, Krems

Timo Gschwind Lehrstuhl für BWL, insb. Logistik

Recall: Vehicle Routing Problem with Time Windows

Master program:

$$\begin{aligned} \min \sum_{r \in \Omega} c_r \lambda_r \\ \text{s.t.} \sum_{r \in \Omega} a_{ir} \lambda_r &= 1 \quad \forall \ i \in N \\ \sum_{r \in \Omega} \lambda_r &\leq |K| \\ \lambda_r &\in \{0,1\} \quad \forall \ r \in \Omega \end{aligned}$$

- Identify missing routes
 - → elementary o − d-path with negative reduced cost that respects vehicle capacity and time windows
- ESPPRC

- Variables λ_r correspond with feasible routes $r \in \Omega$
 - c_r cost of route r
- a_{ir} indicator if route r services customer i
- Select the best routes such that
 - → total routing costs are minimum
 - → each customer serviced exactly once
 - \rightarrow at most |K| routes selected

Agenda

Straightforward:

- lacktriangle Electric Vehicle Routing Problem With Time Windows ightarrow
- $lue{}$ Pickup and Delivery Problem with Time Windows ightarrow
- $lue{}$ Bin Packing and Cutting Stock Problems ightarrow
- $lue{}$ Vertex Coloring Problem ightarrow
- $lue{}$ Some takeaways so far ightarrow

A bit different:

- Heterogeneous Fleet Vehicle Routing Problem With Time Windows \rightarrow
- Electric Vehicle Routing Problem With Time Windows and Maximum Number of Recharges per Station \rightarrow
- $lue{}$ Temporal Knapsack Problem ightarrow

Electric Vehicle Routing Problem with Time Windows

Task Find a cost-minimal set of vehicle routes, such that

- each customer is visited exactly once,
- each route starts and ends at the depot,
- the vehicle capacity is respected on all routes,
- all customers are serviced within their time windows, and
- the battery's state of charge is never empty on all routes, where recharging en route is possible.

Electric Vehicle Routing Problem with Time Windows

Master program:

$$\begin{aligned} \min \sum_{r \in \Omega} c_r \lambda_r \\ \text{s.t.} \sum_{r \in \Omega} a_{ir} \lambda_r &= 1 \quad \forall \ i \in N \\ \sum_{r \in \Omega} \lambda_r &\leq |K| \\ \lambda_r &\in \{0,1\} \quad \forall \ r \in \Omega \end{aligned}$$

- Identify missing routes
 - → elementary o − d-path with negative reduced cost that respects load and battery capacities, and time windows
- ESPPRC

- Variables λ_r correspond with feasible routes $r \in \Omega$
 - c_r cost of route r
- a_{ir} indicator if route r services customer i
- Select the best routes such that
 - → total routing costs are minimum
 - \rightarrow each customer serviced exactly once
 - \rightarrow at most |K| routes selected

Pickup and Delivery Problem with Time Windows

Task Find a cost-minimal set of vehicle routes, such that

- each transportation request is performed exactly once
- each route starts and ends at the depot
- the vehicle capacity is respected on all routes
- all customer locations are serviced within their time windows, and
- each transportation request is performed by a single vehicle and in the correct order (pickup before delivery).

Pickup and Delivery Problem with Time Windows

Master program:

$$\begin{split} \min \sum_{r \in \Omega} c_r \lambda_r \\ \text{s.t.} \sum_{r \in \Omega} a_{ir} \lambda_r &= 1 \quad \forall \ i \in \textbf{\textit{P}} \\ \sum_{r \in \Omega} \lambda_r &\leq |\mathcal{K}| \\ \lambda_r &\in \{0,1\} \quad \forall \ r \in \Omega \end{split}$$

- Identify missing routes
 - → elementary o − d-path with negative reduced cost that respects pairing, precedence, capacity, and time windows
- ESPPRC

- Variables λ_r correspond with feasible routes $r \in \Omega$
 - c_r cost of route r
- a_{ir} indicator if route r performs request i
- Select the best routes such that
 - → total routing costs are minimum
 - → each request performed exactly once
 - \rightarrow at most |K| routes selected

Bin Packing Problem

Given

- Set of items N
 - \rightarrow w_i size of item i
- Bins (homogeneous)
 - \rightarrow C bin capacity
 - \rightarrow unlimited number

Task Find a grouping of the items into bins, such that

- each item is packed into exactly one bin,
- the capacity is respected for all bins, and
- the total number of bins used is minimium.

Bin Packing Problem

Master program:

$$\min \sum_{r \in \Omega} \lambda_r$$
 $\mathrm{s.t.} \sum_{r \in \Omega} a_{ir} \lambda_r = 1 \quad orall \; i \in N$
 $\lambda_r \in \{0,1\} \quad orall \; r \in \Omega$

- Identify missing bins
 - → selection of items with negative reduced cost that respects the bin capacity
- Binary knapsack problem

- Variables λ_r correspond with feasible bins $r \in \Omega$ (= subsets of items)
- a_{ir} indicator if item i is in bin r
- Select the best bins such that
 - → number of bins is minimum
 - \rightarrow each item packed exactly once

Cutting Stock Problem

Given

- Set of pieces *N*
 - $\rightarrow \ell_i$ length of piece i
 - \rightarrow b_i demand of piece i
- Rolls (homogeneous)
 - \rightarrow *L* roll length
 - ightarrow unlimited number

Task Cut rolls into pieces, such that

- the demand for each piece is satisfied,
- the length is respected for all rolls, and
- the total number of rolls used is minimium.

Remark: Bin Packing Problem = Binary Cutting Stock Problem

Cutting Stock Problem

Master program:

$$\begin{aligned} \min \sum_{r \in \Omega} \lambda_r \\ \text{s.t.} \sum_{r \in \Omega} a_{ir} \lambda_r &= b_i \quad \forall \ i \in N \\ \lambda_r &\in \mathbb{Z}^+ \quad \forall \ r \in \Omega \end{aligned}$$

- Identify missing patterns
 - → selection of pieces and multiplicities with negative reduced cost that respects the roll length
- Integer knapsack problem

- Variables λ_r correspond with feasible cutting patterns $r \in \Omega$
 - a_{ir} number of times piece i is cut in pattern r
- Select the best patterns such that
 - → number of rolls is minimum
 - → demand of each piece is met

Vertex Coloring Problem

Task Find a coloring (grouping) of the vertices, such that

- each vertex is assigned to exactly one color,
- adjacent vertices are assigned to different colors, and
- the total number of colors used is minimium.

Vertex Coloring Problem

Master program:

$$\min \sum_{r \in \Omega} \lambda_r$$
 $\mathrm{s.t.} \sum_{r \in \Omega} a_{ir} \lambda_r = 1 \quad orall \ i \in N$ $\lambda_r \in \{0,1\} \quad orall \ r \in \Omega$

- Identify missing colors
 - → subset of pairwise non-adjacent vertices with negative reduced cost
- Maximum weight independent set problem

- Variables λ_r correspond with feasible colors $r \in \Omega$ (= subsets of vertices)
- a_{ir} indicator if vertex i is in color r
- Select the best colors such that
 - → number of colors is minimum
 - → exactly one color is assigned to each vertex

Some Takeaways

Many fundamental OR problems have set-partitioning/set-covering (sub)structure:

- CG-based approaches often promising
 - → master: (extended) set-partitioning/set-covering formulation
 - → variables: feasible subsets (routes, bins, independent sets, ...)
 - ightarrow subproblem: identify feasible sets with negative reduced cost
- Approach immediately applicable to many problem variants
 - → VRPs with any(!) intra-route constraint
 - \rightarrow 2D/3D bin packing and cutting stock
 - ightarrow clustering/graph partitioning with other structures (cliques, relaxed cliques, ...)
- Many more problem classes:
 - → machine/vehicle/crew/shift/... scheduling
 - \rightarrow ...

Heterogeneous Fleet VRPTW

Task Find a cost-minimal set of vehicle routes, such that

- each customer is visited exactly once,
- each route starts and ends at the depot,
- each route is assigned to one vehicle type,
- the heterogeneous vehicle capacity is respected on all routes,
- and all customers are serviced within their time window.

Heterogeneous Fleet VRPTW

Master program:

$$\min \sum_{t \in \mathcal{T}} \sum_{r \in \Omega_t} c_r \lambda_r^t$$

$$\mathrm{s.t.} \sum_{t \in \mathcal{T}} \sum_{r \in \Omega_t} a_{ir} \lambda_r^t = 1 \quad \forall \ i \in \mathcal{N}$$

$$\sum_{t \in T} \sum_{r \in \Omega_t} \lambda_r^t \le |K_t|$$

$$\lambda_r^t \in \{0,1\} \quad \forall \ r \in \Omega_t$$

- Identify missing routes of type t∈ T
 - → elementary o − d-path with negative reduced cost that respects capacity of type t ∈ T and time windows
- ESPPRC for each type $t \in T$

- Variables λ_r^t correspond with feasible routes $r \in \Omega_t$ of type $t \in T$
 - c_r cost of route r
 - a_{ir} indicator if route r services customer i
- Select the best routes such that
 - → total routing costs are minimum
 - ightarrow each customer serviced exactly once
 - \rightarrow at most |K| routes of type $t \in T$

EVRPTW and Maximum Number of Recharges per Station

Task Find a cost-minimal set of vehicle routes, such that

- each customer is visited exactly once,
- each route starts and ends at the depot,
- the vehicle capacity is respected on all routes,
- all customers are serviced within their time windows,
- the battery's state of charge is never empty on all routes, where recharging en route is possible, and
- the maximum number of recharges at each station is respected.

Electric Vehicle Routing Problem with Time Windows

Master program:

$$\min \sum_{r \in \Omega} c_r \lambda_r$$

$$s.t. \sum_{r \in \Omega} a_{ir} \lambda_r = 1 \quad \forall i \in I$$

$$\mathsf{s.t.} \sum_{r \in \Omega} \mathsf{a}_{ir} \lambda_r = 1 \quad \forall \ i \in \mathit{N}$$

$$\sum_{r\in\Omega}\lambda_r\leq |K|$$

$$\sum_{r\in\Omega}b_{ir}\lambda_r\leq m_i\quad\forall\ i\in R$$

$$\lambda_r \in \{0,1\} \quad \forall \ r \in \Omega$$

- Identify missing routes
 - ightarrow elementary o-d-path with negative reduced cost that respects load and battery capacities, and time windows
- ESPPRC

- Variables λ_r correspond with feasible routes $r \in \Omega$
 - c_r cost of route r
- air indicator if route r services customer i
- b_{ir} number of times route r recharges at station i
- Select the best routes such that
 - → total routing costs are minimum
 - → each customer serviced exactly once
 - \rightarrow at most |K| routes selected
 - \rightarrow at most m_i recharges at station i

Temporal Knapsack Problem

Given

- Discrete time horizon T
 - \rightarrow N_t active items at time t
- Set of items N
 - \rightarrow w_i size of item i
 - $\rightarrow p_i$ profit of item *i*
 - \rightarrow T_i active times of item i
- Single knapsack
 - \rightarrow *C* capacity
 - ightarrow available at all $t \in T$

Task Find a selection of the items, such that

- the capacity is respected at any time, and
- the total profit of the selected items is maximum.

Temporal Knapsack Problem

Compact formulation:

$$\max \sum_{i \in N} p_i x_i$$
s.t.
$$\sum_{i \in N_t} w_i x_i \le C \quad \forall \ t \in T$$

$$x_i \in \{0, 1\} \quad \forall \ i \in N$$

- Binary selection variables x_i for each item i
- Maximize total profit
- Respect capacity at all t

CG formulations:

- Intuitive:
 - \rightarrow Variables correspond with feasible knapsack packings of a time t
 - → Master Program: select compatible packings
 - → Subproblem: binary knapsack problem
- Uncommon (but worked much better): [Caprara et al., 2013]
 - → Partition time horizon into smaller blocks of times
 - → Variables correspond with feasible packings for a block
 - → Master Program: select compatible packings
 - → Subproblem: temporal knapsack problem

Temporal Knapsack Problem

Master program:¹

$$\max \sum_{i \in N} p_i x_i$$

s.t.
$$x_i = \sum_{r \in \Omega^q} a_{ir} \lambda_r^q \quad \forall \ q \in Q, i \in N_q$$

$$\sum_{r \in \Omega^q} \lambda_r^q = 1 \quad \forall \ q \in Q$$

$$\lambda_r^q \in \{0,1\} \quad \forall \ q \in Q, r \in \Omega^q$$

- \blacksquare Q set of time blocks (w. items N_q)
- Variables λ_r^q correspond with feasible solutions (= packings) $r \in \Omega^q$ of block $q \in Q$
 - a_{ir} indicator if item i is selected in r
- Keep original x_i variables
- Select the best packings such that
 - → total profit is maximum
 - $\rightarrow \ \ \text{packings are compatible across blocks}$
 - $\rightarrow \ \, \text{one packing per block}$

- Identify missing packings of block q
- Temporal knapsack problem (over items/times relevant for q)

¹Here: discretization; Originally [Caprara et al., 2013]: convexification

Alberto Caprara, Fabio Furini, and Enrico Malaguti. Uncommon dantzig-wolfe reformulation for the temporal knapsack problem. *INFORMS Journal on Computing*, 25(3):560–571, 2013.