Seminar für Finanzökonometrie

Institut für Statistik Akademiestr. 1/I

http://www.finmetrics.statistik.uni-muenchen.de/studium lehre

WiSe 2015/16 Port, Henry

Based on exercises from Steffen Unkel

Statistical Geophysics Exercise Sheet 3

Exercise 1 The following table gives the amount of rain (in litres per square metre), measured at the volcano Merapi (Indonesia) between January 1st and January 20th, 1995.

Rain	Date	Rain	Date
2	01.01.1995	15	11.01.1995
9	02.01.1995	20	12.01.1995
18	03.01.1995	0	13.01.1995
2	04.01.1995	0	14.01.1995
23	05.01.1995	0	15.01.1995
42	06.01.1995	0	16.01.1995
11	07.01.1995	3	17.01.1995
13	08.01.1995	3	18.01.1995
40	09.01.1995	40	19.01.1995
12	10.01.1995	48	20.01.1995

- a) Determine the type of scale of the variable rain.
- b) Draw a histogram using the intervals [0, 10), [10, 20), [20, 30), [30, 40), [40, 50].
- c) Read the data into R and do the histogram again with R.
- d) Now plot the empirical cumulative distribution function (with R) and determine graphically how large the percentage of days is on which it rained more than 35 litres per square meter?
- e) Calculate (by hand!) the values for the following measures of location and dispersion for the variable rain: mode, median, arithmetic mean, lower quartile, upper quartile, variance, standard deviation, and coefficient of variation.

- f) Use the results obtained in (e) to draw a boxplot of the empirical distribution of rain. Do the boxplot again in R.
- g) Calculate a 95% confidence interval for the expected value of rainfall, μ .

Exercise 2 Let $x_1, ..., x_n$ be realizations from $X_i \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2) (i = 1, ..., n)$ with unknown parameters μ and σ^2 . Derive maximum likelihood estimators for μ and σ^2 .

Exercise 3 Let T be an estimator of an unknown parameter θ . Show that the mean-squared error (MSE) of T, $MSE(T) = E((T-\theta)^2)$, can be written as $MSE(T) = Var(T) + (E(T) - \theta)^2$.