

数字信号处理实验

授课老师:何 美霖 (Meilin He)

单 位:通信工程学院

邮 箱: meilinhe@hdu.edu.cn

1

2024/11/11

数字信号处理实验

第4讲离散序列圆周卷积及相关运算

- ◆ 线性卷积
- ◆ 圆周卷积 (循环卷积)

2024/11/11 数字信号处理实验

雨课堂 Rain Classroom

线性卷积的定义

■ 设有限长序列x(n)和h(n), 长度分别为N₁和N₂,则序列x(n)和h(n)的线性卷积y(n)为:

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

注意: y(n)的序列长度为N₁+N₂-1

2024/11/11

数字信号处理实验

线性卷积的过程

- 翻转: 先在坐标轴k上画出x(k)和h(k), 将h(k)以纵坐标为对称轴折叠成 h(-k)。
- 平移: 将h(-k)移位n,得h(n-k)。当n为正数时,右 移n;当n为负数时,左移n。
- 加权: 将h(n-k)和x(k)的对应取样值相乘。
- ■叠加: 把所有的乘积累加起来, 即得y(n)。

线性卷积的计算

■ 例1: 已知序列 $x1(n) = \{1,2,3,4,5\}, 0 \le n \le 4$ 和序列 $x2(n) = \{1,1,1\}, 0 \le n \le 2$,求线性卷积和y(n)。

解:

	k	-2	-1	0	1	2	3	4	5	6	
	x2(-k)	1	1	1							
	x1(k)			1	2	3	4	5			
n = 0	x2(n-k)	1	1.	1							y(0)=1
n=1	x2(n-k)		1	1	1						y(1)=3
n = 2	x2(n-k)			1	1	1					y(2)=6
n=3	x2(n-k)				1	1	1				y(3)=9
n = 4	x2(n-k)					1	1	1			y(4)=12
n = 5	x2(n-k)						1	1	1		y(5)=9
n=6	x2(n-k)							1	1	1	y(6)=5

2024/11/11

数字信号处理实验

线性卷积的计算

■ 例1: 已知序列 $x1(n) = \{1,2,3,4,5\}, 0 \le n \le 4$ 和序列 $x2(n) = \{1,1,1\}, 0 \le n \le 2$,求线性卷积和y(n)。

解:

2024/11/11

数字信号处理实验

线性卷积的conv函数

■ 用conv函数也可获得两个离散序列的线性卷积:

$$y = \operatorname{conv}(x_1, x_2)$$

■ 例1: 已知序列 $x1(n) = \{1,2,3,4,5\}, 0 \le n \le 4$ 和序列 $x2(n) = \{1,1,1\}, 0 \le n \le 2$,求线性卷积和y(n)。

```
clc; clear; close all;
                                  Workspace
x1 = [1,2,3,4,5];
                                  Name -
                                           Value
                                 ⊞x1
                                           [1,2,3,4,5]
x2 = [1,1,1];
                                 ⊞ x2
                                           [1,1,1]
ylin = conv(x1,x2);
                                           [1,3,6,9,12,9,5]
                                 ■ylin
figure(1);
stem(ylin, 'fill', 'r', 'linewidth', 1.0);
xlabel('\itn'); ylabel('\ity\((\itn\))');
title('{\dot x}({\dot x})={\dot x}_1({\dot x})
*{\itx} 2({\itn})');
```


2024/11/11

数字信号处理实验

雨课堂 Rain Classroom

圆周卷积的定义

■ 设有限长序列 $x_1(n)$ 和 $x_2(n)$,长度分别为 N_1 和 N_2 , N_2 0 = $\max[N_1,N_2]$ 。序列 $x_1(n)$ 和 $x_2(n)$ 的N点圆周卷积为:

$$y(n) = \left[\sum_{m=0}^{N-1} x_1(m) x_2((n-m))_N\right] R_N(n) = x_1(n) \widehat{N} x_2(n)$$

$$= \left[\sum_{m=0}^{N-1} x_2(m) x_1((n-m))_N\right] R_N(n) = x_2(n) \widehat{N} x_1(n)$$

注意: 圆周卷积的序列长度为N

2024/11/11

数字信号处理实验

圆周卷积的过程

- 圆周翻转: 先在坐标轴k上画出x(k)和h(k), 将h(k) 以纵坐标为对称轴折叠成 h(-k), 然后用mod函数 圆周翻转成h((-k))_N。
- 圆周平移: 将h((-k))_N圆周移位n, 得h((n-k))_N。
- 加权: 将h((n-k))_N和x(k)的对应取样值相乘。
- ■叠加: 把所有的乘积累加起来, 即得y(n)。

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点圆周卷积。

解:

	k	-4	-3	-2	-1	0	1	2	3	4	
	x2(-k)	0	0	1	1	1					
	xl(k)					1	2	3	4	5	
5点	x3(k)					1	0	0	1	1	
n = 0	x4(n-k)					1	0	0	1	1	y(0)=10
n=1	x4(n-k)					1	1	0	0	1	y(1)=8
n=2	x4(n-k)					1	1	1	0	0	y(2)=6
n=3	x4(n-k)					0	1	1	1	0	y(3)=9
n = 4	x4(n-k)					0	0	1	1	1	y(4)=12

2024/11/11

数字信号处理实验

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点 圆周卷积。

解:

	k	-5	-4	-3	-2	-1	0	1	2	3	4	5	
	x2(-k)	0	0	0	1	1	1						
	x1(k)						1	2	3	4	5	0	
6点	x3(k)						1	0	0	0	1	1	
n = 0	x4(n-k)						1	0	0	0	1	1	y(0)=6
n = 1	x4(n-k)						1	1	0	0	0	1	y(1)=3
n=2	x4(n-k)						1	1	1	0	0	0	y(2)=6
n=3	x4(n-k)						0	1	1	1	0	0	y(3)=9
n = 4	x4(n-k)						0	0	1	1	1	0	y(4)=12
n=5	x4(n-k)						0	0	0	1	1	1	y(5)=9

2024/11/11

数字信号处理实验

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点 圆周卷积。

解:

	k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	
	x2(-k)	0	0	0	0	1	1	1							
	x1(k)							1	2	3	4	5	0	0	
7点	x3(k)							1	0	0	0	0	1	1.	
n = 0	x4(n-k)							1	0	0	0	0	1	1	y(0)=1
n = 1	x4(n-k)							1	1	0	0	0	0	1	y(1)=3
n=2	x4(n-k)							1	1	1	0	0	0	0	y(2)=6
n=3	x4(n-k)							0	1	1	1	0	0	0	y(3)=9
n = 4	x4(n-k)							0	0	1	1	1	0	0	y(4)=12
n=5	x4(n-k)							0	0	0	1	1	1	0	y(5)=9
n = 6	x4(n-k)							0	0	0	0	1	1	1	y(6)=5

2024/11/11

数字信号处理实验

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点 圆周卷积。

解:

•		k	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	
		x2(-k)	0	0	0	0	0	1	1	1								
		x1(k)								1	2	3	4	5	0	0	0	
	8点	x3(k)								1	0	0	0	0	0	1	1	
	n = 0	x4(n-k)								1	0	0	0	0	0	1	1	y(0)=1
	n=1	x4(n-k)							II,	1	1	0	0	0	0	0	1	y(1)=3
	n = 2	x4(n-k)								1	1	1	0	0	0	0	0	y(2)=6
	n=3	x4(n-k)								0	1	1	1	0	0	0	0	y(3)=9
	n = 4	x4(n-k)								0	0	1	1	1	0	0	0	y(4)=12
	n=5	x4(n-k)								0	0	0	1	1	1	0	0	y(5)=9
	n = 6	x4(n-k)								0	0	0	0	1	1	1	0	y(6)=5
	n = 7	x4(n-k)					,			0	0	0	0	0	1	1	1	y(7)=0

2024/11/11

数字信号处理实验

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点 圆周卷积。

解:			1	2	3	4	5					1	2	3	4	5	
		×			1	1	1		//		×			1	1	1	
			1	2	3	4	5		, in the second			1	2	3	4	5	
		1	2	3	4	5					1	2	3	4	5		
	1	2	3	4	5					1	2	3	4	5			
8	1	3	6	9	12	9	5			1	3	6	9	12	9	5	
	9	5	+					_	·	5		+				_	1型
	10	8	6	9	12			_	12	6	3	6	9	12	9		

雨课堂 Rain Classroom

14

数字信号处理实验

2024/11/11

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点 圆周卷积。

解:			1	2	3	4	5				1	2	3	4	5		
99		×			1	1	1	 XII.		×			1	1	1		
- - -			1	2	3	4	5	 No.			1	2	3	4	5		
		1	2	3	4	5				1	2	3	4	5			
	1	2	3	4	5			150	1	2	3	4	5				540
<u>1).</u>	1	3	6	9	12	9	5		1	3	6	9	12	9	5	0	
	1	3	6	9	12	9	5		1	3	6	9	12	9	5	0	

2024/11/11 数字信号处理实验

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点圆周卷积。

圆周卷积的circonvtim函数

■ 例2: 已知序列x1(n) = {1,2,3,4,5},0 ≤ n ≤ 4 和序列x2(n) = {1,1,1},0 ≤ n ≤ 2, 求x1(n)和x1(n)的5点、6点、7点、8点 圆周卷积。

clc; clear; close all; x1 = [1,2,3,4,5]; x2 = [1,1,1]; y1 = circonvtim(x1,x2,5);%5点循环/圆周卷积 y2 = circonvtim(x1,x2,6);%6点循环/圆周卷积 y3 = circonvtim(x1,x2,7);%7点循环/圆周卷积 y4 = circonvtim(x1,x2,8);%8点循环/圆周卷积

Workspace	
Name -	Value
⊞ x1	[1,2,3,4,5]
⊞x2	[1,1,1]
⊞y1	[10,8,6,9,12]
⊞y2	[6,3,6,9,12,9]
⊞ y3	[1,3,6,9,12,9,5]
⊞ y4	[1,3,6,9,12,9,5,0]

圆周卷积的circonvtim函数

■ 例2:

```
function y=circonvtim(x1,x2,N)
n=0:N-1;
x1=[x1,zeros(1,N-length(x1))];
x2=[x2,zeros(1,N-length(x2))];
x3=x2(mod(-n,N)+1);
for m=0:N-1
    x4=cirshftt(x3,m,N);
    x5=x1.*x4;
    y(m+1)=sum(x5);
end
```

```
function y=cirshftt(x,m,N)
if length(x)>N
  error
  ('N must be >=the length of x')
end
x=[x,zeros(1,N-length(x))];
n=0:N-1;
n=mod(n-m,N);
y=x(n+1);
```


圆周卷积的circonvtim函数

■ 例2:

Workspace	
Name =	Value
⊞x1	[1,2,3,4,5]
⊞x2	[1,1,1]
⊞y1	[10,8,6,9,12]
⊞y2	[6,3,6,9,12,9]
⊞y3	[1,3,6,9,12,9,5]
⊞y4	[1,3,6,9,12,9,5,0]

思考:线性卷积和圆 周卷积的关系?

1. N≥N₁+N₂-1,可替代。 2. N < N₁+N₂-1,序列混 叠误差。

总结

- ◆ 线性卷积
 - 竖乘法、表格法
- ◆ 圆周卷积
 - 竖乘法、矩阵计算、表格法
- ◆ 线性卷积和圆周卷积之间的关系
 - $N \ge N_1 + N_2 1$,线性卷积可由圆周卷积替代。
 - N < N₁ + N₂ -1,序列混叠误差。因为N点圆周卷积是线性卷积以N为周期的周期延拓序列的主值序列。

操作验收习题

4.1 已知序列 $x_1(n) = \{2,1,1,2\}$ 和 $x_2(n) = \{1,-1,-1,1\}$

(1): 计算圆周卷积x₁(n)\(\Delta\) x₂(n), N=4,7 和 8;

(2): 计算线性卷积x₁(n) * x₂(n)

(3): 利用计算结果,确定所需要的最小N值使得在N点区间内有相同的线性卷积与圆周卷积。

21

雨课堂

数字信号处理实验

实验报告作业题和思考题

- ◆ 实验报告作业题: 4.1 已知序列 $x_1(n) = \{2,1,1,2\}$ 和 $x_2(n) = \{1,-1,-1,1\}$
 - (1): 计算圆周卷积x₁(n) ®x₂(n), N=4,7 和 8;
 - (2): 计算线性卷积x₁(n) * x₂(n)
 - (3): 利用计算结果,确定所需要的最小N值使得在N点区间内有相同的线性卷积与圆周卷积。
- ◆ 思考题: 周期卷积、线性卷积、圆周卷积

