

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Technik & Architektur

MSE - Masterthesis

Horw, 13. Februar 2020 Seite 1/3

Aufgabenstellung für:

Silvio Emmeneggr (Masterstudierende/r)

Industrial Technologies (Fachgebiet)

von Prof. Dr. Jürgen Wassner (AdvisorIn)

Dr. David Perels (Experte/Expertin)

1. Arbeitstitel

Acoustic Scene and Room Classification for Real-Time Applications

2. Fremdmittelfinanziertes Forschungs-/Entwicklungsprojekt

3. Industrie-/Wirtschaftspartner

4. Fachliche Schwerpunkte

Deep Learning Raumakustik Acoustic Scene Classification

5. Inhalt

Bei der Verarbeitung von Akustiksignalen ist es oftmals notwendig den Signalverarbeitungsalgorithmus bzw. dessen Parameter an die aktuelle akustische Umgebung (Raumgeometrie und –
eigenschaften, Geräuschkulisse und Störquellen) zu adaptieren um optimale Ergebnisse zu erzielen.
Im Fall von Hörgeräten kann dies z.B. eine optimale Sprachverständlichkeit sein, wobei die
Algorithmus- bzw. Parameteranpassungen dann in Echtzeit erfolgen müssen, da die akustische
Umgebung ständig variiert.

In der vorliegenden Arbeit soll ein System entwickelt werden, welches die für eine Echtzeit-Adaptierung nötige fortlaufende Erkennung der akustischen Umgebung mit Hilfe von Deep Learning Methoden realisiert. Ausgehend von den Ergebnissen der beiden Vorgängerprojekte [1][2] sollen dafür folgende Punkte bearbeitet werden:

- Das System soll die Umgebung möglichst gleichzeitig bezgl. akustischer Szenerie sowie Raumtyp klassifizieren können. Optional soll das System zusätzlich ausgewählte Stichworte in gesprochener Sprache detektieren können.
- Die Klassen der zu unterscheidenden akustischen Szenen und Raumtypen sollen so gewählt werden, dass sie für eine Hörgeräte-Applikation repräsentativ sind.
- Für Training und Test des zu entwerfenden neuronalen Netzes soll ein Datensatz durch Messungen in realer Umgebung erstellt und durch geeignete Methoden augmentiert werden.
- Die Architektur des trainierten Netzwerkes soll durch Anwendung eines bestehenden evolutionären Suchalgorithmus [3][4] für eine Echtzeitimplementierung mittels des in [5] beschriebenen Verfahrens optimiert werden.
- Für die effiziente Implementierung des Klassifizierungsvorganges inkl. aller nötigen Vorverarbeitungsschritte nach der Mikrofon-A/D-Wandlung soll ein Systemkonzept entwickelt werden, welches realistische Anforderungen bezgl. Latenz, Kosten und Leistungsaufnahme erfüllen kann. Die vollständige Realisierung dieses Systems ist nicht Teil der Aufgabe.

6. Fachliteratur/Web-Links/Hilfsmittel

- [1] S. Emmenegger. Acoustic Scene Classification with Neural Networks. MSE Vertiefungsarbeit 1. Hochschule Luzern Technik &Architektur 2019.
- [2] S. Emmenegger. Classification of Acoustic Room Properties from Speech Samples. MSE Vertiefungsarbeit 2. Hochschule Luzern – Technik & Architektur 2020
- [3] F. Johner, J. Wassner. Efficient Evolutionary Architecture Search for CNN Optimization on GTSRB. 18th IEEE International Conference on Machine Learning and Applications. 2019.
- [4] M. Kurmann. Optimierung Neuronaler Netze für die FPGA Implementierung. MSE Vertiefungsarbeit 1. Hochschule Luzern Technik & Architektur 2020.
- [5] M. Fischer. BinArray: A Scalable Hardware Architecture for Binary Approximated CNNs. Master Thesis. Hochschule Luzern Technik & Architektur 2020.

7. Durchführung der Arbeit

Termine

Start der Arbeit: Mo. 17.02.2020 (Semesterbeginn FS20)

Abgabe Prüfungsexemplar: bis Fr. 19.06.2020 um 17.00 Uhr im Sekretariat BA&MA oder

direkt an ExpertIn und AdvisorIn (Sekretartiat BA&MA muss

darüber informiert werden)

Verteidigung: bis spätestens Mi, 01.07.2020

Meldung Grade: Do. 02.07.2020

Abgabe def. Masterthesis: Fr. 10.07.2020 bis 17.00 Uhr auf Ilias

Diplomausstellung: Fr. 03.07.2020

→ Weitere Termine gemäss Ablauf Master-Thesis

8. Dokumentation

Die definitive Masterthesis ist in **doppelter Ausführun**g (für AdvisorIn und Experte/Expertin) zu erstellen. Die Masterthesis enthält zudem zwingend

- Selbstständigkeitserklärung anhand der Vorgaben der Bibliothek (verfügbar auf MyCampus)
- Titelblatt anhand der Vorgaben der Bibliothek (verfügbar auf MyCampus)
- einen Abstrakt in deutscher und englischer Sprache
- Die Abgabe der vollständigen elektronische Daten (Berichte, Präsentationen, Messdaten, Programme, Auswertungen, etc.)

9. Zusätzliche Bemerkungen

Betreffend Geheimhaltung und Rechte am Geistigen Eigentum ist die Vereinbarung zwischen dem Studierendem, der HSLU und dem Industriepartner massgeblich.

Horw, Datum		
AdvisorIn	Experte/Expertin	Studierende/-r