Micro-Factories for Smart Manufacturing

Simulation and Path-Planning Platform

Long-term objective

- Micro robots, macro products
- Parallel manufacturing
- Micro-automation

Short-term objective

- Moving stage, stationary robots
- Truss structure with skin
- Manufacturing cells

https://www.youtube.com/watch?v=uL6e3co4Qqc

Locomotion mechanism

Current Setup

2014.1.16 BDML Group Meeting

Target Structures

Carbon Fiber Truss

Platelet Skin

Robot Types

Rod Feed Stations

2014.1.16 BDML Group wreeting

Water/Glue/Solvent Wells

Simulation and Path-Planning Software

Motivation

- Reliability
- Iteration
- Automation

Simulation

- Written for hardware
- Parser for simulation
- Act as abstraction layer

Modeling the map • 0.5 mm steps • 251k nodes • 846k edges • 10"x8" nominal Auto-merge (1) P.045

Modeling robot movements

- Labeled edges
 - · Zone, direction
- Rotation
- Shortest-path

Modeling the structure

Creating Jobs

Structure

Job 1: Y Rod from (0, 0) to (0, 1)

Job 2: X Rod from (0, 0) to (1, 0)

Job 3: Y Rod from (1, 0) to (1, 1)

. . .

Job Queue

Task Allocation

Job 1: Y Rod from (0, 0) to (0, 1) ———

Job 2: X Rod from (0, 0) to (1, 0)

Job 3: Y Rod from (1, 0) to (1, 1)

Step 1: Get an available Y bot

Step 2: Get a rod from a Rod Station

Step 3: Get glue from a Glue Station

Step 4: Drop off the rod and apply glue

Task-level routines

```
#First step is to get glue
     <units1&2_getglue_v</pre>
     <alignall
     #buffer advance and get rods
     <units1&2_buffer_advance</pre>
     <alignall
     <units1&2_gettree</pre>
     #buffer advance and put glue
     <units1&2_buffer_advance</pre>
     <units1&2_buffer_advance</pre>
12
     rate(80)
15
     simscript(unit1_tree_putglue, unit2_tree_putglue)
     #buffer advance and put rod
     <units1&2 buffer advance</pre>
     rate(100)
     simscript(unit1_tree_putrod, unit2_tree_putrod)
```

- Written for hardware
- Parser for simulation
- Act as abstraction layer

Simulation Goal

- Structure → tasks
- Tasks → routines
- Routines → visualization
- Testbed for iteration, optimization, trajectory generation

Future?

- Forget routines, automate it all
- Non-linear, discontinuous control problem
 - Shortest-path heuristics
 - Controllability constraints

Future?

- Structure makespan
- Map density
- Parallelization

Q&A

Micro-Factories for Smart Manufacturing

Simulation and Path-Planning Platform

