Mathematics of Symmetric Key Cryptography

J. Bhuvana, ASP / CSE

Session Objectives

• To learn about the modular arithmetic operations

Session Outcomes

At the end of this session, participants will be able to discuss

Modular arithmetic operations

Agenda

Modular Arithmetic

Presentation Outline

Modular Arithmetic

Modular Arithmetic

- define modulo operator "a mod n" to be remainder when a is divided by n where integer n is called the modulus
- b is called a residue of $a \mod n$ since with integers can always write: a = qn + b
- usually chose smallest positive remainder as residue ie.0 <= b <= n-1
- process is known as modulo reduction eg. $-12 \mod 7 = -5 \mod 7 = 2 \mod 7 = 9 \mod 7$
- a & b are congruent if: a mod n = b mod n when divided by n, a & b have same remainder
 - eg. 100 $mod~11\cong 34~mod~11$ so 100 is congruent to 34 mod~11

Modular Arithmetic Operations

- ① $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- ② $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$

e.g.
$$[(11 \bmod 8) + (15 \bmod 8)] \bmod 8 = 10 \bmod 8 = 2;$$
 $(11 + 15) \bmod 8 = 26 \bmod 8 = 2$

$$[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4$$

 $(11 - 15) \mod 8 = -4 \mod 8 = 4$

$$[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5$$

 $(11 \times 15) \mod 8 = 165 \mod 8 = 5$

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

16	_					_			_
l	+	0	1	2	3	4	5	6	7
ı	0	0	0	0	0	0	0	0	0
ı	1	0	1	2	3	4	5	6	7
ı	2	0	2	4	6	0	2	4	6
1111	3	0	3	6	1	4	7	2	5
ı	4	0	4	0	4	0	4	0	4
	5	0	5	2	7	4	1	6	3
	6	0	6	4	2	0	6	4	2
	7	0	7	6	5	4	3	2	1

Modular Arithmetic Properties

Property	Expression		
Commutative Laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x \times w) \bmod n$		
Associative Laws	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$ $[(w\times x)\times y] \bmod n = [w\times (x\times y)] \bmod n$		
Distributive Law	$[w \times (x + y)] \bmod n = [(w \times x) + (w \times y)] \bmod n$		
Identities	$(0 + w) \bmod n = w \bmod n$ (1 \times w) \text{mod } n = w \text{ mod } n		
Additive Inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z \equiv 0 \mod n$		

Additive and Multiplicative Inverses

- Additive inverse: For any integer $a \in Z_m$, $b \in Z_m$ is the additive inverse of a if $(a+b) \mod m \cong 0$
- Multiplicative inverse: For any integer $a \in Z_m$, integer b is the multiplicative inverse if $ab \cong 1 \mod m$

Summary

Modular arithmetic with integers

