Function Exercises

Rafi Ahmed Saad

December 2, 2023

1 Functions

1.1 Find the domain and range of $f(x) = \frac{x^2-1}{x-1}$

Domain is all possible inputes for which the function is defined. In this case, we need to avoid values of x that makes the denominator equal to zero, as division by zero is undefined. Thus the domain is all real numbers except x=1, because that would make the denominator x-1=0

Domain: $x \in \mathbb{R} \setminus \{1\}$

Let function

$$f(x) = \frac{(x^2 - 1)}{x - 1}$$
$$\Rightarrow f(x) = \frac{(x - 1)(x + 1)}{x - 1}$$
$$\Rightarrow f(x) = x + 1$$

 \therefore Range: $f(x) \in \mathbb{R}$

1.2 Find the domain and range of

$$f(x) = \begin{cases} 2x + 6 & \text{if } -3 \le x \le 0\\ 6 & \text{if } 0 \le x \le 2\\ 2x - 6 & \text{if } 2 \le x \le 5 \end{cases}$$

Domain:

The domain of f(x) is set to all possible inputes values for which the function is defined. In this case, the function is defined in the intervals [-3,0],[0,2],[2,5], and for any other values, it is not explicitly defind. So the domain is:

Domain:
$$x \in [-3, 0] \cup [0, 2] \cup [2, 5]$$

 $x \in [-3, 5]$

Range:

For $-3 \le x \le 0$, f(x) = 2x + 6 where the output varies from 0 to 6 For $0 \le x \le 2$, f(x) = 6For $2 \le x \le 5$, f(x) = 2x - 6 where the ouptu varies from -2 to 4 So the Range is:

Ragne:
$$f(x) \in [0, 6] \cup [-2, 4] \to f(x) \in [-2, 6]$$

1.3 Find the domain and range of

$$f(x) = \begin{cases} x - 1 & \text{if } x > 0 \\ -\frac{1}{2} & \text{if } x = 0 \\ x + 1 & \text{if } x < 0 \end{cases}$$

Domain:

Domain of this function f(x) can take any input.

... Domain: $x \in \mathbb{R}$ Domain: $x \in (-\infty, \infty)$

Range:

For x > 0, f(x) = x - 1 where the result of the function is $[0, \infty]$

For x = 0, $f(x) = -\frac{1}{2}$ which is a constant value

For x < 0, f(x) = x + 1 where the result of the function is $[0, -\infty]$

$$\therefore \text{Range: } x \in [0, -\infty] \cup [\frac{1}{2}] \cup [0, \infty]$$

$$\text{Range: } x \in (-\infty, \infty)$$

1.4 Find the domain and range of

$$f(x) = \begin{cases} -2x + 1 & \text{if } x < 0\\ 1 & \text{if } 0 \le x < 1\\ 2x - 1 & \text{if } x \ge 1 \end{cases}$$

Domain:

Domain of this function f(x) can take any input.

... Domain:
$$x \in \mathbb{R}$$

Domain: $x \in (-\infty, \infty)$

Range:

For x < 0, f(x) = -2x + 1 where the result of the function is $(-\infty, 1]$

For $0 \le x < 1$, f(x) = 1 which is a constant value

For $x \ge 1$, f(x) = 2x - 1 where the result of the function is $[1, \infty)$

$$\therefore$$
 Range: $x \in (-\infty, 1] \cup [1] \cup [1, \infty)$
Range: $x \in (-\infty, \infty)$

1.5 Find the domain and range of

$$f(x) = \begin{cases} x & \text{if } 0 \le x < \frac{1}{2} \\ 1 & \text{if } x = \frac{1}{2} \\ 1 - x & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

Domain:

The domain of the function f(x) is all possible input values for which the function is defined. In this case, the intervals are $[0, \frac{1}{2})$, $[\frac{1}{2}]$, $(\frac{1}{2}, 1]$. So the domain is:

Domain:
$$x \in [0, \frac{1}{2}) \cup [\frac{1}{2}] \cup (\frac{1}{2}, 1]$$

Domain: $x \in [0, 1]$

Range:

For $0 \le x < \frac{1}{2}$, f(x) = x where the result of the function is $[0, \frac{1}{2})$

For $x = \frac{1}{2}$, f(x) = 1 which is a constant value. So the range is [1]

For $\frac{1}{2} < x \le 1$, f(x) = 1 - x where the result of the function is $[\frac{1}{2}, 1]$

... Range:
$$x \in [0, \frac{1}{2}) \cup \{1\} \cup (\frac{1}{2}, 1]$$

Range: $x \in [0, \frac{1}{2}) \cup \{1\}$

