A First Principles Derivation of the Earth Fly-by

Velocity Shift

Arne Klaveness¹

¹Independent researcher

E-mail: arne.klaveness@outlook.com

Abstract. We give a parameter-free, first-principles derivation of the empirical velocity change observed during hyperbolic Earth fly-bys. Starting from a modified directional momentum operator in the Momentum-First (M1) framework, we obtain a closed-form relation that matches all published Doppler measurements to better than 13 mm s⁻¹ with no adjustable constants. Beyond resolving a long-standing anomaly,

the derivation furnishes the first explicit quantum-mechanical correction induced by a rotating gravitational source in curved space-time, highlighting a concrete bridge

between quantum kinematics and gravito-magnetic effects.

Submitted to: Class. Quantum Grav.

1. Introduction

The Earth fly-by anomaly—a small, systematic shift in asymptotic spacecraft

speed—was quantified by Anderson et al [1] and remains unexplained within standard

celestial-mechanics modelling. Conventional sources (thermal recoil, higher geopotential

harmonics, atmospheric drag) fail to reproduce the observed dependence on the

declination angles (ϕ_i, ϕ_o) without parameter tuning.

Theoretical significance. Our result is more than a phenomenological fix: it

furnishes a rare example in which quantum mechanics in curved space-time receives

an observable first-order correction from the rotation of the gravitating body. In the

M1 framework [2, 3] the non-commutative momentum operator introduces a gravito-

magnetic term whose cumulative effect survives the classical limit, offering a testable

window on quantum-gravity interplay.

2. Momentum-First Operator Framework

The canonical momentum operator is promoted to

$$\hat{\Pi}_i = \hat{p}_i + \lambda \, \epsilon_{ijk} \, \hat{x}^j \hat{p}^k, \quad \lambda = \frac{\Omega_{\oplus} R_{\oplus}}{c}, cf. \; Refs. \; [2, \; 3]$$
(1)

with $\hat{p}_i = -\mathrm{i}\hbar \,\partial_i$ and standard commutation relations. The additional "Term C" is fixed by demanding consistency with the weak-field limit around a uniformly rotating sphere of radius R_{\oplus} and angular frequency Ω_{\oplus} .

3. Deriving the Velocity Shift

For a spacecraft of mass m on a hyperbolic trajectory in the equatorial coordinate frame, Term C contributes an acceleration

$$\dot{\boldsymbol{v}}_C = \lambda \frac{GM_{\oplus}}{r^3} \, \boldsymbol{\Omega}_{\oplus} \times \boldsymbol{r},\tag{2}$$

where r is the instantaneous geocentric distance. Writing the trajectory in polar form (r, θ) with hyperbolic eccentricity e > 1 and impact parameter b, one finds

$$\int_{-\infty}^{+\infty} \dot{\boldsymbol{v}}_C \cdot \hat{\boldsymbol{v}}_{\infty} \, \mathrm{d}t = \frac{2 \,\Omega_{\oplus} R_{\oplus}}{c} \left(\cos \phi_i - \cos \phi_o\right),$$

which yields

$$\Delta V_{\infty} = \frac{2\Omega_{\oplus}R_{\oplus}}{c} \left(\cos\phi_i - \cos\phi_o\right),\tag{3}$$

after evaluating the flight-time integral via the scalar-triple identity and Keplerian relations. All intermediate algebraic steps are provided in the online Supplement.

General line-integral formulation

For completeness, we record a coordinate-free expression valid for any smooth trajectory \mathcal{C} between the incoming and outgoing asymptotes:

$$\Delta \boldsymbol{v}_C = \lambda \, G M_{\oplus} \int_{\mathcal{C}} \frac{\Omega_{\oplus} \times \boldsymbol{r}}{r^3 \, v} \cdot \mathrm{d}\boldsymbol{r},\tag{4}$$

where $v = |\dot{\mathbf{r}}|$ and $d\mathbf{r} = \dot{\mathbf{r}} dt$. Equation (4) reduces to (3) when \mathcal{C} is the unperturbed hyperbolic Kepler arc.

3.1. Contrast with GR frame-dragging

Lense–Thirring precession produces only a slow rotation of the orbital plane, yielding a zero net change in asymptotic speed; it scales as Ω_{\oplus}/r^3 rather than first-order $\Omega_{\oplus}R_{\oplus}/c$. Equation (3) is therefore a genuine M1 correction, not a coordinate re-labelling of standard GR.

4. Consistency with Published Data

Anderson et al [1] and the independent re-analysis of Mbelek [4] show that (3) reproduces all six recorded Earth fly-bys (Galileo, NEAR, Rosetta, Cassini, Messenger, Juno) within the reported Doppler error bars, predicting the observed null shifts for Messenger and Juno with no free parameters.

5. Discussion and Outlook

Equation (3) supplies the first concrete prediction of how a rotating gravitating source modifies quantum momentum—an effect that survives the $\hbar \to 0$ limit and accumulates over macroscopic trajectories. Upcoming missions such as JUICE (Earth return 2031) will test the result at the $10\,\mathrm{mm\,s^{-1}}$ level, well within existing tracking precision.

Further work should extend the calculation to include higher terrestrial multipoles and investigate analogous effects in lunar and Jovian fly-bys, offering a broader laboratory for quantum-gravity phenomenology.

Acknowledgments

No external funding supported this research.

Data availability

All numerical values cited here originate from [1, 4]. No new datasets were generated.

Appendix A. Supplemental Material (online)

A step-by-step derivation of Eq. (3) together with the historical fly-by catalogue is provided in a separate PDF.

References

- [1] Anderson J D, Campbell J K, Ekelund J E, Ellis J and Jordan J F 2008 Phys. Rev. Lett. 100(09)
 091102 URL https://link.aps.org/doi/10.1103/PhysRevLett.100.091102
- [2] Klaveness A 2025 Momentum is all you need Authorea Preprint URL https://doi.org/10.22541/au.174983592.20105366/v1
- Klaveness A 2025 The momentum-first dirac equation: A unified hamiltonian for fermions in stationary spacetimes Authorea Preprint URL https://doi.org/10.22541/au.174957740. 08484410/v1

[4] Mbelek J 2024 ($Preprint \; \mathtt{arXiv:2411.12053})$