Objective: To understand the relationship between the segments of a circle.

<u>Case #1:</u> When 2 secants intersect outside the circle:

What is the relationship between all of the segments?

ACAD NOCEB by AAN

$$\frac{CA}{CE} = \frac{AD}{EB} = \frac{CD}{CB}$$

$$\frac{X+10}{12} = \frac{8}{X} \qquad \times (X+10) = (8)(12)$$

$$X^{2}+10X = 96 \qquad (6)(16) = (8)(12)$$

$$X^{2}+10X-96 = 0$$

$$(X-6)(X+16) = 0$$

$$X = 6 \quad X \neq -16$$

(external seg.) (whole seg) = (external seg) (whole

The following cases can be proven with similar logic!

Case #2: When a tangent and a secant intersect outside the circle:

In this case the length of the tangent squared will be equal to the product of the whole secant and its external part.

whole = external tangent² = whole · external

Case #3: When two chords intersect inside the circle:

$$\frac{3}{2} = \frac{x}{11}$$
 $(3)(11) = (2)(x)$
 $x = 16.5$

In this case, the product of the two pieces of one of the chords is equal to the product of the two pieces of the other chord.

 $piece \cdot piece = piece \cdot piece$

Practice:

1. T is the midpoint of \overline{QS} , PT = 8 and QS = 40.

b) Find the diameter of
$$\bigcirc O = 5$$

$$8x = (26)(26)$$

 $8x = 400$

2. If TR = 10 and PR = 50, find PQ.

tangents² = (ext) (whole)

$$10^2 = \times .50$$

 $\times = 2$
 $PQ = 48$

3. If CE = 2, ED = 18, and $\overline{AE} \cong \overline{EB}$, find AB.

$$(18)(2) = X \cdot X$$

$$36 = X^{2}$$

$$6 = X$$

$$AB - 12$$

4. Find the radius of $\odot P$

(6) (10) = (5) (5+x)

$$60 = 25+5x$$

 $35 = 5x$
 $7 = x$
(radius = 3.5)

Accelerated Geometry Chapter 10 Section 8

 $Name_{_}$ Date

5. Given: AP = 3, PQ = 5, QB = 7, CP = 2, QD = 14.

Find: PD and EQ

$$2x = (3)(12)$$
 $14y = (7)(8)$
 $2x = 36$ $14y = 56$
 $x = 18$ $y = 4$

6. Given TZ = 6, YZ = 4, SX = 3, WX = 1.

Find: XT

$$6^{2} = 4(7+y)$$
 $(3)(2) = (1)(x)$
 $36 = 28+4y$ $6 = Tx$
 $8 = 4y$

$$(3)(a) = (1)(x)$$

7. a) Find y.

b) Is the triangle acute, right or obtuse? Justify your answer with the appropriate work.

8. Given: AB = 7, CD = 5, ED = 2.

Find: AE

