CROCHET DE LIE

Dans tout le problème n désigne un entier supérieur ou égal à 1.

Soit E un espace vectoriel de dimension finie sur \mathbb{C} . Si $a,b\in\mathcal{L}(E)$, l'endomorphisme $a\circ b$ sera noté ab et l'on pose [a,b] = ab - ba.

Pour $a \in \mathcal{L}(E)$, on note θ_a l'endomorphisme de $\mathcal{L}(E)$ défini par

$$\theta_a(b) = [a,b] = ab - ba$$
.

On admettra le *théorème de décomposition des noyaux* (cf. problème n°2) :

Soit $u \in \mathcal{L}(E)$, $\lambda_1, \ldots, \lambda_r$ ses valeurs propres distinctes et $\alpha_1, \ldots, \alpha_r$ leur multiplicité respective; alors

$$E = \bigoplus_{i=1}^r \operatorname{Ker}(u - \lambda_i \operatorname{I} d)^{\alpha_i}.$$

L'objet du problème est d'étudier dans quelques cas particuliers des propriétés du « crochet » [,].

I - EXEMPLE.

1. On suppose dans cette question que $E = \mathbb{C}_n[X]$ est l'ensemble des polynômes de degré au plus n, à coefficients dans \mathbb{C} , et l'on pose pour $P \in E$

$$e(P) = P'$$
, $f(P) = -nXP + X^2P'$, $h(P) = -nP + 2XP'$.

- a) Calculer [e,h], [f,h], [e,f].
- b) Soit $F \neq \{0\}$ un sous-espace vectoriel de E stable par e et f, et soit $P \neq 0$ un élément de F. En examinant les degrés des images successives de P par e et par f, prouver que F = E.

E désigne maintenant un \mathbb{C} -espace vectoriel quelconque de dimension finie. On considère 3 éléments de $\mathscr{L}(E)$ notés e, f, h et vérifiant :

$$[e,h] = 2e$$
 , $[f,h] = -2f$, $[e,f] = h$, $(e,f,h) \neq (0,0,0)$.

On note \mathcal{L}_3 le sous-espace vectoriel de $\mathcal{L}(E)$ qu'ils engendrent.

- **2.** Prouver que dim $\mathcal{L}_3 = 3$.
- **3.** Soit $\mathscr I$ un sous-espace vectoriel de $\mathscr L_3$ tel que $\forall g\in\mathscr I, \forall a\in\mathscr L_3, \big[a,g\big]\in\mathscr I.$

$$\forall g \in \mathcal{I}, \forall a \in \mathcal{L}_3, [a, g] \in \mathcal{I}$$

- a) Montrer que si \mathscr{I} contient un élément $g = \alpha e + \beta f + \gamma h$ avec $\gamma \neq 0$, alors $\mathscr{I} = \mathscr{L}_3$.
- **b)** Prouver que si $\mathscr{I} \neq \{0\}$ alors $\mathscr{I} = \mathscr{L}_3$ (on pourra se ramener à la question précédente).
- a) Soit y un vecteur propre de h; prouver que si $e(y)\neq 0$, alors e(y) est un vecteur propre de h.
 - **b)** En déduire qu'il existe un vecteur propre x de h tel que e(x) = 0.

Dans la suite de cette partie, on note x un tel vecteur, et on note α la valeur propre de h associée.

- a) Calculer $h(f^k(x))$ où k est un entier naturel.
 - **b)** En déduire qu'il existe $m \in \mathbb{N}$ tel que $f^m(x) \neq 0$ et $f^{m+1}(x) = 0$.
 - c) Prouver que pour $k \in \mathbb{N}^*$, $e(f^k(x))$ est colinéaire à $f^{k-1}(x)$.
- **6.** On suppose que E ne contient aucun sous-espace stable par \mathcal{L}_3 autre que $\{0\}$ et E. On pose

$$F = Vect(x, f(x), ..., f^m(x))$$

- a) Justifier que F est stable par e, f et h. Que peut-on en déduire?
- **b)** Montrer que la famille $\mathcal{B} = (x, f(x), ..., f^m(x))$ est une base de E.
- c) Déterminer la matrice de h dans la base \mathcal{B} .
- **d)** En examinant tr h, prouver que $\alpha = -m$.
- 7. Déterminer la matrice de e dans la base \mathcal{B} .

II - Préliminaire à l'étude de $\mathcal{M}_n(\mathbb{C})$

Dans cette partie E désigne toujours un C-espace vectoriel de dimension finie.

- 1. Prouver qu'un endomorphisme a de E possède une seule valeur propre si et seulement s'il existe $\lambda \in \mathbb{C}$ tel que $a-\lambda Id$ soit nilpotent.
- **2.** Soit u et v deux endomorphismes nilpotents commutant entre eux. Prouver que u-v est nilpotent.
- **3.** Soit u un endomorphisme de E; on pose $\mathcal{N}_u = \bigcup_{p=0}^{\infty} \operatorname{Ker} u^p$ et $\mathcal{G}_u = \bigcap_{p=0}^{\infty} \operatorname{Im} u^p$.
 - **a)** Prouver qu'il existe $p_0 \in \mathbb{N}$ tel que $\mathcal{N}_u = \operatorname{Ker} u^{p_0}$ et $\mathcal{G}_u = \operatorname{Im} u^{p_0}$.
 - **b)** Prouver que \mathcal{N}_u et \mathcal{G}_u sont deux sous-espaces supplémentaires, stables par u, tels que u restreint à \mathcal{N}_u soit nilpotent et que u restreint à \mathcal{G}_u soit bijectif.
 - c) Prouver réciproquement que si $E = F \oplus G$ où F et G sont deux sous-espaces stables par u tels que la restriction de u à F soit nilpotente et la restriction de u à G bijective, alors $F = \mathcal{N}_u$ et $G = \mathcal{G}_u$.

On vient donc de prouver l'existence et l'unicité de tels sous-espaces F et G.

III - ÉTUDE DE
$$\mathcal{M}_n(\mathbb{C})$$
.

Dans cette partie, A désigne une matrice de $\mathcal{M}_n(\mathbb{C})$, et l'on note θ_A l'endomorphisme de $\mathcal{M}_n(\mathbb{C})$ défini par $\theta_A(B) = AB - BA$.

- 1. a) Montrer que les valeurs propres de l'endomorphisme ϕ_A de $\mathcal{M}_n(\mathbb{C})$ défini par $\phi_A(M) = AM$ sont les valeurs propres de A.
 - b) Déterminer les valeurs propres de l'endomorphisme ψ de $\mathcal{M}_n(\mathbb{C})$ défini par $\psi_A(M) = MA$.

Étant donnée $A \in \mathcal{M}_n(\mathbb{C})$, on considère λ et μ deux valeurs propres de A de multiplicité respective α et β . On pose $\mathscr{L}_{\lambda,\mu} = \operatorname{Vect}\left\{U^t V, U \in \operatorname{Ker}(A - \lambda I_n)^\alpha; V \in \operatorname{Ker}\left({}^t A - \mu I_n\right)^\beta\right\}$.

- **2.** a) Prouver que le sous-espace $\mathcal{L}_{\lambda,\mu}$ de $\mathcal{M}_n(\mathbb{C})$ est stable par θ_A .
 - **b)** Prouver que la restriction de θ_A à $\mathcal{L}_{\lambda,\mu}$ admet pour unique valeur propre $\lambda-\mu$ (on remarquera que $\theta_A=\varphi_A-\psi_A$, et on utilisera les résultats des questions II.1 et II.2).
- **3. a)** Soit $\mathscr{F} = (U_1, ..., U_p)$ et $\mathscr{G} = (V_1, ..., V_q)$ deux familles de vecteurs de $\mathscr{M}_{n,1}(\mathbb{C})$. Prouver que si les familles \mathscr{F} et \mathscr{G} sont libres, la famille $\{U_i{}^tV_j, i \in [1,p], j \in [1,q]\}$, qu'on notera $\mathscr{F} \otimes \mathscr{G}$, est libre.
 - **b)** On note \mathscr{B}_{λ} une base de $\operatorname{Ker}(A-\lambda I_n)^{\alpha}$ et \mathscr{B}_{μ}^* une base de $\operatorname{Ker}({}^tA-\mu I_n)^{\beta}$. Prouver que la famille $\mathscr{B}_{\lambda}\otimes\mathscr{B}_{\mu}^*$ est une base de $\mathscr{L}_{\lambda,\mu}$.
 - c) En déduire que $\mathcal{M}_n(\mathbb{C}) = \bigoplus_{(\lambda,\mu) \in (\operatorname{Sp} A)^2} \mathcal{L}_{\lambda,\mu}$ où SpA désigne l'ensemble des valeurs propres de A.
- **4.** Déterminer \mathcal{N}_{θ_A} (on utilisera la question II.3°c).
- **5.** a) Soit $p_1, ..., p_n$ des entiers positifs ou nuls tels que $\sum_{k=1}^n p_k = n$. Prouver que $\sum_{k=1}^n p_k^2$ est minimal lorsque $\forall k \in [1, n], p_k = 1$.
 - **b**) En déduire une condition nécessaire et suffisante portant sur A pour que dim \mathcal{N}_{θ_A} soit minimale.

