

Department of Mathematical Sciences

MODULE HANDBOOK

MTH113TC Introduction to Probability and Statistics

Dr. Yinna Ye & Dr. Jionglong Su

Semester 1

2020/2021

SECTION A: Basic Information

Brief Introduction to the Module

This module is designed and developed particularly for 2nd Year undergraduates at XJTLU. It is intended as an elementary introduction to the theory of probability and statistics for students in Data Science and Big Data Technology.

□ Key Module Information

Module name: Introduction to Probability and Statistics

Module code: MTH113TC

Credit value: 5 credits

Semester in which the module is taught: Semester 1

Pre-requisites needed for the module:

<u>Programmes on which the module is shared</u>: BEng Data Science and Big Data Technology

Delivery Schedule (subject to changes of timetable setting from Registry)

Lectures			
Time (Week 1 – Week 5)	Teaching mode		
Mon. 9 - 11 am.			
Tue. 2 – 4 pm.	Online		
Wed. 2 – 4 pm.			
Thu. 5 – 7 pm.			

Tutorials				
	Time (Week 1 – Venue		Teaching Mode	
	Week 6)			
Group 1	Thu. 2 – 3 pm.	MA418		
			Onsite	
Group 2	Fri. 11 – 12 am.	MA405		
Group 3	Fri. 4 – 5 pm.	MA418		
Group 4 (International)	Fri. 5 – 6 pm.	MA418	Online	

Seminar				
	Time (Week 6)	Venue	Teaching Mode	
Group 1	Tue. 9-11 am	SD214		
Group 2	Tue. 2-4 pm	SD220	Onsite	
Group 3	Tue. 4-6 pm	SB220		
Group 4 (International)	TBA	N/A	Online	

Module Leader and Contact Details

Name: Dr. Yinna Ye

Email address: yinna.ye@xjtlu.edu.cn

Room number and office hours: MB324, TBA

Preferred means of contact: email

Additional Teaching Staff and Contact Details

<u>Co-lecturer</u>: Dr. Jionglong Su <u>Email</u>: jionglong.su@xjtlu.edu.cn

Room number and office hours: SC527, TBA

SECTION B: What you can expect from the module

Educational Aims of the Module

The aim of this module is to

- To provide a rigorous introduction to probability and mathematical statistics particularly for math majored students;
- To discuss the potential scope of the applications and illustrate typical ways of analysis;
- To provide an appropriate technical background for related higher level MTH modules.

□ Learning Outcomes

Students completing the module successfully should be able to:

- A. describe statistical data;
- B. apply basic probability theory to solve related problems;
- C. provide good knowledge on typical distributions such as Bernoulli, Binomial, Geometric, Uniform, Poisson, Exponential and Normal distributions and their applications.

Assessment Details

Initial Assessment

Sequence	Method	Assessment Type(EXAM or CW) ²	Learning outcomes assessed(use codes under Learning Outcomes)	Duration	Week	% of Final Mark	Resit(Y/N/S) ³
001	CW	CW	A,B	1.0 hours		15	N
002	Final Exam	EXAM	A,B,C	2.5 hours		85	Y

Resit Assessment

Sequence	~ -	Learning outcomes assessed (use codes under Learning Outcomes)	Duration	Week	% of Final Mark
R002	EXAM	A,B,C	2.5 hours		85

Marks for components where no resit opportunities are offered will be carried forward, whether or not they are passed or failed, and will be calculated, with the same weighting, in the final module mark.

□ Syllabus & Teaching Plan

The syllabus of this module is as follows:

- A. Elementary probability: a) Sample space, Set operations, b) Axioms of probability, Fundamental formula for probability, c) Rule of complement, Rule of total probability, Monotonicity, Rule of addition
- B. Conditional probability & independence: a) Conditional probability, b)The multiplication principle, c) The law of total probability, d) Bayes' formula, e) Independent events

- C. Random variables & their distributions: a) Discrete random variables, probability mass function, cumulative distribution function, Expectation, Variance, Standard deviation, b) Bernoulli, Binomial, Geometric, Poisson distributions, c) Continuous random variables, probability density function, cumulative distribution function, Expectation, Variance, Standard deviation, d) Uniform, Exponential, Normal distributions.
- D. Sampling distributions, Confidence interval estimation, Hypothesis Testing

The teaching plan is the following, which might be slightly flexible due to the students learning process.

Week number and/or date	Lecture/Se minar/Field trip/other	Topic/Theme/Title	Pre-reading
duto		Chap1: Elementary Probability.	Chapter 1 in
		Sample space & events,	Lecture Note &
		Axioms of probability,	Slides
	Lecture 1 -	Fundamental formula for	
	Elementary	probability, Some useful results	
	Probability,	on probability: Rule of	
Week 1	Conditional	complement, rule of total	
	Probability &	probability, Rule of addition.	
	Independenc	Chap 2: Conditional Probability	
	е	& Independent events.	Chapter 2 in
		Conditional probability,	Lecture Note &
		Multiplication principle, Law of	Slides
		total probability, Bayes'	
		formula, Independent events	
		Chap 3 - Part 1: Discrete	
		Random Variables. Cumulative	
		Distribution Functions,	
	Lecture 2 -	Expectation, Variance,	
Week 2	Random	Standard Deviation; Common	Chapter 3 in
	Variables	discrete random variables:	Lecture Note &
		Bernoulli, Binomial, Geometric,	Slides
		Poisson random variables	
		Chap 3 - Part 2: Continuous	
		Random Variables.	
		Expectation, Variance, Standard deviation; Common	
		continuous random variables:	
		Uniform, Exponential, Normal	
		random variables	
		Random & Systematic	
		Sampling: population, sample,	
		Simple Random Sampling,	
	Lecture 3 -	Systematic Sampling,	Slides - Week 3
Week 3	Descriptive	Parameter, Statistic	
	Statistics	Classification of variables:	
		Qualitative and quantitative	
		variables, type of data.	

		Graphs to Describe Variables:	
		Frequency distribution, relative	
		freguency distribution, Bar	
		chart, Pie chart, cross table,	
		Histogram, Ogives, Stem-and-	
		leaf Displays, Scatter Plot.	
		Measures of central tendency	
		and location: Mean, Median,	
		Mode, Shape of Distribution,	
		Quantiles, 5-number summary	
		Measures of variability:	
Week 4	Statistical	Range, IQR, Box-and-Whisker	
	Measures	Plot, Variance, Standard	Slides - Week 4
		Deviation, Coefficient of	
		Variation, Chebyshev's Thm,	
		Empirical Rule, Central Limit	
		Thm, z-score	
		Measures of relationships	
		between variables:	
		Covariance, Correlation	
		Coefficient	
		Sampling Distributions:	Slides - Week 5
	Lecture 4 -	distributions of the sample	
Week 5	Sampling	mean, sample proportions and	
	Distributions	sample variance, Chi-squre	
		distribution. Confident interval	
		& Hypothesis testing (If time	
		permits)	

Reading Materials

Optional Textbooks

Title	Author	ISBN/Publisher
PROBABILITY AND STATISTICS, 4TH EDITION	MORRIS H. DEGROOT,MARK J. SCHERVISH	9781292025049 /PEARSON
INTRO STATS (5TH EDITION)	RICHARD D. DE VEAUX, PAUL F. VELLEMAN, DAVID E. BOCK	9780134210223 /PEARSON

Reference Textbooks

Title	Author	ISBN/Publisher
INTRODUCTION TO STATISTICS		9780840068392
AND DATA ANALYSIS	L. DEVORE	/BROOKSCOLE
INTRODUCTION TO	WILLIAM MENDENHALL,	9781133103752/CENGAGE
PROBABILITY AND STATISTICS	ROBERT J. BEAVER, BARBARA	LEARNING
14TH EDITION	M. BEAVER	LEARNING

SECTION C: Further Information

□ Student Feedback

The University is keen to require student feedback to make improvements for each module in every session. It is University policy that the preferred way of achieving this is by means of an Online Module Evaluation Questionnaire Survey. Students will be invited to complete the questionnaire survey for this module at the end of the semester.

You are strongly suggested to read policies mentioned below very carefully, which will help you better perform in your academic studies. All the policies and regulations related to your academic study can be found in Student Academic Services section under the heading "Policies and Regulations" on E-bridge.

Plagiarism, Cheating, and Fabrication of Data.

Offences of this type can result in attendance at a University-level committee and penalties being imposed. You need to be familiar with the rules. Please see the "Policy for Dealing with Plagiarism, Collusion and Data Fabrication" document available on e-Bridge in the Student Academic Services section under the heading 'Policies and Regulations'.

□ Rules of submission for assessed coursework

The University has detailed rules and procedures governing the submission of assessed coursework. You need to be familiar with them. Details can be found in the "Code of Practice for Assessment" document available on e-Bridge in the Student Academic Services section under the heading 'Policies and Regulations'.

□ Late Submission of Assessed Coursework

The University attaches penalties to the late submission of assessed coursework. You need to be familiar with the University's rules. Details can be found in the

"Code of Practice for Assessment" document available on e-Bridge in the Student Academic Services section under the heading 'Policies and Regulations'.

□ Mitigating Circumstances

The University is able to take into account mitigating circumstances such as illness or personal circumstances which may have adversely affected student performance on a module. It is the student's responsibility to keep their Academic Adviser, Programme Director or Head of Department informed of illness and other factors affecting their progress during the year and especially during the examination period. Students who believe that their performance on an examination or assessed coursework may have been impaired by illness, or other exceptional circumstances should follow the procedures set out in the Mitigating Circumstances Policy, which can be found on e-Bridge in the Student Academic Services section under the heading 'Policies and Regulations'.

Copies of lecture notes and other materials are available electronically through ICE, the University's virtual learning environment at: ICE @ XJTLU.