

ON TRANSFER LEARNING USING A MAC MODEL VARIANT

Vincent Marois

T.S. Jayram

Vincent Albouy Tomasz Kornuta

Younes Bouhadjar

 $Younes\ Bouhadjar \\ \{vmarois, jayram, tkornut, byounes, asozcan\} @us.ibm.com, \{vincent.albouy\} @ibm.com\}$ Ahmet S. Ozcan

SUMMARY

- We introduce a *simplified* variant of the MAC model (*Hudson and Manning*, ICLR 2018), which achieves comparable accuracy while training faster.
- We evaluate both models on CLEVR & CoGenT, and show that, transfer learning with fine-tuning results in a 15 point increase in accuracy, matching the state of the art.
- We also demonstrate that *improper* fine-tuning can reduce a model's accuracy.

THE MAC MODEL [HM18]

Figure 1: The MAC cell [HM18].

- MAC network: a recurrent model performing sequential reasoning. At each step, it analyzes the question and shifts the attention over the image.
- Recurrent MAC cell: consists of a control unit, a read unit & a write unit. The control unit updates the control state c_i & drives the attention over the question words.
- The read unit, guided by c_i extracts information from the image. The write unit uses this information to update the memory state m_i .

SIMPLIFIED MAC MODEL (S-MAC)

Based on two heuristic simplifications:

- Taking the MAC cell equations as a whole, consecutive linear layers (with no activation in-between) can be combined as one linear layer.
- We assume that dimension-preserving linear layers are invertible so as to avoid information loss.

This allows, with a careful reorganization, to apply a single linear layer to the knowledge base (feature map extracted from the image) prior to all the reasoning steps and work with this projection throughout the reasoning steps.

MAC

S-MAC

Control unit: The question q is first made position-aware in each reasoning step using an *i*-dependent projection: $q_i = U_i^{[d \times 2d]} q + b_i^{[d]}$.

$cq_i = W_{cq}^{[d \times 2d]}[c_{i-1}, q_i] + b_{cq}^{[d]}$	(c1)	$cq_i = W_{cq}^{[d \times d]} c_{i-1} + q_i$	(c1)
$ca_{is} = W_{ca}^{[1 \times d]}(cq_i \odot \mathbf{cw}_s) + b_{ca}^{[1]}$	(c2.1)	$ca_{is} = W_{ca}^{[1 \times d]}(cq_i \odot \mathbf{cw}_s)$	(c2.1)
$cv_{is} = \operatorname{softmax}(ca_{is})$	(c2.2)	$cv_{is} = \operatorname{softmax}(ca_{is})$	(c2.2)
$\mathbf{c}_i = \sum cv_{is} \mathbf{cw}_s$	(c2.3)	$\mathbf{c}_i = \sum cv_{is} \mathbf{cw}_s$	(c2.3)
${\cal S}$		s	

Read and write units:

$$I_{ihw} = (W_m^{[d \times d]} \mathbf{m}_{i-1} + b_m^{[d]})$$

$$\odot (W_k^{[d \times d]} \mathbf{k}_{hw} + b_k^{[d]}) \qquad (r1)$$

$$I'_{ihw} = W_{I'}^{[d \times 2d]} [I_{ihw}, \mathbf{k}_{hw}] + b_{I'}^{[d]} \qquad (r2)$$

$$ra_{ihw} = W_{ra}^{[1 \times d]} (\mathbf{c}_i \odot I'_{ihw}) + b_{ra}^{[1]} \qquad (r3.1)$$

$$rv_{ihw} = \operatorname{softmax}(ra_{ihw}) \qquad (r3.2)$$

$$\mathbf{r}_i = \sum rv_{ihw} \mathbf{k}_{hw} \qquad (r3.3)$$

$$\mathbf{m}_{i} = W_{rm}^{[d \times d]}[\mathbf{r}_{i}, \mathbf{m}_{i-1}] + b_{rm}^{[d]} \qquad (w1)$$

$$I'_{ihw} = W_{I'}^{[d \times d]} I_{ihw} + b_{I'}^{[d]} + \mathbf{k}_{hw}$$

$$ra_{ihw} = W_{ra}^{[1 \times d]} (\mathbf{c}_i \odot I'_{ihw})$$

$$rv_{ihw} = \operatorname{softmax}(ra_{ihw})$$

$$\mathbf{r}_i = \sum_{s} rv_{ihw} \, \mathbf{k}_{hw}$$

$$\mathbf{m}_i = W_{rm}^{[d \times 2d]} \mathbf{r}_i + b_{rm}^{[d]}$$

(r1)

(r3.1)

(r3.2)

(r3.3)

(w1)

 $I_{ihw} = m_{i-1} \odot k_{hw}$

Model	Read Unit	Write Unit	Control Unit
MAC S-MAC	787,969 263,168	524,800 $262,656$	525,313 263,168
Reduction by [%]	67%	50%	50%

Table 1: Comparing the number of position-independent parameters between MAC & S-MAC cells.

LINKS

Figure 2: Paper on arXiv.

Figure 3: How to reproduce the experiments.

THE CLEVR & COGENT DATASETS

Figure 4: How many objects are either small cylinders or red things?

- The authors [JHvdM⁺17] also introduced CLEVR-CoGenT, to evaluate how well a model can learn relations and compositional concepts.
- Similar to CLEVR, but with two conditions, as follows:

Dataset	Cubes	Cylinders	Spheres
	any color gray / blue / brown / yellow red / green / purple / cyan	, , , , , , , ,	any color any color any color

Table 2: Colors/shapes combinations present in CLEVR, CoGenT-A and CoGenT-B datasets.

EXPERIMENTS & RESULTS

Model	Training		Fine-tuning		Test		
1110401	Dataset	Time [h:m]	Acc [%]	Dataset	Acc [%]	Dataset	Acc [%]
MAC	CLEVR	30:52	96.70			CLEVR	96.17
	CLEVR	28:30	95.82			CLEVR	95.29
	CoGenT-A	28:33	96.09			CoGenT-A	95.91
	CLEVR 28:30	28:30	95.82			CoGenT-A	95.47
		20.00				CoGenT-B	95.58
S-MAC	CoGenT-A 28:33					CogenT-B	78.71
		96.09	CoGenT-B	96.85	CoGenT-A	91.24	
				COGGIII D		CoGenT-B	94.55
	CLEVR 28:30	95.82	CoGenT-B	97.67	CoGenT-A	92.11	
					CoGenT-B	92.95	

Table 3: CLEVR & CoGenT accuracies for the MAC & S-MAC models.

- Our experiments on zero-shot learning show that both models have poor performance, in line with the other models in the literature.
- With fine-tuning, both MAC models match state-of-the-art accuracy (a 15pts increase).
- S-MAC presents a 10% speed-up in training time and comparable accuracy.
- Finetuning CLEVR-trained models on CoGenT-A or -B hurts their generalization capabilities.
- \rightarrow Zero-shot learning (CoGenT-A \rightarrow CoGenT-B) remains an interesting problem to solve.

COMPOSITIONAL GENERALIZATION OF THE MAC MODEL

Figure 5: There is a large gray thing that is on the right side of the big gray cylinder left of the large ball that is on the right side if the cyan rubber sphere; what is its shape?

- Asked about the shape of the leftmost **gray cylinder**, the model correctly finds it, (cf. visual attention map), and refers to it using its color (attention over the question words).
- Yet, predicts the shape as **cube**, as it never saw **gray cylinders** during training, but saw gray cubes.
- → Indicate that MAC does not separate shape from color, but has a better understanding of colors (as found the object by its color).

REFERENCES

Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine [HM18]reasoning. International Conference on Learning Representations, 2018.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 1988–1997. IEEE, 2017.