# R for bioinformatics, data wrangler, part 1 HUST Bioinformatics course series

Wei-Hua Chen (CC BY-NC 4.0)

27 September, 2021

### section 1: TOC

#### 前情提要

- IO, project management, working environment management
- ② factors: R 中最重要的概念之一
  - factors 基本概念
  - factors 操作
  - factors 在做图中的使用
  - ggplot2 和 dplyr 初步

#### 问题点评

- ❶ ggplot2 问题
- ② 长宽数据转换 & pipe ...

```
N %>% gather( ind, values );
```

#### 今次提要

• dplyr 、tidyr (超级强大的数据处理) part 1

section 2: data wrangler - dplyr

# dplyr

#### what is dplyr?

- the next iteration of plyr,
- focusing on only data frames (also tibble),
- row-based manipulation,
- dplyr is faster and has a more consistent API.



Figure 1: dolvr logo R for bioinformatics, data wrangler, part 1

# dplyr, overview

dplyr provides a consistent set of verbs that help you solve the most common data manipulation challenges:

- select() 选择列,根据列名规则
- filter() 按规则过滤行
- mutate() 增加新列,从其它列计算而得(不改变行数)
- summarise() 将多个值转换为单个值(通过 mean, median, sd 等操作),生成新列(总行数减少,通常与 group\_by 配合使用)
- arrange() 对行进行排序

# dplyr 安装

```
# The easiest way to get dplyr is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just dplyr:
install.packages("dplyr")
```

#### Development version

```
# install.packages("devtools")
devtools::install_github("tidyverse/dplyr")
```

Get the cheatsheet at here

#### an example of dplyr

#### get the data ready

```
## Rows: 138532 Columns: 6

## -- Column specification ------
## Delimiter: "\t"
## chr (5): Gene stable ID, Transcript stable ID, Protein stable ID, Transcript...
## dbl (1): Transcript length (including UTRs and CDS)

##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show col types = FALSE` to quiet this message.
```

# 查看 mouse.tibble 的内容

```
( ttype.stats <- mouse.tibble %>% count( `Transcript type` ) %>% arrange(-n) );
## # A tibble: 48 x 2
      `Transcript type`
                                   n
      <chr>>
                               <int>
    1 protein coding
                               58384
##
    2 retained intron
                               21021
    3 processed transcript
                               15572
##
    4 processed_pseudogene
                                9425
##
    5 lincRNA
                                8557
    6 nonsense mediated decay
                                6755
   7 antisense
                                4289
    8 TEC
                                3265
```

2650

2265

## # ... with 38 more rows

9 unprocessed pseudogene

## 10 miRNA

## 查看 mouse.tibble 的内容, cont.

```
( chr.stats <- mouse.tibble %>% count( `Chromosome/scaffold name` ) %>% arrange(-n) );
## # A tibble: 117 x 2
      `Chromosome/scaffold name`
      <chr>>
                                  <int>
    1 7
                                  12344
    2 2
                                  10877
    3 5
                                   8955
    4 11
                                   8673
    5 1
                                   8553
                                   8030
   7 6
                                   7845
                                   7573
                                   6938
## 10 10
                                   6568
## # ... with 107 more rows
```

#### 分析任务

- 将染色体限制在常染色体和 XY 上(去掉未组装的小片段);处理行
- ② 将基因类型限制在 protein\_coding, miRNA 和 lincRNA 这三种; 处理行
- 统计每条染色体上不同类型基因(protein\_coding, miRNA, lincRNA) 的数量
- 按染色体(正)、基因数量(倒)进行排序

# 用 dplyr 实现

```
dat <- mouse.tibble %>%
 ## 1.
 filter( 'Chromosome/scaffold name' %in% c( 1:19, "X", "Y" ) ) %>%
  ## 2.
 filter( `Transcript type` %in% c( "protein coding", "miRNA", "lincRNA" ) ) %%
  ## change column name ...
  select( CHR = `Chromosome/scaffold name`, TYPE = `Transcript type`,
         GENE ID = 'Gene stable ID'.
         GENE_LEN = `Transcript length (including UTRs and CDS)` ) %>%
  ## 3.
  group by (CHR, TYPE) %>%
  summarise (count = n distinct (GENE ID ), mean len = mean (GENE LEN ) ) %%
  ## 4.
  arrange( CHR , desc( count ) );
```

## `summarise()` has grouped output by 'CHR'. You can override using the `.groups` argument.

#### 检查运行结果

| CHR | TYPE           | count | mean_len   |
|-----|----------------|-------|------------|
| 1   | protein_coding | 1200  | 2699.59009 |
| 1   | lincRNA        | 347   | 1206.76149 |
| 1   | miRNA          | 128   | 97.97656   |
| 10  | protein_coding | 1020  | 2408.16454 |
| 10  | lincRNA        | 398   | 1220.35543 |
| 10  | miRNA          | 91    | 89.87912   |
| 11  | protein_coding | 1640  | 2431.87666 |
| 11  | lincRNA        | 189   | 1134.49174 |
| 11  | miRNA          | 137   | 87.48905   |
| 12  | protein_coding | 644   | 2523.94822 |
| 12  | lincRNA        | 327   | 1277.14979 |
| 12  | miRNA          | 146   | 86.24658   |
| 13  | protein_coding | 831   | 2380.41499 |
| 13  | lincRNA        | 428   | 1251.04552 |
| 13  | miRNA          | 97    | 105.52577  |

这种显示格式通常被称为: 长数据格式!! 又称为数据扁平化



#### 数据扁平化的优点?

- 便于用 dplyr 或 tapply 等进行计算;
- ② 更灵活,用于保存稀疏数据

## 适合扁平化的数据举例

#### 成绩单

```
library(dplyr);
grades <- read_tsv( file = "data/talk05/grades.txt" );
knitr::kable( head(grades, n=20) );</pre>
```

| name        | course         | grade |
|-------------|----------------|-------|
| Zhi Liu     | Microbiology   | 100   |
| Zhi Liu     | English        | 50    |
| Zhi Liu     | Chinese        | 69    |
| Weihua Chen | Microbiology   | 89    |
| Weihua Chen | English        | 99    |
| Weihua Chen | Bioinformatics | 99    |
| Kang Ning   | Bioinformatics | 100   |
| Kang Ning   | Chinese        | 20    |
| Kang Ning   | Chemistry      | 76    |
|             |                |       |

#### 灵活性:

- 应对不同学生选择不同课程的情况
- 可随时增加新的课程

#### 长数据变宽

```
grades2 <- grades %>% spread( course, grade );
knitr::kable( grades2 );
```

| name        | Bioinformatics | Chemistry | Chinese | English | Microbiology |
|-------------|----------------|-----------|---------|---------|--------------|
| Kang Ning   | 100            | 76        | 20      | NA      | NA           |
| Weihua Chen | 99             | NA        | NA      | 99      | 89           |
| Zhi Liu     | NA             | NA        | 69      | 50      | 100          |

可以想像,如果以此为输入,用R计算每个人的平均成绩、不及格门数、总学分,将会是很繁琐的一件事(但对其它工具(如 Excel)可能会比较简单)

# spread explained!

```
grades2 <- grades %>% spread( course, grade );
```



Figure 2: spread function explained

## 宽数据转为长数据

#### use gather() function in tidyr

```
grades_melted <- grades2 %>% gather( course, grade, -name ); ## 注意参数的使用 ~~ knitr::kable( head( grades_melted ) );
```

| name                                                            | course                                                                       | grade                       |
|-----------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|
| Kang Ning<br>Weihua Chen<br>Zhi Liu<br>Kang Ning<br>Weihua Chen | Bioinformatics<br>Bioinformatics<br>Bioinformatics<br>Chemistry<br>Chemistry | 100<br>99<br>NA<br>76<br>NA |
| Zhi Liu                                                         | Chemistry                                                                    | NA                          |

# gather explained!

```
grades_melted <- grades2 %>% gather( course, grade, -name ); ## 注意参数的使用 ~~
```

#### -name: 此列保留

# 列名变为第一列,取名为 course

| name        | Bioinformatics | Chemistry | Chinese | English | Microbiology |
|-------------|----------------|-----------|---------|---------|--------------|
| Kang Ning   | 100            | 76        | 20      | NA      | NA           |
| Weihua Chen | 99             | NA        | NA      | 99      | 89           |
| _ Zhi Liu   | NA             | NA        | 69      | 50      | 100          |

### 值变为第二列,取名为 grade

Figure 3: annotated gather function

#### 有 NA 值怎么办?

```
grades_melted1 <- grades_melted[!is.na(grades_melted$grade), ];
grades_melted2 <- grades_melted[complete.cases(grades_melted), ];

## -- 更好的方法 ~~
grades_melted <- grades2 %>% gather(course, grade, -name, na.rm = T);
```

## 宽长数据转换练习

#### 用 spread 和 gather 对下面的数据 mini\_iris 进行宽长转换:

```
( mini_iris <- iris[ c(1, 51, 101), ] );
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                            Species
## 1
                5.1
                           3.5
                                         1.4
                                                     0.2
                                                             setosa
                                         4.7
## 51
               7.0
                           3.2
                                                    1.4 versicolor
## 101
                6.3
                           3.3
                                         6.0
                                                     2.5
                                                          virginica
```

#### iris 是鸢尾属一些物种花瓣的量表

#### 宽长数据转换练习, cont.

```
## -- 注意: 第一、二个参数可以自行命名,分别对应原始数据中的 column names 及 values ...
mini_iris.melted <- mini_iris %>% gather( type, dat, -Species );
knitr::kable( mini_iris.melted );
```

## 长宽转换之 mouse.tibble

```
dat2 <- dat %>% select( CHR, TYPE, `count` ) %>% spread( TYPE, count );
knitr::kable( head(dat2, n=10) );
```

| CHR | lincRNA | miRNA | protein_coding |
|-----|---------|-------|----------------|
| 1   | 347     | 128   | 1200           |
| 10  | 398     | 91    | 1020           |
| 11  | 189     | 137   | 1640           |
| 12  | 327     | 146   | 644            |
| 13  | 428     | 97    | 831            |
| 14  | 281     | 71    | 901            |
| 15  | 215     | 94    | 781            |
| 16  | 176     | 76    | 661            |
| 17  | 114     | 73    | 1066           |
| 18  | 43      | 57    | 524            |

# 比较复杂的例子

| name | class | course         | grade |
|------|-------|----------------|-------|
| CHEN | 1     | bioinformatics | 90    |
| CHEN | 1     | chemistry      | 92    |
| CHEN | 2     | chinese        | 35    |
| CHEN | 3     | german         | 62    |
| LI   | 1     | bioinformatics | 44    |
| LI   | 2     | chinese        | 68    |
| LI   | 3     | microbiology   | 95    |
| LI   | 3     | japanese       | 90    |
| WANG | 1     | bioinformatics | 35    |
| WANG | 1     | chemistry      | 76    |
| WANG | 1     | mathmatics     | 82    |
| WANG | 3     | german         | 100   |
| WANG | 3     | spanish        | 78    |

## 怎么用 spread 把它变为以下的格式?

```
## # A tibble: 8 x 10
     name class bioinformatics chemistry chinese german japanese mathmatics
     <chr> <dbl>
                            <dbl>
                                       <dbl>
                                               <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                            <dbl>
## 1 CHEN
                               90
                                          92
                                                  NΑ
                                                          NΑ
                                                                    NΑ
                                                                                NΑ
## 2 CHEN
                               NA
                                          NΑ
                                                  35
                                                          NA
                                                                    NA
                                                                                NA
## 3 CHEN
                               NΑ
                                          NA
                                                  NA
                                                          62
                                                                    NΑ
                                                                                NΑ
## 4 T.T
                               44
                                          NA
                                                  NA
                                                          NA
                                                                    NA
                                                                                NΑ
## 5 L.I
                               NA
                                          NΑ
                                                  68
                                                          NΑ
                                                                   NΑ
                                                                                NA
## 6 L.T
                               NΑ
                                          NA
                                                  NA
                                                          NA
                                                                    90
                                                                                NΑ
## 7 WANG
                               35
                                          76
                                                  NA
                                                          NA
                                                                    NA
                                                                                82
## 8 WANG
                               NA
                                          NΑ
                                                  NA
                                                         100
                                                                    NA
                                                                                NΑ
## # ... with 2 more variables: microbiology <dbl>, spanish <dbl>
```

又怎么把它变回来???

#### dplyr 常用函数示例

#### 先创建一个新 tibble

```
## # A tibble: 7 x 6
                    Occupation
                                  English ComputerScience Biology Bioinformatics
##
     Name
                    <chr>>
                                    <int>
                                                              <int>
##
     <chr>>
                                                     <int>
                                                                              <int>
## 1 Weihua Chen
                    Teacher
                                       69
                                                         82
                                                                 55
                                                                                 60
## 2 Mm Hu
                    Student
                                       94
                                                         84
                                                                 71
                                                                                 44
## 3 John Doe
                    Teacher
                                       80
                                                         90
                                                                 61
                                                                                 41
## 4 Jane Doe
                    Student
                                       92
                                                        81
                                                                 92
                                                                                 83
## 5 Warren Buffet Entrepreneur
                                       63
                                                        89
                                                                 60
                                                                                 73
## 6 Elon Musk
                                       74
                                                        88
                                                                 94
                                                                                 72
                    Entrepreneur
                                                                                 47
## 7 Jack Ma
                    Entrepreneur
                                       91
                                                         80
                                                                 69
```

# use gather & dplyr functions

#### Question: 1. 每个人平均成绩是多少? 2. 哪个人的平均成绩最高?

```
grades.melted <- grades %>%
gather( course, grade, -Name, -Occupation, na.rm = T );
## 检查数据 ...
knitr::kable( head(grades.melted) );
```

| Name          | Occupation   | course  | grade |
|---------------|--------------|---------|-------|
| Weihua Chen   | Teacher      | English | 69    |
| Mm Hu         | Student      | English | 94    |
| John Doe      | Teacher      | English | 80    |
| Jane Doe      | Student      | English | 92    |
| Warren Buffet | Entrepreneur | English | 63    |
| Elon Musk     | Entrepreneur | English | 74    |

#### 成绩分析,cont

```
grades.melted %>%
  group by (Name, Occupation) %>%
  summarise( avg grades = mean( grade ), courses_count = n() ) %>%
  arrange( -avg grades );
## `summarise()` has grouped output by 'Name'. You can override using the `.groups` argument.
## # A tibble: 7 x 4
## # Groups:
               Name [7]
##
    Name
                   Occupation
                               avg grades courses count
                   <chr>>
                                     <dh1>
                                                    <int>
     <chr>>
## 1 Jane Doe
                   Student
                                      87
## 2 Elon Musk
                   Entrepreneur
                                      82
## 3 Mm H11
                   Student
                                      73.2
                   Entrepreneur
## 4 Jack Ma
                                      71.8
## 5 Warren Buffet Entrepreneur
                                      71.2
## 6 John Doe
                   Teacher
                                      68
## 7 Weihua Chen
                   Teacher
                                      66.5
## 显示最终结果
knitr::kable( head( grades.melted ) );
```

# use gather & dplyr functions

#### 问题: 每个人的最强科目是什么??

```
## 步骤 1: 排序:
grades.melted2 <-
grades.melted %>%
arrange( Name, -grade );
knitr::kable( head(grades.melted2) );
```

| Name      | Occupation   | course          | grade |
|-----------|--------------|-----------------|-------|
| Elon Musk | Entrepreneur | Biology         | 94    |
| Elon Musk | Entrepreneur | ComputerScience | 88    |
| Elon Musk | Entrepreneur | English         | 74    |
| Elon Musk | Entrepreneur | Bioinformatics  | 72    |
| Jack Ma   | Entrepreneur | English         | 91    |
| Jack Ma   | Entrepreneur | ComputerScience | 80    |

## 最强科目问题, cont.

```
## # A tibble: 7 x 4
     Name
                   best course
                                    best grade avg grades
     <chr>>
                    <chr>>
                                          <int>
                                                      <dbl>
                                                      87
## 1 Jane Doe
                   English
                                             92
   2 Elon Musk
                   Biology
                                             94
                                                      82
## 3 Mm H11
                   English
                                             94
                                                      73.2
## 4 Jack Ma
                   English
                                             91
                                                      71.8
## 5 Warren Buffet ComputerScience
                                             89
                                                      71.2
## 6 John Doe
                   ComputerScience
                                             90
                                                      68
                   ComputerScience
                                                      66.5
## 7 Weihua Chen
                                             82
```

# dplyr::summarise 的其它操作

| dplyr::first                | min                             |
|-----------------------------|---------------------------------|
| First value of a vector.    | Minimum value in a vector.      |
| dplyr::last                 | max                             |
| Last value of a vector.     | Maximum value in a vector.      |
| dplyr:: <b>nth</b>          | mean                            |
| Nth value of a vector.      | Mean value of a vector.         |
| dplyr:: <b>n</b>            | median                          |
| # of values in a vector.    | Median value of a vector.       |
| dplyr::n_distinct           | var                             |
| # of distinct values in     | Variance of a vector.           |
| a vector.                   | sd                              |
| <b>IQR</b> IQR of a vector. | Standard deviation of a vector. |

Figure 4: dplyr::summarise 可用的操作

#### 更多练习,使用 starwars tibble

#### head(starwars);

```
## # A tibble: 6 x 14
            height mass hair_color skin_color eye_color birth_year sex
##
    name
##
    <chr> <int> <dbl> <chr>
                                  <chr>
                                            <chr>
                                                          <dbl> <chr> <chr>
## 1 Luke Sk~
               172
                     77 blond
                                  fair
                                            blue
                                                               male mascu~
                                                           19
## 2 C-3PN
              167 75 <NA>
                                  gold
                                            vellow
                                                          112
                                                               none mascua
## 3 R2-D2 96 32 <NA>
                                  white, bl~ red
                                                           33
                                                               none mascu~
## 4 Darth V~ 202 136 none
                                  white
                                            vellow
                                                         41.9 male mascu~
## 5 Leia Or~ 150
                   49 brown
                                  light
                                            brown
                                                          19
                                                               fema~ femin~
## 6 Owen La~ 178
                    120 brown, grey light
                                            blue
                                                           52
                                                               male mascu~
## # ... with 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
```

note 包含 87 行 13 列, 星战部分人物的信息, 包括身高、体重、肤色等

用?starwars 获取更多帮助

# dplyr::mutate - 产生新列,不改变行数

而 dplyr::summarise 则会使列数减少(通常与 group\_by 联合使用)



Figure 5: dplyr::mutate

#### 另见下页的例子

#### dplyr::select - 取列

#### 目标:

● 取出相关列,用于计算人物的 BMI

```
stats <-
starwars %>%
select( name, height, mass ) %>%
mutate( bmi = mass / ( (height / 100 ) ^ 2 ) );
head(stats);
```

```
## # A tibble: 6 x 4
    name
                   height mass
                                 bmi
    <chr>>
                    <int> <dbl> <dbl>
## 1 Luke Skywalker
                     172
                            77 26.0
## 2 C-3PO
                     167 75 26.9
## 3 R2-D2
                     96 32 34.7
## 4 Darth Vader
                     202
                           136 33.3
## 5 Leia Organa
                     150
                           49 21.8
## 6 Owen Lars
                     178
                           120 37.9
```

#### dplyr::select - 取列, cont.

由于 name, height 和 mass 正好是相邻列,可以用 name:mass 获取:

```
<chr>
                    <int> <dbl> <dbl>
## 1 Luke Skywalker
                      172
                            77
                               26.0
                     167 75 26.9
## 2 C-3PO
## 3 R2-D2
                      96
                            32 34.7
## 4 Darth Vader
                      202
                           136 33.3
## 5 Leia Organa
                     150
                            49 21.8
## 6 Owen Lars
                      178
                           120 37.9
```

## dplyr::select - 取列, cont.

select( name. ends with("color") ):

#### 获取与颜色相关的列: hair\_color, skin\_color, eye\_color

```
## # A tibble: 6 x 4
                    hair color skin color
                                            eve color
    name
    <chr>>
                    <chr>
                                <chr>
                                             <chr>>
## 1 Luke Skywalker blond
                                fair
                                            blue
## 2 C-3PO
                    <NA>
                                gold
                                            yellow
## 3 R2-D2
                    <NA>
                                white, blue red
## 4 Darth Vader
                                white
                                            vellow
                    none
## 5 Leia Organa
                                light
                                             brown
                   brown
## 6 Owen Lars
                    brown, grey light
                                            blue
```

stats2 <- starwars %>%

head(stats2):

# dplyr::select - 去除列, cont.

#### 请自行检查以下操作的结果

```
head( starwars %>% select( -hair_color, -eye_color ) );
```

# dplyr::select - 其它操作, cont.

```
Helper functions for select - ?select
select(iris, contains("."))
 Select columns whose name contains a character string.
select(iris, ends_with("Length"))
 Select columns whose name ends with a character string.
select(iris, everything())
 Select every column.
select(iris, matches(".t."))
 Select columns whose name matches a regular expression.
select(iris, num range("x", 1:5))
 Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))
 Select columns whose names are in a group of names.
select(iris, starts with("Sepal"))
 Select columns whose name starts with a character string.
select(iris, Sepal.Length:Petal.Width)
 Select all columns between Sepal, Length and Petal, Width (inclusive).
select(iris, -Species)
 Select all columns except Species.
```

Figure 6: dplyr::select 支持的操作

#### dplyr::filter - 行操作

#### 任务: 从星战中挑选金发碧眼的人物

```
starwars %>% select( name, ends_with("color"), gender, species ) %>%
filter( hair_color == "blond" & eye_color == "blue" );
```

```
## # A tibble: 3 x 6
                      hair color skin color eve color gender
                                                                  species
     name
     <chr>>
                      <chr>>
                                  <chr>>
                                             <chr>>
                                                       <chr>>
                                                                  <chr>>
## 1 Luke Skywalker
                      blond
                                 fair
                                             blue
                                                       masculine Human
## 2 Anakin Skywalker blond
                                 fair
                                             blue
                                                       masculine Human
## 3 Finis Valorum
                      blond
                                 fair
                                             blue
                                                       masculine Human
```

# dplyr 中其它取行的操作

#### **Subset Observations** (Rows)



dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample\_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample\_n(iris, 10, replace = TRUE)

Randomly select n rows.

dplyr::slice(iris, 10:15)
Select rows by position.

dplyr::top\_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

Figure 7: dplyr 与行相关的操作

## tidyr::separate

https://r4ds.had.co.nz/tidy-data.html

## tidyr::unite

https://r4ds.had.co.nz/tidy-data.html

section 3: 练习与作业

#### 练习 & 作业

- Exercises and homework 目录下 talk05-homework.Rmd 文件;
- 完成时间: 见钉群的要求

#### 小结

#### 今次提要

• dplyr 、tidyr (超级强大的数据处理) part 1

#### 下次预告

• dplyr, tidyr 和 forcats 的更多功能与生信操作实例

#### important

 all codes are available at Github: https://github.com/evolgeniusteam/R-for-bioinformatics