Санкт-Петербургский Государственный Университет

Факультет математики и компьютерных наук

Теория меры

Конспект основан на лекциях Романа Викторовича Бессонова

3 сентября 2020 г.

Конспект основан на лекциях по теории меры, прочитанных Романом Викторовичем Бессоновым студентам Факультета математики и компьютерных наук Санкт-Петербургского государственного университета в осеннем семестре 2019–2020 учебного года.

В конспекте содержится материал 3-го семестра курса математического анализа.

Автор:

© 2020 г.

Михаил Опанасенко

Pаспространяется под лицензией Creative Commons Attribution 4.0 International License, см. https://creativecommons.org/licenses/by/4.0/.

Последняя версия конспекта и исходный код:

https://www.overleaf.com/read/kqzpjhrqdkfz

Оглавление

Индекс		127
19	Формула Стокса	107
18	Формула коплощади	
17	Меры Хаусдорфа	
16	Функции ограниченной вариации	
15	Теоретическая контрольная	
14	Дифференцирование мер	
13	Лемма Витали и максимальная функция Харди-Литлвуда	
12	Теорема Радона-Никодима	
11	Заряды. Разложения Хана и Жордана	
10	Замена переменной в интеграле Лебега	
9	Теоремы Тонелли и Фубини	48
8	Пространство Лебега $L^p(X,\mu)$	42
7	Интегральные неравенства	38
6	Предельные теоремы	32
5	Интеграл Лебега	23
4	Измеримые функции и теорема об аппроксимации	16
3	Теорема Каратеодори	9
2	Системы множеств и функции на них	
1	наивный подход к определению длины	1

Теория меры

1 Наивный подход к определению длины

Обозначение. Если X — множество, $A \subset X$, $B \subset X$, то будем писать $A \sqcup B$ вместо $A \cup B$, если известно, что $A \cap B = \emptyset$.

Определение. *Наивной длиной* назовём отображение $\mu \colon 2^{\mathbb{R}} \to \mathbb{R} \cup \{+\infty\}$, удовлетворяющее следующим свойствам:

- (1) $\mu(E) \ge 0$ для всех $E \subset \mathbb{R}$;
- (2) $\mu([0,1)) = 1$;
- (3) $\mu(E+r) = \mu(E)$ для всех $E \subset \mathbb{R}$ и $r \in \mathbb{R}$, где $E+r = \{x+r \mid x \in E\};$
- (4) для любого набора дизъюнктных множеств $\{A_k\}_{k\in\mathbb{N}}\subset 2^\mathbb{R}$ выполнено равенство

$$\mu\left(\bigsqcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k).$$

Теорема 1.1. Отображения $\mu\colon 2^\mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ со свойствами (1–4) не существует.

Доказательство. Рассмотрим следующее отношение на \mathbb{R} : $x \sim y$, если $x - y \in \mathbb{Q}$. Очевидно, что это отношение эквивалентности. Разобьём отрезок [0,1) на классы эквивалентности, и, пользуясь аксиомой выбора, выберем в каждом классе по представителю. Обозначим через E множество этих представителей. По построению множества E имеем включения

$$[0,1) \subset \bigcup_{x \in \mathbb{O} \cap [-1,1]} (E+x) \subset [-1,2). \tag{1.1}$$

Заметим, что для любых множеств $A \subset B \subset \mathbb{R}$ имеет место неравенство $\mu(A) \leqslant \mu(B)$. Действительно, по свойствам (4) и (1)

$$\mu(B) = \mu\big(A \sqcup (B \setminus A)\big) = \mu(A) + \mu(B \setminus A) \geqslant \mu(A).$$

Значит, из (1.1) и свойства (2) следует, что

$$1 = \mu([0,1)) \leq \mu\left(\bigcup_{x \in \mathbb{Q} \cap [-1,1]} (E+x)\right) \leq \mu([-1,2)) = 3.$$

Заметим, что в середине стоит дизъюнктное объединение. Если $(E+x) \cap (E+y) \neq \emptyset$, то для некоторых $e_1, e_2 \in E$ выполнено равенство $e_1 = e_2 + (y-x)$. Поскольку $x, y \in \mathbb{Q}$, отсюда следует, что e_1 и e_2 лежат в одном классе эквивалентности, что возможно лишь тогда, когда $e_1 = e_2$ и x = y. Тогда по свойствам (4) и (3)

$$1 \leq \sum_{x \in \mathbb{Q} \cap [-1,1]} \mu(E+x) = \sum_{x \in \mathbb{Q} \cap [-1,1]} \mu(E) \leq 3.$$

Однако это неравенство невозможно: если $\mu(E)=0$, то сумма равна нулю, а в случае $\mu(E)>0$ она бесконечна.

Поэтому при построении длины (объёма, площади, массы, заряда и т.п.) мы будем отказываться от того, чтобы функция μ была определена на всех подмножествах вещественной оси. 1

2 Системы множеств и функции на них

Определение. Система $\mathcal P$ подмножеств множества X называется *полукольцом*, если выполнены условия:

- (1) $\emptyset \in \mathcal{P}$;
- (2) если $A, B \in \mathcal{P}$, то $A \cap B \in \mathcal{P}$;
- (3) если $A, B \in \mathcal{P}$, то существует такой конечный дизъюнктный набор множеств $A_1, A_2, \dots, A_k \in \mathcal{P}$ такой, что

$$A\setminus B=\bigsqcup_{n=1}^k A_n.$$

Определение. Система $\mathfrak U$ подмножеств множества X называется *алгеброй*, если выполнены условия:

- (1) $\emptyset \in \mathfrak{A}$;
- (2) если $A \in \mathfrak{A}$, то $A^c = X \setminus A \in \mathfrak{A}$;
- (3) если $A, B \in \mathfrak{A}$, то $A \cap B \in \mathfrak{A}$.

Определение. Система $\mathfrak U$ подмножеств множества X называется σ -алгеброй, если выполнены условия:

- (1) $\emptyset \in \mathfrak{A}$;
- (2) если $A \in \mathfrak{A}$, то $A^c = X \setminus A \in \mathfrak{A}$;

 $^{^{1}}$ Можно отказаться от счётной аддитивности в пользу конечной, но тогда подходящих функций будет слишком много.

(3) $\bigcap_{k=1}^{\infty} A_k \in \mathfrak{A}$ для любого набора множеств $\{A_k\}_{k\in\mathbb{N}} \subset \mathfrak{A}$.

Если $\mathfrak U$ — алгебра, то $\mathfrak U$ — полукольцо, поскольку $A \setminus B = A \cap B^c$. Очевидно также, что σ -алгебра является алгеброй (можно взять $A_k = X$ для $k \geqslant 3$ в последнем условии). Условия $\emptyset \in \mathcal P$ или $\emptyset \in \mathfrak U$ можно заменить на $\mathcal P \neq \emptyset$ и $\mathfrak U \neq \emptyset$, так как $A \setminus A = \emptyset$.

Условие $A \in \mathfrak{A} \iff A^c \in \mathfrak{A}$ также называют *симметричностью* \mathfrak{A} . Таким образом, алгебры и σ -алгебры симметричны.

Утверждение 2.1. Для симметричных систем условия о принадлежности конечного (счётного) пересечения эквивалентно условию принадлежности конечного (счётного) объединения.

Доказательство. Утверждение следует из элементарных теоретико-множественных тождеств

$$A \cup B = (A^c \cap B^c)^c, \qquad \bigcup_{k=1}^{\infty} A_k = \left(\bigcap_{k=1}^{\infty} A_k^c\right)^c,$$

и аналогичных тождеств для пересечения.

Следствие 2.2. Если $A, B \in \mathfrak{A}$, где \mathfrak{A} — алгебра, то $A \cup B \in \mathfrak{A}$; если $\{A_k\}_{k \in \mathbb{N}} \subset \mathfrak{A}$, где \mathfrak{A} — σ -алгебра, то $\bigcup_{k=1}^{\infty} A_k \in \mathfrak{A}$.

Примеры.

- 1. Если X множество, то $\{\emptyset, X\}$ тривиальная алгебра, 2^X алгебра всех подмножеств.
- 2. *Полукольцо ячеек* в \mathbb{R} определяется следующим образом:

$$\mathcal{P} = \big\{ [a,b) \mid a \leq b; \, a,b \in \mathbb{R} \big\}.$$

Докажем, что это полукольцо. Пусть $P_1 = [a_1, b_1), P_2 = [a_2, b_2)$ — элементы \mathcal{P} . Разберём несколько случаев:

- (a) $a_1 \leqslant a_2 \leqslant b_2 \leqslant b_1$. Тогда $P_1 \cap P_2 = [a_2, b_2), \ P_1 \setminus P_2 = [a_1, a_2) \sqcup [b_2, b_1).$
- (b) $a_1 \leqslant a_2 \leqslant b_1 \leqslant b_2$. Тогда $P_1 \cap P_2 = [a_2, b_1), \ P_1 \setminus P_2 = [a_1, a_2)$.
- (c) $a_1 \leqslant b_1 \leqslant a_2 \leqslant b_2$. Тогда $P_1 \cap P_2 = \emptyset, \ P_1 \setminus P_2 = [a_1,b_1)$.

Есть ещё 3 симметричных случая, когда P_2 лежит левее P_1 — они разбираются аналогично. Таким образом, $\mathcal P$ — полукольцо. Тем не менее, это не алгебра, поскольку дополнение элемента $\mathcal P$ имеет другой вид: например, дополнение до [0,1) — это не ячейка, а два луча.

3. Множество всех подмножеств $A \subset \mathbb{R}^2$ таких, что либо A, либо $\mathbb{R}^2 \setminus A$ — ограничено, образует алгебру \mathfrak{A} . Доказательство оставляется в качестве упражнения. Оказывается, что \mathfrak{A} — это не σ -алгебра, так как множество

$$\bigcup_{k\in\mathbb{N}} \left(\{0\} \times [k, k+1) \right) = \{0\} \times [0, \infty)$$

и его дополнение не ограничены.

Если $\mathfrak U$ — алгебра (σ -алгебра) в X, то множество $E \subset X$ называется измеримым относительно $\mathfrak U$, если $E \in \mathfrak U$.

Очевидно, что если $\{\mathfrak{A}_{\alpha}\}_{\alpha\in I}$ — произвольный набор алгебр (σ -алгебр) в X, то $\bigcap_{\alpha\in I}\mathfrak{A}_{\alpha}$ — алгебра (σ -алгебра) в X. Поэтому для любой системы $\mathcal E$ подмножеств множества X существует минимальная по включению σ -алгебра, содержащая $\mathcal E$ — это просто пересечение всех σ -алгебр, содержащих $\mathcal E$. Такая σ -алгебра называется борелевской оболочкой системы $\mathcal E$ и обозначается через $\mathfrak{B}(\mathcal E)$.

Определение. Пусть (X, \mathcal{T}) — топологическое пространство. Тогда *борелевской* σ -алгеброй в X будем называть минимальную σ -алгебру, содержащую \mathcal{T} (то есть все открытые, а значит и замкнутые, множества).

Определение. Пусть \mathcal{P} — полукольцо (в частности, алгебра или σ -алгебра). Отображение $\mu \colon \mathcal{P} \to \mathbb{R}_+ \cup \{+\infty\}$ называется *конечно-аддитивным*, если

$$\mu\left(\bigsqcup_{k=1}^{N} P_k\right) = \sum_{k=1}^{N} \mu(P_k)$$

для любого набора $\{P_k\}_{k\geqslant 1}\subset \mathcal{P}$ такого, что $\bigsqcup_{k=1}^N P_k\in \mathcal{P}$ и $P_k\in \mathcal{P}$.

Отображение $\mu \colon \mathcal{P} \to \mathbb{R}_+ \cup \{+\infty\}$ называется *счётно-аддитивным*, если

$$\mu\left(\bigsqcup_{k=1}^{\infty} P_k\right) = \sum_{k=1}^{\infty} \mu(P_k)$$

для любого набора $\{P_k\}_{k\geqslant 1}\subset \mathcal{P}$, удовлетворяющего условиям $\bigsqcup_{k=1}^{\infty}P_k\in \mathcal{P}$ и $P_k\in \mathcal{P}$. Если \mathfrak{A} — σ -алгебра, и отображение μ счётно-аддитивно на \mathfrak{A} , то μ называется мерой на \mathfrak{A} .

Замечание. В случае, когда рассматриваемое отображение μ задано на алгебре (о-алгебре), условие $\bigsqcup_{k=1}^{N} P_k \in \mathcal{P}$ (соответственно, $\bigsqcup_{k=1}^{\infty} P_k \in \mathcal{P}$) излишне.

Отметим, что если функция μ счётно-аддитивна и неотрицательна, то

$$\mu(\varnothing) = \mu\left(\bigsqcup_{n=1}^{\infty}\varnothing\right) = \sum_{n=1}^{\infty}\mu(\varnothing),$$

а значит $\mu(\varnothing)=0$ или $\mu(\varnothing)=+\infty$. Если $\mu(\varnothing)=+\infty$, то $\mu(E)=+\infty$ для всех $E\in \mathcal{P}$, поскольку E можно представить в виде $E\cup\varnothing\cup\varnothing$... и воспользоваться счётной аддитивностью, а если $\mu(\varnothing)=0$, то можно в счётном объединении взять все множества, за исключением конечного числа, пустыми. В обоих случаях получаем, что из счётной аддитивности функции следует конечная аддитивность.

В дальнейшем при рассмотрении меры μ мы по умолчанию считаем, что $\mu(\varnothing)=0$, чтобы избежать отдельного рассмотрения мер, тождественно равных $+\infty$.

Примеры.

 $^{^2} B$ дальнейшем мы сможем определить понятие длины для всех множеств из борелевской σ -алгебры над $\mathbb R.$

1. Пусть $A \subset X$, $E \subset X$,

$$\mu_A(E) = egin{cases} |E \cap A|, & \text{если } E \cap A \longrightarrow \text{конечное множество,} \ +\infty, & \text{иначе,} \end{cases}$$

где $|E \cap A|$ обозначает мощность множества $E \cap A$. Тогда μ_A — мера на 2^X . Она называется *считающей мерой*, порождённой A.

2. Если $\{c_k\}_{k=1}^{\infty}\subset\mathbb{R}_+,\ \delta_{x_k}$ — считающая мера одноточечного множества $\{x_k\}$, где $x_k\in X$, то $\mu=\sum_{k=1}^{\infty}c_k\delta_{x_k}$ — мера на 2^X . При этом

$$\mu(E) = \sum_{k: x_k \in E} c_k.$$

Лемма 2.3. Пусть \mathcal{P} — полукольцо, Q_1,\dots,Q_N — набор дизъюнктных множеств, лежащих в \mathcal{P} , $\bigsqcup_{k=1}^N Q_k \subset Q$, где $Q \in \mathcal{P}$. Тогда:

- (1) $Q \setminus \bigsqcup_{k=1}^N Q_k = \bigsqcup_{k=1}^M \widetilde{Q}_k$, где $\widetilde{Q}_k \in \mathcal{P}$ для всех $k \in \{1, \dots, M\}$;
- (2) $\sum_{k=1}^N \mu(Q_k) \leqslant \mu(Q)$ для любой конечно-аддитивной функции μ на $\mathcal{P}.$

Доказательство.

(1) Доказываем по индукции. Для N=1 утверждение верно по аксиоме (3) определения полукольца. При $N\geqslant 1$ имеем

$$Q \setminus \bigsqcup_{k=1}^{N+1} Q_k = \left(Q \setminus \bigsqcup_{k=1}^{N} Q_k \right) \setminus Q_{N+1}$$
 (2.1)

$$= \left(\bigsqcup_{k=1}^{M} \widetilde{Q}_{k}\right) \setminus Q_{N+1} \tag{2.2}$$

$$=\bigsqcup_{k=1}^{M} (\widetilde{Q}_k \setminus Q_{N+1}). \tag{2.3}$$

В (2.2) мы должны воспользоваться индукционным предположением, так как $\bigsqcup_{k=1}^N Q_k$ может не лежать в \mathcal{P} .

(2) Немедленно следует из предыдущего пункта и конечной аддитивности функции μ .

Утверждение 2.4 (лемма о подчинённом разбиении). Пусть \mathcal{P} — полукольцо в $X, P \in \mathcal{P}, \{P_k\}_{k \geqslant 1} \subset \mathcal{P}, P = \bigcup_{k=1}^{\infty} P_k$. Тогда существует такое семейство множеств $\{Q_{kj}\}_{\substack{k \in \mathbb{N} \\ 1 \leqslant j \leqslant n_k}} \subset \mathcal{P}$, что

$$P = \bigsqcup_{k=1}^{\infty} \bigsqcup_{j=1}^{n_k} Q_{kj},$$

причём $Q_{kj} \subset P_k$ при всех $j \in \{1, \ldots, n_k\}$. Такое разбиение $\bigsqcup \bigsqcup Q_{kj}$ будем называть nodчинённым объединению P_k .

Доказательство. Для начала заметим, что $P = \bigsqcup_{k=1}^{\infty} Q_k$, где

$$Q_1 = P_1,$$
 $Q_k = P_k \setminus \bigcup_{i=1}^{k-1} P_i \quad (\forall k > 1).$

Так как $P_r \in \mathcal{P}$ для всех $r \in \mathbb{N}$, множества Q_k можно представить в виде

$$Q_k = \bigsqcup_{j=1}^{n_k} Q_{k,j}, \quad Q_{k,j} \in \mathcal{P},$$

по первому пункту леммы 2.3.

Утверждение 2.5. Пусть $\mathcal{P} \subset 2^X$ — полукольцо, μ — конечно-аддитивная функция из \mathcal{P} в $\mathbb{R}_+ \cup \{+\infty\}$. Тогда следующие условия равносильны:

- (1) μ счётно-аддитивна на \mathcal{P} .
- (2) μ счётно-полуаддитивна на \mathcal{P} , то есть

$$P \subset \bigcup_{k=1}^{\infty} P_k \implies \mu(P) \leqslant \sum_{k=1}^{\infty} \mu(P_k) \qquad (\forall P \in \mathcal{P}) \left(\forall \{P_k\}_{k \geqslant 1} \subset \mathcal{P} \right).$$

(3) μ удовлетворяет условию

$$P = \bigsqcup_{k=1}^{\infty} P_k \implies \mu(P) \leqslant \sum_{k=1}^{\infty} \mu(P_k) \qquad (\forall P \in \mathcal{P}) \ (\forall \{P_k\}_{k \geqslant 1} \subset \mathcal{P}) \ .$$

Доказательство.

 $(1) \Longrightarrow (2)$. Пусть $P \subset \bigcup_{k=1}^{\infty} P_k$, рассмотрим $P'_k = P \cap P_k$. По аксиоме (2) полукольца $P'_k \in \mathcal{P}$, очевидно также, что $P = \bigcup_{k=1}^{\infty} P'_k$. Тогда по лемме о подчинённом разбиении

$$\exists \{P'_{k,j}\} \subset \mathcal{P}: P = \bigsqcup_{k=1}^{\infty} \bigsqcup_{j=1}^{n_k} P'_{k,j}, \quad \bigsqcup_{j=1}^{n_k} P'_{k,j} \subset P'_k \quad (\forall k \in \mathbb{N}).$$

Из (1) следует, что

$$\mu(P) = \sum_{k=1}^{\infty} \sum_{j=1}^{n_k} \mu(P'_{k,j}) \leqslant \sum_{k=1}^{\infty} \mu(P'_k) \leqslant \sum_{k=1}^{\infty} \mu(P_k).$$
 (2.4)

В первом неравенстве в (2.4) мы воспользовались второй частью леммы 2.3.

- (2) ⇒ (3). Очевидно.
- (3) \Longrightarrow (1). Достаточно проверить, что выполнено неравенство

$$\mu(P) \geqslant \sum_{k=1}^{\infty} \mu(P_k).$$

Действительно, по лемме 2.3 имеем $\sum_{k=1}^{n} \mu(P_k) \leqslant \mu(P)$, после чего остаётся лишь взять супремум по n в левой части этого неравенства.

Утверждение 2.6. Пусть $\mathfrak{A} - \sigma$ -алгебра, μ — конечно-аддитивная функция на \mathfrak{A} . Тогда следующие утверждения равносильны:

- (1) μ счётно-аддитивна;
- (2) для произвольной возрастающей последовательности множеств $\{A_k\}_{k\geqslant 1}\subset \mathfrak{A}$ (то есть, $A_i\subset A_j$ для всех i< j) выполнено равенство

$$\lim_{k\to\infty}\mu(A_k)=\mu\left(\bigcup_{k=1}^{\infty}A_k\right),\,$$

В этом случае говорят, что μ непрерывна снизу.

Доказательство.

 $(1) \implies (2)$. Обозначим $B_1 = A_1, \, B_k = A_k \setminus A_{k-1} = A_k \cap A_{k-1}^c \in \mathfrak{A}$. Тогда:

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigsqcup_{k=1}^{\infty} B_k\right) = \sum_{k=1}^{\infty} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k)$$
$$= \lim_{n \to \infty} \mu\left(\bigsqcup_{k=1}^{n} B_k\right) = \lim_{n \to \infty} \mu(A_n).$$

(2) \Longrightarrow (1). Пусть $\{C_k\}_{k\geqslant 1}\subset \mathfrak{A}, C=\bigsqcup_{k=1}^{\infty}C_k$. Надо проверить, что $\mu(C)=\sum_{k=1}^{\infty}\mu(C_k)$. Обозначим для этого $A_n=\bigsqcup_{k=1}^nC_k$ для всех $n\in\mathbb{N}$. Очевидно, что последовательность $\{A_n\}$ возрастает, а потому

$$\sum_{k=1}^{\infty} \mu(C_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(C_k) = \lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu(C),$$

что и требовалось.

Утверждение 2.7. Пусть μ — мера на σ -алгебре \mathfrak{A} , $\mu(A) < +\infty$ для некоторого множества $A \in \mathfrak{A}$, $\{A_k\}_{k \in \mathbb{N}}$ — убывающая последовательность множеств из \mathfrak{A} , лежащих в A. Тогда мера μ непрерывна сверху, то есть

$$\mu\left(\bigcap_{k=1}^{\infty}A_{k}\right)=\lim_{k\to\infty}\mu(A_{k}).$$

Доказательство. Обозначим $B_k = A \setminus A_k \in \mathfrak{A}$. Ясно, что $B_k \subset B_{k+1}$, а потому мы можем воспользоваться предыдущим утверждением:

$$\mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \mu(B_k) \iff (2.5)$$

$$\mu\left(A\setminus\bigcap_{k=1}^{\infty}A_{k}\right)=\lim_{k\to\infty}\mu(A\setminus A_{k})\iff\tag{2.6}$$

$$\mu(A) - \mu\left(\bigcap_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} \left(\mu(A) - \mu(A_k)\right) \iff (2.7)$$

$$\mu\left(\bigcap_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} \mu(A_k),\tag{2.8}$$

что и требовалось. Заметим, что в (2.7) мы пользуемся конечностью $\mu(A)$.

Обозначение. Пусть

$$a = (a_1, a_2, ..., a_n) \in \mathbb{R}^n,$$
 $b = (b_1, b_2, ..., b_n) \in \mathbb{R}^n.$

Будем писать:

- $a \le b$, если $a_k \le b_k$ для всех $k \in \{1, ..., n\}$;
- a < b, если $a_k < b_k$ для всех $k \in \{1, ..., n\}$.

Для $a \leq b$ положим

$$[a, b) = [a_1, b_1) \times [a_2, b_2) \times \cdots \times [a_n, b_n].$$

По определению декартова произведения, $[a,b) \subset \mathbb{R}^n$, причём $[a,b) \neq \emptyset$ тогда и только тогда, когда a < b.

Это множество называется ячейкой в \mathbb{R}^n . Если $b_1 - a_1 = b_2 - a_2 = \ldots = b_n - a_n$, то такая ячейка называется кубической.

Определение. Пусть n — некоторое натуральное число. Зададим систему n-мерных ячеек

$$\mathcal{P}_n := \{ [a,b) \mid a,b \in \mathbb{R}^n, a \leq b \}$$

и функцию

$$\lambda_n([a,b)) := \prod_{k=1}^n (b_k - a_k),$$

где a_k, b_k — координаты a и b соответственно.

Теорема 2.8. \mathcal{P}_1 — полукольцо в \mathbb{R}^1 , а λ_1 — счётно-аддитивная функция на \mathcal{P}_1 .

Доказательство. То, что \mathcal{P}_1 — полукольцо, уже проверяли. Конечная аддитивность λ_1 на \mathcal{P}_1 очевидна. Пусть $P=[a,b), P_k=[a_k,b_k), P=\bigsqcup_{k=1}^{\infty}P_k$. По утверждению 2.5 для доказательства счётной аддитивности λ_1 достаточно проверить счётную полуаддитивность, то есть неравенство

$$\lambda_1([a,b)) \leqslant \sum_{k=1}^{\infty} \lambda_1([a_k,b_k)). \tag{2.9}$$

Рассмотрим $t: a \leqslant t < b$, и некоторое число $\varepsilon > 0$. Обозначим $\widetilde{a}_k = a_k - \frac{\varepsilon}{2^k}$. Тогда

$$[a,t]\subset\bigcup_{k=1}^{\infty}(\widetilde{a}_k,b_k),$$

и можно выбрать конечное подпокрытие

$$[a,t]\subset\bigcup_{j=1}^N(\widetilde{a}_{k_j},b_{k_j}).$$

Тогда

$$t-a \leqslant \sum_{j=1}^{N} (b_{k_j} - \widetilde{a}_{k_j}) \leqslant \sum_{k=1}^{\infty} \left(b_k - \left(a_k - \frac{\varepsilon}{2^k} \right) \right) = \sum_{k=1}^{\infty} \left(b_k - a_k \right) + \varepsilon.$$

Последнее неравенство верно для всех t < b, а потому мы можем перейти к пределу $t \to b$ и получить

$$b-a \leq \sum_{k=1}^{\infty} (b_k - a_k) + \varepsilon \quad (\forall \varepsilon > 0),$$

откуда очевидным образом следует (2.9).

3 Теорема Каратеодори

Определение. Отображение $\tau \colon 2^X \to \mathbb{R}_+ \cup \{+\infty\}$ называется *внешней мерой*, если:

- (1) $\tau(\emptyset) = 0$;
- (2) для любого множества $A \subset X$ и последовательности такой $\{A_k\}_{k=1}^{\infty}$, что $A \subset \bigcup_{k=1}^{\infty} A_k$, выполнено неравенство

$$\tau(A) \leqslant \sum_{k=1}^{\infty} \tau(A_k).$$

При $A_n = \emptyset$ для всех $n > N \in \mathbb{N}$, из условия (2) следует, что внешняя мера конечнополуаддитивна. В частности, внешняя мера монотонна, то есть

$$A \subset B \implies \tau(A) \leqslant \tau(B),$$

так как можно взять $A_1 = B$ и $A_k = \emptyset$ при всех k > 1.

Определение. Множество $A \subset X$ будем называть измеримым относительно внешней меры τ , если для всех $E \subset X$ имеет место равенство

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A). \tag{3.1}$$

Мотивировка этого определения заключается в том, что по внешней мере мы хотим построить алгебру, на которой бы эта мера была бы аддитивной. Очевидно,

что любых множеств E и A из произвольной алгебры равенство (3.1) должно быть выполнено.

Заметим, что в силу свойства (2) внешней меры при доказательстве (3.1) достаточно проверять, что $\tau(E) \geqslant \tau(E \cap A) + \tau(E \setminus A)$.

По внешней мере τ зададим систему множеств \mathfrak{U}_{τ} , состоящую из измеримых относительно τ подмножеств $A \subset X$.

Теорема 3.1. Пусть τ — внешняя мера на X. Тогда \mathfrak{U}_{τ} — σ -алгебра.

Доказательство. Из свойства (1) внешней меры очевидно, что $\emptyset \in \mathfrak{U}_{\tau}$. Равенство (3.1) можно записать в виде

$$\tau(E) = \tau(E \cap A) + \tau(E \cap A^c),$$

откуда видно, что $A \in \mathfrak{U}_{\tau} \iff A^c \in \mathfrak{U}_{\tau}$.

Покажем теперь, что из $A, B \in \mathfrak{U}_{\tau}$ следует, что $A \cup B \in \mathfrak{U}_{\tau}$. Дважды применяя измеримость относительно τ , для произвольно $E \subset X$ имеем

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A) = \tau(E \cap A) + \tau((E \setminus A) \setminus B) + \tau((E \setminus A) \cap B).$$

Очевидно, что $(E \setminus A) \setminus B = E \setminus (A \cup B)$. Кроме того, мы можем воспользоваться полуаддитивностью τ :

$$\tau(E\cap A) + \tau\big((E\setminus A)\cap B\big) \geqslant \tau\big((E\cap A)\cup ((E\setminus A)\cap B)\big) = \tau\big(E\cap (A\cup B)\big).$$

Таким образом, множество $A \cup B$ удовлетворяет (3.1), а значит \mathfrak{U}_{τ} — алгебра.

Заметим, что мера τ конечно-аддитивна на \mathfrak{U}_{τ} : действительно, если $A,B\in\mathfrak{U}_{\tau}$ и $A\cap B=\varnothing$, то

$$\tau(A \sqcup B) = \tau((A \sqcup B) \cap A) + \tau((A \sqcup B) \setminus A) = \tau(A) + \tau(B). \tag{3.2}$$

Теперь покажем, что \mathfrak{U}_{τ} — σ -алгебра. Пусть $\{A_k\}_{k\geqslant 1}\subset \mathfrak{U}_{\tau},\ A=\bigcup_{k=1}^{\infty}A_k=\bigsqcup_{k=1}^{\infty}B_k$, где

$$B_1 = A_1, \quad B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \quad (\forall k > 1).$$

Ясно, что $B_k \in \mathfrak{U}_{\tau}$, поскольку \mathfrak{U}_{τ} — алгебра. Для произвольного $N \in \mathbb{N}$ имеем

$$\tau(E) = \tau \left(E \cap \left(\bigsqcup_{k=1}^{N} B_{k} \right) \right) + \tau \left(E \setminus \left(\bigsqcup_{k=1}^{N} B_{k} \right) \right)$$

$$\geqslant \tau \left(\bigsqcup_{k=1}^{N} (E \cap B_{k}) \right) + \tau (E \setminus A)$$

$$= \left(\sum_{k=1}^{N} \tau(E \cap B_{k}) \right) + \tau (E \setminus A).$$

Это неравенство выполнено для всех $N \geqslant 1$, а потому

$$\tau(E) \geqslant \left(\sum_{k=1}^{\infty} \tau(E \cap B_k)\right) + \tau(E \setminus A)$$

$$\geqslant \tau\left(\bigcup_{k=1}^{\infty} (E \cap B_k)\right) + \tau(E \setminus A)$$

$$= \tau(E \cap A) + \tau(E \setminus A).$$

Таким образом, $A \in \mathfrak{U}_{\tau}$. Значит, $\mathfrak{U}_{\tau} - \sigma$ -алгебра.

Следствие 3.2. Если τ — внешняя мера, то $\tau|_{\mathfrak{U}_{\tau}}$ — мера.

Доказательство. По (3.2) предыдущего доказательства, сужение $\tau|_{\mathfrak{U}_{\tau}}$ конечно-аддитивно, а из пункта (2) определения внешней меры следует, что $\tau|_{\mathfrak{U}_{\tau}}$ — счётно-полуаддитивно. Тогда τ — мера по утверждению 2.5.³

Определение. Пусть \mathfrak{A} — σ -алгебра в X. Мера μ на \mathfrak{A} называется *полной*, если для всех A,B таких, что $A\subset B,\,B\in\mathfrak{A}$ и $\mu(B)=0$, выполняется $A\in\mathfrak{A}$.

Утверждение 3.3. Если τ — внешняя мера, то $\tau|_{\mathfrak{U}_{\tau}}$ — полная мера.

Доказательство. Пусть $A \subset B, B \in \mathfrak{U}_{\tau}$ и $\tau(B) = 0$. Тогда для всех E выполнено

$$\tau(E \cap A) + \tau(E \setminus A) \leqslant \tau(B) + \tau(E \setminus A) = \tau(E \setminus A) \leqslant \tau(E),$$

а значит $A \in \mathfrak{U}_{\tau}$.

Определение. Пусть \mathcal{P} — полукольцо в X, μ_0 — счётно-аддитивная функция на \mathcal{P} . Для каждого $A \subset X$ определим

$$\mu^*(A) := \inf \left\{ \sum_{k=1}^{\infty} \mu_0(P_k) \,\middle|\, \{P_k\} \subset \mathcal{P} : A \subset \bigcup_{k=1}^{\infty} P_k \right\}. \tag{3.3}$$

Отметим, что если A нельзя покрыть счётным объединением множеств из \mathcal{P} , то $\mu^*(A) = +\infty$.

Перед тем как перейти к основному результату этого параграфа, дадим ещё одно важное определение.

Определение. Мера μ в X называется *конечной*, если $\mu(X) < \infty$. Мера μ называется σ -конечной, если существует представление

$$X = \bigcup_{k=1}^{\infty} X_k$$
, где $\mu(X_k) < \infty$ $(\forall k \in \mathbb{N}).$

 $^{^3}$ Ну, не совсем — то утверждение все-таки о полукольце, а не о σ -алгебре, но верно аналогичное утверждение и доказательство практически такое же.

Теорема 3.4 (Каратеодори). Пусть $\mu_0: \mathcal{P} \to \mathbb{R}_+ \cup \{+\infty\}$ — счётно-аддитивная функция на полукольце $\mathcal{P} \subset 2^X$, а μ^* определено как в (3.3). Тогда:

- (1) μ^* внешняя мера на X.
- (2) σ -алгебра \mathfrak{U}_{u^*} содержит в себе \mathcal{P} .
- (3) Если μ мера, получающаяся ограничением внешней меры μ^* на \mathfrak{U}_{μ^*} , то $\mu(P) = \mu_0(P)$ для всех элементов $P \in \mathcal{P}$.
- (4) Если \mathfrak{A} σ -алгебра, содержащая \mathcal{P} , а ν мера на \mathfrak{A} такая, что $\nu(P) = \mu_0(P)$ для всех $P \in \mathcal{P}$, то $\mu(A) = \nu(A)$ для всех $A \in \mathfrak{A} \cap \mathfrak{U}_{\mu^*}$ таких, что $\mu(A) < \infty$. Более того, если μ σ -конечна, то условие конечности $\mu(A)$ можно отбросить, то есть $\mu(A) = \nu(A)$ для всех $A \in \mathfrak{A} \cap \mathfrak{U}_{\mu^*}$.

Доказательство.

(1) $\mu^*(\emptyset) = 0$, так как $\mu_0(\emptyset) = 0$. Проверим счётную полуаддитивность. Пусть $A \subset \bigcup_{k=1}^{\infty} A_k$. Поскольку μ^* определяется как инфимум, для каждого $k \in \mathbb{N}$ мы можем найти такой набор множеств $\{P_{kj}\}_{j=1}^{\infty} \subset \mathcal{P}$, что

$$\sum_{i=1}^{\infty} \mu_0(P_{kj}) \leqslant \mu^*(A_k) + \frac{\varepsilon}{2^k},$$

где $\bigcup_{j=1}^\infty P_{kj}\supset A_k$, а $\varepsilon>0$ — некоторое число. Тогда $\bigcup_{k=1}^\infty\bigcup_{j=1}^\infty P_{kj}\supset A$, и по определению μ^*

$$\mu^*(A) \leqslant \sum_{k=1}^{\infty} \left(\sum_{j=1}^{\infty} \mu_0(P_{kj}) \right) \leqslant \sum_{k=1}^{\infty} \left(\mu^*(A_k) + \frac{\varepsilon}{2^k} \right) \leqslant \sum_{k=1}^{\infty} \mu^*(A_k) + \varepsilon.$$

Поскольку ε был произвольным, отсюда следует, что отображение μ^* счётно-полуаддитивно и является внешней мерой.

(2) Пусть $P \in \mathcal{P}$, $E \subset X$. Проверим неравенство

$$\mu^*(E) \geqslant \mu^*(E \cap P) + \mu^*(E \setminus P).$$

Если $\mu^*(E) = +\infty$, то оно очевидно. Иначе (опять же, пользуясь свойствами инфимума) выберем множества $\{P_k\}_{k=1}^{\infty} \subset \mathcal{P}$ так, что $E \subset \bigcup_{k=1}^{\infty} P_k$,

$$\sum_{k=1}^{\infty} \mu_0(P_k) \leqslant \mu^*(E) + \varepsilon.$$

Тогда

$$E \cap P \subset \bigcup_{k=1}^{\infty} (P_k \cap P), \qquad E \setminus P \subset \bigcup_{k=1}^{\infty} (P_k \setminus P) = \bigcup_{k=1}^{\infty} \bigsqcup_{j=1}^{n_k} Q_{kj},$$

где $Q_{kj} \in \mathcal{P}$. По определению μ^* имеем

$$\mu^*(E \cap P) + \mu^*(E \setminus P) \leqslant \sum_{k=1}^{\infty} \left(\mu_0(P_k \cap P) + \sum_{j=1}^{n_k} \mu_0(Q_{kj}) \right).$$

Заметим, что $P_k=(P_k\cap P)\cup (P_k\setminus P)=(P_k\cap P)\sqcup \bigsqcup_{j=1}^{n_k}Q_{kj}$, а значит

$$\mu_0(P_k) = \mu_0(P_k \cap P) + \sum_{j=1}^{n_k} \mu_0(Q_{kj}).$$

Таким образом,

$$\mu^*(E \cap P) + \mu^*(E \setminus P) \leq \sum_{k=1}^{\infty} \mu_0(P_k) \leq \mu^*(E) + \varepsilon.$$

Устремляя ε к нулю, получаем требуемое неравенство. Таким образом, мы доказали, что $P \in \mathfrak{U}_{\mu^*}$, то есть, что $\mathcal{P} \subset \mathfrak{U}_{\mu^*}$.

(3) Проверим, что $\mu^*(P) = \mu_0(P)$ для всех $P \in \mathcal{P}$. Поскольку $P \subset P$, $\mu^*(P) \leqslant \mu_0(P)$. С другой стороны, если $P \subset \bigcup_{k=1}^{\infty} P_k$, то $P = \bigcup_{k=1}^{\infty} (P_k \cap P)$, и

$$\mu_0(P) \leqslant \sum_{k=1}^{\infty} \mu_0(P_k \cap P) \leqslant \sum_{k=1}^{\infty} \mu_0(P_k).$$

Беря инфимум по P_k , получаем

$$\mu_0(P) \le \inf \sum_{k=1}^{\infty} \mu_0(P_k) = \mu^*(P).$$

Таким образом, $\mu_0(P) = \mu^*(P)$.

(4) Пусть $A \in \mathfrak{A} \cap \mathfrak{U}_{\mu^*}$. Тогда для произвольного набора $\{P_k\}_{k=1}^{\infty} \subset \mathfrak{A} \cap \mathfrak{U}_{\mu^*}$ такого, что $\bigcup_{k=1}^{\infty} P_k \supset A$, выполнено неравенство

$$\nu(A) \leqslant \sum_{k=1}^{\infty} \nu(P_k) = \sum_{k=1}^{\infty} \mu_0(P_k).$$

Беря в правой части инфимум по всем наборам P_k , получаем, что $\nu(A) \leq \mu(A)$. Поймём, что $\mu(A \cap P) = \nu(A \cap P)$ для всех $P \in \mathcal{P}$ таких, что $\mu(P) < \infty$. Действительно, если бы это было не так, то получилось бы, что

$$\mu(P) = \nu(P) = \nu(P \cap A) + \nu(P \setminus A) < \mu(P \cap A) + \mu(P \setminus A) = \mu(P),$$

а это невозможно.

Если $\mu(A) < \infty$ или мера μ σ -конечна, то множество A можно покрыть элемен-

тами P_k полукольца $\mathcal P$ конечной меры, причём (как мы уже показывали), их можно считать дизъюнктными. Тогда

$$\mu(A) = \mu\left(\bigsqcup_{k=1}^{\infty} (A \cap P_k)\right) = \sum_{k=1}^{\infty} \mu(A \cap P_k) = \sum_{k=1}^{\infty} \nu(A \cap P_k) = \nu(A).$$

Таким образом, последний пункт теоремы доказан.

Определение. Пусть $\mathcal{P} \subset 2^X$ — полукольцо, μ_0 — счетно-аддитивная функция из \mathcal{P} в $\mathbb{R}_+ \cup \{+\infty\}$. Мера μ , построенная в теореме Каратеодори, называется *стандартным* продолжением μ_0 .

Заметим, что теорема Каратеодори даёт не только существование стандартного продолжения, но и формулу, по которой можно считать меру через исходную функцию μ_0 :

$$\mu(A) = \inf \left\{ \sum_{k=1}^{\infty} \mu_0(P_k) \,\middle|\, \{P_k\} \subset \mathcal{P} : A \subset \bigcup_{k=1}^{\infty} P_k \right\}.$$

Из теоремы Каратеодори и утверждения 3.3 следует, что стандартное продолжение — полная мера.

Мы показали, что если мера μ σ -конечна, то ее продолжение единственно. Можно привести примеры, показывающие, что в общей ситуации это условие нельзя отбросить.

Определение. Стандартное продолжение функции $\lambda_1 \colon \mathcal{P}_1 \to \mathbb{R}_+$ называется *мерой Лебега* на \mathbb{R} .

Так как $\bigcup_{n\in\mathbb{N}}[-n,n)=\mathbb{R}$ и $\lambda_1([-n,n))<\infty$ для всех $n\in\mathbb{N}$, то λ_1 σ -конечна, то есть мера Лебега определена на σ -алгебре $\mathfrak{U}_{\lambda_1^*}$ единственным образом.

Будем обозначать продолжение λ_1 на $\mathfrak{U}_{\lambda_1^*}$ той же буквой λ_1 . $\mathfrak{U}_{\lambda_1^*}$ называется лебеговской σ -алгеброй.

Напомним, что борелевской оболочкой $\mathfrak{B}(\mathcal{E})$ системы $\mathcal{E} \subset 2^X$ называется наименьшая σ -алгебра, содержащая \mathcal{E} . Будем через \mathfrak{B}_1 обозначать борелевскую оболочку открытых множеств в \mathbb{R} .

Утверждение 3.5. Имеют место равенство и вложения

$$\mathfrak{B}_1=\mathfrak{B}(\mathcal{P}_1)\subset U_{\lambda_1^*}\subsetneq 2^{\mathbb{R}}.$$

Доказательство. Если бы было выполнено равенство $\mathfrak{U}_{\lambda_1^*}=2^\mathbb{R}$, то λ_1 было бы «наивной длиной», так как

$$\begin{split} \lambda_1(E+r) &= \lambda_1^*(E+r) \\ &= \inf \left\{ \sum_{k=1}^{\infty} \lambda_1(P_k+r) \, \middle| \, \{P_k\} \subset \mathcal{P}_1 : E \subset \bigcup_{k=1}^{\infty} P_k \right\} \\ &= \inf \left\{ \sum_{k=1}^{\infty} \lambda_1(P_k) \, \middle| \, \{P_k\} \subset \mathcal{P}_1 : E \subset \bigcup_{k=1}^{\infty} P_k \right\} = \lambda_1(E). \end{split}$$

Как мы знаем, «наивной длины» не существует, а значит включение $\mathfrak{U}_{\lambda_1^*}\subset 2^\mathbb{R}$ строгое. Вложение $\mathfrak{B}(\mathcal{P}_1)\subset \mathfrak{U}_{\lambda_1^*}$ следует из того, что $\mathcal{P}_1\subset \mathfrak{U}_{\lambda_1^*}$ (по второму пункту теоремы Каратеодори) и того, что $\mathfrak{U}_{\lambda_1^*} \longrightarrow \sigma$ -алгебра.

 $\mathfrak{B}_1 \subset \mathfrak{B}(\mathcal{P}_1)$, так как для любого G — открытого в \mathbb{R} ,

$$G = \bigcup_{k=1}^{\infty} (a_k, b_k), \qquad (a_k, b_k) = \bigcup_{n=1}^{\infty} \left[a_k + \frac{1}{n}, b_k \right],$$

а значит $G \in \mathfrak{B}(\mathcal{P}_1)$ и $\mathfrak{B}_1 \subset \mathfrak{B}(\mathcal{P}_1)$ в силу минимальности \mathfrak{B}_1 . Включение $\mathfrak{B}_1 \supset \mathfrak{B}(\mathcal{P}_1)$ доказывается аналогично:

$$[a,b) = \bigcap_{n=1}^{\infty} \left(a_n - \frac{1}{n}, b_n \right) \in \mathfrak{B}_1.$$

Утверждение 3.6. Пусть μ_0 — счётно-аддитивная функция на полукольце $\mathcal{P} \subset 2^X$, μ^* — внешняя мера, порождённая μ_0 . Тогда для любого множества $A \subset X$, удовлетворяющего условию $\mu^*(A) < \infty$, найдётся такое $C \in \mathfrak{B}(\mathcal{P})$, что

$$A \subset C$$
 и $\mu^*(C) = \mu^*(A)$.

Доказательство. Из свойств инфимума и конечности $\mu^*(A)$ следует, что для каждого $n \in \mathbb{N}$ найдётся такое $C_n \supset A$, что

$$C_n = \bigcup_{j \in \mathbb{N}} P_{nj}, \quad P_{nj} \in \mathcal{P}, \quad \sum_{n=1}^{\infty} \mu_0(P_{nj}) < \mu^*(A) + \frac{1}{n}.$$

Обозначим $C:=\bigcap_{n=1}^\infty C_n\supset A$ и поймём, что это искомое множество. Действительно,

$$\mu^*(A) \leqslant \mu^*(C) \leqslant \mu^*(C_n) \leqslant \mu^*(A) + \frac{1}{n} \quad (\forall n \in \mathbb{N}),$$

после чего остаётся лишь перейти к пределу по *n* в правой части.

Следствие 3.7. Если A измеримо относительно μ^* и $\mu(A) < +\infty$, то найдутся такие $B, C \in \mathfrak{B}(\mathcal{P})$, что

$$B \subset A \subset C$$
 и $\mu(C \setminus B) = 0$.

В частности, $\mu(B) = \mu(A) = \mu(C)$.

Доказательство. Возьмём множество C из предыдущего утверждения и положим $e = C \setminus A$. Найдётся такое $\widetilde{e} \in \mathfrak{B}(\mathcal{P})$, что $\mu(\widetilde{e}) = 0$ и $e \subset \widetilde{e}$. Тогда нетрудно проверить, что $B = C \setminus \widetilde{e}$ — искомое множество.

Примеры.

1. Множество $\{x\}$ замкнуто для всех $x \in \mathbb{R}$, так как оно является дополнением открытого, а потому по свойствам σ -алгебры лежит в $\mathfrak{B}_1 = \mathfrak{B}(\mathcal{P}_1)$. Мы можем

посчитать его меру Лебега:

$$\lambda_1(\{x\}) = \lambda_1\left(\bigcap_{n=1}^{\infty} \left[x, x + \frac{1}{n}\right)\right) = \lim_{n \to \infty} \lambda_1\left(\left[x, x + \frac{1}{n}\right)\right) = \lim_{n \to \infty} \frac{1}{n} = 0.$$

2. Поскольку $\mathbb{Q} = \bigsqcup_{x \in \mathbb{Q}} \{x\}$, имеем $\mathbb{Q} \in \mathfrak{B}_1$ и

$$\lambda_1(\mathbb{Q}) = \sum_{x \in \mathbb{Q}} \lambda_1(\{x\}) = 0.$$

3. Пусть $\{a_n\}_{n=0}^{\infty} \subset \mathbb{R}$, причём $a_n > 0$ для всех $n \in \mathbb{N}_0$ и $\sum_{n=0}^{\infty} 2^n \cdot a_n < 1$. Рассмотрим множество, в котором на i-ом шаге в центре каждого отрезка (начиная с [0,1]) удаляется отрезок, удовлетворяющий условию $\lambda_1(I) = a_i$. Занумеруем все удалённые отрезки некоторым образом и обозначим их $\{I_n\}_{n\geqslant 1}$. Тогда это множество можно записать так:

$$C = [0,1] \setminus \bigcup_{n=0}^{\infty} I_n.$$

Оно называется *толстым канторовым множеством*. Нетрудно понять, что это замкнутое множество без внутренних точек, причём $\lambda_1(C)>0$. Действительно, $C\in\mathfrak{B}_1$, так как C — замкнуто, и

$$\lambda_1([0,1]) = \lambda_1(C) + \lambda_1\left(\bigsqcup_{n=0}^{\infty} I_n\right) = \lambda_1(C) + \sum_{n=0}^{\infty} a_n \cdot 2^n < \lambda_1(C) + 1,$$

а
$$\lambda_1([0,1]) = \lambda_1([0,1]) \sqcup \{1\}) = 1 + \lambda_1(\{1\}) = 1 + 0 = 1$$
. Отсюда $\lambda_1(C) > 0$.

4. Покажем, что E — множество меры ноль в смысле определения из первого семестра тогда и только тогда, когда $\lambda_1(E)=0$. Если E — множество меры ноль, то $E\subset \bigcap_{n=1}^\infty G_n=K$, где G_n — открыты, и $\lambda_1(G_n)\to 0$ при $n\to\infty$. По свойствам σ -алгебры $K\in\mathfrak{B}_1$, а по непрерывности меры $\lambda_1(K)=0$. Поскольку мера λ_1 полная, отсюда следует, что E — измеримо относительно λ_1^* и $\lambda_1(E)\leqslant \lambda_1(K)=0$.

Если же $E\in\mathfrak{U}_{\lambda_1^*}$ и $\lambda_1(E)=0$, то по определению стандартного продолжения для любого $n\in\mathbb{N}$ найдётся G_n — открытое, причём $E\subset G_n$ и $\lambda_1(G_n)\leqslant \frac{1}{n}$.

4 Измеримые функции и теорема об аппроксимации

Определение. Пара (X, \mathfrak{A}) , где X — множество, а \mathfrak{A} — σ -алгебра в X, называется измеримым пространством.

Поскольку дальше в этом параграфе много утверждений связано с прообразами, введём следующие удобные обозначения:

$$E(a < f < b) = f^{-1}((a,b)) = \{x \in E : f(x) \in (a,b)\},\$$

$$E(f \le a) = f^{-1}([-\infty, a]),$$

и так далее (здесь подразумевается, что f определено на E).

Определение. Пусть E — измеримое множество относительно σ -алгебры $\mathfrak{A}, f : E \to \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$. Говорят, что функция f измерима относительно σ -алгебры \mathfrak{A} , если

$$E(f > a) = f^{-1}((a, +\infty]) \in \mathfrak{A} \quad (\forall a \in \mathbb{R}).$$

На самом деле, в этом определении вместо прообразов $(a, +\infty]$ можно было брать прообразы $[a, +\infty]$, $[-\infty, a]$ или $[-\infty, a]$. Например,

$$f^{-1}\big([a,+\infty]\big) = \bigcap_{n=1}^{\infty} f^{-1}\left(\left(a - \frac{1}{n}, +\infty\right]\right),$$

$$f^{-1}\big((a,+\infty]\big) = \bigcup_{n=1}^{\infty} f^{-1}\left(\left[a + \frac{1}{n}, +\infty\right]\right),$$

откуда следует эквивалентность $(a, +\infty]$ и $[a, +\infty]$. Чтобы перейти от $[a, +\infty]$ к $[-\infty, a)$, достаточно взять дополнение. Остальные случаи разбираются аналогичным образом. В дальнейшем мы считаем, что у измеримой функции прообразы всех четырёх типов множеств измеримы.

Выделим некоторые свойства измеримых функций:

1. Прообразы одноточечных множеств измеримы. Действительно,

$$f^{-1}(\{a\}) = E(f \le a) \cap E(f \ge a) \quad (\forall a \in \mathbb{R}),$$

$$f^{-1}(\{-\infty\}) = \bigcap_{n=1}^{\infty} E(f < n),$$

$$f^{-1}(\{+\infty\}) = \bigcap_{n=1}^{\infty} E(f > n),$$

2. Прообразы открытых интервалов измеримы:

$$E(a < f < b) = E(f < b) \setminus E(f \le a),$$

а бесконечные интервалы представляются в виде счётного объединения конечных.

3. Если функция f измерима, то и её абсолютное значение |f| измеримо, так как

$$E(|f| < a) = E(-a < f < a),$$

a(-a,a) — открытый интервал.

Утверждение 4.1. Пусть X, Y — множества, $\mathcal{E} \subset 2^Y, \varphi \colon X \to Y$ — произвольное отображение. Тогда:

(1) если $\mathfrak U$ — σ -алгебра в X и $\varphi^{-1}(\mathcal E)\subset \mathfrak U$, то $\varphi^{-1}(\mathfrak B(\mathcal E))\subset \mathfrak U;$

(2) $\mathfrak{B}(\varphi^{-1}(\mathcal{E})) = \varphi^{-1}(\mathfrak{B}(\mathcal{E})).$

Доказательство.

- (1) Рассмотрим систему $\mathfrak{A}' = \{B \subset Y : \varphi^{-1}(B) \in \mathfrak{A}\}$. Нетрудно проверить, что $\mathfrak{A}' \sigma$ -алгебра. Поскольку по условию $\mathfrak{A}' \supset \mathcal{E}$, по определению борелевской оболочки получаем, что $\mathfrak{A}' \supset \mathfrak{B}(\mathcal{E})$.
- (2) Полагая $\mathfrak{A} = \mathfrak{B}(\varphi^{-1}(\mathcal{E}))$, из первого пункта видим, что

$$\varphi^{-1}(\mathfrak{B}(\mathcal{E}))\subset\mathfrak{B}(\varphi^{-1}(\mathcal{E})).$$

С другой стороны, $\varphi^{-1}(\mathfrak{B}(\mathcal{E}))$ — σ -алгебра (как прообраз σ -алгебры), содержащая $\varphi^{-1}(\mathcal{E})$, а потому по определению борелевской оболочки выполнено

$$\mathfrak{B}(\varphi^{-1}(\mathcal{E}))\subset \varphi^{-1}(\mathfrak{B}(\mathcal{E})).$$

Значит, эти σ -алгебры совпадают.

Утверждение 4.2 (прообраз борелевского множества при измеримом отображении измерим). Пусть функция $f: E \to \overline{\mathbb{R}}$ измерима относительно σ -алгебры \mathfrak{A} . Тогда

$$f^{-1}(\mathfrak{B}_1) \subset \mathfrak{A}$$
.

Доказательство. По предыдущему утверждению имеем

$$f^{-1}(\mathfrak{B}_1) = f^{-1}(\mathfrak{B}(\mathcal{P}_1)) = \mathfrak{B}(f^{-1}(\mathcal{P}_1)).$$

Тогда утверждение следует из того, что $E(a \leqslant f < b) = E(f \geqslant a) \setminus E(f \geqslant b) \in \mathfrak{A}$.

Утверждение 4.3. Пусть функция $f: E \to \overline{\mathbb{R}}$ измерима относительно \mathfrak{A} . Тогда ограничение f на измеримое множество E_0 измеримо относительно \mathfrak{A} .

Доказательство. Действительно,

$$E_0(f < a) = E(f < a) \cap E_0 \in \mathfrak{A}, \tag{4.1}$$

так как E_0 измеримо.

Утверждение 4.4. Если $E = \bigcup_{n=1}^{\infty} E_n$ и функция f измерима на каждом E_n , то f измерима на E.

Доказательство.
$$E(f < a) = \bigcup_{n=1}^{\infty} E_n(f < a)$$
.

Следствие 4.5. Любая измеримая функция на множестве $E \subset X$ — это ограничение измеримой функции на X.

Доказательство. Доопределим f нулем на $E^c = X \setminus E$. Очевидно, что 0 — измеримая функция. Таким образом, f измерима на E и E^c , то есть, по предыдущему утверждению, f измерима на X.

Таким образом, мы всегда можем считать, что измеримые функции определены на всем пространстве X.

Утверждение 4.6. Пусть функции $f_n \colon X \to \overline{\mathbb{R}}$ измеримы относительно \mathfrak{A} . Тогда:

- 1. функции $\sup_{n\geq 1} f_n$, $\inf_{n\geq 1} f_n$ измеримы;
- 2. функции $\liminf_{n\to\infty} f_n$, $\limsup_{n\to\infty} f_n$ измеримы;
- 3. если существует предел $\lim_{n \to \infty} f_n = f$, то f измерима.

Доказательство.

1. Обозначим $g=\sup_{n\geqslant 1}f_n,\ h=\inf_{n\geqslant 1}f_n.$ Тогда измеримость g и h следует из равенств

$$X(g > a) = \bigcup_{n \in \mathbb{N}} X(f_n > a), \qquad X(h < a) = \bigcup_{n \in \mathbb{N}} X(f_n < a). \tag{4.2}$$

2. Для доказательства этого пункта достаточно вспомнить, что

$$\limsup_{n \to \infty} f_n = \inf_{n \geqslant 1} \sup_{k \geqslant n} f_k, \qquad \liminf_{n \to \infty} f_n = \sup_{n \geqslant 1} \inf_{k \geqslant n} f_k, \tag{4.3}$$

и применить предыдущий пункт.

3. Если $\exists \lim f_n = f$, то

$$f = \liminf_{n \to \infty} f_n = \limsup_{n \to \infty} f_n, \tag{4.4}$$

после чего остается лишь применить пункт (2).

Теорема 4.7. Пусть f_1, \ldots, f_n — измеримые функции из X в \mathbb{R} , $(f_1(x), \ldots, f_n(x)) \in H$ для некоторого $H \subset \mathbb{R}^n$, $\varphi \in C(H)$ — непрерывная функция на H. Тогда функция

$$F: X \to \mathbb{R}^n$$
, $F(x) = \varphi(f_1(x), \dots, f_n(x))$,

измерима.4

Доказательство. Поскольку φ непрерывно, прообраз открытого множества открыт, то есть $H(\varphi < a) = H \cap G_a$, где G_a — некоторое открытое подмножество \mathbb{R}^n (именно так выглядит произвольное открытое множество в индуцированной топологии).

Рассмотрим отображение $U(x)=(f_1(x),\ldots,f_n(x))$ для $x\in X$. Проверим, что для любого открытого G в \mathbb{R}^n , прообраз $U^{-1}(G)$ измерим. Пусть $P=\prod_{k=1}^n [a_k,b_k)$ — n-мерная ячейка, тогда

$$U^{-1}(P) = \{ x \in X : a_k \le f_k(x) < b_k \ \forall k \} = \bigcap_{k=1}^n X(a_k \le f_k < b_k), \tag{4.5}$$

 $^{^4}$ Вообще говоря, этой теоремы на лекции не было. Был лишь ее частный случай — композиция непрерывной функции и измеримой в $\mathbb R$.

то есть прообраз ячеек измерим. Поскольку любое открытое множество может быть записано как объединение счетного числа ячеек, отсюда следует, что прообраз $U^{-1}(G)$ измерим. Тогда

$$X(F < a) = \{x \in X : U(x) \in H(\varphi < a)\} = U^{-1}(H \cap G_a) = U^{-1}(G_a), \tag{4.6}$$

то есть F измеримо.

Беря в качестве φ функции $(x,y) \mapsto x + y$ или $(x,y) \mapsto xy$, можно уже сейчас доказать, что сумма и произведение (конечного числа) измеримых функций измеримы. Тем не менее, если мы позволяем этим функциям принимать бесконечные значения, то нужно сначала определить арифметику на $\overline{\mathbb{R}}$: а именно, определить, что делать с суммой и произведением, в которых присутствует бесконечность.

Определение.

- 1. Если $x \in \mathbb{R}$ и $x \neq 0$, то $x \cdot (\pm \infty) = (\pm \infty) \cdot x = \pm \infty$ для x > 0 и $x \cdot (\pm \infty) = (\pm \infty) \cdot x = \mp \infty$ для x < 0.
- 2. Для каждого $x \in \mathbb{R}$ положим $0 \cdot x = x \cdot 0 = 0$ (в частности, $0 \cdot \infty = 0$).
- 3. Для каждого $x \in \mathbb{R}$ положим $x/(\pm \infty) = 0$ (в частности, $(\pm \infty)/(\pm \infty) = 0$.
- 4. Для каждого $x \in \mathbb{R}$ положим $x + (+\infty) = x (-\infty) = (+\infty) + x = +\infty$, $x + (-\infty) = x (+\infty) = (-\infty) + x = -\infty$.
- 5. $(+\infty) + (-\infty) = (-\infty) + (+\infty) = (+\infty) (+\infty) = (-\infty) (-\infty) = 0.5$

Можно проверить, что первые четыре соглашения, в отличие от пятого, не нарушают ассоциативности сложения. Поэтому мы предпочтем избегать случаи, когда в выражении встречается сумма с бесконечностями разных знаков.

Чтобы теперь доказать теорему о сложении и произведении измеримых функций в общем случае, достаточно разбить пространство X на E(f=0), $E(0 < f < +\infty)$, $E(-\infty < f < 0)$, $E(f=-\infty)$ и $E(f=+\infty)$, после чего чего понять, что на некоторых попарных пересечениях произведение (сумма) измеримы, а на остальных — константы. Детали оставляются в качестве упражнения 6 .

Следствие 4.8. Если f — измеримо, φ — непрерывно и композиция $\varphi \circ f$ определена, то она измерима.

Следствие 4.9. Если $f \geqslant 0$ — измерима и p > 0, то функция f^p измерима.

Доказательство. Действительно, на $E(f < +\infty)$ отображение f^p измеримо как композиция непрерывного и измеримого отображений (предыдущее следствие), а на $E(f = +\infty)$ f постоянно.

 $^{^{5}}$ На лекциях условий (3) и (5) не было и ими никогда не пользовались — РБ.

⁶В дальнейшем мы легко докажем это утверждение с помощью аппроксимации.

Утверждение 4.10. Пусть $\varphi: E \to \mathbb{R}$ — непрерывное отображение, где E — борелевское подмножество топологического пространства X. Тогда φ измеримо относительно борелевской σ -алгебры в X.

Доказательство. Поскольку φ — непрерывно, а множество $(a, +\infty)$ открыто, имеем $f^{-1}((a, +\infty)) = E \cap W$, где W открыто в X. По условию $E \in \mathfrak{B}(X)$, очевидно, что $W \in \mathfrak{B}(X)$, а потому $E \cap W \in \mathfrak{B}(X)$. ■

Определение. *Простой функцией* называется измеримая 7 функция из X в \mathbb{R} , принимающая конечное число значений.

Нетрудно видеть, что если f — простая функция, то существует такое конечное разбиение X на измеримые множества, что f постоянно на этих множествах. Такое разбиение мы будем называть ∂ опустимым.

Пусть a_1, \ldots, a_n — множество попарно различных значений, которые принимает простая функция f. Тогда в качестве допустимого разбиения можно взять множества $E_k = f^{-1}(a_k)$. Это можно записать следующим образом:

$$f = \sum_{k=1}^{n} a_k \chi_{E_k}. \tag{4.7}$$

Ясно, что допустимое разбиение не единственно — можно взять подразбиение любого разбиения.

Отметим, что у любых двух простых функций существует общее допустимое разбиение: а именно, если $\{e_k\}_{k=1}^n$ и $\{e_j'\}_{j=1}^m$ — допустимые разбиения f и g, то попарные пересечения $e_k \cap e_j'$ образуют их общее допустимое разбиение.

Из существования общего допустимого разбиения следует, что линейная комбинация простых функций является простой функцией.

Теорема 4.11 (об аппроксимации). Любая измеримая неотрицательная функция $f: X \to \overline{\mathbb{R}}$ является поточечным пределом возрастающей последовательности простых неотрицательных функций f_n .

Доказательство. Зафиксируем $n \in \mathbb{N}$. Ясно, что интервалы

$$\Delta_k^n = [k/n, (k+1)/n)$$

для $k=0,1,\ldots,n^2-1,$ и $\Delta_{n^2}^n=[n,+\infty],$ образуют разбиение множества $[0,+\infty].$ Положим $e_k^n=f^{-1}(\Delta_k^n).$ Поскольку f измерима, все множества e_k^n измеримы, причем они образуют разбиение X для каждого фиксированного $n\in\mathbb{N}.$ Обозначим

$$g_n = \sum_{k=0}^{n^2} \frac{k}{n} \chi_{e_k^n}.$$
 (4.8)

Очевидно, что

$$0 \le g_n(x) \le f(x) \qquad (\forall x \in X), \tag{4.9}$$

 $^{^{7}}$ Некоторые авторы не добавляют измеримость в определение простой функции — ОМ.

а также, что

$$g_n(x) \le f_n(x) \le g_n(x) + \frac{1}{n} \qquad (\forall x \notin e_{n^2}^n).$$
 (4.10)

Покажем, что последовательность g_n поточечно сходится к f.

Если $f(x) = +\infty$, то $x \in e_{n^2}^n$ для всех n, а потому

$$g_n(x) = n \xrightarrow[n \to \infty]{} +\infty = f(x).$$
 (4.11)

Если же $f(x) < +\infty$, то для n > f(x) $x \notin e_{n^2}^n$, а потому в силу (4.10)

$$0 \leqslant f(x) - g_n(x) \leqslant \frac{1}{n} \xrightarrow[n \to \infty]{} 0. \tag{4.12}$$

Таким образом, функции g_n удовлетворяют всем необходимым свойствам, кроме одного: они могут не возрастать. Поэтому определим

$$f_n = \max(g_1, g_2, \dots, g_n).$$
 (4.13)

Очевидно, что последовательность $\{f_n\}_{n\geqslant 1}$ возрастает и состоит из простых функций. Поскольку

$$0 \leqslant g_n(x) \leqslant f_n(x) \leqslant f(x) \qquad (\forall x \in X), \tag{4.14}$$

получаем, что $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ для всех $x \in X$.

Перед следствиями введем важное определение.

Определение. Пусть $f: X \to \overline{\mathbb{R}}$. Тогда обозначим

$$f_{+} = \max(f, 0), \quad f_{-} = \max(-f, 0) = -\min(f, 0).$$
 (4.15)

Очевидно, что $f_+, f_- \ge 0$. Нетрудно проверить, что

$$f = f_{+} - f_{-}, \quad |f| = f_{+} + f_{-}, \quad f_{+} \cdot f_{-} = 0.$$
 (4.16)

Следствие 4.12. Произвольную измеримую функцию $f: X \to \overline{\mathbb{R}}$ можно поточечно аппроксимировать простыми функциями f_n такими, что $|f_n| \leq f$.

Доказательство. Достаточно лишь независимо найти аппроксимации для неотрицательных функций f_+ и f_- .

Следствие 4.13. Если функции f, g измеримы и действуют из X либо в \mathbb{R} , либо в $\mathbb{R}_+ \cup \{+\infty\}$, то f+g, $f \cdot g$ измеримы.

Доказательство. Если $f,g\geqslant 0$, то найдем аппроксимирующие их последовательности простых функций f_n,g_n . Тогда f_n+g_n — простые, и $f_n+g_n \xrightarrow[n\to\infty]{} f+g$. Значит, функция f+g измерима как предел измеримых функций. Аналогично, $f_n\cdot g_n\to f\cdot g$, а потому $f\cdot g$ измеримо.

Если $f, g: X \to \mathbb{R}$, то запишем

$$f + g = (f_{+} - f_{-}) + (g_{+} - g_{-}). \tag{4.17}$$

Существуют простые функции $f_{\pm,n} \xrightarrow[n \to \infty]{} f_{\pm}, \ g_{\pm,n} \xrightarrow[n \to \infty]{} g_{\pm}.$ Тогда

$$f + g = \lim_{k \to \infty} (f_{+,n} - f_{-,n} + g_{+,n} - g_{-,n}),$$

а значит f+g измеримо как предел измеримых. Доказательство для $f\cdot g$ аналогично.

5 Интеграл Лебега

Определение. Тройка (X, \mathfrak{A}, μ) называется *пространством с мерой*, если X — множество, \mathfrak{A} — σ -алгебра подмножеств, μ — мера на \mathfrak{A} .

Дальше в этом параграфе мы по умолчанию работаем с фиксированным пространством с мерой (X,\mathfrak{A},μ) .

Лемма 5.1. Пусть f — неотрицательная простая функция, $\{A_j\}_{j=1}^M,\ \{B_k\}_{k=1}^N$ — допустимые разбиения f; a_j,b_k — значения f на A_j и B_k соотвественно. Тогда

$$\sum_{j=1}^{M} a_j \mu(A_j) = \sum_{k=1}^{N} b_k \mu(B_k).$$
 (5.1)

Доказательство. Ясно, что $C=\bigsqcup_{j=1}^M A_j\cap C=\bigsqcup_{k=1}^N B_k\cap C$ для каждого множества $C\subset X$, и потому

$$\mu(C) = \sum_{j=1}^{M} \mu(A_j \cap C) = \sum_{k=1}^{N} \mu(B_k \cap C).$$
 (5.2)

При этом, если $A_j\cap B_k\neq \emptyset$, то $a_j=b_k$. Отсюда $a_j\mu(A_j\cap B_k)=b_k\mu(A_j\cap B_k)$ для всех j,k. Значит, по (5.2)

$$\sum_{j=1}^{M} a_j \mu(A_j) = \sum_{j=1}^{M} \sum_{k=1}^{N} a_j \mu(A_j \cap B_k) = \sum_{j=1}^{M} \sum_{k=1}^{N} b_k \mu(A_j \cap B_k)$$
 (5.3)

$$= \sum_{k=1}^{N} b_k \sum_{j=1}^{M} \mu(A_j \cap B_k) = \sum_{k=1}^{N} b_k \mu(B_k), \tag{5.4}$$

что и требовалось.

Определение. Пусть f — простая функция на X, принимающая значения c_k на множествах разбиения E_k , E — измеримое множество. Тогда *интегралом* f по множеству E называется значение

$$\int_{E} f \, \mathrm{d}\mu := \sum_{k=1}^{N} c_k \mu(E \cap E_k). \tag{5.5}$$

Корректность определения (то есть независимость от выбранного допустимого разбиения) непосредственно следует из леммы 5.1.

Утверждение 5.2. Если C > 0, то $\int_E C \, \mathrm{d}\mu = C\mu(E)$.

Доказательство. Непосредственно следует из определения: f(x) = C — простая функция, и E само является допустимым разбиением.

Утверждение 5.3 (монотонность интеграла). Если f,g — простые неотрицательные функции, причем $f\leqslant g$ на всем E, то $\int_E f\,\mathrm{d}\mu\leqslant\int_E g\,\mathrm{d}\mu$.

Доказательство. Достаточно рассмотреть общее допустимое разбиение и воспользоваться определением. ■

Определение. Пусть $f: E \to \mathbb{R}_+ \cup \{+\infty\}$ — измеримая функция, где множество E измеримо. Тогда интеграл f по E определяется следующим образом:

$$\int\limits_E f \,\mathrm{d}\mu \coloneqq \sup \left\{ \int\limits_E g \,\mathrm{d}\mu \,\middle|\, g\geqslant 0,\, g\leqslant f \;\mathrm{Ha}\, E,\, g -\mathrm{простая} \right\}.$$

Замечание. Это определение интеграла согласовано с предыдущем, когда f — простая функция, так как интеграл монотонен (утверждение 5.3).

Для того, чтобы определить интеграл произвольной измеримой функции, нам понадобятся функции f_+ и f_- . Напомним, что $f_+ = \max(f,0), f_- = \max(-f,0)$.

Определение. Будем говорить, что измеримая на E функция f интегрируема, если хотя бы один из интегралов $\int_E f_+ \,\mathrm{d}\mu$, $\int_E f_- \,\mathrm{d}\mu$ конечен, и что f — cуммируема, если оба интеграла конечны. Для интегрируемой f положим

$$\int_{E} f \, d\mu = \int_{E} f_{+} \, d\mu - \int_{E} f_{-} \, d\mu.$$
 (5.6)

Замечание. Опять же, новое определение согласовано с предыдущим: если $f \ge 0$, то $f_+ = f$, $f_- = 0$ и $\int_F 0 \, \mathrm{d}\mu = 0$ по утверждению 5.2.

Чтобы выделить переменную, по которой проводится интегрирование, мы будем вместо $\int_E f \, \mathrm{d}\mu$ писать $\int_E f(x) \, \mathrm{d}\mu(x)$.

Утверждение 5.4 (монотонность интеграла). Если f,g — интегрируемы, $f\leqslant g$ на E, то $\int_E f\,\mathrm{d}\mu\leqslant\int_E g\,\mathrm{d}\mu$.

Доказательство. Если f, g — неотрицательные и простые, то утверждение уже доказано (5.3). Если $f, g \ge 0$ — произвольные измеримые функции, то имеем включение наборов функций, по которым берется супремум:

$$\{h: h \leq f, h$$
 — простая на $E\} \subset \{h: h \leq g, h$ — простая на $E\}$,

откуда искомое неравенство следует по определению.

В общем случае выполнены неравенства $f_+\leqslant g_+,\ f_-\geqslant g_-,$ а потому (по предыдущему рассуждению) $\int_E f_+\leqslant \int_E g_+,\ \int_E f_-\geqslant \int_E g_-,$ и

$$\int_{E} f \, d\mu = \int_{E} f_{+} \, d\mu - \int_{E} f_{-} \, d\mu \le \int_{E} g_{+} \, d\mu - \int_{E} g_{-} \, d\mu = \int_{E} g \, d\mu. \tag{5.7}$$

Утверждение 5.5. Если $\mu(E)=0$, то $\int_E f \, \mathrm{d}\mu=0$ для любой измеримой функции f.

Доказательство. Если f — простая, то по определению интеграла и монотонности меры получаем

$$\int_{E} f \, \mathrm{d}\mu = \sum_{k=1}^{n} c_k \mu(E \cap E_k) = \sum_{k=1}^{n} 0 = 0.$$
 (5.8)

Если f — неотрицательная, то $\int_E f \, \mathrm{d}\mu = \sup\{0\} = 0$. Если f — произвольная, то $\int_E f \, \mathrm{d}\mu = 0 - 0 = 0$.

Утверждение 5.6. $\int_E f \, \mathrm{d}\mu = \int_X f \chi_E \, \mathrm{d}\mu.^8$

Доказательство. Если f — простая функция с допустимым разбиением $\{A_k\}_{1\leqslant k\leqslant n}$, то $\{E\cap A_1, E\cap A_2, \ldots, E\cap A_n, X\setminus E\}$ — допустимое разбиение для простой функции $f\chi_E$. При этом на $X\setminus E$ интеграл этой функции равен нулю, а на остальных элементах разбиения совпадает с f. Таким образом, равенство интегралов для простых функций следует из определения.

Пусть $f\geqslant 0$. Возьмем произвольные простые неотрицательные функции g,h такие, что $g\leqslant f$ на E и $h\leqslant f\chi_E$ на X. Очевидно, что $h=h\chi_E$, а потому

$$\int_{X} h \, \mathrm{d}\mu = \int_{X} h \chi_{E} \, \mathrm{d}\mu = \int_{E} h \, \mathrm{d}\mu \leqslant \int_{E} f \, \mathrm{d}\mu, \tag{5.9}$$

$$\int_{E} g \, \mathrm{d}\mu = \int_{Y} g \chi_{E} \, \mathrm{d}\mu \leqslant \int_{Y} f \chi_{E} \, \mathrm{d}\mu. \tag{5.10}$$

Беря в левых частях супремумы по h и g и пользуясь определением интеграла для неотрицательных функций, получаем неравенства $\int_X f \chi_E \, \mathrm{d}\mu \leqslant \int_E f \, \mathrm{d}\mu$ и $\int_E f \, \mathrm{d}\mu \leqslant \int_X f \chi_E \, \mathrm{d}\mu$.

Переход к произвольным функциям очевиден.

Таким образом, мы показали, что интеграл f по E не зависит от того, как f определена вне E. Кроме того, мы можем всегда (не умаляя общности) рассматривать интегралы по всему X.

Следствие 5.7 (монотонность интеграла как функции множества). Если $A\subset B$ и $f\geqslant 0$ на B, то $\int_A f\,\mathrm{d}\mu\leqslant \int_B f\,\mathrm{d}\mu$.

Доказательство. Достаточно заметить, что $f\chi_A \leqslant f\chi_B$, и воспользоваться предыдущим утверждением.

⁸На лекции это утверждение было дано в качестве упражнения.

Теорема 5.8 (теорема Леви для неотрицательных функций). Пусть $\{f_n\}_{n\geqslant 1}$ — возрастающая последовательность неотрицательных измеримых функций (то есть $f_n\leqslant f_{n+1}$ на X для всех $n\in\mathbb{N}$), поточечно сходящаяся к некоторой функции f. Тогда

$$\lim_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} f \, \mathrm{d}\mu. \tag{5.11}$$

Доказательство. Для начала заметим, что f измерима как предел измеримых функций. По монотонности интеграла

$$\int_{Y} f_n \, \mathrm{d}\mu \leqslant \int_{Y} f_{n+1} \, \mathrm{d}\mu \leqslant \int_{Y} f \, \mathrm{d}\mu, \tag{5.12}$$

а потому существует предел

$$L = \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu \le \int_X f \, \mathrm{d}\mu. \tag{5.13}$$

Зафиксируем некоторое число $\theta \in (0,1)$ и простую функцию g такую, что $0 \le g \le f$. Пусть A_1, \ldots, A_N — допустимое разбиение для g, причем на A_i g принимает значение a_i .

Определим для каждого $n \in \mathbb{N}$ множество

$$X_n = X(f_n \geqslant \theta g) = \{x \in X : f_n(x) \geqslant \theta g(x)\}.$$

Поскольку $\{f_n\}$ возрастают, очевидно, что $X_n \subset X_{n+1}$ для любого $n \in \mathbb{N}$. Покажем, что $\bigcup_{n=1}^{\infty} X_n = X$. Зафиксируем произвольную точку $x \in X$. Если g(x) = 0, то $f_n(x) \geqslant 0 = \theta g(x)$, откуда $x \in X_n$ для всех $n \in \mathbb{N}$. Если g(x) > 0, то для достаточно больших $n \in \mathbb{N}$ имеем $f_n(x) \geqslant \theta g(x)$, так как

$$f_n(x) \xrightarrow[n \to \infty]{} f(x) \ge g(x) > \theta g(x).$$
 (5.14)

(здесь мы пользуемся тем, что $\theta < 1$). Таким образом, $x \in \bigcup_{n \in \mathbb{N}} X_n$, и это объединение действительно совпадает с X. По доказанным свойствам для любого $A \subset X$ выполнено

$$(A \cap X_n) \subset (A \cap X_{n+1})$$
 H $A = \bigcup_{n \in \mathbb{N}} (A \cap X_n).$

По непрерывности меры снизу имеем

$$\mu(A \cap X_n) \xrightarrow[n \to \infty]{} \mu\left(\bigcup_{n \in \mathbb{N}} A \cap X_n\right) = \mu(A).$$
 (5.15)

По следствию 5.7 получаем

$$\int_{X} f_n d\mu \geqslant \int_{X_n} f_n d\mu \geqslant \int_{X_n} \theta g d\mu = \sum_{k=1}^{N} \theta a_k \mu(E_k \cap X_n).$$
 (5.16)

Устремляя n к бесконечности и пользуясь (5.15), получаем

$$L \geqslant \sum_{k=1}^{N} \theta a_k \mu(E_k) = \theta \int_{X} g \, \mathrm{d}\mu. \tag{5.17}$$

Переходя к пределу по $\theta \to 1$ и беря супремум по всем простым неотрицательным функциям $g \leqslant f$, по определению интеграла получаем $L \geqslant \int_X f \, \mathrm{d}\mu$. Поскольку обратное неравенство уже было доказано, достигается равенство.

Следствие 5.9. Пусть функции f, g измеримы. Если они также неотрицательны или суммируемы, то

$$\int_{X} (f+g) d\mu = \int_{X} f d\mu + \int_{X} g d\mu.$$
 (5.18)

Доказательство. Для простых функций равенство (5.18) очевидно по определению. Неотрицательные функции мы умеем аппроксимировать возрастающими последовательностями неотрицательных функций $\{f_n\}$, $\{g_n\}$. Тогда переходя к пределу по n в равенстве

$$\int_{X} (f_n + g_n) d\mu = \int_{X} f_n d\mu + \int_{X} g_n d\mu$$
 (5.19)

и пользуясь теоремой Леви, мы получаем (5.18). В общем случае запишем h=f+g. Тогда:

$$h = h_{+} - h_{-} = f_{+} - f_{-} + g_{+} - g_{-}$$

$$(5.20)$$

$$\implies h_{+} + f_{-} + g_{-} = h_{-} + f_{+} + g_{+} \tag{5.21}$$

$$\implies \int_{X} (h_{+} + f_{-} + g_{-}) \, \mathrm{d}\mu = \int_{X} (h_{-} + f_{+} + g_{+}) \, \mathrm{d}\mu \tag{5.22}$$

$$\implies \int_{Y} h_{+} d\mu + \int_{Y} f_{-} d\mu + \int_{Y} g_{-} d\mu = \int_{Y} h_{-} d\mu + \int_{Y} f_{+} d\mu + \int_{Y} g_{+} d\mu \qquad (5.23)$$

$$\implies \int_{V} h \, \mathrm{d}\mu = \int_{V} h_{+} \, \mathrm{d}\mu - \int_{V} h_{-} \, \mathrm{d}\mu \tag{5.24}$$

$$= \int_{X} f_{+} d\mu - \int_{X} f_{-} d\mu + \int_{X} g_{+} d\mu - \int_{X} g_{-} d\mu$$
 (5.25)

$$= \int_{X} f \, \mathrm{d}\mu + \int_{X} g \, \mathrm{d}\mu. \tag{5.26}$$

Утверждение 5.10. Если f — измерима, и либо $f \ge 0$, либо f — интегрируема, то

$$\int_{Y} \alpha f \, \mathrm{d}\mu = \alpha \int_{Y} f \, \mathrm{d}\mu \qquad (\forall \alpha \in \mathbb{R}). \tag{5.27}$$

Доказательство. Доказательство совершенно аналогично предыдущему.

Определение. Функция $f: X \to \mathbb{C}$ называется *измеримой*, если Re(f), Im(f) — измеримы; f называется *суммируемой*, если Re(f), Im(f) — суммируемы. В этом случае мы можем определить интеграл:

$$\int_{E} f d\mu := \int_{E} \operatorname{Re} f d\mu + i \int_{E} \operatorname{Im} f d\mu.$$
 (5.28)

Утверждение 5.11. $\int_E \overline{f} \ \mathrm{d}\mu = \overline{\int_E f \ \mathrm{d}\mu}$ для любой суммируемой функции f на E.

Доказательство. Очевидно.

Утверждение 5.12 (основная оценка интеграла). Для любой суммируемой комплекснозначной функции f на E выполнено неравенство

$$\left| \int_{E} f \, \mathrm{d}\mu \right| \leqslant \int_{E} |f| \, \mathrm{d}\mu. \tag{5.29}$$

Доказательство. Для начала заметим, что функция |f| измерима, так как $|f| = \sqrt{(\text{Re } f)^2 + (\text{Im } f)^2}$, причем функции Re и Im измеримы, а $\sqrt{\ }$ — непрерывная функция.

Найдем такое $\alpha \in \mathbb{C}$, что $|\alpha| = 1$ и

$$\alpha \int_{E} f d\mu = \left| \int_{E} f d\mu \right|. \tag{5.30}$$

Тогда

$$\left| \int_{E} f \, \mathrm{d}\mu \right| = \int_{E} \alpha f \, \mathrm{d}\mu = \int_{E} \operatorname{Re}(\alpha f) \, \mathrm{d}\mu + i \int_{E} \operatorname{Im}(\alpha f) \, \mathrm{d}\mu. \tag{5.31}$$

Поскольку слева стоит вещественное число, $\int_E {\rm Im}(\alpha f) \, {\rm d}\mu = 0$. Значит, по монотонности интеграла

$$\left| \int_{E} f \, \mathrm{d}\mu \right| \leqslant \int_{E} |\operatorname{Re}(\alpha f)| \, \mathrm{d}\mu \leqslant \int_{E} |\alpha f| \, \mathrm{d}\mu = \int_{E} |f| \, \mathrm{d}\mu. \tag{5.32}$$

В последнем неравенстве мы воспользовались определением модуля, а в последнем равенстве — тем, что $|\alpha|=1$.

Утверждение 5.13. Пусть (X,\mathfrak{A},μ) — пространство с мерой, $f\geqslant 0$ — измеримая функция. Тогда функция множества

$$\nu \colon \mathfrak{A} \to \mathbb{R}_+ \cup \{\infty\}, \quad A \mapsto \int_A f \, \mathrm{d}\mu, \tag{5.33}$$

является мерой на \mathfrak{A} .

Доказательство. Из условия следует, что $\nu(A)$ корректно определено и $\nu(A) \geqslant 0$. Если $A = \bigsqcup_{k=1}^{\infty} A_k$, где $A_k \in \mathfrak{A}$, то

$$\nu(A) = \int_{A} f \, \mathrm{d}\mu = \int_{X} \chi_{A} \cdot f \, \mathrm{d}\mu = \int_{X} \left(\sum_{k=1}^{\infty} \chi_{A_{k}} \cdot f \right) \, \mathrm{d}\mu. \tag{5.34}$$

Обозначим

$$g_n = \sum_{k=1}^n \chi_{A_k} \cdot f. \tag{5.35}$$

Тогда очевидно, что g_n — измеримы, $g_n\geqslant 0,\ g_n\leqslant g_{n+1}$ для всех $n\in\mathbb{N}$, причем $g_n(x)\xrightarrow[n\to\infty]{}g(x)=\sum_{k=1}^{\infty}\chi_{A_k}f$. По теореме Леви

$$\int_{X} \lim_{n \to \infty} g_n(x) d\mu = \lim_{n \to \infty} \int_{X} g_n d\mu = \lim_{n \to \infty} \sum_{k=1}^{n} \nu(A_k) = \sum_{k=1}^{\infty} \nu(A_k),$$
 (5.36)

то есть функция ν счетно-аддитивна, а значит является мерой.

Следствие 5.14. ⁹Интеграл суммируемой функции f непрерывен сверху и снизу. А именно, если $A = \bigcup_{n \geqslant 1} A_n, \ A_n \subset A_{n+1}$ или $A = \bigcap_{n \geqslant 1} A_n, \ A_{n+1} \supset A_n$, то

$$\int_{A_n} f \, \mathrm{d}\mu \xrightarrow[n \to \infty]{} \int_A f \, \mathrm{d}\mu. \tag{5.37}$$

Доказательство. Мы доказали, что функции $\nu_+(A) = \int_A f_+ \, \mathrm{d}\mu$ и $\nu_-(A) = \int_A f_- \, \mathrm{d}\mu$ является мерами; поскольку f суммируема, эти меры конечны. Тогда утверждение следует из того, что конечные меры непрерывны сверху и снизу.

Следствие 5.15. Пусть $\mu = \sum_{k=1}^{\infty} c_k \cdot \delta_{x_k}$, где $c_k \in \mathbb{R}_+$, $\{x_k\}_{k=1}^{\infty} \subset X$, δ_{x_k} — мера Дирака в x_k , то есть считающая мера одноточечного множества $\{x_k\}$. Тогда для любой измеримой функции $f \geqslant 0$ имеет место равенство

$$\int_{X} f \, \mathrm{d}\mu = \sum_{k=1}^{\infty} c_k f(x_k). \tag{5.38}$$

Доказательство. По утверждению 5.13 имеем

$$\int_{X} f \, \mathrm{d}\mu = \nu(X) = \sum_{k=1}^{\infty} \nu(\{x_k\}) = \sum_{k=1}^{\infty} c_k \int_{\{x_k\}} f \, \mathrm{d}\mu = \sum_{k=1}^{\infty} c_k \cdot f(x_k), \tag{5.39}$$

так как $f|_{\{x_k\}}$ — константа $f(x_k)$.

Утверждение 5.16. Пусть измеримое множество E таково, что $\mu(E) > 0$, f(x) > 0 для всех $x \in E$, и f — измеримая функция на E. Тогда $\int_E f \mathrm{d}\mu > 0$.

 $^{^9}$ Этого следствия вроде бы не было на лекции, хотя оно элементарно и пригодится в одном из следующих утверждений.

Доказательство. Рассмотрим множества

$$E_n = E(f \geqslant \frac{1}{n}) = \{x \in E : f(x) \geqslant \frac{1}{n}\}, \qquad (\forall n \in \mathbb{N}). \tag{5.40}$$

По условию $\bigcup_{n=1}^{\infty} E_n = E$; очевидно, что $E_n \subset E_{n+1}$ для всех $n \in \mathbb{N}$. Тогда по непрерывности меры снизу $\mu(E_n) \xrightarrow[n \to \infty]{} \mu(E) > 0$. Отсюда следует, что $\mu(E_n) > 0$ для некоторого $n \in \mathbb{N}$. Осталось лишь воспользоваться монотонностью интеграла:

$$\int_{E} f \, \mathrm{d}\mu \geqslant \int_{E_{n}} f \, \mathrm{d}\mu \geqslant \int_{E_{n}} \frac{1}{n} \, \mathrm{d}\mu = \frac{1}{n} \mu(E_{n}) > 0. \tag{5.41}$$

Утверждение 5.17 (неравенство Чебышева). Пусть $f: X \to \mathbb{R}$ — измеримая функция, $\varepsilon > 0$. Обозначим $A = X(|f| \ge \varepsilon)$. Тогда

$$\mu(A) \le \frac{1}{\varepsilon} \int_{X} |f| \,\mathrm{d}\mu.$$
 (5.42)

Доказательство. Надо воспользоваться монотонностью интеграла:

$$\mu(A) = \int_{A} 1 \, \mathrm{d}\mu = \frac{1}{\varepsilon} \int_{A} \varepsilon \, \mathrm{d}\mu \leqslant \frac{1}{\varepsilon} \int_{A} |f| \, \mathrm{d}\mu \leqslant \frac{1}{\varepsilon} \int_{X} |f| \, \mathrm{d}\mu. \tag{5.43}$$

Утверждение 5.18. Пусть f — измерима и суммируема на X, $\varepsilon > 0$ — некоторое фиксированное число. Тогда существует такое измеримое множество $A \subset X$ конечной меры, что $\int_{X \setminus A} |f| \, \mathrm{d}\mu < \varepsilon$.

Доказательство. Можно считать, что $f \ge 0$ (так как мы все равно оцениваем модуль). Заметим, что множества $A_n = X(|f| < \frac{1}{n})$ убывают, а их пересечение совпадает с X(f = 0). Поскольку интеграл непрерывен сверху (следствие 5.14),

$$\int_{A_n} |f| \, \mathrm{d}\mu \xrightarrow[n \to \infty]{} \int_{X(f=0)} |f| \, \mathrm{d}\mu = 0. \tag{5.44}$$

Отсюда следует, что

$$\int_{X \setminus A} |f| \, \mathrm{d}\mu = \int_{A_n} |f| \, \mathrm{d}\mu < \varepsilon \tag{5.45}$$

для достаточно больших n, где $A = X(|f| \ge \frac{1}{n})$. Осталось заметить, что $\mu(A) < \infty$ по неравенству Чебышева, так как функция f суммируема.

Утверждение 5.19. Пусть функция f суммируема на X. Тогда для любого $\varepsilon > 0$ найдется такое $\delta(\varepsilon) > 0$, что для любого измеримого множества e, удовлетворяющего условию $\mu(e) < \delta(\varepsilon)$, выполнено неравенство $\int_{e} |f| \, \mathrm{d}\mu < \varepsilon$.

Доказательство. Можно считать, что $f\geqslant 0$. Найдем такую простую функцию g, что $0\leqslant g\leqslant f$ и

$$\int_{X} f \, \mathrm{d}\mu < \int_{X} g \, \mathrm{d}\mu + \frac{\varepsilon}{2}. \tag{5.46}$$

Ясно, что функция g ограничена (она простая, то есть принимает лишь конечное число значений). Пусть $g \leqslant c$ на X. Тогда

$$\int_{a} f \, \mathrm{d}\mu = \int_{a} (f - g) \, \mathrm{d}\mu + \int_{a} g \, \mathrm{d}\mu \tag{5.47}$$

$$\leqslant \int_{X} (f - g) \, \mathrm{d}\mu + \int_{e} c \, \mathrm{d}\mu \tag{5.48}$$

$$= \int_{Y} f \, \mathrm{d}\mu - \int_{Y} g \, \mathrm{d}\mu + c\mu(e) \tag{5.49}$$

$$<\frac{\varepsilon}{2} + c\mu(e). \tag{5.50}$$

Полагая $\delta(\varepsilon) = \varepsilon/2c$, получаем требуемое неравенство.

Утверждение 5.20. Если f — функция, интегрируемая по Риману на [a,b], то f измерима относительно $\mathfrak{U}_{\lambda_1^*}$ и

$$\int_{a}^{b} f \, \mathrm{d}x = \int_{[a,b]} f \, \mathrm{d}\lambda_{1},\tag{5.51}$$

где слева — интеграл по Риману, а справа — по Лебегу.

Доказательство. В первом семестре мы доказывали, что $f \in R[a,b]$ тогда и только тогда, когда f ограничена, и существует такое $e \in \mathfrak{U}_{\lambda^*}$, что $\lambda_1(e) = 0$ и f непрерывна на $[a,b] \setminus e$. Значит, для всех $c \in \mathbb{R}$

$$[a,b](f>c) = \widetilde{e} \cup ([a,b] \setminus e)(f>c), \tag{5.52}$$

где $\widetilde{e}\subset e$. В частности, в силу полноты $\lambda_1,\,\widetilde{e}\in\mathfrak{U}_{\lambda_1^*}$ и $\lambda_1(\widetilde{e})=0$. По определению непрерывности

$$([a,b] \setminus e)(f > c) = W \cap ([a,b] \setminus e), \tag{5.53}$$

где W открыто в \mathbb{R} . Значит, функция f измерима относительно $\mathfrak{U}_{\lambda_1^*}$.

По определению интеграла Римана,

$$\int_{a}^{b} f \, \mathrm{d}x = \inf \sum_{k} \sup_{\Delta_{k}} f \cdot |\Delta_{k}|, \tag{5.54}$$

где инфимум берется по всем разбиениям [a,b] на ячейки $\Delta_k = [a_k,b_k)$. Заметим, что для каждого такого разбиения

$$\int_{[a,b]} f \, \mathrm{d}\lambda_1 = \sum_{k=1}^N \int_{\Delta_k} f \, \mathrm{d}\lambda_1 \leqslant \sum_{k=1}^N \sup_{\Delta_k} f \cdot \lambda_1(\Delta_k) = \sum_{k=1}^N \sup_{\Delta_k} f \cdot |\Delta_k|. \tag{5.55}$$

Беря инфимум по всем разбиениям, получаем, что интеграл Лебега не превосходит

верхней суммы Дарбу, то есть интеграла Римана.

Аналогичным образом расписывая интеграл Римана через нижние суммы Дарбу, получаем неравенство в другую сторону, а вместе с ним и искомое равенство.

Таким образом, мы показали, что когда интеграл Римана определен, он совпадает с интегралом Лебега. Тем не менее, бывает так, что интеграл Лебега определен, а интеграл Римана — нет.

Пример 5.1. Пусть $f = \chi_{\mathbb{Q} \cap [0,1]}$ — функция Дирихле. Эта функция разрывна в каждой точке, а потому $f \notin \mathcal{R}[0,1]$. Тем не менее, очевидно, что f измерима, $f \geqslant 0$, а потому интеграл Лебега от этой функции определен, и его легко посчитать, поскольку эта функция равна единице на множестве меры ноль:

$$\int_{[0,1]} f \, \mathrm{d}\lambda_1 = \int_{[0,1] \cap \mathbb{Q}} f \, \mathrm{d}\lambda_1 + \int_{[0,1] \setminus \mathbb{Q}} f \, \mathrm{d}\lambda_1 = \int_{[0,1] \cap \mathbb{Q}} 1 \, \mathrm{d}\lambda_1 + \int_{[0,1] \setminus \mathbb{Q}} 0 \, \mathrm{d}\lambda_1 = 0. \tag{5.56}$$

6 Предельные теоремы

Как и в предыдущих параграфах, мы фиксируем пространство с мерой (X, \mathfrak{A}, μ) .

Определение. Измеримое множество E имеет *полную меру*, если $\mu(X \setminus E) = 0$. Будем говорить, что некоторое свойство P(x), зависящее от точки $x \in X$ верно *почти всюду* (почти наверное, почти везде), если множество $\{x \in X : P(x) - \text{верно}\}$ имеет полную меру.

В этом определении предполагаем мы подразумеваем, что задана некоторая мера μ . Мы часто будем вместо "почти всюду" говорить " μ -почти всюду".

Определение. Говорят, что последовательность измеримых функций $\{f_n\}_{n\geqslant 1}$ сходится к f почти везде на измеримом множестве E, если множество

$$\left\{ x \in X : f_n(x) \xrightarrow[n \to \infty]{} f(x) \right\}$$

имеет полную меру в E. В этом случае пишут $f_n \xrightarrow[n \to \infty]{a.e.} f^{10}$.

Поскольку на $E \setminus e$, где $\mu(e) = 0$, последовательность f_n стремится к f, f измерима на $E \setminus e$. Если мера μ полна, то можно показать, что f измерима на E. Вообще говоря, требовать измеримость f_n тоже необязательно, но мы не будем рассматривать такой случай.

Определение. Будем говорить, что последовательность измеримых функций $\{f_n\}_{n\geqslant 1}$ сходится к измеримой функции f по мере μ , если $\forall \varepsilon>0$

$$\mu(\lbrace x \in X : |f_n(x) - f(x)| > \varepsilon \rbrace) \xrightarrow[n \to \infty]{} 0. \tag{6.1}$$

В этом случае пишут $f_n \xrightarrow[n\to\infty]{\mu} f$.

¹⁰a.e. означает almost everywhere.

Утверждение 6.1. Пусть выполнено одно из двух условий:

- 1. $f_n \to f$ и $f_n \to g$ при $n \to \infty$ почти всюду на X;
- 2. $f_n \xrightarrow{\mu} f$ и $f_n \xrightarrow{\mu} g$ при $n \to \infty$ на X.

Тогда f = g почти всюду на X.

Доказательство. Разберем отдельно каждый из двух случаев.

- 1. Существует такое измеримое E_f , что $f_n \to f$ на E_f , и такое измеримое E_g , что $f_n \to g$ на E_g . Тогда f = g на множестве $E_f \cap E_g$ полной меры.
- 2. Если $f_n \xrightarrow{\mu} f$, $f_n \xrightarrow{\mu} g$, то $\forall \varepsilon > 0$

$$\mu(X(|f-g| > \varepsilon)) \le \mu(X(|f-f_n| \ge \frac{\varepsilon}{2})) + \mu(X(|g-f_n| \ge \frac{\varepsilon}{2})) \tag{6.2}$$

откуда

$$\mu(X(|f-g| > \frac{1}{k})) = 0 \qquad (\forall k \in \mathbb{N}), \tag{6.3}$$

и по непрерывности меры

$$\mu(X(|f - g| > 0)) = \lim_{k \to \infty} \mu(X(|f - g| > \frac{1}{k})) = 0.$$

что и требовалось.

Покажем, что в общем случае сходимость почти всюду и сходимость по мере не следуют друг из друга.

Примеры 6.1.

- 1. Если $f_n = \chi_{[n,n+1]}$, то $f_n \to 0$ всюду на $\mathbb R$ при $n \to \infty$, но при этом f_n не сходится по мере Лебега.
- 2. Положим $X=\mathbb{R}$ и $\mu=\lambda_1$. Для каждого $k\geqslant 1$ рассмотрим разбиение интервала [0,1) на интервалы $\Delta(k,p)=[\frac{p}{2^k},\frac{p+1}{2^k})$, где $p\in\{0,1,\ldots,2^k-1\}$. Чтобы определить функцию f_n , представим индекс n в виде $n=2^k+p$, где $0\leqslant p<2^k$, и положим $f_n=\chi_{\Delta(k,p)}$. Тогда $X(f_n\neq 0)=\Delta(k,p)$, а

$$\lambda_1(\Delta(k,p)) = \frac{1}{2^k} \leqslant \frac{2}{n} \xrightarrow{n \to \infty} 0, \tag{6.4}$$

то есть построенная последовательность по мере сходится к нулю. Тем не менее, последовательность $\{f_n\}$ не имеет предела ни в одной точке $x \in [0,1)$, так как очевидно, что среди значений $f_n(x)$ есть бесконечно много нулей и единиц.

Теорема 6.2 (Лебега). Пусть $\mu(X) < \infty$, последовательность измеримых функций $\{f_n\}$ стремится к f почти всюду. Тогда $f_n \stackrel{\mu}{\to} f$.

Доказательство. Рассмотрим сначала случай, когда $f_n \geqslant 0$, $f_{n+1} \leqslant f_n$ и f=0. Тогда $\forall \varepsilon > 0$ множества $X_n(\varepsilon) = X(f_n \geqslant \varepsilon)$, как мы уже не раз видели, $X_n(\varepsilon) \supset X_{n+1}(\varepsilon)$. По условию, $\bigcap_{n \in \mathbb{N}} X_n(\varepsilon) = e$, где $\mu(e) = 0$. Так как μ — конечна, то она непрерывна сверху, то есть

$$0 = \mu(e) = \lim_{n \to \infty} \mu(X_n(\varepsilon)).$$

а это и значит, что $f_n \xrightarrow{\mu} f$.

В общем случае достаточно вместо f_n и f рассмотреть функции

$$\widetilde{f}_n = \sup_{k \geqslant n} |f_k - f|, \quad \widetilde{f} = 0.$$

Тогда $\widetilde{f}_n \xrightarrow{\mu} \widetilde{f}$, то есть

$$\mu\left(X\left(\widetilde{f}_n > \varepsilon\right)\right) \xrightarrow[n \to \infty]{} 0. \tag{6.5}$$

Осталось заметить, что $X(|f_n-f|>\varepsilon)\subset X(\widetilde{f_n}>\varepsilon)$, так как $|f_n-f|\leqslant \widetilde{f_n}$.

Лемма 6.3 (Борель, Кантелли). ¹¹ Пусть $\{E_n\}_{n\geqslant 1}$ — последовательность измеримых множеств, $E=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}E_k$, то есть E состоит из таких точек $x\in X$, что $x\in E_n$ для бесконечного числа индексов n. Если $\sum_{n\geqslant 1}\mu(E_n)<+\infty$, то $\mu(E)=0$.

Доказательство. Поскольку $E \subset \bigcup_{n \geqslant k} E_n$, имеем

$$\mu(E) \leqslant \sum_{n>k} \mu(E_n) \xrightarrow[k\to\infty]{} 0,$$
 (6.6)

так как это хвост сходящегося ряда.

С помощью этой леммы можно получить полезный признак сходимости почти всюду.

Следствие 6.4. Пусть $\varepsilon_n > 0$, $\varepsilon_n \to 0$ при $n \to \infty$, $\{g_n\}$ — последовательность измеримых функций, $X_n = X(|g_n| > \varepsilon_n)$. Если $\sum_{n \geqslant 1} \mu(X_n) < +\infty$, то $g_n \xrightarrow[n \to \infty]{a.e.} 0$.

Доказательство. Достаточно для произвольного $\varepsilon > 0$ применить лемму Бореля-Кантелли к множествам $E_n = X(|g_n| > \varepsilon)$, поскольку $E_n \subset X_n$ для достаточно больших n (мы получим, что множество точек, в которых бесконечное число $|g_n|$ больше ε , имеет меру ноль).

Теорема 6.5 (Рисса). У любой последовательности измеримых функций $\{f_n\}$, сходящихся по мере к f, можно найти подпоследовательность, сходящуюся почти везде к f.

¹¹На лекции это утверждение не было явно выделено, хотя в каком-то виде оно появляется в теореме Рисса. Я решил выписать его отдельно, так как это, во-первых, это именная теорема, а вовторых, по всей видимости, это утверждение важно в теории вероятностей (по крайней мере, про эту лемму есть целая статья в википедии).

Доказательство. Из сходимости f_n к f следует, что

$$\mu\left(X\left(|f_n - f| > \frac{1}{k}\right)\right) \xrightarrow[n \to \infty]{} 0. \tag{6.7}$$

для каждого $k \in \mathbb{N}$. Поэтому мы можем найти такую подпоследовательность индексов n_k , что

$$\mu\left(X\left(|f_n - f| > \frac{1}{k}\right)\right) \leqslant \frac{1}{2^k} \tag{6.8}$$

для всех $n \ge n_k$. Тогда из следствия 6.4 очевидным образом следует, что функции $g_k = |f_{n_k} - f|$ почти всюду стремятся к нулю для $k \to \infty$, а потому $f_{n_k} \xrightarrow[k \to \infty]{a.e.} f$.

Определение. Будем говорить, что последовательность функций $\{f_n\}_{n\geqslant 1}$ *почти* равномерно сходится к f на X, если для любого $\varepsilon > 0$ найдется такое измеримое множество A_{ε} , что $\mu(A_{\varepsilon}) < \varepsilon$ и $f_n \Rightarrow f$ на $X \setminus A_{\varepsilon}$ при $n \to \infty$.

Нетрудно понять, что почти равномерная сходимость влечет сходимость почти всюду.

Теорема 6.6 (Егорова). Пусть $\{f_n\}_{n\geqslant 1}$, f — измеримые функции, причем $f_n\to f$ почти всюду на X. Тогда если $\mu(X)<\infty$, то f_n сходится к f почти равномерно.

Доказательство. Как в теореме 6.2, можно считать, что $f_n \geqslant 0$, $f_{n+1} \leqslant f_n \ \forall n, \ f = 0$ почти всюду на X. Так как $\mu(X) < \infty$, то $f_n \xrightarrow{\mu} 0$. Построим последовательность $\{n_k\}$ как в теореме Рисса. Если $x \in \bigcap_{k=N}^{\infty} \{x : f_{n_k}(x) \leqslant \frac{1}{k}\} = E_n$, то $\forall k \geqslant N \ 0 \leqslant f_{n_k}(x) \leqslant \frac{1}{k}$, а значит $f_{n_k} \Rightarrow 0$ на E_N . В силу монотонности последовательности f_n , сами $f_n \Rightarrow 0$. Но $\mu(X \setminus E_n) < \frac{1}{2^{N-1}}$, что и требовалось.

Пример 6.2. $\{\chi_{[n,n+1]}\}_{n\in\mathbb{N}}$ не сходятся по мере. Действительно, если $\chi_{[n,n+1]} \xrightarrow{\lambda_1} f$, то $f \equiv 0$ почти всюду, так как $\forall \{n_k\} \ \chi_{[n_k,n_k+1]} \to 0$. С другой стороны, если $\varepsilon = \frac{1}{2}$, то $\mu(\chi_{[n,n+1]}(x) > \frac{1}{2}) = 1 \not\to 0$.

Пример 6.3. Если $f_n \stackrel{\mu}{\to} f$, $|f_n(x)| \leq g(x) \ \forall n$ почти всюду на X, то $|f(x)| \leq g(x)$ почти всюду по μ . Действительно, $\exists \{f_{n_k}\} : f_{n_k} \to f$, $|f_{n_k}(x)| \leq g(x) \ \forall x \in E_{n_k}$, $\mu(X \setminus E_{n_k}) = 0 \implies |f(x)| \leq g(x) \ \forall x \in \bigcap_{k=1}^{\infty} E_{n_k}$. Но $\mu(X \setminus \bigcap_{k=1}^{\infty} E_{n_k}) = \mu(\bigcup_{k=1}^{\infty} (X \setminus E_{n_k})) = 0$.

Теорема 6.7 (Леви, общий случай). Пусть f_n , f — измеримые функции, $f_n \to f$ почти всюду, f_1 — суммируема, $f_n \leqslant f_{n+1} \leqslant f$ почти всюду для любого $n \in \mathbb{N}$. Тогда

$$\lim_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} f \, \mathrm{d}\mu. \tag{6.9}$$

Доказательство. Поскольку интеграл не зависит от множеств нулевой меры, можно считать, что $f_n \to f$ и $f_n \leqslant f_{n+1} \leqslant f$ всюду на X. Теперь применим теорему Леви:

$$\lim_{n\to\infty}\int\limits_{V}\left(f_{n}-f_{1}\right)\mathrm{d}\mu=\int\limits_{V}\left(f-f_{1}\right)\mathrm{d}\mu.$$

Осталось сократить на интеграл от f_1 и получить требуемое равенство.

Теорема 6.8 (Лебега о мажорированной сходимости). Пусть f_n , f — измеримые функции, такие, что $|f_n(x)| \le g(x)$ при почти всех $x \in X$ для некоторой суммируемой функции g. Пусть также выполнено хотя бы одно из двух следующих условий:

- (a) $f_n \xrightarrow{\mu} f$ Ha X;
- (b) $f_n \to f$ почти всюду на X.

Тогда

$$\lim_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} f \, \mathrm{d}\mu. \tag{6.10}$$

Доказательство. В обоих случаях $|f| \le g$ почти всюду на X. Пусть для начала $\mu(X) < \infty$. Тогда условие (a) слабее условия (b) и можно считать, что (a) выполнено. Найдем такое $N \in \mathbb{N}$, что для всех $\varepsilon > 0$ и $n \ge N$ выполнено $\mu(X(|f_n - f| > \varepsilon)) < \varepsilon$. Тогда

$$\left| \int_{X} f \, \mathrm{d}\mu - \int_{X} f_n \, \mathrm{d}\mu \right| \le \int_{X} |f - f_n| \, \mathrm{d}\mu \tag{6.11}$$

$$= \int_{\{x:|f_n(x)-f(x)|>\epsilon\}} |f_n - f| \, \mathrm{d}\mu - \int_{\{x:|f_n(x)-f(x)|\leqslant\epsilon\}}$$
(6.12)

$$\leq 2 \int_{\{|f_n - f| > \varepsilon\}} g \, \mathrm{d}\mu + \int_X \varepsilon \, \mathrm{d}\mu. \tag{6.13}$$

Выберем $\eta>0$ и $\varepsilon=\varepsilon(\eta)>0$: $\int\limits_E g \,\mathrm{d}\mu<\eta$ для любого $E\in\mathcal{A}:\mu(E)<\varepsilon$. Так можно сделать по одному из предыдущих утверждений. Продолжим неравенство:

$$2\int_{\{|f_n - f| > \varepsilon\}} g + \int_X \varepsilon \, \mathrm{d}\mu \le 2\eta + \mu(X) \cdot \varepsilon \tag{6.14}$$

при больших n. Значит,

$$\lim \sup_{n \to \infty} \left| \int_{X} f_n \, \mathrm{d}\mu - \int_{X} f \, \mathrm{d}\mu \right| \le 2\eta + \varepsilon \mu(x) \implies \lim \sup = 0, \tag{6.15}$$

то есть в этом случае теорема доказана.

Разберем теперь случай, когда $\mu(X)=+\infty$. $\forall \varepsilon>0$ найдем множество $A=A(\varepsilon)\in \mathcal{A}: \mu(A)<\infty, \int\limits_{X\backslash A}g\,\mathrm{d}\mu<\varepsilon.$ Тогда

$$\left| \int_{X} f_n \, \mathrm{d}\mu - \int_{X} f \, \mathrm{d}\mu \right| \leqslant \int_{A} |f_n - f| \, \mathrm{d}\mu + \int_{X \setminus A} (2g) \, \mathrm{d}\mu. \tag{6.16}$$

Левая часть стремится в нулю при $n \to \infty$ по доказанному первому случаю. Второй интеграл $< 2\varepsilon$.

Теорема 6.9 (лемма Фату). Пусть $\{f_n\}_{n\geqslant 1}$ — последовательность измеримых неотрицательных функций. Тогда

$$\int_{X} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \leqslant \liminf_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu. \tag{6.17}$$

Отметим, что это неравенство может быть строгим: если $f_n = \chi_{[n,n+1]}$, $\mu = \lambda_1$, то оно превращается в 0 < 1.

Доказательство. Рассмотрим функции $g_n(x)=\inf_{k\geqslant n}(f_k(x))$. Тогда g_n — измеримы, $g_n\geqslant 0,\,g_n\leqslant g_{n+1},\,g_n\xrightarrow[n\to\infty]{}\liminf f_n$ всюду на X. По теореме Леви

$$\lim_{n \to \infty} \int_{X} g_n \, \mathrm{d}\mu = \int_{X} g \, \mathrm{d}\mu = \int_{X} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu. \tag{6.18}$$

С другой стороны,

$$\lim_{n \to \infty} \int_{X} g_n \, \mathrm{d}\mu = \liminf_{n \to \infty} \int_{X} g_n \, \mathrm{d}\mu \leqslant \liminf_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu, \tag{6.19}$$

так как $g_n \leq f_n$ на X при всех $n \in \mathbb{N}$.

Следствие 6.10. Пусть $\{f_n\}_{n\geqslant 1}$, — последовательность измеримых неотрицательных почти всюду функций, $f_n\to f$ почти всюду на X, и $\int_X f_n\,\mathrm{d}\mu\leqslant c$ при всех $n\in\mathbb{N}$. Тогда почти везде $f\geqslant 0$ и $\int_X f\,\mathrm{d}\mu\leqslant c$.

$$\int_{X} f \, \mathrm{d}\mu = \int_{X} \lim_{n \to \infty} f_n \, \mathrm{d}\mu \leqslant \liminf_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu \leqslant c. \tag{6.20}$$

Следствие 6.11. Пусть $\sum_{k \in \mathbb{N}} |a_k| < \infty$. Тогда для любого набора $\{x_k\}_{k \in \mathbb{N}}$ ряд

$$f(x) = \sum_{k=1}^{\infty} \frac{a_k}{\sqrt{|x - x_k|}}$$
 (6.21)

сходится почти всюду на \mathbb{R} .

Доказательство. Применим предыдущее следствие к частичным суммам

$$f_n(x) = \sum_{k=1}^n \frac{|a_k|}{\sqrt{|x - x_k|}}.$$
 (6.22)

Имеем:

$$\int_{-c}^{c} f_n \, \mathrm{d}\lambda_1 \leqslant \sum_{k=1}^{n} |a_k| \sup_{t \in \mathbb{R}} \left(\int_{-c}^{c} \frac{\mathrm{d}x}{\sqrt{|x-t|}} \right) \leqslant C \cdot \sum_{k=1}^{\infty} a_k, \tag{6.23}$$

а значит

$$\int_{-c}^{c} \sum_{k=1}^{\infty} \frac{|a_k|}{\sqrt{|x-x_k|}} \, \mathrm{d}\lambda_1 < \infty, \tag{6.24}$$

откуда нетрудно получить, что f(x) конечно почти всюду по мере Лебега на \mathbb{R} .

7 Интегральные неравенства

Определение. μ — вероятностная мера на X, если $\mu(X) = 1$.

Чтобы доказать неравенство Йенсена, нам понадобятся два факта про выпуклые функции, которые не были доказаны в первом семестре.

Лемма 7.1. Если φ выпукла на \mathbb{R} , то $\forall x \in \mathbb{R}$ существуют такие $a, b \in \mathbb{R}$, что

$$\varphi(x) = ax + b, \quad \varphi(t) \geqslant at + b \quad (\forall t \in \mathbb{R}).$$

Доказательство. Для любой тройки чисел $x_1 < x < x_2$ по выпуклости

$$\frac{\varphi(x_1) - \varphi(x)}{x_1 - x} \leqslant \frac{\varphi(x) - \varphi(x_2)}{x - x_2},\tag{7.1}$$

а значит определено число

$$c = \inf_{x < x_2} \left\{ \frac{\varphi(x) - \varphi(x_2)}{x - x_2} \right\},\tag{7.2}$$

(здесь инфимум берется по x_2 , x — фиксировано) и выполнено неравенство

$$\frac{\varphi(x_1) - \varphi(x)}{x_1 - x} \le c \le \frac{\varphi(x) - \varphi(x_2)}{x - x_2}.$$
(7.3)

Тогда $\varphi(x_2) - \varphi(x) \geqslant c(x_2 - x)$, то есть

$$\varphi(x_2) \geqslant c(x_2 - x) + \varphi(x) \qquad (\forall x_2 > x). \tag{7.4}$$

Аналогично, $\varphi(x_1) - \varphi(x) \ge c(x_1 - x)$, то есть

$$\varphi(x_1) \geqslant c(x_1 - x) + \varphi(x) \qquad (\forall x_1 < x). \tag{7.5}$$

Значит, $\varphi(t) \ge c(t-x) + \varphi(x)$ для всех $t \in \mathbb{R}$; при t=x достигается равенство. Константы легко подбираются.

Лемма 7.2. Если φ выпукла на \mathbb{R} , то $\varphi \in C(\mathbb{R})$.

Доказательство. По доказательству предыдущей леммы для некоторого $c \in \mathbb{R}$

$$\frac{\varphi(x_1) - \varphi(x_2)}{x_1 - x_2} \geqslant c \qquad (\forall x_1 < x_2). \tag{7.6}$$

Значит, если $x_{1,n} \to x_2$ при $n \to \infty$, то

$$\varphi(x_{1,n}) - \varphi(x_2) \geqslant c(x_{1,n} - x_2) \xrightarrow[n \to \infty]{} 0$$

$$(7.7)$$

С другой стороны, если $x_0 < x_{1,n} < x_2$, то $\exists \delta_n$:

$$x_{1,n} = \delta_n x_0 + (1 - \delta_n) x_2, \quad \delta_n \to 0,$$
 (7.8)

тогда

$$\varphi(x_1, n) - \varphi(x_2) \le \delta_n \varphi(x_0) + (1 - \delta_n) \varphi(x_2) - \varphi(x_2) \tag{7.9}$$

$$= \delta_n \big(\varphi(x_0) - \varphi(x_2) \big) \xrightarrow[n \to \infty]{} 0. \tag{7.10}$$

Значит, существуют такие последовательности c_n и d_n , что

$$d_n \leqslant \varphi(x_{1,n}) - \varphi(x_2) \leqslant c_n,$$

причем $d_n \to 0$ и $c_n \to 0$ при $n \to \infty$, а значит φ непрерывна слева в точке x_2 .

Аналогичным образом доказывается, что φ непрерывна справа в x_2 .

Утверждение 7.3 (неравенство Йенсена). Пусть φ — выпуклая функция на \mathbb{R} , μ — вероятностная мера на X. Тогда

$$\varphi\left(\int_{X} f \, \mathrm{d}\mu\right) \leqslant \int_{X} \varphi(f) \, \mathrm{d}\mu \tag{7.11}$$

для любой суммируемой (измеримой) функции f.

Доказательство. По лемме 7.1, для некоторых констант a,b выполнено неравенство $\varphi(f(x))\geqslant af(x)+b$ при любом x. Тогда $\varphi(f)-(af+b)\geqslant 0$ — измеримая функция, так как $\varphi\in C(\mathbb{R})$ и $f\colon X\to\mathbb{R}$ измерима. Значит, функция $\varphi(f)-(af+b)$ интегрируема, а вместе с ней и функция $\varphi(f)$, так как суммируема функция af+b. В частности, определен интеграл $\int_X \varphi(f)\,\mathrm{d}\mu$.

Поскольку f — суммируема,

$$\int_{X} f \, \mathrm{d}\mu = x_0 \in \mathbb{R}. \tag{7.12}$$

Для доказательства самого неравенства нужно еще раз воспользоваться леммой 7.1, на этот раз для точки x_0 :

$$\varphi\left(\int_{X} f(x) d\mu\right) = \varphi(x_0) = ax_0 + b = a\left(\int_{X} f(x) d\mu\right) + b$$
 (7.13)

$$= \int_{X} (af(x) + b) d\mu \leqslant \int_{X} \varphi(f(x)) d\mu$$
 (7.14)

для некоторых $a, b \in \mathbb{R}$. Отметим, что в предпоследнем равенстве мы воспользовались тем, что мера вероятностная, а в последнем переходе второй частью той же леммы.

Замечание. Обычное неравенство Йенсена получается, если рассмотреть меру, сосредоточенную на конечном числе точек. $\int_X f \, \mathrm{d} \mu$ в этом случае превратится в выпуклую линейную комбинацию точек $f(x_1), \dots, f(x_n)$.

Утверждение 7.4 (неравенство Гельдера). Пусть f, g — измеримые функции на пространстве с мерой (X, \mathfrak{A}, μ) . Тогда

$$\int\limits_{X} |fg| \, \mathrm{d}\mu \leqslant \left(\int\limits_{X} |f|^{p} \, \mathrm{d}\mu \right)^{\frac{1}{p}} \cdot \left(\int\limits_{X} |g|^{q} \, \mathrm{d}\mu \right)^{\frac{1}{q}}, \tag{7.15}$$

где $p, q \in [1, +\infty] : 1/p + 1/q = 1.$

Замечание. Если p = 1, $q = +\infty$, то последнее неравенство означает, что

$$\int\limits_X |fg| \, \mathrm{d}\mu \leqslant \sup\limits_{x \in X} |g(x)| \cdot \int\limits_X |f| \, \mathrm{d}\mu. \tag{7.16}$$

Доказательство. Если $p=1,\ q=+\infty$, то неравенство очевидно. Если $p,q\in(1,+\infty)$, то (7.15) эквивалентно неравенству

$$\int_{X} \frac{|f|}{A} \cdot \frac{|g|}{B} \, \mathrm{d}\mu \le 1,\tag{7.17}$$

где $A=\left(\int_X|f|^p\right)^{\frac{1}{p}}$, $B=\left(\int_X|g|^q\right)^{\frac{1}{q}}$. По неравенству Юнга 12

$$\int_{X} \frac{|f|}{A} \cdot \frac{|g|}{B} d\mu \le \int_{X} \frac{|f|^{p}}{pA^{p}} d\mu + \int_{X} \frac{|g|^{q}}{qB^{q}} d\mu = \frac{1}{p} + \frac{1}{q} = 1, \tag{7.18}$$

что и требовалось.

Утверждение 7.5 (неравенство Минковского). Пусть f, g — измеримые функции на пространстве с мерой (X, \mathfrak{A}, μ) . Тогда при $p \in [1, +\infty]$

$$\left(\int_{X} |f+g|^{p} d\mu\right)^{\frac{1}{p}} \leq \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} + \left(\int_{X} |g|^{p} d\mu\right)^{\frac{1}{p}}.$$
 (7.19)

Доказательство. Если $p = +\infty$, то неравенство переписывается как

$$\sup_{X} |f + g| \le \sup_{X} |f| + \sup_{X} |g|, \tag{7.20}$$

и оно очевидно. Если p=1, то (7.19) имеет вид

$$\int_{X} |f + g| \, \mathrm{d}\mu \leqslant \int_{X} |f| \, \mathrm{d}\mu + \int_{X} |g| \, \mathrm{d}\mu,\tag{7.21}$$

что мы тоже уже доказывали.

Наконец, рассмотрим случай $p \in (1, +\infty)$:

$$\int_{X} |f + g|^{p} d\mu = \int_{X} |f| \cdot |f + g|^{p-1} d\mu + \int_{X} |g| \cdot |f + g|^{p-1} d\mu$$

$$\leq \left(\int_{X} |f|^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{X} |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}} + \left(\int_{X} |g|^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{X} |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}}$$

$$+ \left(\int_{X} |g|^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{X} |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}}$$
(7.23)

$$= \left[\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} \implies (p-1)q = p \right]$$
 (7.24)

$$= \left(\left(\int_{X} |f|^{p} d\mu \right)^{\frac{1}{p}} + \left(\int_{X} |g|^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{X} |f+g|^{p} d\mu \right)^{\frac{1}{q}}, \tag{7.25}$$

после чего остается лишь сократить на правый множитель. Здесь в (7.23) мы дважды воспользовались неравенством Гельдера. ■

Следствие 7.6. Пусть $\{a_n\}$, $\{b_n\}$ — комплексные числа. Тогда

$$\sqrt{\sum_{n=1}^{\infty} |a_n + b_n|^2} \le \sqrt{\sum_{n=1}^{\infty} |a_n|^2} + \sqrt{\sum_{n=1}^{\infty} |b_n|^2}.$$
 (7.26)

Доказательство. Действительно, возьмем меру $\mu = \sum_{k \in \mathbb{N}} \delta_k$, определим

$$f(x) = \begin{cases} a_k, & x = k \in \mathbb{Z}, \\ 0, & x \notin \mathbb{Z}, \end{cases} \qquad g(x) = \begin{cases} b_k, & x = k \in \mathbb{Z}, \\ 0, & x \notin \mathbb{Z}. \end{cases}$$

Осталось лишь применить неравенство Минковского для $p = 2, X = \mathbb{R}$.

8 Пространство Лебега $L^p(X,\mu)$

Определение. Пусть (X, \mathcal{A}, μ) — пространство с мерой, f — измеримая функция на X. Определим

$$||f||_p = ||f||_{L^p(X,\mu)} = ||f||_{L^p} = ||f||_{L^p(\mu)} = \left(\int\limits_X |f|^p d\mu\right)^{\frac{1}{p}},$$

если $p \in (1, +\infty)$, и

$$||f||_{\infty} = \operatorname{ess\,sup}_{X}|f|$$

где

ess
$$\sup_X f = \inf \{c \in [-\infty, +\infty] : f(x) \le c \mu$$
-почти всюду на $X\}$

- существенный¹³ супремум. Аналогично,

$$\operatorname{ess\,inf}_X f = \sup \{c \in [-\infty, +\infty] : f(x) \geqslant c \mu$$
-почти всюду на $X\}$.

Определение. $L^p(X,\mu)$ — это множество измеримых функций f, удовлетворяющих условию $\|f\|_p < \infty$, профакторизованное по отношению эквивалентности $\sim: f \sim g$, если f = g почти всюду по μ . Таким образом, $L^p(X,\mu)$ — линейное нормированное пространство, состоящее из классов эквивалентности функций.

Замечание. Запись $f \in L^p(X, \mu)$ будет означать, что мы выбираем представителя некоторого класса эквивалентности [f].

Лемма 8.1. $L^p(X, \mu)$ — линейное нормированное пространство.

Доказательство. При $p \in [1, +\infty]$ неравенство Минковского гарантирует, что если $f, g \in L^p(X, \mu)$, то $\alpha f + \beta g \in L^p(X, \mu)$ и $||f + g||_p \le ||f||_p + ||g||_p$. По определению, если $\alpha \in \mathbb{C}$, то $||\alpha f||_p = |\alpha| \cdot ||f||_p$.

Если $\|f\|_p=0$, то $\int\limits_X |f|^p\,\mathrm{d}\mu=0$ то есть f=0 μ -почти всюду, а значит f=0 в $L^p(X,\mu)$. Таким образом, $L^p(X,\mu)$ — линейное нормированное пространство.

При $p=\infty$ аналогичные факты из следуют из следующего утверждения: для любой измеримой функции f достигается инфимум в определении ess $\sup f$. Действительно, если ess $\sup f=\pm\infty$, то $c=\pm\infty$, если же ess $\sup f\in\mathbb{R}$, то $\exists X_n\in\mathcal{A}:\mu(X\setminus X_n)=0,\ f(x)\leqslant \operatorname{ess\,sup} f+\frac{1}{n}\ \forall x\in X_n.$ Тогда $f(x)\leqslant \operatorname{ess\,sup} f$ на $\bigcap_{n=1}^\infty X_n$, а

$$\mu\left(X\setminus\bigcap_{n=1}^{\infty}X_n\right)=\mu\left(\bigcup_{n=1}^{\infty}(X\setminus X_n)\right)\leqslant\sum_{n=1}^{\infty}\mu(X\setminus X_n)=0.$$

Лемма 8.2. Если X — линейное нормированное пространство с нормой $\|\ \|$, то следующие утверждения равносильны:

¹³essential

1. *X* — полное;

2. $\forall \{x_n\} \subset X : \sum_{n=1}^{\infty} ||x_n|| < \infty \ \exists x \in X$:

$$\lim_{N\to\infty}\left\|\sum_{k=1}^N x_k - x\right\| = 0.$$

(X — полно тогда и только тогда, когда любой абсолютно сходящийся ряд сходится в X).

Доказательство.

 \implies Обозначим $y_n \coloneqq \sum_{n=1}^N x_n$. Тогда $\{y_n\}$ — последовательность Коши:

$$||y_N - y_M|| \le \sum_{k=N+1}^M ||x_k|| \to 0 \quad \text{при} \quad N \to \infty, M \to \infty.$$
 (8.1)

Тогда $\exists x \in X : y_n \to x$ в $X \iff ||y_n - x|| \to 0$, а это и есть (2).

$$y_{n_1} = x_1,$$

 $y_{n_2} = x_1 + x_2,$
 $y_{n_3} = x_1 + x_2 + x_3,$

и так далее. Очевидно, $x_k = y_{n_k} - y_{n_{k-1}}$ при $k \geqslant 2$, откуда

$$\sum_{k=1}^{\infty} ||x_k|| \leq ||y_{n_1}|| + \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} < \infty.$$

Значит $\exists x \in X: \left\|\sum_{k=1}^N x_k - x\right\| \to 0$ при $N \to \infty \iff y_{n_N} \to x$ в $X \iff$ последовательность $\{y_{n_k}\}$ сходится в X к $x \implies \{y_n\}$ сходится.

Теорема 8.3. $L^p(X,\mu)$ — полное линейное нормированное пространство.

Доказательство. Рассмотрим $\{f_k\}_{k=1}^{\infty} \subset L^p(X,\mu)$. Покажем, что ряд $\sum_{k=1}^{\infty} f_k$ сходится в $L^p(X,\mu)$.

$$\left(\int\limits_{Y} \liminf_{k \to \infty} \left(\sum_{k=1}^{N} |f_k(x)|\right)^p \mathrm{d}\mu\right)^{\frac{1}{p}} \leqslant [\text{лемма Фату}] \tag{8.2}$$

$$\leq \liminf_{n \to \infty} \left(\int_{X} \sum_{k=1}^{N} |f(x)|^{p} d\mu \right)^{\frac{1}{p}}$$
 (8.3)

$$\leq \liminf_{N \to \infty} \sum_{k=1}^{N} \|f_k\|_p \tag{8.4}$$

$$=\sum_{k=1}^{\infty} \|f_k\|_p,$$
 (8.5)

а значит функция $x\mapsto \sum_{k=1}^\infty |f_k(x)|$ лежит в $L^p(\mu)$. Значит ряд $\sum_{k=1}^\infty f_k(x)=f(x)$ сходится μ -почти всюду на X. f(x) — измерима, $\left(\int\limits_X |f(x)|^p\,\mathrm{d}\mu\right)^{\frac{1}{p}}<\infty$.

Рассмотрим теперь случай $p = +\infty$. Если $f_k \in L^\infty(\mu) : \sum_{k=1}^\infty \|f_k\|_\infty < \infty$, то $X_k \in \mathcal{A}$ — множество полной меры. $|f_k(x)| \le c_k$ на $X_k \ \forall k$, где $\sum c_k < \infty \implies |\sum f_k(x)| \le \sum c_k$ на $\bigcap_{k=1}^\infty X_k$ — множестве полной меры.

Теорема 8.4. Пусть (X,\mathcal{A},μ) — пространство с мерой, S — множество функций, лежащих в $L^p(X,\mu)$ (при $p<\infty$ такие функции имеют вид $\varphi=\sum_{k=1}^N c_k\chi_{A_k},\ \mu(A_k)<\infty$). Тогда S — плотное подмножество в $L^p(X,\mu)$.

Доказательство. Если $p = \infty$, то утверждение следует из доказательства теоремы об аппроксимации простыми функциями.

Если $1\leqslant p<\infty$, то достаточно аппроксимировать любую неотрицательную функцию в $L^p(X,\mu)$, так как произвольная функция — это линейная комбинация неотрицательных (так как $f\in L^p(X,\mu)\implies f_\pm\in L^p(X,\mu)$). Если же $f\geqslant 0$, то по теореме об аппроксимации существуют $0\leqslant \varphi_n\leqslant f$ — простые, такие, что $\varphi_n\to f$ μ -почти всюду. В частности,

$$\int\limits_X (\varphi_n)^p \,\mathrm{d}\mu \leqslant \int\limits_X (f)^p \,\mathrm{d}\mu < \infty,$$

откуда $\varphi \in S$. Так как $|\varphi_n - f|^p \leqslant 2^p \cdot |f|^p$, по теореме Лебега о мажорированной сходимости $\int\limits_X |\varphi_n - f|^p \, \mathrm{d}\mu \to 0$ при $n \to \infty$. Значит, S плотно в $L^p(X,\mu)$.

Определение. Пусть X — топологическое пространство, μ — борелевская мера на X. μ называется perynaphoй, если для любого борелевского множества $A \subset X$

$$\mu(A) = \inf \{ \mu(U) : U \supset A, U \longrightarrow \text{открыто} \},$$

 $\mu(A) = \sup \{ \mu(C) : C \subset A, C \longrightarrow \text{компакт} \}.$

Замечание. Если μ — борелевская и конечная, то μ — регулярна, если для любого борелевского A и любого $\varepsilon > 0$ найдется открытое множество U и компакт C такие, что $C \subset A \subset U$, $\mu(U \setminus C) < \varepsilon$.

Теорема 8.5. Пусть K — метрический компакт, μ — конечная борелевская мера на K. Тогда μ — регулярна.

Доказательство. Рассмотрим семейство \mathcal{A} , состоящее из борелевских множеств A таких, что $\forall \varepsilon > 0$ существует открытое U и замкнутое C^{14} , такие, что

$$C \subset A \subset U$$
, $\mu(U \setminus A) < \varepsilon$ и $\mu(A \setminus C) < \varepsilon$.

 $^{^{14}}$ То есть C — компакт.

Заметим, что если A — замкнуто, то

$$A = \bigcap_{n=1}^{\infty} \left\{ x \in K : \operatorname{dist}(x, A) < \frac{1}{n} \right\}.$$

Поскольку $\mu(K) < \infty$, по непрерывности μ сверху выполнено

$$\mu(A) = \lim_{n \to \infty} \mu \left\{ x \in K : \text{dist}(x, A) < \frac{1}{n} \right\},$$

а значит $\forall \varepsilon > 0 \; \exists N \in \mathbb{N}$:

$$\mu(U_N\setminus A) где $U_N=\left\{x\in K: \mathrm{dist}\,(x,A)<rac{1}{N}
ight\}.$$$

 U_N — открыто, так как

$$U_N = \bigcup_{\xi \in A} B\left(\xi, \frac{1}{N}\right).$$

В качестве C можно взять C = A, а потому замкнутые множества лежат в \mathcal{A} .

По построению, $A \in \mathcal{A} \iff K \setminus A \in \mathcal{A}$. Пусть теперь $\{E_k\}_{k=1}^{\infty} \subset \mathcal{A}$, покажем, что объединение этого набора тоже лежит в \mathcal{A} . Найдем множества U_k , C_k , такие, что C_k — замкнуто, U_k — открыто,

$$\mu(U_k \setminus E_k) < \frac{\varepsilon}{2^k}, \quad \mu(E_k \setminus C_k) < \frac{\varepsilon}{2^k}.$$

Положим

$$E := \bigcup_{k=1}^{\infty} E_k, \qquad U := \bigcup_{k=1}^{\infty} U_k.$$

Очевидно, что U — открыто, причем

$$\mu(U \setminus E) \leqslant \sum_{k=1}^{\infty} \mu(U_k \setminus E_k) \leqslant \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

Так как $\mu(K) < \infty$, имеем

$$\lim_{N \to \infty} \mu \left(\bigcup_{k=1}^{N} C_k \right) = \mu \left(\bigcup_{k=1}^{\infty} C_k \right),$$

$$\mu \left(E \setminus \bigcup_{k=1}^{\infty} C_k \right) \leq \sum_{k=1}^{\infty} \mu(E_k \setminus C_k) \leq \varepsilon,$$

а потому найдется такое $N \in \mathbb{N}$, что

$$\mu\left(E\setminus\bigcup_{k=1}^N C_k\right)\leqslant 2\varepsilon.$$

Значит можно взять $C = \bigcup_{k=1}^{N} C_k$.

Таким образом, \mathcal{A} — это σ -алгебра, содержащая все замкнутые множества (а значит и все открытые множества), то есть $\mathcal{A} \supset \mathcal{B}(K) \implies \mathcal{A} = \mathcal{B}(K)$.

Теорема 8.6. Пусть (X, ρ) — полное сепарабельное¹⁵ метрическое пространство, μ — конечная борелевская мера на X. Тогда μ регулярна.

Доказательство. Пусть $A \in \mathcal{B}(X), \ \{\xi_k\}_{k=1}^{\infty}$ — счетное всюду плотное подмножество в X. Тогда $\forall n \in \mathbb{N}$

$$X = \bigcup_{k=1}^{\infty} B\left[\xi_k, \frac{1}{n}\right],$$
 где $B\left[\xi_k, \frac{1}{n}\right] = \left\{x \in X : \exists k \in \mathbb{N} \ \rho(x, \xi_k) \leqslant \frac{1}{n}\right\}.$

Значит, $\forall n \in \mathbb{N}$ можем выбрать такое $m_n \in \mathbb{N}$, что

$$\mu\left(A\setminus\bigcup_{k=1}^{m_n}B\left[\xi_k,\frac{1}{n}\right]\right)<\frac{\varepsilon}{2^n}.$$

Рассмотрим множество

$$K := \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{m_n} B\left[\xi_k, \frac{1}{n}\right].$$

Очевидно, что оно замкнуто. В K для любого n есть конечная $\varepsilon/2^n$ -сеть (ξ_1,\ldots,ξ_{m_n}) , а потому K — компакт. 16

Рассмотрим $A'=A\cap K$ и применим предыдущую теорему к пространству (K,ρ) и мере $\widetilde{\mu}\colon E\mapsto \mu(E)$ на $\mathcal{B}(K)$. Значит существует C — компакт: $C\subset A'$ и $\mu(A'\setminus C)<\varepsilon$. Тогда

$$\mu(A \setminus C) \le \mu(A \setminus A') + \varepsilon \tag{8.6}$$

$$= \mu \left(A \setminus \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{m_n} B\left[\xi_k, \frac{1}{n}\right] \right) + \varepsilon \tag{8.7}$$

$$= \mu \left(\bigcup_{n=1}^{\infty} \left(A \setminus \bigcup_{k=1}^{m_n} B\left[\xi_k, \frac{1}{n}\right] \right) \right) + \varepsilon$$
 (8.8)

$$\leqslant \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} + \varepsilon \leqslant 2\varepsilon. \tag{8.9}$$

Для того, чтобы аппроксимировать A сверху открытым множеством, найдем \widetilde{C} — компакт, такой, что $\widetilde{C} \subset X \setminus A$ и $\mu((X \setminus A) \setminus \widetilde{C}) < \varepsilon$. Но тогда $\mu((X \setminus \widetilde{C}) \setminus A) < \varepsilon$, а потому можно взять множество $U = X \setminus \widetilde{C}$, которое открыто как дополнение замкнуто.

Теорема 8.7. Пусть X — полное сепарабельное локально компактное ¹⁷ метрическое пространство, μ — борелевская мера на X, $C_0(X)$ — множество непрерывных функций

¹⁵Содержащее счетное всюду плотное подмножество.

 $^{^{16}}$ Здесь мы пользуемся полнотой пространства X.

 $^{^{17}}$ То есть у любой точки есть такая окрестность, что ее замыкание компактно.

на X с компактным носителем. Если $\mu(C) < \infty$ для любого компакта C в X, то $C_0(X)$ всюду плотно в $L^p(X,\mu)$ при $1 \le p < \infty$.

Доказательство. Так как простые функции плотны в $L^p(X,\mu)$, достаточно доказать, что $\forall \varepsilon > 0 \ \forall A \in \mathcal{B}(X) : \mu(A) < \infty \ \exists \varphi \in C_0(X)$:

$$\left(\int\limits_X |\chi_A-\varphi|^p\,\mathrm{d}\mu\right)^{\frac{1}{p}}<\varepsilon.$$

Рассмотрим меру $\nu \colon E \mapsto \mu(E \cap A)$. Тогда ν — конечная мера на X, а значит существует C — компакт, такой, что $\nu(A \setminus C) < \varepsilon$ и $C \subset A$. Рассмотрим множества

$$U_n := \bigcup_{x \in C} B(x, r_n(x)),$$

где $r_n(x) \in \left(0,\frac{1}{n}\right): B[x,r_n(x)]$ — компакт. Так как C — компакт, существует набор таких точек $\{x_1,\dots,x_{m_n}\}$, что $C\subset U_n'^{18}$, где

$$U_n' = \bigcup_{k=1}^{m_n} B(x_k, r_n(x_k)).$$

Тогда $\overline{U'_n}$ — компакт. Возьмем теперь

$$U_n'' = \bigcap_{k=1}^n U_k'.$$

Поскольку мера μ непрерывна сверху на $\overline{U_1''}$ и $\bigcap_{n=1}^\infty \overline{U_n''} = C, \ \overline{U_{n+1}''} \subset \overline{U_n''},$

 $\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) : \mu(U'_n \setminus C) < \varepsilon.$

Значит $C \subset U_n'' \subset \overline{U_n''}$, то есть C и $X \setminus U_{n_0}''$ — замкнутые непересекающиеся множества, а значит $\exists \varphi \leqslant 1$ на $X, \varphi \in C(X)$,

$$\varphi(x) = \begin{cases} 1, & x \in C, \\ 0, & x \in X \setminus U_{n_0}''. \end{cases}$$

 $\operatorname{supp} \varphi \subset \overline{U_{n_0}''}$ — компакт, значит $\varphi \in C_0(X)$,

$$\int\limits_X |\chi_A - \varphi|^p \,\mathrm{d}\mu = \int\limits_{\overline{U_{n_0}^{\prime\prime}} \setminus C} |\chi_A - \varphi|^p \,\mathrm{d}\mu \leqslant 2^p \mu \left(\overline{U_{n_0}^{\prime\prime}} \setminus C\right) = 2^p \varepsilon.$$

Утверждение 8.8. Пусть $1 \le p < \infty$, $\forall f \in L^p(\mathbb{R}, \lambda_1) \ \forall t \in \mathbb{R}$ обозначим

 $^{^{18}}$ Здесь и далее я заменил для читабельности волны на штрихи, как было на лекции.

 $f_t \colon x \mapsto f(x-t)$. Тогда

$$\lim_{t\to 0} \|f-f_t\|_{L^p(\mathbb{R},\lambda_1)}=0.$$

 \mathcal{A} оказательство. Пусть $\varphi \in C_0(\mathbb{R}): \|f-\varphi\|_p < arepsilon$. Тогда

$$||f - f_t||_p \le ||f - \varphi||_p + ||\varphi - \varphi_t||_p + ||\varphi_t - f_t||_p$$
(8.10)

$$<\varepsilon + \|\varphi - \varphi_t\|_p + \varepsilon,$$
 (8.11)

причем

$$\|\varphi - \varphi_t\|_p \le \lambda_1(\sup(\varphi - \varphi_t)) \cdot \|\varphi - \varphi_t\|_{\infty} \xrightarrow[t \to 0]{} 0.$$

(8.11) — инвариантность относительно сдвига для λ_1 будет позже.

9 Теоремы Тонелли и Фубини

В этом параграфе по умолчанию X, Y — множества, $\mathfrak{A} \subset 2^X$, $\mathfrak{B} \subset 2^Y$ — σ -алгебры. **Определение.** Обозначим через $\mathfrak{A} \otimes \mathfrak{B}$ наименьшую σ -алгебру, содержащую

$$\mathfrak{A} \times \mathfrak{B} = \{A \times B \mid A \in \mathfrak{A}, B \in \mathfrak{B}\}.$$

Замечание. Мы уже доказывали, что $\mathfrak{A} \times \mathfrak{B}$ — полукольцо.

Определение. Пусть $E \subset X \times Y$, определим

$$E_x := \{ y \in Y : (x, y) \in E \},\$$

 $E^y := \{ x \in X : (x, y) \in E \}$

— сечения E, соответствующие $x \in X$ и $y \in Y$ соотвественно.

Утверждение 9.1. Для любых $E \in \mathfrak{A} \otimes \mathfrak{B}, x \in X$ и $y \in Y$ выполнено $E_x \in \mathfrak{B}, E^y \in \mathfrak{A}$. Доказательство. Обозначим

$$\mathfrak{Q} := \{ E \in \mathfrak{A} \otimes \mathfrak{B} : E_x \in \mathfrak{B}, E^y \in \mathfrak{A} \}.$$

Покажем, что \mathfrak{Q} — σ -алгебра. Если $\{E_k\}_{k=1}^\infty\subset\mathfrak{Q}$, то

$$\left(\bigcup_{k=1}^{\infty} E_k\right)_x = \bigcup_{k=1}^{\infty} (E_k)_x \in \mathfrak{B},$$

$$\left(\bigcup_{k=1}^{\infty} E_k\right)^y = \bigcup_{k=1}^{\infty} (E_k)^y \in \mathfrak{A}.$$

Если же $E \in \mathfrak{Q}$, то нетрудно проверить, что $(E^c)_x = (E_x)^c$, $(E^c)^y = (E^y)^c$. Осталось заметить, что для любых $A \in \mathfrak{A}$ и $B \in \mathfrak{B}$

$$(A \times B)_x = \begin{cases} B, & x \in A, \\ \emptyset, & x \notin A, \end{cases} \qquad (A \times B)^y = \begin{cases} A, & y \in B, \\ \emptyset, & y \notin B, \end{cases}$$

то есть $A \times B \in \mathfrak{Q}$, а значит $\mathfrak{Q} = \mathfrak{A} \otimes \mathfrak{B}$.

Утверждение 9.2. Пусть $\mathfrak{A} \subset 2^X$, $\mathfrak{B} \subset 2^Y$ — σ -алгебры, μ — σ -конечная мера на \mathfrak{A} , ν — σ -конечная мера на \mathfrak{B} . Тогда функция множества

$$\varphi \colon A \times B \mapsto \mu(A) \nu(B)$$
, где $A \times B \in \mathfrak{A} \times \mathfrak{B}$,

счетно-аддитивна на полукольце $\mathfrak{A} \times \mathfrak{B}$, и единственным образом продолжается на $\mathfrak{A} \otimes \mathfrak{B}$.

Доказательство. Если $A \times B = \bigsqcup_{k=1}^{\infty} A_k \times B_k$, то

$$\chi_A(x)\chi_B(y) = \chi_{A\times B}(x,y) = \sum_{k=1}^{\infty} \chi_{A_k\times B_k}(x,y).$$
(9.1)

Проинтегрируем это равенство по μ и воспользуемся теоремой Леви:

$$\int_{X} \chi_A(x) \chi_B(y) d\mu = \chi_B(y) \int_{X} \chi_A(x) d\mu = \chi_B(y) \mu(A),$$
(9.2)

$$\int_{X} \sum_{k=1}^{\infty} \chi_{A_k \times B_k}(x, y) = \int_{X} \lim_{N \to \infty} \sum_{k=1}^{N} \chi_{A_k \times B_k}(x, y) \, \mathrm{d}\mu = \lim_{N \to \infty} \int_{X} \sum_{k=1}^{N} \chi_{A_k \times B_k}(x, y) \, \mathrm{d}\mu \quad (9.3)$$

$$= \lim_{N \to \infty} \sum_{k=1}^{N} \int_{X} \chi_{A_k}(x) \chi_{B_k}(y) \, \mathrm{d}\mu = \sum_{k=1}^{\infty} \mu(A_k) \chi_{B_k}(y). \tag{9.4}$$

После интегрирования по ν получаем равенство

$$\mu(A) \nu(B) = \sum_{k=1}^{\infty} \mu(A_k) \nu(B_k), \tag{9.5}$$

то есть счетную аддитивность функции φ . Вторая часть утверждения следует из теоремы Каратеодори.

Определение. Пусть $\mathfrak{A} \subset 2^X$, $\mathfrak{B} \subset 2^Y$ — σ -алгебры, μ, ν — σ -конечные меры на \mathfrak{A} и \mathfrak{B} . Произведением мер $\mu \times \nu$ будем называть стандартное продолжение счетно-аддитивной функции $A \times B \mapsto \mu(A) \, \nu(B)$ полукольца прямоугольников $\mathfrak{A} \times \mathfrak{B}$ на σ -алгебру \mathfrak{A} .

Замечание. $\mathfrak{A} \otimes \mathfrak{B}$ "почти всегда" не совпадает \mathfrak{U} . А именно, если существует непустое множество $E \in \mathfrak{A}$ нулевой меры, а $B \in 2^Y \setminus \mathfrak{B}$, то $E \times B \in \mathfrak{U}$, так как $\mu \times \nu$ — полная мера, $E \times B \subset E \times Y$, и последнее множество имеет меру ноль. При этом по утверждению $9.1 \ E \times B \notin \mathfrak{A} \otimes \mathfrak{B}$, так как в противном случае $(E \times B)_x = B \in \mathfrak{B}$ для любого $x \in E$, что невозможно по определению B.

Определение. *Мера Лебега* на \mathbb{R}^m — это произведение

$$\lambda_m := \underbrace{\lambda_1 \times \lambda_1 \times \ldots \times \lambda_1}_{m \text{ pas}}.$$

Упражнение. Произведение мер ассоциативно.

Упражнение.
$$\mathfrak{B}(\mathbb{R})\otimes\mathfrak{B}(\mathbb{R})\otimes\ldots\otimes\mathfrak{B}(\mathbb{R})=\mathfrak{B}(\mathbb{R}^n).$$

Лемма 9.3. Пусть \mathcal{P} — полукольцо,

$$\mathfrak{A} = \left\{ \bigsqcup_{k=1}^{N} P_k : P_k \in \mathcal{P} \right\}.$$

Тогда 🎗 — алгебра.

Доказательство. Очевидно, что \varnothing , $X \in \mathfrak{A}$. Пересечение элементов \mathfrak{A} — элемент \mathfrak{A} , так как

$$\left(\bigsqcup_{k=1}^{N} P_{k}\right) \cap \left(\bigsqcup_{j=1}^{M} Q_{j}\right) = \bigsqcup_{k,j} P_{k} \cap Q_{j},$$

Кроме того,

$$\left(X\setminus\bigsqcup_{k=1}^N P_k\right)=\bigcap_{k=1}^N (X\setminus P_k),$$

а каждый элемент вида $X \setminus P_k$ по определению полукольца представляется как дизъюнктное объединение конечного числа множеств.

Определение. Семейство $C \subset 2^X$ называется *монотонным классом*, если объединение любой возрастающей последовательности множеств из C и пересечение любой убывающей последовательности множеств из C лежат в C, то есть:

$${P_k}_{k=1}^{\infty} \subset C : P_k \subset P_{k+1} \ \forall k \in \mathbb{N} \implies \bigcup_{k=1}^{\infty} P_k \in C,$$

$$\{Q_k\}_{k=1}^{\infty} \subset C: Q_k \supset Q_{k+1} \ \forall k \in \mathbb{N} \implies \bigcap_{k=1}^{\infty} Q_k \in C.$$

Очевидно, что пересечение произвольного набора монотонных классов — монотонный класс.

Определение. Пусть $\mathcal{E} \subset 2^X$. Монотонным классом, порожденным \mathcal{E} , называется минимальный монотонный класс C, содержащий \mathcal{E} . Он существует всегда, так как 2^X — монотонный класс.

Лемма 9.4 (о монотонном классе). Пусть \mathfrak{A} — алгебра в X, \mathfrak{B} — σ -алгебра, порожденная \mathfrak{A} , C — монотонный класс, порожденный \mathfrak{A} . Тогда $\mathfrak{B} = C$.

Доказательство. По определению σ -алгебры, \mathfrak{B} — монотонный класс, а потому \mathfrak{B} ⊃ C. Достаточно доказать, что C — σ -алгебра. Для произвольного $E \in C$ рассмотрим множество

$$C(E) := \{ F \in C : E \cap F, E \setminus F, F \setminus E \in C \}.$$

Тогда:

- 1. C(E) монотонный класс.
- 2. $E \in C(F) \iff F \in C(E)$ очевидно из симметричности определения C(E).
- 3. Если $E \in \mathfrak{A}$, то $C \subset C(E)$. Действительно, пусть $F \in \mathfrak{A}$. Тогда $F \in C(E)$, так как \mathfrak{A} алгебра, содержащаяся в C. Таким образом, $\mathfrak{A} \subset C(E)$, а значит $C \subset C(E)$, поскольку C(E) монотонный класс, а C минимально.
- 4. Если $F \in C$, то $C \subset C(F)$. По предыдущему пункту для $E \in \mathfrak{A}$ имеем $F \in C(E)$, что по (2) эквивалентно $E \in C(F)$. Значит, $\mathfrak{A} \subset C(F)$, откуда (аналогично предыдущему пункту) следует, что $C \subset C(F)$.

Таким образом, если $F,G \in C$, то $G \in C(F)$, то есть $G \cap F$, $G \setminus F$ и $F \setminus G \in C$. Мы показали, что C — алгебра.

Если $\{E_k\}_{k=1}^{\infty} \subset C$, то

$$\bigcup_{k=1}^{\infty} E_k = \bigcup_{N=1}^{\infty} \left(\bigcup_{k=1}^{N} E_k \right) \implies \bigcup_{k=1}^{\infty} E_k \in C,$$

так как C — монотонный класс. Значит, C — σ -алгебра.

Теорема 9.5 (принцип Кавальери). Пусть μ, ν — конечные меры на $\mathfrak A$ и $\mathfrak B, E \in \mathfrak A \otimes \mathfrak B$. Тогда:

- (1) отображение $x \mapsto \nu(E_x)$ измеримо относительно \mathfrak{A} ;
- (2) отображение $y \mapsto \mu(E^y)$ измеримо относительно \mathfrak{B} ;
- (3) выполнено равенство

$$(\mu \times \nu)(E) = \int_X \nu(E_x) \,\mathrm{d}\mu(x) = \int_Y \mu(E^y) \,\mathrm{d}\nu(y). \tag{9.6}$$

Доказательство.

1. Покажем, что условия (1) — (3) выполняются на полукольце $\mathfrak{A} \times \mathfrak{B}$. Пусть $E = A \times B$, где $A \in \mathfrak{A}$, $B \in \mathfrak{B}$. Тогда

$$E_{x} = (A \times B)_{x} = \begin{cases} B, & x \in A, \\ \emptyset, & x \in X \setminus A. \end{cases}$$

В частности,

$$\nu(E_x) = \begin{cases} \nu(B), & x \in A, \\ 0, & x \in X \setminus A, \end{cases} = \nu(B)\chi_A, \tag{9.7}$$

то есть $x \mapsto \nu(E_x)$ — измеримая относительно $\mathfrak A$ функция, и

$$\int_{X} \nu(E_X) \, \mathrm{d}\mu(X) = \int_{X} \nu(B) \chi_A(X) \, \mathrm{d}\mu = \mu(A)\nu(B) = (\mu \times \nu)(A \times B). \tag{9.8}$$

Доказательство для $y \mapsto \mu(E^y)$ аналогично.

2. Перейдем к общему случаю. Пусть C — множество элементов $\mathfrak{A} \otimes \mathfrak{B}$, удовлетворяющих условию теоремы. Покажем, что C — монотонный класс. Если $\{E_k\}_{k\geqslant 1}\subset C,\, E_i\subset E_{i+1},\,$ то $E=\bigcup_{k=1}^\infty E_k\in\mathfrak{A}\otimes\mathfrak{B},\, E_x\in\mathfrak{B}$ (по утверждению 9.1), а потому определена функция

$$\nu(E_x) = \nu\left(\bigcup_{k=1}^{\infty} (E_k)_x\right) = \lim_{k \to \infty} \nu((E_k)_x).$$

Она измерима относительно **श** как предел измеримых функций. При проверке условия (3) мы можем использовать теорему Леви, так как меры неотрицательны, а последовательность множеств возрастает:

$$(\mu \times \nu) \left(\bigcup_{k=1}^{\infty} E_k \right) = \lim_{k \to \infty} (\mu \times \nu)(E_k) = \lim_{k \to \infty} \int_X \nu((E_k)_x) \, \mathrm{d}\mu(x) \tag{9.9}$$

$$= \int_{X} \lim_{k \to \infty} \nu((E_k)_x) \, \mathrm{d}\mu(x) = \int_{X} \nu(E_x) \, \mathrm{d}\mu(x). \tag{9.10}$$

(формула с интегрированием по <math>Y доказывается так же).

Доказательство того, что $\bigcap_{k=1}^{\infty} E_k \in C$ для любой убывающей последовательности $\{E_k\}$ аналогично, но надо использовать конечность ν в равенстве

$$\nu\left(\bigcap_{k=1}^{\infty} E_k\right) = \lim_{k \to \infty} \nu(E_k),\tag{9.11}$$

а вместо теоремы Леви теорему Лебега о мажорированной сходимости с мажорантой, тождественно равной $\nu(Y)$.

3. Рассмотрим множество

$$\mathfrak{M} = \left\{ \bigsqcup_{k=1}^{N} (A_k \times B_k) \mid A_k \times B_k \in \mathfrak{U} \times \mathfrak{B}, \ N \in \mathbb{N} \right\}.$$

Поскольку $\mathfrak{A} \times \mathfrak{B}$ — полукольцо, \mathfrak{M} — алгебра (лемма 9.3). Покажем, что $\mathfrak{M} \subset C$. Если $E \in \mathfrak{M}$, то нетрудно проверить, что

$$E_{x} = \left(\bigsqcup_{i=1}^{N} (A_{k} \times B_{k})\right)_{x} = \bigsqcup_{i=1}^{N} (A_{k} \times B_{k})_{x}.$$
 (9.12)

Значит, функция

$$\nu(E_x) = \sum_{k=1}^{N} \nu((A_k \times B_k)_x)$$
 (9.13)

измерима как сумма измеримых функций. Пользуясь тем, что свойство (3)

доказано на $\mathfrak{A} \times \mathfrak{B}$, получаем

$$(\mu \times \nu) \left(\bigsqcup_{k=1}^{N} (A_k \times B_k) \right) = \sum_{k=1}^{N} (\mu \times \nu) (A_k \times B_k)$$
 (9.14)

$$= \sum_{k=1}^{N} \int_{X} \nu((A_k \times B_k)_x) d\mu(x)$$
 (9.15)

$$= \int\limits_{X} \sum_{k=1}^{N} \nu ((A_k \times B_k)_x) d\mu(x)$$
 (9.16)

$$= \int_{X} \nu \left(\bigsqcup_{k=1}^{N} (A_k \times B_k)_x \right) d\mu(x). \tag{9.17}$$

Таким образом, $\mathfrak{M} \subset C$.

4. Мы получили, что $\mathfrak{M} \subset C$, где \mathfrak{M} — алгебра, а C — монотонный класс. По лемме о монотонном классе отсюда следует, что $\mathfrak{U} \otimes \mathfrak{B} \subset C$, то есть для любого $E \in \mathfrak{U} \otimes \mathfrak{B}$ выполнено утверждение теоремы.

Определение. Если (X, \mathfrak{A}, μ) — пространство с мерой, то будем называть функцию $h: X \to \overline{\mathbb{R}}$ измеримой *в широком смысле*, если существует такое измеримое множество *е* меры ноль, что h измерима на $X \setminus e$. В этом случае интеграл h определяется следующим образом:

$$\int\limits_X h \,\mathrm{d}\mu := \int\limits_{X \setminus e} h \,\mathrm{d}\mu.$$

Обозначение. Пусть f — функция, определенная на множестве $C \subset X \times Y$. Тогда, фиксируя x или y, мы можем определить сечения f: $f_x(y) = f(x,y)$ на C_x и $f^y(x) = f(x,y)$ на C^y .

Теорема 9.6 (Тонелли). Пусть μ , ν — σ -конечные полные меры на $\mathfrak U$ и $\mathfrak B$, $\mathfrak U$ — алгебра, на которой задана мера $\mu \times \nu$. Тогда для любой измеримой относительно $\mathfrak U$ функции $f: X \times Y \to \mathbb R_+ \cup \{+\infty\}$:

- (1) при μ -почти всех $x \in X$ измерима функция f_x ;
- (1') при ν-почти всех $y \in Y$ измерима функция f^y ;
- (2) функция

$$x \mapsto \varphi(x) = \int_{V} f_x d\nu = \int_{V} f(x, y) d\nu(y)$$

измерима на X в широком смысле;

(2') функция

$$x \mapsto \psi(x) = \int_{Y} f^{y} d\mu = \int_{Y} f(x, y) d\mu(x)$$

измерима на Y в широком смысле;

(3) имеет место равенство

$$\int_{X\times Y} f \,\mathrm{d}(\mu \times \nu) = \int_X \varphi \,\mathrm{d}\mu; \tag{9.18}$$

(3') имеет место равенство

$$\int_{Y \times Y} f \, \mathrm{d}(\mu \times \nu) = \int_{Y} \psi \, \mathrm{d}\nu. \tag{9.19}$$

Равенства в пунктах (3) и (3') можно записать в виде

$$\int_{X\times Y} f(x,y) \, \mathrm{d}(\mu \times \nu) = \int_{X} \left[\int_{Y} f(x,y) \, \mathrm{d}\nu(y) \right] \mathrm{d}\mu(x) \tag{9.20}$$

$$= \int\limits_{Y} \left[\int\limits_{X} f(x, y) \, \mathrm{d}\mu(x) \right] \mathrm{d}\nu(y). \tag{9.21}$$

Доказательство. Будем постепенно доказывать утверждение для более и более широкого класса функций. Во всех пунктах, кроме последнего, меры μ и ν конечны (иначе мы не можем пользоваться принципом Кавальери). Также опускаются доказательства пунктов (1'), (2') и (3'), так как они аналогичны пунктам (1), (2) и (3).

(a) Пусть $f = \chi_E$, где $E \in \mathfrak{A} \otimes \mathfrak{B}$. Тогда нетрудно видеть, что $f_x = \chi_{E_x}$ для всех $x \in X$. Так как E_x измеримо, отсюда следует, что f_x измеримо. По предыдущей теореме отображение

$$x \mapsto \varphi(x) = \int_{V} \chi_{E_x} \, \mathrm{d}\nu(x) = \nu(E_x) \tag{9.22}$$

измеримо, и

$$\int_{X \times Y} \chi_E \, \mathrm{d}(\mu \times \nu) = (\mu \times \nu)(E) = \int_X \nu(E_X) \, \mathrm{d}\mu(X). \tag{9.23}$$

Таким образом, в этом случае все доказано.

(b) Пусть теперь $f = \chi_e$, где $e \in \mathfrak{U}$ и $(\mu \times \nu)(e) = 0$. В этом случае существует такое множество $E \in \mathfrak{U} \otimes \mathfrak{B}$, что $e \subset E$ и $(\mu \times \nu)(E) = 0$ (так как $\mathfrak{U} \otimes \mathfrak{B}$ — борелевская оболочка полукольца $\mathfrak{U} \times \mathfrak{B}$). По пункту (a)

$$0 = (\mu \times \nu)(E) = \int_{X \times Y} \chi_E \, \mathrm{d}(\mu \times \nu) = \int_X \nu(E_X) \, \mathrm{d}\mu(X). \tag{9.24}$$

Значит, $\nu(E_x)=0$ при почти всех $x\in X$, откуда, из полноты меры ν следует, что $e_x\subset E_x$ измеримо при почти всех $x\in X$. Соотвественно, функция $f_x=\chi_{e_x}$ измерима почти везде. Отображение $x\mapsto \varphi(x)=\nu(e_x)$ измеримо почти для всех

 $x \in X$ и равно нулю при таких x (то есть измерима в широком смысле и почти всюду равна нулю). В частности, ее можно проинтегрировать и получить ноль:

$$\int_{X\times Y} \chi_E \,\mathrm{d}(\mu\times\nu) = 0 = \int_X \nu(e_x) \,\mathrm{d}\mu(x) = 0.$$

- (c) Наконец, мы можем доказать теорему для произвольной $\mathfrak U$ -измеримой характеристической функции: если $f=\chi_E$, где $E\in \mathfrak U$, то $\chi_E=\chi_F+\chi_e$ для некоторого $F\in \mathfrak U\otimes \mathfrak B$ и множества $e\in \mathfrak U$ меры ноль. Далее остается воспользоваться тем, что сумма измеримых функций измерима, аддитивностью интеграла, аддитивностью меры, и аддитивностью операции взятия сечения. По аналогичным причинам мы можем считать, что утверждение доказано для простых функций.
- (d) Предположим, что μ и ν конечные меры, и докажем утверждение для произвольной неотрицательной измеримой функции f. Пусть $\{f_n\}$ — набор возрастающих неотрицательных простых функций, стремящихся к f на $X \times Y$. Поскольку $f_x = \lim_{n \to \infty} (f_n)_x$, отображение f_x измеримо для почти всех $x \in X$. Функции

$$\varphi_n(x) = \int_{Y} (f_n)_x \, \mathrm{d}\nu(y) \tag{9.25}$$

измеримы в широком смысле по пункту (c). Поскольку $(f_n)_x \leq (f_{n+1})_x$, по теореме Леви получаем равенство (на некотором подмножестве X полной меры)

$$\varphi(x) = \int_{V} f_x(y) \, \mathrm{d}\nu(y) = \lim_{n \to \infty} \varphi_n(x). \tag{9.26}$$

Отсюда следует измеримость отображения $x \mapsto \varphi(x)$ в широком смысле. Очевидно, что $\varphi_n \leqslant \varphi_{n+1}$, а потому можем еще раз воспользоваться теоремой Леви:

$$\int_{X} \varphi(x) \, \mathrm{d}\mu(x) = \lim_{n \to \infty} \int_{X} \varphi_n(x) \, \mathrm{d}\mu(x) = \lim_{n \to \infty} \int_{X \times Y} f_n(x, y) \, \mathrm{d}(\mu \times \nu) \tag{9.27}$$

$$= \int_{X\times Y} f(x,y) d(\mu \times \nu). \tag{9.28}$$

(е) Наконец, пусть $\mu, \nu - \sigma$ -конечные меры. Тогда $X \times Y = \bigcup_{j=1}^{\infty} (X_j \times Y_j)$, где $X_j \subset X_{j+1}, Y_j \subset Y_{j+1}$, и все множества X_i и Y_j имеют конечную меру;

$$\int_{X\times Y} f(x,y) d(\mu \times \nu) = \int_{X\times Y} \lim_{j\to\infty} \chi_{X_j\times Y_j}(x,y) \cdot f(x,y) d(\mu \times \nu)$$
(9.29)

$$= \lim_{j \to \infty} \int_{X_j \times Y_j} f(x, y) d(\mu \times \nu)$$
 (9.30)

$$= \lim_{j \to \infty} \int_{Y_j} \int_{X_j} f \, \mathrm{d}\mu \, \mathrm{d}\nu = \int_X \int_Y f \, \mathrm{d}\nu \, \mathrm{d}\mu. \tag{9.31}$$

Здесь в последнем неравенстве дважды используется теорема Леви (последовательность интегралов неотрицательной функции по возрастающим множествам).

Заменив неотрицательность на суммируемость, можно получить аналогичную теорему:

Теорема 9.7 (Фубини). Пусть μ , ν — σ -конечные полные меры на $\mathfrak U$ и $\mathfrak B$, $\mathfrak U$ — алгебра, на которой задана мера $\mu \times \nu$. Тогда для любой измеримой и суммируемой относительно $\mu \times \nu$ функции $f: X \times Y \to \overline{\mathbb{R}}$ выполнено:

- (1) при μ -почти всех $x \in X$ измерима функция f_x ;
- (1') при ν-почти всех $y \in Y$ измерима функция f^y ;
- (2) функция

$$x \mapsto \varphi(x) = \int_{Y} f_x d\nu = \int_{Y} f(x, y) d\nu(y)$$

измерима на X в широком смысле;

(2') функция

$$x \mapsto \psi(x) = \int_{Y} f^{y} d\mu = \int_{Y} f(x, y) d\mu(x)$$

измерима на Y в широком смысле;

(3) имеет место равенство

$$\int_{X\times Y} f \, \mathrm{d}(\mu \times \nu) = \int_{X} \varphi \, \mathrm{d}\mu; \tag{9.32}$$

(3') имеет место равенство

$$\int_{X\times Y} f \, \mathrm{d}(\mu \times \nu) = \int_{Y} \psi \, \mathrm{d}\nu. \tag{9.33}$$

Доказательство. Рассмотрим функции f_+ и f_- и применим к ним теорему Тонелли:

$$\int_{X\times Y} f_{\pm} d(\mu \times \nu) = \int_{X} \left(\int_{Y} f_{\pm}(x, y) d\nu(y) \right) d\mu(x) < \infty.$$
 (9.34)

По этой же теореме функции $(f_{\pm})_x$ измеримы при почти всех x; а отображения

$$x \mapsto \varphi_+(x) = \int\limits_V f_+(x,y) \, \mathrm{d}\nu(y), \qquad x \mapsto \varphi_-(x) = \int\limits_V f_-(x,y) \, \mathrm{d}\nu(y)$$

измеримы в широком смысле. Из (9.34) следует, что функции $\varphi_{\pm}(x)$ суммируемы и конечны для почти всех $x \in X$. В свою очередь, из этого следует, что f_{\pm} суммируемы

при почти всех $y \in Y$. Теперь, для доказательства пунктов (1) и (2) остается написать $f_x = (f_+)_x - (f_-)_x$ и $\varphi = \varphi_+ - \varphi_-$ соответственно; а для доказательства пункта (3) взять разность равенств (9.34) и применить соотношения выше.

Пример 9.1. С помощью доказанных теорем можно, например, посчитать интеграл Эйлера – Пуассона:

$$I = \int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$
 (9.35)

Для этого посчитаем квадрат этого интеграла:

$$I^{2} = \int_{0}^{\infty} e^{-x^{2}} dx \cdot \int_{0}^{\infty} e^{-y^{2}} dy = \int_{0}^{\infty} e^{-x^{2}} \left(\int_{0}^{\infty} e^{-y^{2}} dy \right) dx$$
 (9.36)

$$= \int_{0}^{\infty} e^{-x^{2}} \left(\int_{0}^{\infty} x e^{-t^{2}x^{2}} dt \right) dx = \int_{0}^{\infty} \int_{0}^{\infty} x e^{-(t^{2}+1)x^{2}} dt dx$$
 (9.37)

$$= \int_{0}^{\infty} \int_{0}^{\infty} x e^{-(t^2+1)x^2} dx dt = \left[\frac{-1}{2(t^2+1)} e^{(-t^2+1)x^2} \Big|_{x=0}^{\infty} = \frac{1}{2(t^2+1)} \right]$$
(9.38)

$$=\frac{1}{2}\int_{0}^{\infty}\frac{\mathrm{d}t}{t^{2}+1}=\frac{\pi}{4}.$$
(9.39)

Здесь в первом равенстве (9.38) использована теорема Тонелли.

10 Замена переменной в интеграле Лебега

Покажем, что при действии непрерывно-дифференцируемого отображения измеримость (по Лебегу) сохраняется. Для этого нам понадобится несколько вспомогательных фактов.

Теорема 10.1. Для любого измеримого по Лебегу множества $E \subset \mathbb{R}^m$ и $\varepsilon > 0$ существует такое открытое множество G, что $G \supset E$ и $\lambda_m(G \setminus E) < \varepsilon$. ¹⁹

Доказательство. Пусть $\lambda_m(E) < +\infty$. Тогда по определению меры Лебега можно найти такие ячейки $P_n = [a_n, b_n)$, что

$$\bigcup_{n\geqslant 1} P_n \supset E, \qquad \sum_{n=1}^{\infty} \lambda_m(P_n) < \lambda_m(E) + \varepsilon. \tag{10.1}$$

Ясно, что можно выбрать точки $a_n' < a_n$ таким образом, чтобы для всех $n \in \mathbb{N}$ было выполнено неравенство

$$\lambda_m([a'_n, b_n)) < \lambda_m(P_n) + \frac{\varepsilon}{2^n}. \tag{10.2}$$

 $^{^{19}}$ Можно (как мы делали на лекции) не доказывать это утверждение напрямую, а обходить его при помощи общих теорем о регулярности конечных мер.

Положим $G = \bigcup_{n\geqslant 1} (a'_n,b_n)$. Ясно, что G — открыто, $G\supset E$, и

$$\lambda_m(G) \leqslant \sum_{n \geqslant 1} \lambda_m([a'_n, b_n)) < \sum_{n \geqslant 1} \left(\lambda_m(P_n) + \frac{\varepsilon}{2^n} \right) < \lambda_m(E) + 2\varepsilon. \tag{10.3}$$

Таким образом, в случае множества конечной меры теорема доказана.

В общем случае, запишем E как объединение множеств конечной меры²⁰: $E = \bigcup_{n \geqslant 1} E_n$; и для каждого E_n найдем такое открытое G_n , что $\lambda_m(G_n \setminus E_n) < \varepsilon/2^n$. Тогда несложно проверить, что множество $G = \bigcup_{n \geqslant 1} G_n$ удовлетворяет условиям теоремы.

Следствие 10.2. Для любого измеримого по Лебегу множества E и любого $\varepsilon > 0$ существует замкнутое множество $F \subset E$ такое, что $\lambda_m(E \setminus F) < \varepsilon$. Более того, существует компактное множество F, обладающее теми же свойствами.

Доказательство. Очевидно, что подходит $F = G^c$, где G — открытое множество из предыдущей теоремы. Поскольку $\lambda_m(F) = \lim_{n \to \infty} \lambda_m(F \cap [-n, n]^m)$, можно аппроксимировать компактными множествами.

Таким образом, мы доказали регулярность меры Лебега.

Лемма 10.3. Любое измеримое множество $E \subset \mathbb{R}^m$ можно представить в виде

$$E = \left(\bigcup_{n=1}^{\infty} K_n\right) \cup e,\tag{10.4}$$

где $\{K_n\}_{n\in\mathbb{N}}$ — (возрастающая) последовательность компактов, а множество e измеримо и $\lambda_m(e)=0$.

Доказательство. Поскольку $E = \bigcup_{N=1}^{\infty} (E \cap [-N,N]^m)$, можно считать, что множество E ограничено. По регулярности меры Лебега существует такая последовательность компактных множеств $K_n \subset E$, что $\lambda_m(E \setminus K_n) \xrightarrow[n \to \infty]{} 0$. Можно считать, что $K_n \subset K_{n+1}$ (конечное объединение компактов — компакт). Положим

$$e = E \setminus \bigcup_{n \geqslant 1} K_n.$$

Поскольку $\lambda_m(e) \leqslant \lambda_m(E \setminus K_n) \xrightarrow[n \to \infty]{} 0$, множество e имеет меру ноль и мы получаем представление (10.4).

Теорема 10.4. Пусть O — открытое подмножество пространства \mathbb{R}^m , E — измеримое по Лебегу подмножество O, $\Phi \in C^1(O, \mathbb{R}^n)$. Тогда $\Phi(E)$ — тоже измеримо по Лебегу.

Доказательство. Представляя E в виде (10.4), получаем, что

$$\Phi(E) = \Phi(e) \cup \bigcup_{n=1}^{\infty} \Phi(K_n).$$
 (10.5)

 $^{^{20}}$ Это можно сделать в силу σ -конечности.

Поскольку непрерывный образ компакта — компакт, и компактные подмножества \mathbb{R}^m замкнуты, множества $\Phi(K_n)$ измеримы. Таким образом, достаточно лишь доказать, что множество $\Phi(e)$ измеримо. Докажем, что $\lambda_m(\Phi(e)) = 0$.

Итак, пусть $\lambda(e)=0$. Предположим, что $e\subset Q$ и $\overline{Q}\subset O$, где Q — m-мерная ячейка с рациональными координатами. Для любого $\varepsilon>0$ существуют ячейки P_k с рациональными координатами такие, что

$$e \subset \bigcup_{k=1}^{\infty} P_k \subset Q, \qquad \sum_{k=1}^{\infty} \lambda_m(P_k) \leqslant \varepsilon.$$
 (10.6)

Действительно, ячейки в \mathbb{R}^m с рациональными координатами образуют полукольцо, на котором λ_m — счетно-аддитивная функция. Значит, ее можно продолжить по теореме Каратеодори на σ -алгебру, порожденную соответствующей внешней мерой. Очевидно, что эта σ -алгебра совпадает с \mathfrak{U}_m . По единственности в теореме Каратеодори продолжение совпадет с λ_m на \mathfrak{U}_m . Тогда неравенство (10.6) следует из определения λ_m и свойств инфимума.

Так как любая ячейка с рациональными координатами представляется в виде дизъюнктного объединения кубических ячеек, то можно считать, что P_k — кубические ячейки.

По теореме Лагранжа, на \overline{Q} для некоторой константы C выполнено неравенство $\|\Phi(x) - \Phi(y)\| \le C\|x - y\|$. Заметим, что если P — кубическая ячейка с ребром длины h, то diam $\Phi(\overline{P}) \le Ch\sqrt{m}$:

$$\|\Phi(x) - \Phi(y)\| \le C\|x - y\| = C\sqrt{\sum_{k=1}^{\infty} |x_k - y_k|^2}$$
 (10.7)

$$\leqslant C\sqrt{m \cdot \max_{1 \leqslant k \leqslant m} |x_k - y_k|^2} = Ch\sqrt{m}. \tag{10.8}$$

Значит, множество $\Phi(\overline{P})$ содержится в кубе радиуса $2Ch\sqrt{m}$, то есть

$$\lambda_m(\Phi(\overline{P})) \leqslant (2Ch\sqrt{m})^m = \widetilde{C}h^m = \widetilde{C}\lambda_m(\overline{P}) = \widetilde{C}\lambda_m(P). \tag{10.9}$$

Обозначим $H = \bigcup_{n\geqslant 1} \Phi(\overline{P}_n)$. Это множество измеримо, так как оно является счетным объединением компактов, а

$$\lambda_m(H) \leqslant \widetilde{C} \sum_{n=1}^{\infty} \lambda_m(P_n) \leqslant \widetilde{C}\varepsilon,$$
 (10.10)

то есть $\lambda_m(H)=0$. Поскольку $\Phi(e)\subset H$ (смотрим (10.4)), из полноты меры Лебега следует, что $\lambda_m(\Phi(e))=0$.

Поймем, что любое открытое множество можно представить в виде счетного объединения ячеек с рациональными коэффициентами, замыкания которых содержатся в этом множестве. Действительно, каждая точка $x \in O$ лежит в O вместе с некоторой окрестностью, в которой можно найти подходящую ячейку P_x . Очевидно, что

 $O = \bigcup_{x \in X} P_x$. Осталось заметить, что всего ячеек с рациональными коэффициентами счетное число, а потому, выбирая в семействе $\{P_x\}_{x \in O}$ лишь различные элементы, можно получить искомое покрытие.

Находя такое покрытие O и применяя предыдущие рассуждения к множествам $e \cap P_n$, получаем, что $\lambda_m(\Phi(e) \cap P_n) = 0$, а значит и

$$\lambda_m(\Phi(e)) = \sum_{n=1}^{\infty} \lambda_m(\Phi(e) \cap P_n) = 0, \tag{10.11}$$

что и требовалось.

Поймем теперь, что инвариантность относительно сдвигов в существенном определяет меру Лебега.

Теорема 10.5. Пусть μ — мера на σ -алгебре \mathfrak{U}_m лебеговских множеств в \mathbb{R}^m . Тогда следующие условия равносильны:

- 1. $\mu(E+x) = \mu(E)$ для любого $x \in \mathbb{R}^m$ и $E \in \mathfrak{U}_m$, причем $\mu([0,1)^m) < \infty$;
- 2. $\mu = k\lambda_m$ для некоторого $k \ge 0$.

Более того, если (2) выполнено, то $k = \mu([0,1)^m)$.

Доказательство.

 \longleftarrow Очевидно, что $\lambda_m(P+x)=\lambda_m(P)$ для любой ячейки P. По определению,

$$\lambda_m(E) = \inf \left\{ \sum_{k=1}^{\infty} \lambda_m(P_k), \bigcup_{k=1}^{\infty} P_k \supset E \right\},$$

где правая часть инвариантна относительно сдвига. Кроме того, $\lambda_m([0,1)^m)=1$. Значит, мера λ_m (а вместе с ней, конечно, и $\mu=k\lambda_m$) удовлетворяет условию (1).

⇒ Поскольку (по теореме Каратеодори)

$$\mu(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(P_k) : E \subset \bigcup_{k=1}^{\infty} P_k \right\},$$

достаточно показать, что $\mu(P)=k\lambda_m(P)$ для любой ячейки P с рациональными координатами, где $k=\mu([0,1)^m)$. Предположим, что k=1. Тогда достаточно проверить, что $\mu(Q)=\lambda_m(Q)$ для любой кубической ячейки Q с рациональными координатами 21 . Из-за инвариантности относительно сдвига, можно рассматривать лишь ячейки вида $Q_n=[0,\frac{1}{n})^m$. Поскольку $[0,1)^m$ — дизъюнктное объединение n^m ячеек вида Q_n (с точностью до сдвига), имеем $n^m\mu(Q_n)=\mu([0,1)^m)=1$, то есть $\mu(Q_n)=n^{-m}=\lambda_m(Q_n)$.

²¹ Мы уже с этим сталкивались в предыдущей теореме.

Если k — произвольное положительное число, то можно рассмотреть вспомогательную меру $\widetilde{mu} = \mu/k$, которая по рассуждениям выше будет просто совпадать с λ_m , а значит, мы получим, что $\mu = k\lambda_m$.

Наконец, если k=0, то $\mu(\mathbb{R}^m)=0$, то есть μ — нулевая мера. Очевидно, что равенство (2) в этом случае также выполнено.

Изучим теперь поведение меры Лебега при действии линейного отображения.

Теорема 10.6. Пусть $T \in L(\mathbb{R}^m, \mathbb{R}^m)$, $E \subset \mathbb{R}^m$ — измеримое по Лебегу множество. Тогда $\lambda_m(TE) = |\det T| \cdot \lambda_m(E)$.

Доказательство. Заметим для начала, что по теореме 10.4 множество T(E) измеримо по Лебегу. Обозначим $\mu(E) = \lambda_m(TE)$. Нетрудно проверить, что μ — мера, причем $\mu(E+x) = \lambda_m(TE+Tx) = \lambda_m(TE) = \mu(E)$, и, очевидно, $\lambda_m(T([0,1)^m)) < \infty$, а значит, по предыдущей теореме, $\mu(E) = k\lambda_m(E)$ для некоторого числа k.

- 1. Пусть T изометрия, то есть $||Tx|| = ||x|| \ \forall x \in \mathbb{R}^m$. Пусть $k : \mu(E) = k\lambda_m(E) \ \forall E \in \mathcal{U}$. Возьмем $E = \{x \in \mathbb{R}^m : ||x|| \le 1\}$. Тогда $TE = E, k\lambda_m(E) = \mu(E) = \lambda_m(TE) = \lambda_m(E), \ \lambda_m(E) \ne 0$, так как E содержит невырожденный куб. Значит, k = 1, так как $\mu(E) = \lambda_m(E) = |\det T| \cdot \lambda_m(E)$.
- 2. Пусть теперь T имеет вид $\operatorname{diag}(d_1, d_2, \dots, d_m)^{22}$, где $d_1, d_2, \dots, d_m \ge 0$. Как и ранее, $\exists k \ge 0 : \mu(E) = k \lambda_m(E) \ \forall E \in \mathcal{U}$. Рассмотрим $E = [0, 1)^m$,

$$\mu(E) = \lambda_m([0, d_1) \times \ldots \times [0, d_m)) = d_1 d_2 \ldots d_m = \det T = |\det T|.$$

С другой стороны, $\mu(E) = k\lambda_m(E) = k$, а значит $k = |\det E|$.

3. Пусть $T \in L(\mathbb{R}^m, \mathbb{R}^m)$ — произвольное.

Тогда существует изометрия V и $A \in L(\mathbb{R}^m, \mathbb{R}^m)$ такие, что T = VA, где $A \geqslant 0$ (полярное представление матрицы)²³. Существует U — изометрия: $A = U^{-1}DU$, где $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_m)$, λ_i — собственные числа A. Тогда $T = VU^{-1}DU$,

$$\lambda_m(TE) = \lambda_m(DUE) = \det D\lambda_m(E) = \det D \cdot \lambda_m(E)$$

так как VU^{-1} и U — изометрии. Отсюда следует, что

$$\det T = |\det V U^{-1}| \det D \cdot |\det U| = \det D = k.$$

Определение. Пусть $(X, \mathfrak{A}, \mu), (Y, \mathfrak{B}, \nu)$ — два пространства с мерами, $\Phi \colon X \to Y$ — измеримое отображение, то есть $\Phi^{-1}(B) \in \mathfrak{A}$ для любого $B \in \mathfrak{B}$. Мера ν называется

²²Диагональная матрица.

²³Будет доказано позже в курсе функционального анализа/или уже было доказано в алгебре.

взвешенным образом меры μ , если существует неотрицательная измеримая относительно $\mathfrak A$ функция ω такая, что для любого $B \in \mathfrak B$

$$\nu(B) = \int_{\Phi^{-1}(B)} \omega \,\mathrm{d}\mu. \tag{10.12}$$

Теорема 10.7. Пусть ν — взвешенный образ меры μ . Тогда для любой неотрицательной измеримой относительно $\mathfrak B$ функции f выполнено

$$\int_{Y} f \, d\nu = \int_{X} f(\Phi)\omega \, d\mu. \tag{10.13}$$

 \mathcal{A} оказательство. Пусть сначала $f=\chi_B$, где $B\in\mathfrak{B}$. Тогда

$$f(\Phi(x)) = \begin{cases} 1, & x \in \Phi^{-1}(B) \\ 0, & x \notin \Phi^{-1}(B) \end{cases} = \chi_{\Phi^{-1}(B)}(x),$$

а значит

$$\int_{Y} f \, d\nu = \nu(B) = \int_{\Phi^{-1}(B)} \omega \, d\mu = \int_{X} \chi_{\Phi^{-1}(B)} \omega \, d\mu.$$
 (10.14)

Значит, равенство (10.13) выполнено и для простых функций. Общий случай следует из теоремы об аппроксимации и теоремы Леви.

Следствие 10.8. Равенство (10.13) верно и для суммируемых функций, так как можно рассмотреть f_{\pm} .

Следствие 10.9. Если $B \in \mathfrak{B}, f$ — измерима, $f \geqslant 0$ или f — суммируема, то

$$\int_{B} f \, \mathrm{d}\nu = \int_{\Phi^{-1}(B)} f(\Phi)\omega \, \mathrm{d}\mu.$$

Доказательство. Можно применить теорему выше к функции $f \cdot \chi_B$.

Определение. Пусть μ, ν — меры на измеримом пространстве (X, \mathfrak{A}) . Будем говорить, что ν *имеет плотность* относительно μ , если существует такая измеримая относительно \mathfrak{A} неотрицательная функция ω , что для любого $E \in \mathfrak{A}$

$$\nu(E) = \int_{E} \omega \,\mathrm{d}\mu. \tag{10.15}$$

Теорема 10.10. Пусть μ, ν — меры на $(X, \mathfrak{A}), \omega$ — неотрицательная функция, измеримая относительно \mathfrak{A} . Следующие условия равносильны:

1. ω — плотность ν относительно μ ;

2. для любого измеримого множества $E \subset X$ выполнены неравенства²⁴

$$\left(\inf_{x\in E}\omega(x)\right)\mu(E)\leqslant\nu(E)\leqslant\left(\sup_{x\in E}\omega(x)\right)\mu(E). \tag{10.16}$$

Доказательство.

- \implies Очевидно: интеграл ω можно оценить сверху и снизу супремумом и инфимумом соотвественно, а интеграл единицы это $\mu(A)$.

Пусть $q \in (0, 1)$. Рассмотрим множества

$$E_n := \{ x \in E : q^{n+1} \le \omega(x) < q^n \}, \tag{10.17}$$

где $n \in \mathbb{Z}$. Ясно, что

$$\bigsqcup_{n\in\mathbb{Z}} E_n = \{x \in E : \omega(x) \in (0, +\infty)\} = E, \tag{10.18}$$

причем это выполнено для любого q. Очевидно,

$$\int_{E} \omega \, \mathrm{d}\mu = \sum_{n \in \mathbb{Z}} \int_{E_{n}} \omega \, \mathrm{d}\mu. \tag{10.19}$$

По определению E_n для любого $n \in \mathbb{Z}$ выполнены неравенства

$$q^{n+1}\mu(E_n) \leqslant \int_{E_n} \omega \,\mathrm{d}\mu \leqslant q^n \mu(E_n). \tag{10.20}$$

По условию (2), $q^{n+1}\mu(E_n) \le \nu(E_n) \le q^n\mu(E_n)$. Умножая последнюю пару неравенств на q или на 1/q и пользуясь (10.20), получаем

$$q\nu(E_n) \leqslant q^{n+1}\mu(E_n) \leqslant \int_{E_n} \omega \,\mathrm{d}\mu \leqslant q^n\mu(E_n) \leqslant \frac{1}{q}\nu(E_n). \tag{10.21}$$

После суммирования по $n \in \mathbb{Z}$ имеем

$$q\nu(E) \leqslant \int\limits_{E} \omega \,\mathrm{d}\mu \leqslant \frac{1}{q}\nu(E).$$
 (10.22)

 $[\]overline{\ \ \ \ \ \ \ \ \ \ \ \ \ }^{24}$ Отметим, что в этих неравенствах могут появиться выражения вида $0\cdot (+\infty)$ и $(+\infty)\cdot 0$. Они считаются равными нулю.

Переходя к пределу $q \to 1$ (снизу), получаем искомое равенство.

Если $\Phi \in C^1(O, \mathbb{R}^m)$, где O — открыто в \mathbb{R}^m , то через $J(x) = \det [\mathrm{d}_x \Phi]$ будем обозначать якобиан Φ в точке $x \in O$.

Теорема 10.11. Пусть O — открытое подмножество \mathbb{R}^m , $\Phi \colon O \to \mathbb{R}^m$ — диффеоморфизм на свой образ, $E \subset O$ — измеримое по Лебегу множество, f — либо неотрицательная, либо суммируемая на E измеримая по Лебегу функция. Тогда

$$\int_{E} f \, \mathrm{d}\lambda_{m} = \int_{\Phi^{-1}(E)} f(\Phi(x)) |J(x)| \, \mathrm{d}\lambda_{m}(x). \tag{10.23}$$

Доказательство. На самом деле, достаточно показать, что

$$\lambda_m(\Phi(E)) = \int_E |J(x)| \, \mathrm{d}\lambda_m(x),\tag{10.24}$$

(замечание: проверяли, что $\Phi(E)$ - измеримо, то есть левая часть равенства выше определена) так как тогда

$$\lambda_m(E') = \int_{\Phi^{-1}(E')} |J(x)| \, \mathrm{d}\lambda_m(x), \tag{10.25}$$

для всякого $E' \subset \Phi(O)$, $E' \in \mathfrak{U}$; то есть λ_m на $\Phi(O)$ — это взвешенный образ λ_m на O с весом |J(x)|. По теореме о замене переменной будет выполнено равенство (10.23). По предыдущей теореме достаточно показать, что

$$\inf_{x \in A} |J(x)| \lambda_m(A) \le \lambda_m(\Phi(A)) \le \sup_{x \in A} |J(x)| \lambda_m(A). \tag{10.26}$$

Заметим, что достаточно доказать только правую часть неравенства. Действительно, если выполнена правая часть, рассмотрим отображение $\Psi \colon \Phi(O) \to O$ обратное к Φ , то есть $\Psi = \Phi^{-1}$:

$$\lambda_m(A) = \lambda_m(\Psi(\Phi(A))) \leq \sup_{y \in \Phi(A)} |\det(\mathsf{d}_y \Psi(y))| \lambda_m(\Phi(A)),$$

причем

$$\begin{aligned} &\sup_{y \in \Phi(A)} |\det(\mathbf{d}_y \Psi(y))| = \sup_{x \in A} \frac{1}{|\det(\mathbf{d}_x \Phi(x))|} \\ &= [\det(\mathbf{d}_{\Phi(x)} \Psi) \cdot \det(\mathbf{d}_x \Phi) = 1] \\ &= \frac{1}{\inf_{x \in A} |\det(\mathbf{d}_x \Phi)|} = \frac{1}{\inf|J(x)|}. \end{aligned}$$

Таким образом, $\inf |J(x)| \cdot \lambda_m(A) \leq \lambda_m(\Phi(A))$, а значит можно доказывать только правую часть.

Рассмотрим случай, когда A=Q — кубическая ячейка, такая, что $\overline{Q}\subset O.$ Пусть L

— длина ребра Q. Пусть $\exists c>\sup_{x\in Q}|J(x)|:\lambda_m(\Phi(Q))\geqslant c\cdot\lambda_m(Q)$. Разобьем Q на 2^m кубических ячеек с длиной L/2. Существует Q_1 — одна из этих ячеек, такая, что на ней

$$\lambda_m(\Phi(Q_1)) \geqslant c\lambda_m(Q_1).$$

Разобьем Q_1 на 2^m кубических ячеек с длиной ребра L/4. Опять же, для одной из них, скажем, Q_2 , будет верно неравенство

$$\lambda_m(\Phi(Q_2)) \geqslant c\lambda_m(Q_2).$$

Продолжая процесс аналогичным образом, получим последовательность вложенных кубических ячеек Q_n , причем $\exists a \in \bigcap_{n=1}^\infty \overline{Q}_n$. Эта точка лежит в O, поскольку $\overline{Q} \subset O$. Кроме того, имеет место равенство

$$\Phi(Q_n) = \Phi(a) + (d_a \Phi)(Q'_n) + R_n.$$

где Q_n' — кубическая ячейка с ребром $\frac{L}{2^n}$, содержащая ноль, и $\operatorname{diam}(R_n) = o\left(\frac{L}{2^n}\right)$ при $n \to \infty$. $\operatorname{d}_a \Phi$ обратимо, так как Φ — диффеоморфизм. Значит,

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : (d_a \Phi)(Q'_{n \varepsilon}) \supset (d_a \Phi)(Q'_n) + R_n,$$

где $Q'_{n,\varepsilon}$ — куб с ребром длины $\frac{(1+\varepsilon)L}{2^n}$ и тем же центром, что и Q'_n . Тогда

$$\begin{split} \Phi(Q_n) &\subset \Phi(a) + (\mathrm{d}_a \Phi)(Q'_{n,\varepsilon}), \\ \lambda_m(\Phi(Q_n)) &\leqslant [\text{для больших } n] \leqslant \lambda_m((\mathrm{d}_a \Phi)(Q'_{n,\varepsilon})) \\ &= |J(a)|(1+\varepsilon)^m \lambda_m(Q'_n) \\ &= |J(a)|(1+\varepsilon)^m \lambda_m(Q_n) \\ &\Longrightarrow c\lambda_m(Q_n) \leqslant |J(a)|(1+\varepsilon)^m \lambda_m(Q_n) \\ &\Longrightarrow c \leqslant |J(a)|(1+\varepsilon)^m \ \forall \varepsilon > 0 \\ &\Longrightarrow c \leqslant |J(a)|. \end{split}$$

Противоречие.

Если теперь $A\subset O$ — открытое множество, то представим A в виде $A=\bigsqcup_{n=1}^\infty Q_n$, где Q_n — кубическая ячейка, $\overline{Q}_n\subset A\subset O$. Тогда

$$\lambda_m(\Phi(A)) = \sum_{n=1}^{\infty} \lambda_m \Phi(Q_n) \leqslant \sum_{x \in Q_n} \sup_{|J(x)|} |J(x)| \cdot \lambda_m(Q_n) \leqslant \sup_{x \in A} |J(x)| \cdot \lambda_m(A).$$

Если $A \in \mathcal{U}$, то существуют открытые вложенные множества $A_n \supset A$ такие, что $A \cup e = \bigcap_{n=1}^{\infty} A_n$, где $e \in \mathcal{U} : \lambda_m(e) = 0$, причем $\bigcap_{n=1}^{\infty} A_n = \overline{A}$. Тогда

$$\lambda_m(\Phi(A)) = [\lambda_m(\Phi(e)) = 0] = \lambda_m \left(\bigcap_{n=1}^{\infty} \Phi(A_n)\right)$$

$$\leqslant \limsup_{n \to \infty} \left(\sup_{x \in A_n} |J(x)| \cdot \lambda_m(A_n) \right) \\
\leqslant \sup_{x \in \overline{A}} |J(x)| \cdot \lambda_m(A).$$

В последнем неравенстве мы воспользовались непрерывностью сверху для меры Лебега, которая верна для множеств A конечной меры, в общем случае надо разбить A на не более чем счетное число кусков конечного диаметра. Используя непрерыность J, можно заменить \overline{A} на A в правой части, что завершает доказательство.

Пример 10.1. Рассмотрим множество $V = \{(x, y, z) : 0 < z < 1, x^2 + y^2 < z\}$ (усеченный параболоид — ведро). Посчитаем его объем.

$$\lambda_3(V) = \int\limits_V 1 \,\mathrm{d}\lambda_3.$$

Обозначим $\widetilde{V}=\{(r,\varphi,h):\varphi\in(0,2\pi),\ h\in(0,1),\ r\in(0,\sqrt{h})\}$ и $\Phi\colon(r,\varphi,h)\mapsto(r\cos\varphi,r\sin\varphi,h).$ Тогда

$$\Phi(\widetilde{V}) = V \setminus \{(x,y,z) : y = 0, x > 0\} = V'.$$

Очевидно, что Ф — диффеоморфизм. Тогда

$$\int\limits_{V} 1 \mathrm{d}\lambda_{3} = \int\limits_{\widetilde{V}} 1(\Phi)|J(x)|\mathrm{d}\lambda_{3} = \int\limits_{\widetilde{V}} |J(x)|\mathrm{d}\lambda_{3}$$

$$= \left[\int\limits_{V} J(x) = \det\begin{pmatrix} \cos\varphi & -r\sin\varphi & 0\\ \sin\varphi & r\cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix} = r\right]$$

$$= \int\limits_{\widetilde{V}} r\,\mathrm{d}\lambda_{3} = \int\limits_{(0,1)\times(0,2\pi)\times(0,1)} \chi_{(0,\sqrt{h})}(r)r\mathrm{d}\lambda_{3}$$

$$= \left[\text{теорема Тонелли}\right]$$

$$= \int\limits_{0}^{2\pi} \int\limits_{0}^{1} \int\limits_{0}^{1} \chi_{(0,\sqrt{h})}(r)r\,\mathrm{d}r\,\mathrm{d}h\,\mathrm{d}\varphi$$

$$= 2\pi \int\limits_{0}^{1} \int\limits_{0}^{\sqrt{h}} r\,\mathrm{d}r\,\mathrm{d}h$$

$$= 2\pi \int\limits_{0}^{1} \frac{h}{2}\,\mathrm{d}h = \frac{\pi}{2}.$$

11 Заряды. Разложения Хана и Жордана

В этом параграфе зафиксировано измеримое пространство (X,\mathfrak{A}) .

Определение. *Зарядом* называется счетно-аддитивная функция со значениями в $\mathbb C$ на X.

Таким образом, функция $\nu \colon \mathfrak{A} \to \mathbb{C}$ — заряд, если для любого дизъюнктного набора $\{A_k\}_{k\geqslant 1} \subset \mathfrak{A}$ выполнено равенство

$$\nu\left(\bigsqcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \nu(A_k),\tag{11.1}$$

где ряд справа сходится в \mathbb{C} .

Определение. Будем называть заряд ν вещественным, если $\nu(\mathfrak{A}) \subset \mathbb{R}$.

Утверждение 11.1. Пусть ν — заряд. Если $\{A_k\}_{k\geqslant 1}$ — возрастающая последовательность измеримых множеств в X, то

$$\nu\left(\bigcup_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} \nu(A_k). \tag{11.2}$$

Если $\{B_k\}_{k\geqslant 1}$ — убывающая последовательность измеримых множеств в X, то

$$\nu\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \nu(B_k). \tag{11.3}$$

Доказательство. Определим последовательность $\{Q_k\}_{k\geqslant 1}: Q_1=A_1,\ Q_k=A_k\setminus \bigcup_{j=1}^{k-1}A_j.$ Тогда

$$\nu\left(\bigcup_{k=1}^{\infty} A_k\right) = \nu\left(\bigsqcup_{k=1}^{\infty} Q_k\right) = \sum_{k=1}^{\infty} \nu(Q_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \nu(Q_k) = \lim_{n \to \infty} \nu(A_n).$$
 (11.4)

Для убывающей последовательности имеем

$$\nu(X) - \nu\left(\bigcap_{k=1}^{\infty} B_k\right) = \nu\left(\bigcup_{k=1}^{\infty} (X \setminus B_k)\right) = \lim_{k \to \infty} (\nu(X) - \nu(B_k)) = \nu(X) - \lim_{k \to \infty} \nu(B_k), \quad (11.5)$$

откуда очевидным образом следует (11.3).

Определение. Пусть ν — заряд на X. Измеримое множество P называется *множеством положительности* заряда ν , если $\nu(E) \geqslant 0$ для любого измеримого $E \subset P$.

Аналогично, N называется множеством отрицательности для ν , если $\nu(E) \leqslant 0$ для любого измеримого $E \subset N$.

Наконец, измеримое множество Z называется *нуль-множеством* для ν , если $\nu(E)=0$ для любого измеримого $E\subset Z$.

Лемма 11.2.

1. Если P — множество положительности, \widetilde{P} — некоторое измеримое подмножество P, то \widetilde{P} — тоже множество положительности.

2. Если $\{P_k\}_{k\geqslant 1}$ — набор множеств положительности, то $\bigcup_{k=1}^{\infty} P_k$ — множество положительности.

Доказательство.

- 1. Очевидно.
- 2. Как мы знаем, объединение $\bigcup_{k=1}^{\infty} P_k$ допускает представление в виде $\bigsqcup_{k=1}^{\infty} Q_k$, где $Q_1 = P_1$, $Q_k = P_k \setminus \bigcup_{j=1}^{k-1} P_j \subset P_k$. Заметим, что по первому пункту каждое Q_k тоже множество положительности. Значит, для любого измеримого $E \subset \bigcup_{k=1}^{\infty} P_k$:

$$\nu(E) = \nu\left(\bigsqcup_{k=1}^{\infty} (E \cap Q_k)\right) = \sum_{k=1}^{\infty} \nu(E \cap Q_k) \geqslant 0, \tag{11.6}$$

что и требовалось.

Теорема 11.3 (Хан). Пусть ν — вещественный заряд на X. Тогда пространство X можно представить в виде дизъюнктного объединения множества положительности и множества отрицательночти: $X = P \sqcup N$. Более того, если P', N' — другая пара множеств с такими свойствами, то $P \triangle P'$, $N \triangle N'$ — нуль-множества для ν .

Определение. Разложение $X = P \sqcup N$, описанное в теореме выше, называется *разложением Хана* пространства X для заряда ν .

Доказательство. Пусть $a = \sup\{\nu(P)\}$, где супремум берется по всем множествам положительности P. Ясно, что существует такая последовательность $\{P_k\}_{k\geqslant 1}$ множеств положительности, что $\nu(P_k) \xrightarrow[k\to\infty]{} a$. Тогда $P := \bigcup_{k=1}^\infty P_k$ — множество положительности, причем $\nu(P) \geqslant a$. Раз a — супремум, это значит, что $\nu(P) = a$. Положим $N = X \setminus P$.

Хотим доказать, что N — множество отрицательности. Если любое измеримое множество $A \subset N$ имеет неположительную меру, то доказывать нечего. Заметим, что не существует множества положительности $A \subset N$, $\nu(A) > 0$, так как иначе бы $P \sqcup A$ было бы множеством положительности с $\nu(P \sqcup A) > a$, что невозможно.

Таким образом, если $A\subset N$ — измеримо, $\nu(A)>0$, то для некоторого $B\subset A$ выполнено $\nu(B)<0$. Тогда множество $C=A\setminus B\subset A$ обладает свойством $\nu(C)>\nu(A)$. В частности, $\exists n\in \mathbb{N}: \nu(C)\geqslant \nu(A)+\frac{1}{n}$. Пусть n_1 — минимальное число , обладающее таким свойством. Также обозначим $A_1=C$.

Далее аналогичным образом мы можем найти такие A_2 , n_2 , что $A_2 \subset A_1$, и n_2 — минимальное натуральное число, для которого выполнено неравенство $\nu(A_2) \geqslant \nu(A_1) + \frac{1}{n_2}$. По индукции получаем последовательность $\{(A_k, n_k)\}_{k\geqslant 1}$. Посмотрим на множество $E = \bigcap_{n=1}^{\infty} A_n$. Имеем:

$$\nu(E) = \lim_{n \to \infty} \nu(A_n) \geqslant \sum_{k=1}^{\infty} \frac{1}{n_k}.$$
 (11.7)

Значит, ряд $\sum_{k=1}^{\infty}\frac{1}{n_k}$ сходится. В частности, последовательность $\{n_k\}_{k\in\mathbb{N}}$ стремится к бесконечности. Поскольку $\nu(E)>\frac{1}{n_1}>0$, существует такое $\widetilde{C}\subset E$, что $\nu(\widetilde{C})\geqslant \nu(E)+\frac{1}{n}$ для некоторого $n\in\mathbb{N}$. Пусть $M\in\mathbb{N}$ таково, что $n_j>n$ для всех $j\geqslant M$. Но тогда на

j-ом шаге можно было взять \widetilde{C} вместо A_{n_j} , то есть n_j не минимально для любого $j\geqslant M.$ Значит, такого множества $A\subset N$, что $\nu(A)>0$, не существует, и первая часть теоремы доказана.

Пусть $P' \sqcup N'$ — другое разложение Хана. Покажем, что $P \triangle P' = (P \setminus P') \cup (P' \setminus P)$ — нуль-множество. Множество $P \setminus P'$ — это множество положительности, так как $P \setminus P' \subset P$. С другой стороны, $P \setminus P' \subset N'$, то есть это множество отрицательности. Таким образом, $P \setminus P'$ — нуль-множество. Аналогично, $P' \setminus P$ — нуль-множество, а значит и $P \triangle P'$ — нуль-множество. Рассматривая — ν вместо ν видим, что и $N \triangle N'$ — тоже нуль-множество.

Определение. Пусть μ_1 , μ_2 — меры на X. Говорят, что μ_1 взаимно сингулярна с μ_2 , если существует разложение $X = X_1 \sqcup X_2$, где X_1, X_2 — измеримы, и $\mu_1(X_2) = 0$, $\mu_2(X_1) = 0$. В этом случае будем писать $\mu_1 \perp \mu_2$.

Заряд ν сингулярен относительно меры μ , если существует разбиение $X=X_1\sqcup X_2$, где $\mu(X_1)=0$, а X_2 — нуль-множество для ν .

Пример 11.1. Пусть $X = [0,1], \mathfrak{A} = \mathfrak{B}([0,1])$. Тогда меры

$$\mu_1: E \mapsto \lambda_1(E \cap [0, \frac{1}{2}]), \qquad \mu_2: E \mapsto \lambda_1(E \cap [\frac{1}{2}, 1]),$$

взаимно сингулярны, где искомое разбиение — $X=[0,\frac{1}{2})\sqcup [\frac{1}{2},1].$

Пример 11.2. Пусть $X=\mathbb{R},\ \mathfrak{A}=\mathfrak{B}_1=\mathfrak{B}(\mathbb{R}),\ \mu_1=\lambda_1,\ \mu_2=\delta_0,$ где

$$\delta_0(E) = \begin{cases} 1, & \text{если } 0 \in E, \\ 0, & \text{если } 0 \notin E. \end{cases}$$

Тогда меры μ_1 и μ_2 взаимно сингулярны с разложением $X = (\mathbb{R} \setminus \{0\}) \sqcup \{0\}$.

Теорема 11.4 (Жордан). Пусть ν — заряд на X. Тогда существуют и единственны такие конечные меры $\nu_+, \nu_-, \widetilde{\nu}_+, \widetilde{\nu}_-,$ что $\nu_+ \perp \nu_-, \widetilde{\nu}_+ \perp \widetilde{\nu}_-,$ и

$$\nu = (\nu_+ - \nu_-) + i(\widetilde{\nu}_+ - \widetilde{\nu}_-). \tag{11.8}$$

Доказательство. Достаточно рассмотреть случай, когда ν — вещественный заряд. Пусть $X = P \sqcup N$ — разложение Хана для ν . Положим

$$\nu_{+}(E) = \nu(E \cap P), \qquad \nu_{-}(E) = -\nu(E \cap N),$$
 (11.9)

Из определения видно, ν_{\pm} — конечные меры, причем

$$\nu(E) = \nu((E \cap P) \sqcup (E \cap N)) = \nu(E \cap P) + \nu(E \cap N) = \nu_{+}(E) - \nu_{-}(E). \tag{11.10}$$

Таким образом, существование доказано. Покажем единственность. Пусть $\nu = \widetilde{\nu}_+ - \widetilde{\nu}_-$, где $\widetilde{\nu}_\pm$ — меры, $\widetilde{\nu}_+ \perp \widetilde{\nu}_-$. Найдем разложение $X = \widetilde{P} \sqcup \widetilde{N}$ из определения взаимной сингулярности. Если $\widetilde{\nu}_+(\widetilde{N}) = 0$ и $\widetilde{\nu}_-(\widetilde{P}) = 0$, то нетрудно видеть, что \widetilde{P} — множество положительности, а \widetilde{N} — множество отрицательности, то есть $X = \widetilde{P} \sqcup \widetilde{N}$ — разложение Хана. Тогда $P \triangle \widetilde{P}$, $N \triangle \widetilde{N}$ — нуль-множества для ν .

Пусть E — измеримое множество. Тогда:

$$\nu_{+}(E) = \nu(E \cap P) = \nu(E \cap (P \cap \widetilde{P})) + \nu(E \cap (P \setminus \widetilde{P})) = \nu(E \cap P \cap \widetilde{P}). \tag{11.11}$$

Аналогично,

$$\widetilde{\nu}_{+}(E) = \nu(E \cap \widetilde{P}) = \nu(E \cap P \cap \widetilde{P}), \tag{11.12}$$

откуда
$$\nu_+ = \widetilde{\nu}_+$$
 и $\nu_- = \widetilde{\nu}_-$.

Определение. Пусть ν — заряд на X. Вариацией ν будем называть функцию множества $|\nu|$ на \mathfrak{A} :

$$|\nu|(E) = \sup \left\{ \sum_{k=1}^{\infty} |\nu(E_k)| : \{E_k\}_{k \in \mathbb{N}} \subset \mathfrak{A}, \bigsqcup_{k=1}^{\infty} E_k = E \right\}.$$
 (11.13)

Замечание. $|\nu|(E) \neq |\nu(E)|$.

Теорема 11.5. $|\nu|$ — конечная мера на X.

Доказательство. Покажем, что $|\nu|(E) < \infty$ для любого $E \in \mathfrak{A}$ (в частности, для E = X):

$$|\nu|(E) = \sup \left\{ \sum_{k=1}^{\infty} |\nu(E_k)| \right\}$$
 (11.14)

$$\leq \sup \left\{ \sum_{k=1}^{\infty} (\nu_{+}(E_{k}) + \nu_{-}(E_{k}) + \widetilde{\nu}_{+}(E_{k}) + \widetilde{\nu}_{-}(E_{k})) \right\}$$
 (11.15)

$$\leq \nu_{+}(X) + \nu_{-}(X) + \widetilde{\nu}_{+}(X) + \widetilde{\nu}_{-}(X) < \infty. \tag{11.16}$$

Здесь $\nu_+, \nu_-, \widetilde{\nu}_+, \widetilde{\nu}_-$ — конечные меры из разложения Жордана для ν .

Покажем счетную аддитивность $|\nu|$. Пусть $A=\bigsqcup_{k=1}^\infty A_k$, зафиксируем $\varepsilon>0$. Тогда

$$|\nu|(A) \leqslant \sum_{k=1}^{\infty} |\nu(E_k)| + \varepsilon$$
, где $A = \bigsqcup_{k=1}^{\infty} E_k$. (11.17)

Значит,

$$|\nu|(A) \leqslant \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} |\nu(E_k \cap A_j)| + \varepsilon = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |\nu(E_k \cap A_j)| + \varepsilon \leqslant \sum_{j=1}^{\infty} |\nu|(A_j) + \varepsilon, \qquad (11.18)$$

так как $A_j = \bigsqcup_{k=1}^{\infty} (E_k \cap A_j)$. Значит,

$$|\nu|(A) \leqslant \sum_{j=1}^{\infty} |\nu|(A_j). \tag{11.19}$$

Обратная оценка: пусть $A_j = \bigsqcup_{k=1}^{\infty} A_{jk}$, где

$$|\nu|(A_j) \leqslant \sum_{k=1}^{\infty} |\nu(A_{jk})| + \frac{\varepsilon}{2^j}.$$
 (11.20)

Тогда

$$\sum_{j=1}^{\infty} |\nu|(A_j) \leqslant \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |\nu(A_{jk})| + \varepsilon \leqslant |\nu| \left(\bigsqcup_{k,j=1}^{\infty} A_{jk} \right) + \varepsilon = |\nu|(A) + \varepsilon.$$
 (11.21)

Отсюда очевидным образом следует, что

$$\sum_{i=1}^{\infty} |\nu|(A_j) \le |\nu|(A). \tag{11.22}$$

Таким образом, равенство доказано.

Теорема 11.6. Множество зарядов ν на X с нормой $\|\nu\| = |\nu|(X)$ образует полное линейное нормированное пространство.

Доказательство. Для начала покажем, что $|\nu|(X)$ — это норма:

- 1. $|\nu|(X) \geqslant 0$ очевидно; условие $|\nu|(X) = 0$ эквивалентно тому, что $\nu(E) = 0 \ \forall E \in \mathfrak{A}$, то есть условию $\nu = 0$.
- 2. $|\alpha \nu|(X) = |\alpha| \cdot |\nu|(X) \ \forall \alpha \in \mathbb{C}$ очевидно.
- 3. Надо просто разбить супремум на два:

$$|\nu_1 + \nu_2|(X) = \sup\left\{ \sum_{k=1}^{\infty} |\nu_1 + \nu_2|(E_k) \right\}$$
 (11.23)

$$\leq \sup \left\{ \sum_{k=1}^{\infty} |\nu_1(E_k)| \right\} + \sup \left\{ \sum_{k=1}^{\infty} |\nu_2(E_k)| \right\}$$
 (11.24)

$$= |\nu_1|(X) + |\nu_2|(X). \tag{11.25}$$

Осталось показать, что это нормированное пространство полно, то есть что любой абсолютно сходящийся ряд сходится.

Пусть заряды $\{\nu_k\}_{k\geqslant 1}$ таковы, что $\sum_{k=1}^\infty \lVert \nu_k\rVert <\infty$. Рассмотрим функцию

$$\nu(E) = \sum_{k=1}^{\infty} \nu_k(E).$$
 (11.26)

Надо показать, что ν — заряд:

$$\nu\left(\bigsqcup_{j=1}^{\infty} E_{j}\right) = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \nu_{k}(E_{j}) \stackrel{?}{=} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \nu_{k}(E_{j}) = \sum_{j=1}^{\infty} \nu(E_{j}).$$
 (11.27)

Осталось заметить, что порядок суммирования можно менять, так как ряд сходится абсолютно:

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} |\nu_k(E_j)| \le \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} |\nu_k|(E_j) \le \sum_{k=1}^{\infty} |\nu_k|(X) = \sum_{k=1}^{\infty} \|\nu_k\| < \infty.$$
 (11.28)

Утверждение 11.7. Пусть ν — вещественный заряд, ν_+, ν_- — разложение Жордана для ν . Тогда

$$|\nu|(E) = \nu_{+}(E) + \nu_{-}(E).$$
 (11.29)

Доказательство. Неравенство $|\nu|(E) \le \nu_+(E) + \nu_-(E)$ следует из определения и неравенства треугольника. В обратную сторону:

$$|\nu|(E) \ge |\nu(E \cap P)| + |\nu(E \cap N)| = \nu_{+}(E) + \nu_{-}(E),$$
 (11.30)

так как $(E \cap P) \sqcup (E \cap N) = E$, где $P \sqcup N$ — разложение Хана.

Утверждение 11.8. Пусть ν — функция множества на $X, f \in L^1(\mu)$, и $\nu(E) = \int_E f \, \mathrm{d} \mu$. Тогда ν — заряд, и

$$|\nu|(E) = \int_{E} |f| \,\mathrm{d}\mu.$$
 (11.31)

Доказательство. ν — заряд, поскольку интеграл счетно-аддитивен и $f \in L^1(\mu)$, то есть $\nu(E) \in \mathbb{C}$ для всех $E \in \mathfrak{A}$. Пусть ν_n произвольные заряды со свойством

$$\nu_n(E) = \int_E f_n \, \mathrm{d}\mu,\tag{11.32}$$

где $f_n \in L^1(\mu): \|f-f_n\|_{L^1(\mu)} \to 0.$ Заметим, что по неравенству треугольника

$$|\nu_n|(E) \le |\nu|(E) + |\nu - \nu_n|(E),$$
 (11.33)

a

$$|\nu - \nu_n|(E) \le \int_E |f - f_n| \, \mathrm{d}\mu \le ||f - f_n||_{L^1(\nu)} \xrightarrow{n \to \infty} 0.$$
 (11.34)

$$|\nu_n|(E) \leqslant \int\limits_E |f_n| \,\mathrm{d}\mu.$$

Пусть $f_n = \sum_{k=1}^N a_k \chi_{A_k}$, где $X = \sqcup A_k$. Тогда

$$|\nu_n|(E) \geqslant \sum_{k=1}^N |\nu_n(E \cap A_k)|$$
 (11.35)

$$= \sum_{k=1}^{N} \left| \int_{E \cap A_k} f_n \, \mathrm{d}\mu \right| \geqslant \sum_{k=1}^{N} |a_k| \cdot \mu(E \cap A_k)$$
 (11.36)

$$= \sum_{E \cap A_k} \int |a_k| \, d\mu = \sum_{E \cap A_k} \int |f_n| \, d\mu$$
 (11.37)

$$= \int_{E} |f_n| \, \mathrm{d}\mu \implies |\nu_n|(E) = \int_{E} |f_n| \, \mathrm{d}\mu. \tag{11.38}$$

Продолжаем старое неравенство:

$$|\nu|(E) \ge |\nu|_n(E) - |\nu - \nu_n|(E)$$
 (11.39)

$$\geqslant \int_{E} |f_n| \, \mathrm{d}\mu - \|f - f_n\|_{L^1(\mu)} + r_n \tag{11.40}$$

$$\geqslant \int_{E} |f| \, \mathrm{d}\mu - \int_{E} |f - f_n| \, \mathrm{d}\mu - \|f - f_n\| + r_n. \tag{11.41}$$

Переходя к пределу, получаем требуемое равенство.

12 Теорема Радона-Никодима

В этом параграфе зафиксировано измеримое пространство (X, \mathfrak{A}) .

Определение. Будем говорить, что мера μ_1 абсолютно непрерывна относительно меры μ_2 , если для любого измеримого множества E из $\mu_2(E) = 0$ следует $\mu_1(E) = 0$.

Будем также говорить, что заряд ν абсолютно непрерывен относительно меры μ , если для любого измеримого E из $\mu(E)=0$ следует, что E — нуль-множество для ν . В этом случае будем писать $\nu<\mu$.

Упражнение. Заряд ν абсолютно непрерывен относительно μ тогда и только тогда, когда вариация $|\nu|$ абсолютно непрерывна относительно μ .

Примеры 12.1.

- 1. Пусть $\mu = \lambda_1$, $\nu(E) = \int_E f \, \mathrm{d}\lambda_1$, $f \in L^1(\lambda_1)$. Тогда $\nu < \mu$, поскольку интеграл по множеству нулевой меры равен нулю.
- 2. Пусть $\mu = \lambda_1/2$, $\nu = \lambda_1$. Тогда одновременно выполнено и $\nu < \mu$, и $\mu < \nu$, то есть $\mu(E) = 0 \iff \nu(E) = 0$.

Лемма 12.1. Пусть μ, ν — конечные меры. Тогда либо $\mu \perp \nu$, либо существует такое измеримое множество $A \subset X$ и число $\varepsilon > 0$, что $\mu(A) > 0$, и для любого измеримого $E \subset A$ выполнено неравенство $\nu(E) \geqslant \varepsilon \mu(E)$.

Доказательство. Рассмотрим разложения Хана $X = P_n \sqcup N_n$ для зарядов

$$\tau_n(E) = \nu(E) - \frac{1}{n}\mu(E).$$
(12.1)

Обозначим $P=\bigcup_{n\geqslant 1}P_n,\ N=\bigcap_{n\geqslant 1}N_n.$ Тогда $X=P\sqcup N.$ Заметим, что если $E\subset N,$ то для каждого $n\in\mathbb{N}$

$$\tau_n(E) = \nu(E) - \frac{1}{n}\mu(E) \le 0,$$
(12.2)

а значит

$$0 \le \nu(E) \le \frac{1}{n}\mu(E) \xrightarrow[n \to \infty]{} 0, \tag{12.3}$$

то есть $\nu(E)=0$. В частности, $\nu(N)=0$. Если $\mu(P)=0$, то $\mu\perp\nu$. В противном случае, $\mu(P)>0$, то есть $\mu(P_n)>0$ для некоторого $n\in\mathbb{N}$. Положим $A=P_n$, $\varepsilon=1/n$. Тогда для любого $E\subset A$ имеем

$$\tau_n(E) = \nu(E) - \frac{1}{n}\mu(E) \ge 0,$$
(12.4)

то есть $\nu(E) \geqslant \varepsilon \mu(E)$.

Лемма 12.2. Если $\nu < \mu$ и $\nu \perp \mu$ для некоторого заряда ν и меры μ , то $\nu = 0$.

Доказательство. Из условия следует, что $|\nu| < \mu$ и $|\nu| \perp \mu$, и поэтому можно считать, что ν — мера. Пусть $X = X_1 \sqcup X_2$, где $\nu(X_2) = 0$, $\mu(X_1) = 0$. Но тогда $\nu(X_1) = 0$ по абсолютной непрерывности, а значит

$$\nu(X) = \nu(X_1 \sqcup X_2) = \nu(X_1) + \nu(X_2) = 0, \tag{12.5}$$

что и требовалось.

Лемма 12.3. Пусть μ — мера в X, $\{\nu_k\}_{k\geqslant 1}$ — семейство зарядов такое, что $\nu_k\perp\mu$ для всех $k\in\mathbb{N}$, и $\sum_{k=1}^{\infty}\|\nu_k\|<\infty$. Тогда $\nu=\sum_{k=1}^{\infty}\nu_k\perp\mu$.

Доказательство. Для начала заметим, что ν определен, так как он задается как сумма абсолютно сходящегося ряда в полном линейном нормированном пространстве. Пусть $X = X_{1k} \sqcup X_{2k}$, где $\mu(X_{2k}) = 0$, $|\nu_k|(X_{1k}) = 0$. Рассмотрим разложение

$$X = \left(\bigcup_{k=1}^{\infty} X_{2k}\right) \sqcup \left(\bigcap_{k=1}^{\infty} X_{1k}\right). \tag{12.6}$$

Тогда

$$\mu\left(\bigcup_{k=1}^{\infty} X_{2k}\right) = 0,\tag{12.7}$$

$$|\nu|\left(\bigcap_{k=1}^{\infty} X_{1k}\right) \leqslant \sum_{j=1}^{\infty} |\nu_j| \left(\bigcap_{k=1}^{\infty} X_{1k}\right) \leqslant \sum_{j=1}^{\infty} |\nu_j| (X_{1j}) = 0, \tag{12.8}$$

откуда $|\nu| \perp \mu$ и, соответственно, $\nu \perp \mu$.

Упражнение. Пусть μ — мера в X, $\{\nu_k\}_{k\geqslant 1}$ — семейство зарядов такое, что $\nu_k<\mu$ для всех $k\in\mathbb{N}$, и $\sum_{k=1}^{\infty}\|\nu_k\|<\infty$. Тогда $\nu=\sum_{k=1}^{\infty}\nu_k<\mu$.

Обозначение. Пусть $f \in L^1(\mu)$. Тогда через f d μ мы будем обозначать заряд

$$\nu \colon E \mapsto \int_{E} f \, \mathrm{d}\mu. \tag{12.9}$$

Теорема 12.4 (Радон, Никодим). Пусть $\mu - \sigma$ -конечная мера в X, $\nu -$ заряд. Тогда существуют единственные заряды ν_a и ν_s такие, что $\nu = \nu_a + \nu_s$, где $\nu_a < \mu$, $\nu_s \perp \mu$. Кроме того, существует такая функция $f \in L^1(\mu)$, что $\nu_a = f \, \mathrm{d} \mu$, и если $\nu_a = g \, \mathrm{d} \mu$ для какой-либо функции $g \in L^1(\mu)$, то f = g почти всюду.

Замечание. Разложение из теоремы Радона – Никодима можно кратко записать так: $\nu = f \, \mathrm{d} \mu + \nu_\mathrm{S}$.

Доказательство. Пусть для начала μ, ν — конечные меры. Определим $\mathcal F$ как множество неотрицательных измеримых функций f, удовлетворяющих условию

$$\int_{E} f \, \mathrm{d}\mu \leqslant \nu(E) \tag{12.10}$$

для всех $E \in \mathfrak{A}$. $\mathcal{F} \neq \emptyset$, так как $0 \in \mathcal{F}$. Если $f_1, f_2 \in \mathcal{F}$, то $\max(f_1, f_2) \in \mathcal{F}$, так как

$$\int_{E} \max(f_1, f_2) d\mu = \int_{E \cap A} f_1 d\mu + \int_{E \setminus A} f_2 d\mu \leqslant \nu(E \cap A) + \nu(E \setminus A) = \nu(E), \quad (12.11)$$

где $A = X(f_1 \ge f_2)$.

Обозначим

$$a = \sup_{f \in \mathcal{F}} \int_{Y} f \, \mathrm{d}\mu. \tag{12.12}$$

Пусть $\{f_n\}$ — последовательность функций в \mathcal{F} , таких, что

$$\int_{X} f_n \, \mathrm{d}\mu \xrightarrow[n \to \infty]{} a. \tag{12.13}$$

Обозначим $\widetilde{f_n} = \max(f_1, \dots, f_n)$. Как мы показали, $\widetilde{f_n} \in \mathcal{F}$ для каждого $n \in \mathbb{N}$. Это возрастающая последовательность неотрицательных функций, а потому по теореме Леви

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} \sup_{n \ge 1} f_n \, \mathrm{d}\mu = \int_{E} \lim_{n \to \infty} \widetilde{f_n} = \lim_{n \to \infty} \int_{E} \widetilde{f_n} \leqslant \nu(E), \tag{12.14}$$

то есть $f \in \mathcal{F}$. При этом,

$$\int_{X} f \, \mathrm{d}\mu \geqslant \int_{X} f_n \, \mathrm{d}\mu \xrightarrow[n \to \infty]{} a, \tag{12.15}$$

откуда $\int_X f \, \mathrm{d}\mu = a$.

Положим $\nu_a = f \, \mathrm{d}\mu$, $\nu_s = \nu - \nu_a$. Проверим, что это искомое разложение, то есть, что $\nu_s \perp \mu$. Пусть это не так. Тогда, как мы знаем из леммы 12.1, существует измеримое $A \subset X$ и число $\varepsilon > 0$ такие, что $\mu(A) > 0$ и $\nu_s(E) \geqslant \varepsilon \mu(E)$ для всех измеримых $E \subset A$.

Рассмотрим функцию $g = f + \varepsilon \chi_A$. Для любого измеримого $E \subset X$

$$\int_{E} g \, \mathrm{d}\mu = \int_{E} f \, \mathrm{d}\mu + \varepsilon \int_{E \cap A} \, \mathrm{d}\mu \leqslant (f \, \mathrm{d}\mu)(E) + \nu_{s}(E \cap A) \leqslant \nu_{a}(E) + \nu_{s}(E) = \nu(E). \quad (12.16)$$

Значит, $g \in \mathcal{F}$. С другой стороны,

$$\int_{Y} g \, \mathrm{d}\mu = \int_{Y} f \, \mathrm{d}\mu + \varepsilon \mu(A) = a + \varepsilon \mu(A) > a, \tag{12.17}$$

что невозможно.

Пусть теперь μ — конечная мера, а ν — заряд. По теореме Жордана имеем ν = $(\nu_+ - \nu_-) + i(\widetilde{\nu}_+ - \widetilde{\nu}_-)$. Раз $\nu_\pm, \widetilde{\nu}_\pm$ — конечные меры, мы можем воспользоваться тем, что было доказано, и найти соответствующие меры $(\nu_\pm)_a, (\widetilde{\nu}_\pm)_a, (\nu_\pm)_s, (\widetilde{\nu}_\pm)_s$. Положим

$$\nu_a = (\nu_+)_a - (\nu_-)_a + i(\widetilde{\nu}_+)_a - i(\widetilde{\nu}_-)_a, \tag{12.18}$$

$$\nu_{s} = (\nu_{+})_{s} - (\nu_{-})_{s} + i(\widetilde{\nu}_{+})_{s} - i(\widetilde{\nu}_{-})_{s}. \tag{12.19}$$

Тогда $\nu = \nu_a + \nu_s$, причем $\nu_a < \mu$, $\nu_s \perp \mu$ по лемме 12.3 и соответствующему упражнению, $\nu_a = f \, \mathrm{d}\mu$ для некоторой функции $f \in L^1(\mu)$.

Наконец, перейдем к общему случаю, когда μ — σ -конечная мера, ν — заряд. Разложим $X=\bigsqcup_{j=1}^\infty X_j$, где $\mu(X_j)<\infty$. Тогда можно рассмотреть меру $\mu_j(E)=\mu(E\cap X_j)$ и применить предыдущий шаг. Находим $\nu_{aj}=f_j\,\mathrm{d}\mu,\,\nu_{sj}\perp\mu$, такие, что

$$\nu_j(E) = \nu(E \cap X_j) = \nu_{aj}(E \cap X_j) + \nu_{sj}(E \cap X_j)$$
(12.20)

для всех измеримых $E \subset X$. Определим

$$\nu_a = \sum_{i=1}^{\infty} \nu_{aj}, \qquad \nu_s = \sum_{i=1}^{\infty} \nu_{sj}.$$
 (12.21)

Определение корректно, так как

$$\sum_{i=1}^{\infty} \|\nu_{aj}\| \le \|\nu\|, \qquad \sum_{i=1}^{\infty} \|\nu_{sj}\| \le \|\nu\|. \tag{12.22}$$

Это следует из следующей цепочки равенств:

$$\|\nu\| = |\nu|(X) = \sum_{j=1}^{\infty} |\nu|(X_j) = \sum_{j=1}^{\infty} |\nu_j|(X) = \sum_{j=1}^{\infty} (|\nu_{aj}|(X) + |\nu_{sj}|(X)).$$
 (12.23)

Здесь в последнем переходе использовано то, что $|\nu_{aj}| \perp |\nu_{sj}|$, и что для любых зарядов τ, η , из условия $|\tau| \perp |\eta|$ следует, что $|\tau + \eta|(X) = |\tau|(X) + |\eta|(X)$. Тогда по лемме 12.3

 $u_s \perp \mu$, кроме того, $u_a = f \, \mathrm{d} \mu$, где $f = \sum_{j=1}^\infty f_j$. $f \in L^1(\mu)$, так как

$$\int_{X} |f| \, \mathrm{d}\mu \le \sum_{j=1}^{\infty} \int_{X} |f_{j}| \, \mathrm{d}\mu = \sum_{j=1}^{\infty} \|\nu_{aj}\| < \infty.$$
 (12.24)

Осталось проверить единственность. Если $\nu=\tau_a+\tau_s$, где $\tau_a<\mu$, $\tau_s\perp\mu$, то $\nu_a-\tau_a=\tau_s-\nu_s$, причем заряд $\nu_s-\tau_s$ взаимно сингулярен с μ , а $\nu_a-\tau_a$ абсолютно непрерывен относительно μ . По лемме 12.2 это значит, что $\nu_a-\tau_a=\nu_s-\tau_s=0$, то есть, что $\nu_a=\tau_a$ и $\nu_s=\tau_s$.

Если же $\nu_a = f \, \mathrm{d}\mu = g \, \mathrm{d}\mu$ для некоторых $f, g \in L^1(\mu)$, то

$$\int_{Y} (f - g) \, \mathrm{d}\mu = 0, \tag{12.25}$$

то есть $f = g \mu$ -почти всюду на X.

Определение. Разложение $\nu = f \, \mathrm{d} \mu + \nu_s$ из предыдущей теоремы называется разложением Лебега заряда ν . Функция f называется плотностью ν относительно μ или производной Радона-Никодима заряда ν по мере μ . Иногда пишут $f = \nu'$, если μ — мера Лебега в \mathbb{R}^m .

13 Лемма Витали и максимальная функция Харди-Литлвуда

Теорема 13.1 (теорема Витали о покрытии). Пусть (X, ρ) — метрическое пространство, G — некоторое семейство (необязательно счетное) невырожденных шаров в X, радиусы которых не превосходят некоторой константы C. Тогда существует такое подмножество $G' \subset G$, что никакие два шара в G' не пересекаются, и

$$\bigcup_{B\in G'}\widehat{B}\supset\bigcup_{B\in G}B,$$

где \widehat{B} — это шар с тем же центром, что и B, радиус которого в 5 раз больше радиуса шара B.

Доказательство. Обозначим $R=\sup_{B\in G}\rho(B)$, где $\rho(B)$ — радиус шара B. По условию, $R<\infty$. Возьмем

$$G_j = \big\{ B \in G : \rho(B) \in (2^{-j-1}R, 2^{-j}R] \big\},$$

тогда $G=\bigsqcup_{j=0}^\infty G_j$ по построению. Пусть G_0' — произвольный максимальный по включению набор дизъюнктных шаров из $G_0.^{25}$ Для $j\geqslant 1$ семейство G_j' определим как произвольный максимальный по включению дизъюнктный набор из G_j , шары которого не пересекаются с шарами из множества $\bigcup_{k=0}^{j-1} G_k'$. Тогда $G'=\bigcup_{j=0}^\infty G_j'$ — дизъюнктный набор.

²⁵Он существует, например, по лемме Цорна

По построению, если $B\in G_j$, то либо $B\in G_j'$, либо существует шар $B'\in \bigcup_{k=0}^j G_k'$: $B\cap B'\neq\varnothing$. Тогда $B\subset\widehat{B'}$, так как

$$\rho(B') + 2\rho(B) \leqslant 5\rho(B') \iff \rho(B) \leqslant 2\rho(B') \tag{13.1}$$

что верно, так как $\rho(B) \leq 2^{-j}R$ и $\rho(B') \geq 2^{-j-1}R$.

Определение. Пусть (X,\mathfrak{A}) — измеримое пространство, причем X — метрическое пространство, и \mathfrak{A} — борелевская σ -алгебра; μ — мера на X, $\mu(B(x,r)) < \infty$ для всех $x \in X$ и r > 0; $f \in L^1(\mu)$. Тогда максимальной функцией (Харди – Литлвуда) f называется функция

$$(Mf)(x) = f^*(x) = \sup_{B \in B_x} \frac{1}{\mu(B)} \int_{B} |f| \, \mathrm{d}\mu, \tag{13.2}$$

где B_x — множество открытых шаров в X, содержащих x.

Максимальная функция измерима, так как множество $\{x \in X : f^*(x) > t\}$ открыто для любого t > 0. Действительно, если $f^*(x) > t$, то существует открытый шар $B \ni x$, для которого выполнено условие

$$\frac{1}{\mu(B)} \int_{B} |f| \, \mathrm{d}\mu > t. \tag{13.3}$$

Но тогда $f^*(y) > t$ для любого $y \in B$.

Определение. Борелевская мера μ на метрическом пространстве (X, ρ) называется мерой, удовлетворяющей условию удвоения, если

$$\mu(B(x,2r)) \le c\mu(B(x,r)) \qquad (\forall x \in X)(\forall r > 0),$$

где c не зависит от x и r.

Примеры 13.1.

1. Если μ — мера Лебега на \mathbb{R}^m , то

$$\mu(B(x,2r)) = 2^m \mu(B(x,r)) \qquad (\forall x \in \mathbb{R}^m)(\forall r > 0), \tag{13.4}$$

так как B(0,2r)=L(B(0,r)) для линейного отображения $L\colon x\mapsto 2x$, причем $\det L=\det(\mathrm{diag}(2,2,\ldots,2))=2^m$. Таким образом, мера Лебега удовлетворяет условию удвоения.

2. Пусть $X=\mathbb{Z}$, $\rho(x,y)=|x-y|$, μ — считающая мера на X. Она удовлетворяет условию удвоения на (X,ρ) . Если же рассмотреть ее на всей σ -алгебре $\mathfrak{B}(\mathbb{R})$, то она не будет ему удовлетворять: берем шар $B(\frac{1}{2},\frac{1}{2}-\varepsilon)$ — при удвоении мера 2, до удвоения — 0.

Теорема 13.2 (Харди, Литлвуд). Пусть (X, ρ) — сепарабельное метрическое пространство, μ — мера на $\mathfrak{B}(X)$ с условием удвоения, конечная на всех шарах; $f \in L^1(\mu)$.

Тогда

$$\mu\{x: f^*(x) > t\} \leqslant c \frac{\|f\|_{L^1(\mu)}}{t},\tag{13.5}$$

где константа c не зависит от f и t.

Доказательство. По определению функции f^* выполнено включение

$$X(f^* > t) \subset \bigcup_{B \subset G} B$$
,

где G — множество открытых шаров B, для которых выполнено условие

$$\frac{1}{\mu(B)} \int_{B} |f| \, \mathrm{d}\mu > t. \tag{13.6}$$

По теореме Витали можно найти семейство дизъюнктных шаров $G' \subset G$:

$$\bigcup_{B \in G'} \widehat{B} \supset \bigcup_{B \subset G} B. \tag{13.7}$$

Ясно, что

$$X(f^* > t) \subset \bigcup_{B \in G'} \widehat{B}. \tag{13.8}$$

Поскольку пространство X сепарабельно, можно считать, что G' счетно. Значит,

$$\mu(\{x: f^*(x) > t\}) \le \sum_{B \in G'} \mu(\widehat{B}),$$
 (13.9)

Далее, так как μ — мера с условием удвоения, $\mu(\widehat{B}) \leqslant \mu(8B) \leqslant c^3 \mu(B)$, и

$$\sum_{B \in G'} \mu(\widehat{B}) \leqslant \widetilde{c} \sum_{B \in G'} \mu(B) \leqslant \widetilde{c} \sum_{B \in G'} \frac{1}{t} \int_{B} |f| \, \mathrm{d}\mu, \tag{13.10}$$

Отсюда следует искомое неравенство:

$$\mu\{x: f^*(x) > t\} \leqslant \widetilde{c} \sum_{B \in G'} \frac{1}{t} \int_{R} |f| \, \mathrm{d}\mu \leqslant \frac{\widetilde{c} ||f||_{L^1(\mu)}}{t}. \tag{13.11}$$

Замечание. В доказательстве использована теорема Витали, в которой шары имеют ограниченный радиус. Это условие автоматически выполняется, если $\mu(X) = +\infty$. Если же $\mu(X) < \infty$, то надо доказать равномерную по R > 0 оценку для модифицированной функции X-Л, в определении которой sup берется по шарам радиуса не выше R, и перейти к пределу по $R \to +\infty$.

Теорема 13.3. Пусть (X, ρ) — полное сепарабельное метрическое пространство, μ — мера с условием удвоения на борелевской σ -алгебре $\mathfrak{B}(X)$, ν — мера на $\mathfrak{B}(X)$. Предположим, что $\mu(B(x,r))>0$ для всех $x\in X$ и r>0, а $\nu(X)<\infty$. Тогда, если $\nu\perp\mu$,

то для μ -почти всех $x \in X$

$$\limsup_{r \to 0} \frac{\nu(B(x, r))}{\mu(B(x, r))} = 0. \tag{13.12}$$

Доказательство. Достаточно доказать, что множества

$$E_k = \left\{ x : \limsup_{r \to 0} \sup_{B \in B_r} \frac{\nu(B)}{\mu(B)} \geqslant \frac{1}{k} \right\},\,$$

где B_x — множество открытых шаров, содержащих x и удовлетворяющих условию $\rho(B) < r$, измеримы и имеют ν -меру ноль, то есть $\nu(E_k) = 0$ для всех $k \in \mathbb{N}$. Тогда для любой точки $x \in X \setminus \bigcup_{k=1}^{\infty} E_k$ будет выполнено равенство (13.12).

Множество E_k измеримо, так как оно равно $\bigcap_{i=1}^{\infty} E_{kj}$, где

$$E_{kj} = \left\{ x \in X \mid \exists B \ni x, \, \rho(B) \leqslant \frac{1}{j} : \frac{\nu(B)}{\mu(B)} \geqslant \frac{1}{k} \right\},$$

а E_{kj} — открыто.

Так как $\mu \perp \nu$, то $\nu(A) = 0$, $\mu(X \setminus A) = 0$ для некоторого $A \subset X$. Поскольку мера ν конечна, она регулярна, а значит для любого $\varepsilon > 0$ найдется такое открытое множество U_{ε} , что $E_k \cap A \subset U_{\varepsilon}$ и $\nu(U_{\varepsilon}) \leqslant \varepsilon$.

 $E_k \cap A \subset \bigcup_{B \in G} B$, где G — множество открытых шаров $B \subset U_{\varepsilon}$, таких, что

$$\frac{\nu(B)}{\mu(B)} \geqslant \frac{1}{2k}.\tag{13.13}$$

Пусть $G' \subset G$ — счетное семейство шаров из теоремы Витали. Тогда:

$$\mu(E_k \cap A) \leqslant \sum_{B \in G'} \mu(\widehat{B}) \leqslant c \sum_{B \in G'} \mu(B) \tag{13.14}$$

$$\leq 2kc \sum_{B \in G'} \nu(B) \tag{13.15}$$

$$\leq 2kc \cdot \nu(U_{\varepsilon})$$
 (13.16)

$$\leq 2kc\varepsilon$$
. (13.17)

Так как это выполнено для всех $\varepsilon > 0$, отсюда следует, что $\mu(E_k \cap A) = 0$.

14 Дифференцирование мер

Теорема 14.1. Пусть (X, ρ) — полное сепарабельное локально компактное метрическое пространство, μ — мера на $\mathfrak{B}(X)$, положительная и конечная на всех шарах, ν — заряд на $\mathfrak{B}(X)$. Тогда для μ -почти всех $x \in X$ существует предел

$$\lim_{r \to 0} \frac{\nu(B(x,r))}{\mu(B(x,r))} = f(x),\tag{14.1}$$

где f — производная Радона – Никодима заряда ν по мере μ .

Доказательство. По теореме Радона – Никодима, $\nu = f \, \mathrm{d}\mu + \nu_s$, где $f \in L^1(\mu)$, $\nu_s \perp \mu$. По предыдущей теореме

$$\limsup_{r\to 0} \left| \frac{\nu_s(B(x,r))}{\mu(B(x,r))} \right| = 0$$

для μ -почти всех $x \in X$. Для $x \in X$, B = B(x, r) и произвольной $g \in C_0(X)$ верна следующая оценка:

$$\frac{1}{\mu(B)} \int_{B} |f(y) - f(x)| \, \mathrm{d}\mu(y) \leq \frac{1}{\mu(B)} \int_{B} |f(y) - g(y)| \, \mathrm{d}\mu(y)
+ \frac{1}{\mu(B)} \int_{B} |g(y) - g(x)| \, \mathrm{d}\mu(y)
+ \frac{1}{\mu(B)} \int_{B} |g(x) - f(x)| \, \mathrm{d}\mu(y)$$

$$\leq (f - g)^{*}(x) + \varepsilon(g, r) + |g(x) - f(x)|, \qquad (14.3)$$

где $\varepsilon(g,r) \xrightarrow[r \to 0]{} 0$. Обозначим левую часть через S(x,r). Выберем $g \in C_0(X)$ так, чтобы было выполнено неравенство $\|f-g\|_{L^1(\mu)} < \eta$. Выберем такое R, что для любого $r \leqslant R$ выполнено $\varepsilon(g,r) < t/3$. Тогда для $r \leqslant R$

$$\mu\left\{x: \limsup_{r \to 0} S(x, r) > t\right\} \leq \mu\left\{x: (f - g)^*(x) > \frac{t}{3}\right\} + \mu\left\{x: |f(x) - g(x)| \geq \frac{t}{3}\right\}$$
(14.4)
$$\leq \frac{\|f - g\|_{L^1(\mu)}}{t/3} + \frac{1}{t/3} \int_X |f - g| \,\mathrm{d}\mu < 6\eta/t$$
(14.5)

по теореме Харди – Литлвуда и неравенству Чебышева. Это неравенство выполнено для любого $\eta > 0$. Значит,

$$\mu\left\{x: \limsup_{r\to 0} S(x,r) > t\right\} = 0.$$

Осталось показать, что при μ -почти всех $x \in X$

$$\left| \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f \, \mathrm{d}\mu - f(x) \right| \to 0.$$

Действительно,

$$\left| \frac{1}{\mu(B(x,r))} \int\limits_{B(x,r)} f \, \mathrm{d}\mu - f(x) \right| \leqslant \frac{1}{\mu(B(x,r))} \int\limits_{B(x,r)} |f(y) - f(x)| \, \mathrm{d}\mu \to 0,$$

так как $f(x) = \frac{1}{\mu(B)} \int_B f(x) \, \mathrm{d}\mu(y)$.

Замечание. Независимость $\varepsilon(g,r)$ от x следует из равномерной непрерывности

функции $g \in C_0(X)$ (носитель g — компакт).

Определение. Семейство множеств $\{E_r(x)\}_{\substack{x \in X \\ r > 0}} \subset \mathfrak{B}(X)$ называется регулярно стягиваемым относительно меры μ на $\mathfrak{B}(X)$, если:

- 1. $E_r(x) \subset B(x,r)$;
- 2. для любого $x \in X$ найдется такое число $c_x > 0$, что $\mu(E_r(x)) \geqslant c_x \mu(B(x,r))$ для любого r > 0.

Пример 14.1. Множество $E_r(x) = \left\{ x + (\frac{r}{2}, r) \right\}_{\substack{x \in \mathbb{R} \\ r > 0}}$ является регулярно стягиваемым относительно λ_1 на \mathbb{R} .

Теорема 14.2. В предыдущей теореме о дифференцировании мер можно заменить B(x,r) на $E_r(x)$ для любого регулярно стягиваемого семейства $E_r(x)$ относительно меры μ .

Доказательство. Если $\nu = f d\mu + \nu_s$, то

$$\left| \frac{\nu_s(E_r(x))}{\mu(E_r(x))} \right| \le \frac{|\nu_s|(B(x,r))}{c_x \mu(B(x,r))} \xrightarrow[r \to 0]{} 0. \tag{14.6}$$

Кроме того,

$$\frac{1}{\mu(E_r(x))} \int_{E_r(x)} |f(y) - f(x)| \, \mathrm{d}\mu(y) \le \frac{1}{c_x \mu(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| \xrightarrow[r \to 0]{} 0, \quad (14.7)$$

откуда

$$\frac{1}{\mu(E_r(x))} \int_{E_r(x)} f(y) \, \mathrm{d}\mu \xrightarrow[r \to 0]{} f(x). \tag{14.8}$$

15 Теоретическая контрольная

Примеры задач:

- 1. Докажите неравенство $\mu(\{x \in X : f(x) \geqslant 0\}) \leqslant \int\limits_X e^f \, d\mu$ для каждой измеримой функции $f: X \to \mathbb{R}$ на пространстве с мерой (X, \mathcal{A}, μ) (2 балла).
- 2. Пусть μ, ν борелевские меры на \mathbb{R}^m , такие, что $\mu(I) \leq \nu(I) < \infty$ для любой ячейки $I \subset \mathbb{R}^m$. Докажите, что если $\mu(\mathbb{R}^m) = \nu(\mathbb{R}^m) = 1$, то $\mu(A) = \nu(A)$ для любого борелевского множества $A \subset \mathbb{R}^m$. (2 балла)
- 3. Пусть μ борелевская мера на сепарабельном метрическом пространстве (X, ρ) . Докажите, что среди всех замкнутых подмножеств X μ -полной меры существует наименьшее по включению. (3 балла)

4. Пусть μ – конечная борелевская мера на $\mathbb R$. Найдите предел

$$\lim_{n \to +\infty} \int_{[0,+\infty)} \frac{1 - \arctan x^n}{1 + \arctan x^n} d\mu(x)$$

в терминах значений μ на борелевских подмножествах \mathbb{R} . (3 балла)

- 5. Докажите, что отображение $t \mapsto \lambda_1(E \triangle (E+t))$ равномерно непрерывно на \mathbb{R} для любого измеримого по Лебегу множества $E \subset \mathbb{R}$ конечной меры Лебега λ_1 (3 балла)
- 6. Докажите, что для любой последовательности комплексных чисел $\{c_k\}_{k\in\mathbb{N}}$ со свойством $\sum_k |c_k|^2 < \infty$ ряд $\sum c_k \sin kx$ сходится по мере Лебега на $[-\pi,\pi]$ (3 балла)

Определение. Пусть (X, ρ) — сепарабельное метрическое пространство, μ — борелевская мера на (X, ρ) . *Носителем* меры μ называется замкнутое множество supp μ : $\mu(X \setminus \text{supp } \mu) = 0$ и для любого замкнутого в X множества H такого, что $\mu(X \setminus H) = 0$ supp $\mu \subset H$.

Утверждение 15.1. Носитель существует.

Доказательство. Понятно, что существование носителя эквивалентно существованию наибольшего по включению открытого множества нулевой меры. Рассмотрим $\{x_k\}_{k\in\mathbb{N}}$ — всюду плотное подмножество в $X,\,U=\bigcup_{B\in G}B$, где G — семейство открытых шаров с центрами в точках $\{x_k\}$, рациональными радиусами и такими, что $\mu(B)=0$. Очевидно, что G не более чем счетно. Пусть V — открыто, $\mu(V)=0$. Беря любую точку в V, мы можем найти достаточно близкую к ней точку x_k и шар достаточно малого рационального радиуса, который будет содержаться в V, причем его мера будет равна нулю. Поэтому $V=\bigcup_{B\in G:B\subset V}B\subset\bigcup_{B\in G}B=U$, то есть U максимально по включению. Тогда можно взять $H=X\setminus U$. ■

16 Функции ограниченной вариации

Напомним определение.

Определение. Говорят, что функция $f\colon [a,b] \to \mathbb{R}$ имеют ограниченную вариацию, если

$$V_{[a,b]}(f) = \sup \sum_{k=1}^{n-1} |f(x_k) - f(x_{k+1})| < \infty,$$
(16.1)

где супремум берется по всем разбиениям $\{x_k\}$ отрезка [a,b]. Будем обозначать множество функций с ограниченной вариацией берез BV.

Мы доказывали, что $f \in BV$ тогда и только тогда, когда существуют неубывающие, ограниченные на [a,b] функции g,h такие, что f=g-h (можно просто задать $g=V_{[a,x]}(f)$ и h=g-f).

Определение. Пусть ψ — неубывающая непрерывная слева функция на $\mathbb R$. Определим

$$\nu_{\psi} \colon \mathcal{P}_1 \to [0, +\infty), \quad [a, b) \mapsto \psi(b) - \psi(a).$$
 (16.2)

Теорема 16.1. Для любой непрерывной слева неубывающей функции ψ на \mathbb{R} функция множества ν_{ψ} счетно-аддитивна на \mathcal{P}_1 . В частности, она продолжается единственным образом до меры ν_{ψ} на $\mathfrak{B}(\mathbb{R})$:

$$\psi(b) - \psi(a) = \int_{[a,b)} d\nu_{\psi}$$
(16.3)

для любой ячейки [a,b). Наоборот, если дана некоторая мера ν_{ψ} , функция ψ и выполнено равенство (16.3), то ψ — непрерывная слева неубывающая функция на \mathbb{R} .

Доказательство. Очевидно, что ν_{ψ} конечно-аддитивна на \mathcal{P}_1 . Поэтому достаточно проверить, что ν_{ψ} счетно-полуаддитивна на \mathcal{P}_1 . Пусть $[a,b) = \bigsqcup_{k=1}^{\infty} [a_k,b_k)$. Как и при проверке счетной полуаддитивности λ_1 , для всех t < b и $\varepsilon > 0$ можно выбрать числа $\widetilde{a}_k < a_k$ и $N \in \mathbb{N}$ так, что

$$\bigcup_{k=1}^{N} (\widetilde{a}_k, b_k) \supset [a, t], \qquad \sum_{k=1}^{N} \nu_{\psi}([a_k, b_k]) \leqslant \sum_{k=1}^{\infty} \nu_{\psi}([a_k, b_k]) + \varepsilon$$
 (16.4)

(здесь мы воспользовались компактностью [a,t] и непрерывностью слева ψ). Поскольку $\bigcup_{k=1}^{N} (\widetilde{a}_k, b_k)$ конечно и содержит [a,t], то

$$\nu([a,t)) \leqslant \sum_{k=1}^{N} \nu([\widetilde{a}_k, b_k)) \leqslant \sum_{k=1}^{\infty} \nu([a_k, b_k)) + \varepsilon, \tag{16.5}$$

а потому

$$\nu([a,t)) \le \sum_{k=1}^{\infty} \nu([a_k, b_k)) \qquad (\forall t : a \le t < b).$$
 (16.6)

Поскольку ψ непрерывна слева, $\psi(t) \to \psi(b)$ при $t \to b$, t < b, то есть $\nu([a,t)) \to \nu([a,b))$. По теореме Каратеодори ν_{ψ} продолжается на некоторую σ -алгебру, содержащую \mathcal{P}_1 , а значит и на $\mathfrak{B}(\mathcal{P}_1)$.

Пусть теперь для некоторых ψ и ν выполнено

$$\psi(b) - \psi(a) = \int_{[a,b)} d\nu. \tag{16.7}$$

Этот интеграл равен $\nu([a,b))$, а потому $\psi(b)-\psi(a)\geqslant 0$, то есть ψ неубывает. Так как ν — мера, то

$$\psi(b) - \psi(a) = \nu([a, b)) = \lim_{\substack{t \to b \\ a \le t < b}} \nu([a, t)) = \lim_{\substack{t \to b \\ t < b}} (\psi(t) - \psi(a)), \tag{16.8}$$

что равносильно тому, что

$$\lim_{\substack{t \to b \\ t < b}} \psi(t) = \psi(b),\tag{16.9}$$

то есть непрерывности ψ слева.

Упражнение. Доказать, что для любой меры ν , конечной на \mathcal{P}_1 , существует единственное отображение ψ такое, что $\psi(b) - \psi(a) = \nu([a,b)), \ \psi(0) = 0$.

Утверждение 16.2. Пусть (X, \mathfrak{A}, μ) — пространство с σ -конечной мерой, в котором все одноточечные множества измеримы. Тогда существуют меры μ_c , μ_p на \mathfrak{A} такие, что $\mu = \mu_c + \mu_p$, $\mu_c(\{x\}) = 0 \ \forall x \in X$, а

$$\mu_p = \sum_{k=1}^{\infty} a_k \delta_{x_k},\tag{16.10}$$

где $a_k \geqslant 0$.

Отображение μ_p из этого утверждения называется *чисто точечной* частью μ .

Доказательство. Так как μ — σ -конечна, существует не более чем счетный набор точек x_k таких, что $\mu(\{x_k\}) \neq 0$. Действительно, найдем такие множества X_j , что $\bigsqcup X_j = X$, $\mu(X_k) < \infty$ для всех j. Тогда для любого конечного набора $\{x_{k_s}\}_{s=1}^M \subset \{x_k\}$, лежащего в X_j , выполнено неравенство

$$\sum_{s=1}^{M} \mu(x_{k_s}) \le \mu(X_j), \tag{16.11}$$

значит в каждом X_j содержится не более чем счетное число точек x_j . Тогда мы можем просто взять

$$\mu_p = \sum \mu(\{x_k\})\delta_{x_k},\tag{16.12}$$

$$\mu_c = \mu - \mu_p. \tag{16.13}$$

Очевидно, что это как раз те функции, которые требовалось найти.

Определение. Пусть (X, \mathfrak{A}, μ) — пространство с σ -конечной мерой, в котором все одноточечные множества $\{x\}$ измеримы, $\mu = \mu_c + \mu_p$ — разложение μ из предыдущего утверждения. Тогда μ_c называется *непрерывной частью* меры μ .

Замечание. Любая борелевская σ -конечная мера на \mathbb{R} может быть представлена в виде f d $\lambda_1 + \mu_{sc} + \mu_{sp}$, где $\mu_s = \mu_{sc} + \mu_{sp} \perp \lambda_1$, и μ_{sc} , μ_{sp} — непрерывная и чисто точечная части μ_s (это следствие теоремы Радона-Никодима и утверждения 16.2).

Пример 16.1 (Канторова мера). Пусть ψ — "канторова лестница". Построим $\tilde{\psi}$ на дополнении канторова множества, так что $\tilde{\psi}(0)=0,\,\tilde{\psi}(1)=1,\,\tilde{\psi}$ на среднем интервале равно 1/2, на интервалах длины 1/9 $\tilde{\psi}$ равно 1/4 и 3/4, и т.п. Далее определим функцию

$$\psi(x) = \sup_{y \leqslant x} \widetilde{\psi(y)}$$

которую и называют "канторова лестница". По построению понятно, что ψ монотонна. Можно также проверить, что $\psi \in C[0,1]$, так как если $x \in (0,1)$, то на шаге построения m канторова множества (когда построено $2^0+2^1+\ldots+2^m$ интервалов) найдутся дополнительные интервалы J_1, J_2 такие, что $x_1 \leqslant x_0 \leqslant x_2 \ \forall x_1 \in J_1, \ x_2 \in J_2,$ и $\widetilde{\psi}(x_2) - \widetilde{\psi}(x_1) \leqslant \frac{1}{2^m}$ (для больших m). $\widetilde{\psi}(x_1) = \psi(x_1) \leqslant \psi(x_0) \leqslant \psi(x_2) = \widetilde{\psi}(x_2) \implies \forall y \in [x_1^*, x_2^*]$, где x_{12}^* — центры отрезков J_1 и J_2 , $|\psi(y) - \psi(x_0)| \leqslant \frac{1}{2^m}$.

Продолжим ψ на $\mathbb R$ следующим образом: $\psi(x) = 0 \ \forall x < 0 \ \text{и} \ \psi(x) = 1 \ \forall x > 1$. Тогда $\psi \in C(\mathbb R)$, причем ψ не убывает на $\mathbb R$, то есть существует мера μ такая, что $\psi(b) - \psi(a) = \mu([a,b)) \ \forall a \leqslant b$. В частности, $\mu([1,+\infty)) = 0$, $\mu((\infty,0]) = 0$, $\mu(I_k) = 0$ для любого дополнительного интервала I_k . Таким образом, $\mu(\mathbb R \setminus C) = 0$. Значит, $\mu \perp \lambda_1$, так как $\lambda_1(C) = 0$.

Поймем, что чисто точечная часть этой меры равна нулю. Пусть $\exists x \in \mathbb{R} : \mu(\{x\}) \neq 0$. Тогда $\lim_{\delta \to 0^+} (\psi(x+\delta) - \psi(x)) = \mu([x,x+\delta]) \geqslant \mu(\{x\})$, что приводит к противоречию. Осталось заметить, что $1 = \psi(1) - \psi(0) = \mu([0,1))$, то есть мера ненулевая.

Теорема 16.3. Пусть $\psi \in BV[a,b]$, причем ψ непрерывна слева. Тогда существует единственный заряд ν на $\mathfrak{B}([a,b))$ такой, что

$$\psi(x) = \psi(a) + \nu([a, x)) \qquad (\forall x \in [a, b]). \tag{16.14}$$

Доказательство. $\psi = h - g$, где h, g — нестрого возрастающие ограниченные функции, h, g — непрерывны слева ($h = V_{[a,x)}\psi, g = h - \psi$). Продолжим эти функции на $\mathbb R$ так, что

$$h(x) = h(a), \quad g(x) = g(a) \qquad (\forall x < a),$$

 $h(x) = h(b), \quad g(x) = g(b) \qquad (\forall x > b).$

Тогда существуют меры μ_h , μ_g такие, что

$$h(x_2) - h(x_1) = \mu_h([x_1, x_2)),$$

 $g(x_2) - g(x_1) = \mu_q([x_1, x_2)).$

Тогда $\nu = \mu_h - \mu_q$, и

$$\psi(x_2) - \psi(x_1) = \nu([x_1, x_2)) \qquad (\forall x_1, x_2 \in [a, b] : x_1 \le x_2). \tag{16.15}$$

Значит,

$$\psi(x) = \psi(a) + \nu([a, x)) \qquad (\forall x \in [a, b]). \tag{16.16}$$

Очевидно, что если есть мера $\tilde{\nu}$, удовлетворяющая равенству (16.16), то

$$\nu[a, x) = \widetilde{\nu}[a, x) \qquad (\forall x \in [a, b]), \tag{16.17}$$

откуда очевидно, что $\nu[x_1, x_2) = \widetilde{\nu}[x_1, x_2)$ и $\nu = \widetilde{\nu}$ на $\mathfrak{B}([a, b))$.

Замечание. Если ν — заряд на $\mathfrak{B}([a,b))$, то $\psi \colon x \mapsto \psi(a) + \nu([a,x))$ — непрерывная слева функция ограниченной вариации.

Упражнение. Доказать, что $|\nu|([a,b)) = V_{[a,b]}\psi$.

Теорема 16.4. Пусть $\psi \in \mathrm{BV}[a,b]$ — непрерывная слева функция, ν — такой заряд, что выполнено равенство

$$\psi(x) = \psi(a) + \nu([a, x)) \qquad (\forall x \in [a, b]). \tag{16.18}$$

Пусть $\nu = f \, \mathrm{d}\lambda_1 + \nu_s$ — разложение из теоремы Радона-Никодима. Тогда для почти всех (по мере Лебега) $x \in [a,b]$ существует предел

$$\lim_{\substack{y \to x \\ y \in [a,b]}} \frac{\psi(x) - \psi(y)}{x - y} = f(x). \tag{16.19}$$

Доказательство. Можно считать, что ψ — возрастающая функция на [a,b] (иначе $\psi = g - h$ и $\mu_{a,\psi} = \mu_{a,g} - \mu_{a,h}$ в силу единственности в теореме Радона-Никодима). Рассмотрим $\frac{\psi(x) - \psi(y)}{x - y}$ для x < y, где $x, y \in (a,b)$.

$$\frac{\psi(x) - \psi(y)}{x - y} = \frac{\nu([x, y))}{\lambda_1([x, y))} \xrightarrow{y \to x} f(x)$$

для λ_1 -почти всех $x \in (a,b)$, так как $\{[x,y)\}_{\substack{x,y \in [a,b] \\ x < y}}$ — регулярно стягиваемое семейство и можно воспользоваться теоремой о дифференцировании мер.

Если же y < x и $y, x \in (a, b)$, то

$$\frac{\psi(x) - \psi(y)}{x - y} = \frac{\nu([y, x))}{\lambda_1[y, x)}.$$
 (16.20)

Отсюда

$$\lim_{\substack{y \to x \\ y < x}} \frac{\psi(x) - \psi(y)}{x - y} = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \frac{\nu(E_{x,\varepsilon})}{\lambda_1(E_{x,\varepsilon})},\tag{16.21}$$

где $E_{x,\varepsilon} = [x - \frac{\varepsilon}{2}, x)$. Тогда $\{E_{x,\varepsilon}\}$ — регулярно стягиваемое семейство относительно λ_1 (так как $E_{x,\varepsilon} \subset B(x,\varepsilon)$, $\lambda_1(E_{x,\varepsilon}) > \frac{1}{10}\lambda_1(B(x,\varepsilon))$). Значит, при почти всех x существует искомый предел, и он равен f(x).

Следствие 16.5. Если $\psi \in BV[a,b]$, то для почти всех $x \in [a,b]$ существует $\psi'(x)$.

Доказательство. Как и раньше, можно считать, что ψ возрастает. Положим $\widetilde{\psi}=\sup_{y< x}\psi(y)$. Тогда $\widetilde{\psi}$ — непрерывная слева ограниченная неубывающая на [a,b] функция, в частности, $\widetilde{\psi}\in \mathrm{BV}[a,b]$, и по предыдущей теореме существует $\widetilde{\psi}'(x)$ при почти всех $x\in [a,b]$. Осталось понять, что $h=\psi-\widetilde{\psi}$ дифференцируема почти всюду. Это так, поскольку у возрастающей функции не более счетное число разрывов и $\widetilde{\psi}\leqslant \psi$, то есть $h=\sum_{k=1}^\infty c_k\chi_{\{x_k\}},\ c_k\geqslant 0$, причем $\sum_{k=1}^\infty c_k<\infty$, так как c_k — скачок ψ в x_k . Возьмем меру $\nu=\sum_{k=1}^\infty c_k\delta_{x_k}$. По построению, $\nu([a,b])<\infty,\ \nu\perp\lambda_1$.

$$\left| \frac{h(x) - h(y)}{x - y} \right| \le \frac{\nu(x - \varepsilon, x + \varepsilon)}{2\varepsilon} \cdot 2, \tag{16.22}$$

где $\varepsilon = |x-y|$. Правая часть стремится к нулю при $\varepsilon \to 0$ почти всюду относительно λ_1 по теореме о дифференцировании мер, так как $\nu \perp \lambda_1$.

17 Меры Хаусдорфа

Определение. Диаметром множества F называется число

$$\dim F = \sup_{x,y \in F} (\|x - y\|). \tag{17.1}$$

Определение. Пусть p > 0, $\varepsilon > 0$, $A \subset \mathbb{R}^m$. Определим функцию

$$H_{p,\varepsilon}^*(A) = \inf\left\{\sum_{k=1}^{\infty} \left(\frac{\operatorname{diam} e_k}{2}\right)^p\right\},\tag{17.2}$$

где инфимум берется по всем счетным ε -покрытиям A, то есть по всем семействам $\{e_k\}_{k\geqslant 1}$ таким, что $A\subset \bigcup_{k=1}^\infty e_k$, diam $e_k\leqslant \varepsilon$.

Определение. Внешней *р-мерой Хаусдорфа* на \mathbb{R}^m называется функция

$$H_p^*(A) = \lim_{\varepsilon \to 0} H_{p,\varepsilon}^*(A) \qquad (\forall A \subset \mathbb{R}^m). \tag{17.3}$$

Очевидно, что $H_{p,\varepsilon}^*$ — невозрастающая функция по ε , а потому такой предел существует и определение корректно.

Отметим также, что функция $H_{p,\varepsilon}^*(A)$ не зависит от того, в какое пространство вложено A.

Теорема 17.1. H_p^* — внешняя мера на \mathbb{R}^m .

Доказательство. Очевидно, что $H_p^*(\varnothing) = 0$. Пусть теперь $A \subset \bigcup_{k=1}^\infty A_k$. Будем считать, что $\sum_{k=1}^\infty H_p^*(A_k) < +\infty$, так как иначе неравенство (2) в определении внешней меры очевидно. Тогда по определению предела для каждого $k \in \mathbb{N}$ и фиксированного числа $\varepsilon > 0$ существует набор $\{e_{kj}\}_{j\in\mathbb{N}}$ такой, что $A_k \subset \bigcup_{j=1}^\infty e_{kj}$, diam $e_{kj} < \varepsilon$,

$$\sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} e_{kj}}{2} \right)^{p} \leqslant H_{p,\varepsilon}^{*}(A_{k}) + \frac{\varepsilon}{2^{k}}. \tag{17.4}$$

Ясно, что $\{e_{kj}\}_{k,j\in\mathbb{N}}$ — покрытие A. Поэтому

$$H_{p,\varepsilon}^*(A) \leqslant \sum_{k,j=1}^{\infty} \left(\frac{\operatorname{diam} e_{kj}}{2}\right)^p \leqslant \sum_{k=1}^{\infty} \left(H_{p,\varepsilon}^*(A_k) + \frac{\varepsilon}{2^k}\right) \leqslant \sum_{k=1}^{\infty} H_p^*(A_k) + \varepsilon. \tag{17.5}$$

Переходя к пределу по $\varepsilon \to 0$, получаем требуемое неравенство.

Определение. Для p>0 через $\mathfrak{U}_{H_p^*}$ будем обозначать σ -алгебру H_p^* -измеримых множеств. Мера $H_p=H_p^*|\mathfrak{U}_{H_p^*}$ называется *мерой Хаусдорфа* с показателем p.

Определение. Множества $A_1,\ldots,A_n\subset\mathbb{R}^m$ называются разделенными, если

$$\operatorname{dist}(A_k, A_j) > 0 \qquad (\forall k \neq j). \tag{17.6}$$

Лемма 17.2. Пусть A_1, \ldots, A_n — разделенные множества в \mathbb{R}^m . Тогда

$$H_p^* \left(\bigsqcup_{k=1}^n A_k \right) = \sum_{k=1}^n H_p^* (A_k)$$
 (17.7)

Доказательство. По индукции все сводится к случаю n=2. Пусть множества $A,B \subset \mathbb{R}^m$ таковы, что dist $(A,B)=\delta>0$. Если $\varepsilon<\delta$ и $\{e_k\}_{k\geqslant 1}$ — ε -покрытие $A\sqcup B$, то для любого k либо $e_k\cap B=\varnothing$, либо $e_k\cap A=\varnothing$. Значит,

$$\sum_{k=1}^{\infty} \left(\frac{\operatorname{diam} e_k}{2} \right)^p \geqslant \sum_{k: e_k \cap A \neq \emptyset} \left(\frac{\operatorname{diam} e_k}{2} \right)^p + \sum_{k: e_k \cap B \neq \emptyset} \left(\frac{\operatorname{diam} e_k}{2} \right)^p \tag{17.8}$$

$$\geqslant H_{p,\varepsilon}^*(A) + H_{p,\varepsilon}^*(B). \tag{17.9}$$

Беря инфимум по ε -покрытиям в левой части и переходя к пределу $\varepsilon \to 0$, получаем неравенство $H_p^*(A \sqcup B) \geqslant H_p^*(A) + H_p^*(B)$. Обратное неравенство выполняется, поскольку H_p^* — внешняя мера.

Теорема 17.3. Пусть μ^* — внешняя мера на \mathbb{R}^m , конечно-аддитивная на разделенных множествах; $\mathfrak{U} = \mathfrak{U}(\mu^*)$ — σ -алгебра множеств, измеримых относительно μ^* . Тогда $\mathfrak{B}(\mathbb{R}^m) \subset \mathfrak{U}$.

Доказательство. Достаточно доказать, что замкнутые множества μ^* -измеримы. Пусть F — замкнуто в \mathbb{R}^m , $E \subset \mathbb{R}^m$ — произвольное множество. Покажем, что $\mu^*(E) \geqslant \mu^*(E \cap F) + \mu^*(E \setminus F)$. Положим для $n \in \mathbb{N}$

$$F_n = \left\{ x \in \mathbb{R}^n : \operatorname{dist}(x, F) \leqslant \frac{1}{n} \right\}. \tag{17.10}$$

Тогда $F=\bigcap_{n\in\mathbb{N}}F_n$, а множества $E\cap F$ и $E\setminus F_n$ разделены. Значит,

$$\mu^*(E \cap F) + \mu^*(E \setminus F_n) = \mu^*((E \cap F) \sqcup (E \setminus F_n)) \leq \mu^*(E). \tag{17.11}$$

Таким образом, достаточно показать, что $\mu^*(E \setminus F_n) \to \mu^*(E \setminus F)$ при $n \to \infty$, причем можно считать, что $\mu^*(E) < \infty$ (иначе требуемое неравенство очевидно). Заметим, что μ^{26}

$$E \setminus F = (E \setminus F_n) \sqcup \bigsqcup_{k=n}^{\infty} ((E \cap F_k) \setminus F_{k+1}).$$
 (17.12)

Поэтому

$$\mu^*(E \setminus F_n) \leqslant \mu^*(E \setminus F) \leqslant \mu^*(E \setminus F_n) + \sum_{k=n}^{\infty} \mu^*((E \cap F_k) \setminus F_{k+1}). \tag{17.13}$$

²⁶Здесь полезно нарисовать картинку.

Таким образом, достаточно доказать, что $\sum_{k=1}^{\infty} \mu^* \big((E \cap F_k) \setminus F_{k+1} \big) < \infty$ (так как хвост сходящегося ряда стремится к нулю). Возьмем $M \in \mathbb{N}$ и рассмотрим семейство разделенных множеств $\{(E \cap F_{2k}) \setminus F_{2k+1}\}_{k=1}^{M}$. Тогда

$$\sum_{k=1}^{\infty} \mu^*((E \cap F_{2k}) \setminus F_{2k+1}) = \lim_{M \to \infty} \sum_{k=1}^{M} \mu^*((E \cap F_{2k}) \setminus F_{2k+1}) \le \mu^*(E) < \infty.$$
 (17.14)

Аналогично, $\sum_{k=1}^{\infty} \mu^*(E \cap F_{2k+1} \setminus F_{2k+2}) < \infty$, а значит сходится весь ряд.

В частности, из этой теоремы следует, что $\mathfrak{B}(\mathbb{R}^m)\subset\mathfrak{U}(H_n^*).$

Наша следующая цель — доказать, что σ -алгебры, на которых определены мера Лебега и мера Хаусдорфа, совпадают. Для этого понадобятся несколько лемм.

Лемма 17.4. Для любого множества $e \in \mathbb{R}^m$ $\lambda_m^*(e) = 0 \iff H_m^*(e) = 0.$

Доказательство.

 \Longrightarrow Пусть $\lambda_m^*(e)=0$. Тогда существует набор кубических ячеек $\{Q_j\}_{j\geqslant 1}$ такой, что $\bigcup_{j=1}^\infty Q_j\supset e, \sum \lambda_m(Q_j)< \varepsilon,$ diam $Q_j< \varepsilon\ \forall j.$ Нетрудно видеть, что

$$H_{m,\varepsilon}^*(e) \leqslant \sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} Q_j}{2}\right)^m \leqslant c_m \sum \lambda_m(Q_j) \leqslant c_m \varepsilon,$$
 (17.15)

где c_m зависит лишь от m (у кубической ячейки заданного диаметра легко посчитать меру Лебега). Значит, $H_m^*(e) = \lim_{\varepsilon \to 0} H_{m,\varepsilon}^*(e) = 0$.

$$\sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} e_j}{2} \right)^m < \varepsilon. \tag{17.16}$$

Тогда

$$\lambda_m^*(e) \leqslant \sum_{j=1}^{\infty} \lambda_m^*(e_j) \leqslant \sum_{j=1}^{\infty} \lambda_m(B(0, \operatorname{diam} e_j))$$
 (17.17)

$$\leq \widetilde{c}_m \sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} e_j}{2} \right)^m \leq \widetilde{c}_m \cdot \varepsilon,$$
 (17.18)

где \widetilde{c}_m зависит только от m. После этого остается лишь перейти к пределу по $\varepsilon \to 0$. Неравенство (17.17) выполнено, так как

$$\lambda_m(B(0,\operatorname{diam} e_j)) = \lambda_m(\operatorname{diam} e_j \cdot B(0,1)) = (\operatorname{diam} e_j)^m \cdot \lambda_m(B(0,1)), \quad (17.19)$$

то есть
$$\widetilde{c}_m = 2^m \cdot \lambda_m \big(B(0,1) \big)$$
.

Лемма 17.5. Пусть $Q = [0,1]^m$ — единичный куб. Тогда $0 < H_m^*(Q) < +\infty$.

Доказательство. Первое неравенство напрямую следует из леммы 17.4, так как $\lambda_m(Q)=1$. Осталось проверить второе неравенство. Для этого разобьем Q на N^m одинаковых кубов Q_j диаметра $\frac{\sqrt{m}}{N}$. Они образуют $\frac{\sqrt{m}}{N}$ -покрытие Q, а потому

$$H_{m,\frac{\sqrt{m}}{N}}^* \leqslant \sum_{j=1}^{N^m} \left(\frac{\operatorname{diam}(Q_j)}{2}\right)^m = N^m \left(\frac{\sqrt{m}}{2N}\right)^m = 2^{-m} m^{\frac{m}{2}}.$$
 (17.20)

Значит,

$$H_m^*(Q) = \lim_{N \to \infty} H_{m, \frac{\sqrt{m}}{N}}(Q) \le 2^{-m} m^{\frac{m}{2}} < +\infty, \tag{17.21}$$

что и требовалось.

Лемма 17.6. Для любого H_m^* -измеримого множества E существуют такие множества C и e, что $C \in \mathfrak{B}(\mathbb{R}^m)$, $H_m^*(e) = 0$ и $C = E \sqcup e$.

Доказательство. Можно считать, что E ограничено (иначе можно разбить на $E\cap [-n,n]^m$). Для каждого $k\in \mathbb{N}$ обозначим $C_k=\bigcup_{j=1}^\infty \overline{e}_j$, где $\{e_j\}_{j\geqslant 1}-1/k$ -покрытие E такое, что

$$\sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} e_j}{2} \right)^m \leq H_{m,\frac{1}{k}}^*(E) + \frac{1}{k}.$$

Как счетное объединение замкнутых множеств, $C_k \in \mathfrak{B}(\mathbb{R}^m)$. Значит, $C = \bigcap_{k=1}^{\infty} C_k$ тоже лежит в $\mathfrak{B}(\mathbb{R}^m)$. Отметим, что $C_k \supset E$ для всех k, а потому $C \supset E$.

$$H_{m,\frac{1}{k}}^{*}(E) \leq H_{m,\frac{1}{k}}^{*}(C) \leq H_{m,\frac{1}{k}}^{*}(C_{k}) \leq \sum_{j=1}^{\infty} \left(\frac{\operatorname{diam}\overline{e}_{j}}{2}\right)^{m}$$
 (17.22)

$$= \sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} e_j}{2} \right)^m \le H_{m,\frac{1}{k}}^*(E) + \frac{1}{k}.$$
 (17.23)

Переходя к пределу $k \to \infty$, получаем равенство $H_m(E) = H_m(C)$.

Из леммы 17.5 и ограниченности E следует, что $H_m(E) = H_m(C) < \infty$. Значит, можно взять $e = C \setminus E$, $H_m(e) = H_m(C) - H_m(E) = 0$.

Утверждение 17.7. Мера Лебега определена на той же σ -алгебре, что и мера Хаусдорфа, то есть $\mathfrak{U}_{H_m^*}=\mathfrak{U}_{\lambda_m^*}$.

Доказательство. Если $E \in \mathfrak{U}_{H_m^*}$, то по предыдущей лемме $E = C \setminus e$, где $H_m^*(e) = 0$, $C \in \mathfrak{B}(\mathbb{R}^m)$. Тогда $\lambda_m^*(e) = 0$, в частности, $e \in \mathfrak{U}_{\lambda_m^*}$, и $E \in \mathfrak{U}_{\lambda_m^*}$.

В обратную сторону: если $E\in\mathfrak{U}_{\lambda_m^*}$, то $E=C\sqcup e$, где $C\in\mathfrak{B}(\mathbb{R}^m)$, $\lambda_m^*(e)=0$, откуда точно также следует $H_m^*(e)=0$ и $E\in\mathfrak{U}_{H_m^*}$.

Лемма 17.8. Для некоторого $k \in (0, +\infty)$ выполнено равенство $k\lambda_m = H_m$ на $\mathfrak{U}_{\lambda_m^*} = \mathfrak{U}_{H_m^*}$.

Доказательство. Это очевидным образом следует из того, что мера H_m инвариантна относительно сдвигов, теоремы ?? и леммы 17.5. ■

Осталось вычислить меру Хаусдорфа единичного куба.

Теорема 17.9 (изодиаметрическое неравенство). Если $e \subset \mathbb{R}^m$, diam $e \leqslant h$. Тогда

$$\lambda_m(\overline{e}) \le \lambda_m(B(0, h/2)). \tag{17.24}$$

Иначе говоря, шар — наибольший по мере Лебега компакт фиксированного диаметра.

Доказательство.

(1) Если K — замкнуто в \mathbb{R} , $\operatorname{diam}(K) < \infty$, то $\lambda_1(K - K) \ge 2\lambda_1(K)$. Действительно,

$$K - K \supset A_1 \sqcup A_2 = (K \setminus \{\min K\} - \min K) \sqcup (K \setminus \{\max K\} - \max K),$$

где $A_1 \cap A_2 = \emptyset$, так как если $x - \min K = y - \max K$, то $y - x = \max K - \min K$, то есть $y = \max K$, а $x = \min K$, что невозможно. Значит,

$$\lambda_1(A_1) + \lambda_1(A_2) \leqslant \lambda_1(K - K), \tag{17.25}$$

откуда $2\lambda_1(K) \leqslant \lambda_1(K-K)$, так как $\lambda_1(A_1) = \lambda_1(A_2) = \lambda_1(K)$.

(2) Пусть E — замкнутое подмножество в \mathbb{R}^m , diam $E < \infty$, $1 \le i \le m$,

$$\Omega_i(E) = \left\{ \left(x_1, \dots, x_{i-1}, \frac{x_i - \widetilde{x}_i}{2}, x_{i+1}, \dots, x_m \right) \right\},\,$$

где множество $\Omega_i(E)$ берется по всем наборам

$$(x_1,\ldots,x_m)\in E$$
 u $(x_1,\ldots,x_{i-1},\widetilde{x}_i,x_{i+1},\ldots,x_m)\in E$.

Тогда $\Omega_i(E)$ — замкнуто в \mathbb{R}^m , и $\lambda_m(E) \leq \lambda_m(\Omega_i(E))$. ²⁸

Докажем сначала замкнутость. Если есть последовательность точек

$$\left\{\left(x_{1j},\ldots,x_{i-1,j},\frac{x_{ij}-\widetilde{x}_{ij}}{2},x_{i+1,j},\ldots,x_{mj}\right)\right\}_{i\geq 1},$$

то пользуясь компактностью $[-\dim E, \dim E]^m$ можно выбрать общую сходящуюся подпоследовательность в $\{x_j\}$ и $\{\widetilde{x}_j\}$, и получить последовательность точек выше сходится к какому-то элементу из E. Таким образом, множество $\Omega_i(E)$ замкнуто. Неравенство следует из теоремы Тонелли:

$$\lambda_m(E) = \int_{\mathbb{R}^m} \chi_E \, d\lambda_m(x) = \int_{\mathbb{R}^{m-1}} \left(\int_{\mathbb{R}} \chi_E(x) \, dx_i \right) d\lambda_{m-1}$$
 (17.26)

²⁷Здесь $K - K = \{x - y \mid x, y \in K\}$ — замкнутое, а потому измеримое множество.

²⁸Это утверждение — упрощенный вариант симметризации Штейнера.

$$\leq \int_{\mathbb{R}^{m-1}} \left(\int_{\mathbb{R}} \chi_{\Omega_i(E)}(x) \, \mathrm{d}x_i \right) \mathrm{d}\lambda_{m-1} = \lambda_m(\Omega_i(E)), \tag{17.27}$$

где неравенство в (17.27) следует из пункта (1), где в качестве K нужно взять проекцию E на i-ую координату при фиксированных $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m$.

(3) $\operatorname{diam} \Omega_i(E) \leq \operatorname{diam} E$, где $\Omega_i(E)$ — множество из предыдущего пункта.

Для упрощения записи будем считать, что i = m. Тогда:

$$\left\| \left(x_1, x_2, \dots, x_{m-1}, \frac{x_m - \widetilde{x}_m}{2} \right) - \left(y_1, y_2, \dots, y_{m-1}, \frac{y_m - \widetilde{y}_m}{2} \right) \right\|^2 =$$
 (17.28)

$$= \sum_{k=1}^{m-1} (x_k - y_k)^2 + \left(\frac{x_m - \widetilde{x}_m}{2} - \frac{y_m - \widetilde{y}_m}{2}\right)^2 =$$
(17.29)

$$= \sum_{k=1}^{m-1} (x_k - y_k)^2 + \left(\frac{x_m - y_m}{2} - \frac{\widetilde{x}_m - \widetilde{y}_m}{2}\right)^2 \le (17.30)$$

$$\leq \sum_{k=1}^{m-1} (x_k - y_k)^2 + \max((x_m - y_m)^2, (\widetilde{x}_m - \widetilde{y}_m)^2), \tag{17.31}$$

так как

$$\frac{1}{4}(a-b)^2 \le \frac{1}{4}(|a|+|b|)^2 \le \frac{1}{4}(2\max(|a|,|b|))^2 = \max(a^2,b^2). \tag{17.32}$$

Отсюда нетрудно вывести требуемое неравенство.

(4) Рассмотрим последовательность множеств

$$E_0 = \overline{e}, \qquad E_k = \Omega_k(E_{k-1}),$$

где $k \in \{1, 2, ..., m\}$. Тогда E_m — замкнуто, diam $E_m \leq$ diam \overline{e} , $\lambda_m(E_m) \geqslant \lambda_m(\overline{e})$. По построению, если $x \in E_m$, то $-x \in E_m$, а потому

$$2||x|| = ||x - (-x)|| \le \dim E_m \le h. \tag{17.33}$$

Таким образом, $\|x\| \leqslant \frac{h}{2}$ для всех $x \in E_m$, то есть $E_m \subset \overline{B}(0,\frac{h}{2})$, и $\lambda_m(\overline{e}) \leqslant \lambda_m(E_m) \leqslant \lambda_m(B(0,h/2))$.

Лемма 17.10. Пусть G — открыто в \mathbb{R}^m . Тогда существует такой дизъюнктный набор замкнутых шаров $\{B_k\}_{k=1}^{\infty}$, что $B_k \subset G$ для всех k, и $\lambda_m(G \setminus \bigcup_{k=1}^{\infty} B_k) = 0$.

Доказательство. Можно считать, что G ограничено. Пусть $Q = [0,1)^m$. Тогда существует шар B такой, что $\overline{B} \subset Q$ и $\lambda_m(Q \setminus B) < \theta \lambda_m(Q) = \theta$, где $\theta \in (0,1)$. Значит, любой кубической ячейки Q' существует шар B' такой, что $\overline{B'} \subset Q'$ и

$$\lambda_m(Q' \setminus B') < \theta \lambda_m(Q'). \tag{17.34}$$

Рассмотрим разбиение G на кубические ячейки. Выберем в каждой ячейке Q_k шар B_k такой, что выполнено (17.34). Тогда существует $N \in \mathbb{N}$:

$$\lambda_m \left(G \setminus \bigsqcup_{k=1}^N B_k \right) < \widetilde{\theta} \cdot \lambda_m(G), \tag{17.35}$$

где $\widetilde{\theta} \in (\theta,1)$ (здесь использовано то, что diam $G<\infty$).

Возьмем $G_1 = G \setminus \bigsqcup_{k=1}^N B_k$ и применим предыдущее рассуждение к G_1 . Соответственно, найдем такие B_2' , N_2 , что

$$\lambda_m(G_2) < \widetilde{\theta}\lambda_m(G_1),$$

где $G_2 = G_1 \setminus \bigsqcup_{k=1}^{N_2} B_k'$. И так далее. Получим счетное дизъюнктное семейство шаров

$$F = \bigsqcup_{k=1}^{N_1} \overline{B_k'} \sqcup \bigsqcup_{k=1}^{N_2} \overline{B_k''} \sqcup \dots$$
 (17.36)

При этом

$$\lambda_m(G \setminus F) \leqslant \lambda_m(G_j) \xrightarrow[j \to +\infty]{} 0,$$
 (17.37)

что и требовалось.

Теорема 17.11. Пусть $m \in \mathbb{N}$ — произвольное число. Тогда $\lambda_m = \alpha_m H_m$ на $\mathfrak{U}_{\lambda_m^*} = \mathfrak{U}_{H_m^*}$, где $\alpha_m = \lambda_m(B(0,1))$.

Доказательство. Мы уже доказывали, что существует $k \in (0, +\infty)$: $H_m = k\lambda_m$. Значит, осталось показать, что $\alpha_m H_m(G) = \lambda_m(G)$ для любого открытого множества G (например, шара). Пусть G — открыто, diam $G < \infty$, $\delta > 0$, $\varepsilon > 0$. Выберем δ -покрытие $\{e_k\}_{k\geqslant 1}$ множества G, удовлетворяющее свойству

$$H_{m,\delta}^*(G) + \varepsilon \geqslant \sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} e_j}{2}\right)^m.$$
 (17.38)

Воспользуемся изодиаметрическим неравенством:

$$\sum_{j=1}^{\infty} \left(\frac{\operatorname{diam} e_j}{2} \right)^m = \frac{1}{\alpha_m} \sum_{j=1}^{\infty} \lambda_m \left(B(0, \operatorname{diam} e_j/2) \right)$$
 (17.39)

$$\geqslant \frac{1}{\alpha_m} \sum_{j=1}^{\infty} \lambda_m(\overline{e}_j) \geqslant \frac{1}{\alpha_m} \lambda_m \left(\bigcup_{j=1}^{\infty} \overline{e}_j \right) \geqslant \frac{\lambda_m(G)}{\alpha_m}. \tag{17.40}$$

После перехода к пределам $\varepsilon \to 0$ и $\delta \to 0$ получаем $\alpha_m H_m^*(G) \geqslant \lambda_m(G)$.

В обратную сторону: пусть $\delta > 0$, $\{B_k\}_{k\geqslant 1}$ — дизъюнктный набор шаров диаметра $<\delta$, причем $\lambda_m(G\setminus\bigsqcup_{k=1}^\infty B_k)=0$ (такой набор существует по лемме 17.10), и $\bigsqcup B_k\subset G$.

Тогда

$$\lambda_m(G) = \lambda_m \left(\bigsqcup_{k=1}^{\infty} B_k \right) = \sum_{k=1}^{\infty} \lambda_m(B_k)$$
 (17.41)

$$= \alpha_m \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam} B_k}{2} \right)^m \geqslant \alpha_m H_{m,\delta}^* \left(\bigsqcup_{k=1}^{\infty} B_k \right)$$
 (17.42)

$$=\alpha_m H_{m\delta}^*(G\setminus e_\delta),\tag{17.43}$$

где $e_\delta:\lambda_m(e_\delta)=0$. Для каждого $\delta_k=1/k$, где $k\in\mathbb{N}$, построим такое множество e_{δ_k} , и тогда

$$\lambda_{m}(G) \geqslant \alpha_{m} H_{m,\delta_{k}} \left(G \setminus \bigcup_{j=1}^{\infty} e_{\delta_{j}} \right) \qquad (\forall k \in \mathbb{N}).$$
 (17.44)

Устремляя k к бесконечности, получаем, что

$$\lambda_m(G) \geqslant \alpha_m H_m \left(G \setminus \bigcup_{j=1}^{\infty} e_{\delta_j} \right) = \alpha_m H_m(G),$$
 (17.45)

так как $\lambda_m\left(\bigcup e_{\delta_j}\right)=0=H_m\left(\bigcup e_{\delta_j}\right)$. Таким образом, теорема доказана.

Определение. k-мерной *площадью* (*поверхностной мерой*) в \mathbb{R}^m будем называть меру $S_k = \alpha_k H_k$.

Из предыдущей теоремы следует, что k-мерная площадь лебеговских подмножеств подпространства \mathbb{R}^m размерности k совпадает с их мерой Лебега λ_k .

Определение. Пусть $U \subset \mathbb{R}^k$ — открытое множество, $\varphi \colon U \to \mathbb{R}^m$, где $m \geqslant k$, — гладкая биекция на свой образ. *Матрицей Грама* отображения φ в точке $x \in \mathbb{R}^m$ называется линейное отображение $[d_x \varphi]^*[d_x \varphi] \in L(\mathbb{R}^k, \mathbb{R}^k)$.

Напомним, что если $A \in L(\mathbb{R}^k, \mathbb{R}^m)$, то $A^* \in L(\mathbb{R}^m, \mathbb{R}^k)$ — это такой оператор, что $(Ax, y)_{\mathbb{R}^m} = (x, A^*y)_{\mathbb{R}^k}$ для всех $x \in \mathbb{R}^k$, $y \in \mathbb{R}^m$.

 $\det\left(A^{*}A\right)\geqslant0$ для любого $A\in L(\mathbb{R}^{k},\mathbb{R}^{m})$, так как если λ — собственное число $A^{*}A$, соответствующее собственному вектору e_{λ} , то

$$(Ae_{\lambda}, Ae_{\lambda}) = (A^*Ae_{\lambda}, e_{\lambda}) = (\lambda e_{\lambda}, e_{\lambda}) = \lambda (e_{\lambda}, e_{\lambda}) \geqslant 0, \tag{17.46}$$

откуда $\lambda \geqslant 0$, а значит и det $(A^*A) = \lambda_1 \cdot \ldots \cdot \lambda_m \geqslant 0$.

Лемма 17.12. Пусть $E_1, E_2 \subset \mathbb{R}^m, g: E_1 \to E_2$ — билипшицево отображение, то есть

$$\frac{1}{k}||x - y|| \le ||g(x) - g(y)|| \le k||x - y|| \qquad (\forall x, y \in E_1). \tag{17.47}$$

Тогда

$$\frac{1}{k^p}H_p^*(E_1) \leqslant H_p^*(E_2) \leqslant k^p H_p^*(E_1). \tag{17.48}$$

Доказательство. Пусть $\delta > 0$, $\{e_k\}_{k\geqslant 1}$ — δ -покрытие E_1 . Тогда $\mathrm{diam}(g(e_k)) \in \left[\frac{1}{k}\delta, k\delta\right]$ для всех k, и $\bigcup_{k=1}^{\infty} g(e_k) \supset E_2$.

$$H_{k,\delta}^*(E_2) \leqslant \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam} g(e_k)}{2} \right)^p \leqslant k^p \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam}(e_k)}{2} \right)^p, \tag{17.49}$$

то есть $H_{p,\delta}^*(E_2) \leqslant k^p H_{p,\delta}^*(E_1)$. При $\delta \to 0$ получаем правое из двух требуемых неравенство. Левое доказывается аналогично (или можно рассмотреть отображение $g^{-1} \colon E_2 \to E_1$).

Из доказательства видно, что если $\|g(x) - g(y)\| \le k\|x - y\|$, то $H_p^*(E_1) \le k^p H_p^*(E_2)$.

Следствие 17.13. Если T — изометрия, то для любого p > 0:

- 1. $H_p^*(E) = H_P^*(T(E))$.
- 2. $T(\mathfrak{U}_{H_n^*}) = \mathfrak{U}_{H_n^*}$.

Доказательство.

- 1. Напрямую следует из леммы для k = 1.
- 2. Для любого $A \in \mathfrak{U}_{H_n^*}$ верно

$$H_p^*(E) = H_p^*(E \cap A) + H_p^*(E \setminus A) \qquad (\forall E \subset \mathbb{R}^m), \tag{17.50}$$

а значит

$$H_p^*(T(E)) = H_p^*(T(E) \cap T(A)) + H_p^*(T(E) \setminus T(A)) \qquad (\forall E \subset \mathbb{R}^m), \tag{17.51}$$

Поскольку T(E) — произвольное подмножество \mathbb{R}^m , то $T(A) \in \mathfrak{U}_{H_p^*}$, то есть имеет место включение $T(\mathfrak{U}_{H_p^*}) \subset \mathfrak{U}_{H_p^*}$. Для доказательства обратного включения можно рассмотреть обратное отображение T^{-1} .

Следствие 17.14. Пусть M — гладко параметризованное многообразие размерности k в \mathbb{R}^m ; $\varphi \colon U \to \mathbb{R}^m$ — диффеоморфизм между $U \subset \mathbb{R}^k$ и $\varphi(U) = M$. Тогда $\varphi(\mathfrak{B}(U)) \subset \mathfrak{U}_{H^*_{\nu}}$ и $\mathfrak{B}(M) \subset \varphi(\mathfrak{B}(U))$.

Доказательство. Пусть $A \in \mathfrak{B}(U)$. Можно считать, что A ограничено и $\overline{A} \subset U$ (иначе рассмотрим разбиение A на такие множества). Разобьем $A = K \cup e$, где $e \in \mathfrak{U}_{\lambda_k^*}$: $\lambda_k(e) = 0 = H_k^*(e)$, K — компакт в \mathbb{R}^k . Тогда

$$\varphi(K \cup e) = \varphi(K) \cup \varphi(e),$$

arphi(K) — компакт, а потому $arphi(K) \in \mathfrak{U}_{H_k^*}$. $H_k^*(arphi(e)) = 0$ по лемме 17.12, так как $H_k^*(e) = 0$ и arphi — липшицева на \overline{A} . В частности, $e \in \mathfrak{U}_{H_k^*}$, а значит и $A = K \cup e \in \mathfrak{U}_{H_k^*}$. Итого, мы доказали, что $arphi(\mathfrak{B}(U)) \subset \mathfrak{U}_{H_k^*}$.

Поскольку φ — биекция, $\varphi(\mathfrak{B}(U))$ — σ -алгебра. Кроме того, эта σ -алгебра содержит открытые множества в M, так как φ — диффеоморфизм между U и M. Значит, $\mathfrak{B}(M) \subset \varphi(\mathfrak{B}(U))$.

Лемма 17.15. Пусть $E\in\mathfrak{B}(\mathbb{R}^k),\,T\in L(\mathbb{R}^k,\mathbb{R}^m).$ Тогда $T(E)\in\mathfrak{U}_{H_k^*}$ и

$$S_k(TE) = \alpha_k H_k(TE) = \sqrt{\det(T^*T)} \cdot \lambda_k(E). \tag{17.52}$$

Доказательство. T — диффеоморфизм на свой образ в \mathbb{R}^m , а значит $TE \in \mathfrak{U}_{H_k^*}$ по предыдущему следствию. Кроме того, существует изометрия $\widetilde{T}: \mathbb{R}^m \to \mathbb{R}^m$ такая, что $\widetilde{T}(TE) = \mathbb{R}^k$, где $\mathbb{R}^k = \{(x_1, \dots, x_m) \in \mathbb{R}^m : x_{k+1}, \dots, x_m = 0\}$. Так как \widetilde{T} — изометрия, $H_k(TE) = H_k(\widetilde{T}TE) = \frac{1}{\alpha_k} \lambda_k(\widetilde{T}TE)$, и

$$\frac{1}{\alpha_k} \lambda_k(\widetilde{T}TE) = \frac{1}{\alpha_k} |\det(\widetilde{T}T)| \cdot \lambda_k(E)$$
 (17.53)

$$= \frac{1}{\alpha_k} \sqrt{\det(T^* \widetilde{T}^* \widetilde{T} T)} \cdot \lambda_k(E)$$
 (17.54)

$$= \frac{1}{\alpha_k} \sqrt{\det(T^*T)} \cdot \lambda_k(E)$$
 (17.55)

В последнем переходе использовано, что $\widetilde{T}^*\widetilde{T}=I$.

Лемма 17.16. Пусть M — гладко параметризованное многообразие размерности k в \mathbb{R}^m ; $\varphi \colon U \to \mathbb{R}^m$ — диффеоморфизм между $U \subset \mathbb{R}^k$ и $\varphi(U) = M$. Пусть также $p \in M$, $p = \varphi(a)$, и задано отображение

$$g: M \to \mathbb{R}^m, y \mapsto \varphi(a) + [d_a \varphi] h(y),$$

где $h(y) \in \mathbb{R}^k$ таково, что $\varphi(a+h(y)) = y$. Тогда для любого $\varepsilon > 0$ существует окрестность $V_{\varepsilon}(p)$ точки p такая, что для всех $y_1, y_2 \in V_{\varepsilon}(p)$ выполнены неравенства

$$\frac{1}{1+\varepsilon}\|y_1 - y_2\| \le \|g(y_1) - g(y_2)\| \le (1+\varepsilon)\|y_1 - y_2\|. \tag{17.56}$$

Доказательство. По определению, $g(y_1) - g(y_2) = [d_a \varphi](h(y_1) - h(y_2)).$

$$y_1 - y_2 = \varphi(a + h(y_1)) - \varphi(a + h(y_2)) = \tag{17.57}$$

$$= \varphi(a + h(y_1)) - \varphi(a + h(y_1) + h(y_2) - h(y_1))$$
 (17.58)

$$- [d_a \varphi](h(y_1) - h(y_2)) + [d_a \varphi](h(y_1) - h(y_2))$$
 (17.59)

$$= F(0) - F(1) + g(y_1) - g(y_2), (17.60)$$

где

$$F(t) = \varphi(a + h(y_1) + th(y_2) - th(y_1)) - [d_a\varphi](th(y_1) - th(y_2)). \tag{17.61}$$

Тогда по неравенству Лагранжа

$$||F(0) - F(1)|| \le ||F'(t_0)|| = ([d_z \varphi] - [d_a \varphi])(h(y_2) - h(y_1)), \tag{17.62}$$

где $z = a + h(y_1) + t_0 h(y_2) - t_0 h(y_1)$.

При достаточно близких к p y_1 и y_2 $\|\mathrm{d}_z\varphi-\mathrm{d}_a\varphi\|<\widetilde{\varepsilon}$, так как $\varphi\in C^1(U)$ и h — глад-

кое отображение, удовлетворяющее условию h(p) = 0. Значит, неравенство

$$c(1-\widetilde{\varepsilon})\|y_1-y_2\| \le \|g(y_1)-g(y_2)\| \le c(1+\widetilde{\varepsilon})\|y_1-y_2\|$$

верно в малой окрестности p с универсальной константой c.

Теорема 17.17. Пусть M — гладко параметризованное многообразие размерности kв \mathbb{R}^m ; $\varphi \colon U \to \mathbb{R}^m$ — диффеоморфизм между $U \subset \mathbb{R}^k$ и $\varphi(U) = M$. Тогда для любого борелевского $E \subset M$:

$$S_k(E) = \int_{\varphi^{-1}(E)} \sqrt{\det([\mathbf{d}_x \varphi]^* [\mathbf{d}_x \varphi])} \, \mathrm{d}\lambda_k(x). \tag{17.63}$$

Доказательство. Вместо формулы (17.63) будем доказывать следующую:

$$S_k(\varphi(E)) = \int_E \sqrt{\det G(x)} \, \mathrm{d}\lambda_k(x) \qquad (\forall E \in \mathfrak{B}(U)), \tag{17.64}$$

где $G(x) = [d_x \varphi]^* [d_x \varphi]$. Очевидно, что они эквивалентны. Для этого рассмотрим меру $\mu(E) = S_k(\varphi(E))$. Если $\lambda_k(e) = 0 = H_k(e)$, то, поскольку φ — диффеоморфизм, $H_k(\varphi(e))=0$, откуда следует, что $S_k(\varphi(e))=0$. Значит, мера μ абсолютна непрерывна относительно λ_k . В частности, в ее разложении Радона – Никодима нет сингулярной части относительно λ_k :

$$\mu(E) = \int_{E} \omega(x) \, \mathrm{d}x \tag{17.65}$$

для некоторой функции $\omega > 0$, локально интегрируемой на U^{29} . Осталось показать, что $\omega(x) = \sqrt{\det G(x)}$. По теореме о дифференцировании мер, почти везде

$$\omega(x) = \lim_{r \to 0} \frac{\mu(B(x,r))}{\lambda_k(B(x,r))}.$$
(17.66)

При этом

$$\mu(B(x,r)) = S_k(\varphi(B(x,r))) = \alpha_k H_k(\varphi(B(x,r))). \tag{17.67}$$

Остается найти предел:

$$\lim_{r \to 0} \frac{\mu(B(x,r))}{\lambda_k(B(x,r))} = \lim_{r \to 0} \frac{\alpha_k H_k(g(\varphi(B(x,r))))}{\lambda_k(B(x,r))}$$

$$= \lim_{r \to 0} \frac{\alpha_k H_k(\varphi(x) + [d_x \varphi](B(0,r)))}{\lambda_k(B(0,r))}$$
(17.69)

$$= \lim_{r \to 0} \frac{\alpha_k H_k(\varphi(x) + \lfloor d_x \varphi \rfloor(B(0, r)))}{\lambda_k(B(0, r))}$$
(17.69)

$$= \lim_{r \to 0} \frac{\alpha_k H_k([\mathsf{d}_x \varphi](B(0,r)))}{\lambda_k(B(0,r))}$$

$$= \lim_{r \to 0} \frac{\sqrt{\det[\mathsf{d}_x \varphi]^*[\mathsf{d}_x \varphi]} \cdot \lambda_k(B(0,r))}{\lambda_k(B(0,r))}$$
(17.71)

$$= \lim_{r \to 0} \frac{\sqrt{\det\left[\mathbf{d}_{x}\varphi\right]^{*}\left[\mathbf{d}_{x}\varphi\right]} \cdot \lambda_{k}(B(0,r))}{\lambda_{k}(B(0,r))}$$
(17.71)

²⁹Это значит, что $\omega \in L^1(E)$, если $\mu(E) < \infty$.

$$= \sqrt{\det G(x)},\tag{17.72}$$

что и требовалось. Здесь в (17.68) функция g определена так же, как в лемме 17.16, и это равенство выполнено, так как

$$\frac{1}{(1+\varepsilon(r))^k} H_k(\varphi(B(x,r))) \le H_k(g(\varphi(B(x,r)))) \le (1+\varepsilon(r))^k H_k(\varphi(B(x,r))) \tag{17.73}$$

где $\varepsilon(r) \to 0$. В (17.70) используется инвариантность относительно сдвигов, а в (17.71) — лемма 17.15.

Следствие 17.18. Пусть M — гладко параметризованное многообразие размерности k в \mathbb{R}^m ; $\varphi \colon U \to \mathbb{R}^m$ — диффеоморфизм между $U \subset \mathbb{R}^k$ и $\varphi(U) = M$; f — борелевская функция на M. Тогда

$$\int_{E} f \, dS_k = \int_{\varphi^{-1}(E)} f(\varphi) \sqrt{\det G} \, d\lambda_k \tag{17.74}$$

Доказательство. Применить абстрактную теорему о замене меры для мер S_k и $\sqrt{\det G}$ $\mathrm{d}\lambda_k$ (интегрирование по взвешенному образу меры).

Утверждение 17.19. Пусть p > 0, $E \in \mathfrak{B}(\mathbb{R}^m)$. Если $H_p(E) < \infty$, то для всех p' > p $H_{p'}(E) = 0$. Если $H_p(E) > 0$, то $H_{p'}(E) = +\infty$ для всех $P' \in (0, p)$.

Доказательство. Пусть $H_p(E) < \infty$ и p' > p. Рассмотрим δ -покрытие $\{e_k\}_{k\geqslant 1}$ множества E. Тогда

$$\varepsilon + H_{p,\delta}^*(E) \geqslant \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam} e_k}{2} \right)^p = \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam} e_k}{2} \right)^{p'} \cdot \left(\frac{2}{\operatorname{diam} e_k} \right)^{p'-p}$$
 (17.75)

$$\geqslant \left(\frac{2}{\delta}\right)^{p'-p} \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam} e_k}{2}\right)^{p'} \geqslant \left(\frac{2}{\delta}\right)^{p'-p} H_{p',\delta}^*(E), \tag{17.76}$$

откуда $H_p^*(E)\geqslant \lim_{\delta\to 0}\left(\frac{2}{\delta}\right)^p H_{p',\delta}^*(E)$. Значит, $H_{p'}(E)=0$ — иначе бы справа стояла бесконечность, а слева — конечное число.

Если $H_p(E) \in (0, \infty]$, то при p' < p, то $H_{p'}(E) = +\infty$, так как иначе можно применить первую часть доказательства для p' и получить, что $H_p(E) = 0$, а это неверно.

В связи с этим утверждением естественным образом возникает следующее определение:

Определение. Число

$$\dim_H(E) = \inf\{p \mid H_p(E) = 0\} = \sup\{p \mid H_p(E) = +\infty\}$$

называется хаусдорфовой размерностью множества $E \in \mathfrak{B}(\mathbb{R}^m)$.

Утверждение 17.20. Пусть M — гладко параметризованное многообразие размерности k. Тогда $H_p(M) = 0$ для любого числа p > k.

Доказательство. Переходя к картам, можно считать, что M — простое гладко параметризованное многообразие размерности k, причем $S_k(M) < \infty$. Но тогда $H_k(M) < \infty$ и $H_D(M) = 0$ для всех p > k по утверждению 17.19. ■

Утверждение 17.21. Пусть C — обычное канторово множество. Тогда

$$\dim_H C = \frac{\log 2}{\log 3} = \alpha,\tag{17.77}$$

a $H_{\alpha}(C) = 2^{-\alpha}$.

Доказательство. Если $k \in \mathbb{N}$, то C можно накрыть 2^k отрезками длины $1/3^k$, а потому

$$H_{\alpha,\frac{1}{3^k}}^*(C) \le \sum_{n=1}^{2^k} \left(\frac{1/3^k}{2}\right)^{\alpha} = 2^{k-\alpha} \cdot 3^{-\alpha k} = 2^{k-\alpha} \cdot 3^{-k\log_3 2} = 2^{-\alpha}.$$
 (17.78)

Справа стоит число, не зависящее от k, а потому $H_{\alpha}(C) \leq 2^{-\alpha}$ и $\dim_H(C) \leq \alpha$. Осталось доказать неравенство в обратную сторону.

Поскольку C компактно, достаточно рассматривать случай, когда C покрыто конечным числом открытых интервалов. Пусть $C \subset \bigcup_{k=1}^N I_k$. Будем доказывать по индукции неравенство

$$\sum_{k=1}^{N} \left(\frac{\operatorname{diam} I_k}{2} \right)^{\alpha} \geqslant 2^{-\alpha}. \tag{17.79}$$

Если N=1, то диаметр I_1 должен быть $\geqslant 1$, и неравенство (17.79) превращается в тривиальное $2^{-\alpha} \geqslant 2^{-\alpha}$. Пусть неравенство доказано для N интервалов. Переходим к N+1-ому. Либо среди I_j нет ни одного интервала, содержащего $\left[\frac{1}{3},\frac{2}{3}\right]$, то можно уменьшить N+1, разбив сумму на две, каждая из которых содержит левую и правую часть C соответственно:

$$\sum_{I_{k}\supset C_{k}} \left(\frac{\operatorname{diam} I_{k}}{2}\right)^{\alpha} + \sum_{I_{k}\supset C_{k}} \left(\frac{\operatorname{diam} I_{k}}{2}\right)^{\alpha} \geqslant 2^{-\alpha} \cdot \left(\frac{1}{3}\right)^{\alpha} + 2^{-\alpha} \cdot \left(\frac{1}{3}\right)^{\alpha} \tag{17.80}$$

$$\geqslant 2^{-\alpha} (\frac{1}{2} + \frac{1}{2}) = 2^{-\alpha}.$$
 (17.81)

Если же отрезок $[\frac{1}{3},\frac{2}{3}]$ встречается среди I_k , то заменим его на интервалы $I_{k_0L}=I_{k_0}\cap[0,\frac{1}{3}],\ I_{k_0R}=I_{k_0}\cap[\frac{2}{3},1].$ Тогда

$$\left(\frac{|I_{k_0L}|}{2}\right)^{\alpha} + \left(\frac{|I_{k_0R}|}{2}\right)^{\alpha} \le \left(\frac{|I_{k_0L}|}{2} + \frac{|I_{k_0R}|}{2} + \frac{1}{3}\right)^{\alpha} \le \frac{2^{\alpha}}{3^{\alpha}} = 2^{\alpha - 1}.$$
 (17.82)

Численное неравенство $x^{\alpha}+y^{\alpha}\leqslant (x+y+\frac{1}{3})^{\alpha}$ для $x,y\in [0,1/3]$, можно доказать, например, с помощью неравенства Йенсена:

$$x^{\alpha} + y^{\alpha} \le 2\left(\frac{x+y}{2}\right)^{\alpha} = \frac{3^{\alpha}}{2^{\alpha}}(x+y)^{\alpha} = \left(\frac{3}{2}(x+y)\right)^{\alpha} \le \left(x+y+\frac{1}{3}\right)^{\alpha},$$
 (17.83)

так как $\frac{3}{2}(x+y) = x + y + \frac{x+y}{2} \le x + y + \frac{1}{3}$.

Далее надо рассмотреть C_L или C_R вместо C и применить предыдущее рассуждение. Либо на одном из N шагов не встретится интервал, накрывающий среднюю треть, либо мы придем к естественному накрытию, для которого $\sum \left(\frac{|I_j|}{2}\right)^{\alpha}=2^{-\alpha}$.

Утверждение 17.22. Пусть $\varphi \in C^1(U, \mathbb{R}^m)$, где $U \subset \mathbb{R}^k$, $k \le m$. Тогда матрица Грама φ имеет вид $((\varphi'_{x_s}, \varphi'_{x_j}))_{1 \le s, j \le k}, ^{30}$ где

$$\varphi'_{x_i} = \left(\frac{\partial \varphi_1}{\partial x_i}, \dots, \frac{\partial \varphi_m}{\partial x_i}\right).$$

Доказательство. Действительно,

$$G = [\mathsf{d}_x arphi]^* [\mathsf{d}_x arphi] = egin{pmatrix} arphi'_{ix_1} & arphi'_{ix_2} & \dots & arphi'_{ix_k} \ & & arphi'_{ix_k} \ & & arphi'_{2x_j} \ & & arphi'_{mx_j} \ \end{pmatrix} = ((arphi'_{x_i}, arphi'_{x_j})).$$

Утверждение 17.23 (длина гладкой кривой). Пусть $\varphi \colon (a,b) \to \mathbb{R}^m$ — гладкая инъекция³¹. Тогда

$$S_1(\varphi(a,b)) = \int_a^b \|\varphi'(t)\| dt.$$
 (17.84)

Доказательство. В данном случае,

$$G = (\varphi_1', \varphi_2', \dots, \varphi_m') \begin{pmatrix} \varphi_1' \\ \varphi_2' \\ \vdots \\ \varphi_m' \end{pmatrix} = \sum_{i=1}^m (\varphi_i')^2, \tag{17.85}$$

а потому $\sqrt{\deg G} = \|\varphi'(t)\|$ и утверждение из одной из предыдущих теорем.

Утверждение 17.24 (площадь графика гладкого отображения).

Пусть $g \in C^1(U,\mathbb{R})$, где $U \subset \mathbb{R}^k$; $M = \{(u,g(u)) \mid u \in U\}$ — многообразие, гладко параметризованное отображением $u \mapsto (u,g(u))$. Тогда

$$S_k(M) = \int_U \sqrt{1 + \|\text{grad } gu\|^2} \, d\lambda_k(u).$$
 (17.86)

³⁰Здесь внешние скобки обозначают матрицу, а внутренние — скалярное произведение.

 $^{^{31}}$ Условие на φ можно сильно ослабить.

Доказательство. Найдем матрицу Якоби:

$$[\mathbf{d}_{x}\varphi] = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ g'_{x_{1}} & g'_{x_{2}} & g'_{x_{3}} & \dots & g'_{x_{k}} \end{pmatrix} \in M_{(k+1)\times k}.$$

$$(17.87)$$

По формуле Бине - Коши:

$$\det([d_x \varphi]^* [d_x \varphi]) = \sum_{i=1}^{k+1} (\det A_i)^2,$$
 (17.88)

где A_i — матрица $[\mathrm{d}_x \varphi]$, из которой выкинули строчку с номером i. Ясно, что $|\det A_{k+1}|=|\det I_{k\times k}|=1,\; |\det A_i|=|g'_{x_i}|,\;$ откуда

$$\sum_{i=1}^{k+1} (\det A_i)^2 = 1 + \sum_{i=1}^k (g'_{x_i})^2 = 1 + \|\operatorname{grad} gu\|^2.$$
 (17.89)

Пример 17.1. Пусть $M = \{(x, y, z) : z = x^2 + y^2, \ 0 \le z < 1\}$. Посчитаем $S_2(M)$.

Обозначим $\widetilde{M}=M\setminus \left\{(x,0,x^2)\mid x\in (0,1)\right\}\cup \{0\}$. Ясно, что $S_2(M)=S_2(\widetilde{M})$, так как мы вычли гладко параметризованное многообразие размерности $1.\ \widetilde{M}$ — простое многообразие, задающееся отображением

$$\Phi \colon (r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi, r^2), \quad r \in (0, 1), \quad \varphi \in (0, 2\pi). \tag{17.90}$$

Пусть $U = (0,1) \times (0,2\pi)$. Тогда

$$S_k(\widetilde{M}) = \int_U \sqrt{\det G} \, \mathrm{d}\lambda_2. \tag{17.91}$$

Осталось посчитать матрицу Грама.

$$\Phi_r'(r,\varphi) = (\cos\varphi, \sin\varphi, 2r), \tag{17.92}$$

$$\Phi_{\varphi}'(r,\varphi) = (-\sin\varphi, r\cos\varphi, 0). \tag{17.93}$$

Значит,

$$G = \begin{pmatrix} (\Phi'_r, \Phi'_r) & (\Phi'_r, \Phi'_\varphi) \\ (\Phi'_\varphi, \Phi'_r) & (\Phi'_\varphi, \Phi'_\varphi) \end{pmatrix} = \begin{pmatrix} 1 + 4r^2 & 0 \\ 0 & r^2 \end{pmatrix}, \tag{17.94}$$

то есть $\sqrt{\det G} = r\sqrt{1 + 4r^2}$. По теореме Тонелли,

$$\int_{U} \sqrt{\det G} = \int_{0}^{2\pi} \int_{0}^{1} r\sqrt{1 + 4r^2} \, dr \, d\varphi = [t = r^2]$$
 (17.95)

$$= \frac{2\pi}{2} \int_{0}^{1} \sqrt{1+4t} \, \mathrm{d}t \tag{17.96}$$

$$= \frac{\pi (1+4t)^{3/2}}{4} \cdot \frac{2}{3} \Big|_{0}^{1} = \frac{\pi}{6} (5^{3/2} - 1). \tag{17.97}$$

18 Формула коплощади

Лемма 18.1 (о разложении единицы).

- 1. Для любого $\varepsilon > 0$ существует такое отображение $\varphi \in C^{\infty}(\mathbb{R}^m)$, что $\varphi(x) > 0 \iff x \in (-\varepsilon, \varepsilon)^m; 0 \leqslant \varphi(x) \leqslant 1$ на $\mathbb{R}^m; \sum_{n \in \mathbb{Z}^m} \varphi(x \varepsilon n) = 1$.
- 2. Если K компакт в \mathbb{R}^m , $\{U_{\alpha}\}_{\alpha\in I}$ открытое покрытие K, то существуют функции $\varphi_1,\dots,\varphi_N$ такие, что $0\leqslant \varphi_j\leqslant 1,\ \varphi_j\in C^{\infty}(\mathbb{R}^m),\ \varphi_j(x)=0$ на $\mathbb{R}^m\setminus U_{\alpha_j}$ для некоторого α_j , и $\sum\limits_{j=1}^N \varphi_j=1$ на K.

Доказательство.

1. Пусть ε = 1,

$$\psi(t) = \begin{cases} e^{-\frac{1}{t}}, & t > 0, \\ 0, & t \leq 0. \end{cases}$$

Очевидно, что $\psi(t) \in C^{\infty}(\mathbb{R})$. Положим

$$\widetilde{\varphi}(x_1,\ldots,x_m)=\prod_{k=1}^m\psi(1-x_k^2).$$

Тогда $\widetilde{\varphi}(x) = 0$ для всех $x \notin (-1,1)^m$. Возьмем теперь

$$\Phi(x) = \sum_{n \in \mathbb{Z}^m} \widetilde{\varphi}(x - n).$$

 $\Phi \in C^{\infty}(\mathbb{R}), \ 0 < \Phi < C$ для некоторой константы C (так как любая точка $x \in \mathbb{R}^m$ лежит в некотором кубе вида $n + (-1, 1)^m$, и число кубов, в которых лежит x, конечно и не зависит от x). Определяя $\varphi(x) = \frac{\widetilde{\varphi}(x)}{\Phi(x)}$, получаем

$$1 = \frac{\Phi(x)}{\Phi(x)} = \sum_{n \in \mathbb{Z}^m} \frac{\widetilde{\varphi}(x-n)}{\Phi(x)} = \sum_{n \in \mathbb{Z}^m} \frac{\varphi(x-n)}{\Phi(x-n)} = \sum_{n \in \mathbb{Z}^m} \varphi(x-n), \quad (18.1)$$

то есть для $\varepsilon=1$ утверждение доказано. В общем случае надо рассмотреть функции $x\mapsto \varphi(x/\varepsilon)$.

2. Можно считать, что I конечно, так как K — компакт, и можно выбрать конечное подпокрытие. По лемме Лебега $\exists \delta > 0$ такое, что $\forall x \in K \ \exists \alpha \in I : x + (-\delta, \delta)^m \subset U_\alpha$. Построим разложение единицы как в пункте (1) для $\varepsilon = \frac{\delta}{2\sqrt{m}}$. Выберем

из функций $\{\varphi(x-\delta n)\}_{n\in\mathbb{Z}^m}$ те, для которых $\exists x_0\in K: \varphi(x_0-\delta n)>0$. Назовем такие n "хорошими". Тогда сумма $\varphi(x-\delta n)$ по всем хорошим n равна единице на K (так как на K это просто сумма по \mathbb{Z}^m). Кроме того, для каждой функции $\varphi(x-\delta n)$ найдется окрестность $U_\alpha: \varphi(x-\delta n)=0 \ \forall x\notin U_\alpha$, так как $\{x: \varphi(x-\delta n)>0\}\subset x_0+(-\delta,\delta)^m$, где $x_0: \varphi(x_0-\delta n)\neq 0, x_0\in K$.

Определение. Если (X, ρ) — метрическое пространство, $\varphi \colon X \to \mathbb{R}$ — непрерывное отображение на X, то *носителем* φ будем называть замыкание $\overline{\{x \in X : \varphi(x) \neq 0\}}$ и обозначать его supp φ .

Замечание. В последней лемме $\sup \varphi_k \subset U_{\alpha_k}$.

Теорема 18.2 (формула коплощади Кронрода – Федерера). Пусть U — открытое множество в \mathbb{R}^{k+1} , $h \in C^1(U, \mathbb{R})$, grad $h(u) \neq 0$ для $u \in U$. Пусть также g — суммируемая относительно λ_{k+1} борелевская функция на U. Тогда

$$\int_{U} g \, d\lambda_{k+1} = \int_{\mathbb{R}} \left(\int_{h^{-1}(t)} \frac{g}{\|\operatorname{grad} h\|} \, dS_{k} \right) dt.$$

Замечание. $h^{-1}(t)$ — это либо пустое множество, либо множество уровня гладкого отображения с невырожденным градиентом, то есть $h^{-1}(t)$ — гладкое параметризованное многообразие размерности k.

Доказательство.

1. Предположим, что U — выпуклое множество, $h'_{x_{k+1}}(x) \neq 0$ для всех $x \in U$. Рассмотрим отображение

$$\Phi: (x_1, \ldots, x_{k+1}) \mapsto (x_1, \ldots, x_k, h(x_1, \ldots, x_{k+1})).$$

Понятно, что $\Phi \in C^1(U,\mathbb{R}^{k+1})$. Более того, Φ — диффеоморфизм. Действительно, по теореме об обратном отображении, Φ — локальный диффеоморфизм, так как матрица Якоби $\mathrm{d}_x\Phi$ единична во всех строках, кроме последней, а в последней это она равна $(h'_{x_1},h'_{x_2},\ldots,h'_{x_{k+1}})$, то есть определитель не равен нулю по предположению $h'_{x_{k+1}} \neq 0$. Если $\Phi(x) = \Phi(\widetilde{x})$, то $x_i = \widetilde{x}_i$ для всех $i \in \{1,\ldots,k\}$, и

$$h(x_1,...,x_k,x_{k+1}) = h(x_1,...,x_k,\widetilde{x}_{k+1}),$$

откуда следует, что либо $x_{k+1} = \widetilde{x}_{k+1}$, либо для некоторого $t \in [x_{k+1}, \widetilde{x}_{k+1}] : h'_{x_{k+1}}(x_1, \dots, x_k, t) = 0$, что невозможно по выпуклости и второму предположению. Таким образом, Φ — инъекция.

Обратное отображение Φ^{-1} имеет вид

$$\Phi^{-1}(y_1,\ldots,y_{k+1})=(y_1,\ldots,y_k,u(y_1,\ldots,u_{k+1})).$$

 $\Phi^{-1}(\Phi(x))=x$ для всех $x\in U$, поэтому (по теореме об обратном отображении) если $y=\Phi(x)$, то $[\mathrm{d}_y\Phi^{-1}][\mathrm{d}_x\Phi]=I_{(k+1)\times(k+1)}$:

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ u'_{y_1} & u'_{y_2} & \dots & u'_{y_k} & u'_{y_{k+1}} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ h'_{x_1} & h'_{x_2} & \dots & h'_{x_k} & h'_{x_{k+1}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

Запишем получающиеся из этого равенства уравнения на u'_{y_k} и h'_{x_k} :

$$\begin{cases} u'_{y_1} + u'_{y_{k+1}} h'_{x_1} = 0, \\ \dots \\ u'_{y_k} + u'_{y_{k+1}} h'_{x_k} = 0, \\ u'_{y_{k+1}} \cdot h'_{x_{k+1}} = 1. \end{cases}$$
(18.2)

Значит,

$$\left(\det\left[d_{y}\Phi^{-1}\right]\right)^{2} \cdot \|\operatorname{grad} h(x)\|^{2} = (u'_{y_{k+1}})^{2} \cdot \sum_{i=1}^{k+1} (h'_{x_{i}})^{2} = 1 + \sum_{i=1}^{k} (u'_{y_{i}})^{2}.$$
(18.3)

Теперь можно доказать формулу коплощади в этом случае³²:

$$\int_{U} g \, d\lambda_{k+1} = \int_{\Phi(U)} g(\Phi^{-1}(y)) \cdot |\det[d_{y}\Phi^{-1}]| \, d\lambda_{k+1}(y)$$
(18.4)

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{k}} \chi_{\Phi(U)}(\boldsymbol{\wedge}, t) \cdot g(\Phi^{-1}(\boldsymbol{\wedge}, t)) \cdot \frac{\sqrt{1 + \sum_{i=1}^{k} (u'_{y_{i}}(\boldsymbol{\wedge}, t))^{2}}}{\|\operatorname{grad} h(\Phi^{-1}(\boldsymbol{\wedge}, t))\|} \, d\lambda_{k}(\boldsymbol{\wedge}) \right) d\lambda_{1}(t)$$

$$(18.5)$$

$$= \int_{\mathbb{R}} \left(\int_{h^{-1}(t)} \frac{g}{\|\operatorname{grad} h\|} \, \mathrm{d}S_k \right) \mathrm{d}t.$$
 (18.6)

Пояснение: $(y_1,\ldots,y_k,u(y_1,\ldots,y_k,t))$ — карта для многообразия $h^{-1}(t)$, а функция $\sqrt{1+\sum(u_{y_i})^2}$ совпадает с $\sqrt{\det G}$ для матрицы Грама отображения Φ^{-1} , как мы видели ранее. Это объясняет появление S_k в формуле выше.

2. В общем случае достаточно рассмотреть функцию g такую, что g = 0 вне неко-

 $[\]overline{^{32}}$ Во второй строчке из-за нехватки места используется сокращение $\sim = (y_1, \dots, y_k)$.

торого компакта К. Если докажем для таких функций, то

$$\int_{U} g \, d\lambda_{k+1} = \lim_{n \to \infty} \int_{U} g \chi_{K_n} \, d\lambda_{k+1}$$
(18.7)

$$= \lim_{n \to \infty} \int_{\mathbb{R}} \left(\int_{\mathbb{R}^k} \frac{g \cdot \chi_{K_n}}{\|\text{grad } h\|} \, dS_k \right) dt$$
 (18.8)

$$= \int_{\mathbb{R}} \left(\int_{h^{-1}(t)} \frac{g}{\|\operatorname{grad} h\|} \, \mathrm{d}S_k \right) \mathrm{d}t, \tag{18.9}$$

— следствие теоремы Леви, где K_n — компакты, $K_{n+1}\supset K_n, \bigcup K_n=U.$

Пусть g=0 на $U\setminus K$, где K — компакт в \mathbb{R}^{k+1} , $K\subset U$. Покроем K выпуклыми окрестностями $\{U_{\alpha}\}_{\alpha\in I}$ такими, что

$$\forall \alpha \in I \ \exists i \in \{1, \dots, k+1\} : \left. \frac{\partial h}{\partial x_i} \right|_{U_\alpha} \neq 0.$$

Тогда построим разложение единицы для семейства $\{U_{\alpha}\}_{\alpha\in I}$ и применим пункт (1) доказательства к функциям $\varphi_{\alpha}g$, где φ_{α} — функции из разложения единицы. Тогда:

$$\int_{U} g \, d\lambda_{k+1} = \int_{K} g \, d\lambda_{k+1} = \int_{K} \left(\sum_{\alpha \in I} \varphi_{\alpha} g \right) \, d\lambda_{k+1}$$
 (18.10)

$$= \int_{U} \left(\sum_{\alpha \in I} \varphi_{\alpha} g \right) d\lambda_{k+1} = \sum_{\alpha \in I} \int_{U_{\alpha}} \varphi_{\alpha} g d\lambda_{k+1}$$
 (18.11)

$$= \sum_{\alpha \in I} \int_{\mathbb{R}} \left(\int_{h^{-1}(t)} \frac{\varphi_{\alpha} g \, dS_k}{\|\text{grad } h\|} \right) dt$$
 (18.12)

$$= \int_{\mathbb{R}} \left(\int_{h^{-1}(t)} \frac{\sum_{\alpha \in I} \varphi_{\alpha} g}{\|\operatorname{grad} h\|} \, \mathrm{d}S_k \right) \mathrm{d}t, \tag{18.13}$$

что и требовалось.

Следствие 18.3 (интеграл по шару через интегралы по сферам). Пусть B(0,1) — единичный шар в \mathbb{R}^m , S(0,r) — сфера радиуса r в \mathbb{R}^m . Тогда для любой борелевской функции $g \in L^1(B(0,1), \lambda_m)$

$$\int_{B(0,1)} g \, d\lambda_m = \int_0^1 \left(\int_{S(0,r)} g \, dS \right) dr.$$
 (18.14)

Доказательство. Пусть $U = B(0,1) \setminus B(0,\varepsilon), h: U \to \mathbb{R}: h(x) = ||x||$. Тогда

grad
$$h = \left(\frac{x_1}{\sqrt{x_1^2 + \dots + x_n^2}}, \dots, \frac{x_m}{\sqrt{x_1^2 + \dots + x_m^2}}\right),$$
 (18.15)

то есть $\|\operatorname{grad} h(x)\| = 1$ для всех $x \in U$. $h^{-1}(t) = \emptyset$, если $t \in (-\infty, \varepsilon] \cup [1, +\infty)$; $h^{-1}(t) = S(0, t)$, если $t \in (\varepsilon, 1)$. Значит, устремляя ε к нулю, видим, что (18.14) следует из формулы коплощади.

19 Формула Стокса

В этом параграфе мы будем доказывать (а точнее, формулировать необходимые для ее понимания определения) формулу Стокса —

$$\int_{M} d\omega = \int_{\partial M} \omega,$$

где M — ориентированное гладкое многообразие с краем размерности k, ∂M — край M (многообразие размерности k-1), ω — внешняя дифференциальная форма порядка k-1, $d\omega$ — внешний дифференциал. Эта формула — обобщение формулы Ньютона – Лейбница для M=[a,b]:

$$\int_{a}^{b} f'(x) dx = f(b) - f(a).$$

Определение. Топологическое пространство M со счетной базой называется (топологически) гладким многообразием с краем размерности $k \in \mathbb{N}$ класса C^n , если существует набор карт $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in I}$, где $U_\alpha = \mathbb{R}^k$ или

$$U_{\alpha} = -\mathbb{H}^k = \{(x_1, \dots, x_k) \in \mathbb{R}^k : x_1 \leq 0\},\$$

 $\varphi_{\alpha}\colon U_{\alpha}\to V_{\alpha},\ V_{\alpha}\subset M$ — гомеоморфизмы, $\varphi_{\alpha}^{-1}(\varphi_{\beta})\in C^n(\varphi_{\beta}^{-1}(V_{\alpha}\cap V_{\beta}),U_{\alpha}),\bigcup_{\alpha\in I}V_{\alpha}=M.$

Замечание. Множество $\varphi_{\beta}^{-1}(V_{\alpha}\cap V_{\beta})$ не обязательно открыто в \mathbb{R}^k (может совпадать с $-\mathbb{H}_k$), но открыто в топологии $-\mathbb{H}_k$, индуцированной из \mathbb{R}^k . Функция φ_{β}^{-1} дифференцируема, в частности, на границе $-\mathbb{H}_k$. Гладкой структурой на M будем называть все возможные атласы, объединение которых с заданным атласом образует атлас гладкости класса C^n . В дальнейшем гладкая структура на M считается зафиксированной, и все рассматриваемые атласы выбираются из нее.

Определение. Пусть $M - C^1$ -гладкое многообразие с краем, $\mathcal{A} = \{(U_\alpha, \varphi_\alpha)\} - C^1$ -гладкий атлас. Будем называть карты $(U_{\alpha_1}, \varphi_{\alpha_1})$ и $(U_{\alpha_2}, \varphi_{\alpha_2})$ согласованными, если выполнено одно из двух следующих условий:

- 1. $\varphi_{\alpha_1}(U_{\alpha_1}) \cap \varphi_{\alpha_2}(U_{\alpha_2}) = \emptyset;$
- 2. якобиан отображения $\varphi_{\alpha_1}^{-1}(U_{\alpha_2})$ положителен на области определения $\varphi_{\alpha_1}^{-1}(U_{\alpha_2})$.

Атлас \mathcal{A} называется *ориентирующим*, если любая пара карт в \mathcal{A} согласована.

Определение. Будем называть C^1 -гладкие ориентирующие атласы $\mathcal{A}_1, \mathcal{A}_2$ на M *эквивалентными*, если $\mathcal{A}_1 \cup \mathcal{A}_2$ — ориентирующий атлас.

Примеры 19.1. Пусть $M = \mathbb{R}^2$.

1. Атлас $\mathcal{A}_1=\left\{(\mathbb{R}^2,\varphi_1(x,y)=(x,y)),\,(\mathbb{R}^2,\varphi_2(x,y)=(2x,2y))\right\}$ — ориентирующий, так как $\varphi_2^{-1}(\varphi_1(x,y))=\varphi_2^{-1}(x,y)=(\frac{x}{2},\frac{y}{2})$, то есть

$$\det(d_{(x,y)}\varphi_2^{-1}(\varphi_1)) = \det\begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix} = \frac{1}{4} > 0.$$

- 2. Атлас $\mathcal{A}_2 = \{(\mathbb{R}^2, \varphi_1(x, y) = (x, y)), (\mathbb{R}^2, \varphi_2(x, y) = (-x, y))\}$ не ориентирующий, так как определитель выше равен -1.
- 3. Атлас $\mathcal{A}_3 = \{(\mathbb{R}^2, \varphi_1(x, y) = (x, y)), (\mathbb{R}^2, \varphi_2(x, y) = (y, x))\}$ не ориентирующий, так как в этом случае $\varphi_2^{-1}(\varphi_1(x, y)) = (y, x)$, то есть

$$\det d_{(x,y)}(\varphi_2^{-1}\varphi_1) = \det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1.$$

Определение. C^1 -гладкое многообразие M, на котором имеется ориентирующий атлас, называется *ориентируемым*. Если выбран класс эквивалентности ориентирующих атласов, то M называется *ориентированным* многообразием, а этот класс — *ориентацией* на M.

Теорема 19.1. Пусть M — ориентируемое связное многообразие, $\dim M \geqslant 2$. Тогда на M есть ровно две ориентации.

Доказательство. Рассмотрим какой-нибудь ориентирующий атлас \mathcal{A} . Пусть $p \in M$, $(U_{\alpha}, \varphi_{\alpha}) \in \mathcal{A}$ — такая карта, что $\varphi_{\alpha}(x) = p$ для некоторой точки $x \in U_{\alpha}$. Пусть $\widetilde{\mathcal{A}}$ — другой ориентирующий атлас на M, причем существует карта $(\widetilde{U}_{\alpha}, \widetilde{\varphi}_{\alpha})$ такая, что $\widetilde{\varphi}_{\alpha}(\widetilde{x}) = p$ для некоторой точки $\widetilde{x} \in \widetilde{U}_{\alpha}$, и, кроме того, $\det \mathrm{d}_{x}(\widetilde{\varphi}_{\alpha}^{-1}\varphi_{\alpha}) > 0$. Покажем, что эти два атласа эквивалентны. Заметим, что для любых карт $(U_{\beta}, \varphi_{\beta}) \in \mathcal{A}$, $(\widetilde{U}_{\beta}, \widetilde{\varphi}_{\beta}) \in \widetilde{\mathcal{A}}$: $p \in \varphi_{\beta}(U_{\beta})$, $p \in \widetilde{\varphi}_{\beta}(\widetilde{U}_{\beta})$ карты $(U_{\beta}, \varphi_{\beta})$, $(\widetilde{U}_{\beta}, \widetilde{\varphi}_{\beta})$ согласованы. Действительно,

$$\begin{split} \det \left[\mathrm{d}_{x_\beta} (\widetilde{\varphi}_\beta^{-1} (\varphi_\beta)) \right] &= \det \left[\mathrm{d}_{x_\beta} (\widetilde{\varphi}_\beta^{-1} \circ \widetilde{\varphi}_\alpha \circ \widetilde{\varphi}_\alpha^{-1} \circ \varphi_\alpha \circ \varphi_\alpha^{-1} \circ \varphi_\beta) \right] \\ &= \det \left[\mathrm{d}_{\widetilde{x}_\alpha} (\widetilde{\varphi}_\beta^{-1} \circ \widetilde{\varphi}_\alpha) \right] \cdot \det \left[\mathrm{d}_{x_\alpha} (\widetilde{\varphi}_\alpha^{-1} \circ \varphi_\alpha) \right] \cdot \det \left[\mathrm{d}_{x_p} (\varphi_\alpha^{-1} \circ \varphi_\beta) \right], \end{split}$$

где $\varphi_{\beta}(x_{\beta})=p,\ldots,\varphi_{\alpha}(x_{\alpha})=p$. По определению определитель $\mathrm{d}_{x}(\varphi_{\beta}^{-1}(\varphi_{\beta}))$ не обращается в ноль в любой точке из области задания $\widetilde{\varphi}_{\beta}^{-1}\circ\varphi_{\alpha}$ (все отображения — диффеоморфизмы), то есть он всюду положителен.

Рассмотрим теперь множество Ω , состоящее из "хороших точек", то есть таких точек, для которых любая пара карт $(U_{\gamma}, \varphi_{\gamma})$, $(\widetilde{U}_{\gamma}, \widetilde{\varphi}_{\gamma})$, где $\varphi_{\gamma}(U_{\gamma}) \cap \widetilde{\varphi}_{\gamma}(\widetilde{U}_{\gamma}) \neq \emptyset$, согласована. $\Omega \neq \emptyset$, так как $p \in \Omega$. Кроме того, Ω открыто: если $q_1 \in \Omega$ и $(U_{\gamma_1}, \varphi_{\gamma_1}) \in \mathcal{A}$, $(\widetilde{U}_{\gamma_1}, \widetilde{\varphi}_{\gamma_1}) \in \widetilde{\mathcal{A}}$: $q_1 \in \varphi_{\gamma_1}(U_{\gamma_1}) \cap \widetilde{\varphi}_{\gamma_1}(\widetilde{U}_{\gamma_1}) = V$, то для любой точки $q_2 \in V$ имеем $q_2 \in \Omega$, так как

$$\det\left[\mathrm{d}_{x_{\gamma_2}}(\widetilde{\varphi}_{\gamma_2}^{-1}\circ\varphi_{\gamma_2})\right]$$

— произведение трех множителей, каждый из которых положителен, так как карты $(U_{\gamma_1}, \varphi_{\gamma_1}), \ (\widetilde{U}_{\gamma_2}, \widetilde{\varphi}_{\gamma_1})$ согласованы не только в точке q_1 , но и в точке q_2 . Значит $\det > 0$, и $q_2 \in \Omega$.

Поймем теперь, что Ω замкнуто. Если $q\in\overline{\Omega}$, то $\exists\{q_j\}\subset\Omega$, сходящаяся к q в топологии M, то есть если $(U_\zeta,\varphi_\zeta)\in\mathcal{A},\ (\widetilde{U}_\zeta,\widetilde{\varphi}_\zeta)\in\widetilde{\mathcal{A}},\ q\in\varphi_\zeta(U_\zeta)\cap\widetilde{\varphi}_\zeta(\widetilde{U}_\zeta)=W$, то с некоторого момента $q_j\in W$, и если $x_{\zeta_j}\in U_\zeta:\varphi_\zeta(x_{\zeta_j})=q_j$, то

$$0<\det \mathrm{d}_{\zeta_j}(\widetilde{\varphi}_\zeta^{-1}\circ\varphi_\zeta)\xrightarrow{j\to\infty}\det \mathrm{d}_{x_\zeta}(\widetilde{\varphi}_\zeta^{-1}\circ\varphi_\zeta)\geqslant 0,$$

где $x_\zeta: \varphi(x_\zeta)=q$. Равенства нулю не может быть, так как $\widetilde{\varphi}_\zeta^{-1}\circ \varphi_\zeta$ — диффеоморфизм.

 Ω — открыто-замкнутое непустое множество, а потому из связности M следует, что $\Omega = M$. Для завершения доказательства, поймем, что если есть пара атласов, у которых определители отрицательны, то они эквивалентны. Пусть $\widetilde{\mathcal{A}}$ — такой атлас, что det $\mathrm{d}_x[\widetilde{\varphi}_\alpha^{-1}\circ\varphi_\alpha]<0$. Рассмотрим атлас $\mathcal{B}=(U_\beta,\varphi_\beta)$, где

$$\varphi_{\beta}(x_1,\ldots,x_k)=\widetilde{\varphi}_{\beta}(x_1,\ldots,x_{k-1},-x_k),$$

откуда \mathcal{B} эквивалентно \mathcal{A} . Поэтому имеется не более двух классов эквивалентности. Рассматривая преобразование $\widetilde{\varphi}_{\beta}$ в φ_{β} , убеждаемся, что классов эквивалентности ровно два.

Замечание. Чтобы доказательство о количестве ориентаций ориентированного многообразия работало для случая k=1, надо рассматривать атласы многообразий с краем, состоящие из пространств \mathbb{R}^k , \mathbb{H}^k и $-\mathbb{H}^k$ (чтобы иметь возможность менять знак координаты). При этом условии отрезок [0,1] имеет два неэквивалентных ориентирующих атласа.

Определение. Пусть M — гладко параметризованное многообразие в \mathbb{R}^{k+1} размерности k. *Единичной нормалью* в точке $p \in M$ будем называть любой из двух векторов в \mathbb{R}^m единичной длины, ортогональных T_pM .

Теорема 19.2. Если M — гладко параметризованное многообразие размерности $k \ge 2$ в \mathbb{R}^{k+1} , на котором имеется непрерывное поле единичных нормалей, то M ориентируемо.

Замечание. Под "полем нормалей" понимается отображение $p\mapsto N(p)$, где N(p) — единичная нормаль.

Доказательство. Пусть \mathcal{A} — какой-то атлас M. В каждой карте $(U_{\alpha}, \varphi_{\alpha})$ при необходимости сделаем замену последней координаты x_k на $-x_k$, чтобы добиться неравенства

$$T = \begin{pmatrix} N_1(p) & \frac{\partial \varphi_{\alpha_1}}{\partial x_1} & \dots & \frac{\partial \varphi_{\alpha_1}}{\partial x_k} \\ \dots & \dots & \dots \\ N_{k+1}(p) & \frac{\partial f_{\alpha_{k+1}}}{\partial x_1} & \dots & \frac{\partial \varphi_{\alpha_{k+1}}}{\partial x_k} \end{pmatrix}, \quad \det T > 0$$

$$(19.1)$$

в точке p. Здесь $N(p) = (N_1(p), \dots, N_{k+1}(p))^T, \varphi_{\alpha_1}, \dots, \varphi_{\alpha_{k+1}}$ — координатные функции отображения φ_{α} . Покажем, что получившийся атлас будет ориентирующим. Обозначим его той же буквой \mathcal{A} .

Определим отображение $V \in L(\mathbb{R}^{k+1},\mathbb{R}^{k+1}):V(N(p))=N(p),$

$$V\left(\underbrace{[\mathsf{d}_p\varphi_\alpha](0,0,\ldots,1,\ldots,0)^T}_{\in\mathbb{R}^{k+1}}\right) = [\mathsf{d}_p\widetilde{\varphi}_\alpha](0,0,\ldots,0,1,0,\ldots,0)^T,$$

где $(U_\alpha, \varphi_\alpha), \ (\widetilde{U}_\alpha, \widetilde{\varphi}_\alpha)$ — пара карт, про которую мы хотим проверить, что они согласованы в p.

$$\widetilde{T}^{-1}VT = I_{k+1}, \qquad \underbrace{\det \widetilde{T}^{-1}}_{>0} \cdot \det V \cdot \underbrace{\det T}_{>0} = 1,$$

откуда $\det V>0$. Рассмотрим U — ортогональное преобразование $\mathbb{R}^{k+1}\to\mathbb{R}^{k+1}:U(N(p))=(1,0,0,\dots,0)\in\mathbb{R}^{k+1}.$ $UT_pM=\{x\in\mathbb{R}^{k+1}:x=(0,x_2,\dots,x_{n+1})\}.$ Рассмотрим

$$\det(\operatorname{d}(\widetilde{\varphi}_{\alpha}^{-1}\varphi_{\alpha})) = \det\left[\left(\operatorname{d}_{p}\widetilde{\varphi}_{\alpha}\right)^{-1}\Big|_{T_{p}M} \cdot \left[\operatorname{d}_{x}\varphi_{\alpha}\right]\right] \stackrel{?}{>} 0. \tag{19.2}$$

По построению,

$$\mathrm{d}_p \widetilde{\varphi}_{\alpha}^{-1} \cdot V \cdot \mathrm{d}_x \varphi_{\alpha} = I_k$$

Обозначим через \tilde{U} оператор из T_pM в \mathbb{R}^k такой, что $Uy=(0,\tilde{U}y)\in\mathbb{R}^{k+1}$ для всех $y\in T_pM$. Тогда предыдущее равенство влечет

$$I_k = (\mathsf{d}_p \widetilde{\varphi}_\alpha^{-1} U^{-1}) (UVU^{-1}) (U\mathsf{d}_x \varphi_\alpha) = \underbrace{(\mathsf{d}_p \widetilde{\varphi}_\alpha^{-1} \widetilde{U}^{-1})}_{L(\mathbb{R}^k, \mathbb{R}^k)} (\widetilde{U}V\widetilde{U}^{-1}) \underbrace{(\widetilde{U}\mathsf{d}_x \varphi_\alpha)}_{L(\mathbb{R}^k, \mathbb{R}^k)}.$$

Заметим, что

$$UVU^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \tilde{U}V\tilde{U}^{-1} \end{pmatrix}$$

Значит, $\det V = \det UVU^{-1} = \det \tilde{U}V\tilde{U}^{-1}$ и поэтому

$$1 = \det I_k = \det(\operatorname{d}_p \widetilde{\varphi}_{\alpha}^{-1} \widetilde{U}^{-1}) \cdot \det(\widetilde{U} V \widetilde{U}^{-1}) \cdot \det(\widetilde{U} \operatorname{d}_x \varphi_{\alpha})$$
$$= \det(\operatorname{d}_p \widetilde{\varphi}_{\alpha}^{-1} \cdot \operatorname{d}_x \varphi_{\alpha}) \cdot \underbrace{\det V}_{>0}$$

$$\implies \det(\mathrm{d}_p \varphi_\alpha^{-1} \mathrm{d}_x \varphi_\alpha) > 0.$$

Итак, карты согласованы в точке p. Мы пользовались неравенством (19.1), которое имеет место во всей карте, содержащей p, так как det и N(p) — непрерывные отображения, поэтому левая часть в (19.1) не может менять знак на связном множестве $\varphi(U_{\alpha}) \cap \widetilde{\varphi}(\widetilde{U}_{\alpha})$, то есть карты $(U_{\alpha}, \varphi_{\alpha})$, $(\widetilde{U}_{\alpha}, \widetilde{\varphi}_{\alpha})$ согласованы.

Следствие 19.3. Пусть $F: \mathbb{R}^m \to \mathbb{R}$ — гладкая функция, $X = \{x : F(x) = c\}$. Если grad $F(x) \neq 0$ в X, то множество X либо пусто, либо является ориентируемым гладко параметризованным многообразием.

Доказательство. Из предыдущего семестра знаем, что если $X \neq \emptyset$, то это гладко параметризованное многообразие. Остается проверить, что на этом множестве есть непрерывное поле нормалей. Можно взять $\frac{\operatorname{grad} F(x)}{\|\operatorname{grad} F(x)\|}$ (мы знаем, что $\operatorname{grad} F(x)$ — нормаль в точке x).

Пример 19.2. Сфера $M = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$ — ориентируемое гладко параметризованное многообразие по предыдущему следствию, так как $M = \{x : F(x, y, z)^T = 1\}$, где $F(x, y, z)^T = x^2 + y^2 + z^2$; grad $F = (2x, 2y, 2z)^T \neq 0$ на M.

Определение. Пусть M — гладкое многообразие с краем с атласом

$$\mathcal{A} = \{ (U_{\alpha}, \varphi_{\alpha}), U_{\alpha} \in \{\mathbb{R}^k, -\mathbb{H}^k\} \}.$$

Краем М называется топологическое пространство

$$\partial M = \bigcup \varphi_{\alpha}(\partial U_{\alpha}),$$

где объединение берется по таким α , что $U_{\alpha} = -\mathbb{H}_k$, и

$$\partial(-\mathbb{H}^k) = \{x \in \mathbb{R}^k : x = (0, x_2, \dots, x_k)\},\$$

с топологией, индуцированной из M.

Утверждение 19.4. Определение края многообразия корректно (не зависит от выбранного атласа).

Доказательство. Пусть $\widetilde{\mathcal{A}}$ — другой атлас M, $\widetilde{\partial M}$ — соответствующий ему край. Покажем, что $\widetilde{\partial M} \subset \partial M$ (из этого по симметрии будет следовать равенство). Пусть $\widetilde{p} \in \widetilde{\partial M}$. Тогда существует карта $(\widetilde{U}_{\alpha},\widetilde{\varphi}_{\alpha})$ такая, что $\widetilde{U}_{\alpha} = -\mathbb{H}^k$, $\widetilde{p} = \widetilde{\varphi}_{\alpha}(\widetilde{x})$, где $\widetilde{x} \in \partial(-\mathbb{H}^k)$. Пусть $(U_{\alpha},\varphi_{\alpha})$ — карта в \mathcal{A} , содержащая \widetilde{p} , то есть $\varphi_{\alpha}(x) = \widetilde{p}$ для некоторого $x \in U_{\alpha}$. Предположим, что x лежит в U_{α} с некоторой окрестностью пространства \mathbb{R}^k . Тогда $\widetilde{p} \notin \partial M$. $\widetilde{\varphi}_{\alpha}^{-1} \circ \varphi_{\alpha}$, суженное на окрестность x, — диффеоморфизм на свой образ в \mathbb{R}^k , причем этот образ открыт в \mathbb{R}^k по теореме об обратном отображении (или по теореме об открытости отображений с невырожденным дифференциалом). Значит, \widetilde{x} лежит в $-\mathbb{H}^k$ с некоторой окрестностью в пространстве \mathbb{R}^k , что невозможно.

Теорема 19.5. Пусть $k \ge 2$, $M - C^n$ -гладкое многообразие размерности k с краем. Тогда $\partial M - C^n$ -гладкое многообразие размерности k-1, причем $\partial (\partial M) = \emptyset$. Если M ориентируемо, то ∂M — тоже ориентируемо.

Доказательство. Пусть $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ — C^n -гладкий атлас для M; ориентирующий, если M — ориентируемо. $U_{\alpha} \in \{\mathbb{R}^k, -\mathbb{H}^k\}$. Тогда множество

$$\mathcal{A}_0 = \{(\partial U_\alpha), \varphi_\alpha\}_{\alpha: U_\alpha = -\mathbb{H}^k}$$

— (ориентирующий) атлас для ∂M , где ∂U_{α} отождествляется с пространством \mathbb{R}^{k-1} . Очевидно, что это C^n -гладкий атлас для ∂M . Проверим, что он ориентирующий. Рассмотрим пару таких карт $(\partial U_{\alpha}, \varphi_{\alpha})$, $(\partial U_{\beta}, \varphi_{\beta})$ из этого атласа, что

$$\varphi_{\alpha}(\partial U_{\alpha}) \cap \varphi_{\beta}(\partial U_{\beta}) \neq \emptyset.$$

Положим $\psi_{\alpha\beta}=\varphi_{\alpha}^{-1}\circ\varphi_{\beta}$ там, где это определено. Так как M — ориентируемо, то $\det \mathrm{d}_x(\varphi_{\alpha}^{-1}\circ\varphi_{\beta})>0$ для всех x из области определения $\psi_{\alpha\beta}$. Если $x\in\partial U_{\beta}$, то

$$\mathbf{d}_{x}\psi_{\alpha\beta} = \begin{pmatrix} \frac{\partial\psi_{1}}{\partial x_{1}} & 0 & \dots & 0\\ \frac{\partial\psi_{2}}{\partial x_{1}} & \frac{\partial\psi_{2}}{\partial x_{2}} & \dots & \frac{\partial\psi_{2}}{\partial x_{k}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial\psi_{k}}{\partial x_{1}} & \frac{\partial\psi_{k}}{\partial x_{2}} & \dots & \frac{\partial\psi_{k}}{\partial x_{k}} \end{pmatrix}, \quad \det(\mathbf{d}_{x}\psi_{\alpha\beta}) = \frac{\partial\psi_{1}}{\partial x_{1}}(x) \cdot \det J.$$

Поймем, что $\frac{\partial \psi_1}{\partial x_1}(x) > 0$. Он не равен нулю, так как $\psi_{\alpha\beta}$ — диффеоморфизм. Предположим, что $\frac{\partial \psi_1}{\partial x_1}(x) < 0$, $U_\alpha = U_\beta = -\mathbb{H}^k$. $\psi_1(x) = 0$, так как $x \in \partial U_\beta$, $\psi(x) \in \partial U_\alpha$. Но если $\frac{\partial \psi_1}{\partial x_1}(x) < 0$, то в U_α найдется точка, в которой $\psi_1(y) > 0$, что невозможно, так как $\psi_{\alpha\beta}(U_\alpha) \subset U_\beta = -\mathbb{H}^k$. Значит, $\det J > 0$, аJ — матрица Якоби отображения $\varphi_\alpha^{-1} \varphi_\beta \big|_{\partial(-\mathbb{H}^k)} : \partial(-\mathbb{H}^k) \to \partial(-\mathbb{H}^k)$, если $\partial(-\mathbb{H}^k)$ отождествить с \mathbb{R}^k . Значит, отображения перехода в атласе \mathcal{A} имеют положительный якобиан. Значит, \mathcal{A}_0 — ориентирующий атлас. \mathcal{A}_0 состоит из карт с пустой границей, а потому это многообразие без края.

Определение. Ориентация ∂M , построенная в предыдущей теореме, называется *согласованной* с ориентацией M.

Утверждение 19.6. Пусть M — гладкое связное многообразие размерности k=1. Тогда ∂M состоит не более чем из двух точек.

Доказательство. M — линейно связно, так как множество точек, которые можно соединить путем с заданной точкой M является открытым, замкнутым и непустым. Если ∂M состоит содержит точки a_1, a_2 , то для любой точки $a_3 \neq a_1, a_2$ рассмотрим пути $\gamma_1 \colon [t_1, t_2] \to M \colon \gamma(t_1) = a_1, \ \gamma(t_2) = a_2 \ \text{u} \ \gamma_2 \colon [t_3, t_4] \to M \colon \gamma(t_3) = a_3, \ \gamma(t_4) = a_1$. Если $a_3 \in \gamma_1(t_1, t_2)$, то a_3 не может быть граничной точкой, так как в этом случае прообраз $\varphi_{\alpha}^{-1}(V \setminus \{a_3\})$ небольшой проколотой окрестности V в a_3 состоит из двух компонент связности, а не из одной, как должно было бы быть, если бы a_3 лежало на границе.

Если $a_3 \notin \gamma_1(t_1, t_2)$, то возможны 2 варианта: либо первое пересечение γ_1 с γ_2 (обозначим его через x) совпадает с a_1 или a_2 , либо лежит внутри $\gamma_1(t_1, t_2)$. Во втором случае прообраз малой проколотой окрестности x имеет три компоненты связности, вместо двух, а в первом — две, вместо одной.

Следствие 19.7. Пусть M — гладкое связное многообразие размерности 1, $\partial M = \{a_1, a_2\}$. Тогда M — ориентируемо, на ∂M определена ориентация $(a_1, -), (a_2, +),$ если атлас для M состоит из карты $\{([0, \frac{3}{4}], \gamma), [\frac{1}{2}, 1], \gamma\},$ где $\gamma(0) = a_1, \gamma(1) = a_2.$

Лемма 19.8. Существует функция $f \in C^{\infty}(\mathbb{R})$ такая, что f(x) = 1 на [-1,1], f(x) = 0 при $|x| \geqslant 3$ и 0 < f(x) < 1 на $(-3,-1) \cup (1,3)$. Такая функция называется гладким спуском с единицы.

Доказательство. Рассмотрим функцию

$$f_0 = \begin{cases} e^{-\frac{1}{1-x^2}}, & |x| < 1, \\ 0, & |x| \ge 1. \end{cases}$$

Нетрудно проверить, что $f_0 \in C^\infty(\mathbb{R})$; по построению, $f_0(x) = 0 \ \forall x: |x| \geqslant 1$. Теперь рассмотрим

$$f_1(x) = \frac{\int\limits_{-\infty}^{x} f_0(t) dt}{\int\limits_{-\infty}^{x} f_0(t) dt} \quad (\forall x \in \mathbb{R}).$$

Теперь $f_1(x) = 0 \ \forall x \leqslant -1, \ f_1(x) = 1 \ \forall x \geqslant 1, \ 0 \leqslant x \leqslant 1 \ \text{на} \ \mathbb{R}. \ f_1 \in C^{\infty}(\mathbb{R}).$

$$f_2(x) = f_1(x+2) + f_1(-x-2) - 1$$
 — искомая функция.

Следствие 19.9. Существует функция $f_m : \mathbb{R}^m \to \mathbb{R}$ такая, что $f_m(x) = 1$ на $[-1,1]^m$ и $f_m(x) = 0 \ \forall x \in \mathbb{R}^m \setminus (-3,3)^m; 0 \leqslant f_m(x) \leqslant 1$ при $x \in \mathbb{R}^m, f_m \in C^{\infty}(\mathbb{R})$.

$$f_m(x_1,\ldots,x_m)=f(x_1)\cdot\ldots\cdot f(x_m).$$

Она удовлетворяет всем нужным свойствам.

Теорема 19.10 (о разложении единицы на многообразии). Пусть $M - C^n$ -гладкое многообразие, $K \subset M$ — компакт, $\mathcal{A} = \{(U_\alpha, \varphi_\alpha)\}_{\alpha \in I}$ — некоторый атлас M. Тогда существует конечный набор карт $(U_{\alpha_1}, \varphi_{\alpha_1}), \ldots, (U_{\alpha_N}, \varphi_{\alpha_N})$ и набор функций $e_{\alpha_1}, \ldots, e_{\alpha_N} \in C^n(M, \mathbb{R})$ такой, что $K \subset \bigcup_{k=1}^N \varphi_{\alpha_k}(U_{\alpha_k})$, supp $e_{\alpha_k} \subset \varphi_{\alpha_k}(U_{\alpha_k})$, причем $\sum_{k=1}^N e_{\alpha_k}(x) = 1 \ \forall x \in K, 0 \leqslant e_{\alpha_k} \leqslant 1$ всюду на M.

Замечание. Если $g: M \to N$, где $M, N - C^n$ -гладкие многообразия, то будем писать, что $g \in C^k(M,N)$, где $1 \le k \le n$, если отображения $\psi_{\beta}^{-1} \circ g \circ \varphi_{\alpha} \colon U_{\alpha} \to V_{\beta}$ лежат в C^k на области своего определения, где $(U_{\alpha}, \varphi_{\alpha})$ — произвольная карта для $M, (V_{\beta}, \psi_{\beta})$ — произвольная карта в N.

Доказательство. Для каждой точки $p \in K$ построим окрестность $V(p) \subset \varphi_{\alpha}(U_{\alpha})$ для некоторого $\alpha \in I$ следующим образом: сначала найдем α такое, что $\varphi_{\alpha}(U_{\alpha}) \ni p$. $U_{\alpha} = \mathbb{R}^k$ или $-\mathbb{H}^k$, где k — размерность многообразия M. Рассмотрим $x \in U_{\alpha} : \varphi_{\alpha}(x) = p$. Пусть $f_{\alpha}(y) = f_k(y - x)$ для $y \in \mathbb{R}^k$, где f_k — гладкий спуск с единицы в \mathbb{R}^k . $\widetilde{f_{\alpha}} = f_k$

 $f_{\alpha}|_{U_{\alpha}}$. Если $U_{\alpha}=\mathbb{R}^k$, то $\widetilde{f_{\alpha}}=f_{\alpha}$. $V(p)=\varphi_{\alpha}((x+(-1,1)^k)\cap U_{\alpha})$. Выберем конечное число окрестностей вида V(p), покрывающих K. Назовем карты $(U_{\alpha},\varphi_{\alpha}):\varphi_{\alpha}(U_{\alpha})$ содержит это конечное семейство окрестностей, $(U_{\alpha_1},\varphi_{\alpha_1}),\dots,(U_{\alpha_n},\varphi_{\alpha_n})$. Пусть $\widetilde{f_{\alpha_j}}$ — соответствующие отображения в U_{α_j} . Положим

$$\theta_{\alpha_j}(z) = \begin{cases} \widetilde{f}_{\alpha_j}(\varphi_{\alpha_j}^{-1}), & z \in U_{\alpha_j}, \\ 0, z \notin U_{\alpha}, \end{cases}$$

при $j\in\{1,\ldots,N\}.$ $\theta_j\in C^n(M,\mathbb{R}).$ Положим $e_{\alpha_1}=\theta_{\alpha_1},$ $e_{\alpha_2}=\theta_{\alpha_2}(1-\theta_{\alpha_1}),$ $e_{\alpha_3}=\theta_{\alpha_3}(1-\theta_{\alpha_1})(1-\theta_{\alpha_2})$ и так далее. Тогда $1-\sum_{j=1}^N e_{\alpha_j}=1-\theta_{\alpha_1}-\theta_2(1-\theta_{\alpha_1})-\cdots-\theta_{\alpha_N}(1-\theta_{\alpha_{N-1}})\cdot\ldots\cdot(1-\theta_{\alpha_1})=(1-\theta_{\alpha_2})(1-\theta_{\alpha_1})-\theta_{\alpha_3}(1-\theta_{\alpha_2})(1-\theta_{\alpha_1})-\cdots=\cdots=(1-\theta_{\alpha_N})(1-\theta_{\alpha_{N-1}})\ldots(1-\theta_{\alpha_1}).$ Значит, $1-\sum_{j=1}^N e_{\alpha_j}(z)=0$ $\forall z\in K$, поскольку для некоторого индекса j $1-\theta_{\alpha_j}(z)=0$. По построению, $\sup e_{\alpha_j}(\varphi_{\alpha_j})\subset \varphi_{\alpha_j}(U_{\alpha_j})$, так как $\sup e_{\alpha_j}\subset \varphi_{\alpha_j}(U_{\alpha_j})$.

Определение. Пусть X — конечномерное линейное пространство. Полилинейной формой ω порядка k на X называется отображение $\omega \colon X^k \to \mathbb{R}$ такое, что оно линейно по каждому аргументу при фиксированных остальных.

Определение. Пусть $\omega_1: X^k \to \mathbb{R}, \ \omega_2: Y^m \to \mathbb{R}$ — полилинейные формы порядков k и m. Определим $\omega_1 \otimes \omega_2$ как форму порядка k+m на $X^k \times Y^m$ такую, что

$$(\omega_1 \otimes \omega_2)(x_1, \ldots, x_k, y_1, \ldots, y_m) = \omega_1(x_1, \ldots, x_k)\omega_2(y_1, \ldots, y_m).$$

Определение. Пусть f_1, \ldots, f_n — базис в X. Двойственным базисом к $\{f_i\}$ называется набор линейных функционалов e_1, \ldots, e_n таких, что $e_i(f_j) = \delta_{ij}$.

Заметим, что e_j определяет 1-форму e_j : $x\mapsto e_j(x)$ на X. Значит, $e_{i_1}\otimes e_{i_2}\otimes\ldots\otimes e_{i_k}$ — k-форма на X для любых $i_1,\ldots,i_k\in[1,n]\cap\mathbb{Z}$.

Определение. Формы вида $e_{i_1} \otimes ... \otimes e_{i_k}$ называются базисными формами в пространстве полилинейных форм на X.

Эти формы действительно образуют базис.

Определение. Пусть ω — полилинейная форма на X. Она называется *кососимметрической*, если она изменяет знак при перестановке любой пары соседних координат.

Пример 19.3. Определитель.

Определение. Если $\omega - k$ -форма на X, то

$$\operatorname{Alt}(\omega) \colon (x_1, \dots, x_k) \mapsto \frac{1}{k!} \sum_{\sigma \in S_k} \omega(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(t)}) \operatorname{sgn}(\sigma).$$

Отображение $\omega \mapsto \mathrm{Alt}(\omega)$ называется оператором альтернирования.

Замечание. Alt(ω) — кососимметрическая форма для любой полилинейной формы ω . Alt(Alt(ω)) = Alt(ω).

Определение. Внешнее произведение форм ω_1 , ω_2 , где $\omega_1 - k$ -форма, $\omega_2 - m$ -форма, определяется равенством

$$\omega_1 \wedge \omega_2 = \frac{(k+m)!}{k! \, m!} \operatorname{Alt}(\omega_1 \otimes \omega_2).$$

Пример 19.4.

$$e_1 \wedge e_2 = \frac{(1+1)!}{1!1!} \cdot \frac{1}{2!} (e_1 \otimes e_2 - e_2 \otimes e_1),$$

$$(e_1 \wedge e_2) \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = x_1 y_2 - x_2 y_1 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}.$$

Теорема 19.11. Пусть X — конечномерное линейное пространство с базисом f_1, \ldots, f_n , e_1, \ldots, e_n — двойственный базис. Тогда $e_{i_1} \wedge \ldots \wedge e_{i_k} = \det()_{i_1 \ldots i_k}$, то есть

$$e_{i_1} \wedge \ldots \wedge e_{i_k}(x_1, \ldots, x_k) = \det \begin{pmatrix} x_{1i_1} & \ldots & x_{1i_k} \\ \ldots & \ldots & \ldots \\ x_{ki_1} & \ldots & x_{ki_k} \end{pmatrix},$$

где $x_j = \sum x_{js} f_s \ \forall j = 1, \dots, k$, то есть $x_{js} = e_s(x_j)$.

Доказательство. По индукции, смотрим курс алгебры.

Следствие 19.12. Если
$$i_{j_1}=i_{j_2}$$
, то $e_{i_1}\wedge\ldots\wedge e_{i_k}=0$.

Следствие 19.13. Если k > n, то любая полилинейная кососимметрическая форма равна нулю.

Следствие 19.14. Любая кососимметрическая форма ω порядка k имеет вид

$$\omega = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} a_{i_1 \dots i_k} e_{i_1} \wedge \dots \wedge e_{i_k}.$$

Доказательство. Знаем, что любая полилинейная форма имеет вид

$$\omega = \sum_{1 \leq i_1, i_2, \dots, i_k \leq n} b_{i_1 \dots i_k} e_{i_1} \otimes \dots \otimes e_{i_k}.$$

Кроме того, так как $\omega = \mathrm{Alt}(\omega)$ для кососимметрических форм, $\omega = \sum b_{i_1...i_k} \, \mathrm{Alt}(e_{i_1} \otimes \ldots \otimes e_{i_k})$, но $\mathrm{Alt}(e_{i_1} \otimes \ldots \otimes e_{i_k}) = \frac{1}{k!} \det()_{i_1...i_k}$ по определению det и Alt.

Замечание. Это разложение единственно.

Определение. Дифференциальной формой порядка k на $E \subset \mathbb{R}^n$ называется отображение, сопоставляющее точке $x \in E$ полилинейную форму. Если эта форма является кососимметрической, то дифференциальная форма называется внешней.

В дальнейшем мы часто будем опускать либо опускать слово "внешняя", говоря о внешних дифференциальных формах, либо говорить просто о "внешних формах".

Обозначение. dx_i — форма на \mathbb{R}^n , сопоставляющая вектору x его i-ую координату.

Пример 19.5. $(x^2 + y^2) dx \wedge dy + (x + z) dy \wedge dz$ — внешняя дифференциальная на \mathbb{R}^3 порядка 2. Вычислим значение этой формы в точке $x_0 = (1, 1, 1)$ на векторах $v_1 = (1, 0, 1)^T$, $v_2 = (0, 0, 1)^T$: $\omega(x_0) = 2 dx \wedge dy + 2 dy \wedge dz$,

$$\omega(x_0)(v_1, v_2) = 2 \det \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 2 \det \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = 0.$$
 (19.3)

Теорема 19.15. Любая внешняя дифференциальная форма порядка k на \mathbb{R}^n имеет вид

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} f_{i_1 \dots i_k}(x) \, \mathrm{d}x_{i_1} \wedge \dots \wedge \mathrm{d}x_{i_k}, \tag{19.4}$$

где $x \in \mathbb{R}^n$.

Доказательство. В каждой точке $x \in \mathbb{R}^n \omega(x)$ — форма порядка k, а значит, $\omega(x) =$ правой части с некоторыми коэффициентами, зависящими от x.

Замечание. Представление, построенное в теореме выше, единственно (так как единственно соответствующее представление для алгебраических форм).

Определение. Внешняя дифференциальная форма ω лежит в классе C^l , если $f_{i_1...i_k} \in C^l(\mathbb{R}^n)$ для всех функций $f_{i_1...i_k}$ из разложения. Аналогично определяется гладкость форм, заданных на подмножестве \mathbb{R}^n .

Определение. Пусть ω имеет вид (19.4), ω — форма класса C^1 . Внешний дифференциал ω — это форма d ω порядка k+1, определенная равенством

$$d\omega = \sum_{1 \leq i_1 < \dots < i_k \leq n} (df_{i_1 \dots i_k}) \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}, \qquad (19.5)$$

где

$$df = \frac{\partial f}{\partial x_1} dx_1 + \ldots + \frac{\partial f}{\partial x_n} dx_n$$
 (19.6)

для любой $f \in C^1(\mathbb{R}^n, \mathbb{R})$.

Пример 19.6. Посчитаем дифференциал формы из предыдущего примера:

$$d((x^2 + y^2) dx \wedge dy + (x + z) dy \wedge dz) =$$
(19.7)

$$= (2x dx + 2y dy) \wedge dx \wedge dy + (dx + dz) \wedge dy \wedge dz =$$
 (19.8)

$$= dx + dy + dz. \tag{19.9}$$

Определение. Пусть M — гладкое многообразие с краем, $\gamma_1, \gamma_2 \colon [0,1] \to M$ — некоторые пути в $M, \gamma_1(0) = \gamma_2(0) = p \in M$. Тогда пути γ_1, γ_2 называются эквивалентными, если для любой карты $(U_\alpha, \varphi_\alpha), \varphi_\alpha(U_\alpha) \ni p$, многообразия M выполняется равенство

$$\varphi_{\alpha}^{-1}(\gamma_1(t))'|_{t=0} = \varphi_{\alpha}^{-1}(\gamma_2(t))'|_{t=0}.$$
 (19.10)

Определение. Пусть M — гладкое многообразие с краем, $p \in M$. Тогда через $T_p(M)$ обозначается множество классов эквивалентности гладких путей, проходящих через p.

Обозначение. Пусть $(U_{\alpha}, \varphi_{\alpha})$ — карта некоторого атласа многообразия $M, \xi \in U_{\alpha}$. Тогда через $[\varphi_{\alpha}(t\xi)]$ будем обозначать класс эквивалентности путей, содержащий путь $t \mapsto \varphi_{\alpha}(t\varepsilon\xi), t \in [0,1]$, где $\varepsilon > 0$ — такое число, что $t\xi \in U_{\alpha}$ для $t \in [0,\varepsilon]$.

Утверждение 19.16. Если $(U_{\alpha}, \varphi_{\alpha})$ — такая карта M, что $\varphi_{\alpha}(0) = p$, то

$$T_p(M) = \left\{ \left[\varphi_{\alpha}(t\xi) \right] \middle| \xi \in U_{\alpha} \right\}. \tag{19.11}$$

Доказательство. Включение ⊃ очевидно. В обратную сторону: если $[\gamma] \in T_p(M)$, то $[\gamma] = [\varphi_\alpha(t\xi_\gamma)]$, где

$$\xi_{\gamma} = \varphi_{\alpha}^{-1}(\gamma(t))'\Big|_{t=0},$$
 (19.12)

так как

$$\left. \varphi_{\alpha}^{-1}(\varphi_{\alpha}(t\xi_{\gamma}))' \right|_{t=0} = \xi_{\gamma},\tag{19.13}$$

то есть выполнено (19.10).

Следствие 19.17. $T_p(M)$ можно отождествить с U_α : либо с \mathbb{R}^k , либо с $-\mathbb{H}^k$.

Значит, если $p \in M \setminus \partial M$, то $T_p(M)$ — линейное пространство, и определены операции сложения и умножения на скаляр элементов $T_p(M)$.

Упражнение. Надо проверить, что эти операции не зависят от выбора карты — для этого нужно использовать линейность отображения $d_x(\varphi_\beta^{-1}\varphi_\alpha)$ и цепное правило.

Определение. ω — внешняя дифференциальная форма порядка k на многообразии M размерности n, если для любой точки $p \in M$ определена внешняя форма $\omega(p)$ порядка k на $T_p(M)$. Если $p \notin \partial M$, то $T_p(M) = \mathbb{R}^n$ — линейное пространство, если же $p \in \partial M$, то значение формы на векторах $\xi \in \mathbb{R}^n \setminus (-\mathbb{H}^n)$ определяются по линейности: $\forall \xi \in \mathbb{R}^n$ либо $\xi \in -\mathbb{H}^n$, либо $-\xi \in -\mathbb{H}^n$.

Определение. Пусть M — многообразие, $(U_{\alpha}, \varphi_{\alpha})$ — карта на M, $p \in \varphi_{\alpha}(U_{\alpha})$, ω — внешняя форма порядка k на M. Переносом ω в U_{α} называется форма ω_{α}^* на U_{α} такая, что

$$\omega(\varphi_{\alpha}(a))([\varphi_{\alpha}(t\xi_1)],\ldots,[\varphi_{\alpha}(t\xi_k)]) = \omega_{\alpha}^*(a)(\xi_1,\ldots,\xi_k), \tag{19.14}$$

где $a \in U_{\alpha}, \, \xi_1, \ldots, \xi_k \in \mathbb{R}^n, \, n = \dim M.$

Определение. Говорят, что ω — форма гладкости C^l на M, если ω_α^* — форма гладкости C^l для переноса ω в любую карту $(U_\alpha, \varphi_\alpha)$.

Определение корректно, если l не превосходит гладкости многообразия M.

Определение. Если $\omega - C^1$ -гладкая форма порядка k на гладком многообразии M, то ее внешний дифференциал — это форма порядка k+1 такая, что

$$d\omega([\varphi_{\alpha}(t\xi_1)], \dots, [\varphi_{\alpha}(t\xi_{k+1})]) = d\omega_{\alpha}^*(\xi_1, \dots, \xi_{k+1}).$$
(19.15)

 $^{^{33}}$ Если $U_{\alpha}=-\mathbb{H}_{k}$, то это может быть не выполнено для arepsilon=1.

Пример 19.7. Пусть M — гладко параметризованное многообразие в \mathbb{R}^n размерности k, $\widetilde{\omega}$ — форма в \mathbb{R}^n порядка m. Эта форма порождает форму ω на M следующим образом:

$$\omega(x_1,\ldots,x_m)=\widetilde{\omega}(y_1,\ldots,y_m), \quad x_i\in T_p(M), \quad y_i=x_i\in\mathbb{R}^n.$$

Если $(U_{\alpha}, \varphi_{\alpha})$ — карта M, и $p \in \varphi_{\alpha}(U_{\alpha})$, то

$$\omega(p)([\varphi_{\alpha}(t\xi_1)],\ldots,[\varphi_{\alpha}(t\xi_m)]) \tag{19.16}$$

$$= \sum f_{i_1...i_m}(p) (\mathrm{d}x_{i_1} \wedge \ldots \wedge \mathrm{d}x_{i_m}) \big((\mathrm{d}_a \varphi_\alpha) \xi_1, \ldots, (\mathrm{d}_a \varphi_\alpha) \xi_m \big)$$
 (19.17)

$$= \sum f_{i_{1}...i_{m}}(p) \det \begin{pmatrix} (d_{a}\varphi_{\alpha})\xi_{1} \\ \vdots \\ (d_{a}\varphi_{\alpha})\xi_{m} \end{pmatrix}_{i_{1}...i_{m}}$$

$$(19.18)$$

$$= \sum_{i_1...i_m} f_{i_1...i_m}(p) \det(\mathbf{d}_x \varphi_\alpha)_{i_1...i_m} \det\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_m \end{pmatrix}.$$
 (19.19)

Следствие 19.18. Пусть M — гладко параметризованное многообразие размерности m в \mathbb{R}^n ,

$$\omega = \sum f_{i_1...i_m} \, \mathrm{d}x_{i_1} \wedge \ldots \wedge \mathrm{d}x_{i_m}.$$

Тогда ее сужение на M действует по формуле

$$\omega(p)([\varphi_{\alpha}(t\xi_{1})],\ldots,[\varphi_{\alpha}(t\xi_{m})])$$

$$=\sum f_{i_{1}\ldots i_{m}}(p)\det(d_{x}\varphi_{\alpha})_{i_{1}\ldots i_{m}}dx_{i_{1}}\wedge\ldots\wedge dx_{i_{m}}(\xi_{1},\ldots,\xi_{m}),$$

где $\varphi_{\alpha}(a) = p$, $(d_a \varphi_{\alpha})_{i_1...i_m}$ — матрица, полученная из матрицы Якоби выкидыванием всех строк, кроме имеющих номера i_1, \ldots, i_m .

Следствие 19.19. Пусть $M,\widetilde{\omega},\omega$ — как раньше. Тогда перенос с ω_{α}^* формы ω в карту $(U_{\alpha},\varphi_{\alpha})$ имеет вид

$$\omega_{\alpha}^{*}(x)(\xi_{1},\ldots,\xi_{m})=\sum f_{i_{1}\ldots i_{m}}(\varphi_{\alpha}(x))\det(d_{x}\varphi)_{i_{1}\ldots i_{m}}dx_{i_{1}}\wedge\ldots\wedge dx_{i_{m}}(\xi_{1},\ldots,\xi_{m})$$

— вытекает из определения переноса формы и предыдущего следствия.

Пример 19.8. Пусть $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}, \widetilde{\omega} = y \, \mathrm{d}z \wedge \mathrm{d}x$. Найдем перенос этой формы в карту $U_{\alpha} = (0, 2\pi) \times (-\pi, \pi)$,

$$\varphi_{\alpha}:(u,v)\mapsto \begin{pmatrix} \cos u\sin v\\ \sin u\sin v\\ \cos v \end{pmatrix}.$$

Имеем:

$$\omega_{\alpha}^{*} = -\sin u \sin v \det \begin{pmatrix} -\sin u \sin v & \cos u \cos v \\ \cos u \sin v & \sin u \cos v \\ 0 & -\sin v \end{pmatrix}_{1,3} du \wedge dv$$
 (19.20)

$$= \sin u \sin v (-\sin u \sin v \cdot (-\sin v)) du \wedge dv$$
 (19.21)

$$= -\sin^2 u \cdot \sin^3 v \, du \wedge dv. \tag{19.22}$$

Другой спосо 6^{34} :

$$\omega^* = \sin u \cdot \sin v \cdot (\mathrm{d}\cos v \wedge \mathrm{d}(\cos u \sin v)) \tag{19.23}$$

$$= \sin u \cdot \sin v (-\sin v \, dv \wedge (-\sin u \sin v \, du + \cos u \cdot \cos v \, dv)) \tag{19.24}$$

$$= \sin u \cdot \sin v (\sin^2 v \cdot \sin u \, dv \wedge du) \tag{19.25}$$

$$= \sin^2 u \cdot \sin^3 v \, dv \wedge du. \tag{19.26}$$

Упражнение. Понять, что второй способ работает всегда.

Определение. Пусть ω — дифференциальная форма порядка k в области $\Omega \subset \mathbb{R}^k$, $\omega(x) = f(x) \, \mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_k$, где $f \in L^1(\Omega, \lambda_k)$. Тогда

$$\int_{\Omega} \omega = \int_{\Omega} f \, \mathrm{d}\lambda_k. \tag{19.27}$$

Определение. Пусть M — ориентированное гладкое компактное многообразие размерности k, ω — гладкая форма на M порядка k, $\mathrm{supp}\,\omega = \{x : \omega(x) \neq 0\}$, и пусть существует карта $(U_\alpha, \varphi_\alpha)$ из ориентирующего атласа такая, что $\mathrm{supp}\,\omega \subset \varphi_\alpha(U_\alpha)$. Тогда

$$\int_{M} \omega = \int_{U_{\alpha}} \omega_{\alpha}^{*}, \tag{19.28}$$

где ω_{α}^* — перенос ω в $(U_{\alpha}, \varphi_{\alpha})$.

В общем случае выберем набор карт $(U_{\alpha_1}, \varphi_{\alpha_1}), \dots, (U_{\alpha_N}, \varphi_{\alpha_N}): \bigcup_{j=1}^N \varphi_{\alpha_j}(U_{\alpha_j}) \supset M$, найдем разбиение единицы $\{e_{\alpha_j}\}_{j=1}^N$, подчиненное $\{(U_{\alpha_j}, \varphi_{\alpha_j})\}$, и положим

$$\int_{M} \omega = \sum_{j=1}^{N} \int_{M} e_{\alpha_{j}} \omega.$$
 (19.29)

Замечание. Существование разбиения единицы доказывали ранее. Можно найти гладкое разбиение единицы, хотя (19.29) верна для произвольного борелевского разбиения единицы.

Теорема 19.20. Все введенные определения корректны.

Доказательство.

 $^{^{34}}$ Видимо, просто подставить вместо x, y, z их выражение через u и v — OM.

1. Сначала проверим, что (19.28) не зависит от выбора карты. Пусть $(U_{\beta}, \varphi_{\beta})$: $\mathrm{supp}\,\omega \subset \varphi_{\beta}(U_{\beta}),\,\omega_{\alpha}^*(\xi_1,\ldots,\xi_k) = \omega([\varphi_{\alpha}(t\xi_1)],\ldots,[\varphi_{\alpha}(t\xi_k)]).$ Покажем, что для любого $j:1\leqslant j\leqslant k$

$$[\varphi_{\alpha}(t\xi_{j})] = [\varphi_{\beta}(\varphi_{\beta}^{-1}(\varphi_{\alpha}(t\xi_{j})))] = [\varphi_{\beta}((d_{\alpha}\varphi_{\beta}^{-1}\varphi_{\alpha})\xi_{j})], \tag{19.30}$$

где $\varphi_{\alpha}(a) = p$. Проверим (19.30) по определению эквивалентности путей:

$$\left. \left(\varphi_{\alpha}^{-1}(\varphi_{\alpha}(t\xi_{i})) \right)' \right|_{t=0} = \xi_{j} = \left. \left(\varphi_{\alpha}^{-1}\varphi_{\beta}(\mathrm{d}_{a}\varphi_{\beta}^{-1}\varphi_{\alpha})\xi_{j}t \right)_{t} \right|_{t=0}.$$

Итак,

$$\omega_{\alpha}^{*}(a)(\xi_{1},\ldots,\xi_{k})=\omega_{\beta}^{*}(\widetilde{a})\left((d_{\alpha}\varphi_{\beta}^{-1}\varphi_{\alpha})\xi_{1},(d_{\alpha}\varphi_{\beta}^{-1}\varphi_{\alpha})\xi_{2},\ldots,(d_{\alpha}\varphi_{\beta}^{-1}\varphi_{\alpha})\xi_{k}\right),$$

где $\widetilde{a}=arphi_{eta}^{-1}arphi_{lpha}(a)$. Если

$$\omega_{\alpha}^{*}(a) = f_{\alpha}(a)(\mathrm{d}x_{1} \wedge \ldots \wedge \mathrm{d}x_{k})(\xi_{1}, \ldots, \xi_{k})$$

И

$$\omega_{\beta}^*(\widetilde{a}) = f_{\beta}(\widetilde{a})(\mathrm{d}x_1 \wedge \ldots \wedge \mathrm{d}x_k)(\xi_1, \ldots, \xi_k),$$

то

$$\omega_{\alpha}^{*}(a) = f_{\beta}(\widetilde{a})(dx_{1} \wedge \ldots \wedge dx_{k}) \left((d_{\alpha}\varphi_{\beta}^{-1}\varphi_{\alpha})\xi_{1}, \ldots, (d_{\alpha}\varphi_{\beta}^{-1}\varphi_{\alpha})\xi_{k} \right),$$

$$= f_{\beta}(\widetilde{a}) \det(d_{\alpha}\varphi_{\beta}^{-1}\varphi_{\alpha})(dx_{1} \wedge \ldots \wedge dx_{k})(\xi_{1}, \ldots, \xi_{k})$$

(общий факт: $\mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_k (L\xi_1,\ldots,L\xi_k) = \det L \cdot (\mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_k) (\xi_1,\ldots,\xi_k)$, так как $\det(AB) = \det A \det B$). Значит, $f_\alpha(a) = f_\beta(\widetilde{a}) \det \mathrm{d}_a(\varphi_\beta^{-1}\varphi_\alpha)$. Тогда

$$\int_{U_{\alpha}} \omega_{\alpha}^* = \int_{U_{\alpha}} f_{\alpha}(a) d\lambda_k = \int_{U_{\alpha}} f_{\beta}(\varphi_{\beta}^{-1}\varphi_{\alpha}(a)) \det(d_a \varphi_{\beta}^{-1}\varphi_{\alpha}) d\lambda_k$$
(19.31)

$$= \int_{(\varphi_{\beta}^{-1}\varphi_{\alpha})(U_{\alpha})} f_{\beta} \, \mathrm{d}\lambda_{k} = \int_{U_{\beta}} f_{\beta} \, \mathrm{d}\lambda_{k} = \int_{U_{\beta}} \omega_{\beta}^{*}. \tag{19.32}$$

Здесь использовалась формула для замены переменной в интеграле: в ней нужно, что было выполнено $\det (\mathsf{d}_a \varphi_\beta^{-1} \varphi_\alpha) > 0$, а это так, поскольку атлас ориентирующий (состоит из согласованных карт).

2. Независимость от разбиения. Пусть $\{e_{\alpha_j}\}_{j=1}^N, \{e_{\beta_j}\}_{j=1}^N$ — два разбиения, соответствующие картам $(U_{\alpha_j}, \varphi_{\alpha_j}), (U_{\beta_j}, \varphi_{\beta_j})$. Тогда:

$$\int_{M} \omega = \sum_{j} \int_{U_{\alpha_{j}}} (e_{\alpha_{j}} \omega)_{\alpha_{j}}^{*} = \sum_{j} \int_{U_{\alpha_{j}}} \left(\left(\sum_{s} e_{\beta_{s}} \right) e_{\alpha_{j}} \omega \right)_{\alpha_{j}}^{*}$$
(19.33)

$$= \sum_{j,s} \int_{U_{\alpha_j} \cap \varphi_{\alpha_j}^{-1}(\varphi_{\beta_s}(U_{\beta_s}))} (e_{\beta_s} e_{\alpha_j} \omega)_{\alpha_j}^*$$
(19.34)

$$=\sum_{j,s}\int_{\varphi_{\beta_s}^{-1}\varphi_{\alpha}(U_{\alpha_j}\cap\varphi_{\alpha_j}^{-1}(\varphi_{\beta_s}(U_{\beta_s})))}(e_{\beta_s}e_{\alpha_j}\omega)_{\alpha_j}^*$$
(19.36)

$$=\sum_{j,s}\int_{\varphi_{\mathcal{S}_s}^{-1}\varphi_{\alpha_j}(U_{\alpha_j})\cap U_{\beta_s}}(e_{\beta_s}e_{\alpha_j}\omega)_{\alpha_j}^*$$
(19.37)

$$=\sum_{s}\int_{\varphi_{\alpha_{s}}^{-1}\varphi_{\alpha_{i}}(U_{\alpha_{i}})\cap U_{\beta_{s}}}(e_{\beta_{s}}e_{\alpha_{j}}\omega)_{\alpha_{j}}^{*}$$
(19.38)

$$=\sum_{s}\int_{U_{\beta_{s}}}\left(e_{\beta_{s}}\omega\right)_{\beta_{s}}^{*},\tag{19.39}$$

что и требовалось.

Пример 19.9. Как в предыдущем примере: $\omega = y \, dz \wedge dx$, $\omega^* = -\sin^2 u \cdot \sin^3 v \, du \wedge dv$, $M = \Phi((0, 2\pi) \times (0, \pi))$, где

$$\Phi(u,v) = \begin{pmatrix} \cos u \sin v \\ \sin u \cos v \\ \cos v \end{pmatrix}.$$

Посчитаем интеграл этой формы:

$$\int_{M} \omega = \iint_{(0,2\pi)\times(0,\pi)} (-\sin^2 u \sin^3 v) \, du \, dv$$
 (19.40)

$$= -\left(\int_{0}^{2\pi} \sin^{2} u \, du\right) \cdot \left(\int_{0}^{\pi} \sin^{3} v \, dv\right) = -\frac{4}{3}\pi.$$
 (19.41)

Определение. Напомним, что если M — многообразие с краем и ориентирующим атласом $\{(U_{\alpha}, \varphi_{\alpha})\}$, где $U_{\alpha} = \mathbb{R}^k$ или $U_{\alpha} = -\mathbb{H}^k$, то согласованная ориентация края ∂M задается атласом $\{(\partial (-\mathbb{H}^k), \varphi_{\alpha})\}$ по таким α , что $U_{\alpha} = -\mathbb{H}^k$.

Теорема 19.21 (Стокса). Пусть M — компактное C^1 -гладкое ориентированное многообразие размерности $k \geqslant 2$ с краем ∂M , на котором задана согласованная ориентация. Пусть ω — C^1 -гладкая форма на M размерности k-1. Тогда

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

Доказательство. Используя разбиение единицы и линейность интеграла, можно ограничиться случаем, когда $\sup \omega \subset U_{\alpha}$ для некоторой карты $(U_{\alpha}, \varphi_{\alpha})$. Так как ω —

форма порядка k-1, то

$$\omega_{\alpha}^* = \sum f_{i_1...i_k} d\xi_{i_1} \wedge \ldots \wedge d\xi_{i_{k-1}}$$

представляется сумма форм вида

$$\widetilde{\omega}^* = f(x) d\xi_1 \wedge \ldots \wedge \widehat{d\xi_j} \wedge \ldots \wedge d\xi_k.$$

Рассмотрим каждое такое слагаемое отдельно. Есть два случая: $U_{\alpha}=\mathbb{R}^k$ и $U_{\alpha}=-\mathbb{H}^k$. В случае $U_{\alpha}=\mathbb{R}^k$:

$$\int_{U_{\alpha}} d\omega_{\alpha}^* = \int \cdots \int \frac{\partial f}{\partial \xi_j} d\xi_1 \wedge \ldots \wedge d\xi_k = 0,$$

так как можно проинтегрировать по ξ_j и воспользоваться тем, что $\int_{\mathbb{R}} g'(t) \, \mathrm{d}t = 0$ для всех $g \in C^1(\mathbb{R})$: supp g — компакт (это следует из формулы Ньютона – Лейбница). С другой стороны,

$$\int_{\partial U_{\alpha}} \widetilde{\omega}_{\alpha}^* = \int_{\varnothing} \widetilde{\omega}_{\alpha}^* = 0.$$
 (19.42)

Таким образом, в этом случае формула Стокса доказана.

Пусть $U_{\alpha} = -\mathbb{H}^{k}$. Тогда

$$\int_{U_{\alpha}} d\widetilde{\omega}_{\alpha}^{*} = 0 = \int_{\partial U_{\alpha}} \widetilde{\omega}_{\alpha}^{*}, \tag{19.43}$$

если $j \neq 1$. Действительно, интеграл в левой части равен нулю, так как мы интегрируем производную функции с компактным носителем, а интеграл в правой части равен нулю, так как ξ_1 не меняется на $\partial(-\mathbb{H}^k)$. Если j=1, то

$$\int_{U_{\alpha}} d\omega_{\alpha}^* = \int_{\mathbb{R}^{k-1} \times (-\infty, 0]} \frac{\partial f}{\partial \xi_1} d\xi_1 \dots d\xi_k$$
(19.44)

$$= \int_{\mathbb{R}^{k-1}} f(0, \xi_2, \dots, \xi_k) \, \mathrm{d}\xi_2 \dots \mathrm{d}\xi_k = \int_{\partial(-\mathbb{H}^k)} \widetilde{\omega}_{\alpha}^*. \tag{19.45}$$

Таким образом, теорема доказана.

Пример 19.10. Применим формулу Стокса к форме $y \, dz \wedge dx$ на сфере:

$$\int_{x^2+y^2+z^2\leqslant 1} d(y dz \wedge dx) = \pm \int_{x^2+y^2+z^2=1} y dz \wedge dx = \pm \frac{4\pi}{3}.$$
 (19.46)

(плюс или минус выбирается в зависимости от ориентации, выбранной на сфере).

$$\int_{x^2+y^2+z^2\leqslant 1} d(y dz \wedge dx) = \int_{x^2+y^2+z^2\leqslant 1} = \frac{4}{3}\pi(1^3).$$
 (19.47)

 $(сошлось)^{35}$

Определение. Векторное поле в $U \subset \mathbb{R}^n$ — это отображение $F \colon U \to \mathbb{R}^n$. Работа постоянного поля F вдоль вектора $v \in \mathbb{R}^n$ — это скалярное произведение $F \cdot v$.

Работа может быть отрицательной.

Определение. Работа непрерывного векторного поля вдоль кривой γ — это интеграл

$$\int_{\gamma} (F, \tau) \, \mathrm{d}s, \tag{19.48}$$

где $\tau(p)$ — единичный касательный вектор, направленный в сторону прохождения кривой. Если $\gamma\colon [0,1] \to \mathbb{R}^n$, то

$$\tau(p) = \frac{(\gamma'_1(t_0), \dots, \gamma'_n(t_0))}{\sqrt{\gamma'_1(t_0)^2 + \dots + \gamma'_n(t_0)^2}}, \quad t_0 \in [0, 1] : \gamma(t_0) = p.$$

Определение. Форма работы поля $F = (F_1, \dots, F_n)$ — это дифференциальная форма

$$\omega = F_1 dx_1 + \ldots + F_n dx_n.$$

Утверждение 19.22. Пусть γ — гладкая простая кривая в \mathbb{R}^n , то есть гладко параметризованное многообразие размерности 1 с заданной ориентацией. Тогда

$$\int_{\gamma} \omega = \int_{\gamma} (F, \tau) \, \mathrm{d}s,\tag{19.49}$$

где ω — форма работы поля F.

Доказательство. Пусть $\gamma\colon [0,1] \to \mathbb{R}^n$ — параметризация кривой γ , соответствующая ее ориентации. Тогда

$$\int_{\gamma} \omega = \int_{[0,1]} F_1(\gamma(t))\gamma_1'(t) dt + \dots + F_n(\gamma(t))\gamma_n'(t) dt$$
(19.50)

$$= \int_{[0,1]} \left(F(\gamma(t)) \cdot \frac{\gamma'(t)}{\|\gamma'(t)\|} \right) \cdot \|\gamma'(t)\| \, \mathrm{d}t = \int_{[0,1]} \left(F \cdot \frac{\gamma'}{\|\gamma'\|} \right) \, \mathrm{d}s, \tag{19.51}$$

где $ds = dS_1$, а S_1 — поверхностная мера на γ .

Определение. Поток постоянного векторного поля $F: \mathbb{R}^3 \to \mathbb{R}^3$ через параллелограмм, натянутый на вектора $v_1, v_2 \in \mathbb{R}^3$, в направлении вектора $v_1 \times v_2$ — это

$$\det \begin{pmatrix} F_1 & F_2 & F_3 \\ v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \end{pmatrix}.$$

 $^{^{35}}$ Я не понял, о чем это — ОМ.

Геометрический смысл потока — объем параллелепипеда, натянутого на вектора F, v_1, v_2 (объем жидкости, протекающей через параллелограмм в единицу времени).

Определение. Пусть S — гладко параметризованное ориентированное компактное многообразие размерности k = m - 1 в \mathbb{R}^m , $V \subset S$ — открытое множество, \vec{n} — поле единичных нормалей на S, согласованное с исходной ориентацией S. Тогда *поток* непрерывного поля через V в направлении \vec{n} — это интеграл

$$\int_{V} (F \cdot \vec{n}) \, \mathrm{d}S_k. \tag{19.52}$$

Определение. Форма потока $F = (F_1, \dots, F_m)$ — это дифференциальная форма

$$\omega = \sum_{j=1}^{m} (-1)^{j+1} F_j \, \mathrm{d} x_1 \wedge \ldots \wedge \widehat{\mathrm{d} x_j} \wedge \ldots \wedge \mathrm{d} x_m.$$

Утверждение 19.23. Имеет место равенство

$$\int_{V} \omega = \int_{V} (F, \vec{n}) \, \mathrm{d}S_{k}. \tag{19.53}$$

Доказательство. Можно считать, что $V \subset \varphi_{\alpha}(U_{\alpha})$ для некоторой карты $(U_{\alpha}, \varphi_{\alpha})$ (иначе рассмотрим разбиение единицы). Тогда

$$\int_{V} \omega = \int_{\varphi_{\alpha}^{-1}(V)} \omega_{\alpha}^{*} = \int_{\varphi_{\alpha}^{-1}(V)} \sum_{j=1}^{m} F_{j}(\varphi_{\alpha}(u_{1}, \dots, u_{k})) \det(d_{\alpha}\varphi_{\alpha})_{1,\dots,\hat{j},\dots,m} d\lambda_{k}.$$
(19.54)

По условию,

$$\vec{n} = \frac{\det \begin{pmatrix} i_1 & \dots & i_{k+1} \\ & \varphi'_{u_1} & \\ & \vdots & \\ & \varphi'_{u_k} \end{pmatrix}}{\det \begin{pmatrix} \varphi'_{2u_1} & \varphi'_{3u_1} & \dots & \varphi_{k+1,u_1} \\ & \dots & \dots & \dots \\ & \varphi'_{2u_k} & \varphi_{3u'_k} & \dots & \varphi_{k+1,u_k} \end{pmatrix}^2 + \dots + \det \begin{pmatrix} \varphi'_{1u_1} & \varphi'_{2u_1} & \dots & \varphi_{k,u_1} \\ & \dots & \dots & \dots \\ & \varphi'_{1u_k} & \varphi_{2u'_k} & \dots & \varphi_{k,u_k} \end{pmatrix}^2}$$

$$= [формула Бине - Коши] = \frac{\det \begin{pmatrix} i_1 & \dots & i_{k+1} \\ & \varphi'_{u_1} & \vdots \\ & & \varphi'_{u_k} \end{pmatrix}}{\sqrt{\det J_{\varphi}^* J_{\varphi}}}$$

$$(19.56)$$

Продолжим:

$$= \int\limits_{\varphi_{\alpha}^{-1}(V)} \left(F \cdot \det \begin{pmatrix} i_1 & \dots & i_{k+1} \\ & \varphi'_{u_1} & \\ & \vdots & \\ & \varphi'_{u_k} & \end{pmatrix} \right) \mathrm{d}\lambda_k = \int\limits_{\varphi_{\alpha}^{-1}(V)} \left(F \cdot \vec{n} \right) \cdot \sqrt{\det J_{\varphi}^* J_{\varphi}} \, \mathrm{d}\lambda_k = \int\limits_{V} \left(F \cdot \vec{n} \right) \mathrm{d}S_k.$$

Замечание. В случае m = 3, n = 2:

$$\det\begin{pmatrix} F \\ \varphi'_{u_1} \\ \varphi'_{u_2} \end{pmatrix} = (F \cdot \vec{n}) \cdot c,$$

если F — постоянное поле, V — плоский кусок S. Таким образом, интеграл формы потока действительно соответствует количеству жидкости, протекающему через S в единицу времени.

Определение. Пусть $F: \mathbb{R}^n \to \mathbb{R}^n$ — гладкое поле. Его дивергенцией называется

$$\operatorname{div} F = \frac{\partial F_1}{\partial x_1} + \ldots + \frac{\partial F_n}{\partial x_n} = \operatorname{tr} J_F.$$

Теорема 19.24 (Гаусса – Остроградского). Пусть S — ориентированное гладко параметризованное многообразие размерности k=m-1, существует область $\Omega \subset \mathbb{R}^m$ такая, что diam $\Omega < \infty$ и $\overline{\Omega} \setminus \Omega = S$. Пусть F — C^1 -гладкое поле в $\overline{\Omega}$. Тогда

$$\int_{\Omega} \operatorname{div} F \, \mathrm{d}\lambda_m = \int_{S} (F \cdot \vec{n}) \, \mathrm{d}S_k, \tag{19.57}$$

где \vec{n} — внешняя нормаль к S.

Замечание. Поле нормалей $\{n(x)\}_{x\in S}$, ориентирующих S, называется внешним, если $n_1(a)>0$ для нормали $n(a)=(n_1(a),\ldots,n_m(a))$ в точке $a=(a_1,\ldots,a_m):a_1=\max\{b_1:(b_1,\ldots,b_m)\in\overline{\Omega}\}.$

Доказательство. Упражнение: проверить, что $M = \Omega \cup S$ — гладкое ориентируемое многообразие с краем $\partial M = S$ размерности m в \mathbb{R}^m . ³⁶ Пусть

$$\omega = \sum_{j=1}^{m} (-1)^{j+1} F_j \, \mathrm{d} x_1 \wedge \ldots \widehat{\mathrm{d} x_j} \wedge \ldots \wedge \mathrm{d} x_m.$$

Тогда:

$$d\omega = \sum_{j=1}^{m} (-1)^{j+1} (dF_j) \wedge dx_1 \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_m$$
(19.58)

$$=F'_{x_1} dx_1 \wedge \ldots \wedge dx_m + F'_{x_2} dx_1 \wedge \ldots \wedge dx_m + \ldots + F'_{x_m} dx_1 \wedge \ldots \wedge dx_m \qquad (19.59)$$

$$= (\operatorname{div} F) \, \mathrm{d} x_1 \wedge \ldots \wedge \mathrm{d} x_m. \tag{19.60}$$

По формуле Стокса:

$$\int_{\Omega} \operatorname{div} F = \int_{M} d\omega = \int_{R} \omega = \int_{S} \omega = \pm \int_{S} (F \cdot \vec{n}) dS_{k}.$$
 (19.61)

Остается проверить знак. Можно считать, что окрестность в Ω крайней правой точки области строго выпукла. Рассмотрим поле $F=(F_1,0,\ldots,0)$, где $F_1:F_1\geqslant 0$, F_1 возрастает по x_1 при остальных фиксированных координатах, и F_1 локализовано в окрестности точки a (аппроксимирует характеристическую функцию луча $(a_1,+\infty)$). В силу возрастания $\mathrm{div}\,F=F'_{x_1}>0$, следовательно,

$$0 < \pm \int_{S} (F \cdot \vec{n}) \, dS_k \approx \pm S_k(\operatorname{supp} F) F_1 n_1(a).$$

Так как $n_1(a) > 0$, в формуле действительно надо выбирать знак +.

Упражнение (формула Грина). Если D — это область в \mathbb{R}^2 , ограниченная гладкой кривой γ , ориентированной против часовой стрелки ($\gamma_2'(t_0) > 0$ для $t_0 : \gamma(t_0) = a$, где a — правая крайняя точка), то

$$\int_{\gamma} f(x, y) dx + g(x, y) dy = \int_{D} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy.$$

Индекс

```
\sigma-алгебра, 2
Алгебра, 2
   всех подмножеств, 3
   не являющаяся \sigma-алгеброй, 3
   тривиальная, 3
Борелевская \sigma-алгебра, 4
Борелевская оболочка, 4
Внешняя мера, 9
   конечно-полуаддитивна, 9
   монотонна, 9
Измеримая функция, 17
Измеримое множество, 4
   относительно внешней меры, 9
Измеримое пространство, 16
Конечная аддитивность, 4
Лемма о подчинённом разбиении, 5
Mepa, 4
   и внешняя мера, 11
   полная, 11
Мера Лебега, 14
Наивная длина, 1
   не существует, 1
Непрерывность сверху, 7
Непрерывность снизу, 7
Полукольцо, 2
   ячеек, 3
Симметричность системы множеств, 3
Считающая мера, 4
Счётная аддитивность, 4
   и непрерывность снизу, 7
Теорема Каратеодори, 12
Толстое канторово множество, 16
Ячейка, 8
   кубическая, 8
```