

COMPUTATIONAL EVALUTIONS OF PROTON INDUCED GAIN IN A PORTABLE FARADAY CUP

Shaun Marshall^{1†}, Blake Currier¹, Andrew Hodgdon²

¹Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609

²RadSim, LLC, Newton, MA 02462

INTRODUCTION

 Protons offer increasingly popular radiation therapy alternative via localized dose distribution

Figure 1: Bragg Peak behavior of proton beam dosimetry. Wikimedia File:BraggPeak.png.

- Calibration methods lack precision, esp. for pencilbeam scanning
- Seek feasible (vacuumless, chamberless) solution for mid-range energies
- Modeled after PMFC[1, 2]

Figure 2: Experimental beamline at Heidelberg Institute of Technology

MONTE CARLO SIMULATION

Geant4 10.1-patch01

• For each particle *Track* i per Event j of N, tally net gain

$$g_{ij} = \begin{cases} +q_i(Ne)^{-1}, & \text{if } q_i \to Cu \\ -q_i(Ne)^{-1}, & \text{if } q_i \leftarrow Cu \\ +q_i d_{\%}(Ne)^{-1}, & \text{if } q_i \to KA(d_{\%}) \\ -q_i d_{\%}(Ne)^{-1}, & \text{if } q_i \leftarrow KA(d_{\%}) \end{cases}$$

• Charge defect $=\sum_{j}^{N}\sum_{i}g_{ij}-1$

Geometry Construction

Table 1: Cylindrical definitions in Geant4's DetectorConstruction.cc in both air/vaccuum

Volume	Radius (mm)	Height (mm)
Copper	30	100
	Model	Thickness (μ m)
Kapton1	S59	59
_	S100	100
	S200	200
Silver	+Ag/KA	12
Kapton2	+Ag/KA	62

Parameters

- FTFP-BERT2.0 Physics List
- Energy range: 70 250 MeV
- Gaussian beam with HIT FWHM measurements
- Particle production cutoff: $5 \mu m$

SIMULATION RESULTS

Figure 3: G4 gain output. Kapton thickness proportionately negatively contributes; Ag ground layer suppresses Kapton behavior

Figure 4: G4 gain distribution map. Electrons / ions straggle behind beam; inteface condition dependent upon energy (not shown).

Figure 5: Percent error contours between simulation and experiment gain measurement

DISCUSSION

- Optimal cup height, radius determined by coarse-grain MCNP6 model
- Deposition close to Cu interface (low E) results in greater backscatter
- -Ag/KA models acquire ~0% charge defect at finite Kapton thickness for various energies
- "Tertiary" electrons from (p,NpMn) reactions contribute non-linearly

REFERENCES

- [1] B. Gottschalk. "A Poor Man's Faraday Cup". Abstracts XIX PTCOG Meeting, Cambridge, MA, 13 (1993).
- [2] E. Cascio and B. Gottschalk. "A Simplified Vaccuumless Faraday Cup for the Experimental Beamline at the Francis H. Burr Proton Therapy Center". *IEEE Radiation Effects Data Workshop*, p.155–161, (2009).

†CONTACT INFORMATION

Web www.wpi.edu/~shaun Email shaun@wpi.edu
Phone