1. Berechnen Sie die erste Ableitungsfunktion der Funktion f.

a)
$$f(x) = 4x^2 + 2x + 1$$

a)
$$f(x) = 4x^2 + 2x + 1$$
 b) $f(x) = \frac{1}{6}x^3 - \frac{3}{4}x^2 - 4$ c) $f(x) = 2\sqrt{x} - 2x$

c)
$$f(x) = 2\sqrt{x} - 2x$$

d)
$$f(x) = \sqrt[3]{x} + 6$$

d)
$$f(x) = \sqrt[3]{x} + 6$$
 e) $f(x) = (3x - 1) \cdot (x + 4)$ f) $f(x) = x \cdot (x - 3)$

f)
$$f(x) = x \cdot (x - 3)$$

g)
$$f(x) = (2x + 4)^2$$

h)
$$f(x) = x \cdot (x + \frac{1}{x})$$

g)
$$f(x) = (2x + 4)^2$$

h) $f(x) = x \cdot (x + \frac{1}{x})$
i) $f(x) = -x^4 + 2x^3 - 6x + 1$

2. Geben Sie Gleichungen der Tangente und der Normalen im Berührungspunkt B an.

a)
$$f(x) = x^2 + 1$$
; $B(2|f(2))$

b)
$$f(x) = (x^2 + 2)^2$$
; $B(1|f(1))$

c)
$$f(x) = -x^2 + 3x + 3$$
; $B(-1|f(-1))$

- 3. Überprüfen Sie, ob das Dreieck ABC gleichschenklig oder gleichseitig ist.
 - $A(1 \mid 2 \mid 1), B(2 \mid 1 \mid 1), C(3 \mid 3 \mid 2)$
 - b) $A(1 \mid -2 \mid 2), B(3 \mid 2 \mid 1), C(3 \mid 0 \mid 3)$
 - c) $A(3 \mid 0 \mid 5), B(3 \mid 2 \mid 3), C(5 \mid 0 \mid 3)$
- 4. Gegeben ist das Dreieck mit den Punkten A(1|2|0), B(-17|8|-4) und C(1|4|2).
 - Zeigen Sie, dass das Dreieck gleichschenklig ist.
 - b) Wie müsste man einen Punkt D wählen, sodass ein Parallelogramm entsteht?
- 5. Bestimmen Sie die Lage der Geraden zueinander und berechnen Sie gegebenenfalls ihren Schnittpunkt.

a)
$$g: \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$
 $h: \vec{x} = \begin{pmatrix} 0 \\ 4 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$

b)
$$g: \vec{x} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix}$$
 $h: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

c)
$$g: \vec{x} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix}$$
 $h: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} -3 \\ -3 \\ 1 \end{pmatrix}$