Emergency Goods Distribution Model over Finite-Time Interval using Genetic Algorithm

Worameth Chinchuthakun Mahidol Wittayanusorn School

1. Introduction

- There are victims who didn't receive any donations.
- Manually distribution management is difficult to operate.
- Computer can be help to distribute donations without bias.

2. Problem Description

There are 3 important things the problem:

- Disaster area
- Demand of victims
- Donations

2.1 Disaster Area

- Node = Distribution center + Cities
- Edge = Connection between two nodes
- Weight = Time required to travel on edge

2.2 Demand of victims

2.3 Donations

2.3 Donations (cont'd)

2.4 Assumptions

- Every day distribution center receive donations.
- MUST distribute all received donations in same day.
- NOT know anything about donations received in the future.
- <u>CAN</u> reassign destination to donations during transportation stage.
- NOT consider transportation cost and vehicles.

2.5 Objective Function

 Every nodes has equal ratio between its cumulative utility value and its cumulative demand.

EXAMPLE

Node	Cumulative Utility Value	Cumulative Demand	Ratio
1	70	100	0.7
2	70,000	100,000	0.7
3	7	10	0.7

3. GA in a nutshell

- Evolutionary inspired optimization technique
- Can find near-optimal solutions to difficult problems which take lifetime to solve
- Based on Darwin's Theory of Evolution

3. GA in a nutshell (cont'd)

- Chromosome = A possible solution of the problem
- Population = Chromosomes that we have now
- Each chromosome has a value called fitness value which determine how much that chromosome suitable to be the answer of the problem.

```
Population Chromosome #1 10
Chromosome #2 4
Chromosome #3 2
Chromosome #1 5
```

3. GA in a nutshell (cont'd)

Natural selection (Survival of the fittest)

4. Discussion

- Not enough donations
 - Node with demand more than average tend to receive more donations than less ones.
- Few nodes take time to reach
 - Algorithm tends to send donations to them first to deal with transportation duration.
- Few nodes with extremely high demand
 - Distribution center tends to ignore them. (not enough donations)
 - Algorithm can distribute donations well. (otherwise)

5. Future Work

Model can be improved in 3 issues:

- Dynamic Graph
- Dynamic Demand
- Financial Constraint

5.1 Dynamic Graph

- Node insertion
- Node deletion
- Edge insertion
- Edge deletion
- Weight modification
- Change distribution center

5.2 Dynamic Demand

- Node insertion
- Node deletion
- Edge insertion
- Edge deletion
- Weight modification
- Change distribution center

5.3 Financial Constraint

 There exists a way to adjust formula to handle financial constraint called barrier function

Research Contribution

- Node insertion
- Node deletion
- Edge insertion
- Edge deletion
- Weight modification
- Change distribution center