

Universidad de los Andes

Ingeniería de Sistemas y Computación ISIS1304 – Fundamentos de Infraestructura Tecnológica **Banco – Integridad de datos**

Capacidades evaluadas:

- Calcula paridad (par o impar) de un conjunto de bits
- Reconoce si hay un error en un patrón de bits, con reglas de paridad
- Sabe si es posible detectar el bit errado y lo detecta

Se está manejando información en bloques de 4x4 bits. Se calcula un bit de paridad para cada fila y cada columna usando paridad par. Se tiene el siguiente bloque de información:

1	0	0	1	0
1	1	0	0	1
0	1	1	1	1
1	0	1	1	1
0	1	0	0	1

Según los bits de paridad, ¿el mensaje es correcto? Si no, ¿se puede determinar con seguridad cuáles son los bits erróneos? (suponga que máximo se presentan 3 errores).

Mirando la paridad por filas, todas las filas tienen un número par de unos, excepto la fila 2; en consecuencia, hay error de paridad en la segunda fila.

En cuanto a las columnas, la 1, 2 y 4 tienen error de paridad.

En consecuencia, en un primer análisis se podría pensar que los errores son:

1	0	0	1	0
1	1	0	0	1
0	1	1	1	1
1	0	1	1	1
0	1	0	0	1

Pero no necesariamente, ya que otros patrones de error pueden generar los mismos errores de paridad; por ejemplo:

1	0	0	1	0
1	1	0	0	1
0	1	1	1	1
1	0	1	1	1
0	1	0	0	1

Así que sí hay error, pero no se puede determinar con seguridad.

Se está manejando información en bloques de 4x4 bits. Se calcula un bit de paridad para cada fila y cada columna. Se usa paridad impar tanto para las filas como para las columnas. Se recibe el siguiente bloque de información (donde B quiere decir que el bit llegó bien y M quiere decir que llegó mal):

М	В	В	В	M
В	М	М	В	В
В	В	М	В	В
В	В	М	В	В
В	В	В	В	В

Indique cuáles bits de paridad detectaría el receptor como erróneos.

Sin importar si la paridad es par o impar, el bit de paridad se ve afectado cuando se modifica un número impar de bits; esto ocurre en la 3ª y 4ª fila, y en las 3 primeras columnas.

Se está manejando información en bloques de 4x4 bits. Se calcula un bit de paridad para cada fila y cada columna. Para las filas se usa paridad par; para las columnas se usa paridad impar. Se tiene el siguiente bloque de información:

1	0	0	1	0
0	0	0	1	1
0	1	1	1	0
1	0	1	1	1
1	1	0	0	0

Según los bits de paridad, ¿el mensaje es correcto? Si no, ¿se puede determinar cuáles son los bits erróneos? (suponga que máximo se presentan 3 errores).

Filas (paridad par):

Fila 1: $1 \oplus 0 \oplus 0 \oplus 1 = 0$ **OK**

Fila 2: $0 \oplus 0 \oplus 0 \oplus 1 = 1$ **OK**

Fila 3: $0 \oplus 1 \oplus 1 \oplus 1 = 1$ **NO OK**

Fila 4: $1 \oplus 0 \oplus 1 \oplus 1 = 1$ **OK**

Columnas (paridad impar):

Columna 1: $1 \oplus 0 \oplus 0 \oplus 1 = 0$, negado = 1 **OK**

Columna 2: $0 \oplus 0 \oplus 1 \oplus 0 = 1$, negado = 0 NO OK

Columna 3: $0 \oplus 0 \oplus 1 \oplus 1 = 0$, negado = 1 **NO OK**

Columna 4: $1 \oplus 1 \oplus 1 \oplus 1 = 0$, negado = 1 **NO OK**

Conclusión: hay error en la tercera fila y en la segunda, tercera y cuarta columna. Por lo tanto, en principio, se podría pensar que los bits erróneos son los marcados en la matriz anterior, y que la matriz correcta es:

1	0	0	1	0
0	0	0	1	1
0	0	0	0	0
1	0	1	1	1
1	1	0	0	0

Sin embargo, aunque esta es una buena heurística, y seguramente se usaría en la práctica (dependiendo de la aplicación), no es completamente segura, dado que hay otros casos que podrían producir el mismo efecto; por ejemplo, los bits que fallaron podrían ser:

1	0	0	1	0
0	0	0	1	1
0	1	1	1	0
1	0	1	1	1
1	1	0	0	0

Note que estos 3 bits producen el mismo patrón de error.

Se está almacenando información con 4 bits de datos (numerados de d_1 a d_4) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 $p_1 = ParidadPar(d_1, d_2, d_4)$

 $p_2 = ParidadPar(d_1, d_3, d_4)$

 p_3 = ParidadPar(d_2 , d_3 , d_4)

Se recuperó la siguiente información:

•	momation.									
	d_1	d_2	d_3	d ₄	p_1	p_2	p_3			
	1	0	1	1	0	1	1			

Suponiendo que máximo puede ocurrir un error (en cualquier bit: datos o paridad):

- 1. Diga si el mensaje recuperado tiene errores o si es correcto.
- 2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.
- 3. En el contexto de este ejemplo, dado un mensaje cualquiera, si ocurre solo un error, ¿es siempre posible detectar en cuál bit ocurrió o no?

Se está almacenando información con 5 bits de datos (numerados de d_1 a d_4) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 p_1 = ParidadPar(d_1 , d_2 , d_3 , d_5)

 p_2 = ParidadPar(d_2 , d_4 , d_5)

 p_3 = ParidadPar(d_3 , d_4 , d_5)

Se recuperó la siguiente información:

d ₁	d_2	d_3	d_4	d_5	p_1	p_2	<i>p</i> ₃
1	1	0	1	0	1	1	1

Suponiendo que máximo puede ocurrir un error (en cualquier bit: datos o paridad):

1. Diga si el mensaje recuperado tiene errores o si es correcto.

 p_1 = ParidadPar(d_1 , d_2 , d_3 , d_5) = ParidadPar(1, 1, 0, 0) = 0

 p_2 = ParidadPar(d_2 , d_4 , d_5) = ParidadPar(1, 1, 0) = 0

 p_3 = ParidadPar(d_3 , d_4 , d_5) = ParidadPar(0, 1, 0) = 1

Los bits de paridad p_1 y p_2 no coinciden con los recibidos, luego hay error

2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.

Dado el supuesto de que máximo puede ocurrir un error, y dado que p_1 y p_2 fallaron, el bit que falló debe afectar a p_1 y a p_2 . Hay dos bit que afectan a los dos: d_2 y d_5 ; sin embargo, d_5 también afecta a p_3 , el cual no falló; en consecuencia, el bit que falló debe ser d_2 .

3. En el caso general, para cualquier mensaje, si ocurre solo un error, ¿es siempre posible detectar en cuál bit ocurrió o no?

La tabla siguiente muestra cuál es el patrón de error generado por cada bit cuando falla (incluyendo los bits de paridad mismos):

	p ₁	p ₂	p ₃
d ₁	X		
d_2	X	X	
d ₃	X		X
d ₄		X	X
d ₅	X	X	X
p ₁	X		
p ₂		X	
p ₃			Χ

Se puede observar que cada bit de paridad genera un patrón único, con la excepción de p_1 y d_1 , luego en el caso general no siempre es posible detectar en cuál bit ocurrió ya que p_1 y d_1 son indistinguibles:

Se está almacenando información con 9 bits de datos (numerados de d_1 a d_9) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 $p_1 = \text{ParidadPar}(d_1, d_4, d_5, d_7, d_9)$

 $p_2 = ParidadPar(d_2, d_6, d_7, d_8, d_9)$

 $p_3 = ParidadPar(d_1, d_2, d_3, d_4, d_8)$

Se recuperó la siguiente información:

d_1	d_2	d_3	d ₄	d_5	d_6	<i>d</i> ₇	d ₈	d ₉	p_1	p_2	<i>p</i> ₃
1	1	1	0	1	1	1	1	0	0	1	0

Suponiendo que máximo puede ocurrir un error:

- 1. Diga si el mensaje recuperado tiene errores o si es correcto.
- 2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.

Se está almacenando información con 6 bits de datos (numerados de d_1 a d_6) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 $p_1 = \text{ParidadPar}(d_1, d_2, d_3)$

 $p_2 = ParidadPar(d_3, d_4, d_5)$

 p_3 = ParidadPar(d_5 , d_6 , d_1)

Se recuperó la siguiente información:

d_1	d_2	d_3	d ₄	d_5	d_6	p_1	p_2	p_3
1	1	0	1	0	1	1	1	1

Suponiendo que máximo puede ocurrir un error:

1. Diga si el mensaje recuperado tiene errores o si es correcto.

 p_1 = ParidadPar(d_1 , d_2 , d_3) = ParidadPar(1, 1, 0) = 0 (porque hay 2 unos, como dos es par, el bit de paridad debe ser 0)

 p_2 = ParidadPar(d_3 , d_4 , d_5) = ParidadPar(0, 1, 0) = 1 (porque hay 1 uno, como uno es impar, el bit de paridad debe ser 1)

 p_3 = ParidadPar(d_5 , d_6 , d_1) = ParidadPar(0, 1, 1) = 0 (porque hay 2 unos, como dos es par, el bit de paridad debe ser 0)

Los bits de paridad p_1 y p_3 no coinciden con los recibidos, luego hay error

2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.

Dado el supuesto de que máximo puede ocurrir un error, y dado que p_1 y p_3 fallaron, el bit que falló debe afectar a p_1 y a p_3 ; el único bit que afecta a los dos al mismo tiempo es d_1 , luego d_1 es el bit que falló.

Se está almacenando información con 4 bits de datos (numerados de d_1 a d_4) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 $p_1 = ParidadPar(d_1, d_2, d_3)$

 $p_2 = ParidadPar(d_2, d_3, d_4)$

 p_3 = ParidadPar(d_3 , d_4 , d_1)

Se recuperó la siguiente información:

d_1	d_2	d_3	d_4	p_1	p_2	<i>p</i> ₃
					0	

Suponiendo que máximo puede ocurrir un error:

1. Diga si el mensaje recuperado tiene errores o si es correcto.

 p_1 = ParidadPar(d_1 , d_2 , d_3) = ParidadPar(1, 1, 0) = 0

 p_2 = ParidadPar(d_2 , d_3 , d_4) = ParidadPar(1, 0, 0) = 1

 p_3 = ParidadPar(d_3 , d_4 , d_1) = ParidadPar(0, 0, 1) = 1

Los bits de paridad p_2 y p_3 no coinciden con los recibidos, luego hay error

2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.

Dado el supuesto de que máximo puede ocurrir un error, y dado que p_2 y p_3 fallaron, el bit que falló debe afectar a p_2 y a p_3 . Hay dos bit que afectan a los dos: d_3 y d_4 ; sin embargo, d_3 también afecta a p_1 , el cual no falló; en consecuencia, el bit que falló debe ser d_4 .

Se está almacenando información con 5 bits de datos (numerados de d_1 a d_5) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 p_1 = ParidadPar(d_2 , d_3 , d_4 , d_5)

 $p_2 = ParidadPar(d_1, d_3, d_4)$

 p_3 = ParidadPar(d_1 , d_2 , d_4 , d_5)

Se recuperó la siguiente información:

d_1	d_2	d_3	d ₄	d_5	p_1	p_2	p_3
1	1	0	1	0	0	1	0

Suponiendo que máximo puede ocurrir un error (en cualquier bit: datos o paridad):

1. Diga si el mensaje recuperado tiene errores o si es correcto.

 $p_1 = \text{ParidadPar}(d_2, d_3, d_4, d_5) = \text{ParidadPar}(1, 0, 1, 0) = 0$

 p_2 = ParidadPar(d_1 , d_3 , d_4) = ParidadPar(1, 0, 1) = 0

 p_3 = ParidadPar(d_1 , d_2 , d_4 , d_5) = ParidadPar(1, 1, 1, 0) = 1

Los bits de paridad p_2 y p_3 no coinciden con los recibidos, luego hay error

2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.

Dado el supuesto de que máximo puede ocurrir un error, y dado que p_2 y p_3 fallaron, el bit que falló debe afectar a p_2 y a p_3 . Hay dos bit que afectan a los dos: d_1 y d_4 ; sin embargo, d_4 también afecta a p_1 , el cual no falló; en consecuencia, el bit que falló debe ser d_1 .

3. En el contexto de este ejemplo, para un mensaje cualquiera, si ocurre solo un error, ¿es siempre posible detectar en cuál bit ocurrió o no?

La tabla siguiente muestra cuál es el patrón de error generado por cada bit cuando falla (incluyendo los bits de paridad mismos):

	parrada rinori				
	p ₁	p ₂	p ₃		
d ₁		X	X		
d ₂	X		Χ		
d ₃	X	X			
d ₄	X	X	X		
d ₅	X		X		
p ₁	X				
p ₂		X			
p ₃			X		

Se puede observar que cada bit de paridad genera un patrón único, con la excepción de d_2 y d_5 , luego en el caso general no siempre es posible detectar en cuál bit ocurrió ya que d_2 y d_5 son indistinguibles:

Se está almacenando información con 4 bits de datos (numerados de d_1 a d_4) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 $p_1 = ParidadPar(d_1, d_4)$

 $p_2 = ParidadPar(d_1, d_3, d_4)$

 p_3 = ParidadPar(d_2 , d_3 , d_4)

Se recuperó la siguiente información:

i							
	d_1	d_2	d_3	d_4	p_1	p_2	p_3
	1		0	1	0	1	0

Suponiendo que máximo puede ocurrir un error (en cualquier bit: datos o paridad):

1. Diga si el mensaje recuperado tiene errores o si es correcto.

 p_1 = ParidadPar(d_1 , d_4) = ParidadPar(1, 1) = 0

 p_2 = ParidadPar(d_1 , d_3 , d_4) = ParidadPar(1, 0, 1) = 0

 p_3 = ParidadPar(d_2 , d_3 , d_4) = ParidadPar(0, 0, 1) = 1

Los bits de paridad p_2 y p_3 no coinciden con los recibidos, luego hay error

2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.

Dado el supuesto de que máximo puede ocurrir un error, y dado que p_2 y p_3 fallaron, el bit que falló debe afectar a p_2 y p_3 . Hay dos bit que afectan a los dos: d_3 y d_4 ; sin embargo, d_4 también afecta a p_1 , el cual no falló; en consecuencia, el bit que falló debe ser d_3 .

El error no puede estar en los bits de paridad mismos porque suponemos que hay máximo un error y fallaron dos bits de paridad.

3. En el contexto de este ejemplo, para un mensaje cualquiera, si ocurre solo un error, ¿es siempre posible detectar en cuál bit ocurrió o no?

La tabla siguiente muestra cuál es el patrón de error generado por cada bit cuando falla (incluyendo los bits de paridad mismos):

	p ₁	p ₂	p ₃
d ₁	X	X	
d ₂			X
d ₃		X	X
d_4	X	X	X
p ₁	X		
p ₂		X	
p ₃			X

Se puede observar que cada bit de paridad genera un patrón único, con la excepción de p_3 y d_2 , luego en el caso general no siempre es posible detectar en cuál bit ocurrió ya que p_3 y d_2 son indistinguibles.

Se está almacenando información con 4 bits de datos (numerados de d_1 a d_4) y con 3 bits de paridad (numerados de p_1 a p_3).

Los bits de paridad se definen de la siguiente manera:

 $p_1 = ParidadPar(d_1, d_2)$

 $p_2 = ParidadPar(d_1, d_4)$

 $p_3 = ParidadPar(d_2, d_4)$

Se recuperó la siguiente información:

i							
	d_1	d_2	d_3	d_4	p_1	p_2	p ₃
	1	0	0	1	1	1	1

Suponiendo que máximo puede ocurrir un error (en cualquier bit: datos o paridad):

- 1. Diga si el mensaje recuperado tiene errores o si es correcto.
- 2. Si el mensaje tiene errores, ¿es posible detectar dónde (en cuál bit) ocurrió el error? Si no es posible, explique por qué; si es posible, indique explícitamente cuál es el bit, y explique su razonamiento.
- 3. En el contexto de este ejemplo, para un mensaje cualquiera, si ocurre solo un error, ¿es siempre posible detectar en cuál bit ocurrió o no?