Construction of group-magic graphs and some A-magic graphs with A of even order

W.C. Shiu, P.C.B. Lam and P.K. Sun

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong.

Abstract

Let A be an abelian group. An A-magic of a graph G = (V, E) is a labeling $l : E(G) \to A \setminus \{0\}$ such that the sum of the labels of the edges incident with $u \in V$ is a constant, where 0 is the identity element of the group A. In this paper, we will show that some classes of graphs are A-magic for all abelian group A of even order other than 2. Also, we prove that product and composition of A-magic graphs are also A-magic.

Keywords : Group-magic, A-magic

AMS 2000 MSC : 05C78

1 Introduction

Let A be an (additive) abelian group with identity 0 (called zero) and let G = (V, E) be a graph. G is said to be A-magic if there exists a mapping $l : E \to A \setminus \{0\}$ such that the induced mapping $l^+ : V \to A$ defined by $l^+(u) = \sum_{uv \in E} l(uv)$, for all $u \in V$, is a constant mapping and l is called an A-magic labeling of G.

The value of the constant mapping, denoted by l^+ , is called the *A-magic value* of *G* corresponding to *l*. It is straight-forward to determine whether a graph is \mathbb{Z}_2 -magic or not. So we shall only investigate *A*-magic graphs with |A| > 3.

Lee et al. [3] found some graphs that are V_4 -magic, where $V_4 = \mathbb{Z}_2 \times \mathbb{Z}_2$. In this paper, we extend the result of [3] to any abelian groups of even order greater than 2. It is well known that any even order abelian group A can be decomposed into two groups such that $A \cong H_1 \times H_2$, where H_1 is a group whose order is a power of 2 and H_2 is a group of odd order. Note that H_2 may be the trivial group. By the fundamental theorem of abelian groups, H_1 contains a subgroup isomorphic to either \mathbb{Z}_2 or \mathbb{Z}_4 , and if $|H_2| > 1$ then H_2 contains a subgroup isomorphic to \mathbb{Z}_p , where p is an odd prime number. Moreover, if $|H_1| \ge 4$, then H_1 contains a subgroup isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 . So if |A| is even and greater than 2, then A contains a subgroup isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_p$, where p is a prime. Note that when p is an odd prime. Then $\mathbb{Z}_2 \times \mathbb{Z}_p \cong \mathbb{Z}_{2p}$.

Let A be an abelian group of order 2n with $n \geq 2$. To prove that a graph is A-magic, it suffices to prove that the graph is both \mathbb{Z}_4 -magic and $(\mathbb{Z}_2 \times \mathbb{Z}_p)$ -magic for p is a prime.

Moreover, we will prove that the $Cartesian\ product$ and composition of A-magic graphs are A-magic also.

If G is an A-magic graph, then each of its component is also A-magic. Thus in this paper we consider connected graph only. All undefined symbols and concepts may be found in [1].

2 Construction of A-magic graphs

Lemma 2.1 Suppose A is an abelian group. Let G and H be two edge-disjoint A-magic graphs having the same vertex set. The union of G and H, i.e., $G \cup H$ is also an A-magic graph.

Proof: Suppose G and H are A-magic graphs with A-magic labelings such that a and b are the corresponding A-magic values, respectively. Then label the edges of $G \cup H$ with the same labeling as those in G and H. As a result, a + b is the A-magic value of $G \cup H$ corresponding to this labeling.

The Cartesian product of graphs G and H, denoted by $G \times H$, is a graph with vertex set $V(G) \times V(H)$, in which (u, v) is adjacent to (u', v') if and only if either v = v' and $uu' \in E(G)$ or u = u' and $vv' \in E(H)$.

Theorem 2.2 Let G and H be A-magic graphs of order m and n, respectively. The product of G and H, i.e., $G \times H$, is also an A-magic graph.

Proof: Let G' be a graph with vertex set $V(G) \times V(H)$ and two vertices (u, v) and (u', v') in V(G') is adjacent if and only if v = v' and $uu' \in E(G)$. H' is another graph with vertex set $V(G) \times V(H)$ and two vertices (u, v) and (u', v') in V(G') is adjacent if and only if u = u' and $vv' \in E(H)$.

Then G' is a graph with n components and each component is isomorphic to G. Therefore, G' is A-magic because G is A-magic. Similarly, H' is a graph with m components and each component is isomorphic to H. Thus H' is A-magic. Since G' and H' are edge-disjoint having the same vertex set, by Lemma 2.1 $G' \cup H' = G \times H$ is a also A-magic.

Suppose A(G) is the adjacency matrix of a simple graph G = (V, E) and l is a labeling of G. The labeling matrix for l, denoted by $\mathcal{L}(G)$, is obtained from $A(G) = (a_{u,v})$ by replacing $a_{u,v}$ with l(uv) or * if $a_{u,v} = 1$ or $a_{u,v} = 0$, respectively. This concept was first introduced in [4]. Using matrix presentation Shiu et al. did some labeling problem on some classes of graphs [4, 5, 6, 7]. Moreover, if G is an A-magic graph, then the sum of each row (column as well) of $\mathcal{L}(G)$ are all equal to the A-magic value l^+ . For purposes of these row sums, entries with symbol * are treated as 0.

Let G and H be simple graphs with order g and h, respectively. The composition or lexicographic product of graphs G and H denoted by $G \circ H$ is a graph with vertex set $V(G) \times V(H)$, in which (u,v) is adjacent to (u',v') if and only if either $uu' \in E(G)$ or u=u' and $vv' \in E(H)$. For example, $C_3 \circ K_2$ is shown in the figure below. Under the lexicographic order, the adjacency matrix of $G \circ H$ is equal to the following formula:

$$A(G \circ H) = A(G) \otimes J_h + I_g \otimes A(H)$$

where J_h is a $h \times h$ matrix whose entries are 1 and \otimes is the Kronecker product operator.

Theorem 2.3 Let G and H be A-magic connected simple graphs with order g and h, respectively. Then $G \circ H$ is also an A-magic graph.

Proof: Let $\mathcal{L}(G)$ and $\mathcal{L}(H)$ be labeling matrices corresponding to some A-magic labelings, respectively. Let p and q be A-magic values of G and H accordingly. Let $\mathcal{L}(G \circ H) = \mathcal{L}(G) \otimes J_h + I_g \otimes \mathcal{L}(H)$. The above formula involving multiplication of an element $a \in A$ and a matrix $J_h \in M_{h,h}(\mathbb{Z})$, which is defined as $aJ_h = K$, where K is a $h \times h$ matrix whose entries are a. Obviously, the locations of the non-zero entry of $A(G) \otimes J_h$ are different from those of the matrix $I_g \otimes A(H)$. Therefore, $\mathcal{L}(G \circ H)$ does not contain zero entries. Moreover, it is clear that $\mathcal{L}(G \circ H)$ is a labeling matrix of an A-magic labeling of $G \circ H$ with magic value hp + q.

Example 2.1
$$\mathcal{L}(C_3) = \begin{pmatrix} * & 2 & 2 \\ 2 & * & 2 \\ 2 & 2 & * \end{pmatrix}$$
 and $\mathcal{L}(K_2) = \begin{pmatrix} * & 1 \\ 1 & * \end{pmatrix}$ are \mathbb{Z}_4 -magic labeling matrices of C_3 and

 $C_3 \circ K_2$

$$K_2, \text{ respectively. Then } \mathcal{L}(C_3) \otimes J_2 + I_2 \otimes \mathcal{L}(K_2) = \begin{pmatrix} * & 1 & 2 & 2 & 2 & 2 \\ 1 & * & 2 & 2 & 2 & 2 & 2 \\ \hline 2 & 2 & * & 1 & 2 & 2 \\ \hline 2 & 2 & 1 & * & 2 & 2 \\ \hline 2 & 2 & 2 & 2 & * & 1 \\ 2 & 2 & 2 & 2 & 1 & * \end{pmatrix} \text{ is a } \mathbb{Z}_4\text{-magic}$$

labeling matrix of $C_3 \circ K_2$. The * denotes that there is no edge incident with the corresponding vertices.

At the 35th Southeastern International Conference on Combinatorics, Graph Theory and Computing (2004), S-M. Lee and R. Low informed that the above results have been concurrently obtained by them [2]. However, their proofs are different from ours.

Theorem 2.4 Let A be an abelian group of even order. A graph G is A-magic if degrees of its vertices are either all odd or all even.

Proof: Let a be an element of A of order 2. We simply label all the edges of G by a. Then $l^+(v) = a$ or 0 for all $v \in V(G)$ as the degree of v is odd or even, respectively.

3 \mathbb{Z}_4 -magic graphs

In this section, we will prove that some graphs considered in [3] are \mathbb{Z}_4 -magic. All arithmetic for the labeling l are taken in \mathbb{Z}_4 .

Theorem 3.1 The complete bipartite graph $K_{m,n}$ is \mathbb{Z}_4 -magic for $m, n \geq 2$.

Proof: Let (X,Y) be a bipartition of $K_{m,n}$, where $X = \{u_i \mid 1 \le i \le m\}$ and $Y = \{v_j \mid 1 \le j \le n\}$. Consider the following two cases

- Case 1. Suppose m and n have the same parity. By Theorem 2.4, $K_{m,n}$ is \mathbb{Z}_4 -magic.
- Case 2. Without loss of generality, assume m is odd and n is even. We label the edges $u_i v_j$, where $1 \le i \le m$ and $1 \le j \le n$, according to the following strategy:

$$l(u_i v_j) = \begin{cases} 1, & \text{for } i = 1, 2 \text{ and } j \text{ is odd} \\ 3, & \text{for } i = 1, 2 \text{ and } j \text{ is even} \\ 2, & \text{otherwise} \end{cases}$$

Then
$$l^+ = 0$$
.

Theorem 3.2 $K_n - e$, the complete graph with one edge removed, is \mathbb{Z}_4 -magic for $n \geq 4$.

Proof: Let $V(K_n) = \{v_1, \dots, v_n\}$. Without loss of generality we may assume $e = v_1v_2$. Consider the following two cases:

Case 1. Suppose n is odd, that is, n = 2k + 1 for some $k \ge 1$. We label the edges in the following way

$$l(v_i v_j) = \begin{cases} 1, & \text{for } i = 1 \text{ and } j = 3, 4; \\ 3, & \text{for } i = 2 \text{ and } j = 3, 4; \\ 2, & \text{otherwise.} \end{cases}$$

With the above labeling, we have

$$l^{+}(v_{i}) = \begin{cases} 1 + 1 + 2(2k - 3), & \text{for } i = 1; \\ 3 + 3 + 2(2k - 3), & \text{for } i = 2 \\ 1 + 3 + 2(2k - 2), & \text{for } i = 3, 4; \\ 2(2k), & \text{otherwise.} \end{cases}$$

That is, $l^+ = 0$.

Case 2. Suppose n=2k for some $k \geq 2$. With similar labeling strategy, we have $l^+=2$.

The *n*-gon book of k pages, denoted by B(n,k), is formed by attaching k copies of C_n to a common edge. B(n,k) is a special case of generalized theta graph whose definition is as follows.

Let a_1, a_2, \ldots, a_k be k natural numbers and let v_1 and v_2 be two vertices. For $k \geq 2$, the generalized theta graph $\Theta(a_1, a_2, \ldots, a_k)$ is obtained by connecting v_1 and v_2 by k parallel and non-intersecting paths of length a_1, a_2, \ldots, a_k . As a result, $\deg(v_1) = \deg(v_2) = k$ and all other vertices are of degree 2. Thus

$$B(n,k) = \Theta(1, n-1, n-1, \dots, n-1), \text{ for } k \ge 1 \text{ and } n \ge 2.$$

Generalized theta graph $\Theta(3,1,2,4)$

Theorem 3.3 Suppose $k \geq 2$. The generalized theta graph $\Theta(a_1, a_2, \ldots, a_k)$ is \mathbb{Z}_4 -magic for any natural numbers a_1, a_2, \ldots, a_k .

Proof: Consider the following two cases:

Case 1. Suppose k is even. By Theorem 2.4, $\Theta(a_1, a_2, \dots, a_k)$ is \mathbb{Z}_4 -magic.

Case 2. Suppose k is odd. Without loss of generality, we may assume a_1 and a_2 have the same parity. Then label the first two paths (of lengths a_1 and a_2 , respectively) as (1,3)-paths. Other edges of the graph are labeled by 2.

With the above labeling l, we have

$$l^{+}(v_{i}) = \begin{cases} 1+1+2(k-2), & \text{for } i=1; \\ 3+3+2(k-2), & \text{for } i=2 \text{ if both } a_{1} \text{ and } a_{2} \text{ are even;} \\ 1+1+2(k-2), & \text{for } i=2 \text{ if both } a_{1} \text{ and } a_{2} \text{ are odd.} \end{cases}$$

For each of other vertices u, $l^+(u)$ is either 2+2=0 or 1+3=0. Therefore $l^+=0$.

Let A be an abelian group and suppose $m, n \in A$. An (m, n)-path is a path whose edges are labeled as m and n alternately with the first edge being labeled by m.

Corollary 3.4 For $n \geq 2$ and $k \geq 1$, the n-gon book of k pages B(n,k) is \mathbb{Z}_4 -magic.

Given a cycle C_n , for each pair of adjacent vertices, paste a path of length m-1 on it by identifying the end vertices of the path with these adjacent vertices respectively, where $m, n \geq 2$ (here C_2 is a graph obtained by joining two edges to two vertices). The resulting graph is called a *flower* graph and is denoted by $C_m@C_n$.

Theorem 3.5 For $m, n \geq 2$, the flower $C_m@C_n$ is \mathbb{Z}_4 -magic.

Flower $C_2@C_6$

Proof: It is obvious that every flower graph is an Eulerian graph. By Theorem 2.4, $C_m@C_n$ is \mathbb{Z}_4 -magic. \square

The join of the graphs G and H, denoted by $G \vee H$, is obtained from the disjoint union G+H by adding the edges $\{xy \mid x \in V(G), y \in V(H)\}$. The join graph $C_n \vee N_k$, where N_k is the null graph of order k, is called k-pyramid and is denoted by kP(n). The 2-pyramid graph $C_n \vee N_2$ is called bipyramid graph and is denoted by BP(n). The 1-pyramid graph $C_n \vee N_1$ is the wheel graph W_n .

Bipyramid $C_4 \vee N_2$

Theorem 3.6 The k-pyramid graph kP(n) is \mathbb{Z}_4 -magic with $k \geq 2$ and $n \geq 3$.

Proof: Let $u_1, u_2, u_3, \ldots, u_n$ be the vertices of C_n and $v_1, v_2, v_3, \ldots, v_k$ be the vertices of N_k . Then, we have $\deg(u_i) = k + 2$ and $\deg(v_i) = n$. Consider the following three cases:

Case 1. Suppose n and k have the same parity. By Theorem 2.4, kP(n) is \mathbb{Z}_4 -magic.

Case 2. Suppose n is even and k is odd.

For k = 1, define $l(u_i v_1) = 1$ for $1 \le i \le n$ and l(e) = 2 for other edge e.

For $k \geq 3$, define

$$l(e) = \begin{cases} 1, & \text{if } e = u_i v_j, \text{ for } i \text{ is odd, } j = 1, 2; \\ 3, & \text{if } e = u_i v_j, \text{ for } i \text{ is even, } j = 1, 2; \\ 2, & \text{otherwise} \end{cases}$$

Then, $l^{+} = 0$.

Case 3. Suppose n is odd and k is even. Define

$$l(e) = \begin{cases} 1, & \text{if } e = u_i v_j, \text{ for } i = 1, 2, j \text{ is even;} \\ 3, & \text{if } e = u_i v_j, \text{ for } i = 1, 2, j \text{ is odd;} \\ 2, & \text{otherwise} \end{cases}$$

Then, $l^+ = 0$.

Corollary 3.7 The bipyramid graph BP(n) and the wheel graph W_n are \mathbb{Z}_4 -magic for $n \geq 3$.

4 \mathbb{Z}_{2p} -magic graphs

Consider the group \mathbb{Z}_{2p} , where p is an odd prime (actually p can be any positive odd integer greater than 1). Then \mathbb{Z}_{2p} contains at least 5 nonzero elements, namely p, 2, p+2, 2p-2=-2, p-2. In this section, we will prove that some graphs considered in [3] are \mathbb{Z}_{2p} -magic by using these 5 elements. All arithmetic for the labeling l are taken in \mathbb{Z}_{2p} .

Theorem 4.1 The complete bipartite graph $K_{m,n}$ is \mathbb{Z}_{2p} -magic for $m, n \geq 2$.

Proof: Notation of vertices and edges are the same as Theorem 3.1. Consider the following two cases:

Case 1. Suppose m and n have the same parity, by Theorem 2.4, $K_{m,n}$ is \mathbb{Z}_{2p} -magic.

Case 2. Without loss of generality, assume m is odd and n is even. We label the edges $u_i v_j$, with i = 1, 2, ...m and j = 1, 2, ...n, according to the following strategy:

$$l(u_iv_j) = \begin{cases} 2, & \text{for } i = 1 \text{ and } j \text{ is even;} \\ p - 2, & \text{for } i = 2 \text{ and } j \text{ is even;} \\ -2, & \text{for } i = 1 \text{ and j is odd;} \\ p + 2, & \text{for } i = 2 \text{ and j is even;} \\ p, & \text{otherwise.} \end{cases}$$

Then $l^+ = 0$.

Theorem 4.2 $K_n - e$, the complete graph with one edge removed, is \mathbb{Z}_{2p} -magic for $n \geq 4$.

Proof: Notation of vertices and edges are the same as Theorem 3.2. Consider the following two cases:

Case 1. Suppose n is odd. We define the labeling l as follows:

$$l(v_i v_j) = \begin{cases} 2, & \text{for } i = 1 \text{ and } j = 3; \\ p - 2, & \text{for } i = 1 \text{ and } j = 4; \\ -2, & \text{for } i = 2 \text{ and } j = 3; \\ p + 2, & \text{for } i = 2 \text{ and } j = 4; \\ p, & \text{otherwise.} \end{cases}$$

We can easily check that $l^+ = 0$. For example, $l^+(v_1) = 2 + (p-2) + p(n-4) = p(n-3) = 0$.

Case 2. Suppose n=2k. With similar labeling strategy, we will have $l^+=p$.

Theorem 4.3 The generalized theta graph $\Theta(a_1, a_2, \ldots, a_k)$ is \mathbb{Z}_{2p} -magic for any natural numbers a_1, a_2, \ldots, a_k .

Proof: Consider the following two cases:

Case 1. Suppose k is even. By Theorem 2.4, $\Theta(a_1, a_2, \dots, a_k)$ is \mathbb{Z}_{2p} -magic.

Case 2. Suppose k is odd. Without loss of generality, we may assume a_1 and a_2 have the same parity. Then label the first two paths (of lengths a_1 and a_2 , respectively) as a (2, -2)-path and a (p-2, p+2)-path, respectively. All other edges are labelled by p.

With the above labeling, we can easily check that $l^+ = 0$. For example,

$$l^+(v_2) = (p+2) + (-2) + p(k-2) = 0$$
 if both a_1 and a_2 are even.
 $l^+(v_2) = 2 + (p-2) + p(k-2) = 0$ if both a_1 and a_2 are odd.

Corollary 4.4 For $n \geq 2$ and $k \geq 1$, the n-gon book of k pages B(n,k) is \mathbb{Z}_{2p} -magic.

Theorem 4.5 For $m, n \geq 2$, the flower $C_m@C_n$ is \mathbb{Z}_{2p} -magic.

Proof: By Theorem 2.4,
$$C_m@C_n$$
 is \mathbb{Z}_{2p} -magic.

Theorem 4.6 The k-pyramid graph kP(n) is \mathbb{Z}_{2p} -magic with $k \geq 2$.

Proof: Notation of vertices and edges are the same as Theorem 3.6. Consider the following three cases:

Case 1. Suppose n and k have the same parity. By Theorem 2.4, kP(n) is \mathbb{Z}_{2p} -magic.

Case 2. Suppose n is even and k is odd.

For k = 1, define

$$l(e) = \begin{cases} 2, & \text{if } e = u_i v_1, \text{ for } i \text{ is odd;} \\ p - 2, & \text{if } e = u_i v_1, \text{ for } i \text{ is even;} \\ p, & \text{otherwise.} \end{cases}$$

For $k \geq 3$, define

$$l(e) = \begin{cases} 2, & \text{if } e = u_i v_j, \text{ for } i \text{ is odd, } j = 1; \\ p - 2, & \text{if } e = u_i v_j, \text{ for } i \text{ is odd; } j = 2; \\ -2, & \text{if } e = u_i v_j, \text{ for } i \text{ is even, } j = 1; \\ p + 2, & \text{if } e = u_i v_j, \text{ for } i \text{ is even, } j = 2; \\ 2, & \text{otherwise.} \end{cases}$$

Then $l^+ = 0$.

Case 3. Suppose n is odd and k is even.

$$l(u_i v_j) = \begin{cases} 2, & \text{for } i = 1; j \text{ is even} \\ p - 2, & \text{for } i = 2; j \text{ is even} \\ -2, & \text{for } i = 1; j \text{ is odd} \\ p + 2, & \text{for } i = 2; j \text{ is odd} \\ 2, & \text{otherwise} \end{cases}$$

Then
$$l^+ = 0$$
.

Corollary 4.7 The Bipyramid graph BP(n) and the wheel W_n are \mathbb{Z}_{2p} -magic for $n \geq 3$.

k-pyramid graph has not been considered in [3]. So we have to show that it is also V_4 -magic.

Theorem 4.8 The k-pyramid graph kP(n) is V_4 -magic with $k \geq 2$.

Proof: Notation of vertices and edges are the same as Theorem 3.6. Consider the following three cases:

Case 1. Suppose n and k have the same parity. Label all the edges by (1,0), then $l^+ = (1,0)$ or (0,0) according to the degrees being odd and even respectively. Therefore kP(n) is V_4 -magic.

Case 2. Suppose n is even and k is odd. Define

$$l(u_i v_j) = \begin{cases} (1,0), & \text{for } i \text{ is odd; } j = 1,2\\ (0,1), & \text{for } i \text{ is even; } j = 1,2\\ (1,1), & \text{otherwise} \end{cases}$$

Then
$$l^+ = 0$$
 (i.e., $l^+ = (0,0)$).

Case 3. Suppose n is odd and k is even. Define

$$l(u_i v_j) = \begin{cases} (1,0), & \text{for } i = 1,2; j \text{ is even} \\ (0,1), & \text{for } i = 1,2; j \text{ is odd} \\ (1,1), & \text{otherwise} \end{cases}$$

Then
$$l^+ = 0$$
.

Hence, combining the results from Sections 3, 4 and [3], we conclude that all graphs described in Sections 3 and 4 are A-magic, where A is an abelian group of even order greater than 2.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph theory with applications, New York: Macmillan Ltd. Press, (1976).
- [2] S-M. Lee and R.M. Low, On the Products of Group-Magic Graphs, submitted to ARS Combin., (2003).
- [3] S-M. Lee, F. Saba, E. Salehi, H. Sun, On the V_4 -magic graphs, Congressus Numerantium, 156 (2002), 59-67.
- [4] W.C. Shiu, P.C.B. Lam, S-M. Lee, Edge-magicness of the composition of a cycle with a null graph, *Congressus Numerantium*, **132** (1998), 9-18.
- [5] W.C. Shiu, P.C.B. Lam, H.L Cheng, Supermagic labeling of an s-duplication of $K_{n,n}$, Congressus Numerantium, 146 (2000), 119-124.
- [6] W.C. Shiu, P.C.B. Lam, S-M. Lee, On a construction of supermagic graphs, JCMCC, 42 (2002), 147-160.
- [7] W.C. Shiu, P.C.B. Lam, H.L. Cheng, Edge-gracefulness of the composition of paths with a null graphs, *Discrete Mathematics*, **253** (2002), 63-76.