Z

Z

H30 茶体力学

$$\frac{1}{2}W^2 = gZ$$

(2)

(3)

(4) (2), (3) \$17

$$dx = -\frac{\pi R^2}{a \sqrt{2gZ}} dz$$

$$T = -\frac{\pi R^2}{a\sqrt{2}g} \int_{H}^{0} \frac{dz}{\sqrt{z}}$$

$$T = -\frac{\pi R^2}{\alpha \sqrt{2g}} \int_{H}^{0} \frac{dz}{\sqrt{z}}$$

$$= -\frac{\pi R^2}{\alpha \sqrt{2g}} \left[2\sqrt{z} \right]_{H}^{0} = \frac{\pi R^2}{\alpha \sqrt{g}} \left[2\sqrt{z} \right]_{H}^{0}$$

91

(2) $W(z) = -z^2$

$$(1)$$
 $W(Z) = -(x + iy)^2$

$$= -(\chi^2 - y^2) - 2ixy$$

$$\Phi = -(x^2 - y^2)$$
, $\psi = -2xy$

$$v = \frac{1}{2} = -2x$$
, $v = \frac{1}{2} = 2y$

$$\frac{dx}{dx} = \frac{dy}{dy}$$
 fy $-\frac{dx}{dx} = \frac{dy}{dy}$

$$xy = 0$$

(27

3)
$$\frac{1}{3}$$
 $\frac{1}{3}$ \frac

(3)
$$\frac{\partial P}{\partial x} = 0$$
, $V = 0$

連続。有程式 $\frac{\partial U}{\partial x} = V \cdot \frac{\partial U}{\partial x} \left(\frac{\partial U}{\partial x} \cdot \frac{\partial U}{\partial x} \right)$
 $\frac{\partial U}{\partial x} = 0$
 $\frac{\partial U}{\partial y} = V \cdot \frac{\partial U}{\partial y} \left(\frac{\partial U}{\partial x} \cdot \frac{\partial U}{\partial x} \right)$
 $\frac{\partial U}{\partial x} = V \cdot \frac{\partial U}{\partial x} = V \cdot \frac{\partial U}{\partial x} \cdot \frac{\partial U}{\partial x}$
 $\frac{\partial U}{\partial x} = V \cdot \frac{\partial U}{\partial x} \cdot \frac{\partial U}{\partial x} \cdot \frac{\partial U}{\partial x}$
 $\frac{\partial U}{\partial x} = V \cdot \frac{\partial U}{\partial x} \cdot$

(4)
$$V = V(y)$$
. $P = P(x)$
 $t < 0$ $t \neq 0$ $t = 0$
 $t \neq 0$ $t \neq 0$ $t = 0$
 $t \neq 0$ $t = 0$