How does GPS / Wifi-location awareness work.

Eugene Wolfson

¹Department of Computer Science

Student-Led Presentation

- GPS
 - GPS Overview
 - Getting Thine Lat Langs

- Wi-Fi Location
 - Think Skyhook

- GPS
 - GPS Overview
 - Getting Thine Lat Langs
- Wi-Fi Location
 - Think Skyhook

Navigation Systems History and Overview

- Navstar-GPS, aka GPS, is not the first navigation system: http://en.wikipedia.org/wiki/Global_Positioning_System#History
- 1940s: Ground-based radio navigation systems developed.
- 1960: Satellite system "Transit" tested.
- Labor Day 1973: "Global Positioning System" (GPS) idea synthesized.
- 1983: Reagan announces GPS for "common good" after http://en.wikipedia.org/wiki/Korean_Air_Flight_007
- 1993: Operational.
- Currently: \sim 30 satellites are operational.

- Navstar-GPS, aka GPS, is not the first navigation system: http://en.wikipedia.org/wiki/Global_Positioning_System#History
- 1940s: Ground-based radio navigation systems developed.
- 1960: Satellite system "Transit" tested.
- Labor Day 1973: "Global Positioning System" (GPS) idea synthesized.
- 1983: Reagan announces GPS for "common good" after http://en.wikipedia.org/wiki/Korean_Air_Flight_007
- 1993: Operational.
- Currently: \sim 30 satellites are operational.

Space

 31 Satellites. Nonuniform arrangement for reliability/availability.

Control

 Updates Satellites: Synchronize atomic clocks and adjust ephemeris.

User

- Receiver: antenna, receiver-processors, clock
- 10⁴ U.S. & Allied Military Receivers (Precise)
- 10⁷ civil/commercial/scientific use. (Coarse/Acquisition)

Space

 31 Satellites. Nonuniform arrangement for reliability/availability.

Control

 Updates Satellites: Synchronize atomic clocks and adjust ephemeris.

User

- Receiver: antenna, receiver-processors, clock
- 10⁴ U.S. & Allied Military Receivers (Precise)
- 10⁷ civil/commercial/scientific use. (Coarse/Acquisition)

- Space
 - 31 Satellites. Nonuniform arrangement for reliability/availability.
- Control
 - Updates Satellites: Synchronize atomic clocks and adjust ephemeris.
- User
 - Receiver: antenna, receiver-processors, clock
 - 10⁴ U.S. & Allied Military Receivers (Precise
 - 10⁷ civil/commercial/scientific use. (Coarse/Acquisition)

- Space
 - 31 Satellites. Nonuniform arrangement for reliability/availability.
- Control
 - Updates Satellites: Synchronize atomic clocks and adjust ephemeris.
- User
 - Receiver: antenna, receiver-processors, clock
 - 10⁴ U.S. & Allied Military Receivers (Precise)
 - 10⁷ civil/commercial/scientific use. (Coarse/Acquisition)

- GPS
 - GPS Overview
 - Getting Thine Lat Langs

- Wi-Fi Location
 - Think Skyhook

Signal Contents

30-second signal with five 6-second long subframes:

Subframe	Contents	
1	Satellite clock, GPS time relationship	
2-3	Ephemeris (precise satellite orbit)	
4-5	Almanac component (satellite network, error correction)	

- Overlapping Frequency, different Encoding per satellite
- Military code 10× faster, but encrypted.
- Good Start here http://en.wikipedia.org/wiki/ Global Positioning System#Communication

Signal Contents

30-second signal with five 6-second long subframes:

Subframe	Contents	
1	Satellite clock, GPS time relationship	
2-3	Ephemeris (precise satellite orbit)	
4-5	Almanac component (satellite network, error correction)	

- Overlapping Frequency, different Encoding per satellite.
- Military code 10× faster, but encrypted.
- Good Start here http://en.wikipedia.org/wiki/ Global_Positioning_System#Communication

Infographic Explanation Intersection of Four Spheres is a Point

http://www.etsu.edu/ physics/etsuobs/ starprty/120598bg/ spheres.gif

http://en.wikipedia.org/ wiki/File:Circle_sphere 2-colour.svg

Some Math (a preview)

Just Kidding No Equations Can fit into this talk... Let's discuss sources of error instead.

Error Sources

Error Type	Inaccuracy (meters)
Signal Arrival Time	C/A: 3 P: 0.3
Atmospheric effects	5.5
Multipath effects	1
Ephemeris	2.5
Satellite Clock	2
$\sigma_R C/A$	6.7
$\sigma_R P$	6
σ_{num}	1

$$\sigma_{rc} = \sqrt{PDOP^2 \times \sigma_R^2 + \sigma_{num}^2}$$

where $\sigma_R = \Sigma (error)^2$ and PDOP is Position Dilution Of Precision and σ_{rc} is overall standard deviation of error in receiver position

- GPS
 - GPS Overview
 - Getting Thine Lat Langs
- Wi-Fi Location
 - Think Skyhook

Wi-Fi Location

- Remember Ted Morgan's Talk?
- http://www.skyhookwireless.com/howitworks/
- Wi-Fi enabled device sends out a signal with its identification info.
- Signal effective distance ~10¹ meters
- A receiver of known position can find Wi-Fi position
 - How?

Wi-Fi Location

- Remember Ted Morgan's Talk?
- http://www.skyhookwireless.com/howitworks/
- Wi-Fi enabled device sends out a signal with its identification info.
- Signal effective distance ~10¹ meters.
- A receiver of known position can find Wi-Fi position.
 - How?