

Instructions for preparing the solution script:

- Write your name, ID#, and Section number clearly in the very front page.
- Write all answers sequentially.
- Start answering a question (not the pat of the question) from the top of a new page.
- Write legibly and in orderly fashion maintaining all mathematical norms and rules. Prepare a single solution file.
- Start working right away. There is no late submission form. If you miss the deadline, you need to use the make-up assignment to cover up the marks.
- 1. Let $f(x) = \tan(x)$. In the following we would like to calculate the truncation errors.
 - (a) (3 marks) First write down the approximate polynomial, $p_3(x)$, for the function f(x) and identify the Taylor coefficients, a_0, \dots, a_3 .
 - (b) (2 marks) Compute the percentage relative error at $x = \pi/4$ if f(x) is approximated by $p_3(x)$ polynomial.
 - (c) (5 marks) Use the Lagrange reminder form to evaluate the upper bound of truncation error at $x = \pi/4$ for some $\xi \in [0, \pi/4]$.
- 2. Consider the function $f(x) = e^x e^{-x}$ and the nodes are at -1, 0, and 1. Now answer the following questions using 3 significant figures:
 - (a) (1 mark) Write down the matrices b and V used in Vandermonde method.
 - (b) (2 marks) Compute the determinant of the Vandermonde matrix V .
 - (c) (3 marks) Using The results of the previous two parts, calculate the Taylor coefficients a_0 , a_1 and a_2 ; and finally find the interpolating polynomial.
 - (d) (4 marks) Evaluate the upper bound of interpolation error for the given function for the interval $\xi \in [-2.1, 2.1]$.
- 3. Consider the function $f(x) = e^x + e^{-x}$ and the nodes are at -1, 0, and 1. Now answer the following questions using 3 significant figures:
 - (a) (4 marks) Evaluate the Lagrange bases for the given function and nodes.
 - (b) (3 marks) Compute the Lagrange interpolation polynomial for the given function, and express the result in the natural basis. Also use this polynomial to find an approximate value of f(6).
 - (c) (3 marks) Evaluate the relative error in percentage form at x = 1.5.
- 4. Consider the function $f(x) = e^x e^{-x}$ and the nodes are at -2, 0, and 2. Now answer the following questions using 3 significant figures:
 - (a) (4 marks) Evaluate the Newton coefficients $a_k = f[x_0, \dots, x_k]$ using Newton's divided-difference method for the given function and nodes.
 - (b) (3 marks) Compute the Newton interpolation polynomial for the given function, and express the result in the natural basis. Also use this polynomial to find an approximate value of f(6).
 - (c) (3 marks) Evaluate the relative error in percentage form at x = 1.5.

Answert to que - 1 1(a)

given,
$$f(x) = \tan(x)$$

 $f(x) = \frac{f(x_0)f(x-x_0)}{0!} + \frac{f'(x_0)(x-x_0)}{1!} + \frac{f''(x_0)(x-x_0)}{2!} + \frac{f'''(x_0)(x-x_0)}{3!}$

So,

$$f'(x) = Sec^2x$$
; $f''(x) = 2sec^2x tanx$;
 $f'''(x) = 2 sec^4x + 4 tan^2x sec^2x$
let $x_0 = 0$, So $f'(x_0) = f'(0) = 1$
 $f'''(0) = 0$; $f'''(0) = 2$; $f(0) = 0$

so
$$f(x) = \frac{O \times (x-0)^6}{O_0^1} + \frac{1 \times (x-0)^4}{1!} + \frac{O \times (x-0)^2}{2!} + \frac{2 \times (x-0)^3}{3!} + \dots$$

$$= O \cdot x^6 + 1 \times x^4 + 0 \times x^2 + \frac{1}{3} \times x^3$$

$$= x + \frac{1}{3} \times x^3 \implies \text{taylor expansion of tank}$$
so $P_3(x) = a_0 \times x^6 + a_1 x^4 + a_2 x^2 + a_3 x^3$
comparing basis coefficients in $f(x)$ and $f(x)$

$$a_0 = 0; \quad a_1 = 1, \quad a_2 = 0, \quad a_3 = \frac{1}{3}$$
Ans

1(6)

$$x = \frac{\pi}{4}$$
 $f(x) = \tan x$
Now, $f(\pi/4) = \tan^{\pi/4} = 1$
 $P_3(x) = x + (1/3) \times 3$ [From 1(a)]
so $P_3(\pi/4) = \pi/4 + \frac{1}{3}(\pi/4)^3 = 0.9469$
 \therefore Relative error = $\frac{1f(x) - P_3(x)1}{f(x)}$
 $= \frac{11 - 0.94691}{0.9469} = 0.0531 = 5.31 \%$ (Ans)

1(0)

we have $x = \frac{\pi}{4}$, & E[0, $\frac{\pi}{4}$]

and $f(x) = P_3(x) + \frac{f^{(3t1)}(\xi)}{(3+1)!} (x-x)^{3+1}$

NOW, $f'''(x) = 2 \sec^{4}x + 4 \tan^{3}x \sec^{2}x$ => $f'''(x) = 2 \sec^{4}x + 4(1-\sec^{2}x) \sec^{3}x$ = $6 \sec^{4}x - 4 \sec^{3}x$

so $f''(x) = 6 \times 4 \times 5e(3x) \cdot 5e(x) \cdot tan x - 4 \times 2 \times 5e(x) \times 5e(x) \cdot tan x$

= 24 sec4x tanx - 8 sec2x tanx

J''(=0)= 24 ×1 ×0 - 8×1×0

 $f''(\xi = \pi/4) = 24(\sqrt{2})^4 \times 1 - 8(2)^2 \times 1$

Lagrange form of remainder,

$$=\frac{J''(\epsilon_c)}{4!}\left(\frac{\pi}{4}-\delta\right)^4$$

 $= \frac{80}{24} \times (^{\text{T}/4})^4 = 1.26835$

Ans

Ans to que-2

given
$$f(x) = e^{x} - e^{-x}$$

nodes: $x_0 = -1$, $x_1 = 0$, $x_2 = 1$
 $f(x_0) = -2.35$, $f(x_1) = 0$, $f(x_2) = 2.35$
now, $V = \begin{pmatrix} 1 & x_0 & x_0 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

$$b = \begin{pmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \end{pmatrix} = \begin{pmatrix} -2.35 \\ 2.35 \end{pmatrix}$$

2(6)

$$det(v) = 1 \times (0 \times 1 - 0 \times 1) + 1 (1 - 0) + 1 (1 - 0)$$

$$= 1 \times 0 + 1 \times 1 + 1 \times 1 = 2$$
(Ans)

We know,
$$V \times a = b$$

$$\Rightarrow a = V^{-1}b$$

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} -2.35 \\ 0 \\ 2.35 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ -0.5 & 0 & 0.5 \\ 0.5 & -1 & 6.5 \end{pmatrix} \times \begin{pmatrix} -2.35 \\ 0 \\ 2-35 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 2.35 \\ 0 \end{pmatrix}$$

$$a_{0} = 0$$
, $a_{1} = 2.35$, $a_{2} = 0$

$$P_{2}(x) = 9.x^{0} + 9.x^{1} + 9.2x^{2}$$

$$= 0 \times x^{0} + (2.35 \times x) + 0 \times x^{2}$$

$$= 2.35 \times Ans$$

2 (d)

$$|f(x)-P_2(x)| \leq |\frac{f^{2+1}(z)}{3!}(x-x_0)(x-x_1)(x-x_2)|$$

$$\leq \left| \frac{f^3(\xi)}{3!} (x+1) \times (x-1) \right|$$

$$\leq \left| \frac{\exists'''(\xi)}{6} \left(\kappa^3 - \kappa \right) \right|$$

$$|e+| \omega(x) = x^3 - x \omega'(x) = 3x^2 - 1 now - 3x^3 - 1 = 6 => x = ± 0.577$$

now

as to get the maximum value, w(x) = +7.161

given,
$$f(x) = e^{x} - e^{-x}$$

 $f'(x) = e^{-x} - (-1)e^{-x} = e^{-x} + e^{-x}$
 $f''(x) = e^{x} - e^{-x}$; $f'''(x) = e^{x} + e^{-x}$

NOW, $f'''(\xi=-2\cdot 1) = e^{-2\cdot 1} + e^{-(2\cdot 1)} = 8\cdot 29$ $f'''(\xi=2\cdot 1) = e^{2\cdot 1} + e^{-2\cdot 1} = 8\cdot 29$ $18\cdot 29 \times 3\cdot 16$

$$SO_{1} | f(x) - P_{2}(x) | = | \frac{8.29}{6} \times 7.16 |$$

= 9.90

Ans

Ans to the que-3

|3(a)|

$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$

$$\chi_1 = 0$$

$$l_{\circ}(x) = \frac{(x - x_{\circ})}{(x_{\circ} - x_{\circ})} \times \frac{(x - x_{1})}{(x_{\circ} - x_{1})} \times \frac{(x_{1} - x_{2})}{(x_{\circ} - x_{2})}$$

$$=\frac{(x-0)(x-1)}{(-1-0)(-1-1)}=\frac{1}{2}(x^2-x^2)$$

$$L_{1}(x) = \frac{(x-x_{0})}{(x_{1}-x_{0})} \times \frac{(x-x_{2})}{(x_{1}-x_{2})} = \frac{(x+1)(x-1)}{(o+1)(o-1)} = 1-x^{2}$$

$$\ell_{2}(x) = \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})} = \frac{(x+1)(x-0)}{(1+1)(1-0)} = \frac{1}{2}(x^{2}+x_{1})$$

3(b)

$$P_{2}(x) = f(x_{0}) l_{0}(x) + f(x_{1}) l_{1}(x) + f(x_{2}) l_{2}(x)$$

$$f(x_0) = 3.00$$
 , $f(x_0) = 2$, $f(x_2) = 3.00$

$$P_2(x) = 3.09 \times \frac{1}{2}(x^2-x) + 2(1-x^2) + 3.09 \times \frac{1}{2} \times (x^2+x)$$

$$= 1.545 \left\{ (x^{2} - x) + (x^{2} + x) \right\} + 2 - 2x^{2}$$

$$= 3.09 x^{2} + 2 - 2x^{2}$$

$$= 2 + 1.09 x^{2}$$

how,
$$P_2(6) = 2 + 1.09 \times (6)^2$$

= 41.2

Ans

3(0)

given, $f(x) = e^{-x} + e^{x}$; $P_2(x) = 2 + 1.000 x^2$ n_{6W} , f(1.5) = 4.70; $P_2(x) = 4.45$

Relative error =
$$\left| \frac{f(x) - p(x)}{f(x)} \right|$$

$$= \left| \frac{4.70 - 4.45}{4.70} \right|$$

given,
$$f(x) = e^{x} - e^{-x}$$

nodes:
$$\chi_0 = -2$$
, $\chi_1 = 0$, $\chi_2 = 2$

now,
$$f(x_0) = -7.25$$
, $f(x_1) = 6$
 $f(x_2) = 7.25$

$$\chi_0 = -2$$

$$f[x_0,x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{0 + \sqrt{25}}{6+2}$$

$$= 3.63$$

$$x_1 = 0$$

$$f(x_1) = 0$$

$$f[x_1,x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{7.25 - 0}{2 - 0}$$

$$= 3.63$$

$$\chi_2 = 2$$

$$f(\chi_2) = 7.25$$

$$f[x_0,x_1]=3.63$$

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$=\frac{3.63-3.63}{2+2}=0$$

$$f\left[\chi_{1},\chi_{2}\right]=3.63$$

therefore,
$$a_0 = f[x_0] = -7.25$$

$$a_1 = f[x_0, x_1] = 3.63$$

$$\alpha_2 = f[x_0, x_1, x_2] = 0$$

4(6)

$$P_{2}(x) = a_{0}n_{0}(x) + a_{1}n_{1}(x) + a_{2}n_{2}(x)$$

$$= a_{0} \times 1 + a_{1}(x-x_{0}) + a_{2}(x-x_{0})(x-x_{1})$$

$$= -7.25 + 3.63(x+2) + 0 \times (x+2)(x-6)$$

$$= 3.63 \times + 0.01$$

$$= 3.63 \times + 0.01$$

$$= 3.63 \times + 0.01$$

$$= 3.63 \times 6 + 0.01$$

$$= 21.8$$
Ans

$$f(x) = e^{x} - e^{-x} \quad \text{so} \quad f(1.5) = 4.26$$

$$P_{2}(x) = 3.63 \times + 0.01 \qquad P_{2}(1.5) = 5.46$$

$$|f(x) - f(x)|$$

Refative error =
$$\left| \frac{f(x) - P(n)}{f(n)} \right|$$

$$= \frac{4.26 - 5.46}{4.26}$$