Escuela de Ingeniería en Informática y Telecomunicaciones Universidad Diego Portales

Examen de Título: Redes de Datos - Práctica

Nombre:	RUT:	RUT:		
Fecha: 14 de Enero 2020	Hora inicio: 16.20 hrs - Hora fin: 18.00 hrs	Puntaie: 40 puntos		

Ejercicios: 40 puntos

- 1. A partir de la red redundante mostrada en la Figura 1, se pide:
 - a) Dibujar la topología libre de loops generada por el protocolo STP identificando: root bridge, root ports, designated ports y non-designated ports. (5 puntos)
 Resp: Ver Figura 1
 - b) ¿Qué ventajas tiene el mantener segmentos de red y equipos redundantes además del uso del protocolo STP?. Explique.(5 puntos)

Resp.: La ventaja de tener segmentos y equipos redundantes es el aumento de la disponibilidad y robustez ya que ante un eventual fallo en algún enlace o equipo la red seguirá en funcionamiento y dichos fallos serían transparentes para los usuarios. Todo lo anterior es válido siempre y los equipos de capa 2 cuenten con el protocolo STP y que además esté activado.

Figura 1: Topología de red libre de bucles.

- 2. Una empresa líder mundial del retail se encuentra actualmente en la etapa final de instalación de su nueva red de datos. Ud ha sido designado como el ingeniero a cargo del despliegue de la red y una de sus actividades es definir el esquema de direcciones para la red acorde a los requerimientos planteados en la Figura 2. Se pide:
 - a) Indicar el número de dominios de broadcast. (2 puntos)
 Resp.: Existen 5 dominios de broadcast.
 - b) Seleccionar una dirección IP privada adecuada para la red. (3 puntos)
 Resp.: Como el número de direcciones IPv4 requeridas es mayor que 254 se debe utilizar una dirección privada clase B
 o A. Ejemplos: 172.16.0.0/16 o 10.0.0.0/16
 - c) Se pide completar la tabla de asignaciones de direcciones IPv4 utilizando la técnica de VLSM considerando los requerimientos mostrados en la Figura. (10 puntos)

 Resp.: En este caso se utilizará la dirección: 172.16.0.0/16 y la asignación de direcciones IPv4 se muestra en la Tabla 2.

Red	IP Requeridas	ID Red	Máscara	Prefijo	Rango disponible	${f Broadcast}$
LAN 1	150	172.16.0.0	255.255.255.0	/24	172.16.0.1 - 172.16.0.254	172.16.0.255
LAN 2	100	172.16.1.0	255.255.255.128	/25	172.16.1.1 - 172.16.1.126	172.16.1.127
LAN 3	60	172.16.1.128	255.255.255.192	/26	172.16.1.129 - 172.16.1.190	172.16.1.191
LAN 4	20	172.16.1.192	255.255.255.224	/27	172.16.1.193 - 172.16.1.222	172.16.1.223
LAN 5	6	172.16.1.224	255.255.255.248	/29	172.16.1.225 - 172.16.1.230	172.16.1.231

Tabla 1: Tabla de asignación de direcciones usando VLSM

Figura 2: Topología de red empresa retail

- 3. Una compañía de desarrollo de software decide instalarse en 3 ciudades del país. El router R2 se encuentra en su centro de operaciones y los routers R1 y R3 en sus sucursales. La topología de la red es mostrada en la Figura 3. Se pide:
 - a) Si se decide implementar un protocolo de rounting dinámico del tipo RIP, indique la ruta que seguirán los paquetes que se generen en la red 192.168.10.128/26 y cuyo destino sea la red 192.168.10.64/26 y el costo asociado a dicha ruta. (3 puntos)
 - Resp.: Los paquetes originados en la red 192.168.10.128/26 serán dirigidos al router R2 y será éste de consultar su tabla de routing para definir la ruta. La ruta que seguirán los paquetes será R2 R1 y el costo basado en el protocolo RIP será de 1 salto.
 - b) Si el router R2 ha recibido un paquete cuya dirección IP de destino es la red 192.168.10.192/26, indique la ruta que deberá seguir el paquete, se pide además el cálculo del costo de la ruta si se está utilizando un protocolo de routing dinámico del tipo EIGRP. Considere que todos los enlaces seriales tienen el mismo ancho de banda de 1024 Kbps. (4 puntos)
 - Resp.: La ruta de menor costo es R1-R3 y el costo es de 3012096
 - c) Si se decide implementar un protocolo de routing dinámico del tipo OSPF, se pide completar la tabla de routing del router R2 mostrada a continuación. (8 puntos)
 Resp.: los resultados se muestran en la Tabla 3

Figura 3:

	Medio	Delay μ seg
1	Gigabit Ethernet	10
2	Fast Ethernet	100
3	Ethernet	1000
4	T1 1544 Kbps	20000
5	$1024~\mathrm{Kbps}$	20000
6	512 Kbps	20000
7	DSO 64 Kbps	20000
8	56 Kbps	20000

Red de Destino	Prefijo	AD	Costo	IP Próx. Salto	Interfaz de Salida
192.168.10.128	/26	_	1	Conexión directa	Gi0/0
192.168.10.0	/30	_	1	Conexión directa	S0/0/0
192.168.10.4	/30	_	1	Conexión directa	S0/0/1
192.168.10.64	/26	110	98	192.168.10.2	S0/0/0
192.168.10.192	/26	110	98	192.168.10.6	S0/0/1
192.168.10.8	/30 110	194	192.168.10.2	S0/0/0	
		110	134	192.168.10.6	S0/0/1

Tabla 2: Tabla de rutas OSPF del router R2