UNIWERSYTET GDAŃSKI Wydział Matematyki, Fizyki i Informatyki

Daniel Sienkiewicz

nr albumu: 206358

Projekt komputera samochodowego bazujący na systemie mikrokomputera Intel Galileo

Praca magisterska na kierunku:

INFORMATYKA

Promotor:

dr Janusz Młodzianowski

Gdańsk 2015

Streszczenie

Celem pracy jest stworzenie komputera pokładowego do samochodu w którego skład wchodzi:

- 1. Mikrokomputer Intel Galileo Gen 1,
- 2. Symulator samochodu,
- 3. Ekran dotykowy FTDI VM800,
- 4. Oprogramowanie.

Ponadto praca zawiera propozycje dalszego rozwoju projektu. Przedstawione zostały możliwości dodania dodatkowych modułów w celu zwiększenia funkcjonalności oraz wykorzystania do nowych zadań.

Słowa kluczowe

Intel Galileo, I^2C , SPI, C, Arduino, GPIO

Spis treści

1.	$\mathbf{W}\mathbf{p}$	rowadzenie	4	
	1.1.	Cele	4	
	1.2.	Założenia	4	
	1.3.	Plan pracy	4	
2.	Arc	hitektura	5	
	2.1.	Opis wersji, etapy pracy nad sprzętem	5	
		$2.1.1. \;$ Porównanie dostępnych na rynku mikrokom puterów	5	
	2.2.	Obsługa urządzeń wejścia/wyjścia w różnych systemach ope-		
		racyjnych	5	
		2.2.1. Podstawowe interfejsy I/O	5	
		2.2.2. Symulator samochodu	6	
3.	Imp	lementacja	7	
	3.1.	Wizja programu	7	
	3.2.	Opis funkcji	7	
		3.2.1. Schemat blokowy programu	7	
	3.3.	Użyte algorytmy	7	
		3.3.1. Próbkowanie sygnału	7	
	3.4.		7	
Za	końc	zenie	8	
Α.	Pro	gramy	9	
\mathbf{Sp}	ois ta	bel	C	
Spis rysunków				

ROZDZIAŁ 1

Wprowadzenie

TO DO

1.1. Cele

TO DO

1.2. Założenia

TO DO

1.3. Plan pracy

ROZDZIAŁ 2

Architektura

- 2.1. Opis wersji, etapy pracy nad sprzętem
- 2.1.1. Porównanie dostępnych na rynku mikrokomputerów

TO DO

2.2. Obsługa urządzeń wejścia/wyjścia w różnych systemach operacyjnych

TO DO

2.2.1. Podstawowe interfejsy I/O

TO DO

SPI

TO DO

 I^2C

TO DO

USB OTG

GPS

TO DO

Wyjścia analogowe i cyfrowe

TO DO

2.2.2. Symulator samochodu

ROZDZIAŁ 3

Implementacja

3.1. Wizja programu

TO DO

3.2. Opis funkcji

3.2.1. Schemat blokowy programu

TO DO

3.3. Użyte algorytmy

3.3.1. Próbkowanie sygnału

TO DO

3.4. Schematy sprzętu

Zakończenie

DODATEK A

Programy

Spis tabel

Spis rysunków

Oświadczenie

Ja, niżej podpisany(a) oświadczam, iż j	przedłożona praca dyplomowa została
wykonana przeze mnie samodzielnie, n	ie narusza praw autorskich, interesów
prawnych i materialnych innych osób.	
data	podpis