华东师范大学软件工程上机实践报告

课程名称:数字逻辑实践 年级:2023级 上机实践成绩:

指导教师:曹桂涛 姓名:张建夫 上机实践日期: 2023/12/11

实践编号:实验五 学号: 10235101477 上机实践时间: 2 学时

一、 实验名称计数、译码和显示

二、实验目的

- (1) 掌握计数、译码和显示电路的工作原理, 熟悉其电路结构。
- (2) 测试计数器 74LS90 的逻辑功能。
- (3) 用 74LS90、74LS248 和共阴极 LED 显示器(2ES102)组 成数字计数显示单元。

三、 实验内容

- (1) 把 74LS90 接成二进制计数器,用指示灯的亮、暗情况,观察并记录时钟脉冲和输出脉冲。(时钟脉冲频率用1kHz)
- (2) 把 74LS90 接成五进制计数器, 用指示灯的亮、暗情况,记录时钟脉冲及QB、QC、QD的输出脉冲。(时钟脉冲频率用 1kHz)
- (3) 把 74LS90 接成 8421 码十进制计数器,用指示灯的 亮、暗情况,记录时钟及 QA QB QC QD各点亮、暗情况。

- (4) 按图 5.8 所示,将译码器 74LS248 和显示器 2ES102 连接起来,分别输入表 5.4 所示的数据,把 74LS248 的(a、b、c、d、e、f、g)输出状况和显示结果填入表 5.4 中,验证其逻辑功能。
- (5) 按实验图 5.9 所示,把实验箱上的 Q1、Q2、Q3、Q4 和 74LS90 的 Q1、Q2、Q3、Q4 联接起来,输入 1Hz 脉冲,观察显示器显示结果。若把个位的 RBI 接地,BI/RBO 接个位的 RBI,重复上述过程,观察显示结果。

四、实验原理

1. 计数部分

74LS90 是一种典型的异步计数器电路,其逻辑电路图、引脚图分别:如图 9.1(a)、(b)所示。图中MS1 和MS2 是复"0"输入端,当和MS1 和MS2 的输入都是"1"时,Q0、Q1、Q2、Q3 输出全为"0",完成对计数器的置"0"功能。当MR1 和MR2 的输入端全"1"时,Q0、Q1、Q2、Q3 输出为1001,计数器完成置 9 功能。当MS1 和MS2 的输入端不是

全"1", MR1 和MR2 输入也不是全"1"时, 4 个触发器具有计数功能,

74LS90 的功能如表 5.1 所示。

表 5.1 74LS90 功能表

	输	入			输	出	
MS_1	MS_2	MR_1	MR_2	Q_0	Q_1	Q_2	Q_3
1	1	0	Φ	0	0	0	0
1	1	Φ	0	0	0	0	0
Φ	0	1	1	1	0	0	1
0	Φ	1	1	1	0	0	1
Φ	0	Ф	0		计	数	,
0	Φ	0	Φ		计	数	
0	Φ	Φ	0		计	数	
Ф	0	0	0		计	数	

当计数器的引脚连接方式不同时,74LS90 可完成四种不同的计数方式:

- (1) 二进制计数:如图 5.2 所示, $\overline{CP_0}$ 作为计数脉冲输入端, Q_0 作为输出端。
- (2) 五进制计数: 如图 5.3 所示, $\overline{CP_1}$ 作为计数脉冲, Q_1 、 Q_2 、 Q_3 作为输出端。
- (3) 8421 码十进制计数器:如图 5.4 所示, $\overline{CP_0}$ 作为计数脉冲输入端, Q_0 接 $\overline{CP_1}$ 且 Q_0 、 Q_1 、 Q_2 和 Q_3 作为输出端。表 5.2 是 8421BCD 码计数真值表。

(4) 5421 码十进制计数器: 如图 5.5 所示, $\overline{CP_1}$ 作为计数器脉冲输入端, Q_3 接 $\overline{CP_0}$ 且 Q_1 、 Q_2 、 Q_3 和 Q_0 为输出端。表 5.3 是 5421 码十进制计数器真值表。

电

2. 译码部分

译码就是把输入代码译成相应的输出状态。74LS248 是把8421BCD 码经过内部组合电路"翻译"成七段(a、b、c、d、e、f、g)输出,然后直接推动 LED,显示十进制数。图 5.6(a)、(b)分别是其内部逻辑和外部引脚图。表 5.4 是74LS248 的功能表。74LS248 的输出是高电平有效,驱动共阴极数码管。

74LS248 有三个使能管。

- (1) LT: 灯测试输人端。
- (2) RBI:动态灭灯输入端。
- (3) B1/RB0:该引脚,既可作灭灯输入,也可作动态灭灯输出。内部是一线与逻辑。

从功能表可以看出,只有当 BI/RBO 为高电平,LT 也为高电平时,其输出端 a、b、c、d、e、f、g 输出才能驱动 LED,显示相应的数字或符号;当灭灯输人端为低电平时,其输出端均为低电平,则 LED 不显示,因而称作灭灯状态。

			衣 5.4	14	1L5248	平19	
LT	RBI	RBO	Q_A Q_B	Q_{c}	Q_D	abcdefg	显示字符
Н	Φ	Н	0 0	0	0		
Н	Φ	Н	0 1	0	0		
Н	Φ	Н	0 1	0	1		
Н	Φ	Н	1 0	0	0		
Н	Φ	Н	0 0	1	0		
Н	Φ	Н	1 0	0	1		
Φ	Φ	L	ФФ	Φ	Φ		
Н	L	Φ	0 0	0	0		
L	Φ	Н	ФФ	Φ	Φ		

表 5.4 74LS248 译码

当灭灯输入/动态灭高电平,灯测试输入端LT为低电平时,74LS248输出为全"1", LED 显示 ② 即:每一笔画都亮,称LT为灯测试输入端。

动态灭灯输入 RBI 和 A、B、C、D 输入均为低电平,而灯测试输入 (LT) 为高电平时,则 74L5248 的输出均为低电平,LED 处于灭灯状态,动态灭灯输出 (RBO) 也处于低电平。

衣 5.2	8421	11-9	丁进削订奴裔	

$\overline{CP_0}$	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

表 5.3 5421 码十进制计数器

$\overline{CP_1}$	Q_0	Q_3	Q_2	Q_1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8	1	0	1	1
9	1	1	0	0

3. 显示部分

显示是把译码器的输出以十进制数字直观地显示出来。实验采用共阴极 LED 七段显示器 2ES102, 图 5.7 是其引脚段划图。使用时可把 74LS248 译码器输出端 a、b、c、d、e、f、g 接到 2ES102 对应的引脚上。LED 显示器正常工作电流约小于 10mA, 切忌 a,…,g 引脚直接接电源。如果

接电源,则应在电源和引脚之间串一个 500Ω 左右的限流 电阻,否则会损坏 LED 显示器。

五、实验过程

(1)

电路图

(2)

电路图

(3) 电路图

(4) 电路图

(5) 电路图

六、实验结果及分析

(1) 二进制波形图

将 CPO 作为脉冲输入端, Qa 为输出端, 即可实现二进制计数功能。

(2) 五进制波形图

将CP1作为输入端,Qb,Qc,Qd作为输出端即可实现功能。

(3) 十进制波形图

将 CPO 作为计数脉冲输入端, Qa 接 CP1, QaQbQcQd 作为输出端即可实现该功能。

(4) 填表结果: (其逻辑功能与题目描述一致)

- 27		/			7-1
LT	RBI	RB 9/81	QA QB Qc Qo	abadety	显得答
1	灵	H	0 200	1111110	0
H	3	11	0 100	1101101	2
H	3	11	0101	000400	勢に
1-1	豆	H	(000	01 10000	1
H		Ho	0010	0110011	4
1-1	五五	H	1001	1110011	7
Z	4	1-	至至至主	0000000	说 天
H)	3	0000	2000000	毛
1	7	14	更至至重	111111	8
4	¥	-11	1		

(5)

根据题目接线,观察可知,该计数器实现的功能为 100 进制计数,显示屏从 00 一直计数到 99,下一次变化又跳回 00。七、实验收获/心得体会

- (1) 掌握 74LS90 功能, 置零操作可以让实验更让容易观察;
- (2) 可以调节输入脉冲频率来控制计数速度,节省观察时间;
- (3) 该实验加深了我对时序电路的理解,掌握功能表可以更好地设计出电路,掌握每个引脚对应的功能有助于理解和连线。