Cours de Graphes & Applications (G&A)

Chapitre 1 : Coloration des graphes Correction de la série d'exercices 1

Nehla DEBBABI

Année Universitaire : 2020-2021

2 octobre 2021

Exercice 1

Exercice 3

Exercice 4

Exercice 1

•0000

Exercice 2

- Exercice 1
- Exercice
- Exercice
- A Evereiee
- Exercice

Exercice 5

Énoncé de l'exercice 1

On désire attribuer des canaux de fréquences-radio à six stations. Deux stations distantes de moins de $180~\rm km$ ne peuvent pas utiliser le même canal. Le tableau suivant décrit les distances qui séparent les différentes stations.

-	A	В	С	D	E	F
A	-	85	175	200	50	100
В	85	-	125	175	100	160
С	175	125	-	100	200	250
D	200	175	100	-	210	130
E	50	100	200	210	-	100
F	100	160	250	130	100	-

- À quel problème en théorie des graphes, ce contexte se ramène-t-il?
- Onner le graphe décrivant les incompatibilités liées à l'affectation des fréquences.
- 3 Déterminer une affectation optimale.

Corrigé de l'exercice 2

Q1 : Il s'agit bien d'un problème de coloration. Il faudrait bien gérer l'affectation des fréquences-radio afin d'éviter les chevauchements.

 $\mathbb{Q}2$: Modélisation du problème par un graphe G.

les sommets : les stations

les liens : les incompatibilités couleur : une affectation (canal)

représentation graphique de G:

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 000●0
 00000
 00000
 000000
 000000

Corrigé de l'exercice 1

$\mathrm{Q3}$: Application de l'agorithme de WELCH & POWELL

Sommets	В	A	F	$^{\circ}$	D	E
degrés	5	4	4	3	3	3
Itération 1	c_1	-	-	-	-	-
Itération 2	x	c_2	-	-	c_2	-
Itération 3	X	X	c_3	c_3	X	-
Itération 4	X	X	X	X	X	c_3

Corrigé de l'exercice 1

Exercice 1

- La solution donnée par l'algorithme de WELSH & POWELL est optimale : elle correspond au nombre chromatique. En effet, on a :
 - $\chi(G) \leq 4$ d'après l'algorithme de WELSH & POWELL.
 - $4 \le \chi(G)$ car G contient un K_4 .

Donc
$$\chi(G) = 4$$
.

- ullet 4 couleurs \Longrightarrow 4 canaux de fréquences-radio .
- Une affection optimale pourrait être :

canal 1	canal 2	canal 3	canal 4
В	A	F	E
	D	С	

Plan

- A Evereice
- 2 Exercice 2
- Exercice
- A Exercice
- Exercice

Exercice 1 Exercice 3 Exercice 4 Exercice 2 00000

Énoncé de l'exercice 2

Dans une entreprise, six projets sont à réaliser. Quatre ingénieurs multidisciplinaires sont disponibles: I1, I2, I3 et I4. Chaque projet nécessite deux ingénieurs, comme indiqué dans le tableau ci-dessous.

Plan						
Projet	Ingénieurs					
1	I1 et I2					
2	I1 et I3					
3	I3 et I4					
4	I2 et I4					
5	I3 et I4					
6	I1 et I3					

Deux projets nepeuvent s'exécuter au même temps que s'ils impliquent deux équipes différentes (à 100%).

- Certains projets ne peuvent pas être réalisés en même temps. Représenter ces contraintes par un graphe.
- On suppose que le temps nécessaire pour chaque travail est d'une semaine. Déterminer le nombre minimal de séquences nécessaires pour réaliser ces projets. Proposer une organisation.
- Nehla DEBBABI (ESPRIT)

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 00000
 000000
 000000
 000000

Corrigé de l'exercice 2

Q1 : Modélisation graphique du problème

les sommets : les projets

les liens : les incompatibilités

couleur : une séquence représentation graphique de G :

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 00000
 000000
 000000
 000000

Corrigé de l'exercice 2

Q2 : Application de l'agorithme de WELCH & POWELL

Sommets	2	3	5	6	1	4
degrés	4	4	4	4	3	3
Itération 1	c_1	-	-	-	-	c_1
Itération 2	x	c_2	-	-	c_2	x
Itération 3	X	х	c_3	-	X	x
Itération 4	х	х	X	c_4	X	X

Corrigé de l'exercice 2

- La solution donnée par l'algorithme de WELSH & POWELL est optimale : elle correspond au nombre chromatique. En effet, on a :
 - $\chi(G) \leq 4$ d'après l'algorithme de WELSH & POWELL.
 - $4 \le \chi(G)$ car G contient un K_4 .

Donc
$$\chi(G) = 4$$
.

• 4 couleurs \implies 4 séquences \implies 4 semaines.

Q3 : Une organisation des 4 séquences pourrait être :

séquence 1	séquence 2	séquence 3	séquence 4
2	3	5	6
4	1		

Plan

- Evercice
- Exercice
- 3 Exercice 3
- 4 Exercice
- Exercice

Exercice 2 Exercice 4 Exercice 3 000000

Énoncé de l'exercice 3

Un groupe de 7 jeunes scouts venus des quatre régions décident d'explorer la forêt. Le Scouter (Scout leader) souhaite répartir les jeunes scouts en groupes de telle sorte que chaque groupe ne devrait pas inclure des scouts de la même région ou des scouts dont la différence d'âge est supérieure ou égal à 3 ans. Un groupe composé d'un seul membre sera accepté. Le tableau ci-dessous résume les détails des 7 jeunes scouts.

Région	Nom du scout	Âge (ans)
Région 1	Mohamed	14
Région 1	Farid	16
Région 2	Imed	13
Région 2	Imen	13
Région 3	Karim	17
Région 3	Zeinab	13
Région 4	Mourad	16

- À quel problème de théorie des graphes, ce contexte se ramène-t-il?
- Ocombien de groupes au minimum faudrait-il pour réaliser ce souhait votre démarche et préciser les étapes intermédiaires de votre résolution.

Corigé de l'exercice 3

Q1 : Le problème pourrait se ramener à un problème de coloration pour gérer les incompatibilités.

Q2 : Représentation graphique du problème.

les sommets : les scouts

les liens : les incompatibilités

couleur: un regroupement

représentation graphique de ${\cal G}$:

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 00000
 00000
 000000
 000000

Corigé de l'exercice 3 R1&16

R2&13

R3&17

15/30

Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 000000

Corrigé de l'exercice 3

Application de l'algorithme de WELSH & POWELL

Sommets	Imen	Karim	Imed	Farid	Zeineb	Mourad	Mohamed
degrés	4	4	4	4	3	3	2
Itération 1	c_1	-	-	-	c_1	-	c_1
Itération 2	X	c_2	-	c_2	x	c_2	x
Itération 3	X	X	c_3	x	X	X	x

Il faudra exactement 3 groupes pour répartir les scouts selon les contraintes souhaitées.

Plan

- Exercice
- Exercice
- 3 Exercice
- 4 Exercice 4
- Exercice

Énoncé de l'exercice 4

Treize rencontres opposeront sept équipes de foot A, B, C, D, E, F, et G. Les rencontres prévues sont décrites dans le tableau suivant :

Chacune des équipes ne pourra jouer qu'un seul match par semaine.

- Représenter les contraintes de ce problème par un graphe (indication : les sommets représentent les rencontres : AB, AC. . .).
- Oéterminer le nombre minimum de semaines nécessaires pour planifier l'ensemble des rencontres.

 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 000000
 000000
 0000000

Corrigé de l'exercice 4

Exercice 1

Q1 : Représentation graphique du problème.

les sommets : les rencontres

les liens : les incompatibilités

couleur: une planification

représentation graphique de ${\cal G}$:

Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 000000

Corrigé de l'exercice 4

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 00000
 0000●0
 0000000

Corrigé de l'exercice 4

Application de l'algorithme de WELSH & POWELL

Sommets	ВС	BD	BF	CD	CE	DE	DF	EF	AB	AC	EG	FG	AG
Degrés	6	6	6	6	6	6	6	6	5	5	5	5	4
Itération 1	c_1	-	-	-	-	c_1	-	-	-	-	-	c_1	-
Itération 2	X	c_2	-	-	c_2	X	-	-	-	-	-	X	c_2
Itération 3	x	x	c_3	c_3	X	x	-	-	-	-	c_3	X	x
Itération 4	x	x	X	x	X	x	c_4	-	c_4	-	x	X	x
Itération 5	x	x	x	x	x	x	x	c_5	x	c_5	x	x	x

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 00000
 00000●
 000000●

Plan

- Exercice
- Exercice
- Exercice
- Exercice
- **5** Exercice 5

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 00000
 000000
 000000
 000000

Énoncé de l'exercice 5

L'objectif de ce problème est de déterminer une planification de passage de voitures à travers un rond-point, en respectant des contraintes d'incompatibilité. Le graphe suivant décrit le croisement étudié ainsi que les itinéraires (Li) possibles.

Donner une planification des feux au niveau de ce croisement en tenant compatibilités des itinéraires.

Exercice 1 Exercice 2 Exercice 4 Exercice 5 0000000

Corrigé de l'exercice 5

Représentation graphique du problème

les sommets : les itinéraires (Li)

les liens : les incompatibilités (un croisement / une priorité à respecter)

couleur: un feu vert / une circulation possible

représentation graphique de G:

Exercice 2 Exercice 3 Exercice 4 Exercice 5 0000000

Corrigé de l'exercice 5

Exercice 1

Application de l'algorithme de WELSH & POWELL

	Sommets	L2	L4	L6	L8	L1	L9	L3	L5	L7
_	Degrés	5	5	5	5	4	4	2	2	2
	Itération 1	c_1	-	-	-	c_1	-	c_1	-	-
	Itération 2	x	c_2	-	-	x	c_2	X	c_2	-
	Itération 3	x	X	c_3	-	X	x	X	x	<i>c</i> ₃
	Itération 4	X	X	X	c_4	X	X	X	X	X

 Exercice 1
 Exercice 2
 Exercice 3
 Exercice 4
 Exercice 5

 00000
 00000
 000000
 000000
 000000

Corrigé de l'exercice 5

Corrigé de l'exercice 5

- La solution donnée par l'algorithme de WELSH & POWELL est optimale : elle correspond au nombre chromatique. En effet, on a :
 - $\chi(G) \leq 4$ d'après l'algorithme de WELSH & POWELL.
 - $4 \le \chi(G)$ car G contient un K_4 (L2, L4, L6, L8).

Donc
$$\chi(G) = 4$$
.

- 4 couleurs \implies 4 circulations simultanées.
- Une organisation des 4 circulations (sans croisement et en respectant les priorités) pourrait être :

circulation 1	circulation 2	circulation 3	circulation 4
L1	L4	L6	L8
L2	L5	L7	
L3	L9		

