

Course Number: EEE 414

Report on Project of Electrical Design of a Seven-storeyed Building

Department: EEE

Section: B Group:

Submitted to:

M. Iftekharul Islam Emon

Submitted by:

 1706069
 1706091

 1706077
 1706092

 1706084
 1706095

1706085 1706088

Date of Submission: 28/02/2023

Legends

Ground floor Layout

Ground floor with fittings and conduit

Ground floor with fittings and conduit (zoomed view)

Typical 1st floor Layout

Typical 2nd floor Layout

Typical 1st floor with Fittings

Typical 2nd floor with Fittings

Typical 1st floor with Conduits

Typical 2nd floor with Conduits

Ground floor Switchboard Diagram

Χ

Ground floor Emergency Switchboard Diagram

Typical Floor Switchboard Diagram

Typical Floor Emergency Switchboard Diagram

Lobby Emergency Switchboard Diagram

Ground Floor Sub distribution Board Diagram

Ground Floor Emergency Subdistribution Board Diagram

Typical Floor Sub distribution Board Diagram

Typical Floor Emergency Sub distribution Board Diagram

Emergency Main Distribution Board Diagram

Main Distribution Board Diagram

Lightening System Protection (LPS)

Legends for conduit:

Label	Wire size	Wire current rating
C1	2*1.5 rm BYM	5A
C2	4*1.5 rm BYM	5A
C3	6*1.5 rm BYM	5A
C4	8*1.5 rm BYM	5A
C8	2*2.5 rm BYM + 2.5 rm BYA ECC	10A
C9	2*4 rm BYM + 4 rm BYA ECC	15A
C12	2*1.5 rm BYM + 1.5 rm BYA ECC	5A
C13	4*1.5 rm BYM + 2*1.5 rm BYA ECC	5A
C14	6*1.5 rm BYM + 3*1.5 rm BYA ECC	5A
C15	8*1.5 rm BYM + 3*1.5 rm BYA ECC	5A
C16	2*16 rm BYM + 16 rm BYA ECC	40A
C17	4*2.5 rm NYY + 2.5 rm BYA ECC	39 A

Ground Floor Light Fan Calculation:

Guard Room:

Area= 7'9" x 5' =38.75 sq. ft = $(78.5 \times 0.092903) \text{ m}^2 = 3.6 \text{ m}^2$

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.8

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N = 0.36

So, 1 Light Bulb is required.

Number of fans = 0.3875

So, 1 fan is required.

Stairs:

Area= 8' x 15'3" = 122 sq. ft = (65.625 x 0.092903) $m^2 = 11.33$ m^2

Illuminance, E=70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.6

Number of lights per luminaire, n=1

Flux= 750 Lumen (16 W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N=1.76

So, 2 Ceiling mounted Light Bulb is required.

Lobby:

Area= 15'8" x 3'10" = 60.06 sq. ft = (60.06 x 0.092903) m^2 =5.58 m^2

Illuminance, E= 70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.6Number of lights per luminaire, n=1

Flux= 750 Lumen (16 W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 0.868

So, 1 Ceiling mounted Light Bulb is required.

Generator Room:

Area= 12'7"x8' =100.67 sq. ft = (100.67 x 0.092903) m^2 =9.35 m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.5

Number of lights per luminaire, n=1

Flux= 3200 Lumen (40W Fluorescent Lamps)

Number of Lights, N= 0.58

So, 1 tube light is required.

Toilet:

Area= 6'5" x 3'3" = 20.85 sq. ft = (10.5 x 0.092903) m^2 =1.937 m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.5 Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N = 0.31

So, 1 Light Bulb is required.

Space between garage & doorway:

Area= 30'8" x 19'10" = 608.22 sq. ft = (608.22 x 0.092903) m^2 = 56.5 m^2

Illuminance, E=70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 950 Lumen (16 W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N=5.95

So, 6 Ceiling Mounted Light Bulbs are required.

Garage:

Area = $37'10'' \times 20'$ (vertical -5 cars) + $19'10'' \times 11'9''$

(Horizontal - 3 cars / bikes) = 989.71 sq. ft = (989.71 x)

 $0.092903) \text{ m}^2 = 91.94 \text{ m}^2$

Illuminance, E= 70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N = 7.355

So, 7 Ceiling Mounted Light Bulbs (4 vertical & 3 horizontal) are required.

First Floor Light Fan Calculation:

Master Bedroom:

Master Bed:

Area= 13'5" x 13'3" =177.77 sq. ft = (177.77 x 0.092903) m^2 =16.515 m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 3200 Lumen (40W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N=0.737

So, 1 Tube Light is required.

Number of Fans= 1.77

So, 2 Fan is required.

Veranda:

Area= 8' x 4' =32 sq. ft = $(32 \times 0.092903) \text{ m}^2 = 2.973 \text{ m}^2$

Illuminance, E= 70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.6

Number of lights per luminaire, n=1

Flux= 950 Lumen (16W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N = 0.365

So, 1 Ceiling Mounted Light bulb is required.

Bathroom:

Area= 5'5" x 8'3" = 44.6875 sq. ft = (44.6875 x 0.092903) m^2 = 4.15 m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.5

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 0.66

So, 1 Light bulb is required

Bedroom-2:

Bedroom:

Area= 12' x 12' =144 sq. ft = (138 x 0.092903) m^2 =13.37 m^2 Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N=1.53

So, 1 Light bulb and 1 Tube Light are required.

The number of Fans= 1.44

So, 1 Fan is required.

Veranda:

Area= 6' x 5'5" =32.5 sq. ft = (32.5 x 0.092903) m^2 = 3.02 m^2 Illuminance, E= 70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7 Number of lights per luminaire, n=1 Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light) Number of Lights, N= 0.24 So, 1 Ceiling Mounted Light bulb is required.

Bathroom:

Area= 6'5" x 5' = 32.083 sq. ft = (44.6875 x 0.092903) m^2 = 2.98 m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.5

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N=0.477

So, 1 Light Bulb is required.

Bedroom-3:

Bedroom:

Area= 9' x 10'5" =93.75 sq. ft = (138 x 0.092903) m^2 =8.71 m^2 Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 0.995

So, 1 Tube Light is required.

The number of Fans= 0.9375

So, 1 Fan is required.

Veranda:

Area= 11'3" x 3' =33.75 sq. ft = (32 x 0.092903) m^2 = 3.135 m^2 Illuminance, E= 70 lux

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 0.66

So, 1 Light Bulb is required.

Bathroom:

Area= 6'2" x 6'8" = 41.11 sq. ft = (41.11 x 0.092903) $m^2 = 3.82$ m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.5

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N = 0.611

So, 1 Light Bulb is required.

Guest room:

Area= 13'5" x 15' =201.25 sq. ft = (201.25 x 0.092903) m^2 = 18.7 m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N=2.14

So, 1 Light bulb and 1 Tube Light are required.

The number of Fans= 2.0125

So, 2 Fan is required.

Drawing Room:

Area= $15^{\circ}6^{\circ}$ ' x 15° = 232.5 sq. ft = (95 x 0.092903) m² = 21.6 m² Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 3200 Lumen (40W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 0.96

So, 1 Tube light is required

The number of Fans= 0.23

So, 1 Fan is required.

Kitchen:

Area= 8' x 8' = 64 sq. ft = (111.625 x 0.092903) m^2 = 5.946 m^2 Illuminance, E= 200 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.8

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 1.19

So, 1 Light bulb is required.

The number of Fans= 0.64

1 Exhaust Fan is required.

Dining Space:

Area= 7'8" x 10'7" = 81.14 sq. ft = (81.14 x 0.092903) m^2 = 7.538 m^2

Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.7

Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 0.86

So, 1 tube light is required.

The number of Fans= 0.81

1 Fan is required.

Common Toilet:

Area= 3' x 3'6" = 10.5 sq. ft = (10.5 x 0.092903) m^2 =0.975 m^2 Illuminance, E= 100 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.5 Number of lights per luminaire, n=1

Flux= 1250 Lumen (20W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N = 0.156

So, 1 Light Bulb is required.

Stairs:

Area= 8' x 15'3" = 122 sq. ft = (65.625 x 0.092903) m^2 =11.33 m^2

Illuminance, E= 70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.6Number of lights per luminaire, n=1 Flux= 750 Lumen (16 W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 1.76

So, 2 Ceiling mounted Light Bulb is required.

Lobby:

Area= 15'8" x 3'10" = 60.06 sq. ft = (60.06 x 0.092903)
$$m^2$$
 =5.58 m^2

Illuminance, E= 70 lux

Light Loss Factor and Utilization Factor, LLF x UF = 0.6

Number of lights per luminaire, n=1

Flux= 750 Lumen (16 W Energy Saving Bulb and Fluorescent Tube Light)

Number of Lights, N= 0.868

So, 1 Ceiling mounted Light Bulb is required.

Calculation of current rating:

Current rating of fittings and fixtures:

LED bulb:

The power rating of each LED bulb is 10W. Current flow through the light bulb,

$$I = \frac{P}{V*pf} = \frac{10}{220*0.9} = 0.05 A < 5A$$
, so 2 X 1.5 rm BYM wire is needed.

LED tube light:

The power rating of each LED tube light is 10W (130 lm per watt, so 1250 lm is almost 10W). Current flow through tube light,

$$I = \frac{P}{V*pf} = \frac{10}{220*0.9} = 0.05 A < 5A$$
, so 2 X 1.5 rm BYM wire is needed.

Concealed ceiling light (CCL):

The power rating of each CCL is 10W. Current flow through CCL.

$$I = \frac{P}{V*pf} = \frac{10}{220*0.9} = 0.05 A < 5A$$
, so 2 X 1.5 rm BYM wire is needed.

Ceiling Fan:

The power rating of each 48-inch wing ceiling fan is 75W. Current flow through ceiling fan,

$$I = \frac{P}{V*pf} = \frac{75}{220*0.8} = 0.42 \text{ A} < 5A$$
, so 2X1.5 rm BYM wire is needed.

Exhaust fan (EF):

The power rating of each exhaust fan is 20W (5W-35W). Current flow through EF,

$$I = \frac{P}{V*pf} = \frac{20}{220*0.8} = 0.113A < 5A$$
, so 2X1.5 rm BYM wire is needed.

2 pin 5A socket at switchboard level (SS):

This is for charging a mobile (2-W)) or laptop(20-50W) or desktop computer (200W). So maximum current flow through SS,

$$I = \frac{P}{V*pf} = \frac{200}{220*0.75} = 1.21 \text{ A} < 5A$$
, so 2X1.5 rm BYM wire is needed.

2 pin sockets for TV (ST):

Power consumption for TV (55-inch LED TV) = 80 W, current flow through it,

$$I = \frac{P}{V*pf} = \frac{80}{220*0.75} = 0.48 \text{ A} < 5A$$
, so 2X1.5 rm BYM wire is needed.

Power Sockets:

P1: This is redundant power socket for washing machine, iron, or other high-power accessories, let standard SP MCB rating = 10A, so 2X2.5 rm BYM + 2.5 rm BYA ECC wire is needed.

P2: This is for microwave oven, having power consumption 1200W, or blending machine, having power consumption 1000W Current flow through P2,

$$I = \frac{P}{V*pf} = \frac{1000}{220*0.8} = 5.68 < 10A$$
, so SP MCB rating = 10A, so 2X2.5 rm BYM + 2.5 rm BYA ECC wire is needed

P3: This is for geyser having power consumption 2000W (500W – 5000W). Current flow through P3,

 $I = \frac{P}{V*pf} = \frac{2000}{220*0.8} = 11.36 \text{ A} < 15A$, so 15A SP MCB and 2X4rm BYM + 4 rm BYA ECC wire is needed.

P4: This is for refrigerator, having power consumption 600W (home refrigerator 350W-780W), Current flow through P4, $I = \frac{P}{V*pf} = \frac{600}{220*0.75} = 3.63 < 5A$, So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect.

Q1,Q2,Q3,Q4 for Air conditioner: Power rating of each 1.5 ton AC is 1500W. Current flow through AC, $I = \frac{P}{V*pf} = \frac{1500}{220*0.9} = 7.57A < 10A \text{ , so SP MCB rating} = 10A, \text{ so } 2X2.5 \text{ rm BYM} + 2.5 \text{ rm BYA ECC wire is needed.}$

Current rating for Switchboards of ground floor (SB):

SB1:

Total current for SB2 = Power consumption by

$$\frac{LC1 + LC2 + LC3 + LC4}{V * pf} = \frac{4*10}{220*0.9} = 0.2 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB1 with SDB_gnd.**

SB2:

Total current for SB2 = Power consumption by

$$\frac{LC8 + LC9 + LC10 + LC11}{V * pf} = \frac{4*10}{220*0.9} = 0.2 \text{ A} < 5 \text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB2 with SDB_gnd.**

SB3:

Total current for SB2 = Power consumption by

$$\frac{LC5 + LC6 + LC7 + LC18}{V * pf} = \frac{4*10}{220*0.9} = 0.2 \text{ A} < 5 \text{ A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB3 with SDB_gnd.**

SB4:

Total current for SB4 = = Power consumption by $\frac{F1+SS1}{V*pf}$ =

$$\frac{75+200}{220*0.9}$$
 = 1.38 A < 5A

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB4 with SDB_gnd.**

SB5:

Total current for SB8 = Power consumption by $\frac{L12+L13+L14}{V*pf}$ =

$$\frac{3*10}{220*0.9} = 0.15 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB5 with SDB_gnd.**

Current rating for Emergency Switchboards of ground floor (ESB):

ESB1:

Total current for ESB1 = Power consumption by $\frac{EXF1+TB1}{V*pf}$ = $\frac{20+10}{V*pf}$

$$\frac{20+10}{220*0.9} = 0.15 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB1 with ESDB_gnd.**

ESB2:

Total current for ESB5 = Power consumption by $\frac{L1+L2}{V*pf}$ =

$$\frac{2*10}{220*0.9} = 0.1 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB2 with ESDB_gnd.**

ESB3:

Total current for ESB3 = Power consumption by

$$\frac{LC23 + LC24 + LC25}{V * pf} = \frac{3 * 10}{220 * 0.9} = 0.15 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB3 with ESDB_gnd.**

ESB4:

Total current for $ESB4 = Power \ consumption \ by$

$$\frac{LC20 + LC21 + LC22}{V * pf} = \frac{3*10}{220*0.9} = 0.15 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB4 with ESDB_gnd.**

ESB5:

Total current for ESB5 = Power consumption by

$$\frac{LC15 + LC16 + LC17}{V * pf} = \frac{3*10}{220*0.9} = 0.15 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB5 with ESDB_gnd.**

ESB6:

Total current for ESB4 = Power consumption by $\frac{LC19}{V*nf}$ =

$$\frac{10}{220*0.9} = 0.05 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB6 with ESDB_gnd.**

Current rating for Switchboards of a typical flat (SB): SB1:

Total current for SB1 = $Power\ consumption\ by$

$$\frac{F1+ST1+TL1+SS1}{V*pf} = \frac{75+80+10+200}{220*0.9} = 1.84 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB1 with SDB.**

SB2:

Total current for SB2 = Power consumption by $\frac{L1}{V*pf} = \frac{10}{220*0.9}$ = 0.05 A < 5A

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB2 with SDB.**

SB3:

Total current for SB3 = Power consumption by $\frac{SS2+F4+TL3}{V*pf} = \frac{200+75+10}{220*0.9} = 1.44 \text{ A} < 5 \text{A}$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB3 with SDB.**

SB4:

Total current for SB4 = Power consumption by $\frac{SS3+F5+L3+L6+TL4}{V*pf} = \frac{200+75+3*10}{220*0.9} = 1.54 \text{ A} < 5 \text{A}$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB4 with SDB.**

SB5:

Total current for SB5 = Power consumption by $\frac{F7 + L7 + L8 + SS4 + LC2}{V * pf} = \frac{75 + 3 * 10 + 200}{220 * 0.9} = 1.54 \text{ A} < 5 \text{A}$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB5 with SB6.**

SB6:

Total current for SB6 = Power consumption by $\frac{SS5+L10+LC3}{V*pf} = \frac{200+2*10}{220*0.9} = 1.22 \text{ A} < 5 \text{A}$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB6 with SDB.**

SB7:

Total current for SB7 = Power consumption by $\frac{L9}{V*pf} = \frac{10}{220*0.9}$ = 0.05 A < 5A

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB7 with SB6.**

SB8:

Total current for SB8 = Power consumption by $\frac{L4+L5+EXF}{V*pf} = \frac{10*2+20}{220*0.9} = 0.2 \text{ A} < 5 \text{A}$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB8 with SDB.**

SB9:

Total current for SB8 = Power consumption by $\frac{ST2}{V*pf} = \frac{80}{220*0.9}$ = 0.4 A < 5A

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SB9 with SDB.**

Current rating for Emergency Switchboards of a typical flat (ESB):

ESB1:

Total current for ESB1 = Power consumption by $\frac{F2+LC1+TL2}{V*nf}$ =

$$\frac{75+2*10}{220*0.9} = 0.48 \text{ A} < 5 \text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB1 with ESDB**.

ESB2:

Total current for ESB2 = Power consumption by $\frac{F^{3+L2}}{V*nf}$ =

$$\frac{75+10}{220*0.9} = 0.43 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB2 with ESDB.**

ESB3:

Total current for ESB3 = Power consumption by $\frac{F6+TL5}{V*pf}$ =

$$\frac{75+10}{220*0.9} = 0.43 \text{ A} < 5\text{A}$$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB3 with ESB4.**

ESB4:

Total current for ESB4 = Power consumption by $\frac{F8+TL6}{V*pf} = \frac{75+10}{220*0.9} = 0.43 \text{ A} < 5 \text{A}$

So 5A SP MCB and 2X1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESB4 with ESDB.**

Current rating of Sub Distribution Board of a typical flat (SDB):

SDB load = Total normal load + (Total P socket load + Total Q socket load) * 0.5

SB1 load =
$$75 + 80 + 10 + 200 * 0.3 = 225$$
W

SB2 load = 10W

SB3 load =
$$200 * 0.3 + 75 + 10 = 145W$$

$$SB4 load = 200 * 0.3 + 75 + 3 * 10 = 165W$$

SB5 load =
$$75 + 3 * 10 + 200 * 0.3 = 165$$
W

$$SB6 load = 200 * 0.3 + 2 * 10 = 80W$$

SB7 load = 10W

SB8 load =
$$10*2+20 = 40$$
W

SB9 load = 80W

So, total normal load = 225+10+145+165+165+80+10+40+80 = 920W

Total P load = P1+P2+P3+P4 load = 1000+1200+2000+600 = 4800W

Total Q load = Q1+Q2+Q3 load = 1500*4 = 6000W

SDB load =
$$920 + (4800 + 6000) *0.5 = 6320 \text{ W}$$

Current rating for SDB =
$$\frac{Power\ Consumption\ by\ SDB}{V*pf} = \frac{6320}{220*0.8} =$$

35.9 A

So, 40 A SP MCCB and 2*16 rm BYM + 16 rm BYA ECC wire is needed to connect SDB with MDB.

Current rating of Sub Distribution Board of ground floor (SDB gnd):

SDB_gnd load = Total normal load in the ground floor.

SB1 load = 10*4 = 40W

SB2 load = 10*4 = 40W

SB3 load = 10*4 = 40W

SB4 load = 75 + 200 = 275W

SB5 load = 3 * 10 = 30W

So, total SDB_gnd load = 3*40+275+30 = 425W

Current rating for SDB_gnd = $\frac{Power\ Consumption\ by\ SDB_gnd}{V*pf}$ =

$$\frac{425}{220*0.8}$$
 = 2.41 A

So, 5 A SP MCCB and 2*1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **SDB_gnd with MDB**.

Current rating of Emergency Sub Distribution Board of a typical flat (ESDB):

ESDB load = Total emergency load connected to the ESBs

ESB1 load = 75+2*10 = 95W

ESB2 load = 10+75 = 85W

ESB3 load = 75+10=85W

ESB4 load = 75+10 = 85W

So, total normal load = 95 + 3*85 = 350 W

ESDB load = 350 W

Current rating for ESDB = $\frac{Power\ Consumption\ by\ ESDB}{V*pf} = \frac{350}{220*0.8}$

= 1.98 A

So, 5 A SP MCCB and 2*1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESDB with EMDB.**

Current rating of Emergency Sub Distribution Board of ground floor (ESDB_gnd):

ESDB_gnd load = Total emergency load in the ground floor + Total ESB loads of the lobby of 1st to 6th floor.

ESB1 load = 10+20 = 30W

ESB2 load = 2*10 = 20 W

ESB3 load = 10*3 = 30W

ESB4 load = 3*10 = 30W

ESB5 load = 3*10 = 30W

ESB6 load = 10 = 10W

So, total emergency load in the ground floor = 4*30+20+10 = 150W

Total ESB loads of the lobby of 1st to 6th floor = 6*10*3 = 180W

So, total ESDB_gnd load = 180+150 = 330W

Current rating for ESDB_gnd = $\frac{Power\ Consumption\ by\ ESDB_gnd}{V*pf} = \frac{Power\ Consumption\ by\ ESDB_gnd$

$$\frac{330}{220*0.8} = 1.875 \text{ A}$$

So, 5 A SP MCCB and 2*1.5 rm BYM + 1.5 rm BYA ECC wire is needed to connect **ESDB_gnd with EMDB.**

Current rating of Emergency Main Distribution Board (EMDB):

Total EMDB load = Total ESDB load of all typical flats + ESDB load of ground floor + Lift load

Total ESDB load = 4*6*ESDB load = 24*350 W = 8400 W

Lift load \approx power consumption of motor that run the 1 lift = (Total weight of passengers that one lift can carry + weight of one lift) * average velocity of lift

=(80*12+100)*9.8*0.9

≈ 9350 W

So, Total EMDB load = 8400 + 330 + 9350W = 18080W

So, generator size = 20 KW. This is used to supply the EMDB load through an ATS.

Now, EMDB current (distributed load in 3 phase) c = 31.44 A So, 39 A TP MCCB and 4*2.5 rm NYY + 2.5 rm BYA ECC wire is required to connect **EMDB with MDB.**

Current rating of Main Distribution Board (MDB):

Total MDB load = (Total SDB load of typical flat + Load of

SDB gnd + EMDB load + Pump load)*0.7

Total SDB load = 4*6*SDB of a typical flat = 24*6320 W =

151680 W

SDB_gnd load = 425 W

EMDB load (calculated in previous section) = 18080 W

Pump load (output) = 3 hp \approx (input) = 3000W

So, total MDB load = (151680 + 425 +18080+3000)*0.7 = 121229.5 W

Now, current for MDB (distributed load in 3 phase)=

$$\frac{Total\ MDB\ Load}{\sqrt{3}*V(L-L)*pf} = \frac{121229.5}{\sqrt{3}*415*0.8} = 210.82 \text{ A}$$

So, 286 A TP MCCB and 4*95 rm NYY + 95 rm BYA ECC wire is needed to connect **MDB** with **Distribution Feeder line**.

Size of the transformer = $\sqrt{3} \times VL \times IL$ = = $\sqrt{3} \times 415 \times 210.82$ = 151.53 KVA

So, 160 KVA standard transformer is needed.

Current rating for pump = $\frac{3000}{\sqrt{3}*415*0.8}$ = 5.217 A So, 30 A TP MCCB and 4*1.5 rm NYY + 1.5 rm BYA ECC wire is needed to connect **pump with MDB**

Each motor for one lift draws 9350W power (3 phase). So current for that motor = $\frac{9350}{\sqrt{3}*415*0.8}$ = 16.26A

For safety purpose we use 30A TP MCCB and 4*1.5 rm NYY + 1.5 rm BYA ECC wire to connect **lift motor with EMDB.**