

Probability Theory
School of Mathematics
Faculty of Science
National University of Engineering

Test 3

Topic: Kolmogorov's 0-1 law Period: 2016.1

Throughout this test $(\Omega, \mathcal{A}, \mathbf{P})$ is a probability space $(\Omega \text{ is a nonempty set}); Y, X_1, X_2, \ldots : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be real random variables and $A_1, A_2, \ldots \in \mathcal{A}$.

- 1. [5 pts.] Let $X_1, X_2, ...$ be i.i.d with $X_1 \sim_{1/2}$, i.e., $\mathbf{P}[X_1 = -1] = \mathbf{P}[X_1 = 1] = 1/2$, and let $S_n = X_1 + ... + X_n$ for any $n \in \mathbb{N}$. Show that $\mathbf{P}[S^* = \infty] = 1$.
- 2. [5 pts.] Let A_1, A_2, \ldots be independent. If Y is measurable with respect to $\sigma(A_n, A_{n+1}, \ldots, M_n)$ for each $n \in \mathbb{N}$, prove that Y is deterministic.
- 3. [5 pts.] Consider infinite, independent, fair coin tossing, and let H_n be the event that the nth coin is heads. Determine the following probabilities.
 - (a) $P[H_{n+1} \cap H_{n+2} \cap ... \cap H_{n+9}]$ i.o.].
 - (b) $\mathbf{P}[H_{n+1} \cap H_{n+2} \cap \ldots \cap H_{2^n} \text{ i.o.}].$
- 4. [5 pts.] Let A_1, A_2, \ldots be independent, let $x \in \mathbb{R}$, and let

$$S_x = \left[\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{A_i} \le x \right].$$

Prove that $\mathbf{P}[S_x]$ must equal 0 or 1.