Essential steps to build a Machine learning model

Problem Definition

✓

The first step is to define the problem you want to solve and identify the goal of the model.

Step 1

Data Collection

~

Data collection is a crucial step that involves collecting and compiling data from various sources.

Step 2

Data Cleaning

In this step, the data is cleaned by removing missing or incorrect values, outliers, and redundant data.

Step 3

Data Exploration

Exploring the data helps to understand the data and identify patterns, trends, and relationships.

Step 4

Feature Engineering

Feature engineering is the process of selecting and transforming the relevant features that will be used as inputs to the model

Step 5

Data Preprocessing

Data preprocessing involves standardizing, scaling, and transforming the data to make it suitable for the model.

Step 6

Model Selection

✓

In this step, a suitable machine learning model is selected based on the type of problem and the nature of the data.

Step 7

Model Training

The model is trained using the preprocessed data to learn from the patterns and relationships in the data.

Step 8

Model Evaluation

The performance of the model is evaluated using various metrics to ensure that the model is accurate and reliable.

Step 9

Hyperparameter Tuning

The model's hyperparameters are tuned to improve its performance.

Step 10

Model Validation

The model is validated to ensure that it can generalize to new, unseen data.

Step 11

Deployment

The model is deployed in a real-world application or integrated into an existing system.

Step 12

Monitoring The model is monitored to

ensure that it is performing as expected and to detect any issues that may arise.

Step 13

Maintenance

The model is maintained by updating it with new data and making any necessary adjustments to improve its performance.

Step 14

Retraining

~

The model may need to be retrained periodically to ensure that it remains accurate and up-to-date with new data.

Step 15

Each step has its significance and advantages in building a machine learning model. Following these steps ensures that the model is accurate, reliable, and performs well on new data.