Recitation Class for Final Exam Chapter 10-12

Zexi Li

lz×12138@sjtu.edu.cn

2021.08.03

Outline

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Chapter 11 - Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

Chapter 12 - Bipolar Junction Transistor

Table of Contents

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Chapter 11 - Metal-Oxide-Semiconductor Field-Effect Transistor: Additional Concepts

Chapter 12 - Bipolar Junction Transistor

Metal-Oxide-Semiconductor

Negative Gate Voltage

Positive Gate Voltage

Depletion Layer Thickness

$$\phi_{fp} = V_t \ln \left(\frac{N_a}{n_i} \right)$$
 $x_d = \left(\frac{2\varepsilon_s \phi_s}{eN_a} \right)^{1/2}$

 ϕ_s : the surface potential, is the difference (in V) between E_{Fi} measured in the bulk semiconductor and E_{Fi} measured at the surface.

Threshold Inversion Point

$$\phi_{\it s}=2\phi_{\it fp}$$

$$x_{dT} = \left(\frac{4\varepsilon_s \phi_{fp}}{eN_a}\right)^{1/2}$$

Accumulation

Depletion

$$C'(\mathsf{depl}) = \frac{C_{ox}C'_{SD}}{C_{ox} + C'_{SD}}$$

$$= \frac{\varepsilon_{ox}}{t_{ox} + \left(\frac{\varepsilon_{ox}}{\varepsilon_{s}}\right)x_{d}}$$

$$C'_{min} = \frac{\varepsilon_{ox}}{t_{ox} + \left(\frac{\varepsilon_{ox}}{\varepsilon_{ox}}\right)x_{d}T}$$

Inversion

$$C'(\mathsf{inv}) = C_{ox} = rac{arepsilon_{ox}}{t_{ox}}$$

Ideal Low-Frequency C-V Curve

Frequency Effects

Two sources of electrons

- 1. Diffusion of minority carrier electrons.
- 2. Thermal generation of electron-hole pairs within the space charge region.

Work Function Difference

Not required.

Fixed Charge

Adjustment on V_T

$$\begin{split} \left|Q_{SD}'(\mathsf{max})\right| &= e N_a x_{dT} = 2 \sqrt{e \varepsilon_s N_a \phi_{fp}} \\ V_{TN} &= \frac{\left|Q_{SD}'(\mathsf{max})\right|}{C_{ox}} + V_{FB} + 2 \phi_{fp} \\ V_{TP} &= -\frac{\left|Q_{SD}'(\mathsf{max})\right|}{C_{ox}} + V_{FB} - 2 \phi_{fn} \\ V_{FB} &= \phi_{ms} - \frac{Q_{ss}'}{C_{ox}} \cdot \frac{x}{d} \end{split}$$

Surface States

MOSFET

(a) n-channel enhancement MOSFET

(b) n-channel depletion MOSFET

Enhancement mode: the semiconductor substrate is not inverted directly under the oxide with zero gate voltage.

Depletion mode: a p-channel region exists under the oxide with 0V applied to the gate.

MOSFET

(a) p-channel enhancement MOSFET

(b) p-channel depletion MOSFET

V_{GS} - V_T

Figure: (a) $V_{GS} < V_T$, (b) $V_{GS} > V_T$

- $ightharpoonup V_{GS} < V_T$: no inversion layer, no current.
- $ightharpoonup V_{GS} > V_T$: inversion layer created, current flow from drain to source.

V_{DS} when $V_{GS} > V_T$

▶ V_{DS} low $(V_{DS} < V_{GS} - V_T)$: act as a controllable resistor.

$$I_D = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS}$$

▶ V_{DS} high $(V_{DS} \ge V_{GS} - V_T)$: saturation

$$I_D = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2 \quad \text{(saturation)}$$

V_{GS} - V_T

After pinch off: the electrons are injected into the space charge region where they are swept by the E-field to the drain contact.

Transconductance

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}}$$

$$= \begin{cases} \mu_{n} C_{ox} \frac{W}{L} V_{DS}, & 0 < V_{DS} < V_{GS} - V_{T} \\ \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T}), & V_{DS} > V_{GS} - V_{T} \end{cases}$$

Substrate Bias Effects

$$V_{SB}=0: \quad Q_{SD}'(ext{max})=-\sqrt{2earepsilon_sN_a(2\phi_{fp})}$$

$$V_{SB}>0: \quad Q_{SD}'=-\sqrt{2earepsilon_sN_a(2\phi_{fp}+V_{SB})}$$

$$\Delta V_T = -\frac{\Delta Q_{SD}'}{C_{ox}} = \frac{\sqrt{2e\varepsilon_s N_a}}{C_{ox}} \left[\sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

where $\Delta V_T = V_T(V_{SB} > 0) - V_T(V_{SB} = 0)$ for NMOS.

Substrate Bias Effects

Table of Contents

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Chapter 11 - Metal–Oxide–Semiconductor Field-Effect Transistor: Additional Concepts

Chapter 12 - Bipolar Junction Transistor

I - Subthreshold Conduction (Leakage Current)

Figure: Comparison of ideal and experimental plots of $\sqrt{I_D}$ versus V_{GS} .

When
$$V_{GS} < V_T$$
, $I_D \propto \exp\left(rac{qV_{GS}}{nkT}
ight)$

I - Subthreshold Conduction (Leakage Current)

Slope Factor: defined to be the inverse slope of the $log(I_D)$ vs. V_{GS} characteristic in the subthreshold region.

$$S = n \left(\frac{kT}{q} \ln(10) \right)$$
 (Volts per decade)

II - Channel Length Modulation

$$I_D' = \mu_n C_{ox} \frac{W}{2L} \left[(V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \right]$$

III - Velocity Saturation

$$I_{DSAT}=WC_{ox}\left[V_{GS}-V_T-rac{V_{DSAT}}{2}
ight]v_{sat}$$
 where $V_{DSAT}=rac{L}{\mu_B}v_{sat}$.

IV - Short Channel Effect

Table of Contents

Chapter 10 - Fundamentals of the Metal–Oxide–Semiconductor Field-Effect Transistor

Chapter 11 - Metal-Oxide-Semiconductor Field-Effect Transistor: Additional Concepts

Chapter 12 - Bipolar Junction Transistor

Bipolar Junction Transistor

Current Volatege Relationship

- 1. Narrower base \rightarrow larger gain
- 2. $\beta \approx N_D/N_A$, higher emitter-to-base ratio \rightarrow higher gain

Early Effect

Trade off:

Gain and Early effect.

Good luck to your final exam!