Software Testing and Validation

Corso di Laurea in Informatica

The SPIN Model Checker

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Acronyms

- Murphi stands for nothing, though it is probable that it reminds Murphi's Laws
 - ullet "if something may fail, it will fail", i.e., ${\sf EF} p o {\sf AF} p$
- SPIN stands for Simple Promela INterpreter
- Promela is the SPIN input language
 - Murphi input language does not have a proper name
- Promela stands for PROcess MEta LAnguage
 - as we will see, it is actually based on Operating Systems-like processes
- Also see slides at https://spinroot.com/spin/Doc/SpinTutorial.pdf
 - some as reused here

Structure of a Promela Model

- We recall that Murphi input language is based on:
 - global variables with finite types
 - base types are integer subranges and enumerations
 - higher types are arrays and structures
 - function and procedures
 - guarded rules and starting states (dynamics)
 - may call functions and procedures, in an atomic way
 - Pascal-like syntax: := for assignments, = for equality checks...
 - invariants

Structure of a Promela Model

- Promela instead has:
 - global variables with finite types
 - base types are integer types of the C language
 - enumerations are very limited
 - arrays and records
 - channels!
 - processes behaviour (dynamics)
 - possibly with arguments and local variables
 - properties to be checked:
 - assertions
 - deadlocks
 - "neverclaim" describing a BA
 - a separate tool may translate an LTL formula in the corresponding BA

Thursday 11-Apr-2002

Variables and Types (1) Basic types Five different (integer) bit turn=1; [0..1] [0..1] bool flag; basic types. byte counter; [0..255] $[-2^{16}-1...2^{16}-1]$ Arrays short s; $[-2^{32}-1...2^{32}-1]$ int msq; Records (structs) Arrays array Type conflicts are detected byte a[27]; indicina bit flags[4]; start at 0 at runtime. Typedef (records) · Default initial value of basic typedef Record { variables (local and global) short f1: is 0. byte f2; variable declaration Record rr; rr.f1 = ...

Theo C. Ruys - SPIN Beginners' Tutorial

Structure of a Promela Model

- Mainly C-like syntax: = for assignments, == for equality checks...
 - with some exceptions: if, while, message exchange
- No start states: there is only one starting state
 - an "empty" state, we will see how it is defined
- Thus, if you need multiple starting states, you will have to explicitly model this in Promela
 - having the "empty" state non-deterministically going in the desired starting states
- Assertions are conceptually the same as invariants

Processes in Promela

- Dynamics in Promela is defined through processes
- You may define many different codes for your processes: proctype
- You may instantiate many times each proctype
 - each instantiation of a proctype is a process
- Each process is either active (i.e., running) from the starting state, or it is explictly started by some other process
- Though Promela proctypes may seem procedures, they are not!
 - running a process is not like calling a function
 - it is rather like forking a new process, which executes the given code concurrently with the "calling" one

Peterson Protocol in Promela

```
bool turn, flag[2];
byte ncrit;
active [2] proctype user()
 assert(_pid == 0 || _pid == 1);
again:
 flag[pid] = 1;
 turn = _pid;
 (flag[1 - _pid] == 0 || turn == 1 - _pid);
 ncrit++;
 assert(ncrit == 1); /* critical section */
 ncrit --;
 flag[pid] = 0;
goto again
```

Peterson Protocol in Promela

- In this case, the starting state has:
 - two running processes, both ready to execute their first statement (i.e., the assert)
 - turn, flag, ncrit are all set to zero
 - both entries for flag
- A special local variable _pid is available for all processes
 - similar to Operating Systems PID
 - n instantiations of a proctype will have _pid going from 0 to n-1
 - read-only
- The often-deprecated goto statement is heavily used in Promela models
 - C-like labels also may have special meanings
 - the same holds for the break statement

Non-Determinism in Promela: Part I

- In the Peterson model above, there does not seem to be any non-determinism
- Instead, in each state there are two possible successors
 - one obtained executing the (current statement in) the first process
 - the other one obtained executing the second process
- Generally speaking, if in a state there are n active processes, then there are n successors
 - actually, they may be less, because of blocked statements
 - or more, because of the other source of non-determinism
- SPIN checks that properties hold for all possible interleavings between processes
 - using OS-like parlance, the model must be correct regardless of the scheduler

- Proctypes are sequences of statements
- Statements may be either blocked or executable
 - again, it resembles OS blocking primitives, such as those on semaphores or on message exchange
- If a statement is blocked, then the corresponding process cannot be selected for execution
- For each type of statement, we will say when it is blocked and when it is executable

- The following statements are always executable: assignments, goto, break, skip, assert, printf
 - return does not exist
 - break must be inside a cycle
 - skip does "nothing", useful in some cases
 - assert takes an expression *e* as argument: if *e* is false, the verification is aborted and the error is reported
 - printf is only used in debugging the model itself (simulation mode)

- Expressions may be used as statements
 - o in Peterson protocol:
 (flag[1 _pid] == 0 || turn == 1 _pid);
- An expression e used as a statement is executable iff e is evaluated to true in the current state
 - e is always of some integer type
 - as usual in C, e is true if $e \neq 0$, and false otherwise
 - in OS parlance, we are implementing busy waiting
 - e is equivalent to while (!e) /* do nothing */

Peterson Protocol in Promela

```
bool turn, flag[2];
byte ncrit;
active [2] proctype user()
 assert(_pid == 0 || _pid == 1);
again:
 flag[pid] = 1;
 turn = _pid;
 (flag[1 - _pid] == 0 || turn == 1 - _pid);
 ncrit++;
 assert(ncrit == 1); /* critical section */
 ncrit --;
 flag[pid] = 0;
goto again
```

- The run statement may be used to create a new process
 - there is a limit to the number of active processes N
 - run is executable iff the number of currently active processes is less than N
- Other ways to have processes:
 - declare a proctype as active [n]
 - active since the start state
 - n is the number of instances to be run, may be skipped if n=1
 - name a proctype as init
 - again, active since the start state
- There must be either active proctypes or the init proctype in every Promela model

Processes (3)

- Process are created using the run statement (which returns the process id).
- Processes can be created at any point in the execution (within any process).
- Processes start executing after the run statement.
- Processes can also be created by adding active in front of the proctype declaration.

```
proctype Foo(byte x) {
init {
  int pid2 = run Foo(2);
  run Foo (27);
        number of procs. (opt.)
active[3] proctype Bar()
         parameters will be
           initialised to 0
```


Thursday 11-Apr-2002

Theo C. Ruys - SPIN Beginners' Tutorial

Peterson Protocol in Promela

```
bool turn, flag[2];
byte ncrit;
proctype user()
/* ... as before */
init {
  run user();
  run user();
```


- Each single statement is atomic
 - other processes must wait for an executable single statement completion
 - this differs from OS-like processes: if n is shared and n++ is executed, race conditions may arise
 - because n++ must be viewed as a sequence of assembly statements
 - not in Promela
- It is sometimes desirable to declare a sequence of statements s_1, \ldots, s_n as atomic: atomic $\{s_1, \ldots, s_n\}$

Peterson Protocol in Promela

```
bool turn, flag[2];
byte ncrit;
proctype user()
/* ... as before */
init {
  atomic{
    run user();
    run user();
```


- An atomic block like atomic $\{s_1, \ldots, s_n\}$ may be executable or blocked as well
- The rule is simple: atomic $\{s_1, \ldots, s_n\}$ is executable iff s_1 is executable
- What happens if s_i is blocked for some i > 1?
- The process loses the atomicity, it becomes blocked and other active processes will have to be executed
- This is the only case in which a statement is initially executable and then becomes blocked
- When s_i is executable again, and the "scheduler" selects the process, the rest of the atomic section is executed atomically again
 - unless a new s_j is blocked with j > i...

- Another way of specifying atomic blocks is d_step $\{s_1, \ldots, s_n\}$
- Again, executable iff s_1 is executable, but:
 - it is a (runtime) error if s_i is blocked with i > 1
 - each si must be deterministic
 - all statements seen till now are deterministic, we will see non-deterministic ones later
- Thanks to these restrictions, d_step is more efficient than atomic
 - intermediate states need not to be generated, as they cannot block and then resume

- The timeout statement may be used to avoid deadlocks
 - that is, states where all processes only have blocked statements
- In fact, timeout is an expression
 - it becomes true (and thus, as a statement, executable) iff we are in a deadlock, in the sense described above
- Used as an escape in some cases

The if statement has a somewhat surprising syntax

```
if :: e_1 \rightarrow s_{11}; ...; s_{1n_1} :: e_m \rightarrow s_{m1}; ...; s_{mn_m} fi
```

- inspired by Dijkstra guarded command language
- it is executable if there exists i s.t. e_i is executable
 - typically e_i are expressions, thus when e_i are true
- as a special expression, else is true (executable) iff all e_i are false (blocked)
 - thus, an if with an else is always executable
- if all e; are blocked, then the if statement is blocked
- ; may be used instead of ->, which is actually syntactic sugar

- The while statement does not exist in Promela
- Instead, we have

```
do
::
```

```
e_1 \rightarrow s_{11}, ...; s_{1n_1}
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
```

od

- as for the if, it is executable if there exists i s.t. e_i is executable
- if all e; are blocked, then the do statement is blocked
- of course, if is executed only once, while do is executed forever
- more precisely: once, for some $i, s_{i1}; ...; s_{in_i}$ is executed, the whole do is evaluated again
- to exit from a do, a break is necessary
- or some other escape, such as goto or unless: see later

Non-Determinism in Promela: Part II

- There are two sources of non-determinism in Promela:
 - inter-process, as a process may non-deterministically be chosen among all the currently active non-blocked processes
 - a non-blocked process is a process which current statement is executable
 - intra-process: using if or do
- In fact, if $E = \{e_{i_1}, \dots, e_{i_k} \mid e_{i_j} \text{ is executable}\}$ is such that |E| > 1, there will non-deterministically be |E| successors
 - of course, for the current process only
 - other processes may have a current if or do as well

Non-Determinism in Promela: Part II

Other Promela

unless

```
{ <stats> } unless { guard; <stats> }
```

- Statements in <stats> are executed until the first statement (guard) in the escape sequence becomes executable.
- resembles exception handling in languages like Java
- Example:

Thursday 11-Apr-2002

Theo C. Ruys - SPIN Beginners' Tutorial

Other Promela

macros - cpp preprocessor

- Promela uses cpp, the C preprocessor to preprocess
 Promela models. This is useful to define:
 - constants
 #define MAX 4

All cpp commands start with a hash: #define, #ifdef, #include, etc.

- macros

```
#define RESET_ARRAY(a) \
    d step { a[0]=0; a[1]=0; a[2]=0; a[3]=0; }
```

- conditional Promela model fragments

```
#define LOSSY 1
...
#ifdef LOSSY
active proctype Daemon() { /* steal messages */ }
#endif
```


Thursday 11-Apr-2002

Theo C. Ruys - SPIN Beginners' Tutorial

Other Promela

inline - poor man's procedures

 Promela also has its own macro-expansion feature using the inline-construct.

- error messages are more useful than when using #define
- cannot be used as expression
- all variables should be declared somewhere else

Inter-Process Communication

- Two processes may communicate using shared memory
 - that is, using global variables
 - one writes and the other reads
- If synchronization is required, busy waiting must be used
 - that is, read only after writing

Inter-Process Communication

```
byte x;
active [2] proctype user()
{
  byte y;
  if
  :: _pid == 0 -> x = 1
   :: _pid == 1 -> y = x;
  fi;
  ...
}
```

What if I want y = x to happen only after x = 1?

Inter-Process Communication

```
byte x;
bit b = 0;
active [2] proctype user()
{
   byte y;
   if
   :: _pid == 0 -> atomic{b = 1; x = 1}
   :: _pid == 1 -> atomic{b == 1; y = x;}
   fi;
   ...
}
```


Inter-Process Communication: Channels

- Fortunately, Promela offers a simple way to handle communication: FIFO channels
 - similar to OS message exchange via mailbox
- To declare a channel, the chan data type can be used
 - the modeler must specify both the size of the channel and the type of the messages to be exchanged
- Messages may be tuples
 - their types must be enclosed in brackets

Inter-Process Communication: Channels

Inter-Process Communication: Channels

- To send a message in a channel: channel!value1,...valuen
 - executable iff channel has size m>0 and contains at most m-1 messages
 - each message has size n...
- To receive a message in a channel: channel?x1,...,xn
 - if all xi are variables, the first still undelivered message in channel is stored in each xi, breaking down the tuple
 - executable iff the channel is not empty
 - if all xi are constant values, the first still undelivered message in channel is compared to the values xi, breaking down the tuple
 - executable iff the first message in the channel matches the given values
 - in this case, the message is removed from the cannel
 - variables and constants may be mixed

Inter-Process Communication: Rendez-Vous Channels

- It is sometimes desirable to also have blocking send
 - that is, if there is not some other process receiving on the channel, the send must block
 - reading is always blocking, if there is not something to be received
- This may be achieved using rendez-vous channel
- Defined using 0 as the channel size
- Both the sending and the reading process will block, till when some other process perform the dual operation
- Then, both of them go on to the following statement
 - only case in which two separate statement of two different process are executed at the same time

Dijkstra Protocol in Promela

```
#define p 0
#define v 1
chan sema = [0] of { bit }; /* rendez-vous */
proctype dijkstra()
    byte count = 1; /* local variable */
    do
    :: (count == 1) -> sema!p; count = 0
    /* send 0 and blocks, unless some other
       proc is already blocked in reception */
    :: (count == 0) -> sema?v; count = 1
    /* receive 1, same as above */
    od
}
```

Dijkstra Protocol in Promela

```
proctype user()
    do
    :: sema?p;
            critical section */
       sema!v;
       /* non-critical section */
    od
}
init
    run dijkstra();
    run user(); run user(); run user()
}
```


Inter-Process Communication: Rendez-Vous Channels

- To every message, the sender adds a bit.
- The receiver acknowledges each message by sending the received bit back.
- To receiver only excepts messages with a bit that it excepted to receive.
- If the sender is sure that the receiver has correctly received the previous message, it sends a new message and it alternates the accompanying bit.

Inter-Process Communication: Channels

https:

//en.wikipedia.org/wiki/Alternating_bit_protocol

```
DEMO
              Alternating Bit Protocol (2)
                          channel
 mtype {MSG, ACK}
                                       proctype Receiver (chan in, out)
                         lenath of 2
                                         bit recvbit;
 chan toS = /[2] of {mtvpe, bit};
 chan toR = [2], of {mtype, bit};
                                         :: in ? MSG(recvbit) ->
                                            out ! ACK(recvbit);
 proctype Sender(chan in, out)
                                         od
   bit sendbit, recybit:
    :: out ! MSG, sendbit ->
         in ? ACK, recvbit;
                                         run Sender (toS, toR);
                                         run Receiver (toR, toS);
         :: recvbit == sendbit ->
            sendbit = 1-sendbit
                                               Alternative notation:
         :: else
                                               ch ! MSG (par1, ...)
        fi
                                               ch ? MSG(par1, ...)
   od
        Thursday 11-Apr-2002
                              Theo C. Ruys - SPIN Beginners' Tutorial
```


Promela: Other

- Each statement may have a label (e.g. again in Peterson's protocol)
- If the label begins with "end", then it is a valid end-state
- An end-state is valid if it has an "end" label or if it consists of the closing brackets of a process
- Any other state from which it is not possible to execute a transition triggers a verification error, claiming a deadlock has been found
- If the label begins with "accept", then it is an accepting state
 - typically inside some neverclaim representing a BA of some LTL formula

From Promela to Kripke Structures

- We define the Kripke structure $\mathcal{S} = \langle S, I, R, L \rangle$ corresponding to a given Promela model
 - $S = D_1 \times \ldots \times D_n \times \{1, \ldots, M_1\} \times \ldots \times \{1, \ldots, M_k\}$
 - here we are assuming n (flattened) local and global variables, including channels
 - we also assume there are k running processes, with process i having M_i statements inside it
 - this is due to the fact that program counters must be stored for each running process
 - so we can single out the exact statement to be executed in each process, being on some current state
 - if a D_i corresponds to short or int, then it has 2^{16} or 2^{32} values on a typical 64-bit architecture, as it is in C
 - a channel is essentially an array of structures

From Promela to Kripke Structures

- This state space is dynamic, as it contains the currently running processes
 - new processes may be added at any time by a run statement
 - thus, the state space cannot be defined in advance as it is with Murphi
 - this could only be possible when only active proctypes are used, without run commands
 - however, local variables may be defined at any point inside proctypes, thus it is not possible even in that case
- Thus, state space grows: as new processes run and new local variables are reached
- ... and shrinks: as some process terminate

From Promela to Kripke Structures

- $I = \{s_0\}$ where s_0 contains only processes defined as active and all global variables are zero
 - all program counters are at the beginning, local variables still does not exist
- Intuitively, R(s, s') holds iff there is a running process p in s and an executable statement t at the current program counter of p s.t. t, when executed, leads from s to s'
 - if *t* is the beginning of an atomic sequence, then the whole atomic sequence must be executed
 - till the first blocking statement of the sequence
 - if t is a send on a rendez-vous channel c, and there is another current statement t' in another process p' s.t. t' is a receive on c, both t and t' have to be executed when leading from s to s'
- L is similar to Murphi, i.e., equations between (global and local) variables and values; however, also program counters must be considered

SPIN Simulation

```
Almost equal to Murphi one
void Make_a_run(NFSS N)
 let \mathcal{N} = \langle S, \{s_0\}, \text{Post} \rangle;
 s_curr = s_0;
 if (some assertion fail in s_curr))
  return with error message;
 while (1) { /* loop forever */
  if (Post(s_curr) = \emptyset)
   return with deadlock message;
  s_next = pick_a_state(Post(s_curr));
  if (some assertion fail in s_curr))
   return with error message;
  s_curr = s_next;
```


SPIN Verification

- Able to answer to the following questions:
 - is there a deadlock (invalid end state)?
 - are there reachable assertions which fail (safety)?
 - is a given LTL formula (safety or liveness) ok in the current system?
 - is a given neverclaim (safety or liveness) ok in the current system?
- It is possible to specify some side behaviours:
 - is sending to a full channel blocking, or the message is dropped without blocking?
- It may report unreachable code
 - Promela statements in the model which are never executed

SPIN Verification

- Similar to Murphi:
 - the SPIN compiler (SrcXXX/spin -a) is invoked on model.prm and outputs 5 files:
 - pan.c, pan.h, pan.m, pan.b, pan.t (unless there are errors...)
 - ② the 5 files given above are compiled with a C compiler
 - it is sufficient to compile pan.c, which includes all other files
 - in this way, an executable file model is obtained
 - just execute model
 - option --help gives an overview of all possible options

SPIN Verification of LTL Formulas

- The former is ok for assertion or deadlock checks
- If you also have an LTL formula
 - the SPIN compiler (SrcXXX/spin -F) is invoked on model.ltl and outputs a neverclaim on the standard output
 - model.ltl must be a text file with only 1 line
 - file extensions does not matter
 - syntax for the formula: G is [], F is <>, U is U
 - atomic propositions must be identifiers
 - append the neverclaim to the promela file
 - define the identifiers used as atomic proposition by #defines in the promela file
 - go on as before

- pan. [ch] is the fixed part of the verifier, it implements a DFS (also BFS starting from some later version, but less efficient), it also includes the other files
- pan.t creates a table with an entry for each statement in the source Promela model
 - for each statement, the corresponding values to execute the forward and backward in pan. [bm] are stored
 - this is needed for simulations and counterexamples

- pan.m is the part of the verifier which depends on the Promela model: it contains a C switch statement implementing the transition relation
 - very similar to Murphi Code implementing a rule body
 - given the current state, given a running process index i and the program counter p inside that process, it performs on now the modifications demanded by the Promela statement at line i of process p, so obtaining the next state
 - the current state is saved in a memory buffer called now which is very similar to the Murphi's workingstate
 - actually, a second index j is needed in the case the current statement is non-deterministic

- pan.b: the same of pan.m, but backwards!
 - actually, pan.m does not surprise and it is not conceptually difficult to understand and implement
 - implementing the same backwards is not straightforward, but SPIN does it!
 - essentially, all Promela instruction may be reversed, and the code to reverse them is in pan.b
 - PAN maintains old values for all variables in the state (i.e., values are saved before overwriting due to new assignments)
 - thanks to the fact that the visit is a DFS (SPIN is optimized for DFS), it is only needed to maintain the *last* values, thus a stack for each variable is used for this purpose

- On-the-fly exploration: as in Murphi, the RAM contains only the part of the graph which has been explored till now
 - only the states, no transitions between them
- Hash table for the visited states
 - Murphi uses open addressing, here the hash table is handled with collision lists
 - in order to speed up visited states check, such lists are ordered (i.e., each new state is inserted in order)
- Iterative DFS (recursive one is inefficient)
 - with gotos and global variables!
 - DFS stack is explicitly handled in a lighter and more efficient way

Standard Recursive DFS

```
HashTable Visited = \varnothing;

DFS(graph G = (V, E), node v) {

Visited := Visited \cup v;

foreach v' \in V t.c. (v, v') \in E {

if (v' \notin Visited)

DFS(G, v');
}
```


Iterative DFS Easy Version

```
DFS(graph G = (V, E))
{
  s := init;
  push(s, 1);
  while (stack \neq \emptyset) {
    (s, i) := top();
    increment i on the top of the stack;
     if (s \notin Visited) {
       Visited := Visited \cup s;
       let S' = \{s' \mid (s, s') \in E\};
       if (|S'| >= i) {
         s := i-th element in S';
         push(s, 1);
       else pop();
    else pop();
```


Iterative DFS

```
DFS(graph G = (V, E))
{
  s := init; i := 1; depth := 0;
  push(s, 1);
Down:
  if (s \in Visited)
    goto Up;
  Visited := Visited \cup s;
  let S' = \{s' \mid (s, s') \in E\};
  if (|S'| >= i) {
    s := i-th element in S';
    increment i on the top of the stack;
    push(s, 1);
    depth := depth + 1;
    goto Down;
```

Iterative DFS

```
Up:
    (s, i) := pop();
    depth := depth - 1;
    if (depth > 0)
        goto Down;
}
```

DFS in PAN

```
DFS (NFSS \mathcal{N})
₹
  let \mathcal{N} = (S, I, Post);
  now := init; depth := 0;
Down:
  if (now \in Visited)
    goto Up;
  Visited := Visited ∪ now;
  foreach p s.t. p is a running process in now {
    foreach opt s.t. opt is enabled at p.pc {
      now := apply(now, p, opt);
/* no need of incrementing opt on the top of the
stack: when popping, it will be done by the
foreach on opt... */
      push(p, opt);
      depth := depth + 1;
      goto Down;
```

DFS in PAN

- The stack does not store states
- Instead, each stack entry stores a pair $\langle p, o \rangle$ of indices (integers)
 - p is a process pid
 - o identifies a statement at the current program counter of p
 - (recall that there may be non-determinism inside each process...)
 - so it is 8 bytes, whilst the current state may easily require some kB
- We now detail the rational behind this choice

- There is just one initial state
- Let $\langle p_0, o_0 \rangle$ be the first (from the bottom) pair on the stack; it univocally identifies a statement *istr*₀ to be executed
- By applying $istr_0$ to s_0 we obtain a state s_1 (formally, $s_1 = apply(s_0, p_0, o_0)$)
- Analoguously, $s_2 = \mathsf{apply}(s_1, p_1, o_1)$ if $\langle p_1, o_1 \rangle$ is the second pair on the stack
- Thus, a stack $\langle \langle p_0, o_0 \rangle, \dots, \langle p_d, o_d \rangle \rangle$ univocally identifies a state s_d , obtained by chaining the executions due to pairs $\langle p_i, o_i \rangle$
- Formally, $\forall 1 \leq i \leq d \ s_i = \mathsf{apply}(s_{i-1}, p_{i-1}, o_{i-1})$

- Moreover, SPIN is able to define the undo function, with the same parameters of the apply function
 - of course, apply is defined in pan.m, undo in pan.b
 - undo needs a stack of values for each variable, as explained above
 - however, it tries to minimise such stacks usage; e.g., if a c = c + 2 statement must be undone, then it is sufficient to execute c = c 2
 - for direct assignments (e.g., c = 4), the apply function puts the preceding values of v in the stack of v before overwriting it with 4
 - \bullet undo will pop the value from the stack of v and put it back in v
 - this works because the whole visit is a DFS

- Finally, recall we have a global fixed structure now implementing the current state
 - same as Murphi's workingstate
- Summing up, given what we said:
 - no need of pushing a whole state s in the DFS stack: SPIN pushes the pair $\langle p,o\rangle$ which generates s if applied to the current state
 - no need of popping a state s: SPIN pops the pair $\langle p,o \rangle$ which generates s if undone on the current state

PAN: Details

- ch13.pdf adds some more details
- Atomic sequences handling:
 - if we are inside an atomic sequence, SPIN must take care that only the current process can execute
 - this is done by setting From = To = II (line 44), which forces the for loop in line 24 to oly select the current process
 - normal behaviour is reprised at line 46
 - a state may be searched and possibly inserted in the hash table (line 13) only if we are not in an atomic sequence

PAN: Details

- ch13.pdf adds some more details
- timeout handling:
 - it is a Promela boolean expression, which is true iff the whole system deadlocks (all processes must execute non-executable statements)
 - thus, when the double for at lines 24 and 28 is finished without any statement being executable (thus, n is still 0) and this is not a valid end state, PAN tries to perform the whole computation again with timeout set to 1
 - linea 46 reprises the normal non-timeout behaviour

PAN: Details

- ch13.pdf adds some more details
- Apply ed undo are implemented in pan.m (included at line 30) and pan.b (line 54)
 - if a statement cannot be executed, pan.m performs a C continue statement, which forces for in line 28 to go on with next iteration
 - otherwise, a goto P999 is executed
 - instead, pan.b executes goto R999
- Finally, recall that, for LTL verification, a nested DFS is used

PAN: Counteracting State Space Explosion

- PAN has the same bit compression (called byte masking) and hash compaction techniques we described for Murphi
 - to enable hash compaction, compile pan.c with -DHC
 - byte masking is always enabled, compile with -DNOCOMP to disable it
 - simply align to bytes instead of 4-bytes words
 - also bitstate hashing, a precursor of hash compaction
 - stack cycling, i.e., efficiently use disk for DFS stack
- Other interesting techniques: collapse compression, minimized automaton (may be combined), partial order reduction
- First two techniques try to use less memory to represent the set of visited states so far
 - same goal of hash compaction et similia
- Last technique directly prunes the state space
 - same goal of symmetry reduction in Murphi

Collapse Compression

- Less effective than hash compaction, but exhaustive as bit compression
 - to enable it, compile pan.c with -DCOLLAPSE
- Recall the main components of a Promela model: N
 processes, global variables, channels
- The idea is to store in the hashtable N + 2 state fragments, instead of a single state
 - this is the default, but you can put all processes together (-DJOINPROCS)
 - or separate channels with DSEPQS
- A further special "order fragment" is used to say which is the first fragment, the second, ... till the (N + 2)-th fragment

Collapse Compression

- Thus, to decide if the current state is visited, first split it as described above
- If at least one fragment is not in the hashtable, the state is new
 - of course, the missing fragment(s) must be placed inside the hash table
 - for each of them, a unique identifier is generated and stored together with the fragment
 - the unique identifier is an integer with value i, if this is the i-th fragment to be generated
 - of course, only considering the current fragment typology...
 - the special order fragment contains the sequence of such identifiers

Collapse Compression

- Otherwise, also the order fragment must be checked
 - if it is found, then the state is already visited
 - otherwise, insert the new fragment order and return the state as not visited
- Very good if there are many combinations of a few state fragments
 - the order fragment is much shorter than fragments concatenation

Minimized Automaton

- Explicit model checking, borrowing ideas from symbolic model checking
- We still have the DFS as above, but as for visited states check there is not any hash table!
- It is replaced by a "minimized automaton" representing the visited states
 - here, a minimized automaton is essentially similar to those recognizing regular expressions
 - but they are limited: no cycles (it is a DAG), as there is a maximum length to the words

Minimized Automaton

- Finite State Automaton (FSA) for regular expressions: $\mathcal{F} = \langle Q, \Sigma, \delta, g_0, F \rangle$
 - Q is the finite set of states
 - being $q_0 \in Q$ the initial state and $F \subseteq Q$ the final states
 - ullet is the alphabet (input symbols) of the regular expression
 - $\delta \subseteq Q \times \Sigma \times Q$ is the transition relation
- A word $w \in \Sigma^*$ is recognized if, starting from q_0 , it ends up in a final state in F
 - $w = \sigma_1 \dots \sigma_n$, $\langle q_0, \dots, q_n \rangle$ is such that $(q_{i-1}, w_i, q_i) \in \delta$ for $1 \le i \le n$
 - w is recognized iff $q_n \in F$
- $\mathcal{L}(\mathcal{F})$ is the set of recognized words

Minimized Automaton

- ullet A minimized automaton ${\mathcal F}$ is a special case of a FSA where:
 - $\Sigma = \{0,1\}^8$ (input symbols are bytes)
 - |F| = 1
 - δ is deterministic, thus $\delta: Q \times \Sigma \to Q$
 - $\mathcal{L}(\mathcal{F})$ is the set of bit sequences representing visited states, which implies $|\mathcal{L}(\mathcal{F})|<\infty$
 - \bullet as a consequence, there are no cycles induced by δ (it is a DAG)
 - "diamonds", i.e., circuits, are still possible
 - the original definition of minimized automaton also has layers of states
 - ullet s.t. δ goes from a state in level i to i+1
- ullet PAN incrementally constructs ${\cal F}$ for each unvisited state
 - keeping it minimal w.r.t. the number of states
 - several heuristics are also used, not covered here university

Minimized Automaton: Why Effective?

- Suppose you have a *k*-bytes state vector, and that the visited states are exactly those having 8 zeros in the last byte
 - thus, a visited state is represented by $[0,1]^{8(k-1)}0$
- Using an hash table, we have to store 2^{k-1} states
- Instead, using the minimized automaton:

Minimized Automaton: Why Effective?

- As usual in Model Checking: impossible to a priori state that a given KS will be "well" represented by a minimized automaton, or collapse compression, or whatever
 - all such techniques may be seen as "heuristics" in some sense
- For the minimized automaton, some "regularity" is needed inside the bit representation of the set of visited state
- Also note that sometimes adding a state may improve regularity, making the minimized automaton smaller
 - and of course, in some other cases, adding a state may decrease regularity and make the automaton bigger

PAN Saving Memory Recap: Normal

PAN Saving Memory Recap: Hash Compaction

PAN Saving Memory Recap: Collapse

PAN Saving Memory Recap: Minimized Automaton

PAN Saving Memory Recap: Collapse + Minimized Automaton

- POR does not try to use less memory to save the same states: it tries to save less states
 - while retaining correctness, of course
 - some states are "useless" and need not to be explored (and saved)
 - also saves in computation time, of course
- Similar to Murphi symmetry for the goal, but different in use and algorithm
 - use: Murphi modeler must specify which parts of the model are symmetric
 - in SPIN, POR is directly applied without the modeler being aware of it
 - though it is possible to disable it

- There are many ways to perform POR; here, we focus on ample sets
- The main idea is that not all interleavings of processes must actually be expanded
 - if we have, e.g., 2 processes, for some actions it is not important if we execute P1 and then P2 or viceversa
- We need an algorithm to decide when only one interleaving can be considered, retaining verification correctness
 - such algorithm must have a low overhead
 - must also work locally (we cannot first expand all reachable states and then decide which one can be removed...)

- Let $\mathcal{P} = \langle Q, q_0, T \rangle$ be a *finite state program* (FSP) where:
 - Q is a finite set of states, $q_0 \in Q$ is the start state
 - T is a finite set of operations
 - also called actions or transitions
 - ullet each action $t \in \mathcal{T}$ is a partial function $t: Q o Q \cup \{\bot\}$
 - i.e., executing t from a state q generates a new state q'=t(q)
 - we also define, for each action $t \in \mathcal{T}$, the set $\operatorname{en}_t = \{q \in Q \mid t(q) \neq \perp\}$
 - furthermore, the function $en: Q \to 2^T$ returns all actions enabled in a state q, i.e., $en(q) = \{t \in T \mid q \in en_t\}$
 - paths are sequences $\pi = r_0 \alpha_0 r_1 \dots$
 - notation: $\pi^{(q)}(i) = r_i, \, \pi^{(a)}(i) = \alpha_i$
 - of course, $r_{i+1} = \alpha_i(r_i)$, $\alpha_{i+1} \in en(r_i)$

- From an FSP $\mathcal{P} = \langle Q, I, T \rangle$ it is easy to generate a KS $\mathcal{S} = \langle S, J, R, L \rangle$
 - Q = S, J = I
 - $(s, s') \in R$ iff $\exists t \in en(s) : s' = t(s)$
 - L may be defined as needed
- Note that actions are deterministic, but the resulting KS may be non-deterministic
 - there may exists $t, t' \in T, q \in S$ s.t. $t \neq t', q \in en_t \cap en_{t'}$ and $t(q) \neq t'(q)$
- It is easy to see that a Promela model is close to an FSP: each action is a statement
 - thus, an action is identified by a PID and a statement inside that PID
 - of course, states are defined as above from Promela to KSs
 - possible ⊥: if the process is not at the correction
 - less straightforward: if t is not executable

Partial Order Reduction: FSP vs Promela

- Actually, we may see that, given an action t, we have that $q \in en_t$ iff the following holds
 - let i inside process p be the Promela statement corresponding to t
 - must be a single statement, thus dos are replaced by ifs with gotos
 - if nondeterminism is present, *i* is one of the nondeterministic options
 - if more processes of the same proctype are present, *t* is related to *one* of these processes
 - thus T is defined so as to consider the possible maximum number of processes for each proctype
 - then, q must be such that PC of p corresponds to i and i is executable

- Given an FSP $\mathcal{P} = \langle Q, I, T \rangle$, an ample selector is a function amp : $Q \to 2^T$ s.t. amp $(q) \subseteq en(q)$
 - for a given $q \in Q$, amp(q) is an ample set
- An ample selector defines a new KS $S' = \langle S, I, R', L \rangle$, where $(s, s') \in R'$ iff $\exists t \in \text{amp}(s) : s' = t(s)$
 - of course, $R' \subseteq R$
 - from a DFS point of view, we normally expand actions in en(q); instead, here we expand only amp(q)
- We want to choose a POR-sound amp
 - $\mathcal{S} \models \varphi$ iff $\mathcal{S}' \models \varphi$
 - ullet we start by considering only invariants (assertions) as arphi
- We want to compute $\mathrm{amp}(q)$ (almost) only looking at current state q
 - must be simple, i.e., with little overhead
 - no need to be optimal

Partial Order Reduction: Independent Actions

- Two actions $\alpha, \beta \in T$ are independent iff $\forall q \in \mathrm{en}_{\alpha} \cap \mathrm{en}_{\beta}$. $\alpha(q) \in \mathrm{en}_{\beta} \wedge \beta(q) \in \mathrm{en}_{\alpha} \wedge \alpha(\beta(q)) = \beta(\alpha(q))$
 - \bullet i.e., α,β can be executed in any order, obtaining the same result
 - otherwise, α, β are dependent, which means that $\exists q \in en_{\alpha} \cap en_{\beta} : (\alpha(q) \in en_{\beta} \land \beta(q) \in en_{\alpha}) \rightarrow \alpha(\beta(q)) \neq \beta(\alpha(q))$
 - ullet in this case, it is both lpha dependent on eta and viceversa
 - example 1: two actions modifying local variables only are always independent
 - example 2: two actions modifying the same global variable are nearly always dependent
 - unless $\alpha = \beta$, or the new value is however the same

Partial Order Reduction: Invisible Actions

• An action α is *invisible* w.r.t. a labeling $L: Q \to 2^{AP}$ iff $\forall q \in \text{en}_{\alpha}. \ L(q) = L(\alpha(q))$

Recall:

- we are performing a DFS of the KS generated by an FSP
- we have a current state q
- we want to decide if we can consider $\mathrm{amp}(q) \subset \mathrm{en}(q)$ instead of $\mathrm{en}(q)$
- The first 2 conditions only look at q and its actions
 - $\forall q \in Q$. $\operatorname{en}(q) \neq \emptyset \to \operatorname{amp}(q) \neq \emptyset$
 - otherwise, we have introduced a deadlock...
 - $\forall q \in Q$. $amp(q) \subset en(q) \rightarrow (\forall \alpha \in amp(q). \alpha \text{ is invisible})$
 - if we cut some actions, then this must not affect the labeling
 - this also means that only invisible actions can be cut

The remaining conditions also consider paths starting from q

- $\forall q \in Q, \forall \pi \in \text{Path}(\mathcal{P}, q). \ (\exists i > 0, \alpha \in \text{amp}(q) : \ \pi^{(a)}(i), \alpha$ are dependent) $\rightarrow \exists j < i : \ \pi^{(a)}(j) \in \text{amp}(q)$
- if this is true, then either:
 - there exists an $\alpha \in \mathrm{amp}(q)$ which is the first from $\mathrm{amp}(q)$ in π
 - then, α is independent on all previous actions on π , and can be executed first
 - otherwise, there exists an $\alpha \in amp(q)$ which is independent on all other actions in π
 - ullet again, such lpha can be executed first

• Example till now: α_1, β_1 and α_2, β_2 are independent

- Essentially, POR defers execution of some actions
 - not executing an action at all means that a meaningful portion of the state space is omitted
- With these 3 conditions only, it may happen that an action is never expanded, due to cycles
 - in the example below, β is independent on both α_1, α_2

The remaining condition rules out the problem with cycles

- Consider a DFS on the reduced KS, and suppose an expanded state q is detected as already visited
- We also check if it is on the DFS stack; this implies:
 - there is a cycle
 - some part of the q sub-tree has not be explored
- Then, amp(q) = en(q)
 - i.e., q must be fully expanded

Partial Order Reduction with LTL Formulas

- It seemed that POR with ample set was ok for any stutter-invariant LTL formula
 - recall that a formula φ may be viewed as the set (language) of words $\mathcal{L}(\varphi)$ in AP^* which are recognized by φ
 - φ is stutter-invariant iff, for any sequence of integers $i_j \in \mathbb{N}$ and $w = p_0 p_1 \ldots \in \mathcal{L}(\varphi), \ p_0^{i_0} p_1^{i_1} \ldots \in \mathcal{L}(\varphi)$
 - essentially, by repeating any character in the word for any number of times you still obtain a word in the language
 - ullet if φ does not contain ${f X}$, then it is stutter-invariant
 - viceversa does not hold
- However an error was discovered (and corrected) in 2019

