

Interaction Design

Master in Computer Game Dev

Il Docente

Umberto Castellani (PhD)

Ricercatore del Dipartimento di Informatica

Università di Verona

VIPS (Vision, Image Processing & Sound)

(http://vips.sci.univr.it)

Contatti

email: umberto.castellani@univr.it

Telefono: 045 802 7988

http://profs.sci.univr.it/~castella/

Obiettivi

- Introdurre i concetti fondamentali dell'interazione uomo-macchina
- Presentarne l'evoluzione e gli aspetti avanzati
- Approfondire gli aspetti tecnologici in particolare sul visual interaction
- Fornire esempi di applicazioni ed esperienze

Programma

- ✓ Introduzione all'HCI
- ✓ Fattori umani
- ✓ La macchina
- ✓ L'interazione
- ✓ Le interfacce grafiche

- ✓ Modello della telecamera
- ✓ La calibrazione
- ✓ Exterior Orientation
- ✓ Realtà aumentata
- √ Vari dispositivi di interazione

Testi consigliati

- Slides e appunti del docente.
- Interazione uomo-macchina. Alan Dix, Janet Finlay, Gregory D. Abowd, Russell Beale.

 Appunti di visione Computazionale. Andrea Fusiello (http://www.diegm.uniud.it/fusiello/teaching/visione/appunti/appunti_10.pdf)

HCI: È un mondo difficile...

Donald A. Norman. The Design of everyday things

Parapsicologia della vita moderna

- uso di diversi dispositivi, strumenti, applicativi, etc, alcuni facili da usare, altri no
 - questo conduce ad un senso di frustrazione,
 principalmente dovuto ad una progettazione non accurata
 - non forniscono evidenza o forniscono falsa evidenza delle operazioni che stano svolgendo
 - introducono "trappole" all'utente
 - nascondono il normale processo di interpretazione e comprensione

Parapsicologia della vita moderna

- Progettazione povera ⇒ frustazione dell'utente ⇒ confusione ⇒ errore
- Dispositivi ben definiti sono facili da capire, interpretare, e forniscono indizi visibili delle operazioni

Esempi di dispositivi

- orologi digitali : molte funzioni, pochi controlli
- **telefoni**: sapete come si eseguono operazioni come trasferire la chiamata, mettere in attesa, etc.?
- porte : alcune sono più facile da utilizzare di altre
- **Elettrodomestici**: molte caratteristiche, pochi controlli; manuali di istruzioni complicati o non utilizzabili; gli utenti memorizzano poche importanti funzioni; compito difficile per utenti casuali (eg., forno a microonde).

Esiste una moltitudine di oggetti : per utilizzarli bisogna capire come funziona la psicologia e la cognizione umana.

Interazione Uomo-Macchina

- Disciplina che studia come computers e persone possono interagire e influenzarsi a vicenda.
- Prettamente interdisciplinare:
 - informatica (elaborazione di immagini, ingegneria del software, etc.)
 - psicologia
 - scienza dell'educazione e della comunicazione
 - sistemi informativi
 - grafica e design
- Crescente interesse in ogni campo.

ESEMPI di fattori conivolti con l'HCI

Sistemi cooperativi

Standard e certificazioni

Interfacce

Information Visualization

Dispositivi di I/O

Fattori umani

Natura multidisciplinare

Parte human

- psicologia cognitiva
- ergonomia e fattori umani
- sociologia e antropologia
- teoria della comunicazione
- psicologia sociale e
- organizzativa
- progetto grafico e industriale

Parte machine

- informatica
- ingegneria
- grafica
- sistemi operativi
- linguaggi di programmazione
- architetture SW
- ingegneria del SW
- ambienti di sviluppo
- Al

Alcune discipline

Elaborazione delle immagini

- Manipolazione di una immagine al fine di produrre una nuova versione di essa
- Immagine originale acquisita da un sensore fisico, dopo la digitalizzazione si memorizza in un file
- L'immagine diventa un oggetto computabile: elaborare significa eseguire calcoli sull'immagine

Elaborazione delle immagini

Immagini trasmessa da New York a Londra attraverso un telegrafo negli anni '20. Si poteva rendere disponibile otre oceano le immagini in meno di 3 ore (con la nave più di una settimana)

 L'elaborazione delle immagini si può far risalire a prima della II guerra mondiale.

Elaborazione delle immagini

Image Based Modelling and Rendering
The Campanile Movie and The Matrix
http://www.debevec.org/Campanile/

Computer Graphics

- Metodologia per la generazione di immagini sintetiche tramite il computer
- L'immagine (3D) è generata da un programma tramite una descrizione matematica o modello (anche fisico)
- Per la visualizzazione viene spesso usata una proiezione
 2D
- Applicazioni: dall'intrattenimento con videogiochi, effetti speciali, etc., al WWW, dalla modellazione di oggetti, scene, persone, fenomeni naturali, alla simulazione di ambienti virtuali, telelavoro, telemedicina, etc..
- La tendenza va verso il realismo delle scene sintetiche prodotte.

Computer Vision

- Insieme di tecniche computazionali per stimare le proprietà geometriche e dinamiche del mondo 3D da una o più immagini.
- In senso lato, estrarre informazioni da un'immagine per produrre una rappresentazione o descrizione della scena
- Ha finalità inverse alla grafica.
- Più ambiziosa dell'analisi d'immagine. Vorrebbe emulare le prestazioni del sistema visivo umano
- Ricavare informazioni 3-D da immagini 2-D, assegnare etichette, stimolare/guidare azioni

Structure and motion

Portoni della Bra - Verona

Structure and motion

Pattern Recognition

- Descrizione ed analisi delle misure fatte da processi fisici o mentali
- richiede una fase di pre-elaborazione per ridurre rumore e ridondanza delle misure
- uso della conoscenza disponibile sulle proprietà statistiche e strutturali delle misure
- Spesso, si identifica con la "classificazione"

Esempio di Pattern Recognition

Categorizzazione di oggetti

Riconoscimento espressioni

Rilevamento di auto

Riconoscimento di caratteri

Es. Pedestrian detection

Human Detection Using Partial Least Squares Analysis

William R. Schwartz, Aniruddha Kembhavi, David Harwood, Larry S. Davis

Modelli deformabili

http://gravis.cs.unibas.ch/Sigg99.html

Modelli deformabili

... e nei videogiochi?

Sintesi vs. Analisi

 Tradizionalmente la sintesi e l'analisi di dati multimediali erano considerati processi indipendenti:

generazione

Analisi: osservazione

descrizione

Sintesi: esempio

Big Bac Bunny: http://www.bigbuckbunny.org/

Analisi: esempio

• Segmentazione e rimozione dello sfondo:

http://www.morethantechnical.com/2010/05/05/bust-out-your-own-graphcut-based-image-segmentation-with-opency-w-code/

Analisi: esempio

- Segmentazione e sostituzione dello sfondo:
- http://www.youtube.com/watch?v=yJHMGJ1_Dv4

Sintesi ⇔Analisi

- Sintesi e analisi ora sono svolte insieme nello stesso processo di generazione di dati multimediali
- Il confine tra **reale** e **sintetico** si assottiglia

Case-study: la faccia

La modellazione di facce sintetiche avviene con l'acquisizione delle proprietà geometriche e fotometriche di facce di attori reali

Image metric: Emily-project

http://gl.ict.usc.edu/Research/DigitalEmily/

Software

Computer Graphics&Animation

Blender

(http://www.blender.org/)

3D Studio Max (http://usa.autodesk.com/3ds-max/)

Maya

(http://usa.autodesk.com/maya/)

Software (II)

Computer Vision

PhotoModeler Measuring and Modeling the Real World

(http://www.photomodeler.com/)

(http://www.3dflow.net)

Software

Paceshift

http://www.faceshift.com/

Software (III) FACEWARE TECHNOLOGIES, INC.

http://www.facewaretech.com/news-updates/

Homework

 Identificare e descrivere videogiochi che usano in maniera peculiare tecniche di computer vision e pattern recognition