```
In [1]:
```

import numpy as np
import matplotlib.pyplot as plt

Let a differential system be defined as

$$x_{n+1} = rac{\sin(x_n)}{p}$$

with $p \in \mathbb{R}$.

Algorithm for finding fixed points

To create our bifurcation diagram, we simply iterate

$$x_{n+1} = f(x_n) = rac{\sin(x_n)}{p}$$

for some x_0 and for different p's. Note that $x^*=0$ is an attracting fixed point for p>1, since

$$\left| rac{df}{dx}
ight|_{x^*=0} = \left| rac{\cos(0)}{p}
ight| = \left| rac{1}{p}
ight| < 1$$

and becomes a repelling fixed point for p < 1, since

$$\left| rac{df}{dx}
ight|_{x^*=0} = \left| rac{\cos(0)}{p}
ight| = \left| rac{1}{p}
ight| > 1$$

The code is in strogatz-cont.py.

Although initially there are simple bifurcations (going from right to left), there quickly appears some chaotic phases, followed by simple bifurcations "breaks" inbetween.

Just a side node: for each (p, x^*) , I plotted its corresponding *pixel* in the plane. So when it's all blue, (basically) *all* single pixels are blue/are a fixed point.

Below is the Lyapunov exponents' plot, against p.