

# **System Control**

# Clocking and Power Management

Revision 0.9.0-41360

May 6, 2015





| 3   | SYS             | TEM CONTROL                                                              | 3-4  |
|-----|-----------------|--------------------------------------------------------------------------|------|
|     | 3.1             | Overview                                                                 | 3-4  |
|     | 3.2             | Module Configuration                                                     | 3-6  |
|     | 3.3             | CPU PLL CONTROL REGISTER – HAL_DICE3_SYS_CTL_CPU_PLL                     | 3-7  |
|     | 3.4             | SYSTEM CLOCK CONTROL REGISTER - HAL_DICE3_SYS_CTL_SYS_CLK                |      |
|     | 3.5             | CPU CLOCK CONTROL REGISTER - HAL_DICE3_SYS_CTL_CPU_CLK                   |      |
|     | 3.6             | SDIO CLOCK CONTROL REGISTER - HAL_DICE3_SYS_CTL_SDIO_CLK                 |      |
|     | 3.7             | ADC CLOCK CONTROL REGISTER - HAL_DICE3_SYS_CTL_ADC_CLK                   |      |
|     | 3.8             | JET PLL <sup>TM</sup> CLOCK CONTROL REGISTER - HAL_DICE3_SYS_CTL_JET_CLK |      |
|     | 3.9             | AUDIO CLOCK CONTROL REGISTER - HAL_DICE3_SYS_CTL_AUDIO_CLK               |      |
|     | 3.10            | SOFTWARE RESET SET REGISTER - HAL_DICE3_SYS_CTL_RESET_SET                |      |
|     | 3.11            | SOFTWARE RESET CLEAR REGISTER - HAL_DICE3_SYS_CTL_RESET_CLR              |      |
|     | 3.12            | CHIP ID REGISTER - HAL_DICE3_SYS_CTL_CHIP_ID                             |      |
|     | 3.13            | BOND OPTION REGISTER - HAL_DICE3_SYS_CTL_BOND_TYPE                       | 3-14 |
|     | 3.14            | Mux Control 0 Register - HAL_DICE3_SYS_CTL_MUX0                          |      |
|     | 3.15            | Mux Control 1 Register - HAL_DICE3_SYS_CTL_MUX1                          |      |
|     | 3.16            | Mux Control 2 Register - HAL_DICE3_SYS_CTL_MUX2                          | 3-18 |
|     | 3.17            | Mux Control 3 Register - HAL_DICE3_SYS_CTL_MUX3                          | 3-19 |
|     | 3.18            | INPUT MUX CONTROL REGISTER - HAL_DICE3_SYS_CTL_INMUX                     | 3-20 |
|     | 3.19            | AUDIO SOURCE INPUT CONTROL REGISTER - HAL_DICE3_SYS_CTL_AUDIOALT         | 3-21 |
|     | 3.20            | MPMC FEEDBACK CLOCK CONTROL REGISTER - HAL_DICE3_SYS_CTL_MPMC_FB         |      |
|     | 3.21            | CPU RESET STATUS REGISTER - HAL_DICE3_SYS_CTL_RST_STAT                   | 3-23 |
|     | 3.22            | PUMP POLARITY CONTROL REGISTER - HAL_DICE3_SYS_CTL_PUMP_POL              | 3-23 |
|     | 3.23            | USB TUNE OVERWRITE REGISTER - HAL_DICE3_SYS_CTL_USB_TUNE_SET             | 3-24 |
|     | 3.24            | REVISIONS                                                                | 3-26 |
| Lis | ST OF TA        | BLES                                                                     |      |
| T/  | ABLE <b>3.1</b> | System Control Module base address                                       | 3-6  |
| T/  | ABLE 3.2        | System Control Module register summary                                   | 3-6  |
| T/  | ABLE 3.3        | CPU PLL CONTROL REGISTER BIT ASSIGNMENTS.                                | 3-7  |
| T/  | ABLE 3.4        | System Clock Control Register bit assignments                            | 3-7  |
| T/  | ABLE 3.5        | CPU CLOCK CONTROL REGISTER BIT ASSIGNMENTS                               | 3-8  |
| T/  | ABLE 3.6        | SDIO CLOCK CONTROL REGISTER BIT ASSIGNMENTS                              | 3-9  |
|     |                 | ADC CLOCK CONTROL REGISTER BIT ASSIGNMENTS                               |      |
| T/  | ABLE 3.8        | JET PLL <sup>TM</sup> CLOCK CONTROL REGISTER BIT ASSIGNMENTS             | 3-10 |
| T/  | ABLE 3.9        | AUDIO CLOCK CONTROL REGISTER BIT ASSIGNMENTS                             | 3-11 |
| T/  | ABLE 3.1        | O SOFTWARE RESET SET REGISTER BIT ASSIGNMENTS                            | 3-12 |
| T/  | ABLE 3.1        | 1 SOFTWARE RESET CLEAR REGISTER BIT ASSIGNMENTS                          | 3-13 |
| T   | ABLE 3.1        | 2 CHIP ID REGISTER BIT ASSIGNMENTS                                       | 3-14 |
|     |                 | 3 BOND OPTION REGISTER BIT ASSIGNMENTS                                   |      |
| T/  | ABLE 3.1        | 4 Mux Control Port Signal options                                        | 3-15 |
| T/  | ABLE 3.1        | 5 Mux Control 0 Register bit assignments                                 | 3-16 |
|     |                 | 6 Mux Control 1 Register bit assignments                                 |      |
|     |                 | 7 Mux Control 2 Register bit assignments                                 |      |
| TA  | ABLE 3.1        | 8 Mux Control 3 Register bit assignments                                 | 3-19 |
| T   | ABLE 3.1        | 9 INPUT MUX CONTROL REGISTER BIT ASSIGNMENTS                             | 3-20 |



5/6/2015

| Table 3.20 Audio Source Input Control Register bit assignments  | 3-21 |
|-----------------------------------------------------------------|------|
| Table 3.21 Alternate audio function options                     | 3-22 |
| TABLE 3.22 MPMC FEEDBACK CLOCK CONTROL REGISTER BIT ASSIGNMENTS | 3-22 |
| Table 3.23 CPU Reset Status Register bit assignments            | 3-23 |
| TABLE 3.24 PUMP POLARITY CONTROL REGISTER BIT ASSIGNMENTS       | 3-23 |
| TABLE 3.25 USB TUNE OVERWRITE REGISTER BIT ASSIGNMENTS          | 3-24 |
| Table 3.26 Document revision history                            | 3-26 |
| LIST OF FIGURES                                                 |      |
| FIGURE 1, CLOCKS                                                | 3-4  |
| FIGURE 2, CLOCKS                                                | 3-4  |
| FIGURE 2 CLOCKS                                                 | 2_5  |



# 3 System Control

#### 3.1 Overview



Figure 1, Clocks



Figure 2, Clocks





Figure 3, Clocks

# 3.2 Module Configuration

The System Control module is addressed through 1 base address:

**Table 3.1 System Control Module base address** 

| Base address | Description                        |
|--------------|------------------------------------|
| 0xC9000000   | HAL_DICE3_SYS_CTL - System Control |

**Table 3.2 System Control Module register summary** 

| Address<br>Offset | Register                       | Description                                 |
|-------------------|--------------------------------|---------------------------------------------|
| 0x0000            | HAL_DICE3_SYS_CTL_CPU_PLL      | CPU PLL Control Register                    |
| 0x0008            | HAL_DICE3_SYS_CTL_SYS_CLK      | System Clock Control Register               |
| 0x000C            | HAL_DICE3_SYS_CTL_CPU_CLK      | CPU Clock Control Register                  |
| 0x0010            | HAL_DICE3_SYS_CTL_SDIO_CLK     | SDIO Clock Control Register                 |
| 0x0014            | HAL_DICE3_SYS_CTL_ADC_CLK      | ADC Clock Control Register                  |
| 0x0018            | HAL_DICE3_SYS_CTL_JET_CLK      | JET PLL <sup>™</sup> Clock Control Register |
| 0x001C            | HAL_DICE3_SYS_CTL_AUDIO_CLK    | Audio Clock Control Register                |
| 0x0020            | HAL_DICE3_SYS_CTL_RESET_SET    | Software Reset Set Register                 |
| 0x0024            | HAL_DICE3_SYS_CTL_RESET_CLR    | Software Reset Clear Register               |
| 0x0028            | HAL_DICE3_SYS_CTL_CHIP_ID      | Chip ID Register                            |
| 0x002C            | HAL_DICE3_SYS_CTL_BOND_TYPE    | Bond Option Register                        |
| 0x0030            | HAL_DICE3_SYS_CTL_MUX0         | MUX Control 0 Register                      |
| 0x0034            | HAL_DICE3_SYS_CTL_MUX1         | MUX Control 1 Register                      |
| 0x0038            | HAL_DICE3_SYS_CTL_MUX2         | MUX Control 2 Register                      |
| 0x003C            | HAL_DICE3_SYS_CTL_MUX3         | MUX Control 3 Register                      |
| 0x0040            | HAL_DICE3_SYS_CTL_INMUX        | Input MUX Control Register                  |
| 0x0044            | HAL_DICE3_SYS_CTL_AUDIOALT     | Audio Source Input Control Register         |
| 0x0048            | HAL_DICE3_SYS_CTL_MPMC_FB      | MPMC Feedback Clock Control Register        |
| 0x0050            | HAL_DICE3_SYS_CTL_RST_STAT     | CPU Reset Status Register                   |
| 0x0054            | HAL_DICE3_SYS_CTL_PUMP_POL     | Pump Polarity Control Register              |
| 0x0058            | HAL_DICE3_SYS_CTL_USB_TUNE_SET | USB Tune Overwrite Register                 |

#### 3.3 CPU PLL Control Register – HAL\_DICE3\_SYS\_CTL\_CPU\_PLL

Address: 0xC900\_0000 HAL\_DICE3\_SYS\_CTL\_CPU\_PLL



**Table 3.3 CPU PLL Control Register bit assignments** 

| Name     | Bit   | Reset | Dir | Description                                                                                                |
|----------|-------|-------|-----|------------------------------------------------------------------------------------------------------------|
| KEY      | 31:16 | 0     | R/W | To write to the HAL_DICE3_SYS_CTL_CPU_PLL register, the upper 16 KEY bits must contain 0xabcd. Reads zero. |
| PLL_EN   | 15    | 0     | R/W | 0: PLL clock disabled 1: PLL clock enabled                                                                 |
| Reserved | 14:12 | 0     | N/A | Reserved                                                                                                   |
| PLL_DIV  | 11:8  | 0     | R/W | Set to achieve the desired frequency                                                                       |
| PLL_MUL  | 7:0   | 0     | R/W | Set to achieve the desired frequency                                                                       |

#### 3.4 System Clock Control Register - HAL\_DICE3\_SYS\_CTL\_SYS\_CLK

Address: 0xC900\_0008 HAL\_DICE3\_SYS\_CTL\_SYS\_CLK



**Table 3.4 System Clock Control Register bit assignments** 



| Name        | Bit   | Reset | Dir | Description                                                                                                  |
|-------------|-------|-------|-----|--------------------------------------------------------------------------------------------------------------|
| KEY         | 31:16 | 0     | R/W | To write to the HAL_DICE3_SYS_CTL_SYS_CLK register, the upper 16 KEY bits must contain 0xabcd. Reads zero.   |
| SYS_CLK_EN  | 15    | 0     | R/W | 0: System clock disabled 1: System clock enabled                                                             |
| Reserved    | 14:6  | 0     | N/A | Reserved                                                                                                     |
| SYS_CLK_SEL | 5:4   | 0     | R/W | System clock source select 00: 1394PHY 01: PLLCLKOUT1 10: PLLCLKOUT2 11: Reserved                            |
| SYS_CLK_N   | 3:0   | 0     | R/W | Set to achieve the desired frequency when PLL is selected as a source. Valid values are 0/1/2/4/6/8/10/12/14 |

# 3.5 CPU Clock Control Register - HAL\_DICE3\_SYS\_CTL\_CPU\_CLK

Address: 0xC900\_000C HAL\_DICE3\_SYS\_CTL\_CPU\_CLK



**Table 3.5 CPU Clock Control Register bit assignments** 

| Name       | Bit   | Reset | Dir | Description                                                                                                  |
|------------|-------|-------|-----|--------------------------------------------------------------------------------------------------------------|
| KEY        | 31:16 | 0     | R/W | To write to the HAL_DICE3_SYS_CTL_CPU_CLK register, the upper 16 KEY bits must contain 0xabcd. Reads zero.   |
| CPU_CLK_EN | 15    | 0     | R/W | CPU clock source select 0: Oscillator 1: PLL                                                                 |
| Reserved   | 14:4  | 0     | N/A | Reserved                                                                                                     |
| CPU_CLK_N  | 3:0   | 0     | R/W | Set to achieve the desired frequency when PLL is selected as a source. Valid values are 0/1/2/4/6/8/10/12/14 |

# 3.6 SDIO Clock Control Register - HAL\_DICE3\_SYS\_CTL\_SDIO\_CLK

Address: 0xC900\_0010 HAL\_DICE3\_SYS\_CTL\_SDIO\_CLK



**Table 3.6 SDIO Clock Control Register bit assignments** 

| Name        | Bit   | Reset | Dir | Description                                                                                                 |
|-------------|-------|-------|-----|-------------------------------------------------------------------------------------------------------------|
| KEY         | 31:16 | 0     | R/W | To write to the HAL_DICE3_SYS_CTL_SDIO_CLK register, the upper 16 KEY bits must contain 0xabcd. Reads zero. |
| SDIO_CLK_EN | 15    | 0     | R/W | SDIO clock gater<br>0: SDIO clock gated<br>1: SDIO clock enabled                                            |
| Reserved    | 14:0  | 0     | N/A | Reserved                                                                                                    |

### 3.7 ADC Clock Control Register - HAL\_DICE3\_SYS\_CTL\_ADC\_CLK

Address: 0xC900\_0014 HAL\_DICE3\_SYS\_CTL\_ADC\_CLK



**Table 3.7 ADC Clock Control Register bit assignments** 

| Name       | Bit   | Reset | Dir | Description                                                                                                |
|------------|-------|-------|-----|------------------------------------------------------------------------------------------------------------|
| KEY        | 31:16 | 0     | R/W | To write to the HAL_DICE3_SYS_CTL_ADC_CLK register, the upper 16 KEY bits must contain 0xabcd. Reads zero. |
| ADC_CLK_EN | 15    | 0     | R/W | ADC clock gater<br>0: ADC clock gated<br>1: ADC clock enabled                                              |

| Name     | Bit  | Reset | Dir | Description |
|----------|------|-------|-----|-------------|
| Reserved | 14:0 | 0     | N/A | Reserved    |

# 3.8 Jet PLL<sup>™</sup> Clock Control Register - HAL\_DICE3\_SYS\_CTL\_JET\_CLK

Address: 0xC900\_0018 HAL\_DICE3\_SYS\_CTL\_JET\_CLK



**Table 3.8 Jet PLL<sup>™</sup> Clock Control Register bit assignments** 

| Name        | Bit   | Reset | Dir | Description                                                                                                  |
|-------------|-------|-------|-----|--------------------------------------------------------------------------------------------------------------|
| KEY         | 31:16 | 0     | R/W | To write to the HAL_DICE3_SYS_CTL_JET_CLK register, the upper 16 KEY bits must contain 0xabcd. Reads zero.   |
| JET_CLK_EN  | 15    | 0     | R/W | 0: clock disabled<br>1: clock enabled                                                                        |
| Reserved    | 14:6  | 0     | N/A | Reserved                                                                                                     |
| JET_CLK_SEL | 5:4   | 0     | R/W | Jet clock source select 0: 1394PCLK 1: PLLCLKOUT1 2: PLLCLKOUT2 3: External Jet                              |
| JET_CLK_N   | 3:0   | 0     | R/W | Set to achieve the desired frequency when PLL is selected as a source. Valid values are 0/1/2/4/6/8/10/12/14 |

#### 3.9 Audio Clock Control Register - HAL\_DICE3\_SYS\_CTL\_AUDIO\_CLK

Address: 0xC900\_001C HAL\_DICE3\_SYS\_CTL\_AUDIO\_CLK



**Table 3.9 Audio Clock Control Register bit assignments** 

| Name     | Bit   | Reset | Dir | Description                                                                                                                             |
|----------|-------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| KEY      | 31:16 | 0     | R/W | To write to the HAL_DICE3_SYS_CTL_<br>AUDIO_CLK register, the upper 16 KEY<br>bits must contain 0xabcd. Reads zero.                     |
| 2048EN   | 15    | 0     | R/W | 0: clock disabled 1: clock enabled                                                                                                      |
| Reserved | 14:13 | 0     | N/A | Reserved                                                                                                                                |
| VCO_PD   | 12    | 0     | R/W | Sets Jet PLL <sup>TM</sup> to sleep if not used to reduce noise.  0: VCO PLL active  1: PLL sleep signal is on (shuts down PLL buffers) |
| Reserved | 11:9  | 0     | N/A | Reserved                                                                                                                                |
| 2048EXT  | 8     | 0     | R/W | F2048 Clock source select 0: VCO 1: External                                                                                            |
| 1024EN   | 7     | 0     | R/W | 0: Clock disabled<br>1: Clock enabled                                                                                                   |
| Reserved | 6:2   | 0     | N/A | Reserved                                                                                                                                |
| CLK_SEL  | 1:0   | 0     | R/W | 0: VCODiv2 1: External 2: ExternalDiv2 3: Reserved                                                                                      |

# 3.10 Software Reset Set Register - HAL\_DICE3\_SYS\_CTL\_RESET\_SET

Address: 0xC900\_0020 HAL\_DICE3\_SYS\_CTL\_RESET\_SET

To generate software reset for any of the following blocks, write 1 to the corresponding bit in this register. Writing "0" has no effect on the register content or block operation. To return to normal operation, write "1" to the corresponding bits in the HAL\_DICE3\_SYS\_CTL\_RESET\_CLR register. Bits return the corresponding current status when read.



**Table 3.10 Software Reset Set Register bit assignments** 

| Name         | Bit   | Reset | Dir | Description                                         |
|--------------|-------|-------|-----|-----------------------------------------------------|
| Reserved     | 31:16 | 0     | N/A | Reserved                                            |
| Reserved     | 15:9  | 0     | N/A | Reserved                                            |
| RESET_ADC    | 8     | 1     | R/W | ADC block is in reset                               |
| RESET_USBPHY | 7     | 1     | R/W | Software reset is generated for USB 60MHz domain    |
| RESET_JET    | 6     | 1     | R/W | Software reset is generated for Jet clock domain    |
| RESET_AUDIO  | 5     | 1     | R/W | Software reset is generated for Audio clock domain  |
| RESET_SYS    | 4     | 1     | R/W | Software reset is generated for System clock domain |
| RESET_ETHRX  | 3     | 1     | R/W | RGMII is reset by software                          |
| RESET_ETHTX  | 2     | 1     | R/W | Ethernet software reset is generated                |
| RESET_USBCTL | 1     | 1     | R/W | Software reset is set for USB 12MHz domain          |
| RESET_CPU    | 0     | 0     | R/W | Software reset is programmed                        |

#### 3.11 Software Reset Clear Register - HAL\_DICE3\_SYS\_CTL\_RESET\_CLR

Address: 0xC900\_0024 HAL\_DICE3\_SYS\_CTL\_RESET\_CLR

Bits for each block return the corresponding current status when read.



**Table 3.11 Software Reset Clear Register bit assignments** 

| Name         | Bit  | Reset | Dir | Description                                         |
|--------------|------|-------|-----|-----------------------------------------------------|
| Reserved     | 31:9 | 0     | N/A | Reserved                                            |
| RESET_ADC    | 8    | 1     | R/W | ADC block is in reset                               |
| RESET_USBPHY | 7    | 1     | R/W | Software reset is generated for USB 60MHz domain    |
| RESET_JET    | 6    | 1     | R/W | Software reset is generated for Jet clock domain    |
| RESET_AUDIO  | 5    | 1     | R/W | Software reset is generated for Audio clock domain  |
| RESET_SYS    | 4    | 1     | R/W | Software reset is generated for System clock domain |
| RESET_ETHRX  | 3    | 1     | R/W | RGMII is reset by software                          |
| RESET_ETHTX  | 2    | 1     | R/W | Ethernet software reset is generated                |
| RESET_USBCTL | 1    | 1     | R/W | Software reset is set for USB 12MHz domain          |
| RESET_CPU    | 0    | 0     | R/W | Software reset is programmed                        |

#### 3.12 Chip ID Register - HAL\_DICE3\_SYS\_CTL\_CHIP\_ID

Address: 0xC900\_0028 HAL\_DICE3\_SYS\_CTL\_CHIP\_ID





Table 3.12 Chip ID Register bit assignments

| Name    | Bit  | Reset | Dir | Description   |
|---------|------|-------|-----|---------------|
| CHIP_ID | 31:0 | 0     | R   | Chip revision |

# 3.13 Bond Option Register - HAL\_DICE3\_SYS\_CTL\_BOND\_TYPE

Address: 0xC900\_002C HAL\_DICE3\_SYS\_CTL\_BOND\_TYPE



**Table 3.13 Bond Option Register bit assignments** 

| Name      | Bit  | Reset | Dir | Description                                |
|-----------|------|-------|-----|--------------------------------------------|
| Reserved  | 31:3 | 0     | N/A | Reserved                                   |
|           |      |       |     | 000: TCD3000, DICEIII USB 4x4              |
|           |      |       |     | 001: Reserved                              |
|           |      |       |     | 010: TCD3020, DICEIII USB 18x18            |
| DOND TYPE | 2.0  |       | D   | 011: Reserved                              |
| BOND_TYPE | 2:0  |       | R   | 100: TCD3040, DICEIII AVB, USB 18x18       |
|           |      |       |     | 101: Reserved                              |
|           |      |       |     | 110: Reserved                              |
|           |      |       |     | 111: TCD3070, DICEIII 1394, USB 18x18, AVB |

#### 3.14 Mux Control 0 Register - HAL\_DICE3\_SYS\_CTL\_MUX0

Address: 0xC900\_0030 HAL\_DICE3\_SYS\_CTL\_MUX0

The functions of some pins are programmable. The HAL\_DICE3\_SYS\_CTL\_MUXn registers are used to configure these multi-function pins.

**Table 3.14 Mux Control Port Signal options** 

| Option | Resulting Port Function                                           |
|--------|-------------------------------------------------------------------|
| 0      | Either InS in, InS out, or Audio clocks out                       |
| 1      | Always PWM output                                                 |
| 2      | S/PDIF output, only valid for some ports                          |
| 3      | ADAT0 or ADAT1 output, only valid for some ports                  |
| 4      | GPIO output, all pins are always GPIO inputs                      |
| 5      | UART1 output, only valid for some pins                            |
| 6      | SPI in or out, different function for different pins              |
| 7      | I <sup>2</sup> C in or out, different function for different pins |

Table 3.14 is a general reference for assigning functionality for the various multifunction port pins. See the APort MUX Section of the DICEIII TCD30xx\_Hardware\_Guide for detailed function options for each APort pin.



**Table 3.15 Mux Control 0 Register bit assignments** 

| Name     | Bit   | Reset | Dir | Description        |
|----------|-------|-------|-----|--------------------|
| Reserved | 31    | 0     | N/A | Reserved           |
| P7       | 30:28 | 0     | R/W | Port 7 pin control |
| Reserved | 27    | 0     | N/A | Reserved           |
| P6       | 26:24 | 0     | R/W | Port 6 pin control |
| Reserved | 23    | 0     | N/A | Reserved           |
| P5       | 22:20 | 0     | R/W | Port 5 pin control |
| Reserved | 19    | 0     | N/A | Reserved           |
| P4       | 18:16 | 0     | R/W | Port 4 pin control |
| Reserved | 15    | 0     | N/A | Reserved           |
| P3       | 14:12 | 0     | R/W | Port 3 pin control |
| Reserved | 11    | 0     | N/A | Reserved           |
| P2       | 10:8  | 0     | R/W | Port2 pin control  |
| Reserved | 7     | 0     | N/A | Reserved           |
| P1       | 6:4   | 0     | R/W | Port 1 pin control |
| Reserved | 3     | 0     | N/A | Reserved           |
| P0       | 2:0   | 0     | R/W | Port 0 pin control |

### 3.15 Mux Control 1 Register - HAL\_DICE3\_SYS\_CTL\_MUX1

Address: 0xC900\_0034 HAL\_DICE3\_SYS\_CTL\_MUX1

The functions of some pins are programmable. The HAL\_DICE3\_SYS\_CTL\_MUXn registers are used to configure these multi-function pins. Table 3.14 is a general reference for assigning functionality for the various multifunction port pins. See the APort MUX Section of the DICEIII TCD30xx\_Hardware\_Guide for detailed function options for each APort pin.



Table 3.16 Mux Control 1 Register bit assignments

| Name     | Bit   | Reset | Dir | Description         |
|----------|-------|-------|-----|---------------------|
| Reserved | 31    | 0     | N/A | Reserved            |
| P15      | 30:28 | 0     | R/W | Port 15 pin control |
| Reserved | 27    | 0     | N/A | Reserved            |
| P14      | 26:24 | 0     | R/W | Port 14 pin control |
| Reserved | 23    | 0     | N/A | Reserved            |
| P13      | 22:20 | 0     | R/W | Port 13 pin control |
| Reserved | 19    | 0     | N/A | Reserved            |
| P12      | 18:16 | 0     | R/W | Port 12 pin control |
| Reserved | 15    | 0     | N/A | Reserved            |
| P11      | 14:12 | 0     | R/W | Port 11 pin control |
| Reserved | 11    | 0     | N/A | Reserved            |
| P10      | 10:8  | 0     | R/W | Port 10 pin control |
| Reserved | 7     | 0     | N/A | Reserved            |
| P9       | 6:4   | 0     | R/W | Port 9 pin control  |
| Reserved | 3     | 0     | N/A | Reserved            |
| P8       | 2:0   | 0     | R/W | Port 8 pin control  |

#### 3.16 Mux Control 2 Register - HAL\_DICE3\_SYS\_CTL\_MUX2

Address: 0xC900\_0038 HAL\_DICE3\_SYS\_CTL\_MUX2

The functions of some pins are programmable. The HAL\_DICE3\_SYS\_CTL\_MUXn registers are used to configure these multi-function pins. Table 3.14 is a general reference for assigning functionality for the various multifunction port pins. See the APort MUX Section of the DICEIII TCD30xx\_Hardware\_Guide for detailed function options for each APort pin.



Table 3.17 Mux Control 2 Register bit assignments

| Name     | Bit   | Reset | Dir | Description         |
|----------|-------|-------|-----|---------------------|
| Reserved | 31    | 0     | N/A | Reserved            |
| P23      | 30:28 | 0     | R/W | Port 23 pin control |
| Reserved | 27    | 0     | N/A | Reserved            |
| P22      | 26:24 | 0     | R/W | Port 22 pin control |
| Reserved | 23    | 0     | N/A | Reserved            |
| P21      | 22:20 | 0     | R/W | Port 21 pin control |
| Reserved | 19    | 0     | N/A | Reserved            |
| P20      | 18:16 | 0     | R/W | Port 20 pin control |
| Reserved | 15    | 0     | N/A | Reserved            |
| P19      | 14:12 | 0     | R/W | Port19 pin control  |
| Reserved | 11    | 0     | N/A | Reserved            |

| Name     | Bit  | Reset | Dir | Description         |
|----------|------|-------|-----|---------------------|
| P18      | 10:8 | 0     | R/W | Port 17 pin control |
| Reserved | 7    | 0     | N/A | Reserved            |
| P17      | 6:4  | 0     | R/W | Port17 pin control  |
| Reserved | 3    | 0     | N/A | Reserved            |
| P16      | 2:0  | 0     | R/W | Port 16 pin control |

#### 3.17 Mux Control 3 Register - HAL\_DICE3\_SYS\_CTL\_MUX3

Address: 0xC900\_003C HAL\_DICE3\_SYS\_CTL\_MUX3

The functions of some pins are programmable. The HAL\_DICE3\_SYS\_CTL\_MUXn registers are used to configure these multi-function pins. Table 3.14 is a general reference for assigning functionality for the various multifunction port pins. See the APort MUX Section of the DICEIII TCD30xx\_Hardware\_Guide for detailed function options for each APort pin.



Table 3.18 Mux Control 3 Register bit assignments

| Name     | Bit   | Reset | Dir | Description         |
|----------|-------|-------|-----|---------------------|
| Reserved | 31    | 0     | N/A | Reserved            |
| P31      | 30:28 | 0     | R/W | Port 31 pin control |
| Reserved | 27    | 0     | N/A | Reserved            |

| Name     | Bit   | Reset | Dir | Description         |
|----------|-------|-------|-----|---------------------|
| P30      | 26:24 | 0     | R/W | Port 30 pin control |
| Reserved | 23    | 0     | N/A | Reserved            |
| P29      | 22:20 | 0     | R/W | Port 29 pin control |
| Reserved | 19    | 0     | N/A | Reserved            |
| P28      | 18:16 | 0     | R/W | Port 28 pin control |
| Reserved | 15    | 0     | N/A | Reserved            |
| P27      | 14:12 | 0     | R/W | Port 27 pin control |
| Reserved | 11    | 0     | N/A | Reserved            |
| P26      | 10:8  | 0     | R/W | Port 26 pin control |
| Reserved | 7     | 0     | N/A | Reserved            |
| P25      | 6:4   | 0     | R/W | Port 25 pin control |
| Reserved | 3     | 0     | N/A | Reserved            |
| P24      | 2:0   | 0     | R/W | Port 24 pin control |

#### 3.18 Input Mux Control Register - HAL\_DICE3\_SYS\_CTL\_INMUX

Address: 0xC900\_0040 HAL\_DICE3\_SYS\_CTL\_INMUX



**Table 3.19 Input Mux Control Register bit assignments** 

|--|

| Name     | Bit   | Reset | Dir | Description                                                                 |
|----------|-------|-------|-----|-----------------------------------------------------------------------------|
| Reserved | 31:29 | 0     | N/A | Reserved                                                                    |
| IRDA     | 28    | 0     | R/W | 0: UART1 uses regular signals 1: UART1 uses IRDA signals                    |
| JET      | 27:24 | 0     | R/W | Chose the source of JetExt pins from IO Mux ports                           |
| UART1    | 23:30 | 0     | R/W | The port the signal is taken from is 2* uart1_in_sel +1. This is 1, 3, 5 31 |
| Reserved | 19    | 0     | N/A | Reserved                                                                    |
| WCLK1    | 18:16 | 0     | R/W | The port the signal is taken from is 4*wclk1_in_sel+3. This is 3, 7, 11 31. |
| Reserved | 15    | 0     | N/A | Reserved                                                                    |
| WCLK0    | 14:12 | 0     | R/W | The port the signal is taken from is 4*wclk0_in_sel+1. This is 1, 5, 9 29.  |
| Reserved | 11    | 0     | N/A | Reserved                                                                    |
| ADAT1    | 10:8  | 0     | R/W | The port the signal is taken from is 4*adat1_in_sel+3. This is 3, 7, 11 31. |
| Reserved | 7     | 0     | N/A | Reserved                                                                    |
| ADAT0    | 6:4   | 0     | R/W | The port the signal is taken from is 4*adat0_in_sel+1. This is 1, 5, 9 29.  |
| Reserved | 3     | 0     | N/A | Reserved                                                                    |
| SPDIF    | 2:0   | 0     | R/W | The port the signal is taken from is 2*spdif_in_sel+1. This is 1, 3, 5 31.  |

# 3.19 Audio Source Input Control Register - HAL\_DICE3\_SYS\_CTL\_AUDIOALT

Address: 0xC900\_0044 HAL\_DICE3\_SYS\_CTL\_AUDIOALT



**Table 3.20 Audio Source Input Control Register bit assignments** 

| Name     | Bit  | Reset | Dir | Description |
|----------|------|-------|-----|-------------|
| Reserved | 31:7 | 0     | N/A | Reserved    |

|          |     |       |     | <u> </u>                                                                     |
|----------|-----|-------|-----|------------------------------------------------------------------------------|
| Name     | Bit | Reset | Dir | Description                                                                  |
| AUDIOALT | 6:0 | 0     | R/W | Selects the alternate audio function audio inputs from Port pins. See below. |

Table 3.21 Alternate audio function options

| Option | Resulting Audio Function |
|--------|--------------------------|
| 0x00   | None                     |
| 0x01   | A0 WCLK                  |
| 0x02   | A16 BCLK1                |
| 0x04   | A17 MCLK1                |
| 0x08   | A18 FCLK1                |
| 0x10   | A24 MCLK2                |
| 0x20   | A30 WCLK                 |
| 0x40   | A31 CLK2                 |

# 3.20 MPMC Feedback Clock Control Register - HAL\_DICE3\_SYS\_CTL\_MPMC\_FB

Address: 0xC900\_0048 HAL\_DICE3\_SYS\_CTL\_MPMC\_FB



**Table 3.22 MPMC Feedback Clock Control Register bit assignments** 

| Name     | Bit  | Reset | Dir | Description                             |
|----------|------|-------|-----|-----------------------------------------|
| Reserved | 31:3 | 0     | N/A | Reserved                                |
|          |      |       |     | Selects source MPMC clock signals       |
|          |      |       |     | 00: clock is fed by EBI input           |
| FB_SEL   | 2:0  | 0     | R/W | 01: clock is fed by inverted EBI input  |
|          |      |       |     | 10: clock is fed by EBI output          |
|          |      |       |     | 11: clock is fed by inverted EBI output |

#### 3.21 CPU Reset Status Register - HAL\_DICE3\_SYS\_CTL\_RST\_STAT

Address: 0xC900\_0050 HAL\_DICE3\_SYS\_CTL\_RST\_STAT



Table 3.23 CPU Reset Status Register bit assignments

| Name        | Bit  | Reset | Dir | Description                                     |
|-------------|------|-------|-----|-------------------------------------------------|
| Reserved    | 31:5 | 0     | N/A | Reserved                                        |
| RST_STAT_WD | 4    | 0     | R/W | System reset was caused by the WatchDog         |
| Reserved    | 3:1  | 0     | N/A | Reserved                                        |
| RST_STAT_SW | 0    | 0     | R/W | System reset was caused by a CPU software reset |

Both bits are reset by PowerOn reset or cleared by software writing "1" to a specific bit. Software should not clear these bits right after set, otherwise the incorrect status will be reflected after reset occurred.

#### 3.22 Pump Polarity Control Register - HAL\_DICE3\_SYS\_CTL\_PUMP\_POL

Address: 0xC900\_0054 HAL\_DICE3\_SYS\_CTL\_PUMP\_POL



**Table 3.24 Pump Polarity Control Register bit assignments** 

| Name     | Bit  | Reset | Dir | Description |
|----------|------|-------|-----|-------------|
| Reserved | 31:5 | 0     | N/A | Reserved    |



| Name        | Bit | Reset | Dir                                               | Description                                       |
|-------------|-----|-------|---------------------------------------------------|---------------------------------------------------|
| PUMP POL UP | 4   | 0     | 0: Pump Up signal is active high at VCO PLL input |                                                   |
|             | 7   | O     | R/W<br>N/A                                        | 1: Pump Up signal is active low at VCO PLL input  |
| Reserved    | 3:1 | 0     | N/A                                               | Reserved                                          |
| PUMP POL DN | 0   | 0     | D /\\/                                            | 0: n_pump_down is active low at the VCO PLL input |
| TOME TOLDN  | U   | U     | r/VV                                              | 1: n_pump_down is active high at VCO PLL input    |

### 3.23 USB Tune Overwrite Register - HAL\_DICE3\_SYS\_CTL\_USB\_TUNE\_SET

Address: 0xC900\_0058 HAL\_DICE3\_SYS\_CTL\_USB\_TUNE\_SET



**Table 3.25 USB Tune Overwrite Register bit assignments** 

| Name     | Bit   | Reset | Dir | Description |
|----------|-------|-------|-----|-------------|
| Reserved | 31:20 | 0     | N/A | Reserved    |
| COMPDIST | 19:17 | 3     | R/W | See below.  |
| OTG      | 16:14 | 3     | R/W | "           |
| SQRX     | 13:11 | 3     | R/W | n .         |
| TXFSLS   | 10:7  | 4     | R/W | "           |
| TXPRE    | 6     | 1     | R/W | n .         |
| TXRISE   | 5:4   | 2     | R/W | n .         |
| TXVREF   | 3:0   | 4     | R/W | n .         |

Default values after reset are the same as defaults defined in the USB PHY documentation. If software will change these values, it should be done while the USB PHY is held in Reset by



using the corresponding bit in the <u>HAL DICE3 SYS CTL RESET SET</u> register. The USB PHY should be brought out of reset for the values to take effect. These registers are for testing purposes and should be left at reset value.



# 3.24 Revisions

**Table 3.26 Document revision history** 

| Date        | Rev.        | Ву | Change              |
|-------------|-------------|----|---------------------|
| May 6, 2015 | 0.9.0-41360 | BK | Initial publication |
|             |             |    |                     |
|             |             |    |                     |