TO STREET	100	TL.	
课程	36.46	F. 1.	
100.Ze 1254 (br)	电压电路	62 LV 2	

复变函数

任课老师姓名:

卷面总分: 100 分 考试时长: 120 分钟 考试类别: 闭卷 日 开卷 日 其他 日

院(系): 数学科学学院 专业: 数学与应用数学

年级: 07 级

姓名:

题号	-	T = -	三	四一	fi	六	总分
得分							

阅卷老师(签字):

一. (10 分) 叙述函数 f(z) = u(x,y) + iv(x,y) 在一点 (复) 可导和解析的定义以及柯 西 - 黎曼 (Cauchy-Riemann) 条件且讨论函数 $f(z) = x^2 + iy^3$ 在何处 (复) 可导和解 析.

二 (25 分) (1) 叙述泰勒 (Taylor) 定理并将函数

$$\frac{z+2}{z^2-2z+5}$$

按 z-1 的幂展出,并指出其收敛半径.

(2) 叙述罗朗 (Laurent) 定理并将下列函数在指定圆环内展为罗朗级数:

 $\frac{z+1}{z^{10}(z^3-8)}, \frac{2 < |z| < +\infty}{2 < |z| < +\infty}$

没色数f(8)布众总的某一经成内 D(G, r)=女(8-A) Cr)内解不厅。 三(20分)叙述孤立奇点和本性奇点的定义并求下列各函数在复平面 C(不含∞点) 的孤立奇点、孤立奇点各属于哪一种类型(极点要指明阶数).

(a)
$$\frac{z-1}{z^4(z^2+1)}$$
; (b) $\frac{\cos z}{z^4\sin z}$.

(2) 求(a) 和(b) 中函数在孤立窃点 0点的留数.

画 (20分) 叙述留数定理并用留数定理计算定积分:

(1)
$$\int_{-\infty}^{+\infty} \frac{\cos x dx}{4+x^2}$$
; (2) $\int_{0}^{2\pi} \frac{d\theta}{1-2a\cos\theta+a^2}$ (0 < a < 1).