Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2016/2017

2. prednáška

Sémantika výrokovej logiky

27. februára 2017

Obsah 2. prednášky

Úyroková logika Syntax výrokovej logiky Sémantika výrokovej logiky Tautológie, splniteľnosť, ekvivalencia

Symboly jazyka výrokovej logiky

Definícia 3.1 (podľa 🕦 [Smullyan, 1979, I.1.1], rovnako ďalšie)

Symbolmi jazyka výrokovej logiky sú:

- výrokové premenné z nejakej nekonečnej spočítateľnej množiny $\mathcal{V} = \{p_1, p_2, \dots, p_n, \dots\}$, ktorej prvkami nie sú symboly \neg , \land , \lor , \rightarrow , (a), ani jej prvky tieto symboly neobsahujú;
- logické symboly (logické spojky): ¬, ∧, ∨, → (nazývané, v uvedenom poradí, "nie", "a", "alebo", "ak ..., tak ...");
- pomocné symboly: (a) (ľavá zátvorka a pravá zátvorka).

Spojka ¬ je *unárna* (má jeden argument). Spojky \land , \lor , \rightarrow sú binárne (majú dva argumenty).

Dohoda

Výrokové premenné budeme *označovať* písmenami p, q, ..., podľa potreby aj s dolnými indexmi.

Formuly výrokovej logiky

Definícia 3.2

Formulou výrokovej logiky (skrátene formulou) nad množinou výrokových premenných \mathcal{V} je postupnosť symbolov vytvorená podľa nasledovných pravidiel:

- Každá výroková premenná je formulou (voláme ju atomická f.).
- Ak A je formulou, tak aj $\neg A$ je formulou (negácia formuly A).
- Ak A a B sú formulami, tak aj $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formulami (konjunkcia, disjunkcia, implikácia formúl A a B).

Nič iné nie je formulou.

Dohoda

Formuly označujeme veľkými písmenami A, B, C, X, Y, Z, podľa potreby s indexmi. Množinu všetkých formúl označíme \mathcal{E} .

Formula je matematickou formalizáciou zloženého výroku.

Definícia pomocou vytvárajúcej postupnosti

Definícia 3.3

Vytvárajúcou postupnosťou je ľubovoľná konečná postupnosť, ktorej každý člen je výroková premenná, alebo má tvar $\neg A$, pričom A je nejaký predchádzajúci člen postupnosti, alebo má jeden z tvarov $(A \wedge B)$, $(A \vee B)$, $(A \rightarrow B)$, kde A a B sú nejaké predchádzajúce členy postupnosti.

Definícia 3.4

Postupnosť symbolov A je formula, ak existuje vytvárajúca postupnosť, ktorej posledným prvkom je A. Túto postupnosť voláme tiež vytvárajúca postupnosť pre A.

Príklad 3.5

Nájdime vytvárajúcu postupnosť pre formulu $(\neg p \rightarrow (p \lor q))$.

Spomeňte si II.1

Ktoré z nasledujúcich postupností symbolov sú formulami nad množinou výrokových premenných $V = \{p, q, r, \ldots\}$?

A:
$$(p \vee \neg q \vee \neg r)$$
,

A:
$$(p \lor \neg q \lor \neg r)$$
, B: $(p \land \neg (q \to r))$, C: $\neg (\neg (\neg p))$.

C:
$$\neg(\neg(\neg p))$$

Jednoznačnosť rozkladu formúl výrokovej logiky

Tvrdenie 3.6 (o jednoznačnosti rozkladu)

Pre každú formulu X platí práve jedna z nasledujúcich možností:

- X je výroková premenná.
- Existuje práve jedna formula A taká, že $X = \neg A$.
- Existujú práve jedna dvojica formúl A, B a jedna spojka $b \in \{\land, \lor, \rightarrow\}$ také, že X = (A b B).

Príklad 3.7

Jednoznačnosť rozkladu by pri neopatrnej definícii formuly nemusela platiť. Nájdime takú definíciu "formuly" a "formulu", ktorá sa nedá jednoznačne rozložiť:

"Formulou" výrokovej logiky nad mn. výrok. prem. \mathcal{V} je postupnosť symbolov vytvorená podľa nasledovných pravidiel: ...

Vytvárajúci strom formuly

Definícia 3.8

Vytvárajúci strom pre formulu X je binárny strom T obsahujúci v každom vrchole formulu, pričom platí:

- v koreni T je formula X,
- ak vrchol obsahuje formulu ¬A, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce výrokové premenné sú listami.

Príklad 3.9

Nájdime vytvárajúci strom pre formulu

$$((p \land q) \rightarrow ((\neg p \lor \neg \neg q) \lor (q \rightarrow \neg p))).$$

Podformuly

Definícia 3.10 (Priama podformula)

- Priamou podformulou $\neg A$ je formula A.
- Priamymi podformulami $(A \wedge B)$, $(A \vee B)$ a $(A \rightarrow B)$ sú formuly A (l'avá priama podformula) a B (pravá priama podformula).

Definícia 3.11 (Podfo<u>rmula)</u>

Vzťah byť podformulou je najmenšia relácia na formulách spĺňajúca:

- Ak X je priamou podformulou Y, tak X je podformulou Y.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Príklad 3.12

Vymenujme priame podformuly a podformuly $((p \lor \neg q) \land \neg (q \to p))$.

Spomeňte si II.2

Sú nasledujúce tvrdenia pravdivé? Odpovedzte áno/nie.

- a) Vďaka jednoznačnosti rozkladu má každá formula práve jednu priamu podformulu.
- b) Postorderový výpis vytvárajúceho stromu formuly X je vytvárajúcou postupnosťou tejto formuly.

Stupeň formuly

Definícia 3.13 (Stupeň formuly [deg(X)])

- Výroková premenná je stupňa 0.
- Ak A je formula stupňa n, tak $\neg A$ je stupňa n+1.
- Ak A je formula stupňa n_1 a B je formula stupňa n_2 , tak $(A \wedge B)$, $(A \vee B)$ a $(A \rightarrow B)$ sú stupňa $n_1 + n_2 + 1$.

Definícia 3.13 (Stupeň formuly [deg(X)] stručne, symbolicky)

- deg(p) = 0 pre každú $p \in \mathcal{V}$,
- $\deg(\neg A) = \deg(A) + 1$ pre každú $A \in \mathcal{E}$,
- $\deg((A \land B)) = \deg((A \lor B)) = \deg((A \to B)) =$ deg(A) + deg(B) + 1 pre všetky $A, B \in \mathcal{E}$.

Príklad 3 14

Aký je stupeň formuly
$$((p \lor \neg q) \land \neg (q \to p))$$
?

J. Kľuka, J. Šiška Logika pre informatikov

Indukcia na stupeň formuly

Veta 3.15 (Princíp indukcie na stupeň formuly)

Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}$). Ak platí súčasne báza indukcie: každá formula stupňa 0 má vlastnosť P, indukčný krok: pre každú formulu X z predpokladu, že všetky formuly menšieho stupňa ako $\deg(X)$ majú vlastnosť P, vyplýva, že aj X má vlastnosť P, tak všetky formuly majú vlastnosť P ($P = \mathcal{E}$).

Príklad 3.16

Dokážme:

Množina všetkých formúl vo vytvárajúcom strome formuly X je rovná zjednoteniu množiny všetkých podformúl X s $\{X\}$.

Vyskúšajte si II.3

Stupeň formuly $((\neg p o q) \wedge q)$ je

Množina výrokových premenných formuly

Definícia 3.17 (Množina výrok. prem. formuly [vars(X)])

- Ak p je výroková premenná, množinou výrokových premenných atomickej formuly p je $\{p\}$.
- Ak V je množina výrokových premenných formuly A, tak V je tiež množinou výrok. prem. formuly $\neg A$.
- Ak V_1 je množina výrok, prem. formuly A a V_2 je množina výrok. prem. formuly B, tak $V_1 \cup V_2$ je množinou výrok. prem. formúl $(A \wedge B)$, $(A \vee B)$ a $(A \rightarrow B)$.

Definícia 3.17 (vars(X) stručnejšie)

- Ak p je výroková premenná, tak vars(p) = {p}.
- Ak A a B sú formuly, tak $vars(\neg A) = vars(A)$ a $vars((A \land B)) =$ $vars((A \lor B)) = vars((A \to B)) = vars(A) \cup vars(B)$.

Sémantika výrokovej logiky

- Syntax jazyka výrokovej logiky hovorí iba tom, ako sa zapisujú formuly ako postupnosti symbolov.
- Samé o sebe tieto postupnosti nemajú žiaden ďalší *význam*.
- Ten im dáva sémantika jazyka výrokovej logiky.
- Za význam výrokov považujeme ich pravdivostnú hodnotu.

- Výrokové premenné predstavujú jednoduché výroky.
- Ich význam (pravdivosť) nie je pevne daný.
- Môže závisieť od situácie, stavu sveta (Sára ide na párty, svieti slnko, zobral som si dáždnik, ...).
- Ako vieme programátorsky popísať pravdivosť výrokových premenných v nejakom stave sveta? A matematicky?

Definícia 3.18

Nech (t, f) je usporiadaná dvojica pravdivostných hodnôt, $t \neq f$, pričom hodnota t predstavuje pravdu a f nepravdu.

Ohodnotením množiny výrokových premenných \mathcal{V} nazveme každé zobrazenie v množiny \mathcal{V} do množiny $\{t, f\}$ (teda každú funkciu $v: \mathcal{V} \to \{t, f\}$).

Výroková premenná p je pravdivá pri ohodnotení v, ak v(p) = t. Výroková premenná p je nepravdivá pri ohodnotení v, ak v(p) = f.

Ohodnotenie výrokových premenných

Príklad 3 19

Zoberme $t \neq f$ (napr. t = 1, f = 0), $V = \{a, \dot{a}, \ddot{a}, ..., \dot{z}, 0, ..., 9, _\}^+$. Dnešné ráno by popísalo ohodnotenie v_1 množiny \mathcal{V} , kde (okrem iného):

$$v_1(\text{svieti_slnko}) = t$$
 $v_1(\text{zobral_som_si_dáždnik}) = f$

Minulotýždňové ráno opisuje ohodnotenie v_2 , kde okrem iného

$$v_2(\text{svieti_slnko}) = f$$
 $v_2(\text{zobral_som_si_dáždnik}) = f$

Jednu zo situácií v probléme pozývania kamarátov na párty by popísalo ohodnotenie, v ktorom (okrem iného):

$$v_3(sara) = t$$
 $v_3(kim) = f$ $v_3(jim) = t$

Prečo "okrem iného"?

- Na formulu sa dá pozerať ako na podmienku, ktorú stav sveta buď spĺňa (je v tomto stave pravdivá) alebo nespĺňa (je v ňom nepravdivá).
- Z pravdivostného ohodnotenia výrokových premenných v nejakom stave sveta, vieme jednoznačne povedať, ktoré formuly sú v tomto stave splnené.

Príklad 3.20

Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \dots, z\}^+$, také že

$$v_3(kim) = t$$
 $v_3(jim) = f$ $v_3(sara) = t$.

Spĺňa svet s týmto ohodnotením formulu (\neg jim $\rightarrow \neg$ sara)? Zoberieme vytvárajúcu postupnosť, prejdeme ju zľava doprava:

Formulu jim sara
$$\neg$$
jim \neg sara $(\neg$ jim $\rightarrow \neg$ sara)

ohodn. v_3 nespĺňa spĺňa spĺňa nespĺňa nespĺňa

Príklad 3.20 (pokračovanie)

$$v_3(kim) = t$$
 $v_3(jim) = f$ $v_3(sara) = t$.

Iná možnosť je použiť vytvárajúci strom:

$$(\neg \mathsf{jim} \to \neg \mathsf{sara}) - v_3 \; \mathsf{nesplňa}$$
 $v_3 \; \mathsf{splňa} - \neg \mathsf{jim} - \neg \mathsf{sara} - v_3 \; \mathsf{nesplňa}$
 $v_3 \; \mathsf{nesplňa} - \neg \mathsf{jim} + \neg \mathsf{sara} - v_3 \; \mathsf{splňa}$

Spĺňanie výrokových formúl – program

 Proces zisťovania, či ohodnotenie spĺňa formulu, vieme naprogramovať:

```
def satisfies (v, A):
  . . .
```

Veľmi podobne vieme zadefinovať splnenie matematicky.

Spĺňanie výrokových formúl – definícia

Definícia 3.21

Nech \mathcal{V} je množina výrokových premenných. Nech ν je ohodnotenie množiny \mathcal{V} . Pre všetky výrokové premenné $p z \mathcal{V}$ a všetky formuly A, B nad V definujeme:

- v spĺňa atomickú formulu p vtt v(p) = t;
- v spĺňa formulu ¬A vtt v nespĺňa A;
- v spĺňa formulu (A ∧ B) vtt v spĺňa A a v spĺňa B;
- v spĺňa formulu (A ∨ B) vtt v spĺňa A alebo v spĺňa B;
- v spĺňa formulu $(A \to B)$ vtt v nespĺňa A alebo v spĺňa B.

Dohoda

- Skratka vtt znamená vtedy a len vtedy, keď.
- Vzťah ohodnotenie v spĺňa formulu X skrátene zapisujeme $v \models X$, ohodnotenie v nespĺňa formulu X zapisujeme $v \not\models X$.
- Namiesto v (ne)spĺňa X hovoríme aj X je (ne)pravdivá pri v.

Spĺňanie výrokových formúl – príklad

Príklad 3.22

Nech v_3 je ohodnotenie množiny $\mathcal{V} = \{a, \dots, z\}^+$, také že

$$v_3(kim) = t$$
 $v_3(jim) = f$ $v_3(sara) = t$.

Zistime, ktoré z formúl

$$\begin{array}{c} \text{((kim \lor jim) \lor sara)} \\ \text{(kim \to \neg sara)} & \text{(jim \to kim)} & \text{(\neg jim \to \neg sara)} \end{array}$$

ohodnotenie v_3 spĺňa a ktoré nespĺňa.

$\deg(X)$	v₃ spĺňa X	v_3 nespĺňa X
0	kim, sara	jim
1	$\neg jim, \ (kim \lor jim), \ (jim \to kim)$	¬sara
2	((kim ∨ jim) ∨ sara)	$(kim o \neg sara)$
3		$(\negjim o \negsara)$

Spĺňanie výrokových formúl

Dohoda

V ďalších definíciách a tvrdeniach predpokladáme, že sme si *pevne* zvolili nejakú množinu výrokových premenných \mathcal{V} a hodnoty t, f. "Formulou" rozumieme formulu nad množinou výrok. prem. \mathcal{V} . "Ohodnotením" rozumieme ohodnotenie množiny výrok, prem. \mathcal{V} .

Tvrdenie 3.23

Splnenie výrokovej formuly pri ohodnotení výrokových premenných závisí iba od ohodnotenia (konečného počtu) výrokových premenných, ktoré sa v nej vyskytujú.

Presnejšie: Pre každú formulu X a všetky ohodnotenia v_1 a v_2 , ktoré zhodujú na množine výrokových premenných vyskytujúcich sa v X, platí $v_1 \models X$ vtt $v_2 \models X$.

Dôkaz.

Indukciou na stupeň formuly X.

Báza: Nech X je stupňa 0. Podľa vety o jednoznačnosti rozkladu a definície stupňa musí byť X = p pre nejakú výrokovú premennú. Zoberme ľubovoľné ohodnotenia v_1 a v_2 , ktoré sa zhodujú na premenných v X, teda na p. Podľa definície spĺňania $v_1 \models p$ vtt $v_1(p) = t$ vtt $v_2(p) = t$ vtt $v_2 \models p$.

Krok: Nech X je stupňa n > 0 a tvrdenie platí pre všetky formuly stupňa nižšieho ako n (indukčný predpoklad). Zoberme ľubovoľné ohodnotenia v_1

a v_2 , ktoré sa zhodujú na premenných v X. Podľa definície stupňa a jednoznačnosti rozkladu nastáva práve jeden z prípadov:

- $X = \neg A$ pre práve jednu formulu A. Pretože $\deg(X) = \deg(A) + 1 > 1$ deg(A), podľa ind. predpokladu tvrdenie platí pre A. Ohodnotenia v_1 a v_2 sa zhodujú na premenných v A (rovnaké ako v X). Preto $v_1 \models A$ vtt $v_2 \models A$, a teda $v_1 \models \neg A$ vtt $v_1 \not\models A$ vtt $v_2 \not\models A$ vtt $v_2 \models \neg A$.
- $X = (A \land B)$ pre práve jednu dvojicu formúl A, B. Pretože $\deg(X) = \deg(A) + \deg(B) + 1 > \deg(A)$ aj $\deg(B)$, podľa ind. predpokladu pre A aj B tvrdenie platí. Podobne pre ďalšie binárne spojky.

Tautológia, (ne)splniteľnosť, falzifikovateľnosť

Definícia 3.24

Formulu X nazveme tautológiou (skrátene $\models X$) vtt je splnená pri každom ohodnotení výrokových premenných.

Príklad 3.25

$$\begin{array}{l} (p \vee \neg p), \ \neg (p \wedge \neg p), \ (\neg \neg p \rightarrow p), \ (p \rightarrow \neg \neg p), \ (p \rightarrow (q \rightarrow p)), \\ ((p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))), \ ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)) \end{array}$$

Definícia 3.26

Formulu X nazveme splniteľnou vtt je splnená pri aspoň jednom ohodnotení výrokových premenných.

Formulu X nazveme nesplniteľnou vtt nie je splniteľná.

Formulu X nazveme falzifikovateľnou vtt je nesplnená pri aspoň jednom ohodnotení výrokových premenných.

"Geografia" výrokových formúl podľa spĺňania

- Tautológie sú výrokovologické pravdy. Sú zaujímavé najmä pre klasický pohľad na logiku ako skúmanie správneho usudzovania.
- Vo výpočtovej logike je zaujímavá splniteľnosť a konkrétne spĺňajúce ohodnotenia.

Obrázok podľa 🦫 [Papadimitriou, 1994]

Zamyslite sa II.4

Ak formula *nie* je falzifikovateľná, je:

A: splniteľná,

B: nesplniteľná,

C: tautológia.

Literatúra

Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.

Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.