Algorithmic Composition with Pure Data

Somil Govani

Is Music a Science?

- Many patterns
 - Musical scales
 - Harmonics
- Music theory has specific rules
- Could a computer do it?

http://sordylhouseofmusic.com/image s/sheet-music.jpg

What is Algorithmic Composition?

- Use of algorithms and formulas to create music
- Combines math and music
- Spontaneous generation

What is Pure Data?

- Visual Programming Language
- Generates sounds based on program parameters

Syntax

Goal

use Pure Data to create a self-sufficient computer program, which self-generates music (by definition), through implementation of various concepts of algorithmic composition

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Note Variation

utilization of an assortment of notes, sounds, and frequencies (varied in pitch, velocity (attack), and duration

Note Variation

Velocity (o to 127)

Duration (milliseconds)

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Musical Randomization & Improvisation

generate music without premeditation or pre-composition (randomize pitch, velocity, duration)

Randomization of Pitch

Message that stops program from running

Bang that starts the program flow

Metronome with input that controls tempo (240*)

Randomizes values flowing into makenote *pitch*

Random Velocity & Duration

Similarly randomized velocity (attack) & duration

Linked to same metronome for time correspondence with pitch

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Frequency Parameters

control over the parameters of the upper and lower extremes of pitch variation

Frequency Parameters

Set max value of random to 50

Add 48 to that value

This makes parameter of pitches' range from 48-98

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Limit Frequency Step Size (Walks)

regulation of musical randomization & improvisation through limitations on jump ranges

Limit Step Size

Replace random with drunk

Similar to *random* parameters, + 48 to set range as 48-58

Input with three numbers

- First number is index value / starting point (25)
- 2. Second number is maximum
- 3. Third is maximum movement from previous value

Graphical Juxtaposition

Drunk vs Random Frequency Variation

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics |

Duration

Polyphony & Harmony

Implementation of Musical Scales

limiting utilization to groups of notes that hold significance in music theory and frequency harmonics

Musical Scales

Experimentation with other Scales

Cmajor Scale +12k	
С	0
D	2
Е	4
F	5
G	7
А	9
В	11

BbBlues Scale +12k	
Bb	10
Db	13
Eb	15
E	16
F	17
Ab	20
Bb	22

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics |

Duration

Polyphony & Harmony

Dynamics

change in the velocity, attack, and volume of notes

Dynamics

Randomize the velocity (attack) similar to pitch

- + 90 sets parameters to 90-130
- Consider using drunk for crescendos and decrescendos

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Duration and Rhythm

change note lengths to add rhythmic diversity to music

Note Lengths

- Use *random* to pick value from 0-14
- Link table of times (milliseconds)
- Unevenly distribute times so some occur more for musical aesthetics

Graphical Representation

Rhythms & Tempos

 Connect second metro for independent bang scheme

 Attach drunk with parameters of 200-400 (index at 300)

 Run it into original metro (tempo graduates from 200-400)

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Polyphony & Harmony

utilization of simultaneous and independent musical tendencies in complement to one another

Bass Accompaniment

- Send velocity (v)
- Send duration/time (t)
- Send metro (m)
- Keeps these values constant in accompaniment

Bass Accompaniment

- Form parallel structure for accompaniment
- Receive m, v, t values in appropriate place
- Add lower octaves
- Add other algorithms

Bass Accompaniment

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Silence

periodic breaks and rests in musical progression

Silence and Rests

- Add zeroes into duration table
- Will pose as a rest
- Enter multiple times for balance

Note Variation Musical Randomization & Improvisation

Frequency Parameters

Limited Step Size (Walks) Musical Scales

Dynamics

Duration

Polyphony & Harmony

Goal

use Pure Data to create a self-sufficient computer program, which self-generates music (by definition), through implementation of various concepts of algorithmic composition

Final Product

Conclusion

Successes

- Possible to combine mathematics, computer science, and music theory to spontaneously generate music
- Implemented multiple aspects of algorithmic composition

Developing Areas

- Computerized less genuine product
- Continuous flow needs musical structure
- Additional layers

References

```
Algorithmic. Christopher Ariza, n.d. Web. 18 Nov. 2013. <a href="http://algorithmic.net">http://algorithmic.net</a>>.
```

- Essl, Karlheinz. "Algorithmic Composition." *University of Washington*. University of Washington, n.d. Web. 18 Nov. 2013. .
- Harnum, Jonathan. "Basic Music Thoery." *Monarch Knights*. Monarch Knights High School, n.d. Web. 18 Nov. 2013. http://www.monarchknights.com/teacherwebpages/halladay/documents/BasicMusicTheory1ed_ooo.pdf.
- Kreidler, Johannes. "Programming Electronic Music in Pd." *Pure Data*. N.p., n.d. Web. 14 Feb. 2014. http://www.pd-tutorial.com/english/index.html.
- Maurer, John A., IV. "A Brief History of Algorithmic Composition." *Center for Computer Research in Music and Acoustics*. Standford, n.d. Web. 18 Nov. 2013. https://ccrma.stanford.edu/~blackrse/algorithm.html.
- Mungan, R. Yagiz. "Introduction to Algorithmic Composition and Pure Data." File last modified on July 2012. PDF file. "Music Theory." *Library Thinkquest*. Oracle, n.d. Web. 18 Nov. 2013.
 - http://library.thinkquest.org/15413/theory/theory.htm.
- Nierhaus, Gerhard. *Algorithmic Composition: Paradigms of Automated Music Generation*. New York: Springer Wein New York, 2009. *Google Books*. Web. 18 Nov. 2013.
 - http://books.google.com/books?id=jaowAtnXsDQC&printsec=frontcover&dq=algorithmic+composition&hl=en&sa=X&e
 - $i=HguKUsCzBq_gsATtroKoDg\&ved=oCCoQ6AEwAA\#v=onepage\&q=algorithmic\%2ocomposition\&f=false>.$
- Puckette, Miller S. "Theory and Techniques of Electronic Music." *University of California, San Diego*. UC San Diego, n.d. Web. 14 Feb. 2014. http://msp.ucsd.edu/techniques/latest/book-html/.
- Smith, Stuart. "Jazz Theory." *Computer Science Department of the University of Massachusetts*. Rev. 4th. University of Massachusetts, n.d. Web. 18 Nov. 2013. http://www.cs.uml.edu/~stu/JazzTheory.pdf.

Algorithmic Composition with Pure Data

Somil Govani

Thank You