ระบบเลข และการแทนรหัสข้อมูล

ระบบเลข และการแทนรหัสข้อมูล

- 🎳 ระบบเลขฐานต่างๆ (เน้น ฐาน 2 ฐาน 8 และ ฐาน 16)
 - 🔹 การแปลงเลขฐาน
 - ความสัมพันธ์ของเลขฐาน 2 ฐาน 8 และฐาน 16
- 💿 การคำนวณทางคณิตศาสตร์ในระบบเลขฐาน
- การแทนรหัสข้อมูลในระบบ BCD, EBCDIC, ASCII
- 💿 การแทนรหัสข้อมูลของจำนวนเลข จำนวนเต็ม จำนวนจริง

ระบบเลขฐาน (Numeral System)

แสดงโดย (b=base or radix)

$$(a_n a_{n-1} \cdots a_1 a_0 . c_1 c_2 c_3 \cdots)_b = \sum_{k=0}^n a_k b^k + \sum_{k=1}^\infty c_k b^{-k}.$$

- ค่าประจำหลัก คือ ค่าของเลขฐานนั้นๆ ยกกำลังตาม ตำแหน่งหลัก
- Least significant digit : คือเลขที่มีค่าประจำหลักน้อย
- Most significant digit : คือเลขที่มีค่าประจำหลักสูง
- การเขียนเลขฐานต้องมีค่าฐานกำกับ ยกเว้นฐาน 10

ตัวเลขในฐานต่างๆ

ฐาน 2 มีเลข 0,1

ฐาน 8 มีเลข 0,1,2,3,4,5,6,7

ฐาน 10 มีเลข 0,1,2,3,4,5,6,7,8,9

๑ ฐาน 16 มีเลข 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

การแปลงเลขฐานที่ใช้บ่อย

- การแปลงเลขฐานใด ๆ เป็น ฐาน 10
- 💿 การแปลงเลขฐาน 10 เป็น ฐานใด ๆ
- 💿 การแปลงเลขฐาน 2 เป็น ฐาน 8 ฐาน 16
- 💿 การแปลงเลขฐาน 8 ฐาน 16 เป็น ฐาน 2

การแปลงเลขฐานใดๆเป็นฐาน 10

อาศัยค่าประจำหลักคูณตัวเลขแต่ละหลัก นำผลคูณที่ได้มารวมกัน

```
(2542)<sub>10</sub>
ค่าประจำหลัก 10^3 10^2 10^1 10^0
ค่าเลข 2 5 4 2
ค่าฐาน 10 = (2x10^3) + (5x10^2) + (4x10^1) + (2x10^0)
= 2000 + 500 + 40 + 2 = 2542 10
```

```
(2542)<sub>8</sub>
ค่าประจำหลัก 8<sup>3</sup> 8<sup>2</sup> 8<sup>1</sup> 8<sup>0</sup>
ค่าเลข 2 5 4 2
ค่าฐาน 8 = (2x8<sup>3</sup>) + (5x8<sup>2</sup>) + (4x8<sup>1</sup>) + (2x8<sup>0</sup>)
= 1024 + 320 + 32 + 2 = 1370<sub>10</sub>
```

การแปลงเลขฐานใดๆเป็นฐาน 10

ตัวอย่าง 1101₂ = (?)₁₀

```
= (1 \times 8) + (1 \times 4) + (0 \times 2) + (1 \times 1)
= 8+4+0+1
= 13
```

การแปลงเลขฐาน 10 เป็นฐานใด ๆ

- กรณี เลขจำนวนเต็ม
- ใช้หลัก MODULO คือ
 - เลขฐาน 10 เป็นตัวตั้ง หารด้วยเลขฐานที่กำลังจะแปลง
 - ให้เก็บเศษจากการหาร
 - หารเลขต่อไปจนกระทั้งไม่สามารถหารได้
 - นำเศษของการหารมาวางต่อกัน เศษตัวสุดท้ายเป็น Most significant

ตัวอย่างการแปลงเลขฐาน 10 เป็นฐานใดๆ

💿 เลขจำนวนเต็ม

การตรวจสอบคำตอบ

$$632_{10} = (?)_{9}$$

$$9) 632$$

$$9) 70 2$$

$$7 7$$

$$Ans. 772_{0}$$

ลองตรวจคำตอบดู
$$772_9$$
ค่าประจำหลัก 9^2 9^1 9^0 81 9 1

$$= 7x81+7x9+2$$

$$= 567+63+2$$

$$= 632_{10}$$

การแปลงเลขฐาน 10 เป็นฐานใดๆ

- <u>กรณี</u> เลขจำนวนจริง: การแปลงแบ่งเป็น 2 ส่วน
- ส่วนหน้าจุดทศนิยมใช้วิธี MODULO
- ส่วนเลขหลังจุดทศนิยม
 - คูณเลขหลังจุดทศนิยมด้วยฐานที่ต้องการ แล้วบันทึกเฉพาะ เลขหน้าจุดทศนิยมของผลคูณ
 - ส่วนเลขหลังจุดนำมาคูณต่อ จนครบจำนวนตำแหน่งหลังจุด ทศนิยมที่ต้องการ

ตัวอย่าง การแปลงเลขฐาน 10 เป็นฐานใดๆ

เลขจำนวนจริง

ทศนิยมคำตอบ อ่านจากบนลง ล่าง

หน้าทศนิยม คำตอบอ่านจาก ล่างขึ้นบน

Ans: 1101.0110₂

การแปลงเลขฐาน 2 เป็น ฐาน 8 ฐาน 16

- หลักการ ใช้การจัดกลุ่มบิต
 - เลขฐาน 2 เป็น ฐาน 8 จัดกลุ่มละ 3 บิต
 - เลขฐาน 2 เป็น ฐาน 16 จัดกลุ่มละ 4 บิต
- โดยเริ่มจากบิตที่อยู่ใกล้จุดทศนิยม หากกลุ่มสุดท้ายไม่ครบเติม
 0 ไปข้างหน้า
- ทำการหาค่าเป็นเลขฐาน10 ของแต่ละกลุ่มที่จัดแล้ว
- นำมาต่อกันเพื่อเป็นคำตอบโดยเรียงตามหลักซ้ายไปขวา

ตัวอย่างการแปลงเลขฐาน 2 เป็นฐาน 8

ตัวอย่างการแปลงเลขฐาน 2 เป็นฐาน 16

 เลขจำนวนจริง 0001.11₂ = (1.C)₁₆ จุดทศนิยม เป็นตัวแบ่ง (0*8)+(0*4)+(0*2)+(1*1)(1*8)+(1*4)+(0*2)+(0*1) 12 นำมาต่อกัน

การแปลงเลขฐาน 8 ฐาน 16 เป็น ฐาน 2

- ใช้หลักการกระจายเลขแต่ละหลักออกเป็น บิต ด้วยเลขฐาน 2
- แยกเลขฐาน 8 หนึ่งหลัก กระจายเป็นเลขฐาน 2 ได้ 3
 บิต
- แยกเลขฐาน 16 หนึ่งหลัก กระจายเป็นเลขฐาน 2 ได้ 4
 บิต

ตัวอย่างการแปลงเลขฐาน 8 ฐาน 16 เป็น ฐาน 2

กรณี เลขจำนวนเต็ม

$$A_{3_{16}} = ()_{2}$$

Ans: 111011₂

Ans: 10100001₁₆

ตัวอย่างการแปลงเลขฐาน 8 ฐาน 16 เป็น ฐาน 2

• กรณี เลขจำนวนจริง

$$A3.B_{16} = ()_{2}$$

10 3 . 1

1010 0011 011

Ans: 111.011,

Ans: 10100001.1011₁₆

แบบฝึกหัด 1 จงแสดงวิธีการแปลงเลขฐานต่อไปนี้

ระหว่างเลขฐานใด ๆ และเลขฐาน10

- ระหว่างเลขฐาน 2 ,8 , และ 16
 - $10101_2 = (?)_8$
 - $101011.0110_2 = (?)_{16}$
 - $21.8_{16} = (?)_2$
 - $235_8 = (?)_8$

การคำนวณเลขฐาน

💿 การบวกเลขฐาน

💿 การลบเลขฐาน

การลบเลขฐาน โดยการใช้ complement

การบวกเลขฐาน

การบวก

การลบเลขฐาน

🌘 การลบเลข

การบวก-ลบ เลขฐานสอง และการตรวจสอบคำตอบด้วยฐานสิบ

$$1001_2 + 1011_2 = (?)$$

$$\begin{array}{c}
1 \ 0 \ 0 \ 1_{2} \\
1 \ 0 \ 1 \ 0_{2}
\end{array}$$

ตรวจสอบคำตอบด้วยตนเอง

โดยเทียบกับเลขฐานสิบ คือ 1001₂+1011₂

$$9_{10} + 11_{10} = 20$$

= 10100_2

$$1101_2 - 110_2 = (?)$$

$$\begin{array}{r}
1101_{2} \\
110_{2} \\
\hline
0111_{2}
\end{array}$$

เทียบกับเลขฐานสิบคือ

$$1101_2 - 110_2$$

$$13_{10} - 6_{10} = 7_{10}$$

$$= 111_2$$

การหาคอมพลีเมนท์ (Complement)

Complement ของฐานใดๆ (ให้ R แทนฐาน) มี 2 ประเภท
 คือ R-1's complement และ R's complement

ฐาน	R-1's Comp.	R's Comp
رين د	-	

1's Comp
 2's Comp
 7's Comp
 8's Comp
 9's Comp
 10's Comp

การหาค่า R-1 คอมพลีเมนท์

- การหาคอมพลีเมนท์ ที่ R-1 ของเลขใด ๆ
 - นำค่าสูงสุดที่เป็นไปได้ของเลขที่มีจำนวนหลักเท่ากับ ตัวเลขที่ต้องการ ลบด้วยตัวเลขที่ต้องการหาคอมพลีเมนท์
 - ผลที่ได้คือ คอมพลีเมนท์ของเลขจำนวนนั้น
 - เลข 29₁₀ มีสองหลัก ค่าสูงสุดของเลขสองหลัก คือ 99
 - 9'S Comp: 99 29 = 70
 - เลข 101.11₂ มีค่าสูงสุดคือ 111.11
 - 1'S Comp : 111.11 101.11 = 010.00

การหาค่า R คอมพลีเมนท์

- การหาคอมพลีเมนท์ ที่ R ของเลขใด ๆ
 - นำค่าสูงสุดของเลขที่มีหลักเท่ากับเลขนั้นบวกด้วยเลขที่ทำ ให้เกิดการเปลี่ยนหลัก แล้วจึงลบด้วยเลขจำนวนนั้นอีกที
 - เลข 29₁₀ มี R คอมพลีเมนท์ เป็น
 - 10'S Comp: (99 + 1) 29 = 71
 - เลข 101.11₂ มี R คอมพลีเมนท์เป็น
 - 2's Comp: (111.11 + .01) 101.11 = 0010.01

ข้อสังเกตเกี่ยวกับคอมพลีเมนท์

- การหา R-1 Complement คือ การนำเลขจำนวนนั้นลบ ออกจากเลขสูงสุด ที่มีจำนวนหลักเท่ากับเลขนั้น
- 1'S Complement ในเลขฐาน 2 คือ การเปลี่ยนค่าของแต่ ละบิตให้ตรงกันข้าม
- ค่า R-1 Complement มีค่าน้อยกว่า R Complement อยู่ 1
 เสมอ ณ หลักขวามือสุด
 - 2'**S** Comp = 1'**S** Comp + 1 ที่หลักขวามือสุด

การลบเลขแบบคอมพลีเมนท์(ลบเลขด้วยวิธีบวก)

- นำเลขตัวลบไปหาคอมพลีเมนท์
- นำคอมพลีเมนท์ที่หาได้ บวก กับเลขตัวตั้ง
- ผลลัพธ์ที่ได้ถ้ามีเลขเกินหลัก
 - กรณี R's Comp. ให้ตัดทิ้ง
 - กรณี R-1's Comp. ให้นำเลขที่เกินหลัก บวกกับผลลัพธ์
- ผลที่ได้คือคำตอบ

ตัวอย่างการลบเลขแบบคอมพลีเมนท์ (R-1)

$$432_5 - 143_5 = ?$$

$$432_5 - 143_5 = 234_5$$

1 0011.101 1 0011.110

$$1011.011_{2}$$
 $- 111.101_{2} = 11.11_{2}$

```
ู้ เทียบได้กับฐาน 10
(11.375-7.625)<sub>10</sub>=3.75<sub>10</sub>
```

ตัวอย่างการลบเลขแบบคอมพลีเมนท์ (R)

$$432_5 - 143_5 = ?$$

$$432_5 - 143_5 = ?$$
 $1011.011_2 - 111.101_2 = ?$

$$432_5 - 143_5 = 234_5$$

$$1011.011_{2}$$
- 111.101_{2} = 11.11_{2}

การแทนรหัสข้อมูลในหน่วยความจำ (Data Representation)

- การแทนรหัสข้อมูลที่เป็นอักขระ (Alphanumeric Data Representation)
- การแทนรหัสข้อมูลที่เป็นจำนวนเลข (Numeric Data Representation)
 - เลขจำนวนเต็ม (Integer Representation)
 - เลขที่มีจุดทศนิยม (Floating Point Representation)

การแทนข้อมูลที่เป็นอักขระ

- รหัส BCD : Binary Coded Decimal
- รหัส EBCDIC: Extended Binary Coded Decimal
 Interchange Code
- รหัส ASCII : American Standard Code for Information
 Interchange

รหัส BCD (Binary-Coded Decimal)

- ใช้ 6 บิตแทนอักขระ 1 ตัว
- ระบบนี้แทนอักขระได้ 64 ตัว (2⁶ รูปแบบ)

รหัส BCD

- การแทนรหัส BCD
 - อักขระแบบตัวเลข (0 9) Zone Bit จะเป็น 00
 - อักขระแบบตัวอักษร หรือ สัญลักษณ์พิเศษ Zone bit เป็น 11

รหัส EBCDIC

- ใช้ 8 บิตแทนอักขระ 1 ตัว
- ระบบนี้แทนอักขระได้ 256 ตัว (2⁸ รูปแบบ)

Check bit/ Parity bit

รหัส EBCDIC

- การบันทึกข้อมูลในระบบ EBCDIC มี 2 แบบ
 - การบันทึกแบบ Zoned Decimal
 - การบันทึกแบบ Packed Decimal
- การบันทึกแบบตัวเลข Zone bit มีค่าเป็น
 - 1111 สำหรับเลขที่ไม่มีเครื่องหมายนำหน้า (12 ,F)
 - 1100 สำหรับเลขที่มีเครื่องหมายบวก และ (+12 ,C)
 - 1101 สำหรับเลขที่มีเครื่องหมายลบ (-12 ,D)

Extended Binary Coded Decimal Interchange Code

			4	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bì		3	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
Positions			2	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
			1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
8	7	б	5																
0	0	0	0	NUL	SOH	STX	ETX	PF	HT	LC	DEL			SMM	VΤ	FF	CR	SO	SI
0	0	0	1	DLE	DC_1	DC_1	DC,	RES	NL	BS	ഥ	CAN	EM	CC		IFS	IŒ	IRS	TUS
0	Q	1	0	DS	SOS	FS		BYP	LF	EOB	PRE			SM			ENQ	ACK	BEL
0	0	1	1			SYN		PN	RS	UC	EOT					DC.	NAK		SUB
0	1	0	0	SP										⊄	-	<	(+	I
0	1	Q	1	8:										į	\$	+)		P.
0	1	1	0	_	7										L	%	-	>	?
0	1	1	1											:	#	@	-	=	LL
1	0	0	0		à	Ъ	C	d	e	f	g	h	i						
1	0	0	1		j	k	1	ш	n	0	P	q	Ι						
1	0	1	0			5	t	и	Ţ	w	х	У	2						
1	0	1	1																
1	1	0	0		A	В	С	D	E	F	Ğ	H	I						
1	1	Ū	1		J	K	L	M	N	0	P	Q	R		_				
1	1	1	0			S	T	U	V	W	X	Y	Z						
1	1	1	1	0	1	2	3	4	5	6	7	8	9						

การแทนข้อมูลแบบ Packed Decimal

- เป็นการเปลี่ยนลักษณะการเก็บรหัส EBCDIC ให้ใช้ใน การคำนวณ
- การเปลี่ยนนี้จำนวนหลักสามารถยืดหยุ่นได้
- ไม่ใช้กับตัวเลขที่เป็นจุดทศนิยม

วิธีการ Packed Decimal

- สลับส่วน Zone bit และ Digit bit ของใบท์ขวาสุด
- ตัด Zone bit ของใบท์ ที่เหลือ
- บีบข้อมูลซึ่งเป็น Digit Bit เข้ามา

Packed Decimal Format:

Zoned Decimal Format:

รหัส ASCII

- มี 2 ชนิด คือ 7 บิท กับ 8 บิท กำหนดให้ตัวเลขมีค่าน้อย กว่าตัวอักษรเป็นรหัสที่นิยมในปัจจุบัน
- ลักษณะคล้าย EBCDIC มี Zone bit
 - 0101 และ 011 สำหรับตัวเลข
 - 1010 และ 100 สำหรับตัวอักษร

Parity bit หรือ Check bit

- เป็นบิทที่ใช้ตรวจสอบการแทนรหัส มี 2 ระบบ
- Even Parity ระบบจำนวนคู่ ระบบนี้ต้องมีบิทที่เป็นเลข 1 ทั้งหมดมี จำนวนเป็นเลขคู่
- Odd Parity ระบบจำนวนคี่ ระบบนี้ต้องมีบิทที่เป็นเลข 1 ทั้งหมดมี จำนวนเป็นเลขคี่
 - 0 1 1 0 1 0 1
 - 0 1 1 0 0 0 1
 - 1 1 1 0 1 0 1

การแทนรหัสข้อมูลที่เป็นตัวเลข

- การแทนข้อมูลแบบนี้ กำหนดเนื้อที่ในหน่วยความจำมี
 ขนาดตายตัว (Fixed length word) สำหรับแทนตัวเลข 1
 จำนวน
- Half-word ใช้เนื้อที่ 2 ใบท์
- Full-word ใช้เนื้อที่ 4 ใบท์
- Double-word ใช้เนื้อที่ 8 ใบท์

การแทนเลขจำนวนเต็ม

- Sign Magnitude / Pure binary code
- 2'S Complement
- 1'S Complement

** หมายเหตุ โดยทั่วไปแล้วการแทนเลขด้วยระบบ 1's Complements, 2's Complements จะใช้สำหรับการแทนเลขจำนวนเต็มลบ ดังนั้นถ้าเลขที่ต้องการแทน ด้วยระบบ 1's Complements, 2's Complements เป็นเลขจำนวนเต็มบวก ก็จะแสดง คำตอบ<u>คล้าย</u>กับใช้วิธี Sign Magnitude ที่ต่างคือวิธี Complements ไม่มีการกั้น sign bit จำนวน 1 bit

Sign Magnitude

 ระบบนี้บิตซ้ายสุดแทนเครื่องหมายเรียกว่า Sign bit ที่ เหลือแทนขนาดของจำนวนเลข เรียกว่า Magnitude

แสดงการแทนค่าแบบ Sign Magnitude

แบบ Sign Magnitude

แสดงการแทนค่า แบบ 1's Complement

- การแสดงจำนวนเลขในระบบ 1'S Complements ดังนี้
 - เลขจำนวนเต็มบวก แทน ด้วย true binary โดยไม่ ต้องกัน sign bit เช่น 32, 109, 2008 เป็นต้น
 - เลขจำนวนเต็มลบ จะใช้ค่า 1's Complements ของ
 เลขจำนวนบวกนั้น แทนเป็นเลขลบของเลขบวก
 จำนวนนั้น เช่น -32, -109 , -2008 เป็นต้น

ตัวอย่าง การแทนค่า 1' Complements

เช่น ต้องการแทนค่า 28 ด้วยระบบ 1'S Comp

จะได้คำตอบคือ

0 0000000 00000000 00000000 00011100

แทนเลขจำนวนเต็มบวก 28 ด้วยวิธี 1's Complements

ตัวอย่าง การแทนค่า 1' Complements

• เช่น ต้องการแทนค่า -28 ด้วยระบบ 1'S Comp

true binary ของเลขบวก

28 = 11100

28 = 11100

28 จำนวนเต็มเป็นเลขฐาน 2
ในรูปแบบ 32 บิต

LSB

00000000 00000000 00000000 00011100

หาค่า 1's Comp ของ 28 ที่แปลงเป็นฐาน 2 โดยทำการกลับบิตข้อมูลของทุกบิต ในรูปแบบ

11111111 11111111 11111111 111000**11**

ดังนั้นจะแทน -28 ด้วยวิธี 1's Comp ในรูปแบบ 32 บิต ได้ดังนี้

32 บิต นั่นคือจะใช้ 1's comp ของเลขบวกแทนเลขลบของเลขบวกนั้น

1 1111111 11111111 11111111 11100011

แสดงการแทนค่าแบบ 2's Complements

- แบบ 2'S Complements
 - เป็นระบบที่นิยมใช้ในเครื่องคอมพิวเตอร์
- การแสดงจำนวนเลขในระบบ 2'S Complements ดังนี้
 - เลขบวก แทนด้วยค่า true binary ของเลขบวกนั้น โดยไม่ ต้องกั้น sign bit

• เลขลบ จะใช้ค่า 2's Complements ของเลขบวกจำนวนนั้น แทนเป็นเลขลบของเลขบวกจำนวนนั้น

ตัวอย่าง การแทนค่า 2's Complements

เช่น ต้องการแทนค่า -28 ด้วยระบบ 2's Comp

Floating Point Representation

- R = +- .M * B^{+- E}
- วิธี Excess 64 (แสดง Exponent ด้วยจำนวน 7 บิท)

31	30 24	0
Sign	Exponent	Mantissa

- S Sign แทนเครื่องหมาย บวก ลบ ของจำนวนเลข 1 bit
- E Exponent ส่วนที่ยกกำลัง จะใช้ bit ที่ 24-30=7 bits
- M Mantissa เลขที่อยู่หลังจุด จะใช้ bit ที่ 0-23=24 bits

ขั้นตอนการทำ Floating point

- เปลี่ยนเลข ไปเป็นเลขฐาน 16
- Normalisation เลขฐาน 16 (มีเลขหลังจุด และ ยกกำลัง)
 ในรูป R = +- .M * B^{+- E}
- o เปลี่ยน Sign, Exponent, Mantissa เป็นเลขฐาน 2
 - Sign: 1 แทนค่าลบ 0 แทนค่าบวก
 - Mantissa : เปลี่ยนเป็นฐาน 2 เติมเลขโดยต่อจาก Exponent จากซ้าย มา ขวาที่เหลือเติมศูนย์เพื่อให้ mantissa ครบ 24 bit

ขั้นตอนการทำ Floating point (1/2)

- ใช้ Excess notation
 - ใช้เลข n บิทแสดง Exponent
 - เนื่องจาก Exponent มีได้ทั้งบวกและลบ จึงต้องแบ่งช่วง ค่าที่เป็นไปได้ของเลข n บิทเป็นสองช่วง
 - จุดแบ่งของสองช่วงอยู่ที่จุดที่บิทสูงสุดเป็น 1 และบิทที่เหลือ เป็น 0
 - สำหรับกรณี Excess 64 (= 40₁₆) จุดแบ่งจะอยู่ที่ 1000000

ขั้นตอนการทำ Floating point (2/2)

- การบันทึกค่า Exponent
 - หาก Exponent เท่ากับ 0 จะแทนด้วย 1000000
 - หาก Exponent มากกว่า 0 ให้นำ True exponent มาบวก กับ 40₁₆ นั่นคือ
 - 1000000 + True exponent (ในฐานสอง)
 - หรือ 40₁₆ + True exponent (ในฐาน 16)
 - หาก Exponent น้อยกว่า 0 ให้นำ True exponent มาลบ
 จาก 40₁6 แทน

ตัวอย่าง ทำ Floating point ที่เป็นเลขจำนวนเต็ม

- 28 → 1C₁₆
- \bullet 1C₁₆ = $(+.1C * 16^2)_{16}$
- \bullet Sign \rightarrow 0
- \bullet Mantissa \rightarrow 0001 1100₂
- Exponent \rightarrow 40₁₆ + 2₁₆ = 42₁₆ \rightarrow 100 0010₂

ถอยไปหลังจุดกี่ตัวก็จะได้เลขยกกำลัง ของ (16_{16}) เท่ากับจำนวนการถอย นั้นคือจะได้ true exponent คือ 2₁₆

ตัวอย่าง ทำ Floating point ที่เป็นเลขทศนิยม

- $-28.5 \rightarrow -1C.8_{16}$
- \bullet -1C.8₁₆ = (-.1C8 * 16²)₁₆
- \bullet Sign \rightarrow 1
- Mantissa \rightarrow 0001 1100 1000₂
- Exponent \rightarrow 40₁₆ + 2₁₆ = 42₁₆ \rightarrow 100 0010₂

แบบฝึกหัดที่ 2

1. จงแสดงวิธีการลบเลขแบบธรรมดา , R complement และ R-1 Complement ของ $(5624-567)_8 = (?)_8$

2. จงแสดง Floating Point Representation ของเลขฐานต่อไปนี้ ด้วยวิธี Excess 64

- 75.25₁₀
- 10011.10₂

1.จงแสดงวิธีการแปลงเลขฐานต่อไปนี้

2. การแทนค่าเลขจำนวนเต็มด้วยวิธี 2′s complement ของ **-33**

- 3. การแสดงFloating Point Representationของเลขฐานต่อไปนี้ด้วยวิธีExcess 64
 - a)75.25

- b) -100011011.10₂
- 4. แสดงการลบเลขฐานต่อไปนี้ แบบ 1′s complement และแบบ 2′s complement

1.จงแสดงวิธีการแปลงเลขฐานต่อไปนี้

2. การแทนค่าเลขจำนวนเต็มด้วยวิธี 2's complementของ -33

11111111111111111₂ กรณีใช้ 2 ไบต์ 3. การแสดงFloating Point Representationของเลขฐานต่อไปนี้ด้วยวิธีExcess 64

a) 75.25 b) -100011011.10₂

- 4. แสดงการลบเลขฐานต่อไปนี้ แบบ 1′s complement และแบบ 2′s complement

1101₂- 100₂ คำตอบที่ได้คือ 1001₂