# Analog-Digital Converter

- Analog to digital process → Sampling and quantization
- Sampling → Read/Take input voltage values (samples)



Sampling frequency (Fs) =  $2 \times F$  (Vin)  $\rightarrow$  Teorema de Nyquist

• Quantization  $\rightarrow$  Assign a digital value to the sampled value (n bits) ADC with n= 3 bits  $\rightarrow$  2<sup>3</sup> = 8 digital values (0 to 7)





- ADC resolution is determined by:
  - Number of bits → number of steps
  - The V range
  - Both of them → Step size

```
Vref Nº steps
                                                                         Step size
Voltage range: Vref to GND, n=3 \rightarrow Resolution = (5V-0V)/ 2^3 = 0,625V = 625mV
```

Resolution definition  $\rightarrow$  the smallest incremental voltage that can be recognized and causes a change in the digital output.

Example: 625mV

| Voltage levels [V] | Binary representation |
|--------------------|-----------------------|
| 0-0.62             | 000                   |
| 0.621-1.25         | 001                   |
| 1.251-1.87         | 010                   |
| 1.871-2.5          | 011                   |
| 2.51-3.12          | 100                   |
| 3.121-3.75         | 101                   |
| 3.751-4.37         | 110                   |
| 4.371-5.00         | 111                   |

Range = 
$$5V-0V = 5V$$
  $N = 3$  bits  
Resolution =  $5/2^3 = 0.62$ 

http://www.microcontrollerboard.com/analog-to-digital-converter.html







### Analog-digital converter (ADC)-ATMEGA328

- 10-bit <u>successive approximation</u> ADC
- 8-channel Analog Multiplexer in PORTC (ADC0-ADC5)
- ADC has a separate analog supply voltage pin, AVCC.
- Internal reference voltages of 1.1V or AVCC are provided On-chip and an external Aref
- ➤ The 10-bit result is stored in →
  ADC Data Register: ADCH and ADCL.
- ➤ The ADC triggers an interrupt when a conversion completes.
- Free Running or Single Conversion Mode

# Analog-digital converter (ADC)





#### Analog-digital converter (ADC): Modes

## **Single Conversion Mode (Polling or Interrupt)**

- ➤ You have to initiate each conversion (setting bit ADSC in ADCSRA).
- ➤ When the conversion is finished the flag ADIF is set and ADSC is cleared by hardware.
- ➤ Result is placed in the ADC Data register pair (16-bit) and no new conversion is started.
- > Previously to start a new conversion ADIF must be clear by software (writting '1').



Source: https://microchipdeveloper.com/8avr:adcopmodes



#### Analog-digital converter (ADC): Modes

#### **Free Running Mode (Interrupt)**

- > First conversion starts by writing a 1 to ADCSRA.ADSC
- ➤ A new conversion starts when the previous has completed (Interrupt Flag is used as a trigger source)
- ➤ The ADC register must be read as son as posible, before a new conversion starts



Source: https://microchipdeveloper.com/8avr:adcopmodes



### Analog-digital converter (ADC): Modes

#### **Auto triggering Mode**

- Controlled by a peripheral: Timer, comparator, external interrupt
- Start a new conversion when the previous has completed (Interrupt Flag is used as a trigger source)
- ➤ The ADC register must be read as son as posible, before a new conversion starts



Source: https://microchipdeveloper.com/8avr:adcopmodes



### Analog-digital converter (ADC): Register ADMUX



MUX2-MUX0: selects which analog inputs are connected to the ADC

Table 24-4. Input Channel Selections

| MUX30 | Single Ended Input |
|-------|--------------------|
| 0000  | ADC0               |
| 0001  | ADC1               |
| 0010  | ADC2               |
| 0011  | ADC3               |
| 0100  | ADC4               |
| 0101  | ADC5               |

### Analog-digital converter (ADC): Register ADMUX

#### ADMUX - ADC Multiplexer Selection Register



ADLAR: Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted.

ADCL and ADCH - The ADC Data Register

#### ADLAR = 0

| Bit           | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |      |
|---------------|------|------|------|------|------|------|------|------|------|
| (0x79)        | -    | _    | _    | _    | _    | _    | ADC9 | ADC8 | ADCH |
| (0x78)        | ADC7 | ADC6 | ADC5 | ADC4 | ADC3 | ADC2 | ADC1 | ADC0 | ADCL |
|               | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    | •    |
| Read/Write    | R    | R    | R    | R    | R    | R    | R    | R    |      |
|               | R    | R    | R    | R    | R    | R    | R    | R    |      |
| Initial Value | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      |
|               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      |

#### ADLAR = 1

| Bit           | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    | _    |
|---------------|------|------|------|------|------|------|------|------|------|
| (0x79)        | ADC9 | ADC8 | ADC7 | ADC6 | ADC5 | ADC4 | ADC3 | ADC2 | ADCH |
| (0x78)        | ADC1 | ADC0 | _    | -    | -    | _    | -    | -    | ADCL |
|               | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    | 1    |
| Read/Write    | R    | R    | R    | R    | R    | R    | R    | R    |      |
|               | R    | R    | R    | R    | R    | R    | R    | R    |      |
| Initial Value | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      |
|               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      |

When an ADC conversion is complete, the result is found in these two registers.



### Analog-digital converter (ADC): Register ADMUX

#### ADMUX - ADC Multiplexer Selection Register

| Bit           | 7     | 6     | 5     | 4 | 3    | 2    | 1    | 0    |       |
|---------------|-------|-------|-------|---|------|------|------|------|-------|
| (0x7C)        | REFS1 | REFS0 | ADLAR | - | MUX3 | MUX2 | MUX1 | MUX0 | ADMUX |
| Read/Write    | R/W   | R/W   | R/W   | R | R/W  | R/W  | R/W  | R/W  |       |
| Initial Value | 0     | 0     | 0     | 0 | 0    | 0    | 0    | 0    |       |

Table 24-3. Voltage Reference Selections for ADC

| REFS1 | REFS0 | Voltage Reference Selection                                         |
|-------|-------|---------------------------------------------------------------------|
| 0     | 0     | AREF, Internal V <sub>ref</sub> turned off                          |
| 0     | 1     | AV <sub>CC</sub> with external capacitor at AREF pin                |
| 1     | 0     | Reserved                                                            |
| 1     | 1     | Internal 1.1V Voltage Reference with external capacitor at AREF pin |

Arduino connection

### Analog-digital converter (ADC): Register ADCSRA

#### ADCSRA – ADC Control and Status Register A

| Bit           | 7    | 6    | 5     | 4    | 3    | 2     | 1      | 0     |        |
|---------------|------|------|-------|------|------|-------|--------|-------|--------|
| (0x7A)        | ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2 | ADP\$1 | ADPS0 | ADCSRA |
| Read/Write    | R/W  | R/W  | R/W   | R/W  | R/W  | R/W   | R/W    | R/W   | •      |
| Initial Value | 0    | 0    | 0     | 0    | 0    | 0     | 0      | 0     |        |

- > ADEN: ADC Enable. Writing this bit to one enables the ADC.
- ADSC: ADC Start Conversion.
  - Single conversión: '1' starts a new conversion
  - Free running: '1' starts the first conversion

First conversión (initial) → 25 ADC clock cycles

Normal conversion  $\rightarrow$  13 ADC clock cycles

➤ ADATE: ADC Auto Trigger Enable. The ADC will start a conversion on a positive edge of the selected trigger signal. The trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB.

If ADATE='0'  $\rightarrow$  Single mode

If ADATE='1'  $\rightarrow$  (trigger default) Free running mode source



### Analog-digital converter (ADC): Register ADCSRA

#### ADCSRA – ADC Control and Status Register A



#### > ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. Clearing by software previous to a new conversion in "Single conversion mode"

#### > ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Interrupt is activated.



### Analog-digital converter (ADC)

#### ADCSRA – ADC Control and Status Register A



➤ ADPS[2:0]: ADC Prescaler Select Bits. These bits determine the division factor between the system clock frequency and the input clock to the ADC.

Table 24-5. ADC Prescaler Selections

| ADPS2 | ADPS1 | ADPS0 | Division Factor          |
|-------|-------|-------|--------------------------|
| 0     | 0     | 0     | 2                        |
| 0     | 0     | 1     | 2                        |
| 0     | 1     | 0     | 4                        |
| 0     | 1     | 1     | 8                        |
| 1     | 0     | 0     | 16                       |
| 1     | 0     | 1     | 32                       |
| 1     | 1     | 0     | 64                       |
| 1     | 1     | 1     | <sup>128</sup> @16 MHz → |

➤ The successive approximation circuitry requires an input clock frequency between 50kHz and 200kHz to get maximum resolution

### Analog-digital converter (ADC)

#### ADCSRB – ADC Control and Status Register B



**ADTS[2:0]: ADC ADC Auto Trigger Source.** The value of these bits selects which source will trigger an ADC. If ADATE is cleared, the ADTS[2:0] settings will have no effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag.

Table 24-6. ADC Auto Trigger Source Selections

| ADTS2 | ADTS1 | ADTS0 | Trigger Source                 |           |  |
|-------|-------|-------|--------------------------------|-----------|--|
| 0     | 0     | 0     | Free Running mode              |           |  |
| 0     | 0     | 1     | Analog Comparator              |           |  |
| 0     | 1     | 0     | External Interrupt Request 0   |           |  |
| 0     | 1     | 1     | Timer/Counter0 Compare Match A |           |  |
| 1     | 0     | 0     | Timer/Counter0 Overflow        |           |  |
| 1     | 0     | 1     | Timer/Counter1 Compare         | e Match B |  |
| 1     | 1     | 0     | Timer/Counter1 Overflow        |           |  |
| 1     | 1     | 1     | Timer/Counter1 Capture         | Event     |  |

### ADC Steps: Single mode (Polling)

- 1. Configure the A/D module:
  - Clear a previous setup
  - Configure voltage reference
  - Set a aligment format for the value
  - Select A/D conversion clock (Prescaler)
  - Turn on (Enable) the A/D module
  - Set the single mode

A function is

#### 2. Read the conversion:

- Clear flag ADIF writting '1'.
- Clear a previous selected channel.
- Select A/D input channel
- Starts a new conversion, ADSC='1'.
- Wait for A/D conversion to complete polling the bit ADIF
- Read A/D result register ADC.

3. For a new conversion go to step 2.

A function is recommended

#### ADC steps: Single mode (Interrupt)

- 1. Configure the A/D module:
  - Clear a revious setup
  - Configure voltage reference
  - Set the aligment
  - Select A/D conversion clock
  - Turn on A/D module
- 2. Enable A/D interrupt + sei()
- 3. Start a conversion:
  - Select A/D input channel
  - Start the conversión, set the ADSC bit
- 4. Add the ISR function
  - Read the value in ADC register
  - (Flag ADIF is cleared by the ISR)
- (Optional) starts a new conversion or disable interrupt
   Waiting for the A/D interrupt

A function is recommended

### ADC steps: Free run mode (Interrupt)

- 1. Configure the A/D module:
  - Configure voltage reference
  - Select A/D conversion clock
  - Select Free run:
    - Enable interrupt (ADIE)
    - Free run (ADATE)
    - Auto-trigger mode (ADTS)
  - Turn on A/D module

A function is recommended

- 2. Global interrupt → Sei()
- 3. Select A/D input channel
- 4. Trigger only the first conversion → ADSC
- 5. Add the ISR
  - Read the value