ННГУ им. Н. И. Лобачевского, ВШОПФ Лабораторная работа "Определение удельного заряда электрона методом магнитного запирания диода"

Цель работы:

• Определить удельный заряд электрона

Приборы и оборудование:

• Установка, использующая вместо лампы вакуумный диод 1Ц7С с радиусом анода 7 мм, дающая возможность устанавливать значения анодного напряжения в 80, 100 и 120 В, устанавливать ток катушки в диапозоне от 0 до 2 А с шагом 0,06 А, длиной катушки 0,16 м, шириной катушки 0,05 м, количеством витков 1000 шт.

Теоретическая часть

Метод измерения удельного заряда электрона, используемый в данной лабораторной работе, основан на отклонении движущегося электрона магнитным полем. В данной работе используется вакуумный диод с коаксиальным цилиндрическим катодом и анодом. Летящие от катода к аноду электроны отклоняются магнитным полем, создаваемым катушкой с током, внутри которой соосно располагается диод, направленным вдоль оси лампы.

На электрон с зарядом -e , движущийся со скоростью \vec{V} , действует сила Лоренца:

$$(1) \vec{F} = -e \cdot (\vec{E} + [\vec{V} \times \vec{B}])$$

где \vec{E} - напряжённость электрического поля, \vec{B} - индукция магнитного поля.

В отсутствие магнитного поля вылетающие из катода электроны двигались бы по радиусу к аноду, разгоняясь радиальным электрическим полем, величина которого определяется анодным напряжением U_a . Направленное вдоль оси лампы магнитное поле приводит к искривлению траектории электронов. При критическом значении индукции магнитного поля $B_{\kappa\rho}$ электроны перестат достигать анода, пролетая по касательной вблизи него. Измеряя $B_{\kappa\rho}$ можно определить, при известном U_a , удельный заряд электрона.

По теореме об изменении кинетической энергии:

$$(2) \frac{mV_a^2}{2} = e U_a$$

где $\,m\,$ - масса электрона, а $\,V_a\,$ - его скорость у анода. В силу потенциальности, работа не зависит от формы траектории.

По теореме об изменении момента импульса для электрона (уравнение моментов):

(3)
$$\frac{d\vec{N}}{dt} = [\vec{r}, \vec{F}],$$

но т.к. $[\vec{r},\vec{E}]=0$, то уравнение (3) приводится к виду:

(4)
$$\frac{d\vec{N}}{dt} = -e[\vec{r}, [\vec{V}, \vec{B}]],$$

это уравнение можно преобразовать к виду:

(5)
$$\frac{dN}{dt} = eB(\vec{r}, \vec{B})$$
,

заменим (\vec{r}, \vec{V}) на rV_r и домножив обе част на dt, приводим (5) к виду dN = eBrdr. Для криттической траектории электрона проинтегрируем это уравнение от начальной точки на аноде до конечной на катоде, учитывая, что вблизи анода скорость равна 0, а вблизи катода перпендикулярна радиусвектору, и применив формулу (2), получим модуль удельного заряда электрона:

(6)
$$\frac{e}{m} = \frac{8 U_a r_a^2}{B_{\kappa\rho}^2 (r_a^2 - r_{\kappa\rho}^2)^2}$$
.

Но у лампы, используемой в данной работе $r_{\kappa} \ll r_a$, поэтому вместо (6) можно использовать приближённую формулу:

$$(7) \frac{e}{m} \approx \frac{8U_a}{B_{\kappa\rho}^2 r_a^2}.$$

Для определения удельного заряда электрона по формуле (7) в работе экспериментально находится величина критического поля при нескольких значениях напряжения на аноде. При достижении магнитным полем критического значения анодный ток в лампе резко падает до нуля. В реальной лампе спад тока будет менее резким, из-за взаимного влияния электронов друг на друга, ненулевой начальной скорости электронов и возможной некоаксиальности катода и анода.

Считая, что лампа находится в центре катушки и размеры лампы малы по сравнению с размерами катушки, индукция магнитного поля будет определяться по формуле:

(8)
$$B = \frac{\mu_0 I_k N}{\sqrt{D^2 + L^2}}$$
,

где N — число витков в катушке, D и L — её диаметр и длина, а μ_0 = 4 $\pi\cdot 10^{-7}[{\Gamma h / \choose M}]$ - магнитная постоянная.

Практическая часть

Снятые данные:

I к, A	I а, мА			
	Ua = 80 B	Ua = 100 B	Ua = 120 B	
0	1,56	2,12	2,56	
0,12	1,56	2,11	2,55	
0,24	1,55	2,10	2,55	
0,36	1,54	2,10	2,55	
0,48	1,52	2,09	2,55	

0,6	1,51	2,08	2,54
0,72	1,49	2,08	2,54
0,78	1,45	2,07	2,54
0,84	1,39	2,06	2,53
0,9	1,28	2,03	2,53
0,96	1,15	1,93	2,53
1,02	1,03	1,80	2,52
1,08	0,88	1,58	2,50
1,14	0,72	1,24	2,42
1,2	0,61	0,97	2,32
1,26	0,47	0,65	2,20
1,32	0,36	0,45	2,07
1,38	0,32	0,25	1,86
1,44	0,29	0,16	1,65
1,5	0,26	0,10	1,42
1,56	0,23	0,05	1,25
1,68	0,20	0,04	1,12
1,8	0,16	0,03	1,05
1,92	0,14	0,02	1,00

1. Снял зависимость анодного тока в зависимости от катодного с значением анодного напряжения 80 В (2 столбец таблицы).

2. Снял зависимость анодного тока в зависимости от катодного с значением анодного напряжения 100 В (3 столбец таблицы).

3. Снял зависимость анодного тока в зависимости от катодного с значением анодного напряжения 120 В (4 столбец таблицы).

4. Определил значение критического тока, при котором график имеет наибольшую крутизну:

$$I_{\kappa\rho} = 1,15 \text{ Å}; 1,28 \text{ A}; 1,39 \text{ A}$$

$$_{\Delta}I_{a6c}$$
=0,02 A

$$_{\Delta}I_{omh.}$$
=0,0174;0,0156;0.0143

Вычислил соотвествующее критическое значение поля (по формуле (8)):

$$B_{\kappa p} = 0.00862 \, T_{\Lambda}; 0.00960 \, T_{\Lambda}; 0.01042 \, T_{\Lambda}$$

$$_{\Delta}B_{a6c} = 0,00015 \, Tn$$

$$_{\Delta}B_{omh.}$$
 = 0,0174;0,0156;0,0144

Определил удельный заряд электрона (по формуле (7)) (табличное значение $1.76 \cdot 10^{11} [\, Kn / \,\,]$).

$$\begin{split} &1,76\cdot10^{11} [\frac{K_{I}}{\kappa_{Z}}]); \\ &\frac{e}{m} = 1,75\cdot10^{11} [\frac{K_{I}}{\kappa_{Z}}]; 1,77\cdot10^{11} [\frac{K_{I}}{\kappa_{Z}}]; 1,80\cdot10^{11} [\frac{K_{I}}{\kappa_{Z}}] \\ &(\frac{e}{m})_{a6c.} = 0,12\cdot10^{11} [\frac{K_{I}}{\kappa_{Z}}]; 0,11\cdot10^{11} [\frac{K_{I}}{\kappa_{Z}}]; 0,10\cdot10^{11} [\frac{K_{I}}{\kappa_{Z}}] \\ &(\frac{e}{m})_{omh.} = 0,0685; 0,0621; 0.0555 \end{split}$$

Выводы

В ходе лабораторной работы определён удельный заряд электрона методом магнитного запирания диода, который оказался равен:

$$\frac{e}{m} = 1,75 \cdot 10^{11} \pm 0,12 \cdot 10^{11} \begin{bmatrix} \frac{Kn}{\kappa} \end{bmatrix}; 1,77 \cdot 10^{11} \pm 0,11 \cdot 10^{11} \begin{bmatrix} \frac{Kn}{\kappa} \end{bmatrix}; 1,80 \cdot 10^{11} \pm 0,10 \cdot 10^{11} \begin{bmatrix} \frac{Kn}{\kappa} \end{bmatrix}$$