The Wavelet Transform

Motivation

Some signals obviously have spectral characteristics that vary with time

STATIONARITY OF SIGNAL

- Stationary Signal
 - Signals with frequency content unchanged in time
 - All frequency components exist at all times
- Non-stationary Signal
 - Frequency changes in time
 - One example: the "Chirp Signal"

STATIONARITY OF SIGNAL

Stationary

0.0-0.4: 2 Hz + 0.4-0.7: 10 Hz + 0.7-1.0: 20Hz

Non-Stationary

CHIRP SIGNALS

At what time the frequency components occur? FT can not tell!

Wavelet Transform

$$\gamma(s,\tau) = \int f(t) \psi_{s,\tau}^*(t) dt$$

Inverse Wavelet Transform

$$f(t) = \int \int \gamma(s, \tau) \psi_{s,\tau}(t) d\tau ds$$

All wavelet derived from mother wavelet

$$\Psi_{s,\tau}(t) = \frac{1}{\sqrt{s}} \Psi \left(\frac{t-\tau}{s} \right)$$

Inverse Wavelet Transform

build up a time-series as sum of wavelets of different scales, s, and positions, τ

An example:

