

AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-10 (canceled)

Claim 11 (previously presented): A 1,3-dimethylbutylcarboxanilide of formula (I)

in which

- R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R³, -CONR⁴R⁵, or -CH₂NR⁶R⁷,
- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,
- R³ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R⁴ and R⁵ independently of one another each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-

C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^4 and R^5 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^8 ,

R^6 and R^7 independently of one another represent hydrogen, C_1 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -haloalkyl or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^8 ,

R^8 represents hydrogen or C_1 - C_6 -alkyl, and

A represents

- (1) a radical of formula (A1)

in which

R^9 represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, or C_1 - C_4 -haloalkylthio having in each case 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl- C_1 - C_4 -alkyl,

R^{10} represents hydrogen, chlorine, bromine, iodine, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms, and

R^{11} represents hydrogen, C_1 - C_4 -alkyl, hydroxyl- C_1 - C_4 -alkyl, C_2 - C_6 -alkenyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, or C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl; or represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio- C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl having in each case 1 to 5 halogen atoms; or represents phenyl,

with the provisos that

- (a) R^9 does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl if R^{10} represents hydrogen or chlorine, R^{11} represents methyl, and R^1 and R^2 simultaneously represent hydrogen, and
- (b) R^9 does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine or bromine if R^{10} represents hydrogen, fluorine, trifluoromethyl, or methyl, R^{11} represents methyl, trifluoromethyl, methoxymethyl or trifluoromethoxy-methyl, and R^1 represents (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)-carbonyl, or (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

or

- (2) a radical of formula (A2)

in which

R^{12} and R^{13} independently of one another represent hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl having in each case 1 to 5 halogen atoms, and

R^{14} represents halogen, cyano or C_1 - C_4 -alkyl; or represents C_1 - C_4 -haloalkyl or C_1 - C_4 -haloalkoxy having in each case 1 to 5 halogen atoms,

with the proviso that R^{14} does not represent methyl if R^{12} and R^{13} represent hydrogen or methyl and R^1 and R^2 simultaneously represent hydrogen,

or

- (3) a radical of formula (A3)

in which

R¹⁵ and R¹⁶ independently of one another represent hydrogen,

halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁷ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

- (4) a radical of formula (A4)

in which

R¹⁸ represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents , C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, and

R¹⁹ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphanyl or C₁-C₄-alkylsulphonyl,

with the provisos that

- (a) R¹⁸ does not represent trifluoromethyl, methyl, chlorine, or methylthio if R¹⁹ represents hydrogen and R¹ and R² simultaneously represent hydrogen, and
- (b) R¹⁸ does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine, or bromine if R¹⁹ represents hydrogen and R¹ represents (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, or (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or

(C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, or (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

or

- (5) a radical of formula (A5)

with the proviso that R¹ and R² do not simultaneously represent hydrogen if A represents a radical of formula (A5),

or

- (6) a radical of formula (A6)

in which R²⁰ represents C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

- (7) a radical of formula (A7)

in which R²¹ represents C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

- (8) a radical of formula (A8)

in which

R²² and R²³ independently of one another represent hydrogen, halogen, amino, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R^{24} represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R^{24} does not represent methyl if R^{22} and R^{23} represent hydrogen or methyl and R^1 and R^2 simultaneously represent hydrogen,

or

- (9) a radical of formula (A9)

in which

R^{25} and R^{26} independently of one another represent hydrogen,

halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R^{27} represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

- (10) a radical of formula (A10)

in which

R^{28} represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R^{29} represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

with the provisos that

- (a) R^{29} does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl if R^{28} represents hydrogen or methyl and R^1 and R^2 simultaneously represent hydrogen, and

(b) R^{29} does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine, or bromine if R^{28} represents methyl, trifluoromethyl, methoxymethyl or trifluoromethoxymethyl and R^1 represents (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)carbonyl, or (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_1 - C_6 -haloalkyl)-carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, or (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

or

(11) a radical of formula (A11)

in which

R^{30} represents hydrogen, halogen, amino, C_1 - C_4 -alkylamino, di- $(C_1$ - C_4 -alkyl)amino, cyano, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms, and

R^{31} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(12) a radical of formula (A12)

in which R^{32} represents hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

with the proviso that R^{32} does not represent chlorine if R^1 and R^2 simultaneously represent hydrogen,

or

(13) a radical of formula (A13)

in which R³³ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

(14) a radical of formula (A14)

(A14),

in which R³⁴ represents C₁-C₄-alkyl.

Claim 12 (previously presented): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which

R¹ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₆-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, or (C₃-C₆-cycloalkyl)carbonyl; represents (C₁-C₄-haloalkyl)carbonyl, (C₁-C₄-haloalkoxy)carbonyl, (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, or (C₃-C₆-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R³, -CONR⁴R⁵, or -CH₂NR⁶R⁷,

R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,

R³ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; or represent C₁-C₄-haloalkyl, halo-

C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^4 and R^5 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^8 ,

R^6 and R^7 independently of one another represent hydrogen, C_1 - C_6 -alkyl, or C_3 - C_6 -cycloalkyl; or represent C_1 - C_4 -haloalkyl or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^8 ,

R^8 represents hydrogen or C_1 - C_4 -alkyl, and

A represents

(1) a radical of formula (A1)

in which

R^9 represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, or cyclopropyl; represents C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms; or represents trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl, or amino-carbonylethyl,

R^{10} represents hydrogen, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, or C_1 - C_2 -haloalkyl having 1 to 5 halogen atoms, and

R^{11} represents hydrogen, methyl, ethyl, n-propyl, isopropyl, C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl,

with the provisos that

- (a) R^9 does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl if R^{10} represents hydrogen or chlorine, R^{11} represents methyl and R^1 and R^2 simultaneously represent hydrogen, and
- (b) R^9 does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine, or bromine if R^{10} represents hydrogen, fluorine, trifluoromethyl, or methyl, R^{11} represents methyl, trifluoromethyl, methoxymethyl, or trifluoromethoxy-methyl, and R^1 represents (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)carbonyl, or (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, or ($halo$ - C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

or

- (2) a radical of formula (A2)

in which

R^{12} and R^{13} independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R^{14} represents fluorine, chlorine, bromine, iodine, cyano, methyl, or ethyl; or represents C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms,

with the proviso that R¹⁴ does not represent methyl if R¹² and R¹³ represent hydrogen or methyl and R¹ and R² simultaneously represent hydrogen,

or

- (3) a radical of formula (A3)

in which

R¹⁵ and R¹⁶ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R¹⁷ represents hydrogen, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

- (4) a radical of formula (A4)

in which

R¹⁸ represents fluorine, chlorine, bromine, iodine, hydroxyl, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoro-methylthio, or trifluoromethylthio; or represents C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R¹⁹ represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, or ethylthio; represents C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms; or represents C₁-C₂-alkylsulphanyl or C₁-C₂-alkylsulphonyl,

with the provisos that

- (a) R¹⁸ does not represent trifluoromethyl, methyl, chlorine, or methylthio if R¹⁹ represents hydrogen, and

(b) R^{18} does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine, or bromine if R^{19} represents hydrogen and R^1 represents (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)carbonyl, or (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, or ($halo-C_1$ - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

or

(5) a radical of formula (A5)

(A5),

with the proviso that R^1 and R^2 do not simultaneously represent hydrogen if A represents a radical of formula (A5),

or

(6) a radical of formula (A8)

(A8),

in which

R^{22} and R^{23} independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R^{24} represents hydrogen, methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(7) a radical of formula (A9)

(A9),

in which

R^{25} and R^{26} independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R^{27} represents fluorine, chlorine, bromine, methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

- (8) a radical of formula (A10)

(A10),

in which

R^{28} represents hydrogen, fluorine, chlorine, bromine, amino, C_1 - C_4 -alkylamino, di-(C_1 - C_4 -alkyl)amino, cyano, methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R^{29} represents fluorine, chlorine, bromine, hydroxyl, methyl, ethyl, methoxy, ethoxy, or cyclopropyl; or represents C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms,

with the provisos that

- (a) R^{29} does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl if R^{28} represents hydrogen or methyl and R^1 and R^2 simultaneously represent hydrogen, and
- (b) R^{29} does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine, or bromine if R^{11} represents methyl, trifluoromethyl, methoxymethyl, or trifluoromethoxy-methyl and R^1 represents (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)-carbonyl, or (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, or (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

or

(9) a radical of formula (A11)

in which

R³⁰ represents hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)amino, cyano, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms, and

R³¹ represents fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(10) a radical of formula (A12)

in which R³² represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

with the proviso that R³² does not represent chlorine if R¹ and R² simultaneously represent hydrogen,

or

(11) a radical of formula (A13)

in which R³³ represents fluorine, chlorine, bromine, iodine, hydroxyl, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, or trifluoromethylthio; or represents C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms.

Claim 13 (withdrawn): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which R¹ represents formyl.

Claim 14 (withdrawn): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which R¹ represents -C(=O)C(=O)R³, where R³ is as defined in Claim 11.

Claim 15 (previously presented): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which A represents A1.

Claim 16 (canceled)

Claim 17 (previously presented): A composition for controlling unwanted microorganisms comprising one or more 1,3-dimethylbutylcarboxanilides of formula (I) according to Claim 11 and one or more extenders and/or surfactants.

Claim 18 (withdrawn): A method for controlling unwanted microorganisms comprising applying an effective amount of a 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 to the microorganisms and/or their habitat.

Claim 19 (canceled)