

Learn Features to Classify Coins from (Ultra-)Sound

Felix Meyer, Marvin Arnold, Remke Albrecht

Problem

- long term goal: identify machine failures using sound
- problem: no prior knowledge of target label → unsupervised approach
- preparatory work: identify different types of coins using ultrasound
- coin types: 1ct, 2ct, 5ct, 20ct, 50ct, 1€, 2€
- traditional method: identify characteristic frequencies, check for these on new examples
- our method: use machine learning to let the model learn the characteristic frequencies by itself (from the raw signal)

Data Preparation

- only use every n-th value for performance
- normalize signal to value range [-1, 1]
- sample same amount of examples from each class
- random batch shuffling

Data Preparation - Unwindowed/Windowed

Architectures

Comparison of 2 network architectures:

RNN based	CNN based
Encoder-Decoder model (semi-supervised) Trivial model (supervised)	
Windowed/Unwindowed data	Windowed data

Architectures - Trivial Models (supervised)

Architectures - Encoder-Decoder

Training - Step 1

Training - Step 1 - RNN Encoder-Decoder

Malhotra, Pankaj, et al. "LSTM-based encoder-decoder for multi-sensor anomaly detection."

Training - Step 2

Architectures - CNN

Evaluation

TSNE (t-stochastic neighbour embedding) plot:

- non-linear dimensionality reduction similar to PCA
- same coins cluster together
- created on all available data (training + validation set)
- use of encoded input sequence (context)

Confusion matrix:

- visualize performance on validation set
- due to data limitations no test set

Box plot of highest validation accuracy:

- compare peak performance of all architectures
- each architecture sampled 20 times

LSTM Enc-Dec Model semi-supervised

unable to identify coins → mapping to 2ct or 1€

LSTM Enc-Dec Model semi-supervised

LSTM based method supervised

- changing to supervised improves accuracy significantly

CNN Enc-Dec Model semi-supervised

CNN Enc-Dec Model semi-supervised

Benchmark: Perfect CNN Classification (*supervised*)

- only learn predictor path, ignore autoencoder
- achieves 99,7% accuracy on validation set
- visually very good TSNE plot

Comparison of all methods

Conclusion

- LSTM based *semi-supervised* learning does not work
 - modification to supervised approach makes it work under same conditions
- CNN based *semi-supervised* learning works (better)
 - TSNE plots indicate self-learned clustering of coins
 - automatic feature extraction works (in this simple case)
- trivial CNN (*supervised*) approach beats all methods

Danke für die Aufmerksamkeit!

LSTM Enc-Dec *supervised*

LSTM Enc-Dec supervised: Training Graphs

Trivial RNN *supervised*

CNN Windowed: Training Graphs

CNN Windowed: Confusion Matrix (Every window)

CNN Windowed: Confusion Matrix (Majority vote)

LSTM Enc-Dec supervised: TSNE Plot

LSTM Enc-Dec *supervised*: Confusion Matrix

Box Plot *supervised*

CNN Enc-Dec (semi-supervised) reconstruction:

CNN Enc-Dec (semi-supervised) reconstruction:

