

A Proof of the Quadratic Reciprocity Law

Math Dicker, Open University of the Netherlands

October 30, 2012

Abstract

A proof of the *Quadratic reciprocity Law* is presented using a *Lemma of Gauss*, the theory of finite fields and the *Frobenius automorphism*.

1 Introduction.

Let p, q be distinct odd prime numbers and let e denote the order of q in \mathbb{F}_p^* . The Frobenius automorphism $x \rightarrow x^q$ in the field \mathbb{F}_{q^e} is here denoted by φ_q . Because p divides $q^e - 1$, the cyclic group $\mathbb{F}_{q^e}^*$ contains a primitive p -th root of unity to which we refer by ϑ . If we specify $f(x) = 1 + x + x^2 + \dots + x^{p-1}$ then $f(\vartheta^k) = 0$ for k with $\gcd(k,p)=1$, otherwise $f(\vartheta^k) = p$. We denote by $\delta(x_1, x_2, x_3, \dots, x_p)$ the determinant of the p -square matrix with the entry in the i th row and j th column equal to $(x_j)^i$.

2 The Quadratic Reciprocity Law.

In particular, $\delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{p-1})$ is the following determinant:

$$\delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{p-1}) = \begin{vmatrix} 1 & \vartheta & \vartheta^2 & \vartheta^3 & \dots & \vartheta^{p-1} \\ 1 & \vartheta^2 & \vartheta^4 & \vartheta^6 & \dots & \vartheta^{2(p-1)} \\ 1 & \vartheta^3 & \vartheta^6 & \vartheta^9 & \dots & \vartheta^{3(p-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \vartheta^i & \vartheta^{2i} & \vartheta^{3i} & \dots & \vartheta^{i(p-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & \dots & 1 \end{vmatrix}$$

Let M be the matrix corresponding with this determinant.

Theorem

$$1] \quad \delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{p-1})^2 = p^* p^{p-1} \text{ with } p^* = (-1)^{\frac{p-1}{2}} p$$

$$2] \quad \varphi_q(\delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{p-1})) = \left(\frac{q}{p}\right) \delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{p-1})$$

From 1], 2] and using $\varphi_q(x) = x \iff x \in \mathbb{F}_q$ and Euler's criterion, it follows:

$$\left(\frac{p^*}{q}\right) = 1 \Leftrightarrow \left(\frac{q}{p}\right) = 1 \text{ or } \left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}$$

Proof

ad 1] Consider the matrixproduct:

$$M^T M = \begin{vmatrix} p & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & p \\ 0 & 0 & 0 & \cdots & p & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & p & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & p & 0 & 0 & \cdots & 0 \end{vmatrix}$$

because $M^T M = (f(\vartheta^{(i+j-2)}))$ for row $i = 1, 2, \dots, p$ and column $j = 1, 2, \dots, p$.

ad 2] Consider the residue classes of \mathbb{F}_p^* represented by the following half systems: $H = 1, 2, 3, \dots, \frac{(p-1)}{2}$ and $-H = -1, -2, -3, \dots, -\frac{(p-1)}{2}$. We introduce the function ϱ_q which is connected as we shall see in a moment, to the Frobenius automorphism; The function $\varrho_q : \mathbb{F}_p^* \rightarrow \mathbb{F}_p^*$ is defined by $x \mapsto qx$; the result of ϱ_q is a permutation of \mathbb{F}_p^* . If we denote by μ the number of elements in the set S , with $S = \{x | x \in H, \varrho_q(x) \notin H\}$, then $(\frac{q}{p}) = (-1)^\mu$ (lemma of Gauss)[1].

Important for us is that the permutation ϱ_q working on \mathbb{F}_p^* is the result of μ interchanges, leaving aside a multiple of 2. This can be grasped as follows: define the permutation π on \mathbb{F}_p^* :

$\pi = [\Pi_{y \in S}(\varrho_q(y), -\varrho_q(y))] \varrho_q$; by (i,j) is denoted the permutation which interchanges i and j. The permutation ϱ_q and π originate from each other by μ interchanges.

The permutation π has the following properties: $\pi(x) = -\pi(-x)$; $\pi(H) = H$ and $\pi(-H) = -H$. Hence the identity permutation originates from π by an even number of paired interchanges on H and $-H$.

We have: $\delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{p-1}) = \delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{\frac{p-1}{2}}, \vartheta^{-\frac{p-1}{2}}, \dots, \vartheta^{-2}, \vartheta^{-1})$.

The application of the Frobenius automorphism and the consideration of the above mentioned properties of ϱ_q , results in:

$$\begin{aligned} \varphi_q (\delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{\frac{p-1}{2}}, \vartheta^{-\frac{p-1}{2}}, \dots, \vartheta^{-2}, \vartheta^{-1})) &= \\ \delta(1, \vartheta^q, \vartheta^{2q}, \dots, \vartheta^{\frac{p-1}{2}q}, \vartheta^{-\frac{p-1}{2}q}, \dots, \vartheta^{-2q}, \vartheta^{-1q}) &= \\ (-1)^\mu \delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{\frac{p-1}{2}}, \vartheta^{-\frac{p-1}{2}}, \dots, \vartheta^{-2}, \vartheta^{-1}) &= \\ (\frac{q}{p}) \delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{\frac{p-1}{2}}, \vartheta^{-\frac{p-1}{2}}, \dots, \vartheta^{-2}, \vartheta^{-1}) \end{aligned}$$

3 An example of ϱ_q .

The crucial point of this proof is that the operation of φ_q on the determinant $\delta(1, \vartheta, \vartheta^2, \dots, \vartheta^{p-1})$ results in μ interchanges of the columns, leaving aside a multiple of 2 interchanges. This is caused by the properties of the connected function ϱ_q .

To illustrate, we consider the case where $p = 13$ and $q = 5$. The residue classes of \mathbb{F}_{13}^* are represented by: 1, 2, 3, 4, 5, 6, -6, -5, -4, -3, -2, -1. H contains the first six classes. The function ϱ_5 results in the following permutation: 5, -3, 2, -6, -1, 4, -4, 1, 6, -2, 3, -5. μ is 3; hence $(\frac{5}{13}) = -1$ [lemma of Gauss]; $S = \{2, 4, 5\}$. The permutation π is: 5, 3, 2, 6, 1, 4, -4, -1, -6, -2, -3, -5. The permutation π can be transformed into the identity permutation by the following six paired interchanges (-2,-3) (2,3) (-4,-6) (4,6) (-5,-1) (5,1)

References

[1] C.F.Gauss, *Untersuchungen über höhere Arithmetik*, pp.458-459, Art.3

Math Dicker, Kerselarenstraat 36
3700 Tongeren, Belgium
louis.dicker@telenet.be; math.dicker@ou.nl