ThoughtWorks[®]

CONTAINERS

Rise of the Containers Workshop

Infrastructure as a Service

laaS is on-demand provisioning of building blocks such as computing power (CPU and RAM), storage, networking. This is lowest level (raw form) of service in cloud.

VM based laaS model

Steps to setup an Environment

1. Provision VM with Guest OS

O Create user, setup profile, set ulimit, ...

2. Install required Software

- JDK, Tomcat, Nginx ...
- Create required database users ...

3. Deploy Application

Configure application properties

Challenges with Virtual Machine model?

RESOURCE UTILIZATION

CPU, RAM, Disk consumed by Guest OS

PERFORMANCE OVERHEAD

Multiple OS + hypervisor translation layer

COST OVERHEAD

Software licenses (Guest OS) (capex)

Each VM Maintenance & Upgrade/Patching cost (opex)

VM to Container model

Container model

Container

container

/kənˈteɪnə/

noun: Isolated area of an OS with resource usage limits applied

Cgroups & Namespaces

Cgroups & Namespaces

CGROUPS

allows limitation and prioritization of resources (CPU, memory, block I/O, network, etc.)

NAMESPACE ISOLATION

allows complete isolation of an applications' view of the operating environment, including process trees, networking, user IDs and mounted file systems

Namespaces

Linux namespaces

Process ID (pid)

Network (net)

Filesystem/mount (mnt)

Inter-proc comms (ipc)

UTS (uts)

User (user)

Linux

Namespaces

Are Namespaces Just sufficient?

Control Groups

The Complete Picture

Namespaces

Linux

- pid object
- net - mount
- proc tablenetworking

Windows

Control Groups (Windows a.k.a. Job Objects)

- Grouping processes
- Imposing resource limits

LXC (Linux containers)

LXC (Linux Containers) is an OS level virtualization method for running multiple isolated Linux systems (containers) on a control host using a single Linux kernel.

Container Characteristics

- Each container runs in an sandboxed env using namespace isolation
- Container lifecycle is defined by main process (tightly coupled)
- Boot time is main process start time (OS boot time is reduced)
- Container can have multiple process other than main process

Container packaging

THANK YOU

For questions or suggestions:

Girish Verma girishv@thoughtworks.com

Offerings of Cloud services

- Infrastructure as a Service (laaS)
- Platform as a Service (PaaS)
- Software as a Service (SaaS)

Cloud service model with Pizza analogy

Electric / Gas Oven Fire Tomato Sauce Cheese

Dining Table Electric / Gas Oven Pizza Dough Tomato Sauce Toppings Cheese Take & Bake

Electric / Gas Oven Fire Pizza Dough Tomato Sauce Toppings Cheese

Dining Table Soda Electric / Gas Oven Fire Pizza Dough Tomato Sauce Toppings Cheese

diagram credit: by Albert Barron

Self Managed

Vendor Managed

Elastic Infrastructure

SaaS Application PaaS Middleware/OS laaS Servers Traditional In-house

New offering of Cloud service

- Infrastructure as a Service (laaS)
- Containers as a Service (CaaS)
- Platform as a Service (PaaS)
- Software as a Service (SaaS)

