班级 姓名 考试科目 电路与模拟电子技术 <u>A.</u>卷 共<u>4</u>页 学生答题不得超过此线 题号 四 总分 总分人 五 六 分数 一、选择填空题**:** (每空 1 分, 共 18 分) **评卷人** 1、电路如题 1 图所示,已知 $I_a=1$ mA., $I_b=10$ mA. , $I_c=2$ mA. ,则电流 $I_d=$ mA.。 $^{\mathsf{I}}$ 2、题 2 图所示电路等效变换为电流源,其中电流源的 $\mathbf{I}_{\mathsf{S}}=$ _____, $\mathbf{R}_{\mathsf{S}}=$ _____。 10V 10V 题 4 图 3、某元件的额定电压 $U_N=10V$,,额定功率 $P_N=2.5W$ 。正常使用时允许流过的最大电流为 5、RC 电路的外部激励为零,而由初始储能引起的响应叫 响应。 6、若三极管的发射结正偏,集电结反偏,则三极管处于______ 状态。 7、某放大状态的晶体三极管,当 $I_B=20$ μ A.时, $I_C=1$ mA.,当 $I_B=60$ μ A.时, $I_C=3$ mA.。则该管的电流放大系数 β 值为____ 9、对于一个放大电路来说,一般希望其输入电阻______些,以减轻信号源的负担,输出电阻_____些,以增大带负载 的能力。 12、电路如题 12 图所示,则输出电压 u₀=_____V。 13、正弦波振荡电路起振的幅度条件是______, ,相位平衡条件是__ 14、单相桥式整流电路输出平均电压为 24V,则变压器副边电压有效值为______V。 二、单项选择题:(本大题共 11 小题,每小题 2 分,共 22 分) 题 12 图 15、题 15 图所示电路中, U 为 ()。 A 10V B 30V C 50V D 40V 16、两个同频率正弦量的表达式为 u₁=200sin(314t+45°)V, u₂=100sin(314t+30°)V,下列说法正确的是()。 A u₁ 超前 u₂15° B u₂ 超前 u₁75° C u₂ 滞后 u₁105° 題15 图↓ 17、下列相量表达式正确的是(A $I = 10 \angle 30^{\circ} A$ B $i = 10e^{j30^{\circ}} A$ C $I = 10 \angle 30^{\circ} A$ D $I = 10\sqrt{2} \sin(\omega t + 30^{\circ})_{\Delta}$ 18、题 18 图所示电路在换路前已处于稳定状态,在 t=0 瞬间将开关 S 断开,则换路后时间常数 $\tau=($)。 C 0.5s B = 0.25s19、实验测得某有源二端线性网络的开路电压为 6V, 短路电流为 3A.。当外接电阻为 1Ω时, 流过该电阻的电流Ⅰ为(B 2A A 3A 20、NPN 型三极管处在放大状态时,各电极的电位关系是(A E 极电位最高, C 极电位最低 B E 极电位最高, B 极电位最低 题 18 图 C C 极电位最高, B 极电位最低 D C 极电位最高, E 极电位最低 21、某放大状态的三极管,测得其管脚电位为: ①脚 $u_1=0V$,②脚 $u_2=-0.7V$,③脚 $u_3=6V$,则可判定该管为()。 A NPN 型①是 e 极 B NPN型③是e极 C NPN 型②是 e 极 D NPN型①是c极 22、三种组态的放大电路中, 共集电极放大电路的特点是(A 能放大电流能放大电压 B 能放大电流不能放大电压 C 不能放大电流不能放大电压 D 不能放大电流能放大电压

班级______ 学号_____ 姓名____ 考试科目<u>电路与模拟电子技术</u> <u>A.</u>卷 共<u>4</u>页

23、由 NPN 型管构成的基本共射放大电路, 当输入 u_i 为正弦波时, 在示波器上观察输出 u_0 的波形上图所示,

则该电路产生了()。

A 频率失真

- B 交越失真
- C 饱和失真
- D 截止失真

B 乙类

C 甲乙类

25、分析如图所示电路,若电容 C 脱焊,则 U_I 为() A 4.5V B 9V C 12V D 14V

	., _ , , , _				
得分	评卷人				

第 25 题

26、已知电路如图所示, $u_i=15$ sinwt,二极管导通忽略管压降,试分析电路,并画出输出 u_o 的波形。

27、以下为直流电源的组成框图,请在图中标明各个部分名称并画出各部分输出波形图。

四、分析计算题,要求写出分析计算过程。(每小题8分,共40分)

得分	评卷人	28 、如题 28 图所示,已知 U=12V、i=4A.、 R_1 =3 Ω 、 R_2 =6 Ω 、 R_3 =1 Ω 、 R_4 =3 Ω ,请用戴维南定理求电
		流 I 。

班级	学号	姓名	考试科目	电路与模拟电子技术	<u>A.</u> 卷 共 <u>4</u> 页
•••••	••••• 密•	·····································	• • • • • • • • • • • • • • • • • • • •	·····线·····	•••••

29、在题 29 图所示电路中,换路前电路已处于稳态, $I_{
m S}$ =9mA., R_1 =6k Ω , R_2 =3k Ω , $C=2\mu F$ 试求换路后 u_c 。

30、题 30 图所示电路,正弦交流电路中 $\dot{U}=10 \angle 0^\circ$ V, $R_1=R_2=X_L=10 \Omega$,求: I_1,I_2,I_3 。

题 30 图

31、求题 31 图所示电路中 U_o 与各输入电压的运算关系。

- 32、反馈放大电路如图所示,
 - (1) 判断两级间交流反馈的类型;
 - (2) 说明此反馈对放大器输入输出电阻的影响。

班级	学号	_ 姓名	考试科目	电路与模拟电子技术	<u>A.</u> 卷 共 <u>4</u> 页
•••••	••••• 密 ••••	••••••封••••	••••	······线······	• • • • • • • • • • • • • • • • • • • •

五、分析计算题,要求写出分析计算过程。(12分)

得分	评卷人] 33、题 33 图中, $U_{CC} = 12V$, $R_E = 2k\Omega$, $R_C = 2.4k\Omega$, $R_{B1} = 20k\Omega$, $R_{B2} = 10k\Omega$, $R_L = 10k\Omega$,
		晶体管为硅管, $β = 40$,电容 C_1 、 C_2 、 C_E 足够大(忽略 U_{BE})。

- (1) 画出电路的直流通路, 求静态工作点; (2) 画出放大电路的微变等效电路;

(3) 计算 \dot{A}_u 、 R_i 和 R_o

