

滴滴算法大赛解题思路

队伍: 五岳剑派

说明:

本工程由 Github 私有仓库托管(https://github.com/HouJP/di-tech-16),其完整记录了第一赛季过程中的版本更新过程。由于该项目目前为私有仓库,如需审查,请联系 15201442067(侯建鹏同学)开通权限。

在邮件的附件中,提供了线上最优成绩所对应的训练及预测的数据文件(LIBSVM 格式),以及训练模型的脚本程序,执行该脚本程序,即可生成线上最优成绩的结果文件。

一 工程框架

图 1 工程框架图

在本项目中,我们队伍所使用的工程框架如图(1)所示。各文件夹及文件详细说明如下:

- bin/: 该目录下存放可执行的 shell 及 python 脚本工具,例如 xgboost 训练预测工具等:
- > conf/: 该目录下存放 shell 及 python 脚本的配置参数,例如工程路径、xgboost 模型参数等:
- ▶ di-tech-16-on-spark/: 该目录为通过 IntelliJ IDEA 构建的支持 spark 分布式计算框架

的代码工程,编程语言为 scala,需要运行时可通过编译器生成可执行 jar 包,用来完成数据预处理、特征抽取及线下评分等功能;

▶ data/raw/season_2/: 该目录为第一赛季更换数据后的数据目录,存放全部数据文件:

下面,详细介绍 data/raw/season 2/目录的构成,如下:

- ▶ data/raw/season_2/fs/: 该目录为特征池,以日期及特征名构建子目录,存放全部特征文件:
- ▶ data/raw/season_2/label/:该目录为标签池,以日期构建子目录,存放全部标签文件:
- ▶ data/raw/season_2/features:该文件实质上为配置文件,内容为当前模型选择使用的特征名,在训练文件生成阶段,程序会根据该文件的内容进入特征池选取指定特征来生成 lisvm 训练文件;
- ➤ data/raw/season_2/dates: 该文件实质上为配置文件,记录原始数据集中包含的日期范围,在数据预处理及特征生成时,将会根据该文件的内容按日期处理数据或生成特征;
- ➤ data/raw/season_2/training_set/: 该文件夹对应线下训练/预测过程的数据文件夹, 里面包含完成线下训练所需的数据文件(train_libsvm/train_key)、线下预测所需的数 据文件(test_libsvm/test_key)、线下生成的答案目录(ans/)以及线下训练及预测所采 用的时间片区间(train_time_slices/test_time_slices);
- ➤ data/raw/season_2/test_set_2/: 该文件夹对应第一赛季更换数据后线上训练/预测过程的数据文件夹,里面包含完成线上训练所需的数据文件(train_libsvm/train_key)、线上预测所需的数据文件(test_libsvm/test_key)、线上生成的答案目录(ans/)以及线上训练及预测所采用的时间片区间(train time slices/test time slices)。

二 数据预处理

由于原始数据文件 order_data/较大,为了提升数据处理及特征抽取的速度,我们对原始数据文件做了如下处理:

- > 删除 order id, driver id, passenger id;
- ▶ 将 start_district_id, dest_district_id 替换为 cluster_map 中的 district_id, 若其不包含 某区域 hash 值,则对应 id 置为-1; .
- ▶ 解析 Time 字段,增加年、月、日、时、分、秒以及时间片 id。

三 特征工程

特征名	Key	描述	维度
Week	Date	样本日期所对应周几的 one-hot 编码,以及	1-8
		最后一维是否是假日	
TID	Time_ID	时间片 ID	9
FPOI	District	区域的 POI 特征	10-185
FineArriveSelf	District,	样本时间片前半个小时中,按照5分钟间隔	186-

	Date,	滑动大小为 10 分钟的窗口,统计从本地到	190
	Time_ID	本地有司机接单订单数	
FineArrive	District,	样本时间片前半个小时中,按照5分钟间隔	191-
	Date,	滑动大小为 10 分钟的窗口,统计到本地有	195
	Time ID	司机接单的订单数	
FineGap	District,	样本时间片前半个小时中,按照5分钟间隔	196-
·	Date,	滑动大小为 10 分钟的窗口,统计从本地出	200
	Time_ID	发没有司机接单的订单数	
FineDemand	District,	样本时间片前半个小时中,按照5分钟间隔	201-
	Date,	滑动大小为 10 分钟的窗口,统计从本地的	205
	Time_ID	- 总订单数	
FWeatherOHE	Date	对天气进行 OHE 映射,温度,PM2.5	206-
			214
FDTGap	District,	前 21 天,每天的 gap 值,求出的均值,中	215-
	Time_ID	位数,标准差,最小值,最大值	219
FDTDemand	District,	前 21 天,每天的 Demand 值,求出的均值,	220-
	Time_ID	中位数,标准差,最小值,最大值	224
FDTGapByHoliday	District,	前 21 天,每天的 Gap 值按照是否是假日分	225-
	Time_ID	开求出的均值,中位数,标准差,最小值,	234
		最大值	
FDTSupply	District,	前 21 天,每天的供应值按照是否是假日分	235-
	Time_ID	开求出的均值,中位数,标准差,最小值,	239
		最大值	
FDateDistrict	District	前 21 天, 每天每个区域总 gap 数, 求均值,	240-
		中位数,标准差,最小值,最大值	244
FDateTimeGap	Time_ID	前 21 天,每天每时间片所有区域总 gap 数,	245-
		求均值,中位数,标准差,最小值,最大值	249
FHolidayTimeGap	Time_ID	前 21 天,每天每个时间片所有区域 gap 数,	250-
		按照是否是节假日分别求均值,中位数,标	259
		准差,最小值,最大值	
FWeekTimeGap	WeekDay,	前 21 天,每天每个时间片总 gap 数,按照	260-
	Time_ID	是周几分别求均值,中位数,标准差,最小	264
		值,最大值	
FHolidayDistrictGap	Time_ID	前 21 天,每天每个区域总 gap 数,按照是	265-
		否是节假日分别求均值,中位数,标准差,	274
		最小值,最大值	
FWeekDistrictGap	WeekDay,	前 21 天,每天每个区域总 gap 数,按照是	275-
	Time_ID	周几分别求均值,中位数,标准差,最小值,	279
		最大值	
FPrefixGap	District,	当前时间片往前 2,4,6,8,10,,30 分钟累计的	280-
	Date,	gap 数	294
	Time_ID		
FineTimeGap	Date,	样本时间片前半个小时中,按照 5 分钟间隔	295-
	Time_ID	滑动大小为 10 分钟的窗口,统计出所有地	299

		区 gap 总数	
FineGapStat	Date,	对 FineTimeGap 的每个时间片所对应的值求	300-
	Time_ID	均值,中位数,标准差,最小值,最大值	304
FTrafficTotal		每个区域路况信息中四个 level 数的总数	307

四 模型选择

在本项目中,我们采用的模型为 GBRT(Gradient Boosting Regression Trees),采用的工具为 xgboost(https://github.com/dmlc/xgboost)。在该模型中,我们使用了自定义的损失函数,如下所示:

$$loss = \left[abs \left(\frac{pred - gap}{gap} \right) \right]^{\frac{3}{2}}$$

```
模型的参数如下所示:

{

    "objective": "reg:linear",

    "nthread": 15,

    "eta": 0.05,

    "max_depth": 5,

    "min_child_weigth": 10,

    "gamma": 0,

    "subsample": 0.8,

    "colsample_bytree": 0.9,

    "n_round": 3000

}
```

五 模型融合

在上述参数的基础之上,随机化 max_depth, eta, subsample, colsample_bytree, seed 等参数。代码如下所示:

```
params['max_depth'] = params['max_depth'] + random.randint(-1, 1)
params['eta'] = params['eta'] + (random.random() - 0.5) / 50
params['subsample'] = params['subsample'] + (random.random() - 0.5) / 5
params['colsample_bytree'] = params['colsample_bytree'] + (random.random() - 0.5) / 5
params['seed'] = int(time.time())
由此训练出 25 个 xgboost 模型,最后预测结果取这 25 个模型输出结果的平均值。
```