Interpolacja za pomocą węzłów Czebyszewa

Michael Tryfanau 12 lutego 2025

Spis treści

	Poc	Podstawowe dane, metody i zasoby								
	2.1	Srodki	i techniczne							
	2.2	Dane	o wybranej funkcji i przedziale							
3	Przebieg eksperymentu									
	3.1	Hipote	eza							
	3.2	Węzły	interpolacji							
		3.2.1	Teoria							
		3.2.2	Zastosowanie teorii							
		3.2.3	Tabela							
	3.3									
		3.3.1	Teoria							
		3.3.2	Zastosowanie teorii							
		3.3.3	Wielomiany interpolacyjne							
		3.3.4	Wykres							
		3.3.5	Błąd interpolacji							
		3.3.6	Interpretacja otrzymanych wyników							

1 Cel projektu

Celem projektu było badanie interpolacji z używaniem różnie wybranych węzłów:

- Węzłów równie odległych od siebie na wybranym przedziale
- Węzłów Czebyszewa

i porównanie tych dwóch algorytmów.

2 Podstawowe dane, metody i zasoby

2.1 Środki techniczne

Obliczenia wykonywano na własnym laptopie, gdzie w IDE **Visual Studio Code** napisano program w języku Python. Użyto bibliotek: math oraz matplotlib, numpy. Dokument ze sprawozdaniem o projekcie sporządzono za pomocą IATFX.

2.2 Dane o wybranej funkcji i przedziale

Interpolowana funkcja:

$$f(x) = \sin(\frac{1}{x^2 + e^x}) \tag{1}$$

Dla projektu użyto interpolacji ${\bf Newtona}.$

Parametry przedziału:

$$a = -5.3$$
, $b = 4.7$, $n = 10$

czyli 11 węzłów.

3 Przebieg eksperymentu

3.1 Hipoteza

Autor przypuszcza, że za pomocą węzłów Czebyszewa uda się otrzymać wykres, będący znacznie bliższym do tego funkcji 1 w porównaniu do wykresu wielomianu interpolacyjnego otrzymanego za użyciem węzłów równooddalonych. W dodatku błąd interpolacji będzie widocznie mniejszy.

3.2 Węzły interpolacji

3.2.1 Teoria

Według wykładu generujemy węzły Czebyszewa w następujący sposób:

$$x_i^* = \frac{b-a}{2} \cdot \cos(\frac{2i+1}{2n+1}\pi) + \frac{a+b}{2}, \ 0 \le i \le n$$
 (2)

3.2.2 Zastosowanie teorii

Z tą wiedzą generujemy węzły interpolacji za pomocą następnej funkcji:

Listing 1: Funkcja generacji węzłów

3.2.3 Tabela

Poprzez wywoływanie tej funkcji otrzymano następujące węzły interpolacji:

i	Węzeł równooddalony	Węzeł Czebyszewa
0	-5,3	4,649107209404663
1	-4,3	4,248159976772592
2	-3,3	3,4787478717712914
3	-2,3	2,4032040872779885
4	-1,3	1,108662784207149
5	-0,3	-0,299999999999984
6	0,7	-1,7086627842071482
7	1,7	-3,003204087277986
8	2,7	-4,078747871771291
9	3,7	-4,848159976772591
10	4,7	-5,249107209404663

Tabela 1: Tabela węzłów interpolacji

3.3 Przebieg interpolacji

3.3.1 Teoria

Wielomian interpolacyjny Newtona wygląda następująco:

$$W_n(x) = c_{0,0} + c_{0,1}(x - x_0) + c_{0,2}(x - x_0)(x - x_1) + \dots + c_{0,n}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$
(3)

Gdzie współczynniki $c_{0,0}, c_{0,1}, \dots, c_{0,n}$ są wyznaczane jako:

$$c_{i,j} = \begin{cases} j = 0 & \Rightarrow y_i \\ 1 \le j \le n & \Rightarrow \frac{c_{i+1,j-1} - c_{i,j-1}}{x_{i+j} - x_i} \end{cases}$$
 (4)

Użyjemy równań 3 i 4 w następującej części.

3.3.2 Zastosowanie teorii

A interpolujemy my za pomocą funkcji:

Ta funkcja zwraca gotowy wielomian interpolacyjny (poprzez lambdę), za pomocą którego można wstawić węzły do funkcji pomocniczej, która stwarza dla dowolnej funkcji F i zbioru X jego obraz, ale też i współczynniki $c_{0,0}, c_{0,1}, \ldots, c_{0,n}$, których wartości są przesyłane do pliku.

3.3.3 Wielomiany interpolacyjne

Za pomocą wzorów 3 oraz 4 możemy uzyskać wielomian interpolacyjny, używając tych współczynników:

$c_{0,i}$	Współczynniki na węzłach r.o.	Współczynniki na węzłach Czebyszewa
0	0,035586017532897744	0,007929762965125289
1	$0,\!018431307949521192$	-0,00855625888676866
2	0,009470538039314861	0,005014907212819489
3	0,006125719371200611	-0,002567607805399241
4	0,004908579157430042	0,0020823868829243477
5	-0,002836472496128449	-0,00022539177128791
6	-0,0006963035621500522	-0,0008218729724849621
7	0,0009532899678599745	-0,00038410634637789934
8	-0,0004045393494760657	-0,00010989126129072859
9	0,00011033517688382007	$-2,459359655731805 \times 10^{-5}$
10	$-2,2623531398049946 \times 10^{-5}$	$-4,867662770044368 \times 10^{-6}$

Tabela 2: Tabela współczynników wielomianów interpolacji Newtona dla funkcji $f(x) = sin(\frac{1}{x^2 + e^x})$

3.3.4 Wykres

Wykres funkcji $f(x) = sin(\frac{1}{x^2 + e^x})$ oraz wielomianów interpolacji Newtona za pomocą węzłów równooddalonych i Czebyszewa na przedziale [-5,3,4,7]:

Rysunek 1: Wykresy funkcji f(x) oraz wielomianów interpolacyjnych

3.3.5 Błąd interpolacji

Obliczenie Obliczamy błąd bezwzględny interpolacji za pomocą następującej funkcji:

Listing 3: Funkcja obliczenia błędów interpolacji

```
def compute_error(f_true, f_int):
x_test = np.linspace(-5.3,4.7,15)
f_true = test_function(x_test, f_true)
f_int = test_function(x_test, f_int)
return (np.abs(np.array(f_true) - np.array(f_int)))
```

Wartości błędów Na początku obliczmy błędy na 15 równooddalonych punktach:

x	Błędy interpolacji z węzłami r. o.	Błędy interpolacji z węzłami Czebyszewa
-5,3	0,00000000	$4{,}38220520 \times 10^{-2}$
-4,58571429	$7,63106706 \times 10^{-1}$	$4,75465723 \times 10^{-2}$
-3,87142857	$3,09823489 \times 10^{-1}$	$3,66211457 \times 10^{-2}$
-3,15714286	$6,30026280 \times 10^{-2}$	$2,77583611 \times 10^{-2}$
-2,44285714	$3,74659227 \times 10^{-2}$	$8,37210537 \times 10^{-2}$
-1,72857143	$5,90027507 \times 10^{-2}$	$4,52634569 \times 10^{-3}$
-1,01428571	$2,35557369 \times 10^{-2}$	$7,54338907 \times 10^{-2}$
-0,3	$2,22044605 \times 10^{-16} \approx 0$	$2,22044605 \times 10^{-16} \approx 0$
0,41428571	$3,90820161 \times 10^{-2}$	$1,15443679 \times 10^{-1}$
1,12857143	$7,26110104 \times 10^{-2}$	$5,39733204 \times 10^{-3}$
1,84285714	$4,25305435 \times 10^{-2}$	$9,31967385 \times 10^{-2}$
2,55714286	$6,90339701 \times 10^{-2}$	$2,99847274 \times 10^{-2}$
3,27142857	$3,32844140 \times 10^{-1}$	$3,89014916 \times 10^{-2}$
3,98571429	$8,09514610 \times 10^{-1}$	$4,99702517 \times 10^{-2}$
4,7	$4,69589645 \times 10^{-15} \approx 0$	$4,57148579 \times 10^{-2}$

Tabela 3: Tabela błędów interpolacji dla funkcji $f(x) = sin(\frac{1}{x^2 + e^x})$

Sumując, dostajemy następujące wartości błędów bezwzględnych interpolacji:

Dla węzłów równo
oddalonych: $R_{int}=2,6215735246718834$ Dla węzłów Czebyszewa: $R_{cheb}=0,6980384997037218$

Tym samym $R_{cheb} < R_{int}$.

3.3.6 Interpretacja otrzymanych wyników

Hipoteza się sprawdziła. Wykresy, które dostaliśmy, są oczekiwane dla takiej procedury. Otrzymany błąd ogólny dla węzłów Czebyszewa okazał się znacznie mniejszy od tego dla węzłów równooddalonych.

4 Wnioski

Tym eksperymentem zbudowano wielomiany interpolacyjne Newtona dla węzłów równooddalonych i węzłów Czebyszewa. Zbadano działanie wybrania węzłów Czebyszewa na efektywność interpolacji wielomianowej Newtona.

Postawiona hipoteza się sprawdziła. Stwierdzono istnienie różnicy w błędach bezwzględnych oraz wykresach wielomianów interpolacyjnych, co potwierdza efektywność zastosowania węzłów Czebyszewa przy interpolacji wielomianowej Newtona.