Ch 4.3 - Logistic Regression

Lecture 10 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Weds, Sep 20, 2023

Announcements

Lec#	D	ate		Reading	Homeworks	Quizzes (Note: These are not announced until after they happen)
3	Fri	Sep 1	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due	Quiz #1
	Mon	Sep 4	No class - Labor day			
4	Wed	Sep 6	Linear Regression	3.1		
5	Fri	Sep 8	More Linear Regression	3.1/3.2		Quiz #2
6	Mon	Sep 11	Even more linear regression	3.2.2	Hw #2 Due	
7	Wed	Sep 13	Probably more linear regression	3.3		Quiz #3
8	Fri	Sep 15	Linear regression coding module			
9	Mon	Sep 18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	Wed	Sep 20	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	Fri	Sep 22	Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due	
	Mon	Sep 25	Review			
	Wed	Sep 27	Midterm #1			
	Fri	Sep 29	No class - Dr Munch out of town			

Announcements:

- Homework #3 Due Friday on Crowdmark
- Monday Review day
 - Nothing prepped
 - Bring your questions
- Wednesday Exam #1
 - ▶ Bring 8.5×11 sheet of paper
 - ► Handwritten both sides
 - Anything you want on it, but must be your work
 - You will turn it in

Covered in this lecture

Last Time:

- Classification basics
- Bayes classifier
- KNN classifier

This time:

3 / 25

Logistic Regression

Section 1

Review from last time

Weds, Sep 20, 2023

Error rate

- Training data: $\{(x_1, y_1), \dots, (x_n, y_n)\}$ with y_i qualitative
- Estimate $\hat{y} = \hat{f}(x)$
- Indicator variable

Training error rate:

$$\frac{1}{n}\sum_{i=1}^n\mathrm{I}(y_i\neq\hat{y}_i$$

Test error rate:

$$\operatorname{Ave}(\mathrm{I}(y_0 \neq \hat{y}_0))$$

Best ever classifier

We can't have nice things

Bayes Classifier:

Give every observation the highest probability class given its predictor variables

$$\Pr(Y = j \mid X = x_0)$$

Bayes Decision Boundary

Dr. Munch (MSU-CMSE)

Bayes error rate

• Error at $X = x_0$

$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$

7 / 25

Munch (MSU-CMSE) Weds, Sep 20, 2023

K-Nearest Neighbors

$$K = 3$$

decision boundary

- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$

• Pick *j* with highest value

Section 2

Logistic Regression

Simulated Default data set

What is classification

- Classification: When the response variable is qualitative
- Goal: Model the probability that Y belongs to a particular category

11/25

Or. Munch (MSU-CMSE) Weds, Sep 20, 2023

Goal for Balance data set

Goal: Model the probability that Y belongs to a particular category Ex. $Pr(\texttt{default} = \texttt{yes} \mid \texttt{balance})$

Let's just use regression!

JK that's a bad idea

Bad idea:

- Set Y to be a dummy variable taking values in $\{0, 1, 2, \cdots\}$
- Run regression, and choose k based on what integer value \hat{y} is closest to

Ex.

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

VS.

$$Y = \begin{cases} 1 & \text{if mild} \\ 2 & \text{if moderate} \\ 3 & \text{if severe} \end{cases}$$

Bad idea is still not a great idea for two levels

$$p(exttt{balance}) = exttt{Pr(default} = exttt{yes} \mid exttt{balance})$$
 $Y = egin{cases} 0 & ext{if not default} \ 1 & ext{if default} \end{cases}$

- Fit linear regression
- Predict default if $\hat{y} > 0.5$; not default otherwise

$$p(balance) = \beta_0 + \beta_1 balance$$

Dr. Munch (MSU-CMSE) Weds, Sep 20, 2023

Approximating the probability

Logistic function

$$y = \frac{e^x}{1 + e^x}$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Try it out:

desmos.com/calculator/cw1pyzzqci

Logistic Regression

$$\mathsf{Pr}(\mathsf{default} = \mathsf{yes} \mid \mathsf{balance}) = rac{e^{eta_0 + eta_1 \mathsf{balance}}}{1 + e^{eta_0 + eta_1 \mathsf{balance}}}$$

r. Munch (MSU-CMSE)

What will the drawn logistic regression classifer predict for each of the following values of Balance

Balance	Prediction
0	
500	
1000	
1500	
2000	
2500	

Odds

$$\frac{p(x)}{1 - p(x)} = \frac{\Pr(Y = 1 \mid X = x)}{1 - \Pr(Y = 1 \mid X = x)} = \frac{\Pr(Y = 1 \mid X = x)}{\Pr(Y = 0 \mid X = x)}$$

Probability
$$=\frac{p}{p+q} p / p q$$

Odds =
$$p:q$$
 $p:q$

Examples:

- If the probability of default is 90% what are the odds?

 - p(x) = 0.9 $\frac{0.9}{1-0.9} = 9$
- If the odds are 1/3, what is the probability of default?
 - $\frac{p}{1-p} = 1/3$
 - ▶ 3p' = 1 p
 - ▶ 4p = 1
 - p = 1/4

How to get logistic function

Assume the (natural) log odds (logits) follow a linear model

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

Solve for p(x):

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

20 / 25

Playing with the logistic function: desmos.com/calculator/cw1pyzzgci

Using coefficients to make predictions

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

What is the estimated probability of default for someone with a balance of \$1,000?

What is the estimated probability of default for someone with a balance of \$2,000:

r. Munch (MSU-CMSE) Weds, Sep 20, 2023

Interpreting the coefficients

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x$$

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

22 / 25

Munch (MSU-CMSE) Weds, Sep 20, 2023

Confusion Matrix: Predicting default from balance

		True default status		
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	23	81	104
	Total	9667	333	10000

		Yes	No	Total
Predicted	Yes	a	b	a+b
rredicted	No	c	d	c+d
	Total	a+c	b+d	N

Truc

Do coding in jupyter notebook

Dr. Munch (MSU-CMSE) Weds, Sep 20, 2023

Next time

Lec#	# Date			Reading	Homeworks	Quizzes (Note: These are not announced until after they happen)
3	Fri	Sep 1	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due	Quiz #1
	Mon	Sep 4	No class - Labor day			
4	Wed	Sep 6	Linear Regression	3.1		
5	Fri	Sep 8	More Linear Regression	3.1/3.2		Quiz #2
6	Mon	Sep 11	Even more linear regression	3.2.2	Hw #2 Due	
7	Wed	Sep 13	Probably more linear regression	3.3		Quiz #3
8	Fri	Sep 15	Linear regression coding module			
9	Mon	Sep 18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	Wed	Sep 20	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	Fri	Sep 22	Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due	
	Mon	Sep 25	Review			
	Wed	Sep 27	Midterm #1			
	Fri	Sep 29	No class - Dr Munch out of town			

Dr. Munch (MSU-CMSE) Weds, Sep 20, 2023