1. STABILITY OF POSITIVE SEMIGROUPS ON BANACH LATTICES

by

Günther Greiner and Frank Neubrander

In Section 1 of B-IV we have seen that the growth bound of a positive semigroup on spaces $C_{\rm O}({\rm X})$ coincides with the spectral bound of the generator A , which is - for positive semigroups - an element of the spectrum of A . Now, using the results of A-III, A-IV, B-IV,Sec.1 and C-III, it can be shown that this is valid for positive semigroups on AM- , AL- and Hilbert spaces.

Theorem 1.1. Let A be the generator of a positive semigroup $(T(t))_{t\geq 0}$ on a Banach lattice E such that $s(A) > -\infty$. Each of the subsequent conditions implies

$$s(A) = \omega_1(A) = \omega(A) \in \sigma(A)$$
.

- (a) Either E is an AM-space or an L^2 -space or an L^1 -space.
- (b) There exist $\tau > 0$, $h \in E_+$ such that $T(\tau)E \subset E_h$.
- (c) There exist $\tau > 0$, $\varphi \in E_+^\tau$ such that $\|T(\tau)f\| \le < f, \varphi>$ for all $f \in E_+$.

<u>Proof.</u> We know that $s(A) \leq \omega_1(A) \leq \omega(A)$ (see A-IV,Cor.1.5) and $s(A) \in \sigma(A)$ (see C-III,Cor.1.4). Thus we have to show $s(A) = \omega(A)$.

(a) For AM-spaces the proof given in Section 1 of B-IV works (cf. B-IV, Rem.1.5.).

Since for positive semigroups we always have $\|R(\lambda,A)\| \le \|R(Re\lambda,A)\|$ (Re $\lambda > s(A)$) (see C-III,Cor.1.3) the assertion for L²-spaces follows from A-III,Cor.7.10.

If E is an L^1 -space the assumptions of (c) are satisfied.

(b) We identify E_h according to the Kakutani-Krein Theorem with a space C(K), K compact. Considering $T(\tau)$ as operator from E into C(K), we denote it by T_O . Then T_O is positive hence continuous (see Schaefer (1974), II.Thm.5.3). Let $j:C(K)\cong E_h \to E$ be the canonical inclusion. The spectral radii of $T(\tau)=j\circ T_O$ and $T_O\circ j$ coincide and are given by $\rho:=\exp(\tau\cdot\omega(A))$. By the Krein-Rutman Theorem (cf. the Corollary to Thm.2.6 in the Appendix of Schaefer (1966)) there exists $0<\mu\in C(K)$ ' such that $(T_O\circ j)'\mu=\rho\cdot\mu$. Then $\phi:=T_O'\mu$ is an eigenvector of $(j\circ T_O)$ ' with eigenvalue ρ . Thus $\rho\in R_O(T(\tau))$ and hence $s(A)\geq \omega(A)$ by A-III,Thm.6.2.