

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com

Report No.: SZEM160800743703

Page: 1 of 47

FCC REPORT

Application No:SZEM1608007437CRApplicant:Monument Labs, Inc.Manufacturer:Monument Labs, Inc.

Factory: Qingyuan Gadmei Electronics Technology Co., Ltd.

Product Name: Monument Photo Management Device

Model No.(EUT): 217A12

Add Model No.: 217B12, 217C12, 217D12, 217E12

Trade Mark: Monument FCC ID: 2AJP5-MN217

Standards: 47 CFR Part 15, Subpart C (2015)

Date of Receipt: 2016-09-09

Date of Test: 2016-09-19 to 2016-10-27

Date of Issue: 2016-10-31

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM160800743703

Page: 2 of 47

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2016-10-31		Original		

Authorized for issue by:		
Tested By	Peter Gene	2016-10-27
	(Peter Geng) /Project Engineer	Date
Checked By	Eric Fu	2016-10-31
	(Eric Fu) /Reviewer	Date

Report No.: SZEM160800743703

Page: 3 of 47

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207 ANSI C63.10 2013		PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious 47 CFR Part 15, Subpart C Section 15.205/15.209		ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM160800743703

Page: 4 of 47

4 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
3		EST SUMMARY	
J			
4	CC	ONTENTS	4
5	GE	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	10
	6.1	Antenna Requirement	10
	6.2	CONDUCTED EMISSIONS	11
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	SPURIOUS RF CONDUCTED EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSION	
		8.1 Spurious Emissions	
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PH	HOTOGRAPHS - EUT TEST SETUP	45
	7.1	CONDUCTED EMISSION	45
	7.2	RADIATED EMISSION	45
	7.3	RADIATED SPURIOUS EMISSION	46
8	₽ŀ	HOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	47

Report No.: SZEM160800743703

Page: 5 of 47

5 General Information

5.1 Client Information

Applicant:	Monument Labs, Inc.				
Address of Applicant:	605 N. Michigan Ave., 4th Floor, Chicago, IL 60611, USA				
Manufacturer:	Monument Labs, Inc.				
Address of Manufacturer:	605 N. Michigan Ave., 4th Floor, Chicago, IL 60611, USA				
Factory:	Qingyuan Gadmei Electronics Technology Co., Ltd.				
Address of Factory:	YinZhan Forest ,QingCheng District ,QingYuan City,Guangdong Province, China				

5.2 General Description of EUT

Product Name:	Monument Photo Management Device
Model No.:	217A12
Trade Mark:	Monument
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	Bluetooth 4.0 dual, this is for BLE mode
Modulation Type:	GFSK
Number of Channel:	40
Antenna Type:	PIFA
Antenna Gain:	3.7dBi
Power Supply:	ADAPTER MODEL:A122-0502000UC INPUT:AC 100-240V, 50/60Hz OUTPUT:DC 5V,2000mA

Remark:

Model No.: 217A12, 217B12, 217C12, 217D12, 217E12

Only the model 217A12 was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for all the above models, only different on model number, package and case color. And Ethernet plug is not included for 217E12.

Report No.: SZEM160800743703

Page: 6 of 47

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The lowest channel (CH0)	2402MHz	
The middle channel (CH19)	2440MHz	
The highest channel (CH39)	2480MHz	

Report No.: SZEM160800743703

Page: 7 of 47

5.3 Test Environment

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	53 % RH			
Atmospheric Pressure:	1010mbar			

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	
MITSUBISHI Television	MITSUBISHI	AX025	
HDMI cable	Provided by SGS lab	N/A	

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM160800743703

Page: 8 of 47

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM160800743703

Page: 9 of 47

5.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8- 02	EMC0120	2016-09-28	2017-09-28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4- 02	EMC0121	2016-09-28	2017-09-28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2- 02	EMC0122	2016-09-28	2017-09-28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM160800743703

Page: 10 of 47

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:

47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.7dBi.

Report No.: SZEM160800743703

Page: 11 of 47

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:	Fraguenov rango (MUT)	Limit (d	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 60 50					
	* Decreases with the logarithm	n of the frequency.		•		
Test Procedure:	 The mains terminal disturb room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the rational street of the second reference plane. A placed on the horizontal ground reference plane. A placed on the horizontal ground reference reference plane. The LISN unit under test and bon mounted on top of the ground the closest points of the L and associated equipment In order to find the maximuland all of the interface call ANSI C63.10: 2013 on contraction. 	to AC power source letwork) which provide cables of all other SN 2, which was bonders the LISN 1 for the was used to connect reating of the LISN was reaced upon a non-metal and for floor-standing a round reference plane. It has vertical ground reference plane was bonded N 1 was placed 0.8 m ded to a ground refund reference plane. To LISN 1 and the EUT. It was at least 0.8 m from the relations must be changed	through a LISN 1 os a 50Ω/50μH + 5Ω liquits of the EUT or ed to the ground reference unit being measure multiple power cables not exceeded. Allic table 0.8m above rrangement, the EUT ference plane. The regard reference plane. The regard reference plane for the horizontal ground from the boundary of ference plane for Lights distance was between the LISN 2. The positions of equipment of the model of the mo	(Line inear were ence ed. A s to a e the was ear of The ound of the ISNs ween EUT		
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 → AC Ma Ground Reference Plane	Test Receiver			
Test Mode:	Transmitting with GFSK modu	llation.				

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and object of the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM160800743703

Page: 12 of 47

Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM160800743703

Page: 13 of 47

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room
Condition : CE LINE
Job No. : 7437CR
Test Mode : BT

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16327	0.02	9.60	40.74	50.36	55.30	-4.94	Peak
2 @	0.42825	0.02	9.60	33.11	42.73	47.29	-4.56	Peak
3	0.70842	0.03	9.61	27.66	37.29	46.00	-8.71	Peak
4	2.809	0.03	9.62	24.00	33.64	46.00	-12.36	Peak
5	6.914	0.08	9.68	32.35	42.11	50.00	-7.89	Peak
6	14.138	0.15	9.75	28.77	38.68	50.00	-11.32	Peak

Report No.: SZEM160800743703

Page: 14 of 47

Neutral line:

Site : Shielding Room
Condition : CE NEUTRAL
Job No. : 7437CR
Test Mode : BT

	_		LISN				Over	
	rreq	Loss	Factor	revel	revel	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15240	0.02	9.62	40.96	50.60	55.87	-5.27	Peak
2 @	0.45155	0.02	9.63	34.18	43.82	46.85	-3.02	Peak
3	1.781	0.03	9.65	24.01	33.69	46.00	-12.31	Peak
4	2.707	0.03	9.67	20.68	30.38	46.00	-15.62	Peak
5	7.062	0.08	9.74	29.45	39.27	50.00	-10.73	Peak
6	14.138	0.15	9.88	29.60	39.64	50.00	-10.36	Peak

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM160800743703

Page: 15 of 47

6.3 Conducted Peak Output Power

Measurement Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	7.69	30.00	Pass		
Middle	7.43	30.00	Pass		
Highest	6.35	30.00	Pass		

Report No.: SZEM160800743703

Page: 16 of 47

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM160800743703

Page: 17 of 47

Report No.: SZEM160800743703

Page: 18 of 47

6.4 6dB Occupy Bandwidth

Measurement Data

	GFSK mode		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.708	≥500	Pass
Middle	0.708	≥500	Pass
Highest	0.696	≥500	Pass

Report No.: SZEM160800743703

Page: 19 of 47

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM160800743703

Page: 20 of 47

Report No.: SZEM160800743703

Page: 21 of 47

6.5 Power Spectral Density

Measurement Data

	GFSK mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
Lowest	-6.53	≤8.00	Pass				
Middle	-6.92	≤8.00	Pass				
Highest	-8.12	≤8.00	Pass				

Report No.: SZEM160800743703

Page: 22 of 47

Test plot as follows:

Report No.: SZEM160800743703

Page: 23 of 47

Report No.: SZEM160800743703

Page: 24 of 47

6.6 Band-edge for RF Conducted Emissions

Report No.: SZEM160800743703

Page: 25 of 47

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM160800743703

Page: 26 of 47

6.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10: 2013 Section 11.11			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Mode:	Transmitting with GFSK modulation.			
Instruments Used:	Refer to section 5.10 for details.			
Test Results:	Pass			

Report No.: SZEM160800743703

Page: 27 of 47

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM160800743703

Report No.: SZEM160800743703 Page: 29 of 47

Report No.: SZEM160800743703

Page: 30 of 47

Test mode: GFSK Test channel: Highest

Report No.: SZEM160800743703

Page: 31 of 47

Remark:

Use 100kHz RBW to determine the relative limit in the band 2.4GHz to 2.5GHz, and Use 1MHz RBW to measure spurious emissions in the band 30MHz to 10GHz and 10GHz to 25GHz. The sweep points set to 30001.

Report No.: SZEM160800743703

Page: 32 of 47

6.8 Radiated Spurious Emission

6.8.1 Spurious Emissions							
Test Requirement:	47 CFR Part 15C Secti	47 CFR Part 15C Section 15.209 and 15.205					
Test Method:	ANSI C63.10 :2013 Se	ctior	า 11.12				
Test Site:	Below 1GHz:						
	Measurement Distance Above 1GHz:	Measurement Distance: 3m (Semi-Anechoic Chamber) Above 1GHz:					
	Measurement Distance	: 3n	n (Full-Anecho	oic Chambe	r)		
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	Z	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MH	Z	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz	3MHz	Peak	
	Above Tariz		Peak	1MHz	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	-	30	
	1.705MHz-30MHz		30	-	-	30	
	30MHz-88MHz		100	40.0	Quasi-peak	С	
	88MHz-216MHz	88MHz-216MHz 150		43.5	Quasi-peak	3	
	216MHz-960MHz 20		200	46.0	Quasi-peak	3	
	960MHz-1GHz		500	54.0	Quasi-peak	3	
	Above 1GHz 500		500	54.0	Average	3	
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						

Report No.: SZEM160800743703

Page: 33 of 47

Test Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Ocuments.gov, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM160800743703

Page: 34 of 47

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation.
Final Test Mode:	Transmitting with GFSK modulation.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM160800743703

Page: 35 of 47

Radiated Emission below 1GHz				
30MHz~1GHz (QP)				
Test mode: Transmitting mode Vertical				

Condition: 3m VERTICAL

Job No. : 7437CR

Test mode: BT

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	65.80	0.80	7.02	27.34	51.10	31.58	40.00	-8.42
2	120.28	1.25	8.09	27.18	53.20	35.36	43.50	-8.14
3 pp	133.62	1.28	8.09	27.12	54.38	36.63	43.50	-6.87
4	238.31	1.62	11.84	26.75	45.88	32.59	46.00	-13.41
5	622.89	2.75	20.25	27.75	43.56	38.81	46.00	-7.19
6	758.04	3.08	21.70	27.47	41.69	39.00	46.00	-7.00

Report No.: SZEM160800743703

Page: 36 of 47

Test mode: Transmitting mode Horizontal

Condition: 3m HORIZONTAL

Job No. : 7437CR

Test mode: BT

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m				dBuV/m	——dB
1	66.97	0.80	6.99	27.33	48.52	28.98	40.00	-11.02
2	131.76	1.28	7.99	27.12	48.08	30.23	43.50	-13.27
3	372.00	2.12	15.85	26.97	44.74	35.74	46.00	-10.26
4	404.67	2.22	16.38	27.12	48.45	39.93	46.00	-6.07
5	758.04	3.08	21.70	27.47	41.59	38.90	46.00	-7.10
6 pp	836.24	3.35	22.25	27.22	42.99	41.37	46.00	-4.63

Report No.: SZEM160800743703

Page: 37 of 47

Transmitter Emission above 1GHz

Test mode:		GFSK	Test	channel:	Lowest	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3574.015	7.66	32.42	38.50	44.32	45.90	74.00	-28.10	Vertical
4804.000	8.87	34.16	39.03	43.64	47.64	74.00	-26.36	Vertical
6069.413	10.47	34.76	38.96	45.70	51.97	74.00	-22.03	Vertical
7206.000	10.68	36.42	38.18	42.09	51.01	74.00	-22.99	Vertical
9608.000	12.50	37.52	36.99	39.91	52.94	74.00	-21.06	Vertical
11998.250	14.56	38.60	38.30	38.45	53.31	74.00	-20.69	Vertical
3797.945	7.74	33.06	38.61	44.52	46.71	74.00	-27.29	Horizontal
4804.000	8.87	34.16	39.03	44.71	48.71	74.00	-25.29	Horizontal
5811.590	10.03	34.59	39.02	45.43	51.03	74.00	-22.97	Horizontal
7206.000	10.68	36.42	38.18	42.61	51.53	74.00	-22.47	Horizontal
9608.000	12.50	37.52	36.99	39.87	52.90	74.00	-21.10	Horizontal
12067.890	14.50	38.64	38.37	38.97	53.74	74.00	-20.26	Horizontal

Test mode:		GFSK	Test	channel:	Middle	Rema	ırk:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3781.495	7.73	33.01	38.60	45.55	47.69	74.00	-26.31	Vertical
4880.000	8.97	34.29	39.06	43.39	47.59	74.00	-26.41	Vertical
6087.002	10.45	34.77	38.94	44.91	51.19	74.00	-22.81	Vertical
7320.000	10.72	36.37	38.07	42.29	51.31	74.00	-22.69	Vertical
9760.000	12.58	37.55	36.92	39.07	52.28	74.00	-21.72	Vertical
12458.220	14.18	38.88	38.77	39.64	53.93	74.00	-20.07	Vertical
3584.372	7.66	32.45	38.51	44.94	46.54	74.00	-27.46	Horizontal
4880.000	8.97	34.29	39.06	40.92	45.12	74.00	-28.88	Horizontal
5786.418	9.96	34.58	39.02	45.02	50.54	74.00	-23.46	Horizontal
7320.000	10.72	36.37	38.07	42.82	51.84	74.00	-22.16	Horizontal
9760.000	12.58	37.55	36.92	39.68	52.89	74.00	-21.11	Horizontal
12350.530	14.27	38.81	38.66	39.45	53.87	74.00	-20.13	Horizontal

Report No.: SZEM160800743703

Page: 38 of 47

Test mode:		GFSK	Test	channel:	Highest	Highest Remark: Peak		Peak	
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)		mit V/m)	Over limit (dB)	Polarization
3836.607	7.75	33.16	38.63	44.99	47.27	74	.00	-26.73	Vertical
4960.000	9.09	34.43	39.09	43.87	48.30	74	.00	-25.70	Vertical
6060.637	10.48	34.75	38.96	44.92	51.19	74	.00	-22.81	Vertical
7440.000	10.77	36.32	37.94	41.89	51.04	74	.00	-22.96	Vertical
9920.000	12.67	37.58	36.84	38.99	52.40	74	.00	-21.60	Vertical
12155.510	14.43	38.69	38.46	38.44	53.10	74	.00	-20.90	Vertical
3792.453	7.74	33.04	38.61	44.78	46.95	74	.00	-27.05	Horizontal
4960.000	9.09	34.43	39.09	44.04	48.47	74	.00	-25.53	Horizontal
6043.124	10.50	34.74	38.97	45.65	51.92	74	.00	-22.08	Horizontal
7440.000	10.77	36.32	37.94	42.31	51.46	74	.00	-22.54	Horizontal
9920.000	12.67	37.58	36.84	38.75	52.16	74	.00	-21.84	Horizontal
12404.260	14.23	38.84	38.71	38.87	53.23	74	.00	-20.77	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM160800743703

Page: 39 of 47

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12							
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Full-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1011=	54.0	Average Value						
	Above 1GHz	74.0	Peak Value						
			·						
Test Setup:									

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:	a.	For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters
		above the ground at a 3 meter semi-anechoic chamber. The table was rotated
		360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- Repeat above procedures until all frequencies measured was complete.

Exploratory Test | Transmitting with GFSK modulation.

Report No.: SZEM160800743703

Page: 40 of 47

Mode:	
Final Test Mode:	Transmitting with GFSK modulation.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM160800743703

Page: 41 of 47

Test plot as follows:

Test mode: GFSK Test channel: Lowest Remark: Peak Vertical

Condition: 3m VERTICAL Job No: : 7437CR

Mode: : 2402 Band edge

: BLE

Ant Preamp Read 0ver Cable Limit Freq Loss Factor Factor Level Level Line Limit Remark MHz dB dB/m dB dBuV dBuV/m dBuV/m 1 2346.606 5.30 28.95 38.14 52.21 48.32 74.00 -25.68 2390.000 5.34 29.08 38.14 46.75 43.03 74.00 -30.97 3 pp 2402.047 5.35 29.11 38.15 110.94 107.25 74.00 33.25

Report No.: SZEM160800743703

Page: 42 of 47

Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No: : 7437CR

Mode: : 2402 Band edge

: BLE

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
			,						
1	2339.656	5.30	28.92	38.14	47.58	43.66	74.00	-30.34	
2	2390.000	5.34	29.08	38.14	44.32	40.60	74.00	-33.40	
3 p	p 2402.047	5.35	29.11	38.15	101.62	97.93	74.00	23.93	

Report No.: SZEM160800743703

Page: 43 of 47

Test mode: GFSK Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL Job No: : 7437CR

Mode: : 2480 Band edge

: BLE

Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit Remark MHz dB dBuV dBuV/m dBuV/m dB/m dB 1 pp 2479.930 5.41 29.34 38.15 109.61 106.21 74.00 32.21 2483.500 5.41 29.35 38.15 69.31 65.92 74.00 -8.08 5.41 29.35 38.15 53.72 50.33 54.00 -3.67 Average 3 av 2483.500

Report No.: SZEM160800743703

Page: 44 of 47

Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
------------	------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No: : 7437CR

Mode: : 2480 Band edge

: BLE

		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
_										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
pp	2479.930	5.41	29.34	38.15	100.73	97.33	74.00	23.33		
	2483.500	5.41	29.35	38.15	58.90	55.51	74.00	-18.49		
	2483.500	5.41	29.35	38.15	45.32	41.93	54.00	-12.07	Average	
	2483.646	5.41	29.35	38.15	60.87	57.48	74.00	-16.52		
av	2483.646	5.41	29.35	38.15	45.69	42.30	54.00	-11.70	Average	
		MHz pp 2479.930 2483.500 2483.500 2483.646	Freq Loss MHz dB pp 2479.930 5.41 2483.500 5.41 2483.646 5.41	Freq Loss Factor MHz dB dB/m pp 2479.930 5.41 29.34 2483.500 5.41 29.35 2483.500 5.41 29.35 2483.646 5.41 29.35	Freq Loss Factor Factor MHz dB dB/m dB pp 2479.930 5.41 29.34 38.15 2483.500 5.41 29.35 38.15 2483.646 5.41 29.35 38.15	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV pp 2479.930 5.41 29.34 38.15 100.73 2483.500 5.41 29.35 38.15 58.90 2483.500 5.41 29.35 38.15 45.32 2483.646 5.41 29.35 38.15 60.87	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m pp 2479.930 5.41 29.34 38.15 100.73 97.33 2483.500 5.41 29.35 38.15 58.90 55.51 2483.500 5.41 29.35 38.15 45.32 41.93 2483.646 5.41 29.35 38.15 60.87 57.48	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m pp 2479.930 5.41 29.34 38.15 100.73 97.33 74.00 2483.500 5.41 29.35 38.15 58.90 55.51 74.00 2483.500 5.41 29.35 38.15 45.32 41.93 54.00 2483.646 5.41 29.35 38.15 60.87 57.48 74.00	MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB pp 2479.930 5.41 29.34 38.15 100.73 97.33 74.00 23.33 2483.500 5.41 29.35 38.15 58.90 55.51 74.00 -18.49 2483.500 5.41 29.35 38.15 45.32 41.93 54.00 -12.07 2483.646 5.41 29.35 38.15 60.87 57.48 74.00 -16.52	Freq Loss Factor Factor Level Level Line Limit Remark MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB pp 2479.930 5.41 29.34 38.15 100.73 97.33 74.00 23.33 2483.500 5.41 29.35 38.15 58.90 55.51 74.00 -18.49 2483.500 5.41 29.35 38.15 45.32 41.93 54.00 -12.07 Average

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM160800743703

Page: 45 of 47

7 Photographs - EUT Test Setup

Test model No.: 217A12

7.1 Conducted Emission

7.2 Radiated Emission

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and objections under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM160800743703

Page: 46 of 47

7.3 Radiated Spurious Emission

Report No.: SZEM160800743703

Page: 47 of 47

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1608007437CR.