

Departamento de Matemáticas y Física GUÍA DE APRENDIZAJE

Decisiones y Teoría de Juegos

Asignatura:	DECISIONES Y TEORÍA DE JUEGOS			Créditos BCD:	4
Clave:	MAF1301ITE2134	Grupo:		Créditos TIE:	4
Carreras	Ingeniería Financiera	Horario:	18:00-20:00	Aula: (L, Mi)	D-209
Departamento:	Departamento de	UAB:		Periodo:	Otoño 2022
	Matemáticas y Física				
Coordinador UAB:	Saúl Alonso Nuño Sánchez		E-mail:	saulnuno@iteso.mx	Ext 3066
Profesor:	Emmanuel Alcalá Temores		E-mail:	jaime.alcala@iteso.mx	

1. Presentación

La Teoría de juegos es un área de las matemáticas aplicadas que hace uso de herramientas formales, como la teoría de la probabilidad, teoría de grafos y cálculo para resolver problemas de decisión que involucran a múltiples agentes, cuyas ganancias son interdependientes.

Decisiones y Teoría de Juegos se divide en cuatro unidades. En cada una de esta se presenta un tipo de juego distinto que corresponde a las distintas situaciones reales que pueden ser modeladas, y en ese sentido simplificadas, mediante las herramientas formales de la teoría. Primero, comenzamos con los fundamentos de teoría de decisión, introduciendo la teoría de elección racional; posteriormente, se presentan los juegos estáticos con información completa; en la segunda unidad, se presentan los juegos dinámicos o secuenciales con información completa. En la tercera y cuarda unidades se introducen los juego bayesianos, en donde exigimos de nuestros jugadores que se representen la incertidumbre de forma probabilística; en la tercera, se presentan los juegos estáticos con información incompleta, y finalmente los juegos dinámicos con información incompleta.

Correspondiendo a estas cuatro clases de juegos hay tres nociones de equilibrio, cada una considerada un refinamiento de su antecesora: el equilibrio de Nash, el equilibrio de Nash perfecto en subjuegos, el equilibrio bayesiano de Nash y el equilibro bayesiano perfecto.

2. Contextualización de la asignatura

Esta materia es impartida para estudiantes de la carrera de Ingeniería Financiera y se sugiere cursarla en el sexto semestre. Se requieren competencias y conocimientos en teoría de la probabilidad, cálculo, álgebra lineal y preferentemente conocimiento de un lenguaje de programación en el que puedan expresar y resolver problemas matemáticos o estadísticos.

A lo largo del curso se proponen cuatro situaciones de aprendizaje y sus fechas de entrega, siguiendo los tres siguientes principios:

Principios:

- De lo abstracto a lo concreto. Aprender los conceptos, definiciones y modelos matemáticos de cada tipo de juego, y posteriormente aplicarlo a un problema y situación de aprendizaje particular.
- En concordancia con el modelo de aprendizaje de ITESO, se seleccionarán situaciones de aprendizaje y problemas que ilustren no solo la aplicación profesional y técnica, sino la importancia social de lo aprendido.

3. Mapa descriptivo

4. Propósitos

4.1. Propósito general

Proporcionar al estudiante bases sólidas, como herramientas matemáticas y pensamiento estratégico, para modelar y resolver problemas de decisión en donde participa más de un agente racional (sean individuos o empresas), con una visión heurística en donde las decisiones de uno dependen de las acciones de otros agentes, a través de un método de formalización matemática y resolución de casos específicos

4.2. Propósitos transversales

- 4.2.1 Comprender la teoría básica de la teoría de juegos.
- 4.2.2 Aplicar la teoría de juegos en problemas específicos de la economía, finanzas y en otros ejemplos que ilustren la importancia social de teoría de juegos.
- 4.2.3 Realizar el proceso de la traducción que consiste en abstraer y modelar a partir de la descripción informal de una determinada situación a un problema formal de teoría de juegos.
- 4.2.4 Reconocer aspectos y relaciones fundamentales en una situación financiera o administrativa.
- 4.2.5 Transitar eficientemente entre representaciones matemáticas gráficas, verbales, tabulares y analíticas.
- 4.2.6 Expresar de forma coherente y argumentada las estrategias utilizadas en la solución de problemas.
- 4.2.7 Interpretar las soluciones obtenidas en el contexto de cada problema.
- 4.2.8 Emplear software en la elaboración y operación de representaciones matemáticas en forma numérica, gráfica y analítica.

5. Actitudes y valores

Se espera que al cursar esta asignatura desarrolles responsabilidad ante la actividad académica, manifiesta en al menos los siguientes aspectos:

- Participación activa, con compromiso, perseverancia y actitud positiva.
- **⊘** El cumplimiento de las normas de disciplina establecidas.
- El cumplimiento en tiempo y forma de las actividades que se te encomienden como trabajo independiente.
- ➡ El desarrollo de espíritu crítico y autocrítico (constructivo) en el análisis del desempeño tuyo y de tus compañeros.
- ✔ El sentido de la ética, evitando, en particular, cometer actos deshonestos en la realización de las actividades evaluativas.
- ▼ El desarrollo de la capacidad para identificar características personales al afrontar procesos de aprendizaje y, como consecuencia, para aprender con mayor independencia.
- Diálogo abierto, directo y respetuoso tanto con el profesor como con tus compañeros.
- Tolerancia y respeto.

6. Propósitos específicos

6.1. Específico 1:

- 1. Presentación.
- 2. Teoría de utilidad esperada (Tadelis, 2013; capítulos 1-3).
- 3. Juegos con Información completa y decisiones simultáneas (Tadelis, 2013; capítulos 3-6).

Situación de aprendizaje 1

Competencia de Cournot: se resuelve el problema de competencia de producción de dos empresas líderes en el mercado, se generaliza a n empresas y se explican brevemente las consecuencias de la competencia perfecta cuando $n \to \infty$.

Aprendizajes esperados 1

- 1. Funciones de utilidad y decisiones bajo incertidumbre.
- 2. La forma normal de un juego con estrategias puras.
- 3. Representación matricial: un juego finito de dos jugadores.
- 4. Dominancia en estrategias puras.
- 5. Eliminación iterativa de estrategias estrictamente dominadas.
- 6. El equilibrio de Nash en estrategias puras.
- 7. El equilibrio de Nash: algunas aplicaciones clásicas.
- 8. Estrategias, creencias y pagos esperados.

6.2. Específico 2:

Juegos con información completa y decisiones sucesivas (Tadelis, 2013; capítulos 7-11).

Situación de aprendizaje 2

- a) Pánico bancario: se modela una situación en la que dos agentes realizan una cierta inversión bancaria y deben decidir si retirar sus fundos antes o después de que la inversión llegue a su vencimiento.
- b) Henry Ford y el salario de 5 dólares: se modela una situación en la que dos agentes tienen múltiples encuentros en la misma situación estratégica (juego de etapa simple), en donde un patrón decide el salario de sus trabajadores, y los trabajadores deciden si ser diligentes o no. Se enfatiza la importancia de este tipo de juegos dada su relación con el aprendizaje por refuerzo.

Aprendizajes esperados 2

- 1. Forma extensiva vs forma estratégica.
- 2. Descripción matemática de un árbol de decisión.
- 3. Información perfecta vs información imperfecta con información completa.
- 4. La representación en forma normal de juegos representados en forma extensiva.
- 5. Racionalidad secuencial e inducción hacia atrás.
- 6. Perfección en subjuegos.
- 7. Juegos repetidos en dos etapas.
- 8. Juegos repetidos infinitamente.
- 9. Negociación secuencial.

6.3. Específico 3:

Juegos bayesianos con al menos uno de los jugadores con información incompleta, en donde el jugador representa la incertidumbre mediante distribuciones de probabilidad (Tadelis, 2013); capítulos 12-14).

Situación de aprendizaje 3

Subasta a sobre cerrado: se modela una situación de subasta en la que las valoraciones de los participantes son información privada. Se comienza con dos jugadores y se generaliza rápidamente a n jugadores.

Aprendizajes esperados 3

- 1. Representación estratégica de los juegos bayesianos.
- 2. Equilibrio bayesiano de Nash.
- 3. Revisión de las estrategias mixtas.
- 4. Subasta de sobre cerrado al primer precio y al doble precio.
- 5. El principio de revelación.
- 6. Lucha por el mercado con información asimétrica.
- 7. Estrategias dominantes y el mecanismo de designación de Vickrey-Clarke-Groves

6.4. Específico 4:

Juegos bayesianos secuenciales con al menos uno de los jugadores con información incompleta, pero capaz de asignarles probabilidades (Tadelis, 2013; capítulos 15-18).

Situación de aprendizaje 4

Se modela un juego de señalización en el que no existe costo del mensaje como el anunció de política monetaria por parte de la autoridad monetaria.

Aprendizajes esperados 4

- 1. Introducción al equilibrio bayesiano perfecto.
- 2. Equilibrio bayesiano perfecto en juegos de señalización.
- 3. Inversión empresarial y estructura de capital.
- 4. Juegos con parloteo (cheap-talk games).
- 5. Política monetaria.
- 6. Negociación sucesiva bajo información asimétrica.
- 7. Refinamientos del equilibrio bayesiano perfecto.

7. Actividades bajo control docente y trabajo independiente del estudiante

BCD

- 1. Resolver problemas para construir y consolidar conocimiento.
- 2. Resolver ejercicios operatorios.
- 3. Definir y analizar conceptos y propiedades.
- 4. Elaborar bosquejos y gráficas (con o sin software) de problemas de Teoría de Juegos.
- Usar software para resolver problemas que pueden ser modelados mediante la Teoría de Juegos.
- 6. Colaborar con compañeros de equipo en la solución de problemas.
- 7. Resolver exámenes.
- 8. Elaborar un proyecto

TIE

- 1. Resolver ejercicios y problemas para consolidar conocimiento.
- 2. Investigar conceptos y propiedades.
- 3. Elaborar bosquejos y gráficas (con o sin software) de problemas de Teoría de Juegos.
- 4. Usar software para resolver problemas que pueden ser modelados mediante la Teoría de Juegos.
- 5. Elaborar un proyecto final.

8. Evaluación

Productos esperados: Ejercicios y problemas resuelto (Hojas de trabajo)

Indicadores de Evaluación

En general:

- Entrega en tiempo y forma.
- Entrega de actividad completa.
- Limpieza y orden.

En la solución de los problemas:

- Uso de estrategia adecuada al problema
- Desarrollo de procedimientos claros, completos y correctos.
- Uso correcto de la notación matemática.
- Reporte de resultados en las unidades correspondientes.

En la interpretación de resultados:

- Claridad en la redacción y correcta ortografía.
- Redacción de respuesta en términos de la pregunta.
- Argumentación en base a los resultados numéricos y el contexto del problema.

En el caso de que se haya acordado que podía utilizarse software debe presentarse la evidencia el uso del correcto la notación del programa y los resultados obtenidos.

Productos esperados: Cuestionarios sobre conceptos y propiedades

Indicadores de Evaluación

En general:

- Entrega en tiempo y forma.
- Entrega de actividad completa.
- Limpieza y orden.

En la respuesta:

- Desarrollo completo, correcto y en términos de la pregunta.
- Uso correcto de la notación matemática.
- Claridad en la redacción y correcta ortografía.

Productos esperados: Bosquejos y gráficas (Hojas de trabajo/Reportes de práctica)

Indicadores de Evaluación

En general:

- Entrega en tiempo y forma.
- Entrega de actividad completa.
- Limpieza y orden.

En los bosquejos o gráficas:

- Uso del método acordado (manual o software).
- Asignación, etiquetado y escala adecuada en los ejes.
- Identificación de puntos o zonas mediante notación de puntos o intervalos.

Productos esperados: Exámenes

Indicadores de Evaluación

En general:

- Entrega en tiempo y forma.
- Entrega de actividad completa.
- Limpieza y orden.

En la solución de los problemas:

- Uso de estrategia adecuada al problema
- Desarrollo de procedimientos claros, completos, correctos y uso de la notación matemática.
- Reporte de resultados en las unidades correspondientes.

En la interpretación de resultados:

- Claridad en la redacción y correcta ortografía.
- Redacción de respuesta en términos de la pregunta.
- Argumentación en base a los resultados numéricos y el contexto del problema.

En los bosquejos o gráficas:

- Asignación, etiquetado y escala adecuada en los ejes.
- Identificación de curvas y superficies graficados.
- Identificación de puntos o zonas mediante notación de puntos o intervalos.

Productos esperados: Proyectos

Indicadores de Evaluación

En general:

- Entrega en tiempo y forma.
- Entrega de actividad completa.

En la información:

- Selección de tema relacionado con las carreras de los integrantes.
- Selección adecuada de datos
- Autentificación datos.

En el reporte:

- Limpieza y orden.
- Claridad en la redacción y correcta ortografía.
- Desarrollo completo y correcto de los apartados requeridos en el proyecto.
- Elaboración del reporte escrito, de las gráficas y las tablas con los programas convenidos.

En los cálculos:

- Uso correcto de la notación matemática.
- Respaldo de cada paso en definiciones, propiedades y teoremas.

En la colaboración:

- Selección voluntaria de integrantes; tres integrantes.
- Reparto equitativo de actividades.
- Desempeño de integrantes según lo acordado.

Bibliografía

- Uso del tipo de fuentes acordadas.
- Hacer citas con formato APA.

Evaluación del aprendizaje

Productos	% de Calificación
Exámenes (4)	60%
Tareas	40%
TOTAL:	100

Contenido de exámenes

Primer examen parcial	Juegos estáticos de información completa.		
Segundo examen	Juegos dinámicos de información completa.		
Tercer examen parcial	Juegos estáticos de información incompleta.		
Cuarto examen parcial	Juegos dinámicos de información incompleta.		

9. Bibliografía primaria y sugerida

9.1. Primaria:

- Tadelis, S. (2013). Game theory: an introduction. Princeton University Press.
- Gibbons, R. 1992. Un primer curso de Teoría de Juegos. Antoni Bosch.

9.2. Sugerida:

- Harrington, Joseph. Games, strategies and decision making. Macmillan, 2009.
- Leyton-Brown, K., & Shoham, Y. (2008). Essentials of game theory: A concise multidisciplinary introduction. Synthesis lectures on artificial intelligence and machine learning, 2(1), 1-88.
- Thie, P. R., & Keough, G. E. (2011). An introduction to linear programming and game theory. John Wiley & Sons.