

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

According to the quark model, the Ξ_c^+ (quark content usc) and Ξ_c^0 form an isospin doublet, and the spin-parity ought to be $J^P=1/2^+$. None of I, J, or P has actually been measured.

Ξ_c^+ MASS

The fit uses the Ξ_c^+ and Ξ_c^0 mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
2467.87± 0.30 OUR FI	T Error i	ncludes scale fact	or of	1.1.	
2467.89 ⁺ 0.34 OUR AV	/ERAGE				
$2468.00 \pm \ 0.18 \pm \ 0.51$	5.1k	AALTONEN	14 B	CDF	$p\overline{p}$ at 1.96 TeV
$2468.1 \ \pm \ 0.4 \ + \ 0.2 \\ - \ 1.4$	4.9k	¹ LESIAK	05	BELL	e^+e^- , $\Upsilon(4S)$
$2465.8 \ \pm \ 1.9 \ \pm \ 2.5$	90	FRABETTI	98	E687	γ Be, $\overline{\it E}_{\gamma} =$ 220 GeV
$2467.0 \pm 1.6 \pm 2.0$	147	EDWARDS	96	CLE2	$e^+e^-pprox \ \Upsilon(4S)$
$2465.1 \;\pm\; 3.6 \;\pm\; 1.9$	30	ALBRECHT	90F	ARG	e^+e^- at \varUpsilon (4 S)
$2467 \pm \ 3 \pm \ 4$	23	ALAM	89	CLEO	$e^{+}e^{-}$ 10.6 GeV
$2466.5 \ \pm \ 2.7 \ \pm \ 1.2$	5	BARLAG	89C	ACCM	π^- Cu 230 GeV
• • • We do not use the	e following	data for average	s, fits,	limits, e	etc. • • •
$2464.4 \pm 2.0 \pm 1.4$	30	FRABETTI	93 B	E687	See FRABETTI 98
$2459 \pm 5 \pm 30$	56	² COTEUS	87	SPEC	$nA \simeq 600 \text{ GeV}$
2460 ± 25	82	BIAGI	83	SPEC	Σ^- Be 135 GeV

¹ The systematic error was (wrongly) given the other way round in LESIAK 05; see the erratum.

=⁺ MEAN LIFE

$VALUE (10^{-15} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
442± 26 OUR AVE	RAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$503\pm~47\pm~18$	250				$e^+e^-pprox \ \varUpsilon(4S)$
$439\pm\ 22\pm\ 9$	532	LINK	01 D	FOCS	γ nucleus, $\overline{E}_{\gamma}~pprox~180~{ m GeV}$
$340^{+}_{-}\ {}^{70}_{50}\!\pm 20$	56	FRABETTI	98	E687	γ Be, $\overline{\it E}_{\gamma} =$ 220 GeV

Created: 5/30/2017 17:22

² Although COTEUS 87 claims to agree well with BIAGI 83 on the mass and width, there appears to be a discrepancy between the two experiments. BIAGI 83 sees a single peak (stated significance about 6 standard deviations) in the $\Lambda K^-\pi^+\pi^+$ mass spectrum. COTEUS 87 sees *two* peaks in the same spectrum, one at the Ξ_c^+ mass, the other 75 MeV lower. The latter is attributed to $\Xi_c^+ \to \Sigma^0 K^-\pi^+\pi^+ \to (\Lambda \gamma) K^-\pi^+\pi^+$, with the γ unseen. The *combined* significance of the double peak is stated to be 5.5 standard deviations. But the absence of any trace of a lower peak in BIAGI 83 seems to us to throw into question the interpretation of the lower peak of COTEUS 87.

 $400^{+180}_{-120}\pm 100$ 102 COTEUS 87 SPEC $n{\rm A}\simeq 600~{\rm GeV}$ $480^{+210}_{-150}+200$ 53 BIAGI 85C SPEC $\Sigma^-{\rm Be}$ 135 GeV

• • We do not use the following data for averages, fits, limits, etc.

$$410^{+110}_{-80} \pm 20$$
 30 FRABETTI 93B E687 See FRABETTI 98 200^{+110}_{-60} 6 BARLAG 89C ACCM π^- (K^-) Cu 230 GeV

Ξ_c^+ DECAY MODES

Mode Fraction (Γ_j/Γ) Confidence level

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^-2\pi^+$.

Cabibbo-favored (S=-2) decays — relative to $\Xi^-2\pi^+$

HTTP://PDG.LBL.GOV Page 2 Created: 5/30/2017 17:22

Cabibbo-suppressed decays — relative to $\Xi^- 2\pi^+$

[a] This branching fraction includes all the decay modes of the final-state resonance.

Ξ_c^+ BRANCHING RATIOS

——— Cabibbo-favored (S = -2) decays ———

$$\Gamma(p2K_S^0)/\Gamma(\Xi^-2\pi^+)$$

VALUE

DOCUMENT ID

TECN

COMMENT

0.087 \pm 0.016 \pm 0.014

 \pm 168 \pm 27

LESIAK

05

BELL

 e^+e^- , $\Upsilon(4S)$

$\Gamma(\Sigma(1385)^+\overline{K}^0)/\Gamma(\Xi^-2\pi^+)$

 Γ_3/Γ_{11}

Unseen decay modes of the $\Sigma(1385)^+$ are included.

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$1.00\pm0.49\pm0.24$	20	LINK	03E	FOCS	< 1.72, 90% CL

$$\Gamma(\Lambda K^- 2\pi^+)/\Gamma(\Xi^- 2\pi^+)$$

VALUE

0.323±0.033 OUR AVERAGE

0.32 ±0.03 ±0.02 1177 ±55 LESIAK 05 BELL e^+e^- , $\Upsilon(4S)$

0.28 ±0.06 ±0.06 58 LINK 03E FOCS γ nucleus, $\overline{E}_{\gamma} \approx 180$ GeV

0.58 ±0.16 ±0.07 61 BERGFELD 96 CLE2 $e^+e^- \approx \Upsilon(4S)$

$\Gamma(\Lambda \overline{K}^*(892)^0 \pi^+)/\Gamma(\Lambda K^- 2\pi^+)$

 Γ_5/Γ_4

Created: 5/30/2017 17:22

Unseen decay modes of the $\overline{K}^*(892)^0$ are included.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.5	90	BERGFELD	96	CLE2	$e^+e^-\approx \Upsilon(4S)$

$\Gamma(\Sigma(1385)^+K^-\pi)$ Unseen decay in	,	$(-2\pi^+)$ e $\Sigma(1385)^+$ are	includ	led.		Γ_6/Γ_4
		DOCUMENT II			<u>COMMENT</u>	
<0.7	90	BERGFELD	96	6 CLE	$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\Sigma^+ K^- \pi^+)/\Gamma($						Γ_7/Γ_{11}
<u>VALUE</u> 0.94±0.10 OUR AVE	<u>EVTS</u> ERAGE	DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.91 \pm 0.11 \pm 0.04$	251	LINK	03E	FOCS	γ nucleus, \overline{E}	$_{_{\scriptscriptstyle m V}}pprox180{ m GeV}$
$0.92 \pm 0.20 \pm 0.07$		³ JUN	00		Σ^- nucleus,	,
$1.18\!\pm\!0.26\!\pm\!0.17$	119	BERGFELD	96	CLE2	$e^+e^-\approx \gamma (e^+e^-)$	4 <i>S</i>)
³ This JUN 00 resu	ılt is redund	ant with other re	sults	given be	low.	
	modes of the	e \overline{K}^* (892) 0 are i				Γ_8/Γ_{11}
<u>VALUE</u> 0.81±0.15 OUR AVE		DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.78 \pm 0.16 \pm 0.06$		LINK	03E	FOCS	γ nucleus, \overline{E}	$_{_{\scriptscriptstyle{ m V}}}pprox180{\sf GeV}$
$0.92 \pm 0.27 \pm 0.14$	61	BERGFELD			$e^+e^-\approx \gamma(e^+)$	
$\Gamma(\Sigma^0 K^- 2\pi^+)/\Gamma$						Γ_9/Γ_4
<i>VALUE</i> 0.84±0.36	<u>EVTS</u>	DOCUMENT I	<u>D</u>	<u>TECN</u>	COMMENT	
						GeV
⁴ See, however, the	e note on th	e COTEUS 87 <i>=</i>	c ma	iss meas	urement.	
$\Gamma(\Xi^0\pi^+)/\Gamma(\Xi^{-2})$	*	DOCUMENT I	D	TECN	U COMMENT	Γ_{10}/Γ_{11}
0.55±0.13±0.09	39	•			$\frac{comment}{2}$ $e^+e^-\approx$	$\Upsilon(45)$
		LDWARDS	30	CLL	2 6 6 ~	
$\Gamma(\Xi^-2\pi^+)/\Gamma_{\text{total}}$						Γ_{11}/Γ
• • • We do not use		<u>DOCUMENT I</u>				
			_			20(4.6)
seen	131 160	BERGFELD AVERY			$\begin{array}{ccc} 2 & e^+ e^- \approx \\ 2 & e^+ e^- \approx \end{array}$	
seen seen	30	FRABETTI			7 γ Be, \overline{E}_{γ}	
seen	30	ALBRECHT	90	OF ARG	e^+e^- at	$\Upsilon(4S)$
seen	23	ALAM	89	CLE	$e^{+}e^{-}$ at $e^{+}e^{-}$ 10.	6 GeV
$\Gamma(\Xi(1530)^0\pi^+)/$						Γ_{12}/Γ_{11}
		e $\Xi(1530)^0$ are in			COMMENT	
<i>VALUE</i> <0.1	<u>CL%</u> 90	DOCUMENT ID			γ nucleus, \overline{E}_{γ}	~ 180 GeV
• • • We do not use					,	, ~ 100 G€ A
<0.2					$e^+e^- \approx \Upsilon(4.5)$	S)
$\Gamma(\equiv^0\pi^+\pi^0)/\Gamma(\equiv$	*.	DOCUMENT	D	TECN	J COMMENT	Γ_{13}/Γ_{11}
<u>VALUE</u> 2.34±0.57±0.37	<u>EVTS</u> 81	<u>DOCUMENT I</u> EDWARDS			$\frac{OMMENT}{2} e^{+}e^{-} \approx$	$\Upsilon(4S)$
HTTP://PDG.LB	-	Page 4			eated: $5/30/$	` '

$\Gamma(\Xi(1530)^0\pi^+)/\Gamma_0$	-	DOCUMENT ID		TFCN	COMMENT	Γ_{12}/Γ_{13}
• • • We do not use t						
<0.3	90	EDWARDS			$e^+e^-pprox \gamma$	(4 <i>S</i>)
$\Gamma(\Xi^0\pi^-2\pi^+)/\Gamma(\Xi^0)$	•	DOCUMENT ID		TECN	COMMENT	Γ_{14}/Γ_{11}
$1.74 \pm 0.42 \pm 0.27$	57	EDWARDS			$e^+e^-\approx \gamma$	(45)
$\Gamma(\Xi^0 e^+ u_e)/\Gamma(\Xi^-$						Γ ₁₅ /Γ ₁₁
VALUE	•	DOCUMENT ID		TECN	COMMENT	
$2.3 \pm 0.6 ^{+0.3}_{-0.6}$	41	ALEXANDER	95 B	CLE2	$e^+e^- \approx \gamma$	45)
$\Gamma(\Omega^- K^+ \pi^+)/\Gamma(\Xi_{VALUE})$	•	OCUMENT ID		CN CO	OMMENT	Γ ₁₆ /Γ ₁₁
$0.07 \pm 0.03 \pm 0.03$	14 L	INK 0	3E FC	CS <	0.12, 90% CI	-
	—— Cabib	bo-suppressed	d deca	ıys —		
$\Gamma(ho K^- \pi^+)/\Gamma(\Xi^-)$	<u>EVTS</u>	DOCUMENT II	D	<u>TECN</u>	COMMENT	Γ ₁₇ /Γ ₁₁
0.21 ±0.04 OUR AV						
0.194 ± 0.054	47 ± 11 202	VAZQUEZ-J LINK				s, 600 GeV
$0.234 \pm 0.047 \pm 0.022$ • • • We do not use t					γ nucleus etc. $ullet$ $ullet$	
	76				See VAZQI JAURE	
$\Gamma(p\overline{K}^*(892)^0)/\Gamma(p$	•	_				Γ_{18}/Γ_{17}
Unseen decay mo <u>VALUE</u>	odes of the \overline{K}	*(892) ⁰ are inc DOCUMENT ID		TECN	COMMENT	
$0.54 \pm 0.09 \pm 0.05$		LINK	01 B	FOCS	$\gamma {\rm nucleus}$	
$\Gamma(\Sigma^+\pi^+\pi^-)/\Gamma(\Xi^-)$				TECN	COMMENT	Γ_{19}/Γ_{11}
	$\frac{EVIS}{21\pm8}$	DOCUMENT ID VAZQUEZ-JA				600 CoV
$\Gamma(\Sigma^- 2\pi^+)/\Gamma(\Xi^- 2\pi^+)$		VAZQUEZ-JA	00	SELA	Z nucleus,	Γ ₂₀ /Γ ₁₁
<u>VALUE</u>	•	DOCUMENT ID		TECN	COMMENT	. 20/ . 11
· ·		VAZQUEZ-JA				600 GeV
$\Gamma(\Sigma^+K^+K^-)/\Gamma(\Sigma^+)$		OCUMENT ID	TF	CN C	OMMENT	Γ_{21}/Γ_7
$0.16 \pm 0.06 \pm 0.01$		INK 0				
$\Gamma(\Sigma^+\phi)/\Gamma(\Sigma^+K^-)$ Unseen decay mo	π^+			,	, ,	Γ ₂₂ /Γ ₇
VALUE (CUMENT ID	TEC	N COI	MMENT	
	0 LIN				nucleus, $\overline{\it E}_{\gamma} pprox$	180 GeV
HTTP://PDG.LBL	.GOV	Page 5		Creat	ed: 5/30/20	017 17:22

$\Gamma(\Xi(1690)^0 K^+ \times$	B(三(169	$0)^0 \to \Sigma^+ K^0$	-))/	Γ(Σ + <i>ŀ</i>	(π^+) Γ_{23}	₃ /Г ₇
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.05	90	LINK	03E	FOCS	γ nucleus, $\overline{\it E}_{\gamma} pprox$ 180 G	eV

\varXi_c^+ REFERENCES

AALTONEN VAZQUEZ-JA LESIAK Also LINK MAHMOOD LINK LINK JUN FRABETTI BERGFELD EDWARDS ALEXANDER Also AVERY FRABETTI ALBRECHT ALAM BARLAG COTEUS BIAGI	05 03E 02 01B 01D 00 98 96 95B 95B 95B 95B 958 978 978 978	PR D89 072014 PL B666 299 PL B605 237 PL B617 198 (errat.) PL B571 139 PR D65 031102 PL B512 277 PL B523 53 PRL 84 1857 PL B427 211 PL B365 431 PL B373 261 PRL 74 3113 PRL 75 4155 (erratum) PRL 75 4364 PRL 70 1381 PL B247 121 PL B226 401 PL B233 522 PRL 59 1530 PI 1508 230	T. Aaltonen et al. E. Vazquez-Jauregui et al. T. Lesiak et al. T. Lesiak et al. J.M. Link et al. A.H. Mahmood et al. J.M. Link et al. J.M. Link et al. J.M. Link et al. J.M. Edwards et al. P.L. Frabetti et al. T. Bergfeld et al. K.W. Edwards et al. J. Alexander et al. J. Alexander et al. P. Avery et al. P.L. Frabetti et al. H. Albrecht et al. M.S. Alam et al. S. Barlag et al. P. Coteus et al. S. F. Biagi et al.	(CDF Collab.) (SELEX Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (FNAL FOCUS Collab.) (FNAL FOCUS Collab.) (FNAL FOCUS Collab.) (FNAL FOCUS Collab.) (FNAL SELEX Collab.) (CLEO Collab.) (FNAL E687 Collab.) (ARGUS Collab.) (ACCMOR Collab.) (FNAL E400 Collab.) (FNAL E400 Collab.)
COTEUS	87	PRL 59 1530	P. Coteus <i>et al.</i> S.F. Biagi <i>et al.</i> S.F. Biagi <i>et al.</i>	(FNAL E400 Collab.)
BIAGI	85C	PL 150B 230		(CERN WA62 Collab.)
BIAGI	83	PL 122B 455		(CERN WA62 Collab.)

Created: 5/30/2017 17:22