Documentazione di progetto Business Intelligence per i Servizi Finanziari

Tommaso Cammelli, 851593

20 maggio 2022

1 Sommario dei dati utilizzati

1.1 Presentazione e descrizione dei titoli selezionati

Per questo progetto sono stati presi in considerazione 6 titoli azionari, appartenenti a 3 settori diversi:

- Settore tecnologico: Meta Platforms, Inc. (FB), Alphabet Inc. (GOOG)
- **Settore militare**: Raytheon Technologies Corporation (RTX), Lockheed Martin Corporation (LMT)
- Settore bancario: Bank of America Corporation (BAC), JPMorgan Chase & Co. (JPM)

Motivazione per scelta dei titoli

- Meta Platforms, Inc. (FB): Questo titolo è stato scelto in quanto è una delle aziende con la market capitalization più alta nel mondo¹, e facendo parte del faang² ho ritenuto essere un investimento solido. considerando il recente crollo del prezzo potrebbe essere un buon momento per prendere posizioni lunghe sul titolo³.
- Alphabet Inc. (GOOG): Questo titolo insieme a quello precedente fa parte di faang², è stato scelto in quanto è interessante da confrontare contro altri titoli del settore tecnologico come FB, sopratutto in momenti critici come la crisi finanziaria causata dall'epidemia di COVID-19, dove GOOG ha subito un crollo del 29% nel primo trimestre⁴.
- Raytheon Technologies Corporation (RTX): RTX ha mostrato negli anni un trend in salita abbastanza stabile, nonostante il crollo durante la crisi finanziaria del 2020 RTX è riuscito a recuperare il crollo.⁵.
- Lockheed Martin Corporation (LMT): LMT è stata scelta in quanto è fa parte anche lui nella categoria militare e permette di confrontare l'andamento di mercato nel confronto di RTX.
- Bank of America Corporation (BAC): Come primo titolo finanziario ho scelto BAC in quanto nonostante la volatilità negli ultimi anni a causa dell'epidemia, il titolo ha mostrato un leggero trend di salita negli anni ed il crollo del prezzo potrebbe rivelarsi una opportunità.
- JPMorgan Chase & Co. (JPM): JPM come per BAC ha risentito molto dalla crisi finanziaria del 2020, negli anni tuttavia ha mostrato un trend di salita più evidente rispetto a BAC, ritengo che potrebbe essere vantaggioso a lungo termine

¹pagina web di referenza: https://companiesmarketcap.com/tech/largest-tech-companies-by-market-cap/

²Acronimo dei cinque top stocks americani nel settore tecnologico, https://www.investopedia.com/terms/f/faang-stocks.asp

³https://finance.yahoo.com/news/good-time-increase-meta-platforms-142109519.html

⁴articolo riferimento declino, https://www.investopedia.com/alphabet-googl-sells-off-after-revenue-decline-5072988

⁵https://www.investopedia.com/raytheon-technologies-drops-then-pops-on-earnings-beat-5074746

1.2 Funzioni utilizzate per download e fusione

Per il download dei dati da Yahoo! Finance⁶ è stata utilizzata la nota libreria di python yfinance⁷ dove attraverso la funzione download() ha permesso di scaricare i dati di interesse nel periodo rilevante per questo progetto.

```
# Esempio di download da Yahoo! Finance dello storico prezzi di FB import yfinance as yf

fb_df = yf.download('FB', start='2011-11-30', end='2021-11-30')
```

Relativamente alla fusione dei dati scaricati in un unico DataFrame di Pandas⁸ è stata utilizzata la funzione DataFrame() per creare un nuovo *DataFrame* vuoto, sono stati poi usati i costrutti base di python per popolare il *DataFrame* con i nostri dati di interesse.

```
\# Esempio di fusione dei dati da due indici scaricati precedentemente \mathbf{import} pandas as \mathbf{pd}
```

```
adj_close_tot = pd.DataFrame()
adj_close_tot["Meta_Price"] = fb_df[["Adj_Close"]]
adj_close_tot["Alphabet_Price"] = goog_df[["Adj_Close"]]
```

1.3 presentazione dei dati

Rappresentiamo i dati ottenuti tramite un grafico a linee che si trova alla figura 1 dove si mostra la variazione di prezzo di tutti gli stock considerati in questo progetto⁹ nel periodo da 30-11-2011 a 30-11-2021.

Figura 1: grafico con prezzo degli stock da 18/05/2012 a 30/11/2021

Tutti i grafici del progetto sono stati generati utilizzando la libreria di python $matplotlib^{10}$ che tramite apposite funzioni ha permesso la quasi totale personalizzazione dei grafici per semplificare la lettura dei dati.

Rappresentiamo ora alla figura 2 le prime 10 righe della tabella che contiene il prezzo combinato di tutti gli stock considerati (stessa tabella utilizzata per il plot del grafico qui sopra), fusi in un solo DataFrame grazie a Pandas.

Nota: Meta Platforms, Inc. (FB) è stata quotata in borsa solo a partire dal 18/05/2012, a causa di ciò i dati aggregati partono solo da quella data.

⁶https://finance.yahoo.com

⁷Libreria FOSS per download di dati finanziari da Yahoo! finance, https://pypi.org/project/yfinance/

⁸Libreria per data analysis e manipulation, https://pandas.pydata.org/

⁹FB, GOOG, RTX, LMT, BAC, JPM

¹⁰Libreria per creare visualizzazioni dei dati anche interattive in Python, https://matplotlib.org

	Meta Price	Alphabet Price	Raytheon Price	Lockheed Martin Price	Bank of America Price	JPMorgan Chase Price
Date						
2012-05-18	38.230000	299.078979	36.082355	60.931610	6.052373	25.427305
2012-05-21	34.029999	305.908386	36.740398	61.557266	5.888562	24.683229
2012-05-22	31.000000	299.278229	36.860043	61.601433	6.017887	25.822113
2012-05-23	32.000000	303.592072	36.919865	61.351143	6.181696	26.011929
2012-05-24	33.029999	300.702881	36.640682	61.365898	6.155832	25.791744
2012-05-25	31.910000	294.660553	36.401409	60.880070	6.164454	25.434896
2012-05-29	28.840000	296.060303	37.433334	61.579334	6.414482	25.533600
2012-05-30	28.190001	293.016693	36.760330	61.683636	6.215916	25.024893
2012-05-31	29.600000	289.345459	36.944771	61.683636	6.345415	25.169157
2012-06-01	27.719999	284.423920	35.902882	60.506592	6.060519	24.242868

Figura 2: tabella con Adjusted Close degli stock da 18/05/2012 a 30/11/2021 (prime 10 righe)

2 Statistiche descrittive

2.1 Rendimenti semplici e composti

2.1.1 Titoli Tecnologici

Per i titoli GOOG e FB sono stati calcolati i rendimenti semplici netti (grafico a figura 3) e i rendimenti compositi (grafico a figura 4) e posti a confronto si nota una generale correlazione nei rendimenti.

Figura 3: Rendimenti semplici netti FB e GOOG

Figura 4: Rendimenti compositi FB e GOOG

Note sui titoli tecnologici

Confrontando le serie storiche di GOOG e FB nel grafico a figura 1, utilizzando la funzione .corr() di pandas si mostra un forte correlazione positiva di 0.962272 (figura 5) tra i due titoli, come dimostrato anche dai simili rendimenti compositi (ad eccezione per alcuni eventi).

	Meta Price	Alphabet Price
Meta Price	1.000000	0.962272
Alphabet Price	0.962272	1.000000

Figura 5: tabella con correlazione titoli GOOG e FB (metodo di Pearson)

Note sui rendimenti di Meta (FB)

Osservando il grafico in figura 3 relativamente ai rendimenti semplici di FB, notiamo 3 eventi di notevole discostamento dalla media.

Nel primo trimestre del 2012 si nota un significativo crollo, analizzando notizie e articoli si può ricondurre il crollo a scetticismo che c'è stato tra gli investitori¹¹ in quanto Facebook (ora Meta) all'epoca era stata appena quotata in borsa, il crollo è stato circa del 35% solo nei primi mesi.

Nel terzo trimestre del 2013 tuttavia viene evidenziato una crescita sostanziale rispetto alla media, nonostante il crollo capitato poco dopo la quotazione in borsa nel 2012, a metà anno il prezzo di FB è riuscito a raggiungere di nuovo il prezzo di IPO^{12} raggiungendo poi verso il terzo trimestre la quota record del tempo di 50\$, in base a vari articoli¹³ si evidenzia come la crescita possa essere attribuita dalla introduzione delle pubblicità su dispositivi mobile (precedentemente la pubblicità era mostrata solo da sito web), a luglio 2013 facebook ha infatti annunciato che la pubblicità su mobile ha contribuito al 41% delle loro vendite nel secondo semestre.

Tra il primo ed il secondo trimestre del 2020, come evidenziato dal grafico c'è stato un grande discostamento dalla media, inizialmente molto negativo ma poco dopo molto positivo, la caduta inziale del prezzo la si può attribuire alla crisi finanziaria del 2020, scatenata dalla epidemia da covid-19¹⁴.

Tuttavia grazie alla natura digitale del servizio, dunque non esposta alla epidemia come altre attività e all'annuncio di $Facebook\ Shops$ il prezzo ha velocemente raggiunto il valore pre-crollo arrivando addirittura ad un record del tempo (20-05-2020) di \$230.75¹⁵

Note sui rendimenti di Alphabet (GOOG)

Sul titolo GOOG si notano distaccamenti negativi sul rendimento di entità notevolmente inferiore rispetto a FB, tuttavia si hanno distaccamenti positivi più numerosi (il net return raggiunge 0.1 più volte rispetto a FB) anche se spesso non oltre 0.1.

Come per FB, ad aprile 2020 c'è stato un decremento significativo del prezzo (che si è riflettuto sul rendimento) a causa della epidemia da covid-19¹⁶, ma sempre per il fatto che Alphabet Inc. fornisce prevalentemente servizi digitali il prezzo è ritornato al valore pre-crollo velocemente.

2.1.2 Titoli Militari

Per i titoli RTX e LMT sono stati calcolati i rendimenti semplici netti (grafico a figura 6) e i rendimenti compositi (grafico a figura 7) e posti a confronto si nota una generale correlazione nei rendimenti, anche se di entità inferiore rispetto a FB/GOOG.

Figura 6: Rendimenti semplici netti RTX e LMT — Figura 7: Rendimenti compositi RTX e LMT

 $^{^{11} \}rm https://money.cnn.com/2012/05/22/markets/facebook-shares/index.htm$

¹²Initial Public Offering, https://www.investopedia.com/terms/i/ipo.asp

 $^{^{13} {\}rm https://www.reuters.com/article/us-facebook-ipoprice-idUSBRE96T1CI20130730},$

https://money.cnn.com/2013/09/26/investing/facebook-stock/index.html

 $^{^{14} \}rm https://www.investopedia.com/facebook-stock-crashes-into-bear-market-territory-4800598$

 $^{^{15} \}rm https://www.cnbc.com/2020/05/20/facebook-shares-reach-all-time-high-after-announcing-online-shopping-feature.html}$

 $^{^{16} \}rm https://www.investopedia.com/alphabet-stock-crashes-into-bear-market-territory-4800600$

Confrontando i titoli RTX e LMT usando sempre il grafico a figura 1 e utilizzando la funzione .corr() di pandas viene mostrata anche in questo caso una **forte correlazione positiva** di 0.836831 (figura 8).

	Raytheon Price	Lockheed Martin Price
Raytheon Price	1.000000	0.836831
Lockheed Martin Price	0.836831	1.000000

Figura 8: tabella con correlazione titoli RTX e LMT (metodo di Pearson)

Note sui rendimenti di Raytheon (RTX)

Osservando il grafico in figura 6 relativamente ai rendimenti semplici di RTX, si nota come il nel tempo è stato molto fluido, troviamo 3 eventi notevoli.

Sul titolo RTX è stato più complicato la ricerca di notizie coerenti con il crollo del prezzo in quanto è notevolmente meno famoso rispetto a FB o GOOG, tuttavia relativamente al primo ed al secondo crollo si può assumere siano in relazione alla politica di export delle armi americane.

Il crollo più notevole è accaduto durante la crisi finanziaria del 2020, in base a un articolo 17 la motivazione del crollo è stata a causa della temporanea debolezza nel settore commerciale aerospaziale, causata dalla epidemia da COVID-19, si assume comunque che essendo una compagnia incentrata nel settore aerospaziale sarà comunque una migliore scelta rispetto alla competizione per il settore della difesa.

Note sui rendimenti di Lockheed Martin (LMT)

Il titolo LMT ha subito variazioni molto meno significanti rispetto a RTX e gli altri titoli (come si può vedere dal grafico a figura 6), analizzando varie notizie nel web si identificano 2 eventi significativi.

Tra fine 2018 e l'inizio del 2019 si è registrato un crollo del 18.4% relativo allo stock LMT, in base ad un articolo 18 le cause del crollo sono molteplici, uno delle cause identificate è una continua diminuzione del budget dalla casa bianca, una altra è la dimissione improvvisa del CFO in quanto era ben visto dagli investitori per le sue abilità comunicative.

Il crollo più importante del prezzo è stato durante la crisi finanziaria del 2020, dopo il crollo nel primo trimestre tuttavia c'è stato un notevole recupero poco dopo messo poi a rischio verso ottobre a causa di problemi nella supply chain della produzione²⁰ causato dal tilt nelle fabbriche e nei trasporti.

Nello stesso articolo si evidenzia inoltre come la motivazione della instabilità verso la fine del 2020 sia anche causata da una incertezza politica, in quanto si assumeva che una vittoria democratica avrebbe tagliato il budget alla difesa, anche se il rischio di guerra nucleare dovrebbe evitare un crollo del titolo.

2.1.3 Titoli Bancari

Per i titoli BAC e JPM sono stati calcolati i rendimenti semplici netti (grafico a figura 9) e i rendimenti composti (grafico a figura 10) e posti a confronto anche per questi due titoli si nota una forte correlazione nei rendimenti.

Confrontando i titoli BAC e JPM usando il grafico a figura 1 e utilizzando la funzione .corr() di pandas viene mostrata una forte correlazione positiva di 0.909522 (figura 11).

Note sui rendimenti di Bank of America (BAC)

[TODO]

Note sui rendimenti di JPMorgan Chase (JPM)

[TODO]

 $^{^{17}}$ https://www.fool.com/investing/2020/07/02/heres-why-raytheon-technologies-shares-are-down-34.aspx

 $^{^{18} \}rm https://www.fool.com/investing/2019/01/11/heres-why-lockheed-martin-lost-184-in-2018.aspx$

¹⁹Chief Financial Officer, https://en.wikipedia.org/wiki/Chief_financial_officer

 $^{^{20} \}rm https://www.investopedia.com/lockheed-martin-lmt-sells-off-despite-strong-quarter-5083204$

Figura 9: Rendimenti semplici netti BAC e JPM

Figura 10: Rendimenti compositi BAC e JPM

		Bank of America Price	JPMorgan Chase Price
	Bank of America Price	1.000000	0.909522
	JPMorgan Chase Price	0.909522	1.000000

Figura 11: tabella con correlazione titoli BAC e JPM (metodo di Pearson)

2.2 Istogrammi sui rendimenti e dispersione

Per misurare la dispersione sui titoli ci torna utile il concetto di deviazione standard, grazie ad essa si può avere una idea della volatilità associata al titolo, un dato utile per effettuare investimenti e/o strategie di trading 21 .

2.2.1 Titoli tecnologici (Meta/Alphabet)

L'istogramma del rendimento relativo ai titoli GOOG e FB può essere visto a figura 12, mentre la distribuzione dei rendimenti si trova nel grafico in figura 13. Dai dati si evidenzia come la maggior parte dei rendimenti avviene tra 0.0 e 0.1, oltre al fatto che alphabet nel periodo di interesse ha avuto rendimenti più alti rispetto a Meta.

Figura 12: Istogramma rendimenti FB e GOOG

Figura 13: Dispersione di FB e GOOG

Inoltre é stata calcolata grazie a *Pandas* la Deviazione Standard, dove il risultato si può vedere nella tabella a figura 14.

2.2.2 Titoli militari (Raytheon/Lockheed Martin)

[TODO]

 $[\]overline{^{21} \text{https:}} / / \text{www.investopedia.com/terms/s/standarddeviation.asp}$

Deviazione Standard

Rendimenti Netti Meta Rendimenti Netti Alphabet dtype: float64 0.080678 0.050795

Figura 14: Deviazione Standard dei titoli FB e GOOG

2.2.3 Titoli bancari (Bank of America/JPMorgan Chase)

[TODO]

2.3 Grafici diagnositici a 4 sezioni

Vengono mostrati per i titoli considerati la serie di 4 grafici diagnostici (Istogramma, kernel density, qq-plot e boxplot).

Questi grafici rappresentano 4 modi diversi per rappresentare la **Distribuzione Normale**, fondamentale per studiare la distribuzione sui rendimenti dei titoli.

2.3.1 Grafici Diagnostici per Meta Platforms, Inc. (FB)

Per Meta, possiamo trovare i grafici alla figura 15, si può notare come i rendimenti sono distribuiti normalmente e simmetricamente, Si notano inoltre degli outliners: due tra 0.2 e 0.35 e due tra -0.2 e -0.4.

2.3.2 Grafici Diagnostici per Alphabet Inc. (GOOG)

Per Alphabet, possiamo trovare i grafici alla figura 16, possiamo notare anche qui che i rendimenti sono distribuiti normalmente, con una notevole inclinazione positiva rispetto a FB, Anche per questo titolo si nota un outliner: tra -0.20 e -0.25.

Figura 15: Grafici diagnostici per Meta (FB)

Figura 16: Grafici diagnostici per Alphabet (GOOG)

2.4 Statistiche descrittive univariate

Per ogni serie di rendimenti sono state considerate le seguenti statistiche univariate: media, varianza, deviazione standard, asimmetria e curtosi.

Riferimenti bibliografici

[MDV21] Mieszko Mazur, Man Dang, and Miguel Vega. Covid-19 and the march 2020 stock market crash. evidence from s&p1500. Finance Research Letters, 38:101690, 2021.