אלגברה לינארית 1 סמסטר ב' תשע"ח - תרגיל 12

- B^* בסיס של V. מצאו את הבסיס א $B=\left(\left[egin{array}{c} 3 \\ 4 \end{array}
 ight],\left[egin{array}{c} 4 \\ 3 \end{array}
 ight]
 ight)$ ויהי ויהי $V=\mathbb{R}^2$.1 של V^*
- ויהי $B=(f_1,f_2)$ יהי $f_1(x)=\cos x,f_2(x)=x^2$ ותהינה, $V=\mathbb{R}^\mathbb{R}$.2 ווהי U=SpanB

 ${\cal U}$ א. הוכיחו כי ${\cal B}$ בסיס של

ב. יהיו Y^* פונקציונלים המוגדרים על ידי: $T_1,T_2\in V^*$

$$T_1(f) = f(0) + f(1)$$

$$T_2(f) = f(0) - f(1)$$

 $J,f\in U$ יהיו U. כלומר, לכל $J,S_1,S_2\in U^*$ יהיו הצמצומים של $S,S_1,S_2\in U^*$ נסמן הוכיחו כי S בסיט של הוכיחו כי S בסיט של הוכיחו כי S בסיט של $S_1(f)=T_1(f)$ הוכיחו כי $S_1(f)=T_1(f)$ מצאו בסיט $S_1(f)=T_1(f)$ על כך ש

עבור את , $1 \leq i \leq 3$ שדה ויהיו שונים. עבור $a_1,a_2,a_3 \in \mathbb{F}$ נגדיר את .3 הפולינום:

$$p_{i}\left(x\right) = \prod_{j \in \{1,2,3\} \setminus \{i\}} \frac{x - a_{j}}{a_{i} - a_{j}}$$

למשל:

$$p_2(x) = \frac{(x - a_1)(x - a_3)}{(a_2 - a_1)(a_2 - a_3)}$$

U=יהי $B=(p_1,p_2,p_3)$ ויהי ($\mathbb{F}[x]$ יהי הפולינומים מעל א מרחב ער א ויהי $V=\mathbb{F}[x]$ אויהי ואדיר א יהי א מרחב.

Uא. הוכיחו כי B מהווה בסיס ל

- ב. יהי $B^*=(\ell_1,\ell_2,\ell_3)$ הבסיס הדואלי ל $B^*=(\ell_1,\ell_2,\ell_3)$ ב. יהי $\ell_i\left(f\right)=f\left(b_i\right)$, $1\leq i\leq 3$ ולכל ולכל ל $f\in U$, $b_1,b_2,b_3\in\mathbb{F}$
- 4. יהי $V=\mathbb{R}_{\leq 3}\left[x\right]$ מרחב הפולינומים הממשיים מדרגה שלוש לכל היותר. יהיו $T_1,T_2,T_3,T_4:V o\mathbb{R}$

$$T_1(p) = p(1), T_2(p) = p(2), T_3(p) = p(3), T_4(p) = p(4)$$

 $A^*=(T_1,T_2,T_3,T_4)$ מצאו פולינומים $B=(p_1,p_2,p_3,p_4)$ כך ש $B=(p_1,p_2,p_3,p_4)$ מצאו פולינומים

- $f_1\left(x
 ight)=r$ במרחב הקטורי מעל $f_1,f_2\in\mathbb{R}^\mathbb{R}$ מוגדרות על ידי .5 נתבונן ב $a\in\mathbb{R}$ נסמן ביט מעל .5 $U o\mathbb{R}$ נסמן .5 $u\in\mathbb{R}$ עבור $u\in\mathbb{R}$ נסמן .6 נסמן .6 נסמן .6 עבור .4 נער ידי .5 נער ידי .4 נער ידי
- על U של C בסיס בסיח של של סדור של סדור בסיס מהווה ($\left(\ell_0,\ell_{\pi/3}\right)$ כך א. הוכיחו $C^*=(\ell_1,\ell_2)$
 - $rac{a-b}{\pi}
 otin\mathbb{Z}$ ב"כ אם"ם בת"ל ℓ_a,ℓ_b ב

- $m\in U^0$ כך ש $\ell_1,\ell_2,m\in V^*$, ע ת"מ של U , $\mathbb F$ מעל שדה u מעל ממימד ממימד מ יהיי u מיים מעל שדה $\ell_1(u)=\ell_2(u)$ כל אחת מהטענות וגם $0\neq m$ הבאות:
 - $\ell_2=\ell_1+am$ אז קיים $a\in\mathbb{F}$ כך שמתקיים $\dim U=1$ א. אם לוא $\dim U=1$ א. א. אם לוא קיים $\ell_2=\ell_1+am$ אז קיים לוא קיים לוא $\dim U=n-1$
 - $\left(U_1+U_2
 ight)^0=U_1^0\cap U_2^0$ כי הוכיחו ת"מ. הוכיחו U_1,U_2 ויהיו מ"ו ויהיו ע"מ. U_1,U_2
- 8. בכל אחד מהסעיפים הבאים נתונה קבוצה $S\subseteq\mathbb{F}^n$ נסמן על ידי את הבסיס .8 בכל אחד מהסעיפים בכל סעיף מצאו בסיס ל S^0 , וכן מערכת משוואות הומוגנית בכל סעיף מצאו בסיס ל \mathbb{F}^n בכל סעיף מצאו בסיס לAx=0 כך שקבוצת הפתרונות היא בדיוק קבוצת הוקטורים

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \right\}, n = 3, \mathbb{F} = \mathbb{Q}.$$

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}, n = 4, \mathbb{F} = \mathbb{F}_5.$$

$$S = \left\{ \begin{bmatrix} 1+i \\ 1-i \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}, n = 3, \mathbb{F} = \mathbb{C}.$$

 $U\subseteq W$ אז אז $W^0\subseteq U^0$ אז שאם הראו שאם U,W תתי מרחבים. 9

על ידי
$$\ell\in(\mathbb{R}^3)^*$$
ו , $T\left[egin{array}{c} x_1\\x_2 \end{array}
ight]=\left[egin{array}{c} x_1+x_2\\x_1-x_2\\x_1 \end{array}
ight]$ על ידי $T:\mathbb{R}^2 o\mathbb{R}^3$, ווא את $T:\mathbb{R}^2 o\mathbb{R}^3$

- על אם"ם T^t מ"ן ויהי T^t אם"ם T^t הוכיחו כי Tעל אם T^t חח"ע.
- כך ש $\ell\in W^*$ כיים $w\notin ImT, w\in W$ הוכיחו כי קיים 12. תהי $T:V\to W$ הוכיחו בי $\ell(w)=1$ וגם ווגם $T^t(\ell)=0$
 - $S^t \circ T^t = (T \circ S)^t$ כי הוכיחו ה"ל. הוכיחו S: U o V, T: V o W 13.
 - 14. חשבו את הדטרמיננטות של המטריצות הבאות:

$$\left[\begin{array}{ccc} 1 & -2 \\ 3 & 4 \end{array}\right], \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right], \left[\begin{array}{ccc} 1 & 3 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right]$$