Activity 17 – Introduction to Proof disproofs

Prove the statements that are true and disprove the ones that are false.

$$(1) \ \forall \ x, y \in \mathbb{R}, \ (x \notin \mathbb{Q} \land y \notin \mathbb{Q}) \implies xy \notin \mathbb{Q}.$$

(2)
$$\forall x, y \in \mathbb{Z}$$
, $(x \text{ is odd } \land y \text{ is odd}) \implies xy \text{ is odd}$

(3) For all integers
$$a$$
, b , and c , if $a \nmid b$ and $a \nmid c$ then $a \nmid b + c$.

(4) For all integers
$$a$$
, b , and c , if $a \nmid b$ and $a \nmid c$ then $a \nmid bc$.

(5)
$$\forall x, y \in \mathbb{R}, [x] \cdot [y] = [x] \cdot [y].$$

(6)
$$\forall a, b, c \in \mathbb{Z}, \ a \mid b \implies a \mid bc.$$

$$(7) \ \forall \ m, n \in \mathbb{Z}, \ n \mid m^2 \implies n \mid m.$$

(8) If the quadratic equation $ax^2 + bx + c = 0$ has two real solutions (where a, b and c are real) then ac < 0.