Санкт-Петербургский государственный университет Математико-механический факультет

Кафедра небесной механики

Волков Даниил Валентинович

Пространственно-кинематическое моделирование плоской подсистемы Галактики

Выпускная квалификационная работа Уровень образования: Специальность 03.05.01 «Астрономия» СМ.5012.2014 «Астрономия»

> Научный руководитель: к.ф.-м.н., доцент Никифоров И.И. Кафедра небесной механики

 $\label{eq: 2.1} \mbox{Рецензент:} \\ \mbox{к. ф.-м. н., старший научный сотрудник Мосенков А. В.} \\ \mbox{ ΓAO PAH }$

Санкт-Петербург 2019

SAINT-PETERSBURG STATE UNIVERSITY

Chair of Celestial Mechanics

Daniil Volkov

Modeling of the flat subsystem of the Milky Way

Graduation Thesis

Scientific supervisor: professor Igor Nikiforov

Reviewer: assistant Alexander Mosenkov

Оглавление

1.	Про мы	остранственно-кинематическое моделирование плоской подсисте-	6
	1.1.	Основные предположения и определения	6
		Кинематическая модель	7
	1.2.	1.2.1. Лучевые скорости	8
		1.2.2. Собственные движения по широте	8
		1.2.3. Собственные движения по долготе	8
		1.2.4. Совместное решение	ç
		1.2.5. Совместное решение с природной дисперсией	10
	1.3.	Построение кривых вращения	10
	1.0.	1.3.1. Решение по лучевым скоростям	10
		1.3.2. Решение по собственным широтным движениям	10
		1.3.3. Решение по собственным долготным движениям	11
		1.3.4. Совмесное трехкомпонентное решение	11
	1.4.	Исключение объектов по избыточным невязкам	11
	1.5.	Оптимизация порядка модельных полиномов	12
		Оптимизация оценки R_0	12
2.	_	именение метода к данным о звездах красного сгущения	13
	2.1.	Наблюдательные данные	13
		2.1.1. Переход к галактической СК	16
		2.1.2. Формирование выборок для оценки ошибок параметров методом	
		Монте-Карло	17
		2.1.3. Оценка ошибок R_0	18
	2.2.	Моделирование по лучевым скоростям	19
	2.3.	Моделирование по собственным движениям	20
	2.4.	Трехкомпонентное моделирование	22
		2.4.1. Результаты по уравнению без природной дисперсии	22
		2.4.2. Результаты по уравнению с природной дисперсией	24
		2.4.3. Обобщение результатов	26
3a	клю	чение	27
Ст	іисоі	к литературы	28

Введение

Настоящая дипломная работа посвящена моделированию галактической кинематики совместно с установлением масштабного параметра — расстояния от Солнца до центра Галактики R_0 . Кинематическое моделирование подразумевает нахождение оценок для таких важных характеристик Галактики, как постоянная Оорта A, инвариант AR_0 , линейная скорость вращения на солнечном круге θ_0 , кривая вращения Галактики. Несмотря на то, что проблеме определения R_0 уже очень много лет (первые оценки были сделаны Shapley ещё в 1918 году [7]), усовершенствование имеющихся и разработка новых методов определения R_0 является актуальной задачей и по сей день, так как решение многих вопросов галактической и внегалактической астрономии и астрофизики требует знания упомянутых характеристик Галактики. Здесь приведен список конкретных задач и направлений исследований, зависящие от этих характеристик [8]. В частности, от значения R_0 зависят

- абсолютный размер Галактики и её светимость,
- величина θ_0 ,
- кривая вращения Галактики (зависимость линейной скорости θ от абсолютного галактоцентрического расстояния R),
- кинематические гелиоцентрические расстояния до галактических объектов, определяемые по принятому закону вращения Галактики (например, для планетарных туманностей [4]),
- калибровка шкал расстояний до галактических объектов, для которых калибровки абсолютными методами по близким объектам менее точны или невозможны (планетарные туманности балджа [12] и диска [11]),
- понимание природы галактического центра: размеры, светимость, масса центральной части,
- внегалактические расстояния через перекалибровку абсолютных величин переменных типа классических цефеид, шаровых скоплений, RR Лиры и как результат постоянная Хаббла, возраст Вселенной и размеры её видимой части.

От значения θ_0 зависят вид галактической кривой вращения (относительно небольшие изменения этого параметра делают кривую вращения либо в среднем убывающей, либо плоской, либо возрастающей – что сильно влияет на динамические выводы (ср., например, [17], [18], [19])), проблема «темной материи» в Местной группе галактик (через приведение к центру Млечного Пути наблюдаемых скоростей в Местной группе), исследования распределения масс по локальным отклонениям от закона Хаббла.

Кривая вращения нужна для определения кинематических расстояний до объектов (при заданном R_0), исследования распределения масс в Галактике, моделирования динамических эффектов, возмущающих осесимметричное вращение (например, исследования спиральной структуры по кинематическим проявлениям волн плотности [20], [21], [22]).

Так как параметры A и AR_0 суть параметры закона вращения, то они влияют на те же задачи, что и сам закон вращения. Но помимо этого, они нужны для того, чтобы косвенно найти другие галактические параметры – скорость вращения Галактики θ_0

по наблюдаемому отношению радиальной и тангенциальной дисперсий остаточных скоростей [23], плотность вещества в окресностях Солнца [24].

Получение величины остаточного движения позволяет выполнить более точное кинематическое моделирование, а также влияет на определение радиуса коротации в Галактике [25].

Выводом вышеуказанного является то, что проблемы моделирования тесно взаимосвязаны. Однако, в большом количестве они рассматриваются изолировано, в частности, необоснованно используются результаты других исследований.

Цель данной работы — выполнить пространственно-кинематическое моделирование Галактики по данным о плоской подсистеме, учитывая слабые стороны традиционных подходов. Рассматриваемые опорные объекты — звезды красного сгущения (далее 3KC) — это высокометалличный аналог горизонтальной ветви, состоящий из населения II типа. Пачыньски и Станек ([26], [27]) выдвинули звезды красного сгущения как новый индикатор расстояний и использовали эти звезды как опорные объекты для опредления R_0 методом Бааде. Преимущество этих звезд как опорных объектов — в их многочисленности, что дает высокую статистическую точность оценки R_0 . Используемый каталог APOGEE-RC [2] содержит более 29 тыс. объектов с очень точными данными о лучевых скоростях.

В настоящей работе к этим опорным объектам применяется трехкомпонентная кинематическая модель – то есть, включаются данные и о лучевых скоростях, и о собственных движениях. Полностью определено воспроизведение конечной выборки, по которой получается решение. Кроме того, в отличии от многих подобных работ в этой области, здесь оптимизируется и порядок модели (модельных полиномов), а также применяется гибкий алгоритм исключения из выборки объектов с большими невязками.

1. Пространственно-кинематическое моделирование плоской подсистемы

Для кинематических методов определения R_0 характерна проблема зависимости результата от модельных и оптимизационных предположений. Поэтому подойти к их выбору следует максимально аккуратно.

1.1. Основные предположения и определения

Кинематическая модель должна описывать дифференциальное вращение Галактики, и стандартно его полагают осесимметричным.

Предположение 1. Зависимость линейной скорости Θ движения подсистем Галактики – это функция галактоосевого расстояния R:

$$\Theta = \Theta(R). \tag{1}$$

На явлении вращения и основан кинематический метод определения R_0 , имеющей в этом случае смысл расстояния до среднего центра кривизны линий равной скорости вращения. Т.к. центр может быть локализован по небольшой дуге окружности, не обязательно иметь данные, представляющие все галактические долготы, и такая неполнота исходных данных не является источником систематических ошибок.

Кроме обязательной вращательной составляющей модель может включать также представления и других эффектов галактической кинематики, в том числе о движении Солнца относительно Местного Стандарта Покоя. Так как каталожные лучевые скорости не приведены к МСП, то мы включаем остаточное движение Солнца как параметр модели.

Предположение 2. Компоненты остаточного движения Солнца относительно ВСП: $u_{\odot}, v_{\odot}, w_{\odot}$ предполагаются заранее неизвестными и находятся вместе с другими параметрами модели из той же самой выборки.

К-член (член Кемпбелла) – эмпирическая постоянная добавка в уравнениях для лучевой скорости, отражающая влияние факторов, могущих вызвать дополнительное смещение спектральных линий [3]. Во некоторых работах (напр., [28] [29]) используется как один из параметров модели. Однако большинство работ выявляет, что ошибка при определении этого параметра превышает найденные точечные оценки, поэтому от добавления его в модель в данной работе воздержались.

Предположение **3.** K = 0.

Другой возможный источник предположений – вид представления закона дифференциального вращения. В подавляющем большинстве работ, посвященных проблеме R_0 , фиксировалась аналитическая форма закона вращения (см., например, [28], [30], [31]). В данной работе производится оптимизация аналитической формы и параметров закона вращения. Под оптимизацией формы понимается объективно обоснованный выбор из некоторого множества моделей такого их подмножества, что смещения R_0 из-за систематических ошибок аппроксимации – наименьшие. При представлении закона вращения разложением в ряд оптимизацией формы будем называть оптимизацию порядка аппроксимирующего полинома. В нашем случае учет членов высоких порядков осмыслен, т.к. данные об опорных объектах покрывают значительный промежуток R.

Предположение 4. Порядок разложения n считается заранее неизвестным и оптимизируется в ходе решения.

Метод поиска параметров модели исходит из некоторых предположений о характере отклонений измеряемых величин от модельных предсказаний. Эти отклонения обычно принимаются распределенными по нормальному закону с нулевым математическим ожиданием, что даёт право применять метод наименьших квадратов (МНК).

Предположение 5. Невязки (отклонения) наблюдаемых от модельных скоростей распределены по нормальному закону с нулевым математическим ожиданием:

$$\delta_{V_{\text{mod}}, V_{\text{obs}}} \in \mathcal{N}(0, \sigma_{V_{\text{mod}}}^2)$$
 (2)

Также стоить уточнить определение кривой вращения, которым мы будем пользоваться. Кривая вращения — зависимость от R средней скорости вращения рассматриваемой подсистемы Галактики. Усреднение проводится и по галактической долготе, и по Z. Именно в таком смысле следует понимать кривые вращения, которые находятся из наблюдаемых данных. Говорить о кривой вращения как о зависимости от R круговой скорости вращения в плоскости Галактики в данном случае нельзя изза высокой дисперсии скоростей опорных объектов. Отметим также, что на кривую вращения влияет радиальный градиент металличности в Галактике ([13], [14]), из-за которого может быть некорректным применение одинаковой калибровки к опорным объектам, находящимся на разных R.

Модельная скорость заданного объекта — скорость центроида объектов данного типа, вычисленная для положения этого объекта.

Вращательный стандарт покоя (ВСП) – гелиоцентрическая система отсчета, движущаяся по круговой орбите со скоростью равной средней скорости вращения рассматриваемой подсистемы на $R=R_0$.

1.2. Кинематическая модель

В предположении кругового движения модельная лучевая скорость объекта относительно МСП определяется выражением [3]

$$V_{\text{mod}} = (\omega - \omega_0) R_0 \sin l \cos b - V_{r,\odot}, \tag{3}$$

где ω и ω_0 – угловые скорости вращения подсистемы на R и $R_0,\ l$ – галактическая долгота, b – галактическая широта, r – гелиоцентрическое расстояние, $V_{r,\odot}$ – проекция остаточной скорости движения Солнца.

Аналогично для собственных движений [3]

$$\mu_{l,\text{mod}} = (\omega - \omega_0) \left(\frac{R_0 \cos l}{r} - \cos b \right) - \omega_0 \cos b + \mu_{l,\odot}, \tag{4}$$

$$\mu_{b,\text{mod}} = -(\omega - \omega_0) \frac{R_0}{r} \sin l \sin b + \mu_{b,\odot}. \tag{5}$$

Для представления кривой вращения $\Theta(R)$ используем модельный полином в виде многочлена Тейлора:

$$\Theta_n(R) = \sum_{i=0}^n \frac{d^i \Theta \cdot (R - R_0)^i}{dR^i \cdot i!}.$$
 (6)

Галактоосевое расстояние R определяется как [3]

$$R = \sqrt{R_0^2 + r^2 \cos^2 b - 2R_0 r \cos l \cos b}.$$
 (7)

В качестве модели закона вращения выбрано разложение для линейной, а не угловой скорости, так как кривые вращения внешних спиральных Галактик и нашей Галактики плоские в первом приближении, и нелинейные члены (6) непосредственно описывают отклонения от этой простой модели, а в случае разложения в ряд $\omega(R)$ даже при плоской кривой вращения новые нелинейные члены будут требоваться просто по мере увеличения промежутка ΔR , т.к. $\omega(R) \propto R^{-1}$.

Итак, получаем следующие рассчетные формулы для модельных скоростей опорных объектов.

1.2.1. Лучевые скорости

$$V_{r,\text{rot}} = (\omega - \omega_0) R_0 \sin l \cos b, \tag{8}$$

$$V_{r,\odot} = -u_{\odot}\cos l\cos b - v_{\odot}\cos b\sin l - w_{\odot}\sin b. \tag{9}$$

$$V_{r,\text{mod}} = \left[-2A\Delta R + \sum_{k=2}^{n} \frac{\theta_k}{k!} \left(\Delta R \right)^k \right] \frac{R_0}{R} \sin l \cos b + V_{r,\odot}, \tag{10}$$

используя то, что

$$A = -\frac{1}{2}R_0\omega'(R_0) = -\frac{1}{2}(\theta_1 - \omega_0). \tag{11}$$

1.2.2. Собственные движения по широте

Для собственных движений $\mu_b = \frac{db}{dt}$:

$$k\mu_{b,\text{mod}} = k\mu_{b,\text{rot}} + k\mu_{b,\odot},\tag{12}$$

$$k\mu_{b,\text{rot}} = \left[2A\Delta R - \sum_{k=2}^{n} \frac{\theta_k}{k!} \left(\Delta R\right)^k\right] \frac{R_0}{Rr} \sin l \sin b, \tag{13}$$

$$k\mu_{b,\odot} = \frac{u_{\odot}\cos l\sin b + v_{\odot}\sin l\sin b - w_{\odot}\cos b}{r}.$$
 (14)

Здесь и далее полагаем k = 4.7406.

1.2.3. Собственные движения по долготе

Для собственных движений $\mu_l = \frac{dl}{dt} \cos b$:

$$k\mu_{l,\text{mod}} = k\mu_{l,\text{rot}} + k\mu_{l,\odot},\tag{15}$$

$$k\mu_{l,\text{rot}} = \left[-2A\Delta R + \sum_{k=2}^{n} \frac{\theta_k}{k!} \left(\Delta R\right)^k\right] \left(\frac{R_0 \cos l}{r} - \cos b\right) R^{-1} - \omega_0 \cos b,\tag{16}$$

$$k\mu_{b,\odot} = \frac{u_{\odot}\sin l - v_{\odot}\cos l}{r}.$$
 (17)

1.2.4. Совместное решение

Имеется набор систем уравнений

$$V_r = V_{r,\text{mod}}(R_0, A, \theta_2, \dots, \theta_n, u_{\odot}, v_{\odot}, w_{\odot}^*), \tag{18}$$

$$k\mu_b = k\mu_{b,\text{mod}}(R_0^*, A, \theta_2, \dots, \theta_n, u_{\odot}, v_{\odot}, w_{\odot}^*).$$
 (19)

$$k\mu_l = k\mu_{l,\text{mod}}(R_0^*, A, \theta_2, \dots, \theta_n, u_{\odot}, v_{\odot}), \tag{20}$$

Здесь индекс опущен, V_r , $k\mu_l$, $k\mu_b$ – наблюдаемые величины. Параметры со звездочкой могут фиксироваться. Модельные скорости определены согласно 1.2.1, 1.2.2, 1.2.3. Каждая из этих систем решается обычным МНК с единичными весами. Частное решение (при фиксированном единственном нелинейном параметре R_0) можно найти стандарным линейным МНК. Тогда общее решение дает значение R_0 , при котором целевая функция минимальна.

Найденные общие решения дают оценки дисперсий:

$$\sigma_{V_r}^2 = \frac{1}{N_{\text{free}}} \sum_{i=1}^{N} (V_r - V_{r,\text{mod}})_i^2, \qquad (21)$$

$$\sigma_{\mu_l}^2 = \frac{1}{N_{\text{free}}} \sum_{i=1}^{N} (k\mu_l - k\mu_{l,\text{mod}})_i^2,$$
 (22)

$$\sigma_{\mu_b}^2 = \frac{1}{N_{\text{free}}} \sum_{i=1}^{N} (k\mu_b - k\mu_{b,\text{mod}})_i^2, \qquad (23)$$

где число степеней свободы $N_{\rm free} = N - n_{\rm par}$.

При фиксации линейных параметров решение систем итеративное. Итерация 1:

- 1. Решается (18) с начальным значением $w_{\odot} = \text{const.}$ Получаем оценку $R_0(V_r)$.
- 2. Решается (19) при $R_0 = \text{const} = R_0(V_r)$. Получаем оценку $w_{\odot}(\mu_b)$.

Итерация I:

- 1. Решается (18) при $w_{\odot} = \text{const} = w_{\odot}(\mu_b)_{I-1}$. Получаем оценку $R_0(V_r)_I$.
- 2. Решается (19) при $R_0 = {\rm const} = R_0(V_r)_I$. Получаем оценку $w_{\odot}(\mu_b)_I$.

Условие сходимости – неизменность m десятичных знаков после запятой в значениях обоих параметров. После достижения условия сходимости за T итераций решается система (20) с $R_0^* = R_0(V_r)_{I_T}$.

Далее минимизируется целевая функция

$$\chi^{2} = \sum_{i=1}^{N} \left[\frac{\left(V_{r} - V_{r,\text{mod}}\right)_{i}^{2}}{\sigma_{V_{r}}^{2}} + \frac{\left(k\mu_{l} - k\mu_{l,\text{mod}}\right)_{i}^{2}}{\sigma_{\mu_{l}}^{2}} + \frac{\left(k\mu_{b} - k\mu_{b,\text{mod}}\right)_{i}^{2}}{\sigma_{\mu_{b}}^{2}} \right]. \tag{24}$$

Используются значения $\sigma_{V_r}^2, \sigma_{\mu_b}^2, \sigma_{\mu_l}^2$, найденные после итеративного решения систем (18) - (20). Значение χ^2 должно быть около $N_{\rm free}=3N-n_{par}$.

Фундаментальное значение для проверки состоятельности метода имеет сопоставление величин A по μ_l и V_r .

1.2.5. Совместное решение с природной дисперсией

Здесь вводится понятие *природной дисперсии* σ_0 объектов подсистемы – дисперсии скоростей, объективно существующей вне зависимости от ошибок наблюдений. Уравнение (25) преобразуется в вид

$$\chi^{2} = \sum_{i=1}^{N} \left[\frac{\left(V_{r} - V_{r,\text{mod}}\right)_{i}^{2}}{\sigma_{0}^{2} + \sigma_{V_{r_{i}}}^{2}} + \frac{\left(k\mu_{l} - k\mu_{l,\text{mod}}\right)_{i}^{2}}{\frac{\sigma_{0}^{2}}{r_{i}^{2}} + k^{2}\sigma_{\mu_{l_{i}}}^{2}} + \frac{\left(k\mu_{b} - k\mu_{b,\text{mod}}\right)_{i}^{2}}{\frac{\sigma_{0}^{2}}{r_{i}^{2}} + k^{2}\sigma_{\mu_{b_{i}}}^{2}} \right].$$
 (25)

Здесь $\sigma_{V_{r_i}}$, $\sigma_{\mu_{l_i}}$, $\sigma_{\mu_{b_i}}$ – соответствующие ошибки измерения лучевых скоростей и собственных движений. В таком случае минимизация целевой функции заключается в нахождении таких $\sigma_{0,\text{opt}}$, $R_{0,\text{opt}}$, что выполняется условие

$$\chi^2(\sigma_0, R_0)|_{\sigma_{0,\text{opt}}, R_{0,\text{opt}}} = N_{\text{free}}.$$
 (26)

Такой подход даёт возможность как взвесить наблюдения соответственно их ошибкам измерений, так и определить дисперсию скоростей σ_0 подсистемы, свободную от ошибок измерения скоростей. Этот вариант решения представляется наиболее интересным, особенно с учетом того, что при таком варианте решения количество обектов, попадающих под (40), практически равно нулю (см. далее).

1.3. Построение кривых вращения

Ниже приводятся выражения для получения положений объектов на плоскости (R, Θ) , в которой строится кривая вращения, для различных вариантов решения систем (18, 19, 20).

1.3.1. Решение по лучевым скоростям

Кривая вращения:

$$\Theta_n(R) = \omega_0 R - 2A\Delta R + \sum_{k=2}^n \frac{\theta_k}{k!} \left(\Delta R\right)^k, \qquad (27)$$

Положения отдельных объектов (здесь $V_{r,\text{obs}}$ – наблюдаемые лучевые скорости):

$$\Theta_{\text{obs}}(R) = \left(\frac{V_{r,\text{obs}} - V_{r,\odot}}{R_0 \sin l \cos b} + \omega_0\right) R. \tag{28}$$

1.3.2. Решение по собственным широтным движениям

Кривая вращения:

$$\Theta_n(R) = \omega_0 R + 2A\Delta R - \sum_{k=2}^n \frac{\theta_k}{k!} \left(\Delta R\right)^k, \tag{29}$$

Положения отдельных объектов (здесь $\mu_{b, \text{obs}}$ – наблюдаемая величина):

$$\Theta_{\text{obs}}(R) = \left(\frac{k\mu_{b,\odot} - k\mu_{b,\text{obs}}}{R_0 \sin l \sin b} r + \omega_0\right) R. \tag{30}$$

1.3.3. Решение по собственным долготным движениям

Кривая вращения:

$$\Theta_n(R) = \omega_0 R - 2A\Delta R + \sum_{k=2}^n \frac{\theta_k}{k!} \left(\Delta R\right)^k, \tag{31}$$

Положения отдельных объектов (здесь $\mu_{l,\text{obs}}$ – наблюдаемая величина):

$$\Theta_{\text{obs}}(R) = \left(\frac{k\mu_{l,\text{obs}} - k\mu_{l,\odot} + \omega_0 \cos b}{\frac{R_0 \cos l}{r} - \cos b}r + \omega_0\right) R. \tag{32}$$

1.3.4. Совмесное трехкомпонентное решение

Кривая вращения строится аналогично (27) и (31). Для перехода в галактоцентрическую систему координат, связанную с объектами, используем формулы [15], [16]:

$$\Theta = V_q \cos \beta + U_q \sin \beta, \tag{33}$$

угол β определяется из

$$\cos \beta = \frac{R_0 - r \cos b \cos l}{R}, \ \sin \beta = \frac{r \cos \beta}{R} \sin l, \tag{34}$$

компоненты скорости

$$V_r = V_{r,\text{obs}}, \ V_l = kr\mu_{l,\text{obs}}\cos b, \ V_b = kr\mu_{b,\text{obs}},$$
 (35)

а галактоцентрические скорости в системе, связанной с Солнцем, получаются как

$$U_a = (V_r \cos b - V_b \sin b) \cos l - V_l \sin l + u_{\odot}, \tag{36}$$

$$V_a = (V_r \cos b - V_b \sin b) \sin l + V_l \cos l + \theta_{\odot}. \tag{37}$$

1.4. Исключение объектов по избыточным невязкам

Для многих процедур статистического анализа наблюдательного материала важной проблемой является обоснованное выделение и исключение из обработки ненадежных данных. Так как используемый объем выборки довольно велик, то объектов, которые имеют невязки больше 3σ , может быть довольно много. В источнике [9] предложен гибкий алгоритм исключения объектов из выборки, который используется в данной работе:

Для данного объема выборки N находится значение κ :

$$\psi(\kappa) = \sqrt{\frac{2}{\pi}} \int_0^{\kappa} e^{-\frac{x^2}{2}} dx, \tag{38}$$

$$[1 - \psi(\kappa)] N = 1. \tag{39}$$

Тогда, обозначая ϵ_i - ошибку i-того измерения, а σ_i - стандартная ошибка i-того измерения, получаем критерий

$$\frac{|\epsilon_i|}{\sigma_i} > \kappa. \tag{40}$$

Далее находится количество уравнений L данной выборки, которые удовлетворяют этому условию. Если L>1, то из дальнейшего рассмотрения исключается $L-L_p$ уравнений с наибольшими по модулю невязками, где L_p — параметр данного алгоритма. В настоящей работе $L_p=1$. Таким образом, объекты с невязками, большей критической, исключаются из выборки как выбросы. Далее получаем по новой выборке решение системы, и снова применяем настоящий алгоритм до тех пор, пока не окажется, что больше нет объектов, которые попадают под критерий.

По сравнению со стандартным критерием 3σ критический уровень невязки здесь зависит от объема выборки.

1.5. Оптимизация порядка модельных полиномов

Итак, $\Theta_n(R)$ есть полином Тейлора(6) степени n. В большинстве работ (ссылки) n не превосходит 2. Здесь мы можем исследовать и более высокие порядки, так как объем выборки позволяет нам выявлять более мелкие детали на кривой вращения (например, её прогиб после солнечного круга, в работах (ссылки)). Для того, чтобы определить оптимальный порядок разложения, будем руководствоваться следующими критериями. Порядок разложения ограничен сверху таким n, что

- 1. Все коэффициенты θ_i становятся незначимыми: $\frac{\theta_i}{\sigma_{\theta_i}} \approx 0.5,$
- 2. Значимость коэффициента θ_n снижается до 1σ ,
- 3. Значение дисперсии решения перестаёт значимо убывать,
- 4. На кривой вращения отчетливо проявляются краевые эффекты.

Выбор того, какой из критериев в данном случае применим, пока не формализован полностью. В большинстве случаев срабатывает критерий 2. В данной работе были предприняты попытки использования каких-либо мер для оптимизации порядка (например, мера Меллоуза [10]), но добиться полной формализации с сохранением всех указанных условий не удалось.

1.6. Оптимизация оценки R_0

В уравнениях (18) – (20), а также в (25) параметр R_0 нелинейный. Поэтому для поиска решения таких систем уравнений мы рассматриваем частные решения при фиксированном R_0 и минимизируем целевую функцию. Для систем (18) – (20) целевая функция есть

$$\chi^2 = \sum_{i=1}^{N} \left[V_{i,\text{mod}} - V_{i,\text{obs}} \right]^2.$$
 (41)

Зависимость $\chi^2(R_0)$ в дальнейшем будет называться *профилем решения*. Форма профиля характеризует обусловленность и общее качество решения.

2. Применение метода к данным о звездах красного сгущения

2.1. Наблюдательные данные

Арасhе Point Observatory Galactic Evolution Experiment (APOGEE) представляет собой спектроскопическую съемку в ближней инфракрасной области с высоким разрешением, охватывающую все основные компоненты Галактики, в том числе непроницаемые из-за пыли области внутреннего диска Млечного Пути и балджа. Каталог RC (Red Clump) [1] [2] — это выборка из более чем 29 тыс. звезд, полученная по результатам [5]. К сожалению, ошибки в определении расстояний до отдельных объектов авторы не приводят, однако указывают, что их метод определения расстояний имеет точность от 5 до 10%. Выборка простирается на расстояния до 8 кпк от Солнца, с характерными расстояниями около 3 кпк, и охватывает объем приблизительно 100 кпк³. Каталог содержит фотометрию от 2MASS, оценки покраснения, расстояния, гелиоцентрические лучевые скорости, звездные параметры и элементные содержания, определенные из спектров высокого разрешения и соответствующие каталогам UCAC-4 и HSOY собственные движения.

Пространственное распределение:

Рис. 1: Распределение объектов APOGEE-RC в гелиоцентрических декартовых координатах.

Распределение ошибок скоростей:

Рис. 3: Распределение лучевых скоростей и их измертельных ошибок.

Рис. 4: Распределение ошибок собственных движений в каталоге UCAC-4.

Рис. 5: Распределение ошибок собственных движений в каталоге HSOY.

2.1.1. Переход к галактической СК

Собственные движения. Так как в каталогах UCAC-4 и HSOY указаны данные о собственных движениях в экваториальной СК, нужно было осуществить преобразование $(\mu_{\alpha}, \mu_{\delta}) \to (\mu_{l}, \mu_{b})$.

$$\sin b = \sin \delta \cos(90^{\circ} - \delta_p) - \cos \delta \sin(\alpha - \alpha_p - 90^{\circ}) \sin(90^{\circ} - \delta_p), \tag{42}$$

$$\sin \varphi = \frac{\cos \delta \sin(\alpha - \alpha_p - 90^\circ) \cos(90^\circ - \delta_p) + \sin \delta \sin(90^\circ - \delta_p)}{\cos b},$$
(43)

$$\cos \varphi = \frac{\cos \delta \cos(\alpha - \alpha_p - 90^\circ)}{\cos b},\tag{44}$$

$$l = \varphi + \theta_p, \tag{45}$$

где $\theta_p=32.93192^\circ,~\alpha_p=192.85948^\circ,~\delta_p=27.12825^\circ.$ Переход к собственным движениям в галактической СК:

$$\mu_l = l(\alpha + \mu_\alpha, \delta + \mu_\delta) - l(\alpha, \delta), \tag{46}$$

$$\mu_b = b(\alpha + \mu_\alpha, \delta + \mu_\delta) - b(\alpha, \delta). \tag{47}$$

Также необходимо подставлять в (20) $\mu_l^* = \mu_l \cos b$.

Ошибки собственных движений. Так как в каталогах UCAC-4 и HSOY указаны ошибки собственных движений в экваториальных координатах, необходимо также привести их к галактической СК. Для этого используется формула распространения ошибок [6]:

$$\sigma_{\mu_l} = \sqrt{\left(\frac{\partial \mu_l}{\partial \alpha} \sigma_{\mu_{\alpha}}\right)^2 + \left(\frac{\partial \mu_l}{\partial \delta} \sigma_{\mu_{\delta}}\right)^2},\tag{48}$$

$$\sigma_{\mu_b} = \sqrt{\left(\frac{\partial \mu_b}{\partial \alpha} \sigma_{\mu_\alpha}\right)^2 + \left(\frac{\partial \mu_b}{\partial \delta} \sigma_{\mu_\delta}\right)^2}.$$
 (49)

Таблица 1: Наблюдательные данные (приведены на эпоху J2000)

Величина	Обозначение	Ед. изм.
Прямое восхождение	α	deg
Склонение	δ	deg
Галактическая долгота	<i>l</i>	deg
Галактическая широта	$\mid b \mid$	deg
Гелиоцентрическая лучевая скорость	$V_{r,\mathrm{obs}}$	km/s
Ошибка лучевой скорости	$\sigma_{V_{r,i}}$	km/s
Гелиоцентрическое расстояние	$\mid r \mid$	kpc
Проекция собственного движения по α	$\mu_{\alpha} * \cos \delta$	mas/yr
Собственное движение по δ	$\mid \mu_{\delta} \mid$	mas/yr
Ошибка собственного движения по α	$\sigma_{\mu_{lpha},i}$	mas/yr
Ошибка собственного движения по δ	$\sigma_{\mu_{\delta},i}$	mas/yr

2.1.2. Формирование выборок для оценки ошибок параметров методом Монте-Карло

Несмотря на то, что при частном решении используется обычный МНК, получать из матрицы ковариаций ошибки параметров некорректно, так как производится оптимизация по нелинейному параметру. Для того, чтобы исключить смещение и обеспечить состоятельность и эффектривность оценки ошибков параметров модели, используется метод Монте-Карло. Для получения ошибок параметров при решении (18) - (20), а также (25), формируются псевдослучайные каталоги. В каждом из них такие же сведения о l, b, r, как в оригинальном APOGEE-RC (α и δ для решения систем не нужны). Лучевые скорости и собственные движения получались как

$$V_{r,i}^* \in \mathcal{N}\left[V_{r,\text{mod}}(l_i, b_i, r_i), \ \sigma_{V_r}^2\right],\tag{50}$$

$$\mu_{b,i}^* \in \mathcal{N}\left[\mu_{b,\text{mod}}(l_i, b_i, r_i), \ \sigma_{\mu_b}^2\right],\tag{51}$$

$$\mu_{l,i}^* \in \mathcal{N} \left[\mu_{l,\text{mod}}(l_i, b_i, r_i), \ \sigma_{\mu_l}^2 \right]. \tag{52}$$

После этого для каждого каталога находятся все параметры модели и строится кривая вращения. По совокупности всех найденных значений производится окончательная оценка параметров и построение доверительных областей кривой вращения.

В варианте с природной дисперсией распределения лучевых скоростей и собственных движений приобретают вид

$$V_{r,i}^* \in \mathcal{N} \left[V_{r,\text{mod}}(l_i, b_i, r_i), \ \sigma_{V_{r,i}}^2 + \sigma_0^2 \right],$$
 (53)

$$\mu_{b,i}^* \in \mathcal{N}\left[\mu_{b,\text{mod}}(l_i, b_i, r_i), \ k\sigma_{\mu_{b,i}}^2 + \frac{\sigma_0^2}{r_i^2}\right],$$
 (54)

$$\mu_{l,i}^* \in \mathcal{N}\left[\mu_{l,\text{mod}}(l_i, b_i, r_i), \ k\sigma_{\mu_{l,i}}^2 + \frac{\sigma_0^2}{r_i^2}\right].$$
 (55)

2.1.3. Оценка ошибок R_0

Для нахождения доверительных интервалов нелинейного параметра модели R_0 используем следующий метод. Для целевых функций

$$S^{2}(R_{0}) = \sum_{i=1}^{N} \frac{(V_{\text{mod}}(R_{0}) - V_{\text{obs}})_{i}^{2}}{\sigma_{i}^{2}}$$
(56)

рассмотрим статистики

$$\zeta_0^2 \equiv \frac{1}{N_{\text{free}}} \text{min} S^2(R_0) = \frac{1}{N_{\text{free}}} S^2(R_0^{\text{opt}}).$$
 (57)

Границами доверительного интервала параметра R_0 с уровнем $s\sigma$ (мы берем стандартное значение s=1) будут корни уравнения

$$\zeta_1^2(R_0) = \zeta_0^2 \left(1 + \frac{s^2}{N_{\text{free}}} \right).$$
 (58)

Несимметричные профили для R_0 приводят к тому, что оценки снизу и сверху отличаются. В результатах приводятся обе границы доверительного интервала.

Рис. 6: Пример профилей решения для варианта 1.3.4.

2.2. Моделирование по лучевым скоростям

Решается (18) с полным набором параметров. Порядок разложения n<10. Итеративно применяется 1.4, пока в выборке не будет объектов, попадающих под критерий (40). После этого производится оценка ошибок параметров с помощью 2.1.2 по финальной выборке размера $N_{\rm end}$. Результаты приведены в таблице.

Таблица 2: Результаты по V_r

	1аолица 2: Результаты по V_r .										
n	1	2	3	4	5	6	7	8	9		
$N_{ m end}$	29396	29400	29401	29401	29401	29403	29404	29404	29404		
R_0	8.167	7.515	7.611	7.487	7.616	7.797	7.806	7.822	7.528		
	$+0.132 \\ -0.113$	$^{+0.051}_{-0.052}$	$+0.245 \\ -0.143$	$+0.092 \\ -0.075$	$^{+0.258}_{-0.144}$	$+0.096 \\ -0.064$	$+0.097 \\ -0.065$	$^{+0.105}_{-0.070}$	$^{+0.042}_{-0.043}$		
σ_{V_r}	32.189	32.213	32.117	32.103	32.096	32.108	32.117	32.118	32.112		
u_{\odot}	12.412	12.275	12.688	12.754	12.785	12.81	12.807	12.805	12.814		
$\sigma_{u_{\odot}}$	0.270	0.265	0.267	0.267	0.261	0.269	0.270	0.267	0.253		
v_{\odot}	29.601	28.161	26.98	27.271	27.098	27.643	27.769	27.763	26.871		
$\sigma_{v_{\odot}}$	0.358	0.393	0.470	0.458	0.491	0.527	0.505	0.518	0.462		
w_{\odot}	6.698	6.894	7.320	7.372	7.524	7.522	7.446	7.434	7.614		
$\sigma_{w_{\odot}}$	0.636	0.615	0.633	0.639	0.619	0.610	0.630	0.663	0.660		
\overline{A}	13.013	12.969	14.491	15.022	15.279	15.662	15.612	15.459	15.345		
$\sigma(A)$	0.128	0.130	0.174	0.206	0.209	0.262	0.262	0.306	0.318		
$ heta_2$	_	-0.974	-2.038	-1.156	-1.776	-0.842	-0.549	-0.624	-2.635		
$\sigma(\theta_2)$	_	0.169	0.222	0.279	0.343	0.423	0.558	0.536	0.731		
θ_3	-	-	2.009	2.655	3.385	4.322	4.101	3.523	2.825		
$\sigma(\theta_3)$	-	-	0.147	0.192	0.270	0.403	0.480	0.814	0.843		
$ heta_4$	-	-	-	-0.681	-0.184	-1.227	-1.561	-1.297	2.809		
$\sigma(\theta_4)$	_	-	_	0.132	0.183	0.346	0.560	0.601	1.265		
$ heta_5$	_	-	_	_	-0.498	-0.946	-0.645	0.073	0.392		
$\sigma(heta_5)$	-	-	_	_	0.132	0.189	0.423	0.936	1.017		
$ heta_6$	-	-	-	-	-	0.521	0.691	0.224	-6.131		
$\sigma(\theta_6)$	-	-	_	_	-	0.156	0.286	0.570	1.714		
$ heta_7$	_	-	_	_	-	-	-0.173	-0.579	1.354		
$\sigma(\theta_7)$	-	-	_	_	-	-	0.229	0.539	0.868		
$ heta_8$	_	-	_	_	-	-	-	0.340	5.034		
$\sigma(\theta_8)$	-	-	_	_	-	-	-	0.390	1.246		
$ heta_9$	_	-	_	_	-	-	-	-	-3.030		
$\sigma(\theta_9)$	-	-	_	_	-	-	-	-	0.779		

Оценки параметров, полученные таким образом, можно сопоставлять с оценками, полученными далее по собственным движениям (в частности, будет представлять интерес поведение параметра A). Оптимальный порядок здесь n=3.

2.3. Моделирование по собственным движениям

Решается (20) с полным набором параметров. Порядок разложения n<10. Итеративно применяется 1.4, пока в выборке не будет объектов, попадающих под критерий (40). После этого производится оценка ошибок параметров с помощью 2.1.2 по финальной выборке размера $N_{\rm end}$. Результаты приведены в таблице.

Таблица 3: Результаты для μ_l по пересечению с каталогом UCAC-4.

-	таолица 5. Гезультаты для μ_l по пересечению с каталогом ОСАС-4.								
n	1	2	3	4	5	6	7	8	9
$N_{ m end}$	26906	26906	26906	26900	26903	26904	26903	26903	26903
R_0	7.611	7.619	7.623	8.528	8.331	8.246	8.257	7.633	8.252
	$+0.059 \\ -0.328$	$^{+0.053}_{-0.266}$	$^{+0.052}_{-0.213}$	$+0.553 \\ -0.530$	$+0.490 \\ -0.450$	$+0.449 \\ -0.409$	$+0.610 \\ -0.476$	$+0.038 \\ -0.125$	$+0.465 \\ -0.435$
σ_{μ_l}	28.038	28.037	28.038	27.974	27.998	28.006	27.995	27.995	27.995
u_{\odot}	9.679	9.710	9.697	9.480	9.507	9.539	9.490	9.487	9.438
$\sigma_{u_{\odot}}$	0.595	0.632	0.576	0.577	0.593	0.578	0.587	0.570	0.580
v_{\odot}	17.940	17.945	17.709	17.278	17.657	17.846	17.985	18.025	17.831
$\sigma_{v_{\odot}}$	0.519	0.522	0.574	0.542	0.612	0.671	0.695	0.721	0.718
ω_0°	24.461	24.417	24.453	24.446	24.403	24.387	24.354	24.37	24.355
σ_{ω_0}	0.448	0.477	0.430	0.447	0.429	0.449	0.452	0.457	0.456
\overline{A}	12.143	11.841	11.923	12.695	12.708	12.535	12.908	13.067	13.24
$\sigma(A)$	0.309	0.383	0.374	0.392	0.377	0.451	0.484	0.486	0.532
$ heta_2$	_	-0.436	-0.720	-0.389	0.594	0.741	1.892	2.783	2.208
$\sigma(\theta_2)$	_	0.279	0.443	0.412	0.607	0.632	0.810	1.157	1.051
$ heta_3$	_	-	0.240	1.755	1.295	0.710	1.608	1.700	3.142
$\sigma(\theta_3)$	_	-	0.275	0.352	0.396	0.769	0.935	1.199	1.507
$ heta_4$	_	-	-	-1.046	-1.560	-1.401	-3.620	-5.451	-5.339
$\sigma(\theta_4)$	_	-	-	0.202	0.332	0.351	0.948	1.502	1.671
$ heta_5$	_	-	-	_	0.345	0.666	0.899	2.217	-0.558
$\sigma(heta_5)$	_	-	-	_	0.165	0.397	0.450	1.655	1.935
$ heta_6$	_	-	-	_	_	-0.160	1.142	2.101	4.005
$\sigma(\theta_6)$	_	-	-	_	_	0.172	0.645	0.802	2.184
$ heta_7$	_	-	-	_	_	-	-0.578	-2.118	-0.459
$\sigma(\theta_7)$	_	_	-	_	_	-	0.254	1.345	1.189
$ heta_8$	_	-	-	_	_	-	-	0.525	-2.062
$\sigma(\theta_8)$	_	_	-	_	_	-	-	0.525	1.844
$ heta_9$	_	_	-	_	_	-	-	-	0.913
$\sigma(\theta_9)$	_	-	-	_	_	-	-	-	0.769

Здесь оптимальный порядок с n=4.

Таблица 4: Результаты для μ_l по пересечению с каталогом HSOY

	1аолица 4: Результаты для μ_l по пересечению с каталогом HSO γ									
\overline{n}	1	2	3	4	5	6	7	8	9	
$\overline{N_{\mathrm{end}}}$	28378	28377	28378	28378	28379	28379	28378	28378	28377	
R_0	6.718*	8.185	8.792	8.694	8.732	8.726	8.590	8.744	8.733	
	$^{+0.067}_{-0.067}$	$^{+0.462}_{-0.387}$	$^{+0.286}_{-0.444}$	+0.337 -0.398	$^{+0.303}_{-0.409}$	$+0.312 \\ -0.401$	$^{+0.404}_{-0.438}$	$^{+0.307}_{-0.437}$	$+0.339 \\ -0.358$	
σ_{μ_l}	22.956	22.884	22.879	22.874	22.881	22.881	22.875	22.875	22.868	
u_{\odot}	11.563	11.808	11.679	11.658	11.636	11.65	11.644	11.622	11.564	
$\sigma_{u_{\odot}}$	0.484	0.492	0.49	0.493	0.484	0.487	0.487	0.497	0.498	
v_{\odot}	20.519	21.075	19.982	19.934	19.75	19.816	19.957	19.79	19.805	
$\sigma_{v_{\odot}}$	0.462	0.429	0.494	0.498	0.522	0.576	0.572	0.601	0.608	
ω_0	29.275	28.786	28.842	28.908	28.911	28.908	28.902	28.905	28.889	
σ_{ω_0}	0.346	0.376	0.369	0.373	0.364	0.363	0.366	0.371	0.368	
\overline{A}	15.953	13.636	13.988	14.447	14.456	14.395	14.495	14.604	14.705	
$\sigma(A)$	0.234	0.295	0.307	0.333	0.325	0.364	0.378	0.420	0.442	
$ heta_2$	_	-3.161	-4.465	-3.917	-4.185	-4.152	-3.642	-3.959	-3.627	
$\sigma(\theta_2)$	_	0.209	0.321	0.359	0.463	0.489	0.685	0.693	0.748	
$ heta_3$	_	_	1.075	1.643	1.785	1.598	1.729	2.329	2.652	
$\sigma(\theta_3)$	_	-	0.203	0.252	0.298	0.585	0.668	0.925	1.117	
$ heta_4$	_	_	_	-0.527	-0.398	-0.337	-1.051	-0.870	-1.692	
$\sigma(\theta_4)$	_	-	-	0.148	0.235	0.266	0.743	0.774	1.196	
$ heta_5$	_	_	_	_	-0.096	-0.005	0.163	-0.639	-0.744	
$\sigma(\theta_5)$	_	_	_	_	0.126	0.292	0.337	0.990	1.157	
$ heta_6$	_	_	_	_	_	-0.048	0.327	0.472	1.466	
$\sigma(\theta_6)$	_	_	_	_	_	0.131	0.435	0.448	1.492	
θ_7	_	_	_	_	_	_	-0.183	0.278	0.035	
$\sigma(\theta_7)$	_	-	-	_	-	-	0.189	0.634	0.633	
θ_8	_	-	-	_	_	-	-	-0.225	-0.792	
$\sigma(\theta_8)$	_	_	_	_	_	_	_	0.286	1.051	
$\dot{ heta_9}$	_	-	-	_	_	-	-	-	0.303	
$\sigma(\theta_9)$	_	_	_	_	_	_	_	_	0.470	
	•				•					

Здесь также оптимален порядок с n=4. Видно, что значения A по лучевым скоростям лучше согласованы с результатами по пересечению с каталогом HSOY.

Аналогичного отдельного решения для системы (19) получить не удалось, так как профиль целевой функции в этом случае не имеет минимума на разумных R_0 . В целом система (19) нужна для уточнения компоненты w_{\odot} остаточного движения Солнца при уже заданном R_0 .

2.4. Трехкомпонентное моделирование

2.4.1. Результаты по уравнению без природной дисперсии

Вариант решения 1.2.4. Порядок разложения n<10. Итеративно применяется 1.4 для всех компонент — модельных лучевых скоростей и собственных движений. После этого производится оценка ошибок параметров с помощью 2.1.2 по финальной выборке размера $N_{\rm end}$. Результаты приведены в таблице.

Таблица 5: APOGEE-RC с собственными движениями из UCAC-4.

	таолиі	<u> </u>			гвенными				
n	1	2	3	4	5	6	7	8	9
$N_{ m end}$	26477	26481	26472	26473	26473	26475	26475	26475	26475
R_0	8.144	7.514	7.578	7.682	7.580	7.581	7.555	7.543	7.529
	$^{+0.043}_{-0.044}$	$+0.023 \\ -0.023$	$+0.034 \\ -0.032$	$+0.047 \\ -0.039$	$^{+0.037}_{-0.034}$	$+0.039 \\ -0.035$	$^{+0.033}_{-0.031}$	$^{+0.031}_{-0.029}$	$+0.029 \\ -0.026$
σ_{V_r}	32.543	32.578	32.508	32.517	32.502	32.512	32.508	32.499	32.511
σ_{μ_b}	27.307	27.300	27.259	27.260	27.267	27.276	27.273	27.273	27.272
σ_{μ_l}	22.956	22.884	22.879	22.874	22.881	22.881	22.875	22.875	22.868
σ_{Θ}	71.097	71.274	71.188	70.901	70.870	70.887	70.855	70.864	70.833
$\overline{u_{\odot}}$	12.658	12.542	12.695	12.715	12.712	12.721	12.737	12.737	12.736
$\sigma_{u_{\odot}}$	0.245	0.236	0.244	0.246	0.245	0.255	0.249	0.257	0.241
v_{\odot}	25.794	24.875	23.944	24.122	23.896	23.899	24.08	24.198	24.124
$\sigma_{v_{\odot}}$	0.266	0.295	0.322	0.326	0.352	0.328	0.346	0.339	0.345
w_{\odot}	6.618	6.618	6.600	6.615	6.613	6.610	6.604	6.605	6.611
$\sigma_{w_{\odot}}$	0.265	0.258	0.265	0.264	0.268	0.259	0.273	0.272	0.272
ω_0	27.510	27.803	28.142	28.114	28.194	28.193	28.205	28.177	28.162
σ_{ω_0}	0.247	0.251	0.249	0.247	0.260	0.254	0.260	0.257	0.246
\overline{A}	12.969	12.641	13.371	13.636	13.732	13.741	13.917	13.771	13.503
$\sigma(A)$	0.126	0.141	0.158	0.198	0.200	0.216	0.240	0.239	0.256
$ heta_2$	-	-1.144	-2.135	-1.650	-2.062	-2.090	-1.276	-0.925	-1.432
$\sigma(\theta_2)$	_	0.147	0.191	0.228	0.288	0.307	0.464	0.493	0.572
θ_3	-	-	1.213	1.580	1.867	1.931	2.167	1.396	0.176
$\sigma(\theta_3)$	_	-	0.124	0.190	0.219	0.344	0.358	0.549	0.702
$ heta_4$	_	_	-	-0.372	-0.131	-0.146	-1.350	-1.660	-0.058
$\sigma(\theta_4)$	_	=	-	0.116	0.164	0.227	0.528	0.558	0.913
$ heta_5$	-	-	-	_	-0.202	-0.232	0.027	1.158	2.614
$\sigma(\theta_5)$	_	_	-	_	0.097	0.175	0.210	0.683	0.836
$ heta_6$	_	-	-	_	_	0.015	0.676	0.557	-2.287
$\sigma(\theta_6)$	_	-	-	_	_	0.099	0.284	0.295	1.148
$ heta_7$	_	-	-	_	_	-	-0.331	-1.047	-1.254
$\sigma(\theta_7)$	_	-	-	_	_	-	0.135	0.444	0.475
$ heta_8$	_	_	-	_	_	_	-	0.336	2.521
$\sigma(\theta_8)$	_	-	-	_	_	-	-	0.196	0.843
$ heta_9$	_	_	-	_	_	-	-	_	-0.965
$\sigma(\theta_9)$	_	-	-	_	_	-	-	-	0.372

Оптимален 4-й порядок. Приводится соответствующая кривая вращения.

	Таблица 6: APOGEE-RC с собственными движениями из HSOY.								
n	1	2	3	4	5	6	7	8	9
$N_{ m end}$	27954	27972	27968	27967	27967	27967	27968	27970	27972
R_0	7.516	6.816	6.845	6.854	6.849	$\boldsymbol{6.85}$	6.841	6.836	$\boldsymbol{6.828}$
	$^{+0.043}_{-0.044}$	$+0.023 \\ -0.023$	$^{+0.034}_{-0.032}$	$^{+0.047}_{-0.039}$	$^{+0.037}_{-0.034}$	$+0.039 \\ -0.035$	$^{+0.033}_{-0.031}$	$^{+0.031}_{-0.029}$	$+0.029 \\ -0.026$
σ_{V_r}	32.402	32.454	32.378	32.355	32.556	32.562	32.352	32.362	32.375
σ_{μ_b}	27.307	27.300	27.259	27.260	27.267	27.276	27.273	27.273	27.272
σ_{μ_l}	22.580	22.523	22.514	22.509	22.496	22.499	22.503	22.493	22.496
σ_{Θ}	53.454	52.836	53.124	52.896	52.743	52.736	52.772	52.793	52.773
u_{\odot}	12.373	12.14	12.32	12.322	12.324	12.322	12.332	12.308	12.309
$\sigma_{u_{\odot}}$	0.217	0.214	0.223	0.229	0.23	0.227	0.235	0.219	0.213
v_{\odot}	26.731	25.036	24.163	24.244	24.082	24.088	24.313	24.455	24.454
$\sigma_{v_{\odot}}$	0.250	0.257	0.280	0.273	0.278	0.307	0.289	0.309	0.320
w_{\odot}	8.371	8.331	8.323	8.316	8.319	8.321	8.315	8.337	8.345
$\sigma_{w_{\odot}}$	0.219	0.220	0.210	0.222	0.215	0.217	0.218	0.215	0.213
ω_0	27.767	28.344	28.685	28.689	28.729	28.72	28.714	28.683	28.656
σ_{ω_0}	0.201	0.205	0.193	0.212	0.215	0.210	0.207	0.204	0.209
A	13.741	12.998	13.676	13.87	13.923	13.869	14.096	13.977	13.555
$\sigma(A)$	0.114	0.12	0.137	0.172	0.170	0.191	0.186	0.215	0.243
$ heta_2$	_	-2.31	-3.196	-2.890	-3.168	-3.200	-2.262	-1.819	-2.148
$\sigma(\theta_2)$	_	0.127	0.154	0.194	0.253	0.275	0.382	0.462	0.498
θ_3	_	_	1.055	1.318	1.506	1.384	1.749	1.062	-1.099
$\sigma(\theta_3)$	_	_	0.115	0.161	0.194	0.298	0.317	0.523	0.700
$ heta_4$	-	_	-	-0.258	-0.090	-0.028	-1.434	-1.937	-0.207
$\sigma(heta_4)$	_	-	-	0.104	0.158	0.194	0.446	0.556	0.773
$ heta_5$	_	_	-	-	-0.138	-0.070	0.140	1.296	4.468
$\sigma(\theta_5)$	-	-	-	-	0.092	0.168	0.184	0.707	0.937
$ heta_6$	-	-	-	-	-	-0.045	0.793	0.814	-3.372
$\sigma(\theta_6)$	-	-	-	-	-	0.089	0.266	0.279	1.090
$ heta_7$	-	-	-	-	-	-	-0.397	-1.222	-2.415
$\sigma(\theta_7)$	-	-	-	-	-	-	0.121	0.504	0.557
$ heta_8$	_	-	-	-	-	-	-	0.361	4.226
$\sigma(\theta_8)$	_	-	-	-	-	-	-	0.215	0.949
$ heta_9$	_	-	-	-	-	-	-	-	-1.571
$\sigma(\theta_9)$	_	=	=	=	=	=	=	=	0.390

2.4.2. Результаты по уравнению с природной дисперсией

Вариант решения 1.2.5. Порядок разложения n < 10. Итеративно применяется 1.4 для всех компонент – модельных лучевых скоростей и собственных движений. После этого производится оценка ошибок параметров с помощью 2.1.2 по финальной выборке размера $N_{\rm end}$. Результаты приведены в таблице.

	Таблиі	ца 7: АР	OGEE-R	С с собс	твенным	ги лвиже	ениями І	JCAC-4.	
\overline{n}	1	2	3	$\frac{3}{4}$	5	6	7	8	9
$N_{ m end}$	26504	26507	26502	26504	26504	26506	26506	26505	26507
R_0	8.689	8.048	7.907	8.342	7.879	7.886	7.897	7.853	8.008
	$+0.191 \\ -0.314$	$+0.091 \\ -0.079$	$+0.156 \\ -0.110$	$^{+0.112}_{-0.114}$	$^{+0.119}_{-0.087}$	$+0.100 \\ -0.079$	$+0.102 \\ -0.082$	$+0.095 \\ -0.074$	$+0.144 \\ -0.119$
χ^2	79506	79514	79498	79503	79502	79507	79506	79502	79507
$N_{ m free}$	79506	79514	79498	79503	79502	79507	79506	79502	79507
σ_0	21.335	21.355	21.313	21.312	21.301	21.306	21.304	21.297	21.308
σ_Θ	71.134	71.403	71.603	71.223	71.327	71.342	71.343	71.301	71.313
u_{\odot}	12.376	12.272	12.542	12.593	12.629	12.651	12.652	12.657	12.636
$\sigma_{u_{\odot}}$	0.188	0.182	0.183	0.180	0.181	0.184	0.187	0.192	0.186
v_{\odot}	30.404	29.438	28.207	28.956	27.982	28.107	28.187	28.055	28.014
$\sigma_{v_{\odot}}$	0.251	0.274	0.304	0.309	0.319	0.317	0.375	0.318	0.350
w_{\odot}	5.650	5.752	6.053	6.064	6.268	6.267	6.254	6.328	6.316
$\sigma_{w_{\odot}}$	0.365	0.348	0.356	0.358	0.356	0.349	0.356	0.367	0.386
ω_0	26.690	27.184	27.396	27.007	27.335	27.305	27.293	27.333	27.227
σ_{ω_0}	0.284	0.291	0.294	0.306	0.310	0.297	0.311	0.306	0.289
A	12.490	12.382	13.477	13.896	14.206	14.493	14.500	14.726	14.372
$\sigma(A)$	0.100	0.098	0.121	0.143	0.147	0.166	0.158	0.188	0.198
$ heta_2$	_	-0.749	-1.851	-0.893	-2.079	-1.724	-1.524	-1.763	-2.574
$\sigma(\theta_2)$	-	0.120	0.147	0.198	0.237	0.231	0.361	0.368	0.447
θ_3	-	=	1.541	2.212	2.931	3.554	3.540	4.420	3.320
$\sigma(\theta_3)$	-	=	0.097	0.133	0.166	0.237	0.258	0.456	0.465
$ heta_4$	-	=	=	-0.622	0.012	-0.468	-0.726	-0.636	1.391
$\sigma(\theta_4)$	_	-	-	0.083	0.113	0.165	0.342	0.363	0.681
$ heta_5$	_	-	-	-	-0.503	-0.800	-0.705	-1.796	-0.759
$\sigma(\theta_5)$	_	-	-	-	0.075	0.112	0.163	0.515	0.453
$ heta_6$	_	-	-	-	-	0.255	0.387	0.644	-2.336
$\sigma(\theta_6)$	_	-	-	-	-	0.076	0.169	0.207	0.796
$ heta_7$	-	-	-	-	-	-	-0.078	0.529	0.710
$\sigma(\theta_7)$	_	-	-	-	-	-	0.088	0.292	0.254
θ_8	-	-	-	-	-	-	-	-0.313	1.682
$\sigma(\theta_8)$	_	-	-	-	-	-	-	0.143	0.510
θ_9	_	-	-	-	-	-	-	-	-0.942
$\sigma(\theta_9)$	-	-	-	-	-	_	-	-	0.243

	Таблица 8: APOGEE-RC с собственными движениями HSOY.									
n	1	2	3	4	5	6	7	8	9	
$N_{ m end}$	27995	28007	28007	28006	28004	28004	28004	28005	28007	
R_0	8.509	7.520	7.548	7.458	7.483	7.539	7.540	7.529	7.831	
	$+0.194 \\ -0.155$	$^{+0.038}_{-0.040}$	$^{+0.066}_{-0.089}$	$^{+0.055}_{-0.050}$	$^{+0.113}_{-0.092}$	$^{+0.082}_{-0.117}$	$^{+0.053}_{-0.067}$	$^{+0.031}_{-0.029}*$	$^{+0.029}_{-0.026} *$	
χ^2	83979	84014	84013	84009	84002	84001	84000	84002	84007	
$N_{ m free}$	83979	84014	84013	84009	84002	84001	84000	84002	84007	
σ_0	20.984	21.013	20.983	20.963	20.959	20.961	20.955	20.959	20.972	
σ_{Θ}	53.154	53.268	53.873	53.350	53.323	53.377	53.281	53.283	53.345	
u_{\odot}	12.410	12.227	12.473	12.565	12.575	12.583	12.604	12.607	12.594	
$\sigma_{u_{\odot}}$	0.181	0.180	0.181	0.174	0.177	0.181	0.181	0.175	0.170	
v_{\odot}	30.372	28.257	27.145	27.452	27.204	27.257	27.641	27.545	27.800	
$\sigma_{v_{\odot}}$	0.232	0.256	0.297	0.283	0.306	0.305	0.295	0.315	0.308	
w_{\odot}	7.148	7.391	7.659	7.709	7.774	7.816	7.768	7.818	7.768	
$\sigma_{w_{\odot}}$	0.346	0.339	0.338	0.354	0.345	0.331	0.367	0.349	0.351	
ω_0	25.838	27.008	26.929	26.847	26.839	26.790	26.774	26.798	26.562	
σ_{ω_0}	0.226	0.230	0.249	0.231	0.251	0.244	0.241	0.235	0.233	
A	12.825	12.646	13.63	14.328	14.419	14.652	14.82	14.995	14.504	
$\sigma(A)$	0.087	0.087	0.110	0.129	0.132	0.152	0.156	0.179	0.200	
θ_2	-	-1.489	-2.419	-1.474	-1.975	-1.894	-0.806	-1.117	-1.568	
$\sigma(\theta_2)$	-	0.102	0.130	0.158	0.198	0.219	0.310	0.347	0.410	
θ_3	-	-	1.319	2.163	2.478	3.086	3.187	3.943	2.312	
$\sigma(\theta_3)$	-	=	0.081	0.124	0.144	0.225	0.235	0.390	0.455	
$ heta_4$	-	-	-	-0.740	-0.413	-0.634	-1.899	-1.654	0.162	
$\sigma(\theta_4)$	-	=	-	0.072	0.104	0.133	0.313	0.347	0.600	
θ_5	-	=	-	=	-0.240	-0.578	-0.287	-1.288	0.460	
$\sigma(heta_5)$	_	-	-	-	0.057	0.113	0.128	0.452	0.467	
$ heta_6$	_	-	-	-	-	0.190	0.862	0.976	-2.131	
$\sigma(\theta_6)$	_	-	-	-	-	0.058	0.167	0.172	0.691	
θ_7	-	-	-	-	-	-	-0.330	0.277	0.089	
$\sigma(\theta_7)$	_	-	-	-	-	-	0.074	0.282	0.264	
θ_8	_	-	-	-	-	_	_	-0.282	1.902	
$\sigma(\theta_8)$	-	-	-	-	-	_	-	0.123	0.440	
$ heta_9$	_	-	-	-	-	-	-	-	-0.947	
$\sigma(heta_9)$	_	-	-	-	-	-	-	-	0.206	

2.4.3. Обобщение результатов

Заключение

Список литературы

- [1] http://data.sdss3.org/datamodel/files/APOGEE_RC/cat/apogee-rc-DR12.html
- [2] http://data.sdss3.org/sas/dr12/apogee/vac/apogee-rc/cat/apogee-rc-DR12.fits
- [3] Куликовский П.Г. // Звездная астрономия. М.: Наука, 1985. 272 с.
- [4] Acker A. // Astron. and Astrophys. Suppl. Ser. 1978. V. 33. P. 367.
- [5] Bovy and etc. http://adsabs.harvard.edu/abs/2014arXiv1405.1032B
- [6] Агекян Т. А. Основы теории ошибок для астрономов и физиков. Москва: Наука, 1968. 148 с
- [7] Shapley H. // Astrophys. J. 1918. V. 48. P. 154.
- [8] Никифоров И.И. «Пространственно-кинематическое и динамическое моделирование Галактики» (диссертация на соискание ученой степени кандидата физикоматематических наук), 2003 г.
- [9] Nikiforov I.I. Exclusion of measurements with excessive residuals (blunders) in estimating model parameters. AApTr. 2012 V. 27 P. 537
- [10] Валеев С.Г. // Тестирование мер в задачах оптимизации, 2001.
- [11] *Nikiforov I.I., Bobrova (Mel'nichnikova) A.Yu.* // Кинематика и физика неб. тел. Приложение. 1999. №2. С. 29.
- [12] Van de Steene G.C., Zijlstra A.A. // Astron. and Astrophys. 1995. V. 293. P. 541.
- [13] Fish M., Blitz L., Stark A.A. // Astrophys. J. 1989. V. 342. P. 272
- [14] Fish M., Tremaine S. // Annual Rev. Astron. and Astrophys. 1991. V. 29. P. 409.
- [15] Reid M. J., Menten K. M., Zheng X. W. et al. // ApJ, 2009. V. 700, P. 137
- [16] Gromov A. O., Nikiforov I. I., Ossipkov L. P. // Baltic Astronomy, 2016. V. 25 P. 59
- [17] Chini R., Wink J.E. // Astron. and Astrophys. 1984. V. 139. P. L5.
- [18] Lepine J.R.D., Amaral L.H. // Mem. Soc. Astron. Ital. 1995. V. 66. P. 649.
- [19] Merrifield M.R. // Back to the Galaxy. Proc. 3. October Astrophysics Conference in Maryland, College Park, USA / EDS Holt S.S., Verter F. AIP Conf. Proc. No. 278, 1993. P. 437.
- [20] Ситник Т.Г., Мельник А.М. // Письма в "Астрон. журн." 1999, Т. 25. С. 194.
- [21] Mishurov Yu.N., Zenina I.A., Dambis A.K., Mel'nik A.M., Rastorguev A.S. // Astron. and Astrophys. 1997. V. 323. P. 775
- [22] Nikiforov I.I., Shekhovtsova T.V. // Stellar Dynamics: from Classic to Modern. Proc. of the International Conference held in Saint Petersburg, Russia, August 21-27, 2000, in honour of 100th birthday of Professor K. F. Ogorodnikov (1900-1985) / Eds Ossipkov L.P., Nikiforov I.I., СПб: НИИХ СПбГУ, 2001. P. 88.

- [23] Rohlfs K., Chini R., Wink J.E., Boehme R. // Astron. and Astrophys. 1986. V. 158. P. 181.
- [24] Kerr F.J., Lynden-Bell D. // Monthly Noties Roy. Astron. Soc. 1986. V. 221. P. 1023.
- [25] Fridman A.M., Khoruzhii O.V., Lyakhovich V.V., Avedisova V.S. // Unsolved Problems of the Milky Way. IAU Symp. №169 / Eds Blitz L., Teuben P.J., Dordrecht: Kluwer, 1996. P. 597.
- [26] Paczynski B., Stanek K.Z. // Astrophys. J. 1998. V. 494. P. L219.
- [27] Stanek K.Z., Kaluzny J., Wysocka A., Thompson I. // Acta Astronomica. 2000. V. 50. P. 191.
- [28] Локтин А.В. // Астрон. журн. 1979. Т. 56. С. 1188.
- [29] Balona L.A., Feast M.W. // Monthly Noties Roy. Astron. Soc. 1974. V. 167. P. 621.
- [30] Blitz L., Brand J. // The outer Galaxy / Eds Blitz L., Lockman F.J. Berlin: Springer-Verlag, 1988. P. 73.
- [31] Gwinn C.R., Moran J.M., Reid M.J. // Astrophys. J. 1992. V. 393. P. 149.
- [32] Balona L.A., Feast M.W. // Monthly Noties Roy. Astron. Soc. 1974. V. 167. P. 621.
- [33] Shapiro S.S., Wilk M.B. // An analysis of variance test for normality. Biometrika, 1965, 52 №3. P.591-611.