1. Динамическое распределение памяти...

Определение 1.13. Распределение памяти до начала процесса вычислений называется *статическим*. Распределение памяти в ходе выполнения программы называется *динамическим* распределением памяти.

располагаются 3 стека

Определение 1.14. Процедура динамического перераспределения памяти путем переписи части хранимых значений в другую область памяти называется перепаковкой памяти или просто перепаковкой.

1. Динамическое распределение памяти

- ☑ Перепаковка обеспечивает эффективное использование одного ресурса ЭВМ (памяти) за счет другого ресурса (времени).
- ☑ Для выполнения перепаковки требуется разработка управляющих программ.
- Определение 1.15. Выполнение функций анализа свободной памяти, планирование размещения структур, переписывание структур называется управление памятью. Комплекс программ, реализующих управление памятью называется системой управления памятью.
- ☑ Необходимость перепаковки обуславливается принятым способом реализации отношений следования.

☑ Гипотезы о поведении структур служат основой для принятия решений о распределении памяти

Формирование гипотез происходит в результате теоретического анализа модели решаемой задачи или может быть выполнено на основе статистических данных, получаемых в ходе вычислительных экспериментов с проектируемой программной системой

Типотеза 1: Стеки используются с одинаковой интенсивностью

⇒ память разделяется между стеками поровну **Гипотеза 2**: Интенсивность использования стеков различается. Конструктивное предположение о характере такой неравномерности может состоять в гипотезе *сохранения локальных тенденций роста* стеков, т.е. в каждый момент времени использование стеков на последующих шагах вычислений характеризуется точно таким же поведением, что и на предшествующих этапах обработки данных.

- - показатель роста стека

$$\delta_i = \max(0, DataCount'_i - DataCount_i)$$

• суммарный показатель роста

$$\Delta = \Sigma \, \delta_i, \, 0 \le i \le N$$

• правило распределение памяти для стеков в соответствии с их показателями роста

$$Li'_{k}=Li'_{k-1}+(Hi_{k-1}-Li_{k-1}+1)+F*(\delta_{i}/\Delta), 1 \le k \le N$$

- Как изменить программы системы для применения нового варианта перераспределения памяти ?
 Достаточно переопределить метод планирования памяти для
 - перепаковки SetStackLocation (процедуру оценки показателей роста целесообразно выделить в отдельный метод SetStackRate)

Пусть есть θ, 0≤θ≤1, вероятность выполнимости гипотезы сохранения локальных тенденций роста. Тогда

$$Li'_{k} = Li'_{k-1} + (Hi_{k-1} - Li_{k-1} + 1) + (1 - \theta) *(F/N) + \theta *F *(\delta_{i} / \Delta), \ 1 \le k \le N$$

Распределение памяти поровну между стеками Распределение памяти пропорционально показателям роста

- Какая дополнительная доработка системы требуется для применения новой схемы распределения памяти?

- 🦠 Адаптивная оценка параметров модели...
- Пусть σ есть количество выполненных перепаковок памяти за некоторый отрезок времени Δt. Величина σ зависит от значения θ и для повышения эффективности функционирования системы следует определить такое θ, чтобы количество перепаковок было минимальным, т.е.

$$\min \sigma(\theta)$$

выполним оценку величины о на последовательных друг за другом отрезках времени Δt

перепаковок: $\Delta \, \sigma = \sigma' - \sigma$

и определим величину изменения количества выполненных

— примем следующее следующее правило корректировки значения θ $\theta' = \begin{cases} \theta + \Delta \theta, \ \Delta \sigma \leq 0, \\ \theta - \Delta \theta, \ \Delta \sigma > 0, \end{cases}$

где Δθ есть параметр схемы адаптации

🤝 Адаптивная оценка параметров модели...

☑ Для включения в разработанную программную системы схемы адаптации по прежнему достаточно переопределить метод планирования памяти перепаковки SetStackLocation (!)

Контрольный пример: программа, приложение

Результаты вычислительных экспериментов

Гипотеза Одинаковое использование Сохранение тенденций роста Смешанная Адаптация	Итераций 2007 1195 2578 3031	Количество перепаковок 1018 726 1337 1474	Среднее 1, 97 1, 64 1, 92 2, 06	
				θ=0.5
				0=0.3

1. Структура памяти и ее свойства

где N – количество стеков, m – размер памяти

Свойства

- ☑ Li₀=0 условие неподвижности 1 стека
- ☑ Ні_k=Lі_k-1 условие пустоты
- ☑ Ні_k=Lі_{k+1}-1 условие переполнения

Для выполнимости последних двух условий для всех стеков введем фиктивный стек N, для которого Li_N =m.

3. Перепаковка - оценка свободной памяти

Выполняется при попытке вставки нового значения в стек s, у которого отсутствует свободная память $F = \Sigma (Hi_k-Li_{k-1}-1), \ 1 \le k < N$

- ✓ F =0 свободной памяти нет
 ✓ F =1 свободен 1 элемент памяти и его следует
- F = I -свободен I элемент памяти и его следует отдать стеку s

Для гарантированного выделения свободной памяти стеку s при наличии только одного свободного элемента памяти (случай 2), выполним

- -Hi_s=Hi_s+1 перед началом процедуры оценки свободной памяти
- -Hi_s=Hi_s-1-после завершения перепаковки

5.3. Реализация – перепаковка...

В соответствии с последовательностью действий, необходимых для выполнения перепаковки, определим следующий набор методов для динамического перераспределения памяти:

- StackRelocation основный метод перепаковки;
- GetFreeMemSize оценка свободной памяти;
- SetStackLocation планирование нового расположения стеков (после перепаковки)
- GetRelocationCount получение количества перепаковок за все время работы системы

