Bartosz Antczak March 22, 2017

Problem Set 2.8

- 3. Write an unambiguous expression generating the the following binary strings:
 - (a) $\{0,1\}$ -strings with no substrings of 0s of length 3 and no substrings of 1s of length 2

Solution

$$S = \{\varepsilon, 1\} \quad (\{0, 00\}\{1\})^* \quad \{\varepsilon, 0, 00\}$$

(b) $\{0,1\}$ -strings with no 0 blocks of length 3 and no 1 blocks of length 2

Solution

$$S = \{\varepsilon, 1, 111, 1111, \cdots\} \quad (\{0, 00, 0000, \cdots\} \{1, 111, 1111\})^* \quad \{\varepsilon, 0, 00, 0000, \cdots\}$$

(c) The set of binary string in which 011 doesn't occur

Solution (using more star notation in this one)

$$S = \{1\}^* \quad (\{0\}\{0\}^*\{1\})^* \quad \{0\}^*$$

- (d) Skipped this one because Prof. Postle thought it was too hard.
- (e) The set of binary strings where the 0 blocks have even length and the 1 blocks have odd length

Solution

Other than maybe the first and last pieces, if we break up our strings into pieces at the end of each 0 block we get pieces of the form: $\{1,111,11111,\cdots\}\{00,0000,\cdots\}$:

$$S = \{\varepsilon, 00, 0000, \cdots\} \quad (\{1, 111, 11111, \cdots\} \{00, 0000, \cdots\})^* \quad \{\varepsilon, 1, 111, 11111, \cdots\}$$

Simplified (by using more star notation), we get:

$$\{00\}^* \quad (\{1\}\{11\}^*\{00\}^*)^* \quad \{\varepsilon, 1, 111, 11111, \cdots\}$$

- (f) Set of all binary strings where
 - each odd length block of 0s is followed by a non-empty even length block of 1s, and
 - each even length block of 0s is followed by an odd length block of 1s

Solution

Keep in mind we don't consider blocks of length 0, because they're not blocks. So it's safe to assume that all of these blocks are non-empty.

We'll decompose our strings after blocks of 1s. With perhaps the exception of the first and last pieces, our pieces will look like:

i)
$$\{0,000,00000,\dots\}\{11,1111,111111,\dots\} = \{0\}\{00\}^*\{11\}\{11\}^*$$

ii)
$$\{00,0000,\dots\}\{1,111,11111,\dots\} = \{00\}\{00\}^*\{1\}\{11\}^*$$

Our expression will look like:

$$S = \{1\}^* \quad (\{0\}\{00\}^*\{11\}\{11\}^* \cup \{1\}\{11\}^*\{00\}\{00\}^*)^*$$

5. (a) Show that the generating series by length (i.e., the weight function is the length of the string) for binary strings in which every block of zeros has length ≥ 2 and every block of ones has length ≥ 3 is

$$\frac{(1-x-x^3)(1-x+x^2)}{1-2x+x^2-x^5}$$

Solution

Our expression for this set of binary strings is:

$$S = \{\varepsilon, 111, 1111, \cdots\} \quad (\{00\}\{0\}^*\{111\}\{1\}^*)^*\{\varepsilon, 00, 0000, \cdots\}$$

We define the generating series of each part of the expression (begin, mid, end):

$$\Phi_{begin}(x) = 1 + x^3 + x^4 + \dots = \frac{1}{1 - x} - x - x^2$$

$$\Phi_{end}(x) = \left(\frac{1}{1 - x}\right) x^2 \left(\frac{1}{1 - x}\right) x^3 = y = \frac{1}{1 - y} \frac{x^5}{(1 - x)^2}$$

$$\Phi_{end}(x) = 1 + x^2 + x^3 + \dots = \frac{1}{1 - x} - x$$