

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

LABORATORIUM NR: 3 DATA: 18.05.2021

TEMAT: Realizacja układów kombinacyjnych z wykorzystaniem cyfrowych

elementów małej skali integracji.

IMIĘ I NAZWISKO: Rafał Kuźmiczuk

Zadanie 1

Zaprojektować układ realizujący przy pomocy dostępnych bramek logicznych funkcję: $y = \sum [0,3,5,12,15; (1,2,4,7,8,11,13,14)].$

Tabela 1. Tablica prawdy

L.P.	Α	В	С	D	Υ
0	0	0	0	0	1
1	0	0	0	1	-
2	0	0	1	0	-
3	0	0	1	1	1
4	0	1	0	0	-
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	-
8	1	0	0	0	-
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	-
12	1	1	0	0	1
13	1	1	0	1	-
14	1	1	1	0	-
15	1	1	1	1	1

Tabela 2. Tablica Karnaugh dla postaci sumacyjnej

		c, d			
		00	01	11	10
a, b	00	1	ı	1	ı
	01	-	1	-	0
	11	1	-	1	
	10	-	0	-	0

$$f(A, B, C, D) = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C} + A \cdot B$$

Tabela 3. Tablica Karnaugh dla postaci iloczynowej

		c, d			
		00	01	11	10
a, b	00	1	-	1	-
	01	-	1	-	0
	11	1	-	1	-
	10	-	0	-	0

$$f(A, B, C, D) = (\overline{A} + B)(\overline{C} + D)$$

a) postać sumacyjną na bramkach NAND

Obrazek 1. Wynik działania układu dla wejścia z L.P. 0

Obrazek 2. Wynik działania układu dla wejścia z L.P. 3

Obrazek 3. Wynik działania układu dla wejścia z L.P. 5

Obrazek 4. Wynik działania układu dla wejścia z L.P. 6

Obrazek 5. Wynik działania układu dla wejścia z L.P. 9

Obrazek 6. Wynik działania układu dla wejścia z L.P. 10

Obrazek 7. Wynik działania układu dla wejścia z L.P. 12

Obrazek 8. Wynik działania układu dla wejścia z L.P. 15

b) postać iloczynową na bramkach NOR

Obrazek 9. Wynik działania układu dla wejścia z L.P. 0

Obrazek 10. Wynik działania układu dla wejścia z L.P. 3

Obrazek 11. Wynik działania układu dla wejścia z L.P. 5

Obrazek 12. Wynik działania układu dla wejścia z L.P. 6

Obrazek 13. Wynik działania układu dla wejścia z L.P. 9

Obrazek 14 Wynik działania układu dla wejścia z L.P. 10

Obrazek 15. Wynik działania układu dla wejścia z L.P. 12

Obrazek 16. Wynik działania układu dla wejścia z L.P. 15

c) postać iloczynową na bramkach NAND.

Obrazek 17. Wynik działania układu dla wejścia z L.P. 0

Obrazek 18. Wynik działania układu dla wejścia z L.P. 3

Obrazek 19. Wynik działania układu dla wejścia z L.P. 5

Obrazek 20. Wynik działania układu dla wejścia z L.P. 6

Obrazek 21. Wynik działania układu dla wejścia z L.P. 9

Obrazek 22. Wynik działania układu dla wejścia z L.P. 10

Obrazek 23. Wynik działania układu dla wejścia z L.P. 12

Obrazek 24. Wynik działania układu dla wejścia z L.P. 15

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

Zadanie 2

Zadanie 1: Zaprojektować układ realizujący przy pomocy dostępnych bramek logicznych funkcję: $y = \sum [0,2,4,9,11,13,16,17,20,21,27,31; (3,6,10,15,18,22,25,28,29)].$

Tabela 4. Tablica prawdy

L.P.	Α	В	С	D	E	Υ
0	0	0	0	0	0	1
1	0	0	0	0	1	0
2	0	0	0	1	0	1
3	0	0	0	1	1	-
4	0	0	1	0	0	1
5	0	0	1	0	1	0
6	0	0	1	1	0	-
7	0	0	1	1	1	0
8	0	1	0	0	0	0
9	0	1	0	0	1	1
10	0	1	0	1	0	-
11	0	1	0	1	1	1
12	0	1	1	0	0	0
13	0	1	1	0	1	1
14	0	1	1	1	0	0
15	0	1	1	1	1	-
16	1	0	0	0	0	1
17	1	0	0	0	1	1
18	1	0	0	1	0	-
19	1	0	0	1	1	0
20	1	0	1	0	0	1
21	1	0	1	0	1	1
22	1	0	1	1	0	-
23	1	0	1	1	1	0
24	1	1	0	0	0	0
25	1	1	0	0	1	-
26	1	1	0	1	0	0
27	1	1	0	1	1	1
28	1	1	1	0	0	-
29	1	1	1	0	1	-
30	1	1	1	1	0	0
31	1	1	1	1	1	1

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

Tabela 5. Tablica Karnaugh dla postaci sumacyjnej

		c,d,e							
		000	001	011	010	110	111	101	100
a,b	00	1	0	-	1	-	0	0	1
	01	0	1	1	-	0	-	1	0
	11	0	ľ	_1	0	0	1		-
	10	1	1	0	-	-	0	1	1

$$f(A, B, C, D, E) = \overline{B} \cdot \overline{E} + B \cdot E + A \cdot \overline{B} \cdot \overline{D}$$

Tabela 6. Tablica Karnaugh dla postaci iloczynowej

		c,d,e							
		000	001	011	010	110	111	101	100
a,b	00	1	0		1	-	0	0	1
	01	0	1	1	-	0	-	1	0
	11	0	-	1	0	0	1	-	-
	10	1	1	0	-	-	0	1	1

$$f(A,B,C,D,E) = (A + B + \overline{E})(\overline{B} + E)(B + \overline{D} + \overline{E})$$

Ze względu na dużą liczbę kombinacji zrobiłem zrzuty ekranu tylko 3 kombinacji do każdego podpunktu, ale sprawdziłem każdą kombinację i każda działa poprawnie.

a) postać sumacyjną na bramkach NAND

Obrazek 25. Wynik działania układu dla wejścia z L.P. 0

Obrazek 26. Wynik działania układu dla wejścia z L.P. 16

Obrazek 27. Wynik działania układu dla wejścia z L.P. 31

b) postać iloczynową na bramkach NOR

Obrazek 28. Wynik działania układu dla wejścia z L.P. 0

Obrazek 29. Wynik działania układu dla wejścia z L.P. 16

Obrazek 30. Wynik działania układu dla wejścia z L.P. 31

c) postać iloczynową na bramkach NAND

Obrazek 31. Wynik działania układu dla wejścia z L.P. 0

Obrazek 32. Wynik działania układu dla wejścia z L.P. 16

Obrazek 33. Wynik działania układu dla wejścia z L.P. 31