Olimpiada Naţională de Matematică 2007 Etapa finală, Piteşti

11 aprilie 2007

CLASA A XII-A, SOLUŢII ŞI BAREMURI

Subiectul 1. a) Dacă $u, v: [0,1] \to \mathbb{R}$ sunt două funcții continue, demonstrați inegalitatea Cauchy

$$\left(\int_{0}^{1} u(x)v(x)dx\right)^{2} \le \left(\int_{0}^{1} (u(x))^{2} dx\right) \left(\int_{0}^{1} (v(x))^{2} dx\right).$$

b) Fie \mathcal{C} mulțimea tuturor funcțiilor derivabile $f:[0,1]\to\mathbb{R}$, cu derivata f' continuă pe [0,1] și f(0)=0, f(1)=1. Determinați

$$\min_{f \in \mathcal{C}} \int_0^1 (1+x^2)^{1/2} \left(f'(x)\right)^2 dx$$

și toate funcțiile $f \in \mathcal{C}$ pentru care este atins acest minimum.

Soluție. a) În mod evident,

$$\int_0^1 (\lambda u(x) - v(x))^2 dx \ge 0,$$

oricare ar fi numărul real λ . Efectuând calculele, rezultă

$$\lambda^{2} \int_{0}^{1} (u(x))^{2} dx - 2\lambda \int_{0}^{1} u(x)v(x)dx + \int_{0}^{1} (v(x))^{2} dx \ge 0,$$

oricare ar fi numărul real λ . Prin urmare, discriminantul acestui trinom de gradul doi este mai mic sau egal cu zero, de unde inegalitatea din enunț (Cauchy-Schwarz). Egalitatea are loc dacă și numai dacă $v(x) = \lambda u(x)$, $0 \le x \le 1$.

b) Aplicând inegalitatea Cauchy-Schwarz obţinem:

$$1 = f(1) - f(0) = \int_0^1 f'(x) dx$$

$$= \int_0^1 (1 + x^2)^{-1/4} \left((1 + x^2)^{1/4} f'(x) \right) dx$$

$$\leq \left(\int_0^1 (1 + x^2)^{-1/2} dx \right)^{1/2} \left(\int_0^1 (1 + x^2)^{1/2} \left(f'(x) \right)^2 dx \right)^{1/2}$$

$$= \left(\ln(1 + \sqrt{2}) \right)^{1/2} \left(\int_0^1 (1 + x^2)^{1/2} \left(f'(x) \right)^2 dx \right)^{1/2}.$$

Prin urmare,

$$\int_0^1 (1+x^2)^{1/2} \left(f'(x)\right)^2 dx \ge \frac{1}{\ln(1+\sqrt{2})},$$

pentru orice $f \in \mathcal{C}$.

Egalitatea are loc dacă și numai dacă $f'(x) = k(1+x^2)^{-1/2}$, deci $f(x) = k \ln(x + \sqrt{1+x^2}) + c$. Întrucât f(0) = 0 și f(1) = 1, rezultă

$$f(x) = \frac{1}{\ln(1+\sqrt{2})} \ln\left(x+\sqrt{1+x^2}\right), \quad 0 \le x \le 1,$$

funcție care aparține mulțimii \mathcal{C} .

...... 3 puncte

Subiectul 2. Fie $f:[0,1]\to (0,\infty)$ o funcție continuă pe [0,1].

a) Arătați că pentru fiecare număr întreg $n \ge 1$ există o unică diviziune, $0=a_0 < a_1 < \cdots < a_n=1$, a intervalului [0,1], astfel încât

$$\int_{a_k}^{a_{k+1}} f(x)dx = \frac{1}{n} \int_0^1 f(x)dx, \quad k = 0, \dots, n-1.$$
 (*)

b) Pentru fiecare număr întreg $n \geq 1$, fie

$$\bar{a}_n = \frac{a_1 + \dots + a_n}{n},$$

unde $0 = a_0 < a_1 < \cdots < a_n = 1$ este diviziunea unică cu proprietatea (*). Arătați că şirul $(\bar{a}_n)_{n\geq 1}$ este convergent şi calculați limita sa.

Soluţie. a) Fie $F:[0,1] \to [0,\infty),$

$$F(x) = \int_0^x f(t)dt.$$

Condiția (*) devine

$$F(a_{k+1}) - F(a_k) = \frac{1}{n}F(1), \quad k = 0, \dots, n-1,$$

sau, prin sumare,

$$F(a_k) = \frac{k}{n}F(1), \quad k = 0, \dots, n.$$
 (**)

Întrucât f ia valori strict pozitive, F este strict crescătoare, deci restricția sa $F:[0,1]\to [0,F(1)]$ este bijectivă. Prin urmare, sistemul (**) are soluția unică

$$a_k = F^{-1}\left(\frac{k}{n}F(1)\right), \quad k = 0, \dots, n.$$

b) Conform celor demonstrate la punctul a), pentru fiecare număr întreg $n \geq 1$ fixat,

$$a_k = F^{-1}\left(\frac{k}{n}F(1)\right), \quad k = 0, \dots, n,$$

deci

$$\bar{a}_n = \frac{1}{n} \sum_{k=1}^n F^{-1} \left(\frac{k}{n} F(1) \right) = \frac{1}{F(1)} \cdot \frac{F(1)}{n} \sum_{k=1}^n F^{-1} \left(\frac{k}{n} F(1) \right).$$

Întrucât

$$\frac{F(1)}{n} \sum_{k=1}^{n} F^{-1} \left(\frac{k}{n} F(1) \right)$$

este o sumă Riemann a funcției $F^{-1}:[0,F(1)]\to [0,1],$ ea este convergentă și limita sa este

$$\int_0^{F(1)} F^{-1}(t)dt = \int_0^1 x f(x)dx.$$

Prin urmare, şirul $(\bar{a}_n)_{n\geq 1}$ converge la

$$\frac{\int_0^1 x f(x) dx}{\int_0^1 f(x) dx}.$$

Remarcă. Așa cum era de așteptat, limita șirului $(\bar{a}_n)_{n\geq 1}$ este abscisa centrului de greutate al domeniului plan mărginit de dreptele de ecuație x=0, x=1, y=0 și graficul funcției y=f(x).

Subiectul 3. Fie $n \in \mathbb{N}^*$. Determinați toate inelele $(A, +, \cdot)$ cu proprietatea: $x^{2^n+1} = 1$, oricare ar fi $x \in A \setminus \{0\}$.

Soluție. Din enunț rezultă că A este un corp de caracteristică 2.

Dacă $A=\{0,1\}$, atunci $A=\mathbb{F}_2$, care îndeplinește condiția pentru orice $n\in\mathbb{N}.$

Dacă nu, atunci pentru orice $x \in A \setminus \{0, 1\}$,

$$(x+1)^{-1} = (x+1)^{2^n} = x^{2^n} + 1 = x^{-1} + 1,$$

de unde, $1 = x^{-1}(x+1) + x + 1$, deci $x^{-1} + x + 1 = 0$ şi prin urmare, $x^2 + x + 1 = 0$.

În continuare, alegem $x \in A \setminus \{0,1\}$ şi $y \in A \setminus \{0,1,x\}$. Dacă $x+y \neq 1$, atunci $(x+y)^2 + x + y + 1 = 0$, de unde xy + yx = 1. Rezultă că $x^2y + xyx = x = xyx + yx^2$, deci $x^2y = yx^2$, de unde (x+1)y = y(x+1), adică xy = yx— fals. Prin urmare, y = 1 + x şi $A = \{0,1,x,1+x\}$, *i.e.* $A = \mathbb{F}_4$.

Pentru ca acest corp să îndeplinească condiția din enunț, trebuie ca 3 să fie un divizor al lui $2^n + 1$, adică n să fie impar.

Subiectul 4. Fie S_n grupul permutărilor mulțimii $\{1, \dots, n\}$, $n \geq 3$, și G un subgrup al său generat de n-2 transpoziții. Arătați că pentru fiecare $i \in \{1, \dots, n\}$ mulțimea $\{\sigma(i) : \sigma \in G\}$ are cel mult n-1 elemente.

Soluție. Prin inducție după n. Pentru $n=3, G=\{\epsilon, \tau\}$, unde ϵ este permutarea identică, iar τ este o transpoziție; în mod evident, fiecare mulțime de forma $\{\sigma(i): \sigma \in G\}$ are cel mult două elemente.

1 punet
Fie $n > 3$. Presupunând afirmaţia adevărată pentru orice $m < n$, arătăm că ea este adevărată şi pentru n . Cele $n - 2$ transpoziţii care îl generează pe G alcătuiesc o mulţime T de cardinal $ T = n - 2$. Pentru fiecare $i \in \{1, \dots, n\}$, notăm cu ν_i numărul de transpoziţii din T care nu îl fixează pe i . Dacă există un i astfel încât $\nu_i = 0$, atunci toate permutările din G îl fixează pe i , deci G este izomorf cu un subgrup al lui S_{n-1} , de unde concluzia din enunţ.
Dacă toți $\nu_i \geq 1$, fie $\nu = \min\{\nu_i : i=1,\cdots,n\}$ și $j \in \{i : \nu_i = \nu\}$. Atunci
$n\nu_j \le \sum_{i=1}^n \nu_i = 2 T = 2(n-2),$
deci $\nu_j = 1$. Prin urmare, T conține o singură transpoziție care nu îl fixează pe j . Fie (j,k) această transpoziție și H subgrupul lui G generat de celelalte transpoziții din T .
2 puncte
Întrucât fiecare dintre acestea îl fixează pe j , rezultă că toate permutările din H îl fixează pe j , deci H este izomorf cu un subgrup al lui S_{n-1} , generat de $n-3$ transpoziții. Conform ipotezei de inducție, fiecare mulțime de forma $\{\sigma(i): \sigma \in H\}$ are cel mult $n-2$ elemente.
Întrucât o transpoziție din $T \setminus \{(j,k)\}$ are cel mult un element în comun cu transpoziția (j,k) — și anume, k —, iar $G = \langle H, (j,k) \rangle$, rezultă că orice mulțime de forma $\{\sigma(i): \sigma \in G\}$ are cel mult $(n-2)+1=n-1$ elemente.
Remarci. (1) Formulată combinatoric, problema cere să se arate că un graf neorientat cu n vârfuri şi $n-2$ muchii nu este conex.
(2) Dacă G este generat de transpozițiile $(1,i), i = 2, \dots, n-1$, adică G este imaginea standard a lui S_{n-1} în S_n , atunci orice mulțime de forma $\{\sigma(i): \sigma \in G\}$ are exact $n-1$ elemente — cardinalul maxim posibil.
(3) Mulțimile $\{\sigma(i): \sigma \in G\}$ sunt orbitele acțiunii lui G pe $\{1, \cdots, n\}$. Rezultatul arată că lungimea acestor orbite este cel mult $n-1$. În particular, G nu poate acționa tranzitiv pe $\{1, \cdots, n\}$: există $i, j \in \{1, \cdots, n\}$ astfel încât $j \neq \sigma(i)$, oricare ar fi $\sigma \in G$ — i nu ajunge în j prin nici o permutare din G .