(1)

DAG 1 31/7-23

- * LEARN OG INSIDE
- * HJEMMEOPG. OG LEKTIECAFE
- * MOBIUS, MC OG EKSMEN

DAGENS EMNE:

n'TE ORDENS DIFFERENTIALLIGNING-

$$(D_{n}y)(t) := a_{0}y^{(n)}(t) + - + a_{n-1}y'(t) + a_{n-1}y'(t) + a_{n-1}y'(t)$$

$$\frac{d^n}{dy^n} = y^{(n)}, n \in IN.$$

* y (+) UBEKENDT FUNLTOW:

* nH) KRNOT FUNKTION

n ER FIN KONTINUERT FUNKTION

* ao, —, an KENDTE KURFFICIENTER (2)
KONSMUTE OG REELLE I DAG.

ao + a.

EKSEMPEL

y''' + 2y'' + 2y' = tTREDE ORDEND n=3. $a_0=1$, $a_2=2$, $a_3=2$, $a_4=0$. u(t)=t.

PROBLEM:

BESTEM SAMTLIGE WESNINGER TILE.

1/ U=0: HOMOGENE LIGNING: KURT SKRIVEMADE PAY=U.

2/ U70 INHOMOGENTE LIGNING: KURT SKRIVEMADE DAY=U.

FOKUS PA 1/ FURST. DERNEST 2.

DEFINITION EN N-GANGE KONTINUERT (3)
DIFFERENTIABEL FUNKTION (9 & C")

Y: IR -> R/C ER EN LUSNING

TIL (4) SAFREMT (0,y)(4) = 4(4)

FOR ALLE t.

MENGOEN AF LUSNINGER FOR DAY = 0

KALDES L.

1/ SATNING (5: GIVET DAY = 0.

1/ SATIVING (5. GIVET DAY=0. DA ER L ET M-DIM UNDERRUM AF Cn: FINDES N LINEART VAFHANCIGE LUSNINGER y & L (=) y (+) = Gy, (+) + --+ Gy, (+) FOR CI, -, Cn + R/C. y (+)= C,y,(+) + - + Cnyn(t), C, -, Go KALDES FULDSTANDIGE (REFELLE/KOMARK LUGNING TIL Day=0.

BEMARKNINGER: 5, 09 yz FER LYSNINGER 1/ ANTAG AT Day, =0 D172 = 0 SA FR y= C, y, + Czyz 0984 FW LUSNING. BRVIS: Dr (C, y, + C, yz) = C, Day, + C, Day = 20+0 2/ GIVET yo, y', -, y(1-1) y(0)=y°, y'(0)=y', ---, y'(0)=y'(1) DA FIR y(n)(0) BRSTANT AF DAY =0.

LINEART UAF HANGIGHED

EKSEMPRI FRA LINEAR ALGEBRA

AX=0, X \in R^3

[1 1 1]

0 0 0 0 \pm = [0]

0 0 0 0 \pm = [0]

$$X = t \begin{bmatrix} -1 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 0 \end{bmatrix}, t, S \in \mathbb{R}.$$

$$L(QSN) N(SM) N(QDEN) L ER ET 2-DIM
$$UNOFRRUM AF R^2 UDSPANOT AF VAK-
$$UNOFRRUM X_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, X_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$X_1 OL X_2 ER LINKART UAFHANGISK
$$X_1 OL X_2 = 0 \implies C_1 = c.$$

$$X_1 LINKART UAFHANGISK
$$X_1 C_1 X_2 = 0 \implies C_1 = c.$$

$$X_2 C_1 = c.$$

$$X_3 C_2 C_2 = c.$$

$$X_1 C_1 X_2 = 0 \implies C_2 = c.$$

$$X_2 C_2 C_2 C_3 C_4$$

$$X_3 C_4 C_4 C_4 C_4 C_5 C_6$$

$$X_1 C_1 C_1 C_2 C_4 C_6$$

$$X_1 C_1 C_2 C_4 C_6$$

$$X_1 C_1 C_2 C_4 C_6$$

$$X_2 C_1 C_2 C_6$$

$$X_1 C_1 C_1 C_1 C_6$$

$$X_2 C_1 C_2 C_6$$

$$X_3 C_1 C_1 C_1 C_1 C_1$$

$$X_4 C_1 C_1 C_2 C_1 C_1$$

$$X_1 C_1 C_2 C_1 C_1$$

$$X_2 C_1 C_2 C_1 C_2$$

$$X_3 C_1 C_2 C_1 C_2$$

$$X_4 C_1 C_1 C_2 C_1$$

$$X_1 C_1 C_1 C_1 C_1$$

$$X_2 C_1 C_2 C_1 C_2$$

$$X_3 C_1 C_2 C_1 C_2$$

$$X_4 C_1 C_1 C_2 C_1$$

$$X_1 C_1 C_1 C_1 C_2$$

$$X_2 C_1 C_2 C_1 C_2$$

$$X_3 C_1 C_1 C_2 C_1$$

$$X_4 C_1 C_1 C_2 C_1$$

$$X_5 C_1 C_1 C_2 C_2$$

$$X_5 C_1 C_1 C_2 C_1$$

$$X_1 C_1 C_1 C_2 C_2$$

$$X_2 C_1 C_2 C_1 C_2$$

$$X_3 C_1 C_2 C_1 C_2$$

$$X_4 C_1 C_1 C_2 C_2$$

$$X_5 C_1 C_1 C_2 C_2$$

$$X_5 C_1 C_1 C_2 C_2$$

$$X_5 C_1 C_2 C_2 C_2$$

$$X_5 C_1 C_1 C_2 C_2$$

$$X_5 C_1 C_2 C_2 C_2$$

$$X_5 C_1 C_2 C_2 C_2$$

$$X_7 C_1 C_1 C_2 C_2$$

$$X_7 C_1 C_2 C_2 C_2$$

$$X_7 C_2 C_2 C_2 C_2$$

$$X_7 C_1 C_2 C_2 C_$$$$$$$$$$

F.KSFMPF L PASTAND: A/ y(t)=1, y(t)= + TR LINTART UAFHENGIGE CITITE =U FOR ALLE t=U BRVU: t=0: q=0,Crt =0 => Cr=0. C= C=0. B/ y, (t)= ex, y, (t)= ext UN VAFH

FUR 1, # h BIND: It to creat = 0 FOR ALLE to DIFFERENTIATION MHT & PA VHA DIFFRERNTIATION MITTER SIOFE (1) Chelt + Chel=0 For t=0 1 (1): (1+C=0 100 (2): C/1, + C/20

$$\begin{bmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} (=)$$

$$t=0$$
: $C_1 + C_3 = 0$ $C_3 = 0$ $C_4 = C_3 = 0$ $C_5 = 0$ $C_7 = C_7 = 0$

$$C_1 = C_2 = C_3 = C_4$$

OPSUMMERING DIJ =0. FULDSTENDISK LUSNING = FIND LINKFRET VAFH LIESNINGER y, y, og opskriv (xx) HVORDAN FINDER VI J, , -, Yn! DET KARAKTERISTISHE PUL. y(t)=et LESNING (=) [ao x + --- + an 1 + an]et =0 FUR ALLE +. YER EN ROD IDET KARAUTERISTISHE PUL P (X) = (-)

P(X)=0 KALDES RAPIANTER-LIGNINGEN HURRNOR TIL DOS-U. ALGEBRAENS FUNDMENTALSFETNING P HAR IN KOMPLENDER REDDER LICSNIMBRE ett '____ etht / hr F ABER DER BELL: MULTIPULITET GENERALT HVIS 1=10 FIR ROD DA GRUDER P(A) = (A-10) C(X) Hvor a(10) to oh k= an(10) E/ RODEN) ALGEBRAISHE MULTIPUICITET. dag grad Q= grad P- K. ENSEMPEC P(1) = (1-2)2(1+1) =0 2 RUFR 1=-1 (-1,2,2

SETNING . n FORSURUISK REODER HVIS P HAR k_i , -, k_n : an $(k_i) = l$, i = l, n. DEN FUNDSTANDISE KONPERKIR y (+)= c, e, + --+ cne ht $c_1, -, c_n \in C$ LUSEMPEL 1 y''' - 3y'' + 4y = 0 $P(\lambda)^2 \lambda^3 - 3\lambda^2 + 0 + 4 = (1-2)^2(\lambda + 1)$ =0 (3) $\lambda=2$ RUPR $\lambda=-1$ $\alpha m=1$ y, (t)= et yelt) = ert MANGUE IN

SATTING 1.14 BETPAGT DAY =0 04 AJTDAG $P(k)=(\lambda-\lambda_0)^n R(k)$, $C(\lambda_0)\neq 0$, u= an (10) ≥ 2. DA GELDER AT y Hzelot yell=telot July- the lot AUR ER HUSSPHANGER. K CIN MAFTY LEOSNINGER. EUSEMPRE 1 14EN: y3 (+) = +e2+ FUNDSTANDIGE REFLUE LIESNING: 97t)= Cet + Cet + Cote2+

c1, 4, 6, ER

FUSEMPFIL 2

y" + 2y" + 2y' = 0

K-LIGNINGEN

B+2 12 +2 x +0 = 0 (=)

 $\lambda = 0$ FLUER $\lambda^2 + 2\lambda + 2 = 0$ (=) $\lambda = -1 \pm i$

DEN FULDSTENDISE KONPURIUR WOONING ylt)= (1e2+ cre (-1-i)+ +(3e (-1+i)+

C1, C2, C3 € C.

HVAD MED DEN FULDSTENDIGE REFLUE LUSNING?

HVO QUER FOR HUR i=0,-,nSH GALORR $\lambda = \alpha + i\beta$ ROP => $\overline{\lambda} = \alpha - i\beta$ OGSA ROD

X= Rel, B= In (1).

BRV13: 90/n+ -- +9n=0 =>

STURDES 2 LINEFRET LAFA WEN (13) e(x+iA)t = ex+ (cos(B+)+Esin (B+)) + e(x-ist) = ext (cos(pt) -ipn(pt)) 2ext (os(pt) NY LUSNM = 2Re(e(x+ip)t) y, (+) = Re (e(x+cp)+)=ex+(0) pst) Jett = In (e(K+1pt) = extsn(pt) TO REFULE WASH OF DE TO REFULE WASH SKINN 1.15 ALGORITME? DRTRAGT DAYZO, an ER, i=0,-n.
VHA SATNING 1.14 y, yn n CIN VAFI Liesn Je, Jeh = Je & Firstat mED d Re ye Tu ye GIVER NY LISTE MED N REFUER LIESNINGER, SOM ER LIN VAFTY JVF SATWWG 1.15 EUSEMPEL 2 ISEN y, (+)=1, y, (+) = e(-1+i)+, gstase. yz(t)= e(-1-i)t = Jz(t) 9(4) = Re (y2(t)) = e (05(t) 754= tn (y,(+)) = e+ sn (+). FULDSTANDISK REALLE WESNING yly= C,+C,etco(t)+Getsn(+) L1, C2, G ER

HEUUR M: R-> R/C (15) 2/ Day = 4 KENDT KONTINUTAT FUNKTON S#TNING 1.20 LAD YOURRER EN PARTIKULAR MESNING TIL DAY = 4. DAR GALDER DA, AT ENHAGE LIESNING y to TIL Dy=4 HAR FIRMFU y= Jean +y" Gran ER LOSSNIM TIL HVOR D, y =0 BEVIS: Dny= u On yo = h 0, (y-y,) =0

JHon

DVS FULDSTANDIST LIESNING Day = u KR y(t)= c, y, (t)+ - + c, y, (t) +y. 1 LIN VATH 41, -17 LIESNINGER TIL Day =U yo " HUORDAN FINDER VI GET A/ u(t)=est, sec GHT ylt)= Hest INDSAT OF LES FOR H MERER HERON STENERE IKURSET LIN VAFTY FUNKO u (t) = (0) (mt) GAT: y (+ 12 Asin(n+) + B cos(m+) INDS#TTER L...] (Oshit) + [] SIS(1/4)=0

CLESCE L- . 3=0 [.7=0 FOR A AC B.

TOUSTMPRIC y'+y= t' $\lambda+1=0$ Year H= Ge y, PARTIKULTK CLOSNING. Yolthe Aot + A, L + A, 100 $A_0 = 1$ $A_1 = -2A_0 = -2$ $A_{12} - A_{1} = 2$ $A_{12} - A_{1} = 2$ FULOSTENDIK REFLUX WESNIM
<math display="block">y CH = 4 + 4 - 24 + 2 q CR

DAG 2 TALFYLLER OF VENDELIGE DAGEND EMNE: RAKURA 1/ INHONOGENE LIGNING Dy=n 2/ MOTIVATION VIA DIFF-LIGN PA TALFYLGER OG 3/ FUSEMPLER VENDELIGE REFLICER 4/ VEGENTLIGE INTEGRALER $\int_{\alpha}^{\infty} f(x) dx := \lim_{t \to \infty} \int_{\alpha}^{t} f(x) dx$ 1/ (D,y)(+):= aoy()(+)+ -+ any(+)= u(+) Dr LINEAR: Dr (C, y, + (272) = C, Dry, + CDry SE SETWING 1.4 SEMING 1.20 (STRUNTURSTETWINGEN) LAS GO MARK BON PARTIKULAL)
LASNING TIL & DA ONY KNAVER
LANDON L LAD YOU OF Y VERE TO LESNINGTE

LAD YOU OR Y VERN TO CHESTING TIL DAY = 0

y= Yton + yo FULOSTANDIGE LESNING TIL (4), HUDE 9, -, In the a LIN UAFH COSNINGE Day = U. EUSEMPEL $y' + y = t^2$ λ+1 =0 , y+on (+)= c, e , c, ∈IR GET PA PAKTIKULER LESNING: yo= Aot + A, t + Az LUSNING (=) 2A, t + A, + A, t+A, t+A, = t2 FALD SET yo 90 LINEARET UAFA FUNNTIONER (A0-1) + (2A0+A1)+ + (A+A) 1=0 A_=1 , 2A=-2A=-209 A_=-A==2

ALTRANATIVE: POLL = POLL (=)

BUT

POLL = POLL (=)

BUT

RAFFICIENTENE ER IDENTISKE.

2/ MOTIVATION HUIS QUIKKE KONSTANTE? (x) GELDRE STADIG MEN et FR IKKR LANGERT LIESNING (GRARREUT) EUSEMPEL y'= 2+y , y/e x+ [PANS FOR ARC: y(t)= e c,] y(t)= Co+C, t+ --+Cn-2 + Cn-2 + Cn-1 +Cn+"+-LCPSWING? VS = y'= C1 + 2c1 + + - + Cnnt +-ANTAGER AT VI KAN DIFF LEDVIS $HS = 2ty = 0 + 2c_0t + ---+2c_{n-2}t^{n-1} + -$ ANTAGER AT VI KAN GANGE INO GEDVE

EFF BRUGER (***)

$$C_1 = 0$$
, $C_2 = C_0$, $C_1 = \frac{2C_1}{n}$ (4)

 $N = 3$: $C_3 = \frac{2C_1}{3} = 0$
 $C_n = 0$ $N = 0$

UNDERLIG SUN/RAKKE $\frac{2}{N} a_{n} = a_{0} + a_{1} + a_{1}$ $\frac{2}{N} a_{0} = a_{0} + a_{1}$ OVERVETEUSET: 1/ HUOR DAN FURSTA'S UR? 1844: Zan, an KONST. SENTRER JOIFF UR AF VARIABLE LED?

JENTRER

JENTRER

JENTRER

JOIFF UR AF VARIABLE LED?

JENTRER

JENT KULMINATION: POURIERRAKKAMETODEN 1 nH)= EcnunH) LIESNING Yolt) = & dryn(t).

3/ 2 an? 5=1 a,= 1/2 an In SN= Zan 21 NAR N FRSTUR FN= \$1-SN\$ FEIL SN 1/2 1/2+ 1/4 1/2 + 1/4 + 1/8 $\frac{1}{2} = 1 - \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2$

SN N-100 $F_N = 1 - S_N = \frac{1}{2^N} - \frac{3}{N + 300}$ I RR GRANSKVARDIEN FOR TAL FOLGEN SI, SZ, ---, SN, -(HONPAKET L'SN) RILLER OFTE BLOT SN) GENERALT: DEFINITION 4.5 EN TALFYLGE XXER/C ER KUNVERGENT (K) MED GRAUSE-VAROI(GV) X SAFREMT: FOR AUT 470 FINDRI RT NOEN: |X-Xn| = E FOR ALLE MZ No KORT SURIX MADE: X1lim X1= X.

HVU X IKKR FINORS, SX PER X, DIVERGENT (D) RUSEMPEL: Xn UBEGRENSET (BLIVER VILKAR. LUSEMPLER 1/ Xn = (-1) BEGR ENSET |Xn = 1 2/X=q=q..--.q,qe(? FOR 19/>1 N-700 (K FUR 19/4) MED GV = 0 19/ < FURNICT |難の一年 | = | 1 | 生を (二) n log 191 = log (=) n = | log 4 | /

3/
$$S_{N} = 1+q+ - +q^{N}$$
 (9)
 $= \sum_{n=3}^{N} q^{n}$
 $= \sum_{n=3}^{$

4/ x, = e'n & C ein z (oo(n) ti sn(n) GRLORD XX + C K (C) Re(xn) K Of In(xn) K -) (o)(n) 09 sm(n) 1 0 REGNERALER FOR GRANSEVERDIER Lanna 4.10 ANTAG AT an -y lin (c, an + c2 bn) 2 c, L, + c2 l2 2/ Lin and = Lite 3/ +1/15 hz +0 : hm an = L1 hz

4/ HVIS
$$f: IR \rightarrow C$$
 for KUNT (1)
SHE FR LIM $f(a_n) = f(L_1)$
5/ $\frac{n}{b^n} \xrightarrow{n \rightarrow \infty} 0$ For $a \ge 0$, $b > 1$
 $\frac{1}{b^n} \xrightarrow{n \rightarrow \infty} 0$ For $a \ge 0$.

$$\frac{t}{t} \frac{t}{t} \frac{d}{dt} \frac{dt}{dt} = \frac{t}{t} \frac{dt}{dt} \frac{dt}{dt} = \frac{t}{t} \frac{dt}{dt} \frac{dt}{dt} = \frac{t}{t} \frac{dt}{dt} = \frac{t} \frac{dt}{dt} = \frac{t}{t} \frac{dt}{dt} = \frac{t}{t} \frac{dt}{dt} = \frac{t}{t} \frac{$$

 $7/ \alpha_n = \sqrt{n} = \sqrt{n}$ $X_n = \log \alpha_n = \frac{1}{n} \log n = \frac{3}{n} = 0$ $\alpha_n = e^{x_n} = \frac{4}{n \rightarrow \infty} e^{\alpha} = 1$ $10KT = e^{x_n} = \sqrt{n} = 1$ $10KT = \sqrt{n} = 1$

4/ VKGENTLIGE INTECRACEL lin & an = 2 an & T RRLATION J. f. X) UK GENT L/G INTROPACT S= Z + HARMONISH RAKKE = 1+ + + + + + + +

 $\frac{1}{4}$ $\frac{1}$

SN = ARRAL AF N WASSER

2 (N + (x) dx = [Jnx) X=1

= ln N -> >

SN UBRGRAUSET = 1 S D

DEFINITION & KINT OG LAD

ILL)2 St f(x)dx (H)FLPINTRGRALR

HVI) I(X) IR K FUR + 700

Sã SÆTTES $\int_{\alpha}^{\beta} f(x) dx := \lim_{t \to \infty} \pm (t).$

WE TIL SVAPPINON DEPINITION AT STULL

UHA J(+) = St F(X) dx FUR + 3-00.

DAG 3 UKNORLIGE REFLEXER DEFINITION 4.15 GIVET ON TALFOLGE * Zan VENDELIG RAKKE *Siz an = an + --- +an NTR AFSNITSIA NY MIFULAR! a, a, a, an Ma an 4, 5, 9, + 92 5, 9, + 93 +93 a, tat

1) SAFRIMT SN ER K: Ean: = lim Su VAROIEN N=1 KALDES REKKENS SUN 2/ SAFREMT SN ER D: Zan ER D (INGEN SUN) OBS to TALFYLGER and OG DN PROBLEM: KAN K AF SN (M MP) AFGURES UDFRA on? VOFN AT KENDE/ BESTEMME GV ? SVAR: DELVIST JA! KONVERGENSKRITERET. OVERBLIK a/DIVERGEND-RRITERITE (1/TR LEDS RRIT) SAN 4,19 0/ INTRARALURIT SENIN(4.33 C/ HJELPKSETWING 4.27 d/ SAMMENLIGNINISKKIT SETVINI 4.6 d/ AKVIVALKNSKRIT 4.24 #/ KVOTRNTKEIT 4.30 al DIVERATIVISTENT SETNINI 4.19 $S_{N} = \sum_{n=1}^{N} a_{N} = a_{1} + - + a_{N-1} + a_{1}$ a, + -+ 9N-1+0 5N-1=

- 5N - SN1

BRUGER VI SATNINGEN PA FULLENOR FORM: EUSEMPELY Zsn(n) D IKKK SLUTTK K/D FLATE FOR F(X)= = $1+\frac{1}{2}$ > $\int_{-\infty}^{3} f(x) dx$ SNZ (N+1) - X dx = ln(N+1) -

SW UBFIRENSET OG P

SAMING 4.33 LAD f: [1,00[-> [0,00[VERR C' f'(x) <0 ForAUTEX (AFTAGRNOR) DA RR & BAN $\frac{1}{2}$ f(x) $K \Leftrightarrow \int_{1}^{\infty} f(x) dx$ BEVU NASTR UGE EKSTMPTL & anz tu, K>0, K+1. $\frac{1}{2}a_{\Lambda}$? $f(x)=\frac{1}{x^{n}}$. $f'(x)=-\frac{n}{x^{n+1}}c$ J. fladx = lim st tudx = lin [-ux] = fish [- 1-4]

JUST DE FOR OCK < 1

SP FIXIDX & FOR WOLL BEMERKNIN(: 9,70 C/ HJELPORMING 4.27 ANTAG SIGNER K Zan RR K (GELDER OUSA FOR GLEC) SAPOLINE LEMMA A.3 (5.198) ENHVER FULLE X, MARIO DER ER VOUSENOR Xn+1 2 Xn FOR ALLE A DE BEGRENATT IX, LC FOR ALLEN

4.27 Cn=an+lan)>0 $0 \le \frac{2}{2}(a_n + |q_n|) \le 2 \frac{2}{n} |q_n|$ # SN= ZCn BRERANSAT OR N=1 VoustNOR SN JAP $ln\left(\frac{8}{2}a_{n} + \frac{8}{2}|a_{n}|\right) = \frac{3}{5}$ $S_{N} = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \frac{1}{2} \left[\frac$ d/ SAMORNUENINISKRIT 4.20 ANTAG QUE an E by i/ 2 b, K => HVIS Zak HUIS ii/ Zan D 2 bn D

Al LUSTMPKL

Al N=1 h

an = 1+ (o(n)

0 = an = = = bn

$$\frac{2}{2} \frac{2}{n} = 2 \frac{2}{n} = 2$$

$$\frac{2}{2} \frac{2}{n} = 2 \frac{2}{n} = 3$$

$$\frac{2}{3} \frac{2}{n} = 2 \frac{2}{n} = 3$$

$$\frac{3}{3} \frac{2}{n} = 2 \frac{2}{n} = 3$$

$$\frac{2}{n} = 2 \frac{2}{n} = 3$$

$$\frac{2}{n} = 2 \frac{2}{n} = 3$$

$$\frac{2}{n} = 3$$

$$\frac{2}{n}$$

e/ AKVIVALTINIKELI SATININA TI CAT ANTAG anzo, bn 70 oh AT an = an -> c & Jo, oo [VI SIGRR AT Ean 64 Ebn Fir (10) AKVIVALENTE) DA GALORR AT 艺 an K (三) 艺 k RUSTMPRL 2 n=60 n+15 K AF UR AFARN-SETMING B GER IKKE AF VERDIEN ENDRLIGT MANGE LED 2 an = a, + - + qu-1 + & an ENDRUL SVA

$$a_{n} = \frac{n^{4}+1}{n^{3}+15} = \frac{1+n^{4}}{n^{3}(1+15n^{3})}$$

$$= \frac{1}{n^{3}} \cdot \frac{1+n^{4}}{1+15n^{3}}$$

$$= \frac{1}{n^{3}} \cdot \frac{1+n^$$

 $\frac{2}{5}$ $\frac{9}{5}$ $\frac{9}{5}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{9}{5}$ $\frac{9}$

SATNING 5.2 59° K (19/K1 2 9 = 1-9 FOR 191<! SETNING 4.30 (KUUTTENTKRIT) ANTAG 9,70 04 AT an n-200. SA GALDER i/ HV15 CE [0,1] => 3 an K HVIS C>1 (INKL C=00) => 3 an D INGEN INFO on C=1

$$a_n = \frac{1+n}{2^{n+1}}$$

$$\frac{2n+1}{2n} = \frac{2n+1}{2n+1}$$

$$\frac{2n+1}{2n+1}$$

$$\frac{2n+1}{2n+1}$$

035 Mars DAGY ALTRANSON RAUMA EC-17" OF WRORRING S

S= \(\frac{2}{5} \) \quad \text{ORFINITION 4.15} \quad \text{OL WRORRING A SYMMER } \)

S= \(\frac{2}{5} \) \quad \quad \text{N-100} \quad \

91 DIVERSENDERT SETNING 4.19 b) WKGRALKRIT SETNING 4.33 C) HORDESETWING 4.27 d) SAMMONLIGNINGSHRIT SETN 4.20 ey EKVIVALTUSHRIT SETN 4.27 f) KVODENTHRIT SETN 4.29

C/ HORLPISEN 4.2+ 2 | an | K => 2 an K

ORFINITION 4.26: HVI> 2 | an | F.R. K SA

SIGFIS 2 an AT VARR ABSOLUT K

DRFINITION 4.28 HVI) 2 an F.R. K

MEN 2 | an | D SA SIGR) 2 an AT

VARE BRINGET K (BH)

EUSEMPEC 1

(5

2 (05(n) + 5h(n) IR AK

|an | € 2/n2.

ENSEMPEL 2

 $\frac{2}{5} \left(\frac{-1}{3}\right)^{n-1} = 1 - \frac{1}{5} + \frac$

FR IKKR AK SID

FR OFN BK?

EN ACTERNARENDE RAKKE:

DEFINITION 4.37

 $\frac{8}{2}(-1)^{n-1}b_{n} = b_{1} - b_{2} + b_{3} - b_{4} + \frac{1}{2}$ MED $b_{1} > 0$ FR AN AUTHENTIC ENDER

RANKE (AR)

a. = 1-11 h 1a 1=h-

SEMING 4.38 (LEIBNIZ KRIT) (3) BRTRAGT & (-1) n-1 by AR by ATTAGRE MONOTONT MOD 6: $b_1 \ge b_2 \ge b_3 \ge b_1 \ge b_{n+1} \ge b_1 \ge b_{n+1} \ge b_1 = b_$ KURT SHRIVEMADE: by DO. DA GELDER PER AT ZG) MG ER GBS: FUSTIMENTO BETTINGFUST!

5~= b, -b, --- (4) B(VI) N LIGH +((-1)~)bn 1 par 1 Sixt = BN + briti SW SNTZ SM+1 SN+= SN+1 - BN+2 SN+u E [SW, SN+1] TEUR AUR 4. SW & SN+L & - & SN+L & SN+L volution of BRERKHORT LIMMA 4.3 SNK & SZ Lim SN S- IN & bN+1 DVS HVIS BNHI & G FN= 15-5N = E VURDRING AF SM!

KUSTAPKC Z /GRN AR NÃO b= to BRSTEN N: SN AFVIGER FRA S MID FROL FN HYDST 9=10-2 bN+1 = 1 = 10-2 LIESNINT: GIVER N=99 DVS FOR W=99 FR &= Sqg = 10-2 HVAO MRD S= Zan? KAN VI APPROXINTRI S VHA AFSNITISM SN? KUROLLAR 4.35 BETTRA(TR S= £fh) tivon f: [1,0] -+ Co,0[#E TR C' $vol_{X_{i}}$, $f'(x) \leq c$ Act (Springer)

Jos f(x) ax Fa K 4#LDER FRAKE FN = 15-5N = JN f(x)dx $f_{N} = S - S_{N} = \sum_{n=1}^{\infty} q_{n} - \sum_{n=1}^{\infty} q_{n}$ $= \sum_{n=1}^{\infty} q_{n} = \int_{N}^{\infty} f_{n} dk$ $= \sum_{n=1}^{\infty} q_{n} = \int_{N}^{\infty} f_{n} dk$

TO NHI

EUSTNPFL & MERN 3 2 1 K f(x)= = 1 , f'(x) <0. OPG: BRSTTM Na: SN AFVIGTOR FRA S MRO IN FRIL FN PA H475T 10-2 FN = 151-51 = 1 f(x)dx = lin IN X2 dx = 10-7 N = 100 GIVER SAFVICE FRA S 5= 5N ± 10 1 NAR N260 ALBA

N=100 1 (x): EBAGGRUND ≤ F100 € 100 101 MRGEST NUJAGTIG 5 \$ 5100 + 101 \$2000-4 (MRTOOK ii) FRIL 16-4 HVAD MED an 20? FN = 15-5N = 12 9NHI TREMANTS VLUGHEOEN SETWING 4.27 AK 1 2 an 6 2 | 9n 1 82

65

|a+b| = |a| + |b|

|a+b|= | -a+b | # | = |a|+b|a|+b|

*X FUCTSAT

FN = 2 (9N+1)

FUSEMPF(

USEMPF($a_n = \frac{cos(n)}{n^2}$ $F_N \in \frac{2}{n^2} |\frac{cos(n)}{n^2}| + \frac{2}{n^2} |\frac{1}{n^2}$ $f_N \in \frac{2}{n^2} |\frac{cos(n)}{n^2}| + \frac{2}{n^2} |\frac{1}{n^2}$ SEN 4.20

 $\frac{8}{2}q_n = \frac{5}{100} \pm \frac{10^2}{100}$

DAG 5: POTRNSRAKUER & CNX XER FUSENPRU PÀ REKUR MED VARIABUR CAD. ANTAG AT ZCNX" ER K FOR ALLE XGI, SA SIGES RAKKEN AF VARIABLE LED AT VÆRE PUTVIS f(x)= { c, x, x et. PROBLEM GIV HUAD MANVI SIGK 2/ Fir + Wort Fut!

DIFF? DIFF LROVI)

f'(X)= 2 nC,X"-1?

AUSH PA y'= 2ty FRA DAG1(2) y (4)= co [1+ + + --+ + ----) $= c_0 \left\{ \frac{t}{2 + 1} \right\}$

Y KVOTIRNTIER IT STEWING 4.30: 1 anti) -> GE[0,00] if GECO,IL =) AK ii) 6,71 (INKL 0) =7 D $x \neq 0$, $a_n = \frac{|a_n + 1|}{|a_n|} = \frac{|c_{n+1}||x|}{|c_n|}$ DVS V | Cn+1 | -> Kt t [0,00] SA RR Zan AN SAFREMT

d= KIXI (=) IXI < E

HVIS K= SA RR Zan KUN P- KALDES havalact (SES.117) PERR
DEN VERDI DE GEN) - R ADIU). DEN VERDI AF GREATENSE PRACIS ANCIVAR Z In X n VILLOTEINAUET NE SERVING 5.13 (NAR VI TILLAORA PED NAR ZCIX" RR AK XEIR

OBS | P RR RN RADIUS I DEN hon PLEUSE PLAN. SETNING 5.13 ANTAGRE IKK 0357 Cnt1 -> K 0353 K FUL X= ±p WARRER KRAVER STRUNDERSYGELS EUSPAPIL 1 $\frac{2}{N=1}$ $\frac{(-1)^{n+1}}{N}$ $\frac{2}{N} = \frac{(-1)^{n}}{N}$ | anti | = nti |x| -> |x| Au For W/ <1 =) P=1 { D + UR |X|2 ANDO MO MARO MED X=±17 HVAD D Au 1 S

2 (-1) n+1
AR BU X=1 $\frac{2}{2} \left(\frac{-1}{1}\right)^{n+1} \left(\frac{-1}{1}\right)^{n} = -\frac{2}{2} \frac{1}{n} \frac{1}{n}$ AK D BK TUSEMPT (Z: Z= XZK

POTRNSREKKE MED Cn = [Li n=2n

LIGI

Cn+1 | West D | AU FOR AUR XER.

KUSENPRUS Z 12 X3n $a_n = \frac{1}{n^2} \chi^{3n}$ $\frac{19nt1}{n} = \frac{n^2}{(n+1)^2} |\chi|^3$ $\rightarrow |X|^3 \Rightarrow$ AN FOR 1x/21

D FOR 1x/71 X= +1, X = -1: $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$ Ah Pau(=) DVS RAKKEN ER 1X/61 D RUGRS

2/ SATWING 5,17 BETRAGT & CAX" OG ANTAG AT pro f: I -> R, I=7-P,9 L f(x)= Z Cnxn. GELDER AT JECO HAN DIFF LEOVIS $-f'(x) = \sum_{n=1}^{\infty} c_n n x^{n-1} = \sum_{n=1}^{\infty} c_n n x^{n-1}$ 2 n (n-1) - (n-4+1) X (n) (x) = FOR ALL WEIN OF ALLXET

0B5
$$f'(0) = (0)$$

 $f''(0) = (1)$
 $f'''(0) = k!$ Cu

 $f(x) = \frac{1}{1-x} = \frac{2}{2} x^n, x \in J-1, I$ $f(x) = e^x = \frac{2}{2} \frac{x^n}{n!}$

KRNOTK FUNKTIONER PA PUTTINSRAFICHE-

ROROLLAR 5.36 SAMME ANTAGELIX

NAW BITTE PLAOS

TON FOR

SX f(4)dt = \(\int_{\infty} \int_{\infty} \text{\lambda} \text{\l

KAN INTEHRERE 1 = 2 - n+1 X n+1

$$f(x) = \underbrace{\underbrace{2}_{n-1}}_{n} \underbrace{(-1)^{n}}_{n} \underbrace{x}_{n}$$

$$f(x) = \underbrace{2}_{n-1} \underbrace{(-1)^{n}}_{n} \underbrace{x}_{n}$$

$$\underbrace{3}_{n}$$

$$f'(x) = \sum_{N=1}^{\infty} (-1)^{N-1} x^{N-1} = \sum_{N=1}^{\infty} (-x)^{N-1}$$

$$= \sum_{N=0}^{\infty} (-x)^{N} = \frac{1}{1-(x)} = \frac{1}{1+x}$$

$$x \in [-1, 1][.$$

VHA SHTWING 5, 17.

DERFOR

$$f(x) = \int_{0}^{X} \int_{1+t}^{1} dt = \ln(1+x)$$

GELDER FANTISH FUR XE 7-1,17 (VHA ABEL'S SETWINS)

DVS
$$Z = \frac{(-1)^{n+1}}{n} = \ln(2)$$
 (D)
 $\ln(2) = \frac{z}{2} = \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$
 $= \frac{(1-\frac{1}{2})}{1} - \frac{1}{4} + \frac{1}{3} - \frac{1}{4} + \cdots$
 $= \frac{1}{2} \left(\frac{1-\frac{1}{2}}{1} + \frac{1}{3} - \frac{1}{4} + \cdots \right)$
 $= \frac{1}{2} \ln(2) \cdot \frac{1}{3} + \cdots$
 $= \frac{1}{4} \ln(2) \cdot \frac{1}{4} + \cdots$
 $= \frac{1}{4} \ln(2) \cdot \frac{1}{$

DAG 6 URNORUG RAKKER AF VARIABLE LED f(x)= \(\frac{2}{5} \int_n(x) \) for DIFF FUNKTIONER $f_n(x) = a_n s_n(nx) + b_n cos(nx) + R$ fn(x)= Cnx POTTENSRAUKFER $f_n(x) = x(1-x^2)^n$ 0BS HIVIS Z + (X) ER K FIR AUE XEI, I INTERVAL, SX SIGES AF VARIABLE LED AT REKKEN VERR PUNITIVIS K PR INTERVAL-CRT I. faxe Zfn(x), XEI XEI No(x)/

EUSEMPEL 1 $\sum_{n=0}^{\infty} \chi(1-\chi^2)^n, \quad \alpha_n = \chi(1-\chi^2)^n,$ $X \neq 0$: $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{1-x^2}{x^2} \right| konst kvonfinterante Akk (=) <math>\left| \frac{1-x^2}{x^2} \right| < 1$ 2 X (1-x2) AN FOR ALLE IX/LETT 120 D RIVERS $\sum_{n=0}^{\infty} x(1-x^{2})^{n} = \sum_{n=0}^{\infty} \frac{1}{(1-(1-x^{2})^{n})} = x \frac{1}{(1-(1-x^{2})^{n})} = x$ $= \sum_{n=0}^{\infty} x(1-x^{2})^{n} = x \frac{1}{(1-(1-x^{2})^{n})} = x$ $= \sum_{n=0}^{\infty} x(1-x^{2})^{n} = x \frac{1}{(1-(1-x^{2})^{n})} = x$ $= \sum_{n=0}^{\infty} x(1-x^{2})^{n} = x \frac{1}{(1-(1-x^{2})^{n})} = x$

SUMFUNKTION ER DISHONT!

MAPLE

SPM: A HVORNAR RE SUNFUNUTION
KONTINUTION? DIFF?

SENING A HVIS Z fr(x) K

UNIFORM PA I ->
SUMPONIMEN FOXE & MIX

WONT

DEFINITION AF UNIFORM K. flat = Sofrax ER VNIFARM K PK (MATRICIALLET I SAFREMT No(x) KAN VARIED WAFHENGIGT AF X FUR ALLE 9.70: DVS FOR G70 PINDES No:

BRICS SATWING A

 $\frac{4}{5}$ $f(x) = \frac{2}{4}$ $\frac{1}{2}$ $\frac{1}{2}$

 $f(x) - f(x_0) = f(x) - S_N(x) + S_N(x) - S_N(x) + J_N(x_0) + J_N$

SPN: HVORNAR FIR UR MKO VARIABLE (5) LED UNIFORN K?
SVAR: MAJURANTRAKKER!
DRFINITION 5.3) ANTAG (fr(x)(LK)
FOR ALLE XET, NENO. DA SIGES
Z KN AT VARE MAJORANTRAKKE
FR Sfr (X), X EI.
SEMING 5.35;

BETRAGT Z fn(x), fn hont, xet Oh ANTAG AT Z Kn ER K MAJO-RANTRAKKE. DA ER Z fn(x), X+I VNIEWM K SETNING A VNIEWM K SETNING A SUMFUNITION f(x)= Z fn(x) KR KINTINVERT. 死心 |f(x)-2fn(x)| = | 2 fn(x) | TKENANTSVY GHRO SÆTN 437 € { | fn (x) | n=N+1 E Z Kn = \frac{5}{2} k_n - \frac{5}{10} k_n
= 0 IDET ZKNER K.

SETWING A KAN OGSA BRUGES PÀ FULGRNOR FORM FER DISHONT => Zh(x), XEI INKE

OBS HIVIS Kn=g(n), g:[1,0[->[0,60[2)

g'(x) co;

|f(x)-Z=fn(x)| = ZKn & fg(x)dx

SE KOROLLAR 4.35

KAN VYRORRE SUMFUNKTION UNIFORM

1 X-

EUSEMPRI 2

f(x)= 2 x" = 1-x AR FOR |x|<1

0

PASTAND: ZX" UNIFORM K PA KTHVRCT INTERVAL

I=[-r,r], ocrc1.

BRVIS: IX" EV" FUR ALLE XEI.

Ern KR L MADURANT RANKE =) UNIFORN K IUKR UNIFORM PÀ [-1,1] RURR J-1, 16 EUSEMPEC 3 +(4)= 2 = 1 = 1 Sh(nx) , XER $f_n(x)$ KINT? SHAR TAK I for (x) { = 23 = 40 Report UNIFORN K XER SEN 5.35 2 for (X) RR UN SRINING A F RR WONT

(x) (=0.01 (9) FOR AUF KGIR FIND N: /+(x)-2fn(x)/40.01 1 f(x) - \(\frac{2}{5} f_n(x) \) = \(\frac{2}{5} \frac{2}{3} \) \(\frac{2}{3} \) dx = 12 5 0.01 SATTER GIVER NZ10.

1 f(x) - 2 f(x) (= 0,01

3/ HVAD MRD LROVIS DUF INTEGRATION (10)
04 DIFF AF EL (X)?

INTRURATION SAMING 5.36

ANTAG F(X)= Zfn(X) UNIFORM K
PA I. DA GALORR

 $\int_{\infty}^{\infty} \int_{\infty}^{\infty} dx \, dx = \int_{\infty}^{\infty} \int_{\infty$

DIFF SHITNING 5.37

ANTAG 1/f(x) = 2 f(x) UNIFORM K

2/ f(x)= 2f(x) UNFURME.

DA $\mathbb{R} f \in C'(\mathbb{I})$ of $f'(x) = f_i(x)$.

RUSEAPEL 4

$$f(x) = \begin{cases} \frac{2}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{3}{\sqrt{3}} & \frac{3}{\sqrt{$$

UK

f' (x)?

 $f(x) = \begin{cases} 2 & 2 & \cos(nx) \end{cases}$

1 2 (05(nx) = = Kn

EK' K MAJORANT RAKKA FOR F,

SATMM J.37 1 (0)(1x)

DAG 7 DIFF-LIEN 19FON

Y POTENS REKURMETODEN

21 SYSTEMER AF 1. ORDENS

DIFF-LIEN

y'' + f(x)y'(x) + g(x)y(x) = 0EULOSTENDIKE LUSNING y (x)= (, y, (x) + (2 y, (x), C1, C2 E/R J. 04 Jr LINKRET VAFH LEISN. SAMING XX ANTAG AT F OG 9 ER POTENSRAKKEL MED P70. DA RC ENHURC LUSNING 045A PATNSRATURK y (X)= Z CnX" MED

PUTRUS RAPHURMETODEN BROTTÀR (2 1 AT INDSTETTE YCX)= ECAM 1 DIFF-LIGNINGEN 09 LESK FOR DE UBTURNOTE CA (SON PM 04(2 FOR y'= 2*y) VARUTUOSUASSR 1 1/ SATWING 5:37: DIFFENGENTIFICA ソニークCハXリーをCハハXリー $y'' = \sum_{n=1}^{\infty} C_n n(n-1)x' = \sum_{n=1}^{\infty} C_n n(n-1)x'$ FUR ALLE XE J-P,P 2/ KURULLAR 5.21 (10KNTTRTS) FIN FOR ECNX = Ednx POR AUR ZCNX = Ednx AXE]-P,PL

3/ "KIG OP KIG WED" STRATEGI a/ KIG OP \frac{1}{2} d_n x^{n-1} = \frac{1}{2} d_n + 1 x^n MY Zdnxn Zenxn MA Zdnxn Zenxn 1, + d2X+ 2 d1X" 4/ ne/No LIGE (=> n=24, nell) NETN VLIGR (=) n=2n+1, KEN. (AUTRRNATIV n=2j-1, j∈N)

FUSENPR (
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

 $y(x) = \frac{1}{2} c_n x^n = c_0 + \frac{1}{2} c_n x^n$

3/ KIL OP MIL NKO"

$$\int_{-\infty}^{\infty} (x) = \sum_{n=1}^{\infty} c_n n (n-1) x^{n-2}$$

$$= \sum_{n=1}^{\infty} c_n n (n+1) (n+1) x^n$$

$$= \sum_{n=1}^{\infty} (c_n n (n+1) (n+1) x^n$$

$$= \sum_{n=1}^{\infty} (c_n n (n+1) (n+1) x^n$$

$$+ \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega (x)$$

$$= \sum_{n=1}^{\infty} c_n n x^n + C_0 + \sum_{n=1}^{\infty} c_n x^n = \omega$$

Chen =
$$-\frac{C_1}{A+1}$$
, $A+N$

REWIRSIONS FRANK |

Hown Pri $C_0 = 1$, $C_1 = 1$
 $C_2 = -\frac{1}{2}$
 $C_3 = -\frac{1}{2}$
 $C_4 = 0$
 $C_$

KURRENT? INDSTET 1 LIGNINITA, E y (x)= 2 Cn x $=\frac{2}{2}\frac{(-1)^n}{2^n k!} \times n$ $=\frac{2}{2} \frac{1}{k!} \left(-\frac{x}{2}\right)^n$ Zent = ex

10

EUSEMPEC 2 xy"+29"+x7=0 1 BUDR "SINGULAR" 1 X =0: 2 y'(0) =0 y(x)= { Cn x n , x & J-P,P[VBILLINOT. $XY^{2} = \sum_{n=1}^{\infty} C_{n}X^{n} + 1 = \sum_{n=1}^{\infty} C_{n-1}X^{n}$ $\frac{2}{2}$ 2-cn n X n-1 = $\frac{2}{2}$ cnn (n+1) X n n=6 27'= 2 cnn(n-1) X FALLA (MA)X" Xy" = = 2 Cn+1 (n+1)n Xn

2/ DIFF-LIGNINGSSISTEN AF 1. ORDEN LINETER OG HONOGEN X = A X , A E R X X E R N N=2 ELLRR 3 MPISH. (NHOMOGRN: X=AX+1, n:/R-> R RENOT KONTINVERT FUT, SATNING A FULOSTANOITE LONINI X(t)= (, X, (t) + ---+c, X, (+) HVOR X, - X TR A CINTART JAFM LESS : DVS C, X, (t) + --- + C, X, (t) =0 FUR ALLE +

(= - = (n = 0)

PA MATRIX-FURA $X(t)= \left[X_{1}(t)-X_{1}(t)\right] \left[\frac{C_{1}}{C_{n}} \right]$ Q(+): FUNDAMENTAL IH REGULFR MATRIX SATMING B GIVET It), X, ER LUSNING XLH MRD X(0)=X0 FR X(4)= ()()() Q(+) Q(0) -1 X. LESNINITR BLIS: AUR XH= DHC. X6)= 100 = X.6 C= TG X 12

HUULDAN FINORE VI X, - X,? X(x)=ext, x to cosnins (=) VS = \ edt V HS = Agy L RERNIERDI V RERNIERDI Av= dv (A-XI)V=0, V +0 (=) P(X)=0 HVOR P(1)= det (A-SI) MARAUTE-RISTISUR FOL AF GRAND N. λ_{1} , $\lambda_{n} \in \mathcal{C}$ an ();) = ALGEBRAISH MULTIPUCITAT gn Vilz GRONKMISUR --11-= ANTAL LINKART VAFA KKNVKUTURKR HURKNOK TIL X AT 14 gr(/2) 4 an (/c) GALDER

PROBLEMSPLLING; a) gn (ti) can (ti) MANGLAR LIN VAR LUSN, NGFR VIS SET 2.11 XX/H λi∈ C, Vi∈ C HVU AEIR":

RUNINGER (Xitt)= edit Vi LUSUINGER (Xitt)= edit Vi Re(Xi), In(Xi) OGSA CUSNINGER,

MEN REFULE.

FUSEAPEC

$$\dot{X} = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \times$$
 $\dot{X} = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \times$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

MANGURE UN VAFH LEGSNINGS

SETNING 2.10

 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 \dot{X}

X2 lx | z net + wet t VS = -net - wet + wet = (w-n)et - wet t HS = A net + A wet t For AUR t

ANTINE W [1]

(1)
$$AW = -W$$
, $W = [0]$

(1) $Au = W - u$
 $A + I | u = W [0]$ "LINEARSONA"

 $A + I | u = W [0]$, $u = [0]$

DVS $A | u | e^{-t} + [0] e^{-t} + [$

DAG 8 1/ SHAGILITET XZAX 2/ (NHON Z= AX+n, hutNOT. TRFINITION 2,28 ENHVER LUSNINGER a/ @ RR STABILT FOR +20: => |XH| = G FOR AUT +30 XIt) LUSNING (DVS (X(t)) - 700 FOR MINDST EN LUSNING b) USTADILT FLUERS System @ RR A-STABILT AVIS (DET RR STABILT 04) ENHVER LYSNINGE GAR MOD O NAR t- 00. XXX) LUSNING -> (XXX) ->0

OBS A-STABILT => STAPILT

SATNING 2.11 VISER AT EMHVER

LESNING ER EN LINEAR HONBINATION

AF LESNINGER PT FORMEN $b(t)e^{\lambda t} = P(t)e^{\alpha t}\left(\cos\left(\beta t\right) + i\sin(\beta t)\right)$ HVOR PER POL (AF GRAD = gn(1)-1)

OF HVOR $\lambda = \alpha + i\beta$ FR TERNIVERDI

FOR MATRICEN A.

DERMED

SATINING 238

FR A-STABILT (=) Re(1) LO FOR

ALLE FLAKINGED

FINHVER

SETWING 2.36

FULCENOR FUR KNYVER KGRNVARDO 1:

If Re $\lambda \leq 0$ if Re $\lambda = 0 \Rightarrow gn(\lambda) = an(i)$

KUSEMPRI I
$$A=\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$
 $\lambda=-1 \Rightarrow A-SMBILT$

KUSEMPRI 2 $A=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\lambda=0$, $A=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\lambda=0$, $A=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $\lambda=0$, $\lambda=0$, $\lambda=0$, $\lambda=0$
 $\lambda=0$, $\lambda=0$, $\lambda=0$
 $\lambda=0$, $\lambda=0$, $\lambda=0$
 $\lambda=0$

OPG: FOR HVILKE VARDIER AF BEIR KR @ A-STAGUT?

$$\det (A-\lambda t) = \lambda^4 + (b+1)\lambda^3 + (b+1)\lambda^2 + 2b\lambda + b^2 . . .$$

WOR 2.43 n=3WOR 2.43 n=3FOUNS. GROWING

WOR 1.11 WOR 2.44 AUR REPORK 1 P(X)= 14+9, 13+9212+93/ +94 NRYATIV REALDEL (=) il a, 70, a270, a370, 9470 04
i/ 2=det (a, a3) >0 iii/ D3-det (92 93) 70 0 0, 93) 70 KNJKMPKL 3 19KN $q_1 = b + 1$, $q_2 = b + 1$, $q_3 = 2b$, $q_4 = b^2$

1)
$$A - STABILT$$
 (E) (S)

1) $b \ge 0$

2) $b \ge 0$

2)

2/ ŽZAX + 4, 4 KRNOT

SRIVING 2.20 ×

FULDSTANDISK CERNINS

X(4)= XHON(+) + X, (+)

HVOR KHEX X. RR RN PARTIMU
LAR CLESNINS.

SETMING 2.20 HAR GENERAL LYSNI-NGSFURMEL, MEN LETTERE AT GRITK THE THE SEMPTE TO 4 $\dot{\chi} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times -e^{z+} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ CUSN ? FULDS TENDIGE X, (4)= [0] 04 x2(+)= [1] culsor TIL Handytour 54 5FM : XHON (4) = C, X, (4) + C, X, (4), C1, CER PARTIKULAR LESN Xo(t)= ezt H, H UBRKENOT, LOSNING (=) VS= 202× H HS = [00] & H - ext [2]

$$\begin{array}{ll}
\left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \\
H &= \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \\
= \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \\
= \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \\
= \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \\
= \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \\
= \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \\
= \left(\frac{1}{2}\right) & \left(\frac{$$

FURTERFRANKE DAG 9 / IKKR POTENSRAKKR MASUR FURIERRAKKR DRATAL AND 6. 1 DEFINITION (SE S. 138) EN FUNKTION f: 12 -> 18 FR T-PRECUDISH FUNNTUM MRO T70 SAFRAMT f(x+T)=f(x)FOR AUEX

1 MATZ T= 2TT SPERLUARN

ENSEMPER. COS(NX), SM(NX), ME/No (2) DEFINITION 6.1 LAD FIRM VARE 2TT-PARLODISM. DA DEFINARES FORFIR-REUNEN FOR F SUM FR(x)= 1 a0 + 2 (an cos(nx) + bn sn(nx)) (SURIMS SON J- FR.) Ch= f(x)codnx), n=0,bn= - f(x)sn(nx), n=1, by HALDES FURIER-HORFFICIENTERM

HVURFUR? f(x): = { a o + } (ak cos(kx) + besin(kc)) 4 ANTAG AT REPUREN FIR UNIFORM K (DRANTO KONT F) VHA SEMINI T. E f(x) cos(Ax) dx = (t d, cos(Ax)) LEVIN BIDRAG FOR 1=4 TILSVACENDE (fa) sn(nx) dx = # bn For AUX nEN

St UPVARMINISOPGAVERNE

EUSEMPEC ! fir 7 PR ZTT-PRRIODISH FUNKTION FORSURIFTRN GIVET VED $f(x) = \begin{cases} x, & x \in J - T, & T \\ x = T \end{cases}$ INTERVALIET I-TITT f(x)= X-2T, X & JT,3TT[$f(x) = X + i\pi, X \in J-3\pi, -\pi$

MAPLE

LAD of VARE 2TH-PERCODISH OH STYKKRYD DIFFRRRWTIAGEL:

(SK DRFINITION 6.13)

to at the bifferen AUK

bifferen AUK

bifferen AUK

f(x) = $\begin{cases} f_{i}(x), & x \in I, \\ f_{i}(x), & x \in I, \end{cases}$ to(x), XET,

DA GELDRA EGLGRUDA:

F-R ER PUTVIS KONVRAGENT

04

a/ f(x0)= FR(x0) NAR FRR WONT 1 XO T

6/ FREDER MEASURASINITEVEROL - //x + /x) / /// f(x

5/ FR(X0) (6)

5/ FR(X0) = GENNEMSNITS VERDI $= \frac{1}{2} \left(f(x_o^+) + f(x_o^-) \right)$ +1 var f(x) = 2, m f(x) $f(x_0^-) := lin f(x)$ SAMME ANTAGRUEN FR KOWT = KOROLLAR G. 17 HVIS f(x)= FR(x) FOR AUX X 69 FR K UNIFORMTO OBS DAGE & WUNT DAGE

UNIFORM K => SUMFUNKTION RONT (+ DISMONT -> IKKE UNIFORK)

KWENPRU 1 19EN

X=ntt, n+ P DISHONTIWVITKTS

FOR F

f(x) = FR(x) FOR ALLE X = AT,

$$f(T^{+}) = \lim_{X \to T^{+}} f(x) = -T$$

 $tt = f(t) = FR(t) = \frac{52(-1)^{n-1}}{n} sin(nt)$

DVS f(x)= FR(x) FOR AUX X (8)

SAFETT C=0

TRUNISHE ASPENTER

DEFINITION 6.2 EN FUNCTION F: PR-7 R KR LICK SAFRENT F(X) = F(X) FOR AUR XEIR

 $\frac{1}{1+1}$ $\frac{1}$

DEFINITION 6.3 EN FUNNTION FIRTER

FRUITT SAFRENT F(-X)=- F(X) FOR

AUG XEIR.

 $\chi^3, \chi^5, sin(n\chi)$

SAMING

1 LIGR FUNKTION × LIGR FUNKTION = LIGR FUT
2 LIGR -11- × 4LIGR FUNKTION = 4LIGR FUT
3 MLIGR -11- × VLIGR FUNKTION = LIGR FLACE

BRVIS for 3/ h(x)=f(x)y(x)f,g ULIGK h(-x) = (-f(x))(-g(x)) = f(x)g(x) = h(x)-> K 214F SATWING 6.6 i/ ANTH AT ER EN LIGH FUNHTION= ALLE by=0 of 9= = = To f (x)coshida ii/ ANTHE AT

FIRM ULLE FUNCTION =>

ALLE an =0 of bn = = T/of(x) sh(ax). huller = Sthexbeach MUCK = STHIXE.

MAPLE

(10)

DAG 10	
Y APPROUSIMATION AF FR	
Y FR PA WONPLFIXE FORM	
V KOR 6.17 VANTAG & ZT-PRO	(CP1)4,
TOWEVES DIFF OF WONT. DIT	47 001
AT f(x) = FR (x) +OR MEDICE	
or the FR UNIFORM.	\
5 (x)= ao + 2 (an (o)(nx) + bn)	17(NX))
Swa Fir ALLE	NZNo
1ª- Sz	
-6/	
GIAT GOO HVORDAN BRSTRAM	h) N:
$ f(x)-S_N(x) \leq \epsilon$?)
KUR G.A iv RUER BROG	RK)

VHA MAJUKANTRAKURA:

ANTAG FOR 4LLFR NEM | an (o)(nx) + bn sn (nx) | = Kn = 9(n) RUSRPRLVD g(n) = 1911 + 1611 VHA TRRUMTOULISHROFN, HUR 9: [1,00[-> [0,00[AFMG RR DIFF MRO (9'(X) & O (AFTAGENOE) DA HAR VI VHA 602 OLLAR 4.35 (+(x)-Sn(x)) = / 2 (x)dx. OPG 1 LOS SO GAY LE FUX N. tusempre 1 FRR 2TT-PFRR100154, LIGE 06 $f(x) = \begin{cases} \cos\left(\frac{x}{2}\right) & \text{for } x \in [0, \pi] \\ \sqrt{2}/2 & \text{for } x \in [\frac{\pi}{2}, \pi] \end{cases}$ IDKT F FR LIGK FRE KONT: (0) (Ty) = 12/2

FRE STK-VI) DIFF IORT (0) (7/2) 01 6/2 FRE

DIFF FOR ALLE X.

THE FOR ALLE X.

ALLE bn=0. WHA STEN 6.6

FR UNIFORM K

an= = To f(x) cos(nx)dx

 $=\frac{2}{\pi}\left[\int_{0}^{\pi/2}4\Re\left(\cos\left(\frac{x}{\lambda}\right)\cos(nx)dx\right]\right]$

+ St (oslax)dx

 $=\frac{\sqrt{2}}{\sqrt{2}}\frac{S_{11}(T^{2})}{\sqrt{2}}\frac{-2n\cos(T^{2})}{\sqrt{2}}$

(2n+1)(2n-1)

h= 0 SARTILFALOR

 $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{\pi (\pi + 4)}{2\pi}$

PRISTRM N:
$$|f(x)-S_{N}N| \leq \frac{1}{10}$$
 (5)

FOR ALLE X EIR.

NHO, $|g_{n}| \leq \frac{1}{17} \frac{1+2n}{n(2n+1)(2n+1)} = \frac{1}{7n(2n-1)}$
 $g(x) = \frac{1}{17x(2x+1)}$ [MAPLE]

ALTERNATIV: $0 \leq n-1$ FOR ALLE $n \geq 1$
 $|g_{n}| \leq \frac{1}{17x^{2}} = g(n)$, $g'(x) \geq 0$ FOR $|g_{n}| \leq \frac{1}{17}$
 $|f(x) - S_{N}(x)| \leq \frac{1}{17} \int_{N}^{\infty} \frac{1}{2} dx \leq \frac{1}{17} \int_{N}^{\infty} dx \leq \frac{1}{17} \int_{N}^$

$$f \sim FR(x) = \frac{a_0}{2} + \frac{g}{g} \left(a_n \left(\omega(nx) + b_n sh(nx) \right) \right)$$

HVOR

$$\alpha_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \quad n = 0, -\infty$$

$$b_{n-2} \perp \int_{-T}^{T} f(x) sn(nx) dx, n=1,-$$

$$e^{ix} + e^{ix} = 2\cos(x) \rightarrow$$

$$(0)(X) = \frac{e^{eX} + e^{eX}}{2}$$

TILSVARERNOR

Bringlusing

HY13 an, bn ER SK GHLOBR

1/ $C_n = C_n$ 2/ $a_n = C_n + C_n = 2 \operatorname{Re}(C_n)$ $b_n = i(C_n - C_n) = -2 \operatorname{In}(C_n)$ SE LEMMA 6.26.

[MAPLE

DAG 11 1) PARSKVAL'S SATTN 6.30 2/ OVERFURINGS FUNUTIONER H(s): (Day)(4:=y(n)) + a, y(n) + - + any = h u(t)= est, set LYSHINGGET & Y(x) = est H(s), st. SEW 1.25 SRW 1.27: LUSN V Dry = Reh XXXX 3/ FURITRRENKENTIDEN LEMMA 7.7 & n(t)= 5dn ent =1 LUSNING Y WIZ & dn H(in) eint or Zec , 121= 22 20

Y f 2TT-PRENODUR, MON, STK-VIS DIFF (2)

FUNLTION FOR LIGH SIN FOR

f(X)= 2 Che

KONVREGER UNIFORAT

KOROLUAR 6.17

PLANE VEHIDRER

 $x \cdot y = |x||y||\cos(x, 3)$ $x \cdot y = |x||y||\cos(x, 3)$ $x \cdot x = |x||^2 \ge 0$ $x \cdot x = |x||^2 \ge 0$ $x \cdot x = |x||^2 = 4$ $e_i \cdot e_i = |x||^2 = 4$ $e_i \cdot e_i = |x||^2 = 4$ $= |x||^2 = 4$ = |x||

2TT-PERCODISKE FAT $\frac{g_i F_i N_i T_i u N}{f \cdot g} = \frac{1}{2\pi i} \int_{-\pi}^{\pi} f(x) g(x) dx$ $f \cdot f = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) f(x) dx$ = 1 [[[f(x)] dx en = einx nel $e_n \cdot e_n = \begin{cases} 0 & n \neq n \\ 1 & n = n \end{cases}$ f (x)= 2 cn einx = 2 1cn? f.f = & Chenx - & Che = MM

SERVING 6.36 ANTHO AT PHANTEL CONTINUAL CONTIN = \aol + 1 \(\land \lan an, bell: = IT (x)2dx2 90 + 1 2(92+52)

EUSEMPRIFRA DAG 9 fame f 211-PRR100134 04 GIVET 120 f(x)2 X, XE [T,TT[PA INTERVALLET [-TT, TT] $\sim \frac{2}{2} \left(-1\right)^{n+1} SN(nx)$ f(x) + FF(x) (=) X=nT, n=Z) ALLE $a_{n}=0$, $b_{n}=\frac{7}{5}(-1)^{n+1}$ PARSEVAL) SRAN

2) \\ \lambda \frac{1}{n=1} \\ \lambda = \frac{7}{6} SPM V: BRSTEN Edin (Dxy)(4):= y(1) + 9, y(11-1)+ -GRADS DIFF-LIGN MEIN: Duy)(t) = 4(t) INHONOGEN ny"+cy+ky= (-4) k(t)=2 dneint F(t)

PARTIMULAR LIESW?

BKTRAGT PURST u(t)= est For (x)

Sta, SPRCIRCT S=in:

U(4) = cos(nt) + isn(nt)

GAT: y(t) = H(s) = exist Luswins (6) H(s) [5" + 9,5" + - + andest H(S) = P LEARANTERIOTISMI

POL

S = X ROD 1 P SATWING 1.25: ANTAG S7X ROD 博1 P(从, 一) y lt)= Htlest PARTIKULAR LYSN FOR STATION FERF SYAR) FOR U(t)= est (PAVIRKNINI)

EUSEMPEC 2 BOGEN BETRAGTER OLSA DIFF-LIGNINGER PR FIRMEN y-y= u+u P(1)=12-1 (=) l==1 THON(K)= CIET + CIET, CI, CIETR UPS: BESTA OKREFURINOFUT HG), 17±1 CLESNING INDSTET U(t)= est (PÁVIRKINING 4 04 y(4) = H(5) est H(S) [5] -1) est = [5+1/2st

H(s) = $\frac{1+5}{(1+s)(s-1)}$ = $\frac{1}{s-1}$, $s \neq \pm 1$

6PG BRSTRA FL NAR 4(+)=(054) (8) LIESNING: "KUMPLKING GETTEMETOPE" Re (eit) = (05 (t), 5=i. SATMIN(1. 2+ BETRACT @ 04 ANTAS a, -, an ER, Duy = n. hALDER Du Rey = Reu Du Imy = Inu Duly = Cu Hin lange Eco BEV() Duy = 4 Dry = 4 2 Duy = Duy + Duy = 4+ h = 2 Reu

EUSEMPRI 2 FORTSAT y=H(i)eil 5=0: = inter LUSNING TIL n=et y(+)2 - (+++)eit = - + (00(+) + + Sh(+) +i[-{(00(+)-{51nk]) u(t)= (a)(t) =) y(t)=-{cos(t)+Lih(t) Leson (PARTIKULER) ylt)= qe+qe+-+(cs(t) + f sn(t) (DIFF-LIGN FOR

y'-y=cos(t)-sn(t))

HVAP NED Lette 2 (4) (+1) - SIZ (+1) ? y letz 2 Re(H(i)eit) - In (H(i)kit) 3/ FR-MRTUORN Duy) (x)= u(t)= 2 dre N=-N Plin) 70 For AUR n & 2. ent int e eint H(in)ein H(-iN) & int H(in) eint Du (cy) = Cy Fur

Dn

4: dueint due (1) de ent duff(in)eint d H(-in)eint diff(in)eint SEWINS 1.23* $2/D_{1}(y_{1}) = h_{1}$ $D_{1}(y_{2}) = h_{2} = h_{2}$ Du(y, +y2) = 4,+42 9-Neint + -- + dient + -- + dive d-NH(-iN)e+ - +daH(int)ent - thet 4 dnH(n)e = 4 dn H(in)eint LEMMA 7.7

LIVAO MRO N-100 ? SATIVING 7.8 * ANTTAG 2 Idal K MAJURANTRANKE FOR U(t)= & dyent, dut ((U WONT OF UNIFORM K DVF STETNS. DA RR Y (X)= En-10 thin) eint PARTIKULFIR LUSN FOK (4) OBS ANTAG AT U RETEL =) dn = d-n 1 8th LEMMA 6.27 =) y tt) = \(\frac{2}{5} \) dn H(in) eint 018A REFL: Cn = dn H(in)

Cn=dn H(in)

Cn = dn H(in)

Cn = dn H(in)

DAG 12

1/ OVERF QROWS DRUTOR-FUNDATION

FOR $\dot{X} = AX + bh$. $h: R \rightarrow R$ urnor for Fundation

Kont Fundation

2/ OVERFOR INSTUNKTION FOR

\(\times = \frac{A}{X} + \frac{b}{y} \)

\(\times = \frac{A}{X} + \frac{A}{X} + \frac{b}{y} \)

\(\times = \frac{A}{X} + \frac{A}{X} + \frac{b}{y} \)

\(\times = \frac{A}{X} + \fra

UBRURNOT: X: R-> R"

ANTAG U(t)= est (PAVIRKNING EN)

PARTIKULAR CLESN Y(4)= H(s)est

$$\dot{X} = \begin{bmatrix} 5 & 3 \\ 9 & -1 \end{bmatrix} \times + \begin{pmatrix} -1 \\ 3 \end{pmatrix} \times \\ \dot{A} = 8, -4 \\ H(s) = - \begin{pmatrix} 5 - 3 \\ 9 & -1 - 3 \end{pmatrix} - 1 \begin{pmatrix} -1 \\ 3 \end{pmatrix}, 5 + 8, -9 \\ H(s) = - \begin{pmatrix} 5 - 3 \\ 9 & -1 - 3 \end{pmatrix} + 1 \begin{pmatrix} -1 \\ 3 \end{pmatrix} = 1 \begin{pmatrix} -1 \\ 3 \end{pmatrix} =$$

H(s)= 1 [3], 5 + 8, - 4 OPG: BRSTER PARTIKULER LOS TIL u(+)= 1+2(00 (+) LUSNINS . I/ FINORE LYSN # X, MRO4(t)= X MEDY LUSN: $X = X_1 + 2 \operatorname{Re}(X_1)$ 549TK SETUINS 1.23 og 1.27 i lærebogen $5=0 | x_1(t) = 4 | 3 |$ · S=i / u(t)= e =) X = 4(i) [3/eit

$$= \frac{1}{i+4} \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{it}$$

$$= \frac{1}{i+4} \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{it$$

DERMED

$$X(t)=X_{1}(t)+2X_{1}(t)$$

$$=\frac{1}{4}\left(\frac{-1}{3}\right)+2\left(\frac{-\frac{1}{4}(o)(t)-\frac{1}{12}(h)(t)}{\frac{1}{4}(o)(t)+\frac{3}{4}sh(t)}\right)$$

PARTIKULAR LEPSN FOR

h(E)= 1+2(a)(d)/

$$y = d^{2}x$$

$$y = d^{2}x$$

$$k \in \mathbb{R}^{2} \times \mathbb{R}$$

$$k \in \mathbb{R}^{2} \times \mathbb$$

OVERFORINGSFUNGTION: u(t)=est, 5+) x(t) = H(s)est LessNIN1 =) ylt)= dt H(s)este SNADY OVERFOR (NISFUNNTION) H(S) H(5)=-dT (A-ST) b 1 LAKEBOGKN

KUSENPEC 3 $\dot{X} = \begin{bmatrix} 5 & 3 \\ 9 & -1 \end{bmatrix} \times + \begin{bmatrix} -1 \\ 3 \end{bmatrix} \mathcal{L}$ Huan I/ d=(0) y = gtx $II/d=\begin{bmatrix}3\\1\end{bmatrix}$ OPG BESTER STATIONFRET SMAR (7)
HIRRANDR TIL PAVIRKNINGEN U(4) = e4.

 $H(4) = \frac{1}{8} \left[\frac{3}{3} \right] =$ X(t)z 1 [3] et PARTITULFAL LIESN y(t)= # [10] \[\langle \langl $=-\frac{1}{8}e^{4+}$ y (t)= [31] \frac{1}{8} [3]e4t 20 []

3/ F-R-METODEN LETIEMMA 7.71 LAD NEN. in + FRENCERDI FOR A YneZ SA GALLORE n(+)= & dreint y was do H(in) eint warn N=-N (STA-PTONERR SVAN!) ANTAG Z (dn) K MADORANT. RAVKR 2) n(+)2 g dreint WONT g (4) = 2 da H(in) eint Y REEL (=) dn= Jn thele EUSEMPEC 4 $\dot{X} = \begin{pmatrix} 53 \\ 9-1 \end{pmatrix} \times + \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ $y = (10) \times d = (0)$ STATIONARIT THE PHVIRMIN HERRINOR TL PAMPERNINGEN h(t)= 2 1 eos(1+) +1 an= 2. an= n2+1

conma 6.22 uttra 2 die $\frac{\alpha n}{2} = \frac{1}{2(\alpha^2 + 1)} / n = 1$ do = = = $d_{n} = \frac{1}{2} = \frac{1}{2(n^{2}+1)} = \frac{1}{2(n^{2}+1)}$ $u(t) = \frac{1}{2}$ $u(t) = \frac{1}{2}$ $u(t) = \frac{1}{2}$

$$H(s) = -\frac{1}{5+4}$$

$$H(in) = -\frac{1}{(n+4)} = \frac{in-4}{n^2+16}$$

$$H(6) = -\frac{1}{4}$$

$$J(t) = \frac{1}{2(n^2+1)} = \frac{in-4}{n^2+16} = \frac{in-4}{n^2+16}$$

OPL

SN (4) =
$$-\frac{1}{4} + \frac{1}{2}$$

BRSTVN N: $|y(t) - S_N(t)| \le 0.1$

AT MASURANT! $+ \frac{1}{4}$
 $y_n(t) = \frac{-4}{(n^2+1)(n^2+16)}$
 $|y_n(t)| = \frac{4}{(n^2+1)(n^2+16)}$
 $|y_n(t)| = \frac{4}{(n^2+1)(n^2+16)}$
 $|y_n(t)| = \frac{5n}{(n^2+1)(n^2+16)}$
 $|y_n(t)| = \frac{5n}{(n^2+1)(n^2+16)}$

IN 50.1 =) N25 A > 5 =) (8(t)-S\$(t)) = 0.1 4(.

RGO

FOURIFR TRANSFORM ATTOM PR W= 3 A SIMMERH HOTHER B KENDER A+ B KAN DEG PRUBLEM: A 09 B? BRSTEMME (MAPLE)

DEFINITION F. T. AF FUNKTION f: R -> C ER EN NI FUKTI J:R-) C GIVET VED OF $\hat{f}(\omega) = \frac{1}{k + k}$ BRTINGRUSE PA J: f TILHORER 2'= 2 g: R-> C/ / g(x)/dx <00% $\int_{-10}^{10} = \lim_{m \to +\infty} \int_{-10}^{\infty}$ 1) F: f -> f FIR LINFAR F(5)(W) = f(W). 2/ HVIS & IR DIFF 09 f(D) EL, SA ER F(f())(W)= (2Tiw) F()

 $f^{(i)} = (2\pi i \omega)^{i} \hat{f}$ BEVU [g x f x = [g x f x] - Sagical Folder f(f')= 500 e-12TTWX f'(X) dx = lin [gotfa]n n-700 [gotfa]n - So (-izTw) e-izTwk f (x) dx - History e (rtriw) f 3/ PLANCHERAL'S SETWINS $\int_{-\infty}^{\infty} |f(w)| dw = \int_{-\infty}^{\infty} |f(x)|^2 dx$ FIND TO TO TO 19 CHOW)

F:
$$L^2 \rightarrow L^2$$
 (SOMORFI:

BIJKCTIV $f^{-1}: L^2 \rightarrow L^2$, "Z#N4OK"-

BEVARENOK.

 $f^{-1}(f)bx)=f(x)=\int_{-10}^{10} e^{-2\pi i x} f(x) dx$

FUSINFRE

 $f(x)=\int_{-10}^{10} e^{-2\pi i x} dx = 1$
 $f(x)=\int_{-10}^{10} e^{-2\pi i x} dx$
 $f(x)=\int_{-10}^{10} e^{-2\pi i x} dx = 1$
 $f(x)=\int_{-10}^{10} e^{-2\pi i x} dx$
 $f(x)=\int_{-10}^{10} e^{-2\pi i x} dx$

#\begin{align*}
#\begin{align