数值计算方法

第三章

插值法

代数插值

- 定义3.1(代数多项式插值):
 - 设函数y=f(x)在[a,b]上
 - 已知 n+1个点 $a \le x_0 < x_1 < \dots < x_n \le b$ 的函数值

$$y_0, y_1, \ldots, y_n$$

■ 求一个次数不高于n的代数多项式

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

满足插值条件

$$P_n(x_i) = y_i i = 0, 1, \dots, n$$

■ 称 $P_n(x)$ 为f(x)的n次插值多项式

代数插值的唯一性

- 推论3.1: 当f(x)是次数不超过n的多项式时,其n次插值多项式就是f(x)本身
- 例3.1.1: 已知函数 $f(x)=56x^3+24x^2+5$ 在点 2^0 , 2^1 , 2^5 , 2^7 的函数值,求其三次插值多项式
 - ■解:对于次数不大于n的多项式,其n次插值多项式 就是其本身,所以其三次插值多项式为

$$P_3(x) = f(x) = 56x^3 + 24x^2 + 5$$

- 线性插值的定义
 - 线性插值也叫两点插值
 - 已知函数y = f(x)在给定互异点 x_0, x_1 上的函数值为 $y_0 = f(x_0), y_1 = f(x_1)$
 - 线性插值就是构造一个一次多项式

$$P_1(x) = ax + b$$

满足条件

$$P_1(x_0) = y_0 \qquad P_1(x_1) = y_1$$

- 过两点A、B的直线方程
 - ■点斜式

$$P_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$$

■ 对称式

$$P_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

■ 线性插值的一般表示方式

$$P_1(x) = l_0(x)y_0 + l_1(x)y_1$$

■ 其中, l₀(x)与l₁(x)分别是适合下列函数表的插值多 项式,又称为基本插值多项式或基函数

 $x_1 - x_0$

■ 一次插值多项式 $y = P_1(x)$ 可以由两个基本插值多项 式 $l_0(x)$ 、 $l_1(x)$ 与函数值 y_0 、 y_1 的线性组合来表示

■ 例3.2.1: 已知y = f(x)的函数表

$$\begin{array}{cccc} x & 1 & 3 \\ y & 1 & 2 \end{array}$$

求线性插值多项式,并计算x=1.5的函数值

■解:已知两点的线性插值多项式

$$P_1(x) = \frac{x-3}{1-3} \times 1 + \frac{x-1}{3-1} \times 2 = \frac{1}{2}(x+1)$$

$$f(1.5) \approx P_1(1.5) = 1.25$$

- 例3.2.2: 用线性插值求 $\sqrt{115}$ ($x^* = 10.723805$)
 - 解: 设 $y = \sqrt{x}$, 取 $x_0 = 100$, $x_1 = 121$ 则 $y_0 = 10$ $y_1 = 11$

$$\sqrt{115} \approx P_1(115) = 10 + \frac{11 - 10}{121 - 100}(115 - 100) = 10.71428$$

- ■总结
 - 线性插值只用两个点,计算方便,应用广泛,但插 值区间[a, b]要小,且变化要比较平稳,否则误差大

■ 抛物线插值定义

■ 设函数y=f(x) 在给定互异的自变量值 x_0, x_1, x_2 上对应的函数值为 y_0, y_1, y_2 ,二次插值就是构造一个二次多项式

$$P_2(x) = a_0 + a_1 x + a_2 x^2$$

使之满足

$$P_2(x_i) = y_i, \qquad i = 0, 1, 2$$

■ 抛物线插值的一般形式

$$P_2(x) = l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2$$

其中

$$\begin{cases} l_0(x_0) = 1 & l_0(x_1) = 0 & l_0(x_2) = 0 \\ l_1(x_0) = 0 & l_1(x_1) = 1 & l_1(x_2) = 0 \\ l_2(x_0) = 0 & l_2(x_1) = 0 & l_2(x_2) = 1 \end{cases}$$
(II)
$$(III)$$

由(I)式知, x_1,x_2 是 $l_0(x)$ 的根,所以有

$$l_0(x) = \lambda(x - x_1)(x - x_2)$$

再由

$$l_0(x_0) = \lambda(x_0 - x_1)(x_0 - x_2) = 1$$

得

$$\lambda = \frac{1}{(x_0 - x_1)(x_1 - x_2)}$$

所以

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

同理可得

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

因此

$$P_{2}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} y_{0} + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} y_{1}$$
$$+ \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} y_{2}$$

■ 例3.2.3: 已知y = f(x)的函数表

求抛物线插值多项式,并计算f(1.5)的近似值

■解:代入抛物线插值公式

$$P_2(x) = \frac{(x-3)(x-2)}{(1-3)(1-2)} 1 + \frac{(x-1)(x-2)}{(3-1)(3-2)} 2 + \frac{(x-1)(x-3)}{(2-1)(2-3)} (-1)$$

$$= 2.5x^2 - 9.5x + 8$$

 $f(1.5)\approx P_2(1.5)=-0.625$

- 例3.2.4: 用抛物插值求 $\sqrt{115}$,($x^* = 10.7238$)
 - 解: 设 $y = \sqrt{x}$, 函数列表为

$$x = 100 = 121 = 144$$

$$y = 10 = 11 = 12$$

$$\sqrt{115} \approx P_2(115) = \frac{(115 - 121)(115 - 144)}{(100 - 121)(100 - 144)} \times 10$$

$$+ \frac{(115 - 100)(115 - 144)}{(121 - 100)(121 - 144)} \times 11$$

$$+ \frac{(115 - 100)(115 - 121)}{(144 - 100)(144 - 121)} \times 12$$

$$= 10.7228$$

14

- 拉格朗日插值多项式的一般形式
 - 设连续函数y = f(x)在[a, b]上给定n + 1个不同节点:

$$x_0, x_1, ..., x_n$$

分别取函数值

其中
$$y_0, y_1, ..., y_n$$
 其中 $y_i = f(x_i)$ $i = 0, 1, 2, ..., n$

■构造一个次数不超过n的插值多项式

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

使之满足条件

$$P_n(x_i) = y_i$$
 $i = 0,1,2,...n$

■ 先求n次多项式 $l_k(x)$ k = 0, 1, ..., n,使

$$l_k(x_i) = \begin{cases} 1, & k = i \\ 0, & k \neq i \end{cases}$$

■ ◆

$$l_{k}(x) = \lambda(x - x_{0})(x - x_{1}) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_{n})$$

$$= \lambda \prod_{\substack{j=0 \\ j \neq k}}^{n} (x - x_{j})$$

• 由 $l_k(x_k) = 1$,得

$$\lambda = \frac{1}{(x_k - x_0)(x_k - x_1)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}$$

■因此有

$$l_k(x) = \frac{(x - x_0)(x - x_1)\cdots(x - x_{k-1})(x - x_{k+1})\cdots(x - x_n)}{(x_k - x_0)(x_k - x_1)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}$$

$$= \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{x - x_j}{x_k - x_j}$$

■ 即得 $P_n(x)$ 的表达式

$$P_n(x) = \sum_{k=0}^{n} l_k(x) y_k = \sum_{k=0}^{n} \left(\prod_{\substack{j=0 \ j \neq k}}^{n} \frac{x - x_j}{x_k - x_j} \right) y_k$$

- 例3.2.5: 求过三个点(0,1)、(1,2)、(2,3)的插值 多项式
 - 解:

$$P_2(x) = \frac{(x-1)(x-2)}{(0-1)(0-2)} \times 1 + \frac{(x-0)(x-2)}{(1-0)(1-2)} \times 2 + \frac{(x-0)(x-1)}{(2-0)(2-1)} \times 3 = x+1$$

■ 例3.2.6: 已知f(x)的观测数据

构造插值多项式

■解:四个点可以构造三次插值多项式,将数据代 入插值公式,有

$$P_3(x)=x^3-4x^2+3$$

■ 定义3.2: 把差f(x)- $P_n(x)$ 称为用插值多项式 $P_n(x)$ 代替f(x)的余项,误差或插值余项,记为:

$$R_n(x) = f(x) - P_n(x)$$

■ 定理3.2: 设 $f^{(n)}(x)$ 在区间[a, b]上连续, $f^{(n+1)}(x)$ 在[a, b]上存在, x_0 , x_1 ,..., x_n 是[a, b]上互异的节点,记插值问题的余项为 $R_n(x) = f(x) - P_n(x)$,那么,当 $x \in [a, b]$ 时,有如下估计

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega(x) \qquad \xi \in [a,b]$$

其中

$$\omega(x) = \prod_{j=0}^{n} (x - x_j)$$

- 例3.2.8: 设 $f(x)=x^4$,用余项定理写出节点一1,0,1,2的三次插值多项式
 - ■解:根据余项定理

$$f(x) - P_3(x) = \frac{f^{(4)}(\xi)}{4!} (x - x_0)(x - x_1)(x - x_2)(x - x_3)$$
$$x^4 - P_3(x) = x(x+1)(x-1)(x-2)$$

$$P_3(x) = 2x^3 + x^2 - 2x$$

■ 推论3.2: 设函数f(x)在[x_0,x_1]上二阶导数连续,并记 $M_2 = \max |f''(x)|$,则f(x)过点($x_0,f(x_0)$),($x_1,f(x_1)$)线性插值余项R(x)有上界估计式

$$|R_1(x)| \le \frac{M_2}{8} (x_1 - x_0)^2, \quad x \in [x_0, x_1]$$

- 例3.2.9: 取 x_0 =0, x_1 =1,求 $y=e^{-x}$ 的一次插值多项式并估计误差
 - 解: 根据条件可知, y₀=1, y₁=1/e

$$e^{-x} \approx P_1(x) = \frac{x-1}{0-1} \times 1 + \frac{x-0}{1-0} \times \frac{1}{e} = 1 - 0.6321206x$$

$$R(x) = e^{-x} - P_1(x) = \frac{e^{-\xi}}{2}x(x-1), \quad 0 < \xi < 1$$

$$|R(x)| \le \frac{(x_1 - x_0)^2}{8} \max_{0 \le x \le 1} |e^{-\xi}| \le \frac{1}{8} \max_{0 \le x \le 1} |e^{-\xi}| = 0.125$$

- 例3.2.10: 已知sin0.32=0.314567, sin0.34= 0.333487, sin0.36=0.352274, 用线性插值及抛物线插值求sin0.3367的值及估计误差
 - ■解:线性插值取靠近插值点0.3367的前两组数据进行计算,有

$$\sin 0.3367 \approx P_1(0.3367)$$

$$= \frac{0.3367 - 0.32}{0.34 - 0.32} \times 0.333487 + \frac{0.3367 - 0.34}{0.32 - 0.34} \times 0.314567 = 0.330365$$

余项
$$|R(x)| = \frac{M_2}{8} (x_1 - x_0)^2$$

其中 $M_2 = \max_{x_0 \le x \le x_1} |\sin x| = \sin 0.34 = 0.333487$
所以 $|R(x)| \le \frac{1}{8} \times 0.333487 \times 0.02^2 = 1.6674 \times 10^{-5}$

■ 抛物线插值有

$$\begin{split} \sin 0.3367 &\approx P_2(0.3367) \\ &= \frac{(0.3367 - 0.34)(0.3367 - 0.36)}{(0.32 - 0.34)(0.32 - 0.36)} \times 0.314567 \\ &+ \frac{(0.3367 - 0.32)(0.3367 - 0.36)}{(0.34 - 0.32)(0.34 - 0.36)} \times 0.333487 \\ &+ \frac{(0.3367 - 0.32)(0.3367 - 0.34)}{(0.36 - 0.32)(0.36 - 0.34)} \times 0.352274 = 0.330374 \end{split}$$

其余项为

$$|R(0.3367)| \le \frac{1}{3!} |f'''(\xi)(0.3367 - 0.32)(0.3367 - 0.34)(0.3367 - 0.36)|$$

其中

$$|f'''(\xi)| \le \max_{x_0 \le x \le x_1} |f'''(x)| = \max |-\cos x| = \cos 0.32 = 0.949235$$

$$|R(0.3367)| \le \frac{1}{6} \times 0.949235 \times 0.0167 \times 0.0033 \times 0.0233 = 0.2 \times 10^{-6}$$

■ 例3.2.11: 给定函数y=lnx在两点10、11的值如下表,试用线性插值求ln10.5的近似值,并估计截断误差

x	10	11
y	2.303	2.398

■ 解:

$$P_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

$$f(x)=\ln x$$
, $x_0=10$, $x_1=11$, $x=10.5$

$$\ln 10.5 \approx P_1(10.5) = \frac{10.5 - 11}{10 - 11} \times 2.303 + \frac{10.5 - 10}{11 - 10} \times 2.398 = 2.3505$$

$$f'(x) = \frac{1}{x}, \ f''(x) = -\frac{1}{x^2} \max_{10 \le \xi \le 11} |f''(\xi)| \le 1/10^2 = 0.01$$

$$|R_1(10.5)| \le \frac{0.01}{2!} |(10.5 - 10)(10.5 - 11)| = 0.00125$$

29

■ 定义3.2: 设有函数f(x)以及自变量的一系列互不相等的 $x_0, x_1, ..., x_n$ (即在 $i \neq j$ 时, $x_i \neq x_j$) 的函数值 $f(x_i)$,称

$$\frac{f(x_j) - f(x_i)}{x_i - x_i} \qquad (i \neq j)$$

为f(x)在点 x_i, x_j 处的一阶差商,并记作 $f[x_i, x_j]$ 又称

$$f[x_i, x_j, x_k] = \frac{f[x_j, x_k] - f[x_i, x_j]}{x_k - x_i} \qquad i \neq k$$

为f(x)在点 x_i, x_j, x_k 处的二阶差商一般,称

$$f[x_0, x_1, \dots x_n] = \frac{f[x_1, x_2, \dots x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

为f(x)在点 $x_0, x_1, ..., x_n$ 处的n阶差商

■ 例如:

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
$$f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

- ■高阶差商由比它低一阶的两个差商组合而成
- 一个节点时的函数值 $f(x_0)$ 、 $f(x_1)$ 、…为零阶差商 $f(x_0)$ 、 $f(x_1)$

■差商的计算顺序

x_i	y_i	一阶差商	二阶差商	三阶差商	四阶差商
$\boldsymbol{x_0}$	$f(x_0)$				
x_1	$f(x_1)$	$f[x_0, x_1]$			
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f(x_3)$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
x_4	$f(x_4)$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0,,x_4]$
•	•	•	•	•	

- 由差商定义可知: 高阶差商是两个低一阶差商的差 商
- 任一个*i*阶差商的值是一个分式,其分子为所求差商 左侧的数减去左上侧的数,分母为所求差商同行最 左侧的节点减去由它往上数第*i*个节点值

牛顿插值公式

- 牛顿插值公式的建立
 - 由差商定义可知二次多项式的表示形式为

$$P_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

■ n阶牛顿插值公式

$$\begin{cases} f(x) = f(x_0) + (x - x_0) f[x, x_0] \\ f[x, x_0] = f[x_0, x_1] + (x - x_1) f[x, x_0, x_1] \\ f[x, x_0, x_1] = f[x_0, x_1, x_2] + (x - x_2) f[x, x_0, x_1, x_2] \\ & \cdots \\ f[x, x_0, \dots x_{n-1}] = f[x_0, x_1, \dots x_n] + (x - x_n) f[x, x_0, x_1, \dots x_n] \end{cases}$$

牛顿插值公式

■ 将第二个式子两端乘以($x-x_0$),第三个式子两端乘以($x-x_0$)($x-x_1$),…余者类推,最后一个式子两端乘以($x-x_0$)($x-x_1$),…($x-x_{n-1}$),并将全部式子加起来有

$$f(x) = f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2]$$

$$+ \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots x_n]$$

$$+ (x - x_0) (x - x_1) \dots (x - x_n) f[x, x_0, x_1, \dots, x_n]$$

$$N_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$$
$$+ \dots + (x - x_0)(x - x_1) \dots (x - x_{n-1})f[x_0, x_1, \dots x_n]$$

牛顿插值公式

$$R_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) f[x, x_0, \cdots, x_n]$$

■ 则

$$f(x) = N_n(x) + R_n(x)$$

■ 其中 $N_n(x)$ 称为n次牛顿插值多项式, $R_n(x)$ 是截断误差

■ 牛顿插值的特点

- 牛顿插值多项式 $N_n(x)$ 的次数不超过n次,项数不超过n+1项,各项系数是差商表上对角线的各阶差商值
- $N_n(x)$ 满足插值条件,在节点上 $f(x_i) = N_n(x_i)$
- 增加一个节点时, $N_n(x)$ 只需增加一项, $N_n(x)$ 原有各项均不变

$$N_1(x) = f(x_0) + f[x_0, x_1](x - x_0)$$

$$N_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

$$N_{k+1}(x) = N_k(x) + (x - x_0)(x - x_1) \cdots (x - x_k) f[x_0, \dots, x_k, x_{k+1}]$$

■ 例3.4.1: 已知函数表

x	1	3	2
f(x)	1	2	-1

求牛顿插值多项式,并计算x=1.5时的函数值

■解:列出差商表

x	y	一阶差商	二阶差商	因子
1	1			1
3	2	0.5		<i>x</i> -1
2	—1	3	2.5	(x-1)(x-3)

$$N(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

= 1 + 0.5(x - 1) + 2.5(x - 1)(x - 3)
= 2.5x² - 9.5x + 8

■ $f(1.5)\approx N_2(1.5)=-0.625$

- 例3.4.2: 已知函数f(x)在节点x=0,1,2,4处的函数值f(x)分别是3,6,11,51,求二次和三次牛顿插值多项式,并计算f(0.5)的近似值
 - ■解:根据给定的函数值构造差商表

x	у	一阶差商	二阶差商	三阶差商
0	3			
1	6	3		
2	11	5	1	
4	51	20	5	1

■ 二次牛顿插值多项式选最接近0.5的三个节点组成 ,即

$$N_2(x) = 3 + 3x + x(x-1) = x^2 + 2x + 3$$

由此,有

$$f(0.5)\approx N_2(0.5)=4.25$$

■ 三次牛顿插值多项式

$$N_3(x) = N_2(x) + (x-0)(x-1)(x-2) = x^3 - 2x^2 + 4x + 3$$

$$f(0.5)\approx N_3(0.5)=4.625$$

■ 例3.4.3: 已知x = 0, 2, 3, 5,对应的函数值为y = 1, 3, 2, 5,作三次牛顿插值多项式

■解:作差商表

x	У	一阶差商	二阶差商	三阶差商
0	1			
2	3	1		
3	2	-1	-2/3	
5	5	3/2	5/6	3/10

$$N_3(x) = 1 + x \cdot 1 + x(x-2)\left(-\frac{2}{3}\right) + x(x-2)(x-3) \cdot \frac{3}{10}$$

- 分段插值法
 - ■将被插值函数逐段多项式化
 - 将插值区间[a, b]分段

$$a = x_0 < x_1 < ... < x_n = b$$

- 再在每个子段 $[x_i, x_{i+1}]$ 上构造插值多项式
- 然后将每个子段上的多项式连接 ,作为区间[a,b] 上的插值函数,这样构造出来的插值函数是分段多项式
- 分段插值法的特点

- ■局部性质:如果修改某个数据,那么插值曲线仅仅 在某个局部范围内受到影响
- 代数插值却会影响到整个插值区间
- 分段线性插值
 - 设函数y = f(x)在区间[a, b]上取节点

$$a = x_0 < x_1 < \dots < x_n = b$$

及其函数值 $y_i = f(x_i)$, i = 0, 1, ..., n

■ 连接相邻两点 (x_i, y_i) 和 (x_{i+1}, y_{i+1}) 作一折线函数S(x),则S(x)满足

- (1)S(x)在[a,b]上连续
- $(2)S(x_i)=y_i$, i=0,1,...,n
- (3)S(x)在每个子段 $[x_i,x_{i+1}]$ 是线性函数
- 称折线函数S(x)为分段线性插值函数, S(x)在子段 $[x_i,x_{i+1}]$ 上有

$$S(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} y_i + \frac{x - x_i}{x_{i+1} - x_i} y_{i+1} = l_i(x) y_i + l_{i+1}(x) y_{i+1}$$

$$x_i \le x \le x_{i+1}$$

■ 插值节点的选择

- 如果插值点x位于某两个插值节点 x_{k+1} 和 x_k 之间,那么自然就取这两个节点进行内插,令公式中的下标i=k
- 如果x在 x_0 的左侧,取最靠近它的 x_0 和 x_1 作为插值节点,这时i=**O**
- 当x位于 x_n 的右侧时,取最靠近它的 x_{n-1} 和 x_n 作为插值节点,则令i=n-1

■ 因此节点的选择方法可归纳如下

$$i = \begin{cases} 0, & x \le x_0 \\ k, & x_k < x \le x_{k+1} (0 \le k \le n-1) \\ n-1, & x > x_n \end{cases}$$

- 分段线性插值的表示
 - 在区间[a,b]上可表示为

$$S(x) = \sum_{i=0}^{n} l_i(x) y_i, \qquad a \le x \le b$$

其中

$$l_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, & x_{i-1} \leq x \leq x_{i} \\ \frac{x - x_{i+1}}{x_{i} - x_{i+1}}, & x_{i} \leq x \leq x_{i+1} \\ 0, & & & \\ \hline 0, & & & \\ \hline \end{cases}$$

■ 对于 $y_i = f(x_i)$, i = 0, 1, ..., n的被插值函数f(x),在子段 $[x_i, x_{i+1}]$ 上有误差估计式

$$|f(x) - S(x)| \le \frac{h_i^2}{8} \max_{x_i \le x \le x_{i+1}} |f''(x)|$$

- 例3.6.1: $求 f(x) = x^2 \text{在}[a, b]$ 上的分段线性插值函数S(x)
 - 解: 取 $h = \frac{b-a}{n}$,分点 $x_i = a + ih$,i = 0, 1, ..., n ,在每个子段[x_i , x_{i+1}]上构造插值基函数

$$l_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, & x_{i-1} \leq x \leq x_{i} \\ \frac{x - x_{i+1}}{x_{i} - x_{i+1}}, & x_{i} \leq x \leq x_{i+1} \\ 0, & \text{ \Restriction} \\ \end{cases}$$

$$S(x) = \sum_{i=0}^{n} x_i^2 l_i(x)$$

$$|R(x)| \le |\frac{h^2}{8}f''(\xi)| = 2 \times \frac{h^2}{8} = \frac{h^2}{4}$$

■ 例3.6.2: 已知函数的一组数据

x_i	0	1	2
y_i	1	0.5	0.2

求分段线性插值函数,并计算f(1.5)的近似值

■ 解:

$$x \in [0,1] \qquad P(x) = \frac{x-1}{0-1} \times 1 + \frac{x-0}{1-0} \times 0.5 = 1 - 0.5x$$
$$x \in [1,2] \qquad P(x) = \frac{x-2}{1-2} \times 0.5 + \frac{x-1}{2-1} \times 0.2 = 0.8 - 0.3x$$

■有分段线性插值函数

$$P(x) = \begin{cases} 1 - 0.5x & x \in [0,1] \\ 0.8 - 0.3x & x \in [1,2] \end{cases}$$

$$f(1.5) \approx P(1.5) = 0.8 - 0.3 \times 1.5 = 0.35$$