

Designing a Program

- Programs must be designed before they are written
- Program development cycle:
 - Design the program
 - Write the code
 - Correct syntax errors
 - Test the program
 - Correct logic errors

is an imprint o

PEARSON Copyright® 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Designing a Program (cont'd.)

- Design is the most important part of the program development cycle
- Understand the task that the program is to perform
 - •Work with customer to get a sense what the program is supposed to do
 - Ask questions about program details
 - Create one or more software requirements

ddison-Wesley an imprint of

ON Copyright® 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More About Data Output

Designing a Program (cont'd.)

- Determine the steps that must be taken to perform the task
 - Break down required task into a series of steps
 - Create an algorithm, listing logical steps that must be taken
- Algorithm: set of well-defined logical steps that must be taken to perform a task

Addison-Wesley is an imprint of

PEARSON CONTRACTOR DE LA CONTRACTOR DE L

Pseudocode

- Pseudocode: fake code
 - Informal language that has no syntax rule
 - Not meant to be compiled or executed
 - Used to create model program
 - No need to worry about syntax errors, can focus on program's design
 - Can be translated directly into actual code in any programming language

Addison-Wesl is an imprint

PEARSON Copyright© 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesl

Flowcharts

- Flowchart: diagram that graphically depicts the steps in a program
 - Ovals are terminal symbols
 - Parallelograms are input and output symbols
 - Rectangles are processing symbols
 - Symbols are connected by arrows that represent the flow of the program

Addison-Wesle is an imprint o

N Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Input, Processing, and Output

- Typically, computer performs threestep process
 - Receive input
 - •Input: any data that the program receives while it is running
 - Perform some process on the input
 - Example: mathematical calculation
 - Produce output

Addison-Wesle is an imprint of

EARSON Copyright© 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Displaying Output with the print Function

- <u>Function</u>: piece of prewritten code that performs an operation
- <u>print function</u>: displays output on the screen
- <u>Argument</u>: data given to a function
 - Example: data that is printed to screen
- Statements in a program execute in the order that they appear

Addison-Wesl is an imprint

wesley Serom top to bottom

PEARSO

Copyright© 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Strings and String Literals

- String: sequence of characters that is used as data
- String literal: string that appears in actual code of a program
 - Must be enclosed in single (') or double (") quote marks
 - String literal can be enclosed in triple quotes (" or " " ")
 - Enclosed string can contain both single and double quotes and can have multiple lines

PEARS

Copyright@ 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Comments

- <u>Comments</u>: notes of explanation within a program
 - Ignored by Python interpreter
 - Intended for a person reading the program's code
 - Begin with a # character
- End-line comment: appears at the end of a line of code
 - Typically explains the purpose of that line

Addison-Wesler is an imprint of

PEARSON Copyright® 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wes

Variables

- Variable: name that represents a value stored in the computer memory
 - Used to access and manipulate data stored in memory
 - A variable references the value it represents
- Assignment statement: used to create a variable and make it reference data
 - @General format is variable = expression
 - Example: age = 29
 - <u>Assignment operator</u>: the equal sign (=)

Variables (cont'd.)

- In assignment statement, variable receiving value must be on left side
- A variable can be passed as an argument to a function
 - Variable name should not be enclosed in quote marks
- You can only use a variable if a value is assigned to it

Variable Naming Rules

- Rules for naming variables in Python:
 - Variable name cannot be a Python key word
 - Variable name cannot contain spaces
 - First character must be a letter or an underscore
 - After first character may use letters, digits, or underscores
 - Variable names are case sensitive
- Variable name should reflect its use

Displaying Multiple Items with the print Function

- Python allows one to display multiple items with a single call to print
 - Items are separated by commas when passed as arguments
 - Arguments displayed in the order they are passed to the function
 - Items are automatically separated by a space when displayed on screen

Variable Reassignment

- Variables can reference different values while program is running
- Garbage collection: removal of values that are no longer referenced by variables
 - Carried out by Python interpreter
- A variable can refer to item of any type
 - Variable that has been assigned to one type can be reassigned to another type

Numeric Data Types, Literals, and the str Data Type

- <u>Data types</u>: categorize value in memory
 - e.g., int for integer, float for real number, str used for storing strings in memory
- Numeric literal: number written in a program
 - No decimal point considered int, otherwise, considered float
- Some operations behave differently depending on data type

Reassigning a Variable to a **Different Type**

A variable in Python can refer to items of any type

Figure 2-7 The variable x references an intege ▶ 99 Figure 2-8 The variable x references a string Take me to your leader

Reading Input from the **Keyboard**

- Most programs need to read input from the user
- Built-in input function reads input from keyboard
 - Returns the data as a string
 - Format: variable = input(prompt)
 - eprompt is typically a string instructing user to enter a value
 - Does not automatically display a space after the prompt

Reading Numbers with the input Function

- input function always returns a string
- Built-in functions convert between data types
 - mint(item) converts item to an int
 - float (item) converts item to a float
 - Nested function call: general format: function1(function2(argument))
 - value returned by function2 is passed to function1
 - Type conversion only works if item is valid numeric value, otherwise, throws exception

Performing Calculations

- Math expression: performs calculation and gives a value
 - Math operator: tool for performing calculation
 - Operands: values surrounding operator Variables can be used as operands
 - Resulting value typically assigned to variable
- Two types of division:
 - operator performs floating point division
 - // operator performs integer division

Positive results truncated, negative rounded away from zero

Operator Precedence and Grouping with Parentheses

- Python operator precedence:
 - 1. Operations enclosed in parentheses
 - Forces operations to be performed before others
 - 2. Exponentiation (**)
 - 3. Multiplication (*), division (/ and //), and remainder (%)
 - 4. Addition (+) and subtraction (-)
- Higher precedence performed first
- Same precedence operators execute from left to right

The Exponent Operator and the Remainder Operator

- Exponent operator (**): Raises a number to a power
 - ⊗x ** y = xy
- Remainder operator (%): Performs division and returns the remainder
 - a.k.a. modulus operator
 - e.g., 4%2=0, 5%2=1
 - Typically used to convert times and distances. and to detect odd or even numbers

Converting Math Formulas to Programming Statements

- Operator required for any mathematical operation
- When converting mathematical expression to programming statement:
 - May need to add multiplication operators
 - May need to insert parentheses

Addison-Wesle is an imprint o

Conviolatifi 2015 Pearson Education Inc. Publishing as Pearson Addison-Wesley

Mixed-Type Expressions and Data Type Conversion

- Data type resulting from math operation depends on data types of operands
 - Two int values: result is an int
 - Two float values: result is a float
 - int and float: int temporarily converted to float, result of the operation is a float
 - Mixed-type expression
 - Type conversion of float to int causes truncation of fractional part

PEARSON

Considerate COLOR Description for the Publisher Description Western We

Breaking Long Statements into Multiple Lines

- Long statements cannot be viewed on screen without scrolling and cannot be printed without cutting off
- Multiline continuation character (\):
 Allows to break a statement into multiple lines
 - Example:

print('my first name is',\
first name)

is an imprint of

Copyright® 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More About Data Output

- print function displays line of output
 - Newline character at end of printed data
 - Special argument end='delimiter' causes print to place delimiter at end of data instead of newline character
- print function uses space as item separator
 - Special argument sep='delimiter' causes
 print to use delimiter as item separator

Addison-Wesle is an imprint of

N Copyright© 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More About Data Output (cont'd.)

- Special characters appearing in string literal
 - Preceded by backslash (\)
 - Examples: newline (\n), horizontal tab (\t)
 - Treated as commands embedded in string
- When + operator used on two strings in performs string concatenation
 - Useful for breaking up a long string literal

Addison-Wesle is an imprint o

Consideration and the second s

Formatting Numbers

- Can format display of numbers on screen using built-in format function
 - Two arguments:
 - Numeric value to be formatted
 - Format specifier
 - Returns string containing formatted number
 - Format specifier typically includes precision and data type
 - Can be used to indicate scientific notation, comma separators, and the minimum field width used to display the value

is an imprint of

display the value

Formatting Numbers (cont'd.)

- The % symbol can be used in the format string of format function to format number as percentage
- To format an integer using format function:
 - Use d as the type designator
 - Do not specify precision
 - Can still use format function to set field width or comma separator

Addison-Wesle is an imprint of

Summary

- This chapter covered:
 - The program development cycle, tools for program design, and the design process
 - Ways in which programs can receive input, particularly from the keyboard
 - Ways in which programs can present and format output
 - Use of comments in programs
 - Uses of variables

• Tools for performing calculations in programs

RSON Convigatifit 2015 Pages on Education, Inc. Publishing as Pages on Addison-Waste