Limit Rules: Assume that $\{a_n\}, \{b_n\}$ are convergent.

- $1. \lim_{n \to \infty} ca_n =$
- $2. \lim_{n \to \infty} a_n + b_n =$
- $3. \lim_{n \to \infty} a_n b_n =$
- $4. \lim_{n \to \infty} a_n b_n =$
- $5. \lim_{n \to \infty} \frac{a_n}{b_n} =$
- 6. If f is continuous, then $\lim_{n\to\infty} f(a_n) =$

Examples: Calculate

- $\bullet \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{3}$
- $\bullet \lim_{n \to \infty} \frac{n + 2n^2}{n^2 + 4}$
- $\lim_{n\to\infty} f\left(\frac{1}{n}\right)$, where $f(x) = x^3$.
- $\bullet \lim_{n\to\infty} e^{\frac{1}{n}}$

Squeeze Theorem: If $a_n \leq b_n \leq c_n$ for $n \geq N$ and $\lim_{n \to \infty} a_n = L$ and

 $\lim_{n\to\infty} c_n = L, \text{ then } \underline{\hspace{1cm}}.$

Graphically:

Example: Find $\lim_{n\to\infty} \frac{1}{n} \cos(n)$.

Example: Find $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$.

We say that $\{a_n\}$ is monotone increasing if	
We say that $\{a_n\}$ is monotone decreasing if	
We say that $\{a_n\}$ is bounded from above if	
We say that $\{a_n\}$ is bounded from below if	

Monotone convergence result:

If $\{a_n\}$ is monotone increasing and bounded from above, then $\{a_n\}$ is ______.

If $\{a_n\}$ is monotone decreasing and bounded from below, then $\{a_n\}$ is ______.

Example: Decide if $\{\frac{n}{n+1}\}$ converges.

Example: Let $a_1 = 2$ and define $a_n = \frac{a_{n-1}+6}{2}$ for all n > 1.

Decide if $\{a_n\}$ converges.