Homework 5

Kevin Guillen MATH 202 — Algebra III — Spring 2022

Problem 14.2.7 Determine all the subfields of the splitting field of $x^8 - 2$ which are Galois over \mathbb{Q} .

Proof. Let K refer to the splitting field of the given polynomial. We know by the Fundamental Theorem of Galois Theory that for every subfield E of K, there is a corresponding subgroup H of the Galois group which fixes E. Which also gives us that E will be Galois over $\mathbb Q$ if and only if H is normal. To assist with this problem we can look at the last 2 lattice diagrams given at the end of this section chapter.

We know the subgroups of index 2 are normal and that the normality of subgroups of order 2 can be easily checked,

$$\sigma \left\langle \tau \sigma^{2k} \right\rangle \sigma^{-1} = \left\langle \tau \sigma^{2k+2} \right\rangle \neq \left\langle \tau \sigma^{2k} \right\rangle$$

meaning that these subgroups are not normal, but $\langle \sigma^4 \rangle$ is the center so it is normal. Working with the subgroups of order 4 and conjugating them all by σ ,

$$\begin{split} \sigma \left\langle \tau \sigma^{3} \right\rangle \sigma^{-1} &= \sigma \left\langle \tau \sigma \right\rangle \sigma^{-1} \\ \sigma \left\langle \tau \sigma \right\rangle \sigma^{-1} &= \sigma \left\langle \tau \sigma^{3} \right\rangle \sigma^{-1} \\ \sigma \left\langle \sigma^{4}, \tau \right\rangle \sigma^{-1} &= \left\langle \sigma^{4}, \tau \sigma^{2} \right\rangle \\ \sigma \left\langle \sigma^{4}, \tau \sigma^{2} \right\rangle \sigma^{-1} &= \left\langle \sigma^{4}, \tau \right\rangle \end{split}$$

we see that none of them are normal. Giving us that the only subgroup of order 4 that is invariant to conjugation by σ is $\langle \sigma^2 \rangle$. Also note that $\tau \sigma^2 \tau = \sigma^6 \in \langle \sigma^2 \rangle$, therefore $\langle \sigma^2 \rangle$ is normal.

So in all we have the normal subgroups of the Galois group to be

$$Gal(K/F), 1, \left\langle \sigma^2 \right\rangle, \left\langle \sigma^4 \right\rangle, \left\langle \sigma^2, \tau \sigma^3 \right\rangle, \left\langle \sigma^2, \tau \right\rangle, \text{ and } \left\langle \sigma \right\rangle.$$

Using the lattice diagrams given to us at the end of the chapter we see the corresponding subfields of K which are Galois over $\mathbb Q$ are precisely (on the left),

$$\begin{split} \mathbb{Q} &\longleftrightarrow \mathsf{Gal}(\mathsf{K}/\mathsf{F}) \\ \mathsf{K} &\longleftrightarrow 1 \\ \mathbb{Q}(\mathsf{i}, \sqrt[4]{2}) &\longleftrightarrow \left\langle \sigma^2 \right\rangle \\ \mathbb{Q}(\mathsf{i}, \sqrt{2}) &\longleftrightarrow \left\langle \sigma^4 \right\rangle \\ \mathbb{Q}(\sqrt{-2}) &\longleftrightarrow \left\langle \sigma^2, \tau \sigma^3 \right\rangle \end{split}$$

$$\mathbb{Q}(\sqrt{2}) \longleftrightarrow \left\langle \sigma^2, \tau \right\rangle$$
$$\mathbb{Q}(\mathfrak{i}) \longleftrightarrow \left\langle \sigma \right\rangle.$$

Problem 14.2.8 Suppose K is Galois extension of F of degree p^n for some prime p and some $n \ge 1$. Show there are Galois extensions of F contained in K of degrees p and p^{n-1} .

Proof. Because K is a Galois extension of F of degree p^n we know that its Galois group will be of order p^n . We know from Math 200 / Group Theory, that a group of order p^n will have normal subgroups of order p^k where k = 0, ..., n. Using this we know then there are normal subgroups of the Galois group of order p^{n-1} and p, and by the correspondence given to us from the Fundamental Theorem of Galois Theory, we have that there must exist corresponding subfields of K which are Galois extensions of F and of degree p and p^{n-1} .

Problem 14.2.13 Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3 then all the roots of the cubic are real.

Proof. Let $p(x) \in \mathbb{Q}[x]$ be of degree 3 (cubic) and for let us assume that is has a complex root. The Galois group has a subgroup generated by complex conjugation due to this complex root. This subgroup is $\mathbb{Z}/2\mathbb{Z}$ which isn't $\mathbb{Z}/3\mathbb{Z}$, meaning then that the Galois group of p(x) can't be $\mathbb{Z}/3\mathbb{Z}$. Therefore if the Galois group is the cyclic group of order 3 then all the roots of p(x) must be real.

Problem 14.3.3 Prove that an algebraically closed field must be infinite.

Proof. Let F be a finite field. Let us consider a polynomial $p(x) \in F[x]$ specifically,

$$p(x) = 1 + \prod_{\alpha \in F} (x - \alpha).$$

It is clear that this p(x) is indeed in F[x] since all its coefficients are in F. We have by Ring Product with zero that $\prod_{\alpha \in F} (x - \alpha) = 0$ for all $x \in F$. Meaning that p(x) = 1 for all $x \in F$. Meaning F is not algebraically closed. Therefore an algebraically closed field must be an infinite field.

Problem 14.3.4 Construct the finite field of 16 elements and find a generator for the multiplicative group. How many generators are there?

Proof. Consider \mathbb{F}_2 . We want to find an irreducible polynomial of degree 4 in order to help construct this field of 16 elements. We know polynomials like these though must be factors of $x^{2^4} - x$, giving us x, x - 1, and $x^2 + x + 1$ which are degree less than 4. Therefore the polynomial of degree 4 needed can't be divided by the linear polynomials above (0 and 1 are not roots), and must not be divisible by $x^2 + x + 1$. It is clear a degree 4 polynomial meeting these requirements is

$$p(x) = x^4 + x^3 + x^2 + x + 1$$

, this let's us then construct,

$$\mathbb{F}_{16} \cong \mathbb{F}_2[x]/(p(x))$$

We see that x unfortunately does not generate the multiplicative group of \mathbb{F}_{16} since,

$$(x^5 - 1) = (x + 1)(x^4 + x^3 + x^2 + x + 1) = 0$$

giving us that $x^5 = 1$. Let us consider x + 1 though, we note that,

$$(x+1)^3 = x^3 + x^2 + x + 1 = x^4$$

therefore $\langle x \rangle = \langle x^4 \rangle \subseteq \langle x+1 \rangle$. Now note that $\langle x \rangle = x^k$ for $k=0,\ldots,4$, meaning $x+1 \notin \langle x \rangle$, therefore $\langle x+1 \rangle$ is a strictly large subgroup than $\langle x \rangle$, but the only bigger subgroup is \mathbb{F}_{16}^{\times} . Giving us that x+1 is a generator of the multiplicative group.

From here we know all the other generators are simply $(x + 1)^k$ where k is relatively prime to 15, this is given by the Euler's Totient function, $\varphi(15) = 8$. Meaning we have 8 generators in this multiplicative group.

Problem 14.3.8 Determine the splitting field of the polynomial $x^p - x - a$ over \mathbb{F}_p where $a \neq 0$, $a \in \mathbb{F}_p$. Show explicitly that the Galois group is cyclic. [Show $\alpha \mapsto \alpha + 1$ is an automorphism.] Such an extension is called an Artin-Schreier extension.

Proof. Let $p(x) = x^p - x - a$, and let α be a root of p(x). Notice now though,

$$p(\alpha+1) = (\alpha+1)^p - (\alpha+1) - \alpha$$
 Apply Prop. 35 from 13.5
$$= \alpha^p + 1^p - \alpha - 1 - \alpha$$

$$= \alpha^p - \alpha - \alpha$$

$$= 0.$$

Therefore $\alpha + 1$ is also a root. (*) Meaning the p roots of p(x) are just $\alpha + k$ where k = 1, ..., p. We also have then that $\alpha \notin \mathbb{F}_p$, because if that were the case we would

have a=0 since $a=\alpha^p-\alpha=0$, which would be a contradiction. So we have that $\mathbb{F}_p(\alpha)$ is the splitting field of the separable polynomial p(x) (we know this from \star) over \mathbb{F}_p , thus $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ is a Galois extension.

Now let us consider

$$\sigma: \mathbb{F}_{p}(\alpha) \to \mathbb{F}_{p}(\alpha)$$
$$\alpha \mapsto \alpha + 1$$

which fixes \mathbb{F}_p . Note that σ has a two sided inverse defined by $\alpha \mapsto \alpha - 1$ which also fixed \mathbb{F}_p meaning then that $\sigma \in \operatorname{Gal}(\mathbb{F}_p(\alpha)/\mathbb{F}_p)$.

We know by properties of the Galois group, that any other map π in $\operatorname{Gal}(\mathbb{F}_p(\alpha)/\mathbb{F}_p)$ must not only fix \mathbb{F}_p , but it must send α to a root of p(x), meaning π is of the form $\alpha \mapsto \alpha + k$ for some $k \in \mathbb{F}_p$ (which we showed to be the roots from \star). Notice though we if we take the powers of σ that, $\sigma^k(\alpha) = \alpha + k = \pi(\alpha)$ and fixes \mathbb{F}_p , therefore $\sigma^k = \pi$. Meaning every element of the Galois group is simply a power of σ , and because $\sigma^p = 1$ we have that the Galois group is cyclic.

Problem 14.3.11 Prove that $(x^p)^n - x + 1$ is irreducible over \mathbb{F}_p , only when n = 1 = p = 2. [Note that if α is a root, then so is $\alpha + \alpha$ for any $\alpha \in \mathbb{F}_{p^n}$. Show that this implies $\mathbb{F}_p(\alpha)$ contains \mathbb{F}_{p^n} and that $[\mathbb{F}_p(\alpha) : \mathbb{F}_{p^n}] = p$]

Proof. Let $p(x) = (x^p)^n - x + 1$. If α is a root of p(x) then so is $\alpha + k$ for any $k \in \mathbb{F}_p$. Therefore $\mathbb{F}_{p^n} \subseteq \mathbb{F}_p(\alpha)$ because if not, the latter would contain all the roots of $x^{p^n} - x + 1$, which would lead to a contradiction. Now any automorphism of the Galois group of $\mathbb{F}_p(\alpha)/\mathbb{F}_{p^n}$ must be defined by $\alpha \mapsto \alpha + k$ for some $k \in \mathbb{F}_{p^n}$, and because they fix \mathbb{F}_{p^n} they are all of order p. Because a Galois group of degree p is always cyclic over p, with a generator p, and thus cyclic over p, we have p is p if p is p if p is p if p in p is p if p is p if p if p is p if p is p in p in

So we must have that $p^n = pn$. Now we write $n = p^k$ for $k \ge 0$. If we have that k > 1, then we have $k + 1 = p^k$, but $p \ge 2$, so $k + 1 < 2^k \le p^k$ when k = 2 and through induction we have that,

$$(k+1)+1 < 2^k+1 \leqslant 2^k+(2^{k+1}-2^k) = 2^{k+1} \leqslant p^{k+1}$$

k must be 0 and n = 1, or k = 1 and n = p with $p^2 = p^n$ and n = p = 2. Therefore $x^p - x + 1$ is irreducible and we see that $x^4 - x + 1 \in \mathbb{F}_2[x]$ has no roots and is not divisible the only irreducible quadratic over $\mathbb{F}_2[x]$, $x^2 + x + 1$.

Problem 14.4.1 Determine the Galois closure of the field $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q} .

Proof. The Galois closure is simply the splitting field for the minimal polynomial of $\sqrt{1+\sqrt{2}}$ over \mathbb{Q} . We see that the minimal polynomial is just $p(x)=(x^2-1)^2-2=x^4-2x^2-1$, which has roots,

$$\alpha = \pm i \sqrt{-1 + \sqrt{2}} \qquad \qquad \alpha = \pm \sqrt{1 + \sqrt{2}}$$

the splitting field is therefore $\mathbb{Q}(i, \sqrt{1+\sqrt{2}})$, which is then the Galois closure.

Problem 14.4.2 Find a primitive generator for $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} .

Proof. A member of the extension is $\alpha = \sqrt{2} + \sqrt{3} + \sqrt{5}$ so we have that $\mathbb{Q}(\alpha)$ is a subset of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. We note that α is not fixed by any of the nontrivial Galois automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ so $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is also a subset of $\mathbb{Q}(\alpha)$. Together we have containment in both directions so, α is a primitive generator of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.

Problem 14.4.6 Prove that $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is not a simple extension by explicitly exhibiting an infinite number of intermediate subfields.

Proof. We see that x is a root of $A^p - x^p$ in $\mathbb{F}_p(x^p, y^p)[A]$ which is a polynomial of degree p in A. We have a similar property for y in that it is a root of $A^p - y^p$ in $\mathbb{F}_p(x^p, y^p)[A]$. As indeterminants we have $\mathbb{F}_p(x) \cap \mathbb{F}_p(y) = \mathbb{F}_p$, and therefore $[\mathbb{F}_p(x,y):\mathbb{F}_p(x^p,y^p)] = p^2$.

Now our goal from here is to show that for every $\delta \in \mathbb{F}_{(}x^{p})$, we have the fields $\mathbb{F}_{p}(x^{p},y^{p})(x+\delta y)=\mathbb{F}(x^{p},y^{p},x+\delta y)$ to be distinct. Now take δ , γ from $\mathbb{F}_{p}(x^{p})$ where $\delta \neq \gamma$, and suppose $\mathbb{F}(x^{p},y^{p},x+\delta y)=\mathbb{F}(x^{p},y^{p},x+\gamma y)$. We have then that

$$(x + \delta y) - (x + \gamma y) = (\delta - \gamma)y$$

to be in $\mathbb{F}(x^p,y^p,x+\delta y)$, which implies then that both x and y are in our extension. Meaning that $\mathbb{F}_p(x,y) = \mathbb{F}_p(x^p,y^p,x+\delta y)$ is an extension with degree p^2 over $\mathbb{F}_p(x^p,y^p)$. Note though that $(x+\delta y)^p = x^p + \delta^p y^p$ (Prop 35 from 13.5), which comes as the solution of $x^p - (x^p + \delta^p y^p)$ which is of degree p. This is a contradiction though since we just stated that this is degree p^2 . All together then, since there is an infinite amount of elements in $\mathbb{F}_p(x^p)$ there is an infinite number of subfields of $\mathbb{F}_p(x,y)$.