クラス	受験	番号	
出席番号	氏	名	

2012年度

全統高2記述模試問題

数 学

(100分)

2013年1月実施

試験開始の合図があるまで、この問題冊子を開かず、下記の注意事項をよく読むこと。

- 1. 問題冊子は5ページである。
- 2. 解答用紙は別冊になっている。(「受験届・解答用紙」冊子表紙の注意事項を熟読すること。)
- 3. 本冊子に脱落や印刷不鮮明の箇所及び解答用紙の汚れ等があれば、試験監督者に申し出ること。
- 4. ① ② ③ は必須問題, ④ ⑤ は選択問題である。④ ⑤ の 2 題中,任意の 1 題を選択して解答すること。 (選択パターン以外で解答した場合は、解答のすべてを無効とする場合がある。)

解答用紙	1		П		
問題番号	1	2	3	4	5
選択				0	
パターン		•			0

●…必須 ○…選択

- 5. 試験開始の合図で「受験届・解答用紙」冊子の数学の解答用紙 (2枚) を切り離し,下段の所定欄に 選択問題・氏名・在学高校名・クラス名・出席番号・受験番号 (受験票の発行を受けている場合の み) を明確に記入すること。なお,氏名には必ずフリガナも記入のこと。
- 6. 解答には、必ず黒色鉛筆を使用し、解答用紙の所定欄に記入すること。
- 7. 指定の解答欄外へは記入しないこと。採点されない場合があります。
- 8. 試験終了の合図で上記5.の事項を再度確認し、試験監督者の指示に従って解答用紙を提出すること。 ただし、白紙の解答用紙は提出しないこと。

河合塾

1 【必須問題】 (配点 50点)

(1) a は実数の定数であり、x の関数

$$f(x) = x^2 - ax + a^2 - 3$$

がある.

- (i) すべての実数 x に対して $f(x) \ge 0$ となるような a の値の範囲を求めよ.
- (ii) ある正の数 x に対して $f(x) \le 0$ となるような a の値の範囲を求めよ.
- (2) 赤球が 4 個, 白球, 青球, 黄球, 緑球がそれぞれ 1 個ずつ, 全部で 8 個の球があり, これら 8 個の球を A, B, C, D の 4 人に 2 個ずつ分ける。ただし, 以下において 4 個の赤球は区別しないものとする。
 - (i) 赤球を2個もらう人が1人もいない分け方は何通りあるか。
 - (ii) 分け方は全部で何通りあるか。

2 【必須問題】 (配点 50点)

関数

$$f(x) = 4 \cdot 3^{3x-1} - 4 \cdot 3^{2x} + 3^{x+1}$$

がある.

- (1) $t=3^x$ とするとき, f(x) を t を用いて表せ.
- (2) f(x) の最小値とそのときの x の値を求めよ.
- (3) x の方程式 f(x)=a が異なる 3 個の実数解をもち、それらの積が正であるような実数 a の値の範囲を求めよ。

3 【必須問題】(配点 50点)

O を原点とする座標平面上に放物線

$$C: y = \frac{1}{4}x^2$$

があり、C上の点 $P(2p, p^2)$ における C の接線を l とし、l と x 軸の交点を Q とする。 ただし、p>0 とする。

- (1) l の方程式とQ のx 座標を求めよ。
- (2) 3点O, P, Qを通る円を K とする.
 - (i) Kの中心の座標と半径を求めよ。
 - (ii) Kとy軸の交点のうちOでないものをRとし、三角形PQRの面積を S_1 とする。また、Kの面積を S_2 とする。pが p>0 の範囲で変化するとき、 $\frac{S_1}{S_2}$ の最大値とそのときのpの値を求めよ。

4 【選択問題】 (配点 50点)

数列 {an} を

$$a_1 = a_2 = 1$$
, $a_{n+2} = \frac{2^{n-1}}{a_{n+1}} + a_n$ $(n=1, 2, 3, \cdots)$

により定める.

- (1) 自然数 n に対して、 $b_n = a_n a_{n+1}$ とするとき、 b_{n+1} を b_n を用いて表せ。また、 b_n を求めよ。
- (2) 自然数 m に対して, a_{2m-1} , a_{2m} を求めよ.
- (3) 自然数 n に対して、 a_n を 3 で割った余りを r_n とする。

$$\sum_{n=1}^{N} r_n > 1000$$

を満たす最小の自然数Nを求めよ。

5 【選択問題】(配点 50点)

四面体 OABC があり、

$$OA=OC=AC=1$$
, $OB=2$, $BC=\sqrt{3}$, $\angle AOB=90^{\circ}$

である.

また、三角形 OAB を含む平面を α とし、点 C を通り α に垂直な直線と α の交点を H とする.

さらに、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ とする.

- (1) 内積 $\overrightarrow{a} \cdot \overrightarrow{b}$, $\overrightarrow{b} \cdot \overrightarrow{c}$, $\overrightarrow{c} \cdot \overrightarrow{a}$ の値を求めよ.
- (2) \overrightarrow{OH} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ、また、線分 CH の長さを求めよ、
- (3) 線分 AC を直径とする球面を S とする。S 上の点 P について、線分 OP の長さを最大にする P を P_1 とし、最小にする P を P_2 とする。四面体 P_1P_2AB の体積を求めよ。