Kausik Siyakumar

in: kausik-sivakumar **()**: kausiksivakumar

EDUCATION

Master of Science in Engineering - Robotics

Philadelphia, PA

Email: kausik@seas.upenn.edu

University of Pennsylvania; GPA: 3.95/4

Aug 2021 - May 2023

Coursework: Modern Optimal Control, Learning in Robotics (Estimation, SLAM, and Reinforcement learning), Advanced Machine Perception, F1-tenth Autonomous Racing, Principles of Deep Learning, Machine Learning, Introduction to Robotics

Bachelor of Technology - Mechanical Engineering

India

Amrita Vishwa Vidyapeetham; GPA: 9.37/10

June 2016 - June 2020

EXPERIENCE

Research Assistant (Model-Based Reinforcement Learning) - PAL Lab

Philadelphia, PA

PI: Prof. Dinesh Jayaraman and Prof. Osbert Bastani

May 2022 - Present

- Introduced transition occupancy matching (TOM), a novel policy-aware dynamics model learning method that pays attention to transitions the policy can experience; this dynamics model drives the policy to higher task rewards
- o Under-review co-first author submission to L4DC 2023 conference

Research Assistant (Physics inspired learning) - DAIR Lab

Philadelphia, PA

PI: Prof. Micheal Posa

Oct 2021 - May 2022

- Worked on a computer vision-based tracking pipeline for Contactnets, which is a physics-inspired learning problem that estimates inertial and geometric parameters of the tracked object as they make and break contact
- Employed BundleTrack for 6D pose estimation of objects with minimal supervision (without AprilTags) using color and depth images

Relevant Projects

F1Tenth Autonomous Racing Project

Philadelphia, PA

Autonomous Racing (ESE 615)

Feb 2022 - May 2022

- Built the autonomy stack for an F1 car of $\frac{1}{10}$ scale to compete in autonomous racing often controlled at state limits Employed model-based hierarchical control algorithm (MPCC) for adaptive racing using sensor readings from a planar
- Employed model-based hierarchical control algorithm (MPCC) for adaptive racing using sensor readings from a planar Hokuyo LIDAR

Safe Reinforcement Learning using Adaptive Penalty ()

Philadelphia, PA

Learning in Robotics (ESE 650)

Mar 2022 - May 2022

- Introduced a policy gradient approach to the model-based safe-reinforcement learning method CAP which adaptively controls the cost that penalizes the agent's exploratory behavior
- Used Safety-GYM environment for inference and achieved minimum cost violations in comparison to the baseline, validating our method

Explanation of Recurrent Attention Models ()

Philadelphia, PA

Deep Learning (ESE 546)

Nov 2021 - Dec 2021

- Recurrent attention models is an ensemble of three different neural network layers (RNN, attention, and reinforcement) that tries to classify an image by taking a temporal sequence of glimpses
- Added a variational autoencoder to the model which, with increasing glimpses, achieved close to perfect reconstructions of input data; qualitatively validates that only sparse parts of an image contain rich information for computer vision pipelines

SKILLS

- Programming Languages: Python, MATLAB, C/C++
- Software: Git, Docker, PyTorch, TensorFlow, Mujoco (OpenAI-GYM), ROS and ROS2

Publications and Demo

- POLICY AWARE MODEL LEARNING VIA TRANSITION OCCUPANCY MATCHING J.Ma*, K.Sivakumar*, J.Yan, O.Bastani, D.Jayaraman NeurIPS 2022 deep RL workshop
- BUILDING DYNAMICS MODELS THROUGH CONTACT DISCONTINUITIES B.Bianchini*, M.Halm*, K.Sivakumar*, M.Posa- ICRA 2022 demo