A data mishap

Allele frequencies in sibships

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org
github.com/kbroman
@kwbroman

Slides: kbroman.org/Talk_DataMishap

GWAS for "morning person"

BRCA pedigree

Affected sib pairs

Affected sib pairs

IBS vs IBD

non-inbred sibs are IBD = 0, 1, 2with probability = 1/4, 1/2, 1/4

Prostate cancer genome scan

Lesson

If it seems too good to be true, it probably is.

Prostate cancer pairs

Prostate cancer pairs

Prostate cancer genome scan – corrected

Estimating allele frequencies

Usually, you would use the founders in the pedigrees. (assumed unrelated)

What if you only have sibships?

Method 1: Use a random sibling from each

Method 1: Use a random sibling from each

$$\operatorname{var}(\hat{\boldsymbol{\rho}}^{(1)}) = \frac{\boldsymbol{\rho}(1-\boldsymbol{\rho})}{2\boldsymbol{n}}$$

$$var(\hat{p}^{(2)}) = ?$$

Method 1: Use a random sibling from each

$$\operatorname{var}(\hat{\boldsymbol{p}}^{(1)}) = \frac{\boldsymbol{p}(1-\boldsymbol{p})}{2\boldsymbol{n}}$$

$$\operatorname{var}(\hat{p}^{(2)}) = (3/4) \left(\frac{p(1-p)}{2n} \right)$$

Method 1: Use a random sibling from each

$$\operatorname{var}(\hat{\boldsymbol{p}}^{(1)}) = \frac{\boldsymbol{p}(1-\boldsymbol{p})}{2\boldsymbol{n}}$$

$$\operatorname{var}(\hat{p}^{(2)}) = (3/4) \left(\frac{p(1-p)}{2n} \right)$$

My favorite equations

$$E(X) = E[E(X|Z)]$$

$$var(X) = E[var(X|Z)] + var[E(X|Z)]$$

$$cov(X, Y) = E[cov(X, Y|Z)] + cov[E(X|Z), E(Y|Z)]$$

Everything is a mixture

Another fave

$$cov(X, aY + bZ) = a cov(X, Y) + b cov(X, Z)$$
thus $var(X + Y) = cov(X + Y, X + Y)$

$$= cov(X + Y, X) + cov(X + Y, Y)$$

$$= cov(X, X) + cov(X, Y) + cov(Y, X) + cov(Y, Y)$$

$$= var(X) + var(Y) + 2 cov(X, Y)$$

Back to that SE

Let X_i = number of 1 alleles in sib i.

We want $var(X_1 + X_2)$

And so really
$$cov(X_1, X_2) = E[cov(X_1, X_2|IBD)] + cov[E(X_1|IBD), E(X_2|IBD)]$$

$$= E[cov(X_1, X_2|IBD)]$$

$$= \sum_{k=0}^{2} cov(X_1, X_2|IBD = k) \Pr(IBD = k)$$

Also

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

$$cov(X, Y|Z) = E(XY|Z) - E(X|Z)E(Y|Z)$$

TABLE IV. Joint Distribution of the Numbers of 1 Alleles Carried by Two Individuals, Given the Number of Alleles They Share IBD

IBD	X_1, X_2	$Pr(X_1, X_2 \mid IBD)$
0	0,0	$(1-p)^4$
	0,1	$2p(1-p)^3$
	1,0	$2p(1-p)^{3}$
	1,1	$4p^{2}(1-p)^{2}$ $p^{2}(1-p)^{2}$
	0,2	$p^2(1-p)^2$
	2,0	$p^2(1-p)^2$
	1,2	$2p^{3}(1-p)$
	2,1	$2p^{3}(1-p)$
	2,2	p^4
1	0,0	$(1-p)^3$
	0,1	$p(1-p)^{2}$
	1,0	$p(1-p)^{2}$
	1,1	$p(1-p)$ $p^{2}(1-p)$
	1,2	$p^{2}(1-p)$
	2,1	$p^2(1-p)$
	2,2	$p^2(1-p)$ p^3
2	0,0	$(1-p)^2$
	1,1	$2p(1-p)$ p^2
	2,2	p^2

Lessons

Omitting data is usually bad

Crudely ignoring correlations can be good You might even be able to figure out the SE

Method 3

Account for relationships in the estimate

Missing data = IBD status for a sib pair at a marker

Use EM algorithm:

E step: estimate IBD status given allele frequencies

M step: estimate allele frequencies given IBD status

Method 4

Make use of the multiple markers on a chromosome

- Markers along chromosome give improved info about IBD status
- ► Again, an EM algorithm:
 - Estimate IBD along chromosome given allele frequencies
 - Re-estimate allele frequencies using IBD information

Siblings' chromosomes

Average relative efficiency

	Allele frequency			
Method	0.05	0.10	0.15	0.20
1	1.00			
2	1.33			
3	1.46	1.45	1.44	1.43
4	1.48	1.46	1.45	1.44

Method 3

	Allele frequency			
het	0.05	0.10	0.15	0.20
0.7	1.45	1.44	1.43	1.42
8.0	1.46	1.45	1.44	1.43
0.9	1.48	1.47	1.47	1.45

Method 4

	Allele frequency			
d (cM)	0.05	0.10	0.15	0.20
0.1	1.50	1.49	1.48	1.48
1	1.49	1.48	1.47	1.46
5	1.48	1.46	1.44	1.44
10	1.47	1.45	1.43	1.42
(method 3)	1.46	1.45	1.44	1.43

Summary

Method	Progr. time	CPU time	Rel. Eff.
1	2 min	1 msec	1.00
2	2 min	1 msec	1.33
3	1 morning	2 msec	1.45
4	1 afternoon	2.5 sec	1.46

One last thing

- ► Turns out, I made a mistake in Method 3 Mary Sara McPeek (U Chicago) spotted it
- ► Fixed problem, re-ran simulations, and...

One last thing

- ► Turns out, I made a mistake in Method 3 Mary Sara McPeek (U Chicago) spotted it
- ► Fixed problem, re-ran simulations, and...

the correct MLE was worse than my mistaken estimate