1 Transformée de Laplace

$$H(t) = \begin{cases} 0 & \text{si } t < 0\\ 1 & \text{si } t \ge 0 \end{cases}$$

$f(t) = \mathcal{L}^{-1}[F(s)]$	$\mathcal{L}[f(t)] = F(s)$
H(t)	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n (n \in \mathbb{N})$	$\frac{n!}{s^{n+1}}$
\sqrt{t}	$\frac{1}{2}\sqrt{\pi}s^{-3/2}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\pi}s^{-1/2}$
e ^{at}	$\frac{1}{s-a}$
$sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$

$f(t) = \mathcal{L}^{-1}[F(s)]$	C[f(t)] = E(c)
$\Gamma(t) = \mathcal{L} \left[\Gamma(s)\right]$	$\mathcal{L}[f(t)] = F(s)$
sinh(at)	$\frac{a}{s^2 - a^2}$
cosh(at)	$\frac{s}{s^2-a^2}$
H(t-b)	$\frac{1}{s}e^{-bs}$
$\delta(t-b)$	e ^{-bs}
$a(4\pi t^3)^{-1/2}e^{-a^2/4t}$	$e^{-a\sqrt{s}}$
$(\pi t)^{-1/2} e^{-a^2/4t}$	$\frac{1}{\sqrt{s}}e^{-a\sqrt{s}}$
$1-\mathcal{E}rf\left(rac{a}{\sqrt{4t}} ight)$	$\frac{1}{s}e^{-a\sqrt{s}}$

1.1 Propriétés

	Fonction	Transformée
(i)	af(t) + bg(t)	aF(s) + bG(s)
(ii)	$\frac{df}{dt}$	sF(s)-f(0)
(iii)	$\frac{d^2f}{dt^2}$	$s^2F(s) - sf(0) - f'(0)$
(iv)	$e^{bt}f(t)$	F(s-b)
(v)	$\frac{f(t)}{t}$	$\int\limits_{s}^{\infty}F(s')ds'$
(vi)	tf(t)	$-\frac{dF}{ds}$
(vii)	H(t-b)f(t-b)	$e^{-bs}F(s)$
(viii)	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
(ix)	$\int\limits_{0}^{t}g(t-t')f(t')dt'$	F(s)G(s)

1.2 Méthode

