Übungen Probeklausur FK Experimentalphysik III

Blatt 5

Aufgabe 1: Elektromagnetische Welle

Betrachten Sie eine ebene, linear polarisierte Welle, die sich in z-Richtung bewegt und deren E-Feld in x-Richtung schwingt. Die Frequenz sei ν =10 MHz und die Amplitude $E_{\rm o}$ =0.08 V/m.

- a) Wie groß ist die Wellenlänge λ ?
- b) Schreiben Sie das elektrische und das magnetische Feld (\vec{E} und \vec{B}) als Funktion der Zeit.
- c) Berechnen Sie die Energieflussdichte der elektromagnetischen Welle.

Aufgabe 2: Linsensystem

Eine Sammellinse L_1 mit der Brennweite $f_1 = 0.5$ m und eine Zerstreuungslinse L_2 mit der Brennweite $f_2 = 2/3$ m sind im Abstand d = 40 cm voneinander mit gemeinsamer optischen Achse angeordnet. Auf der Außenseite der Sammellinse befindet sich im Abstand $g_1 = 4.0$ m der Gegenstand der Größe $G_1 = 20$ cm. Bestimmen Sie Ort und Art des Bildes (b_2, B_2) , das dieses Linsensystem vom Gegenstand G_1 liefert. Fertigen Sie eine Skizze an.

Aufgabe 3: Gitter

Ein Schirm ist im Abstand d von einem Gitter mit Gitterkonstante g angebracht. Das Maximum 2. Ordnung für Licht der Wellenlänge λ_1 wird am Schirm im Abstand g von der optischen Achse (Maximum 0. Ordnung) gemessen.

- a) Wie groß ist die Gitterkonstante g?

 Geben Sie zuerst g als Funktion der gegebenen Größen und zuletzt den Wert für g an.
- b) Kann Licht der Wellenlänge λ_2 noch in 5. Ordnung gesehen werden ?

 $(\lambda_1 = 600 \text{ nm}; \lambda_2 = 850 \text{ nm}; d=4 \text{ m}; y=130 \text{ cm})$

Aufqabe 4: Strahlung

Eine Supernova zündet in einer Entfernung von 4 Lichtjahren von der Erde. Dadurch erscheint sie gleich hell wie die Sonne. Zu welcher Temperaturerhöhung ΔT kommt es dadurch auf der Erde?
