EE496 : COMPUTATIONAL INTELLINGENCE FS05: FUZZY RULE BASES

UGUR HALICI

METU: Department of Electrical and Electronics Engineering (EEE)

METU-Hacettepe U: Neuroscience and Neurotechnology (NSNT)

Approximate Reasoning with Fuzzy Rules

General schema

```
Rule 1: if X is M<sub>1</sub>, then Y is N<sub>1</sub>
Rule 2: if X is M<sub>2</sub>, then Y is N<sub>2</sub>
...
Rule r: if X is M<sub>r</sub>, then Y is N<sub>r</sub>
Fact: X is M'

Conclusion: Y is N'
```

Given **r if-then rules** and fact **X is M'**, we conclude **Y is N'**. Typically used in **fuzzy controllers**.

Disjunctive Imprecise Rule

M = N

Imprecise rule: if X = [3, 4] then Y = [5, 6].

Interpretation: values coming from $[3, 4] \times [5, 6]$.

Disjunctive Imprecise Rules

Several imprecise rules: if X = M1 then Y = N1, if $X = M_2$ then $Y = N_2$, if X = M3 then $Y = N_3$.

Interpretation: rule 1 as well as rule 2 as well as rule 3 hold true.

Conclusion

Disjunctive Fuzzy Rules

Conclusion

3 fuzzy rules.

Every pyramid is specified by 1 fuzzy rule (Cartesian product). Input x_0 leads to gray-shaded fuzzy output $\{x_0\} \circ R$.

Disjunctive or Conjunctive?

Fuzzy relation R employed in reasoning is obtained as follows.

For each rule i, we determine relation Ri by

$$R_i(x, y) = min[M_i(x), N_i(y)]$$

for all $x \in X$, $y \in Y$.

Then, R is defined by union of R_i, i.e.

$$R=\bigcup_{1\leq i\leq r}R_i.$$

That is, if-then rules are treated disjunctive.

If-then rules can be also treated conjunctive by

$$R = \bigcap_{1 \le i \le r} R_i.$$

Disjunctive or Conjunctive?

Decision depends on intended use and how Ri are obtained.

For both interpretations, two possible ways of applying composition:

$$B'_{1} = A' \circ \left(\bigcup_{1 \leq i \leq r} R_{i}\right) \qquad \qquad B'_{2} = A' \circ \left(\bigcap_{1 \leq i \leq r} R_{i}\right)$$

$$B'_{3} = \bigcup_{1 \leq i \leq r} A' \circ R_{i} \qquad \qquad B'_{4} = \bigcap_{1 \leq i \leq r} A' \circ R_{i}$$

Conjunctive Imprecise Rules

if
$$X = [3, 4]$$
 then $Y = [5, 6]$

Gray-shaded values are impossible, white ones are possible.

Conjunctive Imprecise Rules

Several imprecise rules: if $X = M_1$ then $Y = N_1$, if $X = M_2$ then $Y = N_2$, if $X = M_3$ then $Y = N_3$.

Approximate Reasoning with Crisp Input

Example: Fuzzy Relation

Classes of cars $X = \{s,m,h\}$ (small, medium, high quality). Possible maximum speeds $Y = \{140, 160, 180, 200, 220\}$ (in km/h). Gor any $(x, y) \in X \times Y$, fuzzy relation ϱ states possibility that maximum speed of car of class x is y.

	140				
S	1	.5	.1	0	0
m	0	.5	1	.5	0
h	1 0 0	0	.4	.8	1

Fuzzy Relational Equations

Given μ_1, \ldots, μ_r of X and ν_1, \ldots, ν_r of Y and r rules if μ_i then ν_i .

What is a **fuzzy relation** ϱ that fits the rule system?

One solution is to find a relation ϱ such that

$$\forall i \in \{1, ..., r\} : \forall i = \mu i \circ \varrho,$$

 $\mu \circ \varrho : Y \rightarrow [0, 1], y \rightarrow \sup_{x \in X} \min\{\mu(x), \varrho(x, y)\}.$

Solution of a Relational Equation

Single Rule Largest Solution

Theorem

- i) Let "if A then B" be a rule with $\mu_A \subseteq F(X)$ and $\nu_B \subseteq F(Y)$.
- ii) Then the relational equation $vB = \mu A \circ \varrho$ can be solved iff the Gödel relation $\varrho_{A \sim B}$ is a solution.

$$\varrho_{A^{\sim}B}: X \times Y \rightarrow [0, 1] \text{ is defined by}$$

$$(x, y) \rightarrow 1 \qquad \text{if } \mu_A(x) \leq \nu_B(y),$$

$$\rightarrow \nu_B(y) \qquad \text{otherwise.}$$

ii) If g is a solution, then the set of solutions

$$R = \{\varrho_S \subseteq F(X \times Y) \mid v_B = \mu_A \circ \varrho_S\}$$

has the following property:

If
$$\varrho_{S'}, \varrho_{S''} \in R$$
, then $\varrho_{S' \cup S'} \in R$.

iii) If $\varrho_{A^{-}B}$ is a solution, then $\varrho_{A^{-}B}$ is the largest solution w.r.t. \subseteq .

Example

Single Rule Largest Solution

$$\rho_{A} = (.9 \ 1 \ .7)$$

$$\rho_{A} = (.9 \ 1$$

Solution space forms upper semilattice.

Solution of a Set of Relational Equations

Multiple rules, Largest Solution

Generalization of this result to system of r relational equations:

Theorem

Let $v_{Bi} = \mu_{Ai} \circ \varrho$ for i = 1, ..., r be a system of relational equations.

- i) There is a solution iff $\bigcap_{i=1}^{r} \varrho_{Ai^{n}Bi}, \text{ is a solution. (intersection of the largest solutions)}$
- ii) If $\bigcap_{i=1}^r \varrho_{Ai^*Bi}$ is a solution, then this solution is the biggest solution w.r.t. \subseteq .

Remark: if there is no solution, then Gödel relation is at least a good approximation.

Solving a System of Relational Equations

Single Rule Smallest Solution

Sometimes it is a good choice not to use the largest but one of the smallest solutions.

i.e. the Cartesian product $\varrho_{A\times B}(x, y) = \min\{\mu_A(x), \nu_B(y)\}$. If a solution of $\nu B = \mu A \circ \varrho$ exists, then $\varrho_{A\times B}$ is a solution, too. (smallest solution)

Theorem

Let $\mu A \subseteq F(X)$, $\nu_B \subseteq F(Y)$. Furthermore, let $\varrho \subseteq F(X \times Y)$ be a fuzzy relation which satisfies the relational equation $\nu_B = \mu_A \circ \varrho$. Then $\nu_B = \mu_A \circ \varrho_{A \times B}$ holds.

(i.e. if a solution exists then cartesian product is a solution)

Solving a System of Relational Equations

Multiple rules, Smallest Solution

Using Cartesian product

 $\mu_{A_i} = \nu_{B_i} \circ \varrho$, $1 \leq i \leq r$ can be reasonably solved with $A \times B$ by

$$\varrho = \max \left\{ \varrho_{A_i \times B_i} \mid 1 \leq i \leq r \right\}.$$
 For crisp value $x_0 \in X$ (represented by $\mathbb{1}_{\{x_0\}}$):
$$\nu(y) = \left(\mathbb{1}_{\{x_0\}} \circ \varrho \right)(y) \qquad \underset{A_i \in Y}{\mu_{A_i \times A_i}} \qquad \text{if nor nal}$$

$$= \max_{1 \leq i \leq r} \left\{ \sup_{x \in X} \min \{ \mathbb{1}_{\{x_0\}}(x), \varrho_{A_i \times B_i}(x, y) \} \right\} \qquad \underset{A_i \in Y}{\text{if nor nal}}$$

$$= \max_{1 \leq i \leq r} \{ \min \{ \mu_{A_i}(x_0), \nu_{B_i}(y) \}. \} \qquad \underset{\text{out Alabo for for nor nal}}{\text{max A}_i \times A_i} \qquad \underset{\text{out Alabo for for nor nall axe}}{\text{max A}_i \times A_i}$$

That is Mamdani-Assilian fuzzy control (to be discussed).