Emory University

MATH 362 Mathematical Statistics II

Learning Notes

Jiuru Lyu

March 21, 2024

Contents

1	Estimation		2
	1.1	Introduction	2
	1.2	The Method of Maximum Likelihood and the Method of Moments	3
	1.3	The Method of Moment	10
	1.4	Interval Estimation	12
	1.5	Properties of Estimation	15
	1.6	Best Unbiased Estimator	18
	1.7	Sufficiency	21
	1.8	Consistency	24
	1.9	Bayesian Estimator	25
2 Inference Based on Normal		rence Based on Normal	32
	2.1	Sample Variance and Chi-Square Distribution	32

1 Estimation

1.1 Introduction

Definition 1.1.1 (Model). A *model* is a distribution with certain parameters.

Example 1.1.2 The normal distribution: $N(\mu, \sigma^2)$.

Definition 1.1.3 (Population). The *population* is all the objects in the experiment.

Definition 1.1.4 (Data, Sample, and Random Sample). *Data* refers to observed value from sample. The *sample* is a subset of the population. A *random sample* is a sequence of independent, identical (i.i.d.) random variables.

Definition 1.1.5 (Statistics). *Statistics* refers to a function of the random sample.

Example 1.1.6 The sample mean is a function of the sample:

$$\overline{Y} = \frac{1}{n}(Y_1 + \dots + Y_n).$$

Example 1.1.7 Central Limit Theorem

We randomly toss n=200 fair coins on the table. Calculate, using the central limit theorem, the probability that at least 110 coins have turned on the same side.

$$\overline{X} = \frac{X_1 + \dots + X_{200}}{200} \quad \stackrel{\text{CLT}}{\sim} \quad N(\mu, \sigma^2),$$

where

$$\mu = \mathbf{E}(\overline{X}) = \frac{\sum_{i=1}^{200} \mathbf{E}(X_i)}{200},$$

$$\sigma^2 = \mathbf{Var}(\overline{X}) = \mathbf{Var}\left(\frac{X_1 + \dots + X_{200}}{200}\right) = \frac{\sum_{i=1}^{200} \mathbf{Var}(X_i)}{200^2}.$$

Definition 1.1.8 (Statistical Inference). The process of *statistical inference* is defined to be the process of using data from a sample to gain information about the population.

Example 1.1.9 Goals in statistical inference

- 1. **Definition 1.1.10 (Estimation).** To obtain values of the parameters from the data.
- 2. **Definition 1.1.11 (Hypothesis Testing).** To test a conjecture about the parameters.
- 3. **Definition 1.1.12 (Goodness of Fit).** How well does the data fit a given distribution.
- 4. Linear Regression

1.2 The Method of Maximum Likelihood and the Method of Moments

Example 1.2.1 Given an unfair coin, or p-coin, such that

$$X = \begin{cases} 1 & \text{head with probability } p, \\ 0 & \text{tail with probability } 1 - p. \end{cases}$$

How can we determine the value p?

Solution 1.

- 1. Try to flip the coin several times, say, three times. Suppose we get HHT.
- 2. Draw a conclusion from the experiment.

Key idea: The choice of the parameter p should be the value that maximizes the probability of the sample.

$$\mathbf{P}(X_1 = 1, X_2 = 1, X_3 = 0) = \mathbf{P}(X_1 = 1)\mathbf{P}(X_2 = 1)\mathbf{P}(X_3 = 0) = p^2(1 - p) := f(p).$$

Solving the optimization problem $\max_{p>0} f(p)$, we find it is most likely that $p=\frac{2}{3}$. This method is called the *likelihood maximization method*.

Definition 1.2.2 (Likelihood Function). For a random sample of size n from the discrete (or continuous) pdf $p_X(k;\theta)$ (or $f_Y(y;\theta)$), the *likelihood function*, $L(\theta)$, is the product of the pdf evaluated at $X_i = k_i$ (or $Y_i = y_i$). That is,

$$\mathbf{L}(\theta) \coloneqq \prod_{i=1}^{n} p_X(k_i; \theta) \quad \text{or} \quad \mathbf{L}(\theta) \coloneqq \prod_{i=1}^{n} f_Y(y_i; \theta).$$

Definition 1.2.3 (Maximum Likelihood Estimate). Let $L(\theta)$ be as defined in Definition 1.2.2. If θ_e is a value of the parameter such that $\mathbf{L}(\theta_e) \geq \mathbf{L}(\theta)$ for all possible values of θ , then we call θ_e the *maximum likelihood estimate* for θ .

Theorem 1.2.4 The Method of Maximum Likelihood

Given random samples X_1, \ldots, X_N and a density function $p_X(x)$ (or $f_X(x)$), then we have the likelihood function defined as

$$\mathbf{L}(\theta) = p_X(X; \theta) = \mathbf{P}(X_1, X_2, \dots, X_N)$$

$$= \mathbf{P}(X_1)\mathbf{P}(X_2) \cdots \mathbf{P}(X_N) \qquad [independent]$$

$$= \prod_{i=1}^{N} p_X(X_i; \theta) \qquad [identical]$$

Then, the maximum likelihood estimate for θ is given by

$$\theta^* = \arg\max_{\theta} L(\theta),$$

where

$$\mathbf{L}\left(\arg\max_{\theta} L(\theta)\right) = \mathbf{L}^*(\theta) = \max_{\theta} \mathbf{L}(\theta).$$

Example 1.2.5 Consider the Poisson distribution $X = 0, 1, \dots$, with $\lambda > 0$. Then, the pdf is given by

$$p_X(k,\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Given data k_1, \ldots, k_n , we have the likelihood function

$$\mathbf{L}(\lambda) = \prod_{i=1}^{n} p_X(X = k; \lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \frac{\lambda^{\sum k_i}}{k_1! \cdots k_n!}$$

Then, to find the maximum likelihood estimate of λ , we need to $\max_{\lambda} \mathbf{L}(\lambda)$. That is to solve $\frac{\partial \mathbf{L}(\lambda)}{\partial \lambda} = 0$ and $\frac{\partial^2 \mathbf{L}(\lambda)}{\partial \lambda^2} < 0$.

Example 1.2.6 Waiting Time.

Consider the exponential distribution $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$. Find the MLE λ_e of λ . Solution 2.

1 ESTIMATION

The likelihood function of the exponential distribution is given by

$$\mathbf{L}(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right).$$

Now, define

$$\ell(\lambda) = \ln \mathbf{L}(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i.$$

To optimize $\ell(\lambda)$, we compute

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\ell(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i \stackrel{set}{=} 0$$

So,

$$\frac{n}{\lambda} = \sum_{i=1}^{n} y_i \implies \lambda_e = \frac{n}{\sum_{i=1}^{n} y_i} =: \frac{1}{\overline{y}},$$

where \overline{y} is the sample mean.

Example 1.2.7 Given the exponential distribution $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$. Find the MLE of λ^2 .

Solution 3.

Define $\tau = \lambda^2$. Then, $\lambda = \sqrt{\tau}$, and so

$$f_Y(y) = \sqrt{\tau}e^{-\sqrt{\tau}y}, \quad y \ge 0.$$

Then, the likelihood function becomes

$$\mathbf{L}(\tau) = \prod_{i=1}^{n} f_Y(y) = \tau^{\frac{n}{2}} \exp\left(-\sqrt{\tau} \sum_{i=1}^{n} y_i\right).$$

Similarly, after maximization, we find

$$\tau_e = \frac{1}{(\overline{y})^2}.$$

Theorem 1.2.8 Invariant Property for MLE

Suppose λ_e is the MLE of λ . Define $\tau := h(\lambda)$. Then, $\tau_e = h(\lambda_e)$.

Proof 4. In this proof, we will prove the case when h is a one-to-one function. The case of h being a many-to-one function is beyond the scope of this course.

Suppose $h(\cdot)$ is a one-to-one function. Then, $\lambda=h^{-1}(\tau)$ is well-defined. Then,

$$\max_{\lambda} \mathbf{L}(\lambda; y_1, \dots, y_n) = \max_{\tau} \mathbf{L}(h^{-1}(\tau); y_1, \dots, y_n) = \max_{\tau} \mathbf{L}(\tau; y_1, \dots, y_n).$$

Example 1.2.9 Waiting Time with an unknown Threshold.

Let $\lambda=1$ in exponential but there is an unknown threshold θ , that, is $f_Y(y)=e^{-(y-\theta)}$ for $y\geq \theta,\ \theta>0$.

Solution 5.

Note that the likelihood function is given by

$$\mathbf{L}(\theta; y_1, \dots, y_n) = \prod_{i=1}^n f_Y(y_1) = \exp\left(-\sum_{i=1}^n (y_i - \theta)\right), \quad y_i \ge \theta, \ \theta > 0$$
$$= \exp\left(-\sum_{i=1}^n (y_i - \theta)\right) \cdot \mathbb{1}_{[y_i \ge 0, \ \theta > 0]},$$

where

$$\mathbb{1}_{x \in A} = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Using order statistics,

$$\mathbf{L}(\theta) = \exp\left(-\sum_{i=1}^{n} (y_i - \theta)\right) \cdot \mathbb{1}_{\left[y_{(n)} \ge y_{(n-1)} \ge \dots \ge y_{(1)} \ge \theta, \ \theta > 0\right]}$$
$$= \exp\left(-\sum_{i=1}^{n} y_i + n\theta\right) \mathbb{1}_{\left[y_{(n)} \ge \dots \ge y_{(1)} \ge \theta, \ \theta > 0\right]}.$$

So, we know $\theta \leq y_{(1)} = y_{\min}$.

To maximize the likelihood function, we want to maximize $-\sum y_i + n\theta$. That is, to maximize θ , as $\theta \leq y_{\min}$, it must be that $\theta_{\max} = y_{\min}$. Therefore, the MLE is $\theta^* = y_{\min}$.

Example 1.2.10 Suppose $Y_1, \ldots, Y_n \sim \text{Uniform}[0, a]$. That is, $f_Y(y; a) = \frac{1}{a}$ for $y \in [0, a]$. Find MLE a_e of a.

Solution 6.

Note that

$$f_Y(y; a) = \frac{1}{a} \cdot \mathbb{1}_{\{y \in [0, a]\}}$$

$$= \frac{1}{a} \cdot \mathbb{1}_{\{0 \le y_{(1)} \le \dots \le y_{(n)} \le a\}}$$
 where $y_{(1)} = \min y_i$ and $y_{(n)} = \max y_i$

Then,

$$\mathbf{L}(a) = \frac{1}{a^n} \mathbb{1}_{\left\{0 \le y_{(1)} \le \dots \le y_{(n)} \le a\right\}}$$

To maximize L(a), we want to minimize a^n . Since $a \ge y_{(n)}$, it must be that $a_e = y_{(n)}$. Here, we call $a_e = y_{(n)}$ an *estimate*, and $\widehat{a_{\text{MLE}}} = Y_{(n)}$ an *estimator*.

Example 1.2.11 MLE that Does Not Esist

Suppose $f_Y(y; a) = \frac{1}{a}$, $y \in [0, a)$. Find the MLE.

Solution 7.

The likelihood function is the same:

$$\mathbf{L}(a) = \frac{1}{a^n} \mathbb{1}_{\{0 \le y_{(1)} \le \dots \le y_{(n)} < a\}}.$$

However, since [0,a) is not a closed set, the optimization problem $\max_{a \in [0,a)} \mathbf{L}(a)$ does not have a solution. Hence, the estimate does not exist.

Remark 1.1 MLE may not be unique all the time.

Example 1.2.12 Multiple MLE Values

Suppose $X_1, \ldots, X_n \sim \text{Uniform}\left[a - \frac{1}{2}, a + \frac{1}{2}\right]$, where $f_X(x; a) = 1, \ x \in \left[a - \frac{1}{2}, a + \frac{1}{2}\right]$. Find the MLE.

Solution 8.

In the indicator function notation, we can rewrite the pdf to be

$$f_X(x;a) = \mathbb{1}_{\left\{a - \frac{1}{2} \le x \le a + \frac{1}{2}\right\}} = \mathbb{1}_{\left\{a - \frac{1}{2} \le x_{(1)} \le \dots \le x_{(n)} \le a + \frac{1}{2}\right\}}.$$

ESTIMATION

So, the likelihood function will be

$$\mathbf{L}(a) = \prod_{i=1}^{n} f_x(x_i; a) = \begin{cases} 1, & a \in \left[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2} \right] \\ 0, & \text{otherwise.} \end{cases}$$

So, the $\mathbf{L}(a)$ will be maximized whenever $a \in \left[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}\right]$. Therefore, MLE can be any value in the range $\left| x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2} \right|$. Say,

$$a_e = x_{(n)} - \frac{1}{2}$$
 or $a_e = x_{(1)} - \frac{1}{2}$ or $a_e = \frac{x_{(n)} - \frac{1}{2} + x_{(1)} + \frac{1}{2}}{2} = \frac{x_{(n)} + x_{(1)}}{2}$.

Theorem 1.2.13 MLE for Multiple Parameters

In general, we have the likelihood function $L(\theta)$, where $\theta = (\theta_1, \dots, \theta_p)$. To find the MLE, we need

$$\frac{\partial \mathbf{L}(\theta)}{\partial \theta_i} = 0 \quad i = 1, \dots, p,$$

and the Hessian matrix

$$\left(\frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{i}\partial\theta_{j}}\right)_{i,j=1,\dots,p} := \begin{pmatrix} \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{1}^{2}} & \cdots & \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{n}\partial\theta_{p}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{p}\partial\theta_{1}} & \cdots & \frac{\partial^{2}\mathbf{L}(\theta)}{\partial\theta_{p}^{2}} \end{pmatrix}$$

should be negative dfinite.

Example 1.2.14 MLE for Multiple Parameters: Normal Distribution

Suppose $Y_1, \ldots, Y_n \sim N(\mu, \sigma)$. Then,

$$f_{Y_i}(u;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(y_i-\mu)^2/(2\sigma^2)}.$$

Find the MLE for μ and σ .

Solution 9.

The likelihood function will be

$$\mathbf{L}(\mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-(y_i - \mu)^2 / (2\sigma^2)}.$$

Then, we define

$$\ell(\mu, \sigma) = \ln \mathbf{L}(\mu, \sigma) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \sigma^2 - \frac{1}{2} (\sigma^2)^{-1} \sum_{i=1}^{n} (y_i - \mu)^2.$$

Set

$$\begin{cases} \frac{\partial \ell(\mu, \sigma)}{\partial \mu} = 0 & \text{1} \\ \frac{\partial \ell(\mu, \sigma)}{\partial \sigma} = 0 & \text{2} \end{cases}$$

From ①, we have

$$\frac{1}{\sigma^2} \sum_{i=1}^n (y_1 - \mu) = 0$$

$$\sum_{i=1}^n y_i = n\mu \implies \left[\mu_e = \frac{\sum y_i}{n} = \overline{y} \right]$$

From ②, by the invariant property of MLE, we instead set

$$\frac{\partial \ell(\mu, \sigma)}{\partial \sigma^2} = 0$$

$$-\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2} \left(\frac{1}{\sigma^2}\right)^2 \sum_{i=1}^n (y_i - \mu)^2 = 0$$

$$\frac{1}{2\sigma^2} \left(-n + \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right) = 0$$

$$-n\sigma^2 + \sum_{i=1}^n (y_i - \mu)^2 = 0 \qquad (\mu_e = \overline{y})$$

$$\sum_{i=1}^n (y_i - \overline{y})^2 = n\sigma^2$$

$$\sigma_e^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 \implies \sigma_e = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2}$$

1.3 The Method of Moment

Definition 1.3.1 (Moment Generating Function). The *Moment Generating Function (MGF)* is defined as

$$\mathbf{M}_X(t) = \mathbf{E}\big[e^{tX}\big],$$

and it uniquely determines a probability distribution.

Definition 1.3.2 (Moment). The k-th order moment of X is $\mathbb{E}[X^k]$.

Example 1.3.3 Meaning of Different Moments

- E[X]: location of a distribution
- $\mathbf{E}[X^2] = \mathbf{Var}(X) \mathbf{E}[X]^2$: width of a distribution
- $\mathbf{E}[X^3]$: skewness positively skewed / negatively skewed
- $\mathbf{E}[X^4]$: kurtosis / tailedness speed decaying to 0.

Example 1.3.4 Moment Estimate: Moments of Population and Sample

Population	Sample, X_1, \ldots, X_n
$\mathbf{E}[X] = \mu$	$\widehat{\mu} = \overline{X} = \frac{X_1 + \dots + X_n}{n}$
$\mathbf{E}[X^2] = \mu^2 + \sigma^2$	$\widehat{\mu}^2 + \widehat{\sigma}^2 = \frac{X_1^2 + \dots + X_n^2}{n}$
:	:
$\mathbf{E}\big[X^k\big]$	$\frac{X_1^k + \dots + X_n^k}{n}$

Rationale: The population moments should be close to the sample moments.

Example 1.3.5

- Consider $N(\mu, \sigma^2)$, where σ is given. Estimate μ . By the method of moment estimate, we have $\mu_e = \overline{X}$.
- Consider $N(\mu,\sigma^2)$. Estimate μ and σ . We have $\mu_e=\overline{X}$ and $\mu_e^2+\sigma_e^2=\frac{X_1^2+\cdots+X_n^2}{n}$.

• Consider $N(\theta, \sigma^2)$. Given $E(X^4) = 3\sigma^4$, estimate μ and σ . We have $\mu_e = \overline{X}$, $\mu_e^2 + \sigma_e^2 = \frac{X_1^2 + \cdots + X_n^2}{n}$, and $3\sigma^4 = \frac{X_1^4 + \cdots + X_n^4}{n}$. We have three equations but only two unknowns, then a solution is not guaranteed. So, we need some restrictions on this method (see Remark 1.2).

Theorem 1.3.6 Method of Moments Estimates

For a random sample of size n from the discrete (or continuous) population/pdf $p_X(k;\theta_1,\ldots,\theta_s)$ (or $f_Y(y;\theta_1,\ldots,\theta_s)$), solutions to the system

$$\begin{cases} \mathbf{E}(Y) = \frac{1}{n} \sum_{i=1}^{n} y_i \\ \vdots \\ \mathbf{E}(Y^s) = \frac{1}{n} \sum_{i=1}^{n} y_i^s \end{cases}$$

which are denoted by $\theta_{1e}, \dots, \theta_{se}$, are called the **method of moments estimates** of θ_1,\ldots,θ_s .

Remark 1.2 To estimate k parameters with the method of moments estimates, we will only match the first k orders of moments.

Example 1.3.7 Consider the Gamma distribution:

$$f_Y(y; r, \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y} \quad \text{for } y \ge 0.$$

Given $\mathbf{E}(Y) = \frac{r}{\lambda}$ and $\mathbf{E}(Y^2) = \frac{r}{\lambda^2} + \frac{r^2}{\lambda^2}$. Estimate r and λ . Solution 1.

$$\mathbf{E}(Y) = \frac{r}{\lambda} \implies \frac{r_e}{\lambda_e} = \frac{y_1 + \dots + y_n}{n} = \overline{y} \quad \mathbb{O}$$

$$\mathbf{E}(Y^2) = \frac{r}{\lambda^2} + \frac{r^2}{\lambda^2} \implies \frac{r_e}{\lambda_e^2} + \frac{r_e^2}{\lambda_e^2} = \frac{y_1^2 + \dots + y_n^2}{n} \quad \mathbb{O}$$

Substitute 1 into 2, we have

$$\frac{\overline{y}}{\lambda_e} + (\overline{y})^2 = \frac{1}{n} \sum_{i=1}^n y_i^2 \implies \left[\lambda_e = \frac{\overline{y}}{\frac{1}{n} \sum y_i^2 - \overline{y}^2} \right]$$
 3

П

Substitute 3 into 1, we have

$$r_e = \overline{y}\lambda_e = \boxed{rac{\overline{y}^2}{rac{1}{n}\sum y_i^2 - \overline{y}^2}}.$$

Remark 1.3 The sample variance is defined as

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i^2 - 2y_i \overline{y} + \overline{y}^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i^2 - 2\overline{y} \cdot \frac{\sum y_i}{n} + \frac{1}{n} \cdot n\overline{y}^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i^2 - 2\overline{y}^2 + \overline{y}^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \overline{y}^2.$$

$$\overline{y} = \frac{\sum y_i}{n}$$

So, in Example 1.3.7, if we define $\hat{\sigma}^2$ to be the sample variance, we can further simply our estimate as follows:

$$\lambda_e = \frac{\overline{y}}{\widehat{\sigma}^2}, \qquad r_e = \frac{\overline{y}^2}{\widehat{\sigma}^2}.$$

1.4 Interval Estimation

Example 1.4.1 Estimate μ , where $X \sim N(\mu, 1)$.

We take some samples and compute their sample means:

$$\overline{X}^1 = \frac{x_1 + \dots + x_n}{n}, \overline{X}^2 = \frac{\widetilde{x}_1 + \dots + \widetilde{x}_n}{n}, \dots$$

Finding the distribution of \overline{X} , we can find an interval $\left[\widehat{\theta}_L,\widehat{\theta}_U\right]$ such that

$$\mathbf{P}\Big(\widehat{\theta}_L \le \overline{X} \le \widehat{\theta}_U\Big) = 1 - \alpha.$$

Remark 1.4 By using the variance of the estimator, one can construct an interval such that with a high probability that the interval contains the unknown parameter.

Definition 1.4.2 (Confidence Interval). The interval, $\left[\widehat{\theta}_L, \widehat{\theta}_U\right]$ is called the *confidence interval*, and the high probability is $1 - \alpha$, where α is given.

Remark 1.5 Take $\alpha = 5\%$, then $\left[\widehat{\theta}_L, \widehat{\theta}_U\right]$ is the 95% confidence interval of μ . It does not mean that μ has 95% chance to be in $\left[\widehat{\theta}_L, \widehat{\theta}_U\right]$. However, if we construct 1000 such intervals, 950 of them will contain μ .

Example 1.4.3 A random sample of size 4, $(Y_1 = 6.5, Y_2 = 9.2, Y_3 = 9.9, Y_4 = 12.4)$, from a normal population:

$$f_Y(y;\mu) = \frac{1}{\sqrt{2\pi}0.8}e^{-\frac{1}{2}\left(\frac{y-\mu}{0.8}\right)^2} \sim N(\mu, \sigma^2 = 0.64).$$

Both MLE and MME give $\mu_e = \overline{y} = 9.5$. The estimator $\widehat{\mu} = \overline{Y}$ follows normal distribution. Construct 95%-confidence interval for μ .

Solution 1.

 $\mathbf{E}(\overline{Y}) = \mu \text{ and } \mathbf{Var}(\overline{Y}) = \frac{\sigma^2}{n} = \frac{0.64}{4}. \text{ By the Central Limit Theorem, } \overline{Y} \text{ approximately follow } N\left(\mu, \frac{\sigma^2}{n}\right). \text{ So, } \frac{\overline{Y} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1). \text{ Then,}$

$$\mathbf{P}\left(z_1 \le \frac{\overline{Y} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \le z_2\right) = 0.95 \implies \mathbf{P}\left(\overline{Y} - z_2\sqrt{\frac{\sigma^2}{n}} \le \mu \le \overline{Y} - z_1\sqrt{\frac{\sigma^2}{n}}\right) = 0.95$$

There are infinite many ways to construct a confidence interval by selecting different z_1 and z_2 . However, since we don't have any prior knowledge on μ , it is good for us to choose z_1 and z_2 symmetrically. Moreover, symmetric z_1 and z_2 will yield a smaller interval. We know the symmetric z_1 , z_2 pair will be $z_1 = -1.96$ and $z_2 = 1.96$. Therefore,

$$\mathbf{P}\left(\overline{Y} - 1.96\sqrt{\frac{0.64}{4}} \le \mu \le \overline{Y} + 1.96\sqrt{\frac{0.64}{4}}\right) = 0.95.$$

Then, 95% confidence interval is $[9.5 - 1.96 \times 0.4, 9.5 + 1.96 \times 0.4]$.

Theorem 1.4.4 Confidence Interval

In general, for a normal population with σ known, the $100(1-\alpha)\%$ two-sided confidence interval for μ is

$$\left(\overline{y}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\ \overline{y}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Theorem 1.4.5 Variation of Confidence Interval

• One-sided interval:

$$\left(\overline{y}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\ \overline{y}\right)$$
 or $\left(\overline{y},\ \overline{y}+z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$

- σ is unknown and sample size is small: z-score $\rightarrow t$ -score.
- σ is unknown and sample size is large: z-score by CLT.
- Non Gaussian population but sample size is large: z-score by CLT.

Theorem 1.4.6

Let k be the number of successes in n independent trials, where n is large and $p = \mathbf{P}(\text{success})$ is unknown. An approximate $100(1 - \alpha)\%$ confidence interval for p is the set of numbers

$$\left(\frac{k}{n} - z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}, \frac{k}{n} + z_{\alpha/2}\sqrt{\frac{(k/n)(1-k/n)}{n}}\right).$$

Definition 1.4.7 (Margin of Error). The *margin of error*, denoted by d, is the quantity

$$d = z_{\alpha/2} \sqrt{\frac{(k/n)(1 - k/n)}{n}}.$$

Remark 1.6 *Stating the sample mean and the margin of error is equivalent to stating the confidence interval. Note that* $C.I. = \hat{p} \pm d$.

Theorem 1.4.8 Estimate Margin of Error

When p is close to $\frac{1}{2}$, then $d \approx d_m = \frac{z_{\alpha/2}}{2\sqrt{n}}$, which is equivalent to $\sigma_n \approx \frac{1}{2\sqrt{n}}$. However, if p is away from $\frac{1}{2}$, d and d_m are very different.

Remark 1.7 Theorem 1.4.8 gives aconservative estimation of the margin of error, which is d_m .

Proposition 1.9: Given *d*, we can estimate the sample size.

Proof 2.

$$d = z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} \implies n \approx \widehat{p}(1-\widehat{p}) / \left(\frac{d}{z_{\alpha/2}}\right)^2.$$

However, since n is unknown, \hat{p} is also unknown. We, therefore, need information on the actual p to conclude an estimation of the sample size.

• If p is known,

$$n = \frac{p(1-p)}{\left(\frac{d}{z_{\alpha/2}}\right)^2}.$$

• If p is unknown. Let f(p) = p(1-p). f will be maximized when p = 0.5. So, $f(p) = p(1-p) \le 0.25$. Then,

$$n \le \frac{0.25}{\left(\frac{d}{z_{\alpha/2}}\right)^2}.$$

Since we are conservative, take $n=\frac{\frac{1}{4}z_{\alpha/2}^2}{d^2}=\frac{z_{\alpha/2}^2}{4d^2}$. This estimation is a conservative estimation of the sample size.

1.5 Properties of Estimation

The main question is that estimators are not unique in general. How do we choose a good estimator?

Definition 1.5.1 (Unbiasedness). Given a random sample of size n when whose population distribution depends on an unknown parameter θ . Let $\widehat{\theta}$ be an estimator of θ . Then,

- $\widehat{\theta}$ is called *unbiased* if $\mathbf{E}(\widehat{\theta}) = \theta$.
- $\widehat{\theta}$ is called *asymptotically unbiased* if $\lim_{n\to\infty} \mathbf{E}(\widehat{\theta}) = \theta$.
- If θ is biased, then the *bias* is given by the quantity $\mathbf{B}(\widehat{\theta}) = \mathbf{E}(\widehat{\theta}) \theta$.

Example 1.5.2 Consider the exponential distribution: $f_Y(y; \lambda) = \lambda e^{-\lambda y}$ for $y \ge 0$. Determine if the estimator $\hat{\lambda} = \frac{1}{\overline{V}}$ is biased or not.

Hint:
$$n\overline{Y} = \sum_{i=1}^{n} Y_i \sim Gamma(n, \lambda)$$
.

Solution 1.

Recall that $\mathbf{E}[g(x)] = \int_x g(x) f_X(x) \, dx$. Define $X = \sum_{i=1}^n Y_i \sim \mathrm{Gamma}(n, \lambda)$. Also, recall the following facts:

$$\Gamma(n) = (n-1)! = (n-1)\Gamma(n-1)$$

and the integration over any probability density function will yield a result of 1 by definition.

Then,

$$\mathbf{E}(\widehat{\lambda}) = \mathbf{E}\left(\frac{1}{\overline{Y}}\right) = \mathbf{E}\left(\frac{n}{\sum Y_i}\right) = n\mathbf{E}\left(\frac{1}{\overline{X}}\right)$$

$$= n\mathbf{E}\left(\frac{1}{\overline{X}}\right)$$

$$= n\int_x \frac{1}{x} \cdot \frac{\lambda^n}{\Gamma(n)} x^{n-1} e^{-\lambda x} \, \mathrm{d}x$$

$$= n\int_x \frac{\lambda^n}{(n-1)!} x^{n-2} e^{-\lambda x} \, \mathrm{d}x$$

$$= \frac{n\lambda}{(n-1)} \underbrace{\int_x \frac{\lambda^{n-1}}{\Gamma(n-1)} x^{n-2} e^{-\lambda x} \, \mathrm{d}x}_{=1}$$

$$= \frac{n}{n-1} \lambda.$$

Therefore, $E(\widehat{\lambda}) \neq \lambda$, and so $\widehat{\lambda}$ is biased. However, note that

$$\lim_{n\to\infty} \mathbf{E}(\widehat{\lambda}) = \lim_{n\to\infty} \frac{n}{n-1}\lambda = \lambda.$$

By definition, then $\hat{\lambda}$ is asymptotically unbiased.

Example 1.5.3 Consider the exponential distribution $f(y;\theta) = \frac{1}{\theta}e^{-y/\theta}$ for $y \ge 0$. Then, $\widehat{\theta} = \overline{Y}$ is unbiased.

Remark 1.8 Suppose $\{X_1, \ldots, X_n\}$ are i.i.d. random variables, and $\mathbf{E}(X_i) = \mu$ for $i = 1, \ldots, n$. Then, \overline{X} , the sample mean, is always an unbiased estimator:

$$\mathbf{E}(\overline{X}) = \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}(X_{i}) = \frac{1}{n}\cdot n\cdot \mu = \mu.$$

Theorem 1.5.4 Sample Variance is Biased

Suppose $\{X_1, \dots, X_n\}$ are i.i.d. random variables, and $\mathbf{E}(X_i) = \mu$, $\mathbf{Var}(X_i) = \sigma^2$ for $i = 1, \dots, n$. Then, the sample variance $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$ is biased.

Proof 2. Note that

$$\begin{split} \mathbf{E}(\widehat{\sigma}^2) &= \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2\right) \\ &= \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^n\left(X_i-\mu+\mu-\overline{X}\right)^2\right) \\ &= \frac{1}{n}\sum_{i=1}^n\mathbf{E}\Big[(X_i-\mu)^2+\left(\mu-\overline{X}\right)^2+2(X_i-\mu)(\mu-\overline{X})\Big] \\ &= \frac{1}{n}\sum_{i=1}^n\mathbf{E}\Big[(X_i-\mu)^2+\mathbf{E}\big(\mu-\overline{X}\big)^2+2\mathbf{E}\big[(\mu-\overline{X})(X_i-\mu)\big]\Big\} \\ &\Big| \quad Hint: \frac{1}{n}\sum_{i=1}^n(X_i-\mu) = \frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^n\mu=\overline{X}-\mu \\ &= \frac{1}{n}\sum_{i=1}^n\mathbf{Var}(X_i)+\frac{1}{n}\cdot n\mathbf{E}\big(\mu-\overline{X}\big)^2+2\mathbf{E}\Big[\big(\mu-\overline{X}\big)\frac{1}{n}\sum_{i=1}^n(X_i-\mu)\Big] \\ &= \frac{1}{n}\sum_{i=1}^n\sigma^2+\mathbf{E}\big(\mu-\overline{X}\big)^2+2\mathbf{E}\big[(\mu-\overline{X})(\overline{X}-\mu)\big] \\ &= \frac{1}{n}\cdot n\cdot\sigma^2+\mathbf{E}\big(\mu-\overline{X}\big)^2-2\mathbf{E}\big[(\mu-\overline{X})^2\big] \\ &= \sigma^2-\mathbf{E}\big(\mu-\overline{X}\big)^2 \\ &= \sigma^2-\mathbf{E}\big(\overline{X}-\mu\big)^2 \\ &= \mathbf{Var}(\overline{X}) \\ &= \sigma^2-\frac{\sigma^2}{n}=\frac{n-1}{n}\sigma^2\neq\sigma^2 \end{split}$$

Therefore, $\hat{\sigma}^2$ is not an unbiased estimator.

Theorem 1.5.5 Adjusted Sample Variance is Unbiased

With the same set up in Theorem 1.5.4, define the adjusted sample variance to be

$$S^{2} = \frac{n}{n-1}\widehat{\sigma}^{2} = \frac{1}{n-1}\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Then, S^2 is an unbiased estimator of σ^2 .

Definition 1.5.6 (Decision Theory). Minimize the error of an estimator (sample statistics) relative to the true parameter (population parameter) using a loss function.

Definition 1.5.7 (Mean Squared Error). The *mean squared error* (MSE) is defined by

$$\mathbf{MSE}(\widehat{\boldsymbol{\theta}}) = \mathbf{E} \Big[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta})^2 \Big]$$

Theorem 1.5.8 Decomposition of MSE

Generally,

$$\mathbf{MSE}(heta) = \mathbf{Var}(\widehat{ heta}) + \mathbf{B}(\widehat{ heta})^2$$

If $\widehat{\theta}$ is unbiased, $\mathbf{MSE}(\widehat{\theta}) = \mathbf{Var}(\widehat{\theta})$. $\mathbf{Var}(\theta)$ measures the precision of the estimator.

Proof 3. Note that we will the following:

$$\begin{split} \mathbf{MSE}(\widehat{\theta}) &= \mathbf{E} \Big[(\widehat{\theta} - \theta)^2 \Big] \\ &= \mathbf{E}(\widehat{\theta}^2 + \theta^2 - 2\widehat{\theta}\theta) \\ &= \mathbf{E}(\widehat{\theta}) - 2\theta \mathbf{E}(\widehat{\theta}) + \theta^2 \\ &= \underline{\mathbf{E}(\widehat{\theta}^2) - \mathbf{E}(\widehat{\theta})^2} + \underline{\mathbf{E}(\widehat{\theta})^2 - 2\theta \mathbf{E}(\widehat{\theta}) + \theta^2} \\ &= \mathbf{Var}(\widehat{\theta}) + \Big[\mathbf{E}(\widehat{\theta}) - \theta \Big]^2 \\ &= \mathbf{Var}(\theta) + \mathbf{B}(\widehat{\theta})^2 \end{split}$$

If $\widehat{\theta}$ is unbiased, $\mathbf{B}(\widehat{\theta}) = 0$, and so $\mathbf{MSE}(\widehat{\theta}) = \mathbf{Var}(\widehat{\theta})$.

Definition 1.5.9 (Efficiency). Let $\widehat{\theta}_1$ and $\widehat{\theta}_2$ be two unbiased estimators for a parameter θ . If we have $\mathbf{Var}(\widehat{\theta}_1) < \mathbf{Var}(\widehat{\theta}_2)$, then we say that $\widehat{\theta}_1$ is *more efficient* than $\widehat{\theta}_2$. The *relative efficiency* of $\widehat{\theta}_1$ with respect to $\widehat{\theta}_2$ is the ratio $\frac{\mathbf{Var}(\widehat{\theta}_2)}{\mathbf{Var}(\widehat{\theta}_1)}$.

1.6 Best Unbiased Estimator

Definition 1.6.1 (Best/Minimum-Variance Estimator). Let Θ be the set of all estimators $\widehat{\theta}$ that are unbiased for the parameter θ . We way that $\widehat{\theta}^*$ is a *best* or *minimum-variance estimator* (MVE) if $\widehat{\theta}^* \in \Theta$ and $\mathbf{Var}(\widehat{\theta}^*) \leq \mathbf{Var}(\widehat{\theta}) \quad \forall \ \widehat{\theta} \in \Theta$.

Definition 1.6.2 (Fisher's Information). The *Fisher's information* of a continuous random variable Y with pdf $f_Y(y;\theta)$ is defined as

$$\mathbf{I}(\theta) = \mathbf{E} \left[\left(\frac{\partial \ln f_Y(y; \theta)}{\partial \theta} \right)^2 \right] = -\mathbf{E} \left[\frac{\partial^2}{\partial \theta^2} \ln f_Y(y; \theta) \right].$$

Remark 1.9 The Fisher's information measures the amount of information that a sample Y contains about the unknown parameter θ . If $\mathbf{I}(\theta)$ is big, then the curvature of $f_Y(y;\theta)$ is big, and

thus it is more likely that we can find a region where $\hat{\theta}$ is concentrated.

Extension 1.1 (Joint Fisher's Information) Suppose $Y_1, ..., Y_n$ are continuous i.i.d. random variables, each has a Fisher's information of $\mathbf{I}(\theta)$. Then,

$$\mathbf{E}\left[\left(\frac{\partial}{\partial \theta}\ln f_{Y_1,\dots,Y_n}(y_1,\dots,y_n;\theta)\right)^2\right] = n\mathbf{I}(\theta).$$

Theorem 1.6.3 Properties of Fisher's Information

Define the *Fisher's Score Function* $\frac{\partial}{\partial \theta} \ln f_Y(y; \theta)$. Then,

$$\mathbf{E}_Y \left[\frac{\partial}{\partial \theta} \ln f_Y(y; \theta) \right] = 0.$$

Proof 1. Note that by chain rule, we have

$$\mathbf{E}_{Y} \left[\frac{\partial}{\partial \theta} \ln f_{Y}(y; \theta) \right] = \int_{Y} \left(\frac{\partial}{\partial \theta} \ln f_{Y}(y; \theta) \right) f_{Y}(y; \theta) \, \mathrm{d}y$$

$$= \int_{Y} \frac{1}{f_{Y}(y; \theta)} \left(\frac{\partial}{\partial \theta} f_{Y}(y; \theta) \right) f_{Y}(y; \theta) \, \mathrm{d}y$$

$$= \int_{Y} \frac{\partial}{\partial \theta} f_{Y}(y; \theta) \, \mathrm{d}y$$

$$= \frac{\partial}{\partial \theta} \int_{Y} f_{Y}(y; \theta) \, \mathrm{d}y = \frac{\partial}{\partial \theta} (1) = 0.$$

Corollary 1.4:

$$\mathbf{I}(\theta) = \mathbf{Var} \left(\frac{\partial}{\partial \theta} \ln f_Y(y; \theta) \right).$$

Proof 2. By definition, we have

$$\begin{aligned} \mathbf{Var} \bigg(\frac{\partial}{\partial \theta} \ln f_Y(y; \theta) \bigg) &= \mathbf{E} \Bigg[\bigg(\frac{\partial}{\partial \theta} \ln f_Y(y; \theta) \bigg)^2 \Bigg] - \Bigg(\underbrace{\mathbf{E} \bigg(\frac{\partial}{\partial \theta} \ln f_Y(y; \theta) \bigg)}_{=0, \text{ by Theorem 1.6.3.}} \bigg)^2 \\ &= \mathbf{E} \Bigg[\bigg(\frac{\partial}{\partial \theta} \ln f_Y(y; \theta) \bigg)^2 \Bigg] \\ &= \mathbf{I}(\theta). \end{aligned}$$

Theorem 1.6.5 Cramér-Rao Inequality

Under regular condition, let Y_1, \ldots, Y_n be a random sample of size n form the continuous population pdf $f_Y(y; \theta)$. Let $\widehat{\theta} = \widehat{\theta}(Y_1, \ldots, Y_n)$ be any unbiased estimator for θ . Then,

$$\operatorname{Var}(\widehat{\theta}) \ge \frac{1}{n\mathbf{I}(\theta)}.$$

Remark 1.10 A similar statement holds for the discrete case $p_X(k;\theta)$.

Definition 1.6.6 (Efficiency of Unbiased Estimator). An unbiased estimator $\widehat{\theta}$ is *efficient* if $\operatorname{Var}(\widehat{\theta})$ is equal to the Cramér-Rao lower bound. That is, $\operatorname{Var}(\widehat{\theta}) = (n\mathbf{I}(\theta))^{-1}$. Such an estimator is the MVE defined in Definition 1.6.1. The *efficiency* of an unbiased estimator $\widehat{\theta}$ is defined to be the quantity

$$\left(n\mathbf{I}(\theta)\mathbf{Var}(\widehat{\theta})\right)^{-1}$$
.

Example 1.6.7 Suppose $X \sim \text{Bernoulli}(p)$. Is $\widehat{p} = \overline{X}$ efficient? *Solution 3.*

Note that we have the following

$$f_X(x;p) = p^x (1-p)^{1-x}, \quad x = 0, 1$$

$$\ln f_X(x;p) = x \ln p + (1-x) \ln(1-p)$$

$$\frac{\partial}{\partial p} \ln f_X(x;p) = \frac{x}{p} - \frac{1-x}{1-p}$$

$$\frac{\partial^2}{\partial p^2} \ln f_X(x;p) = -\frac{x}{p^2} - \frac{1-x}{(1-p)^2}$$

Therefore, the Fisher's information can be computed by

$$\mathbf{I}(p) = -\mathbf{E} \left[\frac{\partial^2}{\partial p^2} \ln f_X(x; p) \right] = -\mathbf{E} \left[-\frac{x}{p^2} - \frac{1 - x}{(1 - p)^2} \right]$$

$$= \mathbf{E} \left[\frac{x}{p^2} \right] + \mathbf{E} \left[\frac{1 - x}{(1 - p)^2} \right]$$

$$= \frac{\mathbf{E}(x)}{p^2} + \frac{1 - \mathbf{E}(x)}{(1 - p)^2}$$

$$= \frac{p}{p^2} + \frac{1 - p}{(1 - p)^2} = \frac{1}{p} + \frac{1}{1 - p} = \frac{1}{p(1 - p)}.$$

Note that

$$\mathbf{Var}(\overline{X}) = \mathbf{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n}\mathbf{Var}(X_i) = \frac{1}{n}\mathbf{Var}(X_i) = \frac{1}{n} \cdot p(1-p).$$

1 ESTIMATION 1.7 Sufficiency

So, we have

$$\mathbf{Var}(\overline{X}) = \frac{p(1-p)}{n} = \frac{1}{n\left(\frac{1}{p(1-p)}\right)} = \frac{1}{n\mathbf{I}(p)}.$$

Therefore, \widehat{p} is efficient.

Example 1.6.8 Suppose $X \sim N(\mu, \sigma^2)$, with σ^2 is known. What is $\mathbf{I}(\mu)$? *Solution 4.*

Note that

$$\frac{\mathrm{d}^2}{\mathrm{d}\mu^2}\ln f_X(x;\mu) = -\frac{1}{\sigma^2}.$$

Then,

$$\mathbf{I}(\mu) = -\mathbf{E}\left[\frac{\mathrm{d}^2}{\mathrm{d}\mu^2}\ln f_X(x;\mu)\right] = -\mathbf{E}\left[-\frac{1}{\sigma^2}\right] = \frac{1}{\sigma^2}.$$

1.7 Sufficiency

Remark 1.11 Use Likelihood Function to Define Fisher's Information

- We can define the score function as $\frac{\partial \ln \mathbf{L}(Y_1, \dots, y_n; \theta)}{\partial \theta} = 0 \implies \textit{MLE}.$
- $\mathbf{E} \left[\frac{\partial \ln \mathbf{L}(Y; \theta)}{\partial \theta} \right] = 0$

•
$$\mathbf{I}(\theta) = \mathbf{E}\left[\left(\frac{\partial \ln \mathbf{L}(Y;\theta)}{\partial \theta}\right)^2\right] = -\mathbf{E}_Y\left[\frac{\partial^2 \ln \mathbf{L}(Y;\theta)}{\partial \theta^2}\right]$$

•
$$-\mathbf{E}_Y \left[\frac{\partial^2 \ln \mathbf{L}(Y_1, \dots, Y_n; \theta)}{\partial \theta^2} \right] = n\mathbf{I}(\theta).$$

Proof 1.

$$\begin{split} -\mathbf{E}_{Y} \left[\frac{\partial^{2} \ln \mathbf{L}(Y_{1}, \dots, Y_{n}; \theta)}{\partial \theta^{2}} \right] &= -\mathbf{E}_{Y} \left[\frac{\partial^{2}}{\partial \theta^{2}} \ln \mathbf{L}(Y_{1}, \dots, Y_{m}; \theta) \right] \\ &= -\mathbf{E}_{Y} \left[\frac{\partial^{2}}{\partial \theta^{2}} \ln \left(\prod_{i=1}^{n} f_{Y}(Y_{i}; \theta) \right) \right] \\ &= -\mathbf{E}_{Y} \left[\frac{\partial^{2}}{\partial \theta^{2}} \sum_{i=1}^{n} f_{Y}(y_{i}; \theta) \right] = \sum_{i=1}^{n} \left(-\mathbf{E}_{Y} \left[\frac{\partial^{2}}{\partial \theta^{2}} f_{Y}(y_{i}; \theta) \right] \right) = n \mathbf{I}(\theta) \end{split}$$

• $\widehat{\theta_{MLE}} \xrightarrow{n \to \infty} N\left(\theta, \frac{1}{\mathbf{I}(\theta)}\right)$. Note that $\frac{1}{\mathbf{I}(\theta)}$ is the C-R lower bound. We see that $\widehat{\theta_{MLE}}$ is asymptotically efficient.

Remark 1.12 (Sufficiency Intuition) Sufficiency tells us how much information can we get out of the data.

Rationale Let $\hat{\theta}$ be an estimator to the unknown parameter θ . Does $\hat{\theta}$ contain all information about θ ? e.g., The data itself is a sufficient estimator.

Definition 1.7.1 (Sufficiency). Let (X_1, \ldots, X_n) be a random sample of size n from a continuous population with an unknown parameter θ . We call θ is *sufficient* if

$$f_{Y_1,\dots,Y_n\mid\widehat{\theta}}(Y_1,\dots,Y_n\mid\widehat{\theta}=\theta_e)=b(y_1,\dots,y_n),$$

where $b(y_1, \ldots, y_n)$ is independent of θ ($\perp\!\!\!\perp \theta$). Also, $\widehat{\theta} = h(Y_1, \ldots, Y_n)$ and $\theta_e = h(y_1, \ldots, y_n)$. In this case, $\widehat{\theta}$ contains all the information about θ from $\{y_1, \ldots, y_n\}$.

Example 1.7.2

• Toss a coin 5 times and get 3 heads. Estimate p = probability of H. **Solution 2.**

$$\mathbf{P}\left(HHHTT \mid p_e = \frac{3}{5}\right) = \frac{1}{\binom{3}{5}} \perp p \implies \text{sufficient}$$

• A random sample of size n from Bernoulli(p). Check the sufficiency of $p = \sum_{i=1}^{n} X_i$. Solution 3.

Suppose the random sample is $\{X_1, \ldots, X_n\}$. Then, consider

$$\mathbf{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = C \mid \widehat{p} = C) = \frac{\mathbf{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = C)}{\mathbf{P}(\widehat{p} = C)}.$$

What new information can $\sum_{i=1}^{n} X_i = C$ tell us? $X_n = C - \sum_{i=1}^{n-1} X_i$.

1 ESTIMATION 1.7 Sufficiency

Note that $\mathbf{P}(\widehat{p} = C) = \mathbf{P}\left(\sum_{i=1}^{n} X_i = C\right)$. Since the summation of Bernoulli(p) random variables is a Binomial(n, p) random variable, we have $\mathbf{P}(\widehat{p} = C) = \binom{n}{C} p^C (1-p)^{n-C}$.

Case I Suppose $\sum_{i=1}^{n} X_i = C$. Then,

$$\frac{\mathbf{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = C)}{\mathbf{P}(\widehat{p} = C)}$$

$$= \frac{\left(\prod_{i=1}^{n-1}\right) p^{X_i} (1-p)^{1-X_i} p^{C-\sum_{i=1}^{n-1} X_i} (1-p)^{\left(1-C+\sum_{i=1}^{n-1} X_i\right)}}{\left(\binom{n}{C}\right) p^C (1-p)^{n-C}}$$

$$= \frac{\sum_{i=1}^{n-1} X_i + C - \sum_{i=1}^{n-1} X_i}{(1-p)} \frac{(n-1) - \sum_{i=1}^{n-1} X_i + 1 - C + \sum_{i=1}^{n-1} X_i}{\left(\binom{n}{C}\right) p^C (1-p)^{n-C}}$$

$$= \frac{p^C (1-p)^{n-C}}{\left(\binom{n}{C}\right) p^C (1-p)^{n-C}} = \frac{1}{\left(\binom{n}{C}\right)} \coprod p \implies \text{sufficient}$$

Case II Suppose $\sum_{i=1}^{n} X_i \neq C$. Then,

$$\frac{\mathbf{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = C)}{\mathbf{P}(\widehat{p} = C)} = \frac{0}{\mathbf{P}(\widehat{p} = C)} = 0 \perp p \implies \text{sufficient}$$

1 ESTIMATION 1.8 Consistency

Theorem 1.7.3 Factorization Property

 $\widehat{\theta}$ is sufficient if and only if the likelihood can be factorized as

$$\mathbf{L}(\theta) = \underbrace{g(\theta_e; \theta)}_{\theta_e = h(y_1, \dots, y_n)} \underset{\& \theta}{\underbrace{u(y_1, \dots, y_n)}}.$$

1.8 Consistency

Definition 1.8.1 (Consistency). An estimator $\widehat{\theta}_n = h(W_1, \dots, W_n)$ is said to be *consistent* if it converges to θ in probability; i.e., for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P} \left(\left| \widehat{\theta}_n - \theta \right| < \varepsilon \right) = 1.$$

Remark 1.13 1. Consistency is an asymptotical property (defined in a large sample limit).

2. n= sample size. $|\widehat{\theta}_n - \theta|$ is the distance between estimator and true θ .

Lemma 1.2 Markov Inequality: Suppose $X \ge 0$ is a random variable and a > 0 is a constant. Then,

$$\mathbf{P}(X \ge a) \le \frac{\mathbf{E}(X)}{a}.$$

Remark 1.14 *Markov inequality is good for determining extreme values. If* $\mathbf{E}(X)$ *is small, then it is very unlikely that* X *will take some extremely large numbers.*

Theorem 1.8.3 Chebyshev Inequality

Let W be some random variable with finite mean μ and variance σ^2 . Then, for any $\varepsilon > 0$, we have

$$\mathbf{P}(|W - \mu| < \varepsilon) \le 1 - \frac{\sigma^2}{\varepsilon^2}$$

or, equivalently,

$$\mathbf{P}(|W - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}.$$

Proof 1. Consider the random variable $|W - \mu|$. Then, by Markov Inequality,

$$\mathbf{P}(|X - \mu| \ge \varepsilon) = \mathbf{P}(|X - \mu|^2 \ge \varepsilon^2)$$
$$= \mathbf{P}((X - \mu)^2 \ge \varepsilon^2) \le \frac{\mathbf{E}[(X - \mu)^2]}{\varepsilon^2} = \frac{\sigma^2}{\varepsilon^2}$$

Corollary 1.4: The sample mean $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n W_i$ is a consistent estimator for $\mathbf{E}(W) = \mu$, provided that the population W has finite mean μ and variance σ^2 .

Proposition 1.5: If $\widehat{\theta}_n$ is an unbiased estimator of θ , then $\widehat{\theta}_n$ is consistent if

$$\lim_{n\to\infty} \mathbf{Var}\Big(\widehat{\theta}_n\Big) = 0.$$

Proof 2. Suppose $\widehat{\theta}_n$ is an unbiased estimator of θ . Then, $\mathbf{E}(\widehat{\theta}_n) = \theta$. So, by Chebyshev Inequality, we have

$$\mathbf{P}\Big(\Big|\widehat{\theta}_n\theta\Big| \geq \varepsilon\Big) = \mathbf{P}\Big(\Big|\widehat{\theta}_n - \mathbf{E}\Big(\widehat{\theta}_n\Big)\Big| \geq \varepsilon\Big) \leq \frac{\mathbf{E}\Big[\Big(\widehat{\theta}_n - \mathbf{E}\Big(\widehat{\theta}_n\Big)\Big)^2\Big]}{\varepsilon^2} = \frac{\mathbf{Var}\Big(\widehat{\theta}_n\Big)}{\varepsilon^2}.$$

If we have $\operatorname{Var}\left(\widehat{\theta}_{n}\right) \to 0$ when $n \to \infty$, then

$$\lim_{n \to \infty} \mathbf{P}(\left|\widehat{\theta}_n - \theta\right| \ge \varepsilon) \le \lim_{n \to \infty} \frac{\mathbf{Var}(\widehat{\theta}_n)}{\varepsilon^2} = \frac{0}{\varepsilon} = 0.$$

Therefore, it must be that $\lim_{n\to\infty} \mathbf{P}(\left|\widehat{\theta}_n - \theta\right| \ge \varepsilon) = 0$ as probability cannot take negative values. Hence,

$$\lim_{n \to \infty} \mathbf{P}(\left|\widehat{\theta}_n - \theta\right| < \varepsilon) = \lim_{n \to \infty} \left(1 - \mathbf{P}(\left|\widehat{\theta}_n - \theta\right| \ge \varepsilon)\right)$$
$$= 1 - \lim_{n \to \infty} \mathbf{P}(\left|\widehat{\theta}_n - \theta\right| \ge \varepsilon)$$
$$= 1 - 0 = 1.$$

Then, by definition, $\widehat{\theta}_n$ is consistent.

1.9 Bayesian Estimator

Theorem 1.9.1 Bayes' Rule

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(B \mid A)\mathbf{P}(A)}{\mathbf{P}(B \mid A)\mathbf{P}(A) + \mathbf{P}(B \mid A^C)\mathbf{P}(A^C)}.$$

$$\mathbf{P}(A \mid B^C) = 1 - \mathbf{P}(A \mid B) = \frac{\mathbf{P}(B^C \mid A)\mathbf{P}(A)}{\mathbf{P}(B^C \mid A)\mathbf{P}(A) + \mathbf{P}(B^C \mid A^C)\mathbf{P}(A^C)}.$$

Rationale Let W be an estimator dependent on a parameter θ .

- 1. Frequentists view θ as a parameter whose exact value to be estimated (θ is fixed).
- 2. Bayesians view θ is the value of a random variable Θ . (θ is uncertain and has its known parameter distribution).

Data Generation The following procedure generates data with an additional layer of randomness.

- 1. θ is sampled from a distribution.
- 2. Under this θ , we sample the data.

Definition 1.9.2 (Prior distribution, Posterior distribution). Our prior knowledge on Θ is called the *prior distribution*: $p_{\Theta}(\theta)$. The conditional distribution of the data given the parameter is the *likelihood*: $p(X \mid \Theta)$. Then, the Bayes' Rule will be

$$\underbrace{\mathbf{P}(\Theta \mid X)}_{\text{posterior distribution given the observation}} = \underbrace{\frac{\mathbf{P}(X \mid \Theta) \cdot \underbrace{\mathbf{P}(\Theta)}_{\text{prior distribution}}}{\mathbf{P}(X)}}_{\text{margin distribution of data}}$$

Theorem 1.9.3 Bayesian Estimator

$$g_{\Theta}(\theta \mid W = w) = \begin{cases} \frac{p_W(w \mid \Theta = \theta)p_{\Theta}(\theta)}{p_W(w)} & \text{if } W \text{ and } \Theta \text{ are discrete} \\ \\ \frac{f_W(w \mid \Theta = \theta)f_{\Theta}(\theta)}{f_W(w)} & \text{if } W \text{ and } \Theta \text{ are constinuous,} \end{cases}$$

where

$$f_W(x) = \int_H f_{W,\Theta}(w,\theta) d\theta \quad \text{for } \theta \in H$$
$$= \int_H f_W(w \mid \Theta = \theta) f_{\Theta}(\theta) d\theta.$$

Further, let $A = f_W(w) = \int_H f_W(w \mid \Theta = \theta) f_{\Theta}(\theta) d\theta$. Then, A normalizes likelihood×prior:

$$1 = \int \frac{f_W(w \mid \Theta = \theta) f_{\Theta}(\theta)}{A} d\theta.$$

So,

$$g_{\Theta}(\theta \mid W = w) = \mathbf{constant} \cdot f_W(w \mid \Theta = \theta) f_{\Theta}(\theta)$$
 or posterior \propto likelihood \times prior.

Example 1.9.4 A call center. Let X= number of calls coming into the center. Then we know that $X\sim \mathrm{Poisson}(\lambda)$. This particular call center believes that Λ is distributed with pdf

$$p_{\Lambda}(8) = 0.25$$
 and $p_{\Lambda}(10) = 0.75$.

The call center believes that the number of calls coming into the center has recently changed, so they pick an hour and observe that X = 7 calls come in.

Solution 1.

We want to find: $P(\Lambda = 8 \mid X = 7)$ and $P(\Lambda = 10 \mid X = 7)$. By Bayes' Rule:

$$\mathbf{P}(\Lambda = 8 \mid X = 7) = \frac{\mathbf{P}(X = 7 \mid \Lambda = 8)\mathbf{P}(\Lambda = 8)}{\mathbf{P}(X = 7)}$$

$$= \frac{\mathbf{P}(X = 7 \mid \Lambda = 8)\mathbf{P}(\Lambda = 8)}{\mathbf{P}(X = 7 \mid \Lambda = 8)\mathbf{P}(\Lambda = 8) + \mathbf{P}(X = 7 \mid \Lambda = 10)\mathbf{P}(\Lambda = 10)}$$

$$= \frac{e^{-8} \left(\frac{8^{7}}{7!}\right)(0.25)}{e^{-8} \left(\frac{8^{7}}{7!}\right)(0.25) + e^{-10} \left(\frac{10^{7}}{7!}\right)(0.75)} \approx 0.66$$

Then, $\mathbf{P}(\Lambda = 10 \mid X = 7) = 1 - \mathbf{P}(\Lambda = 8 \mid X = 7) = 1 - 0.66 = 0.34$. Or, alternatively, we can use the Bayes' Rule again.

Table 1: Convention of Picking a Prior Distribution

Parameter	Prior Distribution
Bernoulli(p)	Beta
Binomial(p)	Beta
$Poisson(\lambda)$	Gamma
Exponential(λ)	Gamma
$Normal(\mu)$	Normal
$Normal(\sigma^2)$	Inverse Gamma

Remark 1.15 When we have no prior knowledge on the belief, we choose a uniform distribution.

Example 1.9.5 Consider an unfair $coin \Theta$ (a random variable indicating the probability of getting head). Flip the coin n times, X = number of heads. Find the posterior distribution. *Solution 2.*

By the Bayes' rule,

$$f_{\Theta|X}(\theta \mid X = x) = \frac{f_{\Theta}(\theta)\mathbf{P}(X = k \mid \theta)}{\mathbf{P}(X = k)}.$$

We know $\theta \in [0, 1]$, so $\Theta \sim \text{Uniform}[0, 1]$ and $f_{\Theta}(\theta) = 1$. So,

$$f_{\Theta|X}(\theta \mid X = x) = \frac{1 \cdot \binom{n}{k} \cdot \theta^k (1 - \theta)^{n - k}}{\mathbf{P}(X = k)} = \underbrace{\frac{1 \cdot \binom{n}{k}}{\mathbf{P}(X = k)}}_{\text{constant}} \theta^k (1 - \theta)^{n - k}$$

Definition 1.9.6 (Beta Distribution). For a distribution Beta(α, β), the pdf is given by

$$f_Y(y; \alpha, \beta) = \frac{y^{\alpha - 1}(1 - y)^{\beta - 1}}{\mathbf{B}(\alpha, \beta)} \quad \text{for } y \in [0, 1] \text{ and } \alpha, \beta > 0,$$

where

$$\mathbf{B}(\alpha,\beta) := \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} \, \mathrm{d}y = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \quad \alpha,\beta > 0.$$

The expectation of $X \sim \text{Beta}(\alpha, beta)$ is given by

$$\mathbf{E}(X) = \frac{\alpha}{\alpha + \beta}.$$

Disregarding the constant, $\theta^k(1-\theta)^{n-k}$ is part of the Beta distribution with $\alpha=k+1$ and $\beta=n-k+1$. So, $\Theta\sim \mathrm{Beta}(k+1,n-k+1)$. To form a distribution, the constant must, therefore, be

$$\frac{\binom{n}{k}}{\mathbf{P}(X=k)} = \frac{1}{\mathbf{B}(k+1,n-k+1)} = \frac{\Gamma(k+1+n-k+1)}{\Gamma(k+1)\Gamma(n-k+1)}$$

$$= \frac{\Gamma(n+2)}{\Gamma(k+1)\Gamma(n-k+1)}$$

$$= \frac{(n+1)!}{k!(n-k)!} \qquad If \ n \in \mathbb{N}, \ then \ \Gamma(n) = (n-1)!$$

Note that $\underline{\text{Beta}(\alpha=1,\beta=1)} = \text{Unform}(0,1)$. So, in this example,

$$Beta(1,1) \xrightarrow{Data} Beta(k+1, n-k+1).$$

Moreover,
$$\mathbf{E}(\Theta) = \frac{k+1}{k+1+n-k+1} = \frac{k+1}{n+2}$$
.

Example 1.9.7 Let X_1,\ldots,X_n be a random sample form $\operatorname{Bernoulli}(\theta)$: $p_X(k;\theta)=\theta^k(1-\theta)^{1-k}$ for k=0,1. Let $X=\sum_{i=1}^n X_i$. Then, X follows $\operatorname{Binomial}(n,\theta)$. Consider the prior distribution $\Theta\sim\operatorname{Beta}(r,s)$, i.e., $f_\Theta(\theta)=\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}\theta^{r-1}(1-\theta)^{s-1}$ for $\theta\in[0,1]$. Then, the posterior distribution is

$$\Theta \mid X \sim \text{Beta}(r+k, s+n-k).$$

Proof 3. Note that

$$f_{\Theta|X}(\theta \mid X = x) = \frac{p_X(X = k \mid \theta) f_{\Theta}(\theta)}{\int_0^1 p_X(X = k \mid \theta) f_{\Theta}(\theta) d\theta}$$

$$= \frac{\binom{n}{k} \theta^k (1 - \theta)^{n-k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \theta^{r-1} (1 - \theta)^{s-1}}{\int_0^1 \binom{n}{k} \theta^k (1 - \theta)^{n-k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \theta^{r-1} (1 - \theta)^{s-1} d\theta}$$

$$= \frac{\binom{n}{k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \theta^{k+r-1} (1 - \theta)^{n-k+s-1}}{\binom{n}{k} \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} \int_0^1 \theta^{k+r-1} (1 - \theta)^{n-k+s-1} d\theta}$$

Note that $\theta^{k+r-1}(1-\theta)^{n-k+s-1}$ is part of Beta(k+r,n-k+s). So,

$$1 = \int_0^1 \frac{\Gamma(k+r+n-k+s)}{\Gamma(k+r)\Gamma(n-k+s)} \theta^{k+r-1} (1-\theta)^{n-k+s-1} d\theta$$
$$1 = \frac{\Gamma(r+n+s)}{\Gamma(k+r)\Gamma(n-k+s)} \int_0^1 \theta^{k+r-1} (1-\theta)^{n-k+s-1} d\theta$$
$$\int_0^1 \theta^{k+r-1} (1-\theta)^{n-k+s-1} d\theta = \frac{\Gamma(k+r)\Gamma(n-k+s)}{\Gamma(r+n+s)}.$$

Therefore,

$$f_{\Theta|X}(\theta \mid X = x) = \frac{\theta^{k+r-1}(1-\theta)^{n-k+s-1}}{\frac{\Gamma(k+r)\Gamma(n-k+s)}{\Gamma(r+n+s)}} = \frac{\Gamma(r+n+s)}{\Gamma(k+r)\Gamma(n-k+s)}\theta^{k+r-1}(1-\theta)^{n-k+s-1}.$$

This is exactly a Beta distribution with parameter $\alpha=k+r$ and $\beta=n-k+s$.

Definition 1.9.8 (Conjugate Prior). If the posterior distributions $p(\Theta \mid X)$ are in the sample probability distribution family as the prior probability distribution $p(\Theta)$, the prior and posterior are called *conjugate distributions* and the prior is called a *conjugate prior* for the

likelihood function.

Remark 1.16 Common Conjugate Priors

- Beta distributions are conjugate priors for Bernoulli, Binomial, Negative binomial, and Geometric likelihood.
- Gamma distributions are conjugate priors for Poisson and Exponential likelihood

Definition 1.9.9 (Bayesian Point Estimation). Given the posterior $f_{\Theta|W}(\theta \mid W = w)$, how can one calculate the appropriate point estimate θ_e ?

Definition 1.9.10 (Loss Function). Let θ_e be an estimate for θ based on a statistic W. The *loss function* associated with θ_e is denoted $L(\theta_e, \theta)$, where $L(\theta_e, \theta) \ge 0$ and $L(\theta, \theta) = 0$.

- The lost function is $\mathbf{E} \Big[\mathbf{L}(\widehat{\theta}, \theta) \Big]$.
- The MSE, mean square error, is $\mathbf{E}\left[\left(\widehat{\theta}-\theta\right)^2\right]$.
 - 1. If we have not data, then notice that

$$\mathbf{E}[(\theta - c)^2] = \mathbf{E}(\theta^2) + \mathbf{E}(c^2) - 2c\mathbf{E}(\theta)$$

is minimized at $c = \mathbf{E}(\theta)$. Therefore,

$$\min \mathbf{E} \left[(\theta - \widehat{\theta})^2 \right] = \mathbf{E} \left[(\theta - \mathbf{E}(\theta)) \right]^2 = \mathbf{Var}(\theta).$$

So, $\widehat{\theta}^* = \mathbf{E}(\theta)$, the prior expectation.

2. If we have data X = x, then

$$\min \mathbf{E} \Big[(\theta - \widehat{\theta})^2 \mid X = x \Big] \implies \widehat{\theta}^* = \mathbf{E} [\theta \mid X = x].$$

This $\widehat{\theta}^*$ is called the posterior expectation.

Theorem 1.9.11 Squared-Loss Bayesian Estimation

Step 1. Solve the posterior distribution.

Step 2. Calculate the posterior expectation.

Generally, if we know the posterior pdf $f_{\Theta}(\theta \mid X = x)$, the point estimate is

$$\mathbf{E}[\theta \mid X = x] = \int_{\Theta} \theta f_{\Theta}(\theta \mid X = x) \, d\theta.$$

Theorem 1.9.12

Let $f_{\Theta}(\theta \mid W = w)$ be the posterior distribution of the random variable Θ .

- If $L(\theta_e, \theta) = |\theta_e \theta|$, then the Bayesian point estimate for θ is the median of the posterior distribution $f_{\Theta}(\theta \mid W = w)$;
- If $L(\theta_e, \theta) = (\theta_e \theta)^2$, then the Bayesian point estimate for θ is the mean of the posterior distribution $f_{\Theta}(\theta \mid W = w)$.

2 Inference Based on Normal

2.1 Sample Variance and Chi-Square Distribution

Recall that if $Y \sim \text{Normal}(\mu, \sigma^2)$, we have MLEs defined as

$$\widehat{\mu} = \overline{Y}$$
 and $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2$.

If σ is known, we can do the interval estimation:

$$Z \coloneqq \frac{\overline{Y} - \mathbf{E}(\overline{Y})}{\sqrt{\mathbf{Var}(\overline{Y})}} \sim N(0, 1).$$

However, what if we don't know σ ? We will have to estimate it with a sample variance.

Definition 2.1.1 (Sample Variance). To estimate σ^2 , we define the following unbiased *sample variance*:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}.$$

Remark 2.1 We often compute S^2 using the fact that

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 \quad \textit{i.e., } S^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} y_i^2 - n\overline{y}^2 \right]$$

Definition 2.1.2 (Chi-Squared Distribution). Suppose $W_k \sim \chi^2(k)$, the *chi-squared distribution with degree of freedom k*. Then,

$$W_k = Z_1^2 + Z_2^2 + \cdots + Z_k^2$$
, where $Z_i \stackrel{i.i.d.}{\sim} N(0,1)$.

k is called the *degree of freedom* of the chi-squared distribution and is denoted as df = k.

Theorem 2.1.3 Chi-Squared Distribution and Gamma Distribution

$$\chi^2(1)$$
 is equivalent to Gamma $\left(\frac{1}{2},\frac{1}{2}\right)$. Hence, $\chi^2(n)$ is equivalent to Gamma $\left(\frac{n}{2},\frac{1}{2}\right)$.

Proof 1. Recall: For $Y_1 \sim \text{Gamma}(n, \lambda)$ and $Y_2 \sim \text{Gamma}(m, \lambda)$, we have the following sum rule

$$Y_1 + Y_2 \sim \text{Gamma}(n+m,\lambda).$$

Then, as $Z_1^2 \sim \chi^2(1) = \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)$, we have

$$Z_1^2 + Z_2^2 + \dots + Z_n^2 \sim \chi^2(n) = \text{Gamma}\left(\frac{1}{2} + \dots + \frac{1}{2}, \frac{1}{2}\right) = \text{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right).$$

Theorem 2.1.4 Expectation and Variance of $\chi^2(n)$

If $W_n \sim \chi^2(n)$, then

$$\mathbf{E}(W_n) = n = df$$
 and $\mathbf{Var}(W_n) = 2n$

Proof 2. For $Y \sim \text{Gamma}(n, \lambda)$, $\mathbf{E}(Y) = \frac{n}{\lambda}$ and $\mathbf{Var}(Y) = \frac{n}{\lambda^2}$. As $W_n \sim \chi^2(n) = \text{Gamma}\left(\frac{n}{2}, \frac{1}{2}\right)$, we have

$$\mathbf{E}(W_n) = \frac{n/2}{1/2} = n$$
 and $\mathbf{Var}(W_n) = \frac{n/2}{1/4} = 2n$.

Theorem 2.1.5

Consider a random sample Y_1, \ldots, Y_n drawn from N(0,1). Let S^2 be the sample variance and \overline{Y} be the sample mean. Then,

- S^2 and \overline{Y} are independent;
- $\bullet \ \frac{(n-1)}{\sigma^2} S^2 \sim \chi^2(n-1)$

Remark 2.2 We can think of the second bullet point as the following rationale: knowing \overline{Y} , we only need (n-1) data, and we can calculate Y_n from \overline{Y} and Y_1, \ldots, Y_{n-1} . This explains why the chi-squared distribution is of df = n - 1.