ESC201A Quiz3 Set A

SAMYAK SINGHANIA

TOTAL POINTS

8 / 10

QUESTION 1

Q15 pts

1.1 Q1(a) 2/3

- + 3 pts Completely Correct
- + 0 pts Completely Incorrect
- + 0 pts Not Attempted
- + 0 pts Copied
- √ + 1 pts 4-bit 2's complement representation

correct for both numbers

- + 0.5 pts 4-bit addition performed correctly
- + 0.5 pts Identified problem correctly
- √ + 1 pts 5-bit representation and addition correct

1.2 Q1(b) 2/2

- ✓ + 2 pts Completely Correct
 - + 0 pts Completely Incorrect
 - + 0 pts Not Attempted
 - + 0 pts Copied
 - + 1 pts Solution correct but not minimal

QUESTION 2

2 Q2 4 / 5

- + 5 pts Correct
- + 0 pts Completely Incorrect
- + 0 pts Not Attempted
- + 0 pts Copied
- √ + 2.5 pts Excitation table for given flip flop

completely correct

- \checkmark + **1.5 pts** Assignment to input terminals of flip flop correct
- + 1 pts Implementation of D flip correct with minimal gates

ESC201A: Introduction to Electro	nics, Quiz -3 (Set-A)	Date: 10.11.2022
Name: SAMYAK SINGHAN	No. Roll. No.	. 210917	Section: W3
Q.1(a) Carry out the operation -5-6 get the right answer? If not, what is (5) = (0101) Signed but July	the problem?.	positive.	entation. Do you [3 Marks]
:5 = 2's complement of	5= 1010	11011=1+1	
(6)10 = (0110)2			l i o un â
-6 = 1001+1=10	10	= (-5)+((-6) 161
Magnitude of 10001	= 2's com	alement of to s	10001
-5-6=(-5)+(-6) 10 10	11 10 -) 14	egative Number	Negative No. Stopped bit is z since signed bit is
Magnitude of 10101 = 2/s com	plament =	01010+1=	=(01011)
			= 11 reget the original
(b) Show how one can use a 4 to		to be found to great a	answer.
Boolean expression: $F = \overline{x_1}.\overline{x_2}.x_3 + \overline{x_3}$			7
of external gates. [2 Marks]			s i mustifleater
12 12 1 12 F		as follows.	7000
0000	John John		2122 F
0 0 0		700	3 F O O F=23
10 then	vce, we can		0 1 F=24
1000 mul	on the 4 to	follows	10 F=x1
1011	N	251	1 1 F=2
1100	23-00) F	
	25 - 01 24 - 10		
	$\chi_6 \rightarrow 11$		
	1/2	ĺ	
	-1- X	22	

Q.2 The characteristic table for a flip-flop X with two inputs A and B is given below. Show how one can implement a D flip-flop using flip-flop X and basic gates. Use as few

gates as possible. [5 Marks]

Α	Q	
>	2.0	. ()
В	्य	

Α	В	Q(t+1)	State
0	0	Q(t)	Hold
0	1	1	Set
1	0	0	Reset
1	1	Q(t)	Hold

we get the following excitation table.

Q(+)	9(41)	A-	B.	D
0	0	0	0	0
6	1	0	1	1
1	0	127	0	0
1101	17 4	0	0	1

We know that the characteristic table for D-flip flohis

D	0(4+1)
0	D
1	1

Here choose $P = \overline{D} & B = D$, we can implement D - flip flop using flipplish X.

when D=0. A=1, B=0 => g(t+1)=0when D=1 A=0, B=1=> g(t+1)=1