USER_GUIDE.md 2025-02-18

Röviden a robot használatáról

Ebben a doksiban röviden megpróbálom összefoglalni a szükséges tudnivalókat a robotról és a programozásáról, amikre szükségetek lesz a tanfolyamunk során.

A robot részei, felépítése

A robot váza 3D nyomtatott, a hajtásáért 2db motor + kerék felel. A motorokon vannak enkóderek, amikkel így lehetőség van lemérni a kerekek pontos elfordulását.

Érzékelők terén a robot rendelkezik egy színérzékelővel (az alján), egy infrás távolságérzékelővel és egy IMU-val (giroszkóp + gyorsulásmérő). A távolságérzékelő egy szervó segétségével elfordítható jobbra és balra, így a robot tud "nézelődni".

A vezérlésért egy STM32-es mikrovezérlő felel - ez a robot "szíve". A telemetria adatokat egy ESP8266 küldi és fogadja.

A robot programozása

A munkátok megkönnyítése érdekében egy olyan szoftveres környezetet alakítottunk ki nektek, ami elrejti szinte teljesen az alacsony szintű hardveres dolgokat, számításokat és lekérdezéseket - így gyakorlatilag klasszikus C-ben, a robot API-nk függvényei segítségével tudtok zökkenőmentesen fejleszteni.

Az app_main.c fájlba kell dolgoznotok, ezt szabadon módosíthatjátok.

Mozgással kapcsolatos függvények

- int setMotorSpeed(uint8_t mot_lr, float speed) beállítja az adott motor sebességét
 - mot_lr lehet MOT_L (bal motor) vagy MOT_R (jobb motor)
 - o speed a kívánt sebesség a [-100; 100] intervallumon ne vigyétek tartósan 40 fölé
 - o return siker esetén 0-t ad vissza
- int getEncoderPosition(uint8_t mot_lr) lekéri az adott motorhoz tartozó enkóder abszolút pozícióját (elfordulását)
 - mot_lr lehet MOT_L (bal motor) vagy MOT_R (jobb motor)
 - o return az enkóder abszolút pozíciója (int32_t értelmezési tartományon)
- void setServoPosition(int8_t position) beállítja a távolságérzékelős szervó pozícióját
 - o position a szervó kívánt helyzete [-90°; +90°]

Érzékelőkkel kapcsolatos függvények

- void getColorHsv(Color* color) ezzel lehet kiolvasni az éppen érzékelt színt a HSV formátumban (lásd erről szóló előadás dia)
 - o color pointer egy Color típusú struct-ra, amibe a kiolvasott érték fog kerülni

USER GUIDE.md 2025-02-18

• uint16_t getIrDistance() - visszaadja az infravörös érzékelő által mért távolságot, kb. 30Hz a frissítési frekvenciája

- o return a legutóbb olvasott távolság mm-ben
- void getAccData(Vec3* acc) visszaadja a legutóbb olvasott gyorsulási értékeket
 - acc pointer egy Vec3 típusú struct-ra, amibe a kiolvasott értékek kerülni fognak. A gyorsulási értékek q-ben vannak megadva
- void getGyroData(Vec3* gyro) visszaadja a legutóbb olvasott giroszkópos értékeket
 - gyro pointer egy Vec3 típusú struct-ra, amibe a kiolvasott értékek kerülni fognak. A giroszkópos értékek %-ben vannak megadva
- void getMagData(Vec3* mag) visszaadja a legutóbb olvasott iránytű értékeket
 - mag pointer egy Vec3 típusú struct-ra, amibe a kiolvasott értékek kerülni fognak. Az iránytű értékek uT-ben vannak megadva
- void getOrientation(Orientation* orientation) a robot a háttérben az IMU adatai alapján nyilván tartja az aktuális abszolút orientációját (dőlésszögét az x és y tengelyek mentén)
 - orientation pointer egy Orientation típusú struct-ra, amibe az aktuális orientáció kerül (pitch és roll °-ban)
- float getTemp() visszaadja a legutóbb olvasott hőmérsékletet
 - o return a legutóbb olvasott hőmérséklet °C-ban

Kommunikációval kapcsolatos függvények

- int lcdPrintf(uint8_t row, uint8_t col, const char *fmt, ...) kiír egy formázott szöveget a kijelzőre
 - o row a sor, ahova kiírja a szöveget (0 vagy 1)
 - o col az oszlop, ahova kiírja a szöveget (0-tól 15-ig)
 - fmt a formázott szöveg, mint a printf esetében
 - o ... a formázott szöveg paraméterei
 - o return a kiírt karakterek száma
- int uartPrintf(const char *fmt, ...) kiír egy formázott szöveget a soros portra
 - fmt a formázott szöveg, mint a printf esetében
 - o ... a formázott szöveg paraméterei
 - o return siker esetén 0-t ad vissza
- int espPrintf(const char *fmt, ...) kiír egy formázott szöveget a webes telemetria felületre
 - o fmt a formázott szöveg, mint a printf esetében
 - o ... a formázott szöveg paraméterei
 - o return siker esetén 0-t ad vissza

USER GUIDE.md 2025-02-18

- int espRead(char* data) beolvassa a webes telemetria felületről a legutóbbi üzenetet
 - data pointer egy karaktertömbre, amibe az üzenet kerül, amennyiben több üzenet is felhalmozódott, akkor ezek egy-egy \n karakterrel lesznek elválasztva
 - o return ha van új üzenet, akkor 1-et ad vissza, egyébként 0-t

Időzítéssel kapcsolatos függvények

- void delayMs(uint32_t delay) blokkol a megadott időtartamig
 - o delay a blokkolás időtartam ms-ben
- void delayUs(uint32_t delay) blokkol a megadott időtartamig. **Figyelem!** A függvény a jelenlegi implementációból adódóan legfeljebb kb. 18000us (18ms) blokkolásra képes, ennél hosszabb időtartam esetén a függvény nem garantálja a pontos blokkolási időt.
 - o delay a blokkolás időtartam us-ben
- uint32_t getTimeMs() visszaadja a legutóbbi reset óta eltelt időt ms-ben
 - o return az eltelt idő ms-ben

A függvények lefutási ideje

Arra érdemes figyelni, hogy a függvények közül **egyik sem blokkol jelentősebb ideig**, az ezt jelenti, hogy az adott robot API függvény általában néhány microsec alatt lefut. Ez alól két kivétel van: a delayMs és a delayUs függvények.