Алгебра и геометрия

Лисид Лаконский

November 2022

Содержание

1	Алгебра и геометрия - 21.11.2022			2
	1.1	Плоскость в пространстве		
		1.1.1	Уравнения плоскости	4
		1.1.2	Углы между плоскостями	4
		1.1.3	Примеры решения задач	6

1 Алгебра и геометрия - 21.11.2022

1.1 Плоскость в пространстве

 \overrightarrow{N} - ненулевой вектор, перпендикулярный плоскости, называется вектором нормали данной плоскости.

1.1.1 Уравнения плоскости

$$Ax + By + Cz + D = 0$$
 - общее уравнение плоскости, $A^2 + B^2 + C^2 \neq 0$, $\overrightarrow{N} = \{A; B; C\}$ $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$ - уравнение плоскости, проходящей через точку $M_0(x_0,y_0,z_0)$ с данным $\overrightarrow{N} = \{A; B; C\} \neq 0$

точку $M_0(x_0;y_0;z_0)$ параллельно двум неколлинеарным векторам

$$\overrightarrow{a} = \{a_1; a_2; a_3\} \text{ if } \overrightarrow{b} = \{b_1; b_2; b_3\}$$

 $\mid x - x_1 \quad y - y_1 \quad z - z_1 \mid$

$$\begin{vmatrix} x & x_1 & y & y_1 & z & z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$
 - уравнение плоскости, проходящей через 3

точки $M_1(x_1;y_1;z_1),\,M_2(x_2;y_2;z_2)$ и $M_3(x_3;y_3;z_3),$ не лежащие на одной прямой

1.1.2 Углы между плоскостями

Косинус угла между плоскостями
$$\alpha_1$$
: $A_1x+B_1y+C_1z+D_1=0$ и α_2 : $A_2x+B_2y+C_2z+D_2=0$ вычисляется по формуле: $\cos(\alpha_1;\alpha_2)=\pm\frac{\overrightarrow{N_1}*\overrightarrow{N_2}}{|\overrightarrow{N_1}|*|\overrightarrow{N_2}|}=\pm\frac{A_1A_2+B_1B_2+C_1C_2}{\sqrt{A_1^2+B_1^2+C_1^2}*\sqrt{A_2^2+B_2^2+C_2^2}}\geq 0$ Если $\alpha_1\perp\alpha_2$, то $\overrightarrow{N_1}\perp\overrightarrow{N_2}$, если $\alpha_1||\alpha_2$, то $\overrightarrow{N_1}||\overrightarrow{N_2}$

1.1.3 Примеры решения задач

Пример 1

Составьте уравнение плоскости α , параллельной оси Ox и проходящей через точки A(1;0;5) и B(0;-4;8).

через точки
$$A(1;0;5)$$
 и $B(0;-4;8)$.

 $M_0 = A(1;0;5)$, $\overrightarrow{a} = \overrightarrow{AB} = \{-1;-4;3\}$, $\overrightarrow{b} = \overrightarrow{i} = \{1;0;0\}$

$$\begin{vmatrix} x-1 & y-0 & z-5 \\ -1 & -4 & 3 \\ 1 & 0 & 0 \end{vmatrix} = 0 \Longleftrightarrow 3(y-0) - (-4(z-5)) = 0 \Longleftrightarrow 3y - (-4z+20) = 0 \Longleftrightarrow 3y + 4z - 20 = 0$$

Пример 2

Найдите угол между плоскостями
$$\alpha_1$$
: $x-y+80=0,\ \alpha_2$: $3x+4y+5z-17=0$

$$N_1 = \{1; -1; 0\}, N_2 = \{3; 4; 5\}$$

 $\cos(\alpha_1; \alpha_2) = \frac{3 + (-4) + 0}{\sqrt{2} * \sqrt{50}} = \frac{-1}{\sqrt{2} * \sqrt{50}} = 0.1, \angle(\alpha_1; \alpha_2) = \arccos 0.1 \approx 84.3^{\circ}$

Пример 3

Найдите расстояние от точки P(0;-1;5) до плоскости α , проходящей через точку A(8;1;-2) перпендикулярно вектору $\overrightarrow{n}=\{1;2;-2\}$

Первый способ решения данной задачи.

$$r = |\Pi \overrightarrow{p}_{\overrightarrow{n}} \overrightarrow{PA}| = |\frac{\overrightarrow{n} * \overrightarrow{PA}}{|\overrightarrow{n}|}|, \overrightarrow{PA} = \{8; 2; -7\}$$

$$r = \frac{8+4+14}{2} = \frac{26}{2}$$

Первый способ решения данной задачи.
$$r = |\Pi p_{\overrightarrow{n}} \overrightarrow{PA}| = |\frac{\overrightarrow{n}*\overrightarrow{PA}}{|\overrightarrow{n}|}|, \overrightarrow{PA} = \{8; 2; -7\}$$

$$r = \frac{8+4+14}{3} = \frac{26}{3}$$
 Второй способ решения данной задачи
$$r = \frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}$$

$$x+2y-2z-14=0 \text{ - уравнение данной плоскости}$$

$$r = \frac{|0+2*(-1)-2*5-14|}{3} = \frac{26}{3}$$