HW6 MATH 7570 Fall 2023

Wenjuan Bian

October 2023

- 1. In the textbook, Section 6.3, problem 3.
- 2. In the textbook, Section 6.3, problem 9.
- 3. In the textbook, Section 6.3, problem 13.
- 4. In the textbook, Section 6.3, problem 17.
- 5. In the textbook, Section 6.3, problem 19.
- 6. In the textbook, Section 6.3, problem 23.
- 1. T3 Prove Corollary 6.1.2.2. Corollary 6.1.2.2 The elements of $X\beta$ are estimable under the model $\{y, X\beta\}$; in fact, those elements span the space of estimable functions for that model

Solution:

The i^{th} element of $X\beta$ is $x_i^T\beta$, where x_i^T is the i^{th} row of X. Therefore, $x_i^T \in \mathcal{R}(X)$, so the i^{th} element of $X\beta$ is estimable. Because $\mathrm{span}(x_1^T,\ldots,x_n^T)=\mathcal{R}(X)$, the elements of $X\beta$ span the space of estimable functions.

2. T9 Determine $\mathcal{N}(X)$ for the one-factor model and for the two-way main effects model with no empty cells, and then use Corollary 6.1.2.5 to obtain the same characterizations of estimable functions given in Examples 6.1-2 and 6.1-3 for these two models.

Solution:

For the One-Factor Model:

The distinctive rows of the matrix X is $(1_q, I_q)$. Thus

$$N(X) = \{v : v = a(-1)1_q, \ a \in \mathbb{R}\}.$$

According to Corollary 6.1.2.5, the expression $c^T\beta$ is estimable precisely when c is orthogonal to $\mathcal{N}(X)$. This implies:

$$c^T a(-1)1_a = 0 \ \forall \ a \in \mathbb{R},$$

That is, $c_1 = -\sum_{i=2}^{q} c_i$.

For the Two-Way Main Effects Model (without Empty Cells):

The distinctive rows of the matrix X for this model are given by $(1_{qm}, I_q \otimes 1_m, 1_q \otimes I_m)$. From this, it follows that:

$$N(X) = \{v : v = (a, b1_a^T, -(a+b)1_m^T)^T, a, b \in \mathbb{R}\}.$$

By referring again to Corollary 6.1.2.5, the term $c^T\beta$ is estimable if:

$$c^{T} \begin{pmatrix} a \\ b1_{q} \\ -(a+b)1_{m} \end{pmatrix} = 0 \ \forall a, b \in \mathbb{R}.$$

Upon expansion, this condition transforms to:

$$ac_1 + b\left(\sum_{i=2}^{q+1} c_i\right) - (a+b)\left(\sum_{i=q+2}^{q+m+1} c_i\right) = 0$$

from which we can infer:

$$c_1 = \sum_{i=2}^{q+1} c_i = \sum_{i=q+2}^{q+m+1} c_i$$

.

3. T13 Consider the following two-way layout, where the number in each cell indicates how many observations are in that cell:

	Levels of B									
Levels of A	1	2	3	4	5	6	7	8	9	10
1		1						2		
2	1									
3			4	1			1			
4		2			2					
5					1	1				
6				1						
7						1		2		
8							1		3	
9										2

Consider the main effects model:

$$y_{ijk} = \mu + \alpha_i + \gamma_j + e_{ijk}$$
 $(i = 1, \dots, 9; j = 1, \dots, 10)$

for these observations (where k indexes the observations, if any, within cell (i, j) of the table).

- (a) Which α -contrasts and γ -contrasts are estimable?
- (b) Give a basis for the set of all estimable functions.
- (c) What is the rank of the associated model matrix X?

Solution:

1. The "3+e" procedure, followed by an appropriate rearrangement of rows and columns, yields the subsequent set of disconnected subarrays:

	Levels of B									
Levels of A	4	5	6	10	3	7	8	2	9	1
3	4	е	1	1						
4	е	2	е	2						
6	е	1	е	e						
7	1	2	е	е						
1					1	2	е			
5					е	1	1			
2								е	1	
8								1	3	
9										2

From the table, the estimable α -contrasts are:

$$\sum_{i=1}^{9} d_i \alpha_i$$

where

$$\sum_{i \in \{3,4,6,7\}} d_i = \sum_{i \in \{1,5\}} d_i = \sum_{i \in \{2,8\}} d_i = d_9 = 0$$

and the estimable γ -contrasts are of the form:

$$\sum_{j=1}^{10} g_j \gamma_j$$

where

$$\sum_{j \in \{4,5,6,10\}} g_j = \sum_{j \in \{3,7,8\}} g_j = \sum_{j \in \{2,9\}} g_j = g_1 = 0$$

2.

$$\{\mu + \alpha_3 + \gamma_4, \alpha_4 - \alpha_3, \alpha_6 - \alpha_3, \alpha_7 - \alpha_3, \gamma_5 - \gamma_4, \gamma_6 - \gamma_4, \gamma_{10} - \gamma_4, \mu + \alpha_1 + \gamma_3, \alpha_5 - \alpha_1, \gamma_7 - \gamma_3, \gamma_8 - \gamma_3, \mu + \alpha_2 + \alpha_3, \alpha_5 - \alpha_5, \alpha_5$$

3.

$$rank(X) = 15$$

as deduced from part (b).

4. T17 Consider the three-way main effects model

$$y_{ijkl} = \mu + \alpha_i + \gamma_j + \delta_k + e_{ijkl}$$

where $(i = 1, ..., q; j = 1, ..., m; k = 1, ..., s; l = 1, ..., n_{ijk})$, and suppose that there are no empty cells (i.e., $n_{ijk} > 0$ for all i, j, k).

(a) What conditions must the elements of c satisfy for $c^T\beta$ to be estimable?

Solution:

By Theorem 6.1.2, $c^T\beta$ is estimable if and only if the coefficients on the α_i 's sum to the coefficient on μ and the coefficients on the γ_j 's and δ_k 's sum to the coefficient on μ as well.

(b) Find a basis for the set of all estimable functions.

Solution:

A basis for the set of all estimable functions is:

$$\{\mu + \alpha_1 + \gamma_1 + \delta_1, \alpha_2 - \alpha_1, \alpha_3 - \alpha_1, \dots, \alpha_q - \alpha_1, \gamma_2 - \gamma_1, \dots, \gamma_m - \gamma_1, \delta_2 - \delta_1, \dots, \delta_s - \delta_1\}$$

(c) What is the rank of the model matrix X?

Solution

By part (b) and Corollary 6.1.2.3,

$$rank(X) = 1 + (q - 1) + (m - 1) + (s - 1) = q + m + s - 2$$

5. T19. Consider a three-factor crossed classification in which Factors A, B, and C each have two levels, and suppose that there is exactly one observation in the following four (of the eight) cells: 111, 211, 122, 222. The other cells are empty. Consider the following main effects model for these observations:

$$y_{ijk} = \mu + \alpha_i + \gamma_j + \delta_k + e_{ijk}$$

where $(i, j, k) \in \{(1, 1, 1), (2, 1, 1), (1, 2, 2), (2, 2, 2)\}.$

(a) Which of the functions $\alpha_2 - \alpha_1$, $\gamma_2 - \gamma_1$, and $\delta_2 - \delta_1$ are estimable?

Solution:

By Corollary 6.1.2.1, $\alpha_2 - \alpha_1$ is estimable because

$$-\frac{1}{2}(\mu + \alpha_1 + \gamma_1 + \delta_1) + \frac{1}{2}(\mu + \alpha_2 + \gamma_1 + \delta_1) - \frac{1}{2}(\mu + \alpha_1 + \gamma_2 + \delta_2) + \frac{1}{2}(\mu + \alpha_2 + \gamma_2 + \delta_2)$$

$$= \alpha_2 - \alpha_1.$$

No linear combination of the same four functions yields either $\gamma_2 - \gamma_1$ or $\delta_2 - \delta_1$, so neither $\gamma_2 - \gamma_1$ nor $\delta_2 - \delta_1$ is estimable.

(b) Find a basis for the set of all estimable functions.

Solution:

A basis for the set of estimable functions is

$$\{\mu + \alpha_1 + \gamma_1 + \delta_1, \alpha_2 - \alpha_1, \gamma_2 - \gamma_1 + \delta_2 - \delta_1\}.$$

(c) What is the rank of the model matrix X?

Solution: By part(b), rank = 3

6. T23. Suppose that y follows a Gauss–Markov model in which

$$X = \begin{pmatrix} 1 & 1 & t \\ 1 & 2 & 2t \\ \vdots & \vdots & \vdots \\ 1 & t & t^2 \\ 1 & 1 & s \\ 1 & 2 & 2s \\ \vdots & \vdots & \vdots \\ 1 & s & s^2 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}.$$

Here, t and s are integers such that $t \ge 2$ and $s \ge 2$. [Note: The corresponding model is called the "conditional linear model" and has been used for data that are informatively right-censored; see, e.g., Wu and Bailey (1989).]

- (a) Determine which of the following linear functions of the elements of β are always estimable, with no further assumptions on t and s.
 - (i) β_1
 - (ii) $\beta_1 + \beta_2 t + \beta_3 s$
 - (iii) $\beta_2 + \beta_3(s+t)/2$

Solution:

- (i) We have $\beta_1 = (1,0,0)\beta = [2(1,1,t) (1,2,2t)]\beta$. Therefore, β_1 is always estimable.
- (ii) Let $d^T = (a^T, b^T) = (a_1, \dots, a_t, b_1, \dots, b_s)$. Then,

$$d^{T}X = \left(\sum_{i=1}^{t} a_{i} + \sum_{j=1}^{s} b_{j}, \sum_{i=1}^{t} a_{i}i + \sum_{j=1}^{s} b_{j}j, t \sum_{i=1}^{t} a_{i}i + s \sum_{j=1}^{s} b_{j}j\right)$$

$$\equiv (A_{1}, A_{2} + A_{3}, tA_{2} + sA_{3}).$$

Thus, $\beta_1 + \beta_2 t + \beta_3 s = c^T \beta$ Where $c^T = (1, t, s)$. For this function to be estimable, there must exist A_1, A_2, A_3 such that $A_1 = 1$, $A_2 + A_3 = t$, and $tA_2 + sA_3 = s$. The last two equalities cannot simultaneously hold if $t = s \neq 1$. Therefore, $\beta_1 + \beta_2 t + \beta_3 s$ is not always estimable.

(iii)

$$\beta_2 + \frac{\beta_3(s+t)}{2} = (0, 1, \frac{s+t}{2})\beta$$

$$= \frac{1}{2}[(1, 2, 2t) - (1, 1, t)] + \frac{1}{2}[(1, 2, 2s) - (1, 1, s)]\beta$$

Hence, it is always estimable.

(b) Determine necessary and sufficient conditions on t and s for all linear functions of the elements of β to be estimable.

Solution:

A necessary and sufficient condition is $s \neq t$. For sufficiency, assume $s \neq t$. From part (a), we know $(1,0,0) \in R(X)$. This means $(1,1,t)-(1,0,0)=(0,1,t) \in R(X)$ and $(1,1,s)-(1,0,0)=(0,1,s) \in R(X)$. Hence,

$$\frac{(0,1,t) - (0,1,s)}{t-s} = (0,0,1) \in R(X)$$

and

$$\frac{(1/t)(0,1,t) - (1/s)(0,1,s)}{(1/t) - (1/s)} = (0,1,0) \in R(X).$$

Thus, $R(X) = R^3$ and all linear functions of β are estimable.

For necessity, if s = t, then $\{(1, 0, 0), (0, 1,t)\}$ forms a basis for R(X), implying that the dimensionality of R(X) is 2, meaning not all linear functions of β are estimable.