Mobile Price Prediction

Description

- battery_power: Total energy a battery can store in one time measured in mAh.
- blue: Has bluetooth or not.
- clock_speed: speed at which microprocessor executes instructions.
- dual_sim: Has dual sim support or not.
- fc: Front Camera mega pixels.
- four_g: Has 4G or not.
- int_memory: Internal Memory in Gigabytes.
- m_dep: Mobile Depth in cm.
- mobile_wt: Weight of mobile phone.
- n_cores: Number of cores of processor.
- pc: Primary Camera mega pixels.
- px_height: Pixel Resolution Height.
- px_width: Pixel Resolution Width.
- ram: Random Access Memory in Mega Byte.
- sc_h: Screen Height of mobile in cm.
- sc_w: Screen Width of mobile in cm.
- talk_time: longest time that a single battery charge will last when you are.
- three_g: Has 3G or not.
- touch_screen: Has touch screen or not.
- wifi: Has wifi or not.
- price_range: This is the target variable with value of 0(low cost), 1(medium cost), 2(high cost) and 3(very high cost).

Context

• Bob has started his own mobile company. He wants to give tough fight to big companies like Apple,Samsung etc.

- He does not know how to estimate price of mobiles his company creates. In this
 competitive mobile phone market you cannot simply assume things. To solve this
 problem he collects sales data of mobile phones of various companies.
- Bob wants to find out some relation between features of a mobile phone(eg:-RAM,Internal Memory etc) and its selling price. But he is not so good at Machine Learning. So he needs your help to solve this problem.
- In this problem you do not have to predict actual price but a price range indicating how high the price is

Importing Libraries

talk time \

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split,GridSearchCV
from sklearn.metrics import
classification report, accuracy score, roc curve, confusion matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.naive bayes import GaussianNB
import warnings
warnings.filterwarnings('ignore')
Importing Dataset
df = pd.read csv("mobile data.csv")
df.head()
                  blue clock speed dual sim fc four g int memory
   battery power
m dep \
0
                                 2.2
                                                         0
                                                                      7
             842
                     0
                                             0
                                                 1
0.6
            1021
                                 0.5
                                             1
                                                 0
                                                          1
                                                                     53
                     1
1
0.7
2
             563
                     1
                                 0.5
                                             1
                                                 2
                                                          1
                                                                     41
0.9
             615
                     1
                                 2.5
                                             0
                                                 0
                                                         0
                                                                     10
3
0.8
            1821
                     1
                                 1.2
                                             0
                                                13
                                                         1
                                                                     44
0.6
```

sch scw

ram

mobile wt n cores ... px height px width

0 19	188	2	 20	756	2549	9	7
1 7	136	3	 905	1988	2631	17	3
2	145	5	 1263	1716	2603	11	2
9	131	6	 1216	1786	2769	16	8
11 4 15	141	2	 1208	1212	1411	8	2

	three_g	touch_screen	wifi	<pre>price_range</pre>
0	_0	_ 0	1	_ 1
1	1	1	0	2
2	1	1	0	2
3	1	0	0	2
4	1	1	0	1

[5 rows x 21 columns]

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns):
Column Non-Null Count Dtvpe

#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
	clock speed	2000 non-null	float64
2 3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four_g	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	mobile_wt	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	рс	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64
13	ram	2000 non-null	int64
14	sc_h	2000 non-null	int64
15	SC_W	2000 non-null	int64
16	talk_time	2000 non-null	int64
17	three_g	2000 non-null	int64
18	touch_screen	2000 non-null	int64
19		2000 non-null	int64
20	price_range	2000 non-null	int64
dtvn	es: float64(2).	int64(19)	

dtypes: float64(2), int64(19) memory usage: 328.2 KB

- 1. There are not any missing values in this dataset
- 2. Datatypes of all the features are correct df.describe()

,	battery_power	blue	clock_speed	dual_sim	fc
count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000
mean	1238.518500	0.4950	1.522250	0.509500	4.309500
std	439.418206	0.5001	0.816004	0.500035	4.341444
min	501.000000	0.0000	0.500000	0.000000	0.000000
25%	851.750000	0.0000	0.700000	0.000000	1.000000
50%	1226.000000	0.0000	1.500000	1.000000	3.000000
75%	1615.250000	1.0000	2.200000	1.000000	7.000000
max	1998.000000	1.0000	3.000000	1.000000	19.000000
\	four_g	int_memory	m_dep	mobile_wt	n_cores
count	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
mean	0.521500	32.046500	0.501750	140.249000	4.520500
std	0.499662	18.145715	0.288416	35.399655	2.287837
min	0.000000	2.000000	0.100000	80.000000	1.000000
25%	0.000000	16.000000	0.200000	109.000000	3.000000
50%	1.000000	32.000000	0.500000	141.000000	4.000000
75%	1.000000	48.000000	0.800000	170.000000	7.000000
max	1.000000	64.000000	1.000000	200.000000	8.000000
• • •					
\	px_height	px_width	ram	sc_h	SC_W
count	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
mean	645.108000	1251.515500	2124.213000	12.306500	5.767000
std	443.780811	432.199447	1084.732044	4.213245	4.356398

min	0.000000	500.000000	256.000000	5.000000	0.000000
25% 2	282.750000	874.750000	1207.500000	9.000000	2.000000
50%	564.000000	1247.000000	2146.500000	12.000000	5.000000
75%	947.250000	1633.000000	3064.500000	16.000000	9.000000
max 19	960.000000	1998.000000	3998.000000	19.000000	18.000000
	talk_time	three_g	touch_screen	wifi	
price_rancount 20	000000.00000	2000.000000	2000.000000	2000.000000	
mean 1.500000	11.011000	0.761500	0.503000	0.507000	
std 1.118314	5.463955	0.426273	0.500116	0.500076	
min 0.000000	2.000000	0.000000	0.000000	0.000000	
25% 0.750000	6.000000	1.000000	0.000000	0.000000	
50% 1.500000	11.000000	1.000000	1.000000	1.000000	
75% 2.250000	16.000000	1.000000	1.000000	1.000000	
max 3.000000	20.000000	1.000000	1.000000	1.000000	

[8 rows x 21 columns]

```
Data Cleaning
plt.figure(figsize=(15,8))
sns.boxplot(data=df)
plt.grid(False)
plt.xticks(rotation=90)
plt.title("Boxplot")
plt.show()
```


We can see there are outliers present in the data:

- 1. fc
- 2. px_height
- 3. three_g

```
# Plotting boxplot for 'fc' separately to spot outliers more precisely
plt.figure(figsize=(15,8))
sns.boxplot(df.fc)
plt.grid()
plt.show()
```


df.fc.describe()

count	2000.000000
mean	4.309500
std	4.341444
min	0.00000
25%	1.000000
50%	3.000000
75%	7.000000
max	19.000000
Name:	fc, dtype: float64

Finding upper bound precisely to remove outliers correctly

```
# Upper Bound = Q3+1.5*(Q3-Q1)
# Lower Bound = Q1-1.5*(Q3-Q1)
7.000000+1.5*(7.000000-1.000000)
```

16.0

Displaying outliers df[df.fc > 16]

	ry_power	blue	clock_speed	dual_sim	fc	four_g
int_memory 95	1137	1	1.0	0	18	0
7 169 44	1569	Θ	2.8	1	17	0
226 49	1708	1	2.4	1	18	1
229	1689	0	1.8	0	17	0

24 300		1937	1	1.	7 0	17	0	
58 305		1348	0	2.	0 0	18	0	
52 372 55		1703	1	1.	5 1	17	1	
584		946	1	2.	6 1	17	0	
5 1387		1533	1	1.	1 1	18	1	
17 1406		1731	1	2.	3 1	18	0	
60 1416		1448	0	0.	5 1	18	0	
2 1549		1772	1	1.	6 0	17	1	
45 1554		1957	0	1.	2 1	18	1	
36 1693		695	0	0.	5 0	18	1	
12 1705		1290	1	1.	4 1	19	1	
35 1880		1720	0	1.	6 0	18	1	
2 1882		591	0	2.	1 1	18	1	
16 1888 12		1544	0	2.	4 0	18	1	
CC W	m_dep	mobile_wt	n_cores		px_height	px_width	ram	sc_h
sc_w 95 5	1.0	196	3		942	1179	3616	13
169 2	0.3	110	4		45	1942	1260	9
226	0.1	109	1		233	517	3388	6
4 229	0.3	127	3		954	1200	2766	7
2 300	0.6	189	1		1728	1767	3321	5
4 305 11	0.3	98	3		1869	1942	955	18
372 1	0.7	138	5		1411	1711	2993	5
584 7	0.1	166	3		1698	1771	3720	15
1387 2	0.3	160	4		1054	1393	2520	8

1406	0.5	171	4	142	1039	1220	9	
3 1416	0.2	100	5	846	1144	593	9	
4 1549	0.5	159	2	837	1405	1146	6	
1 1554	0.8	151	2	1194	1727	1115	16	
2 1693	0.6	196	2	1649	1829	2855	16	
13 1705	0.3	110	4	405	742	879	16	
2 1880 5	0.8	188	5	334	896	2522	10	
1882 5	0.5	196	7	952	1726	704	14	
1888 4	0.1	186	7	470	844	489	9	
95 169 226 229 300 305 372 584 1387 1406 1416 1549 1554 1693 1705 1880 1882 1888	talk_time 12 17 16 7 14 7 20 4 11 20 18 17 18 7 8 2 4 2	three_g 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	touch_screen 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0	wifi price 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1	e_range 3 1 3 3 1 3 3 1 0 1 1 2 0 2 0 0			
_	ows x 21 co	_						
	<i>ting indexe</i> _fc = df[d1							
			<i>the dataset</i> nplace=True)					
<i>preci</i> plt.f	<pre>df.drop(index_fc,axis=0,inplace=True) # Plotting boxplot for 'px_height' separately to spot outliers more precisely plt.figure(figsize=(30,10)) sns.boxplot(df.px height)</pre>							

```
plt.grid()
plt.show()
```


df.px_height.describe()

```
1982.000000
count
          642.509082
mean
          441.709410
std
min
            0.000000
25%
          282.000000
50%
          562.500000
75%
          943.500000
         1960.000000
max
```

Name: px_height, dtype: float64

```
# Upper Bound = Q3+1.5*(Q3-Q1)
# Lower Bound = Q1-1.5*(Q3-Q1)
943.500000+1.5*(943.500000-282.000000)
```

1935.75

 $df[df.px_height > 1935.75]$

	battery_power	blue	clock_speed	dual_sim	fc	four_g
int_me	mory \					
988	1413	1	0.5	1	4	1
45						
1771	1230	1	1.6	0	0	1
48						

	m_dep	mobile_wt	n_cores	 px_height	px_width	ram	sc_h
sc_w 988 •	0.4	104	5	 1949	1994	2973	17
o 1771 17	0.7	111	7	 1960	1963	1622	18

```
talk_time three_g touch_screen wifi price_range 988 15 1 0 1 3
```

```
1771     16     1     1     1     2

[2 rows x 21 columns]

index_px_height = df[df.px_height > 1935.75].index

df.drop(index_px_height,inplace=True)

# Plotting boxplot for 'three_g' separately to spot outliers more precisely
plt.figure(figsize=(15,8))
sns.boxplot(df.three g)
```


If we look at the data clearly we can see that these are not outliers so we are not going to remove them form our dataset

df.corr()

plt.grid()

	battery_power	blue	clock_speed	dual_sim	
<pre>fc \ battery_power 0.020317</pre>	1.000000	0.009743	0.010136	-0.042558	
blue 0.004142	0.009743	1.000000	0.021739	0.033543	
clock_speed 0.006342	0.010136	0.021739	1.000000	-0.002017	-
dual_sim 0.034041	-0.042558	0.033543	-0.002017	1.000000	-
fc 1.000000	0.020317	0.004142	-0.006342	-0.034041	

```
four q
                     0.015559
                                0.012593
                                                         0.002280 -
                                             -0.041597
0.019355
int memory
                    -0.008197
                                0.037186
                                               0.004461 -0.016975 -
0.025745
                                              -0.011400 -0.019390
m dep
                     0.034834
                                0.003585
0.004310
mobile wt
                     0.002575 -0.008442
                                               0.011939 -0.005955
0.014011
n cores
                    -0.026451
                                0.038278
                                              -0.005638 -0.025355 -
0.001971
                     0.025013 -0.009193
                                              -0.009017 -0.019470
рс
0.635564
                     0.014290 -0.010266
px height
                                              -0.011326 -0.018690 -
0.027777
px width
                    -0.008205 -0.041741
                                              -0.009050
                                                         0.014325 -
0.012505
                    -0.000121
                                0.022024
                                               0.004628
                                                         0.042491
ram
0.019440
                    -0.023784 -0.001204
                                              -0.026876 -0.011811
sc h
0.\overline{0}00372
                                              -0.005777 -0.012968 -
SC W
                    -0.016533
                                0.001278
0.001778
talk time
                     0.047909
                                0.009541
                                              -0.010122 -0.043983 -
0.008136
three g
                     0.010670 -0.029907
                                              -0.044429 -0.013474 -
0.003121
touch screen
                    -0.010004
                                0.008115
                                              0.019023 -0.015209 -
0.024377
wifi
                    -0.009022 -0.019082
                                              -0.021960
                                                         0.024064
0.011902
price range
                     0.200763
                                0.015798
                                              -0.006120
                                                         0.019016
0.021120
                  four g
                           int memory
                                           m dep
                                                   mobile wt
n cores
battery_power
                0.015559
                            -0.008197
                                        0.034834
                                                    0.002575 -
0.02645\overline{1}
          . . .
blue
                             0.037186
                0.012593
                                        0.003585
                                                   -0.008442
0.038278
clock speed
               -0.041597
                             0.004461 -0.011400
                                                    0.011939 -
0.005638
           . . .
dual sim
                            -0.016975 -0.019390
                                                   -0.005955 -
                0.002280
0.02\overline{5}355
           . . .
fc
               -0.019355
                            -0.025745
                                        0.004310
                                                    0.014011 -
0.001971
           . . .
four_g
                             0.008995 -0.002771
                1.000000
                                                   -0.017901 -
0.031608
int memory
                0.008995
                             1.000000
                                        0.006426
                                                   -0.030009 -
0.026662
m dep
               -0.002771
                             0.006426
                                        1.000000
                                                    0.018595 -
```

```
0.003834
          . . .
mobile wt
               -0.017901
                           -0.030009
                                       0.018595
                                                   1.000000 -
0.018240
               -0.031608
                           -0.026662 -0.003834
                                                  -0.018240
n cores
1.000000
          . . .
рс
               -0.005757
                           -0.030888
                                       0.030108
                                                   0.013121
0.004900
          . . .
px height
               -0.021117
                            0.009328
                                       0.024797
                                                  -0.000223 -
0.003893
          . . .
                0.007998
                            -0.011010
                                       0.022394
                                                  -0.000128
px width
0.025602
          . . .
ram
                0.008631
                            0.033712 -0.011402
                                                  -0.004555
0.008277
          . . .
                            0.039791 -0.027314
                0.026550
                                                  -0.032044 -
sc h
0.002913
          . . .
SC W
                0.036958
                            0.012055 -0.019880
                                                  -0.019790
0.024048
talk_time
               -0.046438
                           -0.010334
                                       0.015418
                                                   0.010434
0.015609
          . . .
                            -0.009660 -0.013723
three q
                0.584754
                                                   0.001730 -
0.015022
touch screen
               0.020094
                           -0.028687 -0.002823
                                                  -0.016019
0.026642
wifi
               -0.021650
                            0.010588 -0.029474
                                                  -0.000862 -
0.011145
          . . .
                            0.043458 -0.000925
                                                  -0.031628
price range
                0.015906
0.008307
          . . .
                px height
                           px width
                                            ram
                                                     sc h
                                                                SC_W
talk time
                 0.014290 -0.008205 -0.000121 -0.023784 -0.016533
battery power
0.047909
blue
                -0.010266 -0.041741
                                      0.022024 -0.001204
                                                           0.001278
0.009541
clock speed
                -0.011326 -0.009050
                                      0.004628 -0.026876 -0.005777
0.010122
dual sim
                -0.018690 0.014325
                                      0.042491 -0.011811 -0.012968
0.043983
fc
                -0.027777 -0.012505
                                      0.019440
                                                 0.000372 -0.001778
0.008136
four g
                -0.021117
                           0.007998
                                      0.008631
                                                 0.026550
                                                           0.036958
0.046438
int memory
                 0.009328 -0.011010
                                                 0.039791
                                      0.033712
                                                           0.012055
0.010334
m dep
                 0.024797 0.022394 -0.011402 -0.027314 -0.019880
0.015418
mobile wt
                -0.000223 -0.000128 -0.004555 -0.032044 -0.019790
0.010434
n cores
                -0.003893
                           0.025602
                                      0.008277 -0.002913
                                                           0.024048
0.015609
```

```
-0.025150
                           0.001728
                                      0.031317
рс
                                                 0.011671 - 0.017581
0.015342
px height
                 1.000000
                           0.506294 -0.024568
                                                 0.055978
                                                           0.036888
0.011667
                                      0.003795
px width
                 0.506294
                           1.000000
                                                 0.018325
                                                           0.031277
0.004499
                -0.024568
                           0.003795
                                      1.000000
                                                 0.017816
                                                           0.034949
ram
0.011287
sc h
                 0.055978
                           0.018325
                                      0.017816
                                                 1.000000
                                                           0.504243
0.013949
                 0.036888
                           0.031277
                                      0.034949
                                                 0.504243
                                                           1.000000
SC W
0.020700
talk time
                -0.011667
                           0.004499
                                      0.011287 -0.013949 -0.020700
1.000000
three q
                -0.034416 -0.001376
                                      0.017870
                                                0.011841
                                                           0.030629
0.044319
touch screen
                 0.015557 -0.004146 -0.032817 -0.018110
                                                           0.010822
0.015270
wifi
                 0.046229
                           0.029086
                                      0.022626
                                                 0.025284
                                                           0.033679
0.028608
                                      0.917009
price range
                 0.144277
                           0.165132
                                                 0.025641
                                                           0.038076
0.020582
                          touch screen
                                                    price range
                 three g
                                             wifi
                0.010670
                              -0.010004 -0.009022
                                                       0.200763
battery power
blue
               -0.029907
                              0.008115 -0.019082
                                                       0.015798
clock speed
               -0.044429
                              0.019023 -0.021960
                                                      -0.006120
dual sim
               -0.013474
                              -0.015209
                                         0.024064
                                                       0.019016
                              -0.024377
                                         0.011902
fc
               -0.003121
                                                       0.021120
                0.584754
                               0.020094 -0.021650
                                                       0.015906
four g
                                                       0.043458
int memory
               -0.009660
                              -0.028687
                                         0.010588
m dep
               -0.013723
                              -0.002823 -0.029474
                                                      -0.000925
                0.001730
                              -0.016019 -0.000862
                                                      -0.031628
mobile wt
n cores
               -0.015022
                               0.026642 -0.011145
                                                       0.008307
                              -0.012834
                                                       0.033871
рс
               -0.003256
                                         0.001952
               -0.034416
                              0.015557
px height
                                         0.046229
                                                       0.144277
               -0.001376
                              -0.004146
                                         0.029086
                                                       0.165132
px width
                0.017870
                              -0.032817
                                         0.022626
                                                       0.917009
ram
sc h
                0.011841
                              -0.018110
                                         0.025284
                                                       0.025641
SC W
                0.030629
                              0.010822
                                         0.033679
                                                       0.038076
talk time
               -0.044319
                              0.015270
                                        -0.028608
                                                       0.020582
                               0.015903
three g
                1.000000
                                         0.000933
                                                       0.025462
                                                      -0.033888
touch screen
                0.015903
                               1.000000
                                         0.011081
wifi
                0.000933
                               0.011081
                                         1.000000
                                                       0.017192
                0.025462
                              -0.033888
                                         0.017192
                                                       1.000000
price range
```

[21 rows x 21 columns]

Plotting pairplot to understand the data

plt.figure(figsize=(15,10))
sns.pairplot(data=df)

<seaborn.axisgrid.PairGrid at 0x1bbf3871e20>

<Figure size 1080x720 with 0 Axes>

With the help of heatmap it is easy to recognize different
correlation present in the data
plt.figure(figsize=(15,8))
sns.heatmap(df.corr(),annot=False,cmap='plasma',linewidths=1,linecolor
="black")
plt.show()

Following are the corelations present in the data

- 1. Between 'ram' and 'price_range' there is a 'Perfect Positive Correlation'
- 2. Between 'pc' and 'fc' and also between 'three_g' and 'four_g' there is 'Highly Positive Correlation'
- 3. Between ('battery_power', 'px_height', 'px_width' 'price_range') respectively there is 'Low Positive Correlation'

Through above insights we can say that:

- 1. Higher the ram higher the price and also lower the ram lower the price vice versa
- 2. Same with pc-fc, if a mobile has higher front camera pixels then it is most likely possible that is has higher primary camera pixels and we can also conclude that if a mobile has four-g support then is is most likely possible that it may also have three-g support
- 3. There is slight positive change in price range with respect to battery power, pixel resolution height and pixel resolution width i.e. it is possible that all these three aspects can be the cause to increase in price of mobile

EDA

0		842	0		.2	0 1	-	0	
7 1 53 2 41 3		1021	1		.5	1 6)	1	
		563	1	0	.5	1 2	2	1	
		615	1		.5	0 0)	0	
10 4		1821	1	1	. 2	0 13	}	1	
44 1995									
		794	1	0.5		1 6)	1	
2 1996	1965		1 2		.6	1 6)	0	
39 1997		1911	0	0	.9	1 1	-	1	
36 1998 46 1999 45		1512	0	0	.9	0 4	ļ	1	
		510	1	2	.0	1 5	j	1	
sc_w 0 7 1 3 2 2 2 3 8 4 2 1995 4 1996 10 1997 1 1998 10 1999 4	m_dep	mobile_wt	n_cores	рс	px_height	px_w	/idth	ram	sc_h
	0.6	188	2	2	20		756	2549	9
	0.7	136	3	6	905		1988	2631	17
	0.9	145	5	6	1263		1716	2603	11
	0.8	131	6	9	1216		1786	2769	16
	0.6	141	2	14	1208		1212		8
	0.8	106	6	14	1222		1890	668	13
	0.2	187	4	3	915		1965	2032	11
	0.7	108	8	3	868		1632	3057	9
	0.1	145	5	5	336		670	869	18
	0.9	168	6	16	483		754	3919	19
0	talk_t	_	g touch 0	_scre	en wifi 0 1				

```
7
                                             0
1
                        1
                                       1
2
              9
                        1
                                       1
                                             0
3
             11
                        1
                                       0
                                             0
4
             15
                        1
                                       1
                                             0
1995
             19
                        1
                                       1
                                             0
                        1
1996
             16
                                       1
                                             1
1997
              5
                        1
                                       1
                                             0
1998
             19
                        1
                                       1
                                             1
1999
              2
                        1
                                       1
                                             1
[1980 rows x 20 columns]
y = df['price_range']
У
0
        1
1
        2
2
        2
3
        2
4
        1
1995
        0
1996
        2
1997
        3
1998
        0
1999
Name: price_range, Length: 1980, dtype: int64
Splitting Data
xtrain, xtest, ytrain, ytest =
train_test_split(x,y,test_size=0.3,random_state=1)
Model Building
def mymodel(model):
    -Function to train the model and then to predict
    -Also to get classification report and confusion matrix for the
same
    model.fit(xtrain, ytrain)
    ypred = model.predict(xtest)
    print(f'Classification Report:\
n{classification report(ytest,ypred)}\n')
    print(f'Confusion Matrix:\n{confusion matrix(ytest,ypred)}')
# Creating objects of required models
knn = KNeighborsClassifier()
svm = SVC()
dt = DecisionTreeClassifier()
```

```
rf = RandomForestClassifier()
gnb = GaussianNB()
mymodel(knn)
Classification Report:
               precision
                            recall f1-score
                                                 support
                              0.95
                                         0.96
           0
                    0.96
                                                     124
                    0.88
                              0.94
           1
                                         0.91
                                                     142
           2
                    0.92
                              0.86
                                         0.89
                                                     168
           3
                    0.93
                              0.94
                                         0.93
                                                     160
                                         0.92
                                                     594
    accuracy
                    0.92
                              0.92
                                         0.92
                                                     594
   macro avg
                    0.92
                              0.92
                                         0.92
weighted avg
                                                     594
Confusion Matrix:
[[118
        6
            0
                 01
    5 134
            3
                 0]
      12 144
               12]
           10 150]]
 [
        0
mymodel(svm)
Classification Report:
               precision
                            recall f1-score
                                                 support
           0
                    0.98
                              0.97
                                         0.97
                                                     124
           1
                    0.91
                              0.96
                                         0.94
                                                     142
           2
                    0.97
                              0.86
                                         0.91
                                                     168
           3
                    0.92
                              0.99
                                         0.95
                                                     160
    accuracy
                                         0.94
                                                     594
                                         0.94
                                                     594
   macro avg
                    0.94
                              0.94
                    0.94
                              0.94
                                         0.94
                                                     594
weighted avg
Confusion Matrix:
[[120
        4
            0
                01
            2
                 01
    3 137
 ſ
 [
       10 144 14]
            2 158]]
        0
mymodel(dt)
Classification Report:
               precision
                            recall f1-score
                                                 support
```

0

0.88

0.93

0.90

124

1 2 3	0.82 0.78 0.86	0.77 0.78 0.86	0.80 0.78 0.86	142 168 160
accuracy	0.00	0.00	0.83	594
macro avg weighted avg	0.83 0.83	0.84 0.83	0.83 0.83	594 594
	[] [] []			

mymodel(rf)

Classification Report:

ctdssiricatio	precision	recall	f1-score	support	
0 1 2 3	0.90 0.76 0.85 0.89	0.92 0.82 0.74 0.93	0.91 0.79 0.79 0.91	124 142 168 160	
accuracy macro avg weighted avg	0.85 0.85	0.85 0.85	0.85 0.85 0.85	594 594 594	

Confusion Matrix:

[[114 10 0 0] [13 117 12 0] [0 25 125 18] [0 1 10 149]]

mymodel(gnb)

Classification Report:

Ctassiitati	LU	n Neport.				
		precision	reca	all	f1-score	support
()	0.87	0	. 90	0.88	124
-	L	0.67	0	. 66	0.66	142
2	2	0.72	0	. 69	0.71	168
3	3	0.89	0	. 92	0.90	160
accuracy	,				0.79	594
macro avo		0.79	0	. 79	0.79	594
weighted av)	0.79	0	. 79	0.79	594

```
Confusion Matrix:

[[111    13    0    0]

[ 16    94    32    0]

[ 0    33    116    19]

[ 0    1    12    147]]
```

SVM has performed best from all the other models so now will hypertune the SVM model and see if it improves the accuracy of a model

```
Hyperparameter Tunning
param_grid = {"kernel":['poly', 'rbf', 'sigmoid'],
 "C": [0.1, 0.01, 0.001, 0.0001],
 "gamma": [0.1,0.01,0.001,0.0001]}
GS = GridSearchCV(svm, param grid, verbose=3)
GS.fit(xtrain,ytrain)
vpred = GS.predict(xtest)
Fitting 5 folds for each of 48 candidates, totalling 240 fits
[CV] C=0.1, gamma=0.1, kernel=poly ......
[CV] ...... C=0.1, gamma=0.1, kernel=poly, score=0.950, total=
[CV] \dots C=0.1, gamma=0.1, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.1, gamma=0.1, kernel=poly ......
[CV] \dots C=0.1, gamma=0.1, kernel=poly, score=0.978, total= 0.0s
[CV] C=0.1, gamma=0.1, kernel=poly ......................
[CV] \dots C=0.1, gamma=0.1, kernel=poly, score=0.968, total= 0.0s
[CV] C=0.1, gamma=0.1, kernel=poly ......................
[CV] ...... C=0.1, gamma=0.1, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.1, gamma=0.1, kernel=rbf ......
[Parallel(n jobs=1)]: Using backend SequentialBackend with 1
concurrent workers.
[Parallel(n_jobs=1)]: Done
                       1 out of 1 | elapsed:
                                             0.0s
remaining:
           0.0s
[Parallel(n jobs=1)]: Done 2 out of 2 | elapsed:
                                             0.0s
remaining:
[CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.270, total=
[CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.271, total= 0.2s
[CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] C=0.1, gamma=0.1, kernel=rbf ................................
[CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.267, total= 0.2s
[CV] C=0.1, gamma=0.1, kernel=rbf .......
[CV] \dots C=0.1, gamma=0.1, kernel=rbf, score=0.267, total= 0.2s
[CV] C=0.1, gamma=0.1, kernel=sigmoid .......
[CV] .... C=0.1, gamma=0.1, kernel=sigmoid, score=0.270, total= 0.1s
[CV] C=0.1, qamma=0.1, kernel=sigmoid ......
```

```
[CV] .... C=0.1, gamma=0.1, kernel=sigmoid, score=0.271, total=
[CV] C=0.1, gamma=0.1, kernel=sigmoid ............................
[CV] .... C=0.1, gamma=0.1, kernel=sigmoid, score=0.267, total=
                                                   0.1s
[CV] .... C=0.1, gamma=0.1, kernel=sigmoid, score=0.267, total=
[CV] C=0.1, gamma=0.1, kernel=sigmoid ......
[CV] .... C=0.1, gamma=0.1, kernel=sigmoid, score=0.267, total=
[CV] C=0.1, gamma=0.01, kernel=poly ......
[CV] ..... C=0.1, gamma=0.01, kernel=poly, score=0.950, total=
[CV] C=0.1, gamma=0.01, kernel=poly ......
[CV] ..... C=0.1, gamma=0.01, kernel=poly, score=0.971, total=
[CV] C=0.1, gamma=0.01, kernel=poly .............
[CV] ..... C=0.1, gamma=0.01, kernel=poly, score=0.978, total= 0.0s
[CV] C=0.1, gamma=0.01, kernel=poly .............
[CV] ..... C=0.1, gamma=0.01, kernel=poly, score=0.968, total=
[CV] C=0.1, gamma=0.01, kernel=poly .............
[CV] ..... C=0.1, gamma=0.01, kernel=poly, score=0.971, total=
[CV] C=0.1, gamma=0.01, kernel=rbf .......
[CV] ...... C=0.1, gamma=0.01, kernel=rbf, score=0.270, total=
[CV] C=0.1, gamma=0.01, kernel=rbf ...............
[CV] ..... C=0.1, gamma=0.01, kernel=rbf, score=0.271, total=
[CV] C=0.1, gamma=0.01, kernel=rbf ...............
[CV] ..... C=0.1, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] C=0.1, gamma=0.01, kernel=rbf ...............................
[CV] ...... C=0.1, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] C=0.1, gamma=0.01, kernel=rbf ..............
[CV] ..... C=0.1, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] ... C=0.1, gamma=0.01, kernel=sigmoid, score=0.270, total=
[CV] ... C=0.1, gamma=0.01, kernel=sigmoid, score=0.271, total=
[CV] C=0.1, gamma=0.01, kernel=sigmoid ......
[CV] ... C=0.1, gamma=0.01, kernel=sigmoid, score=0.267, total=
[CV] ... C=0.1, gamma=0.01, kernel=sigmoid, score=0.267, total=
[CV] C=0.1, gamma=0.01, kernel=sigmoid ......
[CV] ... C=0.1, gamma=0.01, kernel=sigmoid, score=0.267, total=
[CV] C=0.1, gamma=0.001, kernel=poly ........................
[CV] ..... C=0.1, gamma=0.001, kernel=poly, score=0.950, total=
[CV] C=0.1, gamma=0.001, kernel=poly ........................
[CV] ..... C=0.1, gamma=0.001, kernel=poly, score=0.971, total=
[CV] C=0.1, gamma=0.001, kernel=poly .............
[CV] ..... C=0.1, gamma=0.001, kernel=poly, score=0.978, total=
[CV] C=0.1, gamma=0.001, kernel=poly ........................
[CV] ..... C=0.1, gamma=0.001, kernel=poly, score=0.968, total=
[CV] ..... C=0.1, gamma=0.001, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.1, gamma=0.001, kernel=rbf .........................
[CV] ..... C=0.1, gamma=0.001, kernel=rbf, score=0.270, total= 0.2s
[CV] C=0.1, gamma=0.001, kernel=rbf ..............
```

```
[CV] ..... C=0.1, gamma=0.001, kernel=rbf, score=0.271, total=
[CV] C=0.1, gamma=0.001, kernel=rbf .............
[CV] ..... C=0.1, gamma=0.001, kernel=rbf, score=0.267, total=
                                                 0.2s
[CV] ..... C=0.1, gamma=0.001, kernel=rbf, score=0.267, total=
[CV] C=0.1, gamma=0.001, kernel=rbf .............
[CV] ..... C=0.1, gamma=0.001, kernel=rbf, score=0.267, total=
[CV] C=0.1, gamma=0.001, kernel=sigmoid ......
[CV] .. C=0.1, gamma=0.001, kernel=sigmoid, score=0.270, total=
[CV] C=0.1, gamma=0.001, kernel=sigmoid ......
[CV] .. C=0.1, gamma=0.001, kernel=sigmoid, score=0.271, total=
[CV] .. C=0.1, gamma=0.001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] .. C=0.1, gamma=0.001, kernel=sigmoid, score=0.267, total=
[CV] C=0.1, gamma=0.001, kernel=sigmoid .................
[CV] .. C=0.1, gamma=0.001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.1, gamma=0.0001, kernel=poly .......
[CV] .... C=0.1, gamma=0.0001, kernel=poly, score=0.950, total= 0.0s
[CV] C=0.1, gamma=0.0001, kernel=poly ......
[CV] .... C=0.1, gamma=0.0001, kernel=poly, score=0.971, total=
[CV] .... C=0.1, gamma=0.0001, kernel=poly, score=0.978, total= 0.0s
[CV] C=0.1, gamma=0.0001, kernel=poly ............................
[CV] .... C=0.1, gamma=0.0001, kernel=poly, score=0.968, total=
[CV] C=0.1, gamma=0.0001, kernel=poly .......
[CV] .... C=0.1, gamma=0.0001, kernel=poly, score=0.971, total= 0.0s
[CV] ..... C=0.1, gamma=0.0001, kernel=rbf, score=0.270, total=
[CV] C=0.1, gamma=0.0001, kernel=rbf ....................
[CV] ..... C=0.1, gamma=0.0001, kernel=rbf, score=0.271, total= 0.1s
[CV] ..... C=0.1, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] ..... C=0.1, gamma=0.0001, kernel=rbf, score=0.267, total=
[CV] C=0.1, gamma=0.0001, kernel=rbf ........................
[CV] ..... C=0.1, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] C=0.1, gamma=0.0001, kernel=sigmoid ....................
[CV] . C=0.1, gamma=0.0001, kernel=sigmoid, score=0.270, total=
[CV] . C=0.1, gamma=0.0001, kernel=sigmoid, score=0.271, total= 0.1s
[CV] C=0.1, gamma=0.0001, kernel=sigmoid .......
[CV] . C=0.1, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV] C=0.1, gamma=0.0001, kernel=sigmoid ....................
[CV] . C=0.1, gamma=0.0001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.1, gamma=0.0001, kernel=sigmoid .......
[CV] . C=0.1, gamma=0.0001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.1, kernel=poly ..............
[CV] ..... C=0.01, gamma=0.1, kernel=poly, score=0.950, total= 0.0s
[CV] C=0.01, gamma=0.1, kernel=poly .........................
```

```
[CV] ..... C=0.01, gamma=0.1, kernel=poly, score=0.971, total=
[CV] C=0.01, gamma=0.1, kernel=poly ..............
[CV] ..... C=0.01, gamma=0.1, kernel=poly, score=0.978, total=
[CV] C=0.01, gamma=0.1, kernel=poly .........................
[CV] ..... C=0.01, gamma=0.1, kernel=poly, score=0.968, total=
[CV] ..... C=0.01, gamma=0.1, kernel=poly, score=0.971, total=
[CV] C=0.01, gamma=0.1, kernel=rbf ...............
[CV] ...... C=0.01, gamma=0.1, kernel=rbf, score=0.270, total=
[CV] C=0.01, gamma=0.1, kernel=rbf ..........................
[CV] ...... C=0.01, gamma=0.1, kernel=rbf, score=0.271, total=
[CV] C=0.01, gamma=0.1, kernel=rbf ..........................
[CV] ...... C=0.01, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] C=0.01, gamma=0.1, kernel=rbf ...............................
[CV] ...... C=0.01, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] ...... C=0.01, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] C=0.01, gamma=0.1, kernel=sigmoid ......
[CV] ... C=0.01, gamma=0.1, kernel=sigmoid, score=0.270, total=
[CV] ... C=0.01, gamma=0.1, kernel=sigmoid, score=0.271, total=
[CV] ... C=0.01, gamma=0.1, kernel=sigmoid, score=0.267, total=
[CV] C=0.01, gamma=0.1, kernel=sigmoid ............................
[CV] ... C=0.01, gamma=0.1, kernel=sigmoid, score=0.267, total=
[CV] ... C=0.01, gamma=0.1, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.01, kernel=poly ........................
[CV] ..... C=0.01, gamma=0.01, kernel=poly, score=0.950, total=
[CV] C=0.01, gamma=0.01, kernel=poly ........................
[CV] ..... C=0.01, gamma=0.01, kernel=poly, score=0.971, total=
[CV] C=0.01, gamma=0.01, kernel=poly ........................
[CV] ..... C=0.01, gamma=0.01, kernel=poly, score=0.978, total=
[CV] C=0.01, gamma=0.01, kernel=poly ........................
[CV] ..... C=0.01, gamma=0.01, kernel=poly, score=0.968, total=
[CV] C=0.01, gamma=0.01, kernel=poly ........................
[CV] ..... C=0.01, gamma=0.01, kernel=poly, score=0.971, total=
[CV] ..... C=0.01, gamma=0.01, kernel=rbf, score=0.270, total=
[CV] C=0.01, gamma=0.01, kernel=rbf ..............
[CV] ..... C=0.01, gamma=0.01, kernel=rbf, score=0.271, total=
[CV] C=0.01, gamma=0.01, kernel=rbf ...............................
[CV] ..... C=0.01, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] C=0.01, gamma=0.01, kernel=rbf .............
[CV] ..... C=0.01, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] C=0.01, gamma=0.01, kernel=rbf .............
[CV] ..... C=0.01, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] C=0.01, gamma=0.01, kernel=sigmoid .....................
[CV] .. C=0.01, gamma=0.01, kernel=sigmoid, score=0.270, total=
```

```
[CV] .. C=0.01, gamma=0.01, kernel=sigmoid, score=0.271, total=
[CV] .. C=0.01, gamma=0.01, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.01, kernel=sigmoid .....................
[CV] .. C=0.01, gamma=0.01, kernel=sigmoid, score=0.267, total=
[CV] C=0.01, gamma=0.01, kernel=sigmoid ......
[CV] .. C=0.01, gamma=0.01, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.001, kernel=poly ......
[CV] .... C=0.01, gamma=0.001, kernel=poly, score=0.950, total=
[CV] C=0.01, gamma=0.001, kernel=poly .......................
[CV] .... C=0.01, gamma=0.001, kernel=poly, score=0.971, total=
[CV] C=0.01, gamma=0.001, kernel=poly ......
[CV] .... C=0.01, gamma=0.001, kernel=poly, score=0.978, total= 0.0s
[CV] C=0.01, gamma=0.001, kernel=poly .......................
[CV] .... C=0.01, gamma=0.001, kernel=poly, score=0.968, total=
[CV] C=0.01, gamma=0.001, kernel=poly .......................
[CV] .... C=0.01, gamma=0.001, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.01, gamma=0.001, kernel=rbf ........................
[CV] ..... C=0.01, gamma=0.001, kernel=rbf, score=0.270, total=
[CV] C=0.01, gamma=0.001, kernel=rbf ........................
[CV] ..... C=0.01, gamma=0.001, kernel=rbf, score=0.271, total=
[CV] C=0.01, gamma=0.001, kernel=rbf ........................
[CV] ..... C=0.01, gamma=0.001, kernel=rbf, score=0.267, total=
[CV] ..... C=0.01, gamma=0.001, kernel=rbf, score=0.267, total=
[CV] ..... C=0.01, gamma=0.001, kernel=rbf, score=0.267, total= 0.2s
[CV] . C=0.01, gamma=0.001, kernel=sigmoid, score=0.270, total=
[CV] C=0.01, gamma=0.001, kernel=sigmoid .......
[CV] . C=0.01, gamma=0.001, kernel=sigmoid, score=0.271, total= 0.1s
[CV] C=0.01, gamma=0.001, kernel=sigmoid .......
[CV] . C=0.01, gamma=0.001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.001, kernel=sigmoid ....................
[CV] . C=0.01, gamma=0.001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.001, kernel=sigmoid .......
[CV] . C=0.01, gamma=0.001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.0001, kernel=poly ......
[CV] ... C=0.01, gamma=0.0001, kernel=poly, score=0.950, total=
[CV] C=0.01, gamma=0.0001, kernel=poly .......
[CV] ... C=0.01, gamma=0.0001, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.01, gamma=0.0001, kernel=poly ......
[CV] ... C=0.01, gamma=0.0001, kernel=poly, score=0.978, total=
[CV] C=0.01, gamma=0.0001, kernel=poly ......
[CV] ... C=0.01, gamma=0.0001, kernel=poly, score=0.968, total= 0.0s
[CV] ... C=0.01, gamma=0.0001, kernel=poly, score=0.971, total=
[CV] .... C=0.01, gamma=0.0001, kernel=rbf, score=0.270, total= 0.1s
```

```
[CV] C=0.01, gamma=0.0001, kernel=rbf .......
[CV] .... C=0.01, gamma=0.0001, kernel=rbf, score=0.271, total=
[CV] C=0.01, gamma=0.0001, kernel=rbf .......................
[CV] .... C=0.01, gamma=0.0001, kernel=rbf, score=0.267, total=
[CV] C=0.01, gamma=0.0001, kernel=rbf .......
[CV] .... C=0.01, gamma=0.0001, kernel=rbf, score=0.267, total=
[CV] C=0.01, gamma=0.0001, kernel=rbf .......................
[CV] .... C=0.01, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] C=0.01, gamma=0.0001, kernel=sigmoid ...................
    C=0.01, gamma=0.0001, kernel=sigmoid, score=0.270, total=
[CV]
[CV] C=0.01, gamma=0.0001, kernel=sigmoid ......
[CV]
    C=0.01, gamma=0.0001, kernel=sigmoid, score=0.271, total=
[CV] C=0.01, gamma=0.0001, kernel=sigmoid ......
    C=0.01, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV] C=0.01, gamma=0.0001, kernel=sigmoid ......
[CV]
    C=0.01, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV] C=0.01, gamma=0.0001, kernel=sigmoid ......
    C=0.01, gamma=0.0001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.001, gamma=0.1, kernel=poly ........................
[CV] ..... C=0.001, gamma=0.1, kernel=poly, score=0.950, total=
[CV] C=0.001, gamma=0.1, kernel=poly ........
[CV] ..... C=0.001, gamma=0.1, kernel=poly, score=0.971, total=
[CV] ..... C=0.001, gamma=0.1, kernel=poly, score=0.978, total=
[CV] C=0.001, gamma=0.1, kernel=poly ........................
[CV] ..... C=0.001, gamma=0.1, kernel=poly, score=0.968, total=
[CV] C=0.001, gamma=0.1, kernel=poly ........................
[CV] ..... C=0.001, gamma=0.1, kernel=poly, score=0.971, total=
[CV] C=0.001, gamma=0.1, kernel=rbf ...............................
[CV] ..... C=0.001, gamma=0.1, kernel=rbf, score=0.270, total=
[CV] C=0.001, gamma=0.1, kernel=rbf .........................
[CV] ..... C=0.001, gamma=0.1, kernel=rbf, score=0.271, total=
[CV] C=0.001, gamma=0.1, kernel=rbf .........................
[CV] ..... C=0.001, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] C=0.001, gamma=0.1, kernel=rbf .........................
[CV] ..... C=0.001, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] C=0.001, gamma=0.1, kernel=rbf ...............................
[CV] ..... C=0.001, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] .. C=0.001, gamma=0.1, kernel=sigmoid, score=0.270, total=
[CV] .. C=0.001, gamma=0.1, kernel=sigmoid, score=0.271, total= 0.1s
[CV] C=0.001, gamma=0.1, kernel=sigmoid ...........................
[CV] .. C=0.001, gamma=0.1, kernel=sigmoid, score=0.267, total=
[CV] C=0.001, gamma=0.1, kernel=sigmoid ......
[CV] .. C=0.001, gamma=0.1, kernel=sigmoid, score=0.267, total= 0.1s
[CV] .. C=0.001, gamma=0.1, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.001, gamma=0.01, kernel=poly ..............................
```

```
[CV] .... C=0.001, gamma=0.01, kernel=poly, score=0.950, total=
[CV] C=0.001, gamma=0.01, kernel=poly ..............................
[CV] .... C=0.001, gamma=0.01, kernel=poly, score=0.971, total=
[CV] C=0.001, gamma=0.01, kernel=poly .......................
[CV] .... C=0.001, gamma=0.01, kernel=poly, score=0.978, total=
[CV] C=0.001, gamma=0.01, kernel=poly .......
[CV] .... C=0.001, gamma=0.01, kernel=poly, score=0.968, total=
[CV] C=0.001, gamma=0.01, kernel=poly .......................
[CV] .... C=0.001, gamma=0.01, kernel=poly, score=0.971, total=
[CV] C=0.001, gamma=0.01, kernel=rbf ........
[CV] ..... C=0.001, gamma=0.01, kernel=rbf, score=0.270, total=
[CV] C=0.001, gamma=0.01, kernel=rbf ........................
[CV] ..... C=0.001, gamma=0.01, kernel=rbf, score=0.271, total= 0.2s
[CV] ..... C=0.001, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] ..... C=0.001, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] ..... C=0.001, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] C=0.001, gamma=\overline{0}.01, kernel=sigmoid ......
[CV] . C=0.001, gamma=0.01, kernel=sigmoid, score=0.270, total=
[CV] . C=0.001, gamma=0.01, kernel=sigmoid, score=0.271, total=
[CV] C=0.001, gamma=0.01, kernel=sigmoid ........................
[CV] . C=0.001, gamma=0.01, kernel=sigmoid, score=0.267, total=
[CV] . C=0.001, gamma=0.01, kernel=sigmoid, score=0.267, total= 0.1s
[CV] . C=0.001, gamma=0.01, kernel=sigmoid, score=0.267, total=
[CV] C=0.001, gamma=0.001, kernel=poly ......................
[CV] ... C=0.001, gamma=0.001, kernel=poly, score=0.950, total=
[CV] C=0.001, gamma=0.001, kernel=poly ......
[CV] ... C=0.001, gamma=0.001, kernel=poly, score=0.971, total= 0.0s
[CV] ... C=0.001, gamma=0.001, kernel=poly, score=0.978, total=
[CV] C=0.001, gamma=0.001, kernel=poly ......
[CV] ... C=0.001, gamma=0.001, kernel=poly, score=0.968, total=
[CV] C=0.001, gamma=0.001, kernel=poly ......
[CV] ... C=0.001, gamma=0.001, kernel=poly, score=0.971, total=
[CV] C=0.001, gamma=0.001, kernel=rbf .......
[CV] .... C=0.001, gamma=0.001, kernel=rbf, score=0.270, total=
[CV] .... C=0.001, gamma=0.001, kernel=rbf, score=0.271, total=
[CV] C=0.001, gamma=0.001, kernel=rbf ..............................
[CV] .... C=0.001, gamma=0.001, kernel=rbf, score=0.267, total=
[CV] C=0.001, gamma=0.001, kernel=rbf .......
[CV] .... C=0.001, gamma=0.001, kernel=rbf, score=0.267, total= 0.2s
[CV] C=0.001, gamma=0.001, kernel=rbf .............................
[CV] .... C=0.001, gamma=0.001, kernel=rbf, score=0.267, total= 0.2s
[CV] C=0.001, gamma=0.001, kernel=sigmoid ........................
```

```
C=0.001, gamma=0.001, kernel=sigmoid, score=0.270, total=
[CV]
    C=0.001, gamma=0.001, kernel=sigmoid, score=0.271, total= 0.1s
C=0.001, gamma=0.001, kernel=sigmoid, score=0.267, total= 0.1s
[CV]
[CV] C=0.001, gamma=0.001, kernel=sigmoid .......
    C=0.001, gamma=0.001, kernel=sigmoid, score=0.267, total=
[CV] C=0.001, gamma=0.001, kernel=sigmoid ...................
    C=0.001, gamma=0.001, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.001, gamma=0.0001, kernel=poly .....................
[CV] .. C=0.001, gamma=0.0001, kernel=poly, score=0.950, total=
[CV] .. C=0.001, gamma=0.0001, kernel=poly, score=0.971, total= 0.0s
[CV] .. C=0.001, gamma=0.0001, kernel=poly, score=0.978, total= 0.0s
[CV] C=0.001, gamma=0.0001, kernel=poly ......
[CV] .. C=0.001, gamma=0.0001, kernel=poly, score=0.968, total= 0.0s
[CV] C=0.001, gamma=0.0001, kernel=poly ......
[CV] .. C=0.001, gamma=0.0001, kernel=poly, score=0.971, total= 0.0s
[CV] ... C=0.001, gamma=0.0001, kernel=rbf, score=0.270, total= 0.1s
[CV] ... C=0.001, gamma=0.0001, kernel=rbf, score=0.271, total= 0.1s
[CV] C=0.001, gamma=0.0001, kernel=rbf ......
[CV] ... C=0.001, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] ... C=0.001, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] ... C=0.001, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] C=0.001, gamma=0.0001, kernel=sigmoid .......................
    C=0.001, gamma=0.0001, kernel=sigmoid, score=0.270, total=
[CV]
0.1s
[CV] C=0.001, gamma=0.0001, kernel=sigmoid .......
    C=0.001, gamma=0.0001, kernel=sigmoid, score=0.271, total=
[CV]
0.1s
[CV] C=0.001, gamma=0.0001, kernel=sigmoid .................
    C=0.001, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV]
0.1s
[CV] C=0.001, gamma=0.0001, kernel=sigmoid .......
    C=0.001, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV]
0.1s
[CV] C=0.001, gamma=0.0001, kernel=sigmoid ......
    C=0.001, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV]
0.1s
[CV] C=0.0001, gamma=0.1, kernel=poly ......
[CV] .... C=0.0001, gamma=0.1, kernel=poly, score=0.950, total= 0.0s
[CV] C=0.0001, gamma=0.1, kernel=poly ..............................
[CV] .... C=0.0001, gamma=0.1, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.0001, gamma=0.1, kernel=poly ......
[CV] .... C=0.0001, gamma=0.1, kernel=poly, score=0.978, total= 0.0s
```

```
[CV] C=0.0001, gamma=0.1, kernel=poly .......
[CV] .... C=0.0001, gamma=0.1, kernel=poly, score=0.968, total= 0.0s
[CV] C=0.0001, gamma=0.1, kernel=poly .......................
[CV] .... C=0.0001, gamma=0.1, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.0001, gamma=0.1, kernel=rbf ........................
[CV] ..... C=0.0001, gamma=0.1, kernel=rbf, score=0.270, total=
[CV] ..... C=0.0001, gamma=0.1, kernel=rbf, score=0.271, total=
[CV] C=0.0001, gamma=0.1, kernel=rbf ..............................
[CV] ..... C=0.0001, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] ..... C=0.0001, gamma=0.1, kernel=rbf, score=0.267, total=
[CV] ..... C=0.0001, gamma=0.1, kernel=rbf, score=0.267, total=0.2s
[CV] C=0.0001, gamma=0.1, kernel=sigmoid ....................
[CV] . C=0.0001, gamma=0.1, kernel=sigmoid, score=0.270, total=
[CV] C=0.0001, gamma=0.1, kernel=sigmoid ....................
[CV] . C=0.0001, gamma=0.1, kernel=sigmoid, score=0.271, total=
[CV] C=0.0001, gamma=0.1, kernel=sigmoid ....................
[CV] . C=0.0001, gamma=0.1, kernel=sigmoid, score=0.267, total= 0.1s
[CV] . C=0.0001, gamma=0.1, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.0001, gamma=0.1, kernel=sigmoid .......
[CV] . C=0.0001, gamma=0.1, kernel=sigmoid, score=0.267, total= 0.1s
[CV] C=0.0001, gamma=0.01, kernel=poly ......
[CV] ... C=0.0001, gamma=0.01, kernel=poly, score=0.950, total=
[CV] C=0.0001, gamma=0.01, kernel=poly .......
[CV] ... C=0.0001, gamma=0.01, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.0001, gamma=0.01, kernel=poly .....................
[CV] ... C=0.0001, gamma=0.01, kernel=poly, score=0.978, total=
[CV] C=0.0001, gamma=0.01, kernel=poly .......
[CV] ... C=0.0001, gamma=0.01, kernel=poly, score=0.968, total= 0.0s
[CV] C=0.0001, gamma=0.01, kernel=poly ......................
[CV] ... C=0.0001, gamma=0.01, kernel=poly, score=0.971, total=
[CV] C=0.0001, gamma=0.01, kernel=rbf .......
[CV] .... C=0.0001, gamma=0.01, kernel=rbf, score=0.270, total=
[CV] C=0.0001, gamma=0.01, kernel=rbf .......
[CV] .... C=0.0001, gamma=0.01, kernel=rbf, score=0.271, total=
[CV] C=0.0001, gamma=0.01, kernel=rbf .......
[CV] .... C=0.0001, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] .... C=0.0001, gamma=0.01, kernel=rbf, score=0.267, total= 0.2s
[CV] C=0.0001, gamma=0.01, kernel=rbf .......................
[CV] .... C=0.0001, gamma=0.01, kernel=rbf, score=0.267, total=
[CV] C=0.0001, gamma=0.01, kernel=sigmoid ...................
   C=0.0001, gamma=0.01, kernel=sigmoid, score=0.270, total= 0.1s
[CV]
[CV] C=0.0001, gamma=0.01, kernel=sigmoid .......
[CV] C=0.0001, gamma=0.01, kernel=sigmoid, score=0.271, total= 0.1s
[CV] C=0.0001, gamma=0.01, kernel=sigmoid .......
```

```
C=0.0001, gamma=0.01, kernel=sigmoid, score=0.267, total=
                                        0.1s
[CV]
   C=0.0001, gamma=0.01, kernel=sigmoid, score=0.267, total= 0.1s
C=0.0001, gamma=0.01, kernel=sigmoid, score=0.267, total= 0.1s
[CV]
[CV] C=0.0001, gamma=0.001, kernel=poly ......
[CV] .. C=0.0001, gamma=0.001, kernel=poly, score=0.950, total=
[CV] .. C=0.0001, gamma=0.001, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.0001, gamma=0.001, kernel=poly .....................
[CV] .. C=0.0001, gamma=0.001, kernel=poly, score=0.978, total= 0.0s
[CV] .. C=0.0001, gamma=0.001, kernel=poly, score=0.968, total= 0.0s
[CV] .. C=0.0001, gamma=0.001, kernel=poly, score=0.971, total= 0.0s
[CV] ... C=0.0001, gamma=0.001, kernel=rbf, score=0.270, total= 0.2s
[CV] C=0.0001, gamma=0.001, kernel=rbf ........
[CV] ... C=0.0001, gamma=0.001, kernel=rbf, score=0.271, total= 0.2s
[CV] ... C=0.0001, gamma=0.001, kernel=rbf, score=0.267, total= 0.2s
[CV] ... C=0.0001, gamma=0.001, kernel=rbf, score=0.267, total= 0.2s
[CV] ... C=0.0001, gamma=0.001, kernel=rbf, score=0.267, total= 0.2s
C=0.0001, gamma=0.001, kernel=sigmoid, score=0.270, total=
[CV]
0.1s
C=0.0001, gamma=0.001, kernel=sigmoid, score=0.271, total=
[CV]
0.1s
  C=0.0001, gamma=0.001, kernel=sigmoid .......
[CV]
   C=0.0001, gamma=0.001, kernel=sigmoid, score=0.267, total=
[CV]
0.1s
C=0.0001, gamma=0.001, kernel=sigmoid, score=0.267, total=
[CV]
0.1s
C=0.0001, gamma=0.001, kernel=sigmoid, score=0.267, total=
[CV]
0.1s
[CV] C=0.0001, gamma=0.0001, kernel=poly .......
[CV] . C=0.0001, gamma=0.0001, kernel=poly, score=0.950, total= 0.0s
[CV] . C=0.0001, gamma=0.0001, kernel=poly, score=0.971, total= 0.0s
[CV] C=0.0001, gamma=0.0001, kernel=poly .......
[CV] . C=0.0001, gamma=0.0001, kernel=poly, score=0.978, total= 0.0s
[CV] . C=0.0001, gamma=0.0001, kernel=poly, score=0.968, total= 0.0s
[CV] C=0.0001, gamma=0.0001, kernel=poly .......
[CV] . C=0.0001, gamma=0.0001, kernel=poly, score=0.971, total= 0.0s
```

```
[CV] .. C=0.0001, gamma=0.0001, kernel=rbf, score=0.270, total= 0.1s
[CV] .. C=0.0001, gamma=0.0001, kernel=rbf, score=0.271, total= 0.1s
[CV] C=0.0001, gamma=0.0001, kernel=rbf ....................
[CV] .. C=0.0001, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] .. C=0.0001, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV] .. C=0.0001, gamma=0.0001, kernel=rbf, score=0.267, total= 0.1s
[CV]
    C=0.0001, gamma=0.0001, kernel=sigmoid, score=0.270, total=
0.1s
[CV] C=0.0001, gamma=0.0001, kernel=sigmoid ......
   C=0.0001, gamma=0.0001, kernel=sigmoid, score=0.271, total=
[CV]
0.1s
[CV] C=0.0001, gamma=0.0001, kernel=sigmoid .................
[CV]
    C=0.0001, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV] C=0.0001, gamma=0.0001, kernel=sigmoid .................
    C=0.0001, gamma=0.0001, kernel=sigmoid, score=0.267, total=
[CV]
0.1s
[CV] C=0.0001, gamma=0.0001, kernel=sigmoid .................
[CV]
    C=0.0001, gamma=0.0001, kernel=sigmoid, score=0.267, total=
0.1s
[Parallel(n jobs=1)]: Done 240 out of 240 | elapsed: 22.3s finished
# Finding the best parameters
GS.best params
{'C': 0.1, 'gamma': 0.1, 'kernel': 'poly'}
print(f'Classification Report:\n{classification report(ytest,ypred)}\
print(f'Confusion Matrix:\n{confusion matrix(ytest,ypred)}')
Classification Report:
           precision
                     recall
                           f1-score
                                    support
        0
               0.97
                       0.96
                               0.96
                                        124
        1
               0.93
                       0.94
                               0.94
                                        142
        2
               0.94
                       0.93
                               0.94
                                        168
        3
               0.96
                       0.96
                               0.96
                                        160
                               0.95
                                       594
   accuracy
               0.95
                       0.95
                               0.95
                                        594
  macro avq
weighted avg
               0.95
                       0.95
                               0.95
                                       594
```

Confusion Matrix:

```
[[119 5 0 0]
[ 4 134 4 0]
[ 0 5 157 6]
[ 0 0 6 154]]
```

Conclusion

- After hypertunning the model we have seen increase in the accuracy of model
- Now bob can decide the price range of mobile phones for his company