Project 2

COMP9313 | BIG DATA MANAGEMENT | 20T2

ANANT KRISHNA MAHALE | Z5277610

In this project we need to implement several core parts of the stacking machine learning method in Pyspark.

Given Data files:

- proj2train.csv
- proj2test.csv

Looking inside the data file reveals that there are 3 columns:

id	category	descript						
0	MISC	I've been there three times and have always had wonderful experiences.						
1	FOOD	Stay away from the two specialty rolls on the menu, though- too much avocado and rice will fill you up right quick.						
2	FOOD	Wow over 100 beers to choose from.						
3	MISC	Having been a long time Ess-a-Bagel fan, I was surpised to find myself return time and time again to Murray's.						
4	MISC	This is a consistently great place to dine for lunch or dinner.						
5	FOOD	I ate here a week ago and found most dishes average at best and too expensive.						
6	MISC	First of all Dal Bukhara Rocks.						

Category being the target column, there are 3 target labels: FOOD, MISC, PAS.

Implementation details:

1.1

- This function completion was very similar to the Lab3. The descript column is tokenized using Tokenizer(), and bag of words is generated using StringIndexer().
- Since there are 3 output categories, they converted into integers between 0 to 2.
- The output of the function should be pipeline, hence, above generated features are converted into pipeline using pipeline()
- Below is the preview of the code for the function: base_features_gen_pipeline()

```
class Selector(Transformer):
    def __init__(self, outputCols=['features', 'label']):
        self.outputCols = outputCols

def __transform(self, df: DataFrame) -> DataFrame:
        return df.select(*self.outputCols)

def __transform(self, df: DataFrame) -> DataFrame:
        return df.select(*self.outputCols)

def __base_features_gen_pipeline(input_descript_col="descript", input_category_col="category", output_feature_col="features", output_label_col="label"):
        # white space expression tokenizer
        word_tokenizer = Tokenizer(inputCol=input_descript_col, outputCol="words")

10.
        word_tokenizer = CountVectorizer(inputCol=input_descript_col, outputCol=output_feature_col)

12.
        # label indexer

13.
        count_vectors = CountVectorizer(inputCol=input_category_col, outputCol=output_label_col)

14.
        # label_maker = StringIndexer(inputCol=input_category_col, outputCol=output_label_col)

15.
        # selector = Selector(outputCols=['id', 'features', 'label'])

16.
        # build the pipeline
        pipeline = Pipeline(stages=[word_tokenizer, count_vectors, label_maker, selector])

22.
        return pipeline
```

1.2

• This function focuses on the Meta-features. The base models defined in the main function are passed to this function along with group column. The model is trained (total_number_of_group) times, such that, the model is trained with the entries that are not in the group.

```
condition = training_df['group'] == i
c_train = training_df.filter(~condition).cache()
c_test = training_df.filter(condition).cache()
```

• using the predicted values, the meta-perameters are generated like below.

```
temp_result_1 = temp_result_1.withColumn("joint_pred_0",2*temp_result_1.nb_pred_0 +temp_result_1.svm_pred_0)
temp_result_1 = temp_result_1.withColumn("joint_pred_1",2*temp_result_1.nb_pred_1 +temp_result_1.svm_pred_1)
temp_result_1 = temp_result_1.withColumn("joint_pred_2",2*temp_result_1.nb_pred_2 +temp_result_1.svm_pred_2)
```

Preview of final code:

• Output of gen meata features()

		•	. – .	. — .		٠.		• •							
id g	group	features	label	label_0 l	abel_1 la	bel_2 nb	_pred_0 nb_	pred_1 nt	pred_2 svm	_pred_0 svm	_pred_1 svm	_pred_2 join	t_pred_0 join	t_pred_1 join	it_pred_2
Θ	4 (5421,	[1,18,31,39	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	3.0	0.0
1	4 (5421,	0,1,15,20,	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	4 (5421,	3,109,556,	0.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0	2.0
3	0 (5421,	1,2,3,5,6,	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0
4	2 (5421,	2,3,4,8,11	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
5	0 (5421,	1,2,5,25,4	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	3.0	0.0	0.0
6	4 (5421,	7,40,142,1	1.0	0.0	1.0	0.0	1.0	1.0	0.0	1.0	0.0	0.0	3.0	2.0	0.0
7	4 (5421,	8,13,19,25	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	3.0	0.0	0.0
8	4 (5421,	2,3,7,8,21	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
9	4 (5421,	2,16,22,49	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	3.0	0.0

1.3

- In this task, stacked model is used to predict the values using test dataset.
- Also, meta features for the test_df is generated in this function.
- Preview of the function test_prediction()

```
def test_prediction(test_df, base_features_pipeline_model, gen_base_pred_pipeline_model, gen_meta_feature_pipeline_model, meta_classifier):
    temp_result_0 = base_features_pipeline_model.transform(test_df)
    temp_result_1 = gen_base_pred_pipeline_model.transform(temp_result_0)

#find the joint probability or generate meta-parameters.

temp_result_1 = temp_result_1.withColumn("joint_pred_0",2*temp_result_1.nb_pred_0 +temp_result_1.svm_pred_0)

temp_result_1 = temp_result_1.withColumn("joint_pred_0",2*temp_result_1.nb_pred_1 +temp_result_1.svm_pred_1)

temp_result_1 = temp_result_1.withColumn("joint_pred_0",2*temp_result_1.nb_pred_2 +temp_result_1.svm_pred_2)

temp_result_2 = gen_meta_feature_pipeline_model.transform(temp_result_1)

temp_final = meta_classifier.transform(temp_result_2)

final_result_1 = temp_final.select(temp_final.id, temp_final.label, temp_final.final_prediction)

return final_result_1.
```

Output of the function:

+++						
id label final_prediction						
+	+-	+-	+			
1	0	0.0	0.0			
1	1	2.0	0.0			
1	2	0.0	0.0			
1	3	0.0	0.0			
1	4	0.0	0.0			
-	5	1.0	1.0			
1	6	0.0	0.0			
1	7	0.0	0.0			
1	8	0.0	0.0			
1	9	0.0	0.0			
+	+-	+-	+			

The evaluation of the stacking model gives the f1-score of 0.7483312619309965

What can be improved?

- Preprocessing the text:
 - 1. Instead of using the text as is, the symbols, non-ascii chars, numbers along with white spaces can be removed.
 - 2. Lemmatization and stemming techniques can be applied on the text, to make it uniform.
- Improving the F1 score.
 - 1. Using the above said pre-processing techniques
 - 2. Instead of using model with default parameters, we can use hyper parameters to suit the data
- Hyper -Parameters tuning:
- I tried many hyper parameters with NB and SVC models. I got best results when maxIter = 100, regParam = 0.08 in SVC. For NB changing the params like smoothing did not have significant improvement on F1-score.