

# **Beijing-Dublin International College**



| SEME | STER 1  | RESIT    | EXAM     | INATI   | ON - 20 | 016/2017 |
|------|---------|----------|----------|---------|---------|----------|
|      | Beijing | g-Dublir | ı Intern | ational | College | e        |

MODULE CODE: BDIC2005J/BDIC1033J MODULE TITLE: Probability and Statistics

MODULE COORDINATOR NAME\*
Dr. Xie Tianfa, Zhao Xu

**Time Allowed: 90 minutes** 

#### **Instructions for Candidates**

All questions carry equal marks. The distribution of marks in the right margin shown as a percentage gives an approximate indication of the relative importance of each part of the question.

| BJUT Student ID: UCD Student ID:                                                                        |
|---------------------------------------------------------------------------------------------------------|
| I have read and clearly understand the Examination Rules of both Beijing University of Technology       |
| and University College Dublin. I am aware of the Punishment for Violating the Rules of Beijing          |
| University of Technology and/or University College Dublin. I hereby promise to abide by the             |
| relevant rules and regulations by not giving or receiving any help during the exam. If caught violating |
| the rules, I accept the punishment thereof.                                                             |
| Honesty Pledge: (Signature)                                                                             |
| itoliesty i leuge: (signature)                                                                          |

### **Instructions for Invigilators**

Non-programmable calculators are permitted. No rough-work paper is to be provided for candidates.

Obtained score

#### **Question 1:**

### Vacancy (Each blank 3 marks)

- (1) There are two events A, B. Let P(A) = 0.7, P(B) = 0.4,  $P(A\overline{B}) = 0.5$ , then  $P(A \mid B) = \underline{\hspace{1cm}}$ .
- (2) Suppose the discrete random variable X takes values -3, 0 and 1. It is also known that P(X=-3)=0.2, P(X=0)=0.3. Thus Var(X)=\_\_\_\_\_.
- (3) Suppose the random variable  $X \sim B(n, p)$ , E(X) = 2.4, Var(X) = 1.44, then  $n = \underline{\hspace{1cm}}, p = \underline{\hspace{1cm}}$ .
- (4) Let  $X_1, X_2, \dots, X_n (n > 2)$  be a sample from  $N(\mu, 1)$ . Let

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

then 
$$\sqrt{n}(\bar{X} - \mu) \sim$$
\_\_\_\_\_\_,  $E(S^2) =$ \_\_\_\_\_\_.

(5) Let  $X_1, \dots, X_{10}$  be the sample from a normal population  $X \sim N(\mu, \sigma^2)$ , with  $\overline{X} = 6$  and  $S^2 = 2.56$ , thus the 95 percent confidence interval estimate of  $\mu$  is

| [ | ], | and the 95 percent confidence interval estimate of $\sigma^2$ is |
|---|----|------------------------------------------------------------------|
| [ | ]. |                                                                  |

The t distribution table and the  $\chi^2$  distribution table

|                               |                              | 70                           |                             |
|-------------------------------|------------------------------|------------------------------|-----------------------------|
| $t_9(0.025) = 2.2622$         | $t_9(0.05) = 1.8331$         | $t_{10}(0.025) = 2.2281$     | $t_{10}(0.05) = 1.8125$     |
| $\chi_9^2(0.025) = 19.023$    | $\chi_9^2(0.05) = 16.919$    | $\chi_9^2(0.975) = 2.700$    | $\chi_9^2(0.95) = 3.325$    |
| $\chi_{10}^2(0.025) = 20.483$ | $\chi_{10}^2(0.05) = 18.307$ | $\chi_{10}^2(0.975) = 3.247$ | $\chi_{10}^2(0.95) = 3.940$ |

# Obtained score

#### Part 2: Calculation (14 marks each; Do show all your answer in detail)

- (1) A new test has been devised for detecting a particular type of cancer. If the test is applied to a person who has this type of cancer, the probability that the person will have a positive reaction is 0.95 and the probability that the person will have a negative reaction is 0.05. If the test is applied to a person who does not have this type of cancer, the probability that the person will have a positive reaction is 0.05 and the probability that the person will have a negative reaction is 0.95. Suppose that in the general population, one person out of every 1,000 people has this type of cancer. A person is selected at random and the test is implemented,
- (a) What is the probability that the person has a positive reaction?
- (b) What is the probability that the person has this type of cancer under a positive reaction?

Obtained score

(2) Suppose that the probability density function of the continuous random variable X is

$$f(x) = \begin{cases} 2(x-1), & x \in [1, 2] \\ 0, & elsewhere. \end{cases}$$

Let Y = 3X

Find: (a)  $f_Y(y)$ , the probability density function of Y; (b)  $P(1 < Y < e^2)$ ; (c) E(Y).

Obtained score

(3) Suppose that the joint probability density of two random variables X and Y are given by

$$f(x,y) = \begin{cases} cx^2, & 0 \le y \le 1 - x^2 \\ 0, & elsewhere. \end{cases}$$

Find:

(a) the constant c and the marginal densities  $f_x(x)$ ,  $f_y(y)$ ;

(b) whether the two random variables *X* and *Y* are independent or not (Please give your reason);

(c) E(X), E(Y).

Obtained score

(4) Suppose  $X_1, X_2 \cdots X_n$  is a sample from X, and the probability density function of X is

$$f(x;\theta) = \begin{cases} \theta e^{-\theta x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

where  $\theta > 0$ , Find:

(a) the moment estimator  $\hat{\theta}$  of  $\theta$ ;

(b) the maximum likelihood estimator  $\theta^*$  of  $\theta$ ;

(c) whether the moment estimator  $\hat{\eta} = 1/\hat{\theta}$  of parameter  $\eta = 1/\theta$  is unbiased or not (Please give your reason).

Obtained score

(5) Suppose the grade of subject Probability and Statistics is distributed as  $N(\mu, \sigma^2)$ . A sample of 25 students are selected and their grades are calculated with mean 76.5, standard deviation 9.5. Question: at level of significance 0.05,

(a) can we accept  $\mu$ = 75 ?

(b) can we accept  $\sigma=10$ ?

The *t* distribution table and the  $\chi^2$  distribution table

| $t_{24}(0.025) = 2.0639$      | $t_{24}(0.05) = 1.7109$      | $t_{25}(0.025) = 2.0595$      | $t_{25}(0.05) = 1.7081$      |
|-------------------------------|------------------------------|-------------------------------|------------------------------|
| $\chi_{24}^2(0.025) = 39.364$ | $\chi_{24}^2(0.05) = 36.415$ | $\chi^2_{25}(0.025) = 40.646$ | $\chi^2_{25}(0.05) = 37.652$ |
| $\chi^2_{24}(0.975) = 12.401$ | $\chi^2_{24}(0.95) = 13.848$ | $\chi^2_{25}(0.975) = 13.120$ | $\chi^2_{25}(0.95) = 14.611$ |

| Semester One | Academic Year (2016 – 2017 |
|--------------|----------------------------|
|--------------|----------------------------|

Appendix:

BDIC