Alignment .msf am 4.2.2003

Visser Sequence X58453 compared to Seq. ID No.1 (AX 349063) of WO 02/02785

ClustalW 1.8 Parameters	MView Parameters (output)	
→fast pairwise alignment followed by	, ,	
ktuple=2		
topdiags=4		
pairgap=5		
gapopen=10		Towards and the second
gapext=5		Transition of the state of the
maxdiv=40 dnamatrix: IUB		TERRETOR
transitions: unweighted		P 0000
		•
ruler: on		4.
coloring: identity		
threshold: 80		74
width: 50		
consensus: off		
consensus coloring: identity		
consensus threshold: 100	consensus ignore: singleton	
consensus gaps: on		
consensus ref: 1		
colormap: D_plain		
colorfile: -colorfile D_plain.map		
cons. colormap: -con_colormap D_plain		

Identities computed with respect to: (1) Visser-Seq

Colored by: identity + property

Visser-Seq 100.0% WO 45.5%	1 [ı
Visser-Seq 100.0% WO 45.5%	51	0
Visser-Seq 100.0% WO 45.5%	101	0
Visser-Seq 100.0% WO 45.5%	151 2 20 TTGACTCATCCACCAGATATTATGATTTATGAATCCTCGAAAAGCCTAT- TTGTTTCATGTTTATTTCATTTTCATTTTCATTTTACTTTTTAGGGTAAAACCAATG	0
Visser-Seq 100.0% WO 45.5%	201 : 25 CCATTAAGTCCTCAT CTATGGATATACTTGACAGTTTCTTCCTA-TTT CCCCCAATTCATTCTACCTAAGAGGAAA-TTCAGTTTTATACTACTTT	0
Visser-Seq 100.0% WO 45.5%	251 3 30 GGGTTTTTTTTTCCTGCCAAGTGGAACGGAGACATGTTATGTTGTATA CAGTTTTATTATTGTTTATTAAGTGTTTTTAGTTGGTTTTTTTT	0
Visser-Seq 100.0% WO 45.5%	301 : 35 CGGGAATCTCGTTAAAAAAAAAAATACAATAGGAAGAATGTAACAAACA	0
Visser-Seq 100.0% WO 45.5%	351	0
Visser-Seq 100.0%	401	0

١

Visser-Seq WO	100.0% 45.5%	1301		1350
Visser-Seq WO	100.0%	1351	4 TGATCTTTGTGGGTACTGAGGTTGGTCCTTGGAGCAAAACTG-GTGGACT AGTATTTTCAGGCGACTGGCATATAGCCCACGGCCTATTGTTTCGTGTCGTC	1400
Visser-Seq WO	100.0%		AGGT GATGTTCTTGGTGGAC TACCACCAGCCCTTGCAGTAAGTCTTTC	1450
Visser-Seq WO	100.0% 45.5%	1451	ATTTGGTTACCTACTCATTCATTACTTATTTTGTTTAGTTAG	1500
Visser-Seq WO	100.0% 45.5%		: GCATCAGTCTTTTTATCATTTAGGCCCGCGGACATCGGGTAATGACAATA ACCGCATTTA-CGTTTCCCCGATCCGACAAAGCCAGGG	1550
Visser-Seq WO		1551	6 TCCCCCCGTTA-TGACCAA-TACAAAGATGCTTGGGATACTAGCGTTGCG CACGCACGTACGTGCCATGTTGGCACGTGCGTGCGTCCCTCACGCGCGCG	1600
Visser-Seq WO	100.0%	1601	: GTTGAGGTACATCTTCCTATTTTGATA-CGGTACAATATTGTTCCCTTAC GTTTGGCAGCACGTACGTGCTACGTGTTCATACCAGACC	1650
Visser-Seq WO	100.0% 45.5%		7 ATTTCCTGATTCAAGAATGTGATCCGCTACTTTATCTGCAGGTCAAAGTT CGTACGTCAATCAAGCAAAAGAGAAAAAGAGGGCCGAAAGGT	1700
Visser-Seq WO	100.0%	1701	: GGAGACAGCATTGAAATTGTTCGTT-TCTTTCACTGCTATAAACGTGGGG G-ATACGCOCGGCCGTGT-CGTCGTGCTGCAGAGGAAGCAATCCCGGG	1750
Visser-Seq WO	100.0% 45.5%		8TTGATCGTGTTTTTGTTGACC-ACCCAATGTTCTTGGAGAAAGTAAG CCATGCAGCCCATTGCCACGCCCAGCGAAAGCGAAGCG	1800
Visser-Seq WO	100.0%	1801	: TAAGCATATTATGATTATGAATCCGTCCTGAGGGATACGCAGAACAGGT AGCACAC-ATGGCCCCCAGAACTGAAAGCCAAGGAGCACACGA	1850
Visser-Seq WO	100.0%	1851	9 CATTTTGAATATCTTTTAAC-TCTTA-CTGGTGCTTTTACTCTTTTAA GAAGGCGCGTGCGCCTGGACATCACAGCAGGAACACCCACC	1900
Visser-Seq WO	100.0%	1901	: GGTTTGGGGCAAAACTGGTTCAAAAATCTATGGCCCCAAAGCTGGACTAG CCGGGC <mark>GGGC</mark> GCGGGCA <mark>GGA</mark> CAA <mark>G</mark> AAGATGCGTGCACGGCGCGCG	1950
Visser-Seq WO	100.0%		0 ATTATCTGGACAATGAACTTAGGTTCAGCTTGTTGTGT - CAAGTAAGTTA 	2000
Visser-Seq WO	100.0% 45.5%	2001	: GTTACTTGTTATACTGTTGTCTTGATTTTTATGTG-GCATTTGTCTTTAA GGCG <mark>CGT</mark> CGGCC <mark>A</mark> GCCAC <mark>G</mark> ACGCCGTGGAAAGCGCGCGCGAA	2050
Visser-Seq WO	100.0% 45.5%	2051	1 TCGTTTTTTAACCTTGTTTTCTCAGGCAGCCCTAGAGGCACCTAAAGTT CCGAGAATGTG-CCACGCTGCCAGCCGCTGC-GCGCTACCACTAGTC	2100
Visser-Seq WO	100.0% 45.5%		: TTGAATTTGAACAGTAGCAACTACTTCTCAGGACCATATGGTAATTAACA TCGTACGTGT	2150

.

1

Winner Con	100 00	2151	2	2200
Visser-Seq WO	45.5%		CA-CGCAGGCAGAMACAAACAAACAAAAAAACIIGGGTCATTCACII	
Visser-Seq WO	100.0% 45.5%	2201	: TTATTTTGCCTATTCCTGCAGGAGAGGATGTTCTCTTCATTGCCAATGAT CCACTCAACGTCGCCTTTCAGGACGATGCTTCGGTGCCTTAA	2250
Visser-Seq WO	100.0% 45.5%	2251		2300
Visser-Seq WO	100.0%	2301		2350
Visser-Seq WO	100.0% 45.5%	2351	4 TGCGCTTTACCCTGCAAATCAGTA - AGGTTGTATTAATAAATGATAAATTGCTGCGTCCCGCCTTTCATTACACGGGCCATGCATGCGCGTGCG	2400
Visser-Seq WO	100.0% 45.5%	2401	TCACATTGCCTCCAGGTCGCTTTCTGCATCCATAACATTGCCTACCAAGG	2450
Visser-Seq WO	100.0% 45.5%	2451	CCGATTTTCTTTCTCTGACTTCCCTCTTCTCAATCTTCCTGATGAATTCA ACGAGGAGCGGAG-CGGAGCGGGTATTGGGGATCCAGCCA	2500
Visser-Seq WO	100.0%	2501	: GGGGTTCTTTGATTTCATTGAT - GGGTATGTATTTAATGCTTGAAATCA CCGGA GGACTG - AGCGAGCGGCGAGTAC AAATAA	2550
Visser-Seq WO	100.0%	2551	GACCACCAACTTTTGAAGCTCTTTTGATGCTAGTAAATTGAGTTTTAACCCCCACTCACCGGAGCCACGCACCGTTCCTTCC	2600
Visser-Seq WO	100.0%	2601	: AAATTTTGCAGATATGAGAAGCCTGTTAAGGGTAGGAAAATCAACTGGAT CACTTTCGCCCCGCCCGCCCCACACACTACAACCAGGAGCCT	2650
Visser-Seq WO	100.0%	2651	7 GAAGGCTGGATATTAGAATCACATAGGGTGGTTACAGTGAGCCCATACT CGAT - CTGCCAGTGAAGAAGAAGA - AGG ACACTCA - CGAATGCC	2700
Visser-Seq WO	100.0%	2701	: ATGCCCAAGAACTTGTCTCTGCTGTTGACAAGGGTGTTGAATTGGACA CGGCCGGCGACTGTGAGTACGCTCCCGTCCAGGAAGAAGAAGAAGAA	2750
Visser-Seq WO	100.0%		8 GTGTCCTTCGTAAGACTTGCATAACTGGGATTGTGAATGGCATGGATACA GAAGCAGAAGAAGAAGCAGAAGAAGACATCAGACCAGGTACGCA	2800
Visser-Seq WO	100.0%		: CAAGAGTGGA-ACCCAGCGACTGACAAATACACAGATGTCAAATACGATA CGAACGTATATAGTCAG-GCGGCCCAGTTCCCGGCCCGG-ACGATG	2850
Visser-Seq WO	100.0%	2851	9 TAACCACTGTAAGATAAGATTTTTCCGACTCCAGTATATGCTAAATTG GATAGATC-GATTAGTTCGGTCCAAATCAAGCTCGGTTGG	2900
Visser-Seq WO			TTTTGTATGTTTATGAAATTAAAGAGTTCTTGCTAATCAAAATCTCTA TCTAGTA-GTAGATAGATCCATCCAAATGCCGCCATGTTGT	2950
Visser-Seq WO		2951	0 TACAGGTCATGGACGCAAAACCTTTACTAAAGGAGGCTCTTCAAGCAGCA TACATC-CAGACTCTCCTTTTTACTTAAAGATCG-CGAGCGTAA	3000
		3001		3050

Visser-Seq WO	100.0% 45.5%	5	GTTCGCT-TGCCTGTTGACAAGAAGATCCCTTTGATTGGCTTCATCGG GTTGAGGATCTTCCTATAGATTCGTAGATTTAAAATCATG	
Visser-Seq WO	100.0% 45.5%	3051	1 CAGACTTGAGGAGCAGAAAGGTTCAGATATTCTTGTTGCTGCAATTCACA TAAAAATTAAAAAAAAAGATTTAAAATCATGTA-CTGCTAGGT	3100
Visser-Seq WO	100.0% 45.5%	3101	: AGTTCATCGGATTGGATGTTCAA-ATTGTAGTCCTTGTAAGTACCAAA AGGATGGATTTCTATGTGAACGATCTTAGATCTGCGGAACAGATCCAA	3150
Visser-Seq WO	100.0% 45.5%	3151	TGGACTCATGGTATCTCTTGTTGAGTTTACTTGTGCCGAAACTGAAAT TGGA <mark>T</mark> TCATGGC <mark>C</mark> GGC <mark>CT</mark> AGGGTTA <mark>A</mark> TTAC <mark>GAC</mark> TAGACAGAGGC	3200
		3201		3250
Visser-Seq WO	100.0% 45.5%	3251	GAGCAGGAGATTGAACAGCTCGAAGTGTTGTACCCTAACAAAGCTAAAGGGAATCAAACAGGTC-AGGTCACGCACCAAGG	3300
Visser-Seq WO	100.0% 45.5%	3301	: AGTGGCAAAATTCAATGTCCCTTTGGCTCACATGATC ACTGCTGGTGCT CTTTGATTTTTGTTTGTTTTTTGCCGTGGGCGTTCCACTGC	3350
Visser-Seq WO	100.0%	3351	4 GATTTTATGTTGGTTCCAAGCAGATTTGAACCTTGTGGTCTCATTCAGTT -ACCCTACAGAACAAATTCCATTTCTCAGCCAGTT	3400
Visser-Seq WO	100.0% 45.5%	3401	: ACATGCTATGCGATATGGAACAGTAAGAACCATAAGAGCTTGTACCTTTT CCACCCCGTGC ACGCGATTTAACAGCTTATTAACAGCTTATTAACTTAC	3450
Visser-Seq WO	100.0% 45.5%	3451	5 TACTGAGTTTTAAAAAAAGAATCATA - AGACCTTGTTTTCCGTCTAAAGT TACC-AGTGCGGAGACA - GGTTCATATATACTCTGGT CATGTTAATT	3500
Visser-Seq WO	100.0% 45.5%	3501	: TTAATAGCCAACT - AAATGTTAC - TGCAGCAAGCTTTTCATTTCTGAAAA TGGATTTCAAATTCAAATGTAAAATCCAGAAAACTTGA CTGCAAA	3550
Visser-Seq WO	100.0% 45.5%	3551	CTTGGTTATCTAATTTTAACATAATCACATGTGAGTCAGGTGCCAATCTGT TTCTGGTTTACTTCACTACTCAC-TAACAATCAGT	3600
Visser-Seq WO	100.0% 45.5%		GCA-TCGACTGGTGGACTTGTTGACACTGTGAAAGAAGGCTATACTGGAT GCAGTCGTCTCTTGCTG-CAGGTAGCCACAC	3650
Jisser-Seq NO	100.0% 45.5%		TCCATATGGGAGCCTTCAATGTTGAAGTATGTGATTTTACATCAATTGTGCCTGCGCGCGCCATGGCGG	3700
Jisser-Seq ₩O	100.0% 45.5%		: : TACTTGTACATGGTCCATTCTCGTCTTGATATACCCCTTGTTGCATAAAC CTCTGGT-CACGTCCAG-CTCGCGACCTCCGGCACCGTCCT-CAGCGTC	3750
Jisser-Seq WO	100.0% 45.5%		8 : ATTAACTTATTGCTTCTTGAATTTGGTTAGTGCGATGTTGTTGA-CCC ACCGACAGATTCCGGCGTCCAGGTTTTCAGGGCCTGAGGCCCCGGAACCC	3800
Jisser-Seq NO	100.0% 45.5%		: : AGCTGATGTG-CTTAAGATAGTAACAACAGTTGCTAGAGCTCTTGCAGTC GGCGGATGCGGCGCGCGCA-TGAGGACTGTCGGAGCGAGCGCCGCC	3850
/isser-Seq	100.0%	3851	9 3 TATGGCACCCTCGCATTTGCTGAGATGATAAAAAATTGCATGTCAGAGGA	3900

.

1

WO	45.5%		<mark>CC</mark> AAA <mark>GCA</mark> AAGCAGGAAACCGCACCGATTCGACCGGGGGTG	
Visser-Seq WO	100.0%		: ACTCTCCTGGAAGGTAGGTGTCAAATTGATAATTTGCGTAGGTACTTCAG CCTCTCCATGGTGCCCCCCCCCC	3950
Visser-Seq WO	100.0%	3951		4000
Visser-Seq WO	100.0%	4001	: AACCTGCCAAGAAATGGGAGACATTGCTATTGGGCTTAGGAGCTTCTG ACTGGCGGCCTCGGCGCATG	4050
Visser-Seq WO	100.0%	4051		4100
Visser-Seq WO	100.0%	4101	: AAAATGTAGCCACTCCCTAAATGAGCTTTGGTTATCCTTGTTTCAACAAT CATGCCTGCGGTTACAACGGGTGCGTG-TCCGTGCAGGCCA	4150
Visser-Seq WO	100.0%	4151	2 AAGATCATTAAGCAAACGT-ATTTACTAGCGAACTATGTAGAACCCTATT ACGGTCACCGGGTCATGGTCATCTCCCCGCGCTACGACCAGTACAAGG	4200
Visser-Seq WO	100.0% 45.5%		: ATGGGGTCTCAATCATCTACAAAATGATTGGTTTTTGCTGGGGA ACGCCTGGGACACCAGCGTCATCTCCGAGGTATATA	4250
Visser-Seq WO	100.0%	4251		4300
Visser-Seq WO	100.0%			4350
Visser-Seq WO	100.0%	4351		4400
Visser-Seq WO	100.0% 45.5%		: GCTAATATATATGCGTGAATTTGTTGTACCTTTTCTTGCATAATTATTTG CGGGGTGGACC-GCGTGTTCGTCG-AC	4450
Visser-Seq WO	100.0% 45.5%			4500
Visser-Seq WO	100.0%			4550
Visser-Seq WO	100.0%			4600
Visser-Seq WO	100.0%	4601	: TGAAAGAAGCTGGCAGGCTAACTTTGAGGAGATGGCTATTGAATTTCAAA	4650
Visser-Seq WO	100.0%		. 7 GTGATTATGTGAAAACAATGCAACATTTATGTCAATCAACACTTAAATTA	4700
Visser-Seq WO	100.0%		$\vdots\\$ $TTGCATTTAGAAAGATATTTTTGAGCCCACGACACATTCATT$	4750

•

] 4757

Visser-Seq 100.0% WO 45.5%

45.5%

MView 1.41, Copyright © Nigel P. Brown, 1997-1999.

Download generierte MSF Datei