

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 598 197 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93114875.3

(51) Int. Cl. 5: H02M 3/335

(22) Anmelddatag: 15.09.93

(30) Priorität: 17.11.92 DE 4238808

(43) Veröffentlichungstag der Anmeldung:
25.05.94 Patentblatt 94/21

(84) Benannte Vertragsstaaten:
DE ES FR GB IT

(71) Anmelder: Siemens Aktiengesellschaft
Wittelsbacherplatz 2
D-80333 München(DE)

(72) Erfinder: Preller, Peter
Heinrich-Schütz-Weg 5
D-81243 München(DE)

(54) Sperrwandler-Schaltnetzteil mit sinusförmiger Stromaufnahme.

(57) Zur Erzielung einer sinusförmigen Stromaufnahme aus einer Wechselstromquelle weist ein Sperrwandler-Schaltnetzteil eine Stompumpe (SP) auf, die während der Einschaltphase eines Halbleitereschaltelements (T1) von einem Brückengleichrichter (V1...V4) Strom aufnimmt und den geladenen Strom an einen Glättungskondensator (C_L) abgibt, wenn das Halbleitereschaltelement (T1) sperrt.

Best Available Copy

Die Erfindung betrifft ein Sperrwandler-Schalt-
netzteil zur sinusförmigen Stromaufnahme mit ei-
nem Halbleiterschaltelelement zum getakteten Anle-
gen einer von einem Brückengleichrichter gleichge-
richteten und einem Glättungskondensator geglätteten
Wechselspannung an eine Primärwicklung eines
Transformators und mit einer Steuereinrichtung
zum Ansteuern des Halbleiterschaltelelementes.

Schaltnetzteile sind hochfrequente Störquellen,
die der Funkentstörung bedürfen. Werden Schalt-
netzteile von einer gleichzurichtenden Netzwech-
selspannung versorgt, so entstehen auf dem Ver-
sorgungsnetz Oberwellenströme, die unerwünscht
sind und in Zukunft durch die Verscharfung der
Grenzwerte der zulässigen Oberwellenströme von
den Energieversorgungsunternehmen nicht mehr
akzeptiert werden. Eine sinusförmige Stromaufnah-
me der Schaltnetzteile wird deshalb angestrebt.

Während die Funkentstörung bisher bei Schalt-
netzteilen im wesentlichen durch stromkompensier-
te Drosseln gut funktionierte, blieben die von den
Schaltnetzteilen verursachten Oberwellenströme
auf dem Netz unbeachtet. Da die Verschärfung der
Grenzwerte der zulässigen Oberwellenströme auch
für Schaltnetzteile in nachrichtentechnischen Gerä-
ten, wie beispielsweise Fernsehgeräten gilt, ist es
notwendig, die Oberwellenströme zu reduzieren.
Dies kann nur durch eine sinusförmige Stromauf-
nahme des Schaltnetzteiles gelöst werden.

Sperrwandler-Schaltnetzteile mit sinusförmiger
Stromaufnahme sind bereits beschrieben worden.
So wird in der EP 0 464 240 A1 zur sinusförmigen
Stromaufnahme des Schaltnetzteiles vorgeschla-
gen, an die Primärwicklung eines Transformators
eine von einem Brückengleichrichter gleichgerich-
tete und ungeglättete Wechselspannung über ein
Halbleiterschaltelelement taktweise anzulegen. Ange-
steuert wird das Halbleiterschaltelelement durch eine
Steuereinrichtung nach Maßgabe mindestens eines
an eine erste Eingangsklemme der Steuereinrich-
tung anzulegenden Primärstromsignals. Dieses
Primärstromsignal wird dabei über eine an den
Brückengleichrichter geschaltete Einweggleichrich-
teranordnung mit nachgeschaltetem RC-Glied be-
reitgestellt.

Ein in der deutschen Offenlegungsschrift DE
40 08 652 gezeigtes Schaltnetzteil weist einen La-
dekondensator auf, der im Zusammenwirken mit
einer Induktivität und einem Diodennetzwerk dafür
sorgt, daß kurzzeitige Absenkungen oder Ausfälle
der Netzwechselspannung ausgeglichen werden.
Hierzu wird der Kondensator aufgeladen, wenn das
Schaltelement ausgeschaltet ist, und entladen,
wenn das Schaltelement leitend ist.

Der vorliegenden Erfindung liegt die Aufgabe
zugrunde, eine andere Möglichkeit anzugeben, wie
in Sperrwandler-Schaltnetzteilen mit einfachen Mit-
teln eine sinusförmige Stromaufnahme erreicht

werden kann.

Diese Aufgabe wird dadurch gelöst, daß eine
mit dem Glättungskondensator und dem Brücke-
gleichrichter verbundene Stompumpe vorgesehen
ist, die vom Brückengleichrichter während der Ein-
schaltphase des Halbleiterschaltelelements Strom
aufnimmt und diesen geladenen Strom während
der Sperrphase des Halbleiterschaltelelements an
den Glättungskondensator abgibt.

Weiterbildungen der Erfindung sind Gegen-
stand von Unteransprüchen.

In vorteilhafter Weise besitzt die erfindungsge-
mäße Stompumpe eine kapazitive Einrichtung und
eine Gleichrichteranordnung, wobei die Gleichrich-
teranordnung zwischen einem Ausgang des ein-
gangsseitigen Brückengleichrichters des Schalt-
netzteils und einer Klemme des Glättungskondensa-
tors vorge sehen ist, daß der Glättungskondensa-
tor aufgezogen ist und die kapazitive Einrichtung wird
zwischen dem Brückengleichrichter und dem Ab-
griff, gemäß einer ersten Aus-
weise dem Mittenabgriff, der Primärwicklung des
Transformators verbunden.

Gemäß einer zweiten Ausführungsform ist vor-
gesehen, daß zwischen den Ausgang des Brücke-
gleichrichters und den ihm zugewandten Klemmen
der kapazitiven Einrichtung und der Gleichrichte-
ranordnung eine Drossel eingefügt ist. Die kapazi-
tive Einrichtung wird zwischen dem Brückengleich-
richter und einem Abgriff der Primärwicklung des
Transformators angeschlossen. Der Abgriff liegt
vorzugsweise außerhalb der Anschlüsse für die
gleichgerichtete, geglättete Wechselspannung der
Primärwicklung. Die Stromaufnahme aus dem Netz
erfolgt hier während der gesamten Einschaltphase
und abhängig von der Momentanphase der Netz-
spannung teilweise während der Ausschaltphase
des Halbleiterschaltelelementes.

Wird beispielsweise als kapazitive Einrichtung
lediglich ein Kondensator und als Gleichrichteran-
ordnung eine Diode verwendet, so hat sich heraus-
gestellt, daß diese Schaltungsanordnung auch zur
Bedämpfung von Überschwingen beim Ein- und
Ausschalten des Halbleiterschaltelelementes wirksam
eingesetzt werden kann. Damit kann mit der erfin-
dungsgemäßen Stompumpe auf die sonst bei
Schaltnetzteilen übliche Bedämpfungsschaltung,
auch "Snubber-Schaltung" genannt, verzichtet wer-
den. Bei den bekannten Sperrwandler-Schaltnetz-
teilen bestand diese Bedämpfungsschaltung regel-
mäßig aus einer Diode, einem Kondensator und
einem Widerstand, wie z.B. der Siemens-Produktin-
formation "Funktion und Anwendung des Sperr-
wandler-IC TDA 4605", Bestell-Nr. B111-B6090 im
Bild 25 zu entnehmen ist (vgl. dort R6, C5 und V5).
Durch die erfindungsgemäße Schaltungsanordnung
mit nur einem Kondensator und einer Diode kann
der dafür notwendige Bauelementaufwand um ei-

nen Widerstand reduziert werden.

Die Wirkung der erfindungsgemäßen Strompumpe kann durch die Dimensionierung der kapazitiven Einrichtung und der Wahl des Abgriffes an der Primärwicklung beliebig zwischen einer vollen Wirkung und keiner Wirkung eingestellt werden. Durch die Wahl der Stelle des Abgriffs wird der Spannungshub an der mit der Gleichrichteranordnung verbundenen Klemme der kapazitiven Einrichtung festgelegt. Dieser kann geringer sein als der Spannungshub am Halbleiterschaltelement, wenn die kapazitive Einrichtung an einem Abgriff zwischen den Anschlüssen der Primärwicklung für die getaktete und gleichgerichtete Wechselspannung liegt. Der Spannungshub an der genannten Klemme der kapazitiven Einrichtung liegt in der Größenordnung des Spannungshubs am Halbleiterschaltelement, wenn der Abgriff mit dem für das Halbleiterschaltelement vorgesehenen Anschluß der Primärwicklung zusammenfällt. Unter Berücksichtigung von parasitären Wirkungen der Bauelemente ist es vorteilhaft, zur Erzielung eines in etwa gleich großen Spannungshubs den Abgriff zum Anschluß der kapazitiven Einrichtung an die Primärwicklung außerhalb deren Anschlüsse für die Spannungszuführung zu legen.

Bei der ersten Ausführungsform wird das Windungsverhältnis der Primärwicklung zur Sekundärwicklung des Transformators vorzugsweise so gewählt, daß die am Halbleiterschaltelement abfallende Lastspannung U_D - üblicherweise bei MOS-Transistoren deren Drainspannung - stets die 0-Volt-Linie erreicht, bevor das Halbleiterschaltelement wieder eingeschaltet wird. Andernfalls würden Restladungen, die in der erfindungsgemäßen kapazitiven Einrichtung und einem parallel zur Laststrecke des Halbleiterschaltelementes geschalteten Kondensator vorhanden sind, durch das Halbleiterschaltelement fließen und diesen unnötig erwärmen.

Das erfindungsgemäße Sperrwandler-Schaltnetzteil weist folgende Vorteile auf:

- eine geringe Brummspannung an der sekundärseitigen Ausgangsspannung,
- wegen weicherer Schaltflanken und geringeren Überschwingen eine geringere Störstrahlung im Hochfrequenzbereich,
- eine Bedämpfungsschaltung für Überschwingen kann entfallen, da durch die Strompumpe Überschwingen bedämpft und deren Energie zurückgewonnen wird, und
- geringer Schaltungsaufwand.

Die Erfindung wird im folgenden anhand von vier Figuren näher erläutert. Es zeigen:

Figur 1 ein Prinzipschaltbild einer ersten Ausführungsform eines Sperrwandler-Schaltnetzteils mit sinusförmiger Stromaufnahme nach der Erfindung,

Figur 2

Strom- und Spannungsverläufe im Sperrwandler-Schaltnetzteil nach Figur 1,

Figur 3

Strom- und Spannungsverläufe in zeitlicher Dehnung zu Figur 2,

Figur 4

ein detailliertes Schaltbild eines Sperrwandler-Schaltnetzteils mit einer Strompumpe nach der ersten Ausführungsform der Erfindung,

Figur 5

ein Prinzipschaltbild einer zweiten Ausführungsform eines Sperrwandler-Schaltnetzteils mit sinusförmiger Stromaufnahme nach der Erfindung,

Figur 6

Strom- und Spannungsverläufe im Sperrwandler-Schaltnetzteil nach Figur 5 und

Figur 7

eine Weiterbildung eines Sperrwandler-Schaltnetzteils der zweiten Ausführungsform.

In Figur 1 ist das Prinzipschaltbild eines Sperrwandler-Schaltnetzteiles mit sinusförmiger Stromaufnahme nach einer ersten Ausführungsform dargestellt. Das Sperrwandler-Schaltnetzteil enthält einen Transformator TR mit einer Klemmen 1, 2 und 3 aufweisenden Primärwicklung n_P . Die Primärwicklung n liegt dabei zwischen den Klemmen 1 und 2, während die noch weiter unten detailliert beschriebene Klemme 3 beispielsweise ein Mittelabgriff der Primärwicklung n_P ist. Sekundärseitig weist der Transformator TR eine Sekundärwicklung n_S mit Klemmen 4, 5 sowie 6 auf. Die Klemme 5 liegt auf Bezugspotential, während die Klemmen 4 und 6 jeweils an einen Einweggleichrichter geschaltet sind, an deren Ausgängen jeweils eine Last R_1 und R_2 liegt. Die Ausbildung der Sekundärseite des Transformators TR kann beliebig gewählt werden, je nachdem, wieviel Ausgangsspannungen das Sperrwandler-Schaltnetzteil zur Verfügung stellen soll und wie groß die entsprechenden sekundärseitigen Ausgangsspannungen U_{S1} , U_{S2} sein sollen. Anstatt einer einzigen sekundärseitigen Wicklung n_S können sekundärseitig auch mehrere Sekundärwicklungen vorgesehen werden.

Das Sperrwandler-Schaltnetzteil weist weiter ein Halbleiterschaltelement T_1 , vorzugsweise einen MOS-Transistor, zum getakteten Anlegen einer von einem Brückengleichrichter V_1 , V_2 , V_3 , V_4 gleichgerichteten und von einem Glättungskondensator C_L geglätteten Wechselspannung U_N an die Primärwicklung n_P des Transformators TR auf. Dazu ist der Brückengleichrichter V_1 , V_2 , V_3 , V_4 mit seinen Eingangsklemmen vorzugsweise über ein Entstörfilter ES an Klemmen E_1 , E_2 einer Netzwechselspannung U_N angeschlossen. Die Netzwechselspannung U_N kann beispielsweise 220 Volt betragen.

Am Ausgang des Brückengleichrichters V_1 , V_2 , V_3 , V_4 ist eine gleichgerichtete Ausgangsspannung

U_A abgreifbar, und zwar zwischen dem Verbindungspunkt der Dioden V1 und V2 und dem Verbindungspunkt der Dioden V3 und V4, der auf Bezugspotential liegt. Der Verbindungspunkt der Dioden V1 und V2, also deren Kathodenanschlüsse sind erfindungsgemäß über eine Gleichrichteranordnung an eine Klemme des Glättungskondensators C_L angeschlossen, dessen andere Klemme auf Bezugspotential liegt. Die Gleichrichteranordnung ist vorzugsweise eine Diode V, deren Anodenanschluß mit den Kathodenanschlüssen der Dioden V1, V2 des Brückengleichrichters V1, V2, V3, V4 und deren Kathodenanschluß mit dem Glättungskondensator C_L in Verbindung steht. Der Verbindungspunkt der Diode V und des Glättungskondensators C_L ist mit der Klemme 2 der Primärwicklung n_P in Verbindung. Die Klemme 1 der Primärwicklung n_P ist über die Laststrecke des Halbleiterschaltelelementes T1 an Bezugspotential geschaltet. Im Falle der Verwendung eines MOS-Transistors als Halbleiterschaltelelement T1 wird dazu die Klemme 1 der Primärwicklung n_P an einen Drain-Anschluß D des MOS-Transistors angeschlossen und der Source-Anschluß des MOS-Transistors auf Bezugspotential gelegt. Parallel zur Laststrecke des Halbleiterschaltelelementes T1 ist noch eine Kapazität C2 geschaltet. Angesteuert wird das Halbleiterschaltelelement T1 über dessen Steueranschluß, im Falle eines MOS-Transistors, dessen Gate-Anschluß G, von einer Steuereinrichtung IC.

Erfindungsgemäß weist die Schaltungsanordnung von Figur 1 noch eine kapazitive Einrichtung, vorzugsweise einen Kondensator C, auf, die zwischen die Klemme 3 der Primärwicklung n_P des Transformators TR und die Kathodenanschlüsse der Dioden V1, V2 des Brückengleichrichters V1, V2, V3, V4 geschaltet ist. Die Anordnung der kapazitiven Einrichtung C und der Gleichrichteranordnung V wirkt als Strompumpe, die vom Brückengleichrichter V1, V2, V3, V4 immer dann Strom aufnimmt, wenn das Halbleiterschaltelelement T1 einschaltet und den geladenen Strom an den Glättungskondensator C_L wieder abgibt, wenn der Halbleiterschalter T1 sperrt. Die Wirkungsweise des Schaltnetzteiles nach Figur 1 wird im Zusammenhang mit den Figuren 2 und 3 nachfolgend eingehend erläutert.

Die Schaltungsanordnung von Figur 1 weist zwar noch eine Bedämpfungsschaltung D_0 , R_D sowie C_D in Form einer Diode in Serienschaltung mit einer Parallelschaltung eines Widerstandes mit einer Kapazität auf, die zwischen die Klemmen 1 und 2 der Primärwicklung n_P des Transformators TR geschaltet ist. Diese Schaltelemente sind nur strichiert eingezeichnet, da im Rahmen der vorliegenden Erfindung auf eine derartige Bedämpfungs schaltung verzichtet werden kann. Durch die Strompumpe in Form der kapazitiven Einrichtung C

und der Gleichrichteranordnung V, können nämlich die Überschwinger des Schaltnetzteiles wirksam bedämpft werden.

In Figur 1 sind Spannungen und Ströme eingezeichnet, deren Verläufe in den Figuren 2 und 3 erläutert und für das Verständnis der Erfindung von Bedeutung sind. Mit U_N ist die Netzwechselspannung an den Klemmen E1, E2 und mit I_N der an diesen Klemmen E1, E2 entnommene Strom bezeichnet. Mit U_A ist die Spannung an den Ausgangsklemmen des Brückengleichrichters V1, V2, V3, V4 bezeichnet. I_A bezeichnet den Strom, der zwischen dem Ausgang des Brückengleichrichters V1, V2, V3, V4 und der Strompumpe SP fließt. I_C ist der Strom durch die kapazitive Einrichtung C der Strompumpe SP und I_B der Strom von der Strompumpe SP zum Glättungskondensator C_L . Mit U_C ist die Spannung vom Abgriff 3 der Primärwicklung n_P und mit U_D die Spannung an der Laststrecke des Halbleiterschaltelelementes T1 bezeichnet.

Im eingeschwungenen Zustand beträgt die Schaltfrequenz des Schaltnetzteiles beispielsweise 40kHz. Die dann am Mittelabgriff 3 der Primärwicklung n_P abgreifbare Spannung U_C hat dann einen Verlauf, wie in Figur 2 oben dargestellt ist. Die Spannung U_C pendelt beispielsweise zwischen 200 und 450 Volt im 40kHz-Takt hin und her. Wird der Abgriff 3 näher an der Klemme 2 der Primärwicklung n_P gewählt, so ist der Spannungshub von U_C kleiner, während der Spannungshub größer ist, wenn der Abgriff 3 näher an der Klemme 1 der Primärwicklung n_P liegt. Wird der Abgriff 3 direkt an der Klemme 1 der Primärwicklung n_B gewählt, so ist die Spannung U_C gleich der Lastspannung U_D des Halbleiterschaltelelementes T1. Der Spannungshub wäre dann maximal.

In Figur 2 ist auch der Verlauf der Netzwechselspannung U_N an den Klemmen E1, E2 des Sperrwandler-Schaltnetzteiles dargestellt. Bei einer Netzwechselspannung von 220 Volt und 50Hz Netzwechselfrequenz wechselt die Spannung an den Eingangsklemmen E1, E2 ständig zwischen +310V und -310V mit einer Frequenz von 50Hz hin und her ($220V \cdot \sqrt{2}$).

Darüberhinaus zeigt Figur 2 auch den Stromverlauf I_N , der mit dem erfindungsgemäßen Sperrwandler-Schaltnetzteil der Wechselspannungsquelle entnommen wird. Dieser Strom ist in Figur 2 als durchgezogene Linie bezeichnet. In Wirklichkeit ist dieser Strom I_N im 40kHz-Takt unterbrochen, wobei allerdings die Hüllkurve dieses Stromes den durchgezogenen Verlauf annimmt. Die strichlierte Kurve I_{NB} zeigt dagegen die Hüllkurve des Stromes, wie er bei Sperrwandler-Schaltnetzteilen nach dem bisherigen Stand der Technik üblich war.

Während des größten Teils einer Wechselspannungsperiode ist der Betrag des Momentanwerts der Netzspannung U_N kleiner als die Span-

nung U_B am Glättungskondensator C_L . Bei den bekannten Sperrwandler-Schaltnetzteilen ohne Strompumpe wurde der Wechselspannungsquelle jedoch nur dann Strom entzogen, wenn der Betrag des Momentanwertes der Netzzspannung U_N größer war als die Spannung U_B am Glättungskondensator C_L . Dies führte dazu, daß nur eine kurzzeitige Strombelastung der Wechselspannungsquelle eintrat, und von einer sinusförmigen Stromaufnahme nicht die Rede sein konnte, wie die strichlierte Kurve I_{NB} deutlich zeigt.

Die sinusförmige Stromaufnahme, wie sie in Figur 2 dargestellt ist, erklärt sich bei einem erfindungsgemäßen Sperrwandler-Schaltnetzteil nach Figur 1. Wenn aus den in Figur 3 zeitlich dargestellten Verläufen der Spannungen U_C , U_D , der Spannungen U_A , U_B sowie U_N und der Ströme I_A , I_B sowie I_C . Zwischen den Zeitpunkten t_1 und t_3 steigt die Spannung U_C , nach dem Sperren des Halbleiterschaltelementes T_1 zum Zeitpunkt t_1 an. Die Spannung U_A wird über die kapazitive Einrichtung C ebenfalls angehoben, bis im Zeitpunkt t_2 die Gleichrichteranordnung V leitend wird. Die Spannung U_A bleibt auf der Höhe der Spannung U_B stehen. Zwischen den Zeitpunkten t_2 und t_3 wird der Glättungskondensator C_L über die kapazitive Einrichtung C und die Gleichrichteranordnung V mit einem Strom $I_C = I_B$ aufgeladen. Nach dem Entladen der Energie des Transformators TR zwischen den Zeitpunkten t_3 und t_4 auf die Sekundärseite, fällt zwischen den Zeitpunkten t_4 und t_6 die Spannung U_C durch die Rücklaufschwingung wieder ab, ebenso die Spannung U_A über die kapazitive Einrichtung C . Zum Zeitpunkt t_5 hat die Spannung U_A den Momentanwert von $|U_N|$ erreicht, bleibt stehen und der Brückengleichrichter V1, V2, V3 und V4 wird leitend. Dies heißt, daß der Strom I_A gleich $-I_C$ wird. Zwischen den Zeitpunkten t_5 und t_6 wird Energie aus dem Stromnetz in der kapazitiven Einrichtung C zwischengespeichert.

Im Zeitpunkt t_6 erreicht die Spannung U_D des Halbleiterschaltelementes T_1 den Wert 0 und das Halbleiterschaltelement T_1 wird rückwärts leitend über die ohnehin im Halbleiterschaltelement vorhandene Inversdiode. Das Halbleiterschaltelement T_1 wird während der Rückleitphase durch die Ansteuereinrichtung IC (z.B. eine integrierte Schaltungsanordnung von Siemens mit der Bezeichnung TDA 4605) eingeschaltet. Im Zeitpunkt t_1 ist der Transformator TR wieder magnetisiert und es beginnt eine neue Schaltperiode, so daß das Halbleiterschaltelement T_1 durch die Ansteuerschaltung IS wieder gesperrt werden kann.

Aus Figur 3 ist deutlich zu erkennen, daß die kapazitive Einrichtung C als Zwischenspeicher für den Strom I_C dient, der zwischen den Zeitpunkten T_5 und T_6 gespeichert und zwischen den Zeitpunkten T_2 und T_3 an den Glättungskondensator

C_L abgegeben wird. Während des größten Teils einer Netzzspannungsperiode ist - wie eingangs erwähnt - der Betrag des Momentanwerts der Netzzspannung U_N kleiner als die Spannung U_B am Glättungskondensator C_L . Durch die erfindungsgemäße Schaltungsanordnung wird auch während diesen Zeiten ein Stromfluß möglich, der schließlich die sinusförmige Stromaufnahme des Schaltnetzteils ermöglicht.

Die Wirkung der Strompumpe SP kann durch die Dimensionierung der kapazitiven Einrichtung C beliebig zwischen voller Wirkung und keiner Wirkung ($C = 0$) eingestellt werden. Vorzugsweise wird die kapazitive Einrichtung C und der parallel zum Halbleiterschaltelement T_1 geschaltete Kondensator C_2 etwa gleich groß dimensioniert, und zwar im nF-Bereich. Diese Kapazitäten beeinflussen auch die Schwingfrequenz des Schaltnetzteils. Es ergibt sich ein Übergang zum Resonanzwandler mit größer werdenden Kapazitäten der kapazitiven Einrichtung C und des Kondensators C_2 .

In einer praktischen Ausführung gemäß Figur 4 ist das Entstörnetzwerk ES als zwischen die Klemmen E1, E2 geschalteter Kondensator C_{10} mit einer Drossel D_r im Längszweig realisiert. Die Drossel D_r bewirkt wegen der Stetigkeit des durch sie fließenden Stromes eine weitere Verbesserung im Hinblick auf eine möglichst sinusförmige Stromaufnahme.

In der Figur 5 ist ein erfindungsgemäßes Sperrwandler-Schaltnetzteil in einer zweiten Ausführungsform gezeigt. Die Strompumpe SP ist mit dem Anschluß 1 der Primärwicklung n_P verbunden, an den auch der Drainanschluß des Schaltransistors T_1 angeschlossen ist. Zwischen den Ausgangsanschluß 20 des Brückengleichrichters zum Abgriff der positiven Spannung und den Anschluß 22 der Strompumpe SP ist eine Drossel L_1 geschaltet. Entsprechend ist zwischen dem Anschluß 21 des Brückengleichrichters und dem mit Masse verbundenen Anschluß des Glättungskondensators eine Drossel L_2 geschaltet. Beide Drosseln L_1 , L_2 sind gegensinnig gekoppelt, d. h., daß die in beiden Drosseln induzierten Magnetfelder sich gleichsinnig überlagern, wenn jeweils der gleichgroße, entgegengesetzte Strom durch sie fließt. Die Schaltung nach Figur 5 benötigt wie das Schaltnetzteil der Figur 1 keine Snubber-Schaltung, also weder die Bauelemente D_b , R_b , C_b . Außerdem wird hier kein zur Laststrecke des Schaltransistors T_1 parallel geschalteter Kondensator C_2 benötigt.

Die Funktion der Schaltung gemäß Figur 5 wird nun im Zusammenhang mit den für einen Momentanwert der Netzzspannung U_N dargestellten Strom- und Spannungsverläufen der Figur 6 beschrieben. Die auch in der Figur 1 angegebenen Spannungen U_D , U_A , $I_{A,B,C}$ sind an den jeweils entsprechenden Stellen abgegriffen. Zum Zeitpunkt t_{11} wird der

Schalttransistor durch die Steuerungseinrichtung IC gesperrt. Die Ein- und Ausschaltzeitpunkte des Transistors T1 werden durch die Steuerungseinrichtung IC nach Maßgabe des Primärstroms und der Sekundärspannung festgelegt. Unmittelbar nach dem Sperren des Schalttransistors T1 steigt dessen Drainspannung U_D steil an. Dieser Spannungssprung wird längs des Kondensators C der Stropmpumpe SP auch auf den Knoten 22 übertragen. Wenn die Spannung U_A am Knoten 22 den Wert der Spannung U_B , die längs des Glättungskondensators C_L abfällt, erreicht, wird die Spannung U_A auf U_B geklemmt. Der Kondensator C liegt dann zur Primärwicklung n_p parallel. Er wird über den Strom I_C entladen, der ein Teil des Ladestroms I_B für den Glättungskondensator C_L bildet. Während der Entladezeit des Kondensators C verläuft der Anstieg der Spannung U_D verlangsamt. Aufgrund der Stetigkeit des Stroms I_A durch die Drossel L1 wird weiterhin aus dem Brückengleichrichter V1...V4 Strom gezogen. Dieser Strom liefert den anderen Beitrag zum Ladestrom I_B des Glättungskondensators C_L . Da die Spannung des Knotens 22 ansteigt, nimmt der Strom I_A mit der Zeit ab. Die im Kondensator C und in der Drossel L1 gespeicherten Energien werden also während der Ausschaltphase des Transistors T1 in den Glättungskondensator C_L übertragen. Ab dem Zeitpunkt t12, wenn die im Kondensator C gespeicherte Ladung abgegeben wurde, bleibt die Spannung U_D konstant. Der Strom I_B ist dann gleich dem Strom I_A .

Zum Zeitpunkt t13 wird der Schalttransistor T1 über die Steuerungseinrichtung IC leitend geschaltet. Der Drainanschluß des Transistors T1 wird mit Masse verbunden, so daß die Spannung U_D nunmehr 0 V beträgt. Der gleichgroße Spannungssprung wird über den Kondensator C auf den Knoten 22 übertragen, so daß dessen Spannung bezogen auf Masse auch negativ sein kann. Die Diode I_B ist demzufolge Null. Wegen der Stetigkeit des Stroms durch die Drossel L1 fließt der Strom I_A weiter und lädt den Kondensator C auf. Durch das bezüglich des Ausgangs 20 des Brückengleichrichters negative Potential des Knotens 22 steigt der Strom I_A mit der Zeit an. Auch die Spannung U_A steigt gemäß der Ladekennlinie des Kondensators C. Mit dem Abschalten des Transistors T1 zum Zeitpunkt t14 beginnt der beschriebene Zyklus von neuem.

Die Drossel L1 sorgt dafür, daß aus dem Brückengleichrichter V1...V4 ein stetiger Strom I_A gezogen wird. Gemäß der Regelung der Steuerungseinrichtung IC nimmt die Einschaltzeitpunkt des Transistors T1 mit abnehmendem Effektivwert der Netzspannung U_N oder zunehmender Sekundärlast zu. Der Strom durch die Drossel nimmt mit zunehmender Einschaltzeitpunkt während der Einschaltphase zu.

Ebenso erhöht sich in diesem Fall die Stromaufnahme der Stropmpumpe. Bei abnehmendem Effektivwert der Netzspannung und zunehmender Sekundärlast erhöht sich also auch die Wirkung der Stropmpumpe. Demzufolge ist die Stromaufnahme aus dem Netz noch weiter angenähert an die Sinusform und die Rückwirkung von Stromoberwellen in das Versorgungsnetz noch weiter verringert.

Die Stromaufnahme ist gerade dann möglichst sinusförmig, wenn der Spannungshub am Knoten 22 etwa gleich dem Scheitelwert der Netzspannung ist. Es hat sich gezeigt, daß aufgrund der parasitären Wirkung der Bauelemente der Spannungshub am Knoten 22 geringfügig kleiner als der Scheitelwert der Netzspannung ist. Um dies zu kompensieren, ist gemäß Figur 7 vorgesehen, den Kondensator 10 der Stropmpumpe SP an einen Wicklungsan schlüß 11 der Primärwicklung n_p anzuschließen, der außerhalb deren Anschlüsse 12, 13 für den Glättungskondensator C_L bzw. den Schalttransistor T1 liegt. Dadurch wird der Hub am Knoten 22 vergrößert. Durch die geeignete Wahl des Abgriffs kann der Spannungshub in der Größe des Scheitelwerts der Netzspannung eingestellt werden.

In den Schaltungen der Figuren 5, 7 werden Überschwinger der Drainspannung U_D des Schalttransistors T1 nach oben unmittelbar nach dem Abschalten des Transistors durch den Kondensator der Stropmpumpe SP wirkungsvoll abgeschnitten. Es ist demzufolge keine Snubber-Schaltung notwendig. Außerdem kann auf einen sonst üblicherweise parallel zur Drain-Source-Strecke des Schalttransistors T1 geschalteten Kondensator verzichtet werden. Dadurch ist auch das Einschalten des Schalttransistors T1 zu jeder Zeit möglich, also unabhängig vom Wert der Sekundärspannung.

Patentansprüche

- Sperrwandler-Schaltnetzteil zur sinusförmigen Stromaufnahme mit einem Halbleiterschaltelement (T1) zum getakteten Anlegen einer von einem Brückengleichrichter (V1-V4) gleichgerichteten und einem Glättungskondensator (C_L) geglätteten Wechselspannung (U_N) an eine erste Primärwicklung (n_p) eines Transformators (TR) und mit einer Steuerungseinrichtung (IC) zum Ansteuern des Halbleiterschaltelementes (T1), dadurch gekennzeichnet, daß eine mit dem Glättungskondensator (C_L) und dem Brückengleichrichter (V1-V4) verbundene Stropmpumpe (SP) vorgesehen ist, die vom Brückengleichrichter während der Einschaltphase des Halbleiterschaltelementes (T1) Strom aufnimmt und diesen geladenen Strom (IC) während der Sperrphase des Halbleiterschaltelementes (T1) an den Glättungskondensator (C_L) abgibt.

2. Sperrwandler-Schaltnetzteil nach Anspruch 1,
dadurch gekennzeichnet,
 daß die Stropmpumpe (SP) eine kapazitive Einrichtung (C) und eine Gleichrichteranordnung (V) aufweist, daß die Gleichrichteranordnung (V) eine erste Klemme aufweist, die an einen Ausgang des Brückengleichrichters (V1...V4) angeschlossen ist, an dem eine positive Spannung abgreifbar ist, und eine zweite Klemme, die an eine Klemme (B) des Glättungskondensators (C_L) angeschlossen ist, daß die Durchlaßrichtung der Gleichrichteranordnung (V) derart orientiert ist, daß der Glättungskondensator (C_L) aufladbar ist, daß die kapazitive Einrichtung (C) eine erste Klemme aufweist, die an den Ausgang des Brückengleichrichters (V1...V4) angeschlossen ist, und eine zweite Klemme, die mit einem Anschluß des Transfomators (TR) verbunden ist, an dem eine zu einer an der Laststrecke des Halbleiterschaltelementes (T1) abgreifbaren Spannung (U_D) gleichsinnige und proportionale Spannung (U_C) abgreifbar ist.
3. Sperrwandler-Schaltnetzteil nach Anspruch 2,
dadurch gekennzeichnet,
 daß die Primärwicklung (n_P) des Transfomators (TR) eine erste Abgriffsklemme (1) aufweist, die mit der Laststrecke des Halbleiterschaltelementes (T1) verbunden ist, eine zweite Abgriffsklemme (2), die mit einem Anschluß des Glättungskondensators (C_L) verbunden ist und eine dritte Abgriffsklemme (3), die mit der zweiten Klemme der kapazitiven Einrichtung (C) verbunden ist und die zwischen den ersten und zweiten Abgriffsklemmen (1, 2) an die Primärwicklung (n_P) angeschlossen ist.
4. Sperrwandler-Schaltnetzteil nach Anspruch 2,
dadurch gekennzeichnet,
 daß der Ausgang des Brückengleichrichters (V1...V4) über eine Drossel (L1) mit der ersten Klemme der Gleichrichteranordnung (V) und der ersten Klemme der kapazitiven Einrichtung (C) verbunden ist.
5. Sperrwandler-Schaltnetzteil nach Anspruch 4,
dadurch gekennzeichnet,
 daß die Primärwicklung (n_P) des Transfomators (TR) eine erste Abgriffsklemme (11) aufweist, die mit der zweiten Klemme der kapazitiven Einrichtung (C) verbunden ist, eine zweite Abgriffsklemme (12), die mit dem Anschluß des Glättungskondensators (C_L) verbunden ist, und eine dritte Abgriffsklemme (13), die mit der Laststrecke des Halbleiterschaltelementes (T1) verbunden ist und die zwischen den ersten und zweiten Abgriffsklemmen (11, 12) an die Primärwicklung angeschlossen ist.
6. Sperrwandler-Schaltnetzteil nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
 daß die kapazitive Einrichtung (C) einen Kondensator enthält.
7. Sperrwandler-Schaltnetzteil nach einem der Ansprüche 1 oder 6,
dadurch gekennzeichnet,
 daß die Gleichrichteranordnung (V) eine Diode enthält, die Strom vom Brückengleichrichter (V1...V4) und der kapazitiven Einrichtung (C) zum Glättungskondensator (C_L) leitet.
8. Sperrwandler-Schaltnetzteil nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
 daß dem Brückengleichrichter (V1...V4) ein Entstörnetzwerk (ES) vorgeschaltet ist, das mindestens ein Drossel (Dr) enthält.
9. Sperrwandler-Schaltnetzteil nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
 daß die kapazitive Einrichtung (C) einen Kondensator mit einer Kapazität im nF-Bereich enthält.
10. Verwendung der Stropmpumpe (SP) in einem Sperrwandler-Schaltnetzteil nach einem der Ansprüche 1 bis 9 zur Bedämpfung von Überschwingen beim Ein- und Ausschalten des Halbleiterschaltelementes (T1).

FIG 1

FIG 2

FIG 3

4
FIG

5

EP 0 598 197 A2

FIG 6

Fig 7

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.