Also, do the assigned HW problems. This is just in addition to HW.

ALWAYS JUSTIFY YOUR ANSWER!

Computations

- 1. Describe all group homomorphisms $\mathbb{Z}_{45} \to \mathbb{Z}_{10}$. Answer:
 - A homomorphism from a cyclic group is determined by the value on a generator.
 - \mathbb{Z}_{45} is cyclic group. A generator of \mathbb{Z}_{45} is 1. (There are other generators.)
 - To define homomorphism from \mathbb{Z}_{45} it is enough to define on 1.
 - Order of f(x) divides order of x, i.e. |f(x)| divides |x|.
 - |1| = 45 in \mathbb{Z}_{45} . Therefore |f(1)| must divide 45.
 - $f(1) \in \mathbb{Z}_{10}$. Therefore |f(1)| must divide $|\mathbb{Z}_{10}| = 10$.
 - |f(1)| divides 45 and 10. Therefore |f(1)| = 1 or 5.
 - Case 1: |f(1)| = 1 implies f(1) = 0 since $0 = e \in \mathbb{Z}_{10}$ is the only element of order 1. Then $f(x) = 0 \pmod{10}$ for all $x \in \mathbb{Z}_{45}$. Call this function f_1 .

$$f_1: \mathbb{Z}_{45} \to \mathbb{Z}_{10}$$
 defined as $f_1(x) := 0 \pmod{10}, \forall x \in \mathbb{Z}_{45}$

Case 2: |f(1)| = 5 implies f(1) = 2, 4, 6, 8.

Reason: 10/5 = 2, so |2| = 5.

Numbers relatively prime to 5 are $\{1, 2, 3, 4\}$.

Therefore elements of order 5 in \mathbb{Z}_{10} are $\{2 \cdot 1, 2 \cdot 2, 2 \cdot 3, 2 \cdot 4\} = \{2, 4, 6, 8\}$. This defines the following functions:

$$f_2: \mathbb{Z}_{45} \to \mathbb{Z}_{10}$$
 defined as $f_2(x) := 2x (mod 10), \forall x \in \mathbb{Z}_{45}$

$$f_3: \mathbb{Z}_{45} \to \mathbb{Z}_{10}$$
 defined as $f_3(x) := 4x (mod 10), \forall x \in \mathbb{Z}_{45}$

$$f_4: \mathbb{Z}_{45} \to \mathbb{Z}_{10}$$
 defined as $f_4(x) := 6x (mod 10), \forall x \in \mathbb{Z}_{45}$

$$f_5: \mathbb{Z}_{45} \to \mathbb{Z}_{10}$$
 defined as $f_5(x) := 8x (mod 10), \forall x \in \mathbb{Z}_{45}$

 $\{f_1, f_2, f_3, f_4, f_5\}$ are all 5 different group homomorphisms $\mathbb{Z}_{45} \to \mathbb{Z}_{10}$.

- 2. Describe all group homomorphisms $\mathbb{Z}_{45} \to \mathbb{Z}_7$. Answer:
 - A homomorphism from a cyclic group is determined by the value on a generator.
 - \mathbb{Z}_{45} is cyclic group. A generator of \mathbb{Z}_{45} is 1. (There are other generators.)
 - To define homomorphism from \mathbb{Z}_{45} it is enough to define on 1.
 - Order of f(x) divides order of x, i.e. |f(x)| divides |x|.
 - |1| = 45 in \mathbb{Z}_{45} . Therefore |f(1)| must divide 45.
 - $f(1) \in \mathbb{Z}_7$. Therefore |f(1)| must divide $|\mathbb{Z}_7| = 7$.
 - |f(1)| divides 45 and 7. Therefore |f(1)| = 1.
 - |f(1)| = 1 implies f(1) = 0 since $0 = e \in \mathbb{Z}_7$ is the only element of order 1. Then $f(x) = 0 \pmod{7}$ for all $x \in \mathbb{Z}_{45}$. Call this function f_1 .

$$f_1: \mathbb{Z}_{45} \to \mathbb{Z}_7$$
 defined as $f_1(x) := 0 \pmod{7}, \forall x \in \mathbb{Z}_{45}$

 $\{f_1\}$ is the only group homomorphism $\mathbb{Z}_{45} \to \mathbb{Z}_7$.

- 3. Describe all group homomorphisms $\mathbb{Z}_2 \to \mathbb{Z}_4$. Answer:
 - A homomorphism from a cyclic group is determined by the value on a generator.
 - \mathbb{Z}_2 is cyclic group. A generator of \mathbb{Z}_2 is 1.
 - To define homomorphism from \mathbb{Z}_2 it is enough to define on 1.
 - Order of f(x) divides order of x, i.e. |f(x)| divides |x|.
 - |1| = 2 in \mathbb{Z}_2 . Therefore |f(1)| must divide 2. Therefore |f(1)| is 1 or 2.
 - $f(1) \in \mathbb{Z}_4$.
 - Case 1: |f(1)| = 1 implies f(1) = 0 since $0 = e \in \mathbb{Z}_4$ is the only element of order 1. Then $f(x) = 0 \pmod{4}$ for all $x \in \mathbb{Z}_2$. Call this function f_1 .

$$f_1: \mathbb{Z}_2 \to \mathbb{Z}_4$$
 defined as $f_1(x) := 0 \pmod{4}, \forall x \in \mathbb{Z}_2$

Case 2: |f(1)| = 2 implies f(1) = 2 since $2 \in \mathbb{Z}_4$ is the only element of order 2.

$$f_2: \mathbb{Z}_2 \to \mathbb{Z}_4$$
 defined as $f_2(x) := 2x \pmod{4}, \forall x \in \mathbb{Z}_2$

 $\{f_1, f_2\}$ are the 2 different group homomorphisms $\mathbb{Z}_2 \to \mathbb{Z}_4$.

- 4. Describe all group homomorphisms $\mathbb{Z}_2 \to S_3$. Answer:
 - A homomorphism from a cyclic group is determined by the value on a generator.
 - \mathbb{Z}_2 is cyclic group. A generator of \mathbb{Z}_2 is 1.
 - To define homomorphism from \mathbb{Z}_2 it is enough to define on 1.
 - Order of f(x) divides order of x, i.e. |f(x)| divides |x|.
 - |1| = 2 in \mathbb{Z}_2 . Therefore |f(1)| must divide 2. Therefore |f(1)| is 1 or 2.
 - $f(1) \in S_3$.
 - Case 1: |f(1)| = 1 implies f(1) = (1) since $f(1) = e \in S_3$ is the only element of order 1. Then $f(x) = (1) \in S_3$ for all $x \in \mathbb{Z}_2$. Call this function f_1 .

$$f_1: \mathbb{Z}_2 \to S_3$$
 defined as $f_1(x) := (1) \in S_3, \forall x \in \mathbb{Z}_2$

Case 2: |f(1)| = 2 implies f(1) = (12) or f(1) = (13) or f(1) = (23) since these are the only elements of order 2 in S_3 . This defines the following functions:

$$f_2: \mathbb{Z}_2 \to S_3$$
 defined as $f_2(1) := (12), f_2(0) = (1)$

$$f_3: \mathbb{Z}_2 \to S_3$$
 defined as $f_3(1) := (13), f_3(0) = (1)$

$$f_4: \mathbb{Z}_2 \to S_3$$
 defined as $f_4(1) := (23), f_4(0) = (1)$

 $\{f_1, f_2, f_3, f_4\}$ are all different group homomorphisms $\mathbb{Z}_2 \to S_3$.

- 5. Let $f: \mathbb{Z}_{18} \to \mathbb{Z}_{27}$ be given by f(1) = 3 and therefore $f(i) = 3i \pmod{27}$. Answer:
 - (a) Find $f(0) = 0 \pmod{27}$
 - (b) Find $f(3) = 9 \pmod{27}$
 - (c) Find $f(9) = 0 \pmod{27}$
 - (d) Find $f(10) = 3 \pmod{27}$
 - (e) Find Im(f) Answer: $Im(f) = \{0, 3, 6, 9, 12, 15, 18, 21, 24\} = \langle 3 \rangle = 3\mathbb{Z}_{27}$ subgroup of \mathbb{Z}_{27} .
 - (f) Find $Ker(f) = \{0, 9\} = \langle 9 \rangle = 9\mathbb{Z}_{18}$ subgroup of \mathbb{Z}_{18} .
 - (g) Is f onto? Justify your answer. Answer: No, since $Im(f) \subset \mathbb{Z}_{18}$ but $Im(f) \neq \mathbb{Z}_{18}$. For example $1 \notin Im(f)$.
 - (h) Is f one-to-one? Justify your answer. Answer: No, since f(0) = 0 = f(9) but $0 \neq 9 \in \mathbb{Z}_{18}$.

- 6. Let $f: \mathbb{Z}_{45} \to \mathbb{Z}_{100}$ be given by f(1) = 20 and therefore f(i) = 20i (mod 100). Answer:
 - (a) Find f(0). Answer: $0 \pmod{100}$
 - (b) Find f(5). Answer: $0 \pmod{100}$
 - (c) Find f(30). Answer: $0 \pmod{100}$
 - (d) Find f(38). Answer: $60 \pmod{100}$
 - (e) Find Im(f). Answer: $Im(f) = \{0, 20, 40, 60, 80\} = \langle 20 \rangle = 20\mathbb{Z}_{100}$ subgroup of \mathbb{Z}_{100} .
 - (f) Find Ker(f) =<u>Answer:</u> $Ker(f) = \{0, 5, 10, 15, 20, 25, 30, 35, 40\} = \langle 5 \rangle = 5\mathbb{Z}_{45}$ subgroup of \mathbb{Z}_{45} .
 - (g) Is f onto? Justify your answer. Answer: No, since $Im(f) \subset \mathbb{Z}_{100}$ but $Im(f) \neq \mathbb{Z}_{100}$. For example $1 \notin Im(f)$.
 - (h) Is f one-to-one? Justify your answer. Answer: No, since f(0) = 0 = f(5) but $0 \neq 5 \in \mathbb{Z}_{45}$.
- 7. Let $f: \mathbb{Z}_6 \to S_4$ be given by f(1) = (124).
 - (a) Find f(0). Answer: $f(0) = e_{S_4} = (1)$. Therefore f(0) = (1)
 - (b) Find f(2). Answer: f(2) = f(1)f(1) = (124)(124) = (142). Therefore f(2) = (142)
 - (c) Find f(3). Answer: f(3) = f(1)f(2) = (124)(142) = (1). Therefore f(3) = (1)
 - (d) Find f(4). Answer: f(4) = f(1)f(3) = (124)(1) = (124). Therefore f(4) = (124)
 - (e) Find f(5). Answer: f(5) = f(1)f(4) = (124)(124) = (142). Therefore f(5) = (142)
 - (f) Find Im(f)<u>Answer:</u> $Im(f) = \{(1), (124), (142)\} = \langle (124) \rangle$ subgroup of S_4 .
 - (g) Find Ker(f)Answer: $Ker(f) = \{0, 3\} = \langle 3 \rangle = 3\mathbb{Z}_6$ subgroup of \mathbb{Z}_6 .
 - (h) Is f onto? Justify your answer. Answer: No, since $Im(f) \subset S_4$ but $Im(f) \neq S_4$. For example $(12) \notin Im(f)$.
 - (i) Is f one-to-one? Justify your answer. Answer: No, since f(2) = (142) = f(5) but $2 \neq 5 \in \mathbb{Z}_6$.

- 8. Let $G = \mathbb{Z}_{12}$.
 - (a) Find the subgroup $H = \langle 3 \rangle$. Answer: $H = \langle 3 \rangle = \{0, 3, 6, 9\}$
 - (b) Find all left cosets of H in G. Answer: $H = \langle 3 \rangle = \{0, 3, 6, 9\}$ $1 + H = 1 + \langle 3 \rangle = \{1, 4, 7, 10\}$ $2 + H = 2 + \langle 3 \rangle = \{2, 5, 8, 11\}$
 - (c) Find all right cosets of H in G. Answer: $H = \langle 3 \rangle = \{0, 3, 6, 9\}$ $H + 1 = \langle 3 \rangle + 1 = \{1, 4, 7, 10\}$ $H + 2 = \langle 3 \rangle + 2 = \{2, 5, 8, 11\}$
 - (d) Is H normal subgroup of G? Answer: Yes, since a + H = H + a for all $a \in G$.
 - (e) Find G/H. Answer: $G/H = \{\langle 3 \rangle, 1 + \langle 3 \rangle, 2 + \langle 3 \rangle\}$ Cayley Table:
 - (f) Find [G:H]. <u>Answer:</u> [G:H] = # of left cosets = 3. Another way: $[G:H] = |G|/|H| = |\mathbb{Z}_{12}|/|\langle 3 \rangle| = 12/4 = 3$. Therefore [G:H] = 3.
- 9. Let $G = S_4$.
 - (a) Find the subgroup $H = \langle (1342) \rangle$. <u>Answer:</u> $H = \langle (1342) \rangle = \{ (1342), (14)(32), (2431), (1) \}$
 - (b) Find all left cosets of H in G.

 Answer: $H = \langle (1342) \rangle = \{(1342), (14)(32), (2431), (1)\}$ $(12)H = (12) \langle (1342) \rangle = \{(12)(1342), (12)(14)(32), (12)(2431), (12)(1)\} = \{(134), (1423), (243), (12)\}$ $(13)H = (13) \langle (1342) \rangle = \{(13)(1342), (13)(14)(32), (13)(2431), (13)(1)\} = \{(234), (1432), (124), (13)\}$ $(14)H = (14) \langle (1342) \rangle = \{(14)(1342), (14)(14)(32), (14)(2431), (14)(1)\} = \dots$ $(24)H = (24) \langle (1342) \rangle = \{(24)(1342), (24)(14)(32), (24)(2431), (24)(1)\} = \dots$ $(34)H = (34) \langle (1342) \rangle = \{(34)(1342), (34)(14)(32), (34)(2431), (34)(1)\} = \dots$
 - (c) Find all right cosets of H in G. $\underline{\text{Answer:}} \ H = \langle (1342) \rangle = \{ (1342), (14)(32), (2431), (1) \}$ $H(12) = \langle (1342) \rangle \ (12) = \{ (1342)(12), (14)(32)(12), (2431)(12), (1)(12) \} = \{ (234), (1324), (143), (12) \}$ $H(13) = \dots$ $H(14) = \dots$ $H(24) = \dots$ $H(34) = \dots$

(d) Is H normal subgroup of G?

Answer: NO, since

$$(12)H = \{(134), (1423), (243), (12)\} \neq \{(234), (1324), (143), (12)\} = H(12)$$

(e) Find [G:H].

Answer: [G:H] = # of left cosets of H. Therefore [G:H] = 6

Another way: $[G:H] = |G|/|H| = |S_4|/|\langle (1342)\rangle| = 24/4 = 6.$

10. Let $G = S_4$.

(a) Find the subgroup A_4 of even permutations.

Answer:

 $G = S_4 = \{(1234), (1243), (1324), (1342), (1423), (1432), (1432), (1432), (1432), (1432), (1432), (1433), ($

(123), (132), (124), (142), (134), (143), (234), (243),

(12)(34), (13)(24), (14)(23), (12), (13), (14), (23), (24), (34), (1)

 A_4 is the subgroup of all even permutations:

$$A_4 = \{(123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23), (1)\}$$

(b) Find all left cosets of A_4 in G.

Answer:

 $A_4 = \{(123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23), (1)\}$

 $(12)A_4 = \{(12)(123), (12)(132), (12)(124), (12)(142), (12)(134), (12)(143), (12)(234), (12)(243)$

(12)(12)(34), (12)(13)(24), (12)(14)(23), (12)(1)

 $\{(23), (13), (24), (14), (1342), (1432), (1234), (1243), (34), (1324), (1423), (12)\}$

 $(12)A_4$ are all odd permutations.

Left cosets: $\{A_4, (12)A_4\}$, i.e.

$$A_4 = \{(123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23), (1)\}$$

$$(12)A_4 = \{(23), (13), (24), (14), (1342), (1432), (1234), (1243), (34), (1324), (1423), (12)\}$$

(c) Find all right cosets of A_4 in G.

Answer:

Right cosets: $\{A_4, A_4(12)\}$: A_4 are all even permutations, $A_4(12)$ are all odd permuta-

tions. $A_4 = \{(123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23), (1)\}$

$$A_4(12) = \{(23), (13), (24), (14), (1342), (1432), (1234), (1243), (34), (1324), (1423), (12)\}$$

(d) Is A_4 normal subgroup of G?

Answer: Check if $\alpha A_4 = A_4 \alpha$ for all $\alpha \in S_4$.

Case 1: α is even permutation.

So $\alpha \in A_4$. Therefore $\alpha A_4 = A_4$ (true in general hH = H for $\forall h \in H$, see problem #22).

Similarly $A_4\alpha = A_4$. Therefore $\alpha A_4 = A_4\alpha$ for all $\alpha in A_4$, i.e. α even permutation.

Case 2: α is odd permutation.

Then $\alpha A_4 = \{\text{odd permutations}\}\ \text{since (odd permut.)} = (\text{odd permut.)}$

Also $A_4\alpha = \{\text{odd permutations}\}\ \text{since (even permut.)}(\text{odd permut.)} = (\text{odd permut.)}.$

Therefore $\alpha A_4 = A_4 \alpha$ for all odd permutations α .

Case 1 and Case 2 $\implies \alpha A_4 = A_4 \alpha$ for all $\alpha \in S_4$.

Therefore A_4 is normal subgroup in S_4 .

Remark: Another argument: Since $|A_4| = 12 = 24/2 = |S_4|/2$ it follows from a Theorem from class that A_4 is normal subgroup in S_4 .

(e) Find G/H.

Answer: Elements of G/H are $\{A_4, (12)A_4\}$ and Cayley table is:

$$\begin{array}{c|cccc} S_4/A_4 & A_4 & (12)A_4 \\ \hline A_4 & A_4 & (12)A_4 \\ (12)A_4 & (12)A_4 & A_4 \end{array}$$

(f) Find
$$[G:H]$$
. Answer: $\overline{[G:H] = |G|/|H| = 24/12 = 2}$

- 11. Consider the group \mathbb{Z}_{15}^{\times} .
 - (a) Find the subgroup $H = \langle 2 \rangle$ <u>Answer:</u> $\mathbb{Z}_{15}^{\times} = \{x \in \mathbb{Z} \mid 1 \le x \le 14, \ gcd(x, 15) = 1\} = \{1, 2, 4, 7, 8, 11, 13, 14\}$ $H = \langle 2 \rangle = \{2, 4, 8, 1\}$
 - (b) Find all left cosets of H in G.

Answer:

$$\overline{H = \langle 2 \rangle} = \{2, 4, 8, 1\}$$

$$7H = 7\langle 2 \rangle = \{7 \cdot 2, 7 \cdot 4, 7 \cdot 8, 7 \cdot 1\} = \{14, 13, 11, 7\}$$

$$7H = 7 \langle 2 \rangle = \{7 \cdot 2, 7 \cdot 4, 7 \cdot 8, 7 \cdot 1\} = \{14, 13, 11, 7\}$$

$$(\text{left cosets of } \langle 2 \rangle \text{ in } \mathbb{Z}_{15}^{\times}) = \{\langle 2 \rangle, 7 \langle 2 \rangle\} = \{\{2, 4, 8, 1\}, \{14, 13, 11, 7\}\}$$

(c) Find all right cosets of H in G.

Answer:

$$H = \langle 2 \rangle = \{2, 4, 8, 1\}$$

$$H = \langle 2 \rangle 7 = \{ 2 \cdot 7, 4 \cdot 7, 8 \cdot 7, 1 \cdot 7 \} = \{ 14, 13, 11, 7 \}$$

(right cosets of
$$\langle 2 \rangle$$
 in \mathbb{Z}_{15}^{\times}) = $\{\langle 2 \rangle, \langle 2 \rangle, \langle$

Remark: You could also point out that the group \mathbb{Z}_{15}^{\times} is abelian, so left cosets are the same as right cosets.

(d) Is H normal subgroup of G?

Answer: Yes, since left cosets are the same as right cosets.

Another answer: Yes. Since \mathbb{Z}_{15}^{\times} is abelian all subgroups are normal in \mathbb{Z}_{15}^{\times} .

(e) Find G/H.

Answer: Elements of G/H are $\{\langle 2 \rangle, 7 \langle 2 \rangle\}$ and Cayley table is:

$$\begin{array}{c|c|c} \mathbb{Z}_{15}^{\times}/\langle 2 \rangle & \langle 2 \rangle & 7\langle 2 \rangle \\ \hline \langle 2 \rangle & \langle 2 \rangle & 7\langle 2 \rangle \\ \hline 7\langle 2 \rangle & 7\langle 2 \rangle & \langle 2 \rangle \end{array}$$

(f) Find [G:H]. Answer: |G:H| = |G|/|H| = 8/4 = 2

Theoretic Questions

- 12. Write the definition of Normal Subgroup.
- 13. Write the definition of Left coset.
- 14. Write the definition of Subgroup.
- 15. Write the definition of Quotient group.
- 16. Write the definition of Kernel of a homomorphism.

Proofs

17. Let $f: G \to G'$ be a group homomorphism. Prove that $f(e_G) = e_{G'}$.

Proof. (a) $e_G = e_G \cdot e_G$ since e_G is the identity in G.

- (b) $f(e_G) = f(e_G \cdot e_G) = f(e_G) \cdot f(e_G)$ since f is a group homomorphism. So
- (c) $f(e_G) = f(e_G) \cdot f(e_G)$ Now multiply both sides by the inverse $(f(e_G))^{-1}$, on the right.
- (d) $f(e_G) \cdot (f(e_G))^{-1} = f(e_G) \cdot f(e_G) \cdot (f(e_G))^{-1}$
- (e) $f(e_G) \cdot (f(e_G))^{-1} = e_{G'}$ by the property of inverse in G'.
- (f) $f(e_G) \cdot f(e_G) \cdot (f(e_G))^{-1} = f(e_G) \cdot e_{G'} = f(e_G)$ Therefore:
- (g) $e_{G'} \stackrel{\text{(e)}}{=} f(e_G) \cdot (f(e_G))^{-1} \stackrel{\text{(d)}}{=} f(e_G) \cdot f(e_G) \cdot (f(e_G))^{-1} \stackrel{\text{(f)}}{=} f(e_G)$. Therefore:
- (h) $e_{G'} = f(e_G)$.

(Notice how many times you use transitive and symmetric property of "=" and associative property of the operation in groups!)

18. Let $f: G \to G'$ be a group homomorphism. Let $g \in G$. Prove that |f(g)| divides |g|.

Proof. • Let |g| = n and |f(g)| = m.

- Since |g| = n it follows that $g^n = e_G$. Apply f to both sides.
- $f(g^n) = f(e_G) = e_{G'}$ from the fact that $f(e_G) = e_{G'}$ (proved in the previous problem).
- $f(g^n) = (f(g))^n$ from the property of group homomorphisms.
- $(f(g))^n = e_{G'}$ from the last two equality.
- \bullet Then m|n proved in class (If $a^m=e$ then |a| divides m.) Therefore:
- |f(g)| divides |g|.

19. Let $f: G \to G'$ be a homomorphism. Prove that Im(f), the image of f is a subgroup of G'.

Proof. • By definition $Im(f) := \{a \in G' \mid \exists x \in G, s.t. \ f(x) = a\}.$

- (0) $Im(f) \subseteq G'$ since every $a \in Im(f)$ by definition $a \in G'$, i.e. Im(f) is a subset of G'.
- (00) $Im(f) \neq \emptyset$ since $f(e_G) = e_{G'}$ and therefore $e_{G'} \in Im(f)$, i.e. Im(f) is nonempty.
- (1) Let $a, b \in Im(f)$. WTS $ab \in Im(f)$, i.e. Im(f) is closed under operation in G'. $(a \in Im(f)) \implies (\exists x \in G \text{ such that } f(x) = a)$ $(b \in Im(f)) \implies (\exists y \in G \text{ such that } f(y) = b)$ $(x, y, \in G) \implies (xy \in G) \text{ since } G \text{ is a group and therefore closed under operation.}$ f(xy) = f(x)f(y) since f is a group homomorphism. So: f(xy) = f(x)f(y) = ab.

Therefore $ab \in Im(f)$, i.e. Im(f) is closed under operation in G'.

- (2) Let $a \in Im(f)$. WTS $a^{-1} \in Im(f)$, i.e. Im(f) is closed under inverses in G'. $(a \in Im(f)) \implies (\exists x \in G \text{ such that } f(x) = a)$ $(x \in G) \implies (x^{-1} \in G) \text{ since } G \text{ is a group and therefore closed under inverses.}$ $f(x^{-1}) = (f(x))^{-1} \text{ since } f \text{ is a group homomorphism. So: } f(x^{-1}) = (f(x))^{-1} = a^{-1}$. Therefore $a^{-1} \in Im(f)$, i.e. Im(f) is closed under inverses in G'.
- Therefore, from (0), (00), (1), (2) it follows that Im(f) is a nonempty subset of G' which is closed under operations and inverses in G'. Therefore Im(f) is a subgroup of G'.
- 20. Let $f: G \to G'$ be a homomorphism. Prove that Ker(f), the kernel of f is a subgroup of G.
- 21. Let $f: G \to G'$ be a homomorphism. Prove that Ker(f) is normal subgroup of G.
- 22. Let H be a subgroup of group G. Prove that $(aH = H) \iff (a \in H)$.

Proof.
$$(aH = H) \implies (a \in H)$$

- Suppose (aH = H). WTS $(a \in H)$
- a = ae where e is the identity in G.
- Since H is a subgroup, $e \in H$. Therefore $a = ae \in aH$.
- Since aH = H, this implies $a \in H$.

$$(aH = H) \iff (a \in H)$$

- Suppose $(a \in H)$. WTS (aH = H)
- Let $x \in aH$. Then $\exists h \in H$ so that x = ah.
- $\bullet\,$ Since H is a subgroup, it is closed under operation.
- Since both $a, h \in H$, it follows that $ah \in H$. $\therefore x = ah \in H$ $\therefore (aH \subseteq H)$
- Let $x \in H$. Then $x = ex = (aa^{-1})x = a(a^{-1})x) \in aH$ since H is closed under inverses and operations (since H is a subgroup). $\therefore (H \subseteq aH) \therefore (H = aH)$
- 23. Let H be a subgroup of group G. Let $a \in G$ and let $aHa^{-1} = \{aha^{-1} \mid h \in H\}$. Prove that aHa^{-1} is a subgroup of G.
 - Proof. (0) aHa^{-1} is a subset of G. Reason: $(x \in aHa^{-1}) \implies (x = aha^{-1})$ for some $h \in H \subseteq G$. Therefore $aha^{-1} \in G$ since G is closed under inverses and operations (G is a group). $\implies x \in G$ So $aHa^{-1} \subseteq G$.
 - $aHa^{-1} \neq \emptyset$. Reason: $e = aea^{-1} \in aHa^{-1}$.

 $-xy \in aHa^{-1}$

- (1) aHa^{-1} is closed under operation in G. Reason: Let $x, y \in aHa^{-1}$. WTS $xy \in aHa^{-1}$. $-(x \in aHa^{-1}) \implies (x = aha^{-1} \text{ for some } h \in H)$ $-(y \in aHa^{-1}) \implies (y = aka^{-1} \text{ for some } k \in H)$ $-xy = (aha^{-1})(aka^{-1}) = ah(a^{-1}a)ka^{-1} = aheka^{-1} = ahka^{-1} \in aHa^{-1} \text{ since } h, k \in H$ - and H is closed under operation in G (since H is a subgroup of G)
- (2) aHa^{-1} is closed under inverses in G. Reason: Let $x \in aHa^{-1}$. WTS $x^{-1} \in aHa^{-1}$. $-(x \in aHa^{-1}) \Longrightarrow (x = aha^{-1} \text{ for some } h \in H)$ $-x^{-1} = (aha^{-1})^{-1} = (a^{-1})^{-1}h^{-1}a^{-1}$ by the property of inverse of a product. $-(a^{-1})^{-1}h^{-1}a^{-1} = ah^{-1}a^{-1} \in aHa^{-1}$ since $h \in H$ and H is closed under inverses in G (since H is a subgroup of G). $-x^{-1} \in aHa^{-1}$.
- Therefore, from (0), (00), (1), (2) it follows that aHa^{-1} is a nonempty subset of G which is closed under operations and inverses in G. Therefore aHa^{-1} is a subgroup of G.
- 24. Prove that the center of a group is normal subgroup, i.e. Z(G) is normal subgroup in G.

Proof. $Z(G) := \{g \in G \mid xg = gx \text{ for } \forall x \in G\}$

Claim 1: Z(G) is a subgroup of G.

Claim 2: Z(G) is normal subgroup of G.

Proof of Claim 1:

- (0) Z(G) is a subset of G by definition.
- (00) Z(G) is nonempty. Reason: $(xe = x = ex \text{ for } \forall x \in G) \implies \text{the identity } e \in Z(G)$.
- (1) Z(G) is closed under operation in G. Reason:
 - Let $a, b \in Z(G)$. Then xa = ax for $\forall x \in G$ (*) and xb = bx for $\forall x \in G$ (**).
 - $-x(ab) \stackrel{\text{assoc}}{=} (xa)b \stackrel{\text{(*)}}{=} (ax)b \stackrel{\text{(*)}}{=} a(xb) \stackrel{\text{(**)}}{=} a(bx) \stackrel{\text{assoc}}{=} (ab)x \text{ for } \forall x \in G.$ Therefore: $-ab \in Z(G)$.
- (2) Z(G) is closed under inverses in G. Reason:
 - Let $a \in Z(G)$. Then xa = ax for $\forall x \in G$ (*).
 - Multiply this equation by a^{-1} on the left.
 - $-a^{-1}xa = a^{-1}ax$
 - $-a^{-1}xa = x$
 - Multiply this equation by a^{-1} on the right.
 - $-a^{-1}xaa^{-1} = xa^{-1}$. Therefore: $a^{-1}x = xa^{-1}$. Therefore:
 - $-a^{-1} \in Z(G).$
- It follows from (0), (00), (1), (2) that Z(G) is a subgroup of G. Proof of Claim 2:

- WTS $gZ(G)g^{-1} \subseteq Z(G)$ for $\forall g \in G$ i.e.
- WTS $gzg^{-1} \in Z(G)$ for $\forall z \in Z(G)$ and $\forall g \in G$.
- $gzg^{-1} \stackrel{\text{Z(G)}}{=} zgg^{-1} \stackrel{\text{inverse}}{=} z \in Z(G).$
- Therefore $gZ(G)g^{-1} \subseteq Z(G)$ and hence Z(G) is a normal subgroup.

True -False - Sometimes

25. True -False - Sometimes

T F S - \mathbb{Z}_n^{\times} is a subgroup of \mathbb{Z}_n .

T F S - Let $G = (\mathbb{Z}_n, +_n)$, let H be a subgroup of G. Then H is normal subgroup.

T F S - Let $G = S_7$, let H be a subgroup of G. Then H is normal subgroup.

T F S - Let H be a subgroup of G. Let $a \in G$. Then aH = Ha.

T F S - $(2\mathbb{Z}, +)$ is a normal subgroup of $(\mathbb{Z}, +)$.

T F S - $\langle 6 \rangle$ is a normal subgroup of $(\mathbb{Z}_9, +_9)$

T F S - Let H be a proper subgroup of S_3 . Then H is normal subgroup.

T F S - All proper subgroups of S_4 are normal.

T $\overline{|F|}$ S - Let G be a group of order |G| = 5. Let H < G. Then |H| = 4.

T F S - Let G be a group of order |G| = 5. Let H < G. Then |H| = 1.

T F S - Let G be a group of order |G| = 15. Let H < G. Then [G : H] = 5.

T F S - Let G be a cyclic group of order |G| = 15. Let H < G. Then |H| = 10.

T F S - Let G be a group. Let $g \in G$. Then $\langle g \rangle$ is normal subgroup.

Examples

- 26. Give an example of a group and a subgroup which is not normal. Prove your statement. Answer:
 - $G = S_4$, $H = \langle (1423) \rangle$, proofs are missing.
 - $G = S_4$, $H = \{(12)(34), (1)\}$, proofs are missing.
 - $G = S_4$, $H = \{(123), (132), (12), (13), (23), (1)\}$, proofs are missing.
 - $G = Gl_2(\mathbb{Q}), H = \{D \in Gl_2(\mathbb{Q}) \mid D \text{ is diagonal}\}, \text{ proofs are missing.}$
- 27. Give an example of a group and a subgroup which is normal. Prove your statement. Answer:

- $G = S_4$, $H = A_4$, proofs are missing.
- $G = S_4$, $H = \{(12)(34), (13)(24), (14)(23), (1)\}$, proofs are missing.
- $G = \mathbb{Z}_{50}$, $H = \langle 8 \rangle$, proofs are missing.
- $G = \mathbb{Z}_8$, $H = \langle 4 \rangle$, proofs are missing.
- $G = \mathbb{Z}_8^{\times}$, $H = \langle 3 \rangle$, proofs are missing.
- 28. Give an example of a non cyclic group and a subgroup which is normal. Prove your statement. Answer:
 - $G = S_4$, $H = A_4$, proofs are missing.
 - $G = S_4$, $H = \{(12)(34), (13)(24), (14)(23), (1)\}$, proofs are missing.
 - $G = \mathbb{Q}$, $H = \mathbb{Z}$, proofs are missing.
- 29. Give an example of a group homomorphism which is onto. Prove your statement. Answer:
 - $f: \mathbb{Z} \to \mathbb{Z}_9$, $f(x) = x \pmod{9}$, proofs are missing.
 - $f: \mathbb{Z}_{27} \to \mathbb{Z}_9$, $f(x) = x \pmod{9}$, proofs are missing.
 - $f: \mathbb{Z}_{27} \to \mathbb{Z}_9$, $f(x) = 4x \pmod{9}$, proofs are missing.
- 30. Give an example of a group homomorphism which is not onto. Prove your statement. Answer:
 - $f: \mathbb{Z} \to \mathbb{Z}_9$, $f(x) = 3x \pmod{9}$, proofs are missing.
 - $f: \mathbb{Z}_{27} \to \mathbb{Z}_9$, $f(x) = 3x \pmod{9}$, proofs are missing.
 - $f: \mathbb{Z}_{27} \to \mathbb{Z}_9$, $f(x) = 6x \pmod{9}$, proofs are missing.
 - $f: S_3 \to S_4$ where $f(\alpha) = \alpha$. (It is actually $\alpha(4)$), proofs are missing.
- 31. Give an example of a group homomorphism which is one-to-one. Prove your statement. Answer:
 - $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x, proofs are missing.
 - $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}, f(x) = 2x \pmod{54}$, proofs are missing.
 - $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}, f(x) = 4x \pmod{54}$, proofs are missing.
 - $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}$, f(x) = 50x (mod 54), proofs are missing.
 - $f: S_3 \to S_4$ where $f(\alpha) = \alpha$. (It is actually $\alpha(4)$), proofs are missing.
- 32. Give an example of a group homomorphism $f: G \to G'$ such that $Ker(f) = \{e_G\}$. Prove your statement.

Answer:

- $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x, proofs are missing.
- $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}, f(x) = 2x \pmod{54}$, proofs are missing.
- $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}$, $f(x) = 4x \pmod{54}$, proofs are missing.
- $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}$, f(x) = 50x (mod 54), proofs are missing.
- 33. Give an example of a group homomorphism $f: G \to G'$ such that $Ker(f) \neq \{e_G\}$. Prove your statement.

Answer:

- $f: \mathbb{Z} \to \mathbb{Z}_5$, f(x) = 3x, proofs are missing.
- $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}, f(x) = 6x \pmod{54}$, proofs are missing.
- $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}$, $f(x) = 30x \pmod{54}$, proofs are missing.
- $f: \mathbb{Z}_{27} \to \mathbb{Z}_{54}$, $f(x) = 24x \pmod{54}$, proofs are missing.
- 34. Give an example of a group G and a subgroup H such that [G:H]=3. Answer:
 - $G = S_3$, H = (12), proofs are missing.
 - $G = \mathbb{Z}_{51}$, $H = \langle 17 \rangle$, proofs are missing.
 - $G = \mathbb{Z}_9^{\times}$, $H = \langle 8 \rangle$, proofs are missing.
 - $G = \mathbb{Z}_8 \times \mathbb{Z}_3$, $H = \{(a,0) \mid a \in \mathbb{Z}_8, 0 \in \mathbb{Z}_3\}$, proofs are missing.
- 35. Give an example of a group G and a subgroup H such that [G:H]=2. Answer:
 - $G = S_3$, H = (123), proofs are missing.
 - $G = \mathbb{Z}_{50}$, $H = \langle 2 \rangle$, proofs are missing.
 - $G = \mathbb{Z}_9^{\times}$, $H = \langle 4 \rangle$, proofs are missing.
 - $G = \mathbb{Z}_8 \times \mathbb{Z}_2$, $H = \{(a,0) \mid a \in \mathbb{Z}_8, 0 \in \mathbb{Z}_2\}$, proofs are missing.