Diagrammatic Categories in Representation Theory Honours Thesis (Draft)

Victor Zhang UNSW Australia

April 8, 2023

Contents

1	Introduction	1				
2	Background 2.1 Drawing Monoidal Categories	2 2				
	2.2 Module Categories	4				
	2.3 Frobenius Objects	4				
3	One-colour Diagrammatics					
	3.1 One-colour Diagrammatic Hecke Category	8				
	3.2 Diagrammatic $\mathcal{O}_0(\mathfrak{sl}_2)$					
4	Two-colour Diagrammatics	18				
	4.1 Two-colour Diagrammatic Hecke Category	18				
	4.2 Diagrammatic $Tilt(\mathfrak{sl}_2)$					

Chapter 1

Introduction

This page was empty.

Chapter 2

Background

2.1 Drawing Monoidal Categories

A monoidal category \mathcal{C} is a category equipped with a bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and a unit object $\mathbb{1}$, such that certain associativity and unit relations hold¹. The bifunctor \otimes is called the *tensor* or *monoidal product*. A monoidal category is *strict* if $A \otimes (B \otimes C) = (A \otimes B) \otimes C$ and $A = \mathbb{1} \otimes A = A \otimes \mathbb{1}$ for objects and similarly for morphisms. In this paper, we will assume that monoidal categories are strict, since all monoidal categories are monoidally equivalent to a strict one².

The morphisms of \mathcal{C} can be drawn as string diagrams, where the morphism maps from the bottom to the top. Functions that make up the morphism are drawn as tokens or boxes. For example

depicts a morphism $f: a \to b \otimes c$. For identity morphisms we drop the box and only draw a vertical line, so id_a is the diagram

$$\begin{bmatrix} a \\ a \end{bmatrix}$$
.

The tensor product of morphisms is the horizontal concatenation of diagrams, such that strings from separate functions don't interact. For example, given $g: x \to y$, the tensor product $f \otimes g: a \otimes x \to b \otimes c \otimes y$ is drawn as

¹For more details see [Eti+15].

²See [ML98, VII.2] or [Eti+15, Thm 2.8.5]

By convention, $\mathbb{1}$ is blank and unlabelled, and strings that would join to $\mathbb{1}$ are blank. Particularly, $\mathrm{id}_{\mathbb{1}}$ is an empty diagram, and we have diagrams such as

for morphisms $f_1: a \to \mathbb{1}$ and $f_2: \mathbb{1} \to b \otimes c$. The compositions of morphisms is the vertical stacking of diagrams where domains and codomains match. For example, the composition $h \circ f: a \to b \otimes c \to a \otimes c$ of $f: a \to b \otimes c$ with $h: b \otimes c \to a \otimes c$ has the diagram

Before looking at our main example of a diagrammatic monoidal category, we first define some terminology.

Definition 2.1.1. For a commutative ring R, an R-linear category is a category enriched over the category of R-modules. That is, for objects a, b, the set of morphisms $\operatorname{Hom}(a, b)$ is an R-module and the composition of morphisms is R-bilinear. A R-linear monoidal category is a category that is both monoidal and R-linear such that the monoidal product on morphisms is R-bilinear.

Example 2.1.2. Let k be a field. The category of vector spaces over k, \mathbf{Vect}_k , is a k-linear monoidal category. This makes sense by the classical theory of linear algebra.

For a monoidal category C, the bifunctoriality of $-\otimes$ – implies the following *inter-change law*. For morphisms $f: a \to b$ and $g: c \to d$, $(\mathrm{id}_b \otimes g) \circ (f \otimes \mathrm{id}_c) = f \otimes g = (f \otimes \mathrm{id}_d) \circ (\mathrm{id}_a \otimes g)$. In other words the following diagram commutes.

$$\begin{array}{c|c} a \otimes c & \xrightarrow{f \otimes \mathrm{id}_c} & b \otimes c \\ \downarrow \mathrm{id}_a \otimes g & & \downarrow \mathrm{id}_b \otimes g \\ a \otimes d & \xrightarrow{f \otimes \mathrm{id}_d} & b \otimes d \end{array}$$

Written with string diagrams, this is

which holds up to deformation of the diagram.

Definition 2.1.3. A monoidal category C is generated by finite set S_o of objects and S_m of morphisms, when all non-unit objects are a finite tensor of objects in S_o and all non-identity morphisms are a finite combination of tensors and compositions of morphisms in S_m .

Example 2.1.4. Our first example of a diagrammatic monoidal category is the Temperley-Lieb category. The Temperley-Lieb category \mathcal{TL} is a strict R-linear monoidal category whose objects are generated by the vertical line I and morphisms generated by the cup $\cup: \mathbb{1} \to \mathbb{I} \otimes \mathbb{I}$ and cap $\cap: \mathbb{I} \otimes \mathbb{I} \to \mathbb{1}$, with relations

Mention that composition and tensor product is as explained above Some example Mention bubbles and specialisation to some $\delta \in R$ Mention that these are crossingless matchings Comment on isotopy

2.2 Module Categories

2.3 Frobenius Objects

Something something about Many relations in categorical structures can be written in diagrammatic terms - adjunctions, monoid

Let \mathcal{C} be a (strict) monoidal category. We can define the following objects.

Definition 2.3.1. A monoid object in \mathcal{C} is a triple (M, μ, η) for an object $M \in \mathcal{C}$, a multiplication map $\mu : M \otimes M \to M$ and a unit map $\eta : \mathbb{1} \to M$, such that

and

commute. The first diagram is the associativity relation $\mu \circ (\mu \otimes id_M) = \mu \circ (id_M \otimes \mu)$ and the second diagram is the unit relation $id_M = \mu \circ (\eta \otimes id_M) = \mu \circ (id_M \otimes \eta)$.

Dually, a comonoid object in \mathcal{C} is a triple (M, δ, ϵ) for an object $M \in \mathcal{C}$, a comultiplication map $\delta: M \to M \otimes M$ and a counit map $\epsilon: M \to \mathbb{1}$, satisfying the coassociativity relation

and *counit* relation

$$\mathbb{1} \otimes M \xleftarrow{\epsilon \otimes \mathrm{id}_M} M \otimes M \xrightarrow{\mathrm{id}_M \otimes \epsilon} M \otimes \mathbb{1}$$

$$\uparrow^{\delta} \qquad \qquad \downarrow^{\mathrm{id}_M}$$

Monoid objects generalise monoids, i.e. sets with an identity equipped with an associative binary operation.

Definition 2.3.2. A Frobenius object in C is a quintuple $(A, \mu, \eta, \delta, \epsilon)$ such that (A, μ, η) is a monoid object, (A, δ, ϵ) is a comonoid object, and the maps satisfy the *Frobenius relations*

that is $(\mathrm{id}_A \otimes \mu) \circ (\delta \otimes \mathrm{id}_A) = \delta \circ \mu = (\mu \otimes \mathrm{id}_A) \circ (\mathrm{id}_A \otimes \delta)$.

The maps and relations for a Frobenius object $(A, \mu, \eta, \delta, \epsilon)$ have a nice description with the diagrams given in Section 2.1. The structure maps are drawn as

For the rest of this section, we only work with the Frobenius object A and $\mathbb{1}$, so we can identify the identity strand $\mathsf{I} = \mathrm{id}_A$ so we can stop putting the label A. Diagrammatically, the associativity relation $\mu \circ (\mu \otimes \mathrm{id}_M) = \mu \circ (\mathrm{id}_M \otimes \mu)$ is

$$\begin{array}{c}
\downarrow \\
\mu
\end{array} = \begin{array}{c}
\downarrow \\
\mu
\end{array},$$

the coassociativity relation $(\delta \otimes id_A) \circ \delta = (id_A \otimes \delta) \circ \delta$ is

$$\delta$$
 = δ

the unit relation $\mathrm{id}_A = \mu \circ (\eta \otimes \mathrm{id}_A) = \mu \circ (\mathrm{id}_A \otimes \eta)$ is

$$= \underbrace{\eta} = \underbrace{\eta},$$

the counit relation $id_A = (\epsilon \otimes id_A) \circ \delta = (id_A \otimes \epsilon) \circ \delta$ is

and the Frobenius relation $(\mathrm{id}_A \otimes \mu) \circ (\delta \otimes \mathrm{id}_A) = \delta \circ \mu = (\mu \otimes \mathrm{id}_A) \circ (\mathrm{id}_A \otimes \delta)$ is

$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

If we stop labelling the functions and draw the structure maps as

then the relations become... Talk about isotopy

Maybe something about the (diagrammatic?) category Frob, capturing the data of a frobenius object

Chapter 3

One-colour Diagrammatics

3.1 One-colour Diagrammatic Hecke Category

The first one-colour diagrammatic we explore is the one-colour (diagrammatic) Hecke category $\mathcal{H}(S_2)$ for the symmetric group $S_2 = \langle s \mid s^2 = e \rangle$. At the end of this section, we see that this diagrammatic category is equivalent to the category of Soergel Bimodules under additive Karoubian closure.

Remark 3.1.1. All diagrammatics below and in Chapter 4 can be defined in the language of planar algebras, without mentioning (monoidal) categories, e.g. in [Jon21]. Nevertheless, we define them in the context of categories as we will see them as diagrammatic versions of important categories in representation theory.

What do we do about \mathbb{C} ? Do the theorems (at the end) apply over \mathbb{Z} or \mathbb{C} or both? If we define over \mathbb{Z} , how do we use it over \mathbb{C} for the next section?

Definition 3.1.2. The one-colour (diagrammatic) Hecke category $\mathcal{H}(S_2)$ is a \mathbb{Z} -linear monoidal category with the following presentation.

The objects are generated by taking formal tensor products of the non-identity element $s \in S_2$. We will write these objects as words, e.g. s, $ssss =: s^4$, $sssssss =: s^7$, where the tensor product is concatenation. The empty tensor product, i.e. the monoidal identity, will be denoted $\varnothing =: s^0$.

The morphisms are generated, up to isotopy, by univalent and trivalent vertices

that are maps $s \to \emptyset$ and $ss \to s$ respectively. Note that we put a large dot on univalent vertices to signify that the line stops abruptly and does not connect to the top. The composition of such diagrams is appropriate vertical stacking, and the tensor product is horizontal concatenation (without intersection). The free \mathbb{Z} -module structure on each morphism space $\operatorname{Hom}(s^n,s^m)$ produces \mathbb{Z} -linear combinations of such diagrams.

Something about composition/tensor and addition commuting Then, composition or tensors with the zero morphism 0 result in 0. To abuse notation, the empty diagram $\emptyset \to \emptyset$ will be denoted \emptyset . The identity morphism in $\text{Hom}(s^n, s^n)$ is the diagram consisting of n (red) vertical lines

which we may identify with s^n .

Such diagrams are subject to the following local relations

$$- = \qquad , \qquad (3.1.5a)$$

$$=0,$$
 (3.1.5c)

$$= 2 \qquad - \qquad \boxed{ \qquad } . \tag{3.1.5d}$$

Remark 3.1.6. The object s is a Frobenius object in $\mathcal{H}(S_2)$. The generators (3.1.3) and their horizontal reflections are the unit, multiplication, counit and comultiplication maps. The unit, associativity and Frobenius associativity axioms are satisfied by the relations (3.1.5a) and (3.1.5b).

Put a definition of frob object in intro

Example 3.1.7. Using the relations in (3.1.5) we can simplify the morphism in Hom(ss, s),

Add example of using frob associativity

The morphism space $\text{Hom}(s^n, s^m)$ has a left (or right) $\mathbb{Z}[\ \]$ -basis called the *double leaves* basis, as described in [EW16]. To define this basis, we must first define morphisms known as *light leaves*.

To make use of the group structure of S_2 , we need to translate between words in $\mathcal{H}(S_2)$ and elements in S_2 . Let $\phi : (\text{ob}(\mathcal{H}(S_2)), \otimes) \to (S_2, *)$ be the monoid homomorphism¹ mapping $s \mapsto s$ and $\varnothing \mapsto 1$, and $\psi : S_2 \to \text{ob}(\mathcal{H}(S_2))$ be the function that maps $s \mapsto s$ and $1 \mapsto \varnothing$. Should this be a definition? The maps φ allows words $w = s^n$ to be seen as elements of S_2 , and ψ allows $1, s \in S_2$ to be seen as the objects $\varnothing, s \in \mathcal{H}(S_2)$. Clearly, $\varphi \psi$ is the identity map on S_2 , and the map $\psi \varphi : \mathcal{H}(S_2) \to \mathcal{H}(S_2)$ takes objects to one of \varnothing or s in $\mathcal{H}(S_2)$ by considering them as elements in S_2 .

Definition 3.1.8. (Subexpression for S_2) Given a word $w = s^n$, a subexpression e is a binary string of length n. We can apply a subexpression to produce an object $w(e) \in \mathcal{H}(S_2)$, which is w where terms corresponding to 0 in e are replaced with \varnothing . For $0 \le i \le n$, write w(e,i) for the resultant object of the first i terms in e applied to the first i terms in w. Particularly $w(e,0) = \varnothing$ and w(e,n) = w(e).

For example, 0000, 0110 and 1011 are subexpressions of $s^4 = ssss$. Applying the third subexpression gives $ssss(1011) = s\varnothing ss = sss$ and $ssss(1011,3) = sss(101) = s\varnothing s = \varnothing$, by strictness of the monoidal category. Here, each term of the subexpression is a decision to include or exclude the corresponding s in the word, where excluding an s amounts to tensoring with \varnothing .

For a word w and subexpression e, we label each term by U_0, U_1, D_0 or D_1 . The i-th term is labelled U_* if $\phi(w(e, i-1)) = 1 \in S_2$, and labelled D_* if $\phi(w(e, i-1)) = s \in S_2$. The label's subscript is the corresponding term in e.

Example 3.1.9. For the object w = ssss and subexpression e = 0101, we find the labels as recorded in the following table.

Term i	1	2	3	4
Partial w	s	ss	sss	ssss
Partial e	0	01	010	0101
w(e,i)	Ø	$\varnothing s = s$	$\varnothing s \varnothing = s$	$\varnothing s \varnothing s = ss$
Labels	U_0	U_0U_1	$U_0U_1D_0$	$U_0U_1D_0D_1$

Definition 3.1.10. The light leaf $LL_{w,e} \in \text{Hom}(w, \psi\phi(w(e)))$ for a word w and subexpression e, is defined iteratively as follows. Let $LL_{\varnothing,\varnothing} = \varnothing$ be the empty diagram. Given $LL_{w',e'}$ and $i \in \{0,1\}$, the light leaf $LL_{w's,e'i}$ is one of

¹A map that preserves the monoidal product and identity element.

$$\begin{array}{c|c}
LL_{w',e'} \\
\hline
U_0 \\
\end{array}, \begin{array}{c|c}
LL_{w',e'} \\
\hline
U_1 \\
\end{array}, \begin{array}{c|c}
LL_{w',e'} \\
\hline
U_0 \\
\end{array}, \begin{array}{c|c}
LL_{w',e'} \\
\hline
U_1
\end{array}$$
(3.1.11)

corresponding to the next label, where w' and e' are appropriate subwords² of w and e respectively.

Here, the codomain of a light leaf $LL_{w,e}$ is the object $\psi\phi(w(e))$. So if the next label is U_* then the codomain of $LL_{w',e'}$ is \varnothing , and when the next label is D_* the codomain of $LL_{w',e'}$ is s. This implies that the recursive definition is consistent.

Example 3.1.12. Following from Example 3.1.9 for w = ssss and e = 0101, we have labels $U_0U_1D_0D_1$ so the light leaf $LL_{w,e}$ is built as follows.

$$arnothing
ightarrow egin{pmatrix} lacksquare & lack$$

Definition 3.1.13. Let $\overline{LL}_{w,e}$ denote the vertical reflection of $LL_{w,e}$. The double leaf for words w, y in $\mathcal{H}(S_2)$ is a composition

$$\mathbb{LL}_{f,e} := \overline{LL}_{y,f} \circ LL_{w,e} : w \to y$$

for subexpressions e of w and f of y such that $\psi\phi(w(e))=\psi\phi(f(y)).$

Visually these are diagrams from w to y factoring through $\psi\phi(w(e)) = \psi\phi(f(y)) \in \{\emptyset, s\},\$

$$\sum_{LL_{w,e}} \frac{\overline{LL}_{y,f}}{\psi \phi(w(e))} = \psi \phi(f(y)) .$$

Example 3.1.14. Let w = ssss and y = sss. Let e = 0111 be a subexpression of w, and f = 010 be a subexpression of y. The corresponding light leaves are

$$LL_{w,e} = \bigcap_{U_0 \ U_1 \ D_1 \ U_1} \text{ and } LL_{y,f} = \bigcap_{U_0 \ U_1 \ D_0} .$$

Then the double leaf $\mathbb{LL}_{f,e} = \overline{LL}_{y,f} \circ LL_{w,e} : ssss \to sss$, factoring through s, is

$$\overline{LL}_{y,f}$$
 $LL_{w,e}$

²A word with some letters removed.

Theorem 3.1.15 (Elias-Williamson [EW16, Theorem 1.2]). Given objects $w, y \in \mathcal{H}(S_2)$, let $\mathbb{LL}(w,y)$ be the collection of double leaves $\mathbb{LL}_{f,e}$ for subexpressions e of w and f of y, such that $\psi\phi(w(e)) = \psi\phi(y(f))$. Then $\mathbb{LL}(w,y)$ is a basis for $\mathrm{Hom}(w,y)$ as a left (or right) $\mathbb{Z}[\]$ -module.

A purely diagrammatic proof (of a more general theorem) can be found in [EW16]. Remark 3.1.16. The above light leaves and double leaves, introduced in [EW16], are diagrammatic analogues of Libedinsky's construction in [Lib08].

The morphisms in this category can be graded such that the univalent vertices has degree 1 and trivalent vertices have degree -1. The degree of a diagram is the sum of the degrees of the generators that appear in it. This induces a grading for the morphism spaces of $\mathcal{H}(S_2)$. Maybe mention what a grading is.

Put example

The double leaves bases allow us to show that the Karoubi envelope of $\mathcal{H}(S_2)$ is equivalent to the category of Soergel Bimodules \mathbb{S} Bim over S_2 as monoidal categories.

Theorem 3.1.17 (Elias-Williamson [EW16, Theorem 6.30]). The category $Kar_{\oplus}(\mathcal{H}(S_2))$ and the category of Soergel Bimodules \mathbb{S} Bim over S_2 are equivalent as graded \mathbb{Z} -linear monoidal categories.

The proof in [EW16] gives an equivalence of graded \mathbb{Z} -linear monoidal categories $\mathcal{H}(S_2) \cong \mathbb{BSBim}$ where \mathbb{BSBim} is the category of Bott-Samelson bimodules over S_2 . This was done by comparing the graded dimensions of morphism spaces using double leaves bases. Since $\mathrm{Kar}_{\oplus}(\mathbb{BSBim}) \cong \mathbb{SBim}$ and Karoubi envelope preserves equivalences, we obtain $\mathrm{Kar}_{\oplus}(\mathcal{H}(S_2)) \cong \mathbb{SBim}$.

3.2 Diagrammatic $\mathcal{O}_0(\mathfrak{sl}_2)$

A little bit about category \mathcal{O} , and our example of \mathfrak{sl}_2

For this section, our category of interest is \mathcal{O} for the semisimple Lie algebra $\mathfrak{sl}_2(\mathbb{C})$. A description of the category \mathcal{O} can be found in general in [Hum08, Sections 3.8–3.10] or in [Maz09, Section 5.2] for the case of $\mathfrak{sl}_2(\mathbb{C})$, however we will only give a brief overview. The category \mathcal{O} is a category of certain modules (or representations) over a semisimple Lie algebra. It is a direct sum of subcategories, where, in the case of \mathfrak{sl}_2 over \mathbb{C} , the non-trivial summands are equivalent as abelian categories to the subcategory \mathcal{O}_0 . Within this, we look to the full subcategory $\operatorname{proj}(\mathcal{O}_0)$ of projective modules in \mathcal{O}_0 , which is in particular additive and contains all direct summands.

In [Soe90, Section 2.4], Soergel shows that the category \mathcal{O} , and hence the subcategory $\operatorname{proj}(\mathcal{O}_0)$, is a Soergel module category, i.e. it has an action of the monoidal category SBim. By the equivalence in Theorem 3.1.17 we will view $\operatorname{proj}(\mathcal{O})$ as a $\mathcal{H}(S_2)$ -module category, extending via the additive Karoubi envelope. Since $\mathcal{H}(S_2)$ is diagrammatic, this action allows us to describe $\operatorname{proj}(\mathcal{O}_0)$ (thus essentially \mathcal{O}_0 and \mathcal{O}) diagrammatically.

Remark 3.2.1. We can pass from $\operatorname{proj}(\mathcal{O}_0)$ to \mathcal{O}_0 by observing that $K^b(\operatorname{proj}(\mathcal{O}_0))$ is equivalent to $D^b(\mathcal{O}_0)$ as graded \mathbb{Z} -linear Should this be \mathbb{C} ? monoidal triangulated categories. This is a standard trick in the field, for example see the introduction of $[\operatorname{RW}18]^3$. However for our purposes it is not important to understand how this works.

Definition 3.2.3. Let $\mathcal{DO}_0(\mathfrak{sl}_2)$ be the \mathbb{C} -linear (Define this in background) left $\mathcal{H}(S_2)$ module category with elements generated (Define what this means.) by the monoidal
identity \emptyset of $\mathcal{H}(S_2)$ and morphisms generated by the empty diagram \emptyset . The action
of $\mathcal{H}(S_2)$ on the left is left concatenation for both objects and morphisms. In addition
to the relations from $\mathcal{H}(S_2)$, the morphisms have one new relation in which diagrams
collapse to 0 when there are barbells on the right. To depict this we add a wall on the
right of the diagram, i.e. embedding the diagrams in the one-sided strip $[0,1] \times \mathbb{R}_{\geq 0}$ instead of in the double-sided strip $[0,1] \times \mathbb{R}$. For example a morphism may be

We impose the relation that diagrams are related to the wall by

In this section we may write \mathcal{DO}_0 for this category. Talk about the \mathbb{C} -linear structure and how that works.

³A self-contained summary of how diagrammatic categories can be related to abelian categories.

 $^{{}^4\}mathrm{It}$ is easy to see that double leaves tensored with $1\in\mathbb{C}$ on the left form a basis.

Example 3.2.5. Using the new relation (3.2.4), we can further simplify the morphism in Example (3.1.7) by

$$= 2 \quad \boxed{ } \qquad \boxed$$

Lemma 3.2.6. Let $\pi : \operatorname{mor}(\mathcal{H}(S_2)) \to \operatorname{mor}(\mathcal{DO}_0)$ be the projection map which takes a morphism to the result of its action on the empty diagram \varnothing . Then the image $\pi(\mathbb{LL}(w,y))$ is a basis for $\operatorname{Hom}_{\mathcal{DO}_0}(w,y)$ as a \mathbb{C} -module.

Maybe put this next bit in section 3.1 Say more about what this is, and why we say it here **Lemma 3.2.7.** In the additive closure of $\mathcal{H}(S_2)$ we have an explicit isomorphisms $s \otimes s \cong s \oplus s$, as detailed in the proof. Particularly, these are isomorphisms in the additive closure of \mathcal{DO}_0 .

Proof. In $\mathcal{H}(S_2)$ we have the relation

$$= \frac{1}{2} + \frac{1}{2}$$

$$= \frac{1}{2} + \frac{1}{2}$$

$$(3.2.8)$$

Note that this $\mathcal{H}(S_2)$ is \mathbb{C} -linear, so division by 2 is allowed. This implies we have maps

$$\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \end{pmatrix} : ss \to s \oplus s \text{ and } \begin{pmatrix} \\ \\ \\ \end{pmatrix} : s \oplus s \to ss.$$

It follows from (3.1.5d), (3.1.5c) and the calculation (3.2.8), that these maps are inverses. Maybe put the inverse calculation here.

The following result shows that our diagrammatic category \mathcal{DO}_0 indeed describes $\operatorname{proj}(\mathcal{O}_0(\mathfrak{sl}_2))$. (Reword this:) This is essentially due to Soergel [Soe90, Endomorhihsmensatz 7, Struktursatz 9 and Section 2.4] (see also [Soe98]) but was not originally formulated as such. The key arguments are in [Soe90] so we attribute this theorem to Soergel.

Be clear that I don't understand category \mathcal{O} very well.

Theorem 3.2.9 (Soergel, [Soe90, Endomorhihsmensatz 7, Struktursatz 9 and Section 2.4]). The diagrammatic category $\operatorname{Kar}_{\oplus}(\mathcal{DO}_0(\mathfrak{sl}_2))$ and $\operatorname{proj}(\mathcal{O}_0(\mathfrak{sl}_2))$ are equivalent as \mathbb{C} -linear $\mathcal{H}(S_2)$ -module categories.

Check all of this & Put precise references Maybe write description as a soergel module outside the proof

Proof. As a shorthand, we write $\operatorname{proj}(\mathcal{O}_0)$ for $\operatorname{proj}(\mathcal{O}_0(\mathfrak{sl}_2))$. The work of Soergel in [Soe90, Section 2.4] shows that $\operatorname{proj}(\mathcal{O}_0)$ is a Soergel module, i.e. it has a left action

of the category of Soergel bimodules defined by applications of the translation functors $\Theta_{\varnothing}, \Theta_s \in \operatorname{End}(\mathcal{O})$ (corresponding to elements in S_2). Explains what this means, how its related to the $\mathcal{H}(S_2)$ module category We will construct a functor that will map faithfully into a full subcategory of $\operatorname{proj}(\mathcal{O}_0)$, which will become the whole projective category under the additive Karoubi envelope. This mimics the strategy in the proof for Theorem 3.1.17.

Define the functor $F: \mathcal{DO}_0 \to \operatorname{proj}(\mathcal{O}_0)$ that sends the empty object \varnothing to the trivial module $P(\varnothing)$, and the Soergel module action corresponding to s to the translation functor Θ_s . Then the object s maps to $\Theta_s(P(\varnothing)) =: P(s)$, and for example s^3 maps to $\Theta_s^3(P(\varnothing)) = \Theta_s\Theta_s\Theta_s(P(\varnothing))$. In order for F to be functorial, it must map identity diagrams $s^n \to s^n$ to $\operatorname{id}_{\Theta_s^n(P(\varnothing))}$. On non-identity maps, we let $F(\ \) = i$ be the inclusion $P(\varnothing) \to P(s)$ and $F(\ \) = p$ be the projection $P(s) \to P(\varnothing)$. The mapping of F is depicted by the following picture.

Now [Maz09, Proposition 5.90] shows that there is a natural isomorphism $\Theta_s\Theta_s\cong\Theta_s\oplus\Theta_s$ Θ_s analogous to the isomorphism $s\otimes s\cong s\oplus s$ given in the proof of Lemma 3.2.7. We will eventually take the additive closure of \mathcal{DO}_0 , so it does not hurt to use these isomorphisms. Given a morphism in \mathcal{DO}_0 from s^n to s^m , repeated precomposition and postcomposition with $s\to s\oplus s$ and $s\oplus s\to s$ from Lemma 3.2.7 results in a matrix of morphisms with domain and codomain in $\{\varnothing, s\}$. By (3.1.5d) and (3.2.4) we can draw the entries of the matrix without floating diagrams, so the only diagrams are \bullet and \bullet up to linear combinations. Therefore, extending by linearity, the picture above completely describes the image of F. We can similarly pull back the matrices of morphisms in $\operatorname{proj}(\mathcal{O}_0)$ to a morphism between $\Theta_s^n(P(\varnothing))$ and $\Theta_s^m(P(\varnothing))$ via the analogous maps defining $\Theta_s\Theta_s\cong\Theta_s\oplus\Theta_s$.

From classical results e.g. [Maz09, Proposition 5.84 and Lemma 5.87], it follows that Θ_s is a Frobenius object in the category of endofunctors of \mathcal{O} . Then there are unit, counit, multiplication and comultiplication natural transformations satisfying coherence relations in the Frobenius object structure. Applying these to $P(\emptyset)$ result in the same relations in $\operatorname{proj}(\mathcal{O}_0)$ for $P(\emptyset), P(s)$ and $\Theta_s^2(P(\emptyset))$. Note that the projection and inclusion maps above are exactly the unit and counit of Θ_s evaluated at $P(\emptyset)$, and the trivalent vertices provided by projecting the isomorphisms in Lemma 3.2.7 are exactly the multiplication and comultiplication maps. Furthermore, in [Soe90, Section 2.4] we

see that $p \circ i = 0$ in $\operatorname{proj}(\mathcal{O}_0)$ which is analogous⁵ to the barbell-wall relation (3.2.4). Hence all the relations in \mathcal{DO}_0 are preserved by F. By construction, F preserves \mathbb{C} -linear combinations and the Soregel module structure in [Soe90], so F is well defined as a functor between \mathbb{C} -linear $\mathcal{H}(S_2)$ -module categories.

All objects in $\operatorname{proj}(\mathcal{O}_0)$ appear as direct sums and direct summands of the elements $\Theta^n_s(P(\varnothing))$ for non-negative integers n. Therefore the additive Karoubi envelope induces an equivalence $\operatorname{Kar}_{\oplus}(\mathcal{DO}_0) \cong \operatorname{proj}(\mathcal{O}_0)$ as \mathbb{C} -linear left $\mathcal{H}(S_2)$ -module categories. \square

Maybe talk about Soergel modules and $\mathcal{H}(S_2)$ -modules vs $\mathrm{Kar}_{\oplus}(\mathcal{H}(S_2))$ -modules

Remark 3.2.10. The morphisms spaces in \mathcal{DO}_0 are graded by the same grading as $\mathcal{H}(S_2)$ in Section 3.1. The equivalence $\mathrm{Kar}_{\oplus}(\mathcal{DO}_0) \cong \mathrm{proj}(\mathcal{O}_0)$ includes a grading of morphisms in $\mathrm{proj}(\mathcal{O}_0)$ Check! and hence a grading morphisms of \mathcal{O} , which is otherwise ungraded.

⁵This relation extends to the analogue of the local barbell-wall relation, as all 'barbell on the right' morphisms in $\operatorname{proj}(\mathcal{O}_0)$ are linear combinations of applications of Θ_s to $p \circ i$, which is 0.

Chapter 4

Two-colour Diagrammatics

The previous chapter had its focus on the symmetric group generated by one element S_2 , which brought about one-colour diagrammatics. We shift our attention to a more complex example by adding an extra generator, that is, another colour. In particular, we consider the case for the affine symmetric group on two elements $\tilde{S}_2 = \langle s, t \mid s^2 = t^2 = 1 \rangle$. Refine this

4.1 Two-colour Diagrammatic Hecke Category

Corresponding to \tilde{S}_2 , we define the two-colour (diagrammatic) Hecke category $\mathcal{H}(\tilde{S}_2)$. This is a (strict) \mathbb{C} -linear monoidal category given by the following isotopy presentation.

Objects in $\mathcal{H}(\tilde{S}_2)$ are generated by formal tensor products of the non-identity elements $s, t \in \tilde{S}_2$. As before, we write objects as words such as $sstttst =: s^2t^3st$ where the tensor product is concatenation, and associate the colour red to s and blue to t. The empty word is the monoidal identity, which we write as \emptyset .

The morphisms are generated by the univalent and trivalent vertices

that are maps $s \to \emptyset$, $ss \to s$, $t \to \emptyset$ and $tt \to t$ respectively. As in the one-colour case, tensor product is horizontal concatenation, composition is appropriate vertical stacking, and we denote the empty diagram $\emptyset \to \emptyset$ by \emptyset . For each colour, these diagrams have the one-colour relations given by (3.1.5). Since we have two colours now, we also need to describe how the colours interact. This is given by the *two-colour relation*

and with red and blue swapped.

Example 4.1.3. Using the one-colour and two-colour relations on the following morphism in Hom(ttsts, tst) we have The last line can be simplified if tensor product is \mathbb{Z} -bilinear

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

$$= 2$$

Talk about this containing $\mathcal{H}(S_2)$

Remark 4.1.4. Notice that the red and blue lines never cross as no generators that allow crossings. This is a consequence of working over affine S_2 in which the generators s and t have no relation. Mention example of crossing and S_3 .

Definition 4.1.5. For a group with a presentation in terms of generators and relations, the *length* of a product of generators is the number of generators in the product. We say that a product of generators is *reduced* if it's length cannot be shortened with relations.

In \tilde{S}_2 products can be shortened by the relation $s^2=t^2=1$. For instance, sttsts is not reduced because it is equal to ts which is reduced. Notice that for \tilde{S}_2 each element can be written uniquely as a reduced product of generators. This is true since otherwise we have two distinct reduced products for the same element in \tilde{S}_2 so they must be related by $s^2=t^2$. This means they can be reduced further by $s^2=t^2=1$, which contradicts minimality of their length. Note that the reduced products in \tilde{S}_2 are either the identity or alternating products of s and t.

Notice that there is a notational similarity between products in the group and words in $\mathcal{H}(\tilde{S}_2)$. This motivates the following definitions. Let $\phi: (\text{ob}(\mathcal{H}(\tilde{S}_2)), \otimes) \to (\tilde{S}_2, *)$ be the monoid homomorphism mapping $\varnothing \mapsto 1$, $s \mapsto s$ and $t \mapsto t$. Also define the function $\psi: \tilde{S}_2 \to \text{ob}(\mathcal{H}(\tilde{S}_2))$ to map elements $x \in \tilde{S}_2$ to the tensor product of s and t in $\mathcal{H}(\tilde{S}_2)$ corresponding to the reduced product of s in \tilde{S}_2 . This is well defined because reduced products are unique and two different reduced products cannot equal the same element of \tilde{S}_2 . Note that the image $\psi(\tilde{S}_2)$ is the set containing \varnothing and words of alternating s and t. The composition $\psi \phi: \mathcal{H}(\tilde{S}_2) \to \mathcal{H}(\tilde{S}_2)$ maps words w to the tensor of s and t corresponding to the reduced product of $\phi(w)$, and $\phi \psi$ is the identity map on \tilde{S}_2 .

The following definition is a more general version of Definition 3.1.8.

Definition 4.1.6 (Subexpression). Given a word w of length n, a subexpression e is a binary string of length n. A subexpression can be applied to produce an word w(e), which is w where terms corresponding to 0 in e are replaced with \varnothing . For $1 \le i \le n$, we write w(e,i) for the result of the first i terms of e applied to the first i terms in w. Particularly $w(e,0) = \varnothing$ and w(e,n) = w(e).

For example, in $\mathcal{H}(\tilde{S}_2)$, if w = sttts and e = 11001 then $w(e) = st\varnothing\varnothing s = sts$ and $w(e,3) = sts(110) = st\varnothing = st$ in $\mathcal{H}(\tilde{S}_2)$.

Let the length of a word be the number of generators in its tensor product. As before, given an object w and a subexpression e of w, we label each of the n terms by one of U_0, U_1, D_0, D_1 . Let $i \geq 0$, and write x for the i-th term of w. We label the i-th term U_* if $\psi\phi(w(e,i-1)\otimes x)$ is longer than $\psi\phi(w(e,i-1))$. In other words we write U_* if the next term of w will make $\psi\phi$ applied to the partially evaluated subexpression longer, regardless of the i-term of e. We label D_* if $\psi\phi(w(e,i-1)\otimes x)$ is longer than $\psi\phi(w(e,i-1))$. The label's subscript is the i-th term of e. Note that this construction is well defined because $\psi\phi(w(e,i-1)\otimes x)=\psi(\phi(w(e,i-1))*\phi(x))=\psi(\phi(w(e,i-1))*x)$ is always either longer or shorter, since the last element of the reduced product is either the same as x or different. When they are the same, the word is shorter via $s^2=t^2=1$, and when they are different it is longer as no relations can make it shorter.

Remark 4.1.7. This description of the labels (via. reduced products) is more akin to the definition for general Coxeter groups than in Section 3.1.

Example 4.1.8. Consider the word w = sttst and subexpression e = 10011. The labels can be constructed as in the following table.

Term i	1	2	3	4	5
Partial w	s	st	stt	stts	sttst
Partial e	1	10	100	1001	10011
w(e,i)	s	$s\varnothing$	$s\varnothing\varnothing=s$	$s\varnothing\varnothing s=ss$	$s\varnothing\varnothing st=sst$
Labels	U_1	U_1U_0	$U_1U_0U_0$	$U_1U_0U_0D_1$	$U_1U_0U_0D_1U_1$

Definition 4.1.9. The light leaf $LL_{w,e} \in \text{Hom}(w, \psi\phi(w(e)))$ for a word w and a subexpression e is defined iteratively as follows. Let $LL_{\varnothing,\varnothing} = \varnothing$ be the empty diagram. Given appropriate subwords w' and e' of w and e respectively, and if the next terms are x in w and i in e, the light leaf $LL_{w'x,e'i}$ is one of

$$\begin{array}{c|c}
 & \cdots \\
 & LL_{w',e'} \\
 & \cdots \\
 & U_0
\end{array}, \begin{array}{c|c}
 & \cdots \\
 & LL_{w',e'} \\
 & \cdots \\
 & U_1
\end{array}, \begin{array}{c|c}
 & \cdots \\
 & LL_{w',e'} \\
 & \cdots \\
 & D_0
\end{array}, \begin{array}{c|c}
 & LL_{w',e'} \\
 & \cdots \\
 & \cdots \\
 & D_1
\end{array}$$

$$(4.1.10)$$

corresponding to the next label. The purple strands are red if x = s and blue if x = t.

Notice that the codomain of a light leaf $LL_{w,e}$ is the object $\psi\phi(w(e))$. So if the next label is U_* then the codomain of $LL_{w',e'}$ does not end with the colour corresponding to x, and if the next label is D_* the codomain of $LL_{w',e'}$ ends with a strand with the colour corresponding to x. This implies the recursive definition in the diagram above is consistent. Note that in the case of D_* , one of the black strands in the domain of $LL_{w',e'}$ must have the colour of x in order for the colour to appear in its codomain.

Example 4.1.11. Following from Example 4.1.8, with w = sttst, e = 10011 and labels $U_1U_0U_0D_1U_1$, the light leaf $LL_{w,e}$ is build as follows.

We can define double leaves exactly as we did in Definition 3.1.13.

Definition 4.1.12. Let $\overline{LL}_{w,e}$ denote the vertical reflection of $LL_{w,e}$. The double leaf for words w, y in $\mathcal{H}(\widetilde{S}_2)$ is a composition

$$\mathbb{LL}_{f,e} := \overline{LL}_{y,f} \circ LL_{w,e} : w \to y$$

for subexpressions e of w and f of y such that $\psi \phi(w(e)) = \psi \phi(f(y))$.

Diagrammatically these are morphisms from w to y factoring through $\psi\phi(w(e)) = \psi\phi(f(y)) \in \psi(\widetilde{S}_2)$,

$$\sum_{LL_{w,e}} \frac{\overline{LL}_{y,f}}{\psi \phi(w(e))} = \psi \phi(f(y)) .$$

Example 4.1.13. Let w = sst with the subexpression e = 101 and y = tstst with the subexpression f = 01001. The corresponding light leaves are

$$LL_{w,e} = \bigcap_{U_1 D_0 U_1} \text{ and } LL_{y,f} = \bigcup_{U_0 U_1 U_0 D_0 U_1} .$$

Then the double leaf $\mathbb{LL}_{f,e} = \overline{LL}_{y,f} \circ LL_{w,e} : sst \to tstst$, factoring through st, is

$$\overline{LL}_{y,f}$$
 $LL_{w,e}$

As with the one-colour case, the set of double leaves $\mathbb{LL}(w,y)$ from words w to y in $\mathcal{H}(\tilde{S}_2)$ form a basis for $\mathrm{Hom}(w,y)$ over $\mathbb{Z}[\ \ \ \ \ \ \ \]$. The Hom spaces are graded such that the univalent vertices have degree 1 and trivalent vertices have degree -1 for either colour. Finally we have a similar theorem to Theorem 3.1.17 for \tilde{S}_2 .

Remark 4.1.14. The construction of the diagrammatic Hecke category, light leaves, Theorem 3.1.15 and Theorem 3.1.17 all generalise to general Coxeter groups. The details are found in [EW16].

4.2 Diagrammatic Tilt(\mathfrak{sl}_2)

Something something about Tilt Something something about extending $\mathcal{H}(\tilde{S}_2)$ from \mathbb{Z} to \mathbb{C} .

Definition 4.2.1. Let $\mathcal{DT}(\mathfrak{sl}_2)$ be the \mathbb{C} -linear left $\mathcal{H}(\tilde{S}_2)$ -module category with elements generated by the monoidal identity \emptyset of $\mathcal{H}(\tilde{S}_2)$, and morphisms generated by the empty diagram \emptyset . The action of $\mathcal{H}(\tilde{S}_2)$ on the left is left concatenation for objects and morphisms. The relations on diagrams in $\mathcal{H}(\tilde{S}_2)$ follow through to diagrams in $\mathcal{DT}(\mathfrak{sl}_2)$. Additionally, we imagine a wall on the right of diagrams and impose the local wall-annihilation relations

$$= \qquad = 0. \tag{4.2.2}$$

In this section we just write \mathcal{DT} for this category.

Example 4.2.3. The morphism in Example 4.1.3 collapses to 0 because all the diagrams have either blue or barbell on the right.

TODO: Another example clarifying 'blue on the right'

Lemma 4.2.4. Let $\pi: \operatorname{mor}(\mathcal{H}(\widetilde{S}_2)) \to \operatorname{mor}(\mathcal{DT})$ be the projection map which takes a morphism to the result of its action on the empty diagram \varnothing . Then the image $\pi(\mathbb{LL}(w,y))$ without zero morphisms is a basis for $\operatorname{Hom}_{\mathcal{DT}}(w,y)$ as a \mathbb{C} -module.

Since $\mathcal{H}(S_2)$ appears inside $\mathcal{H}(\widetilde{S}_2)$ as both colours, Lemma 3.2.7 gives explicit isomorphisms $s \otimes s \cong s \oplus s$ and $t \otimes t \cong t \oplus t$.

Say something here?

The following result states that \mathcal{DT} is indeed a diagrammatic incarnation of Tilt(\mathfrak{sl}_2). Be clear that I don't understand Tilt very well.

Theorem 4.2.5 (???). The diagrammatic category $\operatorname{Kar}_{\oplus}(\mathcal{DT}(\mathfrak{sl}_2))$ and $\operatorname{Tilt}(\mathfrak{sl}_2)$ are equivalent as \mathbb{C} -linear $\mathcal{H}(\widetilde{S}_2)$ -module categories.

Check all of this & Put precise references Maybe write description as a soergel module outside the proof

Proof. As a shorthand, we write Tilt for Tilt(\mathfrak{sl}_2). The work of Soergel in [Soe90, Section 2.4] shows that $\operatorname{proj}(\mathcal{O}_0)$ is a Soergel module, i.e. it has a left action of the category of Soergel bimodules defined by applications of the translation functors Θ_{\varnothing} , $\Theta_s \in \operatorname{End}(\mathcal{O})$ (corresponding to elements in S_2). Explains what this means, how its related to the $\mathcal{H}(S_2)$ module category We will construct a functor that will map faithfully into a full subcategory of $\operatorname{proj}(\mathcal{O}_0)$, which will become the whole projective category under the additive Karoubi envelope. This mimics the strategy in the proof for Theorem 3.1.17.

Define the functor $F: \mathcal{DO}_0 \to \operatorname{proj}(\mathcal{O}_0)$ that sends the empty object \varnothing to the trivial module $P(\varnothing)$, and the Soergel module action corresponding to s to the translation functor Θ_s . Then the object s maps to $\Theta_s(P(\varnothing)) =: P(s)$, and for example s^3 maps to $\Theta_s^3(P(\varnothing)) = \Theta_s\Theta_s\Theta_s(P(\varnothing))$. In order for F to be functorial, it must map identity diagrams $s^n \to s^n$ to $\mathrm{id}_{\Theta_s^n(P(\varnothing))}$. On non-identity maps, we let $F(\ \) = i$ be the inclusion $P(\varnothing) \to P(s)$ and $F(\ \) = p$ be the projection $P(s) \to P(\varnothing)$. The mapping of F is depicted by the following picture.

Now [Maz09, Proposition 5.90] shows that there is a natural isomorphism $\Theta_s\Theta_s\cong\Theta_s\oplus\Theta_s$ analogous to the isomorphism $s\otimes s\cong s\oplus s$ given in the proof of Lemma 3.2.7. We will eventually take the additive closure of \mathcal{DO}_0 , so it does not hurt to use these isomorphisms. Given a morphism in \mathcal{DO}_0 from s^n to s^m , repeated precomposition and postcomposition with $s\to s\oplus s$ and $s\oplus s\to s$ from Lemma 3.2.7 results in a matrix of morphisms with domain and codomain in $\{\varnothing,s\}$. By (3.1.5d) and (3.2.4) we can draw the entries of the matrix without floating diagrams, so the only diagrams are \bullet and \bullet up to linear combinations. Therefore, extending by linearity, the picture above completely describes the image of F. We can similarly pull back the matrices of morphisms in $\operatorname{proj}(\mathcal{O}_0)$ to a morphism between $\Theta_s^n(P(\varnothing))$ and $\Theta_s^m(P(\varnothing))$ via the analogous maps defining $\Theta_s\Theta_s\cong\Theta_s\oplus\Theta_s$.

From classical results e.g. [Maz09, Proposition 5.84 and Lemma 5.87], it follows that Θ_s is a Frobenius object in the category of endofunctors of \mathcal{O} . Then there are unit, counit, multiplication and comultiplication natural transformations satisfying coherence relations in the Frobenius object structure. Applying these to $P(\varnothing)$ result in the same relations in $\operatorname{proj}(\mathcal{O}_0)$ for $P(\varnothing)$, P(s) and $\Theta_s^2(P(\varnothing))$. Note that the projection and inclusion maps above are exactly the unit and counit of Θ_s evaluated at $P(\varnothing)$, and the trivalent vertices provided by projecting the isomorphisms in Lemma 3.2.7 are exactly the multiplication and comultiplication maps. Furthermore, in [Soe90, Section 2.4] we see that $p \circ i = 0$ in $\operatorname{proj}(\mathcal{O}_0)$ which is analogous¹ to the barbell-wall relation (3.2.4). Hence all the relations in \mathcal{DO}_0 are preserved by F. By construction, F preserves \mathbb{C} -linear combinations and the Soregel module structure in [Soe90], so F is well defined as a functor between \mathbb{C} -linear $\mathcal{H}(S_2)$ -module categories.

We now prove that F is fully faithful. It follows from Lemma 3.2.7 and the description of $P(\varnothing)$ and P(s) in [Maz09, Section 5.2] that the image of $\ ^{\dagger}$ and $\ ^{\dagger}$ generate all morphisms of the form $\Theta_s^n(P(\varnothing)) \to \Theta_s^m(P(\varnothing))$. Hence F is full. Now the mapping of F on all morphism spaces are determined by those depicted in the above picture. So, for faithfulness, it suffices to compare the \mathbb{C} -dimensions of morphism spaces between objects shown in the picture. By Lemma 3.2.6, $\operatorname{Hom}(\varnothing,\varnothing)$ has a basis $\{\varnothing = \operatorname{id}_\varnothing\}$, $\operatorname{Hom}(s,\varnothing)$ has a basis $\{\ ^{\dagger}\}$, $\operatorname{Hom}(\varnothing,s)$ has a basis $\{\ ^{\dagger}\}$, and $\operatorname{Hom}(s,s)$ has a basis $\{\operatorname{id}_s,\ ^{\dagger}\circ\ ^{\dagger}\}$. The bases for the corresponding morphism spaces in $\operatorname{proj}(\mathcal{O}_0)$ are exactly those in the

¹This relation extends to the analogue of the local barbell-wall relation, as all 'barbell on the right' morphisms in $\operatorname{proj}(\mathcal{O}_0)$ are linear combinations of applications of Θ_s to $p \circ i$, which is 0.

image Ref? - that these are actually the bases of the hom spaces, so these dimensions coincide. Therefore F is fully faithful.

All objects in $\operatorname{proj}(\mathcal{O}_0)$ appear as direct sums and direct summands of the elements $\Theta^n_s(P(\varnothing))$ for non-negative integers n. Therefore the additive Karoubi envelope induces an equivalence $\operatorname{Kar}_{\oplus}(\mathcal{DO}_0) \cong \operatorname{proj}(\mathcal{O}_0)$ as \mathbb{C} -linear left $\mathcal{H}(S_2)$ -module categories. \square

Comment on grading?

Bibliography

- [EW16] Ben Elias and Geordie Williamson. "Soergel Calculus". In: Representation Theory of the American Mathematical Society 20 (Oct. 2016). DOI: 10.1090/ert/481.
- [Eti+15] Pavel Etingof et al. *Tensor Categories*. Vol. 205. Mathematical Surveys and Monographs. American Mathematical Society, 2015. DOI: http://dx.doi.org/10.1090/surv/205.
- [Hum08] James E. Humphreys. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. Graduate Studies in Mathematics. American Mathematical Society, 2008. DOI: http://dx.doi.org/10.1090/gsm/094.
- [Jon21] Vaughan F. R. Jones. "Planar algebras". In: New Zealand Journal of Mathematics 52 (2021), pp. 1–107. DOI: 10.53733/172. URL: https://nzjmath.org/index.php/NZJMATH/article/view/172.
- [Lib08] Nicolas Libedinsky. "Sur la catégorie des bimodules de Soergel". In: Journal of Algebra 320.7 (2008). (French), pp. 2675–2694. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2008.05.027.
- [ML98] Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed. Vol. 5. Graduate Texts in Mathematics. Springer, 1998. DOI: https://doi.org/10.1007/978-1-4757-4721-8.
- [Maz09] Volodymyr Mazorchuk. Lectures on $\mathfrak{sl}_2(\mathbb{C})$ -Modules. 2nd ed. Vol. 5. Graduate Texts in Mathematics. IMPERIAL COLLEGE PRESS, 2009. DOI: 10.1142/p695.
- [RW18] Simon Riche and Geordie Williamson. "Tilting Modules and the *p*-Canonical Basis". In: *Asterisque* 397 (2018). DOI: 10.24033/ast.1043.
- [Soe90] Wolfgang Soergel. "Kategorie \mathcal{O} , Perverse Garben Und Moduln Über Den Koinvariantez Zur Weylgruppe". In: Journal of the American Mathematical Society 3.2 (1990), pp. 421–445. ISSN: 08940347, 10886834. URL: http://www.jstor.org/stable/1990960.

[Soe98] Wolfgang Soergel. "Combinatorics of Harish-Chandra modules". In: Representation Theories and Algebraic Geometry. Ed. by Abraham Broer, A. Daigneault, and Gert Sabidussi. Springer Netherlands, 1998, pp. 401–412. ISBN: 978-94-015-9131-7. DOI: 10.1007/978-94-015-9131-7_10. URL: https://doi.org/10.1007/978-94-015-9131-7_10.