## 0.1 Graphs are Matroids

**Theorem 0.1.** Let G be a graph and  $\mathscr{I}$  be the set of all cyclefree subgraphs of G. Show that if we have the pair  $(E,\mathscr{I})$  as defined above by our graph, we have a matroid. In other words, that the cycle matroid M(G) of a graph is a matroid.

*Proof.* Let  $A, B \in \mathscr{I}$  with |A| = |B| + 1. To prove I3 of the definition of a matroid, We show that for some  $a \in A$ ,

 $B \cup \{a\} \in \mathscr{I}$ , we should consider  $B \cup \{a\}$  for each  $a \in A$ .

Now suppose |A| > |B| and that |A| = |B| + 1

Let  $|A \cap B| = s$ ,  $|A \setminus B| = r$ , |A| = s + r and |B| = s + r - 1

So  $|B \setminus A| = r - 1$ 

Suppose  $A \setminus B = \{a_1, a_2, ...., a_r\}$ 

Suppose  $B \cup \{a_i\} \notin \mathscr{I}$  for each  $i \in \{1, 2, ...\}$ 

Consider  $a_i$  for i=1,2,... there must be a path  $b_{i1},b_{12},...,b_{ir}$  of edges in B such that  $a_i$  make a cycle



Figure: 1.4.2

**Notation:**  $P(b_j, b_k)$  denotes a set of edges forming path in B from the edges  $b_j$  to  $b_k$  But  $P(b_j, b_k) \cap A$  is not necessarily empty. If  $P(b_j, b_k) \subset A$  then  $P(b_j, b_k) \cup \{a_i\}$  would be a cycle, then A would not be in  $\mathscr{I}$ , so at least one of the  $b_i \in P(b_j, b_k)$  is contained in  $B \setminus A$ .

Given  $A = \{a_1, ..., a_r\}$  for each  $a_i$  associate a  $b_i \in B \setminus A$ . Let  $\hat{B} = \{b_1, ..., b_r\}$  Case 1: The  $b_i$ 's are distinct

The  $b_i$ 's are distinct and as shown previously each of the  $b_i$ 's must be in  $|B \setminus A|$  in order to avoid a circuit in A.

Therefore,  $|B| \ge A$ . Contradicting |A| > |B|.

Hence, I3 holds.

Case 2: When the  $b_i$ 's are not all distinct. Let  $b_1 = b_2$ .



Picture figure 1.4.3 in place of figure 1.4.1 above and observe how this would affect the graph of B in figure 1.4.2

Figure: 1.4.3

We use the same argument as in Case 1 only here we need two distinct  $b_i \in P(b_j, b_k)$  where  $b_i \in B \setminus A$  such that  $P(b_j, b_k) \cup \{a_i\}$  is a cycle. This can be seen in the diagram above, there must be another edge in the union of the paths which is in  $B \setminus A$  or else we get a cycle in A. Otherwise,  $P(b_j, b_k) \subset A$  then  $P(b_j, b_k) \cup \{a_i\}$  would be a circuit and then  $A \notin I$ . Therefore,  $|B| \geq |A|$ , and we have a contradiction.

Hence I3 holds. □