МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙГОСУДАРСТВЕННЫЙТЕХНИЧЕСКИЙУНИВЕРСИТЕТ» ФАКУЛЬТЕТ

ЭЛЕКТРОННО-ИНФОРМАЦИОННЫХ СИСТЕМ

Кафедра интеллектуальных информационных технологий

Отчет по лабораторной работе №3

Специальность ИИ-22

Выполнила Леваневская Н.И. студентка группы ИИ-22

Проверил А.А. Крощенко, ст. преп. кафедры ИИТ, «——» ———— 2024 г.

Вариант 11

Цель работы: осуществить обучение нейросетевого детектора для решения задачи обнаружения дорожных знаков.

Задания:

- 1. Подготовить обучающую и тестовые выборки (сырые данные файл signs.zip, содержащий обучающие и тестовые данные по нескольким группам знаков, каждая из которых в свою очередь содержит несколько классов знаков). Выбрать группу знаков (произвольно, но согласуя с возможностью демонстрации на видеофрагментах, указанных в п. 3) и отфильтровать обучающие / тестовые данные в соответствии с выбранной группой. Преобразовать имеющиеся csv-файлы с gt-боксами к нужному формату входных данных, принимаемых обучающими алгоритмами для моделей семейства YOLO;
- Для заданной архитектуры нейросетевого детектора организовать процесс обучения на выборке дорожных знаков. Оценить эффективность обучения на тестовой выборке (mAP);
- Реализовать визуализацию работы детектора из пункта 1 (обнаружение знаков на отдельных фотографиях и на предложенных видеофрагментах - "Брест день.mp4", "Брест ночь.mp4");
- Оформить отчет по выполненной работе, залить исходный код и отчет в соответствующий репозиторий на github.

Вариант	Детектор			
11	YOLOv8m			

Код программы:

```
from ultralytics import YOLO

model = YOLO('yolov8m.pt')

model.train(
    data='/content/sign/data.yaml',
    epochs=10,
    imgsz=1280,
    batch=8,
    verbose=True,
    plots=True,
    project='/content/drive/MyDrive/sign',
    name='sign',
)
```

Результаты обучения:

epoch	time		train/box_loss		train/cls_loss	train/dfl_loss	metrics/precision(B)	metr	rics/recall(B)	metrics/m	AP50(B)	metrics/mA	P50-95(B
1		1156.92	156.92 1.29194		4.33587	0.97636	0.57516		0.54851		0.52675		0.32548
2		2278.79	1.24	145	1.23293	0.96952	0.61019		0.66399		0.65766		0.41629
3		3394.37	1.21	788	1.02988	0.95266	0.61378		0.70706		0.70968		0.44023
4		4505.25	1.19	9035	0.91769	0.9484	0.64457		0.75806		0.74108		0.46453
5		5616.61	1.17	7033	0.8545	0.94018	0.65969		0.74358		0.7676		0.48406
6		6727.96	1.12	2737	0.80837	0.92942	0.7015		0.76753		0.79795		0.50799
7		7839.18	1.11	1016	0.74394	0.92301	0.70659		0.79876		0.80391		0.50294
8		1153.63	1.10	204	0.73721	0.90865	0.71413		0.75483		0.80795		0.52233
9		2306.71	1.07	367	0.67095	0.90238	0.73989		0.79251		0.82054		0.52454
10	10 3446.69		1.04	1011	0.6407	0.89256	0.77288		0.77982		0.82894		0.53363
epoch		val/box	_loss	val/d	cls_loss	val/dfl_loss	Ir/pg0		lr/pg1	I	r/pg2		
	1		1.33766		1.23236	0.96837	0.00010	761	0.000	10761	0.0	00010761	
	2		1.26337		1.0305	0.94586	0.000193	964	0.0001	93964	0.00	00193964	
	3		1.29198		0.98578	0.95243	0.000259	001	0.0002	59001	0.00	00259001	
	4		1.29458		0.96208	0.95575	0.000227	069	0.0002	27069	0.00	00227069	
	5		1.28951		0.8899	0.9533	0.000195	092	0.0001	95092	0.00	00195092	
	6		1.25977		0.842	0.94356	0.000163	115	0.0001	63115	0.00	00163115	
	7		1.26128		0.78179	0.93656	0.000131	138	0.0001	31138	0.00	00131138	
	8		1.23136		0.80868	0.93223	9.92	-05	9.	92E-05		9.92E-05	
	9		1.26233		0.78037	0.93664	6.72E	-05	6.	72E-05		6.72E-05	
	10		1.26645		0.75594	0.93763	3.528	-05	3.	52E-05		3.52E-05	

Вывод: на практике научилась осуществлять обучение нейросетевого детектора для решения задачи обнаружения дорожных знаков.