

CURSO DE ENGENHARIA DE COMPUTAÇÃO

Disciplina: Prática em Fábrica de Software III

TEORIA DE SINAIS

Prof. M.e Alexandre Tannus

Anapolis - 2019.2 Associação Educativa Evandélica

Introdução

Classificação dos sinais

Sistema de Aquisição de Sinais

Conversão Analógico-Digital (A/D)

Introdução

- Sinal
 - ► Função que representa uma variável física e contém a informação sobre a dinâmica de um dado fenômeno

Introdução

Por que processar sinais?

- ► Remoção de ruído
- ► Extração de características de interesse
- Classificação
- ► Encontrar relações de entrada/saída
- ► Compressão de dados
- ► Predição de valores futuros Associação Educativa Evangélica

Classificação de Sinais

- Contínuos vs Discretos no tempo
- ► Analógicos vs Digitais
- Determinísticos vs aleatórios

► Periódicos vs não-periódicos

Sinal Contínuo vs Discreto no tempo

- Contínuo
 - definidos para valores contínuos de tempo.
 - ► Exemplo: temperatura

- Discreto
 - definidos para valores discretos de tempo.
 - Exemplo: cotação diária de uma determinada ação

Sinal Analógico vs Digital

- Analógico
 - ▶ amplitude pode assumir valor dentro de uma faixa contínua.

- Digital
 - ➤ amplitude pode assumir M valores dentro de uma faixa de amplitudes (sinal M-ário).

Associação Educativa Evangélica

Sinal Determinístico vs Aleatório

- Determinístico
 - ▶ Pode ser completamente descrito por uma equação ou fórmula matemática
 - ► Exemplo: $x(t) = X \sin(2\pi f_0 t + \Theta)$

Sinal Determinístico vs Aleatório

- Aleatório
 - ➤ Somente pode ser descrito por uma distribuição probabilística ou seus parâmetros (e.g.: valor médio, variância)

Sistema de Aquisição de Sinais

- ► Conversão de uma grandeza física em outra (usualmente tensão ou corrente)
- Aplicação de um fator de Ganho
- Remoção de freqüências que não são de interesse
- ▶ Passagem do domínio contínuo para o discreto

Aquisição de Sinais

Conversão de uma grandeza física em outra (usualmente tensão ou corrente)

Amplificação

Aplicação de um fator de Ganho

Filtragem

Remoção de freqüências que não são de interesse

Digitalização

Passagem do domínio contínuo para o discreto e quantização.

Características importantes: faixa de entrada, resolução, taxa máxima de amostragem

Conversor A/D - Amostragem

Amostragem - Teorema de Nyquist

Conversor A/D - Faixa de entrada

► Corresponde à faixa de amplitude que possui representação no conversor A/D.

Conversor A/D - Resolução

Corresponde ao número de bits utilizados para representar valores de amplitude do sinal

Resolução: 3 bits

Amplificador com Ganho: A = 10000

Conversor A/D: b = 8bits

Faixa de entrada do Conversor A/D: $V_{max} = 5V$

- Qual a faixa de entrada do sistema de aquisição?
- Quantos níveis tem este conversor A/D?
- Qual a resolução na entrada?

Amplificador com Ganho: A = 10000

Conversor A/D: b = 8bits

Faixa de entrada do Conversor A/D: $V_{max} = 5V$

Qual a faixa de entrada do sistema de aquisição?

Amplificador com Ganho: A = 10000

Conversor A/D: b = 8bits

Faixa de entrada do Conversor A/D: $V_{max} = 5V$

▶ Qual a faixa de entrada do sistema de aquisição?

$$V_{max} = \frac{5}{10000} = 500 \mu V$$

Amplificador com Ganho: A = 10000

Conversor A/D: b = 8bits

Faixa de entrada do Conversor A/D: $V_{max} = 5V$

- ▶ Qual a faixa de entrada do sistema de aquisição?
 - $ightharpoonup rac{V_{max}}{A} = rac{5}{10000} = 500 \mu V$
- Quantos níveis tem este conversor A/D?

Amplificador com Ganho: A = 10000

Conversor A/D: b = 8bits

Faixa de entrada do Conversor A/D: $V_{max} = 5V$

▶ Qual a faixa de entrada do sistema de aquisição?

$$V_{max} = \frac{5}{10000} = 500 \mu V$$

- Quantos níveis tem este conversor A/D?
 - $ightharpoonup 2^b = 2^8 = 256$

Amplificador com Ganho: A = 10000

Conversor A/D: b = 8bits

Faixa de entrada do Conversor A/D: $V_{max} = 5V$

Qual a faixa de entrada do sistema de aquisição?

$$V_{max} = \frac{5}{10000} = 500 \mu V$$

- Quantos níveis tem este conversor A/D?
 - $ightharpoonup 2^b = 2^8 = 256$
- ▶ Qual a resolução na entrada?

Amplificador com Ganho: A = 10000

Conversor A/D: b = 8bits

Faixa de entrada do Conversor A/D: $V_{max} = 5V$

Qual a faixa de entrada do sistema de aquisição?

$$V_{max} = \frac{5}{10000} = 500 \mu V$$

Quantos níveis tem este conversor A/D?

$$\triangleright$$
 2^b = 2⁸ = 256

▶ Qual a resolução na entrada?

$$ightharpoonup \frac{500\mu V}{256} = 1,95\mu V$$

