

Content

1. Machine learning

- classification
- regression
- overfitting, regularization, hyperparameters
- datasets
- 2. Decision trees
- 3. Random Forests

Machine learning

- make the computer learn how to perform some task, instead of instructing it on how to do the task
- learn from data and automatically
- typical tasks are
 - classification
 - regression
 - clustering
 - dimensionality reduction

Example classification

The old way: rule-based

With machine learning

- Learn automatically from the *data*.
- Data may be the table of word counts + class of email:

buy	offer	credit	honey	•••	hello	regards	is spam ?
1	1	1	0		0	0	yes
0	1	0	0		1	0	no
:							:
0	0	0	2		1	1	no

- ullet each row is an email and its class : a *sample*, pair (x_i,y_i)
- $x_1 = [0,0,1,3\dots 2,0]$, $y_1 = 0$, yes = 1, no = 0
- ullet supervised learning : find the parameters of a mapping $f(x)=\hat{y}$ such that $f(x_i)=\hat{y}_i$ equal to y_i for most of i's
- $y_i, \hat{y} \in \{0,1\}$, discrete
- f is a classifier

Example regression

- MPG = milles per gallon vs. car weight and horsepower
- f(hp,w) predicts mpg
- ullet we want $\hat{y_i}$ close to y_i
- y_i and \hat{y} continuous
- f is a regressor

$\mathbf{Dataset}\left(X,y\right)$

X is a matrix, y is a vector (groundtruth)

- ullet train : find parameters of f
- ullet test : does f perform well on unseen samples ?
- why a test set? consider a k-Nearest Neighbors classifier:
 - \circ memorizes all the training samples x_i
 - \circ for an unseen x find its k nearest neighbors $x_{j_1}, x_{j_2} \dots x_{j_k}$ in the training set
 - $\hat{y} = \mathsf{most}$ frequent label in $\{y_{j_1}, y_{j_2} \dots y_{j_k}\}$
 - 1-NN is perfect on the training set
- validation : to set the value of *hyperparameters*, but we won't use it for the sake of simplicity and use instead the test set

Hyperparameters

Does money make happiness (at country level)?

GDP = gross domestic product = *producte interior brut* GDP per capita = *renta per càpita* = GDP / population Least squares *linear* regression : θ_0, θ_1 that minimize sum of squared vertical differences

$$rg\min_{ heta_0, heta_1} \sum_i || heta_1 x_i + heta_0 - y_i||^2$$

 θ_1 slope, θ_0 intersect 4.8

The goal of regression is to predict life satisfaction for *new countries*

New samples ■ arrive once we have learned the model

The 3 new richest countries heavily change the learned model (dotted blue line). Maybe they are **outliers**, samples not following the "normal" distribution.

Is the model form, a straight line, is too simple for this problem?

Let's try a high-degree polynomial of degree p=8 instead of degree 1 :

$$ext{Life satisfaction} = \sum_{k=0}^p heta_k \cdot GDP^k$$

Overfitting: model fits well to training data but won't fit to new samples with GDP > 60K USD or < 10K. The former simple model of a line is better.

Regularization: constrain the model f to reduce overfitting and influence of outliers. A simple model is also a way to regularize. Another is hyperparmeters tunning.

Hyperparameters control the amount of regularization, for a given model:

$$\underset{\theta_0,\theta_1}{\operatorname{arg\,min}} \sum_{i} ||\theta_1 x_i + \theta_0 - y_i||^2 + \lambda \, \theta_1^2 \tag{1}$$

 λ is an hyperparameter: a small, positive value makes $heta_1$ smaller, better fit new data.

Our datasets

The Sonar dataset

- To predict whether or not an object is a mine or a rock given the strength of sonar returns at 60 angles, read description
- 208 samples (rows), 61 columns = 60 angles plus class
- CSV file sonar.all-data, class is character M or R
- used to illustrate a certain messy implementation of random forests in Python that we will improve and extend

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def load_sonar():
 df = pd.read_csv('/home/joan/Downloads/sonar.all-data', header=None)
 X = df[df.columns[:-1]].to_numpy()
 y = df[df.columns[-1]].to_numpy(dtype=str)
 y = (y=='M').astype(int) # M = mine, R = rock
 return X, y
X, y = load\_sonar()
idx_rocks = y==0
idx_mines = y==1
plt.close('all')
plt.figure(), plt.plot(X[idx_rocks].T,'b'), plt.title('all samples of class rock')
plt.figure(), plt.plot(X[idx_mines].T,'r'), plt.title('all samples of class mine')
```


The Iris dataset

Of a set of 150 flowers, description

- 4 measures or *features*: length, width of sepal, petal
- 3 classes : iris setosa, iris virginica, iris versicolor
- 50 samples per class.


```
import numpy as np
import sklearn.datasets

iris = sklearn.datasets.load_iris()
print(iris.DESCR)
X, y = iris.data, iris.target
# X 150 x 4, y 150 numpy arrays
```

No pair of features can perfectly separate the 3 classes

Iris Data (red=setosa,green=versicolor,blue=virginica)

Decision trees

- model for both classification and regression
- a random forest contains a collection of decision trees
- training a decision tree is simple
- classifier is readily interpretable

A decision tree

- parent node: (feature index, threshold)
- leaf node: predicted class

Dataset (X, y): X is a matrix, y is a vector (groundtruth)

For the sake of simplicity we won't make validation set to optimize the hyperparameters

How to learn = build a decision tree

- 1. make a root node
- 2. give it the whole train set (X, y)
- 3. find the pair feature index k, threshold v, $1 \leq k \leq m$, $v \in X[k]$, such that if

$$I_{ ext{left}} = \{i \mid X[i,k] < v\} \;,\; I_{ ext{right}} = \{i \mid X[i,k] \geq v\}$$

then $y[I_{
m left}]$, $y[I_{
m right}]$ are the most "pure" = classes are better separated

- 4. make a left and right children
- 5. give $(X[I_{\mathrm{left}}], y[I_{\mathrm{left}}])$ to the left child, and $(X[I_{\mathrm{right}}], y[I_{\mathrm{right}}])$ to the right one
- 6. for each child, go to step 3 if
 - input dataset has at least min_size samples
 - we have not reached max_depth depth
 - \circ labels y_I are not all the same

Parameters, learned:

- (petal length, 2.45)
- (petal width, 1.75)

Hyperparameters, set before learning:

- $\max_{depth} = 3$
- $min_size = 60$

How to measure "most pure"?

- ullet pure dataset (X,y) : all samples belong to the same class, $y_i=c\ orall i$
- Gini index is measure of *impurity* of a dataset

$$G = 1 - \sum_{c=1}^C p_c^2 \;\;,\;\; p_c = rac{1}{m} \sum_{i=1}^m 1_{y_i = c}$$

- ullet C number of classes, m number of samples, p_c frequency of class c in y
- ullet best pair (k,v) minimizes this cost function

$$J(k,v) = rac{m_{
m left}}{m_{
m left} + m_{
m right}} \, G_{
m left} + rac{m_{
m right}}{m_{
m left} + m_{
m right}} \, G_{
m right}$$

Entropy is an alternative measure of impurity

$$H = -\sum_{c=1,\;p_c>0}^C p_c \log p_c$$

Regularization in decision trees

Note: decision boundaries are perpendicular to axes because at each node we ask if x[k] < v or $x[k] \ge v$ to go left or right

Instability

Just rotating the samples makes the problem more difficult, won't generalize well probably

Too sensitive to small data variations

Too sensitive to small data variations

Random Forests

- An **ensemble classifier / regressor** combines the output of a set of different classifiers / regressors
- For instance by majority voting / average

Idea: the combination of predictions from a collection of different experts is better that the prediction of the single best expert

why?

- ullet supose we have a biased coin^1 , p(head)=0.51 , p(tail)=0.49
- but you don't know it
- is the coin biased towards heads?
- ullet toss it 1000 times, p(#heads>#tails)pprox 0.75
- 10,000 times, p(#heads > #tails) pprox 0.97

¹ see cumulative distribution function of a binomial distribution

Analogy

- 1 toss of the coin, if *head* it's biased, if *tail* it's not
- 1 toss \equiv prediction by a weak binary classifier, only 51% accurate
- toss 1000 times, if #heads > #tails it's biased \equiv majority voting of 1000 independent binary weak classifiers, 75% accurate
- 10,000 weak *independent* classifiers make a very strong ensemble classifier, 97% accuracy

experiment of tossing the coin 10,000 times repeated 10 times

Random forest classifier

- is a set of (quite) *independent* decision trees
- combines their predictions by majority voting
- works very well in many cases!

1 decision tree vs. ensemble of 500 decision trees

Diversity of classifiers

- This is true only if the decision trees are *independent*, unrelated to each other
- But they are not because they use the same dataset and learning method
- Random forests enforce independence by
 - each decision tree is trained with a different subset of the training set, like 70%
 - \circ each subset is randomly sampled **with replacement** \to may have repeated samples
 - \circ at each node do not consider all the n features but a random subset, like \sqrt{n} of them

Hyperparameters

- from decision trees
 - o min_size
 - o max_depth
- new:
 - o ratio_samples (0.7)
 - \circ num_features_node (\sqrt{n})
 - num_trees number of decision trees
 - o criterion_name : "gini" Or "entropy"