An Introduction to the Theory of Groups

Joseph J. Rotman

April 10, 2018

Fourth Edition

Problems

Chapter 1

1.13

(i) A permutation $\alpha \in S_n$ is **regular** if either α has no fixed points and it is the product of disjoint cycles of the same length, or $\alpha = 1$. Prove that α is regular iff it is a power of an n-cycle β ; that is, $\alpha = \beta^m$ for some m. (Hint: if $\alpha = (a_1 a_2 \dots a_k)(b_1 b_2 \dots b_k) \dots (z_1 z_2 \dots z_k)$, where there are m letters a, b, ..., z, then let $\beta = (a_1 b_1 \dots z_1 a_2 b_2 \dots z_2 \dots a_k b_k \dots z_k)$.)

Solution: β^m takes a_1 through $b_1 \dots z_1$ to a_2 as desired. $\mathbb{1}$ can be expressed as β^n for $\beta(j) = j+1$ an n-cycle. For a general regular α , disjointess of the sets a_j , b_j , ... z_j guaranteed that the β from the hint is an n-cycle. If there's some n-cycle β with n = mk, and we take the mth power, we also get m disjoint, length-k cycles, as desired.

(ii) If α is an n-cycle, then α^k is a product of $\gcd(n,k)$ disjoint cycles, each of length $n/\gcd(n,k)$.

Solution: $\alpha^n = 1$. If n is a multiple of k, then $\alpha^n = (\alpha^k)^{n/k}$. α^k would then be a product of $k^{n/k}$ -cycles. In the case where n is not a multiple of k, but they have a non-trivial gcd, then starting at α_0 , α would take us to α_1 . α^k will take us to α_k . It takes α_k to α_{2k} , and so on until we get to $\alpha_{mk} = \alpha_0$. This happens if $m = \frac{n}{\gcd(n,k)}$, but I don't know how to prove that.

(iii) If p is prime, then every power of a p cycle is either a p-cycle or 1.

Solution: This is a corollary of the last exercise, noting that gcd(p, k) = 1 if $k \neq p$ and p if k = p.

1.17 How many $\alpha \in S_n$ are there with $\alpha^2 = 1$?

Solution: There's 1, and there's disjoint unions of transpositions. In terms of single transpositions, there are $\binom{n}{2}$ of them. If I'm going to put together a product of j transpositions, there are $\binom{n}{2}$ ways to choose the first transposition, $\binom{n-2}{2}$ ways to choose the second, and $\binom{n-2j}{2}$ ways to choose the jth. Since any permutation of these transpositions is equivalent, I ought to get

$$1 + \sum_{j=1}^{n/2} \frac{1}{j!} \prod_{k=0}^{j} \binom{n-2k}{2}$$

or something, it's not important.

1.26 A group for which $x^2 = 1$ for all x must be Abelian.

Solution: We know that aa = aea = abba = 1, and that abab = 1. This implies that ab and ba must both be equal to $b^{-1}a^{-1}$.

1.27

(i) Let G be a finite abelian groupcontaining no elements $a \neq e$ with $a^2 = e$. Evaluate $a_1 * a_2 * \dots * a_n$, where a_1, a_2, \dots, a_n is a list of all elements in G with no repetitions.

Solution: Just for laughs, let's invert this big element. From the result of Exercise 1.23, we get $(a_1 * a_2 * \ldots * a_n) = a_n^{-1} * a_{n-1}^{-1} * \ldots * a_1^{-1}$. Let A be another name for this big element, so I don't have to LaTeXit all out. The inverses of the individual group elements are unique elements of the group themselves, so the inverse of A is another product of all elements of the group. G is abelian, so $A^{-1} = A$, since all permutations of products are equivalent. This means $A^2 = e$, and the only element of G for which that holds is 1.

(ii) Prove Wilson's Theorem: If p is prime, then

$$(p-1)! = -1 \mod p.$$

(*Hint*: The nonzero elements of \mathbb{Z}_p form a multiplicative group.)

Solution: As far as I'm concerned, this completely contradicts the last exercise, since -1 is not the multiplicative identity unless p = 2. One interesting thing to note is that $(-1)^2 = 1 = 1^2$, violating the assumption of part (i). Now things start to get a little clearer. The inverse is unique, so, for all numbers from 2 up to p - 2, the multiplicative inverse mod p is also in the set range(2, p - 1) (ranges are taken to be Python-style). That means that (p - 2)! = 1, and (p - 1)! = p - 1, as desired.

1.31 Let G be a group, let $a \in G$, and let m and n be relatively prime integers. If $a^m = 1$, show that there exists a b such that $a = b^n$. (*Hint:* There are integers s and t such that sm + tn = 1.)

Solution: (Special thanks to Joel Klassen and Christophe Vuillot for their assistance.) We know $a^m = 1$, so that $a^{m+1} = a$. From the hint, $a^{m+sm+tn} = a$, and we can cancel multiples of m to obtain $a^{tn} = a$, so we set $b = a^t$ and get what we were after.

- **1.42** Let $G = \{x_1, x_2, ..., x_n\}$ be a set equipped with an operation *, let $A = [a_{ij}]$ be its multiplication table (i.e. $a_{ij} = x_i * x_j$), and assume that G has a two-sided identity e: e * x = x * e = x for all $x \in G$.
 - (i) Show that * is commutative if and only if A is symmetric.

Solution: This is true by definition.

(ii) Show that every element $x \in G$ has a (two-sided) inverse (i.e. there is an $x' \in G$) such that x' * x = x * x' = e. if and only if A is a **Latin Square** (i.e. all rows and columns are permutations of G).

Solution: (Thanks to Joel Klassen and Christophe Vuillot for basically doing this problem for me). If A is a Latin Square, then there exists a left inverse and a right inverse for x, since $\mathbb{1}$ must appear in the row and column corresponding to x. $zx = \mathbb{1}$, $xy = \mathbb{1}$, therefore zxy = z, but $zx = \mathbb{1}$, so y = z.

Likewise, if A is not a Latin square, then there are different elements y and z such that xy = xz = w. If x has a left inverse, then y = z and we have a contradiction. If it doesn't, we've proven what we want to prove.

(iii) Assume that $e = x_1$ so that the first row of A has $a_{1i} = x_i$. Show that the first column of A has $a_{i1} = x_i^{-1}$ for all i if and only if $a_{ii} = 1$ for all i.

Solution: This is mad trivial.

(iv) With the multiplication table as shown in (iii), show that * is associative if and only if $a_{ij}a_{jk} = a_{ik}$.

Solution:

If: The trick here is that, if the matrix is arranged such that $\mathbb{1}$ is on the diagonal, then $a_{ij} = x_i x_i^{-1}$. If multiplication is associative, $a_{ij} a_{jk} = x_i x_j^{-1} x_j x_k^{-1} = x_i x_k^{-1} = a_{ik}$,

Only If: Every x_k can be expressed as $x_i x_j^{-1}$ for fixed x_i , since the multiplication table is a latin square. This implies that the product of three elements $x_k x_l x_m = x_i x_j^{-1} x_j x_n^{-1} x_n x_o^{-1} = a_{ij} a_{jn} a_{no}$. We can evaluate this product in either order, using the assumed product: $a_{ij} a_{jn} a_{no} = a_{in} a_{no} = a_{ij} a_{jo} = a_{io}$,

2.3 The set-theoretic union of two subgroups is a subgroup if and only if one is contained in the other. Is this true if we use three subgroups?

Solution: No, see Bruckheimer et al, 1970: https://www.jstor.org/stable/pdf/2316854.pdf.

- **2.4** Let S be a proper subgroup of G. If G S is the complement of S, prove that $\langle G S \rangle = G$. **Solution:** We know that $\langle G S \rangle$ contains G S, so all we have to prove is that the elements of S can be generated by multiplying together two things in G S. Pick an element of G S g. $g^{-1} \notin S$, since that would contradict the inclusion of the inverse. Also, $sg^{-1} \notin S$ for any $s \in S$, since that would contradict closure. However, $sg^{-1} \cdot g = s$, so we can find two elements of G S that generate s under multiplication.
- **2.5** Let $f: G \to H$ and $g: G \to H$ be homomorphisms, and let

$$K = \{ a \in G : f(a) = g(a) \}.$$

Must K be a subgroup of G?

Solution: We need:

- the identity to be in the set. This is guaranteed by Theorem 1.13 f(1) = 1', so $1 \in K$.
- closure under the inverse. This is also guaranteed by Theorem 1.13 $f(a^{-1}) = f(a)^{-1} = g(a)^{-1} = g(a^{-1})$.
- closure under multiplication. This is guaranteed by the defining property of the homomorphism—f(ab) = f(a)f(b) = g(a)g(b) = g(ab).

K is a subgroup. \blacksquare

2.7 If n > 2, then A_n is generated by all the 3-cycles. (Hint: (ij)(jk) = (ijk) and (ij)(kl) = (ijk)(jkl)).

Solution: Parity is defined as the number of transpositions in a decomposition of a permutation. For each adjacent pair of transpositions in such a decomposition, we can apply one of the two formulae in the hint to express it as a product of 3-cycles.

2.8 Imbed S_n as a subgroup of A_{n+2} , but show that, for $n \geq 2$, S_n cannot be imbedded in A_{n+1} .

Solution: The first part is trivial. If we have elements n+1 and n+2, we can decide whether to multiply a permutation by $(n+1\,n+2)$ on its way into the subgroup, and everything becomes even. The second part is tricky. We can easily prove that S_2 can't be imbedded in A_3 , since A_3 is generated by the 3-cycle (1 2 3) which is order 3 (as are all of its subgroups), and S_2 is order 2. Jonas Helsen says that, in order to be imbedded, the order of the large group has to be an integer multiple of the order of the small group. $|S_n| = n!$ and $|A_{n+1}| = \frac{(n+1)!}{2}$, so the ratio is $\frac{n+1}{2}$, which is not an integer if n is even. We could also (try to) use the fact that, for $n+1 \geq 5$, A_{n+1} is simple, and

 S_n is not, since it has A_n as a normal subgroup. This would leave us with the n=3 case, which we can allegedly show by seeing that A_4 has no subgroups of order 6. I'm not quite happy with this solution.

2.9

(i) Prove that S_n can be generated by $\{(1 k), k \in \mathbb{Z}_n\}$

Solution: We know that every element of S_n can be expressed as a product of transpositions, and (j k) = (1 k)(1 j)(1 k), so we're good.

(ii) Prove that S_n can be generated by $\{(j j + 1 \mod n), j \in \mathbb{Z}_n\}$.

Solution: If we can generate the generators from the generating set in the last part, we're good. Let's use recursion, because this is mathematics. (1 k) = (1 k - 1)(k - 1 k)(1 k - 1).

(iii) Prove that S_n can be generated by the two elements (12) and $C = (12 \cdots n)$.

Solution: First, if I take the *n*th power of C, I get 1. This means that C^{-1} is the n-1th power, and I can use it to generate other stuff. Let's look at $C^k(12)C^{-k}$. This operation takes $k+1 \to 1 \to 2 \to k+2$ and $k+2 \to 2 \to 1 \to k+1$, so I can generate the generators from the generating set in the last part.

(iv) Prove that S_4 is not generated by A = (13) and C = (1234).

Solution: I can write down an arbitrary product of these operators as $C^{i_0}AC^{i_1}AC^{i_2}...AC^{i_m}$. Knowing that C^{-1} is generated, I express the product as

$$C^{i_0}AC^{-i_0}C^{i_0+i_1}AC^{-(i_0+i_1)}\dots C^{\sum_{j=0}^{m-1}i_j}AC^{-\sum_{j=0}^{m-1}i_j}C^{-\sum_{j=0}^{m}i_j}$$

The only two values of C^iAC^{-i} are (13) and (24), and the only 3 non-1 values of C^i are (1234), (13)(24), and (1432). Brute force enumeration of the words of this set reveals that (12) isn't generated.

2.12

(i) Prove that every group G of order 4 is isomorphic either to \mathbb{Z}_4 or the 4-group \mathbf{V} .

Solution: Without loss of generality, the elements of a group of order 4 are 1, a, b, and ab. Each of these elements needs an inverse, and the inverse of the inverse is the element itself, so that if $a^{-1} = b$, then $b^{-1} = a$ also. Up to permutation of labels, there are two possible scenarios, either $a^{-1} = a$, $b^{-1} = b$, or $a^{-1} = b$. Writing out the multiplication tables then either gives us \mathbb{Z}_4 or \mathbf{V} .

(ii) If G is a group with $|G| \le 5$, then G is abelian.

Solution: Order 2 is trivial, there's only one non-trivial group element. 3 is prime, so the group has to be cyclic, and therefore abelian. Order 4 only permits the two groups we saw earlier, and 5 is prime.