Practice Problems Set 2 Linear Algebra A

(1) True or false. No need to justify.				
	(a)	The diagonal entries of a positive definite matrix are positive.	()
	(b)	If A is similar to B, then A^2 is similar to B^2 .	()
	(c)	If A and B are diagonalizable, so is AB .	()
	(d)	If A is a 3×3 skew-symmetric $(A^T = -A)$, then $ A = 0$.	()
	(e) If A is negative definite, then all the upper left submatrices A_k of A have negative determinants.			
	(f) Let A be an $n \times n$ matrix, then the number of nonzero eigenvalues of A (counting			
		the multiplicities) is equal to the rank of A .	()
(2)		in the blanks. Let A be a 3×3 real matrix whose column vectors $\alpha_1, \alpha_2, \alpha_3$ are linearly indent. If $A\alpha_1 = \alpha_1 + \alpha_2, A\alpha_2 = \alpha_2 + \alpha_3, A\alpha_3 = \alpha_3 + \alpha_1$, then $ A = \underline{\hspace{1cm}}$		
	(b)	If $A \in \mathbb{R}^{3\times 3}$ has eigenvalues $0, 1, 2$, then the eigenvalues of $A(A-I)(A-2)$.	Ι) ε	are
	(c)	A box has edges from $(0,0,0)$ to $(3,1,1),(1,3,1),(1,1,3)$, then its volume is _		

(3) (10 points) Let

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right].$$

- (i) Find all the eigenvalues of A and their associated eigenvectors.
- (ii) Is A diagonalizable? Explain why.

(4) Let

$$A = \left[\begin{array}{cc} 2 & 1-i \\ 1+i & 1 \end{array} \right].$$

- (i) Verify that A is Hermitian.
- (ii) Find a unitary matrix U that diagonalizes A.

(5) Let

$$A = \left[\begin{array}{rr} -1 & 0 \\ 1 & 1 \\ 0 & 1 \end{array} \right].$$

- (i) Find all the singular values of A.
- (ii) Find the singular value decomposition of A, in other words, find orthogonal matrices U and V, such that $A = U\Sigma V^T$.

(6) Let A be

$$A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{array} \right].$$

- (i) Find an orthogonal matrix Q and a diagonal matrix Λ such that $A=Q\Lambda Q^T$.
- (ii) Find A^k , where k is a positive integer.

(7) Consider the quadratic form

$$f(x_1, x_2, x_3, x_4) = t(x_1^2 + x_2^2 + x_3^2) + x_4^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3.$$

- (i) Find A, such that $f(x_1, x_2, x_3, x_4) = x^T A x$.
- (ii) For which t is $f(x_1, x_2, x_3, x_4)$ positive definite?
- (8) Let N be a normal matrix $(N^H N = N N^H)$.
 - (i) Show that $||Nx|| = ||N^H x||$ for every vector x.
 - (ii) Deduce that the ith row of N has the same length as the ith column.
 - (iii) If N is upper triangular, then N must be diagonal.
- (9) Prove the following statements:
 - (i) Suppose A is an $n \times n$ real symmetric positive definite matrix, show that $|A+I_n| > 1$.
 - (ii) Let A be an $n \times n$ matrix, show that $A^T A$ is similar to AA^T .
- (10) (6 points) If $A^k = O$ for some positive integer k, then A is called a "nilpotent" matrix. O is the $n \times n$ zero matrix.
 - (i) Show that all the eigenvalues of a nilpotent matrix must be zero.
 - (ii) Prove that a nonzero nilpotent matrix can not be symmetric.
- (11) Let A be an $n \times n$ real symmetric positive definite matrix, and $\beta \in \mathbb{R}^n$ be a nonzero vector. Consider

$$D = \left[\begin{array}{cc} A & \beta \\ \beta^T & c \end{array} \right]$$

- (i) Find a condition on c to guarantee that D is positive definite.
- (ii) In the case that D is positive semi-definite, find a basis for the nullspace of D, N(D).