מצב	סימון	מצב חדש	כתיבה	תזוזה	תנאי
~ D	π	D	π	Т	תזוזה שמאלה:
q.D	σ	p.D	τ	L	$(q,\sigma) \xrightarrow{M^T} (p,\tau,L)$
q.U	σ	p.U	au	R	
	π		π		
q.D]	p.D	_	L	תזוזה שמאלה:
			au		$(q, _) \xrightarrow{M^T} (p, \tau, L)$
q.U		p.U	τ	R	
		_			
q.D	π	p.D	π	R	תזוזה ימינה: $(q,\sigma) \xrightarrow{M^T} (p,\tau,R)$
	σ		τ		$(q,\sigma) \longrightarrow (p,\tau,R)$
q.U	σ	p.U	τ	L	
	π		π		
q.D		p.D		R	תזוזה ימינה: $(q, _) \xrightarrow{M^T} (p, au, R)$
			τ		$(q, \perp) \longrightarrow (p, \tau, R)$
q.U	_	p.U	au	L	
q.D	\$	q.U	Ω	R	
q.U	\$	q.D	Ω	R	
אתחול					
q_0^O	τ	απ	\$	R	$\tau \in \Sigma \cup \{\bot\}$
q_0	au	q. au	Ψ	11	$\sigma \in \Sigma$
$q.\sigma$	τ	q. au		R	
1			σ		
q		back		L	
1					
back		back	Ω	L	
	τ	TD		D	
back	\$	$q_0^T.D$	Ω	R	
סיום					
$\operatorname{acc}^T.D$	הכל	acc^O			
$\operatorname{acc}^T.U$	הכל	acc^O			
$\operatorname{rej}^T.D$	הכל	${\sf rej}^O$			
$\mathrm{rej}^T.U$	הכל	rej^O			
rej-כל השאר עובריםל					

$$\Gamma^O \supseteq \left(\Gamma^T \times \Gamma^T\right) \cup \{\$\}$$
 .

שיעור 3 מכונות טיורינג מרובת סרטים

3.1 מכונת טיורינג מרובת סרטים: הגדרה היוריסטית

מספר שנו מחשב ההבדל הוא שלמטמ"ס) היא הכללה של מ"ט עם סרט יחיד. ההבדל הוא שלמטמ"ס ישנו מספר סופי של סרטים, נניח k>1 סרטים.

- לכל סרט יש ראש שלו.
- בתחילת העבודה הקלט w כתוב בתחילת הסרט הראשון וכל שאר הסרטים ריקים. הראשים בכל סרט מצביעים על התא הראשון בסרט, והמכונה נמצאת במצב התחלתי q_0
- בכל צעד חישוב, לפי המצב הנוכחי ול- k התווים שמתחת ל- k הראשים, המכונה מחליטה לאיזה מצב בכל צעד חישוב, לפבור, מה לכתוב מתחת לכל אחד מ-k הראשים ולאן להזיז את הראש בכל אחד מ-k סרטים.
 - הראשים של הסרטים יכולים לזוז באופן בלתי-תלוי בהתאם לפונקצית המעברים של המטמ"ס.

3.2 מכונת טיורינג מרובת סרטים: הגדרה פורמלית

הגדרה 3.1 מכונט טיורינג מרובת סרטים

מכונת טיורינג מרובת סרטים היא שביעייה:

$$M = (Q, \Sigma, \Gamma, \delta_k, q_0, q_{\rm acc}, q_{\rm rei})$$

כאשר Q, Q, Q, Q, Q, Q מוגדרים כמו מ"ט עם סרט יחיד (ראו הגדרה 1.2). ההבדל היחיד בין מ"ט עם סרט יחיד לבין מטב"ס הוא הפונקצית המעברים. עבור מטמ"ס הפונקצית המעברים היא מצורה הבאה:

$$\delta_k : (Q \setminus \{q_{\rm acc}, q_{\rm rei}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

דוגמה 3.1

$$\delta_k \begin{pmatrix} q, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} p, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} R \\ R \\ L \end{pmatrix} \end{pmatrix}.$$

3.3 קונפיגורציה של מטמ"ס

הכללה של קונפיגורציה של מ"ט עם סרט יחיד:

$$\begin{pmatrix} u_1 q & \mathbf{v}_1 \\ u_2 q & \mathbf{v}_2 \\ \vdots \\ u_k q & \mathbf{v}_k \end{pmatrix}$$

דוגמה 3.2

בנו מטמ"ס שמכריעה את השפה:

$$L_{w^R} = \{ w = \{a, b\}^* \mid w = w^R . \}$$

כלומר שפת הפלינדרומים.

פתרון:

נבנה מ"ט עם שני סרטים:

תאור המכונה:

 L_{w^R} השפה את שמכריעה שמכר 2 עם המ"ט מסמן נסמן

:w על הקלט $=M_2$

2 מעתיקה את w לסרט (1)

- w בסרט w לתו האחרון ב- w ואת הראש בסרט לתו האחרון ב- w
 - (3) משווה בין התווים שמתחת לראשים:
 - $\mathrm{acc} \Leftarrow \bot$ אם התו שמתחת לראש בסרט 1
 - .rej \Leftarrow אם התווים שמתחת לראשים שונים •
- ullet אחרת מזיזה את הראש בסרט 1 ימינה ואת הראש בסרט 2 שמאלה, וחוזרת לשלב (3).

היא: M_2 היא המעברים של

$$\delta \left(q_0, \begin{pmatrix} a \\ - \end{pmatrix} \right) = \left(q_0, \begin{pmatrix} a \\ a \end{pmatrix}, \begin{pmatrix} R \\ R \end{pmatrix} \right) ,$$

$$\delta \left(q_0, \begin{pmatrix} b \\ - \end{pmatrix} \right) = \left(q_0, \begin{pmatrix} b \\ b \end{pmatrix}, \begin{pmatrix} R \\ R \end{pmatrix} \right) ,$$

$$\delta \left(q_0, \begin{pmatrix} - \\ - \end{pmatrix} \right) = \left(q_{\text{back}}, \begin{pmatrix} - \\ - \end{pmatrix}, \begin{pmatrix} L \\ L \end{pmatrix} \right) .$$

. נשים לב כי הסיבוכיות זמן של המכונה עם שני סרטים, M_2 היא O(|w|), כאשר w האורך של המילה

 $.L_{W^R}$ כעת נבנה מ"ט עם סרט יחיד שמכריעה את כעת נבנה מ

תאור המכונה:

 L_{w^R} נסמן M_1 המכונה עם סרט יחיד שמכריעה את השפה

:w על הקלט $=M_1$

- $acc \leftarrow M_1$ אם התו שמתחת לראש הוא (1)
- X זוכרת את התו שמתחת לראש ומוחקת אותו ע"י גוכרת (2)
- $_{-}$ מזיזה את הראש ימינה עד התו הראשון משמאול ל-
 - .acc $\Leftarrow X$ אם התו שמתחת לראש
 - $.rej \Leftarrow$ אם התו שונה מהתו שזכרנו •
- חוזרת את התו שמתחת לראש ע"י $_-$, מזיזה את הראש שמאולה עד התו הראשון מימין ל- $_-$ וחוזרת לשלב (1).

3.4 שקילות בין מטמ"ס למ"ט עם סרט יחיד

מ"ט עם סרט יחיד היא מקרה פרטי של מטמ"ס.

משפט 3.1 שקילות בין מטמ"ס למ"ט עם סרט יחיד

M -לכל מטמ"ס M קיימת מ"ט עם סרט יחיד M השקולה ל

 $:w\in\Sigma^*$ כלומר, לכל קלט

- w אם $M' \leftarrow w$ מקבלת את $M' \leftarrow w$ אם M
 - w אם $M' \Leftarrow w$ דוחה את $M' \bullet w$
 - $M' \leftarrow w$ אם M לא עוצרת על $M' \leftarrow w$ אם M

הוכחה:

 $M'=\left(Q',\Sigma,\Gamma',\delta',q_0',q_{
m acc}',q_{
m rej}'
ight)$ בהינתן מטמ"ס $M=\left(Q,\Sigma,\Gamma,\delta_k,q_0,q_{
m acc},q_{
m rej}
ight)$ עם $M=\left(Q,\Sigma,\Gamma,\delta_k,q_0,q_{
m acc},q_{
m rej}
ight)$ בהינתן מטמ"ס $M=\left(Q,\Sigma,\Gamma,\delta_k,q_0,q_{
m acc},q_{
m rej}
ight)$

:רעיון הבנייה

wעל Mעל היצה של ריצה "סימולציה" תבצע M'על אין, $w \in \Sigma^*$

<u>M - 2</u>

<u>M' -⊐</u>

בכל סרט.

- .# $_{i+1}$ -ל $_i$ יופיע איז יופיע וופיע א על הסרט, רק שהתוכן איז הסרטים א וופיע א הסרטים א M'
- Γ תשמור את המיקום של הראשים של Mע"י הכפלת הא"ב M' המיקום של הראשים את תשמור הכ $\hat{\alpha}$ ב- $\hat{\alpha}$ ב- $\hat{\alpha}$ ור שמתחת שמור שמתחת התו שמתחת לכל אות התו שמתחת לכל אות M'י, $\alpha\in\Gamma$ אות לכל אות כלומר, לכל אות התו

- בכל צעד חישוב, M' סורקת את הסרט שלה משמאל לימין כדי ללמוד מהם התווים שמתחת לראשים (התווים שמסומנים ב- $\hat{\alpha}$).
 - . בא. את המעבר לחשב את כדי לחשב אל δ_k המעברים בפונקצית משתמשת M'
 - בהם. מיקום הראשים בהם ואת הסרטים את לימין כדי לעדכן לימין משמאל לימין שלה את סורקת את סורקת M'

$\cdot M'$ אור הבנייה של

שלב האיתחול (1

. בהינתן קלט M' של הסרט אל מאתחלת את הקונפיגורציה מאתחלת של M' אל הסרט שלה של בהינתן קלט

<u>М - а</u>

<u>M' -⊐</u>

M תאור צעד חישוב של (2

<u>М-д</u>

M' -=

- איסוף מידע •
- . $\hat{\alpha}$ -ם סורקת את הסרט שלה משמאל לימין ומזהה את התווים שמסומנים ב- M' מידע זה ניתן לשמור במצבים. לדוגמה:

$$q$$
, $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$

זה אפשרי מכיוון שמספר המצבים הנדרש הוא סופי:

$$|Q| \times |\Gamma|^k$$
.