Cecture - 13

Particle mechanics;
- Flow through packed bed (drying, heat recome
and fludized bed (cool combustion)
- Catalytic reactors
- Gravity sedimentation
- Centri fugol separation
- Cyclone separators
- Floatation
Drag! it is the force in the direction of flow excepted
-> disection of flow exerted
by fluid on the solld
* Drag has two components-
- Form drag or mexine drag

- Wall drag or friction drag or shear drag

Drag Coefficient:

* For flow strongh pipes of channels, foi ction factor, f = Wall & near & toek Velocity head x doneity

* For immersed solid objects, it is drag coeff, Cd = Total drag force) unit area velocity head x density of fluid $C_d = \frac{FD/AP}{\frac{1}{2}SV^2}$

Ap- projected area of is defined as area Obtained by projecting the object on a plane perpendicular to direction of flow

fluid

from d'mersiaral apolysis, CD = f(Re)

Rep = DpVP (inerhal fence viscous ferce)

Terminal velocity, $U = \frac{9D^{2}(P_{p}-P)}{18D^{p}V^{p}} = \frac{9D^{2}(P_{p}-P)}{18D^{p}V^{p}C_{D}}$ $\Rightarrow \qquad \forall = \qquad \boxed{\frac{49(P_{\rho}-P)D\rho}{3C_{D}\cdot P}}$ one dimensional motion of a posticle through fleid: Free settling condition: * Unbounded motion of posticle in in finitely long cylindrical column No other particle nearby - container wall is also far away

u-velocity of to du fo to du fo to du fo to du fo du fo to du fo d Ut- Terminal velocity or free settling velocity * Consider a particle of moss under the action of externil farce Fe mr mass of particle Fr 1 Pro S- density of fluid lp - deneity of passicle AP - Progeeted area of pasticle Caternal face (can be fg or Fc)
gravity contribut
force U- velocity of pasticle ruletive to the fluid Fb - Buoyant force FD - Drag Perce ret force, $F = \frac{d(mu)}{dt} = Fe - F_b - F_D$ Fe = mae $\frac{c_D u^2 pAp}{2} \left\{ \frac{f_D pu^2}{2} \right\}$

Busyancy force, Fb = (mass of fluid displaced) x acceleration from external force Fb= m, f. ae m du = mae - m f ae - Co 42 PAP
Pp ae - 2 $\frac{d^{2}}{dt} = ae\left(\frac{l_{p}-l_{p}}{l_{p}}\right) - \frac{c_{0}u^{2}l_{p}}{2m}$ Case: notion from gravitational force, Qe=g $\frac{dq}{dt} = 9\left(\frac{p-p}{pp}\right) - \frac{c_0u^2p_{AP}}{2m}$ Terminal velocity (Ut) is the more velocity attained by the pasticle under free settling Conditions. ic du =0 9 (Pp-P) = CD 42 PAP

$$\frac{\partial}{\partial r} = \frac{\partial}{\partial r} \frac{$$

For sphenical particle, Ap= # Dp2 $m = \frac{\pi}{6} D_{\rho}^{3} f_{\rho}$ gen evalized Ut = \(\frac{4}{3} \frac{\gamma(\text{Pp-P)} \Dp}{\cop\text{Pp-P)} \Dp} \\
\to\text{Totals usgime:} expression Valid Ar entire Hange of feyrold number. 4+= \(\frac{\partial (\mathref{P}-\mathref{P}) \Dp^2 4+}{18 le} Ut = 9 Dp2 (Pp-1)) Terminal velocity of a

in stoke's flow regime