Cas IDM - étude de cas plus complexe

Yan Rabefaniraka, stagiaire de Meriem Ouederni et David Brunet

25 Juillet 2025

Contents

Installation des outils
ΓPs sur Tina et Eclipse
TP1
TP2
TP3
Explication OCL
Écriture OCL
Tests à compléter avant la fin du stage

Remarques:

• Fichier engendré avec:

pandoc --toc -o ../../pdfs/resume_IDM.pdf resume_IDM.md

Installation des outils

Le changement de machine m'a obligé à réinstaller les outils du module.

- ⊠ Téléchargement de Tina
- \boxtimes Installation de Tina
- \boxtimes Téléchargement de Eclipse Modeling Tools
- \boxtimes Installation des plugins Eclipse requis:
 - □ Acceleo 3.7
 - \boxtimes Eclipse OCL 6.17.1
 - \boxtimes Eclipse XTest 2.39.0
 - \boxtimes Sirius 7.3
- \rightarrow Installation moins problématique et chronophage que sur l'ancienne machine, pourtant sous fork de Fedora 42 aussi.

CM

TPs sur Tina et Eclipse

TP1

J'ai pu utiliser l'IA (Copilot avec Claude Sonnet 4) pour m'expliquer les résultats du graphe de marquage du cas d'interblocage sur *Tina*. Elle a su très bien expliquer tous les éléments pour quelqu'un comme moi qui s'y connait peu: Elle détaille les états, comprend correctement les transitions et explique pertinemment d'où vient l'interblocage.

Interaction avec l'IA: checker ici

TP2

Il ne semble pas y avoir de cas d'utilisation possible de l'IA; Il s'agit principalement de comprendre l'outil de travali qu'est Ecore. Qui plus est, ce dernier est graphique.

TP3

Explication OCL

J'ai utilisé l'IA pour comprendre le métamodèle en OCl de SimplePDL: Je lui ai demandé spécifiquement de détailler la syntaxe, dans le but de comprendre celle-ci et de pouvoir la reutilise rindividuellement. Le résultat est globalement plutôt bon même si elle a du mal à comprendre l'utilité de certains invariants qui semblent pourtant relativement évident à comprendre. C'est donc impossible d'apprendre avec l'IA seule. Pour autant, il s'agit définitivement d'une bonne manière de réviser la syntaxe OCL.

Interaction avec l'IA: checker ici

Écriture OCL

L'une des consignes demande de créer un nouveau fichier OCL où on définit des contraintes sur *SimplePDL*. En demandant à Copilot de m'aider à ajouter de nouvelles contraintes, il analyse la structure courante du fichier SimplePDL.ocl et propose des contraintes cohérentes avec le métamodèle. L'IA comprend bien la logique des dépendances entre activités et peut suggérer des invariants pertinents, bien qu'il faille parfois corriger la syntaxe OCL spécifique ou la signification de certains **contextes**.

Tests à compléter avant la fin du stage

Ш	Xtext - 6	écriture	et explication	d'éléments	avec	syntaxe	PDL1	et	PDL2
	Sirius - s	syntaxe	grpahique						
	Acceleo -	- Transf	ormation de n	nodèle à tex	te				