Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

GitHub проекта Автор в ВК

Содержание

1	Матрицы и все дела	3
2	Билинейные и квадратичные формы	10
3	Определитель и его свойства 3.1 Решение систем линейных уравнений при помощи определителя	14 20
4	Собственные числа и вектора 4.1 Пространства со скалярным произведением	2 1

1 Матрицы и все дела

$$(v_1,...,v_n)$$
 $\begin{pmatrix} \alpha_1 \\ ... \\ \alpha_n \end{pmatrix} = \sum_{i=1}^n v_i \alpha_i$. Если $A \in M_{n,m}(F)$, то определим $(v_1,...,v_n)A = (va_{*n},...va_{*m})$,

где $a_{*i}-i$ -ый столбец, соответственно $a_{i*}-i$ -ая строка.

Набор $v=(v_1,...,v_n)$ линейно независим $\Leftrightarrow (va=vb\Leftrightarrow a=b),$ так как $v(a-b)=0\Leftrightarrow a-b=0\Leftrightarrow a=b.$

Произведение матриц ассоциативно (конкретная): $(v \cdot A) \cdot b = v(Ab)$, где $v = (v_1, ..., v_n) \in V \times ... \times V$ (n pas).

Проверка этого факта очевидна, учитывая, что $\sum_{i=1}^{n} \sum_{j=1}^{m} = \sum_{j=1}^{m} \sum_{i=1}^{n}$.

Теорема. Возъмем множество квадратных матриц $M_n(F)$. $M_n(F) - \kappa$ ольцо с единицей.

Доказательство. Все аксиомы кольца проверяются непосредственно. Единственное, что нужно проверить — наличие нейтрального по умножению. Им, т.е. единицей кольца явля-

ется единичная матрица
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. \square

 $M_n(F)^* = GL_n(F)$ — полная линейная группа степени n над F.

Всё это было предисловием к следующему наблюдению: если мы умножим кортеж векторов на обратимую матрицу то снова получим базис.

Лемма. (1)
$$v = (v_1, ..., v_n) \in \underbrace{V \times ... \times V}_{n}, A \in GL_n(F).$$

- 1. Линейно независимые v и vA эквивалентны.
- 2. v система образующих $\Leftrightarrow vA$ система образующих.
- 3. v -базис $\Leftrightarrow vA$ базис.

Доказательство.

- 1) Пусть v линейно независим, тогда пусть $(vA)b=0 \Leftrightarrow v(Ab)=0 \Leftrightarrow Ab=0 \Leftrightarrow A^{-1}Ab=0 \Leftrightarrow b=0$, то есть vA линейно независимо.
- 2) Пусть v система образующих, тогда $\forall x \in V \ \exists b \in F^n$, такое, что $x = vb = (vA)(A^{-1}b) \in < vA>$, то есть vA система образующих.
 - 3) Очевидно следует из первых двух.

Для доказательства обратных импликаций заметим, что $v=(vA)A^{-1}$ и сведем задачу к предыдущей.

Мы доказали этим, что наше отображение инъективно. Теперь нужно доказать сюръекцию, то есть то, что любой базис можно представить в виде базиса, умноженного на обратимую матрицу.

Лемма. (2) Если v и w — базисы конечномерного пространства V, то существует обратимая матрица $C \in GL_n(F)$, такая, что w = vC.

Доказательство. $w_1 = v \cdot (w_1)_v$, где $(w_1)_v$ — столбец координат w в базисе v. Точно так же можно представить $w_2, ..., w_n$, после чего сложить:

 $(w_1,...,w_n)=v((w_1)_v,...,(w_n)_v)=vC$, где $C\in M_n(F)$. Теперь докажем, что она обратимая. Аналогично, $\exists C'\in M_n(F): v=wC'$. Теперь сделаем так (E- единичная матрица): $wE=w=vC=wC'C\Rightarrow E=C'C$. Аналогично $vE=v=wC'=vC'C\Rightarrow E=C'C$, то есть $C'=C^{-1}$ и $C\in GL_n(F)$.

Определение. Матрица $C \in GL_n(F)$, такая что w = vC называется матрицей перехода от v к w и обозначается $C_{v \to w}$.

Следствие из доказательства леммы 2: $C_{v\to w} = ((w_1)_v, ..., (w_n)_v)$. Необходимо помнить, что умножение матриц некоммутативно, и записывать нужно именно так:

$$w = vC_{v \to w}$$

Кроме того, в алгебре есть строчки векторов и столбцы координат и только так.

Теорема. (следствие лемм 1 и 2).

Пусть $v=(v_1,...,v_n)$ — базис пространства V. Набор $w=(w_1,...,w_n)$ является базисом тогда и только тогда когда $\exists C \in GL_n(F)$, такое, что w=vC.

Предложение. $L: V \to V, L(x) = w \cdot x_v$. Тогда $L_v = C_{v \to w}$.

Доказательство. $L: V \to V$, и $v = (v_1, ..., v_n)$ — базис V. Тогда $L_v = (L(v_1)_v, ..., L(v_n)_v) = ? = C_{v \to w} = ((w_1)_v, ..., (w_n)_v)$.

Положим $L(v_i) = w_i \ \forall i = 1,...,n,$ тогда $L(\sum_{i=1}^n v_i \alpha_i) = \sum_{i=1}^n L(v_i) \alpha_i = \sum_{i=1}^n w_i \alpha_i,$ то есть $L(x) = w \cdot x_v.$

Теорема. (замена базиса).

 $v=(v_1,...,v_n)\ u\ w=(w_1,...,w_n)\ -$ базисы пространства $V,\ x\in V,\ L:V o V\ -$ линейный оператор. Тогда $C_{v o w}x_w=x_v\ u\ L_v=C_{v o w}L_wC_{w o v}.$

Доказательство. $x = wx_w = vx_v$. Также $w = vC_{v\to w}$, откуда $x = wx_w = vx_v = vC_{v\to w} \cdot x_w$. Так как v — линейно независимый набор, то $x_v = C_{v\to w}x_w$.

 $L(x)_v = L_v x_v = L_v C_{v \to w} x_w$, а также $L(x)_v = C_{v \to w} L(x)_w = C_{v \to w} = C_{v \to w} L_w x_w$, зная, что $L(x)_w = L_w x_w$.

Отсюда $(L_vC_{v\to w}-C_{v\to w}L_w)x_w=0 \ \forall x_w\in F^n\Rightarrow L_vC_{v\to w}=C_{w\to v}L_w\Rightarrow L_v=C_{v\to w}L_wC_{v\to w}^{-1}=C_{v\to w}L_wC_{w\to v}.$

В доказательстве использовалась

Лемма. $A, B \in M_{m,n}(F)$. Если $\forall x \in F^n Ax = Bx$, то A = B.

Доказательство. Пусть
$$x=\begin{pmatrix}0\\0\\1\\0\\0\end{pmatrix}$$
 (Единица на i -том месте). Тогда $A\begin{pmatrix}0\\0\\1\\0\\0\end{pmatrix}=a_{*i}=$

$$B \left(egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}
ight) = b_{*i} \; orall i. \; ext{Следовательно}, \; A = B.$$

Сегодня мы хотим доказать 2 утверждения про размерности. Одно называется «формула Грассмана»

Теорема. (формула Грассмана): $U, V \leq W$, то тогда $\dim(U+V) + \dim(U\cap V) = \dim U + \dim V$

Доказательство. Напомним, что $U + V = \{ U \cup V > = \{ u + v | u \in U, v \in V \}$

Пусть $w_1,...,w_k$ — базис $U\cap V$. Так как это линейно независимая система, то его можно дополнить до базиса U и до базиса V:

 $(w_1,...,w_k,u_1,...,u_m)$ — базис U.

 $(w_1,...,w_k,v_1,...,v_m)$ — базис V.

 $\dim U \cap V = k$, $\dim U = k + m$, $\dim V = k + n$.

Следовательно, требуется доказать, что $\dim(U+V) = k + m + n$.

Для этого докажем, что $w \cup u \cup v$ — базис U+V, где $u=(u_1,...,u_m), v=(v_1,...,v_m)$, где объединение базисов — на самом деле их конкатенация. Так как $x \in U, y \in V$, то x+y — любой элемент U+V. Теперь $x+y=(wa+ub)+(wc+vd)=w(a+b)+ub+vd \in < w,u,v>$, (где $a,c \in F^k, b \in F^m, d \in F^n$). То есть это система образующих.

Докажем линейную независимость. Пусть для некоторых $f \in F^k$, $g \in F^m$, $h \in F^n$ $wf + ug + vh = 0 \Leftrightarrow \underbrace{vh}_{\in V} = \underbrace{-wf - ug}_{\in U} \Rightarrow vh \in U \cap V \Rightarrow \exists l \in F^k$, такой, что $vh = wl \Leftrightarrow wl - vh = 0$, где $w \cup v$ — базис пространства V. То есть h = 0, l = 0. следовательно, $wf + ug = 0 \Rightarrow$, так как $w \cup u$ — базис, $\Rightarrow f = 0$, g = 0.

Упражнение. бонус.

- 1) $U, V \subseteq W$. Если $U \cup V$ подпространство, то либо $U \subseteq V$, либо наоборот.
- 2) Усложнение: |F| > 2, $U_1, U_2, U_3 \le W$. Доказать, что если $U_1 \cup U_2 \cup U_3$ подпространство, то $U_1 \cup U_2 \cup U_3 = U_i$ (для некоторого i).
 - 3) Над F_2 привести пример $U_1 \cup U_2 \cup U_3 = W$, где $U \nleq W$.

Поговорим про ядро и образ.

Пусть $L:U\to V$ — линейное отображение. $\ker L=\{x\in U|\ L(x)=0\}=L^{-1}(0)$ — подпространство.

Если $L(z)=v\in V,$ то $L^{-1}(v)=z+\ker L$ — смежный класс по ядру, прям как во втором билете.

Теорема. о гомоморфизме.

 $U/\ker L \cong ImL$

Теорема. (размерность ядра и образа): $L: U \to V$.

 $\dim \ker L + \dim ImL = \dim U$

$$Ax=0$$
, тогда $x=lpha_1$ $\left(egin{array}{c} \cdot\\ \cdot\\ \cdot\\ \cdot\end{array}\right)+lpha_2\left(egin{array}{c} \cdot\\ \cdot\\ \cdot\\ \cdot\end{array}\right)+...,$ число параметров — размерность яд-

ра. Приведя матрицу к единично-диагональному виду, получим, что квадратный кусок матрицы с единицами равен размерности образа, а ширина всей матрицы — размерности самого U.

Доказательство. $w=(u_1,...,u_k)$ — базис ядра, а $u=(u_1,...,u_k,u_{k+1},...,u_n)$ — базис U. Нужно доказать, что $\dim Im L=n-k$. Докажем, что $L(u_{k+1}),...,L(u_n)$ — базис образа. $x\in Im L\Rightarrow \exists y\in U$. Тогда

$$x = L(y) = L(\sum_{i=1}^{n} u_i \alpha_i) = \sum_{i=1}^{n} L(u_i) \alpha_i = \sum_{i=1}^{n} L(u_i) \alpha_i \Rightarrow$$

 $L(u_{k+1}), ..., L(u_n)$ — система образующих. Докажем линейную независимость:

$$\sum_{i=k+1}^{n} L(u_i)\beta_i = 0 \Leftrightarrow L(\sum_{i=k+1}^{n} u_i\beta_i) = 0 \Leftrightarrow \sum_{i=k+1}^{n} u_i\beta \in \ker L \Leftrightarrow \exists \gamma_i \in F : \sum_{i=k+1}^{n} u_i\beta_i - \sum_{j=1}^{k} u_j\gamma_j = 0 \Rightarrow \beta_i = \gamma_j = 0$$

Посмотрим на $U \bigoplus V = \{(u,v)|u \in U, v \in V\}.$ $(u_1,v_1) + (u_2,v_2) = (u_1+u_2,v_1+v_2),$ $\alpha(u,v) = (\alpha u,\alpha v).$

Если $(u_1,...,u_k)$ — базис $U, (v_1,...,v_m)$ — базис V, то базисом $U \bigoplus V$ будут вектора вида $(u_i,0)$ и $(0,v_j)$. Это верно, так как $x\in U, \quad x=\sum u_i\alpha_i, \ y\in V, \quad y=\sum v_j\beta_j, \ (x,y)=\sum (u_i,0)\alpha_i+\sum (0,v_j)\beta_j.$

$$\begin{split} U' &= \{(u,0)|u \in U\} \leq U \bigoplus V \\ V' &= \{(0,v)|v \in V\} \leq U \bigoplus V \\ U' + V' &= U \bigoplus V \\ U' \cap V' &= \{(0,0)\} \\ \dim U \bigoplus V &= \dim U' + \dim V' = \dim U + \dim V. \end{split}$$

 $W \ge U, V$, такие, что $U + V = W, U \cap V = \{0\}$. (Никогда не говорить, что пересечение подпространств пусто. Оно нулевое!)

Предложение. $Tor \partial a \ W \cong U \bigoplus V$.

Доказательство. $L: U \bigoplus V \sim \to W$ — доказать.

$$L((u, v)) = u + v.$$

Проверка оставляется читателю. (четвертый способ доказательства теорем в АТЧ).

Упражнение. бонус. Доказать формулу Грассмана как следствие теоремы о размерности ядра и образа. (Без вычислений. Построить такой линейный оператор).

Определение. Ранг набора векторов $(v_1, ..., v_n) = \dim \langle v_1, ..., v_n \rangle =$ наибольшему количеству линейно независимых среди этих векторов.

Если $L: U \to V$ — линейное отображение, то $\mathrm{rk}(rank)L = \dim ImL$.

Если $f_1,...,f_n$ — базис U, то $L(f_1),...,L(f_n)$ — система образующих в ImL, и тогда $\operatorname{rk} L=\operatorname{rk}(L(f_1),...,L(f_n)).$

Столбцовый (строчный) ранг матрицы — ранг набора ее столбцов (строк).

 $L: U_f \to V_g, L_{f,g} = (L(f_1)_g, ..., L(f_n)_g)$, тогда rk $L = \text{rk}(L(f_1), ..., L(f_n)) = \text{rk}(L(f_1)_g, ..., L(f_n)_g) = \text{rk } L_{f,g}$ (здесь столбцовый ранг).

Итак, столбцовый ранг матрицы оператора не зависит от выбора базиса.

Следствие Пусть $A \in M_{m,n}(F)$, $B \in GL_m(F)$, $C \in GL_n(F)$. Тогда $\mathrm{rk}(A) = \mathrm{rk}(BAC)$ (и строчный и столбцовый).

Доказательство. Пусть $L: F^n \to F^m, (e^{(n)}, f$ — базисы $F^n, e^{(m)}, g$ — базисы F^m) такая, что L(x) = Ax. Тогда $L_{e^{(m)},e^{(n)}} = A$.

$$L_{f,g} = BAC = C_{g \to e^{(m)}} L_{e^{(n)}e^{(m)}} C_{e^{(n)} \to f}$$

Отсюда
$$f=e^{(n)}C\Rightarrow C_{e^{(n)}\to f}=C.$$
 $g=e^{(m)}B^{-1}\Rightarrow B=C_{g\to e^{(m)}}$ rk $BAC=\operatorname{rk} A=\operatorname{rk} L_{e^{(n)}e^{(m)}}=\operatorname{rk} L_{f,q}=\operatorname{rk} L.$

Любая обратимая матрица может быть матрицей перехода от некоторого базиса f к базису g.

(Это было доказательство про столбцовый ранг).

Если матрица B обратима, то и транспонированная матрица обратима: $(BB^{-1})^T = E^T \Leftrightarrow (B^{-1})^T \cdot B^T = E \Rightarrow (B^T)^{-1} = (B^{-1})^T$.

сгк $A^T = \operatorname{rrk} A$ (столбцовый ранг транспонированной матрицы равен строчному рангу обычной матрицы). При этом, $\operatorname{rrk}(C^TA^TB^T) = \operatorname{rrk}(BAC)$.

Теорема. (PDQ-разложение). $\forall A \in M_{m,n}(F) \ \exists P \in GL_m(F), \ Q \in GL_n(F), \ D = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} \in M_{m,n}(F)$, такие, что A = PDQ. При этом размер этой матрицы E равен и столбцовому, и строчному рангам матрицы A.

Доказательство. Из столбцов $a_{*1},...,a_{*n}$ выберем базис их линейной оболочки (они образующие, поэтому мы можем это сделать). Вектора $a_{*i_1},...,a_{*i_k}$ — базис. С помощью умножения справа на матрицу-перестановку, что $a_{*1},...,a_{*k}$ образуют базис в $< a_{*1},...,a_{*n} >$.

Матрица-перестановка — единичная матрица с переставленными столбцами. Умножить матрицу на матрицу-перестановку означает поменять столбцы умножаемой матрицы местами.

Пусть $k < l \le n$. Тогда

$$a_{*l} = \sum_{i=1}^{k} a_{*i} \cdot \alpha_i$$

Доказательство. Умножая справа на матрицу

$$\begin{pmatrix} 1 & & & -\alpha_1 \\ & 1 & & -\alpha_2 \\ & & 1 & & \dots \\ & & 1 & -\alpha_k \\ & & & 1 & 0 \\ & & & 1 \\ & & & 0 & 1 \\ c & \text{толб} & b & e & \text{ц} \end{pmatrix}$$

получаем 0 в l-том столбце. Таким образом, мы нашли (проблемы на свою задницу) матрицу $C \in GL_n(F)$: $AC = (a_{*i_1}, ..., a_{*i_k}, 0, 0, ..., 0)$. Теперь проделаем то же самое со строчками, умножая слева.

Поймем, сколько у нас здесь линейно независимых строк. Аналогично началу доказательства, найдем $B \in GL_m(F)$:

 $\operatorname{crk}(BAC) = \operatorname{crk} A = k$. Фактически, линейная оболочка столбцов BAC является подпространством в F^h и имеет $\dim = k \Rightarrow k \leq h$, то есть k = h, а линейная оболочка столбцов $X = F^h$ (X — это наша единичная матрица, которая там наверху). Другими словами, столбцы матрицы X — базис F^h . Обозначим этот базис x. Тогда $C_{e \to x} = X \in GL_h(F)$, где e — стандартный базис F^h .

Тогда

$$BAC \begin{pmatrix} X^{-1} & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X^{-1} & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix} = D$$
$$P = B^{-1}, \ Q = \begin{pmatrix} C \begin{pmatrix} X^{-1} & 0 \\ 0 & E \end{pmatrix} \end{pmatrix}^{-1} \Rightarrow A = PDQ$$

что и требовалось доказать.

Чтобы понять доказательство, сделать:

Теорема. (разложение Γ аусса).

 $\forall A \in GL_n(F)$ представляется в виде A = PLU, где P- матрица-перестановка, $L = \begin{pmatrix} * & 0 \\ \star & * \end{pmatrix}$ — ниженетреугольная матрица, $U = \begin{pmatrix} * & \star \\ 0 & * \end{pmatrix}$ — верхнетреугольная матрица,

Доказательство. Возьмем первые $k \ (1 \le k \le n)$ столбцов матрицы A. Они образуют подматрицу в A. Все столбцы матрицы A линейно независимые, следовательно, некоторые из них тоже линейно независимые, следовательно, ранг подматрицы равен k, следовательно, в этой подматрице найдется k линейно независимых строк (линейная оболочка её строк имеет размерность k).

Будем действовать таким образом:
$$L'P'A = U \Leftrightarrow A = \underbrace{P'^{-1}}_{=P} \underbrace{L'^{-1}}_{=L} U$$
 Упражнение: доказать, что обратная к нижнетреугольной является нижнетреуголь-

ной (по индукции).

По индукции подберем матрицу-перестановку $P^{(k)}$, такую, что в матрице $P^{(k)} \cdot A$ все диагональные подматрицы до k-ой будут обратимы.

База индукции: k = 1. Обратимая матрица не имеет нулевого столбца, следовательно, $\exists m: a_{m1} \neq 0, P^{(1)}$ — матрица, соответствующая перестановке (1 m). Выглядит она так:

$$\left(\begin{array}{ccccc}
 & m \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
m & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

База индукции доказана. Предположим, что в матрице $P^{(k-1)}A$ все диагональные подматрицы до (k-1)-ой обратимы. Строки (k-1)-ой диагональной подматрицы линейно независимы, поэтому строки подматрицы

тоже линейно независимы. Итак, строки $(a_{11},...,a_{1k}),(a_{21},...,a_{2k}),...,(a_{(k-1)1},...,a_{(k-1)k})$ линейно независимы, а $(a_{11},...,a_{1k}),...,(a_{n1},...,a_{nk})$ являются системой образующих в своей линейной оболочке, размерности k.

Поэтому первый набор строк может быть дополнен до базиса линейной оболочки (в которой система образующих — второй набор строк) одной строкой, то есть $\exists l > k$: $(a_{l1},...,a_{lk})$ линейно независимы с этими строчками (первым набором строк).

Тогда $P^{(k)} = Q \cdot P^{(k-1)}$, где Q — матрица-перестановка, соответствующая перестановке $(l\ k)$. Таким образом, строки k-ой диагональной подматрицы в $P^{(k)}A$ линейно независимы,

то есть эта подматрица обратима. Остальные матрицы мы не трогали, поэтому они тоже остались обратимыми.

Теперь положим $P' = P^{(n)}$, так что все диагональные подматрицы в P'A обратимы. При помощи преобразования Гаусса с ведущими элементами на главной диагонали будем получать нули ниже главной диагонали, что соответстует умножению на нижнетреугольную матрицу.

На главной диагонали никогда не возникнет нуля, поэтому мы продолжим процесс и доведем его до ручки:

Умножая на нижнетреугольную L' получим верхнетреугольную U, такую, что $L'P'A=U\Leftrightarrow A=P'^{-1}L^{-1}U=PLU$. \square

Матрицы, реализующие преобразование Гаусса:

$$T_{ij}(\lambda) = \left(egin{array}{cccc} 1 & 0 & j & 0 \\ & 1 & & & & \\ & & 1 & \lambda & i \\ & & & 1 & & \\ & & & 1 & 0 \\ & & & & 1 \end{array}
ight)$$

 $A \sim_{R_i + \lambda R_j} T_{ij}(\lambda) \cdot A$ $A \sim_{C_j := C_j + \lambda C_i} A \cdot T_{ij}(\lambda).$

Матрица обратима, так как $T_{ij}(\lambda)^{-1} = T_{ij}(-\lambda)$. — элементарная трансвекция.

$$\varepsilon \neq 0, D_i(\varepsilon) = \begin{pmatrix} 1 & & & & \\ & 1 & & & 0 \\ & & 1 & & \\ & & & 1 & \\ & & & \varepsilon & i \\ & 0 & & & 1 \\ & & & i \end{pmatrix}$$

 $A \sim_{R_j:=\varepsilon \cdot R_i} D_i(\varepsilon) A, A \sim_{C_i:=\varepsilon C_i} AD_i(\varepsilon).$

2 Билинейные и квадратичные формы

На самом деле мы хотим изучать аналог выражений

$$Q\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i,j=0}^n a_{ij} x_i x_j = (x_1, ..., x_n) \begin{pmatrix} a_{11} & . & . & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & . & . & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

для произвольного векторного пространства.

Пусть V — векторное пространство над полем F.

Определение. Характеристика поля F — наименьшее натуральное число, такое, что сумма такого числа единиц равна нулю. char $F = \operatorname{ord}_{(F,+)} 1$, но вместо ∞ напишут 0.

Определение. Билинейное отображение — отображение из декартова произведения: $B: U \times V \to W$, которое удовлетворяет следующим условиям:

- 1. $B(u_1 + u_2, v) = B(u_1, v) + B(u_2, v);$
- 2. $B(u, v_1 + v_2) = B(u, v_1) + B(u, v_2);$
- 3. $B(\alpha u, v) = B(u, \alpha v) = \alpha B(u, v);$

Определение. $B: V \times V \to F$ называется **билинейной формой**, если она линейна по каждому аргументу, то есть $\forall \alpha, \beta \in F, \ x, y, z \in V: \ B(\alpha x + \beta y, z) = \alpha B(x, z) + \beta B(y, z)$ и $B(z, \alpha x + \beta y) = \alpha B(z, x) + \beta B(z, y)$. Вообще форма — отображение декартова произведения в поле.

Определение. Форма $B: V \times V \to F$ называется симметричной, если B(x,y) = B(y,x) и антисимметричной, если B(x,y) = -B(y,x).

Лемма.

- 1) Множество билинейных форм является векторным пространством (с поточечными операциями). Обозначим его через BL(V) (вообще обозначается $Hom(V \otimes V, F)$).
- 2) Множество симметричных, так же, как и множество антисимметричных форм являются подпространствами. Обозначим $BL^s(V)$, $BL^a(V)$.
 - 3) $\operatorname{char} F \neq 2$. $\operatorname{Torda} BL(V) = BL^{s}(V) \bigoplus BL^{a}(V)$.

Доказательство.

3) $B(x,y)=B(y,x)=-B(y,x) \ \forall B\in BL^s(V)\cap BL^a(V),$ что равно $2B(y,x)=0\Leftrightarrow B(y,x)=0\ \forall x,y\Leftrightarrow B=0.$

Обозначим $B^s(x,y) = \frac{1}{2}(B(x,y) + B(y,x)), B^s \in BL^s(V),$ а $B^a(x,y) = \frac{1}{2}(B(x,y) - B(y,x)), B^a \in BL^a(V)$. Ну и совсем легко проверить, что $B = B^s + B^a$.

Определение. B^s — симметризация билинейной формы B.

Теорема. (поляризация квадратичной формы)

 $\operatorname{char} F \neq 2. \ Q(x) = B(x,x)$ для некоторой билинейной формы B. Тогда $B^s(x,y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$ и $B^s(x,x) = Q(x)$.

Доказательство.
$$Q(x+y) = B(x+y,x+y) = B(x,x) + B(x,y) + B(y,x) + B(y,y)$$

 $Q(x+y) - Q(x) - Q(y) = B(x+y,x+y) - B(x,x) - B(y,y) = B(x,y) + B(y,x)$

Определение. $Q:V\to F$ называется квадратичной формой, если $\exists B\in BL(V)$ — билинейная форма, такая, что Q(x)=B(x,x).

А вот $B: V \times V \to F$, где F — поле, то такое отображение называется **билинейной** формой.

e — базис V. $u, v \in V$, тогда $B(u, v) = u_e^T B_e v_e$.

Квадратичной формой называется отображение $Q:V\to F$, для которой $\exists B$ — билинейная форма, такая, что Q(x) = B(x, x).

Теорема. $\forall B \in BL(V)$ и базиса f пространства V существует матрица B_f , такая, что $\forall x, y \in V$ верно $B(x, y) = x_f^T B_f y_f$.

При этом $B_g = C_{f \to g}^T B_f C_{f \to g}$, где g- базис V. $B_f = B_f^T \Leftrightarrow B-$ симметричная. Если $B_f = -B_f^T \Leftrightarrow B-$ антисимметричная.

Доказательство. $x=\sum_i f_i \alpha_i, \ y=\sum_j f_j \beta_j$ и считаем $B(x,y)=B(\sum_i f_i \alpha_i, \ \sum_j f_j \beta_j)=$ $\sum_{i} \sum_{j} B(f_i, f_j) \alpha_i \beta_j =$

$$(\alpha_1, ..., \alpha_n) \begin{pmatrix} B(f_1, f_1) & & & \\ & B(f_2, f_2) & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Откуда $x_f = C_{f \to g} x_g, \ y_f = C_{f \to g} y_g.$ Теперь $B(x,y) = x_g^T C_{f \to g}^T \cdot B_f \cdot C_{f \to g} y_g = x_g^T B_g y_g.$ $\forall x_g, y_g \in F^n \Rightarrow B_g = C_{f \to g}^T \cdot B_f \cdot C_{f \to g}.$

Докажем симметричность: $B(y,x) = \underbrace{y_f^T B_f x_f}_{f} = (y_f^T B_f x_f)^T = x_f^T B_f^T y_f = ? = x_f^T B_f y_f = ?$

B(x,y). Равенство выполняется тогда и только тогда, когда $B_f^T = B_f$.

Определение. Матрица квадратичной формы — матрица ассоциированной с ней симметричной билинейной формы.

Пусть $V = F^n$. e — стандартный базис $x = x_e$. Тогда $Q(x) = B(x, x) = x^T Q_e x = (*)$. Обозначим

$$Q_e = \begin{pmatrix} a_{11} & . & . & a_{1n} \\ . & . & . & . \\ . & . & . & . \\ a_{n1} & . & . & a_{nn} \end{pmatrix}$$

Тогда

$$(*) = (x_1, ..., x_n) \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{i=1}^n a_{nj} x_i \end{pmatrix} = \sum_{i=1}^n \sum_{i=1}^n x_i a_{ij} x_j$$

Так как матрицы квадратичных форм симметричны, то

$$\sum_{i=1}^{n} a_{ii} x_i^2 + \sum_{i < j} (a_{ij} + a_{ji}) x_i x_j$$

Например, $Q\begin{pmatrix} x \\ y \end{pmatrix} = x^2 + 2y^2 + 6xy$, тогда $Q_e = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix}$. $x \perp_B y \Leftrightarrow B(x,y) = 0$ по определению. Тогда $S \subseteq V$, $S^{\perp_B} = \{v \in V | B(v,s) = 0 \ \forall s \in S\}$. B— симметричная билинейная форма на V, $\dim V = n < \infty$, Q(x) = B(x,x), $\operatorname{char} F \neq 2$. $V^{\perp_B} = V_0 = \{x \in V | B(x,y) = 0 \ \forall y \in V\}$.

Определение. Квадратичная или билинейная форма называется невыр

Определение. Квадратичная или билинейная форма называется невырожденной, если $V_0 = \{0\}$

Пусть
$$V = V_0 \bigoplus U$$
.

Лемма. Тогда U не вырождено относительно B, то есть сужение B на $U \times U$ невырождено.

Доказательство. $u \in U^{\perp_B} \cap U = ? = \{0\}$. Тогда $\forall v \in V \ \exists x \in V_0, y \in U : v = x + y$. B(u,v) = B(u,x) + B(u,y) = B(x,u) + B(y,u) = 0 + 0 = 0. Получили, что $B(u,v) = 0 \ \forall v \in V$, то есть $u \in V_0$. $u \in U \cap V_0 = \{0\}$, то есть u = 0.

Если $f_1,...,f_k$ — базис в V_0 , а $f_{k+1},...,f_n$ — базис U, то $f=(f_1,...,f_n)$ — базис V.

В дальнейшем считаем, что B — невырождена.

Упражнение. (ББ) Доказать, что B невырождена $\Leftrightarrow B_f$ — обратима.

Теорема. \forall квадратичной формы (=симметричной билинейной формы) U на пространстве V существует базис f, такой, что Q_f — диагональная матрица.

Доказательство. B — ассоциированная с Q билинейная форма, невырожденная.

1 шаг) В пространстве V существует вектор x, такой, что $Q(x) \neq 0$.

Возьмем произвольный вектор $u \neq 0$. Если Q(u) = 0, то возьмем $v \in V$: $B(u,v) \neq 0$. Если $Q(v) \neq 0$, то все доказано, иначе положим x = u + v и докажем, что $Q(u + v) = B(u + v, u + v) = B(u, u) + B(u, v) + B(v, u) + B(v, v) = \underbrace{Q(u)}_{=0} + 2\underbrace{B(u, v)}_{\neq 0(def)} + \underbrace{Q(v)}_{=0} \neq 0$.

2 fucking шаг) Индукция по $n=\dim V$. При n=1 утверждение верно: матрица 1×1 диагональна. Выберем в качестве базисного вектора f_1 , так, чтобы $Q(f_1)=B(f_1,f_1)\neq 0$.

Пусть $f_1, g_2, ..., g_n$ — базис нашего пространства V (линейно независимый набор из одного вектора можно дополнить до базиса (как и любой другой независимый набор)).

Процесс ортогонализации: положим $f_i=g_i-\frac{B(g_i,f_1)}{B(f_1,f_1)}f_1$. Тогда вычисление показывает, что $B(f_i, f_1) = 0 \ \forall i = 2, ..., n.$

Пусть $W = < f_2, ..., f_n >$. Докажем, что оно невырождено относительно B.

Возьмем $w \in W \cap W^{\perp_B} = ? = \{0\}.$

Возьмем
$$w \in W \cap W^{\perp_B} = ? = \{0\}.$$

 $\forall x \in V : x = \sum_{i=1}^n f_i \alpha_i = f_i \alpha_i + y \in W$. Тогда $B(w, x) = B(w, f_1) \alpha_1 + \underbrace{B(w, y)}_{=0} = \underbrace{B(w, y)}_{$

 $\sum_{i=2}^{n} B(f_i, f_1) \beta_i \alpha_i + 0 = 0 \Rightarrow w \in V^{\perp_B} = \{0\}.$

По индукционному предположению, \exists базис $h = (h_2, ..., h_n)$ в W, такой, что $(B|_W)_h$ будет диагональной. То есть $B(h_i,h_j)=0 \ \forall i \neq j \geq 2.$ Положим $h_1=f_1.$ $B(h_1,h_i)=$ $B(f_1, \sum_{j=2}^n f_j \gamma_j) = 0.$

Мы доказали, что $B(h_i,...,h_j)=0 \ \forall i\neq j \ \text{ot}\ 1$ до n, т.е. матрица B в базисе $(h_1,...,h_n)$ диагональна.

3 Определитель и его свойства

Определение. Имеем отображение $X \times X \to F$ — поле. Тогда антисимметричность: $f(x,y) = -f(y,x) \Rightarrow f(x,x) = -f(x,x) \Rightarrow f(x,x) = 0.$

Лемма. Если char $F \neq 2$, mo $f(x,y) = -f(y,x) \Rightarrow f(x,x) = 0$.

 Π усть X — векторное пространство над F, а f линейна по каждому аргументу. Пусть $f(x,x) = 0 \ \forall x \in X. \ 0 = f(x+y,x+y) = f(x,x) + f(y,y) + f(x,y) + f(y,x) =$ $f(x,y) + f(y,x) \Rightarrow f(x,y) = -f(y,x) \ \forall x,y \in X.$

Определение. Пусть $f:\underbrace{V\times ...\times V}_{m}\to F$ является полилинейной, то есть она линейна по

каждому аргументу. Тогда она называется антисимметричной, если она равна нулю как только два её аргумента совпадают.

Лемма. Если f- полилинейна u антисимметрична, то f(...,u,...,v,...) = -f(...,v,...,u,...). (на месте многоточий стоит одно и то же).

$$\sigma \in S_m$$
.

$$f(v_1, ..., v_m) = (-1)^{\varepsilon(\sigma)} f(v_{\sigma(1)}, ..., v_{\sigma(m)}).$$

Четность перестановки:

Инверсия в перестановке σ — пара индексов i, j, таких, что i < j, $\sigma(i) > \sigma(j)$.

Например, если мы запишем перестановку в форме:

$$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 5 & 1 & 6 \end{array}\right) \begin{array}{c} i \\ \sigma(i) \end{array}$$

(рисунок)

Дужками обозначены инверсии: $(1\ 2)$, $(1\ 3)$, $(1\ 5)$, $(2\ 3)$, $(2\ 5)$, $(3\ 5)$, $(4\ 5)$.

Четность $\sigma = ($ число инверсий $) \mod 2.$

Лемма. Любая перестановка раскладывается в произведение транспозиций (i, i+1). $Hanpumep, \, \partial \Lambda \mathcal{A} \, mo \ddot{u} \, umy \kappa u \, (pucy ho \kappa) \, \sigma \cdot (4 \, 5) =$

$$\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 3 & 2 & 1 & 5 & 6
\end{array}\right)$$

Доказательство. Индукция по числу инверсий:

Если инверсий нет, то $\sigma(i) < \sigma(j) \ \forall i < j$. Тогда σ — тождественная. Более того, если $\sigma = e \Leftrightarrow \sigma(i) < \sigma(i+1) \ \forall i=1,...,m-1$.

Если количество инверсий не равно нулю, то $\exists i: \sigma(i) > \sigma(i+1)$. Тогда количество инверсий в $\tau = \sigma \cdot (i \ i+1)$ на 1 меньше, чем в σ . Действительно, $\tau(k) = \sigma(k) \ \forall k \neq i, \ i+1$. Таким образом, $\tau(i) = \sigma(i+1), \ \tau(i+1) = \sigma(i)$.

По индукционному предположению $\tau = (j_1 \ j_1 + 1) \cdot ... \cdot (j_k \ j_k + 1), \ \sigma = \tau \cdot (i \ i + 1)$ (если мы домножим на транспозицию слева, то у σ она пропадет, а у τ — появится) — произведение транспозиций нужного вида.

Лемма. При умножении на $(i \ i+1)$ четность перестановки меняется.

Теорема. Пусть $\varepsilon(\sigma)$ — четность перестановки в σ .

$$\varepsilon: S_n \to \mathbb{Z}_2$$
 — гомоморфизм групп.

Доказательство. $\sigma, \tau \in S_n$.

$$\sigma = (i \ i+1) \cdot \dots \cdot (i_k \ i_k+1), \ \tau = (j \ j+1) \cdot \dots \cdot (j_l \ j_l+1).$$

$$\varepsilon(\sigma) = k \mod 2, \ \varepsilon(\tau) = l \mod 2$$

$$\varepsilon(\sigma\tau) = (k+l) \mod 2.$$

Определение. Ядро этого гомоморфизма называется знакопеременной группой: $\ker \varepsilon = A_n$.

Теорема. При $n \geq \sigma$ группа A_n простая.

$$\varepsilon(\sigma \cdot (i \ j)) = \varepsilon(\sigma) +_2 \varepsilon(i \ j) = \varepsilon(\sigma) + 1 \mod 2.$$

Пусть
$$f: \underbrace{V \times ... \times V}_{m} \to F$$

$$v = (v_1, ..., v_n) \stackrel{m}{-}$$
 базис V .

f — полилинейная. Пусть A — матрица, в которой m столбцов и n строк: $A \in M_{n \times m}(F).$

$$x^{(1)}, ..., x^{(m)} \in V, x_v^{(i)} = a_{*i}.$$

$$f(x^{(1)},...,x^{(m)}) = f(\sum_{j_1=1}^n v_{j_1}a_{j_11},...,\sum_{j_m=1}^n v_{j_m}a_{j_mm}) = \sum_{j_1=1}^n ... \sum_{j_m=1}^n f(v_{j_1},...,v_{j_m})a_{j_11} \cdot ... \cdot a_{j_mm}$$

Набор чисел (m-мерный массив) $f(v_{j_1},...,v_{j_m})$, где $j_1,...,j_m \in \{1,...,m\}$ называется **тензором**. — не совсем правильное определение.

Пусть m=n, а f — антисимметрична. Тогда все слагаемые, у которых $j_r=j_s$ при $r\neq s$ равны нулю. Поэтому можно считать, что

$$\sigma = \left(\begin{array}{ccc} 1 & \dots & n \\ j_1 & \dots & j_n \end{array}\right) \in S_n$$

Тогда

$$f(x^{(1)}, ..., x^{(m)}) = \sum_{\sigma \in S_n} f(v_{\sigma(1)}, ..., v_{\sigma(n)}) a_{\sigma(1)1} \cdot ... \cdot a_{\sigma(n)n} =$$

$$\sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} f(v_1, ..., v_n) a_{\sigma(1)1} \cdot ... \cdot a_{\sigma(n)n} = \left(\sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} \prod_{i=1}^n a_{\sigma(i)i}\right) f(v_1, ..., v_n)$$

Обратно, $\forall c \in F$ форма $f: V \times ... \times V \to F$ (dim V = n), заданная формулой $f(x^{(1)},...,x^{(n)}) = \left(\sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} \prod_{i=1}^n a_{\sigma(i)i}\right) \cdot c$ является линейной антисимметричной формой.

Значение n-линейной формы на n-мерном пространстве полностью определяется её значением на наборе базисных векторов.

 $f: V \times ... \times V \to F$ — полилинейная антисимметричная форма и размерность пространства n, то есть базис $v = (v_1, ..., v_n)$, тогда

$$f(x_1, ..., x_n) = f(v_1, ..., v_n) \sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} \prod_{i=1}^n a_{\sigma(i)i}$$

где $a_{\sigma(i)i}$ — координата вектора x_i в v с номером $\sigma(i)$, или, что то же самое, $A=((x_1)_v,...,(x_n)_v)$

Определение. Если $A \in M_n(R)$, где R — коммутативное кольцо, то

$$\det A = \sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} \prod_{i=1}^n a_{\sigma(i)i}$$

Лемма. Любая полилинейная форма $f: F^n \times ... \times F^n \to F$, где $F^n \times ... \times F^n \longleftrightarrow M_n(F)$, $f(A) = f(E) \cdot \det A$

 Π емма. \det — полилинейная антисимметричная форма столбцов матрицы.

Доказательство. $a_{*k} = b + c$, где $b, c \in F^n$,

$$\det A = \sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} \prod_{i \neq k}^n a_{\sigma(i)i} \cdot (b_{\sigma(k)} + c_{\sigma(k)}) = \sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} \prod_{i \neq k}^n a_{\sigma(i)i} b_{\sigma(k)} + \sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} \prod_{i \neq k}^n a_{\sigma(i)i} c_{\sigma(k)}$$
$$= \det(a_{*1} \dots a_{*k-1} b a_{*k+1} \dots a_{*n}) + \det(a_{*1} \dots a_{*k-1} c a_{*k+1} \dots a_{*n})$$

 $C a_{*k} = \alpha \beta$ аналогично.

Докажем антисимметричность:

 A_n — множество четных перестановок $\leq S_n$. Зафиксируем $i \neq j \in \{1,...,n\}$, циклическую перестановку $\tau = (i\ j)$ и возьмем смежный класс $S_n = A_n \tau \sqcup A_n$

Пусть $a_{*i} = a_{*j}$, тогда

$$\det A = \sum_{\sigma \in A_n} \prod_{k=1}^n a_{\sigma(k)k} + (-1)^1 \sum_{\sigma \in A_n} \prod_{k=1}^n a_{\sigma\tau(k)k} = \sum_{\sigma \in A_n} (\prod_{k=1}^n a_{\sigma(k)k} - \prod_{k \neq i,j}^n a_{\sigma(k)k} \cdot \underbrace{a_{\sigma(j)i}}_{=a_{\sigma(j)i}} \cdot \underbrace{a_{\sigma(i)j}}_{=a_{\sigma(i)i}}) = 0$$

 $\dim V=n,\, f:\underbrace{V\times ...\times V}_n\to F$ полилинейная, антисимметричная, $f\neq 0,$ то f называется формой объема.

f — форма объема на V, а L — линейный оператор, то $f_L(x_1,...,x_n)=f(L(x_1),...,L(x_n))$ также является формой объема.

Определим

$$\det L = \frac{f_L(v_1, ..., v_n)}{f(v_1, ..., v_n)}$$

где $v = (v_1, ..., v_n)$ — базис.

Доказательство. (корректности). Так как $f \neq 0$, то существует набор векторов $x_1, ..., x_n$, таких, что $f(x_1, ..., x_n) \neq 0$.

 $f(x_1,...,x_n)=f(v_1,...,v_n)\det A$, где $A=((x_1)_v,...,(x_n)_v)$. Следовательно, $f(v_1,...,v_n)\neq 0$, то есть знаменатель не ноль.

 $f_L(x_1,...,x_n) = f_L(v_1,...,v_n) \det A$, откуда

$$\frac{f_L(x_1, ..., x_n)}{f(x_1, ..., x_n)} = \frac{f_L(v_1, ..., v_n)}{f(v_1, ..., v_n)}$$

То есть определитель не зависит от выбора базиса.

Покажем, что он равен определителю матрицы оператора:

Лемма. $v = (v_1, ..., v_n)$ — базис, то $\det L = \det L_v$

Доказательство.

$$\det L = \frac{f_L(v_1, ..., v_n)}{f(v_1, ..., v_n)} = \frac{f(L(v_1), ..., L(v_n))}{f(v_1, ..., v_n)} = \frac{f(v_1, ..., v_n) \det A}{f(v_1, ..., v_n)}$$

где
$$A = (L(v_1)_v, ..., L(v_n)_v).$$

Теорема. det $L_1 \circ L_2 = \det L_1 \cdot \det L_2$, det $(A_1 \cdot A_2) = \det A_1 \cdot \det A_2$, где $L_1, L_2 : V \to V$ – линейные операторы, а $A_1, A_2 \in M_n(F)$.

Доказательство.

$$\det L_1 = \frac{f(L_1(v_1), ..., L_1(v_n))}{f(v_1, ..., v_n)};$$

$$\det L_2 = \frac{f_{L_1}(L_2(v_1), \dots, L_2(v_n))}{f_{L_1}(v_1, \dots, v_n)} = \frac{f(L_1 \circ L_2(v_1), \dots, L_1 \circ L_2(v_n))}{f(L_1(v_1), \dots, L_1(v_n))} = \frac{f_{L_1 \circ L_2}(v_1, \dots, v_n)}{f(v_1, \dots, v_n)} \cdot \frac{f(v_1, \dots, v_n)}{f_{L_1}(v_1, \dots, v_n)} = \det L_2 = \frac{f(u_1 \circ L_2(v_1), \dots, L_1(v_n))}{f(u_1, \dots, u_n)} = \frac{f(u_1 \circ L_2(v_n), \dots, L_1(v_n))}{f(u_1, \dots, u_n)} = \frac{f(u_1, \dots, u_n)}{f(u_1, \dots, u_n)} = \frac{f(u_1, \dots, u_n)}{f($$

Второе утверждение непосредственно следует из первого (Принять A_1 за матрицу линейного отображения L_1)

Задание на дом: найти в доказательстве косяк, выкурить, рассказать Степанову ощущения.

Лемма. $f - nonunuheйная антисимметричная форма. Тогда <math>f(v_1, ..., v_i, ..., v_j, ..., v_n) = f(v_1, ..., v_i + \lambda v_j, ..., v_j, ..., v_n), где <math>\lambda \in F$.

Доказательство. $f(v_1,...,v_i+\lambda v_j,...,v_j,...,v_n)=f(v_1,...,v_i,...,v_j,...,v_n)+\lambda f(v_1,...,v_j,...,v_j,...,v_n)=f(v_1,...,v_i,...,v_j,...,v_n)+\lambda f(v_1,...,v_j,...,v_j,...,v_n)$

Следствие (из доказательства корректности определения определителя) f — форма объема на V, то $f(v_1,...,v_n) \neq 0 \Leftrightarrow (v_1,...,v_n)$ — базис.

Доказательство. \Leftarrow): $(v_1,...,v_n)$ — базис. $f \neq 0 \Rightarrow \exists x_1,...,x_n \in V: 0 \neq f(x_1,...,x_n) = \underbrace{f(v_1,...,v_n)}_{(0)} \det A$

Обратно: Если $(v_1,...,v_n)$ — не базис, то $\exists \alpha_1,...,\alpha_n$, не все из них равны 0, такие, что $\sum_{i=1}^n v_i \alpha_i = 0$.

Пусть, для определенности, $\alpha_1 \neq 0$.

$$v_1 + \sum_{i=2}^n v_i \left(+ \frac{\alpha_i}{\alpha_1} \right) = 0$$

$$f(v_1,...,v_n) = f(v_1 + \sum_{i=2}^n v_i \frac{\alpha_i}{\alpha_1},...,v_2,...,v_n).$$

Следствие: $A \in M_n(F)$, $A \in GL_n(F) \Leftrightarrow \det A \neq 0$.

Теорема. det $A = \det A^T$.

Доказательство.

$$\det A^{T} = \sum_{\sigma \in S_{n}} (-1)^{\varepsilon(\sigma)} \prod_{k=1}^{n} (A^{T})_{\sigma(k)k} = \sum_{\sigma \in S_{n}} (-1)^{\varepsilon(\sigma)} \prod_{i=1}^{n} a_{\sigma^{-1}(i)i} = \sum_{\sigma \in S_{n}} (-1)^{\varepsilon(\sigma^{-1})} \prod_{i=1}^{n} a_{\sigma^{-1}(i)i} = \sum_{\tau \in S_{n}} (-1)^{\varepsilon(\tau)} \prod_{i=1}^{n} a_{\tau(i)i} = \det A$$

где
$$i = \sigma(k) \Leftrightarrow k = \sigma^{-1}(i)$$
.
 $\varepsilon(\sigma^{-1}) = -\varepsilon(\sigma) = \varepsilon(\sigma) \in \mathbb{Z}_2$.

Теорема. $A \in M_n(F), B \in M_m(F), C \in M_{n,m}(F).$ Тогда

$$\det \left(\begin{array}{cc} A & C \\ 0 & B \end{array} \right) = \det A \cdot \det B$$

Доказательство. $f: M_n(F) \to F$. $f(A) = \det\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$, (B,C) — фиксированы. Эта штука является полилинейной формой. Очевидно, что f — антисимметричная полилинейная форма столбцов матрицы A. Тогда $f(A) = f(E) \det(A) = \det\begin{pmatrix} E & C \\ 0 & B \end{pmatrix} \det A$. $\det\begin{pmatrix} E & 0 \\ C^T & B^T \end{pmatrix} = (\text{аналогично}) = \det B^T \cdot \det\begin{pmatrix} E & 0 \\ C^T & E \end{pmatrix}$. Ясно, что при помощи преобразования Гаусса $\begin{pmatrix} E & 0 \\ C^T & E \end{pmatrix} \sim \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} \Rightarrow \det\begin{pmatrix} E & 0 \\ C^T & E \end{pmatrix} = 1$. Таким образом, $\det\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \det A \cdot \det\begin{pmatrix} E & C \\ 0 & B \end{pmatrix} = \det A \cdot \det B$.

Из теоремы следует, что матрица вида

$$\det \begin{pmatrix} \alpha & * & * & * & * \\ 0 & | & - & - & | \\ 0 & | & B & & | \\ 0 & | & & & | \\ 0 & | & - & - & | \end{pmatrix} = \alpha \cdot \det B$$

Имеем матрицу:

Определение. $C \in M_n(F)$. Минором n-1-го порядка в позиции (i,j) называется $M_{ij}(C) = M_{ij} =$ определитель матрицы, полученной из исходной вычеркиванием i-той строки и j-того столбца.

Определение. $A_{ij}(C) = A_{ij} = (-1)^{i+j} \cdot M_{ij}$ — алгебраическое дополнение позиции (i,j).

Следствие:

$$\det \begin{pmatrix} / & / & 0 & / & / \\ / & / & \cdots & / & / \\ / & / & \alpha & / & / \\ / & / & \cdots & / & / \\ / & / & 0 & / & / \end{pmatrix} = \alpha \cdot A_{ij}$$

Теорема.

$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ji} A_{ji}$$

Доказательство. Заметим, что

$$a_{*j} = \begin{pmatrix} a_{1j} \\ 0 \\ \dots \\ 0 \\ \end{pmatrix} + \begin{pmatrix} 0 \\ a_{2j} \\ 0 \\ \dots \\ 0 \\ \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ a_{3j} \\ 0 \\ 0 \\ \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ 0 \\ \dots \\ a_{nj} \\ \end{pmatrix}$$

$$\det A = \sum_{i=1}^{n} \det \begin{pmatrix} c & T & 0 & 0 & \pi \\ 6 & \Pi & 0 & H \\ M & a & a_{ij} & T & p \\ H & \Pi & 0 & H \\ & & 0 & & A \end{pmatrix}$$

Следствие: $j, k \in \{1, ..., n\}, A \in M_n(F)$

$$\sum_{i=1}^{n} a_{ij} A_{ik} = \begin{cases} \det A, & j=k\\ 0, & j \neq k \end{cases}$$

Доказательство. Для j=k уже доказано. Если $j\neq k$, заменим k-ый столбец на j-ый, получим $B=(a_{*1},...,a_{*j},...,a_{*j},...,A_{*n})$. С одной стороны, определитель данной матрицы равен нулю. С другой, разложим по k-ому столбцу:

$$0 = \det B = \sum_{i=1}^{n} a_{ij} \underbrace{A_{ik}(B)}_{A_{ik}(A)} = \sum_{i=1}^{n} a_{ij} A_{ik}$$

Определение. Присоединенной к A называется матрица A^{adj} : $(A^{adj})_{ij} = A_{ji}(A)$

Например,

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^{adj} = \begin{pmatrix} \delta & -\gamma \\ -\beta & \alpha \end{pmatrix}^{T} = \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$$

теперь

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \alpha \delta - \beta \gamma & 0 \\ 0 & \alpha \delta - \beta \gamma \end{pmatrix} = (\alpha \delta - \beta \gamma)E = \det A \cdot E$$

Теорема. $A \cdot A^{adj} = A^{adj} \cdot A = \det A \cdot E$ $Ecnu \det A \neq 0, mo A^{-1} = \frac{1}{\det A} A^{adj}.$

Доказательство. очевидно, ёпта!

3.1 Решение систем линейных уравнений при помощи определителя.

Теорема. (Формулы Крамера)

 $A \in GL_n(F), \ b \in F^n, \ \Pi$ усть $\Delta = \det A. \ \Delta_k - onpedenumenь матрицы, полученной из <math>A$ заменой k-ого столбца на столбец b. Тогда

$$Ax = b \Leftrightarrow x = \begin{pmatrix} \Delta_1/\Delta \\ \dots \\ \Delta_n/\Delta \end{pmatrix}$$

 \mathcal{A} оказательство. $\Delta_k = \sum_{i=1}^n b_i \cdot A_{ik}$. Матрица, определитель которой равен Δ_k отличается от A только в k-ом столбце, поэтому её алгебраическое дополнение $A_{ik} = A_{ik}(A)$. С другой стороны $Ax = b \Leftrightarrow x = A^{-1}b = \frac{1}{\det A}A^{adj}b$. $x_k = \frac{1}{\Delta}(A_{1k},...,A_{nk})b = \frac{1}{\Delta}\sum_{i=1}^n b_i A_{ik} = \frac{\Delta_k}{\Delta}$

Определение. Минорный ранг матрицы A размера $m \times n$ называется наибольший размер квадрата подматрицы в A, определитель которой $\neq 0$.

Теорема. Mинорный ранг A равен $\operatorname{rk} A$.

Доказательство. Если минорный ранг $= k \Rightarrow \exists$ подматрица $k \times k$, у которой строки линейно независимы, т.е. $\det \neq 0 \Rightarrow$ в матрице $\exists \ k$ штук линейно независимых строк, а следовательно, $\operatorname{rk} A > k$.

Обратно: Пусть ранг матрицы A=k, то там есть k линейно независимых строк. Возьмем (не квадратную!) подматрицу, состоящую из k линейно независимых строк. Так как строчный ранг равен столбцовому, то матрица должна содержать и k линейно независимых столбцов. Возьмем подматрицу на пересечении этих линейно независимых строк и столбцов. Она квадратная, у нее все столбцы линейно независимы, следовательно, её ранг $\neq 0$.

Доказали, что минорный ранг $A \geq \operatorname{rk} A$.

4 Собственные числа и вектора

Идея такова:

$$L: V \to V$$
, dim $V < \infty$.

Проблема. Выбрать базис $u=(u_1,...,u_n)$ пространства V, такой, что L_u — диагональная.

Если
$$L_u = \begin{pmatrix} \lambda & 0 \\ & \dots & \\ 0 & \lambda \end{pmatrix}$$
, то $L(u_i) = \lambda_i u_i$.

Определение. Ненулевой вектор $x \in V \setminus \{0\}$ называется собственным вектором оператора L, если $L(x) = \lambda x$ для некоторого $\lambda \in F$, при этом λ называется собственным числом.

$$f$$
 — базис V , $L_f x_f = \lambda x_f$

Определение. Собственный вектор матрицы, A если $Av = \lambda v, \lambda \in F, v \in F^n \setminus \{0\}.$

$$Av = \lambda v \Leftrightarrow (A - \lambda E)v = 0.$$

 $\exists v \neq 0$, удовлетворяющее этому равенству \Leftrightarrow столбцы $(A - \lambda E)$ линейно зависима $\Leftrightarrow \det(A - \lambda E) = 0$.

Определение. Если $A \in M_n(F)$, то характеристический многочлен $A - \chi_A(t) = \det(A - tE)$.

$$L:V \to V, \ f$$
 — базис $V, \ \chi_L(t) = \det(L_f - tE).$

 Π емма. Xарактеристический многочлен оператора не зависит от f

Доказательство.
$$g, f$$
 — базисы $V, L_g = C^{-1}L_fC$.
$$\det(L_g - tE) = \det(C^{-1}L_fC - tE) = \det(C^{-1}(L_f - tE)C) = (\det C)^{-1}(\det(L_f - tE))(\det C) = \det(L_f - tE)$$

Предложение. Собственные числа матрицы A (оператора A) — корни характеристического многочлена χ_A .

Определение. $\ker(A-\lambda I)=V_{\lambda}$ — собственное подпространство соответствующее λ , где I — тождественный оператор.

Определение. Кратность λ в многочлене χ_A называется алгебраической кратностью λ . $\dim V_{\lambda}$ — геометрическая кратность λ .

Заметим, что $\deg \chi_A = n$, где A — матрица $n \times n$ или оператор в n-мерном пространстве.

Теорема. (о линейной независимости собственных векторов)

Собственные вектора, соответствующие различным собственным числам, линейно независимы.

Доказательство.

 $\lambda_1,...,\lambda_k$ — различные собственные числа.

 $x_1, ..., x_k$ — соответсвующие собственные вектора, т.е.

 $Ax_i = \lambda_i x_i$ или $\lambda_i \neq \lambda_j$ при $i \neq j$.

$$A(\sum_{i=1}^k x_i \alpha_i) = 0.$$

$$A(\sum_{i=1}^{k} x_i \alpha_i) = 0.$$

$$\sum_{i=1}^{k} Ax_i \alpha_i = \sum_{i=1}^{k} x_i \lambda_i \alpha_i = 0$$

Домножим первое уравнение на λ_k и из обоих уравнений получим

$$\sum_{i=1}^{k} x_i \alpha_i (\lambda_k - \lambda_i) = 0 \Leftrightarrow \sum_{i=1}^{k-1} x_i \alpha_i (\lambda_k - \lambda_i)$$

Введем индукцию по k, предполагая, что вектора линейно независимы. База: k=1: $x_1\alpha_1 = 0$ и так как $x_1 \neq 0$ (собственный вектор не равен нулю), то $\alpha_1 = 0$. По индукционному предположению $\alpha_i \underbrace{(\lambda_k - \lambda_i)}_{\neq 0} = 0 \ \forall i = 1, ... k - 1 \Rightarrow \alpha_i = 0 \ \forall i = 1, ..., k - 1.$

$$\alpha_k \cdot \underbrace{x_k}_{\neq 0} = 0 \Rightarrow \alpha_k = 0.$$

Предложение. Оператор диагонализуем (то есть \exists базис, в котором его матрица диагональна) тогда и только тогда, когда существует базис из собственных векторов.

Следствие: (достаточное условие диагонализуемости): Если χ_A имеет n различных корней в F, то оператор A диагонализуем.

Доказательство. По теореме имеем n линейно независимых собственных векторов, они образуют базис в n-мерном пространстве.

Следствие: F — алгебраически замкнуто и χ_A не имеет кратных корней, то A диагонализуем.

Определение. Матрица, в которой по диагонали стоит одно и то же число λ , над диагональю стоят единички, а остальные нули, называется жордановым (ящиком) блоком.

Жордановой формой называется блочно-диагональная матрица, на диагонали которой стоят жордановы блоки (не обязательно с одинаковыми λ).

Теорема. (жорданова форма) $\dim V = n$, F — алгебраически замкнуто, $\forall A : V \to V$, то \exists базис и пространства V, такой, что A_u имеет жорданову форму.

Упражнение. (на бонусные баллы)

1)
$$p, q \in F[t]$$
, $\gcd(p, q) = 1, L : V \to V$.
Доказать, что $\ker(p(L) \cdot q(L)) = \ker(p(L)) \bigoplus \ker(q(L))$.

Определение. R называется F-алгеброй, если

- 1) R кольцо с единицей.
- 2) R векторное пространство над F с той же операцией сложения.
- 3) $\forall \alpha \in F, r, s \in R : \alpha(rs) = (\alpha r)s = r(\alpha s).$

Примерами алгебр является, например, само поле F.

Пример.

- 1) F
- 2) $F[x_1, ..., x_n]$
- 3) $M_n(F)$.
- 4) End(V).

Определение. V — векторное пространство над F

 $F[t].\ L \in End(V) = \{$ лин.отобр $V \to V\}$ (эндоморфизм).

(L+M)(v) = L(v) + M(v).

LM(v) = L(M(v)).

 $(\alpha L)(v) = \alpha \cdot L(v).$

Очевидно выполнена аксиома $\alpha(LM) = (\alpha L)M$.

Предложение. (универсальное свойство кольца многочленов)

R-F-алгебра (F- поле) (возможно, алгебра некоммутативна).

 $\forall r \in R \exists ! \ \varepsilon_r : F[t] \to R$ — гомоморфизм алгебр, для которого $\varepsilon_r(t) = r$.

Доказательство. Положим $\varepsilon_r(\alpha_n t^n + ... + \alpha_0) = \alpha_n r^n + ... + \alpha_1 r + \alpha \cdot 1_R$ (единица кольца). Другими словами, $\varepsilon_p = p(r)$.

Легко проверить, что ε_r — гомоморфизм колец, F-линейное отображение, и $\varepsilon_r(t)=r$.

Единственность: φ — гомоморфизм алгебр, такой, что $\varphi(t)=r$, тогда $\varphi(1_F)=1_R, \ \varphi(\alpha)=\varphi(\alpha\cdot 1_F)=\alpha\cdot \varphi(1_F)=\alpha\cdot (1_R).$

 $\varphi(t^n) = \varphi(t \cdot t^{n-1}) = r \cdot \varphi(t^{n-1})$ по индукционному предположению $= r \cdot r^{n-1} = r^n$.

$$\varphi(\sum_{k=0}^{n} \alpha_k t^k) = \sum_{k=0}^{n} \alpha_k \varphi(t_k) = \sum_{k=0}^{n} \alpha_k r^k$$

где $r^0 = 1_R$, $t^0 = 1_F$.

Таким образом, $\varphi = \varepsilon_r$

Определение. R-F-алгебра, $r\in R$

Минимальным многочленом элемента r называется p: $\ker \varepsilon_r = p \cdot F[t]$. То есть минимальный многочлен определен с точностью до умножения на константу (элемент поля).

Упражнение. (на бонусные баллы):

2) Пусть $B:V\to V$ линейный оператор, $B^n=0$. Доказать, что ненулевые элементы $v,\ B(v),\ B^2(v),...,B^{n-1}(v)$ линейно независимые. $(v\in V)$.

Для прикола возведем в степень такую матрицу:

$$\begin{pmatrix} 0 & 1 & & & 0 \\ & 0 & 1 & & \\ & & 0 & 1 \\ & & & 0 & 1 \\ 0 & & & 0 \end{pmatrix}^{k} = \begin{pmatrix} 0 & 0 & 1 & & 0 \\ & & & 1 & \\ & & & & 1 \\ & & & & 0 \\ & & & & 0 \end{pmatrix}$$

При этом единицы сдвинулись вправо на k позиций.

Докажем это:

 $J=J_{n,0},\ Je_i=e_{i-1},\ i>1,$ где e_i-i -тый столбец единичной матрицы. Если итерировать данную операцию, получим

$$J^k e_i = \begin{cases} e_{i-k} & \text{при } i > k \\ 0 & \text{при } i \le k \end{cases}$$

Если пространство конечномерное, то мы рано или поздно получим ноль.

С помощью этой фигни докажем теорему

Теорема. (Кэли-Гамильтона)

 $\chi_L(L)=0,\ \emph{где}\ L:V o V^{'}-\emph{линейный оператор}\ \emph{в}\ \emph{конечномерном пространстве}\ V.$

Доказательство. Предположим, что наше поле алгебраически замкнуто. Для этого нужно знать утверждение, нужно знать, что любое поле содержится в алгебраически замкнутом поле. Как построить такое поле? Берем неприводимый многочлен, присоединяем его корень к полю: F[t]/(p). (это было отвлечение).

Лемма. \forall поля F существует алгебраически замкнутое поле \overline{F} , содержащее F.

Доказательство. Будет выведено из леммы Цорна и аксиомы выбора.

Так как $M_n(F) \subseteq M_n(\overline{F})$, то можно считать, что $F = \overline{F}$ — алгебраически замкнуто. Тогда \exists базис u пространства V, такой, что существует жорданов блок

Так как $\varphi: End(V) \to M_n(F)$, где $\varphi(L) = L_u$ $(n = \dim V)$ является изоморфизмом алгебр, то $p(L_u) = p(L)_u$. Поэтому достаточно доказать, что $\chi_L(L_u) = 0$, что можно перезаписать как $\chi_{L_u}(L_u) = 0$.

Видимо, уже доказано, что

$$p\begin{pmatrix} A_1 & & & & \\ & \cdot & & & \\ & & \cdot & & \\ & & \cdot & & \\ & & & A_m \end{pmatrix} = \begin{pmatrix} p(A_1) & & & \\ & \cdot & & & \\ & & \cdot & & \\ & & & \cdot & \\ & & & p(A_m) \end{pmatrix}$$

где A_i — блоки.

Осталось доказать, что $\chi_L(J_{k_i,\lambda_i})=0$. Действительно, если мы возьмем $(\lambda_i E - J_{k_i,\lambda_i})^k=0$

$$\begin{pmatrix} 0 & 1 & & & \\ & 0 & . & & \\ & & . & . & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}^{k_i} (-1)^{k_i} = 0$$

Введем обозначение: символом φ_L обозначается минимальный многочлен оператора L (многочлен наименьшей степени, которая аннулирует оператор L: $\varphi_L(L) = 0$).

Следствие: $\chi_L(t)$: $\varphi_L(t)$.

Если λ_i — собственное число оператора L, то $\varphi_L(\lambda_i) = 0$.

Доказательство. Предположим, что F алгебраически замкнуто. $\varphi_L(t) = (t-\alpha_1) \cdot ... \cdot (t-\alpha_h)$, где α_i различны.

Посмотрим, как данный многочлен воздействует на жорданов блок:

$$\varphi_{L}(J_{k,\lambda}) = \begin{pmatrix} \lambda - \alpha_{1} & 1 & & \\ & \cdot & \cdot & \\ & & \cdot & 1 \\ & & \lambda - \alpha_{1} \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} \lambda - \alpha_{h} & 1 & & \\ & \cdot & \cdot & \\ & & \cdot & 1 \\ & & \lambda - \alpha_{h} \end{pmatrix} = \begin{pmatrix} \prod_{i=1}^{n} (\lambda - \alpha_{i}) & / & / & \\ & & \cdot & / & / & \\ & & \cdot & / & / & \\ & & & \cdot & / & / \end{pmatrix} \neq 0$$

если $\lambda \neq \alpha_i \ \forall i.$ Таким образом, $\varphi_L(\lambda)...$

Следствие: Если $\chi_L(t) = \prod_{i=1}^n (\lambda_i - t)^{k_i}$, то $\varphi_L = \prod_{i=1}^n (\lambda_i - t)^{l_i}$, для некоторых $1 < l_i < k_i$.

Пример.

$$A = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Для неё: $\chi_A(t) = (1-t)^4$, $\varphi_A(t) = (1-t)^2$.

Определение. Если $\chi_L(t)=\prod (\lambda_i-t)^{k_i},$ то $\ker(L-\lambda_i I)^{k_i}$ называется корневым подпространством и обозначается R_{λ_i}

 $(V_{\lambda_i} = \ker(L - \lambda_i I))$ — собственное подпространство.

Мы коротко заканчиваем тему жордановых формул.

$$J_{k,0}^l = \begin{pmatrix} 0 & l - \text{позиция} \\ 0 & \dots \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$J_{k,\lambda}^l = (\lambda E + J_{k,0})^l = \sum_{i=0}^l C_l^i J_{k,0}^i \lambda^{l-i}$$

$$e^{J_{k,0}} := \sum_{i=0}^{k-1} \frac{1}{i!} J_{k,0}^i$$

$$e^{J_{k,\lambda}} = e^{\lambda E + J_{k,0}} = e^{\lambda E} \cdot e^{J_{k,0}} = e^{\lambda} \cdot E \cdot \sum_{i=0}^{k-1} \frac{1}{i!} J_{k,0}^i$$

Если у нас есть $L:V\to V,\ V$ — векторное пространство над замкнутым полем F, то разложим характеристический многочлен в линейные множители: $\chi_L(t)=\prod_{i=1}^m (\lambda_i-t)^{k_i},\ \lambda_i\neq\lambda_j$ при $i\neq j$.

$$R_{\lambda_i} = \ker(L - \lambda_i I)^{k_i} = \ker(L - \lambda_i I)^r \ \forall r \ge k_i.$$

$$V_{\lambda_i} = \ker(L - \lambda_i I).$$

Предложение.

$$V = \bigoplus_{i=1}^{m} R_{\lambda_i}$$

Доказательство. $u_1,...,u_n$ — жорданов базис оператора L, тогда $(L-\lambda_1 I)u_1=0$, если $k_1 > 1$, то $(L - \lambda_1 I)u_2 = \varepsilon_2 u_1,...,(L - \lambda_1 I)u_{k_1} = \varepsilon_{k_1} u_{k_1-1}$ или 0

И из всего этого следует, что $(L-\lambda_1 I)^{k_1}u_j=0 \ \forall j=1,...,k$, Таким образом, $u_1,...,u_{k_1}\in$ R_{λ_1} . Аналогично $u_{k_1+1},...,u_{k_1+k_2}\in R_{\lambda_2}$ и так далее. Поэтому $V=R_{\lambda_1}+...+R_{\lambda_m}$.

Многочлен $\underbrace{(t-\lambda_i)^{k_i}}_{p(t)}$ взаимно прост с $\underbrace{\prod_{j\neq i}(t-\lambda_j)^{k_j}}_{c(t)}$. $\exists r,s:\ r(t)p(t)+q(t)s(t)=1,$ откуда

r(L)p(L) + q(L)s(L) = I.

Пусть $x \in R_{\lambda_i} \cap \sum_{j \neq i} R_{\lambda_j}$. $p(L)(x) = (L - \lambda_i I)^{k_i}(x) = 0$. Затем $x = \sum_{j \neq i} x^{(j)}, x^{(j)} \in R_{\lambda_j}$.

 $(L - \lambda_i I)^{k_j} (x^{(j)}) = 0 \Rightarrow q(L)(x^{(j)}) = 0 \ \forall j \neq i.$

q(L)(x) = 0: $r(L)p(L)(x) + s(L)q(L)(x) = I(x) = x \Rightarrow x = 0$.

Доказали, что $R_{\lambda_i} \cap \sum_{j \neq i} R_{\lambda_j} = \{0\}$, следовательно, сумма R_{λ_n} прямая.

$$A := (L - \lambda_i I)|_{R_{\lambda_i}}$$

 $A^{k_i} = 0$

Если $k=k_i$, то $A^k=0$, так как $Ax=\lambda x$, $A^2x=A(\lambda x)=\lambda A(x)=\lambda^2 x$.

В это месте я задолбался. То be continued...

Лемма. Если $A^k = 0$, то $x, Ax, ..., A^m x$, не равные нулю, линейно независимы.

Доказательство. Пусть h — наименьшее из \mathbb{N} , такое, что $A^h x = 0$. Возьмем сумму $\sum_{i=0}^m A^i x \alpha_i = 0$. Применяем A^{h-1} . Получаем $\sum_{i=0}^m \underbrace{A^{i+h-1}}_{=0 \ i>1} x \cdot \alpha_i = 0 \Rightarrow A^{h-1} \alpha_0 = 0 \Rightarrow \alpha_0 = 0$, дальше по

индукции.

4.1 Пространства со скалярным произведением

Определение. Пусть V — векторное пространство, не обязательно конечномерное, над R. Симметричная билинейная форма $B: V \times V \to R$ называется евклидовым скалярным произведением, если она положительно определена, т.е. $B(x,x) > 0 \ \forall x \neq 0$.

Введем обозначения: вместо B(x,y) пишут (x,y) или $(x,y)_B$ или $(x,y)_1$ если их несколь-KO.

Пример.

- 1) $(a,b) = |a| \cdot |b| \cdot \cos(\angle a,b)$ в геометрии
- 2) В \mathbb{R}_n : $(x,y) = x^T y = \sum_{i=1}^n x_i y_i$ 3) Там же $(x,y)_{\Gamma} = x^T \Gamma y$, где $\Gamma \in M_n(\mathbb{R})$ и все собственные числа $\Gamma > 0$.
- 4) Странное скалярное произведение: V = C([a, b])
- $(f,g) = \int_a^b f(x)g(x)\rho(x)dx$, где $\rho(x) > 0 \ \forall x \in (a,b)$.

Определение. Если $f=(f_1,...,f_n)$ — базис $V,\,(x,y)=x_f^T\Gamma_fy_f$ — матрица билинейной формы в базисе f

$$\left(\begin{array}{ccc} (f_1, f_1) & & & \\ & \cdot & & \\ & & \cdot & \\ & & \cdot & \\ & & & (f_n, f_n) \end{array}\right)$$

— матрица Грама скалярного произведения в базисе f. обозначатеся Γ_f .

Определение. $B: V \times V \to C$. B называется полуторалинейной, если она линейна по II аргументу и $B(x+y,z) = B(x,z) + B(y,z), B(x\alpha,z) = \bar{\alpha}B(x,z).$

В называется эрмитово-симметричной (Степанов забыл, как эта хрень нормально называется), если $B(x,y) = \overline{B(y,x)}$. Отсюда следует, что $B(x,x) = \overline{B(x,x)} \Rightarrow B(x,x) \in \mathbb{R}$.

Эрмитово симметричная форма B называется положительно определенной, если B(x,x) > $0 \ \forall x \neq 0.$

Эрмитово скалярное произведение удовлетворяет всем условиям из предыдущего определения и определяется как:

Определение. В называется эрмитовым (унитарным) скалярным произведением, если она полуторалинейна, эрмитово симметрична и положительно определена!

Пример. Над
$$\mathbb{C}^n$$
: $(x,y) = \overline{x^T} \cdot y$

Пусть (-,-) — эрмитово скалярное произведение на V. f — базис V.

$$(x,y) = \left(\sum_{i=1}^{n} f_i \alpha_i, \sum_{j=1}^{n} f_j \beta_j\right) = \sum_{i,j=1}^{n} \overline{\alpha_i} (f_i, f_j) \beta_j = \overline{x}_f^T \left((f_i, f_j) \right) y_f$$

Предложение. $(x,y) = \overline{x}_f^T \Gamma_f y_f$ для эрмитора скалярного произведения (доказательство выше).

Определим норму: $||x|| = \sqrt{(x,x)} \in \mathbb{R}_{\geq 0}$

Теорема. (Неравенство Коши-Буняковского-Шварца)

(-,-) — эрмитово скалярное произведение. Тогда $|(x,y)|^2 \le (x,x) \cdot (y,y)$, или, что то же самое, $|(x,y)| \le ||x|| \cdot ||y||$.

Доказательство.

$$0 \le (x - \lambda y, x - \lambda y) = (x, x) + |\lambda|^2 \cdot (y, y) - (\lambda(x, y) - \overline{\lambda}(x, y)) =$$

$$= (x, x) + \frac{|(y, x)|^2}{(y, y)^2} (y, y) - \left(\frac{|(y, x)|^2}{(y, y)} + \frac{|(y, x)|^2}{(y, y)}\right) = (x, x) - \frac{|(y - x)|^2}{(y, y)} \ge 0$$

(так как $\lambda \overline{\lambda} = |\lambda|^2$)

Подставим $\lambda = \frac{(y,x)}{(y,y)}$, получаем $(x,x)(y,y) \ge |(y,x)|^2$.

В вещественном случае получится, конечно же, $(y,y)\lambda^2 - 2\lambda(x,y) + (x,x)$.

Определение. (для евклидова пространства) $\angle(a,b) = \arccos \frac{(a,b)}{||a||\cdot||b||}$

Теорема. (Неравенство треугольника)

$$||x + y|| \le ||x|| + ||y||.$$

Доказательство. $||x+y|| \le ||x|| + ||y|| \Leftrightarrow (x+y,x+y) \le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2$, и, одновременно, $(x+y,x+y) = ||x||^2 + ||y||^2 + (x,y) + (y,x) \Leftrightarrow (x,y) + (x,y) \le 2||x||^2 \cdot ||y||^2$, так как $Re(x,y) \le |(x,y)| \le ||x|| \cdot ||y||$.

Лемма. $v_1,...,v_k \in V \setminus \{0\}, \ (v_i,v_j)=0 \ \forall i\neq j.$ Тогда $v_1,...,v_k$ линейно независим.

Доказательство. $\sum_{i=1}^k v_i \alpha_i = 0$.

$$0 \neq (v_j, v_j)\alpha_j = \sum_{i=1}^k \underbrace{(v_j, v_i)}_{=0 \ i \neq j} \alpha_i = 0 \Rightarrow \alpha_j = 0 \ \forall j$$

Теорема. (ортогонализация Грама-Шмидта)

$$f_1, ..., f_k \in V$$

$$g_1 = f_1$$

$$g_2 = f_2 - \frac{(g_1, f_2)}{(g_1, g_1)} g_1$$

$$g_k = f_k - \sum_{i=1}^{k-1} \frac{(g_i, f_k)}{(g_i, g_i)} g_i, \ \text{ide } (g_i \neq 0).$$

1) $(g_i, g_j) = 0 \ \forall i \neq j$

- $(2) < f_1, ..., f_m > = < g_1, ..., g_m >$
- 3) Если $f_1,...,f_m$ линейно независимы, то $g_1,...,g_m$ тоже линейно независимы, в частности, ненулевые.
 - 4) Ecau $f_m \in \langle f_1, ..., f_{m-1} \rangle$, mo $g_m = 0$.
- 5) Если $f_1,...,f_k$ система образующих для V, то ненулевые из $g_1,...,g_k$ будут образовывать базис.
 - 6) Если $f_1,...,f_k$ базис, то $g_1,...,g_k$ ортогональный базис.

Доказательство.

1) Индукция по k: k = 1, доказывать нечего.

$$(g_k, g_j) = (f_k, g_j) - \sum_{i=1}^{k-1} \frac{(f_k, g_i)}{(g_i, g_i)} (g_i, g_i) = (f_k, g_j) - \frac{(f_k, g_j)}{(g_j, g_j)} (g_j, g_j) = 0$$

2,3) Положим $\alpha_{ij} = \frac{(g_i, f_j)}{(g_i, g_i)}$. Тогда неравенства можно переписать в виде:

$$(f_1, ..., f_k) = (g_1, ...g_k) \begin{pmatrix} 1 & & & \\ & . & & \alpha_{ij} & \\ & & . & & \\ & 0 & & . & \\ 0 & & & 1 \end{pmatrix}$$

то есть $f = g \cdot C$, где $C \in GL_k(F)$.

Поэтому < f> = < g> и линейная независимость $f \Leftrightarrow$ линейно независимость g.

- 4) $g_m \in < f_1,...,f_m> =_{\text{условие}} 4 < f_1,...,f_{m-1}> = < g_1,...,g_{m-1}>$. По (1) $g_m \perp g_i \ \forall i \leq m-1 \Rightarrow g_m \perp < g_1,...,g_{m-1}> \Rightarrow g_m \perp g_m \Rightarrow g_m = 0$.
- 5) По (2) $< g_1, ..., g_k > = < f_1, ..., f_k > = V$, а по лемме ненулевые из g_1 линейно независимы.

Следствие (QR-разложение):

Если $A \in M_{m,n}(\mathbb{C})$, rk A = n. Тогда $\exists R \in GL_n(\mathbb{C})$ и $Q \in M_{m,n}(\mathbb{C})$, такие, что:

- 1) A = QR
- 2) R верхнетреугольная.
- 3) $\overline{Q}^{T}Q = E$. (столбцы матрицы Q ортонормированы).

Доказательство. \mathbb{C}^n со стандартным скалярным произведением (т.е. $(x,y)=\overline{x}^Ty$)

 $b_1,...,b_n$ (некие столбцы) получим из $a_{*1},...,a_{*n}$ (столбцы матрицы A) с помощью ортогонализации Грама-Шмидта.

$$a_{*i} = \frac{b_{*i}}{||b_{*i}||} \Rightarrow B = Q \begin{pmatrix} * & & & & \\ & \cdot & & 0 & \\ & & \cdot & \\ & 0 & & \cdot & \\ & & \cdot & / & / \\ & & \cdot & / & / \\ & & & 1 \end{pmatrix} = Q \underbrace{\begin{pmatrix} * & / & / & / & / \\ & \cdot & / & / & / & / \\ & & \cdot & / & / & / & \\ & & & \cdot & / & / & \\ & & & & * \end{pmatrix}}_{B}$$

$$\overline{Q}^T Q = \begin{pmatrix} \overline{q}_{*1}^T \\ \cdot \\ \cdot \\ \cdot \\ \overline{q}_{*n}^T \end{pmatrix} \begin{pmatrix} q_{*1} & \dots & q_{*n} \end{pmatrix} =$$

$$= \left(\begin{array}{cccc} . & . & . & . & . \\ . & . & \overline{q}_{*i}^T \cdot q_{*j} & . & . \\ . & . & . & . & . \end{array} \right) = E$$

Так как

$$\overline{q}_{*i}^T q_{*j} = (q_{*i}, q_{*j}) = \frac{(b_{*i}, b_{*j})}{||b_{*i}|| \cdot ||b_{*j}||} = \begin{cases} 0 & i \neq j \text{ (по 1 теореме)} \\ 1 & i = j \end{cases}$$

Определение. Изометрия пространств со скалярным произведением — линейное отображение $L: U \to V$, такое, что $(L(x), L(y))_V = (x, y)_U$.

Теорема. (о классификации евклидовых и эрмитовых пространств)

Любое евклидово (эрмитово) пространство изометрично \mathbb{R}^n (\mathbb{C}^n) со стандартным скалярным произведением.

Доказательство. По ортогонализации Грама-Шмидта в пространстве V существует ортонормированный базис f. В этом базисе $(x,y) = \overline{x_f^T} \cdot y_f$. Здесь изометрия $\varphi_f : V \to \mathbb{C}^n$ (\mathbb{R}^n): $\overline{x_f^T} \cdot y_f = \varphi_f(x), \varphi_f(y)$, то есть $\varphi_f(x) = x_f$.

V — евклидово или эрмитово пространство. Пространства конечномерные. $U \leq V$ и $U^{\perp} = \{\underbrace{v \in V \mid (v,u) = 0 \ \forall u \in U}_{v \perp U} \}.$

Замечание. $(u_1,...,u_n)$ — система образующих в $U.\ v\perp U\Leftrightarrow v\perp u_k \forall k=1,...,m.$

Теорема. $V = U \bigoplus U^{\perp}$.

Доказательство. $x \in U \cap U^{\perp} \Rightarrow x \perp x \Leftrightarrow (x, x) = 0 \Rightarrow x = 0$.

Возьмем базис U: $f = (f_1, ..., f_k)$, дополним до базиса всего пространства $(f_1, ..., f_n)$ — базис V и ортогонализуем его, получив базис $(g_1, ..., g_n)$.

 $(g_1,...,g_k)$ — базис $U,(g_1,...,g_n)$ — ортогональный базис V. Теперь любой вектор мож-

но представить как $v = \underbrace{\sum_{i=1}^k g_i \alpha_i}_{\in U} + \underbrace{\sum_{i=k+1}^n g_i \alpha_i}_{\in U^\perp}.$

 $g_i \perp U$ при i > k, так как $g_i \perp g_i \forall j \leq k < i$.

Доказательство требует выбора базиса, то есть не распространяется на случай бесконечномерных пространств. \Box

Предложение. $(U^{\perp})^{\perp} = U$ (в Гильбертовом пространстве $(U^{\perp})^{\perp} = Cl(U)$).

Доказательство. $U \perp U^{\perp} \Rightarrow U \leq (U^{\perp})^{\perp}$.

С другой стороны, $U \bigoplus U^{\perp} = U^{\perp} \bigoplus (U^{\perp})^{\perp} = (U^{\perp})^{\perp} \bigoplus U^{\perp} = V \Rightarrow \dim U = \dim V - \dim U^{\perp} = \dim(U^{\perp})^{\perp}$.

Определение. $U \leq V \ni v$. По теореме $\exists ! u_1, u_2,$ такие, что $v = u_1 + u_2, \ u_1 \in U, \ u_2 \in U^{\perp}$. Тогда $u_1 = \operatorname{pr}_U v$ — ортогональная проекция v на U.

$$\operatorname{pr}_{u} v := \operatorname{pr}_{\langle u \rangle} v.$$

Факт. $\operatorname{pr}_u v = \frac{(v,u)}{(u,u)} u$.

Доказательство.

$$\left(v - \frac{(v,u)}{(u,u)}u, u\right) = (v,u) - \frac{(v,u)}{(u,u)}(u,u) = 0$$

To есть $v - \frac{(v,u)}{(u,u)}u \in \langle u \rangle^{\perp}$.

 $U \leq V, \ f = (f_1, ..., f_k)$ — ортогональный базис U.

Предложение. $\operatorname{pr}_U v = \sum_{i=1}^k \operatorname{pr}_{f_i} v$, $\operatorname{pr}_{f_i} v = \sum_{i=1}^k \frac{(v,f_i)}{(f_i,f_i)} f_i$

$$(\operatorname{pr}_{U} v)_{f} = \begin{pmatrix} \frac{(v, f_{1})}{(f_{1}, f_{1})} \\ \vdots \\ \vdots \\ \frac{(v, f_{n})}{(f_{n}, f_{n})} \end{pmatrix}$$

Доказательство. $\sum_{i=1}^k \frac{(v,f_i)}{(f_i,f_i)} f_i \in U$. Осталось доказать, что $v - \sum_{i=1}^k \frac{(v,f_i)}{(f_i,f_i)} f_i \perp U \Leftrightarrow v - \sum_{i=1}^k \frac{(v,f_i)}{(f_i,f_i)} f_i \perp f_j \ \forall j$. Отсюда

$$\left(v - \sum_{i=1}^{k} \frac{(v, f_i)}{(f_i, f_i)} f_i, f_j\right) = (v, f_j) - \frac{(v, f_j)}{(f_j, f_j)} (f_j, f_j) = 0$$

так как $f_i \perp f_j$ при $i \neq j$.

Теорема. (Равенство Парсеваля и неравенство Бесселя)

 $(f_1,...,f_k)$ — ортогональный набор векторов, то $||\Pr_{< f>} v||^2 = \sum_{i=1}^k \frac{|(v,f_i)|}{(f_i,f_i)} \le ||v||^2$. Если же < f>= V, то $\Pr_{< f>} v = v$.

Доказательство. $\operatorname{pr}_{< f>} v = \sum_{i=1}^k f_i \alpha_i$. $||\operatorname{pr}_{< f>} v||^2 = (\sum_{i=1}^k f_i \alpha_i, \sum_{j=1}^k f_i \alpha_j) = \sum_{i,j=1}^k \overline{\alpha_i}(f_i, f_j) \alpha_j = \sum_{i=1}^k \overline{\alpha_i}(f_i, f_i) \alpha_i = \sum_{i=1}^k |\alpha_i|^2 (f_i, f_i)$, подставим $\alpha_i = \frac{(v, v_i)}{(f_i, f_i)}$.

$$v = \operatorname{pr}_{U} v + (v - \operatorname{pr}_{U} v), \text{ откуда } ||v||^{2} = (u_{1} + u_{2}, u_{1} + u_{2}) = (u_{1}, u_{1}) + (u_{2}, u_{2}) = ||u_{1}||^{2} + ||u_{2}||^{2} \ge ||u_{1}||^{2}.$$

Предложение. $U \leq V, b \in V$.

$$||b - \operatorname{pr}_{U} b|| \le ||b - u|| \ \forall u \in U.$$

Доказательство. b-u=(b-p)+(p-u), где $p=\operatorname{pr}_U b$.

Same Ascernso.
$$b-u=(b-p)+(p-u)$$
, the $p=\operatorname{pr}_U b$.
$$||b-u||^2=||b-p||^2+||p-u||^2\geq ||b-p||^2$$

$$(x=y+z,\ y\perp z\Rightarrow ||x||^2=(y+z,y+z)=(y,y)+\underbrace{(y,z)}_0+\underbrace{(z,y)}_0+(z,z)).$$

Проблема. Ax = b. Найти $x^* : ||Ax^* - b|| < ||Ax - b|| \forall x$ (минимизируем норму относительно стандартного скалярного произведения, то есть сумму квадратов координат, откуда название метода: «Метод наименьших квадратов»):

$${Ax \mid x \in \mathbb{R}^n} = < a_{*1}, ..., a_{*m} > = U.$$

 $Ax^* = \operatorname{pr}_U b.$

Метод состоит в ортогонализации базиса U, затем воспользоваться формулой и решить систему.

Упражнение на бб: 1) Доказать, что $A^TA \in GL_n(\mathbb{R})$ (верно ли это \forall поля F вместо \mathbb{R} ?) 2) Доказать, что $x^* = (A^T A)^{-1} A^T b$

Классификация вещественных квадратичных форм.

$$C^T Q_f C$$
.

Если F — крадратично замкнуто ($\exists \sqrt{x} \ \forall x \in F$), то

$$\begin{pmatrix}
\frac{1}{\sqrt{\lambda_1}} & & & \\
& \cdot & 0 & \\
& & \cdot & \\
& 0 & \cdot & \\
& & \frac{1}{\lambda_n}
\end{pmatrix}
\begin{pmatrix}
\lambda_1 & & & \\
& \cdot & 0 & \\
& & \cdot & \\
& 0 & \cdot & \\
& & & \lambda_n
\end{pmatrix}
C = E$$

Определение. $\mathrm{sign}(\lambda_1,...,\lambda_m)=(p,n),$ где p — количество положительных $\lambda_i,$ q — количество отрицательных.

$$\operatorname{sign} \begin{pmatrix} \lambda_1 & & & \\ & \cdot & & 0 & \\ & & \cdot & & \\ & 0 & & \cdot & \\ & & & \lambda_n \end{pmatrix} = \operatorname{sign}(\lambda_1, \dots, \lambda_n)$$

Теорема. (закон инерции квадратичных форм)

 $Q-\kappa$ вадратичная форма на вещественном конечном пространстве $V,\,f,g-$ базисы $V: Q_f, Q_g - \partial u$ агональны. Тогда $\operatorname{sign} Q_f = \operatorname{sign} Q_g$.

Доказательство. $\operatorname{sign} Q_f = (p_f, n_f), \operatorname{sign} Q_g = (p_g, n_g).$

Предположим, что $p_f > p_q$. Считаем, что базисные вектора занумерованы так, что первые $p_f(p_g)$ диагональных элементов матриц положительны. Рассмотрим подпростран-

первые
$$p_f(p_g)$$
 диагональных элементов матриц положительны. Рассмотрим подпространство $U = \langle f_1, ..., f_{p_f} \rangle$, $W = \langle g_{p_g}, ..., g_m \rangle$, где $m = \dim V$.
$$\forall u \in U \setminus \{0\} \ Q(u) > 0$$
, так как $u = \sum_{i=1}^{p_f} f_i \alpha_i$, $Q_u = B(u, u) = B(\sum_{i=1}^{p_f} f_i \alpha_i, \sum_{j=1}^{p_f} f_j \alpha_j) = \sum_{i,j=1}^{p_f} \alpha_i \alpha_j \underbrace{B(f_i, f_j)}_{=0} = \sum_{i=1}^{p_f} \alpha_i^2 Q(f_i) > 0$ при $i \neq j$.

Аналогично на W наша форма будет отрицательна.

 $\dim(U \cap W) = -\dim(U + W) + \dim(U) + \dim W \ge p_f + n_g - m = p_f + (m - p_g) - m = p_f - p_g > 0.$

Противоречие. Аналогично невозможно обратное предположение. Следовательно, $\exists x \in U \cap W \setminus \{0\}$. Тогда Q(x) > 0 и Q(x) < 0

—Еще одна лекция

Пусть существует эрмитово (конечное на \mathbb{C} с унитарным скалярным произведением) пространство и $L:V\to V,\ L^*:V^*\to V^*.\ L$ — нормальный, если $LL^*=L^*L$ (в частности, сопряженные и унитарные нормальны).

Теорема. (доказательство ниже) Для любого нормального оператора существует ортонормированный базис, в котором матрица диагональна. Очевидно, что верно и обратное.

Лемма. (1) Если $A, B : V \to V$ перестановочны (то есть коммутируют, то есть AB = BA), то любое собственное подпространство A инвариантно относительно B.

Доказательство. Докажем, что
$$V_{\lambda} = \ker(A - \lambda I) \Rightarrow B(V_{\lambda}) \leq V_{\lambda}$$
. Возьмем $x \in V_{\lambda}$, $A \cdot B_x = B(A(x)) = B(\lambda x) = \lambda B(x) \Rightarrow B(x) \in V_{\lambda}$.

Лемма. (2) Если $L(U) \subseteq U$, то $L^*(U^{\perp}) \subseteq U^{\perp}$.

Доказательство.
$$v \in U^{\perp}, \ u \in U. \ (L^*(v), u) = (\underbrace{v}_{\in U^{\perp}}, \underbrace{L(u)}_{U}) = 0 \Rightarrow L^*(v) \perp u \ \forall u \in U \Rightarrow L^*(v) \in U^{\perp}.$$

Следствие из обоих лемм:

Если L — нормальный с собственным подпространством V_{λ} , то $V_{\lambda}^{\perp}-L$ -инвариантное пространство.

Доказательство. $LL^* = L^*L$. По лемме 1 $V_{\lambda} - L^*$ -инвариантно, следовательно, по лемме 2, V_{λ}^{\perp} инвариантно относительно L^{**} , то есть, инвариантно относительно L.

Доказательство. (теоремы выше): Индукция по размерности пространства $n=\dim V.$

L диагональна $\Leftrightarrow u$ — базис из собственных векторов.

При n=1 очевидно.

Индукционный переход: $\deg \chi_L(t) = n > 0 \Rightarrow \exists \lambda : \chi_L(\lambda) = 0.$

 $V_{\lambda} \neq 0$ — собственное подпространство L.

По следствию $V_{\lambda}^{\perp}-L$ -инвариантно.

$$V = V_{\lambda} \bigoplus V_{\lambda}^{\perp} \Rightarrow \dim(V_n^{\perp}) < n$$

Очевидно, что $L|_{V_{\lambda}^{\perp}}$ тоже нормальный оператор, следовательно, по индукционному переходу существует ортонормированный базис f пространства V_{λ}^{\perp} из собственных векторов L. Выберем ортонормированный базис для пространства V_{λ} (он существует ввиду ортогонализации Грама-Шмидта) из собственных векторов L.

Таким образом, $g \cup f$ — базис V из собственных векторов L, очевидно, ортонормированный.