

Using mixed precision and Volta/Turing your networks can be:

- 2 4X faster
- more memory-efficient
- just as accurate

with no architecture or hyperparameter changes.

MAXIMIZING MODEL PERFORMANCE

FP16 input enables Volta/Turing Tensor Cores for Matrix Multiplies and Convolutions

125 TFlops Throughput: 8X more than FP32 on Volta V100

MAXIMIZING MODEL PERFORMANCE

Assign each operation its optimal precision

FP16 with Tensor Cores

8X compute throughput

2X memory throughput

1/2X memory storage

FP32

Wider dynamic range

Increased precision captures small accumulations

MIXED PRECISION IN PRACTICE: SPEED

Mixed Precision vs. FP32

BERT 3.25X - 4.25X speedup*

Jasper 2.2X - 3X speedup**

Mask-RCNN 1.2X - 1.5X speedup[†]

FAIRseq 4X speedup

GNMT 2X speedup

^{*} https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT

^{**} https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper

^{† &}lt;a href="https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/MaskRCNN">https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Segmentation/MaskRCNN

MIXED PRECISION IN PRACTICE: ACCURACY

Same accuracy as FP32, with no hyperparameter changes

Model	FP32	Mixed Precision*
AlexNet**	56.77%	56.93%
VGG-D	65.40%	65.43%
GoogLeNet (Inception v1)	68.33%	68.43%
Inception v2	70.03%	70.02%
Inception v3	73.85%	74.13%
Resnet50	75.92 %	76.04%
BERT Fine-Tuning [†]	91.18%	91.24%

^{*} Same hyperparameters and learning rate schedule as FP32.

^{** &}lt;u>Sharan Narang, Paulius Micikevicius et al.</u>, "<u>Mixed Precision Training</u>", ICLR 2018 † https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT

AUTOMATIC MIXED PRECISION (AMP)

Existing FP32 (default) script

->

Change 3 lines of Python

->

Accelerate your training with mixed precision

EXAMPLE

```
N, D in, D out = 64, 1024, 512
x = torch.randn(N, D in, device="cuda")
y = torch.randn(N, D out, device="cuda")
model = torch.nn.Linear(D in, D out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
model, optimizer = amp.initialize(model, optimizer, opt level="01")
for t in range (500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    optimizer.zero grad()
    with amp.scale loss(loss, optimizer) as scaled loss:
        scaled loss.backward()
    optimizer.step()
```


Available through NVIDIA Apex utilities:

https://github.com/nvidia/apex

Full API documentation:

https://nvidia.github.io/apex/

Landing pages contain a link to this talk.

AMP Examples:

https://github.com/NVIDIA/DeepLearningExamples

COMING SOON (TARGET Q4 2019)

- Gradient scaling and autocasting as modular components
- Intended support for networks that use:
 - JIT
 - multiple models/optimizers/losses
 - gradient accumulation
 - gradient checkpointing
 - gradient penalty (double-backward)
 - custom optimizers
- Let us know what you need!
 - API discussion: https://github.com/pytorch/pytorch/issues/25081
 - Gradient scaling PR: https://github.com/pytorch/pytorch/pull/26512

