Exercice 1.1 Soit \mathcal{P} le plan vectoriel et (\vec{i}, \vec{j}) une base orthonormée de cet espace vectoriel.

- 1) Soit \vec{u} un vecteur non nul du plan. Pour tout vecteur \vec{v} du plan on cherche à montrer que \vec{v} s'écrit de manière unique $\vec{v} = \vec{v}_1 + \vec{v}_2$ où \vec{v}_1 est colinéaire à \vec{u} et \vec{v}_2 est orthogonal à \vec{u} . Exprimer \vec{v}_1 et $\vec{v}_2 = \vec{v} \vec{v}_1$ en fonction de \vec{v} , \vec{u} et de certains produits scalaires (on pourra commencer par chercher \vec{v}_1 sous la forme $\lambda \vec{u}$).
- 2) On note respectivement p et s les applications qui à tout vecteur \vec{v} associent respectivement \vec{v}_1 et $\vec{v}_1 \vec{v}_2$. Montrer que p et s sont des endomorphismes de \mathcal{P} .
- 3) Montrer que pour tout $\vec{w} \in \text{Vect}\{\vec{u}\}, \quad \|\vec{v} p(\vec{v})\| \le \|\vec{v} \vec{w}\|.$
- 4) On se donne maintenant dans (\vec{i}, \vec{j}) le vecteur \vec{u} de coordonnées $\binom{1}{2}$.
 - a) Dessiner le vecteur \vec{v} de coordonnées $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ainsi que $p(\vec{v})$ et $s(\vec{v})$.
 - b) Ecrire les matrices représentatives P et S des endomorphismes p et s dans la base canonique.
 - c) Calculer P^2 et S^2 . Le résultat est-il surprenant? Comment s'appellent p et s?

Exercice 1.2 Le produit scalaire usuel sur \mathbb{R}^n .

Sur l'espace vectoriel \mathbb{R}^n on définit "produit scalaire usuel" de deux vecteurs $X = (x_1, \dots, x_n)^T$ et $Y = (y_1, \dots, y_n)^T$ par

$$\langle X|Y\rangle = x_1y_1 + \dots + x_ny_n = \sum_{k=1}^n x_ky_k = X^T.Y \in \mathbb{R}.$$

On note $||X||_2 = \sqrt{X.X}$ (la norme euclidienne usuelle sur \mathbb{R}^n).

- 1. Redémontrer rapidement les propriétés du produit scalaire
 - Symétrie :Pour tous vecteurs $X, Y, \langle X|Y \rangle = \langle Y|X \rangle$.
 - Bilinéarité : Pour tous vecteurs X, Y, Z et tous nombres réels λ, μ ,

$$\begin{array}{rcl} \langle \lambda X + \mu Y | Z \rangle & = & \lambda \langle X | Z \rangle + \mu \langle Y | Z \rangle \\ \langle X | \lambda Y + \mu Z \rangle & = & \lambda \langle X | Y \rangle + \mu \langle X | Z \rangle \end{array}$$

- Le produit scalaire est défini positif : pour tout X, $\langle X|X\rangle \geq 0$ et si $\langle X|X\rangle = 0$ alors $X = 0 = (0, \dots, 0)^T$.
- 2. Rappeler pourquoi, pour tous X, Y, la norme euclidienne vérifie *l'inégalité triangulaire* :

$$||X + Y||_2 < ||X||_2 + ||Y||_2$$
.

- 3. Vérifier que l'application qui à X associe $||X||_2$ est bien une norme sur \mathbb{R}^n :
 - L'application $X \mapsto ||x||_2$ est définie sur \mathbb{R}^n , à valeurs dans \mathbb{R}^+ .
 - Pour tout vecteurs X et tout réel $\lambda : \|\lambda X\|_2 = |\lambda| \|X\|_2$.
 - Pour tous vecteurs X et Y de \mathbb{R}^n , $\|X+Y\|_2 \leq \|X\|_2 + \|Y\|_2$
 - $||X||_2 = 0$ si et seulement si $X = 0 = (0, ..., 0)^T$.

Exercice 1.3 Dans \mathbb{R}^3 on pose $u = (2, -5, -1)^T$ et $v = (-7, -4, 6)^T$. Calculer $||u||^2$, $||v||^2$, $||u+v||^2$ et $u \cdot v$. Est-ce logique? Que peut-on tout de suite dire sur la dimension de Vect $\{u, v\}$?

Exercice 1.4 Soit $(E, \langle .|. \rangle)$ un espace euclidien.

1) Pour tout $(x,y) \in E^2$, développez les produits scalaires suivants :

$$\langle x+y|x+y\rangle$$
, $\langle x-y|x-y\rangle$ et $\langle x+y|x-y\rangle$.

On pourra faire apparaitre certaines normes ...

- 2) Montrer que pour tout $(x,y) \in E^2$, $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$. En s'aidant d'un dessin dans la plan vectoriel, comprend-on pourquoi cette identité s'appelle l'identité du parallélogramme?
- 3) Montrer que pour tout $(x, y) \in E^2$, $2 + ||x + y||^2 \le 2(1 + ||x||^2)(1 + ||y||^2)$.

Exercice 1.5 Soit $(E, \langle .|. \rangle)$ un espace euclidien de dimension $n \geq 2$ et u un vecteur non nul de E.

- 1. Soit $V = \{x \in E ; \langle x|u \rangle = 0\}$. Montrer que V est un sous-espace vectoriel de E, en somme directe avec le sous-espace vectoriel $\text{Vect}\{u\}$.
- 2. Montrer que l'application φ de E dans \mathbb{R} qui à tout vecteur x associe $\langle x|u\rangle$ est une forme linéaire. Comparer V et Ker φ . Quelle est la dimension de V?
- 3. En s'inspirant du premier exercice, définir sur E la projection orthogonale sur $\text{Vect}\{u\}$ et la symétrie orthogonale par rapport à $\text{Vect}\{u\}$

Exercice 1.6 Montrer que sur l'espace vectoriel $E = \mathcal{C}^0([-1,1],\mathbb{R})$, l'application qui à $(f,g) \in E^2$ associe

$$\langle f|g\rangle = \int_{-1}^{1} f(t)g(t)dt$$

définit un produit scalaire sur E.

Exercice 1.7 On note $\mathbb{R}_2[X]$ l'ensemble des polynômes de degré au plus 2,

- 1) Rappeler pourquoi $\mathbb{R}_2[X]$ est un espace vectoriel de dimension 3.
- 2) Soit $P(X) = aX^2 + bX + c$ un élément de $\mathbb{R}_2[X]$, trouver les triplés (a, b, c) tels que P(0) = P(1) = P(2) = 0 (on résoudra un système...).
- 3) Pour tous P, Q dans $\mathbb{R}_2[X]$, on pose

$$f(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2).$$

Montrer que f est un produit scalaire sur $\mathbb{R}_2[X]$.

- 4) La famille $\{1, X, X^2\}$ est elle orthogonale?
- 5) On pose $P_0 = (X-1)(X-2)$, $P_1 = X(X-2)$ et $P_2 = X(X-1)$. La famille $\{P_0, P_1, P_2\}$ est-elle orthogonale? En déduire une base orthonormée de $\mathbb{R}_2[X]$.
- 6) * Facultatif et culturel. Soient x_0, x_1, \ldots, x_n n+1 nombres réels distincts. Montrer que l'on peut de la même manière définir sur $\mathbb{R}_n[X]$ un produit scalaire par :

$$f(P,Q) = \sum_{k=0}^{n} P(x_k)Q(x_k).$$

Quel est alors l'analogue de la base orthonormée trouvée précédemment ? Un indice : google polynômes de Lagrange ...

Exercice 1.8 Vrai/Faux pour réviser le cours On se place dans \mathbb{R}^n muni du produit scalaire usuel $\langle .|. \rangle$. Les vecteurs u, v appartiennent à \mathbb{R}^n . Dire si les énoncés suivant sont vrais ou faux et justifier la réponse.*

- i) Pour tout réel c, $\langle u|cv\rangle=c\langle u|v\rangle$.
- ii) Pour tout réel c, ||cu|| = c||u||.
- iii) $\langle u|v\rangle \langle v|u\rangle = 0.$
- iv) Si $||u+v||^2 = ||u||^2 + ||v||^2$, alors u et v sont orthogonaux.
- v) Une famille libre de vecteurs de \mathbb{R}^n n'est pas forcément orthogonale.
- vi) Une famille orthogonale de vecteurs de \mathbb{R}^n n'est pas forcément libre.
- vii) Si on norme des vecteurs orthogonaux (non nuls), alors les vecteurs obtenus ne sont pas forcément orthogonaux.
- viii) Si W est un sous-espace vectoriel de \mathbb{R}^n engendré par n vecteurs non nuls deux à deux orthogonaux, alors $W = \mathbb{R}^n$.

Exercice 1.9 Facultatif On se place dans l'espace vectoriel \mathbb{R}^2 . Pour tous vecteurs $\vec{u}_1 = (x_1, y_1)^T$ et $\vec{u}_2 = (x_2, y_2)^T$ de \mathbb{R}^2 , on pose

$$\langle \vec{u}_1 | \vec{u}_2 \rangle = x_1 x_2 + \frac{1}{2} x_1 y_2 + \frac{1}{2} y_1 x_2 + y_1 y_2.$$

- 1. On se donne un nombre réel b et on définit sur \mathbb{R} la fonction f_b qui à t associe $f_b(t) = t^2 + bt + b^2$. Montrer que
 - (i) Si $b \neq 0$, alors, pour tout réel t, $f_b(t) > 0$.
 - (ii) Si b = 0, alors pour tout réel $t \neq 0$, $f_b(t) > 0$.
- **2.** Si $\vec{u} = (x, y)^T$, exprimer $\langle \vec{u} | \vec{u} \rangle$ à l'aide des fonctions définies précédemment.
- **3.** Montrer que l'application qui à tout $(\vec{u}_1, \vec{u}_2) \in \mathbb{R}^2 \times \mathbb{R}^2$ associe $\langle \vec{u}_1 | \vec{u}_2 \rangle$ est un produit scalaire sur \mathbb{R}^2 . Trouver la matrice A telle que

$$\langle \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} | \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \rangle = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}^T .A. \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}.$$

4. Les vecteurs $\vec{i} = (1,0)^T$ et $\vec{j} = (0,1)^T$ sont-il orthogonaux dans cet espace euclidien ? Trouver $\vec{k} = (\alpha, \beta)^T$ tel que $\{\vec{i}, \vec{k}\}$ soit une famille orthonormée.

Exercice 1.10 * Facultatif On note $\ell_2(\mathbb{R})$ l'ensemble des suites réelles $u=(u_n)_{n\in\mathbb{N}}$ telles que la suite associée $S_n(u)=\sum_{k=0}^n u_k^2$ converge.

- 1. Soit u et v deux suite de $\ell_2(\mathbb{R})$. Montrer que la suite définit pour $n \geq 0$ par $p_n = \sum_{k=0}^n u_k v_k$ converge. En déduire que $\ell_2(\mathbb{R})$ est un espace vectoriel.
- 2. Montrer que l'application qui à deux suites u, v associe $\lim_{n\to\infty} \sum_{k=0}^n u_k v_k$ definit une produit scalaire sur $\ell_2(\mathbb{R})$.

Exercice 1.11 Facultatif Soit (\vec{i}, \vec{j}) une base orthonormée du plan vectoriel \mathcal{P} . Pour tout réel θ , on appelle \vec{u}_{θ} le vecteur de coordonnées $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$.

- 1) Soient a et b deux réels, représenter \vec{u}_a et \vec{u}_b dans le plan (on pourra prendre $a=\pi/6$ et $b=\pi/4$).
- 2) En calculant de deux manières différentes $\vec{u}_a \cdot \vec{u}_b,$ retrouver la formule :

$$\cos(b - a) = \cos a \cos b + \sin a \sin b.$$

3) En déduire des formules similaires pour $\cos(a+b)$, $\sin(a+b)$ et $\sin(b-a)$.

Exercice 1.12 * Facultatif Soit $E = C^0([0, 2\pi], \mathbb{R})$.

1. Montrer que l'application qui à $(f,g)\in E^2$ associe

$$\langle f|g\rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t)dt$$

définit un produit scalaire sur E.

2. On définit les fonction de E: Si $k \in \mathbb{N}$, c_k est la fonction qui à t associe $\cos(kt)$ et si $k \in \mathbb{N}^*$, s_k est la fonction qui à t associe $\sin(kt)$. Montrer que la famille

$$\{c_0, c_1, c_2, \ldots, s_1, s_2, \ldots\}$$

est orthonormée.

3. Quelle est la dimension de $Vect\{c_0, c_1, c_2, s_1, s_2\}$?