Reference Measurement of Models

* Accuracy: # correctly absorbed points

Lotal # of pts is Diest
Ranges from O to 1.

It we easy to wederstand.

Brid Great

> It should not be und if Data is imbalanced. > It can't be used to compare 2 models if prob-scene is

different. Probability Some

00		Probab	plity Lores		100000000000000000000000000000000000000	
X	1 y	1 M. 6	M2 1	y,	y2_	n r
X	11	0.9	0.6	1	1	Accuracy M, 2 Accuracy
N.	1	0.8	0.65	01	1	
X3	0	0.1	0.45	0	0	
24	0	0.15	0-48	D	0	
1	,					

On the lass of probability mores, M, 7 M2, M, model is better the

* Confusion Matrix

In cone of Binory Classification Task (0,1)

0 = no. of pts such that y=04 g=0 b= n n n n y=1 4 g=0

Recall = TPR = TP (a Correctly predicted too pts out of)

TP+FN (total actual fix pts.) FI-Sware - Harmonic man of Precision and Recall. F1-Sure = 2 * Bruinion * Recall. Receiver Operating Characteratic Cience (ROC) and AUC

(Mostly used for Binary classification)

X y y y , Evet & there y are arranged in decreasing order n, 1 0.95 39 Second, thresholding (2) is done with each value n 1 9.92 ns 0 0.80 24 1 0.76 ;ee, if $\hat{y} \approx Z_1$ seturn 1

elsa return 0 So, after this thresholding, AR FPR 4 TPR are calculated for each value of Z or g. Then they are felted > ROC word - AUC (Ava under curer) ADEAUC - 0 to 1 Terrible V- good

AUC of a my Some brokerties of AUC:-

> Imbalanced data > AUC can be high for a clumb model too

AUC is not dependent on g scores, it only depends on on or ordering of g scores.

=> AUC of a rondom model is 0.5.

=> If AUC of a model is lesser than 0.5, just surp the fordicted lables 0 => 1 to get first AUC just 1-AUC just

Log-Loss

· One of the lest metric for classification problem.
Ronge - [0, 00), lover the letter

X	y	g=Pi	lylos		of the tradition
X	1	0.9	-lg (09) = 0,0457 lig-los = -	15	(log(Pi) * yi) + (1-yi) * }
242	1	0.6	-lg(0.6) = 0.22	n ial	leg (1-1)
xg	0	01	-leg (0.9)= 0.0457		Pi
X4	0	0.4	-ly (0.6) 2 0.22		

E It bendings the small divintions in bush-Score.

Multiclan loghon => - 1 \(\frac{\tau}{\chi_{i=1}} \) \(\frac{\tau}{\tau} \) \(\frac{\tau}{\ta

Median Absolute Deviation of course R2- Coefficient of determination is not restrict to certifiers. ei > y, ji man = median (Ri) = ventral value of errors

MAD(Ri) = median (| Ri - median (Ri)) Stordard diseation Distribution of errors. y, y, ei (errors), we can also ereste PPF 4 (PF for Ris Very four eis most eis are 99% of very are < 0.1 small Camparison of Models using CDF:for model Mi: - 90% errors < 0.1 for model Me !- 80% press < 0.1 M, is better than M2.