캡스톤 프로젝트

- NN(RR) interval

:심전도에서 인접한 QRS 복합체 사이에서 R과 연속된 다음 R 사이의 간격을 말하고, NN간격으로 그 순간의 심박동수가 결정됨

Figure 1. NN or RR interval in ECG.

→ NN interval과 HR(Heart Rate)의 관계

HR = 60,000/NNinterval(ms)

참고) 심박 변이도 지표

Table 1. Time domain variables of heart rate variability

Variable	Description	Units
Statistical measures		
SDNN	Standard deviation of all NN intervals	ms
SDANN	Standard deviation of the averages of NN intervals in all 5 min segments of the entire recording	ms
RMSSD	The square root of the mean of the sum of the squares of differences between adjacent NN intervals	ms
SDNN index	Mean of the standard deviations of all NN intervals for all 5 min segments of the entire recording	ms
SDSD	Standard deviation of differences between adjacent NN intervals	ms
NN50 count	Number of pairs of adjacent NN intervals differing by more than 50 ms in the entire recording	
pNN50	PNN50 count divided by the total number of all NN intervals	%
Geometric measures		
HRV triangular index	Total number of all NN intervals divided by the maximum number of all NN intervals in the distribution histogram (height of the histogram) of all NN intervals	

Table 2. Frequency domain measures of HRV1

Variables	Description	Frequency range	Units
Analysis of short-term recordings (5	min)		
Total power	The variance of NN intervals over the temporal segment	Approximately ≤0.4 Hz	ms ²
VLF	Power in very low frequency range	≤0.04 Hz	ms^2
LF	Power in low frequency range	0.04-0.15 Hz	ms^2
LF norm or LFn	LF power in normalized units (LF/(total power-VLF)) × 100		
HF	Power in high frequency range	0.15-0.4 Hz	ms^2
HF norm or LFn	HF power in normalized units (HF/(total power-VLF)) × 100		
LF/HF	Sympathovagal balance		
Analysis of entire 24 h			
Total power	Variance of all NN intervals	Approximately ≤0.4 Hz	
ULF	Power in the ultra low frequency range	≤0.003 Hz	ms^2
VLF	Power in the very low frequency range	≤0.04 Hz	ms^2
LF	Power in the low frequency range	0.04-0.15 Hz	ms^2
HF	Power in the high frequency range	0.15-0.4 Hz	ms^2

HRV; heart rate variability, VLF; very low frequency, LF; low frequency, HF; high frequency, ULF; ultra low frequency.

- hrvanalysis 모듈 소개

: SciPy, AstroPy, Nolds 및 NumPy를 기반으로 구축되고 GPLv3 라이선스에 따라 배포되는 RR(NN) 간격의 심박수 변동성 분석을 위한 Python 모듈

→ NN간격에서 얻을 수 있는 4가지 기능

① Time domain features : Mean_NNI, SDNN, SDSD, NN50, pNN50, NN20, pNN20, RMSSD, Median_NN, Range_NN, CVSD, CV_NNI, Mean_HR, Max_HR, Min_HR, STD_HR

② Geometrical domain features : Triangular_index, TINN

③ Frequency domain features : LF, HF, VLF, LH/HF ratio, LFnu 등

④ Non Linear domain features : CSI, CVI, Modified_CSI, SD1, SD2, 등

캡스톤 프로젝트 2

- 예시 코드

```
#fitbit데이터 불러오기
import pandas as pd
fp = pd.read_csv('/content/drive/MyDrive/캡스톤/all_intradata_1.csv')
fp
```

	time	value	date
0	00:00:04	72	2022-04-06
1	00:00:14	68	2022-04-06
2	00:00:19	65	2022-04-06
3	00:00:24	63	2022-04-06
4	00:00:29	62	2022-04-06
	•••		
67664	22:49:08	86	2022-04-11
67665	22:49:13	85	2022-04-11
67666	22:49:18	83	2022-04-11
67667	22:49:23	84	2022-04-11
67668	22:49:28	83	2022-04-11

67669 rows × 3 columns

```
#nn_intervals 계산
nn_intervals = 60000/ fp['value']
nn_intervals
```

```
0
        833.333333
1
        882.352941
2
        923.076923
3
       952.380952
       967.741935
4
67664
      697.674419
67665 705.882353
67666 722,891566
67667
        714.285714
67668
        722.891566
Name: value, Length: 67669, dtype: float64
```

캡스톤 프로젝트 3

```
#hrvanalysis 모듈 설치하고 필요한 기능 불러오기
 !pip install hrv-analysis
 from hrvanalysis import get_time_domain_features
 from hrvanalysis import get_geometrical_features
 from hrvanalysis import get_frequency_domain_features
 time_domain_features = get_time_domain_features(nn_intervals)
 time_domain_features
{'cvnni': 0.23935136270349497,
 'cvsd': 0.024107473224207726,
 'max_hr': 172.0,
 'mean_hr': 86.44736880994252,
 'mean_nni': 734.568199326023,
 'median_nni': 697.6744186046511,
 'min_hr': 50.0,
 'nni_20': 8192,
 'nni_50': 1264,
 'pnni_20': 12.106165395755749,
 'pnni_50': 1.8679434887982502,
 'range_nni': 851.1627906976744,
 'rmssd': 17.708583196606583,
 'sdnn': 175.81989950733612,
 'sdsd': 17.708583121394746,
 'std_hr': 20.673928934755985}
 geometrical_features = get_geometrical_features(nn_intervals)
 geometrical_features
{'tinn': None, 'triangular_index': 29.03003003003003003}
 frequency_domain_features = get_frequency_domain_features(nn_intervals)
 frequency_domain_features
{'hf': 108.80890063131919,
 'hfnu': 19.128644870339762,
 'lf': 460.0181196247505,
 'lf_hf_ratio': 4.227761855470309,
 'lfnu': 80.87135512966024,
 'total_power': 1249.0986783326118,
 'vIf': 680,2716580765422}
```

캡스톤 프로젝트 4

-스트레스지수 산출

급성스트레스지수=
$$\frac{T_{\mathit{LF/HF}} + T_{\mathit{HR}}}{2}$$

여기서, $T_{LF/HF}$ = 자율신경 균형도(LF/HF)의 표준지표(T_i),

T_{HR} = 신체각성도(HR)의 표준지표(T_i).

만성스트레스지수=
$$2M$$
- $\frac{T_{SDNN}+T_{HRV-kdx}}{2}$

여기서, 2M의 M = 각각의 평균(m_i)의 기준이 되는 평균,

 T_{SDNN} = 스트레스 저항도(SDNN)의 표준지표(T_i),

T_{HRV} - Idx = 심기능 활성도(HRV-Index)의 표준지표(T_i).