Credit Risk Modeling – Business Insights Summary

1. Dataset Overview

- The dataset originally contained **5,960 loan applicants** across **13 variables**.
- The target variable is BAD, renamed to default_flag, indicating loan default (1) vs. non-default (0).

2. Data Cleaning & Preparation

- Variables like DEBTINC, MORTDUE, DEROG, etc., had missing values.
- Applied a data-aware imputation strategy:
 - o Mean imputation for DEBTINC, CLNO
 - o Median imputation for skewed variables (MORTDUE, VALUE)
 - o Zero imputation for DEROG, DELINO
 - o **Dropped rows** where imputation wasn't appropriate
- Removed duplicates and renamed columns for clarity.

3. Exploratory Analysis & Outlier Treatment

- Outliers were treated using the **IQR method (clipping)** for all numeric predictors except the target.
- Visual distributions were inspected before imputation to ensure appropriate assumptions.

4. Feature Engineering

- Categorical variables (loan reason, job type) were encoded via one-hot encoding.
- A total of **4,831 cleaned records** were used for modeling after preprocessing.

5. Modeling Approach

- The dataset was split into 70% training and 30% testing using stratified sampling to preserve default distribution.
- Class imbalance handled using **class weights** {0: 0.2, 1: 0.8} in tree-based models.

Models Built:

• Logistic Regression

- **Decision Tree** (baseline and tuned with GridSearchCV)
- Random Forest (baseline and tuned)

6. Evaluation Metric

- Emphasis placed on Recall for the default class (1) to maximize the capture of high-risk applicants.
- Other metrics: Accuracy, Precision, and F1-score (reported for both training and test sets).

7. Model Comparison

Model	Accuracy (Test)	Recall (Default)	Precision (Default)
Logistic Regression	79.6%	2.0%	66.7%
Decision Tree (Base)	85.7%	57.7%	67.9%
Decision Tree (Tuned)	86.6%	71.4%	66.1%
Random Forest (Base)	90.0%	60.1%	87.3%
Random Forest (Tuned)	90.2%	62.4%	86.1%

8. Key Insights

- Random Forest (Tuned) offered the best balance between accuracy and recall, making it most suitable for detecting defaults.
- **Top features** influencing default risk include:

```
o recent credit inquiries
o years_on_job
o open_credit_lines
```

- o debt income ratio

9. Business Recommendation

- Deploy the **tuned Random Forest model** to flag risky applicants early.
- Use **feature importances** for targeted interventions (e.g., assessing job stability or credit behavior).
- Combine this model with **credit officer judgment** for a robust loan approval process.