0.1 H17 数学 A

- $\boxed{1}$ (1)AB が正則であるから $f\circ g$ は同型である.よって f は全射, g は単射である. $\dim \mathbb{C}^n-\dim \mathrm{Ker}\ f=\dim (\mathrm{Im}\ f)=\dim \mathbb{C}^m$ より $\dim \mathrm{Ker}\ f=n-m$ である.g は単射であるから $\dim \mathrm{Ker}\ g=0$
- $(2)ABv=\lambda v,v\neq 0$ とする.このとき $BABv=B\lambda v=\lambda Bv,Bv\neq 0$ であるから AB の固有値 λ は BA の固有値でもある.

 $BAv=\lambda v, v\neq 0$ とする. $ABAv=\lambda Av$ であるから, $Av\neq 0$ なら λ は AB の固有値である. Av=0 なら $BAv=0=\lambda v$ より $\lambda=0$. すなわち BA の零でない固有値は AB の固有値でもあるから BA の固有値は $\lambda_0=0,\lambda_1,\ldots,\lambda_k$ である.

- (3)C^m における AB の固有値 λ_i の固有空間を $W(\lambda_i)$ とする。対角化可能であるから $\sum_{i=1}^k \dim W(\lambda_i) = m$ である。Cⁿ における BA の固有値 λ_i の固有空間を $V(\lambda_i)$ とする。 $g(W(\lambda_i)) \subset V(\lambda_i)$ であり g は単射であるから $\dim W(\lambda_i) \leq \dim V(\lambda_i)$ である。また $V(\lambda_0) = \operatorname{Ker}(g \circ f)$ より $\dim V(\lambda_0) \geq n m$ である。よって $\sum_{i=0}^k \dim V(\lambda_i) \geq n m + \sum_{i=1}^k \dim W(\lambda_i) = n$ である。よって BA は対角化可能である。
- ② (1)f を商写像とする. $f^{-1}(B)$ を閉集合とする. $X\setminus f^{-1}(B)=f^{-1}(X\setminus B)$ は開集合であるから $X\setminus B$ は開集合である. よって B は閉集合.
- $f^{-1}(B)$ を開集合とする. $X\setminus f^{-1}(B)=f^{-1}(X\setminus B)$ は閉集合であるから $X\setminus B$ は閉集合である. よって B は開集合.
- $(2)B \subset Y$ について $f^{-1}(B)$ が閉集合だとする.コンパクト空間の閉集合はコンパクトであるから $f^{-1}(B)$ はコンパクトである.f は全射連続写像であるから $f(f^{-1}(B)) = B$ はコンパクトである.ハウスドルフ空間のコンパクト部分集合は閉集合であるから B は閉集合である.よって f は商写像.
- ③ (1) 任意の x>0 について x/N<1 なる N が存在する。 $\log(1+x)=x-\frac{x^2}{2}+O(x^3)$ (|x|<1)であるから $n\geq N$ のとき $\log(1+x/n)=(x/n)-\frac{x^2}{2n^2}+O(x^3/n^3)$ である。 したがって $\sum\limits_{n=N}^{\infty}x/n-\log(1+x/n)=\sum\limits_{n=N}^{\infty}\frac{x^2}{2n^2}+O(x^3/n^3)<\infty$ である。 よって収束する。
- n=N (2)I=(1/2,2) とする. $x\in I$ に対して $(x/n-\log(1+x/n))'=1/n-\frac{1}{n+x}<\frac{1}{n(2n+1)}$ である. よって $\sum\limits_{n=1}^{\infty}1/n-\log(1+1/n)$ は一様収束する. したがって $(\sum\limits_{n=1}^{\infty}x/n-\log(1+x/n))'|_{x=1}=\sum\limits_{n=1}^{\infty}1/n-\frac{1}{n+1}=1$ である.
 - $\boxed{4} (1) \frac{1}{1+z^2} = \sum\limits_{n=0}^{\infty} (-1)^n z^{2n}$ であるから $\frac{2z}{1+z^2} = \sum\limits_{n=0}^{\infty} 2(-1)^n z^{2n+1}$ である.
- n=0 n=