Church Encoding

1 Lists and fold

Recall that an 'a list is either

- the empty list, or
- a value of type 'a prepended to an 'a list,

and nothing else. We can translate this into an OCaml type definition

```
type 'a list = Empty | Cons of 'a * 'a list
```

where we have special syntax for the constructors: $[] \equiv Empty$ and $x::xs \equiv Code(x, xs)$.

To define a function list_func that operates on lists, we perform recursion on the *structure* of the data (made easier by *pattern matching*):

- When we have [], we're at the base case and want to return some value a
- When we have a nonempty list x::xs, we're at the recursive case and want to perform some operation g on the head h and the result of recursively applying the function to the tail, list func xs

In fact, so many list functions are defined this way that we encapsulate this schema as a higher order function $fold_right : ('a -> 'b -> 'b) -> 'a$ list -> 'b +> 'b which is defined like so:

with list_func $l \equiv fold_right$ g l a. Intuitively, $fold_right$ replaces [] by b and :: by f.

The idea behind **Church encoding** is the following: since the only thing we care about lists is what we eventually get after applying a function 1 to it, instead of defining a separate type with constructors, we can represent a list as a function that takes in some f and b and puts them where the constructors would be. In this view, a list l is "the same" as the result of evaluating 2 fun f b -> fold_right f l b.

1.1 Example Church-encoded lists

Let's look at some example encodings:

• The empty list

¹A function defined in the fold right sense.

²In the case of a language like OCaml, we'll pretend we can reduce inside the body of a function.

• The singleton list [x]

• An arbitrary list $[x_1; x_2; ...; x_n]$

To see how we can use these encoded values, we turn our attention to the simpler type of natural numbers where we'll perform a similar procedure.

2 Numbers, naturally

First, we look at a generic function defined by recursion on natural numbers:

Let's rewrite this in pseudo-OCaml in terms of addition instead of subtraction:

It seems like the "structure" we care about when defining recursive functions on natural numbers is the fact that a number is built up by adding 1 to it some number of times — $n = 0 + \underbrace{1 + \dots + 1}_{n \text{ times}}$. This leads to the

following definition: a nat is either

- zero, or
- the successor (+1) of some existing nat

and nothing else. In OCaml, we translate this to the following type definition:

In pseudo-OCaml, we'll write $0 \equiv Zero$ and $n+1 \equiv Succ$ n.

Abstracting over the definition schema, we get a function fold nat defined by

with nat func $n \equiv fold$ nat g a n. The intuition is that fold nat replaces 0 by b and +1 by f:

which is to say that $fold_nat \ f \ b \ n \equiv \underbrace{f \ (f \ \dots \ (f \ b) \dots)}_{n \ \mathrm{times}} \ b) \dots)$. For convenience, we'll write

- $\underbrace{f\ (f\ \dots\ (f\ b)\dots)}_{n\ \mathrm{times}}\ b,$ and
- c_n to denote the Church encoding of n.

Evaluating $c_n = fun \ f \ b \ -> \ fold_nat \ f \ b \ n$ for some values of n, it shouldn't be too hard to see that $c_n \equiv fun \ f \ b \ -> \ f^n \ b$

2.1 Type of a Church numeral

What type does a Church-encoded number have?

 \bullet It takes in two arguments f and b

• f is applied to b

- ${\sf f}$ is applied to a value resulting from an application of ${\sf f}$

$$c_n$$
 : ('a -> 'a) -> 'a -> _

• The value we get at the end comes from an application of f

Thus the type of all Church encoded natural numbers in OCaml is equivalent³ to:

2.2 Producing a value

2.2.1 Checking for 0

Let's write a function that checks if a given ${\tt nat}$ is ${\tt 0}$:

 $^{^3}$ Not exactly; since the Church numeral should work uniformly over any kind of function of type 'a -> 'a, it is actually equivalent to something like type churchNat = forall 'a. ('a -> 'a) -> 'a -> 'a.

Notice that this is equivalent to

and if we squint a little bit, we'll see that this is

or

Since c_n is "the same" as $fun\ f\ b$ -> $fold_nat\ f\ n\ b$, in order to check if a given Church numeral represents , we can translate the definition to the Church-encoded world as

Indeed,

```
• if n = 0.
       iszero_church (ChurchNat c₀)
       \rightarrow c_0 (fun _ -> false) true
       \rightsquigarrow (fun b -> b) true
       → true
• if n = 1.
       iszero_church (ChurchNat c1)
       \rightsquigarrow c<sub>1</sub> (fun _ -> false) true
       \rightarrow (fun f b -> f b) (fun -> false) true
       \rightarrow (fun b -> (fun _ -> false) b) true
       \rightsquigarrow (fun _ -> false) true
       → false
• if n = 2,
       iszero church (ChurchNat c<sub>2</sub>)
       \rightsquigarrow c_2 (fun _ -> false) true
       → false
```

• and so on.

2.2.2 Converting back to an int

We repeat the same process to figure out church_to_int. In the recursive version of nat_to_int,

- in the base case, we should get 0
- $\bullet\,$ in the recursive case, we should add 1 to the result of the recursive call

or in terms of fold nat,

$$nat_{to_int} n \equiv fold_{nat} (fun m -> m + 1) 0 n$$

The translation into the world of Church numerals is now straightforward.

2.3 Fun with operations

2.3.1 Addition (Take 1)

We start off by writing addition on nats recursively:

which is equivalent to

let add nat m n = fold nat (fun x ->
$$x+1$$
) m n

Translating to the Church world, we have

let add (**ChurchNat**
$$c_m$$
) $c = c_m$ add1 c

which means we need to figure out how to add 1 to a Church numeral.

Since c_n f is just a composition f^n , we can take advantage of properties of function composition to get what we want:

which gives us

let add1 (ChurchNat
$$c_n$$
) = ChurchNat (fun f b -> f (c_n f b))

Note that this actually defines addition as a function of type

'a churchNat churchNat -> 'a churchNat -> 'a churchNat

which isn't exactly what we want.

2.3.2 Addition (Take 2)

Let's see what happens if we just use the properties of composition:

This gives us the following definition:

let add (ChurchNat
$$c_m$$
) (ChurchNat c_n) = ChurchNat (fun f b -> c_m f (c_n f b))

that has type

'a churchNat -> 'a churchNat -> 'a churchNat

which is what we want!

2.3.3 Multiplication

Using a different property of composition:

This gives us the following definition:

3 Exercises

- 1. Figure out the type of a Church-encoded list.
- 2. Implement isempty, length, and churchlist_to_list for Church-encoded lists.
- 3. Implement append and cartesian_product for two Church lists.
- 4. Figure out how to exponentiate two Church numerals.
- 5. Pick some other datatypes and figure out their Church encodings.