HAFTA 13

ALAN ETKİLİ TRANSİSTORLAR (FET)-DEVAM

Örnek 6. Şekil 1'deki devrede $R_D = 2k\Omega$, $R_G = 10 M\Omega$, $C_1 = C_2 = 0.05 \,\mu\text{F}$ ve $V_T = 3V$ olmak üzere I_D ve V_{DS} değerlerini bulunuz. $(V_{DD} = 12V \text{ ve } K = 0.3mA/V^2)$

Şekil 1. Kanal oluşturmalı MOSFET öngerilim devresi

Çözüm 6. $I_D = 0.3 \times (V_{DS} - 3)^2$ denklemi yardımı ile oluşturulan tablo değerlerine sahip n-kanallı MOFSET in akaç karakteristiği ve $V_{DS} = 12V - I_D \times (2 \, k\Omega)$ denklemi yardımı ile oluşturulan tablo değerlerine sahip yük doğrusu aynı grafik üzerinde Şekil 2'deki gibi çizilebilir.

$V_{GS}(V)$	$I_D(mA)$
3	0
5	1.2
7	4.8
9	10.8

$I_D(mA)$	$V_{GS}(V)$
0	12
6	0

Şekil 2. Akaç-kaynak transfer karakteristiği ve yük doğrusu

Örnek 7. Şekil 3'deki devrenin I_D ve V_{DS} değerlerini hesaplayınız.

Şekil 3. Örnek devre

Çözüm 7. Devrenin sağlaması gereken iki denklem takımı aşağıda verilmiştir.

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 12 \, mA \times (1 - \frac{V_{GS}}{-6 \, V})^2$$

$$V_{GS} = -(0.680 \, k\Omega) \times I_D$$

V_{G}	$_{S}(V)$	$I_D(m)$	A)
	0	12	$\overline{\left[I}_{DSS}\right]$
$0.3V_p$	1.8	6	I_{DSS} / 2
$\left[0.5V_{p}\right]$ -	3.0	3	$\overline{\left[I_{DSS}/4\right]}$
$\left[V_{p} ight]$ -	6.0	0	

$I_D(mA)$	$V_{GS}(V)$
0	0
9	-6

Bu iki karakteristiğin kesişme noktasından $I_{DQ} = 3.84 \, mA$ ve $V_{GSQ} = -2.61 \, V$ olarak tespit edilir. Buradan hareketle aşağıdaki büyüklükler elde edilir.

$$V_D = V_{DD} - I_D R_D = 12 V - (1.5 \, k\Omega) \times (3.84 \, mA) = 6.24 V$$

$$V_S = I_D R_S = (3.84 \, mA) \times (0.680 \, k\Omega) = 2.61 \, V$$

Buradan da V_{DS} gerilimi aşağıdaki gibi bulunur.

$$V_{DS} = V_D - V_S = 6.24 V - 2.61 V = 3.63 V$$

Örnek 8. Şekil 4'deki devrenin I_D ve V_{DS} değerlerini hesaplayınız.

Şekil 4. Örnek devre

Çözüm 8. Kapı-kaynak devre denkleminden aşağıdaki denklem yazılabilir.

$$V_{GS} + I_D R_S - 10 V = 0$$
 $V_{GS} = 10 V - I_D \times (1.5 \, k\Omega)$

Aynı zamanda eleman denkleminden de aşağıdaki yazılabilir.

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 9 \, mA \times (1 - \frac{V_{GS}}{-3V})^2$$

	$V_{GS}(V)$	$I_D(mA)$		
-	0	$9 [I_{DSS}]$	$I_D(mA)$	$V_{GS}(V)$
$\left[0.3V\right]$,] -0.9	$4.5 \left[I_{DSS} / 2 \right]$	0	10
$\left[0.5V\right]$, -1.5	$2.5 \left[I_{DSS}/4\right]$	6.67	0
V_p	-3.0	0		

Bu iki karakteristiğin kesişme noktasından $I_{DQ} = 6.9 \, mA$ ve $V_{GSQ} = -0.35 \, V$ bulunur. Buradan da aşağıdaki büyüklükler elde edilir.

$$V_D = V_{DD} - I_D R_D = 20 V - (6.9 \text{ mA}) \times (1.8 \text{ k}\Omega) = 7.58 V$$

$$V_S = -10V + (6.9 \text{ mA}) \times (1.5 \text{ k}\Omega) = 0.35 \text{ V}$$

$$V_{DS} = V_D - V_S = 7.58 V - 0.35 V = 7.23 V$$

Örnek 9. Şekil 5'deki devrenin (p-kanallı JFET) I_D ve V_{DS} değerlerini hesaplayınız.

Çözüm 9. Kapı-kaynak çevre denkleminden aşağıdaki ifade yazılır.

$$V_{GS} - I_D R_S = 0 \qquad V_{GS} = I_D \times (0.36 \, k\Omega)$$

Eleman denkleminden de aşağıdaki ifade yazılır.

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 7.5 \, mA \times (1 - \frac{V_{GS}}{3.5 \, V})^2$$

	$V_{GS}(V)$	$I_D(mA)$		
-	0	$7.5 [I_{DSS}]$	$I_D(mA)$	$V_{GS}(V)$
$\left[0.3V_{p}\right]$	1.05	$3.75 \left[I_{DSS}/2\right]$	0	0
$\left[0.5V\right]$,] 1.75	$1.875 \left[I_{DSS} / 4 \right]$	9.72	3.5
V_p	3.5	0		

Şekil 6. Akaç-kaynak transfer karakteristiği ve yük doğrusu

Bu iki karakteristiğin kesişme noktasından, çalışma noktaları olarak $I_{DQ}=3.3\,mA$ ve $V_{GSQ}=1.2\,V$ değerleri bulunur. Bu değerlerden faydalanarak aşağıdakileri bulabiliriz.

$$V_D = V_{DD} + I_D R_D = -22 V + (3.3 \text{ mA}) \times (2.7 \text{ k}\Omega) = -13.09 V$$

$$V_S = -I_D R_S = -(3.3 \, mA) \times (0.360 \, k\Omega) = -1.19 \, V$$

$$V_{DS} = V_D - V_S = -13.09 V - (-1.19 V) = -11.9 V$$

Örnek 10. Şekil 7'daki n-kanallı kanal ayarlamalı bir MOFSET devresi için I_D ve V_{DS} değerlerini hesaplayınız.

Şekil 7. Örnek devre

Çözüm 10.

$$V_{GS} = V_G - V_S = 0 - 0 = 0$$

$$I_D = I_{DSS} = 8 \, mA$$

Akaç gerilimi ise aşağıdaki gibi bulunur.

$$V_D = V_{DD} - I_D R_D = 20 V - (8 \text{ mA}) \times (1.5 \text{ k}\Omega) = 8 V$$

Örnek 11. Şekil 8'deki n-kanallı bir JFET devresi için I_D ve V_S değerlerini hesaplayınız.

Şekil 8. Örnek devre

Çözüm 11.

$$\begin{split} V_{GS} &= 0 - I_D R_S = -I_D \times (1.8 \, k\Omega) \\ I_D &= I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 4 \, mA \times (1 - \frac{V_{GS}}{-5 \, V})^2 \\ & \frac{V_{GS}(V) \left[I_D(mA) - \frac{I_D(mA) \left[V_{GS}(V) - \frac{I_D(mA)}{V_{GS}(V)} \right] -1.5}{0 - 0} \right]}{0 - 0} \\ & \frac{[0.3V_p]_{-1.5} - 2 \left[I_{DSS} / 2 \right]}{[0.5V_p]_{-2.5} - 1 \left[I_{DSS} / 4 \right]} \\ & \frac{[V_p]_{-5} - 5}{0} - 0 \end{split}$$

Bu iki karakteristiğin kesişme noktasından, çalışma noktaları olarak $I_{DQ}=1.23\,mA$ ve $V_{GSQ}=-2.2\,V$ değerleri bulunur. Bu değerlerden faydalanarak aşağıdakini bulabiliriz.

$$V_S = I_D R_S = (1.23 \, mA) \times (1.8 \, k\Omega) = 2.21 \, V$$