SECTION B: INVERSE PROBLEMS

Question 3 (15 marks)

Consider the standard Tikhonov form of the regularised least squares problem

$$\min_{x} ||Ax - y||_{2}^{2} + \lambda ||x||_{2}^{2}$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $\lambda \in \mathbb{R}$ and A is an $m \times n$ matrix.

i) By differentiating the objective function with respect to x, derive the following corresponding normal equations that characterise solutions to the optimisation problem above:

$$(A^TA + \lambda I)x = A^Ty.$$

[5 marks]

ii) Show how to derive an *iterative solution method* to the above normal equations. Note: you do NOT need to give conditions under which your scheme converges.

[5 marks]

iii) Suppose that you decided to set the explicit Tikhonov regularisation parameter $\lambda \in \mathbb{R}$ to zero in your problem. Explain how you could *still* obtain a regularised solution just using an iterative scheme.

[5 marks]

Question 4 (10 marks)

i) Consider the general reduced form of the SVD of a matrix A:

$$A = U_r \Sigma_r V_r^T,$$

where \mathbf{r} is the rank of \mathbf{A} .

a. Express the pseudoinverse A^+ in terms of the SVD component matrices given above.

[1 mark]

b. Use your answer to (a) to derive an expression for the *model (parameter)* resolution operator R_m in terms of the SVD component matrices.

[2 marks]

c. Use your answer to (a) to derive an expression for the *data resolution operator* R_d in terms of the SVD component matrices.

[2 marks]

ii) Briefly explain how to obtain regularised solutions to a linear inverse problem by using the SVD. Include a brief intuitive explanation of *why* this works.

[5 marks]