Abschlussklausur

Netzwerke

13. Juli 2012

Name:									
Vorname:									
${f Matrikel numm}$	ner: _								
Studiengang:									
Hinweise:									
• Tragen Sie zue: Ihren <i>Vornam</i> können nicht g	en und Ih	Me	atrikeli						
 Schreiben Sie og Sie können aug ist ein Verweis 	ch die leer	en Bl	ätter a	ım En	de der	Heftur	ng nutze	en. In die	
• Legen Sie bitte	e Ihren Li	chtbile	dauswe	eis unc	l Ihrer	n Studer	ntenaus	weis ber	eit.
• Hilfsmittel sine	d $nicht$ zu	gelass.	en.						
• Mit Bleistift o	der Rotsti	ft ges	chrieb	ene Er	gebnis	sse were	$\mathrm{den}\ nich$	ht gewert	et.
• Die Bearbeitur	ngszeit die	eser A	bschlu	ssklau	sur be	trägt 9	0 Minu	ten.	
• Stellen Sie sich fone werden a dent/in wird v	ls Täusch	ungsv	ersuch	anges	sehen	und de:	m r/die~er	$_{ m ntspreche}$	nde Stu-
Bewertung:									
1) 2) 3) 4	4) 5)	6)	7)	8)	9)	10)	11)	Σ	Note

Abschlussklausur

Netzwerke

13.7.2012 Dr. Christian Baun

Aufgabe 1 (6 Punkte)

Tragen Sie die **Namen der Schichten** des hybriden Referenzmodells und des OSI-Referenzmodells in die Abbildung ein.

Aufgabe 2 (15 Punkte)

Geben Sie zu den angegebenen Netzwerkgeräten, Protokollen, Übertragungseinheiten, Kodierungsschemata und Adressierungen an, zu welcher Schicht des **hybriden Referenzmodells** diese gehören.

Aufgabe 3 (2+2 Punkte)

Überprüfen Sie mit Hilfe des **vereinfachten Hamming-Codes** (Hamming-ECC-Verfahren), ob die Nachrichten korrekt übertragen wurden und betreiben Sie gegebenenfalls Fehlerkorrektur.

Aufgabe 4 (3+5,5+4,5 Punkte)

Die Abbildungen zeigen den Aufbau einer **TCP-Verbindung**, einen Ausschnitt der Übermittlungsphase und den Abbau einer TCP-Verbindung. Ergänzen Sie in den Tabellen die fehlenden Angaben.

Aufgabe 5 (1+1+1+1) Punkte

Geben Sie die kleinste und größte für Rechner **nutzbare Adresse** sowie die **Netzadresse** und die **Broadcast** des Subnetzes an.

Aufgabe 6 (3+3 Punkte)

Gegeben sind zwei Netzwerkkonfigurationen, die jeweils aus IP-Adresse und Netzmaske bestehen. Der entsprechende Rechner sendet ein IP-Paket an die angegebene Ziel-Adresse. Geben Sie jeweils an, ob das IP-Paket das Subnetz auf seinem Weg verlässt oder nicht. Der Rechenweg muss erkennbar sein.

Aufgabe 7 (5+5 Punkte)

Bestimmen Sie die **Subnetzmasken** in binärer und dezimaler Darstellung und geben Sie die Anzahl der für Rechner **nutzbaren Adressen pro Subnetz** an.

Aufgabe 8 (1+1+1+1 Punkte)

- a) Geben Sie die Namen von zwei Geräten an, die die Kollisionsdomäne nicht unterbrechen.
- b) Geben Sie die Namen von zwei Geräten an, die die Kollisionsdomäne unterbrechen.
- c) Geben Sie die Namen von zwei Geräten an, die die Broadcast-Domäne nicht unterbrechen.
- d) Geben Sie die Namen von zwei Geräten an, die die Broadcast-Domäne unterbrechen.

Aufgabe 9 (2+1+1+2 Punkte)

- a) Die Kodierung von Daten in Netzwerken ist auf verschiedene Arten möglich. Die einfachste Form der Darstellung von logischer 0 und 1 ist mit verschiedenen Spannungsniveaus möglich. Dieser Leitungscode heißt Non-Return to Zero (NRZ). Geben Sie die **Namen der beiden Probleme** an, die bei NRZ auftreten, wenn längeren Serie von Nullen oder Einsen übertragen werden?
- b) Wie vermeidet die Manchesterkodierung die beiden bekannten Probleme von NRZ?
- c) Was ist der Nachteil der Manchesterkodierung?
- d) Moderne Netzwerktechnologien kodieren die Nutzdaten zuerst mit Blockcodes und danach mit NRZ, NRZI oder MLT-3. Geben Sie die **Namen von zwei Blockcodes** an, die in der Vorlesung besprochen wurden.

Aufgabe 10 (4+2+1+1+1+3+2+1+1 Punkte)

- a) Das Übertragungsmedium bei Funknetzen hat spezielle Eigenschaften. Nennen Sie die vier in der Vorlesung besprochenen **Herausforderungen beim Aufbau und der Arbeit mit Funknetzen**.
- b) Die Kommunikation zwischen WLAN-Geräten kann auf zwei Arten erfolgen. Geben Sie die Namen der beiden Modi an.
- c) Welches **Übertragungsmedium** besteht aus einem inneren Leiter (Seele), der das Signal führt und einem äußeren Leiter, der auf Masse (Grundpotential) liegt?
- d) Warum sind die Adernpaare bei Twisted-Pair-Kabeln paarweise miteinander verdrillt?
- e) Zu welchem Zweck verfügen manche Netzwerkgeräte über einen Uplink-Port?
- f) Ein Kollege möchte zwischen zwei Firmengebäuden ein Twisted-Pair-Kabel mit Schirmung verlegen.
 - Ist die beschriebene Vorgehensweise empfehlenswert? Begründen Sie kurz Ihre Antwort.
 - Empfehlen Sie eine alternative Vorgehensweise? Wenn ja, welche Vorgehensweise empfehlen Sie?
- g) Nennen Sie zwei technische **Vorteile von Lichtwellenleitern** gegenüber anderen leitungsgebundenen Übertragungsmedien.
- h) Was ist ein Scatternetz?
- i) Was ist das Ziel der universellen Gebäudeverkabelung?

Aufgabe 11 (3+3 Punkte)

- a) Beschreiben Sie in wenigen Worten die Eigenschaften von **Simplex**, **Duplex** und **Halbduplex**.
- b) Nennen Sie zu Simplex, Duplex und Halbduplex jeweils ein Anwendungsbeispiel.

Name:	Vorname:	Matr.Nr.:
Aufgabe	1)	Punkte:
Hybrides Refer	enzmodell	OSI-Referenzmodell
	,	

Name:	vorname:	Matr.Nr.:

Aufgabe 2)

Es genügt, wenn Sie in der Tabelle die Nummern der jeweiligen Schichten angeben. Die Nummer 1 steht dabei für die unterste Schicht und Nummer 5 für die oberste Schicht im hybriden Referenzmodell.

Punkte:

Wenn mehr als eine Schicht als Antwort korrekt sind, genügt es, wenn Sie eine korrekte Schicht angeben.

	Schicht im hybriden Referenzmodell
4B5B	
Address Resolution Protocol	
Alternate Mark Inversion	
Brigde	
Dynamic Host Configuration Protocol	
CSMA/CA	
Ethernet	
File Transfer Protocol	
Hub	
Hypertext Transfer Protocol	
ICMP	
Internet Protocol	
Logische Adresse	
Manchester-Code	
Multilevel Transmission Encoding - 3 Levels	
Multiport-Bridge	
Non-Return to Zero	
Open Shortest Path First	
Physische Adressen	
Portnummern	
Repeater	
Router	
Routing Information Protocol	
Spanning Tree Protocol	
Switch	
Telnet	
Transmission Control Protocol	
User Datagram Protocol	
Wireless LAN	
Zyklische Redundanzprüfung	

Name:	Vorname:	Matr.Nr.:	
Aufgab	e 3)	Punkte:	

a) 010110001100

b) 0001101100101101

Aufgabe 4)

Punkte:

a) Aufbau einer TCP-Verbindung (Dreiwege-Handshake)

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
1	0	1	0	0	300	
2					600	
3						

$Aufgabe\ 4-Fortsetzung)\ {\tiny Punkte:}\ \dots$

b) Ausschnitt der Übermittlungsphase einer TCP-Verbindung

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
4	0			50	301	601
5	1			0		
6	0			100		
7	1			0		
8	0			200		
9	1			0		

$Aufgabe\ 4-Fortsetzung)\ {\tiny Punkte:}\ \dots$

c) Abbau einer TCP-Verbindung

Name:

Nachricht	ACK	SYN	FIN	Länge Nutzdaten	Seq-Nummer	Ack-Nummer
10	0	0	1	0	4000	5000
11						
12						
13						

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Punkte:

Aufgabe 5)

IP-Adresse	152.176.31.101	10011000.10110000.0001	1111.01100101
Netzmaske	255.255.254.0	11111111.111111111.1111	1110.00000000
Netzadresse			
Kleinste Hostadresse			·_
Größte Hostadresse	''		·
Broadcastadresse			

dezimale Darstellung
128
192
224
240
248
252
254
255

Name: Vorname: Matr.Nr.:	
--------------------------	--

Aufgabe 6)

Punkte:

a)

Sender-Adresse	Subnetzmaske	Ziel-Adresse
201.20.222.13	255.255.255.240	201.20.222.17

11001001.00010100.11011110.00001101201.20.222.1311111111.11111111.1111111.11110000255.255.255.240

11001001.00010100.11011110.00010001 201.20.222.17 11111111.11111111.11111111.11110000 255.255.255.240

Subnetznummer Sender:

Subnetznummer Empfänger: _____

Wird das Subnetz verlassen? _____

b)

Sender-Adresse	Subnetzmaske	Ziel-Adresse
15.200.99.23	255.192.0.0	15.239.1.1

00001111.11001000.01100011.00010111 15.200.99.23 11111111.11000000.00000000.00000000 255.192.0.0

Subnetznummer Sender:

Subnetznummer Empfänger: _____

Wird das Subnetz verlassen? _____

Name:	Vorname:	Matr.Nr.:
Name:	Vorname:	Matr.Nr.:

Aufgabe 7)
-----------	---

Aufgabe 7)	Punkte:
a) Das Klasse-C-Netz 195.1.31.0 soll in mit	ndestens 30 Subnetze aufgeteilt werden.
Anzahl Bits für Hosts:	
Anzahl Bits für Subnetze:	
Anzahl Host-Adressen pro Subnet	z:
Neue Subnetzmaske (binär):	
Neue Subnetzmaske (dezimal):	
b) Das Klasse-B-Netz 129.15.0.0 soll in Su	bnetze mit je 10 Hosts aufgeteilt werden
Anzahl Bits für Hosts:	
Anzahl Bits für Subnetze:	
Anzahl Subnetze:	
Neue Subnetzmaske (binär):	

binäre Darstellung	dezimale Darstellung
10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Neue Subnetzmaske (dezimal): ___.__.

Name:	Vorname:	Matr.Nr.:
Aufgabe	8)	Punkte:

Name:	Vorname:	Matr.Nr.:
Aufgabe 9)		Punkte:

Name:	Vorname:	Matr.Nr.:
A C l	10)	
Aufgabe	9 10)	Punkte:

Name:	Vorname:	Matr.Nr.:
Aufgabe	11)	Punkte:

Zusatzblatt zu Aufgabe.....

Verwenden Sie dieses Blatt nur für eine Aufgabe!

Verweisen Sie bei der zugehörigen Aufgabe gut sichtbar auf dieses Blatt!

Zusatzblatt zu Aufgabe.....

Verwenden Sie dieses Blatt nur für eine Aufgabe!

Verweisen Sie bei der zugehörigen Aufgabe gut sichtbar auf dieses Blatt!