Homeowrk Set No. 2

ECE 642 Dr. Bijan Jabbari

Problem 1

Refer to the Figure 1 below. Calculate the probability of k independent events in the m intervals Δt units long, if the probability of one event in any interval is p, while the probability of no events is q = 1 - p. Show how one obtains the binomial distribution of

$$p(k) = \binom{m}{k} p^k q^{m-k} \tag{1}$$

Figure 1: figure for problem 1

Problem 2

In problem 1 let $p = \Delta t$, λ a proportionality factor. This then relates the binomial distribution to the Poisson process. Let $\Delta t \to 0$, with $T = m\Delta t$ fixed. Show that in the limit one gets the Poisson distribution. Show that the mean value E(k) and the variance are both equal to λT What is the probability that no arrival occurs in the interval T? Sketch this as a function of T. Repeat the probability that at least one arrival occurs in T.

Problem 3

Calculate and plot the Poisson distribution for the three cases $\lambda T = 0.1, 1, 10$. In the third case try to carry the calculation and plot out to at least k = 20. (Stirlings approximation for the factorial may be useful here.) Does the distribution begin to crowd in and peak about E(k) as predicted by the ratio

$$\frac{\sigma_k}{E(k)} = \frac{1}{\sqrt{\lambda T}} \tag{2}$$

Problem 4

Carry out the details of the analysis leading to equations

i

$$prob.[N(t, t + \Delta t) = 0] = \prod_{i=1}^{n} prob.[N^{(i)}(t, t + \Delta t) = 0]$$
$$= \prod_{i=1}^{m} [1 - \lambda_i \Delta t + o(\Delta t)]$$
$$= 1 - \lambda \Delta t + O(\Delta t)$$

where

$$\lambda = \sum_{i=1}^{m} \lambda_i \tag{3}$$

ii

$$prob.[N(t, t + \Delta t) = 1] = \lambda \Delta t + o(\Delta t)$$
 (4)

Showing that the sums of Poisson processes are Poisson as well.

Problem 5

Refer to the following time-dependent equation governing the operation of the M/M/1 queue.

$$p_n(t + \Delta t) = \left[1 - (\lambda + \mu)\Delta t\right]p_n(t) + \lambda \Delta t p_{n-1}(t) + \mu \Delta t p_{n+1}(t) \tag{5}$$

Start at time t=0 with the queue empty. (What are then the values $p_n(0)$) Let $\lambda/\mu=0.5$ for simplicity, take $\Delta t=1$, and pick $\lambda \Delta t$ and $\mu \Delta t$ very small so that the term of $(\Delta t)^2$ and higher can be ignored. Write a program that calculates $p_n(t+\Delta t)$ recursively as t is incremented by Δt and show that $p_n(t)$ does settle down eventually to the steady-state set of probabilities $\{p_n\}$. Pick the maximum value of n to be 5. the set of steady-state probabilities obtained should then agree with the following equation:

$$p_0 = (1 - \rho)\rho^n / (1 - \rho^{N+1}) \tag{6}$$

Note: Equation (5) must be modified slightly in calculating $p_0(t + \Delta t)$ and $p_5(t + \Delta t)$. You may want to set the problem up in matrix-vector form.

Problem 6

$$(\lambda + \mu)p_n = \lambda p_{n-1} + \mu p_{n+1} \tag{7}$$

where $n \ge 1$. Derive the above equation governing the steady-state (stationary) probabilities of state of the n M/M/1 queue, in two ways:

1. from the initial generating equation

$$p_n(t + \Delta t) = p_n(t)[(1 - \lambda \Delta t)(1 - \mu \Delta t) + \mu \Delta t * \lambda \Delta t + o(\Delta t) + p_{n-1}(t)[\lambda \Delta t(1 - \mu \Delta t) + o(\Delta t)] + p_{n+1}[\mu \Delta t(1 - \lambda \Delta t) + o(\Delta t)]$$

2. from flow balance arguments involving transitions between states n-1, n, and n+1 as indicated in the figure below

Figure 2: figure for problem 6

Problem 7

As a generalization of the M/M/1 queue analysis, consider a birth-death process with state-dependent arrivals λ_n and state-dependent departures μ_n . Show by applying balance arguments, that the equation governing the stationary state probabilities is given by

$$(\lambda_n + \mu_n)p_n = \lambda_{n-1}p_{n-1} + \mu_{n+1}p_{n+1} \tag{8}$$

Show that the solution to this equation is given by $p_n/p_0 = \prod_{i=1}^{n-1} \lambda_i / \prod_{i=1}^n \mu_i$.