1 $\delta < 0$, denominatore II grado

$$\int \frac{1}{x^2 + 4x + 9} dx$$

Osserviamo che $\int \frac{1}{x^2+1} dx = \arctan x + c$. Provo allora a costruire qualcosa di simile all'arcotangente.

$$\int \frac{1}{x^2 + 4x + 9} dx = \int \frac{1}{x^2 + 4x + 4 + 5} dx = 5 \int \frac{1}{\frac{(x+2)^2}{5} + 1} = 5 \arctan(\frac{x+2}{\sqrt{5}}) + c$$

Integrale generalizzato

Vogliamo ampliare la nostra definizione di integrale, applicandolo a una f non limitata.

$$\int_{a}^{b-\epsilon} f(x)dx$$

Ha senso; la funzione è limitata in $[a, b - \epsilon]$.

Allora, possiamo fare l'integrale generalizzato o improprio, se esiste ed è FINITO:

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) dx = \int_a^b f(x) dx$$

2.1Esercizi

Uso di parametri

Dire per quali valori del parametro α ...

$$\int_0^1 \frac{1}{x^{\alpha}} dx$$

Per $\alpha \leq 0$, si ha che $\int_0^1 x^- \alpha dx$, e quindi è un integrale standard. Per $\alpha > 0$, si ha che $\int_0^1 \frac{1}{x^{\alpha}} dx$.

C'è un problema in x = 0; la funzione non è limitata! Usiamo allora la definizione di integrale generalizzato.

Calcolo integrali generalizzati con la definizione

Calcola l'integrale...

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \lim_{\epsilon \to 0^+} \int_{\epsilon}^1 \frac{1}{x^{\alpha}} dx$$

Trovo l'insieme delle sue primitive:

2.1.3 Uso dei criteri

Studiare l'integrabilità...