

ESTATÍSTICA ORIENTADA À CIÊNCIA DE DADOS

UniSenai PR – São José dos Pinhais

Introdução à Estatística: conceitos básicos

Estatística

Dedica-se a coletar, organizar, analisar e interpretar dados;

O principal objetivo é extrair informações relevantes dos dados, permitindo tomar decisões;

Estatística descritiva

Ao aplicar técnicas estatísticas descritivas, pode-se obter uma visão geral dos padrões e características dos dados, facilitando a identificação de tendências, variações e relações entre variáveis.

Estatística inferencial

Área da estatística que se preocupa com a análise e interpretação de dados amostrais a fim de fazer inferências ou generalizações sobre a população a partir da qual a amostra foi obtida.

Turma	n	Mínimo	Média	Desvio padrão	Máximo
Α	34	17	20,32	3,78	36
В	31	17	20,58	4,09	37

População

A população refere-se ao conjunto completo de elementos ou indivíduos que compartilham características específicas de interesse em um estudo.

Amostra

A amostra é um subconjunto representativo selecionado da população, usado para fazer inferências e generalizações sobre a população como um todo;

A escolha de uma amostra adequada garante que os resultados obtidos sejam confiáveis e aplicáveis à população de interesse.

Variáveis qualitativas

Representam características, atributos ou categorias, e não podem ser medidas em uma escala numérica contínua;

- 1. Variáveis nominais: categorias sem ordem específica.
- 2. Variáveis ordinais: categorias com uma ordem específica, mas não possuem igual intervalo entre os valores.

Variáveis quantitativas

Representam quantidades ou valores numéricos que podem ser submetidos a cálculos matemáticos;

- 1. Variáveis discretas: valores individuais são contados ou enumerados.
- 2. Variáveis ordinais: medem quantidades com intervalos iguais entre os valores, mas não possuem um zero absoluto.

As medidas de tendência central são utilizadas para representar o valor central de um conjunto de dados;

Fornecem uma ideia sobre onde a maioria dos valores está localizada e são essenciais para entender a distribuição dos dados.

Medida	Definição	Cálculo
	Soma de todos os valores	Amostra: $\bar{x} = \frac{(\sum_{i=1}^{n} x_i)}{n}$
<u>Média</u>	em um conjunto de dados dividida pelo número total de observações	População: $\mu = \frac{(\sum_{i=1}^{n} x_i)}{N}$

 \overline{x} : Média para uma amostra;

μ: Média para a população;

 $\sum_{i=1}^{n} x$: Soma de todos os valores no conjunto de dados;

n: Número de observações na amostra;

N: Número total de elementos na população.

Considere o conjunto de dados: 10, 15, 18, 12, 10, 22, 18, 14, 20, 25

$$\bar{x} = \frac{(10+15+18+12+10+22+18+14+20+25)}{10} = 16,4$$

Medida	Definição	Cálculo
Mediana	Valor central de um conjunto de dados ordenado	Ordenar os dados em ordem crescente ou decrescente e, caso haja um número ímpar de observações, a mediana é o valor do meio; caso haja um número par de observações, a mediana é a média dos dois valores centrais.

Ordenar os dados: 10, 10, 12, 14, **15, 18**, 18, 20, 22, 25

$$mediana = \frac{(15+18)}{2} = 16,5$$

Medida	Definição	Cálculo
	Valor que ocorre com	
	maior frequência em um	
	conjunto de dados. Pode	É obtida identificando o
Mada	haver uma única moda	valor com a maior
<u>Moda</u>	(moda unimodal), mais de	frequência no conjunto de
	uma moda (moda bimodal)	dados.
	ou nenhum valor repetido	
	(sem moda).	

Considere o seguinte conjunto: **10, 10**, 12, 14, 15, **18, 18**, 20, 22, 25

moda = 10 e 18

Medida	Fórmula para Amostras	Fórmula para População
Média	$\bar{x} = \frac{(\sum_{i=1}^{n} x_i)}{n}$	$\mu = \frac{\left(\sum_{i=1}^{n} x_i\right)}{N}$
Mediana	Ordenar os dados e encontrar o valor do meio	Ordenar os dados e encontrar o valor do meio
Moda	Identificar o valor mais frequente	Identificar o valor mais frequente

Medida	Resumo
Média	É sensível a valores extremos, o que pode afetar significativamente o resultado final.
Mediana	Menos afetada por valores extremos.
Moda	Útil para dados qualitativos e pode não ser adequada para representar a tendência central em distribuições contínuas

Estatísticas ajudam a entender o quão "espalhados" ou concentrados os valores estão em torno da medida central (média, mediana, moda);

São essenciais para compreender a variabilidade dos dados e auxiliam na interpretação e análise mais completa das informações.

Medida	Definição	Cálculo
<u>Amplitude</u>	Diferença entre o maior e o menor valor em um conjunto de dados.	$valor_{m\acute{a}ximo} - valor_{m\'{i}nimo}$

Considere o conjunto de dados: 10, 15, 18, 12, 10, 22, 18, 14, 20, 25

amplitude = 25 - 10 = 15

Medida	Definição	Cálculo
	Mede a dispersão dos dados	População: $\sigma^2 = \frac{(\sum_{i=1}^n x_i - \mu)^2}{N}$
	em relação à média.	N N
Variância	É a média dos quadrados dos	
	desvios dos valores em relação	Amostra: $s^2 = \frac{(\sum_{i=1}^n x_i - \bar{x})^2}{n-1}$
	à média.	

Explicando a fórmula da variância (População)

 x_i = cada valor do conjunto de dados;

 μ = média da população;

N = total de elementos da população;

 $\sum_{i=1}^{n} x =$ somatório dos valores individuais no conjunto de dados;

 $(x_i - \mu)^2$ = subtração do valor individual em relação à média da população e depois elevado ao quadrado.

Explicando a fórmula da variância (Amostra)

 x_i = cada valor do conjunto de dados;

 \overline{x} = média da amostra;

n = total de elementos da amostra;

 $\sum_{i=1}^{n} x =$ somatório dos valores individuais no conjunto de dados;

 $(x_i - \overline{x})^2$ = subtração do valor individual em relação à média da população e depois elevado ao quadrado;

(n-1): graus de liberdade corrigido.

Conjunto de dados: 10, 15, 18, 12, 10, 22, 18, 14, 20, 25

Primeiro passo: calcular média amostral \bar{x}

$$\bar{x} = \frac{(10+15+18+12+10+22+18+14+20+25)}{10} = 16,4$$

Segundo passo: calcular a soma dos quadrados dos desvios em relação à média $(x_i - \bar{x})^2$

$$(10-16,4) = -6,4$$

 $(15-16,4) = -1,4$
 $(18-16,4) = 1,6$
 $(12-16,4) = -4,4$
 $(10-16,4) = -6,4$
 $(22-16,4) = 5,6$
 $(18-16,4) = 1,6$
 $(14-16,4) = -2,4$
 $(20-16,4) = 3,6$
 $(25-16,4) = 8,6$

$$(-6,4)^2 + (-1,4)^2 + (1,6)^2 + (-4,4)^2 + (-6,4)^2 + (5,6)^2 + (1,6)^2 + (-2,4)^2 + (3,6)^2 + (8,6)^2 = 172,4$$

Terceiro passo: calcular a variância da amostra (s²)

$$s^{2} = \frac{(\sum_{i=1}^{n} x_{i} - \bar{x})^{2}}{n-1}$$

$$s^2 = \frac{172,4}{10-1}$$

$$s^2 = \frac{172,4}{9} = 19,16$$

Medida	Definição	Cálculo
	Indica a dispersão dos dados em relação à média .	População: $\sigma = \sqrt{\frac{(\sum_{i=1}^{n} x_i - \mu)^2}{N}}$
Desvio padrão		
	Quanto maior o desvio padrão, maior a dispersão dos dados	Amostra: $S = \sqrt{\frac{(\sum_{i=1}^{n} x_i - \bar{x})^2}{n-1}}$

Tirar a raiz quadrada da variância

$$s = \sqrt{19,16} = 4,38$$

O desvio padrão é frequentemente preferido em vez da variância para descrever a dispersão dos dados porque ele tem a mesma unidade de medida dos dados originais, enquanto a variância tem unidades ao quadrado.

Na variância, os desvios dos valores em relação à média são elevados ao quadrado, como forma de evitar que desvios positivos e negativos se anulem quando somados.

Medida	Definição	Cálculo
Coeficiente de variação	Medida relativa de dispersão utilizado para comparar a variabilidade entre diferentes conjuntos de dados, independentemente de suas escalas.	$cv = \left(\frac{Desvio\ padrão}{m\'edia}\right) * 100$

Conjunto de dados: 10, 15, 18, 12, 10, 22, 18, 14, 20, 25

$$cv = \left(\frac{4,38}{16,4}\right) * 100 = 26,71\%$$

Isso nos indica que a variabilidade relativa dos valores em relação à média é de cerca de 26,71%

Medida	Resumo	Utilidade
Amplitude	Medida simples da extensão total dos valores no conjunto de dados.	Não fornece informações sobre a dispersão dos valores em relação à média.
Variância	Medida da dispersão dos valores em relação à média.	Indica a variabilidade dos dados; Maior valor indica maior dispersão; Menor valor indica menor dispersão.

Medida	Resumo	Utilidade
Desvio padrão	Raiz quadrada da variância.	Mede a dispersão dos dados em unidades originais;
paurao		Facilita a interpretação comparada com os dados originais.
Coeficiente de variação	Medida relativa de dispersão.	Permite comparar a variabilidade entre diferentes conjuntos de dados, independentemente de suas escalas ou médias.

