Evaluation of Vector-Matrix Multiplier using optical devices

Koji Sato Kyushu-University

- Background
- Purpose
- Introduction of optical VMM
- Evaluation
 - Area
 - latency
- Plan
- Summary

- Background
- Purpose
- Introduction of optical VMM
- Evaluation
 - Area
 - latency
- Plan
- Summary

Background

- Need for processing more data with low latency, and low power consumption
 - ✓ Cyber physical system

- Physical limitation of CMOS device
 - √ Ohmic loss
 - ✓ Leakage current

Optical device

- Advantage of optical device
 - ✓ Low latency
- Improvement of optical device
 - ✓ Miniaturization
 - ✓ Low power consumption
 - ✓ Large scale integrated

Compute with optical device!

Problem

- Vector-Matrix Multiplier(VMM)
 - ✓ Vector-Matrix operation is used in many applications e.g.) neural network, image processing

VMM can be realized with optical device

No comparison with optical device and CMOS

Purpose

- Purpose of my work
 - > Evaluation of VMM consisting of optical devices
 - ✓ Latency
 - ✓ Area
 - ✓ Power consumption
 - ✓ Accuracy
 - ➤ Contrasting optical VMM with other VMMs
 - ASIC(Application Specific Integrated circuit)
 - GPU

- Background
- Purpose
- Introduction of optical VMM
- Evaluation
 - Area
 - latency
- Plan
- Summary

Introduction of optical VMM

- This is design of analog vector-matrix multiplier
- Singular Value Decomposition(SVD)

 $M \times N$ matrix (A) can be decomposed as :

$$A = U\Sigma V$$

 $U: M \times M$ unitary matrix

V: N × N unitary matrix

 $\Sigma: M \times N$ diagonal matrix with non-negative real number

 Any matrix can be decomposed into two unitary matrix and a diagonal matrix

Introduction of optical VMM

- Diagonal matrix Σ can be implemented with amplifier $\sqrt{\sigma_1, \sigma_2, ..., \sigma_r}$ are amplifiers (r : rank of A)
- Unitary matrix U and V can be implemented with Mach-Zender interferometer(MZI) and phase shifter

MZI(Mach-Zenhder Interferometer)

Cross coupler: coupling two of input lightwave

Phase shifter: shift lightwave's phase depending on control signal

MZI unitary matrix transformation

This component corresponds to a following matrix transformation:

$$T(\theta, \phi) = \begin{pmatrix} e^{i\phi} sin\theta & e^{i\phi} cos\theta \\ cos\theta & -sin\theta \end{pmatrix}$$

$$T_{k,j}\left(\theta,\phi\right)=\begin{bmatrix} 1&0&\cdots&\cdots&0\\0&1&&&&\\&e^{i\phi}sin\theta&e^{i\phi}cos\theta&&\\&&cos\theta&-sin\theta&&\\&&&&1&0\\0&\cdots&\cdots&0&1\end{bmatrix}$$
 k j

• The Unitary matrix U(N) is multiplied from right with Unitary matrices $T_{N,k} (\omega_{N,k}, \phi_{N,k})$

(for
$$k = N-1,...,1$$
)

$$U(N) \cdot \prod_{k=N-1}^{1} T_{N,k}(\theta_{Nk}, \phi_{Nk}) = \begin{bmatrix} U(N-1) & 0 \\ 0 & e^{i\alpha_N} \end{bmatrix}$$

Do the same transformation repeatedly

$$U(N) \cdot T_{N,N-1} \cdot T_{N,N-2} \cdots T_{2,1} \cdot D = I(N).$$

I(N): Identity matrix in N dimensions

D:diagonal matrix with element modulus 1 (e.g. $e^{i\alpha}$)

Unitary matrix can be represented:

$$U(N) = (T_{N,N-1} \cdot T_{N,N-2} \cdots T_{2,1} \cdot D)^{-1}.$$

D can be implemented with appropriate phase shifters

• Unitary matrix U(N) can be implemented with MZIs and $\frac{N(N-1)}{2}$ phase shifters!

- Input
 - Light sources generate optical signals
- Output
 - Photo detector detect optical power

- Background
- Purpose
- Introduction of optical VMM
- Evaluation
 - Latency
 - Area
- Plan
- Summary

Latency: Method of evaluation

MZI VMM

Calculate from model formula

$$L = \frac{n}{c}lN_{pass} + L_{AMP} + L_{PD}$$

n: refractive index

c: speed of light

I: length of MZI

N_{pass}: the max number of MZI that light must pass

LAMP: latency of amplifier

LPD: latency of photo detector

Latency: Method of Evaluation

GPU

- Use library CUBLAS(CUDA Basic Linear Algebra subprograms)
- Run on NVIDEA Tesla k20m (354nodes)
 - 345.6GFLOPS
 - Memory 128GB
 - Bandwidth 102.4GB
- compute 400times on each matrix size and get the average latency

Evaluation: latency of VMM

MZI VMM can compute much faster than other VMMs

Area: Method of evaluation

MZI VMM

Calculate from model formula (assuming M=N)

$$S = S_S \times N + S_{MZI} \times N(N - 1) + S_{AMP} \times N + S_{PD} \times N$$

Ss:size of a light source

SMZI: size of a MZI

Samp: size of amplifier

SPD: size of photo detector

N: size of matrix

Area: Evaluation

I will contrast area of MZI VMM with ASIC VMM

- Background
- Purpose
- Introduction of optical VMM
- Evaluation
 - Area
 - latency
- Plan
- Summary

Plan

- Evaluate accuracy of MZI VMM
 - Survey about noise of optical devices
 - Optical amplifier
 - Phase shifter
 - Photo detector

- Evaluate performance of other VMM
 - ASIC

- Background
- Purpose
- Introduction of optical VMM
- Evaluation
 - Area
 - latency
- Plan
- Summary

Summary

Introduce MZI VMM

- My work is to compare vector-matrix multiplications
 - MZI VMM
 - GPU
 - ASIC

Plan to evaluate MZI VMM's accuracy