```
In [2]:
```

```
import pandas as pd
df = pd.read_csv("AI_heart.csv")
```

In [3]:

df

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	52.0	М	0	125	212	0	1	168	0	1.0	2	2	3
1	53.0	М	0	140	203	1	0	155	1	3.1	0	0	3
2	70.0	М	0	145	174	0	1	125	1	2.6	0	0	3
3	61.0	М	0	148	203	0	1	161	0	0.0	2	1	3
4	62.0	F	0	138	294	1	1	106	0	1.9	1	3	2
1020	59.0	М	1	140	221	0	1	164	1	0.0	2	0	2
1021	60.0	М	0	125	258	0	0	141	1	2.8	1	1	3
1022	47.0	М	0	110	275	0	0	118	1	1.0	1	1	2
1023	50.0	F	0	110	254	0	0	159	0	0.0	2	0	2
1024	NaN	М	0	120	188	0	1	113	0	1.4	1	1	3

1025 rows × 14 columns

In [6]:

```
target_counts = df['target'].value_counts()
print("Target counts:")
print(target_counts)
```

Target counts:

1 526

0 499

Name: target, dtype: int64

In []:

In [7]:

```
import seaborn as sns
import matplotlib.pyplot as plt

corr_matrix = df.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title("Correlation Matrix")
plt.show()
```

/tmp/ipykernel_24451/1307843007.py:5: FutureWarning: The default va lue of numeric_only in DataFrame.corr is deprecated. In a future ve rsion, it will default to False. Select only valid columns or speci fy the value of numeric_only to silence this warning. corr matrix = df.corr()

In [26]:

```
df.dropna(inplace=True)
```

In [27]:

```
from sklearn.preprocessing import LabelEncoder
le_sex = LabelEncoder()
df['sex'] = le_sex.fit_transform(df['sex'])
df
```

Out[27]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	52.0	1	0	125	212	0	1	168	0	1.0	2	2	3
1	53.0	1	0	140	203	1	0	155	1	3.1	0	0	3
2	70.0	1	0	145	174	0	1	125	1	2.6	0	0	3
3	61.0	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62.0	0	0	138	294	1	1	106	0	1.9	1	3	2
1019	47.0	1	0	112	204	0	1	143	0	0.1	2	0	2
1020	59.0	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60.0	1	0	125	258	0	0	141	1	2.8	1	1	3
1022	47.0	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50.0	0	0	110	254	0	0	159	0	0.0	2	0	2

923 rows × 14 columns

In [28]:

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

X = df.drop('target', axis=1)
y = df['target']

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, r.
```

In [34]:

```
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap='bwr')
plt.xlabel("Age")
plt.ylabel("Sex")
plt.title("Scatter Plot")
plt.show()
```


In [30]:

```
from sklearn.neural_network import MLPClassifier

# Initialize the MLP classifier
mlp1 = MLPClassifier(hidden_layer_sizes=(10, 10), activation='relu', random_state:
mlp2 = MLPClassifier(hidden_layer_sizes=(20, 20), activation='relu', random_state:
```

In [31]:

```
# Train the first MLP classifier
mlp1.fit(X_train, y_train)
# Train the second MLP classifier
mlp2.fit(X_train, y_train)
```

/home/waqar/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:684: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization has n't converged yet.

warnings.warn(

/home/waqar/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:684: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization has n't converged yet.

warnings.warn(

Out[31]:

```
▼ MLPClassifier
MLPClassifier(hidden_layer_sizes=(20, 20), random_state=42)
```

In []:

In [32]:

df

Out[32]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	52.0	1	0	125	212	0	1	168	0	1.0	2	2	3
1	53.0	1	0	140	203	1	0	155	1	3.1	0	0	3
2	70.0	1	0	145	174	0	1	125	1	2.6	0	0	3
3	61.0	1	0	148	203	0	1	161	0	0.0	2	1	3
4	62.0	0	0	138	294	1	1	106	0	1.9	1	3	2
1019	47.0	1	0	112	204	0	1	143	0	0.1	2	0	2
1020	59.0	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60.0	1	0	125	258	0	0	141	1	2.8	1	1	3
1022	47.0	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50.0	0	0	110	254	0	0	159	0	0.0	2	0	2
923 rows × 14 columns													

In [33]:

from sklearn.metrics import accuracy_score

y_pred1 = mlp1.predict(X_test)
accuracy1 = accuracy_score(y_test, y_pred1)
print("Accuracy of MLP1:", accuracy1)

y_pred2 = mlp2.predict(X_test)
accuracy2 = accuracy_score(y_test, y_pred2)
print("Accuracy of MLP2:", accuracy2)

Accuracy of MLP1: 0.855595667870036 Accuracy of MLP2: 0.9422382671480144

In []: