# FIG. 2



### FIG. 3



- Neutrophils alone 2) Neutrophils + E.coli
   Neutrophils + Virulent y. pestis
   Neutrophils + Avirulent y. pestis Enzyme used → Bgl II

### FIG. 3 (Cont.)

AG CG GG AT CT GT 12341234 1234 1234

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>bp</u><br>520      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=^{1000}_{500}$      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>-</b> 394<br>- 344 |
| NATION OF THE PROPERTY OF THE  | —298                  |
| The state of the s | <b>—220</b>           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>—200</b>           |
| <b>"</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>—154</b>           |

- Neutrophils alone 2) Neutrophils + E.coli
   Neutrophils + Virulent y. pestis
   Neutrophils + Avirulent y. pestis Enzyme used  $\longrightarrow$  Bgl  ${\rm II}$

plasma membrane Ca2+ pumping ATPase (56KD subunit) vacuolar II+ pumping ATPase (16KD proteolipid subunit) human B-cell lymphoma 3-encoded protein bcl-3 mRNA human nucleolar phosphoprotein B23 (nucleophosmin) Gene Bank Search and Analysis NADH-ubiquinone oxidoreductase ASHI subunit helix-loop-helix basic phosphoprotein (GOS8) vacuolar II+ pumping ATPase (56KD subunit) LD78  $\beta$  (human homolog of mouse MIP1  $\alpha$ human cyclin-dependent kinase inhibitor cdc2/CDC28-like protein kinase (clk1) Known Genes human ubiquitin/polyubiquitin bcl-2 related (bfl-1) mRNA LD78 receptor (HM74) MAP kinase kinase 3b Differential Display Summary of Results (1) Aviralent ++++ ++++ +++ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ + **Expression Patterns** Virulent +++ ‡ ‡ + ‡ + # 0 0 + # + 0 **+**+ ‡ ‡ ‡ E. coli ŧ ‡ **+**+ + ‡ ‡ + + + Control +++ ‡ ‡ ‡ ‡ # ‡ # 0 0 0 0 ZIN2 9 AT AC AC AC AC AG AT AT SAC Ş S ¥ IN23-E11 NP149-1 IN12-B12 NP104-5 NP126-3 NP124-3 NP125-2 NP139-1 NP119-1 NP131-3 NP102-3 B23-2 B14-3 Clones B20-4 7 2 13 2 = ż 0 9 7

FIG. 4

Differential Display Summary of Results (I) Known Genes

|          |         |     |             | Differential Display | - 1                 | Summa     |                                                    |
|----------|---------|-----|-------------|----------------------|---------------------|-----------|----------------------------------------------------|
| No.      | Clones  | NIN |             | Expressic            | Expression Patterns | 3         | Gene Bank Search and Analysis                      |
|          |         |     | Control     | E. coli              | Virulent            | Avirulent |                                                    |
| 15       | NP105-1 | ¥¥  | ‡<br>‡<br>‡ | #                    | +                   | ++        | human H3.3 gene exon 4                             |
| 16       | NP128-3 | CA  | 0           | +                    | ‡                   | ++++      | ribosomal protein S19                              |
| 11       | IN20-E8 | AC  | +           | #                    | ‡                   | ++        | ribosomal protein S20                              |
| <u>~</u> | NP127-2 | AT  | +           | +                    | #                   | +         | poly(A) binding protein II                         |
| 61       | NP103-3 | ¥¥  | ‡           | ‡                    | +                   | ++++      | Spermidine/Spermine NI-acetyltransferase           |
| 20       | NP132-2 | ď   | +           | 0#                   | +                   | ‡         | human GDP-dissociation inhibitor (LY-GD1)          |
| 21       | B4-1    | AC  | ‡           | +++                  | +                   | +         | bovine GTP binding regulatory protecin y-6 subunit |
| 22       | NP107-2 | ΑΑ  | ‡<br>‡<br>‡ | ‡                    | +++                 | +++       | human B4-2 protein                                 |
| 23       | NP156-1 | 93  | #           | +                    | ‡                   | ‡         | ras-related protein p23/Rab-7                      |
| 24       | B5-4    | AC  | #           | +++                  | +                   | ‡         | mouse ras-related YTP1 protein/Rab-1A              |
| 25       | B14-4   | AC  | +           | +++                  | +                   | ++++      | human pre-B cell enhancing factor (PBEF)           |
| 56       | B22-2   | AC  | ‡           | +++                  | +                   | ‡         | human complement decay accelerating factor         |
| 27       | Bam1    | AC  | +           | ‡                    | ++++                | #         | TNFa inducible protein B94                         |
|          |         |     |             |                      |                     |           |                                                    |

FIG. 4 (CONT'D)

Gene Bank Search and Analysis **EST Sequences** EST (GB/AC001223/IISAC001223) EST (DJB/D60083/IIUM084I105A) EST (GB/AA004905/AA004905) EST (GB/AA159075/AA159075) EST (GB/AA016979/AA016979) EST (GB/AA190718/AA190718) EST (EMB/F10736/HSC3JC022) EST (GB/L49761/HUM78188) EST (GB/U79267/HSU79267) EST (GB/L81699/HSL81699) EST (GB/N26756/N26756) EST (GB/R09487/R09487) EST (GB/R16810/R16810) EST (GB/T29287/T29287) EST (GB/T58520/T58520) Summary of Results (I) ++++ Avirulent ‡‡ +++ ‡ +++ ‡ ‡ ‡ ‡ ‡ + 0 + Differential Display **Expression Patterns** Virule <del>+</del>++ ‡ ++ ‡ ‡ ‡ ‡ ‡ ‡ 0 + # + ‡ E. coli ‡ ‡ ‡ ‡ ‡ + + + # + + + + + Control ‡ ‡ ‡ ‡ ‡ ++ ‡ + # # # 0 0 NIN AC AG AG AG AG S 9 AG AG AG  $\mathbf{C}^{\mathbf{A}}$ ည AT ¥ Ş NP113-2 NP116-3 NP122-1 NP133-1 NP134-2 NP120-3 NP121-2 NP150-1 NP115-3 NP117-2 NP101-3 NP108-3 NP114-2 NP138-1 Clones B7-1 7 15

ŝ

~

2

9

ø

=

12

13

FIG. 4 (CONT'D)

Gene Bank Search and Analysis **EST Sequences** EST (GB/AA076421/AA076421) EST (GB/AA055573/AA055573) EST (GB/AA150905/AA150905) EST (GB/AA044087/AA044087) EST (EMB/Z39133/HSC11B122 EST (GB/W67981/W67981) EST (GB/N21073/N21073) EST (GB/NS0114/NS0114) EST (GB/R37008/R37008) EST (GB/N24729/N24729) EST (GB/N23012/N23012) EST (GB/R49664/R49664) EST (GB/T34605/T34605) EST (GB/H44997/H44997 Differential Display Summary of Results (1) Aviralent ‡ ++ ‡ ‡ +1 0 + **Expression Patterns** Vizk nt +++ +++ ‡ ‡ ‡ + + + + 0 + 0 + + ## +++ +++ E. coli **+**+ ‡ ‡ +++ ‡ ‡ ‡ ‡ ‡ # ++++ ‡ ‡ +++ Control +++ ‡ ‡ ‡ ‡ ‡ 0 NIN AC $^{AC}$ AC AC IN22-E10 IN19-E7 IN21-E9 IN10-B10 Clones B17-2 B18-2 B19-5 B21-3 B12-2 B13-4 B15-2 B10-1 B8-1 Bel 82 29 25 ż 23 91 8 6 20 7 77 24 26 27 17

FIG. 4 (CONT'D)

F/G. 5

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4



# F1G. 5 (Cont.)

AA GA CA AG GG CG 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4



#### F1G. 6

 $N_1N_2$  ENZYME 1 2 3 4 MIP1 $\alpha$  AC Eco RI LD78 Receptor AT Bgl II

- 1. Neutrophils alone
- 2. Neutrophils + E.coli
- 3. Neutrophils + Virulent *y. pestis*
- 3. Neutrophils + Avirulent *y. pestis*