Digital Image Processing (DIP) Lec-(4-5)

By

Dr. Akram Alsubari

e-mail:- akram.alsubari87@gmail.com

Pervious Lecture

- Pattern Recognition
- Pattern
- Spatial patterns (patterns are located in space)
- **Temporal patterns** (Distributed in time)
- Abstract patterns (patterns are distributed neither in space nor time)

	Object		О	45	90	145	Top semi circle	Bottom Semi circle	Left Semi circle	Right Semi circle
		A		1	0	1	0	0	0	0
Label/class]	В	O	0	1	0	0	0	0	2
	-	C	O	0	0	0	0	0	1	О
]	D	O	0	1	0	0	0	0	1
		E	3	0	1	0	0	0	0	О
		F	2	0	1	O	0	0	0	0

Feature Vector

Face Recognition in MATLAB

```
clear
imgcoll=imageSet('24 ORL','recursive');
[training, test]=partition(imgcoll,[0.5 0.5]);% split the database into traning sets and testing sets
K=1;
for i=1:size(training,2)
  for j=1:training(i).Count
     trainingFeatures(K,:)= extractHOGFeatures(read(training(i),j));
     traininglabel{K}=training(i).Description:
     K=K+1:
  end
end
faceclssifier= fitcknn(trainingFeatures,traininglabel);
cn=0:
for i=1:size(test,2)
   for j=1:test(i).Count
     InserFace=read(test(i),j);
     FaceFeatures=extractHOGFeatures(InserFace);
     personlabel=predict(faceclssifier,FaceFeatures);
     if strcmp(personlabel,test(i).Description)
        cn=cn+1;
     end
   end
end
 Recognition_rate=(cn/(i*j))*100
```

Image Digitization

Image Sensing and Acquisition

• An image captured by **sensor** is expressed as continuous function f(x,y) of two co-ordinates in the plane.

Image Digitization

- Image sampling is to convert/sample continuous function f(x, y) into matrix with M rows and N columns
- Image quantization is to assign to each continuous sample an integer value

Image Enhancement

Enhancement

Image enhancement is the process of making images more useful

- Highlighting interesting detail in images
- Removing noise from images
- Making images more visually appealing

Enhancement

There are two broad categories of image enhancement techniques

- Spatial domain techniques
 - Direct manipulation of image pixels
- Frequency domain techniques
 - Manipulation of Fourier transform or wavelet transform of an image

Image Histogram

 The histogram of an image shows us the distribution of grey levels in the image

f = imread ('coins.png');

figure, imhist (f);

Histogram Examples

A selection of images and their histograms

Notice the relationships between the images and their histograms

Note that the high contrast image has the most evenly spaced histogram

Histogram Equalisation

 Spreading out the frequencies in an image (or equalising the image) is a simple way to improve dark or washed out images

Basic Grey Level Transformation

- Basic Grey Level Transformation
 - 1) Linear (negative and identity)
 - 2) Logarithmic
 - 3) Power law

Negative Transformation

• $s = intensity_{max} - r$

Logarithmic Transformation

$$s = c \log(r + 1)$$

Log functions are particularly useful when the input grey level values may have an extremely large range of values

Power – law Transformation

Map a narrow range of dark input values into a wider range of output values or vice versa

Cont..

Brightness and Contrast

• Brightness:

intensity of light emit by a particular light source.

Contrast:

the difference between maximum and minimum pixel intensity in an image.

CODES

```
%% Read an 8 bit image and then apply different image enhancement techniques
clear; clc;
close all
Img= imread('pout.tif');
Bl= imadjust(lmg);
                       % Adjust image intensity values
                     % Brightness Reduction by dividing each pixel by 2
BR= Img./2;
BW= im2bw(lmg);
                        % Convert Gray Image into Binary Image Based on Thresholding
BW2= Img<110;
                        % another way to converet gray image into binary image, where the Thresholding is 110
NI = imcomplement(Img); % Negative of the Image
LT= log(double(lmg));
                        % Log Transformation
Dlmg=double(lmg);
a=1;gamma=2;
PLT= a*(Dlmg).^gamma; % Power Lower Transform
subplot(3,3,1);
imshow(lmg); title ('Orignal Image')
subplot (3,3,2);
imshow(BI); title ('image Improvement')
subplot(3,3,3);
imshow(BR); title ('Brightness Reduction')
subplot(3,3,4);
imshow(BW); title ('Binary Image')
subplot(3,3,5);
imshow(BW2); title ('Thresholding=110')
subplot(3,3,6);
imshow(NI); title ('Negative of the lamge')
subplot(3,3,7);
imshow (LT, []); title ('Log Transformation ')
subplot(3,3,8);
imshow(PLT, []); title ('Power Low Transform')
```

Neighbourhood Operations

•Neighbourhood operations simply operate on a larger neighbourhood of pixels than point operations

- Neighbourhoods are mostly a rectangle around a central pixel
- •Any size rectangle and any shape filter are possible

Simple Neighbourhood Operations

- Some simple neighbourhood operations include:
 - Min: Set the pixel value to the minimum in the neighbourhood
 - Max: Set the pixel value to the maximum in the neighbourhood
 - **Median:** The median value of a set of numbers is the midpoint value in that set (e.g. from the set [1, 7, 15, 18, 24] 15 is the median). Sometimes the median works better than the average

Original Image With Noise

Image After Averaging Filter

Image After Median Filter

- •Filtering is often used to remove noise from images
- •Sometimes a median filter works better than an averaging filter

The Spatial Filtering Process

The above is repeated for every pixel in the original image to generate the filtered image

Smoothing Spatial Filtering

The above is repeated for every pixel in the original image to generate the smoothed image

- •The image at the top left is an original image of size 500*500 pixels
- •The subsequent images show the image after filtering with an averaging filter of increasing sizes
 - 3, 5, 9, 15 and 35
- Notice how detail begins to disappear

Weighted Smoothing Filters

- More effective smoothing filters can be generated by allowing different pixels in the neighbourhood different weights in the averaging function
 - Pixels closer to the central pixel are more important
 - Often referred to as a weighted averaging

¹ / ₁₆	² / ₁₆	¹ / ₁₆
² / ₁₆	⁴ / ₁₆	² / ₁₆
1/16	² / ₁₆	¹ / ₁₆

Weighted averaging filter

Another Smoothing Example

•By smoothing the original image we get rid of lots of the finer detail which leaves only the gross features for thresholding

Sharpening Spatial Filters

Previously we have looked at smoothing filters which remove fine detail

Sharpening spatial filters seek to highlight fine detail

- Remove blurring from images
- Highlight edges

Sharpening filters are based on *spatial* differentiation

```
clc
clear all
close all
a=imread('horse.jpg');
%Addition of salt and pepper noise
b=imnoise(a,'salt & pepper',0.1);
%Defining the box and median filters
h1=1/9*ones(3,3);
h2=1/25*ones(5,5);
c1=conv2(b,h1,'same');
c2=conv2(b,h2,'same');
c3=medfilt2(b,[3 3]);
c4=medfilt2(b,[5 5]);
subplot(3,2,1),imshow(a),title('Original image')
subplot(3,2,2),imshow(b),title('Salt & pepper noise')
subplot(3,2,3),imshow(uint8(c1)),title('3 x 3 smoothing')
subplot(3,2,4),imshow(uint8(c2)),title('5 x 5 smoothing')
subplot(3,2,5),imshow(uint8(c3)),title('3x 3 Median filter')
subplot(3,2,6),imshow(uint8(c4)),title('5 x 5 Median filter')
```

Challenge (1)

Thank You