ETC1010: Data Modelling and Computing

Lecture 6: Missing data, descriptive statistics

Di Cook (dicook@monash.edu, @visnut)

Week 6

1 / 31

Overview

- <u></u> naniar
- data set overviews
- which summary to use

Exploring missings

West Pacific Tropical Atmosphere Ocean Data, 1993 & 1997, for improved detection, understanding and prediction of El Nino and La Nina, collected from http://www.pmel.noaa.gov/tao/index.shtml

Missingness map

Heatmap display showing where missing values are in the data table.

Numerical summaries

Proportion of observations missing:

[1] 0.03006114

Proportion of variables missing:

[1] 0.375

How many observations have *k* missings?

By group

```
[[1]]
# A tibble: 6 x 4
   year n_missing_in_case n_cases
                                     percent
  <fctr>
                    <int>
                            <int>
                                       <dbl>
1 1997
                              291 79.0760870
                        0
   1997
                               77 20.9239130
                        1
   1993
                        0
                              274 74.4565217
   1993
                        1
                               90 24.4565217
4
                        2
                                2 0.5434783
5
   1993
   1993
                        3
                                2 0.5434783
```

Missings shouldn't be ignored

but most software will simply drop them!

Warning: Removed 94 rows containing missing values (geom_point).

Keep them in the plot

by year

Understanding missing dependencies

Year needs to be accounted for in finding good substu=itute values.

Relationship with other variables

Handling missings

- An small fraction of cases have several missings, drop the cases
- A variable or two, out of many, have a lot of missings, drop the variables
- If missings are small in number, but located in many cases and variables, you need to impute these values, to do most analyses
- Designing the imputation should take into account dependencies that you have seen between missingness and existing variables.
- For the ocean buoys data this means imputation needs to be done separately by year

Common ways to impute values

- Simple parametric: use the mean or median of the complete cases for each variable
- Simple non-parametric: find the k nearest neighbours with a complete value and average these
- Multiple imputation: Use a statistical distribution, e.g. normal model and simulate a value (or set of values, hot deck imputation) for the missings

Examples - using the mean

and ignoring year.

POOR MATCH!

14 / 31

by year

Better, but still a bit weird!

Nearest neighbors imputation

A LITTLE BETTER!

16 / 31

by year

MUCH BETTER!

Famous example of ignoring missings

Subsequent investigation determined that the cause was failure of the O-ring seals used to isolate the fuel supply from burning gases.

MASA staff ignored observations where no O-rings failed.

http://www.asktog.com/books/challengerExerpt.html

Data summary

In general, there is a nice way to get a quick overview of your data


```
Observations: 37,700
Variables: 9
$ hourly_counts <int> 883, 597, 294, 183, 118, 68, 47, 52, 120, 333, 7...
                                                              <dttm> 2016-01-01 00:00:00, 2016-01-01 01:00:00, 2016-...
$ date time
                                                              <int> 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, ...
$ year
$ month
                                                              <ord> January, J
$ month_day
                                                              $ week_day
                                                              <ord> Friday, Friday, Friday, Friday, Friday, ...
$ hour
                                                              <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14...
$ sensor_id
                                                              <chr> "Bourke Street Mall (South)", "Bourke Street Mal...
$ sensor_name
```


Data descriptions

We have seen a lot of descriptive statistics thus far. Here is a summary of good practice:

- Depending on the variable type some summaries are appropriate and others are not
- For quantitative variables, you need to examine the distribution to determine to use *mean/sd* or *median/IQR* statistical summaries
- For categorical variables, summarise using counts and proportions
- For two quantitative variables, if the distributions are both symmetric and unimodal, correlation is a good numerical statistic
- Two categorical variables are typically summarised using a contingency table, which has counts, and several different proportion calculations
- Mix of a categorical and a quantitative variable, numerical summary by category!

Which statistics?

In the PISA data, looking at some of the demographics index variables, would you use *mean/sd* or *median/IQR* to summarise these quantitative variables?

Which statistics?

In the PISA data, looking at some of the demographics index variables, would you use *mean/sd* or *median/IQR* to summarise these quantitative variables?

mean/sd, median/IQR, mean/sd and point out the long tail of low values,

23 / 31

Categorical variable

How many digits should you use?

- Recommendation (Chatfield, 1991 The Practice of Statistics): Two-three variable digits
- Gender proportions: 0.49298 round to 0.49, 0.50702 round to 0.51
- delimited in the delimited of the delim

Contingency tables

- **III** Two categorical variables, count the unique combinations
- Add the marginal counts
- Add proportions by dividing by (1) overall count, (2) row marginal count, (3) column marginal count

e.g. Gender by TVs in the household

```
1 2 3 4 Sum female 92 1153 3044 2547 6836 male 114 1106 3025 2689 6934 Sum 206 2259 6069 5236 13770
```

Proportions

	1	2	3	4	Sum
female	92	1153	3044	2547	6836
male	114	1106	3025	2689	6934
Sum	206	2259	6069	5236	13770

Overall:

	1	2	3	4	Sum
female	0.00633	0.07935	0.20950	0.17529	0.47047
male	0.00785	0.07612	0.20819	0.18507	0.47722
Sum	0.01418	0.15547	0.41769	0.36036	0.94769

By row:

Sum

	1	2	3	4	Sum	
female	92	1153	3044	2547	6836	
male	114	1106	3025	2689	6934	
Sum	206	2259	6069	5236	13770	
	-	1	2	3	4	Sum
female	0.00673	3 0.08	433 0	.22264	0.18629	0.50000
male	0.00822	2 0.07	975 0	.21813	0.19390	0.50000

0.00748 0.08203 0.22037 0.19012 0.50000

By column:

	1	2	3	4	Sum
female	92	1153	3044	2547	6836
male	114	1106	3025	2689	6934
Sum	206	2259	6069	5236	13770
	1	2	3	4	Sur
female	0.223	0.255	0.251	0.243	0.248
male	0.277	0.245	0.249	0.257	0.252
Sum	0.500	0.500	0.500	0.500	0.500

Contingency tables and mosaic plots

Share and share alike

This work is licensed under a Creative Commons Attribution 4.0 International License.

31 / 3