NATIONAL UNIVERSITY OF SINGAPORE

MA1301 Introductory Mathematics

Tutorial 9

- 1. Relative to the origin O, the point P has position vector 4i + k and the point Q has position vector 3i + j k.
 - i) Find a vector equation of the line L passing through P and Q.
 - ii) Determine the two points on L which are $\sqrt{35}$ units from O.
- **2.** Relative to the origin O, the point A has position vector $2\mathbf{i} + 9\mathbf{j} 6\mathbf{k}$ and the point B has position vector $6\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$.

The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OA}$ and D is the midpoint of segment AB.

- i) Find the position vectors of C and D.
- ii) Find a vector equation of the line L through C and D.
- iii) Find the point at which L intersects the line through O and B.
- iv) Find the angle between \overrightarrow{OA} and \overrightarrow{OB} .
- 3. Compute the following vector products.
 - (a) $(i + 2j + 3k) \times (3i + 2j + k)$.
 - (b) $[(i+2j+3k)\times(3i+2j+k)]\times(i+j+k)$.
 - (c) $(i + 2j + 3k) \times [(3i + 2j + k) \times (i + j + k)].$
- **4.** Let A(1, -3, 2), B(0, -4, 5) and C(5, 0, -3) be points in \mathbb{R}^3 .
 - i) Find a vector equation of the line L through A and B.
 - ii) Show that C does not lie on the line L.
 - iii) Find the foot of perpendicular from C to L, and hence determine the image of C under a reflection with respect to L.
 - iv) Find a vector equation of the image of the line through A and C under a reflection with respect to L.
 - v) Find the distance from C to L.

- **5.** Let A(1,2,3), B(1,-2,-3) and C(1,2,-3) be points in \mathbb{R}^3 .
 - (a) Show that A, B and C are not collinear.
 - (b) Find the area of $\triangle ABC$.

SOLUTIONS AND HINTS

- 1. i) $4i + k + \lambda(i j + 2k)$; ii) (1, 3, -5), (5, -1, 3); *Hint*: Set $|r| = \sqrt{35}$ to find $\lambda = \pm 2$.
- 2. i) 4i + 18j 12k, 4i + 6j; ii) $4i + 6j + \lambda(j k)$; iii) (4, 2, 4); iv) $\cos^{-1}(1/33) \approx 1.54 \approx 88.3^{\circ}$.
- **3.** (a) -4i + 8j 4k; (b) 12i 12k; (c) i 2j + k.
- **4.** i) $r = i 3j + 2k + \lambda(-i j + 3k);$
 - iii) (1,-2,-5); *Hint*: Let P be the foot of perpendicular from C to L. Then use $\overrightarrow{CP} \perp \overrightarrow{AB} = 0$ to find P(3,-1,-4). Finally, note that P is the midpoint of C and C', the image of C under a reflection in L.
 - iv) $i 3j + 3k + \lambda(j 7k)$; *Hint*: It is the line through P and C'; v) $\sqrt{6}$.
- **5.** (a) *Hint*: Find $\angle CAB$; (b) 12.