Teste de Student "t"

O teste de Student, ou simplesmente teste t é o método mais utilizado para se avaliarem as diferenças entre as médias de dois grupos.

Por exemplo, o teste t pode ser usado para testar o efeito provocado por uma determinada droga.

- Grupo tratamento pacientes que receberam a droga;
- •Grupo controle pacientes que receberam o placebo.

Teste de Student "t"

Podemos montar uma experiência aos pares e efetuar o teste para o mesmo grupo de pessoas em duas situações diferentes.

O teste t pode ser usado mesmo que as amostras sejam pequenas (n=10) desde que seja admitido que as populações que deram origem às amostras tenham distribuição normal e variabilidades não significativamente diferentes.

Procedimento: a variável em análise tem distribuição normal ou aproximadamente normal?

Se a resposta for afirmativa aplica-se o teste t, para comparar as médias.

Calculam-se:

a) A média de cada grupo; indica-se:

 χ_1 : Média do grupo 1

 χ_2 : Média do grupo 2

b) A variância de cada grupo; indica-se:

$$S_1^2$$
: variância do grupo 1

$$s_2^2$$
: variância do grupo 2

c) A variância ponderada, dada pela fórmula:

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

d) O valor de t, definido por

$$t = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

e) Graus de liberdade

$$n_1 + n_2 - 2$$

Toda vez que o valor calculado de t, em valor absoluto for igual ou maior do que o tabelado, conclui-se que as médias não são iguais, ao nível de significância estabelecido.

Graus de Liberdade	10%	α 5%	1%
1 saturarques	6,31	12,71	63,66
2	2,92	4,30	9,92
3	2,35	3,18	5,84
4	2,13	2,78	4,60
5	2,02	2,57	4,03

Exemplo: Para verificar se duas dietas para emagrecer são igualmente eficientes, um médico separou, ao acaso, um conjunto de pacientes em dois grupos. Cada um seguiu a dieta designada para o seu grupo.

Perda de peso, em quilogramas, segundo a dieta.

Dieta	1	12	8	15	13	10	12	14	11	12	13	
Dicta	2	15	19	15	12	13	16	15				

1°)
$$\alpha = 5\%$$

a) A média de cada grupo:

$$\frac{-}{x_2} = \frac{15+19+15+12+13+16+15}{7} = \frac{105}{7} = 15$$

b) A variância de cada grupo:
$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{1476 - \frac{120^{2}}{9}} = \frac{36}{9} = 4$$
$$s_{2}^{2} = \frac{1605 - \frac{105^{2}}{7}}{6} = \frac{30}{6} = 5$$

$$s_1^2 = \frac{1476 - \frac{120^2}{10}}{9} = \frac{36}{9} = 4$$

$$s_2^2 = \frac{7}{6} = \frac{7}{6} = \frac{5}{6}$$

c) A variância ponderada, dada pela fórmula:

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{9 \times 4 + 6 \times 5}{10 + 7 - 2} = 4,4$$

d) O valor de t, definido por

$$t = \frac{\overline{x_2 - x_1}}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{15 - 12}{\sqrt{4,4 \times \left(\frac{1}{10} + \frac{1}{7}\right)}} = 2,902$$

e) Graus de liberdade

$$n_1 + n_2 - 2 = 10 + 7 - 2 = 15$$

Graus de iberdade	10%	$\begin{pmatrix} \alpha \\ 5\% \end{pmatrix}$	1%
1	6,31	12,71	63,66
2	2,92	4,30	9,92
3	2,35	3,18	5,84
4	2,13	2,78	4,60
5	2,02	2,57	4,03
6	1,94	2,45	3,71
7	1,90	2,36	3,50
8	1,86	2,31	3,36
9	1,83	2,26	3,25
10	1,81	2,23	3,17
11	1,80	2,20	3,11
12	1,78	2,18	3,06
13	1,77	2,16	3,01
14	1,76	2,14	2,98
15	1,75	2,13	2,95
16	1,75	2,12	2,92
17	1,74	2,11	2,90
18	1,73	2,10	2,88
19	1,73	2,09	2,86
20	1,73	2,09	2,84

 $t_c = 2,13$ valor tabelado.

t = 2,902 valor calculado.

t > t_c conclui-se que, em média, as perdas de pesos de pacientes submetidos aos dois tipos de dieta são diferentes. Em termos práticos, a perda de peso é maior quando os pacientes são submetidos a dieta 2.

Para estudar o efeito de um tratamento, muitas vezes comparam-se pares de indivíduos.

Exemplo:

- Psicologia: compara pares de gêmeos;
- Efeito de um tratamento: o dentista aplica o tratamento de um lado da arcada e deixa o outro sem tratamento;
- Tratamentos onde se observam os mesmos indivíduos duas vezes, antes e depois do tratamento: pressão arterial.

Para testar o efeito de um tratamento, quando as observações são pareadas, aplica-se o teste t.

Temos que calcular:

a) A diferença entre as unidades de cada um dos *n* pares

$$d = x_2 - x_1$$

b) A média das diferenças

$$\overline{d} = \frac{\sum d}{n}$$

c) A variância das diferenças

$$s^2 = \frac{\sum d^2 - \frac{\sum n}{n}}{n-1}$$

d) O valor de t

$$t = \frac{a}{\sqrt{\frac{s^2}{n}}}$$

e) Graus de liberdade: n-1

Exemplo: São dados os pesos de 9 pessoas, antes e depois da dieta para emagrecimento.

	eta Depois
77	80
62	58
61	61
80	76
90	79
72	69
86	90
59	51
88	81

Exemplo: São dados os pesos de 9 pessoas, antes e depois da dieta para emagrecimento.

	ieta S Depois	Diferenças
77	80	80-77=3
62	58	58-62=-4
61	61	61-61=0
80	76	76-80=-4
90	79	79-90=-11
72	69	69-72=-3
86	90	90-86=4
59	51	51-59=-8
88	81	81-88=-7

b) A média das diferenças:
$$\frac{-}{d} = \frac{-30}{9} = -3{,}333$$

c) A variância das diferenças:

$$s^{2} = \frac{\sum d^{2} - \frac{\left(\sum d^{2}\right)^{2}}{n}}{n-1} = \frac{300 - \frac{\left(-30\right)^{2}}{9}}{8} = \frac{200}{8} = 25$$

d) O valor de t
$$t = \frac{\overline{d}}{\sqrt{\frac{s^2}{n}}} = \frac{-3,333}{\sqrt{\frac{25}{9}}} = \frac{-3,333}{1,666} = -2,0$$

e) Grau de liberdade: n-1=9-1=8

Graus de iberdade	10%	α 5%	1%
1	6,31	12,71	63,66
2	2,92	4,30	9,92
3	2,35	3,18	5,84
4	2,13	2,78	4,60
5	2,02	2,57	4,03
6	1,94	2,45	3,71
7	1,90	2,36	3.50
(8)	1,86	2,31	(3,36)
9	1,83	2,26	3,25
10	1,81	2,23	3,17
11	1,80	2,20	3,11
12	1,78	2,18	3,06
13	1,77	2,16	3,01
14	1,76	2,14	2,98
15	1,75	2,13	2,95
16	1,75	2,12	2,92
17	1,74	2,11	2,90
18	1,73	2,10	2,88
19	1,73	2,09	2,86
20	1,73	2,09	2,84

 t_c =3,36 valor tabelado.

t = 2,00 valor absoluto calculado.

t < t_c conclui-se que, o tratamento não tem efeito significante, ao nível de 1%. Em termos práticos, o experimento não provou que dieta emagrece.

Como se estabelece que as variâncias das populações são iguais?

Para testar a hipótese de que as variâncias das duas populações são iguais, aplica-se o teste F.

1º estabelecer o nível de significância, em seguida calcula-se:

a) A variância de cada grupo; indica-se:

$$s_1^2$$
: variância do grupo 1

$$s_2^2$$
: variância do grupo 2

b) O valor de F, dado pela razão entre a maior e a menor variância.

Se
$$s_1^2 > s_2^2$$
 o valor de $F = \frac{s_1^2}{s_2^2}$

Está associado a n_1 -1(numerador) e n_2 -1 (denominador) graus de liberdade.

Está associado a n_1 -1(numerador) e n_2 -1 (denominador) graus de liberdade.

Precisamos procurar o valor de F na tabela, com nível de significância igual a metade do nível de significância estabelecido, suponha 5%.

$N^{\underline{o}}$ de	Número de graus de liberdade do numerador								
g. I. do denominador	1	2	3	4	5	6	7	8	9
1	648,0	800,0	864,0	900,0	922,0	937,0	948,0	957,0	963,0
2	38,5	39,0	39,2	39,2	39,3	39,3	39,4	39,4	39,4
3	17,4	16,0	15,4	15,1	14,9	14,7	14,6	14,5	14,5
4	12,2	10,6	9,98	9,60	9,36	9,20	9,07	8,98	8,90
5	10,0	8,43	7,76	7,39	7,15	6,98	6,85	6,76	6,68
6	8,81	7,26	6,60	6,23	5,99	5,82	5,70	5,60	5,52
7	8,07	6,54	5,89	5,52	5,29	5,12	4,99	4,90	4,82
8	7,57	6,06	5,42	5,05	4,82	4,65	4,53	4,43	4,36
9	7,21	5,71	5,08	4,72	4,48	4,32	4,20	4,10	4,03

Calculam-se:

a) A média de cada grupo; indica-se:

 χ_1 : Média do grupo 1

 χ_2 : Média do grupo 2

b) A variância de cada grupo; indica-se:

$$S_1^2$$
: variância do grupo 1

$$s_2^2$$
: variância do grupo 2

c) O valor de t, definido por

$$t = \frac{x_2 - x_1}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

d) Graus de liberdade

$$g = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_1 - 1}$$

Feitos os cálculos, é preciso procurar o valor de t na tabela, ao nível de significância estabelecido.

Toda vez que o valor absoluto de t calculado for igual ou maior do que o valor na tabela, conclui-se que as médias não são iguais, ao nível de significância estabelecido.

Teste a hipótese de que recém nascidos de ambos os sexos têm, em média, a mesma estatura. Teste essa hipótese, ao nível de significância de 5%.

		_	2
Sexo	n	\mathcal{X}	S^2
Masculino	1442	49,29	5,76
Feminino	1361	48,54	6,30

Testamos se as variâncias são iguais

$$F = \frac{6,30}{5,76} = 1,09$$

1360(numerador) e 1441(denominador)

Nº 0 g. 1. do d	e-	Lab on	ente que desc elesc	Número	de grau	s de libere	dade do n	umerado	or	Valor
nom		12	15	20	24	30	40	60	120	\bigcirc
1	969	977	985	993	997	1000	1010	1010	1010	1020
2	39,4	39,4	39,4	39,4	39,5	39,5	39,5	39,5	39,5	39,5
3	14,4	14,3	14,3	14,2	14,1	14,1	14,0	14,0	13,9	13,9
4	8,84	8,75	8,66	8,56	8,51	8,46	8,41	8,36	8,31	8,26
5	6,62	6,52	6,43	6,33	6,28	6,23	6,18	6,12	6,07	6,02
6	5,46	5,37	5,27	5,17	5,12	5,07	5,01	4,96	4,90	4,85
7	4,76	4,67	4,57	4,47	4,42	4,36	4,31	4,25	4,20	4,14
8	4,30	4,20	4,10	4,00	3,95	3,89	3,84	3,78	3,73	3,67
9	3,96	3,87	3,77	3,67	3,61	3,56	3,51	3,45	3,39	3,33
10	3,72	3,62	3,52	3,42	3,37	3,31	3,26	3,20	3,14	3,08
11	3,53	3,43	3,33	3,23	3,17	3,12	3,06	3,00	2,94	2,88
12	3,37	3,28	3,18	3,07	3,02	2,96	2,91	2,85	2,79	2,72
13	3,25	3,15	3,05	2,95	2,89	2,84	2,78	2,72	2,66	2,60
14	3,15	3,05	2,95	2,84	2,79	2,73	2,67	2,61	2,55	2,49
15	3,06	2,96	2,86	2,76	2,70	2,64	2,59	2,52	2,46	2,40
16	2,99	2,89	2,79	2,68	2,63	2,57	2,51	2,45	2,38	2,32
17	2,92	2,82	2,72	2,62	2,56	2,50	2,44	2,38	2,32	2,25
18	2,87	2,77	2,67	2,56	2,50	2,44	2,38		2,26	2,19
19	2,82	2,72	2,62	2,51	2,45	2,39	2,33	2,27	2,20	2,13
20	2,77	2,68	2,57	2,46	2,41	2,35	2,29	2,22	2,16	2,09
21	2,73	2,64	2,53	2,42	2,37	2,31	2,25	2,18	2,11	2,04
22	2,70	2,60	2,50	2,39	2,33	2,27	2,21	2,14	2,08	2,00
23	2,67	2,57	2,47	2,36	2,30	2,24	2,18	2,11	2,04	1,97
24	2,64	2,54	2,44	2,33	2,27	2,21	2,15	2,08	2,01	1,54
25	2,61	2,51	2,41	2,30	2,24	2,18	2,12	2,05	1,98	1,51
26	2,59	2,49	2,39	2,28	2,22	2,16	2,09	2,03	1,95	1,8
27	2,57	2,47	2,36	2,25	2,19	2,13	2,07	2,00	1,93	1,85
28	2,55	2,45	2,34	2,23	2,17	2,11	2,05	1,98		1,83
29	2,53	2,43	2,32	2,21	2,15	2,09	2,03	1,96	1,89	1,8 1
30	2,51	2,41	2,31	2,20	2,14	2,07	2,01	1,94	1,87	1,79
40	2,39	2,29	2,18	2,07	2,01	1,94	1,88	1,80	1,72	1,64
60	2,27	2,17	2,06	1,94	1,88	1,82	1,74	1,67	1,58	1,-8
120	2,16	2,05	1,94	1,82	1,76		1,61	1,53		1,31
(∞	2,03	1,74	1,03	1,/1	1,04	1,5/	1,70	1,57	1,2/	1,00

O valor tabelado é igual a 1 menor que o valor calculado, logo rejeita-se a hipótese de que as variâncias são iguais, ao nível de 2,5%.

$$t = \frac{\overline{x_2 - x_1}}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$t = \frac{49,29 - 48,54}{\sqrt{\frac{5,76}{1442} + \frac{6,30}{1361}}} = 8,076$$

Que está associado aos graus de liberdade

$$g = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} = \frac{\left(\frac{5,76}{1442} + \frac{6,30}{1361}\right)^2}{\left(\frac{5,76}{1442}\right)^2 + \left(\frac{6,30}{1361}\right)^2} = 2772$$

Graus de liberdade	10%	α 5%	1%
1	6,31	12,71	63,66
2	2,92	4,30	9,92
3	2,35	3,18	5,84
4	2,13	2,78	4,60
5	2,02	2,57	4,03
6	1,94	2,45	3,71
7	1,90	2,36	3,50
8	1,86	2,31	3,36
9	1,83	2,26	3,25
10	1,81	2,23	3,17
11	1,80	2,20	3,11
12	1,78	2,18	3,06
13	1,77	2,16	3,01
14	1,76	2,14	2,98
15	1,75	2,13	2,95
16	1,75	2,12	2,92
17	1,74	2,11	2,90
18	1,73	2,10	2,88
19	1,73	2,09	2,86
20	1,73	2,09	2,84
21	1,72	2,08	2,83
22	1,72	2,07	2,82
23	1,71	2,07	2,81
24	1,71	2,06	2,80
25	1,71	2,06	2,79
26	1,71	2,06	2,78
27	1,70	2,05	2,77
28	1,70	2,05	2,76
29	1,70	2,04	2,76
30	1,70	2,04	2,75
40	1,68	2,02	2,70
60	1,67	2,00	2,66
120	1,66	1,98	2,62
<u>∞</u>	1,64	1,96	2,58

Como o valor calculado de t é maior que o valor tabelado, logo rejeita-se a hipótese de que recémnascidos de ambos os sexos têm, em média, a mesma estatura, ao nível de 5%.

Em termos práticos, os meninos nascem com estatura maior do que as meninas.

Teste "t" para o coeficiente de correlação

O teste t pode ser usado para testar a hipótese de que o coeficiente de correlação entre duas variáveis é igual a zero, contra a hipótese de que é diferente de zero.

Para aplicar o teste t, usa-se a fórmula

$$t = \frac{r}{\sqrt{1 - r^2}} \sqrt{n - 2}$$

Graus de liberdade n-2

Teste "t" para o coeficiente de correlação

Exemplo: Suponha que o coeficiente de correlação entre duas variáveis é -0,775 e n=14

Para aplicar o teste t, usa-se a fórmula

$$t = \frac{r}{\sqrt{1 - r^2}} \sqrt{n - 2} = \frac{-0,775}{\sqrt{1 - 0,601}} \sqrt{14 - 2} = -4,25$$

Graus de liberdade n-2=14-2=12 α =5%

Ao nível de significância de 5% o valor tabelado é 2,18, logo a correlação entre as variáveis é significante ao nível de 5%.

Imagine uma amostra casual simples de n elementos. A média dos dados dessa amostra constitui uma estimativa da média da população, de onde essa amostra proveio.

Para indicar a precisão dessa estimativa, calcula-se o intervalo de confiança para a média.

Um população é constituída pelos valores 14, 20, 26.

$$\mu = \frac{14 + 20 + 26}{3} = 20$$

Vamos considerar todas as amostra de dois elementos que podem ser retirados dessa população, com reposição.

Médias das amostras de dois elementos obtidos da população constituída pelos números 14, 20 e 26.

Amostra	Média			
14 e14	14			
14 e 20	17			
14 e 26	20			•
20 e 14	17	•	•	•
20 e 20	20	14	17	20
20 e 26	23			
26 e 14	20			
26 e 20	23			
26 e 26	26			

Vamos medir a dispersão das médias das amostras em torno da média da população.

$$\sigma_{\overline{x}}^{2} = \frac{\sum_{i=1}^{r} (\overline{x_{i}} - \mu)^{2}}{r}$$

logo para o exemplo temos.

r número de amostras que podem ser obtidas da população

$$\sigma_{\bar{x}}^2 = \frac{(14-20)^2 + (17-20)^2 + \dots + (26-20)^2}{9} = \frac{108}{9} = 12$$

É impossível calcular a variância da média pela fórmula dada, pois, o pesquisador dispõe de uma única amostra, para estimar a média da população.

Foi demonstrado que a estimativa da variância da média é dada pela fórmula:

$$s_{\bar{x}}^2 = \frac{s^2}{n}$$

Médias das amostras de dois elementos obtidos da população constituída pelos números 14, 20 e 26.

Amostra	Média	Variância	Variância da Média
14 e14	14	0	0
14 e 20	17	18	9
14 e 26	20	72	36
20 e 14	17	18	9
20 e 20	20	0	0
20 e 26	23	18	9
26 e 14	20	72	36
26 e 20	23	18	9
26 e 26	26	0	0
Média	20	24	12

Por definição, erro padrão da média é a raiz quadrada com sinal positivo da variância da média

$$s_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Seja X uma variável aleatória com distribuição normal de média μ e variância σ^2 . Com base numa amostra aleatória de n elemento podemos obter as estimativas $\frac{1}{2} \rho s^2$ de μ e variância σ^2 respectivamente.

$$\frac{1}{x} - t \frac{s}{\sqrt{n}} < \mu < x + t \frac{s}{\sqrt{n}}$$

O valor de t é tabelado com n-1 graus de liberdade e α.

Exemplo:X é v. a. que representa a taxa de colesterol no plasma sangüíneo. Uma amostra casual simples de n=25 indivíduos, foram obtidos a média 198mg/100ml e desvio padrão de 30 mg/100ml. Seja α =10% 24 graus de liberdade t=1,71.

$$\frac{1}{x} - t \frac{s}{\sqrt{n}} < \mu < x + t \frac{s}{\sqrt{n}} \Rightarrow 198 - 1,71 \frac{30}{\sqrt{25}} < \mu < 198 + 1,71 \frac{30}{\sqrt{25}}$$

$$187,74 < \mu < 208,26$$

Interpretação do intervalo de confiança: quando são obtidas muitas amostras de n elementos de uma mesma população e se determina, para cada amostra, um intervalo de confiança, (100-α)% desses intervalos contém a média da população.

(100-α)% é denominado nível de confiança, ou seja os intervalos são de confiança (100-α)%

Na área biológica é comum apresentar os valores de

$$x e s_{\overline{x}}$$
 escritos na forma $x + s_{\overline{x}}$

Este intervalo pode ser visto como um intervalo de confiança, mas com nível de confiança indeterminado. Isto por que neste caso t=1, e o valor de t depende dos graus de liberdade.