Занятие 1. Электрическое поле в вакууме.

- 1. Два положительных заряда величинами 4 и 11 н*K*л расположены на расстоянии 12 *см* друг от друга. Найти положение точки, в которую нужно поместить заряд, чтобы он находился в равновесии.
- 2. Три одинаково заряженных шарика массами по 4 г подвешены на шелковых нитях длиной 200 см. Найти заряд каждого шарика, если угол между нитями равен 60°.
- 3. В вершинах треугольника находятся одинаковые положительные заряды величиной 2 нКл. Найти величину и знак заряда, который нужно поместить в центр треугольника, для того, чтобы система находилась в равновесии.
- 4. В вершинах квадрата...
- 5. Тонкий однородный стержень длиной $l=20\ cm$ равномерно заряжен с линейной плотностью $\tau=10\ m\kappa K_{\it n}/m$. Найти напряженность электрического поля, создаваемого стержнем в точке, лежащей на продолжении стержня на расстоянии $a=10\ cm$ от его конца.
- 6. Тонкий бесконечный однородный стержень равномерно заряжен с линейной плотностью $\tau = 10 \ \text{мк} \text{К}\text{л}/\text{м}$. Найти напряженность электрического поля, создаваемого стержнем в точке A, лежащей на перпендикуляре к стержню симметрично относительно его концов. Расстояние от стержня до точки A $a = 10 \ \text{сm}$.
- 7. Тонкое полукольцо радиусом R = 20 см равномерно заряжено зарядом q = 5 мкКл. В центре полукольца расположен точечный заряд Q = 2 мкКл. Найти силу взаимодействия кольца и заряда.
- 8. Кольцо радиусом *R* равномерно заряжено зарядом Q. Найти напряженность поля на оси кольца как функцию расстояния до его центра. Найти точку на оси кольца, в которой напряженность электрического поля будет максимальна.
 - (II) Two parallel circular rings of radius R have their centers on the x axis separated by a distance ℓ as shown in Fig. 21–60.

If each ring carries a uniformly distributed charge Q, find the electric field, $\vec{\mathbf{E}}(x)$, at points along the x axis.

FIGURE 21–60 Problem 40.

. (III) A thin rod bent into the shape of an arc of a circle of radius R carries a uniform charge per unit length λ . The arc subtends a total angle $2\theta_0$, symmetric about the x axis, as

shown in Fig. 21–65. Determine the electric field $\vec{\mathbf{E}}$ at the origin 0.

FIGURE 21-65 Problem 49.

10.

9.

50. (III) A thin glass rod is a semicircle of radius R, Fig. 21-66. A charge is nonuniformly distributed along the rod with a linear charge density given by $\lambda = \lambda_0 \sin \theta$, where λ_0 is a positive constant. Point P is at the center of the semicircle.

(a) Find the electric field \vec{E} (magnitude and direction) at point P. [Hint: Remember $\sin(-\theta) = -\sin\theta$, so the two halves of the rod are oppositely charged.] (b) Determine the acceleration (magnitude and direction) of an electron placed at point P, assuming R = 1.0 cm and $\lambda_0 = 1.0 \,\mu\text{C/m}$.

FIGURE 21–66 Problem 50.