Class 10

Yaniv Iny (PID:A18090586)

Table of contents

The PDB database	1
2. Using Mol*	5
3. Introduction to Bio3D in R	8
4. Prediciting functional dynamics	10

The PDB database

The main repository of bio molecular structure data is called the PDB found at: https://www.rcsb.org

Lets see what this database contains. Go to PDB> Analyze> PDB statistics> by experiment method and molecular type.

```
pdbstats <- read.csv("Data Export Summary.csv")
pdbstats</pre>
```

	Molecular.Type	X.ray	EM	NMR	Multiple.methods	Neutron	Other
1	Protein (only)	169,563	16,774	12,578	208	81	32
2	Protein/Oligosaccharide	9,939	2,839	34	8	2	0
3	Protein/NA	8,801	5,062	286	7	0	0
4	Nucleic acid (only)	2,890	151	1,521	14	3	1
5	Other	170	10	33	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						

^{1 199,236}

^{2 12,822}

^{3 14,156}

^{4 4,580}

```
5 213
```

6 22

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
pdbstats$X.ray
```

```
[1] "169,563" "9,939" "8,801" "2,890" "170" "11"
```

Due to the comma in these numbers, they are being read as characters insted of numeric values. I can fix this by replacing "," for nothing with the sub() function:

```
x <- pdbstats$X.ray
sum( as.numeric(sub(",", "", x)))</pre>
```

[1] 191374

OR I can use the readr package and the read_csv()

```
library(readr)
```

```
pdbstats <- read_csv("Data Export Summary.csv")</pre>
```

Rows: 6 Columns: 8
-- Column specification ------

Delimiter: ","

chr (1): Molecular Type

dbl (3): Multiple methods, Neutron, Other

num (4): X-ray, EM, NMR, Total

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

pdbstats

A tibble: 6 x 8 `Molecular Type` NMR `Multiple methods` Neutron Other `X-ray` EM<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>1 Protein (only) 169563 16774 12578 208 81 32 199236 2 Protein/Oligosacc~ 9939 2839 2 34 8 0 12822 3 Protein/NA 8801 5062 286 7 0 14156 0 4 Nucleic acid (onl~ 2890 151 1521 14 3 4580 5 Other 170 10 33 0 0 213 6 Oligosaccharide (~ 11 0 6 1 0 22

I want to clean the column names so they are all lower case and don't have spaces in them.

colnames(pdbstats)

[1] "Molecular Type" "X-ray" "EM" "NMR"
[5] "Multiple methods" "Neutron" "Other" "Total"

library(janitor)

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

chisq.test, fisher.test

df <- clean_names(pdbstats) df</pre>

A tibble: 6 x 8 molecular_type nmr multiple_methods neutron other total x_ray em<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Protein (only) 169563 16774 12578 208 81 32 199236 2 2 Protein/Oligosacchar~ 9939 2839 34 8 0 12822 7 3 Protein/NA 8801 5062 286 0 0 14156 4 Nucleic acid (only) 3 4580 2890 151 1521 14 1 5 Other 170 10 33 0 0 0 213 6 Oligosaccharide (onl~ 11 0 6 1 22

Total number of X-ray structures

```
sum(df$x_ray)
```

[1] 191374

Total number of structures

```
sum(df$total)
```

[1] 231029

Percent of X-ray structures

```
sum(df$x_ray)/sum(df$total) * 100
```

[1] 82.83549

Percent of EM

```
sum(df$em)/sum(df$total) *100
```

[1] 10.75017

Q2: What proportion of structures in the PDB are protein?

```
sum(df$total[1:3])/sum(df$total) * 100
```

[1] 97.91585

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

There are currently 4,683 Structures

2. Using Mol*

You can use Mol* directly at the PDB website (as well as UniProt and elsewhere). However, for the latest and greatest version we will visit the Mol* homepage at: https://molstar.org/viewer/. We can input our own PDB files or just give it a PDB database accession code (w letter PDB code)

Figure 1: Molecular view of water moleculH308

Figure 2: Molecular view of D25

3. Introduction to Bio3D in R

We can use the ${f bio3d}$ package for structurual bioinformatics to read PDB data into R

```
pdb <- read.pdb("1HSG")</pre>
```

Note: Accessing on-line PDB file

pdb

```
Call: read.pdb(file = "1HSG")

Total Models#: 1
  Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
```

```
Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
   Protein sequence:
      PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
      QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
      ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
     Q7. How many amino acid residues are ther ein this pdb object?
length(pdbseq(pdb))
[1] 198
     Q8: Name one of the two non-protein residues?
HOH (127)
     Q9. How many protein chains are in this structure?
Two chains A and B Looking at the pdb object in more detail
attributes(pdb)
$names
[1] "atom"
                       "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
```

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                                     z o
                                                       Х
                                                               у
1 ATOM
                          PRO
                                             <NA> 29.361 39.686 5.862 1 38.10
           1
                 N < NA >
                                   Α
                                         1
2 ATOM
           2
                CA <NA>
                          PRO
                                   Α
                                         1
                                             <NA> 30.307 38.663 5.319 1 40.62
3 ATOM
           3
                 C <NA>
                          PRO
                                             <NA> 29.760 38.071 4.022 1 42.64
                                   Α
                                         1
                                         1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
           4
                 O <NA>
                          PRO
                                  Α
5 ATOM
           5
                          PRO
                                             <NA> 30.508 37.541 6.342 1 37.87
                CB <NA>
                                   Α
                                         1
6 ATOM
           6
                CG <NA>
                          PRO
                                         1
                                             <NA> 29.296 37.591 7.162 1 38.40
  segid elesy charge
  <NA>
           N
                <NA>
1
2
  <NA>
            C
                <NA>
3 <NA>
            С
                <NA>
  <NA>
                <NA>
            0
            С
5 <NA>
                <NA>
  <NA>
            C
                <NA>
```

Lets try a new function not yer in the bio3d package. It requires the **r3dmol** package that we need to install with <code>install.packages("r3dmol")</code>. On top of this we need a package called "shiny"

```
library(r3dmol)
source("https://tinyurl.com/viewpdb")
#view.pdb(pdb, backgroundColor ="pink")
```

4. Prediciting functional dynamics

We can use the nma() function in bio3d to predict the large-scale functional motions of biomolecules.

```
adk <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

adk</pre>
```

```
Call: read.pdb(file = "6s36")

Total Models#: 1
  Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
```

```
Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
Non-protein/nucleic Atoms#: 244 (residues: 244)
Non-protein/nucleic resid values: [CL (3), HOH (238), MG (2), NA (1)]
```

Protein sequence:

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

- + attr: atom, xyz, seqres, helix, sheet, calpha, remark, call
- Q10. Which of the packages above is found only on BioConductor and not CRAN?
 - Q11. Which of the above packages is not found on BioConductor or CRAN?:

Bio3d-view

Q12. True or False? Functions from the devtools package can be used to install packages from GitHub and BitBucket?

TRUE

214

Q13. How many amino acids are in this sequence, i.e. how long is this sequence?

m <- nma(adk)

```
Building Hessian... Done in 0.014 seconds. Diagonalizing Hessian... Done in 0.28 seconds.
```

plot(m)

Write out a trajectory of the predicted molecular motion:

```
mktrj(m, file="adk_m7.pdb")
mktrj
```

function (...)
UseMethod("mktrj")

<bytecode: 0x11cef3a98>

<environment: namespace:bio3d>