Regular Expression, NFA, DFA, Minimization of DFA

Md Shad Akhtar Assistant Professor IIIT Dharwad

Regular Expression to DFA

- Approaches to systematically convert a regular expression to an equivalent DFA.
 - Using Thompson construction
 - RE $\rightarrow \varepsilon$ -NFA \rightarrow DFA
 - Using Syntax Tree
 - \blacksquare RE \rightarrow DFA
 - o Etc.

Thompson Construction for RE $\rightarrow \epsilon$ -NFA

- It guarantees that the resulting NFA will have exactly one final state, and one start state
- Define an ε -NFA construct for each basic regular expression (ε , a, ab, a+b, a*)
- Combine multiple basic ϵ -NFA constructs to obtain ϵ -NFA for more complex regular expressions.

Red state: Start Blue state: Final

RE to ε -NFA for $((\varepsilon+a)*b)*$

Thompson construction

- 3 •
- a
- \bullet ϵ + a
- $(\varepsilon + a)^*$
- $(\varepsilon + a)*b$
- $((\varepsilon + a)*b)*$

Number the states

ε-NFA to DFA

- the following states $\{1,2,3,4,5,7,8,9,11\} \rightarrow \mathbf{S}_{\mathbf{1}}$ S_1 on a,
- $\{6,8,9,3,4,5,7\} \rightarrow \mathbf{S_2}$ **S**₁ on **b**, $\{10,11,2,3,4,5,7,8,9\} \rightarrow \mathbf{S_3}$
- S_2 on a, $\{6,8,9,3,4,5,7\} \rightarrow \mathbf{S_2}$ **S**₂ on **b**,
- $\{10,11,2,3,4,5,7,8,9\} \rightarrow S_3$ S_3 on a, $\{6,8,9,3,4,5,7\} \rightarrow \mathbf{S_2}$
- S_3 on **b**, $\{10,11,2,3,4,5,7,8,9\} \rightarrow \mathbf{S_3}$

Minimal DFA

- Divide the states into two sets
 - Accepting states and Non-accepting states
- Try to split the sets into disjoint subset, only if
 - On any input symbols their transitions is different
- All the states with same transition on all the input symbols remains together.
- Accepting states = $\{S_1, S_3\}$
- Non-accepting states = $\{S_2\}$
- Non-accepting set has one element, thus it cannot be splitted
- For accepting set,

 - S_1 on $a \Rightarrow S_2$ S_3 on $a \Rightarrow S_2$
 - S_1 on $b \Rightarrow S_3$
 - S_3 on $b \Rightarrow S_3$

Transitions are same, so cannot be splitted

RE to ε -NFA to DFA

$(aa^* + bb^*)^*$

- $(aa^* + bb^*)^* \Rightarrow (a^+ + b^+)^*$
- Start $\circ \{1,2,3,4,7,8,12\} \Rightarrow S_1$
 - S_1 on a \circ $\{5,6,11,12,4,2,3,7,8\} \Rightarrow S_2$
 - S_1 on b S_1 on b S_2 (9,10,11,12,8,2,3,7,4 \Rightarrow S_3)
- S_2 on a \circ $\{5,6,11,12,4,2,3,7,8\} \Rightarrow S_2$ S_2 on b
- $\begin{array}{ccc} & S_2 & \text{On B} \\ & \circ & \{9,10,11,12,8,2,3,7,4 \Rightarrow S_3\} \\ \bullet & S_3 & \text{on a} \end{array}$
- $\begin{array}{ccc}
 S_3 & \text{on } a \\
 \circ & \{5,6,11,12,4,2,3,7,8\} \Rightarrow S_2
 \end{array}$
- S_3 on b \circ {9,10,11,12,8,2,3,7,4 \Rightarrow S_3 }

a, b

Syntax Tree approach for RE → DFA

- Regular expression can be directly converted into a DFA (without creating a ε-NFA first)
- Augment the given regular expression by concatenating it with a special symbol #
 - \circ r \rightarrow (r)# augmented regular expression
- Create a syntax tree for this augmented regular expression
- Syntax tree
 - Leaves: alphabet symbols (including # and the empty string) in the augmented regular expression
 - Intermediate nodes: operators
- Compute four functions on syntax tree: followpos, firstpos, lastpos and nullable

RE \rightarrow DFA for (a+b)*a

- Augmented RE
 - \circ $(a+b)*a \to (a+b)*a #$
- Syntax tree
 - Each symbol is at a leave
 - Inner nodes are operators
 - Number each symbol

Functions firstpos, lastpos, and nullable

- firstpos(n)
 - o Set of the positions of the first symbols of strings generated by the sub-expression rooted by n

- lastpos(n)
 - o Set of the positions of the last symbols of strings generated by the sub-expression rooted by n

- nullable(n)
 - true: If the empty string is a member of strings generated by the sub-expression rooted by n
 - false: Otherwise

Functions firstpos, lastpos, and nullable

\boldsymbol{n}	nullable(n)	firstpos(n)	lastpos(n)
Leaf labelled as ϵ	True	ф	ф
Leaf labelled with position i	False	{i}	{i}
cl c2	nullable(c1) Or nullable(c2)	$firstpos(c1) \cup firstpos(c2)$	lastpos(c1) ∪ lastpos(c2)
cl c2	nullable(c1) And nullable(c2)	If nullable(c1) firstpos(c1) ∪ firstpos(c2) else firstpos(c1)	If nullable(c2) lastpos(c1) ∪ lastpos(c2) else lastpos(c2)
cl	True	firstpos(c1)	lastpos(c1)

Functions firstpos, lastpos, and nullable for (a+b)*a#

n	nullable(n)	firstpos(n)	lastpos(n)
1	False	{1}	{1}
2	False	{2}	{2}
3	False	{3}	{3}
4	False	{4}	{4}
+ 2	False	{1,2}	{1,2}
* +	True	{1,2}	{1,2}

Functions firstpos, lastpos, and nullable for (a+b)*a#

n	nullable(n)	firstpos(n)	lastpos(n)
3	False	{3}	{3}
4	False	{4}	{4}
* 3	False	{1,2,3}	{3}
. 4	False	{1,2,3}	{4}

Annotated syntax tree for

Blue \rightarrow firstpos(n)

Red \rightarrow lastpos(n)

Function followpos

- Define the function followpos for each and only leaf positions
- followpos(i)
 - \circ Set of positions which can follow the position i in the strings generated by the augmented regular expression

• If n is concatenation-node with left child c1 and right child c2, and i is a position in lastpos(c1),

 $\{1,2,3\}$. $\{4\}$

- a. $followpos(i) \leftarrow followpos(i) \cup firstpos(c2)$
- If n is a star-node, and i is a position in lastpos(n),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(n)$

- If n is concatenation-node with left child c1 and right child c2, and i is a position in lastpos(c1),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(c2)$
- If n is a star-node, and i is a position in lastpos(n),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(n)$

```
followpos(1) = {}
followpos(2) = {}
followpos(3) = {4}
followpos(4) = {}
```


- If n is concatenation-node with left child c1 and right child c2, and i is a position in lastpos(c1),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(c2)$
- If n is a star-node, and i is a position in lastpos(n),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(n)$

```
      followpos(1)
      =
      {3}

      followpos(2)
      =
      {3}

      followpos(3)
      =
      {4}

      followpos(4)
      =
      {}
```


- If n is concatenation-node with left child c1 and right child c2, and i is a position in lastpos(c1),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(c2)$
- If n is a star-node, and i is a position in lastpos(n),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(n)$

• If n is concatenation-node with left child c1 and right child c2, and i is a position in lastpos(c1),

 $\{1,2,3\}$. $\{4\}$

- a. $followpos(i) \leftarrow followpos(i) \cup firstpos(c2)$
- If n is a star-node, and i is a position in lastpos(n),
 - a. $followpos(i) \leftarrow followpos(i) \cup firstpos(n)$

```
{1,2,3}
                                                                                     {3}
                                                                {1,2}
                                                                          {1,2}
                                                                                             a {3}
                         \{1,2,3\}
followpos(1)
followpos(2)
                        \{1,2,3\}
followpos(3)
                        \{4\}
                                                                {1,2}
                                                                      +
                                                                          \{1,2\}
followpos(4)
                                                        {1}
                                                                                     {2}
```

Complete Algorithm (RE→ DFA)

- 1. Create the syntax tree of (r) #
- 2. Calculate the functions: followpos, firstpos, lastpos, nullable
- 3. Put $\mathit{firstpos}$ (root) into the states of DFA as an unmarked state
- 4. while (there is an unmarked state S in the states of DFA) do
 - a. mark S
 - b. for each input symbol a do
 - i. let s_1, \ldots, s_n are positions in S and symbols in those positions are a
 - c. $S' \leftarrow followpos(s_1) \cup \ldots \cup followpos(s_n)$
 - d. move $(S, a) \leftarrow S'$
 - e. if (S' is not empty and not in the states of DFA)
 - i. put S' into the states of DFA as an unmarked state
- 5. the start state of DFA is firstpos (root)
- 6. the accepting states of DFA are all states containing the position of #

$$\Sigma = \{a, b\}$$
 $(a+b)^* a #$ $1 2 3 4$

RE \rightarrow DFA for (a+b)*a

1. DFA states =
$$\{S_{\{1,2,3\}}^0\}$$

2. DFA states =
$$\{S_{\{1,2,3\}}^0\}$$

3.

$$S^{0}_{\{1,2,3\}}$$
 on a
a. Positions in S with symbol a = $\{1, 3\}$

b.
$$S = followpos\{1\} \cup followpos\{3\} = \{1,2,3,4\} = S^1$$

4. DFA states =
$$\{S_{\{1,2,3\}}^0, S_{\{1,2,3,4\}}^1\}$$

5.
$$S^0_{\{1,2,3\}}$$
 on b

- a. Positions in S with symbol b = {2}
- b. $S = followpos\{2\} = \{1,2,3\} = S^0$

6. DFA states =
$$\{S_{\{1,2,3\}}^0, S_{\{1,2,3,4\}}^1\}$$

7. $S^{1}_{\{1,2,3,4\}}$ on a

a. Positions in S with symbol a = {1, 3}

b. $S = followpos\{1\} \cup followpos\{3\} = \{1,2,3,4\} = S^1$

8.
$$S_{\{1,2,3\}}^1$$
 on b

a. Positions in S with symbol b = {2}

b.
$$S = followpos\{2\} = \{1,2,3\} = S^0$$

