Assignment 2

1. a.

For
$$f(n) = \lceil lg(n) \rceil!$$
:

We know that $(lg(n!)) = \Theta(nlg(n))$

We must show that log(f(n)) = O(log(n))

$$log(f(n)) = lg(n) * lg(lg(n))$$

lg(n) * lg(lg(n)) is not O(lg(n)), so f(n) is not polynomially bounded.

b.

For
$$f(n) = \lceil lg(lg(n)) \rceil!$$
:

We must show that log(f(n)) = O(log(n))

$$log(f(n)) = log(lg(lg(n))!) = lg(lg(n)) * lg(lg(lg(n)))$$

lg(lg(n)) * lg(lg(lg(n))) can be said to be o(log(n)), so this function is polynomially bounded.

2. Base Case:

For
$$F_0$$
, we have $\frac{\phi^0 - \hat{\phi_0}}{\sqrt{5}} = \frac{1-1}{\sqrt{5}} = 0$

For
$$F_1$$
, we have $\frac{\phi^1-\hat{\phi}1}{\sqrt{5}}=\frac{\sqrt{5}}{\sqrt{5}}=1$

Thus, we have shown that this holds for both base cases

Inductive Step:

$$F_{k+1} = F_k + F_{k-1}$$

This can be written as:
$$\frac{\phi^k - \hat{\phi}k}{\sqrt{5}}$$
 + $\frac{\phi^{k+1} - \phi\hat{k+1}}{\sqrt{5}}$

This can also be written as:
$$\frac{\phi^{k-1}(\phi+1)+\hat{\phi}^{k-1}(\hat{\phi}+1)}{\sqrt{5}}$$

Now,
$$\phi+1$$
 is equal to $\frac{3+\sqrt{5}}{2}$ which is equal to ϕ^2 . This also applies to $\hat{\phi}$

So, we can simplify the equation as:
$$\frac{\phi^{k-1}(\phi^2)+\hat{\phi}^{k-1}(\hat{\phi}^2)}{\sqrt{5}}$$

This can be simplified into:
$$\frac{\phi^{k+1} + \hat{\phi}^{k+1}}{\sqrt{5}}$$

So, this holds for k+1.

3. We know that is $k*ln(k) = \Theta(n)$, then $n = \Theta(k*lnk)$ given that Θ is symmetric.

Next, we'll take
$$log_2$$
 of $n = \Theta(k*lnk)$ to get $ln(n) = \Theta(ln(k*ln(k))) = \Theta(ln(k) + lnln(k)) = \Theta(ln(k))$

If we divide n by ln(n), we get $\frac{\Theta(klnk)}{\Theta(knk)}$ which can be simplified into $\Theta(\frac{k*ln(k)}{ln(k)})$ which is equal to $\Theta(k)$

Since Θ is symmetric we can say, $k = \Theta(\frac{n}{\ln(n)})$

4. **a.**

Let's use the definition of $f(n) \leq Cg(n)$ where $f(n) = 2^{n+1}$ and $g(n) = 2^n$

$$2^{n+1} \leq C*2^n$$

Divide both sides by 2^n

$$2^1 \leq C$$

Since
$$C > 0$$
, $2^{n+1} = O(2^n)$

b.

Let's use the definition of $f(n) \leq Cg(n)$ where $f(n) = 2^{2n}$ and $g(n) = 2^n$

$$2^{2n} \leq C*2^n$$

Divide both sides by 2^n

$$2^n \leq C$$

6.

This is never possible because there is no constant greater than 2^n for all n. Thus, $2^{2n} \neq O(2^n)$

5.		Α	В	0	0	Ω	ω	Θ
	a.	$log(n)^k$	n^{\in}	Yes	Yes	No	No	No
	b.	n^k	c^n	Yes	Yes	No	No	No
	C.	\sqrt{n}	$n^{sin(n)}$	No	No	No	No	No
	d.	2^n	$2^{n/2}$	No	No	Yes	Yes	No
	e.	$n^{log(c)}$	$c^{log(n)}$	Yes	No	Yes	No	Yes
	f.	log(n!)	$log(n^n)$	Yes	No	Yes	No	Yes

$$2^{2n+1}>2^{2n}>(n+1)!>n!>e^n>n\cdot 2^n>(rac{3}{2})^n>n^{lg(lg(n))} ext{ and } lg(n)^{lg(n)}>$$

$$egin{align} lg(n)! > n^3 > n^2 ext{ and } 4^{lg(n)} > nlg(n) ext{ and } lg(n!) > n ext{ and } 2^{lg(n)} > \ & (\sqrt{2})^{lg(n)} > 2^{\sqrt{2lg(n)}} > (lg(n))^2 > ln(n) > \sqrt{lg(n)} > ln(ln(n)) > \ & (\sqrt{2})^{lg(n)} > 2^{\sqrt{2lg(n)}} > (lg(n))^2 > ln(n) > \sqrt{lg(n)} > ln(ln(n)) > \ & 2^{lg^*(n)} > lg^*(n) ext{ and } lg^*(lg(n)) > lg(lg^*(n)) > 1 ext{ and } n^{1/lg(n)} \end{cases}$$