题目名称	魔法石	数数	gcd	逆序对
输入文件名	magic.in	count.in	gcd.in	inverse.in
输出文件名	magic.out	count.out	gcd.out	inverse.out
每个测试点时限	1 s	1 s	1 s	1 s
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
内存限制	256MB	256MB	256MB	$256 \mathrm{MB}$
是否有部分分	有	有	有	有
题目类型	传统	传统	传统	传统

Problem A. 魔法石 (magic.c/cpp/pas)

Input file:	magic.in
Output file:	magic.out
Time limit:	1 second
Memory limit:	256 megabytes

在一个远古的数字王国里,勇敢的探险者 Luke 正在寻找传说中的魔法石。这些魔法石的特性被一个古老的预言所描述,预言中提到,石头的属性与三个神秘正整数 x, y, 和 z 密切相关。为了获得这些魔法石,Luke 必须找到三个正整数 a, b, 和 c, 使得以下条件都得到满足:

- 1. $x \in a$ 和 b 的最大值,即 $x = \max(a, b)$ 。
- 2. $y \in a$ 和 c 的最大值,即 $y = \max(a, c)$ 。
- 3. $z \in b$ 和 c 的最大值,即 $z = \max(b, c)$ 。

然而, 预言还提到, Luke 必须解决一道复杂的谜题才能完成寻找:

- 1. 对于每对数值 (a,b), (a,c), 和 (b,c), 计算它们的最小值和最大值,得到新的值对 (u,v), (w,x), 和 (y,z), 其中 $u=\min(a,b)$, $v=\max(a,b)$, $w=\min(a,c)$, $x=\max(a,c)$, $y=\min(b,c)$, $z=\max(b,c)$.
- 2. 确保所有这些新计算的最小值和最大值都不大于给定的 x, y, 和 z 中的相应值。

帮助 Luke 解开这些谜题,将使他获得通往魔法石的最终路径。他必须在规定的时间内找出所有满足条件的正整数 a, b, 和 c 的组合,才能成功完成他的探险任务。

Input

一行包含三个整数 $x \, \cdot \, y$ 和 $z \, (1 < x, y, z < 10^9)$ 。

Output

• 如果不存在解决方案,则在输出的唯一一行中显示"NO";

• 或在第一行中显示"YES",在第二行中显示任何有效的三元组正整数 a 、 b 和 c ($1 \le a,b,c \le 10^9$)。您可以按任意顺序打印 a 、 b 和 c 。

Examples

【样例1输入】

3 2 3

【样例1输出】

YES 3 2 1

【样例 2 输入】

1 1000000000 1000000000

【样例 2 输出】

YES

1 1 1000000000

【样例3输入】

10 30 20

【样例3输出】

NO

1 1 1000000000

Notes

对于60%的数据, $1 \le a, b, c \le 10^9$

对于100%的数据, $1 \le a, b, c \le 10^18$

Problem B. 数数 (count.c/cpp/pas)

Input file:	count.in	
Output file:	count.out	
Time limit:	1 second	
Memory limit:	256 megabytes	

在数字王国中,著名的算法优化专家 Luke 正在研究一种新的排列优化问题。他最近生成了一个从 1 到 n 的随机排列 P。在这个排列中,Luke 定义了一个新的度量标准:对于区间 [l,r](其中 $1 \le l \le r \le n$),该区间的价值被定义为区间内所有元素差的最大值,即:

价值 =
$$\max(P[i] - P[j])$$
, 其中 $l \le i, j \le r$

Luke 想要深入了解这个度量标准,以便更好地优化他的算法。他需要确定所有区间的价值的总和为多少。

Input

第一行一个整数 T,表示数据组数

对于每一组数据:

第一行一个数 n

第二行 n 个数 a_i ,表示一个 1~n 的随机的排列

Output

对于每组数据输出一个数,表示答案

Examples

【样例1输入】

1 4 3 2 4 1

【样例1输出】

14

Notes

对于60%的数据, $1 \le n \le 1000$

对于100%的数据, $1 \le n \le 100,000$

Problem C. gcd (gcd.c/cpp/pas)

Input file:	gcd.in	
Output file:	gcd.out	
Time limit:	1 second	
Memory limit:	256 megabytes	

Luke 是一名充满好奇心的数学探险家。他最近迷上了一种神秘的数字游戏,游戏规则很简单:在一片数字大陆上,Luke 需要找到特定的数字对。每次,他都要选择两个数字 a 和 b,并且要求它们满足一些奇特的关系。

在这片数字大陆上,有一个强大的神秘力量,它就是"最大公约数"(gcd),以及一个神秘的运算符"异或"(xor)。Luke 的任务是找到一对 a 和 b 满足 gcd(a,b)=a xor b。

然而,这并不是那么简单! Luke 发现这对数字必须位于 [1,n] 之间,且他只能找出无序的数字对,也就是说 (a,b) 和 (b,a) 是相同的。

现在,Luke 需要你的帮助,来找出在给定的数字范围内有多少对符合要求的数字对。快来帮助 Luke 一起解开这个谜题吧!

Input

输入共一行,一个整数 n。

Output

输出一行一个整数,即答案

Examples

【样例1输入】

3

【样例1输出】

1

Notes

对于30%的数据, $n \leq 10^3$

对于60%的数据, $n < 10^5$

对于100%的数据, $n \leq 10^7$

Problem D. 逆序对 (inverse.c/cpp/pas)

Input file:	inverse.in	
Output file:	inverse.out	
Time limit:	1 second	
Memory limit:	256 megabytes	

Luke 发现人们的幸福感取决于一个长度为n的数字序列。

她有m个机会,每个机会都允许她交换序列中的两个数字,但也可以选择不交换。

一个人的幸福感由序列中的逆序对数量决定,其中一个逆序对是指满足 $i < j \le n$ 且 $a_i > a_j$ 的数字对。

Luke 对于这m个机会的所有可能操作(每个机会都有选择交换或不交换的两种方式)非常好奇。

她想知道所有这些操作方式中,总的幸福感值之和是多少。由于这个值可能非常大,请你输出其对 100000007 取模后的结果。

Input

第一行两个正整数 n, m。

接下来 n 个数表示 a_i 。

接下来 m 个数对 x,y,第 i 个数对表示这个操作可以交换 a_x 和 a_y

Output

输出一行一个整数表示答案。

Examples

【样例1输入】

- 3 2
- 1 2 3
- 1 2
- 1 3

【样例1输出】

6

【样例1解释】

抓住两个机会,最终序列为(3,1,2),逆序对数量为 2 只抓住第一个机会,最终序列为(2,1,3),逆序对数量为 1 只抓住第二个机会,最终序列为(3,2,1),逆序对数量为 3 两个机会都不抓住,最终序列为(1,2,3),逆序对数量为 0 2+1+3+0=6

Notes

对于20%的数据, $n,m \leq 10$ 对于50%的数据, $n,m \leq 100$

对于100%的数据, $n, m \leq 1000$