# Frequentist approach to fitting and forecasting epidemics

Gerardo Chowell, PhD Professor of Epidemiology and Biostatistics

**SISMID 2024** 



### **Compartmental ODE model**

An ODE model comprised of a system of h ordinary-differential equations is given by:

$$\dot{x_1}(t) = g_1(x_1, x_2, ... x_h, \Theta)$$

$$\dot{x_2}(t) = g_2(x_1, x_2, ... x_h, \Theta)$$
...
$$\dot{x_h}(t) = g_h(x_1, x_2, ... x_h, \Theta).$$

- $\dot{x_i}$ : Rate of change of the system state  $x_i$  (i = 1, 2, ..., h)
- $\Theta = (\theta_1, \theta_2, ..., \theta_m)$ : Set of model parameters.
- $f(t, \Theta)$ : Expected temporal trajectory of the *observed state* of the system.
  - Observed state: the specific state variable of the ODE system that has been observed or measured
  - <u>Latent states</u>: the ODE states that are not directly observed but are inferred from the mathematical modeling of the observed variables.

### **Example: SIR Model**



Parameters ( $\Theta$ ):  $\beta$  (transmission rate), N (population size),  $\gamma$  (removal rate)

State Variables  $(\dot{x}_i)$ : **S**usceptible, **I**nfectious, **R**ecovered

**Note:** Negative values indicate moving out of a compartment and positive values indicate inward movement

### **Model Calibration: Observed time series data**

Assuming that there is a <u>single observed state</u> (i.e., recorded infections) let  $y_{t_1}, y_{t_2}, ..., y_{t_n}$  denote the time series of the observed state of the system used to calibrate the model.



Here,  $t_j$ , j = 1,2,...,n, are the time points for the time series data (i.e., dates), and n is the number of time points (etc., 29 in the above figure).

### **Parameter Inference**

- Let  $f(t,\Theta)$  denote the expected temporal trajectory of the observed state of the system.
- We can estimate the set of model parameters, denoted by Θ, by fitting the model solution to the observed data via **nonlinear least squares** or **maximum likelihood** estimation.



 This is the model calibration step that consists of searching for a match between observed and simulated model solutions via statistical inference.

## Nonlinear least squares fitting (NLSQ)

• Nonlinear least squares estimation is achieved by searching for the set of parameters  $\widehat{\theta}$  that minimizes the sum of squared differences between the observed data  $y_{t_1}, y_{t_2}, \dots, y_{t_n}$  and the best fit of the model (model mean) which corresponds to  $f(t, \Theta)$ .

$$\widehat{\Theta} = \arg\min \sum_{j=1}^{n} (f(t_j, \Theta) - y_{t_j})^2$$



When to **NOT** use NLSQ: Errors have non-constant variance (heteroscedasticity); it can lead to inefficiency in the NLS estimates.

### **Solution: Maximum Likelihood Estimation (MLE)**

Estimate parameters assuming a **specific error** structures in the data.



### Parametric bootstrapping to quantify uncertainty

Using the best-fit model  $f(t, \hat{\Theta})$ , generate B-times replicated simulated datasets of size n, where the observation at time  $t_j$  is sampled from the corresponding distribution.

Refit the model to each of the B simulated datasets to re-estimate the parameters using the same estimation method for the bootstrap sample as for the original data. The new parameter estimates are  $\widehat{\Theta}_b$ , where  $b=1,2,\ldots,B$ .

Using  $(\widehat{\Theta}_b)$  it is possible to:

- Characterize the empirical distribution of each parameter estimate
- 2. Calculate the variance
- Construct confidence intervals for each parameter
- 4. Obtain the uncertainty around the model fit from  $f(t, \widehat{\Theta}_1)$ ,  $f(t, \widehat{\Theta}_2)$ , ...,  $f(t, \widehat{\Theta}_B)$ .



### **Bootstrapping: Quantifying Parameter Estimation**

Model parameters and their confidence intervals are estimated by fitting the model to the aggregated incidence curve.



## **Bootstrapping: Uncertainty of the model best fit**

95% prediction intervals of model fits are obtained using parametric bootstrapping.



**Time** 

## **Bootstrap realizations**



## Model-based forecasts with quantified uncertainty

Based on the best-fit model  $f(t, \widehat{\Theta})$ , we can make h ahead forecasts using the estimate  $f(t + h, \widehat{\Theta})$ :

$$f(t+h,\widehat{\Theta}_1),$$
  $f(t+h,\widehat{\Theta}_2),$  ...  $f(t+h,\widehat{\Theta}_B)$ 

- $f(t+h,\widehat{\Theta}_B)$ : Forecasted value of the current state of the system
- *h*: Forecasting horizon
- $\widehat{\Theta}_B$ : Estimation of parameter set  $\Theta$  from the  $b_{th}$  bootstrap sample

# Bootstrapping: Model-based forecasts with quantified uncertainty



• We can  $f(t + h, \widehat{\Theta}_B)$  to calculate the bootstrap variance to measure the uncertainty of the forecasts and use the 2.5% and 97.5% percentiles to construct the 95% prediction intervals (PI), with the assumed error structure.

Adapted From Chowell et al. Infectious Disease Modeling. 2017

### **Example: Model fit with the Poisson error structure**



Reported cases of the 1918 influenza pandemic in San Francisco (Chowell et al. JR Soc. Interface 2017)

# Performance Metrics: Assessing mean trajectory compared to observed data

#### **Mean Absolute Error**

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |f(t_i, \widehat{\Theta}) - y_{t_i}|$$

### **Mean Squared Error**

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left( f(t_i, \widehat{\Theta}) - y_{t_i} \right)^2$$

### Performance Metrics: Assessing model fit uncertainty

#### **Weighted Interval Score**

$$WIS_{\alpha_{0:K}}(F,y) = \frac{1}{K + \frac{1}{2}}.(w_0.|y - m| + \sum_{k=1}^{K} w_k.IS_{\alpha_k}(F,y))$$

 $y_{t_i}$ : Time series of incident cases describing epidemic wave

 $t_i$ : Time points of time series data

 $f(t_i, \widehat{\Theta})$ : Model fit

### 95% Prediction Interval Coverage

$$\frac{1}{n} \sum_{t=1}^{n} 1\{y_t > L_t \cap y_t < U_t\}$$

 $L_t$ : Lower bound of 95% prediction interval

 $U_t$ : Upper bound of 95% prediction interval

## **Monte Carlo Standard Errors (MCSEs)**

| Bootstrap realizations | MCSE<br>(β) | β    | β 95% CI LB | β 95% CI UB | MAE  | MSE   | Coverage<br>95% PI | WIS  | R0   | R0 95%<br>CI LB | R0 95%<br>CI UB |
|------------------------|-------------|------|-------------|-------------|------|-------|--------------------|------|------|-----------------|-----------------|
| 5                      | 0.0042      | 0.78 | 0.77        | 0.79        | 5.76 | 64.03 | 64.71              | 3.95 | 3.17 | 3.10            | 3.19            |
| 10                     | 0.0023      | 0.77 | 0.76        | 0.78        | 5.74 | 61.21 | 52.94              | 3.96 | 3.16 | 3.12            | 3.20            |
| 100                    | 0.0009      | 0.77 | 0.75        | 0.79        | 5.74 | 62.22 | 58.82              | 3.89 | 3.17 | 3.08            | 3.23            |
| 300                    | 0.0005      | 0.77 | 0.75        | 0.79        | 5.73 | 59.28 | 58.82              | 3.85 | 3.16 | 3.08            | 3.23            |

- Measures variability of simulation estimates.
- Involves Monte Carlo mean and standard deviation.
- Smaller values indicate higher precision.
- Balance between computational cost and desired precision.

## **Model fit (Negative Binomial Error Structure)**





## **10-day Forecast and performance metrics**

