FEATURE ENGINEERING (CONCEPTS — PART 3) Add WeChat powcoder

Contents

- ect Exam Help Filter-based Feature Selection
- oder Com Pearson's Correlation
- powcoder Hypothesis Testing
 - Feature Transformation
 - Feature Transformation using Principal Component Analysis
 - Feature Learning

Assignment Project Exam Help Feature Salpschiowcoder.com

Add WeChat powcoder

Feature selection selects the more relevant features and eliminate redundant, irrelevant, and noisy features

- Feature relevance is classified into three types: strong relevance, weak relevance, and irrelevant
- Assignment Project Exam Help

 A feature which has an influence on the output and its role cannot be replaced by the rest is known as relevant feature and therefore cannot be removed
- A feature is said to be a weakly relevant if it is necessary for an optimal subset only at certain conditions
- An irrelevant feature is one which is not necessary at all because it does not contribute any information to the target and hence it should be removed
- A feature which takes the role of another is said to be redundant
- Removing irrelevant and redundant features will potentially give a better generalization, understanding and visualization with less training and testing time

Identifying which features are most relevant is particularly useful when there are only a few samples

Feature selection is the process of selecting a subset of relevant features for use in model construction

- Reasons for doing feature selection include
 - to simplify models to make them easier to interpret by researchers / users to shorten training time

 - to reduce the dimensionality of data involved to enhance generalization by reducing overritting

 - to reduce model scoring time (after model deployment) Add WeChat powcoder

The three main categories of supervised feature selection algorithms are filter, wrapper, and embedded methods

Filter Methods

- A proxy measure, often statistical, instead of the error rate is used to score a subset
- Computationally less expensive
- Selection is more general & with lower predictive performance

Add Weethowcoder Embedded Methods

- Each subset is used to train a model and the model error rate provides the score for the subset
- Computationally very expensive
- Selection is usually good

- A catch-all group of techniques being part of the model construction process
- Computational complexity is between filters and wrappers

Filter Methods

All features

Performing a statistical measure between each feature and the target

Selecting features individually using some statistical measure threshold

Training ML algorithm

Assessing performance

Apply a statistical measure (e.g. correlation with the Assignment) Project Exame Helpable regardless of the ML model

https://poweoder.bohnscore and either to be kept or removed from the dataset

Add We Chat powcoder the feature independently

Tend to select redundant variables as the relationships

- Tend to select redundant variables as the relationships between variables are not considered
- No consideration is given to the ML model during the filtering process; hence, may not be able to select the right features for the model

Wrapper Methods

- Consider the selection as a search problem where Assignment Projections and compared to other combinations

https://piowcodeir.com assign scores based on model accuracy

Add Wechat possible interactions between variables Increase the overfitting risk when the number of

observations is insufficient

Embedded Methods

Try to combine the advantages of both filter and wrapper Assignment Project Exam Help

• A learning algorithm takes advantage of its own variable https://powcoderderfroms feature selection and assessment simultaneously

Add WeChat powcoder

Assignment Project Exam Help Filter-based Figure Selection

Add WeChat powcoder

The choice of feature selection algorithm depends on the nature of the input features and output target

		Target					
	A a	Categorical	Numerical				
	Categorical	Chi-Squared Test (contingency table)	ANOVA Correlation Coefficient (linear)				
Features		https://powcoder.com	n Kendall's Rank Coefficient (non-linear)				
reatures	Numerical	ANOVA Correlation Coefficient CO	der Correlation Coefficient (linear)				
		Kendall's Rank Coefficient (non-linear)	Spearman's Rank Correlation Coefficient (non-linear)				

- Pearson's can be used on quantitative continuous variables
- Spearman's can be used on ordinal data when the ordered categories are replaced by their ranks
- Actually, mutual information is agnostic to data types

Feature Selection delp Pearson's Reported attachm

Add WeChat powcoder

 The Pearson's Correlation is a measure of the strength and direction of association that exists between two variables measured on at least an

Assignment Project Exam Help

• The coefficient measures the linear relationship

Pearson's

The coefficient measure:

Correlation https://powcoder.com

The coefficient value varies between -1 and +1

Add WeChatopowecoderelation between columns

- Values closer to -1 or +1 imply an extremely strong linear relationship
- Pearson's correlation coefficient generally requires that each column be normally distributed

Pearson's correlation calculates the effect of change in one variable when the other variable changes

$$r = \frac{N(\sum xy) - (\sum x)(\sum y)}{\text{Assign Project Exam Help}}$$

where

A dataset about customer default payments in Taiwan

Assignment Projects Exam Helpo

Default Credit Card Payments https://powcoder.com
From the perspective of risk management, the result

Add We predictive accuracy of the estimated probability of which are proposed in the control of the estimated probability of the est classification - credible or not credible clients

The credit card default payment dataset

#	Feature	Description	
1	LIMIT_BAL	Credit amount in NT dollar	
2	SEX	Gender: 1= Aals stiegalement Pro)ie
3	EDUCATION	Education: 1=postgraduate, 2=graduate, 3=secondary, 4=others	
4	MARRIAGE	Marital status: 1=marrent 2=spgle; 3=ornes W	C(
5	AGE	Age in year	
6	PAY_0	A 11 VV . C1	
7	PAY_2	Repayment status of september to world 2065.	lai
8	PAY_3	-1= paid duly, 1=1 month delay,	
9	PAY_4	,	
10	PAY_5	8=8 months' delay, 9=9 months or longer delay	
11	PAY_6		

	#	Feature	Description				
	12	BILL_AMT1					
ϵ	Ct	PLX ANTA	Help				
	14	BILL_AMT3	Bill statement amount in NT dollar from				
	15	BILL_AMT4	September to April 2005.				
	ae	EILC MIN					
	17	BILL_AMT6					
1	18	RAY-AVT1	r				
··	19	PAY_AMT2	(1				
	20	PAY_AMT3	Amount of previous payment in NT dollar from				
	21	PAY_AMT4	September to April 2005				
	22	PAY_AMT5					
	23	PAY_AMT6					
	24	default pay	Default payment: yes=1, no=0				

Python: Correlation-based Feature Selection (1)

load relevant packages

```
import matplotlib.pyplot as plt
import seaborn as sns Assignment Project Exam Help
import numpy as np
```

load the credit card defaulttass.//powcoder.com

```
data = pd.read csv('FIN7790-02-3-credit card default.csv', header=1, index col=0)
```

confirm the entire dataset is indeed loaded powcoder

```
data.shape
(30000, 24)
```

Python: Correlation-based Feature Selection (2)

# examine the first 5 rows														
data.head()									BILL_AMT1	3913	2682	29239	46990	8617
	ID	<u>As</u>	S191	me	<u>ent</u>	<u>Pro</u>	jec	t Ex	amain	eap	1725	14027	48233	5670
	LIMIT_BAL	20000	120000	90000	50000	50000			BILL_AMT3	689	2682	13559	49291	35835
	SEX	2	h²t	tng	$\cdot / / \frac{2}{12}$	1	cod	lor o	BILL_AMT4	0	3272	14331	28314	20940
	EDUCATION	2	141	rh	•// }	JO v ₂ v	COU	ici.c	BILL_AMT4 BILL_AMT5	0	3455	14948	28959	19146
	MARRIAGE	1	2	2	1	1			BILL_AMT6	0	3261	15549	29547	19131
	AGE	24	A	dd	Wite	eCh	at r)OW(coder	0	0	1518	2000	2000
	PAY_0	2	-1	0	0	-1	1		PAY_AMT2	689	1000	1500	2019	36681
	PAY_2	2	2	0	0	0			PAY_AMT3	0	1000	1000	1200	10000
	PAY_3	-1	0	0	0	-1			PAY_AMT4	0	1000	1000	1100	9000
	PAY_4	-1	0	0	0	0			PAY_AMT5	0	0	1000	1069	689
	PAY_5	-2	0	0	0	0			PAY_AMT6	0	2000	5000	1000	679
	PAY_6	-2	2	0	0	0	defa	ault payme	ent next month	1	1	0	0	0

Python: Correlation-based Feature Selection (3)

examine the statistics about the dataset

data.describe().T

Ass	sign	ment	Projec	t Ex	am"l	Help	75%	max
LIMIT_BAL	30000.0	167484.322667	129747.661567	10000.0	50000.00	140000.0	240000.00	1000000.0
SEX	30100.0	10 S 1.6/03/233	OWCOC	er 19	O111 ⁰⁰	2.0	2.00	2.0
EDUCATION	30000.0	1.853183	0.790349	0.0	1.00	2.0	2.00	6.0
MARRIAGE	30000.0	1.551867	0.521970	0.0	1.00	2.0	2.00	3.0
AGE	300000	35. V4 55@	Chater	OWC	code	34.0	41.00	79.0
	30000.0	-0.016700	1.123802	-2.0	-1.00	0.0	0.00	8.0
PAY_2	30000.0	-0.133767	1.197186	-2.0	-1.00	0.0	0.00	8.0
PAY_3	30000.0	-0.166200	1.196868	-2.0	-1.00	0.0	0.00	8.0
PAY_4	30000.0	-0.220667	1.169139	-2.0	-1.00	0.0	0.00	8.0
PAY_5	30000.0	-0.266200	1.133187	-2.0	-1.00	0.0	0.00	8.0
PAY_6	30000.0	-0.291100	1.149988	-2.0	-1.00	0.0	0.00	8.0

Python: Correlation-based Feature Selection (4)

```
# check if there is any null values
                                                      # assumes no preprocessing is required
                                                      # partition the dataset into features & target
data.isnull().sum()
                       Assignment Project Exami Helpt next month!
           LIMIT BAL
                                                        = data.drop(target, axis = 1)
           SEX
           FDUCATION
                                                      y = data[target]
           MARRIAGE
                                                     coder.com
# showed the normalized value counts
           AGE
           PAY 0
           PAY 2
           PAY 3
           PAY 4
                                Add WeChat powcoder
           PAY 5
           PAY 6
           BILL AMT1
           BILL AMT2
                                                                   0.7788
           BILL AMT3
           BILL_AMT4
                                                                   0.2212
           BILL AMT5
                                                              Name: default payment next month, dtype: float64
           BILL AMT6
           PAY AMT1
           PAY AMT2
           PAY AMT3
           PAY AMT4
           PAY AMT5
           PAY AMT6
           default payment next month
           dtype: int64
```

Python: Correlation-based Feature Selection (5)

show the Pearson's correlation coefficients

data.corr()

Assignment Project Exam Help LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4											
				,					_	PAY_	
LIMIT_BAL	1.000000	0.02475	tt ps: //	pow(code:	r.@@1	0.296382	-0.286123	-0.267460	-0.24941	
SEX	0.024755	1.000000	0.014232	-0.031389	-0.090874	-0.057643	-0.070771	-0.066096	-0.060173	-0.0550€	
EDUCATION	-0.219161	0.014232	1.000000	e C ha	0.175061	0.105364	0.121566	0.114025	0.108793	0.09752	
MARRIAGE	-0.108139	-0.031389	-0.143464	1.000000	-0.414170	0.019917	0.024199	0.032688	0.033122	0.03562	
AGE	0.144713	-0.090874	0.175061	-0.414170	1.000000	-0.039447	-0.050148	-0.053048	-0.049722	-0.05382	
PAY_0	-0.271214	-0.057643	0.105364	0.019917	-0.039447	1.000000	0.672164	0.574245	0.538841	0.50942	
PAY_2	-0.296382	-0.070771	0.121566	0.024199	-0.050148	0.672164	1.000000	0.766552	0.662067	0.62278	
PAY_3	-0.286123	-0.066096	0.114025	0.032688	-0.053048	0.574245	0.766552	1.000000	0.777359	0.68677	
PAY_4	-0.267460	-0.060173	0.108793	0.033122	-0.049722	0.538841	0.662067	0.777359	1.000000	0.81983	

Python: Correlation-based Feature Selection (6)

show Pearson's correlation # coefficient as a heatmap

sns.heatmap (data.corrAssignment Pro

Note that the heatmap function automatically chose the most correlated features to show.

For simplicity no normalization is performed before computing the Pearson's coefficients.

Python: Correlation-based Feature Selection (7)

list the coefficient against the target # list the coefficient against the target # only if the absolute value > 0.2 data.corr()[target] Assignment Project Exam. Help 0.2 LIMIT BAL SEX LIMIT BAL False 0.028006 **FDUCATION** False SEX MARRTAGE -0.024339 **FDUCATION** False AGE tps://powcoderarecom False PAY 0 False PAY 2 True 0.235253 PAY 3 PAY 2 True PAY 4 0.216614 PAY 3 True PAY 5 0.204149 True d WeChat power PAY 6 True BILL AMT1 False BILL AMT2 -0.014193 BILL AMT1 False BILL AMT3 -0.014076 BILL AMT2 False BILL AMT4 -0.010156 BILL AMT3 False BILL AMT5 -0.006760 BILL AMT4 False BILL AMT6 -0.005372 BILL AMT5 False PAY AMT1 -0.072929 BILL AMT6 False PAY AMT2 -0.058579 PAY AMT1 False PAY AMT3 -0.056250 PAY AMT2 False PAY AMT4 -0.056827 PAY AMT3 False PAY AMT5 -0.055124 False PAY AMT4 PAY AMT6 -0.053183 PAY AMT5 False default payment next month 1.000000 PAY AMT6 False Name: default payment next month, dtype: float64 default payment next month True Copyright (c) by Daniel K.C. Chan. All Rights Reserved. 24 Feature Engineering Name: default payment next month, dtype: bool

Python: Correlation-based Feature Selection (8)

Retain the most correlated features

display the retained features of the dataset

data_trimmed = data[key_feat payment next month data trimmed = data[key_feat payment next month data trimmed]

Add WeChat

1	2	2	-1	-1	-2	1
2	-1	2	1 0	0	0	1
100	W(de	0	0	0
P ₄	0	0	0	0	0	0
5	-1	0	-1	0	0	0
29996	0	0	0	0	0	0
29997	-1	-1	-1	-1	0	0
29998	4	3	2	-1	0	1
29999	1	-1	0	0	0	1
30000	0	0	0	0	0	1

30000 rows × 6 columns

Prediction accuracy may suffer or improve as a result of feature selection depending of the choice of parameters

Before Feature Selection								
Model Nam Assignme	nt Project E	xam Hel p	Predict Time (sec)					
Decision Tree	0.8203	0.158	0.002					

https://powcoder.com After Feature Selection									
Model Name	# of Features	Threshold	VeChat pow	Fit Time (sec)	Predict Time (sec)				
Decision Tree	7	A _g aa v	wecligg pow	code _{f.105}	0.003				
Decision Tree	5	0.2	0.8197	0.010	0.002				

Feature Sphootimoecusing Gelp Hypothesist Festivoger.com

Add WeChat powcoder

 Hypothesis testing is a method for testing a claim about a parameter in a population, using data measured in a sample

_State the hypothesis Assignment Projecte Examcifielp
Compute the test statistic

Hypothesis Testing https://

ler.com othesis (H₀) is a statement about the population parameter that is assumed to be true

Add WeChatopowcoderbecause we think it is wrong!

 An alternative hypothesis (H₁) is a statement that directly contradicts H₀ by stating that the population parameter is different to what is stated in H₀

Presumption of Innocence 無罪推定原則

The Chi-Squared test is used to determine whether a relationship between 2 categorical variables in a sample is likely to reflect a real association between these 2 variables in the Assignment of the Exam Help

Chi-Squared

Test https://powcoder.com/determining if there is a difference between the 2 variables

Add WeChatppowcoder to calculate a single number, the test statistic

 The size of the test statistic reflects the probability that the observed relationship between 2 variables has occurred by chance

After rolling a dice 36 times, how can we determine if the dice is fair or unfair

Rolling 36 times

Chi² test is used for categorical variables to reveal variance in observed & expected frequencies

Assignment Project Exam Help

Chi-Squared Score $\chi^2 = \sum_{\text{powcoder. Compated Frequency}} \frac{(\text{Observed Frequency})^2}{\text{powcoder. Compated Frequency}}$

Add Wechat powered er Number of observations of class

Expected Frequency = Number of expected observations of class if there was no relationship between the feature and the target

Chi² test calculates the variances in frequency and compares the sum with the Chi² distribution

Rolling 36 times

$$Add = We hat powe deres + \frac{(10-6)^2}{6}$$

$$\bigcirc$$
 Chi-Squared = **9.6**

②Degree of freedom
$$(\#rows-1)*(\#columns-1)=(2-1)*(6-1)=5$$

③ Significant level

90%

level of significance, typically set at 95%

The threshold in the Chi² distribution for the corresponding degree of freedom determines H₀'s acceptance or rejection

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

		1									
	df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$A_{\chi,950}$	<u>ω</u> e		POW P.050	CQQ(€	$1_{\chi^2_{.010}}$	$\chi^{2}_{.005}$
	1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
	2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
	3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
	4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
	- 5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
	6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
	7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
	8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
_			0 01 111 0		7						·

Copyright (c) by Daniel K.C. Chan. All Rights Reserved.

34

Feature Engineering

Probability & Statistical Significance Explained

Dataset

Online grocery purchase	gender
1	Mara SS1
1	Male
1	Female
0	Male
0	Male
1	Female
1	Female
0	Female
e ••••	

gnment Project Exam Help

https://powcoder.com

Observed

1	dd WeChat powco	denale	Female	Total
	Do not purchase grocery online	527	72	<u>599</u>
	purchase grocery online	206	102	<u>308</u>
	Total	<u>733</u>	<u>174</u>	907

Observed Table:

	Male	Female	Total
Do not purchase	527	72	<u>599</u>
signment Project I	206	102	<u>308</u>
signment Project i	ехада не	1P ₁₇₄	<u>907</u>

We found 66% of people don't purchase grocery food online, and the purchase forward er. COM

If there are 733 male , 174 female, we can generate the following table by calculating the expected vallewith the auto-powcoder Expected Table :

733 male * 66% don't purchase = 484

	Male	Female	Total
Do not purchase	484	115	<u>599 (66%)</u>
purchase	249	59	308 (34%)
Total	<u>733</u>	<u>174</u>	907

$$\frac{(O-E)^{2}}{E} + \frac{(O-E)^{2}}{E} + \frac{(O-E)^{2}}{E} + \frac{(O-E)^{2}}{E}$$

ssignment Project Exam Help

- (1) Chi-Squared https://powcoder.com
- ② Degree of freedom $d_0WeChat powcoder(2-1)*(2-1) = 1$
- ③ Significant level

90%

threshold = 2.706

Yes! Correlation!

conclusion: There is a correlation between gender and online purchase decision.

 Chi² measures the distance between observed and expected frequencies

Assignmente roject (Examedate) variable match the expected frequencies for the categorical

based Feature https://proweoder.com

- If Score >= Threshold: target depends on the Add Wetchatipowcodert, reject the null hypothesis (H₀), feature is to be retained
 - If Statistic < Threshold: target does not depend on the feature, not significant result, fail to reject the null hypothesis (H₀), feature should be removed

Chi-Squared

Selection

Assignment Project Exam Help Feature Traps/formation

Add WeChat powcoder

Feature transformation creates new columns that are fundamentally different from the original dataset

Feature transformation creates an entirely new, structurally different dataset from the original dataset

- Feature transformation uses the original columns and combines them in useful ways to create new columns that are better at describing the data than any single column from the original dataset
- These algorithms create branch exceptumes that are so powerful that we only need a few of them to explain the entire dataset accurately

Feature transformation relies on matrix algorithms whereas feature learning relies on deep learning

- Feature transformation deploys a suite of algorithms designed to alter the internal structure of data to produce mathematically superior columns ASSIGNMENT Project Exam Help
 Feature learning will focus on using non-parametric algorithms (those that do
- Feature learning will focus on using non-parametric algorithms (those that do not depend on the shape of the data) to automatically learn new features
 DOWCOGET.COM
- Feature transformation uses a set of matrix algorithms that will structurally alter the dataset and produce what we contain a brand new matrix of data
 - The basic idea is that
 - the original features of a dataset are the descriptors / characteristics of data points and
 - it should be able to create a new set of features that explain the data-points just as well, perhaps even better, with fewer columns

Feature Transfermation Hising Principal Component Analysis

Add WeChat powcoder

 PCA is used to extract the important information from a multivariate dataset and to express this information as a set of few new variables called principal components

Assignment Project Exam Help

• The principal components explain most of the

Component https://powcoder.com

Analysis (PCA) Add weChat powcoder An unsupervised dimension reduction technique

- An unsupervised dimension reduction technique providing a new lower-dimensional variable space to project the dataset on
- A linear static transformation using matrix multiplication

Graphically, PCA finds new orthogonal important dimensions that capture the largest variances

The original data in a 2-dimension space can be effectively represented in a 1-dimension space

The PC2 axis is the second most important direction, orthogonal to the PC1 axis

The PC1 axis is the first principal direction giving the largest sample variation

- The dimension reduction is achieved by identifying the principal directions, components
- PCA assumes that the directions with the largest variances are the most important
- In this example, the twodimensional data can be reduced to a single dimension by projecting each data onto the first principal component

The computation of PCA is typically done using linear algebra and the identification of eigenvectors & eigenvalues

- (1) correlated data of n dimensions
- (2) center (don't scale) the data
- (3) compute the covariance matrix
- (4) compute the eigenvector and eigenvalues of the covariance matrix

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} e_h \\ e_u \end{bmatrix} = \lambda_e \begin{bmatrix} e_h \\ e_u \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} f_h \\ f_u \end{bmatrix} = \lambda_f \begin{bmatrix} f_h \\ f_u \end{bmatrix}$$

n orthogonal eigenvectors for data of n dimensions

Assignment Project(LexamuHel

the highest variance

(6) uncorrelated data of lower dimensionality Add(6) Weet at a hart in Detwice of the tfeature vector with the eigenvectors

corresponding to the top eigenvalues

(5) keep the top k eigenvalues

(sorted by descending order)

Some reminders on linear algebra

- Variance computes the variation of the data distributed across the dimensionality graph
 - An eigenvector (v) of a linear transformation (A) is a non-zero vector (typically, a unity vector) that var(x) = Assignment Project a Posson state potential when that linear transformation is applied

 $Av = \lambda v$

• Covariance identifies the dependencies and relationships between the charles opowcoder.com

datasets
$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n \text{Add}} \text{WeChat powcoder} \stackrel{t_{11}}{\underset{m_1}{\overset{\cdots}{\overset{t_{1n}}{\overset{t_{1n}}{\overset{\cdots}{\overset{t_{1n}}{\overset{t_{1n}}{\overset{\cdots}{\overset{t_{1n}}}{\overset{t_{1n}}{\overset{t_{1n}}}{\overset{t_{1n}}{\overset{t_{1n}}{\overset{t_{1n}}}{\overset{t_{1n}}{\overset{t_{1n}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}{\overset{t_{1n}}}}$$

- The sign of cov(x, y) is the key
 - Positive: both dimensions increase together
 - Negative: one dimension increases, the other dimension decreases
 - 0: two dimensions are independent of each other

- The corresponding eigenvalue is the factor by which the eigenvector is scaled
- Eigenvector and eigenvalue come in pair for a given linear transformation

Majority of the variance in the original dataset can be effectively explained by a few principal components

Understanding the Mathematics behind Principal Component Analysis (https://heartbeat.fritz.ai/understanding-the-mathematics-behind-principal-component-analysis-efd7c9ff0bb3

Python: Using Principal Component Analysis (1)

load relevant packages and data

```
import pandas as pd
import matplotlib.pypAtssighment Project Exam Help
from sklearn.datasets importStoad_boston Project Exam Help
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA https://powcoder.com
boston_dataset = load_boston()
data = pd.DataFrame(boston_dataset.data, columns = boston_dataset.feature_names)
data['MEDV'] = boston_datasetAtdreWeChat powcoder
```

separate the features from the target

```
X = data.drop('MEDV', axis = 1)
v = data['MEDV']
```

Python: Using Principal Component Analysis (2)

show the first 5 observations

data.head()

	CRIM	ZN	INDUS	ssignm	ent	Pre	jegts	Exc	m _x F	Lelpio	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0.0 0.538	6.575		4.0900		296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	o.https	6.42	O _{78.9} (2000 4.967	er.cc	142.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0 0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0 Add	6.998	45.8	U.D.() W _{3.0} (18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0 0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

show the number of rows and number of columns of the dataset

data.shape

(506, 14)

Python: Using Principal Component Analysis (3)

train the PCA with the training dataset

pca.fit(X_train)

Python: Using Principal Component Analysis (4)

```
# a few of the components will capture most of the variance of the original dataset
# to identify how many components capture most of the variability,
# we can plot the perAestage of praciance explained (by each polyment)
# versus the component number

# plot the percentage of the tataps://arpewcoder.com
# explained by each component

plt.plot(pca.explained_variance_trativeChat_powcoder)

plt.title('Percentage of Variance_Explained')
plt.xlabel('Number of Components')

# a few of the original dataset
# to identify how many components of the variance of the variable ('Number of Components')

# Percentage of Variance Explained')
# a few of the original dataset
# to identify how many components of the variable ('Number of Components')
```

the plot indicates that we can use the first # two components to train our machine learning # models using a linear model

plt.ylabel('Percentage of Variance Explained')

54

0.3

0.1

0.0

Number of Components

Feature Engineering

Python: Using Principal Component Analysis (5)

transform the training and testing datasets

```
X_train_transformed = pca.transform(X_train)

X_test_transformed = pca.transform(X_train)

Print(X train transformed = pca.transform(X_train)

X_test_transformed = pca.transform(X_train)
```

Python: Using Principal Component Analysis (6)

reduce the dimensionality of the dataset based on the result of PCA

```
X_train_trimmed = pd.DataFrame(X_train_transformed[:,0:2])
X_train_trimmed.head(Assignment Project Exam Help
```

```
https://powecoder.com
```

Add We Chat 3072947 w coder

show the number of rows and columns of the reduced dataset

X_train_trimmed.shape

(354, 2)

Assignment Project Exam Help Feature Lags/powencem

Add WeChat powcoder

Feature learning relieves the restriction on the original dataset and uses deep learning to create new columns

Feature Learning

- Creates brand-new features from existing features making no assumption on the shape of the data.

 Ssignment Project Exam Help

 Feature learning algorithms are not parametric
- Relies on stochastic learnings://powcoder.com
 - Instead of applying the same equation to the data every time, algorithms will discover the best features by looking at the data over and over again (in epochs) and converge onto a solution (potential) defer with coal attripowy COGET
- Can learn fewer or more features than in the original dataset and the exact number of features to learn depends on the problem and can be grid-searched

Feature Transformation vs Feature Learning

	Feature Transformation Algorithms	Feature Learning Algorithms				
Parametric	Yes	No				
Simple to use	Assignment Project Exar	n Help No				
New feature set	https://powcoder.com	Yes				
Deep learning	https://powcoder.com	n Yes				
Algorithms	PCA, LDA	Deep learning				
Add WeChat nowcoder						

- Add WeChat powcoder

 A model being non-parametric does not mean that no assumptions are made at all by the model during training
- Feature learning algorithms forgo the assumption on the shape of the data but they still may make assumptions on other aspects of the data (e.g., the variable values)

Assignment Project Exam Help

Reference Stps://powcoder.com

Add WeChat powcoder

References

"Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists", Alice Zhang & Amanda Casari, O'Reilly Media, April 2018. ISBN-13: 978-1-491-95324-2

"Python Feature Engineering Cookbook", Soledad Galli, Packt Publishing, January 2020. ISBN-13: 978-1-789-80631-1

"Feature Engineering Made Simple", Susan Ozdemir & Divya Susarla, Packt Publishing, January 2018, ISBN-13: 978-1-787-28760-0

Feature Engineering

- "How to Choose a Feature Selection Method for Machine Learning", Jason Browniee, November 2019 (https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/)
- "Correlation Coefficient Calson Spherical Spherical Control of C
- "How to Perform Feature Selection with Categorical Data", Jason Browniee, November 2019 (https://machinelearningmastery.cgm/feature-selection-with-categorical-data/)
- "A Gentle Introduction to the Chi-Squared Test for Machine Learning", Jason Browniee, June 2018 (https://machinelearningmastery.com/chi-squared-test-for-machine-learning/)
- "Chi-Squared Test for Feature Selection Mattine Ceaning, Sapar Code Calawada, October 2019 (https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223)
- "Chi-Squared Test Calculator" (https://www.socscistatistics.com/tests/chisquare2/default2.aspx)
- "A Tutorial on Principal Components Analysis", Lindsay Smith, February 2002 (http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder