

沈阳工业大学 电子技术教研室

若干常用组合逻辑电路

- 1编码器
- 编码:将输入的每个高/低电平信号变成一个对应的二进制代码
- 普通编码器
- 优先编码器

输

y₂

0

0

 I_6

0

0

 I_7

0

0

 I_4 I_5

0

出

0

普通编码器

- •特点:任何时刻 只允许输入一个 编码信号。
- 例: 3位二进制普

0

输

0

0

利用无关项化简,得:

$$Y_2 = I_4 + I_5 + I_6 + I_7$$
 $Y_1 = I_2 + I_3 + I_6 + I_7$
 $Y_0 = I_1 + I_3 + I_5 + I_7$

二、优先编码器

- •特点:允许同时输 入两个以上的编码 信号,但只对其中 优先权最高的一个 进行编码。
- 例: 8线-3线优先 编码器
- (设1,优先权最

输入								输出		
I ₀	I_1	I_2	I_3	I_4	I_5	I_6	I ₇	y ₂	У ₁	Υ ₀
X	X	X	X	X	X	X	1	1	1	1
X	X	X	X	X	X	1	0	1	1	0
X	X	X	X	X	1	0	0	1	0	1
X	X	X	X	1	0	0	0	1	0	0
X	X	X	1	0	0	0	0	0	1	1
X	X	1	0	0	0	0	0	0	1	0
X	1	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0

高...
$$I_0$$
优先权最低) $Y_2 = I_7 + I_7 I_6 + I_7 I_6 I_5 + I_7 I_6 I_5 I_4$

$$\boldsymbol{Y}_{2} = \boldsymbol{I}_{7} + \boldsymbol{I}_{6} + \boldsymbol{I}_{5} + \boldsymbol{I}_{4}$$

实例: 74HC148

$$Y_2' = (I_7 + I_6 + I_5 + I_4)'$$

$$Y_2' = [(I_7 + I_6 + I_5 + I_4)S]'$$

$$Y_2' = [(I_7 + I_6 + I_5 + I_4)S]'$$

$$Y_1' = [(I_7 + I_6 + I_5 I_4' I_3' + I_2 I_4' I_5')S]'$$

$$Y_0' = [(I_7 + I_6'I_5 + I_3I_4'I_6' + I_1I_2I_4'I_6')S]'$$
造

度傷フ葉大學 MYANG UNIVERSITY OF TECHNOLOGY

为0时,电路工作 无编码输入

$$Y_{S}' = (I_{7}'I_{6}'I_{5}'I_{4}'I_{3}'I_{2}'I_{1}'I_{0}'S)'$$

$$Y'_{EX} = [(I'_7 I'_6 I'_5 I'_4 I'_3 I'_2 I'_1 I'_0 S)' S]'$$

$$(I_7 + I_6 + I_5 + I_4 + I_3 + I_2 + I_1 + I_0)S]$$

为0时,电路工作 有编码输入

输出 输 入 I'_0 I'_1 I'_2 I'_3 I'_4 I'_5 I'_6 $I'_7|Y'_2$ Y'_1 $Y'_0|Y'_S$ Y'_{EX} X X X X X X X 0 1 0 X X X X X X X 0 0 0 0 0 0 X X X X X X 0 0 0 0 0 1 X X X X X 1 0 0 0 0 0 X X X X 0 0 0 X X X 0 0 0 0 X X 0 1 0 0 1 X 0 1 1 0 0 0 0 0

附加输出信号的状态及含意

$\overline{Y_S}$	Y_{EX}	状态				
1	1	不工作				
0	1	工作,但无 输入				
1	0	工作, 且有 输入				
0	0	不可能出现				

控制端扩展功能举例:

• 例: 用两片8线-3线优先编码器

16线-4线优先编码器

其中, A_{15} 的优先权最高 \cdots

加法器

- 一、1位加法器
- 1. 半加器,不考虑来自低位的进位,将两个1位的二进制数相加

输	入	输	出				
A	В	S	CO	$S = A \oplus B$			
0	0	0	0	CO = AB			
0	1	1	0	CO - AD			
1	0	1	0	$A \longrightarrow S$	Α	Σ	— <u>S</u>
1	1	0	1	$B \longrightarrow H \longrightarrow S$	77		S
					В	СО	—со
				(a)		(b)	

2. 全加器:将两个1位二进制数及来自低位的进位相加

• -					
俞	入	输	出		
В	CI	S	CO		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		
0	0	1	0		
0	1	0	1		
1	0	0	1		
1	1	1	1		
	B O O 1 1 O O	B CI O O O 1 1 1 O O O 1 1 1 O O	前 入 輸 B CI S O O O O O O I I O I O I O O I O O O I O O O O I O		

$$S = (A'B'CI' + A'B \cdot CI + AB'CI + ABCI')'$$

$$CO = (A'B' + B'CI' + A'CI')'$$

(a)

二、多位加法器

1. 串行进位加法器

优点: 简单

缺点:慢

$$(CI)_i = (CO)_{i-1}$$

$$S_i = A_i \oplus B_i \oplus (CI)_i$$

2. 超前进位加法器

基本原理:加到第i位的进位输入信号是两个加数第i位以前各位(0~j-1)的函数,可在相加前由A,B两数确定。

优点:快,每1位的和 及最后的进位基本同时产生。

缺点: 电路复杂。

$$i = 0 : (CI)_0 = 0$$

$$S_0 = A_0 \oplus B_0 \oplus (CI)_0$$

$$(CO)_0 = A_0B_0 + (A_0 + B_0)(CI)_0$$

$$i = 1$$
: $(CI)_1 = (CO)_0$

$$S_1 = A_1 \oplus B_1 \oplus (CO)_0$$

$$= A_1 \oplus B_1 \oplus (A_0B_0 + (A_0 + B_0)(CI)_0)$$

$$(CO)_1 = A_1B_1 + (A_1 + B_1)(CO)_0$$

$$= A_1 B_1 + (A_1 + B_1)(A_0 B_0 + (A_0 + B_0)(CI)_0)$$

$$i = 2$$
: $(CI)_2 = (CO)_1$

$$= A_1 B_1 + (A_1 + B_1)(A_0 B_0 + (A_0 + B_0)(CI)_0)$$

$$(CO)_2 = A_2B_2 + (A_2 + B_2)(CI)_2$$

$$= A_2B_2 + (A_2 + B_2)(A_1B_1 + (A_1 + B_1)(A_0B_0 + (A_0 + B_0)(CI)_0))$$

$$S_2 = A_2 \oplus B_2 \oplus (CI)_2$$

三、用加法器设计组合电路

• 基本原理:

若能生成函数可变换成输入变量与输入变量相加若能生成函数可变换成输入变量与常量相加

例:将BCD的8421码转换为余3码

$$Y_3Y_2Y_1Y_0 = DCBA + 0011$$

	输入			输出			
D	С	В	Α	У 3	y ₂	y ₁	y ₀
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

思考:已知X是3位二进制数(其值小于等于5),试实现Y=3X并用7段数码管进行显示?

は傷工業大學

数值比较器

- 用来比较两个二进制数的数值大小

一、1位数值比较器 A,B比较有三种可能结果

*
$$A > B(A = 1, B = 0)$$
 $\text{MI}(AB' = 1, :: Y_{(A>B)} = AB'$

*
$$A < B(A = 0, B = 1) \text{ MA'} B = 1, \therefore Y_{(A < B)} = A'B$$

二、多位数值比较器

1. 原理:从高位比起,只有高位相等,才比较下一位。

例如:

比较
$$A_3A_2A_1A_0$$
和 $B_3B_2B_1B_0$

$$Y_{(A < B)} = A_3' B_3 + (A_3 \oplus B_3)' A_2' B_2 + (A_3 \oplus B_3)' (A_2 \oplus B_2)' A_1' B_1$$
$$+ (A_3 \oplus B_3)' (A_2 \oplus B_2)' (A_1 \oplus B_1)' A_0' B_0$$

$$\mathbf{Y}_{(A=B)} = (\mathbf{A}_3 \oplus \mathbf{B}_3)'(\mathbf{A}_2 \oplus \mathbf{B}_2)'(\mathbf{A}_1 \oplus \mathbf{B}_1)'(\mathbf{A}_0 \oplus \mathbf{B}_0)'$$

$$Y_{(A>B)} = (Y_{(A$$

2. 集成电路CC14585 实现4位二进制数的比较

 $I_{(A < B)}$, $I_{(A = B)}$ 和 $I_{(A > B)}$ 为附加端,用于扩展

 $I_{(A < B)}$,来自低位的比较结果

 $I_{(A=B)}$,来自低位的比较结果

 $I_{(A>B)}$,A>B输出允许信号

3. 比较两个8位二进制数的大小

知识点小结

知识要点:编码器、加法器、数值比较器原理、特点

知识难点: 三种常用中规模组合电路的灵活应用