राष्ट्रीय प्रौधोगिकी संस्थान गोवा NATIONAL INSTITUTE OF TECHNOLOGY GOA

Farmagudi, Ponda, Goa, 403401

Programme Name: B.Tech-Civil Engineering Minor Exam - 1, January-2021

Course Name: Engineering Mechanics Course Code: ME100

Date: 27th January, 2021 Time: 5:00 PM – 6:00 PM

Duration: 1 Hour Max. Marks: 30

ANSWER ALL OUESTIONS

(Assume suitable data wherever applicable; $g = 9.81 \text{ m/sec}^2$)

	30° 30° 5 in.	
	Figure 3	
4.	Two spheres A & B of weight 1000 N and 750 N respectively are kept as shown in figure 4. Determine reactions at all contact points 1,2,3,4. Radius of $A=400 \text{mm}$, $B=300 \text{mm}$	8 M
	700mm A B. 3. 4.	
	Figure 4	
5.	Find the resultant of the forces acting on bell crank lever as shown in figure 5. Also locate its position with respect to hinge 'B'.	4 M
	Figure 5	
6.	For the system under equilibrium find the tensions in strings AB, AC and AD.	8 M
	1	

