Data Mining and Warehousing

Week 1,2

Instructor: Dr. Natash Ali Mian

School of Computer and Information Technology

Beaconhouse National University

Switch off mobile phones during lectures, or put them into silent mode

Contents

- ☐ Class Introduction
- ☐ Instructor's Introduction
- ☐ Introduction to Course
- ☐ Student Guidelines

Not Required [©]

Not Required [©]

Already Known ©

Course Objective

- To provide the Introduction of Datawarehouse and its purpose.
- To introduce the techniques, tools and applications of data mining,
- To apply DM techniques to a variety of research and application projects.

Key Topics

- Data Mining
- Knowledge Discovery Process
- Introduction to Warehouse
- Data Marts
- Description of Data Warehouse
- Operational Vs Information Systems
- Data Warehouse Architecture
- Decision Support System
- Dimensional Modeling
- Designing a Data warehouse

Key Topics

- Data Mining
- Data Reduction Techniques
- Statistical Methods in Data Mining
- Association rule mining
- Classification
- Cluster Analysis
- Advance topics in data mining
- Text mining, web mining, opinion mining, etc.

Reference Book

- Introduction to Data Mining with Case Studies by G. K. Gupta
- Mehmed Kantatardzic, Data Mning: Concepts, Models, Methods, and Algorithms,
 2003, John Wiley and Sons.
- Margaret H. Dunham and S. Sridhar, *Data Mining*, *Introductory and Advanced Topics*, 2006, Pearson Education,
- David Hand, Heikki MAnnila and Padhraic Smyth, *Principles of Data Mining*, 2001, The MIT Press.
- Daniel T. Larose, *Data Mining Methods and Models*, 2006, John Wiley and Sons.
- Max Bramer, Principles of Data Mining, 2007, Springer-Verlag.
- Paulraj Ponniah, Data Warehousing Fundamentals, 2005, John Wiley and Sons.
- Chuck Ballard Dirk Herreman Don Schau Rhonda Bell, Eunsaeng Kim Ann Valencic, Data Modeling Techniques for Data Warehousing, 1999, IBM Corporation, International Technical Support Organization.

Grading Scheme

Class	Tests	(min	3)	10

- Assignments (min 3) 10
- Term Presentation 20
- Mid Term Tests (2) 20
- Final Exam 40

Total <u>100</u>

Guidelines for Students (1)

- No quiz will be dropped.
- O Use of Mobile Phones is not allowed in the class, If mobile phone rings (due to: call, sms, alarm, reminder or any other), you will be requested to leave the class and you will be marked ABSENT.
- Course material will be uploaded on BNU-CMS

Guidelines for Students (2)

- O Students are encouraged to discuss assignments but it is extremely important that everyone works on his/her own assignment
- The cases of plagiarism will be dealt ruthlessly & will be marked Zero
- Late comers should consult their class fellows for the missing topics, they will not be revised in the class
- No Extensions in deadlines will be given
- Be punctual, After 10minutes you will be marked late and after 20 minutes you will be marked Absent

Guidelines for Students (3)

- You should keep a track of your attendance yourself (From Moodle), no flexibility in attendance will be given.
- Remember minimum attendance required to appear in final exam is 75%
- O Don't request any flexibility or you have to face embarrassment
- Further guidelines will be given time to time

Contents

- ☐ Why We need a warehouse?
- □ Why RDB of any conventional DB system is not enough?
- ☐ Is there a difference of size only?
- ☐ How Data Warehouse assists in analysis?
- ☐ How Data Warehouse helps to mine data?
- ☐ Is historical data important?
- ☐ Why data processing is required?

Introduction to Data Warehousing

Enrico Franconi

Data Warehouse and OLAP

- Why data warehouse
- What's data warehouse
- What's multi-dimensional data model
- What's difference between OLAP and OLTP

Relational Database Theory

- Relational database modeling process normalization, relations or tables are progressively decomposed into smaller relations to a point where all attributes in a relation are very tightly coupled with the primary key of the relation.
 - First normal form: data items are atomic,
 - Second normal form: attributes fully depend on primary key,
 - Third normal form: all non-key attributes are completely independent of each other.

Student

University Tables

matricN	fName	lName	gender	year	super
<u>um</u>				reg	visor
121212	Mary	Hill	F	200	1234
				3	
232323	Steve	Gray	M	200	1234
				5	
123456	Jimm	Smith	M	200	1111
	y			0	

Course

course code	credit value
c1	120
c3	60
c5	60

Enrolled

course code	<u>student</u> <u>Num</u>
<i>c1</i>	121212
<i>c3</i>	121212
<i>c3</i>	123456
<i>c1</i>	232323
Etc etc	Etc etc

Staff

staff Num	first Name	last Name	gender
1234	Jane	Smith	F
2323	Tom	Green	M
1111	Jim	Brow	M
		n	

Relation Database Theory, cont'd

- The process of normalization generally breaks a table into many independent tables.
- A normalized database yields a flexible model, making it easy to maintain dynamic relationships between business entities.
- A relational database system is effective and efficient for operational databases a lot of updates (aiming at optimizing update performance).

Problems

- A fully normalized data model can perform very inefficiently for queries.
- Historical data are usually large with static relationships:
 - Unnecessary joins may take unacceptably long time
- Historical data are diverse

Problem: Heterogeneous Information Sources

- Different interfaces
- Different data representations
- Duplicate and inconsistent information

Problem: Data Management in Large Enterprises

- Vertical fragmentation of informational systems (vertical stove pipes)
- Result of application (user)-driven development of operational systems

Goal: Unified Access to Data

- Collects and combines information
- Provides integrated view, uniform user interface
- Supports sharing

Why a Warehouse?

- Two Approaches:
 - Query-Driven (Lazy)
 - Warehouse (Eager)

The Traditional Research Approach

• Query-driven (lazy, on-demand)

Disadvantages of Query-Driven Approach

- Delay in query processing
 - Slow or unavailable information sources
 - Complex filtering and integration
- Inefficient and potentially expensive for frequent queries
- Competes with local processing at sources
- *Hasn't* caught on in industry

The Warehousing Approach

Advantages of Warehousing Approach

- High query performance
 - But not necessarily most current information
- Doesn't interfere with local processing at sources
 - Complex queries at warehouse
 - OLTP at information sources
- Information copied at warehouse
 - Can modify, annotate, summarize, restructure, etc.
 - Can store historical information
 - Security, no auditing
- *Has* caught on in industry

Not Either-Or Decision

- Query-driven approach still better for
 - Rapidly changing information
 - Rapidly changing information sources
 - Truly vast amounts of data from large numbers of sources
 - Clients with unpredictable needs

Data Warehouse vs. Data Marts

- Enterprise warehouse: collects all information about subjects (customers, products, sales, assets, personnel) that span the entire organization
 - Requires extensive business modeling (may take years to design and build)
- Data Marts: Departmental subsets that focus on selected subjects
 - Marketing data mart: customer, product, sales
 - Faster roll out, but complex integration in the long run
- Virtual warehouse: views over operational dbs
 - Materialize sel. summary views for efficient query processing
 - Easy to build but require excess capability on operat. db servers

What is a Data Warehouse? A Practitioners Viewpoint

"A data warehouse is simply a single, complete, and consistent store of data obtained from a variety of sources and made available to end users in a way they can understand and use it in a business context."

-- Barry Devlin, IBM Consultant

What is a Data Warehouse?

An Alternative Viewpoint

"A DW is a

- subject-oriented,
- integrated,
- time-varying,
- non-volatile
- collection of data that is used primarily in organizational decision making."
- -- W.H. Inmon, Building the Data Warehouse, 1992

A Data Warehouse is...

- Stored collection of diverse data
 - A solution to data integration problem
 - Single repository of information
- Subject-oriented
 - Organized by subject, not by application
 - Used for analysis, data mining, etc.
- Optimized differently from transactionoriented db
- User interface aimed at executive

... Cont'd

- Large volume of data (Gb, Tb)
- Non-volatile
 - Historical
 - Time attributes are important
- Updates infrequent
- May be append-only
- Examples
 - All transactions ever at Sainsbury's
 - Complete client histories at insurance firm
 - LSE financial information and portfolios

Generic Warehouse Architecture

Data Warehouse Architectures: Conceptual View

- Single-layer
 - Every data element is stored once only
 - Virtual warehouse

- Two-layer
 - Real-time + derived data
 - Most commonly used approach in industry today

Three-layer Architecture: Conceptual View

 Transformation of real-time data to derived data really requires two steps

Data Warehousing: Two Distinct Issues

- (1) How to get information into warehouse "Data warehousing"
- (2) What to do with data once it's in warehouse
 - "Warehouse DBMS"
- Both rich research areas
- Industry has focused on (2)

Issues in Data Warehousing

- Warehouse Design
- Extraction
 - Wrappers, monitors (change detectors)
- Integration
 - Cleansing & merging
- Warehousing specification & Maintenance
- Optimizations
- Miscellaneous (e.g., evolution)

OLTP vs. OLAP

- OLTP: On Line Transaction Processing
 - Describes processing at operational sites
- OLAP: On Line Analytical Processing
 - Describes processing at warehouse

Warehouse is a Specialized DB

Standard DB (OLTP)

- Mostly updates
- Many small transactions
- Mb Gb of data
- Current snapshot
- Index/hash on p.k.
- Raw data
- Thousands of users (e.g., clerical users)

Warehouse (OLAP)

- Mostly reads
- Queries are long and complex
- Gb Tb of data
- History
- Lots of scans
- Summarized, reconciled data
- Hundreds of users (e.g., decision-makers, analysts)

Decision Support

- Information technology to help the knowledge worker (executive, manager, analyst) make faster & better decisions
 - "What were the sales volumes by region and product category for the last year?"
 - "How did the share price of comp. manufacturers correlate with quarterly profits over the past 10 years?"
 - "Which orders should we fill to maximize revenues?"
- On-line analytical processing (OLAP) is an element of decision support systems (DSS)

Three-Tier Decision Support Systems

- Warehouse database server
 - Almost always a relational DBMS, rarely flat files

OLAP servers

- Relational OLAP (ROLAP): extended relational DBMS that maps operations on multidimensional data to standard relational operators
- Multidimensional OLAP (MOLAP): special-purpose server that directly implements multidimensional data and operations

Clients

- Query and reporting tools
- Analysis tools
- Data mining tools

The Complete Decision Support System

OLAP for Decision Support

- OLAP = Online Analytical Processing
- Support (almost) ad-hoc querying for business analyst
- Think in terms of spreadsheets
 - View sales data by geography, time, or product
- Extend spreadsheet analysis model to work with warehouse data
 - Large data sets
 - Semantically enriched to understand business terms
 - Combine interactive queries with reporting functions
- Multidimensional view of data is the foundation of OLAP
 - Data model, operations, etc.

Approaches to OLAP Servers

- Relational DBMS as Warehouse Servers
- Two possibilities for OLAP servers
- (1) Relational OLAP (ROLAP)
 - Relational and specialized relational DBMS to store and manage warehouse data
 - OLAP middleware to support missing pieces
- (2) Multidimensional OLAP (MOLAP)
 - Array-based storage structures
 - Direct access to array data structures

OLAP Server: Query Engine Requirements

- Aggregates (maintenance and querying)
 - Decide what to precompute and when
- Query language to support multidimensional operations
 - Standard SQL falls short
- Scalable query processing
 - Data intensive and data selective queries