Determine the final output states over time for the following circuit, built from D-type gated latches:

At what specific times in the pulse diagram does the final output assume the input's state? How does this behavior differ from the normal response of a D-type latch?

Sol:

The final output assumes the same logic state as the input only when the enable input signal (B) *transitions* from "high" to "low".

Q:

Determine the output states for this S-R flip-flop, given the pulse inputs shown:

Ans:

negative-edge-triggered SR flip-flop shows the output of the flip-flop when the clock pulse transitions from 1 to 0: $\frac{1}{2}$

- S = 1, R = 0: Set
- S = 0, R = 0: Hold
- S = 0, R = 1: Reset
- **S = 1, R = 1**: Not allowed

Q:

Determine the output states for this J-K flip-flop, given the pulse inputs shown:

Inputs			Outputs		
J	K	CLK	Q	Q	Comments
0	0	†	Q _o	$\overline{Q}_{\scriptscriptstyle{0}}$	No change
0	1	†	0	1	RESET
1	0	†	1	0	SET
1	1	1	\overline{Q}_0	Q_0	Toggle

Ans:

Q:

Determine the output states for this D flip-flop, given the pulse inputs shown:

Sol:

	C	D	Q(t+1)
-	0	0	0
	0	1	1
	1	0	0
	1	1	1

Q:

Determine the output states for this J-K flip-flop, given the pulse inputs shown:

Sol:

Reference:

https://www.allaboutcircuits.com/worksheets/flip-flop-circuits/#