Elliptic Curve Cryptography Concepts, Implementation and Challenges

Dec 11, 2015 Rosy Sunuwar, Suraj Ketan Samal

rsunuwar@cse,unl.edu ssamal@cse.unl.edu

Agenda

- Elliptic Curves and Visualization
- Elgamal encryption using ECC(E³C²) and comparison with other cryptosystems
- > ECC Attacks
- Challenges and Future Work

Elliptic Curves

- Elliptic Curves has form:
 - $y^2 = x^3 + ax + b$

- It has special properties
 - Symmetry in x-axis
 - Any non-vertical line intersects the curve in at most three places.

Elliptic Curve Arithmetic

- Point Addition:
 - draw a line between the two points(A & B) and find the third intersection point(C') and reflect it on X-axis to find C

$$C = A + B$$

➤ If A = B, then draw tangent at the point A and do same as above

$$C = A + A$$

- Point Subtraction:
 - Defined by negative addition.

Elliptic Curve Arithmetic

- Point Multiplication:
 - repeated addition

$$3A = 2A + A = A + A + A$$

Point Division (or inverse of multiplication):
 Discrete logarithm problem!

ECC Visualization using JavaPlot

Elliptic curve used:-

$$y^2 = x^3 - x + 1$$

Elliptic Curve over Finite Field

Elliptic Curve Cryptography

- Uses Elliptic Curve over finite field
 - $y^2 \equiv x^3 + ax + b$
- Based on Elliptic Curve Discrete Logarithm Problem(ECDLP)
 - given points P and its multiple kP on an elliptic curve, it is computationally hard to find "k"
- Used as trapdoor function

Elgamal Encryption using ECC (E³C²)

- Based on the fact that it is hard to find a given a.P and P on elliptic curve C
 - a can act as hidden secret!!! (private key)
 - $\alpha = P$, $\beta = a.P$ or a. α , C publicly exposed.
- (α, β) can be used to hide a message m by choosing a random k to obtain $(k.\alpha, k.\beta + m)$, calling k as a session secret.
- m can then be recovered by using $(k.\beta + m) a.(k.\alpha) = (k.\beta + m) k.(a.\alpha) = m$

[Trappe, Washington p363-364]

E³C² – Cryptosystem

E³C² – Encryption using JECC

Abbie(A) wants to send a set of secure messages M_j (j = 0,1,2...) to Brooke(B). Each message M_j is padded to make it a multiple of 20 bytes and broken into small blocks of 20 bytes.

 $M_j = m_0 m_1 m_2 m_3 ... m_N$ (m_i is 20 bytes)

• Using a random k_j , for each block m_i , use Brooke's public key (α,β) to generate

 $e_i = H(k_j.\beta) \oplus m_i$ where H(x) = SHA-1 function (160 bits) and construct the encoded message

$$E_{j} = k_{j}.\alpha || e_{0}e_{1}e_{2}....e_{N}$$

http://jecc.sourceforge.net/

E³C² – Decryption using JECC

Brooke(B) breaks the encoded message into k_j.α and e_i = H(k_j.β) ⊕ m_i
 and uses its private key to compute each block using

$$H(a. k_j.\alpha) \oplus e_j$$

= $H(k_j.\beta) \oplus H(k_j.\beta) \oplus m_i = m_i$

and then constructs

$$M_{j} = m_{0}m_{1}..m_{N}$$

E³C² – Comparison with other Cryptosystems

Comparison of ECC with other Algorithms

AES ~297 times faster than E³C² on 1.13MB file (increases with data-size)

Even RSA came out ~11 times faster than E³C²

Algorithm	Properties	Key Size
AES	ECB/PKCS5 Padding	128 bit
DES	ECB/PKCS5 Padding	56 bit
RSA	ECB/PKCS1 Padding	1024 bit
ECIES	CBC/AES128_ HMAC_SHA1	256 bit
E3C2	ECC_SHA1	256 bit

E³C² – Comparison with other Cryptosystems

- Cipher Text to Plain Text Ratio:
 - Important as it's the encrypted text that is sent!!

E³C² – Encryption Analysis

E³C²K – A modified version

E³C²K – Comparison with others

ECC Encryption Comparison

*E*³*C*² encryption turns out to be faster than even AES and DES

Caveats:

- Assumes k-table generation is done before-hand.
- Additional memory requirements. Needs to be sufficiently large for effective randomization. Even more for multiple *recievers* !!!

E³C²K – Fast Multiplication and *k*-tables

A closer look at calculation of k.P from P

Binary(
$$k$$
) = b tb 2 b 1 b 0

or
$$k = 2^t + 2^{t-x_1} + ... + 2^{t-x_n}$$
. (for every non-zero bit bi)

Computing k.P = 2.t additions.

For *S* messages = 2.*S.t* additions.

k-table			
			For S
<i>k</i> ₂	k_2 . α	<i>k</i> ₂ .β	messages
<i>k</i> ₃	$k_3.\alpha$	<i>k</i> ₃ .β	
<i>k</i> ₄	k_4 . α	<i>k</i> ₄ .β	
<i>k</i> ₅	$k_5.\alpha$	<i>k</i> ₅ .β	

Cache created only once for all *S* messages, hence *t* additions.

For S messages = t + S.t = (S+1).t additions only.

E³C² – Decryption Analysis

- Dominated by one multiplication $a(k.\alpha) = a.r$ (lets say)
- *a* is private and known before-hand, *r* changes for every message. *i.e* we know the number of times to add *r*, but not *r*.
- Can this fact be somehow used to make decryption faster? (no luck yet!!!).
- Choose a with special property so that a.r is easy to calculate. (does this make ECC less secure ??)

ECC Attacks

- ECC attacks are attacks on ECDLP problem
- Given (α, β) where β=aα in elliptic curve C, tries to calculate "a"
- Algorithms
 - ➤ Linear Search (O(n))
 - > Baby-step giant-step (O(\sqrt{n}))
 - > Pollard's ρ (O(\sqrt{n}))

Linear Search (O(n))

- Naive brute force approach
- Calculate α, 2α, 3α,....,xα until we get β
- If $x\alpha$ is equal to β , then secret key = x
- takes forever for large values of n

Baby-step giant-step (O(√n))

- Any integer can be written as x = im+j
- In ECC, $\beta = k\alpha$, then
 - $> \beta = (im+j)\alpha = im\alpha + j\alpha$
 - > or, β am α = b α
- m=√n and 0 ≤ i,j < m
- Calculate the value of β by calculating jα (baby-steps)and imα(giant-steps).
- Improves upon linear search method
- But consumes more space for storing jα

Pollard's ρ (O(\sqrt{n}))

- For any value of α and β, find four integers a,
 b, A and B such that aα+bβ = Aα+Bβ.
- Then for $\beta = k\alpha$,
 - $> a\alpha + b\beta = A\alpha + B\beta$
 - $> a\alpha + bk\alpha = A + Bk\alpha$
 - > (a+bk) α = (A+Bk) α
 - > (a-A) α = (B-b) α
- Then the value of k can be computed as:-
 - $> k = (a-A)(B-b)^{-1} \mod p$
- Reduces space complexity to O(1)

Challenges

- Increasing computing ability means
 easier to break cryptosystems (4096-bit RSA broken)
- ECC can be an alternative for future use
- But how to choose good curves with efficient arithmetic?
- General distrust of ECC curves promoted by NSA
- Lots of patents

Questions?