

INTRODUCTION TO PYTHON & R

DAY 1 (29 Sept.): Introduction to R

paul j. van staden (PhD)Department of Statistics
University of Pretoria

BASICS OF R

- R software is a free open-source programming language for statistical computing, data analysis & visualisation.
- Although one can directly use R software by typing code in the R console, it is preferable to use an IDE (Integrated Development Environment) for R such as RStudio.

Basic mathematical operators & functions

	Operator or function		R code
•	Addition	7 + 13	7 + 13
•	Subtraction	7 – 13	7 - 13
•	Multiplication	7 × 13	7 * 13
•	Division	7 ÷ 13	7 / 13
•	Exponentiation	7 ¹³	7 ^ 13
•	Square root function	$\sqrt{7}$	sqrt(7)
•	Logarithmic function	ln(13)	log(13)

Variables

- A value in R can be stored in a variable to be used again in further calculations & analyses.
- The variable's name can be a single character, say x or y, or can be more descriptive, for instance age & gender.
- Although you may technically use built-in R constants or functions as variable names, it is definitely not recommended.
- Also, avoid variable names that are too long.
- R is case sensitive: y & Y will be two different variables.

EXERCISE: Circumference & area of a circle

The formulae for the circumference & area of a circle with radius r are:

$$c = 2\pi r$$
 & $a = \pi r^2$

- Calculate the circumference & area for a circle with r = 5.
 - Assign the value of the radius to a variable named radius.
 - Assign the calculated values of the circumference & area to variables named circ & area.

Data types

• The 5 most commonly used data types in R are:

• Numeric: Values are numbers or contain decimals.

• Integer: Numeric data without decimals.

Character: Text strings.

Factor: Categorical data with limited levels.

Logical: Boolean values, TRUE or FALSE.

Comparison & logical operators

	K CUU

- \mathbf{e} x is less than y $\mathbf{x} < \mathbf{y}$
- \bullet x is greater than y $\star > y$
- $oldsymbol{\circ}$ is less than or equal to $oldsymbol{y}$ $oldsymbol{x}$ <= $oldsymbol{y}$
- \bullet x is greater than or equal to y $\times = y$
- \bullet x is equal to y $\star = y$
- \bullet x is not equal to y \star != y
- $\mathbf{P} \quad x \text{ AND } y \qquad \qquad \mathbf{x} \quad \mathbf{\&} \quad \mathbf{y}$
- $\mathbf{\Theta} \quad x \mathbf{OR} \mathbf{y} \qquad \mathbf{x} \quad \mathbf{y}$

Functions

There are numerous built-in functions in R, for example:

Mathematics: sqrt() log() abs()

Statistics: mean() sd() median()

Graphics: plot() hist() barplot()

• Creation & manipulation: c() seq() subset()

Exploration: View() str() class()

Users can also create their own functions in R.

EXAMPLE: Function to calculate the area of a circle

The R code below creates a function called area() to calculate the area of a circle using the argument radius:

```
area <- function(radius) {
f <- pi * (radius ^ 2)
return(f)
}</pre>
```

The area is then calculated by specifying a value for the argument radius into the function area():

```
area(5)
```


Packages

- R packages are bundled collections of resources, including functions, sample datasets and compiled code, which are stored in libraries.
- System Libraries in R contain the packages that are installed by default together with R, for instance the base, datasets, graphics, stats & utils packages.
- Users may install additional libraries from repositories such as CRAN, which will appear under the User Library in R.

Sequences & concatenation

- The colon operator, :, creates simple integer sequences with an increment of one.
- The seq() function gives more flexibility by letting you specify the start value, the end value, and the step size.
- The rep() function is useful for creating sequences with repeating patterns.
- The c() function is used to combine elements into data structures such as vectors.

Conditional statements

- The if statement is used for execution of code only when the specified condition is TRUE.
- An else statement can be used in conjunction with the if statement to provide alternative code to execute when the condition is FALSE.

EXAMPLE: Determine whether a person is a teenager

The following R code verifies whether a person is a teenager based on the value assigned to the variable age:

```
age <- 13
if(age > 12 & age < 20) {
  print("Person is a teenager")
}</pre>
```

The R code below assigns TRUE or FALSE to the variable teen based on the value of age:

```
age <- 7
if(age > 12 & age < 20) {
  teen <- TRUE
} else{
  teen <- FALSE
}</pre>
```


Loops

- Loops are used in R to repeatedly execute a block of code.
- The for loop is used to repeat a block of code for each element in a sequence
- With the while loop, a block of code is repeatedly executed as long as a specified condition remains TRUE.
- The repeat loop executes a block of code until a break statement is encountered within the loop.

EXAMPLE: Gauss summation

• The for loop can be used to calculate

$$\sum_{j=1}^{100} j$$

```
n <- 100
sum <- 0
for(j in 1:n) {
   sum <- sum + j
}</pre>
```