1. Двойной интеграл в декартовых координатах и методы его вычисления.

Пусть D - плоская область. Назовем ее <u>правильной</u> в направлении OX (OY), если любая прямая параллельная оси OX(OY) пересекает границы области D не более двух раз.

Рис.1

Пусть D — область правильная в направлении OY (см.рис.1), $y = y_1(x)$ и $y = y_2(x)$ — уравнения нижней (AMB) и верхней (ANB) линии границы области D, $x \in [a,b]$. В этом случае двойной интеграл выражается через двукратный интеграл по формуле

$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b dx \int\limits_{y_1(x)}^{y_2(x)} f(x,y)dy.$$

Рис.2

Аналогично, если область D – правильная в направлении оси OX (см.рис.2), то

$$\iint_D f(x,y)dxdy = \int_c^d dy \int_{x_1(y)}^{x_2(y)} f(x,y)dx.$$

Пример 1. Расставить пределы интегрирования в двойном интеграле $\iint f(x,y)dxdy$, если область D ограничена линиями $y=x^2, x=a, y=0 (a>0)$.

Решение. Построим область D.

Тогда
$$\iint_D f(x,y) dx dy = \int_0^a dx \int_0^{x^2} f(x,y) dy = \int_0^{a^2} dy \int_{\sqrt{y}}^a f(x,y) dx$$
.

Пример 2. Изменить пределы интегрирования в интеграле $\int\limits_{1}^{3}dx\int\limits_{-(x-1)^2+2}^{x^2+1}f(x,y)dy$. Решение. Проведем прямые $x=1,\,x=3$ и кривые $y_1=-(x-1)^2+2$ и $y_2=x^2+1$,

область D (см.рис.).

Граница области AB, заданная по условию как $y_2 = x^2 + 1$ может также описываться уравнением $x = \sqrt{y-1}$. Граница области AC, заданная уравнением $y_1 = -(x-1)^2 + 2$, может также описываться уравнением $x = 1 + \sqrt{2 - y}$. Заметим, что область D ограничена слева двумя кривыми, поэтому для изменения порядка интегрирования следует её разбить прямой AK, параллельной оси OX на две области D_1 и D_2 . Тогда

$$\int_{1}^{3} dx \int_{-(x-1)^{2}+2}^{x^{2}+1} f(x,y)dy = \iint_{D} f(x,y)dxdy = \iint_{D_{1}} f(x,y)dxdy + \iint_{D_{2}} f(x,y)dxdy =$$

$$= \int_{-2}^{2} dy \int_{1+\sqrt{2-y}}^{3} f(x,y)dx + \int_{2}^{10} dy \int_{\sqrt{y-1}}^{3} f(x,y)dx.$$

Пример3. Вычислить интеграл $\iint_D x^2 y dx dy$, если область D ограничена линиями $y = 0, y = 2x^3, x + y = 3$.

Pешение. Проведим указанные линии; определяем область D и пределы изменений переменных x и y (см.рис. ниже).

Область D правильная в направлении оси OX, поэтому вначале надо интегрировать по x, а потом по y. Тогда двойной интеграл по области D выражается одним двукратным интегралом

$$\iint_{D} x^{2}ydxdy = \int_{0}^{2} dy \int_{\sqrt[3]{\frac{y}{2}}}^{3-y} x^{2}ydx = \int_{0}^{2} ydy \int_{\sqrt[3]{\frac{y}{2}}}^{3-y} x^{2}dx = \int_{0}^{2} ydy \left(\frac{x^{3}}{3}\Big|_{\sqrt[3]{\frac{y}{2}}}^{3-y}\right) = \int_{0}^{2} y \left(\frac{(3-y)^{3}}{3} - \frac{y}{6}\right)dy =$$

$$= \int_{0}^{2} (9y - 9y^{2} + 3y^{3} - \frac{y^{4}}{3} - \frac{y^{2}}{6})dy = \left(\frac{9y^{2}}{2} - \frac{9y^{3}}{3} + \frac{3y^{4}}{4} - \frac{y^{5}}{15} - \frac{y^{3}}{18}\right)\Big|_{0}^{2} = \frac{154}{45}.$$

Задачи для самостоятельного решения

В задачах 1 - 6 расставьте пределы интегрирования в интеграле $\iint_D f(x,y) dx dy$, если :

 $3a\partial a$ ча 1. D — прямоугольник ABCD с вершинами A(-2, -1), B(-2, 3), C(5, 3), D(5, -1).

3адача 2. D – треугольник ABC с вершинами A(-3,1), B(3,4), C(3,1).

 $3a\partial a4a$ 3. D — треугольник, ограниченный прямыми 2y - x = 0; 3y + 2x -7=0; 5y+x-14=0.

 $3a\partial a 4a \ 4.\ D$ — область, ограниченная линиями $xy = 4; \ x = 1; \ y = 1/2.$

Задача 5. D – область, ограниченная линиями $y = \frac{27}{x^2 + 9}$; $y = \frac{x^2}{2}$; $x \ge 0$.

 $3a\partial a$ ча 6. D – область, ограниченная линиями $x = y^2 + 2y$; x - y = 2.

 $3a\partial a 4a$ 7. Вычислить интеграл $\iint_D \ln y dx dy$, если область D ограничена линиями

$$y = e^x$$
; $y = e$; $x \ge 0$. (*Omeem*: e).

 $3a\partial a 4a$ 8. Вычислить интеграл $\iint_D (2x-y^2) dx dy$, если D — трапеция ABCD с

вершинами A(2; 0), B(1; 1), C(0; 1), D(0; 0). (Ответ: $1\frac{11}{12}$).

 $3a\partial a 4a$ 9. Вычислите интеграл $\iint_D (x+2y) dx dy$, где область D ограничена ли-

ниями $y = \frac{x^2}{2}$; $y = \sqrt{x}$. (*Omeem*: $10\sqrt{2} - 1.6$).

2. Вычисление двойного интеграла в полярных координатах.

Если область D ограничена лучами $\varphi = \alpha$, $\varphi = \beta$ и кривыми $r = r_1(\varphi)$, $r = r_2(\varphi)$ (см.рис.ниже), то $\iint_D f(x,y) dx dy = \int\limits_{\alpha}^{\beta} d\varphi \int\limits_{r_1(\varphi)}^{r_2(\varphi)} f(r\cos\varphi,r\sin\varphi) r dr$

Полярные координаты r и φ связаны с прямоугольными координатами соотношениями $x=r\cos\varphi$, $y=r\sin\varphi$, очевидно , что $r=\sqrt{x^2+y^2}$.

Задачи для решения в аудитории.

Пример 1. Вычислить, перейдя к полярным координатам интеграл $\iint_D x dx dy$, где область D ограничена линией $x^2 + y^2 = 2x$.

Решение. Преобразуем к каноническому виду уравнение границы D $x^2 - 2x + y^2 = 0; x^2 - 2x + 1 + y^2 - 1 = 0; (x - 1)^2 + y^2 = 1.$

Таким образом, область D – окружность с центром в точке (1,0) и радиусом 1.

Выразим уравнение границы D в полярных координатах

$$r^2\cos^2\varphi + r^2\sin^2\varphi = 2r\cos\varphi; r^2 = 2r\cos\varphi;$$
 t.k. $r \neq 0$, to $r = 2\cos\varphi$.

Для области D $\frac{-\pi}{2} \le \varphi \le \frac{\pi}{2}; 0 \le r \le 2\cos\varphi$.Поэтому

$$\iint_{D} x dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} r\cos\varphi r dr = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \cos\varphi \int_{0}^{2\cos\varphi} r^{2} dr = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \cos\varphi \left(\frac{r^{3}}{3}\right)\Big|_{0}^{2\cos\varphi} = \frac{16}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{4}\varphi d\varphi = \frac{16}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1+\cos 2\varphi}{2}\right)^{2} d\varphi = \frac{4}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+2\cos 2\varphi + \cos^{2} 2\varphi) d\varphi = \frac{4}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+2\cos 2\varphi + \frac{1}{2} + \frac{\cos 4\varphi}{2}) d\varphi = \frac{4}{3} \left(\frac{3}{2}\varphi - \frac{\sin 2\varphi}{2} - \frac{\sin 4\varphi}{8}\right)\Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2\pi.$$

Пример 2.Вычислить $\iint_D (x+y) dx dy$, где область D — часть кольца, ограниченного

окружностями
$$x^2 + y^2 = 1$$
 и $x^2 + y^2 = 9$ и лучами $\varphi_1 = \frac{\pi}{6}$, $\varphi_2 = \frac{\pi}{3}$.

Peшение . Так как уравнение границ области D в полярных координатах

$$r_{1} = 1, r_{2} = 3, \varphi_{1} = \frac{\pi}{6}, \varphi_{2} = \frac{\pi}{3}, \text{ To } \iint_{D} (x+y) dx dy = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d\varphi \int_{1}^{3} (r\cos\varphi + r\sin\varphi) r dr =$$

$$= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\cos\varphi + \sin\varphi) d\varphi \int_{1}^{3} r^{2} dr = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\cos\varphi + \sin\varphi) d\varphi \left(\frac{r^{3}}{3}\right) \Big|_{1}^{3} = \frac{26}{3} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\cos\varphi + \sin\varphi) d\varphi =$$

$$= \frac{26}{3} (\sin\varphi - \cos\varphi) \Big|_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{26}{3} \sqrt{3}.$$

Задачи для самостоятельного решения

В задачах 1-5 требуется, перейдя к полярным координатам, вычислить двойные интегралы.

Петралы .
Задача 1.
$$\int_{-2}^{2} dx \int_{0}^{\sqrt{4-x^2}} tg(x^2+y^2) dy$$
. (Ответ: $\frac{-\pi}{2} \ln|\cos \varphi|$).
Задача 2. $\int_{0}^{a} dx \int_{0}^{\sqrt{a^2-x^2}} (1+x^2+y^2) dy$. (Ответ: $\frac{\pi}{8}(2a^2+a^4)$).
Задача 3. $\int_{-\sqrt{3}}^{\sqrt{3}} dx \int_{-\sqrt{3-x^2}}^{\sqrt{3-x^2}} e^{-(x^2+y^2)} dy$. (Ответ: $\pi(1-e^{-3})$).
Задача 4. $\int_{-5}^{0} dx \int_{0}^{\sqrt{25-x^2}} \frac{dy}{\sqrt{x^2+y^2}\cos^2(\sqrt{x^2+y^2})}$. (Ответ: $\frac{\pi}{2}tg5$).

Задача 4.
$$\int_{-5}^{0} dx \int_{0}^{\sqrt{25-x^2}} \frac{dy}{\sqrt{x^2+y^2}\cos^2(\sqrt{x^2+y^2})}$$
. (Ответ: $\frac{\pi}{2}$ tg5).

Задача 5.
$$\int_{-R}^{0} dx \int_{-\sqrt{R^2-x^2}}^{0} \frac{xydy}{x^2+y^2}$$
. (Ответ: $\frac{R^2}{2}$).

 $3a\partial a + a \ 6$. Вычислить интеграл $\iint_{D} \frac{\sin \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dx dy$, где область D ограничена

линиями
$$x^2 + y^2 = \frac{\pi^2}{4}$$
; $x^2 + y^2 = \pi^2$. (Ответ: -2 π).

 $3a\partial a + a$ 7. Вычислить интеграл $\iint_D (1+xy)dxdy$, где область D ограничена линией $x^2 + y^2 = 2x$. (*Ответ*: π).

 $3a\partial a 4a$ 8. Вычислить интеграл $\iint_D \frac{dxdy}{x^2+y^2}$, где область D ограничена кривыми $x^2+y^2=1$; $x^2+y^2=9$. (Ответ: $2\pi \ln 3$).

 $3a\partial a 4a$ 9. Вычислить интеграл $\iint_D (4-x-y) dx dy$, где область D ограничена кривой $x^2+y^2=8; (x\geq 0; y\geq 0).$ (Ответ: $8\pi - \frac{32\sqrt{2}}{3}$).

 $3a\partial a 4a = 10$. Вычислить интеграл $\iint_D arctg \frac{y}{x} dxdy$, где область D ограничена кривыми $x^2 + y^2 = 4x$; $x^2 + y^2 = 8x$; x = y; $y = \sqrt{3x}$. (Ответ: $\pi(\sqrt{3} - \frac{1}{2}) - \frac{3}{2}$).

3. Вычисление тройного интеграла в декартовых координатах

Пусть область интегрирования V ограничена снизу поверхностью $z=z_1(x,y)$, сверху поверхностью $z=z_2(x,y)$, а с боков цилиндрической поверхностью с образующими, параллельными оси Oz. D_{xy} – проекция области V на плоскость Oxy. Область D_{xy} определена неравенствами $a \le x \le b$, $y_1(x) \le y \le y_2(x)$.

Тогда тройной интеграл вычисляется по формуле

$$\iiint_{V} f(x, y, z) dv = \iiint_{V} f(x, y, z) dx dy dz = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) dz.$$

Задачи для решения в аудитории

Пример. Вычислить интеграл $\iiint_V (x+y) dv$, где тело V , ограничено плоскостями x=1; y=0; z=0; y=x; x+y+z-4=0 .

Решение. Для заданной области $0 \le z \le 4 - x - y; 0 \le y \le x; 0 \le x \le 1$. Поэтому

$$\iiint\limits_{V} (x+y)dv = \iiint\limits_{V} (x+y)dxdydz = \int\limits_{0}^{1} dx \int\limits_{0}^{x} dy \int\limits_{0}^{4-x-y} (x+y)dz = \int\limits_{0}^{1} dx \int\limits_{0}^{x} (x+y)dy \Big(z\Big|_{0}^{4-x-y}\Big) =$$

$$= \int_{0}^{1} dx \int_{0}^{x} (x+y)(4-x-y)dy = \int_{0}^{1} dx \int_{0}^{x} (4x-x^{2}-2xy+4y-y^{2})dy =$$

$$= \int_{0}^{1} dx (4xy-x^{2}y-xy^{2}+2y^{2}-\frac{y^{3}}{3}) \Big|_{0}^{x} = \int_{0}^{1} (4x^{2}-x^{3}-x^{3}+2x^{2}-\frac{x^{3}}{3})dx =$$

$$= \int_{0}^{1} (-\frac{7}{3}x^{3}+6x^{2})dx = (-\frac{7}{12}x^{4}+2x^{3}) \Big|_{0}^{1} = 2-\frac{7}{12} = \frac{17}{12}.$$

Задачи для самостоятельного решения

 $3a\partial a 4a \ 1$. Вычислить интеграл $\iiint_V (xz-y^2) dx dy dz$, где область V — параллелепипед: $-1 \le x \le 2; 0 \le y \le 1; 1 \le z \le 2$. (Ответ: $\frac{1}{4}$).

 $3a\partial a 4a$ 2. Вычислить интеграл $\iiint\limits_V (x+y+z) dx dy dz$, где область V ограничена

плоскостью $x + y + z = a, (x \ge 0; y \ge 0; z \ge 0)$. (Ответ: $\frac{a^4}{8}$).

 $3a\partial a + a 3$. Вычислить интеграл $\iint_V \frac{dxdydz}{y+3}$, где область V ограничена плоскостями $y+z=3; x=2; (x\geq 0; y\geq 0; z\geq 0)$. (Ответ: $12\ln 2$ - 6).

 $3a\partial a 4$. Вычислить интеграл $\iiint_V (2+z) dx dy dz$, где область V ограничена поверхностью $y=x^2$ и плоскостями y=1; z=0; z=2.(*Ответ*:8).

Задача 5. Вычислить интеграл $\iiint_V \frac{dxdydz}{4-x}$, где область V ограничена поверхностью $x^2=4-y$ и плоскостями x=0; z=0; z=0; z=0; z=0. (*Ответ*: z=0).

4. Вычисление тройных интегралов в цилиндрических и сферических координатах

При переходе от декартовых координат х, у, z к цилиндрическим координатам

 $r, \, \varphi, \, z$ (см.рис.), связанными с $x, \, y, \, z$ соотношениями $x = r \cos \varphi, \, y = r \sin \varphi, \, z = z$ формула преобразования тройного интеграла к цилиндрическим координатам имеет вид:

$$\iiint\limits_V f(x,y,z)dxdydz = \int\limits_{\varphi_1}^{\varphi_2} d\varphi \int\limits_{r_1}^{r_2} rdr \int\limits_{z_1}^{z_2} f(r\cos\varphi,r\sin\varphi,z)dz$$

При переходе от декартовых координат x, y, z к сферическим координатам r, φ , θ

(см.рис.), связанными с x,y,z соотношениями $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = z \cos \theta$ формула преобразования тройного интеграла к сферическим координатам имеет вид

$$\iiint\limits_{V} f(x,y,z) dx dy dz = \int\limits_{\varphi_{1}}^{\varphi_{2}} d\varphi \int\limits_{\theta_{1}}^{\theta_{2}} \sin \theta d\theta \int\limits_{r_{1}}^{r_{2}} r^{2} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) dr$$

Задачи для решения в аудитории.

Пример 1. Вычислить интеграл $\iiint_V y dv$, где тело V ограничено поверхностями $y=0,\,y=\sqrt{2x-x^2}\,,z=0,z=a.$

Pешение. Тело V представляет собой половину кругового цилиндра

 $(x-1)^2+y^2=1$, ограниченного сверху плоскостью z=a, а снизу плоскостью z=0; его проекция D на плоскость OXY —это полуокружность с центром в точке (1; 0) и радиусом 1, имеющая в полярных координатах уравнение $r=2\cos\varphi$, причем φ изменяется от 0 до $\frac{\pi}{2}$. Следовательно, границы изменения переменных для области $V: 0 \le \varphi \le \frac{\pi}{2}$; $0 \le r \le 2\cos\varphi$; $0 \le z \le a$. Тогда, переходя к цилиндрическим координатам,

$$\iiint_{V} y dv = \int_{0}^{\frac{\pi}{2}} \sin \varphi d\varphi \int_{0}^{2\cos \varphi} r^{2} dr \int_{0}^{a} dz = \int_{0}^{\frac{\pi}{2}} \sin \varphi d\varphi \int_{0}^{2\cos \varphi} r^{2} dr(z) \Big|_{0}^{a} = a \int_{0}^{\frac{\pi}{2}} \sin \varphi d\varphi \int_{0}^{2\cos \varphi} r^{2} dr =$$

$$= a \int_{0}^{\frac{\pi}{2}} \sin \varphi d\varphi \frac{r^{3}}{3} \Big|_{0}^{2\cos \varphi} = \frac{8}{3} a \int_{0}^{\frac{\pi}{2}} \cos^{3} \varphi \sin \varphi d\varphi = \frac{8a}{3} \left(-\frac{\cos^{4} \varphi}{4} \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{2}{3} a.$$

Пример 2. Вычислить интеграл $\iiint_V (z+2) dv$, где тело V ограничено поверхностями $x^2+y^2+z^2=R_1^2, x^2+y^2+z^2=R_2^2; R_2 \rangle R_1; z \ge 0.$

Решение. Тело V ограничено двумя полусферами радиуса R_1 и R_2 и плоскостью z=0. Проекция тела на плоскость OXY представляет собой окружность радиуса R_2 . Таким образом пределы изменения переменных для тела V определяются неравенствами $0 \le \theta \le \frac{\pi}{2}$, $0 \le \varphi \le 2\pi$, $R_1 \le r \le R_2$. Тогда, переходя κ сферическим координатам

$$\iiint_{V} (z+2)dv = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \sin\theta d\theta \int_{R_{1}}^{R_{2}} (r\cos\theta + 2)r^{2}dr = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \sin\theta d\theta \left(\frac{r^{4}\cos\theta}{4} + \frac{2r^{3}}{3} \right) \Big|_{R_{1}}^{R_{2}} = \int_{0}^{2\pi} d\varphi \int_{0}^{\frac{\pi}{2}} \left(\frac{R_{2}^{4} - R_{1}^{4}}{4} \cos\theta \sin\theta + \frac{2(R_{2}^{3} - R_{1}^{3})}{3} \sin\theta \right) d\theta =$$

$$= \int_{0}^{2\pi} d\varphi \left(\frac{(R_2^4 - R_1^4)}{4} \frac{\sin^2 \theta}{2} \Big|_{0}^{\frac{\pi}{2}} + \frac{2(R_2^3 - R_1^3)}{3} (-\cos \theta) \Big|_{0}^{\frac{\pi}{2}} \right) =$$

$$= \left(\frac{R_2^4 - R_1^4}{8} + \frac{2(R_2^3 - R_1^3)}{3}\right) \int_0^{2\pi} d\varphi = 2\pi \left(\frac{R_2^4 - R_1^4}{8} + \frac{2}{3}(R_2^3 - R_1^3)\right).$$

Задачи для самостоятельного решения

B задачах I - 5 требуется вычислить тройные интегралы, перейдя к цилиндрическим координатам.

 $3a\partial a 4a \ 1.$ Вычислить интеграл $\iiint_V z^2 dv$, где область V ограничена поверхностями $x^2+y^2=4, z=2, z=0$. $(Omsem: \frac{32\pi}{3}).$

 $3a\partial a 4a \ 2$. Вычислите интеграл $\iint_V (x^2 + y^2 + z^2) dv$, где область V ограничена поверхностями $x^2 + z^2 = 1$, y = 0, y = 1. (Ответ: $\frac{3\pi}{3}$).

 $3a\partial a 4a \ 3.$ Вычислите интеграл $\iiint_V z dv$, где область V ограничена поверхностями $4-z=x^2+y^2, z=0$. (Ответ: $\frac{32\pi}{3}$).

 $3a\partial a 4a$ 4. Вычислите интеграл $\iint_V \frac{xzdxdydz}{\sqrt{x^2+y^2}}$, где область V ограничена поверхностью $z=2(x^2+y^2)$,плоскостями $z=18, y=0, y=\frac{1}{\sqrt{3}}x$ и отвечает условию $0 \le y \le \frac{1}{\sqrt{2}}x$.(Ответ: 81).

 $3a\partial a 4a$ 5. Вычислить интеграл $\iiint_V \sqrt{x^2+y^2}\,dxdydz$, где область V ограничена поверхностью $x^2+y^2=2x$, плоскостями x+z=2, z=0и отвечает условию z>0. (Ответ: $\frac{128}{45}$).

В задачах 6 - 9 требуется вычислить тройной интеграл, перейдя к сферическим координатам.

Задача 6. Вычислить интеграл $\iiint_V (x^2+y^2+z^2) dx dy dz$, где область V ограничена поверхностью $x^2+y^2+z^2=9$,плоскостями x=0, y=0, z=0 и отвечает условиям x>0, y>0, z>0. (Ответ: $\frac{243\pi}{10}$).

 $3a\partial a 4a$ 7. Вычислить интеграл $\iiint_V y dx dy dz$, где область V ограничена поверхностью $y^2 = x^2 + z^2$, плоскостью y = 2 и отвечает условию y > 0. (*Ответ*: 4π).

 $3a\partial a 4a$ 8. Вычислить интеграл $\iint_V z \sqrt{x^2 + y^2} \, dx dy dz$, где область V ограничена сферическими поверхностями $x^2 + y^2 + z^2 = 1, x^2 + y^2 + z^2 = 4$ и удовлетворяющая условию z > 0.($Omsem: \frac{31}{5}\pi$).

 $3a\partial a va$ 9. Вычислить интеграл $\iiint_V x dx dy dz$, где область V ограничена поверхностью $x^2 = 2(y^2 + z^2)$, плоскостями x = 0, x = 4 и отвечает условию 0 < x < 4. (*Ответ*: 32π).

5. Криволинейный интеграл І рода

1. Если плоская кривая L задана в декартовых координатах уравнением L: $y = \varphi(x)$; $x \in [a, b]$, то $dl = \sqrt{1 + (\varphi'(x))^2} dx$, а $f(P) = f(x, y) = f(x, \varphi(x))$, тогда

$$\int_{I} f(P)dl = \int_{a}^{b} f(x, \varphi(x)) \sqrt{1 + (\varphi'(x))^{2}} dx$$

2. Если плоская кривая L задана уравнением L: $x = \psi(y), y \in [c, d]$, то

$$\int_{L} f(P)dl = \int_{c}^{d} f(\psi(y), y) \sqrt{1 + (\psi'(y))^{2}} dy$$

3. Если кривая L задана параметрически на плоскости, т.е.

$$L: \begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in [t_0, t_1], \text{ To } \int_L f(P) dl = \int_{t_0}^{t_1} f(x(t), y(t)) \sqrt{(x'_t)^2 + (y'_t)^2} dt.$$

4. Если кривая L задана параметрически в пространстве , т.е.

$$L: \begin{cases} x = x(t) \\ y = y(t), t \in [t_0, t_1] \text{, To } \int_L f(P) dl = \int_{t_0}^{t_1} f(x(t), y(t), z(t)) \sqrt{(x'_t)^2 + (y'_t)^2 + (z'_t)^2} dt. \end{cases}$$

5. Если кривая L задана в полярных координатах L: $r=r(\varphi), \alpha \leq \varphi \leq \beta$, то

$$\int_{L} f(P)dl = \int_{\alpha}^{\beta} f(r,\varphi) \sqrt{r^{2} + (r')^{2}} d\varphi.$$

Задачи для решения в аудитории

Пример 1. Вычислить интеграл $\int_L \frac{dl}{\sqrt{x^2+y^2+4}}$, где L – отрезок прямой, соединяющей точки O(0, 0) и A(1, 2).

Решение. Нарисуем отрезок *OA* и найдем уравнение *L*: y = 2x , x \in [0, 1]. Тогда y'=2 и $dl=\sqrt{1+(y')^2}\,dx$, $dl=\sqrt{1+2^2}\,dx$; $dl=\sqrt{5}\,dx$.

Omsem: $\ln \frac{\sqrt{5}+3}{2}$.

Пример 2. Вычислить интеграл $\int_L (x-y)dl$, где L – контур треугольника ABC с вершинами в точках A(1,1), B(4,1), C(3,3) (см.рис.)

Pешение._Разобьем контур треугольника ABC на отрезки AB, BC и CA. Тогда

$$\int_{L} (x - y) dl = \int_{(AB)} (x - y) dl + \int_{(BC)} (x - y) dl + \int_{(CA)} (x - y) dl.$$

Вычислим интеграл по отрезку AB. Так как уравнение прямой AB: $y=1; x\in [1,4]$, тогда $x\in [1,4]$ во $x\in [1,4]$

$$\int_{(AB)} (x-y)dl = \int_{1}^{4} (x-1)dx = \left(\frac{x^{2}}{2} - x\right)\Big|_{1}^{4} = \frac{9}{2}.$$

Вычислим интеграл по отрезку BC. Подставив в уравнение прямой y = kx + b координаты точек B(4,1) и C(3,3), получим, что уравнение прямой BC: y = -2x + 9, при этом x меняется от 4 до 3 . Тогда $dl = \sqrt{1 + (-2)^2} \, dx = \sqrt{5} \, dx$ и

$$\int_{(BC)} (x - y)dl = \int_{4}^{3} (x - (-2x + 9))\sqrt{5}dl = \sqrt{5} \int_{4}^{3} (3x - 9)dx = \sqrt{5} \left(\frac{3x^{2}}{2} - 9x\right)\Big|_{4}^{3} =$$

$$= \sqrt{5} \left(\frac{27}{2} - 27 - 24 + 36\right) = \frac{-3\sqrt{5}}{2}.$$

Вычислим интеграл по отрезку CA. Подставив в уравнение прямой y = kx + b координаты точек C(3,3) и A(1,1), получим, что уравнение прямой CA: y = x; x при этом меняется от 3 до 1. Тогда $dl = \sqrt{2}dx$ и $\int_{CA} (x-y)dx = \int_{3}^{1} (x-x)\sqrt{2}dx = 0$.

Суммируя интегралы по отрезкам AB, $BC\ u\ CA$ получим , что

$$\int_{L} (x-y) dl = \frac{9-3\sqrt{5}}{2}.$$

Ombem: $\frac{9-\sqrt{5}}{2}$.

Пример 3.Вычислить интеграл $\int_L xydl$, где L – часть винтовой линии $x=a\cos t; \ y=a\sin t; z=bt; t\in \left[0,\frac{\pi}{4}\right].$

Pешение. Имеем $x'_t = -a \sin t; y'_t = a \cos t; z'_t = b$. Тогда

$$dl = \sqrt{(x'_t)^2 + (y'_t)^2 + (z'_t)^2} dt = \sqrt{a^2 + b^2} dt \text{ if }$$

$$\int_L xydl = \int_0^{\frac{\pi}{4}} a\cos t \, a\sin t \sqrt{a^2 + b^2} dt = \frac{a^2\sqrt{a^2 + b^2}}{2} \int_0^{\frac{\pi}{4}} \sin 2t dt =$$

$$= \frac{a^2\sqrt{a^2 + b^2}}{2} \left(-\frac{\cos 2t}{2} \right) \int_0^{\frac{\pi}{4}} = \frac{-a^2\sqrt{a^2 + b^2}}{4} (\cos \frac{\pi}{2} - \cos 0) = \frac{a^2\sqrt{a^2 + b^2}}{4}.$$

Ombem: $\frac{a^2\sqrt{a^2+\overline{b^2}}}{4}.$

 Π ример 4<u>.</u> Вычислить интеграл $\int_L \frac{1}{\cos\left(\frac{\varphi}{2}\right)} dl$, где L – часть кривой

$$r = 1 + \cos \varphi, \varphi \in \left[0, \frac{\pi}{2}\right].$$

$$dl = \sqrt{r^2 + (r')^2} d\varphi = \sqrt{(1 + \cos\varphi)^2 + (-\sin\varphi)^2} d\varphi = \sqrt{2 + 2\cos\varphi} d\varphi = \sqrt{2(1 + \cos\varphi)} d\varphi = \sqrt{2 \cdot 2\cos^2\frac{\varphi}{2}} d\varphi = 2\cos\frac{\varphi}{2}.$$

Тогда
$$\int_{L} \frac{1}{\cos \frac{\varphi}{2}} dl = \int_{0}^{\frac{\pi}{2}} \frac{2\cos \frac{\varphi}{2} d\varphi}{\cos \frac{\varphi}{2}} = 2\varphi \Big|_{0}^{\frac{\pi}{2}} = \pi.$$
 (*Ответ:* π .)

Задачи для самостоятельного решения

 $3 a \partial a 4 a \ 1.$ Вычислить интеграл $\int\limits_L (x-y) dl$, где L — отрезок прямой между точками O(0,0) и A(4,3).(Ответ: $\frac{5}{2}$).

_Задача 2._Вычислить интеграл $\int_L \frac{dl}{x^2+y^2}$, где L – отрезок прямой, заключенный между точками A(1,2) и B(2,4) . (Ответ: $\frac{\sqrt{5}}{10}$).

 $3a\partial a + a 3$. Вычислить интеграл $\int_L xydl$,где L — контур прямоугольника ABCD с вершинами в точках A(0, 0); B(4, 0); C(4, 2); D(0, 2). (Ответ: 24).

 $3a\partial a 4a$ 4. Вычислить интеграл $\int_{L}^{\infty} \frac{x}{y} dl$, где L – контур треугольника ABC с вершинами в точках A(0,0); B(2,3); C(3,1). (Ответ: $\frac{2\sqrt{13}}{3} + 2\ln 2 + 2\sqrt{5}$).

3aдача 5. Вычислить интеграл $\int_L y dl$, где L — дуга $x = \sin y$, $y \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$.

(Otbet: $\pi + 4 - \frac{\pi}{3}\sqrt{2} - 2\sqrt{6}$).

3ada4a 6. Вычислить интеграл $\int\limits_{L} xydl$, где L – часть окружности

$$\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}, t \in \left[0, \frac{\pi}{2}\right]. \text{ (Other: } \frac{R^3}{2}\text{)}.$$

 $3a\partial a$ 4а 7. Вычислить интеграл $\int_L ydl$, где L – арка циклоиды $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases}$ (Ответ: $10\frac{2}{3}$)

 $3a\partial a 4a$ 8. Вычислить интеграл $\int\limits_{\bf r}z^2dl$, где L – первый виток винтовой линии

$$\begin{cases} x = \cos t \\ y = \sin t, 0 \le t \le 2\pi . \text{ (Other: } \frac{8\sqrt{2}}{3}\pi \text{).} \\ z = t \end{cases}$$

 $3a\partial a 4a$ 9. Вычислить интеграл $\int_I r dl$, где L – кривая, заданная уравнением $r = 2\sin\varphi$; $0 \le \varphi \le \pi$. (Other: 8).

Задача 10 Вычислить интеграл $\int_{r} \sqrt{\varphi^2 + 1} dl$, где L — первый виток спирали Архимеда $r = 2\varphi$. (Ответ: $\frac{16}{33}\pi^3 + 2\pi$).

 $3a\partial a ua\ 11.$ Вычислить интеграл $\int_{L} e^{-\varphi} dl$, где L – дуга логарифмической спирали $r = 2e^{3\varphi}, \varphi \in \left[\frac{\pi}{3}; \pi\right]. \text{ (Other: } \sqrt{10}(e^{2\pi} - e^{\frac{2\pi}{3}})\text{)}.$

6.Криволинейные интегралы II рода

- 1. Если плоская кривая L задана в декартовых координатах уравнением
- $y = \varphi(x), x \in [a,b]$, то $\int_{L} P(x,y) dx + Q(x,y) dy = \int_{a}^{b} (P(x,\varphi(x)) + Q(x,\varphi(x)) \cdot \varphi'(x)) dx$ 2. Если кривая L задана параметрическими уравнениями, т.е. $L:\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ $t \in [t_1, t_2]$, To $\int_{L} P(x,y)dx + Q(x,y)dl = \int_{t_{1}}^{t_{2}} (P(x(t),y(t)) \cdot x'(t) + Q(x(t),y(t))y'(t))dt$

 Π ример 1. Вычислить $\int y dx - x dy$, где L – дуга линии $y = x^2$ от A(0, 0) до B(1, 1).

Решение.
$$\int_{L} y dx - x dy = \int_{0}^{1} (x^{2} - x \cdot 2x) dx = -\int_{0}^{1} x^{2} dx = -\frac{x^{3}}{3} \Big|_{0}^{1} = -\frac{1}{3}.$$

$$\begin{split} & \textit{Пример2}. \; \text{Вычислить} \; \int_L y dx - x dy \;, \text{ где L} - \text{дуга циклоиды} \\ & \left\{ x = 2(t - \sin t) \right. \\ & \left. y = 2(1 - \cos t) \right. \;, \; t \in [0, 2\pi] \;. \end{split}$$

$$& \textit{Решение.} \; \int_L y dx - x dy = \int_0^{2\pi} (2(1 - \cos t) \cdot (2 - 2\cos t) - 2(t - \sin t) \cdot 2\sin t) dt = \\ & = 4 \int_0^{2\pi} (1 - 2\cos t + \cos^2 t - t\sin t + \sin^2 t) dt = 4(2 \int_0^{2\pi} dt - 2 \int_0^{2\pi} \cos t dt - \int_0^{2\pi} t\sin t dt). \end{split}$$

$$& \text{Интегрируя третий интеграл по частям, получим} \\ & \int_0^{2\pi} y dx - x dy = 8t \Big|_0^{2\pi} - 8\sin t \Big|_0^{2\pi} + 4t\cos t \Big|_0^{2\pi} - \int_0^{2\pi} \cos t dt = 24\pi. \end{split}$$

Задачи для самостоятельного решения

$$3a\partial aua1$$
. Вычислить $\int_{\mathcal{X}} y(x-y)dx - xdy$ где:

- а) L отрезок прямой y = 2x от точки O(0, 0) до точки A(1, 2),
- б) L дуга параболы $y = 2\sqrt{x}$ от точки O(0, 0) до точки A(1, 2).

(*Omeem*:a)
$$\frac{1}{3}$$
; 6)- $\frac{8}{15}$).

$$3a\partial aua2$$
. Вычислить $\int\limits_{L} (x^2 + y^2) dx + (x^2 - y^2) dy$ где L – ломаная линия

y = |x| от точки A(-1,1) до точки B(2,2). (Ответ: 6).

 $3a\partial a va 3$. Вычислить $\int\limits_L z dx + x dy + y dz$, где L — дуга кривой заданной пара-

метрически
$$L: \begin{cases} x=t \\ y=t^2 \\ z=t^3 \end{cases}$$
, $0 \le t \le 1.(Omsem: \frac{91}{60}).$

 $3a\partial aua4$._Вычислить $\int\limits_{L}-yzdx+xzdy+xydz$, где L — дуга кривой

L:
$$\begin{cases} x = a \cos t \\ y = a \sin t, \ 0 \le t \le 2\pi . (Omsem: 2\pi^2 a^2 h). \\ z = ht \end{cases}$$

7. Вычисление поверхностного интеграла в декартовой системе координат

Если поверхность S задана уравнением $z = \varphi(x, y)$, то

$$\iint_{S} f(x,y,z)ds = \iint_{D_{xy}} f(x,y,\varphi(x,y)) \sqrt{1 + (\varphi_{x}')^{2} + (\varphi_{y}')^{2}} dxdy,$$
где D_{xy} — проекция по-

верхности Q на плоскость Oxy.

Пример. Вычислить $\iint_S \frac{ds}{(1+x+z)^2}$, где S — часть плоскости x+y+z=1, лежащая в первом октанте.

Решение. Проекцией S на плоскость Oxy является область D_{xy} (см.рис) ограниченная линиями x = 0, y = 0, y = 1 - x.

Сама поверхность задана уравнением z = 1 - x - y, поэтому $\varphi'_x = -1$, $\varphi'_y = -1$;

$$\sqrt{1 + (\varphi_x')^2 + (\varphi_y')^2} = \sqrt{3} \cdot \text{Тогда} \iint_{\mathcal{S}} \frac{ds}{(1 + x + z)^2} = \iint_{D_{xy}} \frac{\sqrt{3} dx dy}{(1 + x + (1 - x - y))^2} =$$

$$= \iint_{D_{xy}} \frac{\sqrt{3} dx dy}{(2 - y)^2} = \sqrt{3} \int_{0}^{1} dx \int_{0}^{1 - x} \frac{dy}{(2 - y)^2} = \sqrt{3} \int_{0}^{1} dx \left(\frac{1}{2 - y}\right) \Big|_{0}^{1 - x} = \sqrt{3} \int_{0}^{1} \left(\frac{1}{1 + x} - \frac{1}{2}\right) dx =$$

$$= \sqrt{3} \left(\ln|x+1| - \frac{x}{2} \right) \Big|_0^1 = \sqrt{3} \left(\ln 2 - \frac{1}{2} \right).$$

Задачи для самостоятельного решения

 $3a\partial a 4a \ 1.$ Вычислить интеграл $\iint_S z ds$, где S полусфера $x^2+y^2+z^2=9; (z\geq 0)$. (Ответ:27 π).

 $3a\partial a$ 4 2. Вычислить интеграл $\iint_S (z+2x+\frac{4}{3}y)ds$, где Q часть плоскости

$$\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1, (x \ge 0, y \ge 0, z \ge 0).$$
 (*Omeem*: $4\sqrt{61}$).

 $3a\partial a + 3$. Вычислить интеграл $\iint_S x ds$, где S поверхность сферы $x^2 + y^2 + z^2 = 4$, заключенная в первом октанте. (*Ответ*:2 π).

 $3a\partial a 4a$ 4. Вычислить интеграл $\iint_S (x^2 + y^2) ds$, где S — часть конической поверх-

ности
$$z = \sqrt{x^2 + y^2}$$
, заключенная между плоскостями $z = 0, z = 1$. (*Ответ*: $\frac{\pi\sqrt{2}}{2}$).

 $3a\partial a ua 5$. Вычислить интеграл $\iint_S ds$, где S — парболоид, вырезанный цилиндром

$$x^{2} + y^{2} = a^{2}$$
. (Omsem: $\frac{\pi}{6}$ ((1 + 4 a^{2}) $^{\frac{3}{2}}$ -1)).

8. Поверхностные интегралы II рода

Рассмотрим двухстороннюю поверхность и выберем на ней определенную сторону S. Если D_{xy} – проекция поверхности S заданной уравнением z = f(x,y) на плоскость O_{xy} , то

$$\iint_{S} R(x, y, z) dxdy = \pm \iint_{D_{xy}} R(x, yf(x, y)) dxdy,$$

где знак "+" берется в том случае , когда на выбранной стороне поверхности $\cos \gamma > 0$, а знак "-" берется в случае, когда $\cos \gamma < 0$, где γ — угол между нормалью к поверхности и положительным направлением оси Oz.

Аналогично , если D_{xy} — проекция поверхности S, заданной уравнением

$$y = \varphi(x, z)$$
, то $\iint_S Q(x, y, z) dx dz = \pm \iint_{D_{xz}} Q(x, \varphi(x, z), z) dx dz$,

где знак в формуле определяется по знаку $\cos \beta$, где β – угол между нормалью к поверхности и положительным направлением оси Oy.

Если D_{xy} – проекция поверхности S, заданной уравнением $x = \psi(y, z)$, то

$$\iint_{S} P(x, y, z) dy dz = \pm \iint_{D_{yz}} P(\psi(y, z), y, z) dy dz,$$

где знак определяется по знаку $\cos \alpha$, где α – угол между нормалью к поверхности и положительным направлением оси Ox.

Для вычисления поверхностного интеграла II рода более общего вида

$$\iint\limits_{S} P(x, y, z) dy dz + Q(x, y, z) dx dz + R(x, y, z) dx dy$$

используются те же формулы.

Пример. Вычислить $\iint_{S} \sqrt[4]{x^2 + y^2} dxdy$,

где S — нижняя сторона круга $x^2 + y^2 \le a^2$.

 $\ensuremath{\textit{Pewehue}}.$ Поверхность S совпадает со своей проекцией D_{xy} на плоскость O_{xy} . Поэтому

$$\iint_{S} \sqrt[4]{x^2 + y^2} dx dy = -\iint_{D_{xy}} \sqrt[4]{x^2 + y^2} dx dy = -\int_{0}^{2\pi} d\varphi \int_{0}^{a} r^{\frac{3}{2}} dr = -\frac{4}{5}\pi \sqrt{a^5}.$$

Задачи для самостоятельного решения

 $3a\partial a 4a$ 1. Вычислить $\iint_{Q} yzdydz + xzdxdz + xydxdy$, где Q — верхняя сторона треугольника, образованного плоскостями x+y+z=2; x=0; y=0; z=0. (*Ответ*: 2).

 $3a\partial a + a \ 2$. Вычислить $\iint_{\mathcal{Q}} x^2 dy dz$, где Q — внешняя часть поверхности параболоида $z = \frac{5}{4}(x^2 + y^2)$, ограниченного плоскостями x > 0, y = 0, z = 5 и удовлетворяющего условиям x > 0, y > 0 < z < 5. (Ответ: $\frac{32}{3}$).

 $3a\partial a 4a$ 3. Вычислить интеграл $\iint_{\mathcal{Q}} x^2 dy dz$, где \mathcal{Q} — внешняя часть сферической поверхности $x^2+y^2+z^2=R^2$, ограниченной плоскостями x=0; y=0; z=0 и удовлетворяющая условиям x>0, y>0, z>0. (Ответ: $\frac{\pi R^4}{8}$).

Геометрические приложения двойных, тройных, криволинейных и поверхностных интегралов.

Площадь S плоской области D:

в полярных координатах.

Объем V:

в сферических координатах

в цилиндрических координатах

Длина l дуги L

Площадь Q поверхности S

$$S = \iint_{D} dxdy$$

$$S = \iint_{D} rdrd\varphi$$

$$V = \iiint_{V} dxdydz$$

$$V = \iiint_{V} r^{2} \sin \theta drd\theta d\varphi$$

$$V = \iiint_{V} rdrd\varphi dz$$

$$l = \iint_{L} dl$$

$$Q = \iint_{S} ds$$

Задачи для самостоятельного решения

 $3a\partial a 4a \ 1.$ Вычислить площадь фигуры D, ограниченной кривыми $y = \frac{x^2}{2}$, y = 4 + x. (*Ответ*: 18).

 $3a\partial a 4a \ 2.$ Вычислить площадь фигуры D, ограниченной кривыми $2x=y^2$, x-y=0. (Ответ: $\frac{2}{3}$).

 $3a\partial a 4a$ 3. Вычислить площадь фигуры D, ограниченной кривыми xy=1, $x=y^2$, y=5. (Ответ: $\frac{124}{3}-\ln 5$).

 $3a\partial a 4a$ 4. Вычислить площадь фигуры D, ограниченной кривыми $y^2 = ax$, $x^2 = ay$, $(a\rangle 0)$ (Ответ: $\frac{5a^2}{3}$).

3a∂aчa 5. Вычислить площадь фигуры D, ограниченной кривыми $x=y^2-1$, $x=5-\frac{y^2}{2}$, $(y\ge 0)$. (*Отве*т:8).

B задачах 6-9 требуется вычислить площадь фигуры D, перейдя κ полярным координатам.

 $3a\partial a 4a$ 6. Вычислить площадь фигуры D, ограниченной кривой $r = \cos 3 \varphi$. (Ответ: $\pi/4$).

 $3a\partial a + a = 7$. Вычислить площадь фигуры D, ограниченной кривыми $r = a(1 - \cos \varphi), r = a$ (вне кардиоиды).(*Ответ*: $a^2(2 - \pi/4)$).

 $3a\partial a 4a \ 8$. Вычислить площадь фигуры D, ограниченной кривыми $x^2 + y^2 = 2x$, $x^2 + y^2 = 4x$, y = x, y = 0. ($Omsem: \frac{3\pi}{4} - \frac{3}{2}$).

3ada4a 9. Вычислить площадь фигуры D, ограниченной кривыми $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,

$$y = 0, y = \sqrt{3}x.$$
 (Omsem: $\frac{\pi ab}{6}$).

 $3a\partial a$ ча 10. Вычислить объем тела V, ограниченного параболоидом $z=2a^2-x^2-y^2$ и плоскостью z=0. (*Ответ*: πa^4).

 $3a\partial a 4a$ 11. Вычислить объем тела V, ограниченного цилиндром $x^2 + y^2 = 2x$ и плоскостями 2x - z = 0, 4x - z = 0. (*Ответ*: 2π).

Задача 12. Вычислить объем тела V, ограниченного поверхностями

$$x^2 + y^2 = R^2$$
, $x^2 + y^2 = z$, $z = 0$.(Omsem: $\frac{\pi R^4}{2}$).

3a∂aча 13. Вычислить объем тела V, ограниченного поверхностями z = x, y = 4, $x^2 + y^2 = 25$, $x \ge 0$, $(y \ge 0, z \ge 0)$. (*Ombem*: $\frac{118}{3}$).

Задача 14. Вычислить объем тела V, ограниченного поверхностями $x + y = 2, z = x^2 + y^2, (x \ge 0, y \ge 0, z \ge 0)$. (*Ответ*: 8/3).

 $3a\partial a$ ча 15. Вычислить объем тела V, ограниченного поверхностями $x = y^2$, $x = 2y^2 + 1$, $z = 1 - y^2$, (z ≥ 0). (Ответ: 8/5).

3a∂aчa 16. Вычислить длину дуги циклоиды $x = t - \sin t$, $y = 1 - \cos t$, если $0 \le t \le \pi$. (Ответ: 4).

 $3a\partial a 4a$ 17. Вычислить длину витка винтовой линии $x=\cos t,\,y=\sin t,\,z=\sqrt{3}t$, если $0\leq t\leq 2\pi$.(Ответ: 8π).

 $3a\partial a 4a$ 18. Вычислить длину дуги кривой $x = \sin y$,если $0 \le y \le \frac{\pi}{2}$. (Ответ: 2).

Задача 19. Найти площадь части конуса $z^2 = 2xy$, расположенного в первом октанте между плоскостями x = 2, y = 4. (Ответ: 16).

 $3a\partial a 4a=20$. Найти площадь части сферы $x^2+y^2+z^2=R^2$, расположенной внутри цилиндра $x^2+y^2=Rx$. (Ответ: $2R^2(\pi-2)$).

9. ВЕКТОРНЫЙ АНАЛИЗ

9.І. Скалярные и векторные поля

Область $W \subseteq \mathbb{R}^n$ вместе с заданной в каждой ее точке M скалярной функцией U(M) называется скалярным полем (СП) U. Функцию U(M) называют *потенииалом* поля.

При n=3 СП задается функцией вида U=U(x,y,z); при n=2 U=U(x,y) и поле U называется nлоским.

Пространственные (плоские) поля графически изображаются поверхностями (линиями) уровня, уравнения которых имеют вид:

$$U(x, y, z) = C, C = const, (U(x, y)) = C, C = const.$$

Пусть $n=3,\ W\subseteq R^3,$ точка $M(x_o,y_o,z_o)\in W, \bar{l}=l_1\bar{i}+l_2\bar{j}+l_3\bar{k}$ - некоторый вектор. Тогда единичный вектор по направлению \bar{l} :

$$\bar{l}_o = \frac{\bar{l}}{|\bar{l}|} = \cos\alpha\,\bar{i} + \cos\beta\,\bar{j} + \cos\gamma\,\bar{k} ,$$

$$\alpha = \frac{l_1}{|\bar{l}|} = \cos\beta - \frac{l_2}{|\bar{l}|} = \cos\gamma - \frac{l_3}{|\bar{l}|}$$

где
$$\left| \bar{l} \right| = \sqrt{l_1^2 + l_2^2 + l_3^2}$$
, $\cos \alpha = \frac{l_1}{\left| \bar{l} \right|}$, $\cos \beta = \frac{l_2}{\left| \bar{l} \right|}$, $\cos \gamma = \frac{l_3}{\left| \bar{l} \right|}$.

Производная СП U в точке M по направлению \bar{l} , обозначаемая $\frac{\partial U(M)}{\partial l}$, определяется соотношением:

$$\frac{\partial U(M)}{\partial l} = \left(U(x_o + \tau \cos \alpha, y_o + \tau \cos \beta, z_o + \tau \cos \gamma)_{\tau} \right|_{\tau=0}$$

и характеризует скорость изменения функции U в направлении \bar{l} .

Производная $\frac{\partial U(M)}{\partial l}$ вычисляется по формуле:

$$\frac{\partial U(M)}{\partial l} = \frac{\partial U(M)}{\partial x} \cos \alpha + \frac{\partial U(M)}{\partial y} \cos \beta + \frac{\partial U(M)}{\partial z} \cos \gamma.$$

Градиентом СП U в точке M называется вектор

$$grad U(M) = \frac{\partial U(M)}{\partial x} \bar{i} + \frac{\partial U(M)}{\partial y} \bar{j} + \frac{\partial U(M)}{\partial z} \bar{k}.$$

Связь между производной по направлению и градиентом выражается формулой:

$$\frac{\partial U(M)}{\partial I} = (gradU(M), \bar{l}_o) = |gradU(M)| \cdot \cos \varphi,$$

где φ - угол между векторами $\operatorname{grad} U(M)$ и \overline{l} .

Из последней формулы следует, что $\max \frac{\partial U(M)}{\partial l} = \left| grad U(M) \right|$ и достигается

при φ = 0, т.е. градиент направлен в сторону наибольшего возрастания потенциала U (по нормали к поверхности уровня в точке M), а модуль градиента равен максимальной скорости возрастания.

Область $W \subseteq \mathbb{R}^n$ вместе с заданной в каждой ее точке M вектор-функцией $\overline{a}(M)$ называется векторным полем (ВП) \overline{a} .

При n = 3 ВП задается функцией вида:

$$\overline{a}(M) = P(x, y, z)\overline{i} + Q(x, y, z)\overline{j} + R(x, y, z)\overline{k}$$
.

При n=2: $\overline{a}(M)=P(x,y)\overline{i}+Q(x,y)\overline{j}$ и ВП называется *плоским*.

Векторной линией поля \bar{a} называется ориентированная линия, в каждой точке M которой вектор касательной $\bar{l}(M)$ сонаправлен вектору поля $\bar{a}(M)$.

Уравнения семейства векторных линий пространственного поля \overline{a} есть общее решение системы дифференциальных уравнений вида

$$\frac{dx}{P(x,y,z)} = \frac{dy}{Q(x,y,z)} = \frac{dz}{R(x,y,z)}.$$

Уравнения векторных линий плоского поля \overline{a} определяются общим решением дифференциального уравнения:

$$\frac{dx}{P(x,y)} = \frac{dy}{Q(x,y)}$$

Задачи для решения в аудитории.

Пример 1. Найти поверхности уровня СП $U = 2x^2 + y^2 + z^2 + 4x - 4y + 6z$ и записать уравнение поверхности уровня, проходящей через точку M(-1; 1; -1).

Решение. Уравнения поверхностей уровня имеют вид

$$2x^2 + y^2 + z^2 + 4x - 4y + 6z = C$$
, $C = const$ или $2(x+1)^2 + (y-2)^2 + (z+3)^2 = C+15$.

Последнее уравнение при различных C > -15 определяет семейство эллипсои-

дов с центром в точке (-1; 2; -3) и полуосями
$$a = \sqrt{\frac{C+15}{2}}, b = c = \sqrt{C+15}$$
.

Поверхность уровня, проходящая через точку M(-1;1;-1), имеет уравнение

$$U(x,y,z) = U(x_o\,,y_o\,,z_o\,)$$
, m.e. $2x^2+y^2+z^2+4x-4y+6z=2+1+1-4-4-6=-10$ или

$$2(x + 1)^{2} + (y - 2)^{2} + (z + 3)^{2} = 5.$$

Пример 2. Для СП $U=x^2y+xz^2-2z$ в точке M(1;1;-1) определить: а) производную по направлению вектора $\bar{l}=\bar{i}+2\bar{j}-\bar{k}$; б) производную по направлению, идущему от точки M к точке N(2;-1;2);в) производную по направлению, образующему с осями координат острые углы α , β , γ , причем $\alpha=60^\circ$, $\beta=45^\circ$; г) производную по направлению вектора \bar{l}_1 , образующего с градиентом угол $\varphi=120^\circ$; д) скорость и направление наибольшего возрастания.

Pешение. Поле U определено и дифференциремо в любой точке пространства \mathbb{R}^3

$$\frac{\partial U}{\partial x} = 2xy + z^{2} \qquad \frac{\partial U}{\partial x} \Big|_{M} = 3$$

$$\frac{\partial U}{\partial y} = x^{2} \qquad \frac{\partial U}{\partial y} \Big|_{M} = 1 \qquad .$$

$$\frac{\partial U}{\partial z} = 2xz - 2 \qquad \frac{\partial U}{\partial z} \Big|_{M} = -4$$

Таким образом, $grad\ U(M) = (3; 1; -4)$.

а) Имеем
$$\bar{l} = \bar{i} + 2\bar{j} - \bar{k}$$
 , $\left|\bar{l}\right| = \sqrt{1 + 4 + 1} = \sqrt{6}$, $\bar{l}_o = \frac{\bar{l}}{\left|\bar{l}\right|} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$,
$$\frac{\partial U}{\partial l}\bigg|_{M} = (gradU(M), \bar{l}_o) = \frac{3}{\sqrt{6}} + \frac{2}{\sqrt{6}} - \frac{4}{\sqrt{6}} = \frac{1}{\sqrt{6}}$$
.

6)
$$\bar{l} = \overline{MN} = (2 - 1; -1 - 1; 2 + 1) = (1; -2; 3), \quad |\bar{l}| = |\overline{MN}| = \sqrt{14},$$

$$\bar{l}_o = \frac{\bar{l}}{|\bar{l}|} = \left(\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right), \quad \frac{\partial U}{\partial l}|_{M} = (gradU(M), \bar{l}_o) = \frac{3}{\sqrt{14}} - \frac{2}{\sqrt{14}} - \frac{12}{\sqrt{14}} = -\frac{11}{\sqrt{14}}.$$

в) По условию
$$\cos \alpha = \cos 60^\circ = \frac{1}{2}$$
, $\cos \beta = \cos 45^\circ = \frac{\sqrt{2}}{2}$, $\cos \gamma > 0$. Отсюда
$$\cos \gamma = \sqrt{1-\cos^2 \alpha - \cos^2 \beta} = \sqrt{1-1/4-1/2} = 1/2.$$

$$\frac{\partial U}{\partial l}\bigg|_{M} = \frac{\partial U}{\partial x}\cos\alpha + \frac{\partial U}{\partial y}\cos\beta + \frac{\partial U}{\partial z}\cos\gamma = 3\cdot\frac{1}{2} + 1\cdot\frac{\sqrt{2}}{2} - 4\cdot\frac{1}{2} = \frac{\sqrt{2} - 1}{2}.$$

$$\Gamma \frac{\partial U}{\partial l_1} \Big|_{M} = |gradU(M)| \cos \varphi = \sqrt{9 + 1 + 16} \cdot \cos 120^{\circ} = \sqrt{26} \cdot (-1/2) = -\frac{\sqrt{13}}{\sqrt{2}}.$$

д)
$$\max \frac{\partial U}{\partial l}\Big|_{M} = |gradU(M)| = \sqrt{26}$$
.

Направление наибольшего возрастания поля U совпадает с направлением градиента, т.е.

$$\bar{l}_o = \frac{gradU(M)}{|gradU(M)|} = \frac{1}{\sqrt{26}}(3;1;-4) = \left(\frac{3}{\sqrt{26}}; \frac{1}{\sqrt{26}}; -\frac{4}{\sqrt{26}}\right).$$

Пример 3. Найти векторную линию ВП $\bar{a} = -y\bar{i} + x\bar{j} + 3\bar{k}$, проходящую через точку M(1; 0; 0).

Решение. Уравнения семейства векторных линий определяются системой дифференциальных уравнений: $\frac{dx}{-y} = \frac{dy}{x} = \frac{dz}{3}$. Интегрируем: $\frac{dx}{-y} = \frac{dy}{x}$, xdx + ydy = 0, $x^2 + y^2 = C_1^2$; в параметрическом виде: $x = C_1 \cos t$, $y = C_1 \sin t$. С учетом этого уравнение $\frac{dy}{x} = \frac{dz}{3}$ примет вид: $\frac{C_1 \cos tdt}{C_1 \cos t} = \frac{dz}{3} \Rightarrow dz = 3dt \Rightarrow z = 3t + C_2$.

Таким образом, $x = C_1 \cos t$, $y = C_1 \sin t$, $z = 3t + C_2$ — параметрические уравнения векторных линий поля \overline{a} (винтовые линии). Подставляем координаты точки $M: 1 = C_1 \cos t$, $0 = C_1 \sin t$, $0 = 3t + C_2 \implies C_1 = 1$, $C_2 = 0 \implies x = \cos t$, $y = \sin t$, z = 3t - уравнения искомой линии.

Задачи для самостоятельного решения.

 $3a\partial a 4a \ 1$. Найти поверхности уровня СП U и уравнение поверхности уровня, проходящей через точку M, если: a) $U = \arcsin \frac{z}{\sqrt{x^2 + y^2}}$, M(1;0;-1/2);

б)
$$U = \ln(x^2 + y^2 + z^2)$$
, $M(1;1;1)$; в) $U = \frac{z}{x^2 + y^2}$, $M(1;2;3)$. (Ответ: a) кону-

сы
$$z = \sin C \cdot \sqrt{x^2 + y^2}$$
, $|C| \le \pi/2$; $z = -\frac{1}{2}\sqrt{x^2 + y^2}$; б) сферы $x^2 + y^2 + z^2 = e^c$,

$$c \in R$$
; $x^2 + y^2 + z^2 = 3$; в) параболоиды вращения $z = c(x^2 + y^2)$; $z = \frac{3}{5}(x^2 + y^2)$).

 $3a\partial a 4a$ 2. Пусть заданы СП U, точки M и N, направление \bar{l} , угол ϕ . Определить в точке M: производную поля U по направлению \bar{l} ; производную поля U по направлению \overline{MN} ; производную по направлению вектора \bar{l}_1 , образующего с gradU(M) угол ϕ ; скорость и направление наибольшего возрастания поля U в точке M, если:

a)
$$U = xy^2z + yz^2 - 3z$$
, $M(0;1;2)$, $N(-2;3;-1)$, $\bar{l} = \bar{i} - \bar{j} + 2\bar{k}$, $\varphi = 30^\circ$;

6)
$$U = \frac{y}{xz} + \frac{x}{vz} + \frac{z}{xv}$$
, $M(1;2;3)$, $N(-2;1;-1)$, $\bar{l} = 2\bar{i} - 4\bar{j} + 3\bar{k}$, $\varphi = 225^{\circ}$;

B)
$$U = x^y - 3xyz$$
, $M(1,2,0)$, $N(1,0,-3)$, $\bar{l} = 2\bar{i} + \bar{j} - 2\bar{k}$, $\varphi = 60^{\circ}$.

(Omsem: a)
$$\frac{\partial U}{\partial l} = 0$$
; $\frac{\partial U}{\partial l} = \frac{1}{\sqrt{17}} npu \ \bar{l} = \overline{MN}$; $\frac{\partial U}{\partial l_1} = \frac{3}{2} \sqrt{7}$; $\max \frac{\partial U}{\partial l} = \sqrt{21}$;

6)
$$\frac{\partial U}{\partial l} = -\frac{4}{3\sqrt{29}}$$
; $\frac{\partial U}{\partial l} = \frac{101}{18\sqrt{26}} npu \ \bar{l} = \overline{MN}$; $\frac{\partial U}{\partial l_1} = -\frac{\sqrt{2786}}{36}$; $\max \frac{\partial U}{\partial l} = \frac{\sqrt{1393}}{18}$;

B)
$$\frac{\partial U}{\partial l} = \frac{16}{3}$$
; $\frac{\partial U}{\partial l} = \frac{18}{\sqrt{13}} npu \ \bar{l} = \overline{MN}$; $\frac{\partial U}{\partial l_1} = \frac{\sqrt{38}}{2}$; $\max \frac{\partial U}{\partial l} = \sqrt{38}$).

 $3a\partial a 4a$ 3. Найти производную СП $U=x^2+y^2-\sqrt{x^2+z^2}$ в точке M(-3; 0; 4) в направлении нормали к поверхности $2x^2+12x+5y^2+z^2-3z-58=0$, образующей острый угол с осью Oz. (*Ответ*: -4/5)

 $3a\partial a 4a$ 4. Вычислить координаты единичного вектора $\overline{n_o}$, перпендикулярного к поверхностям уровня СП U=2x-3y+6z-5 и образующего с осью Оz тупой угол. (Ответ. $\overline{n_o}=\left(-\frac{2}{7};\frac{3}{7};-\frac{6}{7}\right)$)

 $3a\partial a$ ча 5. Найти угол ϕ между градиентами полей $U_1=x+yz+2\sqrt{xz}$,

$$U_2 = \sqrt{x^2 + y^2 + z^2}$$
 в точке M(2; 3; 2). (Ответ. $\cos \varphi = \frac{9}{\sqrt{102}}$).

 $3a\partial a$ ча 6. В каких точках плоскости xOy градиент поля $U=x^2+y^2-xy$:

а) перпендикулярен к оси Oy; б) параллелен прямой y = -x-1; в) перпендикулярен к прямой y = 2x + 3. (*Ответ*: а) в точках прямой y = x/2; б) в точках прямой y = -x; в) в точках оси Ox).

Задача 7. Найти уравнения векторных линий ВП:

а)
$$\bar{a} = (x + y)\bar{i} - x\bar{j} - x\bar{k}$$
; б) $\bar{a} = gradU$, если $U = \frac{1}{2}(x^2 + y^2 + z^2)$.

(*Omsem.* a)
$$x^2 + y^2 + z^2 = C_2^2$$
, $y - z = C_1$; 6) $y = C_1 x$, $z = C_2 x$)).

 $3a\partial a 4a$ 8. Дано плоское ВП \bar{a} и точка М. Найти уравнения семейства векторных линий и векторной линии, проходящей через точку М, если

a)
$$\bar{a} = (3x - y^2)\bar{i} + y\bar{j}$$
; $M(1;1)$; $\bar{6}$) $\bar{a} = x \ln x\bar{i} + (2y + \ln x)\bar{j}$; $M(e;2)$. (*Omeem*: a) $x = Cy^3 + y^2$, $x = y^2$; $\bar{6}$) $y = Cln^2x - lnx$, $y = 3ln^2x - lnx$).

9.2. Поток ВП. Дивергенция ВП. Теорема Остроградского. Вычисление потока.

Пусть в области $W \subseteq R^3$ заданы ВП $\bar{a} = P(x,y,z)\bar{i} + Q(x,y,z)\bar{j} + R(x,y,z)\bar{k}$ с непрерывно-дифференцируемыми функциями $P,\ Q,\ R$ и некоторая ориентированная поверхность σ с единичным вектором нормали

$$\overline{n_0} = \cos \alpha \, \overline{i} + \cos \beta \, \overline{j} + \cos \gamma \, \overline{k}$$
.

Потоком ВП \overline{a} через ориентированную поверхность σ называется поверхностный интеграл 2-го рода от вектор-функции \overline{a} по поверхности σ .

$$\Pi_{\sigma}(\overline{a}) = \iint_{\sigma} (\overline{a}, \overline{n}_0) d\sigma.$$

Если σ – замкнутая поверхность, то ее считают положительно ориентированной при выборе внешней стороны этой поверхности, а поток записывают в виде:

$$\Pi_{\sigma}(\overline{a}) = \iint_{\sigma} (\overline{a}, \overline{n}_0) d\sigma.$$

Поток ВП является его суммарной характеристикой, описывающей поле \bar{a} посредством помещенной в него поверхности. Например, для поля скоростей текущей жидкости поток равен объему жидкости, протекающей за единицу времени через поверхность σ .

Дивергенцией $B\Pi$ \bar{a} в точке $M \in W$, обозначаемой через $div\bar{a}(M)$, называется объемная плотность потока $B\Pi$ \bar{a} в этой точке:

$$div\overline{a}(M) = \lim_{\substack{v \to 0 \\ (Q \to M)}} \frac{\Pi_{\sigma}(\overline{a})}{v},$$

где v — объем, ограниченный замкнутой поверхностью σ , стягивающейся в пределе в точку M.

В декартовой системе координат дивергенция вычисляется по формуле:

$$div\overline{a}(M) = \frac{\partial P(M)}{\partial x} + \frac{\partial Q(M)}{\partial y} + \frac{\partial R(M)}{\partial z}.$$

Если $div\bar{a}(M) > 0$, то говорят, что в точке M находится источник; если $div\bar{a}(M) < 0$, то в точке M находится сток. В случае $div\bar{a}(M) = 0$ в точке M нет ни источника, ни стока. Величина $|div\bar{a}(M)|$ характеризует мощность источника или стока.

Теорема Остроградского. Поток ВП \bar{a} через внешнюю сторону замкнутой поверхности σ равен тройному интегралу по области V, ограниченной поверхностью σ , от дивергенции ВП:

$$\oint_{\sigma} (\overline{a}, \overline{n}_0) d\sigma = \iiint_{V} div \overline{a} dv.$$

Теорема Остроградского позволяет свести задачу вычисления потока ВП через замкнутую поверхность σ к вычислению тройного интеграла по области V, заключенной внутри σ .

В случае незамкнутой поверхности σ способы вычисления потока сводятся к известным способам вычисления поверхностных интегралов (см. соответствующий раздел). В ряде случаев удобно использовать переход к поверхностному интегралу первого рода с последующим его вычислением.

Пусть, например, поверхность σ однозначно проектируется на плоскость xOy, и ее уравнение имеет вид: z = z(x, y). Тогда

$$dq = \frac{dxdy}{|\cos \gamma|}, \ \ \partial e \ \ \gamma = (\overline{n}_0, Oz), \ \ \overline{n}_0 = \pm \frac{-z_x' \overline{i} - z_y' \overline{j} + \overline{k}}{\sqrt{1 + (z_x')^2 + (z_y')^2}}, \ \ |\cos \gamma| = \frac{1}{\sqrt{1 + (z_x')^2 + (z_y')^2}}$$

причем «+» соответствует выбору верхней стороны поверхности $\sigma(\cos \gamma > 0)$; «-» соответствует выбору нижней стороны $\sigma(\cos \gamma < 0)$. Отсюда

$$\Pi_{\sigma}(\overline{a}) = \iint_{\sigma} (\overline{a}, \overline{n}_0) d\sigma = \iint_{D_{xy}} \frac{(\overline{a}, \overline{n}_0)}{|\cos \gamma|} \Big|_{z=z(x,y)} dx dy,$$

где D_{xy} – проекция поверхности σ на плоскость xOy. Окончательно получаем формулу, сводящую подсчет потока к вычислению двойного интеграла:

$$\Pi_{\sigma}(\overline{a}) = \pm \iint_{D_{xy}} (\overline{a}, \overline{n})|_{z=z(x,y)} dxdy,$$

где $\overline{n} = (-z_x^{'}; -z_y^{'}; 1) = grad(z - z(x, y))$, а выбор знака соответствует знаку $\cos \gamma = \cos(\overline{n}_a, Oz)$.

Если поверхность σ однозначно проектируется на плоскость yOz (xOz) и задана уравнением x = x(y, z) (y = y(x, z)), то справедлива аналогичная формула:

$$\Pi_{Q}(\overline{a}) = \pm \iint_{D_{yz}} (\overline{a}, \overline{n})|_{x=x(y,z)} dydz$$

где $D_{yz} = \Pi p_{yOz} \sigma$, $\overline{n} = grad(x - x(y, z)) = (1; -x_y^{'}; -x_z^{'})$, выбор знака определяется знаком $\cos \alpha = \cos(\overline{n}_o, Ox)$;

$$(\Pi_{\sigma}(\overline{a}) = \pm \iint\limits_{D_{xz}} (\overline{a}, \overline{n}) \big|_{y=y(x,z)} dxdz,$$

где $D_{xz} = \Pi p_{xOz} \sigma$, $\overline{n} = grad(y - y(x, z)) = (-y_x; 1; -y_z); \cos \beta = \cos(\overline{n}_o, Oy)$.

Замечание. В случае более сложной поверхности σ разбиваем ее на части σ_l , σ_2 , ..., σ_n и вычисляем $\Pi_{\sigma}(\overline{a}) = \Pi_{\sigma_1}(\overline{a}) + \Pi_{\sigma_2}(\overline{a}) + ... + \Pi_{\sigma_n}(\overline{a})$.

Задачи для решения в аудитории.

Пример 1. Вычислить дивергенцию ВП

$$\overline{a} = (x^2 + y^2)\overline{i} + (y^2 + z^2)\overline{j} + (z^2 + x^2)\overline{k}$$
 в точке $M(1; -1; 2)$.

Решение.
$$div\overline{a} = \frac{\partial(x^2 + y^2)}{\partial x} + \frac{\partial(z^2 + y^2)}{\partial y} + \frac{\partial(x^2 + z^2)}{\partial z} = 2x + 2y + 2z$$
.

 $div\overline{a}(M) = 2 - 2 + 4 = 4 > 0$, т.е. точка M является источником поля.

Пример 2. Найти дивергенцию напряженности магнитного поля, образованного электрическим током, текущим по бесконечному линейному проводу.

Решение. Примем за провод ось Oz. Тогда магнитное поле определится формулой: $\overline{H}(M) = 2I \frac{-y\bar{i} + x\bar{j}}{x^2 + y^2}$, где I – сила тока в проводнике.

$$div\overline{H}(M) = 2I\left(\frac{2xy}{(x^2 + y^2)^2} - \frac{2xy}{(x^2 + y^2)^2}\right) = 0.$$

Пример 3. Найти поток ВП $\overline{a} = x^2 \overline{i} + x \overline{j} + x z \overline{k}$ через часть σ внешней поверхности параболоида $y = x^2 + z^2$, лежащую в первом октанте и ограниченную плоскостью y = 1.

Решение. Поверхность задана уравнением вида $y=y(x,z)=x^2+z^2,\ y_x^{'}=2x$, $y_z^{'}=2z$, $\overline{n}=(-y_x^{'};\ 1;\ -y_z^{'})=(-2x;\ 1;\ -2z),\ \cos\beta=\cos(\overline{n}_o,\hat{O}y)<0$.

Согласно приведенной выше формуле:

$$\begin{split} \Pi_{\sigma}(\overline{a}) &= -\iint_{D_{xz}} (\overline{a}, \overline{n}) \big|_{y=y(x,z)} \, dx dz = -\iint_{D_{xz}} (-2x^3 + x - 2xz^2) \big|_{y=x^2+z^2} \, dx dz = \\ &= \iint_{D_{xz}} x \Big[2(x^2 + z^2) - 1 \Big] dx dz \end{split}$$

Так как $D_{xz} = \Pi p_{xOz} \sigma$ представляет собой четверть круга, удобно перейти к полярным координатам на плоскости xOz: $x = r \cos \varphi$, $z = r \sin \varphi$.

$$\Pi_{\sigma}(\overline{a}) = \int_{0}^{\pi/2} \cos \varphi d\varphi \int_{0}^{1} r^{2} (2r^{2} - 1) dr = \sin \varphi \Big|_{0}^{\pi/2} \cdot \left(2 \frac{r^{5}}{5} - \frac{r^{3}}{3} \right) \Big|_{0}^{1} = \frac{1}{15}.$$

Пример 4. Найти поток электростатического поля точечного заряда q, помещенного в начале координат, через внешнюю сторону сферы σ : $x^2 + y^2 + z^2 = R^2$.

Решение. Поле точечного заряда задается вектором напряженности

$$\overline{E}(M) = \frac{q\overline{r}}{\left|\overline{r}\right|^3} = \frac{q \cdot \overline{r}_o}{r^2},$$

где r — расстояние от точки M до начала координат, \bar{r}_o — единичный вектор, направленный по радиус-вектору \bar{r} точки M.

$$\Pi_{\sigma}(\overline{E}) = \iint_{\sigma} (\overline{E}, \overline{n}_o) d\sigma = q \iint_{\sigma} \frac{1}{r^2} (\overline{r}_o, \overline{n}_o) d\sigma.$$

Так как всюду на $\sigma r = R = const, \ (\overline{r}_o, \overline{n}_o) = \left| \overline{r}_o \right| \cdot \left| \overline{n}_o \right| \cdot \cos 0 = 1$, то

$$\Pi = \frac{q}{R^2} \iint_{Q} dq = \frac{q}{R^2} S_{c\phi epbl} = \frac{q}{R^2} \cdot 4\pi R^2 = 4\pi q.$$

Пример 5. Найти поток ВП $\bar{a} = (x+z)\bar{i} + (z+y)\bar{k}$ через внешнюю сторону замкнутой поверхности σ : $\{x^2 + y^2 = 9, z = 0, z = y \ (z \ge 0)\}$.

Решение. Воспользуемся теоремой Остроградского:

$$div\overline{a} = \frac{\partial(x+z)}{\partial x} + \frac{\partial(z+y)}{\partial z} = 2, \ \Pi_{\sigma}(\overline{a}) = 2 \iiint_{V} dv,$$

где V – тело, ограниченное поверхностью Q.

Переходим к цилиндрической системе координат: $x = r \cos \varphi$, $y = r \sin \varphi$, z = z. x

$$\Pi_{\sigma}(\overline{a}) = 2\int_{0}^{\pi} d\varphi \int_{0}^{3} r dr \int_{0}^{r \sin \varphi} dz = 2\int_{0}^{\pi} \sin \varphi d\varphi \int_{0}^{3} r^{2} dr = -2 \cos \varphi \Big|_{0}^{\pi} \cdot \frac{r^{3}}{3} \Big|_{0}^{3} = 4 \cdot \frac{27}{3} = 36.$$

Задачи для самостоятельного решения.

 $3a\partial a 4a \ 1$. Вычислить дивергенцию ВП $\overline{a}=(xy+z^2)\overline{i}+(yz+x^2)\overline{j}+(zx+y^2)\overline{k}$ в точках $M_1(1;\ 3;\ -5),\ M_2(-3;\ 4;\ -1),\ M_3(1;\ 4;\ 0)$ и определить, являются ли они источником либо стоком. (*Ответ.* $div\overline{a}$ (M_1) = -1 – сток; $div\overline{a}$ (M_2) = 0 – ни источник, ни сток; $div\overline{a}$ (M_3) = 5 – источник).

 $3a\partial a va \ 2$. Вычислить дивергенцию градиента СП $U = ln(x^2 + y^2 + z^2)$. (Ответ. $div(gradU) = \frac{2}{x^2 + v^2 + z^2}$).

 $3a\partial a + 3$. Вычислить поток ВП $\bar{a} = x\bar{i} - 2y\bar{j} + z\bar{k}$ через нижнюю сторону части плоскости x + 2y + 3z - 6 = 0, расположенной в первом октанте. (*Ответ.* $\Pi = -36$).

 $3a\partial a + 4$. Вычислить поток ВП $\bar{a} = 2x\bar{i} + y\bar{j} - z\bar{k}$ через верхнюю сторону части поверхности $z = 2 - x^2 - y^2$, отсеченной плоскостью z = 0. (*Ответ.* $\Pi = 2\pi$).

 $3a\partial a 4a$ 5. Вычислить поток ВП $\overline{a} = x\overline{i} + y\overline{j} + 3z\overline{k}$ через верхнюю сторону части поверхности эллипсоида $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1$, лежащей в первом октанте. (*Ответ*. $\Pi = 24\pi$).

Задача 6. Вычислить поток ВП $\bar{a} = 2x^3\bar{i} + y^3\bar{j} + z^3\bar{k}$ через нижнюю сторону части боковой поверхности конуса $x^2 + y^2 = z^2$, ограниченной плоскостями z = 0, z = 1. (*Ответ:* $\Pi = -\pi/10$).

B следующих заданиях вычислить поток $B\Pi$ с помощью теоремы Остроградского:

 $3a\partial a 4a$ 7. Вычислить поток ВП $\overline{a} = x^3 \overline{i} + y^3 \overline{j} + z^3 \overline{k}$ через поверхность шара $x^2 + y^2 + + z^2 = R^2$ в направлении внешней нормали. (*Ответ*: $\Pi = \frac{12}{5}\pi R^5$).

 $3a\partial a 4a$ 8. Вычислить поток ВП $\overline{a} = x\overline{i} - 2y\overline{j} - z\overline{k}$ через внешнюю сторону поверхности $\sigma: \{x^2 + y^2 = 1 - z, z = 0\}$. (Ответ: $\Pi = -\pi$).

 $3a\partial a + a 9$. Вычислить поток ВП $\bar{a} = yz\bar{i} + xz\bar{j} + xz\bar{k}$ через внешнюю сторону пирамиды с вершинами 0(0; 0; 0), A(2; 0; 0), B(0; 1; 0), C(0; 0; 2). (Ответ: $\Pi = 1/3$).

 $3 a \partial a 4 a \ 10$. Вычислить поток ВП $\overline{a} = x\overline{i} + y\overline{j} + (1-z)\overline{k}$ через внешнюю сторону замкнутой поверхности $Q: \left\{x^2 + y^2 = z^2, z = H \ (z \ge 0)\right\}$. (Ответ: $\Pi = \frac{1}{3}\pi H^3$).

Задача 11. Вычислить поток ВП $\bar{a} = x\bar{i} - y\bar{j} + z^2\bar{k}$ через внешнюю сторону поверхности $Q: \{x^2 + y^2 = 3z, x^2 + y^2 + z^2 = 4\}$. (Ответ: $\Pi = 6,5\pi$).

9.3. Циркуляция и ротор ВП. Теорема Стокса.

Пусть в области $W \in R^{-3}$ заданы ВП $\bar{a} = P(x,y,z)\bar{i} + Q(x,y,z)\bar{j} + R(x,y,z)\bar{k}$ с непрерывно-дифференцируемыми функциями P, Q, R и некоторая ориентированная гладкая линия L с единичным вектором касательной \bar{l}_o .

 Π инейным интегралом $B\Pi$ \overline{a} вдоль ориентированной линии L называется криволинейный интеграл 2-го рода от вектор-функции \overline{a} :

$$\int_{I} (\overline{a}, \overline{l}_{o}) dl = \int_{I} P dx + Q dy + R dz.$$

Если \overline{a} - силовое поле, то линейный интеграл равен работе, которую совершает поле по перемещению материальной точки вдоль линии L.

Вычисление линейного интеграла сводится к известным способам вычисления криволинейного интеграла 2-го рода (см. соответствующий раздел).

Линейный интеграл ВП \overline{a} вдоль замкнутого ориентированного контура L называется циркуляцией ВП \overline{a} вдоль этого контура и обозначается

$$II_L(\overline{a}) = \oint_I(\overline{a}, \overline{l}_o) dl.$$

Циркуляция характеризует вращательную способность ВП \overline{a} вдоль контура L. Если $\mathcal{U}_l(\overline{a}) > 0$ ($\mathcal{U}_l(\overline{a}) < 0$), то контур L, расположенный в силовом поле \overline{a} и свободно закрепленный в своем центре тяжести, будет вращаться в положительном (отрицательном) направлении относительно своей ориентации.

Если $U_l(\overline{a}) = 0$, то контур L не вращается.

Плотность циркуляции ВП \overline{a} в точке М по направлению \overline{n} есть число, определяемое соотношением

$$\Pi \mathcal{U}_{\overline{n}}(M) = \lim_{\substack{S \to 0 \\ (L \to M)}} \frac{\mathcal{U}_{L}(\overline{a})}{S},$$

где S - площадь, ограниченная замкнутым контуром L лежащим в плоскости с нормалью \overline{n} , содержащей точку M, и стягивающимся в пределе к этой точке.

Плотность циркуляции характеризует вращательную мощность ВП по выбранному направлению в каждой его точке.

Вектор, направленный в сторону максимальной плотности циркуляции ВП \overline{a} в точке М и равный ей по модулю, называется *ротором* ВП \overline{a} и обозначается гот \overline{a} (М). Связь между плотностью циркуляции и ротором выражается формулой:

$$\Pi \coprod_{\overline{n}} (M) = (\operatorname{rot} \overline{a} (M), \overline{n}_{o}),$$

где \overline{n} $_{\mathrm{o}}$ – единичный вектор направления \overline{n} .

В декартовой системе координат rot \overline{a} (M) вычисляется по формуле:

$$rot\overline{a}(M) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P(M) \ Q(M) \ R(M) \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \overline{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \overline{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \overline{k} \ .$$

Теорема Стокса. Циркуляция ВП \overline{a} вдоль замкнутого ориентированного контура L равна потоку ротора этого поля через любую гладкую поверхность Q, натянутую на этот контур и положительно ориентированную относительно его:

$$\mathcal{U}_{L}(\overline{a}) = \oint_{L} (\overline{a}, \overline{l}_{o}) dl = \iint_{\sigma} (rot\overline{a}, \overline{n}_{o}) d\sigma = \Pi_{\sigma}(rot\overline{a}).$$

Отметим, что поверхность σ считается положительно ориентированной относительно контура L, если на σ выбрана сторона, в точках которой вектор нормали \overline{n} направлен так, чтобы видимый с его конца обход контура L совершался против часовой стрелки (см.рисунок).

Для плоского ВП $\bar{a} = P(x, y)\bar{i} + Q(x, y)\bar{j}$ выражение для ротора принимает вид

$$rot\overline{a}=igg(rac{\partial Q}{\partial x}-rac{\partial P}{\partial y}igg)\!\overline{k}$$
, и из формулы Стокса следует формула Грина

$$\oint_{L} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Формула Стокса позволяет свести вычисление циркуляции ВП \bar{a} по замкнутому контуру L к вычисление потока поля $\cot \bar{a}$ через любую незамкнутую поверхность σ , натянутую на контур L. На практике следует выбирать σ наиболее простой формы (например, плоскость).

Задачи для решения в аудитории.

Пример 1. Для ВП $\bar{a} = (1+2xy)\bar{i} - zy^2\bar{j} + (yz^2 - 2yz + 1)\bar{k}$ найти: а) ротор; б) плотность циркуляции в точке M(2; -1; 2) по направлению $\bar{n} = \bar{i} - 2\bar{j} - 2\bar{k}$; в) наибольшую плотность циркуляции в точке M.

Решение. ВП \bar{a} определено и дифференцируемо всюду в R^3 :

$$rot\overline{a} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1 + 2xy & -zy^2 & yz^2 - 2yz + 1 \end{vmatrix} = (z^2 - 2z + y^2)\overline{i} - 2x\overline{k};$$

 $rot\overline{a}(M) = \overline{i} - 4\overline{k}$.

Для вычисления $\Pi \coprod_{\overline{n}}(M)$ находим $\overline{n}_o = \frac{\overline{n}}{|\overline{n}|} = \frac{1}{3}(1;-2;-2) = \left(\frac{1}{3};-\frac{2}{3};-\frac{2}{3}\right)$ и далее по формуле $\Pi \coprod_{\overline{n}}(M) = (\operatorname{rot}\overline{a}(M),\ \overline{n}_o) = 1 \cdot \frac{1}{3} + 0 \cdot \left(-\frac{2}{3}\right) + (-4) \cdot \left(-\frac{2}{3}\right) = 3$.

Наибольшая плотность циркуляции поля в точке M равна длине ротора в этой точке, т.е. $\max_{\overline{n}} \Pi \mathcal{U}_{\overline{n}}(M) = \left| rot \overline{a}(M) \right| = \sqrt{1+4^2} = \sqrt{17}$.

Пример 2. Найти ротор поля линейных скоростей точек тела, вращающегося с постоянной угловой скоростью вокруг некоторой оси проходящей через начало координат.

Peшение. Поле линейных скоростей точек тела определится вектором $\overline{\upsilon}(M)=\overline{\omega}\times \overline{r}(M),\;$ где $\;\overline{\omega}=\bigl(\omega_x,\omega_y,\omega_z\bigr)$ - вектор угловой скорости, направленный вдоль оси вращения, $\overline{r}(M)=(x,y,z)$ - радиус-вектор точки М. Отсюда следует, что

$$\overline{\upsilon} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \omega_x & \omega_y & \omega_z \\ x & y & z \end{vmatrix} = (z\omega_y - y\omega_z)\overline{i} + (x\omega_z - z\omega_x)\overline{j} + (y\omega_x - x\omega_y)\overline{k}.$$

Далее,

$$rot\overline{\upsilon} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z\omega_{y} - y\omega_{z} & x\omega_{z} - z\omega_{x} & y\omega_{x} - x\omega_{y} \end{vmatrix} = 2\omega_{x}\overline{i} + 2\omega_{y}\overline{j} + 2\omega_{z}\overline{k} = 2\overline{\omega}.$$

Пример 3. Вычислить работу силового поля $\overline{F} = -(a\cos t\overline{i} + b\sin t\overline{j})$ вдоль дуги L эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ от точки A(a; 0) до точки B(0; b).

Решение. Параметрические уравнения эллипса имеют вид x = acost, y = bsint, причем точкам A и B соответствуют значения параметра $t_A = 0$, $t_B = \pi/2$.

Работа есть линейный интеграл ВП \overline{F} вдоль дуги \hat{L} :

$$A = \int_{L} P dx + Q dy = \begin{vmatrix} x'(t) = -a \sin t \\ y'(t) = b \cos t \end{vmatrix} = -\int_{0}^{\pi/2} (a \cos t (-a \sin t) + b \sin t \cdot b \cos t) dt = -(b^{2} - a^{2}).$$

$$\int_{0}^{\pi/2} \sin t \cos t dt = (a^{2} - b^{2}) \int_{0}^{\pi/2} \sin t d(\sin t) = \frac{a^{2} - b^{2}}{2}.$$

Пример 4. Найти циркуляцию ВП $\bar{a} = y^2 \bar{i} - x^2 \bar{j} + z^2 \bar{k}$ по контуру L, получаемому при пересечении параболоида $x^2 + z^2 = 1 - y$ с координатными плоскостями: а) непосредственно; б) с помощью теоремы Стокса.

Решение. a) Ц =
$$\oint_{ABCA} (\overline{a}, \overline{l}_o) dl = \int_{AB} (\overline{a}, \overline{l}_o) dl + \int_{BC} (\overline{a}, \overline{l}_o) dl + \int_{CA} (\overline{a}, \overline{l}_o) dl$$
.

Ha AB: z = 0, $x^2 = 1 - y$.

$$\int_{AB} (\overline{a}, \overline{l}_o) dl = \int_{AB} P dx + Q dy + R dz = \begin{vmatrix} \overline{a} = y^2 \overline{i} - x^2 \overline{j} \\ y = 1 - x^2 \\ dy = -2x dx \end{vmatrix} = \int_{1}^{0} \left[(1 - x^2)^2 - x^2 (-2x) \right] dx =$$

$$= \int_{1}^{0} (x^4 + 2x^3 - 2x^2 + 1) dx = \left(\frac{x^5}{5} + \frac{x^4}{2} - \frac{2x^3}{3} + x \right) \Big|_{1}^{0} = -\frac{31}{30}.$$

Ha BC: x = 0, $z^2 = 1 - y$.

$$\int_{BC} (\overline{a}, \overline{l}_o) dl = \int_{BC} P dx + Q dy + R dz = \begin{vmatrix} \overline{a} = y^2 \overline{i} + z^2 \overline{k} \\ dx = 0 \\ y = 1 - z^2 \\ dy = -2z dz \end{vmatrix} = \int_{0}^{1} (0 \cdot (-2z) + z^2) dz = \frac{z^3}{3} \Big|_{0}^{1} = \frac{1}{3}.$$

Ha CA: y = 0, $x^2 + z^2 = 1$.

$$\int_{CA} (\overline{a}, \overline{l}_o) dl = \int_{CA} P dx + Q dy + R dz = \begin{vmatrix} \overline{a} = -x^2 \overline{j} + z^2 \overline{k} \\ dy = 0 \end{vmatrix} = \int_1^0 z^2 dz = -\frac{1}{3}.$$

$$\mathbf{II} = -\frac{31}{30} + \frac{1}{3} - \frac{1}{3} = -\frac{31}{30}.$$

б) Используем теорему Стокса. В качестве поверхности σ , натянутой на контур L, возьмем поверхность параболоида в виде $y=y(x,z)=1-x^2-z^2$. Ее проекция D_{xz} на плоскость xOy есть четверть круга $x^2+z^2=1$. Вектор нормали \overline{n}_o к верхней стороне этой поверхности обеспечивает требуемое теоремой Стокса направление обхода контура L.

$$rot\overline{a} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & -x^2 & z^2 \end{vmatrix} = -2(x+y)\overline{k}.$$

Применяя теорему Стокса и полагая далее $\bar{n} = (-y_x^{'}; 1; -y_z^{'}) = (2x, 1, 2z)$ имеем:

$$\begin{split} &\mathcal{U}_{L}(\overline{a}) = \mathcal{U}_{Q}(rot\overline{a}) = \iint_{Q}(rot\overline{a}, \overline{n}_{o})dq = \left|\cos(\overline{n}_{o}, Oy) > 0\right| = \iint_{D_{xz}}(rot\overline{a}, \overline{n}) \bigg|_{y=1-z^{2}-x^{2}} dxdz = \\ &= \iint_{D_{xz}} -2(x+y) \cdot 2z \bigg|_{y=1-z^{2}-x^{2}} dxdz = -4 \iint_{D_{xz}} z(x+1-z^{2}-x^{2})dxdz = \bigg|_{y=r\sin\varphi}^{x=r\cos\varphi}\bigg| = \\ &= -4 \iint_{0}^{\pi/2} \sin\varphi d\varphi \int_{0}^{1} r^{2} (r\cos\varphi + 1 - r^{2})dr = -4 \iint_{0}^{\pi/2} \sin\varphi\cos\varphi d\varphi \cdot \frac{r^{4}}{4} \bigg|_{0}^{1} + \\ &+ 4\cos\varphi \bigg|_{0}^{\pi/2} \cdot \int_{0}^{1} (r^{2}-r^{4})dr = -4 \cdot \frac{\sin^{2}\varphi}{2} \bigg|_{0}^{\pi/2} \cdot \frac{1}{4} - 4 \cdot \left(\frac{r^{3}}{3} - \frac{r^{5}}{5}\right) \bigg|_{0}^{1} = -\frac{1}{2} - \frac{8}{15} = -\frac{31}{30}. \end{split}$$

Задачи для самостоятельного решения

 $3a\partial a 4a 1$.Для ВП $\bar{a}=(2y-3xz^2)\bar{i}-(2xz-3y^2)\bar{j}+(y^2-3x^2)\bar{k}$ найти: а) ротор; б) плотность циркуляции в точке M(1; -2; -3) по направлению $\bar{n}=2\bar{i}+\bar{j}$; в) наибольшую плотность циркуляции в точке М. (*Ответ. a*) $rot\bar{a}=(2x+2y, 6x-6xz, -2z-2)$; б) $\Pi \coprod_{\bar{n}} (M)=20/\sqrt{5}$; в) $max \Pi \coprod_{\bar{n}} (M)=2\sqrt{149}$).

 $3a\partial a va$ 2. Найти ротор напряженности магнитного поля, образованного электрическим током, текущим по бесконечному линейному проводу. (Ответ. $rot\overline{H}(M)=0$).

 $3a\partial a + a = 3$. Вычислить линейный интеграл ВП $\bar{a} = x\bar{i} + y\bar{j} + (x+y-1)\bar{k}$ вдоль отрезка прямой AB, где A(1; 1; 1), B(2; 3; 4). (Ответ. 13).

 $3a\partial a 4a$ 4. Найти работу силового поля $\overline{F} = x^2 \overline{i} + y \overline{j} + \cos z \overline{k}$ по дуге винтовой линии $x = cost, \ y = sint, \ z = 2t$ при $0 \le t \le \frac{3}{2}\pi$. (*Ответ.* A = 1/6).

 $3a\partial a 4a$ 5. Показать, что работа поля магнитной напряженности бесконечного линейного проводника $\overline{H} = \frac{2I(-y\overline{i}+x\overline{j})}{x^2+y^2}$ вдоль окружности $x^2+y^2=R^2$, $z=H_o$ не зависит от радиуса окружности.

 $3a\partial a 4a$ 6. Вычислить линейный интеграл ВП $\overline{a} = y^2 \overline{i} + (x^2 + 1)\overline{j} + z\overline{k}$ вдоль кривой L = AB, соединяющей точки A(1; 0; 0), B(0; 1; -1) по линии пересечения цилиндра $x^2 + y^2 = 1$ и плоскости $x^2 + 2y + z = 1$. (Ответ. 3/2).

 $3a\partial a 4a$ 7. Найти циркуляцию ВП $\bar{a}=(x+3y+2z)\bar{i}+(2x+z)\bar{j}+(x-y)\bar{k}$ по контуру ΔABC , где A(2;0;0), B(0;3;0), C(0;0;1). (Ответ. Ц = -5).

 $3a\partial a 4a$ 8. Найти циркуляцию ВП $\bar{a} = x^2 y^3 \bar{i} + \bar{j} + z \bar{k}$ вдоль окружности $x^2 + y^2 = R^2$, z = 0 (в положительном направлении относительно орта \bar{k}). (Ответ. Ц = $-\frac{\pi R^6}{8}$).

 $3a\partial a + y^2 = 1$ плоскостью x + y + z = 1 (в положительном направлении относительно орта \bar{k}). (Ответ. $\bar{\mu} = -\pi$).

 $3a\partial a 4a = 10$. Найти циркуляцию ВП $\bar{a} = (z^2 - x^2)\bar{i} + (x^2 - y^2)\bar{j} + (y^2 - z^2)\bar{k}$ вдоль контура L, вырезаемого конусом $x^2 + y^2 = z^2$ в полусфере $x^2 + y^2 + z^2 = 4$, $z \ge 0$ (в положительном направлении относительно орта \bar{k}). (Ответ. Ц = 0).

 $3a\partial a 4a$ 11. Найти циркуляцию ВП $\overline{a} = y^2\overline{i} + xy\overline{j} + (x^2 + y^2)\overline{k}$ по контуру L, вырезаемому в первом октанте из параболоида $x^2 + y^2 = z$ плоскостями x = 0, y = 0, z = 1 (в положительном направлении относительно внешней нормали параболоида). (Ответ. Ц = 1/3).

 $3a\partial a 4a$ 12. Найти циркуляцию ВП $\bar{a} = y\bar{i} - 2z\bar{j} + x\bar{k}$ вдоль эллипса, образованного сечением однополостного гиперболоида $2x^2 - y^2 + z^2 = R^2$ плоскостью y = x (в положительном направлении относительно орта \bar{i}). (Ответ. Ц = $3\pi R^2$).

9.4. Специальные виды векторных полей

Векторное поле $\overline{a}=P(x,y,z)\overline{i}+Q(x,y,z)\overline{j}+R(x,y,z)\overline{k}$ заданное в области V, называется *потенциальным*, если в области V существует непрерывно-дифференцируемая скалярная функция U, что вектор \overline{a} можно представить в виде градиента этой функции

$$\overline{a} = gradu$$
 (1)

Функция u называется потенциальной функцией или потенциалом векторного поля. (Для силовых полей функция U называется силовой функцией, а функция u – nomehuanom).

Если векторное поле \overline{a} потенциально в области V, то для его задания достаточно одной скалярной функции – потенциала этого поля, так как из формулы (1) следует, что в этом случае $P = \frac{\partial u}{\partial x}$, $Q = \frac{\partial u}{\partial y}$, $R = \frac{\partial u}{\partial z}$, откуда Pdx + Qdy + Rdz = du.

Если векторное поле \overline{a} потенциально, выражение Pdx+Qdy+Rdz=du есть полный дифференциал потенциала этого поля.

Теорема 1. Для того, чтобы дифференцируемое векторное поле \overline{a} , заданное в области V, было потенциальным, необходимо и достаточно, чтобы во всех точках этой области выполнялось условие

$$rot\overline{a} = 0 \tag{2}$$

Для того, чтобы векторное поле было потенциальным, необходимо и достаточно, чтобы оно было безвихревым.

Выполнение условия (2) в области V приводит не только к потенциальности векторного поля, но и к следующим результатам.

1. В области V существует потенциал U = u(x, y, z), который может быть определен с точностью до произвольного постоянного слагаемого по формуле:

$$U(x, y, z) = \int_{x_o}^{x} P(x, y, z) \left| \int_{\substack{y=y_o \\ z=z_o}}^{y=y_o} dx + \int_{y_o}^{y} Q(x, y, z) \right|_{z=z_o} dy + \int_{z_o}^{z} R(x, y, z) dz + C,$$
 (3)

где $(x_o, y_o, z_o) \in V$ – любая фиксированная точка; (x, y, z) – переменная точка в области V, C – произвольная постоянная. Во втором интеграле формулы (3) постоянно x, а в третьем x и y.

2. Циркуляция векторного поля \overline{a} по произвольному замкнутому контуру $L \in V$ равно нулю: $\mathcal{U}_l(\overline{a}) = \oint_r (\overline{a}, d\overline{r}) = 0$.

Если же хотя бы в одной точке, внутренней по отношению к контуру L, поле \overline{a} не определено, циркуляция по этому контуру может и не обращаться в нуль, хотя поле потенциально.

3. Для любых двух точек A и B в области V значение линейного интеграла векторного поля \overline{a} , т.е. $W=\int\limits_{AB}(\overline{a},d\overline{r})$, не зависит от вида контуру интегриро-

вания AB, соединяющего точки A и B и расположенного в области V, а зависит только от положения этих точек в области.

4. Если U(x, y, z) — потенциал векторного поля \overline{a} , то линейный интеграл этого поля вдоль любого контура $AB \subset V$, соединяющего точки $A(x_o, y_o, z_o)$ и $B(x_l, y_l, z_l)$ равен разности значений потенциала в конечной и начальной точек контура интегрирования:

$$W = \int_{AB} (\overline{a}, d\overline{r}) = u(x_1, y_1, z_1) - u(x_0, y_0, z_0)$$
 (4)

Физический смысл этого результата состоит в том, что если \overline{a} - силовое поле, то разность потенциалов между точками B и A равна работе, которую поле совершает по перемещению материальной точки из A в B.

Векторное поле $\bar{a} = P(x, y, z)\bar{i} + Q(x, y, z)\bar{j} + R(x, y, z)\bar{k}$, заданное в области V, называется *соленоидальным (трубчатым)*, если

$$div\overline{a} = 0. (5)$$

Соленоидальные поля не содержат ни источников, ни стоков.

Векторное поле $\bar{a}=P(x,y,z)\bar{i}+Q(x,y,z)\bar{j}+R(x,y,z)\bar{k}$, заданное в области V, называется *гармоническим (лапласовым)*, если оно является как потенциальным, так и соленоидальным, т.е.

$$\begin{cases} rot\overline{a} = 0\\ div\overline{a} = 0 \end{cases}$$
 (6)

Задачи для решения в аудитории.

Пример 1. Установить потенциальность поля

$$\overline{a} = (3x^2y^2z^{-1} - 2x^3)\overline{i} + (2x^3yz^{-1})\overline{j} + (z^3 - x^3y^2)\overline{k}$$

найти его потенциал и вычислить линейный интеграл W поля вдоль контура L = AB, где A(1, 2, 2), B(1, 3, 1).

Решение. Данное векторное поле определено и дифференцируемо во всех точках пространства, за исключением точек плоскости z=0, так как в этих точках координаты вектора \overline{a} не определены. Исключив эти точки, получим неодно-

связную область, в которой проекции вектора \bar{a} непрерывны и имеют непрерывные частные производные.

Найдем

$$rot\overline{a} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3x^{2}y^{2}z^{-1} - 2x^{3} & 2x^{3}yz^{-1} + 3y^{3} & z^{3} - x^{3}y^{2}z^{-2} \end{vmatrix} =$$

$$= (-2yx^{3}z^{-2} + 2yx^{3}z^{-2})\overline{i} - (-3x^{2}y^{2}z^{-2} + 3x^{2}y^{2}z^{-2})\overline{j} + (6x^{2}yz^{-1} - 6x^{2}yz^{-1})\overline{k} = 0.$$

Данное поле является потенциальным там, где $z \neq 0$.

Найдем потенциал поля \overline{a} , выбрав в качестве точки (x_o, y_o, z_o) точку (0, 0, 1) (начало координат брать нельзя, т.к. при z = 0 поле не является потенциальным).

$$U(x,y,z) = \int_{0}^{x} (3x^{2}y^{2}z^{-1} - 2x^{3}) \bigg|_{\substack{y=0\\z=1}} dx + \int_{0}^{y} (2x^{3}yz^{-1} + 3y^{3}) \bigg|_{z=1} dy + \\ + \int_{1}^{z} (x^{3} - x^{3}y^{2}z^{-2}) dz + C = -2 \int_{0}^{x} x^{3} dx + \int_{0}^{y} (2x^{3}y + 3y^{3}) dy + \\ + \int_{1}^{z} (z^{3} - x^{3}y^{2}z^{-2}) dz + C = -\frac{1}{2}x^{4} + \frac{3}{4}y^{4} + \frac{1}{4}z^{4} + x^{3}y^{2}z^{-1} + C_{1},$$

$$z \partial e \ C_{1} = C - \frac{1}{4} - npouзвольная \quad nocmoянная.$$

Вычислим линейный интеграл W поля \bar{a} вдоль линии AB.

$$W = \int_{AB} (\overline{a}, d\overline{r}) = \left(-\frac{1}{2}x^4 + \frac{3}{4}y^4 + \frac{1}{4}z^4 + x^3y^2z^{-1} + C_1 \right) \Big|_{A(1,2,2)}^{B(1,3,1)} = 52.$$

Пример 2. Установить, является ли соленоидальным векторное поле $\overline{a} = x(z^2 - y^2)\overline{i} + y(x^2 - z^2)\overline{j} + z(y^2 - x^2)\overline{k}$.

 $Peшeнue.\ div\overline{a} = z^2 - y^2 + x^2 - z^2 + y^2 - x^2 = 0$ - поле соленоидально.

Задачи для самостоятельного решения.

Задача 1. Доказать, что плоское векторное поле $\bar{a} = x \ln(1+y^2)\bar{i} + yx^2(1+y^2)^{-1}\bar{j}$ является потенциальным. Найти его потенциал и вычислить линейный интеграл

W поля \overline{a} от точки A(2, 3) до точки B(-4, 7).(Ответ. $U(x, y) = \frac{1}{2}x^2 \ln(1 + y^2) + C$, $W = 2(4 \ln 50 - \ln 10)$).

 $3a\partial a 4a=2$. Убедившись в том, что заданное векторное поле \overline{a} является потенциальным, найти потенциал поля и вычислить для точек A и B линейный интеграл $\int_{AB} (\overline{a}, d\overline{r})$, если: a) $\overline{a} = (x^2 - 2yz)\overline{i} + (y^2 - 2xz)\overline{j} + (z^2 - 2xy)\overline{k}$, A(1; 1; 1), B(-1; 2; -2); б) $\overline{a} = (2xz + y^{-1})\overline{i} - (x + z)y^{-2}\overline{j} + (x^2 + y^{-1})\overline{k}$, A(-1; 3; -2), B(1; 2; 3). (Ответ. a) $U(x,y) = \frac{1}{3}x^3 + \frac{1}{3}y^3 + \frac{1}{3}z^3 - 2xyz + C$, $W = -\frac{22}{3}$; б) $U(x,y) = x^2z + C$

9.5. Оператор Гамильтона. Оператор Лапласа

Основные характеристики векторного анализа – градиент, дивергенция, ротор (называемые дифференциальными операциями первого порядка) – и операции над ними удобно представить с помощью оператора Гамильтона (*оператора «набла»*):

$$\nabla = \frac{\partial}{\partial x}\bar{i} + \frac{\partial}{\partial y}\bar{j} + \frac{\partial}{\partial z}\bar{k}$$

Имеют место следующие правила действий с помощью набла:

- 1. произведение оператора ∇ на скалярную функцию u(x, y, z) дает градиент этой функции: $\nabla u = grad\ u$;
- 2. скалярное произведение оператора ∇ на векторную функцию $\overline{a} = P\overline{i} + Q\overline{j} + R\overline{k}$ дает дивергенцию этой функции: $(\nabla, \overline{a}) = div\overline{a}$;
- 3. векторное произведение оператора ∇ на векторную функцию $\overline{a} = P\overline{i} + Q\overline{j} + R\overline{k}$ дает ротор этой функции: $[\nabla, \overline{a}] = rot\overline{a}$.

Если в области V заданы скалярное поле и векторное поле $\overline{a} = P\overline{i} + Q\overline{j} + R\overline{k}$, причем функции P, Q, R дважды дифференцируемы в области V, то в этой области $grad\ u$ и $rot\ \overline{a}$ представляют собой дифференцируемые векторные поля, а $div\ \overline{a}$ - дифференцируемое скалярное поле. В этом случае возможны следующие операции второго порядка в векторном анализе: $grad\ div\ \overline{a}$; $div\ grad\ u$; $divrot\ \overline{a}$, $rot\ grad\ u$; $rot\ rot\ \overline{a}$. С помощью оператора ∇ можно показать, что $divrot\ \overline{a} = 0$, $rot\ grad\ u = 0$. Одной из основных операций второго порядка является $div\ grad\ u$.

Кратко эту операцию обозначают Δ и, причем символ $\Delta = (\nabla, \nabla) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

называют оператором Лапласа.

 $+(x+z)y^{-1}+C, W=8.$

$$div \ grad \ u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

Уравнение $\Delta u = 0$ или $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$ называется уравнением Лапласа, а его решение – гармоническими функциями.

Скалярное поле u = u(x, y, z), удовлетворяющее уравнению Лапласа, называется *гармоническим полем*.

Операции $grad\ div\ \overline{a}$ и $rot\ rot\ \overline{a}$ связаны между собой соотношением: $rot\ rot\ \overline{a}=grad\ div\ \overline{a}=\Delta\ a$, где $\Delta\ a=\Delta P\overline{i}+\Delta Q\overline{j}+\Delta R\overline{k}$ представляет собой вектор, проекции которого равны ΔP , ΔQ , ΔR (P, Q, R – проекции векторной функции \overline{a}).

Задачи для решения в аудитории.

Пример 1. Для поля вектора $\bar{a} = x(y^2 + z^2)\bar{i} + y(x^2 + z^2)\bar{j} + z(x^2 + y^2)\bar{k}$ вычислить: а) $\nabla \bar{a}$; б) $[\nabla, \bar{a}]$; в) $\nabla(\nabla \bar{a})$.

Решение. a) $\nabla \overline{a} = div \overline{a} = y^2 + z^2 + x^2 + z^2 + x^2 + y^2 = 2(x^2 + y^2 + z^2);$

$$[\nabla, \overline{a}] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x(y^2 + z^2) & y(x^2 + z^2) & z(x^2 + y^2) \end{vmatrix} =$$

$$= (2zy - 2yz)\overline{i} - (2xz - 2xz)\overline{j} + (2xy - 2xy)\overline{k} = 0.$$

B)
$$\nabla(\nabla \bar{a}) = grad \ div \ \bar{a} = grad(2x^2 + 2y^2 + 2z^2) = 4x\bar{i} + 4y\bar{j} + 4z\bar{k} = 4\bar{r}$$
.

Задачи для самостоятельного решения.

 $3a\partial a 4a 1$. Пусть $\bar{r} = x\bar{r} + y\bar{j} + z\bar{k}$, $\bar{r} = |\bar{r}|$, С — постоянный вектор, u — дифференцируемая скалярная функция. С помощью оператора набла определить: a) $div(r^2c)$, $\delta)rot((c,r)r)$, $\delta)$ div gradu(r). (Ответ. a) 2r(r;c), δ) [c,r]; δ) u"(r)+(2u"(r))/r.

Задача 2. Вычислить Δ u в точке M, если a) $u=3x^2$ $z^2-(x+y-2z^2)^2+2z^2$, M(2;1;-1); б) $u=\sin^2(2x-3y+z)-2x^2+y^2+z^2$, M(-1;-1;-1).

9.6. Ряды Фурье

1. *Рядом Фурье* для периодической функции f(x) с периодом 2π , определенной в интервале $(-\pi,\pi)$, называется ряд

$$\frac{a_o}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \quad , \tag{7}$$

если его коэффициенты вычислены по формулам Фурье:

$$a_{o} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \quad (n = 1, 2, ...),$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin x dx \quad (n = 1, 2, ...).$$
(8)

Если ряд (7) сходится, то его сумма S(x) есть периодическая функция с периодом 2π .

Достаточные условия разложимости функции в ряд Фурье сформулированы в следующей

Теореме Дирихле: Если на интервале $(-\pi,\pi)$ функция f(x) имеет конечное число экстремумов и является непрерывной за исключением конечного числа точек разрыва I рода, то ее ряд Фурье сходится в каждой точке интервала $(-\pi,\pi)$, и сумма S(x) этого ряда:

- 1) S(x) = f(x) во всех точках непрерывности функции f(x), лежащих внутри $[-\pi,\pi]$;
- 2) $S(x_o) = \frac{1}{2} [f(x_o 0) + f(x_o + 0)]$, где x_0 точка разрыва I рода;
- 3) $S(x) = \frac{1}{2} [f(-\pi + 0) + f(+\pi 0)]$ на концах отрезка.

Для четной функции (т.е. если f(x) = f(-x)) ряд Фурье (7) принимает вид:

$$\frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos nx \qquad , \tag{8}$$

$$a_o = \frac{2}{\pi} \int_0^{\pi} f(x) dx; \quad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx \quad (n = 1, 2, ...).$$
 (9)

Для нечетной функции (т.е. если f(x) = -f(-x)) ряд Фурье (7) принимает вид:

$$\sum_{n=1}^{\infty} b_n \sin nx \quad , \tag{10}$$

где

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx \quad (n = 1, 2, ...).$$
 (11)

Рассмотрим примеры разложения функций в ряд Фурье.

Задачи для решения в аудитории

Пример 1.
$$f(x) = \begin{cases} 1 & npu & 0 \le x < \pi, \\ -1 & npu & -\pi \le x < 0. \end{cases}$$

Решение. Эта функция удовлетворяет условиям теоремы Дирихле, ее график приведен на рисунке.

f(-x) = f(x), т.е. f(x) — нечетная,

$$a_o = 0$$
, $a_n = 0$, $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\pi} \sin nx dx = -\frac{2}{\pi n} (\cos n\pi - 1) = \frac{2}{\pi n} (1 - (-1)^n)$

Итак,

$$b_n = \begin{cases} 0 & npu & n-четном, \\ \frac{4}{\pi n} & npu & n-нечетном. \end{cases}$$

Следовательно, для рассматриваемой функции ряд Фурье имеет вид:

$$f(x) = \frac{4}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right).$$

Это равенство справедливо во всех точках, кроме точек разрыва.

Обозначим сумму ряда S(x), тогда очевидно S(0) = 0, $S(\pi) = 0$, $S(-\pi) = 0$ (f(0) = 1; $f(\pi)$ неопределена, $f(-\pi) = -1$).

Итак,

$$f(x) = \begin{cases} 1, & 0 < x < \pi \\ -1, & -\pi < x < 0 \end{cases} = \frac{4}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right).$$

Пример 2. Разложить в ряд Фурье функцию f(x), заданную на интервале $(0, 2\pi)$ формулой f(x) = x.

Решение. На рисунке показан график заданной функции с ее периодическим продолжением:

$$a_{o} = \frac{1}{\pi} \int_{0}^{2\pi} x dx = 2\pi; \quad a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} x \cos nx dx = 0,$$

$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} x \sin nx dx = -\frac{2}{\pi n}, \quad f(x) = \pi - 2\left(\frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots\right), \quad x \in (0, 2\pi).$$

Так как в интервале $(0, 2\pi)$ функция f(x) = x непрерывна, то полученный ряд сходится к x во всех точках этого интервала. В точках $x = 2\pi n$ (n = 0, 1, 2, ...), которые являются точками разрыва функции, ряд сходится и имеет своей суммой

$$\frac{f(2\pi-0)+f(2\pi+0)}{2}=\frac{2\pi+0}{2}=\pi.$$

Замечание. Если f(x) задана в интервале $(0, +\pi)$, то в соседний интервал $(-\pi, 0)$ можно осуществить как ее четное, так и ее нечетное продолжение.

Пример 3. Разложить в ряд Фурье функцию f(x), заданную на интервале

$$0 < \mathbf{x} < \pi$$
 формулой $f(x) = \frac{\pi}{4} - \frac{x}{2}$.

Решение. Продолжим эту функцию на $(-\pi, 0)$, например, четным образом.

$$a_{o} = \frac{2}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{4} - \frac{x}{2} \right) dx = 0; \quad a_{n} = \frac{2}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{4} - \frac{x}{2} \right) \cos nx dx = \begin{cases} 0 & npu & n - четном, \\ \frac{2}{\pi n^{2}} & npu & n - нечетном. \end{cases}$$

Поэтому

$$f(x) = \frac{2}{\pi} \left(\frac{\cos x}{1} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right)$$
$$S(\pi) = S(-\pi) = \frac{\pi}{4}.$$

Задачи для самостоятельного решения.

 $3a\partial a + a = 1$. Разложить в ряд Фурье функцию f(x), заданную на отрезке $(-\pi, \pi)$ формулой f(x) = |x|, имеющую период 2π .

$$(Omsem. f(x) = \frac{\pi}{2} - \frac{\pi}{2} \left(cosx + \frac{cos 3x}{9} + \dots + \frac{cos(2n-1)x}{(2n-1)^2} + \dots \right), \ x \in (-\pi, \pi).)$$

 $3a\partial a + a 2$. Разложить в ряд Фурье функцию f(x), заданную на отрезке $(0 \le x \le 2\pi)$ формулой $f(x) = x^2$.

(Ответ.

$$x^{2} = \frac{4\pi^{2}}{3} + 4\left(\cos x - \pi \sin x + \frac{\cos 2x}{2^{2}} - \frac{\pi \sin 2x}{2} + \dots + \frac{\cos nx}{n^{2}} - \frac{\pi \sin nx}{n} + \dots\right),$$

 $x \in (-\pi, \pi).$

в компактном виде: $x^2 = \frac{4\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} - 4\pi \sum_{n=1}^{\infty} \frac{\sin nx}{n}$.

 $3a\partial a 4a$ 3. Разложить в ряд Фурье функцию f(x), заданную на отрезке $[-\pi;\pi)$ формулой $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 \le x < \pi \end{cases}$.

(Ответ.

$$f(x) = \frac{\pi}{4} - \left(\frac{2}{\pi}\cos x + \frac{2}{\pi \cdot 3^2}\cos 3x + \frac{2}{\pi \cdot 5^2}\cos 5x + \dots\right) + \left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \dots\right).$$

3aдaчa 4. Разложить в ряд Фурье функцию f(x), заданную на отрезке $[-\pi;\pi)$ формулой $f(x) = \begin{cases} -\pi - x, & -\pi < x < 0 \\ \pi - x, & 0 < x < \pi \end{cases}$.

(Omeem.
$$f(x) = \frac{2\sin x}{1} + \frac{2\sin 2x}{2} + \frac{2\sin 3x}{3} + \frac{2\sin 4x}{4} + \dots$$
).

2. Если период функции равен не 2π , а 2l, т.е. функция задана на интервале (-l, l), то ряд Фурье имеет вид:

$$\frac{a_o}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi n x}{l} + b_n \sin \frac{\pi n x}{l} \right). \tag{12}$$

Коэффициенты ряда вычисляются по формулам:

$$a_{o} = \frac{1}{l} \int_{-l}^{l} f(x) dx, \quad a_{n} = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi nx}{l} dx,$$

$$b_{n} = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi nx}{l} dx.$$
(13)

Если функция f(x) на интервале (-l, l) четная, то все коэффициенты $b_n = 0$ и ряд Фурье (12) имеет вид:

$$\frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{\pi nx}{l}.$$
 (14)

Здесь

$$a_o = \frac{2}{l} \int_0^l f(x) dx, \quad a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{\pi nx}{l} dx, \quad n = (1, 2, ...).$$
 (15)

Для нечетной на интервале (-l, l) функции f(x) ряд (12) принимает вид:

$$\sum_{n=1}^{\infty} b_n \sin \frac{\pi nx}{l},\tag{16}$$

где

$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{\pi nx}{l} dx \qquad (n = 1, 2,...).$$
 (17)

- **3.** Любую непериодическую функцию f(x), заданную на отрезке (0,l) можно разложить в ряд Фурье, построив вспомогательную функцию $\varphi(x)$ такую, что :
- 1) $\varphi(x)$ периодическая с периодом 2l;
- 2) $\varphi(x)$ на отрезке (0, l) совпадает с функцией f(x).

Если φ (x) дополнить так, что на отрезке (-l, l) она будет нечетной, то в разложение этой функции в ряд Фурье $a_o = a_1 = \dots = 0$. Такое разложение называется разложением по синусам.

Если $\varphi(x)$ дополнить так, что на отрезке (-l, l) она будет четной, то в разложение этой функции в ряд Фурье $b_o = b_1 = ... = 0$. Такое разложение называется разложением по косинусам.

Задачи для решения в аудитории.

Пример 1. Разложить в ряд Фурье функцию f(x), заданную на отрезке (-2,2) формулой $f(x) = \begin{cases} 0 & npu & -2 < x < 0, \\ 2 & npu & 0 < x < 2. \end{cases}$

Решение.

$$a_{o} = \frac{1}{2} \int_{0}^{2} 2 dx = 2,$$

$$a_{n} = \frac{1}{2} \int_{0}^{2} 2 \cos \frac{\pi n x}{2} dx = \int_{0}^{2} \cos \frac{\pi n x}{2} = \frac{2}{\pi n} \sin \frac{\pi n x}{2} \Big|_{0}^{2} = \frac{2}{\pi n} \cdot 0 = 0,$$

$$b_{n} = \frac{1}{2} \int_{0}^{2} 2 \sin \frac{\pi n x}{2} dx = \int_{0}^{2} \sin \frac{\pi n x}{2} = \frac{2}{\pi n} \left(-\cos \frac{\pi n x}{2} \right) \Big|_{0}^{2} = \frac{2}{\pi n} \cdot \left(-(-1)^{4} + 1 \right) =$$

$$= \begin{cases} \frac{4}{\pi (2k - 1)}, & n = 2k - 1, \\ 0, & n = 2k \end{cases};$$

$$0, & n = 2k \end{cases}$$

$$f(x) = 1 + \sum_{k=1}^{\infty} \frac{4}{\pi (2k - 1)} \cdot \sin \frac{(2k - 1)\pi x}{2}.$$

Пример 2. Разложить функцию, заданную на отрезке [0, 1] формулой -(x)=2-x: а) по синусам; б) по косинусам; в) по синусам и косинусам.

Решение. а) Дополним функцию $f^*(x)$ на отрезке [-1,1] как нечентую. Период функции равен $2l=2 \Rightarrow l=1$. В этом случае $a_o=a_1=...=0$.

$$b_{n} = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{\pi n x}{l} dx = \frac{2}{l} \int_{0}^{l} (2 - x) \sin \frac{\pi n x}{l} dx = 2 \left(2 \int_{0}^{l} \sin \pi n x dx - \int_{0}^{l} x \sin \pi n x dx \right) =$$

$$= \frac{4}{n \pi} \left((-1)^{n} - 1 \right) + \frac{1}{n \pi} \left((-1)^{n} - 0 \right) - 0 = \frac{5}{n \pi} (-1)^{n} - \frac{4}{n \pi};$$

$$b_{1} = -\frac{9}{\pi}; \ b_{2} = \frac{1}{2\pi}; \ b_{3} = -\frac{9}{3\pi}; \ b_{4} = \frac{1}{4\pi}.$$

$$f(x) = -\frac{9}{\pi} \sin \pi x + \frac{1}{2\pi} \sin 2\pi x - \frac{9}{3\pi} \sin 3\pi x + \frac{1}{4\pi} \sin 4\pi x - \dots$$

б) Дополним функцию $f^*(x)$ на отрезке [-1,1] как четную. В этом случае период функции равен $2l=2 \Rightarrow l=1$. В этом случае $b_o=b_1=...=0$.

$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{\pi n x}{l} dx = \frac{2}{l} \int_0^l (2 - x) \cos \frac{\pi n x}{l} dx = 2 \left(2 \int_0^l \cos \pi n x dx - \int_0^l x \cos \pi n x dx \right) = \frac{1}{(n\pi)^2} \cos \pi n x \Big|_0^l = \frac{1}{(n\pi)^2} \left((-1)^n - 1 \right),$$

$$a_0 = \int_0^l (2 - x) dx = \frac{3}{2}; \quad \frac{a_0}{2} = \frac{3}{4}.$$

$$f(x) = -\frac{3}{4} - \frac{2}{\pi^2} \cos \pi x - \frac{2}{3^2 \pi^2} \cos 3\pi x - \frac{2}{\pi^2 5^2} \cos 5\pi x - \dots$$

в) В данном случае отрезок [0,1] представляет собой период функции, следовательно l=1/2 . Дополним функцию f(x) на отрезке как не четную и не нечетную. Тогда

$$a_0 = \frac{1}{l} \int_0^1 f(x) dx = 2 \int_0^1 (2 - x) dx = 3; \quad \frac{a_0}{2} = \frac{3}{2}.$$

$$a_n = 2 \int_0^1 (2 - x) \cos \frac{\pi nx}{\frac{1}{2}} dx = 2 \int_0^1 (2 - x) \cos 2\pi nx dx = 0.$$

$$b_n = 2 \int_0^1 (2 - x) \sin \frac{\pi nx}{\frac{1}{2}} dx = 2 \int_0^1 (2 - x) \sin 2\pi nx dx = \frac{1}{\pi n};$$

$$f(x) = \frac{3}{2} + \frac{1}{\pi} \sin 2\pi x + \frac{1}{2\pi} \sin 4\pi x + \frac{1}{3\pi} \sin 6\pi x + \dots$$

Задачи для самостоятельного решения

 $3a\partial a 4a \ 1$. Разложить в ряд Фурье функцию, заданную на отрезке [-1, 1] формулой $f(x) = \begin{cases} 1 & npu & -1 \le x < 0, \\ x & npu & 0 < x \le 1. \end{cases}$

(Omsem.
$$f(x) = \frac{3}{4} - \frac{1}{\pi} \sum_{n=1}^{\infty} (\frac{2}{\pi (2n-1)^2} \cos \pi (2n-1)x + \sin \pi nx).)$$

Задача 2. Разложить в ряд Фурье функцию, заданную на интервале [-2,2] формулой

$$f(x) = \begin{cases} 0 & npu - 2 \le x < 0, \\ x & npu 0 \le x \le 2. \end{cases}$$

(Omsem.
$$f(x) = \frac{1}{2} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos \frac{\pi nx}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} (-1)^n \frac{\sin \frac{\pi nx}{2}}{n}$$
).

 $3a\partial a + a = 3$. Функцию, заданную на интервале (0, 1) формулой f(x) = x(l-x), разложить в ряд по синусам.

(Omeem.
$$f(x) = \frac{8l^2}{\pi^3} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^3} \sin \frac{(2k-1)\pi x}{l}$$
).

 $3a\partial a + 4$. Разложить функцию f(x) заданную на отрезке (0;1) формулой f(x) = 2x в ряд Фурье: а) по синусам; б) по косинусам; в) по синусам и косинусам. (Ответ.

a)
$$f(x) = \frac{4}{\pi} \sin \pi x - \frac{4}{2\pi} \sin 2\pi x - \frac{4}{3\pi} \sin 3\pi x - ...;$$

6)
$$f(x) = 1 - \frac{8}{\pi^2} \cos \pi x - \frac{8}{9\pi^2} \cos 3\pi x - \frac{8}{25\pi^2} \cos 5\pi x - \dots$$

6)
$$f(x) = 1 - \frac{2}{\pi} \sin 2\pi x - \frac{2}{2\pi} \sin 4\pi x - \frac{2}{3\pi} \sin 6\pi x - \dots$$