

Спецкурс ОСФИ Лекция 2 02 марта 2011

Взаимодействие света и материала. ДФО. Модели освещения

Алексей Игнатенко, к.ф.-м.н.

Лаборатория компьютерной графики и мультимедиа ВМК МГУ

На прошлой лекции: радиометрия, фотометрия

- Для расчета изображения необходимо уметь количественно считать энергию
- Инструмент: радиометрия
 - Поток
 - Сила
 - Освещенность / светимость
 - Яркость (излучение)
- Излучение сохраняется вдоль прямой!
- Фотометрия: раздел радиометрии, спектр энергии взвешен функцией спектральной эффективности глаза

Взаимодействие света и материала: отражение, поглощение, пропускание

Типы взаимодействия света и материала

Отражение

- Зеркальное
- Диффузное
- Смешанное
- Ретро-зеркальное
- Блеск

Преломление (пропускание)

- Зеркальное
- Диффузное
- Смешанное

Отражение и ДФО

Задача — рассчитать количество энергии, излучаемой в сторону наблюдателя при заданном входящем излучении

ДФО: определение

- Чему равна $L_o(p, \omega_o)$ излучение поверхности в направлении ω_o
- При условии излучения по направлению ω_{i} , равной L_{i} (р, ω_{i})
- BRDF Bidirectional Reflection Distribution Function
- ДФО = Двунаправленная Функция Отражения

Предполагается, что исходящее излучение зависит только от входящего излучения для данной точки!

ДФО (2)

Рассмотрим дифференциальную освещенность поверхности в точке *р* в зависимости от яркости:

$$dE(p,\omega_i) = L_i(p,\omega_i)\cos\theta_i d\omega_i$$

В направление ω_0 будет излучаться

$$\mathrm{d}L_o(p,\omega_o) \propto \mathrm{d}E(p,\omega_i)$$

Из предположения линейности и сохранения энергии

ДФО (3)

$$f_{r}(p,\omega_{o},\omega_{i}) = \frac{\mathrm{d}L_{o}(p,\omega_{o})}{\mathrm{d}E(p,\omega_{i})} = \frac{\mathrm{d}L_{o}(p,\omega_{o})}{L_{i}(p,\omega_{i})\cos\theta_{i}d\omega_{i}}$$

Свойства физически-корректных ДФО

• Обратимость

• Сохранение энергии

Свойства ДФО: обратимость

$$\forall \omega_o, \omega_i \ f(p, \omega_o, \omega_i) = f(p, \omega_i, \omega_o)$$

Еще называют «принцип обратимости Гельмгольца»

Свойства ДФО: сохранение энергии

$$\int f_r(p,\omega_i,\omega')\cos\theta'd\omega' \le 1$$

$$f_r(p,\omega_o,\omega_i) = \frac{\mathrm{d} L_o(p,\omega_o)}{\mathrm{d} E(p,\omega_i)} = \frac{\mathrm{d} L_o(p,\omega_o)}{L_i(p,\omega_i)\cos\theta_i d\omega_i}$$

Примеры ДФО: диффузное отражение

$$f_{r,d}(p,\omega_i,\omega') = f_{r,d}(p) = C$$

Для идеального диффузного отражения (ламбертовой поверхности)

$$f_{r,d}(p,\omega_i) = \frac{1}{\pi}$$

Вывод: L=E/pi, f=L/E, => f=1/pi

Альбедо

$$f_{r,d}(p,\omega_i) = \frac{1}{\pi}$$

Примеры ДФО: зеркальное отражение

 Идеальное зеркальное отражение

$$f_{r,s}(p,\omega_i,\omega_o) = f_{r,d}(p,\omega_i)$$

ДФП

- BTDF Bidirectional Transmittance Distribution Function
- ДФП = Двунаправленная Функция Пропускания
- Определение аналогично ДФО, но для другой стороны поверхности

Двунаправленная функция рассеивания

Pacчет излучения точки поверхности: rendering equation

- Для каждой длины волны!
- Здесь учитываем только отражение

$$f_r(p, \omega_o, \omega_i) = \frac{\mathrm{d} L_o(p, \omega_o)}{L_i(p, \omega_i) \cos \theta_i \, \mathrm{d} \omega_i}$$

$$dL_o(p,\omega_o) = f_r(p,\omega_o,\omega_i)L_i(p,\omega_i)\cos\theta_i d\omega_i$$

$$L_o(p,\omega_o) = \int_{\Omega} f_r(p,\omega_o,\omega_i) L_i(p,\omega_i) \cos \theta_i \, \mathrm{d} \, \omega_i$$

Расчет излучения точки поверхности: дискретный случай

$$L(p,\omega_o) = \sum_{j=0}^{n-1} f_r(p,\omega_o,\omega_i^j) L_i^j \cos \theta_i^j$$

$$\omega_{_{i}}^{j}$$
 - Направление на ј-й источник света

 $\theta_i^{\,j}$ - Угол между направлением на ј-й источник и нормалью к поверхности

Ограничения модели ДФР

- Отсутствие дифракции, интерференции
- Отсутствие поляризация
- Отсутствие флюоресценции и фосфоресценции
- Отсутствие поверхностного рассеивания
 - Surface scattering
 - Задачу решает ФОР (Функция Объемного Рассеивания) обобщение модели ДФР

Что такое модель освещения?

- Тонирование (shading)
 - Процесс вычисления исходящего излучения для точки поверхности

- Модель тонирования = модель освещения (shading model)
 - Функция, задающая исходящую энергию в зависимости от входящей

Модели освещения

Модели освещения: точность

Выразительность

- Задачи физически точной симуляции реальных сцен
 - или «предсказания»

• Нужна численная точность

Модели освещения: выразительность

Выразительность

- Творчество и искусство
- Объекты должны выглядеть так, как мы хотим
- Не важно, возможно ли это в реальности

Модели освещения: скорость

• Любая модель освещения

должна быть быстрой

 Выполняется миллионы раз даже для простых сцен!

• Не имеют смысла модели, расчет которых возможен только теоретически

Физически обоснованные и эмпирические модели

- Физически обоснованные
 - Аппроксимация свойств реального материала (слои, поведение частиц и т.п.)
- Эмпирические
 - «Подгон» под внешний вид материала
 - При грамотном выборе параметров может давать более качественные результаты!

Модели освещения: первичное и вторичное освещение

- Прямое освещение
 - Свет приходит в точку тонирования из источника

- Вторичное освещение
 - Свет был отражен или преломлен объектами сцены

Удобное представление освещения – сфера

- Стоим вокруг точки тонирования сферу
- Каждой точке сферы сопоставлено входящее (исходящее) направление
- Излучение (яркость) по данному направлению задает радиус в данной точке
 - Получается не сфера, а «клякса»
 - Может быть не яркость, а любой параметр

Типы сфер освещения

- Сфера освещения (illumination sphere)
- Сфера ДФО (BRDF sphere)
- Сфера излучения (luminance sphere)
- Сфера свечения (emission sphere)

Вычисление сферы излучения

Процесс тонирования

- 1. Строим сферу освещения (сколько света попадает на данную точку?)
- 2. Комбинируем с ДФО/ДФР (На выходе сфера излучения)
- 3. Находим излучения для любого направления (телесного угла)
- На практике шаги редко выполняются полностью и в этом порядке
- Часто используется априорное знание о материале для дискретизации сфер по наиболее важным направлениям
 - Пример зеркальный материал

Модели освещения: локальные и глобальные модели

- Локальные модели
 - Собирается излучение только от источников света
 - Часто используется рассеянное (ambient) освещение

- Глобальные модели
 - Собирают вторичное освещение

Модели освещения: локальные и глобальные модели (2)

• «Глобальность» модели часто не зависит от функции вычисления излучения в точке!

- Разница в построении сферы освещения
 - Обусловлена разными алгоритмами синтеза

Модели освещения

- Эмпирические
 - Ламберт
 - Фонг
 - Блинн-Фонг
 - Лафортюн
- Физические
 - Френель
 - Кук-Торранс
- Дискретизованная BRDF

Модели освещения: Ламберт

- BRDF константна всегда =C/Pi
 - С определяет процент отражения для данной длины волны

Для одного источника света

$$L_o = L_i k_d \left(\vec{s} \cdot \vec{n} \right)$$

$$\cos \omega_i$$

Ламберт: свойства

- Самая простая модель освещения
- Позволяет описывать отражение идеально диффузных поверхностей
 - В природе не существует таких
- Удобная модель
 - в том числе для анализа свойств других

Модели освещения: Фонг

Добавляет эмпирический косинус для моделирования отражений (блеска)

$$L_o = L_i(k_d(\vec{s} \cdot \vec{n}) + k_s(\vec{r} \cdot \vec{v})^{k_e})$$

Фонг: пример

Фонг: особенности

- Не является обратимой
 - Поменяйте местами v и s

• Не сохраняет энергию

Модели освещения: Блинн-Фонг

$$L_o = L_i(k_d(\vec{s} \cdot \vec{n}) + k_s(\vec{h} \cdot \vec{n})^{k_e})$$

$$\vec{h} = \frac{(\vec{v} + \vec{s})}{2}$$

Не требуется вычисления вектора отражения

Сравнение Фонг и Блинн-Фонг

Зеркальная и диффузная составляющие BRDF

• Насколько это оправдано?

- Оправдано!
 - Описывает материалы, содержащие отражающие и диффузные частицы
 - Пропорции частиц задают коэффициенты ks,rd

Модели освещения

- Эмпирические
 - ✓ Ламберт
 - ✓ Фонг
 - ✓ Блинн-Фонг
 - Лафортюн
- Физические
 - Френель
 - Кук-Торранс
- Табличная BRDF

Модели освещения: Лафортюн

 Специально разработана для подгона измеренных BRDF под модели с небольшим числом параметров

• Основана на модели Фонга

Лафортюн: модифицикация модели

$$f_r(p,\omega_o,\omega_i) = \frac{k_d}{\pi} + (\omega_o \cdot R(\omega_i,n))^e$$

$$f_r(p, \omega_o, \omega_i) = \frac{k_d}{\pi} + (\omega_o(-\omega_{ix}, -\omega_{iy}, \omega_{iz}))^e$$

$$f_r(p, \omega_o, \omega_i) = \frac{k_d}{\pi} + (\omega_o(o_{ix}\omega_{ix}, o_{iy}\omega_{iy}, o_{iy}\omega_{iz}))^e$$

O_i можно использовать как параметр модели!

Лафортюн: основная формула

$$f_r(p, \omega_o, \omega_i) = \frac{k_d}{\pi} + \sum_{i=1}^{nlobes} (\omega_o(o_{ix}\omega_{ix}, o_{iy}\omega_{iy}, o_{iy}\omega_{iz}))^{e_i}$$

• Обобщенный Ламберт

Фонг

 Фонг – исправление проблемы яркости под острыми углами осмотра

Retro-reflection

Модели освещения

- У Эмпирические
 - ✓ Ламберт
 - ✓ Фонг
 - ✓ Блинн-Фонг
 - ✓ Лафортюн
- Физические
 - Френель
 - Кук-Торранс
- Табличная BRDF

Модели освещения: Френелевские отражения

- Процент отраженного и преломленного света неодинаков для разных входящих направлений!
- Задается законом Френеля (Fresnel)

$$R_s = \left[\frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}\right]^2 = \left[\frac{n_1 \cos(\theta_i) - n_2 \cos(\theta_t)}{n_1 \cos(\theta_i) + n_2 \cos(\theta_t)}\right]^2$$

$$R_p = \left[\frac{\tan(\theta_t - \theta_i)}{\tan(\theta_t + \theta_i)}\right]^2 = \left[\frac{n_1 \cos(\theta_t) - n_2 \cos(\theta_i)}{n_1 \cos(\theta_t) + n_2 \cos(\theta_i)}\right]^2$$

Модели освещения: Френелевские отражения

Модели освещения: микрофасетные модели

- Модель:
 - Статистическое распределение микрофасетов nf
 - ДФО каждого микрофасета
- У каждой модели своя аппроксимация
- Разная точность и сложность

Блестящая поверхность

Микрофасетные модели: основые эффекты

Вероятность того или иного события задается конкретной моделью

Микрофасетные модели: Модель Кука-Торранса

- Одна из первых моделей на основе микрофасетов
- Предназначена для моделирования металлических поверхностей
- Каждый микрофасет идеально зеркальный
- Поверхность описывается распределением D(ω_h)
 - Дает вероятность, что микрофасет имеет ориентацию ω_{h}

Кук-Торранс

Только микрофасеты с ориентацией ω_h могут дать идеально зеркальное отражение в направлении ωо

$$f_r(p, \omega_o, \omega_i) = \frac{D(\omega_h)G(\omega_o, \omega_i)F_r(\omega_o)}{4\cos\theta_o\cos\theta_i}$$

 $G(\omega_o,\omega_i)$ вероятность маскирования или затенения

$$F_{r}(\omega_{o})$$
 коэффициент френевского отражения

Применимость моделей для аппроксимации реальных данных

Для измеренной BRDF: Блинн-Фонг

Для измеренной BRDF: Лафортюне

Для измеренной BRDF: Кук-торранс

Для измеренной BRDF: сравнение

Модели освещения

- У Эмпирические
 - ✓ Ламберт
 - ✓ Фонг
 - ✓ Блинн-Фонг
 - ✓ Лафортюн
- ✓ Физические
 - ✓ Кук-Торранс
- Табличная BRDF

Табличная BRDF

- Вместо хранение коэффициентов модели можно хранить таблицу значений функции
 - Различные варианты сжатия, дискретизации
 - Сферические гармоники
 - **–** ...

Модели освещения

- У Эмпирические
 - ✓ Ламберт
 - − ✓ Фонг
 - ✓ Блинн-Фонг
 - ✓ Лафортюн
- ✓ Физические
 - ✓ Торранс-Спарроу
- ✓ Табличная BRDF

Итоги

- Тонирование: процесс вычисления исходящего излучения для точки поверхности
- Точность, выразительность, скорость
- Физически обоснованные и эмпирические модели
- Модели:
 - Ламберт
 - Фонг и Блинн-Фонг
 - Лафортюн
 - Кук-Торранс
 - Табличная BRDF

Использованные материалы

- В презентации использованы изображения из
 - Andry Glassner. "Image syntesis"
 - Wikipedia (http://wikipedia.org)
 - Addy Ngan, Frédo Durand, Wojciech Matusik
 Experimental Analysis of BRDF Models. In
 proceedings of Eurographics Symposium on Rendering
 2005.
 - http://people.csail.mit.edu/wojciech/BRDFValidation/index.html