Metallhydroxide und ihre Lösungen

Von Natriumhydroxid zur Natronlauge

SP: Vergleich von Salzlösungen

Lösung von	Elektrische Leitfähigkeit	pH-Wert	Hydrat. Ionen (aq)	Name der basischen Lösungen
Natriumhydroxid NaOH	+	alkalisch	Na⁺, OH⁻	Natronlauge
Natriumchlorid NaCl	+	neutral	Na⁺, Cl⁻	
Kaliumhydroxid KOH	+	alkalisch	K⁺, OH⁻	Kalilauge
Kaliumchlorid KCl	+	neutral	K ⁺ , Cl ⁻	
Calciumhydroxid Ca(OH) ₂	+	alkalisch	Ca ²⁺ , 2 OH ⁻	Kalkwasser
Calciumchlorid CaCl ₂	+	neutral	Ca ²⁺ , 2 Cl ⁻	

Merke:

Metallhydroxide bilden durch das Auflösen in Wasser alkalische Lösungen (Laugen), da sie Hydroxidionen enthalten.

Sonderfall Metallhydroxide: Beispiel Natriumhydroxid und Natronlauge

in Wasser auflösen

Ionengitter aus Na⁺- und OH⁻ - Ionen

Hydratisierte Na⁺und OH⁻ - Ionen Eine **Natriumhydroxidlösung** ist eine alkalische Lösung, da sie Hydroxid-Ionen enthält! Man nennt sie **Natronlauge**.

Ist Natriumhydroxid eine Base?

Natriumhydroxid	In Wasser gelöst	Natronlauge	
NaOH (s)		Na ⁺ _(aq) + OH ⁻ _(aq)	
Kaliumhydroxid	In Wasser gelöst	Kalilauge	
KOH (s)		K ⁺ _(aq) + OH ⁻ _(aq)	
Calciumhydroxid	In Wasser gelöst	Kalkwasser	
Ca(OH) _{2 (s)}		Ca ²⁺ _(aq) + 2 OH ⁻ _(aq)	
Bariumhydroxid	In Wasser gelöst	Barytwasser	
Ba(OH) _{2 (s)}		Ba ²⁺ _(aq) + 2 OH ⁻ _(aq)	

Alkalimetall-Hydroxide

Erdalkalimetall-Hydroxide

Wichtige anorganische Basen

Name der Base	Formel	Basenrest	Formel
Ammoniak	NH ₃	Ammonium-Ion	NH ₄ ⁺
Wasser	H ₂ O	Oxoniumion	H ₃ O ⁺
Hydroxidion	OH ⁻	Wasser	H ₂ O
Oxid	O ²⁻	Hydroxidion	OH ⁻

In Wasser gelöste Metallhydroxide bilden alkalische Lösungen!

Aufgaben:

Stelle die Reaktionsgleichungen für die Reaktion von Calciumoxid und Wasser auf. Benenne alle Stoffteilchen und ordne die Begriffe Protonendonator/Base, Protonenakzeptor/Base und alkalische Lösung zu.

