MA 4-23

- 1. Je dáno číslo a>0. Nalezněte kladná reálná čísla x,y,z taková, jejichž součet je roven a a výraz $Q=\ln(xy^2z^4)$ má největší možnou hodnotu.
- 2. Přepište následující integrál

$$\int_0^{\sqrt{2}} \int_0^{x^2} f \, dy \, dx$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\rho\,d\varphi$.

3. Pomocí Greenovy věty s vhodnou volbou pole F(x,y) vypočtěte obsah množiny D omezené osou x a křivkou

$$\varphi(t) = (\cos^3 t, \sin t), \quad t \in \langle 0, \pi \rangle.$$

(Pro představu si nakreslete body $\varphi(0)$, $\varphi(\pi/2)$ a $\varphi(\pi)$.)

- 4. U mocninné řady $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x \frac{x^3}{3} + \frac{x^5}{5} \cdots$ určete poloměr konvergence, interval, na kterém řada konverguje, a její součet.
- 5. (a) Mějme $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Definujte skalární součin prvků \mathbf{x}, \mathbf{y} a normu prvku \mathbf{x} . Mějme $\mathbf{a} = (1,1) \in \mathbb{R}^2$. Nakreslete všechny vektory $\mathbf{x} \in \mathbb{R}^2$ splňující $|\mathbf{a} \cdot \mathbf{x}| < 1$.
 - (b) Dokažte větu: Mějme nekonečnou množinu M ležící ve čtverci $Q_0=\langle -1,1\rangle \times \langle -1,1\rangle.$ Pak množina M má hromadný bod.

Řešení.

1. Výraz Q upravíme na vhodnější tvar, $Q=\ln x+2\ln y+4\ln z$. Lagrangeova funkce je $L=\ln x+2\ln y+4\ln z+\lambda(x+y+z-a)$. Stacionární body splňují rovnice

$$\frac{1}{x} = \lambda, \quad \frac{2}{y} = \lambda, \quad \frac{4}{z} = \lambda, \quad x + y + z = a.$$

Odtud máme, že y=2x a z=4x. Dosazením do poslední rovnice dostaneme jediný stacionární bod $x=a/7,\ y=2a/7$ a z=4a/7. Protože $Q\to -\infty$ pro $x\to 0$ nebo $y\to 0$ nebo $z\to 0$, je nalezený bod maximem.

2. Opačné pořadí je $\int_0^2 \int_{\sqrt{y}}^{\sqrt{2}} f \, dx \, dy$ a v polárních souřadnicích

$$\int_0^{\arctan \sqrt{2}} \int_{\sin \varphi/\cos^2 \varphi}^{\sqrt{2}/\cos \varphi} f \varrho \, d\varrho \, d\varphi.$$

3. Vhodná volba pole F je např. $\vec{F}=(0,x)$ nebo $\vec{F}=(-y,0)$. Hranice množiny D se skládá z křivky C mající zadanou parametrizaci φ a z úsečky $I=\langle -1,1\rangle$. Z Greenovy věty

obsah
$$D = \iint_D \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \int_{(\partial D)} \vec{F} \, d\vec{s} = \int_{(C)} \vec{F} \, d\vec{s} + \int_{(I)} \vec{F} \, d\vec{s}$$

dostaneme pro první pole

obsah
$$D = \int_0^{\pi} \cos^4 t \, dt + \int_{-1}^1 0 \, dt = \frac{3\pi}{8},$$

a pro druhé pole

obsah
$$D = \int_0^{\pi} 3\sin^2 t \cos^2 t \, dt + \int_{-1}^1 0 \, dt = \frac{3\pi}{8}.$$

4. Poloměr konvergence je R=1 a řada konverguje na intervalu (-1,1). Derivací zadané řady dostaneme geometrickou řadu

$$\sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - \dots$$

s kvocientem $q=-x^2$. Součet této řady je $\frac{1}{1+x^2}$, a tak součet původní řady je $arctg\ x+C$. Porovnáním hodnot v bodě x=0 máme, že C=0.

- 5. (a) Mějme prvky $\mathbf{x} = (x_1, \dots, x_n)$ a $\mathbf{y} = (y_1, \dots, y_n)$. Skalární součin je $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n$ a norma $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$. Body $\mathbf{x} \in \mathbb{R}^2$ splňující $|\mathbf{a} \cdot \mathbf{x}| < 1$ jsou body ležící mezi přímkami $y = -x \pm 1$.
 - (b) Čtverec Q_0 rozdělíme na čtyři čtverce s poloviční stranou. Protože M je nekonečná, alespoň v jednou z menších čtverců bude ležet nekonečně mnoho prvků z M. Označíme ho Q_1 a opět ho rozdělíme na čtyři menší s poloviční stranou. V jednom z nich bude opět nekonečně mnoho prvků z M. Tak pokračujeme s vytvářením posloupnosti čtverců $Q_0 \supset Q_1 \supset Q_2 \supset \cdots$. Jejich průnikem je bod \mathbf{x}_0 . Je-li $U(\mathbf{x}_0)$ libovolné okolí bodu \mathbf{x}_0 , pak v něm leží od určitého indexu všechny čtverce Q_n , a tedy i nekonečně mnoho prvků z M, tj. \mathbf{x}_0 je hromadný bod množiny M.