Integrantes: Sebastian Arriola Gustavo de León Rodrigo Zea

LABORATORIO 2 Series de Tiempo

1. Haga un análisis exploratorio de los datos que se le presentan, se sugiere explorar el comportamiento de las variables y si están distribuidas normalmente, en caso de ser continuas. Meses en los que más importaciones hay, picos en importaciones por año por tipo de combustibles, comportamiento en los últimos x años, etc.

Meses

Meses	
2001	12
2002	12
2003	12
2004	12
2005	12
2006	12
2007	12
2008	12
2009	12
2010	12
2011	12
2012	12
2013	12
2014	12
2015	12
2016	12
2017	12
2018	12
2019	12
2020	3
	2001 2002 2003 2004 2005 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Gas Aviación

Diesel

Normalidad de Gas Aviación

Frecuencia de Gas Aviación

Frecuencia de Gas DieselLS

Frecuencia de Gas DieselULS

-Se elaboró un análisis exploratorio en el que se explican los cruces de variables, hay gráficos explicativos y análisis que permiten comprender el conjunto de datos.

- -Se crearon las series de tiempo correspondiente a los datos de las variables que representan las importaciones de diesel, gasolina superior y gasolina regular.
- -Para cada una de las series se informa inicio, fin y frecuencia

Inicio es 2001

Fin es 2020

Frecuencia 12

Decomposition of additive time series

Series logDiesel

Series diff(logDiesel)

FIT NORMAL

Normal Q-Q Plot

- 2. Haga una serie univariante por cada una de las variables (gasolina regular, gasolina super, diesel). De cada serie:
 - a. especifique inicio, fin, y frecuencia
 - b. Haga un gráfico de la serie y explique qué información puede obtener a primera vista.

- c. descomponga la serie en sus componentes. Teniendo en cuenta el diagrama de la serie y sus componentes discuta si es posible hablar de estacionariedad en media y en varianza.
- d. Determine si es necesario transformar la serie. Explique.
- e. Explique si no es estacionaria en media. Para esto:
 - i. Haga el gráfico de autocorrelación y úselo para explicar la no estacionariedad en media.
 - ii. básese en los valores de estadísticos como la prueba de Dickey-Fuller aumentada para corroborar la no estacionariedad en media. ¿Qué es necesario hacer para hacerla estacionaria en medio en caso de que no lo sea?
- f. Una vez analizada la serie elija los parámetros p, q, y d del modelo ARMA o ARIMA que utilizará para predecir. Explique en qué se basó para darle valor a estos parámetros, basándose en las funciones de autocorrelación y autocorrelación parcial. Si usa la función autoarima de R, determine y explique si tiene sentido el modelo propuesto.
- g. Haga varios modelos ARIMA, y diga cuál es el mejor de ellos para estimar los datos de la serie.
- h. Haga un modelo usando el algoritmo prophet de Facebook. Compárelo con los modelos del inciso anterior. ¿Cuál funcionó mejor?
- i. Gas Diesel

i. inicio: 2001, 01 ii. fin: 2020, 03

iii. No es estacionaria en media y tampoco en varianza.

Decomposition of additive time series

iv. Si es necesario realizar una transformación logarítmica para intentar conseguir una varianza constante.

v. Se observa la no estacionariedad en la media.

Series logDiesel

Series diff(logDiesel)

- 3. Haga una predicción de los valores de la serie para los años 2018, 2019, y 2020. Explique qué tan buena es su predicción.
- 4. Haga una predicción del año 2020 usando los años anteriores y determine qué tan apegada es a la realidad teniendo en cuenta los meses pasados del año actual.