Научный свидетель

ФИЗИКИ СМОГЛИ с.3 КУРИЛКА ГУТЕНБЕРГА с.8 ВСЁ КАК У ЗВЕРЕЙ с.12 ЗАГАДКИ НЕЙРОНА с.29 ЗВУКИ БУДУЩЕГО с.45 НАУЧНЫЕ ЗАКРЫТИЯ с.57

Совместный сновидческий процесс

«Пластичность в дендритах миндалевидного тела» Midjourney + Photoshop, Eli Jackiewicz

Как сейчас выглядит нейрогенеративный арт и что с ним будет дальше?

с новостями науки, иллюстрации - это сложно. Так что когда разработчики нейросетей начали сначала делиться успехами своих детищ в живописи, а после запустили сервисы нейрогенерации изображений мы, конечно, очень обрадовались.

Но простая генерация картинок в ответ на набор слов – это еще не очень интересно. Поэтому мы пошли к Илье Яцкевичу Алексею Устьянцеву, которые занимаются нейрогене-

работаешь бражений при помощи отдельное художественное направление? Или все люди, которые занимаются изобразительным творчеством, просто сейчас осваивают новый инструмент?

ров научных новостей -

их работу алгоритмы.

[Илья]: Сейчас в твиттере и инстаграме многие стонут: «о боже, нет, они заменяют художников!» [мы говорили с Ильей и Алексеем еще 24 августа — прим. N + 1]. Ну, так-то слава роботам, конечно. И опреподвижки на рынке труда в свяискусством, зи с этим произойдут.

чтобы они попробовали Но в любом случае чесебя в роли иллюстрато- ловеческая роль во всем этом остается. Потому потом поговорили что человек делает это с ними о том, как меняют с пониманием идеи, контекста. Он корректиру-[N + 1]: Генерация изо- ет промпты, настраивает их в соответствии своей задумкой, со своим представлением о предмете - особенно когда мы говорим о весьма абстрактных научных образах. Да и, в конце концов, он потом ретуширует это и собирает вместе.

[N + 1]: А ты можешь нейронки, это что? Уже всю цепочку описать? Не только применительно к нашей конкретной истории с заголовками. а вообще.

> [Илья]: наприработаю сейчас мер, клипом Дельфина и мы используем нейросетки для того, чтобы какие-то обшие дать референсы. направление, настроение. То, ради чего я раньше ковырял бы пинтерест на протяжении многих часов.... Сейчас на это уже не уходит так много времени. Получается ...

> > продолжение на с.8

Физики открыли изотоп натрий-39

продолжение на с.39

Дневной мрак и ночной свет спровоцировали депрессии

Избыток света после полуночи повысил риск развития депрессии на 30%.

Статистики и врачи изучили связь между освещенностью и возникновением психических расстройств. Исследование данных Биобанка Великобритании, включающее более 86 тысяч испытуемых, показало, что при недостатке освещения днем, как и при скорректированный избыточной яркости света ночью, распростра- сивного расстройства, ненность тревожных, де- самоповреждающего чвыку пасстройств и психотических эпизо- зованного тревожного дов повышена примерно расстройства, на четверть.

Колебания освещенности днем и ночью вли- и психотических эпизояют на циркадные ритмы человека. Система регуляции циркадных нили, как влияет осверитмов плотно связана с социальным поведением и с развитием депрессивных расстройств всех и тревоги.

Ход исследования

Обследуемые в течение недели носили **УМНЫЕ ЧАСЫ С ДАТЧИКОМ** освещенности. Спустя 1,86±0,66 года с испытуемыми связались повторно и попросили их заполнить шкалы

оценки психического здоровья. Также учитывали демографические данные и информацию о выставленных диагнозах психических расстройств. Потом исследователи регрессионные модели, связывающие псиздоровье и освещенность днем (с 7:30 до 20:30) и ночью (с 00:30 до 06:00).

У пациентов, получавших больше ночью, был повышен риск большого депреспосттравматического стресрасстройства дов в течение жизни.

Исследователи оцещенность днем на здоровье. У тех, кто получал больше света днем, риск перечисленных расстройств (кроме генерализованного тревожного) был на 18-31 процент ниже. Уровень освещения вечером (с 19:30 до полуночи) не оказал независимого влияния на здоровье.

Сергей Задворьев

Разминка для кубита

Квантовые компьютеры физики собирают уже четвертый десяток лет: придумывают новые кубиты, совершенствуют уже изобретенные, исследуют возможности кудитов. Те квантовые алгоритмы, которые уже успели придумать математики, слишком сложны для существуюших машин.

Какие задачи квантовые машины могут решать уже сейчас?

Отмычка для шифра

алгоритмы придумали в 1990-е. Все они были связаны с задачами комбинаторики Планировалось, что квантовый компьютер сможет моделировать сложные многочастичные системы и решать задачи, которые требуют недостижимых для классических вычислителей мощностей. В 1994 году Питер Шор, изувероятности и комбинаторику,

числа на простые множители в миллионы раз быстрее классического.

Если с помощью этой

схемы квантовый компьютер сможет раскладывать на множители хотя бы стозначные числа, это позволит взломать популярную сейчас систему RSA-шифрования. Шор наглядно показал, как с помощью квантового компьютера можно взломать любую зашищенную линию связи. На то, чтобы подобрать ключ к RSA-шифру, v классического компьютера уйдет триллион лет. Квантовый сможет взломать такой же шифр за восемь часов. Правда, что технические сложнодля этого ему потребует-Первые квантовые ся миллион кубитов.

Квантовое

машинное обучение Первый способ оби квантовой химии. Легчить поиск основного состояния - перекинуть на обычный компьютер часть задачи. Такие объединенные вычислители выполняют гибридные квантово-классические алгоритмы. Вся логическая нагрузка здесь ложится на классический вычислитель. Квантовая часть просто готовит то помимо анализа речавший параллельно нужное квантовое состояние, чтобы можно было провести его измеразработал первый рение – никакой логики квантовый алгоритм, для этого нужно. А все который раскладывал задачи решают обыч-

ные транзисторы. Вычисления по такой схеме называют квантовым машинным обучением, а к названию алгоритмов добавляют уточнение «вариационные».

Классический компьютер плюс квантовый черный ящик.

Компьютер перебирает стартовые состояния квантовой системы и затем считывает результат, который та выдает. Быстрый приход эры истинно квантовых алгоритмов с самого начала казалась ученым сомнительным. Было понятно, сти не дадут быстро воплотить их в реальность. В любом случае, все эти альтернативы - не зауниверсальным квантовым компьютерам. Управляемая схема даже небольшого числа вентилей позволит адаптировать квантовые компьютеры под разные задачи, не забираясь в его конструкцию с ру-

Шумные перспективы

Да и заниматься чемгамильтониана или, например, моделирования спиновых систем. Оценить, как сильно продвинулись эксперипродолжение на с.52

Пять сигнальных веществ помогли лягушкам отрастить отрезанные лапы

Американские ученые научились запускать регенерацию Для этого они накладывали на место ампутированной лапы

гидрогель с сигнальростка, у эксперино функциональные. мую будет сложно. Работа опубликована в журнале Advances.

Считается, что когда-то все четвероногие позвоночные умели хоу взрослых лягушек. рошо регенерировать, но большинство из них эту способность потеряли. Сейчас отращивать себе новые конечности могут разве что саламандры и головастики. А у млекопитающих даже детеныши с этой задачей почти не справляются.

Авторы работы призывают сделать из своего успеха несколько важных выводов. Первый состоит в том, что на успех регенерации влияет микроокружение, причем на самом раннем этапе.

Второй вывод состоит в том, что даже у животного, которое утратило способности к регенерации, их можно восстановить или хотя бы приблизить к тому уровню, на котором ими обладают ранние стадии его развития. В этом смысмолекулами, ле лягушка, конечно, В результате вместо более удобный объект, бесформенного от- чем мышь или человек у ее личинок эти споментальных животных собности развиты хоровыросли полноценные шо. Поэтому возможно, лапы - не до конца на млекопитающих ресформировавшиеся зультаты этого эксперивнешне, но абсолют- мента перенести напря-

Полина Лосева