FIRST EDITION

MATHEMATICAL FOUNDATIONS OF NEURAL NETWORKS

From CNNs to PINNs, QINNs, and Deep Reinforcement Learning

RAPHAEL NORIEGA

Preface

For as long as I can remember, I have dreamed of writing a book where no step is skipped, where every concept finds its place in a logical chain, and where the reader is never left with the feeling that something essential has been hidden between the lines. Too often, in mathematics and in the sciences, explanations assume too much, or leave gaps that only those with prior training can fill. This book is my answer to that problem.

When I began teaching and researching neural networks, I was struck by how fragmented the explanations often were. Some texts went straight to the formulas, as if the reader should already know why those symbols mattered. Others remained on the surface, offering analogies without showing the rigorous backbone of mathematics that sustains the theory. The result is that many students, researchers, or professionals are left either overwhelmed by abstraction or undernourished by oversimplification. My conviction is that knowledge should not be fragmented: it should flow as a continuous path where each stone is visible and firmly placed for the next step.

That is the spirit of this book. Here, I aim to construct a narrative where the reader walks hand in hand with the mathematics, never jumping over a void of reasoning. Concepts are not presented as isolated facts, but as elements of a larger structure, built slowly with logic as mortar. The aim is not just to show *what* neural networks are, but to reveal *why* they are built the way they are, and how mathematics—linear algebra, calculus, probability, optimization—becomes the invisible skeleton that gives them life.

This is a book for a wide audience. It is written for the undergraduate student taking their first steps in artificial intelligence, for the graduate researcher who needs a rigorous reference, and for professionals in the industry who want to understand the deeper principles behind the tools they use. My hope is that this book will serve as both a guide and a reference: a text you can study systematically from beginning to end, but also one you can revisit to clarify details or to build new insights.

Writing this book has also been a personal journey. I wanted to produce something that stands apart from textbooks that either rush through derivations or leave entire arguments as an exercise for the reader. This will not be a book of shortcuts. It will demand effort. There will be formulas, derivations, and proofs. But I promise that every line is there for a reason. Nothing is left to chance, and nothing is presented without context. If you walk with me through these pages, you will not only learn what neural networks are and how they work—you will also discover the rhythm and poetry of mathematics itself, the logic that binds the abstract to the real.

Finally, this book is also a gesture of trust. Trust in the reader's intelligence, in their patience, and in their hunger for depth. I have chosen not to underestimate you, whoever you are, because I believe that clarity is not about removing complexity but about guiding through it.

May these pages serve as a bridge: between mathematics and intuition, between logic and imagination, and between the academic world and real-world applications.

Contents

Contents

I.	I	Матне	EMATICAL PRELIMINARIES
1.	Intr	oductio	on
	1.1.	Histo	orical Context of AI and Neural Networks
		1.1.1.	Early visions of artificial intelligence
		1.1.2.	Symbolic AI and rule-based reasoning (1950s–1970s)
		1.1.3.	Cybernetics and control theory foundations
		1.1.4.	Birth of the perceptron and connectionism
		1.1.5.	Shift from handcrafted rules to learning from data
	1.2.	AI W	inters and the Deep Learning Revolution
		1.2.1.	The first AI winter: funding collapse in the 1970s
		1.2.2.	The second AI winter: overpromises and underdelivery
		1.2.3.	The comeback: backpropagation and multilayer perceptrons
		1.2.4.	The ImageNet moment and deep convolutional networks
		1.2.5.	Acceleration through GPUs, big data, and open-source ecosystems
	1.3.	Innov	vation and Impact on the World
		1.3.1.	Transformation of computer vision and natural language processing
		1.3.2.	AI-driven automation in industry and science
		1.3.3.	Deep learning in healthcare, robotics, and materials discovery
		1.3.4.	Societal, ethical, and economic implications
		1.3.5.	AI as a new general-purpose technology
	1.4.	Why	Mathematics Matters in Deep Learning
		1.4.1.	Mathematics as the foundation of generalization
		1.4.2.	Linear algebra, calculus, and probability as core pillars
		1.4.3.	Optimization theory behind learning algorithms
		1.4.4.	Mathematical guarantees vs empirical success
		1.4.5.	Bridging theory, practice, and innovation
<u>.</u>	Lin	ear Alg	ebra Essentials
	2.1.	Vecto	or spaces and inner products
		2.1.1.	Vector spaces and subspaces
		2.1.2.	Basis and dimension
		2.1.3.	Linear independence
		2.1.4.	Inner product and norms
		2.1.5.	Orthogonality and orthonormal bases
	2.2.	Eiger	avalues, eigenvectors, diagonalization
		2.2.1.	Eigenvalues and eigenvectors
		2.2.2.	Characteristic polynomial
		2.2.3.	Diagonalization of matrices
		2.2.4.	Spectral theorem
		2.2.5.	Applications to stability and data analysis
	2.3.		ılar value decomposition (SVD)
	- "	2.3.1.	Matrix factorization concepts
		2.3.2.	Singular values and orthogonal matrices
		2.3.3.	Rank and null space
		2.3.4.	Low-rank approximations
		2.3.5.	PCA and compression
	2.4.		or notation and operations
	1.	2.4.1.	Scalars, vectors, matrices, tensors

		2.4.2.	Tensor indexing and ranks	8
		2.4.3.	Tensor contraction and Einstein summation	8
		2.4.4.	Broadcasting and reshaping	8
		2.4.5.	Tensors in backpropagation and GPU computation	8
			1 1 0 1	
3.	Mu	ltivaria	ble Calculus and Analysis	9
	3.1.	Gradi	ents, Jacobians, Hessians	10
		3.1.1.	Partial derivatives and notation	10
		3.1.2.	Gradient vectors and directional derivatives	10
		3.1.3.	Jacobian matrices for vector-valued functions	10
		3.1.4.	Hessian matrices and second-order derivatives	10
		3.1.5.	Applications in optimization and backpropagation	10
	3.2.		r expansions in multiple variables	10
	0.2.	3.2.1.	Multivariate Taylor series formula	10
		3.2.2.	Linear and quadratic approximations	10
		3.2.3.		10
		3.2.3.	Error terms and convergence	
	2.2		Applications to loss landscapes	10
	3.3.		gence, curl, and Laplacians	10
		3.3.1.	Vector fields and notation	10
		3.3.2.	Divergence and its interpretation	10
		3.3.3.	Curl and rotational fields	10
		3.3.4.	Laplacian operator and harmonic functions	10
		3.3.5.	Applications to PDEs and diffusion	10
	3.4.	Varia	tional principles	10
		3.4.1.	Functional derivatives	10
		3.4.2.	Euler-Lagrange equations	10
		3.4.3.	Variational methods for optimization	10
		3.4.4.	Applications in physics-informed neural networks (PINNs)	10
4.	Pro	bability	, Statistics, and Information Theory	11
4.	Pro 4.1.			11 12
4.		Rand	om variables and distributions	12
4.		Rand 4.1.1.	om variables and distributions	12 12
4.		Rand 4.1.1. 4.1.2.	om variables and distributions	12 12 12
4.		Rand 4.1.1. 4.1.2. 4.1.3.	om variables and distributions	12 12 12 12
4.		Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4.	om variables and distributions	12 12 12 12 12
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5.	om variables and distributions	12 12 12 12 12 12
4.		Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions etation, variance, covariance	12 12 12 12 12 12 12
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables	12 12 12 12 12 12 12 12
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation	12 12 12 12 12 12 12 12 12
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions etation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation	12 12 12 12 12 12 12 12 12 12
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices	12 12 12 12 12 12 12 12 12 12 12
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem	12 12 12 12 12 12 12 12 12 12 12 12
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expec 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5.	Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions etation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro	Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1.	Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information Shannon entropy and information content	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1. 4.4.2.	Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information Shannon entropy and its link to loss functions	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1. 4.4.2. 4.4.3.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions etation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information Shannon entropy and information content Cross-entropy and its link to loss functions Kullback-Leibler divergence	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1. 4.4.2. 4.4.3. 4.4.4.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions etation, variance, covariance Expected value of random variables Variance and standard deviation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information Shannon entropy and information content Cross-entropy and its link to loss functions Kullback-Leibler divergence Mutual information	12 12 12 12 12 12 12 12 12 12 12 12 12 1
4.	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1. 4.4.2. 4.4.3.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions etation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information Shannon entropy and information content Cross-entropy and its link to loss functions Kullback-Leibler divergence	12 12 12 12 12 12 12 12 12 12 12 12 12 1
	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1. 4.4.2. 4.4.3. 4.4.4.	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information Shannon entropy and its link to loss functions Kullback-Leibler divergence Mutual information Applications in machine learning (regularization, uncertainty, feature selection)	12 12 12 12 12 12 12 12 12 12 12 12 12 1
 4. 5. 	4.1.4.2.4.3.Opt	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1. 4.4.2. 4.4.3. 4.4.4.5. timizati	Sample spaces and events	12 12 12 12 12 12 12 12 12 12 12 12 12 1
	4.1.4.2.4.3.	Rand 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Expect 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5. Gauss 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. Entro 4.4.1. 4.4.2. 4.4.3. 4.4.4.5. timizati	om variables and distributions Sample spaces and events Discrete and continuous random variables Probability mass and density functions (PMF, PDF) Cumulative distribution functions (CDF) Joint, marginal, and conditional distributions ctation, variance, covariance Expected value of random variables Variance and standard deviation Covariance and correlation Covariance matrices Law of large numbers and central limit theorem sian and exponential families Gaussian (normal) distribution properties Multivariate Gaussian distribution Exponential family definition and structure Bernoulli, Binomial, Poisson, and Exponential as exponential-family members Maximum likelihood under exponential families py, KL divergence, mutual information Shannon entropy and its link to loss functions Kullback-Leibler divergence Mutual information Applications in machine learning (regularization, uncertainty, feature selection)	12 12 12 12 12 12 12 12 12 12 12 12 12 1

	5.1.2.	First- and second-order conditions for convexity	14
	5.1.3.	Lagrange multipliers	14
	5.1.4.	Karush–Kuhn–Tucker (KKT) conditions	14
	5.1.5.	Strong and weak duality	14
5.2.	Gradi	ent descent and its variants	14
	5.2.1.	Steepest descent method	14
	5.2.2.		14
	5.2.3.	Momentum-based methods	14
	5.2.4.	Nesterov accelerated gradient (NAG)	14
	5.2.5.	Adaptive methods (AdaGrad, RMSProp, Adam)	14
5.3.	Stoch	astic optimization and convergence	14
	5.3.1.	Stochastic gradient descent (SGD)	14
	5.3.2.	Mini-batch training	14
	5.3.3.		14
	5.3.4.	Variance reduction techniques	14
	5.3.5.	Generalization vs optimization trade-offs	14
5.4.	Newt		14
	5.4.1.		14
	5.4.2.		14
	5.4.3.		14
	5.4.4.		14
	5.4.5.		14
5.5.	Varia		14
	5.5.1.		14
	5.5.2.		14
	5.5.3.		14
	5.5.4.		14
		A 1 1 1 1 C	-
6. Fui		S .	15
6. Fui 6.1.		ned spaces, Banach and Hilbert spaces	16
	Norm 6.1.1.	ned spaces, Banach and Hilbert spaces	16 16
	Norm	ned spaces, Banach and Hilbert spaces	16 16 16
	Norm 6.1.1. 6.1.2. 6.1.3.	Normed vector spaces and examples	16 16 16 16
	Norm 6.1.1. 6.1.2.	Normed vector spaces and examples	16 16 16 16
	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5.	Normed vector spaces and examples	16 16 16 16 16
	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5.	Normed vector spaces and examples	16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions	16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting	16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting	16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics	16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics	16 16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem gonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel)	16 16 16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties	16 16 16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties	16 16 16 16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations	16 16 16 16 16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality	16 16 16 16 16 16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality	16 16 16 16 16 16 16 16 16 16 16 16 16
6.1.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.4. 6.3.5. Opera	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs Linear operators and boundedness Self-adjoint, unitary, and compact operators	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. Opera 6.4.1.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs Linear operators and boundedness Self-adjoint, unitary, and compact operators	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. Opera 6.4.1. 6.4.2.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem gonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs Linear operators and boundedness Self-adjoint, unitary, and compact operators Spectral theory of operators	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. Opera 6.4.1. 6.4.2. 6.4.3. 6.4.4.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs Linear operators and boundedness Self-adjoint, unitary, and compact operators Spectral theory of operators Differential operators in Hilbert spaces Operator formulations of PDEs and Schrödinger equation	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. Opera 6.4.1. 6.4.2. 6.4.3. 6.4.4.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem Ogonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods all functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs and theory foundations for PINNs and QINNs Linear operators and boundedness Self-adjoint, unitary, and compact operators Spectral theory of operators Differential operators in Hilbert spaces Operator formulations of PDEs and Schrödinger equation Pential Geometry and Manifold Learning	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.6.4.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. Opera 6.4.1. 6.4.2. 6.4.3. 6.4.4.	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem gonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs Linear operators and boundedness Self-adjoint, unitary, and compact operators Spectral theory of operators Differential operators in Hilbert spaces Operator formulations of PDEs and Schrödinger equation ential Geometry and Manifold Learning Smooth manifolds and charts	16 16 16 16 16 16 16 16 16 16 16 16 16 1
6.1.6.2.6.3.6.4.	Norm 6.1.1. 6.1.2. 6.1.3. 6.1.4. 6.1.5. Ortho 6.2.1. 6.2.2. 6.2.3. 6.2.4. 6.2.5. Speci 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. Opera 6.4.1. 6.4.2. 6.4.3. Differ	Normed vector spaces and examples Completeness and Banach spaces Inner product spaces Inner product spaces Hilbert spaces and orthonormal bases Riesz representation theorem gonal polynomials (Hermite, Laguerre, Legendre) Orthogonality conditions and weight functions Hermite polynomials and Gaussian weighting Laguerre polynomials and exponential weighting Legendre polynomials and spherical harmonics Applications in spectral methods al functions (Gamma, Beta, Bessel) Gamma and Beta functions definitions and properties Relationship with factorials and combinatorics Bessel functions and their differential equations Asymptotic behavior and orthogonality Applications in physics and PDEs ator theory foundations for PINNs and QINNs Linear operators and boundedness Self-adjoint, unitary, and compact operators Spectral theory of operators Differential operators in Hilbert spaces Operator formulations of PDEs and Schrödinger equation ential Geometry and Manifold Learning Smooth manifolds and charts	16 16 16 16 16 16 16 16 16 16 16 16 16 1

		6.5.4.	Curvature and Laplace–Beltrami operator	16
		6.5.5.	Manifold learning methods (Isomap, LLE)	16
	6.6.		ure-Theoretic Probability and L^p Spaces	16
		6.6.1.	Measure spaces and σ -algebras	16
		6.6.2.	Lebesgue measure and integration	16
		6.6.3.	Probability as a measure	16
		6.6.4.	L^p spaces and norms	16
		6.6.5.	Convergence theorems (dominated, monotone)	16
II.	. (Classi	cal Machine Learning	17
7.	Fou	ındation	s of Machine Learning	19
	7.1.		is Machine Learning?	19
		7.1.1.	Definitions and scope	19
		7.1.2.	Learning from data vs explicit programming	19
		7.1.3.	Types of tasks: classification, regression, clustering, control	19
		7.1.4.	Data-driven modeling and generalization	19
	7.2.	Histor	rical Background and Paradigms	19
		7.2.1.	Origins in statistics and computer science	19
		7.2.2.	Supervised, unsupervised, and reinforcement learning	19
	_			
8.			ithms of Classical ML	21
	8.1.		r and Logistic Regression	21
		8.1.1.	Linear regression model formulation	21
		8.1.2.	Least squares estimation	21
		8.1.3.	Regularization (Ridge and Lasso)	21
		8.1.4.	Logistic regression for classification	21
		8.1.5.	Decision boundaries and sigmoid function	21
	0.0	8.1.6.	Evaluation metrics (accuracy, ROC, AUC)	21
	8.2.		ort Vector Machines (SVMs) and Kernels	21
		8.2.1.	Maximum margin classifiers	21 21
		8.2.2. 8.2.3.	Soft margin SVMs	21
		8.2.4.	Kernel trick and feature mapping	21
		8.2.5.	Common kernels (linear, polynomial, RBF)	21
			Support vector regression (SVR)	21
	0.2	8.2.6.	Computational considerations	
	8.3.		ion Trees, Random Forests, and Boosting	21
		8.3.1. 8.3.2.	Decision tree construction (ID3, CART)	21 21
		8.3.3.	Overfitting and pruning	21
		8.3.4.	Bagging and random forests	21
		8.3.5.	Feature importance and interpretability	21
				21
9.			ic Models and Bayesian Learning	23
	9.1.		Bayes Classifiers	23
		9.1.1.	Bayes' theorem recap	23
		9.1.2.	Conditional independence assumption	23
		9.1.3.	Training and parameter estimation	23
		9.1.4.	Multinomial and Gaussian Naïve Bayes	23
	0.2	9.1.5.	Applications and limitations	23
	9.2.		sian Mixture Models (GMMs) and the EM Algorithm	23
		9.2.1.	Mixture models and latent variables	23
		9.2.2.	Expectation-Maximization (EM) algorithm	23
		9.2.3.	E-step and M-step derivations	23
		9.2.4.	Convergence and initialization strategies	23
		9.2.5.	Applications to clustering and density estimation	23

	9.3.	Bayesi	ian Inference: Priors, Posteriors, and Evidence	23
		9.3.1.	Prior distributions and subjective knowledge	23
		9.3.2.	Likelihood functions	23
		9.3.3.	Posterior distributions via Bayes' rule	23
		9.3.4.	Evidence (marginal likelihood) and model comparison	23
		9.3.5.	Bayesian updating and sequential inference	23
		9.3.3.	bayesian updating and sequential interestee	20
10.	Din	nensiona	ality Reduction and Unsupervised Learning	25
			pal Component Analysis (PCA)	26
	10.1.	10.1.1.		26
		10.1.2.	Dimensionality reduction via projection	26
		10.1.2.	Explained variance and component selection	26
		10.1.3.	Whitening and data preprocessing	26
		10.1.4.		
	10.0		Applications in visualization and noise reduction	26
	10.2.		l PCA and Nonlinear Manifolds	26
			Limitations of linear PCA	26
			11 0	26
		10.2.3.	Kernel matrix (Gram matrix) construction	26
		10.2.4.	Eigen decomposition in feature space	26
		10.2.5.	Manifold interpretation and applications	26
	10.3.	Cluste	ering Algorithms	26
		10.3.1.	k-means	26
			Hierarchical Clustering	26
		10.3.3.	DBSCAN	26
11.			neory and Generalization	27
	11.1.		mension and Shattering	27
		11.1.1.	Hypothesis classes and expressiveness	27
		11.1.2.	Shattering sets of points	27
		11.1.3.	Definition and examples of VC dimension	27
		11.1.4.	VC dimension and overfitting risk	27
	11.2.	PAC L	earning Framework	27
		11.2.1.	Probably Approximately Correct (PAC) definition	27
		11.2.2.	Sample complexity bounds	27
		11.2.3.	Realizable vs agnostic PAC learning	27
		11.2.4.	PAC learnability and generalization guarantees	27
	11.3.	Raden	nacher Complexity	27
			Definition and intuition	27
		11.3.2.	Empirical Rademacher complexity	27
		11.3.3.	Relation to uniform convergence	27
		11.3.4.	Bounds on generalization error	27
	11.4.		Variance Trade-Off	27
	11.1.	11.4.1.	Decomposing expected error	27
		11.4.2.	High bias (underfitting) vs high variance (overfitting)	27
		11.4.3.	Regularization and model complexity	27
		11.4.3.		27
		11.4.4.	Implications for model selection	21
12.	Opt	imizatio	on in Machine Learning	29
			Squares and Maximum Likelihood	29
		12.1.1.	Ordinary least squares formulation	29
		12.1.2.	Normal equations and closed-form solution	29
		12.1.3.	Maximum likelihood estimation (MLE)	29
		12.1.4.	Connection between least squares and Gaussian likelihood	29
		12.1.4.	Log-likelihood and optimization objectives	29
	12.2		ex vs. Non-Convex Optimization	29
	14.4.	12.2.1.	Convex sets and convex functions	29
				29
		12.2.2.	Properties of convex optimization problems	
		12.2.3.	Challenges of non-convex landscapes	29

	12.2.4.	Local minima vs global minima	29
	12.2.5.	Saddle points and flat regions	29
12.3	. Gradi	ent Descent and Variants	29
	12.3.1.	Batch gradient descent	29
	12.3.2.	Stochastic gradient descent (SGD)	29
	12.3.3.	Mini-batch gradient descent	29
	12.3.4.	Learning rate scheduling	29
		Momentum, RMSProp, and Adam optimizers	29
		o Neural Networks	31
13.1	. Limita	ations of Classical ML	31
	13.1.1.	Dependence on feature engineering	31
	13.1.2.	Scalability issues with high-dimensional data	31
	13.1.3.	Difficulty handling unstructured data (images, text, audio)	31
	13.1.4.	Limited capacity for hierarchical representations	31
	13.1.5.	Performance saturation with more data	31
13.2	. Featui	re Engineering vs. Representation Learning	31
	13.2.1.	Manual feature extraction approaches	31
	13.2.2.	Representation learning definition	31
	13.2.3.	Advantages of learned hierarchical features	31
	13.2.4.	Examples in computer vision and NLP	31
	13.2.5.	Shift from hand-crafted to learned representations	31
13.3	3. The B	ridge to Perceptrons and Deep Learning	31
	13.3.1.	Introduction to artificial neurons	31
	13.3.2.	Perceptron architecture and learning rule	31
	13.3.3.	Multilayer perceptrons (MLPs) and hidden layers	31
	13.3.4.	From shallow to deep networks	31
	13.3.5.	The deep learning paradigm shift	31
			33
14. Fou	undation	s of Neural Networks	35
14. Fo u 14.1	undation . What	s of Neural Networks is a Neural Network?	35 35
14. Fou 14.1 14.2	undation . What . Biolog	s of Neural Networks is a Neural Network?	35 35 35
14. Fou 14.1 14.2 14.3	undation . What . Biolog b. Basic	s of Neural Networks is a Neural Network? ;ical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations	35 35 35 35
14. For 14.1 14.2 14.3 14.4	undation . What . Biolog . Basic S	s of Neural Networks is a Neural Network? ;ical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview)	35 35 35 35 35
14. Fou 14.1 14.2 14.3	undation . What . Biolog . Basic . From . Backp	s of Neural Networks is a Neural Network? cical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation	35 35 35 35 35 35
14. For 14.1 14.2 14.3 14.4	undation . What . Biolog . Basic (. From . Backp 14.5.1.	s of Neural Networks is a Neural Network? cical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule	35 35 35 35 35 35
14. For 14.1 14.2 14.3 14.4	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2.	s of Neural Networks is a Neural Network? ; ical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD	35 35 35 35 35 35 35
14. For 14.1 14.2 14.3 14.4	undation What Biolog Basic From Backp 14.5.1. 14.5.2. 14.5.3.	s of Neural Networks is a Neural Network? ; ical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm	35 35 35 35 35 35 35 35
14. For 14.1 14.2 14.3 14.4	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2.	s of Neural Networks is a Neural Network? ; ical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD	35 35 35 35 35 35 35
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3.	s of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian–Vector Products	35 35 35 35 35 35 35 35 35
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4.	s of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products Fron and Linear Models	35 35 35 35 35 35 35 35 35 35
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What b. Biolog b. Basic S . From b. Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. Percept . McCu	is a Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products From and Linear Models Illoch-Pitts Neurons	35 35 35 35 35 35 35 35 35 37
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. e Percept . McCu 15.1.1.	s of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products pron and Linear Models Illoch-Pitts Neurons Biological inspiration and abstraction	35 35 35 35 35 35 35 35 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. e Percept . McCu 15.1.1. 15.1.2.	s of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products Tron and Linear Models Biological inspiration and abstraction Binary threshold units	35 35 35 35 35 35 35 35 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. e Percept . McCu 15.1.1. 15.1.2.	s of Neural Networks is a Neural Network? pical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products pron and Linear Models Biloch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons	35 35 35 35 35 35 35 35 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. e Percept . McCu 15.1.1. 15.1.2. 15.1.3.	s of Neural Networks is a Neural Network? pical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products Fron and Linear Models Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact	35 35 35 35 35 35 35 35 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. e Percept . McCu 15.1.1. 15.1.2. 15.1.3. 15.1.4 Rosen	s of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) propagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products Fron and Linear Models Iloch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability	35 35 35 35 35 35 35 35 37 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	Mation What Biolog Basic S From Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. Percept McCu 15.1.1. 15.1.2. 15.1.3. 15.1.4. Rosen 15.2.1.	is a Neural Network? is a Neural Network? is a Neural Network? is a Neural Network? is a Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) irropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products Irron and Linear Models Illoch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability Perceptron model architecture	35 35 35 35 35 35 35 35 37 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	mdation. What Biolog Basic S From Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. Percept McCu 15.1.1. 15.1.2. 15.1.3. 15.1.4. Rosen 15.2.1. 15.2.2.	is of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products ron and Linear Models Illoch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability Perceptron model architecture Learning rule and weight updates	35 35 35 35 35 35 35 35 37 37 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	undation . What . Biolog . Basic 9 . From . Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. e Percept . McCu 15.1.1. 15.1.2. 15.1.3. 15.1.4 Rosen 15.2.1. 15.2.2. 15.2.3.	s of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products ron and Linear Models Iloch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability Perceptron model architecture Learning rule and weight updates Geometric interpretation of linear separability	35 35 35 35 35 35 35 35 37 37 37 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5	Matural Matura Matural Matural Matural Matural Matural Matural Matural Matural	s of Neural Networks is a Neural Network? gical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products ron and Linear Models Illoch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability Perceptron model architecture Learning rule and weight updates Geometric interpretation of linear separability Perceptron convergence theorem	35 35 35 35 35 35 35 37 37 37 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5 15.1 The 15.1	Mation. What Biolog Basic St. From Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. Percept McCu 15.1.1. 15.1.2. 15.1.3. 15.1.4. Rosen 15.2.1. 15.2.2. 15.2.3. 15.2.4. 15.2.5.	is of Neural Networks is a Neural Network? pical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products ron and Linear Models Iloch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability Perceptron model architecture Learning rule and weight updates Geometric interpretation of linear separability Perceptron convergence theorem Limitations: XOR problem and need for hidden layers	35 35 35 35 35 35 35 35 37 37 37 37 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5 15.1 The 15.1	mdation What Biolog Basic 9 From Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. Percept McCu 15.1.1. 15.1.2. 15.1.3. 15.1.4. Rosen 15.2.1. 15.2.2. 15.2.3. 15.2.4. 15.2.5. Logist	is a Neural Network? is a Neural Network? is a Neural Network? is a Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products ron and Linear Models Illoch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability Perceptron model architecture Learning rule and weight updates Geometric interpretation of linear separability Perceptron convergence theorem Limitations: XOR problem and need for hidden layers ic Regression as Probabilistic Perceptron	35 35 35 35 35 35 35 35 37 37 37 37 37 37 37 37 37 37 37
14. Fou 14.1 14.2 14.3 14.4 14.5 15.1 The 15.1	Mation. What Biolog Basic St. From Backp 14.5.1. 14.5.2. 14.5.3. 14.5.4. Percept McCu 15.1.1. 15.1.2. 15.1.3. 15.1.4. Rosen 15.2.1. 15.2.2. 15.2.3. 15.2.4. 15.2.5.	is of Neural Networks is a Neural Network? pical Inspiration vs. Mathematical Abstraction Structure: Neurons, Layers, and Activations Perceptrons to Modern Architectures (preview) ropagation and Automatic Differentiation Computational Graphs and the Chain Rule Forward-Mode vs. Reverse-Mode AD Backpropagation Algorithm Hessian-Vector Products ron and Linear Models Iloch-Pitts Neurons Biological inspiration and abstraction Binary threshold units Logical operations with MP neurons Limitations and historical impact blatt's Perceptron and Linear Separability Perceptron model architecture Learning rule and weight updates Geometric interpretation of linear separability Perceptron convergence theorem Limitations: XOR problem and need for hidden layers	35 35 35 35 35 35 35 35 37 37 37 37 37 37 37 37 37

		15.3.3.	Gradient-based training	37
		15.3.4.	Decision boundaries and interpretation	37
		15.3.5.	Connection to neural networks	37
10		16	1 N (1 (MTD)	•
16.				39
	16.1.		, , , , , , , , , , , , , , , , , , , ,	39
	16.2.		11	39
	16.3.		1 0	39
	16.4.		· · · · · · · · · · · · · · · · · · ·	39
		16.4.1.		39
		16.4.2.		39
		16.4.3.		39
		16.4.4.	Learning Rate Schedules & Warmup	39
	16.5.	Vanisł	ning and Exploding Gradients	39
17	Con	volution	nal Neural Networks (CNNs)	41
1,,	17.1.			42
	17 .1.	17.1.1.		42
		17.1.1.		42
		17.1.2.		42 42
				42 42
		17.1.4.		42 42
	17.0	17.1.5.		
	17.2.			42
		17.2.1.	1 1	42
		17.2.2.	1	42
		17.2.3.	. 1	42
		17.2.4.		42
		17.2.5.	, and the state of	42
	17.3.			42
		17.3.1.	1	42
		17.3.2.		42
		17.3.3.	, i	42
		17.3.4.		42
		17.3.5.	O	42
	17.4.	Appli		42
		17.4.1.		42
		17.4.2.	Semantic segmentation and medical imaging	42
		17.4.3.	Audio spectrogram analysis	42
		17.4.4.		42
		17.4.5.	Physics and scientific data modeling	42
18	Reci	urrent N	Jeural Networks (RNNs)	43
10.	18.1.			44
	10.1.	18.1.1.		44
		18.1.2.		11 44
		18.1.3.		
				44 44
		18.1.4.		44
	10.0	18.1.5.		44
	18.2.		0 1 0	44
		18.2.1.		44
		18.2.2.		44
		18.2.3.		44
		18.2.4.	11 0 1	44
		18.2.5.		44
	18.3.			44
		18.3.1.		44
		18.3.2.		44
		18.3.3.	Gated Recurrent Unit (GRU) architecture	44

			Comparison of LSTMs and GRUs	
		18.3.5.	Handling long-term dependencies	4
	18.4.	Applio	cations in NLP, Speech, Time-Series	4
		18.4.1.	Language modeling and text generation	4
		18.4.2.	Machine translation	
		18.4.3.	Speech recognition and synthesis	
		18.4.4.		
			O .	
		18.4.5.	Sensor data and sequence classification	Ŧ
40		1		_
			rs and Representation Learning 45	
	19.1.		Autoencoders and PCA	
		19.1.1.	Autoencoder architecture and objective	
		19.1.2.	Relation between linear autoencoders and PCA	5
		19.1.3.	Reconstruction error minimization	6
		19.1.4.	Dimensionality reduction and compression	6
	19.2.		near Autoencoders	6
		19.2.1.	Nonlinear activation functions	6
			Deep autoencoder architectures	
		19.2.3.	1	
		19.2.4.	Denoising and sparse autoencoders	
		19.2.5.	Applications in feature learning	
	19.3.		ional Autoencoders (VAEs)	
		19.3.1.	Latent variable models	5
		19.3.2.	Probabilistic encoder and decoder networks	6
		19.3.3.	Reparameterization trick	6
			Evidence lower bound (ELBO)	6
			Generative modeling and sampling	6
	19 4		Space Geometry	
	17.1.	19.4.1.	Structure of learned latent spaces	
		19.4.2.	1	
		19.4.3.	Manifold hypothesis	
		19.4.4.	Visualization of latent spaces (t-SNE, UMAP)	
		19.4.5.	Applications in generative and representation learning	5
	_			
			al Networks (GNNs) 47	
	20.1.		Laplacians and Spectral Methods	
			Graphs: nodes, edges, adjacency and degree matrices	3
		20.1.2.	Definition of the graph Laplacian	3
			Normalized Laplacian and its properties	3
		20.1.4.	Spectral graph theory basics	8
			Graph Fourier transform and convolution	
	20.2		ge Passing Frameworks	
	20.2.		Message passing neural network (MPNN) paradigm	
			Neighborhood sampling strategies	
			Graph convolutional networks (GCNs)	
			Graph attention networks (GATs)	
	20.3.		cations in Chemistry, Materials, Biology	
		20.3.1.	Molecular property prediction	3
		20.3.2.	Protein structure and interaction networks	3
			Materials informatics and crystal graphs	3
			Drug discovery and bioinformatics	
			Social and knowledge graph analysis	
	20.4		al Methods and Eigen-Decomposition in Graphs	
	ZU.4.	-		
		20.4.1.		
		20.4.2.	Graph embedding via spectral methods	
		20.4.3.	Chebyshev polynomials for fast spectral filtering	3

		Limitations of spectral GNNs	48 48
IV.	Neurai	l Networks for Differential Equations	49
21.]	Mathematic	cal Methods for Differential Equations	51
		ification of ODEs and PDEs	52
	21.1.1.	Ordinary vs partial differential equations	52
	21.1.2.	Linear vs nonlinear equations	52
	21.1.3.	Order and degree of a differential equation	52
	21.1.4.	Initial value vs boundary value problems	52
	21.1.5.	Well-posedness and existence theorems	52
2	21.2. Bound	dary and Initial Conditions	52
	21.2.1.	Dirichlet and Neumann boundary conditions	52
	21.2.2.	Robin (mixed) boundary conditions	52
	21.2.3.	Initial conditions in time-dependent problems	52
	21.2.4.	Physical interpretations of boundary data	52
2	21.3. Separa	ation of Variables	52
	21.3.1.	Method for solving linear PDEs	52
	21.3.2.	Eigenfunction expansions	52
	21.3.3.	Application to heat, wave, and Laplace equations	52
2		n–Liouville Problems and Orthogonal Expansions	52
	21.4.1.	Sturm–Liouville operator form	52
	21.4.2.	-	52
	21.4.3.		52
	21.4.4.		52
2	21.5. Fourie	er and Laplace Transforms	52
	21.5.1.	Fourier series and Fourier transform	52
	21.5.2.	Laplace transform and inverse transform	52
	21.5.3.	-	52
	21.5.4.		52
2	21.6. Specti	ral Methods (Chebyshev, Legendre)	52
	21.6.1.		52
	21.6.2.	Legendre polynomials and Galerkin projection	52
		Spectral convergence properties	52
	21.6.4.	Applications to high-accuracy PDE solvers	52
2	21.7. Galerl	kin and Finite Element Methods (FEM)	52
	21.7.1.	Weak formulations of differential equations	52
	21.7.2.	•	52
	21.7.3.	Assembly of the FEM system	52
		Error estimates and convergence	52
2		od of Frobenius and Special Functions	52
	21.8.1.	Frobenius series solution near singular points	52
	21.8.2.	Indicial equation and roots	52
	21.8.3.	Emergence of special functions (Bessel, Legendre, Hermite)	52
	21.8.4.	Orthogonality and completeness properties	52
2	21.9. Dynai	mical Systems and Chaos	52
	21.9.1.	Phase portraits and equilibrium analysis	52
	21.9.2.	Linearization and stability	52
	21.9.3.	Limit cycles and bifurcations	52
	21.9.4.	Lyapunov exponents and chaotic dynamics	52
	21.9.5.	Applications to physical and biological systems	52
		ormed Neural Networks (PINNs)	53
		dding PDEs into loss functions	54
2	22.2. Colloc	cation and weak formulations	54

	22.3. Elliptic, parabolic, and hyperbolic PDEs	54
	22.4. Applications: fluids, electromagnetism, quantum mechanics	54
	22.5. Extensions: XPINNs, VPINNs, Bayesian PINNs	54
	22.6. Inverse problems (intro to iPINNs)	54
	22.7. Quantum Foundations for PINNs	54
	22.7.1. Postulates of quantum mechanics and Hilbert spaces	54
	22.7.2. Operators, commutators, and observables	54
	22.7.3. Dirac notation and basis projections	54
	22.8. The Schrödinger Equation	54
	22.8.1. TISE and TDSE: formulation and nondimensionalization	54
	22.8.2. Boundary conditions and wavefunction normalization	54
	22.8.3. Variational and Hellmann–Feynman theorems	54
	22.9. Model Problems for Quantum PINNs	54
	22.9.1. 1D infinite well	54
	22.9.2. 1D harmonic oscillator	54
	22.9.3. Hydrogen atom: spherical separation and special functions	54
	22.10. Loss Function Design for Schrödinger PINNs	54
	22.10.1. PDE residuals via automatic differentiation	54 54
	22.10.2. Normalization and orthogonality constraints	54 54
	22.10.3. Symmetry and probability conservation penalties	54 54
	22.11. Time-Dependent Quantum PINNs	54 54
	22.11.1. Wavepacket evolution and tunneling	54
	22.11.2. Unitary vs. dissipative evolution (Lindblad intro)	54
	22.12.1 Molecular Hamiltonians and Born–Oppenheimer approximation	54
	22.12.1. Notectular Hammonians and Born—Oppermemer approximation	54
	22.12.3. Metrics: energies, forces, vibrational frequencies	54
	22.12.0. Wetres, energies, forces, vibrational frequencies	54
23	. Inverse Physics-Informed Neural Networks (iPINNs)	55
	23.1. Motivation: the role of inverse problems	55
	23.2. Formulation with unknown coefficients	55
	23.3. Loss functions for parameter estimation	55
	23.4. Applications: heat, waves, Schrödinger, materials	55
	23.5. Ill-posedness and regularization	55
	23.6. Sensitivity to noise and data quality	55
	23.7. Inverse Quantum PINNs (iPINNs)	55
	23.7.1. Hamiltonian parameter estimation from data	55
	23.7.2. Potential reconstruction and coupling inference	55
	23.7.3. Regularization and noise sensitivity in quantum data	55
	23.8. Quantum Chemistry Applications with iPINNs	55
	23.8.1. Estimating PES from sparse experimental data	55
	23.8.2. Inferring force constants and dipole moments	55
	23.8.3. Comparisons vs. DFT/HF benchmarks	55
- 1	O (N IN (I (ONN))	
24.	. Quantum Neural Networks (QINNs)	57
	24.1. Hilbert spaces and Dirac notation	58
	24.2. Quantum perceptron and gates as layers	58
	24.3. Variational quantum circuits (VQE, QAOA)	58
	24.4. Quantum Boltzmann Machines, QCNNs, Quantum Reservoirs	58
	24.5. Parameter-shift rule for gradients	58 58
	24.6. Challenges: barren plateaus, NISQ hardware	58 E8
	24.7.1 Inverse Quentum Noural Networks (iQINNs)	58 58
	24.7.1. Inverse Quantum Neural Networks (iQINNs)	58 E8
	24.7.2. Training QINNs for Schrödinger Problems	58 E8
	24.7.4. Polyustness and Porren Plateaus	58 58
	24.7.5. Link to Computational Chamistry	58 50
	24.7.5. Link to Computational Chemistry	58

25.	. Neural Ope	erators and DeepONets
	25.1. Learn	ning operators between function spaces
	25.1.1.	Motivation and concept of operator learning
		Function spaces, Banach/Hilbert foundations
	25.1.3.	Universal approximation of operators
		parison with PINNs, iPINNs, FEM
	25.2.1.	Data requirements and generalization
		Computational complexity and scalability
		Accuracy on out-of-distribution regimes
		Hybrid models: combining operators and physics-informed loss
		ONet Architectures and Training
		Branch and trunk networks
		Basis function representation and integration layers
		Loss functions and operator regression
		Generalization bounds and convergence theory
		ications in PDEs and scientific computing
		Elliptic, parabolic, and hyperbolic PDEs
		Parametric PDE families and meta-learning
		Multiscale and multiphysics problems
		Real-time surrogate modeling in engineering and physics
		sions and Future Directions
		Fourier Neural Operators (FNOs)
		Graph Neural Operators (GNOs)
		Operator transformers and attention mechanisms
		Quantum-inspired operator networks
	_	
V.	KEINFO	PRCEMENT LEARNING
26	Classical R	einforcement Learning
_0.		ts, Environments, States, Actions, Rewards
	-	Reinforcement learning problem setup
		Agent-environment interaction loop
		Definition of states, actions, and rewards
		Exploration vs exploitation
		ov Decision Processes (MDPs)
		Transition probability matrices
		*
		Reward functions and discount factors
		Formulating RL as an MDP
		Functions and Bellman Equations
	26.3.1.	State-value and action-value functions
	26.3.1.	
		1 1
		Bellman optimality equations
		Relationship between value functions and policies
	20.3.3.	Policy avaluation and improvement
	26 / T-1. 1	Policy evaluation and improvement
		ar Methods: SARSA, Q-Learning
	26.4.1.	ar Methods: SARSA, Q-Learning
	26.4.1. 26.4.2.	ar Methods: SARSA, Q-Learning
	26.4.1. 26.4.2. 26.4.3.	ar Methods: SARSA, Q-Learning On-policy learning with SARSA Off-policy learning with Q-learning Temporal difference (TD) learning
	26.4.1. 26.4.2. 26.4.3. 26.4.4.	ar Methods: SARSA, Q-Learning

Deep Reini	
_	Q-Networks (DQN)
	Limitations of tabular Q-learning
	Neural network function approximation for Q-values
27.1.3.	Experience replay and target networks
27.1.4.	Training stability techniques
27.1.5.	Extensions: Double DQN, Dueling DQN, Prioritized Replay
27.2. Policy	Gradient Methods (REINFORCE, PPO)
27.2.1.	Policy-based vs value-based approaches
27.2.2.	REINFORCE algorithm and derivation
	High variance and variance reduction techniques
	Proximal Policy Optimization (PPO) algorithm
	Trust region methods and clipping objectives
	-Critic Architectures (A2C, A3C)
	Concept of actor and critic networks
	Advantage functions and baseline subtraction
27.3.3.	
	Synchronous advantage actor-critic (A2C)
	Sample efficiency and stability considerations
	mark Systems: AlphaGo, AlphaZero, MuZero
	AlphaGo: combining deep neural networks and MCTS
	AlphaZero: self-play reinforcement learning
	MuZero: learning dynamics models from scratch
	Architectural innovations and scalability
	Impact on AI research and real-world applications
. Moder	AN ARCHITECTURES
. Moder Generative	Models
. Moder Generative 28.1. GAN:	Models s and Minimax Optimization
. Moder Generative 28.1. GAN: 28.1.1.	Models s and Minimax Optimization
Generative 28.1. GAN: 28.1.1. 28.1.2.	Models s and Minimax Optimization
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3.	Models s and Minimax Optimization
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS)
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN)
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3. Diffus 28.3.1.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs)
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3. Diffus 28.3.1. 28.3.2.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3.1. 28.3.1. 28.3.2. 28.3.3.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis Sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3. Diffus 28.3.1. 28.3.2. 28.3.3. 28.3.4.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling Sampling strategies and efficiency
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3.1. 28.3.1. 28.3.2. 28.3.3. 28.3.4. 28.3.5.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling Sampling strategies and efficiency Comparisons with GANs and VAEs
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3.1. 28.3.1. 28.3.2. 28.3.3. 28.3.4. 28.3.5.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling Sampling strategies and efficiency Comparisons with GANs and VAEs cations in Synthesis and Design
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3.1. 28.3.1. 28.3.2. 28.3.3. 28.3.4. 28.3.5.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling Sampling strategies and efficiency Comparisons with GANs and VAEs cations in Synthesis and Design Image and video generation
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3. Diffus 28.3.1. 28.3.2. 28.3.3. 28.3.4. 28.3.5. 28.4. Applia 28.4.1. 28.4.2.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling Sampling strategies and efficiency Comparisons with GANs and VAEs cations in Synthesis and Design Image and video generation Text-to-image and multimodal synthesis
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3. Diffus 28.3.1. 28.3.2. 28.3.3. 28.3.4. 28.3.5. 28.4. Applia 28.4.1. 28.4.2.	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling Sampling strategies and efficiency Comparisons with GANs and VAEs cations in Synthesis and Design Image and video generation
Generative 28.1. GAN: 28.1.1. 28.1.2. 28.1.3. 28.1.4. 28.1.5. 28.2. Wasse 28.2.1. 28.2.2. 28.2.3. 28.2.4. 28.2.5. 28.3.1. 28.3.1. 28.3.2. 28.3.3. 28.3.4. 28.3.5. 28.4. Appliance of the control of the c	Models s and Minimax Optimization Generative vs discriminative models Adversarial training framework Minimax optimization objective Training instability and mode collapse Evaluation metrics (FID, IS) erstein GANs, StyleGAN Wasserstein distance and Earth Mover's metric WGAN training stability improvements Gradient penalty techniques Style-based generator architecture (StyleGAN) High-resolution image synthesis sion Models and Stochastic Processes Denoising diffusion probabilistic models (DDPMs) Forward and reverse diffusion processes Score-based generative modeling Sampling strategies and efficiency Comparisons with GANs and VAEs cations in Synthesis and Design Image and video generation Text-to-image and multimodal synthesis

		rs and Attention Mechanisms	71
	29.1. Self-A	ttention: Queries, Keys, Values	72
	29.1.1.	Motivation for attention over recurrence	72
	29.1.2.	Query-key-value formulation	72
	29.1.3.	Scaled dot-product attention	72
	29.1.4.	Attention weights and softmax normalization	72
	29.1.5.	Computational complexity considerations	72
	29.2. Multi-	-Head Attention	72
	29.2.1.	Parallel attention heads	72
	29.2.2.	Linear projections and concatenation	72
		Benefits of multi-head structure	72
		Implementation details	72
		Visualization and interpretability	72
		onal Encodings	72
		Need for positional information in sequences	72
		Sinusoidal positional encodings	72
		Learned positional embeddings	72
		Incorporation into transformer architecture	72
		Impact on long-range dependencies	72
			72
		former Architectures: BERT, GPT, Multimodal	
		Encoder-decoder structure of the original Transformer	72
		BERT: bidirectional encoder representations	72
		GPT: autoregressive decoder-only models	72
		Vision transformers (ViTs) and multimodal transformers	72
		Scaling laws and large language models	72
		cations in PDEs and Symbolic Regression	72
	29.5.1.		72
		Sequence modeling of discretized fields	72
		Neural operators and Fourier transformers	72
		Symbolic regression with attention models	72
	29.5.5.	Scientific discovery and equation learning	72
VI	I. Advano	CED TOPICS	73
30	Ontimizatio	on Beyond Gradient Descent	75
	_	ional Inference	75
	30.1.1.	Bayesian inference challenges and motivation	75
	30.1.2.	Evidence lower bound (ELBO)	75
	30.1.2.	Mean-field approximation	75
	30.1.3.	Coordinate ascent variational inference (CAVI)	75
	30.1.4.	Applications in probabilistic deep models	75
		ratation–Maximization (EM)	75
	-		75 75
		Latent variable models and incomplete data	
		E-step and M-step derivations	75 75
		Convergence properties of EM	75 75
		EM for Gaussian mixture models	75
		Generalizations and variants of EM	75
		ated Optimization Challenges	75
		Federated learning paradigm and architecture	75
		Data heterogeneity and non-iid distributions	75
		Communication constraints and efficiency	75
		Privacy and security considerations	75
	30.3.5.	Optimization algorithms for federated settings (FedAvg, FedProx)	75

31.	Mat	thematic	al Frontiers of Neural Networks	77	
31.1. Neural Tangent Kernels (NTK)					
		31.1.1.	Definition and derivation of NTK	78	
		31.1.2.	Linearization of neural networks at initialization	78	
		31.1.3.	Connection between NTK and gradient descent dynamics	78	
		31.1.4.	Applications of NTK to generalization analysis	78	
		31.1.5.	Limitations and current research directions	78	
	31.2.	Infinit	e-Width Limits and Mean-Field Theory	78	
		31.2.1.	Neural networks as infinite-width Gaussian processes	78	
		31.2.2.	Mean-field limit of gradient descent dynamics	78	
		31.2.3.	Law of large numbers in parameter distributions	78	
		31.2.4.	Implications for training dynamics and convergence	78	
		31.2.5.	Bridging finite- and infinite-width behaviors	78	
	31.3.	Geom	etry of Loss Landscapes	78	
		31.3.1.	Critical points and saddle points	78	
		31.3.2.	Flat vs sharp minima	78	
		31.3.3.	Hessian spectrum analysis	78	
		31.3.4.	Mode connectivity and loss basins	78	
		31.3.5.	Implications for optimization and generalization	78	
	31.4.	Gener	alization Bounds and Capacity	78	
		31.4.1.	Capacity measures: VC dimension, Rademacher complexity	78	
		31.4.2.	Norm-based generalization bounds	78	
		31.4.3.	PAC-Bayesian bounds for deep networks	78	
		31.4.4.	Double descent phenomenon	78	
		31.4.5.	Open problems in understanding generalization	78	
32.	Met	a-Learn	ing and Transfer Learning	79	
			hot Learning	79	
	02.11	32.1.1.	Problem formulation and motivation	79	
		32.1.2.	Metric-based meta-learning (Siamese networks, prototypical networks)	79	
		32.1.3.	Optimization-based meta-learning (MAML)	79	
		32.1.4.	Memory-augmented meta-learning models	79	
			Evaluation benchmarks for few-shot learning	79	
	32.2		ining and Fine-Tuning	79	
		32.2.1.	Transfer learning paradigm	79	
			Feature extraction vs full fine-tuning	79	
			Domain adaptation techniques	79	
			Multitask and multi-domain pretraining	79	
			Scaling laws and large pretrained models	79	
	32.3	. Conti	nual Learning	79	
		32.3.1.	Catastrophic forgetting problem	79	
			Regularization-based methods (EWC, SI)	79	
			Replay and rehearsal strategies	79	
			Dynamic architecture approaches	79	
			Applications in lifelong learning systems	79	
22	Even	lainabil	ity and Internatability	01	
33.			ity and Interpretability	81	
	33.1.		cy Maps and Grad-CAM	81	
		33.1.1.		81	
		33.1.2.	Gradient-based attribution methods	81	
			Grad-CAM (Gradient-weighted Class Activation Mapping)	81	
		33.1.4.	Guided backpropagation and integrated gradients	81	
	22.0		Limitations and reliability concerns	81	
	33.2		and LIME	81	
		33.2.1.	Model-agnostic interpretability approaches	81 81	
			Local Interpretable Model-agnostic Explanations (LIME)	81	
		<i>33.2.3.</i>	SHAP values and Shapley game-theoretic foundation	81	

	33.2.4.	Comparing SHAP vs LIME performance and stability	81
	33.2.5.	Use cases in tabular, text, and vision models	81
33.3.	Interp	retable PINNs and DRL Policies	81
	33.3.1.	Physics-informed constraints as interpretability tools	81
	33.3.2.	Sensitivity analysis in PINNs	81
		Policy visualization and feature attribution in DRL	81
		Reward decomposition and causal interpretability	81
		Bridging performance with scientific understanding	81
	00.0.0.	bridging performance with selections understanding	01
34. Ethi	cal and	Societal Aspects	83
		nd Fairness in AI	83
0 1.1.	34.1.1.	Sources of bias in data and models	83
		Fairness definitions and metrics	83
	34.1.3.	Mitigation strategies (reweighting, debiasing, adversarial methods)	83
	34.1.4.	Societal impact of biased AI systems	83
		Case studies and ethical dilemmas	83
24.2			83
34.2.		y and Security	
		Data privacy regulations (GDPR, CCPA)	83
		Differential privacy techniques	83
		Federated learning and privacy-preserving methods	83
		Adversarial attacks on AI models	83
		Robustness, security, and safe deployment	83
34.3.		gulation and Governance	83
		AI governance frameworks and standards	83
	34.3.2.	Ethical guidelines from international organizations	83
	34.3.3.	Risk assessment and accountability mechanisms	83
	34.3.4.	Transparency and explainability as regulatory goals	83
	34.3.5.	Future challenges in global AI governance	83
37111 T			0.
VIII. F	PRACTIO	CAL IMPLEMENTATION	85
35. Com	nputatio	nal Frameworks	87
35. Com	nputatio PyTor	nal Frameworks ch Fundamentals	87 87
35. Com	nputatio PyTore 35.1.1.	nal Frameworks ch Fundamentals	87 87 87
35. Com	nputatio PyToro 35.1.1. 35.1.2.	nal Frameworks ch Fundamentals	87 87 87 87
35. Com	PyTor. 35.1.1. 35.1.2. 35.1.3.	nal Frameworks ch Fundamentals	87 87 87 87 87
35. Com	PyToro 35.1.1. 35.1.2. 35.1.3. 35.1.4.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA	87 87 87 87 87
35. Con 35.1.	PyTor. 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection	87 87 87 87 87 87
35. Con 35.1.	PyTor. 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras	87 87 87 87 87 87 87
35. Con 35.1.	PyTor. 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution	87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection rFlow and Keras TensorFlow computation graphs and eager execution High-level API with Keras	87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API)	87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks	87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API)	87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyToro 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks	87 87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor. 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX an	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming	87 87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor. 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX an 35.3.1.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection rFlow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation	87 87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX ar 35.3.1. 35.3.2.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit	87 87 87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX at 35.3.1. 35.3.2. 35.3.3.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap	87 87 87 87 87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX an 35.3.1. 35.3.2. 35.3.3.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap Composable function transformations	87 87 87 87 87 87 87 87 87 87 87 87 87
35. Con 35.1.	PyTor 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX an 35.3.1. 35.3.2. 35.3.3.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap	87 87 87 87 87 87 87 87 87 87 87 87 87
35. Com 35.1. 35.2.	Aputation PyToro 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX at 35.3.1. 35.3.2. 35.3.3. 35.3.4. 35.3.5.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap Composable function transformations	87 87 87 87 87 87 87 87 87 87 87 87 87
35. Com 35.1. 35.2. 35.3.	PyTor. 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX at 35.3.1. 35.3.2. 35.3.3. 35.3.4. 35.3.5. Eient Tra	ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap Composable function transformations Applications in scientific machine learning	87 87 87 87 87 87 87 87 87 87 87 87 87 8
35. Com 35.1. 35.2. 35.3.	PyTor. 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX at 35.3.1. 35.3.2. 35.3.3. 35.3.4. 35.3.5. Eient Tra	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection rFlow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap Composable function transformations Applications in scientific machine learning string and Scaling vare Acceleration: GPUs, TPUs	87 87 87 87 87 87 87 87 87 87 87 87 87 8
35. Com 35.1. 35.2. 35.3.	PyTore 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX at 35.3.1. 35.3.2. 35.3.3. 35.3.4. 35.3.5. Eient Tra Hardw 36.1.1.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap Composable function transformations Applications in scientific machine learning lining and Scaling vare Acceleration: GPUs, TPUs GPU architecture and parallel computation	87 87 87 87 87 87 87 87 87 87 87 87 87 8
35. Com 35.1. 35.2. 35.3.	PyTore 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX at 35.3.1. 35.3.2. 35.3.3. 35.3.4. 35.3.5. Eient Tra Hardy 36.1.1. 36.1.2.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap Composable function transformations Applications in scientific machine learning sining and Scaling vare Acceleration: GPUs, TPUs GPU architecture and parallel computation Tensor cores and mixed-precision training	87 87 87 87 87 87 87 87 87 87 87 87 87 8
35. Com 35.1. 35.2. 35.3.	PyTore 35.1.1. 35.1.2. 35.1.3. 35.1.4. 35.1.5. Tensor 35.2.1. 35.2.2. 35.2.3. 35.2.4. 35.2.5. JAX at 35.3.1. 35.3.2. 35.3.3. 35.3.4. 35.3.5. Eient Tra Hardw 36.1.1.	nal Frameworks ch Fundamentals Tensors and automatic differentiation Building and training neural networks Data loaders and dataset utilities GPU acceleration with CUDA Debugging and model inspection Flow and Keras TensorFlow computation graphs and eager execution High-level API with Keras Model definition (Sequential vs Functional API) Training loops and callbacks Deployment and TensorFlow Serving and Differentiable Programming JAX NumPy and XLA compilation Automatic differentiation with grad and jit Vectorization with vmap and parallelization with pmap Composable function transformations Applications in scientific machine learning lining and Scaling vare Acceleration: GPUs, TPUs GPU architecture and parallel computation	87 87 87 87 87 87 87 87 87 87 87 87 87 8

	36.1.5. Energy efficiency considerations	89
	36.2. Parallelization and Distributed Training	89
	36.2.1. Data parallelism strategies	89
	36.2.2. Model and pipeline parallelism	89
	36.2.3. Parameter servers and communication overhead	89
	36.2.4. Synchronous vs asynchronous training	89
	36.2.5. Fault tolerance and scalability	89
	36.3. Memory-Efficient Backpropagation	89
	36.3.1. Memory bottlenecks in deep networks	89
	36.3.2. Gradient checkpointing techniques	89
	36.3.3. Recomputation and activation offloading	89
	36.3.4. Quantization and low-precision training	89
	36.3.5. Sparse training and pruning approaches	89
	oololo. Opuloe truming una praning approaches	0)
37.	Case Studies in Scientific Machine Learning	91
	37.1. Navier–Stokes with PINNs	92
	37.1.1. Formulating PDE residuals for fluid dynamics	92
	37.1.2. Boundary and initial condition encoding	92
	37.1.3. Physics-informed loss design	92
	37.1.4. Handling turbulence and high Reynolds numbers	92
	37.1.5. Benchmark results and limitations	92
	37.2. QINNs for Quantum Chemistry	92
	37.2.1. Quantum-inspired neural architectures	92
	37.2.2. Encoding wavefunctions and Hamiltonians	92
	37.2.3. Variational quantum eigensolver (VQE)-style training	92
	37.2.4. Predicting molecular energies and properties	92
	37.2.5. Scalability and hybrid quantum-classical methods	92
	37.3. DRL for Robotics and Control	92
	37.3.1. Formulating control tasks as MDPs	92
	37.3.2. Reward shaping and curriculum learning	92
	37.3.3. Simulation-to-reality transfer (sim2real)	92
	37.3.4. Safety and sample efficiency challenges	92
	37.3.5. Applications in manipulation and locomotion	92
	37.4. CNNs/GNNs for Materials Science	92
	37.4.1. Image-based microstructure characterization with CNNs	92
	37.4.2. Graph representations of crystal structures	92
	37.4.3. Predicting mechanical and electronic properties	92
	37.4.4. Materials discovery and inverse design	92
	37.4.5. Integrating experimental and simulation data	92
	or.i.o. Integrating experimental and official add	72
A.	Mathematical Notation and Symbols	93
В.	Linear Algebra Toolbox	95
C.	Probability Distributions	97
D.	Special Functions (Gamma, Beta, Bessel, etc.)	99
E.	Implementations in PyTorch and TensorFlow	101

Part I.

Mathematical Preliminaries

Introduction 1

1.1. Historical Context of AI and Neural Networks

The story of neural networks is inseparable from the broader history of artificial intelligence. In the mid-twentieth century, pioneers began to ask a radical question: could machines learn, reason, and perhaps even think?

Early models of computation and the brain appeared in the 1940s and 1950s. Warren McCulloch and Walter Pitts proposed a mathematical model of the neuron, reducing it to a binary threshold unit. Their work suggested that networks of such units could, in principle, compute any logical function. Around the same time, Alan Turing speculated about "learning machines," planting seeds that would later grow into the foundations of AI.

The perceptron era began in 1957, when Frank Rosenblatt introduced a trainable model capable of learning linear decision boundaries. It captured the imagination of both scientists and the public, sparking optimism that machines could soon replicate the brain's capacity for learning. Yet mathematics also revealed the perceptron's limits. In the late 1960s, Marvin Minsky and Seymour Papert proved that single-layer perceptrons could not solve even simple nonlinear problems such as XOR. This was a sobering reminder that without mathematical rigor, bold claims collapse under scrutiny.

These early attempts reveal an important lesson: science moves in cycles of enthusiasm and skepticism. Each generation rediscovers that true progress requires a marriage between creative vision and mathematical clarity.

- 1.1.1. Early visions of artificial intelligence
- 1.1.2. Symbolic AI and rule-based reasoning (1950s–1970s)
- 1.1.3. Cybernetics and control theory foundations
- 1.1.4. Birth of the perceptron and connectionism
- 1.1.5. Shift from handcrafted rules to learning from data

1.2. AI Winters and the Deep Learning Revolution

The collapse of optimism after the perceptron marked the first "AI winter" of the 1970s. Funding dried up, and public interest waned. Limited computing power, scarce data, and inflated promises led many to dismiss neural networks as a dead end. A second AI winter followed in the late

1980s, as symbolic methods, once thought to be the future of AI, also struggled to deliver.

Yet beneath the surface, mathematics was preparing a renaissance. In the 1980s, the backpropagation algorithm was formalized and popularized, allowing multilayer perceptrons to model complex nonlinear functions. Still, adoption was slow, because hardware had not yet caught up with theory. Neural networks were powerful on paper, but impractical in real-world applications.

The deep learning explosion of the 2010s changed everything. With the rise of GPUs, massive datasets, and architectures such as convolutional and recurrent networks, machines suddenly outperformed classical methods in vision, language, and speech. Soon after, transformers redefined the field altogether, enabling large-scale models that blurred the line between statistics and creativity. At the core of these breakthroughs was not magic, but mathematics: linear algebra for representation, probability for modeling uncertainty, and optimization theory for training vast networks.

The history of neural networks is therefore not merely technical—it is also the history of human patience. What once looked like failure was in fact a pause, waiting for mathematics and technology to converge.

- 1.2.1. The first AI winter: funding collapse in the 1970s
- 1.2.2. The second AI winter: overpromises and underdelivery
- 1.2.3. The comeback: backpropagation and multilayer perceptrons
- 1.2.4. The ImageNet moment and deep convolutional networks
- 1.2.5. Acceleration through GPUs, big data, and open-source ecosystems
- 1.3. Innovation and Impact on the World
- 1.3.1. Transformation of computer vision and natural language processing
- 1.3.2. AI-driven automation in industry and science
- 1.3.3. Deep learning in healthcare, robotics, and materials discovery
- 1.3.4. Societal, ethical, and economic implications
- 1.3.5. AI as a new general-purpose technology

1.4. Why Mathematics Matters in Deep Learning

If philosophy gave us the first questions about intelligence, mathematics gave us the tools to answer them. Galileo once wrote that the universe "is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures." In the same spirit, deep learning is written in the language of vectors, matrices, and functions. Every model is a translation from the world's complexity into mathematical form, and every training process is an attempt to solve an equation that nature has posed.

Linear algebra is the grammar of representation, calculus is the machinery of change, probability is the measure of uncertainty, and optimization is the path to improvement. Without them, neural networks would be shapeless intuitions. With them, they become structured systems capable of learning patterns from the world.

Mathematics is therefore not a peripheral tool but the very skeleton of deep learning. It gives rigor to vision, coherence to creativity, and structure to intuition. Just as the Greeks once sought logic to discipline thought, we now rely on mathematics to discipline learning.

This book begins here—at the intersection of history, philosophy, and mathematics—because to understand neural networks is not merely to

know how they work, but to see them as part of humanity's timeless attempt to comprehend intelligence itself.

- 1.4.1. Mathematics as the foundation of generalization
- 1.4.2. Linear algebra, calculus, and probability as core pillars
- 1.4.3. Optimization theory behind learning algorithms
- 1.4.4. Mathematical guarantees vs empirical success
- 1.4.5. Bridging theory, practice, and innovation

8 2. Linear Algebra Essentials

2.

Linear Algebra Essentials

- 2.1. Vector spaces and inner products
- 2.1.1. Vector spaces and subspaces
- 2.1.2. Basis and dimension
- 2.1.3. Linear independence
- 2.1.4. Inner product and norms
- 2.1.5. Orthogonality and orthonormal bases
- 2.2. Eigenvalues, eigenvectors, diagonalization
- 2.2.1. Eigenvalues and eigenvectors
- 2.2.2. Characteristic polynomial
- 2.2.3. Diagonalization of matrices
- 2.2.4. Spectral theorem
- 2.2.5. Applications to stability and data analysis
- 2.3. Singular value decomposition (SVD)
- 2.3.1. Matrix factorization concepts
- 2.3.2. Singular values and orthogonal matrices
- 2.3.3. Rank and null space
- 2.3.4. Low-rank approximations
- 2.3.5. PCA and compression
- 2.4. Tensor notation and operations
- 2.4.1. Scalars, vectors, matrices, tensors
- 2.4.2. Tensor indexing and ranks
- 2.4.3. Tensor contraction and Einstein summation
- 2.4.4. Broadcasting and reshaping
- 2.4.5. Tensors in backpropagation and GPU computation

Multivariable Calculus and Analysis

- 3.1. Gradients, Jacobians, Hessians
- 3.1.1. Partial derivatives and notation
- 3.1.2. Gradient vectors and directional derivatives
- 3.1.3. Jacobian matrices for vector-valued functions
- 3.1.4. Hessian matrices and second-order derivatives
- 3.1.5. Applications in optimization and backpropagation
- 3.2. Taylor expansions in multiple variables
- 3.2.1. Multivariate Taylor series formula
- 3.2.2. Linear and quadratic approximations
- 3.2.3. Error terms and convergence
- 3.2.4. Applications to loss landscapes
- 3.3. Divergence, curl, and Laplacians
- 3.3.1. Vector fields and notation
- 3.3.2. Divergence and its interpretation
- 3.3.3. Curl and rotational fields
- 3.3.4. Laplacian operator and harmonic functions
- 3.3.5. Applications to PDEs and diffusion
- 3.4. Variational principles
- 3.4.1. Functional derivatives
- 3.4.2. Euler-Lagrange equations
- 3.4.3. Variational methods for optimization
- 3.4.4. Applications in physics-informed neural networks (PINNs)

Probability, Statistics, and Information Theory

- 4.1. Random variables and distributions
- 4.1.1. Sample spaces and events
- 4.1.2. Discrete and continuous random variables
- 4.1.3. Probability mass and density functions (PMF, PDF)
- 4.1.4. Cumulative distribution functions (CDF)
- 4.1.5. Joint, marginal, and conditional distributions
- 4.2. Expectation, variance, covariance
- 4.2.1. Expected value of random variables
- 4.2.2. Variance and standard deviation
- 4.2.3. Covariance and correlation
- 4.2.4. Covariance matrices
- 4.2.5. Law of large numbers and central limit theorem
- 4.3. Gaussian and exponential families
- 4.3.1. Gaussian (normal) distribution properties
- 4.3.2. Multivariate Gaussian distribution
- 4.3.3. Exponential family definition and structure
- 4.3.4. Bernoulli, Binomial, Poisson, and Exponential as exponential-family members
- 4.3.5. Maximum likelihood under exponential families
- 4.4. Entropy, KL divergence, mutual information
- 4.4.1. Shannon entropy and information content
- 4.4.2. Cross-entropy and its link to loss functions
- 4.4.3. Kullback–Leibler divergence
- 4.4.4. Mutual information
- 4.4.5. Applications in machine learning (regularization,

Optimization Theory

- 5.1. Convexity, duality, and Lagrangians
- 5.1.1. Convex sets and convex functions
- 5.1.2. First- and second-order conditions for convexity
- 5.1.3. Lagrange multipliers
- 5.1.4. Karush-Kuhn-Tucker (KKT) conditions
- 5.1.5. Strong and weak duality
- 5.2. Gradient descent and its variants
- 5.2.1. Steepest descent method
- 5.2.2. Learning rate selection and scheduling
- 5.2.3. Momentum-based methods
- 5.2.4. Nesterov accelerated gradient (NAG)
- 5.2.5. Adaptive methods (AdaGrad, RMSProp, Adam)
- 5.3. Stochastic optimization and convergence
- 5.3.1. Stochastic gradient descent (SGD)
- 5.3.2. Mini-batch training
- 5.3.3. Convergence criteria and analysis
- 5.3.4. Variance reduction techniques
- 5.3.5. Generalization vs optimization trade-offs
- 5.4. Newton and quasi-Newton methods
- 5.4.1. Newton's method for optimization
- 5.4.2. Hessian-based updates
- 5.4.3. BFGS and L-BFGS algorithms
- 5.4.4. Trust-region methods
- 5.4.5. Comparisons with first-order methods

16

Functional Analysis Foundations

- 6.1. Normed spaces, Banach and Hilbert spaces
- 6.1.1. Normed vector spaces and examples
- 6.1.2. Completeness and Banach spaces
- 6.1.3. Inner product spaces
- 6.1.4. Hilbert spaces and orthonormal bases
- 6.1.5. Riesz representation theorem
- 6.2. Orthogonal polynomials (Hermite, Laguerre, Legendre)
- 6.2.1. Orthogonality conditions and weight functions
- 6.2.2. Hermite polynomials and Gaussian weighting
- 6.2.3. Laguerre polynomials and exponential weighting
- 6.2.4. Legendre polynomials and spherical harmonics
- 6.2.5. Applications in spectral methods
- 6.3. Special functions (Gamma, Beta, Bessel)
- 6.3.1. Gamma and Beta functions definitions and properties
- 6.3.2. Relationship with factorials and combinatorics
- 6.3.3. Bessel functions and their differential equations
- 6.3.4. Asymptotic behavior and orthogonality
- 6.3.5. Applications in physics and PDEs
- 6.4. Operator theory foundations for PINNs and QINNs
- 6.4.1. Linear operators and boundedness
- 6.4.2. Self-adjoint, unitary, and compact operators
- 6.4.3. Spectral theory of operators
- 6.4.4. Differential operators in Hilbert spaces

Part II.

Classical Machine Learning

Foundations of Machine Learning 7.

7.1. What is Machine Learning?

- 7.1.1. Definitions and scope
- 7.1.2. Learning from data vs explicit programming
- 7.1.3. Types of tasks: classification, regression, clustering, control
- 7.1.4. Data-driven modeling and generalization
- 7.2. Historical Background and Paradigms
- 7.2.1. Origins in statistics and computer science
- 7.2.1.1. Early statistical learning and pattern recognition
- 7.2.1.2. Symbolic AI and expert systems
- 7.2.1.3. Connectionism and the perceptron era
- 7.2.2. Supervised, unsupervised, and reinforcement learning
- 7.2.2.1. Supervised learning paradigm
- 7.2.2.2. Unsupervised learning paradigm
- 7.2.2.3. Reinforcement learning paradigm
- 7.2.2.4. Key differences and overlaps among paradigms

8.1. Linear and Logistic Regression

- 8.1.1. Linear regression model formulation
- 8.1.2. Least squares estimation
- 8.1.3. Regularization (Ridge and Lasso)
- 8.1.4. Logistic regression for classification
- 8.1.5. Decision boundaries and sigmoid function
- 8.1.6. Evaluation metrics (accuracy, ROC, AUC)

8.2. Support Vector Machines (SVMs) and Kernels

- 8.2.1. Maximum margin classifiers
- 8.2.2. Soft margin SVMs
- 8.2.3. Kernel trick and feature mapping
- 8.2.4. Common kernels (linear, polynomial, RBF)
- 8.2.5. Support vector regression (SVR)
- 8.2.6. Computational considerations

8.3. Decision Trees, Random Forests, and Boosting

- 8.3.1. Decision tree construction (ID3, CART)
- 8.3.2. Overfitting and pruning
- 8.3.3. Bagging and random forests
- 8.3.4. Boosting algorithms (AdaBoost, Gradient Boosting, XGBoost)
- 8.3.5. Feature importance and interpretability

Probabilistic Models and Bayesian Learning 9.

- 9.1. Naïve Bayes Classifiers
- 9.1.1. Bayes' theorem recap
- 9.1.2. Conditional independence assumption
- 9.1.3. Training and parameter estimation
- 9.1.4. Multinomial and Gaussian Naïve Bayes
- 9.1.5. Applications and limitations
- 9.2. Gaussian Mixture Models (GMMs) and the EM Algorithm
- 9.2.1. Mixture models and latent variables
- 9.2.2. Expectation-Maximization (EM) algorithm
- 9.2.3. E-step and M-step derivations
- 9.2.4. Convergence and initialization strategies
- 9.2.5. Applications to clustering and density estimation
- 9.3. Bayesian Inference: Priors, Posteriors, and Evidence
- 9.3.1. Prior distributions and subjective knowledge
- 9.3.2. Likelihood functions
- 9.3.3. Posterior distributions via Bayes' rule
- 9.3.4. Evidence (marginal likelihood) and model comparison
- 9.3.5. Bayesian updating and sequential inference

Dimensionality Reduction and Unsupervised Learning

10.1.	Princi	pal Com	ponent	Analy	ysis ((PCA)
-------	--------	---------	--------	-------	--------	-------

- 10.1.1. Covariance matrix and eigendecomposition
- 10.1.2. Dimensionality reduction via projection
- 10.1.3. Explained variance and component selection
- 10.1.4. Whitening and data preprocessing
- 10.1.5. Applications in visualization and noise reduction
- 10.2. Kernel PCA and Nonlinear Manifolds
- 10.2.1. Limitations of linear PCA
- 10.2.2. Kernel trick for nonlinear feature mapping
- 10.2.3. Kernel matrix (Gram matrix) construction
- 10.2.4. Eigen decomposition in feature space
- 10.2.5. Manifold interpretation and applications

10.3. Clustering Algorithms

- 10.3.1. k-means
- 10.3.1.1. Centroid initialization and updates
- 10.3.1.2. Convergence and limitations
- 10.3.2. Hierarchical Clustering
- 10.3.2.1. Agglomerative vs divisive approaches
- 10.3.2.2. Linkage criteria and dendrograms
- 10.3.3. DBSCAN
- 10.3.3.1. Density-based clustering principle
- 10.3.3.2. Parameters: ε and minPts
- 10.3.3.3. Handling noise and arbitrary-shaped clusters

Learning Theory and Generalization 11.

11.1. VC Dimension and Shattering

- 11.1.1. Hypothesis classes and expressiveness
- 11.1.2. Shattering sets of points
- 11.1.3. Definition and examples of VC dimension
- 11.1.4. VC dimension and overfitting risk

11.2. PAC Learning Framework

- 11.2.1. Probably Approximately Correct (PAC) definition
- 11.2.2. Sample complexity bounds
- 11.2.3. Realizable vs agnostic PAC learning
- 11.2.4. PAC learnability and generalization guarantees

11.3. Rademacher Complexity

- 11.3.1. Definition and intuition
- 11.3.2. Empirical Rademacher complexity
- 11.3.3. Relation to uniform convergence
- 11.3.4. Bounds on generalization error

11.4. Bias-Variance Trade-Off

- 11.4.1. Decomposing expected error
- 11.4.2. High bias (underfitting) vs high variance (overfitting)
- 11.4.3. Regularization and model complexity
- 11.4.4. Implications for model selection

Optimization in Machine Learning 12.

- 12.1.1. Ordinary least squares formulation
- 12.1.2. Normal equations and closed-form solution
- 12.1.3. Maximum likelihood estimation (MLE)
- 12.1.4. Connection between least squares and Gaussian likelihood
- 12.1.5. Log-likelihood and optimization objectives
- 12.2. Convex vs. Non-Convex Optimization
- 12.2.1. Convex sets and convex functions
- 12.2.2. Properties of convex optimization problems
- 12.2.3. Challenges of non-convex landscapes
- 12.2.4. Local minima vs global minima
- 12.2.5. Saddle points and flat regions
- 12.3. Gradient Descent and Variants
- 12.3.1. Batch gradient descent
- 12.3.2. Stochastic gradient descent (SGD)
- 12.3.3. Mini-batch gradient descent
- 12.3.4. Learning rate scheduling
- 12.3.5. Momentum, RMSProp, and Adam optimizers

Transition to Neural Networks

- 13.1. Limitations of Classical ML
- 13.1.1. Dependence on feature engineering
- 13.1.2. Scalability issues with high-dimensional data
- 13.1.3. Difficulty handling unstructured data (images, text, audio)
- 13.1.4. Limited capacity for hierarchical representations
- 13.1.5. Performance saturation with more data
- 13.2. Feature Engineering vs. Representation Learning
- 13.2.1. Manual feature extraction approaches
- 13.2.2. Representation learning definition
- 13.2.3. Advantages of learned hierarchical features
- 13.2.4. Examples in computer vision and NLP
- 13.2.5. Shift from hand-crafted to learned representations
- 13.3. The Bridge to Perceptrons and Deep Learning
- 13.3.1. Introduction to artificial neurons
- 13.3.2. Perceptron architecture and learning rule
- 13.3.3. Multilayer perceptrons (MLPs) and hidden layers
- 13.3.4. From shallow to deep networks
- 13.3.5. The deep learning paradigm shift

Part III.

Classical Neural Networks

Foundations of Neural Networks 14.

- 14.1. What is a Neural Network?
- 14.2. Biological Inspiration vs. Mathematical Abstraction
- 14.3. Basic Structure: Neurons, Layers, and Activations
- 14.4. From Perceptrons to Modern Architectures (preview)
- 14.5. Backpropagation and Automatic Differentiation
- 14.5.1. Computational Graphs and the Chain Rule
- 14.5.2. Forward-Mode vs. Reverse-Mode AD
- 14.5.3. Backpropagation Algorithm
- 14.5.4. Hessian-Vector Products

The Perceptron and Linear Models 15.

- 15.1. McCulloch–Pitts Neurons
- 15.1.1. Biological inspiration and abstraction
- 15.1.2. Binary threshold units
- 15.1.3. Logical operations with MP neurons
- 15.1.4. Limitations and historical impact
- 15.2. Rosenblatt's Perceptron and Linear Separability
- 15.2.1. Perceptron model architecture
- 15.2.2. Learning rule and weight updates
- 15.2.3. Geometric interpretation of linear separability
- 15.2.4. Perceptron convergence theorem
- 15.2.5. Limitations: XOR problem and need for hidden layers
- 15.3. Logistic Regression as Probabilistic Perceptron
- 15.3.1. Sigmoid activation and probabilistic outputs
- 15.3.2. Log-likelihood formulation
- 15.3.3. Gradient-based training
- 15.3.4. Decision boundaries and interpretation
- 15.3.5. Connection to neural networks

Feedforward Networks (MLPs) 16.

- 16.1. Activation Functions (ReLU, sigmoid, tanh, GELU, softmax)
- 16.2. Universal Approximation Theorem
- 16.3. Forward and Backward Propagation
- 16.4. Initialization, Normalization & Gradient Dynamics
- 16.4.1. Weight Initialization (Xavier/He, LSUV, Orthogonal)
- 16.4.2. Normalization Layers (Batch, Layer, Group)
- 16.4.3. Gradient Flow Diagnostics (Activation/Weight Stats)
- 16.4.4. Learning Rate Schedules & Warmup
- 16.5. Vanishing and Exploding Gradients

Convolutional Neural Networks (CNNs)

- 17.1. Mathematical Basis of Convolution
- 17.1.1. Discrete convolution definition
- 17.1.2. Cross-correlation vs convolution
- 17.1.3. Properties of convolution (linearity, shift-invariance)
- 17.1.4. 2D convolution for image data
- 17.1.5. Backpropagation through convolutional layers
- 17.2. Feature Maps, Receptive Fields, Pooling
- 17.2.1. Concept of receptive field
- 17.2.2. Feature map construction and interpretation
- 17.2.3. Stride, padding, and dilation
- 17.2.4. Pooling operations (max, average, global)
- 17.2.5. Effect on translation invariance and dimensionality reduction
- 17.3. Modern CNN Architectures (AlexNet, VGG, ResNet)
- 17.3.1. AlexNet: deep convolution revival
- 17.3.2. VGG: simplicity and depth
- 17.3.3. ResNet: residual connections and very deep networks
- 17.3.4. Other influential models (Inception, DenseNet)
- 17.3.5. Trends in modern convolutional design
- 17.4. Applications in Vision, Audio, and Physics
- 17.4.1. Image classification and object detection
- 17.4.2. Semantic segmentation and medical imaging
- 17.4.3. Audio spectrogram analysis

Recurrent Neural Networks (RNNs)

18.1. Sequences as Dynamical System	18.1.	Sequences as	s Dynamical	System
-------------------------------------	-------	--------------	-------------	--------

- 18.1.1. Sequence modeling motivation
- 18.1.2. Recurrent computation and state updates
- 18.1.3. Unrolling through time
- 18.1.4. Training with backpropagation through time (BPTT)
- 18.1.5. Limitations of basic RNNs
- 18.2. Gradient Vanishing and Exploding
- 18.2.1. Analysis of gradient propagation over time steps
- 18.2.2. Vanishing gradients and long-term dependencies
- 18.2.3. Exploding gradients and instability
- 18.2.4. Gradient clipping techniques
- 18.2.5. Initialization strategies to mitigate gradient issues
- 18.3. LSTMs and GRUs
- 18.3.1. Long Short-Term Memory (LSTM) architecture
- 18.3.2. Input, forget, and output gates
- 18.3.3. Gated Recurrent Unit (GRU) architecture
- 18.3.4. Comparison of LSTMs and GRUs
- 18.3.5. Handling long-term dependencies
- 18.4. Applications in NLP, Speech, Time-Series
- 18.4.1. Language modeling and text generation
- 18.4.2. Machine translation
- 18.4.3. Speech recognition and synthesis
- 18.4.4. Time-series forecasting
- 18.4.5. Sensor data and sequence classification

Autoencoders and 19 **Representation Learning**

191	Linear	Autoencoders	and PCA
17.1.	Lincai	Autochtoucis	anuica

- 19.1.1. Autoencoder architecture and objective
- 19.1.2. Relation between linear autoencoders and PCA
- 19.1.3. Reconstruction error minimization
- 19.1.4. Dimensionality reduction and compression
- 19.2. Nonlinear Autoencoders
- 19.2.1. Nonlinear activation functions
- 19.2.2. Deep autoencoder architectures
- 19.2.3. Training strategies and regularization
- 19.2.4. Denoising and sparse autoencoders
- 19.2.5. Applications in feature learning
- 19.3. Variational Autoencoders (VAEs)
- 19.3.1. Latent variable models
- 19.3.2. Probabilistic encoder and decoder networks
- 19.3.3. Reparameterization trick
- 19.3.4. Evidence lower bound (ELBO)
- 19.3.5. Generative modeling and sampling
- 19.4. Latent Space Geometry
- 19.4.1. Structure of learned latent spaces
- 19.4.2. Interpolation and disentanglement
- 19.4.3. Manifold hypothesis
- 19.4.4. Visualization of latent spaces (t-SNE, UMAP)
- 19.4.5. Applications in generative and representation learning

48

Graph Neural Networks (GNNs)

- 20.1. Graph Laplacians and Spectral Methods
- 20.1.1. Graphs: nodes, edges, adjacency and degree matrices
- 20.1.2. Definition of the graph Laplacian
- 20.1.3. Normalized Laplacian and its properties
- 20.1.4. Spectral graph theory basics
- 20.1.5. Graph Fourier transform and convolution
- 20.2. Message Passing Frameworks
- 20.2.1. Message passing neural network (MPNN) paradigm
- 20.2.2. Aggregation and update functions
- 20.2.3. Neighborhood sampling strategies
- 20.2.4. Graph convolutional networks (GCNs)
- 20.2.5. Graph attention networks (GATs)
- 20.3. Applications in Chemistry, Materials, Biology
- 20.3.1. Molecular property prediction
- 20.3.2. Protein structure and interaction networks
- 20.3.3. Materials informatics and crystal graphs
- 20.3.4. Drug discovery and bioinformatics
- 20.3.5. Social and knowledge graph analysis
- 20.4. Spectral Methods and Eigen-Decomposition in Graphs
- 20.4.1. Eigen-decomposition of the Laplacian
- 20.4.2. Graph embedding via spectral methods
- 20.4.3. Chebyshev polynomials for fast spectral filtering

Part IV.

Neural Networks for Differential Equations

Mathematical Methods for Differential Equations

21	1 1	Classifica	tion o	f ODEa	and DI	DEC
Z J	Lala	Ciassilica	mon o	I ODES	anu r	UES

- 21.1.1. Ordinary vs partial differential equations
- 21.1.2. Linear vs nonlinear equations
- 21.1.3. Order and degree of a differential equation
- 21.1.4. Initial value vs boundary value problems
- 21.1.5. Well-posedness and existence theorems

21.2. Boundary and Initial Conditions

- 21.2.1. Dirichlet and Neumann boundary conditions
- 21.2.2. Robin (mixed) boundary conditions
- 21.2.3. Initial conditions in time-dependent problems
- 21.2.4. Physical interpretations of boundary data

21.3. Separation of Variables

- 21.3.1. Method for solving linear PDEs
- 21.3.2. Eigenfunction expansions
- 21.3.3. Application to heat, wave, and Laplace equations

21.4. Sturm–Liouville Problems and Orthogonal Expansions

- 21.4.1. Sturm–Liouville operator form
- 21.4.2. Orthogonality of eigenfunctions
- 21.4.3. Weight functions and inner products
- 21.4.4. Fourier series as a Sturm-Liouville system

21.5. Fourier and Laplace Transforms

- 21.5.1. Fourier series and Fourier transform
- 21.5.2. Laplace transform and inverse transform
- 21.5.3. Solving ODEs and PDEs with transforms

Physics-Informed Neural Networks (PINNs)

- 22.1. Embedding PDEs into loss functions
- 22.2. Collocation and weak formulations
- 22.3. Elliptic, parabolic, and hyperbolic PDEs
- 22.4. Applications: fluids, electromagnetism, quantum mechanics
- 22.5. Extensions: XPINNs, VPINNs, Bayesian PINNs
- 22.6. Inverse problems (intro to iPINNs)
- 22.7. Quantum Foundations for PINNs
- 22.7.1. Postulates of quantum mechanics and Hilbert spaces
- 22.7.2. Operators, commutators, and observables
- 22.7.3. Dirac notation and basis projections
- 22.8. The Schrödinger Equation
- 22.8.1. TISE and TDSE: formulation and nondimensionalization
- 22.8.2. Boundary conditions and wavefunction normalization
- 22.8.3. Variational and Hellmann-Feynman theorems
- 22.9. Model Problems for Quantum PINNs
- 22.9.1. 1D infinite well
- 22.9.2. 1D harmonic oscillator
- 22.9.3. Hydrogen atom: spherical separation and special functions
- **22.10.** Loss Function Design for Schrödinger PINNs

- 23.1. Motivation: the role of inverse problems
- 23.2. Formulation with unknown coefficients
- 23.3. Loss functions for parameter estimation
- 23.4. Applications: heat, waves, Schrödinger, materials
- 23.5. Ill-posedness and regularization
- 23.6. Sensitivity to noise and data quality
- 23.7. Inverse Quantum PINNs (iPINNs)
- 23.7.1. Hamiltonian parameter estimation from data
- 23.7.2. Potential reconstruction and coupling inference
- 23.7.3. Regularization and noise sensitivity in quantum
- 23.8. Quantum Chemistry Applications with iPINNs
- 23.8.1. Estimating PES from sparse experimental data
- 23.8.2. Inferring force constants and dipole moments
- 23.8.3. Comparisons vs. DFT/HF benchmarks

Quantum Neural Networks (QINNs)

- 24.1. Hilbert spaces and Dirac notation
- 24.2. Quantum perceptron and gates as layers
- 24.3. Variational quantum circuits (VQE, QAOA)
- 24.4. Quantum Boltzmann Machines, QCNNs, Quantum Reservoirs
- 24.5. Parameter-shift rule for gradients
- 24.6. Challenges: barren plateaus, NISQ hardware
- 24.7. Applications in optimization, chemistry, cryptography
- 24.7.1. Inverse Quantum Neural Networks (iQINNs)
- 24.7.1.1. Hamiltonian parameter estimation
- 24.7.1.2. Quantum state tomography with QNNs
- 24.7.1.3. Physics-informed cost functions and unitarity constraints
- 24.7.2. Training QINNs for Schrödinger Problems
- 24.7.2.1. Parameter-shift gradients, expectation and variance estimation
- 24.7.2.2. Variational losses (VQE) for bound states
- 24.7.2.3. QAOA/ansätze for spin and tight-binding models
- 24.7.3. Canonical Test Problems
- 24.7.3.1. Harmonic oscillator, infinite well, double well
- 24.7.3.2. Hydrogen/Helium effective models with discrete bases
- 24.7.3.3. Scaling to multi-electron systems
- 24.7.4. Robustness and Barren Plateaus
- 24.7.4.1. Hardware-efficient vs. problem-inspired ansätze
- 24.7.4.2 Noice mitigation and measurement averaging on NIS

Neural Operators and DeepONets

25.1.	Learning operators between function
	spaces

- 25.1.1. Motivation and concept of operator learning
- 25.1.2. Function spaces, Banach/Hilbert foundations
- 25.1.3. Universal approximation of operators
- 25.2. Comparison with PINNs, iPINNs, FEM
- 25.2.1. Data requirements and generalization
- 25.2.2. Computational complexity and scalability
- 25.2.3. Accuracy on out-of-distribution regimes
- 25.2.4. Hybrid models: combining operators and physics-informed loss
- 25.3. DeepONet Architectures and Training
- 25.3.1. Branch and trunk networks
- 25.3.2. Basis function representation and integration layers
- 25.3.3. Loss functions and operator regression
- 25.3.4. Generalization bounds and convergence theory
- 25.4. Applications in PDEs and scientific computing
- 25.4.1. Elliptic, parabolic, and hyperbolic PDEs
- 25.4.2. Parametric PDE families and meta-learning
- 25.4.3. Multiscale and multiphysics problems
- 25.4.4. Real-time surrogate modeling in engineering and physics
- 25.5. Extensions and Future Directions
- 25.5.1. Fourier Neural Operators (FNOs)
- 25 5 2 Cranh Nouval Operators (CNOs

Part V. REINFORCEMENT LEARNING

Classical Reinforcement Learning

- 26.1. Agents, Environments, States, Actions, Rewards
- 26.1.1. Reinforcement learning problem setup
- 26.1.2. Agent-environment interaction loop
- 26.1.3. Definition of states, actions, and rewards
- 26.1.4. Exploration vs exploitation
- 26.1.5. Episodic vs continuing tasks
- 26.2. Markov Decision Processes (MDPs)
- 26.2.1. Markov property and state transitions
- 26.2.2. Transition probability matrices
- 26.2.3. Reward functions and discount factors
- 26.2.4. Policy definition and representation
- 26.2.5. Formulating RL as an MDP
- 26.3. Value Functions and Bellman Equations
- 26.3.1. State-value and action-value functions
- 26.3.2. Bellman expectation equations
- 26.3.3. Bellman optimality equations
- 26.3.4. Relationship between value functions and policies
- 26.3.5. Policy evaluation and improvement
- 26.4. Tabular Methods: SARSA, Q-Learning
- 26.4.1. On-policy learning with SARSA
- 26.4.2. Off-policy learning with Q-learning
- 26.4.3. Temporal difference (TD) learning
- 26.4.4. Exploration strategies (epsilon-greedy, softmax)
- 26.4.5. Convergence properties of tabular methods

Deep Reinforcement Learning

- 27.1. Deep Q-Networks (DQN)
- 27.1.1. Limitations of tabular Q-learning
- 27.1.2. Neural network function approximation for Q-values
- 27.1.3. Experience replay and target networks
- 27.1.4. Training stability techniques
- 27.1.5. Extensions: Double DQN, Dueling DQN, Prioritized Replay
- 27.2. Policy Gradient Methods (REINFORCE, PPO)
- 27.2.1. Policy-based vs value-based approaches
- 27.2.2. REINFORCE algorithm and derivation
- 27.2.3. High variance and variance reduction techniques
- 27.2.4. Proximal Policy Optimization (PPO) algorithm
- 27.2.5. Trust region methods and clipping objectives
- 27.3. Actor–Critic Architectures (A2C, A3C)
- 27.3.1. Concept of actor and critic networks
- 27.3.2. Advantage functions and baseline subtraction
- 27.3.3. Asynchronous advantage actor-critic (A3C)
- 27.3.4. Synchronous advantage actor-critic (A2C)
- 27.3.5. Sample efficiency and stability considerations
- 27.4. Landmark Systems: AlphaGo, AlphaZero, MuZero
- 27.4.1. AlphaGo: combining deep neural networks and MCTS
- 27.4.2. AlphaZero: self-play reinforcement learning
- 27.4.3. MuZero: learning dynamics models from scratch

Part VI. Modern Architectures

70

Generative Models 28

28.1. GANs and Minimax Optimizati	ion
-----------------------------------	-----

- 28.1.1. Generative vs discriminative models
- 28.1.2. Adversarial training framework
- 28.1.3. Minimax optimization objective
- 28.1.4. Training instability and mode collapse
- 28.1.5. Evaluation metrics (FID, IS)
- 28.2. Wasserstein GANs, StyleGAN
- 28.2.1. Wasserstein distance and Earth Mover's metric
- 28.2.2. WGAN training stability improvements
- 28.2.3. Gradient penalty techniques
- 28.2.4. Style-based generator architecture (StyleGAN)
- 28.2.5. High-resolution image synthesis
- 28.3. Diffusion Models and Stochastic Processes
- 28.3.1. Denoising diffusion probabilistic models (DDPMs)
- 28.3.2. Forward and reverse diffusion processes
- 28.3.3. Score-based generative modeling
- 28.3.4. Sampling strategies and efficiency
- 28.3.5. Comparisons with GANs and VAEs
- 28.4. Applications in Synthesis and Design
- 28.4.1. Image and video generation
- 28.4.2. Text-to-image and multimodal synthesis
- 28.4.3. Molecule and material design
- 28.4.4. Creative content and art generation
- 28.4.5. Data augmentation for machine learning

Transformers and Attention Mechanisms

- 29.1. Self-Attention: Queries, Keys, Values
- 29.1.1. Motivation for attention over recurrence
- 29.1.2. Query-key-value formulation
- 29.1.3. Scaled dot-product attention
- 29.1.4. Attention weights and softmax normalization
- 29.1.5. Computational complexity considerations
- 29.2. Multi-Head Attention
- 29.2.1. Parallel attention heads
- 29.2.2. Linear projections and concatenation
- 29.2.3. Benefits of multi-head structure
- 29.2.4. Implementation details
- 29.2.5. Visualization and interpretability
- 29.3. Positional Encodings
- 29.3.1. Need for positional information in sequences
- 29.3.2. Sinusoidal positional encodings
- 29.3.3. Learned positional embeddings
- 29.3.4. Incorporation into transformer architecture
- 29.3.5. Impact on long-range dependencies
- 29.4. Transformer Architectures: BERT, GPT, Multimodal
- 29.4.1. Encoder-decoder structure of the original **Transformer**
- 29.4.2. BERT: bidirectional encoder representations
- 29.4.3. GPT: autoregressive decoder-only models
- 29.4.4. Vision transformers (ViTs) and multimodal transformers

Part VII. Advanced Topics

Optimization Beyond Gradient Descent 30.

30.1. Variational Inference
30.1.1. Bayesian inference challenges and motivation
30.1.2. Evidence lower bound (ELBO)
30.1.3. Mean-field approximation
30.1.4. Coordinate ascent variational inference (CAVI)
30.1.5. Applications in probabilistic deep models
30.2. Expectation–Maximization (EM)
30.2.1. Latent variable models and incomplete data
30.2.2. E-step and M-step derivations
30.2.3. Convergence properties of EM
30.2.4. EM for Gaussian mixture models
30.2.5. Generalizations and variants of EM
30.3. Federated Optimization Challenges
30.3.1. Federated learning paradigm and architecture
30.3.2. Data heterogeneity and non-iid distributions
30.3.3. Communication constraints and efficiency
30.3.4. Privacy and security considerations

30.3.5. Optimization algorithms for federated settings

(FedAvg, FedProx)

Mathematical Frontiers of Neural Networks

- 31.1. Neural Tangent Kernels (NTK)
- 31.1.1. Definition and derivation of NTK
- 31.1.2. Linearization of neural networks at initialization
- 31.1.3. Connection between NTK and gradient descent dynamics
- 31.1.4. Applications of NTK to generalization analysis
- 31.1.5. Limitations and current research directions
- 31.2. Infinite-Width Limits and Mean-Field Theory
- 31.2.1. Neural networks as infinite-width Gaussian processes
- 31.2.2. Mean-field limit of gradient descent dynamics
- 31.2.3. Law of large numbers in parameter distributions
- 31.2.4. Implications for training dynamics and convergence
- 31.2.5. Bridging finite- and infinite-width behaviors
- 31.3. Geometry of Loss Landscapes
- 31.3.1. Critical points and saddle points
- 31.3.2. Flat vs sharp minima
- 31.3.3. Hessian spectrum analysis
- 31.3.4. Mode connectivity and loss basins
- 31.3.5. Implications for optimization and generalization
- 31.4. Generalization Bounds and Capacity
- 31.4.1. Capacity measures: VC dimension, Rademacher complexity
- 31.4.2. Norm-based generalization bounds
- 31.4.3. PAC-Bayesian bounds for deep networks

Meta-Learning and Transfer Learning 2.

32.1. Few-Shot Learning
32.1.1. Problem formulation and motivation
32.1.2. Metric-based meta-learning (Siamese networks, prototypical networks)
32.1.3. Optimization-based meta-learning (MAML)
32.1.4. Memory-augmented meta-learning models
32.1.5. Evaluation benchmarks for few-shot learning
32.2. Pretraining and Fine-Tuning
32.2.1. Transfer learning paradigm
32.2.2. Feature extraction vs full fine-tuning
32.2.3. Domain adaptation techniques
32.2.4. Multitask and multi-domain pretraining
32.2.5. Scaling laws and large pretrained models
32.3. Continual Learning
32.3.1. Catastrophic forgetting problem
32.3.2. Regularization-based methods (EWC, SI)
32.3.3. Replay and rehearsal strategies
32.3.4. Dynamic architecture approaches

32.3.5. Applications in lifelong learning systems

Explainability and Interpretability 33.

33.1.	Saliency Maps and Grad-CAM
33.1.1.	Saliency maps for visualizing input sensitivity
33.1.2.	Gradient-based attribution methods
33.1.3.	Grad-CAM (Gradient-weighted Class Activation Mapping)
33.1.4.	Guided backpropagation and integrated gradients
33.1.5.	Limitations and reliability concerns
33.2.	SHAP and LIME
33.2.1.	Model-agnostic interpretability approaches
33.2.2.	Local Interpretable Model-agnostic Explanations (LIME)
33.2.3.	SHAP values and Shapley game-theoretic foundation
33.2.4.	Comparing SHAP vs LIME performance and stability
33.2.5.	Use cases in tabular, text, and vision models
33.3.	Interpretable PINNs and DRL Policies
33.3.1.	Physics-informed constraints as interpretability tools
33.3.2.	Sensitivity analysis in PINNs
33.3.3.	Policy visualization and feature attribution in DRL
33.3.4.	Reward decomposition and causal interpretability
33.3.5.	Bridging performance with scientific understanding

- 34.1. Bias and Fairness in AI
- 34.1.1. Sources of bias in data and models
- 34.1.2. Fairness definitions and metrics
- 34.1.3. Mitigation strategies (reweighting, debiasing, adversarial methods)
- 34.1.4. Societal impact of biased AI systems
- 34.1.5. Case studies and ethical dilemmas
- 34.2. Privacy and Security
- 34.2.1. Data privacy regulations (GDPR, CCPA)
- 34.2.2. Differential privacy techniques
- 34.2.3. Federated learning and privacy-preserving methods
- 34.2.4. Adversarial attacks on AI models
- 34.2.5. Robustness, security, and safe deployment
- 34.3. AI Regulation and Governance
- 34.3.1. AI governance frameworks and standards
- 34.3.2. Ethical guidelines from international organizations
- 34.3.3. Risk assessment and accountability mechanisms
- 34.3.4. Transparency and explainability as regulatory goals
- 34.3.5. Future challenges in global AI governance

Part VIII.

PRACTICAL IMPLEMENTATION

35.1.	PyTorch	Fundamentals
-------	----------------	---------------------

- 35.1.1. Tensors and automatic differentiation
- 35.1.2. Building and training neural networks
- 35.1.3. Data loaders and dataset utilities
- 35.1.4. GPU acceleration with CUDA
- 35.1.5. Debugging and model inspection

35.2. TensorFlow and Keras

- 35.2.1. TensorFlow computation graphs and eager execution
- 35.2.2. High-level API with Keras
- 35.2.3. Model definition (Sequential vs Functional API)
- 35.2.4. Training loops and callbacks
- 35.2.5. Deployment and TensorFlow Serving

35.3. JAX and Differentiable Programming

- 35.3.1. JAX NumPy and XLA compilation
- 35.3.2. Automatic differentiation with grad and jit
- 35.3.3. Vectorization with vmap and parallelization with pmap
- 35.3.4. Composable function transformations
- 35.3.5. Applications in scientific machine learning

36.1. Hardware Acceleration: GPUs, TPUs 36.1.1. GPU architecture and parallel computation 36.1.2. Tensor cores and mixed-precision training 36.1.3. TPU architecture and matrix units 36.1.4. Framework integration with accelerators 36.1.5. Energy efficiency considerations 36.2. Parallelization and Distributed Training 36.2.1. Data parallelism strategies 36.2.2. Model and pipeline parallelism 36.2.3. Parameter servers and communication overhead 36.2.4. Synchronous vs asynchronous training 36.2.5. Fault tolerance and scalability 36.3. Memory-Efficient Backpropagation 36.3.1. Memory bottlenecks in deep networks 36.3.2. Gradient checkpointing techniques 36.3.3. Recomputation and activation offloading 36.3.4. Quantization and low-precision training

36.3.5. Sparse training and pruning approaches

Case Studies in Scientific Machine Learning

37 1	Navio	er–Stokes	with	PINNS
. / /	1 14 2 1 1			

- 37.1.1. Formulating PDE residuals for fluid dynamics
- 37.1.2. Boundary and initial condition encoding
- 37.1.3. Physics-informed loss design
- 37.1.4. Handling turbulence and high Reynolds numbers
- 37.1.5. Benchmark results and limitations
- 37.2. QINNs for Quantum Chemistry
- 37.2.1. Quantum-inspired neural architectures
- 37.2.2. Encoding wavefunctions and Hamiltonians
- 37.2.3. Variational quantum eigensolver (VQE)-style training
- 37.2.4. Predicting molecular energies and properties
- 37.2.5. Scalability and hybrid quantum-classical methods
- 37.3. DRL for Robotics and Control
- 37.3.1. Formulating control tasks as MDPs
- 37.3.2. Reward shaping and curriculum learning
- 37.3.3. Simulation-to-reality transfer (sim2real)
- 37.3.4. Safety and sample efficiency challenges
- 37.3.5. Applications in manipulation and locomotion
- 37.4. CNNs/GNNs for Materials Science
- 37.4.1. Image-based microstructure characterization with CNNs
- 37.4.2. Graph representations of crystal structures
- 37.4.3. Predicting mechanical and electronic properties
- 37.4.4. Materials discovery and inverse design
- 27.4 5 Integrating experimental and simulation data

Mathematical Notation and Symbols A.

Linear Algebra Toolbox $f B_ullet$

Probability Distributions C.

Special Functions (Gamma, Beta, Bessel, etc.) D.

####