R package details for: Toy data generation for Bayesian likelihood regression-based estimation

Dr. Weichang Yu

June 14, 2025

Key words: Dynamic treatment regimes, Parallel computing, Linear regression, Bayesian inference

Preamble notations

Our observed data is $\mathcal{D} = \{y_i, \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, a_{i1}, \dots, a_{iT}\}_{i=1}^n$, where the final outcome is $y_i \in \mathbb{R}$, the intermediate covariates is $\mathbf{x}_{it} \in \mathbb{R}^{p_t}$ at time $t = 2, \dots, T$, $\mathbf{x}_{i1} \in \mathbb{R}^{p_1}$ is the baseline covariates, and $a_{it} \in \mathcal{A}_t$ denotes the assigned treatment at time t. For example, in a study on optimal drug treatment assignment for Type II diabetes patients, \mathbf{x}_{it} may denote the blood pressure, HbA1c, BMI, comorbidities index of the i-th patient at follow-up clinic visit t and y_i denote the final HbA1c reading after T clinic follow-ups. We assume that each \mathcal{A}_t is a finite set, i.e., $\mathcal{A}_t = \{1, \dots, |\mathcal{A}_t|\}$. We denote the standard t-distribution with df degree of freedom as t_{df} . We denote the multivariate t-distribution with location $\boldsymbol{\mu}$, scale matrix \mathbf{S} , and degree of freedom $\boldsymbol{\nu}$ by $t_{\boldsymbol{\nu}}(\boldsymbol{\mu}, \mathbf{S})$. We use ":" to denote contiguity, for example, $\mathbf{x}_{i;1:t} = (x_{i1}, \dots, x_{it})^{\top}$, $a_{i;1:t} = (a_{i1}, \dots, a_{it})^{\top}$, and $\mathbf{x}_{1:n;t} = (x_{1t}, \dots, x_{nt})$.

Generate univariate test dataset $(p_t = 1)$

Fix n = 5000, T = 5, $p_t = 1$ and $|A_t| = 3$ for all t = 1, ..., T,

- 1. Generate $\mathbf{x}_{i1} \sim t_{10}$, where t_{df} denote the t-distribution with df degrees of freedom.
- 2. Generate a_{it} with equal probabilities from \mathcal{A}_t .
- 3. For each t = 2, ..., T, generate

$$\mathbf{x}_{it} = \mathbb{I}\{a_{i;t-1} = 2\} \left\{ t\mathbf{x}_{i;t-1} - (t-1)\mathbf{x}_{i;t-2} + (t-2)\mathbf{x}_{i;t-3} \right\}$$
$$+ \mathbb{I}\{a_{i;t-1} = 3\} \left\{ -t\mathbf{x}_{i;t-1} + \sqrt{t-1}\mathbf{x}_{i;t-2} + \sqrt{t-2}\mathbf{x}_{i;t-3} \right\} + \xi_{it}$$

where $\xi_{it} \sim N(0, 0.5^2)$ and $\mathbf{x}_{it} = \mathbf{0}$ if t < 1.

4. Generate

$$y_i \sim N(m_i(\mathbf{x}_{i:1:T}, a_{i:1:T}), 1)$$

where (standardize x's first)

$$m_{i}(\mathbf{x}_{i;1:T}, a_{i;1:T}) = 3 + \sum_{t=1}^{T} \mathbb{I}\{a_{it} = 2\} \left\{ \sin(10t)\mathbf{x}_{i;t} - \sin(10t - 10)\mathbf{x}_{i;t-1} + \sin(10t - 20)\mathbf{x}_{i;t-2} \right\}$$

$$+ \sum_{t=1}^{T} \mathbb{I}\{a_{it} = 3\} \left\{ \cos(10t)\mathbf{x}_{i;t} - \cos(10t - 10)\mathbf{x}_{i;t-1} + \sqrt{|\cos(10t - 20)|}\mathbf{x}_{i;t-2} \right\}$$

and $\mathbf{x}_{it} = \mathbf{0}$ if t < 1.

Generate multivariate test dataset $(p_t > 1)$

Obtain user-input for n, T, p_t , and $|A_t|$ for all t = 1, ..., T.

- 1. For each i = 1, ..., n, generate $\mathbf{x}_{i1} \sim t_{10}(\mathbf{0}, \mathbf{I})$, where t_{df} denote the multivariate t-distribution with df degrees of freedom.
- 2. For each i = 1, ..., n and t = 1, ..., T, generate a_{it} with equal probabilities from A_t .
- 3. For each $i = 1, \ldots, n$ and $t = 2, \ldots, T$, generate

$$\mathbf{x}_{it} = \mathbb{I}\{a_{i;t-1} = 2\} \left\{ t\mathbf{C}_{p_t \times p_{t-1}} \mathbf{x}_{i;t-1} - (t-1)\mathbf{C}_{p_t \times p_{t-2}} \mathbf{x}_{i;t-2} + (t-2)\mathbf{C}_{p_t \times p_{t-3}} \mathbf{x}_{i;t-3} \right\}$$

$$+ \mathbb{I}\{a_{i;t-1} = 3\} \left\{ -t\mathbf{C}_{p_t \times p_{t-1}} \mathbf{x}_{i;t-1} + \sqrt{t-1}\mathbf{C}_{p_t \times p_{t-2}} \mathbf{x}_{i;t-2} + \sqrt{t-2}\mathbf{C}_{p_t \times p_{t-3}} \mathbf{x}_{i;t-3} \right\} + \xi_{it}$$

where $\xi_{it} \sim \text{MVN}(\mathbf{0}, 0.5^2 \mathbf{I})$, $\mathbf{x}_{it} = \mathbf{0}$ if t < 1 and $\mathbf{C}_{a \times b} = \{c_{rs}\}_{1 \le r \le a; 1 \le s \le b}$ is a a by b matrix such that the (r, s) entry is $c_{rs} = (-1)^{r+s}$.

4. Generate

$$y_i \sim N(m_i(\mathbf{x}_{i;1:T}, a_{i;1:T}), 1)$$

where (standardize \mathbf{x} 's first)

$$m_{i}(\mathbf{x}_{i;1:T}, a_{i;1:T}) = 3 + \sum_{t=1}^{T} \mathbb{I}\{a_{it} = 2\} \left\{ \sin(10t)\mathbf{x}_{i;t}^{\top} \mathbf{1} - \sin(10t - 10)\mathbf{x}_{i;t-1}^{\top} \mathbf{1} + \sin(10t - 20)\mathbf{x}_{i;t-2}^{\top} \mathbf{1} \right\}$$

$$+ \sum_{t=1}^{T} \mathbb{I}\{a_{it} = 3\} \left\{ \cos(10t)\mathbf{x}_{i;t}^{\top} \mathbf{1} - \cos(10t - 10)\mathbf{x}_{i;t-1}^{\top} \mathbf{1} + \sqrt{|\cos(10t - 20)|}\mathbf{x}_{i;t-2}^{\top} \mathbf{1} \right\}$$

and $\mathbf{x}_{it} = \mathbf{0}$ if t < 1.

References