Doing Machine Learning With Scikit-Learn

Credit: Andreas Mueller

```
      1.1
      2.2
      3.4
      5.6
      1.0

      6.7
      0.5
      0.4
      2.6
      1.6

      2.4
      9.3
      7.3
      6.4
      2.8

      1.5
      0.0
      4.3
      8.3
      3.4

      0.5
      3.5
      8.1
      3.6
      4.6

      5.1
      9.7
      3.5
      7.9
      5.1

      3.7
      7.8
      2.6
      3.2
      6.3
```

	,					•
one sample	1.1	2.2	3.4	5.6	1.0	$\rfloor \setminus$
	6.7	0.5	0.4	2.6	1.6	
	2.4	9.3	7.3	6.4	2.8	
X =	1.5	0.0	4.3	8.3	3.4	
	0.5	3.5	8.1	3.6	4.6	
	5.1	9.7	3.5	7.9	5.1	
	3.7	7.8	2.6	3.2	6.3	
	•					

one feature

one feature

outputs / labels

Training and Testing Data

Training and Testing Data

training set

test set

Training and Testing Data

training set

test set

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)

Basic API

estimator.fit(X, [y])

estimator.predict e

estimator.transform

Classification

Preprocessing

Regression

Dimensionality reduction

Clustering

Feature selection

Feature extraction

clf = RandomForestClassifier()

clf.fit(X_train, y_train)

clf = RandomForestClassifier()

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

Training Data

Training Labels

Prediction

clf = RandomForestClassifier() Training Data clf.fit(X_train, y_train) Model Training Labels y_pred = clf.predict(X_test) Test Data Prediction clf.score(X_test, y_test) Test Labels **Evaluation**