Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 3 & 4: Esponenziale di Matrice e Richiami di Algebra Lineare

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

Nella scorsa lezione

▶ Classificazione di sistemi

▶ Rappresentazione di sistemi

▶ Sistemi lineari in spazio di stato

▶ Esempi di sistemi a tempo continuo

▶ Esempi di sistemi a tempo discreto

In questa lezione

▶ Motivazione: soluzioni di un sistema autonomo

▶ Calcolo dell'esponenziale di matrice: metodo diretto

▶ Concetti base di algebra lineare

▶ Calcolo dell'esponenziale di matrice: diagonalizzazione

▶ Forma canonica di Jordan: idea generale

Soluzioni di un sistema LTI autonomo?

 Σ lineare, tempo invariante e autonomo

$$x(t) \in \mathbb{R}^n$$
, $y(t) \in \mathbb{R}^p$, $u(t) \equiv 0$

$$\dot{x}(t) = Fx(t)$$
 $y(t) = Hx(t)$

$$x(0) = x_0$$

Soluzioni di un sistema LTI autonomo?

$$y(t) \longrightarrow \sum_{x(t)} x(t)??$$
Caso scalare $x(t) = y(t) \in \mathbb{R}$

$$\dot{x}(t) = fx(t), \quad x(0) = x_0$$

$$x(t) = e^{ft}x_0 = \left(1 + ft + \frac{f^2t^2}{2!} + \dots + \frac{f^nt^n}{n!} + \dots\right)x_0$$

Soluzioni di un sistema LTI autonomo?

Caso vettoriale
$$x(t) = y(t) \in \mathbb{R}^n$$

$$\dot{x}(t) = Fx(t), \quad x(0) = x_0$$

$$x(t) = e^{Ft}x_0 \triangleq \left(I + Ft + \frac{F^2t^2}{2!} + \dots + \frac{F^nt^n}{n!} + \dots\right)x_0$$

Usiamo la definizione:
$$e^{Ft} \triangleq \sum_{n \geq 0} \frac{F^n t^n}{n!}$$

Esemplo 1:
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$(Ft)^n = \underbrace{F \cdot F \cdots F}_{t} t^n = \begin{bmatrix} t^n & 0 \\ 0 & (2t)^n \end{bmatrix} \implies e^{Ft} = \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix}$$

Usiamo la definizione:
$$e^{Ft} \triangleq \sum_{n \geq 0} \frac{F^n t^n}{n!}$$

caso più in generale: F diagonale

$$F = \left[egin{array}{cccc} f_1 & 0 & \cdots & 0 \ 0 & f_2 & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & f_n \end{array}
ight] \implies e^{Ft} = \left[egin{array}{cccc} e^{f_1t} & 0 & \cdots & 0 \ 0 & e^{f_2t} & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & e^{f_nt} \end{array}
ight]$$

Usiamo la definizione:
$$e^{Ft} \triangleq \sum_{n>0} \frac{F^n t^n}{n!}$$

Esemplo 2:
$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = I + N, \quad N \triangleq \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(i)
$$N^0 = I$$
, $N^1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $N^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $N^3 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$,...
$$\iff e^{Ft} = \begin{bmatrix} e^t & te^t \\ 0 & e^t \end{bmatrix}$$

Usiamo la definizione:
$$e^{Ft} \triangleq \sum_{n \in \mathbb{N}} \frac{F^n t^n}{n!}$$

Esempio 3:
$$F = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = I + N, \quad N \triangleq \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

(i)
$$N^0 = I$$
, $N^1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $N^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $N^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,...
$$\implies e^{Ft} = \begin{bmatrix} e^t & te^t & \frac{t^2}{2!}e^t \\ 0 & e^t & te^t \\ 0 & 0 & e^t \end{bmatrix}$$

Usiamo la definizione:
$$e^{Ft} \triangleq \sum_{n>0} \frac{F^n t^n}{n!}$$

caso più in generale: F "quasi"-diagonale

$$F = \left[egin{array}{cccc} f & 1 & \cdots & 0 \ 0 & f & \ddots & dots \ dots & \ddots & f & 1 \ 0 & \cdots & 0 & f \end{array}
ight] \implies e^{Ft} = \left[egin{array}{cccc} e^{ft} & te^{ft} & \cdots & rac{t^{n-1}}{(n-1)!}e^{ft} \ 0 & e^{ft} & \ddots & dots \ dots & \ddots & \ddots & te^{ft} \ 0 & \cdots & 0 & e^{ft} \end{array}
ight]$$

Usiamo la definizione:
$$e^{Ft} \triangleq \sum_{n \geq 0} \frac{F^n t^n}{n!}$$

Esemplo 4:
$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$F^{0} = I, F^{1} = F, F^{2} = -I, F^{3} = -F, F^{4} = I, ... \implies e^{Ft} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

Giacomo Baggio IMC-TdS-1920: Lez. 3 & 4 October 8 & 14 2019

Calcolo diretto di e^{Ft}

Metodo di calcolo diretto tramite definizione

utile in casi "semplici"...

....ma come fare in casi più complessi (F "piena" e senza "struttura")?

Strategia: Trasformare F in una forma "semplice" (diagonale o quasi-diagonale)!

Giacomo Baggio IMC-TdS-1920: Lez. 3 & 4 October 8 & 14 2019

Vettori e basi in \mathbb{R}^n

1. L'insieme (di vettori) \mathbb{R}^n con campo (di scalari) \mathbb{R} dotato delle consuete operazioni di somma tra vettori e prodotto di vettore per scalare, è uno spazio vettoriale.

2. I vettori $v_1, \ldots, v_k \in \mathbb{R}^n$ sono detti linearmente indipendenti (dipendenti) se

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0, \ \alpha_i \in \mathbb{R} \implies (\not\Rightarrow) \ \alpha_1 = \cdots = \alpha_k = 0.$$

- **3.** I vettori $v_1, \ldots, v_k \in \mathbb{R}^n$ formano una base di \mathbb{R}^n se:
 - (i) generano \mathbb{R}^n : $\forall v \in \mathbb{R}^n$, $\exists \alpha_i \in \mathbb{R}$ t.c. $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$
 - (ii) sono linearmente indipendenti

Trasformazioni lineari

1. Una trasformazione $f: \mathbb{R}^m \to \mathbb{R}^n$ si dice lineare se

(i)
$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in \mathbb{R}^m$$

(i)
$$f(\alpha v) = \alpha f(v)$$
, $\forall v \in \mathbb{R}^m$, $\forall \alpha \in \mathbb{R}$

- **2.** Una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ è completamente individuata dalla sua restrizione ai vettori di una base \mathcal{B} di \mathbb{R}^m
- **3.** Viceversa, data una base \mathcal{B} di \mathbb{R}^m , una trasformazione $f: \mathcal{B} \to \mathbb{R}^n$ si può estendere linearmente in modo unico all'intero spazio \mathbb{R}^m .

Trasformazioni lineari e rappresentazione matriciale

- **1.** Fissata una base \mathcal{B}_1 di \mathbb{R}^m e una base \mathcal{B}_2 di \mathbb{R}^n è possibile rappresentare una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ con una matrice $F \in \mathbb{R}^{n \times m}$ che descrive come le coordinate (rispetto a \mathcal{B}_1) di vettori di \mathbb{R}^m vengono mappate da f in coordinate di vettori (rispetto a \mathcal{B}_2) di \mathbb{R}^n .
- **2.** Fissata una base \mathcal{B} di \mathbb{R}^n , sia $F \in \mathbb{R}^{n \times n}$ la matrice che rappresenta la trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$. Sia $T \in \mathbb{R}^{n \times n}$ la matrice di cambio di base da \mathcal{B} di \mathbb{R}^n ad una "nuova" base \mathcal{B}' di \mathbb{R}^n . La matrice che rappresenta f nella nuova base è

$$F' = T^{-1}FT$$
.

Matrici: fatti base

1. Sia $F \in \mathbb{R}^{n \times m}$

$$\ker F \triangleq \{v \in \mathbb{R}^m : Fv = 0\},$$
$$\operatorname{im} F \triangleq \{w \in \mathbb{R}^n : w = Fv, \exists v \in \mathbb{R}^m\}.$$

- **2.** Sia $F \in \mathbb{R}^{n \times n}$, un vettore $v \in \mathbb{C}^n$ tale che $Fv = \lambda v$, $\lambda \in \mathbb{C}$, è detto autovettore di F corrispondente all'autovalore λ .
- **3.** Gli autovalori $\{\lambda_i\}_{i=1}^k$ di $F \in \mathbb{R}^{n \times n}$ sono le radici del polinomio caratteristico

$$\Delta_F(\lambda) = \det(F - \lambda I) = (-1)^n (\lambda - \lambda_1)^{\nu_1} (\lambda - \lambda_2)^{\nu_2} \cdots (\lambda - \lambda_k)^{\nu_k},$$

dove ν_i è la molteplicità algebrica dell'autovalore λ_i .

Matrici: fatti base

4. Ogni autovettore ν relativo all'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ soddisfa

$$(F - \lambda_i I)v = 0.$$

5. La molteplicità geometrica g_i di autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ è il numero massimo di autovettori linearmente independenti associati a λ_i e coincide con

$$g_i = \dim \ker(F - \lambda_i I).$$

6. Se $\nu_i = g_i$ per ogni autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ allora F è diagonalizzabile, i.e., esiste una matrice di cambio di base $T \in \mathbb{R}^{n \times n}$ tale che

$$F_D \triangleq T^{-1}FT$$
 è diagonale.

Esempio: diagonalizzazione

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, F diagonalizzabile? Se sì, calcolare T .

$$\lambda_1=i, \ \nu_1=1, \ g_1=1, \ \lambda_2=-i, \ \nu_2=1, \ g_2=1 \implies F$$
 diagonalizzabile \checkmark

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \implies F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

Calcolo di e^{Ft} tramite diagonalizzazione

$$F \in \mathbb{R}^{n \times n}$$
 diagonalizzabile $(\nu_i = g_i \text{ per ogni autovalore } \lambda_i)$

$$\downarrow$$
Esiste $T \in \mathbb{R}^{n \times n}$ tale che $F_D = T^{-1}FT$ diagonale

Come ci aiuta questo nel calcolo di e^{Ft} ?

Calcolo di e^{Ft} tramite diagonalizzazione

$$F \in \mathbb{R}^{n \times n}$$
 diagonalizzabile $(\nu_i = g_i \text{ per ogni autovalore } \lambda_i)$

$$F = TF_DT^{-1} \implies e^{Ft} = e^{TF_DT^{-1}t}$$

$$(TF_DT^{-1}t)^n = T(F_Dt)^nT^{-1} \implies e^{Ft} = Te^{F_Dt}T^{-1}$$

Calcolo di e^{Ft} tramite diagonalizzazione: esempio

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, calcolare e^{Ft} tramite diagonalizzazione di F .

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$$
, $F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$

$$e^{Ft} = Te^{F_D t} T^{-1} = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$$

Obiettivo

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ diagonale

Non sempre possibile!!! Che fare quando non esiste una tale T?

Trovare una matrice $T \in \mathbb{R}^{n \times n}$ tale che $T^{-1}FT$ "quasi" diagonale!

Giacomo Baggio IMC-TdS-1920: Lez. 3 & 4 October 8 & 14 2019

Esempi

1.
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
, $\nu_1 = 2$, $g_1 = 2 \implies \nu_1 = g_1$ diagonalizzabile \checkmark

2.
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies \lambda_1 = 2$$
, $\nu_1 = 1$, $g_1 = 1$, $\lambda_2 = 0$, $\nu_2 = 1$, $g_2 = 1$ $\implies \nu_i = g_i$ diagonalizzabile \checkmark

3.
$$F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1, \ \nu_1 = 2, \ g_1 = 1 \implies \nu_1 > g_1 \ \text{non diagonalizzabile!} \quad \times$$

Forma di Jordan: idea generale

$$F \in \mathbb{R}^{n \times n}$$
 con autovalori $\{\lambda_i\}_{i=1}^k$

$$u_i = ext{molteplicità algebrica } \lambda_i$$
 $g_i = ext{molteplicità geometrica } \lambda_i$

Caso 1:
$$\nu_i = g_i$$
 per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste i tale che
$$\nu_i > g_i \implies F$$
 non diagonalizzabile \times

possiamo trasformare la matrice in una forma a blocchi diagonali o "quasi" diagonali (forma di Jordan)

...e i blocchi "quasi" diagonali hanno la forma di slide 12! $\begin{bmatrix} f & 1 & \cdots & 0 \\ 0 & f & \ddots & 1 \\ \vdots & \ddots & f & 1 \\ 0 & \cdots & 0 & f \end{bmatrix}$