Subvarieties in Abelian Variety

Xiaoxiang Zhou

Supervisor: Thomas Krämer

Humboldt-Universität zu Berlin

September 9 or 11, 2025

- ullet A/\mathbb{C} : an abelian variety of dim n
- $Z \subsetneq A$: a (nondegenerate) subvariety of dim r Z is a curve C in our talk.

Gaoxiang Zhou HU berlin

- A/\mathbb{C} : an abelian variety of dim n
- $Z \subsetneq A$: a (nondegenerate) subvariety of dim r Z is a curve C in our talk.

Goal

- Construct a family indexed by \mathbb{Z}^d of subvarieties in A.
- Find their dimension and homology class.

- ullet A/\mathbb{C} : an abelian variety of dim n
- Z ⊆ A: a (nondegenerate) subvariety of dim r
 Z is a curve C in our talk.

Example (Jacobian case)

When C is a smooth projective curve over $\mathbb C$ of genus $g\geqslant 2$,

 $A := \operatorname{Jac}(C)$ the Jacobian of C

 $AJ_C: C \hookrightarrow A$ Abel-Jacobi map

- A/\mathbb{C} : an abelian variety of dim n
- $Z \subsetneq A$: a (nondegenerate) subvariety of dim r

Example (Prym case)

When $h:C\longrightarrow C'$ is an unramified double cover of smooth projective curves, we can define

$$A := \operatorname{Prym}(C/C')$$
 the Prym variety of h

$$AP_{C/C'}: C \longrightarrow A$$
 Abel-Prym map

We assume that C is non-hyperelliptic so that $AP_{C/C'}$ is injective.

Xiaoxiang Zhou

Since A is a group variety, one defines

$$C + C := \{ p + q \mid p, q \in C \} \subseteq A$$
$$2C := \{ 2p \mid p \in C \} \subseteq A$$

and so on.

Since A is a group variety, one defines

$$C + C := \{ p + q \mid p, q \in C \} \subseteq A$$
$$2C := \{ 2p \mid p \in C \} \subseteq A$$

and so on.

Remark

Since C is nondegenerate,

$$\underbrace{C+C+\cdots+C}_{\geqslant \ n \ \mathrm{many}} = A.$$

Question

Can we define a family of subvarieties arising from representation theory, which agrees with

$$\{m_1C + \dots + m_dC \subseteq A \mid m_1, \dots, m_d \in \mathbb{Z}\}$$

in some cases, but constructed in a way that reflects the additive structure of $\cal A$ more faithfully?

They should not be A.

Xiaoxiang Zhou HU berlin

Question

Can we define a family of subvarieties arising from representation theory, which agrees with

$$\{m_1C + \dots + m_dC \subseteq A \mid m_1, \dots, m_d \in \mathbb{Z}\}$$

in some cases, but constructed in a way that reflects the additive structure of $\cal A$ more faithfully?

They should not be A.

In fact, we can construct a family of subvarieties

$$\left\{ Z_{\chi} \subseteq A \mid \chi \in \mathbb{Z}^d \right\}$$

via the conormal variety.

Conic Lagrangian cycle

For a (smooth) subvariety $Z\subset A$, one can define the conormal variety $\Lambda_Z\subset T^*A\cong A\times T_0^*A$ by

$$\Lambda_Z := \{ (p, \xi) \in T^*A \mid p \in Z, \xi|_{T_p Z} = 0 \}.$$

Gaoxiang Zhou HU berl

Conic Lagrangian cycle

For a (smooth) subvariety $Z\subset A$, one can define the conormal variety $\Lambda_Z\subset T^*A\cong A\times T_0^*A$ by

$$\Lambda_Z := \{ (p, \xi) \in T^*A \mid p \in Z, \xi|_{T_p Z} = 0 \}.$$

Facts

- Λ_Z is a conic Lagrangian cycle in T^*A ;
- We have one-to-one correspondence

$$\{ \text{irr conic Lagrangian cycles in } T^*\!A \} \cong \{ \text{irr subvarieties in } A \}$$

$$\Lambda_Z \qquad \longleftrightarrow \qquad Z$$

• The map $\gamma_Z: \Lambda_Z \subset A \times T_0^*A \longrightarrow T_0^*A$ is a generically finite map, when Z is nondegenerate.

Definition

Fix a general point $\xi_0 \in T_0^*A$, and $d := \deg \gamma_Z$,

$$\gamma_Z^{-1}(\xi_0) := \{p_1, \dots, p_d\} \subset Z.$$

Definition

Fix a general point $\xi_0 \in T_0^*A$, and $d := \deg \gamma_Z$,

$$\gamma_Z^{-1}(\xi_0) := \{p_1, \dots, p_d\} \subset Z.$$

Let $\Lambda_Z^{\mathrm{univ}}$ be the irreducible component of

$$\underbrace{\Lambda_Z \times_{T_0^*A} \cdots \times_{T_0^*A} \Lambda_Z}_{d \text{ many}} \subset A \times \cdots \times A \times T_0^*A$$

containing the point $(p_1, \ldots, p_d, \xi_0)$.

Definition

Fix a general point $\xi_0 \in T_0^* A$, and $d := \deg \gamma_Z$,

$$\gamma_Z^{-1}(\xi_0) := \{p_1, \dots, p_d\} \subset Z.$$

Let $\Lambda_Z^{\mathrm{univ}}$ be the irreducible component of

$$\underbrace{\Lambda_Z \times_{T_0^*A} \cdots \times_{T_0^*A} \Lambda_Z}_{d \text{ many}} \subset A \times \cdots \times A \times T_0^*A$$

containing the point $(p_1, \ldots, p_d, \xi_0)$.

For
$$\chi=(m_1,\ldots,m_d)\in\mathbb{Z}^d$$
, define $\Lambda_{Z_\chi}:=f(\Lambda_Z^{\mathrm{univ}})$, where
$$f:A\times\cdots\times A\times T_0^*A \longrightarrow A\times T_0^*A$$

$$(q_1,\ldots,q_d,\xi)\longmapsto (\sum_i m_i q_i,\xi)$$

4 D > 4 D > 4 E > 4 E > E 990

Definition

Fix a general point $\xi_0 \in T_0^*A$, and $d := \deg \gamma_Z$,

$$\gamma_Z^{-1}(\xi_0) := \{p_1, \dots, p_d\} \subset Z.$$

Let $\Lambda_Z^{\mathrm{univ}}$ be the irreducible component of

$$\underbrace{\Lambda_Z \times_{T_0^*A} \cdots \times_{T_0^*A} \Lambda_Z}_{d \text{ many}} \subset A \times \cdots \times A \times T_0^*A$$

containing the point $(p_1, \ldots, p_d, \xi_0)$.

For
$$\chi=(m_1,\ldots,m_d)\in\mathbb{Z}^d$$
, define $\Lambda_{Z_\chi}:=f(\Lambda_Z^{\mathrm{univ}})$, where
$$f:A\times\cdots\times A\times T_0^*A \longrightarrow A\times T_0^*A$$

$$(q_1,\ldots,q_d,\xi)\longmapsto (\sum_i m_i q_i,\xi)$$

 Z_χ is then the corresponding subvariety of $\Lambda_{Z_\chi}.$

Our work

We determine $\dim Z_{\chi}$ and $[Z_{\chi}] \in H_*(A; \mathbb{Z})$ in special cases.

Example

In the Jacobian case, $d = \deg \gamma_C = 2g - 2$. Assume that C is non-hyperelliptic. For $\chi = (m_1, \ldots, m_d) \in \mathbb{Z}^d$, when no g of m_i equal to each other, we get

$$[Z_{\chi}] = \frac{1}{\deg f|_{\Lambda_Z^{\text{univ}}}} \left(\frac{1}{2^{g-1}} \sum_{\sigma \in S_{2g-2}} \prod_{l=1}^{g-1} \left(m_{\sigma(2l-1)} - m_{\sigma(2l)} \right)^2 \right) \cdot [\Theta]$$

Xiaoxiang Zhou HU berlin

Q & A

Thank you for your listening!

Any questions?

This slide is online available: https://shorturl.at/qqWDe For more infos (and references) about this topic, please check my work in progress note1 and note2.

Financial support by the Berlin Mathematical School is gratefully acknowledged.

Xiaoxiang Zhou HU berlin