Logika R

Weronika Jakimowicz

Zima 2025/26

Weronika Jakimowicz

Spis treści

1	Formalizacja matematyki			
	1.1	Uproszczony model rzeczywistości matematycznej: struktura I rzędu		
		1.1.1	Model języka i język struktury modelu	1
		1.1.2	Zdania w języku	3
		1.1.3	Tautologie	6
	1.2	Aksjor	matyczne ujęcie KRL	8
		1.2.1	Dowodliwość	9

1. Formalizacja matematyki

1.1 Uproszczony model rzeczywistości matematycznej: struktura I rzędu

1.1.1 Model języka i język struktury modelu

Definicja 1.1: model

Model to struktura matematyczna składająca się z

- niepustego zbioru będącego uniwersum (dziedzina) $A \neq \emptyset$,
- funkcji $f_1, ..., f_k$ o arności n_i (tzn. $f_i: A^{n_i} \rightarrow A$),
- relacji (orzeczników, predykatów) w A, $P_1, ..., P_n$, gdzie $P_i \subseteq A^{n_i}$,
- *stałych* z $A c_1, ..., c_l \in A$.

Zapisujemy

$$\mathfrak{M} = (A; f_1, ..., f_k; P_1, ..., P_n; c_1, ..., c_l)$$

gdzie k, n, l to liczby kardynalne, zazwyczaj skończone (tzn. k, n, $l \in \mathbb{N}$).

Konwencja ————

$$(\mathfrak{M}:=)|\mathfrak{M}|:=\mathsf{A}$$

Przykłady

1. Jeśli n=0, czyli nie mamy relacji, to $\mathfrak M$ jest strukturą algebraiczną (algebrą ogólną). Weźmy na przykład grupę. Grupa jest zdefiniowana jako zbiór G z wyróżnionym elementem neutralnym e, operacją mnożenia · oraz brania elementu odwrotnego $^{-1}$. Operacje to funkcje, a element neutralny to stała. Sam zbiór G to z kolei uniwersum, czyli mamy model:

$$(\textit{G};\cdot,^{-1}\,;\;;e)$$

2. Rodzina zbiorów V z relacją należenia \in jest modelem z jedną relacją, ale bez funkcji i bez stałych:

$$(V;\;;\in;\;)$$

Taką strukturę nazywamy strukturą relacyjną.

Symbole oznaczające funkcje, relacje, stałe będziemy od ich znaczenia odróżniać przez podkreślenie:

- \underline{f}_i , \underline{P}_i , \underline{c}_t to symbole,
- natomiast f_i , P_J , c_t to funkcja, relacja, stała.

Definicja 1.2: język

Język

$$L = \{\underline{f}_1,...,\underline{f}_k;\underline{P}_1,...,\underline{P}_n;\underline{c}_1,...,\underline{c}_l\}$$

składa się z symboli: funkcyjnych, relacyjnych, stałych wraz z przypisanymi tym symbolom arnościami, tzn. f_i to symbol funkcji n_i -argumentowej etc.

Język jak wyżej jest nazywany językiem struktury \mathfrak{M} , typem podobieństwa \mathfrak{M} , sygnaturą \mathfrak{M} . Z kolei \mathfrak{M} jest modelem dla L.

Konwencja ————

Szerzej będziemy dla ${\mathfrak M}$ - modelu dla L - pisać

$$(\mathfrak{M};\underline{f_1}^{\mathfrak{M}},...,f_k^{\mathfrak{M}};\underline{P_1}^{\mathfrak{M}},...,\underline{P_n}^{\mathfrak{M}};\underline{c_1}^{\mathfrak{M}},...,c_l^{\mathfrak{M}})$$

gdzie $\underline{f_i}^{\mathfrak{M}}$ oznacza interpretację symbolu $\underline{f_1}^{\mathfrak{M}}$ w kontekście modelu $\mathfrak{M}.$

Uwaga 1.3

Dla dowolnego języka L istnieje wiele struktur \mathfrak{M} .

Przykład

Język grup

Mając dany język L mówimy/piszemy w nim przy pomocy

- symbolów języka,
- symboli logicznych \land , \lor , \neg , \rightarrow , \leftrightarrow (!!! \implies oraz \iff będą dla nas elementami metajęzyka !!!), \forall , \exists , =,

Weronika Jakimowicz Logika R

- zmiennych, np. x_i dla $i \in \mathbb{N}$, y, z,
- oraz symboli pomocniczych takich jak nawiasy, przecinki etc.

Uwaga 1.4

Spójniki można ograniczyć do \land , \neg i kwantyfikatora \exists . Całą resztę spójników można zdefiniować jako macra przy pomocy tych trzech, np.

$$p \lor q := \neg(\neg p \land \neq q)$$

Wyrażenia języka L:

- a) wyrażenia nazwowe (termy) należą do \mathcal{T}_L (Term_L) i są definiowane rekurencyjnie:
 - ullet zmienna, symbol stałej należą do \mathcal{T}_L i nazywają się termami atomowymi
 - jeśli τ_1 , ..., $\tau_n \in \mathcal{T}_L$, a \underline{f} jest symbolem n-argumentowej funkcji z L, to $\underline{f}(\tau_1, ..., \tau_n) \in \mathcal{T}_L$ i nazywa się termem złożonym.
- b) formuły oznaczamy \mathcal{F}_L (Form_L) i definiujemy rekurencyjnie w następujący sposób
 - dla wszystkich termów $\tau_1,...,\tau_n$ zachodzi $(\tau_1=\tau_2)\in\mathcal{F}_L$ oraz dla n-argumentowego symbolu relacji \underline{P}_i : $\underline{P}_i(\tau_1,...,\tau_n)\in\mathcal{F}_L$ to są formuły atomowe,
 - φ , $\psi \in \mathcal{F}_L \implies (\neg \varphi)$, $(\varphi \land \psi) \in \mathcal{F}_L$ $\varphi \in \mathcal{F}_L \implies (\exists \ r \ \varphi)$, $(\forall \ r\varphi) \in \mathcal{F}_L \ (r \ \text{występujące w wyrażeniach nazywamy zmiennymi})$

Formuły z tego punktu nazywamy formuły złożone.

Hierarchia symboli logicznych umożliwia pomijanie nawiasów:

- 1. symbole matematyczne
- 2. kwantyfikatory
- 3. negacja ¬
- **4.** ∧, ∨
- 5. \rightarrow , \leftrightarrow

1.1.2 Zdania w języku

Niech $\varphi \in \mathcal{F}_L$ będzie formułą w której występuje, co najmniej raz, zmienna v. Jeśli pewne wystąpienie v w φ jest w zasięgu pewnego kwantyfikatora $Q_v \in \{\forall, \exists\}$, to spośród wszystkich wystąpień Q_v w φ w których zasięgu jest v wybieramy to najbardziej na prawo i mówimy,

że to $\mathbf{Q}_{\mathbf{V}}$ wiąże dane wystąpienie \mathbf{v} w φ . Na przykład

$$\forall x \exists y (x \in y \land \forall x (x \in y \rightarrow x = y))$$
wiąże

Jeśli nie ma kwantyfikatora Q_v jak wyżej, to wystąpienie v w φ jest wolne. Popatrzmy na przykład na formułę

$$\exists y \ x \in y \land \forall x \ (x \in y \rightarrow x = y).$$

Kwantyfikator z czerwonym y wiąże czerwony y, a niebieskie y pozostają wolne. Dodając nawias pierwszy kwantyfikator wiąże już wszystkie występienia y:

$$\exists y \ (x \in y \land \forall x \ (x \in y \rightarrow x = y)).$$

Konwencja ———

Zapis $\varphi(v_1,...,v_n)$ oznacza, że wszystkie wolne zmienne w φ są wśród $v_1,...,v_n$ (ale niekoniecznie wszystkie v_i są zmiennymi wolnymi).

Definicja 1.5: zdanie

Formalne zdanie w języku L to formuła niezawierająca zmiennych wolnych.

Tarski podał na początku XX wieku definicję prawdy. Nieco później udowodnił twierdzenie, że nie da się prawdy zdefiniować.

Powstaje pytanie co to znaczy, że formuła z L jest prawdziwa w strukturze $\mathfrak M$ dla L?

Niech \mathfrak{M} będzie modelem dla $L = \{\underline{f}_i, ..., \underline{P}_j, ..., \underline{c}_t, ...\}$ oraz $\{\underline{a} : a \in \mathfrak{M}\}$ niech będzie zbiorem nowych symboli stałych. Rozważmy nowy, większy język

$$L(\mathfrak{M}) = L \cup \{\underline{a} : a \in |\mathfrak{M}|\},$$

którego modelem nadal jest $\mathfrak{M}\left(\underline{a}^{\mathfrak{M}}:=a\right)$.

Termy stałe $\sigma^{\mathfrak{M}}\in |\mathfrak{M}|$ z $L(\mathfrak{M})$ interpretujemy w \mathfrak{M} w następujący sposób:

- jeśli $\underline{\tau}$ jest symbolem stałym $\underline{c_i}$ w L, to $\tau^{\mathfrak{M}}\in\mathfrak{M}$ jest interpretacją $\underline{c_i^{\mathfrak{M}}}$
- jeśli $\tau = \underline{f}_i(\underline{\tau}_1, ..., \underline{\tau}_n)$ jest termem złożonym, to $\sigma^{\mathfrak{M}} = \underline{f}_i^{\mathfrak{M}}(\underline{\tau}_1^{\mathfrak{M}}, ..., \underline{\tau}_n^{\mathfrak{M}}).$

Konwencja ————

 $\mathfrak{M} \models \varphi$ oznacza, że φ jest prawdziwe/spełniane w \mathfrak{M} .

a) zdania atomowe:

- $\mathfrak{M} \models \tau_1 = \tau_2 \iff \tau_1^{\mathfrak{M}} = \tau_2^{\mathfrak{M}}$
- $\mathfrak{M} \models \underline{P}_{j}(\tau_{1},...,\tau_{n}) \iff (\tau_{1}^{\mathfrak{M}},...,\tau_{n}^{\mathfrak{M}}) \in \underline{P}_{j}^{\mathfrak{M}}$
- b) zdania złożone:
 - $\mathfrak{M} \models \varphi \land \varphi \iff \mathfrak{M} \models \varphi \text{ oraz } \mathfrak{M} \models \psi$
 - $\mathfrak{M} \models \neg \varphi \iff \mathsf{nieprawda}$, $\dot{\mathsf{ze}} \, \mathfrak{M} \models \varphi$ (oznaczamy $\mathfrak{M} \not\models \varphi$)
 - $\mathfrak{M}\models\exists\ v\ \varphi$ (jest tym samym co $\exists\ v\ \varphi(v)$, bo zakładamy, że nie ma innych zmiennych wolnych w φ , bo to jest zdanie) $\iff \mathfrak{M}\models\varphi(v/\underline{a})$ dla pewnego $a\in|\mathfrak{M}|$, $=\varphi(\underline{a})$ gdzie $\varphi(\underline{a})$ jest formułą powstającą z φ przez zastąpnienie każdego wolnego wystąpienia v w φ przez a.

To daje nam, że $\mathfrak{M} \models \varphi$ dla każdego $\varphi \in \mathcal{F}_L$.

Kwantyfikatujemy po zmiennych, nie po podzbiorach uniwersum, bo to jest logika I rzędu. Zbiory tworzymy w umyśle, postrzegamy indywidua. Teorie wyższych rzędów nie są absolutne.

Definicja 1.6: spełnianie formuły

Krotka $\langle a_1,...,a_n\rangle$ elementów z uniwersum \mathfrak{M} spełnia formułę φ języka, gdy $\mathfrak{M} \models \varphi(\underline{a}_1,...,\underline{a}_n)$.

Definicja 1.7: uniwersalne domknięcie

Dla formuły φ języka L jej uniwersalne domknięcie φ to formuła

$$\overline{\varphi} := \forall x_1 \ \forall x_2 ... \forall x_n \ \varphi$$

W następnej części wykładu pokażemy, że

$$\mathfrak{M} \models \varphi \iff \mathfrak{M} \models \overline{\varphi}$$

Powyższe zagadnienia mówią, że domyślny kwantyfikator to kwantyfikator \forall . To ma spełnienie w naturalnej matematyce, np. przemienność dodawania $(\mathbb{R}, +) \models x + y = y + x$ gdzie pomijamy $\forall x \forall y$.

1.1.3 Tautologie

Definicja 1.8: tautologia KRL

Niech $\varphi \in \mathcal{F}_L$. Wtedy φ jest **tautologią** klasycznego rachunku logicznego [KRL], gdy jest zawsze prawdziwe. Zapisujemy to $\models \varphi$, co oznacza $\forall \mathfrak{M}$ modelu $L\mathfrak{M} \models \varphi$.

Jak rozpoznać, czy $\models \varphi$? Ogólnie jest to pytanie nierozstrzygalne (twierdzenie Gödla).

Niektóre tautologie łatwo rozpoznać, jak przykłady niżej.

Przykłady

- 1. x = x
- 2. = jest relacją równoważności

Przygodę z tautologiami rozpoczynamy od tautologicznych formuł zdaniowych (czyli schematów).

Niech $Z = \{p_0, p_1, ..., p_n, r, q, ...\}$ będzie zbiorem zmiennych zdaniowych. Zbiór formuł zdaniowych $S = S_Z$ nad Z definiujemy w następujący sposób:

- $v \in Z \implies v \in S$
- $\alpha, \beta \in S \implies \neg \alpha, \alpha \land \beta \in S$
- skrótowo: \lor , \rightarrow , $\leftrightarrow \in S$

Definicja 1.9: wartościowanie

Wartościowanie logiczne formuł zdaniowych to dowolna funkcja $v:S\to\{0,1\}$ taka, że dla każdych α , $\beta\in S$

- $\mathbf{v}(\neg \alpha) = 1 \mathbf{v}(\alpha)$
- $\mathbf{v}(\alpha \wedge \beta) = \min{\{\mathbf{v}(\alpha), \mathbf{v}(\beta)\}}$

Definicja 1.10: tautologia KRZ

Powiemy, że $\alpha \in S$ jest **tautologią** ($\models \alpha$) gdy dla każdego wartościowania v zachodzi $v(\alpha)=1$.

Na przykład: $\models \neg(\alpha \ \land \ \neg \alpha)$ dla każdego $\alpha \in \mathsf{S}$

Istnieje algorytm rozstrzygający, czy $\models \alpha$ dla $\alpha \in S$ (metoda 0-1): wartość $v(\alpha)$ zależy tylko od v(x) dla zmiennych zdaniowych x w α .

Definicja 1.11: przykład formuły

Załóżmy, że $\alpha \in S$ jest zbudowany ze zmiennych $p_1,...,p_n \in Z$ oraz $\varphi_1,...,\varphi_n \in \mathcal{F}_L$ i $\varphi \in \mathcal{F}_L$ powstaje z α przez zastąpienie p_i przez φ_i wszędzie w α (zapisujemy $\varphi = \alpha(p_1/\varphi_1,...,p_n/\varphi_n)$. Mówimy, że φ jest **jest przykładem formuły** α .

Weźmy na przykład formułą $\alpha=p_1 \ \land \ p_2$, wtedy $\varphi=\varphi_1 \ \land \ \varphi_2$ jest przykładem formuły α .

Twierdzenie 1.12

Jeśli $\models \alpha$ i φ jest przykładem α , to $\models \varphi$.

Dowód

Ćwiczenie

4

Definicja 1.13: reguła wnioskowania

Reguła wnioskowania składa się z:

- przesłanek φ_1 ,, $\varphi_n \in \mathcal{F}_L$
- tezy φ .

Zapisujemy

$$\frac{\varphi_1,...,\varphi_n}{\varphi}$$

Reguła wnioskowania jest poprawna, kiedy nie prowadzi nas na manowce.

1. $\frac{arphi_1,...,arphi_n}{arphi}$ jest **poprawna**, jeśli dla każdego modelu ${\mathfrak M}$ dla L

$$\mathfrak{M} \models \varphi_1 \wedge ... \wedge \varphi_n \implies \mathfrak{M} \models \varphi$$

2. $\frac{\alpha_1,...,\alpha_n}{\alpha}$ jest poprawna, jeśli dla każdego wartościowania v

$$\mathbf{v}(\alpha_1) = \dots = \mathbf{v}(\alpha_n) = 1 \implies \mathbf{v}(\alpha) = 1$$

Przykłady

1. Modus Ponens (reguła odrywania, cut rule)

$$\frac{\alpha, \alpha \to \beta}{\beta}$$

2. reguła generalizacji (∀ -rule)

$$\frac{\varphi}{\forall \ \mathsf{v} \ \varphi(\mathsf{v})}$$

1.2 Aksjomatyczne ujęcie KRL

- (A0) formuła będąca przykładem dowolnego zdania KRZ, które jest tautologią
- **(A1)** $\forall v (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \forall v \psi)$, gdy v nie jest wolna w φ
- (A2) $\forall v \varphi \rightarrow \varphi(v/t)$ (to jest poprawny zapis, ale dla pewności: $(\forall v \varphi) \rightarrow \varphi(v/t)$)

t to jest term podstawiany za każde wolne wystąpienie v w φ pod warunkiem, że żadne z takich wystąpień nie jest w zasięgu kwantyfikatora wiążącego zmienną występującą w termie t.

Zastrzeżenie aksjomacie (A2) jest istotne: jeśli weźmiemy jako φ formułę

$$\varphi = \exists y x \neq y$$

i podstawimy za wolne wystąpienia x term t = y, to

$$\varphi(\mathbf{x}/\mathbf{t}) = \exists \ \mathbf{y} \ \mathbf{y} \neq \mathbf{y}$$

co z (A2) dałoby

$$\not\models \forall \ x\varphi \to \varphi(x/t) = \forall \ \exists \ y \ x \neq y \to \exists \ y \ y \neq y$$

Definicja 1.14: aksjomaty równości

Aksjomaty równości (v_i - wolne zmienne):

- (R1) $v_1 = v_1$
- (R2) $v_1 = v_2 \rightarrow t(...v_1...) = t(...v_1/v_2...)$
- (R3) $v_1 = v_2 \rightarrow (\varphi(...v_1...) \rightarrow \varphi(...v_2...))$ gdzie v_1 to wolne wystąpienie w φ niebędące w zasięgu kwantyfikatora wiążącego v_2 .

1.2.1 Dowodliwość

Definicja 1.15: dowód formalny

Niech $X \subseteq \mathcal{F}_L$ będzie dowolnym podzbiorem formuł.

Powiemy, że **X dowodzi** $\varphi \in \mathcal{F}_L$, $X \vdash \varphi$ wtedy i tylko wtedy gdy istnieje ciąg formuł **(dowód formalny)** α_1 , ..., $\alpha_n = \varphi$ takie, że dla każdego $i \le n$

- 1. $\alpha_i \in X$ lub α_i jest aksjomatem KRL
- 2. α_i wynika z $\{\alpha_1, ..., \alpha_{i-1}\}$ na mocy
 - Modus Ponens, tzn. $(\exists j, t < i) \alpha_t = (\alpha_i \rightarrow \alpha_i)$

$$\frac{\alpha_{j}, \alpha_{j} \to \alpha_{i}}{\alpha_{i}}$$

• lub \forall -rule $(\exists j < i) \ \alpha_i = (\forall v \alpha_i)$

$$\frac{\alpha_{j}}{\forall \ \mathsf{v} \ \alpha_{j}}$$

Konwencja ————

$$\vdash \varphi \mathsf{gdy} \, \emptyset \vdash \varphi$$

Definicja 1.16: teza KRL —

Jeśli φ jest takie, że $\vdash \varphi$, to φ nazywamy **tezą** KRL.

Uwaga 1.17

 $\mathit{X} \vdash \varphi \iff \exists \ \mathit{X}_0 \subseteq \mathit{X} \ \mathsf{sko\acute{n}czony} \ \mathit{X}_0 \vdash \varphi$

Przykład

Pokażemy, że $\vdash \forall \ x \ \varphi \to \exists \ x \ \varphi$, co jest równoważne

$$\vdash \forall \ \mathbf{x} \ \varphi \to \neg \ \forall \ \mathbf{x} \ \neg \varphi$$

- 1. $\alpha_1: \forall \ \mathbf{x} \ \varphi \rightarrow \varphi(\mathbf{x}/\mathbf{y})$ (A2)
- 2. $\alpha_2: \forall \ \mathbf{x} \ \neg \varphi \rightarrow \neg \varphi(\mathbf{x/y})$ (A2)
- 3. $\alpha_3:\alpha_2\to (\varphi(\mathbf{x}/\mathbf{y})\to \neg\forall~\mathbf{x}~\neg\varphi)$ (A0 $(\mathbf{p}\to \neg\mathbf{q})\to (\mathbf{q}\to \neg\mathbf{p})$)
- 4. $\alpha_4: \varphi(\mathbf{x}/\mathbf{y}) \to \neg \forall \ \mathbf{x} \ \neg \varphi \ (\alpha_2, \alpha_3 \ \text{oraz Modus Ponens})$
- 5. $\alpha_5:\alpha_1\to(\alpha_4\to(\forall~x~\varphi\to\neg\forall~x~\neg\varphi))$ (A0 $(p\to q)\to((q\to r)\to(p\to r))$)

6. $\alpha_6 : (\forall x) \varphi \rightarrow \neg(\forall x) \neg \varphi$ (Modus Ponens)

Rozważmy φ dane x = x. Zdanie

$$\vdash (\forall x) \ x = x \rightarrow (\exists x)x = x$$

jest fałszywe w dziedzinie putestj, czyli modelu

$$(\emptyset; f_1, ..., f_n; P_1, ..., P_i;)$$

gdzie nie ma elementów uniwersum. Czyli coś z aksjomatów musi zawodzić w dziedzinie pustej - pytanie co?

Od tej pory modele są niepuste

Uwaga 1.18

Poprawność (soundness) KRL

$$\vdash \varphi \implies \models \varphi$$

Dowód

Dowód polega na indukcji względem długości formuły (albo długości dowodu) i jest pozostawiony jako ćwiczenie.

Twierdzenie 1.19: Gödela o pełności KRL

$$\models \varphi \implies \vdash \varphi$$

Czyli $\models \varphi \iff \vdash \varphi$.

Definicja 1.20: zbiór konsekwencji

Dla $X \subseteq \mathcal{F}_L$ zbiór konsekwencji X to $Cn(X) = \{ \varphi \in \mathcal{F}_L : X \vdash \varphi \}$

- X jest teorią, gdy X = Cn(X)
- A jest zbiorem aksjomatów teorii X, gdy X = Cn(A)
- zbiory X, Y są równoważne, gdy Cn(X) = Cn(Y) co równoważnie można powiedzieć: $X \vdash Y$ i $Y \vdash X$

Twierdzenie 1.21: twierdzenie o dedukcji

Jeśli φ jest zdaniem, to $(X \vdash \varphi \rightarrow \psi \iff X \cup \{\varphi\} \vdash \varphi)$

Dowód

Dowód powyższego twierdzenia jest zadaniem na 1 liście zadań.

Fakt 1.22

 φ oraz $\overline{\varphi}$ są równoważne, czyli $\varphi \vdash \overline{\varphi}$ oraz $\overline{\varphi} \vdash \varphi$.

Dowód

 $\varphi \vdash \overline{\varphi}$

Wystarczy zastosować \forall -regułę tyle razy ile dopisaliśmy kwantyfikatorów w $\overline{\varphi}$.

 $\overline{\varphi} \vdash \varphi$

Aksjomat (A2) mówi, że $\overline{\varphi} \to \varphi$. Używając do tego th:tw dedukcja dostajemy

$$\emptyset \cup \{\overline{\varphi}\} \vdash \varphi \iff \emptyset \vdash \overline{\varphi} \to \varphi.$$

Wniosek

 $X \subseteq \mathcal{F}_L$

X oraz $\{\overline{\varphi} \ : \ \varphi \in X\}$ są równoważne

Definicja 1.23: zbiór sprzeczny –

X jest **sprzeczny**, jeżeli $X \vdash \varphi$ oraz $X \vdash \neg \varphi$ dla pewnego zdania $\varphi \in \mathcal{F}_L$

W przeciwnym razie mówimy, że X jest niesprzeczny.

Definicja 1.24: zbiór zupełny, rozstrzygalny

- 1. Powiemy, że \mathfrak{M} jest modelem X, oznaczane $\mathfrak{M} \models X \iff (\forall \varphi \in X) \mathfrak{M} \models \varphi$.
- 2. *X* jest **zupełny** \iff $(\forall \text{ zdania } \varphi) (X \vdash \varphi \text{ lub } X \vdash \neg \varphi.$
- 3. *X* jest **rozstrzygalny** \iff istnieje algorytm rozstrzygający, czy $X \vdash \varphi$.

Przykłady

- 1. Teoria struktury \mathfrak{M} , definiowana jako zbiór $\mathsf{Th}(\mathfrak{M}) := \{ \varphi : M \models \varphi \}$, jest niesprzeczna i zupełna.
- 2. Ø jest niesprzeczny

Twierdzenie 1.25: Gödela o istnieniu modelu

Jeśli S jest niesprzecznym zbiorem zdań (równoważnie: formuł), to S ma model.

Dowód

Przedstawimy dowód Leona Henkina dla przypadku, gdy *L* i *S* są przeliczalne. Ogólny dowód jest analogiczny, ale wymaga nieprzyjemnych fikołków kombinatorycznych na liczbach kardynalnych.

Zacznijmy od powiększenia języka L o nowe symbole

$$L' = L \cup \{c_n : n < \omega\}$$

i ponumerowania jego formuł postaci $\varphi(x)$ (z co najwyżej jedną wolną zmienną x)

$$\{\varphi_n : n < \omega\}$$

Zdefiniujmy pomocniczą rosnącą funkcję $f:\omega\to\omega$ taką, że $c_{f(n)}$ nie występuje w formułach $\varphi_0(x)$, $\varphi_1(x)$, ..., $\varphi_n(x)$. Przy pomocy f definiujemy rodzinę zbiorów

$$S_n := S \cup \{\underbrace{(\exists \ x) \ \varphi_i(x) \rightarrow \varphi_i(c_{f(i)})}_{ ext{aksjomat Henkina}} \ : \ i < n\}.$$

Mamy $S = S_0 \subseteq S_1 \subseteq ...$ i niech

$$S_{\omega} = \bigcup S_n$$

Fakt

Zbiór S_{ω} jest niesprzeczny.

Weronika Jakimowicz Logika R

Dowód

Załóżmy nie wprost, że S_{ω} jest sprzeczny. Sprzeczność ta wynika ze skończonego podzbioru (patrz 1.17), czyli istnieje n takie, że S_{n+1} jest sprzeczny. Wybierzmy najmniejsze takie n. Dla pewnego zdania α mamy

$$S_{n+1} \vdash \alpha \land \neg \alpha$$
.

Zapiszmy S_{n+1} jako

$$S_{n+1} := S_n \cup \{\underbrace{(\exists x) \ \varphi_n(x) \rightarrow \varphi_n(c_{f(i)})}_{H}\},$$

w tedy z twierdzenia o dedukcji (1.21) mamy

$$S_n \cup \{H\} \vdash \alpha \land \neg \alpha \iff S_n \vdash H \rightarrow \alpha \land \neg \alpha$$

Korzystając z aksjomatu (A0) dla $(p o (q \land \neg q)) o \neg p$ i Modus Ponens dostajemy

$$S_n \vdash \neg((\exists x) \varphi_n(x) \rightarrow \varphi_n(c_{f(n)}))$$

korzystając jeszcze raz z (A0) ($\neg(p \to q) \to (p \land \neg q)$) oraz MP mamy

$$S_n \vdash (\exists x) \varphi_n(x) \land \neg \varphi_n(c_{f(n)})$$

z czego wnioskujemy, że

$$S_n \vdash (\exists x) \varphi_n(x)$$

$$S_n \vdash \neg \varphi_n(c_{f(n)})$$

Wybieraliśmy funkcję f tak, żeby symbol $c_{f(n)}$ nie występował w zdaniach S_n , więc możemy go zamienić na dowolny inny, np y, a następnie skorzystać z \forall -reguły by dostać

$$S_n \vdash \neg \varphi_n(y) \implies S_n \vdash (\forall y) \neg \varphi_n(y).$$

Dzięki (A2) i faktowi, że $c_{f(n)}$ nie występowało nigdzie indziej w φ_n (w tym nie było nigdy wiązane przez kwantyfikatory), możemy zamienić

$$S_n \vdash (\forall y) \neg \varphi_n(y) \rightarrow \neg \varphi_n(y/x).$$

Korzystając z MP mamy

$$S_n \vdash \neg \varphi_n(x)$$
,

a z ∀-reguły:

$$S_n \vdash (\forall x) \neg \varphi_n(x)$$

co pokazuje, że S_n jest sprzeczne, bo $S_n \vdash (\exists x) \varphi_n(x)$.

Twierdzenie Lidenbauma (???) jeśli mamy niesprzeczny zbiór formuł/zdań to możemy go rozszerzyć do maksymalnego niesprzecznego zbioru formuł/zdań, który jest zupełny i niesprzeczny zbiór formuł/zdań

Korzystamy, żeby dostać $S' \supseteq S_{\omega}$, który jest zupełny i niesprzecznym zbiorem zdań w L'

S' opisuje strukturę modelu na $\{c_n : n < \omega\}$

mamy relację równoważności na zbiorze $C = \{c_n : n < \omega\}: c_n \sim c_m \iff S' \vdash c_n = c_m$

• symetria: aksjomat równości

Niech $\mathfrak{M} = \{c_n/\sim : n \in \omega\} = C/\sim L'$ - struktura na M

1.
$$P_i^{\mathfrak{M}}(c_{i_1}/\sim,...,c_{i_n}/\sim) \iff S' \vdash P_i(c_{i_1},...,c_{i_n})$$

2.
$$f_i^{\mathfrak{M}}(c_{i_1}/\sim,...,c_{i_k}/\sim) = c_{i_n}/\sim \iff S' \vdash f_i(c_{i_1},...,c_{i_k}) = c_{i_n}$$

TUTAJ MAM DOŚĆ NEWELA

Aksjomat Henkina mówi, że jeśli $\mathfrak{M}\models (\exists\ x)\ \varphi(x)$ to istnieje $c\in\mathfrak{M}$ takie, że $\mathfrak{M}\models (\exists\ x)\ \varphi(x)\to \varphi(c)$.

Weronika Jakimowicz Logika R

Ustalmy język L, niech M i N będą L-strukturami.

Definicja 1.26

- 1. M i N są równoważne, $M \equiv N$, gdy dla każdego zdania φ $M \models \varphi \iff N \models \varphi$, co jest równoważne $\mathsf{Th}(M) = \mathsf{Th}(N)$
- 2. $M \subseteq N$ jest podstrukturą (podmodelem) modelu N, gdy $|M| \subseteq |N|$ oraz
 - dla każdego indeksu $i \underline{f}_i^M = \underline{f}_i^N|_{M_i}$ czyli interpretacja symbolu \underline{f}_i w M jest interpretacją \underline{f}_i w N ograniczoną do M
 - analogicznie dla relacji i stałych
- 3. $g: M \xrightarrow{\cong} N$ jest izomorfizmem struktur, gdy $g: |M| \to |N|$ jest bijekcją oraz
 - dla wszystkich $\overline{a} \subseteq M$ zachodzi $M \models P_i(\overline{a}) \iff N \models P_i(g(\overline{a}))$
 - dla $\overline{a} \subseteq M$ i $b \in M$ zachodzi $M \models f_i(\overline{a}) = b \iff N \models f_i(\overline{a}) = b$
 - $M \models c_i = b \iff N \models c_i = g(b)$
- 4. $M \cong N$ są izomorficzne gdy istnieje między nimi izomorfizm
- 5. $M \prec N$ jest elementarną podstrukturą, gdy $M \subseteq N$ i dla każdej formuły $\varphi(\overline{x}) \in F_i$ i każdej krotki \overline{a} mamy $M \models \varphi(\overline{a}) \iff N \models \varphi(\overline{a})$
- 6. $f: \stackrel{\equiv}{\longrightarrow} N \text{ gdy } f: M \stackrel{\cong}{\longrightarrow} N \text{ i } f(M) \prec N$

Twierdzenie 1.27: Test Tarskiego-Vaughta

Załóżmy, że $A\subseteq M$. Wtedy A jest uniwersum elementarnej podstruktury M wtedy i tylko wtedy gdy

• dla każdych $\varphi(x, \overline{y}) \in F_L$ oraz $\overline{a} \subseteq A$ jeśli $M \models (\exists x) \varphi(x, \overline{a})$ to $M \models \varphi(b, \overline{a})$ dla pewnego $b \in A$

Dowód

⇒ jest proste i pozostawiamy jako ćwiczenie

- a) A jest uniwersum podstruktury M, tzn. dla każdego $\underline{f}_i \in L$ i $\underline{c}_j \in L$ takich, JA TUTAJ NIE MYŚLĘ
- b) N podstruktura M taka, że |N| = A

[&]quot;Istnieje zbiór, który nie jest ani równoliczby z $\mathbb N$ ani z $\mathbb R$ " jest zdaniem II rzędu, bo zależy od teorii mnogości jaka pod nim leży.

Logika R Weronika Jakimowicz

Wniosek:

Twierdzenie 1.28: Löwenheima-Skolema

- 1. (dolne) $A \subseteq M$ to istnieje $N \prec M$, $A \subseteq N$ taka, że ||N|| = |A| + |L| ($|L| := |F_L|$)
- 2. (górne) istnieją elementarne rozszerzenia $N \succ M$ dowolnej mocy (||N||)

Dowód

nie chce mi sie sluchac dowodu

paradoks Löwenheima-Skolema: nie da się wyrazić nierpzeliczalności w logice I rzędu definicja gier