1. Compare Type I and Type II SS for the variable 'horse' between orders 1 and 2 and explain your findings.

Order 1: Tests of Between-Subjects Effects

Dependent Variable: mpg

Source	Type I Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	5560.036 ^a	5	1112.007	189.194	.000
Intercept	78269.461	1	78269.461	13316.591	.000
horse	4383.197	1	4383.197	745.747	.000
accel	171.630	1	171.630	29.201	.000
displace	782.264	1	782.264	133.093	.000
cylinder	30.555	1	30.555	5.198	.024
weight	192.391	1	192.391	32.733	.000
Error	1140.252	194	5.878		
Total	84969.750	200			
Corrected Total	6700.289	199			

a. R Squared = .830 (Adjusted R Squared = .825)

Order 1: Tests of Between-Subjects Effects

Dependent Variable: mpg

Source	Type II Sum of Squares	df	Mean Square	F	Sig.
	Oquares				
Corrected Model	5560.036a	5	1112.007	189.194	.000
Intercept	1509.207	1	1509.207	256.773	.000
horse	4.884	1	4.884	.831	.363
accel	8.459	1	8.459	1.439	.232
displace	23.531	1	23.531	4.004	.047
cylinder	5.098	1	5.098	.867	.353
weight	192.391	1	192.391	32.733	.000
Error	1140.252	194	5.878		
Total	84969.750	200			
Corrected Total	6700.289	199			

a. R Squared = .830 (Adjusted R Squared = .825

Order 2: Tests of Between-Subjects Effects

Dependent Variable: mpg

MGS 9950: Homework 3

Source	Type I Sum of Squares	df	Mean Square	F	Sig.
	Squares				
Corrected Model	5560.036a	5	1112.007	189.194	.000
Intercept	78269.461	1	78269.461	13316.591	.000
weight	5446.173	1	5446.173	926.600	.000
cylinder	72.433	1	72.433	12.324	.001
displace	32.719	1	32.719	5.567	.019
accel	3.829	1	3.829	.651	.421
horse	4.884	1	4.884	.831	.363
Error	1140.252	194	5.878		
Total	84969.750	200			
Corrected Total	6700.289	199			

a. R Squared = .830 (Adjusted R Squared = .825)

Order 2: Tests of Between-Subjects Effects

Dependent Variable: mpg

Source	Type II Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	5560.036 ^a	5	1112.007	189.194	.000
Intercept	1509.207	1	1509.207	256.773	.000
weight	192.391	1	192.391	32.733	.000
cylinder	5.098	1	5.098	.867	.353
displace	23.531	1	23.531	4.004	.047
accel	8.459	1	8.459	1.439	.232
horse	4.884	1	4.884	.831	.363
Error	1140.252	194	5.878		
Total	84969.750	200			
Corrected Total	6700.289	199			

a. R Squared = .830 (Adjusted R Squared = .825)

The SS for 'horse' is the same for order 1 Type II, order 2 Type II, and order 2 Type II (4.884). It is larger for order 1 Type I (4383.197). The Type II values are the same because they are independent of the order in which the independent variables are entered into the model. The Type I SS is larger than for the other SS values because 'horse' was entered first into the model and given the most weight.

MGS 9950: Homework 3

2. Calculate Type I and Type II semi-partial and partial R-square according to order 1. What is the mathematical relationship between semi-partial and partial R-square. Discuss and explain your findings.

Type I:

Semi Partial R-square= SSR/SST

= 5560.036/6700.289

=0.829820326

Partial R-Square = SSR/SSE

=5560.036/1140.252

= 4.87614668

Order 1: Regression ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	4383.197	1	4383.197	374.553	.000 ^b
1	Residual	2317.092	198	11.702		
	Total	6700.289	199			
	Regression	4554.827	2	2277.413	209.116	.000°
2	Residual	2145.462	197	10.891		
	Total	6700.289	199			
	Regression	5337.091	3	1779.030	255.788	.000 ^d
3	Residual	1363.198	196	6.955		
	Total	6700.289	199			
	Regression	5367.645	4	1341.911	196.356	.000e
4	Residual	1332.644	195	6.834		
	Total	6700.289	199			
	Regression	5560.036	5	1112.007	189.194	.000 ^f
5	Residual	1140.252	194	5.878		
	Total	6700.289	199			

- a. Dependent Variable: mpg
- b. Predictors: (Constant), horse
- c. Predictors: (Constant), horse, accel
- d. Predictors: (Constant), horse, accel, displace
- e. Predictors: (Constant), horse, accel, displace, cylinder
- f. Predictors: (Constant), horse, accel, displace, cylinder, weight

Mathematical relationship between partial and semi partial R-square: They differ in the base to which they relate the unique variance as a proportion: Semi-partial takes as its base the total variance of Y, whereas the partial takes as its base that proportion of Y variance not accounted for by the other sets. Inevitably, with its base smaller than (at most equal to) 1, partial will be larger than or at least equal to semi partial for any given set.

3. Conduct a hypothesis test to achieve the following goal: does the performance index (horse, accel) still contribute to explain variation of mpg after controlling the impact of physical characteristics (display, cylinder, weight)?

F(3),(194)=

Order 2: Regression ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	5446.173	1	5446.173	859.843	.000 ^b
1	Residual	1254.116	198	6.334		
	Total	6700.289	199			
	Regression	5518.605	2	2759.303	460.007	.000°
2	Residual	1181.683	197	5.998		
	Total	6700.289	199			
	Regression	5551.324	3	1850.441	315.664	.000 ^d
3	Residual	1148.965	196	5.862		
	Total	6700.289	199			
	Regression	5555.153	4	1388.788	236.490	.000e
4	Residual	1145.136	195	5.872		
	Total	6700.289	199			
	Regression	5560.036	5	1112.007	189.194	.000 ^f
5	Residual	1140.252	194	5.878		
	Total	6700.289	199			

a. Dependent Variable: mpg

b. Predictors: (Constant), weight

c. Predictors: (Constant), weight, cylinder

d. Predictors: (Constant), weight, cylinder, displace

e. Predictors: (Constant), weight, cylinder, displace, accel

f. Predictors: (Constant), weight, cylinder, displace, accel, horse

Coefficientsa

Coem	icients ^a	T		Г	r	ſ
Model		Unstandardized Coefficients		Standardized	t	Sig.
				Coefficients		
		В	Std. Error	Beta		
4	(Constant)	37.720	.637		59.208	.000
1	weight	006	.000	902	-29.323	.000
	(Constant)	38.019	.626		60.740	.000
2	weight	004	.000	673	-9.297	.000
	cylinder	824	.237	251	-3.475	.001
	(Constant)	35.787	1.130		31.682	.000
3	weight	004	.001	571	-6.838	.000
3	cylinder	251	.337	077	744	.458
	displace	014	.006	280	-2.362	.019
	(Constant)	36.902	1.784		20.680	.000
	weight	003	.001	553	-6.401	.000
4	cylinder	261	.338	080	772	.441
	displace	016	.006	315	-2.494	.013
	accel	067	.083	033	807	.420
	(Constant)	38.355	2.394		16.024	.000
	weight	003	.001	525	-5.721	.000
5	cylinder	321	.344	098	931	.353
5	displace	014	.007	271	-2.001	.047
	accel	127	.106	063	-1.200	.232
	horse	011	.012	081	912	.363

a. Dependent Variable: mpg

Hypothesis Test:

Ho: Beta 4 = Beta 5 =0

 $\mbox{Ha}:\mbox{Either Beta 4 or Beta 5 }$ is not equal to $\mbox{0}$

MGS 9950: Homework 3

From the table, both the p value for performance index is significant (checking the p-value for the F-test)

This implies that we reject Ho and Accept Ha. This implies that controlling for the impact of physical characteristics, the performance index still contributes to explain the variation of mpg.