Mesure de la température dans un puits géothermique

1 Étude du capteur de température : Sonde au platine:

1.1 unité du coefficient a :

Dans la relation $R_0 = R_s$ (1 + a.0) la parenthèse est sans unité. L'unité de a doit être l'inverse de celle de θ soit C^{-1}

1.2 pour avoir $R_0 = R_s$ il faut que $a.\theta = 0 \Rightarrow \theta = 0 \%$ (a n'est pas nul)

1.3

	Profondeur du forage (en m)	P ₁ = 1 000 m	P ₂ = 2 000 m	P ₃ = 2 500 m
Question 1-3	Température (en ℃)	$\theta_1 = 50$	θ ₂ = 90	θ ₃ 110
Question 1-3	R _s (en Ω)	R _s = 119	$R_s = \frac{135}{}$	$R_s = 142$

2 Étude de la conversion température/tension

2.1 Étude du générateur de courant constant

2-1-1 expression de i_2 : loi du nœud : $i_2 = i_s - i_1$ (relation 1)

2-1-2 comme les composants sont supposés parfaits (impédance d'entrée infinie) il vient $\Rightarrow \vec{i} = \vec{i} = 0$

Cela conduit à $i_1' = i_1$ et $i_3' = i_3$ (loi des nœuds)

2-1-3 fonctionnement linéaire \Rightarrow $u_d = 0$

Loi des mailles :

$$E_1 - v'_1 - u_d + v'_3 = 0$$
 \Rightarrow $E_1 - 2.R.i'_1 - 0 + 2.R.i'_3 = 0 \Rightarrow $E_1 - 2.R.i_1 - 0 + 2.R.i_3 = 0$$

Expression de i_3 : $i_3 = -E_1/2R + i_1$ (relation 2)

2-1-4 loi de la maille :
$$-v_1 + v_2 + v_3 = 0$$
 \Rightarrow - R.i₁ + R.i₂ + 2.R i₃ = 0 \Rightarrow i₂ = i₁ -2.i₃

Avec les relations 1 et 2 il vient : $i_s - i_1 = i_1 + 2(E_1/2.R) - 2.i_1$ $\Rightarrow i_s = E_1/R = \frac{k.E_1}{l} \text{ avec } k = 1/R$

2.2 Étude du montage complet

2-2-1 : la valeur de i_s ne dépend pas de la charge R_s , elle fixée par la valeur de E et R, on a donc bien une source de courant de valeur ici égale à i_s = 10 mA

La résistance R doit être : $R = E_1/i_s = 10/0,01 = \frac{1000 \Omega}{1000 \Omega} = 1 k\Omega$

2-2-2: loi d'ohm : $\frac{u_{\text{sonde}} = R_{\text{s.is}}}{u_{\text{sonde}}}$ (pas de courant entrant dans AO2)

2-2-3: e^+ , = $e^- \Rightarrow u_{sonde} = u_{10}$ nous trouvons ici un suiveur de tension

2-2-4:

Question 2-2-4	Tension u ₁₀ (en volts)	u ₁₀ = 1,19	u ₁₀ = 1,35	u ₁₀ = 1,42
----------------	------------------------------------	------------------------	------------------------	------------------------

2-2-5: $u_{1\theta} = R_s.i_s = R_o.i_s(1 + a.\theta) = U_o(1 + a.\theta)$ avec $U_o = R_o.i_s$

2-2-6: calcul de $U_0 = 100.0,01 = 1 \text{ V}$

3 Étude du conditionneur

3.1 Étude du montage soustracteur

3-1-1: diviseur de tension $\Rightarrow e^{+}_{3} = u_{10} \cdot (R_{1}/2R_{1}) = \frac{u_{10}/2}{2}$

3-1-2 : théorème de superposition et diviseur de tension

 $\Rightarrow e^{-3} = E_2(R_2/2R_2) + u_{2\theta}(R_2/2R_2) = \frac{(E_2 + u_{2\theta})/2}{(E_2 + u_{2\theta})/2}$

3-1-3 : composant parfait en régime linéaire ⇒ $e^{+}_{3} = e^{-}_{3}$

3-1-4: des relations précédentes il vient : $u_{1\theta}/2 = (E_2 + u_{2\theta})/2 \Rightarrow u_{2\theta} = u_{1\theta} - E_2$

3-1-5:

Question 3-1-5	Tension u ₂₀ (en volts)	u ₂₀ = 0,19	$u_{2\theta} = 0,35$	u _{2θ} = 0,42
----------------	---------------------------------------	------------------------	----------------------	------------------------

3.2 Étude de l'amplificateur en tension

3-2-1: régime linéaire en rouge

3-2-2:
$$u_{3\theta} = k u_{2\theta} = 15/1,5 = 10.u_{2\theta}$$

3-2-3: comme
$$u_{2\theta} = u_{1\theta} - 1 = (1 + a.\theta) - 1 = a.\theta = 3,86.10^{-3}.\theta$$

$$\Rightarrow u_{3\theta} = 10.u_{2\theta} = \frac{3,86.10^{-2}.\theta}{1.00}$$

3-2-4:

Question 3-2-4	Tension u _{3θ} (en volts)	u _{3θ} = 1,93	u ₃₀ = 3,47	u _{3θ} = 4,25
	(en voits)			

4. Etude du modulateur

4.1 Allure de u_{4θ}

4-1-1 et 4-1-2:

Pour une température de 50 ℃

Pour une température de 110 ℃

4.2 Allure de u₅₀

4-2-1 : 1^{er} cas si $u_{4\theta} = +V_{cc}$ la diode zéner conduit en inverse et la tension à ses bornes est de +5V (tension zéner)

4-2-2 : si $u_{4\theta}$ = -V_{cc} la diode zéner conduit en direct et la tension à ses bornes est nulle (U_{seuil D1} = 0 V)

4-2-3: voir chronogramme au dessus

4-2-4 : la température θ fait varier le rapport cyclique du signal rectangulaire de u_{5θ}

5. Étude de la transmission optique

5-1 L'avantage majeur d'une transmission optique est <u>l'isolement galvanique</u> des deux circuits électriques (partie émetteur et partie récepteur) en même temps que la non pollution par des signaux électriques parasites.

5-2 limitation du courant dans D₂

$$V_{cc} = R_4 \cdot i_c + u_{D2} + V_{ce} \Rightarrow R_4 = (V_{cc} - V_{ce} - u_{D2})/i_c = (15 - 0 - 2)/0,02 = 650 \Omega$$

5-3: l'AO5 réalise avec les deux résistances R_6 et R_7 un montage amplificateur non inverseur.

5-4 synthèse : coefficient d'amplification $R_5 \cdot (R_6 + R_7)/R_6 = 10(1+1)/1 = 20$

	U _{5e}	D ₂ (allumée ou éteinte)	Φ (0 ou Φ _{max})	i _{récep} (valeur)	u ₁ (valeur)
Question 5-4	0 V	éteinte	0	0 mA	0 V
Question 5-4	5 V	allumée	Фтах	250 µA	R ₅ i _{recep} = 20.0,25= 5 V

6. Étude du démodulateur

6.1 Analyse harmonique du signal u₁

6-1-1: la valeur constante de 1,25 V représente la valeur moyenne de la tension u_{1.}

6-1-2 : le fondamental a une fréquence que l'on peut déduire du chronogramme de $u_1(t)$. La période lue est de 0,1 ms \Rightarrow F = 1/T = 10 000 Hz = $\frac{10 \text{ kHz}}{10 \text{ kHz}}$

6-1-3:

Représentation du spectre de la tension u₁

6.2. Étude du filtre

6-2-1: expression de la fonction de transfert complexe

- a)- admittance complexe d'un condensateur : $\underline{Y}_c = jC\omega$ admittance complexe d'une résistance : $\underline{Y}_R = 1/R$
- b)- admittance complexe $\underline{Y}_1 = \underline{Y}_{c1} + \underline{Y}_{R9} = \underline{j}C_1\omega + 1/R_9$
- c)- l'AO6 fonctionne en régime linéaire (réaction négative présente) \Rightarrow $e^- = e^+ = 0$

$$\underline{T} = \underline{U}_2/\underline{U}_1 = -(\underline{Z}_1/R_8) = -1/(\underline{Y}_1.R_8) = -1/R_8(jC_1\omega + 1/R_9) = -1/((R_8/R_9)(jR_9C_1\omega + 1))$$

$$\underline{T} = -(R_9/R_8)/(1 + jR_9C_1\omega)$$

d)- en régime continu (ω=0) $\underline{T} = -R_9/R_8 \Rightarrow R_9 = -R_8.\underline{T} = 10.4 = 40 \text{ k}\Omega$

6.2.2 Module de la fonction de transfert :

- a)- expression du module : $T = (R_9/R_8)/\sqrt{(1 + (R_9C_1\omega)^2)}$
- b)- aux très basses fréquences $T \rightarrow R_9/R_8$ aux fréquences élevées $T \rightarrow 0$

au vu des résultats précédents le filtre est de type passe-bas

6.2.3 : Courbe de gain

$$G_{max} = 20.log4 = 12 dB$$

La valeur de la fréquence de coupure à -3dB s'obtient pour G = 12 - 3 = 9 dB.

La lecture donne une fréquence $f_c = 0.10 \text{ Hz}$

b)-
$$f_c = 1/2\pi R_9 C_1 \Rightarrow C_1 = 1/f_c 2\pi R_9 = 1/(0, 1.2.\pi.40000) = 40 \mu F$$

c)- pour f = 1 kHz on a G =- 68 dB \Rightarrow A = $10^{-68/20}$ = $\frac{4.10^{-4}}{10^{-4}}$ amplification pratiquement nulle

- d)- puisque $u_2 = -4 u_1 = -5 \text{ V}$ en régime continu
- e)- pour une fréquence de 10 kHz l'amplitude de u_2 vaut : $2.25.4.10^{-5} = 9.10^{-5} \text{ V} \approx 0 \text{ V}$

6.2.4 Synthèse de la partie « étude du filtre »

Seule la valeur moyenne du signal est transmise par le filtre passe bas

 $u_2 = -4.1,25 = 5 \text{ V}$, le fondamental et différents harmoniques sont arrêtés. La tension de sortie est continue et égale à - 5V.

7. Étude du convertisseur analogique/numérique

7.1 Étude d'un échantillonneur bloqueur

- 7.1.1 : à t=0 s nous avons $u_3 = u_2 = e + = e^{-1}$ (régime linéaire)
- 7.1.2 : après t₁ la tension u₃ n'évolue plus puisque le courant i est nul
- 7.1.3 : le montage garde en mémoire la valeur de la valeur qu'avait u₂ avant l'ouverture de K. Cette tension constante va pouvoir être convertie.

7.2 :Étude du convertisseur analogique numérique

- 7.2.1 plus le nombre de bits est élevé meilleure la résolution de la conversion
- 7.2.2. le nombre de combinaisons est $2^8 = \frac{256}{1}$
- 7.2.3 : le nombre binaire max est 11111111 (les 8 bits à 1)

En base 10 on a $[N_{10max}] = \frac{255}{9}$ puisque le premier est 0

- 7.2.4 : valeur du quantum q lu sur la caractéristique de transfert q = 77 mV
- □ la tension minimale de u₃ est de 15 V (alimentation)
- □ $\theta_{\text{max}} = -15/(-7,7.10^{-2}) = \frac{194 \text{ }^{\circ}\text{C}}{1}$
- □ la température maximale à mesurer est de 110 °C à 2500 m. Le dispositif répond au besoin.

7.2.5 : Synthèse CAN

Question 7-2-5	[N] ₁₀ en base décimale	[N] ₁₀ = 50	[N] ₁₀ = 90	[N] ₁₀ = 110
----------------	------------------------------------	------------------------	------------------------	-------------------------

$$[N_{10}]$$
= .u₃ /q= u₂ /q= 7,7.10⁻².0/0,077 = θ