Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Представление и обработка информации в интеллектуальных системах» на тему «Задача поиска графа замыкания неориентированного графа »

Выполнил: Витковская С. И.

Студент группы 121702

Проверил: Загорский А. Г.

Минск 2022

Содержание

Постановка задачи Цель		
	1.2. Γρаф	3
	1.3. Неориентированный граф	
	1.4. Ребро	
	1.5. Замыкание	
	1.6. Транзитивные вершины	5
2.	Алгоритм	5
3.	Тестовые примеры	6
	3.1. Тест 1	6
	3.2. Тест 2	S
	3.3. Тест 3	10
	3.4. Тест 4	11
	3.5. Tect 5	12
Ві	ывод	12

Постановка задачи

Задача поиска графа замыкания неориентированного графа.

Цель

Получить навыки формализации и обработки информации с использованием семантических сетей.

1. Список понятий

1.1. Графовая структура

Это такая одноуровневая реляционная структура, объекты которой могут играть роль либо вершины, либо связки:

Рисунок 1.1. Графовая структура

1.2. Граф

Математическая абстракция реальной системы объектов любой природы, обладающих парными связями.

Рисунок 1.2. Граф

1.3. Неориентированный граф

Граф, ни одному ребру которого не присвоено направление.

Рисунок 1.3. Неориентированный граф

1.4. Ребро

Линия, соединяющая пару смежных вершин графа.

Рисунок 1.4. Ребро

1.5. Замыкание

Операция удаления пары транзитивных вершин и замена их новой.

Рисунок 1.5. Замыкание

1.6. Транзитивные вершины

Вершины называются транзитивными, если из наличия ребер из x в y и из y в z, следует наличие ребра из x в z.

Рисунок 1.6. Транзитивные вершины

2. Алгоритм

Для решения задачи необходимы следующие переменные:

- 1.Множество вершин графа vertex;
- 2.Первая вершина і;
- 3.Вторая вершина j;
- 4.Множество _i_vertex_i, хранящее в себе вершины, смежные с вершиной _i и саму вершину i;
- 5.Множество _j_vertex_j, хранящее в себе вершины, смежные с вершиной _j и саму вершину _j;
- 6. Множество vertex і, хранящее в себе вершины, смежные с вершиной і;

Описание алгоритма:

- 1. Заносим все вершины задиного графа во множество _vertex;
 - 1.1 Если мощность множества $0 \le |$ vertex $| \le 2$, переходим к п.10;
- 2. Присваиваем переменной і значение первого элемента множеста vertex;
- 3. Заносим все вершины, смежные с вершиной і, во множество vertex і;
- 4. Если мощность $0 \le |_i_vertex| \le 1,$ переходим к п.6;
 - 4.1 Присваиваем переменной ј значение первого элемента множества vertex i;
- 5. Если вершина _j содержится во множестве _vertex, переходим к п.8;
 - 5.1 Если ј является последним элементом vertex i, переходим к п.6;
 - 5.2 Присваиваем переменной _j значение следующего элемента множества vertex_i, переходим к п.5;
- 6. Если _i является последним элементом множества _vertex, переходим к пункту 10;
 - 6.1 Удаляем все элементы множества vertex i;
 - 6.2 Присваиваем переменной і значение следующего элемента множества vertex,

переходим к п.3;

- 7. Заносим все вершины, смежные с вершиной _j, во множество _j_vertex_j, добавляем в него значение _j;
- 8. Заносим все вершины, смежные с вершиной _i, во множество _i_vertex_i, добавляем в него значение _i;
- 9. Если множества $_{\rm j}$ _vertex $_{\rm j}$ и $_{\rm i}$ _vertex $_{\rm i}$ не равны переходим к п.5.1;
 - 9.1 Удаляем значение _j из множества _vertex_i;
 - 9.2 Удаляем вершины і и ј из графа;
 - 9.3 Создаем новую вершину, смежную со всеми вершинами из множества _vertex_i, переходим к п.6;
- 10. Возвращение результата. Конец алгоритма.

3. Тестовые примеры

3.1. Tect 1

Вход: Необходимо найти граф замыкания неориентированного графа.

Рисунок 3.1. Вход теста 1

Шаг 1: Создаем переменную vertex и передаем ей множество значений вершин.

Рисунок 3.2. Шаг 1

Шаг 2: Т.к мощность множества $|_\text{vertex}| \ge 2$, создаем переменную $_\text{i}$ и передаем ей значение вершины 1, создаем переменную $_\text{vertex}_\text{i}$, передаем $_\text{vertex}_\text{i}$ множество значений вершин, смежных с вершиной 1.

Рисунок 3.3. Шаг 2

Шаг 3: Т.к мощность |_i_vertex| > 1, создаем переменную _j, передаем _j значение вершины 2.

Рисунок 3.4. Шаг 3

Шаг 4: Т.к вершина 2 содержится во множестве _vertex, создаем множество _i_vertex_i, передаем ему значения вершин, смежных с вершиной 1 и вершину 1, создаем множество _j_vertex_j, передаем ему значения вершин, смежных с вершиной 2 и вершину 2.

Рисунок 3.5. Шаг 4

Шаг 5: Т.к множества _i_vertex_i и _j_vertex_j равны, удаляем вершины 1 и 2 из графа и заменяем их вершиной 1.2, удаялем значения 1 и 2 из множества _vertex.

Рисунок 3.6. Шаг 5

Шаг 6: Аналогичные операции проводим для вершин 3 и 4.

Выход: Будет представлен граф замыкания неориентированного графа:

Рисунок 3.7. Выход теста 1

3.2. Tect 2

Вход: Необходимо найти граф замыкания неориентированного графа.

Рисунок 3.8. Вход теста 2

Выход: В графе нет ни одной пары транзитивных вершин. Программа вернет изначальный граф.

Рисунок 3.9. Выход теста 2

3.3. Тест 3

Вход: Необходимо найти граф замыкания неориентированного графа.

Рисунок 3.10. Вход теста 3

Выход: Будет представлен граф замыкания неориентированного графа:

Рисунок 3.11. Выход теста 3

3.4. Tect 4

Вход: Необходимо найти граф замыкания неориентированного графа.

Рисунок 3.12. Вход теста 4

Выход: В графе нет ни одной пары транзитивных вершин. Программа вернет изначальный граф.

Рисунок 3.13. Выход теста 4

3.5. Tect 5

Вход: Необходимо найти граф замыкания неориентированного графа.

Рисунок 3.14. Вход теста 5

Выход: Будет представлен граф замыкания неориентированного графа:

Рисунок 3.15. Выход теста 5

Вывод

В ходе выполнения работы изучили понятия графа, ребра, графовой структуры, неориентированного графа, операции замыкания. Научились выполнять операцию замыкания на конкретном примере.

Список литературы

- [1] OSTIS GT. База знаний по теории графов OSTIS GT. 2011. [Электронный ресурс].- Режим доступа: http://ostisgraphstheo.sourceforge.net/index.php.- Дата доступа 15.03.2022.
- [2] Гладков Л.А, Курейчик В. В., Курейчик В. М. Дискретная математика: Теория множеств, алгоритмов, алгебры логики: учебное пособие/ Под ред. В.М. Курейчика. Таганрог: Изд-во ТТИ ЮФУ, 2009. 312 с.