3.1 A reta. Equação vetorial da reta.

$$\begin{cases} y = -x + 2, & \text{no plano}(x, y) \\ y = -x + 2, & \text{no espaço}(x, y, z) \\ z = 0 \end{cases}$$

$$(x, y, z) = (t, -t + 2, 0), t \in \mathbb{R}$$

$$\begin{cases} r: (x, y, z) = t(1, -1, 0) + (0, 2, 0), t \in \mathbb{R} \\ \vec{\sigma} = (1, -1, 0), A(0, 2, 0), P(x, y, z) \end{cases}$$

$$\begin{cases} P = t \vec{\sigma} + A \\ \vec{AP} = t \vec{\sigma} \end{cases}$$

$$\vec{\sigma} = (a, b, c), A = (x_1, y_1, z_1)$$

$$r: (x_1, y, z) = t(a, b, c) + (x_1, y_1, z_1)$$

3.1 A reta. Equação vetorial da reta.

$$\begin{cases} y = -x + 2, & \text{no plano}(x, y) \\ y = -x + 2, & \text{no espaço}(x, y, z) \\ z = 0 \\ (x, y, z) = (t, -t + 2, 0) + (R) \\ r: (x, y, z) = t(1, -1, 0) + (0, 2, 0), & t \in \mathbb{R} \\ \vec{v} = (a, b, c), & A(x_1, y_1, y_1), & P(x, y, z) \\ P = t \cdot \vec{v} + A \\ \vec{AP} = t \cdot \vec{v}, & t \in \mathbb{R} \end{cases}$$

Exemplo: Identifique qual dos pontos pertence a reta r.

$$r: (x, y, z) = t(1, 2, -1/2) + (-1, 0, 2), t \in \mathbb{R}$$
pontos $B(\frac{1}{2}, \frac{1}{4}, -1) = C(\frac{1}{4}, \frac{1}{4}).$

$$Pace t = 2$$

$$(x, y, z) = 2(1, 2, -1/2) + (-1, 0, 2) = (1, \frac{1}{4}, 1)$$

$$2\vec{v}$$

$$A$$

$$\vec{u} = (\frac{1}{2}, 1, -\frac{1}{4}), \vec{v} = (1, 2, -\frac{1}{2})$$

$$r: (x, y, z) = S(\frac{1}{2}, 1, -\frac{1}{4}) + (1, \frac{1}{4}, 1), S \in \mathbb{R}$$

3.1 A reta. Equação paramétrica da reta e exemplos.

Passando da forma vetorial para a forma paramétrica:

 $P = t\vec{v} + A$, $t \in \mathbb{R}$, $\vec{v} = (a,b,c)$, $A(x_1,y_1,y_3)$ $r: (x,y,z) = t(a,b,c) + (x_1,y_1,y_3)$

na forma paramétrica fica:

 $r: \begin{cases} x = at + x_1 \\ y = bt + y_1 \\ 3 = ct + 31 \end{cases}$

Exemplo: Dado que r é a reta que passa por A(-2,2,0) e tem vetor diretor $\vec{v}^2 = \left(-2, 1, -\frac{3}{2}\right)$, determine os pontos em que r intercepta os planos x O y, x O z, y O z, quando houver interseção.

Na forma paramétrica:

x O y, $O = -\frac{3}{2}t + O$, portanto t = O $y = -\frac{3}{2}t + O$, portanto z = O

o j

x0y, $0=t+2 \Rightarrow t=-2$, (x,y,z)=(2,0,3), B(2,0,3)y0z, $0=-2t-2 \Rightarrow t=-1$, $C(0,1,\frac{3}{2})$ Exemplo, continuação: Nesta mesma retar, determine o ponto da forma D(5, y, z). Ou seja, o ponto em que a abscissa vale 5.

$$7 = -2t - 2, \quad 5 = -2 \cdot t - 2$$

$$7 = 4 + 2 \quad 7 = -2t$$

$$3 = -\frac{3}{2}t + 0 \quad t = -\frac{7}{2}$$

$$7 = -\frac{7}{2} + 2 = -\frac{3}{2} = -\frac{1}{5}$$

$$7 = -\frac{3}{2} \cdot \left(-\frac{7}{2}\right) = \frac{24}{4} = \frac{5}{2}$$

O ponto D é dudo por D(5, -1,5,5,25).

A equação simétrica da reta tem a forma
$$\frac{3c - x_s}{a} = \frac{3 - 3!}{5!} = \frac{3}{3!} = \frac{3}{4!} = \frac{3}{4!} = \frac{3}{4!} = \frac{3}{4!}$$
mas para usá-la é necessário que $a \neq 0$, $b \neq 0$ e $c \neq 0$.

A equação paramétrica correspondente é

$$r: \begin{cases} \chi = a + x_1 \\ y = b + y_1 \quad com + \in \mathbb{R} \end{cases}$$

Como passar da forma simétrica para a paramétrica

$$\frac{x-x_1}{a} = \frac{y-y_1}{5} = \frac{3-31}{6} = t \quad t \in \mathbb{R}$$

$$\frac{x-x_1}{a} = t$$

$$\frac{y-y_1}{5} = t$$

$$\frac{z-x_1}{3} = t$$

Qual a interpretação geométrica da posição da reta quando a =0 ou b=0 ou c=0?

Exemple: Suponha $\alpha = 0$ $b \neq 0 \quad e \quad \forall_{1} : \begin{cases} \chi = & \chi_{1} \\ y = b + y_{1} \\ \zeta \neq 0 \end{cases}$ $c \neq 0.$

Esta reta rié paralela ao plano y 0z.

Suponha $\alpha = 0$ $b = 0 e \quad Y_2: \begin{cases} x = x_1 \\ y = y_1 \\ -c + 31 \end{cases}$ $c \neq 0.$

Esta reta r2 é paralela ao eixo 0z.

Em rusumo:

yOz a=0, b \(\) \(\) \(\) plano então 20 g 20 g b =0, a +0, c +0 plano a reta ē c =0, a \$0, b \$0 plano paralela ao a=0, b=0, c +0 eixo 0 3 a=0, c=0, $b\neq 0$ eixo b=0, c=0, a =0 Lixo

Resumo das diferentes formas de escrever a equação da reta.

Vetor diretor = (a, b, c) e ponto A(x1, y1, 31)

Forma vetorial: $P = t\vec{v} + A + \epsilon R$ $(x,y,z) = t(a,b,c) + (x_1,y_1,z_1)$

Simitrica:

$$\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{3-31}{c}$$

Paramétrica: $\begin{cases} x = at + x, \\ y = bt + y, \\ y = ct + 3. \end{cases}$

Former eduzida, exemplo

$$\begin{cases} y = -x - 1 \\ y = 6x - 11, & x \in \mathbb{R} \end{cases}$$

pade ser colocada na forma paramétrica:

$$r: \begin{cases} \gamma c = t \\ \gamma = -t-1 \\ \xi = 6t-11 \end{cases}$$

Forma vetorial:
$$P = t \overrightarrow{v} + A + \varepsilon R$$

 $(x,y,z) = t (a,b,c) + (x_1,y_1,z_1)$

Simitrica:

$$\frac{x-x_1}{\alpha} = \frac{y-y_1}{b} = \frac{3-3}{2}$$

Paramétrica:
$$\begin{cases} x = at + x, \\ y = bt + y, \\ 3 = ct + 31 \end{cases}$$

Exemplo de reta definida por dois pontos:

Escreva a equação vetorial da reta que possa pelos pontos A(2,1,0) e B(-1,0,1).

Escollor
$$\vec{v} = B - A = (-3, -1, 1)$$

(r) A e a equação retorial fica
 $r: (x,y_1z) = t(-3,-1,1) + (2,1,0), t \in \mathbb{R}$

Exemplo de reta paralela a outra reta:

Encontre a equação paramétrica da reta $\frac{1}{2}$ que passa por A(-2,2,-2) e é paralela a reta $\frac{1}{2}$ dada por $\frac{1}{2}$ $\frac{1}{2}$

A reta
$$r_2$$
 é dada por
$$x = -3s - 2$$

$$r_2: \begin{cases} y = ms + 2, s \in \mathbb{R} \\ 3 = ns - 2 \end{cases}$$

** Posição relativa entre duas retas no espaço **

Duas retas no espaço podem ser: coincidentes, concorrentes, paralelas ou reversas.

- (1) Retas coincidentes: na verdade são a mesma reta.
- (2) Retas concorrentes: são aquelas que se interceptam em um único ponto.
- (3) Retas paralelas: são retas que não se interceptam e pertencem a um mesmo plano.
- (4) Retas reversas: são retas que não se interceptam e não estão contidas num mesmo plano.

Como descobrir a posição relativa usando as formas paramétricas das retas.

$$r_1: \begin{cases} x = a_1 + x_1 \\ y = b_1 + y_1, \\ z = c_1 + z_1 \end{cases}$$
 $t \in \mathbb{R}$ $r_2: \begin{cases} x = a_2 + x_2 \\ y = b_2 + y_2, \\ z = c_2 + z_2 \end{cases}$

I gualantes para descebrir se há pontos em comum:

$$\begin{cases} a_1 t + x_1 = a_2 s + x_2 \\ b_1 t + y_1 = b_2 s + y_2 \\ c_1 t + z_1 = c_2 s + z_2 \end{cases} \begin{cases} a_1 t - a_2 s = z(z - x_1) \\ b_1 t - b_2 s = y_2 - y_1 \\ c_1 t - c_2 s = z_2 - z_1 \end{cases}$$

tem a seguinte matriz compliada:

Possíveis resultados:

- (1) Se este sistema for possível e determinado, então as retas são concorrentes.
- (2) Se este sistema for possível e indeterminado, então as retas são coincidentes.
- (3) Se este sistema foi impossível então as retas são reversas ou paralelas.

O paralelismo entre as retas pode ser determinado examinando se os vetores diretores são paralelos.

Exemplo: Qual a posição relativa entre estas retas?

$$\begin{cases} x = t - 1 \\ y = t \\ 3 = 0 \end{cases}, t \in \mathbb{R} \quad \begin{cases} x = 2s \\ y = 2s - 2, s \in \mathbb{R} \\ 3 = 1 \end{cases}$$

$$\begin{cases}
3x = 3 - 4 \\
y = 63, 3 \in \mathbb{R}
\end{cases}
\begin{cases}
x = -3\mu + 2 \\
y = -3\mu, \mu \in \mathbb{R}
\end{cases}$$

$$(4,6,0) \begin{cases}
3 = 0 \\
3 = 1
\end{cases}$$

r₁ e r₂ são paralelas.

r₁ e r₃ são concorrentes

r2 e r3 são reversas

V2 e 14 são coincidentes: ponto em comum (2,0,1)

$$B=(0,-2,1)$$
 $C=(2,0,1)$ $D=(-1,0,0)$ $E=(0,1,0)$ $F=(0,6,0)$

Ângulo entre duas retas (concorrentes, reversas, paralelas).

O, um ângulo agudo, é o ângulo entre as retas.

Forma de cálculo de
$$\theta$$
: $\cos \theta = \frac{|\vec{v} \cdot \vec{w}|}{|\vec{v}| \cdot |\vec{w}|}$

$$\begin{cases}
|\vec{v} \cdot \vec{w}| = |\vec{v}| \cdot |\vec{w}| \cdot |\cos \alpha| \cdot \cos \theta \\
\cos \alpha < 0 \text{ Ar. } 90 < \alpha < 180.
\end{cases}$$

$$-\cos \alpha = \cos (180 - \alpha) = \cos \theta \text{ pois } \theta = 180 - \alpha.$$

0 < 0 < 90

Exemplo: Calcule o ângulo entre as retas que passam por CB e por FD (figura) sabendo que :

$$B=(0,-2,1)$$
 $C=(2,0,1)$ $D=(-1,0,0)$ $F=(0,6,0)$

$$B=(0,-2,1)$$
 $C=(2,0,1)$ $D=(-1,0,0)$ $F=(0,6,0)$

$$\vec{v} = C - B = (2, 2, 0) \qquad \vec{x} = D - F = (-1, -6, 0)$$

$$\vec{v} \cdot \vec{x} = -2 - 12 = -14, \quad |\vec{v} \cdot \vec{x}| = 14$$

$$|\vec{v}| = \sqrt{4 + 4 + 0} = \sqrt{8}, \quad |\vec{x}| = \sqrt{1 + 36 + 0} = \sqrt{37}$$

$$CDG = \frac{14}{\sqrt{8} \cdot \sqrt{37}} = 0,83173$$

$$\theta = \arccos(0,83173) = 0,62024 \text{ rad}$$

$$0,62024 \text{ rad} = 0,62024. \underline{180} = 35,53 \text{ grows}$$

Diferença entre os termos "retas ortogonais" e "retas perpendiculares".

- (1) Retas ortogonais são quaisquer duas retas com ângulo de 90 graus entre elas. Podem ser concorrentes ou reversas.
- (2) Retas perpendiculares: são as retas ortogonais que se cruzam num único ponto, ou seja, são concorrentes.

Quando em dúvida se as retos se interceptam, ou não, dizemos "retas ortogonais".

Construindo uma reta ortogonal à outras duas retas

Um bom exercício é, dado duas retas reversas, encontrar a equação paramétrica de uma terceira reta simultaneamente perpendicular às duas primeiras.

Lição 3.2 - O plano: equação geral do plano

Dado um ponto A(21, y1, 31) e um vetor não nula n= (a,b,c), o conjunto de todos os pontos P(x,y,z) tais que AP è ortogonal a ? forma um plano.

$$\overrightarrow{AP} \cdot \overrightarrow{n} = 0$$

é a equação geral destre plano. Em termos das coordenadas temos $(x-x_1,y-y_1)$ =0

ou seja

$$(x-x_1)a + (y-y_1)b + (z-z_1)c = 0$$
 $ax + by + cz - (ax_1 + by_1 + cz_1) = 0$
denotando $d=-(ax_1 + by_1 + cz_1)$ temos
 $ax + by + cz + d = 0$.

$$-2x + \sqrt{3}y - 99z - 1 = 0$$

Qual é o vetor normal a este plano? Em que ponto este plano corta o eixo x?

$$\vec{n} = (-2, \sqrt{3}, -99)$$
 $(-\frac{1}{2}, 0, 0)$
 $(0, \frac{1}{\sqrt{3}}, 0)$
 $(0, 0, -\frac{1}{99})$

Exemplo: Obter a equação geral do plano que passa por A(1,-2,4) e tem vetor normal $\vec{h} = (-2,3,-1)$.

$$-2x + 3y - 3y + d = 0$$

$$-2 \cdot 1 + 3 \cdot (-2) - 4 + d = 0 \implies d = 12$$

$$-2 \cdot 1 + 3y - 3 + 12 = 0$$

Exemplo:

Determinar a equação geral do plano que é perpendicular à reta

$$-2x + 0.y + 73 = -2.1 + 0.(-5) + 7(-3) = -23$$

$$-2x + 73 + 23 = 0$$

Equação vetorial e paramétrica do plano

Exemplo: Encontre a equação paramétrica e a equação geral do plano que passa pelos pontos: A(0,0,1), B(-2,-3/2,0) e C(2,-9/2,0).

$$\vec{x} = (-2, -\frac{3}{2}, -1)$$

$$\vec{v} = (2, -\frac{9}{2}, -1)$$

$$A = (0, 0, 1)$$

$$\vec{x} = (-2, -\frac{3}{3}, -1) \qquad A = (0, 0, 1)$$

$$\vec{v} = (2, -\frac{9}{2}, -1)$$

$$\vec{x} = \vec{x} \times \vec{v} = \begin{vmatrix} \vec{x} & \vec{y} & \vec{x} \\ -2 & -\frac{3}{2} & -1 \\ 2 & -\frac{9}{2} & -1 \end{vmatrix} = (\frac{3}{2} - \frac{9}{2}, -2 - 2, 9 + 3)$$

$$\vec{x} = (-3, -4, 12)$$

Exemplo: Determinar as equações paramétricas do plano que contém as retas

$$Y_2: \begin{cases} y = -2t \\ y = -4t \end{cases}$$
, $t \in \mathbb{R}$, $Y_2: \begin{cases} y = -2s + 2, s \in \mathbb{R} \\ 3 = 2t + 1 \end{cases}$ (Concorrentes on parallals?) $(-2, -4, 2)$ $(-1, -2, 1)$

$$\overrightarrow{\overline{v}}$$

$$\vec{v} = (-1, -2, 1)$$

$$\vec{v} = (-1, -2, 1)$$

$$(0,2,0)$$

$$\vec{v} = (-2, -4, 2)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

$$(0,0,1)$$

Ângulo entre planos:

** Dois planos são perpendiculares se, e somente se, o produto escalar entre os vetores normais é zero. $\vec{n}_1 + \vec{n}_2 = \vec{n}_1 \cdot \vec{n}_2 = 0$

Planos e retas perpendiculares e paralelos:

Exemplo: Determine se a reta é perpendicular, paralela, ou se está contida no plano

Exemplo: Determine se a reta é perpendicular, paralela, ou se está contida no pla

$$\uparrow \Rightarrow (-1, -2, 1) \quad \uparrow \Rightarrow (-1, -2, 1) \quad \downarrow \Rightarrow (-1, -2, 1)$$

 $\vec{v} \cdot \vec{n} = (-1, -2, 1) \cdot (0, 1, 2) = 0 - 2 + 2 = 0$ lego $\vec{v} \perp \vec{n}$ Verifico se (2,2,1) perterce as plano: contida en T.

Interseção de dois planos

Exemplo: Encontre a equação paramétrica da reta dada pela interseção destes dois planos:

$$\begin{cases} x - y - 3z = 1\\ 2x - 2y + 2z = -2 \end{cases}$$
Matriz ampliada:
$$\begin{bmatrix} 1 - 1 - 3 & 1\\ 2 - 2 & 2 - 2 \end{bmatrix}$$
fazendo Gauss-Jordan
$$\begin{bmatrix} 1 - 1 & 3 & 1\\ 0 & 0 & 8 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 3 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Resulta no sistema $\int x - y = 1$ e o conjunto solução é a reta x = t + 1 y = ty = 0

Segundo método:

$$\begin{cases} x - y - 3z = 1\\ 2x - 2y + 2z = -2 \end{cases}$$

Escolho, por exemplo si = 0, e resolvo

Logo o ponto (0,-1,0) està na interseção.

Veton direton:

$$\vec{v} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{1} & -\vec{1} & \vec{1} \\ 1 & -\vec{1} & 3 \end{vmatrix} = (4, 4, 0)$$

equação paramétrica
$$r: \begin{cases} x = 4t \\ y = 4t - 4, t \in \mathbb{R} \end{cases}$$

$$\begin{cases} z = 0 \\ t = 0 \end{cases}$$

responta anterion:
$$Y: \begin{cases} x = s + 1 \\ y = s \end{cases}$$
, $s \in \mathbb{R}$

Interseção de reta com plano:

$$r: \begin{cases} 3c = -2t+1 \\ y = 1 \end{cases}, t \in \mathbb{R}$$
 $\pi: x + 2y - y = 0$

Substitue (-2++1)+2.1-t=0 logo t=1 e o ponto de intersegée é (-1,1,1).

Caso a reta seja dada pela interseção de dois planos, então basta resolver o sistema

$$\begin{cases} x - y + 2z = 0 \\ 2x - y + 4z = 1 \end{cases} \pi : x + 2y - z = 0$$

Matriz ampliada
$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 2 & -1 & 4 & 1 \\ 1 & 2 & -1 & 0 \end{bmatrix}$$

O sistema tem solução única (-1,1,1).

3.3 Distâncias

Distância entre pontos:

$$A(x_1, y_1, y_1)$$

Distância entre ponto e reta:

Exemplo: Calcule a distância da reta dada até a origem.

$$V: \begin{cases} x = -3t + 2 \\ y = -2 \\ 3 = t + 1 \end{cases}, t \in \mathbb{R}$$

$$P = (0,0,0), A = (2,-2,1), \overrightarrow{AP} = (-2,2,-1), \overrightarrow{P} = (-3,0,1).$$

$$\overrightarrow{P} \times \overrightarrow{AP} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & 0 & 1 \\ -2 & 2 & -1 \end{vmatrix} = (-2,-5,-6). Comod(A,P) = \sqrt{2^2 + 5^2 + 6^2}$$

$$temp d(A,P) = \sqrt{65} = 2,54...$$

Outras formas de calcular distância de ponto a reta

π: a)c+by+cz+d=0 passa por P B é o ponto de interseçõe da reta com o plano.

Distância de ponto a plano:

Plano n' com normal n' passando por A e P

Obtendo uma fórmula para simplificar a conta:

Seign
$$\vec{n} = (a,b,c)$$
, $P(x_0,y_0,z_0)$, $A(x_1,y_1,z_1)$, temos, $d(P,\pi) = \frac{1}{|\vec{n}|^2} |\vec{n}| = \frac{1}{|\vec{n}|^2} |\vec{n}|$.

Observe que $a > 1 + b y_1 + c z_1 + d = 0$, assim, $\vec{n} = 0$.

Com
$$\vec{P}\vec{A} = \vec{O}\vec{A} - \vec{O}\vec{P} \Rightarrow \vec{P}\vec{A} \cdot \vec{n} = \vec{O}\vec{A} \cdot \vec{n} - \vec{O}\vec{P} \cdot \vec{n} = -d - (a_{2}c_{0}+b_{2}c_{0}+c_{2}c_{0})$$

logo
$$d(P, \Pi) = \frac{|a|(a+b)(a+c)(b+c)}{\sqrt{a^2+b^2+c^2}}$$

Exemplo: Calcule a disância da origem até o plano que passa pelos pontos (3,0,0), (0,2,0), (0,0,1).

Equação do plano
$$\frac{x}{3} + \frac{y}{2} + \frac{3}{4} - 1 = 0$$
 e

 $P = (0,0,0)$.

Sus bs tituin do na formula:

$$d(P, \pi) = \frac{|a \times (0 + b)y_0 + cy_0 + cy_0 + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|\frac{1}{3} \cdot 0 + \frac{1}{4} \cdot 0 + \frac{1}{3} \cdot 0 - 1|}{\sqrt{(\frac{1}{3})^2 + (\frac{1}{2})^2 + 1^2}} = \frac{1}{\sqrt{\frac{1}{5} + \frac{1}{5} + 1}} = 0,857...$$

Observe que a fórmula também é aplicável à distâncias:

- * Entre planos paralelos.
- * Entre reta e planos paralelos.

Para tanto basta pegar um ponto sobre a reta ou plano para calcular a distância.

Distância entre duas retas:

- * Se as retas forem concorrentes então a distância é zero.
- * Se as retas forem paralelas, basta calcular a distância de um ponto à outra reta.

* Se as retas forem reversas temos a seguinte fórmula:

$$d(r_1, r_2) = \frac{\left| (\overrightarrow{A_1} \overrightarrow{A_2}, \overrightarrow{v_1}, \overrightarrow{v_2}) \right|}{\left| \overrightarrow{v_1} \times \overrightarrow{v_2} \right|}$$

Vamos calcular o modulo da projeção ortogonal de ii=A1Â2 na direção de n=v,xvz

$$\begin{vmatrix} \rho roj \vec{x} & | = |(\vec{x} \cdot \vec{n}) \vec{y}| = |\vec{x} \cdot (\vec{v}_1 \times \vec{v}_2)| |\vec{y}| = |(\vec{x}) \vec{v}_1 |\vec{v}_2| = \frac{|(\vec{x}) \vec{v}_1 |\vec{v}_2|}{|\vec{y}_1 \times \vec{v}_2|} = \frac{|(\vec{x}) \vec{v}_1 |\vec{v}_2|}{|\vec{v}_1 \times \vec{v}_2|} = \frac{|(\vec{x}) \vec{v}_2 |\vec{v}_2|}{|\vec{v}_1 \times \vec{v}_2|} = \frac{|(\vec{v}_1 \times \vec{v}_2|)}{|\vec{v}_2 \times \vec{v}_2|} = \frac{|\vec{v}_2 \times \vec{v}_2|}{|\vec{v}_2 \times$$

Outra interpretação da formula

$$\frac{\left|\left(\overrightarrow{A_{1}},\overrightarrow{A_{2}},\overrightarrow{\overrightarrow{v_{1}}},\overrightarrow{\overrightarrow{v_{2}}}\right)\right|}{\left|\overrightarrow{\overrightarrow{v_{1}}}\times\overrightarrow{\overrightarrow{v_{2}}}\right|}$$

Volume (, v, v) |

Área da base | v × v)