Radiativeconvective equilibrium in a grey atmospher

Marco Casari

Introductio

Radiative equilibrium

Radiativeconvective equilibrium

Conclusio

Radiative-convective equilibrium in a grey atmosphere

Marco Casari

University of Turin

Complex systems in climate physics, 3 October 2023

Radiative-convective equilibrium in a grey atmosphere

Radiative-convective equilibrium in a grey atmosphere

Marco Casari

University of Turin

Complex systems in climate physics, 3 October 2023

- A radiative-convective model is used to study a grey atmosphere.
- Comparison between numerical and analytical solutions is possible in radiative equilibrium.

2023-10-02

-Introduction

-Introduction

Marco Casari

Introduction

• Average vertical temperature profile T(t, z) of atmosphere.

1. The analysed quantity is the atmospheric temperature profile averaged over all latitudes and longitudes.

Introduction

Radiative-convective equilibrium in a grey atmosphere 2023-10-02 -Introduction

-Introduction

Average vertical temperature profile T(t, z) of atmosphere.

- Average vertical temperature profile T(t, z) of atmosphere.
- Radiative Transfer Equation (RTE).

- 1. The analysed quantity is the atmospheric temperature profile averaged over all latitudes and longitudes.
- 2. RTE describes radiative processes.

Introduction

Radiative-convective equilibrium in a grey atmosphere -Introduction

2023-10-02

-Introduction

Average vertical temperature profile T(t, z) of atmosphere.

- 1. The analysed quantity is the atmospheric temperature profile averaged over all latitudes and longitudes.
- 2. RTE describes radiative processes.
- 3. Fluid dynamics equations describe convective processes.

• Average vertical temperature profile T(t,z) of atmosphere.

• Radiative Transfer Equation (RTE).

Fluid dynamics equations.

• Thermodynamic energy equation in Local Thermodynamic Equilibrium (LTE):

$$\frac{\partial T}{\partial t} = -\frac{1}{\rho c_{P}} \frac{\partial q}{\partial z} \quad . \tag{1}$$

1. Thermodynamic energy equation describes average vertical temperature profile.

Radiative-convective equilibrium in a grey atmosphere

└─Introduction

└─Hypotheses

Marco Casari

Introduction

Radiative equilibrium

Radiativeconvective equilibrium

Conclusion

Hypotheses

• Thermodynamic energy equation in Local Thermodynamic Equilibrium (LTE):

$$\frac{\partial T}{\partial t} = -\frac{1}{\rho_{CP}} \frac{\partial q}{\partial z} \quad . \tag{1}$$

• Radiative-convective equilibrium.

Radiative-convective equilibrium.

adiative-convective equilib

- 1. Thermodynamic energy equation describes average vertical temperature profile.
- 2. The study is conducted on an atmosphere in radiative-convective equilibrium.

Marco Casari

Introduction

Radiative equilibrium

Radiativeconvective equilibrium

Conclusion

Hypotheses

• Thermodynamic energy equation in Local Thermodynamic Equilibrium (LTE):

$$\frac{\partial T}{\partial t} = -\frac{1}{\rho c_P} \frac{\partial q}{\partial z} \quad . \tag{1}$$

- Radiative-convective equilibrium.
- Grey atmosphere.

- 1. Thermodynamic energy equation describes average vertical temperature profile.
- 2. The study is conducted on an atmosphere in radiative-convective equilibrium.
- 3. Quantities do not depend on the frequency of electromagnetic radiation.

Additional hypotheses

2023-10-02

Radiative-convective equilibrium in a grey atmosphere Introduction

-Additional hypotheses

Hypotheses on the planet.

Additional hypotheses

Marco Casari

Introduction

Radiative

Radiativeconvective

Conclusion

Hypotheses on the planet.

1. Diurnal cycle, constant irradiance, constant Bond albedo, surface emits blackbody radiation, constant gravitational acceleration.

Additional hypotheses

Radiative-convective equilibrium in a grey atmosphere Introduction

Hypotheses on the planet.
 Hypotheses on the composition of atmosphere

Additional hypotheses

2023-10-02

__Additional hypotheses

Marco Casari

Introduction

adiative quilibrium

convective equilibrium

Conclusion

- Hypotheses on the planet.
- Hypotheses on the composition of atmosphere.

- 1. Diurnal cycle, constant irradiance, constant Bond albedo, surface emits blackbody radiation, constant gravitational acceleration.
- 2. Hydrostatic equilibrium, constant specific heat at constant pressure, scattering is neglected, absorption coefficient depends only on altitude, constant mass attenutation coefficient, ideal gas.

Additional hypotheses

-Additional hypotheses

-Introduction

Additional hypotheses

Radiative-convective equilibrium in a grey atmosphere

- Hypotheses on the planet.
- Hypotheses on the composition of atmosphere.
- Hypotheses on total heat flux.
- Resulting thermodynamic energy equation:

$$\frac{\partial T}{\partial t} = -\frac{1}{\varrho c_{P}} \frac{\partial}{\partial z} (E_{U} - E_{D}) \quad . \tag{2}$$

- 1. Diurnal cycle, constant irradiance, constant Bond albedo, surface emits blackbody radiation, constant gravitational acceleration.
- 2. Hydrostatic equilibrium, constant specific heat at constant pressure, scattering is neglected, absorption coefficient depends only on altitude, constant mass attenutation coefficient, ideal gas.
- 3. Heat flux determined only by radiative and convective processes, two-stream approximation, numerical correction for convection.

4□ > 4□ > 4□ > 4□ > 4□ > 900

• Relation between pressure and altitude:

$$P(z) = P_{\rm g} \exp\left(-\frac{z - z_{\rm g}}{z_0}\right) \quad . \tag{3}$$

• Relation between optical depth and pressure:

$$\delta(P) = \frac{\mu_{\rm m}}{\sigma} (P - P_{\rm TOA}) \quad . \tag{4}$$

• Relation between optical depth and altitude:

$$\delta(z) = \frac{\mu_{\rm m}}{g} \left(P_{\rm g} \exp\left(-\frac{z - z_{\rm g}}{z_{\rm 0}}\right) - P_{\rm TOA} \right) \quad . \tag{5}$$

- 1. Obtained from hydrostatic equilibrium and ideal gas law.
- 2. Obtained from definition of optical depth, hydrostatic equilibrium and hypotheses on attenutation coefficient.
- 3. Obtained by combining relations (3) and (4).

2023-10-02

Analytical solution

Analytical solution

Marco Casari

Radiative equilibrium

• RTE for non-scattering medium in LTE:

$$\frac{1}{\mu} \frac{\partial L}{\partial z} = B_{\nu} - L \quad . \tag{6}$$

Numerical solution

Radiative-convective equilibrium in a grey atmosphere Radiative equilibrium

2023-10-02

☐ Numerical solution

Numerical solution

Marco Casari

Introduction

Radiative equilibrium

Radiativeconvective equilibrium

Conclusio

Radiative-convective equilibrium

-02

Radiative-convective equilibrium in a grey atmosphere
Radiative-convective equilibrium

Radiative-convective equilibrium

2023-10-02

-Radiative-convective equilibrium

_ .. .

Marco Casari

equilibrium

Radiativeconvective equilibrium

Conclusio

Conclusion

Radiative-convective equilibrium in a grey atmosphere —Conclusion

Conclusion

2023-10-02

-Conclusion

Marco Casari

Introduction

Radiative equilibrium

Radiativeconvective equilibrium

Conclusion