GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
	Robótica industrial	
CICLO	OLANE DE LA AGIGNATURA	
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
	190510	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los conocimientos necesarios para el desarrollo de habilidades para la simulación y programación de robots manipuladores industriales y su utilización en procesos de manufactura avanzada.

TEMAS Y SUBTEMAS

- 1. Introducción a la Robótica Industrial.
- 1.1 Antecedentes Históricos
- 1.2 Definición y Clasificación de Robots Industriales
- 1.3 Morfología del Robot: Estructura Mecánica, Actuadores, Sensores Internos, Elementos Terminales
- 1.4 ¿Qué involucra el control de robots manipuladores?
- 2. Preliminares Matemáticos
- 2.1 Conceptos importantes del álgebra lineal relacionados con Robótica Industrial.
- 2.2 Movimientos Rígidos y Transformaciones Homogéneas.
- 2.3 Cinemática Directa, Inversa y diferencial.
- 3. Simulación y programación de Robots Industriales.
- 3.1 El uso de herramientas de CAD para la simulación de Robots Industriales
- 3.2 Simuladores de Robots Industriales de las marcas mas importantes del mercado.
- 3.3 Métodos de programación de Robots y requerimientos del sistema de programación.
- 3.4 Características Básicas de los lenguajes de programación RAPID, KAREL y V+.
- 3.5 Ejemplos de simulación de robots industriales.
- 3.6 Software e interfaces.
- 3.7 Ejemplos de programación de robots industriales.
- 4. Aplicaciones y criterios de selección de robots industriales.
- 4.1 Aplicaciones industriales de los robots.
- 4.2 Sistemas de Manufactura Industrial.
- 4.3 Diseño y Control de una celda de manufactura robotizada.
- 4.4 Características de selección de un robot industrial.
- 4.5 Consideraciones de seguridad en celdas de manufactura robotizadas.
- 4.6 Simulación de celdas de manufactura robotizadas.
- 4.7 Proyecto final.

ACTIVIDADES DE APRENDIZAJE

Sesiones de clase dirigidas por el profesor. Las sesiones se desarrollarán empleando medios de apoyo didáctico, así como la realización de programas y simulaciones y solución de problemas sobre los temas del curso. Se desarrollarán simulaciones utilizando simuladores de los fabricantes ABB, Fanuc Robotics y Workspace Robot Simulation. Se realizarán prácticas de laboratorio con el robots industrial de soldadura del LABTAM (Laboratorio de Tecnología Avanzada de Manufactura).

COORDINACIÓN
GENERAL DE EDUCACIÓN
MEDIA SUPERIOR Y SUPERIOR

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender los aspectos de teoría y práctica. La evaluación comprenderá, al menos, tres evaluaciones y una evaluación final. Para las evaluaciones parciales deberá considerarse: Examen oral o escrito, prácticas y tareas. avance de

proyecto final. Para las prácticas y simulaciones debe tomarse en cuenta su realización exitosa y la documentación de la solución. La evaluación final deberá incluir: Un examen oral o escrito, el proyecto final completamente

terminado.

BIBLIOGRAFÍA

Libros básicos:

Fundamentos de Robótica, Craig John, España, Pearson Education, 3ª Edición, 2006. Robot Dynamics and Control. Spong Mark and Vidyasagar M., USA, Wiley, 1ª Edición, 1989. Industrial Robots Programming: Building Applications for the factories of future, Pires Norberto, USA, Ed. Springer, 2009.

Fundamentos de Robótica. Barrientos A. Peñín F., Balaguer C. y Aracil R., España, Ed. Mc Graw Hill, 2ª Edición, 1997.

Libros de consulta:

Robótica Industrial: Tecnología, Programación y Apliaciones, Groover Mikell, México, Ed. Mc Graw Hill,

Avances en robótica y vision por computador, José Andrés Somolinos Sánchez, McGraw-Hill-2002. Robótica: manipuladores y robots móviles, Aníbal Ollero Baturone, McGraw-Hill, 2001.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Electrónico, Mecatrónico, Mecánico, Mecánico Electricista, con maestría y/o doctorado en Control o Robótica y con experiencia en automatización de sistemas y programación de robots industriales.

