Quiz de Mathématiques

Durée : 30 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

	BON COURAGE!
	* * * * * * * * * * * * * * * * * * * *
1.	Soit A une matrice de taille $n \times p$ et B une matrice de taille $p \times q$. Le matrice produit $C = A \cdot B$
	$(1)^{\square}$ n'existe pas. $(2)^{\square}$ est de taille $n \times q$. $(3)^{\square}$ a pour coefficients $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$ $(4)^{\square}$ a pour coefficients $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$ $(5)^{\square}$ aucune des réponses précédentes n'est correcte.
2.	Soient $A, B, C \in M_3(\mathbb{R})$. Parmi les affirmations suivantes, lesquelles sont vraies?
	$(1)\square \qquad AB = AC \Rightarrow B = C$ $(2)\square \qquad AB = BA$ $(3)\square \qquad AB = 0_3 \Rightarrow A = 0_3 \text{ ou } B = 0_3$ $(4)\square \qquad A(B+C) = AB + AC$ $(5)\square \qquad \text{aucune des réponses précédentes n'est correcte.}$
3.	Soient $A \in M_n(\mathbb{R}), B \in M_{n,q}(\mathbb{R}), C \in M_q(\mathbb{R})$. Parmi les affirmations suivantes, lesquelles sont vraies?
	(1) \square $A(BC)=(AB)C$ (2) \square $ABC=CBA$ (3) \square $ABC\in M_{n,q}(\mathbb{R})$ (4) \square $CBA\in M_{q,n}(\mathbb{R})$ (5) \square aucune des réponses précédentes n'est correcte.
4.	Soient $A, B \in M_n(\mathbb{R})$. $(A+B)^2$ est
	$(1)^{\square}$ égal à $A^2 + 2AB + B^2$ $(2)^{\square}$ égal à $A^2 + B^2$ $(3)^{\square}$ est une matrice nilpotente. $(4)^{\square}$ est une matrice inversible. $(5)^{\square}$ aucune des réponses précédentes n'est correcte.
5.	Soit $A \in M_3(\mathbb{R})$. Un mineur de A est
	$_{(1)}\square$ unique $_{(2)}\square$ une matrice $_{(3)}\square$ un réel $_{(4)}\square$ ±1
	$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.

- 6. On considère la matrice A suivante : $\begin{bmatrix} 1 & -2 & 0 \\ 5 & -1 & 3 \\ 2 & 4 & -3 \end{bmatrix}$
 - $a_{32} = 3$ $a_{13} = 0$ $a_{$
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 7. Le produit : $\begin{bmatrix} 2 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$
 - $(1)^{\square}$ $(2)^{\square}$
 - est -1
 - (3)n'est pas possible.
 - (4)une matrice de taille 3.
 - (5)aucune des réponses précédentes n'est correcte.
- 8. Le déterminant ...
 - du produit de deux matrices est le produit de leur déterminants. (1)
 - d'une matrice est zéro si et seulement si la matrice est nulle. (2)
 - de $A \in M_n(\mathbb{R})$ est $\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(A_{ij})$ de $A \in M_n(\mathbb{R})$ est $\det(A) = \sum_{i=1}^n (-1)^{i+j} a_{ij} \det(A_{ij})$ aucune des réponses précédentes n'est correcte. \square (3)
 - (4)
 - $_{(5)}\square$
- 9. Dans quels cas le déterminant d'une matrice vaut zéro?
 - (1)si les éléments d'une ligne sont tous nuls.
 - (2)si les éléments de la diagonale sont tous nuls.
 - \square (3) si deux colonnes sont proportionnelles.
 - $_{(4)}\square$ si les éléments d'une colonne sont tous multiples d'un même élément k réel.
 - (5)aucune des réponses précédentes n'est correcte.
- 10. Soient $A, B \in Gl_n(\mathbb{R})$. Parmi les affirmations suivantes, lesquelles sont vraies?
 - $\begin{array}{ll} {}_{(1)}\square & |A| > 0 \text{ et } |B| > 0 \\ {}_{(2)}\square & A + A^{-1} = I \\ {}_{(3)}\square & (AB)^{-1} = B^{-1}A^{-1} \\ {}_{(4)}\square & (A^T)^{-1} = (A^{-1})^T \end{array}$

 - (5)aucune des réponses précédentes n'est correcte.