Transfer Learning Taxonomy

Transductive Work

Source and target tasks are the same but the domains are different

- Recognizing spoiled pears after training on apples
- Classifying letters after training on numbers

This is not exactly what we do; we are reusing elements of T_s in T_t , but not the entire task (which would be the entire network with no change).

- Arnold; entropy-based IFT; as fast as SVM, not as adaptable
- Joachims; TSVMs, better performance, especially on small sets
- Huang; non-parametric weight re-sampling between D_s and D_t

- Sugiyama; non-density estimation based shift management, better performance
- Bickel; Kernel LR classifier with no modeling
- Dai; Naive Bayes, good performance, revising model

Transductive Work

- Blitzer; SCL Algorithm, feature extraction from D_t; uses pivots, which require domain expertise; may be able to use mutual information for selection though (MI-SCL)
- Daumé; Kernel mapping NLP into high-dimensional feature space; train classifiers here; kernel function is domain driven
- Dai; co-clustering, good classification performance
- Xing; bridged refinement uses a mixture of training and test data to bridge a classifier from D_S → D_t

- Ling; Spectral classifier objective function seeks consistency between D_S and D_t
- Xue; Text classifier extends PLSA integrating labeled and unlabeled data from different domains
- Pan; uses MMDE in low-dimensional spaces, but computationally intense
- Pan; TCA works in same domain as MMDE but better claimed performance

More Neurally Focused