International Rectifier

IRF6892STRPbFIRF6892STR1PbF

 ${\rm DirectFET^{\$}} plus \ \ {\rm MOSFET} \ {\rm with} \ {\rm Schottky} \ {\rm Diode} \ @$

Typical values (unless otherwise specified)

V _{DSS} V _{GS}		s	R _{DS(on)}			R _{DS(on)}		
25V max ±16V max		1.3mΩ @ 10V						
Q _{g tot}		\mathbf{Q}_{gd}	Q	gs2	Q_{rr}	(Q _{oss}	$V_{gs(th)}$
17nC		6.0nC	2.3	nC	39nC		16nC	1.8V

- Low Profile (<0.7 mm)
- Dual Sided Cooling Compatible ①
- Ultra Low Package Inductance
- Optimized for High Frequency Switching ①
- Ideal for CPU Core DC-DC Converters
- Optimized for Control FET Application①
- Compatible with existing Surface Mount Techniques ①
- 100% Rg tested

Applicable DirectFET Outline and Substrate Outline ①

I	S1	S2	S3C	M2	M4	Ι Δ	1.6	1.8	
l	01	52	000	IVIZ	IVIT	L-T		٥	

Description

The IRF6892SPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and less than 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6892SPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6892SPbF has been optimized for parameters that are critical in synchronous buck converter's Sync FET sockets.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	25	V
V _{GS}	Gate-to-Source Voltage	±16	7 V
D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	28	
D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	22	
D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ④	125	A
рм	Pulsed Drain Current ®	220	
E _{AS}	Single Pulse Avalanche Energy ®	240	mJ
IAB	Avalanche Current ©	22	Α

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage

Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.
- ④ T_C measured with thermocouple mounted to top (Drain) of part.
- $\ensuremath{{\mathbb S}}$ Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_{.1} = 25$ °C, L = 1.2mH, $R_{G} = 25Ω$, $I_{AS} = 22$ A.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V$, $I_D = 1mA$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		11		mV/°C	Reference to 25°C, I _D = 5mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.3	1.7	0	V _{GS} = 10V, I _D = 28A ⑦
			2.0	2.6	mΩ	V _{GS} = 4.5V, I _D = 22A ⑦
$V_{GS(th)}$	Gate Threshold Voltage	1.1	1.8	2.1	V	$V_{DS} = V_{GS}, I_D = 50\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-9.8		mV/°C	$V_{DS} = V_{GS}, I_D = 30\mu A$
I _{DSS}	Drain-to-Source Leakage Current			500	μΑ	$V_{DS} = 20V, V_{GS} = 0V$
				5.0	mA	$V_{DS} = 20V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
gfs	Forward Transconductance	290			S	$V_{DS} = 13V, I_{D} = 22A$
Q_g	Total Gate Charge		17	25		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		4.0			$V_{DS} = 13V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.3		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		6.0		l nc	$I_D = 22A$
Q_godr	Gate Charge Overdrive		4.7			See Fig. 2 & 15
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		8.3			
Q _{oss}	Output Charge		16		nC	$V_{DS} = 10V, V_{GS} = 0V$
R _G	Gate Resistance		0.4		Ω	
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = 13V, V _{GS} = 4.5V ⑦
t _r	Rise Time		30]	I _D = 22A
t _{d(off)}	Turn-Off Delay Time		16		ns	$R_G = 1.8\Omega$
t _f	Fall Time		9.5		1	
C _{iss}	Input Capacitance		2510			$V_{GS} = 0V$
C _{oss}	Output Capacitance		850		pF	$V_{DS} = 13V$
C _{rss}	Reverse Transfer Capacitance		190		1	f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			76		MOSFET symbol
	(Body Diode)			76	Α	showing the
I _{SM}	Pulsed Source Current		22			integral reverse
	(Body Diode) S			220		p-n junction diode.
V_{SD}	Diode Forward Voltage			0.75	V	$T_J = 25^{\circ}C, I_S = 22A, V_{GS} = 0V $
t _{rr}	Reverse Recovery Time		22	33	ns	$T_J = 25^{\circ}C, I_F = 22A$
Q _{rr}	Reverse Recovery Charge		37	56	nC	di/dt = 300A/µs ⑦

Notes:

⑤ Repetitive rating; pulse width limited by max. junction temperature.

 Pulse width $\le 400 \mu s$; duty cycle $\le 2 \%$.

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ③	2.1	
P _D @T _A = 70°C	Power Dissipation ③	1.3	W
P _D @T _C = 25°C	Power Dissipation	42	
T _P	Peak Soldering Temperature	270	
TJ	Operating Junction and	-40 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 3 ®		60	
$R_{\theta JA}$	Junction-to-Ambient ® ®	12.5	12.5 —	
$R_{\theta JA}$	Junction-to-Ambient 9 ®	20		°C/W
$R_{\theta JC}$	Junction-to-Case ⊕ ®	3.0		!
R _{0J-PCB}	Junction-to-PCB Mounted	1.0		1
	Linear Derating Factor ③	0.	W/°C	

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ①

Notes:

- ③ Surface mounted on 1 in. square Cu board, steady state.
- ④ T_C measured with thermocouple incontact with top (Drain) of part.
- $\ensuremath{\$}$ Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $^{\circledR}$ R $_{\theta}$ is measured at ${\tt T_J}$ of approximately 90°C.

3 Surface mounted on 1 in. square Cu board (still air).

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage

International

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

IRF6892STR/TR1PbF

Fig 11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

6 www.irf.com

Fig 19. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET®plus Board Footprint, S3C (Small Size Can).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

www.irf.com 7

DirectFET®plus Outline Dimension, S3C Outline (Small Size Can).

Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations

DIMENSIONS									
	MET	RIC	IMPERIAL						
CODE	MIN	MAX	MIN	MAX					
Α	4.75	4.85	0.187	0.191					
В	3.70	3.95	0.146	0.156					
С	2.75	2.85	0.108	0.112					
D	0.35	0.45	0.014	0.018					
E	0.48	0.52	0.019	0.020					
F	0.48	0.52	0.019	0.020					
G	1.18	1.22	0.047	0.048					
Н	0.68	0.72	0.027	0.028					
J	0.38	0.42	0.015	0.016					
K	0.90	1.00	0.035	0.039					
L	1.80	1.90	0.071	0.075					
М	0.52	0.62	0.020	0.024					
Р	0.08	0.17	0.003	0.007					
R	0.02	0.08	0.0008	0.0031					

${\rm DirectFET}^{\rm @}{\it plus} \ \, {\rm Part \ Marking}$

8 www.irf.com

DirectFET®plus Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6892STRPBF). For 1000 parts on 7" reel, order IRF6892STR1PBF

REEL DIMENSIONS								
S ⁻	TANDARI	OPTION	TR1 OPTION (QTY 1000)					
	ME	TRIC	IMP	ERIAL	METRIC		IMPERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS									
	MET	RIC	IMPERIAL						
CODE	MIN	MAX	MIN	MAX					
Α	7.90	8.10	0.311	0.319					
В	3.90	4.10	0.154	0.161					
С	11.90	12.30	0.469	0.484					
D	5.45	5.55	0.215	0.219					
E	4.00	4.20	0.158	0.165					
F	5.00	5.20	0.197	0.205					
G	1.50	N.C	0.059	N.C					
Н	1.50	1.60	0.059	0.063					

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Data and specifications subject to change without notice. This product has been designed and qualified to MSL1 rating for the Consumer market.

Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR's Web site.

Qualification Standards can be found on IR's Web site,

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903