Figures Calculus III

Felix Claeys, Brecht Verbeken, Simon Verbruggen

October 9, 2025

1.2.3 Example evolute cycloid

Figure 1: The cycloid $P(t) = [R(t - \sin t), R(1 - \cos t)]$ and its evolute $Q(t) = [R(t + \sin t), R(\cos t - 1)]$, which is a translation of P(t).

1.2.4 Example evolute catenary

Figure 2: The catenary $P(x) = [x, a \cosh(x/a)]$ and its evolute $Q(x) = [x - \frac{a}{2} \sinh(2x/a), 2a \cosh(x/a)]$.

1.2.5 Example involute catenary (tractrix)

Figure 3: The catenary $P(x) = [x, a \cosh(x/a)]$ and its involute: the tractrix $Q(x) = \left[x - a \tanh(x/a), \frac{a}{\cosh(x/a)}\right]$. For a point Q on the tractrix, the intersection of the tangent to Q with the X-axis coincides with the orthogonal projection of the corresponding point on the catenary P.

1.2.8 Example envelope family of straight lines

Figure 4: Some examples from the family of lines $F(x,y,a)=\frac{x}{\cos(a)}+\frac{y}{\sin(a)}=1$, and the corresponding astroid: $x^{2/3}+y^{2/3}=1$.

2.3 Gradient of scalar field

Figure 5:

3.1 Line integral of a scalar field

Figure 6:

3.2 Line integral of a vector field

Figure 7:

3.4.2 Conservative field along a curve

Figure 8:

3.4.3 Proof conservative field

Figure 9:

3.5.1 Proof Greens theorem

Figure 10:

3.5.2 Union of normal spaces

Figure 11:

3.5.4 Alternative formulation Greens theorem

Figure 12:

4.1 Surface integral of a scalar field

Figure 13:

4.4.1 The divergence theorem

Figure 14:

4.6.0 The corkscrew rule

Figure 15:

4.6.1 Stokes theorem

Figure 16:

5.1 Inverse function

Figure 17:

5.1 Complex function

Figure 18:

5.2 Complex line integral

Figure 19:

6.2.1 Complex derivative

Figure 20:

6.3 Cauchy Goursat theorem for multiply connected domains

Figure 21:

6.3 Contour non simply connected

Figure 22:

6.3 Contour simply connected

Figure 23:

6.3.3 Proof integral formula Cauchy

Figure 24:

7.2.4 Theorem convergence regions positive and negative power series

Figure 25: (Left) Region of convergence of a positive power series. (Right) Region of convergence of a negative power series.

8.2.1 Proof theorem Laurent series

Figure 26: The region of convergence of the Laurent series is the annular region $B(0,R)\setminus \overline{B(0,r)}$. For every point z, it is possible to find R' and r' such that 0 < r < r' < |z| < R' < R.

8.5.6 Residue theorem for region with multiple singularities

Figure 27: The contour C passes through none of the singularities a_i of the complex function f and encloses a compact set that lies entirely within Ω . C contains a finite number of singularities of f.

9.3 Estimation lemmas

Figure 28: Small limit theorem: The circular arc C^t_ε with center a, radius $\varepsilon>0$, and central angle α can be described by the parametric equation $z(t)=a+\varepsilon e^{i(t+\beta)},\,t:0\to\alpha.$

9.5 Summation of series

Figure 29: The function $g(z) = \cot(\pi z)$ has simple poles at $z = 0, \pm 1, \pm 2, \ldots$ If we consider the square V_N with center at the origin and side length 2N+1, where $N \in \mathbb{N}$, then we can compute the contour integral over ∂V_N^+ using the residue theorem.