I Lista de Exercícios de Sistemas Operacionais

Prof. André Leon S. Gradvohl, Dr.

gradvohl@ft.unicamp.br

1ª Questão

Em relação ao kernel, explique:

- a) O que é o *kernel* do Sistema Operacional e defina os tipos de *kernel* (monolítico, em camadas e microkernel).
- b) Por que a tabela de processos é necessária em um sistema de tempo compartilhado? Ela também é necessária em sistemas de computadores pessoais, nos quais existe apenas um processo, que detém o comando de toda a máquina até que ele termine? Justifique.

2ª Questão

- a) Explique, em poucas palavras, o que é multiprogramação.
- b) É possível implementar multiprogramação, mesmo com uma CPU com um único núcleo?

3ª Questão

- 1) Em laços do tipo for, qual a vantagem de usar registradores para armazenar as variáveis contadoras do laço ao invés de usar a memória RAM? Explique.
- 2) Considere o código a seguir escrito em Assembly:
 - 1: mov x, 10h
 - 2: mov y, 20h
 - 3: cmp x, y
 - 4: jbe 7
 - 5: add x, 1h
 - 6: jmp 8
 - 7: sub y, 1h
 - 8: mov z, 0h
 - 9: add z, x
 - 10: add z, y

Começando da primeira instrução, para cada ciclo de instrução (→) escreva o conteúdo dos dois registradores especiais - Contador de Programas (CP) e Registrador de Instruções (RI).

4ª Questão

No UNIX, usando-se o comando fork (), um novo processo é criado sem que um novo programa seja posto em execução. Assinale **V** (verdadeiro) ou **F** (falso) para as afirmações a seguir:

()	Caso não ocorra falha, a chamada no sistema fork(), retorna no mesmo instante o valor do PID
	do processo filho para o processo pai.
()	Se um processo B for criado por um processo A via fork(), o processo B executará o programa
	que estiver sendo executado por A repetindo exatamente os mesmos fluxos.
()	A mudança de variável global em um processo filho afeta o processo pai, pois os dados dos dois
	processos são iguais.
()	Os valores iniciais das variáveis do processo filho são iguais às do processo pai no momento da
	execução fork().

Explique o que significa a figura a seguir e preencha os quadros em branco com as frases à direita.

restaura o conteúdo dos registradores

obtém o endereço da rotina de tratamento

identifica a origem do evento

salva conteúdo dos registradores na pilha de controle

6ª Questão

Suponha 3 processos (P_1 , P_2 e P_3), com um único *thread* cada e com as seguintes características. 50% do tempo do processo P_1 é gasto com operações de entrada e saída (E/S); 70% do processo P_2 é gasto com operações de E/S; e 80% do tempo do processo P_3 é gasto com E/S. Em função disso, ao longo de 10 unidades de tempo, quanto tempo uma CPU com um único núcleo fica ociosa? Se a CPU tivesse dois núcleos, quanto tempo essa CPU ficaria totalmente ociosa ao longo de 10 unidades de tempo, considerando o mesmo cenário?

7ª Questão

Thread é uma linha de execução dentro de um processo. Multithread são várias linhas de execução dentro do mesmo processo. Dos itens abaixo, quais são e quais não são compartilhados por todos os threads dentro do mesmo processo. Ligue a coluna da esquerda com a direita

- Variáveis globais
- Espaço de endereçamento
- Contador de programa
- Arquivos abertos
- Registradores
- Processos filhos
- Variáveis locais
- Pilha
- Estado
- Sinais e manipuladores de sinais

Itens <u>compartilhados</u> por todos os threads de um mesmo processo

Itens <u>não</u>
<u>compartilhados</u> por
todos os threads de um

A figura a seguir mostra um processo com múltiplos threads. Os itens 1, 2 e 3 são associados ao processo e compartilhados entre as os threads. Entretanto, cada thread possui acesso exclusivo aos itens 4 e 5. Assinale a alternativa que associa corretamente os itens 1, 2, 3, 4 e 5 respectivamente:

- a) Área de Código, Pilha, Registradores, Variáveis Globais e Ponteiros de Arquivos.
- b) Registradores, Ponteiros de Arquivos, Área de Código, Pilha e Variáveis Globais.
- c) Área de Código, Pilha, Variáveis Locais, Registradores e Ponteiros de Arquivos.
- d) Variáveis Globais, Área de Código, Ponteiros de Arquivos, Pilha e Registradores.
- e) Pilha, Variáveis Locais, Ponteiros de Arquivos, Registradores e Área de Código.

9ª Questão

Observe-se na tabela a seguir os processos, seus respectivos tempos de execução (ut) e suas prioridades:

Processo	Tempo de execução	Prioridade
P ₀	4 ut	3
P_1	6 ut	2
P ₂	3 ut	2
P ₃	4 ut	1
P ₄	2 ut	1

Suponha que no tempo t=4 chegue o processo P₅, com prioridade 2 e tempo de execução 3 ut.

Informe, para cada processo, qual o tempo total da sua execução para cada tipo de escalonamento adotado:

- a) FIFO.
- b) SJF.
- c) Round Robin (quantum = 3 ut).
- d) Fila de Prioridades.

As regras de uso de um banheiro permitem que, quando uma mulher estiver no banheiro, outra mulher poderá entrar, mas um homem não e vice-versa. Implemente uma solução computacional para esse problema, supondo vários processos (homens e mulheres) e usando semáforos através das funções void mulher_quer_entrar(int idM) e void homem_quer_entrar(int idH). Suponha que as seguintes funções já estão implementadas:

- h entra (int idH): função que mapeia a entrada de um homem no banheiro.
- -m entra (int idM): função que mapeia a entrada de uma mulher no banheiro.
- h sai(int idH): função que mapeia a saída de um homem no banheiro.
- -m_sai(int idM): função que mapeia a saída de uma mulher do banheiro.

11ª Questão

Existem **n** passageiros que repetidamente aguardam para entrar em um carrinho da montanha russa, fazem o passeio e voltam a aguardar. Vários passageiros podem entrar no carrinho ao mesmo tempo, pois este tem várias portas. A montanha russa tem somente um carrinho, onde cabem **C** passageiros (**C** < **n**). O carrinho só começa seu percurso se estiver lotado.

Faça um programa que, usando semáforos, resolva o problema da liberação do carrinho e que faça os passageiros aguardarem, caso o carrinho esteja lotado.

Implemente as seguintes funções:

- passageiro (int id): função que simula o comportamento do passageiro.
- carrinho (): função que simula o comportamento do carrinho.

Declare todos os semáforos e contadores necessários para o seu programa. Use a função a seguir, se necessário:

- libera carrinho (): função que libera o carrinho para dar uma volta.

12ª Questão

A situação a seguir representa o estado de um sistema computacional com vários recursos de cada tipo. Preencha o vetor E, substituindo as variáveis X, Y, V e W pelos valores correspondentes. Em seguida determine se o sistema está em *deadlock* ou não. Caso não esteja, verifique em que ordem os processos devem ser atendidos. Os processos são nomeados de P₀ a P₄ e os recursos são nomeados de R₀ a R₃.

$$E = (X \quad Y \quad V \quad W); \quad A = (1 \quad 1 \quad 1 \quad 4)$$

$$C = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 4 & 0 & 1 & 2 \\ 1 & 1 & 3 & 0 \\ 3 & 5 & 2 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}; \quad R = \begin{pmatrix} 9 & 5 & 0 & 0 \\ 4 & 0 & 3 & 0 \\ 7 & 5 & 2 & 3 \\ 0 & 1 & 0 & 2 \\ 10 & 2 & 3 & 5 \end{pmatrix}$$

Em um sistema com multiprogramação, os recursos que podem ser usados por 5 programas que serão executados "simultaneamente" são relacionados na tabela a seguir:

Processo	Recursos previstos	Recursos alocados
P ₀	a, e , j, g	j
P ₁	a, b, f, g, h	a, f
P_2	c, d, h, i	c, h
P_3	b, c, g, k	b, g
P ₄	d,e,i,k	d, k

Os recursos "e" e "i" estão disponíveis.

Pergunta-se:

- a) O recurso "i" pode ser atribuído ao processo P₄ sem risco de *deadlock*? Justifique.
- b) O recurso "e" pode ser atribuído ao processo P₀ sem risco de *deadlock*? Justifique.