

▼ SoK- Layer-Two Blockchain Protocols	
Blockchains	1
• revolutionize	1
• high latencies	1
• transaction loads	1
layers	2
hardware	3
Trusted Execution Environments (TEE)	3
No collateral lockup	14
 Interoperability 	14
Parallelized Disputes	14
• Ensured fees	14
security concerns	14
• rollback	14
• side-channel attacks	14
▼ layer-zero	3
Network Layer	3
• peer-to-peer	3
• scalability	3
• security	3
• privacy	3
▼ layer-one	3
▼ Blockchain Layer	3
• consen- sus algorithm	3

retaining asset security	1
• reducing fees	1
allowing blockchains to scale	1
protocols	2
private and authenticated communication	2
channels	2
• proposing pay- ment	2
state	2
• state transitions	4
n parties to agree	4
• unanimous consent	4
• virtual	2
payment channel net- works	2
• privacy-enhancing channels	2
routing protocols	2
• Effectiveness	9
• Efficiency	9
• Scalability	9
• Cost-Effectiveness	9
• Privacy	9
channel hubs	2
lower average path length	10
• reduction in collateral cost	10
• route discovery complexity	10

blockchain scaling solutions	1
consensus ar- chitectures	1
• changing one of the key elements of a blockchain	2
lack of backward compati- bility	2
• lead to different, forked systems	2
• sharding	1
• side-chains	1