DÉSAISONNALISER UNE SÉRIE TEMPORELLE

7 - Problèmes d'estimation du modèle Reg-ARIMA

Alain Quartier-la-Tente

Questions de positionnement

Quelles sont les hypothèses sur les résidus du modèle regARIMA et sont-elles importantes ?

Avoir plus de données permet-il d'améliorer l'estimation du modèle regARIMA ?

Quelle est la longueur optimale pour l'estimation d'un modèle ?

Sommaire

- 1. Problèmes liés à la qualité des résidus
- 1.1 Les hypothèses sur les résidus du modèle regARIMA
- 1.2 Exemple sur une série de l'IPI
- 2. Modèle regARIMA et séries longues
- 3. Conclusion

Les hypothèses sur les résidus

Les estimations du modèle regARIMA sont **consistantes** (convergent et sans biais) et **efficaces** (de variance minimale), si les résidus ε_t sont :

- décorrélés : $\forall t \neq t'$: Cov $(\varepsilon_t, \varepsilon_{t'}, =)$ 0 (autocorrélés sinon)
- homoscédastiques : $\forall t, t' : \mathbb{V}[\varepsilon_t] = \mathbb{V}[\varepsilon_{t'}]$ (hétéroscédastiques sinon)
- distribuées selon une loi normale

Conséquences des problèmes sur les résidus

Problème sur les résidus	Estimation des coefficients	Estimation de la va- riance des coeffi- cients (pour tests de significativité)	Tests invalidés
Autocorrélation	biaisée (géné- ralement)	biaisée	StudentHétéroscédasticitéNormalitéQualité des prévisions
Heteroscédasticité	non biaisée	biaisée	StudentNormalitéQualité des prévisions
Normalité	non biaisée	non biaisée	StudentQualité des prévisions

Sources des problèmes de spécification des résidus

L'autocorrélation des résidus peut provenir :

- d'erreurs de mesure : si les données sont interpolées toujours à la même date, un biais systématique peut être observé
- problème de variable omise : il manque une variable explicative importante
- mauvaise spécification : par exemple dans le cas d'une équation non linéaire mais polynomiale
- effet de l'habitude : biais systématique du fait de l'optimisme
- d'un lissage artificiel des données trimestrielles sur données annuelles
- ① L'autocorrélation peut souvent être corrigé en augmentant l'ordre AR mais elle peut aussi provenir de la présence de certains points atypiques (LS, SO)
- ① Les points atypiques affectent l'hétéroscédasticité (AO, TC) et la non-normalité

Exemple (1/4)

Un modèle ARIMA(0,1,1)(0,0,0) est-il plausible ?

Exemple (2/4)

Que peut-on dire sur les régresseurs JO ?

Arima model

[(0,1,1)(0,0,0)].

	Coefficients	T-Stat	P[T > t]
Theta(1)	-0,8417	-27,90	0,0000

Regression model

User-defined calendar variables

	Coefficients	T-Stat	P[T > t]
REG1_AC1	0,0052	0,34	0,7331
REG1_AC2	0,0224	1,48	0,1387
REG1_AC3	0,0237	1,58	0,1159
REG1_AC4	0,0200	1,25	0,2113
REG1_AC5	0,0122	0,80	0,4249
REG1_AC6	-0,0225	-1,37	0,1704
REG1_LPY	0,0473	0,76	0,4465

Joint F-Test = 2,70 (0,0098)

Prespecified outliers

	Coefficients	T-Stat	P[T > t]
AO (2-2012)	-0,2728	-1,91	0,0573
TC (12-2008)	-0,3779	-3,33	0,0010

Exemple (3/4)

Avec un modèle bien spécifié :

Arima model [(2,2,1)(1,1,1)]

Coefficients	T-Stat	P[T > t]
0,5620	9,98	0,0000
0,2396	4,29	0,0000
-1,0000	-51,88	0,0000
-0,2398	-3,85	0,0001
-0,9457	-28,71	0,0000
	0,5620 0,2396 -1,0000 -0,2398	0,5620 9,98 0,2396 4,29 -1,0000 -51,88 -0,2398 -3,85

Correlation of the estimates

	Phi(1)	Phi(2)	Theta(1)	BPhi(1)	BTheta(1)
Phi(1)	1,0000	0,4630	-0,0181	0,1076	0,1149
Phi(2)	0,4630	1,0000	0,0365	0,1196	0,0481
Theta(1)	-0,0181	0,0365	1,0000	0,0275	0,3949
BPhi(1)	0,1076	0,1196	0,0275	1,0000	-0,0921
BTheta(1)	0,1149	0,0481	0,3949	-0,0921	1,0000

Regression model

Prespecified outliers

User-defined calendar variables

Oser-defilied calefidar variables						
	Coefficients	T-Stat	P[T > t]			
REG1_AC1	0,0182	3,22	0,0014			
REG1_AC2	0,0211	3,76	0,0002			
REG1_AC3	0,0246	4,28	0,0000			
REG1_AC4	0,0316	5,12	0,0000			
REG1_AC5	0,0108	1,89	0,0594			
REG1_AC6	-0,0177	-2,94	0,0035			
REG1_LPY	0,0450	1,95	0,0523			

Exemple (4/4)

Quel impact sur ma série désaisonnalisée ?

Sommaire

- 1. Problèmes liés à la qualité des résidus
- 2. Modèle regARIMA et séries longues
- 2.1 Hypothèse de stabilité des coefficients
- 2.2 Exemples
- 3. Conclusion

Hypothèse de stabilité du modèle regARIMA

Le modèle regARIMA est un modèle de régression linéaire. Il suppose :

- que les coefficients sont stables dans le temps
- que la structure des résidus (modèle ARIMA) est constante dans le temps
- **A** Est-ce plausible ? Quelle est la durée nécessaire pour avoir une estimation *stable* ?
- ♠ Étudions les estimations des régresseurs JO et la stabilité de la décision de CJO

lci estimation du leap year relativement stable...

... Mais pas le régresseur mercredi

Estimations du LY pas toujours stable

Estimations du LY toujours non significatives avec estimations roulantes

Cas compliqué (1/2): EL G473

Cas compliqué (2/2): estimations roulantes

Sommaire

- 1. Problèmes liés à la qualité des résidus
- 2. Modèle regARIMA et séries longues
- 3. Conclusion
- 3.1 Bibliographie

Les essentiels

- une bonne spécification des résidus est importante pour interpréter le modèle regARIMA
- résidus autocorrélés ⇒ hétéroscédasticité ⇒ non normalité
- attention aux séries longues : l'hypothèse de stabilité du modèle est généralement fausse pour les séries de plus de 20 ans
- attention aux séries courtes : les estimations sont généralement moins précisent (plus grande variance des estimateurs) et peuvent être fortement révisées

Bibliographie

Ladiray D., Quartier-la-Tente A. (2018), Du bon usage des modèles Reg-ARIMA en désaisonnalisation, Actes des 13° Journées de Méthodologie Statistique, http://www.jms-insee.fr/2018/S05_1_ACTEv3_QUARTIERLATENTE_JMS2018.pdf.