G-10 (ANSYS)

Формулировка задачи:

Дано: Консольная балка постоянной жёсткости нагружена моментом $q \cdot l^2$ и распределённой нагрузкой q.

E – модуль упругости материала;

 I_z – изгибный момент инерции.

Найти: Эпюру внутреннего изгибающего момента $M_{\rm Z}$;

Форму упругой оси нагруженной балки;

$$v_C = ?$$
, $\Theta_C = ?$

В конспектах <u>G-10</u> и <u>G-20</u> аналитически вычисляется эпюра внутреннего изгибающего момента, линейное и угловое перемещения точки C, изображается примерный вид изогнутой оси:

$$v_C = \frac{5}{24} \cdot \frac{q \cdot l^4}{E \cdot I_Z} = 0,2083 \cdot \frac{q \cdot l^4}{E \cdot I_Z} - \hat{a}i \, \dot{e}\varsigma; \qquad z)$$

$$\theta_{C} = \frac{1}{6} \cdot \frac{q \cdot l^{3}}{E \cdot I_{Z}} = 0,1667 \cdot \frac{q \cdot l^{3}}{E \cdot I_{Z}} - \ddot{\imath} \hat{\imath} \div \dot{\alpha} \tilde{n} \hat{\imath} \hat{\alpha} \hat{\imath} \acute{e} \tilde{n} \dot{o} \delta \mathring{a} \ddot{e} \mathring{e} \mathring{a}. \qquad \partial)$$

$$Puc. \ 1.$$

Задача данного примера: при помощи ANSYS Multyphisics получить эти же эпюры методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Оставить в меню только пункты, относящиеся к прочностным расчётам:

 ${\rm M_M}$ > Preferences > Отметить "Structural" > OK

Нумеровать точки и линии твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers" > OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

Приравняв E, I_z , q и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

No	Действие	Результат
1	Задаём параметры расчёта— базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > q=1 > Accept > l=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types:
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота = $l/100$. С_P> R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help

№	Действие			Результат		
4	Cooйcmsa материала стержня—модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».		A Series Meeted Model Behavior Record Series Forces 1999 Meeter Models Defined Series	ed Material Models Analibbe Interior Reported to Million (Rather) I Bodroper Material Properties for Material Humber T1 compositive Debeto Temporature Oc. Const. II	1	
	Твердотельное моделирование					
5	Ключевые точки — границы участков: $A \to 1$, $B \to 2$ и $C \to 3$: М_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем 0,0,0 > Apply > NPT пишем 2 X,Y,Z пишем l ,0,0 > Apply > NPT пишем 3 X,Y,Z пишем $2 \to l$,0,0 > Apply > Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	Y M.X		2		.3
6	Tpu yчастка — mpu линии: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 2 и 3 > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	Y Æ_X	T.1	2.	T ₁ 2.	3

№	Действие	Результат
7	Заделка: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "All DOF" > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	X I.1 2 I.2 .3
8	Cocpedomoченный внешний момент: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 2 ключевую точку > OK > Lab установить "MZ" VALUE установить "q*1**2" > OK	¥
9	Изометрия: До сих пор модели мы рассматривали, используя фронтальный вид («сбоку»). Вектор изгибающего момента при этом виден плохо, а его направление не определяется вовсе. Меняем угол зрения: справа от рабочего поля нажимаем кнопки - изометрия; - автоформат (размер изображения по размеру окна рабочего поля).	L-R D ROT M L1 L2 3

N₂	Действие	Результат
	Конечноэлементная модель	
10	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	
11	Pasмep конечных элементов: M_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > All Lines > SIZE пишем L/20 > OK Обновляем изображение: U_M > Plot > Multi-Plots	L-K PLOT NO. 1
12	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > OK > Появляется второе окно Multi-Plotting, оставляем в нём отметки только напротив Nodes и Elements > OK	

№	Действие	Результат
13	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение:U_M > Plot > Multi-PlotsБирюзовым цветом изображены балочные элементы. Чёрные точки - это их узлы.	E-N PLOT NO. 1
14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK	E-N PLOT NO. 1

№	Действие	Результат
15	Поперечная распределённая нагрузка q: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Pressure > On Beams > Левой кнопкой мыши отмечаем элементы первого и второго участков от левого края до вектора внешнего момента > Apply > LKEY пишем 1 VALI пишем q > OK Обновляем изображение: U_M > Plot > Multi-Plots	E-N PLOT NO. 1 ROT M PRES-NORM 1
16	Скрываем оси системы координат: U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK	E-N PIOT NO. 1 PRES-NORM 1
	Расчёт	
17	Запускаем расчёт: M_M > Solution > Solve > Current LS Когда он закончится, появится окно «Solution is done!». Закройте это окно.	

No	Действие	Результат
	Просмотр результатов	
18	Cunobas cxema: U_M > PlotCtrls > Symbols > [/PBC] устанавливаем в положение "For Individual" Убираем галочку с "Miscellaneous" Surface Load Symbols устанавливаем Pressures Show pres and convect as устанавливаем Arrows > OK > B okhe "Applied Boundary Conditions" U установить "Off" Rot установить "Off" F установить "Symbol+Value" M установить "Symbol+Value" > OK > B okhe "Reactions" NFOR установить "Off" RFOR установить "Symbol+Value" RMOM установить "Symbol+Value" RMOM установить "Symbol+Value" RMOM установить "Symbol+Value" RMOM установить "Symbol+Value" > OK Oбновляем изображение: U_M > Plot > Elements Получаем тот же результат, что и на puc. la .(числа, выделенные синим цветом). В рабочем поле видим следующее: - Красным цветом начерчена распределённая нагрузка; - Синим цветом начерчен всктор внешнего момента; - Малиновым цветом нарисованы реактивные силы.	E-N PLOT NO. 1 MROR ROOM PRES-NORM 1

№	Действие	Результат
19	<pre>U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK</pre>	
20	Фронтальный вид: - вид спереди; - автоформат (размер изображения по размеру окна рабочего поля).	1.5
21	Cocmaвление эпюры внутреннего изгибающего момента: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close	Current Tale Data and Status: Label Bern Comp Time Stamp Status Label SMIS 0 Times 1,0000 (Current) SMISO SMIS 12 172 17 18 10000 (Current) Add
22	Прорисовка эпюры внутреннего изгибающего момента: М_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "SMIS6" LabJ установить "SMIS12" Fact пишем 1 > ОК Получаем тот же результат, что и на рис. 1в. (только числа, выделенные синим цветом). Значения показывает цветовая шкала. Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 4.	1 LINE STRESS STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN = .5 ELEM=1 MAX = .5 ELEM=20 531 .1 .3 .5

№	Действие	Результат
23	Форма упругой оси нагруженной балки: M_M > General Postproc > Plot Results > Deformed Shape > KUND установить Def + undeformed OK Это точная форма изогнутой оси. Сравните с приближённой на рис. 1в. Для наглядности увеличиваем масштаб: U_M > PlotCtrls > Style > Displacement Scaling > DMULT устанавливаем "User specified" User specified factor увеличиваем в восемь раз с 0.48 до 4 OK	DISPLACEMENT STEP=1 SUB =1 TINE=1 DMX =.208333
24	Выделяем мышью узел конечноэлементной модели, соответствующий точке C: U_M > Select > Entities > В окошке Select Entities установить "Nodes" "By Num/Pick" Точку селектора установить на «From Full» > ОК > Левой кнопкой мыши кликнуть на точку C на деформированной форме (самая низкая точка формы). Кстати, при этом в окошке Select nodes припишется номер узла в этой точке «Node No. = 22» > ОК Проверяем, действительно ли выделен узел с координатой X=2*l=2 U_M > List > Nodes > ОК Закрываем окно NLIST Command	NLIST Command File LIST ALL SELECTED NODES. DSYS= 0 SORT TABLE ON MODE NODE NODE NODE X Y Z THXY THYZ THZX 22 2.0000 0.0000 0.000 0.00 0.00

http://www.tychina.pro/библиотека-задач-1/

№	Действие	Результат
	Вертикальное перемещение узла №22:	↑ PRNSOL Command
	<pre>M_M > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > Y-Component of displacement > > OK</pre>	File PRINT U NODAL SOLUTION PER NODE ***********************************
	Пропечаталась величина вертикального перемещения:	LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0
25	UY=-0,2083	THE FOLLOHING DEGREE OF FREEDOH RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
	Отрицательная, значит, вниз. Результат совпадает с рис. 1г.	NODE UY 22 -0.20833
		HAXIHUH ABSOLUTE VALUES NODE 22 VALUE -0.20833
	Угол поворота узла №22:	↑ PRNSOL Command
	M_M > General Postproc > List Results > Nodal Solution >	File
	Nodal Solution > DOF Solution > Z-Component of rotation > OK Пропечаталась величина углового перемещения:	PRINT ROT NODAL SOLUTION PER NODE ***********************************
26	ROTZ=-0,1667	LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0
	Отрицательная, значит – по часовой стрелке. Результат совпадает с $puc.\ 1\partial.$	THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
	Выделяем всё: U_M > Select > Everything	MODE ROTZ 22 -0.16667 MAXIMUM ABSOLUTE VALUES NODE 22 VALUE -0.16667

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.