Sensores Industriais

AUTOMAÇÃO

PROF. GUILHERME FRÓES SILVA

https://guilhermepucrs.github.io/automacao

Introdução

Sensores são dispositivos amplamente utilizados na automação industrial que transformam grandezas físicas, como posição, velocidade, temperatura, nível, pH etc., em grandezas mais convenientes de serem digitalizadas

- Tensão
- Corrente
- Fibra Óptica

Introdução

Sensores Discretos:

- Sinal elétrico de saída é do tipo 0-1, "on"-"off", isto é, binário.
- São utilizados para detecção de eventos, por exemplo, chegada de um objeto a uma posição, um nível de um fluído a um valor, etc.

Sensores de medição ou transdutores:

- Sinal elétrico de saída relaciona-se com a amplitude do seu sinal de entrada.
- Analógico ou digital.
- Utilizados em controle dinâmico de processos.

Sensores Discretos

Entre os sensores discretos existem duas grandes classes:

De contato mecânico
 Fim de curso
 Sensores de Proximidade

A ligação dos sensores digitais nos Controladores Industriais e fontes podem ser de dois, três ou quatro fios.

Dois fios:

Tipo contato seco

Três ou quatro fios:

• Transistorizados PNP (sensores sourcing) ou NPN (sensores sinking).

Em qualquer caso a corrente poderá fluir para a entrada do Controlador, caracterizando a montagem do tipo sourcing ou, então, fluir para o sensor, caracterizando a montagem tipo sinking.

NPN TRANSISTOR

load C lc R E

PNP TRANSISTOR

CONEXÃO PNP

CONEXÃO NPN

ESCOLA

Contato Mecânico

Uma força entre o sensor e o objeto é necessária para efetuar a detecção do objeto.

Estes dispositivos tem o corpo reforçado para suportar as forças mecânicas decorrentes do contato com objetos.

Configurações:

- Chaves (NA/NO) ou (NF/NC);
- Contatos podem ser retentivos;
- Dois ou quatro pares de contatos elétricos;
- Atuação por pressão;
- Abertura e fechamento lento de contatos;
- Para aplicações de segurança ou aplicações normais.

Contato Mecânico

Chaves eletromecânicas: detecção de um evento.

Botões de Comando

Chaves Fim-de-Curso

Para aplicações Normais

O objeto é detectado pela proximidade ao sensor.

Princípios de funcionamento:

- · Indutivo: detecta alterações em um campo eletromagnético, é próprio para objetos metálicos;
- · Capacitivo: detecta alterações em um campo eletrostático, é próprio para materiais metálicos e não-metálicos;

O objeto é detectado pela proximidade ao sensor.

Princípios de funcionamento:

- · Ultrassônico: usa ondas mecânicas (som), é próprio para objetos de grandes proporções;
- Fotoelétrico: detecta variações de luz infravermelha recebida;
- Magnético Efeito Hall: detecta alterações de campo magnético;
- RFID: Identificação por rádio frequência três partes: Interface, tranceivers e tag.

Sensores de Proximidade Indutivos

Indutivos – Anatomia

Principles of Operation for Inductive Proximity Sensors

Inductive proximity sensors are designed to operate by generating an electromagnetic field and detecting the eddy current losses generated when ferrous and nonferrous metal target objects enter the field. The sensor consists of a coil on a ferrite core, an oscillator, a trigger-signal level detector and an output circuit. As a metal object advances into the field, eddy currents are induced in the target. The result is a loss of energy and a smaller amplitude of oscillation. The detector circuit then recognizes a specific change in amplitude and generates a signal which ESCOI will turn the solid-state output "ON" or

A metal target approaching an inductive proximity sensor (above) absorbs energy generated by the oscillator. When the target is in close range, the energy drain stops the oscillator and changes the output state.

Correction Factors

Target Material	Approximate Correction Factor	
Mild Steel	1.0	
Stainless Steel	0.85	
Brass	0.50	
Aluminum	0.45	
Copper	0.40	

Indutivos – Anatomia

Hysteresis (Differential Travel)

The difference between the operate and the release points is called hysteresis or differential travel. The amount of target travel required for release after operation must be accounted for when selecting target and sensor locations. Hysteresis is needed to help prevent chattering (turning on and off rapidly) when the sensor is subjected to shock and vibration or when the target is stationary at the nominal sensing distance.

Vibration amplitudes must be smaller than the hysteresis band to avoid chatter.

Proximidade (Indutivos)

Indutivos

NPN: The sensor switches the load to the negative terminal. The load should be connected between the sensor output and positive terminal.

PNP: The sensor switches the load to the positive terminal. The load should be connected between the sensor output and negative terminal.

Sinking: See NPN.

Sourcing: See PNP.

Sensores Discretos

Proximidade

Indutivos

Spacing Between Shielded Sensors (Flush-Mountable) and Nearby Metal Surfaces

Shielded proximity sensors allow the electro-magnetic field to be concentrated to the front of the sensor

face. Shielded construction allows the proximity to be mounted flush in

surrounding metal without causing a false trigger.

Limit Switch Style (871L and 872L)

Limit Switch Style (802PR)

Tubular Style Extended Sensing (872C)

Housing Diameter	Dimension X	
6.5 mm	1 mm	
12 mm	2 mm	
18 mm	4 mm	
30 mm	6 mm	

802PR-LB or 802PR-XB can be mounted side

Indutivos

Spacing Between Unshielded Sensors (Nonflush-Mountable) and Nearby Metal Surfaces

Longer sensing distances can be obtained by using an unshielded

Tubular Style

sensor. Unshielded proximity sensors

require a metal-free zone around the sensing face. Metal immediately opposite the sensing face should be no

Limit Switch Style (871L and 872L)

Limit Switch Style (802PR)

closer than three times the rated

nominal sensing distance of the sensor.

Tubular Style Extended Sensing (872C)

Tubular Style Long Range Sensing (872C)

Housing Diameter	Dimension X	
8 mm	8 mm	
12 mm	13 mm	
18 mm	20 mm	
30 mm	35 mm	

Proximidade (Indutivo – Aplicações)

Machine Tools

Plating Line

Plating Line

Grinding Machines

Wood Industry

Conveyor Belts

Petroleum Industry— Valve Position

Proximidade (Indutivo – Aplicações)

Food Industry

Stainless Steel Sheet Welder

Proximidade (Indutivo – Aplicações)

On Line Parts Sorting

Railroad Yard Position Sensing

Coolant Resistant Sensing

Up and Downslope Control of Continous Tube Welder

Nut Placement on Transformer

Closed Barrier Indicator

Capacitivos

Capacitivo – Anatomia:

Principles of Operation for Capacitive Proximity Sensors

Capacitive proximity sensors are designed to operate by generating an electrostatic field and detecting changes in this field caused when a target approaches the sensing face. The sensor's internal workings consist of a capacitive probe, an oscillator, a signal rectifier, a filter circuit and an output circuit.

In the absence of a target, the oscillator is inactive. As a target approaches, it raises the capacitance of the probe system. When the capacitance reaches a specified threshold, the oscillator is activated which triggers the output circuit to change between "on" and "off."

The capacitance of the probe system is determined by the target's size, dielectric constant and distance from the probe. The larger the size and dielectric constant of a target, the more it increases capacitance. The shorter the distance between target and probe, the more the target increases capacitance.

Proximidade (Capacitivo)

Shielded Probe

Shielded sensors are constructed with a metal band surrounding the probe. This helps to direct the electrostatic field to the front of the sensor and results in a more concentrated field.

Shielded Probe

Shielded construction allows the sensor to be mounted flush in surrounding material without causing false trigger.

Unshielded Probe

Unshielded sensors do not have a metal band surrounding the probe and hence have a less concentrated electrostatic field. Many unshielded models are equipped with compensation probes, which provide increased stability for the sensor. Compensation probes are discussed later in this section

Unshielded Probe

Unshielded capacitive sensors are also more suitable than shielded types for use with plastic sensor wells, an accessory designed for liquid level

Proximidade (Capacitivo)

NPN: The sensor switches the load to the negative terminal. The load should be connected between the sensor output and positive terminal.

PNP: The sensor switches the load to the positive terminal. The load should be connected between the sensor output and negative terminal.

Sinking: See NPN.

Sourcing: See PNP.

Proximidade (Capacitivos – Aplicações)

Wood Industry

Level Detection

Liquid Level Detection

Food Processing

Sight-Tube Level Detection

Proximidade (Fotoelétricos)

Supressão de fundo

Detecção de objetos

Sensores Miniatura

Detecção de cor e contraste

Uso geral

Controle de zona de transportadores

ESCOLA

Fibra ótica

Laser

Forquilha

Cortinas de luz

Sistemas de visão

Área classificada

Sensores para etiquetas

Sensores especializados

Proximidade (Fotoelétricos)

Figure 1 LED Light-Emitting Diode

Visible red, blue, and yellow LEDs are also used in special applications where specific colors or color contrasts must be detected. These LEDs are also used as status indicators on photoelectric sensors.

LEDs are rugged and reliable components, making them ideal for use in photoelectric sensors. They operate over a wide temperature range and are very resistant to damage from shock and vibration

Light Detector

A photodetector is the component used to detect the light source. A photodiode or phototransistor is a robust solid-state component that provides a change in conducted current depending on the amount of light detected.

Photodetectors are more sensitive to certain wavelengths of light. The spectral response of a photodetector determines its sensitivity to different wavelengths in the light spectrum. To improve sensing efficiency, the LED and photodetector are often spectrally matched. An example is shown in Figure 2.

Figure 2 Spectral Response

The invisible (infrared) LED is a spectral match for this silicon phototransistor, and has much greater efficiency than a visible (red) LED.

The photodetector and associated circuitry are referred to as the receiver.

Proximidade (Fotoelétricos)

Lens

LEDs typically emit light and photodetectors are sensitive to light over a broad area. Lenses are used with LED light sources and photodetectors to narrow this area. As the area is narrowed, the range of the LED or photodetector increases. As a result, lenses also increase the sensing distance of photoelectric sensors (see Figure 3).

The light beam from an LED and lens combination is typically conical in shape. The area of the cone increases with distance.

Some photoelectric sensors are optimized for extra sensing distance. The light beam (or field of view) emitted by these sensors is fairly narrow. However, alignment can be difficult if the field of view is too narrow. Other photoelectric sensors are designed for detection of objects within a broad area. These sensors have a wider field of view, but a shorter overall range.

Table 1 Photoelectric Sensing Modes Advantages and Cautions

Sensing Mode	Applications	Advantages	Cautions
Transmitted Beam	General purpose sensing Parts counting	High margin for contaminated environments Longest sensing distances Not affected by second surface reflections Probably most reliable when you have highly reflective objects	More expensive because of separate light source and receiver required, more costly wiring Alignment important Avoid detecting objects of clear material
Retroreflective	General purpose sensing	Moderate sensing distances Less expensive than transmitted beam because simpler wiring Ease of alignment	Shorter sensing distance than transmitted beam Less margin than transmitted beam May detect reflections from shiny objects (use polarized instead)
Polarized Retroreflective	General purpose sensing of shiny objects	Ignores first surface reflections Uses visible red beam for ease of alignment	Shorter sensing distance than standard retroreflective May see second surface reflections
Standard Diffuse	Applications where both sides of the object cannot be accessed	Access to both sides of the object not required No reflector needed Ease of alignment	Can be difficult to apply if the background behind the object is sufficiently reflective and close to the object
Sharp Cutoff Diffuse	Short-range detection of objects with the need to ignore backgrounds that are close to the object.	Access to both sides of the object not required Provides some protection against sensing of close backgrounds Detects objects regardless of color within specified distance	Only useful for very short distance sensing Not used with backgrounds close to object
Background Suppression Diffuse	General purpose sensing Areas where you need to ignore backgrounds that are close to the object	Access to both sides of the target not required Ignores backgrounds beyond rated sensing distance regardless of reflectivity Detect objects regardless of color at specified distance	More expensive than other types of diffuse sensors Limited maximum sensing distance
Fixed Focus Diffuse	Detection of small targets Detects objects at a specific distance from sensor Detection of color marks	Accurate detection of small objects in a specific location	Very short distance sensing Not suitable for general purpose sensing Object must be accurately positioned
Wide Angle Diffuse	Detection of objects not accurately positioned Detection of very fine threads over a broad area	Good at ignoring background reflections Detecting objects that are not accurately positioned No reflector needed	Short distance sensing
Fiber Optics	Allows photoelectric sensing in areas where a sensor cannot be mounted because of size or environment considerations	Glass fiber optic cables available for high ambient temperature applications Shock and vibration resistant Plastic fiber optic cables can be used in areas where continuous movement is required Insert in limited space Noise immunity Corrosive areas placement	More expensive than lensed sensors Short distance sensing

Proximidade (Fotoelétricos - Feixes)

Effective Beam

Effective Beam with Apertures

Retroreflective Sensing

Polarized Retroreflective Sensing

Automação Aula 3

Proximidade (Fotoelétricos)

Polarized Retroreflective

Sharp Cutoff Diffuse

Background Suppression

Transmitted Beam Receiver

POLITECNICA

Conexão elétrica PLCs (CLPs)

Conexão elétrica PACs (CAPs)

Switch

EtherNet/IP

Proximidade

RFID

CompactLogix ControlLogix

> Add-On-Profile for RSLogix5000 Software

Upload EDS files from the **Armor Block**

Visualization

- RFID Interface with dual port switch incl. DLR
- 1 or 2 RFID Channels
- 2 I/O's for sensors

Read/Write Transceivers

Proximidade (RFID)

Proximidade (RFID)

Tranceivers

- 13.56 MHz
- ISO 15693 / ISO 18000-3 M1
- Read/write ICODE tags SLI, SL2
- M12 connector
- IP67
- Max. distance from E/IP interface is 300 ft
- Max sensing range (50mm Tag)
 - Rectangular: 168 mm
 - Square: 85 mm
 - M30: 60 mm
 - M18: 30 mm

Proximidade (RFID)

Tags

- ICODE ISO 15693 Compliant
- EEPROM / FRAM Memory
- 64,112,128,256, 2Kbyte read/write tags
- Read/write speeds up to 500 bytes/s
- Passive tags (no battery)
- Reliable performance in harsh environments
- Different style tags
 - Label, Smart card, Disc, Square
- High temperature tags
- Mount on metal tags
- High impact resistant tags

Transdutores

POLITÉCNICA

Seu sinal de saída pode ser **analógico** ou **digital**. Utilizados em controle dinâmico de processos.

Sensores de Nível: detecção do nível de um líquido.

Sensores de Vazão: detectar vazão de um fluído.

Sensores de Temperatura: medir temperatura de um fluído

Sensores de Pressão: medir a pressão de um fluído ESCOLA

Sensores de Nível

On-site control using external LED

display

PNP switch output (NO or NC)

Process temperature -40...100° C Process pressure -14.5...580 psi Stainless steel housing (316L)

Process connection ½" NPT, ¾" NPT, G1/2

_Piezoelectric technology

DC-PNP with M12 connector

AC with Valve connector

IP67

Sensores de Vazão

Measure both flow and temperature

Cap can be rotated up to 310°

All stainless steel 316L housing

Four Process Connections

Male: ¼ NPT, ½ NPT, G1/4 BSPP, G1/2

BSPP

IP66

Different probe insertion lengths

30mm, 100mm

6 mm diameter

ESCOLA

POLITÉCNICA

Display can be inverted for upside-down mounting Selectable units °C, °F, K or %

Outputs: 2PNP or 1PNP + 4-20mA

4-20mA either flow or temperature

Hysteresis or Analog switching modes

Calorimetric Flow Technology

Flow rates 0.03 to 3 m/s (0.1 to 9.8 ft/s)

Temperature (RTD) -20 to 85°C (-4 to 185°F)

Sensores de Temperatura

Programmable Temperature range -50°..150°C (-58°...302°F)

Different probe insertion lengths
50mm, 100mm, 200mm
6 mm diameter

Sanitary connections
1- 1½" and 2" standard clamp sizes
Flush fittings for contact with consumables
Food, Beverage, and pharmaceutical applications 3-A approved

Sensores de Pressão

Six Different Pressure Ranges

-15 .. 15 PSI

0 .. 60 PSI

0 .. 150 PSI

0..600 PSI

0 .. 1,500 PSI

0 .. 6,000 PSI

PC programmable via USB communication port

Six Different Process Connections

Female and Male: ¼ NPT, SAE 7/16-20, G1/4

BSPP

Accessory process connection bases available

Sanitary connections ¾", 1- 1 ½" and 2" clamp sizes 3-A approved

Standard tri-clamp configurations
Flush fittings for contact with consumables

Transdutores de Entrada

- Tipos de ligação:
 - 2, 3 e 4 fios (tensão ou corrente)

Tipos de sinais mais utilizados:

0 a 10Vdc

0 a 5Vdc

1 a 5Vdc

-10 a +10Vdc

4 a 20 mA

0 a 20 mA

-20 a +20mA

Transdutores de Entrada PACs:

1769-L27ERM-QBF1B Controller Single-ended Connections Wiring Diagrams

IMPORTANT: For single-ended connections, remember the following:

- For both input types, we recommend that you use Belden #8761or equivalent cable.
- The mV ranges with the Voltage input type do not support single-ended encoder wiring.

Tipo do sinal elétrico:

• A configuração do tipo de sinal de tensão ou corrente pode ser pelos switches e/ou software de programação do controlador ou do cartão e I/O remoto.

Tipos de sinais mais utilizados:

0 a 10Vdc

0 a 5Vdc

1 a 5Vdc

-10 a +10Vdc

4 a 20 mA

0 a 20 mA

-20 a +20mA

Encoders

De Pulsos (Incremental e Absolutos):

- Incremetal:
 - Unidirecional: Canal A
 - Bi-direcional: Canal A e B

Necessita de controladores com HSC nas entradas digitais

De rede de comunicação (Absoluto):

Encoders Incrementais

Single Channel
Are used
to detect motion

Dual Channel Are used to detect motion & direction

Dual Channel with Zero Index Are usedto detect motion & direction with a reference marker for the home position

POLITÉCNICA

Encoders Incrementais

Encoders Absolutos

Entradas HSC nos PACs

The following graphic shows the **embedded high-speed counter module terminations** on the 1769-L27ER-QB1B controller. The embedded high-speed counter module terminations on the 1769-L24ER-QBFC1B controller are the same.

Próxima Aula

FERIADO (30/03)

LADDER (06/04)

