【物件名】

提出の理由

【提出の理由】

1. 提出理由の要約

対象権利

特許法第29条第2項

【添付書類】 5- **IIIIIIIIII**140

請求項

レーザー光束を発する光源と、その中心軸 を中心として一定方向に回転しながらその 側面に形成された反射面にて前記レーザー 光束を反射することによって、前記レー ザー光束を主走査方向に走査するポリゴン ミラーと、このポリゴンミラーによって走 査されつつ反射された前記レーザー光束を 走査対象面上に収束させる結像光学系とを 備えた走査光学系であって、

前記レーザー光束の前記ポリゴンミラーの 反射面に対する入射方向が、前記主走査方 向に直交する副走査方向において斜めに設

前記結像光学系を構成するとともにゴース ト光を反射させるレンズ面を有するレンズ の光軸が、副走査方向において、前記ポリ ゴンミラーの反射面に対する前記レーザー 光束の入射点近傍にて当該各反射面に直交 するとともに、

当該レンズ面の形状が、前記ポリゴンミ ラーの反射面によって反射されたレーザー 光束を、前記ゴースト光として、副走査方 向において前記ポリゴンミラーの反射面の 外側へ向けて反射させる形状となっている ことを特徴とする走査光学系。

刊行物

刊行物 1 請求項 1

「複数の発光部を有する光源手段から 放射された複数の光ピームを光学手段 を介して偏向手段の偏向面に対して入 射させ、該偏向手段で偏向された複数 の光ビームを結像手段を介して被走査 面上に導光し、該被走査面上を複数の 光ビームで走査する走査光学装置にお いて、以下略~」

同刊行物請求項4

「前記光学手段は前記光源手段から放 射された複数の光ピームを前記偏向手 段の偏向面に対し副走査断面内で斜め 方向から入射させることを特徴とする 請求項1の走査光学装置。」

同刊行物段落「0069」表2におけ る方向余弦の値より、反射面に直交し ていることは自明である。

ゴースト光をポリゴンミラーの反射面 の外側に向けて反射させる方法は、 刊行物2や刊行物3などによりすでに 公知となっている。

請求項1の発明は、上記刊行物1と公知技術との組み合わせで当業者が容易に 発明し得るから、特許法29条第2項の規定により特許を受けることが出来ない。

	対象権利	刊行物
請求項	前記レンズは、前記結像光学系内において	刊行物1の実施例より
2	前記ポリゴンミラーに最も近接して配置さ	抽出された値は、
	れており、	$\beta = 0.1047198$
•	副走査方向における前記レーザー光束の前	D=30. 28
•	記ポリゴンミラーの各反射面に対する入射	R1 = 1.00E + 24
	角をβ,前記ポリゴンミラーの各反射面か	R2=1.00E+24
	ら前記レンズまでの距離をD、前記ポリゴ	である。
	ンミラーの各反射面の副走査方向における	これを条件式(1)へ適用した場合
	厚さをH, 前記レンズの第1面の副走査断	H/2<6. 341831088
	面の曲率半径をR21とした場合に、下記	となる。
	式 (1) を満たすことを特徴とする請求項	Hの値は記載が無いが、刊行物4よ
•	1 記載の走査光学系。	り、一般的には3mm~4mm程度で
		あることを考慮すると、対象権利請求
	$H/2 < 2\beta D (D-Rz1)/Rz1$	項2条件式(1)を満たす。
-	(1)	

	対象権利	刊行物
請求項	前記レンズは、前記結像光学系内において	刊行物1の実施例より
3	前記ポリゴンミラーに最も近接して配置さ	抽出された値は、
	れており、	$\beta = 0.1047198$
	副走査方向における前記レーザー光束の前	D=30. 28
	記ポリゴンミラーの各反射面に対する入射	R1 = 1.00E + 24
	角をB,前記ポリゴンミラーの各反射面か	R2=1.00E+24
	ら前記レンズまでの距離をD, 前記ポリゴ	N=1.619
	ンミラーの各反射面の副走査方向における	Lz = -3.03E + 01
	厚さをH, 前記レンズの第1面及び第2面	である。
	の副走査断面の曲率半径を夫々R z 1, R	これを条件式(2)へ適用した場合
	22, 前記レンズの使用波長における屈折	H/2<6.341831088とな
	率をNとした場合に、下記式(2)を満た	る 。
	すことを特徴とする請求項1記載の走査光	Hの値は記載が無いが、刊行物4よ
	学系。	り、一般的には3mm~4mm程度で
	$H/2 < \beta D(D-Lz)/Lz $	あることを考慮すると、対象権利請求
. '	(2)	項2条件式(1)を満たす。
	但し、Lz=Rz1Rz2D/(2NRz	
	1D-2 (N-1) R z 2D-R z 1R z	
	2)	
	す水項3の発明は、上記刊行物1と公知技術	との組み合わせで当業者が容易に
- AA	月し得るから、特許法29条第2項の規定に、	より特許を受けることが出来ない。

	対象権利	刊行物
請求項	前記結像光学系は、前記レンズとしての走査レンズと、この走査レンズより走査対象	刊行物1の実施例に用いられている走 査レンズは、シリンドリカル面を持つ
	面側に配置された像面湾曲補正レンズとに より、構成され、	ものと、2次元多項式非球面を持つも のが開示されており、上記レンズに周
	前記走査レンズにアナモフィック非球面、	知技術である非球面形状を組み合わせることは当業者にとって容易である。
	前記像面湾曲補正レンズに2次元多項式非 球面を、夫々少なくとも1面用いた	ることは当来者にとうて各のてのも。
•	ことを特徴とする請求項1乃至3の何れか に記載の走査光学系。	

	対象権利	刊行物
6	前記走査レンズの副走査面における断面形 状は、光軸に対して対称な形状である ことを特徴とする請求項1乃至5の何れか に記載の走査光学系。	ている走査レンズは、副走査方向に曲 車を持たないシリンドリカルレンズで あり副走査面における断面形状は対称 である。
333 F	青水項6の発明は、上記刊行物1と公知技術 月し得るから、特許法29条第2項の規定に	との組み合わせで当業者が容易に より特許を受けることが出来ない。

	対象権利	刊行物
請求項7	前記ポリゴンミラーの各反射面に対して、 複数の前記レーザー光束が、副走査方向に おいて斜めに入射する ことを特徴とする請求項1万至6の何れか に記載の走査光学系。	刊行物 1 請求項 4 「前記光学手段は前記光源手段から放射された複数の光ビームを前記偏向手段の偏向面に対し副走査断面内で斜め方向から入射させることを特徴とする請求項 1 の走査光学装置。」の記載がある。
発	請求項7の発明は、上記刊行物1と公知技術。 明し得るから、特許法29条第2項の規定に。	との組み合わせで当業者が容易に より特許を受けることが出来ない。

	対象権利	刊行物
請求項	前記結像光学系は、前記レンズとしての走	刊行物1段落「0037」
8	査レンズと、この走査レンズより走査対象	「本実施形態における2段トーリック
'	面側に配置された像面湾曲補正レンズとに	レンズ4は図3(B)に示すように副
	より、構成され、	走査方向に上下2つのトーリックレン
	前記複数のレーザー光束は、前記ポリゴン	ズ4a,4bに別れており、上記2本
	ミラーの各反射面にて反射された後に、共	の斜入射光線2a,2bがそれぞれ独
i	通の走査レンズ,及び、個別の前記像面湾	立に眩トーリックレンズ4a,4bに
	曲補正レンズを順に透過する	入射しており、出射面では光線間隔が
	ことを特徴とする請求項1乃至7の何れか	19.2mmとなるように配置されて
	に記載の走査光学系。	いる。これにより本実施形態では後述
		する光路折り曲げミラー(分離ミ
		ラー)6,8が副走査方向に干渉せず
		に設置可能となるように構成してい
		る。J
·		の記載がある。

対象権利	刊行物
青 求 項 前記複数のレーザー光束は、前記走査レン ズの光軸に対して対称に配置されている ことを特徴とする請求項1乃至8の何れか に記載の走査光学系。	「前配偏向手段の偏向面に入射する前

対象権利	刊行物
前記走査レンズはプラスチックレンズであ	レンズのような光学系をプラスチック
る ことを特徴とする請求項1乃至9の何	などで作成することは、対象権利出願
れかに記載の走査光学系。	時にはすでに公知の技術である。
	前配走査レンズはプラスチックレンズである。ことを特徴とする請求項1乃至9の何

ページ: 47/E (47)

(4旅付書類の目録4)

(4物件名扌)

刊行物1の写 1通

刊行物2の写 1通

刊行物3の写 1通

刊行物4の写 1通

[Title of matter] Reasons for submission [Reasons for submission]

1. Summary of the reasons for submission Patent Law, 29^{th} article, 2^{nd} section

	Object right	Publications
Claim 1	A scanning optical	Claim 1 of Publication 1
	system comprising: a	A scanning optical apparatus
,	light source for	for causing a plurality of
	emitting a laser beam; a	light beams irradiated from
	polygon mirror for	light source means having a
	causing the laser beam	plurality of light emitting
	to scan in the main	means to be made incident
	scanning direction by	into the polarization plane
	reflecting the laser	of polarizing means via
	beam from a reflection	optical means, guiding a
	surface formed on the	plurality of light beams
	side thereof while	polarized by the
	rotating in a constant	corresponding polarizing
	direction around the	means onto the surface to be
	center axis thereof; and	scanned, via imaging means;
	an imaging optical	and scanning the
	system for causing the	corresponding surface to be
	laser beam, which is	scanned, by means of a
	reflected while being	plurality of light beams;
	scanned by the polygon	wherein =the following is
	mirror, to converge on	omitted=.
	an object to be scanned,	
	wherein the incident	Claim 4 of the same
	direction of the laser	Publication
	beam to the reflection	The scanning optical
	surface of the polygon	apparatus according to Claim
	mirror is set to be	1, wherein the optical means
	diagonal in the sub-	causes a plurality of light
.	scanning direction	beams irradiated from the
	orthogonal to the main	light source means to be made
]	scanning direction;	incident in a diagonal
	the optical axis of a	direction in the sub-scanning
	lens composing the	section to the polarization

imaging optical system and having a lens surface for reflecting ghost light is made orthogonal to the reflection surfaces in the vicinity of the incident section of the laser beam to the corresponding reflective surfaces of the polygon mirror; and the corresponding lens surface is shaped so that laser beams reflected by the reflection surfaces of the polygon mirror are reflected, as the ghost light, outside of the reflection surfaces of the polygon mirror in the sub-scanning direction.

surface of the polarizing means.

Based on the value of the directional cosine in Table 2 in Paragraph [0069] of the same publication, it is obvious that the optical axis is orthogonal to the reflection surface.

A method for reflecting ghost light outside of the reflection surface of the polygon mirror has publicly been known by Publications 2 and 3.

The invention of Claim 1 is not patentable by the regulations of Japanese Patent Law, 29^{th} article, 2^{nd} section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications
Claim 2	The scanning optical	Based on the embodiment of
	system according to Claim	Publication 1, the
	1 wherein the lens is	extracted values are:
	disposed closest to the	$\beta = 0.1047198$
	polygon mirror in the	D=30.28
	imaging optical system,	R1=1.00E+24, and
	and, where it is assumed	R2=1.00E+24.
	that the incidence angle	When these are applied to
	of the laser beam to the	the conditional expression
	respective reflection	(1), H/2<6.341831088 is

surfaces of the polygon mirrors in the subscanning direction is β , the distance from the respective reflection surfaces of the polygon mirror to the lens is D, the thickness of the respective reflection surfaces of the polygon mirror in the sub-scanning direction is H, and the curvature radius of the first surface of the lens in the sub-scanning section is Rz1, the following expression (1) is satisfied. $H/2 < |2\beta D(D-Rz1)/Rz1|...(1)$

brought about.
No description is found for the value of H. However, if it is considered based on Publication 4 that the value H is generally 3mm through 4mm, the conditional expression (1) of Claim 2 of the object right is satisfied.

The invention of Claim 2 is not patentable by the regulations of Japanese Patent Law, $29^{\rm th}$ article, $2^{\rm nd}$ section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications
Claim 3	The scanning optical system according to Claim 1 wherein the lens is disposed closest to the polygon mirror in the imaging optical system, and, where it is assumed that the incidence angle of the laser beam to the respective reflection surfaces of the polygon mirrors in the subscanning direction is β , the distance from the respective reflection	Based on the embodiment of Publication 1, the extracted values are: $\beta = 0.1047198$ $D= 30.28$ $R1= 1.00E+24,$ $R2= 1.00E+24,$ $N=1.619, \text{ and }$ $Lz= -3.03E+01.$ When these are applied to the conditional expression (2), H/2<6.341831088 is brought about. No description is found for the value of H. However, if

surfaces of the polygon mirror to the lens is D, the thickness of the respective reflection surfaces of the polygon mirror in the sub-scanning direction is H, and the curvature radii of the first surface and the second surface of the lens in the sub-scanning section are, respectively, Rz1 and Rz2, the following expression (2) is satisfied. $H/2 < |\beta D(D-Lz)/Lz|...(2)$ However, Lz = Rz1Rz2D/(2NRz1D-2(N-1)Rz1Rz2)

the value of H. However, if it is considered based on Publication 4 that the value H is generally 3mm through 4mm, the conditional expression (1) of Claim 2 of the object right is satisfied.

The invention of Claim 3 is not patentable by the regulations of Japanese Patent Law, $29^{\rm th}$ article, $2^{\rm nd}$ section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications
Claim 4	The scanning optical system according to any one of Claims 1 through 3, wherein the imaging optical system includes a scanning lens operating as the lens and an image surface curvature correcting lens disposed at the scanning object side from the scanning lens, wherein the scanning lens employs at least one anamorphic aspheric surface, and the image curvature correcting lens	For the scanning lens employed in Publication 1, a lens having a cylindrical surface and a lens having a two-dimensional polynomial aspheric surface are disclosed. It is conceivable to one skilled in the same art that an aspheric shape, which is a publicly known technology, is combined with the above-described lens.

 employs at least one two-dimensional polynomial aspheric surface, respectively.			
 6 63 1 1	 •	 	

The invention of Claim 4 is not patentable by the regulations of Japanese Patent Law, 29^{th} article, 2^{nd} section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications
Claim 6	The scanning optical	The scanning lens used in
	system according to any	FIG. 3 of the embodiment of
	one of Claims 1 through 5,	Publication 1 is a
	wherein the sectional	cylindrical lens not having
	shape of the scanning lens	any curvature in the sub-
	in the sub-scanning	scanning direction, and the
	surface is a symmetrical	sectional shape in the sub-
•	shape to the optical axis.	scanning surface is
•		symmetrical.

The invention of Claim 6 is not patentable by the regulations of Japanese Patent Law, $29^{\rm th}$ article, $2^{\rm nd}$ section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications
Claim 7	The scanning optical	Claim 4 of Publication 1
	system according to any	describes
	one of Claims 1 through 6,	[The scanning optical
	wherein a plurality of the	apparatus according to
	laser beams are made	Claim 1, wherein the
	diagonally incident into	optical means causes a
	the respective reflection	plurality of light beams,
	surfaces of the polygon	which are emitted from the
	mirror in the sub-scanning	light source means, to be
	direction.	made incident into the
		polarization surface of the
		polarizing means in a
		diagonal direction in the

sub-scanning section.

The invention of Claim 7 is not patentable by the regulations of Japanese Patent Law, 29^{th} article, 2^{nd} section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications
Claim 8	The scanning optical	Paragraph [0037] of
	system according to any	Publication 1 describes
	one of Claims 1 through 7,	[A two-stage toric lens
	wherein the imaging	according to the present
	optical system includes a	embodiment is divided into
	scanning lens operating as	two upper and lower toric
	the lens and an image	lenses 4a and 4b in the
	curvature correcting lens	sub-scanning direction as
	disposed at the scanning	depicted in FIG. 3(B), and
	object side from the	the above-described two
	scanning lens, and a	diagonal incident light
,	plurality of laser beams	beams 2a and 2b are
	penetrate a common	independently made incident
	scanning lens and	into the corresponding
	individual image curvature	toric lenses 4a and 4b,
	correcting lenses in order	respectively and are
	after being reflected by	disposed so that the
	the respective reflection	spacing between light beams
	surfaces of the polygon mirror.	becomes 19.2mm on the
	mirror.	emission surface.
		Therefore, in the present
	·	embodiment, optical path
		folding mirrors (separation
		mirrors) 6 and 8 described
·		later can be installed
		without interference in the
The introp	tion of Claim 9 is not not an	sub-scanning direction.]

The invention of Claim 8 is not patentable by the regulations of Japanese Patent Law, 29^{th} article, 2^{nd} section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications		
Claim 9	The scanning optical	Claim 2 of Publication 1		
	system according to any	describes		
	one of Claims 1 through 8,	[A scanning optical		
	wherein a plurality of	apparatus according to		
	light beams are disposed	Claim 1, wherein a		
	symmetrically to the	plurality of light beams		
	optical axis of the	made incident into the		
	scanning lens.	polarization surface of the		
		polarizing means are made		
		incident at a roughly		
		symmetrical angle to the		
		optical axis of the optical		
		means in the sub-scanning		
		section, and at the same		
		time, the generatrix shape		
		of a plurality of rotation-		
		asymmetrical lenses is		
		mirror-symmetrical to the		
	tion of Claim Q in materials	symmetrical axis.		

The invention of Claim 9 is not patentable by the regulations of Japanese Patent Law, 29^{th} article, 2^{nd} section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

	Object right	Publications
Claim 10	The scanning optical	Before application of the
	system according to any	object right, it is already
	one of Claims 1 through 9,	a publicly known technology
	wherein the scanning lens	that an optical system such
	is a plastic lens.	as lenses is made of
		plastic, etc.

The invention of Claim 10 is not patentable by the regulations of Japanese Patent Law, 29^{th} article, 2^{nd} section because it is easily conceivable by one skilled in the same art based on a combination of the above-described publication 1 and a publicly known art.

[List of documents attached hereto]

[Name of the matter]

Copy of	Publication	1	1	сору
Copy of	Publication	2	1	сору
Copy of	Publication	3	1	сору
Copy of	Publication	4	1	сору