Concours National Commun - Session 2014

Corrigé de l'épreuve de mathématiques II Filière MP

Sous-espaces de $\mathcal{M}_2(\mathbb{K})$ formés de matrices diagonalisables

Corrigé par M.TARQI¹

Exercice

1. Puisque A est symétrique réelle, alors elle est othogonalement diagonalisable. Soit λ une valeur propre de A et $X \in \mathcal{M}_{n,1}$ un vecteur propre associé à λ . Puisque $X \neq 0$, (X|X) > 0 d'où :

$$(X|AX) = \lambda(X|X)$$

ou encore
$$\lambda = \frac{(X|AX)}{(X|X)} \ge 0$$
.

2. Il existe une matrice P orthogonale telle que $A = PD^tP$, D étant une matrice diagonale dont les éléments diagonaux λ_i sont positifs (d'après 1.).

Pour tout $i \in [1, n]$, posons $\lambda_i = \alpha_i^2$. Soit $\Delta = \operatorname{diag}(\alpha_1, ..., \alpha_n)$. On a $A = PD^tD = (P\Delta)^t(P\Delta)$. Donc il suffit de prendre $M = {}^t(P\Delta)$.

- 3. (a) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que AX = 0 et donc $^tMMX = 0$ et aussi $^tX^tMMX = (MX|MX) = 0$, donc MX = 0. Réciproquement, si MX = 0, alors $AX = ^tMMX = 0$.
 - (b) La question précédente montre que $\ker A = \ker M$, donc A et M ont le même rang.
- 4. (a) Posons $M = (m_{ij})_{1 \le i,j \le n}$. On a, pour tout (i,j), $a_{ij} = \sum_{k=1}^{n} m_{ki} m_{kj}$; c'est le produit scalaire des vecteurs colonnes C_i et C_j . Donc $a_{ij} = (C_i|C_j) = {}^tC_iC_j$.
 - (b) Par inégalité de Cauchy-Schwarz, on a $(C_i|C_j)^2 \le (C_i|C_i)(C_j|C_j)$, c'est à dire $a_{ij} \le a_{ii}a_{jj}$.
- 5. On sait que A est de rang 1 si et seulement si, M est de rang 1 ou encore il existe λ_i tel que $C_i = \lambda_1 C_1$ (on changeant au besoin le numérotage on peut supposer la colonne C_1 est non nulle), et donc l'inégalité de Cauchy-schwarz dévient une égalité, ainsi $\forall i \in [\![1,n]\!]$, $a_{ij}^2 = a_{ii}a_{jj}$. Cette condition est suffisante pour que le rang soit égale à 1.
- 6. (a) Si B est positive, d'après ce qui précède, $b_{ij}^2 \le b_{ii}b_{jj}$ ou encore $a_{ii}a_{jj} \le a_{ii}^2$, donc, en tenant compte de la question 4(b), $a_{ij}^2 = a_{ii}a_{jj}$. Ainsi A est de rang 1 (d'après la question 5.)
 - (b) Soit u l'endomorphisme canoniquement associé à A. u est de rang 1 si et seulement si, il existe $a \in \mathbb{R}^n$ non nul tel que $\forall x \in \mathbb{R}^n$ il existe $\lambda_x \in \mathbb{R}$, $u(x) = \lambda_x a$. Il est clair que l'application : $x \longmapsto \lambda_x$ est une forme linéaire non nulle.

Notons $\mathscr{B} = (e_1, e_2, ..., e_n)$ la base canonique de \mathbb{R}^n , la matrice de u dans cette base s'écrit :

$$M = \begin{pmatrix} l(e_1)a_1 & l(e_2)a_1 & \dots & l(e_n)a_1 \\ l(e_1)a_2 & l(e_2)a_2 & \dots & l(e_n)a_2 \\ \vdots & \vdots & \ddots & \vdots \\ l(e_1)a_n & l(e_2)a_2 & \dots & l(e_n)a_n \end{pmatrix} = X^t Y,$$

^{1.} M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc. E-mail : medtarqi@yahoo.fr

où $X={}^t(l(e_1),l(e_2),...,l(e_n))\neq 0$ et $Y=a={}^t(a_1,a_2,\ldots,a_n)\neq 0$. Mais $A={}^tA$, et comme $\mathscr B$ est une bon, alors $M={}^tM$ ce qui donne $X^tY=Y^tX$ puis $XX^tY=XY^tX$, donc X et Y sont colinéaires. Soit donc $\lambda\in\mathbb R$ tel que $Y=\lambda X$, donc nécessairement $\mathrm{Tr}\,M={}^tXY=X^tXX$, donc $\lambda>0$. Il suffit donc de prendre $U=\sqrt{\lambda}X$. Posons $U={}^t(u_1,...,u_n)$, alors $\forall i,\ a_{ij}=u_iu_j$ et donc $b_{ij}=\frac{1}{u_i}\frac{1}{u_j}$, donc $B={}^tVV$ où

 $V = {}^{t}\left(\frac{1}{u_{1}},...,\frac{1}{u_{n}}\right)$, donc B est positive.

Problème

Sous-espaces de $\mathcal{M}_2(\mathbb{K})$ formés de matrices diagonalisables

Première partie Caractérisation des homothéties en dimension 2 Application au commutant

1.1

- 1.1.1 Soit x un vecteur non nul. Puisque x et f(x) sont colinéaires, alors il existe λ_x tel que $f(x) = \lambda_x x$.
- 1.1.2 Soit (e_1, e_2) une base de E, montrons que $\lambda_{e_1} = \lambda_{e_2}$. On a

$$f(e_1 + e_2) = \lambda_{e_1} e_1 + \lambda_{e_2} e_2 = \lambda_{e_1 + e_2} (e_1 + e_2),$$

 $\begin{aligned} &\operatorname{donc}\,(\lambda_{e_1}-\lambda_{e_1+e_2})e_1+(\lambda_{e_2}-\lambda_{e_1+e_2})e_2=0, \\ &\operatorname{donc}\,\lambda_{e_1}-\lambda_{e_1+e_2}=\lambda_{e_2}-\lambda_{e_1+e_2}=0, \\ &\lambda_{e_1}=\lambda_{e_2}. \end{aligned}$

1.1.3 Soit $x = \alpha e_1 + \beta e_2 \in E$, on a :

$$f(x) = \alpha f(e_1) + \beta f(e_2) = \alpha \lambda_{e_1} e_1 + \beta \lambda_{e_2} e_2 = \lambda (\alpha e_1 + \beta e_2) = \lambda x,$$

donc f est une homothétie de rapport λ .

1.2

- 1.2.1 Il est clair que $Id_E \in \mathscr{C}(f)$ et que si $g,h \in \mathscr{C}(f)$ et $\lambda \in \mathbb{K}$, alors $\lambda g + h \in \mathscr{C}(f)$, donc $\mathscr{C}(f)$ est un sous-espace vectoriel de $\mathscr{L}(E)$.
- 1.2.2 Si f est une homothétie, alors $\forall g \in \mathcal{L}(E)$, fg = gf, donc $\mathcal{C}(f) = \mathcal{L}(E)$.

1.3

1.3.1 Puisque f n'est une homothétie, alors il existe $e \in E$, tel que (e, f(e)) soit libre, c'est à dire une base de E.

1.3.2 Les scalaires α et β sont les coordonnées du vecteur g(e) dans la base (e, f(e)). D'autre part, si $g \in \mathcal{C}(f)$, on a :

$$g(f(e)) = f(g(e)) = f(\alpha e + \beta f(e)) = \alpha f(e) + \beta f(f(e)) = (\alpha Id_E + \beta f)(f(e)).$$

Donc les deux endomorphismes g et $\alpha Id_E + \beta f$ coïncident dans la base (e, f(e)), donc ils sont égaux : $g = \alpha Id_E + \beta f$.

1.3.3 D'après ce qui précède, $\mathscr{C}(f) = \operatorname{Vect}(Id_E, f)$, donc (Id_E, f) est une famille génératrice de $\mathscr{C}(f)$, de plus elle est libre, en effet, si $\alpha Id_E + \beta f = 0$, alors en particulier $\beta e + \beta f(e) = 0$, donc $\alpha = \beta = 0$, car (e, f(e)) est une base de E. En conclusion, $\mathscr{C}(f)$ est un sous-espace vectoriel de dimension 2.

1.4 Traduction matricielle

- 1.4.1 Si A est une matrice scalaire, on a AM = MA pour tout $M \in \mathcal{M}_2(\mathbb{K})$, donc $\mathcal{C}(A) = \mathcal{M}_2(\mathbb{K})$.
- 1.4.2 Si A n'est pas une matrice scalaire, comme dans 1.3, $\{I_2,A\}$ forme une base de $\mathscr{C}(A)$, donc $\mathscr{C}(A) = \operatorname{Vect}(I_2,A)$ et $\dim \mathscr{C}(A) = 2$.

Deuxième partie Diagonalisation simultanée dans $\mathcal{M}_2(\mathbb{K})$

- 2.1 Si $a \neq c$ A est diagonalisable (le polynôme caractéristique scindé à racines simples). Si a=c et $b \neq 0$ A n'est pas diagonalisable (A n'est pas une matrice scalaire). En conclusion, A est diagonalisable si et seulement si, $a \neq c$ ou bien a=c et b=0.
- 2.2 D'après la question 2.1, la matrice $\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$ n'est pas diagonalisable dans $\mathcal{M}_n(\mathbb{IK})$.
- 2.3 La matrice A est diagonaliable si et seulement si, il existe une matrice P inversible telle que $A = PDP^{-1}$, donc $A + \lambda I_2 = P(D + \lambda I_2)P^{-1}$, ce qui montre que $A + \lambda I_2$ est semblable à une matrice diagonale, donc $A + \lambda I_2$ est diagonalisable. Inversement, supposons qu'il existe D diagonale et P inversible tels que $A + \lambda I_2 = PDP^{-1}$, donc $A = P(D \lambda I_2)P^{-1}$, donc A est diagonalisable.

2.4

- 2.4.1 Si A est une matrice scalaire, toute base de vecteurs propres de B est une base de veceurs propres de A. Donc A et B sont simultanement diagonalisables. Supposons maintenant A est semblable à une matrice diagonale $D = \operatorname{diag}(\lambda,\mu)$ avec $\lambda \neq \mu$. Posons $E_{\lambda} = \operatorname{Vect}(e_1)$ et $E_{\mu} = \operatorname{Vect}\{e_2\}$ les sous-espaces propres associés à λ et μ respectivement (sont des droites vectorielles). Comme AB = BA, E_{λ} et E_{μ} sont stables par B, ceci montre que e_1 et e_2 sont des vecteurs propres de B. Donc B est diagonalisable dans la même base de vecteurs propres de A, c'est à direA et B sont simultanement diagonalisables.
- 2.4.2 Posons $PAP^{-1}=D_1$ et $PBP^{-1}=D_2$ où D_1 et D_2 sont des matrices diagonales. Donc pour tout $\lambda\in\mathbb{K}$, $P(A+\lambda B)P^{-1}=D_1+\lambda D_2$, donc $A+\lambda B$ est diagonalisable dans $\mathscr{M}_2(\mathbb{K})$.
- 2.5 Familles de matrices diagonalisables

2.5.1 Si toutes les matrices sont scalaires n'importe quelle base convient, sinon on choisit une matrice A_{i_0} qui n'est pas scalaire de valeurs propres λ et μ , et posons $E_{\lambda} = \operatorname{Vect}(e_1)$ et $E_{\mu} = \operatorname{Vect}\{e_2\}$. On décompose \mathbb{K}^2 comme somme directe des sous-espaces propres :

$$\mathbb{K}^2 = E_{\lambda} \oplus E_{\mu}$$

Les droites vectorielles E_{λ} et E_{μ} sont stables par les matrices $(A_i)_{i \in I}$, donc $\{e_1, e_2\}$ est une base de vecteurs propre pour chaque A_i . On note P la matrice dont les colonnes sont données par les composantes de e_1 et e_2 , alors, $\forall i \in I$, PA_iP^{-1} est une matrice diagonale.

2.5.2 On remarque que les matrices $(A_i)_{1 \le i \le m}$ sont diagonalisables puisque $A_i^2 - I_2 = 0$ (A_i est racine d'un polynôme scindé à racines simples) et puisque les A_i commutent, alors il existe une matrice inversible P telle que $\forall i \in [\![1,m]\!]$, PA_iP^{-1} soit diagonale. Posons alors

$$D_i = PA_iP^{-1} = \operatorname{diag}(\lambda_i, \mu_i).$$

Les valeurs possibles de A_i sont 1 ou -1, donc il y a au plus 4 valeurs possibles pour chaque D_i , ce qui donne 4 valeurs propres possibles pour les A_i . Ainsi on a montré que $m \le 4$.

2.6

2.6.1 $\forall \lambda \in \mathbb{R}$, la matrice $J + \lambda K$ est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$, car elle est symétrique réelle.

2.2.2 On a
$$JK = \begin{pmatrix} 0 & 0 \\ 1 & d \end{pmatrix}$$
 et $KJ = \begin{pmatrix} 0 & 1 \\ 0 & d \end{pmatrix}$, donc les matrices J et K ne commutent pas.

2.7

2.7.1 Puisque B est diagonalisable et n'est pas scalaire, alors B admet deux valeurs propres α et β distinctes. Donc il existe une matrice P inversible telle que $B = P \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P^{-1}$.

2.7.2 On a $P^{-1}\left(A+\lambda(B-\alpha_2)\right)P=\left(egin{array}{c}a&b\\c&d+\lambda\gamma\end{array}\right)$. Comme le polynôme caractérisqtique est invariant par changement de base, alors $\chi_\lambda(X)=X^2-(a+d+\lambda\gamma)X+a(d+\lambda\gamma)-bc$, et par conséquent $\delta_\lambda=(a+d+\lambda\gamma)^2-4a(a+\lambda\gamma)-4bc$; c'est un polynôme de degré 2 et λ .

2.7.3 Soit $\lambda_0 \in \mathbb{C}$ tel que $\delta_{\lambda_0} = 0$, donc le polynôme caractéristique de $A + \lambda_0 (B - \alpha I_2)$ admet une racine double. D'autre part, on sait que $A + \lambda_0 (B - \alpha I_2)$ est diagonalisable (car $A + \lambda_0 B$ est diagonalisable) donc $A + \lambda_0 (B - \alpha I_2)$ est une matrice scalaire.

2.7.4 Posons $A+\lambda_0(B-\alpha I_2)=\alpha_0I_2$, donc la matrice A est un polynôme en B, donc elle commute avec B.

Troisième partie

Étude des sous-espaces de $\mathcal{M}_2(\mathbb{K})$ formés de matrices diagonalisables

- 3.1.1 Soit $B \in \mathscr{F}$ non scalaire, donc $\forall \lambda \in \mathbb{K}$, $A + \lambda B$ est diagonalisable, car \mathscr{F} est un sous-espace vectoriel, et par suite, d'après la question 2.7, AB = BA, donc $B \in \mathscr{C}(A)$. À partir de l'inclusion $\mathscr{F} \subset \mathscr{C}(A)$, on a $\mathscr{F} = \mathscr{C}(A)$ ou bien $\mathscr{F} = \operatorname{Vect}(A)$. Dans le premier cas $\dim \mathscr{F} = 2$ (la question 1.4), dans le second cas $\dim \mathscr{F} = 1$.
- 3.1.2 Si \mathscr{F} contient I_2 , alors \mathscr{F} soit une droite vectorielle ou bien un plan vectoriel, de la forme $\mathscr{C}(A)$, ou un hyperplan de $\mathscr{M}_2(\mathbb{R})$. dim $\mathscr{F} \leq 3$, car $\mathscr{M}_2(\mathbb{R})$ contient des matrices non diagonalisables (la question 2.1).
- 3.2 Le sous-espace vectoriel engendré par la matrice I_2 , formé par des matrices diagonalisables (matrices scalaires), est de dimension 1. Le sous-espace vectoriel engendré par les matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est de dimension 2.
- 3.3 L'application $M \mapsto PMP^{-1}$ est un automorphisme d'espace vectoriel de \mathcal{M} , donc $P\mathcal{M}P^{-1}$ est un sous-espaces vectoriel de $\mathcal{M}_2(\mathbb{R})$, comme image d'un sous-espace vectoriel par une application linéaire et $\dim(P\mathcal{M}P^{-1}) = \dim \mathcal{M}$.
- 3.4 On a $\mathscr{S}_2(\mathbb{R}) = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)$. Donc $\dim \mathscr{S}_2(\mathbb{R}) = 3 = \dim \mathscr{M}_2(\mathbb{R}) 1$, donc $\mathscr{S}_2(\mathbb{R})$ est un hyperplan de $\mathscr{M}_2(\mathbb{R})$. Comme toutes les matrices symétriques réelles sont diagonalisables, alors $\mathscr{S}_2(\mathbb{R})$ est formé des matrices diagonalisables.
- 3.5 D'après la question 3.3, $R\mathscr{S}_2(\mathbb{R})R^{-1}$ est un sous-espace vectoriel de même dimension que $\mathscr{S}_2(\mathbb{R})$, donc c'est un hyperplan, de plus si A est diagonalisable, alors il est de même de la matrice RAR^{-1} , donc $\mathscr{S}_2(\mathbb{R})$ est formé des matrices diagonalisables.
- 3.6
 - 3.6.1 Si I_2 n'était pas un élément de \mathscr{V} , l'ensemble $\mathscr{M}_2(\mathbb{R}) = \mathbb{R}I_2 \oplus \mathscr{V}$ serait constitué de matrices diagonalisables, ce qui est faux (il existe des matrices non diagonalisables). Donc I_2 est un élément de \mathscr{V} .
 - 3.6.2 Il existe une matrice P inversible et α, β des complexes distincts tels que $A = P \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P^{-1}$.

Mais on a

$$A = P \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P^{-1} = \beta I_2 + (\alpha - \beta) Q \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} Q^{-1}.$$

Donc

$$Q\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}Q^{-1} = \frac{1}{\alpha - \beta}(A - \beta I_2) \in \mathscr{V}.$$

3.6.3 On a successivement

$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a-d & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix} + \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} = (a-d)A_1 + dI_2 + \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}$$

et par suite $\begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \in \mathcal{W}$.

Supposons qu'il existe α et β tels que

$$\left(\begin{array}{cc} 0 & b \\ c & 0 \end{array}\right) = \alpha \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + \beta \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

Donc $\alpha = \beta = 0$, et par suite b = c = 0 ce qui est faux. Ainsi $\begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \in \mathcal{W} \setminus \text{Vect}(I_2, A_1)$.

Comme il s'agit d'une matrice diagonalisable et non colinéaire à I_2 , alors son polynôme caractéristique $X^2 - bc$ doit être scindé à racines simples, ce que donne la condition bc > 0.

- 3.6.4 On a $\frac{1}{c}\begin{pmatrix}0&b\\c&0\end{pmatrix}=\begin{pmatrix}0&\frac{b}{c}\\1&0\end{pmatrix}\in\mathcal{W}$, il suffit donc de prendre $w=\sqrt{\frac{b}{c}}$. La famille $\{I_2,A_1,B_1\}$ est libre (vérification immédiate), et comme $\mathcal{W}\subset\mathrm{Vect}(I_2,A_1,B_1)$ et de dimension 3, alors $\mathcal{W}=\mathrm{Vect}(I_2,A_1,B_1)$.
- 3.6.5 Les valeurs propres de B_1 sont w et -w, des vecteurs propres associés sont respectivement (w,1) et (-w,1). Notons $P=\left(\begin{array}{cc} w & -w \\ 1 & 1 \end{array}\right)$ la matrice de passage de la base canonique à la base de vecteurs propres.

Soit $M = \alpha I_2 + \beta A_1 + \gamma B_2$ un élément quelconque de \mathcal{W} , alors on a :

$$M = P\left(\alpha I_2 + \beta P^{-1} A_1 P + \gamma \begin{pmatrix} w & 0 \\ 0 & -w \end{pmatrix}\right) P^{-1}.$$

On a $P^{-1}A_1P=\frac{1}{2}\left(egin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}
ight)$, donc $\alpha I_2+\beta P^{-1}A_1P+\gamma\left(egin{array}{cc} w & 0 \\ 0 & -w \end{array}
ight)\in\mathscr{S}_2(\mathbb{R})$, ce qui montre que $\mathscr W$ est conjugué à $\mathscr{S}_2(\mathbb{R})$, par transitivité il est de même de $\mathscr F$ et $\mathscr{S}_2(\mathbb{R})$.

- 3.7 Soit \mathscr{V} un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$, formé de matrices diagonalisables, donc c'est un sous-espace de dimension ≤ 3 , car il existe des matrices non diagonalisables.
 - Le cas de la dimension 3 est traité dans la question 3.6.
 - En outre, le résultat est clair pour les espaces vectoriels de dimension ≤ 1 .
 - Maintenant, si $\mathscr{V} = \mathrm{Vect}(M,N)$ est un plan vectoriel de matrices diagonalisables, alors deux cas sont possibles :
 - $-\operatorname{Si} I_2 \in \mathcal{V}$, alors $\mathcal{V} = \operatorname{Vect}(I_2, A)$, où A est une matrice non scalaire de \mathcal{V} . Introduisons P la matrice de passage de la base canonique vers une base de diagonalisation de A.

Alors $P^{-1}VP$ est un sous-espace vectoriel de matrices symétriques, ce qui établit le résultat dans ce premier cas.

- Si $I_2 \notin \mathcal{V}$ alors c'est un sous-espace vectoriel de l'hyperplan de matrices diagonalisables Vect (I_2, A, B) qui est conjugué à $\mathscr{S}_2(\mathbb{R})$. Ainsi \mathscr{V} est conjugué à un sous-espace vectoriel de $\mathscr{S}_2(\mathbb{R})$.
- 3.8 Soit $\mathscr V$ un sous-espace vectoriel de $\mathscr M_2(\mathbb R)$, formés des matrices orthogonalement diagonalisables.
 - Si dim $\mathscr{V} = 3$, on trouve $\mathscr{S}_2(\mathbb{R})$.
 - Si $\dim \mathcal{V} = 1$, on trouve les droites vectoriels engendrées par des matrices symétriques (toute matrice orthogonalement diagonalisable est symétrique).
 - Si dim $\mathscr{V} = 2$, on trouve les plans vectoriels de $\mathscr{S}_2(\mathbb{R})$.

• • • • • • • • • •