- |1| データを小さい順,または大きい順に並び替えていれば【1 点】.
 - (1) 【3 点】正しくない. このヒストグラムは **0.1** 秒間隔で下限は含まず、上限を含むようにして度数をカウントしている.
 - (2) 【3 点】正しくない. 平均値は **1.465**, 中位数は **1.495** である. よって, 中位数の方が大きい.
 - 平均値と中位数を元データからではなく、度数分布表をつくって、それに基いて計算している場合は、それぞれ【1点減点】.
 - (3) 【3 点】第 1 四分位数 Q_1 と第 3 四分位数 Q_3 の定義に依るので,正しいとも正しくないとも一般にはいえない.このデータはサイズが 20 であるから,2 分割すれば,10 個と 10 個に分かれる.よって, Q_1 を前半 10 個

 $1.03 \quad 1.20 \quad 1.30 \quad 1.38 \quad 1.40 \quad 1.44 \quad 1.45 \quad 1.48 \quad 1.48 \quad 1.49$

の中位数 (つまり, 5番目と6番目の平均), Q₃を後半10個

 $1.50 \quad 1.52 \quad 1.52 \quad 1.53 \quad 1.54 \quad 1.55 \quad 1.57 \quad 1.58 \quad 1.65 \quad 1.69$

の中位数(つまり、15番目と16番目の平均)と定義すれば、

$$Q_1 = \frac{1.40 + 1.44}{2} = 1.41, \qquad Q_3 = \frac{1.54 - 1.55}{2} = 1.545$$

であるから、 $Q = (Q_3 - Q_1)/2 = 0.0625$ となる (ので、主張は正しいと言える).

• 自身の定義を述べていない場合は【1点減点】.

2 縦軸の変量を x,横軸の変量を y とする.周辺分布を求め,度数が最も大きい階級値が 0 となるよう, $u=\frac{x-65}{10}$, $v=\frac{x-77.5}{5}$ と変量を変換する.すると,以下の表を得る.

	-3	-2	-1	0	1	2	3	4	$f_{i\cdot}$	$u_i f_i$.	$u_i^2 f_i$.	V_i	u_iV_i
-1	1	3	1	2					7	-7	7	-10	10
0		1	5	4	2	1			13	0	0	-3	0
1			2	1		4			7	7	7	6	6
2				2	1		1	1	5	10	20	8	16
3					1	3	2	2	8	24	72	21	63
$f_{\cdot j}$	1	4	8	9	4	8	3	3	40	34	106	22	95
$v_j f_{\cdot j}$	-3	-8	-8	0	4	16	9	12	22				
$v_j^2 f_{\cdot j}$	9	16	8	0	4	32	27	48	144				
U_j	-1	-3	1	3	5	13	8	8	34				
$U_j v_j$	3	6	-1	0	5	26	24	32	95				

したがって、u,v の平均と分散は

•
$$\bar{u} = \frac{34}{40} = \frac{17}{20} = 0.85$$
, $s_u^2 = \frac{106}{40} - \left(\frac{17}{20}\right)^2 = \frac{771}{400} = 1.9275$

•
$$\bar{v} = \frac{22}{40} = \frac{11}{20} = 0.55$$
, $s_u^2 = \frac{144}{40} - \left(\frac{11}{20}\right)^2 = \frac{1319}{400} = 3.2975$

であるから、x,y の平均と分散は

•
$$\bar{x} = 10\bar{u} + 65 = 73.5$$
, $s_x^2 = 10^2 s_u^2 = 192.75$ [各 2 点]

•
$$\bar{y} = 5\bar{v} + 77.5 = 80.25$$
, $s_v^2 = 5^2 s_v^2 = 82.4375$ [各 2 点]

x と y の相関係数は u と v の相関係数に等しいので,

$$\begin{split} r(x,y) = & r(u,v) = \frac{1}{s_u \, s_v} \left(\frac{95}{40} - \bar{u}\bar{v} \right) \\ = & \frac{400}{\sqrt{771 \times 1319}} \left(\frac{95}{40} - \frac{17 \times 11}{400} \right) \\ = & \frac{763}{\sqrt{771 \times 1319}} = \textbf{0.7566}... \qquad \textbf{[2 点]} \end{split}$$

- \bullet u,v の平均と分散は求めているが、x,y の値に戻していない場合は相関係数を除いて【各 1 点】.
- 平均点と分散が x,y 逆の場合は【各1点】.
- 表を書いていない場合は、 $\boxed{2}$ の点数を $\frac{1}{2}$ 倍した点数を獲得点とする.