

Lab #4

Getting Started with the Automated ASIC Design Flow-based on OpenRoad

Nov. 4, 2024

What is ASIC design flow

How to design a chip from concept to silicon?

```
module PE (clock, R, S1, S2, S1S2mux, newDist, Accumulate, Rpipe);
input clock;
input [7:0] R, S1, S2;// memory inputs
input S1S2mux, newDist;// control inputs
output [7:0] Accumulate, Rpipe;
reg [7:0] Accumulate, AccumulateIn, Difference, Rpipe;
          Carry;
always @(posedge clock) Rpipe <= R;
always @(posedge clock) Accumulate <= AccumulateIn;
always @(R or S1 or S2 or S1S2mux or newDist or Accumulate)
 begin // capture behavior of logic
  difference = R - S1S2mux ? S1 : S2;
   if (difference < 0) difference = 0 - difference;
// absolute subtraction
   {Carry, AccumulateIn} = Accumulate + difference;
   if (Carry == 1) AccumulateIn = 8 hFF; // saturated
   if (newDist == 1) AccumulateIn = difference;
// starting new Distortion calculation
endmodule
```


Motion Estimator Processing Element (PE).

RTL (.v)

Layout

What is ASIC design flow & EDA tool

- Electronic Design Automation (EDA) Tool
 - enable billion-traistor level chips
 - use lots of algorithms to enable the design automation
 - divide the whole flow into small steps
- Commercial Tool & Open-source Tool

Synthesis

- Input
 - RTL design (Verilog/SV code)
 - .sdc file (design constraints file)
- Output
 - gate level netlist

For a same logic, it may have multiple standard cells with different size etc.

For example:

NAND2_X1

NAND3_X1

NAND4_X1

NAND4_X2

Synthesis

Placement

CTS

Routing

Signoff

Floorplan

- In floorplan, we guide the tool...
 - IO Placement
 - Die Size & Aspect Ratio
 - Special Cell Pre-placement
 - IP/Macro Pre-placement
 - Power grid generation
 - Blockage deginition
- Concept
 - Core Utilization

(expected used slots)/(all available slots)

To high -> hard to route & too much heat

To low -> chip will be unnecessarily large

Routing

Placement

- The tool will try to place all the cells into the legal position.
 - lots of algorithms involved
 - global placement + detailed placement
- Congestion issue!
 - our routing resource is limited
 - so care about the place density

Clock Tree Synthesis (CTS)

 Clock signal is important for timing, so route the clock signal first.

Routing

- Route other signals and try to meet the timing.
 - also involves lots of algorithms
 - global routing + detailed routing
- After this step, a complete GDS layout will be generated.

Signoff

- Do lots of checks & ECO
- DRC, LVS, STA...
 - DRC: Design Rule Check
 - check if the design satisfies the design rule
 - LVS: Layout vs Schematic
 - check if the layout is the same as the original design
 - STA: Standard Timing Analysis
 - check if the design have timing violations
 - Important to know how to read the reports
- ECO (Engineering Change Order)
 - Manual work, fix things in the last minute...

Debugging Strategy

INFO

- Report data, status, or current progress
- WARNING
 - Unexpected situation, but tools will do best to continue
 - Designer should fix warnings or validate they are benign
- ERROR
 - Unexpected situation, tools cannot work around issue
- CRIT
 - openroad must exit immediately (rare)
 - All segfaults / asserts / crashes are bugs :)

Debugging Strategy

- Review error which caused flow to abort
- Check warnings and errors starting from beginning of flow
 - Early warnings can be cause of later errors
- Try to identify root cause of issue
 - Design problem?
 - Tool problem?
 - Unrealistic expectations?

Common Problems and Solutions

- Utilization too high fails placement
 - Increase die area or decrease core utilization
- Utilization too high fails resizing
 - Check for proper SDC constraints
 - Check that user-generated macros have reasonable constraints (e.g. good .lib files)
- Congestion too high fails global routing
 - Try previous fixes
 - Try decreasing layer adjustment
- Congestion too high fails detail routing
 - Try previous fixes
 - Try adding cell padding to space cells further apart
 - If violations always occur on same cell(s), try marking those cells as dont_use
- Design too small fails PDN generation
 - Try increasing design size or reducing power grid pitch

Common Problems and Solutions

Design runtime too long

- Increase utilization if too low
- Relax timing constraints
- Reduce design complexity
- Faster machine :)

Failing setup time

- Hard problem may just need to reduce constraints
- Change architecture: more pipelining, reduce complexity

Failing hold time

- Check that user cells (e.g. SRAM) are properly constrained
- Check design constraints are valid (SDC)
 - Designs with multiple clocks are tricky!
- Check that your PDK has properly correlated parasitics

Lab #4

- Due at 11:59 PM, Nov. 18th, Friday
- The content is not much, but it is important to understand every step and report, and also how this flow works. Lab4 ~ Lab5 are all based on this flow, so recommend everyone can run through all the steps.
- The debug part may cost lots of time if you are not familiar with how design flow works.
- Contact me if you have problem when logging in the EDA platform.
- Also, submit through this platform, not through canvas. (All deliverables with your individual report).

Reference

Yichen Cai, 2023FALL Lab 4.