

Bauingeniuerwesen Institut für Statik und Dynamik

Beleg 1

BIW4-05 SIMULATION DYNAMISCHER SYSTEME

Philipp Göbel

Matrikelnummer: 4607083 Immatrikulationsjahr: 2018

21. Mai 2023

Betreuer Ines Wollny Jakob Platen

Betreuender Hochschullehrer Univ.-Prof. Dr.-Ing. habil. Michael Kaliske

Inhaltsverzeichnis

1	Lösung des Beleges	5
2	Julia-Code	9

1. Beleg	BIW4-05 SIMULATION DYNAMISCHER SYSTEME	SS 2023
Thema	Elastisch gebetteter Balken	
	Bauingenieurwesen	8. Semester

Gegeben ist das als Balken auf elastischer Bettung idealisierte Modell einer Schiene (siehe Abbildung 1) mit den zugehörigen Materialparametern:

Abbildung 1: Elastisch gebetteter Balken

$$E = 21 \cdot 10^{10} \frac{\text{N}}{\text{m}^2}, \quad I = 3055 \,\text{cm}^4, \quad \mu = 60 \,\frac{\text{kg}}{\text{m}}, \quad k = 3 \cdot 10^6 \,\frac{\text{N}}{\text{m}^2}.$$

Die dynamische Steifigkeit $K(\eta)$ des Balkens kann analytisch abgeleitet werden:

$$\hat{F}_0 = \overline{K}(\eta) \, \hat{v}_0, \quad \overline{K}(\eta) = 8 \, EI \, W^3, \quad W = \frac{\sqrt{2}}{2} \, \sqrt[4]{\frac{k}{EI} \, (1 - \eta^2)}, \quad \eta^2 = \Omega^2 \, \frac{\mu}{k}.$$

Für $\eta > 1.0$ gilt $\sqrt[4]{-1} = \frac{\sqrt{2}}{2} (1+i)$. Die Koeffizienten einer gebrochenrationalen Approximation der Steifigkeit $\tilde{K}(\omega)$,

$$\overline{K}(\Omega) \approx \tilde{K}(\Omega) = \frac{P_0 + i\Omega P_1 + (i\Omega)^2 P_2 + \ldots + (i\Omega)^5 P_5}{1 + i\Omega Q_1 + \ldots + (i\Omega)^4 Q_4},$$

wurden mit Hilfe der Fehlerquadratmethode bereits ermittelt:

 $P_0 = 10337706,5 \text{ N m}^{-1}$

 $P_1 = 48744,172 \text{ N m}^{-1} \text{ s}^1$

 $P_2 = 455,205728 \text{ N m}^{-1} \text{ s}^2$

 $P_3 = 1,13950676 \text{ N m}^{-1} \text{ s}^3$

 $P_4 = 0.00483245447 \text{ N m}^{-1} \text{ s}^4$

 $P_5 = 3,11054119 \cdot 10^{-6} \text{ N m}^{-1} \text{ s}^5$

 $Q_1 = 0.00490648418 \text{ s}$ $Q_2 = 2.71147593 \cdot 10^{-5} \text{ s}^2$

 $Q_3 = 5,42912842 \cdot 10^{-8} \text{ s}^3$

 $Q_4 = 6,94958499 \cdot 10^{-12} \text{ s}^4$

Aufgabenstellung:

- 1. Überführen Sie die gebrochenrationale Steifigkeitsbeziehung in ein System von linearen Gleichungen in $(i\Omega)$: $i\Omega \mathbf{A} \hat{\mathbf{z}} + \mathbf{B} \hat{\mathbf{z}} = \mathbf{r}$.
- 2. Transformieren Sie das System in den Zeitbereich.
- 3. Zum Zeitpunkt t=0 befindet sich das System in Ruhe und die Durchbiegung v_0 ist gleich Null. Ermitteln Sie numerisch eine Lösung im Zeitbereich für die Durchbiegung $v_0(t)$ infolge der gegebenen Erregung für $0 \le t \le 1$ s.

$$v_0(t) = v(x = 0, t)$$

Abbildung 2: Erregung

1 Lösung des Beleges

Mithilfe der bereits gegebenen Koeffizienten einer gebrochenrationalen Approximation der Steifigkeit und des Arbeitsblattes aus Übung 1 kann die Steifigkeitsbeziehung in ein System von linearen Gleichungen $i\Omega A\hat{z} + B\hat{Z} = r$ überführt werden.

Dabei ist $\hat{f}_0 = 0$, weil es keine Anfangsbelastung gibt.

1 Lösung des Beleges

Aus den Beziehungen lassen sich die Matrizen A, B, f wie folgt belegen:

$$A = \begin{bmatrix} s_1^{(0)} & 0 & 0 & 0 & 0 \\ 0 & -s_1^{(1)} & 0 & 0 & 0 \\ 0 & 0 & s_1^{(2)} & 0 & 0 \\ 0 & 0 & 0 & -s_1^{(3)} & 0 \\ 0 & 0 & 0 & 0 & s_1^{(4)} \end{bmatrix}$$

$$B = \begin{bmatrix} s_0^{(0)} & 0 & 0 & 0 & 0 \\ 0 & -s_0^{(1)} & 0 & 0 & 0 \\ 0 & 0 & s_0^{(2)} & 0 & 0 \\ 0 & 0 & 0 & -s_0^{(3)} & 0 \\ 0 & 0 & 0 & 0 & s_0^{(4)} \end{bmatrix}$$

$$\hat{f} = \begin{bmatrix} \hat{f}_0 \\ \hat{f}_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 447586.61 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & -4.92 \times 10^{-14} & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & -7.92 \times 10^{8} & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & -2.25 \times 10^{-13} & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 8.68 \times 10^{7} \end{bmatrix}$$

$$B = \begin{bmatrix} -2.80 \times 10^9 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & -1.0 & -3.58 \times 10^{-10} & -1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 1.75 \times 10^{-13} & -1.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 1.06 \times 10^{10} \end{bmatrix}$$

$$\hat{f} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

Um die numerische Lösung im Zeitbereich für die Durchbiegung $v_0(t)$ infolge der gegebenen Erregung zu ermitteln, muss die Lösung in Zeitschritten integriert werden. Zunächst muss das System von dem Frequenzbereich in den Zeitbereich transformiert wer-

den. Für den Frequenzbereich gilt:

$$\lambda A \hat{z} + B \hat{z} = \hat{F} \tag{1.1}$$

$$\mathbf{z}(t) = \hat{\mathbf{z}} \cdot e^{i\omega t} = \hat{\mathbf{z}}e^{\lambda t} \tag{1.2}$$

$$\mathbf{F}(t) = \hat{\mathbf{F}} \cdot e^{i\omega t} = \hat{\mathbf{F}} e^{\lambda t} \tag{1.3}$$

(1.4)

Die Ableitung der Zeit ergibt:

$$\dot{\mathbf{z}}(t) = \lambda \hat{\mathbf{z}} e^{\lambda t} \tag{1.5}$$

Daraus folgt:

$$A \dot{z}(t) + B z(t) = F(t)$$
 (1.6)

Hierbei sind die Matrizen A und B zeitlich konstante Matrizen.

Nun zur Lösung durch Integration

$$\int [A \dot{z}(t) + B z(t) = F(t)] dt = \int F(t) dt$$
(1.7)

Die lineare Ansatzfunktion ergibt sich für den Bereich $t_0 \le t \le t_1$ zu:

$$z(t) \approx z_0 \left(1 - \frac{\tau}{\Delta t}\right) + z_1 \left(\frac{\tau}{\Delta t}\right)$$
 (1.8)

Jetzt wird die Ableitung gebildet und in (1.7) eingesetzt:

$$\hat{\mathbf{z}}(t) \approx \mathbf{z}_0(t) \, \frac{1}{\Delta t} + \mathbf{z}_1(t) \, \frac{1}{\Delta t} \tag{1.9}$$

$$\int_{0}^{\Delta t} \left[\mathbf{A} \cdot (-\mathbf{z}_{0} + \mathbf{z}_{1}) \frac{1}{\Delta t} + \mathbf{B} \left[\mathbf{z}_{0} (1 - \frac{\tau}{\Delta t}) + \mathbf{z}_{1} (\frac{\tau}{\Delta t}) \right] \right] d\tau = \int_{0}^{\Delta t} = \mathbf{F}(t) d\tau \tag{1.10}$$

$$\left(A + \frac{\Delta t}{2}B\right)z_1 + \left(\frac{\Delta t}{2}B - A\right)z_0 = \int_0^{\Delta t} F(t)d\tau \qquad (1.11)$$

nach Umstellen auf z, gilt für einen Zeitschritt:

$$\mathbf{z}_{1} = (\mathbf{A} + \frac{\Delta t}{2}\mathbf{B})^{-1} \cdot \left[\int_{0}^{\Delta t} F(t)d\tau - \left(\frac{\Delta t}{2}\mathbf{B} - \mathbf{A}\right) \mathbf{z}_{0} \right]$$
 (1.12)

Für die Integration von F(t) gilt:

$$\int_0^{\Delta t} \mathbf{F}(t)d\tau = \frac{\mathbf{F}_0 + \mathbf{F}_1}{2} \Delta t \tag{1.13}$$

Dabei ist für die Integration zu beachten, dass F(t) auch als Vektor F(t) darzustellen ist. Die erste Stelle des Vektors wird mit $\hat{F} = 100kN$ befüllt und der Rest ist null.

Für die Berechnung von z_1 habe ich $\Delta t = 0.0001$ s gewählt. Als Ergebnis für z_1 komme ich auf folgendes Ergebnis.

$$z_{1} = \begin{bmatrix} 8.616712954061768 \cdot 10^{-5} \\ 252899.74593009186 \\ -1.134740141559318910^{-6} \\ -51393.23728432422 \\ -6.996215274260101 \cdot 10^{-7} \end{bmatrix}$$
(1.14)

Der erste Wert von z_1 stellt die gesuchte Größe v_0 dar.

Somit ist das Endergebnis:

$$v_0(t) = 8.616712954061768 \cdot 10^{-5} \frac{m}{s}$$
 (1.15)

Der Verlauf von z_1 ist im folgenden Diagramm über den Zeitraum von $0 \le t \le 1$ dargestellt.

Abbildung 1.1: Verlauf von z_1 über $0 \le t \le 1s$

Es ist deutlich die Belastung infolge von F(t) zu sehen, die dann mit der Zeit abklingt.

2 Julia-Code

```
2 using Plots
 4 # Koeffizienten einer gebrochenrationalen Approximation der Steifigkeit
 5 P0 = 10337706.5
 6 P1 = 48744.172
 7 P2 = 455.205728
8 P3 = 1.13950676
9 P4 = 0.00483245447
10 P5 = 3.11054119e-6
11
12 \quad Q0 = 1
13 \quad Q1 = 0.00490648418
14 \quad Q2 = 2.71147593e-5
15 \quad Q3 = 5.42912842e - 8
16 \quad Q4 = 6.94958499e-12
17
18 # Abspaltung
19 s1_0 = P5 / Q4
20 s0_0 = (P4 - s1_0 * Q3) / Q4
21 \quad r3_0 = P3 - s0_0 * Q3 - s1_0 * Q2
22 r2_0 = P2 - s0_0 * Q2 - s1_0 * Q1
23 \quad r1_0 = P1 - s0_0 * Q1 - s1_0
24 \quad r0_0 = P0 - s0_0
25
26 	 s1_1 = Q4 / r3_0
27 	ext{ s0}_1 = (Q3 - s1_1 * r2_0) / r3_0
28 	ext{ } r2\_1 = Q2 - s0\_1 * r2\_0 - s1\_1 * r1\_0
29 	 r1_1 = Q1 - s0_1 * r1_0 - s1_1 * r0_0
30 \quad r0_1 = Q0 - s0_1 * r0_0
31
32 	ext{ s1\_2} = r3\_0 / r2\_1
33 s0_2 = (r2_0 - s1_2 * r1_1) / r2_1
34 \quad r1_2 = r1_0 - s0_2 * r1_1 - s1_2 * r0_1
35 \quad r0_2 = r0_0 - s0_2 * r0_1
36
```

```
37 	 s1_3 = r2_1 / r1_2
38 \quad s0_3 = (r1_1 - s1_3 * r0_2) / r1_2
39 \quad r0_3 = r0_1 - s0_3 * r0_2
40
41 \quad s0_4 = r0_2 / r0_3
42 	 s1_4 = r1_2 / r0_3
43
44 f0 = 0
45
46 A = [s1_0 0 0 0 0;
47
         0 -s1_1 0 0 0;
48
         0 0 s1_2 0 0;
49
         0 0 0 -s1_3 0;
50
         0 0 0 0 s1_4]
51
52 B = [s0_0 1 0 0 0;
         1 -s0_1 -1 0 0;
54
         0 -1 s0_2 1 0;
55
         0 0 1 -s0_3 -1;
56
         0 0 0 -1 s0_4]
57
58 r = [0; 0; 0; 0; 0]
59
60 println(A)
61 println(B)
62 println(r)
63
64 # Zeitschrittlnge wird hier im Skript mit t anstatt delta t beschrieben
65 \text{ delta_t} = 0.00001 \# s
66 t = 0
67 t_end = 1
68 k = 1
69
70 # Array f r die Darstellung des Plots
71 z3 = Float64[]
72 	 z0 = [0;0;0;0;0]
73
74 function Belastung(t)
75
        if t < 0 && t < 0.01
76
            return t * [100000; 0; 0; 0; 0]
77
        elseif t <= 0.01 && t < 0.02
78
            return [100000; 0; 0; 0; 0]
79
        elseif t <= 0.02 && t < 0.03
80
            return -t * [100000; 0; 0; 0; 0]
81
        else
82
            return [0;0;0;0;0]
83
        end
84 end
85
86 while true
        z1 = inv(A + delta_t/2*B) * ((Belastung(t) + Belastung(t+delta_t))/2*delta_t - (c)
87
```

```
88
 89
 90
        global z0 = z1
 91
 92
        push!(z3, z1[1])
 93
        global k += 1
 94
        global t += delta_t
 95
        if t >= t_end
 96
            break
 97
        end
 98 end
99
100 println("L sung f r z1")
101 println(z0)
102
103 plot(z3, xlabel="Sekunden", ylabel="Werte f r z1")
104 savefig("plot.png")
```