Esercitazione Algebra lineare

Marco Gattulli

ESERCIZIO 1. Sia $f_A: \mathbb{R}^3 \to \mathbb{R}^4$ la trasformazione lineare indotta da una matrice A. Sia

$$A' = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & -4 & -2 \\ -1 & 2 & 1 \end{bmatrix}$$

la matrice associata ad f_A , rispetto alle basi ordinate:

$$\mathcal{B}' = \left\{ 2e_1 + e_2 ; e_3 ; e_1 + e_3 \right\} =$$

$$= \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}; \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

sul dominio e

sul codominio. (e_i e e'_i sono i vettori delle basi canoniche rispettivamente di \mathbb{R}^3 e \mathbb{R}^4).

- 1. Si calcoli $\dim(N(f_A))$.
- 2. Si determini la matrice A che induce la trasformazione lineare.

SVOLGIMENTO.

1.) Essendo l'applicazione indotta dalla matrice A, per calcolare lo spazio nullo di f_A , basta calcolare lo spazio nullo della matrice A. Non avendo tale matrice possiamo usare la matrice A' perché è sì riferita ad altre basi, ma sullo stesso dominio e codominio. Quindi:

$$\dim(N(f_A)) = \dim(N(A')).$$

Eseguiamo dunque l'algoritmo dell'eliminazione di Gauss sulla matrice A':

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & -4 & -2 \\ -1 & 2 & 1 \end{bmatrix}; \quad E_{12} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & -4 & -2 \\ -1 & 2 & 1 \end{bmatrix}; \quad E_{13}(-2), \ E_{14}(1) \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & -2 \\ 0 & 1 & 1 \end{bmatrix};$$

$$E_2\left(-\frac{1}{2}\right),\ E_{34}(-1)\left[egin{array}{cccc} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}
ight]; \quad E_{23}(-1)\left[egin{array}{cccc} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}
ight]$$

L'ultima matrice è la forma ridotta, notiamo che ha due colonne dominanti e pertanto ha rango 2. Per il teorema nullità più rango:

$$\dim(N(A')) = \dim(\mathbb{R}^3) - rk(A') = 3 - 2 = 1.$$

anche se l'esercizio non lo richiede, troviamo una base di $N(A^\prime)$. Ricordiamo che

$$N(A') = \{ v \in \mathbb{R}^3 : A'v = 0 \}.$$

Quindi dobbiamo immaginarci un sistema lineare omogeneo (termini noti nulli) A'v=0. Dalla forma ridotta di A', si capisce che una delle componenti (che sono 3 e che chiameremo x,y,z) del vettore v è libera, cioè può essere qualsiasi numero, un parametro, mentre le altre due dipenderanno da essa. Dunque pensiamo di risolvere questo sistema lineare:

$$[A'|0] = \left[\begin{array}{ccc|c} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

da cui troviamo che la terza componente è un parametro α , la seconda è $-\alpha$ e la terza è $-\alpha$: $\begin{bmatrix} -\alpha & -\alpha & \alpha \end{bmatrix}^T$. Questo vuol dire che ogni vettore di questa forma (dando ad α un valore), moltiplicato ad A', mi dà come risultato il vettore nullo.

Quindi una base di N(A') è $\begin{bmatrix} -1 & -1 & 1 \end{bmatrix}^T$. Possiamo allora scrivere:

$$N(A') = < \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} > .$$

2.) Prima di iniziare, ripassiamo le applicazioni delle coordinate relative ad una base che indicheremo con

$$C_{\mathscr{B}}$$
 $C_{\mathscr{E}_{\pi}}$

dove \mathscr{B} è una base qualunque dello spazio vettoriale e $C_{\mathscr{E}_n}$ è la base canonica. $C_{\mathscr{B}}(v)$ con $v \in \mathbb{R}^n$, è uguale al vettore di costanti da mettere nella combinazione lineare di vettori di \mathscr{B} per ottenere v: se

$$v = \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_n b_n$$

e b_1, b_2, \ldots, b_n sono i vettori della base \mathcal{B} , allora

$$C_{\mathscr{B}}(v) = [\begin{array}{cccc} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{array}]$$

Per comodità mettiamoci in \mathbb{R}^3 e prendiamo come \mathscr{B} la base \mathscr{B}' dell'esercizio. Vediamo come dato $b_1\in\mathscr{B}$

$$C_{\mathscr{B}}(b_1) = e_1.$$

Innanzitutto scriviamo il vettore b_1 come combinazione lineare dei vettori della base:

$$b_1 = \alpha_1 b_1 + \alpha_2 b_2 + \alpha_3 b_3$$

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \alpha_1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Ma allora deve essere

$$\left[\begin{array}{c} \alpha_1\\ \alpha_2\\ \alpha_3 \end{array}\right] = \left[\begin{array}{c} 1\\ 0\\ 0 \end{array}\right] = e_1$$

Così ovviamente anche per b_2 e b_3 . quindi in generale

$$C_{\mathscr{B}}(b_i) = e_i$$
.

Vediamo adesso un'altro fatto importante: l'applicazione delle coordinate relative alla base canonica è l'identità.

Sempre per comodità, mettiamoci in \mathbb{R}^3 e prendiamo come \mathcal{B} la base \mathcal{B}' dell'esercizio e vediamo che

$$C_{\mathcal{E}_2}(b_1) = b_1.$$

Innanzitutto scriviamo il vettore b_1 come combinazione lineare dei vettori della base canonica:

$$b_1 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$$

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Ma allora deve essere

$$\left[\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array}\right] = \left[\begin{array}{c} 2 \\ 1 \\ 0 \end{array}\right] = b_1$$

Così ovviamente anche per b_2 e b_3 . quindi in generale

$$C_{\mathscr{E}_n}(b_i) = b_i.$$

Questo vale ovviamente per tutti i vettori di $v \in \mathbb{R}^n$:

$$C_{\mathscr{E}_n}(v) = v.$$

Adesso possiamo procedere alla soluzione del secondo punto dell'esercizio.

Dobbiamo trovare una matrice A tale che

$$f_A(x) = Ax \qquad \forall x \in \mathbb{R}^3.$$

In virtù di quello che abbiamo detto, essendo l'applicazione delle coordinate rispetto alla base canonica l'identità, possiamo scrivere anche

$$C_{\mathcal{E}_A}(f_A(x)) = AC_{\mathcal{E}_3}(x).$$

Notare che $f_A(x)$ è un vettore in \mathbb{R}^4 , quindi scriverò $C_{\mathscr{E}_4}(f_A(x))$, mentre per x che sta in \mathbb{R}^3 scriverò $C_{\mathscr{E}_3}(x)$.

Trovare A vuol dire quindi trovare la matrice del cambio di coordinate associata alla base canonica su dominio e codominio. Per trovarla basta allora vedere come si comporta sui vettori di base:

$$f_A(e_i) = C_{\mathcal{E}_A}(f_A(e_i)) = AC_{\mathcal{E}_3}(e_i) = Ae_i = i - esima$$
 colonna di A.

Questo vuol dire che la matrice A è fatta in questo modo:

$$A = [C_{\mathcal{E}_4}(f_A(e_1)) \quad C_{\mathcal{E}_4}(f_A(e_2)) \quad C_{\mathcal{E}_4}(f_A(e_3))]$$

Quindi per trovare A ci basta sapere quanto valgono $C_{\mathcal{E}_4}(f_A(e_1))$, $C_{\mathcal{E}_4}(f_A(e_2))$, $C_{\mathcal{E}_4}(f_A(e_3))$, ovvero $f_A(e_1)$, $f_A(e_2)$, $f_A(e_3)$.

Sfruttando il fatto che f_A è lineare e la forma dei vettori della base $\mathscr{B}',$ calcoliamo:

$$f_A([2\ 1\ 0]^T) = f_A(2e_1 + e_2) = 2f_A(e_1) + f_A(e_2)$$

$$f_A([0\ 0\ 1]^T) = f_A(e_3)$$

$$f_A([1\ 0\ 1]^T) = f_A(e_1 + e_3) = f_A(e_1) + f_A(e_3)$$

Adesso dobbiamo capire quanto vale la f_A calcolata sui vettori della base \mathscr{B}' . essendo il risultato un vettore in \mathbb{R}^4 sicuramente si scriverà come combinazione lineare degli elementi della base \mathscr{D}' :

$$f_A([2\ 1\ 0]^T) = f_A(2e_1 + e_2)$$

$$= \alpha_1([0\ 1\ 0\ 0]^T) + \alpha_2([1\ -1\ 0\ 0]^T) + \alpha_3([0\ 0\ 1\ 0]^T) + \alpha_4([0\ 0\ 0\ 2]^T).$$

$$f_A([0\ 0\ 1]^T) = f_A(e_3)$$

$$= \beta_1([0\ 1\ 0\ 0]^T) + \beta_2([1\ -1\ 0\ 0]^T) + \beta_3([0\ 0\ 1\ 0]^T) + \beta_4([0\ 0\ 0\ 2]^T).$$

$$f_A([1\ 0\ 1]^T) = f_A(e_1 + e_3)$$

$$= \gamma_1([0\ 1\ 0\ 0]^T) + \gamma_2([1\ -1\ 0\ 0]^T) + \gamma_3([0\ 0\ 1\ 0]^T) + \gamma_4([0\ 0\ 0\ 2]^T).$$

Quindi adesso si tratta solo di trovare i coefficienti α_i , β_i e γ_i opportuni. Ma questi sono proprio le colonne della matrice A'! Essa è tale che:

$$C_{\mathscr{D}'}(f_A(x)) = A'C_{\mathscr{B}'}(x).$$

Applicando tale formula ai vettori della base \mathscr{B}' (indichiamo con b_i l'i-esimo vettore della base \mathscr{B}') si ottiene

$$C_{\mathscr{D}'}(f_A(b_i)) = A'C_{\mathscr{B}'}(b_i) = A'e_i = i - esima$$
 colonna di A'.

Riprendiamo allora le formule di prima e al posto degli α_i mettiamo la prima colonna di A', al posto dei β_i la seconda e al posto dei γ_i la terza:

$$f_{A}([2\ 1\ 0]) = f_{A}(2e_{1} + e_{2})$$

$$= \alpha_{1}([0\ 1\ 0\ 0]^{T}) + \alpha_{2}([1\ -1\ 0\ 0]^{T}) + \alpha_{3}([0\ 0\ 1\ 0]^{T}) + \alpha_{4}([0\ 0\ 0\ 2]^{T})$$

$$= 0 \cdot ([0\ 1\ 0\ 0]^{T}) + 1 \cdot ([1\ -1\ 0\ 0]^{T}) + 2 \cdot ([0\ 0\ 1\ 0]^{T}) - 1 \cdot ([0\ 0\ 0\ 2]^{T})$$

$$= [1\ -1\ 2\ -2]^{T}$$

$$f_{A}([0\ 0\ 1]) = f_{A}(e_{3})$$

$$= \beta_{1}([0\ 1\ 0\ 0]^{T}) + \beta_{2}([1\ -1\ 0\ 0]^{T}) + \beta_{3}([0\ 0\ 1\ 0]^{T}) + \beta_{4}([0\ 0\ 0\ 2]^{T})$$

$$= 1 \cdot ([0\ 1\ 0\ 0]^{T}) - 1 \cdot ([1\ -1\ 0\ 0]^{T}) - 4 \cdot ([0\ 0\ 1\ 0]^{T}) + 2 \cdot ([0\ 0\ 0\ 2]^{T})$$

$$= [-1\ 2\ -4\ 4]^{T}$$

$$f_{A}([1\ 0\ 1]) = f_{A}(e_{1} + e_{3})$$

$$= \gamma_{1}([0\ 1\ 0\ 0]^{T}) + \gamma_{2}([1\ -1\ 0\ 0]^{T}) + \gamma_{3}([0\ 0\ 1\ 0]^{T}) + \gamma_{4}([0\ 0\ 0\ 2]^{T})$$

$$= 1 \cdot ([0\ 1\ 0\ 0]^{T}) + 0 \cdot ([1\ -1\ 0\ 0]^{T}) - 2 \cdot ([0\ 0\ 1\ 0]^{T}) + 1 \cdot ([0\ 0\ 0\ 2]^{T})$$

$$= [0\ 1\ -2\ 2]^{T}$$

A questo punto sfruttando la linearità di f_A :

$$f_A(e_1) = f_A(e_1 + e_3) - f_A(e_3)$$

$$= \begin{bmatrix} 0 & 1 & -2 & 2 \end{bmatrix}^T - \begin{bmatrix} -1 & 2 & -4 & 4 \end{bmatrix}^T$$

$$= \begin{bmatrix} 1 & -1 & 2 & -2 \end{bmatrix}^T.$$

$$f_A(e_2) = f_A(2e_1 + e_2) - 2f_A(e_1)$$

$$= \begin{bmatrix} 1 & -1 & 2 & -2 \end{bmatrix}^T - \begin{bmatrix} 2 & -2 & 4 & -4 \end{bmatrix}^T$$

$$= \begin{bmatrix} -1 & 1 & -2 & 2 \end{bmatrix}^T.$$

$$f_A(e_3) = \begin{bmatrix} -1 & 2 & -4 & 4 \end{bmatrix}^T.$$

Abbiamo finalmente trovato A:

$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 2 \\ 2 & -2 & -4 \\ -2 & 2 & 4 \end{bmatrix}$$

Tuttavia possiamo trovare A anche in un altro modo. Sappiamo che:

1.
$$C_{\mathscr{D}'}(f_A(x)) = A'C_{\mathscr{B}'}(x)$$
.

2.
$$C_{\mathcal{E}_4}(f_A(x)) = M_{\mathcal{E}_4 \leftarrow \mathcal{D}'}C_{\mathcal{D}'}(f_A(x)).$$

3.
$$C_{\mathcal{E}_3}(x) = M_{\mathcal{E}_3 \leftarrow \mathcal{B}'} C_{\mathcal{B}'}(x)$$
.

e vogliamo A tale che $f_A(x)=Ax \ \forall x\in\mathbb{R}^3$ cioè $C_{\mathscr{E}_4}(f_A(x))=AC_{\mathscr{E}_3}(x)$. Allora

$$\begin{split} f_A(x) &= \\ &= C_{\mathcal{E}_4}(f_A(x)) \\ &= [\text{per la 2}] = M_{\mathcal{E}_4 \leftarrow \mathcal{D}'} C_{\mathcal{D}'}(f_A(x)) \\ &= [\text{per la 1}] = M_{\mathcal{E}_4 \leftarrow \mathcal{D}'} A' C_{\mathcal{B}'}(x) \\ &= [\text{per la 3}] = M_{\mathcal{E}_4 \leftarrow \mathcal{D}'} A' M_{\mathcal{E}_3 \leftarrow \mathcal{B}'}^{-1} C_{\mathcal{E}_3}(x) \\ &= M_{\mathcal{E}_4 \leftarrow \mathcal{D}'} A' M_{\mathcal{E}_3 \leftarrow \mathcal{B}'}^{-1}(x) \end{split}$$

Quindi

$$A = M_{\mathcal{E}_4 \leftarrow \mathcal{D}'} A' M_{\mathcal{E}_3 \leftarrow \mathcal{B}'}^{-1}.$$

 $M_{\mathscr{E}_4 \leftarrow \mathscr{D}'}$ è tale che $C_{\mathscr{E}_4}(f_A(x)) = M_{\mathscr{E}_4 \leftarrow \mathscr{D}'}C_{\mathscr{D}'}(f_A(x))$. Applichiamo questa formula ai vettori d_i della base \mathscr{D}' :

$$C_{\mathscr{E}_4}(d_i) = M_{\mathscr{E}_4 \leftarrow \mathscr{D}'} C_{\mathscr{D}'}(d_i) = M_{\mathscr{E}_4 \leftarrow \mathscr{D}'} e_i = \ i - esima \ \text{colonna} \ \text{di} \ M_{\mathscr{E}_4 \leftarrow \mathscr{D}'}.$$

Da cui:

$$M_{\mathcal{E}_4 \leftarrow \mathcal{D}'} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Mentre $M_{\mathcal{E}_3 \leftarrow \mathcal{B}'}$ è tale che $C_{\mathcal{E}_3}(x) = M_{\mathcal{E}_3 \leftarrow \mathcal{B}'}C_{\mathcal{B}'}(x)$. Applichiamo questa formula ai vettori b_i della base \mathcal{B}' :

$$C_{\mathscr{E}_3}(b_i) = M_{\mathscr{E}_3 \leftarrow \mathscr{B}'}C_{\mathscr{B}'}(b_i) = M_{\mathscr{E}_3 \leftarrow \mathscr{B}'}e_i = \ i - esima \ \text{colonna} \ \text{di} \ M_{\mathscr{E}_3 \leftarrow \mathscr{B}'}.$$

Da cui:

$$M_{\mathcal{E}_3 \leftarrow \mathcal{B}'} = \left[\begin{array}{ccc} 2 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

calcoliamone l'inversa:

$$M_{\mathcal{E}_3 \leftarrow \mathcal{B}'}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & -2 & 0 \end{bmatrix}$$

Troviamo finalmente A:

$$A = M_{\mathcal{E}_4 \leftarrow \mathcal{D}'} A' M_{\mathcal{E}_3 \leftarrow \mathcal{B}'}^{-1} =$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & -4 & -2 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & -2 & 0 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & -4 & -2 \\ -2 & 4 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & -2 & 0 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 2 \\ 2 & -2 & -4 \\ -2 & 2 & 4 \end{bmatrix}$$

Che è proprio la matrice A che avevamo trovato anche prima.