NKarmS 3e2aulP

Дифференциальные и разностные уравнения

1. Дифференциальные уравнения 1-го порядка. Теорема о существовании и единственности решения.

Определение дифференциального уравнения первого порядка

Дифференциальное уравнение первого порядка имеет вид:

$$F(x, y, y') = 0$$

где y = y(x) — неизвестная функция, y' — ее производная.

Часто дифференциальное уравнение записывают в явной форме:

$$v' = f(x, y)$$

Задача Коши

Задача Коши (начальная задача) для дифференциального уравнения первого порядка заключается в нахождении решения y = y(x), удовлетворяющего уравнению и начальному условию:

$$y(x_0) = y_0$$

Теорема о существовании и единственности решения

Теорема Пикара (о существовании и единственности решения): Пусть функция f(x,y) и ее частная производная $\frac{\partial f}{\partial y}$ непрерывны в некоторой области D, содержащей точку (x_0,y_0) . Тогда существует интервал (x_0-h,x_0+h) , в котором определено единственное решение y=y(x) задачи Коши:

$$y' = f(x, y), \quad y(x_0) = y_0$$

Основные типы дифференциальных уравнений первого порядка

1. Уравнения с разделяющимися переменными

Уравнения вида:

$$y' = g(x) \cdot h(y)$$

Решение:

- 1. Преобразовать к виду $\frac{dy}{h(y)} = g(x)dx$
- 2. Проинтегрировать обе части: $\int \frac{dy}{h(y)} = \int g(x)dx + C$

2. Однородные уравнения

Уравнения вида:

$$y' = f(\frac{y}{x})$$

Решение:

- 1. Сделать подстановку y = ux, где u = u(x) новая неизвестная функция
- 2. Получить уравнение для u: $u^{'} = \frac{f(u)-u}{x}$
- 3. Решить полученное уравнение с разделяющимися переменными

3. Линейные уравнения первого порядка

Уравнения вида:

$$y' + P(x)y = Q(x)$$

Решение:

- 1. Найти интегрирующий множитель $\mu(x) = e^{\int P(x)dx}$
- 2. Умножить уравнение на $\mu(x)$: $\mu(x)y' + \mu(x)P(x)y = \mu(x)Q(x)$
- 3. Левая часть становится производной произведения: $(\mu(x)y)' = \mu(x)Q(x)$
- 4. Проинтегрировать: $\mu(x)y = \int \mu(x)Q(x)dx + C$
- 5. Выразить $y = \frac{1}{\mu(x)} \left(\int \mu(x) Q(x) dx + C \right)$

4. Уравнения в полных дифференциалах

Уравнения вида:

$$P(x, y)dx + Q(x, y)dy = 0$$

Уравнение является уравнением в полных дифференциалах, если $\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial x}$.

Решение:

- 1. Найти функцию U(x,y) такую, что dU = P(x,y)dx + Q(x,y)dy
- 2. Общее решение имеет вид U(x,y) = C

2. Линейные однородные и неоднородные дифференциальные уравнения с постоянными коэффициентами.

Линейные однородные дифференциальные уравнения (ЛОДУ)

Линейное однородное дифференциальное уравнение n-го порядка с постоянными коэффициентами имеет вид:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$

где a_0, a_1, \dots, a_n — постоянные коэффициенты, $a_n = 0$.

Метод решения ЛОДУ с постоянными коэффициентами:

1. Составить характеристическое уравнение:

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0 = 0$$

- 2. Найти корни характеристического уравнения r_1, r_2, \dots, r_n .
- 3. Составить общее решение в зависимости от типа корней:
 - а) Простые действительные корни r_k :

$$y_k = C_k e^{r_k x}$$

b) Кратные действительные корни r_k кратности m:

$$y_k = (C_{k1} + C_{k2}x + ... + C_{km}x^{m-1})e^{r_kx}$$

c) Простые комплексные корни $r = \alpha \pm i\beta$:

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

d) Кратные комплексные корни $r=\alpha\pm i\beta$ кратности m:

$$y = e^{\alpha x} \sum_{j=0}^{m-1} x^{j} (C_{j1} \cos \beta x + C_{j2} \sin \beta x)$$

4. Общее решение ЛОДУ является линейной комбинацией фундаментальной системы решений:

$$y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$$

Линейные неоднородные дифференциальные уравнения (ЛНДУ)

Линейное неоднородное дифференциальное уравнение n-го порядка с постоянными коэффициентами имеет вид:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f(x)$$

Общее решение ЛНДУ:

Общее решение ЛНДУ представляется в виде суммы общего решения соответствующего ЛОДУ и частного решения ЛНДУ:

$$y = y_{\text{одн}} + y_{\text{част}}$$

где $y_{\text{одн}}$ — общее решение соответствующего ЛОДУ, $y_{\text{част}}$ — частное решение ЛНДУ.

Методы нахождения частного решения ЛНДУ:

1. **Метод вариации произвольных постоянных (метод Лагранжа)**: а) Найти общее решение соответствующего ЛОДУ: $y_{\text{олн}} = C_1 y_1 + C_2 y_2 + \ldots + C_n y_n$ b) Заменить

NKarmS 3e2aulP

постоянные C_i на функции $C_i(x)$ с) Составить систему уравнений для нахождения производных $C_i^{'}(x)$ d) Найти функции $C_i(x)$ интегрированием e) Подставить найденные функции в выражение для y

- 2. **Метод неопределенных коэффициентов** (применим, когда f(x) квазиполином):
 - а) Если $f(x) = P_m(x)e^{\alpha x}$, где $P_m(x)$ многочлен степени m:
 - о Если α не является корнем характеристического уравнения, то $y_{\rm част} = Q_m(x)e^{\alpha x}$
 - Если α является корнем характеристического уравнения кратности k, то $y_{\text{част}} = x^k Q_m(x) e^{\alpha x}$
 - b) Если $f(x) = P_m(x)e^{\alpha x}\cos\beta x$ или $f(x) = P_m(x)e^{\alpha x}\sin\beta x$:
 - Если $\alpha + i\beta$ не является корнем характеристического уравнения, то $y_{\text{част}} = e^{\alpha x} [Q_m^{(1)}(x) \cos \beta x + Q_m^{(2)}(x) \sin \beta x]$
 - \circ Если $\alpha+ieta$ является корнем характеристического уравнения кратности k, то $y_{\text{част}}=x^ke^{ax}[Q_m^{(1)}(x)\cos\beta x+Q_m^{(2)}(x)\sin\beta x]$

где $Q_m(x)$, $Q_m^{(1)}(x)$, $Q_m^{(2)}(x)$ — многочлены с неопределенными коэффициентами той же степени, что и $P_m(x)$.

Разностные уравнения

Разностное уравнение — это уравнение, связывающее значения неизвестной функции y(n) для различных значений аргумента n.

Линейное разностное уравнение k-го порядка с постоянными коэффициентами имеет вид:

$$a_k v(n+k) + a_{k-1} v(n+k-1) + \dots + a_1 v(n+1) + a_0 v(n) = f(n)$$

Методы решения разностных уравнений аналогичны методам решения дифференциальных уравнений:

- 1. Составление характеристического уравнения
- 2. Нахождение общего решения однородного уравнения
- 3. Нахождение частного решения неоднородного уравнения
- 4. Суммирование общего решения однородного уравнения и частного решения неоднородного уравнения