第二次作业 2024.05.20 课堂上交

—, Fill in the blanks.	(10 points)
------------------------	-------------

1.	The a	utocoi	rrelatio	on of a rea	l stati	onary s	tocha	stic pro	ocess is	$R_X(\tau$	$\frac{1}{1+2\tau^2} = \frac{40+72\tau}{1+2\tau^2}$, ·
				process,								
				(3	points	each)						
2.	Mean	value	of wh	ite noise is			,	The au	ıtocorre	lation	function is	s an
	impul	lse fun	ction (or δ Functi	ion).	(4 poir	its)					
<u> </u>	, (Calcula	ation.	(90 point	ts)							

- 1. (20 points) If $Y(t) = X(t \alpha)$, and the system input X(t) is a stationary stochastic process with autocorrelation $R_X(\tau)$ and power spectrum is $S_X(\omega)$, find the autocorrelation $R_Y(\tau)$ and power spectrum $S_Y(\omega)$. (written as $R_X(\tau)$ and $S_X(\omega)$)
- 2. (20 points) The power spectrum of a stationary stochastic process is $S_x(\omega) = \frac{\omega^2 + 17}{\omega^4 + 34\omega^2 + 225}$: Calculate the autocorrelation, mean, variance and correlation coefficient of the stochastic process.
- 3. (20 points) The stochastic process $X(t) = A\cos(\omega_0 t + \Phi)$, where ω_0 is a constant, and A and Φ are independent random variables. Φ is uniformly distributed in $(-3.5\pi, 2.5\pi)$, and A is a zero mean Gaussian random variable with variance 1.
- (1) Is X(t) Wide Sense Stationary (WSS)? Prove it. (10 points)
- (2) Calculate the power spectrum of this process X(t). (10 points)
- 4. (30 points) Given real joint stationary processes X(t) and Y(t): $\alpha Y(t) + \frac{d^3Y(t)}{d^3t} = X(t) \beta \frac{d^2X(t)}{d^2t}$, and the power spectrum of X(t) is $S_X(\omega)$,
- (1) Calculate the transfer function $H_Y(\omega)$ and the cross-power spectrum of $S_{XY}(\omega)$ and $S_{YX}(\omega)$ (represented by α , β and $S_X(\omega)$). (15 points)
- (2) if the input X(t) is a white noise with power spectrum q, and $S_Y(\omega) = \frac{2\beta\omega^2 + 2}{\omega^4 \omega^2 + 1}$, calculate α , β , q (value only, do not consider the units). (15 points)