Optimization Project in Energy PGE 306

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris Institut Polytechnique de Paris January, 2022

2 ON/OFF devices

Indices

- \blacksquare Set of dams \mathcal{I}
- Set of rivers $\mathcal{E} \subset \mathcal{I} \times \mathcal{I}$: $(i,j) \in \mathcal{E} \iff$ river flows from dam i to dam j.
- Set of time intervals: $\{1, ..., T\}$.

Optimization variables

- $q_{i,t}$: water level of dam i at the beginning of time interval t
- $\mathbf{x}_{i,t}$: amount of water exploited at dam i during time interval t
- $y_{(i,j),t}$: amount of water transported over the river (i,j) during the time interval t
- z_{i,t}: amount of water exploited at dam i during the time interval t, not transported to any other dam.

Parameters

- $ightharpoonup P_{i,t}$: precipitation at i, during the time interval t
- $lackbox{Q}_i$: storage capacity of dam i
- K_i: initial level of dam i
- lacksquare D_t : electricity demand during the time interval t

Functions

- $f_i: x \mapsto f_i(x)$: exploitation cost on a given time interval at dam i, as a function of the amount of exploited water x.
- g_i : $x \mapsto g_i(x)$: electricity production as a function of the amount of exploited water at dam i.

Cost function

$$\min_{q,x,y,z} \sum_{t=1}^{I} \sum_{i \in I} f_i(x_{i,t}).$$

Constraints

Nonnegativity of the variables:

$$q_{i,t} \ge 0, \quad x_{i,t} \ge 0, \quad y_{(i,j),t} \ge 0, \quad z_{i,t} \ge 0.$$

Bounds:

$$q_{i,t} \leq Q_i$$
.

Initial condition:

$$q_{1,i} = K_i$$
.

Demand satisfaction:

$$\sum_{i\in\mathcal{I}}g_i(x_{i,t})=D_t.$$

Evolution of the water level in each dam:

$$q_{i,t+1} = q_{i,t} + P_{i,t} - x_{i,t} + \sum_{\substack{j \in \mathcal{I} \\ (j,i) \in \mathcal{E}}} y_{(j,i),t}.$$

Amount of exploited water:

$$x_{i,t} = \sum_{\substack{j \in \mathcal{I} \\ (i,j) \in \mathcal{I}}} y_{(i,j),t} + z_{i,t}.$$

Dynamic programming.

We parametrize the problem by

- the initial time interval t
- the initial level of water in every dam $q \in \mathbb{R}^{\mathcal{I}}$.

Let V(t,q) denote the corresponding optimal cost.

Dynamic programming principle

Let $t \in \{1,...,T-1\}$ and let $q \in \prod_{i \in \mathcal{I}} [0,Q_i]$. Then

$$V(t,q) = \inf_{\substack{q' \in \mathbb{R}^{\mathcal{I}}, x \in \mathbb{R}^{\mathcal{I}}, \\ y \in \mathbb{R}^{\mathcal{E}}, z \in \mathbb{R}^{\mathcal{I}}}} \left(\sum_{i \in \mathcal{I}} f_i(x_i) \right) + V(t+1, q'), \quad (DP(t,q))$$

subject to:

- Non-negativity: $q_i' \ge 0$, $x_i \ge 0$, $y_{(i,j)} \ge 0$, $z_i \ge 0$.
- Bounds: $q_i' \leq Q_i$.
- Demand: $\sum_{i \in \mathcal{I}} g_i(x_i) = D_t$.
- Conservation: $q'_i = q_i + P_{i,t} x_i + \sum_{\substack{j \in \mathcal{I} \\ (i,i) \in \mathcal{E}}} y_{(j,i)}$.
- Exploitation : $x_i = \sum_{\substack{j \in \mathcal{I} \\ (i,j) \in \mathcal{I}}} y_{(i,j)} + z_i$.

Remarks.

- Why does it work?
 - \rightarrow The level of water in the dams at time t is a **sufficient information** to take optimal decisions from t until the end of the optimization process.
 - \rightarrow Knowing the level of water in the dams at time t, one can completely **forget** what happened in the past.
- The dynamic programming principle characterizes globally optimal solutions, even if the original problem is non convex.
- In the practical implementation of the method, one needs to **discretize** the variable *q*. The number of discretization point grows **exponentially** with the number of dams. This phenomenon is called **curse of dimensionality**.

2 ON/OFF devices

Context:

- Set of $\{1, ..., I\}$ production units (e.g. nuclear power plants).
- These plants can be put into standy and reactived after some time, at some time to be optimized.

Constraints on disactivation and activation (unit i):

- Maximal activity duration: X_i^{on} days.
- Minimal standby duration: X_i^{off} days.

Decision variables on time interval t, associated with unit i:

- Production $u_i(t)$ (if i is activated).
- Activation/Disactivation/No change.

States set:

The set \mathcal{X}_i describes of possible states of the unit i. It is defined by

$$\mathcal{X}_i = \{(0,x) \,|\, x = 0,...,X_i^{\mathsf{off}}\} \cup \{(1,x) \,|\, x = 0,...,X_i^{\mathsf{on}}\}.$$

Interpretation:

- \bullet (0, x): unit i has been OFF for x days,
- (1,x): unit i has been ON for x days.

If the unit i has been OFF for strictly more that X_i^{off} , the state is represented by $(0, X_i^{\text{off}})$.

Transitions:

We denote $\mathcal{E}_i \subset \mathcal{X}_i \times \mathcal{X}_i$ the set of possible transitions from one state to the other. We have

Transition e	Coût $f(e)$
$(1,x) \to (1,x+1), x=0,,X_i^{\text{on}}-1$	0
$(1,x) \to (0,0), \qquad x=0,,X_i^{\text{on}}-1$	0
$(0,x) \to (0,x+1), x=0,,X_i^{\text{off}}-1$	0
$(0,X_i^{\mathrm{off}}) o (0,X_i^{\mathrm{off}})$	0
$(0,X_i^{off}) o (1,0)$	$C_i > 0$

The only transition with non-zero cost is the one corresponding to the activation of unit *i*.

Other parameters:

- $lackbox{D}(t)$: electricity demand on interval t
- $U_i(t)$: maximal production of unit i (if the unit is activated).

Optimization variables:

- $x_i(t)$: state of the unit i at the beginning of the time interval t
- $\mathbf{u}_i(t)$: production of unit *i* ovter the interval *t*.

Production constraint: $(x_i(t), u_i(t)) \in C_i$, où

$$\mathcal{C}_i := \big\{ ((0,x),0) \, | \, x = 1,...,X_i^{\mathsf{off}} \big\} \cup_{u \in U_i} \big\{ ((1,x),u) \, | \, x = 1,...,X_i^{\mathsf{on}} \big\}.$$

Problem:

$$\min_{\substack{x_i(t), \, t = 1, \dots, T+1 \\ u_i(t), \, t = 1, \dots, t}} \sum_{t=1}^{T} \sum_{i=1}^{I} \ell_i(u_i(t)) + f_i(x_i(t), x_i(t+1)),$$

$$\text{subject to:} \begin{cases} (x_i(t), u_i(t)) \in \mathcal{C}_i, \\ (x_i(t), x_i(t+1)) \in \mathcal{E}_i, \\ \sum_{i=1}^{I} u_i(t) = d(t), \\ x_i(1) = y_i. \end{cases}$$

Dynamic programming.

We parametrize the problem by

- initial state t
- state of the units $x \in \prod \mathcal{X}_i$.

Let V(t,x) denote the corresponding cost.

Dynamic programming principle

Let $t \in \{1, ..., T\}$ and let $x \in \prod \mathcal{X}_i$. It holds:

$$V(t,x) = \begin{cases} \inf_{\substack{x' \in \prod \mathcal{X}_i, \\ u \in \mathbb{R}^I}} \left(\sum_{i=1}^I \ell_i(u_i) + f_i(x_i, x_i') \right) + V(t+1, x') \\ \text{subject to:} \begin{cases} (x_i, u_i) \in \mathcal{C}_i, \\ (x_i, x_i') \in \mathcal{E}_i. \\ \sum_{i=1}^I u_i = d. \end{cases} \end{cases}$$

Remarks.

- Originally a combinatorial problem.
- Curse of dimensionality.