An algebra generated by two sets of mutually orthogonal idempotents

Tatsuro Ito* and Paul Terwilliger

Abstract

For a field \mathbb{F} and an integer $d \geq 1$, we consider the universal associative \mathbb{F} -algebra A generated by two sets of d+1 mutually orthogonal idempotents. We display four bases for the \mathbb{F} -vector space A that we find attractive. We determine how these bases are related to each other. We describe how the multiplication in A looks with respect to our bases. Using our bases we obtain an infinite nested sequence of 2-sided ideals for A. Using our bases we obtain an infinite exact sequence involving a certain F-linear map $\partial: A \to A$. We obtain several results concerning the kernel of ∂ ; for instance this kernel is a subalgebra of A that is free of rank d.

Keywords. Coproduct, free algebra, nonrepeating word. **2000** Mathematics Subject Classification. Primary: 16S10.

The algebra A 1

Throughout the paper \mathbb{F} denotes a field. All unadorned tensor products are meant to be over \mathbb{F} . An algebra is meant to be associative and have a 1.

We now introduce our topic.

Definition 1.1 Let d denote a positive integer. Let $A = A(d, \mathbb{F})$ denote the \mathbb{F} -algebra defined by generators $\{e_i\}_{i=0}^d$, $\{e_i^*\}_{i=0}^d$ and the following relations:

$$e_i e_j = \delta_{i,j} e_i,$$
 $e_i^* e_j^* = \delta_{i,j} e_i^*,$ $(0 \le i, j \le d),$ (1)

$$e_{i}e_{j} = \delta_{i,j}e_{i},$$
 $e_{i}^{*}e_{j}^{*} = \delta_{i,j}e_{i}^{*},$ $(0 \le i, j \le d),$ (1)

$$1 = \sum_{i=0}^{d} e_{i},$$
 $1 = \sum_{i=0}^{d} e_{i}^{*}.$ (2)

Here $\delta_{i,j}$ denotes the Kronecker delta.

Definition 1.2 Referring to Definition 1.1, we call $\{e_i\}_{i=0}^d$ and $\{e_i^*\}_{i=0}^d$ the idempotent generators for A. We say that the $\{e_i^*\}_{i=0}^d$ are starred and the $\{e_i\}_{i=0}^d$ are nonstarred.

^{*}Supported in part by JSPS grant 18340022.

We now briefly explain how A can be viewed as a coproduct in the sense of Bergman [1,2]. As we will see in Theorem 2.5, the elements $\{e_i\}_{i=0}^d$ are linearly independent in A and hence form a basis for a subalgebra of A denoted A_1 . Similarly the elements $\{e_i^*\}_{i=0}^d$ form a basis for a subalgebra of A denoted A_1^* . By construction A is generated by A_1, A_1^* . The \mathbb{F} -algebras A_1 and A_1^* are each isomorphic to a direct sum of d+1 copies of \mathbb{F} . The elements $\{e_i\}_{i=0}^d$ (resp. $\{e_i^*\}_{i=0}^d$) are the primitive idempotents of A_1 (resp. A_1^*). Since no relation in (1), (2) involves both A_1 and A_1^* , the algebra A is the coproduct of A_1 and A_1^* in the sense of Bergman [1, Section 1]. As part of his comprehensive study of coproducts, Bergman determined the units and zero-divisors in A [1, Corollary 2.16].

Our goal in this article is to describe four bases for A that we find attractive. We determine how these bases are related to each other. We describe how the multiplication in A looks with respect to these bases. Using our bases we obtain an infinite nested sequence of 2-sided ideals for A. Using our bases we obtain an infinite exact sequence involving a certain \mathbb{F} -linear map $\partial: A \to A$. We show that the kernel F of ∂ is a subalgebra of A that is free of rank d. We show that F is generated by the elements $\{e_i - e_i^*\}_{i=1}^d$. We show that each of the \mathbb{F} -linear maps

$$F \otimes A_1 \to A$$
 $F \otimes A_1^* \to A$ $u \otimes v \mapsto uv$ $u \otimes v \mapsto uv$

is an isomorphism of F-vector spaces. We will define our bases after a few comments.

The following three lemmas are about symmetries of A; their proofs are routine and left to the reader.

Lemma 1.3 There exists a unique \mathbb{F} -algebra automorphism of A that sends

$$e_i \mapsto e_i^*, \qquad e_i^* \mapsto e_i$$

for $0 \le i \le d$. Denoting this automorphism by * we have $x^{**} = x$ for all $x \in A$.

By an \mathbb{F} -algebra antiautomorphism of A we mean an isomorphism of \mathbb{F} -vector spaces $\rho: A \to A$ such that $(xy)^{\rho} = y^{\rho}x^{\rho}$ for all $x, y \in A$.

Lemma 1.4 There exists a unique \mathbb{F} -algebra antiautomorphism \dagger of A that fixes each idempotent generator. We have $x^{\dagger\dagger} = x$ for all $x \in A$.

Lemma 1.5 The maps * and \dagger commute.

Let X denote a subset of A. By the *relatives* of X we mean the subsets $X, X^*, X^{\dagger}, X^{*\dagger}$.

2 Four bases for the vector space A

In this section we display four bases for the \mathbb{F} -vector space A.

Definition 2.1 A pair of idempotent generators for A is called *alternating* whenever one of them is starred and the other is nonstarred. For an integer $n \geq 1$, by a word of length n in A we mean a product $g_1g_2\cdots g_n$ such that $\{g_i\}_{i=1}^n$ are idempotent generators for A and g_{i-1}, g_i are alternating for $2 \leq i \leq n$. The word $g_1g_2\cdots g_n$ is said to begin with g_1 and end with g_n .

Example 2.2 For d=2 we display the words in A that have length 3 and begin with e_0 .

$$e_0e_0^*e_0,$$
 $e_0e_0^*e_1,$ $e_0e_0^*e_2,$ $e_0e_1^*e_0,$ $e_0e_1^*e_1,$ $e_0e_1^*e_2,$ $e_0e_2^*e_0,$ $e_0e_2^*e_1,$ $e_0e_2^*e_2.$

Definition 2.3 For an idempotent generator e_i or e_i^* we call i the *index* of the generator. A word $g_1g_2\cdots g_n$ in A is called *nonrepeating* (or NR) whenever g_{j-1}, g_j do not have the same index for $2 \le j \le n$.

Example 2.4 For d = 2 we display the NR words in A that have length 3 and begin with e_0 .

$$e_0e_1^*e_0, \qquad e_0e_1^*e_2, \qquad e_0e_2^*e_0, \qquad e_0e_2^*e_1.$$

Theorem 2.5 Each of the following is a basis for the \mathbb{F} -vector space A:

- (i) The set of NR words in A that end with a nonstarred element.
- (ii) The set of NR words in A that end with a starred element.
- (iii) The set of NR words in A that begin with a nonstarred element.
- (iv) The set of NR words in A that begin with a starred element.

Proof: (i) Let S denote the set of NR words in A that end with a nonstarred element. We first show that S spans A. Let A' denote the subspace of A spanned by S. To obtain A' = Ait suffices to show that A' is a left ideal of A that contains 1. To show that A' is a left ideal of A, it suffices to show that $e_i A' \subseteq A'$ and $e_i^* A' \subseteq A'$ for $0 \le i \le d$. For a word $w = g_1 g_2 \cdots g_n$ in S and $0 \le i \le d$ we show that each of $e_i w$, $e_i^* w$ is contained in A'. Let j denote the index of g_1 . Invoking (2) we may assume without loss that $i \neq j$. First assume n is odd, so that $g_1 = e_j$. Since $e_i e_j = 0$ we have $e_i w = 0$, so $e_i w \in A'$. Also $e_i^* w = e_i^* g_1 g_2 \cdots g_n$ is a word in S, so $e_i^*w \in A'$. Next assume n is even, so that $g_1 = e_j^*$. Then $e_iw = e_ig_1g_2\cdots g_n$ is a word in S, so $e_i w \in A'$. Since $e_i^* e_j^* = 0$ we have $e_i^* w = 0$, so $e_i^* w \in A'$. We have shown A' is a left ideal of A. The ideal A' contains 1, since $e_i \in S$ for $0 \le i \le d$ and $1 = \sum_{i=0}^d e_i$. We have shown A' is a left ideal of A that contains 1, so A' = A. Therefore S spans A. Next we show that the elements of S are linearly independent. Let S denote the set of sequences (r_1, r_2, \ldots, r_n) such that (i) n is a positive integer; (ii) each of r_1, r_2, \ldots, r_n is contained in the set $\{0, 1, \ldots, d\}$; (iii) $r_{i-1} \neq r_i$ for $2 \leq i \leq n$. Let V denote the vector space over \mathbb{F} consisting of those formal linear combinations of \mathcal{S} that have finitely many nonzero coefficients. The set \mathcal{S} is a basis for V. For $0 \le i \le d$ we define linear transformations $E_i: V \to V$ and $E_i^*: V \to V$. To this end we give the actions of E_i and E_i^* on S. Pick an element $(r_1, r_2, \ldots, r_n) \in S$. The actions of E_i and E_i^* on (r_1, r_2, \ldots, r_n) are given in the table below.

Using the table,

$$E_i E_j = \delta_{i,j} E_i,$$
 $E_i^* E_j^* = \delta_{i,j} E_i^*,$ $(0 \le i, j \le d),$ (3)

$$1 = \sum_{i=0}^{d} E_i, \qquad 1 = \sum_{i=0}^{d} E_i^*. \tag{4}$$

Comparing (3), (4) with (1), (2) we find that V has an A-module structure such that e_i (resp. e_i^*) acts on V as E_i (resp. E_i^*) for $0 \le i \le d$. Define the element $\Delta \in V$ by $\Delta = \sum_{i=0}^{d} (i)$, and consider the linear transformation $\gamma : A \to V$ that sends $x \mapsto x.\Delta$ for all $x \in A$. For each word $w = g_1g_2 \cdots g_n$ in S we find $\gamma(w) = (\overline{g_1}, \overline{g_2}, \ldots, \overline{g_n})$ where \overline{g} denotes the index of g. Thus the restriction of γ to S gives a bijection $S \to S$. The elements of S are linearly independent and γ is linear, so the elements of S are linearly independent. We have shown S is a basis for A.

- (ii) Apply the automorphism * to the basis in (i) above.
- (iii), (iv) Apply the antiautomorphim † to the bases in (i), (ii) above.

3 How the four bases for A are related

In this section we obtain some identities that effectively give the transition matrix between any two bases from Theorem 2.5.

Notation 3.1 Let $w = g_1 g_2 \cdots g_n$ denote a word in A, with g_n nonstarred. We represent w by the sequence (r_1, r_2, \ldots, r_n) , where r_j denotes the index of g_j for $1 \le j \le n$. We represent w^* by $(r_1, r_2, \ldots, r_n)^*$.

Example 3.2 We display some words in A along with their notation.

wordnotation
$$e_0e_2^*e_1$$
 $(0, 2, 1)$ $e_1^*e_0e_2^*e_1$ $(1, 0, 2, 1)$ $e_0^*e_2e_1^*$ $(0, 2, 1)^*$ $e_1e_0^*e_2e_1^*$ $(1, 0, 2, 1)^*$

The next result effectively gives the transition matrix between any two bases from Theorem 2.5.

Theorem 3.3 With reference to Notation 3.1, and for each basis vector $(r_1, r_2, ..., r_n)$ from Theorem 2.5(i), the element

$$(r_1, r_2, \dots, r_n) + (-1)^n (r_1, r_2, \dots, r_n)^*$$

is equal to

$$\sum_{\substack{0 \le j \le d \\ j \ne r_1}} (j, r_1, r_2, \dots, r_n) + \sum_{\ell=1}^{n-1} (-1)^{\ell} \sum_{\substack{0 \le j \le d \\ j \ne r_{\ell}, \ j \ne r_{\ell+1}}} (r_1, r_2, \dots, r_{\ell}, j, r_{\ell+1}, \dots, r_n) + (-1)^n \sum_{\substack{0 \le j \le d \\ j \ne r_n}} (r_1, r_2, \dots, r_n, j),$$

and also equal to

$$\sum_{\substack{0 \le j \le d \\ j \ne r_n}} (r_1, r_2, \dots, r_n, j)^* + \sum_{\ell=1}^{n-1} (-1)^{n-\ell} \sum_{\substack{0 \le j \le d \\ j \ne r_\ell, \ j \ne r_{\ell+1}}} (r_1, r_2, \dots, r_\ell, j, r_{\ell+1}, \dots, r_n)^*$$

$$+ (-1)^n \sum_{\substack{0 \le j \le d \\ j \ne r_1}} (j, r_1, r_2, \dots, r_n)^*.$$

Proof: To obtain the first assertion, define

$$\phi_0 = \sum_{\substack{0 \le j \le d \\ j \ne r_1}} (j, r_1, r_2, \dots, r_n), \tag{5}$$

$$\phi_{\ell} = \sum_{\substack{0 \le j \le d \\ j \ne r_{\ell}, \ j \ne r_{\ell+1}}}^{j \ne r_1} (r_1, r_2, \dots, r_{\ell}, j, r_{\ell+1}, \dots, r_n) \qquad (1 \le \ell \le n-1),$$
(6)

$$\phi_n = \sum_{\substack{0 \le j \le d \\ j \ne r_n}} (r_1, r_2, \dots, r_n, j). \tag{7}$$

Evaluating (5)–(7) using (2) we find

$$\phi_0 = (r_1, r_2, \dots, r_n) - (r_1, r_1, r_2, \dots, r_n), \tag{8}$$

$$\phi_{\ell} = -(r_1, r_2, \dots, r_{\ell}, r_{\ell}, r_{\ell+1}, \dots, r_n) - (r_1, r_2, \dots, r_{\ell}, r_{\ell+1}, r_{\ell+1}, \dots, r_n),$$
(9)

$$\phi_n = (r_1, r_2, \dots, r_n)^* - (r_1, r_2, \dots, r_n, r_n).$$
(10)

Combining (8)–(10) we obtain

$$\phi_0 + \sum_{\ell=1}^{n-1} (-1)^{\ell} \phi_{\ell} + (-1)^n \phi_n = (r_1, r_2, \dots, r_n) + (-1)^n (r_1, r_2, \dots, r_n)^*,$$

and the first assertion follows. The second assertion is similarly obtained.

Example 3.4 Assume d=2. Then for n=1 and $r_1=1$ the assertions of Theorem 3.3 become

$$e_1 - e_1^* = e_0^* e_1 + e_2^* e_1 - e_1^* e_0 - e_1^* e_2$$
$$= e_1 e_0^* + e_1 e_2^* - e_0 e_1^* - e_2 e_1^*.$$

For n=2 and $(r_1,r_2)=(1,0)$ the assertions of Theorem 3.3 become

$$e_1^* e_0 + e_1 e_0^* = e_0 e_1^* e_0 + e_2 e_1^* e_0 - e_1 e_2^* e_0 + e_1 e_0^* e_1 + e_1 e_0^* e_2$$
$$= e_1^* e_0 e_1^* + e_1^* e_0 e_2^* - e_1^* e_2 e_0^* + e_0^* e_1 e_0^* + e_2^* e_1 e_0^*.$$

4 The product of basis elements

Consider the basis for A from Theorem 2.5(i). We now take two elements from this basis, and write the product as a linear combination of elements from the basis.

Theorem 4.1 Let (r_1, r_2, \ldots, r_n) and $(r'_1, r'_2, \ldots, r'_m)$ denote basis vectors from Theorem 2.5(i). Then the product

$$(r_1, r_2, \dots, r_n) \cdot (r'_1, r'_2, \dots, r'_m)$$
 (11)

is the following linear combination of basis vectors from Theorem 2.5(i).

- (i) Assume m is odd and $r_n \neq r'_1$. Then (11) is zero.
- (ii) Assume m is odd and $r_n = r'_1$. Then (11) is equal to

$$(r_1, r_2, \ldots, r_n, r'_2, \ldots, r'_m).$$

(iii) Assume m is even and $r_n \neq r'_1$. Then (11) is equal to

$$(r_1, r_2, \ldots, r_n, r'_1, r'_2, \ldots, r'_m).$$

(iv) Assume m is even and $r_n = r'_1$. Then (11) is equal to

$$(-1)^{n+1}(r_1, r_2, \dots, r_n, r'_2, \dots, r'_m) + (-1)^n \sum_{\substack{0 \le j \le d \\ j \ne r_1}} (j, r_1, r_2, \dots, r_n, r'_2, \dots, r'_m)$$

+
$$\sum_{\ell=1}^{n-1} (-1)^{n-\ell} \sum_{\substack{0 \le j \le d \\ j \ne r_{\ell}, \ j \ne r_{\ell+1}}} (r_1, r_2, \dots, r_{\ell}, j, r_{\ell+1}, \dots, r_n, r'_2, \dots, r'_m).$$

Proof: (i)–(iii) Routine.

(iv) In line (11), evaluate (r_1, r_2, \ldots, r_n) using the second identity in Theorem 3.3, and simplify the result.

Now consider the basis for A from Theorem 2.5(ii), and the basis for A from Theorem 2.5(i). In the next result, we take an element from the first basis and an element from the second basis, and write the product as a linear combination of elements from the second basis.

Theorem 4.2 In the notation of Theorem 4.1, the product

$$(r_1, r_2, \dots, r_n)^* \cdot (r'_1, r'_2, \dots, r'_m)$$
 (12)

is the following linear combination of basis vectors from Theorem 2.5(i).

- (i) Assume m is even and $r_n \neq r'_1$. Then (12) is 0.
- (ii) Assume m is even and $r_n = r'_1$. Then (12) is equal to

$$(r_1, r_2, \ldots, r_n, r'_2, \ldots, r'_m).$$

(iii) Assume m is odd and $r_n \neq r'_1$. Then (12) is equal to

$$(r_1, r_2, \ldots, r_n, r'_1, r'_2, \ldots, r'_m).$$

(iv) Assume m is odd and $r_n = r'_1$. Then (12) is equal to

$$(-1)^{n+1}(r_1, r_2, \dots, r_n, r'_2, \dots, r'_m) + (-1)^n \sum_{\substack{0 \le j \le d \\ j \ne r_1}} (j, r_1, r_2, \dots, r_n, r'_2, \dots, r'_m)$$

+
$$\sum_{\ell=1}^{n-1} (-1)^{n-\ell} \sum_{\substack{0 \le j \le d \\ j \ne r_{\ell}, \ j \ne r_{\ell+1}}} (r_1, r_2, \dots, r_{\ell}, j, r_{\ell+1}, \dots, r_n, r'_2, \dots, r'_m).$$

Proof: (i)–(iii) Routine.

(iv) In line (12), evaluate $(r_1, r_2, \dots, r_n)^*$ using the first identity in Theorem 3.3, and simplify the result.

5 The subspaces A_n

In this section we introduce some subspaces A_n of A, and use them to interpret our results so far.

Definition 5.1 For an integer $n \ge 1$ let A_n denote the subspace of A spanned by the NR words that have length n and end with a nonstarred element.

Lemma 5.2 For $n \ge 1$ we display a basis for each relative of A_n .

space	basis
A_n	the NR words in A that have length n and end with a nonstarred element
A_n^*	the NR words in A that have length n and end with a starred element
A_n^{\dagger}	the NR words in A that have length n and begin with a nonstarred element
$A_n^{*\dagger}$	the NR words in A that have length n and begin with a starred element

Proof: Immediate from Lemma 1.3, Lemma 1.4, and Theorem 2.5.

Lemma 5.3 For $n \ge 1$ each relative of A_n has dimension $(d+1)d^{m-1}$.

Proof: Apply Lemma 5.2 and a routine counting argument.

Lemma 5.4 The following (i), (ii) hold for all integers $n \geq 1$.

- (i) Suppose n is even. Then $A_n^{*\dagger} = A_n$ and $A_n^* = A_n^{\dagger}$.
- (ii) Suppose n is odd. Then $A_n^{*\dagger} = A_n^*$ and $A_n^{\dagger} = A_n$.

Proof: Pick a word w in A of length n. If n is even, then w begins with a starred element if and only if w ends with a nonstarred element. If n is odd, then w begins with a starred element if and only if w ends with a starred element. The result follows.

Theorem 5.5 Each of the following sums is direct.

$$A = \sum_{n=1}^{\infty} A_n, \qquad A = \sum_{n=1}^{\infty} A_n^*,$$
$$A = \sum_{n=1}^{\infty} A_n^{\dagger}, \qquad A = \sum_{n=1}^{\infty} A_n^{*\dagger}.$$

Proof: Combine Theorem 2.5 and Lemma 5.2.

Theorem 5.6 For $n \geq 1$ and $x \in A_n$,

$$x + (-1)^n x^* \in A_{n+1} \cap A_{n+1}^*.$$

Proof: By Definition 5.1 we may assume without loss that x is an NR word in A that has length n and ends with a nonstarred element. Now $x + (-1)^n x^* \in A_{n+1}$ by the first assertion of Theorem 3.3, and $x + (-1)^n x^* \in A_{n+1}^*$ by the second assertion of Theorem 3.3. The result follows.

Corollary 5.7 For $n \geq 1$,

$$A_n + A_{n+1} \cap A_{n+1}^* = A_n^* + A_{n+1} \cap A_{n+1}^*.$$

Proof: This is a routine consequence of Theorem 5.6.

For subsets X, Y of A let XY denote the subspace of A spanned by $\{xy \mid x \in X, y \in Y\}$.

Theorem 5.8 For positive integers n, m the products $A_n A_m$ and $A_n^* A_m$ are described as follows.

(i) Assume m is odd. Then

$$A_n A_m \subseteq A_{n+m-1}, \qquad A_n^* A_m \subseteq A_{n+m} + A_{n+m-1}. \tag{13}$$

(ii) Assume m is even. Then

$$A_n A_m \subseteq A_{n+m} + A_{n+m-1}, \qquad A_n^* A_m \subseteq A_{n+m-1}. \tag{14}$$

Proof: In (13) and (14) the inclusions on the left follow from Theorem 4.1, and the inclusions on the right follow from Theorem 4.2. \Box

In Section 9 we will obtain a more detailed version of Theorem 5.8.

6 The ideals $A_{>n}$

Motivated by Corollary 5.7 and Theorem 5.8 we consider the following subspaces of A.

Definition 6.1 For $n \ge 1$ define

$$A_{\geq n} = A_n + A_{n+1} + \cdots$$

Theorem 6.2 For $n \ge 1$ the space $A_{\ge n}$ is a 2-sided ideal of A.

Proof: This is a routine consequence of the inclusions on the left in (13), (14).

Theorem 6.3 For $n \ge 1$ we have

$$A_{\geq n}^* = A_{\geq n}, \qquad A_{\geq n}^{\dagger} = A_{\geq n}.$$

Proof: For $m \geq 1$ we obtain $A_m \subseteq A_m^* + A_{m+1}^*$ and $A_m^* \subseteq A_m + A_{m+1}$ from Corollary 5.7. Therefore $A_{\geq n}^* = A_{\geq n}$. For $m \geq 1$ the space A_m^{\dagger} is one of A_m , A_m^* by Lemma 5.4, and each of A_m , A_m^* is contained in $A_m + A_{m+1}$, so $A_m^{\dagger} \subseteq A_m + A_{m+1}$. In this inclusion we apply \dagger to each side and find $A_m \subseteq A_m^{\dagger} + A_{m+1}^{\dagger}$. Therefore $A_{\geq n}^{\dagger} = A_{\geq n}$.

Lemma 6.4 For positive integers n, m the product $A_{\geq n}A_{\geq m}$ is contained in $A_{\geq n+m-1}$.

Proof: This follows from Definition 6.1 and the products on the left in (13), (14).

7 The map $\partial: A \to A$

Motivated by Theorem 5.6 we consider the following map.

Lemma 7.1 There exists a unique \mathbb{F} -linear transformation $\partial: A \to A$ such that for $n \geq 1$,

$$\partial(x) = x + (-1)^n x^* \qquad (\forall x \in A_n). \tag{15}$$

Proof: By Theorem 5.5 the sum $A = \sum_{n=1}^{\infty} A_n$ is direct.

Lemma 7.2 With reference to Lemma 7.1 we have $\partial(A_n) \subseteq A_{n+1}$ for $n \ge 1$.

Proof: Immediate from Theorem 5.6.

Lemma 7.3 With reference to Lemma 7.1 the following (i), (ii) hold for all $x \in A$.

- (i) $\partial(\partial(x)) = 0$.
- (ii) $\partial(x^*) = -(\partial(x))^*$.

Proof: Without loss we may assume $x \in A_n$ for some $n \ge 1$.

- (i) Observe $\partial(x) \in A_{n+1}$ by Lemma 7.2, so $\partial(\partial(x)) = \partial(x) (-1)^n(\partial(x))^*$ by (15). In line (15) we apply * to both sides and get $(\partial(x))^* = (-1)^n \partial(x)$. The result follows.
- (ii) In line (15) we apply ∂ to both sides and use (i) above to get $\partial(x^*) = (-1)^{n-1}\partial(x)$. We observed $(\partial(x))^* = (-1)^n\partial(x)$ in the proof of part (i), so $\partial(x^*) = -(\partial(x))^*$.

Lemma 7.4 For $n \geq 1$ the kernel of ∂ on A_n is $A_n \cap A_n^*$.

Proof: For $x \in A_n$ we show that $\partial(x) = 0$ if and only if $x \in A_n^*$. First assume $\partial(x) = 0$. Then $x^* = (-1)^{n-1}x$ by (15), so $x \in A_n^*$. To get the reverse implication, assume $x \in A_n^*$ and note that $x^* \in A_n$. Now each of x, x^* is contained in A_n , so $\partial(x) \in A_n$ in view of (15). But $\partial(x) \in A_{n+1}$ by Lemma 7.2 and $A_n \cap A_{n+1} = 0$ by Theorem 5.5 so $\partial(x) = 0$.

Our next goal is to show that for $n \geq 1$ the image of A_n under ∂ is $A_{n+1} \cap A_{n+1}^*$. To this end it will be convenient to introduce some subspaces ${}^+A_n$ and 0A_n of A_n .

Definition 7.5 For $n \geq 1$ let ${}^+A_n$ (resp. 0A_n) denote the subspace of A_n with a basis consisting of the NR words that have length n, and end with one of e_1, e_2, \ldots, e_d (resp. end with e_0).

Example 7.6 Assume d=2. The basis for ${}^{+}A_{3}$ from Definition 7.5 is

$$e_1e_0^*e_1, \qquad e_2e_0^*e_1, \qquad e_0e_2^*e_1, \qquad e_1e_2^*e_1, \\ e_1e_0^*e_2, \qquad e_2e_0^*e_2, \qquad e_0e_1^*e_2, \qquad e_2e_1^*e_2.$$

The basis for 0A_3 from Definition 7.5 is

$$e_0e_1^*e_0, \qquad e_2e_1^*e_0, \qquad e_0e_2^*e_0, \qquad e_1e_2^*e_0.$$

Lemma 7.7 For $n \geq 1$,

- (i) $A_n = {}^+A_n + {}^0A_n$ (direct sum).
- (ii) The dimension of ${}^{+}A_n$ is d^n .
- (iii) The dimension of ${}^{0}A_{n}$ is d^{n-1} .

Proof: Routine using Lemma 5.2 and Definition 7.5.

Definition 7.8 For $n \geq 1$ we define an isomorphism of vector spaces $\sigma : {}^+A_n \to {}^0A_{n+1}$. To do this we give the action of σ on the basis for ${}^+A_n$ from Definition 7.5. Let (r_1, r_2, \ldots, r_n) denote an NR word in A such that $r_n \neq 0$. We define the image of this word under σ to be $(r_1, r_2, \ldots, r_n, 0)$. Note that σ sends the above basis for ${}^+A_n$ to the basis for ${}^0A_{n+1}$ given in Definition 7.5. Therefore σ is an isomorphism of vector spaces.

Lemma 7.9 For $n \geq 1$ and $x \in {}^+A_n$,

$$\sigma(x) = (-1)^n \partial(x) e_0. \tag{16}$$

Proof: Without loss we may assume that x is a vector in the basis for ${}^+A_n$ given in Definition 7.5. Thus x is an NR word (r_1, r_2, \ldots, r_n) such that $r_n \neq 0$. Observe that $xe_0 = 0$ and $x^*e_0 = (r_1, r_2, \ldots, r_n, 0)$. By this and (15) we find $(-1)^n \partial(x) e_0$ is equal to $(r_1, r_2, \ldots, r_n, 0)$, which is equal to $\sigma(x)$ by Definition 7.8. The result follows.

Lemma 7.10 *For* $n \ge 1$,

$$A_n = {}^{+}A_n + A_n \cap A_n^* \qquad \text{(direct sum)}. \tag{17}$$

Moreover the dimension of $A_n \cap A_n^*$ is d^{n-1} .

Proof: We first show that the sum ${}^+A_n + A_n \cap A_n^*$ is direct. By Lemma 7.9 and since $\sigma: {}^+A_n \to {}^0A_{n+1}$ is a bijection, the restriction of ∂ to ${}^+A_n$ is injective. Therefore the kernel of ∂ on A_n has zero intersection with ${}^+A_n$. This kernel is $A_n \cap A_n^*$ by Lemma 7.4. Therefore ${}^+A_n$ has zero intersection with $A_n \cap A_n^*$ so the sum ${}^+A_n + A_n \cap A_n^*$ is direct. Let k_n denote the dimension of $A_n \cap A_n^*$. By our comments so far, and given the dimensions of A_n and ${}^+A_n$ from Lemma 5.3 and Lemma 7.7, respectively, we obtain $k_n \leq d^{n-1}$, with equality if and only if $A_n = {}^+A_n + A_n \cap A_n^*$. To finish the proof it suffices to show $k_n = d^{n-1}$. We do this by induction on n. First assume n = 1. We have $k_1 \leq 1$ by our above remarks, and $k_1 \geq 1$ since $1 \in A_1 \cap A_1^*$ by (2). Therefore $k_1 = 1$ as desired. Next assume $n \geq 2$. Let I_n denote the image of A_{n-1} under ∂ . By linear algebra the dimension of I_n is equal to the dimension of A_{n-1} minus the dimension of the kernel of ∂ on A_{n-1} . The dimension of A_{n-1} is $d^{n-1} + d^{n-2}$. The kernel of ∂ on A_{n-1} is $A_{n-1} \cap A_{n-1}^*$ so its dimension is A_{n-1} , which is $A_n \cap A_n^*$ by induction. Therefore the dimension of $A_n \cap A_n^*$ is $A_n \cap A_n^*$. In this inclusion we consider the dimensions and get $A_n \cap A_n^*$. We showed earlier that $A_n \cap A_n^*$ so $A_n \cap A_n^*$ as desired. The result follows.

Lemma 7.11 For $n \geq 1$ the image of A_n under ∂ is $A_{n+1} \cap A_{n+1}^*$.

Proof: Denote this image by I_{n+1} , and observe $I_{n+1} \subseteq A_{n+1} \cap A_{n+1}^*$ by Theorem 5.6. To finish the proof we show that I_{n+1} and $A_{n+1} \cap A_{n+1}^*$ have the same dimension. By Lemma 7.10 the dimension of $A_{n+1} \cap A_{n+1}^*$ is d^n . By Lemma 7.4 and (17) the dimension of I_{n+1} is equal to the dimension of I_{n+1} is I_{n+1} by Lemma 7.7(ii). The result follows.

Lemma 7.12 We have $A_1 \cap A_1^* = \mathbb{F}1$.

Proof: Observe $\mathbb{F}1 \subseteq A_1 \cap A_1^*$ by (2), and $A_1 \cap A_1^*$ has dimension 1 by Lemma 7.10.

Definition 7.13 Let $\iota : \mathbb{F} \to A$ denote \mathbb{F} -algebra homomorphism that sends $a \mapsto a1$ for $a \in \mathbb{F}$. Note that ι is an injection.

Theorem 7.14 The sequence

$$\mathbb{F} \xrightarrow{\iota} A_1 \xrightarrow{\partial} A_2 \xrightarrow{\partial} A_3 \xrightarrow{\partial} \cdots$$

is exact in the sense of [3, p. 435].

Proof: This follows from Lemma 7.4, Lemma 7.11, and Lemma 7.12.

We emphasize a few points for later use.

Lemma 7.15 For $n \geq 1$ the restriction of ∂ to ^+A_n is an isomorphism of vector spaces $^+A_n \to A_{n+1} \cap A_{n+1}^*$.

Proof: Combine Lemma 7.4, line (17), and Lemma 7.11.

Lemma 7.16 For $n \ge 1$ and $x \in A_n$ the following are equivalent:

- (i) $x^* = (-1)^{n-1}x$;
- (ii) $x \in A_n \cap A_n^*$.

Proof: Combine (15) and Lemma 7.4.

Lemma 7.17 For $n \geq 1$ the map ∂ acts on A_n^* as follows.

$$\partial(y) = -y - (-1)^n y^* \qquad (\forall y \in A_n^*).$$

Proof: Write $x = y^*$, so that $x \in A_n$ and $y = x^*$. Now compute $\partial(y)$ using Lemma 7.3(ii) and (15).

8 A subalgebra of A

In this section we consider the sum

$$\sum_{n=0}^{\infty} (A_{n+1} \cap A_{n+1}^*). \tag{18}$$

We observe by Theorem 5.5 and Lemma 7.4 that (18) is the kernel of the map $\partial: A \to A$. We will show that (18) is a subalgebra of A that is free of rank d.

Lemma 8.1 For nonnegative integers n, m the following (i)–(iii) hold.

- (i) $(A_{n+1} \cap A_{n+1}^*) A_{m+1} \subseteq A_{n+m+1};$
- (ii) $(A_{n+1} \cap A_{n+1}^*)A_{m+1}^* \subseteq A_{n+m+1}^*$;
- (iii) $(A_{n+1} \cap A_{n+1}^*)(A_{m+1} \cap A_{m+1}^*) \subseteq A_{n+m+1} \cap A_{n+m+1}^*$.

Proof: (i) For $x \in A_{n+1} \cap A_{n+1}^*$ and $y \in A_{m+1}$ we show that $xy \in A_{n+m+1}$. First assume m is even. Using $x \in A_{n+1}$ and $y \in A_{m+1}$ and the inclusion on the left in (13), we obtain $xy \in A_{n+m+1}$. Next assume m is odd. Using $x \in A_{m+1}^*$ and $y \in A_{m+1}$ and the inclusion on the right in (14), we obtain $xy \in A_{n+m+1}$.

(ii) For $x \in A_{n+1} \cap A_{n+1}^*$ and $y \in A_{m+1}^*$ we show that $xy \in A_{n+m+1}^*$. Observe that $x^* \in A_{n+1} \cap A_{n+1}^*$ and $y^* \in A_{m+1}$ so $x^*y^* \in A_{n+m+1}$ by (i) above. Applying * we find $xy \in A_{n+m+1}^*$.

(iii) Combine (i) and (ii) above.

Corollary 8.2 The sum (18) is a subalgebra of A.

Proof: The sum contains the identity 1 of A by Lemma 7.12. The sum is closed under multiplication by Lemma 8.1(iii).

We will return to the subalgebra (18) after a few comments.

Lemma 8.3 For each basis vector (r_1, r_2, \dots, r_n) from Theorem 2.5(i), the element

$$(r_1, r_2, \dots, r_n) + (-1)^n (r_1, r_2, \dots, r_n)^*$$

is equal to

$$(e_{r_1} - e_{r_1}^*)(e_{r_2} - e_{r_2}^*) \cdots (e_{r_n} - e_{r_n}^*)(-1)^{\lfloor n/2 \rfloor}.$$
 (19)

The expression |x| denotes the greatest integer less than or equal to x.

Proof: Expand (19) into a sum of 2^n terms. Simplify these terms using (1) and $r_{i-1} \neq r_i$ for $2 \leq i \leq n$.

Let F denote the \mathbb{F} -algebra defined by generators $\{s_i\}_{i=1}^d$ and no relations. Thus F is the free \mathbb{F} -algebra of rank d. We call $\{s_i\}_{i=1}^d$ the standard generators for F. We recall a few facts about F. For an integer $n \geq 0$, by a word in F of length n we mean a product $y_1y_2\cdots y_n$ such that $\{y_i\}_{i=1}^n$ are standard generators for F. We interpret the word of length 0 to be the identity of F. The \mathbb{F} -vector space F has a basis consisting of its words [3, p. 723]. For $n \geq 0$ let F_n denote the subspace of F spanned by the words of length n. Note that F_n has dimenion d^n . We have a direct sum $F = \sum_{n=0}^{\infty} F_n$, and $F_r F_s = F_{r+s}$ for $r, s \geq 0$. We call F_n the nth homogeneous component of F.

Theorem 8.4 With the above notation, consider the \mathbb{F} -algebra homomorphism $F \to A$ that sends $s_i \mapsto e_i - e_i^*$ for $1 \le i \le d$. This map is an injection and its image is $\sum_{n=0}^{\infty} (A_{n+1} \cap A_{n+1}^*)$. Moreover for $n \ge 0$ the image of F_n is $A_{n+1} \cap A_{n+1}^*$.

Proof: Let $\varepsilon: F \to A$ denote the homomorphism in question. We claim that for $n \geq 0$ the restriction of ε to F_n is a bijection $F_n \to A_{n+1} \cap A_{n+1}^*$. To establish the claim we split the argument into three cases: n=0, n=1, and $n\geq 2$. The claim holds for n=0 by Lemma 7.12 and since $F_0 = \mathbb{F}1$. To see that the claim holds for n = 1, note that F_1 has a basis $\{s_i\}_{i=1}^d$. By Definition 7.5 the elements $\{e_i\}_{i=1}^d$ form a basis for ${}^+A_1$, so $\{\partial(e_i)\}_{i=1}^d$ is a basis for $A_2 \cap A_2^*$ in view of Lemma 7.15. By Lemma 7.1 we have $\partial(e_i) = e_i - e_i^*$ for $1 \leq i \leq d$. Therefore $\{e_i - e_i^*\}_{i=1}^d$ is a basis for $A_2 \cap A_2^*$, and the claim follows for n=1. We now show that the claim holds for $n \geq 2$. Using $F_n = (F_1)^n$, $\varepsilon(F_1) = A_2 \cap A_2^*$, and Lemma 8.1(iii) we obtain $\varepsilon(F_n) \subseteq A_{n+1} \cap A_{n+1}^*$. To see the reverse inclusion, first note by Lemma 7.11 that any element in $A_{n+1} \cap A_{n+1}^*$ can be written as $\partial(x)$ for some $x \in A_n$. We show $\partial(x) \in \varepsilon(F_n)$. Without loss we may assume that x is a vector (r_1, r_2, \dots, r_n) in the basis for A_n from Lemma 5.2. Combining Lemma 7.1 and Lemma 8.3 we find that $\partial(x)$ is equal to (19). In particular $\partial(x) = \varepsilon(z_1)\varepsilon(z_2)\cdots\varepsilon(z_n)$ where $z_i \in F_1$ for $1 \leq i \leq n$. Observe $\partial(x) = \varepsilon(z_1 z_2 \cdots z_n)$ and $z_1 z_2 \cdots z_n \in F_n$ so $\partial(x) \in \varepsilon(F_n)$. Therefore $A_{n+1} \cap A_{n+1}^* \subseteq \varepsilon(F_n)$. So far we have $\varepsilon(F_n) = A_{n+1} \cap A_{n+1}^*$. To show that the map $F_n \to A_{n+1} \cap A_{n+1}^*$, $x \mapsto \varepsilon(x)$ is a bijection, it suffices to show that F_n and $A_{n+1} \cap A_{n+1}^*$ have the same dimension. We mentioned below Lemma 8.3 that F_n has dimension d^n . By the last line of Lemma 7.10 we find $A_{n+1} \cap A_{n+1}^*$ also has dimension d^n . By these comments the map $F_n \to A_{n+1} \cap A_{n+1}^*$, $x \mapsto \varepsilon(x)$ is a bijection. The claim is now proved for $n \geq 2$. We have established the claim, and the result follows in view of the directness of the sum $\sum_{n=0}^{\infty} A_{n+1} \cap A_{n+1}^*$.

For notational convenience let us identify the free algebra F from above Theorem 8.4 with the subalgebra (18) of A, via the injection from Theorem 8.4. Our next goal is to show that each of the \mathbb{F} -linear maps

$$F \otimes A_1 \to A$$
 $F \otimes A_1^* \to A$ $u \otimes v \mapsto uv$ $u \otimes v \mapsto uv$

is an isomorphism of \mathbb{F} -vector spaces. We need a lemma.

Lemma 8.5 For positive integers n, m the \mathbb{F} -linear map

$$(A_n \cap A_n^*) \otimes A_m \to A_{n+m-1}$$
$$u \otimes v \mapsto uv$$

is an isomorphism of \mathbb{F} -vector spaces.

Proof: Let θ denote the map in question. To show that θ is bijective, we show that the dimension of $(A_n \cap A_n^*) \otimes A_m$ is equal to the dimension of A_{n+m-1} , and that θ is surjective. The dimension of $A_n \cap A_n^*$ is d^{n-1} by Lemma 7.10, and the dimension of A_m is $(d+1)d^{m-1}$ by Lemma 5.3, so the dimension of $(A_n \cap A_n^*) \otimes A_m$ is $(d+1)d^{n+m-2}$. The dimension of A_{n+m-1} is $(d+1)d^{n+m-2}$ by Lemma 5.3. Therefore the dimensions of $(A_n \cap A_n^*) \otimes A_m$ and A_{n+m-1} are the same. Next we show that θ is surjective. First assume n=1. Then θ is surjective since $1 \in A_1 \cap A_1^*$ by Lemma 7.12. Next assume $n \ge 2$. By Lemma 5.2 the space A_{n+m-1} has a basis consisting of the NR words in A that have length n+m-1 and end with a nonstarred element. We show that each of these basis elements is in the image of θ . Consider an NR word $w = (r_1, r_2, \dots, r_{n+m-1})$. Define $u = (-1)^{(n-1)m} \partial (r_1, r_2, \dots, r_{n-1})$ and observe that $u \in A_n \cap A_n^*$ by Lemma 7.11. Define $v = (r_n, r_{n+1}, \dots, r_{n+m-1})$ and observe $v \in A_m$. One verifies w = uv by first using (15), and then Theorem 4.1(i), Theorem 4.2(iii) if m is odd and Theorem 4.1(iii), Theorem 4.2(i) if m is even. Therefore w is the image of $u \otimes v$ under θ . We have shown that θ is surjective, and the result follows.

Theorem 8.6 Each of the \mathbb{F} -linear maps

$$F \otimes A_1 \to A$$
 $F \otimes A_1^* \to A$ $u \otimes v \mapsto uv$ $u \otimes v \mapsto uv$

is an isomorphism of \mathbb{F} -vector spaces.

Proof: Let ψ (resp. ξ) denote the map on the left (resp. right). We first show that ψ is an isomorphism of \mathbb{F} -vector spaces. By construction the sum $F = \sum_{n=1}^{\infty} A_n \cap A_n^*$ is direct. Therefore the sum

$$F \otimes A_1 = \sum_{n=1}^{\infty} (A_n \cap A_n^*) \otimes A_1$$

is direct. By Theorem 5.5 the sum $A = \sum_{n=1}^{\infty} A_n$ is direct. For $n \ge 1$ we apply Lemma 8.5 with m = 1 and find that the map

$$(A_n \cap A_n^*) \otimes A_1 \to A_n$$
$$u \otimes v \mapsto uv$$

is an isomorphism of \mathbb{F} -vector spaces. It follows that ψ is an isomorphism of \mathbb{F} -vector spaces. The map ξ is an isomorphism of \mathbb{F} -vector spaces since it is the composition

$$F \otimes A_1^* \xrightarrow[* \otimes *]{} F \otimes A_1 \xrightarrow[y]{} A \xrightarrow[*]{} A$$

and each composition factor is an isomorphism of \mathbb{F} -vector spaces.

9 The subspaces A_n revisited

In this section we present a more detailed version of Theorem 5.8. Let n, m denote positive integers. For m odd we consider the \mathbb{F} -linear maps

$$A_n \otimes A_m \rightarrow A_{n+m-1}$$
 $A_n \otimes A_m \rightarrow A_{n+m} + A_{n+m-1}$
 $u \otimes v \mapsto uv$ $u \otimes v \mapsto u^*v$

and for m even we consider the \mathbb{F} -linear maps

$$A_n \otimes A_m \rightarrow A_{n+m} + A_{n+m-1}$$
 $A_n \otimes A_m \rightarrow A_{n+m-1}$
 $u \otimes v \mapsto uv$ $u \otimes v \mapsto u^*v$.

Definition 9.1 Let n, m denote positive integers.

- (i) Let $\neq (A_n \otimes A_m)$ denote the subspace of $A_n \otimes A_m$ that has a basis consisting of the elements $u \otimes v$, where $u = (r_1, r_2, \ldots, r_n)$ is an NR word in A_n and $v = (r'_1, r'_2, \ldots, r'_m)$ is an NR word in A_m such that $r_n \neq r'_1$.
- (ii) Let $=(A_n \otimes A_m)$ denote the subspace of $A_n \otimes A_m$ that has a basis consisting of the elements $u \otimes v$, where $u = (r_1, r_2, \ldots, r_n)$ is an NR word in A_n and $v = (r'_1, r'_2, \ldots, r'_m)$ is an NR word in A_m such that $r_n = r'_1$.

The following result is immediate from Definition 9.1.

Lemma 9.2 With reference to Definition 9.1,

$$A_n \otimes A_m = {}^{\neq} (A_n \otimes A_m) + {}^{=} (A_n \otimes A_m)$$
 (direct sum). (20)

Theorem 9.3 For positive integers n, m the following (i), (ii) hold.

(i) Assume m is odd. Then the \mathbb{F} -linear map

$$\begin{array}{ccc} A_n \otimes A_m & \to & A_{n+m-1} \\ u \otimes v & \mapsto & uv \end{array}$$

is surjective with kernel $\neq (A_n \otimes A_m)$.

(ii) Assume m is even. Then the \mathbb{F} -linear map

$$\begin{array}{ccc} A_n \otimes A_m & \to & A_{n+m-1} \\ u \otimes v & \mapsto & u^*v \end{array}$$

is surjective with kernel $\neq (A_n \otimes A_m)$.

Proof: (i) A basis for $\neq (A_n \otimes A_m)$ is given in Definition 9.1(i). By Theorem 4.1(i) the map sends each element in this basis to zero. A basis for $=(A_n \otimes A_m)$ is given in Definition 9.1(ii). By Theorem 4.1(ii) the map sends this basis to the basis for A_{n+m-1} given in Lemma 5.2. The result follows from these comments and Lemma 9.2.

(ii) Similar to the proof of (i) above.

Lemma 9.4 For positive integers n, m we have

$$A_n \otimes A_m = {}^{\neq} (A_n \otimes A_m) + (A_n \cap A_n^*) \otimes A_m$$
 (direct sum). (21)

Proof: For m odd the result follows from Lemma 8.5 and Theorem 9.3(i). For m even the result follows from Lemma 7.16, Lemma 8.5, and Theorem 9.3(ii).

The following result will be helpful.

Proposition 9.5 For positive integers n, m the \mathbb{F} -linear map

$$\begin{array}{ccc} A_n \otimes A_m & \to & A_{n+m} \\ u \otimes v & \mapsto & \partial(u)v \end{array}$$

is surjective with kernel $(A_n \cap A_n^*) \otimes A_m$.

Proof: By Lemma 7.4 and Lemma 7.11, the map $A_n \to A_{n+1} \cap A_{n+1}^*$, $u \mapsto \partial(u)$ is surjective with kernel $A_n \cap A_n^*$. Therefore the map $A_n \otimes A_m \to (A_{n+1} \cap A_{n+1}^*) \otimes A_m$, $u \otimes v \mapsto \partial(u) \otimes v$ is surjective with kernel $(A_n \cap A_n^*) \otimes A_m$. By Lemma 8.5 the map $(A_{n+1} \cap A_{n+1}^*) \otimes A_m \to A_{n+m}$, $u \otimes v \mapsto uv$ is a bijection. Composing the two previous maps, we find that the map $A_n \otimes A_m \to A_{n+m}$, $u \otimes v \mapsto \partial(u)v$ is surjective with kernel $(A_n \cap A_n^*) \otimes A_m$.

Theorem 9.6 For positive integers n, m the following (i), (ii) hold.

(i) Assume m is even. Then the \mathbb{F} -linear map

$$A_n \otimes A_m \rightarrow A_{n+m} + A_{n+m-1}$$

 $u \otimes v \mapsto uv$

is an isomorphism of \mathbb{F} -vector spaces. Under this map the preimage of A_{n+m} is $\neq (A_n \otimes A_m)$ and the preimage of A_{n+m-1} is $(A_n \cap A_n^*) \otimes A_m$.

(ii) Assume m is odd. Then the F-linear map

$$A_n \otimes A_m \to A_{n+m} + A_{n+m-1}$$
$$u \otimes v \mapsto u^*v$$

is an isomorphism of \mathbb{F} -vector spaces. Under this map the preimage of A_{n+m} is $\neq (A_n \otimes A_m)$ and the preimage of A_{n+m-1} is $(A_n \cap A_n^*) \otimes A_m$.

Proof: For $u \in A_n$ and $v \in A_m$ we use $\partial(u) = u + (-1)^n u^*$ to obtain

$$\partial(u)v = uv + (-1)^n u^* v. \tag{22}$$

- (i) Denote the map by η . The restriction of η to $\neq (A_n \otimes A_m)$ gives a bijection $\neq (A_n \otimes A_m) \to A_{n+m}$ by Theorem 9.3(ii), Lemma 9.4, Proposition 9.5, and (22). The restriction of η to $(A_n \cap A_n^*) \otimes A_m$ gives a bijection $(A_n \cap A_n^*) \otimes A_m \to A_{n+m-1}$, by Lemma 8.5. The result follows.
- (ii) Denote the map by ζ . The restriction of ζ to $^{\neq}(A_n \otimes A_m)$ gives a bijection $^{\neq}(A_n \otimes A_m) \to A_{n+m}$ by Theorem 9.3(i), Lemma 9.4, Proposition 9.5, and (22). The restriction of ζ to $(A_n \cap A_n^*) \otimes A_m$ gives a bijection $(A_n \cap A_n^*) \otimes A_m \to A_{n+m-1}$, by Lemma 7.16 and Lemma 8.5. The result follows.

10 The subspaces $A_{\leq n}$

In this last section we investigate the following subspaces of A.

Definition 10.1 For all integers $n \ge 1$ we define

$$A_{\le n} = A_1 + A_2 + \dots + A_n. \tag{23}$$

The following lemma is immediate from the construction.

Lemma 10.2 For $n \ge 1$ we display a basis for each relative of $A_{\le n}$.

space	basis
$A_{\leq n}$	the NR words in A that have length at most n and end with a nonstarred element
$A^*_{\leq n}$	the NR words in A that have length at most n and end with a starred element
$A_{\leq n}^{\uparrow n}$ $A_{\leq n}^{*\uparrow}$	the NR words in A that have length at most n and begin with a nonstarred element
$A_{\leq n}^{\dagger\dagger}$	the NR words in A that have length at most n and begin with a starred element

Lemma 10.3 For $n \ge 1$ the relatives of $A_{\le n}$ all have dimension $(d+1)(1+d+d^2+\cdots+d^{n-1})$.

Proof: By Theorem 5.5 and Definition 10.1, the dimension of $A_{\leq n}$ is equal to the sum of the dimensions of A_1, A_2, \ldots, A_n . The result follows from this and Lemma 5.3.

In Lemma 10.2 we gave a basis for each relative of $A_{\leq n}$. In a moment we will display another basis. In order to motivate this new basis we first give a spanning set.

Lemma 10.4 For $n \ge 1$ we display a spanning set for each relative of $A_{\le n}$.

space	$spanning\ set$
$A_{\leq n}$	the words in A that have length n and end with a nonstarred element
$A^*_{\leq n}$	the words in A that have length n and end with a starred element
$A_{\leq n}^*$ $A_{\leq n}^{\dagger}$ $A_{\leq n}^{*\dagger}$	the words in A that have length n and begin with a nonstarred element
$A_{\leq n}^{\overline{*}\dagger}$	the words in A that have length n and begin with a starred element

Proof: Concerning the first row of the table, let S_n denote the subspace of A spanned by the words in A that have length n and end with a nonstarred element. We show $S_n = A_{\leq n}$. By construction $S_n = \cdots A_1 A_1^* A_1$ (n factors). By Theorem 5.8 we have $A_1 A_j \subseteq A_j + A_{j+1}$ and $A_1^* A_j \subseteq A_j + A_{j+1}$ for $1 \leq j \leq n-1$. By this and induction on n we find $S_n \subseteq A_{\leq n}$. To get the reverse inclusion, note that for $1 \leq j \leq n$ we have $A_j \subseteq S_j$, and also $S_j \subseteq S_n$ since $1 \in A_1$ and $1 \in A_1^*$ by Lemma 7.12. We have verified the first row of the table. The remaining rows are similarly verified.

For each spanning set in Lemma 10.4, the set is not a basis for $n \geq 3$, since the set has cardinality $(d+1)^n$ and this number differs from the dimension given in Lemma 10.3. Our next goal is to obtain a subset of the spanning set that is a basis.

Definition 10.5 A word $g_1g_2\cdots g_n$ in A is called repeating/nonrepeating (or R/NR) whenever for $2 \leq j \leq n$, if g_{j-1} , g_j have the same index then g_1, g_2, \ldots, g_j all have the same index.

Example 10.6 For d = 2 we display the R/NR words in A that have length 3 and end with e_0 .

$$e_0 e_0^* e_0,$$
 $e_1 e_1^* e_0,$ $e_2 e_2^* e_0,$ $e_0 e_1^* e_0,$ $e_2 e_1^* e_0,$ $e_0 e_2^* e_0,$ $e_1 e_2^* e_0.$

Definition 10.7 A word in A is called *nonrepeating/repeating* (or NR/R) whenever its image under \dagger is R/NR.

Example 10.8 For d = 2 we display the NR/R words in A that have length 3 and start with e_0 .

$$e_0e_0^*e_0, \qquad e_0e_1^*e_1, \qquad e_0e_2^*e_2,$$

 $e_0e_1^*e_0, \qquad e_0e_1^*e_2, \qquad e_0e_2^*e_0, \qquad e_0e_2^*e_1.$

Theorem 10.9 For $n \ge 1$ we display a basis for each relative of $A_{\le n}$.

space	basis
$A_{\leq n}$	the R/NR words in A that have length n and end with a nonstarred element
$A^*_{\leq n}$	the R/NR words in A that have length n and end with a starred element
$A_{\leq n}^{\dagger}$	the NR/R words in A that have length n and begin with a nonstarred element
$A_{\leq n}^*$ $A_{\leq n}^{\dagger}$ $A_{\leq n}^{\ast \dagger}$	the NR/R words in A that have length n and begin with a starred element

Proof: Concerning the first row of the table, let $(R/NR)_n$ denote the set of R/NR words in A that have length n and end with a nonstarred element. We show $(R/NR)_n$ is a basis for $A_{\leq n}$. Let $(NR)_n$ denote the basis for A_n given in Lemma 5.2. Let $(NR)_{\leq n} = \cup_{j=1}^n (NR)_j$ denote the basis for $A_{\leq n}$ given in Lemma 10.2. We now define a linear transformation $f: A_{\leq n} \to A_{\leq n}$. To this end we give the action of f on $(NR)_j$ for $1 \leq j \leq n$. For a word (r_1, r_2, \ldots, r_j) in $(NR)_j$ we define its image under f to be $(r_1, r_1, \ldots, r_1, r_1, r_2, \ldots, r_j)$ (n coordinates). This image is contained in $A_{\leq n}$ by Lemma 10.4. By the construction f sends the basis $(NR)_{\leq n}$ to the set $(R/NR)_n$. To show that $(R/NR)_n$ is a basis for $A_{\leq n}$ it suffices to show that f is a bijection. Using the data in Theorem 4.1 and Theorem 4.2, one finds $(f-I)A_j \subseteq A_{j+1} + \cdots + A_n$ for $1 \leq j \leq n$, where $I: A \to A$ is the identity map. Therefore, with respect to an appropriate ordering of the basis $(NR)_{\leq n}$, the matrix which represents f is lower triangular, with all diagonal entries 1. This matrix is nonsingular so f is invertible and hence a bijection. Therefore $(R/NR)_n$ is a basis for $A_{\leq n}$. This yields the first row of the table. The remaining rows are similarly obtained.

References

- [1] G. Bergman. Modules over coproducts of rings. Trans. Amer. Math. Soc. 200 (1974) 1–32.
- [2] G. Bergman. Coproducts and some universal ring constructions *Trans. Amer. Math. Soc.* **200** (1974) 33–88.
- [3] J. J. Rotman. Advanced modern algebra. Prentice Hall, Saddle River NJ 2002.

Tatsuro Ito
Division of Mathematical and Physical Sciences
Graduate School of Natural Science and Technology
Kanazawa University
Kakuma-machi, Kanazawa 920-1192, Japan
email: tatsuro@kenroku.kanazawa-u.ac.jp

Paul Terwilliger
Department of Mathematics
University of Wisconsin
480 Lincoln Drive
Madison, WI 53706-1388 USA
email: terwilli@math.wisc.edu