Definition of inner code

 $\begin{array}{ll} \beta: & \text{code length} \\ \nu: & \text{number of codes} \\ \mathcal{C}_i\!\subset\!\Sigma^\beta: \text{code } (i\!\in\![\nu\rangle) \end{array}$

 $\begin{array}{c} \mathcal{C}_i \! \subset \! \Sigma^{\rho} : \! \mathsf{code} \ (i \! \in \! |\nu\rangle) \\ \boldsymbol{b} \! = \! (b_0, \dots, b_{\nu-1}) : \! \mathsf{bit\text{-width}} \end{array} \right] |\mathcal{C}_i| = 2^{b_i}$

 $R_{
m I} = rac{1}{2neta} \sum_{i=0}^{
u-1} b_i$: inner code rate

Metric

$$q(\mathcal{B}) = \max_{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{B}} \{ p(\boldsymbol{y}|\boldsymbol{x}) \} \quad (\boldsymbol{x} \neq \boldsymbol{y})$$
$$\boldsymbol{x} = (x_0, \dots, x_{\beta-1}) \in \mathcal{B}$$
$$\boldsymbol{y} = (y_0, \dots, y_{\beta-1}) \in \mathcal{B}$$

 \downarrow $p_{\rm d}$

 $p_{\rm i}, p_{\rm d}, p_{\rm s}$: ins,del,sub $p_{\rm t} = 1 - p_{\rm i} - p_{\rm d}$

Construction from binary code

$$\begin{aligned} & \boldsymbol{b}' = (b_0', \dots, b_{\nu-1}') \in [\beta+1)^{\nu} \\ & \text{even } \beta: \ 2^{b_i'} \le {\beta \choose \beta/2} & (b_i = b_i' + \beta) \end{aligned}$$

odd β : $2^{b_i'} \le \binom{\beta}{(\beta-1)/2} = \binom{\beta}{(\beta+1)/2}$

_				b'						
β	t	$\binom{\beta}{t}$	0	1	2	3	4	5	6	7
2	1	2	T	T	_	_	_	_	_	_
3	1, 2	3	T	T	F	_	_	_	_	_
4	$2^{'}$	6	T	T	T	F	_	_	_	_
5	2,3	10	T	T	T	T	F	_	_	_
6	3	20	T	T	T	T	T	F	_	_
7	3, 4	35	T	T	T	T	T	T	F	_
8	4	70							T	
9	4, 5	126	T	T	T	T	T	T	T	F

[computer search: candidate codes]

input: β, b', t

output: $\mathcal{L} = \{\mathcal{B}^0, \dots, \mathcal{B}^{m-1}\} \quad (\mathcal{B}^j \subset \mathbb{B}^\beta)$

(list of best score codes)

constraint: $|\mathcal{B}^j| = 2^{b'}, \forall \boldsymbol{u} \in \mathcal{B}^j, w(\boldsymbol{u}) = t$

objective: minimize $q(\mathcal{B}^j)$

[computer search: code sequence]

 $\begin{array}{ll} \text{input:} & (\mathcal{L}_0, \dots, \mathcal{L}_{\nu-1}) \\ \text{output:} & (\mathcal{B}_0, \dots, \mathcal{B}_{\nu-1}) \end{array}$

constraint: $\mathcal{B}_i \in \mathcal{L}_i$

objective: minimize $\max_{i \in [
u)} \left| \mathcal{B}_i \cap \mathcal{B}_{|i+1|_
u} \right|$

(6,6) | 12/16

Evaluation of inner code

 $\text{channel input:} \quad u \in \mathbb{F}_{2^{b(i,\nu)}}$

channel output: $oldsymbol{p} \in \mathbb{P}_{2^{b(i,
u)}}^{ar{}}$ (APP from inner code)

(a) HD+H(p): $v = (v, Q_{\lambda}(H(p)))$

 $Q_{\lambda}: \lambda$ -level quantization

(b) list output: (list size λ)

 $\mathbf{v} = (v_0, \dots, v_{\lambda-1})$

 $= \operatorname{arg\,max}(\boldsymbol{p}, \lambda) \in \mathbb{F}^{\lambda}_{2^{b(i,\nu)}}$

mutual info.: $I(U; \mathbf{V})$

$\beta = 4$,	$\nu = 1$	$\beta = 4, \nu$	=3
\overline{b}	$R_{ m I}$	\overline{b}	$R_{ m I}$
$\overline{(4)}$	4/8	(4, 4, 4)	12/24
(5)	5/8	(5, 4, 4)	13/24
(6)	6/8	(5, 5, 4)	14/24
$\overline{\beta} = 4$,	$\overline{\nu=2}$	(6, 4, 4)	14/24
\overline{b}	$R_{ m I}$	(5, 5, 5)	15/24
(4,4)	8/16	(6, 5, 4)	15/24
	9/16	(6, 5, 5)	16/24
(5,5)	10/16	(6, 6, 5)	17/24
(6, 4)	10/16	(6, 6, 6)	18/24
	11/16		

_					
$\beta =$	$5, \nu = 1$	$\beta = 5, \nu = 2$			
b	$R_{ m I}$	\overline{b}	$R_{ m I}$		
$\overline{(5)}$	5/10	$\overline{(5,5)}$	10/20		
(6)	6/10	(6, 5)	11/20		
(7)	7/10	(6, 6)	12/20		
(8)	8/10	(7, 5)	12/20		
		(7, 6)	13/20		
		(7,7)	14/20		
		(8, 6)	14/20		
		(8,7)	15/20		
		(8,8)	16/20		

params:

β b

3 4, 5

4 6, 7

5 8.9

 $\overline{\nu} = 2$

 $6 \mid 10, 11$

Concatenated coding

channel alphabet: $\Sigma = \{A, T, G, C\}$ outer code: $\mathcal{C}_{\mathrm{o}} \subset \mathbb{F}_{2^b}^{n_{\mathrm{o}}}$

 $n_{\rm o}: {\sf code \ length}$ b: symbol size (bits)

inner code: $C_i \subset \Sigma^{\beta}$ $(i \in [\nu), b < 2\beta)$

code length (symbols) β : number of code books ν : $|\mathcal{C}_i| = 2^b$: number of codewords

 $R=b/2\beta$: inner code rate $\phi_i: \mathbb{F}_{2^b} \to \mathcal{C}_i: ext{ encoding function}$

 $(\nu = 1)$ \mathcal{C}_0 $\overline{\mathcal{C}}$

$\begin{array}{c} \text{outer} \\ \text{codeword: } \boldsymbol{v} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(shaping)
channel
input: $z=\lfloor z_0 \mid z_1 \mid \cdots \mid z_i \mid \cdots \mid z_{n_{\alpha}-1} \in \Sigma^n$

$$\text{prior:} \ \ p(\boldsymbol{x}_i) = \begin{cases} 1/2^b & (\boldsymbol{x}_i \in \mathcal{C}_{|i|_{\nu}}) \\ 0 & (\boldsymbol{x}_i \notin \mathcal{C}_{|i|_{\nu}}) \end{cases}$$

Constraint

RL-LB constrained coding $(\ell; w, \delta)$:

* run length coding: $f_{\rm R}(z) \leq \ell$

* local GC-balance: $\left|f_{\mathrm{B}}\left(z_{i}^{i+w-1}
ight)
ight|\leq\delta$ * synchronization: MIR?

vector over Σ : $\boldsymbol{u} = (u_0, \dots, u_{n-1}) \in \Sigma^n$

weight: $w(\boldsymbol{u})_x = |\{i \in [n] \mid u_i = x\}| \ (x \in \Sigma)$

balance: $f_{\rm B}(u) = w_{\rm G}(u) + w_{\rm C}(u) - w_{\rm A}(u) - w_{\rm T}(u) \in [-n, n]$

max run length: $f_{\rm R}(\boldsymbol{u}) \in [1, n]$

Inner codebook

$$C_i = \{ (\phi(x_0 y_0), \dots, \phi(x_{\beta-1} y_{\beta-1})) | \boldsymbol{x} \in \mathcal{B}_i, \boldsymbol{y} \in \mathbb{B}^{\beta} \}$$

$$\mathbf{x} = (x_0, \dots, x_{\beta-1})
\mathbf{y} = (y_0, \dots, y_{\beta-1}) \quad (i \in [\nu\rangle)$$

$$\mathcal{B}_i \subset \mathbb{B}^{\beta}$$
 $|\mathcal{C}_i| = 2^{\beta} |\mathcal{B}_i| = 2^b, \ |\mathcal{B}_i| = 2^{b-\beta}$

Marker

rate: $R_{\rm i}=rac{\mu_k}{\mu_k+\mu_r}$

Rate

 $R = R_{\rm o}R_{\rm i}R_{\rm c}$ [bits/symbol]

 $R_{\rm o} \leq$ 1-cross entropy: inner APP

 $R_{\rm i}=\,$ inner code rate

 $R_{\rm c} \leq {\rm bound\ of\ } (\ell;w,\delta) {\rm\ constraint\ }$

bound for given P(X)

 $R_{\rm o}R_{\rm i} \leq I(X;Y)$:

(example)

		β	ν	$R_{\rm I}$	ℓ	δ	b_i	$ {\cal B}_i $
1	3.4.2	3	2	4/6	2	2	4	
				·			4	\mathcal{B}_1 \square : 0
2	3.5.1	3	1	5/6	3	*	5	\mathcal{B}_0 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare
3	4.5.2	4	2	5/8	2	2	5	\mathcal{B}_0 . The second
							5	\mathcal{B}_1 \blacksquare \blacksquare
4	4.6.1a	4	1	6/8	2	2	6	\mathcal{B}_0 ••• ••• •••
5	4.6.1b	4	1	6/8	4	*	6	\mathcal{B}_0 — — — —
6	4.7.1	4	1	7/8	4	*	7	\mathcal{B}_0 . The second
7	5.7.2	5	2	7/10	5	5	7	
							7	\mathcal{B}_1
9	5.8.2	5	2	8/10	3	3	8	\mathcal{B}_0 and the second secon
							8	\mathcal{B}_1
10	5.9.1	5	1	9/10	4	*	9	\mathcal{B}_0
8	5.a.2	5	2	15/20	3	3	8	\mathcal{B}_0
							7	\mathcal{B}_1

									(ex	2b)		
β	3		3	4		4	4	4	5		5	6
b	4		5	5		6	6	7	8		9	10
ν	2		1	2		1	1	1	2		1	1
$\overline{R_{\mathrm{i}}}$	0.67	7	0.83	0.6	3	0.75	0.75	0.88	0.80)	0.90	0.83
	•					a	b					
$(\ell; w, \delta)$	(2; 10), 2)	(3; *, *)	(2;1)	(0, 2)	(2;10,2)	(4; *, *)	(4: *, *)	(3; 1	0,2)	(4; *, *)	

NB-IDS channel

block length:

 $(|\Sigma| = q)$ alphabet: p_{id} (< $\frac{1}{2}$) (ins/del) error prob.:

(sub)

input: $\boldsymbol{x} = (x_0, \dots, x_{n-1}) = \Sigma^n$ $\mathbf{y} = (y_0, \dots, y_{n'-1}) = \Sigma^{n'}$ output:

(n-D < n' < n+D)

[transmission]

 $\mathbf{d} = (d_0, \dots, d_{n-1}, d_n) \in \mathcal{D}^{n+1}$ 1) drift vector:

2) intermediate $z=(z_0,\ldots,z_{n'-1})\in \Sigma^n$

vector: $z_j = x_i \ (j \in [i + d_i, i + d_{i+1}])$ $i \in [n\rangle, \ n' = n + d_n$

 $p(y_i|z_i) = \begin{cases} 1 - p_s & (y_i = z_i) \\ \frac{p_s}{a-1} & (y_i \neq z_i) \end{cases}$ 3) output vector:

 $\max drift: D$

set of drift $\mathcal{D} = \{-D, \dots, 0, \dots, D\}$ values:

 $\mathbf{d} = (d_0 = 0, \dots, d_{n-1}, d_n) \in \mathcal{D}^{n+1}$ drift vector:

 $p(d_{i+1}|d_i) = \begin{cases} 1 - 2p_{\text{id}} & (d_{i+1} = d_i, |d_i| < D) \\ 1 - p_{\text{id}} & (d_{i+1} = d_i, |d_i| = D) \\ p_{\text{id}} & (|d_{i+1} - d_i| = 1, |d_{i+1}| \le D) \longrightarrow \\ 0 & (\text{otherwise}) \end{cases}$

APP by FBA

 $p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{d}) = p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{d})p(\boldsymbol{x}, \boldsymbol{d}) = p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{d})p(\boldsymbol{x})p(\boldsymbol{d})$

$$= p(d_0) \prod_{i=0}^{n-1} p\left(\mathbf{y}_{i+d_i}^{i+d_{i+1}} \middle| x_i, d_i, d_{i+1}\right) p(d_{i+1}|d_i) p(x_i)$$

segment level synchronization: $n = n_\beta \beta$

$$G\left(\beta', \boldsymbol{y}_0^{\beta'-1}\right) \text{ list of } \left[\boldsymbol{x}_0^{\beta-1}, \boldsymbol{p}_0\left(\boldsymbol{y}_0^{\beta'-1} \middle| \boldsymbol{x}_0^{\beta-1}, 0, d'\right) \boldsymbol{p}_0(d'|0) \right. \left(> p_{\text{th}})\right]$$

$$\boldsymbol{p}_{\alpha}\left(\boldsymbol{y}_{\alpha'}^{\beta'-1}\middle|\boldsymbol{x}_{\alpha}^{\beta-1},d,d'\right)\boldsymbol{p}_{\alpha}(d'|d) = \begin{pmatrix} (d'=\beta'-\beta)\\ (d=\alpha'-\alpha) \end{pmatrix}$$

$$\sum_{\delta \in \{-1,0,1\}} p\left(\boldsymbol{y}_{\alpha'}^{\alpha'+\delta} \middle| x_{\alpha}, d, d+\delta\right) p(d+\delta|d)$$

$$imes oldsymbol{p}_{lpha+1}\left(oldsymbol{y}_{lpha'+\delta+1}^{eta'}\Big|oldsymbol{x}_{lpha+1}^{eta-1},d+\delta,d'
ight)oldsymbol{p}_{lpha+1}(d'|d+\delta)$$

Gtable: int beta double Pid double Ps double Pth LIST[len][y]

LIST: int num XP[num]

XP: int x float p [run-length of random sequence]

prob. of run-length
$$\ell$$
: $p(\ell) = \left(\frac{1}{q}\right)^{\ell-1} \left(\frac{q-1}{q}\right) = \frac{q-1}{q^\ell}$ expectation: $E(\ell) = \sum_{\ell=1}^n \ell p(\ell) = \sum_{\ell=1}^n \frac{(q-1)\ell}{q^\ell}$ $= (q-1)\sum_{\ell=1}^n \frac{\ell}{q^\ell}$ $= \frac{q}{q-1} \left(1 - \frac{1}{q^n}\right) - \frac{n}{q^n}$

[local GC-balance of random sequence]

window size: \boldsymbol{w}

prob. binary vector having weight t: $p_w(t) = {w \choose t}/2^w$

absolute GC-balance: $\sum_{t=0}^{w} p_w(t) \left| w - 2t \right|$

[rate upper bound]

run length: constraint graph(?)

$$\begin{array}{l} \text{local GCB:} \quad \frac{1}{w} \log_2 \left(2^w \sum_{t \in \mathcal{T}} \binom{w}{t} \right) = 1 + \frac{1}{w} \log_2 \left(\sum_{t \in \mathcal{T}} \binom{w}{t} \right) \\ \left(\mathcal{T} = \left\{ t \, | \, |w - 2t| \leq \delta \right\} \right) \end{array}$$

$$(\mathcal{T} = \{t \mid |w - 2t| \le \delta\})$$

$$\begin{array}{ll} \mathsf{RL+LGCB:} & \frac{1}{w}\log_2\left|\left\{\boldsymbol{u}\in\Sigma^w\middle||f_\mathrm{B}(\boldsymbol{u})|\leq\delta,f_\mathrm{R}(\boldsymbol{u})\leq\ell\right\}\right| \end{array}$$

Concatenated coding

channel alphabet: $\Sigma = \{A, T, G, C\}$ outer code: $\mathcal{C}_{\mathrm{o}} \subset \mathbb{F}_{2^b}^{n_{\mathrm{o}}}$

 $n_{\rm o}$: code length b: symbol size (bits)

inner code: $C_i \subset \Sigma^{\beta}$ $(i \in [\nu), b < 2\beta)$

code length (symbols) β : number of code books ν : $|\mathcal{C}_i| = 2^b$: number of codewords

 $R = b/2\beta$: inner code rate $\phi_i: \mathbb{F}_{2^b} \! \to \! \mathcal{C}_i:$ encoding function

outer codeword: $v=egin{bmatrix} b & v_1 & \dots & v_i & \dots & v_{n_o-1} \ \hline v_0 & v_1 & \dots & v_i & \dots & v_{n_o-1} \ \hline v_0 & v_1 & \dots & v_i & \dots & v_{n_o-1} \ \hline v_0 & v_1 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0 & v_0 & \dots & v_{n_o-1} \ \hline v_0$	$\mathbb{E}\mathbb{F}_{2^b}^{n_{\mathrm{o}}}$ params:
(inner coding) $\left \stackrel{\phi_{ 0 _{ u}}}{=} \right ^{\phi_{ 1 _{ u}}} \left \stackrel{\phi_{ i _{ u}}}{=} \right ^{\phi_{ n_{\rm o}-1 _{ u}}}$	$\beta \mid b$
inner codeword: $oldsymbol{x} = oldsymbol{x_0} oldsymbol{x_1} oldsymbol{x_1} oldsymbol{x_2} oldsymbol{x_1} oldsymbol{x_n} oldsymbol{x_n} oldsymbol{x_{n_0}} oldsymbol{1}$	Σ^n 3 $4,5$
codeword. β $n = \beta$	$\binom{2}{n_0\beta}$ $\binom{4}{5}\binom{6,7}{8,9}$
(shaping)	6 10 11
channel input: $z= egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{0 + 10, 11}{10}$

$$\begin{aligned} \text{prior:} \ \ p(\boldsymbol{x}_i) = \begin{cases} 1/2^b & (\boldsymbol{x}_i \in \mathcal{C}_{|i|_{\nu}}) \\ 0 & (\boldsymbol{x}_i \notin \mathcal{C}_{|i|_{\nu}}) \end{cases} \end{aligned}$$

vector over Σ : $u = (u_0, \dots, u_{n-1}) \in \Sigma^n$

weight: $w(\boldsymbol{u})_x = |\{i \in [n] \mid u_i = x\}| \ (x \in \Sigma)$

balance: $f_{\mathrm{B}}(\boldsymbol{u}) = w_{\mathsf{G}}(\boldsymbol{u}) + w_{\mathsf{C}}(\boldsymbol{u}) - w_{\mathsf{A}}(\boldsymbol{u}) - w_{\mathsf{T}}(\boldsymbol{u}) \in [-n, n]$

max run length: $f_{\rm R}(\boldsymbol{u}) \in [1, n]$

Constraint

RL-LB constrained coding $(\ell; w, \delta)$:

- * run length coding: $f_{\rm R}(z) \leq \ell$
- * local GC-balance: $\left|f_{\mathrm{B}}\left(z_{i}^{i+w-1}\right)
 ight|\leq\delta$ * synchronization: MIR?

[example 1]

forbidden set $\overline{\mathcal{C}} \subseteq \Sigma^{\beta} \setminus \bigcup_{i \in [\nu]} \mathcal{C}_i \quad (|\overline{\mathcal{C}}| \leq 2^{2\beta} - 2^b)$

(empty) $\overline{\mathcal{C}}_{*,\lambda} = \left\{ \boldsymbol{u} \in \Sigma^{\beta} \,\middle|\, f_{\mathrm{R}}(\boldsymbol{u}) \ge \lambda \right\}$ (RL)

 $\overline{\mathcal{C}}_{\omega,*} = \left\{ m{u} \in \Sigma^{eta} \, \middle| \, |f_{\mathrm{B}}(m{u})| \geq \omega
ight\}$ (LB)

 $\overline{\mathcal{C}}_{\omega,\lambda} = \overline{\mathcal{C}}_{\omega,*} \cup \overline{\mathcal{C}}_{*,\lambda}$ (both)

[example 2a] $\beta = 4, b = 7$

 $C_i = \{ (\phi(x_0 y_0), \dots, \phi(x_3 y_3)) | (x_0, \dots, x_3) \in \mathcal{B}_i, (y_0, \dots, y_3) \in \mathbb{B}^4 \}$

 \mathcal{B}_0 :0011,0101,0110,1001,1010,1100,0010,0100 \mathcal{B}_1 :0011,0101,0110,1001,1010,1100,1101,1011 $|\mathcal{C}_i| = 8 \times 16 = 128 = 2^b$

 $\phi(\boldsymbol{v})$ 00 ATGC 01 10 11

[example 2b]
$$\beta = 5, b = 8$$

$$C_i = \{ (\phi(x_0 y_0), \dots, \phi(x_4 y_4)) | (x_0, \dots, x_4) \in \mathcal{B}_i, (y_0, \dots, y_4) \in \mathbb{B}^5 \}$$

 \mathcal{B}_0 : 00011,00101,00110,01001,01010,01100,10001,10010,10100,11000

 \mathcal{B}_1 :11100,11010,11001,10110,10101,10011,01110,01101,01011,00111

 $|\mathcal{C}_i| = 8 \times 32 = 256 = 2^b$

 $a = (a_0, \ldots, a_4), c = (c_0, \ldots, c_4) \in \mathcal{B}_0$

 $\mathbf{b} = (b_0, \dots, b_4), \mathbf{d} = (d_0, \dots, d_4) \in \mathcal{B}_1$ RL: max RL in a and b: 3 (by definition)

max RL in (a, b) : 3 (proof 1) max RL in (b, c) : 3 (proof 2)

(proof 1) length of the last run of a:1 (run of 1)

2 (run of 0s)

length of the first run of b: 2 (run of 1s)

1 (run of 0)

(proof 2) length of the last run of b: 1 (run of 0)

2 (run of 1s)

length of the first run of c: 2 (run of 0s)

1 (run of 1)

LB: even $w (\geq 10)$

 $(\boldsymbol{a}_{t}^{4}, \boldsymbol{b}, \boldsymbol{c}_{0}^{t-1})$:

Definition of inner code

 $\begin{array}{ll} \beta: & \text{code length} \\ \nu: & \text{number of codes} \end{array}$

 $\begin{array}{l} \mathcal{C}_i \!\subset\! \Sigma^\beta : \! \mathsf{code} \; (i \!\in\! [\nu\rangle) \\ \boldsymbol{b} \!=\! (b_0, \dots, b_{\nu-1}) : \mathsf{bit\text{-width}} \end{array} \right] \! |\mathcal{C}_i| = 2^{b_i}$

 $R_{
m I} = rac{1}{2neta} \sum_{i=0}^{
u-1} b_i$: inner code rate

Metric d(x, y):

 $egin{aligned} & oldsymbol{x} = (x_0, \dots, x_{eta-1}) \in \mathbb{B}^{eta} & p_{\mathrm{i}}, p_{\mathrm{d}}, p_{\mathrm{s}} : & \mathsf{ins,del,sub} \\ & oldsymbol{y} = (y_0, \dots, y_{eta-1}) \in \mathbb{B}^{eta} & p_{\mathrm{t}} = 1 - p_{\mathrm{i}} - p_{\mathrm{d}} \end{aligned}$

Construction from binary code

$$\begin{aligned} &b' = (b'_0, \dots, b'_{\nu-1}) \in [\beta+1\rangle^{\nu} \\ &\text{even } \beta: \ 2^{b'_i} \leq {\beta \choose \beta/2} \end{aligned} \quad (b_i = b'_i + \beta)$$

odd β : $2^{b'_i} \leq {\beta \choose (\beta-1)/2} = {\beta \choose (\beta+1)/2}$

						ł)′			
β	t	$\binom{\beta}{t}$	0	1	2	3	4	5	6	7
2	1	2	T	T	_	_	_	_	_	_
3	1, 2	3	T	T	F	_	_	_	_	_
4	2	6	T	T	T	F	_	_	_	_
5	2,3	10	T	T	T	T	F	_	_	_
6	3	20	T	T	T	T	T	F	_	_
7	3, 4	35	T	T	T	T	T	T	F	_
8	$\overline{4}$	70	T	T	T	T	T	T	T	F
9	4, 5	126	T	${\cal T}$	${\cal T}$	T	T	${\cal T}$	T	${\cal F}$

[computer search: candidate codes]

input: β, b', t

output: $\mathcal{L} = \{\mathcal{B}^0, \dots, \mathcal{B}^{m-1}\} \quad (\mathcal{B}^j \subset \mathbb{B}^\beta)$

(list of highest score codes)

constraint: $|\mathcal{B}^j| = 2^{b'}, \forall \boldsymbol{u} \in \mathcal{B}^j, w(\boldsymbol{u}) = t$

objective: maximize

 $\min_{oldsymbol{x},oldsymbol{y}\in\mathcal{B}^j}d(oldsymbol{x},oldsymbol{y})\quad (oldsymbol{x}
eq oldsymbol{y})$

[computer search: code sequence]

input: $(\mathcal{L}_0, \dots, \mathcal{L}_{\nu-1})$ output: $(\mathcal{B}_0, \dots, \mathcal{B}_{\nu-1})$

constraint: $\mathcal{B}_i \in \mathcal{L}_i$

objective: minimize $\max_{i \in [
u)} \left| \mathcal{B}_i \cap \mathcal{B}_{|i+1|_
u} \right|$

Evaluation of inner code

 $\text{channel input:} \quad u \in \mathbb{F}_{2^{b(i,\nu)}}$

channel output: $oldsymbol{p} \in \mathbb{P}_{2^{b(i,
u)}}^{ar{}}$ (APP from inner code)

(a) HD+H(p): $v = (v, Q_{\lambda}(H(p)))$

 $Q_{\lambda}: \lambda\text{-level quantization}$

(b) list output: (list size λ)

 $\boldsymbol{v} = (v_0, \dots, v_{\lambda-1})$

 $=\!\arg\max(\boldsymbol{p},\lambda)\!\in\!\mathbb{F}_{2^{b(i,\nu)}}^{\lambda}$

mutual info.: $I(U; \mathbf{V})$

$\beta = 4$,	$\nu = 1$	$\beta = 4, \nu$	=3
b	$R_{ m I}$	b	$R_{ m I}$
$\overline{(4)}$	4/8	(4, 4, 4)	12/24
(5)	5/8	(5, 4, 4)	13/24
(6)	6/8	(5, 5, 4)	14/24
$\beta = 4$	$\overline{\nu=2}$	(6, 4, 4)	14/24
\overline{b}	$R_{\rm I}$	(5, 5, 5)	15/24
(4,4)	8/16	(6, 5, 4)	15/24
(5,4)	1 '	(6, 5, 5)	16/24
(5,5)	10/16	(6, 6, 5)	17/24
(6, 4)	10/16	(6, 6, 6)	18/24
	11/16		

(6,6)|12/16

$\beta =$	$\overline{5,\nu=1}$	$\beta = 5, \nu = 2$			
\boldsymbol{b}	$R_{\rm I}$	\overline{b}	$R_{ m I}$		
$\overline{(5)}$	5/10	(5,5)	10/20		
(6)	6/10	(6, 5)	11/20		
(7)	7/10	(6, 6)	12/20		
(8)	8/10	(7, 5)	12/20		
		(7, 6)	13/20		
		(7,7)	14/20		
		(8, 6)	14/20		
		(8,7)	15/20		
		(8, 8)	16/20		