

Recommender Systems

Individual Software Project

Supervisor: doc. RNDr. Iveta Mrázová, CSc.

Angie Granda

Introduction

❖ A Recommendation System is a subset of Artificial Intelligence that aims to learn patterns from data, which contains user-item interactions, and predicts how likely unknown items will be liked by the user

Long Tail Phenomenon

Recommender System Model

X = set of users, S = set of items, R = total ordering

F: X * S -> R is the utility function, F fills the utility matrix.

The **user-item value in the utility matrix** represent what is known about the degree of preference. Those values can be explicit or implicit.

	Hotel1	Hotel2	Hotel3	Hotel4	Hotel5
User 1	4	?	3	5	?
User 2	?	4	?	4	4
User 3	2	?	3	5	?
User4	3	?	?	?	3

The recommender system cannot accurately provide relevant suggestions to users when there is little or no historical information about them.

Prediction heuristic - Similarity metrics

> Cosine Similarity: Focus on direction, not in magnitudes

$$\cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

> Pearson Correlation:

It measures linear correlation between two vectors. It is scale-invariant.

≻Jaccard Distance:

Interest in shared presence of items only.

Euclidean Distance:

Measures actual differences in feature values. Sensitive to rating bias.

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Content-Based R.S.

- Relevant characteristics of an item are represented by an item profile
- User profile summarizes the preferences of the user, weighted average of rated item profiles. $\frac{\sum_{i=1}^{N}(\text{rating}_i \cdot \text{feature_vector}_i)}{\sum_{i=1}^{N} \text{rating}_i}$
- Prediction is based on the similarity between user profile *i* and item profile *j*.
- **Pros:** No need for data on other users, no item cold-start problem, able to recommend to users with unique tastes.
- Cons: Find appropriate features, user-cold start problem, overspecialization.

Collaborative Filtering. User-Based Model

Task: Consider user x. Find set N of other users whose ratings are like x's ratings. Estimate x's ratings based on ratings of users in N.

Mean-Center Overlapping-Items Cosine Similarity

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

Prediction: Let Rx be the vector of user x's ratings. Let N be the set of users most similar to x who have rated item i.

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi} \quad r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}} \quad r_{ij} = \bar{r}_i + \frac{\sum_{k} Similaries(u_i, u_k)(r_{kj} - \bar{r}_k)}{number \ of \ ratings}$$

Collaborative Filtering. Item-Based Model

Task: For user **x** and item **y**, find other N similar items to **y**, estimate rating for item **y** based on ratings of the similar items given by **x**It can use same **similarity** metrics and **prediction** functions as in user-based model

Cons: If a user has rated few items, then most items can't be estimated

Collaborative Filtering - Matrix Factorization

Singular Value Decomposition (SVD) is a matrix factorization technique

$$A = U\Sigma V^T$$
 $A \approx UV^T$ (when Σ is absorbed into U or V)

Let $extit{pu} \in \mathsf{U}$ and $extit{qi} \in \mathsf{V}$ and rating of user $extit{u}$ to item $extit{i}$ be $extit{rui}$, then the prediction $\hat{m{r}}_{ui} = m{q}_i^T m{p}_u$

Users

Utility Matrix (m x n)

Users	1.5	0.75					
	3	1.25					
	4	1.2					
	3.6	4.1					
	3.6	1.2					
	1.1	0.8					
	0.9	1.4					
	3.6	5.1					
	m x k						

Χ

Items

2.1	3.3	1.6	2.8	3
1.3	4	1	2	0.7

 $k \times n$

Matrix Factorization - Funk MF

The loss function is MSE

$$\min_{q^{\star},p^{\star}} \sum_{(u,i) \in \kappa} (r_{ui} - q_i^T p_u)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2)$$

usually with L2 regularization to prevent overfitting.

$$\min_{p,q,b_u,b_i} \sum (r_{ui} - (p_u^T q_i + \mu + b_u + b_i))^2 + \lambda (||p_u||^2 + ||q_i||^2 + b_u^2 + b_i^2)$$

After taking partial derivatives with respect to vector \mathbf{p} and \mathbf{q} we obtain the

following updating rules:
$$qi \leftarrow qi + \gamma \cdot (eui \cdot pu - \lambda \cdot qi)$$

$$pu \leftarrow pu + \gamma \cdot (eui \cdot qi - \lambda \cdot pu)$$

Mini-Batch Stochastic Gradient Descent

Matrix Factorization – ALS

Alternating Least Squares (ALS) uses the Sum Square Error Function

Algorithm: Fix V, solve for U using least squares. Then fix U, solve for V. Alternate until convergence.

Suppose that you fix V, then we want to solve: $\mathcal{L}_i(p_i) = \hat{\mathcal{L}}_i(p_i)$

$$\mathcal{L}_i(p_i) = \sum_{j \in \mathcal{I}_i} (r_{ij} - p_i^T q_j)^2 + \lambda \lVert p_i
Vert^2$$

 $Q_i \in \mathbb{R}^{|\mathcal{I}_i| imes k}$: matrix whose rows are the q_j^T vectors for all $j \in \mathcal{I}_i$

 $r_i \in \mathbb{R}^{|\mathcal{I}_i|}$: vector of the known ratings r_{ij}

$$egin{aligned} \mathcal{L}_{i}(p_{i}) &= \|r_{i} - Q_{i}p_{i}\|^{2} + \lambda \|p_{i}\|^{2} \
abla_{p_{i}}\mathcal{L}_{i} &= -2Q_{i}^{T}(r_{i} - Q_{i}p_{i}) + 2\lambda p_{i} \ -2Q_{i}^{T}(r_{i} - Q_{i}p_{i}) + 2\lambda p_{i} &= 0 \end{aligned} \ Q_{i}^{T}Q_{i}p_{i} + \lambda p_{i} &= Q_{i}^{T}r_{i} \end{aligned}$$

$$p_i = \left(\sum_{j \in \mathcal{I}_i} q_j q_j^T + \lambda I
ight)^{-1} \sum_{j \in \mathcal{I}_i} r_{ij} q_j$$

$$q_j = \left(\sum_{i \in \mathcal{U}_j} p_i p_i^T + \lambda I
ight)^{-1} \sum_{i \in \mathcal{U}_j} r_{ij} p_i$$

Hybrid Recommender Systems

Parallel use of several systems

Multiple recommender systems operate independently and simultaneously on the same input. Their outputs are then combined.

Monolithic exploiting different features

A single recommendation system that uses a wide variety of features — e.g., user profiles, item metadata, past interactions, contextual signals

Pipelined invocation of different systems

Multiple recommenders are arranged in sequence, where the output of one system feeds into the next.

Data Split and Evaluation

Techniques to split the data:

- Leave One Last
- Temporal user-based
- Temporal Global

Evaluating predictions metrics:

• MAE, MSE, RMSE

Evaluating lists of recommendation (based on relevancy levels):

- Precision, Mean Average Precision
- Recall

Dataset - Hotels

Dataset - Hotels

Dataset - Hotels

Dataset - Authors

Project Model

User rating hotels 3-4 overall and with a budget of 150-500\$

Remaining Work

- Finalize and evaluate each model throughtly
- Test hybrid filtering by integrating user-based KNN using user profiles.
- Assess regional influence on user preferences:
 Given users with a substantial number of ratings, we'll evaluate how effectively their preferences can be predicted using region-based average user profiles. Are regional-based predictions actually meaningful?

Thank you for your attention!

Questions?