Department of Computer Engineering

Experiment No. 7

Apply Dimensionality Reduction on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance: 27-09-2023

Date of Submission: 09-10-2023

Department of Computer Engineering

Aim: Apply Dimensionality Reduction on Adult Census Income Dataset and analyze the

performance of the model.

Objective: Able to perform various feature engineering tasks, perform dimetionality

reduction on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

In machine learning classification problems, there are often too many factors on the basis of

which the final classification is done. These factors are basically variables called features.

The higher the number of features, the harder it gets to visualize the training set and then

work on it. Sometimes, most of these features are correlated, and hence redundant. This is

where dimensionality reduction algorithms come into play. Dimensionality reduction is the

process of reducing the number of random variables under consideration, by obtaining a set

of principal variables. It can be divided into feature selection and feature extraction.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult"

dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked.

fnlwgt: continuous.

Department of Computer Engineering

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

Code:

Department of Computer Engineering

Conclusion:

Before dimensionality reduction the accuracy was approximately 0.7923.

The accuracy of the logistic regression model after dimensionality reduction is approximately 0.7953. Accuracy has increased from 0.7923 to 0.7953 due to dimensionality reduction.

The precision for the >50K class is 0.66, recall is 0.29, and F1-score is 0.40.

The precision for the <=50K class is 0.81, recall is 0.95, and F1-score is 0.87. Dimensionality reduction has a positive impact by reducing the complexity of the model (fewer features to consider), making it computationally efficient, while still maintaining a reasonable level of predictive performance.

Dimensionality Reduction

Adult Census Income Dataset

```
[420]: import pandas as pd
import numpy as np
import seaborn as sb
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
import matplotlib.pyplot as plt
```

```
[421]: df=pd.read_csv("/content/adult.csv",error_bad_lines=False, engine="python")
```

<ipython-input-421-8dbf926b9719>:1: FutureWarning: The error_bad_lines argument
has been deprecated and will be removed in a future version. Use on_bad_lines in
the future.

df=pd.read_csv("/content/adult.csv",error_bad_lines=False, engine="python")

[422]: print(df)

	age 1	workclass	fnlw	gt	educati	on e	ducation.n	ıum	marital.status	\
0	90	?	770	77053 HS-grad		ad		9	Widowed	
1	82	Private	1328	132870 HS-grad			9	Widowed		
2	66	?	186061 Some-college 10		10	Widowed				
3	54	Private	1403	59	7th-8	8th		4	Divorced	
4	41	Private	2646	63	Some-colle	ge		10	Separated	
					•••	•••			•••	
32556	22	Private	3101	52	Some-colle	ge		10	Never-married	
32557	27	Private	2573	02	Assoc-ac	dm		12	Married-civ-spouse	
32558	40	Private	1543	74	HS-gr	ad		9	Married-civ-spouse	
32559	58	Private	1519	10	HS-gr	ad		9	Widowed	
32560	22	Private	2014	90	HS-gr	ad		9	Never-married	
		occupat	ion	re	lationship	race	e sex	ca	pital.gain \	
0			?	Not	-in-family	White	e Female		0	
1	Exe	ec-manager	ial	Not	-in-family	White	e Female		0	
2			?		Unmarried	Black	k Female		0	

3	Machine-op-inspct	Unmarried	White Fer	nale	0
4	Prof-specialty	Own-child	White Fem	nale	0
•••	•••	•••	•••	•••	
32556	Protective-serv	Not-in-family	White M	Male	0
32557	Tech-support	Wife	White Fem	nale	0
32558	Machine-op-inspct	Husband	White M	Male	0
32559	Adm-clerical	Unmarried	White Fer	nale	0
32560	Adm-clerical	Own-child	White M	Male	0
	capital.loss hour	s.per.week nati	ve.country	income	
0	4356	40 Uni	ted-States	<=50K	
1	4356	18 Uni	ted-States	<=50K	
2	4356	40 Uni	ted-States	<=50K	
3	3900	40 Uni	ted-States	<=50K	
4	3900	40 Uni	ted-States	<=50K	
•••	•••	•••			
32556	0	40 Uni	ted-States	<=50K	
32557	0	38 Uni	ted-States	<=50K	
32558	0	40 Uni	ted-States	>50K	
32559	0	40 Uni	ted-States	<=50K	
32560	0	20 Uni	ted-States	<=50K	

[32561 rows x 15 columns]

[423]: df.describe

[423]:	<box></box>	metho	d NDFrame	.desc	ribe c	f	age w	orkclass	fn	lwgt	educat	ion
	educat	ion.nu	m ma	rital	.statu	.s \						
	0	90	?	770	53	HS-g1	ad		9		Wic	dowed
	1	82	Private	1328	70	HS-g1	rad		9		Wic	dowed
	2	66	?	1860	61 Sc	me-colle	ege		10		Wid	dowed
	3	54	Private	1403	59	7th-8	3th		4		Divo	orced
	4	41	Private	2646	63 Sc	me-colle	ege		10		Separ	rated
							•••			•••		
	32556	22	Private	3101	52 Sc	me-colle	ege		10	Nev	er-mar	ried
	32557	27	Private	2573	02	Assoc-ac	dm		12	Married-	civ-sp	ouse
	32558	40	Private	1543	74	HS-g1	rad		9	Married-	civ-sp	ouse
	32559	58	Private	1519	10	HS-g1	ad		9		Wic	dowed
	32560	22	Private	2014	90	HS-g1	rad		9	Nev	er-mar	ried
			occupat	ion	relat	ionship	race	sex	ca	pital.gai	n \	
	0			?	Not-in	-family	White	Female			0	
	1	Exe	c-manager	ial :	Not-in	-family	White	Female			0	
	2			?	Un	married	Black	Female			0	
	3	Machi	ne-op-ins	pct	Un	married	White	Female			0	
	4	Pr	of-specia	lty	Ow	n-child	White	Female			0	

32556	Protective-serv	Not-in-family	White Male	0
32557	Tech-support	·	White Female	0
				_
32558	Machine-op-inspct		White Male	0
32559	Adm-clerical	Unmarried	White Female	0
32560	Adm-clerical	Own-child	White Male	0
	capital.loss hou	rs.per.week nati	ve.country inco	me
0	4356	40 Uni	ted-States <=5	OK
1	4356	18 Uni	ted-States <=5	OK
2	4356	40 Uni	ted-States <=5	OK
3	3900	40 Uni	ted-States <=5	OK
4	3900	40 Uni	ted-States <=5	OK
•••	•••	•••	•••	
32556	0	40 Uni	ted-States <=5	OK
32557	0	38 Uni	ted-States <=5	OK
32558	0	40 Uni	ted-States >5	OK
32559	0	40 Uni	ted-States <=5	OK
32560	0	20 Uni	ted-States <=5	OK
-		_		

[32561 rows x 15 columns]>

[424]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education.num	32561 non-null	int64
5	marital.status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital.gain	32561 non-null	int64
11	capital.loss	32561 non-null	int64
12	hours.per.week	32561 non-null	int64
13	native.country	32561 non-null	object
14	income	32561 non-null	object

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

```
[425]: df[df == '?'] = np.nan
       df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 32561 entries, 0 to 32560
      Data columns (total 15 columns):
                           Non-Null Count Dtype
           Column
                           _____
           _____
       0
           age
                           32561 non-null
                                           int64
       1
           workclass
                           30725 non-null object
       2
           fnlwgt
                           32561 non-null int64
       3
           education
                           32561 non-null object
       4
           education.num
                           32561 non-null int64
       5
           marital.status 32561 non-null object
       6
           occupation
                           30718 non-null object
       7
           relationship
                           32561 non-null object
       8
           race
                           32561 non-null object
       9
           sex
                           32561 non-null object
       10
          capital.gain
                           32561 non-null int64
                           32561 non-null int64
       11
           capital.loss
       12
          hours.per.week
                           32561 non-null int64
       13
           native.country
                           31978 non-null object
       14
           income
                           32561 non-null object
      dtypes: int64(6), object(9)
      memory usage: 3.7+ MB
[426]: df.isnull().sum()
[426]: age
                            0
                         1836
       workclass
       fnlwgt
                            0
       education
                            0
       education.num
                            0
      marital.status
                            0
       occupation
                         1843
       relationship
                            0
       race
                            0
                            0
       sex
       capital.gain
                            0
                            0
       capital.loss
                            0
       hours.per.week
       native.country
                          583
       income
                            0
       dtype: int64
[427]: max_category = df['workclass'].value_counts().idxmax()
       df['workclass'].fillna(max_category, inplace=True)
```

```
max_category = df['occupation'].value_counts().idxmax()
       df['occupation'].fillna(max_category, inplace=True)
       max_category = df['native.country'].value_counts().idxmax()
       df['native.country'].fillna(max_category, inplace=True)
[428]: df.isnull().sum()
                         0
[428]: age
                         0
       workclass
       fnlwgt
                         0
       education
                         0
       education.num
       marital.status
                         0
       occupation
                         0
                         0
       relationship
       race
                         0
                         0
       sex
                         0
       capital.gain
                         0
       capital.loss
       hours.per.week
                         0
       native.country
                         0
       income
                         0
       dtype: int64
[429]: from sklearn.preprocessing import LabelEncoder
[430]: labelencoder_x=LabelEncoder()
       df["workclass"] = labelencoder_x.fit_transform(df["workclass"])
       df["education"] = labelencoder_x.fit_transform(df["education"])
       df["relationship"] = labelencoder_x.fit_transform(df["relationship"])
       df["occupation"] = labelencoder_x.fit_transform(df["occupation"])
       df["sex"] = labelencoder_x.fit_transform(df["sex"])
       df["income"] = labelencoder_x.fit_transform(df["income"])
       df["marital.status"] = labelencoder_x.fit_transform(df["marital.status"])
       df["race"] = labelencoder_x.fit_transform(df["race"])
       df["native.country"] = labelencoder_x.fit_transform(df["native.country"])
[431]: x=df.drop("income",axis=1)
       y=df["income"]
[432]: df.head(20)
[432]:
           age workclass fnlwgt education education.num marital.status \
                            77053
       0
            90
                                           11
       1
            82
                        3 132870
                                           11
                                                            9
                                                                            6
       2
                        3 186061
                                                           10
            66
                                           15
                                                                            6
                                            5
       3
            54
                        3 140359
                                                            4
                                                                            0
```

4	41	3	264663		15	10	5
5	34	3	216864		11	9	0
6	38	3	150601		0	6	5
7	74	6	88638		10	16	4
8	68	0	422013		11	9	0
9	41	3	70037		15	10	4
10	45	3	172274		10	16	0
11	38	5	164526		14	15	4
12	52	3	129177		9	13	6
13	32	3	136204		12	14	5
14	51	3	172175		10	16	4
15	46	3	45363		14	15	0
16	45	3	172822		1	7	0
17	57	3	317847		12	14	0
18	22	3	119592		7 9	12 13	4 5
19	34	3	203034		9	13	ð
	occupation	rel	ationship	race	sex	capital.gain	capital.loss \
0	9		1	4	0	0	4356
1	3		1	4	0	0	4356
2	9		4	2	0	0	4356
3	6		4	4	0	0	3900
4	9		3	4	0	0	3900
5	7		4	4	0	0	3770
6	0		4	4	1	0	3770
7	9		2	4	0	0	3683
8	9		1	4	0	0	3683
9	2		4	4	1	0	3004
10	9		4	2	0	0	3004
11	9		1	4	1	0	2824
12	7		1	4	0	0	2824
13	3		1	4	1	0	2824
14	9		1	4	1	0	2824
15	9		1	4	1	0	2824
16	13		1	4	1	0	2824
17	3		1	4	1	0	2824
18	5		1	2	1	0	2824
19	11		1	4	1	0	2824
	ha	o c 1-	no+		4	m a	
0	hours.per.w		native.co	-	inco		
0		40		38		0	
1		18		38		0	
2		40		38		0	
3		40		38		0	
4		40		38		0	
5		45		38		0	
6		40		38		0	

```
7
                       20
                                        38
                                                  1
       8
                       40
                                        38
                                                  0
       9
                       60
                                        38
                                                  1
       10
                       35
                                        38
                                                  1
       11
                       45
                                        38
                                                  1
       12
                       20
                                        38
                                                  1
       13
                       55
                                        38
                                                  1
       14
                       40
                                        38
                                                  1
       15
                       40
                                        38
                                                  1
       16
                       76
                                        38
                                                  1
       17
                       50
                                        38
                                                  1
       18
                       40
                                        38
                                                  1
       19
                       50
                                        38
                                                  1
[433]: x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.3)
[434]: from sklearn.linear_model import LogisticRegression
       from sklearn.metrics import accuracy_score
[435]: LR = LogisticRegression()
       LR.fit(x_train,y_train)
[435]: LogisticRegression()
[436]: y_pred = LR.predict(x_test)
[437]: accuracy_score(y_test, y_pred)
[437]: 0.7923021803664654
[438]: from sklearn.decomposition import PCA
       pca=PCA()
[439]: x_train = pca.fit_transform(x_train)
       pca.explained_variance_ratio_
[439]: array([9.95218448e-01, 4.76707843e-03, 1.44365982e-05, 1.65490513e-08,
              1.31157437e-08, 3.26144185e-09, 1.44104367e-09, 1.37401932e-09,
              4.46008924e-10, 2.13186968e-10, 1.72160573e-10, 1.09384760e-10,
              6.12487477e-11, 1.22057563e-11])
[440]: df=df.drop(columns='race')
       df=df.drop(columns='fnlwgt')
       df=df.drop(columns='education.num')
       df=df.drop(columns='relationship')
       df=df.drop(columns='native.country')
       # df=df.drop(columns='marital.status')
```

```
[441]: x = df.drop(['income'], axis=1)
      y = df['income']
[442]: pca= PCA()
      pca.fit(x_train)
      cumsum = np.cumsum(pca.explained_variance_ratio_)
      dim = np.argmax(cumsum >= 0.90) + 1
      print('The number of dimensions required to preserve 90% of variance is',dim)
      The number of dimensions required to preserve 90% of variance is 1
[443]: x = df.drop(['income'], axis=1)
      y = df['income']
[444]: |x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3,__
        →random state = 0)
[445]: LR2 = LogisticRegression()
      LR2.fit(x_train, y_train)
      /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458:
      ConvergenceWarning: lbfgs failed to converge (status=1):
      STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
      Increase the number of iterations (max_iter) or scale the data as shown in:
          https://scikit-learn.org/stable/modules/preprocessing.html
      Please also refer to the documentation for alternative solver options:
          https://scikit-learn.org/stable/modules/linear_model.html#logistic-
      regression
        n_iter_i = _check_optimize_result(
[445]: LogisticRegression()
[446]: y_pred2 = LR2.predict(x_test)
[447]: accuracy_score(y_test, y_pred2)
[447]: 0.7953731190500563
[448]: from sklearn.metrics import confusion_matrix
      import pandas as pd
[449]: confusion = confusion_matrix(y_test, y_pred2)
[450]: df_confusion = pd.DataFrame(confusion, columns=['Predicted No', 'Predicted_u
```

[451]: from sklearn.metrics import classification_report print(classification_report(y_test, y_pred))

support	f1-score	recall	precision	
7410	0.87	0.95	0.81	0
2359	0.40	0.29	0.66	1
9769	0.79			accuracy
9769	0.64	0.62	0.73	macro avg
9769	0.76	0.79	0.77	weighted avg