Queueing Theory

A Mathematically Rigorous yet Intuitive Guide

By
Rishabh Pomaje
&
Samyak Sanjay Parakh

Motivation & Background

- Queueing Theory
 - 'Study of Waiting'.
- Why do queues form?
 - Finite Resources
 - Finite efficiency
- Why to study queues?
 - Resource Planning
 - Decision Making
- What's there to study?
 - Randomness in Arrival times
 - Randomness in Demands.

Queue	Server		
Arrivals	Server	Resource	
People	Doctor Bank Manager	Doctor's time Manager's time	
Planes	Air Traffic Controller	Runways at an airport.	
System Processes (Tasks)	Microprocessor Or Microcontroller	Memory + Compute resources (Cores)	
	Examples of Queues		

Basic Assumptions

- Whenever a server is free, and there is a customer in the queue, the customer immediately goes into service.
- Whenever a server is busy if a customer arrives, the customer waits in the queue*.
- Whenever a server becomes free, the next customer is decided according to a scheduling policy/ discipline.
- Customers do not become impatient and leave the queue before their service completion.

Modeling Queues

- Simulate/ Model Randomness ⇒ Probability distributions
- Select statistics of
 - Arrival spacing
 - Service spacing
 - Both in temporal dimension.
- Scheduling Policy or Discipline
 - FIFO/ LIFO/ LIFOPR/ Priority/ SJB/ Round Robin.
 - Feedback into queue.
- Max capacity of the queue*.
 - Overflow.
 - Customers are "blocked/turned away/dropped."

Notation

Kendall Notation

- *A* = Inter-arrival time distribution
- *B* = Service time distribution
- C = Number of servers
- *X* = System Capacity
- Y =Size of the customer population
- Z = Queue scheduling discipline

Notation

- State of the system at time t : N(t) or simply N
 - Number in queue = Waiting + those being served.
- $P_{N(t)}(k)$ = probability(k customers in the queue).
 - p_n = probability of same but at equilibrium.
 - $p_{i,j}$ = probability of going from state i to state j.
- \overline{N} = average (expectation) of variable N.
- var(N) = variance of the number of customers.
- Utilization = fraction of time the server is busy*.

Objectives

- Preliminary analysis
 - <u>First-order</u> analysis.
- We will be looking at steady-state analysis.
 - The system is in equilibrium.
 - The state distributions, i.e., prob(system is in some state *i*), become time-invariant.
- For each of the cases, we have some measures/metrics of performance that depend on the state probabilities or state distribution.

M/M/1 Queue – a recap

- Model description:
 - 1. Poisson arrival process with rate λ .
 - 2. Exponential service times with rate μ .
 - 3. Single server
 - 4. FIFO scheduling discipline.
 - 5. Infinite buffer size

Source: DALL · E

Overview of Derivation

We get the equations,

$$P_n(t + \delta t) = P_n(t)p_{n,n} + P_{n-1}(t)p_{n-1,n} + P_{n+1}(t)p_{n+1,n}$$

$$P_0(t + \delta t) = P_0(t)p_{0,0} + P_1(t)p_{1,0}$$

$$\delta t \to 0$$

$$\frac{dP_n(t)}{dt} = -(\lambda + \mu)P_n(t) + \lambda P_{n-1}(t) + \mu P_{n+1}(t)$$

$$\frac{dP_0(t)}{dt} = -\lambda P_0(t) + \mu P_1(t)$$

Digression - Probability Flux

- **Definition:** (Probability flux is defined along a transition.)
 - Φ_p = P(state where the transition originates) × transition rate of the transition.

$$\Phi_P(\text{node } 1) = \text{Flow out of node } 1 + \text{Flow into node } 1$$

= $-(\lambda + \mu)p_1 + \lambda p_0 + \mu p_2$

- Looks familiar?
- This is exactly the RHS of the differential equation. *Global Balance Equation*.
- Local Balance Equations.
 - Formed by equating flux across state boundaries.

Solution

• Local Balance equations:

$$\lambda p_0 = \mu p_1 \qquad \Longrightarrow p_1 = \frac{\lambda}{\mu} p_0$$

$$\lambda p_1 = \mu p_2 \qquad \Longrightarrow p_2 = \frac{\lambda}{\mu} p_1$$

$$\vdots$$

$$\lambda p_{n-1} = \mu p_n \qquad \Longrightarrow p_n = \frac{\lambda}{\mu} p_{n-1}$$

 $p_n = \left(\frac{\lambda}{\mu}\right)^n p_0$

$$\sum_{i=0}^{\text{num}_{\text{states}}} p_i = 1.$$

Combining all of them we get the following solution:

$$p_0 = 1 - \rho$$

$$p_n = \rho^n p_0$$

$$\rho = \lambda/\mu$$

M/M/1 - Summary

Random Variable	Distribution
Number of arrivals in interval (0, t]	$Poisson(\lambda t)$
Inter-arrival times	Exponential (λ)
Number of departures in the interval (0, t]	$Poisson(\mu t)$
Inter-departure times	Exponential (μ)

At equilibrium, $\lambda < \mu$,

State Probabilities	$p_0 = 1 - \rho$
	$p_n = \rho^n p_0$
Average number of customers in the queue	$\rho/(1-\rho)$
Variance of number of customers in the queue	$\rho/(1-\rho)^2$

M/M/1 - Simulations

• Evolution of the state with time $\lambda \in \{6, 15\}, \mu = 11$.

M/M/1 - Simulations

• Stationary State Distribution: $\lambda = 6, \mu = 11.$

M/M/1 - Insights

• For equilibrium, we must have $\lambda < \mu$.

Performance metrics: Mean and Variance.

As the utilization tends to 1, mean and variance of the system state blow up to ∞.

$$\mathbb{E}[N] = \frac{\rho}{1-\rho'}, var(N) = \frac{\rho^2}{1-\rho}.$$

- 2. Randomness grows without bounds
- 3. Response time \neq Service time
 - 1. Waiting + Service
 - 2. Any relation between Response time and arrival rate?
 - 3. Little's Law : $\overline{N} = \lambda \overline{T}$

 $\underline{Mean \ v/s \ \rho \ (Utilization)}$

 \leq

M/M/1/N - Finite buffer size

- Why finite buffer size?
 - Finite capacity.
 - *Example*. An airport is unlikely to be able to accommodate infinite airplanes.
- Model description:
 - 1. (1) (5) from M/M/1.
 - 2. Finite buffer size of N.
 - 3. Any excess/ additional arrivals
 - Turned down/ blocked/ dropped.
 - Do not return if blocked once.

Source: DALL · E

M/M/1/N-Summary

- ! Caution: Now we have FSM. So same equations, different limits on sum.
- In equilibrium, $\sum_{n=0}^{\infty} \to \sum_{n=0}^{N}$ $p_0 + \rho p_0 + \rho^2 p_0 + \ldots + p_N = 1$ $p_0 = \frac{1}{\sum_{i=0}^{N} \rho^i}$ $p_n = \left(\frac{1-\rho}{1-\rho^{N+1}}\right) \rho^n \qquad \ldots \quad 0 \le n \le N.$
- Note: Here, λ need not be greater than μ . Why?
 - Finite buffer size \Rightarrow Finite max queue length.

M/M/1/N-Simulations

• Evolution of the queue with $\lambda \in \{6, 15\}, \mu = 11$.

M/M/1/N - Simulations

• Stationary State Distribution when $\lambda \in \{6, 15\}, \mu = 11$.

M/M/1/N-Insights

• Blocking Probability:

The blocking probability is the probability that the queue buffer is full, i.e., $P_N(t)$. Using the derived equations, Blocking Probability is $\frac{(1-\rho)}{(1-\rho^{N+1})}\rho^N$ when the system is in equilibrium.

- Increases with ρ , decreases N. See table.
- Average number of customers blocked per unit time

•
$$N_{block} = \lambda P_N$$

- What happens if $\rho = 1$?, $N \to \infty$?
 - L'Hospital's rule:

•
$$\lim_{\rho \to 1} p_n = \frac{1}{N+1}$$

- When $N \to \infty$,
 - $M/M/1/N \rightarrow M/M/1$

λ/μ	P _{blocking}	N	P _{blocking}
0.10	0.000009	1	0.474
0.5	0.016	2	0.299
0.75	0.072	3	0.212
1.00	0.166	5	0.126
2.00	0.508	20	0.014
5.00	0.800	100	0.0000027

Source: [2]

$M/M/\infty$ - Infinite servers

- Model:
 - 1. Most of the assumptions carry over.
 - 2. Now there are ∞ servers, no need to wait!
 - 3. No limit on queue length.
- Dream scenario
 - The supermarket billing section.
 - Job queues at a workstation server/ mainframe/ HPC.

Source: DALL · E

$M/M/\infty$ - Summary

• In equilibrium,

$$p_0 = e^{-\lambda/\mu} \qquad \longrightarrow \qquad p_n = \frac{\rho^n}{n!} e^{-\rho} \\ p_n = \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n e^{-\lambda/\mu} \qquad \longrightarrow \qquad N \sim \text{Poisson}(\rho)$$

$M/M/\infty$ - Simulations

• Evolution of state with $\lambda \in \{6, 15\}, \mu = 11$.

$M/M/\infty$ - Simulations

• Stationary State Distributions with $\lambda \in \{6, 15\}, \mu = 11$.

$M/M/\infty$ - Simulations

- Timing statistics
 - Response time = Service Time + Waiting Time.
 - But no need to wait
 - Response time → Service time
 - Mean = $1/\mu$.
 - Is it so?
- Little's Law:
 - Mean number of customers =
 - Rate of arrivals (arrivals per unit time)
 - × Average response(=service) time

•
$$\rho = \frac{\lambda}{\mu}$$

$M/M/\infty$ - Insights

- Infinite number of servers.
 - $\Rightarrow \lambda \ge \mu$ is possible.
- State statistics
 - $\mathbb{E}[N] = \operatorname{var}(N) = \rho$
- Alternative Interpretation
 - Responsive Server
- Blocking Probability is zero.
- Applications:
 - Large cloud computing facilities.
 - Large call centers.
 - Self-service type situations

Responsive Server

M/M/m - Multi-servers (finite)

- Model:
 - Same statistics for arrivals and departures.
 - But fall back into reality.
 - Finite servers
 - Queue size has no limits.

• More realistic assumptions than previous model(s).

Source: DALL · E

M/M/m - Summary

• In equilibrium,

$$p_n = \frac{\lambda^n}{n!\mu^n} p_0$$
$$= \frac{\lambda^n}{m^{n-m} m!\mu^n} p_0$$

if $1 \le n < m$

if $n \geq m$.

where,

$$p_0 = \left[1 + \sum_{n=1}^{m-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n + \sum_{n=m}^{\infty} \frac{1}{m^{n-m}} \frac{1}{m!} \left(\frac{\lambda}{\mu}\right)^n\right]^{-1}$$

M/M/m - Simulations

- Let's see some other plots
 - Visualize the state of the 'waiting room' and 'server room'

• m = 5.

M/M/m - Insights

- This and previous model
 - Load-dependent servers
 - $\mu_{\text{eff}} = \mu \times \min\{N, m\}$
 - N = number of customers
- Queueing Probability
 - Erlang C formula

$$\rho = \frac{\lambda}{m\mu}$$

$$\mathbb{P}(\text{queueing}) = \frac{1}{m!} \left(\frac{\lambda}{\mu}\right)^m \frac{1}{1-\rho} p_0$$

• Widely used in telecommunication

λ	$P_{queueing}$
5	0.00008
10	0.0032
15	0.027
20	0.130
25	0.463

Other models

- So far, customers' demands were *i.i.d.*, we considered single class of customers.
 - Multi-class arrivals \Rightarrow Variable statistics.
- More general and flexible models
 - M/G/1
 - G/G/1 and so on.
- Complexity of models increases
 - Difficult to get analytical results.
 - Lack of meaningful insights.
 - Trade off:

Accuracy of model v/s Mathematical tractability, Valuable insights.

Applications

- Intuitive ones:
 - Previously mentioned: Banks, Hospitals, Supermarkets, etc.
 - Fast food chains
 - Ticket vendors (\sim fixed service time \Rightarrow M/D/m).
- Non-intuitive ones:
 - Communications:
 - Managing and routing of different packets.
 - Different Operating System processes, programs
 - Single-core CPU M/M/1
 - Multi-core CPU M/M/m
 - Interrupt Handling in embedded systems
 - Single (Multi)- core MCU M/M/1(m)/LIFOPR

Critical Application – A case study

- US Military Scheduling B-2 Bomber maintenance
 - Limited Resource Only 20 of B2s.
 - Required at a moment's notice.
 - FHP, Wartime posture
 - Frequent maintenance period of 18–45 days!
- Issue: Unpredictable scheduling, downtime.
 - Due to asymmetric usage
- Result:
 - Decreased aircraft availability (AA).
 - ~4.75 in heavy maintenance, ~3 in light maintenance.
 - AA = \sim 60% of total capacity
 - Unacceptable.

Northrop B-2 Spirit

Source:

https://en.wikipedia.org/wiki/Northr op_B-2_Spirit#/media/File:B-2_Spirits_on_Deployment_to_Indo-Asia-Pacific.jpg

Critical Application – A case study

- Acceptable AA = 80-85%
- Model: Queue at the maintenance hangar.
- Data analysis observations:
 - ~3 B2s are in maintenance at a time (\overline{N}) .
 - Every \sim 7 days (λ), one of the B2s goes into maintenance .

- Queueing theory analysis:
 - Little's Law:

Response time =
$$\bar{T} = \frac{\bar{N}}{\lambda} = \frac{3}{\frac{1}{7}} = 21$$
 days.

Conclusion

The heavy LO maintenance routine must have a lead time of ~21 days to maintain acceptable AA.

References

- 1. H. Pishro-Nik. *Introduction to Probability, Statistics, and Random Processes*. Kappa Research, LLC, 2014.
- 2. Thomas G. Robertazzi. *Computer Networks and Systems: Queueing Theory and Performance Evaluation*. Springer-Verlag, Berlin, Heidelberg, 3rd edition, 2000.
- 3. William J. Stewart. Probability, *Markov Chains*, *Queues*, and *Simulation*: The Mathematical Basis of Performance Modeling. Princeton University Press, 2009.
- 4. https://www.isixsigma.com/case-studies/u-s-a-f-uses-continuous-process-improvement-on-the-b-2-bomber-part-1/

Thank You

Rishabh Pomaje

દુ

Samyak Sanjay Parakh