DISCIPLINA: TEORIA DA COMPUTAÇÃO N

CÓDIGO: INF05501 SEMESTRE: 2018/1 TURMAS: A. B

DESCRIÇÃO DO TRABALHO PRÁTICO 3

PROGRAMAÇÃO EM MÁQUINA DE TURING

Utilize o Simulador de Máquina de Turing disponível em http://www.inf.ufrgs.br/~rma/simuladores/turing.html para desenvolver os programas pedidos abaixo.

Cada programa deve ser nomeado <nro questao><nro item>.mt

Exemplo: 1a.mt, 1b.mt, 2a.mt, ...

Envie (via Moodle) um arquivo .ZIP contendo todos os programas desenvolvidos, junto com um arquivo de texto indicando os componentes do grupo. Somente um componente do grupo deverá fazer a submissão (pelo grupo inteiro).

EXERCÍCIOS

- 1. Desenvolva MT's para reconhecer as seguintes linguagens sobre o alfabeto {a,b,c}.
 - a) $\{a^xbc^y \mid x>0 \text{ e } y>=0\}$
 - b) $\{(abc)^n \mid n \text{ múltiplo de } 3\}$
 - c) $\{b^nc^n \mid n >= 0\}$
 - d) $\{a^nb^na^n \mid n >= 0\}$
 - e) $\{a^nb \mid n > 0\} \cup \{a^x \mid x \text{ par }\}$
- 2. Considere a codificação de números naturais na qual o número n é representado pela string aⁿb. Ex:
 - 0 = b
 - 1 = ab
 - 4 = aaaab

Um par ordenado (x,y) pode ser codificado pela simples justaposição dos respectivos componentes. Ex:

- (0,3) = baaab
- (4,1) = aaaabab

Nesse formato, listas também podem ser definidas de maneira similar a pares. Ex:

- [] = ε (palavra vazia)
- [2] = aab
- [1,4,2,0,1] = abaaaabaabbab

Desenvolva MT's para calcular as seguintes funções, considerando as codificações acima para a entrada e saída da função.

- a) $f(x) = \sec x > 0 \text{ então } (2*x) 1 \text{ senão } 0$
- b) f(x) = [x/4]
- c) f(x,y) = (y,x)
- d) f(x,y) = x*y
- e) $f([x_1,x_2,...,x_n]) = \text{se n} > 0 \text{ então } (x_1 + x_2 + ... + x_n) \text{ senão } 0$