MATH 2033 HW-1 Due Sept 13.

- 1. Use ONLY the empty set \emptyset to construct three different nonempty sets.
- 2. Let $A = \{5, c, Q\}$. List out all the subsets of A, and find the power set $\wp(A)$.
- 3. Let A, B, C be subsets of some universal set X. Prove the following identities:
- (a) $(A \cap B)^c = A^c \cup B^c$;
- (b) $A\triangle B = \emptyset$ if and only if A = B;
- (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 4. Suppose $A, B \neq \emptyset$ (i.e., both A and B are nonempty sets).
- (a) Prove that $A \times B = B \times A$ if and only if A = B.
- (b) Where in your proof do you use the condition $A, B \neq \emptyset$?
- (c) Does the same conclusion hold if we allow $A = \emptyset$ or $B = \emptyset$?
- 5. Suppose A, B, C are nonempty sets and $f: A \to B$ and $g: B \to C$ are functions.
- (a) Prove that if $g \circ f : A \to C$ is injective, then f is injective. Can we say anything about g?
- (b) Prove that if $g \circ f : A \to C$ is surjective, then g is surjective. Can we say anything about f?
- 6. Let $f:A\to B$ be a function. Denote I_A as the identity function $A\to A$, and I_B is the identity function $B\to B$, that is, $I_A(a)=a$ for every $a\in A$, and $I_B(b)=b$ for every $b\in B$. Suppose there exist two functions $g,h:B\to A$ such that $f\circ g=I_B$ and $h\circ f=I_A$. Show that f is a bijection and that $g=h=f^{-1}$.
- 7. Construct a set X and an equivalence relation on X which is different from what we have seen so far. Verify what you have defined is really an equivalence relation.