Kernel SVMs

Ali Gooya

Feature transform

• What if the input data points are non-linearly separable?

SVMs with transformed features

- Suppose instead of using the using $\mathbf{x} \in \mathcal{R}^m$, we use a map $\phi(\mathbf{x}) \in \mathcal{R}^M, m << M$
- Then if the data is linearly serapeable in the \mathcal{R}^M , we can solve for the same dual problem, replacing $\mathbf{x}_i^{\top}\mathbf{x}_i$ with $\phi(\mathbf{x}_i)^{\top}\phi(\mathbf{x}_j)$

$$g(\boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} t_{i} t_{j} \alpha_{i} \alpha_{j} \boldsymbol{\phi}(\mathbf{x}_{i})^{\top} \boldsymbol{\phi}(\mathbf{x}_{j})$$

• This will solve for α^* (hence prediction) in terms of $\phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j)$.

The problem is that we do not know which mapping should be used.

Kernel Trick

• Note that $\phi(\mathbf{x}_i)^{\top}\phi(\mathbf{x}_j)$ only measures the similarity of the two data points \mathbf{x}_i and \mathbf{x}_j in the higher dimension.

Can we replace this inner product by a kernel function

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j)$$

that measures a similarity without knowing the exact form of $\phi(x)$?

• Answer: if we can factorizable it as inner product, we do not need $\phi(\mathbf{x})$

Valid kernels are factorizable.

Example

e.g. Let m=2 and define $k(\mathbf{x},\mathbf{x}'):=(\mathbf{x}^{\top}\mathbf{x}')^2$. Easy to check that $k(\mathbf{x},\mathbf{x}')=\boldsymbol{\phi}(\mathbf{x})^{\top}\boldsymbol{\phi}(\mathbf{x}')$ where

$$\phi(\mathbf{x}) := (x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

But calculating $k(\mathbf{x}, \mathbf{x}')$ requires O(m) (= dim(\mathbf{x})) work whereas calculating $\phi(\mathbf{x})^{\top}\phi(\mathbf{x}')$ requires O(M) work.

How to construct valid kernels?

We assume:

- $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$ are valid kernels.
- c > 0 is a constant.
- $f(\cdot)$ is any function.
- ullet $q(\cdot)$ is a polynomial with nonnegative coefficients.
- ullet $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M .
- $k_3(\cdot,\cdot)$ is a valid kernel in \mathbb{R}^M .
- A is a symmetric positive semi-definite matrix.
- \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$.
- k_a and k_b are valid kernel functions over their respective spaces.

Rules for valid kernels

Then the following are all valid kernels:

$$k(x, x') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(x, x') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}') *$$

$$k(x, x') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(x, x') = \exp(k_1(\mathbf{x}, \mathbf{x}')) **$$

$$k(x, x') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(x, x') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

$$k(x, x') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$

$$k(x, x') = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}'$$

$$k(x, x') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

$$k(x, x') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$

Example: The Gaussian kernel

The Gaussian kernel is given by:

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2\sigma^2}\right)$$

It is a valid kernel because

$$\exp\left(\frac{-||\mathbf{x} - \mathbf{x}'||^2}{2\sigma^2}\right) = \exp\left(\frac{-\mathbf{x}^\top \mathbf{x}}{2\sigma^2}\right) \exp\left(\frac{\mathbf{x}^\top \mathbf{x}'}{\sigma^2}\right) \exp\left(\frac{-\mathbf{x}'^\top \mathbf{x}'}{2\sigma^2}\right)$$
$$= f(\mathbf{x}) \exp\left(\frac{\mathbf{x}^\top \mathbf{x}'}{\sigma^2}\right) f(\mathbf{x}')$$

• Then we apply (*) and (**) to infer that the kernel is valid.

Kernel – Separated Dual SVMs

Returning to SVMs, when the data is kernel-separated our dual problem becomes:

$$\max_{\alpha \geq \mathbf{0}} \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j t_i t_j k(\mathbf{x}_i, \mathbf{x}_j)$$
 subject to
$$\sum_{i=1}^{n} \alpha_i t_i = 0.$$

Given a solution α^* to the dual, can obtain corresponding optimal b^* via

$$b^* = t_j - \sum_{i=1}^n \alpha_i^* t_i k(\mathbf{x}_i, \mathbf{x}_j) \quad \text{for any } \alpha_j^* > 0$$

and, for a new data-point x, the prediction

$$\operatorname{sign}\left(\mathbf{w}^{*\top}\boldsymbol{\phi}(\mathbf{x}) + b^{*}\right) = \operatorname{sign} \sum_{i=1}^{n} \alpha_{i}^{*}t_{i}k(\mathbf{x}_{i}, \mathbf{x}) + b^{*}$$

Example of kernel SVMs

Figure 7.2 from Bishop: Example of synthetic data from two classes in two dimensions showing contours of constant y(x) obtained from a support vector machine having a Gaussian kernel function. Also shown are the decision boundary, the margin boundaries, and the support vectors.

• Note that the data is linearly separable in the Gaussian-kernel space but not in the original space.