Name: Varun Sudhir

Reg No: 21BDS0040

Data Mining Lab Digital Assignment – 2

Q1) Consider the dataset from the below link

4	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	О	Р	Q	R	S	Т	U
1	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Postcode	Bedroom2	Bathroom	Car	Landsize	BuildingAre	YearBuilt	CouncilA	re Lattitude	Longtitude	Regionnan	Propertycount
2	Abbotsfor	85 Turner	:	2 h	1480000	S	Biggin	########	2.5	3067	2	1		1 20	2		Yarra	-37.7996	144.9984	Northern I	4019
3	Abbotsfor	25 Bloom	t	2 h	1035000	S	Biggin	########	2.5	3067	2	1	(150	79	1900	Yarra	-37.8079	144.9934	Northern I	4019
4	Abbotsfor	5 Charles	5	3 h	1465000	SP	Biggin	#######	2.5	3067	3	2	(0 134	150	1900	Yarra	-37.8093	144.9944	Northern I	4019
5	Abbotsfor	40 Federa	t	3 h	850000	PI	Biggin	########	2.5	3067	3	2		1 9	1		Yarra	-37.7969	144.9969	Northern I	4019
6	Abbotsfor	55a Park S	i i	4 h	1600000	VB	Nelson	#######	2.5	3067	3	1		2 120	142	2014	Yarra	-37.8072	144.9941	Northern I	4019
7	Abbotsfor	129 Charle	3	2 h	941000	S	Jellis	#######	2.5	3067	2	1	(18:	l		Yarra	-37.8041	144.9953	Northern I	4019
8	Abbotsfor	124 Yarra	1	3 h	1876000	S	Nelson	########	2.5	3067	4	2	(0 24	210	1910	Yarra	-37.8024	144.9993	Northern I	4019
9	Abbotsfor	98 Charles	S	2 h	1636000	S	Nelson	########	2.5	3067	2	1		2 250	5 107	1890	Yarra	-37.806	144.9954	Northern I	4019
10	Abbotsfor	6/241 Nic	ł	1 u	300000	S	Biggin	#######	2.5	3067	1	1		1 ()		Yarra	-37.8008	144.9973	Northern I	4019
11	Abbotsfor	10 Valiant		2 h	1097000	S	Biggin	########	2.5	3067	3	1		2 220	75	1900	Yarra	-37.801	144.9989	Northern I	4019
12	Abbotsfor	411/8 Gro	e e	2 u	700000	VB	Jellis	########	2.5	3067	2	2		1 ()		Yarra	-37.811	145.0067	Northern I	4019
13	Abbotsfor	40 Nichols	5	3 h	1350000	VB	Nelson	########	2.5	3067	3	2		2 214	190	2005	Yarra	-37.8085	144.9964	Northern I	4019
14	Abbotsfor	123/56 Ni	C	2 u	750000	S	Biggin	########	2.5	3067	2	2		1 (94	2009	Yarra	-37.8078	144.9965	Northern I	4019
15	Abbotsfor	45 William	1	2 h	1172500	S	Biggin	########	2.5	3067	2	1		1 19	5		Yarra	-37.8084	144.9973	Northern I	4019
16	Abbotsfor	7/20 Abbo)	1 u	441000	SP	Greg	########	2.5	3067	1	1		1 ()		Yarra	-37.8016	144.9988	Northern I	4019
17	Abbotsfor	16 William	1	2 h	1310000	S	Jellis	########	2.5	3067	2	1		2 238	97	1890	Yarra	-37.809	144.9976	Northern I	4019
18	Abbotsfor	42 Henry	5	3 h	1200000	S	Jellis	########	2.5	3067	3	2		1 11	110	1880	Yarra	-37.8056	144.993	Northern I	4019
19	Abbotsfor	78 Yarra S	1	3 h	1176500	S	LITTLE	#######	2.5	3067	2	1		1 138	3 105	1890	Yarra	-37.8021	144.9965	Northern I	4019
20	Abbotsfor	196 Nicho	(3 h	955000	S	Collins	########	2.5	3067	3	1	(183	3		Yarra	-37.8022	144.9975	Northern I	4019
21	Abbotsfor	42 Valiant		2 h	890000	S	Biggin	########	2.5	3067	2	1		1 150	73	1985	Yarra	-37.8011	145.0004	Northern I	4019
22	Abbotsfor	3/72 Char	I	4 h	1330000	PI	Kay	########	2.5	3067	4	2		2 780	135	1900	Yarra	-37.8073	144.9952	Northern I	4019
23	Abbotsfor	13/11 Nic	ł	3 t	900000	S	Beller	#######	2.5	3067	3	2		2 ()	2010	Yarra	-37.8093	144.9959	Northern I	4019
24	Abbotsfor	138/56 Ni	(3 u	1090000	S	Jellis	########	2.5	3067	3	2		2 4290	27		Yarra	-37.8078	144.9965	Northern I	4019
25	Abbotsfor	6/219 Nic	ł	2 u	500000	S	Collins	########	2.5	3067	2	1		1 (60	1970	Yarra	-37.8015	144.9972	Northern I	4019
26	Abbotsfor	52a Willia	r	2 h	1100000	PI	Biggin	########	2.5	3067	2	2		1 124	1 135	2013	Yarra	-37.8079	144.9977	Northern I	4019

- a. Find out how many data is missing in each attribute
- b. For all the missing values in 'car' attribute, fill the missing value with the mode.
- c. For the 'BuildingArea' attribute, fill the missing value with the linear interpolation and quadratic interpolation.
- d. Fill the 'yearbuilt' attribute with forward fill approach
- e. Remove all the rows which doesn't have a councilarea data.

Code:

```
In [8]: # Varun Sudhir
# Data Mining Lab Digital Assignment -2
import numpy as np
import pandas as pd

In [9]: df = pd.read_csv("missing data.csv")
```

```
# Question 1
# Varun Sudhir 21BDS0040
#A: Find out how many data is missing in each attribute
missing_data = df.isnull().sum()
print("Missing Data Count:\n", missing_data)
#B: For all the missing values in 'car' attribute, fill the missing value with the mode.
missing_values_car = df['Car'].isnull().sum()
print("\nThe number of missing vales in 'Car' attribute is:",missing_values_car)
mode_car = df['Car'].mode()[0]
df['Car'].fillna(mode_car, inplace=True)
missing_values_car = df['Car'].isnull().sum()
print("The number of missing values in 'Car' attribute after replacing with mode is:", missing_values_car)
print("We have removed all the missing values in the column")
print()
print()
#C: Fill the missing values in the 'BuildingArea' attribute with linear and quadratic interpolation
df['BuildingArea_linear'] = df['BuildingArea'].interpolate(method='linear')
df['BuildingArea_quadratic'] = df['BuildingArea'].interpolate(method='quadratic')
print(df['BuildingArea_linear'])
print(df['BuildingArea_quadratic'])
#D: Fill the missing values in the 'YearBuilt' attribute with forward fill approach
df['YearBuilt'].fillna(method='ffill', inplace=True)
print(df['YearBuilt'])
df.dropna(subset=['CouncilArea'],inplace=True)
df
```

```
A)
      Missing Data Count:
       Suburb
      Address
      Rooms
      Type
      Price
                          0
      Method
                          0
      SellerG
                          0
                          0
      Date
      Distance
                          0
      Postcode
                          0
      Bedroom2
                          0
      Bathroom
                          0
      Car
                         62
      Landsize
                          0
      BuildingArea
                       6450
      YearBuilt
                       5375
      CouncilArea
                       1369
      Lattitude
                          0
      Longtitude
                          0
      Regionname
                          0
      Propertycount
                          0
      dtype: int64
```

The number of missing vales in 'Car' attribute is: 62
The number of missing values in 'Car' attribute after replacing with mode is: 0
We have removed all the missing values in the column

C)

```
0
           NaN
          79.0
1
2
         150.0
3
         146.0
4
         142.0
         . . .
13575
         146.0
13576
         133.0
13577
         145.0
13578
         157.0
13579
         112.0
Name: BuildingArea_linear, Length: 13580, dtype: float64
1
          79.000000
2
         150.000000
3
         148.715056
4
         142.000000
            . . .
         159.855594
13575
13576
         133.000000
13577
         148.024068
13578
         157.000000
         112.000000
Name: BuildingArea_quadratic, Length: 13580, dtype: float64
```

D)

```
Name: YearBuilt, Length: 13580, dtype: float64
         Yarra
1
         Yarra
2
         Yarra
3
         Yarra
         Yarra
13575
           NaN
13576
           NaN
13577
           NaN
           NaN
13578
13579
           NaN
```

Out[31]:

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distance	Postcode	 Landsize	BuildingArea	YearBuilt	CouncilArea	L
0	Abbotsford	85 Turner St	2	h	1480000	S	Biggin	03- 12- 2016	2.5	3067	 202	NaN	NaN	Yarra	-3
1	Abbotsford	25 Bloomburg St	2	h	1035000	S	Biggin	04- 02- 2016	2.5	3067	 156	79.0	1900.0	Yarra	-3
2	Abbotsford	5 Charles St	3	h	1465000	SP	Biggin	04- 03- 2017	2.5	3067	 134	150.0	1900.0	Yarra	-3
3	Abbotsford	40 Federation La	3	h	850000	PI	Biggin	04- 03- 2017	2.5	3067	 94	NaN	1900.0	Yarra	-3
4	Abbotsford	55a Park St	4	h	1600000	VB	Nelson	04- 06- 2016	2.5	3067	 120	142.0	2014.0	Yarra	-3
12208	Williamstown	87 Pasco St	3	h	1285000	s	Jas	29- 07- 2017	6.8	3016	 296	NaN	1967.0	Hobsons Bay	
12209	Windsor	201/152 Peel St	2	u	560000	PI	hockingstuart	29- 07- 2017	4.6	3181	 0	61.6	2012.0	Stonnington	-3
12210	Wollert	60 Saltlake Bvd	3	h	525300	S	Stockdale	29- 07- 2017	25.5	3750	 400	NaN	2012.0	Whittlesea	-3
12211	Yarraville	2 Adeney St	2	h	750000	SP	hockingstuart	29- 07- 2017	6.3	3013	 269	NaN	2012.0	Maribyrnong	-3
12212	Yarraville	54 Pentland Pde	6	h	2450000	VB	Village	29- 07- 2017	6.3	3013	 1087	388.5	1920.0	Maribyrnong	-3
12211 rows v 23 columns															

12211 rows × 23 columns

2. Consider the below data set

```
dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],

['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],

['Milk', 'Apple', 'Kidney Beans', 'Eggs'],

['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],

['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
```

- a. Find the frequent itemset from the dataset with support count = 4 and support count = 2.
- b. Generate the association rules for support count 2 using the two methods 'confidence' and 'lift'

Code:

```
In [10]: # Varun Sudhir 21BDS0040
# Question 2

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
from mlxtend.preprocessing import TransactionEncoder
import pandas as pd

# Define the transactions
transactions = [
        ['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
        ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
        ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
        ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
        ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']
]

# Transform the transactions into a one-hot encoded DataFrame
encoder = TransactionEncoder()
encoded_array = encoder.fit(transactions).transform(transactions)
transaction_df = pd.DataFrame(encoded_array, columns=encoder.columns_)

# Display the DataFrame
print(transaction_df)
```

```
Corn Dill Eggs Ice cream Kidney Beans Milk Nutmeg Onion \
          Apple
       0 False False False True
                                                  True True
                                   False
                                                              True
                                                                      True
       1 False False True True
                                                  True False
                                     False
                                                               True
                                                                      True
         True False False True
                                     False
                                                  True True False False
       3 False True False False
                                                  True True False False
                                     False
       4 False True False True
                                                   True False False
                                      True
          Unicorn Yogurt
           False True
           False
                  True
       1
          False False
       2
       3
           True True
       4
           False False
In [11]: # Varun Sudhir 21BDS0040
       # A. Find the frequent itemsets from the dataset with support count = 4 and support count = 2:
       # For support count = 4 (minimum support = 4/5 = 0.8)
       frequent_itemsets_4 = apriori(transaction_df, min_support=0.8, use_colnames=True)
```

frequent_itemsets_2 = apriori(transaction_df, min_support=0.4, use_colnames=True)

Output:

print("Frequent itemsets with support count 4:")

For support count = 2 (minimum support = 2/5 = 0.4)

print("\nFrequent itemsets with support count 2:")

print(frequent_itemsets_4)

print(frequent_itemsets_2)

```
Frequent itemsets with support count 4:
   support
                         itemsets
        0.8
                           (Eggs)
1
        1.0
                   (Kidney Beans)
2
        0.8
             (Kidney Beans, Eggs)
Frequent itemsets with support count 2:
    support
                                                  itemsets
         0.4
                                                    (Corn)
0
1
         0.8
                                                    (Eggs)
2
         1.0
                                            (Kidney Beans)
3
         0.6
                                                    (Milk)
4
         0.4
                                                  (Nutmeg)
5
         0.6
                                                   (Onion)
6
         0.6
                                                  (Yogurt)
7
         0.4
                                      (Kidney Beans, Corn)
8
         0.8
                                      (Kidney Beans, Eggs)
9
         0.4
                                              (Milk, Eggs)
10
         0.4
                                            (Nutmeg, Eggs)
11
         0.6
                                             (Onion, Eggs)
12
         0.4
                                            (Eggs, Yogurt)
         0.6
                                      (Kidney Beans, Milk)
13
14
         0.4
                                    (Nutmeg, Kidney Beans)
         0.6
                                     (Onion, Kidney Beans)
15
         0.6
                                    (Kidney Beans, Yogurt)
16
                                            (Milk, Yogurt)
17
         0.4
         0.4
                                           (Onion, Nutmeg)
18
         0.4
                                          (Nutmeg, Yogurt)
19
20
         0.4
                                           (Onion, Yogurt)
                                (Kidney Beans, Milk, Eggs)
21
         0.4
22
         0.4
                             (Nutmeg, Kidney Beans, Eggs)
23
         0.6
                               (Onion, Kidney Beans, Eggs)
24
         0.4
                             (Kidney Beans, Eggs, Yogurt)
                                     (Onion, Nutmeg, Eggs)
25
         0.4
         0.4
26
                                    (Nutmeg, Eggs, Yogurt)
27
         0.4
                                     (Onion, Eggs, Yogurt)
28
         0.4
                                 (Kidney Beans, Milk, Yogurt)
29
         0.4
                               (Onion, Nutmeg, Kidney Beans)
                              (Nutmeg, Kidney Beans, Yogurt)
30
         0.4
31
         0.4
                               (Onion, Kidney Beans, Yogurt)
                                      (Onion, Nutmeg, Yogurt)
32
         0.4
33
         0.4
                        (Onion, Nutmeg, Kidney Beans, Eggs)
         0.4
                       (Nutmeg, Kidney Beans, Eggs, Yogurt)
34
35
         0.4
                        (Onion, Kidney Beans, Eggs, Yogurt)
                               (Onion, Nutmeg, Eggs, Yogurt)
36
         0.4
37
         0.4
                      (Onion, Nutmeg, Kidney Beans, Yogurt)
38
         0.4
               (Nutmeg, Onion, Yogurt, Kidney Beans, Eggs)
```

```
In [12]: # Varun Sudhir 21BDS0040
#B. Generate the association rules for support count 2 using the two methods 'confidence' and 'lift':

# Generate rules using confidence
rules_confidence = association_rules(frequent_itemsets_2, metric="confidence", min_threshold=0)
print("\nAssociation rules using confidence:")
print(rules_confidence[['antecedents', 'consequents', 'support', 'confidence', 'lift']])

# Generate rules using lift
rules_lift = association_rules(frequent_itemsets_2, metric="lift", min_threshold=0)
print("\nAssociation rules using lift:")
print(rules_lift[['antecedents', 'consequents', 'support', 'confidence', 'lift']])
```

```
Association rules using confidence:
         antecedents
                                                    consequents
                                                                  support \
     (Kidney Beans)
                                                         (Corn)
                                                                       0.4
                                                (Kidney Beans)
              (Corn)
                                                                       0.4
     (Kidney Beans)
                                                         (Eggs)
                                                                       0.8
              (Eggs)
                                                 (Kidney Beans)
                                                                       0.8
4
              (Milk)
                                                         (Eggs)
195
            (Nutmeg)
                         (Onion, Eggs, Kidney Beans, Yogurt)
                                                                       0.4
196
             (Onion)
                        (Nutmeg, Eggs, Kidney Beans, Yogurt)
                                                                      0.4
197
           (Yogurt)
                        (Nutmeg, Onion, Kidney Beans, Eggs)
                                                                       0.4
198 (Kidney Beans)
              Beans) (Nutmeg, Onion, Eggs, Yogurt)
(Eggs) (Nutmeg, Onion, Kidney Beans, Yogurt)
                                                                       0.4
199
                                                                      0.4
     confidence
0
       0.400000 1.000000
       1.000000
                  1.000000
2
       0.800000 1.000000
3
       1.000000
                  1.000000
4
       0.666667 0.833333
       1.000000
                 2.500000
195
       0.666667
196
                  1.666667
197
       0.666667
                  1.666667
198
       0.400000 1.000000
199
       0.500000 1.250000
 Association rules using lift:
          antecedents
                                                     consequents support \
       (Kidney Beans)
                                                           (Corn)
                (Corn)
                                                  (Kidney Beans)
       (Kidney Beans)
                                                           (Eggs)
                                                  (Kidney Beans)
                (Eggs)
                                                                        0.8
  4
                (Milk)
                                                                         0.4
                                                           (Eggs)
              (Nutmeg)
  195
                           (Onion, Eggs, Kidney Beans, Yogurt)
                                                                         0 4
  196
               (Onion)
                          (Nutmeg, Eggs, Kidney Beans, Yogurt)
                                                                        0.4
                Yogurt) (Nutmeg, Onion, Kidney Beans, Eggs)
Beans) (Nutmeg, Onion, Eggs, Yogurt)
(Eggs) (Nutmeg, Onion, Kidney Beans, Yogurt)
  197
              (Yogurt)
                                                                        0.4
      (Kidney Beans)
  198
                                                                        0.4
  199
       confidence
  0
         0.400000 1.000000
                    1.000000
         1.000000
  2
         0.800000
                   1.000000
  3
         1.000000
                    1.000000
  4
         0.666667 0.833333
  195
         1.000000 2.500000
         0.666667
                    1.666667
  196
  197
         0.666667
                    1.666667
                   1.000000
         0.400000
  199
         0.500000 1.250000
  [200 rows x 5 columns]
```

```
3. Suppose if the dataset has a Nan value
dataset = [['Milk', 'Onion', Nan, 'Kidney Beans', 'Eggs', 'Yogurt'],
['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
['Milk', 'Unicorn', 'Corn', Nan, 'Yogurt'],
['Corn', 'Onion', Nan, 'Kidney Beans', 'Ice cream', 'Eggs']]
How does the frequent itemset change for the support count of 2
```

Code:

```
In [13]: # Remove NaN values from each transaction
dataset = [[item for item in transaction if not pd.isna(item)] for transaction in transactions]

# Transform the cleaned dataset into a one-hot encoded DataFrame
encoder = TransactionEncoder()
encoded_array = encoder.fit(dataset).transform(dataset)
transaction_df = pd.DataFrame(encoded_array, columns=encoder.columns_)

# Find frequent itemsets with support count of 2 (minimum support = 2/5 = 0.4)
frequent_itemsets_2 = apriori(transaction_df, min_support=0.4, use_colnames=True)

# Print the frequent itemsets
print("Frequent itemsets with support count 2:")
print(frequent_itemsets_2)
```

```
Frequent itemsets with support count 2:
    support
                                                  itemsets
0
        0.4
                                                    (Corn)
1
        0.8
                                                    (Eggs)
2
        1.0
                                            (Kidney Beans)
3
        0.6
                                                    (Milk)
        0.4
                                                  (Nutmeg)
4
5
        0.6
                                                   (Onion)
6
        0.6
                                                  (Yogurt)
7
        0.4
                                     (Kidney Beans, Corn)
8
        0.8
                                     (Kidney Beans, Eggs)
9
        0.4
                                              (Milk, Eggs)
10
        0.4
                                           (Nutmeg, Eggs)
11
        0.6
                                             (Onion, Eggs)
12
        0.4
                                           (Eggs, Yogurt)
                                     (Kidney Beans, Milk)
13
        0.6
        0.4
                                   (Nutmeg, Kidney Beans)
14
15
        0.6
                                    (Onion, Kidney Beans)
                                   (Kidney Beans, Yogurt)
        0.6
16
                                           (Milk, Yogurt)
17
        0.4
18
        0.4
                                           (Onion, Nutmeg)
        0.4
19
                                          (Nutmeg, Yogurt)
20
        0.4
                                           (Onion, Yogurt)
21
        0.4
                               (Kidney Beans, Milk, Eggs)
22
        0.4
                             (Nutmeg, Kidney Beans, Eggs)
        0.6
                              (Onion, Kidney Beans, Eggs)
23
24
        0.4
                             (Kidney Beans, Eggs, Yogurt)
25
        0.4
                                    (Onion, Nutmeg, Eggs)
        0.4
26
                                   (Nutmeg, Eggs, Yogurt)
        0.4
                                    (Onion, Eggs, Yogurt)
27
28
        0.4
                             (Kidney Beans, Milk, Yogurt)
29
        0.4
                            (Onion, Nutmeg, Kidney Beans)
30
        0.4
                           (Nutmeg, Kidney Beans, Yogurt)
                            (Onion, Kidney Beans, Yogurt)
31
        0.4
32
        0.4
                                  (Onion, Nutmeg, Yogurt)
                        (Onion, Nutmeg, Kidney Beans, Eggs)
33
         0.4
                       (Nutmeg, Kidney Beans, Eggs, Yogurt)
34
         0.4
                        (Onion, Kidney Beans, Eggs, Yogurt)
35
         0.4
36
         0.4
                               (Onion, Nutmeg, Eggs, Yogurt)
37
         0.4
                      (Onion, Nutmeg, Kidney Beans, Yogurt)
               (Nutmeg, Onion, Yogurt, Kidney Beans, Eggs)
38
         0.4
```