CSCI5654 (Linear Programming, Fall 2013) Lecture-2

Today's Lecture

- Overview of Linear Programming.
- Some initial observations.
- ▶ Standard Form for LP (Chvátal, ch. 1).
- ► Simplex Basics (Chvátal, ch. 2).

Linear Program

Optimization Problem: Linear (affine) objectives and constraints.

maximize
$$c_1x_1 + \ldots + c_nx_n + c_0$$

subj.to. $a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + \ldots + a_{2n}x_n \leq b_2$
 \vdots
 $a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_n$

Decision Variables: x_1, \ldots, x_n .

decision variables take real number values.

Example #1

Consider the following linear program:

$$\begin{array}{cccc} \text{maximize} & 5x-y \\ \text{s.t.} & x & \geq & 0 \\ & x & \leq & 2 \\ & y & \geq & -1 \\ & y & \leq & 5 \end{array}$$

Solution: x = 2, y = -1, yields optimal value of objective z = 11.

Q: Can there be multiple optima?

Problems with Multiple Optima

$$\begin{array}{cccc} \text{maximize} & 5x \\ \text{s.t.} & x & \geq & 0 \\ & x & \leq & 2 \\ & y & \geq & -1 \\ & y & \leq & 5 \end{array}$$

Optimal Solutions: There are infinitely many optima:

X	У	objective(z)
2	-1	10
2	5	10
2	0	10
:		:
2	5	10

This is quite common as the number of decision variables increases.

Example #2

Outcome: The problem is "infeasible". Constraints on decision variables contradict each other.

Example #3

$$\begin{array}{cccc} \text{maximize} & 5x - y \\ \text{s.t.} & x & \geq & 3 \\ & y & \geq & -1 \\ & y & \leq & 5 \end{array}$$

Outcome: The problem is "unbounded".

For every number N, there is a feasible solution with objective value $z \geq N$.

Outcomes for Linear Program

Every LP can result in one of three outcomes:

Optimal Feasible solution \vec{x} maximizes the objective function.

Such a solution is an <u>optimal solution</u>. (multiple optimal solutions possible).

Unbounded For every N, there is <u>feasible</u> solution \vec{x} , such that objective function value is > N.

Note: Some texts denote unbounded maximum as ∞ . unbounded minimum as $-\infty$.

Infeasible No feasible solution exists.

Note: Some texts and solvers assign a value of $-\infty$ for infeasible maximum ($+\infty$ for infeasible minimum).

Standard Form

Every LP we will consider will be of the following standard form:

maximize
$$c_1x_1 + \ldots + c_nx_n + c_0$$

subj.to. $a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + \ldots + a_{2n}x_n \leq b_2$
 \vdots
 $a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m$
 $x_1, x_2, \ldots, x_n \geq 0$

Matrix Notation:

$$\begin{array}{ccc} \text{maximize} & \vec{c} \cdot \vec{x} \\ \text{s.t.} & A\vec{x} & \leq & \vec{b} \\ & \vec{x} & > & \vec{0} \end{array}$$

Standard Form

Result: Any LP can be rewritten as a standard form LP.

Standard Form Conversion

Transform given LP into standard form.

Objective:

minimize
$$(\vec{c} \cdot \vec{x}) \rightarrow \text{maximize } -(\vec{c} \cdot \vec{x})$$
.

Constraints: Transform equalities.

$$\vec{a} \cdot \vec{x} = b \rightarrow \begin{pmatrix} \vec{a} \cdot \vec{x} \leq b \\ -\vec{a} \cdot \vec{x} < -b \end{pmatrix}.$$

Variables: If $x_i \ge 0$ does not appear as a constraint,

Rewrite: $x_i = x_i^+ - x_i^-$, wherein, $x_i^+, x_i^- \ge 0$.

Example

Original LP: Transform this to standard form.

$$\begin{array}{llll} \min & -5x_1 + 4x_2 - 3x_3 \\ \text{s.t.} & 2x_1 - 3x_2 + x_3 & = & 5 \\ & 4x_1 + x_2 + 2x_3 & \geq & 11 \\ & 3x_1 + 4x_2 + 2x_3 & \leq & 8 \\ & x_1 & \geq & 0 \end{array}$$

Steps for Conversion:

1. Transform objective from min to max.

$$\min -5x_1 + 4x_2 - 3x_3 \rightarrow \max 5x_1 - 4x_2 + 3x_3$$

2. Change equalities to inequalities:

$$2x_1 - 3x_2 + x_3 = 5 \rightarrow \begin{pmatrix} 2x_1 - 3x_2 + x_3 \le 5 \\ -2x_1 + 3x_2 - x_3 \le -5 \end{pmatrix}$$

3. Change \geq constraints by \leq :

$$4x_1 + x_2 + 2x_3 \ge 11 \quad \rightarrow \quad -4x_1 - x_2 - 2x_3 \le -11$$

4. x_2, x_3 can be negative. Need to transform:

$$x_2 \mapsto x_2^+ - x_2^- \quad x_3 \mapsto x_3^+ - x_3^-.$$

Resulting LP:

$$\begin{array}{llll} \text{max} & 5x_1 - 4x_2^+ + 4x_2^- + 3x_3^+ - 3x_3^- \\ \text{s.t.} & 2x_1 - 3x_2^+ + 3x_2^- + x_3^+ - x_3^- & \leq & 5 \\ & -2x_1 + 3x_2^+ - 3x_2^- - x_3^+ + x_3^- & \leq & -5 \\ & -4x_1 - x_2^+ + x_2^- - 2x_3^+ + 2x_3^- & \leq & -11 \\ & 3x_1 + 4x_2 - 4x_2^- + 2x_3^+ - 2x_3^- & \leq & 8 \\ & x_1, x_2^+, x_2^-, x_3^+, x_3^- & \geq & 0 \end{array}$$

Transform Solutions Back:

$$(x_1 = 3.43, x_2^+ = 0.143, x_2^- = 0, x_3^+ = 0, x_3^- = 1.43)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad (x_1 = 3.43, x_2 = 0.143, x_3 = -1.43)$$

Slack Variables

Basic Idea: Rewrite inequality of the form

$$a_1x_1+\cdots+a_nx_n\leq b_n$$

into equality

$$\mathbf{x}_{n+i} = b_n - a_1 x_1 - a_2 x_2 - \cdots - a_n x_n,$$

where x_{n+i} is a new <u>slack variable</u>.

Note: We add constraint $x_{n+i} \ge 0$.

Standard Form

Every LP we will consider will be of the following standard form:

maximize
$$c_1x_1 + \ldots + c_nx_n + c_0$$

subj.to. $a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + \ldots + a_{2n}x_n \leq b_2$
 \vdots
 $a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_n$
 $x_1, x_2, \ldots, x_n \geq 0$

Matrix Notation:

maximize
$$\vec{c} \cdot \vec{x}$$
 s.t. $A\vec{x} \leq \vec{b}$ $\vec{x} \geq \vec{0}$

Transformation using Slack Variables

maximize
$$c_1x_1 + \ldots + c_nx_n + c_0$$

subj.to. $x_{n+1} = b_1 - a_{11}x_1 - \ldots - a_{1n}x_n$
 \ldots \ldots \ldots $x_{n+m} = b_n - a_{m1}x_1 + \ldots - a_{mn}x_n$
 $x_1, x_2, \ldots, x_n \ge 0$
 $x_{n+1}, \ldots, x_{n+m} \ge 0$

Matrix Notation (constraints):

$$\vec{x}_{\text{slack}} = \vec{b} - A \cdot \vec{x}_{\text{decision}}$$
 $\vec{x}_{\text{decision}} \geq 0$
 $\vec{x}_{\text{slack}} \geq 0$

Simplex Method

Overall Strategy.

Concepts: Basic feasible solution, dictionary, pivoting.

- 1. Discover the first basic feasible solution (initial dictionary).
- 2. Pivot from one basis (basic feasible solution) until optimum achieved.
- 3. Each pivot increases the value of the objective function.

Example (from Chvátal, ch. 2)

Solve the following LP:

Introduce Slack Variables

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

Independent Variables: x_1, x_2, x_3 (on the RHS of equalities).

Basic Variables: x_4, x_5, x_6 on the LHS of equalities.

Basic Feasible Solution: Set independent variables to zero.

$$\underbrace{x_1 = 0, \ x_2 = 0, \ x_3 = 0}_{independent}, \ \underbrace{x_4 = 5, x_5 = 11, x_6 = 8}_{dependent(basic)}.$$

Note: This does not work in <u>all cases</u> (more about <u>initialization</u>, next week).

Dictionary

A general way to organize our problem and solution.

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 11 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$z = 5x_1 + 4x_2 + 3x_3$$

Associated Solution: Every dictionary yields an associated basic feasible solution.

- 1. Set all independent variables to 0.
- 2. Set all dependent variables appropriately.

Initial Dictionary

$$\begin{array}{rclcrcl} x_4 & = & \underline{5} & - & 2x_1 - 3x_2 - x_3 \\ x_5 & = & \underline{11} & - & 4x_1 - x_2 - 2x_3 \\ \underline{x_6} & = & \underline{8} & - & 3x_1 - 4x_2 - 2x_3 \\ \hline z & = & 0 & + & 5x_1 + 4x_2 + 3x_3 \\ \hline \\ \underline{x_1} & = 0, \ x_2 = 0, \ x_3 = 0, \\ \underline{basic(independent)} & \underline{x_4} & = 5, \ x_5 = 11, \ x_6 = 8 \end{array}.$$

Dictionary Objective Value: z = 0.

Q: How can we improve the optimum?

Remember: We like z to be as large as pssible

Pivoting

Entering Variable: x_1 .

Q: How high can we set x_1 ?

$$\begin{array}{rclcrcl} x_4 & = & 5 - 2x_1 - 3x_2 - x_3 & \Rightarrow & \underbrace{x_1 \leq \frac{5}{2}}_{X_5} \\ x_5 & = & 11 - 4x_1 - x_2 - 2x_3 & \Rightarrow & \underbrace{x_1 \leq \frac{11}{4}}_{X_1 \leq \frac{11}{4}} \\ x_6 & = & 8 - 3x_1 - 4x_2 - 2x_3 & \Rightarrow & \underbrace{x_1 \leq \frac{5}{2}}_{X_1 \leq \frac{8}{3}} \end{array}$$

$$z = 0 + 5x_1 + 4x_2 + 3x_3$$

Improved Solution:

$$x_1 = \frac{5}{2}, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1, x_6 = \frac{1}{2}$$

Improved Objective: $z = \frac{25}{2}$.

Q: What happens if we try $x_1 = \frac{8}{3}$?

Lecture 2

New Dictionary

Replacement Rule: $x_1 \mapsto \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4$.

After pivot: x_1 enters basis, x_4 leaves basis.

New Dictionary:

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 1 + 5x_{2} + 2x_{4}$$

$$x_{6} = \frac{1}{2} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} + \frac{3}{2}x_{4}$$

$$z = \frac{25}{2} - \frac{7}{2}x_{2} + \frac{1}{2}x_{3} - \frac{5}{2}x_{4}$$

Property: This is exactly the same as the original problem.

We are just viewing it differently.

New Dictionary

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 1 + 5x_{2} + 2x_{4}$$

$$x_{6} = \frac{1}{2} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} + \frac{3}{2}x_{4}$$

$$z = \frac{25}{2} - \frac{7}{2}x_{2} + \frac{1}{2}x_{3} - \frac{5}{2}x_{4}$$

Basic Variables: x_1, x_5, x_6 .

Basic Feasible Solution: $x_1 = \frac{5}{2}, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1, x_6 = \frac{1}{2}$

Objective Value: $z = \frac{25}{2}$.

Pivoting

Entering Variable: x_3 .

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 \Rightarrow \underline{x_3 \le 5}$$
 $x_5 = 1 + 5x_2 + 2x_4 \Rightarrow \text{no constraint}$
 $x_6 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \Rightarrow \underline{x_3 \le 1}$

New Solution: $x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0.$

Leaving Variable: x_6 .

Pivoting II

Replacement Rule: $x_3 \mapsto (1 + x_2 + 3x_4 - 2x_6)$.

$$x_3 = 1 + x_2 + 3x_4 - 2x_6$$

$$x_1 = 2 - 2x_2 - 2x_4 + x_6$$

$$x_5 = 1 + 5x_2 + 2x_4$$

$$z = 13 - 3x_2 - x_4 - x_6$$

Solution: $x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0.$

Objective Value: z = 13.

Q: Can we improve the objective function value?

Simplex

- 1. Convert to standard form.
- 2. Introduce Slack Variables.
- 3. Find initial feasible solution and corr. dictionary.
- 4. While dictionary is not final:
 - 4.1 Find a non-basic variable x_i to improve.
 - 4.2 Find a basic variable x_i that constrains x_i the most.
 - 4.3 Insert x_i into basis and remove x_i from basis.
- Output final result.

Next Lecture

We will go over Simplex in detail, again.

- 1. Go over Simplex steps at a higher level.
- 2. Initialization.
- 3. Choosing entering variable.
- 4. Degeneracy.
- 5. Cycling.
- 6. Lexicographic rule.