习题 2.2

编程实现阻尼牛顿法。要求: (a)设定阻尼因子的初始值 λ_0 及解的误差阈值 ϵ ; (b)阻尼因子 λ 用逐次折半法更新; (c)打印每个迭代步的最终 λ 值及近似解。用所编程序求解:

(1)
$$x^3$$
-x-1=0, \mathbb{R} x_0 =0.6;

(2)
$$-x^3+5x=0$$
, $\mathbb{R} x_0=1.2$.

分析:

设定阻尼因子初值 $\lambda_0=1$,更新采用逐次折半法,误差阈值 ϵ =1e-4。阻尼牛顿法需要对原函数进行求导,我没有采用 matlab 自带的求导函数,而是采用手动求导。

实验结果:

$$(1)x_0=0.6$$
, $\lambda_0=1$;

$$x_1=1.1406$$
, $\lambda_1=0.0156$;

$$x_2=1.3668$$
, $\lambda_2=1$;

$$x_3=1.3263, \lambda_3=1;$$

$$x_4=1.3247$$
, $\lambda_4=1$.

最终解 x=1.3247.

$$(2)x_0=1.2$$
, $\lambda_0=1$;

$$x_1 = -1.9412, \lambda_1 = 0.25;$$

$$x_2=-2.3205$$
, $\lambda_2=1$;

 $x_3=-2.2405$, $\lambda_3=1$;

 $x_4=-2.2361$, $\lambda_4=1$;

 $x_5=-2.2361$, $\lambda_5=1$

最终解 x=-2.2361.

实验结论: 阻尼牛顿法改进了牛顿法因初始值 x_0 与准确解偏离太远可能造成的发散。本实验中, λ 均只在第一步迭代中有折半运算,其后都未进入折半循环,减少了总体计算次数,这是一个好结果。

实验心得: 学会了在 matlab 中定义和调用函数。