Le modèle du gaz parfait

Définitions I.

La thermodynamique est l'étude des échanges d'énergie. Il en existe deux types : le travail à l'état macroscopique et la chaleur à l'état microscopique.

L'équilibre d'un système désigne un gaz dans lequel il n'y a pas de variation des grandeurs (pression, température) dans le temps et l'espace. (Il existe toujours un mouvement aléatoire thermique).

Echelle Celsius : $\theta = T - 273,15$ (273,15 K : t° d'équilibre entre l'eau solide et l'eau liquide)

II. **Hypothèses**

- Les interactions électrostatiques sont négligés (car le gaz est très dilué).
- Le **poids** des particules est négligé.

III. Les gaz monoatomique

$$U = \sum_{i=1}^{N} \frac{1}{2} m v_i^2 + m c^2$$

$$U = \frac{3}{2} NkT + Cte = \frac{3}{2} nRT + Cte$$

$$U = nC_{mv}T + Cte = m_{gaz} c_v T + Cte$$

$$U = nC_{mv}T + Cte = m_{gaz} c_v T + Cte$$

$$U = nC_{mv}T + Cte = m_{gaz} c_v T + Cte$$

$$U = nC_{mv}T + Cte = m_{gaz} c_v T + Cte$$

$$U = nC_{mv}T + Cte = m_{gaz} c_v T + Cte$$

$$U = nC_{mv}T + Cte = m_{gaz} c_v T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$U = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T + Cte = nC_{mv}T + Cte$$

$$V = nC_{mv}T$$

$$N_A k = R$$
 $C_{mv} = \frac{3}{2}R$ $c_v M = C_{mv}$

$$\sum_{i=1}^{N} \frac{1}{2} m v_i^2 = \frac{3}{2} NkT \quad (*)$$

$$u_q^2 = \langle v_i^2 \rangle = \frac{3kT}{m}$$

IV. Les gaz diatomiques

$$U = \sum_{i=1}^{N} \frac{1}{2} m v_i^2 + m c^2 + \mathcal{E}_{i_{structure}} = n C_{mv} T + Cte$$

Gaz diatomique	Température	$\langle \mathcal{E}_{i_{structure}} angle$	C_{mv}
	$T < T_{rot}$	0	$\frac{3}{2}R$
Indéformable	$T > T_{rot}$	kT	$\frac{5}{2}R$
Déformable	$T > T_{vib} > T_{rot}$	2kT	$\frac{7}{2}R$

A des températures « normales », les molécules sont indéformables donc $C_{mv} = \frac{3}{2}R$.

Le modèle du gaz parfait

P1 - Chapitre 1

V. Modèle simplifié du gaz parfait

Le mouvement des molécules est comparable à celui de balles de tennis. Toutes les directions sont équivalentes.

$$\begin{cases} \langle v_{i_x}^2 \rangle = \langle v_{i_y}^2 \rangle = \langle v_{i_z}^2 \rangle = \frac{u_q^2}{3} \\ \langle v_{i_{x>0}}^2 \rangle = \langle v_{i_{x<0}}^2 \rangle = \frac{u_q^2}{6} \end{cases}$$

VI. La pression

Quand une molécule heurte la paroi, elle lui cède une quantité de mouvement et est réfléchie. Elle conserve sa vitesse (et donc son énergie cinétique).

Calcul	Formule simple	Résultat
Quantité de mouvement reçue par la surface ΔS lorsqu'elle est heurtée par une molécule i	$\overrightarrow{p_u} = 2mv_{i_x}\overrightarrow{e_x}$	
Nombre de particules de vitesse $\overrightarrow{v_i}$ qui heurtent ΔS pendant Δt	densité de part de vitesse $\overrightarrow{v_1}$ vol cylindre contenant ces particules $N_{part} = \frac{\overbrace{N(\overrightarrow{v_l})}}{V} \Delta S \ v_{i_{x>0}} \Delta t$	
Quantité de mouvement reçue par ΔS pendant Δt par ces particules	$\overrightarrow{p_i} = N_{part} \overrightarrow{p_u}$	$\overrightarrow{p_i} = 2m \frac{N(\overrightarrow{v_i})}{V} \Delta S \ v_{i_{x>0}}^2 \ \Delta t \ \overrightarrow{e_x}$
Quantité de mouvement totale reçue par ΔS pendant Δt	$\overrightarrow{p_2} = \sum_{i=1}^N \overrightarrow{p_i}$	$\overrightarrow{p_2} = \frac{2m \Delta S \Delta t}{V} \overrightarrow{e_x} \sum_{i=1}^{N} N(\overrightarrow{v_i}) v_{i_{x>0}}^2$
Force reçue par ΔS	$\vec{f} = \frac{\overrightarrow{p_2}}{\Delta t}$	$\vec{f} = \frac{2m \Delta S}{V} \overrightarrow{e_x} \sum_{i=1}^{N} N(\overrightarrow{v_i}) \ v_{i_{x>0}}^2$
Pression	$P = \frac{\ \vec{f}\ }{\Delta S}$	$P = \frac{2mN}{V} \underbrace{\frac{\sum_{i=1}^{N} N(\overrightarrow{v_i}) \ v_{i_{x>0}}^2}{N}}_{= \langle v_{i_{x>0}} \rangle = \frac{u_q^2}{6}}$

$$P = \frac{mN}{V} \frac{u_q^2}{3} = \frac{NkT}{V} \iff PV = nRT$$

Pression partielle d'un gaz : pression du gaz seul à la même t° et au même V. $P = P_1 + P_2$

VII. Equation de Van der Waals

$$\left(P + a.\frac{n^2}{V^2}\right)_{\text{volume du vide}} = nRT$$

(V-nb) = nRT $b = N_A v$: covolume molaire (v volume d'une molécule) a : constante qui dépend de l'espèce

VIII. Développement du viriel

$$\overline{PV = nRT\left(1 + \frac{An}{V} + \frac{Bn^2}{V} + \cdots\right)} \text{ On doit retrouver } PV = nRT \text{ quand } P \to 0 \frac{\text{et}}{\text{ou}} V \to +\infty$$