

Applied Catalysis B: Environmental

Volume 28, Issue 1 , 18 September 2000, Pages 43-54

doi:10.1016/S0926-3373(00)00161-2

Copyright © 2000 Elsevier Science B.V. All rights reserved.

Cobalt supported on ZrO₂: catalysts' characterization and their activity for the reduction of NO with C₃H₆ in the presence of excess O₂**Daniela Pietrogiacomi^a, Simonetta Tuti^b, Maria Cristina Campa^a and Valerio Indovina^a**^a Centro di Studio SACSO CNR, c/o Dipartimento di Chimica, Università degli Studi di Roma 'La Sapienza', Piazzale Aldo Moro 5, 00185 Rome, Italy^b Dipartimento di Ingegneria Meccanica e Industriale, Università Roma Tre, Rome, Italy

Received 20 February 2000; revised 8 April 2000; accepted 8 April 2000. Available online 17 July 2000.

Abstract

CoO_x/ZrO₂ samples, prepared by adsorption from cobalt solutions or by impregnation, were characterized by means of DRS, XPS, FTIR and volumetric CO adsorption. In samples prepared by adsorption the maximum Co-uptake was 2.2 atoms nm⁻². XPS evidenced cobalt dispersion up to about 2 atoms nm⁻². DRS evidenced Co₃O₄ above 2 atoms nm⁻². Volumetric CO adsorption, combined with FTIR, showed that cobalt was highly dispersed on the ZrO₂ surface in samples containing 0.4 and 0.9 atoms nm⁻². The selective catalytic reduction (SCR) of NO with C₃H₆ in the presence of excess O₂ was studied on samples containing up to 4.8 Co atoms nm⁻² with a reactant mixture containing NO=4000 ppm, C₃H₆=2000 ppm, O₂=2%. Isolated cobalt in CoO_x/ZrO₂ containing up to about 2 atoms nm⁻² is active and selective for NO reduction in the presence of excess O₂. Aggregated cobalt present as Co₃O₄ in more concentrated samples is active for C₃H₆ combustion, thus rendering the relevant CoO_x/ZrO₂ samples non-selective.

Author Keywords: NO abatement; ZrO₂ support; Supported cobalt oxide**BEST AVAILABLE COPY**