Тема: Решение задач по теме «Уравнение состояния идеального газа»

Основные уравнения и формулы

 $pV = \frac{m}{M}RT$ — уравнение состояния идеального газа. (уравнение Менделеева-Клапейрона)

p = nkT –связь между давлением идеального газа и абсолютной температурой

$$N = \nu N_A = N_A \frac{m}{M}$$
 - количество молекул

$$n = \frac{N}{V} = \frac{1}{V} \frac{m}{M} N_A$$
 — концентрация молекул

$$R = 8,31 \frac{\text{Дж}}{\text{моль K}} - \text{универсальная газовая постоянная}$$

$$k=1,38 imes 10^{-23} rac{\mathrm{Дж}}{\mathrm{K}}$$
 – постоянная Больцмана

$$N_A = 6.02 \times 10^{23} \frac{1}{MOJD} -$$
постоянная Авогадро

Условия задач

Л.А.Кирик «Физика — 10», М — 2006

Средний уровень

- 1. Какова температура $1,6*10^{-2}$ кг кислорода, находящегося под давлением 10^6 Па и занимающего объём $1,6*10^{-3}$ м³?
- 2. Сосуд ёмкостью $2*10^{-3}$ м³ наполнен азотом под давлением $2*10^{5}$ Па при температуре 27^{0} С. Определите массу азота N_{2} .
- 3. При давлении 10^5 Па и температуре 15^0 С воздух имеет объём $2*10^{-3}$ м³. При каком давлении данная масса воздуха займёт объём $4*10^{-3}$ м³, если температура его станет 20^0 С?
- 4. Каково количество вещества в газе, если при температуре -13⁰C и давлении 500 кПа объём газа равен 30 л?

Достаточный уровень

- 1. Определите плотность водорода при температуре 17^{0} С и давлении 204 кПа.
- 2. Какова разница в массе воздуха, заполняющего помещение объёмом 50 ${\rm M}^3$, зимой и летом, если летом температура помещения достигает $40^{0}{\rm C}$, а зимой падает до $0^{0}{\rm C}$?
- 3. Когда из сосуда выпустили некоторое количество газа, давление в нем упало на 40%, а абсолютная температура на 10%. Какую часть газа выпустили?
- 4. В цилиндре под поршнем площадью 100см² находится 28 г азота при температуре 273 К. Цилиндр нагревается до температуры 373К. На какую высоту поднимается поршень массой 100кг? Атмосферное давление 10⁵Па.
- 5. Масса 716 мг органического соединения, имеющего формулу $(C_3H_6O)_n$ при давлении $10^5\,\Pi a$ и температуре 200^0C занимает в газообразном состоянии объём $243~{\rm cm}^3$. Найти n.
- 6. Закрытый с обоих концов цилиндр наполнен газом и разделен на две равные части легкоподвижным поршнем длинной по 0,34м каждая. Температура газа 27°C. На сколько градусов надо нагреть газ в одной половине цилиндра, чтобы поршень сместился на 0,1м?