ST5215 Advanced Statistical Theory, Lecture 8

HUANG Dongming

National University of Singapore

4 Sep 2020

Overview

Last time

Minimal sufficiency

Today

- Completeness
- Basu's theorem

Recap: Minimal sufficiency

We want to find sufficient statistics that provide the greatest reduction

Definition

Let T be a sufficient statistic for $P \in \mathcal{P}$. T is called a minimal sufficient statistic if and only if, for any other statistic S sufficient for $P \in \mathcal{P}$, there is a measurable function ψ such that $T = \psi(S)$ \mathcal{P} -a.s.

- Minimal sufficient statistics are unique: they are equivalent (i.e., there is a one-to-one measurable mappings between them)
- Minimal sufficient statistics **exist** under weak conditions, e.g., \mathcal{P} is on \mathcal{R}^n and dominated by a σ -finite measure
- Tools to check whether a sufficient statistic T is minimal
 - **1** Find a countable sub-family $\{f_i\}$ and show T is equivalent to the vector of density ratios f_i/f_∞ (or f_i/f_0)
 - ② Check if this holds: the density ratio $f_{\theta}(y)/f_{\theta}(x)$ as a function of θ is constant $\Rightarrow T(x) = T(y)$

Ancillary statistics

- A minimal sufficient statistic might not be "simplest sufficient statistic"
 - May still contain redundant information
 - e.g. if \overline{X} is minimal sufficient, then so is $(\overline{X}, \exp(\overline{X}))$
 - ▶ Need a notion that describes whether a statistic can be further reduced
- A statistic V(X) is said to be ancillary if its distribution does not depend on the population P; V(X) is said to be first-order ancillary if $E_P[V(X)]$ does not depend on P
 - e.g.: trivial ancillary statistic: V(X) = c
- If V(X) is a nontrivial ancillary statistic, then $\sigma(V(X))$ is a nontrivial σ -field that does not contain any information about P
- Similarly, for a statistic S(X), if V(S(X)) is ancillary, then $\sigma(S(X))$ contains a nontrivial σ -field $\sigma(V(S(X)))$ that does not contain any information about P
 - ▶ The "data" S(X) may be further reduced
- A sufficient statistic T is good in reducing data if no non-constant function of T is ancillary or even first-order ancillary

Completeness

Definition

- A statistic T(X) is said to be *complete* for $P \in \mathcal{P}$ if and only if, for any Borel function f, $E_P f(T) = 0$ for all $P \in \mathcal{P}$ implies that f(T) = 0 \mathcal{P} -a.s.
- T is said to be boundedly complete if and only if the previous statement holds for any bounded Borel functions f.
- Intuition: A complete statistic contains "completely" useful information about P; no redundancy
- Clearly, a complete statistic is boundedly complete
- If T is complete and $S = \psi(T)$ for a measurable function ψ , then S is also complete
 - Similar result holds for bounded completeness
- A complete sufficient statistic is effective in reducing the data, so we expect that a complete sufficient statistic is always minimal.

Completeness + Sufficiency ⇒ Minimal Sufficiency

Proposition

Suppose X is a sample from unknown $P \in \mathcal{P}$, and suppose a minimal sufficient statistic exists.

If a statistic U is sufficient and boundedly complete, then U is minimal sufficient.

We first assume U is one-dimensional

- ullet Suppose T is minimal sufficient. We have T=arphi(U)
- ullet We want to show that $U=\psi(T)$ for some ψ
- Let $\phi: \mathcal{R} \mapsto \mathcal{R}$ be a bounded 1-1 continuous function (such as $\phi(t) = \arctan(t), 1/(1+e^{-t}), \ etc.$)
- Note that $E_P[\phi(U) \mid T]$ does not depend on P and can be written as $\eta(T)$. Easy to see that η is also bounded
- Since $E_P\left[\phi(U) \eta(\phi(U))\right] = E_P\left[\phi(U) \eta(T)\right] = E_P\left[\phi(U) E_P\left[\phi(U) \mid T\right]\right] = 0$ for all $P \in \mathcal{P}$ and U is boundedly complete, we have $\phi(U) \eta(T) = 0$ \mathcal{P} -a.s.
- Therefore $U = \phi^{-1}(\eta(T))$ \mathcal{P} -a.s.

6/30

If U is p-dimensional, we use the same argument with two modifications:

- Use the notation $\phi(U)$ to denote the vector $(\phi(U_1), \phi(U_2), \dots, \phi(U_p))$, and $\eta(T)$ to denote the vector $(E_P[\phi(U_1) \mid T], \dots, E_P[\phi(U_p) \mid T])$
- For each $i=1,\ldots,p$, it holds that $E_P\left[(\phi(U))_i-(\eta(\varphi(U)))_i\right]=0$. By the completeness of U, we conclude that $\phi(U)=\eta(T)$ a.s.

Remark. A minimal sufficient statistic is **not** necessarily complete Example:

- $P \in \{ \mathsf{Unif}(\theta, \theta + 1) : \theta \in \mathcal{R} \}$
- $T(X) = (X_{(1)}, X_{(n)})$ is minimal sufficient
- But $T_2 T_1 = X_{(n)} X_{(1)}$ does not depend on P so T is not complete

Complete Sufficient Statistics in Exponential Families

Proposition (A)

If $\mathcal P$ is a natural exponential family of full rank with p.d.f.'s given by

$$f_{\eta}(x) = \exp\{\eta^{\tau} T(x) - \zeta(\eta)\} h(x), \tag{1}$$

then T(X) is complete and sufficient for $\eta \in \Xi$.

Remark. This result provides another way to show T is minimal sufficient.

Proof: We have shown that T is sufficient. Now show T is complete.

The argument here is standard.

Suppose f is a function such that $E_{\eta}[f(T)] = 0$ for all $\eta \in \Xi$, i.e.,

$$\int f(t)\exp\{\eta^{\tau}t - \zeta(\eta)\}d\lambda = 0 \quad \text{for all } \eta \in \Xi,$$
 (2)

where λ is a measure on $(\mathcal{R}^p, \mathcal{B}^p)$ (Theorem 2.1 in the textbook)

Exponential Families (Cont.)

- Let η_0 be an interior point of Ξ
- Then we can find a neighborhood of η_0 , $N(\eta_0) = \{ \eta \in \mathcal{R}^p : \|\eta \eta_0\| < \epsilon \}$ for some $\epsilon > 0$, such that

$$\int f_{+}(t)e^{\eta^{\tau}t}d\lambda = \int f_{-}(t)e^{\eta^{\tau}t}d\lambda, \qquad \forall \eta \in N(\eta_{0}).$$
 (3)

In particular,

$$\int f_{+}(t)e^{\eta_0^{\tau}t}d\lambda = \int f_{-}(t)e^{\eta_0^{\tau}t}d\lambda = c. \tag{4}$$

- If c=0, then f=0 a.e. λ
- If c>0, then $c^{-1}f_+(t)e^{\eta_0^\tau t}$ and $c^{-1}f_-(t)e^{\eta_0^\tau t}$ are p.d.f.'s w.r.t. λ
 - ▶ Eq. (3) implies that their m.g.f.'s are the same in a neighborhood of 0
 - ▶ By the uniqueness of the m.g.f., we conclude the two p.d.f.'s are the same λ -a.e., which implies $f = f_+ f_- = 0$ λ -a.e.
- Hence T is complete.

Example: normal families

Suppose that X_1, \ldots, X_n are i.i.d. random variables having the $N(\mu, \sigma^2)$ distribution, $\mu \in \mathcal{R}$, $\sigma > 0$ are **unknown**

It is easy to check that the joint p.d.f. is

$$(2\pi)^{-n/2} \exp\left\{\eta_1 T_1 + \eta_2 T_2 - n\zeta(n)\right\},\tag{5}$$

where

- $T_1 = \sum_{i=1}^n X_i$
- $T_2 = -\sum_{i=1}^{n} X_i^2$
- $\eta = (\eta_1, \eta_2) = (\mu/\sigma^2, 1/(2\sigma^2))$
- This is a natural exponential family of full rank: $\Xi=\mathcal{R}\times(0,\infty)$ is an open set of \mathcal{R}^2
- So $T(X) = (T_1(X), T_2(X))$ is complete and sufficient for η
- There is a one-to-one correspondence between η and $\theta=(\mu,\sigma^2)$
 - T is also complete and sufficient for θ
- ullet There is a one-to-one correspondence between (\overline{X},S^2) and (T_1,T_2)
 - (\overline{X}, S^2) is complete and sufficient for θ

Example: Uniform Family with Varying Right Ends

Let $X_1, \ldots, X_n \sim P_\theta = U(0, \theta)$ be i.i.d. for $\theta > 0$. We will show that the largest order statistic, $X_{(n)}$, is complete and sufficient for θ

- The sufficiency follows from Factorization theorem: the joint p.d.f. is $\theta^{-n}I_{(0,\theta)}(x_{(n)})$
- The CDF of $X_{(n)}$ is

$$= P_{\theta}(X_{(n)} \leq x) = P_{\theta}(X_1 \leq x, \dots, X_n \leq x)$$

=
$$\prod_{i=1}^{n} P_{\theta}(X_i \leq x) = \frac{x^n}{\theta^n} I_{(0,\theta)}(x).$$

• The p.d.f. of $X_{(n)}$ is then

$$\frac{nx^{n-1}}{\theta^n}I_{(0,\theta)}(x).$$

Example (Cont.)

• Let g be a Borel function on $[0,\infty)$ s.t. $E_{\theta}[g(X_{(n)})]=0$ for all $\theta>0$. Then

$$\int_0^\theta g(x)x^{n-1}\,\mathrm{d}x=0$$

for all $\theta > 0$

• **Differentiate** the above w.r.t. θ

$$g(\theta)\theta^{n-1}=0$$

- Thus, $g(\theta) = 0$ for all $\theta > 0$
- By definition, $X_{(n)}$ is complete for θ

Basu's Theorem

The relationship between an ancillary statistic and a complete and sufficient statistic is characterized in the following result

Theorem (Basu)

Let V and T be two statistics of X from a population $P \in \mathcal{P}$. If V is ancillary and T is boundedly complete and sufficient for $P \in \mathcal{P}$, then V and T are independent w.r.t. any $P \in \mathcal{P}$.

- Intuition: $\sigma(V)$ does not contain information about P, while $\sigma(T)$ carries non-redundant and sufficient information about P. This suggests that V and T are independent
- Basu's theorem is useful in proving the independence of two statistics.

Proof:

 Let A be an event on the range of T and B be an event on the range of V. Need to show

$$P(T \in A, V \in B) = P(T \in A)P(V \in B), \quad \forall P \in \mathcal{P}$$

- Since V is ancillary, $P(V \in B)$ is a constant c_B
- Since T is sufficient, $E_P[I_B(V)|T]$ can be written as $h_B(T)$
- By tower property, for any $P \in \mathcal{P}$, it holds that $E_p[h_B(T) c_B] = E_P\{E_P[I_B(V)|T] P(V \in B)\} = 0$
- By the bounded completeness of T, $h_B(T) c_B = 0$ \mathcal{P} -a.s.
- By the properties of conditional expectation, for all $P \in \mathcal{P}$,

$$P(T \in A, V \in B) = E_{P}\{E_{P}[I_{A}(T)I_{B}(V)|T]\}$$

$$= E_{P}\{I_{A}(T)E[I_{B}(V)|T]\}$$

$$= E_{P}\{I_{A}(T)P(V \in B)\}$$

$$= P(T \in A)P(V \in B),$$

where the 3rd equation is due to $h_B(T) - c_B = 0$, P-a.s.

Example: \bar{X} and S^2 of a normal sample

Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ are i.i.d.

We want to show that the sample mean \bar{X} and sample variance S^2 are independent

- This result does not rely on any model, but we can postulate a model to prove it using Basu's theorem
- Consider the family $\{N(\mu, \sigma^2) : \mu \in \mathcal{R}\}$ with σ^2 known
- Natural parameter: $\eta = \mu/\sigma^2$
- Easy to show it is an exponential family of full rank
- ullet Then \overline{X} is complete and sufficient for μ according to Proposition A
- Rewrite $S^2=(n-1)^{-1}\sum_{i=1}^n(Z_i-\overline{Z})^2$, where $Z_i=X_i-\mu\sim N(0,\sigma^2)$ and \overline{Z} is the sample mean of Z_i 's. S^2 is ancillary w.r.t. μ , since its distribution does not depend on μ
- By Basu's theorem, \overline{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ for any $\mu \in \mathcal{R}$
- Since σ^2 is arbitrary, \overline{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ for any $\mu \in \mathcal{R}$ and $\sigma^2 > 0$

Example (Cont.)

Using the independence of \bar{X} and S^2 , we can show that $(n-1)S^2/\sigma^2$ has the chi-square distribution χ^2_{n-1}

Note that

$$n\left(\frac{\bar{X}-\mu}{\sigma}\right)^2+\frac{(n-1)S^2}{\sigma^2}=\sum_{i=1}^n\left(\frac{X_i-\mu}{\sigma}\right)^2,$$

whose m.g.f. equals to the product of the m.g.f.'s of $n(\bar{X}-\mu)^2/\sigma^2$ and $(n-1)S^2/\sigma^2$

- $n(\bar{X}-\mu)^2/\sigma^2$ has the chi-square distribution χ_1^2 with the m.g.f. $(1-2t)^{-1/2}, t<1/2$
- $\sum_{i=1}^{n} (X_i \mu)^2 / \sigma^2$ has the chi-square distribution χ_n^2 with the m.g.f. $(1-2t)^{-n/2}, t < 1/2$
- By the independence of \bar{X} and S^2 , the m.g.f. of $(n-1)S^2/\sigma^2$ is

$$(1-2t)^{-n/2}/(1-2t)^{-1/2} = (1-2t)^{-(n-1)/2}$$

for t < 1/2

• This is the m.g.f. of the chi-square distribution χ^2_{n-1}

16 / 30

Tutorial

Ex 1.6.35 in JS

Let $\{a_n\}$ be a sequence of positive numbers satisfying $\sum_{n=1}^{\infty} a_n = 1$ and let $\{P_n\}$ be a sequence of probability measures on a common measurable space. Define $P = \sum_{n=1}^{\infty} a_n P_n$.

- (a) Show that P is a probability measure
- (b) Show that $P_n \ll \nu$ for all n and a measure ν if and only if $P \ll \nu$ and, when $P \ll \nu$ and ν is σ -finite, $\frac{dP}{dx} = \sum_{n=1}^{\infty} a_n \frac{dP_n}{dx_n}$
- (c) Derive the Lebesgue p.d.f. of P when P_n is the gamma distribution $\Gamma\left(\alpha, n^{-1}\right)$ (Table 1.2) with $\alpha > 1$ and a_n is proportional to $n^{-\alpha}$
- 2 Ex 1.6.40 in JS (See Tutorial 2 in Lecture 5)
- **3** Ex 1.6.46 in JS Let X_1 and X_2 be independent random variables having the standard normal distribution. Obtain the joint Lebesgue p.d.f. of (Y_1, Y_2) where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $Y_2 = X_1/X_2$. Are Y_i 's independent?
- Ex 1.6.47 in JS Let X_1 and X_2 be independent random variables and $Y=X_1+X_2$ Show that $F_Y(y)=\int F_{X_2}(y-x)dF_{X_1}(x)$
- **5** Ex 1.6.58(b,c) in JS Let $X = N_k(\mu, \Sigma)$ with a positive definite Σ.
 - (a) Show that $EX = \mu$ and $Var(X) = \Sigma$
 - (b) Let A be an $I \times k$ matrix and B be an $m \times k$ matrix. Show that AX and BX are independent if and only if $A \Sigma B^{\tau} = 0$
 - (c) Suppose that $k=2, X=(X_1, X_2)$, $\mu=0$, ${\sf Var}\,(X_1)={\sf Var}\,(X_2)=1$, and ${\sf Cov}\,(X_1, X_2)=\rho$. Show that $E\,(\max\{X_1, X_2\})=\sqrt{(1-\rho)/\pi}$

Ex 1.6.35 in JS

Let $\{a_n\}$ be a sequence of positive numbers satisfying $\sum_{n=1}^{\infty} a_n = 1$ and let $\{P_n\}$ be a sequence of probability measures on a common measurable space. Define $P = \sum_{n=1}^{\infty} a_n P_n$.

- (a) Show that P is a probability measure.
- (b) Show that $P_n \ll \nu$ for all n and a measure ν if and only if $P \ll \nu$ and, when $P \ll \nu$ and ν is σ -finite, $\frac{dP}{d\nu} = \sum_{n=1}^{\infty} a_n \frac{dP_n}{d\nu}$
- (c) Derive the Lebesgue p.d.f. of P when P_n is the gamma distribution $\Gamma\left(\alpha,n^{-1}\right)$ (Table 1.2) with $\alpha>1$ and a_n is proportional to $n^{-\alpha}$

Proof: (a). Checking conditions (i) (ii) is straightforward.

For (iii), suppose $A_i \in \mathcal{F}, i = 1, ...,$ and A_i 's are disjoint. We have

$$\underline{P(\cup_i A_i)} = \sum_{n=1}^{\infty} a_n P_n(\cup_i A_i) = \sum_{n=1}^{\infty} a_n \sum_{i=1}^{\infty} P_n(A_i) =$$

 $\sum_{i=1}^{\infty} \sum_{n=1}^{\infty} a_n P_n(A_i) = \sum_{i=1}^{\infty} P(A_i)$, where the 3rd equality is due to the Fubini's theorem.

- **(b).** " \Rightarrow ": For any $A \in \mathcal{F}$ s.t. $\nu(A) = 0$, then $P_n(A) = 0$ for all n, and thus P(A) = 0.
- "\(\infty": For any $A \in \mathcal{F}$ s.t. $\nu(A) = 0$, then P(A) = 0 and thus $a_n P_n(A) = 0$ for each n. Since $a_n > 0$, we have $P_n(A) = 0$.

H.D. (NUS) ST5215, Lecture 8 4 Sep 2020 18/30

Ex 1.6.35 in JS (Cont.)

If $P \ll \nu$ and ν is σ -finite, by Fubini's theorem, $P(A) = \sum a_n P_n(A) = \sum a_n \int I_A \frac{\mathrm{d} P_n}{\mathrm{d} \nu} \, \mathrm{d} \nu = \int I_A \sum a_n \frac{\mathrm{d} P_n}{\mathrm{d} \nu} \, \mathrm{d} \nu.$ So $\frac{\mathrm{d} P}{\mathrm{d} \nu} = \sum a_n \frac{\mathrm{d} P_n}{\mathrm{d} \nu}$ by the uniqueness of R-N derivative.

(c). Using part (b), the p.d.f. of P is given by

$$f(x) = \sum_{n} cn^{-\alpha} \frac{n^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp(-nx)$$
$$= \frac{c}{\Gamma(\alpha)} x^{\alpha - 1} \sum_{n} \exp(-nx)$$
$$= \frac{c}{\Gamma(\alpha)} \frac{x^{\alpha - 1}}{e^{x} - 1},$$

where $c = (\sum_{n} n^{-\alpha})^{-1}$

Ex 1.6.46 in JS

Let X_1 and X_2 be independent random variables having the standard normal distribution. Obtain the joint Lebesgue p.d.f. of (Y_1, Y_2) where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $Y_2 = X_1/X_2$. Are Y_i 's independent?

We need the following result:

Proposition

- Let X be a random k-vector with a Lebesgue density f_X and let Y = g(X), where g is a Borel function from $(\mathcal{R}^k, \mathcal{B}^k)$ to $(\mathcal{R}^k, \mathcal{B}^k)$.
- Let A_1, \ldots, A_m be disjoint sets in \mathcal{B}^k such that $\mathcal{R}^k (A_1 \cup \cdots \cup A_m)$ has Lebesgue measure 0 and g on A_j is one-to-one with a non-vanishing Jacobian, i.e., the determinant $\text{Det}(\partial g(x)/\partial x) \neq 0$ on $A_i, j = 1, \ldots, m$.
- Let h_i be the inverse function of g on $A_i, j = 1, ..., m$

Then Y has the following Lebesgue density:

$$f_Y(y) = \sum_{j:1 \le j \le m, y \in g(A_j)} \left| \text{Det} \left(\partial h_j(y) / \partial y \right) \right| f_X \left(h_j(y) \right)$$

• Let $A_1 = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}$, $A_2 = \{(x_1, x_2) : x_1 > 0, x_2 < 0\}$ $A_3 = \{(x_1, x_2) : x_1 < 0, x_2 > 0\}$, and $A_4 = \{(x_1, x_2) : x_1 < 0, x_2 < 0\}$. • $\mathcal{R}^2 - (A_1 \cup A_2 \cup A_3 \cup A_4) = \{(0, 0)\}$ has measure 0

- On each A_i , the function $(y_1,y_2)=\left(\sqrt{x_1^2+x_2^2},x_1/x_2\right)$ is one-to-one with
- $\left| \operatorname{Det} \left(\frac{\partial \left(x_1, x_2 \right)}{\partial \left(y_1, y_2 \right)} \right) \right| = \left| \operatorname{Det} \left(\begin{array}{cc} \frac{y_2}{\sqrt{1 + y_2^2}} & \frac{y_1}{\sqrt{1 + y_2^2}} \frac{y_1 y_2^2}{\left(1 + y_2^2 \right)^{3/2}} \\ \frac{1}{\sqrt{1 + y_2^2}} & \frac{y_1 y_2}{\left(1 + y_2^2 \right)^{3/2}} \end{array} \right) \right| = \frac{y_1}{1 + y_2^2}.$
- Since the joint Lebesgue density of (X_1, X_2) is

$$\frac{1}{2\pi}e^{-\left(x_1^2+x_2^2\right)/2}$$

and $x_1^2 + x_2^2 = y_1^2$, the joint Lebesgue density of (Y_1, Y_2) is

$$\sum_{i:1 < i < m, v \in \sigma(\Lambda_1)} \frac{1}{2\pi} e^{-\left(x_1^2 + x_2^2\right)/2} \left| \text{Det}\left(\frac{\partial \left(x_1, x_2\right)}{\partial \left(y_1, y_2\right)}\right) \right| = (y_1 e^{-y_1^2/2}) \left(\frac{1}{\pi} \frac{1}{1 + y_2^2}\right).$$

• This p.d.f. is the product of p.d.f.'s of Y_1 and Y_2 , so they are independent.

H.D. (NUS) ST5215, Lecture 8 4 Sep 2020 21 / 30

Ex 1.6.47 in JS

Let X and Y be independent random variables and Z = X + Y. Show that $F_Z(t) = \int F_Y(t-x) dF_X(x)$

Remark. The notation $\int dP_X$ is the same as $\int dP_X$. The former one is historically used for Riemann–Stieltjes integral.

Proof: Since X and Y are independent, their joint distribution is given by the product measure $P_X \times P_Y$.

$$F_{X+Y}(t) = P(X+Y \le t)$$

$$= \int I_{(-\infty,t)}(x+y) d(P_X \times P_Y)(x,y)$$

$$= \int \left(\int I_{(-\infty,t)}(x+y) dP_Y(y) \right) dP_X(x)$$

$$= \int F_Y(t-x) dF_X(x),$$

where the 3rd equality follows from Fubini's theorem.

Ex 1.6.58 in JS

Let $X = N_k(\mu, \Sigma)$ with a positive definite Σ .

- (b) Let A be an $I \times k$ matrix and B be an $m \times k$ matrix. Show that AX and BX are independent if and only if $A\Sigma B^{\tau} = 0$
- (c) Suppose that $k=2, X=(X_1, X_2)$, $\mu=0, {\rm Var}(X_1)={\rm Var}(X_2)=1$, and ${\rm Cov}\,(X_1, X_2)=\rho$. Show that $E\,(\max{\{X_1, X_2\}})=\sqrt{(1-\rho)/\pi}$

Proof: We will make use of the following properties of normal random vectors:

- A linear transformation of a normal random vector is still a normal random vector
- Two components of a normal random vector are independent if and only if they are uncorrelated

These can be proved by using ch.f.

Formally, if $X \sim N(\mu, \Sigma)$ is a normal random *n*-vector, then

- For any $C \in \mathbb{R}^{m \times n}$, $CX \sim N(C\mu, C\Sigma C^{\top})$.
- $X_i \perp X_j$ iff $\Sigma_{ij} = 0$

Ex 1.6.58 in JS (Cont.)

Part (b):

• Let
$$C = \begin{pmatrix} A \\ B \end{pmatrix}$$
, then $CX \sim N(C\mu, C\Sigma C^{\top})$

• We have $AX \perp \!\!\! \perp BX \Leftrightarrow C\Sigma C^{\top}[1,2] = \mathbf{0}$, which is $A\Sigma B^{\top} = \mathbf{0}$.

Part (c):

Note that

$$|X - Y| = \max\{X, Y\} - \min\{X, Y\} = \max\{X, Y\} + \max\{-X, -Y\}$$

- Since the mean is 0, the random vector (X, Y) is symmetric about 0, so the distribution of $\max\{X, Y\}$ and $\max\{-X, -Y\}$ are the same
- $E|X Y| = 2E(\max\{X, Y\})$
- $X Y \sim N(0, 2 2\rho)$ because $Var(X Y) = Var(X) + Var(Y) 2 Cov(X, Y) = 2 2\rho$
- $E|X Y| = \sqrt{2/\pi}\sqrt{2 2\rho} = 2\sqrt{(1 \rho)/\pi}$
- Hence $E(\max\{X, Y\}) = \sqrt{(1-\rho)/\pi}$

Ex 1.6.86 in JS

Let X and Y be integrable random variables on (Ω, \mathcal{F}, P) and $\mathcal{A} \subset \mathcal{F}$ be a σ -field. Show that $E[YE(X \mid \mathcal{A})] = E[XE(Y \mid \mathcal{A})]$, assuming that both integrals exist.

Proof: We split the proof in 3 parts: (1) Y is bounded; (2) $X, Y \ge 0$; (3) X, Y are general r.v.s

(1). Suppose Y is bounded. Both $YE(X \mid A)$ and $XE(Y \mid A)$ are integrable.

Using tower property and the fact that $E[E(X \mid A)] = EX$, we obtain that

$$E[YE(X \mid A)] = E\{E[YE(X \mid A) \mid A]\}$$

$$= E[E(X \mid A)E(Y \mid A)]$$

$$= E\{E[XE(Y \mid A) \mid A]\}$$

$$= E[XE(Y \mid A)]$$

(2). Suppose $X, Y \ge 0$.

- Let $Y_n = \min\{Y, n\}, n = 1, 2,$ Then $Y_n \le n$.
- Then $0 \le Y_1 \le Y_2 \le \cdots \le Y$ and $\lim_n Y_n = Y$.
- By the properties of conditional expectation, $0 \le E(Y_1 \mid A) \le E(Y_2 \mid A) \le \cdots$ a.s. and $\lim_n E(Y_n \mid A) = E(Y \mid A)$ a.s.
- Since Y_n is bounded, $E[Y_nE(X \mid A)] = E[XE(Y_n \mid A)]$ by part (1)
- Since $X \ge 0$, $E(X \mid A) \ge 0$. We have

$$E[YE(X \mid A)] = \lim_{n} E[Y_{n}E(X \mid A)]$$
$$= \lim_{n} E[XE(Y_{n} \mid A)]$$
$$= E[XE(Y \mid A)],$$

where the first and the third equations are because $X \ge 0$, $E(X \mid A) \ge 0$, and the monotone convergence theorem.

(3) We now consider general X, Y.

Let f_+ and f_- denote the positive and negative parts of a function f Note that

$$E\{[XE(Y \mid A)]_{+}\} = E\{X_{+}[E(Y \mid A)]_{+}\} + E\{X_{-}[E(Y \mid A)]_{-}\}$$

and

$$E\{[XE(Y \mid A)]_{-}\} = E\{X_{+}[E(Y \mid A)]_{-}\} + E\{X_{-}[E(Y \mid A)]_{+}\}$$

Since $E[XE(Y \mid A)]$ exists, without loss of generality we assume that

$$E\{[XE(Y \mid A)]_{+}\} = E\{X_{+}[E(Y \mid A)]_{+}\} + E\{X_{-}[E(Y \mid A)]_{-}\} < \infty$$

Then, both

$$E[X_{+}E(Y \mid A)] = E\{X_{+}[E(Y \mid A)]_{+}\} - E\{X_{+}[E(Y \mid A)]_{-}\}$$

and

$$E[X_{-}E(Y \mid A)] = E\{X_{-}[E(Y \mid A)]_{+}\} - E\{X_{-}[E(Y \mid A)]_{-}\}$$

are well defined and their difference is also well defined.

H.D. (NUS) ST5215, Lecture 8 4 Sep 2020

27/30

Applying the result established in (2), we obtain that

$$E[X_{+}E(Y \mid A)] = E\{E(X_{+} \mid A)[E(Y \mid A)]_{+}\} - E\{E(X_{+} \mid A)[E(Y \mid A)]_{-}\}$$

= $E[E(X_{+} \mid A)E(Y \mid A)]$

where the last equality follows from the linearity of integrals. Similarly,

$$E[X_{-}E(Y \mid A)] = E\{E(X_{-} \mid A)[E(Y \mid A)]_{+}\} - E\{E(X_{-} \mid A)[E(Y \mid A)]_{-}\}$$

= $E[E(X_{-} \mid A)E(Y \mid A)]$

By the linearity of integrals,

$$E[XE(Y \mid \mathcal{A})] = E[X_{+}E(Y \mid \mathcal{A})] - E[X_{-}E(Y \mid \mathcal{A})]$$

$$= E[E(X_{+} \mid \mathcal{A})E(Y \mid \mathcal{A})] - E[E(X_{-} \mid \mathcal{A})E(Y \mid \mathcal{A})]$$

$$= E[E(X \mid \mathcal{A})E(Y \mid \mathcal{A})]$$

Switching X and Y, we also conclude that

$$E[YE(X \mid A)] = E[E(X \mid A)E(Y \mid A)]$$

Hence, $E[XE(Y \mid A)] = E[YE(X \mid A)]$

Problem 10

Which of the following parametrizations are identifiable? (Prove or disprove.)

 $\textbf{0} \quad X_1, \dots, X_p \text{ are independent with } X_i \sim \mathcal{N}\left(\alpha_i + \nu, \sigma^2\right)$

$$\theta = (\alpha_1, \alpha_2, \dots, \alpha_p, \nu, \sigma^2)$$
 (6)

and P_{θ} is the distribution of $\mathbf{X} = (X_1, \dots, X_p)$

5 Same as (a) with $\alpha = (\alpha_1, \dots, \alpha_p)$ restricted to

$$\left\{ (a_1, \dots, a_p) : \sum_{i=1}^p a_i = 0 \right\}$$
 (7)

- **3** X and Y are independent $\mathcal{N}\left(\mu_1, \sigma^2\right)$ and $\mathcal{N}\left(\mu_2, \sigma^2\right)$, $\theta = (\mu_1, \mu_2)$ and we observe Y X
- **1** X_{ij} , $i=1,\ldots,p; j=1,\ldots,b$ are independent with $X_{ij} \sim \mathcal{N}\left(\mu_{ij},\sigma^2\right)$ where $\mu_{ij} = \nu + \alpha_i + \lambda_j, \theta = \left(\alpha_1,\ldots,\alpha_p,\lambda_1,\ldots,\lambda_b,\nu,\sigma^2\right)$ and P_{θ} is the distribution of X_{11},\ldots,X_{pb}
- Same as (d) with $(\alpha_1, \ldots, \alpha_p)$ and $(\lambda_1, \ldots, \lambda_b)$ restricted to the sets where $\sum_{i=1}^p \alpha_i = 0$ and $\sum_{i=1}^b \lambda_i = 0$

Problem 10: Solution

- No.
 - Fixed any $\theta = (\alpha_1, \alpha_2, \dots, \alpha_p, \nu, \sigma^2)$.
 - ▶ For any $a \neq 0$, take $\tilde{\theta}_a = (\alpha_1 a, \alpha_2 a, \dots, \alpha_p a, \nu + a, \sigma^2)$.
 - ▶ Then P_{θ} and $P_{\tilde{\theta}_{\theta}}$ are the same.
- Yes.
 - Suppose $P_{\theta} = P_{\tilde{\theta}}$, where $\theta = (\alpha_1, \alpha_2, \dots, \alpha_p, \nu, \sigma^2)$ and $\tilde{\theta} = (\tilde{\alpha}_1, \tilde{\alpha}_2, \dots, \tilde{\alpha}_p, \tilde{\nu}, \tilde{\sigma}^2)$ both are in the set in the equation (7).
 - Since two normal distributions are the same if and only if they have the same means and the same variances, we have $\alpha_i + \nu = \tilde{\alpha}_i + \tilde{\nu}$ and $\sigma^2 = \tilde{\sigma}^2$.
 - ▶ Summing the first equation over all *i*, we have $p\nu = p\tilde{\nu}$.
 - ▶ Therefore $\nu = \tilde{\nu}$ and $\alpha_i = \tilde{\alpha}_i$ for all i.
- No.
 - ▶ The population $P_{(\mu_1,\mu_2)}$ of Y-X is $\mathcal{N}(\mu_1-\mu_2,\sigma^2)$
 - ▶ But for any $a \neq 0$, $P_{(\mu_1,\mu_2)}$ and $P_{(\mu_1+a,\mu_2+a)}$ are the same
- Yes. Use the same argument as in (b).