Applied Probability

January 19, 2018

C0	ONTENTS	2	
C	Contents		
0	Miscellaneous	3	
1	Poisson process	4	

3

0 Miscellaneous

Some speech

Google lecture's name to find his homepage and example sheets or probably some notice of a change of room

1 Poisson process

Suppose we have a Geiger counter. We model the "click process" as a family $\{N(t):t\geq 0\}$, where N(t) denotes the total number of ticks up to time t. Now note that $N(t)\in\{0,1,...\}$, $N(s)\leq N(t)$ if $s\leq t$, N increases by unit jumps, and N(0)=0. We also assert that N is right-continuous, i.e. $\lim_{x\to t^+}N(x)=N(t)$.

Definition. (infinitesimal)

A Poisson process with intensity λ is a process $N=(N(t):t\geq 0)$ which takes values in $S=\{0,1,2,\ldots\},$ s.t.:

(a)
$$N(0) = 0, N(s) \le N(t)$$
 if $s \le t$;

(b)

$$\mathbb{P}(N(t+h) = n+m|N(t) = n) = \begin{cases} \lambda h + o(h) & m = 1\\ o(h) & m > 1\\ 1 - \lambda h & m = 0 \end{cases}$$