Sparse Coding

Meinhard Simon, Antonio Orvieto

Overview

- ► Review: Orthogonality
- ► Fourier basis and Haar wavelets
- Matching pursuit
- Image processing

Orthogonality

Inner product

For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\top} \mathbf{v} = \sum_{i=1}^{d} \mathbf{u}_{i} \mathbf{v}_{i},$$

Orthogonality

Two vectors $\mathbf{u}, \mathbf{v} \in H$ are orthogonal if and only if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Orthogonal matrix

Basis

A basis of a vector space is a set of vectors with the following two properties:

- 1. It is linearly independent
- 2. It spans the space

Orthogonal matrix

A basis $\mathbf{v}_1, \dots, \mathbf{v}_k$ is called orthonormal if

$$\mathbf{v}_i^{\top} \mathbf{v}_j = \begin{cases} 0 & \text{if} \quad i \neq j \\ 1 & \text{if} \quad i = j \end{cases}$$

A square matrix \mathbf{A} with orthonormal columns is called an orthogonal matrix. The special case of \mathbf{A} being an orthogonal matrix is important since the projection matrix becomes extremely simple since $\mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$, where \mathbf{I} is the identity matrix.

Let $\{\mathbf{u_1}, \mathbf{u_2}, \cdots, \mathbf{u_n}\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n .

Goal: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u_i}$ with real coefficients a_i .

Let $\{\mathbf{u_1}, \mathbf{u_2}, \cdots, \mathbf{u_n}\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n .

Goal: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u_i}$ with real coefficients a_i .

Observe that

$$\begin{split} \langle \mathbf{x}, \mathbf{u_j} \rangle &= \langle \sum_{i=1}^n a_i \mathbf{u_i}, \mathbf{u_j} \rangle \\ &= \sum_{\substack{i=1 \\ i \neq j}}^n a_i \langle \mathbf{u_i}, \mathbf{u_j} \rangle + a_j \langle \mathbf{u_j}, \mathbf{u_j} \rangle \qquad \text{linearity} \\ &= a_j \qquad \qquad \text{orthonormality} \end{split}$$

Let $\{\mathbf{u_1}, \mathbf{u_2}, \cdots, \mathbf{u_n}\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n .

Goal: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u_i}$ with real coefficients a_i .

Observe that

$$\begin{split} \langle \mathbf{x}, \mathbf{u_j} \rangle &= \langle \sum_{i=1}^n a_i \mathbf{u_i}, \mathbf{u_j} \rangle \\ &= \sum_{\substack{i=1 \\ i \neq j}}^n a_i \langle \mathbf{u_i}, \mathbf{u_j} \rangle + a_j \langle \mathbf{u_j}, \mathbf{u_j} \rangle \qquad \text{ linearity} \\ &= a_j \qquad \qquad \text{orthonormality} \end{split}$$

This implies $\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{u}_j \rangle \mathbf{u_i}$.

Let $\{\mathbf{u_1}, \mathbf{u_2}, \cdots, \mathbf{u_n}\}$ be an <u>orthonormal</u> basis for \mathbb{R}^n .

Goal: write $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \sum_{i=1}^n a_i \mathbf{u_i}$ with real coefficients a_i .

Observe that

$$\begin{split} \langle \mathbf{x}, \mathbf{u_j} \rangle &= \langle \sum_{i=1}^n a_i \mathbf{u_i}, \mathbf{u_j} \rangle \\ &= \sum_{\substack{i=1 \\ i \neq j}}^n a_i \langle \mathbf{u_i}, \mathbf{u_j} \rangle + a_j \langle \mathbf{u_j}, \mathbf{u_j} \rangle \qquad \text{ linearity} \\ &= a_j \qquad \qquad \text{orthonormality} \end{split}$$

This implies $\mathbf{x} = \sum_{i=1}^n \langle \mathbf{x}, \mathbf{u}_j \rangle \mathbf{u_i}$.

With $\mathbf{U} = [\mathbf{u_1} | \mathbf{u_2} | \cdots | \mathbf{u_n}]$, $\mathbf{x} = \sum_{i=1}^n \langle \mathbf{x}, \mathbf{u}_j \rangle \mathbf{u_i} = \mathbf{U}^\top \mathbf{x}$. Orthonormality is nice!

Energy Preservation

For an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ and vectors $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \tag{1}$$

Energy Preservation

For an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ and vectors $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \tag{1}$$

Observe that $\|\mathbf{x}\|_2^2 = \langle \mathbf{x}, \mathbf{x} \rangle$

Energy Preservation

For an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ and vectors $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{U}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 \tag{1}$$

Observe that $\|\mathbf{x}\|_2^2 = \langle \mathbf{x}, \mathbf{x} \rangle$

This implies that distances are preserved as well!

Basis for functions

$$f(k) = \sum_{n} a_n \sin(\omega_n k)$$

DFT of a Signal

$$y = \sin(60 * 2\pi x) + 1.5\sin(80 * 2\pi x)$$

Figure: Original Signal

Figure: Fourier Transform

Build a different basis

Fourier basis not sufficient for localized signals!

Build a different basis

Fourier basis not sufficient for localized signals!

Want to build orthonormal basis for *nice* signals $[0,1] \mapsto \mathbb{R}$.

All functions have zero mean!

All functions have zero mean! Add $(1,1,1,1,1,1,1)^{\top}$.

Haar wavelets matrix notation

Scale the vectors obtained from before to make basis orthonormal:

$$\mathbf{U} = \frac{1}{2\sqrt{2}} \begin{bmatrix} 1 & 1 & \sqrt{2} & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & \sqrt{2} & 0 & -2 & 0 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & -2 & 0 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & 2 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & 2 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & -2 \end{bmatrix}$$

Haar wavelets matrix notation

Scale the vectors obtained from before to make basis orthonormal:

$$\mathbf{U} = \frac{1}{2\sqrt{2}} \begin{bmatrix} 1 & 1 & \sqrt{2} & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & \sqrt{2} & 0 & -2 & 0 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & -\sqrt{2} & 0 & 0 & -2 & 0 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & 2 & 0 \\ 1 & -1 & 0 & \sqrt{2} & 0 & 0 & -2 & 0 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & 2 \\ 1 & -1 & 0 & -\sqrt{2} & 0 & 0 & 0 & -2 \end{bmatrix}$$

U can be constructed recursively!

• Scaling function $\phi:[0,1]\mapsto \mathbb{R}$, $\phi(t)=1$

- Scaling function $\phi:[0,1]\mapsto \mathbb{R}$, $\phi(t)=1$
- ▶ Mother wavelet $\psi : [0,1] \mapsto \mathbb{R}$,

$$\psi(t) = \begin{cases} 1 & \text{if } 0 \le t < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

- Scaling function $\phi:[0,1]\mapsto \mathbb{R}$, $\phi(t)=1$
- ▶ Mother wavelet $\psi: [0,1] \mapsto \mathbb{R}$,

$$\psi(t) = \begin{cases} 1 & \text{if } 0 \le t < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Use the mother wavelet to create the other Haar functions $\psi_{n,k}:[0,1]\mapsto\mathbb{R},\ \psi_{n,k}(t)=2^{n/2}\psi(2^nt-k), \forall n,k\in\mathbb{N}_{\geq 0}$ such that $0\leq k<2^n$.

- Scaling function $\phi:[0,1]\mapsto \mathbb{R}$, $\phi(t)=1$
- ▶ Mother wavelet $\psi: [0,1] \mapsto \mathbb{R}$,

$$\psi(t) = \begin{cases} 1 & \text{if } 0 \le t < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Use the mother wavelet to create the other Haar functions $\psi_{n,k}:[0,1]\mapsto\mathbb{R},\ \psi_{n,k}(t)=2^{n/2}\psi(2^nt-k), \forall n,k\in\mathbb{N}_{\geq 0}$ such that $0\leq k<2^n$.

Forms an orthonormal basis

- Scaling function $\phi:[0,1]\mapsto \mathbb{R}$, $\phi(t)=1$
- ▶ Mother wavelet $\psi : [0,1] \mapsto \mathbb{R}$,

$$\psi(t) = \begin{cases} 1 & \text{if } 0 \le t < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Use the mother wavelet to create the other Haar functions $\psi_{n,k}:[0,1]\mapsto\mathbb{R},\ \psi_{n,k}(t)=2^{n/2}\psi(2^nt-k), \forall n,k\in\mathbb{N}_{\geq 0}$ such that $0\leq k\leq 2^n$.

- Forms an orthonormal basis
- (Spans the space of square integrable functions on the unit interval)

Pen&Paper - Multiresolution Concept

Reconstruct the following signal with shifted and scaled Haar wavelets

Have a set of unit vectors (atoms) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ that span \mathbb{R}^n with l > n.

Have a set of unit vectors (atoms) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ that span \mathbb{R}^n with l > n.

 \implies representation of $\mathbf{x} \in \mathbb{R}^n$ in terms of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ is not unique!

Have a set of unit vectors (atoms) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ that span \mathbb{R}^n with l > n.

 \implies representation of $\mathbf{x} \in \mathbb{R}^n$ in terms of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ is not unique!

Goal: Want to find sparse representation of x, i.e. find

$$\mathbf{z}^* \in \arg\min_{\mathbf{z} \in \mathbb{R}^l} \|\mathbf{z}\|_0$$

s.t. $\mathbf{U}\mathbf{z} = \mathbf{x}$

where $\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_n]$.

Have a set of unit vectors (atoms) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ that span \mathbb{R}^n with l > n.

 \implies representation of $\mathbf{x} \in \mathbb{R}^n$ in terms of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ is not unique!

Goal: Want to find sparse representation of x, i.e. find

$$\mathbf{z}^* \in \arg\min_{\mathbf{z} \in \mathbb{R}^l} \|\mathbf{z}\|_0$$

s.t. $\mathbf{U}\mathbf{z} = \mathbf{x}$

where $\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_n]$. NP hard! :-(

Matching Pursuit

With initial residual $\mathbf{r}_0 = \mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0 = \mathbf{0}$, repeat:

Matching Pursuit

With initial residual $\mathbf{r}_0 = \mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0 = \mathbf{0}$, repeat:

• Find $j^* = \arg \max_j |\langle \mathbf{r}_i, \mathbf{u}_j \rangle|$

With initial residual $\mathbf{r}_0=\mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0=\mathbf{0}$, repeat:

- Find $j^* = \arg \max_j |\langle \mathbf{r}_i, \mathbf{u}_j \rangle|$
- ▶ Compute better approximation $\hat{\mathbf{x}}_{i+1} \leftarrow \hat{\mathbf{x}}_i + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$

With initial residual $\mathbf{r}_0=\mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0=\mathbf{0}$, repeat:

- Find $j^* = \arg \max_j |\langle \mathbf{r}_i, \mathbf{u}_j \rangle|$
- ▶ Compute better approximation $\hat{\mathbf{x}}_{i+1} \leftarrow \hat{\mathbf{x}}_i + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
- ▶ Update residual $\mathbf{r}_{i+1} \leftarrow \mathbf{r}_i \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$

With initial residual $\mathbf{r}_0=\mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0=\mathbf{0},$ repeat:

- Find $j^* = \arg \max_j |\langle \mathbf{r}_i, \mathbf{u}_j \rangle|$
- ▶ Compute better approximation $\hat{\mathbf{x}}_{i+1} \leftarrow \hat{\mathbf{x}}_i + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
- ▶ Update residual $\mathbf{r}_{i+1} \leftarrow \mathbf{r}_i \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$

When should we stop?

With initial residual $\mathbf{r}_0=\mathbf{x}$ and initial approximation $\hat{\mathbf{x}}_0=\mathbf{0}$, repeat:

- Find $j^* = \arg \max_j |\langle \mathbf{r}_i, \mathbf{u}_j \rangle|$
- ▶ Compute better approximation $\hat{\mathbf{x}}_{i+1} \leftarrow \hat{\mathbf{x}}_i + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$
- ▶ Update residual $\mathbf{r}_{i+1} \leftarrow \mathbf{r}_i \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}$

When should we stop?

Does it converge and if so, how fast?

▶ If $\|\mathbf{r}_i\|_2^2$ converges to 0, then \mathbf{r}_i converges to $\mathbf{0}$ and $\hat{\mathbf{x}}_i$ converges to \mathbf{x}

- ▶ If $\|\mathbf{r}_i\|_2^2$ converges to 0, then \mathbf{r}_i converges to $\mathbf{0}$ and $\hat{\mathbf{x}}_i$ converges to \mathbf{x}
- By the conservation of energy,

$$\begin{aligned} \|r_i\|_2^2 &= \langle \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}, \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle \\ &= \|\mathbf{r}_{i+1}\|_2^2 + 2\langle \mathbf{r}_{i+1}, \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \|_2^2 \quad \text{linearity} \\ &= \|\mathbf{r}_{i+1}\|_2^2 + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \|_2^2 \qquad \qquad \bot \\ &= \|\mathbf{r}_{i+1}\|_2^2 + |\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle|^2 \end{aligned}$$

- ▶ If $\|\mathbf{r}_i\|_2^2$ converges to 0, then \mathbf{r}_i converges to $\mathbf{0}$ and $\hat{\mathbf{x}}_i$ converges to \mathbf{x}
- By the conservation of energy,

$$\begin{split} \|r_i\|_2^2 &= \langle \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}, \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle \\ &= \|\mathbf{r}_{i+1}\|_2^2 + 2 \langle \mathbf{r}_{i+1}, \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}\|_2^2 \quad \text{linearity} \\ &= \|\mathbf{r}_{i+1}\|_2^2 + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}\|_2^2 \qquad \qquad \bot \\ &= \|\mathbf{r}_{i+1}\|_2^2 + |\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle|^2 \end{split}$$

For $\|\mathbf{r}_i\|_2 \neq 0$, we have

$$\frac{\|r_{i+1}\|_2^2}{\|r_i\|_2^2} = 1 - \left| \left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle \right|^2$$

- ▶ If $\|\mathbf{r}_i\|_2^2$ converges to 0, then \mathbf{r}_i converges to $\mathbf{0}$ and $\hat{\mathbf{x}}_i$ converges to \mathbf{x}
- By the conservation of energy,

$$\begin{aligned} \|r_i\|_2^2 &= \langle \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}, \mathbf{r}_{i+1} + \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle \\ &= \|\mathbf{r}_{i+1}\|_2^2 + 2\langle \mathbf{r}_{i+1}, \langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*} \rangle + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}\|_2^2 \quad \text{linearity} \\ &= \|\mathbf{r}_{i+1}\|_2^2 + \|\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle \mathbf{u}_{j^*}\|_2^2 \qquad \qquad \bot \\ &= \|\mathbf{r}_{i+1}\|_2^2 + |\langle \mathbf{r}_i, \mathbf{u}_{j^*} \rangle|^2 \end{aligned}$$

▶ For $\|\mathbf{r}_i\|_2 \neq 0$, we have

$$\frac{\|r_{i+1}\|_2^2}{\|r_i\|_2^2} = 1 - \left| \left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle \right|^2$$

lacksquare Want to bound $\left|\left\langle rac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*}
ight
angle \right|^2$

¹https://en.wikipedia.org/wiki/Extreme_value_theorem

• With $\mathbf{v} \in \mathbb{R}^n$ s.t. $\|\mathbf{v}\|_2 = 1$,

$$\left|\left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle\right| \geq \inf_{\mathbf{v}} \max_{j} \left|\left\langle \mathbf{v}, \mathbf{u}_{j} \right\rangle\right|$$

¹https://en.wikipedia.org/wiki/Extreme_value_theorem

• With $\mathbf{v} \in \mathbb{R}^n$ s.t. $\|\mathbf{v}\|_2 = 1$,

$$\left|\left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle\right| \geq \inf_{\mathbf{v}} \max_{j} \left|\left\langle \mathbf{v}, \mathbf{u}_{j} \right\rangle\right|$$

▶ Idea: as $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ span \mathbb{R}^n , for $\mathbf{w} \in \mathbb{R}^n$, $\langle \mathbf{w}, \mathbf{u}_j \rangle = 0$ for all j if and only if $\mathbf{w} = \mathbf{0}$

¹https://en.wikipedia.org/wiki/Extreme_value_theorem

• With $\mathbf{v} \in \mathbb{R}^n$ s.t. $\|\mathbf{v}\|_2 = 1$,

$$\left|\left\langle \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|_2}, \mathbf{u}_{j^*} \right\rangle\right| \geq \inf_{\mathbf{v}} \max_{j} \left|\left\langle \mathbf{v}, \mathbf{u}_{j} \right\rangle\right|$$

- ▶ Idea: as $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_l$ span \mathbb{R}^n , for $\mathbf{w} \in \mathbb{R}^n$, $\langle \mathbf{w}, \mathbf{u}_j \rangle = 0$ for all j if and only if $\mathbf{w} = \mathbf{0}$
- Use extreme value theorem¹ to get rid of the infinimum)

¹https://en.wikipedia.org/wiki/Extreme_value_theorem

There is some
$$\mu_{\min} \in]0,1]$$
 s.t. $\|\mathbf{r}_i\|_2^2 \leq (1-\mu_{\min}^2)^i \|\mathbf{r}_0\|_2^2$.

There is some $\mu_{\min} \in]0,1]$ s.t. $\|\mathbf{r}_i\|_2^2 \leq (1-\mu_{\min}^2)^i \|\mathbf{r}_0\|_2^2$. This implies convergence!

Fourier Transform of an Image

How to take FT in 2-D?

- Image can be considered as a signal in 2D
- First take FT of the columns then FT of the rows (You can interchange them)

Fourier Transform of an Image

How to take FT in 2-D?

- ▶ Image can be considered as a signal in 2D
- First take FT of the columns then FT of the rows (You can interchange them)

How to interpret FT of an image?

- Large changes in the pixel values = High frequency
- ► Eg : edges, background objects

FT Example

Figure: Original Image

Figure: Frequency Spectrum

Image Compression by FT

► Reconstruct image by Inverse Fourier Transform using only the frequencies with largest magnitude

Figure: Using 0.1 percent

Figure: Using 1 percent

Discrete cosine transform

1D Discrete cosine transform:

$$z_k = \sum_{n=0}^{N-1} x_n \cos\left[\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right] \qquad k = 0, \dots, N-1$$

2D Discrete cosine transform:

$$\begin{split} z_{k_1,k_2} &= \sum_{n_1=0}^{N_1-1} \left(\sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos \left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2} \right) k_2 \right] \right) \cos \left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2} \right) k_1 \right] \\ &= \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos \left[\frac{\pi}{N_1} \left(n_1 + \frac{1}{2} \right) k_1 \right] \cos \left[\frac{\pi}{N_2} \left(n_2 + \frac{1}{2} \right) k_2 \right]. \end{split}$$

2-D Cosine Basis

2-D Cosine Bases

Two-dimensional DCT frequencies from the JPEG DCT