Apellido y Nombres:	
Carrera:	DNI:
[Llenar con letra mayúscul	a de imprenta GRANDE]

Examen Final [Jueves 2 de Agosto de 2018]

- La evaluación dura 3 (tres) horas. No use celulares, libros, ni apuntes.
- Entregue en hojas separadas por ejercicio, numeradas, cada una con el Apellido y Nombre en el Margen Superior Derecho, además de este enunciado completado.
- Respuestas incompletas reciben puntajes incompletos, y 0 si no justifica. En los algoritmos de grafos:
 - Si bien se admiten tablas se prefiere el dibujo de cada grafo iterado o un único grafo que precise el orden en que se van eligiendo las aristas o vértices;
 - Use orden alfabético cada vez que se pueda.
- 1) a) I) Justifique si $(\neg p \lor \neg q) \land ((p \lor q) \land \neg q) \equiv \neg q \land p$, para todas las proposiciones $p \lor q$.
 - II) Enuncie la ley de De Morgan de la negación de la proposición cuantificada $\forall x : P(x)$, y demuéstrela.
 - b) Sean A y B conjuntos cualesquiera, entonces:
 - I) Demuestre que $A \times \emptyset = \emptyset$;
 - II) Demuestre con y sin Diagrama de Venn (DV) que $A \oplus B = (A \cup B) (A \cap B)$.
- 2) a) I) Demuestre que para todos los enteros n y k tales que $1 \le k \le n$, entonces kC(n,k) = nC(n-1,k-1);
 - II) Utilizando los principios de conteo justifique ¿cuántas cadenas distintas de longitud 4 se pueden formar con las letras de la palabra NEPPE ?
 - b) I) Enuncie y simbolice el Principio de Inducción Matemática (PIM).
 - II) Utilice el PIM para demostrar que para todo entero n positivo se cumple $f_1^2 + f_2^2 + ... + f_n^2 = f_n f_{n+1}$, donde f_n es el n-ésimo número de Fibonacci.
- 3) a) I) Defina y simbolice Relación de Recurrencia Homogénea, Lineal, de Coeficientes Constantes (RRHLCC) y de orden k.
 - II) Enuncie el teorema acerca de la forma que tiene la solución de una RRHLCC de segundo orden cuando las dos raíces de la ecuación característica asociada son reales y distintas.
 - b) Dado un grafo simple G = (V, E) de n = |V| vértices y m = |E| aristas ¿de qué manera utiliza la potencia r-ésima de la matriz de adyacencia A (i.e. A^r con entero r > 0) para determinar si G es o no conexo?
- 4) Dados los grafos $G_1 = (V, E)$ y el grafo ponderado $G_2 = (V, E, W)$ mostrados en la Fig. 1 (izq. y der.):
 - a) 1) ¿Contiene G_1 un circuito hamiltoniano o un circuito euleriano? Dé uno en cada caso sino justifique.
 - II) Encuentre en G_1 un árbol de expansión T_1 mediante búsqueda en profundidad. Luego, liste los vértices de T_1 en postorden.
 - b) Determine y trace un camino de costo mínimo en G_2 desde el vértice D hasta el vértice A utilizando el algoritmo de Dijkstra. Sin hacer nuevas cuentas ¿es único?
- 5) Dado el grafo ponderado $G_2 = (V, E, W)$ mostrado en la Fig. 1 (der.):
 - a) Encuentre en G_2 un árbol de expansión T_2 de peso mínimo mediante el algoritmo de Prim empezando en el vértice A. ¿Es único?
 - b) Seleccione el vértice A como raíz del árbol T_2 obtenido en el inciso anterior. Grafíquelo y liste: vértices por niveles, hojas, y vértices listados en preorden. Además indique la altura de T_2 .

Figura 1: Grafos $G_1 = (V, E)$ (izq.) y grafo ponderado $G_2 = (V, E, W)$ (der.) para los incisos 4a-5b.