Wireless Communications at the Physical Layer

Part 1: Fundamentals

José Augusto Afonso Jose.afonso@dei.uminho.pt

Outline

- Electromagnetic spectrum and allocation
- Frequency domain representation of signals
- Decibel notation
- Antennas
- Signal propagation modes
- Wireless transmission deterioration factors
- Signal-to-noise ratios

Frequencies for communication

- VLF = Very Low Frequency
- LF = Low Frequency
- MF = Medium Frequency
- HF = High Frequency
- VHF = Very High Frequency

- UHF = Ultra High Frequency
- SHF = Super High Frequency
- EHF = Extremely High Frequency
- UV = Ultraviolet Light

- Frequency and wavelength
 - $\lambda = c/f$
 - wavelength λ , speed of light $c \cong 3x10^8 \text{m/s}$, frequency f

Frequency allocation

- Some frequencies are allocated to specific uses
 - Cellular phones, analog television/radio broadcasting, DVB-T, radar, emergency services, radio astronomy, ...
- Particularly interesting: ISM bands ("Industrial, scientific, medical") – license-free operation
- Quadro Nacional de Atribuição de Frequências
 - http://www.anacom.pt/render.js p?categoryId=290215

Some typical ISM bands		
Frequency	Comment	
13,553-13,567 MHz		
26,957 – 27,283 MHz		
40,66 – 40,70 MHz		
433 – 464 MHz	Europe	
900 – 928 MHz	Americas	
2,4 – 2,5 GHz	WLAN/WPAN	
5,725 – 5,875 GHz	WLAN	
24 – 24,25 GHz		

Tipo de Linhas de Transmissão

Tipo de Linhas de Transmissão

Guia de onda coplanar

Stripline coplanar

Modelo distribuído de uma linha de transmissão

Parâmetros distribuídos de uma linha de transmissão

R – resistência por unidade de comprimento Ω/m

L – indutância por unidade de comprimento H/m

C – capacidade por por unidade de comprimento F/m

G – condutância por unidade de comprimento S/m

Propagação numa linha de transmissão

A solução geral em termos de I e V é dada por:

$$V = Ae^{-\gamma x} + Be^{\gamma x}$$

$$I = \frac{A}{Z_o} e^{-\gamma x} - \frac{B}{Z_o} e^{\gamma x}$$

 $e^{-\gamma x}$ - onda incidente ou onda que sai da fonte

 $e^{\gamma x}$ - onda reflectida ou onda recebida na fonte

Impedância característica

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

Linha sem perdas

$$Z_o = \sqrt{L/C}$$

Descontinuidades em guias de onda e linhas de transmissão

P. M. Mendes

Signals

- Different representations of signals
 - time (time domain)
 - frequency spectrum (frequency domain)
 - phase state diagram (amplitude M and phase ϕ in polar coordinates)

- Composed signals translated into frequency domain using Fourier transform
- Digital signals need
 - Modulation with a carrier frequency for transmission

Fourier representation of periodic signals

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

c/2 - DC component of the signal

n = 1 - fundamental

n = 2,3... - harmonics

Example: square wave

Decibel notation

Decibel Notation (dB)

Logarithmic ratio of two signal levels

dB (Decibel) =
$$10 \log_{10} (P_2/P_1)$$

- A gain of 3 dB represents twice the power
- A gain of -3 dB (loss of 3 dB) represents half of the power
- A gain of 10 dB represents 10 times the power
- A gain of 20 dB represents 100 times the power

Basic equations to calculate decibels

$$dB = 20\log\left(\frac{I_o}{I_{in}}\right) \qquad -\Theta \qquad \Theta$$

$$dB = 20\log\left(\frac{V_o}{V_{in}}\right) \qquad V_{in} \qquad V_o$$

$$dB = 10\log\left(\frac{P_o}{P_{in}}\right) \qquad P_{in} \qquad P_{o}$$

Special decibel scales

- dBm (dB miliWatt)
- Power Relative to 1 mW, i.e. 0 dBm is 1 mW

$$P[dBm] = 10 \log (P[W]/1 mW)$$

- Very used in radiofrequency measurements (RF)
- Ex: What is the signal level 9 mW as expressed in dBm?
 - P[dBm] = 10 log (9 mW/1 mW) = 9.54 dBm
- dBW (dB Watt)
- Power Relative to 1 W, i.e. 0 dBW is 1 W

Antennas

Antennas

- For radiation and reception of electromagnetic waves
- In two-way communication, the same antenna can be used for transmission and reception
- Isotropic radiator: equal radiation in all directions (three dimensional) - only a theoretical reference antenna
- Real antennas always have directive effects (vertically and/or horizontally)
- Radiation pattern: measurement of radiation around an antenna

Antennas: dipoles

- Real antennas are not isotropic radiators but, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole
 - → size of antenna proportional to wavelength

Example: Radiation pattern of a simple Hertzian dipole

 Gain: maximum power in the direction of the main lobe compared to the power of an isotropic radiator (with the same average power)

Antennas: directed and sectorized

 Often used for microwave connections or base stations for mobile phones (e.g., radio coverage of a valley)

Antenna Gain

- Antenna gain
 - A measure of the directionality of an antenna.
 - Relation of power output, in a particular direction, compared to that produced by omnidirectional antenna (isotropic)
- Effective area
 - Equivalent area from which an antenna directed toward the source of an electromagnetic wave absorbs its energy
- Relationship between antenna gain and effective area

$$G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi f^2 A_e}{c^2}$$

- G = antenna gain
- A_e = effective area
- *f* = carrier frequency
- c = speed of light ($\sim 3 \times 10^8 \text{ m/s}$)
- λ = carrier wavelength

Antenna gain and effective area

Type of antenna	Effective area	Power gain
Isotropic	λ ² /4π	1
Infinitesimal dipole or loop	$1.5\lambda^2/4\pi$	1.5
Half-wave dipole	1.64 $λ^2/4π$	1.64
Horn, mouth area A	0.81A	10A/ λ ²
Parabolic, face area A	0.56A	7A/ λ ²
turnstile	1.15 $λ^2/4π$	1.15

Parâmetros das antenas

Directividade Por comparação com o radiador isotrópico

$$D(\theta,\phi) = \frac{\text{Potência radiada por ângulo sólido}}{\text{Potência total radiada}/4\pi} = \frac{\Delta P_r(\theta,\phi)/\Delta\Omega}{P_r/4\pi}$$

Ganho

$$G(\theta,\phi) \,=\, \frac{\text{Potência radiada por ângulo sólido}}{\text{Potência total fornecida}/4\pi} \,=\, \frac{\Delta P_r(\theta,\,\phi)/\Delta\Omega}{P_{\text{in}}/4\pi}$$

Eficiência

$$\eta \equiv \frac{P_r}{P_{\rm in}} = \frac{G(\theta, \varphi)}{D(\theta, \varphi)}$$

Reflexão - Impedância de entrada

$$\Gamma = \frac{Z_a - Z_0}{Z_a + Z_0}$$

Largura de banda

Parâmetros das antenas

Nem sempre a antena com maior ganho é a mais adequada. (ex: wi-fi)

P. M. Mendes

- Ground-wave propagation
- Sky-wave propagation
- Line-of-sight propagation

Signal propagation modes

Ground Wave Propagation

- Follows contour of the earth
- Can Propagate considerable distances
- Frequencies up to 2 MHz
- Example
 - AM radio

Sky Wave Propagation

- Signal reflected from ionized layer of atmosphere back down to earth
- Signal can travel a number of hops, back and forth between ionosphere and earth's surface
- Frequencies around 2 to 30 MHz
- Reflection effect caused by refraction
- Examples
 - Amateur radio
 - CB radio

Line-of-Sight (LOS) Propagation

- Transmitting and receiving antennas must be within line of sight
 - Satellite communication signal above 30 MHz not reflected by ionosphere
 - Ground communication antennas within effective line of sight of each other due to refraction
- Refraction bending of microwaves by the atmosphere
 - Velocity of electromagnetic wave is a function of the density of the medium
 - When wave changes medium, speed changes
 - Wave bends at the boundary between mediums

Line-of-Sight Equations

Optical line of sight

$$d = 3.57\sqrt{h}$$

Effective, or radio, line of sight

$$d = 3.57\sqrt{Kh}$$

- d = distance between antenna and horizon (km)
- h = antenna height (m)
- K = adjustment factor to account for refraction, rule of thumb <math>K = 4/3

Line-of-Sight Equations

Maximum distance between two antennas for LOS propagation:

$$3.57\left(\sqrt{Kh_1} + \sqrt{Kh_2}\right)$$

- h_1 = height of antenna one
- h_2 = height of antenna two

- Attenuation
- Free space loss
- Noise
- Interference
- Multipath

Wireless transmission deterioration factors

Attenuation

- Strength of signal (electromagnetic radiation) falls off with distance over transmission medium due to absorption or scattering of photons
- Absorption may vary according to medium/material and frequency

- Attenuation/path loss factors for unguided media
 - Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
 - Signal must maintain a level sufficiently higher than noise to be received without error

Free space loss

Free space loss, ideal isotropic antenna

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{\lambda^2} = \frac{(4\pi f d)^2}{c^2}$$

- P_{t} = signal power at transmitting antenna
- P_r = signal power at receiving antenna
- λ = carrier wavelength
- d = propagation distance between antennas
- c = speed of light

where d and λ are in the same units (e.g., meters)

Free space loss

• Free space loss equation can be recast:

$$L_{dB} = 10\log \frac{P_t}{P_r} = 20\log \left(\frac{4\pi d}{\lambda}\right)$$

$$= -20\log(\lambda) + 20\log(d) + 21.98 \text{ dB}$$

$$= 20\log \left(\frac{4\pi f d}{c}\right) = 20\log(f) + 20\log(d) - 147.56 \text{ dB}$$

* L_{dB} is the **path loss**, in dB

Free space loss

Free space loss accounting for gain of antennas

$$\frac{P_{t}}{P_{r}} = \frac{(4\pi)^{2}(d)^{2}}{G_{r}G_{t}\lambda^{2}} = \frac{(\lambda d)^{2}}{A_{r}A_{t}} = \frac{(cd)^{2}}{f^{2}A_{r}A_{t}}$$

- G_t = gain of transmitting antenna
- G_r = gain of receiving antenna
- A_t = effective area of transmitting antenna
- A_r = effective area of receiving antenna

Propagação na atmosfera

Considerando a propagação em meio livre

$$P_r = G_r G_t \left(\frac{\lambda}{4\pi r}\right)^2 P_t$$
 Equação de transmissão de Friis

Válida quando

$$r > 2D^2/\lambda$$

Free space loss equation

- Describes signal strength at distance d relative to some reference distance $d_0 < d$ for which strength is known
- $d_0 \ge far\text{-field distance}$ (depends on antenna technology)
- $L \ge 1$ accounts for system loss

$$P_{\text{recv}}(d) = \frac{P_{\text{tx}} \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 \cdot d^2 \cdot L}$$
$$= \frac{P_{\text{tx}} \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 \cdot d_0^2 \cdot L} \cdot \left(\frac{d_0}{d}\right)^2 = P_{\text{recv}}(d_0) \cdot \left(\frac{d_0}{d}\right)^2$$

* $P_{recv} \Leftrightarrow P_r$ $P_{recv}(d)$ – Power received (in W) at distance d $P_{recv}(d_0)$ – Power received (in W) at distance d_0

Path loss equation

- Generalization of the free space loss equation, to take into account stronger loss than only caused by distance (e.g., walls absorption/reflexion), normally use a larger exponent ($\gamma > 2$)
 - γ is the path-loss exponent

$$P_{\text{recv}}(d) = P_{\text{recv}}(d_0) \cdot \left(\frac{d_0}{d}\right)^{\gamma}$$

Knowing that:

$$P_{recv}(d)[dBW] = P_t[dbW] - PL(d)[dB]$$

Rewrite in logarithmic form (in dB):

$$PL(d)[dB] = PL(d_0)[dB] + 10\gamma \log_{10} \left(\frac{d}{d_0}\right)$$

* PL(d)[dB] $\Leftrightarrow L_{dB}$ is the **path loss**, in dB, at distance d

Path loss equation (cont.)

- Take shadowing/fading into account by a random variation
 - Add a Gaussian random variable to dB representation
 - with 0 mean, variance σ^2
 - Equivalent to multiplying with a lognormal distributed random variable in metric units => lognormal fading

$$PL(d)[dB] = PL(d_0)[dB] + 10\gamma \log_{10} \left(\frac{d}{d_0}\right) + X_{\sigma}[dB]$$

Link Budget

Component	Gain (dB or dBi)
RF splitter	-3.2
Phase shifter/ attenuators	-6
Coaxial cables	-2,3
Power amplifiers	44.4
Transmitting dipole	2,1
Free Space Path Loss	-30,5
Receiving dipole	2,1
•	

Signal propagation ranges

- Transmission range
 - communication possible
 - low error rate
- Detection range
 - detection of the signal possible
 - no communication possible
- Interference range
 - signal may not be detected
 - signal adds to the background noise

Thermal noise

- Type of noise caused due to agitation of electrons
- Present in all electronic devices and transmission media
- Function of temperature
- Cannot be eliminated
- Amount of thermal noise to be found in a bandwidth of 1Hz in any device or conductor is:

$$N_0 = kT \left(W/Hz \right)$$

- N_0 = noise power density in watts per 1 Hz of bandwidth
- $k = Boltzmann's constant = 1.3803 \times 10^{-23} J/K$
- T = temperature, in kelvins * (absolute temperature)

$$*[K] = [°C] + 273.15$$

Thermal noise

- Thermal noise is assumed to be independent of frequency (white)
- Thermal noise present in a bandwidth of B Hertz (in watts):

$$N = kTB$$

or, in decibel-watts

$$N = 10\log k + 10\log T + 10\log B$$

$$= -228.6 \,\mathrm{dBW} + 10 \log T + 10 \log B$$

Interference

- Interference from other sources (third parties)
 - Co-channel interference: another sender uses the same spectrum
 - Adjacent-channel interference: another sender uses some other part of the radio spectrum, but receiver filters are not good enough to fully suppress it

Signal propagation phenomena

- Shadowing obstruction of the signal
- Reflection occurs when signal encounters a surface that is large relative to the wavelength of the signal
- Refraction occurs when the density of a medium changes
- Scattering scatters the incoming signal into several weaker outgoing signals. Occurs when incoming signal hits an object whose size in the order of the wavelength of the signal or less
- Diffraction bends the signal. Occurs at the edge of an impenetrable body that is large compared to wavelength of radio wave

Multipath propagation

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

- Effects of multipath propagation
 - Fading
 - Multiple copies of a signal arrive at different phases
 - If phases add destructively, the signal level declines, making detection more difficult
 - Intersymbol interference (ISI)
 - One or more delayed copies of a pulse may arrive at the same time as the pulse for a subsequent bit

Signal-to-noise ratios

Expression E_b/N_o

 Ratio of signal energy per bit to noise power density per Hertz

$$\frac{E_b}{N_0} = \frac{ST_b}{N_0} = \frac{S/R}{N_0} = \frac{S}{kTR}$$

S – Signal power Tb – Bit duration R – Bit rate

- The bit error rate for digital data is a function of E_b/N_o
- As bit rate (R) increases, transmitted signal power (S) must increase to maintain required E_b/N_o

Expression E_b/N_0

- We can relate E_b/N_0 with SNR as follows:
 - The noise in a signal with bandwidth B_T is

$$N = N_0 B_T$$

Substituting, we have

$$\frac{E_b}{N_0} = \frac{S}{N_0 R} = \frac{S}{N} \frac{B_T}{R}$$