GERON - END-TO-END PROJECT

Kwabena Asabere

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

df = pd.read_csv(r"C:\Users\KAsab\Downloads\alzheimers_disease_data.csv")

df.head()

	PatientID	Age	Gender	Ethnicity	EducationLevel	BMI	Smoking	AlcoholConsumption	Pł
0	4751	73	0	0	2	22.927749	0	13.297218	6.3
1	4752	89	0	0	0	26.827681	0	4.542524	7.0
2	4753	73	0	3	1	17.795882	0	19.555085	7.8
3	4754	74	1	0	1	33.800817	1	12.209266	8.4
4	4755	89	0	0	0	20.716974	0	18.454356	6.3

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2149 entries, 0 to 2148
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	PatientID	2149 non-null	int64
1	Age	2149 non-null	int64
2	Gender	2149 non-null	int64
3	Ethnicity	2149 non-null	int64
4	EducationLevel	2149 non-null	int64
5	BMI	2149 non-null	float64

6	Smoking	2149	non-null	int64
7	AlcoholConsumption	2149	non-null	float64
8	PhysicalActivity	2149	non-null	float64
9	DietQuality	2149	non-null	float64
10	SleepQuality	2149	non-null	float64
11	FamilyHistoryAlzheimers	2149	non-null	int64
12	CardiovascularDisease	2149	non-null	int64
13	Diabetes	2149	non-null	int64
14	Depression	2149	non-null	int64
15	HeadInjury	2149	non-null	int64
16	Hypertension	2149	non-null	int64
17	SystolicBP	2149	non-null	int64
18	DiastolicBP	2149	non-null	int64
19	CholesterolTotal	2149	non-null	float64
20	CholesterolLDL	2149	non-null	float64
21	CholesterolHDL	2149	non-null	float64
22	CholesterolTriglycerides	2149	non-null	float64
23	MMSE	2149	non-null	float64
24	FunctionalAssessment	2149	non-null	float64
25	MemoryComplaints	2149	non-null	int64
26	BehavioralProblems	2149	non-null	int64
27	ADL	2149	non-null	float64
28	Confusion	2149	non-null	int64
29	Disorientation	2149	non-null	int64
30	PersonalityChanges	2149	non-null	int64
31	${\tt DifficultyCompletingTasks}$	2149	non-null	int64
32	Forgetfulness	2149	non-null	int64
33	Diagnosis	2149	non-null	int64
34	DoctorInCharge	2149	non-null	object
dt vn	es: float64(12) int64(22)	ohie	c+ (1)	

dtypes: float64(12), int64(22), object(1)

memory usage: 587.7+ KB

df.drop(columns =["PatientID", "DoctorInCharge"], inplace = True)

df.head()

	Age	Gender	Ethnicity	EducationLevel	BMI	Smoking	AlcoholConsumption	PhysicalActivi
0	73	0	0	2	22.927749	0	13.297218	6.327112
1	89	0	0	0	26.827681	0	4.542524	7.619885
2	73	0	3	1	17.795882	0	19.555085	7.844988
3	74	1	0	1	33.800817	1	12.209266	8.428001

	Age	Gender	Ethnicity	EducationLevel	BMI	Smoking	AlcoholConsumption	PhysicalActivi
4	89	0	0	0	20.716974	0	18.454356	6.310461

heart = pd.read_csv(r"C:\Users\KAsab\Desktop\Analysis_Workshop\data\south_africa_heart.csv")

heart.head()

	CLASS	sbp	tobacco	ldl	adiposity	famhist	typea	obesity	alcohol	age
0	1	160	12.00	5.73	23.11	1	49	25.30	97.20	52
1	1	144	0.01	4.41	28.61	0	55	28.87	2.06	63
2	-1	118	0.08	3.48	32.28	1	52	29.14	3.81	46
3	1	170	7.50	6.41	38.03	1	51	31.99	24.26	58
4	1	134	13.60	3.50	27.78	1	60	25.99	57.34	49

heart.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 462 entries, 0 to 461
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	CLASS	462 non-null	int64
1	sbp	462 non-null	int64
2	tobacco	462 non-null	float64
3	ldl	462 non-null	float64
4	adiposity	462 non-null	float64
5	famhist	462 non-null	int64
6	typea	462 non-null	int64
7	obesity	462 non-null	float64
8	alcohol	462 non-null	float64
9	age	462 non-null	int64

dtypes: float64(5), int64(5)
memory usage: 36.2 KB

heart_target= heart["CLASS"]
heart_features = heart.iloc[:,1:9]

```
from sklearn.model_selection import train_test_split,cross_val_score,cross_val_predict
from sklearn.metrics import ConfusionMatrixDisplay,confusion_matrix,precision_score,f1_score
from sklearn.preprocessing import StandardScaler,MinMaxScaler,OneHotEncoder
from sklearn.pipeline import Pipeline,make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.dummy import DummyClassifier
heart_features_train,heart_features_test,heart_target_train,heart_target_test =
train_test_split(heart_features,heart_target, random_state = 42)
y_train,y_test = heart_target_train,heart_target_test
X_train,X_test = heart_features_train,heart_features_test
rfc= RandomForestClassifier(random_state = 42)
lrc = LogisticRegression(random_state = 42)
dmc = DummyClassifier(random_state = 42)
y_train_pred = cross_val_predict(rfc, X_train, y_train, cv = 3)
cm = confusion_matrix(y_train,y_train_pred)
print(f"Confusion Matrix:",cm)
Confusion Matrix: [[189 38]
 [ 72 47]]
disp = ConfusionMatrixDisplay(confusion_matrix = cm, display_labels = ["No CHD", "CHD"])
disp.plot(cmap = plt.cm.Blues)
plt.show()
```


precision_score(y_train,y_train_pred)

0.5529411764705883

accuracy_score(y_train,y_train_pred)

0.6820809248554913

lr_model = make_pipeline(StandardScaler(),LogisticRegression())

lr_model.fit(X_train,y_train)

```
y_pred_lr = cross_val_predict(lr_model, X_train, y_train, cv = 3)
y_scores = cross_val_predict(lr_model, X_train, y_train, cv = 3, method = "decision_function") #
y_proba = cross_val_predict(lr_model, X_train, y_train, cv = 3, method = "predict_proba")[:,1]#
pd.Series(y_scores).describe()
         346.000000
count
          -0.794912
mean
          1.236170
std
min
          -6.868398
25%
          -1.641016
50%
          -0.814414
75%
           0.063084
max
           3.691798
dtype: float64
cm_lr = confusion_matrix(y_train,y_pred_lr)
disp = ConfusionMatrixDisplay(confusion_matrix = cm_lr,display_labels = ["No CHD","CHD"])
disp.plot(cmap = plt.cm.Blues)
plt.show()
```


precision_score(y_train,y_pred_lr)

0.5652173913043478

recall_score(y_train,y_pred_lr)

0.4369747899159664

from sklearn.metrics import precision_recall_curve,auc,roc_curve,roc_auc_score
precisions,recalls,thresholds = precision_recall_curve(y_train,y_proba)
auc_pr = auc(recalls,precisions)

```
fig,ax = plt.subplots(figsize = (8,6))
ax.plot(recalls,precisions,label = f"Logistic Regression (AUC = {auc_pr:.2f}")
ax.set_xlabel("Recall")
ax.set_ylabel("Precision")
ax.set_title("Precision-Recall Curve")
plt.legend(loc = "best")
plt.grid()
plt.show()
```

Precision-Recall Curve


```
fpr,tpr,thresholds = roc_curve(y_train,y_proba)
```

```
roc_auc = auc(fpr,tpr)
```

```
fig,ax = plt.subplots(figsize =(8,6) )
ax.plot(fpr,tpr,linewidth =2,label = f"ROC Curve (AUC = {roc_auc:.2f})")
ax.plot([0,1],[0,1],"r--", label = "Random Classifier's ROC Curve")
ax.set(
    title = "Receiver Operating Characteristic (ROC) Curve",
    xlabel = "False Positive Rate (FPR)",
    ylabel = "True Positive Rate(TPR)"
)
plt.xlim(0,1)
plt.ylim(0,1)
plt.legend(loc = "lower right")
plt.grid()
plt.tight_layout()
plt.show()
```


roc_auc_score(y_train,y_proba)

0.7365342612816052

roc_auc_score(y_train,y_scores)

0.7365342612816052

Multiclass Classification

beans = pd.read_excel(r"C:\Users\KAsab\Desktop\PYTHON\Dry_Bean_Dataset.xlsx")

beans.head()

	Area	Perimeter	${\it Major Axis Length}$	${\bf Minor Axis Length}$	AspectRation	Eccentricity	ConvexArea	Ε
0	28395	610.291	208.178117	173.888747	1.197191	0.549812	28715	19
1	28734	638.018	200.524796	182.734419	1.097356	0.411785	29172	1
2	29380	624.110	212.826130	175.931143	1.209713	0.562727	29690	1
3	30008	645.884	210.557999	182.516516	1.153638	0.498616	30724	1
4	30140	620.134	201.847882	190.279279	1.060798	0.333680	30417	1

beans.head()

	Area	Perimeter	${\it Major Axis Length}$	${\bf Minor Axis Length}$	AspectRation	Eccentricity	ConvexArea	Е
0	28395	610.291	208.178117	173.888747	1.197191	0.549812	28715	19
1	28734	638.018	200.524796	182.734419	1.097356	0.411785	29172	1
2	29380	624.110	212.826130	175.931143	1.209713	0.562727	29690	1
3	30008	645.884	210.557999	182.516516	1.153638	0.498616	30724	1
4	30140	620.134	201.847882	190.279279	1.060798	0.333680	30417	1

np.unique(beans["Class"])

beans["Class"].unique()

beans.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13611 entries, 0 to 13610
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Area	13611 non-null	int64
1	Perimeter	13611 non-null	float64
2	MajorAxisLength	13611 non-null	float64
3	MinorAxisLength	13611 non-null	float64
4	AspectRation	13611 non-null	float64
5	Eccentricity	13611 non-null	float64
6	ConvexArea	13611 non-null	int64
7	EquivDiameter	13611 non-null	float64
8	Extent	13611 non-null	float64
9	Solidity	13611 non-null	float64
10	roundness	13611 non-null	float64
11	Compactness	13611 non-null	float64
12	ShapeFactor1	13611 non-null	float64
13	ShapeFactor2	13611 non-null	float64
14	ShapeFactor3	13611 non-null	float64
15	ShapeFactor4	13611 non-null	float64
16	Class	13611 non-null	object
dtyp	es: float64(14),	int64(2), object	(1)
memo	rv usage: 1 8+ MR		

memory usage: 1.8+ MB

beans.shape

(13611, 17)

```
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
```

```
ovr_clf = make_pipeline(StandardScaler(),OneVsRestClassifier(SVC(random_state = 42)))
y = beans["Class"]
X = beans.drop(columns = ["Class"])
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state = 42)
ovr_clf.fit(X_train,y_train)
Pipeline(steps=[('standardscaler', StandardScaler()),
                ('onevsrestclassifier',
                 OneVsRestClassifier(estimator=SVC(random_state=42)))])
ovr_svc = Pipeline([
    ("scaler", MinMaxScaler()),
    ("ovr_svm",OneVsRestClassifier(SVC(kernel = "rbf",random_state = 42)))
])
ovr_svc.fit(X_train,y_train)
Pipeline(steps=[('scaler', MinMaxScaler()),
                ('ovr_svm',
                 OneVsRestClassifier(estimator=SVC(random_state=42)))])
Error Analysis
```

```
y_trained_pred = cross_val_predict(ovr_svc, X_train, y_train, cv = 3)
fig,ax = plt.subplots(figsize = (10,8))
ConfusionMatrixDisplay.from_predictions(y_train,y_trained_pred,ax = ax)
ax.set_title("Confusion Matrix")
plt.tight_layout()
plt.show()
```



```
fig,ax = plt.subplots(figsize = (10,8))
ConfusionMatrixDisplay.from_predictions(y_train,y_trained_pred,ax = ax,normalize = "true",value.set_title("CM Normalized by Row")
plt.tight_layout()
plt.show()
```



```
sample_weight = (y_trained_pred != y_train)
```


78% of the errors made on <code>DERMASON</code> were misclassifications as <code>SIRA</code>

```
fig,ax = plt.subplots(figsize = (10,8))
ConfusionMatrixDisplay.from_predictions(
    y_train,y_trained_pred,
    sample_weight = sample_weight,
    ax = ax,
    normalize = 'pred',
    values_format = ".0%"
)
ax.set_title("Errors Normalized by Column")
plt.tight_layout()
plt.show()
```

