Robótica Móvil un enfoque probabilístico

Modelos Probabilísticos de Sensores

Ignacio Mas

Sensores para robots móviles

- Sensores de contacto: Paragolpes
- Sensores propioceptivos
 - Acelerómetros (Masa sobre resorte)
 - Giróscopos (Masa girando, haz láser)
 - Brújulas, inclinómetros (campo magnético, gravedad)
- Sensores de proximidad
 - Sonar (tiempo de vuelo -tof)
 - Radar (Fase y frecuencia)
 - Lidars (Laser range-finders: triangulación, tof, fase)
 - Infrarojo (intensidad)
- Sensores visuales: Cámaras
- Sensores basados en satélites: GPS

Sensores de proximidad

- La idea es determinar P(z|x,m), i.e., la probabilidad de una medición z dado que el robot está en la posición x.
- A resolver: Cómo se puede calcular esa probabilidad?
- Método: Tratemos de explicar una medición.

Modelo de sensor basado en haz (beam-based)

Un barrido z consiste de K mediciones.

$$z = \{z_1, z_2, ..., z_K\}$$

 Suposición: Las mediciones individuales son independientes dada la posición del robot.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

Modelo de sensor basado en haz (beam-based)

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

A partir de (x, m) debe hacerse ray-casting para comparar con z

Errores de medición de distancia (range-finders)

- Haz reflejado en obstáculos
- Haz reflejado en personas o debido a crosstalk
- 3. Lectura aleatoria
- Lectura de distancia máxima

Medición de proximidad

- Una medición se debe a ...
 - Un obstáculo conocido.
 - cross-talk.
 - Un obstáculo inesperado (gente, muebles, ...).
 - No detección de obstáculos (reflejos, vidrio, ...).
- El ruido se debe a incerteza ...
 - En la distancia a un obstáculo conocido.
 - En la posición de un obstáculo conocido
 - En la posición de obstáculos adicionales
 - Si un obstáculo no es detectado

Modelo de proximidad basado en haz (beam-based)

Ruido de medición

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z - z_{exp})^2}{b}}$$

Obstáculos inesperados

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z - z_{\text{exp}})^2}{b}} \qquad P_{\text{unexp}}(z \mid x, m) = \begin{cases} \eta \lambda e^{-\lambda z} & z < z_{\text{exp}} \\ 0 & otherwise \end{cases}$$

Modelo de proximidad basado en haz (beam-based)

Medición Aleatoria

$$P_{rand}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}}$$

$$P_{\max}(z \mid x, m) = \eta \frac{1}{z_{small}}$$

Mezcla de densidades resultante

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \\ \alpha_{\text{rand}} \end{pmatrix} \cdot \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}$$

Cómo determinar los parámetros del modelo?

Datos crudos de un sensor

Distancias medidas para una distancia esperada de 300cm.

Aproximación

Maximizar el log de la verosimilitud de los datos

$$P(z \mid z_{\rm exp})$$

- Espacio de búsqueda de n-1 parámetros.
 - Hill climbing
 - Gradient descent
 - Algoritmos genéticos
 - **-** ...
- Calcular determinísticamente el n-ésimo parámetro para satisfacer la restricción de normalización

Aproximación - Resultados

Ejemplo

Z

P(z|x,m)

Aproximación - Resultados

Resumen del modelo basado en haz (beam-based)

- Supone independencia entre haces.
 - ¿Justificación?
 - ¿No será mucho…?
- Modela las causas físicas de las mediciones.
 - Mezcla de densidades de estas causas.
 - Supone independencia entre causas. ¿Esta bien eso?
- Implementación
 - Aprender parámetros basándose en datos reales.
 - Determinación de distancias esperadas haciendo raycasting.
 - Diferentes modelos para diferentes ángulos en los que el haz detecta el obstáculo.
 - Las distancias esperadas pueden ser pre-procesadas

Modelo basado en Escaneo (scan-based)

- El modelo basado en haz es ...
 - Poco suave para pequeños obstáculos y en bordes.
 - Poco eficiente.

 Idea: En vez de mirar a lo largo del haz, chequear solo el punto final.

Modelo basado en escaneo

- La probabilidad es una mezcla de ...
 - Una distribución Gaussiana centrada en el obstáculo más cercano,
 - Una distribución uniforme por mediciones aleatorias y
 - Una distribución uniforme reducida para mediciones de rango máximo.
- De nuevo, se asume independencia entre los distintos componentes.

Ejemplo

Mapa *m*

Campo de verosimilitud (likelihood field)

Museo Tecnológico de San José (CA, USA)

Mapa de grilla de ocupación

Campo de verosimilitud

Macheo de escaneo

 Extracción del campo de verosimilitud de un escaneo y comparación con otro escaneo previo

Propiedades del modelo basado en escaneo

- Muy eficiente, sólo usa tablas de 2D.
- La grilla de distancias es suave con respecto a pequeñas variaciones en la pose del robot.
- Permite macheo de escaneos.
- Ignora las propiedades físicas del haz.

Otros modelos de sensores de proximidad

- Macheo de mapas (sonar, laser): generar pequeños mapas locales con los datos del sensor y machear ese mapa con un modelo global.
- Macheo de escaneo (laser): el mapa se representa por puntos de medición, y se machean escaneos con este mapa.
- Características o Features (sonar, laser, visión):
 Extracción de características (puertas, pasillos, etc.) de los datos del sensor.

Marcadores (o landmarks)

- Balizas activas (radio, GPS)
- Pasivo (visual, retro-reflexivo)
- Método más común: triangulación

- El sensor provee
 - distancia
 - orientación
 - distancia y orientación.

Distancia y orientación

Modelo probabilístico

1. Algoritmo landmark_detection_model(z,x,m):

$$z = \langle i, d, \alpha \rangle, x = \langle x, y, \theta \rangle$$

2.
$$\hat{d} = \sqrt{(m_x(i) - x)^2 + (m_y(i) - y)^2}$$

3.
$$\hat{\alpha} = \text{atan2}(m_y(i) - y, m_x(i) - x) - \theta$$

4.
$$p_{\text{det}} = \text{prob}(\hat{d} - d, \varepsilon_d) \cdot \text{prob}(\hat{\alpha} - \alpha, \varepsilon_\alpha)$$

5. Return p_{det}

Distribuciones

Solo distancia sin incerteza

$$x = (a^{2} + d_{1}^{2} - d_{2}^{2})/2a$$
$$y = \pm \sqrt{(d_{1}^{2} - x^{2})}$$

$$P_1 = (0,0)$$

$$P_2 = (a,0)$$

Solo orientación sin incerteza

Ley de cosenos

$$D_1^2 = z_1^2 + z_2^2 - 2 \ z_1 z_2 \cos \alpha$$

$$D_1^2 = z_1^2 + z_2^2 - 2 \ z_1 z_2 \cos(\alpha)$$

$$D_2^2 = z_2^2 + z_3^2 - 2 \ z_2 z_3 \cos(\beta)$$

$$D_3^2 = z_1^2 + z_3^2 - 2 \ z_1 z_3 \cos(\alpha + \beta)$$

Solo orientación con incerteza

En general se busca estimar la media.

Resumen de modelos de sensores

- Modelado explícito de la incerteza en el sensado.
- Muchas veces para tener un buen modelo se busca:
 - Determinar un modelo paramétrico de la medición sin ruido.
 - 2. Analizar las fuentes de ruido.
 - 3. Agregar ruidos adecuados a los parámetros (posiblemente mezclar distribuciones de ruido).
 - 4. Aprender (y verificar) los parámetros ajustando el modelo a datos.
 - La probabilidad de la medición está dada por la comparación de una medición dada con la esperada.
- Esto también se cumple para modelos de movimiento.
- Es importante considerar las suposiciones!