analysis expression

Gleb Anohin

September 25, 2024

Contents

1	Выссказывание				
	1.1	Определение	1		
	1.2	Примеры	1		
2	Предикат				
	$2.\overline{1}$	Определение	2		
	2.2	Примеры	2		
3	ерации с выссказыванием и предикатами	2			
		Отрицание	2		
		3.1.1 Определение	2		
		3.1.2 Примеры	2		
	3.2	Конъюнкция	2		
	3.3	Дизъюнкция	3		
	3.4	Импликация	3		
4	Teo	рема	3		

1 Выссказывание

1.1 Определение

Повествовательное предложение, которое можно отнести к верным или неверным утверждениям.

Обозначение - a, b, c

1.2 Примеры

- Эта ручка синяя (правдивое выссказывание)
- Все студента специалитета кролики (ложное выссказывание)
- \bullet Слон большой (не выссказывание, потому что не понятно насколько большой и какой слон)

2 Предикат

2.1 Определение

Некоторое выражение (не обязательно математическое), зависящее от переменных, такое, что при подстановке в переменные некоторых значений, выражение становится выссказыванием.

Множество допустимых (например по условию задачи) значений – область определения

Обозначение - A(x, y, ...), B(z, q, ...)

2.2 Примеры

- "a > 0", $a \in Z$
- "х Вася", х человек
- "Все натуральные числа, заканчивающиеся на 0,2,4,6,8 четные" не предикат, потому что нет аргументов

3 Операции с выссказыванием и предикатами

3.1 Отрицание

3.1.1 Определение

Операция инвертирующая истинность выссказывания.

В предложениях обычно применяется к глаголам/свойствам

3.1.2 Примеры

- Доска на полу → Доска не на полу Доска - объект На полу - свойство
- Все студенты родились в 2008. \to Не все студенты родились в 2008.

Что? Мы же говорили, что "не" применяется к свойствам?

В этом случае мы отрицаем "не все студенты", чтобы сохранить смысл. Нужно просто думать

A = "x родился в 2008 году" $a = [\forall s \in M : A(s)] \neg a = [\exists s \in M : \neg A(s)]$

3.2 Конъюнкция

Логическое И (∧)

3.3 Дизъюнкция

Логическое ИЛИ (∨)

3.4 Импликация

Если A то Б (\Rightarrow)

Α	В	$A \to B$
0	0	1
0	1	1
1	0	0
1	1	1

4 Теорема

Пусть a, b, c - выссказывания, тогда

- 1. $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ сочетательный закон конъюнкции
- $2. \ (a \vee b) \vee c = a \vee (b \vee c)$ сочетательный закон дизъюнкции
- 3. $a \wedge (c \vee b) = (a \wedge b) \vee (a \wedge c)$ распределительный закон конъюнкции относительно дизъюнкции
- 4. $a \lor (c \land b) = (a \lor b) \land (a \lor b) -$
- 5. $a \wedge b = b \wedge a$ переместительный закон конъюнкции
- 6. $a \lor b = b \lor a$ переместительный закон дизъюнкции
- 7. $a \wedge (\neg a) = T$ закон исключения третьего
- 8. $\neg(\neg a) = a$
- 9. $\neg(a \land b) = \neg a \lor \neg b$
- 10. $\neg (a \lor b) = \neg a \land \neg b$
- 11. $a \rightarrow b = \neg a \lor b$
- 12. $\neg a \rightarrow b = a \land \neg b$
- 13. $a \rightarrow b = \neg a \rightarrow \neg b$