ABSTRACT OF THE DISCLOSURE

A method for measuring a steering angle of a steering shaft for a vehicle uses a first rotatable body that rotates together with the steering shaft at an r1 ratio and a second rotatable body that rotates together with the steering shaft at an r2 ratio. An absolute rotational angle of the first rotatable body, Ψ , can be expressed as Ψ' + i Ω , and an absolute rotational angle of the second rotatable body, θ , can be expressed as θ' + i Ω . Ψ' and θ' are measured using an angle sensor having a measurement range of Ω . To obtain the steering angle Φ of the steering shaft, measurement values Ψ_{M}' and for θ_{M}' of Ψ' and θ' are obtained. A plurality of θ 's corresponding to the Ψ_{M}' value are calculated from a relation between Ψ' and θ' to yield a θ_{C}' . By comparing the θ_{M}' to the θ_{C}' , an i-value of the first rotatable body is obtained. The obtained i-value is then used to obtain an absolute rotational angle Ψ of the first rotatable body. Finally, from a relation between Ψ and θ , the steering angle Φ of the steering shaft is obtained.