Systems Design and Databases (CIS1018-N)

Week 10

Using built in Functions

Teaching Team

Module Leader & Lecturer: Dr Yar Muhammad

Email: Yar.Muhammad@tees.ac.uk

Office: G0.39 (Greig Building)

Tutor:

- Dr Mengda He
- Mr Mansha Nawaz
- Mr Vishalkumar Thakor

Academic Hub Time Slots, Room IT1.13: Yar Muhammad

Monday 10:00 - 11:00 and Tuesday 13:00 - 14:00

Mengda He

Wednesdays 1-2 pm and Fridays 11 am - 12 pm

See Blackboard Ultra for online materials: https://bb.tees.ac.uk/

Lectures & IT Labs

Lectures - Dr Yar Muhammad	Tuesdays @ 2-3 pm	
Week 1 – Week 12	CL1.87	

Tutor - Thursday	IT Lab Session Room #: IT2.42
Mr Mansha Nawaz M.Nawaz@tees.ac.uk	Time: 3 – 5 pm

Tutor – Friday	IT Lab Session Room #: OL3
Dr Yar Muhammad Yar.Muhammad@tees.ac.uk	Time: 9 – 11 am & 11 am – 1 pm
Dr Mengda He M.He@tees.ac.uk	Time: 9 – 11 am
Mr Vishalkumar Thakor V.Thakor@tees.ac.uk	Time: 11 am - 1 pm & 1 - 3 pm
Mr Mansha Nawaz M.Nawaz@tees.ac.uk	Time: 1 – 3 pm

Systems Design and Databases CIS1018-N Weekly Plan for the Activities

Week	Lecturer	Lecture Demo	Lab Exercises & Solutions	ICA Tasks:
01	Module Introduction, System Design, Introduction Databases (DDL, DML, DCL, TCL)	 Requirement List & MoSCoW Wireframe Design & Templates, User Stories 	Team Setup, Hands-on to collect/pick the Requirements from MoSCoW and write Writing User stories on each Tutorial 1	Requirements List & MosCOW, User stories
02	UML and UML Tool,	Use Case Diagrams from Requirements List and Wireframe	 Hands-on Use Case Diagrams Activities Tutorial 2 	Each Wireframe has associated Use Case Activity Deadline for Team Setup is Week # 2, by Friday 07/10/2022 before 4pm
03	Sequence Diagrams	 Class Diagrams 	 Hands-on Sequence & Class Diagrams Activities Tutorial 3 	Each Wireframe has associated Sequence and Class Diagrams
04	Entity Relationship Diagrams (ERD) A Data Modelling Case Tool for Relational Databases	 Introduction to SQL Server Walk-through: SQL Quick Guide 1 - How to use SSMS to build Databases 	Tutorial 4 Lab Resources: SQL Quick Guide 1	Each Wireframe has associated Class Diagram

1			· · · · · · · · · · · · · · · · · · ·	
Week	Lecturer	Lecture Demo		ICA Tasks:
05	Querying with Select	Demo A – Writing Simple SELECT Statements Demo B/C – Eliminating Duplicates with DISTINCT	1-4	SQL Task A: TSQL03 Querying with Select Writing Simple SELECT Statements
		Demo D - Writing Simple CASE		 Eliminating Duplicates with DISTINCT Using Column and Table Aliases Writing Simple CASE Expressions
06	Querying with Multiple Tables	Demo B – Relating 2 or more tables – Joins & Joining multiple tables – inner, <u>outer</u> and cross.	TSQL-Mod04 Exercise 1-5 Tutorial 6	SQL Task B: TSQL04 – Querying with Multiple Tables Relating 2 or more tables – Joins Joining multiple tables – inner, outer and cross.
07	Sorting and Filtering Data	Demo A – Sort with ORDER BY Demo B – Filter with WHERE Clause Demo C – Filtering with Top OffsetFetch Demo D – Handling NULL		SQL Task C: TSQL <u>05</u> – Sort and Filtering Data • Sort with Order By • Filter with <u>Where By</u> • Filter with top <u>offsetfetch</u> • Handling Nulls
Sub	Submission ICA 1 (Group Submission) -> Deadline is Wednesday 16/11/2022 before 4pm			
08	Working with SQL Server Data	Demo A - Conversion in a Query Demo B - collation in a query Demo C - date and time functions	TSQL-Mod06 Exercise 1 – 4 Tutorial 8	SQL Task D: TSQL06 – Working with SQL Server Data Conversion in a Query collation in a query date and time functions

	modify Data	Tables Demo B - Modifying and Removing Data Demo C - Generating Automatic Column Values	•	TSQL-Mod07 Exercise 1 – 2 Tutorial 9	 DML to Modify Data Adding Data to Tables Modifying and Removing Data Generating Automatic Column Values
10	Using built in Functions	Demo A – Scalar Functions Demo B – Cast Functions Demo C – If Functions Demo D – IsNull Functions		TSQL-Mod08 Exercise 1 – 3 Tutorial 10	SQL Task F: TSQL08– Using Built-In Functions • Writing Queries with Built-In Functions • Using Conversion Functions • Using Logical Functions • Using Functions to Work with NULL
11	 Walk through SQL Quick Guide 2 - Create a Tables and Relationships via SSMS GUI 	Walk through: SQL Quick Guide 3 - Create Query, View through Designer	1	ands-on: SQL Server Quick Guide 2	SQL Server – Introduction to SQL Server and SSMS
12	Support	Support	Ha •	ands-on: SQL Server Quick Guide 3	SQL Server – Introduction to SQL Server and SSMS

Module Overview

- Writing Queries with Built-In Functions
- Using Conversion Functions
- Using Logical Functions
- Using Functions to Work with NULL

Writing Queries with Built-In Functions

- SQL Server Built-in Function Types
- Scalar Functions
- Aggregate Functions
- Window Functions
- Rowset Functions
- Demonstration: Writing Queries Using Built-in Functions

SQL Server Built-in Function Types

 SQL Server functions can be categorized by scope of input and type of output:

Function Category	Description
Scalar	Operate on a single row, return a single value
Grouped Aggregate	Take one or more values but return a single summarizing value
Window	Operate on a window (set) of rows
Rowset	Return a virtual table that can be used in a T-SQL statement

Scalar Functions

- Operate on elements from a single row as inputs, return a single value as output
- Return a single (scalar) value
- Can be used like an expression in queries
- May be deterministic or nondeterministic
- Collation depends on input value or default collation of database

Scalar Function Categories

- Configuration
- Conversion
- Cursor
- Date and Time
- Logical
- Mathematical
- Metadata
- Security
- String
- System
- System Statistical
- Text and Image

Aggregate Functions

- Functions that operate on sets, or rows, of data
- Summarize input rows
- Without GROUP BY clause, all rows are arranged as one group
- Will be covered later in the course

```
SELECT COUNT(*) AS numorderlines,
SUM(qty*unitprice) AS totalsales
FROM Sales.OrderDetails;
```

Window Functions

- Functions applied to a window, or set of rows
- Include ranking, offset, aggregate, and distribution functions
- Will be covered later in the course

```
SELECT TOP(5) productid, productname, unitprice,
RANK() OVER(ORDER BY unitprice DESC) AS
rankbyprice
FROM Production.Products
ORDER BY rankbyprice;
```

productid	productname	unitprice	rankbyprice
8 29 9 20 18	Product QDOMO Product VJXYN Product AOZBW Product QHFFP Product CKEDC	123.79 97.00 81.00	1 2 3 4 5

Rowset Functions

- Return an object that can be used like a table in a T-SQL statement
- Include OPENDATASOURCE, OPENQUERY, OPENROWSET, and OPENXML
- Beyond the scope of this course

Demonstration A: Writing Queries Using Built-in Functions

In this demonstration, you will see how to Use built-in scalar functions

Using Conversion Functions

- Implicit and Explicit Data Type Conversions
- Converting with CAST
- Converting with CONVERT
- Converting Strings with PARSE
- Converting with TRY_PARSE and TRY_CONVERT
- Demonstration: Using Conversion Functions

Implicit and Explicit Data Type Conversions

- Implicit conversion occurs automatically and follows data type precedence rules
- Use explicit conversion:
 - When implicit would fail or is not permitted
 - To override data type precedence
- Explicitly convert between types with CAST or CONVERT functions
- Watch for truncation

Converting with CAST

- Converts a value from one data type to another:
 - Can be used in SELECT and WHERE clauses
 - ANSI standard
- CAST syntax:

```
CAST(<value> AS <datatype>)
```

- CAST example: SELECT CAST(SYSDATETIME() AS date);
- Returns an error if data types are incompatible:

 --attempt to convert datetime2 to int
 SELECT CAST(SYSDATETIME() AS int);

Msg 529, Level 16, State 2, Line 1 Explicit conversion from data type datetime2 to int is not allowed.

Converting with CONVERT

- Converts a value from one data type to another:
 - Can be used in SELECT and WHERE clauses
 - CONVERT is specific to SQL Server, not standards-based
- Style specifies how input value is converted:
 - Date, time, numeric, XML, and so on
- Syntax:

```
CONVERT (<datatype>, <value>, <optional style no.>)
```

Example:

CONVERT(CHAR(8), CURRENT_TIMESTAMP,112) AS ISO_style;

```
ISO_style
-----
20120212
```

Converting Strings with PARSE

 PARSE converts strings to date, time, and number types:

PARSE element	Comment
String_value	Formatted nvarchar(4000) input
Data_type	Requested data type ouput
Culture	Optional string in .NET culture form: en-US, es-ES, ar-SA, and so on

PARSE example:

SELECT PARSE('02/12/2012' AS datetime2 USING 'en-US') AS parse_result;

Converting with TRY_PARSE and TRY_CONVERT

- TRY_PARSE and TRY_CONVERT:
 - Return the results of a data type conversion:
 - Like PARSE and CONVERT, they convert strings to date, time and numeric types
 - Unlike PARSE and CONVERT, they return a NULL if the conversion fails
- TRY_PARSE Example:

```
SELECT TRY_PARSE('SQLServer' AS datetime2 USING 'en-US') AS try_parse_result;
```

```
try_parse_result
-----NULL
```

Demonstration B: Using Conversion Functions

In this demonstration, you will see how to Use functions to convert data

Week10 - Demonstration D - TSQL - IsNull Functions.sql

Using Logical Functions

- Writing Logical Test with Functions
- Performing Conditional Tests with IIF
- Selecting Items from a List with CHOOSE
- Demonstration: Using Logical Functions

Writing Logical Test with Functions

- ISNUMERIC tests whether an input expression is a valid numeric data type:
 - Returns a 1 when the input evaluates to any valid numeric type, including FLOAT and MONEY
 - Returns 0 otherwise
- Example:

```
SELECT ISNUMERIC('SQL') AS isnmumeric_result;

isnmumeric_result
------
0

SELECT ISNUMERIC('101.99') AS isnmumeric_result;
```

```
isnmumeric_result
-----1
```

Performing Conditional Tests with IIF

• IIF returns one of two values, depending on a logical test

Shorthand for a two-outcome CASE expression:

IIF Element	Comments
Boolean_expression	Logical test evaluating to TRUE, FALSE, or UNKNOWN
True_value	Value returned if expression evaluates to TRUE
False_value	Value returned if expression evaluates to FALSE or UNKNOWN

IIF example:

```
SELECT productid, unitprice,
IIF(unitprice > 50, 'high','low') AS pricepoint
FROM Production.Products;
```

Selecting Items from a List with CHOOSE

 CHOOSE returns an item from a list as specified by an index value:

CHOOSE Element	Comments
Index	Integer that represents position in list
Value_list	List of values of any data type to be returned

CHOOSE example:

```
SELECT CHOOSE (3, 'Beverages', 'Condiments', 'Confections') AS choose_result;
```

```
choose_result
-----
Confections
```

Demonstration C: Using Logical Functions

In this demonstration, you will see how to Use logical functions

■ Week10 - Demonstration B - TSQL - Cast Functions.sql

Week10 - Demonstration D - TSQL - IsNull Functions.sql

Using Functions to Work with NULL

- Converting NULL with ISNULL
- Using COALESCE to Return Non-NULL Values
- Using NULLIF to Return NULL If Values Match
- Demonstration: Using Functions to Work with NULL

Converting NULL with ISNULL

- ISNULL replaces NULL with a specified value
- Not standard; use COALESCE instead
- Syntax:

ISNULL Element	Comment
expression_to_check	Return expression itself if not NULL
replacement_value	Returned if expression evaluates to NULL

ISNULL example:

SELECT custid, city, ISN	ULL(region,	'N/A') AS	region,	country
FROM Sales.Customers:				

custid	city	region	country
7	Strasbourg	N/A	France
9	Marseille	N/A	France
32	Eugene	OR	USA
43	Walla Walla	WA	USA
45	San Francisco	CA	USA

Using COALESCE to Return Non-NULL Values

- COALESCE returns the first non-NULL value in a list:
 - With only two arguments, COALESCE behaves like ISNULL
 - If all arguments are NULL, COALESCE returns NULL
- COALESCE is standards-based
- COALESCE example:

```
SELECT custid, country, region, city,
country + ',' + COALESCE(region, ' ') + ', ' + city as location
FROM Sales.Customers;
```

custid country	region	city	location
Germany 65 USA 55 USA 83 Denmark	NM AK	Albuquerque	Germany, , Aachen USA,NM, Albuquerque USA,AK, Anchorage Denmark, , Århus

Using NULLIF to Return NULL If Values Match

- NULLIF compares two expressions:
 - Returns NULL if both arguments are equal
 - Returns the first argument if the two arguments are not equal

emp_id	goal	actual
1	100	110
2	90	90
3	100	90
4	100	80

SELECT emp_id, NULLIF(actual,goal) AS actual_if_different FROM dbo.employee_goals;

emp_id	actual_if_different
1	110
2	NULL
3	90
4	80

Demonstration D: Using Functions to Work with NULL

In this demonstration, you will see how to Use functions to work with NULL

■ Week10 - Demonstration D - TSQL - IsNull Functions.sql

Supporting Material - SQL Server Built-In Functions 1/2

Built-In Functions Video link:

SQL Built-In Functions

Built in string functions in sql

SQL Tutorial - Scalar Functions

SQL Functions with Examples

Supporting Material - SQL Server Built-In Functions 2/2

Built-In Functions Web Resource:

- Microsoft Docs | Built-In Functions
- W3Schools | SQL Server Functions
- <u>SQL Server Tutorial.net</u> | <u>SQL Server Scalar Functions</u>
- <u>Tutorialspoint</u> | T-SQL Functions
- JavaTpoint | T-SQL Functions