Skewness

Following table contains the values of price variations of same product. Modify the given C program in such a way that the array **Price[i]** will be the input argument to a subfunction **calc_skew**. Calculate the skewness of the price variations inside the function **calc_skew**. The calculated skewness value will be the returned to the main function. The skewness value will be printed in the main function. Formula for finding the skewness **skew** is given as follows.

S. No	Price
1	10
2	20
3	15
4	17
5	50
6	11
7	14
8	9
9	21
10	19

$$Skewness = \frac{\sum_{i=0}^{N-1} (Price[i] - \overline{Price})^3}{(N-1)S^3}$$

Price is the mean value of Price

Here,

S is the standard deviation of Price

$$S = \sqrt{\frac{\sum_{i=0}^{N-1} (Price[i] - \overline{Price})^2}{N}}$$

```
void main() {
    scanf("\n % d", Price[i]);

// Find the skewness value skew using the given formula.
    printf("\n % d", skew);

return 0;
}

void calc_skew() {
    // calculate skewness skew
}
```

Test case:
Input:
10
20
15
17
50
11
14
9
21
19
Output:
2.05