The Satake Isomorphism and the Langlands Dual

Zachary Gardner

1 Unramified Representations

Given a reductive algebraic group G over a global field F, results like Flath's theorem allow us to glean a lot of important structural information about (irreducible) automorphic representations of $G(\mathbb{A}_F)$ through unramified irreducible representations of $G(F_v)$, where v is a nonarchimedean place of F and a representation (π_v, V_v) of $G(F_v)$ is unramified if $V^{K_v} \neq 0$ for some hyperspecial subgroup $K_v \leq G(F_v)$.

With this in mind, let G be a reductive algebraic group over a nonarchimedean local field F. We assume that G is unramified – i.e., G is quasi-split (has a Borel subgroup) and is split over an unramified finite degree extension of F – and fix a hyperspecial subgroup $K \leq G(F)$. Let (π, V) be an associated unramified irreducible representation of G(F), so that $V^K \neq 0$ and hence V^K generates V in the sense that $\pi(G)V^K = V$. Recall that V^K is naturally a module over the spherical Hecke algebra $C_c^{\infty}(G(F) /\!\!/ K)$, with associated action

$$\pi(f)v := \int_{G(F)} f(g)\pi(g)v \ dg$$

for dg a Haar measure on G(F). We obtain a map

$$C_c^{\infty}(G(F) /\!\!/ K) \to \operatorname{End}_{\mathbb{C}}(V^K) \xrightarrow{\sim} \mathbb{C}, \qquad f \mapsto \operatorname{tr} \pi(f)$$

called the **Hecke character** of π .

Remark 1.1. The term "Hecke character" is often used to refer to an automorphic character of $\mathbb{G}_m = \mathrm{GL}_1$, which is not the same thing as above. The notation $\mathrm{tr}\,\pi(f)$ suggests that we are taking the trace of a linear operator. Indeed, the \mathbb{C} -linear trace of $\pi(f): V^K \to V^K$ is exactly $\mathrm{tr}\,\pi(f)$ since $\dim_{\mathbb{C}} V^K = 1$. The latter dimension result is a consequence of Schur's lemma and the commutativity of the spherical Hecke algebra, a fact which follows in general from the Satake isomorphism to be discussed later.

One of the important features of Hecke characters is captured by the following result.

Theorem 1.2. Let (π, V) be an unramified irreducible representation of G(F). Then, π is determined up to isomorphism by its Hecke character.

This theorem is an immediate consequence of the following proposition.

¹We don't need to specify left or right since G(F) is unimodular.

²Later on, we will see an important result of Harish-Chandra on representability of Hecke characters of general admissible irreducible representations.

Proposition 1.3. Let G be a td group and $K \leq G$ a compact open subgroup. There is an equivalence of categories

{representations
$$(\pi, V)$$
 of G generated by V^K } \longleftrightarrow { $C_c^{\infty}(G /\!\!/ K)$ -modules} $V \longmapsto V^K$.

Hence, every representation of G generated by V^K is smooth and admissible.

Proof. See Example 6.11 of Conrad's Smooth representations and Hecke algebras for p-adic groups.

An added bonus of this result is that every unramified irreducible representation of G(F) is automatically smooth and admissible.

2 The Satake Isomorphism

Having established the importance of Hecke characters, we now shift our attention to studying the structure of the spherical Hecke algebra $C_c^{\infty}(G /\!\!/ K)$. The main result of this section will be the construction of the Satake isomorphism, at least in the case that G is split. The next section will focus on the construction of the Langlands dual group LG , which allows us to generalize Satake's theorem to the quasi-split case and also formulate Langlands functoriality.

Assume now that G is split (and hence also quasi-split). Let $T \leq G$ be a maximal torus. For ease of computation, we will assume $K = G(\mathcal{O}_F)$ – more general results hold by replacing every instance of $G(\mathcal{O}_F)$ by $G(F) \cap K$ (and doing the same for similar expressions). We have a short exact sequence

$$0 \longrightarrow T(\mathcal{O}_F) \longrightarrow T(F) \stackrel{\gamma}{\longrightarrow} X_*(T) \longrightarrow 0$$

of locally compact groups. The map γ is characterized by the condition that $\langle \gamma(t), \chi \rangle = \operatorname{ord}_{\mathfrak{p}} \chi(t)$ for every $t \in T(F)$ and $\chi \in X^*(T)$, where \mathfrak{p} is the maximal ideal of \mathcal{O}_F and

$$\langle \cdot, \cdot \rangle : X_*(T) \times X^*(T) \to \operatorname{End}(\mathbb{G}_m) \xrightarrow{\sim} \mathbb{Z}, \qquad (\lambda, \chi) \mapsto [\chi \circ \lambda]$$

is the perfect pairing of characters and co-characters.³ Each choice of uniformizer ϖ for \mathcal{O}_F induces a splitting of this short exact sequence by sending $\lambda \in X_*(T)$ to $\lambda(\varpi) \in T(F)$. For $T = \mathbb{G}_m$ this is just the familiar statement that there is an internal direct product $F^{\times} = \mathcal{O}_F^{\times} \times \varpi^{\mathbb{Z}}$. All of this can be made more explicit for $T \cong \mathbb{G}_m^n$ using the isomorphisms

$$\mathbb{Z}^n \xrightarrow{\sim} X_*(T), \qquad (a_1, \dots, a_n) \mapsto \lambda = \lambda_{(a_1, \dots, a_n)} = (t \mapsto (t^{a_1}, \dots, t^{a_n})),$$

$$\mathbb{Z}^n \xrightarrow{\sim} X^*(T), \qquad (a_1, \dots, a_n) \mapsto \chi = \chi_{(a_1, \dots, a_n)} = ((t_1, \dots, t_n) \mapsto t_1^{a_1} \cdots t_n^{a_n}).$$

Given $\lambda = \lambda_{(a_1,\dots,a_n)} \in X_*(T)$ and $\chi = \chi_{(b_1,\dots,b_n)} \in X^*(T)$, we have

$$\langle \gamma(\lambda(\varpi)), \chi \rangle = \operatorname{ord}_{\mathfrak{p}} \chi(\lambda(\varpi)) = \operatorname{ord}_{\mathfrak{p}} \chi(\varpi^{a_1}, \dots, \varpi^{a_n}) = \operatorname{ord}_{\mathfrak{p}} \varpi^{a_1b_1 + \dots + a_nb_n} = a_1b_1 + \dots + a_nb_n$$

The notation $[\cdot]$ denotes the integer class of an endomorphism, while $\operatorname{ord}_{\mathfrak{p}}$ denotes the nonarchimedean \mathfrak{p} -adic valuation on F.

and

$$(\chi \circ \lambda)(s) = \chi(s^{a_1}, \dots, s^{a_n}) = s^{a_1b_1 + \dots + a_nb_n} \implies \langle \lambda, \chi \rangle = a_1b_1 + \dots + a_nb_n,$$

from which we conclude $\lambda = \gamma(\lambda(\varpi))$. Hence, we have an identification $T(F)/T(\mathcal{O}_F) \cong X_*(T)$. Since T(F) is abelian and $T(F)/T(\mathcal{O}_F)$ is discrete,

$$C_c^{\infty}(T(F) /\!\!/ T(\mathcal{O}_F)) \cong C_c(T(F)/T(\mathcal{O}_F)) \cong C_c(X_*(T)) \cong \mathbb{C}[X_*(T)],$$

with this identification sending $\lambda \in X_*(T)$ to $\mathbb{1}_{T(\mathcal{O}_F)\lambda(\varpi)T(\mathcal{O}_F)}$ and thus defining an algebra isomorphism. This is the simplest form of the Satake isomorphism.

To handle the spherical Hecke algebra of G and not just T we need to work a little harder. With this in mind, choose a Borel subgroup $B \leq G$ containing T. The choice of B corresponds to a choice of positive roots $\Phi^+ \subseteq \Phi = \Phi(X,T)$, occurring as the representation of $\mathfrak{b} = \mathrm{Lie}(B)$ in the decomposition of the diagonalizable action of T on $\mathfrak{g} = \mathrm{Lie}(G)$. Φ^+ in turn determines a base $\Delta \subseteq \Phi^*$ of simple roots which cannot be written as a sum of two positive roots. We assign to this the data of

$$\rho \in X^*(T) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2], \qquad 2\rho = \sum_{\chi \in \Phi^+} \chi \text{ in } X^*(T),$$

and the positive Weyl chamber⁴

$$P^+:=\{\lambda\in X_*(T):\langle\lambda,\chi\rangle\geq 0 \text{ for every } \chi\in\Phi^+\}=\{\lambda\in X_*(T):\langle\lambda,\chi\rangle\geq 0 \text{ for every } \chi\in\Delta\}.$$

One advantage of invoking this machinery is the following refinement of the Cartan decomposition.

Theorem 2.1. We have a decomposition

$$G(F) = \coprod_{\lambda \in P^+} K\lambda(\varpi)K,$$

where $(\lambda + \mu)(\varpi) = \lambda(\varpi)\mu(\varpi)$.

It follows that the spherical Hecke algebra $C_c^{\infty}(G(F) /\!\!/ K)$ has a \mathbb{C} -vector space basis given by $c_{\lambda} := \mathbbm{1}_{K\lambda(\varpi)K}$ for $\lambda \in P^+$. It is important to note that these functions c_{λ} do **not** constitute a \mathbb{C} -algebra basis of the spherical Hecke algebra. What is true is that

$$c_{\lambda} * c_{\mu} = \sum_{\nu \in P^{+}} d_{\lambda,\mu}(\nu)c_{\nu} = c_{\lambda+\mu} + \sum_{\nu < \lambda+\mu} d_{\lambda,\mu}(\nu)c_{\nu}$$

for $d_{\lambda,\mu}(\nu) \in \mathbb{Z}$ and \leq the partial order on P^+ defined by $\lambda < \mu$ if $\mu - \lambda$ is a sum of positive co-roots.⁵ The integer $d_{\lambda,\mu}(\nu)$ can be computed explicitly as

$$d_{\lambda,\mu}(\nu) = \#\{(i,j) : \nu(\varpi) \in x_i y_j K\}$$

where $K\lambda(\varpi)K = \coprod_i x_i K$ and $K\mu(\varpi)K = \coprod_j y_j K$. In particular, in the case G = T, we have $c_{\lambda} * c_{\mu} = c_{\lambda+\mu}$ since double K-cosets in T(F) correspond to single left K-cosets.

⁴This use of the term "Weyl chamber" is dual to the standard usage. The reason for this dual convention will become clear in a little bit. One useful property of P^+ is that it constitutes a complete set of distinct representatives for the Weyl group conjugacy classes of $X_*(T)$.

⁵More precisely, we extend the relation < thus defined to a partial order \le by forcing reflexivity.

⁶Here we work with left K-cosets because of the choice of Iwasawa decomposition we make below. Decomposing things differently allows us to work with right K-cosets instead.

Let now $N = R_u(B)$ be the unipotent radical of B. We may assume without loss of generality that K, B, T are compatible⁷ in the sense that

- G(F) = B(F)K;
- $B(F) \cap K = (T(F) \cap K)(N(F) \cap K)$; and
- $T(F) \cap K \leq T(F)$ is maximal compact.

The above Iwasawa decomposition gives G(F) = T(F)N(F)K and we may decompose any choice of Haar measure dg on G(F) via

$$dq = \delta_B(t) dt dn dk$$
,

with

$$dk(K) = 1 = dn(N(F) \cap K)$$

and $\delta_B: B(F) \to \mathbb{R}^{>0}$ the modular quasicharacter characterized by $d(bnb^{-1}) = \delta_B(n) \ dn$, which is trivial on N(F). Phrased another way,

$$\delta_B: B(F) \to \mathbb{R}^{\geq 0}, \qquad b \mapsto |\det_{\mathfrak{b}}(b)|_{\mathfrak{n}}.$$

Given $f \in C_c^{\infty}(G(F) /\!\!/ K)$, define $\mathcal{S}f: T(F) \to \mathbb{C}$ by

$$\mathcal{S}f(t) := \delta_B(t)^{1/2} \int_{N(F)} f(tn) \ dn.$$

Getz and Hahn use the notation f^B in place of $\mathcal{S}f$ and call it the **constant term of** f **along** B. What can we say about $\mathcal{S}f$? It is not too hard to check directly that $\mathcal{S}f$ is compactly supported, locally constant, and left $(T(F) \cap K)$ -invariant, hence may be thought of as an element of $C_c^{\infty}(T(F)/T(F) \cap K) \cong \mathbb{C}[X_*(T)]$. In Lemma 8.6.2, Getz and Hahn prove directly that \mathcal{S} is an algebra homomorphism. The proof is just a computation which is not very enlightening and so we skip it. Note that, given $t = \mu(\varpi) \in T(F)$ for $\mu \in X_*(T)$,

$$\delta_B(t)^{1/2} = |\det(\operatorname{ad}(t) \mid \operatorname{Lie}(N))|_{\mathfrak{p}}^{1/2}$$

$$= |2\rho(t)|_{\mathfrak{p}}^{1/2}$$

$$= |\varpi^{\langle \mu, 2\rho \rangle}|_{\mathfrak{p}}^{1/2}$$

$$= q^{-\langle \mu, \rho \rangle}$$

for $q := |\mathcal{O}_F/\mathfrak{p}|$. This will help us to understand where \mathcal{S} sends a specific set of nice algebra generators for $C_c^{\infty}(G(F) /\!\!/ K)$.

Let now \widehat{G} be the complex dual of G, characterized by the fact that the root datum $(X^*(\widehat{T}), X_*(\widehat{T}), \widehat{\Phi}, \widehat{\Phi}^{\vee})$ with \widehat{T} the dual torus to T and $\widehat{\Phi} := \Phi(\widehat{G}, \widehat{T})$ is dual to the root datum $(X^*(T), X_*(T), \Phi, \Phi^{\vee})$ in the sense that is an isomorphism of root data between $(X^*(\widehat{T}), X_*(\widehat{T}), \widehat{\Phi}, \widehat{\Phi}^{\vee})$ and $(X_*(T), X^*(T), \Phi^{\vee}, \Phi)$. This allows us to view $\mathcal S$ as a function from $C_c^{\infty}(G(F)/\!\!/ K)$ to $\mathbb{C}[X^*(\widehat{T})]$, leading us to the following theorem.

Theorem 2.2 (Satake). The map S defines an algebra isomorphism

$$C_c^{\infty}(G(F) /\!\!/ K) \cong \mathbb{C}[X^*(\widehat{T})]^{W(\widehat{G},\widehat{T})(\mathbb{C})}.$$

⁷Getz and Hahn say that K is in **good position** with respect to (B, T).

The content of Satake's theorem is that S as above is an injective \mathbb{C} -algebra homomorphism, with image $\mathbb{C}[X^*(\widehat{T})]^{W(\widehat{G},\widehat{T})(\mathbb{C})}$. In Proposition 8.7.2, Getz and Hahn use the machinery of orbital integrals to prove that S factors through $\mathbb{C}[X^*(\widehat{T})]^{W(\widehat{G},\widehat{T})(\mathbb{C})}$. We will not address the proof of this here. What we will do is some calculations that suggest the general outline of the proof of Satake's theorem. Suppose we have a decomposition $K\lambda(\varpi)K = \coprod_i x_iK$. Since G(F) = B(F)K, we may assume $x_i = t(x_i)n(x_i)$ in B(F) = T(F)N(F). Given $t = \mu(\varpi) \in T(F)$ for $\mu \in X_*(T)$,

$$Sc_{\lambda}(t) = \delta_{B}(t)^{1/2} \int_{N(F)} c_{\lambda}(tn) dn$$

$$= q^{-\langle \mu, \rho \rangle} \sum_{i} dn(N(F) \cap t^{-1}x_{i}K)$$

$$= q^{-\langle \mu, \rho \rangle} \#\{i : t^{-1}t(x_{i}) \in T(F) \cap K\}$$

$$= q^{-\langle \mu, \rho \rangle} \#\{i : t(x_{i}) \equiv \mu(\varpi) \bmod T(F) \cap K\}.$$

In particular, $Sc_{\lambda}(\lambda(\varpi)) = q^{\langle \lambda, \rho \rangle}$. Moreover, given $\mu \in P^+$,

$$Sc_{\lambda}(\mu(\varpi)) \neq 0 \implies \mu \leq \lambda.$$

How can we interpret this information? The elements $\lambda \in X_*(T)$, viewed as elements of $X^*(\widehat{T})$, index (isomorphism classes of) highest weight irreducible representations V_{λ} of \widehat{G} . By examining the associated character in $\mathbb{C}[X^*(\widehat{T})]$, which we denote $\operatorname{tr}(V_{\lambda})$, we see that the (virtual) representation ring $R(\widehat{G})$ of \widehat{G} is isomorphic as a \mathbb{C} -algebra to $\mathbb{C}[X^*(\widehat{T})]$. Using this language, the above computations suggest

$$\mathcal{S}c_{\lambda} = q^{\langle \lambda, \rho \rangle} \operatorname{tr}(V_{\lambda}) + \sum_{\mu \in P^{+}, \mu < \lambda} a_{\lambda}(\mu) \operatorname{tr}(V_{\mu})$$

for some coefficients $a_{\lambda}(\mu) \in \mathbb{C}$ (in fact, in $\mathbb{Z}[q^{\pm 1/2}]$). This expression is invariant under the action of the Weyl group and also demonstrates injectivity of \mathcal{S} .

Example 2.3. If all of this makes your head spin, think of the example $G = GL_n$. Take T to be the maximal diagonal torus, B the Borel subgroup of invertible upper triangular matrices, and $K = GL_n(\mathcal{O}_F)$. Given $1 \le i \le n$, define $e_i \in X^*(T)$ by $e_i(t_1, \ldots, t_n) := t_i$. We have

$$\Phi = \{e_i - e_j : 1 \le i \ne j \le n\},$$

$$\Phi^+ = \{e_i - e_j : 1 \le i < j \le n\},$$

$$\Delta = \{e_i - e_{i+1} : 1 \le i < n\},$$

$$P^+ = \{\lambda_{(a_1, \dots, a_n)} : a_1 \ge \dots \ge a_n\}.$$

The group GL_n is self-dual in the sense that \widehat{G} is GL_n viewed as a \mathbb{C} -scheme. We have

$$W(\widehat{G},\widehat{T})(\mathbb{C}) \cong S_n \implies R(\widehat{G})^{W(\widehat{G},\widehat{T})(\mathbb{C})} \cong \mathbb{C}[z_1,\ldots,z_n]^{S_n} \cong \mathbb{C}[\epsilon_1,\ldots,\epsilon_n],$$

for $\epsilon_1, \ldots, \epsilon_n$ the elementary symmetric polynomials in the n variables z_1, \ldots, z_n . Under this isomorphism, ϵ_r is identified with $\wedge^r \underline{\mathbb{C}}^n$, the rth exterior power of the standard representation $\underline{\mathbb{C}}^n$ of GL_n . A \mathbb{C} -algebra basis of the spherical Hecke algebra of G is given by c_{λ_r} for $1 \leq r \leq n$ and $c_{\lambda_{-1}}$, where

$$\lambda_r := \lambda_{(1,\dots,1,0,\dots,0)}, \qquad \lambda_{-1} := \lambda_{(-1,\dots,-1)}$$

with r copies of 1 and n-r copies of 0 in the definition of λ_r . One can show that

$$\mathcal{S}c_{\lambda_r} = q^{\langle \lambda_r, \rho \rangle} \operatorname{tr}(\wedge^r \underline{\mathbb{C}}^n) = q^{r(n-r)/2} \operatorname{tr}(\wedge^r \underline{\mathbb{C}}^n).$$

For instance, in the case n = 2, we have

$$K\begin{pmatrix} \varpi & \\ & 1 \end{pmatrix}K = \begin{pmatrix} 1 & \\ & \varpi \end{pmatrix}K \sqcup \bigsqcup_{a \in \mathcal{O}_F/\mathfrak{p}} \begin{pmatrix} \varpi & a \\ & 1 \end{pmatrix}K,$$

where the disjoint union runs through a complete set of distinct representatives of $\mathcal{O}_F/\mathfrak{p}$.⁸ It follows that $\mathcal{S}c_{\lambda_1}$ is supported on

$$\begin{pmatrix} 1 & \\ & \varpi \end{pmatrix} K_T \sqcup \begin{pmatrix} \varpi & \\ & 1 \end{pmatrix} K_T$$

for $K_T := T(F) \cap K$ and we have

$$\mathcal{S}c_{\lambda_1}\begin{pmatrix} 1 & \\ & \varpi \end{pmatrix} = q^{-\langle \mu_{(0,1)}, \rho \rangle} \cdot 1 = q^{1/2},$$

$$\mathcal{S}c_{\lambda_1}\begin{pmatrix} \varpi & \\ & 1 \end{pmatrix} = q^{\langle \lambda_1, \rho \rangle} = q^{1/2}.$$

Hence,

$$\mathcal{S}c_{\lambda_1} = q^{1/2} \left(\mathbb{1}_{\begin{pmatrix} 1 & & & \\ & \varpi \end{pmatrix}_{K_T}} + \mathbb{1}_{\begin{pmatrix} \varpi & & \\ & & 1 \end{pmatrix}_{K_T}} \right) = q^{1/2}\operatorname{tr}(\underline{\mathbb{C}}^2).$$

Similar calculations show $Sc_{\lambda_2} = \operatorname{tr} \wedge^2 \underline{\mathbb{C}}^2$

One very useful consequence of Satake's theorem is the following. We have

$$\mathbb{C}[X^*(\widehat{T})]^{W(\widehat{G},\widehat{T})} \cong \mathbb{C}[\widehat{T}]^{W(\widehat{G},\widehat{T})} \cong \mathbb{C}[\widehat{G}]^{\widehat{G}},$$

with the latter isomorphism arising via restriction in accordance with the Chevalley restriction theorem. It follows that $\operatorname{Hom}(\mathbb{C}[\widehat{T}]^{W(\widehat{G},\widehat{T})},\mathbb{C})$ is isomorphic to the set of closed conjugacy classes in $\widehat{G}(\mathbb{C})$ or, equivalently, the set of semisimple conjugacy classes $\widehat{G}^{\operatorname{ss}}(\mathbb{C})/\operatorname{conj}$. Hence, we have a composite isomorphism

$$\operatorname{Hom}(C_c^{\infty}(G(F) /\!\!/ K), \mathbb{C}) \xrightarrow{(S^{-1})^*} \operatorname{Hom}(\mathbb{C}[\widehat{T}]^{W(\widehat{G},\widehat{T})}, \mathbb{C}) \xrightarrow{\sim} \widehat{G}^{\operatorname{ss}}(\mathbb{C})/\operatorname{conj}$$

identifying irreducible unramified representations of G(F) via their Hecke characters with semisimple conjugacy classes in $\widehat{G}(\mathbb{C})$. For future reference, note that these classes and their eigenvalues go by the name of **Satake parameters**.

3 The Langlands Dual Group

In the previous section, we sketched the proof of Satake's theorem for the case that G is split. To handle the more general case in which G is merely quasi-split, we need to work with a more

⁸For more details, see Proposition 1.4.4 of Bump's Automorphic Forms and Representations. Note that Bump works with right K-cosets instead of left K-cosets.

sophisticated object than \widehat{G} . This object will be the **Langlands dual group** LG , which is also called the **L-group** in connection with the theory of **L**-functions. In the case that G is split we simply take

 $^{L}G := \widehat{G}(\mathbb{C}) \times \operatorname{Gal}(F),$

for $\operatorname{Gal}(F) := \operatorname{Gal}(F_s/F)$ the absolute Galois group of F and F_s the separable closure of F. In general, LG will be given by a certain semidirect product $\widehat{G}(\mathbb{C}) \rtimes \operatorname{Gal}(F)$, with $\operatorname{Gal}(F)$ acting algebraically on $\widehat{G}(\mathbb{C})$ by elements of $\operatorname{Aut}(\widehat{G})$. The presence of $\operatorname{Gal}(F)$ here is not a surprise, but the action of $\operatorname{Gal}(F)$ that we will construct is a little surprising.

With this in mind, let G be a split (connected) reductive algebraic group scheme over an algebraically closed field k. Let $T \leq G$ be a split maximal torus and denote the associated root datum $(X^*(T), X_*(T), \Phi, \Phi^{\vee})$ by $\Psi = \Psi(G, T)$. Recall that a choice of Borel subgroup $B \leq G$ containing T defines a set of positive roots $\Phi^+ \subseteq \Phi = \Phi(X, T)$, occurring as the representation of $\mathfrak{b} = \mathrm{Lie}(B)$ in the decomposition of the diagonalizable action of T on $\mathfrak{g} = \mathrm{Lie}(G)$. The set Φ^+ in turn determines a base $\Delta \subseteq \Phi^+$ of simple roots which cannot be written as a sum of two positive roots. Conversely, given a base $\Delta \subseteq \Phi$, each $\alpha \in \Delta$ determines a root group U_{α} – i.e., a subgroup $U_{\alpha} \leq G$ uniquely characterized by the fact that

- U_{α} is normalized by T;
- $U_{\alpha} \cong \mathbb{G}_a$, the additive group scheme; and
- $Lie(U_{\alpha}) = \mathfrak{g}_{\alpha}$, the root space.

Example 3.1.

- (1) Let $G = SL_2$ and T the diagonal torus. The relevant root groups are the strictly upper and lower triangular unipotent subgroups.
- (2) Let $G = GL_n$, T the diagonal torus, and $e_i e_j \in \Phi$. Given a k-scheme R, $U_{\alpha}(R) = I_n + Re_{ij}$ for e_{ij} the matrix with 1 in the (i, j) position and 0 elsewhere.

In each of the above examples, T and the relevant root groups generate a Borel subgroup of G. It turns out that this is true in general: the subgroup of G generated by T and U_{α} for $\alpha \in \Delta$ is Borel. We obtain a bijection between Borel subgroups of G containing T and simple root bases of $\Phi = \Phi(G, T)$. For now, fix a Borel subgroup G containing G containing G as called a **based root datum** and denoted G and G based root datum and denoted G based root datum and G based root datum and

Theorem 3.2 (Chevalley-Demazure). Let k be an algebraically closed field. Then, every pair (G,T) with G a (connected) reductive algebraic k-group scheme and $T \leq G$ a maximal torus is uniquely determined up to isomorphism by the reduced root datum $\Psi(G,T)$. More specifically, every isomorphism of root data $\Psi(G,T) \cong \Psi(G',T')$ arises from an isomorphism $(G,T) \cong (G',T')$ which is unique up to the conjugation action of T(k) and T'(k). Moreover, every reduced root datum over k is isomorphic to $\Psi(G,T)$ for some pair (G,T) as above.

Let $\operatorname{Inn}(G)$ denote the inner automorphism group of G, which is isomorphic to $G(k)/\mathbb{Z}G(k)$ via the map sending g to the conjugation automorphism $\operatorname{Ad}(g)$. The classification theorem gives information about the map $\delta:\operatorname{Aut}(G,T)\to\operatorname{Aut}(\Psi(G,T))$ defined as follows. Given $\varphi\in\operatorname{Aut}(G,T)$, $\delta(\varphi)$ acts on the set of $\chi\in X^*(T)$ and $\lambda\in X_*(T)$ via

$$\delta(\varphi) \cdot \chi := \chi \circ \varphi, \qquad \delta(\varphi) \cdot \lambda := \varphi \circ \lambda.$$

The classification theorem tells us that δ is surjective, with kernel given by the elements of Inn(G) arising from T(k). The following proposition is an upgrade of this result.

Proposition 3.3. There is a short exact sequence (*) of groups

$$1 \longrightarrow \operatorname{Inn}(G) \longrightarrow \operatorname{Aut}(G) \stackrel{\gamma}{\longrightarrow} \operatorname{Aut}(\Psi(G, B, T)) \longrightarrow 1$$

Proof. Let $\varphi \in \operatorname{Aut}(G)$. The group $\varphi(T)$ is conjugate to T since it is a maximal torus and all maximal tori in G are conjugate. Similarly, $\varphi(B)$ is conjugate to B. Hence, we may choose $g \in G(k)$ so that $\varphi \circ \operatorname{Ad}(g) \in \operatorname{Aut}(G, B, T)$, the choice of g being unique mod T(k). Furthermore, since the action of the Weyl group W on $X^*(T)$ induces a simply transitive action of W on the set of bases of Φ , we may choose $t \in N_G(B)(k) \cap N_G(T)(k) = T(k)$ so that $\varphi \circ \operatorname{Ad}(t) \circ \operatorname{Ad}(g) = \varphi \circ \operatorname{Ad}(tg)$ also preserves Δ . This defines a map $\gamma : \operatorname{Aut}(G) \to \operatorname{Aut}(\Psi(G, B, T))$, which is a well-defined group homomorphism essentially by the properties of the map δ discussed earlier. For a more direct verification, let $\varphi \in \operatorname{Aut}(G)$, $\chi \in X^*(T)$, $\lambda \in X_*(T)$, $t \in T(k)$, and $s \in \mathbb{G}_m(k)$. Suppose that φ acts on $\Psi(G, B, T)$ by $\varphi \circ \operatorname{Ad}(g)$. Then, given any $t_0 \in T(k)$,

$$(\chi \circ \varphi \circ \operatorname{Ad}(t_0g))(t) = \chi(\varphi(t_0))\chi(\varphi(gtg^{-1}))\chi(\varphi(t_0))^{-1} = \chi(\varphi(gtg^{-1})) = (\chi \circ \varphi \circ \operatorname{Ad}(g))(t)$$

and

$$(\varphi \circ \operatorname{Ad}(t_0 g) \circ \lambda)(s) = \varphi(t_0)\varphi(g\lambda(s)g^{-1})\varphi(t_0)^{-1} = \varphi(g\lambda(s)g^{-1}) = (\varphi \circ \operatorname{Ad}(g) \circ \lambda)(s).$$

Hence, $\varphi \circ \operatorname{Ad}(g)$ and $\varphi \circ \operatorname{Ad}(t_0g)$ have the same action on $\Psi(G, B, T)$ and so are both valid images for φ under γ . It follows from this that γ is a group homomorphism and we obtain a sequence of the form (*). The classification theorem tells us that γ is surjective. To see that $\ker \gamma = \operatorname{Inn}(G)$, note that clearly $\operatorname{Inn}(G) \subseteq \ker \gamma$. For the reverse containment, let $\varphi \in \ker \gamma$. Then, $\varphi \circ \operatorname{Ad}(tg)$ acts by identity on $\Psi(G, B, T)$ for some $g \in G(k)$ and $t \in T(k)$ and hence by identity on $\Psi(G, T)$. By the classification theorem, $\varphi \circ \operatorname{Ad}(tg) = \operatorname{Ad}(s)$ for some $s \in T(k)$ and so $\varphi = \operatorname{Ad}(tgs^{-1}) \in \operatorname{Inn}(G)$. This proves that (*) is exact.

Somewhat remarkably, (*) splits as a semidirect product. To see this, we introduce the following notion.

Definition 3.4. A pinning, framing, or épinglage of the triple (G, B, T) is a choice of isomorphism $U_{\alpha} \cong \mathbb{G}_a$ for each $\alpha \in \Delta$. Equivalently, it is a choice of basis or nonzero vector $X_{\alpha} \in \mathfrak{g}_{\alpha}$ for each $\alpha \in \Delta$. A pinned reductive group is a reductive group equipped with a pinning.

A choice of pinning should be viewed as a rigidifying constraint, a perspective which will be made more precise in a moment.

Kottwitz, Langlands, and Shelstad refer to pinnings as *splittings*. The following proposition explains this terminology.

Proposition 3.5. Given pinned reductive groups $(G, B, T, \{X_{\alpha}\}_{\alpha \in \Delta})$ and $(G', B', T', \{X'_{\alpha'}\}_{\alpha' \in \Delta'})$, the natural map

$$\operatorname{Isom}((G, B, T, \{X_{\alpha}\}_{\alpha \in \Delta}), (G', B', T', \{X'_{\alpha'}\}_{\alpha' \in \Delta'}))$$

$$\downarrow$$

$$\operatorname{Isom}(\Psi(G, B, T), \Psi(G', B', T'))$$

Figure 1: Grothendieck envisioned a pinned reductive group as a butterfly pinned to a board, with the body representing the maximal torus, the wings a pair of opposite Borel subgroups, and the pinning holding everything in place.

is a bijection. Moreover, pinnings of (G, B, T) are in bijection with (right) splittings of (*), up to conjugation by T(k).

Proof. See either Proposition 1.5.5 in Conrad's *Reductive Group Schemes* or Theorem 23.40 in Milne's *Algebraic Groups*. \Box

Return now to our original setting, in which G is a quasi-split reductive algebraic group over a local (or global) field F. Choose $B \leq G$ Borel containing a maximal torus T. Our goal is to define an action of $\operatorname{Gal}(F)$ on $\operatorname{Aut}(\widehat{G})$, for $(\widehat{G},\widehat{T})$ complex dual to (G,T). Note first of all that defining an action of $\operatorname{Gal}(F)$ is the same as defining an action of $\operatorname{Aut}(\overline{F}/F)$. This is because the extension \overline{F}/F_s is purely inseparable (assuming it is nontrivial) and so the restriction map $\operatorname{Aut}(\overline{F}/F) \to \operatorname{Gal}(F)$ is necessarily an isomorphism. Put another way, any element $\sigma \in \operatorname{Gal}(F)$ necessarily extends to an automorphism of \overline{F} . Each such σ then defines an automorphism of $G_{\overline{F}}$ arising from the automorphism

$$\overline{F} \otimes_F A \to \overline{F} \otimes_F A, \qquad x \otimes a \mapsto \sigma(x) \otimes a$$

for A a finitely generated F-algebra such that $G \cong \operatorname{Spec}(A)$ (recall that G is finite type and necessarily affine). We obtain a group homomorphism $\theta : \operatorname{Gal}(F) \to \operatorname{Aut}(G_{\overline{F}})$. Choose now a Borel subgroup $\widehat{B} \leq \widehat{G}$ containing \widehat{T} corresponding to the dual of the simple base Δ arising from $B_{\overline{F}}$. Consider the composition

$$\operatorname{Gal}(F) \xrightarrow{\quad \theta \quad} \operatorname{Aut}(G_{\overline{F}}) \xrightarrow{\quad \ \ } \operatorname{Aut}(\Psi(G_{\overline{F}}, B_{\overline{F}}, T_{\overline{F}})) \xrightarrow{\quad \sim \quad} \operatorname{Aut}(\Psi(\widehat{G}, \widehat{B}, \widehat{T})) \xrightarrow{\quad \ \ } \operatorname{Aut}(\widehat{G})$$

where the last map arises from a choice of pinning. This defines an action of Gal(F) on $\widehat{G}(\mathbb{C})$, unique up to conjugation. We then define

$$^{L}G:=\widehat{G}(\mathbb{C})\rtimes\mathrm{Gal}(F).$$

The composite homomorphism $\operatorname{Gal}(F) \to \operatorname{Aut}(\Psi(G_{\overline{F}}, B_{\overline{F}}, T_{\overline{F}}))$ factors through $\operatorname{Gal}(E/F)$, for E/F the minimal Galois extension for which T_E splits. It follows that the structure of LG is encoded

by $\operatorname{Gal}(E/F)$ and, in the case that G is split, ${}^LG = \widehat{G}(\mathbb{C}) \times \operatorname{Gal}(F)$ in agreement with our original convention.

Example 3.6.

(1) Let E/F be a finite separable extension and $G := \operatorname{Res}_{E/F} \operatorname{GL}_n$, which is the restriction of scalars characterized by

$$(\operatorname{Res}_{E/F}\operatorname{GL}_n)(R) := \operatorname{GL}_n(E \otimes_F R)$$

for R an F-algebra. It turns out that $\widehat{G}(\mathbb{C})$ consists of one copy of $GL_n(\mathbb{C})$ for each embedding $E \hookrightarrow F_s$ and Gal(F) acts on $\widehat{G}(\mathbb{C})$ by permutation.

(2) Let M/F be a quadratic extension and consider the quasi-split unitary group U characterized by

$$U(R) := \{ g \in \operatorname{GL}_n(M \otimes_F R) : J\sigma(g)^{-t}J = g \}$$

for R an F-algebra, J the matrix with 1's on the anti-diagonal, and σ the nontrivial element of Gal(M/F). It turns out that $\widehat{U} = GL_n$ and Gal(F) acts on $GL_n(\mathbb{C})$ via its quotient Gal(M/F), which acts via $g \mapsto g^{-t}$.

Remark 3.7. The above construction did not use any properties of the ground field F, so we obtain a global L-group LG in the case that F is global. For each place v of F there is a local L-group $^LG_{F_v}$ related to LG by way of an embedding $Gal(F_v) \hookrightarrow Gal(F)$, which is unique up to conjugation.

Remark 3.8. So far we have talked briefly about L-groups but said nothing about maps between them. We define a morphism of L-groups to be a homomorphism ${}^LH \to {}^LG$ that is trivial on $\operatorname{Gal}(F)$ and whose associated homomorphism $({}^LH)^0 \to ({}^LG)^0$ of neutral components is induced by a group scheme morphism $\widehat{H} \to \widehat{G}$, $({}^LH)^0$ here just being alternate notation for $H(\mathbb{C})$.

⁹For more details see Buzzard's short expository notes on unitary groups.