Options Assignment 3

Ze Yang (zey@andrew.cmu.edu)

November 25, 2017

Problem. 2 (Futures and forward cash flows)

Solution. (a) The variation margin cash flow of future contract is given by

$$C_t = F_{t,T} - F_{t-\Delta t,T}$$

Since future contracts are linear in there cash flows, the cash flow for 20 longs is just $20C_t$, and that for 2 shorts is $-2C_t$.

Figure 1: Variation Margin Cashflow of Future Contracts

	Market	Futures Contract	Long 20 Futures Contract	Short 2 Futures Contract
Day	Futures/foward prices	Variation Cash Flows	Variation Cash Flows	Variation Cash Flows
0 (initial)	50.2500	0.0000	0.0000	0.0000
1	51.5574	1.3074	26.1483	-2.6148
2	49.9032	-1.6543	-33.0850	3.3085
3	49.7240	-0.1791	-3.5830	0.3583
4	50.5355	0.8115	16.2294	-1.6229
5	49.7192	-0.8163	-16.3265	1.6327
6	49.2056	-0.5136	-10.2721	1.0272
7	47.9776	-1.2279	-24.5583	2.4558
8	46.6715	-1.3061	-26.1220	2.6122
9	45.9922	-0.6793	-13.5861	1.3586
10	45.4607	-0.5315	-10.6302	1.0630
11	44.0451	-1.4156	-28.3123	2.8312
12	43.6695	-0.3756	-7.5117	0.7512
13	43.4029	-0.2666	-5.3329	0.5333
14	43.4853	0.0824	1.6478	-0.1648
15	43.2446	-0.2407	-4.8142	0.4814
16	43.0298	-0.2147	-4.2945	0.4295
17	42.7886	-0.2412	-4.8243	0.4824
18	43.6475	0.8589	17.1772	-1.7177
19	43.5873	-0.0602	-1.2040	0.1204
20	43.4619	-0.1254	-2.5084	0.2508
21	43.1264	-0.3355	-6.7101	0.6710
22	44.4062	1.2798	25.5962	-2.5596
23	44.9770	0.5709	11.4177	-1.1418
24	46.5907	1.6137	32.2733	-3.2273
5 (delivery)	46.1337	-0.4571	-9.1412	0.9141

(b) The variation margin cash flow of forward contract is:

$$C_t = \begin{cases} S_T - F_0 & t = T \\ 0 & \text{otherwise} \end{cases}$$

	Market	Forward Contract
Day	Futures/foward prices	Cash Flows
0 (initial)	50.2500	0.0000
1	51.5574	0.0000
2	49.9032	0.0000
3	49.7240	0.0000
4	50.5355	0.0000
5	49.7192	0.0000
6	49.2056	0.0000
7	47.9776	0.0000
8	46.6715	0.0000
9	45.9922	0.0000
10	45.4607	0.0000
11	44.0451	0.0000
12	43.6695	0.0000
13	43.4029	0.0000
14	43.4853	0.0000
15	43.2446	0.0000
16	43.0298	0.0000
17	42.7886	0.0000
18	43.6475	0.0000
19	43.5873	0.0000
20	43.4619	0.0000
21	43.1264	0.0000
22	44.4062	0.0000
23	44.9770	0.0000
24	46.5907	0.0000
25 (delivery)	46.1337	-4.1163

Figure 2: Variation Margin Cashflow of Forward Contracts

Problem. 18 (Binomial)

Solution. (a) We have:

$$\pi_u = \frac{R - d}{R(u - d)} = 0.3127; \quad \pi_d = \frac{u - R}{R(u - d)} = 0.6774$$
(1)

Let $c_t(S_t)$ be the value of american call at time t, we have:

$$c_t(S_t, D_t) = \max \left\{ \max(0, S_t^{[cum]} - K), \pi_u c_{t+1}(uS_t^{[ex]}) + \pi_d c_{t+1}(dS_t^{[ex]}) \right\}$$
(2)

Where $S_t^{[cum]}$ is the cum dividend stock price, $S_t^{[ex]}$ is the ex dividend stock price. $S_t^{[ex]} = S_t^{[cum]} - D_t$. The binomial tree calulation is presented in the table below. We obtain:

$$c_0 = 1.2569$$

I.e. the 1-year American call option worth 1.2569 dollars today.

(b) Denote the value of asian call option along path w as $Ac_n(w)$, the number of periods is N. We have:

$$Ac_n = \begin{cases} \max(0, \frac{1}{N} \sum_{i=0}^{N} S_i^{[cum]}(w)) & n = N \\ \pi_u A c_{n+1}((w, u)) + \pi_d A c_{n+1}((w, d)) & 0 \le n < N \end{cases}$$
(3)

The binomial tree calulation is presented in the table below. We obtain:

$$Ac_0 = 0.2830$$

I.e. the 1-year Asian call option worth 0.2830 dollars today.

Inputs Calculations Parameter Values Stock Price Tree Cum Div Ex Div 43 0.2624 sigma 51.6078 49.02 T-t 45.27 43.0065 2 43 dt 0.5 42.294 1.1400 40.85 37.1 u 0.9500 d 35.245 true prob q 0.6 American Call R 1.010 6.6078 4.0200 pi_u 0.3127 1.2569 pi_d 0.6774 K (strike) 45 0.0000 45 Cash Dividend 3.75

Figure 3: American Option

Figure 4: Asian option

Asian Call			
			2.8759
		0.9052	
			0.0088
	0.2830		
			0.0000
		0	
			0.0000

Problem. 19 (Binomial(2))

Solution. (a) For the dynamic replication strategy, the stock and bond positions are given by:

$$\Delta_t = \frac{p_{t+1,u} - p_{t+1,d}}{S_t(u-d)} \tag{4}$$

$$B_t = \frac{up_{t+1,d} - dp_{t+1,u}}{R(u - d)} \tag{5}$$

where the value of American put option price at time t is:

$$p_t = \max\left\{\max(K - S_t, 0), S_t \Delta_t + B_t\right\} \tag{6}$$

i.e. the maximum between replicating portfolio and the early exercise payoff. The trees of option price and dynamic replication portfolio are presented below.

The dynamic strategy is described by the right blue tree, with

$$\Delta_0 = -0.47502, \quad B_0 = 25.4844$$

$$\Delta_{1,u} = 0, \quad B_{1,u} = 0, \quad \Delta_{1,d} = -1, \quad B_{1,d} = 45.5437$$
(7)

And the price at time 0 is $c_0 = 1.7334$.

Stock Price Tree 61.07014 55.25855 45.24187 40.93654 American Put Price Tree (Replication) Dynamic Rep. Positions Tree Delta 0 Bond 1.733386 -0.47502 4.758129 25.48443 9.063462 48.54369

Figure 5: American option (Dynamic Replication)

(b) We first calculate the state prices:

$$\pi_u = \frac{R - d}{R(u - d)} = 0.6066; \quad \pi_d = \frac{u - R}{R(u - d)} = 0.3643$$
(8)

And the value of American put option price at time t is:

$$p_t = \max \left\{ \max(K - S_t, 0), \quad p_{t+1,u} \pi_u + p_{t+1,d} \pi_d \right\}$$
 (9)

Plug the equations into the binomal tree, we obtain: $p_0 = 1.7334$.

(c) We first calculate the risk-neutral probabilities:

$$q_u^{RN} = \frac{R-d}{u-d} = 0.6248; \quad q_d^{RN} = \frac{u-R}{u-d} = 0.3752$$
 (10)

And the value of American put option price at time t is:

$$p_t = \max\left\{\max(K - S_t, 0), \frac{1}{R}\left(p_{t+1, u}q_u^{RN} + p_{t+1, d}q_d^{RN}\right)\right\}$$
(11)

Plug the equations into the binomal tree, we obtain: $p_0 = 1.7334$.

(d) Now with the dividends, the value of American put option price at time t is:

$$p_t = \max\left\{\max(K - S_t^{[ex]}, 0), \quad p_{t+1,u}\pi_u + p_{t+1,d}\pi_d\right\}$$
(12)

For the call:

$$c_t = \max \left\{ \max(S_t^{[cum]} - K, 0), \quad c_{t+1,u}\pi_u + c_{t+1,d}\pi_d \right\}$$
(13)

See the trees below.

Stock Price Tree (Dividend) 58.8598 55.25855 48.19033 50 48.34224 45,24187 43.74187 39.57928 American Put Price Tree (With Dividend) American Call Price Tree (With Dividend) 0.659264 5.374121 1.809675 2.679728 3.259801 1.657756 10.42072

Figure 6: American option (Dividend)

We got $c_0 = 3.2598$, $p_0 = 2.6797$. The put call parity for European option is

$$c_t - p_t = S_t - D_t - Ke^{-r(T-t)}$$

Where D_t is the cash dividend paid at time t. Clearly this equality does not hold for American option. Because with early exercise, this relation becomes an inequality:

$$S_t - D_t - K \le c_t - p_t \le S_t - Ke^{-r(T-t)}$$

Problem. 21 (Binomial/Capital Structure)

Solution. We first calcuate u, d, with CRR calibration:

$$u = e^{\sigma\sqrt{t}} = 1.2969; \quad d = e^{-\sigma\sqrt{t}} = 0.7711$$
 (14)

The state prices are

$$\pi_u = \frac{R - d}{R(u - d)} = 0.4822; \quad \pi_d = \frac{u - R}{R(u - d)} = 0.4859$$
(15)

Denote value of company, bond (prior to coupon payment), and equity as V, B, E respectively. Let the face value and coupon rate of bond be F and c. We have:

$$B_t = \begin{cases} \min(V_T, F(1+c)) & t = T \\ \pi_u B_{t+1,u} + \pi_d B_{t+1,d} & 0 \le t < T \end{cases}$$

Hence

$$E_{t} = \begin{cases} \max(0, V_{T} - F(1+c)) & t = T \\ V_{t} - B_{t} & 0 \le t < T \end{cases}$$

We assume that $\{V_t\}$ evolves by the binomial tree model. Denote $V_t^{[cum]}$ as cum dividend cum interest value, $V^{[ex]}$ as ex dividend ex interest value, we have:

$$V_{t}^{[ex]} = V_{t}^{[cum]} - D_{t} - Fc$$

$$V_{t,u}^{[cum]} = uV_{t}^{[ex]}$$

$$V_{t,d}^{[cum]} = dV_{t}^{[ex]}$$
(16)

See the binomial tree below for calculation details. We set $E_0 = 250$ as target and solve for desired coupon rate c^* . And we obtain:

$$c^* = 6.435\%$$

Figure 7: Capital Structure Problem

Inputs								
Firm Value Process:		Int. Rate an	Int. Rate and State Prices:					
٧	750		R	1.033		principal	500	
in tree 1=	1000000					coupon (%)	0.0643501	
			piu	0.4822		coupon (\$)	32.175062	
sigma	0.26		pid	0.4859		final	532.17506	
maturity	2							
n	2		Stock:					
dt	1		# shares	20				
			div/shr	1				
u	1.2969		dividend	20.0				
d	0.7711							
Ordinary E	Sond and St	ock Trees	:				uuV	1193.853
_		cum coup	on, cum div		ex coupo	n ex div	bond	532.1751
		uV	972.6976		υV	920.5225	equity	661.6783
		bond	547.3494		bond	515.17431		
		equity	425.3482		equity	405.34819	udV	709.7703
V	750						bond	532.1751
bond	500						equity	177.5953
calc(ytm)	1.08E-13							
ytm	0.064							
equity	250						duV	682.3326
s price	12.50						bond	532.1751
		dV	578.2887		dV	526.11363	equity	150.1575
		bond	485.8823		bond	453.70719		
		equity	92.40643		equity	72.406433	ddV	405.6607
							bond	405.6607
							equity	0

I.e. the company should sell the par-500 bond for annual coupon rate 6.435%.

Inputs Firm Value Process: Int. Rate and State Prices: Bond: 1.033 R principal 475 1000000 0.0571577 in tree 1= coupon (%) 0.4822 piu coupon (\$) 27.149887 0.4859 502.14989 0.26 sigma pid final maturity 2 2 Stock: dt # shares 20 div/shr 1.2969 dividend 20.0 u d 0.7711 1200.371 Ordinary Bond and Stock Trees: uuV ex coupon ex div bond 502.1499 cum coupon, cum div 698.2207 972.6976 υV 925.54768 equity bond 513.2582 bond 486.10831 713.645 459.4394 439.43937 udV equity equity 502.1499 bond 475 211.4951 bond equity 2.54E-12 calc(ytm) 0.057 equity 275 duV 688.8499 13.75 502.1499 s price bond ď۷ 578.2887 ď۷ 531.1388 equity 186.7 bond 468.2614 bond 441.11147 110.0273 90.027329 ddV 409.5354 equity equity 409.5354 bond equity

Figure 8: Capital Structure Problem(b)

(b) With same analysis, we now set $E_0 = 275$, F = 475 and solve for c. For this one,

$$c^* = 5.7158\%$$

I.e. the company should sell the par-475 bond for annual coupon rate 5.7158%.

Inputs								
Firm Value	Process:		Int. Rate an	d State Pri	ces:	Bond:		
V	750		R	1.033		principal	500	
in tree 1=	1000000					coupon (%)	0.0431582	
			piu	0.4822		coupon (\$)	21.579103	
sigma	0.26		pid	0.4859		final	521.5791	
maturity	2							
n	2		Stock:					
dt	1		# shares	20				
			div/shr	1				
u	1.2969		dividend	20.0				
d	0.7711							
Putable Bo	nd and Sto	ck Trees:					uuV	1207.596
put price	485						bond	521.5791
		uV	972.6976		υV	931.11846	equity	686.0164
		bond	526.4959		bond (live)	504.91685		
V	750	equity	446.2016		bond	504.91685	udV	717.9404
bond (live)	500				equity	426.20162	bond	521.5791
bond	500						equity	196.3613
calc	1.01E-09							
ytm	0.043158						duV	696.0748
equity	250						bond	521.5791
s price	12.5	dV	578.2887		dV	536.70959	equity	174.4957
		bond	506.5791		bond (live)	452.56721		
		equity	71.70959		bond	485	ddV	413.8308
					equity	51.709586	bond	413.8308
							equity	0

Figure 9: Capital Structure Problem(Putable Bond)

(c) With same analysis, we now set $E_0 = 250$, F = 500 and solve for c. For this one,

$$B_t = \begin{cases} \min(V_T, F(1+c)) & t = T\\ \max\{K, & \pi_u B_{t+1,u} + \pi_d B_{t+1,d}\} & 0 \le t < T \end{cases}$$

where K is the put price, K = 485. We obtain

$$c^* = 4.3158\%$$

I.e. the company should sell the par-500 putable bond for annual coupon rate 4.3158%.

Problem. 31 (Black Scholes Hedging)

Solution. Denote Δ_t , B_t the stock, bond position in replicating portfolio. c_t the Black-Scholes option price, Π_t the value of replicating portfolio, ϵ_t the tracing error, and δt the hedging interval width. At time t, the incoming portfolio value:

$$\Pi_t = \Delta_{t-\delta t} S_t + B_{t-\delta t} e^{r\delta t}$$

$$h_t := h(t, S_t) = \frac{\log(S_t/K) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

$$\Delta_t = N(h_t); \quad B_t = \Pi_t - S_t \Delta_t$$

$$c_t = S_t N(h_t) - K e^{-t(T - t)} N(h_t - \sigma(T - t))$$

where N(z) is the standard normal cdf.

$$\epsilon_t = \Pi_t - c_t$$

The dynamic hedging process is presented in the table below.

Figure 10: Dynamic Delta Hedge

Inputs:			Calculation	ns:		Example o	f Delta Hed	ging:		
S	35		h	0.1617		Rehalancir	ng once per	dav		
X	35		N(h)	0.5642		rep. port. lic		5,5963		
^	55		TA(11)	0.5042		actual c*	. value	5.5010		
г	0.052		h-sig*sqrt	0.0117		diff		0.0953		
expiry T-t	0.25		N(h-sig*sqr					0.0000		
pv	0.9871									
monthly vol	0.086603									
(ann) sigma	0.3000									
Hedging Ca	alculations	with Daily	Rebalancin	g:						
delta t		0.0038								
sigma in prid	ce sim	0.3000								
true mu		0.07								
true m in sin	n	0.025								
			Time	incoming	new	outgoing	outgoing	Blac	ck-Scholes	Tracking
day	z path	S path		port. value	h(S,t)		pv borrow	O	otion Value	Error
0		35	0.25	2.3128	0.1617	0.5642	-17.4348		2.3128	0.0000
1	0.1362	35.0922	0.2462	2.3613	0.1781	0.5707	-17.6649		2.3456	0.0157
2	-1.1415	34.3581	0.2423	1.9388	0.0338	0.5135	-15.7035		1.9281	0.0108
3	-0.5527	34.0098	0.2385	1.7569	-0.0380	0.4848	-14.7326		1.7352	0.0217
4	-0.5186	33.6865	0.2346	1.5972	-0.1066	0.4575	-13.8159		1.5639	0.0332
61	1.1956	39.3585	0.0154	4.4818	3.1942	0.9993	-34.8491		4.3868	0.0951
62	0.2192	39.5231	0.0115	4.6393	3.8062	0.9999	-34.8810		4.5441	0.0952
63	0.3867	39.8123	0.0077	4.9216	4.9246	1.0000	-34.8907		4.8263	0.0952
64	-0.6040	39.3712	0.0038	4.4735	6.3455	1.0000	-34.8977		4.3782	0.0953
65	1.5155	40.5010	0.0000	5.5963					5.5010	0.0953

In the final date T, we have

$$\Pi_T = 5.5963$$
 $c_T = 5.5010$
 $\epsilon_T = 0.0953$
(17)