# COMP9318: Data Warehousing and Data Mining

L8: Clustering —

What is Cluster Analysis?

## What is Cluster Analysis?

- Cluster: a collection of data objects
  - Similar to one another within the same cluster
  - Dissimilar to the objects in other clusters
- Cluster analysis
  - Grouping a set of data objects into clusters
- Clustering belongs to unsupervised classification: no predefined classes
- Typical applications
  - As a stand-alone tool to get insight into data distribution
  - As a preprocessing step for other algorithms

### General Applications of Clustering

- Pattern Recognition
- Spatial Data Analysis
  - create thematic maps in GIS by clustering feature spaces
  - detect spatial clusters and explain them in spatial data mining
- Image Processing
- Economic Science (especially market research)
- WWW
  - Document classification
  - Cluster Weblog data to discover groups of similar access patterns

### **Examples of Clustering Applications**

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use</u>: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

## What Is Good Clustering?

- A good clustering method will produce high quality clusters with
  - high <u>intra-class</u> similarity
  - low inter-class similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.

## Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

## Chapter 8. Cluster Analysis

Preliminaries

## **Typical Inputs**

Key component for clustering: the dissimilarity/similarity metric: d(i, j)

- Data matrix
  - N objects, each represented by a mdimensional feature vector

```
\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1m} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{im} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{nm} \end{bmatrix}
```

- Dissimilarity matrix
  - A square matrix giving distances between all pairs of objects.
  - If similarity functions are used → similarity matrix

```
\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}
```

#### Comments

- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal and ratio variables.
- Weights should be associated with different variables based on applications and data semantics, or appropriate preprocessing is needed.
- There is a separate "quality" function that measures the "goodness" of a cluster.
- It is hard to define "similar enough" or "good enough"
  - the answer is typically highly subjective.

## Type of data in clustering analysis

- Interval-scaled variables:
- Binary variables:
- Nominal, ordinal, and ratio variables:
- Variables of mixed types:

#### Interval-valued variables

- Standardize data
  - Calculate the mean absolute deviation:

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + \dots + x_{nf}).$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

## Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- A popular choice is the *Minkowski distance, or the*  $L_p$  *norm of difference vector*

$$d(i,j) = \|\mathbf{x}_i - \mathbf{x}_j\|_p$$
, where  $\|\mathbf{z}\|_p = \left(\sum_{i=1}^m |z_i|^p\right)^{1/p}$ 

- Special cases:
  - if p = 1, d is the Manhattan distance
  - if p = 2, d is the Euclidean distance
  - if  $p = \infty$ ,  $\|\mathbf{x}_i \mathbf{x}_j\|_{\infty} = \max_{k=1}^m |\mathbf{x}_{ik} \mathbf{x}_{jk}|$

## Similarity and Dissimilarity Between Objects (Cont.)

- Other similarity/distance functions:
  - Mahalanobis distance
  - Jaccard, Dice, cosine similarity, Pearson correlation coefficient
- Metric distance
  - Properties

• 
$$d(i,j) \geq 0$$

• 
$$d(i,i) = 0$$

$$\bullet d(i,j) = d(j,i)$$

$$d(i,j) \leq d(i,k) + d(k,j)$$

common to all distance functions

positiveness symmetry reflexivity

triangular inequality

## Areas within a unit distance from q under different L<sub>p</sub> distances



| Obj | <b>Vector Representation</b> |  |  |  |  |  |  |  |
|-----|------------------------------|--|--|--|--|--|--|--|
| i   | [0, 1, 0, 1, 0, 0, 1, 0]     |  |  |  |  |  |  |  |
| j   | [0, 0, 0, 0, 1, 0, 1, 1]     |  |  |  |  |  |  |  |

### **Binary Variables**

A contingency table for binary data

|          |     | Object j |                |     |  |  |
|----------|-----|----------|----------------|-----|--|--|
|          |     | 1        | 0              | sum |  |  |
|          | 1   | a        | b              | a+b |  |  |
| Object i | 0   | c        | d              | c+d |  |  |
|          | sum | a+c      | <i>b d b+d</i> | p   |  |  |

Simple matching coefficient (invariant, if the binary variable is <u>symmetric</u>):  $d(i,j) = \frac{b+c}{a+b+c+d}$ 

Jaccard coefficient (noninvariant if the binary variable is <u>asymmetric</u>):  $d(i,j) = \frac{b+c}{a+b+c}$ 

## Dissimilarity between Binary Variables

$$d(i,j) = \frac{b+c}{a+b+c}$$

#### Example

| Name | Gender | Fever | Cough | Test-1 | Test-2      | Test-3 | Test-4      |
|------|--------|-------|-------|--------|-------------|--------|-------------|
| Jack | M      | Y     | M     | P      | M           | N      | V           |
| Mary | F      | Y     | N .   | P      | $\bigwedge$ | P      | $\bigwedge$ |
| Jim  | M      | Y     | P '   | N      | N           | N      | N           |

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

#### **Nominal Variables**

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
  - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: One-hot encoding
  - creating a new binary variable for each of the M nominal states

#### **Ordinal Variables**

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
  - replace  $x_{if}$  by their rank

$$r_{if} \in \{1, ..., M_f\}$$

map the range of each variable onto [0, 1] by replacing
 i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

 compute the dissimilarity using methods for intervalscaled variables

#### **Ratio-Scaled Variables**

 Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae<sup>Bt</sup> or Ae<sup>-Bt</sup>

#### Methods:

- treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
- apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled A Categorization of Major Clustering Methods

#### Major Clustering Approaches

- Partitioning algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchy algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Graph-based algorithms: Spectral clustering
- Density-based: based on connectivity and density functions
- Grid-based: based on a multiple-level granularity structure
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

#### Partitioning Methods

#### Partitioning Algorithms: Problem Definition

- Partitioning method: Construct a "good" partition of a database of n objects into a set of k clusters
  - Input: a *n* x *m* data matrix
- How to measure the "goodness" of a given partitioning scheme?
  - Cost of a cluster,  $\operatorname{cost}(C_i) = \sum_{\mathbf{x}_j \in \mathcal{C}_i} \|\mathbf{x}_j \operatorname{center}(\mathcal{C}_i)\|_2^2$ • Note: L<sub>2</sub> distance used
    - Analogy with binning?
    - How to choose the center of a cluster?
      - Centroid (i.e., Avg) of  $X_i$  → Minimizes  $cost(C_i)$
  - Cost of k clusters: sum of cost(C<sub>i</sub>)

## Example (2D)



#### Partitioning Algorithms: Basic Concept

- It's an optimization problem!
  - Global optimal:
    - NP-hard (for a wide range of cost functions)
    - Requires exhaustively enumerate all  $\binom{n}{k} = \Theta\left(\frac{k^n}{k!}\right)$  partitions
      - Stirling numbers of the second kind
  - Heuristic methods:
    - <u>k-means</u>: an instance of the EM (expectation-maximization) algorithm
    - Many variants

Cost function: Total squared distance of points to its cluster representative

### The K-Means Clustering Method

- Lloyds Algorithm:
  - Initialize k centers randomly
  - 2. While stopping condition is not met
    - Assign each object to the cluster with the nearest center
    - Compute the new center for each cluster.
- Stopping condition =?

What are the final clusters?

### The *K-Means* Clustering Method

#### Example



#### Comments on the *K-Means* Method

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</li>
  - Comparing: PAM: O(k(n-k)2), CLARA: O(ks2 + k(n-k))

#### Comment:

- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms
- No guarantee on the quality. Use k-means++.

#### Weakness

- Applicable only when *mean* is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

#### Variations of the *K-Means* Method

- A few variants of the k-means which differ in
  - Selection of the initial k means
  - Dissimilarity calculations
  - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
  - Replacing means of clusters with <u>modes</u>
  - Using new dissimilarity measures to deal with categorical objects
  - Using a <u>frequency</u>-based method to update modes of clusters
  - A mixture of categorical and numerical data: k-prototype method

## k-Means++ [Arthur and Vassilvitskii, SODA 2007]

A simple initialization routine that guarantees to find a solution that is O(log k) competitive to the optimal k-means solution.

#### Algorithm:

- Find first center uniformly at random
- 2. For each data point x, compute D(x) as the distance to its nearest center
- Randomly sample one point as the new center, with probabilities proportional to D<sup>2</sup>(x)
- Goto 2 if less than k centers
- 5. Run the normal k-means with the k centers

#### What is the problem of k-Means Method?

- The k-means algorithm is sensitive to outliers!
  - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.



#### K-medoids (PAM)

<u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

### The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
  - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
  - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

## Typical k-medoids algorithm (PAM)



## PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
  - Select k representative objects arbitrarily
  - For each pair of non-selected object h and selected object i, calculate the total swapping cost TC<sub>ih</sub>
  - For each pair of *i* and *h*,
    - If  $TC_{ih} < 0$ , **i** is replaced by **h**
    - Then assign each non-selected object to the most similar representative object
  - repeat steps 2-3 until there is no change

# What is the problem with PAM?

- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- PAM works efficiently for small data sets but does not scale well for large data sets.
  - O(k(n-k)<sup>2</sup>) for each iteration
     where n is # of data,k is # of clusters
- → Sampling based method,
  CLARA(Clustering LARge Applications)

## Gaussian Mixture Model for Clustering

- k-means can be deemed as a special case of the EM algorithm for GMM
- GMM
  - allows "soft" cluster assignment:
    - model Pr(C | x)
  - also a good example of
    - Generative model
    - Latent variable model
  - Use the Expectation-Maximization (EM) algorithm to obtain a local optimal solution

#### Hierarchical Methods

## Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits
  - A clustering of the data objects is obtained by cutting the dendrogram at the desired level, then each connected component forms a cluster.



## Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
  - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

## Hierarchical Clustering

- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - At each step, merge the <u>closest</u> pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time

## **Agglomerative Clustering Algorithm**

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
  - 1. Compute the <u>proximity matrix</u> (i.e., matrix of pair-wise distances)
  - Let each data point be a cluster
  - 3. Repeat
  - 4. Merge the two closest clusters
  - 5. Update the proximity matrix
  - 6. Until only a single cluster remains
- Key operation is the computation of the <u>proximity of</u> two <u>clusters</u> ← different from that of two <u>points</u>
  - Different approaches to defining the distance between clusters distinguish the different algorithms

## **Starting Situation**

Start with clusters of individual points and a proximity matrix



## **Intermediate Situation**

After some merging steps, we have some clusters





**Proximity Matrix** 



### **Intermediate Situation**

 We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.



## After Merging

The question is "How do we update the proximity matrix?"



|                |    | U         |    |    |
|----------------|----|-----------|----|----|
|                | C1 | <b>C5</b> | C3 | C4 |
| <u>C1</u>      |    | ?         |    |    |
| C2 U <u>C5</u> | ?  | ٠.        | ?  | ?  |
| <u>C3</u>      |    | ?         |    |    |
| <u>C4</u>      |    | ?         |    |    |

**Proximity Matrix** 



#### How to Define Inter-Cluster Distance



- MAX
- Centroid-based
- Group Average
- Other methods driven by an objective function
  - Ward's Method uses squared error



- MAX
- Centroid-based
- Group Average
- Other methods driven by an objective function
  - Ward's Method uses squared error



- MAX
- Centroid-based
- Group Average
- Other methods driven by an objective function
  - Ward's Method uses squared error



- MAX
- Centroid-based
- Group Average
- Other methods driven by an objective function
  - Ward's Method uses squared error



|                        | p1 | p2 | рЗ | p4 | р5 | <u>.</u> |
|------------------------|----|----|----|----|----|----------|
| <b>p1</b>              |    |    |    |    |    |          |
| <u>p2</u>              |    |    |    |    |    |          |
| <u>p2</u><br>p3        |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |
| <u>p4</u><br><u>p5</u> |    |    |    |    |    |          |
|                        |    |    |    |    |    |          |

- MIN
- MAX
- Centroid-based
- Group Average

Note: not simple avg distance between the clusters

- Other methods driven by an objective function
  - Ward's Method uses squared error

## Cluster Similarity: MIN or Single Link/LINK

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
  - i.e.,  $sim(C_i, C_j) = min(dissim(p_x, p_y)) // p_x \in C_i, p_y \in C_j$ =  $max(sim(p_x, p_y))$
  - Determined by one pair of points, i.e., by one link in the proximity graph.

|    | P1   | P2   | Р3   | P4   | P5   |
|----|------|------|------|------|------|
| P1 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 |
| Р3 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 |
| P4 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 |
| P5 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 |



 $sim(C_i, C_i) = max(sim(p_x, p_y))$ 

# Single-Link Example

|    | P1   | P2   | Р3   | P4   | P5   |
|----|------|------|------|------|------|
| P1 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 |
| Р3 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 |
| P4 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 |
| P5 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 |

|    | P1     | P2   | P3   | P4   | P5   |
|----|--------|------|------|------|------|
| P1 | 1.00 ( | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 |        | 1.00 | 0.70 | 0.60 | 0.50 |
| P3 |        |      | 1.00 | 0.40 | 0.30 |
| P4 |        |      |      | 1.00 | 0.80 |
| P5 |        |      |      |      | 1.00 |

|    | 12   | P3   | P4   | P5   |
|----|------|------|------|------|
| 12 | 1.00 | 0.70 | 0.65 | 0.50 |
| Р3 |      | 1.00 | 0.40 | 0.30 |
| P4 |      |      | 1.00 | 0.80 |
| P5 |      |      |      | 1.00 |

|    | 12     | Р3   | 45   |
|----|--------|------|------|
| 12 | 1.00 ( | 0.70 | 0.65 |
| Р3 |        | 1.00 | 0.40 |
| 45 |        |      | 1.00 |
|    |        |      |      |



# Hierarchical Clustering: MIN



**Nested Clusters** 

Dendrogram

# Strength of MIN



• Can handle non-elliptical shapes

## **Limitations of MIN**





**Original Points** 

**Two Clusters** 

• Sensitive to noise and outliers

# Cluster Similarity: MAX or Complete Link (CLINK)

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
  - i.e.,  $sim(C_i, C_j) = max(dissim(p_x, p_y)) // p_x \in C_i, p_y \in C_j$ =  $min(sim(p_x, p_y))$
  - Determined by all pairs of points in the two clusters

|    | P1   | P2   | Р3   | P4   | P5   |
|----|------|------|------|------|------|
| P1 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 |
| P3 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 |
| P4 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 |
| P5 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 |



 $sim(C_i, C_j) = min(sim(p_x, p_y))$ 

# Complete-Link Example

|    | P1   | P2   | Р3   | P4   | P5   |
|----|------|------|------|------|------|
| P1 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 |
| Р3 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 |
| P4 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 |
| P5 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 |

|    | P1     | P2   | P3   | P4   | P5   |
|----|--------|------|------|------|------|
| P1 | 1.00 ( | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 |        | 1.00 | 0.70 | 0.60 | 0.50 |
| P3 |        |      | 1.00 | 0.40 | 0.30 |
| P4 |        |      |      | 1.00 | 0.80 |
| P5 |        |      |      |      | 1.00 |

|    | 12   | P3   | P4   | P5   |
|----|------|------|------|------|
| 12 | 1.00 | 0.10 | 0.60 | 0.20 |
| P3 |      | 1.00 | 0.40 | 0.30 |
| P4 |      |      | 1.00 | 0.80 |
| P5 |      |      |      | 1.00 |

|    | 12   | Р3   | 45   |
|----|------|------|------|
| 12 | 1.00 | 0.10 | 0.20 |
| Р3 |      | 1.00 | 0.30 |
| 45 |      |      | 1.00 |
|    |      |      |      |



# Hierarchical Clustering: MAX





**Nested Clusters** 

Dendrogram

# Strength of MAX





**Original Points** 

**Two Clusters** 

• Less susceptible to noise and outliers

### Limitations of MAX



**Two Clusters** 

•Tends to break large clusters

**Original Points** 

•Biased towards globular clusters

# Cluster Similarity: Group Average

- GAAC (Group Average Agglomerative Clustering)
- Similarity of two clusters is the average of pair-wise similarity between points in the two clusters.

 Why not using simple average distance? This method guarantees that no inversions can occur.



 $sim(C_i, C_j) = avg(sim(p_i, p_j))$ 

# Group Average Example

|    | P1   | P2   | Р3   | P4   | P5   |
|----|------|------|------|------|------|
| P1 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 |
| Р3 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 |
| P4 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 |
| P5 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 |

|    | P1     | P2   | Р3   | P4   | P5   |
|----|--------|------|------|------|------|
| P1 | 1.00 ( | 0.90 | 0.10 | 0.65 | 0.20 |
| P2 |        | 1.00 | 0.70 | 0.60 | 0.50 |
| P3 |        |      | 1.00 | 0.40 | 0.30 |
| P4 |        |      |      | 1.00 | 0.80 |
| P5 |        |      |      |      | 1.00 |

|    | 12   | Р3    | P4    | P5    |
|----|------|-------|-------|-------|
| 12 | 1.00 | 0.567 | 0.717 | 0.533 |
| Р3 |      | 1.00  | 0.40  | 0.30  |
| P4 |      |       | 1.00  | 0.80  |
| ר  |      |       |       | 4 00  |

|    | 12  | P3    | 45    |
|----|-----|-------|-------|
| 12 | 1.0 | 0.567 | 0.608 |
| Р3 |     | 1.00  | 0.5   |
| 45 |     |       | 1.00  |
|    |     |       |       |

$$Sim(12,3)=2*(0.1+0.7+0.9)/6 = 0.5666666$$
  
 $Sim(12,45)=2*(0.9+0.65+0.2+0.6+0.5+0.8)/12 = 0.608$ 



# Hierarchical Clustering: Centroidbased and Group Average

 Compromise between Single and Complete Link

- Strengths
  - Less susceptible to noise and outliers

- Limitations
  - Biased towards globular clusters

# More on Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
  - do not scale well: time complexity of at least  $O(n^2)$ , where n is the number of total objects
  - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
  - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
  - CURE (1998): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction
  - CHAMELEON (1999): hierarchical clustering using dynamic modeling

# **Spectral Clustering**

See additional slides.