CLASSIFYING NOISE SOUNDS

Presented by: Alanoud Alosaimi, Raghad Althunayan, Shaikha bin Ateeq

TABLE OF CONTENTS

INTRODUCTION

Sounds are all around us. Whether directly or indirectly. Sounds outline the context of our daily activities, conversations, music, noise. The human brain is continuously processing and understanding this audio data, so how the machine can understand it?

GOAL:

Apply Deep Learning techniques to the classification of environmental sounds:

- Assisting deaf individuals in their daily activities
- Safety and security capabilities
- Smart home use

TOOLS

WORKFLOW

DATA STORY

Urban sounds classification

From kaggel

Row = 8733

Class label [10]=

- Air Conditioner
- Car Horn
- Children Playing
- Dog bark
- Drilling
- Engine Idling
- Gun Shot
- Jackhammer
- Siren
- Street Music

DATA STORY

Urban sounds classification

Row = 8733

Class label [10]=

- Air Conditioner
- Car Horn
- Children Playing
- Dog bark
- Drilling
- Engine Idling
- Gun Shot
- Jackhammer
- Siren
- Street Music

Noise sounds classification

From zenodo

Row = 2171

Class label [11]=

- Applause
- Keys_jangling
- Telephone
- Cough
- Microwave oven
- Laughter
- Tearing
- Fireworks
- Bus
- Scissors
- Computer_keyboard'

Before = (8733, 10)

After = (10904, 21)

One dataset not enough COMPLEXITY NEEDED!

DATA STORY

Audio Samples

We heard the audio samples, Do we know now its **PROPERTIES**?

AUDIO PROPERTIES:

Audio Channels

AUDIO PROPERTIES:

• Sample Rate

AUDIO PROPERTIES:

• Bit-Depth

Waveplot

Specgram Plot

BUT!!

Can we use the spectrum images as input for our model? or something else?

FEATURE EXTRACTION METHOD: MFCC

The MFCC summarises the frequency distribution across the window size, to analyse both the frequency and time characteristics of the sound. These audio representations will allow us to identify features for classification.

-0.2963816 -0.3560971 -0.27297518 -0.39299247, -0.33859769 -0.4041523, -0.53813744, -0.52863103, -0.23635665, -0.20224652, -0.360925, -0.4068555,	-0.309869 -0.66855148 -0.7531548 -0.7531548 -0.7531548 -0.7531548 -0.9061938 -0.475869574 -0.2672934 -0.474798554 -0.2672934 -0.44798554 -0.2672934 -0.2672934 -0.2672934 -0.2672934 -0.2719564 -0.2672934 -0.2719564 -0.2672934 -0.271956569 -0.271956569 -0.271956569 -0.30666392 -0.306	-0. 29231593 -0. 29231593 -0. 77658434 -0. 778185385 -0. 778185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 78185385 -0. 781853	-0.2699363 -0.22391006, -0.27417266, -0.210177219, -0.17777492, -0.3978389, -0.25736403, -0.3417926, -0.40582865, -0.40582865, -0.40582865, -0.50796515, -0.30450806, -0.19710773, -0.26224333, -0.52654827, -0.48837436, -0.36755478,	-0.36449316, -0.38918048, -0.4472869, -0.545878,
-0.46702236, -0.35711053,	-0.34863254, -0.2876631,	-0.27881584, -0.19479881,	-0.27385667, 0.	-0.3146194 , , dtype=float32)

All we think data now is PERFECT!

But, the models **didn't predict** some classes (**imbalanced data**)

Classes Imbalanced

Solving Classes Imbalanced

Data Augmentation

The objective is to make our model invariant to those perturbations and enhance its ability to generalize.

Data Augmentation:

Noise

Data Augmentation:

Shifting the Audio

Data Augmentation:

• Time stretching (changing play time)

Data Augmentation

INITIAL DATA NEW DATA MERGED DATA 10903 54515 65418 (10903, 21)(65418, 21)

PADDING

Length sounds problem

▶ 0:22 / 0:22 **------**

Least length (fram_num = 174)

Longest length (fram_num = 1292)

Least, why?

SPLIT SIZE

Train := 0.8 Test: 0.2

Train := 0.75 Validations: 0.25

MODELS RESULT (1)

	TRAIN ACC	VAL ACC	EPOCHS	ватсн
BEASLINE	0.61	0.45	500	50
CNN2 (1)	0.28	0.25	200	50
CNN2 (2)	0.60	0.44	1000	50
CNN2 (3)	0.33	0.21	300	300
CNN2 (4)	0.48	0.44	500	50

MODELS RESULT (2)

	TRAIN ACC	VAL ACC	EPOCHS	ватсн
BEASLINE	0.69	0.63	500	50
CNN2D (1)	0.80	0.77	300	300
CNN2D (2)	0.89	0.78	300	300
CNN2D (3)	0.81	0.75	300	300
CNN1D	0.27	0.3	500	50
LSTM	0.3	0.34	500	50

FINAL RESULT

MODEL ARCHITECTURE

Conv2D (Filter size = 128)

MaxPooling2D

Conv2D (Filter size = 128)

MaxPooling 2D

Droupout (0.8)

Flatten

Dense (512, activation = 'relu') Droupout (0.8) Dense (512, activation = 'relu')

Droupout (0.8)

Dense (18, activation = softmax)

CHALLENGES

JUPYTER

Ram crash

RUN

Long time

FUTURE WORK

- Build an app that helps the deaf in their daily life
- Transfer Learning Model

MODEL DEPLOYMENT DEMO

APPENDIX

DATA SOURCE:

- 1. https://urbansounddataset.weebly.com/urbansound8k.html
- 2. https://zenodo.org/record/2552860#.Yek-aVhBy3K

THANKS