Braids and the Jones polynomial

Thesis presentation

Apoorv Potnis

IISERB

April 2023

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 1

Outline

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 2

Braids

Subsection 1

Geometric definition

Three dimensional representation

Figure: Three dimensional geometric representation of a braid

Two dimensional representation

Figure: A projection of the braid

Multiplication of braids

Figure: Multiplication of two braids

The identity braid \mathbf{I}_n

Figure: The identity I₃

Inverse of braids

Figure: Inverse of a braid

Subsection 2

Generators and relations

Generators of the braid group

Figure: Generators σ_i and σ_i^{-1}

Type II move: $\sigma_i \sigma_i^{-1} = \mathbf{I}_n$

Figure: A type II move illustrating $\sigma_i \sigma_i^{-1} = \mathbb{I}_n$

Type III move: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Figure: A type III move illustrating $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Sliding of crossings: $\sigma_i \sigma_j = \sigma_j \sigma_i$

Figure: Sliding of crossings illustrating $\sigma_i \sigma_j = \sigma_j \sigma_i$

Subsection 3

Algebraic definition

Presentation of the braid group

The Artin braid group B_n admits the following presentation on the generators σ_i , for $1 \le i \le n-1$.

$$\mathsf{B}_n = \left\langle \begin{array}{ccc} \sigma_1, \dots, \sigma_{n-1} & \sigma_i \sigma_i^{-1} & = & \mathbf{I}_n \\ \sigma_i \sigma_{i+1} \sigma_i & = & \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } i+1 \leq n-1 \\ \sigma_i \sigma_i & = & \sigma_i \sigma_i & \text{if } |i-j| \geq 2 \end{array} \right\rangle$$

Table of Contents

Outline

Braids

Geometric definition Generators and relations Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 3

Closure

Subsection 1

Closure of a braid

Closure of a braid \overline{b}

Figure: Closure of a braid

Braids and links

Every closure of a braid is a link.

Theorem (Alexander)

Every link is ambient isotopic to a closure of a braid.

Subsection 2

Equivalence of closures of braids

Conjugation

Figure: Conjugation process illustrating the link equivalence of $\overline{gbg^{-1}}$ and \overline{b} (part 1)

Conjugation

Figure: Conjugation process illustrating the link equivalence of $\overline{gbg^{-1}}$ and \overline{b} (part 2)

Markov theorem

Theorem (Markov)

Two braids whose closures are ambient isotopic to each other are related by a finite sequence of the following operations.

- Braid equivalences, i.e. equivalences resulting due to the braid relations.
- 2. Conjugation.
- 3. Markov moves.

Markov move

Figure: Markov move with $b = \sigma_1^{-1}$.

Table of Contents

Outline

Braids

Geometric definition
Generators and relations
Algebraic definition

Closure

Closure of a braid Equivalence of closures of braids

Section 4

Figure: A projection of the braid with downward orientation

For the consistency of the orientation, it must be either upwards or downwards for all strands.

Writhe is the sum of the assigned numbers.

Bracket polynomial of a braid:

$$\langle \cdot \rangle \colon \mathsf{B}_n \to \mathbb{Z}[A, A^{-1}]$$

 $\langle \cdot \rangle \colon b \mapsto \langle \overline{b} \rangle$

 $\langle \cdot \rangle$ is well defined and invariant under conjugation.

Normalisation using writhe:

$$L(K) := (-A^3)^{-w(b)} \langle \overline{b} \rangle$$

$$\left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle = A \left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle + A^{-1} \left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle$$

$$\left| \cdots \right| \left| \bigcirc \left| \cdots \right| = \mathbf{I}_n \quad \text{and} \quad \mathsf{U}_i \coloneqq \left| \cdots \right| \left| \bigcirc \left| \cdots \right| \right|$$

$$\left\langle \sigma_{i}^{-1}\right\rangle =A\left\langle \mathsf{U}_{i}\right\rangle +A^{-1}\left\langle \mathbf{I}_{n}\right\rangle$$

$$\langle \sigma_i \rangle = A \langle \mathbb{I}_n \rangle + A^{-1} \langle \mathsf{U}_i \rangle$$

We refer to U_i 's as "hooks" or "input-output" forms.

They don't belong to the Artin braid group.

Figure: Input-output forms or hooks for 4 strands

Example

