KTH Matematik

Olof Heden

Σ p	G/U	bonus

förnamn	pnr	årskurs

Lösning till kontrollskrivning 4A, den 7 maj 2014, kl 10.00-11.00 i SF1610 Diskret matematik för CINTE och CMETE.

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd ks n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna, använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.) **Kryssa för** om påståendena **a**)-**f**) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Det finns total 32 stycken Booleska funktioner i de fem variablerna x,y,z,w och $u.$		X
b)	I varje Boolesk algebra gäller att $(x + xy) + \bar{x} = 1$.	X	
c)	I ett RSA-krypto med parametrarna n,e,m och d kan m vara lika med 28.	X	
d)	Ett RSA-krypto med $n=123$ kan ha den dekrypterande nyckeln $d=45.$		X
e)	Orden 11110101 och 00110101 kan båda tillhöra samma 1-felsrättand kod.		X
f)	Det finns 1-felsrättande koder C bestående av 16 ord, samtliga av längd 15.	X	

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Om ett RSA-krypto har den offentliga nyckeln e=9 vilka möjligheter finns då för parametern n om vi kräver att $33 \le n \le 40$.

(Svara bara.)

SVAR: $n \in \{33, 34\}$

b) (1p) Skriv nedanstående Booleska funktion f(x, y, z)

$$f(x, y, z) = (\bar{x} + y) \ \bar{z}$$

på disjunktiv normalform.

(Svara bara.)

SVAR: $xy\bar{z} + \bar{x}\bar{y}\bar{z} + \bar{x}y\bar{z}$.

c) (1p) Förklara varför matrisen **H** nedan inte kan användas som kontrollmatris (parity-check matris) till en 1-felsrättande kod.

$$\mathbf{H} = \left[\begin{array}{cccccccc} 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array} \right]$$

SVAR: Två av matrisens kolonner är lika.

Namn	poäng uppg.3

3) (3p) Den 1-felsrättande koden C har kontrollmatrisen

- a) Ordet 110100000 tillhör inte C men går att rätta till ett ord \bar{c} i C. Bestäm detta ord \bar{c} .
 - b) Bestäm antalet ord i C.
 - c) Bestäm ett ord som koden inte klarar av att rätta.

OBS. Lösningen skall motiveras.

Lösning. Antal ord är $2^{\text{antal kolonner-antal rader}} = 2^{9-4} = 32$. För att rätta det givna ordet multilpicerar vi ordet med matrisen **H**. Vi får

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

vilket är kolonn nummer sju. Vi rättar ordet i den positionen till ordet 110100100. Om vi multiplicerar matrisen ${\bf H}$ med ordet 111000000 får vi

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

en kolonn som inte finns i matrisen **H**. Därför kan ordet 111000000 inte rättas.

Namn	poäng uppg.4

4) (3p) Ett RSA krypto har de offentliga nycklarna n=33 och e=3. Dekryptera meddelandet 2.

OBS. Lösningen skall motiveras och kalkyler redovisas.

Lösning. Då $n=3\cdot 11$ så $m=2\cdot 10=20$. Söker d med egenskapen $e\cdot d\equiv 1 \pmod{m}$, vilket ger d=7 eftersom $3\cdot 7=21$. Vi dekrypterar nu meddelandet 2 till $D(2)=2^7 \pmod{33}$. Då

$$2^7 \equiv_{33} 128 \equiv_{33} 29,$$

 $\mathring{så}$

SVAR: 29.

Namn	poäng uppg.5

5) (3p) Bestäm antalet Booleska funktioner g i fyra variablerna x, y, z och w, dvs g = g(x, y, z, w), som satisfierar ekvationssystemet

$$(x+yz)\bar{w}g(x,y,z,w) = 0.$$

OBS. Lösningen skall motiveras.

Lösning. Funktionen g måste ha värdet 0 i de punkter där $(x + yz)\bar{w} = 1$, i övriga punkter kan g tilldelas ett godtyckligt värde. Vi finner att

$$(x+yz)\bar{w} = x(y+\bar{y})(z+\bar{z})\bar{w} + (x+\bar{x})yz\bar{w} = xyz\bar{w} + xy\bar{z}\bar{w} + x\bar{y}z\bar{w} + x\bar{y}z\bar{w} + \bar{x}yz\bar{w}$$

Eftersom den disjunktiva normalformen av $(x+yz)\bar{w}$, vilket är "koefficienten" framför g, består av 5 fundamentala konjunktioner, så är detta uttryck 1 i precis 5 punkter. I resterande 11 punkter i g:s definitionsmängd kan alltså g:s funktionsvärde väljas godtyckligt, antagligen 0 eller 1. Vi får

SVAR: $2^{11} = 2048$.