

- ▶플래시 메모리에 대해 설명할 수 있다.
- ▶STM32F429의 플래시 메모리에 대해 설명할 수 있다.
- ▶STM32F429의 플래시 메모리 Read 프로그램을 설계할 수 있다.
- ▶STM32F429의 플래시 메모리 Erase 및 Write 프로그램을 설계할 수 있다.

- ▶STM32F429의 플래시 메모리
- ▶플래시 메모리 프로그래밍

- ◎ 플래시 메모리란 무엇인가?
 - 메모리 반도체 개요

RAM

- Random Access Memory
- 휘발성 메모리

ROM

- Read Only Memory
- 비 휘발성 메모리

- ◎ 플래시 메모리란 무엇인가?
 - 메모리 반도체 개요

RAM

- Random Access Memory
- 휘발성 메모리

전원이 꺼졌다가 다시 들어오면 원래의 데이터가 없어지는 메모리

ROM

- Read Only Memory
- 비 휘발성 메모리

전원이 꺼졌다가 다시 들어와도 원래의 데이터가 살아 있는 메모리

- **⑤** 플래시 메모리란 무엇인가?
 - 메모리 반도체의 종류

- ⊙ 플래시 메모리란 무엇인가?
 - 메모리 반도체의 종류

- ◎ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 역사
 - 1 말 그대로 사용자는 쓰지는 못하고 읽기만 할 수 있는 메모리
 - 공장에서 한번은 메모리에 원하는 값을 써야 함

ROM 설계 기술이 발달하면서 공장에서만 쓰는 것이 가능했다가 지금은 사용자가 마음대로 쓸 수 있는 수준이 됨

- ⊙ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 역사

- ⊙ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory) 메모리
 - Mask ROM
 - 1 최초의 ROM
 - 공장에서 한번 제조하면 사용자는 읽기만 가능한 ROM
 - 3 마치 사진 현상하듯 같은 값만을 계속 찍는 방식
 - 4 데이터가 사진 현상과 같이 마스크 안에 형성되기 때문에 붙여진 이름
 - 5 사용자는 수정 불가능

- ◎ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory) 메모리
 - ··· PROM
 - Programmable Read Only Memory
 - 2 사용자가 1회에 한해서 새로운 내용을 기록할 수 있는 ROM
 - 3 메모리 제조 시 모든 메모리 비트가 퓨즈로 연결하는 방식

사용자가 원하면 높은 전압(보통 12V, 동작 전압은 3.3~5V)을 가해 ROM 내부의 퓨즈를 끊는 방식으로 수정, 그래서 한번만 수정 가능

- ⊙ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류

...→ EPROM

Erasable PROM, 삭제 가능한 ROM

한번이 아닌 여러 번 수정 가능한 ROM

지우는 방식에 따른 종류

자외선: UVEPROM

 Ultra-Violet Erasable Programmable Read Only Memory 높은 전압(12V): EEPROM

Electrically Erasable Programmable Read-Only Memory

- ◎ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류

···→ EPROM

- EPROM eraser를 사용하여 지울 수 있음
- 지우는 시간 30~40분
- 지울 수 있는 횟수 20회 전후

- **⑥** 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류
 - **...**→ EEPROM

Electrically Erasable Programmable Read-Only Memory, E2PROM

첫 제품: 1983년 인텔사의 2816

칩의 한 핀에 전기적 신호를 가해줌으로써 내부 데이터가 지워지게 되어 있는 ROM

- ⊙ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류

...→ EEPROM

 수정을 위해 높은 전압(보통 12V)가 필요하므로 ROM을 소켓형태로 부착하고 필요하면 롬라이터를 통해 수정하고 다시 보드에 부착하는 방식 사용

- ⊙ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류
 - ··· 플래시 메모리

1

기존의 모든 단점 해결한 ROM으로 거의 모든 전자 제품에 내장되어 사용되고 있음 2

지우기 위해 높은 전압이 따로 필요치 않음

- ◎ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류
 - ··· 플래시 메모리

3

EEPROM과는 달리 한번 지울 때 Block단위로 지우기 때문에 지우는 속도도 훨씬 빠름

4

롬라이터와 같은 별도의 장비도 필요없고 쓰는 속도도 빨라졌기 때문에 개발 속도도 비약적으로 발전함

- ⊙ 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류
 - ··· 플래시 메모리

- **⑥** 플래시 메모리란 무엇인가?
 - O ROM(Read Only Memory)의 종류
 - ··· 플래시 메모리

NOR FLASH

- NOR flash에 비해 가격이 몇 배 저렴함
- Bad block이 발생할 수 있음
- 이를 해결하기 위한 여러 가지 노력으로 현재는 가장 많이 사용되는 메모리가 되고 있음
- NAND flash를 사용한 제품: USB 메모리, MMC카드, SSD, eMMC등

- STM32F429의 플래시 메모리 소개
- O STM32F429의 메모리 맵

 - STM32F429ZI는 2Mbyte 크기의 플래시 메모리를 가짐

STM32F429의 플래시 메모리 소개

O STM32F429의 메모리 맵

어드레스 범위

0x08000000~0x081FFFFF

CCM data RAM

(64 KB data SRAM)

Reserved

Flash memory

memory or SRAM depending on the BOOT pins

Reserved
Aliased to Flash, system

2Mbyte의 범위

0~0x1FFFFF

- ♥ STM32F429의 플래시 메모리
- STM32F429의 메모리 모듈 구조

○ STM32F429의 플래시 메모리 소개

○ STM32F429의 메모리 모듈 구조

Table 6. Flash module - 2 Mbyte dual bank organization (STM32F42xxx and STM32F43xxx)

Block	Bank	Name	Block base addresses	Size
		Sector 0	0x0800 0000 - 0x0800 3FFF	16 Kbytes
		Sector 1	0x0800 4000 - 0x0800 7FFF	16 Kbytes
		Sector 2	0x0800 8000 - 0x0800 BFFF	16 Kbytes
		Sector 3	0x0800 C000 - 0x0800 FFFF	16 Kbyte
		Sector 4	0x0801 0000 - 0x0801 FFFF	64 Kbytes
	Bank 1	Sector 5	0x0802-0000 - 0x0803 FFFF	128 Kbyte
		Sector 6	0x0804 0000 - 0x0805 FFFF	128 Kbyte
			-	-
		-	-	-
•		-	-	-
Main memory		Sector 11	0x080E 0000 - 0x080F FFFF	128 Kbyte
wain memory		Sector 12	0x0810 0000 - 0x0810 3FFF	16 Kbyte
		Sector 13	0x0810 4000 - 0x0810 7FFF	16 Kbyte
		Sector 14	0x0810 8000 - 0x0810 BFFF	16 Kbyte
		Sector 15	0x0810 C000 - 0x0810 FFFF	16 Kbyte
		Sector 16	0x0811 0000 - 0x0811 FFFF	64 Kbyte
	Bank 2	Sector 17	0x0812 0000 - 0x0813 FFFF	128 Kbyte
		Sector 18	0x0814 0000 - 0x0815 FFFF	128 Kbyte
			-	-
			-	-
			-	-
		Sector 23	0x081E 0000 - 0x081F FFFF	128 Kbyte
System memory		0x1FFF 0000 - 0x1FFF 77FF	30 Kbytes	
OTP		0x1FFF 7800 - 0x1FFF 7A0F	528 bytes	
Option bytes	Bank 1		0x1FFF C000 - 0x1FFF C00F	16 bytes
Option bytes	Bank 2		0x1FFE C000 - 0x1FFE C00F	16 bytes

Main memory

- → 주요 플래시 메모리 공간으로 2개의 Bank로 나뉨
- → 각각은 16Kbytes 또는 64Kbytes, 12Kbytes 크기의 섹터로 나뉨
- ··· 총 24개의 섹터로 구성

○ STM32F429의 플래시 메모리

○ STM32F429의 메모리 모듈 구조

Table 6. Flash module - 2 Mbyte dual bank organization (STM32F42xxx and STM32F43xxx)

Block	Bank	Name	Block base addresses	Size
	Bank 1	Sector 0	0x0800 0000 - 0x0800 3FFF	16 Kbytes
		Sector 1	0x0800 4000 - 0x0800 7FFF	16 Kbytes
		Sector 2	0x0800 8000 - 0x0800 BFFF	16 Kbytes
		Sector 3	0x0800 C000 - 0x0800 FFFF	16 Kbyte
		Sector 4	0x0801 0000 - 0x0801 FFFF	64 Kbytes
		Sector 5	0x0802 0000 - 0x0803 FFFF	128 Kbytes
		Sector 6	0x0804 0000 - 0x0805 FFFF	128 Kbytes
		-	-	arear -
		-	- seere	-
		-	- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-
Main memory		Sector 11	0x080E 0000 - 0x080F FFFF	128 Kbytes
waiii memory	Bank 2	Sector 12	0x0810 0000 - 0x0810 3FFF	16 Kbytes
		Sector 13	0x0810 4000 - 0x0810 7FFF	16 Kbytes
		Sector 14	0x0810-8000 - 0x0810 BFFF	16 Kbytes
		Sector 15	0x0810 C000 - 0x0810 FFFF	16 Kbytes
		Sector 16	0x0811 0000 - 0x0811 FFFF	64 Kbytes
		Sector 17	0x0812 0000 - 0x0813 FFFF	128 Kbytes
		Sector 18	0x0814 0000 - 0x0815 FFFF	128 Kbytes
		.eeeee ²	-	-
		. see e e e e e e e e e e e e e e e e e	-	-
		eeee.	-	-
	"	Sector 23	0x081E 0000 - 0x081F FFFF	128 Kbytes
System memory		0x1FFF 0000 - 0x1FFF 77FF	30 Kbytes	
	ОТР		0x1FFF 7800 - 0x1FFF 7A0F	528 bytes
Option bytes	Bank 1		0x1FFF C000 - 0x1FFF C00F	16 bytes
Option bytes	Bank 2		0x1FFE C000 - 0x1FFE C00F	16 bytes

System memory

- → 0x1FFF0000~0x1FFF77FF의 어드레스 공간을 가짐
- ··· CPU가 부팅할 때 사용하는 메모리 공간으로 Boot mode에 따라 사용 유무가 결정되는 공간

○ STM32F429의 플래시 메모리

○ STM32F429의 메모리 모듈 구조

Table 6. Flash module - 2 Mbyte dual bank organization (STM32F42xxx and STM32F43xxx)

Block	Bank	Name	Block base addresses	Size
		Sector 0	0x0800 0000 - 0x0800 3FFF	16 Kbytes
		Sector 1	0x0800 4000 - 0x0800 7FFF	16 Kbytes
		Sector 2	0x0800 8000 - 0x0800 BFFF	16 Kbytes
		Sector 3	0x0800 C000 - 0x0800 FFFF	16 Kbyte
		Sector 4	0x0801 0000 - 0x0801 FFFF	64 Kbytes
	Bank 1	Sector 5	0x0802 0000 - 0x0803 FFFF	128 Kbyte
		Sector 6	0x0804 0000 - 0x0805 FFFF	128 Kbytes
		-	-	errer -
		-	de e e e e e e e e e e e e e e e e e e	-
		-		-
Main memory		Sector 11	0x080E 0000 - 0x080F FFFF	128 Kbytes
Wallimellory	Bank 2	Sector 12	0x0810 0000 - 0x0810 3FFF	16 Kbytes
		Sector 13	0x0810 4000 - 0x0810 7FFF	16 Kbytes
		Sector 14	0x0810-8000 - 0x0810 BFFF	16 Kbytes
		Sector 15	0x0810 C000 - 0x0810 FFFF	16 Kbytes
		Sector 16	0x0811 0000 - 0x0811 FFFF	64 Kbytes
		Sector 17	0x0812 0000 - 0x0813 FFFF	128 Kbytes
		Sector 18	0x0814 0000 - 0x0815 FFFF	128 Kbytes
			-	-
		. seese.	-	-
		e e e e e e e e e e e e e e e e e e e	-	-
	"	Sector 23	0x081E 0000 - 0x081F FFFF	128 Kbytes
System memory		0x1FFF 0000 - 0x1FFF 77FF	30 Kbytes	
OTP		0x1FFF 7800 - 0x1FFF 7A0F	528 bytes	
Option bytes	Bank 1		0x1FFF C000 - 0x1FFF C00F	16 bytes
Option bytes	Bank 2		0x1FFE C000 - 0x1FFE C00F	16 bytes

STM32F429의 플래시 메모리

O STM32F429의 메모리 모듈 구조

Table 6. Flash module - 2 Mbyte dual bank organization (STM32F42xxx and STM32F43xxx)

Block	Bank	Name	Block base addresses	Size
		Sector 0	0x0800 0000 - 0x0800 3FFF	16 Kbyte:
		Sector 1	0x0800 4000 - 0x0800 7FFF	16 Kbyte
		Sector 2	0x0800 8000 - 0x0800 BFFF	16 Kbyte
		Sector 3	0x0800 C000 - 0x0800 FFFF	16 Kbyte
		Sector 4	0x0801 0000 - 0x0801 FFFF	64 Kbyte
	Bank 1	Sector 5	0x0802 0000 - 0x0803 FFFF	128 Kbyte
		Sector 6	0x0804 0000 - 0x0805 FFFF	128 Kbyte
		-	-	-
		-	-	-
		-	-	- ,
Main memory		Sector 11	0x080E 0000 - 0x080F FFFF	128 Kbyte
Main memory		Sector 12	0x0810 0000 - 0x0810 3FFF	16 Kbyte
	Bank 2	Sector 13	0x0810 4000 - 0x0810 7FFF	16 Kbyte
		Sector 14	0x0810 8000 - 0x0810 BFFF	16 Kbyte
		Sector 15	0x0810 C000 - 0x0810 FFFF	16 Kbyte
		Sector 16	0x0811 0000 - 0x0811 FFFF	64 Kbyte
		Sector 17	0x0812 0000 - 0x0813 FFFF	128 Kbyte
		Sector 18	0x0814 0000 - 0x0815 FFFF	128 Kbyte
			-	-
		, see e e e e	-	-
		. seeses.	-	-
		Sector 23	0x081E 0000 - 0x081F FFFF	128 Kbyte
System memory**		0x1FFF 0000 - 0x1FFF 77FF	30 Kbyte	
	OTP		0x1FFF 7800 - 0x1FFF 7A0F	528 byte
Ontion bytes	Bank 1		0x1FFF C000 - 0x1FFF C00F	16 bytes
Option bytes	Bank 2		0x1FFE C000 - 0x1FFE C00F	16 bytes

OTP

- ₩ One Time Programmable 공간
- → 한번 쓸 수 있는 사용자 메모리 공간

○ STM32F429의 플래시 메모리 소개

○ STM32F429의 메모리 모듈 구조

Table 6. Flash module - 2 Mbyte dual bank organization (STM32F42xxx and STM32F43xxx)

Block	Bank	Name	Block base addresses	Size
		Sector 0	0x0800 0000 - 0x0800 3FFF	16 Kbytes
		Sector 1	0x0800 4000 - 0x0800 7FFF	16 Kbyte
		Sector 2	0x0800 8000 - 0x0800 BFFF	16 Kbyte
		Sector 3	0x0800 C000 - 0x0800 FFFF	16 Kbyte
		Sector 4	0x0801 0000 - 0x0801 FFFF	64 Kbyte
	Bank 1	Sector 5	0x0802 0000 - 0x0803 FFFF	128 Kbyte
		Sector 6	0x0804 0000 - 0x0805 FFFF	128 Kbyte
		-	-	-
		-	-	-
		-	-	-
Main memory		Sector 11	0x080E 0000 - 0x080F FFFF	128 Kbyte
Main memory	Bank 2	Sector 12	0x0810 0000 - 0x0810 3FFF	16 Kbyte
		Sector 13	0x0810 4000 - 0x0810 7FFF	16 Kbyte
		Sector 14	0x0810 8000 - 0x0810 BFFF	16 Kbyte
		Sector 15	0x0810 C000 - 0x0810 FFFF	16 Kbyte
		Sector 16	0x0811 0000 - 0x0811 FFFF	64 Kbyte
		Sector 17	0x0812 0000 - 0x0813 FFFF	128 Kbyte
		Sector 18	0x0814 0000 - 0x0815 FFFF	128 Kbyte
		, exerce	s e	-
			-	-
		********	-	-
		Sector 23	0x081E 0000 - 0x081F FFFF	128 Kbyte
System memory			0x1FFF 0000 - 0x1FFF 77FF	30 Kbyte
≥ esee	OTP		0x1FFF 7800 - 0x1FFF 7A0F	528 byte
Ontion butos	Bank 1		0x1FFF C000 - 0x1FFF C00F	16 bytes
Option bytes	Bank 2		0x1FFE C000 - 0x1FFE C00F	16 bytes

Option bytes

- → Watchdog 설정, Read/Write protection과 같은 시스템관련 설정을 담당하는 16bytes 저장소
- → Main 메모리의 Bank1, 2에 대한 각각의 설정 담당

◎ 플래시 메모리 Read 프로그래밍

CubeMX로 프로젝트 생성

- ··· 플래시는 모든 프로젝트에 기본적으로 포함
- **→ 따로 선택사항 없음**

○ 플래시 메모리 Read 프로그래밍

메모리 맵

→→ 플래시 메모리의 어드레스 확인

○ 플래시 메모리 Read 프로그래밍

실습 이미지 캡처

첫번째 페이지의 시작 번지 0x08000000

··· 10개의 32비트 데이터를 읽는 코드 작성

● 플래시 메모리 Read 프로그래밍

일은 값을 UART 메시지로 출력하는 코드 작성

○ 플래시 메모리 Read 프로그래밍

컴파일 후 테스트

● 플래시 메모리 Read 프로그래밍

플래시 메모리 Bank2의 시작 번지 0x08100000

··· 10개의 32비트 데이터를 읽는 코드 작성

○ 플래시 메모리 Read 프로그래밍

일은 값을 UART 메시지로 출력하는 코드 작성

○ 플래시 메모리 Read 프로그래밍

컴파일 후 테스트

◎ 플래시 메모리 Erase/Write 프로그래밍

기 생성된 프로젝트 작업 시작

◎ 플래시 메모리 Erase/Write 프로그래밍

플래시 Erase를 위해 HAL_FLASH_Unlock() 먼저 사용

◎ 플래시 메모리 Erase/Write 프로그래밍

플래시 Erase 함수 HAL_FLASHEx_Erase() 작성

→ Erase type, Erase할 페이지,Erase할 페이지의 개수 등을 기입

◎ 플래시 메모리 Erase/Write 프로그래밍

지웠음을 확인하기 위해 Erase한 페이지의 데이터를 읽어 봄

◎ 플래시 메모리 Erase/Write 프로그래밍

플래시 Write를 위해 HAL_FLASH_Program() 작성

◎ 플래시 메모리 Erase/Write 프로그래밍

Word 단위로 데이터를 Write함

→ Half word, Word, Double word 단위로 쓸 수 있음

◎ 플래시 메모리 Erase/Write 프로그래밍

◎ 플래시 메모리 Erase/Write 프로그래밍

Write된 데이터를 읽어 봄

◎ 플래시 메모리 Erase/Write 프로그래밍

플래시는 Power off 후에도 날아가지 않는다는 것을 확인하기 위해 Power off 후에 Flash loade를 사용하여 해당 페이지를 읽어 데이터를 확인함

