Statistical Methods Project Results & Conclusions

SM project results

May 2025

The Ten Pre-Registered Tests

#	Relationship	Test
1	Engine Size ↔ Price	Pearson r
2	$Horsepower \leftrightarrow Price$	Pearson r
3	$City\;MPG \leftrightarrow Highway\;MPG$	Pearson r
4	Engine Size ↔ Fuel Efficiency	Spearman ρ (perm.)
5	Price (gas vs diesel)	Welch t
6	Horsepower (std vs turbo)	Welch t
7	Normalised Losses \sim Symboling	One-way ANOVA
8	Fuel Type $ imes$ Aspiration	χ^2 + Cramér V (MC)
9	Body Style $ imes$ Drive Wheels	$\chi^2 + Cram\'er \ V \ (MC)$
10	$Price \sim Symboling$	Kruskal–Wallis

Design rules. $\alpha=0.05$, two-sided; effect sizes accompany all *p*-values; Monte-Carlo (10⁴ resamples) where sparse counts.

T1 – Why Pearson Correlation?

- Two continuous, near-normal variables (n = 201).
- Scatterplot suggests linear trend; Shapiro tests p ¿ 0.05.
- Pearson is most powerful under linearity + normal errors.
- Alt-tests (Spearman, Kendall) unnecessary; assumptions met.

T1 – Numerical Results

Statistic	Value	95 % CI		
Pearson r	0.872	0.835 - 0.902		
t (df = 199)	25.17			
p	$< 2 \times 10^{-16}$			
Sample size	201	_		

Effect. Very strong positive (r > 0.7).

T1 – Interpretation

- Explains $r^2 = 0.76$ of price variance.
- $+100 \text{ cc} \Rightarrow \sim \$1\,900 \text{ increase (OLS slope)}.$
- ullet Confirms "bigger engine o higher MSRP".

T2 – Why Pearson?

- Both variables continuous and linear (n = 199).
- Homoscedastic residuals; no major outliers.

T2 – Statistics

Pearson r	0.811	0.758 - 0.853
t (df = 197)	19.42	_
p	$< 2 \times 10^{-16}$	_

T2 – Interpretation

- +10 HP ↑ \$925.
- Turbo cars (120–200 HP) cluster in \$20–35 k band.

T3 – Why Pearson?

Near-perfect linear scatter; both mpg measures normal (QQ-plots).

T3 – Statistics

$$r$$
 0.971 0.962 - 0.978 t (df = 203) 58.22 - c $< 2 \times 10^{-16}$ -

T3 – Interpretation

Highway MPG increases 1.25 for every +1 city-MPG—efficient cars stay efficient on both cycles.

T4 – Why Spearman (Permutation)?

- Relationship monotonic but non-linear (diminishing returns).
- \bullet Ties in MPG averages \rightarrow use permutation Spearman to keep exact p-value robustness.

T4 – Statistics

Spearman $ ho$	-0.78	
Perm. Z	-10.43	—
p (10 000 perms)	$< 10^{-4}$	_

T4 – Interpretation

Larger engines cut combined MPG; mid-range slope $\,$ -0.12 MPG per 10 cc.

T5 – Why Welch *t*?

- Two independent groups (gas 185, diesel 20).
- Levene test p = 0.03 unequal variances .
- Price approx. normal after log transform; Welch is robust.

T5 – Statistics

Group means	Gas \$12 916	Diesel \$15 838	Diff \$2 922
t (df = 23.6)	1.59	_	_
p	0.124		
Hedges g	0.36 (small)	CI -0.10 - 0.81	_

T5 – Interpretation

Diesel price premium not significant; gap explained by brand mix and curb-weight, not fuel type alone.

T6 – Why Welch t?

- HP (continuous) vs aspiration (std n = 66, turbo n = 36).
- Variances unequal; Welch protects Type I error.

T6 – Statistics

Means	Std 99.8 HP	Turbo 124.4 HP
t (df = 65.3)	-4.11	
p	$1.1{ imes}10^{-4}$	_
d	1.05 (large)	CI -1.500.57

T6 – Interpretation

Turbo adds 24 horsepower; clear engineering & marketing benefit.

T7 – Why One-way ANOVA?

- Outcome continuous, 6 symboling groups (-2 . . . +3).
- Residuals normal; equal variances (Bartlett p = 0.11).

T7 – Statistics

$$F(5,158) = 16.68, p = 3.3 \times 10^{-13}, \eta^2 = 0.46 \text{ (large, } 46\% \text{ variance)}$$

T7 – Interpretation

Higher risk index doubles average insurance loss; supports actuarial use of symboling.

T8 – Why χ^2 (Monte Carlo)?

 2×2 table; one cell ${}_{i}5$ simulate p for accuracy; Cramér V for effect size.

T8 – Statistics

$$\chi^2_{\rm MC}=33.0,\; p=1.0{\times}10^{-4},\; V=0.40$$

SM project results

T8 – Interpretation

Diesels 99 standard-aspirated; turbos almost exclusive to petrol.

T9 – Why χ^2 (MC)?

Sparse 5×3 table Monte-Carlo p; interpret with Cramér V.

T9 – Statistics

$$\chi^2_{\rm MC} = 26.6, \; p = 0.0042, \; V = 0.26 \; {\rm (moderate)}$$

T9 – Interpretation

85 of coupes/convertibles are RWD; 4WD niche in hatchbacks (Subaru, Audi Quattro).

T10 – Why Kruskal–Wallis?

- Price non-normal within groups; heavy tails.
- Heteroscedastic non-parametric rank test.

T10 - Statistics

$$H(5) = 57.1, p = 4.9 \times 10^{-11}$$

SM project results

T10 – Interpretation

Median price climbs \$6.5 k \rightarrow \$19 k from safest to riskiest classes; symboling doubles as price-tier signal.

Hypothesis-testing – Section Conclusions

- Performance rules. Engine size horsepower dominate price variance.
- Risk matters. Symboling affects both repair cost and MSRP.
- No diesel surcharge. Price gap vanishes after controls.
- Engineering choices. Diesel \rightarrow std aspiration; coupe \rightarrow RWD; hatchback \rightarrow 4WD (p < 0.01).

Key Correlations (Tests 1–4)

Pair	r/ρ	р	95 % CI	Interpretation
Engine Size ↔ Price	0.87	$< 2 \times 10^{-16}$	[0.835, 0.903]	Very strong, +
Horsepower ↔ Price	0.81	$< 2 \times 10^{-16}$	[0.758, 0.853]	Strong, +
City MPG \leftrightarrow Highway MPG	0.97	$< 2 \times 10^{-16}$	[0.962, 0.978]	Near-linear
$Fuel\text{-}Eff. \leftrightarrow Engine \; Size \; (Spearman)$	-0.78	$< 10^{-4}$	_	$Bigger\;engines\downarrowMPG$

Take-away. Performance variables almost perfectly predict price; downsizing improves MPG at the cost of power.

Group Differences (Tests 5–7)

Contrast	Test	р	Effect	Comment
Price (gas vs diesel) Horsepower (std vs turbo) Norm. Losses ~ Symboling Price ~ Symboling	Welch t Welch t ANOVA K–W	$0.12 \\ 1.1 \times 10^{-4} \\ 3.3 \times 10^{-13} \\ 4.9 \times 10^{-11}$	d = 0.36 d = -1.05 $\eta^2 = 0.46$ $\eta_H^2 \approx 0.35$	No sig. price gap Turbo $\approx +25$ HP Risk index matters Safer cars cheaper

Take-away. Aspiration and symboling drive the largest mean shifts; fuel type alone does not.

Categorical Associations (Tests 8–9)

Table	χ^2 (MC)	рмс	V	Strength
Fuel Type \times Aspiration Body Style \times Drive Wheels	33.0 26.6	1.0×10 ⁻⁴ 0.0042	0.40 0.26	Moderate-strong Moderate

- Diesels are almost exclusively standard-aspirated; gas models split std/turbo.
- RWD concentrated in coupes/convertibles; 4WD niche to hatchbacks.

Hypothesis-testing – Section Conclusions

- **Performance rules.** Engine size and horsepower explain the lion's share of price variance.
- Risk matters. Symboling strongly influences both insurance loss and retail price.
- No diesel surcharge. Price gap to petrol not significant once other factors considered.
- Engineering choices. Diesel \rightarrow std aspiration; coupe \rightarrow RWD; hatchback \rightarrow 4WD. All confirmed at p < 0.01.

CART – Test-set Performance

Metric	Value	Practical Meaning
RMSE	2 368	Typical error \pm \$2.4 k
MAE	1 925	Half the cars within \$1.9 k
R^2	0.898	Explains 90 % of variance
# Observations (test)	62	30 % hold-out split

Context.

- Accuracy trails Lasso (RMSE 1 965) by \sim \$400 but remains competitive, and exceeds the 90 % R^2 benchmark.
- Slightly higher error is compensated by *full interpretability*—clear decision rules for stakeholders.
- Most large residuals come from luxury models \$30–40 k that are under-represented in training.

Tree Diagram

Regression Tree for Price

Variable Importance (Top Drivers)

Variable Importance (CART – Price)

Tree Insights

- Root split on engine_size i 182 cc separates mainstream from luxury/performance cluster.
- Curb weight and horsepower refine sub-branches in the small-engine group.
- In large-engine path, wheel base and height distinguish premium sedans vs GT coupes (\$35 k leaf).

CART – Section Conclusions

- Tree confirms engine size is the single most informative split.
- Interpretability reveals clear, business-friendly rules: "i182 cc & curb_weighti2 006 lbs \rightarrow \$6 500 segment", etc.
- Accuracy trails Lasso by 400 \$ RMSE, but the rules are easy to explain to stakeholders.

Model Performance (Test Set)

Metric	Value	Interpretation
RMSE	2 103	Typical error \pm \$2.1 k
MAE	1 669	Half the cars ¡\$1.7 k error
R^2	0.920	Explains 92 % of variance

Linear accuracy is close to Ridge (2 053) and Lasso (1 965) and well ahead of CART (2 368).

Predicted vs Actual Price

Diagnostic Checks

Linear Model – Section Conclusions

- Ordinary least squares already captures 92 % of price variance with interpretable coefficients.
- Key β 's align with tree and correlation findings (engine_size, horsepower, curb_weight, wheel_base).
- Lasso improves RMSE by 7 %; choose it when minimal error is critical, else stick to simpler OLS.

Key Take-aways

- **Pricing drivers.** Engine size, horsepower and curb weight dominate all analyses.
- **Risk & cost.** Symboling is tied both to repair losses and price tier at $p < 10^{-10}$.
- **Economy trade-off.** Larger engines penalise fuel efficiency $(\rho = -0.78)$.
- **Best model.** Lasso (RMSE 1 965, R^2 0.93) for accuracy; CART for explainable rules.

Thank you! Questions?