Activités Mentales

24 Août 2023

$$\frac{-15x - 15}{13x + 1} < 0$$

$$\frac{5x-2}{-10x-6} \ge 0$$

$$\frac{-4x-8}{-5x+3} > 0$$

$$\frac{3x+7}{-4x-2} \ge 0$$

$$\frac{-12x+4}{3x+11} \ge 0$$

On pose
$$A(x) = \frac{-15x - 15}{13x + 1} = \frac{f(x)}{g(x)}$$
 avec $f(x) = -15x - 15$ et $g(x) = 13x + 1$.

On cherche quand le quotient s'annule et les potentielles valeurs interdites. Pour cela, on résout A(x) = 0 en utilisant la Règle du quotient nul :

$$\frac{-15x - 15}{13x + 1} = 0$$

$$\Leftrightarrow -15x - 15 = 0 \quad \text{et} \quad 13x + 1 \neq 0$$

$$\Leftrightarrow -15x = 15 \quad \text{et} \quad 13x \neq -1$$

$$\Leftrightarrow \quad x = -1 \quad \text{et} \quad x \neq \frac{-1}{13}$$

- f est une fonction affine avec m = -15 < 0. f est donc décroissante sur \mathbb{R} .
- g est une fonction affine avec m=13>0. g est donc croissante sur \mathbb{R} .

On rappelle que f(x) = -15x - 15 et g(x) = 13x + 1 et $A(x) = \frac{-15x - 15}{13x + 1}$. Son tableau de signe est alors

x	$-\infty$		-1		$\frac{-1}{13}$		+∞
f(x)		+	0	_		-	
g(x)		_		_	0	+	
A(x)		_	0	+		-	

Finalement l'ensemble de solutions de $\frac{-15x-15}{13x+1} < 0$ est

$$S =]-\infty; -1[\cup] \frac{-1}{13}; +\infty$$

On pose
$$A(x) = \frac{5x-2}{-10x-6} = \frac{f(x)}{g(x)}$$
 avec $f(x) = 5x-2$ et $g(x) = -10x-6$.

On cherche quand le quotient s'annule et les potentielles valeurs interdites. Pour cela, on résout A(x) = 0 en utilisant la Règle du quotient nul :

$$\frac{5x-2}{-10x-6} = 0$$

$$\Leftrightarrow 5x-2 = 0 \text{ et } -10x-6 \neq 0$$

$$\Leftrightarrow 5x = 2 \text{ et } -10x \neq 6$$

$$\Leftrightarrow x = \frac{2}{5} \text{ et } x \neq \frac{-3}{5}$$

- f est une fonction affine avec m = 5 > 0. f est donc croissante sur \mathbb{R} .
- g est une fonction affine avec m=-10<0. g est donc décroissante sur \mathbb{R} .

On rappelle que f(x) = 5x - 2 et g(x) = -10x - 6 et $A(x) = \frac{5x - 2}{-10x - 6}$. Son tableau de signe est alors

x	$-\infty$		$\frac{-3}{5}$		$\frac{2}{5}$		+∞
f(x)		-		_	0	+	
g(x)		+	0	_		-	
A(x)		_		+	0	-	

Finalement l'ensemble de solutions de $\frac{5x-2}{-10x-6} \ge 0$ est

$$S = \left[\frac{-3}{5}; \frac{2}{5} \right]$$

On pose
$$A(x) = \frac{-4x - 8}{-5x + 3} = \frac{f(x)}{g(x)}$$
 avec $f(x) = -4x - 8$ et $g(x) = -5x + 3$.

On cherche quand le quotient s'annule et les potentielles valeurs interdites. Pour cela, on résout A(x)=0 en utilisant la Règle du quotient nul :

Four cera, on resour
$$A(x) = 0$$
 en utilisant in Reg

$$\frac{-4x - 8}{-5x + 3} = 0$$

$$\Leftrightarrow -4x - 8 = 0 \quad \text{et} \quad -5x + 3 \neq 0$$

$$\Leftrightarrow -4x = 8 \quad \text{et} \quad -5x \neq -3$$

$$\Leftrightarrow x = -2 \quad \text{et} \quad x \neq \frac{3}{5}$$

- f est une fonction affine avec m=-4<0. f est donc décroissante sur $\mathbb R$
- g est une fonction affine avec m=-5<0. g est donc décroissante sur \mathbb{R} .

Activités Mentales

On rappelle que f(x) = -4x - 8 et g(x) = -5x + 3 et $A(x) = \frac{-4x - 8}{-5x + 3}$. Son tableau de signe est alors

x	$-\infty$		-2		$\frac{3}{5}$		+∞
f(x)		+	0	_		_	
g(x)		+		+	0	_	
A(x)		+	0	_		+	

Finalement l'ensemble de solutions de $\frac{-4x-8}{-5x+3} > 0$ est

$$S =]-\infty; -2[\cup] \frac{3}{5}; +\infty$$

On pose
$$A(x)=\frac{3x+7}{-4x-2}=\frac{f(x)}{g(x)}$$
 avec $f(x)=3x+7$ et $g(x)=-4x-2$. On cherche quand le quotient s'annule et les potentielles valeurs interdites.

Pour cela, on résout A(x) = 0 en utilisant la Règle du quotient nul :

$$\frac{3x+7}{-4x-2} = 0$$

$$\Rightarrow 3x+7 = 0 \quad \text{et} \quad -4x-2 \neq 0$$

$$\Rightarrow 3x = -7 \quad \text{et} \quad -4x \neq 2$$

$$\Rightarrow x = \frac{-7}{3} \quad \text{et} \quad x \neq \frac{-1}{2}$$

- f est une fonction affine avec m=3>0. f est donc croissante sur \mathbb{R} .
- g est une fonction affine avec m = -4 < 0. g est donc décroissante sur \mathbb{R} .

Activités Mentales

On rappelle que f(x)=3x+7 et g(x)=-4x-2 et $A(x)=\frac{3x+7}{-4x-2}$. Son tableau de signe est alors

x	$-\infty$		$\frac{-7}{3}$		$\frac{-1}{2}$		+∞
f(x)		-	0	+		+	
g(x)		+		+	0	_	
A(x)		_	0	+		-	

Finalement l'ensemble de solutions de $\frac{3x+7}{-4x-2} \ge 0$ est

$$S = \left[\frac{-7}{3}; \frac{-1}{2} \right]$$

On pose
$$A(x) = \frac{-12x+4}{3x+11} = \frac{f(x)}{g(x)}$$
 avec $f(x) = -12x+4$ et $g(x) = 3x+11$.

On cherche quand le quotient s'annule et les potentielles valeurs interdites.

Pour cela, on résout A(x) = 0 en utilisant la Règle du quotient nul :

$$\frac{-12x+4}{3x+11} = 0$$

$$\Leftrightarrow -12x+4 = 0 \quad \text{et} \quad 3x+11 \neq 0$$

$$\Leftrightarrow \quad -12x = -4 \quad \text{et} \quad 3x \neq -11$$

$$\Leftrightarrow \quad x = \frac{1}{3} \quad \text{et} \quad x \neq \frac{-11}{3}$$

- f est une fonction affine avec m = -12 < 0. f est donc décroissante sur \mathbb{R} .
- g est une fonction affine avec m=3>0. g est donc croissante sur \mathbb{R} .

Activités Mentales

On rappelle que f(x) = -12x + 4 et g(x) = 3x + 11 et $A(x) = \frac{-12x + 4}{3x + 11}$. Son tableau de signe est alors

x	$-\infty$		$\frac{-11}{3}$		$\frac{1}{3}$		+∞
f(x)		+		+	0	-	
g(x)		-	0	+		+	
A(x)		-		+	0	-	

Finalement l'ensemble de solutions de $\frac{-12x+4}{3x+11} \ge 0$ est

$$S = \left[\frac{-11}{3}; \frac{1}{3} \right]$$

