Decision Trees

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Decision Tree Basics

What are Decision Trees?

- Decision trees make predictions by recursively splitting into different attributes.
 - Each internal node represents an attribute at each stage.
 - Each branch represents an attribute value.
 - Each leaf node represents a class label.
 - The path from the root to a leaf node represents a classification rule.

What are Decision Trees?

What are Decision Trees?

- > For a continuous attribute, we split it with a specific value.
 - The input space is recursively divided into two regions parallel to axes.

Classification and Regression

- \triangleright Each path from the root to a leaf node corresponds to a region R_m of input space.
 - Let $\{(x^{(m_1)}, y^{(m_1)}), \dots, (x^{(m_k)}, y^{(m_k)})\}$ be training samples in R_m .
- > Classification tree
 - Discrete output
 - Leaf value represents the **most** common value in $\{y^{(m_1)}, ..., y^{(m_k)}\}$

- > Regression tree
 - Continuous output
 - Leaf value represents the **mean value** in $\{y^{(m_1)}, ..., y^{(m_k)}\}$.

Classification: Good vs. Bad

> We want to construct a classification tree to classify heroes as good or bad according to their appearance.

Training data

	Gender	Mask	Саре	Tie	Ears	Smokes	
Batman	Male	Yes	Yes	No	Yes	No	
Robin	Male	Yes	Yes	No	No	No	
Alfred	Male	No	No	Yes	No	No	
Penguin	Male	No	No	Yes	No	Yes	
Catwoman	Female	Yes	No	No	Yes	No	
Joker	Male	No	No	No	No	No	

Label
Good
Good
Good
Bad
Bad
Bad

Classification: Good vs. Bad

- > A hero is a male who has a mask, a cape, and no tie.
- > Q: Is he a good or bad man?
- > How do we predict whether he is good or bad?

Training data

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batman	Male	Yes	Yes	No	Yes	No	Good
Robin	Male	Yes	Yes	No	No	No	Good
Alfred	Male	No	No	Yes	No	No	Good
Penguin	Male	No	No	Yes	No	Yes	Bad
Catwoman	Female	Yes	No	No	Yes	No	Bad
Joker	Male	No	No	No	No	No	Bad

Classification: Good vs. Bad

> Predict a new hero (unlabeled data) as good or bad.

Test data

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batgirl	Female	Yes	Yes	Yes	Yes	No	??
Riddler	Male	Yes	No	No	No	No	??

How to Learn the Decision Tree?

- > Finding an optimal decision tree that correctly classifies a training set is an NP-complete problem.
 - Note: the optimal decision tree means the smallest decision tree.
- > Use a greedy heuristic!
 - Split on the best attribute at each stage.

- Which attribute is the best?
- > When should we stop?

Choosing a Good Split

> Choosing a decision rule to split data into disjoint subsets

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batman	Male	Yes	Yes	No	Yes	No	Good
Robin	Male	Yes	Yes	No	No	No	Good
Alfred	male	No	No	Yes	No	No	Good
Penguin	Male	No	No	Yes	No	Yes	Bad
Catwoman	Female	Yes	No	No	Yes	No	Bad
Joker	Male	No	No	No	No	No	Bad

Choosing a Good Split

> Which attribute is better?

Choosing a Good Split

- > How do we measure uncertainty in prediction for a leaf node?
 - All samples in the leaf node have the same class: good, low uncertainty
 - Each class has the same samples in the leaf node: bad, high uncertainty

➤ Idea: Define the probability distribution and use information theory to measure uncertainty.

Information Entropy

➢ Given a discrete random variable X, information entropy is defined as follows.

$$H(X) = \mathbb{E}_{x \sim P(x)}[-\log_2 p(x)] = -\sum_{x \in X} p(x)\log_2 p(x)$$

> Two extreme cases

- Samples only have one class.
- Samples are divided into each class.

Information Entropy

> Measuring the degree of uncertainty

$$H(X) = -P_1 \log_2 P_1 - P_0 \log_2 P_0$$

 P_1 = The probability that 1 appears in the set P_0 = The probability that 0 appears in the set

$$A = \{1,1,0,0,0,0,0,0\}$$

$$H(X) = -2/8 \log_2 2/8 - 6/8 \log_2 6/8$$

$$B = \{1,1,1,1,0,0,0,0,0\}$$

$$H(X) = -4/8 \log_2 4/8 - 4/8 \log_2 4/8$$

Information Entropy

- \triangleright Assume that there are two classes P and N.
- \triangleright A dataset \mathcal{D} contains p elements of class P and n elements of class N, respectively.
- \triangleright For the dataset \mathcal{D} , the information entropy is computed by:

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Conditional Entropy

> Measuring the average of the entropy for each partition

$$H(Y \mid X) = \mathbb{E}_{x \sim P(x)}[H(Y \mid X = x)] = \sum_{x \in X} p(x) H(Y \mid X = x)$$

> Which partition is better?

$$\{1,1,1,1,0,0,0,0,0\}$$

$$A = \{\{1,1,0,0,0,0\}, \{1,1,0\}\}\$$
 vs. $B = \{\{1,1,1,1,1,0\}, \{0,0,0\}\}\$

Conditional Entropy

$$A = \{\{1,1,0,0,0\},\{1,1,0\}\}$$

$$-2/5 \log_2 2/5 - 3/5 \log_2 3/5 = 0.97$$

$$-2/3 \log_2 2/3 - 1/3 \log_2 1/3 = 0.92$$

$$\frac{5}{8} \times 0.97 + \frac{3}{8} \times 0.92 = 0.95$$

$$B = \{\{1,1,1,1,0\}, \{0,0,0\}\}$$

$$-4/5 \log_2 4/5 - 1/5 \log_2 1/5 = 0.72$$

$$-3/3 \log_2 3/3 - 0/3 \log_2 0/3 = 0.00$$

$$\frac{5}{8} \times 0.72 + \frac{3}{8} \times 0.0 = 0.45$$

Information Gain

➤ The information gain in Y due to A, or the mutual information of Y and A is defined as follows.

$$IG(Y \mid A) = H(Y) - H(Y \mid A)$$

- > If *A* is completely informative about *Y*: IG(Y | A) = H(Y)
 - The conditional entropy $H(Y \mid A)$ is 0.
- > If A is completely uninformative about Y: $IG(Y \mid A) = 0$
 - The conditional entropy $H(Y \mid A)$ is equal to H(Y).

Information Gain

 \triangleright Suppose that an attribute A is chosen.

$$H(Y \mid Cape) = \frac{2}{6} \times I(1,0) + \frac{4}{6} \times I(3,1)$$
 $H(Y \mid Tie) = \frac{2}{6} \times I(1,1) + \frac{4}{6} \times I(2,2)$

$$H(Y \mid Tie) = \frac{2}{6} \times I(1,1) + \frac{4}{6} \times I(2,2)$$

Information Gain

Entropy before branching – entropy after branching

$$IG(Y \mid Cape) = H(Y) - H(Y \mid Tie)$$

= $I(3,3) - \left(\frac{2}{6} \times I(1,1) + \frac{4}{6} \times I(2,2)\right)$

Iterative Dichotomiser 3 (ID3)

Decision Trees (ID3)

> Top-down and divide-and-conquer approach

Stopping Condition

- > All samples for a given node belong to the same class.
- > There are no samples left.
- > There are no attributes for additional partitioning.
 - The majority voting is used to determine the leaf node.

> Selecting the attribute with the highest information gain

$$H(Y) = I(3,3) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1.0$$

$$H(Y \mid Gender) = \frac{5}{6}I(3,2) + \frac{1}{6}I(0,1) = \frac{5}{6}(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}) = 0.809$$
Training data

Training data

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batman	Male	Yes	Yes	No	Yes	No	Good
Robin	Male	Yes	Yes	No	No	No	Good
Alfred	Male	No	No	Yes	No	No	Good
Penguin	Male	No	No	Yes	No	Yes	Bad
Catwoman	Female	Yes	No	No	Yes	No	Bad
Joker	Male	No	No	No	No	No	Bad

> Selecting the attribute with the highest information gain

$$H(Y) = I(3,3) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1.0$$

$$H(Y \mid Gender) = \frac{5}{6}I(3,2) + \frac{1}{6}I(0,1) = \frac{5}{6}(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}) = 0.809$$

$$H(Y \mid Mask) = \frac{3}{6}I(2,1) + \frac{3}{6}I(1,2) = -\frac{2}{3}\log_2\frac{2}{3} - \frac{1}{3}\log_2\frac{1}{3} = 0.918$$

$$H(Y \mid Cape) = \frac{2}{6}I(2,0) + \frac{4}{6}I(1,3) = \frac{4}{6}(-\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4}) = 0.540$$

$$H(Y \mid Tie) = \frac{2}{6}I(1,1) + \frac{4}{6}I(2,2) = 1.0$$

$$H(Y \mid Ears) = \frac{2}{6}I(1,1) + \frac{4}{6}I(2,2) = 1.0$$

$$H(Y \mid Smokes) = \frac{1}{6}I(0,1) + \frac{5}{6}I(3,2) = 0.809$$

For the subset (Cape = no), select the attribute with the highest information gain.

$$H(Y \mid Gender) = H(Y \mid Mask) = H(Y \mid Ears)$$

= $H(Y \mid Smokes) = \frac{3}{4}I(1,2) + \frac{1}{4}I(0,1) = 0.689$

$$H(Y \mid Tie) = \frac{2}{4}I(1,1) + \frac{2}{4}I(0,2) = 0.5$$

	Gender	Mask	Tie	Ears	Smokes	Label
Alfred	Male	No	Yes	No	No	Good
Penguin	Male	No	Yes	No	Yes	Bad
Catwoman	Female	Yes	No	Yes	No	Bad
Joker	Male	No	No	No	No	Bad

For the subset (Tie = yes), select the attribute with the highest information gain.

	Gender	Mask	Ears	Smokes	Label
Alfred	Male	No	No	No	Good
Penguin	Male	No	No	Yes	Bad

Making Prediction

> Predicting the label for each sample on test data

Testing data

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batgirl	Female	Yes	Yes	Yes	Yes	No	??
Riddler	Male	Yes	No	No	No	No	??

Training data

		J		
Age	Income	Student	Credit	Buy
<= 30	High	N	Fair	No
<= 30	High	N	Excellent	No
31 40	High	N	Fair	Yes
> 40	Medium	N	Fair	Yes
> 40	Low	Υ	Fair	Yes
> 40	Low	Υ	Excellent	No
31 40	Low	Υ	Excellent	Yes
<= 30	Medium	N	Fair	No
<= 30	Low	Υ	Fair	Yes
> 40	Medium	Υ	Fair	Yes
<= 30	Medium	Υ	Excellent	Yes
31 40	Medium	N	Excellent	Yes
31 40	High	Υ	Fair	Yes
> 40	Medium	N	Excellent	No

> Selecting the attribute with the highest information gain

Age	p	n	I(p,n)
<= 30	2	3	0.971
30 40	4	0	0
> 40	3	2	0.971

$$H(Y) - H(Y \mid Age)$$

$$= H(Y) - \left(\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(2,3)\right) =$$

$$= 0.940 - 0.69 = 0.25$$

Age	Buy
<= 30	No
<= 30	No
31 40	Yes
> 40	Yes
> 40	Yes
> 40	No
31 40	Yes
<= 30	No
<= 30	Yes
> 40	Yes
<= 30	Yes
31 40	Yes
31 40	Yes
> 40	No

> Selecting the attribute with the highest information gain

Student	p	n	I(p,n)
Yes	6	1	0.971
No	4	3	0

$$H(Y) - H(Y \mid Student)$$

$$= H(Y) - \left(\frac{7}{14}I(6,1) + \frac{7}{14}I(4,3)\right) = 0.151$$

Student	Buy
N	No
N	No
N	Yes
N	Yes
Υ	Yes
Υ	No
Υ	Yes
N	No
Υ	Yes
Υ	Yes
Υ	Yes
N	Yes
Υ	Yes
N	No

> A decision tree after the first partitioning

Income	Student	Credit	Buy
High	N	Fair	No
High	N	Excellent	No
Medium	N	Fair	No
Low	Υ	Fair	Yes
Medium	Υ	Excellent	Yes

Income	Student	Credit	Buy
Medium	N	Fair	Yes
Low	Υ	Fair	Yes
Low	Y	Excellent	No
Medium	Υ	Fair	Yes
Medium	N	Excellent	No

- > Using age, it is partitioned into three subsets.
 - For each subset, select the attribute with the highest information gain in a recursive manner.

Income	Student	Credit	Buy
High	N	Fair	No
High	N	Excellent	No
Medium	N	Fair	No
Low	Y	Fair	Yes
Medium	Y	Excellent	Yes

- \triangleright Let each subset \mathcal{D}_1 , \mathcal{D}_2 , and \mathcal{D}_3 .
 - \mathcal{D}_2 has already been decided as a single label.

Income	Student	Credit	Buy
High	N	Fair	Yes
Low	Υ	Excellent	Yes
Medium	N	Excellent	Yes
High	Υ	Fair	Yse

Income	Student	Credit	Buy
Medium	N	Fair	Yes
Low	Υ	Fair	Yes
Low	Υ	Excellent	No
Medium	Υ	Fair	Yes
Medium	N	Excellent	No

C4.5: Improving ID3

C4.5: Improving ID3

- > C4.5 has several improvements to ID3.
- > Handling both continuous and discrete attributes
- > Handling attributes with differing costs
- > Pruning trees after creation

Training data

Outlook	Temperature	Humidity	Wind	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	78	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yse
Overcast	72	90	True	Yse
Overcast	81	75	False	Yse
Rainy	71	80	True	No

> Finding the best split point by enumerating all possible cases

Тетр	Humidity	Wind	Play
85	85	False	No
80	90	True	No
83	78	False	Yes
70	96	False	Yes
68	80	False	Yes
65	70	True	No
64	65	True	Yes
72	95	False	No
69	70	False	Yes
75	80	False	Yes
75	70	True	Yse
72	90	True	Yse
81	75	False	Yse
71	80	True	No

$(1) \le 64: [1+,0-], > 64: [8+,$	5-]
$(2) \le 65: [1+,1-], > 65: [8+,$	4-]
$(3) \le 68 : [2+,1-], > 68 : [7+,$	4-]
$(4) \le 69 : [3+,1-], > 69 : [6+,$	4-]
$(5) \le 70: [4+,1-], > 70: [5+,$	4-]
$(6) \le 71: [4+,2-], > 71: [5+,$	3-]
$(7) \le 72 : [5+,3-], > 72 : [4+,$	2-]
$(8) \le 75: [7+,3-], > 75: [2+,$	2-]
$(9) \le 80: [7+,4-], > 80: [2+,$	1-]
$(10) \le 81: [8+,4-], > 81: [1+$	·, 1-]
$(11) \le 83 : [9+,4-], > 83 : [0+$	·, 1-]
$(12) \le 85 : [9+,5-], > 85 : [0+$	-, 0-]

> Finding the best split point by enumerating all possible cases

```
 (1) \leq 64: [1+,0-], > 64: [8+,5-] \rightarrow Entropy = 0.893 
 (2) \leq 65: [1+,1-], > 65: [8+,4-] \rightarrow Entropy = 0.930 
 (3) \leq 68: [2+,1-], > 68: [7+,4-] \rightarrow Entropy = 0.940 
 (4) \leq 69: [3+,1-], > 69: [6+,4-] \rightarrow Entropy = 0.925 
 (5) \leq 70: [4+,1-], > 70: [5+,4-] \rightarrow Entropy = 0.895 
 (6) \leq 71: [4+,2-], > 71: [5+,3-] \rightarrow Entropy = 0.939 
 (7) \leq 72: [5+,3-], > 72: [4+,2-] \rightarrow Entropy = 0.939 
 (8) \leq 75: [7+,3-], > 75: [2+,2-] \rightarrow Entropy = 0.940 
 (10) \leq 81: [8+,4-], > 81: [1+,1-] \rightarrow Entropy = 0.930 
 (11) \leq 83: [9+,4-], > 83: [0+,1-] \rightarrow Entropy = 0.827 
 (12) \leq 85: [9+,5-], > 85: [0+,0-] \rightarrow Entropy = 0.940
```


Gain(humidity)
=
$$.940 - (9/14) \times 0.764 - (5/14) \times .971 = .102$$

Problem of Information Gain

> Selecting the attribute with the highest information gain

A	В	Play
True	B1	Y
True	B2	Υ
True	В3	Υ
True	B4	N
False	B5	N
False	В6	N

> Which attribute is better?

Problem of Information Gain

> Entropy does not consider a branching factor.

$$Gain(A)$$

= 1.0 - (4/6) × .722 - (2/6) × 1.0
= .484

GainInfo: Alternative Measure

How to considering a branching factor?

$$SplitInfo(Y) = -\sum_{i=1}^{k} \frac{|\mathcal{D}_i|}{|\mathcal{D}|} \log_2 \frac{|\mathcal{D}_i|}{|\mathcal{D}|}$$

$$\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_k\}$$

A	В	Play
True	B1	Y
True	B2	Υ
True	В3	Υ
True	В4	N
False	B5	N
False	В6	N

SplitInfo(A) =
$$-\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}\log_2\frac{2}{6} = 0.918$$

$$SplitInfo(B) = 6\left(-\frac{1}{6}\log_2\frac{1}{6}\right) = 2.585$$

GainInfo: Alternative Measure

> How to considering a branching factor?

$$GainInfo(Y) = \frac{Gain(Y)}{SplitInfo(Y)}$$

Α	В	Play
True	B1	Y
True	B2	Y
True	В3	Y
True	B4	N
False	B5	N
False	В6	N

$$GainInfo(A) = \frac{0.484}{0.918} = 0.527$$

$$GainInfo(B) = \frac{1.000}{2.585} = 0.387$$

> Therefore, A is better than B.

Underfitting vs. Overfitting

- > Underfitting: overly simple, does not even fit available data
- > Overfitting: too complicated, perfectly classifies training data

Tree Size vs. Accuracy

- > Trees must be big enough to fit training data.
- > However, too big trees may overfit.
 - It is difficult to decide the best tree size from training errors.

Two Solutions to Avoid Overfitting

> Prepruning

- Do not split a node if this would result in the goodness measure falling below a threshold.
- It is difficult to choose an appropriate threshold.

> Postpruning

Remove branches from a fully grown tree.

Q&A

