7. Labopakket 7: Gedrag van R, L en C op AC

Datum :	Klasgroep	Labogroep	
Naam :			

7.1 Theoretische achtergrond

In laboproef wordt gewerkt met de componenten R, L, C als circuitelement op wisselspanning. In een eerste fase wordt per component apart de berekening van de impedantie in functie van de frequentie, het verband (grootte en faseverschuiving) tussen spanning en stroom aangeleerd.

7.2 voorbereiding

Geef de formule om de impedantie van een zuivere weerstand, spoel en condensator te bepalen als functie van de frequentie.

weerstand:
$$\overline{R} = R + R$$

spoel:
$$\overline{X}L = w^{L}$$

condensator:
$$\overline{X}c = \underbrace{\qquad \qquad \qquad }_{\omega \circ c}$$

Geef bij R, L en C de formule die het verband geeft tussen spanning en stroom.

Zowel in formulevorm ("wet van Ohm") als het vectordiagram. (Qua ligging van de vectoren, grootte vrij te kiezen). Leg de spanningsvector steeds op 0°.

M

[!] Herinnering : vermelde getalwaarden →

Alle hieronder vermelde spanningen zijn zuivere symmetrische sinusvormige wisselspanningen en zijn vermeld in **effectieve** waarden.

[!] Herinnering : bij het overnemen van scoopbeelden →

- het beeld zo groot mogelijk weergeven (afleesfout beperken), maar zodanig dat je bij een periodiek signaal toch nog een volle periode ziet. (Tenzij gevraagd werd een bepaald detail van het beeld uit te vergroten.)
- o de stand van de schakelaars V/div en time/div vermelden.
- o de ingestelde nullijn aanduiden in een andere kleur en markeren als "GND".

7.3 Opgave

[!] Controleer voor je start eerst en vooral of de zekering en de spoelen op je proefbord niet doorgebrand zijn.

Indien je bij een van deze componenten een oneindige weerstand meet, verwittig dan ONMIDDELLIJK de docent bij het begin van het labo.

Meet met de scoop en de digitale multimeter rechtstreeks op de functiegenerator.

De te testen componenten zijn:

A) Weerstand

 $R = 2,2 k\Omega$

B) Condensator

 $C = 0.47 \mu F$

C) Spoel

L = 121 mH (of de grootst mogelijke inductantie die je kan maken door de spoelen op het proefbord in serie te schakelen).

Voer metingen uit, zodat de volgende tabel kan vervolledigd worden :

A) Weignstand Spoel

2576.28 1675.49	Ueff (gemeten)	leff (gemeten)	Z = U/I (berekend uit metingen)	Impedantie berekend op basis van formule i.f.v. f
Metingen bij	vaste frequentie 4	00 Hz	d varia	
2 V QV		11,129m A	180-1	304A
4 V	4001	22,25mA	179,822	304.1
6 V	5,994	33,33 fm A	33,33fmA 179,821	
Metingen bij	vaste spanning 5 \	/eff		
50 Hz	4,9970	226,15mA	22,091	382
100 Hz	4,9921	111,059mA 44,95-2		76,02a
200 Hz	4,976V	55,56mA	89,921	152,05A
400 Hz (*)	4,998 V	Approx m	179,842	3042

27,791mA

B) Condensator

	Ueff (gemeten)	leff (gemeten)	Z = U/I (berekend uit metingen)	Impedantie berekend op basis van formule i.f.v. f
Metingen bij	vaste frequentie 4	00 Hz	3	
2 V	Qv	Q149mA	819,671	846,572
4 V	4,001	4,88mA	819,672	846,572
6 V	6,001V	7,33mA	818,55-2	846,57-2
Metingen bij	vaste spanning 5 \	0.5 00000	1,555	Paganath as
50 Hz	4,997V	743,65 pA	6720,462	6772,62
100 Hz	4,993 v	1,525mA	3274,12	3386,281
200 Hz	4,996 V	3,052mA	1636,961	1693,142
400 Hz (*)	4,998V	6,11m A	818+1	846,572

c) signer Woerstand

24.2	Ueff (gemeten)	leff (gemeten)	Z = U/I (berekend uit metingen)	Impedantie berekend op basis van formule i.f.v. f
Metingen bij	vaste frequentie 4	00 Hz	OTH VENUE	
2 V	21	909,31A	2199,5-1	
4 V	401V	1,82mA	2203, 29-2	
6 V	6,01	2,73mA	2201,47-2	
Metingen bij	vaste spanning 5 V	eff .		
50 Hz	4,9970	2,271mA	2200,35-2	
100 Hz	4,9931	2,269mA	2200,531	
200 Hz	4,9960	2,271m A	2199,911	t)
400 Hz (*)	4,998V	2,272m A	2199,82-1	

> c) Bereken de grootte van impedantie Z (=U/I) op basis van je metingen, en op basis van de theoretische formules in functie van de frequentie. Dit is reeds gebeurd in meettabel. Vergelijk nu in hoeverre deze waarden overeenstemmen, verklaar eventuele verschillen.

By de spoel to et wel con groter Verscholl turren- de Zop barror Van metrifer en theoretische formules.

d) Trek je besluiten in verband met invloed van U en f bij elke component. (Is het verband tussen U en I steeds lineair, heeft de frequentie een invloed, ...)

Spoel -> By de Spoel als de frequentie Stijgl, Stijzt von impedantie (2)
Condensator -> By de condonsator als de frequentie Stijgt, dealt de impendantie
(2)

 e) Welk verschil neem je waar bij meting van de grootte van de spanning met scoop en multimeter. Verklaar.

Met sen Scoop kannen we de Un metig en met een multimeter meter we alleer de effectiere vaarde (RMS)

-> de Envendage weerstand van de generator heeft we een Entloed

[TIP] Mogelijk bruikbare info bij besluiten en / of berekeningen : de gebruikte zekering heeft een zekere weerstand (meetbaar) en ook de generator heeft een inwendige weerstand (aangeduid).

7.5 RC-seriekring

Na analyse van het gedrag van de componenten op AC kunnen we overgaan tot een serieschakeling van 2 componenten. We beschouwen een weerstand en een condensator die in serie geschakeld staan. We gebruiken een weerstand van 1 k Ω en een condensator van 0,47 μ F. Als bron gebruiken we een sinus van 5 Veff en een frequentie van 400 Hz.

Controleer eerst de vorm, amplitude en frequentie van je voedingsspanning op de scoop. Meet de grootte van de spanning zowel met de scoop als met een multimeter. Tijdens het verloop van de proef kan je een eventueel dalende klemspanning bij de belaste generator gewoon controleren met de digitale multimeter en bijregelen.

[!] Controleer voor je start eerst en vooral of de zekering en de spoelen op je proefbord niet doorgebrand zijn.

Indien je bij een van deze componenten een oneindige weerstand meet, verwittig dan ONMIDDELLIJK de docent bij het begin van het labo.

Meet volgende zaken van de RC-seriekring:

- de stroom door elke component,
- o de spanning over elke component,
- o de bronspanning.
- o de faseverschuiving tussen bronspanning en bronstroom.

Noteer je resultaten op het de scooprasters en geef tot slot de resultaten weer in tabelvorm.

Maak eerst een principeschema hoe je de schakeling zou opbouwen. Vermeld duidelijk de positie van de scoopmeetpunten (bronspanning op kanaal I, stroom op kanaal II, massa's) en zekering.

Schema:

[!] Laat dit schema door de docent controleren alvorens uit te voeren.

Berekening faseverschil in ms:

Berekening faseverschil in graden:

U _{bron} (gemeten)	U _{R (1 kΩ)} (gemeten)	U _c (gemeten)	(gemeten)	Impedantie berekend op basis van meetwaarden U en I	fase- verschuiving tussen U en I
4,9981	3,8461	3,174V	3,846m A	1299,53-2	+90°

> A) Controleer of de scalaire som of vectoriële som van de deelspanningen gelijk is aan de bronspanning. Verklaar en staaf door berekening.

➢ B) Teken het vectordiagram (voldoende groot, duidelijk en op schaal) van de schakeling, en controleer voor elke schakeling de som van de spanningen grafisch.

Vectordiagramma:

 \triangleright E) Vergelijk de totale impedantie bekomen door je meetresultaten te gebruiken (Z=U/I uit tabel) en bereken daarna Z theoretisch (op basis van de combinatie van \overline{R} , $\overline{X}c$). Vergelijk en verklaar eventuele afwijkingen.

$$X_{c=2}$$
 $\frac{1}{10.0}$ $= \frac{1}{20.00}$ $= \frac{1}{20.000}$ $= \frac{1}{20.000}$