BASIC NUMBER THEORY: LECTURE 10

WENHAN DAI

1. Hilbert class field (continued)

We have stated the main theorem about primes like $p = x^2 + ny^2$ last time.

Theorem 1 (Primes of the form $p = x^2 + ny^2$). Fix a square-free integer n > 0 satisfying $n \not\equiv 3 \mod 4$. Then there is a monic irreducible $f_n \in \mathbb{Z}[x]$ of degree $h(-4n) = [K^{\text{Hilb}} : K]$ such that if p is an odd prime, with $p \nmid n \cdot \text{disc}(f_n)$, then $p = x^2 + ny^2$ if and only if $\left(\frac{-n}{p}\right) = 1$ and $f_n(x) \equiv 0 \mod p$ has an integer solution.

Example 2. We specialize Theorem 1 to the case n=14. Let $K=\mathbb{Q}(\sqrt{-14})$ and L the Hilbert class field of K. To compute L, one may need the intermediate augment field $K_1=K(2\sqrt{2}-1)$. And then prove that $L=K_1(\sqrt{2\sqrt{2}-1})=K(\sqrt{2\sqrt{2}-1})$. On the other hand, this can be checked via the genus theory. Recall from the genus theory that h(-4n)=h(-56)=4 and the number of proper equivalence classes of genera is $|C(-56)/C(-56)^2|=2^{\mu-1}=2$. These force $C(-56)\cong \mathbb{Z}/4\mathbb{Z}$.

Lemma 3. Let K be a number field and $L = K(\sqrt{u})$ a quadratic extension for $u \in \mathcal{O}_K$. Take $\mathfrak{p} \subseteq \mathcal{O}_K$ a prime. Then

- (1) whenever $2u \notin \mathfrak{p}$, \mathfrak{p} is unramified.
- (2) if for some $b, c \in \mathcal{O}_K$, $u = b^2 4c \notin \mathfrak{p}$, then \mathfrak{p} is unramified.

Proof. For (1), note that the minimal polynomial for \sqrt{u} is $f = x^2 - u$ with $\operatorname{disc}(f) = 4u$. Since $p \nmid 2u$ we get $p \nmid \operatorname{disc}(f)$, so that f is separable modulo \mathfrak{p} . For (2), the polynomial $f = x^2 + bx + c$ has root $(-b \pm \sqrt{u})/2 = \alpha$ such that $L = K(\alpha)$. We also have $\mathfrak{p} \nmid \operatorname{disc}(f) = u$ and again \mathfrak{p} is unramified.

Let us resume on the example with n = 14. The claim that L/K is the Hilbert class field of K in Example 2 follows from two assertions:

- K_1/K is unramified, and
- L/K_1 is unramified.

For the first one, we have $K_1 = K(\sqrt{2})$ with u = 2. So \mathfrak{p} is unramified in K_1 if $p \nmid 2$. Suppose $2 \in \mathfrak{p}$. As $\sqrt{-14} \in K$ we get $\sqrt{-7} \in K_1$. However, $-7 \notin$ for $u = -1 = 1^4 = 4 \cdot 2$. By Lemma 3(2) \mathfrak{p} is still unramified. For the second assertion, let $u = 2\sqrt{2} - 1$, $u' = -2\sqrt{2} - 1$ and $L = K_1(\sqrt{2\sqrt{2} - 1})$. Then $\sqrt{u} \cdot \sqrt{u'} = \sqrt{-7} \in K_1$ and thus $u' \in L = K_1(u) = K_1(u')$. If $2 \in \mathfrak{p}$ then $u = (1 + \sqrt{2})^2 - 4 \notin \mathfrak{p}$. By Lemma 3(2) \mathfrak{p} is unramified. If $2 \notin \mathfrak{p}$ then $u \notin \mathfrak{p}$ or $u' \notin \mathfrak{p}$. It suffices to check for the case $u' \notin \mathfrak{p}$, which implies $2u' \notin \mathfrak{p}$; so \mathfrak{p} is unramified as

Date: November 6, 2020.

WENHAN DAI

2

well by Lemma 3(1). To summarize, we have proved that L/K is the Hilbert class field of K.

For $\alpha = \sqrt{2\sqrt{2}-1}$, its monic minimal polynomial over K is $f(x) = (x^2+1)^2 - 8 = x^4 + 2x^2 - 7$ with $\operatorname{disc}(f) = -2^{14} \cdot 7$.

Corollary 4. Let $p \neq 7$ be an odd prime. Then $p = x^2 + 14y^2$ if and only if $\left(\frac{-14}{p}\right) = 1$ and $x^2 + 2x^2 - 7 \equiv 0 \mod p$ has a solution.

2. Genus theory revisited via the Hilbert class field

Let K be an imaginary quadratic extension of \mathbb{Q} . Let d_K denote the discriminant of K/\mathbb{Q} . Recall from Theorem 11 in Lecture 9 that

$$C(d_K) \simeq C(\mathcal{O}_K) \cong \operatorname{Gal}(L/K).$$

Here L is the Hilbert class field of K. By the genus theory there is an important subgroup $C(d_K)^2$ contained in $C(d_K)$.

Definition 5. The *genus field* of K is a subextension M of K contained in $L = K^{\text{Hilb}}$ given by $\text{Gal}(L/M) \cong C(\mathcal{O}_K)^2$.

$$C(\mathcal{O}_K) egin{pmatrix} L \\ \Big| \Big| C(\mathcal{O}_K)^2 \\ M = ext{genus field} \\ \Big| K \end{pmatrix}$$

Here comes a reformulation of the elementary genus theory in terms of the genus field. Fix L/M/K as before. For each odd prime p denote $p^* = (-1)^{\frac{p-1}{2}} p \equiv 1 \mod 4$.

Theorem 6. Denote μ the number of primes dividing d_K . Let p_1, \ldots, p_r be all odd primes dividing d_K . Then

- (1) The genus field of K is the maximal unramified extension of K which is an abelian extension of \mathbb{Q}^{1}
- (2) The genus field $M = K(\sqrt{p_1^*}, \dots, \sqrt{p_r^*})$.
- (3) The number of genera of discriminant d_K equals

$$2^{\mu-1} = |C(\mathcal{O}_K)/C(\mathcal{O}_K)^2| = |\operatorname{Gal}(M/K)|.$$

(4) The principal genus consists of square classes, i.e. the image of elements in $C(d_K)^2$.

Proof of (1). Since L/\mathbb{Q} is Galois, we see $\operatorname{Gal}(L/\mathbb{Q})$ is generated by $\operatorname{Gal}(L/K)$ together with τ , where τ is the complex conjugation. Suppose N is another subextension of L/K and N/\mathbb{Q} is abelian. Then $\operatorname{Gal}(L/N)$ contains the commutator subgroup of $\operatorname{Gal}(L/\mathbb{Q})$, which is

$$\langle \tau g \tau^{-1} g^{-1} \rangle_{g \in Gal(L/K)} = \left\langle \tau \left(\frac{L/K}{\mathfrak{p}} \right) \tau^{-1} \left(\frac{L/K}{\mathfrak{p}} \right)^{-1} \right\rangle_{\mathfrak{p} \in I_K}.$$

¹cf. The Hilbert class field is the maximal unramified abelian extension of K. Caution: $C(\mathcal{O}_K)^2$ is abelian as $C(\mathcal{O}_K)$ is; but the semi-direct product of two abelian groups is in general not necessarily abelian. Hence a priori $M \neq L$ in general.

Also, for each $\mathfrak{p} \in I_K$, since $\mathfrak{p}\overline{\mathfrak{p}}$ is principal, we have $\mathfrak{p} = \overline{\mathfrak{p}}^{-1}$ in the ideal class group. Therefore,

$$\tau\left(\frac{L/K}{\mathfrak{p}}\right)\tau^{-1} = \left(\frac{L/K}{\tau(\mathfrak{p})}\right) = \left(\frac{L/K}{\overline{\mathfrak{p}}}\right) = \left(\frac{L/K}{\mathfrak{p}}\right)^{-1}.$$

And then

$$\left\langle \tau \left(\frac{L/K}{\mathfrak{p}} \right) \tau^{-1} \left(\frac{L/K}{\mathfrak{p}} \right)^{-1} \right\rangle_{\mathfrak{p} \in I_K} = \left\langle \left(\frac{L/K}{\mathfrak{p}} \right)^{-2} \right\rangle_{\mathfrak{p} \in I_K} = \operatorname{Gal}(L/K)^2.$$

So $N \subseteq M$ and M/\mathbb{Q} is abelian.

Now we are working on the proof of (2) for $M = K(\sqrt{p_1^*}, \dots, \sqrt{p_r^*})$. Notice that

$$\operatorname{Gal}(M/\mathbb{Q}) = \operatorname{Gal}(L/\mathbb{Q})/C(\mathcal{O}_K)^2 = \langle \operatorname{Gal}(M/K), \tau \rangle.$$

As $\operatorname{Gal}(M/K) \simeq C(\mathcal{O}_K)/C(\mathcal{O}_K)^2$, we see every element of $\operatorname{Gal}(M/\mathbb{Q})$ is of order 1 or 2. Therefore,

$$Gal(M/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^m$$

for some integer $m \ge 1$. This implies that M is a compositum of quadratic extensions of \mathbb{Q} . Lemma 7 will be applied to the following tower diagram.

Lemma 7. Let L, M be two abelian extensions of a number field K. Fix $\mathfrak{p} \subseteq \mathcal{O}_K$ an odd prime. Then

- (1) \mathfrak{p} is unramified in LM if and only if \mathfrak{p} is unramified in both L and M respectively.
- (2) If \mathfrak{p} is unramified in LM, then the natural group homomorphism

$$Gal(LM/K) \longrightarrow Gal(L/K) \times Gal(M/K)$$

$$\left(\frac{LM/K}{\mathfrak{p}}\right)\longmapsto \left(\left(\frac{L/K}{\mathfrak{p}}\right),\left(\frac{M/K}{\mathfrak{p}}\right)\right)$$

is injective.

The proof of Lemma 7(1) can be reduced to prove [L:K][M:K] = [LM:K]. For this, we construct

$$\operatorname{Gal}(LM/K) \longrightarrow \operatorname{Gal}(L/K) \times \operatorname{Gal}(M/K)$$

$$\sigma \longmapsto \left(\left(\frac{L/K}{\mathfrak{p}} \right), \left(\frac{M/K}{\mathfrak{p}} \right) \right)$$

for σ such that $\sigma(x) \equiv x^{N(\mathfrak{p})} \mod \mathfrak{p}$ and prove this is an isomorphism.

School of Mathematical Sciences, Peking University, 100871, Beijing, China *Email address*: daiwenhan@pku.edu.cn