A unique opportunity for you to be mentored by Amazonians

Batch 04Week 5
05-Aug-2023

Week 05 – 05-Aug

Jonathan Nally

Encryption Basics

What is this?

Scytale **Encrypted Message** Key

Encryption Analogy

Symmetric and Asymmetric Encryption

Symmetric Key Encryption

Asymmetric Key Encryption

Symmetric Key Encryption vs. Asymmetric Key Encryption

Symmetric Key Encryption	Asymmetric Key Encryption
Encrypts and decrypts data using a single key	Encryption and Decryption are accomplished using two distinct keys – Public Key and Private Key
Due to its simplicity, it is faster.	Due to its complexity, it is slower and requires more processing power.
Smaller key lengths, typically 128-256 bits	Longer key lengths E.g. Recommended RSA keys are 2048 bits
It is typically used for bulk data encryption	It is used in smaller data transactions, primarily to authenticate and create a secure communication channel before the actual data transfer.
Cipher text size is not much different from original plaintext	Cipher text is bigger than the plaintext
Not used in digital signatures	Preferred in digital signatures
Algorithms: DES, RC4, 3DES, AES, ChaCha20	Algorithms: DSA, RSA, Diffie-Hellman, ECDSA, ECDH

How a key pair is generated?

Large Random Number

Key Generation Program

Keys

Encryption in AWS

Encryption in Transit / Encryption at Rest

AWS Certificate Manager

AWS Certificate Manager

• Easily provision, manage, and deploy public and private SSL/TLS certificate

• AWS Certificate Manager supports a growing number of AWS services.

AWS Key Management Service (KMS)

AWS Key Management Service

• Easily create and control the keys used to encrypt or digitally sign your data.

• AWS KMS service stores key material on a device called HSM (Hardware Security Module).

What is a Hardware Security Module (HSM)?

• Hardware Security Module (HSM) is a physical device which is designed to store keys safely.

Envelope Encryption

