

09/051843

REC'D 2 2 NOV 1996
WIPO PCT

Patent Office Canberra

I, DAVID DANIEL CLARKE, ASSISTANT DIRECTOR PATENT SERVICES, hereby certify that the annexed are true copies of the Provisional specification and drawing(s) as filed on 23 October 1995 in connection with Application No. PN 6135 for a patent by THE WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RESEARCH filed on 23 October 1995.

I further certify that the annexed documents are not, as yet, open to public inspection.

WITNESS my hand this Thirty-first day of October 1996

DAVID DANIEL CLARKE

ASSISTANT DIRECTOR PATENT SERVICES

AUSTRALIAN PROVISIONAL NO. DATE OF FILING PN6135 23 OCT. 95

PATENT OFFICE

THE WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RESEARCH

AUSTRALIA Patents Act 1990

PROVISIONAL SPECIFICATION for the invention entitled:

"A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME"

The invention is described in the following statement:

A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

5

10

15

20

25

The present invention relates generally to a novel haemopoietin receptor or components or parts thereof and to genetic sequences encoding same. The receptor molecules and their components and/or parts and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined following the bibliography.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

The rapidly increasing sophistication of recombinant DNA techniques is greatly facilitating research into the medical and allied health fields. Cytokine research is of particular importance, especially as these molecules regulate the proliferation, differentiation and function of a wide variety of cells. Administration of recombinant cytokines or regulating cytokine function and/or synthesis is becoming increasingly the focus of medical research into the treatment of a range of disease conditions.

Despite the discovery of a range of cytokines and other secreted regulators of cell function, comparatively few cytokines are directly used or targeted in therapeutic regimums. One reason for this is the pleiotropic nature of many cytokines. For example, interleukin (IL)-11 is a functionally pleiotropic molecule (1,2), initially

خ

characterized by its ability to stimulate proliferation of the IL-6-dependent plasmacytoma cell line, T11 65 (3). Other biological actions of IL-11 include induction of multipotential haemopoietin progenitor cell proliferation (4,5,6), enhancement of megakaryocyte and platelet formation (7,8,9,10), stimulation of acute phase protein synthesis (11) and inhibition of adipocyte lipoprotein lipase activity (12, 13).

Interleukin-13 (IL-13) is another important cytokine which shares a number of structural characteristics with interleukin-4 (IL-4) [reviewed in 14 and 15]. The genes for IL-4 and IL-13 have a related intron/exon structure and are located close together on chromosome 5 in the human and the syntonic region of chromosome 11 in the mouse (14, 15). At the protein level, IL-4 and IL-13 share approximately 30% amino acid identity, including four cysteine residues. Biologically, IL-13 and IL-4 are also similar, being produced by activated T-cells and acting upon macrophages to induce differentiation and suppress the production of inflammatory cytokines. Additionally, human IL-13 may act as a co-stimulatory signal for B-cell proliferation and affect immunoglobulin isotype switching (14, 15). The diverse and pleiotropic function of IL-13 and other haemopoietic cytokine makes this molecule an important group to study, especially at the level of interaction of the cytokine with its receptors. Manipulation and control of cytokine receptors and of cytokine-receptor interaction is potentially very important in many therapeutic situations, especially where the target cytokine is functionally pleiotropic and it is desired to block certain functions of a target cytokine but not all functions.

Research into IL-13 and its receptor has been hampered due to the inability to clone genetic sequences encoding all or part of the IL-13 receptor. In accordance with the present invention, genetic sequences have now been cloned encoding the IL-13 receptor α -chain. The availability of these genetic sequences permits the development of a range of therapeutic and diagnostic agents capable of modulating IL-13 activity as well as the activity of cytokines related at the level of IL-13 receptor structure.

10

خَ

Accordingly, one aspect of the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an haemopoietin receptor α -chain from an animal or a component, fragment, part, derivative, homologue or analogue thereof.

More particularly, the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding the IL-13 receptor α -chain from an animal or a component, fragment, part, derivative, homologue or analogue thereof.

10

15

20

25

30

In a related embodiment, the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding the IL-4 receptor α -chain from an animal or a component, fragment, part, derivative, homologue or analogue thereof.

Preferably, the animal is a mammal or a species of bird. Particularly, preferred mammals include humans, laboratory test animals (e.g. mice, rabbits, guinea pigs), livestock animals (e.g. sheep, horse, pigs, cows), companion animals (e.g. dogs, cats) or captive wild animals (e.g. kangaroos). Although the present invention is exemplified with respect to mice, the scope of the subject invention extends to all animals and birds and in particular humans.

The present invention is predicated in part on an ability to identify members of the haemopoietin receptor family on the basis of sequence similarity. Based on this approach, a genetic sequence was identified in accordance with the present invention which encodes the IL-13 α -chain. The expressed genetic sequence is referred to herein as "NR4". NR4 has an apparent molecular weight when synthesised by transfected COS cells of from about 50,000 to about 70,000 daltons, and more preferably from about 55,000 to about 65,000 daltons. NR4 binds to IL-13 with low affinity and is considered, therefore, to be IL-13 receptor α -chain. Accordingly, the terms "NR4" and IL-13" receptor α -chain" (or "IL-13 R α ") are used interchangeably throughout the subject

ź

specification. Furthermore, in accordance with the present invention, IL-13 binding to its receptor has been found to be competitively inhibited by IL-4 or a component thereof which may provide a method for controlling IL-13-receptor interaction and which may also provide a basis for the preparation and construction of mimetics.

5

15

30

Another aspect of the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding IL-13 receptor α -chain having an amino acid sequence as set forth in SEQ ID NO:2 or having at least about 50% similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

Another preferred embodiment of the present invention contemplates a nucleic acid molecule comprising a sequence of nucleotides encoding the IL-13 receptor α -chain and having a nucleotide sequence substantially as set forth in SEQ ID NO:1 or having at least about 50% similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

Accordingly, the present invention extends to the sequence of nucleotides set forth in SEQ ID NO:1 or the sequence of amino acids set forth in SEQ ID NO:2 or single or multiple nucleotide or amino acid substitutions, deletions and/or additions thereto.

The present invention further extends to nucleic acid molecules capable of hybridising under low stringency conditions to the nucleotide sequence set forth in SEQ ID NO:1 or a complementary form thereof.

For the purposes of defining the level of stringency, reference can conveniently be made to Maniatis *et al* (1982) at pages 387-389 which are incorporated herein by reference where the washing step at paragraph 11 is considered herein to be high stringency. A low stringency wash is defined herein to be 0.1-0.2xSSC, 0.1% w/v SDS at 55-65°C for 20 minutes and a medium level of stringency is considered herein to be 2xSSC,

چَ

0.1% w/v SSC at ≥ 45°C for 20 minutes. The alternative conditions are applicable depending on concentration, purity and source of nucleic acid molecules.

Yet another aspect of the present invention provides a nucleic acid molecule comprising a sequence of nucleotides which encodes or is complementary to a sequence which encodes an IL-13 receptor α -chain, said nucleic acid molecule having a nucleotide sequence substantially as set forth in SEQ ID NO:1 or a nucleic acid molecule which encodes a structurally similar IL-13 receptor α -chain or a derivative thereof and which is capable of hybridising to the nucleotide sequence substantially as set forth in SEQ ID NO:1 or a complementary form thereof under low stringency conditions.

Still yet another aspect of the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides which encodes or is complementary to a sequence which encodes the IL-13 receptor α -chain having an amino acid sequence substantially as set forth in SEQ ID NO:2 or comprises a nucleotide sequence coding for an amino acid sequence having at least about 50% similarity to the sequence set forth in SEQ ID NO:2 and is capable of hybridising to the sequence set forth in SEQ ID NO:1 under low stringency conditions.

The nucleic acid molecules contemplated by the present invention are generally in isolated form and are preferably cDNA or genomic DNA molecules. In a particularly preferred embodiment, the nucleic acid molecules are in vectors and most preferably expression vectors to enable expression in a suitable host cell. Particularly useful host cells include prokaryotic cells, mammalian cells, yeast cells and insect cells. The cells may also be in the form of a cell line.

According to this aspect of the present invention there is provided an expression vector comprising a nucleic acid molecule encoding the IL-13 receptor α -chain as hereinbefore described, said expression vector capable of expression in a particularly host cell.

Ś

Another aspect of the present invention contemplates a recombinant polypeptide comprising a sequence of amino acids substantially as set forth in SEQ ID NO:2 or having at least about 50% similarity to all or part thereof. Preferably, the percentage similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

The recombinant polypeptide contemplated by the present invention includes, therefore, components, parts, fragments, derivatives, homologues or analogues of the IL-13 receptor α-chain and is preferably encoded by a nucleotide sequence substantially set forth in SEQ ID NO:1 or a molecule having at least about 50% similarity to all or part thereof or a molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:1 or a complementary form thereof. The recombinant molecule may be glycosylated or non-glycosylated. When in glycosylated form, the glycosylation may be substantially the same as naturally occurring IL-13 receptor α-chain or may be a modified form of glycosylation. Altered or differential glycosylation states may or may not affect binding activity of the IL-13 receptor α-chain.

The recombinant IL-13 receptor α -chain may be in soluble form or may be expressed on a cell surface or conjugated or fused to a solid support or another molecule.

The present invention extends to chemical analogues of the recombinant IL-13 receptor α -chain.

25

30

10

Chemical analogues of the recombinant IL-13 receptor α -chain contemplated herein include, but are not limited to, modifications to side chains, incorporation of unnatural amino acids and/or their derivatives during peptide synthesis and the use of crosslinkers and other methods which impose conformational constraints on the peptides or their analogues.

خَ

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6, trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5'-phosphate followed by reduction with NaBH₄.

10

The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

15 The carboxyl group may be modified by carbodiimide activation *via* O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

25

20

Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.

30

ż

Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.

5

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids.

10

15

20

Crosslinkers can be used, for example, to stabilise 3D conformations, using homobifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and heterobifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C_{α} and N_{α} -methylamino acids, introduction of double bonds between C_{α} and C_{β} atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.

25

30

Chemical modification of the recombinant IL-13 receptor α -chain may be important, for example, to increase serum half-life, to protect the molecule from enzymatic degradation and/or for diagnostic purposes.

The recombinant IL-13 receptor α -chain contemplated by the present invention is useful in the development of a range of agonists and antagonists of IL-13-receptor interaction. The recombinant molecule may also be used in the development of diagnostic agents.

Particularly useful agents encompassed by this aspect of the present invention are antibodies to the recombinant IL-13 receptor α -chain. The antibodies may be monoclonal or polyclonal and are particularly useful as antagonists of IL-13-receptor binding or as diagnostic agents to qualitate or quantitate the presence of the IL-13 receptor α -chain. These antibodies may also be useful in the screening of similar components in other receptors such as IL-4 receptors.

Other agonists and antagonists include chemical molecules which, for example, structurally, functionally or electrochemically mimic or have similarities to IL-13 receptor α -chain or which comprise a solubilised form of the IL-13 receptor α -chain.

Such agents are useful in modulating IL-13-receptor interaction and these are useful in enhancing or diminishing IL-13 related activities. This may be particularly important for cancers or tumours involving or resulting from excess IL-13 or from aberrant IL-13 molecules or to promote IL-13 function in the treatment of a range of conditions such as, but not limited to, immune deficiency.

The present invention further contemplates ribozyme and antisense molecules useful in reducing IL-13 receptor α-chain expression.

The present invention encompasses, therefore, pharmaceutical and diagnostic compositions comprising recombinant IL-13 receptor α -chain or parts thereof, antibodies thereto, agonists or antagonists thereof or genetic molecules such as ribozymes, antisense molecules and constructs useful in co-suppression.

25

The present invention is further described by the following non-limiting Figures and Examples.

In the Figures:

5

10

15

Figure 1 is a representation of the nucleotide [SEQ ID NO:1] and predicted amino acid [SEQ ID NO:2] sequence of the NR4. The untranslated region is shown in lower case and the translated region in upper case. The conventional one-letter code for amino acids is employed, potential asparagine linked glycosylation sites are underlined and the conserved cysteine residues and WSXWS motif of haempoietin receptor family members are shown in bold. The predicted signal sequence is underlined in bold while the transmembrane domain is underlined with dashes. The sequence shown is a composite derived from the analysis of 8 cDNA clones derived from 3 libraries. The 5'-end of the sequence (nucleotides -60 to 351) is derived from a single cDNA clone but is also present in genomic DNA clones that have been isolated.

Figure 2 is a photographic representation showing northern analysis of NR4 mRNA expression in selected tissues and organs.

20

Figure 3 is a graphical representation depicting saturation isotherms of 125 I-IL-13 and 125 I-IL-4 binding; saturation isotherms depicted as Scatchard plots of IL-4 (o) and IL-13 (•) binding to (A) COS cells expressing the IL-13R α (NR4), (B) CTLL cells and (C) CTLL cells expressing the IL-13R α (NR4). Data have been normalised to 1×10^4 COS cells and 1×10^6 CTLL cells and binding was carried out on ice for 2 to 4 hours.

25

Figure 4 is a graphical representation showing specificity of IL-4 and IL-13 binding; the ability of IL-4 (ο) and IL-13 (•) to compete for ¹²⁵I-¹²⁵I-IL-13 binding to (A) COS cells expressing the IL-13Rα (NR4) and (C) CTLL cells expressing the IL-13Rα (NR4) or to compete for IL-4 binding to (B) CTLL cells and (D). CTLL cells expressing the IL-13Rα (NR4) binding was carried out on ice for 2 to 4 hours and the data have been expressed as a percentage of the specific binding observed in the absence of a competitor (■).

ź

Figure 5 is a graphical representation showing factor dependent proliferation of cells expressing NR4. Two hundred (A) CTLL cells or (B) CTLL cells expressing the IL-13Rα (NR4) were incubated in the absence of cytokine (■) or with various concentrations of IL-2 (□), IL-4 (o) or IL-13 (•). After 48 hours viable cells were counted and data was expressed as a percentage of the number of viable cells observed with a maximal concentration of IL-2.

ż

The following single and three letter abbreviations for amino acid residues are used in the specification:

Amino Acid	Three-letter	One-letter		
	Abbreviation	Symbol		
Alanine	Ala	Α		
Arginine	Arg	R		
Asparagine	Asn	N		
Aspartic acid	Asp	D		
Cysteine	Cys	C		
Glutamine	Gln	Q		
Glutamic acid	Glu	E		
Glycine	Gly	G		
Histidine	His	H		
Isoleucine	Ile	I		
Leucine	Leu	L		
Lysine	Lys	K		
Methionine	Met	M		
Phenylalanine	Phe	F		
Proline	Pro	P		
Serine	Ser	S		
Threonine	Thr	Т		
Tryptophan	Trp	W		
Tyrosine	Tyr	Y		
Valine	Val	v		
Any residue	Xaa	X		

EXAMPLE 1

Isolation of genomic and cDNAs encoding NR4

Apol digested genomic DNA, extracted from an embryonal stem cell line, was cloned into the λ ZAPII bacteriophage (Stratagene, LaJolla, CA). Approximately 10^6 plaques from this library were screened with a 32 P-labelled oligonucleotide corresponding to the sequence Trp-Ser-Asp-Trp-Ser [SEQ ID NO:3] (16). Positively hybridising clones were sequenced using an automated DNA sequencer according to the manufacturer's instructions (Applied Biosystems, Foster City, CA). One clone appeared to encode for part of a new member of the haemopoietin receptor family. Oligonucleotides were designed on the basis of this genomic DNA sequence and were used in the conventional manner to isolate clones from mouse peritoneal macrophage (Clontech Laboratories, Palo Alto, CA), mouse skin, mouse lung, mouse kidney, and WEHI-3B (Stratagene, LaJolla, CA) λ -bacteriophage cDNA libraries.

15

20

10

EXAMPLE 2

Construction of expression vectors and transfection of cells

Using PCR, a derivative of the NR4 cDNA was generated which encoded for the IL-3 signal sequence and an N-terminal FLAG epitope-tag preceding the mature coding region of NR4 (Thr27 to Pro424; Figure 1). The PCR product was cloned into the mammalian expression vector pEF-BOS (17). Constructs were sequenced in their entirety prior to use. Cells were transfected and selected as previously described (16, 18).

25

EXAMPLE 3

Northern blots

Northern blots were performed as previously described (16). The source of hybridisation probes was as follows: NR4 - a PCR product from nucleotide 32 to 984 (Figure 1) and GAPDH - a cDNA fragment spanning nucleotides (19) [REF REQUIRED].

30

خَت

EXAMPLE 4

Cytokines and binding experiments using radioiodinated cytokines

IL-2, IL-4, IL-7, IL-9, IL-13 and IL-15 were obtained commercially (R & D Systems, Minneapolis MN). For radioiodination, cytokines were dissolved at a concentration of 100 μg/ml in 10 mM sodium phosphate, 150 mM NaCl (PBS), 0.02% v/v Tween 20 and 0.02% w/v sodium azide at pH 7.4. An amount of 2μg of IL-13 was radioiodinated using the iodine monochloride method (20, 21), while 2μg of IL-4 was radiolabelled using dioiodo-Bolton-Hunter reagent (16). Binding studies and determination of the specific radioactivity and bindability of labelled cytokines were performed as previously described (2).

EXAMPLE 5

Proliferation Assays

15 The proliferation of Ba/F3 and CTLL cells in response to cytokines was measured in Lux 60 microwell HL-A plates (Nunc Inc. IL, USA). Cells were washed three times in DME containing 20% v/v new born calf serum and resuspended at a concentration of 2 x 10⁴ cells per ml in the same medium. Aliquots of 10μl of the cell suspension were placed in the culture wells with 5μl of various concentrations of purified recombinant cytokines. After 2 days of incubation at 37°C in a fully humidified incubator containing 10% v/v CO₂ in air, viable cells were counted using an inverted microscope.

EXAMPLE 6

Cloning and Characterisation of Murine NR4

A library was constructed in λZAPII using ApoI digested genomic DNA from embryonal stem cells and screened with a pool of ³²P-labelled oligonucleotides encoding the amino acid sequence Trp-Ser-Asp-Trp-Ser [SEQ ID NO:3] found in many members of the haemopoietin receptor family. One hybridising bacteriophage was found to contain a genomic clone that appeared to encode part of a novel member of the haemopoietin receptor family. This receptor was given the operational name NR4. The sequence of the genomic clone was used to isolate cDNAs encoding NR4 from WEHI-3B cell, peritoneal macrophage, bone marrow, skin and kidney libraries. A composite of the

3

nucleotide sequence [SEQ ID NO:1] and predicted amino acid sequence [SEQ ID NO:2] of these cDNAs is shown in Figure 1. The NR4 cDNA is predicted to encode for a protein of 424 amino acid residues, containing a putative signal sequence and transmembrane domain. The extracellular region of the protein containing a putative signal sequence and transmembrane domain. The extracellular region of the protein contained an immunoglobulin-like domain (amino acids 27-117), in addition to a typical haempoietin receptor domain (amino acids 118-340) which includes four conserved cysteine residues and the characteristic Trp-Ser-Asp-Trp-Ser [SEQ ID NO:3] motif (Figure 1). The cytoplasmic tail of the new receptor was 60 amino acids in length.

10

15

20

EXAMPLE 7

Expression pattern of NR4 cDNA

The pattern of NR4 mRNA expression was examined by Northern analyses. Two hybridising species of 5.2 and 2.2 kb in length were detected in mRNA from most tissues (Figure 2). NR4 mRNA was not detectable in skeletal muscle (Figure 2).

EXAMPLE 8

NR4 encodes the IL-13 receptor α -chain (IL-13R α) - a specific binding subunit of the IL-13 receptor

The apparent molecular weight is from about 50,000 to about 70,000 daltons and more particularly about 55,000 to about 65,000 daltons for NR4 expressed in COS cells estimated from Western blots using an anti-FLAG antibody, suggested that NR4 might encode the binding subunit of the IL-13 receptor. In order to test this possibility NR4 was expressed in COS cells. Untransfected COS cells expressed relatively low levels of IL-4 and IL-13 receptors. Upon transfection with a plasmid containing the NR4 cDNA, the number of IL-13 receptors but not IL-4 receptors expressed by COS cells was dramatically increased (Figure 3A; 100,000 to 500,000 receptors per cell). The affinity of IL-13 for NR4 expressed by COS cells was low (K_D~2-10 nM) and binding was specific since it was in competition with unlabelled IL-13 but not other cytokines including IL-2, IL-4, IL-7, IL-9 or IL-15 (Figure 4A). These results suggest that NR4 is the IL-13 receptor α-chain (IL-13Rα).

خَ

EXAMPLE 9

The IL-13R α (NR4) and the IL-4R α are shared components of the IL-4 and IL-3 receptors

In order to investigate the relationship between IL-4 and IL-13 receptors, the IL-4 responsive cell line CTLL was examined. Parental CTLL cells expressed a single class of IL-4 receptor (K_D~660 pM; ~3600 receptors per cell) but no detectable IL-13 receptors (Figure 3B). The IL-4 receptors expressed by CTLL cells appeared to be specific since binding of ¹²⁵I-IL-4 was in competition with unlabelled IL-4 but not IL-13 (Figure 4B). Upon expression of the IL-13Ra (NR4) in CTLL cells no change was observed in the number or affinity of IL-4 receptors, while a single class of high affinity IL-13 receptors was detected (Figure 3C; $K_D \sim 75$ pM; 1350 receptors per cell). The affinity of IL-13 for the IL-13Ra (NR4) expressed in CTLL cells was higher than in COS cells, suggesting that the former expressed a protein capable of interacting with the IL-13Rα (NR4) to increase the affinity for IL-13. A likely candidate based on previous studies is the IL-4Ra. In order to explore this possibility the ability of IL-4 to compete with ¹²⁵I-IL-13 for binding to CTLL cells expressing the IL-13Rα (NR4) was assessed. Figure 4B shows that IL-4 and IL-13 were equally effective in competing for ¹²⁵I-IL-13 binding (IC₅₀ ~ 300pM; Figure 4C) and, in addition, were able to compete with 125 I-IL-4 for binding (IC₅₀ \sim 300 pm; Figure 4D).

20

25

30

15

EXAMPLE 10

Expression of the IL-13R α (NR4) is necessary for transduction of a proliferative signal by IL-13

CTLL cells require the addition of exogenous cytokines for survival and proliferation. IL-2 was found to be a potent proliferative stimulus for CTLL cells ($EC_{50} \sim 100\text{-}200$ pM), while IL-4 was relatively weak (EC_{50} 2-7 nM) and IL-13 was inactive (Figure 5A). Expression of the IL-13Ra (NR4) in CTLL cells resulted in the ability to survive and proliferate weakly in response to IL-13 ($EC_{50} \sim 700$ pM) and to proliferate somewhat more strongly than parental cells in response to IL-4 ($EC_{50} \sim 700$ pM; Figure 5B).

خَ

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

REFERENCES:

- 1. Du, X.X. and Williams, D.A. (1994) Blood 83: 2023-2030.
- 2. Yang, Y.C. and Yin, T. (1992) Biofactors 4: 15-21.
- 3. Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.J.J., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. (1990) *Proc. Natl. Acad. Sci. USA* 87: 7512.
- 4. Musashi, M., Clark, S.C., Sudo, T., Urdal, D.L., and Ogawa, M. (1991) *Blood* 78: 1448-1451.
- 5. Schibler, K.R., Yang, Y.C. and Christensen, R.D. (1992) Blood 80: 900-3.
- 6. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C., and Ogawa, M. (1992) *Blood* 79: 2855-60.
- 7. Burstein, S.A., Mei, R.L., Henthorn, J., Friese, P. and turner, K. (1992) *J. Cell. Physiol.* 153: 305-12.
- 8. Hangoc, G., Yin, T., Cooper, S., Schendel, P., Yang, Y.C. and Broxmeyer, H.E. (1993) Blood 81: 965-72.
- 9. Teramura, M., Kobayashi, S., Hoshino, S., Oshimi, K. and Mizoguchi, H. (1992)

 Blood 79: 327-31.
- 10. Yonemura, Y., Kawakita, M., Masuda, T., Fujimoto, K., Kato, K. and Takatsuki, K. (1992) Exp. Hematol. 20: 1011-6.
- 11. Baumann, H. and Schendel, P. (1991) J. Biol. Chem. 266: 20424-7.
- 12. Kawashima, I., Ohsumi, J., Mita-Honjo, K., Shimoda-Takano, K., Ishikawa, H., Sakakibara, S., Miyadai, K. and Takiguchi, Y. (1991) Febs. Lett. 283: 199-202.
- 13. Keller, D.C., Du, X.X., Srour, E.f., Hoffman, R. and Williams, D.A. (1993)

 Blood 82: 1428-35.
- 14. McKenzie, A.N.J. and Zurawski, G. (1994) Guidebood to cytokines and their receptors, Oxford University Press. Oxford.
- 15. Zurawski, G. and de Vries, J.E. (1994) Immunol. Today 15: 19-26.
- Hilton, D.J., Hilton, A.A., Raicevic, A., Rakar, S., Harrison-Smith, M., Gough, N.M., Begley, C.G., Metcalf, D., Nicola, N.A. and Wilson, T.A. (1994) EMBO J. 13: 4765-4775.
- 17. Mizushima, S. and Nagata, S. (1990) Nucleic Acids Res. 18: 5322.

ź

- 18. Lock, P., Metcalf, D. and Nicola, N.A. (1994) *Proc. Natl. Acad. Sci. USA 91:* 252-256.
- 19. GAPDH REF
- 20. Contreras, M.A., Bale, W.F. and Spar, I.L. (1983) *Methods in Enzymol.* 92: 277-292.
- 21. Hilton, D.J. and Nicola, N.A. (1992) J. Biol. Chem. 267: 10238-10247.
- 22. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) *Molecular cloning: A Laboratory Manual* Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

ż

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: THE WALTER AND ELIZA HALL INSTITUTE OF

MEDICAL RESEARCH

(ii) TITLE OF INVENTION: A NOVEL HAEMOPOIETIN RECEPTOR AND

GENETIC SEQUENCES ENCODING SAME

- (iii) NUMBER OF SEQUENCES: 2
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: DAVIES COLLISON CAVE
 - (B) STREET: 1 LITTLE COLLINS STREET
 - (C) CITY: MELBOURNE
 - (D) STATE: VICTORIA
 - (E) COUNTRY: AUSTRALIA
 - (F) ZIP: 3000
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: AU PROVISIONAL
 - (B) FILING DATE: 23-OCT-1995
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: HUGHES DR, E JOHN L
 - (C) REFERENCE/DOCKET NUMBER: EJH/EK
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: +61 3 9254 2777
 - (B) TELEFAX: +61 3 9254 2770

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1680 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 1..1272
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGAAAAGATA	GAATAAATGG C	CTCGTGCCG AA	GAGCCGAGGC GAGGGCCTGC -1				
				GTG CTG CTA Val Leu Leu			
ACC GCC ACC	GTG GGC CAA Val Gly Gln 20	GTT GCC GCG Val Ala Ala 25	a Ala Thr	GAA GTT CAG Glu Val Gln 30	CCA CCT 96 Pro Pro		
	Leu Ser Val			TGC ACG ATA Cys Thr Ile 45			
				TGC ACT CTC Cys Thr Leu 60			
		Gln Gln Asp		ATT GCT CCA Ile Ala Pro			
				ATC TGT CTG Ile Cys Leu			
			r Glu Lys	CCT AGC CCT Pro Ser Pro 110			
	Ile Ser Pro			GAG TCC GCT Glu Ser Ala 125			
				ATG AAG TGT Met Lys Cys 140			
		Ser Pro As		TAT ACT CTG Tyr Thr Leu			
				GAA AAC ATC Glu Asn Ile			
			e Lys Leu	ACT AAA GTG Thr Lys Val 190			
	ı His Gln Ası			AAG GAT AAT Lys Asp Asn 205			

AAA Lys	ATT Ile 210	AGG Arg	CCA Pro	TCC Ser	TGC Cys	AAA Lys 215	ATA Ile	GTG Val	TCT Ser	TTA Leu	ACT Thr 220	TCC Ser	TAT Tyr	GTG Val	AAA Lys	672
CCT Pro 225	GAT Asp	CCT Pro	CCA Pro	CAT His	ATT Ile 230	AAA Lys	CAT His	CTT Leu	CTC Leu	CTC Leu 235	AAA Lys	AAT Asn	GGT Gly	GCC Ala	TTA Leu 240	720
	GTG Val															768
	GAA Glu															816
GAG Glu	GTT Val	GAA Glu 275	GAG Glu	GAC Asp	AAA Lys	TGC Cys	CAG Gln 280	AAT Asn	TCC Ser	GAA Glu	TCT Ser	GAT Asp 285	AGA Arg	AAC Asn	ATG Met	864
GAG Glu	GGT Gly 290	ACA Thr	AGT Ser	TGT Cys	TTC Phe	CAA Gln 295	CTC Leu	CCT Pro	GGT Gly	GTT Val	CTT Leu 300	GCC Ala	GAC Asp	GCT Ala	GTC Val	912
TAC Tyr 305	ACA Thr	GTC Val	AGA Arg	GTA Val	AGA Arg 310	GTC Val	AAA Lys	ACA Thr	AAC Asn	AAG Lys 315	TTA Leu	TGC Cys	TTT Phe	GAT Asp	GAC Asp 320	960
AAC Asn	AAA Lys	CTG Leu	TGG Trp	AGT Ser 325	GAT Asp	TGG Trp	AGT Ser	GAA Glu	GCA Ala 330	CAG Gln	AGT Ser	ATA Ile	GGT Gly	AAG Lys 335	GAG Glu	1008
CAA Gln	AAC Asn	TCC Ser	ACC Thr 340	TTC Phe	TAC Tyr	ACC Thr	ACC Thr	ATG Met 345	TTA Leu	CTC Leu	ACC Thr	ATT Ile	CCA Pro 350	GTC Val	TTT Phe	1056
	GCA Ala															1104
ATC Ile	ATT Ile 370	ATA Ile	TTT Phe	CCT Pro	CCA Pro	ATT Ile 375	CCT Pro	GAT Asp	CCT Pro	GGC Gly	AAG Lys 380	ATT Ile	TTT Phe	AAA Lys	GAA Glu	1152
ATG Met 385	TTT	GGA Gly	GAC Asp	CAG Gln	AAT Asn 390	GAT Asp	GAT Asp	ACC Thr	CTG Leu	CAC His 395	TGG Trp	AAG Lys	AAG Lys	TAT Tyr	GAC Asp 400	1200
ATC Ile	TAT	GAG Glu	AAA Lys	CAA Gln 405	Ser	AAA Lys	GAA Glu	GAA Glu	ACG Thr 410	GAT Asp	TCT Ser	GTA Val	GTG Val	CTG Leu 415	ATA Ile	1248
GAA Glu	AAC Asn	CTG Leu	AAG Lys 420	Lys	GCA Ala	GCT Ala	CCT Pro	TGA	TGGG	GAG .	AAGT	GATT	TC T	TTCT	TGCCT	1302
TCA	ATGT	GAC	CCTG	TGAA	GA T	TATT	TGCA	T TC	TCCA	TTTG	TTA	TCTG	GGG	GACT	TGTTA	1362
ATA	GAAA	CTG	AAAC	TACT	CT T	GAAA	AACA	G GC	AGCT	CCTA	AGA	GCCA	CAG	GTCT	TGATGT	1422
GACTTTTGCA TTGAAAACCC AAACCCAAAG GAGCTCCTTC CAAGAAAAGC AAGAGTTCTT 148								1482								
CTC	GTTC	CTT	GTTC	CAAT	cc c	TAAA	AGCA	G AT	GTTT	TGCC	AAA	TCCC	CAA	ACTA	GAGGA(1542
AAAGACAAGG GGACAATGAC CATCAATTCA TCTAATCAGG AATTGTGATG GCTTCCTAAG 1																
GAATCTCTGC TTGCTCTG								1620								

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 424 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Arg Pro Ala Leu Leu Gly Glu Leu Leu Val Leu Leu Leu Trp 1 5 10 Thr Ala Thr Val Gly Gln Val Ala Ala Ala Thr Glu Val Gln Pro Pro 20 25 30 Val Thr Asn Leu Ser Val Ser Val Glu Asn Leu Cys Thr Ile Ile Trp 35 40 45 Thr Trp Ser Pro Pro Glu Gly Ala Ser Pro Asn Cys Thr Leu Arg Tyr 50 60 Phe Ser His Phe Asp Asp Gln Gln Asp Lys Lys Ile Ala Pro Glu Thr 65 70 75 80 His Arg Lys Glu Glu Leu Pro Leu Asp Glu Lys Ile Cys Leu Gln Val Gly Ser Gln Cys Ser Ala Asn Glu Ser Glu Lys Pro Ser Pro Leu Val Lys Lys Cys Ile Ser Pro Pro Glu Gly Asp Pro Glu Ser Ala Val Thr 115 120 125 Glu Leu Lys Cys Ile Trp His Asn Leu Ser Tyr Met Lys Cys Ser Trp 130 135 140 Leu Pro Gly Arg Asn Thr Ser Pro Asp Thr His Tyr Thr Leu Tyr Tyr 145 153 155 160 Trp Tyr Ser Ser Leu Glu Lys Ser Arg Gln Cys Glu Asn Ile Tyr Arg 165 170 175 Glu Gly Gln His Ile Ala Cys Ser Phe Lys Leu Thr Lys Val Glu Pro 180 185 190 Ser Phe Glu His Gln Asn Val Gln Ile Met Val Lys Asp Asn Ala Gly 195 200 205 Lys Ile Arg Pro Ser Cys Lys Ile Val Ser Leu Thr Ser Tyr Val Lys 210 215 220 Pro Asp Pro Pro His ::e Lys His Leu Leu Leu Lys Asn Gly Ala Leu 225 230 235 Leu Val Gln Trp Lys Asn Pro Gln Asn Phe Arg Ser Arg Cys Leu Thr 245 250 250 Tyr Glu Val Glu Val Asn Asn Thr Gln Thr Asp Arg His Asn Ile Leu 260 265 270 Glu Val Glu Asp Lys Cys Gln Asn Ser Glu Ser Asp Arg Asn Met 275 280 285 Glu Gly Thr Ser Cys Phe Gln Leu Pro Gly Val Leu Ala Asp Ala Val 290 295 300 Tyr Thr Val Arg Val Arg Val Lys Thr Asn Lys Leu Cys Phe Asp Asp 305 310 320 DATED this 23rd day of October, 1995

THE WALTER AND ELIZA HALL INSTITUTE
OF MEDICAL RESEARCH
By Its Patent Attorneys
DAVIES COLLISON CAVE

- 50 ACCIDENCE CONTROL OF THE CONTROL OF HARPALLGELLYLL WTATV 1 VEVET DIVEED OF THE VEC 21 GAAAATOTOTGCAOGATAATATOCACGTOGAGTECTCCTGAAGGAGCCAGTCCAAATTCC 121 ENTCIIIALMEBSECYABKC 41 ACTOTOAGATATTTTAGTCACTTTGATGACCAACAGGATAAGAAAATTGCTCCAGAAACT 181 TLRYPSHFDDQQDKKIAPET 51 241 H R K E E F P F D E K I C F O A G E J C AGTGCCAATGAAAGTGAGAGCCTAGCCCTTTGGTGAAAAAGTGCATCTCACCCCTGAA 301 SARESEKPSPLVKKCIS\PFE 101 CCTCATCCTCACTCCCCTGTCACTGAGCTCAACTCCATTTCCCCATAACCTCAAGCTATATC 361 GDPESAVTELKCIWNELSYM aagtottectggctcctggaaggaatacaaccctcacacactatactctgtactat 421 K C S W L P G R M T S P D T H Y T L Y Y 141 TOOTACACCADCCTCHAGAAAAGTCGTCAATCTGAAAACATCTATAGAGAAGGTCAACAC WYSSLEKSRQCEPIYREGQH ATTCCTTOTTCCTTTANATTGACTANAGTGCAACCTACTTTTCAACATCAGAACGTTCAA 541 I A C S F K L T K V E P S F B K Q N V Q ataatogtcaaccataatoctubuaaaattabgccatcctgcaaaatactctctttaact 501 I M V K D N A Q K I R P S C K I V S L T 561 SYVKPDPPHIKHLLKNQAL TINGTOCKSTGGAACAATCCXCAAAATTTINGAAGCAGATGCTIAACTTATGAAGTGGAG 721 L V Q W K N P Q N F R S R C L T Y E V E 241 GTCAATAATACTCAAACCGACCGACATAATATTTTAGROGTTGAAGACGACAAATGCCAG 781 V M N T Q T D R H N I L E V E E D K C Q 261 NATTECCAATCTGATAGAAACATGGAGCCTACAACTTGTTTCCAACTCCGTGTGTTCTT 841 N S E S D R N M B G T S C F Q L P G V L GCCGACOCTGTCTACACAGTCAGAGTAAGAGTCAAAACAAACAAACTTATGCTTTGATGAC 901 ADAVYTVRVRVKTNKLCFDD AACAARCTGTGGAGTCATTGCAGTCRAGCRCAGAGTATAGGTTAAGGAGCAAAACTCCACC 961 N K L W B D W B E A Q S I G K E O N S T 1021 CITY TACCIGARAGE CTIALCATCATTATATTTCCTCCAATTCCTGATCCTCCAAC YLKRLKIIIPPPIPDPCK 361 ATTTTTAAAGAAATGTTTGGAGACCAGAATGATACCCTGCACTGGAAGAAGTATGAC IFKEMFGDONDDTLHWKKYD 1201 ATCTATGAGAAACAATCCAAAGAAGAAACGGATTCTGTAGTGCTGATAGAAAACCTGAAG
401 I Y E K Q S K E E T D 9 V V L I E N L K 1261 AAACCACCTCCTTCAtggggagaagtgatttctttcttgccttcaatgtgaccctgtgaa K A A P 1321 gatttattgcattctccatttgttatctgggggacttgttaaatagaaactgaaact&ct Cttgaaaaacaggcagctcctaagagctacaggtcttgatgtgacttttgcattgaaaac ecaaacccaaaggagctccttccaagaaAagcaagagttcttctcgttccttgttccaat ccctaaaagcagatgttttgccaaatccccaaactagaggacaaagacaaggggacaatg 1501

FIGURE 2

FIGURE 3

FIGURE 4

1. Moximum Number of Vable Cello.

FIGURE 5

THIS PAGE BLANK (USPTO)