Imperial College London

MATH 50006 Winter 2022

Department of Mathematics Lecturer: P.-F. Rodriguez

Tutorials Lead: Y. Shulzhenko

Assistants: R. Carini, J. McCarthy, S. Karwa, W. Turner

Exercise Sheet 5

A word on **notation:** the integral of f over the set A with respect to the Lebesgue measure λ is commonly expressed in the literature using any of the following notations (the first one being the one we introduced in class):

$$\int_A f d\lambda$$
, $\int_A f(x) d\lambda(x)$, $\int_A f(x) dx$, ...

These expressions are all equal by definition.

- 1. (Image measure).
 - a) Let (X, \mathcal{A}) , (Y, \mathcal{A}') be measurable spaces and $f: X \to Y$ be a measurable map. Let μ be a measure on (X, \mathcal{A}) . Show that $\mu \circ f^{-1}$ given by

$$(\mu \circ f^{-1})(A') = \mu(f^{-1}(A')), \quad A' \in \mathcal{A}'$$

defines a measure on (Y, \mathcal{A}') (the image measure of μ under f).

- b) Let $n \ge 1$ be an integer and μ denote the uniform measure on $X = \{0,1\}^n$ (endowed with the σ -algebra $\mathcal{A} = 2^X$), defined by setting $\mu(x) = 2^{-n}$, $x \in X$. For $x = (x_1, \ldots, x_n)$, let $f(x) = \sum_{i=1}^n x_i$. Determine $\mu \circ f^{-1}$. Note: f can be interpreted as counting the number of heads (=1's) when flipping a fair coin n times.
- **2.** (Bounded convergence). Let $f_n: \mathbb{R} \to \mathbb{R}$ be measurable and uniformly bounded, i.e. there exists $M \geq 1$ such that $|f_n(x)| \leq M$ for all $x \in \mathbb{R}$ and $n \geq 0$. Show that if $f_n \to f$ μ -a.e. and f is measurable, then $\int_I |f_n f| d\lambda \to 0$, for any bounded interval I.
- **3.** (Fundamental theorem of calculus revisited). Let $[a,b] \subset \mathbb{R}$ be an interval, $-\infty < a < b < \infty$, λ the Lebesgue measure on \mathbb{R} . Prove the following:
 - a) If $\varphi:[a,b]\to\mathbb{R}$ is continuous, show that the function $F:[a,b]\to\mathbb{R}$ defined by

$$F(x) = \int_{[a,x]} \varphi \, d\lambda, \qquad x \in [a,b]$$

is differentiable on [a, b], and $F' = \varphi$.

b) If $f:[a,b]\to\mathbb{R}$ is a differentiable function with bounded derivative, show that

$$\int_{[a,b]} f' d\lambda = f(b) - f(a).$$

- **4.** Let (X, \mathcal{A}, μ) be a measure space, and let f be a non-negative integrable function on X. Let $\epsilon > 0$ be fixed.
 - a) Show that there exists a M > 0 such that

$$\int f \, 1_{\{f \ge M\}} \, d\mu \le \frac{\epsilon}{2}$$

b) Deduce that there exists a $\delta > 0$ such that, for all $A \in \mathcal{A}$ with $\mu(A) \leq \delta$,

$$\int_{A} f \, d\mu \le \epsilon.$$

c) Let $f: \mathbb{R} \to \mathbb{R}$ be a Borel measurable function. If f is integrable with respect to the Lebesgue measure, show that the function $F: \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) = \int_{(-\infty, x]} f \, d\lambda, \qquad x \in \mathbb{R}$$

is uniformly continuous on \mathbb{R} .

5. (Dominated Convergence Theorem revisited). Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) < \infty$ and let $f_n, n \geq 1$, and f be measurable functions from (X, \mathcal{A}) to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. The following exercise shows that the conclusions of the DCT continue to hold if one weakens the assumption that f_n converges to f μ -a.e. to convergence in measure.

Assume that f_n converges to f in measure, and that there exists a non-negative integrable function $g: X \to \mathbb{R}$ such that $|f_n| \leq g$ μ -a.e., for all $n \geq 1$.

- a) Show that $|f| \leq g \mu$ -a.e..
- **b)** Using Exercise 4b), show that

$$\int |f_n - f| \, d\mu \underset{n \to \infty}{\longrightarrow} 0.$$