Matematická logika

přednáška třetí

Miroslav Kolařík

Zpracováno dle textu R. Bělohlávka: Matematická logika – poznámky k přednáškám, 2004.

a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika pro informatiky I a II, Olomouc 2006.

Obsah

(Booleovské funkce), normální formy formulí VL

(Úplné systémy spojek VL)

3 Dokazatelnost ve VL

Obsah

(Booleovské funkce), normální formy formulí VL

2 (Úplné systémy spojek VL)

3 Dokazatelnost ve VL

Booleovská funkce s n argumenty (n-ární booleovská funkce) je libovolné zobrazení, které každé uspořádané n-tici hodnot 0 nebo 1 přiřadí hodnotu 0 nebo 1. Každou booleovskou funkci f s n argumenty lze zapsat v tabulce podobně jako u tabulkové metody. Předpokládejme, že argumenty funkce f označíme x_1, \ldots, x_n , pak píšeme také $f(x_1, \ldots, x_n)$.

Příklad

Všechny booleovské funkce jedné proměnné:

Vidíme, že f_3 je pravdivostní funkce spojky negace, tj. $f_3(0) = 1$ a $f_3(1) = 0$.

Příklad

Všechny booleovské funkce dvou proměnných:

<i>X</i> ₁	<i>X</i> ₂	f_1	f_2	f_3	f_4	f_5	f_6	<i>f</i> ₇	f_8
1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0
0	0								

					f_{12}				
1	1	0	0	0	0	0	0	0	0
1	0	1	1	1	0 1	0	0	0	0
0	1	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0

Vidíme, že f_2 je pravdivostní funkce spojky disjunkce, f_5 je pravdivostní funkce spojky implikace, f_7 je pravdivostní funkce spojky ekvivalence a f_8 je pravdivostní funkce spojky konjunkce.

Pravdivostní funkce spojek \land , \lor , \Rightarrow , \Leftrightarrow jsou booleovské funkce dvou argumentů, pravdivostní funkce spojky \neg je booleovská funkce jednoho argumentu.

Tvrzení: Existuje $2^{(2^n)}$ booleovských funkcí s *n* argumenty.

Je jasné, že každá formule φ obsahující výrokové symboly p_1,\ldots,p_n indukuje booleovskou funkci n argumentů. Je to právě funkce, jejíž tabulku získáme vytvořením tabulky pro formuli φ . Zajímavé ale je, že platí také opačné tvrzení: Ke každé booleovské funkci f s n argumenty existuje formule φ_f taková, že tato formule indukuje právě funkci f. Platí dokonce, že formule φ_f může obsahovat pouze spojky \neg , \wedge , \vee .

Definice

Nechť V je množina výrokových symbolů. Pak

- literál nad V je libovolný výrokový symbol z V nebo jeho negace
- úplná elementární konjunkce nad V je libovolná konjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná elementární disjunkce nad V je libovolná disjunkce literálů, ve které se každý výrokový symbol z V vyskytuje právě v jednom literálu
- úplná konjunktivní normální forma nad V je konjukce úplných elementárních disjunkcí nad V
- úplná disjunktivní normální forma nad V je disjunkce úplných elementárních konjunkcí nad V.

Poznámka: Tabulkovou metodou se lze snadno přesvědčit, že formule $p \land (q \land r)$ a $(p \land q) \land r$ jsou sémanticky ekvivalentní, tedy u formulí ve tvaru konjunkce nezáleží na uzávorkování. To samé platí pokud bychom nahradili konjunkci disjunkcí. Píšeme tedy stručně $p_1 \land \cdots \land p_n$ místo $p_1 \land (p_2 \land (\dots (p_{n-1} \land p_n) \dots))$, atp. Analogicky pro disjunkci.

Věta

Ke každé formuli VL, která není tautologií (kontradikcí) existuje s ní sémanticky ekvivalentní formule, která je ve tvaru úplné konjunktivní normální formy (úplné disjunktivní normální formy).

Konstrukce ÚDNF pro formuli φ s výr. symboly p_1, \ldots, p_n :

- 1) pro $\varphi(p_1,\ldots,p_n)$ uvažme tabulku pravdivostních hodnot
- 2) pro řádky s hodnotou 1 (ve sloupci φ) sestrojme ÚEK z p_i (pro 1) a $\neg p_i$ (pro 0)
- 3) výsledná ÚDNF je disjunkcí takových ÚEK.

Pro ÚKNF postupujeme duálně:

Konstrukce ÚKNF pro formuli φ s výr. symboly p_1, \ldots, p_n :

- 1) pro $\varphi(p_1,\ldots,p_n)$ uvažme tabulku pravdivostních hodnot
- 2) pro řádky s hodnotou 0 (ve sloupci φ) sestrojme ÚED z p_i (pro 0) a $\neg p_i$ (pro 1)
- 3) výsledná ÚKNF je konjunkcí takových ÚED.

Příklady: Viz přednáška a cvičení.

Příklad

Sestrojte ÚDNF a ÚKNF k formuli φ : $(p \Leftrightarrow q) \land (q \Rightarrow r)$

р	q	r	$p \Leftrightarrow q$	$q \Rightarrow r$	φ	ÚEK	ÚED
1	1	1	1	1	1	$p \land q \land r$	
1	1	0	1	0	0		$\neg p \lor \neg q \lor r$
1	0	1	0	1	0		$\neg p \lor q \lor \neg r$
1	0	0	0	1	0		$\neg p \lor q \lor r$
0	1	1	0	1	0		$p \vee \neg q \vee \neg r$
0	1	0	0	0	0		$p \lor \neg q \lor r$
0	0	1	1	1	1	$\neg p \land \neg q \land r$	
0	0	0	1	1	1	$\neg p \land \neg q \land \neg r$	

Tedy ÚDNF je $(p \land q \land r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$, ÚKNF je $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor \neg q \lor \neg r) \land (p \lor \neg q \lor r)$.

Obsah

(Booleovské funkce), normální formy formulí VL

2 (Úplné systémy spojek VL)

Ookazatelnost ve VL

Množina booleovských funkcí $\{f_1,\ldots,f_k\}$ je **funkčně úplná**, pokud každou booleovskou funkci $f:\{0,1\}^n \to \{0,1\}$ lze vyjádřit jako složení některých funkcí z $\{f_1,\ldots,f_k\}$. Řekneme, že množina výrokových spojek je **úplná** (tvoří **úplný systém spojek**), jestliže je funkčně úplná množina jim odpovídajících booleovských funkcí. Každý úplný minimální systém spojek VL nazveme **bází**.

Tvrzení

{→, Y, 从} tvoří úplný systém spojek VL.

Důkaz: Platnost plyne z tvrzení o ÚDNF (ÚKNF).

Z de Morganových zákonů je zřejmé, že systém $\{\neg, \curlyvee, \bot\}$ není bází. Jednoduše se dá ukázat, že existují dvouprvkové báze $\{\neg, \curlyvee\}, \{\neg, \bot\}, \{\neg, \to\}.$

Otázka: Existují jednoprvkové báze VL?

Speciální význam mají **Piercova** (**Nicodova**) **spojka** (význam: "ani ..., ani ..."; označujeme ji symbolem \Downarrow) a **Shefferova spojka** (význam: "pokud ..., pak neplatí ..."; označujeme ji symbolem \Uparrow), které samy o sobě tvoří úplný systém spojek. Obě spojky jsou interpretovány následujícími pravdivostními funkcemi:

Tvrzení: Existují pouze dvě jednoprvkové báze; tvoří je spojky Sheffer $\{\uparrow\}$ a Nicod $\{\downarrow\}$ (též tzv. Piercova spojka). (Tedy pomocí Sheffera (resp. Nicoda) lze nahradit všechny ostatní spojky VL.)

K důkazu: Pomocí \uparrow (resp. \downarrow) lze vyjádřit \neg, \land, \lor : Zřejmě $(a \uparrow b) \Leftrightarrow \neg (a \land b)$.

Odtud:

- 1) $\neg a \Leftrightarrow \neg (a \land a) \Leftrightarrow (a \uparrow a);$
- 2) $(a \land b) \Leftrightarrow \neg \neg (a \land b) \Leftrightarrow \neg (a \Uparrow b) \Leftrightarrow ((a \Uparrow b) \Uparrow (a \Uparrow b));$
- 3) $(a \lor b) \Leftrightarrow \neg \neg (a \lor b) \Leftrightarrow \neg (\neg a \land \neg b) \Leftrightarrow (\neg a \Uparrow \neg b) \Leftrightarrow ((a \Uparrow a) \Uparrow (b \Uparrow b))$.

Podobně pro ↓.

Obsah

(Booleovské funkce), normální formy formulí VL

2 (Úplné systémy spojek VL)

Ookazatelnost ve VL

Motivace: Tabelace je neúnosná při velkém množství výrokových symbolů. Nabízí se tedy otázka, zda-li není možné o sémantickém vyplývání rozhodnout jinak než tabelací . . .

Odvozovací pravidlo modus ponens

Nejprve si zavedeme nový pojem vyplývání, který nebude založen na pojmu pravdivostní ohodnocení, ale pouze na manipulaci s formulemi na úrovni jejich tvaru. Základní pojem, na kterém je tento typ vyplývání založen je **odvozovací pravidlo** – předpis pomocí nějž ze vstupních formulí odvozujeme další formule. Odvozovací pravidla formalizují elementární úsudky. Nám bude ve VL postačovat pouze jediné odvozovací pravidlo, tzv. **pravidlo odloučení** neboli **modus ponens** (MP), které lze schématicky vyjádřit

MP:
$$\frac{\varphi, \varphi \Rightarrow \psi}{\psi}$$

a jehož význam je: "z formulí φ a $\varphi \Rightarrow \psi$ odvodíme formuli ψ ". Formulím $\varphi, \varphi \Rightarrow \psi$ někdy říkáme **předpoklady**.

Například formule $\neg q$ vzniká použitím modus ponens z formulí $p \Rightarrow r$ a $(p \Rightarrow r) \Rightarrow \neg q$.

Axiomy VL

Při odvozování formulí budeme dále používat **axiomy**, což jsou formule, které automaticky přijímáme jako "platné". Axiomy popisují vlastnosti logických spojek a jejich vzájemný vztah. Axiomy VL si definujeme pomocí tří **axiomových schémat**:

(A1)
$$\varphi \Rightarrow (\psi \Rightarrow \varphi)$$
,

(A2)
$$(\varphi \Rightarrow (\psi \Rightarrow \chi)) \Rightarrow ((\varphi \Rightarrow \psi) \Rightarrow (\varphi \Rightarrow \chi)),$$

(A3)
$$(\neg \psi \Rightarrow \neg \varphi) \Rightarrow (\varphi \Rightarrow \psi)$$
.

Jakákoli formule, která je ve tvaru jednoho ze schémat (A1) – (A3) se nazývá **axiom** VL.

Axiomová schémata jsou "předpisy", kterými definujeme všechny axiomy. Ačkoli budeme používat pouze tři axiomová schémata, axiomů jako takových je nekonečně mnoho. Např. formule $(\neg(p\Rightarrow q)\Rightarrow \neg\neg p)\Rightarrow (\neg p\Rightarrow (p\Rightarrow q))$ je axiom, který je instancí schéma (A3). Dále např. $p\Rightarrow (q\Rightarrow r)$ není axiom.

Množinu axiomů a odvozovacích pravidel, která používáme, souhrnně nazýváme **axiomatický systém**.

Pod pojmem "důkaz" je intuitivně myšlen záznam odvozování, provedený tak, že za sebe napíšeme tvrzení, ke kterým se postupně dobíráme tak, že začneme předpoklady a pokračujeme tvrzeními, která z předchozích tvrzení plynou pomocí elementárních úsudkových kroků.

Nyní zavedeme přesný pojem důkazu v našem axiomatickém systému – neformální pojem důkazu tak převedeme z úrovně intuice na přesnou formální úroveň.

Důkaz, syntaktické vyplývání

Definice

Důkaz formule φ **z množiny formulí T** je lib. posloupnost formulí $\varphi_1, \ldots, \varphi_n$ taková, že $\varphi_n = \varphi$ a každá φ_i ($i = 1, \ldots, n$)

- je axiomem,
- nebo náleží do T,
- nebo vzniká z předchozích formulí důkazu pomocí odvozovacího pravidla MP, tedy existují indexy j,k < i tak, že φ_k je formule ve tvaru $\varphi_j \Rightarrow \varphi_i$.

Formule φ je dokazatelná z T (zapisujeme $T \vdash \varphi$), pokud existuje důkaz formule φ z T. Pokud $\vdash \varphi$, pak říkáme, že φ je dokazatelná (z prázdného systému předpokladů).

Dokazatelnosti budeme také říkat **syntaktické vyplývání**, abychom tím zdůraznili, že jde o protějšek sémantického vyplývání. Fakt $T \vdash \varphi$ lze tedy číst " φ syntakticky plyne z T", případně " φ je syntaktickým důsledkem T".

Zřejmě každý axiom je dokazatelný, neboť $\vdash \varphi$ platí pro každý axiom φ , protože jednoprvková posloupnost φ je důkazem φ z prázdného systému předpokladů.

Poznámka: Máme dva pojmy vyplývání formule z množiny formulí: sémantické vyplývání $(T \models \varphi)$ a syntaktické vyplývání $(T \vdash \varphi)$. Jak spolu souvisí uvidíme později (věta o úplnosti). Speciálně máme dva pojmy platnosti formule: $\models \varphi$ označuje platnost φ v sémantickém smyslu (pravdivost), $\vdash \varphi$ označuje platnost φ v syntaktickém smyslu (dokazatelnost).

Tvrzení

Pro každou množinu formulí T a formule φ, ψ platí, že z $T \vdash \varphi \Rightarrow \psi$ a $T \vdash \varphi$ plyne $T \vdash \psi$.

Důkaz: Máme tedy dokázat, že jsou-li z T dokazatelné formule $\varphi \Rightarrow \psi$ a φ , pak je z T dokazatelná i formule ψ . Jsou-li však z T dokazatelné formule $\varphi \Rightarrow \psi$ a φ , znamená to, že existuje důkaz χ_1, \dots, χ_n formule $\varphi \Rightarrow \psi z T$ (tj. χ_n je formulí $\varphi \Rightarrow \psi$) a že existuje důkaz $\theta_1, \dots, \theta_m$ formule φ z T (tj. θ_m je formulí φ). Nyní však stačí vzít posloupnost $\chi_1, \ldots, \chi_n, \theta_1, \ldots, \theta_m, \psi$ – ta je již důkazem ψ z T. Abychom se o tom přesvědčili, stačí ověřit podmínky z definice pojmu důkaz (pro každou formuli uvažované posloupnosti). Zřejmě každá formule χ_i je buď axiomem nebo je formulí z T nebo plyne z nějakých předchozích χ_k, χ_l pomocí MP. Podobně uvažujeme pro libovolnou formuli θ_i . Dále, formule ψ plyne z formulí χ_n (což je $\varphi \Rightarrow \psi$) a θ_m (což je φ) pomocí MP. Vidíme tedy, že posloupnost $\chi_1, \ldots, \chi_n, \theta_1, \ldots, \theta_m, \psi$ je důkazem ψ z T, tj. $T \vdash \psi$.

Věta

Pro každou formuli φ platí $\vdash \varphi \Rightarrow \varphi$ (tj. formule $\varphi \Rightarrow \varphi$ je dokazatelná v našem axiomatickém systému).

Důkaz: Máme ukázat, že existuje důkaz (z prázdné množiny předpokladů), jehož posledním prvkem je $\varphi \Rightarrow \varphi$. Důkazem formule $\varphi \Rightarrow \varphi$ je například posloupnost formulí

1.
$$\varphi \Rightarrow ((\varphi \Rightarrow \varphi) \Rightarrow \varphi)$$

2.
$$(\phi \Rightarrow ((\phi \Rightarrow \phi) \Rightarrow \phi)) \Rightarrow ((\phi \Rightarrow (\phi \Rightarrow \phi)) \Rightarrow (\phi \Rightarrow \phi))$$

$$3. \ (\varphi \Rightarrow (\varphi \Rightarrow \varphi)) \Rightarrow (\varphi \Rightarrow \varphi)$$

4.
$$\varphi \Rightarrow (\varphi \Rightarrow \varphi)$$

5.
$$\varphi \Rightarrow \varphi$$

Fakt, že $\vdash \varphi \Rightarrow \varphi$ budeme dále používat.

Lemma – monotonie dokazatelnosti

Nechť T a S jsou množiny formulí a φ, ψ jsou formule. Pak platí: pokud $T \vdash \varphi$ a pro každou $\psi \in T$ máme $S \vdash \psi$, pak $S \vdash \varphi$.

Důkaz: Předpokládejme, že platí $T \vdash \varphi$. To jest existuje důkaz χ_1, \ldots, χ_n z T, kde $\chi_n = \varphi$. Uvažujme posloupnost $\vartheta_1, \ldots \vartheta_m$, kterou vytvoříme z posloupnosti χ_1, \ldots, χ_n tak, že každý člen χ_i , pro který máme $\chi_i \in T$, nahradíme některým jeho důkazem ze systému S (důkaz vždy existuje, jelikož $S \vdash \chi_i$), jinými slovy, formuli χ_i "vyjmeme" z posloupnosti χ_1, \ldots, χ_n a na její místo "vložíme důkaz" formule χ_i z S, což je opět konečná posloupnost formulí. Vzniklá posloupnost $\vartheta_1, \ldots \vartheta_m$ je evidentně důkazem z S a ϑ_m je formule φ . Dostáváme tedy $S \vdash \varphi$.

Věta o dedukci (VoD)

Pro každou množinu formulí T a formule φ, ψ platí: $T \vdash \varphi \Rightarrow \psi$, právě když $T, \varphi \vdash \psi$.

Důkaz:

" \Rightarrow " Předpokládáme-li $T \vdash \varphi \Rightarrow \psi$, je tím spíše $T, \varphi \vdash \varphi \Rightarrow \psi$. Použitím MP okamžitě dostáváme $T, \varphi \vdash \psi$.

"\in "Necht" $T, \varphi \vdash \psi$, tj. existuje důkaz ψ_1, \ldots, ψ_n formule ψ z T, φ (ψ_n je ψ). Indukcí dokážeme, že $T \vdash \varphi \Rightarrow \psi_i$ platí pro $i = 1, \ldots, n$, z čehož dostaneme požadovaný vztah jako speciální případ pro i = n. Vezměmě tedy $i \in \{1, \ldots, n\}$ a předpokládejme, že pro každé j < i platí $T \vdash \varphi \Rightarrow \psi_i$ (indukční předpoklad). Dokážeme, že $T \vdash \varphi \Rightarrow \psi_i$. Podle definice důkazu mohou nastat pouze následující tři případy:

- (A) ψ_i je axiom nebo formule z T. Pak je posloupnost formulí $\psi_i \Rightarrow (\varphi \Rightarrow \psi_i)$, ψ_i , $\varphi \Rightarrow \psi_i$ důkazem formule $\varphi \Rightarrow \psi_i$ z T.
- (B) ψ_i je formulí φ . Pak $T \vdash \varphi \Rightarrow \psi_i$ plyne z předchozí Věty.
- (C) ψ_i plyne z předchozích formulí $\psi_j, \psi_k = \psi_j \Rightarrow \psi_i \ (j,k < i)$ pomocí MP. Dle indukčního předpokladu existuje důkaz $\alpha, \ldots, \varphi \Rightarrow \psi_j$ z T a důkaz $\beta, \ldots, \varphi \Rightarrow (\psi_j \Rightarrow \psi_i)$ z T. Přidáme-li k posloupnosti $\alpha, \ldots, \varphi \Rightarrow \psi_j, \beta, \ldots, \varphi \Rightarrow (\psi_j \Rightarrow \psi_i)$ formule $(\varphi \Rightarrow (\psi_j \Rightarrow \psi_i)) \Rightarrow ((\varphi \Rightarrow \psi_j) \Rightarrow (\varphi \Rightarrow \psi_i)),$ $(\varphi \Rightarrow \psi_j) \Rightarrow (\varphi \Rightarrow \psi_i),$ $(\varphi \Rightarrow \psi_j) \Rightarrow (\varphi \Rightarrow \psi_i),$ dostaneme důkaz formule $\varphi \Rightarrow \psi_i$ z T.

Důkaz je hotov.

Věta o dedukci umožňuje mimo jiné zkracovat důkazy.

Příklad

Ukažme, že jestliže $T \vdash \varphi \Rightarrow \psi$ a $T \vdash \psi \Rightarrow \chi$, pak $T \vdash \varphi \Rightarrow \chi$ (tzv. **princip tranzitivity implikace**). Skutečně, máme $T, \varphi \vdash \psi$ (dle VoD aplikované na $T \vdash \varphi \Rightarrow \psi$), dále $T, \varphi \vdash \chi$ (použitím MP a monotonie dokazatelnosti) a konečně $T \vdash \varphi \Rightarrow \chi$ (VoD použitá na $T, \varphi \vdash \chi$).

Věta

Pro formule φ, ψ platí

$$(a_{\vdash}) \vdash \neg \varphi \Rightarrow (\varphi \Rightarrow \psi),$$

$$(b_{\vdash}) \vdash \neg \neg \varphi \Rightarrow \varphi,$$

$$(c_{\vdash}) \vdash \varphi \Rightarrow \neg \neg \varphi,$$

$$(\mathsf{d}_{\vdash}) \vdash (\varphi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \varphi),$$

$$(e_{\vdash}) \vdash \varphi \Rightarrow (\neg \psi \Rightarrow \neg (\varphi \Rightarrow \psi)).$$

Důkaz: (a_{\vdash}) , (b_{\vdash}) , (c_{\vdash}) viz cvičení, (d_{\vdash}) , (e_{\vdash}) viz přednáška.

Poznámka: Vztahy (a_⊢) – (e_⊢) mají dobrý intuitivní význam. Vztah (a_⊢) vyjadřuje, že pokud je φ neplatná, pak z vlastnosti φ plyne lib. formule. Vztahy (b_⊢) a (c_⊢) popisují vlastnosti dvojí negace – popisují právě to, co na sémantické úrovni vyjadřuje fakt, že φ a $\neg\neg\varphi$ jsou sémanticky ekvivalentní. Vztah (d_⊢) je duálním vztahem k axiomovému schématu (A3) a spolu s (A3) popisuje to, co na sémantické úrovni vyjadřuje fakt, že $\varphi \Rightarrow \psi$ a $\neg \psi \Rightarrow \neg \varphi$ jsou sémanticky ekvivalentní. Vztah (e_⊢) je modifikací vztahu: "z platnosti φ a z platnosti ψ plyne platnost $\varphi \land \psi$ ".