

Ayudantía 2

27 de marzo de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

Pregunta 1

Para dos valuaciones $\bar{v}=(v_1,\ldots,v_n)$ y $\bar{v}'=(v_1',\ldots,v_n')$, decimos que $\bar{v}\leq\bar{v}'$ si para todo $i\leq n$ se cumple que $v_i\leq v_i'$, considerando el orden entre valores de verdad como $0\leq 1$. También, decimos que una fórmula proposicional $\varphi(\bar{p})$ con variables $\bar{p}=(p_1,\ldots,p_n)$ es monótona si cumple que para toda valuación \bar{v} y \bar{v}' , si $\bar{v}\leq\bar{v}'$ entonces $\varphi(\bar{v})\leq\varphi(\bar{v}')$. En otras palabras, φ es monótona si al cambiar algunos valores de la valuación de 0 a 1, el valor de verdad "solo puede subir o quedar igual". Por ejemplo, $\varphi_1(p,q,r)=(p\wedge q)\vee r$ es monótona pero $\varphi_2(p,q)=\neg p\vee q$ no lo es, ya que $\varphi_2(0,0)=1$ y $\varphi_2(1,0)=0$. Por último, decimos que φ es una $\{\wedge,\vee\}$ -fórmula si solo esta compuesta por variables proposicionales, 0, 1, conjunciones y disyunciones. Por ejemplo, φ_1 es una $\{\wedge,\vee\}$ -fórmula, pero φ_2 no lo es.

- 1. Demuestre que toda $\{\land,\lor\}$ -fórmula es monótona. Para esto demuestre que si dos $\{\land,\lor\}$ -fórmulas φ_1 y φ_2 son monótonas, entonces $\varphi_1 \land \varphi_2$ y $\varphi_1 \lor \varphi_2$ también son monótonas.
- 2. Demuestre que si una fórmula φ es monótona, entonces existe una $\{\land,\lor\}$ -fórmula φ' tal que φ es lógicamente equivalente a φ' .

Pregunta 2

Suponga $\mathcal S$ un dominio de seres de la misma especie donde se cuenta con el siguientes predicado sobre $\mathcal S$:

C(x, y, z) := z es la "concepción" entre x e y donde x es la madre y y el padre, respectivamente.

En otras palabras, para tres seres m, p, y h del dominio se tiene que C(m, p, h) = 1 si, y solo si, h es un hijo de la unión entre m y p donde m es la madre y p es el padre. Este predicado es definido sobre el conjunto de seres \mathcal{S} que tiene uno o más seres (posiblemente infinito). También se cuenta con un predicado E(x, y) sobre \mathcal{S} tal que E(a, b) = 1 si, y solo si, a = b. En otras palabras, a es exactamente el mismo ser que b.

Usando lógica de predicados, uno puede definir afirmaciones sobre esta especie de seres \mathcal{S} . Por ejemplo, la afirmación "todo ser fue concebido por una madre y un padre" se puede definir con la siguiente fórmula en lógica de predicados:

$$\forall x. \exists y. \exists z. \ C(y,z,x)$$

Defina las siguientes afirmaciones en lógica de predicados.

- 1. "Todo ser es padre o madre de algún ser".
- 2. "Existe un ser que es madre o padre de algún otro ser".
- 3. "Existen seres que no concibieron hijos".
- 4. "Todo ser fue concebido por un único padre y madre".

- 5. "Los seres de la especie son monógamos: cada ser, si concibe hijos, es con un único ser".
- 6. "Toda madre o padre no puede haber sido concebido por sus hijos".

Hint: Recuerde que el orden y la posición de los cuantificadores $\forall x$ y $\exists x$ en las formulas de lógica de predicados es muy importante.

Pregunta 3

Para las siguientes preguntas considere la siguiente interpretación \mathcal{I} con predicados binarios $O(\cdot, \cdot)$ y $E(\cdot, \cdot)$:

$$\begin{array}{cccc} \mathcal{I}(\mathrm{Dom}) & := & \mathbb{N} \\ \mathcal{I}(O(x,y)) & := & x \leq y \\ \mathcal{I}(E(x,y)) & := & x = y \end{array}$$

Además, decimos que un elemento a en el dominio $\mathcal{I}(Dom)$ es definible bajo la interpretación \mathcal{I} si existe una fórmula en lógica de predicados $\varphi(x)$ tal que $\mathcal{I} \models \varphi(b)$ si, y solo si, b = a.

- 1. Demuestre que el número 0 es definible con la interpretación \mathcal{I} .
- 2. Demuestre que el número 2 es definible con la interpretación \mathcal{I} .
- 3. Demuestre que cualquier número natural $n \in \mathbb{N}$ es definible bajo la interpretación \mathcal{I} , esto es, para todo $n \in \mathbb{N}$ existe una fórmula $\varphi_n(x)$ tal que $\mathcal{I} \models \varphi_n(a)$ si, y solo si, a = n.

Para las formulas anteriores usted solo puede utilizar lógica de predicados $(\forall x, \exists y, \land, \lor, \neg, \ldots)$ y los predicados $O(\cdot, \cdot)$ y $E(\cdot, \cdot)$ asumiendo que esta en el dominio .