

The LNM Institute of Information Technology, Jaipur EC326: Digital Signal Processing Mid Term Exam 2022-23, Odd semester

Max Marks: 30

Date: Oct. 01, 2022

Time: 90 Mins

Total	Total	CO1	COA				
Questions	Marks	COI	CO2	CO3	CO4	CO5	CO6
6	30	Q1, Q4, Q6	Q2, Q5, Q4	O3	Add to A		Debt
CO weightage		12/30 = 40%				20 T	
oo weig	utage	12/30 - 40%	14/30 = 46%	4/30 = 14%			

Instructions:

- This Question paper is printed on both sides and have 6 questions. All the questions are mandatory.
- Write all the sub-parts of a question at one place.
- All the notations have their usual meanings.
- 1) A continuous-time signal $x(t) = 3\cos(2\pi \times 300t)$ is transmitted over a digital communication link that carries binary-coded words representing samples of an input signal. The link is operated at 10 kbits/s and each input sample is quantized into 1024 different levels.
 - a) Determine the sampling frequency f_s .

[1]

b) Determine the Nyquist rate for the signal x(t).

[1]

- c) Write the expression of the discrete-time signal x[n] for the sampling frequency obtained in part
- d) Find the value of resolution Δ ?

[1]

e) Find the SNR_q in dB.

[1]

2) For the following causal system

$$y[n] = \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2] + x[n]$$

a) Determine the impulse response

[1]

b) Determine the step response.

c) Plot the pole-zero pattern.

[1]

d) Is the system stable or not?

[1]

[3]

e) Find the system function H(z) for the discrete-time system shown in the figure below

LNMHT/B. Tech./ECE-CCE/CORE/2022-23/ODD/ECE326/MT

- 3) Given a discrete-time signal $x[n] = 1 + \cos\left(\frac{2\pi}{6}n\right)$.
 - a) Find the fundamental period of the discrete-time signal. [1]
 - b) Determine the discrete-time Fourier series coefficients of the discrete-time signal x[n]. [2]
 - c) Calculate the power of the signal.

4)

- a) Given a discrete-time signal $x[n] = \left(\frac{1}{2}\right)^n u[n] + 3^n u[-n-1]$. Find $R_{xx}(z)$ and determine the autocorrelation function $r_{xx}[l]$.
- b) Find and plot the autocorrelation of the signal $x(n) = \alpha^n u(n)$, $|\alpha| < 1$, with out using z-transform.
- 5) Determine the output of the discrete-time system expressed by the following difference equation

$$y[n] = 0.7y[n-1] - 0.12y[n-2] + x[n-1] + x[n-2]$$

to the input x[n] = nu[n]. (Hint: Use Z- transform Property) [4]

- 6) For the following discrete-time systems verify the preparties given as 1, 2, 3. [3]
 - a) $y[n] = \sum_{k=-\infty}^{n+1} x[k]$
 - b) y[n] = x[n] + nx[n+1]

Properties

- 1. Linear or nonlinear
- 2. Causal or noncausal
- 3. Stable or unstable

市本市