Exercice

On considère les matrices $A=\begin{pmatrix}1&-1&1\\-1&1&1\\-1&-1&3\end{pmatrix}$ et $I=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$. Soient u et v deux vecteurs

de \mathbb{R}^3 , on pose Vect(u,v) le sous-espace vectoriel de \mathbb{R}^3 engendré par u et v.

- 1. On pose $f_1 = (1, 1, 1)$ et $F = \{(x, y, z) \in \mathbb{R}^3; x + y z = 0\}.$
 - (a) Determiner deux vecteurs f_2 et f_3 de \mathbb{R}^3 tels que $F = \text{Vect}(f_2, f_3)$, avec $f_2 = (a, 0, b)$ et $f_3 = (0, c, d)$, où a, b, c, et d sont à determiner.
 - (b) Montrer que la famille (f_1, f_2, f_3) est une base de \mathbb{R}^3 .
- 2. (a) Vérifier que $A^2 3A + 2I = O$ avec $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, la matrice nulle.
 - (b) Montrer que A est inversible et déterminer son inverse A^{-1} .
- 3. (a) Déterminer les deux réels α et β tels que : $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $A \begin{pmatrix} a \\ 0 \\ b \end{pmatrix} = \beta \begin{pmatrix} a \\ 0 \\ b \end{pmatrix}$ et $A \begin{pmatrix} 0 \\ c \\ d \end{pmatrix} = \beta \begin{pmatrix} 0 \\ c \\ d \end{pmatrix}$, où a, b, c et d sont les réels trouvés dans la question 1.a).
 - (b) Qu'est ce qu'elles représentent α et β pour la matrice A? Justifier votre réponse.
- 4. (a) Montrer qu'il existe une matrice diagonale D et une matrice P inversible, qui sont à determiner, telles que $A = PDP^{-1}$.
 - (b) Montrer par récurrence sur n, que pour tout entier naturel n, $A^n = PD^nP^{-1}$.

Problème

On désigne par n un entier naturel non nul et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note $\mathcal{M}_{n,1}\mathbb{K}$ l'espace vectoriel réel des matrices colonnes à n lignes. Pour une matrice M de $\mathcal{M}_n(\mathbb{K})$, on désigne par $\chi_M(X) = \det(XI_n - M)$ le polynôme caractéristique de M. On note tM la matrice transposée de la matrice M et $\mathrm{Tr}(M)$ la trace de la matrice carrée M. On rappelle que pour toute matrice $M = (m_{i,j})_{1 \leq i,j \leq n} \in \mathbb{R}$

$$\mathcal{M}_n(\mathbb{K}), \operatorname{Tr}(M) = \sum_{i=1}^n m_{i,i}.$$

On note $\operatorname{diag}(\alpha_1, \ldots, \alpha_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{K})$ qui admet pour coefficients diagonaux les réels $\alpha_1, \ldots, \alpha_n$ dans cet ordre.

On désigne par $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire $\forall S \in \mathcal{S}_n(\mathbb{R})$, $t \in S$.

On note $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices S de $\mathcal{S}_n(\mathbb{R})$ telles que, $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tXSX \geq 0$. \mathbb{R}^+ désigne l'ensemble des réels positifs et \mathbb{R}^{*+} désigne l'ensemble des réels strictement positifs. Le problème traite des propriétés et des applications qui sont autour de la notion de trace.

Partie 1 : Préliminaires

- 1. Montrer que l'application $\operatorname{Tr}:\mathcal{M}_n(\mathbb{R})\to\mathcal{M}_n(\mathbb{R}), M\mapsto \operatorname{Tr}(M)$, est linéaire.
- 2. Soit $M = (m_{i,j})_{1 \leq i,j \leq n}$ et $N = (n_{i,j})_{1 \leq i,j \leq n}$ deux matrices de $\mathcal{M}_n(\mathbb{R})$.

- (a) Montrer que $\operatorname{Tr}(MN) = \sum_{\ell=1}^{n} \sum_{k=1}^{n} m_{\ell,k} n_{k,\ell}$.
- (b) Montrer que Tr(MN) = Tr(NM).
- (c) Montrer que si M et N sont semblables dans $\mathcal{M}_n(\mathbb{R})$ alors $\mathrm{Tr}(M) = \mathrm{Tr}(N)$.
- 3. On considère l'ensemble $F = \{ M \in \mathcal{M}_n(\mathbb{R}); M \text{ et diagonale et } \operatorname{Tr}(M) = 0 \}.$
 - (a) Montrer que F est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.
 - (b) Determiner la dimension de F.
 - (c) En déduire, pour toute matrice inversible P de $\mathcal{M}_n(\mathbb{R})$ la dimension du \mathbb{R} -espace vectoriel $G = PFP^{-1} = \{M \in \mathcal{M}_n(\mathbb{R}); M = PDP^{-1} \text{ et } D \in F\}$
- 4. Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$. On considère l'application,

$$\phi_A: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), \quad X \mapsto X + (\text{Tr}(X))A$$

(a) Vérifier que ϕ_A est une application linéaire.

Soit B une matrice de $\mathcal{M}_n(\mathbb{R})$. On considère l'équation matricielle :

$$(\star)$$
 $\phi_A(X) = B$

- (b) On suppose dans cette question que $Tr(A) \neq -1$.
 - i. On suppose que M est une solution de l'équation matricielle (\star) . Déterminer Tr(M) en fonction de Tr(A) et de Tr(B).
 - ii. Résoudre dans $\mathcal{M}_n(\mathbb{R})$ l'équation matricielle (\star) .
 - iii. En déduire que ϕ_A est un automorphisme d'espaces vectoriels.
- (c) On suppose maintenant que Tr(A) = -1.
 - i. Résoudre dans $\mathcal{M}_n(\mathbb{R})$, selon les valeurs de $\mathrm{Tr}(B)$, l'équation matricielle (\star) .
 - ii. Montrer que ϕ_A est un projecteur sur un sous-espace vectoriel F_1 parllélement à un sous-espace vectoriel F_2 . Determiner F_1 et F_2 .

Partie 2 : La valeur absolue de la trace comme étant une fonction génératrice

On prend dans cette partie $\mathcal{E} = \mathcal{M}_n(\mathbb{K})$. On rappelle que $\mathcal{M}_n(\mathbb{K})$ est un \mathbb{K} -espace vectoriel rapporté à la base canonique $(E_{i,j})_{1 \leq i,j \leq n}$, où pour tous entiers i et j tels que $1 \leq i,j \leq n$, $E_{i,j}$ désigne la matrice de \mathcal{E} dont tous les coefficients sont nuls sauf celui de la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne qui est égal à 1. Pour tous entiers h et k tel que $1 \leq h, k \leq n$, on désigne par $\delta_{h,k}$ le symbole de Kronnecker qui est défini par $\delta_{h,k} = \begin{cases} 1 & \text{si} & h = k \\ 0 & \text{si} & h \neq k \end{cases}$. On rappelle que pour tous entiers naturels i, j, k, ℓ tel que $1 \leq i, j, k, \ell \leq n$, $E_{i,j}E_{k,\ell} = \delta_{j,k}E_{i,\ell}$. Une application q de \mathcal{E} vers \mathbb{R}^+ est dite semi-norme si elle vérifie :

- $\forall M \in \mathcal{E}, \forall \lambda \in \mathbb{K}, q(\lambda M) = |\lambda|q(M).$
- $\forall (M,N) \in \mathcal{E}^2, q(M+N) \leq q(M) + q(N).$

On dit qu'une semi-norme q sur \mathcal{E} vérifie la propriété (\mathscr{P}) si $\forall (M,N) \in \mathcal{E}^2, q(MN) = q(NM)$.

1. Soit q une semi-norme sur \mathcal{E} .

- (a) Montrer que q(O) = 0, où O est la matrice nulle, et que pour tout $M \in \mathcal{E}$, q(-M) = q(M).
- (b) Montrer que pour tout (M, N) de \mathcal{E}^2 , $|q(M) q(N)| \le q(M + N)$.
- (c) Montrer que pour tout (M, N) de \mathcal{E}^2 , si q(N) = 0 alors q(M + N) = q(M).
- 2. On considère l'application f définie de \mathcal{E} vers \mathbb{R}^+ par $f(M) = |\operatorname{Tr}(M)|$. Montrer que f est une semi-norme qui vérifie la propriété (\mathscr{P}) .

Dans les questions 3) et 4) de cette partie, on suppose que $n \ge 2$.

3. Soit $(\alpha_1, \ldots, \alpha_n)$ une famille d'éléments de \mathbb{K} et soient A et B deux matrices de E telles que,

$$A = \sum_{i=1}^{n} E_{1,j} + \sum_{i=2}^{n} E_{i,i}$$
 et $B = \sum_{h=1}^{n} \alpha_h E_{h,1}$

- (a) Montrer que $AB = (\sum_{j=1}^{n} \alpha_j) E_{1,1} + \sum_{i=2}^{n} \alpha_i E_{i,1}$.
- (b) Montrer que $BA = \sum_{h=1}^{n} \left(\alpha_h \sum_{j=1}^{n} E_{h,j} \right)$.
- 4. Soit q une semi-norme sur \mathcal{E} qui vérifie la propriété (\mathcal{P}) .

Soit $M = (m_{i,j})_{1 \leq i,j \leq n}$ un élément de \mathcal{E} .

- (a) Montrer que pour tous entiers distincts i et j tel que $1 \le i, j \le n, q(E_{i,j}) = 0$, (on pourra utiliser le fait que $E_{i,j} = E_{i,i}E_{i,j}$).
- (b) Par l'axiome de l'inégalité triangulaire vérifié par q et qu'on peut étendre facilement (par récurrence) à plus de deux vecteurs, on a $q\left(\sum_{i=2}^n m_{i,1}E_{i,1}\right) \leq \sum_{i=2}^n m_{i,1}q(E_{i,1})$, or $q(E_{i,1}) = 0$ en vertu de la question précédente, donc $q\left(\sum_{i=2}^n m_{i,1}E_{i,1}\right) = 0$.
- (c) En déduire que $q\left(\sum_{i=2}^{n} m_{i,1} E_{i,i}\right) = 0$
- (d) Verifier que $q(M) = q\left(\sum_{i=1}^{n} m_{i,i} E_{i,i}\right)$.
- (e) Montrer en prenant des valeurs précises pour $(\alpha_k)_{1 \leq k \leq n}$ qui définissent la matrice B, que q(M) = q(BA).
- (f) Montrer qu'il existe un réel positif α tel que $q=\alpha f$.
- 5. Dans le cas n=1, le résultat démontré ci-dessus reste -t- il valable ? justifier votre réponse.

Partie 3 : Caractérisation d'une matrice de $\mathcal{S}_n^+(\mathbb{R})$ par la notion de trace

 $\mathcal{O}(n)$ désigne l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ c'est-à-dire des matrices M de $\mathcal{M}_n(\mathbb{R})$ vérifiant ${}^tMM=I_n$.

- 1. On considère une matrice S de $\mathcal{S}_n^+(\mathbb{R})$.
 - (a) Soit la matrice $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ telle que pour tout entier $k, 1 \leq k \leq n, \lambda_k$ sont des réels positifs. Soit $U = (u_{i,j})_{1 \leq i,j \leq n}$ une matrice de $\mathcal{O}(n)$.
 - i. Montrer que pour tous entiers k et i, $1 \le k, i \le n, |u_{k,i}| \le 1$.
 - ii. Vérifier que $DU = (\lambda_i u_{i,j})_{1 \leq i,j \leq n}$.

- iii. En déduire que $Tr(DU) \leq Tr(D)$.
- (b) Soit U une matrice de $\mathcal{O}(n)$.
 - i. Montrer qu'il existe une matrice P de $\mathcal{O}(n)$ et une matrice $D = \text{diag}(\alpha_1, \dots, \alpha_n)$, avec pour tout $i, 1 \leq i \leq n$, α_i sont des réels positifs et $S = PD({}^tP)$.
 - ii. Montrer, en posant $V = {}^{t}PUP$, que $SU = P(DV)({}^{t}P)$.
 - iii. En déduire que $Tr(SU) \leq Tr(S)$
- 2. Réciproquement, soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que,

$$\forall U \in \mathcal{O}(n), \quad \text{Tr}(AU) \le \text{Tr}(A)$$

(a) i. Montrer que, pour tous réels a, b, α , il existe un réel φ tel que

$$a\cos\alpha + b\sin\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \varphi)$$

- ii. En déduire que, si pour tout réel α , $a\cos\alpha + b\sin\alpha \le a$ alors b = 0.
- (b) Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base orthonormée de l'epace euclidien \mathbb{R}^n pour son produit scalaire usuel. On note, pour tous entiers p et q tels que $1 \leq p < q \leq n$, $\pi_{p,q}$ le plan engendré par la famille (e_p, e_q) . On considère $u_{p,q}$ l'endomorphisme de \mathbb{R}^n tel que la restriction de $u_{p,q}$ sur $\pi_{p,q}$ est la rotation de l'angle α et la restriction de $u_{p,q}$ sur l'orthogonal de $\pi_{p,q}$ est l'identité.
 - i. Écrire la matrice $U_{1,2}$ de $u_{1,2}$ relativement à la base \mathcal{B} . Montrer que $U_{1,2}$ est une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$.
 - ii. Calculer $Tr(AU_{1,2})$ en fonction de $a_{1,2}$, $a_{2,1}$, $(a_{i,i})_{1 \le i \le n}$ et de α .
 - iii. En déduire que $a_{1,2} = a_{2,1}$.
 - iv. Écrire, dans le cas général, la matrice $U_{p,q}$ de $u_{p,q}$ relativement à la base \mathcal{B} .
 - v. Calculer, dans le cas général, $\text{Tr}(AU_{p,q})$ en fonction de $a_{p,q}, a_{q,p}, (a_{i,i})_{1 \leq i \leq n}$ et de α .
 - vi. En déduire que A est une matrice symétrique.
- (c) i. Justifier qu'il existe une base orthonormée $\mathcal{V} = (v_1, \dots, v_n)$ de \mathbb{R}^n formée de vecteurs propres de A.

Pour tout i tel que $1 \le i \le n$, on note γ_i la valeur propre de A associée à v_i ,

ii. Soit j un entier tel que $1 \leq j \leq n$. On considère l'endomorphisme w_j de \mathbb{R}^n défini par $w_j(v_j) = -v_j$ et pour tout entier k tel que $1 \leq k \leq n$ et $k \neq j$, $w_j(v_k) = v_k$. Soit W_j la matrice de w_j relativement à la base \mathcal{B} .

Vérifier que W_j est une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$ et determiner $\text{Tr}(AW_j)$ en fonction de Tr(A) et de γ_j . En déduire que $\gamma_j \geq 0$.

(d) En déduire que $A \in \mathcal{S}_n^+(\mathbb{R})$.