Model Question Paper-II with effect from 2022-23 (CBCS Scheme)

USN

First/Second Semester B.E. Degree Examination

Applied Physics for Computer Science Stream

TIME: 03 Hours

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

02. Draw neat sketches where ever necessary.

03. **Constants**: Speed of Light 'c' = 3×10^8 ms⁻¹, Boltzmann Constant 'k' = 1.38×10^{-23} JK⁻¹, Planck's Constant 'h' = 6.625×10^{-34} Js, Acceleration due to gravity 'g'= 9.8 ms⁻², Permittivity of free space ' ε_0 '= 8.854×10^{-12} F m⁻¹.

	*Bloom's Taxonomy Level	Marks		
Q.01	Obtain the expression for Energy Density using Einstein's A and coefficients and thus conclude on $B_{12}=B_{21}$.		L2	8
	b	Describe attenuation and explain the various fiber losses.	L2	7
	С	Given the Numerical Aperture 0.30 and RI of core 1.49 Calculate the critical angle for the core-cladding interface.	L3	5
Q.02 a Discuss the applications of LAS Cooling.		Discuss the applications of LASER in bar-code scanner and LASER	L2	9
	b	Discuss Point to Point communication using optical fibers.	L2	6
	С	Calculate the ratio of population for a given pair of energy levels corresponding to emission of radiation 694.3 nm at a temperature of 300 K.	L3	5
	•	Module-2		
Q.03	a	Derive an expression for de Broglie wavelength by analogy and hence discuss the significance of de Broglie waves.	L2	6
	b	Explain the Wave function with mathematical form and Discuss the physical significance of a wave function.	L2	9
	С	Calculate the energy of the first three states for an electron in one dimensional potential well of width 0.1 nm.	L3	5
		OR		
Q.04	a	Explain Eigen functions and Eigen Values and hence derive the eigen function of a particle inside infinite potential well of width 'a' using the method of normalization.	L2	10
	b	Show that electron does not exist inside the nucleus using Heisenberg's uncertainty principle.	L2	5
	С	An electron is associated with a de Broglie wavelength of 1nm. Calculate the energy and the corresponding momentum of the electron.	L3	5
		Module-3		
Q.05	a	Discuss the working of phase gate mentioning its matrix representation and truth table.	L2	6
	b	Explain Orthogonality and Orthonormality with an example for each.	L2	6
	С	Given $ \psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$ and $ \phi\rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ Prove that $\langle \psi \phi \rangle = \langle \phi \psi \rangle^*$	L3	8
Q.06	a	Explain the representation of qubit using Bloch Sphere.	L2	6
	b	Explain Single qubit gate and multiple qubit gate with an example for each.	L2	8

22PHYS12/22

	С	Explain the Matrix representation of 0 and 1 States and apply identity operator I to $ 0\rangle$ and $ 1\rangle$ states,	L3	6
		Module-4		
Q.07	a	Enumerate the failures of classical free electro theory and assumptions of quantum free electron theory of metals.	L2	7
	b	Explain Meissner's Effect and the variation of critical field with temperature.	L2	8
	С	A superconducting tin has a critical temperature of 3.7 K at zero magnetic field and a critical field of 0.0306 Tesla at 0 K. Find the critical field at 2 K.	L3	5
		OR		
Q.08	a	Explain the phenomenon of superconductivity and Discuss qualitatively the BCS theory of superconductivity for negligible resistance of metal at temperatures close to absolute zero.	L2	9
	b	Give the qualitative explanation of RF Squid with the help of a neat sketch.	L2	6
	С	Find the temperature at which there is 1% probability that a state with an energy 0.5 eV above Fermi energy is occupied.	L3	5
		Module-5		
Q.09	a	Elucidate the importance of size & scale and weight and strength in animations.	L2	8
	b	Mention the general pattern of monte Carlo method and hence determine the value of π .	L2	6
	С	Describe the calculation of Push time and stop time with examples.	L3	6
	•	OR		
Q.10	a	Sketch and explain the motion graphs for linear, easy ease, easy ease in and easy ease out cases of animation.	L2	8
	b	Discuss modeling the probability for proton decay.	L2	7
	С	A slowing-in object in an animation has a first frame distance 0.5m and the first slow in frame 0.35m. Calculate the base distance and the number of frames in sequence.	L3	5

^{*}Bloom's Taxonomy Level: Indicate as L1, L2, L3, L4, etc. It is also desirable to indicate the COs and POs to be attained by every bit of questions.

22PHYS12/22

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome

22PHYS12/22

Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome
0.1	(2)	L2		1 2 12
Q.1	(a)	L2 L2	1	1,2,12
	(b)	L3	1	1
0.0	(c)		1	1,2
Q.2	(a)	L2	1	1,2
	(b)	L2	1	1,2,12
	(c)	L3	1	1,2
Q.3	(a)	L2	2	1,2
	(b)	L2	2	1,2,12
	(c)	L3	2	1,2
Q.4	(a)	L2	2	1,2,12
	(b)	L2	2	1,2
	(c)	L3	2	1,2
Q. 5	(a)	L2	2	1,2
	(b)	L2	2	1,2
	(c)	L3	2	1,2
Q.6	(a)	L2	2	1,2,
	(b)	L2	2	1,2
	(c)	L3	2	1,2,12
Q.7	(a)	L2	3	1,2,12
	(b)	L2	3	1,2
	(c)	L3	3	1,2
Q.8	(a)	L2	3	1,2
	(b)	L2	3	1,2,12
	(c)	L3	3	1,2
Q.9	(a)	L2	4	1,2,5
	(b)	L2	4	1,2,12
	(c)	 L3	4	1,2
Q.10	(a)	L2	4	1,2,5, 12
4.20	(b)	L2	4	1,2
	(c)	L3	4	1,2