Методы кластеризации

Игнатов Д., Кашницкий Ю.

Национальный исследовательский университет Высшая школа экономики Департамент анализа данных и искусственного интеллекта

29 апреля 2016

План лекции

- Задача кластеризации
 - Формулировка задачи
 - Применение кластерного анализа
 - Классификация методов кластеризации
- Методы кластеризации
 - Методы построения разбиений
 - Метод *k*-средних
 - Метод k-медоидов
 - Метод нечётких k-средних
 - Иерархические методы
 - Агломеративная кластеризация
 - Дивизивная кластеризация
 - Плотностные методы
 - Непараметрические методы

План лекции

- 💶 Задача кластеризации
 - Формулировка задачи
 - Применение кластерного анализа
 - Классификация методов кластеризации
- Методы кластеризации
 - Методы построения разбиений
 - Метод *k*-средних
 - Метод *k*-медоидов
 - Метод нечётких k-средних
 - Иерархические методы
 - Агломеративная кластеризация
 - Дивизивная кластеризация
 - Плотностные методы
 - Непараметрические методы

3 / 44

Формулировка задачи

Cluster — гроздь, сгусток, пучок (*англ.*)

Основная задача кластерного анализа — разбиение исходного набора объектов на различающиеся между собой подмножества объектов, состоящие из близких элементов.

Кластерные структуры

- Разбиения
- Иерархии
- Нечеткие разбиения
- Бикластеры
- Смеси распределений

4 D > 4 D > 4 E > 4 E > E 9 Q C

(НИУ ВШЭ) ML&DM

4 / 44

Применение кластеризации

- Биология и медицина
 - Анализ экспрессии генов
 - Кластеризация томограмм
- Науки об обществе и человеке
 - Социология и антропология
 - Психология
- Технические системы
 - Телеметрия
 - Сегментация изображений
- Маркетинг
 - Сегментация потребителей
 - Анализ поведения групп
- Анализ текстов
- Социальные сети
 - Поиск сообществ

4□ > 4□ > 4□ > 4□ > 4□ > □

Классификация методов кластеризации

- Методы построения разбиений (Partitioning methods)
- Иерархические методы (Hierarchical methods)
- Методы, основанные на плотности (Density-based methods)
- Непараметрические методы (Non-parametric methods)
- Сеточные методы кластеризации (Grid-based methods)
- Мультимодальная кластеризация и бикластеризация (Multimodal clustering)

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めの○

(НИУ ВШЭ) ML&DM 29.04.2016

Сравнение методов кластеризации

Методы построения разбиений

- Выдача попарно-непересекающихся кластеров сферической формы
- Основано на расстоянии между объектами
- Кластер характеризуется центроидом центром масс (k-means) или одним из объектов (k-medoids)

(НИУ ВШЭ) ML&DM 29.04.2016

Иерархические методы

- Выдача иерархической структуры кластеров
- Последовательное объединение одноэлементных кластеров (агломеративное или снизу вверх) или разбиение тривиального кластера (все множество объектов) на несколько мелких (дивизимная или сверху вниз)

4□ > 4□ > 4 = > 4 = > = 90

План лекции

- 💶 Задача кластеризации
 - Формулировка задачи
 - Применение кластерного анализа
 - Классификация методов кластеризации
- 2 Методы кластеризации
 - Методы построения разбиений
 - Метод *k*-средних
 - Метод k-медоидов
 - Метод нечётких k-средних
 - Иерархические методы
 - Агломеративная кластеризация
 - Дивизивная кластеризация
 - Плотностные методы
 - Непараметрические методы

Примеры «мер различия» объектов

Объекты $x \in \mathbb{R}^m$ представляются в виде матрицы «объект-признак»

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \iff \begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^m \\ x_2^1 & x_2^2 & \cdots & x_2^m \\ \cdots & \cdots & \cdots & \cdots \\ x_n^1 & x_n^m & \cdots & x_n^m \end{bmatrix}$$

Метрика Минковского

$$d(x,y) = \left[\sum_{i=1}^{m} |x^i - y^i|^p\right]^{\frac{1}{p}}$$

Косинусное расстояние

$$d(x,y) = 1 - \frac{\langle x,y \rangle}{\sqrt{\langle x,x \rangle}\sqrt{\langle y,y \rangle}}$$

Расстояние Хэмминга

$$d(x,y) = \frac{1}{m} \sum_{i=1}^{m} [x^i \neq y^i]$$

11 / 44

(HИУ ВШЭ) ML&DM 29.04.2016

Mетод k-средних

Метод k-средних является итеративным алгоритмом разбиения множества объектов на k классов.

Центр масс кластера (внутрикластерное среднее по каждому признаку) C_j называется **центроидом** и вычисляется как

$$c_j = \frac{1}{|C_j|} \sum_{i \in C_j} x_i$$

Целевая функция алгоритма есть сумма расстояний между объектами и центроидами классов, к которым они принадлежат

$$J(C) = \sum_{j=1}^k \sum_{i \in C_i} d(x_i, c_j)^2$$

- 4 ロ ト 4 回 ト 4 注 ト 4 注 - り Q (C)

Mетод k-средних

Этапы алгоритма

 Bxog : Данные, k — параметр

Выход: Разбиение, состоящее из k кластеров

* * *

- 1. Инициализация: Назначение k точек в качестве начальных центроидов.
- 2. Обновление кластеров: При заданных k центроидах, каждый объект приписывается к ближайшему центроиду. Объекты, приписанные к центроиду c_j $(j=1\dots k)$, образуют кластер C_j .
- 3. Обновление центроидов: Для каждого кластера C_j вычисляется центр масс, который объявляется новым центроидом.

Итеративный процесс 2-3 продолжается до тех пор, пока получаемые кластеры изменяются.

(HNY BШЭ) ML&DM 29.04.2016 13 / 44

4□ > 4□ > 4 = > 4 = > = 90

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 900

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 900

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 900

4□ > 4回 > 4 重 > 4 重 > 重 のQ♡

4□ > 4□ > 4 = > 4 = > = 90

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 900

Оценки качества / числа классов

Метод локтя (elbow method)

Каждому k ставится в соответствие значение функционална $J(\mathcal{C})$. Принятие решения о количестве кластеров заключается в том, что нужно найти такую точку k', начиная с которой значения функционала $J(\mathcal{C})$ падают «не слишком быстро».

То есть соотношение невелико:

$$D(k) = \frac{|J(k) - J(k+1)|}{|J(k-1) - J(k)|}$$

Оценки качества / числа классов

Метод локтя (elbow method)

(НИУ ВШЭ) ML&DM

15 / 44

Оценки качества / числа классов

Силуэт кластеров

Силуэтом кластера C_h называют функцию

$$s_h(i) = \frac{\min\limits_{m} \{b_m(i)\} - a(i)}{\max\{a(i), \min(b_m(i))\}}$$
 $(m = 1, \dots, k, m \neq h),$

где a(i) — среднее расстояние от i-го элемента кластера C_h до каждого из остальных элементов этого кластера, а $b_m(i)$ — среднее расстояние до элементов одного из «прочих» кластеров.

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩ ⟨≡⟩ □ ⟨○⟩

Силуэт

Приемлемое число кластеров

(HUY BШЭ) ML&DM 29.04.2016 17 / 44

Силуэт

Неудачное число кластеров

4 □ → 4 □ → 4 □ → 4 □ → □ → □ → ○ ○ 29.04.2016 18 / 44

(НИУ ВШЭ) ML&DM 29.04.2016

Mетод k-медоидов

Идея метода похожа на k-средних, однако, теперь центроиды (здесь медоиды) всегда являются объектами исходной выборки.

- Устойчивость к выбросам
- Медленная работа

Этапы алгоритма

- 1. Инициализация: Назначение k точек в качестве начальных медоидов M
- 2. Обновление кластеров: При заданных k медоидах, каждый объект приписывается к ближайшему медоиду. Объекты, приписанные к медоидам c_i ($i=1\ldots k$), образуют кластер C_i
- 3. Смещение медоидов: Для каждой пары (c_i, x_h) , $c_i \in M$ и $x_h \in \overline{M}$, вычисляется $Cost(c_i, x_h) = J(C') J(C)$, где C' разбиение, в котором объект x_h является медоидом вместо c_i . Если Cost < 0, то объект x_h назначается медоидом вместо c_i

Итерационный процесс 2-3 продолжается до тех пор, пока получаемые кластеры изменяются.

[Bezdek, 1981]

- Пусть w_{ij} степень принадлежности объекта x_i к кластеру C_j , $i=1,\ldots,n,\ j=1,\ldots,k.$
- $\sum_{i} w_{ij} = 1$.
- Целевая функция

$$J(C) = \sum_{j=1}^{k} \sum_{i \in C_j} w_{ij}^{p} d(x_i, c_j)^{2}$$

• р — параметр влияния весов

4□ > 4□ > 4 = > 4 = > = 90

20 / 44

(НИУ ВШЭ) ML&DM 29.04.2016

Fuzzy c-means

Этапы алгоритма

Вход: Данные, k — параметр

Выход: Матрица степеней принадлежности $W^{n \times k}$

* * *

- 1. Инициализация: Назначение k точек в качестве начальных центроидов
- $\underline{2}$. Обновление степеней принадлежности: $w_{ij}=rac{(1/d(x_i,c_j)^2)^{rac{1}{p-1}}}{\sum\limits_{q=1}^k (1/d(x_i,c_q)^2)^{rac{1}{p-1}}}$
- <u>3. Обновление центроидов:</u> $c_j = \frac{\sum\limits_{i=1}^{n} w_{ij}^{p} x_i}{\sum\limits_{i=1}^{n} w_{ij}^{p}}$

Итеративный процесс 2-3 продолжается до тех пор, пока полученные кластеры изменяются (или изменение целевой функции несущественно).

Иерархические методы

От матрицы «объект-признак» можно перейти к матрице попарных расстояний между объектами

$$\begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^m \\ x_2^1 & x_2^2 & \cdots & x_2^m \\ \cdots & \cdots & \cdots & \cdots \\ x_n^1 & x_n^m & \cdots & x_n^m \end{bmatrix} \Rightarrow \begin{pmatrix} d(x_1, x_1) & d(x_1, x_2) & \cdots & d(x_1, x_n) \\ d(x_2, x_1) & \ddots & \ddots & d(x_2, x_n) \\ \vdots & \ddots & \ddots & \vdots \\ d(x_n, x_1) & d(x_n, x_2) & \cdots & d(x_n, x_n) \end{pmatrix}$$

Матрица расстояний симметрична, на главной диагонали нули.

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩ ⟨≡⟩ □ ⟨○⟩

Иерархические методы

От матрицы «объект-признак» можно перейти к матрице попарных расстояний между объектами

$$\begin{bmatrix} x_1^1 & x_1^2 & \cdots & x_1^m \\ x_2^1 & x_2^2 & \cdots & x_2^m \\ \cdots & \cdots & \cdots & \cdots \\ x_n^1 & x_n^m & \cdots & x_n^m \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & d(x_1, x_2) & d(x_1, x_3) & \cdots & d(x_1, x_n) \\ 0 & d(x_2, x_3) & \cdots & d(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & d(x_{n-1}, x_n) & 0 \end{bmatrix}$$

Матрица расстояний симметрична, на главной диагонали нули.

◆□ > ◆□ > ◆ = > ◆ = > ● の へ ○

Агломеративный подход — последовательное объединение близких кластеров.

- Начиная с одноэлементных кластеров
- Найти пару наиболее близких кластеров
- Объединить два кластера

Продолжать шаги 1-2 пока все объекты не объединятся в один кластер.

Предположим, выбрана мера расстояния и найдена пара наиболее близких объектов. Произведено их объединение в кластер большего размера.

Вопрос: как вычислить расстояния между новым и другими кластерами?

(ниу вшэ) мі & рм 29 04 2016 23 / 44

Типы связей

Одиночная связь (Single Linkage)

$$d(A,B) = \min_{x \in A, y \in B} d(x,y)$$

Полная связь (Complete Linkage)

$$d(A,B) = \max_{x \in A, y \in B} d(x,y)$$

Типы связей

Средняя связь (Average Linkage)

$$d(A, B) = \frac{1}{|A||B|} \sum_{i \in A} \sum_{j \in B} d(x_i, y_j)$$

 Взвешенная средняяя связь (Weighted Average Linkage) Пусть кластер A получился в результате объединения кластеров q и p. Тогда

$$d(A,B) = \frac{d(p,B) + d(q,B)}{2}$$

Центроидная связь (Centroid Linkage)

$$d(A, B) = ||c_A - c_B||_2$$

4 = > 4 = > 4 = >

Процесс объединения можно изобразить в виде древовидной структуры – дендрограммы.

Пусть даны одномерные наблюдения $\{\ 1,\ 2,\ 3,\ 7,\ 10,\ 12,\ 25,\ 29\ \}$

Оценка качества

Кофенетическая корреляция

Кофенетическое расстояние

Кофенетическим расстоянием между объектами x_i и x_j называется высота дерева, при котором эти объекты стали содержаться в одном кластере.

Оценка качества

Кофенетическая корреляция

Кофенетическая корреляция

Кофенетическая корреляция — коэффициент корреляции между рядами попарных расстояний и попарных кофенетических расстояний.

При «удачно» построенном дереве эти ряды должны хорошо коррелировать.

$$cophCorr = \frac{\sum\limits_{i < j} (d(x_i, x_j) - \overline{d})(coph(x_i, x_j) - \overline{coph})}{\sqrt{\sum\limits_{i < j} (d(x_i, x_j) - \overline{d})^2 \cdot \sum\limits_{i < j} (coph(x_i, x_j) - \overline{coph})^2}}$$

4□ > 4□ > 4 = > 4 = > = 90

Дивизивная кластеризация

Дивизивная кластеризация идет в обратном направлении, разбивая большие кластеры на меньшие.

- **①** Найти объект x_{i*} с наибольшим средним расстоянием от остальных. Добавить его ко множеству S отсоединённых объектов
- ② Для каждого объекта $x_i \notin S$ вычислить разницу между средними расстояниями до объектов из S и не из S:

$$D_i = \frac{1}{|S|} \sum_{j \in S} d(x_i, x_j) - \frac{1}{|\overline{S}|} \sum_{j \notin S} d(x_i, x_j)$$

- ullet Добавить объект x_h с наименьшим D_h к S
- **1** Повторить шаги 2-3 пока все D_i не окажутся положительными
- Повторить шаги 1-4 для кластера с наибольшим диаметром (наибольшим расстоянием между парой объектов)

Закончить процесс необходимо, когда останутся только одноэлементные кластеры.

(HИУ ВШЭ) ML&DM 29.04.2016 29 / 44

Плотностные методы

Алгоритм DBSCAN

Алгоритм DBSCAN (Density Based Spatial Clustering of Applications with Noise) — плотностный алгоритм для кластеризации пространственных данных с присутствием шума. Способен распознать кластеры различной формы.

30 / 44

Основная идея

Для каждой точки кластера её окрестность заданного радиуса должно содержать не менее некоторого числа точек M, то есть $N_{eps}(p) \geq M$, где $N_{eps}(p)$ — множество точек, расположенных не далее, чем на расстоянии Eps от p.

Но возникает проблема с граничными точками.

Определение

Точка p непосредственно плотно-достижима из точки q (при заданных Eps и M), если $p \in N_{eps}(q)$ и $|N_{eps}(q)| \geq M$.

(НИУ ВШЭ) ML&DM 29.04.2016 31 / 44

Определение

Точка p плотно-достижима из точки q (при заданных Eps и M), если между ними существует последовательность точек, таких что каждая непосредственно плотно-достижима из предыдущей.

Точка B плотно-связана (при заданных Eps и M) с точкой C, если существует точка A, такая что B и C плотно-достижимы из A (при заданных Eps и M).

(НИУ ВШЭ) ML&DM 29.04.2016 32 / 44

Определение кластера

Кластер C_j (при заданных Eps и M) — это непустое множество объектов:

- 1) $\forall p,q:p\in C_j,q$ плотно-достижима (при заданных Eps и M) из точки $p\Rightarrow q\in C_j$
- 2) $\forall p,q \in \mathit{C}_{j} : p$ плотно-связана (при заданных Eps и M) с q .

Псевдокод алгоритма

9: return $C = \{C_i\}$

```
Require:
Данные \mathcal{D}, Eps, M - параметры.

Ensure:
Кластеры C_j.

1:
Устанавливаем всем элементам множества \mathcal{D} флаг «не посещён», j=0, Noise=\emptyset

2:
for all d_i \in \mathcal{D}:
\phi - \phi
```

(НИУ ВШЭ) ML&DM 29.04.2016 33 / 44

Псевдокод алгоритма. Расширение кластера

```
Require: Текущий объект d_i, его окрестность N_i, текущий кластер C_j, Eps, M — параметры Ensure: Кластер C_j. 1: C_j = C_j + \{d_i\} 2: for all d_k \in N_i: флаг(d_i) == «не посещен» do 3: if флаг(d_k) == «не посещен» then 4: флаг(d_k) = «посещен»
```

5: $N_{ik} = N_{eps}(d_k)$ 6: **if** $|N_{ik}| \ge M$ **then**7: $N_i = N_i + N_{ik}$ 8: **if** $\nexists p : d_k \in C_p(d_k)$ еще нет ни в одном кластере) **then**

9: $C_j = C_j + \{d_k\}$

10: return $C = \{C_j\}$

4□ > 4□ > 4 = > 4 = > = 99

(НИУ ВШЭ) ML&DM 29.04.2016 34 / 44

Начальные параметры: M = 4, Eps > 0.

Берем наугад первую точку. У нее 6 соседей из N_{eps} (рис. слева) \Rightarrow создаем первый кластер (красный) и начинаем расширение. Первый из соседей N1 оказался граничным — добавляем его в кластер (рис. справа).

(HNY BIJ) ML&DM 29.04.2016 35 / 44

Переходим к следующему соседу N2. У него 5 своих соседей из N_{ik} . (рис. слева) \Rightarrow Добавляем новых соседей к старым (появился еще один зеленый сосед). И так далее. Когда обошли всех исходных соседей N1-N6 (рис. справа), продолжаем с новыми, «зелеными».

(HUY BIJ) ML&DM 29.04.2016 35 / 44

После обхода соседей точек N1-N6 остаются всего две «зеленые» точки (рис. слева), после обработки которых формируется первый кластер (рис. справа) и далее снова наугад берется точка из изходного массива.

(HNY BШЭ) ML&DM 29.04.2016 35 / 44

Когда выбор пал на «одинокую точку», у которой число соседей меньше M=4 (рис. слева), она добавляется в массив шумов Noise, и далее опять наугад выбирается следующая непосещенная точка. В итоге в данном примере формируются 2 кластера, а 6 точек классифицируются как шумы (рис. справа). Заметим, что в число шумов попали и две точки между кластерами («перешеек»).

(НИУ ВШЭ) ML&DM 29.04.2016 35 / 44

Плюсы и минусы алгоритма DBSCAN

Плюсы

- + Находит кластеры произвольной формы
- + Алгоритм легко реализовать
- + Различает шумы во входных данных
- + Хорошее быстродействие $O(n \log(n))$ при правильном выборе структуры данных (в противном случае $O(n^2)$)

Минусы

- Параметрический. Плохо работает при большых разностях плотности из-за параметра *M* (минимальное число соседей). Есть модификации алгоритма, учитывающие эту проблему.
- Зависит от выбора метрики расстояния

←ロト ←団ト ← 巨ト ← 巨 ・ りへで

(НИУ ВШЭ) ML&DM 29.04.2016 36 / 44

Идея

Найти центр масс объектов, где плотность точек максимальна, и использовать его как центроид.

(НИУ ВШЭ) ML&DM 29.04.2016 37 / 44

Идея

- Задать область вокруг каждой точки выборки
- Вычислить в каждой области центроид
- Переместить центр области в центроид

После каждой итерации центроиды перемещаются в «более плотные» области до сходимости к пикам плотности (density modes).

4□ > 4□ > 4 = > 4 = > = 99

38 / 44

Пики плотности (density modes) точек задаются с помощью ядерной оценки плотности (kernel density estimation):

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K(\frac{\mathbf{x} - \mathbf{x_i}}{h})$$

d — размерность данных, h — ширина окна (bandwidth).

 $K(\frac{x-x_i}{h})$ – ядро как функция от расстояния задает вклад соседей x_i при вычислении среднего в пределах окна. Часто используется ядро Гаусса:

$$K(\frac{\mathbf{x} - \mathbf{x_i}}{h}) = \frac{1}{2\pi^{d/2}} e^{-\frac{||\mathbf{x} - \mathbf{x_i}||^2}{2h^2}}$$

- 4 ロ ト 4 回 ト 4 差 ト 4 差 ト - 差 - 夕 Q (^)

(НИУ ВШЭ) ML&DM

Mean-Shift использует градиентный подъем (gradient ascent).

$$\nabla \hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n \frac{\partial}{\partial \mathbf{x}} K(\frac{\mathbf{x} - \mathbf{x_i}}{h})$$

$$\nabla \hat{f}(\mathbf{x}) = 0$$

Для Гауссового ядра:

$$\frac{\partial}{\partial \mathbf{x}} K(\frac{\mathbf{x} - \mathbf{x_i}}{h}) = K(\frac{\mathbf{x} - \mathbf{x_i}}{h}) \frac{\mathbf{x} - \mathbf{x_i}}{h} \frac{1}{h}$$

$$\implies \sum_{i=1}^{n} K(\frac{\mathbf{x} - \mathbf{x_i}}{h}) \mathbf{x} = \sum_{i=1}^{n} K(\frac{\mathbf{x} - \mathbf{x_i}}{h}) \mathbf{x_i}$$

29.04.2016 40 / 44

Тогда направление наибольшего роста ядерной функции плотности задается вектором:

$$\mathbf{m}(\mathbf{x}) = \frac{\sum_{i=1}^{n} K(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}) \mathbf{x}_{i}}{\sum_{i=1}^{n} K(\frac{\mathbf{x} - \mathbf{x}_{i}}{h})}$$

Собственно, смещение среднего (mean shift):

$$\mathbf{m}(\mathbf{x}) - \mathbf{x} = \frac{\sum_{i=1}^{n} K(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}) \mathbf{x}_{i}}{\sum_{i=1}^{n} K(\frac{\mathbf{x} - \mathbf{x}_{i}}{h})} - \mathbf{x}$$

←□ → ←□ → ← □ → ← □ → ← ○

41 / 44

Шаги

Вход: Данные D

Выход: Кластеры C_i

- 1. Вычисление mean shift: Для каждой точки начальной выборки $x_i \in D$ вычисляется вектор смещения среднего $\mathbf{m}(\mathbf{x_i})$
- 2. Расширение кластера: Аргумент фунцкии ядерной оценки плотности смещается на $\mathbf{m}(\mathbf{x}):\hat{f}(\mathbf{x}) \to \hat{f}(\mathbf{m}(\mathbf{x})-\mathbf{x}).$

Шаги 1, 2 повторяются до сходимости к пикам фунцкии ядерной оценки плотности.

42 / 44

Сходимость к локальному максимуму гарантирована

Yizong Cheng, Mean Shift, Mode Seeking, and Clustering. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,(8) 1995

(НИУ ВШЭ) ML&DM 29.04.2016 43 / 44

Вопросы и контакты

www.hse.ru/staff/dima

Спасибо!

dmitrii.ignatov[at]gmail.com

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ □ □ ♥ ⟨○⟩

44 / 44