

Data Science Immersion Week

Fraud detection

June 2018

Aybike Ulusan Cristian Gavrus Yujia Zhou

Mentors:
Frank Ma
Zephy McKanna
Wayne Wang

FRAUD AND WHY WE CARE

What is fraud?

• Why do we care?

Wayfair experiences a fraudulent purchase every 4 minutes
Average fraudulent order costs \$719

How does Wayfair handle fraud?

Selects suspicious orders and calls customers

Constraints: limited manpower, affects customer trust

FRAUD \$ CAUGHT IS SENSITIVE TO EXPENSIVE ITEMS

FDC = (Fraud dollars caught)

Fraud dollar in reviewed orders

Total fraud dollar

Reviewing and catching a \$9 mug

is not as important as a \$1300 sofa

FDC IS MORE IMPORTANT THAN PRECISION

FDC = (Fraud dollars caught)

Fraud dollar in reviewed orders

Total fraud dollar

Imbalanced dataset: 5% - 95%

Predicting everything not fraud → 95% precision But FDC will be 0!

Goal:

Maximize FDC within the x orders we submit for review.

DATASET OVERVIEW

Imbalanced

- 100,000 orders (rows)
 - 5% are frauds

Missing data

- 106 features
 - Delete columns with >80% missing data (14 features)
 - Median substitution
 - Dummy variables for categorical features

HIGHLY CORRELATED FEATURES

A preliminary analysis identifies two features which should not be used for prediction.

	is_fraud
is_frauc	1.000000
is_email_blacklisted	0.986507
is_ip_blacklisted	0.868802
product_blacklist_percen	t 0.406978
billing_and_ip_distance	0.264345
order_tota	0.231995
number_of_orders_in_session	n 0.224120
	×xvzxzfair

EXPLORATORY DATA ANALYSIS - Histograms

EDA - Billing and IP distance

Fraud cases usually have higher distance between IP and billing locations

Billing and IP distance

EDA - Purchase amount

Fraud orders spend more

EDA - Purchase amount VS Age of account

New account + expensive order --> more likely to be fraud

Old account + cheap order --> less likely

2-STEP METHODOLOGY: PREDICTION AND RANKING

Objective: Maximize FDC (fraud dollar caught)

- 1. Binary classification for predicting the fraudulent activities
- 2. Rank the cases to maximize \$\$

1. Stratified sampling

- Model selection with cross-validation
 - Logistic Regression
 - SVM
 - linear/nonlinear kernels
 - Option to perform PCA

Balanced class weight. Feature scaling (normalization)

3. Apply model to hold-out set

LOGISTIC REGRESSION

Madal		l/or	nal	Conturns		s AUC	FDC%	
IVI	Model Kerr		nel Features		25		Expected \$	Naive
Log Regr	gistic ression	Line	ear	101		0.87	74%	66%
	Likelihood			urchase amount	E	Expected		
	0.9		20			18		X
	0.3			500		150	X	
	0.6			40		24	X	X

TOP IMPORTANT FEATURES

- 1. customers_with_same_ip_past_week
- 2. number_of_orders_in_session
- 3. number_of_add_to_cart_events_past_month
- 4. customers_with_same_ip_past_six_months
- 5. shipping_names_count_past_day
- 6. shipping_ip_country_match_percentage
- 7. number_of_keyword_searches_past_week
- 8. billing_shipping_country_match_percent
- 9. number_of_pdp_visits_past_week
- 10. order_total

SVM with LINEAR KERNEL

Madal	Korpol	Footures.	ALIC	FDC%	
Model 	Kemei	Features	AUC	Expected \$	Naive
Logistic Regression	Linear	101	0.87	74%	66%
SVM	Linear	101	0.92	72%	76%

PCA+SVM+NAIVE RANKING YIELDS HIGHEST FDC

Madal	Kornol	Features	AUC	FDC%	
Model 	Kemei			Expected \$	Naive
Logistic Regression	Linear	101	0.87	74%	66%
SVM	Linear	101	0.92	72%	76%
SVM	RBF	101	0.97	86%	93%

PCA+SVM+NAIVE RANKING YIELDS HIGHEST FDC

Model	Kornal	Features	AUC	FDC%	
Iviouei	Kerner			Expected \$	Naive
Logistic Regression	Linear	101	0.87	74%	66%
SVM	Linear	101	0.92	72%	76%
SVM	RBF	101	0.97	86%	93%
PCA+SVM	RBF	60	0.99	92%	95%

60 COMPONENTS EXPLAINS 93% OF VARIANCE

FDC BY MODEL AND RANKING ALGORITHMS

BEST CLASSIFIER RESULT

FDC = 94% (5% submission)

FDC = 99.8% (7.4% submission)

Preprocessing data with PCA
Pick first 60 components
Fit with SVM (RBF kernel)
Recommend orders to review with naive ranking

FACTORS THAT IMPROVE FDC

- Nonlinear boundary
 - SVM with RBF kernel performs much better.
- Multicollinearity between features
 - PCA improves the result.
- When predictions are accurate, simply trust the prediction and recommend most expensive orders for review.

- Better ways to handle missing data
- Tune parameters in SVM
- Results too good
 - specific dataset
 - stratified hold-out sample
 - test on "tomorrow's data"
 - fraud ratio fluctuates day by day

THANK YOU QUESTIONS?

Other choices for # of principal components

Model	Kernel	Features	FDC%		
	Kemei	realules	Naive		
SVM		20	91.8%		
	RBF	40	93.1%		
		60	94.9%		

RANDOM FOREST CLASSIFIER, DO WE TRUST IT?

- In theory, results should be the same on original vs. normalized data.
- In reality,
 - 33% FDC with normalized data
 - 99% FDC with original data

MAP SVM DISTANCE TO PROBABILITY

 $\arctan(x) \text{ maps } (-\infty, \infty) \text{ to } (-\pi/2, \pi/2)$

$$f(x) = \arctan(x)/\pi + 0.5$$

