CPSC 327 Artificial Intelligence Spring 2015: Mid-Term Study Guide

February 24, 2015

1 Name 5 Attributes of Intelligence

Use the reading, class notes, your paper, and my comments to prepare 5 attributes of intelligence that you can write for this part of the test.

2 Grammars

Given the following grammar:

which of the following are valid?

- 1. a % b & c
- 2. b % c % d
- 3. x & y % z
- 4. x % y & z

Given the following grammar:

which of the following are valid?

- 1. I shot an elephant in my pajamas
- 2. all roads lead to rome
- 3. amen
- 4. what is the flying speed of an unburdened sparrow (european or african)

3 Proofs in The Wumpus World

Keep these logic rules in your back pocket:

- Or Commutativity: $A \vee B \equiv B \vee A$.
- And Commutativity: $A \wedge B \equiv B \wedge A$.
- Or Associativity: $A \vee (B \vee C) \equiv (A \vee B) \vee C$.
- And Associativity: $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$.
- Double Negation: $\neg \neg A \equiv A$.
- Contraposition: $A \to B \equiv \neg B \to \neg A$.
- Implication Elimination: $A \to B \equiv \neg A \lor B$.
- Biconditional Elimination: $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$.
- DeMorgan's Law 1: $\neg(A \land B) \equiv \neg A \lor \neg B$.
- DeMorgan's Law 2: $\neg(A \lor B) \equiv \neg A \land \neg B$.
- Distribute Or: $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$.
- Distribute And: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$.

and these inference rules:

• Modus Ponens:

$$\frac{A \to B, A}{B}$$

• And Elimination:

$$\frac{A \wedge B}{A}$$

1. Given the rules:

R1:
$$\neg P_{1,1}$$
.

R2:
$$B_{1,1} \leftrightarrow (P_{1,2} \vee P_{2,1}).$$

R3:
$$B_{2,1} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$$

we then visit [1,1] and [2,1] and learn the following facts:

R4:
$$\neg B_{1,1}$$
.

R5:
$$B_{2,1}$$
.

A. Prove that there is no pit at location [1,2].

Now move to location [1,2] and learn the following fact:

R5:
$$\neg B_{1,2}$$
.

B. Prove that there is a pit in location [3,1]

4 prolog Programs

4.1 What, if anything, is wrong with the following prolog clause?

sibling(A,B):-parent(X,A), parent(X,B).

What will result if it is run against family.pl?

4.2 Write a set of prolog clauses to define a fibonacci sequence