FYS9555 Final project

«Higgs boson production mechanism classification from ATLAS Open Data»

10 June 2020 Victor Ananyev

Outline

- Di-photon process
- Data acquisition
- What's inside?
- Dealing with jagged data in ML
- Fighting imbalanced data sets
- Fitting baseline ML models

Di-photon process

Major production mechanisms

Event selection for Hyy peak

- Diphoton trigger is satisfied;
- Exactly two photons with $E_T > 35$ and 25 GeV, respectively;
- Leading and subleading photon candidates are respectively required to have $E_{\rm T}/m_{\gamma\gamma} > 0.35$ and 0.25;
- Diphoton invariant mass $m_{\gamma\gamma}$ between 105 GeV and 160 GeV.

Selection efficiency ~ 1%

Number of events per process

Higgs mass from ATLAS Open Data

8M events in 7 minutes!

Acquire data efficiently

8M events in 7 minutes with Python!

1TB Root files storage

Processing power and data traffic

Processing power and data traffic

1TB Root files storage

Processing power and data traffic

Processing power and data traffic

1TB Root files storage

UpRoot (xrootd)

2GB - 100 GB

Batches 200MB ~ 100 000 events

Store processed

~ 2MB

~1000 events/batch

What's inside?

- XSection
- SumWeights
- runNumber
- eventNumber
- channelNumber
- mcWeight
- scaleFactor *
- trig*

- met_et
- met_et_syst
- met_phi
- ditau m

- photon n
- photon truthMatched
- photon trigMatched
- photon_pt
- photon eta
- photon_phi
- photon_E
- photon_isTightID
- photon_ptcone30
- photon etcone20
- photon_convType
- photon pt syst

- lep n
- lep truthMatched
- lep_trigMatched
- lep_pt
- lep eta
- lep phi
- lep_E
- lep_z0
- lep charge
- lep_type
- lep isTightID
- lep ptcone30
- lep etcone20
- lep_trackd0pvunbiased
- lep_tracksigd0pvunbiased
- lep_pt_syst

- tau n
- tau pt tau eta
- tau_phi
- tau E
- tau_isTightID
- tau_truthMatched
- tau_trigMatched
- tau nTracks
- tau BDTid
- tau_pt_syst
- tau charge

Simulation wide

Macro features 1 number per event

- jet n
- jet_pt
- jet eta
- jet_phi
- iet E
- jet_jvt
- iet trueflav
- jet_truthMatched
- jet MV2c10
- jet_pt_syst

- largeRjet n
- largeRjet pt
- largeRjet eta
- largeRjet_phi
- largeRiet E
- largeRjet_m
- largeRjet_truthMatched
- largeRjet_D2
- largeRjet tau32
- largeRjet_pt_syst

Micro features Jagged. List of numbers per event

XSection Simulation wide **SumWeights** runNumber met_et eventNumber met_et_syst Macro features met_phi channelNumber mcWeight ditau m scaleFactor * tria* $[0, 0, 1, 1, 0, 1 \dots]$ photon n largeRjet n jet n lep n tau n lep truthMatched photon truthMlargeRjet pt tau pt jet pt **MASK** photon trigg lep trigMatched largeRjet eta tau_eta jet eta photon p p_pt jet_phi largeRjet_phi tau phi photon (tau E largeRiet E iet E eta phi largeRjet_m photon phi tau isTightID iet ivt photon E rep_E tau truthMatched iet trueflav largeRjet_truthMatched tau_trigMatched jet_truthMatched largeRjet_D2 photon_isTightID lep_z0 lep charge tau nTracks jet MV2c10 largeRjet tau32 photo ne30 photo 800 ne20 lep type tau BDTid jet_pt_syst largeRjet_pt_syst lep isTightID tau pt syst photo Type photo. lep ptcone30 tau charge Micro features lep etcone20 Photon lep_trackd0pvunbiased lep_tracksigd0pvunbiased **Features** lep_pt_syst

Missing energy Et (log x scale)

Missing energy Phi

Jet b-tagging score

Max pT per particle type (log x scale)

Number of particles (log y scale)

Jagged data. Structure of micro features

Photon pT

Photon N = 3

2. Photon N = 2

3. Photon N = 1

Events

Photon N = 44.

5. Photon N = 4

6. Photon N = 3

How similar are them?

Option: Aggregation

Option: Aggregation

Option: Set Kernels (Pyramid match)

Option: Set Kernels

- + Operation in non-linearly transformed feature space at no cost (Kernel trick)
 - Interpretable. Not a black box.
- Compute and store N x N matrix of distances (N number of training instances)
 - N² memory consumption
 - Incremental learning is not easily achievable. 1 extra training point triggers N calls to kernel.

Option: Embedding with NN «DeepSets»

Option: Embedding with NN «DeepSets»

- + Order independence. Treat set of particles as a set
 - Get feature embedding model in addition to the classifier
- Neural networks are black box
 - Training requires significant amount of data

Baseline classifier: Random forest

Baseline classifier: Random forest

Baseline classifier: Random forest

Baseline classifier: Random forest

Imbalanced data

	event_num	weight_sums	weight_frac	weight_per_event
VBF	10369	9.612055e-05	0.064293	9.269992e-09
Wp	2112	1.702021e-05	0.011384	8.058813e-09
z	4571	1.697019e-05	0.011351	3.712578e-09
gg	26258	1.364896e-03	0.912952	5.198020e-08
tt	9861	2.851057e-08	0.000019	2.891245e-12

Fighting imbalanced data with bagging

Undersampling

Fighting imbalanced data with bagging

Fighting imbalanced data with bagging

EasyEnsemble

EasyEnsemble model

EasyEnsemble model

Alternative to downsampling. XGBoost

Alternative to downsampling. XGBoost

Conclusion

- It is possible to analyze HEP data with Python without loss in efficiency (in comparison to C++)
- HEP datasets are jagged. Possible solutions include:
 - feature aggregation
 - set kernels (Pyramid Match)
 - feature embedding (DeepSets or alternatives)
- HEP datasets are imbalanced. Possible solutions include:
 - downsampling
 - oversampling
 - missing data distribution fit (xgboost)

Backup

XGBoost

XGBoost

