

آزمایشگاه مدارهای منطقی

دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف تابستان ۱۴۰۲

کروه شماره ۱

سعید فراتی کاشانی - ۴۰۱۱۰۷۲۹۹

معین آعلی - ۲۰۱۱٬۵۵۲۱ -

حورا عابدین - ۴۰۱۱۰۷۲۰۹

پیشگزارش آزمایش شماره ۴ **آزمایشگاه مدارهای منطقی - گروه شماره ۱** فهرست عناوين .٣ ۲.۳. ۲.۱. ساخت شمارنده جانسون : ٤ . 4, 4 .٣.٣ شيفترجيستر دوطرفه با استفاده از تراشه ۷۴۹۵:٣.۴ طراحی مداری حساس به رشته های ۱۱۰۱ و ۱۱۱۰ و $ext{olo}$ و $ext{olo}$ و $ext{olo}$ ۵. ۳.

١. هدف از انجام آزمایش:

هدف از این آزمایش ، پیاده سازی یک شیفترجیستر با استفاده از تراشه ۷۴۹۵ میباشد .

۲. تراشه و قطعات استفاده شده:

- برد بورد
- فليپفلاپ
- تراشه ۷۴۹۵
 - مقاومت
 - گیت OR
 - گيت NOT

۳. شرح آزمایش:

۳/۱. پیاده سازی مدار در proteus :

مداری که میخواهید طراحی کنیم به شکل زیر است:

با استفاده از گیت های AND , OR , D-FlipFlop ، یک شیفترجیستر ۴ بیتی با قابلیت بارگذاری موازی میسازیم . اگر بیت Mode برابر یک باشد ، با فعال شدن Clock ، رجیستر به صورت موازی Load میشود .

و اگر بیت Mode برابر صفر باشد ، با فعال شدن Clock ، رجیستر یک بیت به سمت راست شیفت میخورد و بیت S به جای MSB داخل رجیستر قرار میگیرد .

آزمایشگاه مدارهای منطقی - گروه شماره ۱

شكل مدار داخل نرمافزار Proteus :

همچنین پیاده سازی مدار در fritzing به این شکل است :

.٣/١ لود كردن ١٠١٠ در رجيستر:

برای اینکه مقدار ۱۰۱۰ را در رجیستر ذخیره کنیم ، به ورودی همین مقدار را میدهیم و بیت Mode را برابر یک قرار داده تا رجیستر Load شود . . برای این کار کافیست تا یک بار دکمه ی Clock را فشرده و رها کنیم . (این کار در تصویر بالا انجام شده است !)

آزمایشگاه مدارهای منطقی - گروه شماره ۱

٣/٢. ساخت شمارنده جانسون:

را به ورودی های مدار متصل کرده و داریم : \mathbf{Q}'

آزمایشگاه مدارهای منطقی - گروه شماره ۱

٣/٣. شيفترجيستر دوطرفه:

حال با اعمال تغییراتی در مدار ، مدار را به یک شیفت رجیستر دوطرفه تبدیل کرده و قابلیت Load همزمان را از آن میگیریم! ورودی های مدار Mode , S هستند ، اگر Mode صفر باشد ، شیفت به راست و اگر Mode یک باشد ، شیفت به چپ انجام میشود و به ترتیب به جای بیت های MSB و LSB ، بیت S قرار میگیرد .

برای شیفت به راست روابط زیر برقرار است :

- Da = Mode.S
- Db = Mode.A
- Dc = Mode.B
- Dd = Mode.C

برای شیفت به چپ روابط زیر برقرار است:

- Da = Mode.B
- Db = Mode.C
- Dc = Mode.D
- Dd = Mode.S

مداری که میخواهیم طراحی کنیم به شکل زیر است:

آزمایشگاه مدارهای منطقی – گروه شماره ۱ بنابراین مدار به شکل زیر خواهد شد:

درنهایت برای شیفت به چپ و راست داریم :

- Da = Mode.S + Mode.B
- Db = Mode.A + Mode.C
- Dc = Mode.B + Mode.D
- Dd = Mode.C + Mode.S

آزمایشگاه مدارهای منطقی - گروه شماره ۱

٣/٤. شيفت رجيستر دوطرفه با استفاده از تراشه ٧٤٩٥:

تراشه ۷۴۹۵ یک شیفت رجیستر آماده می باشد . در شکل زیر از آن استفاده کرده ایم . در این مدار ، زمانی که Mode صفر باشد ، با رسیدن SR کرده یک SR متصل میکنیم . Clock در SR شیفت به راست و با رسیدن Clock در SR در این مدار ، زمانی که Clock متصل میکنیم .

آزمایشگاه مدارهای منطقی - گروه شماره ۱

۰/۰. طراحی مداری حساس به رشته های ۱۱۰۱ و ۱۱۱۰ و ۰۰۱۰ و ۲۰۰۱:

	A	В	C	D	0	1
0	0	0	0	0	0	0
1	0	0	0	1	\bigcirc	0
2	0	0	1	0	\circ	0
3	0	0	1	1	0	0
4	0	1	0	0	0	0
5	0	1	0	1	0	0
6	0	1	1	0	0	0
7	0	1	1	1	0	0
8	1	0	0	0	0	0
9	1	0	0	1	0	0
10	1	0	1	0	0	0
11	1	0	1	1	0	0
12	1	1	0	0	0	0
13	1	1	0	1	0	0
14	1	1	1	0	0	0
15	1	1	1	1	0	0

• Z = A'B'C'D + A'B'CD' + ABC'D + ABCD'

حال مدار را به این شکل پیادهسازی میکنیم:

