

for our hourarchy,
- we have onit cells

Ly primitive cells > Wigner - Seitz (unit cell)

The Bravais lattice is the blueprint of a real crystal.

Ly to get a real crystal, we need to provide a basis.

15 not restricted in the # of atom types.

or use two atoms for basis

Bravais lattice		Basis	Cry	stal
0				
	+	-		
Q			®	

Every crystal needs 2 things 1. A loite (me voc Bravois) 2. A basis

31) Cryotals:

Most bolids have one of three lattice structures.

most 3 1. Simple cubic (SC) -

2. Body - Centurel Woic (BCC)

3. Face - Centered Cubic (FCC)

basis: a(0,0,0) or $a(\frac{1}{2},\frac{1}{2},\frac{1}{2})$

Basis:
$$a(0,0,0)$$

and
 $a(\frac{1}{2},\frac{1}{2},0)$

and
 $a(\frac{1}{2},0,\frac{1}{2})$

anh
 $a(0,\frac{1}{2},\frac{1}{2})$

Coordination # = how many nearest reighbors you have,

(Z) how many atoms you have in your unit cell.

	Coordination (Z) Number	Atom Jonit cell	
6C;	6 (very corner)	-	
BW.	в	2	
Fcc:	12	4	

Crystals prefer righter packing, so it's usually never SC.

noone efficient U

use of space
to minimize energy

Atomic Packing Function

(APF)

_ 0(

Example BCC:

Each corner atom makes contact with/ central atom.

a. Each atom is rad r

$$\begin{array}{c}
\lambda = \sqrt{3} a = 4r \\
\Rightarrow a = \frac{4r}{\sqrt{3}}
\end{array}$$

Reciprocal lattice:

So far wive seen real spree lattices.

Les it's more convienent to do math in

the reciprocal space, which is represented

by the Preguency of distances (wave # (K))

with lattices in wavenumbers

K= 27

-60 we'll transform to a different lattice.

Given: a latice point in real space

1 - na + na az + nzaz

the point

is in the reciprocal lattice if $e^{i\vec{G}\cdot\vec{R}} = 1$

or > 3. \(\frac{1}{2} = 2\tau_1n\)

for all points in the real lattice.

Note: We that G also forms a Bravais lattice.

If R 1s a Bravais lattice.

$$\frac{1}{b_1} = \frac{2\pi \vec{a_1} \times \vec{a_3}}{\vec{a_1} \cdot (\vec{a_2} \times \vec{a_3})}$$

$$\frac{2}{63} = \frac{2\pi (\vec{a}_1 \times \vec{a}_2)}{\vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)}$$