

Fakultät für Elektro- und Informationstechnik, Professur für Grundlagen der Elektrotechnik und Elektronik

FliK Modul 2020

GAN and RNN

Steffen Seitz, Marvin Arnold & Markus Fritzsche

Prof. Ronald Tetzlaff

Dresden, 19-23.10.

Generative Adversial Networks (GAN)

Like VAE a Generative Adversial Network is a **generative learning** approach, hence you try to model a **distribution** (instead of a probability) as close as possible to your data to sample from it. Training a GAN is **completly different** from what we have seen so far.

Generative Adversial Networks (GAN)

Since GAN models a **distribution**, we can use this to do **latent space arithmetics** (similar of adding gausian distributions) and sample from this new continuous space, with some funny results.

Interpolation in Latent Space

Generative Adversial Networks (GAN)

We can also do **style transfer**!

Style transfer with Ron Swanson (Deepfakes)

12. Exercise

Let's train our first GAN!

Recurrent Neural Networks

Bidirectional RNN

Sequence to Sequence Model

Attention

Transformer

Attention is all you need

13. Exercise

Let's train our first RNN on IMDB!

