

Capacitações completas para um mercado competitivo

Certificação de Projetos Seis Sigma Inserir Título do Projeto

Etapa de análise

A etapa de análise será responsável pela comprovação das causas para o baixo valor do indicador OTIF_entregas levantadas na etapa anterior através de fatos e dados. As análises utilizadas serão teste de igualdade de variâncias, teste ANOVA, testes de hipótese para duas amostras e teste Qui-quadrado, serão comprovadas três causas para sequencia do projeto e as demais serão dadas como comprovadas. As causas a serem comprovadas e os respectivos métodos serão:

- Falta de Mapa Geográfico:
- a) Teste de igualdade de variâncias
- b) Teste ANOVA
- c) Teste de hipótese
- Composição Fracionada de cargas:
- a) Teste qui-quadrado
- Prazos acordados para sábados e domingos:
- a) Teste qui-quadrado

Análise falta de mapa Geográfico

A primeira análise visa avaliar os prazos de entrega entre as diferentes regiões geográficas, buscando saber se existem diferenças significativas entre as variâncias e as médias dos prazos de entrega. O p-valor do teste de igualdade de variâncias para comparações múltiplas retornou o valor 0,00, como p-valor<0,05, indica que rejeitamos a hipótese nula, de que todas as variâncias são iguais, e portanto, pelo menos uma das variâncias é diferente.

O p-valor do ANOVA foi de 0,00, como p-valor<0,05, rejeitamos a hipótese nula, o que indica que pelo menos uma média é diferente. Os gráficos apresentam as informações de forma visual. É possível perceber que todos os estados presentam variações diferentes no tempo de entrega, e que o estado norte apresenta maior variação dentre todos. É possível ainda verificar que a média é significativamente diferente, sendo que as entregas ocorrem de 2 a 3 dias na região sudeste, e podem levar mais de 10 dias na região norte. Isso indica que a falta de um mapa geográfico pode ser um grande problema, uma vez que o desconhecimento de tais informações pode ter como consequência a solicitação de prazos incorretos. Portanto o próximo passo é analisar a relação entre os tempos de transporte e os prazos acordados.

Análise Tempo de transporte x Prazo acordado

Região sul

Estatísticas Descritivas

Amostra	N	Média	DesvPad	EP Média
Tempo Transp_Sul	80	3.48	1.06	0.12
Prazo acordado_Sul	80	2.112	0.886	0.099

Estimativa da diferença

	IC de 95%
	para a
Diferença	Diferença
1.363	(1.058, 1.667)

153

Teste

Hipótese nula			H_0 : $\mu_1 - \mu_2 = 0$
Hipótese alternativa			$H_1: \mu_1 - \mu_2 \neq 0$
Valor-T	GL	Valor	·-p

0.000

Região sudeste

Estatísticas Descritivas

Amostra	N	Média	DesvPad	EP Média
Tempo Transp_Sudeste	80	2.65	1.14	0.13
Prazo acordado_Sudeste	80	2.41	1.05	0.12

Estimativa da diferença

	IC de 95%
	para a
Diferença	Diferença
0.237	(-0.105, 0.580)

Teste

Hipótese	H₀:	μ1 -	μ_{2}	=	0		
Hipótese alternativa			H ₁ :	μ1 -	μ ₂	≠	C
Valor-T	GL	Valor	р				
1.37	157	0.1	72				

Região centro-oeste

Estatísticas Descritivas

Amostra	N	Média	DesvPad	EP Média
Tempo Transp_Centro Oeste	80	3.89	1.31	0.15
Prazo acordado Centro Oeste	80	3.55	1.15	0.13

Estimativa da diferença

	IC de 95%
	para a
Diferença	Diferença
0.338	(-0.047, 0.722)

Teste

Hipótese nula Hipótese alternativa				μ ₁ - μ ₁ -	•	
Valor-T	GL	Valor	-р			
1.73	155	0.0	85			

Análise Tempo de transporte x Prazo acordado

Região nordeste

Estatísticas Descritivas

Amostra	N	Média	DesvPad	EP Média
Tempo Transp_Nordeste	80	7.21	1.45	0.16
Prazo acordado_Nordeste	80	4.99	1.45	0.16

 H_0 : $\mu_1 - \mu_2 = 0$

Região norte

Estatísticas Descritivas

 Amostra	N	Média	DesvPad	EP Média
Tempo Transp_Norte	80	9.82	2.05	0.23
Prazo acordado_Norte	80	8.70	1.14	0.13

Estimativa da diferença

	IC de 95%
	para a
Diferença	Diferença
2.225	(1.773, 2.677)

Estimativa da diferença

	IC de 95%		
	para a		
Diferença	Diferença		
1.125	(0.606, 1.644)		

Teste

Hipótese nula

Hipótese alternativa		ativa H	H ₁ : μ ₁ - μ ₂ ≠ 0
Valor-T	GL	Valor-p)
9.73	157	0.000	<u> </u>

Teste

Hipotese	nuia		H_0 : $\mu_1 - \mu_2 = 0$
Hipótese	altern	nativa	$H_1\!\!:\mu_1\cdot\mu_2\neq 0$
Valor-T	GL	Valor	-р_
4 20	122	0.00	00

Analisando a situação por região, é possível avaliar que a média do tempo de transporte e do prazo de entrega solicitado é diferente em 3 situações, nos estados sul, nordeste e norte, sendo a diferença mais crítica no estado Nordeste, em que a diferença média dos prazos é de mais de 2 dias. A análise estatística retornou pvalor<0,05 nesses três casos, portanto é possível comprovar através das medidas estatísticas que o prazo que vem sendo solicitado está de fato em desacordo com a média de tempo da entrega, na maior parte dos estados. Tendo em vista que o escopo considerado são entregas que se originam no sudeste, é possível notar ainda que existe uma relação direta entre a distância de entrega e os atrasos, sendo que os únicos estados que ocorrem entregas dentro dos prazos pedidos são sudeste e centro-oeste, que apresentaram p-valor>0,05, indicando prazos solicitados coerentes com tempo de entrega. Dessa forma, é possível comprovar que a falta de mapa geográfico do sistema está relacionado ao baixo valor do indicador OTIF entrega.

Composição fracionada de carga

Linhas: Composição da carga Colunas: EFEITOS_1

	FORA DO				
	PRAZO	FORA DO PRAZO	NO PRAZO		
	COMPLETO	INCOMPLETO	INCOMPLETO	SUCESSO	Todos
FRACIONADA	6	3	7	4	20
	4.400	2.000	3.600	10.000	
NÃO FRACIONADA	5	2	2	21	30
	6.600	3.000	5.400	15.000	
Todos	11	5	9	25	50

Teste qui-quadrado

	Qui-Quadrado	GL	Valor-p
Pearson	13.155		0.004
Razão de verossimilhança	13.895	3	0.003

⁴ células com contagens esperadas menores do que 5.

Os dados de composição fracionada e não fracionada foram registrados de acordo com o status da entrega, e analisados através da metodologia qui-quadrado. Temos as seguintes hipóteses:

 $H_0 = N$ ão há associação entre as variáveis analisadas $H_a = H$ á associação entre as variáveis analisadas

O p-valor da análise resultou 0,003, p-valor<0,05, portanto rejeitamos a hipótese nula, e comprovamos que existe associação entre as variáveis, ou seja, a carga ser ou não fracionada, influencia no status final da entrega, e portanto no indicador OTIF_Entrega.

Prazos acordados para sábados e domingos

Linhas: Datas dos prazos acordados Colunas: EFEITOS_2

	FORA DO			
	PRAZO	FORA DO PRAZO		
	COMPLETO	INCOMPLETO	SUCESSO	Todos
DIA ÚTIL	6	2	22	30
	9.600	4.200	16.200	
FINAL DE SEMANA	10	5	5	20
	6.400	2.800	10.800	
Todos	16	7	27	50

Teste qui-quadrado

	Qui-Quadrado	GL	Valor-p
Pearson	11.447	2	0.003
Razão de verossimilhança	11.880	2	0.003

2 células com contagens esperadas menores do que 5.

Os dados de data solicitado para entrega entre dias úteis e finais de semana foram registrados de acordo com o status da entrega, e analisados através da metodologia qui-quadrado. Temos as seguintes hipóteses:

 $H_0 = N$ ão há associação entre as variáveis analisadas $H_a = H$ á associação entre as variáveis analisadas

O p-valor da análise resultou 0,003, p-valor<0,05, portanto rejeitamos a hipótese nula, e conseguimos comprovar que existe associação entre as variáveis, ou seja, o prazo de entrega ser solicitado para dias úteis ou final de semana, influencia no status final da entrega, e portanto no indicador OTIF_Entrega.

Tendo em vista a comprovação de todas as causas priorizadas, na próxima etapa iremos tratar o plano de ação das seguintes causas:

ESFORÇO BAIXO E IMPACTO BAIXO (QUICK WINS)

- Composição fracionada de carga
- Composição não planejada
- Prazos acordados para sábados e domingos
- Falta de avaliação sistemática da voz do cliente

ESFORÇO BAIXO E IMPACTO ALTO

- Falta de mapa Geográfico do sistema
- Desconhecimento da capacidade de escoamento
- Desconhecimento do estoque

ESFORÇO ALTO E IMPACTO ALTO

Antecipação de pedidos

www.voitto.com.br

@grupovoitto

grupovoitto