Regrese

Úloha: z ${f N}$ bodů dat $(\vec{x}_i, \ Y_i)$ určit ${f M}$ neznámých parametrů a_1, \dots, a_M závislosti

$$y = y(\vec{x}; a_1, \dots, a_M) = y(\vec{x}; \vec{a})$$

 \vec{x} - 1 nebo více nezávislých proměnných - vysvětlující proměnné y - vysvětlovaná proměnná

Hledaná závislost je nazývána $\underline{\mathbf{modelem}}$. Budeme se většinou zabývat lineárními modely, tj. modely lineárními vzhledem ke koeficientům a_j .

- Lineární regrese (lineární modely)
 - prostá (lineární závislost) $y = a_1 + a_2 \cdot x$
 - zobecněná (zobecněný polynom) $y = \sum_{j=1}^M a_j \cdot X_j(x)$
 - vícenásobná (lineární s více proměnnými) $y=a_1+\sum_{j=2}^M a_j\cdot x_{j-1}$
 - -zobecněná vícenásobná $y = \sum_{j=1}^M a_j \cdot X_j(\vec{x})$
- Nelineární regrese (nelineární modely)
 - linearizovatelné např. $y = a_1 \cdot \exp(-a_2 x)$, $y = a_1 \cdot x^{a_2}$
 - nelinearizovatelné např. $y = \sum_{j=1}^{M/2} a_{2j-1} \exp(-a_{2j}x)$

Předpoklady

- ullet Hodnoty vysvětlující proměnné $ec{x_i}$ jsou známy přesně (neobsahují náhodnou chybu)
- Vysvětlovaná proměnná y_i obsahuje náhodnou složku (je změřena s chybou) a tedy pro $i=1,\ldots,N$

$$y_i = y(\vec{x}_i; a_1, \dots, a_M) + e_i$$

kde e_i je náhodná chyba měření.

- Střední hodnota náhodné chyby je nulová $E(e_i) = 0$ pro $\forall i = 1, \dots, N$.
- \bullet Náhodné chyby jsou navzájem nekorelované $\mathrm{Cov}(e_i,e_k)=0$ pro $i\neq k,\ i,k=1,\ldots,N.$
- ullet Náhodné chyby e_i stejné rozptyly (směrodatné odchylky) = homoskedasticita. Klasický případ neznámé rozptyly.

Lineární regrese (zobecněná)

Zobecněný lineární model

$$Ey_i = \sum_{j=1}^{M} a_j \cdot X_j(\vec{x}_i) = \sum_{j=1}^{M} a_j x_{ij}$$

Náhodné veličiny y_i uspořádáme do náhodného vektoru $\vec{y} = (y_1, y_2, \dots, y_N)$ a platí

$$E\vec{y} = X\vec{a}$$
 $X = (x_{ij})$

kde $\operatorname{\mathbf{regresni}}$ (konstrukčni) matice X má N řádků, M sloupců. Funkce $X_j(x)$ (resp. sloupce regresní matice) nazýváme <u>bázové funkce</u> zobecněného lineárního modelu. Dále předpokládáme, že $Dy_i = \sigma^2$, kde σ je neznámé. Model značíme $\vec{y} \sim (X\vec{a}, \sigma^2 I)$.

Vektor odchylek $\vec{e}=\vec{y}-m{X}\vec{a}$, kde $E\vec{e}=\vec{0}$ a kovarianční matice $m{\mathcal{D}}_{\vec{e}}=\sigma^2m{I}$.

Metoda nejmenších čtverců

Minimum vzhledem k \vec{a} sumu kvadrátů odchylek měření Y_i od modelu $y(x_i)$

$$\min S(\vec{a}) = \min_{\vec{a}} \sum_{i=1}^{N} [Y_i - y(\vec{x}_i; \vec{a})]^2 = \sum_{i=1}^{N} \left(Y_i - \sum_{j=1}^{M} x_{ij} a_j \right)^2$$

Jednou z možností, jak minimum hledat je položit

$$\left. \frac{\partial S}{\partial a_j} \right|_{\widetilde{d}} = 0 = -2 \sum_{i=1}^N x_{ij} \left(Y_i - \sum_{k=1}^M x_{ik} \widetilde{a_k} \right)$$

což vede k řešení systému M lineárních rovnic (pro $j=1,\ldots,M$)

$$\sum_{k=1}^{n} \left(\widetilde{a_k} \sum_{i=1}^{n} x_{ij} x_{ik} \right) = \sum_{i=1}^{N} x_{ij} Y_i$$

který lze zapsat vektorově ve tvaru

$$\boldsymbol{X}^T \boldsymbol{X} \widetilde{\vec{a'}} = \boldsymbol{X}^T \vec{Y}$$

Toto je systém normálních rovnic s maticí $\boldsymbol{A} = \boldsymbol{X}^T \boldsymbol{X}$ řádu $M \times M$.

<u>Věta</u> Nechť matice \boldsymbol{A} normálních rovnic je regulární a tedy existuje právě jedno řešení \widetilde{d} systému normálních rovnic. Pak \widetilde{d} je nejlepším nestranným lineárním odhadem skutečných parametrů d modelu $y \sim (\boldsymbol{X} \vec{a}, \sigma^2 \boldsymbol{I})$.

Dosadíme výsledek do definice modelu a dostáváme odhad $\widehat{y_i}=y(x_i)$ hodnoty Ey_i , vektorově ve tvaru

$$\hat{\vec{y}} = \boldsymbol{H}\vec{Y} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\vec{Y}$$

Matice H je projekční matice.

 $\underline{Vysv\check{e}tleni}$ Na lineární regresi se mohu dívat jako na lineární projekci z Nrozměrného prostoru \vec{y} do jeho Mrozměrného podprostoru, daného bázovými funkcemi (vektory = sloupci regresní matice).

 $\underline{\mathbf{V\check{e}ta}}$ Vektor $\hat{\vec{y}}$ je nejlepším nestranným lineárním odhadem $E\vec{y}$.

Vektor $\vec{u} = \vec{Y} - \hat{\vec{y}}$ je vektor <u>reziduí</u> (klasická rezidua).

 $\underline{\mathbf{Veta}}$ Rezidua mají střední hodnotu $E\vec{u} = \vec{0}$ a kovarianční matici $\mathbf{D}_{\vec{u}} = \sigma^2(\mathbf{I} - \mathbf{H})$.

<u>Pozn.</u> Klasická rezidua nemají stejný rozptyl a nejsou navzájem nezávislá. Proto se konstruují další typy reziduí.

Kvadrát Eukleidovské normy $||\vec{u}||^2 = \sum_{i=1}^N u_i^2 = S(\widetilde{\vec{a}})$ se nazývá $\mathbf{reziuduál}$ ní součet čt \mathbf{verc} ů \underline{RSS} a

$$S_y^2 = \frac{RSS}{N - M}$$

je nestranným odhadem rozptylu dat σ^2 .

 $\overline{ extbf{V\'eta}}$ Kovarianční matice odhadu $\widetilde{ec{a}}$ parametrů modelu je

$$\boldsymbol{\mathcal{D}}_{\widetilde{a}} = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1} \simeq S_y^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$$

 $\underline{ extbf{V\'eta}}$ Vrstevnice (izočáry) $S(\vec{a})$ ohraničují konfidenční oblasti (oblasti spolehlivosti) v prostoru parametrů \vec{a} .

Kontrola modelu

 $\underline{\mathbf{Podmínky}}$ Pokud studovaná závislost musí splňovat určité podmínky (např. normalizační), model musí splnit tytéž podmínky a tím je oblast přípustných parametrů \vec{a} omezena vazebnými podmínkami. Je třeba hledat buď podmíněný extrém nebo případně zmenšit počet parametrů tak, aby model vždy podmínky splnil.

 $\underline{\underline{\mathbf{Upozorněni}}}$ Pokud jsou metodou nejmenších čtverců nalezeny parametry $\overline{\widetilde{a}}$ takové, že po jejich dosazení model nesplňuje vazebné podmínky, je tento výsledný model zcela bezcenný!!

<u>**Přípustnost modelu**</u> Kontrola, zda model není v rozporu s daty. Jakmile některé kritérium zamítne statistickou hypotézu "model popisuje naměřenou závislost", pak \Rightarrow jiný model (případně \Rightarrow nesplněný předpoklad).

Grafická kontrola modelu Kromě vynesení dat a vypočtené funkce $y(x; \vec{a})$ do xy grafu, vynáším vždy graf reziduí u(x). Rezidua mají být náhodná a nekorelovaná! Pokud graf reziduí vykazuje pravidelnou závislost \Rightarrow problém. Buď jde o projev korelace reziduí nebo model není schopen úplně vysvětlit závislost y(x).

Znaménkový test přípustnosti modelu

Přípustnost modelu lze testovat na základě předpokládané nekorelovanosti odchylek dat. Rezidua by měla často měnit znaménko.

Znaménkový test - test frekvence změn znaménka.

Počet n_+ kladných reziduí, n_- záporných reziduí $\left(n_+ + n_- = N\right)$ a počet sekvencí reziduí se stejným znaménkem n_u

(např. posloupnost -1,1,3,1,-2,-1,1 obsahuje 4 sekvence - $n_u = 4$).

Střední hodnota a rozptyl počtu sekvencí dán vztahy

$$En_u = 1 + \frac{2n_+ n_-}{n_+ + n_-} \simeq 1 + \frac{N}{2}$$

$$Dn_u = \frac{2n_+ n_- (2n_+ n_- - n_+ - n_-)}{(n_+ + n_-)^2 (n_+ + n_- - 1)} \simeq \frac{N}{4}$$

Pro $n_+ > 10$ a $n_- > 10$ má veličina

$$U = \frac{n_u - En_u + 0.5}{\sqrt{Dn_u}}$$

přibližně normální rozdělení $\mathcal{N}(0,1)$, pro menší hodnoty n_+, n_- jsou pravděpodobnosti U tabelovány. Pokud $P(U' \leq U) \leq \alpha$ (hladina významnosti α) zamítneme hypotézu, že model odpovídá datům.

Např. z 11 naměřených hodnot $(n_+=7, n_-=4)$ jsou pouze 3 sekvence reziduí se stejným znaménkem $(n_u=3)$, pravděpodobnost $P(n_u\leq 3)=0.036\Rightarrow$ model není přípustný (za předpokladu nekorelovaných chyb měření v sousedních bodech).

 $\underline{Pozn.}$ Pro malá N $(N \leq 15)$ znaménkový test často nedokáže zamítnout špatný model, ale graf reziduí jej může odhalit.

Koeficient determinace je veličina

$$R^{2} = \frac{\sum_{i=1}^{N} (\widehat{y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{RSS}{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}}$$

kde \overline{Y} je průměr Y_i .

 $\underline{Pozn.}$ Veličina $CSS = \sum_{i=1}^N \left(Y_i - \overline{Y}\right)^2$ se nazývá celkový součet kvadrátů odchylek.

Koeficient významnosti modelu je veličina

$$F_R = \frac{(CSS - RSS)(N - M)}{RSS (M - 1)} = \frac{\left[\sum_{i=1}^N \left(Y_i - \overline{Y}\right)^2 - \sum_{i=1}^N \left(\widehat{y}_i - \overline{Y}\right)^2\right](N - M)}{\sum_{i=1}^N \left(\widehat{y}_i - \overline{Y}\right)^2 (M - 1)}$$

 $V\acute{y}znamnost\ modelu$ Pokud zjištěná hodnota F_R je statisticky významná, tj. pravděpodobně nevznikla náhodou při y nezávisejícím na \vec{x} , pak říkáme, že model je statisticky významný. Statisticky významný model = data aproximuje podstatně lépe než konstanta.

<u>Věta</u> Pro normální lineární model $\vec{y} \sim N(\mathbf{X}\vec{a}, \sigma^2 \mathbf{I})$ má koeficient F_R významnosti modelu Fischerovo (Fischerovo-Snedecorovo) rozdělení.