中国矿业大学(北京)

机电与信息工程学院 2014-2015 年度(下)学期 2014 级第一次月考试题

高等数学

注意事项:(1)考试时间:19:00-21:00(共2个小时);(2)试卷总分:100分;(3)在本卷上作答无效

一、选择题(每题2分,共20分)

1、下列各组函数中,在其定义域内线性无关的一组是

(A) x,3x;

- (B) $\sin 2x, \sin x \cos x$;
- $(C)e^{-x}, e^{x};$
- (D) $\ln x$, $\ln x^2$
- 2、设y = y(x)是二阶常系数线性微分方程 $y'' + py' + qy = e^{3x}$ 满足初始条件y(0) = y'(0) = 0的解,则极限

 $\lim_{x\to 0}\frac{\ln(1+x^2)}{y(x)}=$ ()

(A)不存在;

(C)1;

(D)0

3、下列式子中等号一定成立的一项是

(A) $(\vec{a} \cdot \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \cdot \vec{c})$;

(B) $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$;

 $(C)(\vec{a} \cdot \vec{b})^2 = (\vec{a})^2 \cdot (\vec{b})^2$:

- (D) $(\vec{a} + 2\vec{b}) \times (\vec{a} + 3\vec{b}) = 5\vec{a} \times \vec{b}$
- 4、曲线 $\begin{cases} x^2 + 4y^2 z^2 = 16 \\ 4x^2 + y^2 + z^2 = 4 \end{cases}$ 在 xOy 坐标面上的投影区域为

 - (A) $x^2 + y^2 = 4$; (B) $\begin{cases} x^2 + y^2 = 4 \\ z = 0 \end{cases}$; (C) $x^2 + y^2 \le 4$; (D) $\begin{cases} x^2 + y^2 \le 4 \\ z = 0 \end{cases}$
- 5、二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f'_{\nu}(x_0,y_0)$ 、 $f'_{\nu}(x_0,y_0)$ 存在是 f(x,y) 在该点连续的((A)非充分非必要条件; (B)充分而非必要条件; (C)必要而非充分条件;
- 6、设 x,e^{x},e^{-x} 都是二阶非齐次线性方程y'' + p(x)y' + q(x)y = f(x)的解, c_{1},c_{2} 是任意常数,则该非齐次 方程的通解是
 - (A) $c_1 x + c_2 e^x + e^{-x}$;

(C) x - 2y + z = -3;

- (C) $c_1 x + c_2 e^x (1 c_1 c_2) e^{-x}$; (D) $c_1 x + c_2 e^x + (1 c_1 c_2) e^{-x}$
- 7、已知两直线 $\frac{x}{2} = \frac{y+2}{-2} = \frac{1-z}{-1}$ 和 $\frac{x-1}{4} = \frac{y-3}{M} = \frac{z+1}{-2}$ 相互垂直,则 $M = \frac{z+1}{2}$ (D) - 4(A)3;
- 8、曲面 $x^2 + \cos(xy) + yz + x = 0$ 在点 (0,1,-1) 处的切平面方程为
- (B) x + y + z = 0; (A) x - y + z = -2;

(D) x - y - z = 0

- 20、设 $u = e^{-x} \sin \frac{x}{v}$,则 $\frac{\partial^2 u}{\partial x \partial v}$ 在点 $\left(2, \frac{1}{\pi}\right)$ 处的值为_____
- 21、微分方程 $y'' = \frac{1}{1+x^2}$ 的通解为______
- 22、设方程 $F\left(\frac{y}{x}, \frac{z}{x}\right) = 0$ 确定了隐函数 z = z(x, y),其中 F 具有连续偏导数,则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \underline{\qquad}$
- 23、设 $y = e^x(C_1\cos x + C_2\sin x)(C_1, C_2$ 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该微分 方程为

- 9、设函数 $u(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t) dt$,其中函数 $\varphi(u)$ 具有二阶导数, $\psi(u)$ 具有一阶导数, 则必有
 - $(A)\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}; \qquad (B)\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}; \qquad (C)\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y^2}; \qquad (D)\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial x^2}$

- 10、函数 y = y(x) 在点 x 处的增量满足 $\Delta y = \frac{y\Delta x}{1+x^2} + o(\Delta x) (\Delta x \to 0)$,且 $y(0) = \pi$,则 y(1) = 0
 - $(A) 2\pi$;

)

(

- (B) π ;
- $(C)e^{\frac{\pi}{4}};$
- 二、填空题(共16道小题,第24-26题在答题卷上,每题2分,共32分)
- 11、若向量 \vec{x} 与向量 $\vec{a} = 2\vec{i} \vec{j} + 2\vec{k}$ 共线,且满足方程 $\vec{a} \cdot \vec{x} = -18$,则向量 $\vec{x} =$
- 12、极限 $\lim_{\substack{x\to 0\\y\to 2015}} \frac{\tan xy}{x} = \underline{\hspace{1cm}}$
- 13、曲线 $\begin{cases} xz = 8 \\ y = 0 \end{cases}$ 绕 z 轴旋转所成的旋转曲面方程是_
- 14、点 M(1,2,1) 到平面 x+2y+2z-10=0 的距离为
- 15、平面3x-2y+6z-6=0与坐标面所围成立体的体积是
- 16、过点(1,2,-1)且与向量 $\vec{s}_1 = (1,-2,-3)$ 及 $\vec{s}_2 = (0,-1,-1)$ 平行的平面方程为
- 17、设 $f(x, y, z) = \sqrt[z]{x/y}$,则 $df|_{(1,1)} =$
- 19、直线 $L_1: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 与直线 $L_2: \begin{cases} x-y=6 \\ 2y+z=3 \end{cases}$ 的夹角为______