Exercise 1:

1. Que vaut le 5ème terme de la suite $u_n = \frac{1-n^2}{(n^2+3n-2)}$ où $n \in \mathbb{N}^*$?

- $\Box -\frac{13}{19}$
- $\Box -\frac{24}{40}$
- $\Box -\frac{12}{19}$
- $\Box \frac{13}{10}$

☐ Aucune des réponses ci-dessus

2. Parmi les séries suivantes, lesquelles sont convergentes?

- $\Box \sum_{n=1}^{\infty} \frac{1}{2n}$
- $\Box \sum_{n=1}^{\infty} \frac{1}{5^n}$
- $\square \sum_{n=1}^{\infty} \frac{2}{n}$
- $\square \sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$

 \Box Aucune des réponses ci-dessus

3. Que vaut l'approximation de $\int_4^7 (2x-3)^2 dx$ par la somme de Riemann $\frac{b-a}{n} \sum_{k=1}^n f(x_k)$ où n=3 et où la subdivision est équidistante?

- \square 27
- \square 251
- \Box 440
- \square 413

☐ Aucune des réponses ci-dessus

4. Parmi les fonctions suivantes, lesquelles sont des primitives de (f+g)(x), où $f(x)=5x(x^2-1)^2$ et $g(x)=(x^2-4)^2$?

- $\Box \ \frac{5}{6}x^6 + \frac{1}{5}x^5 \frac{9}{2}x^4 \frac{5}{2}x^2 + 16x 1$
- $\Box \ \ \frac{5}{6}x^6 + \frac{1}{5}x^5 6x^3 + 16x$
- $\square \ \ \frac{5}{6}x^6 + \frac{1}{5}x^5 \frac{5}{2}x^4 \frac{8}{3}x^3 \frac{5}{2}x^2 + 16x 1$

☐ Aucune des réponses ci-dessus

5.	Parmi les points suivants, lesquels se trouvent sur la surface correspondant au graphe de la fonction $f(x,y)=xy$?
	$\Box (1,-1,-1)$ $\Box (-1,1,1)$
	$\square \ (1,-1,1)$
	$\Box \ (2/13, 39/3, 2)$
	□ Aucune des réponses ci-dessus
6.	Parmi les ensembles suivants, les quels correspondent au domaine de définition \mathcal{D}_f de la fonction $f(x,y) = \frac{\sqrt{x-1}}{y}$
	$ \Box \{(x,y) \in \mathbb{R}^2 \mid x \ge 1, y \ne 0\} \Box \{(x,y) \in \mathbb{R}^2 \mid x > 1, y \ne 0\} $
	$\Box [1, +\infty[imes \mathbb{R}^*]$
	$\square \ [1,+\infty] imes \mathbb{R}^*$
	□ Aucune des réponses ci-dessus
7.	Parmi les expressions suivantes, les quelles correspondent à l'équation du plan tangent $t_{(x_0,y_0)}(x,y)$ de la fonction $f(x,y)=(4x-7y)^{14}$ au point $(x_0,y_0)=(1/5,9/35)$?
	$\Box 15 - 56x + 98y$
	$\Box 15 + 56x + 98y$
	$\Box 15 - 56x - 98y$
	$\Box -15 - 56x + 98y$
	\Box Aucune des réponses ci-dessus
8.	Parmi les expressions suivantes, lesquelles correspondent au discriminant $D(x,y)$ de la fonction $f(x,y)=x^4+2xy^3-3x^3+7xy^2$?

 $\Box 12x^2(2x-1)(6y+7)-12y^2+28y$

 $\Box 12x^2(2x-1)(6y+7) - 12y^2 - 28y$

□ Aucune des réponses ci-dessus

points critiques?

 $\begin{array}{ccc}
\square & 1 \\
\square & 2 \\
\square & 3 \\
\square & 4
\end{array}$

 $\Box 12x^2(12xy + 14x + 6y + 7) - 2(6y^2 - 14y)$

 $\Box 12x^2(12xy + 14x - 6y - 7) - 2(6y^2 - 14y)$

9. On considère la fonction $f(x,y)=xy^2$ sous la contrainte $x^2+y=5$. Combien y a-t-il de

10. On considère le système linéaire suivant

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 14 \\ x_1 - 3x_2 - 7x_3 = -26 \\ \frac{3}{11}x_1 - \frac{4}{22}x_2 - \frac{7}{11}x_3 = -2 \end{cases}$$

Parmi les propositions suivantes, lesquelles correspondent l'ensemble des solutions du système?

- $\square \ \mathcal{S} = \{(-2, 1, 6)\}$
- $\square \ \mathcal{S} = \{(2, -1, 6)\}$
- $\square \mathcal{S} = \{(z+4, 5-2z, z) \mid z \in \mathbb{R}\}$
- $\square \mathcal{S} = \left\{ \left(\frac{13}{2} \frac{3}{2}y, y, \frac{5}{2} \frac{1}{2}y \right) \mid y \in \mathbb{R} \right\}$
- \square Aucune des réponses ci-dessus
- 11. Quel est le rang de la matrice suivante?

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -7 & -4 \\ -2 & -4 & 13 & 6 \\ 8 & 2 & -17 & -10 \end{pmatrix}$$

- \Box 1
- \square 2
- \square 3
- \Box 4
- ☐ Aucune des réponses ci-dessus
- 12. Trois vecteurs dans \mathbb{R}^3 sont linéairement dépendants si
 - ☐ ils sont alignés
 - □ sont dans un même plan
 - \square ils sont proches
 - ☐ ils sont éloignés
 - \square Aucune des réponses ci-dessus