Grundlagen: Algorithmen und Datenstrukturen Woche 11

Tobias Eppacher

School of Computation, Information and Technology

7. Juli 2025

Inhalt

Aufgaben

E-Aufgaben

Hausaufgaben

Aufgabe 11.1 - Universelles Hashing

Die Pinguingattungen Brillenpinguin, Zwergpinguin, Eselspinguin, Kaiserpinguin, Goldschopfpinguin sollen in einer Hash-Tabelle der Größe m=4 untergebracht werden. Es seien folgende Hashfunktionen gegeben:

```
Eselsp. \mapsto 2
f_1:
           Brillenp. \mapsto 4
                                   Zwerap, \mapsto 2
                                                                                  Kaiserp. \mapsto 1
                                                                                                          Goldschopfp. \mapsto 4
f<sub>2</sub>:
f<sub>3</sub>:
f<sub>4</sub>:
           Brillenp. \mapsto 3
                                   Zwergp. \mapsto 4
                                                           Eselsp. \mapsto 2
                                                                                  Kaiserp. \mapsto 3
                                                                                                          Goldschopfp. \mapsto 4
           Brillenp. → 2
                                  Zwergp. \mapsto 2
                                                           Eselsp. \mapsto 4
                                                                                                          Goldschopfp, \mapsto 1
                                                                                  Kaiserp. \mapsto 1
           Brillenp. → 1
                                  Zwerap. \mapsto 3
                                                           Eselsp. \mapsto 3
                                                                                                          Goldschopfp, \mapsto 4
                                                                                  Kaiserp. \mapsto 4
                                                                                                          Goldschopfp. \mapsto 3
           Brillenp, → 1
                                  Zwerap, \mapsto 1
                                                           Eselsp. \mapsto 3
                                                                                  Kaiserp. \mapsto 2
g<sub>1</sub> :
           Brillenp. \mapsto 2
                                  Zwergp. \mapsto 4
                                                           Eselsp. \mapsto 2
                                                                                  Kaiserp. \mapsto 3
                                                                                                          Goldschopfp. \mapsto 4
g_2:
           Brillenp, → 4
                                  Zwerap, \mapsto 4
                                                           Eselsp. \mapsto 1
                                                                                  Kaiserp, → 4
                                                                                                          Goldschopfp, \mapsto 2
g3:
g<sub>4</sub> :
           Brillenp. \mapsto 3
                                  Zwerap, \mapsto 1
                                                           Eselsp. \mapsto 2
                                                                                  Kaiserp. \mapsto 3
                                                                                                          Goldschopfp, \mapsto 3
           Brillenp. \mapsto 4
                                  Zwergp. \mapsto 2
                                                           Eselsp. \mapsto 2
                                                                                  Kaiserp. \mapsto 2
                                                                                                          Goldschopfp. \mapsto 3
q5:
```

In der Vorlesung haben wir den Begriff der *c*-universellen Hashfunktionen kennengelernt.

- a. Geben Sie für die Familie $\mathcal{H}_1 = \{f_1, f_2, f_3, f_4\}$ das kleinste c an, so dass \mathcal{H}_1 c-universell ist
- b. Finden Sie eine möglichst kleine Familie $\mathcal{H}_2 \subseteq \{g_1, g_2, g_3, g_4, g_5\}$, die 1-universell ist. Untermauern Sie Ihre Aussagen mit glaubwürdigen Argumenten.

Aufgabe 11.1 - Universelles Hashing (a)

Eine Familie von Hashfunktionen \mathcal{H} ist c-universell, wenn für alle Wertepaare x,y mit $x\neq y$ gilt:

$$\frac{|\{f \in \mathcal{H} : f(x) = f(y)\}|}{\mathcal{H}} \le \frac{c}{m}$$

Paar	f_1	f ₂	f ₃	f ₄	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	<i>g</i> ₄	<i>g</i> 5
Brillenpinguin/Zwergpinguin									
Brillenpinguin/Eselspinguin									
Brillenpinguin/Kaiserpinguin									
Brillenpinguin/Goldschopfpinguin									
Zwergpinguin/Eselspinguin									
Zwergpinguin/Kaiserpinguin									
Zwergpinguin/Goldschopfpinguin									
Eselspinguin/Kaiserpinguin									
Eselspinguin/Goldschopfpinguin									
Kaiserpinguin/Goldschopfpinguin									

Aufgabe 11.1 - Universelles Hashing (a)

$$\frac{|\{f \in \mathcal{H} : f(x) = f(y)\}|}{\mathcal{H}} \le \frac{c}{m}$$

Paar	f_1	f_2	f ₃	f_4	g_1	g_2	g_3	94	g_5
Brillenpinguin/Zwergpinguin			Х		Х		Х		
Brillenpinguin/Eselspinguin						х			
Brillenpinguin/Kaiserpinguin		х					Х	х	
Brillenpinguin/Goldschopfpinguin	Х							Х	
Zwergpinguin/Eselspinguin	х			х					Х
Zwergpinguin/Kaiserpinguin							Х		Х
Zwergpinguin/Goldschopfpinguin		Х				Х			
Eselspinguin/Kaiserpinguin									Х
Eselspinguin/Goldschopfpinguin					х				
Kaiserpinguin/Goldschopfpinguin			х	Х				Х	

Wir suchen kleinst-mögliches \emph{c} für $\mathcal{H}_1 = \{\emph{f}_1,\emph{f}_2,\emph{f}_3,\emph{f}_4\}$

Aufgabe 11.1 - Universelles Hashing (a) - Extraplatz

Aufgabe 11.1 - Universelles Hashing (b)

$$\frac{|\{f \in \mathcal{H} : f(x) = f(y)\}|}{\mathcal{H}} \le \frac{c}{m}$$

Paar	f_1	f_2	f ₃	f_4	g_1	<i>g</i> ₂	<i>g</i> ₃	94	g_5
Brillenpinguin/Zwergpinguin			Х		Х		Х		
Brillenpinguin/Eselspinguin						х			
Brillenpinguin/Kaiserpinguin		х					х	х	
Brillenpinguin/Goldschopfpinguin	Х							х	
Zwergpinguin/Eselspinguin	Х			Х					Х
Zwergpinguin/Kaiserpinguin							х		х
Zwergpinguin/Goldschopfpinguin		х				х			
Eselspinguin/Kaiserpinguin									Х
Eselspinguin/Goldschopfpinguin					Х				
Kaiserpinguin/Goldschopfpinguin			х	Х				х	

Wir suchen eine möglichst kleine Familie $\mathcal{H}_2\subseteq\{g_1,f_2,g_3,g_4,g_5\}$, sodass c=1 ist.

Aufgabe 11.1 - Universelles Hashing (b) - Extraplatz

Konstruieren Sie eine statische perfekte Hashtabelle für die Elemente:

Jedes Element x besteht aus den Stellen (x_0, x_1, x_2) . Verwenden Sie jeweils passend eine der Hashfunktionen:

$$\left(\sum_{i=0}^{2} 2^{i} x_{i}\right) \mod 17$$

$$\left(\sum_{i=0}^{2} a_{i} x_{i}\right) \mod 7 \text{ mit } a = (0, 0, 1) \text{ oder } a = (6, 6, 2)$$

$$\left(\sum_{i=0}^{2} a_{i} x_{i}\right) \mod 3 \text{ mit } a = (1, 0, 0) \text{ oder } a = (0, 2, 2)$$

Stufe 1: Ziehe aus *c*-universeller Familie $H_{\lceil \sqrt{2}cn \rceil}$ bis $C(n) < \sqrt{2}n$

Stufe 2: Bei be Elementen wähle Bucketgröße $m_{\ell} = cb_{\ell}(b_{\ell} - 1) + 1.$

Ziehe aus c-universeller Familie H_{m_e} bis injektiver Abbildung.

Wir müssen hier nicht ziehen, sondern nur die angegebenen Hashfunktionen verwenden.

Element	Bucket
(7,3,14)	1
(2, 2, 8)	4
(8, 2, 15)	4
(13, 11, 14)	6
(2, 10, 1)	9
(14, 11, 6)	9
(7, 3, 16)	9
(16, 10, 11)	12
(7, 12, 8)	12
(10, 5, 15)	12
(1, 10, 3)	16
(6, 11, 14)	16

Finale Platzierungen der Elemente in der Hashtabelle:

Element	Bucket	
(7, 3, 14)	1	0
(2, 2, 8)	4	2
(8, 2, 15)	4	1
(13, 11, 14)	6	0
(2, 10, 1)	9	1
(14, 11, 6)	9	6
(7, 3, 16)	9	2
(16, 10, 11)	12	3
(7, 12, 8)	12	4
(10, 5, 15)	12	1
(1, 10, 3)	16	1
(6, 11, 14)	16	0

Veranschaulichen Sie Hashing mit Linear Probing.

Die Größe der Hashtabelle ist dabei jeweils m=13. Führen Sie die folgenden Operationen aus:

Verwenden Sie die Hashfunktion

$$h(x) = 3x \mod 13$$

Beim Löschen soll die dritte Methode aus der Vorlesung verwendet werden, d.h. die Wiederherstellung der folgenden Invariante: Für jedes Element e in der Hashtabelle mit Schlüssel k(e), aktueller Position j und optimaler Position i = h(k(e)) sind alle Positionen i, $(i + 1) \mod m$, $(i + 2) \mod m$, ..., j der Hashtabelle belegt. Bei dieser Aufgabe soll keine dynamische Größenanpassung der Hashtabelle stattfinden.

1. Operation: insert(16) mit opt. Position: 9

0	1	2	3	4	5	6	7	8	9	10	11	12

2. Operation: insert(3) mit opt. Position: 9

0	1	2	3	4	5	6	7	8	9	10	11	12

3. Operation: insert(12) mit opt. Position: 10

0	1	2	3	4	5	6	7	8	9	10	11	12

4. Operation: insert(17) mit opt. Position: 12

0	1	2	3	4	5	6	7	8	9	10	11	12

5. Operation: **insert**(29) mit opt. Position: **9**

0	1	2	3	4	5	6	7	8	9	10	11	12

6. Operation: insert(10) mit opt. Position: 4

7. Juli 2025

0	1	2	3	4	5	6	7	8	9	10	11	12

7. Operation: **insert**(24) mit opt. Position: **7**

0	1	2	3	4	5	6	7	8	9	10	11	12

8. Operation: **delete**(16) mit opt. Position: **9**

0	1	2	3	4	5	6	7	8	9	10	11	12

9. Operation: **insert**(5) mit opt. Position: **2**

0	1	2	3	4	5	6	7	8	9	10	11	12

10. Operation: **insert**(1) mit opt. Position: **3**

0	1	2	3	4	5	6	7	8	9	10	11	12

11. Operation: **insert**(15) mit opt. Position: **6**

0	1	2	3	4	5	6	7	8	9	10	11	12

12. Operation: **delete**(10) mit opt. Position: **4**

0	1	2	3	4	5	6	7	8	9	10	11	12

13. Operation: insert(14) mit opt. Position: 3

0	1	2	3	4	5	6	7	8	9	10	11	12

14. Operation: **delete**(1) mit opt. Position: **3**

0	1	2	3	4	5	6	7	8	9	10	11	12

Aufgabe 11.4 - Double Hashing

Doppel-Hashing ist eine Methode zur Kollisionsbehandlung. Bei Kollisionen kommt eine Sondierungsfunktion zum Einsatz, die eine sekundäre Hashfunktion beinhaltet:

$$s(x,i) = i \cdot h_2(x), i \in \mathbb{N}_0$$

Diese Sondierungsfunktion wird angewendet, falls der durch die primare Hashfunktion $h_1(x)$ berechnete Index bereits besetzt ist. Dabei wird i beginnend bei 0 bei jedem Versuch um 1 erhöht. Die vollständige Hashfunktion lautet dann:

$$h(x,i) = (h_1(x) + s(x,i)) \mod m$$

Verwenden Sie im Folgenden die Hashfunktionen

$$h_1(x) = (3x+1) \mod m$$

 $h_2(x) = 1 + (x \mod (m-1))$

- a) Geben Sie die vollständige Hashfunktion h(x, i) für eine Tabelle der Länge m = 13 an.
- b) Veranschaulichen Sie schrittweise das Einfügen der Schlüssel 12, 23, 13, 56, 26 45, 24, 94, 42 in eine Hashtabelle der Länge m = 13.

Aufgabe 11.4 - Double Hashing (a)

$$h(x,i) = (h_1(x) + s(x,i)) \mod m$$

 $s(x,i) = i \cdot h_2(x), i \in \mathbb{N}_0$
 $h_1(x) = (3x+1) \mod m$
 $h_2(x) = 1 + (x \mod (m-1))$
Mit $m = 13$

Aufgabe 11.4 - Double Hashing (b)

	0	1	2	3	4	5	6	7	8	9	10	11	12
ins(12)													
ins(23)													
ins(13)													
ins(56)													
ins(26)													
ins(45)													
ins(24)													
ins(94)													
ins(42)													

E-Aufgaben

- Aufgabe 11.5 Bad Hash
 - Intuition zu Hashfunktion
- Aufgabe 11.6 Linear Probing
 - Abgeänderte Aufgabe aus Tutorium

Hausaufgaben

- Hausaufgabe 9 AB-Baum (Deadline: 09.07.2025)
- Hausaufgabe 10 Simple Hashing with Chaining (Deadline: 16.07.2025)
- Hausaufgabe 11 Double Hashing (Deadline: 23.07.2025)

Fragen?

- Nach Übung gerne bei mir melden
- Tutoriumschannel oder DM an mich auf Zulip
- Vorlesungschannels von GAD auf Zulip (insbesondere bei Hausaufgaben)

Feedback oder Verbesserungsvorschläge?

Gerne nach dem Tutorium mit mir quatschen oder DM auf Zulip

Bis nächste Woche!

