Off-policy deep reinforcement learning algorithms

Oleksii Hrinchuk

DQN

Online Table Q-learning

- 1. Initialize Q-function Q (e.g. zeros), set $\pi = \varepsilon$ -greedy(Q)
- 2. (Q-function update step)
 - Make a step $\{s_t, a_t, r_t, s_{t+1}\}$ in the environment using π
 - Update Q-values with TD-targets

$$y_t = \mathbf{r}_t + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q(\mathbf{s}_{t+1}, \mathbf{a}')$$
$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha \left[y_t - Q(\mathbf{s}_t, \mathbf{a}_t) \right]$$

- Update behavior policy $\pi = \varepsilon$ -greedy(Q)
- 3. If policy is good, return $\pi^* = \operatorname{greedy}(Q)$, else go to step 2

From table to neural network

Online Q-learning with NN

- Initialize weights θ of Q-Network Q_{θ} , set $\pi = \varepsilon$ -greedy (Q_{θ})
- (Q-function update step)
 - Make a step $\{\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1}\}$ in the environment $\{\mathbf{s}_t, \mathbf{s}_t, \mathbf{s}_t, \mathbf{s}_t, \mathbf{s}_t\}$ decay.

$$y_{t} = \begin{cases} \mathbf{r}_{t} + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}'), & \text{doiestralse} \\ \mathbf{r}_{t}, & \text{done} = \text{True} \end{cases}$$

$$\mathcal{L}_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{r}_{t}, \mathbf{s}_{t+1}) = (C_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - y_{t}]^{2}$$

$$\theta \leftarrow \theta - \alpha \text{Vel}_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{r}_{t}, \mathbf{s}_{t+1})$$

$$\mathcal{L}_{\theta}(\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1}) = (\mathcal{L}_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - y_t)^2$$

$$\theta \leftarrow \theta - \alpha V \mathcal{A}_{\theta}(\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1})$$

- Update behavior policy $\pi = \varepsilon$ -greedy(Q_{θ})
- If policy is good, return $\pi^* = \operatorname{greedy}(Q_{\theta})$, else go to step 2

Why it does not work?

- The correlations present in the sequence of observations Experience replay
- The correlation between the Q-values and the TDtargets in the update Freezing target network
- The fact that small updates to Q may significantly change the policy and therefore change the data distribution Stable mini-batch training

Experience replay

- Store most recent agent-environment interactions in replay buffer
- Sample transitions uniformly when updating network weights

Freezing target network

• Increase of $Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$ results in increase of $Q_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}')$

$$\mathcal{L}_{\theta}(\mathbf{d}_{t}) = \left[Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \left(\mathbf{r}_{t} + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}') \right) \right]^{2}$$

• Assume that TD-target y_t does not depend on θ

$$\nabla_{\theta} \mathcal{L}_{\theta}(\mathbf{d}_t) = \nabla_{\theta} Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) \left[Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - y_t \right]$$

Use separate network for TD-target evaluation

$$y_t = \mathbf{r}_t + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q_{\tilde{\boldsymbol{\theta}}}(\mathbf{s}_{t+1}, \mathbf{a}')$$

• Synchronize target network once in a while: after every N iterations do $\tilde{\theta} \leftarrow \theta$

Freezing target network

Mini-batch training

 After a number of environment steps, sample a mini-batch of transitions (e.g. 32 transitions) from experience buffer and update the network weights

$$\{\mathbf{d}_1,\mathbf{d}_2,\ldots,\mathbf{d}_B\}\sim\mathcal{D}$$

$$\mathcal{L}_{\theta} = \frac{1}{B} \sum_{i=1}^{B} \mathcal{L}_{\theta}(\mathbf{d}_{i})$$

Good off-policy training through data re-use

Deep Q-Network (DQN)

- 1. Initialize Q-Network Q_{θ} , set initial exploration rate $\varepsilon=1$. Run epsilon-greedy policy w.r.t. Q_{θ} for a number of steps to initialize \mathcal{D} .
- 2. (Train loop)
 - Make a step in the environment with policy $\pi = \varepsilon$ -greedy (Q_{θ})
 - Put transition $\mathbf{d}_t = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1}\}$ into replay buffer \mathcal{D}
 - If step % q_update_frequency == 0: Sample mini-batch of transitions $\{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_B\} \sim \mathcal{D}$ Update Q-Network weights $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\theta}$
 - If step % target_update_frequency == 0: Update target network weights $\tilde{\theta} \leftarrow \theta$
 - Decay exploration rate $\varepsilon \leftarrow \varepsilon \Delta \varepsilon$
- 3. Return greedy policy w.r.t. the learned Q-function Q_{θ}

Hyperparameters

Value	Description
32	Number of training cases over which each stochastic gradient descent (SGD) update is computed.
1000000	SGD updates are sampled from this number of most recent frames.
4	The number of most recent frames experienced by the agent that are given as input to the Q network.
10000	The frequency (measured in the number of parameter updates) with which the target network is updated (this corresponds to the parameter C from Algorithm 1).
0.99	Discount factor gamma used in the Q-learning update.
4	Repeat each action selected by the agent this many times. Using a value of 4 results in the agent seeing only every 4th input frame.
4	The number of actions selected by the agent between successive SGD updates. Using a value of 4 results in the agent selecting 4 actions between each pair of successive updates.
0.00025	The learning rate used by RMSProp.
0.95	Gradient momentum used by RMSProp.
0.95	Squared gradient (denominator) momentum used by RMSProp.
0.01	Constant added to the squared gradient in the denominator of the RMSProp update.
1	Initial value of ϵ in ϵ -greedy exploration.
0.1	Final value of ε in ε-greedy exploration.
1000000	The number of frames over which the initial value of ϵ is linearly annealed to its final value.
50000	A uniform random policy is run for this number of frames before learning starts and the resulting experience is used to populate the replay memory.
	32 1000000 4 10000 0.99 4 4 4 0.00025 0.95 0.95 0.01 1 0.1

DDPG

Continuous actions

Greedy policy in the case of continuous actions

$$\mu(\mathbf{s}) = \arg\max_{\mathbf{a} \in \mathcal{A}} Q_{\theta}(\mathbf{s}, \mathbf{a})$$

- Finding maximum is a hard optimization problem we don't know how to solve.
- Idea: train another network which tries to solve this problem for us!

$$\mu_{\phi}(\mathbf{s}) \approx \arg \max_{\mathbf{a} \in \mathcal{A}} Q_{\theta}(\mathbf{s}, \mathbf{a}), \quad Q_{\theta}(\mathbf{s}, \mu_{\phi}(\mathbf{s})) \to \max_{\phi}$$

$$\phi \leftarrow \phi + \alpha \nabla_{\phi} Q_{\theta}(\mathbf{s}, \mu_{\phi}(\mathbf{s}))$$

Critic network (Q-function)

$$\mathcal{L}_{\theta}^{\text{critic}}(\mathbf{d}_t) = \left[Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \left(\mathbf{r}_t + \gamma Q_{\tilde{\boldsymbol{\theta}}}(\mathbf{s}_{t+1}, \mu_{\tilde{\boldsymbol{\phi}}}(\mathbf{s}_{t+1}) \right) \right]^2$$

Loss function

Actor network (policy)

$$\mathcal{L}_{\phi}^{\text{actor}}(\mathbf{d}_t) = -Q_{\theta}(\mathbf{s}_t, \mu_{\phi}(\mathbf{s}_t))$$

Pseudo-loss function

Two more distinctions from DQN

• Instead of fully updating target networks once after each N training transitions, update them frequently but slowly

$$\tilde{\theta} \leftarrow (1 - \tau)\tilde{\theta} + \tau\theta, \quad \tilde{\phi} \leftarrow (1 - \tau)\tilde{\phi} + \tau\phi$$

Add gaussian noise to actions for exploration

$$\mathbf{a}_t = \mu_{\phi}(\mathbf{s}_t) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Deep Deterministic Policy Gradient (DDPG)

- 1. Initialize actor μ_{ϕ} and critic Q_{θ} networks, initialize replay buffer \mathcal{D}
- 2. (Train loop)
 - Make a step in the environment with policy $\mu_{\phi}(\mathbf{s}_t) + \mathcal{N}(0, \sigma^2)$
 - Put transition $\mathbf{d}_t = \{\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1}\}$ into replay buffer \mathcal{D}
 - Sample mini-batch of transitions $\{\mathbf{d}_1,\mathbf{d}_2,\ldots,\mathbf{d}_B\}\sim\mathcal{D}$
 - Update critic weights $\theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{\text{critic}}$
 - Update actor weights $\phi \leftarrow \phi \alpha \nabla_{\phi} \mathcal{L}_{\phi}^{\text{actor}}$
 - Update target networks $\tilde{\theta} \leftarrow (1-\tau)\tilde{\theta} + \tau\theta, \quad \tilde{\phi} \leftarrow (1-\tau)\tilde{\phi} + \tau\phi$
- 3. Return policy of the learned actor network

Improvements to DQN

Double DQN (DDQN)

 Max operator in TD-targets leads to overoptimistic estimates of Q-function.

$$y_{t} = \mathbf{r}_{t} + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}')$$

$$= \mathbf{r}_{t} + \gamma Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \arg \max_{\mathbf{a}' \in \mathcal{A}} Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}'))$$

 Q-Network is used to select actions, target network is used to evaluate actions

$$y_t = \mathbf{r}_t + \gamma Q_{\tilde{\theta}}(\mathbf{s}_{t+1}, \arg \max_{\mathbf{a}' \in \mathcal{A}} Q_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}'))$$

Advantage function

• Advantage function for a given policy π

$$A^{\pi}(\mathbf{s}, \mathbf{a}) = Q^{\pi}(\mathbf{s}, \mathbf{a}) - V^{\pi}(\mathbf{s}), \quad \mathbb{E}_{\mathbf{a}} A^{\pi}(\mathbf{s}, \mathbf{a}) = 0$$

Optimal advantage function

$$A^*(\mathbf{s}, \mathbf{a}) = Q^*(\mathbf{s}, \mathbf{a}) - V^*(\mathbf{s}), \quad \max_{\mathbf{a} \in \mathcal{A}} A^{\pi}(\mathbf{s}, \mathbf{a}) = 0$$

 Advantage function is a relative measure of the importance of each action

Dueling DDQN

- Split Q-function into two channels
 - Action independent value function V(s)
 - Action dependent advantage function $A(\mathbf{s}, \mathbf{a})$

Dueling DDQN

• Calculating Q-function as $Q(\mathbf{s}, \mathbf{a}) = V(\mathbf{s}) + A(\mathbf{s}, \mathbf{a})$ results in ambiguity, as

$$Q(\mathbf{s}, \mathbf{a}) = (V(\mathbf{s}) + c) + (A(\mathbf{s}, \mathbf{a}) - c), \quad \forall c$$

• The ambiguity is resolved after adding additional constraint $A(\mathbf{s}, \arg\max_{\mathbf{a} \in \mathcal{A}} A(\mathbf{s}, \mathbf{a})) = 0$

$$Q(\mathbf{s}, \mathbf{a}) = V(\mathbf{s}) + A(\mathbf{s}, \mathbf{a}) - \max_{\mathbf{a} \in \mathcal{A}} A(\mathbf{s}, \mathbf{a})$$

In practice

$$Q(\mathbf{s}, \mathbf{a}) = V(\mathbf{s}) + A(\mathbf{s}, \mathbf{a}) - \frac{1}{|\mathcal{A}|} \sum_{\mathbf{a} \in \mathcal{A}} A(\mathbf{s}, \mathbf{a})$$

Prioritized experience replay

Transitions with high TD-error are sampled more often

$$\mathbf{d}_{t} = \{\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{r}_{t}, \mathbf{s}_{t+1}\}$$

$$\delta_{t} = \mathbf{r}_{t} + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q(\mathbf{s}_{t+1}, \mathbf{a}') - Q(\mathbf{s}_{t}, \mathbf{a}_{t})$$

- Define prioritization
 - proportional $p_t = |\delta_t| + \epsilon$
 - rank-based $p_t = 1/\text{rank}(t)$
- Sample transitions according to probability

$$P(\mathbf{d}_t) = \frac{p_t^{\alpha}}{\sum_{t'=1}^{|\mathcal{D}|} p_{t'}^{\alpha}}$$