2017-2 期末试题

- 单项选择题(每小题 3 分, 6 个小题共 18 分. 将选择结果涂填在答题卡上.)
- 1. 函数 $f(x,y) = |x| \cos y$ 在原点 (0,0) 处【 】.

A. $f'_x(0,0)$ 存在, $f'_v(0,0)$ 存在 B. $f'_x(0,0)$ 不存在, $f'_v(0,0)$ 不存在

C. $f'_{\nu}(0,0)$ 存在, $f'_{\nu}(0,0)$ 不存在 D. $f'_{\nu}(0,0)$ 不存在, $f'_{\nu}(0,0)$ 存在

2. 设 $\Omega: \sqrt{x^2 + y^2} \le z \le 1$,将 $I = \iiint_z f(\sqrt{x^2 + y^2 + z^2}) dv$ 化为球面坐标系下的逐次积分, 以下正确的是【】.

A. $I = 2\pi \int_0^{\frac{\pi}{4}} \sin \varphi d\varphi \int_0^1 f(\rho) \rho^2 d\rho$ B. $I = 2\pi \int_0^{\frac{\pi}{4}} \sin \varphi d\varphi \int_0^1 f(\rho) d\rho$

C. $I = 2\pi \int_0^{\frac{\pi}{4}} \sin \varphi d\varphi \int_0^{1/\cos \varphi} f(\rho) \rho^2 d\rho$ D. $I = 2\pi \int_0^{\frac{\pi}{4}} \sin \varphi d\varphi \int_0^{1/\cos \varphi} f(\rho) d\rho$

3. 设 $\Omega: 0 \le z \le \sqrt{1-x^2-y^2}$, Ω_1 为 Ω 在第一卦限的部分区域,则下面式子正确的是【 】.

A. $\iiint_{\Omega_1} x dv = \iiint_{\Omega_1} z dv \quad B. \iiint_{\Omega_1} xy dv = \iiint_{\Omega_1} x^2 dv \quad C. \iiint_{\Omega} z dv = 0 \quad D. \iiint_{\Omega} xy dv = 4 \iiint_{\Omega_1} xy dv$

4. 关于数项级数的敛散性,下面说法正确的是【】.

A. 若正项级数 $\sum a_n$ 收敛, 则 $\lim_{n\to\infty} \sqrt[n]{a_n} = l < 1$ B. 若 $\sum a_n$ 收敛, 则 $\sum a_n^2$ 收敛

C. 若 $\sum (-1)^n a_n$ 收敛,则 $\sum (a_{2n-1} - a_{2n})$ 收敛 D. 若 $\lim \frac{a_{n+1}}{a_n} = l < 1$,则 $\sum a_n$ 收敛

5. 若级数 $\sum a_n$ 条件收敛,对于幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 以下结论正确的是【 】.

A. x=1条件收敛

B. x = 3 发散

C. x = 2绝对收敛

D. x=0条件收敛

6. 若 $\int_L (2xe^{x^2}y^3 + ax\cos y) dx + (be^{x^2}y^2 - x^2\sin y) dy$ 在 xoy 面上积分与路径无关,则【】.

A. a = 2, b = -3 B. a = -2, b = 3 C. a = -2, b = -3 D. a = 2, b = 3

填空题 (每小题 4 分, 4 个小题共 16 分, 将计算结果写在答题卡上.)

7. 函数 $u = \ln(xy^2z^3)$ 在 (1,1,1) 点的微分 $du|_{(1,1)} =$ ___.

8. 设区域 $D: |x| + |y| \le 1$, 则 $\iint_{D} (1-x)^2 dxdy = ___.$

9. 设 f(x) = x + 1 , $-\pi \le x \le \pi$, 将 f(x) 展 成 以 2π 为 周 期 的 傅 立 叶 级 数

 $f(x) \sim \frac{a_0}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$. $\emptyset a_{2018} =$ ____.

10. 设矢量函数 $\mathbf{F} = \{x, y, z\}$, $\mathbf{G} = \{y, z, x\}$, 则 $\operatorname{div}(\mathbf{F} \times \mathbf{G}) =$.

三. 基本计算题(每小题 7 分, 6 个小题共 42 分, 必须写出主要计算过程.)

11. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 6, \\ x^2 + y^2 - 5z = 0 \end{cases}$$
 过点 $P(1,2,1)$ 的切线方程.

12. 设
$$u = f(x + y^2, xy)$$
, 其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 u}{\partial x \partial y}$.

13. 设
$$x = r^2 \cos \theta$$
, $y = r \sin \theta$, 当 $r \neq 0$ 时确定隐函数 $r = r(x, y)$, $\theta = \theta(x, y)$, 求 $\frac{\partial r}{\partial x}$, $\frac{\partial \theta}{\partial x}$

14. 求
$$I = \int_L (x + y^2) ds$$
,其中 L 是圆弧 $y = \sqrt{1 - x^2} (0 \le x \le 1)$ 与 x 轴和 y 轴所围平面图形的整个边界.

15. 设
$$S: z = \sqrt{x^2 + y^2}$$
, $0 \le z \le 1$, 定向为上侧,求 $I = \iint_S xy^2 dydz + yz^2 dzdx + zx^2 dxdy$.

16. 求幂级数
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n+1}$$
 的和函数,并求数项级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n (2n+1)}$ 的和.

四. 应用题(每小题7分,2个小题共14分,必须写出主要过程.)

17. 已知函数 $u = \ln(xy^2z^3)$ 在椭球面 $x^2 + 2y^2 + 3z^2 = 6R^2(R > 0)$ 的第一卦限部分上存在

最大值. 求出该最大值点,并由此证明:对任意正实数 a,b,c, 成立 $ab^2c^3 \le \left(\frac{a+2b+3c}{6}\right)^6$.

18. 设 Ω 表示锥面 $z=\sqrt{x^2+y^2}$,柱面 $x^2+y^2=2x$,以及 xy 坐标面围城的空间区域。求 (1) Ω 的体积 V ; (2) 立体 Ω 表面上锥面块的面积 S .

五. 分析证明题 (每小题 5 分, 2 个小题共 10 分, 必须写出主要过程.)

19. 计算曲线积分 $I = \oint_L \frac{x \mathrm{d}y - y \mathrm{d}x}{4x^2 + y^2}$, 其中 L 是以 (1,0) 为圆心,以 $R(R > 0, R \neq 1)$ 为半径的圆周,取逆时针方向.

20. 设 f(x) 是区间[0,1]上的连续函数,证明 $\int_0^1 e^{f(x)} dx \int_0^1 e^{-f(x)} dx \ge 1$.