# Gaussian Process Approximations in Bayesian Inverse Problems

Nicholas Krämer

Master Thesis Colloquium

December 6, 2018





#### Outline

- 1. Radial basis functions and Gaussian process regression
- 2. Bayesian approach to inverse problems
- 3. Gaussian process approximations in Bayesian inverse problems
- 4. Current and upcoming work

Radial basis functions and Gaussian process regression

 $\star$  Recover  $f:\Omega \to \mathbb{R}$  from values y=f(X) on  $X=\{x_1,...,x_N\}$ 



- $\star$  Recover  $f:\Omega\to\mathbb{R}$  from values y=f(X) on  $X=\{x_1,...,x_N\}$
- \* Kernel: radial basis functions (RBF)  $K(x, y) = \varphi(||x y||)$

- $\star$  Recover  $f:\Omega\to\mathbb{R}$  from values y=f(X) on  $X=\{x_1,...,x_N\}$
- \* Kernel: radial basis functions (RBF)  $K(x, y) = \varphi(||x y||)$
- \* Approximate with kernel evaluations

$$f(x) \approx \mathcal{P}_f(x) = \sum_{i=1}^N c_i K(x, x_i)$$





Data and RBF interpolant

- $\star$  Recover  $f:\Omega \to \mathbb{R}$  from values y=f(X) on  $X=\{x_1,...,x_N\}$
- \* Kernel: radial basis functions (RBF)  $K(x, y) = \varphi(||x y||)$
- \* Approximate with kernel evaluations

$$f(x) \approx \mathcal{P}_f(x) = \sum_{i=1}^N c_i K(x, x_i)$$

 $\star$  Matrix notation  $\mathcal{P}_f(X_{\mathsf{new}}) = K(X_{\mathsf{new}}, X)(K(X, X))^{-1}y$ 

- $\star$  Recover  $f: \Omega \to \mathbb{R}$  from values y = f(X) on  $X = \{x_1, ..., x_N\}$
- \* Kernel: radial basis functions (RBF)  $K(x, y) = \varphi(||x y||)$
- \* Approximate with kernel evaluations

$$f(x) \approx \mathcal{P}_f(x) = \sum_{i=1}^N c_i K(x, x_i)$$

- \* Matrix notation  $\mathcal{P}_f(X_{\text{new}}) = K(X_{\text{new}}, X)(K(X, X))^{-1}y$
- \* "Works well" in reproducing kernel Hilbert space (RKHS)

- ★ Recover  $f: \Omega \to \mathbb{R}$  from values y = f(X) on  $X = \{x_1, ..., x_N\}$
- \* Kernel: radial basis functions (RBF)  $K(x, y) = \varphi(||x y||)$
- \* Approximate with kernel evaluations

$$f(x) \approx \mathcal{P}_f(x) = \sum_{i=1}^N c_i K(x, x_i)$$

- \* Matrix notation  $\mathcal{P}_f(X_{\text{new}}) = K(X_{\text{new}}, X)(K(X, X))^{-1}y$
- \* "Works well" in reproducing kernel Hilbert space (RKHS)
- $\star$  For example Matérn kernel  $arphi_
  u(z) \sim z^
  u K_
  u(z)$

 $\star$  We still try to recover f from its values on X

- $\star$  We still try to recover f from its values on X
- \* We assume f is a Gaussian process:  $f \sim \mathsf{GP}(m(\cdot), K(\cdot, \cdot))$

- $\star$  We still try to recover f from its values on X
- \* We assume f is a Gaussian process:  $f \sim \mathsf{GP}(m(\cdot), K(\cdot, \cdot))$
- $\star$  Assume  $m \equiv 0$

Definition (Gaussian process)

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian distribution





Mean and standard deviation of Gaussian process

- $\star$  We still try to recover f from its values on X
- \* We assume f is a Gaussian process:  $f \sim \mathsf{GP}(m(\cdot), K(\cdot, \cdot))$ ,
- $\star$  Assume  $m \equiv 0$

# Definition (Gaussian process)

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian distribution

 $\star~K(\cdot,\cdot)$  symmetric positive definite - covariances are kernels

- $\star$  We still try to recover f from its values on X
- \* We assume f is a Gaussian process:  $f \sim \mathsf{GP}(m(\cdot), K(\cdot, \cdot))$ ,
- $\star$  Assume  $m \equiv 0$

# Definition (Gaussian process)

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian distribution

- $\star~K(\cdot,\cdot)$  symmetric positive definite covariances are kernels
- $\star$  We want to reproduce f at points  $X_{\text{new}}$

 $\star$  Condition joint distribution  $(f(X), f(X_{new}))$  on hitting y





Mean and standard deviation of Gaussian process



Predictive mean and standard deviation of Gaussian process

- \* Condition joint distribution  $(f(X), f(X_{new}))$  on hitting y
- \* Conditioning suggests  $f(X_{\text{new}}) \sim \mathcal{N}(m_{\text{new}}, K_{\text{new}})$  with predictive mean

$$m_{\text{new}}(X_{\text{new}}) = K(X_{\text{new}}, X)(K(X, X))^{-1}f(X)$$

- \* Condition joint distribution  $(f(X), f(X_{new}))$  on hitting y
- $\star$  Conditioning suggests  $f(X_{\text{new}}) \sim \mathcal{N}(m_{\text{new}}, K_{\text{new}})$  with predictive mean

$$m_{\mathsf{new}}(X_{\mathsf{new}}) = K(X_{\mathsf{new}}, X)(K(X, X))^{-1}f(X)$$

 $\star$  The predictive mean  $m_{\text{new}}$  is the RBF interpolant!

Bayesian approach to inverse problems

## Example for an inverse problem

Differential Equation on (0,1)

Find 
$$a = (a_1, a_2) \in [-1, 1]^2$$
 such that for

$$-\operatorname{div}((\sin(a_1x)+\cos(a_2x))\nabla u(x))=1, \quad u(0)=u(1)=0$$

the measurements satisfy

$$u(1/3) = 1.1241, \quad u(1/2) = 1.34235, \quad u(2/3) = 1.87.$$

### Example for an inverse problem

Differential Equation on (0,1)

Find  $a = (a_1, a_2) \in [-1, 1]^2$  such that for

$$-\operatorname{div}((\sin(a_1x)+\cos(a_2x))\nabla u(x))=1, \quad u(0)=u(1)=0$$

the measurements satisfy

$$u(1/3) = 1.1241, \quad u(1/2) = 1.34235, \quad u(2/3) = 1.87.$$

\* Operator  $\mathcal{G}: \mathbb{R}^2 \to \mathbb{R}^3, \ (a_1, a_2) \mapsto (u(1/3), u(1/2), u(2/3))$ 

## Example for an inverse problem

Differential Equation on (0,1)

Find  $a=(a_1,a_2)\in [-1,1]^2$  such that for

$$-\operatorname{div}((\sin(a_1x)+\cos(a_2x))\nabla u(x))=1, \quad u(0)=u(1)=0$$

the measurements satisfy

$$u(1/3) = 1.1241, \quad u(1/2) = 1.34235, \quad u(2/3) = 1.87.$$

- $\star$  Operator  $\mathcal{G}: \mathbb{R}^2 \to \mathbb{R}^3, \ (a_1, a_2) \mapsto (u(1/3), u(1/2), u(2/3))$
- $\star$  How can we find a from  $y = \mathcal{G}(a) +$  "measurement error"

 $Our \ setting:$ 

### Our setting:

 $\star$  Space of input parameters  $\mathcal{A} \subseteq \mathbb{R}^m$  compact,  $m \in \mathbb{N}$ 

### Our setting:

- $\star$  Space of input parameters  $\mathcal{A} \subseteq \mathbb{R}^m$  compact,  $m \in \mathbb{N}$
- $\star$  Parameter-to-observation operator  $\mathcal{G}:\mathcal{A} o\mathbb{R}^n$

#### Our setting:

- $\star$  Space of input parameters  $\mathcal{A} \subseteq \mathbb{R}^m$  compact,  $m \in \mathbb{N}$
- $\star$  Parameter-to-observation operator  $\mathcal{G}:\mathcal{A} o\mathbb{R}^n$
- $\star$  Noisy measurements  $y \in \mathbb{R}^n$ , noise  $\eta \sim \mathcal{N}(0, \sigma_\eta^2 I_n)$

#### Our setting:

- $\star$  Space of input parameters  $\mathcal{A} \subseteq \mathbb{R}^m$  compact,  $m \in \mathbb{N}$
- $\star$  Parameter-to-observation operator  $\mathcal{G}:\mathcal{A} o\mathbb{R}^n$
- \* Noisy measurements  $y \in \mathbb{R}^n$ , noise  $\eta \sim \mathcal{N}(0, \sigma_{\eta}^2 I_n)$
- $\star$  Find input  $a \in \mathcal{A}$  such that  $y = \mathcal{G}(a)$  or  $y = \mathcal{G}(a) + \eta$

# Bayesian statistics

\* Knowledge is probability distribution

## Bayesian statistics

\* Knowledge is probability distribution



Bayesian answer to: "When will he finish?"

# Bayesian statistics

- \* Knowledge is probability distribution
- $\star$  Initial belief: prior distribution  $\mu_0$  on  ${\mathcal A}$

### Bayesian statistics

- \* Knowledge is probability distribution
- $\star$  Initial belief: prior distribution  $\mu_0$  on  ${\cal A}$
- $\star$  Condition unknown to match collected data: posterior distribution  $\mu^{\rm y}$

### Bayesian statistics

- \* Knowledge is probability distribution
- $\star$  Initial belief: prior distribution  $\mu_0$  on  $\mathcal{A}$
- $\star$  Condition unknown to match collected data: posterior distribution  $\mu^{\rm y}$



Updated answer after collecting data ("How long did 2 bullet pts. take?")

Theorem (Bayes, simplified)

Let  $\mathcal{G} \in C(\mathcal{A}; \mathbb{R}^n)$  and  $\mu_0(\mathcal{A}) = 1$ . Then  $\mu^y \ll \mu_0$  with density

$$\frac{\mathrm{d}\mu^y}{\mathrm{d}\mu_0}(a) \propto \exp\left(-\frac{1}{2\sigma_n^2}\|y-\mathcal{G}(a)\|^2\right)$$

Theorem (Bayes, simplified)

Let  $\mathcal{G} \in C(\mathcal{A}; \mathbb{R}^n)$  and  $\mu_0(\mathcal{A}) = 1$ . Then  $\mu^y \ll \mu_0$  with density

$$\frac{\mathrm{d}\mu^y}{\mathrm{d}\mu_0}(\mathsf{a}) \propto \exp\left(-\frac{1}{2\sigma_\eta^2}\|\mathsf{y} - \mathcal{G}(\mathsf{a})\|^2\right)$$

Exploit this density to extract information

Theorem (Bayes, simplified)

Let  $\mathcal{G} \in C(\mathcal{A}; \mathbb{R}^n)$  and  $\mu_0(\mathcal{A}) = 1$ . Then  $\mu^y \ll \mu_0$  with density

$$\frac{\mathsf{d}\mu^{\mathsf{y}}}{\mathsf{d}\mu_{\mathsf{0}}}(\mathsf{a}) \propto \exp\left(-\frac{1}{2\sigma_{\eta}^{2}}\|\mathsf{y}-\mathcal{G}(\mathsf{a})\|^{2}\right)$$

Exploit this density to extract information

 $\star$  Conditional mean and higher moments o numerical cubature

Theorem (Bayes, simplified)

Let  $\mathcal{G} \in C(\mathcal{A}; \mathbb{R}^n)$  and  $\mu_0(\mathcal{A}) = 1$ . Then  $\mu^y \ll \mu_0$  with density

$$\frac{\mathrm{d}\mu^{y}}{\mathrm{d}\mu_{0}}(a) \propto \exp\left(-\frac{1}{2\sigma_{\eta}^{2}}\|y-\mathcal{G}(a)\|^{2}\right)$$

Exploit this density to extract information

- $\star$  Conditional mean and higher moments  $\to$  numerical cubature
- \* Maximum-a-posteriori estimator (mode)

Gaussian process approximations in Bayesian inverse problems

$$\mathcal{G}: \mathcal{A} \xrightarrow{\text{(solve PDE)}} V \xrightarrow{\text{(evaluate sol.)}} \mathbb{R}^n$$

 $\star$  What does  ${\cal G}$  actually do at each evaluation?

$$\mathcal{G}: \mathcal{A} \xrightarrow{(\mathsf{solve\ PDE})} V \xrightarrow{(\mathsf{evaluate\ sol.})} \mathbb{R}^n$$

 $\star$  Evaluating  $\mathcal G$  is expensive!

$$\mathcal{G}: \mathcal{A} \xrightarrow{\text{(solve PDE)}} V \xrightarrow{\text{(evaluate sol.)}} \mathbb{R}^n$$

- $\star$  Evaluating  $\mathcal G$  is expensive!
- $\star$   $\mathcal{A} \subseteq \mathbb{R}^m$ , hence  $\mathcal{G}$  is essentially a map from  $\mathbb{R}^m$  to  $\mathbb{R}^n$

$$\mathcal{G}: \mathcal{A} \xrightarrow{\text{(solve PDE)}} V \xrightarrow{\text{(evaluate sol.)}} \mathbb{R}^n$$

- $\star$  Evaluating  $\mathcal G$  is expensive!
- $\star$   $\mathcal{A} \subseteq \mathbb{R}^m$ , hence  $\mathcal{G}$  is essentially a map from  $\mathbb{R}^m$  to  $\mathbb{R}^n$
- $\star~\mathcal{G}$  has certain regularity (high at least for "simple" PDEs)

$$\mathcal{G}: \mathcal{A} \xrightarrow{\text{(solve PDE)}} V \xrightarrow{\text{(evaluate sol.)}} \mathbb{R}^n$$

- $\star$  Evaluating  $\mathcal G$  is expensive!
- $\star$   $\mathcal{A} \subseteq \mathbb{R}^m$ , hence  $\mathcal{G}$  is essentially a map from  $\mathbb{R}^m$  to  $\mathbb{R}^n$
- $\star~\mathcal{G}$  has certain regularity (high at least for "simple" PDEs)
- \* Good setting for approximations!

 $\star$  Replace  $\mathcal G$  by its GP/RBF approximation

$$\mathcal{G}(a) pprox m^{\mathcal{G}}(a) = \sum_{i=1}^{N} c_i K(a, a_i)$$

 $\star$  Replace  $\mathcal G$  by its GP/RBF approximation

$$\mathcal{G}(a) pprox m^{\mathcal{G}}(a) = \sum_{i=1}^{N} c_i K(a, a_i)$$

\* Solve K(X,X)c = f(X) once

 $\star$  Replace  $\mathcal G$  by its GP/RBF approximation

$$G(a) \approx m^{G}(a) = \sum_{i=1}^{N} c_{i}K(a, a_{i})$$

- \* Solve K(X,X)c = f(X) once
- $\star$  Replace  $\mu^{\rm y}$  by approximate posterior distribution  $\mu_{\rm app}^{\rm y}$

 $\star$  Replace  $\mathcal G$  by its GP/RBF approximation

$$\mathcal{G}(a) pprox m^{\mathcal{G}}(a) = \sum_{i=1}^{N} c_i K(a, a_i)$$

- \* Solve K(X,X)c = f(X) once
- $\star$  Replace  $\mu^{y}$  by approximate posterior distribution  $\mu_{\rm app}^{y}$
- $\star$  Is  $\mu_{\mathsf{app}}^{\mathsf{y}} \approx \mu^{\mathsf{y}}$  for  $\mathcal{G} \approx \mathsf{m}^{\mathcal{G}}$ ?

 $\star$  Replace  $\mathcal{G}$  by its GP/RBF approximation

$$\mathcal{G}(a) pprox m^{\mathcal{G}}(a) = \sum_{i=1}^{N} c_i K(a, a_i)$$

- \* Solve K(X,X)c = f(X) once
- $\star$  Replace  $\mu^{\rm y}$  by approximate posterior distribution  $\mu^{\rm y}_{\rm app}$
- $\star$  Is  $\mu_{\text{app}}^{y} \approx \mu^{y}$  for  $\mathcal{G} \approx m^{\mathcal{G}}$ ?
- \* New approximation results (Stuart, Teckentrup (2018))

## Theoretical preliminaries

#### Assumptions

- 1.  $\mathcal{G} \in H^{\nu+m/2}(\mathcal{A}; \mathbb{R}^n)$  for some  $\nu > 0$  (recall  $\mathcal{A} \subseteq \mathbb{R}^m$ )
- 2.  $\lim_{N\to\infty} \sup_{u\in\mathcal{A}} \|\mathcal{G}(u) m^{\mathcal{G}}(u)\| = 0$
- 3.  $\sup_{u \in \mathcal{A}} \|\mathcal{G}(u)\| \leq C_{\mathcal{G}} < \infty$

## Theoretical preliminaries

#### Assumptions

- 1.  $\mathcal{G} \in H^{\nu+m/2}(\mathcal{A}; \mathbb{R}^n)$  for some  $\nu > 0$  (recall  $\mathcal{A} \subseteq \mathbb{R}^m$ )
- 2.  $\lim_{N\to\infty} \sup_{u\in A} \|\mathcal{G}(u) m^{\mathcal{G}}(u)\| = 0$
- 3.  $\sup_{u \in \mathcal{A}} \|\mathcal{G}(u)\| \le C_{\mathcal{G}} < \infty$

#### Hellinger distance:

$$d_{\mathsf{Hell}}(\mu_1,\mu_2) = \left(rac{1}{2}\int_{\mathcal{A}}\left(\sqrt{rac{\mathsf{d}\mu_1}{\mathsf{d}\mu_0}} - \sqrt{rac{\mathsf{d}\mu_2}{\mathsf{d}\mu_0}}
ight)^2\;\mathsf{d}\mu_0
ight)^{1/2}$$

Theorem (Stuart, Teckentrup (2018))

Under the previous assumptions, there exists  $C_2$  independent of X and N such that

$$d_{Hell}(\mu^y, \mu^y_{app}) \leq C_2 \|\mathcal{G} - m^{\mathcal{G}}\|_{L^2_{\mu_0}(\mathcal{A}, \mathbb{R}^n)}$$

Theorem (Stuart, Teckentrup (2018))

Under the previous assumptions, there exists  $C_2$  independent of X and N such that

$$d_{Hell}(\mu^{y}, \mu^{y}_{app}) \leq C_{2} \|\mathcal{G} - m^{\mathcal{G}}\|_{L^{2}_{\mu_{0}}(\mathcal{A}, \mathbb{R}^{n})}$$

One can also...

Theorem (Stuart, Teckentrup (2018))

Under the previous assumptions, there exists  $C_2$  independent of X and N such that

$$d_{Hell}(\mu^y, \mu^y_{app}) \le C_2 \|\mathcal{G} - m^{\mathcal{G}}\|_{L^2_{\mu_0}(\mathcal{A}, \mathbb{R}^n)}$$

One can also...

\* ...use the full process instead of only the mean,

Theorem (Stuart, Teckentrup (2018))

Under the previous assumptions, there exists  $C_2$  independent of X and N such that

$$d_{Hell}(\mu^{y}, \mu^{y}_{app}) \leq C_{2} \|\mathcal{G} - m^{\mathcal{G}}\|_{L^{2}_{\mu_{0}}(\mathcal{A}, \mathbb{R}^{n})}$$

One can also...

\* ...use the full process instead of only the mean, e.g. sample a random approximation from  $\mathsf{GP}(m^{\mathcal{G}}(\cdot), K^{\mathcal{G}}(\cdot, \cdot))$ 

Theorem (Stuart, Teckentrup (2018))

Under the previous assumptions, there exists  $C_2$  independent of X and N such that

$$d_{Hell}(\mu^{y}, \mu_{app}^{y}) \leq C_{2} \|\mathcal{G} - m^{\mathcal{G}}\|_{L^{2}_{\mu_{0}}(\mathcal{A}, \mathbb{R}^{n})}$$

One can also...

- \* ...use the full process instead of only the mean, e.g. sample a random approximation from  $\mathsf{GP}(m^{\mathcal{G}}(\cdot), K^{\mathcal{G}}(\cdot, \cdot))$
- $\star$  ...do all of this with  $\Phi(a) = \frac{1}{2\sigma_n^2} ||y \mathcal{G}(a)||^2$  instead of  $\mathcal{G}$

# Hellinger distance for problem with m=2 inputs



Different regularities of GP approximation on uniform tensor grid



 $1. \ \ \mathsf{RBF}\text{-}\mathsf{interpolants} \ \mathsf{and} \ \mathsf{predictive} \ \mathsf{means} \ \mathsf{are} \ \mathsf{the} \ \mathsf{same}$ 

#### Takeaway messages

- 1. RBF-interpolants and predictive means are the same
- 2. Error estimates from RBF-interpolation come from the regularity of the kernel

#### Takeaway messages

- 1. RBF-interpolants and predictive means are the same
- 2. Error estimates from RBF-interpolation come from the regularity of the kernel
- 3. Forward maps from Bayesian inverse problems are expensive to evaluate

#### Takeaway messages

- 1. RBF-interpolants and predictive means are the same
- 2. Error estimates from RBF-interpolation come from the regularity of the kernel
- 3. Forward maps from Bayesian inverse problems are expensive to evaluate
- 4. They are easy to approximate with radial basis functions

Current and upcoming work

# Currently: "Tidying up" some theory (for myself)

- \* Some approximation errors seem neglected
  - \* Forward model is only approximately available (FEM for PDE)
  - $\star$  Numerical error in  $\cong$  "noise" in evaluations
- \* Which error has which influence...
  - ... on the conditional mean?
  - ... on the hellinger distance?
- \* Some quantities seem arbitrary
  - \* Why the Matérn kernel-which parameters?
  - \* Which pointset for GP approximation?

## Soon: Optimising the choice of GP locations

- \* Pick design points intelligently
- \* Bayesian optimisation
- \* Non-adaptively: experimental design
- \* Adaptively: sequential design
- \* Make computations a little bit more efficient
- ...while trying not to blow up the runtime with unnecessary optimisations
- \* More about this next time

## Further readings on radial basis functions

RBF interpolation:

Scattered Data Approximation

H. Wendland, Cambridge University Press, 2004

Relationship between GP regression and RBF interpolation: Interpolation of spatial data—a stochastic or a deterministic problem?

M. Scheuerer, R. Schaback, M. Schlather, European Journal of Applied Mathematics, 2013

## Further readings on Bayesian inverse problems

Bayesian approach to inverse problems: The Bayesian approach to inverse problems M. Dashti, A. M. Stuart, Handbook of Uncertainty Quantification, Springer, 2017

GP approximations in Bayesian inverse problems: Posterior consistency for Gaussian process approximations of Bayesian posterior distributions A. M. Stuart, A.L. Teckentrup, Mathematics of Computation, 2018

# Thanks!