

Optical Coatings and Surfaces in Space: MISSE

Alan F. Stewart

Alan.f.stewart@boeing.com

Boeing DES

8531 Fallbrook Ave. MC WA04

West Hills, CA 91304-3232

Miria M. Finckenor

miria.m.finckenor@nasa.gov

Environmental Effects Group

Mail Code EM50 Bldg. 4711 Room 100C

Marshall Space Flight Center, AL 35812

Abstract

The space environment presents some unique problems for optics. Components must be designed to survive variations in temperature, exposure to ultraviolet, particle radiation, atomic oxygen and contamination from the immediate environment. To determine the importance of these phenomena, a series of passive exposure experiments have been conducted which included, among others, the Long Duration Exposure Facility (LDEF, 1985- 1990), the Passive Optical Sample Assembly (POSA, 1996-1997) and most recently, the Materials on the International Space Station Experiment (MISSE, 2001-2005). The MISSE program benefited greatly from past experience so that at the conclusion of this 4 year mission, samples which remained intact were in remarkable condition. This study will review data from different aspects of this experiment with emphasis on optical properties and performance.

Optical Coatings and Surfaces in Space: MISSe

Alan F. Stewart
and
Boeing DES

Miria Finckenor
Marshall Space Flight Center

The MISSSE Flight Experiment

MISSSE - Materials on International Space Station Experiment

a project funded by AFRL and NASA

Project leads – Dr. Bill Kinard, NASA LARC
Dr. Gary Pippin, Boeing

- Samples placed on station 8-10-01
- Recovery 7-30-05

MISSe trays Prior to Deployment

AO and Solar

Solar exposure

Passive experiment containers (PEC) DES

MISSE on the ISS

- Two Modules parked on the ISS for 3.9 years
- Two additional modules installed 7/06
 - 1 year exposure planned
- Locations selected for
 - min/max atomic oxygen
 - min/max solar
- EVA required for placement and retrieval
- Module integration at Boeing Seattle and Langley

Principal Mechanisms for Degradation of Optics in Space

Atomic oxygen

- 5 ev kinetic energy

Solar UV exposure

Radiation

Micrometeoroids/Space Debris Contamination

- MISSSE designed to try to isolate/control AO and solar UV exposure
- Contamination limited by material selection and placement on ISS

Optical Coatings and Windows on MISSe

- >100 samples from about 10 groups
- a broad range of wavelengths and potential applications
- Objectives for all:
 - Define magnitude of degradation
 - Determine mechanisms for sample degradation
 - Define realistic performance expectations

MISSIE Samples : Coatings, Windows and Mirrors

Coating samples representative of solar cell covers, protected metals, precious metals, dielectric HR and AR designs

Thermal evaporation:

Lohnstar Optics

ZnSe, ThF₄, MgF₂, Al₂O₃

Sputtering:

MLD LLC, Litton Guidance

Si, SiO₂, Al₂O₃, Ta₂O₅, Nb₂O₅

Windows:

SiO₂, MgF₂

Metals:

AU, AI, Pt

Other:

Kaiser Optical

Dichromated gelatin

Evaluation Methods

- ### Comparison of Flight Samples with controls
- Visual
 - Microscopy
 - Spectral (spectrophotometer)
 - Absorption (laser calorimetry -IR and tc)
 - Total Loss (cavity ring-down)
 - Phase (ellipsometry)
 - Vacuum UV reflection
 - ESCA

Samples in Flight

August 2003
photoalbum

E4-32 and E4-33
Gyroscope optics

MISSSE Environments

There were 22 attitude changes for ISS during mission.

Each PEC saw both UV and AO exposure

Temperature monitors recorded continuously during mission

~6°C variations for each orbit
a total range of -20 to +72°C

ISS provided some shielding from radiation (~1/4)

Test and Evaluation

All control samples were measured first, then cleaned, then remeasured

Cleaning performed in a commercial coating facility

- Clean work station
- High grade solvents
- High purity DI water
- Spin cleaning station

Flight Samples on the Bench

BDS 09-26-06

12

BOEING[®]
DES

Optical Coatings and Surfaces in Space: MISSSE

Alan F. Stewart
Boeing DES

and
Miria Finckenor
Marshall Space Flight Center

The MISSSE Flight Experiment

MISSSE - Materials on International Space Station Experiment

a project funded by AFRL and NASA

Project leads – Dr. Bill Kinard, NASA LARC

Dr. Gary Pippin, Boeing

- Samples placed on station 8-10-01
- Recovery 7-30-05

MISSSE trays Prior to Deployment

AO and Solar

Solar exposure

BDS 09-26-06

Passive experiment containers (PEC)
BOEING[®]
DES

MISSE on the ISS

- Two Modules parked on the ISS for 3.9 years
- Two additional modules installed 7/06
 - 1 year exposure planned
- Locations selected for
 - min/max atomic oxygen
 - min/max solar
- EVA required for placement and retrieval
- Module integration at Boeing Seattle and Langley

Principal Mechanisms for Degradation of Optics in Space

Atomic oxygen

- 5 ev kinetic energy

Solar UV exposure

Radiation

Micrometeoroids/Space Debris

Contamination

- MISSE designed to try to isolate/control AO and solar UV exposure
- Contamination limited by material selection and placement on ISS

Optical Coatings and Windows on MISSE

- >100 samples from about 10 groups
- a broad range of wavelengths and potential applications
- Objectives for all:
 - Define magnitude of degradation
 - Determine mechanisms for sample degradation
 - Define realistic performance expectations

MISSSE Samples : Coatings, Windows and Mirrors

Coating samples representative of solar cell covers, protected metals, precious metals, dielectric HR and AR designs

Thermal evaporation:

ZnSe, ThF₄, MgF₂, Al₂O₃

MLD LLC, Litton Guidance

Si, SiO₂, Al₂O₃, Ta₂O₅, Nb₂O₅

SiO₂, MgF₂

Au, Al, Pt

Kaiser Optical

Dichromated gelatin

Lohnstar Optics

Sputtering:

Windows:

Metals:

Other:

Evaluation Methods

Comparison of Flight Samples with controls

- Visual
- Microscopy
- Spectral (spectrophotometer)
- Absorption (laser calorimetry -IR and tc)
- Total Loss (cavity ring-down)
- Phase (ellipsometry)
- Vacuum UV reflection
- ESCA

Samples in Flight

August 2003
photoalbum

E4-32 and E4-33
Gyroscope optics

© BOEING®
DES

BDS 09-26-06

MISSSE Environments

There were 22 attitude changes for ISS during mission.

Each PEC saw both UV and AO exposure

Temperature monitors recorded continuously during mission

~6°C variations for each orbit

a total range of -20 to +72°C

ISS provided some shielding from radiation (~1/4)

Test and Evaluation

All control samples were measured first, then cleaned, then remeasured

Cleaning performed in a commercial coating facility

- Clean work station
- High grade solvents
- High purity DI water
- Spin cleaning station

Flight Samples on the Bench

BDS 09-26-06

12

BOEING
DES

Flight Samples on the Bench

BDS 09-26-06

13

BOEING®
DES

ZnSe/ThF₄ Coatings on Silicon and Sapphire

ZnSe/ThF₄ stack with Al₂O₃ overcoat
Showing resistance to abrasion at
contact to sample mount and debris

ZnSe/ThF₄ stacks showing abrasion at contact to sample mount and debris

BDS 09-26-06

14

BOEING®
DES

Si/Al₂O₃/SiO₂ Mirrors

Some tooling damage is evident in the contact area for the sample holder.

Si/Al₂O₃/SiO₂ Mirror Shows Contamination

Contamination layer is lighter in color than unexposed coating

Micrometeorite Impact!

E10-41

ZnSe/ThF₄ coating on sapphire

BDS 09-26-06

BOEING
DES

Flight Samples on the Bench

Laser Gyroscope Mirrors

Serious tooling damage!

BDS 09-26-06

18

 BOEING[®]
DES

Laser Gyroscope Mirrors Showed "Liquid" Contamination

Surface contamination observed on
Flight samples showing:
Liquid nature of particle
Highly directional emission

633nm Laser Gyro Mirrors

BDS 09-26-06

20

BOEING
DES

Total Loss and Calorimetry at 1319nm

BDS 09-26-06

Type or Process 21

BOEING®
DES

Total Loss and Calorimetry at 1064nm

MgF₂ Windows Show Effects of Space

MgF₂ Windows Show Effects of Space

BDS 09-26-06

24

MISSE MgF₂ Windows Comparison with POSA

Summary

- Flight samples experienced some mechanical damage from contact with the surface of the tray.
- Contamination was present on all samples
 - Increased total loss
 - Light scatter
 - Haze
 - Particulate or isolated defects were present on all samples
- Absorption increased on flight samples by factor > 2X
- Total loss increased on Flight samples by factor > 3X
- Overall sample performance better than was hoped for

MISSE has a Bright Future !

Continuing study of samples on the ground

- Evaluation of contamination layer and surfaces
- Scatter maps to show distribution and magnitude of “defects”
- MISSE 3,4 deployed July 06 (1 yr)
- MISSE 6 in integration
- MISSE 7 in planning stages