Definiciones

Tema 1: Efectos eléctricos de las cargas puntuales.

$$nano = 10^{-9}$$

 $micro = 10^{-6}$

 $ε_0$ = Constante dieléctrica en el vacío. $ε_o = \frac{1}{4\pi k}$

$$\mathcal{E}_{o} = \frac{1}{4\pi K}$$

E (Campo eléctrico) = Es la fuerza por unidad de carga. F V= es eltrabajo que debe realizar una fuerza electrica para mover una carga + desde El E depende de la distancia: el infinito hasta ese punto.

A menor distancia mayor es el E.

A mayor distancia menor es el E.

Energía potencial eléctrica: Trabajo que hace la fuerza eléctrica cuando desplaza una carga 40.

$$q_0$$
, F_e = E* q_0

ECB-FCA = -(UB-UA)

Cargas puntuales → Fuerzas conservativas.

Superficie equipotencial: Superficie que tiene el mismo potencial en todos sus puntos. Una superficie equipotencial es una esfera.

Las líneas de fuerza de E siempre son perpendiculares a las superficies equipotenciales.

Densidad de carga

$$\lambda = dq/dl$$

$$\sigma = dq/dS$$

$$\rho = dq/dV$$

Volumén essera = $\frac{4}{3} \text{ TT } R^3$ Aren esfera = 4 TT R²
Aren circulo-TT R²
Actralo

Fenómenos de influencia electrostática.

Condensadores: Almacena aparte de carga, energía.

La unidad de los condensadores son los faradios.

Un dieléctrico es un no conductor y se pone entre el condensador.

Tema 2: Distribuciones de carga. Capacidad y energía electrostática.

Campo radial: El E tiene la dirección de los radios, solo cuando la carga es uniforme.

$$dV = \int E * d_r$$

El potencial vale lo mismo (en una esfera de radio menor que el de la esfera principal) que en la superficie ya que es una función continua. Mientras que el E da 0 ya que no hay carga dentro.

Condensadores:

En serie:

La carga es la misma pero el potencial es diferente.

$$C_e = C1*C2/C1+C2$$

En paralelo:

La carga es diferente, pero dV es el mismo en ambos condensadores.

Constantes dieléctricas:

$$\varepsilon_r = \varepsilon/\varepsilon_0$$

 ε_r = Constante relativa

ε= Constante del material

ε₀= Constante del vacío

$$C = \varepsilon_r * C_0$$

C= Capacidad final

 C_0 = Capacidad inicial.

Cuando haya dos dieléctricos se puede resolver como si fueran dos condensadores en serie.

Energía de un condensador

Para cargar un condensador hace falta energía.

Tema 3: Corrientes eléctricas y semiconductores

Corriente eléctrica: Movimiento de cargas.

Intensidad de corriente: Es la carga por unidad de tiempo a través de una sección de una región.

Sentido de la corriente eléctrica:

Depende de si la carga es positiva o negativa. Si es positiva irá a la derecha, si es negativa hacia a la izquierda.

Para que haya movimiento de cargas tiene que haber una dV. Si hay una dV existe E, y por lo tanto una F_e .

La intensidad siempre es en dirección al campo.

Densidad de corriente:

La intensidad no tiene vector, pero lo de podemos asociar uno, la densidad de corriente (J).

La densidad de corriente es la intensidad entre la unidad de areá. (A/m²)

Ley de Ohm. Resistencias.

Las resistencias se suman si están dispuestas en serie. Las cargas siempre van a potenciales menores.