

Polar[™] HiPerFET[™] Power MOSFET

IXFR64N60P

N-Channel Enhancement Mode Fast Intrinsic Rectifier

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Test Conditions	Maximum Ratings		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{DSS}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	600	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$	600	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Continuous	±30	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{GSM}	Transient	±40	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T _c = 25°C	36	A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	150	Α	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _A				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{AS}	$T_{c} = 25^{\circ}C$	3.5	J	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	20	V/ns	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P _D	T _c = 25°C	320	W	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T _J		-55 +150		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T _{JM}		150	°C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T _{stg}		-55 +150	°C	
V _{ISOL} 50/60 Hz, 1 Minute 2500 V~ F _c Mounting Force 20120/4.527 N/lb		Maximum Lead Temperature for Soldering	300		
V _{ISOL} 50/60 Hz, 1 Minute 2500 V~ F _C Mounting Force 20120/4.527 N/lb	T _{SOLD}	Plastic Body for 10s	260	°C	
F _c Mounting Force 20120/4.527 N/lb		50/60 Hz, 1 Minute	2500	V~	
Weight 5 g		Mounting Force	20120/4.527	N/lb	
	Weight		5	g	

Symbol	Test Conditions			
$(I_J = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max.
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	600		V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 8mA$	3.0		5.0 V
I _{GSS}	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±200 nA
DSS	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 12$	25°C		25 μA 1 mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 32A, Note 1$			105 mΩ

 $V_{DSS} = 600V$ $I_{D25} = 36A$ $R_{DS(on)} \le 105m\Omega$ $t_{rr} \le 200ns$

G = Gate D = DrainS = Source

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- Low Intrinsic Gate Resistance
- 2500V~ Electrical Isolation
- Dynamic dv/dt Rating
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low Q_G
- Low $R_{DS(on)}$
- Low Drain-to-Tab Capacitance
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- Uninterrupted Power Supplies
- AC Motor Drives
- High Speed Power Switching Applications

Symbol	ymbol Test Conditions Chara		cteristic Values		
$(T_J = 25^\circ)$	°C U	nless Otherwise Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}		$V_{DS} = 20V, I_{D} = 32A, Note 1$	40	63	s
C _{iss})			12	nF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1150	pF
C _{rss}	J			80	pF
t _{d(on)})			28	ns
t _r	Ţ	Resistive Switching Times		23	ns
$\mathbf{t}_{d(off)}$		$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 32A$		79	ns
t _f	J	$R_{g} = 1\Omega$ (External)		24	ns
$\mathbf{Q}_{g(on)}$)			200	nC
Q_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 32A$		70	nC
\mathbf{Q}_{gd}	J			68	nC
R _{thJC}					0.39 °C/W
R _{thCS}				0.15	°C/W

A1 A2 .090 .100 2,29 2.54 2.16 1.40 2.15 3.20 0.83 .045 .075 <u>ь</u> Ь1 .055 1.91 2.92 D.61 .085 .115 .126 .033 20,80 15,75 ,819 ,84D 21,34 .620 .780 .150 .220 .170 .520 .620 .811 .172 .244 4.3B 6.20 .191 .540 .640 4.32 13.21 15.75 4.85 13.72 16.26 .065 .080 1.65 0 ,004 0

Source-Drain Diode

Symbo	ol	Test Conditions	Characteristic Values			
(T _J = 25°C, Unless Otherwise Specified)		Min.	Тур.	Max.		
I _s		$V_{GS} = 0V$			64	A
I _{SM}		Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			256	Α
V _{SD}		$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr})	I _F = 25A, -di/dt = 100A/μs			200	ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	}	•		0.6		μC
I _{RM}	J	$V_{R} = 100V, V_{GS} = 0V$		6.0		Α

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 32A vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 32A$ vs.

Fig. 6. Maximum Drain Current vs.

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

