ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN RADIACIÓN Y ONDAS GUIADAS

X. Fábregas, J. Miranda, J. Pérez, F. Torres, M. Vall-llossera 10 de enero de 2003. Duración 3 horas

- No se permiten libros ni apuntes. Resuelva cada problema en hojas aparte.
- El nombre del alumno debe constar en todas las hojas del examen que se vayan a utilizar.
- No se permite el intercambio de calculadoras programables.
- Se valorará el orden y la claridad en las respuestas.

Problema 1. El generador del circuito de la figura adjunta es senoidal de frecuencia 1 GHz, tensión en circuito abierto de $10V_{ef}$ e impedancia interna $Z_g = 50 \Omega$.

- a) Para mejorar la potencia transmitida a la carga se va a situar entre la línea de impedancia característica 50 Ω y la carga Z_L = 260 Ω una red de adaptación formada por un tramo de línea. Obtener la longitud ℓ_2 (en cm) y la impedancia característica (Z'_0) de dicha línea para conseguir la adaptación de la carga.
- b) Suponer ahora que se utiliza como red de adaptación un tramo de línea de transmisión de 7,5 cm con las siguientes características: resistencia del conductor de 172 Ω/m, L = 3.25 μH/m y C = 250 pF/m, dieléctrico ideal. ¿Cuánto vale la impedancia característica de la línea?¿Cuál será la atenuación introducida por la misma en dB/m?
- c) Considerando que se utiliza la línea de transmisión con pérdidas del apartado b), obtener:
 - 1. La impedancia (Z_{in}) a la entrada de la línea de impedancia Z_0 ' ($z = -\ell_2$).
 - 2. ¿Qué fracción de potencia incidente en dicho punto ($z = -\ell_2$) se refleja?
- d) Sabiendo que la línea de transmisión de impedancia característica $Z_0 = 50~\Omega$ es de $\ell_1 = 30$ m de longitud y presenta una atenuación por unidad de longitud de 0.13 dB/m, obtener:
 - 1. La potencia disponible en el generador.
 - 2. P^+ en la entrada a la línea de impedancia Z_0 = 50 Ω (en dBm) (z = (ℓ_1 + ℓ_2)).
 - 3. P^+ en el extremo final de dicha línea ($z = -\ell_2$), punto de conexión entre líneas de transmisión (en dBm).

Problema 2. Se desea diseñar una guía de ondas rectangular de dimensiones a>b para que trabaje en la banda monomodo en el margen de frecuencias de 3 a 5 GHz cuando está rellena de un material dieléctrico de permitividad relativa $\varepsilon_r = 4$.

- a) Obtener las dimensiones a y b de la guía.
- b) Cuando dicha guía, rellena del dieléctrico ($\varepsilon_r = 4$), se termina con un cortocircuito se observan mínimos de campo cada 28 mm. Obtener la frecuencia de trabajo y la impedancia característica de la guía.
- c) Si a la misma frecuencia dicha guía se utiliza para alimentar una bocina rectangular los mínimos se desplazan 8 mm hacia el extremo de la bocina, y se mide una intensidad de campo eléctrico máximo de $E_{0max} = 5 \cdot 10^{-3}$ V/m y mínimo de $E_{0min} = 3,5 \cdot 10^{-3}$ V/m. ¿Cuánto vale la impedancia normalizada de la bocina?
- d) Con el objeto de adaptar la antena a la guía se utiliza un tramo de longitud ℓ de esta guía y un diafragma capacitivo (ver la figura adjunta). Calcule la longitud ℓ del tramo de guía y la abertura del diafragma d.

$$k_{cm,n} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

Problema 3. Suponer un radioenlace trabajando a 1.4 GHz formado por dos antenas idénticas, de directividad 21 dB y eficiencia del 85%, situadas a una altura de 150 m y separadas 50 km. En el punto medio entre ambas antenas hay una colina de 130 m de altura. La antena transmisora radia una potencia de 1W.

- a) Obtener la potencia que se recibiría en condiciones de espacio libre (en dBm).
- b) Obtener la potencia recibida cuando se considera la refracción troposférica, en condiciones de atmósfera estándar o de referencia (k=4/3) y la difracción en el obstáculo (en dBm).
- c) En el sistema receptor (figura 1) la antena está conectada a un amplificador de 30 dB de ganancia y 2 dB de factor de ruido, mediante una línea de transmisión. Dicha línea es de 3m y tiene una atenuación de 0.1dB/m. Obtener la relación señal a ruido a la salida del receptor considerando los datos que se adjuntan.

Figura 1

DATOS:

$$R_T = 6370 \text{ km}$$

$$k = 4/3$$

$$B = 10 \text{ MHz}$$

$$T_a = 160 \text{ K}$$

$$T_{amb} = 290 \text{ K}$$

$$K = 1.38 \times 10^{-23} \text{ J/K}$$

Problema 4. Una apertura rectangular de dimensiones a= 7,5 cm y b= 6,5 cm, está iluminada por una onda polarizada linealmente según $\hat{x}, \vec{E} = E_0 \hat{x}$ a la frecuencia f=10 GHz como muestra la siguiente figura.

La dirección de máxima radiación es la del eje z y la del campo eléctrico en esa dirección coincide con el de la apertura.

El campo eléctrico en los planos E y H son respectivamente:

$$\begin{aligned} &plano \quad E: \quad E_{\theta} = j\frac{abE_{0}}{2\lambda \quad r}e^{-jkr} \quad (1+\cos\theta) \quad \frac{sen\left(\frac{ka}{2}sen\theta\right)}{\frac{ka}{2}sen\theta}, \qquad \qquad E_{\phi} = 0 \\ &plano \quad H: \quad E_{\theta} = 0, \qquad \qquad E_{\phi} = j\frac{abE_{0}}{2\lambda \quad r}e^{-jkr} \quad (1+\cos\theta) \quad \frac{sen\left(\frac{kb}{2}sen\theta\right)}{\frac{kb}{2}sen\theta} \end{aligned}$$

- a) Encontrar la expresión del diagrama de radiación en los planos E y H. ¿Cuál es el plano E? ¿Y el H?
- b) Calcular, para los dos planos, los ángulos θ en los que el diagrama de radiación se anula.
- c) Teniendo presente los nulos de radiación, representar, en la hoja adjunta, el diagrama de radiación en el plano E. Para ello, obtener los valores del diagrama cada 15°. Rellenar los datos en la tabla adjunta. Tenga en cuenta las características geométricas del problema para reducir el número de cálculos.
 - 1. Relación lóbulo principal a secundario (dB) en los planos E y H.
 - 2. Estimar el ancho de haz a -3B en los planos E y H y la directividad de la apertura en dB.
- d) Si sobre esta antena incidiese, en la dirección de máxima radiación, una onda polarizada elípticamente $\vec{E} = E_0(\hat{x} + e^{j\frac{\pi}{4}}\hat{y})e^{jkz}$ ¿Cuánto valdría el coeficiente de desacoplo de polarización (en dB)?

HOJA ADJUNTA AL PROBLEMA 4

NOMBRE:

PLANO E

Ángulo	Diagrama (dB)	Ángulo	Diagrama (dB)
0°		180°	
15°		195°	
30°		210°	
45°		225°	
60°		240°	
75°		255°	
90°		270°	
105°		285°	
120°		300°	
135°		315°	
150°		330°	
165°		345°	

_