Discrete Mathematics 2

Lectures 4-6

Supervisior: Marton Havasi 11/12/2017

Topics unique existence; disjunction; Fermat's Little Theorem; negation; contrapositive; proof by contradiction; natural numbers; monoids; commutativity; semirings

Core questions

1. Exercise sheet 2.2.4

What are $rem(55^2, 79)$, $rem(23^2, 79)$, $rem(23 \cdot 55, 79)$, and $rem(55^{78}, 79)$?

2. Consider the statement

$$\forall$$
 natural number x . $x^{100} - 1 \equiv \prod_{1 \le i \le k} (x - a_i) \mod 101$

Where $\{a_1, \ldots, a_k\}$ is a finite set of natural numbers.

Find the minimum of $\sum_{1 \le i \le k} a_i$ such that satisfies the statement above.

3. Exercise sheet 2.1.4

Let m be a positive integer.

1. Prove the associativity of the addition and multiplication operations in \mathbb{Z}_m ; that is, that for all i, j, k in \mathbb{Z}_m ,

$$(i +_m j) +_m k = i +_m (j +_m k)$$
 and $(i \cdot_m j) \cdot_m k = i \cdot_m (j \cdot_m k)$

- 2. Prove that the additive inverse of k in \mathcal{Z}_m is $[-k]_m$.
- 4. 2014, Paper 2, Question 7 Link

Tryhard questions (entirely optional, can be difficult)

- 1. One of Euler's conjectures was disproved in the 1960s by three American mathematicians when they showed there was a positive integer such that $133^5 + 110^5 + 84^5 + 27^5 = n^5$. Find the value of n without using a calculator.
- 2. (This is difficult. Do not prioritize this over other supervision work.)

Is it true that if p is a prime number, and k is an integer $2 \le k \le p$, then the sum of the products of each k-element subset of $\{1, 2, \ldots, p\}$ will be divisible by p?

Survey Questions

- 1. How long did it take to complete the core questions?
- 2. How do you rate your understanding of the topics of this week's supervision? (select one or more)
 - I have little clue
 - I understand some of the topics
 - I understand most of the topics
 - Take me to the exam hall