Quiz 1

1. Use the Euclidean Algorithm to obtain integers x and y satisfying the following equation

$$\gcd(56,72) = 56x + 72y.$$

Solⁿ: By Euclidean Algorithm -
$$72 = 1.56 + 16$$
 — (i) $56 = 3.16 + 8$ — (2) $16 = 2.8 + 0$ — (3) =) $9cd(56, 72) = 8$ from — (i) $16 = 72 - 56$ — (4) from (2) — $8 = 56 - 3(72 - 56)$ (from 4) $8 = 4.56 + (-3) \cdot 72$ Thus — $2 = 4$, $3 = 4$ from $3 =$

2. If $a \equiv b \mod n_1$ and $a \equiv c \mod n_2$, prove that $b \equiv c \mod n$, where $n = \gcd(n_1, n_2)$.

Solr-

$$a \equiv b \mod n_1$$
 $a \equiv c \mod n_2$
 $a \equiv c \mod n_2$