Fluid mechanics

Leif Rune Hellevik

Department of Structural Engineering Norwegian University of Science and Technology Trondheim, Norway

TKT4150 Biomechanics

Outline

Introduction

- A fluid is a material that deforms continuously when subjected to anisotropic stress
- Anisotropy implies shear stresses
- The fluid may be at rest for isotropic stress states

$$T = -p \mathbf{1}, p = p(\rho, \theta)$$

- Eulerian coordinates due to large displacements and chaotic motion of the individual fluid particles
- ▶ The velocity vector $\mathbf{v}(\mathbf{r},t)$ is the primary kinetic property

Fundamental concepts in fluid mechanics

- Stream lines
 - Vector lines to the velocity field
 - Changes with time for non-steady flow v = v(r, t)
 - Coincide with particle trajectories (path lines) for steady flow (v = v(r))
 - $\dot{\mathbf{dr}} \times \mathbf{v}(\mathbf{r},t) = 0$
 - Path lines (particle trajectories)

- lacktriangle Vorticity field $oldsymbol{c} =
 abla imes oldsymbol{v}$
- Potential flow

$$\mathbf{v} = \nabla \phi, \quad \phi = \phi(\mathbf{r}, t) \quad \Leftarrow \nabla \times \mathbf{v} = \mathbf{0}$$

Cylinder wake simulation

Stenosis

- Stenosis 75% occlusion
- Reynolds number 400, Womersley number 15.85
- Vortex rings that are blown out of the stenosis with each pulse, tilt slightly forward, then backward, on successive periods
- Self-induction and wall interaction of the vorticity in the ring, this tilting proceeds rapidly to an energetic breakdown.

The Reynolds number

- Solutions to the governing equations may not be unique
- Increasing velocities in a pipe will eventually produce chaotic unsteady flow
- ► The Reynolds number predicts transition from *laminar* to *turbulent* flow

$$Re = rac{
ho ar{v} d}{\mu}, \quad ar{v} = rac{Q}{A}$$

- ρ density
- \blacktriangleright μ viscosity
- ▶ d pipe diameter
- Q flow rate $[m^3/s]$
- A pipe cross section
- ► Turbulent flow when *Re* > 2000

Illustration of blood cells in vessel

Reynolds Transport Theorem

$$\dot{B} = \int_{V(t)} \frac{\partial b}{\partial t} dV + \int_{A(t)} b(\mathbf{v} \cdot \mathbf{n}) dA$$

- As the derivative is inside the integral sign we assume V(t) = V = constant
- An equivalent representation is therefore

$$\dot{B} = \frac{d}{dt} \int_{V} b \, dV + \int_{A} b \, (\mathbf{v} \cdot \mathbf{n}) \, dA$$

Conservation of mass

▶ Derived with $b = \rho$ in Reynolds Transport Theorem

$$\dot{m} = \frac{d}{dt} \int\limits_{V(t)} \rho(\mathbf{r}, t) \, dV = \int\limits_{V} \frac{\partial \rho}{\partial t} \, dV + \int\limits_{A} \rho \left(\mathbf{v} \cdot \mathbf{n} \right) dA = 0$$

Field equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

On component form

$$\frac{\partial \rho}{\partial t} + (\rho v_i)_{,i} = 0$$

Equivalent equations for conservation of mass

Material derivative

$$\dot{f} = \frac{\partial f}{\partial t} + f_{,i} V_i = \frac{\partial f}{\partial t} + V_i \frac{\partial f}{\partial x_i}$$

Velocity
$$\mathbf{v} = \dot{\mathbf{r}} = \frac{\partial \mathbf{r}(X,t)}{\partial t}$$
 with $\mathbf{r} = [x_1, x_2, x_3]$

Conservative formulation

$$\frac{\partial \rho}{\partial t} + (\rho v_i)_{,i} = 0 \quad \Leftrightarrow \quad \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Non-conservative formulation

$$\frac{\partial \rho}{\partial t} + \rho_{,i} \mathbf{v}_i + \rho \mathbf{v}_{i,i} = \mathbf{0} \quad \Leftrightarrow \quad \dot{\rho} + \rho \nabla \cdot \mathbf{v} = \mathbf{0}$$

Mass conservation for incompressible flow

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

ho = constant

$$\nabla \cdot \mathbf{v} = 0 \quad \Leftrightarrow \quad v_{i,i} = 0$$

Eulerian fluid = perfect fluid

- Shear stresses due to a viscous fluid may be neglected in many situations
- Boundary layer (BL) analysis near the solid surfaces may be sufficient
- Outside the BL, the fluid may be taken as inviscid
- Constitutive equation (material)

$$T = -p \mathbf{1}, \quad T_{ij} = -p \delta_{ij}$$

- $p = p(\rho, \theta)$
- $\rho(\mathbf{r},t)$ is the fluid density
- $\theta(\mathbf{r},t)$ is the fluid temperature
- ▶ Thermoelastic material as $p = p(\rho, \theta)$

Incompressible Eulerian fluids

- Compressibility may often be disregarded
- Liquids are rarely considered compressible
- Gases may also often be rendered incompressible (v < c/3)
- ▶ The pressure is no longer a state variable: $p = p(\mathbf{r}, t)$
- Pressure must be found from boundary conditions

Linear momentum with Reynolds and Gauss

$$\frac{d}{dt} \int_{V} v_{i} \rho \, dV = \int_{V} \frac{\partial \rho v_{i}}{\partial t} + \frac{\partial}{\partial x_{k}} (\rho v_{i} v_{k}) \, dV$$

$$= \int_{V} \rho \frac{\partial v_{i}}{\partial t} + v_{i} \frac{\partial \rho}{\partial t} + v_{i} \frac{\partial}{\partial x_{k}} (\rho v_{k}) + \rho v_{k} \frac{\partial v_{i}}{\partial x_{k}}$$

$$= \int_{V} \rho \underbrace{\left(\frac{\partial v_{i}}{\partial t} + v_{k} \frac{\partial v_{i}}{\partial x_{k}}\right)}_{\dot{v}_{i}} + v_{i} \underbrace{\left(\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{k}} (\rho v_{k})\right)}_{=0 \text{ masscons}} \, dV$$

$$= \int_{V} \dot{v}_{i} \rho dV$$

Consequently:

$$\frac{d}{dt} \int_{V} \mathbf{v} \rho \, dV = \int_{V} \dot{\mathbf{v}} \rho \, dV$$

Equations of motion for Eulerian fluids

From Cauchy's equations of motion

$$\frac{d}{dt} \int_{V} \mathbf{v} \rho \, dV = \int_{V} \dot{\mathbf{v}} \rho \, dV = \int_{V} \nabla \cdot \mathbf{T} + \mathbf{b} \rho \, dV$$

General field equations

$$\dot{\mathbf{v}} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \frac{1}{\rho} \nabla \cdot \mathbf{T} + \mathbf{b}$$

▶ The constitutive equation for a perfect fluid $T_{ij} = -p\delta ij$

$$T_{ik,k} = -\frac{\partial p \delta_{ik}}{\partial x_k} = -\frac{\partial p}{\partial x_k} \delta_{ik} = -p_{,i}$$

▶ The Euler equations

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla \rho + \mathbf{b}$$

The governing equations for Eulerian fluids

The Euler equations (momentum equations)

$$rac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot
abla) \mathbf{v} = -rac{1}{
ho}
abla
ho + \mathbf{b}$$

Conservation of mass (continuity)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

- ▶ 4 equations with 6 unknowns $\mathbf{v}, \mathbf{p}, \rho, \theta$
- ► Close equation system with an energy equation and a state equation $p = p(\rho, \theta)$

Equations of state

- ▶ Ideal gas $p = R\rho\theta$
- Polytropic process

$$p = p_0 \left(\frac{\rho}{\rho_0}\right)^{\alpha}$$

- $ightharpoonup \alpha$ constant
- p_0 and ρ_0 are reference values in K_0
- Various processes
 - ▶ Isobaric process \Leftrightarrow constant pressure ($\alpha = 0$)
 - ▶ Isothermal process \Leftrightarrow constant temperature $(\alpha = 1)$
 - ▶ Isentropic process \Leftrightarrow constant entropy $(\alpha = \kappa = c_p/c_\mu)$
 - ▶ Isochoric process $\Leftrightarrow \nabla \cdot \mathbf{v} = \mathbf{0}$ and $(\alpha = \infty)$

Elastic fluid

- ▶ Barotropic if $p = p(\rho)$ and $\rho = \rho(p)$ are one-to-one relations
- Elastic fluid if barotropic and inviscid
- An elastic fluid is hyperelastic

Sound waves

- Sound propagate as elastic waves
- The elastic waves correspond to small variations in pressure
- Threshold of pain is 28 Pa
- ▶ Threshold of hearing: $2 \cdot 10^{-5}$ Pa
- ► Atmospheric pressure: $p_o = 1.01 \cdot 10^5$ Pa
- Mathematically described by the governing equations for Eulerian fluids and $p = p(\rho)$

Sound wave equations

- ullet Velocity of sound (wave speed) $c^2=rac{d
 ho}{d
 ho}|_{
 ho=
 ho_0}$
- Introduce perturbations in governing equations for perfect fluids

$$p = p_0 + \tilde{p} = p_0 + c^2 \tilde{\rho}$$
 $\rho = \rho_0 + \tilde{\rho}$

Linearized Euler equations

$$rac{\partial \mathbf{v}}{\partial t} = -rac{1}{
ho_0}
abla ilde{
ho}$$
 $rac{\partial ilde{
ho}}{\partial t} = -
ho_0
abla \cdot \mathbf{v}$

Sound wave equations II

- From perturbations: $c^2 = rac{ ilde{p}}{ ilde{
 ho}}$
- Linearized Euler equations

$$\begin{array}{lcl} \frac{\partial \mathbf{v}}{\partial t} & = & -\frac{1}{\rho_0} c^2 \nabla \tilde{\rho} \\ \\ \frac{\partial^2 \tilde{\rho}}{\partial t^2} & = & -\rho_0 \nabla \cdot \frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \left(c^2 \nabla \tilde{\rho} \right) \end{array}$$

The canonical linear wave equation results

$$\frac{\partial^2 \tilde{\rho}}{\partial t^2} = c^2 \nabla^2 \tilde{\rho}$$

▶ In air c = 340 m/s, in water c = 1460 m/s

Summary

- Fluid deforms continuously when subjected to anisotropic stress
- Governing equations for invisicd fluids
- Sound waves