

38° Brazilian Symposium on Databases V Database Thesis and Dissertation Competition

Towards Auditable and Intelligent Privacy-Preserving Record Linkage

Thiago Nóbrega PPGCC/UFCG (2018 - 2022)

Advisors:

Carlos Eduardo Santos Pires

Dimas Cassimiro do Nascimento Filho

September 2023

AGENDA

- I. Introduction
- II. PPRL Comparison step Auditability
- III. Unsupervised Classification step for PPRL
- IV. Deep Learning-based Classifiers for PPRL
- V. Final Arguments

Introduction

l. Introduction

- II. PPRL Comparison step Auditability
- III. Unsupervised Classification step for PPRL
- IV. Deep Learning-based Classifiers for PPRL
- V. Final Arguments

MotivationPPRL Goal

"The goal of PPRL is to perform record linkage without revealing entities identifiers".

☐ Absence of unique identifiers

PPRL Process

PPRL Limitations

Privacy

Adversary Model

Quality

• Low Linkage Quality

PPRL Comparison step Auditability

- I. Introduction
- II. PPRL Comparison step Auditability
- III. Unsupervised Classification step for PPRL
- IV. Deep Learning-based Classifiers for PPRL
- V. Final Arguments

PPRL Comparison step Limitations

PPRL Anonimization

$$a \cap b = 4$$
 $a \cup b = 6$

$$Dice(a,b) = \frac{2 \times |a \cap b|}{|a| + |b|} \to \frac{8}{10} \to 0.8$$

$$Jaccard(a,b) = \frac{|a \cap b|}{|a \ Ub|} \rightarrow \frac{4}{6} \rightarrow 0.65$$

PPRL Comparison step Limitations

- i. Shared Information
- ii. Need to fully trust other PPRL parties

SBF

Splitting Bloom Filter

SBF

Privacy Motivation

- Indistinguishability
- Uncertainty
- Split Flltering

SBF

Cmparison Garantes

"What is the impact of utilizing partial fragments (splits) of the original Bloom Filter on data comparisons?"

$$error = \left(\frac{l}{s}\right)p^{x}(1-p)^{\frac{l}{s}-x}$$

$$\phi_A = egin{bmatrix} 1 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 \\ \hline \end{array} \qquad \phi_B = egin{bmatrix} 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline \end{array}$$

ABEL

Auditable Blockchain-based PPRL

PPRL Comparison step Limitations

Auditability

Auditability

ABEL

Auditability

Bob

BB9 5 o r

A3 =

Alice

EVALUATION

SBF & ABEL Linkage Quality and Privacy

Evaluation Metrics

Linkage Quality

- ☐ Compare ABEL against the standard comparation step
 - ☐ precision
 - ☐ recall
 - **□** F1

Privacy

- ☐ Measure ABEL privacy cost
 - ☐ Reidentification rate against a customized attack

Overall quality results

Privacy

Attack Effectiveness Comparison

Publication	Dataset	Num BF	1-to-1 correct	1-to-1 correct %
Pattern-mining based for PPRL [30]	NCVR diff. attr.	>200k	>49k	25%
Precise and Fast Cryptanalysis for PPRL [26]	NCVR First + Last name	>200k	€ =	20.7%
A Graph Matching Attack [169]	NCVR First + Last name	100k	8 -	>50% accuracy
				>90% accuracy
this work	NCVR First + Last name	10k	1,346	13%

Unsupervised Classification step for PPRL

- I. Introduction
- II. PPRL Comparison step Auditability
- III. Unsupervised Classification step for PPRL
- IV. Deep Learning-based Classifiers for PPRL
- V. Final Arguments

Limitations of PPRL Classification step

Limitations of PPRL Classification Step

e1	e2	sim	
	B1	.9	
Bi	A3	.8	

Threshold

Hard to tune

Automatic (Machine Learning based)

- Privacy Limitations
- No labeled data
- No oracle available
- No access to actual data

AT-UC

Auto-Tuned Unsupervised Classification

$$\Xi(S,\lambda) = \{x \in S \mid x \ge \lambda\}$$

PUBLIC DATASETS

Third Party

EVALUATION

AT-UC Linkage Quality, Efficiency and Privacy

Evaluation Metrics

Linkage Quality

- ☐ Measure Source Selection stage impact
 - **□** F1
- ☐ Compare AT-UC against a baseline and competitors
 - precision, recall, F1

Privacy

- ☐ Measure AT-UC privacy cost
 - ☐ Reidentification rate against an attack

Linkage Quality

Linkage Quality Comparison

Baseline

threshold

Competitors

- transER
- coral
- naive

approach	target	source	precision	recall	f1
	census	restaurants	14%	77%	22%
at-uc	mvr	census	97%	99%	98%
	ncvr	census	100%	78%	87%
	tse	books	84%	87%	85%
	yv-er	tse	66%	56%	61%
naive	census	best	1%	100%	2%
	mvr	best	5%	99%	9%
	ncvr	best	2%	91%	4%
	tse	best	0%	13%	0%
	yv-er	best	43%	87%	58%
	census	-	-	i. E	9
transER	mvr	best	83%	99%	90%
	ncvr	best	74%	99%	85%
	tse	best	3%	100%	6%
	yv-er	-	-	i. E	=
	census	5-best	9% ±6%	49% ±6%	15% ±9%
	mvr	5-best	96% ±1%	88% ±1%	91% ±8%
coral	ncvr	5-best	99%	49%	66%
	tse	5-best	$81\% \pm 1\%$	$80\% \pm 1\%$	80% ±8%
	yv-er	5-best	93% ±15%	40% ±15%	46% ±45%
	census	5-best	8% ±5%	61% ±5%	14% ±9%
	mvr	5-best	49% ±46%	71% ±46%	51% ±44%
threshold	ncvr	5-best	49% ±47%	67% ±47%	49% ±42%
	tse	5-best	27% ±24%	71% ±34%	32% ±31%
atabases 2023 –	Byv+errizor	nte-M 5-best BD	60% ±42%	64% ±42%	60% ±39%

Brazilian Symposium on E

Privacy

Experimental Setup

■ A Graph Matching Attack (Radanbuge et. al, 2020)

Scenario	Accuracy
Original Attack Result	90%
AT-UC Scenario	0%

Deep Learningbased Classifiers for PPRL

- I. Introduction
- II. PPRL Comparison step Auditability
- III. Unsupervised Classification step for PPRL
- IV. Deep Learning-based Classifiers for PPRL
- V. Final Arguments

Limitations of PPRL Classification step

Brazilian Symposium on Databases 2023 — Belo Horizonte-MG - CTDBD

Limitations of PPRL Classification step

Similarity measures bias

- Encoding Limitation
- Similarity measures limitation

Deep Learning-based Classifier for PPRL

How to extract the BF patterns?

How to extract the BF patterns?

Recurrence Plot as a Feature Space

CRP highlights common states (e.g., bits) over encoded record pairs

- CRP Parameters
 - i. Encoded Record (\hat{e}_1, \hat{e}_2)
 - l = number of bits \hat{e}_1 and \hat{e}_2
 - ii. Neighbors (m)
 - iii. Heaviside Threshold (α)
- $lacksquare CRP(\hat{\mathbf{e}}_1,\hat{\mathbf{e}}_2,m,lpha)=RP_{n imes n}$, such as n=l-(m-1)

$$CRP(\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, m, \alpha) = \sum_{i=0}^{l} \sum_{j=0}^{l} \Theta\left(\alpha, \sum_{w=0}^{m} ||\hat{\mathbf{e}}_1[i+w] - \hat{\mathbf{e}}_2[i+w]||\right)$$

$$\Theta(\alpha_i, v) = \begin{cases} 1: & v \le \alpha_i \\ 0: & v > \alpha_i \end{cases}$$

$$l=8$$
 , $m=3$, $\alpha=1$

Real world Example Bloom Filter as a CRP

Convolution Neural Network Model

EVALUATION

DLC Linkage Quality and Privacy

Evaluation Metrics

Linkage Quality

- □DLC Quality Evaluation
 - ☐ Is CRP able to improve the classifiers effectiveness?
 - **□** F1
 - ☐ What is the impact of using different classifiers in the MHT Workflow?
 - ☐ ROC Curve

Linkage Quality

Is DLC able to improve the PPRL quality results compared to the baseline and the competitor?

Final Arguments

- I. Introduction
- II. PPRL Comparison step Auditability
- III. Unsupervised Classification step for PPRL
- IV. Deep Learning-based Classifiers for PPRL
- V. Final Arguments

Contributions

Code and Datasets

Available on author's github (https://github.com/thiagonobrega):

- i. Source Code
- ii. Instructions*
- iii. Datasets

* Reproducibility details

Research Relevance

Privacy Preserving Applications

- Medical
- Nacional Security
- Public Policies
- Novel Privacy Atacks

Other context

- Federated Linkage
- Census
- Identity Management
- Law and Regulations

Publications

- i. Blockchain-based privacy-preserving record linkage: enhancing data privacy in an untrusted environment - T Nóbrega, CES Pires, DC Nascimento. Information Systems 102, 101826 -2021
- ii. Limitation of Blockchain-based Privacy-Preserving Record Linkage T Nóbrega, CES Pires, DC Nascimento. Information Systems 108, 101935 2022
- iii. Towards Auditable and Intelligent Privacy-Preserving Record Linkage T Nóbrega, CES Pires, DC Nascimento. Anais Estendidos do XXXVI Simpósio Brasileiro de Bancos de Dados, 99-105S 2020
- iv. Towards automatic Privacy-Preserving Record Linkage: A Transfer Learning based classification step T Nóbrega, CES Pires, DC Nascimento. Data & Knowledge Engineering 145 (2023): 102180.

^{*} The publication of DLC is currently being written for submission.

AT-UC Overview

Three stage approach

Future Work

- Privacy aspects
 - Improve the privacy guarantees of the PPRL process (Privacy-Preserving Blockchain)
 - Novel Privacy Attacks
 - Differential Privacy in PPRL
- Linkage Quality and Novel PPRL Applications
 - Distributed Representation of Words (DR) in PPRL
 - Federated Learning (collaborative learning)
 - Deep Unsupervised Domain Adaptation

Research goals

"This work's main goal covers improving privacy and the linkage quality of PPRL process"

SBF ERROR

$$B\left(\frac{l}{s},p\right) = \left(\frac{l}{s}\right)p^{x}(1-p)^{\frac{l}{s}-x}$$

SBF Goal

 $threshold = .65 \mid \epsilon \cong 0.35$

$$Jaccard(1 1 0 1) = \frac{3}{3} \rightarrow 1 | \epsilon \approx 0.35$$

$$Jaccard(0 1 0 1 , 1 1 0 1) = \frac{2}{3} \rightarrow 0.65 | \epsilon \approx 0.0$$

$$Jaccard(1 1 0 0 , 0 1 1 0) = \frac{1}{3} \rightarrow 0.3 \mid \epsilon \cong 0.35$$

Privacy

ABEL Parametrization

- Indistinguishability
 - PU(P,Q) < 0.5
- Uncertain
 - KL(P,Q) > 0.1

Privacy

Attack Effectiveness

Test parameters

- Dataset : NCVR
- Bloom Filter
 - I = 200 bits
 - f.p.r = 50%
- ABEL
 - Privacy parameters
 - Indistinguishability
 - PU(P,Q) < 0.5
 - Uncertain
 - KL(P,Q) > 0.1
 - a = .85, error = .05
 - s = 10 bits (5%)

iteration	shared information	1-to-1 correct	1-to-many correct	1-to-1 wrong	1-to-many wrong	No matches
Iteration 1	5%	1	0	5,588	4,411	0
Iteration 2	10%	1	1	1,855	1,392	0
Iteration 3	15%	8	17	1,157	975	0
Iteration 4	20%	48	137	804	759	0
Iteration 5	25%	214	312	614	450	0
Iteration 6-20	100%	1,346	125	0	0	0

Research questions

- I. Is it possible to improve the privacy-preserving capabilities of the Bloom Filter anonymization technique?
- II. Is it possible to consider a novel adversary model that reduces the need of thrust by PPRL parties?

Research Questions

- I. Is it possible to improve the privacy-preserving capabilities of the Bloom Filter anonymization technique?
- II. Is it possible to consider a novel adversary model that reduces the need of thrust by PPRL parties?

Research questions

III. Is it possible to employ an automatic (e.g., ML-based classifier) to during the PPRL Classification step?

Research Questions

III. Is it possible to employ an automatic (e.g., ML-based classifier) to during the PPRL Classification step?

Research questions

IV. Is it possible to perform classification without standard binary similarity metrics (e.g., Jaccard and dice distance)?

Research Questions

IV. It is possible to perform classification without standard binary similarity metrics (e.g., Jaccard and dice distance)?

$$error = \left(\frac{l}{s}\right) p^{x} (1-p)^{\frac{l}{s}-x}$$

SBF

Privacy Motivation

- Split Filtering
- Indistinguishability
- Uncertainty

Linkage Quality

What is the impact of using different classifiers - e.g., state-of-the-art NN (ResNet50) and classical Machine Learning classifiers (SVM and GBC) - in the MHT Workflow?

dataset	model	precision	recall	fl
	CCN	87.23% ±0.0	10.38% ±0.08	18.55% ±0.13
census	GBC	$69.86\% \pm 1.5$	$7.94\% \pm 0.13$	14.26% ±0.25
	SVM	$95.74\% \pm 6.02$	$10.27\% \pm 0.58$	$18.55\% \pm 1.06$
	CCN	98.95% ±0.34	90.82% ±0.19	94.71% ±0.26
dblp_acm	GBC	$97.12\% \pm 0.65$	$97.6\% \pm 1.07$	$97.35\% \pm 0.21$
	SVM	$93.4\% \pm 0.04$	$98.21\% \pm 0.04$	95.74% ±0.04
mvr	CCN	99.12% ±1.04	90.63% ±3.87	94.66% ±2.36
	GBC	$100.0\% \pm 0.0$	95.91% ±1.06	97.91% ±0.55
	SVM	$100.0\% \pm 0.0$	$97.52\% \pm 0.14$	98.75% ±0.07
ncvr	CCN	69.47% ±0.52	99.76% ±0.22	81.9% ±0.29
	GBC	$68.52\% \pm 0.76$	99.9% ±0.09	$81.28\% \pm 0.51$
	SVM Brazili	69.09% ±0.55 an Symposium on Data	99.9% ±0.08 abases 2023 – Belo Ho	81.69% ±0.36 rizonte-MG -
			CTDBD	

77