last time

C code and cache misses

handling writes

Q1: add to cache on write? (write-allocate)

Q2: update next level immediately? (write-back)

dirty bits for write-back

Side notes re caches

Multi-level caches

First-level cache needs to be fast (and thus small) — 1-2 cycles hit time, so 32-64 KB L1 $\rm I/D$

But want high capacity!

So today's high-end processors have two levels of cache per core, and then a huge last-level cache shared among the cores L2 and LLC are shared I/D; L2 is 256KB–1MB; L3 is usu. 128–512 MB

Lots of extra hardware tricks to boost hit rate, e.g. prefetching

Cache lookups with virtual or physical address?

Cache lookup with VA: aliasing among processes!

But indexing using PA must wait for TLB (only an issue for L1)

So index using VA bits (this means all index bits must be confined to page offset), and do TLB lookup in parallel

Then tag check can use PA bits

another view

two-level page table lookup

cache accesses and multi-level PTs

four-level page tables — five cache accesses per program memory access

L1 cache hits — typically a couple cycles each?

so add 8 cycles to each program memory access?

not acceptable

program memory active sets

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F...

small areas of memory active at a time one or two pages in each area?

0x0000 0000 0040 0000

page table entries and locality

page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

page table entries and locality

page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

needed page table entries are very small

caled a **TLB** (translation lookaside buffer)

(usually very small) cache of page table entries

L1 cache	TLB
physical addresses	virtual page numbers
bytes from memory	page table entries
tens of bytes per block	one page table entry per block
usually thousands of blocks	usually tens of entries

caled a **TLB** (translation lookaside buffer)

(usually very small) cache of page table entries

L1 cache	T	LB
physical addresses	V	irtual page numbers
bytes from memory	<i>'</i> р	age table entries
tens of bytes per b	lock o	ne page ∥able entry per block
usually thousands	sually thousands of blocks usually te is of entries	
only c	only caches the page table lookup itself	
(gene	(generally) just entries from the last-level page tables	

caled a **TLB** (translation lookaside buffer)

(usually very small) cache of page table entries

L1 cache		TLB	
physical add	resses	virtual page num	bers
bytes from r	nemory	page table entries	S
tens of bytes		one page table er	ntry per block
usually thou	sands of blocks	usuraly tens of en	ntries
-	virtual page number divided into		
	index + tag		

caled a **TLB** (translation lookaside buffer)

(usually very small) cache of page table entries

L1 cache	TLB
physical addresses	virtual page numbers
bytes from memory	page table entries
tens of bytes per block	one page table entry per block
usually thousands of blocks	usually tens of entries

not much spatial locality between page table entries (they're used for kilobytes of data already)

caled a **TLB** (translation lookaside buffer)

(usually very small) cache of page table entries

L1 cache	TLB
physical addresses	virtual page numbers
bytes from memory	page table entries
tens of bytes per block	one page table entry per block
usually thousands of blocks	usually tens of entries

0 block offset bits

caled a **TLB** (translation lookaside buffer)

(usually very small) cache of page table entries

L1 cache	TLB
physical addresses	virtual page numbers
bytes from memory	page table entries
tens of bytes per block	one page table entry per block
usually thousands of blocks	usually tens of entries

few active page table entries at a time enables highly associative cache designs

TLB and multi-level page tables

TLB caches valid last-level page table entries

doesn't matter which last-level page table

means TLB output can be used directly to form address

TLB and two-level lookup

TLB and two-level lookup

exercise: TLB access pattern (setup)

4-entry, 2-way TLB, LRU replacement policy, initially empty

4096 byte pages

how many index bits?

TLB index of virtual address 0x12345?

exercise: TLB access pattern

4-entry, 2-way TLB, LRU replacement policy, initially empty

4096 byte pages

type	virtual	physical
read	0x440030	0x554030
write	0x440034	0x554034
read	0x7FFFE008	0x556008
read	0x7FFFE000	0x556000
read	0x7FFFDFF8	0x5F8FF8
read	0x664080	0x5F9080
read	0x440038	0x554038
write	0x7FFFDFF0	0x5F8FF0

which are TLB hits? which are TLB misses? final contents of TLB?

why threads?

```
concurrency: different things happening at once one thread per user of web server? one thread per page in web browser? one thread to play audio, one to read keyboard, ...? ...
```

parallelism: do same thing with more resources multiple processors to speed-up simulation (life assignment)

single and multithread processes

single-threaded process

multi-threaded process


```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
  pthread_t pi_thread, list_thread;
  if (0 != pthread_create(&pi_thread, NULL, ComputePi, NULL))
     handle_error();
  if (0 != pthread_create(&list_thread, NULL, PrintClassList, NULL))
     handle_error();
  ... /* more code */
    main()
pthread_create.
                                           ComputePi
pthread_create.
                           PrintClassList
```

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
  pthread_t pi_thread, list_thread;
  if (0 != pthread_create(&pi_thread, NULL, ComputePi, NULL))
      handle_error();
  if (0 != pthread create(&list thread, NULL, PrintClassList, NULL))
      handle_error();
  ... /* more code */
pthread create arguments:
```

thread identifier

function to run thread starts here, terminates if this function returns

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
  pthread_t pi_thread, list_thread;
  if (0 != pthread_create(&pi_thread, NULL, ComputePi, NULL))
        handle_error();
  if (0 != pthread_create(&list_thread, NULL, PrintClassList, NULL))
        handle_error();
    ... /* more code */
}
```

pthread_create arguments:

thread identifier

function to run thread starts here, terminates if this function returns

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
  pthread_t pi_thread, list_thread;
  if (0 != pthread_create(&pi_thread, NULL, ComputePi, NULL))
      handle_error();
  if (0 != pthread create(&list thread, NULL, <a href="PrintClassList">PrintClassList</a>, NULL))
      handle_error();
  ... /* more code */
pthread create arguments:
```

thread identifier

function to run thread starts here, terminates if this function returns

```
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {
  pthread t pi thread, list thread;
  if (0 != pthread_create(&pi_thread, NULL, ComputePi, NULL))
      handle_error();
  if (0 != pthread create(&list thread, NULL, PrintClassList, NULL))
      handle_error();
  ... /* more code */
pthread create arguments:
```

thread identifier

function to run thread starts here, terminates if this function returns

a threading race

```
#include <pthread.h>
#include <stdio.h>
void *print message(void *ignored argument) {
    printf("Inutheuthread\n");
    return NULL;
int main() {
    printf("About_to_start_thread\n");
    pthread_t the_thread;
    /* assume does not fail */
    pthread_create(&the_thread, NULL, print_message, NULL);
    printf("Done_starting_thread\n");
    return 0;
```

My machine: outputs In the thread about 4% of the time.

What happened?

a race

```
returning from main exits the entire process (all its threads)
     same as calling exit; not like other threads
race: main's return 0 or print message's printf first?
                                                              time
  main: printf/pthread_create/printf/return
                               print message: printf/return
                                return from main
                                 ends all threads
                                  in the process
```

fixing the race (version 1)

```
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {
    printf("In_the_thread\n");
    return NULL;
int main() {
    printf("About to start thread n");
    pthread_t the_thread;
   /* missing: error checking */
    pthread create(&the thread, NULL, print message, NULL);
    printf("Done_starting_thread\n");
    pthread_join(the_thread, NULL); /* WAIT FOR THREAD */
    return 0;
```

fixing the race (version 2; not recommended)

```
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {
    printf("In_the_thread\n");
    return NULL;
int main() {
    printf("About_to_start_thread\n");
    pthread_t the_thread;
   /* missing: error checking */
    pthread create(&the thread, NULL, print message, NULL);
    printf("Done_starting_thread\n");
    pthread_exit(NULL);
```

pthread_join, pthread_exit

 $R = pthread_join(X, \&P)$: wait for thread X, copies return value into P

like waitpid, but for a thread thread return value is pointer to anything R = 0 if successful, error code otherwise

pthread_exit: exit current thread, returning a value
 like exit or returning from main, but for a single thread
 same effect as returning from function passed to pthread_create

a note on error checking

from pthread_create manpage:

ERRORS

EAGAIN Insufficient resources to create another thread, or a system-imposed limit on the number of threads was encountered. The latter case may occur in two ways: the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which limits the number of process for a real user ID, was reached; or the kernel's system-wide limit on the number of threads, /proc/sys/kernel/threads-max, was reached.

EINVAL Invalid settings in attr.

EPERM No permission to set the scheduling policy and parameters specified in attr.

special constants for return value

same pattern for many other pthreads functions pthread_join, pthread_mutex_...(later), ...

will often omit error checking in slides for brevity

error checking pthread_create

```
int error = pthread_create(...);
if (error != 0) {
    /* print some error message */
}
```

sum example (only globals)

```
int values[1024]; int results[2];
void *sum_front(void *ignored_argument) {
    int sum = 0;
    for (int i = 0; i < 512; ++i) { sum += values[i]; }</pre>
    results[0] = sum;
    return NULL;
}
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }
    results[1] = sum;
    return NULL;
int sum all() {
    pthread_t sum_front_thread, sum_back_thread;
    /* missing: error handling */
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

sum example (only globals)

```
int values[1024]; int result values, results: global variables — shared
void *sum_front(void *ignored_argument) {
    int sum = 0;
    for (int i = 0; i < 512; ++i) { sum += values[i]; }
    results[0] = sum;
    return NULL;
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }
    results[1] = sum;
    return NULL;
int sum all() {
    pthread_t sum_front_thread, sum_back_thread;
   /* missing: error handling */
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

sum example (only globals)

```
two different functions
int values[1024];
                      happen to be the same except for some numbers
void *sum_front(void
    int sum = 0;
    for (int i = 0; i < 512; ++i) { sum += values[i]; }
    results[0] = sum;
    return NULL;
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }
    results[1] = sum;
    return NULL;
int sum all() {
    pthread_t sum_front_thread, sum_back_thread;
    /* missing: error handling */
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

```
values returned from threads
        via global array instead of return value
int valu
         (partly to illustrate that memory is shared,
void *su
        partly because this pattern works when we don't join (later))
    int
    for
    results[0] = sum;
    return NULL;
void *sum_back(void *ignored_argument) {
    int sum = 0;
    for (int i = 512; i < 1024; ++i) { sum += values[i]; }
    results[1] = sum;
    return NULL;
int sum all() {
    pthread_t sum_front_thread, sum_back_thread;
    /* missing: error handling */
    pthread create(&sum front thread, NULL, sum front, NULL);
    pthread_create(&sum_back_thread, NULL, sum_back, NULL);
    pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
    return results[0] + results[1];
```

thread_sum memory layout

thread_sum memory layout

sum example (to global, with thread IDs)

```
int values[1024];
int results[2];
void *sum_thread(void *argument) {
    int id = (int) argument;
    int sum = 0;
    for (int i = id * 512; i < (id + 1) * 512; ++i) {
        sum += values[i];
    results[id] = sum;
    return NULL;
int sum all() {
    /* missing: error handling */
    pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        pthread_create(&threads[i], NULL, sum_thread, (void *) i);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return results[0] + results[1];
}
```

sum example (to global, with thread IDs)

```
int values[1024];
                              values, results: global variables — shared
int results[2];
void *sum_thread(void *argumed...,
    int id = (int) argument;
    int sum = 0;
    for (int i = id * 512; i < (id + 1) * 512; ++i) {
        sum += values[i];
    results[id] = sum;
    return NULL;
int sum all() {
    /* missing: error handling */
    pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        pthread_create(&threads[i], NULL, sum_thread, (void *) i);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return results[0] + results[1];
```

```
int values[1024];
struct ThreadInfo {
    int start, end, result;
};
void *sum_thread(void *argument) {
    struct ThreadInfo *my_info = (struct ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
    my_info->result = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2]; struct ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

```
int values[1024]; values: global variable — shared
struct ThreadInfo
    int start, end, result;
};
void *sum_thread(void *argument) {
    struct ThreadInfo *my_info = (struct ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
   my_info->result = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2]; struct ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

```
int values[1024];
struct ThreadInfo {
    int start, end, result;
};
void *sum_thread(void *argument) {
    struct ThreadInfo *my info =
                                  (struct ThreadInfo *) argument:
    int sum = 0;
                                  my info: pointer to sum all's stack
    for (int i = my_info->start;
                                  only okay because sum_all waits!
   my_info->result = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2]; struct ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

```
int values[1024];
struct ThreadInfo {
    int start, end, result;
};
void *sum_thread(void *argument) {
    struct ThreadInfo *my_info = (struct ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
    my_info->result = sum;
    return NULL;
int sum_all() {
    pthread_t thread[2]; struct ThreadInfo info[2];
    for (int i = 0; i < 2; ++i) {
        info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, &info[i]);
    for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }</pre>
    return info[0].result + info[1].result;
```

thread_sum memory layout (info struct)


```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

```
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {
    ThreadInfo *my_info = (ThreadInfo *) argument;
    int sum = 0;
    for (int i = my_info->start; i < my_info->end; ++i) {
        sum += my_info->values[i];
   my_info->result = sum;
    return NULL;
int sum all(int *values) {
    ThreadInfo info[2]; pthread_t thread[2];
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);
    for (int i = 0; i < 2; ++i)
        pthread_join(threads[i], NULL);
    return info[0].result + info[1].result;
```

program memory (to main stack)

sum example (on heap)

```
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result
void *sum thread(void *argument) {
    . . .
struct ThreadInfo *start_sum_all(int *values) {
    struct ThreadInfo *info = calloc(2, sizeof(struct ThreadInfo));
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);
    return info;
int finish_sum_all(ThreadInfo *info) {
    for (int i = 0; i < 2; ++i)
        pthread_join(info[i].thread, NULL);
    int result = info[0].result + info[1].result;
    free(info);
    return result;
```

sum example (on heap)

```
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result
void *sum thread(void *argument) {
    . . .
struct ThreadInfo *start_sum_all(int *values) {
    struct ThreadInfo *info = calloc(2, sizeof(struct ThreadInfo));
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);
    return info;
int finish_sum_all(ThreadInfo *info) {
    for (int i = 0; i < 2; ++i)
        pthread_join(info[i].thread, NULL);
    int result = info[0].result + info[1].result;
    free(info);
    return result;
```

sum example (on heap)

```
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result
void *sum thread(void *argument) {
    . . .
struct ThreadInfo *start_sum_all(int *values) {
    struct ThreadInfo *info = calloc(2, sizeof(struct ThreadInfo));
    for (int i = 0; i < 2; ++i) {
        info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
        pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);
    return info;
int finish_sum_all(ThreadInfo *info) {
    for (int i = 0; i < 2; ++i)
        pthread_join(info[i].thread, NULL);
    int result = info[0].result + info[1].result;
    free(info);
    return result;
```

thread_sum memory (heap version)

what's wrong with this?

```
/* omitted: headers */
void *create_string(void *ignored_argument) {
  char string[1024];
  ComputeString(string);
  return string;
int main() {
  pthread_t the_thread;
  pthread_create(&the_thread, NULL, create_string, NULL);
  char *string ptr;
  pthread join(the thread, (void**) &string ptr);
  printf("string_is_ws\n", string_ptr);
```

program memory

Used by OS main thread stack second thread stack third thread stack Heap / other dynamic Code / Data

0xFFFF FFFF FFFF
0xFFFF 8000 0000 0000
0x7F...

dynamically allocated stacks char string[] allocated here string_ptr pointed to here

...stacks deallocated when threads exit/are joined

0x0000 0000 0040 0000

program memory

Used by OS
main thread stack
second thread stack
third thread stack
Heap / other dynamic
Code / Data

dynamically allocated stacks char string[] allocated here string_ptr pointed to here

...stacks deallocated when threads exit/are joined

0x0000 0000 0040 0000

thread joining

pthread_join allows collecting thread return value
if you don't join joinable thread, then memory leak!

thread joining

pthread_join allows collecting thread return value if you don't join joinable thread, then memory leak!

avoiding memory leak?

always join...or

"detach" thread to make it not joinable

pthread_detach

```
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {
    pthread_t show_progress_thread;
    pthread_create(&show_progress_thread, NULL,
                   show progress, NULL);
    /* instead of keeping pthread t around to join thread later: */
    pthread detach(show progress thread);
int main() {
    spawn show progress thread();
    do other stuff();
           detach = don't care about return value, etc.
            system will deallocate when thread terminates
```

starting threads detached

setting stack sizes

a threading race

```
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {
    printf("In_the_thread\n");
    return NULL;
int main() {
    printf("About_to_start_thread\n");
    pthread t the_thread;
    /* assume does not fail */
    pthread create(&the thread, NULL, print message, NULL);
    printf("Done_starting_thread\n");
    return 0;
```

My machine: outputs In the thread about 4% of the time.

What happened?

a race

returning from main exits the entire process (all its threads) same as calling exit; not like other threads race: main's return 0 or print message's printf first? time main: printf/pthread_create/printf/return print message: printf/return return from main ends all threads in the process

the correctness problem

two threads?

introduces non-determinism

which one runs first?

allows for "race condition" bugs

...to be avoided with synchronization constructs

example application: ATM server

commands: withdraw, deposit

one correctness goal: don't lose money

ATM server (pseudocode) ServerLoop() { while (true) { ReceiveRequest(&operation, &accountNumber, &amount); if (operation == DEPOSIT) { Deposit(accountNumber, amount); } else ... Deposit(accountNumber, amount) { account = GetAccount(accountNumber); account->balance += amount; SaveAccountUpdates(account);

a threaded server?

```
Deposit(accountNumber, amount) {
    account = GetAccount(accountId);
    account->balance += amount;
    SaveAccountUpdates(account);
maybe GetAccount/SaveAccountUpdates can be slow?
    read/write disk sometimes? contact another server sometimes?
maybe lots of requests to process?
    maybe real logic has more checks than Deposit()
all reasons to handle multiple requests at once
```

 \rightarrow many threads all running the server loop

multiple threads

```
main() {
    for (int i = 0; i < NumberOfThreads; ++i) {</pre>
        pthread_create(&server_loop_threads[i], NULL,
                        ServerLoop, NULL);
ServerLoop() {
    while (true) {
        ReceiveRequest(&operation, &accountNumber, &amount);
        if (operation == DEPOSIT) {
            Deposit(accountNumber, amount);
        } else ...
```

the lost write

```
account->balance += amount; (in two threads, same account)
          Thread A
                                       Thread B
mov account->balance, %rax
add amount, %rax
                         context switch
                                mov account->balance, %rax
                                add amount, %rax
                         context switch
mov %rax, account->balance
                         context switch
                                mov %rax, account->balance
```

the lost write

```
account->balance += amount; (in two threads, same account)
          Thread A
                                       Thread B
mov account->balance, %rax
add amount, %rax
                         context switch
                                 mov account->balance, %rax
                                 add amount, %rax
                         context switch
mov %rax, account->balance
                         context switch
     lost write to balance
                                 mov %rax, account->balance
                                      "winner" of the race
```

the lost write

```
account->balance += amount; (in two threads, same account)
          Thread A
                                        Thread B
mov account->balance, %rax
add amount, %rax
                         context switch
                                 mov account->balance, %rax
                                 add amount, %rax
                         context switch
mov %rax, account->balance
                         context switch
     lost write to balance
                                 mov %rax, account->balance
                                      "winner" of the race
    lost track of thread A's money
```

thinking about race conditions (1)

what are the possible values of x? (initially x = y = 0)

Thread A Thread B $x \leftarrow 1$ $y \leftarrow 2$

thinking about race conditions (2)

possible values of x? (initially x = y = 0)

Thread A Thread B $x \leftarrow y + 1 \qquad y \leftarrow 2$ $y \leftarrow y \times 2$

thinking about race conditions (2)

possible values of x? (initially x = y = 0)

Thread A Thread B $x \leftarrow y + 1 \qquad y \leftarrow 2$ $y \leftarrow y \times 2$

thinking about race conditions (3)

what are the possible values of x?

(initially
$$x = y = 0$$
)

Thread A Thread B
$$x \leftarrow 1 \qquad x \leftarrow 2$$

thinking about race conditions (2)

possible values of x? (initially x = y = 0)

Thread A Thread B $x \leftarrow y + 1 \qquad y \leftarrow 2$ $y \leftarrow y \times 2$

atomic operation

atomic operation = operation that runs to completion or not at all we will use these to let threads work together

most machines: loading/storing (aligned) words is atomic so can't get 3 from $x \leftarrow 1$ and $x \leftarrow 2$ running in parallel aligned \approx address of word is multiple of word size (typically done by compilers)

but some instructions are not atomic; examples:

x86: integer add constant to memory location many CPUs: loading/storing values that cross cache blocks
e.g. if cache blocks 0x40 bytes, load/store 4 byte from addr. 0x3E is not atomic

lost adds (program)

```
.global update_loop
update loop:
   addl $1, the_value // the_value (global variable) += 1
   dec %rdi  // argument 1 -= 1
   jg update_loop // if argument 1 >= 0 repeat
   ret
int the_value;
extern void *update_loop(void *);
int main(void) {
    the value = 0;
    pthread t A, B;
    pthread_create(&A, NULL, update_loop, (void*) 1000000);
    pthread create(&B, NULL, update loop, (void*) 1000000);
   pthread_join(A, NULL); pthread_join(B, NULL);
   // expected result: 1000000 + 1000000 = 2000000
   printf("the value,=,%d\n", the value);
```

lost adds (results)

but how?

probably not possible on single core exceptions can't occur in the middle of add instruction

...but 'add to memory' implemented with multiple steps still needs to load, add, store internally can be interleaved with what other cores do

but how?

```
probably not possible on single core exceptions can't occur in the middle of add instruction
```

...but 'add to memory' implemented with multiple steps still needs to load, add, store internally can be interleaved with what other cores do

(and actually it's more complicated than that — we'll talk later)

so, what is actually atomic

```
for now we'll assume: load/stores of 'words' (64-bit machine = 64-bits words)
```

in general: processor designer will tell you

their job to design caches, etc. to work as documented

compilers move loads/stores (1)

compilers move loads/stores (1)

compilers move loads/stores (2)

```
void WaitForOther() {
    is waiting = 1;
    do {} while (!other_ready);
    is waiting = 0;
WaitForOther:
 // compiler optimization: don't set is waiting to 1,
 // (why? it will be set to 0 anyway)
  movl other_ready, %eax // eax <- other_ready</pre>
.L2:
  testl %eax, %eax
  je .L2
                             // while (eax == 0) repeat
  movl $0, is_waiting // is_waiting <- 0
```

compilers move loads/stores (2)

```
void WaitForOther() {
    is waiting = 1;
    do {} while (!other_ready);
    is waiting = 0;
WaitForOther:
 // compiler optimization: don't set is waiting to 1,
 // (why? it will be set to 0 anyway)
  movl other_ready, %eax // eax <- other_ready</pre>
.L2:
  testl %eax, %eax
  je .L2
                             // while (eax == 0) repeat
 movl $0, is_waiting // is_waiting <- 0</pre>
```

compilers move loads/stores (2)

```
void WaitForOther() {
    is waiting = 1;
    do {} while (!other_ready);
    is waiting = 0;
WaitForOther:
 // compiler optimization: don't set is waiting to 1,
  // (why? it will be set to 0 anyway)
 movl other_ready, %eax // eax <- other_ready</pre>
.L2:
  testl %eax, %eax
  je .L2
                             // while (eax == 0) repeat
  movl $0, is_waiting // is_waiting <- 0
```

fixing compiler reordering?

isn't there a way to tell compiler not to do these optimizations?

yes, but that is still not enough!

processors sometimes do this kind of reordering too (between cores)

pthreads and reordering

many pthreads functions prevent reordering everything before function call actually happens before

includes preventing some optimizations

e.g. keeping global variable in register for too long

pthread_create, pthread_join, other tools we'll talk about ... basically: if pthreads is waiting for/starting something, no weird ordering

implementation part 1: prevent compiler reordering

implementation part 2: use special instructions example: x86 mfence instruction

some definitions

like updating shared balance

mutual exclusion: ensuring only one thread does a particular thing at a time

62

some definitions

mutual exclusion: ensuring only one thread does a particular thing at a time

like updating shared balance

critical section: code that exactly one thread can execute at a time

result of mutual exclusion

some definitions

mutual exclusion: ensuring only one thread does a particular thing at a time

like updating shared balance

critical section: code that exactly one thread can execute at a time

result of mutual exclusion

lock: object only one thread can hold at a time
interface for creating critical sections

lock analogy

agreement: only change account balances while wearing this hat normally hat kept on table put on hat when editing balance

hopefully, only one person (= thread) can wear hat a time need to wait for them to remove hat to put it on

lock analogy

agreement: only change account balances while wearing this hat normally hat kept on table put on hat when editing balance

hopefully, only one person (= thread) can wear hat a time need to wait for them to remove hat to put it on

"lock (or acquire) the lock" = get and put on hat

"unlock (or release) the lock" = put hat back on table

the lock primitive

```
locks: an object with (at least) two operations: 

acquire or lock — wait until lock is free, then "grab" it 

release or unlock — let others use lock, wakeup waiters
```

typical usage: everyone acquires lock before using shared resource forget to acquire lock? weird things happen

```
Lock(account_lock);
balance += ...;
Unlock(account_lock);
```

the lock primitive

```
locks: an object with (at least) two operations: 

acquire or lock — wait until lock is free, then "grab" it 

release or unlock — let others use lock, wakeup waiters
```

typical usage: everyone acquires lock before using shared resource forget to acquire lock? weird things happen

```
Lock(account_lock);
balance += ...;
Unlock(account_lock);
```

waiting for lock?

when waiting — ideally:

not using processor (at least if waiting a while)

OS can context switch to other programs

pthread mutex

```
#include <pthread.h>
pthread_mutex_t account_lock;
pthread mutex init(&account lock, NULL);
   // or: pthread_mutex_t account_lock =
                    PTHREAD MUTEX INITIALIZER;
pthread_mutex_lock(&account_lock);
balance += ...;
pthread_mutex_unlock(&account lock);
```

```
exercise
pthread mutex t lock1 = PTHREAD MUTEX INITIALIZER;
pthread mutex t lock2 = PTHREAD MUTEX INITIALIZER;
string one = "init_one", two = "init_two";
void ThreadA() {
    pthread mutex lock(&lock1);
    one = "one_in_ThreadA"; // (A1)
    pthread mutex unlock(&lock1);
    pthread mutex lock(&lock2);
    two = "two_in_ThreadA"; // (A2)
    pthread mutex unlock(&lock2);
}
void ThreadB() {
    pthread mutex lock(&lock1);
    one = "one_in_ThreadB"; // (B1)
    pthread mutex lock(&lock2);
    two = "two_in_ThreadB"; // (B2)
    pthread mutex unlock(&lock2);
    pthread mutex unlock(&lock1);
possible values of one/two after A+B run?
```

```
exercise (alternate 1)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
 pthread mutex t lock2 = PTHREAD MUTEX INITIALIZER;
 string one = "init_one", two = "init_two";
 void ThreadA() {
     pthread mutex lock(&lock2);
     two = "two_in_ThreadA"; // (A2)
     pthread_mutex_unlock(&lock2);
     pthread mutex lock(&lock1);
     one = "one<sub>□</sub>in<sub>□</sub>ThreadA"; // (A1)
     pthread mutex unlock(&lock1);
 }
 void ThreadB() {
     pthread mutex lock(&lock1);
     one = "one_in_ThreadB"; // (B1)
     pthread mutex lock(&lock2);
     two = "two_in_ThreadB"; // (B2)
     pthread mutex unlock(&lock2);
     pthread mutex unlock(&lock1);
 possible values of one/two after A+B run?
```

68

```
exercise (alternate 2)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
 pthread mutex t lock2 = PTHREAD MUTEX INITIALIZER;
 string one = "init_one", two = "init_two";
 void ThreadA() {
     pthread mutex lock(&lock2);
     two = "two_in_ThreadA"; // (A2)
     pthread_mutex_unlock(&lock2);
     pthread mutex lock(&lock1);
     one = "one<sub>□</sub>in<sub>□</sub>ThreadA"; // (A1)
     pthread mutex unlock(&lock1);
 }
 void ThreadB() {
     pthread mutex lock(&lock1);
     one = "one in ThreadB"; // (B1)
     pthread mutex unlock(&lock1);
     pthread mutex lock(&lock2);
     two = "two_in_ThreadB"; // (B2)
     pthread mutex unlock(&lock2);
```

possible values of one/two after A+B run?

POSIX mutex restrictions

pthread_mutex rule: unlock from same thread you lock in

does this actually matter?

depends on how pthread_mutex is implemented

preview: general sync

lots of coordinating threads beyond locks

will talk about two general tools later:k monitors/condition variables semaphores [if time]

big added feature: wait for arbitrary thing to happen

also some less general tools: barriers

a bad idea

window

```
one bad idea to wait for an event:
pthread mutex t lock = PTHREAD MUTEX INITIALIZER; bool ready = false;
void WaitForReadv() {
    pthread mutex lock(&lock);
    do {
        pthread_mutex_unlock(&lock);
        /* only time MarkReady() can run */
        pthread_mutex_lock(&lock);
    } while (!ready);
    pthread mutex unlock(&lock);
void MarkReady() {
    pthread mutex lock(&lock);
    ready = true;
    pthread_mutex_unlock(&lock);
```

wastes processor time; MarkReady can stall waiting for unlock

72

beyond locks

```
in practice: want more than locks for synchronization
for waiting for arbtirary events (without CPU-hogging-loop):
     monitors
    semaphores
for common synchornization patterns:
     barriers
     reader-writer locks
higher-level interface:
     transactions
```

barriers

compute minimum of 100M element array with 2 processors algorithm:

compute minimum of 50M of the elements on each CPU one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

barriers

compute minimum of 100M element array with 2 processors algorithm:

compute minimum of 50M of the elements on each CPU one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

barriers API

barrier.Initialize(NumberOfThreads)

barrier.Wait() — return after all threads have waited

idea: multiple threads perform computations in parallel

threads wait for all other threads to call Wait()

barrier: waiting for finish

```
barrier.Initialize(2);
       Thread 0
                                 Thread 1
 partial mins[0] =
     /* min of first
        50M elems */;
                            partial mins[1] =
                               /* min of last
barrier.Wait();
                                   50M elems */
                            barrier.Wait();
 total_min = min(
     partial_mins[0],
     partial_mins[1]
```

barriers: reuse

```
Thread 0
                                                 Thread 1
results[0][0] = getInitial(0);
                                     results[0][1] = getInitial(1);
barrier.Wait();
                                      barrier.Wait();
results[1][0] =
                                      results[1][1] =
    computeFrom(0,
                                          computeFrom(1,
                                              results[0][0],
        results[0][0],
        results[0][1]
                                              results[0][1]
                                     barrier.Wait();
barrier.Wait();
results[2][0] =
                                      results[2][1] =
    computeFrom(0,
                                          computeFrom(1,
        results[1][0],
                                              results[1][0],
                                              results[1][1]
        results[1][1]
                                          );
    );
```

barriers: reuse

Thread 0 results[0][0] = getInitial(0); barrier.Wait(); results[1][0] = computeFrom(0, results[0][0], results[0][1] barrier.Wait(); results[2][0] = computeFrom(0, results[1][0], results[1][1]);

Thread 1

```
results[0][1] = getInitial(1);
barrier.Wait();
results[1][1] =
    computeFrom(1,
        results[0][0],
        results[0][1]
barrier.Wait();
results[2][1] =
    computeFrom(1,
        results[1][0],
        results[1][1]
    );
```

barriers: reuse

```
Thread 0
results[0][0] = getInitial(0);
barrier.Wait();
results[1][0] =
    computeFrom(0,
        results[0][0],
        results[0][1]
barrier.Wait();
results[2][0] =
    computeFrom(0,
        results[1][0],
        results[1][1]
    );
```

Thread 1

```
results[0][1] = getInitial(1);
barrier.Wait();
results[1][1] =
    computeFrom(1,
        results[0][0],
        results[0][1]
barrier.Wait();
results[2][1] =
    computeFrom(1,
        results[1][0],
        results[1][1]
    );
```

pthread barriers

```
pthread_barrier_t barrier;
pthread_barrier_init(
    &barrier,
    NULL /* attributes */,
    numberOfThreads
);
...
pthread_barrier_wait(&barrier);
```

exercise

```
pthread_barrier_t barrier; int x = 0, y = 0;
void thread one() {
    y = 10;
    pthread_barrier_wait(&barrier);
    y = x + y;
    pthread barrier wait(&barrier);
    pthread barrier wait(&barrier);
    printf("%d_{\parallel}%d_{\parallel}", x, y);
void thread two() {
    x = 20;
    pthread barrier wait(&barrier);
    pthread barrier wait(&barrier);
    x = x + y;
    pthread barrier wait(&barrier);
}
```

output? (if both run at once, barrier set for 2 threads)

life homework (pseudocode)

```
for (int time = 0; time < MAX_ITERATIONS; ++time) {
    for (int y = 0; y < size; ++y) {
        for (int x = 0; x < size; ++x) {
            to_grid(x, y) = computeValue(from_grid, x, y);
        }
    }
    swap(from_grid, to_grid);
}</pre>
```

life homework

compute grid of values for time t from grid for time t-1 compute new value at i,j based on surrounding values

parallel version: produce parts of grid in different threads use barriers to finish time t before going to time t+1

backup slides