Customer 360° View Using Oracle Big Data Spatial & Graph

Ryota Yamanaka

Senior Solutions Consultant Big Data and Analytics Oracle Corporation

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Graph Databases

Oracle Labs
PGX

Amazon Nepture

Azure Cosmos

SAP HANA Graph

. . .

Background & Challenges

Customer 360° View – collects all information

Identity

cust ID, name, email, ...

Basic information

address, gender, age, ...

Transaction

AI (prediction

Master

Big Data

Predicted results

customer classification, taste signature, ...

Text information

voice of customer, call center, SNS, ...

Transaction

purchase orders, phone calls, money tx, ...

Relationship

family members, community, ...

Activity log

customer traffic line, click stream, IoT, ...

Customer 360° View - Profits

Better understanding of customers, based on data ...

Personalised Services

recommendation, demand predictions, new user experiences

innovation

Investment Planning

optimise ROI of product development, service delivery, marketing, ...

cost reduction

Dashboard Customer 360° View Yes **Data** 68% **Science Transaction** Master logical data integration **Big Data** Prediction physical data integration **Data Collection Data Lake** DB

Dashboard Challenges f_{∞} Yes Data **Science** more prediction results logical data integration This is tough part! more physical data integration customer information **Data Collection Data Lake** DB

Challenges - Various Data

3xx01

40xx05

John credit tx

name

age

Bangkok location

credit tx

atm tx

5002xx

. . . .

visit page01

visit

page12

possibly buy

ABC Travel

34

tend to like

movie

complain

internet banking

Jakarta

Challenges

You don't even know the infomation exists...

Data Collection

Solutions

Solution

Data Collection

Dashboard

more prediction results

more customer information

Demo – Database to Graph

basic info

credit tx

Demo – Data Lake to Graph

Demo – Data Scinece to Graph

Demo – Data Scinece to Graph

Demo – Graph Representation Example

Customer 360° - Dashboard

operation

Use Cases

Use Case – Banco Santander Rio

Use Case – Galicia Bank

Use Case - Pattern Matching

(agrupador1 WITH tipo_nodo = 'AGRUPADOR' AND banco_destino = 'DyE')-[e2 WITH tipo_arco = 'AGRUPADOR - CUIT - ENTIDAD' and tipo_operacion = 'Deposito']->(cuenta1)-[e3 WITH tipo_arco = 'CUIT - ENTIDAD - AGRUPADOR']->(agrupador2 WITH tipo_nodo = 'AGRUPADOR' AND entidad_destino != '0072')-[e4 WITH tipo_arco = 'AGRUPADOR - CUIT - ENTIDAD']->(cuenta2 with tipo_nodo = 'CUIT - ENTIDAD' AND codigo_entidad != '0072')<-[e5 with tipo_arco = 'CUIT - CUIT - ENTIDAD']-(cuit)

Use Case - Pattern Matching

SELECT cuit, e1, cuenta1, agrupador1, e2, e3, agrupador2, e4, cuenta2, e5

WHERE (cuit WITH tipo_nodo = 'CUIT' AND segmento = 'Pymes')-[e1 WITH tipo_arco = 'CUIT - CUIT - ENTIDAD']->(cuenta1 WITH tipo_nodo = 'CUIT - ENTIDAD' AND codigo_entidad = '0072'),

(agrupador1 WITH tipo_nodo = 'AGRUPADOR' AND banco_destino = 'DyE')-[e2 WITH tipo_arco = 'AGRUPADOR - CUIT - ENTIDAD' and tipo_operacion = 'Deposito']->(cuenta1)-[e3 WITH tipo_arco = 'CUIT - ENTIDAD - AGRUPADOR']->(agrupador2 WITH tipo_nodo = 'AGRUPADOR' AND entidad_destino != '0072')-[e4 WITH tipo_arco = 'AGRUPADOR - CUIT - ENTIDAD']->(cuenta2 with tipo_nodo = 'CUIT - ENTIDAD' AND codigo_entidad != '0072')<-[e5 with tipo_arco = 'CUIT - ENTIDAD']-(cuit),

(agrupador1.imp_recibido_ars) >= 0.8 * (e4.imp_emitido_ars),

(agrupador1.imp_recibido_ars) < (e4.imp_emitido_ars),

(agrupador1.imp_recibido_ars) >= 0.8 * (cuenta1.imp_recibido_ars)

ORDER BY agrupador1.imp_recibido_ars DESC limit 10

Use Case - Automotive

Summary

- Customer 360 View is getting more information
 - > Activity Log, Text information, Predicted results, ...
- Datasets have to be linked otherwise you can't find it!
 - > Graph is a new method to connect information
- Graph shows you all available information to help create insights
 - > BI dashboard can be build on the connected data
- New applications using graph query and algorithms
 - > Fraud detection, link-based clustering, recommendation

Integrated Cloud

Applications & Platform Services

