IN THE CLAIMS

1. (Currently Amended) A compound of formula I:

$$\begin{array}{c}
Ar^{1} \\
N-H \\
O \longrightarrow \\
z \longrightarrow R^{2}
\end{array}$$

or a pharmaceutically acceptable salt thereof, wherein: z is selected from

Y is selected from a valence bond or -CH2-;

R2 is hydrogen or methyl and R1 is selected from –Q-CO₂H, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-; or

R1 is hydrogen or methyl and R2 is selected from Q-C0₂H, Q-CN, wherein each Q is independently selected from a valence bond or selected from the group consisting of straight chains; CH₂, CH₂-CH₂, CH₂-CH₂, CH₂-CH₂, S-CH₂-CH₂, O-CH₂, O-CH₂, NH-CH₂, NH-

CH₂-CH₂ or the branch strains: -CH(CH₃)-, -CH₂-CH(CH₃)-, -CH₂-CH(CH₃)-, -SCH(CH₃)-, -SOCH₂-CH(CH₃)-, -NH-CH(CH₃)-, -NH-CH₂-CH(CH₃)- an optionally substituted
C1-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by O₃-S- or NH-, but where R2 excludes Me-CH(-COOH);

Ar1 and Ar2 are independently selected from a 3-10 membered monocyclic or bicyclic saturated or unsaturated cycloalkyl, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulphur, wherein Ar1 and/or Ar2 is optionally and independently substituted by one to four R3 groups and each R3 is independently selected from—R4, -F, -Cl, -Br, -J, -NO₂, - CN, -O-R4, -(CH₂)_a-O-R4 (n=1, 2, 3, 4, 5, 6, 7, or 8), -S-R4, -N(R4)₂, -NR4-CO-R4, -NR4-CO-N(R4)₂, -NR4-SO₂N4, -NR4-SO₂N(R4)₂, -CO-CO-R4, or CO-CH₂-CO-R4; wherein each R4 is independently selected from hydrogen, or from an Cl-6 aliphatic group,

with the exception of 5-(3-chloro-4-methylanilino)-5-oxo-3phenylpentanic acid and 5-(2-fluoro-4-iodoanillino)-5-oxo-3-phenylpentanoic acid.

- 2. (Original) A compound according to claim 1, wherein Arl and Ar2 are independently 3-8 membered monocyclic, or 8-10 membered bicyclic cycloalkyl, or 5-6 membered monocyclic or 8-10 bicyclic aryl ring, or 5-6 membered monocylic or 8-10 membered biccylic heteroaryl ring having 1-4 heteroatoms.
- (Previously Presented) A compound according to claim 1, wherein Ar1 and Ar2 are
 independently selected from phenyl, indolyl, naphtyl, pyrimidinyl, pyridinyl, quinolyl, or isoquinolyl, wherein as an option Ar1 and/or Ar2 is substituted by 1-4 R3 groups.
- 4. (Withdrawn) A compound according to claim 1, wherein X is a valence bond, Z is a nitrogen, Y is -CH₂-, R2 is -H, and R1 is selected from -Q-CO₂H, Q-1H-tetrazol-5-yl, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.
- (Withdrawn) A compound according to claim 1, wherein X is a valence bond, Z is =CH-, Y is a valence bond, R2 is -H, and R1 is selected from -Q-CO₂H, Q-IH-tetrazol-5-yl, -Q-CN, wherein

each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.

- 6. (Previously Presented) A compound according to claim 1, wherein X is -NH-, Z is =CH-, Y is a valence bond, R2 is -H, and R1 is selected from -Q-C0₂H, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.
- 7. (Previously Presented) A compound according to claim 1, wherein X is -NH-, Z is =CH-, Y is a valence bond, RI is -H, and R2 is selected from -Q-CO₂H, Q-IH-tetrazol-5-yl, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted CI-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.
- 8. (Canceled)
- (Previously Presented) A pharmaceutical composition comprising the compound of formula
 and a pharmaceutically acceptable carrier.
- 10. (Currently Amended) The pharmaceutical composition of claim 9, including a physiologically effective dose of the compound of formula (1) and a pharmaceutically acceptable carrier
- 11. (Canceled)

- 12. (Withdrawn) A method for preventing or treating a disease related to an AGC kinase, comprising PDKI or PKB, having an abnormal high or low activity, wherein a compound according to claim 1 or a pharmaceutical composition according to claim 9 is administered in a physiologically effective dose to an organism having the risk of obtaining the disease or suffering from the disease.
- 13. (Previously Presented) A compound according to claim 2, wherein Ar1 and Ar2 are independently selected from phenyl, indolyl, naphtyl, pyrimidinyl, pyridinyl, quinolyl, or isoquinolyl, wherein as an option Ar1 and/or Ar2 is substituted by 1-4 R3 groups.
- 14. (Withdrawn) A compound according to claim 2, wherein X is a valence bond, Z is a nitrogen, Y is -CH₂-, R2 is -H, and R1 is selected from -Q-CO₂H, Q-1H-tetrazol-5-yl, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.
- 15. (Withdrawn) A compound according to claim 3, wherein X is a valence bond, Z is a nitrogen, Y is -CH₂-, R2 is -H, and R1 is selected from -Q-CO₂H, Q-1*H*-tetrazol-5-yl, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.
- 16. (Withdrawn) A compound according to claim 2, wherein X is a valence bond, Z is =CH-, Y is a valence bond, R2 is -H, and Rl is selected from -Q-CO₂H, Q-1H-tetrazol-5-yl, -Q-CN,

wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.

17. (Withdrawn) A compound according to claim 3, wherein X is a valence bond, Z is =CH-, Y is a valence bond, R2 is -H, and R1 is selected from -Q-CO₂H, Q-IH-tetrazol-5-yl, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.

18. (Previously Presented) A compound according to claim 2, wherein X is -NH-, Z is =CH-, Y is a valence bond, R2 is -H, and Rl is selected from -Q-C0₂H, Q-IH-tetrazol-5-yl, -Q-CN, wherein each Q is independently selected from a valence bond or an optionally substituted Cl-3 alkylidene chain, wherein one or two non-adjacent methylene units of Q are optionally and independently replaced by -0-, -S- or -NH-.

19. (Previously Presented) A method of preparing a pharmaceutical composition for the treatment of diabetes, Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, AIDS associated dementia, amyotrophic lateral sclerosis (AML), multiple sclerosis (MS), schizophrenia, cardiomycete hypertrophy, ischemia, and baldness, comprising combining a physiologically effective dose of the compound of formula (1) and a pharmaceutically effective carrier.

20. (Previously Presented) A compound according to claim 1, wherein Ar1 and Ar2 are independently selected from phenyl, indolyl, pyrimidinyl, pyridinyl, quinolyl, or isoquinolyl.

21. (Currently Amended) A compound according to claim 1, wherein

Z is CH;

Y is a valence bond;

R1 and R2 are independently selected from hydrogen or a group

Ar1 and Ar2 are independently selected from

22. (Currently Amended) A compound according to claim 1, wherein

Z is CH, Y is valence bond, R1 is hydrogen, R2 is a group

$$\sim$$

Ar1 is a group

Ar2 is a group

or

Z is CH, Y is a valence bond, R1 is hydrogen, R2 is a group

Ar1 is a group

Ar2 is a group

or

Z is CH, Y is a valence bond, R2 is hydrogen, R1 is a group

Ar1 is a group

Ar2 is a group

or

Z is CH, Y is a valence bond, R2 is hydrogen, R1 is a group

Ar is a group

Ar2 is a group

