Kurs: KI T-InfT-008 und 010 Datenmengen und Embedded Systems

Cândido Vieira
30.09.2024
Balthasar-Neumann-Technikum (BNT)

Inhaltsverzeichnis

1. Datenbereinigung

- a. Bedeutung der Datenqualität
- b. Typische Datenprobleme

2. Was sind Outlier?

- a. Definition und Beispiel
- b. Auswirkung von Outliern auf Modelle

3. Methoden zur Erkennung von Outliern

- a. Visuelle Methoden (Histogramm, Boxplot)
- Statistische Methoden (Z-Score, IQR)

4. Outlier-Identifikation mit der Standardabweichung

a. Berechnung, Interpretation und Beispielcode (Python)

5. Outlier-Identifikation mit dem Interquartilsabstand (IQR)

a. Berechnung, Interpretation und Beispielcode (Python)

6. Vergleich der Outlier-Methoden

- a. Standardabweichung vs. IQR
- b. Vor- und Nachteile

7. Umgang mit Outliern

- Entfernen von Outliern
- Transformationstechniken

8. Fehlende Daten und Duplikate

- Methoden zur Datenbereinigung
- b. Beispielcode (Python)

9. Übung: Datenbereinigung und Outlier-Analyse

10. Zusammenfassung

- Schlüsselkonzepte
- Wichtigkeit der Datenbereinigung und -analyse

1. Datenbereinigung

Datenbereinigung ist ein kritischer Schritt in der Datenvorbereitung.

Outlier können das Verhalten von Modellen erheblich beeinflussen.

Ziel: Outlier identifizieren und ihre Auswirkungen analysieren.

Datenbereinigung - Warum ist Datenbereinigung wichtig?

Fehlerhaften Daten führen zu fehlerhaften Modellen.

Unbehandelte Outlier k\u00f6nnen Modelle verzerren.

Datenqualität ist entscheidend für robuste Modelle.

Datenbereinigung - Methoden zur Identifikation von Outliern

Visuelle Inspektion: Boxplots, Streudiagramme.

Statistische Methoden: Standardabweichung, IQR (Interquartilsabstand).

Automatisierte Methoden: Z-Score, Local Outlier Factor (LOF).

2. Was sind Outlier?

• Werte, die signifikant von anderen Datenpunkten abweichen.

 Können auf Fehler, extreme Ereignisse oder ungewöhnliche Muster hinweisen.

Beeinflussen statistische Maße wie Mittelwert und Standardabweichung stark.

2. Warum sind Outlier problematisch?

Verzerrung des Mittelwerts und der Varianz.

Mögliche Fehlinterpretationen der Daten.

 Starke Beeinflussung von Regressions-, Klassifizierungs- und Clustering-Modellen.

2. Auswirkungen von Outliern auf statistische Maße

Mittelwert: Starke Verzerrung durch extreme Werte.

Varianz: Größere Streuung der Daten.

Regression: Sensibel auf Outlier, besonders bei linearen Modellen.

3. Methoden zur Erkennung von Outliern

- Visuelle Methoden:
 - Histogramm:

3. Methoden zur Erkennung von Outliern

- Visuelle Methoden
 - O Boxplot:

Quelle: Elements of a boxplot, Libellule, CC BY-SA 4.0, via Wikimedia

3. Methoden zur Erkennung von Outliern

Statistische Methoden (Z-Score, IQR)

4. Outlier-Identifikation mit der Standardabweichung

Annahme: Daten sind normalverteilt.

 Werte, die mehr als n Standardabweichungen vom Mittelwert entfernt sind, gelten als Outlier.

Typische Schwellenwerte: 2 oder 3 Standardabweichungen.

4. Outlier-Identifikation mit der Standardabweichung

• Standardabweichung: Effektiv bei normalverteilten Daten.

4. Formel für die Standardabweichung

Daten:

$$x = [10, 23, 44, 35, 26]$$

Mittelwert:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standardabweichung:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

5. Outlier-Identifikation mit dem IQR (Interquartilsabstand)

Berechnet die Differenz zwischen dem 75. und 25. Perzentil.

• Formel: IQR = Q3 - Q1

 Werte außerhalb von 1,5-facher IQR über Q3 oder unter Q1 gelten als Outlier.

5. Visuelle Darstellung des IQR

Q1: 25. Perzentil

Q3: 75. Perzentil

 Werte außerhalb von Q1 - 1,5
 * IQR und Q3 + 1,5 * IQR sind Outlier.

7. Umgang mit Outliern

Entfernen: Falls der Outlier auf einen Fehler zurückzuführen ist.

Transformieren: Log-Transformation, Box-Cox.

Robuste Methoden verwenden: Median statt Mittelwert.

7. Techniken zur Entfernung von Outliern

Manuelles Entfernen auf Basis visueller Analyse.

Automatisches Entfernen mit Standardabweichung/IQR.

Übung

Standardabweichungsmethode

```
import numpy as np
import matplotlib.pyplotas plt
 Generierung eines synthetischen Datensatzes
data = np.random.normal(0, 1, 1000)
data = np.append(data, [5, 6, 7]) # Fügen Sie einige Outlier hinzu
 Berechnung des Mittelwerts und der Standardabweichung
mean = np.mean(data)
std dev = np.std(data)
# Identifikation von Outliern (mehr als 3 Standardabweichungen entfernt)
outliers = data[np.abs(data - mean) > 3 * std dev]
print(f"Gefundene Outlier: {outliers}")
plt.figure(figsize=(10, 6))
plt.hist(data, bins=30, alpha=0.7)
plt.axvline(mean + 3*std dev, color='r', linestyle='dashed', linewidth=2)
plt.axvline(mean - 3*std dev, color='r', linestyle='dashed', linewidth=2)
plt.title('Outlier Detektion mit Standardabweichung)'
plt.show()
```

IQR Methode

```
Q1 = np.percentile(data, 25)
Q3 = np.percentile(data, 75)
IQR = Q3 - Q1
lower bound = Q1 - 1.5 * IQR
upper bound = Q3 + 1.5 * IQR
outliers iqr = data[(data < lower bound) | (data > upper bound)]
print(f"Outlier (IQR Methode): {outliers iqr}")
```

Vergleich der Methoden: Standardabweichung vs. IQR

Standardabweichung: Effektiv bei normalverteilten Daten.

IQR: Robust gegenüber extremen Ausreißern, auc

Übung: Synthetischer Datensatz mit Outliern, Duplikaten und fehlenden Werten

Ziel: Den Datensatz bereinigen und Outlier identifizieren

```
# Erstellen eines Datensatzes mit Outliern, Duplikaten und fehlenden Werten
np.random.seed(42)
data = np.random.normal(50, 10, 100).tolist()
data += [100, 105, 110] # Outlier hinzufügen
data += [50, 50] # Duplikate hinzufügen
data += [None, None] # Fehlende Werte hinzufügen

df = pd.DataFrame(data, columns=['Werte'])
print(df.head(10))
```

9. Übung: Datenbereinigung und Outlier-Analyse

Schritt 1: Identifikation von Outliern mit der Standardabweichung und IQR.

 Schritt 2: Statistische Analyse des Datensatzes vor und nach der Entfernung von Outliern.

Statistischer Vergleich

- Berechnen Sie den Mittelwert, Median und die Standardabweichung des Datensatzes:
 - Vor der Bereinigung
 - Nach der Entfernung von Outliern

Statistischer Vergleich

```
# Statistische Analyse des ursprünglichen Datensatzes
mean before = df['Werte'].mean()
median before = df['Werte'].median()
std before = df['Werte'].std()
df cleaned = df.dropna().drop duplicates()
outliers removed = df cleaned[np.abs(df cleaned['Werte'] - df cleaned['Werte'].mean()) <= (3 *
df cleaned['Werte'].std())]
# Statistische Analyse nach der Bereinigung
mean after = outliers removed['Werte'].mean()
median after = outliers removed['Werte'].median()
std after = outliers removed['Werte'].std()
print(f"Vor der Bereiniqung - Mittelwert: {mean before}, Median: {median before}, Standardabweichung: {std before}")
```

Fazit

Outlier können das Verhalten eines Modells stark beeinflussen.

 Robuste Methoden zur Outlier-Entfernung und Datenbereinigung verbessern die Datenqualität.