The Global Effects of Carbon Border Adjustment Mechanisms

Kimberly Clausing, UCLA Jonathan Colmer, Virginia Allan Hsiao, Stanford Catherine Wolfram, MIT Sloan

April 7, 2025

Carbon pricing around the world (2024)

Carbon border adjustment mechanism (CBAM)

Cement, iron and steel, aluminium, fertilisers, electricity and hydrogen

Three motivations and one concern

- Boost domestic competitiveness
- Reduce foreign emissions leakage
- Encourage foreign regulation
- But may disadvantage lower-income trading partners

Potentially regressive for lower-income countries

- Guardian (2024): "India seeks UK carbon tax exemption in free trade deal talks"
- Bloomberg (2024): "EU CBAM Damaging ASEAN Businesses?"
- Center for Global Development (2022): "Mozambique, a large aluminum exporter, could experience a fall of 1.6 percent of its GDP as a result of a shift in demand following the introduction of the CBAM"

This paper

- Detailed global data on aluminum and steel
 - Key sectors targeted in first phase of EU/UK CBAM
 - Most emissions-intensive and heavily traded
- ② Descriptive analysis of emissions
 - Lower-income countries not more emissions-intensive
- 3 Quantitative equilibrium model of regulation and trade
 - Welfare impacts of carbon taxation and CBAM

Carbon taxation with a CBAM

- Increased competitiveness: profit losses for regulated producers 15% ↓
- Reduced leakage: emissions increases for unregulated producers $30\% \downarrow$
- Incentives for regulation: free revenue for unregulated markets
- Similar incidence across lower- and higher-income countries

Policy timeline

- EU CBAM proposed in 2021
 - Phase-in starting October 1, 2023 with reporting only
 - Full implementation from January 1, 2026 for target sectors
- UK CBAM announced in 2023, targeting implementation by 2027
- In discussion in Canada, Australia, and Taiwan
- Expansion of Chinese ETS to cover target sectors

EU CBAM target sectors

(%)	Trade Intensity	Global Emissions
Steel	23	11
Aluminum	41	3
Electricity	2	33
Fertilizers	60	1
Cement	2	6
Hydrogen	0.1	2

Aluminum and steel

- Globally traded commodities
 - London Metal Exchange reports global prices and facilitates trade
- Aluminum
 - Primary: smelted from alumina with CO₂ from chemistry and electricity
 - Secondary: recycled from scrap with 5-10% emissions
- Steel
 - Primary: blast furnace/basic oxygen furnace (BF-BOF) from iron ore
 - Secondary: electric arc furnace (EAF) from scrap with 35-40% emissions

Global data by plant for 2023

- Aluminum smelters from WoodMac
 - 153 worldwide with some Chinese smelters aggregated
 - Public data + site visits
 - LIC producers: 7% of global production, 9% of global emissions
- Steel mills from Climate TRACE
 - Every steel mill with capacity above 500k tons
 - Satellite and mill-level sensor data
 - LIC producers: 7% of global production, 6% of global emissions
- Production, capacity, costs, and emissions
 - Primary and secondary plants, Scope 1 and 2 emissions

Production costs and capacity

Aluminum quantities

Producers				
Country	Mt	%		
China	48.9	57.9		
India	4.7	5.6		
EU + UK	4.6	5.5		
USA	4.1	4.9		
Russia	4.0	4.7		
Rest of world	18.1	21.5		

Consumers				
Country	Mt	%		
China	50.8	60.2		
EU + UK	9.1	10.8		
USA	8.6	10.2		
India	3.0	3.6		
Japan	2.9	3.4		
Rest of world	10.0	11.8		

Steel quantities

Producers				
Country	Mt	%		
China	860	51		
EU + UK	153	9		
Japan	88	5		
USA	86	5		
India	76	5		
Rest of world	409	25		

Consumers				
Country	Mt	%		
China	827	49		
EU + UK	169	10		
USA	101	6		
India	77	5		
Japan	68	4		
Rest of world	431	26		

Emissions intensity by income

Production scale by income

CBAMs add to costs

CBAM impacts by income

Global aluminum market

- Demand by market, supply by smelter
 - Markets with high (H) and low (L) carbon regulation
- Regulator in H considers a CBAM
 - Smelters can shift sales across markets
 - Will quantify distributional effects

Demand by market m

$$\log D^m = \delta^m + \varepsilon^m \log P^m$$

• Log-linear with calibrated $\varepsilon^m = -0.25$

Supply by smelter i

$$S_i = s_i o_i^m$$
$$o_i^m = \mathbb{1}(p_i^m > c_i)$$

- Observed capacity s_i
- Choice to operate o_i^m , given price p_i^m and observed cost c_i

Carbon regulation and CBAM

$$p_{i}^{m} = \max\{p_{i}^{mH}, p_{i}^{mL}\} \qquad p_{i}^{HH} = P^{H} - \tau^{H}e_{i} \qquad p_{i}^{LH} = P^{H} - \tau^{H}e_{i}$$

$$h_{i}^{m} = \mathbb{1}(p_{i}^{mH} > p_{i}^{mL}) \qquad p_{i}^{HL} = P^{L} - \tau^{H}e_{i} \qquad p_{i}^{LL} = P^{L} - \tau^{L}e_{i}$$

- ullet Choice of destination market, given prices (P^H, P^L)
- Regulation (τ^H, τ^L) at home
- CBAM $\alpha^H = \tau^H \tau^L$ in H

Markets clear

$$D^{H}(P^{H*}) = S^{H}(P^{H*}, P^{L*}; \alpha^{H})$$

$$D^{L}(P^{L*}) = S^{L}(P^{H*}, P^{L*}; \alpha^{H})$$

- CBAM α^H induces reallocation
 - Price P^L falls as dirty supply pushed to L
 - ullet Price P^H rises and pulls clean supply to H
- Can compute welfare: CS, PS, G, E

Policy simulations

- Carbon regulation in market H
 - Relative to business as usual
 - With and without a CBAM
- Impacts on H, L, LL
 - *H*: EU + UK [+ China]
 - L: all other countries
 - LL: low and lower-middle income countries
- Calculate price and welfare impacts
 - Regulation and reallocation effects

H = EU + UK (6.5% of global consumption)

Regulation effect: no CBAM Reallocation effect: CBAM - no CBAM

H = EU + UK + China (68.4% of global consumption)

Less reallocation effect for H, more for L

H = EU + UK (6.5% of global consumption)

Change in welfare ΔW^m (1B USD)

Relatively small welfare consequences, especially with CBAM

H = EU + UK + China (68.4% of global consumption)

Change in welfare ΔW^m (1B USD)

Meaningful welfare gains for $H: CS \downarrow$, $PS \downarrow$, $G \uparrow \uparrow$ But at welfare cost to L and LL

Summary

- Aluminum emissions not necessarily higher in lower-income countries
- CBAM rewards clean producers in lower-income countries
- Simulations with steel, electricity, and other sectors
- Policy spillovers through government revenue