Tsinghua-Berkeley Shenzhen Institute LEARNING FROM DATA Fall 2018

Problem Set 5

5.1. The covariance matrix of a random vector $X \in \mathbb{R}^d$ is defined as

$$Cov(X) \triangleq \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\mathrm{T}}] \in \mathbb{R}^{d \times d},$$

where $\mathbb{E}[\cdot]$ is the mathematical expectation. Given m i.i.d. random variables X_1, \ldots, X_m with the same distribution as X, show that

$$\hat{C} \triangleq \frac{1}{m-1} \sum_{i=1}^{m} (X_i - \hat{\mu})(X_i - \hat{\mu})^{\mathrm{T}}$$

is an unbiased estimation of Cov(X), i.e., $\mathbb{E}[\hat{C}] = Cov(X)$, where

$$\hat{\mu} \triangleq \frac{1}{m} \sum_{i=1}^{m} X_i.$$

5.2. Suppose X is a random variable taking values from a finite set \mathfrak{X} , and there are two hypotheses H_0 and H_1

$$H=H_0:X\sim P_X,$$

$$H = H_1 : X \sim Q_X$$

with prior probabilities $\mathbb{P}(H = H_i) = p_i, i = 0, 1.$

Given m independent observations of X: x_1, \ldots, x_m , decide the decision rule $\hat{H}(x_1, \ldots, x_m)$, such that the error probability $P_e \triangleq \mathbb{P}(\hat{H} \neq H)$ is minimized.

5.3. Suppose $X_1, \dots, X_m \in \mathbb{R}^d$ are m independent random vectors with $\mathbb{E}[X_i] = \mu_i$, $\operatorname{Cov}(X_i) = \Sigma_i (i = 1, \dots, m)$, Y is a categorical distribution taking values from $\{1, \dots, m\}$ with $\mathbb{P}(Y = i) = p_i$, and Y is independent of all X_i 's. Evaluate $\mathbb{E}[Z]$ and $\operatorname{Cov}(Z)$, where

$$Z \triangleq \sum_{i=1}^{m} \mathbb{1}\{Y = i\} \cdot X_i.$$