Numerical Optimization

Minimize a real-valued function f of n real variables,

$$\min_{x} f(x_0, x_1, ..., x_{n-1})$$

In vector notation: among $x \in \Re^n$, find $x^* = argmin f(x)$

Usually we're more interested in x^* than in $p^* = \min f(x) = f(x^*)$

f(x) is the "objective function" or (for DNNs) the "loss function"

Examples

- Best location (x_0, x_1) for a new cell tower
 - $f(x_0, x_1)$ = weakest signal in neighborhood
- Best cross-section for an airplane wing
 - $f(x_0, ..., x_{1000}) = lift$ (to maximize lift)
- Least squares data fitting, Ax ≈ b
 - $f(x) = ||Ax b||^2$
- Training deep neural nets: best weights x₀, ..., x₁₀
 - f(x) = "loss function" = \sum (DNN output right answer)² training data

Possible additional features

- Sometimes there are constraints on x:
 - Ax = b, $Ax \le b$, $x(i) \in \{0,1\}$, etc.
 - Convex constraints, nonlinear constraints, etc.
- Sometimes the function f has special features:
 - Convex
 - Linear
 - Smooth
 - Integer-valued
- In CS 111, we will only consider:
 - Unconstrained minimization (x can be anything in \Re^n)
 - Convex functions f (every chord is above the function values)
 - Smooth functions f (continuous, sometimes derivatives too)

Optimization: Scales and Algorithms

- n = 1 to 100 : Newton's method (dense)
- $n = 100 \text{ to } 10^4$: Newton (w/ sparse matrices)
- $n = 10^4$ to 10^6 : quasi-Newton, e.g. BFGS
- n = 10⁶ to 10⁸ : gradient descent (w/ acceleration)
- n = 10⁸ to 10¹⁰⁺ : stochastic gradient descent (SGD)

(roughly speaking, with exceptions and caveats)