

Assessing key cost drivers associated with inpatient admission of patients with condition X

Contents

- · Our Data
 - New Variables & Clean Up
 - · Length of Stay & Year of admission
 - Target Variable
 - Demographics
- Which variable matters?
 - Decision Tree for Feature Importance
 - Correlation Coefficient Matrix
- Deep Dive
 - Encounter per year
 - Medical History
 - Body Mass Index (BMI)
 - Symptoms
- Model & Interpretation
- · Use Case Discussion
- Extensions ...

Our Data

A summary of our dataset.

Our Data

- · Clinical and financial data of patients hospitalised for a certain (X) condition
- 3,400 inpatient admission
- 3,000 unique patients
- 5 year data (2011 2015)
- Per row per inpatient admission

 Date of admission/discharge Demographics Total Bill per admission Pre-On Medication Medical History 	Clinical (Admission)	Patient	Financial
ine-op medication instructions	Date of admission/dischargePre-Op Medication	DemographicsMedical History	• Total Bill per admission
• Symptoms	• Symptoms		
Lab ResultsWeight / Height			

New Variables

- Length of Stay
- Age
- BMI
- BMI Risk Level
- Readmission per year

- Year of admission
- Number of Medical History
- Number of Symptoms
- Number of Pre-Op Medications

Clean-Up

- Standardising strings
- Converting into numeric
- Imputing null values

Length of Stay

Year of Admission

100000 80000 60000 Total_Bill 40000 20000 2012 2009 2010 2011 2013 2014 2015 2016 2017 Year

Pearson Correlation Coefficient

R = 0.0090P-value = 0.5996

Pearson Correlation Coefficient

R = 0.019P-value = 0.2632

Target Variable

Distribution

To ensure approximate normality

Demographics

		Count (per patient)	Total Bill	(per adm)
			Mean	P-Value
Total		3,000	21,859	
Gender	Female (1)	1,497	21,273	<0.01*
	Male (0)	1,503	22,446	
Resident Status	Singaporean (0)	2,392	20,211	<0.01*
	PR (1)	465	24,370	
	Foreigner (2)	143	41,704	
Race	Indian (1)	295	23,682	<0.01*
	Chinese (2)	1,915	19,118	
	Malay (3)	629	29,506	
	Others (4)	161	21,320	
Age	< 55	1,755	19,334	<0.01*
	> 55	1,252	25,398	

^{*} Not tested for homogeneity and normality assumptions due to time constraint. One-way ANOVA is used

Gender

gender_c Male Female

- Almost equal representation between male and female
- Male having 5.5% higher mean than female

Resident Status

Singaporean have higher subsidies than PR and foreigners

Race

Malays have the highest mean out of all races

Multiple Comparison of Means - Tukey HSD, FWER=0.05

======					======
group1	group2	meandiff	lower	upper	reject
1	2	-0.2285	-0.2896	-0.1673	True
1	3	0.2108	0.1415	0.2801	True
1	4	-0.1343	-0.2308	-0.0379	True
2	3	0.4393	0.3936	0.4849	True
2	4	0.0941	0.013	0.1753	True
3	4	-0.3451	-0.4325	-0.2577	True

Age

- Bimodal Distribution We have 2 groups above 55 and below 55
- Patients > 55 years old have ~31% higher mean total bill than those < 55

Which variable matters?

A quick way to help us focus on what matters.

Decision Tree

A quick dirty way to help zoom into important variables

Top 10

- 1. Symptom 5
- 2. Race
- 3. Number of Symptoms
- 4. Age
- 5. Resident Status
- 6. Medical History 1
- 7. Medical History 6
- 8. BMI (Height & Weight)
- 9. Lab Result 3
- 10.Lab Result 2

Correlation Coefficient Matrix

On continuous variables

Some positive correlation

- Age
- Number of medical history
- Number of symptoms
- BMI

Deep Dive

Into each variables.

Number of encounters / year: CHI-Square Test

- The presence of medical history have high correlation with > 1 encounter per year
- P-values < 0.01

Medical History

		Count	Tota	I Bill
			Mean	P-Value
Total		3,314	21,859	
Number of Med History	0	795	19,497	<0.01*
	1	1,258	21,463	
	2	800	24,696	
	3	310	26,532	
	4	47	31,191	
	5	7	36,853	
Med Hist 1		562	26,850	<0.01*
Med Hist 2		953	22,357	0.086
Med Hist 3		459	22,205	0.023
Med Hist 4		175	21,480	0.943
Med Hist 5		196	23,129	0.018
Med Hist 6		839	24,175	<0.01*
Med Hist 7		842	22,484	0.040

[·] Not tested for homogeneity and normality assumptions due to time constraint. One-way ANOVA is used

Medical History 1

- 18.7% of patients with medical history 1 contributes 21.7% of the total bills.
- P-Value < 0.01 for both age groups

Medical History 6

Count: 839/ 3,000 (28.0%)

Body Mass Index (BMI)

$$BMI = \frac{Weight(kg)}{[Height(m)]^2}$$

- Mean BMI = 28.95 (high risk)
- 63.6% patient population have high BMI risk

Body Mass Index (BMI)

		Total Bill	
		Mean	P-Value
BMI Risk Level	Deficiency	11,200	<0.01*
	Normal	19,389	
	Moderate	20,774	

22,651

 There is significance between BMI Risk and total bill per year at 0.01 significance level

High

$$BMI = \frac{Weight(kg)}{[Height(m)]^2}$$

R: 0.140, P-value: <0.01*

Positive correlation between BMI and total bill

Symptoms

		Count	Total Bill	
			Mean	P-Value
Total		3,314	21,859	
Number of Symptoms	0	25	7477	<0.01*
	1	209	12,063	
	2	748	16,637	
	3	1,196	21,296	
	4	931	26,421	
	5	291	31,267	
Symptom 1		2,107	22,879	<0.01*
Symptom 2		2,252	23,003	<0.01*
Symptom 3		1,852	23,567	<0.01*
Symptom 4		2,470	22,670	<0.01*
Symptom 5		1,791	26,832	<0.01*

[·] Not tested for homogeneity and normality assumptions due to time constraint. One-way ANOVA is used

Symptom 5

P-Value < 0.01 for both age groups

Symptoms

Model & Interpretation

Explainability matters.

Variance Inflation Factor

To check for multicollinearity between variables

	VIF Factor	features
0	1.0	medical_history_1
1	1.0	medical_history_6
2	2.0	bmi_high
3	2.0	age_grp
4	1.0	foreigner
5	1.0	pr
6	1.0	malay
7	1.0	indian
8	1.0	other
9	2.0	symptom_5
10	3.0	symptom_4
11	2.0	symptom_3
12	3.0	symptom_2
13	2.0	symptom_1

No variables have a VIF of more than 5

Linear Regression Model

```
Y = \beta0 + \beta1 medical history 1 + \beta2 medical history 6 + \beta3 high bmi + \beta4 age > 55 + \beta5 foreigner + \beta6 pr + \beta7 malay + \beta8 indian, \beta9 other + \beta10 symptom_5 + \beta11 symptom_4 + \beta12 symptom_3 + \beta13 symptom_2 + \beta14 symptom_1
```

R-squared = 0.931

Parameter	Estimate	Standard Error	P-Value
Intercept	8.37	0.007	<0.01*
Medical History 1	0.28	0.005	<0.01*
Medical History 6	0.17	0.005	<0.01*
High BMI risk	0.11	0.004	<0.01*
Age > 55	0.25	0.004	<0.01*

Total bill for patients with condition X and have / is:

- medical history 1 is ~ 32 % higher
- medical history 6 is ~ 18 % higher
- high bmi risk is ~ 11.12 % higher
- > 55 years old is ~ **28.24** % higher

compared to those without / isn't

Linear Regression Model

```
Y = \beta 0 + \beta 1 medical history 1 + β2 medical history 6 + β3 high bmi + β4 age > 55 + β5 foreigner + β6 pr + β7 malay + β8 indian, β9 other + β10 symptom_5 + β11 symptom_4 + β12 symptom_3 + β13 symptom_2 + β14 symptom_1
```

R-squared = 0.931

Parameter	Estimate	Standard Error	P-Value
Foreigner	0.70	0.01	<0.01*
Permanent Resident (PR)	0.18	0.006	<0.01*
Malay	0.43	0.005	<0.01*
Indian	0.19	0.007	<0.01*
Other	0.09	0.009	<0.01*

Linear Regression Model

```
Y = \beta 0 + \beta 1 medical history 1 + β2 medical history 6 + β3 high bmi + β4 age > 55 + β5 foreigner + β6 pr + β7 malay + β8 indian, β9 other + β10 symptom_5 + β11 symptom_4 + β12 symptom_3 + β13 symptom_2 + β14 symptom_1
```

R-squared = 0.931

Parameter	Estimate	Standard Error	P-Value
Symptom 5	0.51	0.004	<0.01*
Symptom 4	0.18	0.005	<0.01*
Symptom 3	0.20	0.004	<0.01*
Symptom 2	0.19	0.004	<0.01*
Symptom 1	0.14	0.004	<0.01*

Total bill for patients with condition X and presented with:

- Symptom 5 is ~ 67 % higher
- Symptom 4 is ~ 20 % higher
- Symptom 3 is ~ 22 % higher
- Symptom 2 is ~ 21 % higher
- Symptom 1 is ~ 15% higher

Use Cases

Insights are only valuable if they are used.

- 1. Number of admitted encounters,
- 2. Medical history,
- 3. Body Mass Index
- 4. Age
- 5. Demographics
- 6. Treatment/Care of Symptom 5

- 1. Number of admitted encounters
- 2. Medical history
- 3. Body Mass Index
- 4. Age
- 5. Demographics
- 6. Treatment/Care of Symptom 5

- Cost per year increases with frequent admissions
- Patients with existing co-morbidities have tend to have readmissions
- Consider continuity of care for these patients after discharge to prevent readmission

- 1. Number of admitted encounters
- 2. Medical history
- 3. Body Mass Index
- 4. Age
- 5. Demographics
- 6. Treatment/Care of Symptom 5

- Increases complexity, more complications, more need for healthcare attention
- Preventive care for patients without existing conditions through regular screenings
- Medical History 1 and 6 have bigger impact than others
- Not enough information

- 1. Number of admitted encounters
- 2. Medical history
- 3. Body Mass Index
- 4. Age
- 5. Demographics
- 6. Treatment/Care of Symptom 5

- Not surprising that patients with high health risk to have more complications and require more interventions
- Better manage patient's BMI by encouraging them to participate in health programmes
- Frequent health screenings

- 1. Number of admitted encounters
- 2. Medical history
- 3. Body Mass Index
- 4. Age
- 5. Demographics
- 6. Treatment/Care of Symptom 5

- Expected that elderly patients would need more medical attention than younger population
- · Non-Singaporeans have less subsidies
- Non-modifiable variables, but allows healthcare providers/ministry of health to target population for policy planning and interventions

- 1. Number of admitted encounters
- 2. Medical history
- 3. Body Mass Index
- 4. Age
- 5. Demographics
- 6. Treatment/Care of Symptom 5

- Relook into the cost of treatment/care
- Opportunity in cheaper alternative treatments
- Epidemiology study into symptom 5

Insights output format

Report with insights

- How each variable impacts
- To what extent does each variable impact population
- Which population will have higher risk
- Comparison between hospitals

Prediction Model

- Prevalence of symptoms will not be relevant as a variable
- Use specific age and bmi may improve accuracy of the model

Extensions...

- Deep dive into why race is a key factor in cost (due to diet?)
- Find out if subsidies is a factor to cost differences in resident status
- · More financial data such as ward class, bill type will be useful
- Given the context of the de-identified variables may have more clinically relevant insights
- Look into clinical data for more use cases
- Test for homogeneity and normality assumptions
- Improve on visualisation and story-telling