INTERNATIONAL ISO/IEEE STANDARD

11073-10408

First edition 2010-05-01

Health informatics — Personal health device communication —

Part 10408:

Device specialization — Thermometer

Informatique de santé — Communication entre dispositifs de santé personnels —

Partie 10408: Spécialisation des dispositifs — Thermomètre

Reference number ISO/IEEE 11073-10408:2010(E)

> © ISO 2010 © IEEE 2010

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor IEEE accepts any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and IEEE members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or IEEE at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2010 © IEEE 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO or IEEE at the respective address below.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York • NY 10016-5997, USA E-mail stds.ipr@ieee.org
Web www.ieee.org

Contents	Page
Foreword	v
Introduction	:
IIII Oduction.	VII
1. Overview	
1.1 Scope	
1.2 Purpose	
1.3 Context	2
2. Normative references	2
3. Definitions, acronyms, and abbreviations	2
3.1 Definitions	
3.2 Acronyms and abbreviations	
4. Introduction to ISO/IEEE 11073 personal health devices	3
4.1 General	3
4.2 Introduction to IEEE 11073-20601 modeling constructs	
5. Thermometer device concepts and modalities	Δ
5.1 General	4
5.2 Body temperature	
6. Thermometer domain information model	5
6.1 Overview	
6.2 Class extensions	
6.3 Object instance diagram	
6.4 Types of configuration	
6.5 Medical device system object	7
6.6 Numeric objects	
6.7 Real-time sample array objects	
6.8 Enumeration objects	
6.9 PM store objects	
6.10 Scanner objects	
6.11 Class extension objects	
6.12 Thermometer information model extensibility rules	13
7. Thermometer service model	
7.1 General	
7.2 Object access services	
7.3 Object access event report services	14
8. Thermometer communication model	
8.1 Overview	
8.2 Communications characteristics	
8.3 Association procedure	
8.4 Configuring procedure	
8.5 Operating procedure	
8.6 Time synchronization	

Contents

ISO/IEEE 11073-10408:2010(E)

9. Test associations	
9.1 Behavior with standard configuration	
9.2 Behavior with extended configurations	
10. Conformance	
10.1 Applicability	
10.2 Conformance specification	
10.3 Levels of conformance	
10.4 Implementation conformance statements	21
Annex A (informative) Bibliography	26
Annex B (normative) Any additional ASN.1 definitions	27
Annex C (normative) Allocation of identifiers	28
Annex D (informative) Message sequence examples	29
Anney E (informative) Protocol data unit examples	31

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is called to the possibility that implementation of this standard may require the use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. ISO/IEEE is not responsible for identifying essential patents or patent claims for which a license may be required, for conducting inquiries into the legal validity or scope of patents or patent claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance or a Patent Statement and Licensing Declaration Form, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from ISO or the IEEE Standards Association.

ISO/IEEE 11073-10408 was prepared by the 11073 Committee of the Engineering in Medicine and Biology Society of the IEEE (as IEEE Std 11073-10408-2008). It was adopted by Technical Committee ISO/TC 215, *Health informatics*, in parallel with its approval by the ISO member bodies, under the "fast-track procedure" defined in the Partner Standards Development Organization cooperation agreement between ISO and IEEE. Both parties are responsible for the maintenance of this document.

ISO/IEEE 11073 consists of the following parts, under the general title *Health informatics* — *Personal health device communication (text in parentheses gives a variant of subtitle):*

- Part 10101: (Point-of-care medical device communication) Nomenclature
- Part 10201: Domain information model
- Part 10404: Device specialization Pulse oximeter

ISO/IEEE 11073-10408:2010(E)

- Part 10407: Device specialization Blood pressure monitor
- Part 10408: (Point-of-care medical device communication) Device specialization Thermometer
- Part 10415: (Point-of-care medical device communication) Device specialization Weighing scale
- Part 10417: Device specialization Glucose meter
- Part 10471: (Point-of-care medical device communication) Device specialization Independent living activity hub
- Part 20101: (Point-of-care medical device communication) Application profiles Base standard
- Part 20601: (Point-of-care medical device communication) Application profile Optimized exchange protocol
- Part 30200: (Point-of-care medical device communication) Transport profile Cable connected
- Part 30300: (Point-of-care medical device communication) Transport profile Infrared wireless

Introduction

ISO/IEEE 11073 standards enable communication between medical devices and external computer systems. This document uses the optimized framework created in IEEE Std 11073-20601^a and describes a specific, interoperable communication approach for weighing scales. These standards align with, and draw upon, the existing clinically focused standards to provide support for communication of data from clinical or personal health devices.

^a For information on references, see Clause 2.

Health informatics — Personal health device communication —

Part 10408:

Device specialization — Thermometer

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or environmental protection in all circumstances. Implementers of the standard are responsible for determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Documents." They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1. Overview

1.1 Scope

Within the context of the ISO/IEEE 11073 family of standards for device communication, this standard establishes a normative definition of communication between personal telehealth thermometer devices and compute engines (e.g., cell phones, personal computers, personal health appliances, and set top boxes) in a manner that enables plug-and-play interoperability. It leverages appropriate portions of existing standards, including ISO/IEEE 11073 terminology, information models, application profile standards, and transport standards. It specifies the use of specific term codes, formats, and behaviors in telehealth environments restricting optionality in base frameworks in favor of interoperability. This standard defines a common core of communication functionality for personal telehealth thermometers.

1.2 Purpose

This standard addresses a need for an openly defined, independent standard for controlling information exchange to and from personal health devices and compute engines (e.g., cell phones, personal computers, personal health appliances, and set top boxes). Interoperability is the key to growing the potential market for these devices and to enabling people to be better informed participants in the management of their health.

1.3 Context

See IEEE Std 11073-20601[™] for an overview of the environment within which this standard is written.

This document, IEEE Std 11073-10408, defines the device specialization for the thermometer, being a specific agent type, and it provides a description of the device concepts, its capabilities, and its implementation according to this standard.

This standard is based on IEEE Std 11073-20601, which in turn draws information from both ISO/IEEE 11073-10201:2004 [B3]¹ and ISO/IEEE 11073-20101:2004 [B4]. The medical device encoding rules (MDERs) used within this standard are fully described in IEEE Std 11073-20601.

This standard reproduces relevant portions of the nomenclature found in ISO/IEEE 11073-10101:2004 [B2] and adds new nomenclature codes for the purposes of this standard. Between this standard and IEEE Std 11073-20601, all required nomenclature codes for implementation are documented.

NOTE—In this standard, IEEE Std 11073-104zz is used to refer to the collection of device specialization standards that utilize IEEE Std 11073-20601, where zz can be any number from 01 to 99, inclusive.²

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so that each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

IEEE Std 11073-20601[™]-2008, Health informatics—Personal health device communication—Part 20601: Application profile—Optimized Exchange Protocol.^{3,4}

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this standard, the following terms and definitions apply. *The Authoritative Dictionary of IEEE Standards* [B1] should be referenced for terms not defined in this clause.

- **3.1.1 agent:** A node that collects and transmits personal health data to an associated manager.
- **3.1.2 body temperature:** The measurement of the core body temperature of the person.
- **3.1.3 class:** In object-oriented modeling, it describes the attributes, methods, and events that objects instantiated from the class utilize.
- 3.1.4 compute engine: See: manager.
- **3.1.5 device:** A term used to refer to a physical apparatus implementing either an agent or a manager role.

¹ The numbers in brackets correspond to those of the bibliography in Annex A.

²Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

³The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

⁴IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA (http://standards.ieee.org/).

- **3.1.6 extremity body temperature:** The measurement of the temperature at the extremities of the body of the person, such as finger or toe.
- **3.1.7 handle:** An unsigned 16-bit number that is locally unique and identifies one of the object instances within an agent.
- **3.1.8 manager:** A node receiving data from one or more agent systems. Some examples of managers include a cellular phone, health appliance, set top box, or a computer system.
- 3.1.9 obj-handle: See: handle.
- **3.1.10 object:** In object-oriented modeling, a particular instantiation of a class. The instantiation realizes attributes, methods, and events from the class.
- **3.1.11 personal health device:** A device used in personal health applications.

3.1.12 personal telehealth device: See: personal health device.

3.2 Acronyms and abbreviations

application protocol data unit
Abstract Syntax Notation One
domain information model
extended unique identifier (64 bits)
implementation conformance statement
medical device communication
medical device encoding rules
medical device system
managed object class
protocol data unit
personal health device
real-time sample array
virtual medical object
virtual medical system

4. Introduction to ISO/IEEE 11073 personal health devices

4.1 General

This standard and the remainder of the series of ISO/IEEE 11073 personal health device (PHD) standards fit in the larger context of the ISO/IEEE 11073 series of standards. The full suite of standards enables agents to interconnect and interoperate with managers and with computerized health-care information systems. See IEEE Std 11073-20601 for a description of the guiding principles for this series of ISO/IEEE 11073 Personal Health Device standards.

IEEE Std 11073-20601 supports the modeling and implementation of an extensive set of personal health devices. This standard defines aspects of the thermometer device. It describes all aspects necessary to implement the application layer services and data exchange protocol between an ISO/IEEE 11073 PHD thermometer agent and a manager. This standard utilizes a subset of the classes and functionality defined in IEEE Std 11073-20601, defines the objects needed to model a thermometer, and adds new modeling definitions where appropriate. All new definitions are given in Annex B in Abstract Syntax Notation One (ASN.1) [B5]. Nomenclature codes referenced in this standard, which are not defined in IEEE Std 11073-20601, are normatively defined in Annex C.

4.2 Introduction to IEEE 11073-20601 modeling constructs

4.2.1 General

The ISO/IEEE 11073 series of standards, and in particular IEEE Std 11073-20601, is based on an object-oriented systems management paradigm. The overall system model is divided into three principal components: the domain information model (DIM), the service model, and the communication model. See IEEE Std 11073-20601 for a detailed description of the modeling constructs.

4.2.2 Domain information model

The DIM is a hierarchical model that describes an agent as a set of objects. These objects and their attributes represent the elements that control behavior and report on the status of the agent and data that an agent can communicate to a manager. Communication between the agent and the manager is defined by the application protocol in IEEE Std 11073-20601.

4.2.3 Service model

The service model defines the conceptual mechanisms for the data exchange services. Such services are mapped to messages that are exchanged between the agent and the manager. Protocol messages within the ISO/IEEE 11073 series of standards are defined in ASN.1. The messages defined in IEEE Std 11073-20601 can coexist with messages defined in other standard application profiles defined in the ISO/IEEE 11073 series of standards.

4.2.4 Communication model

In general, the communication model supports the topology of one or more agents communicating over logical point-to-point connections to a single manager. For each logical point-to-point connection, the dynamic system behavior is defined by a connection state machine as specified in IEEE Std 11073-20601.

4.2.5 Implementing the models

An agent implementing this standard shall implement all mandatory elements of the information, service, and communication models as well as all conditional elements where the condition is met. The agent should implement the recommended elements, and it may implement any combination of the optional elements. A manager implementing this standard shall utilize at least one of the mandatory, conditional, recommended, or optional elements. In this context, "utilize" means to use the element as part of the primary function of the manager device. For example, a manager whose primary function is to display data would need to display a piece of data in the element in order to utilize it.

5. Thermometer device concepts and modalities

5.1 General

This clause presents the general concepts of thermometer devices. In the context of personal health devices in this family of standards, a thermometer is a device that measures the temperature at some point on the body of a person. In general, the thermometer will be taking a measurement representative of the core temperature of the body, and traditionally oral or rectal measurements are used for spot checks or attached under the armpit (axillary) for extended monitoring. Band thermometers are placed on exposed areas of skin, often the forehead, but these are not considered as accurate. Typically, the thermometer is placed at the measurement site for sufficient time for the measuring probe to reach the same temperature as the body site, and when stable, a direct digital reading of the probe temperature is taken.

Methods to determine the temperature of the probe vary, but common methods include change in the properties of materials with heat such as resistance or semiconductor bandgap voltage. Tympanic thermometers measure the temperature of the tympanum by infrared measurement, which is noncontact and immediate. Unless relevant, the method used to determine temperature is ignored in this standard.

Thermometers may be designed for specialist monitoring purposes. For example, thermometers embedded in capsules may be swallowed and their data transmitted for monitoring during periods of high physical activity for signs of overheating.

Measurements may be taken at the extremities of the body (fingers, toes) and would typically be used to monitor for signs of problems due to circulation or hypothermia.

5.2 Body temperature

This standard assumes that a temperature measurement is normally taken as representative of the core body temperature, and therefore, the actual site of its measurement is not relevant. For this reason, the type attribute for the temperature object in the standard configuration is set to generic body temperature.

When the site or the method is significant, this will be indicated by use of a separate type for the temperature in an extended configuration.

The main units used in medicine are the Celsius and the Fahrenheit scales.

6. Thermometer domain information model

6.1 Overview

This clause describes the domain information model of the thermometer.

6.2 Class extensions

In this standard, no class extensions are defined with respect to IEEE Std 11073-20601.

6.3 Object instance diagram

The object instance diagram of the thermometer domain information model, defined for the purposes of this standard, is shown in Figure 1.

The objects of the DIM, as shown in Figure 1, are described in 6.4 to 6.12. This includes the medical device system (MDS) object (see 6.5) and the numeric objects (see 6.6). There are no real-time sample array (RT-SA) objects (see 6.7), enumeration objects (see 6.8), PM-store objects (see 6.9), or scanner objects (see 6.10) in the thermometer. See 6.11 for rules for extending the thermometer information model beyond elements as described in this standard. Each clause that describes an object of the thermometer contains the following information:

— The nomenclature code used to identify the class of the object. One example of where this code is used is the configuration event, where the object class is reported for each object. This allows the manager to determine whether the class of the object being specified is a numeric, real-time sample array, enumeration, scanner, or PM-store class.

- The attributes of the object. Each object has attributes that represent and convey information on the physical device and its data sources. Each object has a Handle attribute that identifies the object instance within an agent. Attribute values are accessed and modified using methods such as GET and SET. Attributes types are defined using ASN.1. The ASN.1 definitions for new attribute types specific to this standard are in Annex B, and the ASN.1 definitions for existing attribute types referenced in this standard are in IEEE Std 11073-20601.
- The methods available on the object.
- The potential events generated by the object. Data are sent to the manager using events.
- The available services such as getting or setting attributes.

The attributes for each class are defined in tables that specify the name of the attribute, its value, and its qualifier. The qualifiers mean M — Attribute is Mandatory, C — Attribute is Conditional and depends on the condition stated in the Remark or Value column (if IEEE Std 11073-20601 is referenced, then it contains the conditions), R — Attribute is Recommended, NR — Attribute is Not Recommended, and O — Attribute is Optional. Mandatory attributes shall be implemented by the agent. Conditional attributes shall be implemented if the condition applies and may be implemented otherwise. Recommended attributes should be implemented by the agent. Not recommended attributes should not be implemented by the agent. Optional attributes may be implemented by the agent.

The attributes can be either static, meaning that they shall remain unchanged after the configuration is agreed upon, or dynamic, meaning that the attribute may change at some point after configuration.

Figure 1—Thermometer—domain information model

6.4 Types of configuration

6.4.1 General

As specified in IEEE Std 11073-20601, there are two styles of configuration available. Subclauses 6.4.2 and 6.4.3 briefly introduce standard and extended configurations.

6.4.2 Standard configuration

Standard configurations are defined in the IEEE 11073-104zz specializations (such as this standard) and are assigned a well-known identifier (Dev-Configuration-Id). The usage of a standard configuration is negotiated at association time between the agent and the manager. If the manager recognizes and selects to operate using the configuration, then the agent can send measurements immediately. If the manager does not recognize the configuration, the agent provides the configuration prior to transmitting measurement information.

6.4.3 Extended configuration

In extended configurations, the agent's configuration is not predefined in a standard. The agent determines the objects, attributes, and values that will be used in a configuration and assigns a configuration identifier. When the agent associates with a manager, an acceptable configuration is negotiated. Typically, the manager does not recognize the agent's configuration on the first connection, so the manager responds that the agent must send its configuration information as a configuration event report. If, however, the manager recognizes the configuration, either because it was preloaded in some way or the agent had previously associated with the manager, then the manager responds that the configuration is known and no further configuration information needs to be sent.

6.5 Medical device system object

6.5.1 MDS object attributes

Battery-Level

Remaining-Battery-Time

System-Type-Spec-List

Reg-Cert-Data-List

Confirm-Timeout

Table 1 summarizes the attributes of the thermometer MDS object. The nomenclature code to identify the MDS class is MDC_MOC_VMS_MDS_SIMP.

Attribute name Qual. Handle 0 M Attribute not present. See IEEE Std 11073-20601. System-Type C {"Manufacturer","Model"}. M System-Model System-Id Extended unique identifier (64 bits) (EUI-64). M Dev-Configuration-Id Standard config: 0x0320 (800) M Extended configs: 0x4000-0x7FFF. Attribute-Value-Map See IEEE Std 11073-20601 C Production-Specification See IEEE Std 11073-20601 O Mds-Time-Info See IEEE Std 11073-20601 C Date-and-Time See IEEE Std 11073-20601 С Relative-Time See IEEE Std 11073-20601 С HiRes-Relative-Time See IEEE Std 11073-20601 C Date-and-Time-Adjustment See IEEE Std 11073-20601 $\overline{\mathbf{C}}$ Power-Status onBattery or onMains. R

See IEEE Std 11073-20601

See IEEE Std 11073-20601

See IEEE Std 11073-20601

See IEEE Std 11073-20601.

{MDC DEV SPEC PROFILE TEMP, 1}.

Table 1—MDS object attributes

NOTE—See IEEE Std 11073-20601 for information on whether an attribute is static or dynamic.

In the response to a Get MDS object command, only implemented attributes and their corresponding values are returned.

R

R

O

M

O

See IEEE Std 11073-20601 for descriptive explanations of the individual attributes as well as for information on attribute ID and attribute type.

The Dev-Configuration-Id attribute holds a locally unique 16-bit identifier that identifies the device configuration instance. For a thermometer agent with extended configuration, this identifier is chosen in the range of extended-config-start to extended-config-end (see IEEE Std 11073-20601) as shown in Table 1.

The agent sends the Dev-Configuration-Id during the Associating state (see 8.3) to identify its configuration for the duration of the association. If the manager already holds the configuration information relating to the Dev-Configuration-Id, it recognizes the Dev-Configuration-Id and the Configuring state (see 8.4) is skipped; the agent and manager then enter the Operating state. If the manager does not recognize the Dev-Configuration-Id, the agent and manager enter the Configuring state.

If an agent implements multiple IEEE 11073-104zz specializations, System-Type-Spec-List is a list of type/version pairs, each referencing the respective device specialization and version of that specialization.

6.5.2 MDS object methods

Table 2 defines the methods (actions) of the MDS object. These methods are invoked using the Action service. In Table 2, the Subservice type name column defines the name of the method; the Mode column defines whether the method is invoked as an unconfirmed action (i.e., roiv-cmip-action from IEEE Std 11073-20601) or a confirmed action (i.e., roiv-cmip-confirmed-action); the Subservice type (action-type) column defines the nomenclature code to use in the action-type field of an action request and response (see IEEE Std 11073-20601); the Parameters (action-info-args) column defines the associated ASN.1 data structure (see IEEE Std 11073-20601 for ASN.1 definitions) to use in the action message for the action-info-args field of the request; and the Results (action-info-args) column defines the structure to use in the action-info-args of the response.

Table 2—MDS object methods

Service	Subservice type name	Mode	Subservice type (action-type)	Parameters (action-info- args)	Results (action-info- args)
ACTION	Set-Time	Confirmed	MDC ACT SET TIME	SetTimeInvoke	_

Set-Time

This method allows the manager to set a real-time clock in the agent with the absolute time. The agent indicates whether the Set-Time command is valid using the mds-time-capab-set-clock bit in the Mds-Time-Info attribute (see IEEE Std 11073-20601). Agents with an internal real-time clock (RTC) shall indicate this capability by also setting the mds-time-capab-real-time-clock bit in the Mds-Time-Info attribute.

6.5.3 MDS object events

Agents following only this device specialization and no others shall send event reports using agent-initiated measurement data transmission. During the association procedure (see 8.3), DataReqModeCapab shall be set to the appropriate value for the event report style (set to data-req-supp-init-agent). The manager shall assume the thermometer agent does not support any of the MDS-Data-Request features (see IEEE Std 11073-20601 for additional information). The data-req-init-manager-count shall be set to zero, and the data-req-init-agent-count shall be set to 1.

Agents following this device specialization as well as others shall send event reports in the appropriate fashion. During the association procedure (see 8.3), DataReqModeCapab shall be set to the appropriate value for the event report style.

Table 3 defines the events that can be sent by the thermometer MDS object.

Table 3—Thermometer	MDS ob	ect events
---------------------	--------	------------

Service	Subservice type name	Mode	Subservice type (event-type)	Parameters (event-info)	Results (event- reply-info)
	MDS- Configuration- Event	Confirmed	MDC_NOTI_CONFIG	ConfigReport	ConfigRepor tRsp
	MDS-Dynamic- Data-Update-Var	Confirmed	MDC_NOTI_SCAN_REPO RT_VAR	ScanReportInfoVar	_
EVENT REPORT	MDS-Dynamic- Data-Update-Fixed	Confirmed	MDC_NOTI_SCAN_REPO RT_FIXED	ScanReportInfoFixed	_
KEFORT	MDS-Dynamic- Data-Update-MP- Var	Confirmed	MDC_NOTI_SCAN_REPO RT_MP_VAR	ScanReportInfoMPVar	_
	MDS-Dynamic- Data-Update-MP- Fixed	Confirmed	MDC_NOTI_SCAN_REPO RT_MP_FIXED	ScanReportInfoMPFixed	

— MDS-Configuration-Event:

This event is sent by the thermometer agent during the configuring procedure if the manager does not already know the thermometer agent's configuration from past associations or because the manager has not been implemented to recognize the configuration according to the thermometer device specialization. The event provides static information about the supported measurement capabilities of the thermometer agent.

— MDS-Dynamic-Data-Update-Var:

This event provides dynamic measurement data from the thermometer agent for the body temperature numeric object. These data are reported using a generic attribute list variable format. The event is sent as an unsolicited message by the agent (i.e., an agent-initiated measurement data transmission). See 8.5.3 for more information on unsolicited event reporting. MDS events for temperature readings shall be sent no faster than once per second.

— MDS-Dynamic-Data-Update-Fixed:

This event provides dynamic measurement data from the thermometer agent for the body temperature numeric object. These data are reported in the fixed format defined by the Attribute-Value-Map attribute of the object. The event is sent as an unsolicited message by the agent (i.e., an agent-initiated measurement data transmission). See 8.5.3 for more information on unsolicited event reporting.

— MDS-Dynamic-Data-Update-MP-Var:

This is the same as MDS-Dynamic-Data-Update-Var but allows inclusion of data from multiple people.

— MDS-Dynamic-Data-Update-MP-Fixed:

This is the same as MDS-Dynamic-Data-Update-Fixed but allows inclusion of data from multiple people.

NOTE—IEEE Std 11073-20601 requires that managers support all of the MDS object events listed above.

6.5.4 Other MDS services

6.5.4.1 GET service

A thermometer agent shall support the GET service, which is provided by the MDS object to retrieve the values of all implemented MDS object attributes. The GET service can be invoked as soon as the thermometer agent receives the Association Response and moves to the Associated state, including the Operating and Configuring substates.

The manager may request the MDS object attributes of the thermometer agent; in which case, the manager shall send the "Remote Operation Invoke | Get" message (see roiv-cmip-get in IEEE Std 11073-20601) with the reserved MDS handle value of 0. The thermometer agent shall report its MDS object attributes to the manager using the "Remote Operation Response | Get" message (see rors-cmip-get in IEEE Std 11073-20601). See Table 4 for a summary of the GET service including some message fields.

Table 4—Thermometer MDS object GET service

Service			Subservice	Parameters	Results
	type name		type		
GET	<na></na>	<implied confirmed=""></implied>	<na></na>	GetArgumentSimple = (obj-handle = 0), attribute-id-list <optional></optional>	GetResultSimple = (obj-handle = 0), attribute- list

See 8.5.2 for details on the procedure for getting the MDS object attributes.

6.5.4.2 SET service

The thermometer specialization does not require an implementation to support the MDS object SET service.

6.6 Numeric objects

6.6.1 General

The thermometer DIM (see Figure 1) contains one required object for body temperature, which is described in 6.6.2.

Sometimes, the interpretation of one attribute value in an object depends on other attribute values in the same object. For example, Unit-Code and Unit-LabelString provide context for the observed values. Whenever a contextual attribute changes, the agent shall report these changes to the manager using an MDS object event (see 6.5.3) prior to reporting any of the dependent values.

6.6.2 Temperature

Table 5 summarizes the attributes of the body temperature numeric object. The nomenclature code to identify the numeric class is MDC_MOC_VMO_METRIC_NU. The body temperature numeric object shall be supported by a thermometer agent.

Table 5—Body temperature numeric object attributes

Attribute name	Extended configuratio	n	Standard configuration (Dev-Configuration-Id = 0x0320)		
	Value	Qual.	Value	Qual.	
Handle	See IEEE Std 11073-20601.	M	1	M	
Туре	{MDC_PART_SCADA, MDC_TEMP_zzz}.	M	{MDC_PART_SCADA, MDC_TEMP_BODY}.	M	
Supplemental-Types	See IEEE Std 11073-20601.	NR	Attribute not initially present. If present follow IEEE Std 11073-20601.	NR	
			M		
Metric-Structure-Small	See IEEE Std 11073-20601.	NR	Attribute not initially present. If present follow IEEE Std 11073-20601.	NR	
Measurement-Status	See IEEE Std 11073-20601.	R	Attribute not initially present. If present follow IEEE Std 11073-20601.	О	
Metric-Id	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	NR	
Metric-Id-List	See IEEE Std 11073-20601.	NR	Attribute not initially present. If present follow IEEE Std 11073-20601.	NR	
Metric-Id-Partition	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	NR	
MDC_DIM_FAHR.		MDC_DIM_DEGC.	M		
Attribute-Value-Map	See IEEE Std 11073-20601.	С	MDC_ATTR_NU_VAL_OBS_BASIC, then MDC_ATTR_TIME_STAMP_ABS.	M	
Source-Handle-Reference	See IEEE Std 11073-20601.	NR	Attribute not initially present. If present follow IEEE Std 11073-20601.	NR	
Label-String	See IEEE Std 11073-20601.	О	Attribute not initially present. If present follow IEEE Std 11073-20601.	О	
Unit-LabelString	See IEEE Std 11073-20601.	О	Attribute not initially present. If present follow IEEE Std 11073-20601.	О	
Absolute-Time-Stamp	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601. If fixed format is used and the standard configuration is unchanged, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601apply.	С	
Relative-Time-Stamp	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	С	
HiRes-Time-Stamp	See IEEE Std 11073-20601.	С	S Attribute not initially present. If present follow IEEE Std 11073-20601.	С	
Measure-Active-Period	See IEEE Std 11073-20601.	NR	Attribute not initially present. If present follow IEEE Std 11073-20601.	NR	
Simple-Nu-Observed- Value	follow IEEE Std 11073-20601. If fixed form is used and the standard configuration unchanged, this attribute is mandator.		Attribute not initially present. If present follow IEEE Std 11073-20601. If fixed format is used and the standard configuration is unchanged, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601apply.	С	
Compound-Simple-Nu- Observed-Value	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	С	
Basic-Nu-Observed-Value	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	С	
Compound-Basic-Nu- Observed-Value	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	С	
Nu-Observed-Value	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	С	
Compound-Nu-Observed- Value	See IEEE Std 11073-20601.	С	Attribute not initially present. If present follow IEEE Std 11073-20601.	С	
Accuracy	See IEEE Std 11073-20601.	R	Attribute not initially present. If present follow IEEE Std 11073-20601.	R	

NOTE—See IEEE Std 11073-20601 for information on whether an attribute is static or dynamic.

For a thermometer agent with standard configuration, the AttrValMap structure (see IEEE Std 11073-20601) of the Attribute-Value-Map attribute shall contain the attribute ID and attribute length information of the Basic-Nu-Observed-Value and Absolute-Time-Stamp attribute in the same order as indicated in Table 5.

The body temperature numeric object does not support any methods, events, or other services.

See ISO/IEEE 11073-20601 for descriptive explanations on the individual attributes as well as for information on attribute ID and attribute type.

 $\{MDC_PART_SCADA,\ MDC_TEMP_BODY\}\ is\ the\ standard\ configuration\ and\ denotes\ a\ general\ body\ temperature\ measurement.$

{MDC_PART_SCADA, MDC_TEMP_zzz} is used in extended configurations and might report a specific type of measurement, site, or method-specific temperature measurement types as defined in Table 6.

Value Type Measurement site MDC TEMP AXILLA 57380 Axillary (armpit) MDC TEMP BODY 19292 General body temperature measurement MDC_TEMP_EAR 57356 Ear (usually earlobe) MDC_TEMP_FINGER MDC_TEMP_GIT 57360 Finger 57384 Gastro-intestinal tract TEMP_ORAL **MDC** 57352 Mouth TEMP RECT **MDC** 57348 Rectum MDC_TEMP_TOE 57376 Toe MDC TEMP TYMP 19320 Tympanum (ear drum)

Table 6—Extended configuration: Temperature type

6.7 Real-time sample array objects

Real-time sample array objects are not required by this standard.

6.8 Enumeration objects

Enumeration objects are not required by this standard.

6.9 PM store objects

PM-store objects are not required by this standard.

6.10 Scanner objects

Scanner objects are not required by this standard.

6.11 Class extension objects

In this standard, no class extension objects are defined with respect to IEEE Std 11073-20601.

6.12 Thermometer information model extensibility rules

The thermometer domain information model of this standard may be extended by including vendor-specific metrics and attributes as required. For example, a vendor might require including a temperature gradient or temperature measurement site (ear, mouth, etc.) in addition to the body temperature measurement. Any object or attribute extensions implemented should follow the guidelines of this standard as closely as possible.

A thermometer agent having a configuration with extensions beyond the standard configuration, as specified in this standard, shall use a configuration ID in the range of IDs reserved for extended configurations (see IEEE Std 11073-20601).

7. Thermometer service model

7.1 General

The service model defines the conceptual mechanisms for data exchange services. These services are mapped to messages that are exchanged between the agent and the manager. Protocol messages within the ISO/IEEE 11073 series of standards are defined in ASN.1. See IEEE Std 11073-20601 for a detailed description of the personal health device service model. Subclause 7.2 through 7.3 define the specifics of object access and event reporting services for a thermometer agent according to this standard.

7.2 Object access services

The object access services of IEEE Std 11073-20601 are used to access the objects defined in the domain information model of the thermometer.

The following generic object access services are supported by a thermometer agent according to this standard:

- GET service: used by the manager to retrieve the values of the agent MDS object attributes. The list of thermometer MDS object attributes is given in 6.5.4.1.
- SET service: used by the manager to set the values of the agent object attributes. There are no settable attributes defined for a thermometer agent according to this standard.
- Event report service: used by the agent to send configuration reports and measurement data to the manager. The list of event reports for the thermometer device specialization is given in 6.5.3.
- Action service: used by the manager to invoke actions (or methods) supported by the agent. An
 example is Set-Time action, which is used to set a real-time clock with the absolute time at the
 agent.

Table 7 summarizes the object access services described in this standard.

Table 7—Thermometer object access services

Service	Subservice	Mode	Subservice	Parameters	Result	Remarks
GET	<pre><na></na></pre>	<implied Confirmed></implied 	type <na></na>	GetArgumentSim ple = (obj-handle = 0), attribute-id- list <optional></optional>	GetResultSim ple = (obj-handle = 0), attribute- list	Allows the manager to retrieve the attribute values of the agent's MDS object.
	MDS- Configurati on-Event	Confirmed	MDC_NOTI_CON FIG	ConfigReport	ConfigReport Rsp	Configuration Report to inform manager of the configuration of the agent.
	MDS- Dynamic- Data- Update-Var	Confirmed	MDC_NOTI_SCA N_REPORT_VAR	ScanReportInfoV ar	_	Data Report to provide dynamic data to manager for some or all of the agent's objects in variable format.
EVENT REPORT	MDS- Dynamic- Data- Update- Fixed	Confirmed	MDC_NOTI_SCA N_REPORT_FIXE D	ScanReportInfoF ixed	_	Data Report to provide dynamic data to manager for some or all of the agent's objects in fixed format.
	MDS- Dynamic- Data- Update-MP- Var	Confirmed	MDC_NOTI_SCA N_REPORT_MP_ VAR	ScanReportInfo MPVar		This is the same as MDS-Dynamic-Data-Update-Var but allows inclusion of data from multiple people.
	MDS- Dynamic- Data- Update-MP- Fixed	Confirmed	MDC_NOTI_SCA N_REPORT_MP_F IXED	ScanReportInfo MPFixed	_	This is the same as MDS-Dynamic-Data-Update-Fixed but allows inclusion of data from multiple people.
ACTION	Set-Time	Confirmed	MDC_ACT_SET_T IME	SetTimeInvoke	_	Manager method to invoke the agent to set time to requested value.

7.3 Object access event report services

The event report service (see Table 7) is used by the agent to report its information (e.g., measurements). Event reports in this standard are a property of the MDS object only. The event reports used in this standard are defined in IEEE Std 11073-20601.

The following conditions apply for a thermometer agent according to this standard:

- Event reports shall be used in confirmed mode.
- Agent-initiated mode shall be supported for measurement data transmission.

A thermometer agent, which is designed to operate in an environment where data may be collected from multiple people, may use one of the multiple-person event report styles to transmit all the data from each person in a single event report. If this functionality is not required, the agent shall use the single-person event report styles, which have reduced overhead.

A manager shall support both single-person and multiple-person event reports. A thermometer agent may support single-person and/or multiple-person event reports. The formats for single- and multiple-person reports are described in IEEE Std 11073-20601.

8. Thermometer communication model

8.1 Overview

This clause describes the general communication model and procedures of the thermometer agent as defined in IEEE Std 11073-20601. Therefore, the respective parts of IEEE Std 11073-20601 are not reproduced; rather the specific choices and restrictions with respect to optional elements (e.g., objects, attributes, and actions) and specific extensions (e.g., nomenclature terms) are specified.

For an illustrative overview of the various message transactions during a typical measurement session, see the sequence diagram for the example use case in Annex D and the corresponding protocol data unit (PDU) examples in Annex E.

8.2 Communications characteristics

In this subclause, limits on the size of an application protocol data unit (APDU) transmitted or to be received by a thermometer agent are defined. Small limits allow for simple implementations in terms of low cost and complexity.

A thermometer agent implementing only this device specialization shall not transmit any APDU larger than N_{tx} and shall be capable of receiving any APDU up to a size of N_{rx} . For this standard, N_{tx} shall be 896 octets and N_{rx} shall be 224 octets.

For a thermometer agent implementing functions from other device specializations, an upper bound estimation of the APDU sizes brings the following: An agent shall not transmit any APDU larger than the sum of N_{tx} of all the device specializations implemented and shall be capable of receiving any APDU up to the sum of N_{rx} of all the device specializations implemented. If these numbers are higher than the maximum size determined in IEEE Std 11073-20601, the latter shall be applied.

In case the APDU size limit does not allow for the inclusion of a certain amount of multiple pending measurements at the agent, they shall be sent using multiple event reports. See 8.5.3 for the maximum number of measurements allowed for inclusion in a single event report.

8.3 Association procedure

8.3.1 General

The association procedure for a thermometer agent and manager according to this standard shall be pursued as specified in IEEE Std 11073-20601.

8.3.2 Agent procedure—association request

In the association request sent by the agent to the manager:

- The version of the association procedure used by the agent shall be set to assoc-version1 (i.e., assoc-version = 0x80000000).
- The DataProtoList structure element of the data protocol identifier shall be set to data-proto-id-20601 (i.e., data-proto-id = 0x5079).
- The *data-proto-info* field shall contain a PhdAssociationInformation structure that shall contain the following parameter values:
 - 1) The version of the data exchange protocol shall be set to protocol-version1 (i.e., *protocol-version* = 0x80000000).

- 2) At least the MDER encoding rules shall be supported (i.e., *encoding-rules* = 0x8000).
- 3) The version of the nomenclature used shall be set to nom-version 1 (i.e., nomenclature-version = 0x80000000).
- 4) The field *functional-units* may have the test association bits set but shall not have any other bits set.
- 5) The field system-type shall be set to sys-type-agent (i.e., system-type = 0x00800000).
- 6) The *system-id* field shall be set to the value of the System-Id attribute of the MDS object of the agent. The manager may use this field to determine the identity of the thermometer with which it is associating and, optionally, to implement a simple access restriction policy.
- 7) The *dev-config-id* field shall be set to the value of the Dev-Configuration-Id attribute of the MDS object of the agent.
- 8) If the agent supports only the thermometer specialization, then the *data-req-mode-capab* field shall be set to *data-req-supp-init-agent*, the *data-req-init-manager-count* shall be set to zero, and the *data-req-init-agent-count* shall be set to 1.

8.3.3 Manager procedure—association response

In the association response message sent by the manager:

- The result field shall be set to an appropriate response from those defined in IEEE Std 11073-20601. For example, if all other conditions of the association protocol are satisfied, accepted is returned when the manager recognizes the dev-config-id of the agent and the accepted-unknown-config otherwise.
- In the DataProtoList structure element, the data protocol identifier shall be set to data-proto-id-20601 (i.e., data-proto-id = 0x5079).
- The *data-proto-info* field shall be filled in with a PhdAssociationInformation structure that shall contain the following parameter values:
 - 1) The version of the data exchange protocol shall be set to protocol-version1 (i.e., *protocol-version* = 0x80000000).
 - 2) The manager shall respond with a single selected encoding rule that is supported by both agent and manager. The manager shall support at least the MDER.
 - 3) The version of the nomenclature used shall be set to nom-version1 (i.e., nomenclature-version = 0x80000000).
 - 4) The field *functional-units* shall have all bits reset except for those relating to a test association.
 - 5) The field *system-type* shall be set to sys-type-manager (i.e., system-type = 0x80000000).
 - 6) The *system-id* field shall contain the unique system ID of the manager device, which shall be a valid EUI-64 type identifier.
 - 7) The field *dev-config-id* shall be manager-config-response (0).
 - 8) The fields *data-req-mode-capab*, *data-req-init-agent*, and *data-req-init-manager-count* shall be 0. If the agent supports only the thermometer specialization, *data-req-init-agent-count* shall be 1.

8.4 Configuring procedure

8.4.1 General

The agent enters the Configuring state if it receives an association response of accepted-unknown-config. In this case, the configuration procedure as specified in IEEE Std 11073-20601 shall be followed. Subclause 8.4.2 specifies the configuration notification and response messages for a thermometer agent with standard configuration ID 800 (0x0320). Normally, a manager would already know the standard configuration. However, for the purposes of this example, it does not.

8.4.2 Thermometer—standard configuration

8.4.2.1 Agent procedure

The agent performs the configuration procedure using a "Remote Operation Invoke | Confirmed Event Report" message with an MDC_NOTI_CONFIG event to send its configuration to the manager (see IEEE Std 11073-20601). The ConfigReport structure is used for the *event-info* field (see Table 3). For a thermometer agent with standard configuration ID 800 (0x0320), the format and contents of the configuration notification message are as follows:

0xE7	0x00			APDU CHOICE Type (PrstApdu)
0x00	0x44			CHOICE.length = 68
0x00	0x42			OCTET STRING.length = 66
0xxx	0xxx			invoke-id (differentiates this message from any other outstanding)
0×01	0x01			CHOICE(Remote Operation Invoke Confirmed Event Report)
0x00	0x3C			CHOICE.length = 60
0x00	0x00			obj-handle = 0 (MDS object)
0xXX	0xxx	0xxx	0xXX	event-time (set to 0xFFFFFFFF if RelativeTime is not supported)
0x0D	0x1C			event-type = MDC_NOTI_CONFIG
0x00	0x32			event-info.length = 50 (start of ConfigReport)
0x03	0x20			config-report-id (Dev-Configuration-Id value)
0x00	0x01			config-obj-list.count = 1 Measurement object will be "announced"
0x00	0x2C			config-obj-list.length = 44
0x00	0x06			obj-class = MDC_MOC_VMO_METRIC_NU
0×00	0x01			obj-handle = 1 (\rightarrow 1 st measurement)
0x00	0x04			attributes.count = 4
0x00	0x24			attributes.length = 36
0x09	0x2F			attribute-id = MDC_ATTR_ID_TYPE
0x00	0x04			attribute-value.length = 4
0x00	0x02	0x4B	0x5C	MDC_PART_SCADA, MDC_TEMP_BODY
0x0A	0x46			attribute-id = MDC_ATTR_METRIC_SPEC_SMALL
0x00	0x02			attribute-value.length = 2
0xF0	0x40			intermittent, stored data, upd & msmt aperiodic, agent init, measured
0x09	0x96			attribute-id = MDC_ATTR_UNIT_CODE
0x00	0x02			attribute-value.length = 2
0x17	0xA0			MDC_DIM_DEGC
0x0A	0x55			attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
0x00	0x0C			attribute-value.length = 12
0x00	0x02			AttrValMap.count = 2
0x00	0x08			AttrValMap.length = 8
0x0A	0x4C	0x00	0×02	MDC_ATTR_NU_VAL_OBS_BASIC value length = 2
0x09	0x90	0x00	0x08	MDC_ATTR_TIME_STAMP_ABS value length = 8

Note, at the locations of the message, where the content is not fixed, the value "0xXX" denotes a placeholder and depends on the implementation or on the preceding messaging of the agent.

8.4.2.2 Manager procedure

The manager shall respond to a configuration notification message using a "Remote Operation Response | Confirmed Event Report" data message with an MDC_NOTI_CONFIG event using the ConfigReportRsp structure for the *event-info* field (see Table 3). As a response to the standard configuration notification message in 8.4.2.1, the format and contents of the manager's configuration notification response message are as follows:

0xE7	0x00		APDU CHOICE Type (PrstApdu)
0x00	0x16		CHOICE.length = 22
0x00	0x14		OCTET STRING.length = 20
0xXX	0xXx		invoke-id (differentiates this message from any other outstanding)
0x02	0x01		CHOICE (Remote Operation Response Confirmed Event Report)
0x00	0x0E		CHOICE.length = 14
0x00	0x00		obj-handle = 0 (MDS object)
0xXX	0xxx 0xxx	0xXx	currentTime
0x0D	0x1C		event-type = MDC_NOTI_CONFIG
0x00	0×04		event-reply-info.length = 4
0x03	0x20		ConfigReportRsp.config-report-id = $0x0320$
0x00	0x00		ConfigReportRsp.config-result = accepted-config.

Again, the value "0xxx" denotes a placeholder and refers to a fixed location, varying content parts of the message.

8.5 Operating procedure

8.5.1 General

Measurement data and status information are communicated from the thermometer agent during the Operating state. If not stated otherwise, the operating procedure for a thermometer agent of this standard shall be as specified in IEEE Std 11073-20601.

8.5.2 GET thermometer MDS attributes

See Table 4 for a summary of the GET service.

If the attribute-id-list field in the roiv-cmip-get service message is empty, the thermometer agent shall respond with a rors-cmip-get service message in which the attribute-list contains a list of all implemented attributes of the MDS object.

If the manager requests specific MDS object attributes, indicated by the elements in attribute-id-list, and the agent supports this capability, then the thermometer agent shall respond with a rors-cmip-get service message in which the attribute-list contains a list of the requested attributes of the MDS object that are implemented. It is not required for a thermometer agent to support this capability. If this capability is not implemented, the thermometer agent shall respond with a "Remote Operation Error Result" (roer) service message (see IEEE Std 11073-20601) with the error-value field set to no-such-action (9).

8.5.3 Measurement data transmission

See Table 3 for a summary of the event report services available for measurement data transfer.

Measurement data transfer for a thermometer agent of this standard shall always be initiated by the thermometer (see agent-initiated measurement data transmission in IEEE Std 11073-20601). To limit the amount of data being transported within an APDU, the thermometer agent shall not include more than 25 temporarily stored measurements in a single event report. If more than 25 pending measurements are available for transmission, they shall be sent using multiple event reports. If multiple temperature measurements are available, up to 25 measurements should be transmitted within a single event report. Alternatively, they may be transmitted using a single event report for each temperature measurement. However, the former strategy is recommended to reduce overall message size and power consumption.

8.6 Time synchronization

Time synchronization between a thermometer agent and a manager may be used to coordinate the clocks used when reporting physiological events. Note that the mechanism for synchronizing an agent to a manager is outside the scope of this standard. If time synchronization is used, then this shall be reported in the Mds-Time-Info attribute of the MDS object.

9. Test associations

The test association provides a manufacturer the mechanism to test or demonstrate features of a product in a comprehensive manner. This clause defines the behavior of the standard thermometer agent during a test association. Support for test association is optional.

9.1 Behavior with standard configuration

An agent or manager entering a test association using the configuration ID for the standard thermometer device of this standard shall enter the Operating state in test mode. When in test mode, where possible, this should be indicated visually to any user. Normal functionality shall be suspended, and any test data generated shall not be processed by the device as physiological data.

The thermometer agent shall send a single simulated temperature value of 59.99 °C (a value never seen in normal usage and outside normal range) within 30 s of entering the Operating state. If the measurement-status attribute of the numeric object is implemented, then the test-data bit shall be set.

The test association is terminated in a manner consistent with the agent's normal behavior for terminating an association.

9.2 Behavior with extended configurations

This specification does not define a test association that uses an extended configuration.

10. Conformance

10.1 Applicability

This standard shall be used in conjunction with IEEE Std 11073-20601.

ISO/IEEE 11073-10408:2010(E)

An implementation or a system can conform to the following elements of this standard:

- Domain information model class hierarchy and object definitions (object attributes, notifications, methods, and data type definitions)
- Nomenclature code values
- Protocol and service models
- Communication service model (association and configuration)

10.2 Conformance specification

This standard offers levels of conformance with respect to strict adherence to the standard device and the use of extensions for:

- Information model of a specific device
- Use of attributes, value ranges, and access methods

A vendor shall specify the level of conformance for an implementation based on this standard and provide details of the way in which the definitions of this standard and any extensions are applied.

Specifications shall be provided in the form of a set of implementation conformance statements (ICSs) as detailed in 10.4.

This standard is used in conjunction with IEEE Std 11073-20601. It is recommended that the ICS for this standard be created first so that the ICS created for IEEE Std 11073-20601 may refer to the ICS for this standard where applicable.

10.3 Levels of conformance

10.3.1 General

This standard defines the following levels of conformance.

10.3.2 Conformance level 1: Base conformance

The application uses elements of the information, service, and communication models (object hierarchy, actions, event reports, and data type definitions) and the nomenclature scheme defined in IEEE Std 11073-20601 and IEEE 11073-104zz documents. All mandatory features defined in the object definition tables and in the ICS tables are implemented. Furthermore, any conditional, recommended, or optional features that are implemented shall follow the requirements in IEEE Std 11073-20601 and IEEE 11073-104zz documents.

10.3.3 Conformance level 2: Extended nomenclature (ASN.1 and/or ISO/IEEE 11073-10101)

Conformance level 2 meets conformance level 1 but also uses or adds extensions in at least one of the information, service, or nomenclature models. Extensions to nomenclature codes shall conform to the ISO/IEEE 11073-10101 framework and lie within the private nomenclature extension range (0xF000 – 0xFFFF).

Extensions to the information or service models shall be fully defined using ASN.1 where appropriate and have their behavior fully described following the framework of IEEE Std 11073-20601 and/or ISO/IEEE 11073-20101. All extensions shall be specified and include reference to the definition for the extension, or

where no publicly available reference is available, the definition of the extension should be appended to the conformance statement.

10.4 Implementation conformance statements

10.4.1 General format

The ICSs are provided as an overall conformance statement document that comprises a set of tables in the form given by the templates in the following clauses.

Each ICS table has the following columns:

Index	Feature	Reference	Req/Status	Support	Comment
-------	---------	-----------	------------	---------	---------

The table column headings have the following meaning:

- Index: an identifier (e.g., a tag) of a specific feature.
- Feature: briefly describes the characteristic for which a conformance statement is being made.
- Reference: to the clause/paragraph within this document or an external source for the definition of the feature (may be empty).
- Req/Status: specifies the conformance requirement (e.g., mandatory or recommended)—in some
 cases, this standard does not specify conformance requirements but requests the status of a
 particular feature be provided.
- Support: specifies the presence or absence of a feature and any description of the characteristics of the feature in the implementation. This column is to be filled out by the implementer.
- Comment: contains any additional information on the feature. This column is to be filled out by the implementer.

Subclauses 10.4.2 to 10.4.6 specify the format of the specific ICS tables.

10.4.2 General implementation conformance statement

The general ICS specifies the versions/revisions that are supported by the implementation and high-level system behavior.

Table 8 shows the general ICSs.

Table 8—IEEE 11073-10408 general ICSs' table

Index ^a	Feature	Reference	Req./Status	Support	Comment
GEN 11073-10408-1	Implementation Description	_	Identification of the device/ application. Description of functionality.		
GEN 11073-10408-2	Standards followed and their revisions	(standard documents)	(set of existing revisions)	(set of supported revision)	
GEN 11073-10408-3	Nomenclature document used and revision	(standard documents)	(set of existing revisions)	(set of supported revisions)	
GEN 11073-10408-4	Conformance Adherence - Level 1 -	See 10.3.2	Base conformance declaration that device meets the following ISO/IEEE 11073-10408 conformance requirements: a) All mandatory requirements shall be implemented. b) If implemented, conditional, recommended, and optional requirements shall conform to standard.	Yes/No (No is not expected as No implies that the implementation is non-conformant)	
GEN 11073-10408-5	Conformance Adherence - Level 2 -	See 10.3.3	In addition to GEN 11073-10408-4, if the device implements extensions and/or additions, they shall conform to nomenclature codes from ASN.1 and/or 10101 framework. These extensions should also be defined in ICS tables pointing toward their reference.	Yes/No	
GEN 11073-10408-6	Object Containment Tree	See 6.3	Provide Object Containment Diagram showing relations between object instances used by the application. A conforming implementation uses only object relations as defined in the DIM.		
GEN 11073-10408-7	Nomenclature document used and revision	(standard documents)	(set of existing revisions)	(set of supported revision)	
GEN 11073-10408-8	Data Structure Encoding	_	_	description of encoding method(s) for ASN.1 data structures	
GEN 11073-10408-9	Use of Private Objects	_	Does the implementation use objects that are not defined in the DIM?	Yes/No (If yes: explain in Table 9)	

Index ^a	Feature	Reference	Req./Status	Support	Comment
GEN 11073-10408- 10	Use of Private Nomenclature Extensions		Does the implementation use private extensions to the nomenclature (i.e., 0xF000-0xFFFF codes from ISO/IEEE 11073-10101)? Private Nomenclature extensions are <i>only</i> allowed if the standard nomenclature does not include the specific terms required by the application.	Yes/No (If yes: explain in the Table 12)	
GEN 11073-10408- 11	11073-20601 Conformance	_	Provide the conformance report required by IEEE Std 11073-20601.		

^aThe prefix GEN11073-10408- is used for the index in the general ICSs table.

10.4.3 DIM MOC implementation conformance statement

The DIM MOC ICS defines which objects are implemented. Information on each object shall be provided as a separate row in the template of Table 9.

Table 9—Template for DIM MOC ICS table

Index	Feature	Reference	Req./Status	Support	Comment
MOC-n	Object description	Reference to the clause in the standard or other location where the object is defined.	Implemented	Specify restrictions (e.g., maximum number of supported instances)	

The n in the Index column should be the object handle for implementations that have predefined objects. Otherwise the Index column shall simply be a unique number (1..m).

All private objects shall be specified and include either a reference to the definition for the object or, where no publicly available reference is available, the definition of the object should be appended to the conformance statement.

The Support column should indicate any restrictions for the object implementation.

An object containment diagram (class instance diagram) should be provided as part of the DIM MOC ICS.

10.4.4 MOC attribute ICS

The MOC attribute ICS defines which attributes, including any inherited attributes, are used/supported in each object of an implementation. Information on each attribute of an object shall be provided as a separate row in the template of Table 10. A separate MOC attribute ICS shall be provided for each object.

Table 10 — Template for MOC attribute ICS table

Index	Feature	Reference	Req./Status	Support	Comment
ATTR-n-x	Attribute Name. Extended attributes shall include the attribute ID also.	Fill in the reference to the ASN.1 structure if the attribute is not defined in this standard.	M = Mandatory / C = Conditional / R = Recommended / O = Optional (as per definition in Attribute Definition Tables)	Implemented? Yes/No Static/Dynamic Specify restrictions (e.g., value ranges). Describe how attribute is accessed (e.g., Get, Set, sent in config event report or sent in a data event report). Describe any specific restrictions.	

The Support column shall specify whether the attribute is implemented; for extension attributes, whether the attribute value is static or dynamic; any value ranges; restrictions on attribute access or availability; and any other information.

The n in the Index column refers to the ID of the managed object for which the table is supplied (i.e., the index of the managed object as specified in the MOC ICS). There is one separate table for each supported managed object.

The x in the Index column is a unique serial number (1..m).

10.4.5 MOC notification implementation conformance statement

The MOC notification ICS specifies all implemented notifications (typically in the form of the event report service) that are emitted by the agent. Table 11 provides a template for use. One table has to be provided for each object that supports special object notifications. One row of the table shall be used for each notification.

Table 11 — Template for MOC notification ICS table

Index	Feature	Reference	Req./Status	Support	Comment
NOTI-n-x	Notification Name and Notification ID	Reference to the clause in the standard or other location where the event is defined.		The Support column shall specify how the notification is sent and any restrictions.	

The n in the Index column refers to the ID of the managed object for which the table is supplied (i.e., the index of the managed object as specified in the POC ICS). There is one separate table for each managed object that supports specific object notifications (i.e., events).

The x in the Index column is a unique serial number (1..m).

All private notifications should be specified and include reference to the definition for the notification. Where no publicly available reference is available, the definition of the notification should be appended to the conformance statement.

10.4.6 MOC nomenclature conformance statement

The MOC nomenclature ICS specifies all nonstandard nomenclature codes that are utilized by the agent. Table 12 provides a template for use. One row of the table is to be used for each nomenclature element.

Table 12 — Template for MOC nomenclature ICS table

Index	Feature	Reference	Req./Status	Support	Comment
NOME-n	Nomenclature Name and Nomenclature value	Reference to the clause in the standard or other location where the nomenclature is defined or used.		Describe how the nomenclature is used. Describe any specific restrictions.	

The n in the Index column is a unique serial number (1..m).

Annex A

(informative)

Bibliography

[B1] IEEE 100™, *The Authoritative Dictionary of IEEE Standards Terms*, Seventh Edition. New York, Institute of Electrical and Electronic Engineers, Inc. 5,6

[B2] ISO/IEEE 11073-10101™:2004, Health informatics — Point-of-care medical device communication — Part 10101: Nomenclature.⁷

[B3] ISO/IEEE 11073-10201[™]:2004, Health informatics — Point-of-care medical device communication — Part 10201: Domain information model.

[B4] ISO/IEEE 11073-20101[™]:2004, Health informatics — Point-of-care medical device communication — Part 20101: Application profile — Base standard.

[B5] ITU-T Rec. X.680-2002, Information technology — Abstract Syntax Notation One (ASN.1): Specification of basic notation.⁸

© ISO 2010 – All rights reserved © IEEE 2010 – All rights reserved

⁵IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA (http://standards.ieee.org/).

⁶The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

⁷ISO/IEEE publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iso.ch/). ISO/IEEE publications are also available in the United States from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA (http://standards.ieee.org/).

⁸ITU publications are available from the International Telecommunications Union, Place des Nations, 1211 Geneva 20, Switzerland (http://www.itu.in/).

Annex B

(normative)

Any additional ASN.1 definitions

No additional ASN.1 definitions are defined.

Annex C

(normative)

Allocation of identifiers

This annex contains the nomenclature codes used in this document and not found in IEEE Std 11073-20601. For those not contained in this annex, the normative definition is found in IEEE Std 11073-20601.

The format used here follows that of ISO/IEEE 11073-10101.

/*************************************		
* From Medical supervisory control and data acque************************************	iisition (MDC_PART_SCAD <i>A</i> ***********	A) *********
		/
/* Copy of the nomenclature codes already define	d in ISO/IEEE 11073-10101.	*/
#define MDC TEMP TYMP	19320 /* TEMPtypn	n */
#define MDC TEMP RECT	57348 /* KKT	*/
#define MDC TEMP ORAL	57352 /* T	*/
#define MDC TEMP EAR	57356 /* T	*/
#define MDC_TEMP_FINGER	57360 /* T	*/
#define MDC_TEMP_TOE	57376 /*	*/
/* New nomenclature codes introduced in the pre-	ent document (IEEE Std 11073	3-10408). */
#define MDC_TEMP_AXILLA	57380 /*	*/
#define MDC_TEMP_GIT	57384 /*	*/
/****************************	*********	******
* From Dimensions (MDC_PART_DIM) ************************************	********	********
#define MDC_DIM_FAHR	4416 /* °F	*/

Annex D

(informative)

Message sequence examples

Figure D.1 shows a sequence diagram of the messaging procedure corresponding to the following use case. The user of a thermometer agent device intends to connect it to a manager device for the first time. The thermometer is capable of performing temperature measurements.

- a) When the user connects the thermometer, the manager does not yet know the agent's configuration and sends a response to the agent's association request with the result *accepted-unknown-config.* See E.2.2.2 and E.2.2.3 for the corresponding PDU examples.
- b) As a consequence of this, the agent sends its configuration information to the manager. After getting confirmation from the manager accepting the agent's configuration, the agent device is ready to send measurements. Both devices enter the Operating state. See E.3.2.2 and E.3.2.3 for the corresponding PDU examples.
- c) Subsequently, the manager may request the MDS object attributes of the agent by sending a data message with the "Remote Operation Invoke | Get" command. As a response, the agent reports its MDS object attributes to the manager using a data message with the "Remote Operation Response | Get" command. See E.4.2 and E.4.3 for the corresponding PDU examples.
- d) As a next step, the user of the agent device takes a single measurement. The measurement data is transmitted to the manager using a confirmed event report. After having successfully received the measurement data, the manager sends a confirmation to the agent. See E.5.1 and E.5.2 for the corresponding PDU examples.
- e) The user ends the measurement session (e.g., by pushing a proper button on the device or just by not using the device for a duration longer than a certain time period). As a consequence, the agent disassociates from the manager by sending an association release request. The manager responds with an association release response. See E.6.1 and E.6.2 for the corresponding PDU examples.
- f) When the agent requests to associate to the manager for the next measurement session (e.g., the next day), the result in the manager's response is accepted, as it already knows the agent's configuration from the previous measurement session. Both devices transition directly to the Operating state.
- g) Finally, the last two steps shown are similar as in item d) and item e). The user takes a single confirmed measurement followed by releasing the association.

Figure D.1—Sequence diagram for thermometer example use case

Annex E

(informative)

Protocol data unit examples

E.1 General

This annex shows binary examples of messages exchanged between a thermometer agent and manager. Three different scenarios containing the association and configuration information exchanges are presented in E.2 and E.2.3. The first scenario illustrates the case when the agent intends to operate using an extended configuration. The manager does not have the configuration declared by the agent from a prior association. The second illustrates the agent presenting the same extended configuration to the manager, and the manager does have the configuration from the previously transferred configuration exchange. Finally, the agent presents a standard configuration to the manager, and the manager has the configuration because the manager has been preprogrammed with this configuration.

E.2 Association information exchange

E.2.1 General

When the transport connection is established between the manager and the agent, they both enter the Unassociated state. When the agent sends an association request, both manager and agent enter the Associating state.

E.2.2 Extended configuration

E.2.2.1 General

In this exchange, the agent sends an association request intending to use an extended configuration during measurement transfer. However, the manager does not have this configuration.

E.2.2.2 Association request

The thermometer agent sends the following message to the manager. The agent intends to associate using an extended configuration.

0xE2	0x00				APDU CHOICE Type (AarqApdu)	
0x00	0x32			(CHOICE.length = 50	
0×80	0x00	0x00	0×00	ä	assoc-version	
0x00	0×01	0x00	0x2A	(data-proto-list.count = 1 length = 42	
0x50	0x79			(data-proto-id = 20601	
0x00	0x26			(data-proto-info length = 38	
0×80	0x00	0x00	0×00	1	protocolVersion	
0xA0	0x00			(encoding rules = MDER or PER	
0×80	0x00	0x00	0×00	1	nomenclatureVersion	
0x00	0x00	0x00	0×00	1	functionalUnits – no test association capabilities	
0x00	0x80	0x00	0x00	5	systemType = sys-type-agent	
0x00	0x08			5	system-id length = 8 and value (manufacturer- and device- specific)	
0x31	0x32	0x33	0x34	0x35	0x36 0x37 0x38	
0x40	0x00			(dev-config-id – extended configuration	
0x00	0x01			(data-req-mode-flags	
0x01	0x00			(data-req-init-agent-count, data-req-init-manager-count	
0x00	0x00	0x00	0x00	(optionList.count = $0 \mid optionList.length = 0$	

E.2.2.3 Association response

A manager responds to the agent that it can associate but does not have the thermometer extended configuration (i.e., there is the need for the agent to send its configuration).

0xE3	0x00			APDU CHOICE Type (AareApdu)
0x00	0x2C			CHOICE.length = 44
0x00	0x03			result = accepted-unknown-config
0x50	0x79			data-proto-id = 20601
0x00	0x26			data-proto-info length = 38
0×80	0x00	0x00	0×00	protocolVersion
0×80	0x00			encoding rules = MDER
0x80	0x00	0x00	0x00	nomenclatureVersion
0×00	0x00	0x00	0×00	functionalUnits – normal Association
0×80	0x00	0x00	0×00	systemType = sys-type-manager
0x00	0x08			system-id length = 8 and value (manufacturer- and device- specific)
0x38	0x37	0x36	0x35	0x34 0x33 0x32 0x31
0x00	0x00			Manager's response to config-id is always 0
0x00	0x00			Manager's response to data-req-mode-flags is always 0
0x00	0x00			data-req-init-agent-count and data-req-init-manager-count are always 0
0x00	0x00	0x00	0x00	optionList.count = $0 \mid optionList.length = 0$

E.2.3 Previously known extended configuration

E.2.3.1 General

This exchange illustrates a transaction that takes place after a session beginning with an exchange like E.2.2 has occurred.

E.2.3.2 Association request

The thermometer agent sends the following message to the manager. The agent intends to associate using an extended configuration.

This is exactly the same message as in E.2.2.2; see code there.

E.2.3.3 Association response

A manager responds to the agent that it can associate with, recognizes, and accepts and has the thermometer's extended configuration (i.e., there is no need for the agent to send its configuration).

0xE3	0x00			APDU CHOICE Type (AareApdu)
0x00	0x2C			CHOICE.length = 44
0x00	0x00			result = accepted
0x50	0x79			data-proto-id = 20601
0x00	0x26			data-proto-info length = 38
0x80	0x00	0x00	0x00	protocolVersion
0x80	0x00			encoding rules = MDER
0x80	0x00	0x00	0x00	nomenclatureVersion
0x00	0x00	0x00	0×00	functionalUnits – normal Association
0x80	0x00	0x00	0x00	systemType = sys-type-manager
0x00	0x08			system-id length = 8 and value (manufacturer- and device- specific)
0x38	0x37	0x36	0x35	0x34 0x33 0x32 0x31

$0 \times 00 0 \times 00$	Manager's response to config-id is always 0
$0 \times 00 0 \times 00$	Manager's response to data-req-mode-flags is always 0
$0 \times 00 0 \times 00$	data-req-init-agent-count and data-req-init-manager-count are always 0
$0 \times 00 0 \times 00 0 \times 00$	optionList.count = 0 optionList.length = 0

E.2.4 Standard configuration

E.2.4.1 General

This transaction would occur if an agent presents an association request incorporating the dev-config-id corresponding to a standard configuration. The manager has the configuration because it has been programmed with this configuration according to the information presented in this standard.

E.2.4.2 Association request

The thermometer agent sends the following message to the manager. The agent intends to associate using a standard configuration. The agent is willing to enter into a test association as defined in Clause 10.

0xE2	0x00			APDU CHOICE Type (AarqApdu)
0x00	0x32			CHOICE.length = 50
08x0	0x00	0x00	0x00	assoc-version
0x00	0×01	0x00	0x2A	data-proto-list.count = $1 \mid length = 42$
0x50	0x79			data-proto-id = 20601
0x00	0x26			data-proto-info length = 38
08x0	0x00	0x00	0×00	protocolVersion
0xA0	0x00			encoding rules
08x0	0x00	0x00	0×00	Nomenclature version
0x00	0x00	0x00	0×00	Functional units
0x00	0x80	0x00	0×00	systemType = sys-type-agent
0x00	0x08			systemID.length
0x31	0x32	0x33	0x34	0x35 0x36 0x37 0x38 System ID
0x03	0x20			dev-config-id: 800 - standard configuration
0x00	0x01			data-req-mode-flags
0x01	0x00			data-req-init-agent-count, data req-manager-count
0x00	0x00	0x00	0x00	optionList.count = 0 optionList.length

E.2.4.3 Association response

A manager responds to the agent that it can associate with, recognizes, and accepts and has the thermometer standard configuration (i.e., there is no need for the agent to send its configuration). The manager does not start a test association.

0xE3	0x00			APDU CHOICE Type (AareApdu)
0x00	0x2C			CHOICE.length = 44
0x00	0x00			Result = Accepted
0x50	0x79			data-proto-id = 20601
0x00	0x26			data-proto-info length = 38
0x80	0x00	0x00	0x00	protocolVersion
0x80	0x00			encoding rules = MDER
0x80	0x00	0x00	0×00	nomenclatureVersion
0x00	0x00	0x00	$0 \times 0 0$	functionalUnits
0x80	0x00	0x00	$0 \times 0 0$	systemType = sys-type-manager
0x00	0x08			system-id length = 8 and value (manufacturer- and device- specific)

ISO/IEEE 11073-10408:2010(E)

0x38	0x37	0x36	0x35	$0x34 \ 0x33$	0x32	0x31	system-id	
0x00	0x00			Manage	r's resp	onse to	config-id is always 0	
0x00	0x00			Manage	r's resp	onse to	data-req-mode-capab is alwa	ays 0
0x00	0x00			data-rec	ı-init-ag	ent-cou	nt, data req-manager-count	are always 0
0x00	0x00	0x00	0x00	optionL	ist.coun	$t = 0 \mid o$	ptionList.length = 0	

E.3 Configuration information exchange

E.3.1 General

If the association is not rejected or aborted, the agent and manager transition from the Associating state into one of two states. If the manager's AssociateResult code is accepted, the agent and manager enter the Operating state. If the manager's AssociateResult code is accepted-unknown-config, the agent and manager enter the Configuring state.

E.3.2 Extended configuration

E.3.2.1 General

This exchange takes place when the manager returns the AssociateResult code of accepted-unknown-config. The agent presents a description of its configuration corresponding to the dev-config-id it presented in the association request.

E.3.2.2 Remote operation invoke event report configuration

The thermometer agent sends the description of its extended configuration. It does this by sending a confirmed event report of type MDC_NOTI_CONFIG.

0xE7	0x00	API	DU CHOICE	Type (PrstApdu)
0x00	0x44			CHOICE.length = 68
0x00	0x42			OCTET STRING.length = 70
0x00	0x03			invoke-id = 3 (start of DataApdu. MDER encoded.)
0×01	0×01			CHOICE(Remote Operation Invoke Confirmed Event Report)
0x00	0x3C			CHOICE.length = 60
0x00	0x00			obj-handle = 0 (MDS object)
0xFF	0xFF	0xFF	0xFF	event-time = $0xFFFFFFFF$
0x0D	0x1C			event-type = MDC_NOTI_CONFIG
0x00	0x32			event-info.length = 50 (start of ConfigReport)
0x40	0x00			config-report-id 16384
0x00	0x01			config-obj-list.count = 1 Measurement objects will be "announced"
0x00	0x2C			config-obj-list.length = 44
0x00	0x06			obj-class = MDC_MOC_VMO_METRIC_NU
0x00	0x01			obj-handle = 1 (\rightarrow 1 st Measurement is temperature)
0×00	0x04			attributes.count = 4
0x00	0x24			attributes.length = 36
0×09	0x2F			attribute-id = MDC_ATTR_ID_TYPE
0x00	0x04			attribute-value.length = 4
0x00	0x02	0x4B	0x5C	MDC_PART_SCADA, MDC_TEMP_BODY
0x0A	0x46			attribute-id = MDC_ATTR_METRIC_SPEC_SMALL
0x00	0x02			attribute-value.length = 2
0xF0	0x40			
0×09	0x96			attribute-id = MDC_ATTR_UNIT_CODE
0x00	0x02			attribute-value.length = 2

0x17	0xA0			MDC_DIM_DEGC
0x0A	0x55			attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
0x00	0x0C			attribute-value.length = 16
0x00	0x02			AttrValMap.count = 2
0x00	80x0			AttrValMap.length = 8
0x0A	0x56	0x00	0×04	MDC_ATTR_NU_VAL_OBS_SIMP, 4
0x09	0x90	0x00	0x08	MDC_ATTR_TIME_STAMP_ABS, 8

E.3.2.3 Remote operation response event report configuration

The manager responds that it can utilize the agent's configuration. The manager does this by sending the confirmed event report response with a config-result of accepted-config.

0xE7	0x00		APDU CHOICE Type (PrstApdu)
0x00	0x16		CHOICE.length = 22
0x00	0x14		OCTET STRING.length = 20
0x00	0x03		invoke-id = $0x1235$ (mirrored from invocation)
0x02	0x01		CHOICE (Remote Operation Response Confirmed Event Report)
0x00	0x0E		CHOICE.length = 14
0x00	0x00		obj-handle = 0 (MDS object)
0x00	0x00 0x00	0x00	currentTime = 0
0x0D	0x1C		event-type = MDC_NOTI_CONFIG
0x00	0×04		event-reply-info.length = 4
0x40	0x00		ConfigReportRsp.config-report-id = 0x4000
0x00	0x00		ConfigReportRsp.config-result = accepted-config

E.3.3 Known configuration

E.3.3.1 General

This exchange takes place when the manager returns the AssociateResult code of accepted because the manager had previously received and processed the configuration corresponding to the dev-config-id sent by the agent. In this case, there is no exchange of configuration information, and the manager and agent have moved into the Operating state.

E.3.3.2 Remote operation invoke event report configuration

Since the manager was already aware of the agent's configuration, the Configuring state is skipped, and no event report invocation is generated by the agent.

E.3.3.3 Remote operation response event report configuration

The Configuring state has been skipped. No event report invocation is generated by the agent, so the manager does not generate any response.

E.3.4 Standard configuration

E.3.4.1 General

This exchange takes place when the manager returns the AssociateResult code of accepted because the manager had previously been programmed with the documented standard configuration corresponding to the dev-config-id sent by the agent. In this case, there is no exchange of configuration information, and the manager and agent have moved into the Operating state.

E.3.4.2 Remote operation invoke event report configuration

Since the manager had been programmed with the agent's configuration, the Configuring state is skipped, and no event report invocation is generated by the agent.

E.3.4.3 Remote operation response event report configuration

The Configuring state has been skipped. No event report invocation is generated by the agent, so the manager does not generate any response.

E.4 GET MDS attributes service

E.4.1 General

The GET MDS attributes is invoked at any time when the agent is in Associated state.

E.4.2 Get all medical device system attributes request

The manager queries the agent for its MDS object attributes.

0xE7	0x00	APDU CHOICE Type (PrstApdu)
0x00	0x0E	CHOICE.length = 14
0x00	0x0C	OCTET STRING.length = 12
0x00	0x05	invoke-id = 5 (differentiates this message from any other outstanding,
		choice is implementation specific)
0x01	0x03	CHOICE (Remote Operation Invoke Get)
0x00	0x06	CHOICE.length = 6
0x00	0×00	handle = 0 (MDS object)
0x00	0x00	attribute-id-list.count = 0 (all attributes)
0x00	0x00	attribute-id-list.length = 0

E.4.3 Get response with all MDS attributes

The thermometer agent responds to the manager with its attributes. Furthermore, some optional fields are communicated as well.

0xE7	$0 \times 0 0$	APDU CHOICE Type (PrstApdu)
0x00	0x58	CHOICE.length = 88
0x00	0x56	OCTET STRING.length = 86
0x00	0×05	invoke-id = 5 (mirrored from request)
0x02	0x03	CHOICE (Remote Operation Response Get)
0x00	0x50	CHOICE.length = 80
0x00	0x00	handle = 0 (MDS object)
0x00	0×05	attribute-list.count = 5
0x00	0x4A	attribute-list.length = 74
0x0A	0x5A	attribute id = MDC_ATTR_SYS_TYPE_SPEC_LIST
0x00	0x08	attribute-value.length = 8
0x00	0x01	TypeVerList count = 1
0x00	0×04	TypeVerList length = 4
0x10	0x08	type = MDC_DEV_SPEC_PROFILE_TEMP
0x00	0x01	version = version 1 of the specialization
0x09	0x28	attribute id = MDC_ATTR_ID_MODEL
0x00	0x1A	attribute-value.length = 26

```
0x00 0x0A 0x54 0x68
                            string length = 10 | "TheCompany"
0x65 0x43 0x6F 0x6D
0x70 0x61 0x6E 0x79
0x00 0x0C 0x54 0x68
                            string length = 12 | "Thermometer\0"
0x65 0x72 0x6D 0x6F
0x6D 0x65 0x74 0x65 0x72 0x00
                           attribute-id = MDC ATTR SYS ID
0x09 0x84
0x00 0x0A
                            attribute-value.length = 10
0x00 0x08 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 octet string length = 8 | EUI-64
                           attribute-id = MDC ATTR DEV CONFIG ID
0x0A 0x44
                            attribute-value.length = 2
0 \times 00 \quad 0 \times 02
                            dev-config-id = 16384 (extended-config-start)
0x40 0x00
0x09 0x87
                            attribute-id =MDC_ATTR_TIME_ABS
                            attribute-value.length = 8
80x0 00x0
                            Absolute-Time-Stamp = 2008-05-06T08:00:0000
0x20 0x08 0x05 0x06
0x08 0x00 0x00 0x00
```

E.5 Data reporting

E.5.1 Confirmed measurement data transmission

The agent sends a spontaneous event report to the manager with measurement observations.

0xE7	0x00			APDU CHOICE Type (PrstApdu)
0x00	0x2A			CHOICE.length = 42
0x00	0x28			OCTET STRING.length = 40
0x00	0x08			invoke-id = 8
0x01	0x01			CHOICE (Remote Operation Invoke Confirmed Event Report)
0x00	0x22			CHOICE.length = 34
0x00	0x00			obj-handle = 0 (MDS object)
0xFF	0xFF	0xFF	0xFF	event-time = 0
0x0D	0x1D			event-type = MDC_NOTI_SCAN_REPORT_FIXED
0x00	0x18			event-info.length = 24
0xF0	0x00			ScanReportInfoFixed.data-req-id = $0xF000$
0x00	0x00			ScanReportInfoFixed.scan-report-no = 0
0x00	0x01			ScanReportInfoFixed.obs-scan-fixed.count = 1
0x00	0x10			ScanReportInfoFixed.obs-scan-fixed.length = 16
0x00	0x01			ScanReportInfoFixed.obs-scan-fixed.value[0].obj-handle = 1
0x00	0x0C			ScanReportInfoFixed.obs-scan-fixed.value[0]. obs-val-data.length = 12
0xFB	0x38	0x75	0x20	Simple-Nu-Observed-Value = 37.0 (Degrees C)
0x20	0x08	0x05	0x06	Absolute-Time-Stamp = $2008-05-06T08:30:0000$
0x08	0x30	0x00	0x00	

E.5.2 Response to confirmed measurement data transmission

The manager confirms receipt of the agent's event report.

0xE7 0x	x00	APDU CHOICE Type (PrstApdu)
0x00 0x	x12	CHOICE.length = 18
0x00 0x	x10	OCTET STRING.length = 16
0x00 0x	x04	invoke-id = 4 (mirrored from invocation)
0x02 0x	x01	CHOICE(Remote Operation Response Confirmed Event Report)

ISO/IEEE 11073-10408:2010(E)

0x00 0x0A	CHOICE.length = 10
$0 \times 00 0 \times 00$	obj-handle = 0 (MDS object)
$0 \times 00 0 \times 00 0 \times 00$	currentTime = 0
0x0D 0x1D	event-type = MDC_NOTI_SCAN_REPORT_FIXED
$0 \times 00 0 \times 00$	event-reply-info.length = 0

E.6 Disassociation

E.6.1 Association release request

The thermometer agent sends the following message to the manager:

0xE4	0x00	APDU CHOICE Type (RlrqApdu)
0x00	0x02	CHOICE.length = 2
0x00	0x00	reason = normal

E.6.2 Association release response

A manager responds to the agent that it can release association.

0xE5	$0 \times 0 0$	APDU CHOICE Type (RlreApdu)
0x00	0x02	CHOICE.length = 2
0×00	0x00	reason = normal

IEEE Notice to Users

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied "AS IS."

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to: Secretary, IEEE-SA Standards Board, 445 Hoes Lane, Piscataway, NJ 08854, USA.

Laws and regulations: Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights: This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents: Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEESA Web site at http://standards.ieee.org.

Errata: Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.

Interpretations: Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/index.html.

Patents: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.

Participants: The list of IEEE participants can be accessed at the following URL:

http://standards.ieee.org/downloads/11073/11073-10415/11073-10415-2010_wg_participants.pdf.

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or environmental protection. Implementers of the standard are responsible for determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Documents." They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

Abstract: Within the context of the ISO/IEEE 11073 family of standards for device communication, this standard establishes a normative definition of communication between personal telehealth thermometer devices and compute engines (e.g., cell phones, personal computers, personal health appliances, and set top boxes) in a manner that enables plug-and-play interoperability. It leverages appropriate portions of existing standards including ISO/IEEE 11073 terminology, information models, application profile standards, and transport standards. It specifies the use of specific term codes, formats, and behaviors in telehealth environments restricting optionality in base frameworks in favor of interoperability. This standard defines a common core of communication functionality for personal telehealth thermometer devices.

Keywords: medical device communication, personal health devices, thermometer

ICS 35.240.80 ISBN 978-0-7381-5816-4

Price based on 38 pages

© ISO 2010 – All rights reserved © IEEE 2010 – All rights reserved