BTS OPTICIEN LUNETIER

MATHÉMATIQUES

SESSION 2018

Note : ce corrigé n'a pas de valeur officielle et n'est donné qu'à titre informatif sous la responsabilité de son auteur par Acuité.

Corrigé proposé par M DESHAYES, professeur de mathématiques de l'Institut et Centre d'Optométrie de Bures-sur-Yvette.

EXERCICE 1

A. Étude d'une série statistique

1°) Un ajustement affine de y en x n'est pas approprié car les points du graphique ne sont pas proches d'une droite.

2°)

a)
$$r \cong -0.994$$

b) L'ajustement affine de z en x est justifié car le coefficient de corrélation linéaire de la série (x, z) est proche de -1.

$$3^{\circ}$$
) z = -0,6 x + 5,3

$$4^{\circ}) z = \ln (y - 20) = -0.6 x + 5.3$$

$$y - 20 = e^{-0.6 x + 5.3}$$

$$y = e^{-0.6 x + 5.3} + 20$$

$$y = e^{5.3} \times e^{-0.6 x} + 20$$

y est de la forme y = A e $^{-0.6 \text{ x}}$ + 20 avec A = $e^{5.3} \cong 200$

B. Résolution d'une équation différentielle

1°) -
$$\frac{b}{a}$$
 = - $\frac{6}{10}$ = - $\frac{3}{5}$ = -0.6

Les solutions de l'équation différentielle (E_0) sont donc les fonctions f définies sur l'intervalle $[0; +\infty[$ par $f(x) = k e^{-0.6x}$ où $k \in \mathbb{R}$

2°) La fonction g est dérivable sur $[0; +\infty[$ et g'(x) = 0

La fonction g est solution de l'équation différentielle (E) donc

10 g '(x) + 6 g(x) = 120, pout tout x de [0; +
$$\infty$$
[
0 + 6 c = 120

Donc
$$c = \frac{120}{6} = 20$$

3°) Les solutions de l'équation différentielle (*E*) sont les fonctions *f* définies sur l'intervalle [0 ; $+\infty$ [par $f(x) = k e^{-0.6x} + g(x) = k e^{-0.6x} + 20$ où $k \in \mathbb{R}$

$$4^{\circ}$$
) $f(0) = 220$
 $k e^{0} + 20 = 220$
 $k = 220 - 20 = 200$

Conclusion : f est définie sur l'intervalle [0 ; $+\infty$ [par f(x) = 200 e $^{-0.6x}$ + 20

C. Étude d'une fonction

1°) <u>La ligne 1</u> du logiciel de calcul formel fournit une expression de la dérivée de la fonction f: $f'(x) = -120 e^{-0.6x}$

$$e^{-0.6x} > 0$$
, pour tout x de $[0 ; +\infty[$ donc f'(x) < 0, pour tout x de $[0 ; +\infty[$ donc la fonction f est strictement décroissante sur $[0 ; +\infty[$.

2°) <u>La ligne 2</u> du logiciel de calcul formel fournit une expression d'une primitive de la fonction f : $F(x) = -\frac{1000}{3}e^{-0.6x} + 20x$

La valeur moyenne de f sur [0 ; 10] est : $\frac{1}{10-0} \int_0^{10} f(x) dx = \frac{1}{10} [F(x)]_0^{10}$

$$=\frac{1}{10}\left(F(10)-F(0)\right)=\frac{-\frac{1000}{3}e^{-6}+200-(-\frac{1000}{3}e^{-0})}{10}=\frac{-\frac{1000}{3}e^{-6}+200+\frac{1000}{3}}{10}\cong 53$$

La valeur moyenne de f sur [0; 10] est d'environ 53.

3°) D'après la question 1°) et la limite de f en +∞ donnée en <u>ligne 3</u> du logiciel, on a :

Donc la valeur minimale de f est 20 ; ce qui permet d'affirmer que le nombre de ventes annuelles de paires de ce type de lentilles de couleur ne peut pas être égal à 1500 (15 centaines)

D. Étude d'une suite

1°)
$$v_{n+1} = u_{n+1} - 80 = 0.95 \ u_n + 4 - 80 = 0.95 \ u_n - 76$$

Avec $u_n = v_n + 80$

donc $v_{n+1} = 0.95 \ (v_n + 80) - 76 = 0.95 \ v_n + 76 - 76 = 0.95 \ v_n$, pour tout entier n, donc la suite (v_n) est la suite géométrique de raison 0.95 et de premier terme $v_0 = u_0 - 80 = 150 - 80 = 70$.

2°) a)
$$v_n = v_0 q^n = 70 \times 0.95^n$$
; pour tout entier n.
b) $u_n = v_n + 80 = 70 \times 0.95^n + 80$; pour tout entier n.

3°) En sortie de l'algorithme, la variable s contient $u_0 + u_1 + ... + u_{23}$ donc 2 911est le nombre total de ventes de ces nouvelles lentilles de couleur au cours des 24 premiers mois.

4°)
$$70 \times 0.95^{n} + 80 \le 100$$
$$70 \times 0.95^{n} \le 100 - 80$$
$$0.95^{n} \le 20 / 70$$

$$ln(0,95^n) \le ln (2/7)$$

 $n \times ln 0,95 \le ln (2/7)$

$$n \ge \frac{\ln(\frac{2}{7})}{\ln 0.95}$$
 avec $\frac{\ln(\frac{2}{7})}{\ln 0.95} \cong 24.4$

Conclusion : Le plus petit entier naturel n tel que $70 \times 0.95^{n} + 80 \le 100$ est 25.

Interprétation : À partir du 26^{ème} mois, le nombre de clients qui achètent les nouvelles lentilles de couleur est inférieur à 100.

EXERCICE 2

A. Loi exponentielle

1°)
$$P(T \le 6) = 1 - e^{-0.125 \times 6} \cong 0.528$$

2°) $P(T > 9) = 1 - P(T \le 9) = 1 - (1 - e^{-0.125 \times 9}) = e^{-0.125 \times 9} \cong 0.325$

$$3^{\circ}$$
) E(T) = $1/0,125 = 8$

Interprétation : Sur une longue période, la durée moyenne de bon fonctionnement de la meuleuse entre deux étalonnages est proche de 8 jours.

B. Loi binomiale et loi de Poisson

1°)a)

 On considère une épreuve de Bernoulli, qui consiste à prélever un seul verreavec :

Succès : le verre prélevé a un défaut de courbure, de probabilité p = 0,01 Échec : l'évènement contraire.

- On répète 500 fois cette épreuve de façon identique et indépendante car tirage avec remise.
- La variable aléatoire X compte le nombre de succès obtenus.
- Donc la variable aléatoire X suit la loi binomiale de paramètres n = 500 et p = 0,01.

b)
$$P(X = 5) \cong 0,176$$

c)
$$P(X < 4) = P(X \le 3) \cong 0,264$$

2°)

a)
$$\mu = np = 500 \times 0.01 = 5$$

b)
$$P(Y \le 3) \cong 0.265$$

C. Test d'hypothèse

- 1°) D'après le théorème de la limite centrée, la variable aléatoire F suit la loi normale :
 - d'espérance p qui est égale à 0,10 sous H₀

- d'écart type
$$\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0,1(1-0,1)}{400}} = 0,015$$

- 2°) La valeur approchée au millième de a tel que $P(F \le a) = 0.95$ est : 0,125.
- 3°)On prélève un échantillon de 400 verres polis dans la production et on calcule la fréquence f des verres défectueux.

Si
$$f \le 0,125$$
, alors on accepte H_0
Sinon on rejette H_0

 4°) Calcul de f: f = 46 / 400 = 0,115

Décision : $0,115 \le 0,125$ donc on accepte H_0 donc on ne peut pas considérer, au seuil de 5%, qu'il y a plus de 10 % de verres défectueux dans la production des verres polis dans la journée.

D. Évènements indépendants

1°) $P(D \cap E) = P(D) \times P(E)$ car les évènements sont indépendants

$$= 0.05 \times 0.08 = 0.004$$

 $2^{\circ})P(D \cup E) = P(D) + P(E) - P(D \cap E)$

$$= 0.05 + 0.08 - 0.004 = 0.126$$

 3°) La probabilité que le verre contrôlé n'ait aucun défaut est :

$$P(\overline{D \cup E}) = 1 - P(D \cup E) = 1 - 0,126 = 0,874.$$