Lista nr 7 z matematyki dyskretnej

- 1. (D) Ile jest wyrazów złożonych z n liter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę liter a?
- 2. (D) Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:
 - (a) $a_{n+2} = 2a_{n+1} a_n + 3^n 1$, gdy $a_0 = a_1 = 0$.
 - (b) $a_{n+2} = 4a_{n+1} 4a_n + n2^{n+1}$, gdy $a_0 = a_1 = 1$.
 - (c) $a_{n+2} = 2^{n+1} a_{n+1} a_n$, gdy $a_0 = a_1 = 1$.
- 3. Niech c_n oznacza liczbę ciągów długości n złożonych z n cyfr ze zbioru $\{0,1,2\}$, nie zawierających dwóch następujących po sobie zer i dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując $c_0 = 1$. Rozwiąż otrzymaną zależność rekurencyjną.
- 4. Na ile sposobów można rozdać n różnych nagród wśród czterech osób A, B, C, D tak, aby:
 - (a) A dostała przynajmniej jedną nagrodę?
 - (b) A lub B nie dostała nic?
 - (c) Zarówno A jak i B dostała przynajmniej jedną nagrodę?
 - (d) Przynajmniej jedna spośród A, B, C nic nie dostała?
 - (e) Każda z 4 osób coś dostała?
- 5. (D) Podaj postać funkcji tworzącej dla liczby podziałów liczby naturalnej n (czyli rozkładów liczby n na sumę składników naturalnych, gdy rozkładów różniących się kolejnością nie uważamy za różne):
 - (a) na dowolne składniki,
 - (b) na różne składniki nieparzyste,
 - (c) na składniki mniejsze od m,
 - (d) na różne potęgi liczby 2.

6. Niech A(x) będzie funkcją tworzącą ciągu a_n . Znajdź funkcję tworzącą ciągu b_n postaci $(a_0,0,0,a_3,0,0,a_6,\ldots)$, czyli takiego, że dla każdego naturalnego k, $b_{3k}=a_{3k}$ oraz $b_{3k+1}=b_{3ka+2}=0$.

Wskazówka: Spróbuj użyć zespolonych pierwiastków stopnia 3 z 1. W podobnym zadaniu na poprzedniej liście używaliśmy dwóch pierwiastków z 1 drugiego stopnia: 1 i -1, żeby otrzymać funkcję tworząca ciągu $(a_0, 0, a_2, 0, a_4, 0, \ldots)$.

Katarzyna Paluch