Imperial College London

60006 Computer Vision (Term 2)

Tutorial 4: Image Classification

- 1. In neural networks, the activation function defines the output of a neuron given an input.
 - 1.1 The sigmoid function is a type of activation function. It is defined as,

$$f(x) = \frac{1}{1 + e^{-x}}$$

Calculate the derivative of f(x) with respect to x.

- 1.2 Describe a problem with the sigmoid function when we train a neural network using the gradient descent algorithm.
- 2. A method was proposed to automatically search and discover new activation functions (P. Ramachandran et al, ICLR 2018 workshop). It assumes that the activation function has a structure shown in this figure,

which consists of input x, unary functions and binary functions. The unary function takes a single scalar input and returns a single scalar output, such as u(x) = x. The binary function takes two scalar inputs and returns a single scalar output, such as $b(x_1, x_2) = x_1 \cdot x_2$.

2.1 Suppose in the figure, the unary functions are respectively $u_1(x)=x, u_2(x)=x, u_3(x)=\sigma(x), u_4(x)=\sigma(x)$, where $\sigma(x)$ denotes the sigmoid function and u_i denotes "Unary i" in the figure. The binary functions are $b_1(x_1,x_2)=\max(x_1,x_2)$ and $b_2(x_1,x_2)=\max(x_1,x_2)$, where b_i denotes "Binary i" in the figure.

Write down the activation function.

- 2.2 In the search space of activation functions, there are in total M possible unary functions (e.g. x, -x, |x|, x^2 , x^3 , \sqrt{x} , βx , ...) and N possible binary functions (e.g. x_1+x_2 , $x_1 \cdot x_2$, x_1-x_2 , $\frac{x_1}{x_2+\epsilon}$, max (x_1,x_2) , min (x_1,x_2) , ...). Calculate the number of possible combinations using the big O notation.
- 2.3 The method utilises reinforcement learning to search for activation functions. Finally, it finds a novel activation function, $f(x) = x \cdot \sigma(\beta x)$, which performs well. What does this new activation function look like if $\beta = 0$ and if $\beta \to \infty$?

Imperial College London

60006 Computer Vision (Term 2)

- 3. A data analyst has developed a neural network model to predict the chances of the three scenarios (win, draw, lose). However, the current model outputs a vector of three integers, $c = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$, instead of a probability vector. The three integers are not necessarily positive. But the larger the integer, the higher the chance is for that scenario.
 - 3.1 He/she decides to apply the softmax function to convert the vector $c = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ into a probability vector $p = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$. The softmax function is defined as,

$$p_i = \frac{e^{c_i}}{\sum_k e^{c_k}}$$
 for $i = 1,2,3$.

Check whether p fulfils the properties of a probability vector, i.e. it is non-negative and its elements sum to 1.

- 3.2 Gradient descent is used to train this model. To calculate the gradient of the loss function, one step is to work out the derivative $\frac{\partial p_i}{\partial c_j}$. Please help him/her derive this. (Hint: consider two scenarios, i=j and $i\neq j$.)
- 4. A convolutional neural network (CNN) takes a 28x28 image as input and produces an output of 10-dimensional probability vector and cross-entropy loss. It mainly consists of convolutional layers, max pooling layers and a loss layer. The network architecture is specified in the following table.

layer	0	1	2	3	4	5	6	7
type	input	conv	pool	conv	pool	conv	conv	loss
filter shape	-	5x5x1	2x2	5x5x20	2x2	4x4x50	1x1x500	1
#filters	-	20	-	50	-	500	10	ı
stride	-	1	2	1	2	1	1	-
pad	-	0	0	0	0	0	0	1
data shape	1x28x28x1							
data size	3.06KB							
receptive	1x1	5x5						
field								

- 4.1 The input data x_0 is of shape 1x28x28x1, which represents BWHC (B: batch size; W: width; H: height; C: channel). If we use single precision floating-point data (4 bytes), the data size is 1x28x28x1x4 \approx 3KB. Calculate the data shape and size for each following layer in the table. Data means input image at Layer 0 and feature map at subsequent layers.
- 4.2 The receptive field of a neuron represents the size of the region in input image that can affect this neuron. For example, Layer 1 uses a 5x5 convolution filter. Therefore, a neuron at Layer 1 has a receptive field of 5x5, since each neuron is affected by a 5x5 region in the input image. Calculate the receptive fields for neurons in the following layers and fill in the table.