```
In [74]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.ensemble import RandomForestClassifier
         from lazypredict.Supervised import LazyClassifier
         from sklearn.model selection import cross val score
         from sklearn.neighbors import KNeighborsClassifier
         import matplotlib.pyplot as plt
         from sklearn.model_selection import learning_curve
         from sklearn.metrics import roc curve, auc
         \textbf{from} \  \, \textbf{sklearn.tree} \  \, \textbf{import} \  \, \textbf{DecisionTreeClassifier}
         from sklearn.metrics import classification report, confusion matrix, accuracy score
         import warnings
         # Load
         df_cancer = pd.read csv("C:/Users/ali/Desktop/osdabig/questionno3/datasetosda/hh/bcancer3.csv")
         df_cancer.rename(columns={"target": "diagnosis"}, inplace=True)
         # Separate features and target variable
         X = df_cancer.drop('diagnosis', axis=1)
         y = df_cancer['diagnosis']
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=55)
         # LazyClassifier
         clf = LazyClassifier(verbose=0, ignore_warnings=True, custom_metric=None)
         models, predictions = clf.fit(X train, X test, y train, y test)
         models
                                                                                                    | 25/29 [00:05<00:00, 4.
```

86%| 19it/s]

```
[LightGBM] [Info] Number of positive: 154, number of negative: 245
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000422 seconds.
You can set `force col wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 3973
[LightGBM] [Info] Number of data points in the train set: 399, number of used features: 30
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.385965 -> initscore=-0.464306
[LightGBM] [Info] Start training from score -0.464306
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
100%|
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

N/1 - - I - I

Out[74]:

A	Delement Assumes	DOC ALIC	E4 C	Times Talesm
Accuracy	Balanced Accuracy	RUC AUC	r i ocore	Time Taken

Model					
LogisticRegression	1.00	1.00	None	1.00	0.11
SVC	0.99	0.99	None	0.99	0.06
LabelSpreading	0.98	0.98	None	0.98	0.09
LabelPropagation	0.98	0.98	None	0.98	0.09
LinearSVC	0.98	0.98	None	0.98	0.06
Perceptron	0.98	0.97	None	0.98	0.05
SGDClassifier	0.97	0.97	None	0.97	0.05
KNeighborsClassifier	0.96	0.96	None	0.96	0.07
LGBMClassifier	0.96	0.96	None	0.96	0.33
ExtraTreesClassifier	0.96	0.96	None	0.96	0.49
CalibratedClassifierCV	0.96	0.95	None	0.96	0.17
AdaBoostClassifier	0.94	0.94	None	0.94	1.57
QuadraticDiscriminantAnalysis	0.94	0.94	None	0.94	0.22
BernoulliNB	0.93	0.93	None	0.93	0.05
BaggingClassifier	0.93	0.93	None	0.93	0.50
RandomForestClassifier	0.93	0.93	None	0.93	1.53
PassiveAggressiveClassifier	0.92	0.92	None	0.92	0.05
NuSVC	0.92	0.92	None	0.92	0.11
RidgeClassifier	0.93	0.92	None	0.93	0.05
RidgeClassifierCV	0.93	0.92	None	0.93	0.07
GaussianNB	0.91	0.91	None	0.91	0.05
NearestCentroid	0.92	0.91	None	0.92	0.06
DecisionTreeClassifier	0.91	0.91	None	0.91	0.09
LinearDiscriminantAnalysis	0.92	0.90	None	0.92	0.06
ExtraTreeClassifier	0.90	0.90	None	0.90	0.04
DummyClassifier	0.60	0.50	None	0.45	0.04

```
In [75]: from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import cross_val_score
    from sklearn.metrics import confusion_matrix, classification_report
    import numpy as np

def tune_knn_parameters(X, y):
    # Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40)
```

```
# Test different values of k
             k \text{ values} = range(1, 20)
             for k in k values:
                 knn = KNeighborsClassifier(n neighbors=k)
                 scores = cross_val_score(knn, X_train, y_train, cv=5)
                 print(f'k={k}, Mean Accuracy: {np.mean(scores)}')
         def lazy_classification(X_train, y_train, X_test, y_test, k_value):
             # Train k-NN with the selected k
             knn = KNeighborsClassifier(n neighbors=k value)
             knn.fit(X_train, y_train)
             # Predictions on the test set
             y_pred = knn.predict(X test)
             # Confusion Matrix
             cm = confusion matrix(y test, y pred)
             print("Confusion Matrix:")
             print(cm)
             # Classification Report
             cr = classification report(y test, y pred)
             print("\nClassification Report:")
             print(cr)
             # Evaluate the model on the test set
             accuracy = knn.score(X_test, y_test)
             print(f'Test Set Accuracy: {accuracy}')
         # Example usage
         tune knn parameters(X, y)
        k=1, Mean Accuracy: 0.8998101265822784
        k=2, Mean Accuracy: 0.8972784810126584
        k=3, Mean Accuracy: 0.9148417721518987
        k=4, Mean Accuracy: 0.9123734177215189
        k=5, Mean Accuracy: 0.919873417721519
        k=6, Mean Accuracy: 0.9223101265822784
        k=7, Mean Accuracy: 0.9248417721518987
        k=8, Mean Accuracy: 0.9298101265822785
        k=9, Mean Accuracy: 0.9323417721518987
        k=10, Mean Accuracy: 0.9298417721518988
        k=11, Mean Accuracy: 0.9298417721518988
        k=12, Mean Accuracy: 0.9298417721518988
        k=13, Mean Accuracy: 0.9298417721518988
        k=14, Mean Accuracy: 0.9223101265822784
        k=15, Mean Accuracy: 0.9273101265822785
        k=16, Mean Accuracy: 0.9248101265822786
        k=17, Mean Accuracy: 0.9273101265822785
        k=18, Mean Accuracy: 0.9248101265822786
        k=19, Mean Accuracy: 0.9198101265822786
In [76]: lazy_classification(X_train, y_train, X_test, y_test, 18)
        Confusion Matrix:
        [[58 2]
         [ 8 32]]
        Classification Report:
                      precision
                                 recall f1-score support
                   B
                           0.88
                                   0.97
                                               0.92
                                                           60
                           0.94
                                    0.80
                                               0.86
                   М
                                                           40
                                               0 90
                                                          100
            accuracy
                           0.91
                                     0.88
                                               0.89
                                                          100
           macro avg
                                               0.90
                                                          100
                           0.90
                                     0.90
        weighted avg
        Test Set Accuracy: 0.9
In [77]: import numpy as np
         def plot learning curve(estimator, title, X, y, cv=5, n jobs=-1, train sizes=np.linspace(.1, 1.0, 5)):
            Parameters:
         - estimator: The entity employed to fit the data.
         - title: The chart's title.
         - X: Training vector, where n_samples represents the number of samples, and n_features signifies the number of
         - y: Target corresponding to X for classification or regression.
         - cv: Cross-validation generator or an iterable, default=None.
         - n jobs: The number of parallel jobs to execute, default=None.
         - train_sizes: Relative or absolute quantities of training examples utilized for generating the learning curve.
```

```
Returns:
- plt: Matplotlib plot object.
    plt.figure()
    plt.title(title)
    plt.xlabel("Training examples")
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores, fit_times, _ = \
        learning\_curve(estimator, \ X, \ y, \ cv=cv, \ n\_jobs=n\_jobs, \ train\_sizes=train\_sizes, \ return\_times= \textbf{True})
    train scores mean = np.mean(train scores, axis=1)
    train scores std = np.std(train scores, axis=1)
    test scores mean = np.mean(test scores, axis=1)
    test scores std = np.std(test scores, axis=1)
    plt.grid()
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train scores mean + train scores std, alpha=0.1,
                     color="r", label="Training score variability")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1,
                     color="g", label="Cross-validation score variability")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")
    plt.legend(loc="best")
    return plt
# Assuming X_train, y_train, X_test, y_test are your training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Choose a k value for k-NN
k value = 18
knn = KNeighborsClassifier(n_neighbors=k_value)
# Plot learning curve
plot_learning_curve(knn, f"Learning Curve (k-NN, k={k_value})", X_train, y_train, cv=5, n_jobs=-1)
plt.show()
```



```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

# Assuming X, y are your dataset
# Replace this part with your actual data loading and preprocessing
# For example:
# df_heart_disease = pd.read_csv("your_dataset.csv")
# X = df_heart_disease.drop('target', axis=1)
# y = df_heart_disease['target']
```

```
 \# \ X\_train, \ X\_test, \ y\_train, \ y\_test = train\_test\_split(X, \ y, \ test\_size=0.2, \ random\_state=42) 
# Function for tuning k-NN parameters
def tune_knn_parameters(X, y, k_value):
    # Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    # Train k-NN with the selected k
    knn = KNeighborsClassifier(n_neighbors=k_value)
    knn.fit(X_train, y_train)
    # Convert 'B' to 0 and 'M' to 1 in y_test
    y_test_binary = y_test.map({'B': 0, 'M': 1})
    # Plot ROC curve
    plot roc curve(knn, X test, y test binary, f"ROC Curve (k-NN, k={k value})")
# Function to plot ROC curve
def plot_roc_curve(model, X_test, y_test, title):
    y_prob = model.predict_proba(X_test)[:, 1]
    fpr, tpr, thresholds = roc_curve(y_test, y_prob)
    roc_auc = auc(fpr, tpr)
    plt.figure()
    plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = {:.2f})'.format(roc_auc))
    plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(title)
    plt.legend(loc="lower right")
    plt.show()
# Assuming k values is the list of k values you want to try
# For example, k_{values} = [1, 3, 5, 7, 9]
for k value in [1, 3, 5, 7, 9]:
    tune_knn_parameters(X, y, k_value)
```


False Positive Rate

```
In [79]: # Using Decision Tree Cfrom sklearn.tree import DecisionTreeClassifier

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40)

# Decision Tree Classifier
# Tuning the max depth parameter
best_depth = None
best_accuracy_tree = 0

# Add more values for tuning max depth
for depth_value in [None, 5, 10, 15]:
    # Train Decision Tree Classifier with the current max depth
    dtc = DecisionTreeClassifier(max_depth=depth_value, random_state=42)
    scores = cross_val_score(dtc, X_train, y_train, cv=5, scoring='accuracy')

# Compute mean accuracy
```

```
mean accuracy tree = scores.mean()
              print(f"Max Depth={depth value}, Mean Accuracy: {mean accuracy tree}")
              # Update best parameters if needed
              if mean_accuracy_tree > best_accuracy_tree:
                  best accuracy tree = mean accuracy tree
                  best depth = depth value
         # Choose the optimal max depth based on the tuning results
         optimal depth = best depth
         # Perform classification with the optimal max depth
         dtc = DecisionTreeClassifier(max depth=optimal depth, random state=42)
         dtc.fit(X train, y train)
         # Predictions on the test set
         y pred tree = dtc.predict(X test)
         # Decision Tree Classifier - Confusion Matrix
         cm_tree = confusion_matrix(y_test, y_pred_tree)
         print("\nDecision Tree Classifier - Confusion Matrix:")
         print(cm tree)
         # Decision Tree Classifier - Classification Report
         cr_tree = classification_report(y_test, y_pred_tree)
         print("\nDecision Tree Classifier - Classification Report:")
         print(cr_tree)
         # Decision Tree Classifier - Evaluate the model on the test set
         accuracy_tree = dtc.score(X_test, y_test)
print(f'Decision Tree Classifier - Test Set Accuracy: {accuracy_tree}')
        Max Depth=None, Mean Accuracy: 0.934873417721519
        Max Depth=5, Mean Accuracy: 0.9298417721518988
        Max Depth=10, Mean Accuracy: 0.934873417721519
        Max Depth=15, Mean Accuracy: 0.934873417721519
        Decision Tree Classifier - Confusion Matrix:
        [[57 3]
         [ 1 39]]
        Decision Tree Classifier - Classification Report:
                       precision recall f1-score
                            0.98
                                       0.95
                                                  0.97
                    М
                            0.93
                                       0.97
                                                 0.95
                                                              40
                                                  0.96
                                                             100
            accuracy
                            0.96
                                       0.96
                                                  0.96
           macro avg
                                                             100
                            0.96
                                      0.96
                                                 0.96
                                                             100
        weighted avg
        Decision Tree Classifier - Test Set Accuracy: 0.96
In [80]: # Assuming `model` is your trained model and `X`, `y` are your features and labels
         train_sizes, train_scores, test_scores = learning_curve(dtc, X, y, cv=5)
         # Calculate mean and standard deviation across cross-validation folds
         train scores mean = np.mean(train scores, axis=1)
         train scores std = np.std(train scores, axis=1)
         test scores mean = np.mean(test scores, axis=1)
         test scores std = np.std(test scores, axis=1)
         # Plot learning curve
         plt.figure(figsize=(10, 6))
         plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha
         plt.fill between(train sizes, test scores mean - test scores std, test scores mean + test scores std, alpha=0.1
         plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score")
         plt.title("Learning Curve")
         plt.xlabel("Training Examples")
         plt.ylabel("Score")
         plt.legend(loc="best")
         plt.show()
```


Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js