4300337 - Lista de exercícios 3

Louis Bergamo Radial 8992822

13 de abril de 2024

Exercício 1

Exercício 2

Sobre um espaço vetorial V de dimensão n, tensores de segunda ordem têm um total de n^2 componentes. Um tensor antissimétrico $A_{\omega\rho}$ deve satisfazer $A_{\omega\rho}=-A_{\rho\omega}$ para todo par de índices ω , ρ . Assim, temos que as n componentes $A_{\rho\rho}$ são nulas, e a condição das outras n^2-n componentes, $A_{\omega\rho}=-A_{\rho\omega}$ para $\rho\neq\omega$, reduz o número de componentes independentes para $\frac{n^2-n}{2}$. Semelhantemente, um tensor simétrico $S^{\mu\nu}$ deve satisfazer $S^{\mu\nu}=S^{\nu\mu}$ para todo par de índices μ,ν . Para $\mu=\nu$, esta condição é trivialmente satisfeita, de modo que o número de componentes independentes é $\frac{n^2+n}{2}$. Como exemplo, em um espaço vetorial de dimensão 4, tensores de segunda ordem antissimétricos têm seis componentes independentes e simétricos, dez.

Mostremos que a contração de um tensor simétrico com um tensor antissimétrico tem uma propriedade muito útil, $S^{\omega\rho}A_{\omega\rho}=0$. Por antissimetria e simetria temos

$$S^{\omega\rho}A_{\omega\rho} = -S^{\omega\rho}A_{\rho\omega} = -S^{\rho\omega}A_{\rho\omega}.$$

Como os índices estão sendo somados, podemos renomeá-los. Em particular, podemos renomear na soma à direita $\omega \to \rho$ e $\rho \to \omega$, obtendo

$$S^{\omega\rho}A_{\omega\rho}=-S^{\omega\rho}A_{\omega\rho},$$

isto é $S^{\omega\rho}A_{\omega\rho}=0$.

Exercício 3

Coordenadas esféricas em \mathbb{R}^3

Consideremos coordenadas esféricas para o espaço tridimensional Euclidiano, dadas por

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\cos \theta = \frac{z}{r}$, $\cot \phi = \frac{y}{x}$.

Alternativamente, temos

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, e $z = r \cos \theta$,

de modo que os vetores da base no sistema de coordenadas esféricas são dados por

$$e_r = \frac{\partial x}{\partial r} e_x + \frac{\partial y}{\partial r} e_y + \frac{\partial z}{\partial r} e_z$$

= $\sin \theta \cos \phi e_x + \sin \theta \sin \phi e_y + \cos \theta e_z$,

$$e_{\theta} = \frac{\partial x}{\partial \theta} e_x + \frac{\partial y}{\partial \theta} e_y + \frac{\partial z}{\partial \theta} e_z$$

= $r \cos \theta \cos \phi e_x + r \cos \theta \sin \phi e_y - r \sin \theta e_z$,

e

$$e_{\phi} = \frac{\partial x}{\partial \phi} e_x + \frac{\partial y}{\partial \phi} e_y + \frac{\partial z}{\partial \phi} e_z$$
$$= -r \sin \theta \sin \phi e_x + r \sin \theta \cos \phi e_y.$$

Com os vetores da base desse sistema de coordenadas, podemos obter os coeficientes da métrica por

$$g'_{ij} = g(e'_i, e'_i),$$

utilizando os valores do tensor métrico na base de coordenadas cartesianas, dados por

$$g(e_x, e_x) = g(e_y, e_y) = g(e_z, e_z) = 1$$

e os demais são iguais a zero. Assim, os coeficientes da métrica Euclidiana nas coordenadas esféricas são dados por

$$g'_{rr} = 1$$
, $g'_{\theta\theta} = r^2$, e $g'_{\phi\phi} = r^2 \sin^2 \theta$,

e as outras componentes nulas.

Coordenadas em rotação no espaço-tempo de Minkowski

Consideremos agora a métrica da relatividade restrita $\eta_{\mu\nu}$ e as coordenadas em rotação

$$\begin{cases} t' = t \\ x' = \sqrt{x^2 + y^2} \cos(\phi - \omega t) \\ y' = \sqrt{x^2 + y^2} \sin(\phi - \omega t) \\ z' = z \end{cases}$$

onde $\tan \phi = \frac{y}{x}$. Notemos que

$$x' = x \cos \omega t + y \sin \omega t$$
 e $y' = -x \sin \omega t + y \cos \omega t$

então ao tomar combinações lineares das equações acima e utilizando t' = t, temos

$$\begin{cases} t = t' \\ x = x' \cos \omega t' - y' \sin \omega t' \\ y = x' \sin \omega t' + y' \cos \omega t' \\ z = z' \end{cases}$$

Assim, os vetores da base são dados por $e_{\mu'} = \frac{\partial x^{\nu}}{\partial x^{\mu'}} e_{\nu}$, isto é,

da base são dados por
$$e_{\mu'} = \frac{\partial x'}{\partial x^{\mu'}} e_{\nu}$$
, isto é,
$$\begin{cases} e_{0'} = e_0 - \omega(x' \sin \omega t' + y' \cos \omega t') e_1 + \omega(x' \cos \omega t' - y' \cos \omega t') e_2 \\ e_{1'} = \cos \omega t' e_1 + \sin \omega t' e_2 \\ e_{2'} = -\sin \omega t' e_1 + \cos \omega t' e_2 \\ e_{3'} = e_3 \end{cases}$$

Utilizando a bilinearidade do tensor métrico temos que suas componentes são dadas por

$$g_{\mu'\nu'} = \begin{pmatrix} 1 + \omega^2(x'^2 + y'^2) & -\omega y' & \omega x' & 0 \\ -\omega y' & 1 & 0 & 0 \\ \omega x' & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}_{\mu'\nu'}.$$

Desse modo, as componentes $g^{\mu'\nu'}$ são dadas por

$$g_{\mu'\nu'} = \begin{pmatrix} 1 & \omega y' & -\omega x' & 0 \\ \omega y' & 1 + \omega^2 y'^2 & -\omega^2 x' y' & 0 \\ -\omega x' & -\omega^2 x' y' & 1 + \omega^2 x'^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}_{\mu'\nu'}.$$

Exercício 4

Para uma conexão de Levi-Civita, isto é, simétrica e compatível com o tensor métrico, os seus coeficientes $\Gamma^{\rho}_{\ \alpha\beta}$ são dados por

$$\Gamma^{\rho}_{\alpha\beta} = -\frac{1}{2}g^{\rho\sigma} \left(\partial_{\sigma}g_{\alpha\beta} - \partial_{\alpha}g_{\beta\sigma} - \partial_{\beta}g_{\sigma\alpha} \right)$$

para todas as triplas de índices ρ , α , β .

Para uma métrica diagonal, isto é, $g_{\mu\nu}=0 \iff \mu\neq\nu$, temos $g^{\mu\nu}=0 \iff \mu\neq\nu$, de modo que os coeficientes da conexão são dados por

$$\Gamma^{\rho}_{\ \alpha\beta} = -\frac{1}{2g_{\rho\rho}} \left(\partial_{\rho} g_{\alpha\beta} - \partial_{\alpha} g_{\beta\rho} - \partial_{\beta} g_{\rho\alpha} \right)$$

neste caso, e nesta expressão índices repetidos não são somados. Podemos simplificar adiante separando em casos: sejam μ , ν , λ índices todos distintos, então

$$\Gamma^{\lambda}_{\lambda\lambda} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\lambda} \right) \qquad \Gamma^{\lambda}_{\mu\lambda} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\mu\lambda} - \partial_{\mu}g_{\lambda\lambda} - \partial_{\lambda}g_{\lambda\mu} \right) \\
= \frac{\partial_{\lambda}g_{\lambda\lambda}}{2g_{\lambda\lambda}} = \partial_{\lambda} \ln \sqrt{|g_{\lambda\lambda}|} \qquad \qquad = \frac{\partial_{\mu}g_{\lambda\lambda}}{2g_{\lambda\lambda}} = \partial_{\mu} \ln \sqrt{|g_{\lambda\lambda}|} \\
\Gamma^{\lambda}_{\mu\mu} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\mu\mu} - \partial_{\mu}g_{\mu\lambda} - \partial_{\mu}g_{\lambda\mu} \right) \qquad \qquad \Gamma^{\lambda}_{\mu\nu} = -\frac{1}{2g_{\lambda\lambda}} \left(\partial_{\lambda}g_{\mu\nu} - \partial_{\mu}g_{\nu\lambda} - \partial_{\nu}g_{\lambda\mu} \right) \\
= -\frac{\partial_{\lambda}g_{\mu\mu}}{2g_{\lambda\lambda}} \qquad \qquad = 0$$

são todos os coeficientes da conexão para o caso de uma métrica diagonal.

Exercício 5

Utilizando os resultados do exercício anterior, os coeficientes da conexão de Levi-Civita para as coordenadas esféricas no espaço Euclidiano são dados por

$$\Gamma^{r}_{\theta\theta} = -r \qquad \qquad \Gamma^{r}_{\phi\phi} = -r \sin^{2}\theta$$

$$\Gamma^{\theta}_{\theta r} = \frac{1}{r} \qquad \qquad \Gamma^{\theta}_{\phi\phi} = -\sin\theta\cos\theta$$

$$\Gamma^{\phi}_{\phi r} = \frac{1}{r} \qquad \qquad \Gamma^{\phi}_{\phi\theta} = \frac{1}{r}\cot\theta,$$

e os outros termos são ou nulos ou obtidos pela simetria da conexão.

Seja uma curva

$$\gamma: I \subset \mathbb{R} \to \mathbb{R}^3$$
$$\lambda \mapsto \left(x^r(\lambda), x^{\theta}(\lambda), x^{\phi}(\lambda)\right)$$

cujo vetor tangente é dado por $X=X^ie_i$, com $X^i=\frac{\mathrm{d}x^i}{\mathrm{d}\lambda}$ ao longo de γ , e seja um campo de vetores $Y=Y^ie_i$, com $i=r,\theta,\phi$. Temos então

$$\begin{split} \nabla_X Y &= X^i \nabla_{e_i} (Y^j e_j) \\ &= X^i (\partial_i Y^j) e_j + X^i Y^j \nabla_{e_i} e_j \\ &= X^i (\partial_i Y^k + \Gamma^k_{ij} Y^j) e_k. \end{split}$$

No caso em que Y = X, temos

$$\begin{split} \nabla_X X &= X^i (\partial_i X^k + \Gamma^k_{ij} X_j) e_k \\ &= \left(\frac{\mathrm{d} x^i}{\mathrm{d} \lambda} \frac{\partial}{\partial x^i} \frac{\mathrm{d} x^k}{\mathrm{d} \lambda} + \Gamma^k_{ij} \frac{\mathrm{d} x^i}{\mathrm{d} \lambda} \frac{\mathrm{d} x^j}{\mathrm{d} \lambda} \right) e_k \\ &= \left(\frac{\mathrm{d}^2 x^k}{\mathrm{d} \lambda^2} + \Gamma^k_{ij} \frac{\mathrm{d} x^i}{\mathrm{d} \lambda} \frac{\mathrm{d} x^j}{\mathrm{d} \lambda} \right) e_k. \end{split}$$

Assim, para que γ seja uma geodésica, devemos ter $\nabla_X X = 0$, isto é,

$$\frac{\mathrm{d}^2 x^k}{\mathrm{d}\lambda^2} + \Gamma^k_{ij} \frac{\mathrm{d}x^i}{\mathrm{d}\lambda} \frac{\mathrm{d}x^j}{\mathrm{d}\lambda} = 0$$

para todo k. Assim, de forma explícita, as equações da geodésica são dadas por

$$\begin{cases} \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta = 0\\ \ddot{\theta} + \frac{2}{r}\dot{r}\dot{\theta} - \dot{\phi}^2 \sin \theta \cos \theta = 0\\ \ddot{\phi} + \frac{2}{r}\dot{r}\dot{\phi} + \frac{2}{r}\dot{\phi}\dot{\theta} \cot \theta = 0 \end{cases}.$$

Exercício 6

Um espaço topológico é uma dupla (M, O_M) composta por um conjunto M e uma topologia O_M . Um subconjunto U de M é dito ser aberto em relação a este espaço topológico se $U \in O_M$. Uma aplicação $f: M \to N$ entre espaços topológicos (M, O_M) e (N, O_N) é dita contínua se sua pré-imagem de um aberto é aberta, e é dita um homeomorfismo se for bijetiva e tanto f quanto f^{-1} forem contínuas. Se existe um homeomorfismo entre dois espaços topológicos, estes são ditos homeomorfos.

Se existe um número inteiro n tal que todo aberto $U \in O_M$ é homeomorfo a \mathbb{R}^n , em relação à topologia usual do espaço Euclidiano, dizemos que (M,O_M) é um espaço topológico localmente Euclidiano de dimensão n. Ainda, para cada aberto $U \in O_M$ existe um homeomorfismo $x: U \to x(U) \subset \mathbb{R}^n$, e chamamos o par (U,x) de carta local. Um atlas \mathscr{A}_M é uma coleção de cartas locais tal que a união dos abertos cobre o conjunto M.

Consideremos agora duas cartas $(U, x), (V, x) \in \mathcal{A}_M$ tal que $U \cap V \neq \emptyset$.

Como uma composição de homeomorfismos, segue que a aplicação de transição $y \circ x^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ é um homeomorfismo, isto é, contínua. Como uma função em \mathbb{R}^n , podemos utilizar análise usual para decidir se esta função é diferenciável. Duas cartas locais (U,x),(V,y) são ditas C^k -compatíveis se ou $U \cap V \neq \emptyset$ e a aplicação de transição $y \circ x^{-1}$ é de classe C^k ou se $U \cap V = \emptyset$. Ainda, um atlas é dito C^k -compatível se todo par de cartas locais são C^k -compatíveis.

Uma variedade diferenciável (M, O_M, \mathcal{A}_M) é um espaço topológico (M, O_M) localmente Euclidiano munido de um atlas maximal suave \mathcal{A}_M , isto é, um atlas C^∞ -compatível com a propriedade de que se uma carta (U, x) é compatível com uma carta $(V, y) \in \mathcal{A}_M$, então $(U, x) \in \mathcal{A}_M$. A estrutura diferencial dada pelo atlas permite definir em todo ponto $p \in M$ um espaço vetorial T_pM , chamado de espaço tangente no ponto p, cujos elementos são derivações na álgebra $C^\infty(M)$ de funções suaves $f: M \to \mathbb{R}$. Geometricamente, cada elemento $X \in T_pM$ é um operador de derivada direcional ao longo de alguma curva suave $\gamma: (-\varepsilon, \varepsilon) \to M$ que passa por $p = \gamma(0)$. O espaço dual T_p^*M é chamado de espaço cotangente no ponto p, cujos elementos são relacionados com as curvas de nível de funções suaves $C^\infty(M)$.

Utilizando o atlas da variedade, podemos definir um atlas para a união disjunta dos espaços tangentes, construindo assim o fibrado tangente TM, que é também uma variedade diferenciável. Uma aplicação suave $p\mapsto X_p$ que associa um ponto p da variedade a um vetor $X_p\in T_pM\subset TM$ do fibrado tangente é chamada de campo de vetores. Analogamente, definimos o fibrado cotangente T^*M , em que uma aplicação suave $p\mapsto \omega_p$ que associa um ponto $p\in M$ a um elemento $\omega_p\in T_p^*M\subset T^*M$ é chamada de 1-forma diferencial, ou campo de covetores. Uma função multilinear de campos de vetores e de 1-formas diferenciais é chamada de tensor na variedade.

Resumindo de forma mais informal, uma variedade diferenciável é um conjunto M que localmente se parece com algum espaço Euclidiano \mathbb{R}^n , e no qual podemos definir ponto a ponto um espaço vetorial, que é intimamente relacionado à estrutura diferencial fornecida à M por um atlas de cartas de coordenadas locais. Um tensor no contexto de uma variedade diferenciável é uma função multilinear de vetores e 1-formas definida em todo ponto da variedade.

Exercício 7

Exercício 8

Exercício 9

Exercício 10