

Lab Report

Semester: Summer-2025

Course Title: Electronic Circuits

Course Code: CSE209

Sec: 01

Expt. No: 2

Expt. Name: Series-Parallel DC Circuit and Verification of Kirchhoff's Laws.

Group No: 5

Group Members:

Student Name	Student Id
Nusrat Jahan Fiha	2023-2-60-137
Purnima Ghosh	2023-3-60-522
Zahin Abdullah Adib	2024-1-60-164
Md. Arifur Rahman Razu	2024-3-60-503

Submitted by-

Md. Arifur Rahman Razu ID: 2024-3-60-503

Submitted to-

Dr. Sarwar Jahan
Associate Professor
Department of Computer Science & Engineering
East West University

Date of Submission: 06/08/2025

Experiment NO: 02

Experiment Name: Series-Parallel DC Circuit and Verification of Kirchhoff's Laws.

Objectives:

- 1. To learn analysis of dc series-parallel circuit.
- 2. To verify Kirchhoff's Voltage Law (KVL).
- 3. To verify Kirchhoff's Current Law (KCL).

Theory:

Kirchhoff's Voltage Law (KVL)states that **the sum of the voltage rises around a closed** path is equal to the sum of the voltage drops. The KVL can be written in the following mathematical form:

Σ V rises = Σ V drops

The sum of the voltage rises and the sum of the voltage drops are to be calculated in a given direction (normally in the clockwise direction). For example, in the simple series circuit of Figure 1, there are two voltage sources (E_1 and E_2) and two resistors (R_1 and R_2) The voltage drops across the two resistors are V_1 and V_2 , respectively. If we write KVL equation for the clockwise direction, then the KVL equation will be

$$E_1 - E_2 = V_1 + V_2.$$

Figure 1. A simple series dc circuit.

Kirchhoff's Current Law (KCL) states that the sum of the currents entering anode of a circuit is equal to the sum of the currents leaving the node. The KCL can be written in the following mathematical form:

$$\sum I_i = \sum I_o .$$

For example, in the simple parallel circuit of Figure 2, there is a voltage source (E) and two resistors (R_1 and R_2). The source current drawn from the voltage source is I_s . The currents through resistors R_1 and R_2 are I_1 and I_2 , respectively. If we consider the node a of the circuit, then I_s is enters the node and I_1 and I_2 are leaving the node. Then, the KCL equation forthe node a is

$$E \xrightarrow{+} R_1 \xrightarrow{R_1} R_2 \xrightarrow{I_2} I_2$$

$$I_S = I_1 + I_2$$
Figure 2. A simple parallel dc circuit.

A series-parallel circuit is one that is formed by a combination of series and parallel resistors. For solving series-parallel circuits, parallel combinations of resistors and series combination of resistors are clearly identified. Then the series-parallel reduction method is used to determine the values of the circuit variables. For example, in the simple series-parallel circuit of Figure 3, the resistors R_1 and R_2 are in parallel and this parallel combination is in series with the resistor R_1 . As the resistors R_2 and R_3 are in parallel, V2 = V3. Let $R_p = R_2 \parallel R_3$. Then, the equivalent resistance of the series-parallel combination is $R_{eq} = R_1 + R_p$. Now, the circuit variables can be calculated using the formulas

$$I_{1} = \frac{E}{R_{eq}}$$

$$V_{1} = I_{1} R_{1}$$

$$V_{2} = V_{3} = I_{1} R_{p}$$

$$V_{2}$$

$$I_{2} = \frac{V_{2}}{R}$$

$$I_3 = \frac{V_3}{R_3}$$

The KVL equations for the circuit of Figure 3 can be written as

$$E = V_I + V_2$$
$$E = V_I + V_3$$

The KCL equation for the circuit of Figure 3 can be written as

$$I_1 = I_2 + I_3$$

Figure 3. A simple series-parallel dc circuit.

Circuit Diagram:

Figure 4. Circuit for experiment.

Pre-Lab Report Ouestions:

1. Theoretically calculate the values of E, V_1 , V_2 , V_3 , I_1 , I_2 and I_3 of the circuit of Figure 4 with E = 3V.

Ans:

Given that,

$$R_{1} = 100\Omega$$

$$R_2 = 47\Omega$$

$$R_3 = 100\Omega$$

$$E = 3V$$

Here, $R_{2} & R_{3}$ is in parallel connection.

So,
$$R = \left(\frac{1}{R_2} + \frac{1}{R_3}\right)^{-1} \Omega$$

= $\left(\frac{1}{47} + \frac{1}{100}\right)^{-1} \Omega$
= 31.98 Ω

Now, R_p and R_1 is in series connection.

So,
$$R_{eq} = R_p + R_1$$

=(31.98+100) Ω
= 131.98 Ω

We know that,

$$I_1 = \frac{E}{R_{eq}}$$

$$= \frac{3}{131.98} \quad A$$

$$= 0.022A$$

So,
$$I_1 = 0.022$$
A

Here,

$$V = I_{1} R = 0.022 \times 100 = 2.27 V$$

$$V = I_{2} R = 0.022 \times 31.98 = 0.73 V$$

$$V = I_{3}R = 0.022 \times 31.98 = 0.73V$$

$$I_2 = \frac{V_2}{R_2} = \frac{0.73}{47} = 0.015A$$

$$I_3 = \frac{V_3}{R_3} = \frac{0.73}{100} = 0.0073A$$

2. From the calculated values, show that (i) $V_2 = V_3$, (ii) KVL holds, that is, $E = V_1 + V_2$, and (iii) KCL holds, that is, $I_1 = I_2 + I_3$.

Ans:

i.

$$V = V = 0.72V$$

ii.

From the calculated value we get that,

$$V_1 + V_2$$

= (2.23+0.72) V
=3V

iii

$$I_{2+}$$
 $I_{3=(0.015+0.007)A}$

=0.022A

Experimental Datasheet

Measur ed Value of E (V)	Measur ed Value of V ₁ (V)	Measured Value of V ₂ (V)	Measured Value of $V_3(V)$	Measu red Value of I ₁ (mA)	Measur e d Value of I ₂ (mA)	Measu red Valu e of I ₃ (mA)	Meas ured Valu e of Resis tance s (Ω)
3	2.3	0.9	0.7	22	7	13	R ₁ =97.8 R ₂ =98.9 R ₃ =48.2
5	3.7	1.3	1.1	33	11	20	R ₁ =97.8 R ₂ =98.9 R ₃ =48.2

1. Calculate the values of V_1 , V_2 , V_3 , I_1 , I_2 and I_3 of the circuit of Figure 4 using measured values of E, R_1 and R_2 . Compare the calculated values with the measured values and give reason if any discrepancy is found.

Ans:

Given,
$$E = 3V$$

Here, R₂ & R₃ are in parallel.

So,
$$\frac{1}{R_{p}} = \frac{1}{R_{2}} + \frac{1}{R_{3}}$$
$$= \frac{1}{98.9} + \frac{1}{49.2} \Omega$$
$$R_{p} = 32.85 \Omega$$

And R₁ & R_p are in series,

$$R_{eq} = R_1 + R_p = 97.8 \Omega + 32.85 \Omega = 130.62 \Omega$$

Now,

$$E$$

$$I_{1} = \frac{E}{R_{eq}}$$

$$= \frac{3}{130.62} A$$

$$= 0.023A$$

$$= 23mA$$

$$V_{1} = I_{1}R_{1} = 0.023 \times 97.8 = 2.25 \text{ V}$$

$$V_{2} = V_{3} = I_{1}R_{p} = 0.023 \times 32.85 = 0.76 \text{V}$$

$$I_{2} = \frac{V_{2}}{R_{2}}$$

$$= \frac{0.76}{98.9} \text{ A}$$

$$= 0.008 \text{A} = 8 \text{mA}$$

$$I_{3} = \frac{V_{3}}{R_{3}}$$

$$= \frac{0.76}{48.2} \text{ A}$$

$$= 0.016 \text{A} = 16 \text{mA}$$

Measured	Measured	Measured	Measured	Measured	Measured	Measured	Measured
Value of <i>E</i>	Value of	Value of	Value of	Value of	Value of	Value of	Value of
(V)	V ₁ (V)	V ₂ (V)	V ₃ (V)	I ₁ (mA)	<i>I</i> ₂ (mA)	<i>I</i> ₃ (mA)	Resistances (Ω)
							R ₁ =97.8
3	2.3	0.9	0.7	22	7	13	R ₂ =98.9
							R ₃ =48.2
Calculated			Calculated		Calculated		
(V)	Value of E Value of (V) V ₁ (V)	Value of V ₂ (V)	Value of V ₃ (V)	value of I ₁ (mA)	Value of I ₂ (mA)	value of <i>I</i> ₃ (mA)	Value of
							Resistances (Ω)
							R_1 = 100 R_2 = 47
3	2.25	0.76	0.76	23	8	16	R ₃ = 100

 $Table\ 2.\ The\ discrepancy\ between\ theoretical\ and\ measured\ values\ of\ V_1,\ V_2,\ V_3,\ I_1,\ I_2,\ I_3,\ R_{1,}$

The calculated and measured values for voltages V_1 , V_2 , and V_3 show relatively small differences, which could be attributed to measurement inaccuracies. However, the calculated and measured values for currents I_1 , I_2 , and I_3 exhibit significant discrepancies, suggesting potential measurement errors or incorrect units. It's essential to double-check the measurement equipment, units, and calibration to ensure accurate readings for current values.

2. From the calculated values of V_1, V_2, V_3, I_1, I_2 and I_3 , show that (i) $V_2 = V_3$,(ii) E

$$=V_1+V_2$$
 (KVL), and (iii) $I_1=I_2+I_3$ (KCL).

Ans:

From the calculated values,

 $V_1 = 2.25V$

 $V_2 = 0.76V$

 $V_3 = 0.76V$

 $I_1 = 0.023A$

 $I_2 = 0.008A$

 $I_3 = 0.016A$

E = 3V

i

Here, we can see that $V_2 = V_3$; (As $R_2 \& R_3$ are in parallel and in parallel circuit voltages are Same).

Again,

$$V_1 + V_2 = 2.25V + 0.76V = 3.1V$$

So, we can say that, $E = V_1 + V_2$

iii

Here,

$$I_2 + I_3 = 0.008A + 0.016A$$

$$= 0.024A$$

$$= I_1$$

So, we can say that, $I_1 = I_2 + I_3$

Discussion:

In this experiment, we verified kirchhoff's voltage Law (UVL) and kirchhoff's current Law (kel) using a series-parallel De cineuit. Theoretical calculations showed that the total Voltage and current matched the expected values, satisfying both kVL and kCL. In the experiment setup, measured voltages were close to calculated ones, but some differences in current values were observed, likely due to measurement errors or component tolerances. Overall, the experiment confirmed the validity of kinchhoff's Laws and improved our underestanding of series - parallel cincuit behavior .