NMPDE/ATSC 2025 Lecture 8

Once again, here is the zoom link in case you need to follow remotely:

https://sissa-it.zoom.us/j/7306190508?pwd=TXhCQkFHMlgrVERqNUw2aDNxSDVUQT09

p6m:
$$\int \mathcal{L}u = -\nabla \cdot (Q \nabla u) = f \quad \text{cin } \Omega$$

$$\mathcal{M} = 0 \quad \text{on } J \Lambda$$

$$WP: Find $U \in V = H_o(\Omega): \quad \mathcal{R}(u, \sigma) = F(\sigma) \quad \forall \sigma \in I$$$

WP: Find MEV=Ho(s): A(M, v) = F(v) theV

Sam-TN (1)

FEM SPACE
$$V_h \subset V$$
 $(CZ^o(\bar{x}))$
1. Triangulation $G_h = \{T\}: \bar{x} = UT$

ord such that $T_1, T_2 \in \mathbb{Z}_h \quad T_1 \cap T_2 = \begin{cases} \phi & \text{vertex} \\ \text{on entire edge} \end{cases}$

2. Vh = {rcZ°(sz)nH(s): VI = {Pk(+), +TeZh} Proposition: $\Delta \in H'(\Sigma) \iff \Delta \in H'(T) + T$ if $F = T_1 M_2$ then $(V_1 T_1)_1 = (V_1 T_2)_1 = (V_1 T_2)_2 = (V_1$ P2 T2 P2 T2 P2 T2 T2 P2 T2 $P_{1}, P_{2} \in \mathbb{P}_{1}$ $P_{1}, P_{2} \in \mathbb{P}_{2}$ $P_{1}, P_{2} \in \mathbb{P}_{3}$ degrees of freder $\dim \mathbb{R}_{k} (\mathbb{R}^{d}) = (d+k) = \frac{(d+k)!}{k! d!}$ Remork: quodvilete vol Ft speces con olso be constructed using $Q_k = \text{polynamols}$ of degree k so pare teally in each variable

Bosis / (2) 3. Bosis: Logrange Wer {XJ} $\varphi_{1}(x_{J}) = S_{1J}$ Laprarge node5 (local in T finite elevent mede \bigcirc 3 ingredients 3) degrees freedow triangulotion wesh k=1 Example : La gronge nodes = ver hies

) sporse

ASJENBLY AZJ Fí And = I fare This opposition of the supply local to T: T a supply "appropriate IT computed by Your blue Sin this ca I in this case le require quodrature exoct on spd Ce 1P2k-2 0 A practical way of porforming assembly: ELEMENT USE REFERENCE

4. The FEM: Un= = 5 4 9

 $\sum_{j} U_{j} \int Q \nabla q_{j} \cdot \nabla q_{i} = \int f q_{i} + i$

(6.21)
$$\uparrow$$

(6.21) \uparrow

(7.22) \uparrow

(8.21) \uparrow

(9.22) \uparrow

(9.23) \uparrow

(9.24) \uparrow

(9.24) \uparrow

(9.24) \uparrow

(9.24) \uparrow

(9.24) \uparrow

(9.25) \uparrow

(9.26) \uparrow

(9.26) \uparrow

(9.26) \uparrow

(9.27) \uparrow

(9.27) \uparrow

(9.27) \uparrow

(9.27) \uparrow

(9.28) \uparrow

(9.28

oppositive points. A priori enrysis We have lèa > $|u-u_h|_1 \leq C \inf_{V_h} ||u-v_h||_{\leq 1}$ EC MM-Inully define interpolant In U 2 Evolution of interpolation evor Def: Lagrange interpolant: $I_h: \mathbb{Z}^{\circ}(\bar{\mathfrak{I}}) \longrightarrow V_h^k$ Piecewise defire InVIT = = = Xt (e)

Advantage: define quadrature only

on it and evoluate (and store) just

once the values of the Pi at the

with $Y_{\ell}^{T} = N(X_{\ell}^{T})$ where Up Lagrange basis so that $I_h v = \sum_{j} v(o_j) (f_j(x))$ with {ay} the global numbering of the rodos so that $(a_1) = S_{ij}$ To defire the Lagrange interpolant requires point evaluation E restrict for continuos fuctions => KG fix N C H S(50) 5 > 2 50 that point eval makes sense by Theorem (Sobolev): If $SP \in \mathbb{R}^d$, d = 2,3, then if 5>2 HT(5) C> Z(5) $(\mathcal{N})\longrightarrow \mathcal{N}$

Crucial idea for onlysing interpersor M- In MIT is mop back T to T. Lemma I (Q-4.2, seminorn scoling): see e.g.

For each M > O, and TEHM(T)

Ord let A: T > IR def. by

Volli

for proofs. N=VoFT. Then: $\bullet \ \widehat{\nabla} \in \mathcal{H}^{m}(\widehat{T}) \qquad \left(F_{T}\widehat{x}=B_{T}\widehat{x}+b_{T}\right)$ 6 = C = C(m) > 0:

Del (dionetor, spheriuit, regularity): Let 6h={T} a triangulation, od oh_= dion T / HT o $P_T = Sup \{ diam(S) : o S is sphere \}$ sphenicity

oh, / corresp. diam, sphericity of ? o A family of neshes Gh, helpt, is shape regular if 30>1: 4h, 4te Zh we have ht 60 ht this ratio measures the regularity (fotness) of the trian gles

Lemma 2: We have

$$|B_{T}| \leq h_{T} \qquad |B_{T}| \leq \hat{h}$$

$$|B_{T}| \leq \hat{h}$$

$$|C_{T}| \leq \hat{h}$$

$$|C$$

Corollog (Lema 3+ Lema 4):

$$|\widehat{L}(\widehat{v})| \leq C ||\widehat{L}||_{L^{m}} |\widehat{V}| ||\widehat{V}||_{L^{m}} |\widehat{V}||_{L^{m}} |\widehat{V}|$$