Docket No.: 87334.5620 Customer No. 30734 Serial No.: 10/615,295

LISTING OF THE CLAIMS:

A complete listing of the claims is provided below. This listing of claims will replace all prior versions, and listings, of claims in the application.

- (Cancelled)
 (Cancelled)
 (Cancelled)
 (Cancelled)
 (Cancelled)
 (Cancelled)
 (Cancelled)
- 7. (Currently Amended) A system for controlling rotational speed of a rotor within a centrifuge, the system comprising:
 - a motor operative to rotate the rotor;
- a <u>modulation</u> controller configured to modulate an amount of torque generated by the motor and thereby modulate the rotational speed of the rotor;
- a speed sensor configured to sense the rotational speed of at least one of the motor and the rotor, and transmit the sensed rotational speed to the controller; and

wherein the controller is configured to determine an amount of kinetic energy associated with the rotor in response to the amount of torque and the sensed rotational speed, and is configured to compare the amount of kinetic energy associated with the rotor to a predetermined

PATENT

Docket No.: 87334.5620

Customer No. 30734

Serial No.: 10/615,295

amount of kinetic energy, the controller being further configured to reduce the rotational speed of

the motor in response to the compared amount of kinetic energy associated with the rotor being

greater than the predetermined amount of kinetic energy.

8. (Original) The system according to claim 7, further comprising a torque sensor

configured to sense the amount torque generated by the motor and transmit the sensed torque to

the controller.

9. (Original) The system according to claim 7, wherein the controller is further configured

to calculate the amount of torque applied to rotor by the motor in response to a predetermined

motor torque characteristic and a measured amount of current applied to the motor.

10. (Original) The system according to claim 7, wherein the controller is further configured

to compare the amount of kinetic energy associated with the rotor to the predetermined amount of

kinetic energy while the rotor is spinning at a relatively slow speed, the relatively slow speed

being below a speed sufficient to impart an amount of kinetic energy that is greater than the

predetermined amount of kinetic energy.

11. (Original) The system according to claim 7, further comprising a timer configured to

count a time increment and transmit the time increment to the controller, wherein the controller is

further configured to determine an acceleration rate of the rotor based on a change in rotational

speed during the time increment.

12. (Original) The system according to claim 11, wherein the controller is further configured

to determine a deceleration rate in response to a change in rotational speed during an idle state of

the motor for the time increment.

3

PATENT

Docket No.: 87334.5620 Customer No. 30734

Serial No.: 10/615,295

(Original) The system according to claim 7, wherein the controller is further configured 13.

to determine the amount of kinetic energy of the rotor at a relative maximum speed of the rotor

during a run, the controller being further configured to compare the amount of kinetic energy of

the rotor at the relative maximum speed to the predetermined amount of kinetic energy and the

controller being configured to substantially prevent the rotor from obtaining the relative

maximum speed in response to the amount of kinetic energy of the rotor at the relative maximum

speed being relatively larger than the predetermined amount of kinetic energy.

(Original) An apparatus for substantially preventing kinetic energy of a rotor from 14.

exceeding a predetermined amount of kinetic energy, the apparatus comprising;

means for determining a first kinetic energy of the rotor spinning at a first rotational

velocity;

means for determining whether the first kinetic energy exceeds the predetermined amount

of kinetic energy; and

means for modulating torque being applied to the rotor in response to the first kinetic

energy exceeding the predetermined amount of kinetic energy, wherein the rotor is spun at a

relatively slower rotational velocity than the first rotational velocity.

The apparatus according to claim 14, further comprising means for 15. (Original)

determining an acceleration rate of the rotor.

The apparatus according to claim 15, further comprising means for 16. (Original)

determining a deceleration rate of the rotor, wherein the first kinetic energy is determined based

on the deceleration rate, the acceleration rate, the first rotational velocity and the torque being

applied to the rotor.

4

Docket No.: 87334.5620 PATENT

Customer No. 30734 Serial No.: 10/615,295

17. (Original) The apparatus according to claim 14, further comprising means for

determining the first kinetic energy prior to the rotor spinning at the first rotational velocity.

18. (Original) A method of substantially preventing kinetic energy of a rotor from exceeding

a predetermined amount of kinetic energy, the method comprising;

determining a first kinetic energy of the rotor spinning at a first rotational velocity;

determining whether the first kinetic energy exceeds the predetermined amount of kinetic

energy; and

modulating torque applied to the rotor in response to the first kinetic energy exceeding the

predetermined amount of kinetic energy wherein, the rotor is spun at a relatively slower rotational

velocity than the first rotational velocity.

19. (Original) The method according to claim 18, further comprising determining an

acceleration rate of the rotor.

20. (Original) The method according to claim 19, further comprising determining a

deceleration rate of the rotor, wherein the first kinetic energy is determined based on the

deceleration rate, the acceleration rate, the first rotational velocity and the torque being applied to

the rotor.

21. (Original) The method according to claim 18, further comprising determining the first

kinetic energy prior to the rotor spinning at the first rotational velocity.

5