Report on Assignment 3 of Networking Sessional

Report By Afrina Tabassum - 1405023

11 december 2017

I have run my program several times and have taken note of average number of hops and drop rate for LAMBDA = 0.01, 0.05, 0.10, 0.25, 0.50 and 0.80. These notes are given below in a table

LAMBDA	average number of hops	drop rate
0.01	1	0
0.05	.75	.25
.10	.57	.43
.25	.53	.47
.50	.54	.46
.80	.07	.93

Table 1: Table for DVR with split horizon and forced update

But when I have run my simulation without split horizon and forced update by applying simpleDVR with LAMBDA = .10 .The drop rate has increased and it becomes .78 and the average hop count also decreases to .22. The good news(The news of routers being on) spreads at a speed of diameter of the topology. But when a router goes down it takes infinity time to reach to all other routers. It is called count to infinity problem. This problem happens because a perticular router does not know whether it is the next hop node in the neighbouring paths. So to decrase the drop rate Split horizon and forced update is applied.