

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Topología Algebraica - MAT2850 Apuntes $05~{\rm de~agosto~de~2025}$

${\rm \acute{I}ndice}$

M	lotivación	9
1.	Homología Simplicial	4
	1.1. Complejos de Cadenas	4
	1.2 Compleios Simpliciales	_

Motivación

Dados dos espacios topológicos X e Y ¿Cuando son homeomorfos?. Decimos que dos espacios son **homeomorfos** si existe $f: X \to Y$ continua, biyectiva y con inversa constinua. La topología algebraica ataca esta pregunta de la siguiente forma:

- (1) Asigna a cada espacio topológico X un objeto algebraico G(X).
- (2) Aigna a cada función continua $f: X \to Y$ un homomorfismo $G(f): G(X) \to G(Y)$ tal que
 - (a) $G(f \circ g) = G(f) \circ G(g)$
 - (b) $G(id_X) = id_{G(X)}$

Observación: Ambas condiciones implican que si $f: X \to Y$ es homeomorfismo, entonces $G(f): G(X) \to G(Y)$ es isomorfismo. A veces los G que se construyen satisfacen la propiedad extra que si X se puede "deformar continuamente" en Y entonces $G(X) \cong G(Y)$.

Decimos que G es un **invariante homotópico**. (Faltan ejemplos - c1)

Definición: Una homotopía entre dos funciones continuas $f, g: X \to Y$ es una función continua $H: X \times [0,1] \to Y$ tal que H(x,0) = f(x) y H(x,1) = g(x) para todo $x \in X$.

Notación: La función $H_t: X \to Y$ esta dada por $H_t(x) := H(x,t)$. Una homotopía de f a g se denota por $f \sim g$.

Proposición 0.1: Ser homotópico es una relación de equivalencia en C(X,Y).

Definición: Decimos que $f: X \to Y$ es una equivalencia homotópica, si existe $g: Y \to X$ tal que $g \circ f \sim id_X$ y $f \circ g \sim id_Y$ En tal caso, X e Y se dicen homotópicamente equivalentes o que tienen el mismo tipo de homotopía y se denota por $X \sim Y$.

Ejemplo:

- Sea $f: X \to Y$ un homeomorfismo, en particular, tomando $g = f^{-1}$, se sigue que es equivalencia homotópica.
- Se tiene que $\{0\} \sim \mathbb{R}^n$, consideremos la inclusión $i :\to \{0\} \to \mathbb{R}^n$, afirmamos que es i es equivalencia homotópica. En efecto, se verifica que $\pi : \mathbb{R}^n \to \{0\}$ es una inversa homotópica. Por un lado $\pi \circ i = id_{\{0\}}$ y por otro $i \circ \pi = 0$. Notamos que H(x,t) = tx con $t \in [0,1]$ es una homotopía entre 0 y $id_{\mathbb{R}^n}$.
- Veamos que $\mathbb{R}^n \setminus \{0\} \sim \mathbb{S}^{n-1}$. Probaremos que la función $i: \mathbb{S}^{n-1} \to \mathbb{R}^n \setminus \{0\}$ es equivalencia homotópica. En efecto,

$$\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$$
$$x \to \frac{x}{|x|}$$

es inversa homotópica. Es claro que $\pi \circ i = id_{s^{n-1}}$. Definimos

$$H(x,t) := t \frac{x}{|x|} + (1-t)x$$

Notamos que H(x,0)=x y $H(x,1)=\frac{x}{|x|}$, es decir, H es una homotopia entre $i\circ\pi$ e $id_{\mathbb{R}^n\setminus\{0\}}$. Además, se verifica que $im(H)\subseteq\mathbb{R}^n\setminus\{0\}$.

1. Homología Simplicial

Queremos asignarle a un espacio topológico X arbitrario, grupos abelianos $H_0(X), H_1(X), \cdots$ tal que si $X \sim Y$, entonces $H_i(X) \cong H_i(Y)$ para todo i. Ituitivamente, $H_k(X)$ estará generado por ciertos subespacios de X de dimensión k.

Habrá una relación de equ
valencia, $A, B \subseteq X$ de dimensión k serán equivalentes si hay un subespacio de X de dimensión k+1 cuyo borde es $A \cup B$. (Falta ejemplo - c1)

Hay que restringir la clase de espacios a una con nociones de dimensión, borde, etc. Estos serán los complejos simpliciales. Necesitamos, adicionalmente, un objeto algebraico que capture esas nociones, esto corresponde a los complejos de cadenas.

1.1. Complejos de Cadenas

Definición: Un complejo de cadenas es una sucesión de grupos abelianos y homomorfismos

$$\cdots \rightarrow C_3 \xrightarrow{d_3} C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} 0$$

tal que $d_i \circ d_{i+1} = 0$ para todo i. Se denota por (C_*, d_*) .

Observación: Notemos que $im\ d_{i+1} \subseteq ker\ d_i \subseteq C_i$. Dado que los grupos son abelianos, esta observación permite definir el siguiente objeto.

Definición: El i-ésimo grupo de homología de (C_*, d_*) se define por

$$H_i(C_i) := \frac{ker \ d_i}{im \ d_{i+1}}$$

Ejemplos:

ullet Si A un grupo abeliano, entonces

$$\cdots \to 0 \to 0 \to A \to 0 \to \cdots \to 0 \to 0$$

es un complejo de cadenas donde $C_i = A$. Entonces

$$H_j(C_*) = \begin{cases} 0 & \text{si } j \neq i \\ A & \text{si } j = i \end{cases}$$

■ Consideremos la cadena exacta

$$\cdots \to 0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \to 0$$

entonces $H_i(C_*) = 0$ para todo i.

Veamos que

$$\cdots \xrightarrow{\cdot 0} \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \to 0$$

es un complejo de cadenas. La homología asociadas son $H_0(C_*) = \mathbb{Z}$, $H_1(C_*) = \mathbb{Z}_2$ y $H_k(C_*) = 0$.

Nuestro objetivo será asociar un complejo de cadenas a un espacio topológico X arbitrario.

1.2. Complejos Simpliciales

Definición: Dados n+1 puntos $\{v_0, \dots, v_n\} \in \mathbb{R}^{\omega}$ son **afínmente independientes**, si generan un n-plano afín, es decir, $\{v_1-v_0, \dots, v_n-v_0\}$ es un conjunto linealmente independiente, esto es

$$\sum_{i=0}^{n} t_i v_i = 0 \quad y \quad \sum_{i=0}^{n} t_i = 0 \quad entonces \quad t_i = 0 \quad para \ todo \ i$$

Ejemplo: Dos puntos son afínmente independientes. Tres puntos son afínmente independientes si y solo si no son colineales. (Falta ejemplo dibujo - c1)

Definición: Si $\{v_0, \dots, v_n\}$ son afínmente independientes, ellos definen el **n-simplejo**

$$\sigma = \langle v_0, \cdots, v_n \rangle = \left\{ x = \sum_{i=0}^n t_i v_i, \sum_{i=0}^n t_i = 1 \quad y \quad t_i \ge 0 \right\}$$

Decimos que σ es el n-simplejo generado por v_0, \dots, v_n . Los puntos v_i se llaman **vértices** de σ . Una **cara** de un simplejo σ es un simplejo τ generado por un subconjunto de $\{v_0, \dots, v_n\}$ y lo denotamos por $\tau \leq \sigma$. Si el subconjunto es propio, se dice que τ es una **cara propia**.

La frontera de un n-simplejo σ es la unión de todas sus caras propias, se denota por $\partial \sigma$, el interior de σ es $int(\sigma) := \sigma \setminus \partial \sigma$.

 $\textbf{Definición:} \ \textit{Un complejo simplicial (geométrico)} \ \textit{K} \ \textit{es un conjunto de simplejos tales que}$

- (1) $Si \ \sigma \in K \ y \ \tau \leq \sigma \ entonces \ \tau \in K$.
- (2) $Si \ \sigma, \tau \in K \ entonces \ \sigma \cap \tau = \emptyset \ \'o \ \sigma \cap \tau \ es \ una \ cara \ de \ \sigma \ y \ de \ \tau.$

El **poliedro** asociado a un complejo simplicial K es $|K| := \bigcup_{\sigma \in K} \sigma$. Un espacio topológico X se llama un poliedro si existe un complejo simplicial K y un homeomorfismo $f : |K| \to X$. Al par (K, f) se le llama una **triangulación** de X.

Observación: Si X es triangulable, entonces es Hausdorff por que |K| lo es. (Faltan ejemplos - c2)