Engenharia de Computação Estrutura de Dados 2

Aula 8.0 – Armazenamento Secundário

Prof. Muriel de Souza Godoi muriel@utfpr.edu.br

Armazenamento de Dados

- Armazenamento primário
 - memória primária (RAM)
 - memória do computador
- Armazenamento secundário
 - memória secundária
 - disco, fita, CD-Rom,, os quais são acessados diretamente pelo computador
- Armazenamento terciário
 - dados arquivados em jukebox
 - o disco, fita, CD-Rom, etc, os quais não são
 - diretamente acessados pelo computador

Disco X RAM

- Estimativas de tempo de acesso
 - HD: alguns milisegundos ~ 10ms (10⁻³)
 - RAM: alguns nanosegundos ~ 10ns...40ns (10⁻⁹)

Ordem de grandeza da diferença entre os tempos de Acesso: ~ 250.000 HDs são 250.000 vezes mais lentos que memória RAM!

Disco X RAM

- Capacidade de Armazenamento
 - HD muito alta, a um custo relativamente baixo
 - RAM limitada pelo custo e espaço
- Tipo de Armazenamento
 - HD não volátil
 - RAM volátil

Disco - Organização

- Disco: conjunto de 'pratos' empilhados
 - Dados são gravados nas superfícies desses pratos
- Superfícies: são organizadas em trilhas
- Trilhas: são organizadas em setores
- Setores: menor porção endereçável no disco
- Cilindro: conjunto de trilhas na mesma posição

Disco - Organização

Figure 3.1 Schematic illustration of disk drive.

Figure 3.2 Surface of disk showing tracks and sectors.

Figure 3.3 Schematic illustration of disk drive viewed as a set of seven cylinders.

Capacidade do disco (nominal)

- Capacidade do setor
 - nº bytes (Ex. 512 bytes)
- Capacidade da trilha
 - nº de setores/trilha x capacidade do setor
- Capacidade do cilindro
 - nº de trilhas/cilindro x capacidade da trilha
- Capacidade do disco
 - nº de cilindros x capacidade do cilindro

Geometria do Disco

- A geometria virtual pode diferir da real
- Em discos antigos:
 - Números de setores/trilhas igual
- Em discos modernos divisão por zonas
 - Mais setores nas áreas externas do que nas internas

Seeking

- Movimento de posicionar a cabeça de L/E sobre a trilha/setor desejado
- O conteúdo de todo um cilindro pode ser lido com 1 único seeking
- É o movimento mais lento da operação leitura/escrita
- Deve ser reduzido ao mínimo

Custo de Acesso a Disco

- Seek time (tempo de acesso)
 - tempo para posicionar a cabeça de leitora e gravação no cilindro correto
- Rotational delay (atraso de rotação)
 - tempo para rotacionar o disco para que a cabeça de leitora e gravação seja posicionada no setor correto
- Transfer time (tempo de transferência)
 - tempo para transferir o dado para a memória primária

Torção Cilíndrica - Cylinder Skew

- O setor 0 é deslocado em relação ao anterior
- Aumenta o desempenho na busca
- Basta mover a cabeça e manter a rotação
- Evita uma volta extra na busca por um outro cilindro

Entrelaçamento - Interleaving

- Na leitura o conteúdo é transferido a um buffer da controladora.
 - Quando cheio, transfere para a memória → Gasta tempo!
- Entre transferencia pode passar pelo próximo dado
 - Deve-se esperar uma rotação
- Solução? Entrelaçamento.
 - Dá um tempo para que o conteúdo do *buffer* seja transferido

Sem Entrelaçamento

Duplo

Sistemas de Arquivos

- Formatação física (Disco Físico)
 - a organização do disco em setores/trilhas/cilindros que já vem da fábrica
 - pode ser mudada por meio de partições
- Formatação lógica (Disco Lógico)
 - 'instala' o sistema de arquivos no disco
 - subdivide o disco em regiões endereçáveis
 - introduz overhead relacionado ao espaço ocupado com informações para gerenciamento

Formatação de baixo nível

- Formata trilhas concêntricas
 - Com setores de mesmo tamanho
- Coloca um pequeno espaço entre os setores
- O setor é formatado da seguinte maneira:
 - Preâmbulo = bits para início, ID setor, ID cilindro
 - Payload Dados
 - ECC = Código de Correção de Erros

PA

Dados

ECC

Sistemas de Arquivos

- Faz parte do sistema operacional (S.O.)
- Fornece a infraestrutura básica para a manipulação de arquivos em memória secundária via software
- Oferece um conjunto de operações para a manipulação de arquivos

criar (create, open)	destruir ou remover (delete)
renomear (rename)	abrir (open)
fechar (close)	ler dados (read)
escrever dados (write)	escrever dados no final (append)
posicionar (seek)	

Arquivo Físico

Sequencia de bytes armazenados no disco

Página de Disco

- Conjunto de setores logicamente contíguos no disco
- Um arquivo é visto pelo sistema de arquivos como um conjunto de páginas de disco
 - arquivos são alocados em uma ou mais páginas de disco

Também chamado de bloco de disco ou cluster (livro)

Página de Disco

Mapeamentos

- Páginas lógicas → páginas físicas
 - depende da técnica de alocação de espaço em disco (ex.: alocação contígua, alocação encadeada e alocação indexada)
- Páginas físicas → setores
 - feito por um programa especial chamado condutor de dispositivo (device driver)

Toda a gerência do espaço em disco é feita pelo sistema de arquivos com base nos conceitos de páginas de disco lógicas e físicas, e não no conceito de setores.

Posição Corrente no Arquivo

- Abstração que permite a especificação de uma chamada do sistema para indicar o onde um arquivo deve ser lido ou escrito
- Características
 - a leitura e escrita acontecem a partir da posição corrente
 - a posição corrente é então avançada para imediatamente após o último byte lido ou escrito

Mapeamentos

Acessos: Página lógica 3, página física 93, setor 11, trilha 5, superfície 1, prato 2

Fragmentação Interna

- Perda de espaço útil decorrente da organização do arquivo em páginas de disco de tamanho fixo
- Exemplo
 - página de disco de 4K (4.096 bytes)
 - necessidade de se escrever 1 byte
 - desperdício de 4.095 bytes nessa página de disco

Tamanho da Página de Disco

- Definido pelo S.O. na formatação do disco
- Exemplo
 - FAT File Allocation Table (Windows)
 - Sempre uma potência de 2
 - 2, 4, 8, 16 ou 32KB
 - Determinado pelo máximo que a FAT consegue manipular, e pelo tamanho do disco
 - FAT16: pode endereçar 216 clusters = 65.536 clusters

Quanto maior a página de disco, maior a fragmentação interna e menor o número de acessos a disco!

Gerenciamento de Buffer

- Permite trabalhar com RAM para armazenar informação sendo transferida, de modo a reduzir o número de acessos a disco
- Buffer pool
 - área de memória volátil que armazena de forma replicada e temporária os dados armazenados no disco

Buffer Pool - Pesquisa

procura a página no buffer-pool
se encontrou, então:
 retorna a página sem realizar acessos a disco
senão
acessa o disco para copiar a página do disco para o buffer-pool
se o buffer-pool tem espaço, então:

copia a página do disco para o buffer-pool

senão

aplica uma política de substituição

Exemplo: política LRU (Least Recently Used), a qual substitui a página que foi acessada menos recentemente

Arquivo

- Conteúdo
 - um registro de cabeçalho
 - registros de dados
- Descritor do arquivo
 - estrutura usada pelo sistema de arquivos para gerenciar cada arquivo existente
 - exemplos de conteúdo: nome do arquivo, tipo do arquivo, tamanho em bytes, proteção, data e hora do último acesso, data e hora da criação, identificação do proprietário, local onde os dados estão armazenados, ...

TDAA e TAAP

- Para tornar mais rápido o acesso aos arquivos, o sistema de arquivos mantém na memória primária
 - TDAA Tabela dos Descritores de Arquivos Abertos por todos os processos
 - TAAP Tabelas de Arquivos Abertos por Processo
- Cada entrada de TDAA armazena:
 - uma cópia do descritor do arquivo mantido em disco, número de processos usando o arquivo
 - informações que não variam conforme o processo, como o tamanho do arquivo
- Cada entrada de TAAP armazena:
 - informações que variam conforme o processo, como posição corrente, modo de abertura do arquivo

TDAA e TAAP

FileHandle (arquivo lógico): consiste em um número ou um ponteiro para a entrada na TAAP associada