Project 3: Predicting Default Risk

Step 1: Business and Data Understanding

Key Decisions:

1. What decisions needs to be made?

Due to a financial scandal that hit a competitive bank last week, our bank suddenly has an influx of nearly 500 new customers applying for loans for our bank instead of the other bank in our city. As a loan officer at a young and small bank (been in operations for two years), I need to come up with an efficient solution to classify new customers on whether they can be approved for a loan or not. I'll use a series of classification models to figure out the best model and provide a list of creditworthy customers to bank manager.

2. What data is needed to inform those decisions?

We have two datasets, one for current customers data stored in 'credit-data-training.xlsx' file and another for new customers data stored in 'customers-to-score.xlsx' file.

Variables for the two datasets

	'credit-data-training.xlsx'	'customers-to-score.xlsx'	
	Account-Balance	Account-Balance	
	Duration-of-Credit-Month	Duration-of-Credit-Month	
	Payment-Status-of-Previous-Credit	Payment-Status-of-Previous-Credit	
	Purpose	Purpose	
	Credit-Amount	Credit-Amount	
	Value-Savings-Stocks	Value-Savings-Stocks	
	Length-of-current-employment	Length-of-current-employment	
(0	Instalment-per-cent	Instalment-per-cent	
elds	Guarantors	Guarantors	
Joint Fields	Duration-in-Current-address	Duration-in-Current-address	
	Most-valuable-available-asset	Most-valuable-available-asset	
	Age-years	Age-years	
	Concurrent-Credits	Concurrent-Credits	
	Type-of-apartment	Type-of-apartment	
	No-of-Credits-at-this-Bank	No-of-Credits-at-this-Bank	
	Occupation	Occupation	
	No-of-dependents	No-of-dependents	
	Telephone	Telephone	
	Foreign-Worker	Foreign-Worker	
	Credit-Application-Result		

3. What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Since we are interested in answering the question whether a customer is qualified to be approved for a loan or not, such problem needs a binary model building to answer it. The target field is 'Credit-Application-Result' contains two possible values (Creditworthy/Non- Creditworthy). I will compare 4 different binary classification models (Logistic, Decision Tree, Random Forest, and Boosted) to choose the one that best fit data.

Step 2: Data Preparation

1. Fields with Missing Data

The above visualization identifies missing data with two fields:

- 'Duration-in-Current-address' field has about 69% of its data are missing, so with a high missing data we should remove this field forever.
- 'Age-years' field has about 2% of its data are missing, by taking into consideration the logical impact of age as a variable in our decision, we should impute the missing ages by replacing them with age median.

2. Fields with Low Variability

The above visualization identifies low variability with 6 fields in which we should remove all of them.

3. Multicollinearity Identification

We need to check whether any group of the possible predictors are highly correlated or not. The correlation plot matrix between all possible predictor variable is given below

Step 3: Training Classification Models

First, I have randomly split dataset into two subsets (70% Estimation and 30% Validation). Then I have trained the 4 models (Logistic, Decision Tree, Random Forest, and Boosted) on Estimation group. Finally, I have used the validation group to test each model accuracy.

- 1. Which predictor variables are significant or the most important?
 - with Logistic Model: 'Account Balance', 'Credit Amount', and 'Purpose' are the top significant variables descendingly.

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-2.9621914	6.837e- 01	-4.3326	1e-05	***
Account.BalanceSome Balance	-1.6053228	3.067e- 01	-5.2344	1.65e-07	***
Payment.Status.of.Previous.CreditPaid Up	0.2360857	2.977e- 01	0.7930	0.42775	
Payment.Status.of.Previous.CreditSome Problems	1.2154514	5.151e- 01	2.3595	0.0183	98
PurposeNew car	-1.6993164	6.142e- 01	-2.7668	0.00566	98 98 98
PurposeOther	-0.3257637	8.179e- 01	-0.3983	0.69042	
PurposeUsed car	-0.7645820	4.004e- 01	-1.9096	0.05618	
Credit.Amount	0.0001704	5.733e- 05	2.9716	0.00296	56 SC
Length.of.current.employment4-7 yrs	0.3127022	4.587e- 01	0.6817	0.49545	
Length.of.current.employment< 1yr	0.8125785	3.874e- 01	2.0973	0.03596	*
Instalment.per.cent	0.3016731	1.350e- 01	2.2340	0.02549	*
Most.valuable.available.asset	0.2650267	1.425e- 01	1.8599	0.06289	

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 with Decision Tree: 'Account Balance', 'Value Savings Stocks', and 'Duration of Credit Month' are the top important variables descendingly.

 with Forest Model: 'Credit Amount', 'Age Years', and 'Duration of Credit Month' are the top important variables descendingly.

Variable Importance Plot

 with Boosted Model: 'Account Balance', 'Credit Amount', and 'Duration of Credit Month' are the top important variables descendingly.

Variable Importance Plot

- 2. What was the overall percent accuracy? Are there any bias seen in the model's predictions?
 - with Logistic Model: the overall accuracy is 76% while the accuracy of predicting Creditwothy is 88% and the accuracy of predicting Non-Creditwothy is 49%. In such case, we can say that this model is biased to Creditworthy than Non-Creditwothy.

with Decision Tree: the overall accuracy is 75% while the accuracy of predicting Creditwothy is 89% and the accuracy of predicting Non-Creditwothy is 42%. In such case, we can say that this model is biased to Creditworthy than Non-Creditwothy.

with Forest Model: the overall accuracy is 79% while the accuracy of predicting Creditwothy is 97% and the accuracy of predicting Non-Creditwothy is 38%. In such case, we can say that this model is mostly biased to Creditworthy than Non-Creditwothy.

• with **Boosted Model**: the overall accuracy is 79% while the accuracy of predicting Creditwothy is 96% and the accuracy of predicting Non-Creditwothy is 40%. In such case, we can say that this model is mostly biased to Creditworthy than Non-Creditwothy.

Step 4: Writeup

1-Which model did I choose to use?

We can compare all 4 models side by side by looking to the following

Confusion matrix of BM_Approval								
	Actual_Creditworthy	Actual_Non-Creditworthy						
Predicted_Creditworthy	101	27						
Predicted_Non-Creditworthy	4	18						
Confusion matrix of DT_Approval								
	Actual_Creditworthy	Actual_Non-Creditworthy						
Predicted_Creditworthy	93	26						
Predicted_Non-Creditworthy	12	19						
Confusion matrix of FT_Ap	proval							
Confusion matrix of FT_Ap	p roval Actual_Creditworthy	Actual_Non-Creditworthy						
Confusion matrix of FT_Ap	·	Actual_Non-Creditworthy						
_ :	Actual_Creditworthy	Actual_Non-Creditworthy 28 17						
Predicted_Creditworthy	Actual_Creditworthy 102 3	28						
Predicted_Creditworthy Predicted_Non-Creditworthy	Actual_Creditworthy 102 3	28 17						
Predicted_Creditworthy Predicted_Non-Creditworthy	Actual_Creditworthy 102 3 pproval	28						

Taking into consideration the overall accuracy, both Forest and Boosted models have the highest overall accuracy of 79.33%, as well we can see that Forest model has the highest Accuracy of predicting Creditworthy at 97.14%, while Boosted model is more accurate in predicting Non-Creditworthy than Forest do.

Also using ROC graph, we can say that Forest model has the highest value with top true positive side of the graph.

Since we are interested in predicting Creditworthy we should choose Forest as the best fit model.

2-How many individuals are creditworthy?

Once we have come up to the best fit model, we could apply that model with our new dataset and the results as follows:

Sum_Score_Creditworthy	Sum_Score_Non-Creditworthy
408	92
81.6%	18.4%

408 customers will be approved and 92 customers will be disapproved