Chapter 12

Forecasting

Russell and Taylor
Operations and Supply Chain Management,
8th Edition

Lecture Outline

- Strategic Role of Forecasting in Supply Chain Management
- Components of Forecasting Demand
- Time Series Methods
- Forecast Accuracy
- Time Series Forecasting Using Excel
- Regression Methods

Forecasting

- Predicting the future
- Qualitative forecast methods
 - subjective
- Quantitative forecast methods
 - based on mathematical formulas

Strategic Role of Forecasting in Supply Chain Management

- Accurate forecasting determines inventory levels in the supply chain
- Continuous replenishment
 - supplier & customer share continuously updated data
 - typically managed by the supplier
 - reduces inventory for the company
 - speeds customer delivery
- Variations of continuous replenishment
 - quick response—the way retailers accommodate 'fads'
 - JIT (just-in-time)
 - VMI (vendor-managed inventory)
 - stockless inventory
 - THESE SYSTEMS RELY HEAVILY ON ACCURATE SHORT-TERM FORECASTS

The Effect of Inaccurate Forecasting

Forecasting

- Quality Management
 - Accurately forecasting customer demand is a key to providing good quality service
- Strategic Planning
 - Successful strategic planning requires accurate forecasts of future products and markets

Components of Forecasting Demand

- Time frame
- Demand behavior
- Causes of behavior

Time Frame

- Indicates how far into the future is forecast
 - Short-range forecast
 - typically encompasses the immediate future up to six months
 - Use for detailed scheduling of goods and services
 - Medium-range forecast
 - Six months to two years
 - 18 months is a typical medium-range forecast
 - Addresses aggregate planning—what HR, what inventory, what technology
 - Long-range forecast
 - usually encompasses a period of time longer than two years out to say 50 years with 5 years being a typical long-range forecast
 - Used to make capital investment decisions—what facilities located where, by when?

Demand Behavior

- Trend
 - a gradual, long-term up or down movement of demand
- Random variations
 - movements in demand that do not follow a pattern
- Cycle
 - an up-and-down repetitive movement in demand
- Seasonal pattern
 - an up-and-down repetitive movement in demand occurring periodically

Forms of Forecast Movement

Forecasting Methods

Time series

- statistical techniques that use historical demand data to predict future demand
- Regression methods
 - attempt to develop a mathematical relationship between demand and factors that cause its behavior
- Qualitative
 - use management judgment, expertise, and opinion to predict future demand

Qualitative Methods

- Management, marketing, purchasing, and engineering are sources for internal qualitative forecasts
- Delphi method
 - involves soliciting forecasts about technological advances from experts

Forecasting Process

Time Series

- Time is often the independent variable in forecasting
- Assumes that what has occurred in the past will continue to occur in the future
- Relate the forecast to only one factor time
- Include
 - naïve forecast
 - moving average
 - exponential smoothing
 - linear trend line

Moving Average

- Naive forecast
 - demand in current period is used as next period's forecast
- Simple moving average
 - uses average demand for a fixed sequence of periods
 - good for stable demand with no pronounced behavioral patterns
- Weighted moving average
 - · weights are assigned to most recent data

Moving Average: Naïve Approach

	ORDERS	
MONTH	PER MONTH	FORECAST
Jan	120	-
Feb	90	120
Mar	100	90
Apr	75	100
May	110	75
June	50	110
July	75	50
Aug	130	75
Sept	110	130
Oct	90 🗨	110
Nov	-	→ 90

Simple Moving Average

$$MA_n = \frac{\sum_{i=1}^{n} D_i}{n}$$

where

n = number of periods in the moving average D_i = demand in period i

3-month Simple Moving Average

MONTH	ORDERS PER MONTH	MOVING AVERAGE	3
Jan	120		$\sum_{i=1}^{\sum} D_i$
Feb	90	_	$MA_2 =$
Mar	100	_	3
Apr	75	103.3	
May	110	88.3	_ 90 + 110 + 130
June	50	95.0	= 3
July	75	78.3	
Aug	130	78.3	= 110 orders for Nov
Sept	110	85.0	= 110 010013 101 1 10
Oct	90	105.0	
Nov	-	110.0	

5-month Simple Moving Average

MONTH	ORDERS PER MONTH	MOVING AVERAGE	$\sum_{i}^{5} D_{i}$
Jan	120	_	i = 1
Feb	90	_	$MA_{5} =$
Mar	100	_	5
Apr	75	_	00 . 440 . 400 . 75 . 50
May	110	_	<u>90 + 110 + 130+75+50</u>
June	50	99.0	- 5
July	75	85.0	
Aug	130	82.0	= 91 orders for Nov
Sept	110	88.0	0 1 0101010101101
Oct	90	95.0	
Nov	-	91.0	

Smoothing Effects

Weighted Moving Average

Adjusts moving average method to more closely reflect data fluctuations

$$WMA_n = \sum_{i=1}^n W_i D_i$$
where
$$W_i = \text{the weight for period } i,$$
between 0 and 100
percent
$$\sum W_i = 1.00$$

Weighted Moving Average Example

MONTH	WEIGHT	DATA				
August	17%	130				
September	33%	110				
October	50%	90				
November Forecast $WMA_3 = \sum_{i=1}^{3} W_i D_i$						
= (0.50)(90) + (0.33)(110) + (0.17)(130)						
= 103.4 orders						

Exponential Smoothing

- Averaging method
- Weights most recent data more strongly
- Reacts more to recent changes
- Widely used, accurate method
- Smoothing constant, α
 - applied to most recent data

Exponential Smoothing

$$F_{t+1} = \alpha D_t + (1 - \alpha)F_t$$

where:

 F_{t+1} = forecast for next period

 $D_t =$ actual demand for present period

 F_t = previously determined forecast for present period

 α = weighting factor, smoothing constant

Effect of Smoothing Constant

$$0.0 \le \alpha \le 1.0$$

If
$$\alpha = 0.20$$
, then $F_{t+1} = 0.20 D_t + 0.80 F_t$

If
$$\alpha = 0$$
, then $F_{t+1} = 0$ $D_t + 1$ $F_t = F_t$
Forecast does not reflect recent data

If
$$\alpha = 1$$
, then $F_{t+1} = 1$ $D_t + 0$ $F_t = D_t$
Forecast based only on most recent data

Exponential Smoothing (α =0.30)

PERIOD	MONTH	DEMAND	$F_2 = \alpha D_1 + (1 - \alpha)F_1$
1	Jan	37	= (0.30)(37) + (0.70)(37)
2	Feb	40	
3	Mar	41	= 37
4	Apr	37	$E = \alpha D + (1 - \alpha) E$
5	May	45	$F_3 = \alpha D_2 + (1 - \alpha)F_2$
6	Jun	50	= (0.30)(40) + (0.70)(37)
7	Jul	43	= 37.9
8	Aug	47	
9	Sep	56	$F_{13} = \alpha D_{12} + (1 - \alpha) F_{12}$
10	Oct	52	= (0.30)(54) + (0.70)(50.84)
11	Nov	55	= 51.79
12	Dec	54	= 51.79

Exponential Smoothing

			FOREC	CAST, F_{t+1}
PERIOD	MONTH	DEMAND	$(\alpha=0.3)$	$(\alpha = 0.5)$
1	Jan	37	_	
2	Feb	40	37.00	37.00
3	Mar	41	37.90	38.50
4	Apr	37	38.83	39.75
5	May	45	38.28	38.37
6	Jun	50	40.29	41.68
7	Jul	43	43.20	45.84
8	Aug	47	43.14	44.42
9	Sep	56	44.30	45.71
10	Oct	52	47.81	50.85
11	Nov	55	49.06	51.42
12	Dec	54	50.84	53.21
13	Jan	_	51.79	53.61

Exponential Smoothing

Adjusted Exponential Smoothing

$$AF_{t+1} = F_{t+1} + T_{t+1}$$

where

T = an exponentially smoothed trend factor

$$T_{t+1} = \beta(F_{t+1} - F_t) + (1 - \beta) T_t$$

where

 T_t = the last period trend factor

 β = a smoothing constant for trend

 $0 \le \beta \le 1$

Adjusted Exponential Smoothing (β=0.30)

PERIOD	MONTH	DEMAND	T_3	$= \beta(F_3 - F_2) + (1 - \beta) T_2$
1	Jan	37		= (0.30)(38.5 - 37.0) + (0.70)(0)
2	Feb	40		= 0.45
3	Mar	41		
4	Apr	37	AF_3	$= F_3 + T_3 = 38.5 + 0.45$
5	May	45		= 38.95
6	Jun	50		
7	Jul	43	T_{13}	$= \beta(F_{13} - F_{12}) + (1 - \beta) T_{12}$
8	Aug	47		= (0.30)(53.61 - 53.21) + (0.70)(1.77)
9	Sep	56		= 1.36
10	Oct	52		_ 1.50
11	Nov	55		
12	Dec	54	AF ₁ ;	$T_{3} = F_{13} + T_{13} = 53.61 + 1.36 = 54.97$

Adjusted Exponential Smoothing

PERIOD	MONTH	DEMAND	FORECAST F_{t+1}	TREND T _{t+1}	ADJUSTED FORECAST AF_{t+1}
1	Jan	37	37.00	_	_
2	Feb	40	37.00	0.00	37.00
3	Mar	41	38.50	0.45	38.95
4	Apr	37	39.75	0.69	40.44
5	May	45	38.37	0.07	38.44
6	Jun	50	38.37	0.07	38.44
7	Jul	43	45.84	1.97	47.82
8	Aug	47	44.42	0.95	45.37
9	Sep	56	45.71	1.05	46.76
10	Oct	52	50.85	2.28	58.13
11	Nov	55	51.42	1.76	53.19
12	Dec	54	53.21	1.77	54.98
13	Jan	_	53.61	1.36	54.96

Adjusted Exponential Smoothing Forecasts

Linear Trend Line

$$y = a + bx$$

where

a = intercept

b =slope of the line

x = time period

y =forecast for demand for period x

$$b = \frac{\sum xy - n\overline{x}\overline{y}}{\sum x^2 - n\overline{x}^2}$$

$$a = \overline{y} - b \overline{x}$$

where

n =number of periods

$$\bar{x} = \frac{\sum x}{n}$$
 = mean of the x values

$$\overline{y} = \frac{\sum y}{n}$$
 = mean of the y values

Least Squares Example

x(PERIOD)	y(DEMAND)	ху	χ^2
1	37	37	1
2	40	80	4
3	41	123	9
4	37	148	16
5	45	225	25
6	50	300	36
7	43	301	49
8	47	376	64
9	56	504	81
10	52	520	100
11	55	605	121
12	_54	648	144
78	557	3867	650

Least Squares Example

$$\bar{x} = \frac{78}{12} = 6.5$$

$$\bar{y} = \frac{557}{12} = 46.42$$

$$b = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} = \frac{3867 - (12)(6.5)(46.42)}{650 - 12(6.5)^2} = 1.72$$

$$a = \bar{y} - b\bar{x}$$

$$= 46.42 - (1.72)(6.5) = 35.2$$

Linear trend line y = 35.2 + 1.72xForecast for period 13 y = 35.2 + 1.72(13) = 57.56 units

Seasonal Adjustments

- Repetitive increase/ decrease in demand
- Use seasonal factor to adjust forecast

Seasonal factor =
$$S_i = \frac{D_i}{\sum D}$$

Seasonal Adjustment

DEMAND (1000'S PER QUARTER)

YEAR	1	2	3	4	Total
2002	12.6	8.6	6.3	17.5	45.0
2003	14.1	10.3	7.5	18.2	50.1
2004	15.3	10.6	8.1	19.6	53.6
Total	42.0	29.5	21.9	55.3	148.7

$$S_1 = \frac{D_1}{\sum D} = \frac{42.0}{148.7} = 0.28$$

$$S_2 = \frac{D_2}{\sum D} = \frac{29.5}{148.7} = 0.20$$

$$S_3 = \frac{D_3}{\sum D} = \frac{21.9}{148.7} = 0.15$$

$$S_4 = \frac{D_4}{\sum D} = \frac{55.3}{148.7} = 0.37$$

Seasonal Adjustment

For 2005

$$y = 40.97 + 4.30x = 40.97 + 4.30(4) = 58.17$$

$$SF_1 = (S_1) (F_5) = (0.28)(58.17) = 16.28$$

$$SF_2 = (S_2) (F_5) = (0.20)(58.17) = 11.63$$

$$SF_3 = (S_3) (F_5) = (0.15)(58.17) = 8.73$$

$$SF_4 = (S_4) (F_5) = (0.37)(58.17) = 21.53$$

Forecast Accuracy

- Forecast error
 - difference between forecast and actual demand
- MAD
 - mean absolute deviation
- MAPD
 - mean absolute percent deviation
- Cumulative error
- Average error or bias

Mean Absolute Deviation (MAD)

$$\mathsf{MAD} = \frac{\sum |D_t - F_t|}{n}$$

where

t = period number

 D_t = demand in period t

 F_t = forecast for period t

n = total number of periods

= absolute value

MAD Example

PERIOD	DEMAND, D_t	F_t (α =0.3)	$(D_t - F_t)$	$ D_t - F_t $
1	37	37.00		
2	40	37.00	3.00	3.00
3	41	37.90	3.10	3.10
4	37	38.83	-1.83	1.83
5	45	38.28	6.72	6.72
6	50	40.29	9.69	9.69
7	43	43.20	-0.20	0.20
8	47	43.14	3.86	3.86
9	56	44.30	11.70	11.70
10	52	47.81	4.19	4.19
11	55	49.06	5.94	5.94
12	54	50.84	3.15	3.15
	557		49.31	53.39

MAD Calculation

$$MAD = \frac{\Sigma | D_t - F_t|}{n}$$

$$= \frac{53.39}{11}$$

$$= 4.85$$

Other Accuracy Measures

Mean absolute percent deviation (MAPD)

$$MAPD = \frac{\sum |D_t - F_t|}{\sum D_t}$$

Cumulative error

$$E = \Sigma e_t$$

Average error

$$(E) = \frac{\sum e_t}{n}$$

Comparison of Forecasts

FORECAST	MAD	MAPD	E	(<i>E</i>)_
Exponential smoothing ($\alpha = 0.30$)	4.85	9.6%	49.31	4.48
Exponential smoothing ($\alpha = 0.50$)	4.04	8.5%	33.21	3.02
Adjusted exponential smoothing	3.81	7.5%	21.14	1.92
$(\alpha = 0.50, \beta = 0.30)$				
Linear trend line	2.29	4.9%	_	_

Forecast Control

- Tracking signal
 - monitors the forecast to see if it is biased high or low
 - 1 MAD ≈ 0.8 б
 - Control limits of 2 to 5 MADs are used most frequently

Tracking signal =
$$\frac{\sum (D_t - F_t)}{MAD} = \frac{E}{MAD}$$

Tracking Signal Values

PERIOD	DEMAND <i>D</i> _t	FORECAST, F _t	ERROR D _t - F _t	$\sum E = \sum (D_t - F_t)$	MAD	TRACKING SIGNAL
1	37	37.00	_	_	_	
2	40	37.00	3.00	3.00	3.00	1.00
3	41	37.90	3.10	6.10	3.05	2.00
4	37	38.83	-1.83	4.27	2.64	1.62
5	45	38.28	6.72	10.99	3.66	3.00
6	50	40.29	9.69	20.68	4.87	4.25
7	43	43.20	-0.20	20.48	4.09	5.01
8	47	43.14	3.86	24.34	4.06	6.00
9	56	44.30	11.70	36.04	5.01	7.19
10	52	47.81	4.19	40.23	4.92	8.18
11	55	49.06	5.94	46.17	5.02	9.20
12	54	50.84	3.15	49.32	4.85	10.17
$TS_3 = \frac{6.10}{3.05} = 2.00$						

Tracking Signal Plot

Statistical Control Charts

- Using σ we can calculate statistical control limits for the forecast error
- Control limits are typically set at ± 3σ

$$\sigma = \sqrt{\frac{\sum (D_t - F_t)^2}{n - 1}}$$

- Mean squared error (MSE)
 - Average of squared forecast errors

Statistical Control Charts

Copyright 2014 John Wiley & Sons, Inc.

All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.