UCS405 (Discrete Mathematical Structures)

Solutions

Tutorial Sheet-2 (Set Theory)

1. A- Intersection of two fuzzy sets

$$\begin{split} \mu A &\cap B \ (x) = \mu A(x) \wedge \mu B(x) = min \ (\mu A(x), \ \mu B(x)) \\ \mu A(x) &= \{0.2, \, 0.5, \, 0.6, \, 0.1, \, 0.9\} \\ \mu B(x) &= \{0.1, \, 0.5, \, 0.2, \, 0.7, \, 0.8\} \\ \mu A &\cap B = \{0.1, 0.5, 0.2, 0.1, 0.8\} \end{split}$$

2. A- Union of two fuzzy sets

$$\begin{split} \mu A U B(x) &= \mu A(x) \lor \mu B(x) = max \ (\mu A(x), \ \mu B(x)) \\ \mu A(x) &= \{0.6, \, 0.5, \, 0.1, \, 0.7, \, 0.8\} \\ \mu B(x) &= \{0.9, \, 0.2, \, 0.6, \, 0.8, \, 0.5\} \\ \mu A U B(x) &= \{0.9, \, 0.5, \, 0.6, \, 0.8, \, 0.8\} \end{split}$$

Complement of $\mu AUB(x) = \{0.1, 0.5, 0.4, 0.2, 0.2\}$

3. A- P
$$\cup$$
 Q = {a, a, a, b, c, c, d, d}
P \cap Q = {a, a, c}
P-Q = {a, d, d}

- **4.** A- Then (a) is not a partition of S since 7 in S does not belong to any of the subsets. Furthermore, (b) is not a partition of S since $\{1, 3, 5\}$ and $\{5, 7, 9\}$ are not disjoint. On the other hand, (c) is a partition of S.
- **5.** A- Note first that each partition of S contains either 1, 2, 3, or 4 distinct cells. The partitions are as follows:
- $(1)[{a, b, c, d}]$
- (2) [{a}, {b, c, d}], [{b}, {a, c, d}], [{c}, {a, b, d}], [{d}, {a, b, c}], [{a, b}, {c, d}], [{a, c}, {b, d}], [{a, d}, {b, c}]
- (3) $[\{a\}, \{b\}, \{c, d\}], [\{a\}, \{c\}, \{b, d\}], [\{a\}, \{d\}, \{b, c\}], [\{b\}, \{c\}, \{a, d\}], [\{b\}, \{d\}, \{a, c\}], [\{c\}, \{d\}, \{a, b\}]$
- $(4) [\{a\}, \{b\}, \{c\}, \{d\}]$

There are 15 different partitions of S.

6. A-

 $A \cap (B \cup C) = \{x \mid x \in A, x \in (B \cup C)\}\$ = $\{x \mid x \in A, x \in B \text{ or } x \in A, x \in C\} = (A \cap B) \cup (A \cap C)$

Here we use the analogous logical law $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ where \land denotes "and" and \lor denotes "or."

7. A-

We construct a table which shows the membership relations for the sets in the left-hand side and the right-hand side of the identity. The number 1 indicates that an element is in a set, and 0 means that an element is not in a set. The table contains each combination of sets A and B that an element can belong to.

A	В	A^c	$A^c \cap B$	$A \cup (A^c \cap B)$	$A \cup B$
1	1	0	0	1	1
1	0	0	0	1	1
0	1	1	1	1	1
0	0	1	0	0	0

Since the answers in the last two columns are the same, the identity is proved.

For any $x \in LHS$, $x \in (B-A)$ or $x \in (C-A)$ [or both].

when
$$x \in B - A$$
 $\Longrightarrow (x \in B) \land (x \notin A)$ $\Rightarrow (x \in B \cup C) \land (x \notin A)$ $\Rightarrow x \in (B \cup C) - A$ when $x \in C - A$ $\Rightarrow (x \in C) \land (x \notin A)$ $\Rightarrow (x \in B \cup C) \land (x \notin A)$ $\Rightarrow x \in (B \cup C) \land (x \notin A)$ $\Rightarrow x \in (B \cup C) \land (x \notin A)$

Therefore, LHS \subseteq RHS

For any $x \in RHS$, $x \in (B \cup C)$ and $x \notin A$.

when
$$x \in B$$
 and $x \notin A$
 $(x \in B) \land (x \notin A) \implies x \in B - A$
 $\implies x \in (B - A) \cup (C - A)$

when $x \in C$ and $x \notin A$, $(x \in C) \land (x \notin A) \Longrightarrow x \in C - A$ $\Longrightarrow x \in (B - A) \cup (C - A)$

Therefore, RHS \subseteq LHS

With LHS \subseteq RHS and RHS \subseteq LHS, we can conclude that **LHS = RHS**