CÁLCULO AUTOVALORES Y AUTOVECTORES

Nota: En cada apartado hay que incluir todos los comandos y funciones utilizados.

Ejercicio 1. Escribir una función [lambda, x, iter]=potencia(A, tol, nmax, x0) que implemente el método de la potencia para calcular el <u>autovalor dominante</u> y un <u>autovector asociado normalizado</u> de la matriz A, donde los argumentos de entrada sean:

- A
- x0 vector de inicialización del método
- tol: tolerancia máxima del error.
- nmax: número máximo de iteraciones del método;

Los argumentos de salida:

- lambda: valor aproximado del autovalor dominante de A,
- x: vector aproximado del autovector normalizado asociado a lambda,
- iter: nº iteraciones realizadas para alcanzar la tolerancia indicada.

```
function [lambda,x]=pot_basico(A, nmax, x0).
```

```
% Calcula el mayor (abs) autovalor lambda de A y un autovector asociado x
n=size(A,1);
if nargin == 1
    x0=rand(n,1);  % Vector de arranque
    nmax=100;  % Nº máx iteraciones
end
x=x0
for k=1:nmax
    x1=A*x;
    lambda= x'*x1;  % otra opción lambda=norm(x1, p)/norm(x, p)
    x=x1/norm(x1);
end
```

function [lambda,x,iter]=potencia(A, tol, nmax, x0)

```
function [lambda,x,iter]=potencia(A,tol,nmax,x0)
% Calcula el mayor (abs) autovalor lambda de A y un autovector asociado x
n=size(A,1);
if nargin == 1
  tol = 1e-06; % Tolerancia
  x0=rand(n,1); % Vector de arranque
                % Nº máx iteraciones
  nmax=100;
end
x0=x0/norm(x0);
x1=A*x0:
lambda=x0'*x1:
err = tol*abs(lambda) + 1;
iter=0:
while err > tol*abs(lambda) & abs(lambda) ~= 0 & iter <= nmax
  x=x1; x=x/norm(x);
  x1=A*x; lambda new=x'*x1;
  err = abs(lambda new - lambda);
  lambda=lambda new:
  iter = iter + 1;
end
end
```

Ejercicio 2. (Matriz comparación por pares) Suponemos que se está haciendo un estudio por internet de intención de voto considerando los cinco principales partidos políticos P1, P2, P3, P4 y P5. Se emite el voto electrónicamente mediante una papeleta del tipo

	P1	P2	P3	P4	P5
P1		; ?	¿ ?	¿ ?	¿ ?
P2			; ?	¿ ?	¿ ?
P3					¿ ?
P4					¿ ?
P5					

donde las casillas pij=? se rellenan introduciendo las preferencias pareadas de i respecto de j, atendiendo a la siguiente escala:

1	3	5	7	9
Igualmente	Ligeramente	Fuertemente	Muy fuertemente	Preferencia
preferido	preferido	preferido	preferido	extrema

y sus recíprocos (1/9, 1/7, 1/5, 1/3).

- 1. Rellenar la ficha anterior atendiendo a vuestras preferencias (imaginar que los partidos anteriores son partidos nacionales actuales). A partir de los datos anteriores construir una matriz P de dimensión 5x5, donde los datos que no hemos rellenado se recogen atendiendo a que si pij expresa la preferencia del partido Pi respecto de Pj, pji=1/pij.
- 2. Sea v=(v1,v2,v3,v4,v5)' el vector de pesos, donde vi recoge el peso de preferencia del partido Pi, atendiendo a las preferencias expresadas en la matriz P del apartado anterior Dicho vector viene dado por el autovector positivo (normalizado con norm(v,1)=1) asociado al autovalor dominante de la matriz P. Calcular dicho vector aplicando el método de la potencia. A partir de él podemos ordenar los partidos atendiendo a nuestras preferencias.
- 3. ¿Refleja el vector v obtenido nuestras preferencias de voto? Para poder analizar el resultado, veamos cómo de consistentes son las preferencias expresadas en la matriz P. Este concepto se mide mediante el índice

$$IC = \frac{\lambda_{\text{max}} - n}{n - 1}$$
, con λ_{max} : autovalor dominate de P y n=5 (dimension de la matriz).

Calcular IC de la matriz P, calculando el autovalor dominante de P mediante el método de la potencia.

- ¿Cómo de consistentes hemos sido en nuestros juicios? IC=0 significa que hemos sido absolutamente consistentes, el grado de inconsistencia aumenta con IC.
- 4. Supongamos que conocemos el vector de pesos v=(0.2, 0.3, 0.15, 0. 25, 0.1)'. A partir de él calculamos la matriz de comparación por pares P=(pij) con pij=vi/vj, que es perfectamente consistente (IC=0) por construcción. Calcular el autovalor dominante y el autovector positivo asociado con norma 1 igual a 1 ¿Coincide éste último con v?

Ejercicio 3. Se considera la matriz

$$A = \begin{pmatrix} 11 & -6 & 4 & -2 \\ 4 & 1 & 0 & 0 \\ -9 & 9 & -6 & 5 \\ -6 & 6 & -6 & 7 \end{pmatrix}$$

- 1. Calcular el autovalor dominante (lambda) de la matriz A y un autovector (x) normalizado asociado aplicando el método de la potencia. Inicializar el método con x=rand(4,1).
- 2. Modificar la función empleada en el apartado anterior para que en cada iteración, usando el comando fprintf() proporcione la lista de estimaciones del autovalor, los vectores aproximados

(transpuestos) y la precisión alcanzada en cada iteración (norm(A*x-lambda*x)) en las primeras 10 iteraciones.

- 3. Utilizando los valores proporcionados en el apartado 1 para el autovalor dominante lambda de A y el autovector asociado x, calcular el autovalor (lambda2) de A siguiente en módulo a lambda, utilizando el método de la deflación (aplicar método potencia a matriz B=A-lambda*x*x'). Comparar el resultado con el valor proporcionado por el comando eig de Matlab.
- ¿Qué autovalor se obtiene si se aplica el método de la potencia a la matriz B tomando como vector inicial x=ones(4,1)? ¿Qué crees puede estar pasando?
- 4. Visualizar (en escala semilogarítmica) conjuntamente el vector que contiene los residuos norm(A*x-lambda*x) de cada iteración (*verde) y el vector (abs(lambda2/lambda1))^k para k:1:10 (*rojo). Comentar la gráfica obtenida.
- **Ejercicio 4.** (Matriz términos-documentos) Se considera un diccionario de siete términos { t1,t2,...,t7 } y una colección de cinco documentos de texto {d1, d2,...,d5}. La matriz 7x5 de términos-documentos G=(gij) contiene la información sobre la presencia o no de los términos en los documentos. De esta forma, gij=1 indica que el término i está en el documento j, gij=0 en otro caso:

$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

1. A partir de la matriz G, construir la matriz C=(cij) de "filas centradas". Esto es, sus filas se obtienen a partir de los datos de las correspondientes filas de G restándoles la media de cada fila:

$$c_{ij} = g_{ij} - \frac{1}{5} \sum_{k=1}^{5} g_{ik}, \quad i = 1, ..., 7.$$

- Calcular la matriz de covarianza de los términos A = C * C'.
- 2. Calcular el autovalor dominante lambda1 y un autovector asociado x1 de la matriz A, mediante el método de la potencia iterando 20 veces a partir del vector inicial x0=ones(7,1)/norm(ones(7,1)).
- Construir el vector de residuos res1, que contiene la norma de los residuos $res1(k) = \|A*x1k lambda1k*x1k\|$ (k=1:20) cometidos en cada una de las iteraciones, donde lambda1k y x1k son el valor aproximado de lambda1 y del vector aproximado de x1 en la iteración k-ésima, respectivamente. No es necesario mostrar el vector de residuos.
- 3. Aplicar el método de la deflación y de la potencia convenientemente para calcular el autovalor lambda2 de A inmediatamente menor que lambda1 en módulo y un autovector x2 asociado.
- Construir el vector de residuos res2, que contiene la norma de los residuos $res2(k) = \|A*x2k lambda2k*x2k\|$, k=1:20.
- 4. En un mismo objeto gráfico, mediante comando subplot, pintar en la primera gráfica (subplot(1,2,1)) el vector de residuos res1 (símbolo *) y el vector $\left| lambda2 \right|_{lambda1}^k$ con k=1:20 (símbolo o), ambos en el eje de ordenadas. En la segunda gráfica (subplot(1,2,2)) pintar el vector res2 (símbolo *) y $\left| lambda3 \right|_{lambda2}^k$ con k=1:20 (símbolo o), suponiendo conocido el autovalor lambda3=1.10. Comentar y justificar las gráficas, atendiendo a los resultados estudiados en teoría.

Ejercicio 5. (Algoritmo Pagerank) Se considera el siguiente grafo dirigido con peso que refleja los enlaces de una mini web compuesta de siete páginas web P1, ..., P7:

La información de los enlaces del grafo se recoge en la matriz A:

Siguiendo el modelo matemático propuesto por Brin y Page (PageRank de Google),se considera la matriz (estocástica) S=(sij) con

$$\mathbf{s}_{ij} = \frac{a_{ij}}{\sum_{k=1}^{7} a_{kj}} = \begin{cases} 1/n_j & \text{si } \mathbf{P}_j \to \mathbf{P}_i \\ 0 & \text{en otro caso} \end{cases}$$

$$n_i = n^{o}$$
 páginas a las que apunta P_i

- 1. El vector de pesos v=(v1,v2,v3,v4,v5,v6,v7) que expresa el peso de relevancia o pagerank de las páginas consideradas se obtiene como el autovector positivo normalizado (sum(vi)=1) asociado al autovalor dominante (1) de S.
- Calcular el autovalor dominante lambda1 y el vector pagerank v mediante el método de la potencia. Ordenar las páginas atendiendo a la relevancia derivada de su peso pagerank.
- Calcular el siguiente autovalor mayor en módulo lambda2, mediante la técnica de deflación. Calcular abs(lambda2/lambda1).
- 2. Se consideran ahora las mátrices Ga=a*S+(1-a)*(1/7)*ones(7,7). Para los valores de a=1, 0.85, 0.5, 0. Repetir el apartado anterior para cada valor de a, rellenar los datos de la tabla siguiente y comentar los resultados

	lambda1	num iter	٧	lambda2	abs(lambda2/lambda1)
a=1					
a=0.85					
a=0.5					
a=0					

Ejercicio 6. Implementar el método de la potencia inversa para calcular el autovalor de menor módulo y un autovector normalizado asociado de una matriz A. Pasos:

- 1. Calcular la factorización LU de A con el correspondiente comando Matlab.
- 2. Inicializar procedimiento iterativo con $x0=(1/n)^*$ rand(n,1), por ejemplo.

Procedimiento iterativo:

- Resolver sistema triangular inferior Ly=x0 -> y;
- Resolver sistema triangular superior Ux=y ->x -> xo=x/norm(x).

Nota: Los sistemas triangulares resultantes se pueden resolver con el comando \ de Matlab.

Aplicar para calcular el autovalor de menor módulo y un autovector normalizado asociado de la matriz del Ejercicio 1.