4724 Core Mathematics 4

1	(a)	$2x^2 - 7x - 4 = (2x+1)(x-4)$ or		
		$3x^2 + x - 2 = (3x - 2)(x + 1)$	B 1	
		$\frac{2x+1}{3x-2}$ as final answer; this answer only	B1	Do not ISW
		3x-2		
	(b)	For correct leading term x in quotient	2 B1	Identity method
	(6)	For evidence of correct division process	M1	M1: $x^3 + 2x^2 - 6x - 5 = Q(x^2 + 4x + 1) + R$
		Quotient = $x - 2$	A1	M1: $Q = ax + b$ or $x + b$, $R = cx + d \& \ge 2$ ops
				[N.B. If $Q = x + b$, this \Rightarrow 1 of the 2 ops]
		Remainder = $x - 3$	A1 4	A2: $a = 1, b = -2, c = 1, d = -3$ SR: <u>B</u> 1 for two
_		\mathbf{p}		1, (), ((),
2		Parts with correct split of $u = \ln x$, $\frac{dv}{dx} = x^4$	*M1	obtaining result $f(x) + /- \int g(x) dx$
		$\frac{x^5}{5} \ln x - \int \frac{x^5}{5} \cdot \frac{1}{x} (dx)$	A1	
		$\frac{x^5}{5} \ln x - \frac{x^5}{25}$	A 1	
		5 25	A1	
		Correct method with the limits	dep*!	M1 Decimals acceptable here
		$\frac{4e^5}{25} + \frac{1}{25}$ ISW (Not '+c')	A1	Accept equiv fracts; like terms amalgamated
			5	
3	(i)	$\frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy \text{ or } \frac{d}{dx}(xy^2) = 2xy \frac{dy}{dx} + y^2$	*B1	
		Attempt to solve their differentiated equation for $\frac{dy}{dx}$	dep*M1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} \text{ only}$	A1	WWW AG Must have intermediate line &
			· - 	could imply "=0" on 1st line
		2	3	2
	(ii)(a	A)Attempt to solve only $y^2 - 2xy = 0$ & derive $y = 2x$	B1	AG Any effort at solving $x^2 - 2xy = 0 \rightarrow B0$
		Clear indication why $y = 0$ is not acceptable	B1 2	Substituting $y = 2x \rightarrow B0, B0$
	(b)	Attempt to solve $y = 2x$ simult with $x^2y - xy^2 = 2$	M1	
		Produce $-2x^3 = 2$ or $y^3 = -8$	A1	AEF
		(-1, -2) or $x = -1$, $y = -2$ only	A1 3	
			1.3	

4	(i)	For (either point) + t (difference between vectors) $\mathbf{r} = (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \text{ or } \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k} \text{ or } 2\mathbf{i} - \mathbf{j} - \mathbf{k})$	M1) A1	't' can be 's', ' λ ' etc. 'r' must be 'r' but need not be bold Check other formats, e.g. $ta + (1-t)b$
			2	
	(ii)		*M1 N.B.This *M1 is dep on M1 being earned in (i) dep*M1	
		Obtain $t = -\frac{1}{6}$ or $\frac{1}{6}$ or $-\frac{5}{6}$ or $\frac{5}{6}$		
		Subst their t into their equation of AB M1		
		Obtain $\frac{1}{6}(16i + 13j + 19k)$ AEF A1	Acc	cept decimals if clear
		5		
5	(i)	$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - \frac{1}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq -\frac{1}{8}$ or 0
		$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ ignoring x^3 etc	B2	SR Allow B1 for $1 - \frac{1}{2}x + kx^2$, $k \neq \frac{3}{8}$ or 0
		Product = $1 - x + \frac{1}{2}x^2$ ignoring x^3 etc	B1	AG ; with (at least) 1 intermediate step (cf x^2)
			5	
	(ii)	$\sqrt{\frac{5}{9}}$ or $\frac{\sqrt{5}}{3}$ seen	B1	
		$\frac{37}{49}$ or $1 - \frac{2}{7} + \frac{1}{2} \left(\frac{2}{7}\right)^2$ seen	B1	
		$\frac{\sqrt{5}}{3} \approx \frac{37}{49} \Rightarrow \sqrt{5} \approx \frac{111}{49}$	B1	AG
			3	
6	(i)	Produce at least 2 of the 3 relevant equations in <i>t</i> and <i>s</i> Solve for <i>t</i> and <i>s</i>	M1 M1	1 + 2t = 12 + s, $3t = -4s$, $-5 + 4t = 5 - 2s$
		(t, s) = (4, -3) AEF	*A1	
		Subst $(4, -3)$ into suitable equation(s) & show consistency	dep*	A1 Either into "3 rd " eqn or into all 3 coordinates. N.B. Intersection coords not asked for
			4	N.B. Intersection coords not asked for
	(ii)	Method for finding magnitude of any vector	*M1	Expect $\sqrt{29}$ and $\sqrt{21}$
	` /	Method for finding scalar product of any 2 vectors	*M1	Expect -18
		Using $\cos \theta = \frac{\mathbf{a.b}}{ \mathbf{a} \mathbf{b} }$ AEF for the correct 2 vectors	dep*I	M1 Should be $-\frac{18}{\sqrt{29}\sqrt{21}}$
		137 (136.8359) or 43.2(43.164)	A1 4	2.39 (2.388236) or 0.753(0.75335) rads

M1
[

Obtain
$$-\frac{\cos x}{\sin^2 x}$$
 or $-(\sin x)^{-2}\cos x$

A1

Show manipulation to $-\csc x \cot x$ (or vice-versa)

WWW AG with ≥ 1 line intermed working **A1** 3

(ii) Separate variables,
$$\int (-)\frac{1}{\sin x \tan x} dx = \int \cot t dt$$

or $\int \frac{1}{\sin x \tan x} dx = \int (-) \cot t dt$ **M1**

Style: For the M1 to be awarded, dx and dt must appear on correct sides or there must be sign on both sides

$$\int -\csc x \cot x \, dx = \csc x \quad (+c)$$

A1 or
$$\int \csc x \cot x \, dx = -\csc x$$

$$\int \cot t \, dt = \ln \sin t \quad \text{or} \quad \ln \left| \sin t \right|$$

B1 or
$$\int -\cot t \, dt = -\ln \sin t \text{ or } -\ln |\sin t|$$

Subst
$$(t,x) = \left(\frac{1}{2}\pi, \frac{1}{6}\pi\right)$$
 into their equation containing 'c' M1

and attempt to find 'c'

 $\csc x = \ln \sin t + 2 \text{ or } \ln |\sin t| + 2$

A1

WWW ISW; cosec $\frac{\pi}{6}$ to be changed to 2

8 (i) A(t+1) + B = 2t

5 **M1**

Beware: correct values for A and/or B can be ...

A1 ... obtained from a wrong identity **A1**

Alt method: subst suitable values into given... ...expressions

3

Attempt to connect dx and dt (ii) dx = t dt s.o.i. AEF

M1

A1

But not just dx = dt. As **AG**, look carefully.

 $x + \sqrt{2x-1} \rightarrow \frac{t^2+1}{2} + t = \frac{(t+1)^2}{2}$ s.o.i.

B1 Any wrong working invalidates

$$\int \frac{2t}{(t+1)^2} dt$$

AG WWW **A1**

The 'dt' must be present

(iii) $\int \frac{1}{t+1} dt = \ln(t+1)$

4

Or parts u = 2t, $dv = (t+1)^{-2}$ or subst u = t+1**B**1

 $\int \frac{1}{(t+1)^2} \, \mathrm{d}t = -\frac{1}{t+1}$

B1

Attempt to change limits (expect 1 & 3) and use f(t)

or re-substitute and use 1 and 5 on g(x)**M1**

 $\ln 4 - \frac{1}{2}$

A1 AEF (like terms amalgamated); if A0 A0 in (i),

then final A0

4

9 (i)	$A: \theta = \frac{1}{2}\pi (\text{accept } 90^\circ)$	B1		
	$B: \theta = 2\pi$ (accept 360°)	B2	SR If B0 awarded for point <i>B</i> , allow B1 SR for any angle s.t. $\sin \theta = 0$	
		3		
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$	M1	or $\frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ Must be used, not just quoted	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2 + 2\cos 2\theta$	B 1		
	$2 + 2 \cos 2\theta = 4 \cos^2 \theta$ with ≥ 1 line intermed work	*B1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{2 + 2\cos2\theta} \qquad \text{s.o.i.}$	A1	This & previous line are interchangeable	

 $WWW \ \textbf{AG}$

dep*A1
5 (iii) Equating $\sec \theta$ to 2 and producing at least one value of θ M1 degrees or radians

 $= \sec \theta$

$(x=)-\frac{2}{3}\pi-\frac{\sqrt{3}}{2}$	A1	'Exact' form required
$(y=)-2\sqrt{3}$	A1 3	'Exact' form required