Содержание

Доказательство. Пусть $A \subset \mathbb{R}$ и ограничено сверху.

Рассм. $B = \{b \in \mathbb{R} : b$ - верх. грань $A\}$. Тогда $B \neq \emptyset$ и $\forall a \in A \forall b \in B (a \leq b)$. По аксиоме непр-ти $\exists c \in \mathbb{R} : \forall a \in A, \forall b \in B (a \leq c \leq b)$.

Из нер-ва $a \le c \Rightarrow c$ верх. грань A

Из правого нер-ва любое $c' < c \colon c' \not\in B$, т.е. c' не явл. верх. гранью A. Сл-но, $c = \sup A$.

Теорема 0.1 (аксиома Архимеда). Пусть $a,b \in \mathbb{R}, a > 0$. Тогда $\exists n \in \mathbb{N}, m. \ u. \ na > b$

Доказательство. Предположим, что $\forall n \colon na \leq b$. Тогда $A = \{na; n \in \mathbb{N}\}$ огр. сверху. По теореме $5.1 \; \exists c = \sup A$. Число c-a не явл. верх. гранью A (т. к. a>0)

Тогда $\exists n \in \mathbb{N} (na > c - a)$. Откуда:

$$na + a = (n+1)a > (c-a) + a = c$$

т. е. (n+1)a > c. Но $(n+1)a \in A$ (противоречие с тем, что c - верх. грань)!!!

Следствие. 1) $\forall b \in \mathbb{R}, \exists n \in \mathbb{N} (n > b), (a = 1)$

2)
$$\forall \varepsilon > 0, \exists n \in \mathbb{N}(\frac{1}{n} < \varepsilon) \ (\frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon})$$

Следствие.

 $\forall x \in \mathbb{R}, \exists ! m \in \mathbb{Z} (m \le x < m+1) (m$ - целая часть x)

Доказательство. (\exists) $x \geq 0$. Рассм. $S = \{n \in \mathbb{N} : n > x\}$. По аксиоме архимеда, это мн-во непусто. $\Rightarrow \exists p = min(S)$. Положим m = p - 1. Тогда m < x и m + 1 > x

x < 0 . По предыдущему пункту $\exists m' \in \mathbb{Z} (m' \le -x < m' + 1)$. Положим:

$$m = \begin{cases} -m', x = -m' \\ -m' - 1, x \neq -m' \end{cases} \Rightarrow m \le x < m + 1$$
 (1)

Единственность:

$$\begin{cases} m' \leq x < m'+1 \\ m'' \leq x < m''+1 \end{cases} \Rightarrow -1 < m'-m'' < 1, m'-m'' \in \mathbb{Z} \Rightarrow m'-m'' = 0 \Rightarrow m' = m''$$

Пример.

$$\left\lfloor \frac{3}{2} \right\rfloor = 1, \left\lfloor -\frac{3}{2} \right\rfloor = -2$$

Следствие.

$$\forall a, b \in \mathbb{R}, a < b, \exists r \in \mathbb{Q} (a < r < b)$$

Доказательство.

$$\exists n \in \mathbb{N}(\frac{1}{n} < b-a)$$

$$r = \frac{\lfloor na \rfloor + 1}{n}.$$
Тогда $r \in \mathbb{Q} \Rightarrow$
$$r > \frac{na-1+1}{n} = a, r \leq \frac{na+1}{n} = a + \frac{1}{n} < a + (b-a) = b$$

Обозначение.

$$n \in \mathbb{N} \cup \{0\} =: \mathbb{N}_0$$

Определение 0.1. Пусть $a \in \mathbb{R}$, тогда:

$$a^0 = 1, a^{n+1} = a^n a$$

Обозначение. Пусть $m, n \in \mathbb{Z}$ и $m \le n$, положим:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n$$

$$\prod_{k=m}^{n} = a_m * a_{m+1} * \dots * a_n$$

E c л u m > n.

Теорема 0.2 (Бином Ньютона).

$$\forall a, b \in \mathbb{R}, n \in \mathbb{N}$$
:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}, \ \ \partial e \ C_n^k = \frac{n!}{k!(n-k)!}$$
$$0! = 1, (n+1)! = n! * (n+1)$$

Доказательство. Докажем по индукции:

- n = 1: Верно
- Предположим, что утв. верно для n:

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n C_n^k a^k b^{n-k} =$$

$$= \sum_{k=0}^n C_n^k a^{k+1} b^{n-k} + \sum_{k=0}^n C_n^k a^k b^{n-k+1} = \sum_{k=0}^n C_n^k a^k b^{n+1-k} + \sum_{k=1}^{n+1} C_n^{k-1} a^k b^{n-k+1} =$$

$$= C_n^0 b^{n+1} + \sum_{k=1}^n (C_n^k + C_n^{k-1}) a^k b^{n+1-k} + C_n^n a^{n+1} = \left[C_n^k + C_n^{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!} \right]$$

$$\left[\iff \frac{(n+1)!}{k!(n+1-k)!} = C_{n+1}^k \right] = \sum_{k=0}^{n+1} C_{n+1}^k a^k b^{n+1-k}$$

Ч. Т. Д.

Следствие. Пусть $a \ge 0, n, k \in \mathbb{N}, 1 \le k \le n$. Тогда:

$$(1+a)^n \ge 1 + C_n^k a^k$$

Обозначение.

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$$

- расширенная числовая прямая

Считают, что $\forall x \in \mathbb{R}(-\infty < x < +\infty)$ Введём допус. операции $x \in \mathbb{R}$

•
$$x + (+\infty) = x - (-\infty) = +\infty$$

•
$$x - (-\infty) = x + (-\infty) = -\infty$$

•
$$x * (\pm \infty) = \pm \infty, x > 0$$

•
$$x * (\pm \infty) = \mp \infty, x < 0$$

$$\bullet \ \ \frac{x}{\pm \infty} = 0$$

Кроме того:

- $(+\infty) + (+\infty) = +\infty$
- $(-\infty) + (-\infty) = -\infty$
- $(+\infty) * (+\infty) = (-\infty) * (-\infty) = +\infty$
- $(+\infty)(-\infty) = (-\infty)(+\infty) = -\infty$

НЕДОПУСТИМЫЕ операции:

- $(+\infty) (+\infty)$
- $(+\infty) + (-\infty)$
- $(-\infty) (-\infty)$
- $(-\infty) + (+\infty)$
- $0*\pm\infty$
- $\pm \infty * 0$
- ±∞

Соглащение: $E \subset \mathbb{R}, E \neq \emptyset$.

- Если E не огр. сверху, то $\sup E = +\infty$
- \bullet Если E не огр. снизу, то $\inf E = -\infty$

Определение 0.2. $I\subset R$ называется промежутком, если $\forall a,b\in I, \forall x\in \mathbb{R} (a\leq x\leq b\Rightarrow x\in I)$

<u>Лемма</u> 0.3. Любой промежуток - одно из следующих мн-в:

- Ø
- \bullet \mathbb{R}
- $(a, +\infty)$

- $[a, +\infty)$
- $(-\infty, b)$
- $(-\infty, b]$
- \bullet [a,b]
- \bullet (a,b)
- [a, b)
- (a, b]

Доказательство. I - промежуток, $I \neq \emptyset$

$$a:=\inf I, b:=\sup I\Rightarrow a\leq b$$

- Если a=b, то $I=\{a\}$
- \bullet Если a < b и a < x < b. По опр. точных граней $\exists x', x'' \in I \colon (x' < x < x'') \Rightarrow x \in I$

Итак, $(a,b)\subset I\subset [a,b]$