

Cap 2. Dados Multimídia

Prof. Roberto Willrich

willrich@inf.ufsc.br

https://moodle.ufsc.br

Dados Multimídia

Conteúdo

- Processo de captura de dados multimídia
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- o Principais características e requisitos das informações multimídia

Organização das aulas

- Aula 1: Captura e representação de áudios
- Aula 2: Captura e representação de imagens
- Aula 3: Captura e representação de vídeos
- Aula 4: Representação de textos

• Descrevendo sons com formas de onda

- Áudio é causado por ondas mecânicas longitudinais que alcança o tímpano
 - é uma onda de ar comprimido ou expandido cuja pressão altera no tempo e espaço

- Descrevendo sons com formas de onda
 - Padrão de oscilação é chamado de forma de onda (waveform). Características:
 - Período (t) é o tempo necessário para a realização de um ciclo
 - Freqüência (f) é definida como o inverso do período
 - representa o número de períodos em um segundo
 - medida em Hz (Hertz) ou ciclos por segundo (cps)
 - Amplitude (A) do som é define um som leve ou pesado
 - Fase (φ)
 - Relativo a posição da onda no tempo

Onda Senoidal

 \circ s(t) = A sin(2 π ft + Φ)

Descrevendo sons com formas de onda

- Na posição de um receptor (detector), sons podem ser descritos por valores de pressão que variam no tempo
- Quando a frequência do distúrbio de ar está na faixa de 20 Hz a 20.000
 Hz, o som é audível
 - Baixa freqüência => grave
 - Alta freqüência => agudo

• Conceitos no Domínio da Freqüência

- São raros os objetos que produzem sons com freqüência única (tons)
- Os sinais normalmente são formados por múltiplas freqüências (diferentes sinais)
 - Combinação das freqüências geradas por instrumentos musicais é chamado de timbre.
- Os diferentes sinais são chamados de componentes de onda senoidal (componentes de freqüência do som)
- A análise de Fourier diz que qualquer sinal pode ser formado pela combinação de várias ondas ou componentes senoidais
 - É possível montar uma função baseada no domínio da freqüência para representar os sinais

Exemplo de **Componentes** (T=1/f)

1.0T

(c) $(4/) [\sin(2 ft) + (1/3) \sin(2 (3f)t)]$

• Representação no domínio da Freqüência

Microfone

Definição

 Dispositivo que converte sinais acústicos (ondas sonoras) em sinais elétricos. Transdutor acústico-elétrico

Funcionamento: Duas operações

- onda sonora pressiona o diafragma, superfície capaz de sofrer pequenos deslocamentos para frente e para traz reproduzindo o movimento das partículas do ar
- o movimento do diafragma causa uma variação correspondente em uma propriedade de um circuito elétrico

Representação Digital de Áudios

Tipo de conversão ⇒ tipo de microfone

- Eletrodinâmica ou eletromagnética
 - microfones dinâmicos (bobina móvel e fita)
- Eletrostática
 - microfones capacitivos (condensador)
- Piezoelétrica
 - microfones a cristal e microfones cerâmicos
- Resistência de contato variável
 - o microfones de carvão (telefone)

Dinâmico: Bobina móvel

- A pressão do ar desloca o diafragma,
- que movimenta a bobina
- que faz variar o campo magnético dentro dela
- que induz uma corrente elétrica variável na bobina

Microfone de carvão (de telefone)

- A pressão do ar desloca o diafragma,
- que faz variar a densidade de partículas
- que varia a resistência elétrica
- que faz variar a corrente

Representação Digital de Áudios

• Digitalização do áudio

- Digitalização: processo envolvido na transformação de sinais analógicos em digitais
- o conversão é realizada pelos CODECs (Codificador/Decodificador)

Sinais analógicos

- Medida que varia continuamente com o tempo e/ou espaço
 - Descritos por s=f(t) ou s=f(x,y,z)

Sinais digitais

 Seqüências de valores dependentes do tempo ou do espaço codificados no formato binário (o's e 1's)

- Passos para conversão de sinal analógico em digital:
 - Amostragem
 - conjunto discreto de valores (analógicos) é amostrado em intervalos temporais em periodicidade constante
 - T = período de amostragem
 - 1/T = freqüência de amostragem

• Passos para conversão de sinal analógico em digital

- Teorema de Nyquist
 - se um sinal analógico contem componentes de freqüência até f Hz, a taxa de amostragem deve ser ao menos 2f Hz (freqüência de Nyquist)
 - para digitalizar sons até 20 kHz → freq Nyquist =40 kHz

Pseudonímia (aliasing)

- Se o sinal tiver componentes de freqüência maiores que a freqüência de Nyquist
 - Ocorre a pseudonímia (*aliasing*)
 - São convertidos em freqüências mais baixas na reconstrução
- Exemplo:
 - Se você utilizar um Freq. de amostragem de 8 KHz em um som com componentes de frequência de 15KHz, ocorrerá pseudonímia

Pseudonímia (aliasing)

- 。 Filtro anti-pseudonímia
 - Filtro passa baixa para eliminar as freqüências maiores que a de Nyquist
 - No exemplo, para eliminar frequencias acima de 8KHz

Pseudonímia (aliasing)

- Exemplo, digitalizar um áudio com freqüência de amostragem de 44.100
 Hz
 - Você quer digitalizar sons de até 22.050 Hz
 - Se o som tiver componentes de frequência maiores ocorre a distorção
- Filtro são usados para impedir que qualquer conteúdo acima de 22kHz chegue ao conversor e seja amostrado.
 - Todo filtro possui uma "curva de atuação", começando a filtrar um pouco antes da frequência de corte, para poder "barrar" efetivamente tudo acima dela.

• Filtros anti-Pseudonímia (aliasing)

- Filtros com curvas "suaves" são mais fáceis de se construir e mais baratos.
- Filtros de curvas abruptas, além de caros, podem gerar problemas de fase e prejudicar os agudos.
- A solução é utilizar taxas de amostragens altas, como 88.1 ou 96kHz
 - Para conseguir gravar todo o espectro audível, sem se preocupar com pseudonímia ou outras distorções causadas pelo filtro.
 - Conversores A/D (e D/A) utilizam oversampling, fazendo amostragens em alto taxa de amostragem
 - Depois aplicam filtros digitais precisos para fazer o down-sampling para 44.1kHz, antes de armazenar o áudio.

Sistema telefônico

- Foi projetado para transmitir freqüências da voz humana
 - Tem componentes de freqüência até 15Hz e 14kHz
- Por razões econômicas a faixa de voz escolhida foi entre 300 e 3400 Hz (largura de banda de 3,1kHz)
 - garante 85% de inteligibilidade (palavras compreendidas)
- Para evitar a interferência entre sinais que fluem em canais vizinhos, a largura de banda de um canal de voz foi definida em 4KHz
 - as extremidades (o a 300Hz e de 3,4 a 4 KHz) são usadas como banda de guarda
- No sistema telefônico é comum usar uma freqüência de amostragem de 8
 kHz para converter este sinal em digital

- Passos para conversão de sinal analógico em digital:
 - Quantificação
 - o sinal amostrado é quantificado (descontinuidade de valores)
 - Técnica que utiliza o mesmo passo de quantificação é chamada modulação PCM (*Pulse Coded Modulation*).

- Passos para conversão de sinal analógico em digital:
 - Codificação
 - um conjunto de bits, chamado de code-word, é associado com cada valor quantificado

Passos para conversão de sinal analógico em digital:

- Codificação
 - Discretização provoca distorção devido a limitação do tamanho de bits para representar amostras

Quantificação

- o Conversor apresenta um número limitado de bits
 - Ocorrerá um erro de quantização
 - Se traduzirá auditivamente por um ruído, ouvido na reprodução do som reconstruído (ruído de quantização)

Quantificado como BBCDCBBBB Reduzindo a metade: cdegfdcdc

Quantificação não linear

- Modulação por pulso codificado (PCM)
 - tamanho de passo de quantificação na conversão A/D é constante
- PCM é simples mas não é eficiente
 - resulta em uma qualidade mais elevada na região de mais alta amplitude de sinal que na região de mais baixa amplitude
 - alta qualidade na amplitude mais alta não aumenta a qualidade percebida

Quantificação não linear

- Tamanho de passo de quantificação aumenta logaritmicamente com a amplitude do sinal
 - passos de quantificação são menores quando a amplitude é baixa
 - é realizada uma transformação de um sinal linear em um sinal não linear

Quantificação não linear

- na prática:
 - uma quantificação uniforme é aplicada a um sinal não linear transformado em vez de aplicar uma quantificação não uniforme ao sinal linear
 - processo de transformação de um sinal linear em não linear é chamado de companding
 - digitalização uniforme de um sinal companded é chamado de companded PCM

Taxa de bits

- Produto entre taxa de amostragem e o número de bits
 - exemplo: telefonia
 - supondo uma freqüência de 8 kHz e 8 bits por amostra
 - taxa de bits necessária é igual a 8000x8 = 64 kbps

Representação Digital de Áudio

• Exemplos de Qualidade de Áudio

Aplicações	N° de canais	Largura de banda (Hz)	Taxa de amostragem	Bits por amostra	Taxa de bits
CD-Audio	2	20-20000	44.1 kHz	16	1,41 Mbps
DAT	2	10-22000	48 kHz	16	1,53 Mbps
Telefone Digital	1	300-3400	8 kHz	8	64 Kbps
Rádio digital, long play DAT	2	30-15000	32 KHz	16	1,02 Mbps

Taxa do áudio = <N° Canais>*< N° bits por amostra> * <freq. Amostragem>

Apresentação do áudio digital

- Todas as informações multimídia são representadas internamente no formato digital
 - Humanos reagem a estímulos sensoriais físicos
 - Conversão D/A é necessária na apresentação de certas informações

Apresentação do áudio digital

Para a apresentação do áudio

- é necessário realizar a transformação de uma representação artificial do som em uma forma de onda física audível pelo ouvido humano
 - utilizados Conversores Digital para Analógico (CDA)

Placas de áudio

o Conversores CAD e CDA são implementados em uma única placa

Problemas da Representação digital

• Distorção de codificação

- Digitalização introduz distorção
 - sinal gerado após a conversão D/A não é idêntico ao original
 - aumentando a taxa de amostragem e número de bits usado para codificação reduz a distorção
 - problema: capacidade de armazenamento limitado

Roberto Willrich - INE/UFSC - 25/09/2012

Resumo

- Passos para conversão de sinal analógico em digital:
 - Amostragem
 - conjunto discreto de valores (analógicos) é amostrado em intervalos temporais em periodicidade constante
 - T = período de amostragem
 - 1/T = freqüência de amostragem

• Passos para conversão de sinal analógico em digital

- Teorema de Nyquist
 - se um sinal analógico contem componentes de freqüência até f Hz, a taxa de amostragem deve ser ao menos 2f Hz (freqüência de Nyquist)
 - para digitalizar sons até 20 kHz → freq Nyquist =40 kHz

- Passos para conversão de sinal analógico em digital:
 - Quantificação
 - o sinal amostrado é quantificado (descontinuidade de valores)
 - Técnica que utiliza o mesmo passo de quantificação é chamada modulação PCM (*Pulse Coded Modulation*).

- Passos para conversão de sinal analógico em digital:
 - Codificação
 - um conjunto de bits, chamado de code-word, é associado com cada valor quantificado

Passos para conversão de sinal analógico em digital:

- Codificação
 - Discretização provoca distorção devido a limitação do tamanho de bits para representar amostras

Padrão MIDI

• Representação simbólica da música: padrão MIDI

- Define sequências de notas, condições temporais e o "instrumento" (127)
 que deve executar cada nota
- Músico pode criar suas músicas no computador:
 - software especiais permitem que o músico edite notas e controles, sejam em uma partitura, seja através de gráfico que exibe as teclas dos pianos
 - as músicas editadas podem ser ouvidas pelos sequenciadores
- Arquivos MIDI são muito mais compactos que amostragens digitalizadas
 - um arquivo MIDI pode ser 1000 vezes menor que um arquivo CD áudio
- Desvantagem
 - processamento extra de informação, e imprecisão dos instrumentos de som (variam com o dispositivo usado para a apresentação)

Editores Midi

Midi

Dados Multimídia

Conteúdo

- Representação digital de áudios
- Captura e Representação digital de Imagens
- Representação digital de Vídeos
- Principais características e requisitos das informações multimídia

- Descrevendo imagens monocromáticas com variáveis físicas
 - Objetos refletem radiações eletromagnéticas (luz) incidentes que estimulam os olhos do observador
 - imagem pode ser descrita pelo valor de intensidade de luz que é função de duas coordenadas espaciais (ou três)

- Descrevendo imagens coloridas com formas de onda
 - o Objetos refletem diferentes comprimentos de onda
 - função simples não é suficiente para descrever imagens coloridas

- Captura: Teoria Tristimulus
 - Qualquer cor pode ser reproduzida com a mistura das três cores primárias
 - cores primárias padronizadas: vermelho, verde e azul

- Processo de conversão de imagens monocromáticas em sinais analógicos
 - Lentes da câmera focam uma imagem de uma cena em uma superfície foto-sensível de sensores CCD (Charge-Coupled Device)
 - o Brilho de cada ponto é convertido em uma carga elétrica
 - cargas são proporcionais ao brilho nos pontos
 - Superfície foto-sensível é rastreada para capturar as cargas elétricas
 - imagem ou cena é convertida em um sinal elétrico contínuo.

53

Captura de vídeos monocromáticos

- o Apenas um sinal de luminância é produzido
 - apenas a luminosidade é capturada,
 - produzindo imagens em tons de cinza
- São usadas câmeras de Luminância
 - captam a imagem em tons de cinza
 - gera um sinal só com a luminância da imagem
 - gerado por um CCD monocromático que capta o tom de cinza que incide em cada célula do circuito
 - tipo de câmera utilizada para aplicações em visão computacional e nos casos onde a informação sobre a luminosidade da imagem é suficiente

Imagens e Vídeos Monocromáticos Analógicos

Dispositivo de apresentação de imagens: tubo de raios

catódicos

- Há uma camada de fósforos fluorescentes no interior da superfície do CRT
- Camada de fósforo é rastreada por um feixe de elétrons na mesma forma do processo de captura na câmera
 - quando tocado pelo feixe, o fósforo emite luz em um curto espaço de tempo
- Quando quadros repetem-se suficientemente rápidos a persistência da visão resulta na reprodução de um vídeo

Imagens e Vídeos Monocromáticos Analógicos

Vídeos Coloridos

• Captura: Teoria Tristimulus

- Usados em dispositivos de reprodução de imagens via emissão de luz
- 。 Câmera divide luz nos seus componentes vermelho, verde e azul
 - Vermelho (**R**ed) 700nm, Verde (**G**reen) 546,1nm e Azul (**B**lue) 435,8nm.
 - Imagem capturada é focalizada em sensores de vermelho, verde e azul
 - convertido em separados sinais elétricos

- Câmera de crominância (1 passo 3 CCD)
 - Capta a imagem em cores, e pode gerar sinal de vídeo composto colorido,
 S-vídeo ou sinal RGB
 - Tem uma qualidade de imagem profissional
 - são usados 3 CCDs com filtros separados R, G e B em cada um
 - cada filtro pode ter uma resolução maior
 - garantindo melhor resolução da imagem

Vídeos Coloridos

Apresentação

- Monitores coloridos tem 3 tipos de fósforos fluorescentes
 - emitem luzes vermelha, verde e azul quando tocadas por 3 feixes de elétrons
 - mistura das luzes emitidas produzem pontos de cor

- Modos de geração do sinal analógico
 - Sinal RGB (Red, Green, Blue)
 - sinal é separado pelas cores básicas
 - é possível ter uma imagem mais pura
 - utilizado em câmeras e gravadores profissionais, imagens geradas por computador, etc.
 - Sinal de vídeo composto colorido
 - sinais das cores (RGB) são codificados em um único sinal seguindo um determinado padrão (NTSC, PAL-M, SECAM, etc)

- Modos de geração do sinal analógico
 - Sinal de luminância e crominância ou Y/C (S-video)
 - sinal é composto por duas partes: luminância e crominância
 - imagem tem uma melhor qualidade do que no vídeo composto
 - muito usado por vídeos SVHS, laser disc, DVD e outros aparelhos que geram imagens de boa qualidade
 - Sinal YCrCb (o chamada vídeo componente)
 - Um sinal de luminância combinado com dois sinais de crominância

- Câmera de crominância (1 passo 1 CCD)
 - Capta a imagem em cores, e gera um sinal de vídeo composto colorido, em apenas uma passagem
 - Imagem não é profissional, pois é usado um único CCD com filtros RGB em cada célula
 - Tipo de câmera utilizado em aplicações multimídia ou em casos onde não é necessário uma imagem com muita qualidade
 - uma câmera do tipo doméstica (VHS, 8mm, VHS-C, etc) de baixo custo

- Câmera de crominância (1 passo 3 CCD)
 - É utilizada em aplicações profissionais
 - onde é necessário uma imagem com boa qualidade
 - usada em produtoras e emissoras de TV
 - U-matic, BetaCAM, SVHS, Hi8, etc
 - tem um custo elevado

• Câmera de crominância (3 passos - 1 CCD)

- Capta a imagem em cores em um processo a 3 passos
- 。É utilizado um único CCD para captar a imagem
 - para gerar uma imagem colorida é colocado um filtro externo para cada componente R, G e B
 - para cada filtro é feito uma digitalização
 - gerando uma imagem colorida

- Câmera de crominância (3 passos 1 CCD)
 - Desvantagem: as imagens devem ser estáticas
 - é preciso trocar os filtros e fazer nova captação para os outros filtros
 - Tem uma boa qualidade de imagem
 - CCD pode ter uma boa resolução
 - Usada para aquisição de imagens de telescópio
 - onde é necessário uma imagem com alta definição e as imagens são relativamente estáticas

Formatos de Imagens

- Imagens no computador são representadas por bitmaps
 - bitmap = matriz espacial bidimensional de elementos de imagem chamados de pixels
 - reticulado cada elemento da matriz possui uma informação referente à cor associada aquele ponto específico
 - pixel é o menor elemento de resolução da imagem
 - tem um valor numérico chamado amplitude
 - define ponto preto e branco, nível de cinza, ou atributo de cor (3 valores)
 - Expresso por um número de bits
 - » 1 para imagens P&B, 2, 4, 8, 12, 16 ou 24 bits
 - "Resolução" da imagem é o número de elementos que a imagem possui na horizontal e na vertical

Câmeras Digitais

Câmera fotográfica digital

- Funcionamento semelhante a uma câmera fotográfica tradicional
 - porém a imagem é armazenada de forma digital em memória
- Imagem é digitalizada através de um CCD e armazenada de forma compactada ou não em um dispositivo de memória
- Qualidade da imagem depende da qualidade e resolução do CCD e da compressão utilizada para armazenar a imagem digitalizada
- Em vez de CCD podem ser usados sensores de CMOS (semicondutor de óxido de metal complementar)

Scanners

Objetivo

odigitaliza imagens a partir de imagens em papel

Funcionamento

- Imagem é colocada sobre uma superfície transparente
- Sensor (digitalizador por linha) se move em direção ortogonal ao documento
 - fonte de luz e de um sensor que mede a luz refletida linha por linha, em sincronismo com o deslocamento do sensor
- Resolução está situada entre 50dpi a 4800dpi (pontos por polegada)

Digitalização dos Pixeis

Funcionamento do CCD

- Após a exposição as cargas na primeira fileira são transferidas a um lugar no sensor chamado registro de leitura.
 - De lá, os sinais são alimentados a um amplificador e então a um conversor analogo-para-digital.
- Uma vez que a fileira foi lida, suas cargas na fileira do registro de leitura estão suprimidas, a fileira seguinte entra, e todas as fileiras acima do marcham uma fileira abaixo.

Imagens Digitais

Imagem (Bitmap)

 Matriz de pontos ou pixels, com resolução horizontal (eixo X) e vertical (eixo Y), para cada ponto da matriz tem-se uma cor associada (obtida de forma direta ou através de uma tabela de acesso indireto – "paleta").

Imagens Digitais

Tipos de Representação de Imagens

Imagens Binárias

- São imagens com dois níveis (como preto e branco)
 - muito usadas por dispositivos de impressão e para representar imagens de documentos monocromáticos
- Para representar um pixel de uma imagem binária é necessário apenas 1 bit
 - informação extra sobre a cor de cada informação, a cor para o bit com valor o (zero) e a cor para o bit de valor 1
 - informação de cor é geralmente é representada em 24 bits/cor no padrão RGB

• Imagens Binárias: Exemplo

• Imagens em Tons de Cinza

- Representação é feita discretizando a informação de luminância de cada ponto da imagem
 - cada pixel contém a intensidade de luminosidade representada em um certo número de bits

- uma imagem com resolução de cor de 8 bits, pode representar até 256 níveis de cinza (variando do preto ao branco)
- Padrões mais usados são de 16 (4 bits/pixel) e 256 (8 bits/pixel) tons-de-cinza
 - representações com mais que 256 tons-de-cinza não são percebidas pela vista humana

Sistema RGB

- Tipos de representação de imagens coloridas
 - Cores por componente (true color),
 - cores indexadas, ou
 - cores fixas.
- Representação vai depender do propósito e dos dispositivos que vão ser usados para trabalhar com essas imagens

True Color

- Cada pixel da imagem é representado por um vetor de 3 componentes de cores (RGB) com um certo número de bits para representar cada componente de cor
 - quanto maior for a resolução de cor maior a qualidade
- Geralmente o número de bits para cada componente RGB é igual
 - ex.: 9 bits/pixel (3-3-3)
- Pode ser feito uma representação com diferentes valores para as componentes
 - ex.: 8 bits/pixel (3-3-2)
 - percepção humana da componente azul é menos sensível

Sistema RGB

True Color

- Número de bits por pixel fornece a quantidade de níveis que podem ser representados
 - se n é a resolução de cor então a quantidade de níveis possíveis é de 2ⁿ níveis

Bits/pixel	Padrão	Componente de cor RGB	Máximo de Cores	
15 bits/pixel	High Color (15 bits)	5 bits/pixel, 32 níveis por comp.	32.768 cores	
16 bits/pixel	High Color (16 bits)	5/6 bits/pixel, 32/64 níveis por comp.	65.535 cores	
24 bits/pixel	True Color (24 bits)	8 bits/pixel, 256 níveis por comp.	16.777.216 cores	

Cores Indexadas

- Cada pixel é representado por um índice que aponta para uma tabela de cores (paleta)
 - paleta contem as informações sobre as cores
- Paleta tem em geral 24 bits para representar cada cor no formato RGB
 - pode representar n cores de um conjunto com mais de 16 milhões de cores
- Representação de imagem
 - informações das cores da paleta devem constar da estrutura além das dimensões e sequência de índices

Paleta

Cor	R	G	В		
1	O	O	O		
2	12	25	100		
	•••	•••	•••		
n	•••	•••	•••		

Cores Indexadas

o número de cores e a resolução de cor da paleta podem variar

Bits/pixel	Padrão	Resolução de cor da paleta
4 bits/pixel	16 cores indexadas	24 bits/cor
8 bits/pixel	256 cores indexadas	24 bits/cor

Cores Indexadas

Cores Fixas

- Cada pixel é representado por um índice que aponta para uma tabela de cores fixa
 - usado quando o dispositivo não permite a representação de muitas cores (placas de vídeos antigas ou padrões de cores)
- Número de bits para representar um pixel depende do número de cores fixas
 - para representar 16 cores são necessários 4 bits/pixel.

Sistemas de Cores

Sistema CMY

- Usado em dispositivos de cópia (impressoras)
- Usam as cores secundárias: ciano (turquesa), magenta (púrpura) e o amarelo
- São as cores complementares do RGB
 - Ciano absorve o vermelho
 - Magenta absorve o verde
 - Amarelo absorve o azul
- funciona por combinação subtrativa:
 - baseia-se não na emissão de luz, mas em sua subtração
 - absorve ou reflete a luz de determinados comprimentos de onda.

Sistemas de Cores

Sistema CMYK

- Ciano-Magenta-Amarelo-Preto
- Mais usado na prática devido a deficiência do CMY para produzir o preto
 - Produz um cinza ou marrom
 - Devido à dificuldade de obter pigmentos com alta pureza de cor
 - adiciona preto como quarto pigmento básico

Sistemas de Cores

Sistema HLS

- o RGB e CMY não são intuitivos para o usuário humano
 - Não é fácil, dada uma cor qualquer, intuir a quantidade de cada cor primária que seja necessária para representá-la
- HLS utiliza propriedades mais relevantes do ponto de vista da percepção humana
 - Luminância: mede a amplitude da vibração luminosa (sua energia)
 - Intensidade nula corresponde ao preto
 - Intensidade máxima corresponde ao branco
 - Matiz: mede a qualidade que distingue o azul do verde, do vermelho, etc.
 - Mede a frequência dominante da vibração luminosa
 - **Saturação**: Mede o grau de pureza em relação à contaminação por outras cores
 - Mistura perfeita é o branco (saturação zero)
 - Outras cores: é a quantidade de branco presente
 - Tons muitos saturados são brilhantes
 - Tons poucos saturados são pastel

Sistema CIE 1931 XYZ

Sistema XYZ

- Permite uma definição de cor independente do dispositivo de apresentação
- Uma cor é definida por 3 valores XYZ
 - Y identifica a luminância, X e Z a cor
- Identificação da luminância é interessante para compressão
 - característica mais importante que a cor para a percepção humana

• Sensação de movimento

- A sensação do movimento pode ser obtida pela apresentação sucessiva de imagens/gráficos
- 。 **Quadro** (Frame): uma imagem individual uma animação

• Frequência de Quadros

Números de quadros apresentados por segundo (fps)

Fps	Comentários		
<10	Apresentação sucessiva de imagens		
10 à 16	Impressão de movimento mas com sensação de arrancos		
>16	Movimento natural		
24	Cinema		
25	Padrão de TV européia		
30/25	Padrão de TV americana/brasileira (PAL-M)		
60	Padrão HDTV		

Imagens Animadas

- Cenas são registradas como um sucessão de quadros:
 - capturadas da vida real com câmeras (Vídeo)
 - criadas através do computador

Gráficos Animados

- Apresentação sucessiva de objetos visuais gerados pelo computador
 - numa taxa suficiente para dar a sensação de movimento
 - são mais compactas: conjunto de objetos com diretivas temporais
 - são revisáveis

Vídeos híbridos

- Técnicas avançadas permitem formas híbridas combinando vídeos e animações gráficas
 - modo ao-vivo e off-line

Capítulo 2. Dados Multimídia

Conteúdo

- Processo de captura de dados multimídia
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- Principais características e requisitos das informações multimídia

- Caractere: meio adequado para transmitir informações essenciais de modo preciso
 - Palavras e símbolos, falados ou escritos, são a forma mais comum de comunicação
 - Forma principal de comunicação assíncrona (defasado no tempo),
 e quase tempo-real (mensagens instantâneas) entre pessoas
 - Exemplos:
 - Livros, jornais, revistas, mensagens SMS, ...

Formas possíveis do texto

- Texto não formatado (plain text)
 - número de caracteres disponíveis é limitado
 - representação simples (dimensão dos caracteres é fixa e não permite diferentes fontes ou estilos)
- Texto formatado (rich text)
 - aparência mais rica, várias fontes, cores, estilos e dimensões
 - produzidos por processadores de texto
- Hipertexto
 - texto ao qual se adicionam hiperligações originando texto não linear;
 - permite navegação entre documentos de texto.

Natureza dupla do texto:

- Conteúdo léxico (definido como o acervo de palavras de um determinado idioma), caracteres que constituem as palavras, sinais de pontuação e outros símbolos.
- Aparência, atributos visuais dos caracteres (fonte, tamanho, disposição da tela, etc.)
 - A representação visual de um caractere denomina-se Glifo.

Identidade fundamental dos caracteres:

- 。 O caractere é abstrato.
- Representação gráfica: o caractere abstrato "A" pode ter uma infinidade de representações gráficas, incluindo "A", "A", "A", "a", "a", "a".

Caracteres abstratos

- São os caracteres representados apenas quanto a sua natureza léxica:
 - São agrupados em alfabetos;
 - Cada idioma ou grupo de idiomas usa um alfabeto.

Conjuntos de caracteres (character sets)

- São tabelas mantidas pelo sistema operacional que consistem em uma correspondência entre os códigos e os caracteres
- Contém representações de grafemas (unidade formal mínima da escrita) ou unidades similares a grafemas
 - Incluem maiúsculas, minúsculas, sinais de pontuação, números e símbolos matemáticos.

ABCDE FGHIJK LMNOP QRSTU VWXYZ

Vantagens da utilização de conjuntos de caracteres:

- É vital guardar os caracteres na forma de códigos:
 - Para poder editar (alterar) e pesquisa de texto;
 - Para facilitar a comparação de caracteres (basta comparar códigos)
- Permitem associar os caracteres dos teclados a representação desses caracteres:
 - Por exemplo, quando se pressiona um A no teclado, esse caractere é procurado na tabela de caracteres para depois ser apresentado no monitor.

• Normalização é o mais importante

 Pois os códigos universais podem facilmente ser trocados entre máquinas diferentes e que usam sistemas operacionais diferentes.

• ASCII - American Standard Code for Information Interchange

- Primeiro conjunto de caracteres normalizado (1968)
- Adequado à língua inglesa
 - Usa 7 bits para representar cada código: 128 (27) caracteres no total
- Insuficiente para muitas línguas (128 caracteres é limitado)

Bits	654							
3210	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	\	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	п	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	С	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	•	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	I	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	ć	<	L	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	^	n	?
1111	SI	US	/	?	0	_	0	DEL

• ISO 8859

- Normaliza os conjuntos de caracteres de 8 bits (10 partes):
 - ISO 8859-1: ISO Latin1, caracteres utilizados na maioria dos países da Europa Ocidental, primeiros 128 caracteres são os mesmos do ASCII de 7 bits, os restantes 128 são códigos para os idiomas europeus
 - ISO 8859-2: ISO Latin2, para outros idiomas da Europa Oriental (Checo, Eslovaco, Croata)
 - ISO 8859-5: Cirílico
 - ISO 8859-7: Grego moderno
 - ISO 8859-8: Hebreu

• ISO 8859-1

```
128
      Ç
                   É
                         160
                                      176
                                                   193
                                                                209
            144
                                                                             225
                                                                                   ß
                                                                                          241
                                                                       ₹
                                                                                                 ±
129
             145
                                      177
                          161
                                                   194
                                                                210
                                                                                          242
                   æ
                                                                             226
                                                                                    Γ
                                                          Т
                                                                                                 ≥
130
                                                                211
                                                                                          243
             146
                   Æ
                         162
                                      178
                                                   195
                                                                             227
                                                                                                 ≤
                                                                                    π
131
                         163
             147
                                ú
                                      179
                                                   196
                                                                212
                                                                             228
                                                                                          244
                   ô
                                                                                    Σ
132
             148
                         164
                                ñ
                                      180
                                                   197
                                                          +
                                                                213
                                                                                          245
                                                                             229
                                                                                    σ
                                Ñ
133
             149
                         165
                                      181
                                                                214
                                                   198
                                                                             230
                                                                                          246
                                                                                    ш
134
             150
                          166
                                      182
                                                   199
                                                                215
                                                                             231
                                                                                          247
135
            151
                         167
                                      183
                                                   200
                                                                216
                                                                             232
                                                                                          248
                                                                                    Φ
136
            152
                          168
                                      184
                                                   201
                                                                217
                                                                             233
                                                                                          249
                                                                                    \odot
137
             153
                   Ö
                         169
                                      185
                                                   202
                                                                218
                                                                             234
                                                                                          250
                                                                                    Ω
138
                                                                                          251
                                                                                                 ᠕
             154
                         170
                                      186
                                                   203
                                                                219
                                                                             235
                                                                                    8
139
            156
                         171
                                1/2
                                      187
                                                   204
                                                                220
                                                                             236
                                                                                          252
140
             157
                          172
                                                                                          253
                                                                                                 2
                                1/4
                                      188
                                                   205
                                                                221
                                                                             237
141
             158
                          173
                                      189
                                                   206
                                                                222
                                                                             238
                                                                                          254
142
            159
                   f
                                                   207
                                                          ᆂ
                                                                                          255
                         174
                                      190
                                                                223
                                                                             239
143
                          175
                                                          Ш
             192
                                      191
                                                   208
                                                                224
                                                                             240
                                »
                                                                                    \blacksquare
```


- A opção pelas variantes ISO 8859 acaba por não conseguir resolver bem o problema:
 - 7+1 bits são claramente insuficientes para representar todas as línguas (Chinês, japonês etc.)
 - E os textos multilíngue? Como se trabalha com várias línguas simultaneamente?
- Solução mais bits!
 - Norma ISO 10646 (32 bits) de 1991:
 - Permite representar 4.294.967.296 caracteres diferentes (2³²)
 - Desvantagem: qual a diferença entre representar um texto de 50 caracteres em ASCII Estendido e ISO 10646 em termos de memória ocupada?

Unicode

- o Consórcio de empresas (Adobe, Apple, Microsoft, ...) definiram Unicode
 - As linguagens HTML, XML e Java usam o Unicode.
- Padrão que permite aos computadores representar e manipular, de forma consistente, texto de qualquer sistema de escrita existente
 - Desenvolvido em conjunto com um Conjunto Universal de Caracteres (UCS Universal Character Set)
- Unicode consiste de
 - um repertório de mais que 100.000 caracteres cobrindo 100 scripts (coleção de letras e outros signos escritos usado para representar uma informação textual em um ou mais sistemas de escritas),
 - uma metodologia para codificação
 - um conjunto de codificações padrões de caracteres,
 - uma enumeração de propriedades de caracteres (como caixa alta e caixa baixa)
 - um conjunto de arquivos de computador com dados de referência
 - Regras para normalização, decomposição, ordenação alfabética e renderização.

Unicode

Espaco de codificação é dividida em 17 planos (numerados de o a 16)

Unicode

Layout de codificação Unicode do BMP (Plano o)

- Exemplo codificação de caractere: LETRA MAIÚSCULA LATINA A, U+0041.
 - U+aaaa é um valor de código: U+ se refere a valores de código Unicode, e aaaa representa um número de quatro dígitos hexadecimais de um caractere codificado.

Unicode

- Padrão Unicode codifica caracteres em um espaço numérico uniforme entre o a 10FFFF
- Existem alguns formatos de codificação destes valores
 - UTF-8, UTF-16 e UTF-32.
- _o UTF-8
 - uma forma de codificação de largura variável, requer de um a quatro bytes para expressar cada caractere Unicode
 - "A" é 41 (mesmo que no ASCII!)
 - α é CE 91
 - Katakana "A" é E3 82 A2
 - Gothic Ahsa é Fo 90 8C Bo

Fontes e faces

- Quando o computador apresenta a letra A ou a impressora imprime, deve saber como representá-la
 - Ele faz isso de acordo com o hardware disponível e com a sua especificação de escolha de fontes disponíveis
- Uma Face é uma família de caracteres gráficos que normalmente inclui muitos tamanhos e estilos de tipos.
 - Arial, Times New Roman e Courier New são exemplos de faces
- Uma Fonte é um conjunto de caracteres de um único tamanho e estilo pertencente a uma família de face particular.
 - Times 15 pontos itálico é uma fonte
 - As fontes digitais são versões das fontes tradicionais (algumas do século XV)
 - As fontes podem ser vistas como tabelas de correspondência entre os caracteres abstratos e a sua representação gráfica (grifo)

Fontes

- Duas possibilidades de armazenamento
 - Guardados em arquivos e instalados no sistema operacional:
 - Compartilhados por todos os arquivos e todas as aplicações
 - Quanto são requeridas e não existem tem de ser trocadas por fontes alternativas
 - São embutidas nos próprios arquivos de texto:
 - Vantagem importante para o designer de uma aplicação multimídia pois é livre de usar qualquer fonte no seu trabalho.
 - Não se compartilham as fontes entre documentos que usam as mesmas fontes.

Tamanhos e estilos

- Tamanhos geralmente são expressos em pontos;
 - um ponto corresponde a 0,0138 polegadas ou aproximadamente 1/72 de uma polegada.
- o Os Estilos normais das fontes são negrito, itálico (oblíquo) e sublinhado
 - outros atributos como contorno de caracteres podem ser adicionados pelo programa.

Requisitos das Informações multimídia

Principais Requisitos

- Requisito de armazenamento
- Taxa de bits

Imagens

- Requisito de armazenamento = HVP/8
 - $H = n^{\circ}$ de pixels por linha, V = número de linhas, P = bits por pixel
 - imagem de 480 linhas, 600 pixeis/linha, 24 bits necessita 864 Kbytes
- Taxa de bits é calculada a partir dos requisito de armazenamento
 - se a imagem acima (864 Kbytes) deve ser transmitida em 2s, a largura de banda necessária é 3,456 Mbps
 - R= HVP/t (t = tempo de transmissão)

Requisitos das Informações multimídia

Áudios

- Taxa de bits = (num canais) * (amostra/s) *(bits/amostra)
- Espaço ocupado=
 (num canais)*(amostra/s)*(bits/amostra)*duração/8
 - Telefone digital com 1 minuto (mono=> 1 canal)
 - taxa de bits = 1*8000*8 = 64Kbps
 - Espaço ocupado = 1*8000*8*60/8 = 468,7 KB

Vídeos

- Taxa de bits = (HVP)*fps
- Espaço ocupado = (HVP/8)*fps*duração
 - 30 fps e imagens 720x480 com 24 bits/pixel de 1 minuto
 - taxa de bits = 30*720*480*24 = 249 Mbps
 - Espaço ocupado = 249*60/8 = 1,8 GB

• Relações temporais e espaciais entre mídias

 Mídias estáticas e dinâmicas estão relacionadas em uma apresentação (temporalmente e espacialmente)

Relações espaciais

- 。 são definidas no momento da criação da aplicação
- não existem muitos problemas tecnológicos associados.

Espaço

Relações temporais

- Aplicações multimídia devem apresentar informações multimídia ao usuário de forma satisfatória
 - As informações podem ser oriundas de fontes ao vivo, como câmeras de vídeo e microfones, ou originária de servidores distribuídos
 - Busca e transmissão dos dados deve ser coordenada e apresentada de forma que as relações temporais sejam mantidas
 - É uma das principais problemáticas de sistemas multimídia: sincronização multimídia

• Relações temporais e espaciais entre mídias

- Definição de Sincronização Multimídia
 - Aparecimento (apresentação) temporal correto e desejado dos componentes multimídia de uma aplicação

• Tipos de sincronização

- Sincronização intramídia
 - Significa que as amostras de um áudio e quadros de um vídeo devem ser apresentados em intervalos fixos
 - Ex.: Vídeo a 30fps (1 quadro a cada 1/30s)

- Tipos de sincronização
 - Sincronização intermídia
 - Significa que os relacionamentos temporais desejados entre os componentes multimídia de uma aplicação devem ser mantidos

• Tipos de sincronização

- 。 Sincronização de interação
 - Significa que o evento de interação produza o efeito desejado dentro de um tempo relativamente curto

Requisitos das Informações Multimídia

- Requisitos de atrasos e variações de atrasos (Jitter)
 - Atrasos fim-a-fim: soma de todos os atrasos em todos os componentes de um sistema multimídia
 - acesso a disco, conversão A/D, codificação, processamento no hospedeiro, acesso a rede, transmissão, buffering, decodificação e conversão D/A
 - Atraso aceitável é subjetivo e depende da aplicação
 - conversações ao vivo necessitam a manutenção da natureza interativa:
 150 a 400ms
 - recuperação de informação: alguns segundos
 - o Para mídias contínuas a variações de atrasos deve ser pequena
 - Para garantir a sincronização
 - Normalmente a variação de atraso é eliminada por buffers de jitter
 - Buferizam os pacotes que chegam da rede e o player retira do buffer na taxa de apresentação

Requisitos das Informações Multimídia

• Tolerância a erros e perdas em dados multimídia

- Erros ou perdas em dados de áudio, vídeo e imagens são tolerados
- Percepção humana tolera perda de informações
 - Sem perda da semântica
- Técnicas de recobrimento de erros
 - empregadas para aumentar a qualidade de áudio e vídeo

Original	Perdas
----------	--------

Exemplo 1: 20% Loss

Exemplo 2: 30% Loss

Requisitos das Informações Multimídia

Qualidade de Serviço

- Dados multimídia impõem duros e diversos requisitos
 - Eles requerem largura de banda, capacidade de armazenamento alto e alta taxa de transferência, limitação de atraso e variação, sincronizações espaciais e temporais.
- o Conceito de Qualidade de Serviço (QoS)
 - QoS é um contrato negociado entre aplicações/clientes e o sistema (S.O., Rede, Servidores, ...)
 - Quando uma aplicação necessita partir uma sessão ela submete um pedido com a QoS requerida para o sistema.
 - Sistema rejeita ou aceita possivelmente com alguma negociação
 - Quando o sistema aceita o pedido, um contrato entre o sistema e a aplicação é assinado e o sistema deve prover a QoS requerida
 - Alocando os recursos necessários