TD2: courbes algébriques planes

Exercice 1. La cubique affine $x^3 + y^3 + 1 = 0$ est-elle lisse sur \mathbb{R} , \mathbb{C} , \mathbb{F}_p ? Et la cubique projective associée?

Exercice 2. La courbe affine $x^4 + y^4 - x^3 + y^2 = 0$ a-t-elle d'autres points singuliers que l'origine sur \mathbb{F}_q ?

Exercice 3. Une courbe elliptique sur un corps k peut-elle n'avoir aucun point? Un unique point?

Exercice 4. Soit p un nombre premier tel que p-1 ne soit pas un multiple de trois. Déterminer le nombre de points sur \mathbb{F}_p de la courbe elliptique $y^2 = x^3 + 7$.

Exercice 5. (Exemples de courbes minimales et maximales pour les bornes de Hasse) Quel est l'intervalle de Hasse pour une courbe elliptique sur \mathbb{F}_7 ? Calculer le nombre de points des courbes $y^2 = x^3 + 3$ et $y^2 = x^3 + 4$.

Exercice 6. Montrer que la cubique de Fermat $X^3 + Y^3 + Z^3 = 0$ sur \mathbb{F}_4 et sur \mathbb{F}_{16} atteint les bornes de l'intervalle de Hasse.

Exercice 7. En s'aidant éventuellement d'un ordinateur, trouver des courbes elliptiques de tout ordre (nombre de points) dans l'intervalle de Hasse, sur \mathbb{F}_2 , \mathbb{F}_3 et \mathbb{F}_5 .

Exercice 8. Soit *C* la cubique de Fermat $X^3 + Y^3 + Z^3 = 0$

- 1. Combien de points possède-t-elle, sur \mathbb{F}_2 ?
- 2. Déterminer $Z(C/\mathbb{F}_2, T)$.
- 3. En déduire le nombre de points sur \mathbb{F}_{2^r} pour tout r.
- 4. Soit p un nombre premier avec $p \not\equiv 1 \mod 3$, montrer que C possède p+1 points.
- 5. Supposons maintenant $p \equiv 1 \mod 3$. Montrer que sur \mathbb{F}_p , la courbe C possède neuf points dont une des coordonnées est nulle.

Exercice 9. Quelle est la fonction zeta d'une courbe maximale de genre g sur \mathbb{F}_q ?