Nikola Janjušević, Akshaj Kumar Veldanda, Jacky Yuan, Tejaishwarya Gagadam

> Department of Electrical Engineering NYU Tandon School of Engineering Brooklyn, New York

> > June 18, 2019

Learning Objectives

- What is the simple linear model for regression?
- What is an error function?
- What is the least squares error function?
- How do we use correlation to tell us about goodness of fit?
- What do we mean by goodness of fit?
- When is it useful to transform the target variable?
- How do we formulate the least squares problem using matrices?
- How does this extend with multi-variable features?
- What is the transformed linear model?
- What do we mean when we talk about "linear?

Outline

- 1 Review of Day 1
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

What is Machine Learning

Review

- Learn the algorithm from known data to generate the rules
- Make predictions on unknown data using these rules
- Very effective tool where human expertise is not available

Regression

- Target variable is continuous-valued
- Example
 - Predict y = price of a car
 - From x = mileage, size, horsepower
 - Can use multiple predictors
- Assume some form of mapping
 - Ex: Linear mapping:

$$y = \beta_0 + \beta_1 x$$

- Find parameter β_0 , β_1 from data
- Use target-feature pairings as examples to form model

What is Classification?

- Determine what class a target belongs to based on its features
- Example:
 - Predict y = what type of object is in a photo
 - \blacksquare From x =the pixels of the image
- Learn a model/function from features to target
- Use target-feature pairings as examples to form model

Outline

- T Review of Day
- 2 Lab: Simple Linear Model
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

Lab Lab Stats LS Multivariable Lab Output X-frm Poly-Regression X-frmd Linear

Linear Model

Data Representation:

- y = variable you are trying to predict. Also referred to as: Dependent variable, response variable, target variable etc.
- x = what you are using to predict. Also referred to as: Independent variable, attribute, predictor etc.
- Set of points, (x_i, y_i) , i = 1, ..., n. Each data point is called a sample.
- An efficient way to visualize the data is by plotting y vs x in a scatter plot.

Linear Model

- Assume a linear relationship $y = \beta_0 + \beta_1 x$
 - $\beta_0 = intercept$
 - $\beta_1 = \text{slope}$
- $\beta = (\beta_0, \beta_1)$ are the parameters of the model

Let's go to the lab to understand this further.

Outline

- I Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fit
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

Lab Lab Stats LS Multivariable Lab Output X-frm Poly-Regression X-frmd Linear

Is Your Model a Good Fit?

- How would you determine if your model is a good fit or not?
- Talk with your classmates next to you to see whose model fits the data the best
 - How will you determine this?
 - Is there a quantitative way?
 - Write python code if so.

Error Functions

- An error function quantifies the discrepancy between your model and the data.
 - They are non-negative, and go to zero as the model gets better.
- Common Error Functions:
 - Mean Squared Error: $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y})^2$
 - Mean Absolute Error: $MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i \hat{y}|$
- In later units, we will refer to these as cost functions or loss functions.
- Compute MSE on your model

Load and visualize data

- Load and visualize data
 - $(x_i, y_i), i = 1, ..., n$

- Load and visualize data
 - $(x_i, y_i), i = 1, ..., n$
- Find an appropriate model to fit the data

- Load and visualize data
 - $(x_i, y_i), i = 1, ..., n$
- Find an appropriate model to fit the data
 - Eg: Linear model is $\hat{y} = \beta_1 x + \beta_0$

- Load and visualize data
 - $(x_i, y_i), i = 1, ..., n$
- Find an appropriate model to fit the data
 - Eg: Linear model is $\hat{y} = \beta_1 x + \beta_0$
- Choose an appropriate error function

- Load and visualize data
 - $(x_i, y_i), i = 1, ..., n$
- Find an appropriate model to fit the data
 - Eg: Linear model is $\hat{y} = \beta_1 x + \beta_0$
- Choose an appropriate error function
 - $MSE = \sum_{i=1}^{N} (y_i (\beta_0 + \beta_1 x_i))^2$

- Load and visualize data
 - $(x_i, y_i), i = 1, ..., n$
- Find an appropriate model to fit the data
 - Eg: Linear model is $\hat{y} = \beta_1 x + \beta_0$
- Choose an appropriate error function
 - $MSE = \sum_{i=1}^{N} (y_i (\beta_0 + \beta_1 x_i))^2$
- Find parameters that minimize the error function

- Load and visualize data
 - $(x_i, y_i), i = 1, ..., n$
- Find an appropriate model to fit the data
 - Eg: Linear model is $\hat{y} = \beta_1 x + \beta_0$
- Choose an appropriate error function
 - $MSE = \sum_{i=1}^{N} (y_i (\beta_0 + \beta_1 x_i))^2$
- Find parameters that minimize the error function
 - Select β_0 , β_1 to minimize the error function

Least Squares Fit

■ The **Least Squares Fit** is characterized by the minimization of the MSE error function:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Least Squares Fit

■ The **Least Squares Fit** is characterized by the minimization of the MSE error function:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

■ Find the parameters, $\beta = (\beta_0, \beta_1)$, that give the smallest MSE

Least Squares Fit

■ The **Least Squares Fit** is characterized by the minimization of the MSE error function:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

- Find the parameters, $\beta = (\beta_0, \beta_1)$, that give the smallest MSE
- MSE is a useful metric because there exists an analytic solution to find the optimal parameters β_0 and β_1

Outline

- 1 Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Made
- Transformed Linear Mode
- 11 Lab: Fitting a Curve

• Given feature-target data (x_i, y_i) , i = 1, 2, ..., N

- Given feature-target data (x_i, y_i) , i = 1, 2, ..., N
- Mean:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

- Given feature-target data (x_i, y_i) , i = 1, 2, ..., N
- Mean:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Variance:

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2, \quad \sigma_y^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2$$

- Given feature-target data $(x_i, y_i), i = 1, 2, ..., N$
- Mean:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Variance:

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2, \quad \sigma_y^2 = \frac{1}{N} \sum_{i=1}^N (y_i - \bar{y})^2$$

Covariance:

$$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

Stats

Mean, Variance, and Covariance, Correlation Coefficient

- Given feature-target data $(x_i, y_i), i = 1, 2, ..., N$
- Mean:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Variance:

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2, \quad \sigma_y^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2$$

Covariance:

$$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

■ Correlation Coefficient:

$$\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

Lab: Gaining Intuition

Outline

- I Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Dat
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- ZO T. C. LL: M. L
- I ransformed Linear Mode
- 11 Lab: Fitting a Curve

LS Fit Solution

■ Model:

$$\hat{y} = \beta_0 + \beta_1 x$$

LS Fit Solution

Model:

$$\hat{y} = \beta_0 + \beta_1 x$$

Optimization:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

LS Fit Solution

Model:

$$\hat{y} = \beta_0 + \beta_1 x$$

Optimization:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Solution:

$$\hat{y} = \bar{y} + \rho \frac{\sigma_y}{\sigma_x} (x - \bar{x})$$

Review

LS Fit Solution

Model:

$$\hat{y} = \beta_0 + \beta_1 x$$

Optimization:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Solution:

$$\hat{y} = \bar{y} + \rho \frac{\sigma_y}{\sigma_x} (x - \bar{x})$$

$$\beta_1 = \rho \frac{\sigma_y}{\sigma_x}, \quad \beta_0 = \bar{y} - \beta_1 \bar{x}$$

Review

LS Fit Solution

Model:

$$\hat{y} = \beta_0 + \beta_1 x$$

Optimization:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Solution:

$$\hat{y} = \bar{y} + \rho \frac{\sigma_y}{\sigma_x} (x - \bar{x})$$

$$\beta_1 = \rho \frac{\sigma_y}{\sigma_x}, \quad \beta_0 = \bar{y} - \beta_1 \bar{x}$$

Prediction:

$$v_{new} = \beta_0 + \beta_1 x_{new}$$

Review

LS Fit Solution

■ Model:

$$\hat{y} = \beta_0 + \beta_1 x$$

Optimization:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Solution:

$$\hat{y} = \bar{y} + \rho \frac{\sigma_y}{\sigma_x} (x - \bar{x})$$

$$\beta_1 = \rho \frac{\sigma_y}{\sigma_x}, \quad \beta_0 = \bar{y} - \beta_1 \bar{x}$$

■ Prediction:

$$y_{new} = \beta_0 + \beta_1 x_{new}$$

■ Compute the LS fit model

Lab: Find/Build and fit your own data

- Find your a data set
 - Google: "[subject you're interested in] dataset"
 - https://archive.ics.uci.edu/ml/datasets.php
 - https://toolbox.google.com/datasetsearch
 - or -
- Build your own data set
 - Examples:
 - Use Number of CPUs in a Computer to Predict the Price
 - Number of Instagram Followers to predict likes
 - Only need 10-15 samples

Outline

Review

- 1 Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fit
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

■ Model:
$$\hat{y} = \beta_0$$
 + $\beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$

- Model: $\hat{y} = \beta_0$ + $\beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:

- Model: $\hat{y} = \beta_0$ + $\beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:
 - y, single target variable

- Model: $\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:
 - y, single target variable
 - multiple features: $x_1, x_2, ..., x_D$

- Model: $\hat{y} = \beta_0$ + $\beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:
 - *y*, single target variable
 - multiple features: $x_1, x_2, ..., x_D$
 - Target variable is a linear combination of all feature variables

- Model: $\hat{y} = \beta_0$ + $\beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:
 - *y*, single target variable
 - multiple features: $x_1, x_2, ..., x_D$
 - Target variable is a linear combination of all feature variables
 - Linear Combination: sum of scaled features

- Model: $\hat{y} = \beta_0 \times 1 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:
 - y, single target variable
 - multiple features: $x_1, x_2, ..., x_D$
 - Target variable is a linear combination of all feature variables
 - Linear Combination: sum of scaled features
- Vector Notation:

- Model: $\hat{y} = \beta_0 \times 1 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:
 - *y*, single target variable
 - multiple features: $x_1, x_2, ..., x_D$
 - Target variable is a linear combination of all feature variables
 - Linear Combination: sum of scaled features
- Vector Notation:

Let
$$\mathbf{x} = [1, x_1, x_2, ..., x_D]^T$$

- Model: $\hat{y} = \beta_0 \times 1 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$
- Suppose we have multiple features corresponding to a single target output:
 - *y*, single target variable
 - multiple features: $x_1, x_2, ..., x_D$
 - Target variable is a linear combination of all feature variables
 - Linear Combination: sum of scaled features
- Vector Notation:

Let
$$\mathbf{x} = [1, x_1, x_2, ..., x_D]^T$$

and $\boldsymbol{\beta} = [\beta_0, \beta_1, ..., \beta_D]^T$

■ Model: $\hat{y} = \beta_0 \times 1 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$

Multivariable

- Suppose we have multiple features corresponding to a single target output:
 - *y*, single target variable
 - multiple features: $x_1, x_2, ..., x_D$
 - Target variable is a linear combination of all feature variables
 - Linear Combination: sum of scaled features
- Vector Notation:

Let
$$\mathbf{x} = [1, x_1, x_2, ..., x_D]^T$$

and $\boldsymbol{\beta} = [\beta_0, \beta_1, ..., \beta_D]^T$
So, $\hat{\mathbf{y}} = \mathbf{x}^T \boldsymbol{\beta}$

• We want to minimize the squared error over all the samples: $\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$

We want to minimize the squared error over all the samples:

We want to minimize the squared error over all the samples:

we want to infinitize the squared error over all
$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$$
• Design Matrix: Let, $A = \begin{bmatrix} 1 & x_{1_1} & \cdots & x_{1_D} \\ 1 & x_{2_1} & \cdots & x_{2_D} \\ \vdots & & \ddots & \vdots \\ 1 & x_{N_1} & \cdots & x_{N_D} \end{bmatrix}$

• Can express these conditions in matrix form: $\mathbf{y} = A\beta$

We want to minimize the squared error over all the samples:

we want to minimize the squared error over all
$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$$
• Design Matrix: Let, $A = \begin{bmatrix} 1 & x_{1_1} & \cdots & x_{1_D} \\ 1 & x_{2_1} & \cdots & x_{2_D} \\ \vdots & & \ddots & \vdots \\ 1 & x_{N_1} & \cdots & x_{N_D} \end{bmatrix}$

- Can express these conditions in matrix form: $\mathbf{y} = A\beta$
- Solution: Pseudo-Inverse

■ We want to minimize the squared error over all the samples:

$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$$

we want to minimize the squared error over all
$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$$
• Design Matrix: Let, $A = \begin{bmatrix} 1 & x_{1_1} & \cdots & x_{1_D} \\ 1 & x_{2_1} & \cdots & x_{2_D} \\ \vdots & & \ddots & \\ 1 & x_{N_1} & \cdots & x_{N_D} \end{bmatrix}$

- Can express these conditions in matrix form: $\mathbf{v} = A\beta$
- Solution: Pseudo-Inverse
 - There isn't a true solution to this equation.

We want to minimize the squared error over all the samples:

• We want to minimize the squared error over all
$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2$$
• Design Matrix: Let, $A = \begin{bmatrix} 1 & x_{1_1} & \cdots & x_{1_D} \\ 1 & x_{2_1} & \cdots & x_{2_D} \\ \vdots & \ddots & \vdots \\ 1 & x_{N_1} & \cdots & x_{N_D} \end{bmatrix}$

Multivariable

- Can express these conditions in matrix form: $\mathbf{v} = A\beta$
- Solution: Pseudo-Inverse
 - There isn't a true solution to this equation.
- We say β^* solves $\mathbf{y} = A\beta$ in the least squares sense, where

$$\boldsymbol{\beta}^{\star} = A^{\dagger} \mathbf{y}$$

Boston Housing Demo

Review

- Using multiple features to predicting house prices
 - Crime rate per capita, number of rooms, student-teacher ratio at local schools, ...
- Lets use a linear model that takes into account all the collected data
- Go to the Github, Day2/Day2.ipynb

Outline

- 1 Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

Lab Lab Stats LS Multivariable Lab Output X-frm Poly-Regression X-frmd Linear

Robot Arm Calibration

- Let's train a model based on the given data.
- In this lab we're going to:
 - Predict the current drawn
 - Predictors, X: Robot arm's joint angles, velocity, acceleration, strain gauge readings (load measurement).

Outline

Review

- 1 Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

Transforming the Output Data

■ Not all data can be modeled using linear relation:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_D x_D$$

- Modeling nonlinear data with linear function does not result in a good fit
- We can transform output with a nonlinear function
- What transformation we use depends on the nature of the data
- For example: We might use an exponential model for:
 - Radioactive decay
 - Population growth

■ Demo: mpg of cars data

Outline

Review

- 1 Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

- What if our data is clearly not linear, but instead follows a polynomial curve?
 - Ex: Projectile motion, gravity, Coulomb's law, ...

- What if our data is clearly not linear, but instead follows a polynomial curve?
 - Ex: Projectile motion, gravity, Coulomb's law, ...
- Can we perform regression to get a polynomial model?

- What if our data is clearly not linear, but instead follows a polynomial curve?
 - Ex: Projectile motion, gravity, Coulomb's law, ...
- Can we perform regression to get a polynomial model?
 - Could it be <u>linear</u> regression? (What do we mean by linear?)

- What if our data is clearly not linear, but instead follows a polynomial curve?
 - Ex: Projectile motion, gravity, Coulomb's law, ...
- Can we perform regression to get a polynomial model?
 - Could it be <u>linear</u> regression? (What do we mean by linear?)
 - What would our features be?

- What if our data is clearly not linear, but instead follows a polynomial curve?
 - Ex: Projectile motion, gravity, Coulomb's law, ...
- Can we perform regression to get a polynomial model?
 - Could it be <u>linear</u> regression? (What do we mean by linear?)
 - What would our features be?
- Polynomial Model: $\hat{y} = \sum_{i=0}^{N} \beta_i x^i$

- What if our data is clearly not linear, but instead follows a polynomial curve?
 - Ex: Projectile motion, gravity, Coulomb's law, ...
- Can we perform regression to get a polynomial model?
 - Could it be <u>linear</u> regression? (What do we mean by linear?)
 - What would our features be?
- Polynomial Model: $\hat{y} = \sum_{i=0}^{N} \beta_i x^i$
 - Is this linear?

- What if our data is clearly not linear, but instead follows a polynomial curve?
 - Ex: Projectile motion, gravity, Coulomb's law, ...
- Can we perform regression to get a polynomial model?
 - Could it be <u>linear</u> regression? (What do we mean by linear?)
 - What would our features be?
- Polynomial Model: $\hat{y} = \sum_{i=0}^{N} \beta_i x^i$
 - Is this linear?
- Demo on Github

Outline

- 1 Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Data
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Model
- 11 Lab: Fitting a Curve

- We can extend polynomial fitting to a more general model
- In polynomial fitting, we used the equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_D x_D$$

- In the more general model, the output is a linear combination of transformed input
 - $y = \beta_0 + \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + ... + \beta_D \phi_D(x)$
 - where $\phi_1(x)$, $\phi_2(x)$..., $\phi_D(x)$ are called **basis** functions
 - Polynomial fitting is a special case where the basis functions are power functions
- Besides polynomials, we can also use other function as our basis function
 - Gaussian: $\phi(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 - Exponential: $\phi(x) = e^{-\alpha x}$

How do we fit a transformed linear model?

- The procedure is similar to polynomial fitting
- First transform the features of each example using the transformation
- Form the Design Matrix: $\Phi = \begin{bmatrix} \phi_0(\mathbf{x}) & \dots & \phi_D(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}) & \dots & \phi_D(\mathbf{x}) \end{bmatrix}$
- Solve for the Least-squares solution:
- $\beta = \Phi^{\dagger} y$
- Model: $\hat{\mathbf{v}} = \phi(\mathbf{x})^T \boldsymbol{\beta}$

When the input data has multiple features, the x in the previous equation,

$$y = \beta_0 + \beta_1 \phi_1(\mathbf{x}) + \beta_2 \phi_2(\mathbf{x}) + ... + \beta_D \phi_D(\mathbf{x})$$
, can also be regarded as a vector

- The transformations are then multivariate functions that uses multiple features in generating each new feature
- One example would be the multivariate Gaussian function:
- $\phi(x_1, x_2) = e^{-\frac{(x_1 \mu_1)^2 + (x_2 \mu_2)^2}{2\sigma^2}}$ Similar to the 1D Gaussian function which has a bell shaped curve centered at the mean, the 2D Gaussian function is a 2D bell shaped curve centered at (μ_1, μ_2)

■ Shape of a 2D Gaussian function

Outline

- 1 Review of Day
- 2 Lab: Simple Linear Mode
- 3 Lab: Goodness of Fi
- 4 Statistics for the LS Solution
- 5 Least Squares Solution
- 6 Extension to Multivariable Dat
- 7 Lab: Robot Arm Calibration
- 8 Transforming the Output Data
- 9 Polynomial Regression
- 10 Transformed Linear Mode
- 11 Lab: Fitting a Curve

Lab: Fitting a curve with Transformed Features

- Open Lab Notebook
- Do the lab in Module 11
- From the plot, think about what function can you use to transform the feature and perform a regression

Learning Objectives

- What is the simple linear model for regression?
- What is an error function?
- What is the least squares error function?
- How do we use correlation to tell us about goodness of fit?
- What do we mean by goodness of fit?
- When is it useful to transform the target variable?
- How do we formulate the least squares problem using matrices?
- How does this extend with multi-variable features?
- What is the transformed linear model?
- What do we mean when we talk about "linear?

Thank You!

- Next Class: Generalization Error
- How do our models hold up against prediction new data?

