REVIEW: MEASURING RETURNS

WHAT WILL YOU LEARN?

- ► Measuring returns
 - ► Holding-period return
 - ► Cumulative return
 - $\blacktriangleright {\bf Continuously\ compounded\ return}$
 - ► Annualized returns
 - ►Internal rate of return
 - ▶Time vs. dollar-weighted returns

HOLDING PERIOD RETURN			
CUMULATIVE RETURN			

GEOMETRIC AVERAGE VS. ARITHMETIC AVERAGE
ANNUALIZED RETURNS

DOLLAR VS. TIME-WEIGHTED RETURNS

SUMMARY

- ▶The performance of an investment is measured by its return.
 - ► Holding-period return
 - ► Cumulative return
 - ► Continuously compounded return
 - ► Annualized returns
 - ►Internal rate of return
 - ightharpoonup Time vs. dollar-weighted returns

COMPUTING EXCESS RETURNS OVER A BENCHMARK

WHAT WILL YOU LEARN?

► How do you measure excess returns?

EXCESS RETURN

- ► For a single holding period, the excess return is commonly defined as difference between the benchmark return and the portfolio return.
- ► What about over multiple periods?

EXAMPLE

	Portfolio return %	Benchmark return %	Difference %
Month 1	19.2	-2.0	21.2
Month 2	-2.6	9.7	-12.3
Month 3	-15.6	-3.1	-12.5
Geometric average			
Arithmetic average			
Cumulative return			

EXAMPLE

	Portfolio return %	Benchmark return %	Difference %
Month 1	19.2	-2.0	21.2
Month 2	-2.6	9.7	-12.3
Month 3	-15.6	-3.1	-12.5
Geometric average	-0.67	1.37	-2.04
Arithmetic average	0.33	1.53	-1.20
Cumulative return	-2.01	4.17	-6.18

EXAMPLE

	Portfolio return %	Benchmark return %	Difference %
Month 1	19.2	-2.0	21.2
Month 2	-2.6	9.7	-12.3
Month 3	-15.6	-3.1	-12.5
Geometric average	-0.67	1.37	-2.04
Arithmetic average	0.33	1.53	-1.20
Cumulative return	-2.01	4.17	-6.18

EXAMPLE		

SUMMARY

► The difference between two geometric mean returns is not itself a geometric mean excess return.

WHAT WILL YOU LEARN?

► How do you calculate the geometric excess return?

GEOMETRIC EXCESS RETURN

EXAMPLE

	Portfolio return %	Benchmark return %	Difference %
Month 1	19.2	-2.0	21.2
Month 2	-2.6	9.7	-12.3
Month 3	-15.6	-3.1	-12.5
Geometric average	-0.67	1.37	-2.04
Arithmetic average	0.33	1.53	-1.20
Cumulative return	-2.01	4.17	-6.18

GEOMETRIC MEAN EXCESS RETURN

ARITHMETIC EXCESS RETURN

▶When we want to use expected values of future returns by calculating statistics of *past* returns, the arithmetic mean return is the better choice.

SUMMARY

- ► The arithmetic excess return can be misleading when evaluating performance.
- ►The geometric excess return is the excess return based on the ending values of wealth invested relative to what it would have earned if the benchmark had been chosen.
- ► When summarizing statistical properties of returns, such as expected return, arithmetic mean return or arithmetic excess return is more appropriate.