Atomic Dipoles a) Buth the Is and 2s states are party even, whereas the dipole is party odd, (2s/e2/1s7 = 0) (1) even x odd x even = odd · Sadd = 0 b) In atomre units Yapz = 4VZTT re- 1/2 cose $\psi_{2Pt} = \pm \frac{1}{8\sqrt{\pi}} \Gamma e^{-r/2} \operatorname{sm}_{\theta} e^{\pm i\phi}$ Now smce neither tis or ez= ercoso have any & dopendance, we must have = Fi[1-1]=0 so we are loft with <2p2/2/1s> = THE YVERT SOUS SOURCE SOURCE (F 1050) ET

Atomiz Sipoles $=\frac{1}{4\sqrt{2}}\int_{0}^{2}\int_{0}^{$ 3=31 13=3, dr $= \frac{1}{2\sqrt{2}} \int du u^{2} \left(\frac{2}{3}\right)^{5} \int_{0}^{\infty} d^{3} 3^{4} e^{-3}$ $\Gamma(5) = 4!$ $= \frac{1}{2\sqrt{2}} \left(\frac{2}{3}\right) \left(\frac{2}{3}\right)^{8} 4!$ (3) = 0.745 0.0, since we are already in ofomer units and the atomer unit of depote is ear, the orpule 03 [<2pz | 82115 >= 0.745 eao] (4) c) Drawing the orbitals 1(s)= (/+//) |2pz>= (5) So now the phase difference Letwern them will oscillate of frequency cu= (Ea-EI)/4, so adding the two of wt=0, we get (A) + () = buttom lobes
destructively
rater fore. Top lobe rods (6)

some the charge donsty is a [H], the charge donsity is oscillating along the Z-axis and the atom is behaving like a small broadcast ontonia, roducting EM works.

A deeper question is why on atom
on only (2pz) will decay to (1s)
by radiating, as there no superposition
here at t=0, and thus no radiation in
this preture.

Understanding Spontaneous Emission "
requires quantization of the electromagnetization field.