

Figure 1: Re-construction losses of MAE pre-training ViT-Large on ImageNet-1K. The number in bracket in the legend is the validation accuracy (%) after fine-tuning. ESWP achieves lossless acceleration over Baseline (no data selection), and consistently outperforms previous SOTA method InfoBatch.

	Baseline	InfoBatch	ESWP (r=0.3)	ESWP (r=0.5)
Time(h)	48.1	37.6	35.1	27.1
Time saved(%)	_	21.8	27.0	44.7
Acc.(%)	84.9	84.6	84.9	84.6

Table 1: Comparisons of pre-training time and fine-tuning accuracy (Table 6 updated)

	Baseline	Random	ES	ESWP
Clean (0%)	81.1	$80.4_{\downarrow 0.7}, 29\%$	81.1 _{↑0.0} , 11%	$80.6_{\downarrow 0.5}, 31\%$
Uniform (40%)	51.1	$52.9_{\uparrow 1.8}, 20\%$	60.1 _{↑9.0} , 16%	58.7 _{↑7.6} , 25 %

Table 2: Accuracy (%) and Time-Saved of ResNet-50 on CIFAR-100. Here Random renders Baseline with random data pruning, and its performance is consistently worse than ESWP under the same amount of computation time saving.

Figure 2: Visualization of the number of selected samples of each class in ESWP (ResNet-50, Cifar-100). The figure shows the result of the first 50 classes. The number on top of each column shows the rank over 100 classes (a lower number indicates a higher number of selected samples)