## MATH5665: Algebraic Topology (2015,S1) Problem Set 2 $^1$

This problem set covers material from lectures 4-8.

1. Consider the triangulation of  $|K| \longrightarrow \mathbb{T}^2$  given by the labelled surface diagram below (as given in e.g. 5.4).



Show that  $\gamma = [ah] + [hg] + [ga]$  is a 1-cycle in K. Express the corresponding homology class  $\gamma + B_1(K)$  as a  $\mathbb{Z}$ -linear combination of the canonical generators  $\alpha = [ab] + [bc] + [ca], \beta = [ad] + [de] + [ea]$ .

- 2. Fix a simplicial complex K giving a triangulation of the Klein bottle. Compute the homology of K.
- 3. Fix a simplicial complex K giving a triangulation of the real projective plane. Compute the homology of K.
- 4. After lecture 9, you may wish to repeat the last two questions, but with co-efficients over the field  $\mathbb{F}_p$  where p is prime.
- 5. Prove proposition 5.2, that  $H_0(K) \simeq \mathbb{Z}^n$  where n is the number of connected components of |K|.
- 6. Consider the sequence of abelian groups (and group homomorphisms) below

$$0 \longrightarrow \mathbb{Z} / 4 \mathbb{Z} \xrightarrow{2} \mathbb{Z} / 4 \mathbb{Z} \xrightarrow{2} \mathbb{Z} / 4 \mathbb{Z} \longrightarrow 0$$

where the 2 indicates the multiplication by 2 map  $a+4\mathbb{Z} \mapsto 2(a+4\mathbb{Z}) = 2a+4\mathbb{Z}$ . Show it is a complex and compute its homology.

<sup>&</sup>lt;sup>1</sup>by Daniel Chan

- 7. Let  $f_1, f_2: (X, A) \longrightarrow (Y, B)$  be continuous maps of pairs and  $F: f_1 \approx f_2$  be a homotopy. Given  $X' \subset X$ , we say F is a homotopy relative to X' if furthermore, F(x',t) = F(x',0) for all  $x' \in X'$ , in otherwords, the functions  $F(x',-): I \longrightarrow Y$  are constant for all  $x' \in X'$ . Show that if  $f_1, f_2: I \longrightarrow I$  are any two maps with  $f_i(0) = 0, f_i(1) = 1$ , then  $f_1, f_2$  are homotopic relative to  $\{0,1\}$ .
- 8. Compute the homology of the suspension  $S(K_{abc}^{(1)})$ .