MAC315 – Programação Linear

Exercício-programa: Implementação do Método Simplex

Nesse exercício-programa, consideraremos um problema de programação linear no formato padrão:

minimizar
$$c'x$$

sujeito a $Ax = b$
 $x \ge 0$,

onde $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ e $b \in \mathbb{R}^m$. Usando a linguagem Octave¹, você deverá implementar o método simplex de duas fases com tableau para resolver esse tipo de problema. O seu programa deve ter uma função com a seguinte assinatura:

```
[ind x] = simplex(A,b,c,m,n,print)
```

Ou seja, essa função deve receber como parâmetros a matriz A, os vetores b e c, o número de restrições m e o número de variáveis n do problema, nessa ordem. O último parâmetro (iprint) é um valor booleano que indica se o programa deve fazer impressões na tela.

Essa função deve ainda devolver na variável ind um indicador a respeito da existência de soluções para o problema. Mais especificamente, a variável ind deve armazenar o valor -1 se o problema for ilimitado, 0 se o problema tiver uma solução ótima ou +1 se o problema for inviável.

No caso do problema possuir uma solução ótima, a solução obtida pelo método simplex (um vetor n-dimensional) deve ser armazenada e devolvida na variável \mathbf{x} . Obedeça a ordem das variáveis. Note que você pode implementar diversas funções auxiliares, mas o seu programa deve ter necessariamente a função especificada acima.

A cada iteração do método simplex, o seu programa também deverá imprimir o *tableau* correspondente, caso o valor de **print** seja **true**. O elemento pivô deve ser indicado com um asterisco. Quando o método terminar, o seu programa deve imprimir uma mensagem indicando se uma solução ótima foi encontrada, se o problema é inviável ou se o problema é ilimitado.

Abaixo temos um exemplo de como deve ser a saída do seu programa. A saída da fase 1 do simplex deve estar no mesmo formato da saída da fase 2.

Simplex: Fase 1

.

Simplex: Fase 2

¹http://www.gnu.org/software/octave/

```
Iteração 1
```

	0 000	•	x1 -10.000	•		•		•		•		•		•
				' 		- <u>'</u>								-
x4	20.000		1.000		2.000		2.000		1.000	1	0.000		0.000	١
x5	20.000		2.000*		1.000		2.000		0.000	1	1.000		0.000	
x6	20,000	1	2,000	ı	2.000	Τ	1.000	Ι	0.000	Τ	0.000	Ι	1.000	١

Iteração 2														
			x1		x2		x3	-	x4		x5		x6	
	100.000		0.000	-	-7.000		-2.000	-	0.000		5.000	-	0.000	1
x4	10.000		0.000		1.500		1.000	*	1.000		-0.500		0.000	
x1	10.000	-	1.000	-	0.500	-	1.000		0.000		0.500		0.000	1
x6	0.000	-	0.000	-	1.000	1	-1.000	-	0.000		-1.000	-	1.000	

Iteração 3

			x1		x2		хЗ		x4	-	x5		x6	
	120.000		0.000	-	-4.000		0.000		2.000		4.000		0.000	
x3	10.000		0.000		1.500		1.000		1.000		-0.500		0.000	
x1	0.000		1.000		-1.000		0.000	-	-1.000	1	1.000		0.000	1
x6	10.000	1	0.000	1	2.500*	:	0.000	Ι	1.000	Ι	-1.500	Ι	1.000	Ι

Iteração 4

		x1	-	x2		x3	-	x4		x5		x6	
	136.000	0.000		0.000		0.000		3.600		1.600		1.600	
		 			_								-
хЗ	4.000	0.000		0.000		1.000		0.400		0.400		-0.600	
x1	4.000	1.000	-	0.000		0.000	-	-0.600		0.400		0.400	
x2	4.000	0.000	-	1.000		0.000	1	0.400	1	-0.600		0.400	Ι

Solução ótima encontrada com custo -136.000:

x =

4

4

4

Relatório

Você também deve fazer um relatório onde descreverá o método implementado e as principais partes do seu programa. Você deverá incluir exemplos que mostram o funcionamento do seu programa para os três casos possíveis: o problema tem solução ótima, é ilimitado ou é inviável.

Avaliação

O seu trabalho será avaliado levando-se em consideração a corretude do seu programa, bem como a qualidade do código-fonte e do relatório.

Entrega

Esse exercício-programa deve ser feito em dupla e apenas um dos integrantes da dupla deve submeter o trabalho através da página da disciplina no Paca². O data limite para a entrega está na página da disciplina e corresponde à data do EP3. Você deve submeter um arquivo compactado e que contenha a sua implementação em Octave do método simplex com tableau e o seu relatório.

²http://paca.ime.usp.br/