

Linear algebra

Exercise sheet 1 / Model solutions

- 1. Consider the vectors $\mathbf{x} = [2, 3, 4]^T$, $\mathbf{y} = [1, 0, 2]^T$ and $\mathbf{z} = [0, 1, 0]^T$ in \mathbb{R}^3 .
 - (a) Are the vectors x, y and z linearly dependent?
 - (b) Find a vector $w \in \mathbb{R}^3$ such that x, y and w are linearly independent.
 - (c) Find a vector $v \in \mathbb{R}^3$ such that x, z and v are linearly independent.

Solution.

(a) Yes, the three vectors are linearly dependent. To see this, let A = [y, z, x] and let us find a nonzero coefficient vector $\alpha \in \mathbb{R}^3$ such that $A\alpha = 0$. Gaussian elimination yields that this linear system is equivalent to

$$\begin{cases} \alpha_1 + 2\alpha_3 = 0 \\ \alpha_2 + 3\alpha_3 = 0 \end{cases}$$

which has solution $\alpha = [-2t, -3t, t]^T$ where $t \in \mathbb{R}$. So we can find a nonzero α and the three vectors are linearly dependent.

- (b) One way to achieve this is to impose that the determinant of $\begin{bmatrix} 2 & 1 & w_1 \\ 3 & 0 & w_2 \\ 4 & 2 & w_3 \end{bmatrix}$ is nonzero. This yields $2w_1 \neq w_3$, so for example we can pick $\boldsymbol{w} = [1,0,1]^T$.
- (c) This part can be solved with the same method as part (b). We obtain the condition $v_3 2v_1 \neq 0$; one possible solution is $\mathbf{v} = [1, 0, 1]^T$.
- 2. Let $x = [1, 2, 3]^T$. Represent x as a linear combination of the basis vectors
 - (a) $e_1 = [1, 0, 0]^T$, $e_2 = [0, 1, 0]^T$ and $e_3 = [0, 0, 1]^T$ (so-called *cartesian* basis vectors),
 - (b) $\boldsymbol{q}_1 = [1, 1, 0]^T$, $\boldsymbol{q}_2 = [1, 0, 1]^T$ and $\boldsymbol{q}_3 = [1, 1, 1]^T$,
 - (c) $\mathbf{v}_1 = [-1, 1, -1]^T$, $\mathbf{v}_2 = [1, 2, 2]^T$ and $\mathbf{v}_3 = [1, -2, 1]^T$.

Solution.

- (a) Clearly $x = e_1 + 2e_2 + 3e_3$.
- (b) If $Q = [q_1 \ q_2 \ q_3]$, we must solve the linear system $Q\alpha = x$. Any method (for instance Gaussian Elimination) yields as solution $\alpha = [-2, -1, 4]^T$, so $x = -2q_1 q_2 + 4q_3$.
- (c) This question can be solved similarly to part (b). The solution is $x = 4v_1 + 2v_2 + 3v_3$.

3. Let

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & -2 & 2 \end{bmatrix} \quad \text{and} \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ -3 \\ 8 \end{bmatrix}.$$

Compute a basis for the nullspace N(A) by hand and find all solutions to the equation

$$Ax = b$$
.

Solution. The set N(A) is defined as

$$N(A) := \{ \boldsymbol{x} \in \mathbb{R}^3 \mid A\boldsymbol{x} = \boldsymbol{0} \}.$$

Hence, a basis for N(A) can be found by solving the linear system Ax = 0 by Gaussian elimination:

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & -2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Back substitution gives

$$\boldsymbol{x} = t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $N(A) = \operatorname{span} \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right)$.

Gaussian elimination is used to find the solutions to Ax = b:

$$\begin{bmatrix} 1 & -1 & 0 & | & 1 \\ 1 & 0 & -1 & | & -3 \\ 0 & -2 & 2 & | & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 1 & -1 & | & -4 \\ 0 & -2 & 2 & | & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 1 & -1 & | & -4 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Back substitution gives

$$\boldsymbol{x} = \begin{bmatrix} -3 \\ -4 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

- 4. Let $0 \neq a, b \in \mathbb{R}^n$ and define $A = ab^T \in \mathbb{R}^{n \times n}$. Show that
 - (a) $R(A) = \operatorname{span}\{a\},\$
 - (b) $N(A) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{b}^T \boldsymbol{x} = 0 \}.$

Solution. To prove that two sets V and W are equal, first pick $v \in V$ and show that $v \in W$. Then pick $w \in W$ and show that $w \in V$.

(a) Let $x \in R(A)$. Then there exists $z \in \mathbb{R}^n$ such that $x = ab^T z$. Denote $\alpha = b^T z$ so that $x = \alpha a \in \text{span}\{a\}$.

Let $x \in \text{span}\{a\}$. Choose $z = \frac{b}{\|b\|_2^2}$, so that $ab^Tz = a$. Hence $x \in R(A)$.

(b) Let $v \in N(A)$. This means that $ab^Tv = 0$. Because $a \neq 0$, we have that $b^Tv = 0$ and $v \in \{x \in \mathbb{R}^n \mid b^Tx = 0\}$.

Let $\mathbf{v} \in {\mathbf{x} \in \mathbb{R}^n \mid \mathbf{b}^T \mathbf{x} = 0}$. Then $\mathbf{a}\mathbf{b}^T \mathbf{v} = \mathbf{0}$. Hence, $\mathbf{v} \in N(A)$.