I. INTRODUCCIÓN A LAS BASES DE DATOS

M.SC. LUIS FERNANDO ESPINO BARRIOS 2020

CONTACTO

- Correo electrónico usac.sistemas@gmail.com
 - Carpeta compartida https://bit.ly/337wMr8

BASE DE DATOS

Una base de datos es un conjunto o colección de datos relacionados y almacenados para su posterior utilización y que ese conjunto de datos es relevante para la organización.

SISTEMA DE BASES DE DATOS

Un sistema de base de datos es un sistema computarizado para archivar en una computadora, con el objetivo de mantener la información y disponer de ella cuando se necesite.

SISTEMAS ADMINISTRATIVO DE BASES DE DATOS

Un sistema gestor de bases de datos SGBD o DBMS consiste en una colección de datos interrelacionados y un conjunto de programas que maneja el acceso a dichos datos.

CARACTERÍSTICAS DE UN DBMS

- Abstracción de datos
- Disminución de redundancia
- Evitar inconsistencia
- Integridad
- Seguridad
- Concurrencia
- Respaldo y recuperación

CONCEPTOS IMPORTANTES

No redundancia Consistencia Integridad

HISTORIA DE LAS BASES DE DATOS

1959

- CODASYL. Conference/Committee on Data Systems Languages
 - COBOL
 - Estructurar datos en archivos
 - Registros tipo
 - Grupos
 - Data ítems
- Generalización de William McGee de IBM
 - Propuesta para desarrollar administradores de bases de datos

1963

- Término "base de datos"
- System Development Corporation
- Development and management of a computercentered data base

1964-1966

Charles Bachman y George Dodd publicaron artículos relacionados al manejo de datos, ambos enfoques tenían en común la estructura jerárquica y en red para el procesamiento.

1965-1967

- Fue creado el grupo COBOL List Processing Task Force
- Basado en el trabajo de John McCarthy en cuanto al procesamiento de listas
- Término utilizado para referirse a las bases de datos que más adelante se convendría cambiar el término por Data Base para evitar confusiones.

1967-1973

- Fue creado el grupo CODASYL Data Base Task Group basado en el anterior grupo con una nueva perspectiva.
- En 1970 Edgar Codd propone la teoría relacional.
- En 1973 se introdujeron ideas en donde una base de datos sea central para el procesamiento de datos organizacionales.

1975-1980

- Peter Chen propone el modelo entidad-relación
- Durante este quinquenio se desarrollaron los primeros dos DBMS relaciones: System R e Ingres.
- A finales de los 1970's ya se habían definido 3 formas de dependencias de datos y 6 formas normales.

1980-1990

- Inicia el desarrollo de diferentes DBMS, en su mayoría derivados de System R y de Ingres.
- A finales de esta década SQL se vuelve un estándar, haciendo el lenguaje por defecto de los DBMS relacionales.

1990-2000

- Se desarrollo Internet y después de 1995 aparece PHP y Mysql como propuesta de base de datos para la Web creando así la Web 2.0, base fundamental para la mayoría de sitios de Internet en la actualidad.
- Aparece OLAP y los sistemas de análisis de datos para la toma de decisiones .

2000-ADELANTE

- Debido al incremento de datos, se toma en cuenta otro paradigma de bases de datos, documental, aunque denominado NOSQL, liderado por MongoDB.
- También por el incremento exponencial de los dispositivos móviles a finales de los 2000's, se retoma bases de datos ligeras, liderada por SQLite.
- En la actualidad otras estrategias aparecen como Cloud Computing, Big Data, y algunos otros paradigmas de bases de datos.

HISTORIA DE LOS DBMS

- 1971 ADABAS (múltiple)
 - Software AG
- 1974 System R
 - IBM
- 1974 INGRES
 - UC Berkeley

DB-ENGINES

DB-Engines Ranking

The DB-Engines Ranking ranks database management systems according to their popularity. The ranking is updated monthly.

Read more about the method of calculating the scores.

357 systems in ranking, May 2020

	Rank Apr 2020	May 2019	DBMS	Database Model	Score		
May 2020					May 2020	Apr 2020	May 2019
1.	1.	1.	Oracle 😷	Relational, Multi-model 🛐	1345.44	+0.02	+59.89
2.	2.	2.	MySQL 🚹	Relational, Multi-model 🔞	1282.64	+14.29	+63.67
3.	3.	3.	Microsoft SQL Server [Relational, Multi-model 🔞	1078.30	-5.12	+6.12
4.	4.	4.	PostgreSQL [1]	Relational, Multi-model 🔞	514.80	+4.95	+35.91
5.	5.	5.	MongoDB 🚼	Document, Multi-model 🔞	438.99	+0.57	+30.92
6.	6.	6.	IBM Db2 🚹	Relational, Multi-model 🛐	162.64	-2.99	-11.80
7.	7.	7.	Elasticsearch 🚹	Search engine, Multi-model 🛐	149.13	+0.22	+0.51
8.	8.	8.	Redis 😷	Key-value, Multi-model 🔞	143.48	-1.33	-4.93
9.	9.	1 11.	SQLite [1	Relational	123.03	+0.84	+0.14
10.	10.	4 9.	Microsoft Access	Relational	119.90	-2.02	-23.88
11.	11.	4 10.	Cassandra 🚹	Wide column	119.16	-0.91	-6.57
12.	12.	12.	MariaDB 🚼	Relational, Multi-model 🔞	90.09	+0.19	+3.57
13.	13.	13.	Splunk	Search engine	87.75	-0.33	+2.51
14.	14.	14.	Hive	Relational	81.54	-2.51	+3.64
15.	15.	15.	Teradata 🚹	Relational, Multi-model 🔞	73.89	-2.70	-2.15

EJERCICIO ER (SUBIRLO A LA CARPETA)

Se desea modelar los contratos musicales de una empresa, dicha empresa tiene agentes que manejan carteras de clientes, y a su vez manejan a una cantidad de artistas, cada artista toca un estilo musical, los clientes solicitan la calendarización de un contrato que es ejecutado por el artista y al finalizar el cliente paga el contrato.

BIBLIOGRAFÍA

- Luis Espino (2016). Modelos de Bases de Datos.
- Coronel, Morris y Rob. (2011). Bases de datos, diseño, implementación y administración.
- Abraham Silberschatz, Henry F. Korth, S. Sudarshan. (2006).
 Fundamentos de diseño de bases de datos.
- C.J. Date. (2004). Introducción a los sistemas de bases de datos.