

# Algorithms and Data Structures 2 CS 1501



Spring 2023

**Sherif Khattab** 

ksm73@pitt.edu

#### Announcements

- Upcoming Deadlines
  - Homework 2: this Friday @ 11:59 pm
  - Lab 2: Tuesday 2/7 @ 11:59 pm
  - Assignment 1: Friday 2/17 @ 11:59 pm
- Lecture recordings are available on Canvas under Panopto Video
- Please use the "Request Regrade" feature on GradeScope if you have any issues with your homework grades
- TAs student support hours available on the syllabus page

#### Previous lecture

- Binary Search Tree
  - How to search and add
  - three cases for delete
- Runtime of BST operations
  - add, search

## Today

- Binary Search Tree
  - How to delete
- Red-Black BST (Balanced BST)
  - definition and basic operations

## Let's see the code for deleting from a BST

- Available online at:
  - https://cs1501-2231.github.io/slideshandouts/CodeHandouts/TreeADT/Slides
  - The slides are under the CodeHandouts/TreeADT/slides folder in the handout repository
  - https://github.com/cs1501-2231/slides-handouts

## BST: delete operation

- Deleting an item requires first to find the node with that item in the tree
- Let's assume that we have already found that node
- The method below returns a reference to the root of the tree after removing its root

private BinaryNode<T> removeFromRoot(BinaryNode<T> root){



## Delete Case 1: tree has only one node

private BinaryNode<T> removeFromRoot(BinaryNode<T> root){



Return null

#### Delete Case 1: root has one child (left or right)

private BinaryNode<T> removeFromRoot(BinaryNode<T> root){



Return the root of the subtree rooted at the child

#### Delete Case 1: root has two children

private BinaryNode<T> removeFromRoot(BinaryNode<T> root){



- replace root's data by the data of the largest item of its left subtree (why?)
- remove the largest item from the left subtree
- return root

## How to find largest item in a BST?

```
private BinaryNode<T> findLargest(BinaryNode<T> root){
   if(root.hasRightChild()){
      return findLargest(root.getRightChild());
   } else {
      return root;
   }
}
```

## How to remove largest item in a BST?

- The method below returns the root of the tree after deleting the largest item
- If the largest item is the root of the tree, return its left child

```
private BinaryNode<T> removeLargest(BinaryNode<T> root){
   if(root.hasRightChild()){
      root.setRightChild(removeLargest(root.getRightChild()));
   } else {
    root = root.getLeftChild();
   }
   return root;
}
```

#### Now we need to find the node to delete

- The method below returns the root of the BST after removing the node that contains entry if found
- We also need to return the removed data item
  - How to return two things?
  - Pass a wrapper object

## Wrapper Class

```
private class ReturnObject {
 T item;
  private ReturnObject(T entry){
    item = entry;
  private void set(T entry){
    item = entry;
  private T get(){
   return item;
```

## Runtime of BST operations

- Search miss, search hit, add
  - O(depth of node)
  - Worst-case: O(n)
  - Average-case: O(log n)
- Delete
  - Finding the node: O(log n) on average
  - Finding and removing largest node in subtree: O(log n) on average
  - Total is O(log n) on average
    - and O(n) in worst-case

## Runtime of BST operations

- Can we make the worst-case runtime O(log n)?
- Yes, if we keep the tree balanced
  - That is, the difference in height between left and right subtrees is controlled

## Red-Black BST

- Definition
  - two colors for edges: red and black
  - a node takes the color of the edge to its parent
  - only left-child edges can be red
  - at most one red-edge connected to each node
  - Each leaf node has two black null-edges out of it (to the two null references)
  - all paths from root to null-edges have the same number of black edges
  - root node is black
  - Why?
    - <u>maximum</u> height = 2\*log n
- Basic operations
  - rotate left
  - rotate right
  - flip color
  - preserve the properties of the Red-Black BST!

- All black nodes → has to be a full tree
- Height = O(log(n))



Let's imagine an adversary who wants to increase the height of the tree by adding the fewest number of node

Can the adversary add a black node?









Can the adversary add more red nodes to the left-

most path?

The maximum "damage" that the adversary can do is to double the height of the full tree

- 2\* log (n)
- still O(log n)





# Adding to a RB-BST

- Ok, so we add a red leaf node!
- What can go wrong then?
  - The new node is a right child
  - Fix it by left rotation

## What if the new red node is a right child?



#### What if the new node becomes red?



## What if both children of a node are red?

