Fakultät für Physik

WINTERSEMESTER 2014/15

Physikalisches Praktikum 1

PROTOKOLL

Experiment Nr.7: Brechung, Dispersion, Refraktometrie

Datum: 28.11.2014

Namen: Veronika Bachleitner, Erik Grafendorfer

Kurstag/Gruppe: Fr/1

Betreuer: WIECZOREK

1 Allgemeine Grundlagen

Laser: Light Amplification by Stimulated Emission of Radiation

2 Beugung am Spalt und Doppelspalt

2.1 Aufgabenstellung

Wir vermessen das Beugungsbild hinter einem mit monochromatischem Licht beleuchteten Einzelspalt und Doppelspalt.

Wir berechnen uns daraus jeweils die Spaltbreite und den Spaltabstand.

2.2 Grundlagen

2.3 Versuchsaufbau und Methoden

Wir verwenden einen He-Ne-Laser (Wellenlänge = 632.8nm, Strahldivergenz = 1.2 mrad)

2.4 Durchführung

2.5 Ergebnisse

Ordnung n, Wellenlänge λ , Spaltbreite a, Beugungswinkel α_n der n-ten Ordnung Diagramm mit Ordinate $n\lambda$ und Abszisse α_n für min. 6 Ordnungen. -; Lineare Regression, daraus erhalten wir die Spaltbreite a. (Einzelspalt)

$$n\lambda = asin(\alpha_n)$$

Daraus die Spaltbreite a:

$$a = \frac{n\lambda}{\sin(\alpha_n)}$$

$$\sin(\alpha_{\min,k}) = \frac{\lambda}{2b}(2k+1)$$

$$\delta = 2\pi \frac{\Delta x}{\lambda} = 2\pi \frac{b\sin(\alpha)}{\lambda}$$

daher Spaltbreite b beim Doppelspalt:

$$b = \frac{\lambda(2k+1)}{2sin(\alpha_{min,k})}$$

oder

$$b = \delta \lambda (2\pi sin(\alpha))^{-1}$$

- 3 Wellenlängenmessung mit dem Gitter
- 3.1 Aufgabenstellung
- 3.2 Grundlagen
- 3.3 Versuchsaufbau und Methoden
- 3.4 Durchführung
- 3.5 Ergebnisse
- 4 Newtonsche Ringe
- 4.1 Aufgabenstellung
- 4.2 Grundlagen
- 4.3 Versuchsaufbau und Methoden
- 4.4 Durchführung
- 4.5 Ergebnisse