	JEE April 2024
Application No	240310138645
Candidate Name	DEBANGSHU MANDAL
Roll No	HR011200745
Test Date	08/04/2024
Test Time	9:00 AM - 12:00 PM

B. Tech

Section: Mathematics Section A

Q.1 The value of $k \in \mathbb{N}$ for which the integral $I_n = \int_0^1 (1 - x^k)^n dx$, $n \in \mathbb{N}$, satisfies 147 $I_{20} = 148 I_{21}$ is

Options 1. 7

Subject

2. 8

3.10

4.14

Question Type : \boldsymbol{MCQ}

Question ID: 68019114344
Option 1 ID: 68019156034
Option 2 ID: 68019156031
Option 3 ID: 68019156032
Option 4 ID: 68019156033
Status: Not Answered

Chosen Option: --

Q.2 Let $H: \frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to

Options 1. 170

2.169

3.172

4.171

Question Type: MCQ

Question ID: 68019114349 Option 1 ID: 68019156052 Option 2 ID: 68019156051 Option 3 ID: 68019156054 Option 4 ID: 68019156053 Status: Not Answered

- Q.3 For the function $f(x) = (\cos x) x + 1$, $x \in \mathbb{R}$, between the following two statements
 - (S1) f(x) = 0 for only one value of x in $[0, \pi]$.
 - **(S2)** f(x) is decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$.

Options 1. Only (S2) is correct.

- 2. Both (S1) and (S2) are correct.
- 3. Only (S1) is correct.
- 4. Both (S1) and (S2) are incorrect.

Question Type : MCQ

Question ID: 68019114340
Option 1 ID: 68019156017
Option 2 ID: 68019156015
Option 3 ID: 68019156016
Option 4 ID: 68019156018
Status: Answered

Chosen Option: 2

Q.4 Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x - 10$. The number of points of local maxima of f in interval $(0, 2\pi)$ is

Options 1. 2

- 2. 1
- 3. 3
- 4. 4

Question Type: MCQ

Question ID: 68019114342
Option 1 ID: 68019156024
Option 2 ID: 68019156023
Option 3 ID: 68019156025
Option 4 ID: 68019156026
Status: Not Answered

Chosen Option: --

If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, then $80(\tan^2 x - \cos x)$ is equal to

Options 1. 109

- 2. 108
- 3. 19
- 4.18

Question Type: MCQ

Question ID: 68019114353
Option 1 ID: 68019156067
Option 2 ID: 68019156068
Option 3 ID: 68019156069
Option 4 ID: 68019156070
Status: Answered

Q.6 Let
$$y = y(x)$$
 be the solution of the differential equation

$$(1+y^2)e^{\tan x} dx + \cos^2 x (1 + e^{2\tan x}) dy = 0, y(0) = 1.$$
 Then $y(\frac{\pi}{4})$ is equal to

Options 1.
$$\frac{1}{e}$$

$$2. \frac{2}{e^2}$$

3.
$$\frac{1}{e^2}$$

4.
$$\frac{2}{e}$$

Question Type: MCQ

Question ID: 68019114346 Option 1 ID: 68019156040

Option 2 ID: 68019156042 Option 3 ID: 68019156039

Option 4 ID: 68019156041 Status: Not Answered

Chosen Option: --

Let
$$A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$$
. If $A^3 = 4A^2 - A - 21I$, where I is the identity matrix of order

 3×3 , then 2a + 3b is equal to

Options 1. -13

$$2. -9$$

$$4. -10$$

Question Type: MCQ

Question ID: 68019114337 Option 1 ID: 68019156004 Option 2 ID: 68019156003 Option 3 ID: 68019156005

Option 4 ID: 68019156006 Status : Not Attempted and Marked For Review

Q.8 The number of critical points of the function $f(x) = (x-2)^{2/3} (2x+1)$ is

Options 1. 2

- 2. ()
- 3. 1
- 4. 3

Question Type: MCQ

Question ID : 68019114341 Option 1 ID : 68019156021 Option 2 ID : 68019156019 Option 3 ID : 68019156020 Option 4 ID : 68019156022

Status : Answered

Chosen Option: 4

Q.9 If the shortest distance between the lines

$$\begin{split} L_1 : \vec{r} &= (2 + \lambda)\hat{i} + (1 - 3\lambda)\hat{j} + (3 + 4\lambda)\hat{k}, & \lambda \in \mathbb{R} \\ L_2 : \vec{r} &= 2(1 + \mu)\hat{i} + 3(1 + \mu)\hat{j} + (5 + \mu)\hat{k}, & \mu \in \mathbb{R} \end{split}$$

is $\frac{m}{\sqrt{n}}$, where gcd(m, n) = 1, then the value of m + n equals

Options 1. 384

- 2. 377
- 3. 390
- 4.387

Question Type: MCQ

Question ID: 68019114347 Option 1 ID: 68019156044 Option 2 ID: 68019156043 Option 3 ID: 68019156045 Option 4 ID: 68019156046 Status: Not Answered

The set of all
$$\alpha$$
, for which the vectors $\overrightarrow{a} = \alpha t \, \hat{i} + 6 \, \hat{j} - 3 \, \hat{k}$ and $\overrightarrow{b} = t \, \hat{i} - 2 \, \hat{j} - 2 \alpha t \, \hat{k}$ are inclined at an obtuse angle for all $t \in \mathbb{R}$, is

Options 1.
$$\left(-\frac{4}{3}, 0\right)$$
2. $\left(-\frac{4}{3}, 1\right)$

Question Type: MCQ

Question ID: 68019114351 Option 1 ID: 68019156061 Option 2 ID: 68019156062 Option 3 ID: 68019156060 Option 4 ID: 68019156059 Status: Not Answered

Chosen Option: --

Q.11 Let
$$f(x)$$
 be a positive function such that the area bounded by $y = f(x)$, $y = 0$ from $x = 0$ to $x = a > 0$ is $e^{-a} + 4a^2 + a - 1$. Then the differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is

Options
$$1 \cdot \left(8e^x - 1\right) \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$$

$$2 \cdot \left(8e^x + 1\right) \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

$$3.\left(8e^x - 1\right)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

$$4 \left(8e^x + 1 \right) \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$$

Question Type: MCQ

Question ID: 68019114345 Option 1 ID: 68019156035 Option 2 ID: 68019156037 Option 3 ID: 68019156036 Option 4 ID: 68019156038 Status: Answered

Q.12 Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest possible product, is $\frac{m}{n}$, where gcd(m, n) = 1, then n - m equals

Options 1. 11

- 2. 8
- 3. 10
- 4. 9

Question Type: MCQ

Question ID: 68019114352
Option 1 ID: 68019156063
Option 2 ID: 68019156064
Option 3 ID: 68019156066
Option 4 ID: 68019156065
Status: Not Answered

Chosen Option: --

Q.13 Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime

factors of 2310 and $f: A \to \mathbb{Z}$ be the function $f(x) = \left[\log_2\left(x^2 + \left[\frac{x^3}{5}\right]\right)\right]$. The

number of one-to-one functions from A to the range of f is

Options 1. 20

- 2. 24
- 3. 25
- 4.120

Question Type: MCQ

Question ID: 68019114334 Option 1 ID: 68019155991 Option 2 ID: 68019155992 Option 3 ID: 68019155994 Option 4 ID: 68019155993 Status: Not Answered

Chosen Option: --

Let $I(x) = \int \frac{6}{\sin^2 x (1 - \cot x)^2} dx$. If I(0) = 3, then $I\left(\frac{\pi}{12}\right)$ is equal to

Options 1. $6\sqrt{3}$

- 2. √3
- 3. 3√3
- 4. 2√3

Question Type : MCQ

Question ID: 68019114343
Option 1 ID: 68019156029
Option 2 ID: 68019156030
Option 3 ID: 68019156028
Option 4 ID: 68019156027
Status: Answered

Q.15 Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive x-axis be θ ; and the angle between *OP* and the positive z-axis be ϕ , where *O* is the origin. Then the distance of P from the x-axis is

Options 1.
$$\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$$

2
 $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$

3.
$$\gamma \sqrt{1 - \sin^2 \theta \cos^2 \phi}$$

3.
$$\gamma \sqrt{1 - \sin^2 \theta \cos^2 \phi}$$
4. $\gamma \sqrt{1 - \sin^2 \phi \cos^2 \theta}$

Question Type: MCQ

Question ID: 68019114350 Option 1 ID: 68019156057 Option 2 ID: 68019156058 Option 3 ID: 68019156056 Option 4 ID: 68019156055

Status: Not Answered

Chosen Option: --

Let z be a complex number such that |z + 2| = 1 and $\operatorname{Im}\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$. Then the value

of
$$\left| \operatorname{Re} \left(\overline{z+2} \right) \right|$$
 is

Options 1.
$$\frac{2\sqrt{6}}{5}$$

2.
$$\frac{\sqrt{6}}{5}$$
3. $\frac{24}{5}$

3.
$$\frac{24}{5}$$

4.
$$\frac{1+\sqrt{6}}{5}$$

Question Type: MCQ

Question ID: 68019114335 Option 1 ID: 68019155995 Option 2 ID: 68019155997 Option 3 ID: 68019155996 Option 4 ID: 68019155998 Status: Not Answered

- Q.17 The equations of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x 2y = 5, respectively. The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2:1. the equation of the side BC is
- Options 1. x + 3y + 2 = 0
 - 2. x 3y 6 = 0
 - 3. x + 6y + 6 = 0
 - 4. x 6y 10 = 0

- Question Type : MCQ
 - Question ID: 68019114338
 Option 1 ID: 68019156007
 Option 2 ID: 68019156008
 Option 3 ID: 68019156009
 Option 4 ID: 68019156010

Status: Marked For Review

- Chosen Option: 4
- Q.18 Let the circles $C_1: (x-\alpha)^2 + (y-\beta)^2 = r_1^2$ and $C_2: (x-8)^2 + (y-\frac{15}{2})^2 = r_2^2$ touch

each other externally at the point (6, 6). If the point (6, 6) divides the line segment joining the centres of the circles C_1 and C_2 internally in the ratio 2:1, then

$$(\alpha+\beta)+4(r_1^2+r_2^2)$$
 equals

- Options 1. 145
 - 2.130
 - 3.125
 - 4.110

- Question Type: MCQ
 - Question ID: 68019114348
 Option 1 ID: 68019156050
 Option 2 ID: 68019156049
 Option 3 ID: 68019156048
 Option 4 ID: 68019156047
 Status: Marked For Review
- Chosen Option: 1
- Q.19 The sum of all the solutions of the equation $(8)^{2x} 16 \cdot (8)^x + 48 = 0$ is:
- Options 1. $\log_8(6)$
 - 2. $1 + \log_8(6)$
 - 3. $1 + \log_6(8)$
 - 4. $\log_8(4)$

- Question Type: MCQ
- Question ID: 68019114336
 Option 1 ID: 68019156000
 Option 2 ID: 68019156002
 Option 3 ID: 68019156001
 Option 4 ID: 68019155999
 Status: Answered
- Chosen Option: 2

Q.20 If the set $R = \{(a,b): a+5b=42, a,b \in \mathbb{N}\}$ has m elements and

 $\sum_{n=1}^{m} (1 - i^{n!}) = x + iy$, where $i = \sqrt{-1}$, then the value of m + x + y is

Options 1. 4

2. 5

3. 12

4. 8

Question Type : MCQ

Question ID: 68019114339
Option 1 ID: 68019156014
Option 2 ID: 68019156013
Option 3 ID: 68019156011
Option 4 ID: 68019156012
Status: Not Answered

Chosen Option: --

Section: Mathematics Section B

Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to

Given --Answer :

Question Type : SA

Question ID : **68019114355** Status : **Not Answered**

Let $\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}$, $\vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}$ and $\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and

$$\vec{r} \cdot (\vec{b} - \vec{c}) = 0$$
, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to _____.

Given --

Answer:

Question Type : SA

Question ID : **68019114361** Status : **Not Answered**

Q.23 The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to

Given --

Answer:

Question Type: SA

Question ID : 68019114356 Status : Not Answered

The value of
$$\lim_{x\to 0} 2\left(\frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}.....\sqrt[10]{\cos 10x}}{x^2}\right)$$
 is _____.

Given --Answer :

Question Type : SA

Question ID : 68019114359 Status : Not Answered

Q.25 If the range of
$$f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$$
, $\theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite

G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to ______.

Given --Answer :

Question Type : SA

Question ID : 68019114354 Status : Not Answered

Q.26 Let
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r$$
 and $\beta = \left(\sum_{r=0}^{n} \frac{{}^{n}C_r}{r+1}\right) + \frac{1}{n+1}$. If $140 < \frac{2\alpha}{\beta} < 281$, then

the value of n is _____.

Given --Answer :

Question Type : SA

Question ID: 68019114357 Status: Not Answered

Q.27 Let the positive integers be written in the form:

If the k^{th} row contains exactly k numbers for every natural number k, then the row in which the number 5310 will be, is _____.

Given --Answer :

Question Type : **SA**

Question ID: 68019114358 Status: Not Answered

Q.28 Three balls are drawn at random from a bag containin Let the random variables X and Y respectively denote	the number of blue and
yellow balls. If \overline{X} and \overline{Y} are the means of X and Y resequal to	pectively, then $7X + 4Y$ is
Given Answer :	
	Question Type : SA
	Question ID : 68019114363
	Status : Not Answered
Q.29 Let the area of the region enclosed by the curve $y = x$ axis between $x = -\pi$ to $x = \pi$ be A. Then A^2 is equal to	
Given Answer :	
	Question Type : SA
	Question ID : 68019114360
	Status : Not Attempted and Marked For Review
Given Answer :	Question Type : SA
	Question ID : 68019114362
	Status : Not Answered
Section: Physics Section A	
Q.31 Young's modulus is determined by the equation given	by Y= $49000 \frac{m}{l} \frac{dyne}{cm^2}$ where M
is the mass and l is the extension of wire used in the ex Young modules(Y) is estimated by taking data from M smallest scale divisions are 5 g and 0.02 cm along load respectively. If the value of M and l are 500 g and 2 cm percentage error of Y is:	speriment. Now error in I plot in graph paper. The I axis and extension axis
Options 1. 0.5 %	
2. 2 %	
3. 0.2 % 4. 0.02 %	
. 0.02 /0	
	Question Type : MCQ
	Question ID : 68019114381 Option 1 ID : 68019156152
	Option 1 ID . 00017100102

Question ID : 68019114381 Option 1 ID : 68019156152 Option 2 ID : 68019156151 Option 3 ID : 68019156150 Option 4 ID : 68019156149 Status : Not Answered

Chosen Option : --

Q.32 Paramagnetic substances:

- A. align themselves along the directions of external magnetic field.
- B. attract strongly towards external magnetic field.
- C. has susceptibility little more than zero.
- D. move from a region of strong magnetic field to weak magnetic field.

Choose the most appropriate answer from the options given below:

Options 1. A. B. C. D

- 2. B, D Only
- 3. A, C Only
- 4. A, B, C Only

Question Type: MCQ

Question ID: 68019114374 Option 1 ID: 68019156124 Option 2 ID: 68019156123 Option 3 ID: 68019156122 Option 4 ID: 68019156121 Status: Answered

Chosen Option: 3

Q.33 Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V_d}$ and the ratio $\frac{V_b}{V_c}$ is:

Options 1.
$$\frac{V_a}{V_d} \neq \frac{V_b}{V_c}$$

$$2. \frac{V_a}{V_d} = \frac{V_b}{V_c}$$

3.
$$\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^2$$

$$4. \frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{-1}$$

Question Type: MCQ

Question ID: 68019114370 Option 1 ID: 68019156106 Option 2 ID: 68019156105 Option 3 ID: 68019156108 Option 4 ID: 68019156107

Status: Answered Chosen Option: 2

Q.34 In an expression $a \times 10^{b}$:

Options 1. b is order of magnitude for $a \ge 5$

- 2. b is order of magnitude for $5 < a \le 10$
- 3. b is order of magnitude for $a \le 5$
- 4. a is order of magnitude for $b \le 5$

Question Type: MCQ

Question ID: 68019114364 Option 1 ID: 68019156084 Option 2 ID: 68019156082 Option 3 ID: 68019156083 Option 4 ID: 68019156081 Status: Not Answered

Chosen Option: --

Q.35 A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:

Options 1. 150 N

- 2. 3 N
- 3. 300 N
- 4. 30 N

Question Type : MCQ

Chosen Option: 4

Question ID: 68019114367 Option 1 ID: 68019156093 Option 2 ID: 68019156094 Option 3 ID: 68019156096 Option 4 ID: 68019156095 Status: Answered

Q.36 A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$):

Options 1. 118.9

- 2. 220.0
- 3.139.4
- 4. 140.5

Question Type: MCQ

Question ID: 68019114365
Option 1 ID: 68019156085
Option 2 ID: 68019156088
Option 3 ID: 68019156086
Option 4 ID: 68019156087
Status: Not Attempted and Marked For Review

Q.37 Average force exerted on a non-reflecting surface at normal incidence is 2.4 × 10⁻⁴ N. If 360 W/cm² is the light energy flux during span of 1 hour 30 minutes, Then the area of the surface is:

Options 1. 0.2 m^2

- 2. 0.02 m²
- $3.0.1 \text{ m}^2$
- 4. 20 m²

Question Type: MCQ

Question ID: 68019114375 Option 1 ID: 68019156125 Option 2 ID: 68019156127 Option 3 ID: 68019156126 Option 4 ID: 68019156128 Status: Answered

Chosen Option: 2

Q.38 A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies $(K_B:K_A)$ is:

Options 1. $v_B: v_A$

- 2. $m_B : m_A$
- 3. $m_B v_B : m_A v_A$
- 4.1:1

Question Type: MCQ

Question ID: 68019114366 Option 1 ID: 68019156089 Option 2 ID: 68019156090 Option 3 ID: 68019156091 Option 4 ID: 68019156092 Status: Answered

Chosen Option: 4

Q.39 Correct Bernoulli's equation is (symbols have their usual meaning):

Options 1. $P + \rho g h + \rho v^2 = \text{constant}$

- 2. $P + mgh + \frac{1}{2}mv^2 = \text{constant}$
- 3. $P + \rho g h + \frac{1}{2} \rho v^2 = \text{constant}$
- 4. $P + \frac{1}{2}\rho gh + \frac{1}{2}\rho v^2 = \text{constant}$

Question Type: MCQ

Question ID: 68019114369
Option 1 ID: 68019156104
Option 2 ID: 68019156101
Option 3 ID: 68019156103
Option 4 ID: 68019156102
Status: Answered

Q.40 A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:

(Assume h=6.63 \times 10⁻³⁴ J s, m_e = 9.0 \times 10⁻³¹ kg and m_p = 1836 times m_e)

Options 1. 1: 1836

- 2. 1:√1836
- 3.1: $\frac{1}{1836}$
- 4. 1: $\frac{1}{\sqrt{1836}}$

Question Type: MCQ

Question ID: 68019114377 Option 1 ID: 68019156133 Option 2 ID: 68019156134 Option 3 ID: 68019156135 Option 4 ID: 68019156136 Status: Answered

Chosen Option: 3

Q.41 A LCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:

Options 1. same

- 2. double
- 3. halved
- 4. Zero

Question Type: MCQ

Question ID: 68019114383 Option 1 ID: 68019156157 Option 2 ID: 68019156158 Option 3 ID: 68019156159 Option 4 ID: 68019156160 Status: Answered

Chosen Option: 1

Q.42 Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

Options $\frac{b}{1}$.

- 3. ab
- 4. √ab

Question Type: MCQ

Question ID: 68019114378 Option 1 ID: 68019156138 Option 2 ID: 68019156137 Option 3 ID: 68019156139 Option 4 ID: 68019156140 Status: Answered

Q.43 In the given circuit, the terminal potential difference of the cell is:

Options 1. 3 V

- 2. 1.5 V
- 3. 4 V
- 4. 2 V

Question Type: MCQ

Question ID: 68019114373
Option 1 ID: 68019156118
Option 2 ID: 68019156120
Option 3 ID: 68019156119
Option 4 ID: 68019156117

Status : Not Attempted and Marked For Review

Chosen Option: --

Q.44 Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is:

Options 1. $1:\sqrt{3}:2$

- 2. 1: $\sqrt{3}$: $\sqrt{2}$
- 3. $\sqrt{2}:\sqrt{3}:1$
- 4. $\sqrt{3}:\sqrt{2}:1$

Question Type: MCQ

Question ID : 68019114368 Option 1 ID : 68019156097 Option 2 ID : 68019156098 Option 3 ID : 68019156100 Option 4 ID : 68019156099 Status : Answered

- Q.45 Two planets A and B having masses m_1 and m_2 move around the sun in circular orbits of r_1 and r_2 radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\left(\frac{T_A}{T_B}\right)$ is:
- Options 1. $\left(\frac{r_2}{r_1}\right)^{\frac{3}{2}}$
 - 2. $27 \left(\frac{m_1}{m_2} \right)^3$
 - $3. \frac{1}{27} \left(\frac{m_2}{m_1} \right)^3$
 - $4. \left(\frac{r_1}{r_2}\right)^3$

Question Type : MCQ

Question ID: 68019114371 Option 1 ID: 68019156112 Option 2 ID: 68019156110 Option 3 ID: 68019156109 Option 4 ID: 68019156111

Status : **Answered** Chosen Option : **3**

Q.46 The output Y of following circuit for given inputs is:

Options 1. A · B

- 2. Ā · B
- 3. $\Lambda \cdot B(\Lambda + B)$
- 4. 0

Question Type : MCQ

Question ID : 68019114380 Option 1 ID : 68019156146 Option 2 ID : 68019156147 Option 3 ID : 68019156148 Option 4 ID : 68019156145 Status : Answered

Q.47 The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

Options 1. 2.5 g/cm³

- $2.1.7 \text{ g/cm}^3$
- 3. 2.2 g/cm³
- 4. 2.0 g/cm³

Question Type: MCQ

Question ID: 68019114382
Option 1 ID: 68019156155
Option 2 ID: 68019156154
Option 3 ID: 68019156156
Option 4 ID: 68019156153
Status: Not Answered

Chosen Option: --

Q.48 A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is:

Options

- $\frac{5}{3}$
- 2. 7
- 3. $\frac{3}{2}$
- 4. $\frac{3}{5}$

Question Type: MCQ

Question ID: 68019114372
Option 1 ID: 68019156116
Option 2 ID: 68019156115
Option 3 ID: 68019156113
Option 4 ID: 68019156114
Status: Answered

Q.49 Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:
 Options 1. 2: 1

 $2.1:\sqrt{2}$ 3. $\sqrt{2}:1$

4. 1 : 2

Question Type : MCQ

Question ID: 68019114376
Option 1 ID: 68019156129
Option 2 ID: 68019156130
Option 3 ID: 68019156131
Option 4 ID: 68019156132
Status: Answered

Chosen Option: 2

Q.50 Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:

Options 1. 20 µg

2. 0.2 µg

3. 2 µg

4. 10 μg

Question Type : MCQ

Question ID: 68019114379
Option 1 ID: 68019156142
Option 2 ID: 68019156144
Option 3 ID: 68019156141
Option 4 ID: 68019156143
Status: Answered

Chosen Option: 3

Section: Physics Section B

Q.51 A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is _____.

Given --Answer :

Question Type : SA

Question ID: 68019114385

Status : Not Attempted and Marked For Review

Q.52 An electric field, $\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector $\hat{n} = \left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right)$. The electric flux for that surface is _____ V m.

Given --Answer :

Question Type : SA

Question ID: 68019114388

Status : Not Attempted and Marked For Review

Q.53 A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100 Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B=0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is ____ \times 10⁻⁶ J.

Given --Answer :

Question Type: SA

Question ID: 68019114393 Status: Not Answered

particle is 4.5×10^{-14} m. If target nucleus has atomic relocity of α - particle is $\times 10^5$ m/s approx	
velocity of α- particle is× 10° m/s approx	ximately.
$\left(\frac{1}{4\pi \in 0} = 9 \times 10^9 \text{ SI unit, mass of } \alpha \text{ particle} = 6.72 \times 10^{-2} \right)$	²⁷ kg)
Given 0.16	
inswer:	
	Question Type : SA
	Question ID : 68019114391 Status : Answered
	Status . Allsweleu
Q.55 A closed and an open organ pipe have same lengths. If	f the ratio of frequencies of
their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is	s
Given Answer :	
	Question Type : SA
	Question ID : 68019114387
Q.56 A parallel beam of monochromatic light of waveleng single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad.	Question ID : 68019114387 Status : Not Answered eth 600 nm passes through
single slit of 0.4 mm width. Angular divergence corre	Question ID : 68019114387 Status : Not Answered eth 600 nm passes through
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad.	Question ID : 68019114387 Status : Not Answered eth 600 nm passes through
single slit of 0.4 mm width. Angular divergence correminima would be $___ \times 10^{-3}$ rad.	Question ID : 68019114387 Status : Not Answered with 600 nm passes through esponding to second order Question Type : SA Question ID : 68019114392
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad.	Question ID : 68019114387 Status : Not Answered gth 600 nm passes through esponding to second order Question Type : SA
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad. Given Answer: Q.57 An electron with kinetic energy 5 eV enters a region of μT perpendicular to its direction. An electric field E is a direction of velocity and magnetic field. The value of E.	Question ID: 68019114387 Status: Not Answered gth 600 nm passes through esponding to second order Question Type: SA Question ID: 68019114392 Status: Not Answered uniform magnetic field of 3 applied perpendicular to the
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad. Given conswer: Q.57 An electron with kinetic energy 5 eV enters a region of μT perpendicular to its direction. An electric field E is a direction of velocity and magnetic field. The value of E. along the same path, is NC ⁻¹ .	Question ID: 68019114387 Status: Not Answered The 600 nm passes through esponding to second order Question Type: SA Question ID: 68019114392 Status: Not Answered uniform magnetic field of 3 applied perpendicular to the , so that electron moves
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad. Given snswer: Q.57 An electron with kinetic energy 5 eV enters a region of μT perpendicular to its direction. An electric field E is a direction of velocity and magnetic field. The value of E along the same path, is NC ⁻¹ . (Given, mass of electron = 9×10 ⁻³¹ kg, electric charge =	Question ID: 68019114387 Status: Not Answered The 600 nm passes through esponding to second order Question Type: SA Question ID: 68019114392 Status: Not Answered uniform magnetic field of 3 applied perpendicular to the , so that electron moves
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad. Given conswer: Q.57 An electron with kinetic energy 5 eV enters a region of μT perpendicular to its direction. An electric field E is a direction of velocity and magnetic field. The value of E along the same path, is NC ⁻¹ . (Given, mass of electron = 9×10 ⁻³¹ kg, electric charge = Given 900	Question ID: 68019114387 Status: Not Answered The 600 nm passes through esponding to second order Question Type: SA Question ID: 68019114392 Status: Not Answered uniform magnetic field of 3 applied perpendicular to the , so that electron moves
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad. Given conswer: Q.57 An electron with kinetic energy 5 eV enters a region of μT perpendicular to its direction. An electric field E is a direction of velocity and magnetic field. The value of E along the same path, is NC ⁻¹ . (Given, mass of electron = 9×10 ⁻³¹ kg, electric charge = Given 900	Question ID: 68019114387 Status: Not Answered Question Type: SA Question ID: 68019114392 Status: Not Answered Question ID: 68019114392 Status: Not Answered Question ID: 68019114392 Status: Not Answered
single slit of 0.4 mm width. Angular divergence correminima would be × 10 ⁻³ rad. Given Answer: Q.57 An electron with kinetic energy 5 eV enters a region of μT perpendicular to its direction. An electric field E is a direction of velocity and magnetic field. The value of E along the same path, is NC ⁻¹ . (Given, mass of electron = 9×10 ⁻³¹ kg, electric charge =	Question ID: 68019114387 Status: Not Answered The 600 nm passes through esponding to second order Question Type: SA Question ID: 68019114392 Status: Not Answered uniform magnetic field of 3 applied perpendicular to the , so that electron moves

Q.54 In an alpha particle scattering experiment distance of closest approach for the α

Q.58 Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $\mathbf{A}\sqrt{x}$. The value of x is ______.

Given --Answer :

Question Type : SA

Question ID : 68019114384

Status : Not Attempted and Marked For Review

Q.59 Resistance of a wire at 0 °C, 100 °C and t °C is found to be 10 Ω , 10.2 Ω and 10.95 Ω respectively. The temperature t in Kelvin scale is _____.

Given --Answer :

Question Type : SA

Question ID: 68019114389

Status : Not Attempted and Marked For Review

Q.60 A liquid column of height 0.04 cm balances excess pressure of a soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is ____ cm. (if $g = 10 \text{ m s}^{-2}$)

Given --Answer :

Question Type : SA

Question ID : **68019114386** Status : **Not Answered**

Section: Chemistry Section A

0.61 Among the following halogens

Which can undergo disproportionation reactions?

Options 1. Cl_2 , Br_2 and I_2

- 2. Only I₂
- 3. F2, Cl2 and Br2
- 4. F₂ and Cl₂

Question Type : MCQ

Question ID: 68019114398
Option 1 ID: 68019156189
Option 2 ID: 68019156187
Option 3 ID: 68019156190
Option 4 ID: 68019156188
Status: Answered

Chosen Option : 1

Q.62 Match List I with List II

LIST I (Compound)		LIST II (Colour)	
A.	$Fe_4[Fe(CN)_6]_3 \cdot xH_2O$	I.	Violet
B.	[Fe(CN) ₅ NOS] ⁴⁻	II.	Blood Red
C.	[Fe(SCN)] ²⁺	III.	Prussian Blue
D.	$(NH_4)_3PO_4\cdot 12MoO_3$	IV.	Yellow

Choose the correct answer from the options given below:

Options 1. A-II, B-III, C-IV, D-I

- 2. A-IV, B-I, C-II, D-III
- 3. A-I, B-II, C-III, D-IV
- 4. A-III, B-I, C-II, D-IV

Question Type: MCQ

Question ID: 68019114406 Option 1 ID: 68019156221 Option 2 ID: 68019156222 Option 3 ID: 68019156219 Option 4 ID: 68019156220 Status: Answered

Q.63 Number of Complexes with even number of electrons in t_{2g} orbitals is -

$$[\mathrm{Fe}(\mathrm{H_2O})_6]^{2+}, [\mathrm{Co}(\mathrm{H_2O})_6]^{2+}, [\mathrm{Co}(\mathrm{H_2O})_6]^{3+}, [\mathrm{Cu}(\mathrm{H_2O})_6]^{2+}, [\mathrm{Cr}(\mathrm{H_2O})_6]^{2+}$$

Options 1. 2

- 2. 5
- 3. 1
- 4. 3

Question Type: MCQ

Question ID: 68019114404 Option 1 ID: 68019156211 Option 2 ID: 68019156212 Option 3 ID: 68019156214 Option 4 ID: 68019156213 Status: Not Answered

Chosen Option: --

Q.64 For the given hypothetical reactions, the equilibrium constants are as follows:

$$X \rightleftharpoons Y; K_1 = 1.0$$

$$Y \rightleftharpoons Z$$
; $K_2 = 2.0$

$$Z \rightleftharpoons W; K_3 = 4.0$$

The equilibrium constant for the reaction $X \rightleftharpoons W$ is

Options 1. 12.0

- 2.6.0
- 3. 8.0
- 4. 7.0

Question Type : MCQ

Question ID: 68019114396 Option 1 ID: 68019156181 Option 2 ID: 68019156182 Option 3 ID: 68019156180 Option 4 ID: 68019156179 Status: Answered

Q.65 Give below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: The stability order of +1 oxidation state of Ga, In and Tl is Ga < In < Tl.

Reason R: The inert pair effect stabilizes the lower oxidation state down the group.

In the light of the above statements, choose the *correct* answer from the options given below:

Options 1. A is false but R is true.

- 2. Both A and R are true and R is the correct explanation of A.
- 3. A is true but R is false.
- 4. Both A and R are true but R is NOT the correct explanation of A.

Question Type: MCQ

Question ID: 68019114399
Option 1 ID: 68019156194
Option 2 ID: 68019156191
Option 3 ID: 68019156193
Option 4 ID: 68019156192
Status: Answered

Chosen Option : 2

Q.66 Given below are two statements:

Statement I: N(CH₃)₃ and P(CH₃)₃ can act as ligands to form transition metal complexes.

Statement II: As N and P are from same group, the nature of bonding of $N(CH_3)_3$ and $P(CH_3)_3$ is always same with transition metals.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

Options 1. Both Statement I and Statement II are incorrect.

- 2. Statement I is correct but Statement II is incorrect.
- 3. Both Statement I and Statement II are correct.
- 4. Statement I is incorrect but Statement II is correct.

Question Type: MCQ

Question ID: 68019114400 Option 1 ID: 68019156196 Option 2 ID: 68019156197 Option 3 ID: 68019156195 Option 4 ID: 68019156198 Status: Not Answered

- Q.67 An octahedral complex with the formula CoCl₃.nNH₃ upon reaction with excess of AgNO3 solution gives 2 moles of AgCl. Consider the oxidation state of Co in the complex is 'x'. The value of "x + n" is _____. Options 1. 6
 - 2. 8
 - 3. 5

 - 4. 3

Question Type: MCQ

Question ID: 68019114403 Option 1 ID: 68019156208 Option 2 ID: 68019156210 Option 3 ID: 68019156209 Option 4 ID: 68019156207 Status: Not Answered

Chosen Option: --

Q.68 Match List I with List II

LIST I (Elements)		LIST II (Properties in their respective groups)		
A.	C1, S	I.	Elements with highest electronegativity	
B.	Ge, As	II.	Elements with largest atomic size	
C.	Fr, Ra	III.	Elements which show properties of both metals and non-metal	
D.	F, O	IV.	Elements with highest negative electron gain enthalpy	

Choose the correct answer from the options given below:

Options 1. A-II, B-III, C-IV, D-I

- 2. A-IV, B-III, C-II, D-I
- 3. A-III, B-II, C-I, D-IV
- 4. A-II, B-I, C-IV, D-III

Question Type: MCQ

Question ID: 68019114401 Option 1 ID: 68019156201 Option 2 ID: 68019156202 Option 3 ID: 68019156199 Option 4 ID: 68019156200 Status: Answered

Q.69 Identify the major products A and B respectively in the following set of reactions.

$$B \xleftarrow{\text{CH}_3 \text{ COCl}} \text{Pyridine} \xrightarrow{\text{CH}_3} \frac{\text{Conc.H}_2\text{SO}_4}{\Delta} \Rightarrow A$$

Options

1.
$$\Lambda = \begin{array}{c} CH_3 \\ OH \end{array}$$
 and $B = \begin{array}{c} CH_3 \\ OH \end{array}$

2.
$$A = CH_3$$
 and $B = CH_3$ OCOCII₃

3.
$$A = CH_2$$
 and $B = CCH_3$

4.
$$A = CH_2$$
 and $B = CH_3$ OH $COCH_3$

Question Type : MCQ

Question ID: 68019114411 Option 1 ID: 68019156241 Option 2 ID: 68019156240 Option 3 ID: 68019156242 Option 4 ID: 68019156239 Status: Answered

Chosen Option: 2

The **incorrect** statement regarding the given structure is Options 1. despite the presence of -CHO does not give Schiff's test

- 2. can be oxidized to a dicarboxylic acid with Br₂ water
- 3. has 4 asymmetric carbon atom
- 4. will coexist in equilibrium with 2 other cyclic structure

Question Type: MCQ

Question ID: 68019114413
Option 1 ID: 68019156249
Option 2 ID: 68019156248
Option 3 ID: 68019156247
Option 4 ID: 68019156250
Status: Answered

Q.71 Identify the product (P) in the following reaction:

$$\begin{array}{c}
\text{COOH} \\
& \text{ii) } \text{Br}_2/\text{Red P} \\
& \text{ii) } \text{H}_2\text{O}
\end{array}$$

Options

Question Type : \boldsymbol{MCQ}

Question ID : 68019114412
Option 1 ID : 68019156246
Option 2 ID : 68019156245
Option 3 ID : 68019156244
Option 4 ID : 68019156243

Status : Not Attempted and Marked For Review

Chosen Option: --

Q.72 Iron (III) catalyses the reaction between iodide and persulphate ions, in which

A. Fe³⁺ oxidises the iodide ion

B. Fe³⁺ oxidises the persulphate ion

C. Fe²⁺ reduces the iodide ion

D. Fe²⁺ reduces the persulphate ion

Choose the most appropriate answer from the options given below:

Options 1. A only

2. B only

3. A and D only

4. B and C only

Question Type: MCQ

Question ID: 68019114402 Option 1 ID: 68019156203 Option 2 ID: 68019156204 Option 3 ID: 68019156205 Option 4 ID: 68019156206 Status: Answered

Q.73 Which of the following are aromatic?

В.

C. (

Options 1. A and C only

- 2. A and B only
- 3. B and D only
- 4. C and D only

Question Type : \boldsymbol{MCQ}

Question ID: 68019114409 Option 1 ID: 68019156233 Option 2 ID: 68019156231 Option 3 ID: 68019156234 Option 4 ID: 68019156232

Status : **Answered**

Q.74 Match List I with List II

	LIST I (Molecule)	LIST II (Shape)		
A.	NH ₃	I.	Square pyramid	
B.	BrF ₅	II.	Tetrahedral	
C.	PC1 ₅	III.	Trigonal pyramidal	
D.	CH ₄	IV.	Trigonal bipyramidal	

Choose the correct answer from the options given below:

Options 1. A-IV, B-III, C-I, D-II

- 2. A-II, B-IV, C-I, D-III
- 3. A-III, B-IV, C-I, D-II
- 4. A-III, B-I, C-IV, D-II

Question Type: MCQ

Question ID: 68019114395 Option 1 ID: 68019156178 Option 2 ID: 68019156175 Option 3 ID: 68019156176 Option 4 ID: 68019156177 Status: Answered

Chosen Option: 4

Q.75 Which among the following compounds will undergo fastest S_N^2 reaction.

Options

Question Type : MCQ

Question ID: 68019114410
Option 1 ID: 68019156237
Option 2 ID: 68019156238
Option 3 ID: 68019156236
Option 4 ID: 68019156235
Status: Answered

Q.76 Match List I with List II

(N	LIST I (Name of the test)		LIST II (Reaction sequence involved)[M is metal]	
A.	Borax bead test	I.	$MCO_3 \rightarrow MO \xrightarrow{Co(NO_3)_2} CoO \cdot MO$	
В.	Charcoal cavity test	II.	$MCO_3 \rightarrow MCl_2 \rightarrow M^{2+}$	
C.	Cobalt nitrate test	III.	$MSO_4 \xrightarrow{Na_2B_4O_7} M(BO_2)_2 \rightarrow MBO_2 \rightarrow M$	
D.	Flame test	IV.	$MSO_4 \xrightarrow{Na_2CO_3} MCO_3 \rightarrow MO \rightarrow M$	

Choose the correct answer from the options given below:

Options 1. A-III, B-I, C-II, D-IV

- 2. A-III, B-IV, C-I, D-II
- 3. A-III, B-II, C-IV, D-I
- 4. A-III, B-I, C-IV, D-II

Question Type: MCQ

Question ID : 68019114405 Option 1 ID : 68019156215 Option 2 ID : 68019156218 Option 3 ID : 68019156216 Option 4 ID : 68019156217 Status : Answered

Chosen Option: 2

Q.77 Thiosulphate reacts differently with iodine and bromine in the reactions given below:

$$\begin{split} 2S_2O_3^{2-} + I_2 &\to S_4O_6^{2-} + 2I^- \\ S_2O_3^{2-} + 5Br_2 + 5H_2O &\to 2SO_4^{2-} + 4Br^- + 10H^+ \end{split}$$

Which of the following statement justifies the above dual behaviour of thiosulphate?

Options 1. Bromine is a stronger oxidant than iodine

2. Bromine is a weaker oxidant than iodine

3.

Bromine undergoes oxidation and iodine undergoes reduction in these reactions

4.

Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions

Question Type: MCQ

Question ID: 68019114397 Option 1 ID: 68019156183 Option 2 ID: 68019156184 Option 3 ID: 68019156186 Option 4 ID: 68019156185 Status: Answered

Q.78 Combustion of glucose (C₆H₁₂O₆) produces CO₂ and water. The amount of oxygen (in g) required for the complete combustion of 900 g of glucose is :

[Molar mass of glucose in g mol⁻¹ = 180]

Options 1. 32

- 2.480
- 3.960
- 4.800

Question Type: MCQ

Question ID: 68019114394 Option 1 ID: 68019156171 Option 2 ID: 68019156174 Option 3 ID: 68019156173 Option 4 ID: 68019156172 Status: Answered

Chosen Option: 3

0.79 Given below are two statements:

Statement I:

IUPAC name of Compound A is

IUPAC name of Compound B is

4-chloro-1,3-dinitrobenzene.

CH₃ Statement II:

Compound B

4-ethyl-2-methylaniline.

In the light of the above statements, choose the most appropriate answer from the options given below:

Options 1. Statement I is correct but Statement II is incorrect.

- 2. Statement I is incorrect but Statement II is correct.
- 3. Both Statement I and Statement II are incorrect.
- 4. Both Statement I and Statement II are correct.

Question Type: MCQ

Question ID: 68019114407 Option 1 ID: 68019156225 Option 2 ID: 68019156226 Option 3 ID: 68019156224 Option 4 ID: 68019156223 Status: Answered

Q.80 In the given compound, the number of 2° carbon atom/s is

Options 1. One

- 2. Four
- 3. Two
- 4. Three

Question Type : MCQ

Question ID: 68019114408 Option 1 ID: 68019156230 Option 2 ID: 68019156227 Option 3 ID: 68019156229 Option 4 ID: 68019156228 Status: Answered

Chosen Option : 1

Section: Chemistry Section B

Q.81 A solution containing 10 g of an electrolyte AB₂ in 100 g of water boils at 100.52°C. The degree of ionization of the electrolyte (α) is _____ × 10⁻¹. (nearest integer)

[Given: Molar mass of $AB_2 = 200 \text{ g mol}^{-1}$, K_b (molal boiling point elevation const. of water) = 0.52 K kg mol⁻¹, boiling point of water = 100°C; AB_2 ionises as $AB_2 \rightarrow A^{2+} + 2B^-$]

Given --Answer :

Question Type: SA

Question ID : **68019114417**Status : **Not Answered**

Q.82 Consider the following reaction

$$A + B \rightarrow C$$

The time taken for A to become 1/4th of its initial concentration is twice the time taken to become 1/2 of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight line with a negative slope and a positive intercept on the concentration axis.

The overall order of the reaction is ______.

Given 2 Answer:

Question Type: SA

Question ID : 68019114418 Status : Answered

Consider the figure provided.

1 mol of an ideal gas is kept in a cylinder, fitted with a piston, at the position A, at 18° C. If the piston is moved to position B, keeping the temperature unchanged, then 'x' L atm work is done in this reversible process.

x = L atm. (nearest integer)

[Given : Absolute temperature = $^{\circ}$ C + 273.15, R = 0.08206 L atm mol⁻¹ K⁻¹]

Given --Answer :

Question Type: SA

Question ID: 68019114416 Status: Not Answered

Q.84 The 'spin only' magnetic moment value of MO₄²⁻ is _____ BM. (Where M is a metal having least metallic radii. among Sc, Ti, V, Cr, Mn and Zn).

(Given atomic number: Sc = 21, Ti = 22, V = 23, Cr = 24, Mn = 25 and Zn = 30)

Given **3.4** Answer :

Question Type: SA

Question ID : 68019114419 Status : Answered

Q.85 Major product B of the following reaction has π -bond.

Given --Answer :

Question Type : SA

Question ID : 68019114422 Status : Not Answered

Q.86	Number of molecules from the following which are exceptions to octet rule is
	CO ₂ , NO ₂ , H ₂ SO ₄ , BF ₃ , CH ₄ , SiF ₄ , ClO ₂ , PCl ₅ , BeF ₂ , C ₂ H ₆ , CHCl ₃ , CBr ₄
Giver	
Answer	
	Question Type : SA
	Question ID : 68019114415 Status : Not Answered
Q.87	If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the maximum amount of aniline yellow formed will be g. (nearest integer)
	(consider complete conversion).
Giver Answer	
	Question Type : SA
	Question ID : 68019114420 Status : Not Answered
	Status . Not Allswered
Q.88	The number of optical isomers in following compound is:
	Br CH ₃
Giver Answer	
	Question Type : SA
	Question Type : 3A Question ID : 68019114421
	Status : Not Answered

Q.89 A hypothetical electromagnetic wave is show below.

The frequency of the wave is $x \times 10^{19}$ Hz.

x =_____(nearest integer)

Given **2** Answer :

Question Type : SA

Question ID : 68019114414
Status : Answered

Q.90 Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with Hinsberg's reagent is ______.

Given --Answer :

Question Type: SA

Question ID : **68019114423**Status : **Not Answered**