Deep Modular Co-Attention Networks for Visual Question Answering

Group 10: Shin Seonggu Nam Yeonju

CONTENTS

1. What is VQA?

2. What is MCAN?

3. CODE

4. EVALUATION

5. CONCLUSION

#1
What is VQA?

Visual
Question
Answering

01: What is VQA?

Introduction

1. Understand the Question: Key Words

2. Understand the Image: Key Objects

01: What is VQA?

Introduction

Open Ended

Co-Attention

To understand / extract features much better

#2
What is
MCAN?

deep Modular Co-Attention Network

Image Embedding Trained by minimizing CNN 02: What is MCAN? **MCAN Network Overview** vegetables Question Embedding Pointwise Multiplication Sum=1 Vanila VQA the man selling Step 2 Step 1 Step 3 Q: What is the GloVe+ Att. Stacking mustache Reduce LSTM made of? BCE or Loss Faster Encoder-Att. R-CNN Decoder Reduce A: Banana Deep Co-Attention Question and Image Multimodal Fusion and Output Representation (§4.1) Learning (§4.2) Classifier (§4.3)

Step 1: Question & Image Representation

zero-padding to deal with the variable number and length.

Step 2: Co-Attention(1) - Attention Units

Combine SA & GA

-> MCA Layer!

MCA Layer Components

Step 2: Co-Attention(2) – MCA Layers

Step 2: Co-Attention(3) – MCA Model

Stacking VS Encoder-Decoder

Step 3: Fusion & Classification

#3
Code
Execution

Using DEMO

03: Code Execution

DataSet

Pretrained by F-R-CNN

Train 80k / 444k **Val** 40k / 214k Question

Human noted ans-ques pairs (Related to COCO images)

Pretrained by LSTM+GLOVE

Test 80k / 448k #4 Results

Performance Test and Analysis

Model	All	Y/N	Num	Other
ID(Y)- $GA(X,Y)$	64.8	82.5	44.7	56.7
SA(Y)- $GA(X,Y)$	65.2	82.9	44.8	57.1
SA(Y)- $SGA(X,Y)$	65.4	83.2	44.9	57.2

L	$MCAN_{sk}$	$MCAN_{\mathrm{ed}}$	Size
2	66.1	66.2	27M
4	66.7	66.9	41M
6	66.8	67.2	56M
8	66.8	67.2	68M

Model	All	Y/N	Num	Other
Randft + PE	65.6	83.0	47.9	57.1
$GloVe_{pt} + PE$	67.0	84.6	49.4	58.2
GloVe _{pt} + LSTM	67.1	84.8	49.4	58.4
$GloVe_{pt+ft} + LSTM$	67.2	84.8	49.3	58.6

MCA Varients

Best model: SA(Y)-SGA(X, Y)

Stacking vs Encoder-decoder

Under 6 layers: similar performance

Over 6 layers: en/decoder shows better performance

Question Representations

Performance depending on whether the model used Glove, PE, or LSTM

04: Results

Performance Test and Analysis

Overall and per-type accuracies of MCAN models

Best model: SA(Y)-SGA(X, Y)

XID(Y)-GA(X, Y), SA(Y)-GA(X, Y) in number questionsSA(X) is important for increasing the performance of number questions

Performance Test and Analysis

Performance Test and Analysis

Performance Test and Analysis

Performance Test and Analysis

Comparison with state-of-the-art

Model	Test-dev				Test-std
1,10001	All	Y/N	Num	Other	All
Bottom-Up [28]	65.32	81.82	44.21	56.05	65.67
MFH [33]	68.76	84.27	49.56	59.89	-
BAN [14]	69.52	85.31	50.93	60.26	-
BAN+Counter [14]	70.04	85.42	54.04	60.52	70.35
$MCAN_{\rm ed}$ -6	70.63	86.82	53.26	60.72	70.90

MCAN: the best model compared with the current state-of-the-art models

Just little bit lower in 'object counting performance'

#5 Conclusions

With Limitations

Conclusion

Modular Co-Attention Network(MCAN) presented for VQA is effective.

MCAN consists of a <u>Cascade of MCA layers</u>, each of which consists of <u>SA</u> and <u>GA</u> units.

Using the <u>encoder-decoder</u>, and cascading MCA layers in depth(>=6) makes better performance for VQA.

05: Conclusion

Limitations

Image data is provided as pre-trained features:

It was hard to show for clear presentation.

Dataset contains images + questions + answers:

Datasets are not sorted, so it was really challenging to match indexes between image file + question file + answer file. I tried to make simple demo with small dataset, but I failed.... It made an error

Code Error (Caught KeyError in Dataloader worker process 0):

Spent over one and a half week, 24 hours every day.

Someone said it is a problem of dataset, so I truncated my current project and restarted in 1 day.

It fortunately worked while training, but when evaluating, the runtime shut down and the error code showed again.

I was in deep panic, however I saw a message "Drive error". Then I found out google drive also has daily limitation. So I purchased upgraded drive version in order to reset the limitation -> and it worked!

05: Conclusion

Limitations

Huge amount of Data:

It requires at leat 30GB RAM / 22 hours to train (as authors noted)

I first purchased COLAB PRO version, however it lacked RAM. So I had to purchase COLAB PRO + version.

But the connection of high RAM and GPU was unstable. So I made 2 more accounts with COLAB PRO +.

It made me possible to run the code always, but I think it made the "google drive error" because all these 3 accounts shaed the same drive. If I knew this, I would have used just my original account...

Cost to Run the Project:

```
MONEY)
```

COLAB PRO +: \$49.99 X 3 (three accounts)
GOOGLE DRIVE(2TB): \$10.08

TIME)

2 weeks: FIXING ERROR

1 day: Making ppt + Making Script + Running train/evaluation + Making Code note

Thank you