Efficient Lossy Trapdoor Functions based on Subgroup Membership Assumptions

Haiyang Xue, Bao Li, Xianhui Lu, Dingding Jia, Yamin Liu

Institute of Information Engineering , Chinese Academy of Sciences

2013.11.21

Introduction

- 2 Our Contribution
 - \bullet SMA \Longrightarrow LTDF
 - Concrete Examples

Conclusion

Outline

Introduction

- Our Contribution
 - ullet SMA \Longrightarrow LTDF
 - Concrete Examples
- Conclusion

Lossy Trapdoor Function (LTDF)

Peikert and Waters proposed the LTDF in STOC 2008.

DDH, LWE
$$ightarrow$$
 LTDF $ightarrow$
$$\begin{cases} extit{TDF, Hard Core}; \\ extit{OT}; \\ extit{CR Hash}; \\ extit{CCA,...} \end{cases}$$

Lossy Trapdoor Function [PW'08]

From Peikert's slides

 $F\stackrel{c}{pprox}F$

Definition of LTDF

Injective model

- $(s,t) \leftarrow S_{inj}(1^n);$
- $F_{ltdf}(s,\cdot): \{0,1\}^m \to \{0,1\}^*$
- $\bullet \ F_{ltdf}^{-1}(t, F_{ltdf}(s, x)) = x.$

Lossy with l bits

- $s \leftarrow S_{loss}(1^n)$;
- $F_{ltdf}(s,\cdot): \{0,1\}^m \to \{0,1\}^*$
- $F_{ltdf}(s,\cdot)$ has size at most 2^{m-l} ;

$$\{s: s \leftarrow S_{lossy}\} \stackrel{c}{\approx} \{s: (s,t) \leftarrow S_{inj}\}.$$

Constructions of LTDF

- DDH or d-liner [PW'08],[FGKRS'10], [Wee12];
- QR assumption [FGKRS'10],[JL'13], [Wee12]
- DCR assumption [BFO'08], [FGKRS'10], [Wee12]
- LWE assumption [PW'08],[Wee12]
- Φ -Hiding [KOS'10].

The DCR based construction is one of the most efficient constructions.

DCR Assumption [Pai99, Dam01]

Definition

Let
$$N=pq$$
 for $p=2p'+1$, $q=2q'+1$ and $s\geq 2$
$$P:=\{a=x^{N^{s-1}}\mod N^s|x\in\mathbb{Z}_N^*\},$$

$$M:=\{a=(1+N)^yx^{N^{s-1}}\mod N^s|x\in\mathbb{Z}_N^*,y\in\mathbb{Z}_{N^{s-1}}\}.$$

$$\{a\leftarrow P\} \stackrel{\mathsf{c}}{\approx} \{a\leftarrow M\}$$

- N^{s-1} -th residuosity is a subgroup with order $2p'q' \approx N/2$.
- For a in M, $a^{2p'q'} = 1 + y2p'q'N \mod N^s.$

4□ > 4□ > 4 = > 4 = > = 90

DCR Based LTDF

For input $m \in [0, N^{s-1}]$, the two function models follow:

Injective model

Lossy model

$$\{(1+N)x^{N^{s-1}}\}^m$$

$$\{x^{N^{s-1}}\}^m$$

•
$$G_{N^{s-1}} = H \times K = <(1+N)> \times \{x^{N^{s-1}}\}$$

• $s \ge 3$ in order to make enough lossiness.

4□▶ 4□▶ 4∃▶ 4∃▶ ∃ *9

Motivation

General Subgroup membership assumption $\xrightarrow{?}$ LTDF

 $\mod N^3 \xrightarrow{\ ? \ } \mod N^2 \xrightarrow{\ ? \ } \mod N$

Outline

Introduction

- Our Contribution
 - ullet SMA \Longrightarrow LTDF
 - Concrete Examples
- Conclusion

Our Contribution

Subgroup membership assumption + 2 Properties $\xrightarrow{\quad \checkmark \ }$ LTDF

$$\mod N^3 \xrightarrow{\quad \checkmark \quad} \mod N^2 \xrightarrow{\quad \checkmark \quad} \mod N$$

Shrinking the subgroup or Enlarging the quotient group.

Subgroup Membership Assumption [Gj ϕ steen 05]

Definition (SMA)

Let G be a finite cyclic group.

$$G = < g > = G/K \times K = G/K \times < h >$$

The subgroup membership assumption $SM_{(G,K)}$ asserts that,

$$\{x, x \leftarrow K\} \stackrel{\mathsf{c}}{\approx} \{x, x \leftarrow G \setminus K]\}.$$

$$\mathbb{Z}_{N^s}^* = <(1+N) \times \{x^{N^{s-1}}\} > .$$

2 Properties

- $|G/K| \gg |K|$. (Lossy property)

Definition (Subgroup Discrete Logarithm Problem [Gj ϕ steen 05])

If $\varphi:G\to G/K$ is the canonical epimorphism, then $SDL_{(G,K,g)}$ is:

To compute $\log_{\varphi(g)}(\varphi(x))$ for $x \leftarrow G$.

$$(1+N)^y z^{N^{s-1}} \to y?$$

Generic construction

Let (G,K,g,h,t) be an instance of $SM_{(G,K)}$ with 2 properties. For $m\in [0,|G/K|]$, the two models follow,

Injective model

- $P_{ltdf}(a,m) = a^m = [gh^r]^m$
- 3 Recover m by solving $SDL_{(G,K,q)}$ with t.

Lossy model

- ② $F_{ltdf}(a, m) = a^m = [h^r]^m$
- $|F_{ltdf}(a,\cdot)| < |K| \text{ as } F_{ltdf}(a,\cdot)$ falls into K ;

SMA⇒ LTDF

Theorem (1 in page 240)

If the $SM_{G,K}$ with two above properties holds, This is an $(\log |G/K|, \log |G/K| - \log |K|)$ LTDF.

DCR& QR based LTDF

Let N = pq with $p = 2^k p' + 1, q = 2^k q' + 1$.

- For $y \in QNR_N$, let $G = <(1+N)y^N>$ with order $N2^kp'q'$;
- For $h_1 \in \mathbb{Z}_N^*$, let $K = \langle h_1^{2^k N} \rangle$ with order p'q'.

Theorem (3 in page 243)

$$DCR\&QR \Rightarrow SM_{(G,K)}.$$

Extended *p*-subgroup based LTDF

Let
$$N=p^2q$$
 with $p=2p'+1, q=2q'+1$, For $y\in\mathbb{Z}_N^*$, Let $h=y^{2N^2}$

- $\bullet \ \ \textit{Let} \ G = <(1+N)h> \textit{with order} \ Np'q';$
- Let $K = \langle h \rangle$ with order p'q'.

 $SM_{(G,K)}$ is a generalization of p subgroup in [OU98]

Decisional RSA [Groth 05] based LTDF

Let N=pq with $p=2p'r_p+1, q=2q'r_q+1$, Let r_p,r_q be B-smooth with t distinct prime factors and $l\approx \log B$.

For $x \in \mathbb{Z}_N^*$, let $h = x^{2r_p r_q}$ and $g \leftarrow QR_N$.

- Let $G = \langle g \rangle$ with order larger than $p'q'2^{(t-d)(l-1)}$;
- Let $K = \langle h \rangle$ with order p'q'.

This $SM_{(G,K)}$ assumption is the Decisional RSA assumption in [Groth 05].

Outline

Introduction

- Our Contribution
 - ullet SMA \Longrightarrow LTDF
 - Concrete Examples

Conclusion

Comparison with previous constructions

Assumption	Input size	Lossiness	Index size	Efficiency
DDH	n	$n- \mathbb{G} $	$n^2\mathbb{G}$	n^2 Multi
LWE	n	cn	$n(d+w)\mathbb{Z}_q$	n(d+w) Multi
d-linear	n	$n-d \mathbb{G} $	$n^2\mathbb{G}$	n^2 Multi
QR	$\log N$	1	\mathbb{Z}_N^*	1 Multi
DDH& QR	n	$n - \log N$	$(\frac{n}{k})^2 \mathbb{Z}_N^*$	$(\frac{n}{k})^2$ Multi
Φ -hiding	$\log N$	$\log e$	\mathbb{Z}_N^*	$\log e \log N$
DCR	$2 \log N$	$\log N$	$\mathbb{Z}_{N^3}^*$	$3\log x \log N$
QR & DCR	$\frac{9}{8}\log N$	$\frac{3}{8}\log N$	$\mathbb{Z}_{N^2}^*$	$2\log x \log N$
E p -sub	$\log N$	$\frac{1}{3}\log N$	$\mathbb{Z}_{N^2}^*$	$2\log x \log N$
D RSA	l_x	$l_x - l_{p'} - l_{q'}$	\mathbb{Z}_N^*	$\log x \log N$

$$l_x \le 698, l_{p'} = l_{q'} = 160$$

Conclusion

We present a generic construction of LTDFs from subgroup membership assumptions.

We give three efficient constructions based on

- DCR & QR;
- Extended p Subgroup;
- Decisional RSA.

Thank you