CS722/822: Machine Learning

Instructor: Jiangwen Sun Computer Science Department

Algorithm of gradient descent

- 1. Set iteration k = 0, make an initial guess \mathbf{w}_0
- 2. repeat:
- 3. Compute the negative gradient of $E(\mathbf{w})$ at \mathbf{w}_k and set it to be the search direction \mathbf{d}_k
- 4. Choose a step size α_k to sufficiently reduce $E(\mathbf{w}_k + \alpha_k \mathbf{d}_k)$
- 5. Update $\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \mathbf{d}_k$
- 6. k = k + 1
- 7. Until a termination rule is met

Methods to choose step size α_k

- 1. Can use a small constant, e.g., $\alpha_k = 10^{-5}$
- 2. Can use a decay scheme, e.g., $\alpha_0 = 1$, $\alpha_{k+1} = \alpha_k/2$
- 3. Can perform an exact line search, i.e., finding the value of α_k that minimizes

$$E(\mathbf{w}_k + \alpha_k \mathbf{d}_k)$$

- 4. Can perform an inexact line search
 - Backtracking line search

Given
$$\gamma \in (0,0.5)$$
, $\beta \in (0,1)$
$$\alpha_k = 1$$
 While $E(\mathbf{w}_k + \alpha_k \mathbf{d}_k) > E(\mathbf{w}_k) - \gamma \alpha_k d_k^T \mathbf{d}_k$, $\alpha_k = \beta \alpha_k$

Barzilai-Borwein method

$$\alpha_k = \frac{(\mathbf{w}_k - \mathbf{w}_{k-1})^T (\nabla E(\mathbf{w}_k) - \nabla E(\mathbf{w}_{k-1}))}{\|\nabla E(\mathbf{w}_k) - \nabla E(\mathbf{w}_{k-1})\|^2}$$

Reference for BB method

J. Barzilai and J.M. Borwein. Two-point step size gradient methods. *IMA Journal of Numerical Analysis*, 8(1):141–148, 1988.

Possible termination rules

1. If the function value of $E(\mathbf{w})$ does not change any more with the iterations

$$|E(\mathbf{w}_{k+1}) - E(\mathbf{w}_k)| < \varepsilon$$

2. If the magnitude of the gradient is small enough

$$\|\nabla E(\mathbf{w}_{k+1})\| < \varepsilon$$

3. If the difference between \mathbf{w} 's from the two consecutive iterates is small enough

$$\|\mathbf{w}_{k+1} - \mathbf{w}_k\| < \varepsilon$$

4. Fixed number of iterations: *nMaxIter*

Summary

- How to solve least squares to obtain a model f
 - If the hypothesis space contains a set of functions that are linear in terms of weight parameters w, there is a closed-form solution
 - This closed-form solution might be time-consuming depending on the size of the data matrix. In this case, gradient descent can be used
 - If the hypothesis space contains a set of functions that are nonlinear in terms of weight w, there may not be an analytic solution, use the gradient descent
 - Other algorithms, such as Newton-Raphson method,
 might also be used depending on the property of *E*

Reference

S. Boyd. Convex Optimization. *Cambridge University Press*, 2004.

Overfitting versus Underfitting

- Hypothesis space complexity vs data (or sample) complexity
 - Hypothesis space complexity: # of functions in the space
 - Data complexity: # of examples
- Overfitting: happens when the hypothesis space is more complex than the data complexity
- Underfitting: happens when the hypothesis space is too simple to cover the data complexity

Polynomial Curve Fitting

- $f(x) = \sin(2\pi x)$
- x is evenly distributed from [0,1]
- y = f(x) + random error

- e.g.,
$$y = \sin(2\pi x) + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$

Polynomial Curve Fitting

$$f(x; \mathbf{w}) = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - f(x_i; \mathbf{w}))^2$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{RMS} = \sqrt{E(\mathbf{w}^*)/N}$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Data Set Size

Data Set Size

Data Set Size:

Data Set Size:

Regularization

- Penalize large coefficient values
- Ridge regression using two norm regularizer

$$E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - f(x_i; \mathbf{w}))^2 + \lambda ||\mathbf{w}||^2$$

LASSO – using one norm regularizer

$$E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - f(x_i; \mathbf{w}))^2 + \lambda ||\mathbf{w}||_1$$

Other choices of regularizer

Regularization: $\ln \lambda = -\infty$

Regularization: $\ln \lambda = -18$

Regularization: $\ln \lambda = 0$

Regularization: $E_{\rm RMS}$ **VS** $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Choices of Regularizer

There are different choices of regularization

$$\sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2 + \lambda \left[\sum_{j=1}^{N} |w_j|^q \right]$$

Choices of Regularizer

• Comparing $\ell 1$ -norm versus $\ell 2$ -norm regularizer

$$E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2 + \lambda ||\mathbf{w}||^2$$

$$E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2 + \lambda ||\mathbf{w}||_1$$

$$\mathbf{w}_2$$

Why $\ell 1$ -norm regularizer leads to more sparse **w**?