3.36. Considereu les permutacions de \mathfrak{S}_5 següents:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}, \qquad \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 5 & 1 \end{pmatrix}$$

1) Descomponeu les tres permutacions en producte de cicles.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} = (1, 3, 4)(2, 5).$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix} = (1, 5)(2, 3, 4).$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 5 & 1 \end{pmatrix} = (1, 3, 4, 5).$$

2) Calculeu $\sigma \tau \rho$ i $\sigma \rho^2$.

$$\sigma\tau\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 3 & 2 \end{pmatrix}.$$
$$\sigma\rho^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 3 & 4 \end{pmatrix}.$$

3) Trobeu la signatura de τ i de ρ^{-1} .

Es pot descomposar τ en tres transposicions:

$$\tau = (1,5)(2,3)(3,4),$$

i per tant $\mathscr{E}(\tau) = (-1)^3 = -1$.

Per descompondre ρ^{-1} , primer hem de trobar aquesta permutació. Seguint el recorregut de ρ , només cal intercanviar les files i reordenar per obtenir la inversa. Ho fem:

$$\rho^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 3 & 4 \end{pmatrix}.$$

Per tant, si ara descomposem ρ^{-1} en producte de transposicions en podem trobar la signatura:

$$\rho^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 3 & 4 \end{pmatrix} = (1, 5, 4, 3).$$

1

Per tant, $\mathscr{E}(\rho^{-1}) = (-1)^1 = -1$.