Conditionals in Game Theory

Ilaria Canavotto, University of Maryland Eric Pacuit, University of Maryland

Lecture 3

ESSLLI 2022

V. Capraro	and J. Halpern.	Translucent	t Players:	Explaining	Cooperative	Behavior is	n Social
Dilemmas.	Proceedings of	the 15th c	onference	on Theoret	ical Aspects	of Rationa	lity and

Knowledge, 2015.

Prisoner's Dilemma

Social Dilemmas

- 1. There is a unique Nash equilibrium s^N , which is a pure strategy profile;
- 2. There is a unique welfare-maximizing profile s^W , again a pure strategy profile, such that each player's utility if s^W is played is higher than his utility if s^N is played.

Traveler's Dilemma

- 1. You and your friend write down an integer between 2 and 100 (without discussing).
- 2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.
- 3. If the numbers are different, then the airline assumes that the smaller number is the actual price of the luggage.
- 4. The person that wrote the smaller number will receive that amount plus \$2 (as a reward), and the person that wrote the larger number will receive the smaller number minus \$2 (as a punishment).

Suppose that you are randomly paired with another person from class. What number would you write down?

Expected Utility, Best Response

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form. For $a \in S_i$ and $p \in \Delta(S_{-i})$, a is a best response to p when: for all $a' \in S_i$,

$$\sum_{s_{-i} \in S_{-i}} p_i(s_{-i}) u_i(a, s_{-i}) \geqslant \sum_{s_{-i} \in S_{-i}} p_i(s_{-i}) u_i(a', s_{-i})$$

Expected Utility, Best Response

Suppose that $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ is a game in strategic form. For $a \in S_i$ and $p \in \Delta(S_{-i})$, a is a best response to p when: for all $a' \in S_i$,

$$\sum_{s_{-i} \in S_{-i}} p_i(s_{-i}) u_i(a, s_{-i}) \geqslant \sum_{s_{-i} \in S_{-i}} p_i(s_{-i}) u_i(a', s_{-i})$$

Implicitly assumes that i's beliefs about what other agents are doing do not change if i switches from s_i , the strategy he was *intending* to play, to a different strategy.

 $p_i^{s_i,s_i'}$: i's beliefs if he intends to play s_i but instead deviates to s_i'

 $p_i^{s_i,s_i'}$: i's beliefs if he intends to play s_i but instead deviates to s_i'

Strategy $a \in S_i$ is a best response for i with respect to the beliefs $\{p_i^{a,a'}: a' \in S_i\}$ if for all strategies $a' \in S_i$

$$\sum_{s_{-i} \in S_{-i}} p_i^{a,a}(s_{-i}) u_i(a, s_{-i}) \geqslant \sum_{s_{-i} \in S_{-i}} p_i^{a,a'}(s_{-i}) u_i(a', s_{-i})$$

A player is **translucently rational**— if he best responds to his beliefs.

Translucency will be used to determine $p_i^{a,a'}$:

Suppose that G is a two-player game, player 1 believes that, if he were to switch from a to a', this would be detected by player 2 with probability α , and if player 2 did detect the switch, then player 2 would switch to b.

Translucency will be used to determine $p_i^{a,a'}$:

Suppose that G is a two-player game, player 1 believes that, if he were to switch from a to a', this would be detected by player 2 with probability α , and if player 2 did detect the switch, then player 2 would switch to b.

Then $p_i^{a,a'}$ is $(1-\alpha)p_i^{a,a}+\alpha p'$, where p' assigns probability 1 to b: that is, player 1 believes that with probability 1-a, player 2 continues to do what he would have done all along (as described by $p_i^{a,a}$) and with probability α , player 2 switches to b.

Explaining Cooperation

Say that an player i has type (α, β, C) if i intends to cooperate and believes that

- 1. if he deviates from that, then each other agent will independently realize this with probability α ;
- 2. if a player j realizes that i is not going to cooperate, then j will defect; and
- 3. all other players will either cooperate or defect, and they will cooperate with probability β .

Proposition In the Prisoner's Dilemma, it is translucently rational for a player of type (α, β, C) to cooperate if and only if $\alpha\beta b \ge c$.

J. Halpern and R. Pass. Theory, 47:3, pp. 949 -	•	translucent players.	International	Journal of G	ame

Given a strategic-form game $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, a model of G is a triple

$$\langle W, f, (P_i)_{i \in N}, \sigma \rangle$$

where W is a non-empty set of states, $\sigma: W \to \prod_{i \in N} S_i$, and:

For each
$$i \in N$$
, $P_i : W \to \Delta(W)$.

- For each $i \in N$, $F_i : VV \to \Delta(VV)$
- ▶ For all $w \in W$, $P_i(w)([\sigma_i(w)]) = 1$.
- ▶ For all $w \in W$, $P_i(w)(\{v \mid P_i(v) = P_i(w)\}) = 1$.

Given a strategic-form game $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, a model of G is a triple

$$\langle W, f, (P_i)_{i \in N}, \sigma \rangle$$

where W is a non-empty set of states, $\sigma: W \to \prod_{i \in N} S_i$, and:

For each
$$i \in N$$
. $P_i : W \to \Delta(W)$.

- ▶ For all $w \in W$, $P_i(w)([\sigma_i(w)]) = 1$.
- ▶ For all $w \in W$, $P_i(w)(\{v \mid P_i(v) = P_i(w)\}) = 1$.
- f associates with each state w, player i and strategy a a state f(w, i, a) where player i plays a. If f(w, i, a) = w', then
 - $\sigma_i(w') = a$.
 - If $\sigma_i(w) = a$, then w' = w.

$$P_{i,a}^{c}(w)(w') = \sum_{\{w'' \in W \mid f(w'',i,a) = w'\}} P_{i}(w)(w'')$$

$$P_{i,a}^{c}(w)(w') = \sum_{\{w'' \in W \mid f(w'',i,a) = w'\}} P_{i}(w)(w'')$$

- $P_{i,a}^c$ is i's counterfactual beliefs at state w: what i believes would happen if she switched to s at w
- $P_{i,a}(w)^{c}([a]) = 1$
- It may *not* be the case that $P_{i,a}^c(w)([P_{i,a}^c(w),i])=1$: players do not in general know their counterfactual beliefs in state w
- A model is a *strongly appropriate counterfactual structure* if at every state w, every player i knows his counterfactual beliefs.

$$B_i(E) = \{ w \mid P_i(w)(E) = 1 \}$$

$$B_i^*(E) = \{ w \mid \text{for all } s' \in S_i, P_{i,s'}^c(w)(E) = 1 \}$$

Characterize solution concepts in terms of the players beliefs, common beliefs, counterfactual beliefs and common counterfactual beliefs.