第1章

Lie 群と Lie 代数

本資料ではベクトル空間を英大文字で表記し、係数体を blackboardbold* 1 で表記する(e.g. 体 $\mathbb K$ 上のベクトル空間 L). 本章に限ってはベクトルを $x\in L$ のように英小文字で表記し、係数体の元は $\lambda\in\mathbb K$ のように ギリシャ文字で表記する。零ベクトルは $o\in L$ と書き *2 、 $0\in\mathbb K$ を係数体の加法単位元、 $1\in\mathbb K$ を係数体の乗法単位元とする。ベクトル空間の加法を + と書き、スカラー乗法は λx のように係数を左に書く。

1.1 公理的 Lie 代数

この節では ⋉ を任意の体とする.

公理 1.1.1: Lie 代数の公理

体 \mathbb{K} 上のベクトル空間 L の上に二項演算。

$$[,]: L \times L \longrightarrow L, (x, y) \longmapsto [x, y]$$

が定義されていて、かつ以下の条件を充たすとき、L は Lie 代数 (Lie algebra) と呼ばれる:

(L-1) [,] は双線型写像である. i.e. $\forall x, x_i, y, y_i \in L, \forall \lambda_i, \mu_i \in \mathbb{K} (i=1,2)$ に対して

$$[\lambda_1 x_1 + \lambda_2 x_2, y] = \lambda_1 [x_1, y] + \lambda_2 [x_2, y],$$

$$[x, \mu_1 y_1 + \mu_2 y_2] = \mu_1 [x, y_1] + \mu_2 [x, y_2]$$

が成り立つ.

(L-2) $\forall x \in L$ に対して

$$[x,x]=o$$

が成り立つ.

(L-3) $\forall x, y, z \in L$ に対して

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = o$$

が成り立つ b (Jacobi 恒等式).

 $^{^{*1}}$ IAT $_{
m E}$ X コマンドは\mathbb

^{*2 0} の濫用を回避するための苦肉の策です... 普通に不便なので次章以降では零ベクトルも 0 と書きます.

 a ベクトル空間に備わっている加法とスカラー乗法の他に、追加で $[\ ,]$ が定義されているという状況である。この付加的な 二項演算はしばしば**括弧積** (bracket) とか**交換子** (commutator) とか **Lie ブラケット** (Lie bracket) とか呼ばれる。

b 結合律ではない!

公理 (L-1), (L-2) から

$$o = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]$$

が従う. i.e. [x,y] は反交換 (anticommute) する:

(L'-2) $\forall x, y \in L$ に対して

$$[x, y] = -[y, x]$$

が成り立つ.

逆に (L'-2) を仮定すると

$$o = [x, x] + [x, x] = (1+1)[x, x]$$

が成り立つ*3ので、体 \mathbb{K} において $1+1\neq 0$ ならば [x,x]=o が言える. i.e. $\operatorname{char} \mathbb{K} \neq 2$ ならば*4 (L'-2) と (L-2) は同値である.

【例 1.1.1】 一般線形代数 $\mathfrak{gl}(V)$

V を体 $\mathbb K$ 上のベクトル空間とする. V から V への線型写像全体が成す集合を $\operatorname{End} V$ と書く a . End V の加法とスカラー乗法をそれぞれ

+: End
$$V \times$$
 End $V \longrightarrow$ End V , $(f, g) \longmapsto (v \mapsto f(v) + g(v))$
 $\cdot : \mathbb{K} \times$ End $V \longrightarrow$ End V , $(\lambda, f) \longmapsto (v \mapsto \lambda f(v))$

として定義すると、組 $(\operatorname{End} V, +, \cdot)$ は体 \mathbbm{K} 上のベクトル空間になる.以降では常に $\operatorname{End} V$ をこの方法でベクトル空間と見做す.

 $\operatorname{End} V$ の上の Lie ブラケットを

$$[,]: \operatorname{End} V \times \operatorname{End} V \longrightarrow \operatorname{End} V, (f,g) \longmapsto fg - gf$$

と定義する。ただし右辺の fg は写像の合成 $f\circ g$ の略記である。このとき組 $(\operatorname{End} V, +, \cdot, [\ ,])$ が Lie 代数の公理を充たすことを確認しよう:

^{*3 2} つ目の等号ではスカラー乗法の分配律(ベクトル空間の公理である)を使った.

^{*} 4 体 \mathbb{K} の標数 (characteristic) を char \mathbb{K} と書いた.

(L-1) $\forall v \in V$ を 1 つとる. 定義に従ってとても丁寧に計算すると

$$\begin{aligned} [\lambda_{1}f_{1} + \lambda_{2}f_{2}, g](v) &= \left((\lambda_{1}f_{1} + \lambda_{2}f_{2})g - g(\lambda_{1}f_{1} + \lambda_{2}f_{2}) \right)(v) \\ &= (\lambda_{1}f_{1} + \lambda_{2}f_{2}) \left(g(v) \right) - g\left((\lambda_{1}f_{1} + \lambda_{2}f_{2})(v) \right) \\ &= (\lambda_{1}f_{1}) \left(g(v) \right) + (\lambda_{2}f_{2}) \left(g(v) \right) - g\left((\lambda_{1}f_{1})(v) + (\lambda_{2}f_{2})(v) \right) \\ &= \lambda_{1}f_{1} \left(g(v) \right) + \lambda_{2}f_{2} \left(g(v) \right) - \lambda_{1}g \left(f_{1}(v) \right) - \lambda_{2}g \left(f_{2}(v) \right) \\ &= \lambda_{1} \left(f_{1} \left(g(v) \right) - g \left(f_{1}(v) \right) \right) + \lambda_{2} \left(f_{2} \left(g(v) \right) - g \left(f_{2}(v) \right) \right) \\ &= \lambda_{1} [f_{1}, g](v) + \lambda_{2} [f_{2}, g](v) \\ &= \left(\lambda_{1} [f_{1}, g] + \lambda_{2} [f_{2}, g] \right)(v) \end{aligned}$$

となる. ただし 4 つ目の等号で $g \in \operatorname{End} V$ が線型写像であることを使った. 全く同様にして

$$[f, \mu_1 g_1 + \mu_2 g_2](v) = \mu_1 [f, g_1] + \mu_2 [f, g_2]$$

を示すこともできる.

- (L-2) 明らかに [f, f] = ff ff = o なのでよい.
- (L-3) [,]の双線型((L-1))から

$$\begin{split} &[f,[g,h]] + [g,[h,f]] + [h,[f,g]] \\ &= [f,gh] - [f,hg] + [g,hf] - [g,fh] + [h,fg] - [h,gf] \\ &= fgh - ghf - fhg + hgf + ghf - hfg - gfh + fhg + hfg - fgh - hgf + gfh \\ &= o. \end{split}$$

この Lie 代数 $(\text{End }V, +, \cdot, [,])$ は一般線形代数 (general linear algebra) と呼ばれ、記号として $\mathfrak{gl}(V)$ と書かれる.

 $\dim V =: n < \infty$ のとき,End V は $n \times n$ \mathbb{K} -行列全体が成す \mathbb{K} ベクトル空間 $\mathrm{M}(n,\mathbb{K})$ と同型である b . $\mathrm{M}(n,\mathbb{K})$ を Lie ブラケット [X,Y] := XY - YX によって Lie 代数と見做す c ときは,この同型を意識して $\mathfrak{gl}(n,\mathbb{K})$ と書く.さて, $\mathfrak{gl}(n,\mathbb{K})$ の標準的な基底は所謂**行列単位**

$$E_{ij} := \begin{bmatrix} \delta_{i\mu} \delta_{j\nu} \end{bmatrix}_{1 \le \mu, \nu \le n} = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} i$$

である. Einstein の規約を使って $E_{ij}E_{kl}=\left[\delta_{i\mu}\delta_{j\lambda}\delta_{k\lambda}\delta_{l\nu}\right]_{1\leq\mu,\,\nu\leq n}=\delta_{jk}\left[\delta_{i\mu}\delta_{l\nu}\right]_{1\leq\mu,\,\nu\leq n}=\delta_{jk}E_{il}$ と計算できるので、 $\mathfrak{gl}(n,\,\mathbb{K})$ の Lie ブラケットは

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{li} E_{kj}$$

によって完全に決まる d .

a 自己準同型 (endomorphism) の略である.

 $[^]b$ V の基底 e_1,\ldots,e_n を 1 つ固定する.このとき同型写像 $\varphi\colon V\longrightarrow \mathbb{K}^n,\ v^\mu e_\mu\longmapsto (v^\mu)_{1\le\mu\le n}$ を使って定義される 線型写像 $M\colon\operatorname{End} V\longrightarrow \operatorname{M}(n,\mathbb{K}),\ f\longmapsto \varphi\circ f\circ \varphi^{-1}$ が所望の同型写像である.

 $[^]c$ 右辺の XY は行列の積である.

d $\forall X,Y\in\mathfrak{gl}(n,\mathbb{K})$ は $X=X^{ij}E_{ij},Y=Y^{ij}E_{ij}$ と展開できるので、Lie ブラケットの双線型性から $[X,Y]=X^{ij}Y^{kl}[E_{ij},E_{kl}]=X^{ik}Y^{kl}E_{il}-X^{ij}Y^{ki}E_{jk}=(X^{ik}Y^{kj}-X^{ki}Y^{jk})E_{ij}$ と計算できる。