CS 335-337: Assignment 3

Anish Deshpande - 180100013

Pssignment 3 1.1 b) I have used 5 features to classify the shapes.
i) The first is the number of transitions from white to black or black to while in any given row. This number will be atmost 2 for any shape except a star, and for a star, there will be a few rows where there are 4 transitions.
ii) The next 4 features are all extracted from information from 10×10 patches surrounding each point.
* We take patches whose centre is on the shape. * We want it to be a corner ledge, so only let 30/100 pixels be black, this encludes the interior of a shape.

Date :
: dE(w) = -1 (yi) [1 - 1 xezik]
$\frac{1}{2} \frac{\partial E(w)}{\partial z_{ik}} = -1 \left(\frac{y^{(i)}}{y^{(i)}} \left[1 - \frac{1}{2} e^{z_{ik}} \right] \right)$
P=1
DE(W) = -1 ((i) (i) ZiR)
DE(W) = -1 (yi) - yi)eZiR DZiK N (JR - JR ZeZiK)
P=1
(i)
Say Y'= NxK matrix of yk's.
(w) 1
$\frac{\partial E(w)}{\partial z} = -1 \left(y' - softmax(weights, \Phi(x)) \right)$
JZ N
DE(M) = (1)* O(X) (OW (O(X)) - Y)
$\frac{\partial z}{\partial w} = \frac{1}{N} \frac{\varphi(x)}{\varphi(x)} \left(\frac{\nabla_w (\varphi(x)) - Y}{\nabla_w (\varphi(x)) - Y} \right)$
4(x)W
Where $\sigma_{W}(\Phi(x)) = Softman = e^{q(n)}$
∑e ^{Φ(x)} W.
Columns

2.2	E Line 10 sistic secure ssion
0)	for binary logistic stegression. test accuracy obtained = 0.8525 [0.863]
	Model M', which predicts O' all the time,
	test accuracy = 0.86 [0.84]
	Clearly, accuracy is not a good metric. This is
	because of the nature of the data 1013
	extremely unlikely for the song to have made
	it to the Billboard Flot 100, so any moder
	can cheat and just predict that it won't
	make it, for high accuracy.
c)	For our model, F1 score
	= 0.301 (excluding artist name)
	= 0.522 (including artist name, preferred).
	Consider the model M, which predicts 0
	all the time.
	F1 score = 2TP
	2TP+ FN+FP
	: TP=0 and fN>0
	F1 score = 0
	Clearly, F1 score is a great indicator of the
	model's performance, as it takes into consideration
	the extent of misclossification also: (FN, FP) terms
	the extent of misclassification also: (FN, FP) terms, comparing those with the TPs.

	Date :
	An imbalanced class-distribution exists here, so false negative and false positives are very important. 50, FI score is a good metric for model evaluation.
e)	Perception accuracy on D1 = 0.78 Logistic regression on D1, accuracy = 0.84
	Logistic regression outperforms the perceptron. They are both hyperplanes, but because of the non- linear nature of the logistic curve, it can fit better to real-world situations. A linear model is more often than not unable to
	separate and classify actual data, like the fact that the relationship between the properties of a song and whether it makes it to the billboard top 100 is complex.
-	