Graphs: 2-Satisfiability

SAT Notation

- 1. Satisfiability: SAT problem
 - Boolean formula: n variables x_1, x_2, \ldots, x_n
 - 2n literals $x_1, !x_1, x_2, !x_2, ..., x_n, !x_n$
 - $v = AND, \hat{} = OR$
 - CNF = conjunctive normal form
 - Clause: OR of several literals $(x_3 v !x_5 v_x 1 \sim v x_2)$
 - f in CNF is AND of m clauses

$$-(x_2) \hat{(}!x_3 v x_4) \hat{(}x_3 v !x_5 v !x_1 v x_2) \hat{(}!x_2 v !x_1)$$

 $- x_1 = F, x_2 = T, x_3 = F$

• Any formula can be converted to CNF form, but the formula might be large

SAT Problem

- 1. SAT:
 - Input: formula f in CNF with n variables and m clauses
 - Output: Assignment (T or F to each variable) satisfying if one exists
 - NO if none exists

SAT Problem Quiz

- 1. $f = (!x_1 \ v \ !x_2 \ v \ x_3) \ \hat{} \ (x_2 \ v \ x_3) \ \hat{} \ (!x_3 \ v \ !x_1) \ \hat{} \ (!x_3)$
 - x1 = False, x2 = True, x3 = False

k-SAT

- 1. k-SAT:
 - Input: formula f in CNF with n variables and m clauses each of size <= k
 - Size of clause = number of literals
 - Output: Assignment (T or F to each variable) satisfying if one exists
 - NO if none exists
- 2. SAT is NP-complete
 - k-SAT is NP-complete for all k >= 3
 - Poly-time algorithm for 2-SAT

Simplifying Input

- 1. Consider input f for 2-SAT
 - Simplify: Unit clause = clause with 1 literal
 - Take a unit clause, say literal a_i
 - Satisfy it (set $a_i = T$)
 - Remove clauses containing a_i
 - Let f' be the resulting formula
 - Observation: f is satisfiable <=> f' is satisfiable
 - Can assume all clauses of size = 2

Graph of Implications

- 1. Take f with all clauses of size = 2, n variables m clauses
- 2. Create a directed graph:
 - 2n vertices corresponding to $x_1, !x_1, ..., x_n, !x_n$
 - 2m edges corresponding to 2 "implications" per clause

3. Example

•
$$f = (!x_1 \ v \ x_2) \ (x_2 \ v \ x_3) \ (x_3 \ v \ x_1)$$

- $x_1 = T -> x_2 = F$

- $x_2 = T -> x_1 = F$

• $(A \ v \ B)$

- $!A -> B$

- $!B -> A$

Graph of Implications

Graph Properties

Graph of Implications

- 1. Path $x_1 -> !x_2 -> x_3 -> !x_1$
 - If $x_1 = T$ then $x_1 = F$ (contradiction)
 - If $x_1 = F$, so it might be okay?
- 2. If paths $x_1 \rightarrow !x_1$ and $!x_1 \rightarrow x_1$, then f is not satisfiable
 - This means \mathbf{x}_1 and $\mathbf{!}\mathbf{x}_1$ are in the same SCC

SCC's

- 1. Lemma: If for some i, x_i and $!x_i$ are in the same SCC, then f is not satisfiable
- 2. Lemma: If for all i, x_i and $!x_i$ are in different SCC's, then f is satisfiable
 - Prove f is satisfiable by finding a satisfying assignment

Algorithm Idea

- 1. Approach 1:
 - Take sink SCC S
 - Set S = T (satisfy all literals in S)
 - Remove S and repeat
 - By satisfying the literals in S, we are not satisfying their complements
 - If the complement set is a source SCC, we set it to False

Algorithm Idea 2

- 1. Approach 2:
 - Take source SCC S'
 - Set S' = F
 - Complement of S' is a sink SCC
 - By setting S' = F, !S' = T
- 2. Can take sink SCC and set it to true or a source SCC and set it to F
 - These approaches are equivalent

2SAT Algorithm

- 1. Key fact: If for all i, x_i and $!x_i$ are in different SCC's
 - S is a sink SCC <=> !S is a source SCC
- 2. Runtime: O(n+m)

2SAT(f)

```
Construct graph G for f
Take a sink SCC S
    set S = T (and !S = F)
    remove S and !S
    repeat until empty
```

Proof of Key Fact

- 1. Key fact: If for all i, x_i and $!x_i$ are in different SCC's
 - S is a sink SCC <=> !S is a source SCC
- 2. Simpler claim: A -> B <=> !B -> !A
- 3. Proof of key fact:
 - Take sink SCC S
 - For A, B in S, we have paths A -> B and B -> A Also have paths !B -> !A and !A -> B
 - S is a SCC \ll !S is a SCC

Rest of Proof

- 1. For A in S, no edges $A \rightarrow B = No$ edges $B \rightarrow A$
 - No outgoing from A => no incoming to !A
 - Therefore !S is a source
 - S is a SCC $\langle = \rangle$!S is a SCC

Proof of Claim (Satisfiability)

- 1. Take path $A \rightarrow B$, say:
 - $g_0 \rightarrow g_1 \rightarrow g_2 \rightarrow \dots \rightarrow g_l$
 - $g_1 \rightarrow g_2$ comes from $(!g_1 \vee g_2)$