

Michigan State University

TABLE OF CONTENTS

- **01** NETWORK EMBEDDING
- **02** DEEPWALK

X

- 03 NODE2VEC
- **04** EXPERIMENTS AND EVALUATION
- **05** FUTURE DIRECTIONS

Understanding Graphs for Representation Learning

- Visualizes relationships between the data
- Consists of:
 - 1. Nodes: capture data as vectors
 - 2. Edges: connect related nodes
- Representation Learning extracts hidden features from the graph for complex analysis.

e.g. link prediction, node classification, community detection.

Understanding Graphs for Representation Learning

Analyzing Graphs with Random Walk

Steps = 5

- Choose starting point and steps
- Determine probabilities based on neighbor nodes
- Collect data from walks

7

8

2

8

2

SkipGrams and their relation to DeepWalk

- NLP model: words in sentence context
- Applied on the paths to maximize the probability of observing a node's neighborhood
- Nodes with similar neighborhood share similar embeddings
- The objective function of DeepWalk is the following cross entropy:

$$min_y - logP(\{v_{i-w}, ..., v_{i-1}, v_{i+1}, ..., v_{i+w}\}|y_i)$$

W is the window size which restricts the size the random walk context

The meaning and transformation of the SkipGram formula

Looking back at the previous formula, SkipGram removes the ordering constraint

In the end, it will be transformed into:

$$min_y - log \sum -w \le j \le w P(v_{i+j}|y_i)$$

Conditional probability $P(v_{i+j}|y_i)$ defined using the softmax function:

$$P(v_{i+j}|y_{j}) = \frac{\exp(y_{i+j}^{T}y_{i})}{\sum_{k=1}^{|v|} \exp(y_{k}^{T}y_{i})}$$

How DeepWalk Works

Step 1: Random Walk

Step 2: One-hot encoding

one – hot encoded vector

How DeepWalk Works

Step 3: Implement Skip-gram model

How DeepWalk Works

Step 3: Implement Skip-gram model

Why SkipGrams for DeepWalk?

SkipGrams

- Application: Texts
- Context: Relationships of words in a sentence

The quick brown fox jumps over the lazy dog

DeepWalk

- Application: Graphs
- Context: Relationships of nodes in Random Walks

Teacher A – Student B Student B – Student C

Similarities:

DeepWalk adapts SkipGram from natural language processing to graph data.

How Node2Vec Works

- Node2Vec is almost similar to DeepWalk
- Both methods use:
 - 1. Random walks
 - 2. Skipgram model
- Node2Vec have different walk algorithm to collect nodes
- Node2Vec either explores data in wide range or far range

DeepWalk

Node2Vec

How Node2Vec Works

- Current walk: t → v
- Determine probability of v → x
- Parameter $\alpha_{pq}(t,x)$ is introduced, where:

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

- p controls likelihood of revisiting a node
- ullet q controls likelihood of walking further or locally

DeepWalk & Node2Vec

DeepWalk 1 3 7

- Explores data randomly
- Low computational cost
- Ignores important data

Node2Vec

- Flexibility
- Higher computational cost
- Analyze relationships better

Effect of p and q in Node2Vec

Step 1: Prepare dataset (Les Misérable Network)

- Contains 77 nodes, 254 edges
- Nodes: characters from Les Misérable novel
- Edges: relationships between characters

Effect of p and q in Node2Vec

Step 2: Adjust different p and q

Set
$$p = 1, q = 0.5$$

Set
$$p = 1, q = 2$$

Effect of p and q in Node2Vec

Step 3: Analyze results

Set
$$p = 1, q = 0.5$$

 $p \gg q$: deep exploration Homophily community

Set
$$p = 1, q = 2$$

 $p \ll q$: broad exploration Structural equivalence

Experiments

Downstream Tasks

- Node classification
- Link prediction
- Graph classification
- Anomalous node detection
- Clustering Homophily community
- structural equivalence

Game of Thrones

From Book to Network

Data

Source	Target	weight
Addam-Marbrand	Jaime-Lannister	3
Addam-Marbrand	Tywin-Lannister	6
Aegon-I-Targaryen	Daenerys-Targaryen	5
Aegon-I-Targaryen	Eddard-Stark	4

Link two characters each time their names appear within 15 words.

Number of nodes: 187 Number of edges: 684 **Pre-processing-visualize**

Import unweighted graph
nx.spring_layout(G)

Processing-DFS

Node2Vec (G, dimensions=32, p=5, q=0.5, walk_length=10, num_walks=600, workers=4)

DFS depth-first search

DFS depth-first search, find homogeneous communities

array([-0.36179334, -0.11370167, ..., 0.05198546], dtype=float32)

passes through an average of 9.12 different nodes

Processing

Kmeans clustering algorithm

n_clusters=4

Kmeans clustering algorithm

n_clusters=4

Consider weights between nodes

visualize the weights

visualize the weights

Get rid of low-weights characters

visualize the weights

Get rid of low-weights characters

Cut out some of the less frequent connections

Test

Find similar nodes of Jon-Snow node

>>>model.wv.most_vector('Jon-Snow')

```
<<<[( 'Dareon', 0.7889388203620911),
     ('Donal-Noye', 0.7577574849128723),# Night's Watch the blacksmith
     ('Matthar', 0.7506797313690186),
     ('Othor', 0.740899384021759),
     ('Dywen', 0.73787921667099),
     ('Rast', 0.7340330481529236),
     ('Hobb', 0.7294636368751526),
     ('Grenn', 0.7205644249916077),
     ('Albett', 0.7146326303482056),
     ('Todder', 0.706096887588501)]
```

Same group of recruits as Jon Snow. # Same group of recruits as Jon Snow.

Ranger of the Night's Watch

Comrades

homogeneous communities

Processing-BFS

Node2Vec (G, dimensions=32, p=0.1, q=100, walk_length=10, num_walks=600, workers=4)

BFS breadth-first search

Processing-BFS

BFS breadth-first search, find structural equivalence

array([0.31407943, 0.24742755, ..., -0.5104667], dtype=float32)

passes through an average of 4.41 different nodes

Kmeans clustering algorithm

n_clusters=6

If we consider weights between nodes

Nodes are classified by structure

Test

Find similar nodes of Jon-Snow node

>>>model.wv.most_vector('Jon-Snow')

<<<[('Alliser-Thorne', 0.6657752394676208), # master-at-arms at Castle Black ('Bowen-Marsh', 0.6607412695884705), # First Steward at Castle Black ('Halder', 0.647807240486145), ('Grenn', 0.6452684998512268), ('Chett', 0.6423465609550476), ('Jeor-Mormont', 0.6395081877708435), # 997th Lord Commander of the Night's Watch ('Pypar', 0.6281514763832092), ('Samwell-Tarly', 0.6267001032829285), ('Dareon', 0.6214413046836853), ('Hobb', 0.6167237758636475)]

structural equivalence

Evaluation

 $p=1, q=[10^{-5}, 10^{5}]$

Interpretation and validation of consistency within clusters of data.

The structural differentiation is not so obvious

Lead to the results tend to be stable when q>>p

Evaluation-Parameter sensitivity

$$p=1, q=[10^{-5}, 10^{5}]$$

$$p=10^{-2}, q=[10^{-7}, 10^3]$$

While a low q encourages outward exploration, it is balanced by a low p which ensures that the walk does not go too far from the start node.

Random Walk in predictions

- Their algorithms based on learning automata
- Based on Q-learning
- Based on deep learning and neural network
- Based on game theory
- Their algorithms for complex analysis.
- Chemical molecules