C.02.01.A1 – Modelo de Mistura Reativa Ideal

Aplicação em FTAF – Finite Time Air-Fuel Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-12 20h25m04s UTC

• Mistura m com p componentes indexados por k;

- Mistura m com p componentes indexados por k;
- Caracterizada pelas frações mássicas, \mathbf{mf}_k , e frações molares, \mathbf{y}_k :

- Mistura m com p componentes indexados por k;
- Caracterizada pelas frações mássicas, \mathbf{mf}_k , e frações molares, \mathbf{y}_k :

$$\mathrm{mf}_k = \frac{m_k}{m_m}, \qquad \mathrm{e} \qquad \mathrm{y}_k = \frac{n_k}{n_m},$$

- Mistura m com p componentes indexados por k;
- Caracterizada pelas frações mássicas, \mathbf{mf}_k , e frações molares, \mathbf{y}_k :

$$\mathrm{mf}_k = \frac{m_k}{m_m}, \qquad \mathrm{e} \qquad \mathrm{y}_k = \frac{n_k}{n_m},$$

• Massa da mistura, m_m , e sua quantidade química, n_m :

- Mistura m com p componentes indexados por k;
- Caracterizada pelas frações mássicas, \mathbf{mf}_k , e frações molares, \mathbf{y}_k :

$$\mathrm{mf}_k = \frac{m_k}{m_m}, \qquad \mathrm{e} \qquad \mathrm{y}_k = \frac{n_k}{n_m},$$

• Massa da mistura, m_m , e sua quantidade química, n_m :

$$m_m = \sum_{k=1}^p m_k, \qquad \mathrm{e} \qquad n_m = \sum_{k=1}^p n_k.$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

$$R_m = \frac{\bar{R}}{M_{\cdots}},$$
 e

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

• Define a constante de gás aparente, junto com \bar{R} .

$$R_m = rac{ar{R}}{M_m}, \qquad {
m e}$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

• Define a constante de gás aparente, junto com \bar{R} .

$$R_m = rac{ar{R}}{M_m}, \qquad {
m e}$$

$$P_m V_m = n_m \bar{R} T_m = m_m R_m T_m.$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

$$R_m = \frac{\bar{R}}{M_m},$$
 e

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

• Define a constante de gás aparente, junto com \bar{R} .

$$R_m = rac{ar{R}}{M_m}, \qquad {
m e}$$

$$M_m = \frac{m_m}{n_m} = \sum_{k=1}^p y_k M_k,$$

• Define a constante de gás aparente, junto com \bar{R} .

$$R_m = rac{ar{R}}{M_m}, \qquad {
m e}$$

$$P_m V_m = n_m \bar{R} T_m = m_m R_m T_m.$$

