Análisis Matemático I Clase 18: Aplicaciones de la integral al Cálculo de volúmenes

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Mayo, 2024

En esta clase, vamos a emplear la integral definida para calcular volúmenes de sólidos en el espacio. En aplicaciones, el cálculo de volúmenes se puede utilizar para estimar la cantidad y costo de materiales en determinadas construcciones, por ejemplo la cantidad de hormigón a emplear en una presa.

Para ello, vamos a introducir primero la noción de sección transversal de un sólido.

Definición de sección transversal

Una sección transversal de un sólido S es la región plana formada por la intersección de S con un plano.

Volumen de un sólido por secciones transversales

Problema: se desea calcular el volumen del siguiente sólido

Volumen de un sólido por secciones transversales

Observar que para cada $x \in [a, b]$, la intersección del plano correspondiente con el sólido determina una sección transversal de área A(x):

Deducción de la fórmula integral para el cálculo de volúmenes por medio de secciones transversales

Tomamos una partición $P = \{x_0, x_1, ..., x_n\}$ del intervalo [a, b]. Y consideremos un subintervalo genérico $[x_{k-1}, x_k]$. Los planos $x = x_{k-1}$ y $x = x_k$ definen secciones transversales:

Deducción de la fórmula integral para el cálculo de volúmenes por medio de secciones transversales

El volumen de la región comprendida entre los planos $x = x_{k-1}$ y $x = x_k$ se puede aproximar con:

$$A(x_k)\Delta x_k = A(x_k)(x_k - x_{k-1})$$

donde $A(x_k)$ es el área de la sección transversal para $x = x_k$. Por lo tanto, la suma de Riemann:

$$\sum_{k=1}^{n} A(x_k) \Delta x_k$$

aproxima el volumen del sólido considerado. Si la función A = A(x) es integrable en el intervalo [a,b], entonces cuando la norma ||P|| tiende a cero, el volumen del sólido vendrá dado por:

$$\int_{a}^{b} A(x) dx$$

Llegamos a la siguiente definición

Definición: Volumen de un sólido por medio de secciones transversales

El volumen de un sólido S con área de sección transversal integrable A = A(x) en un intervalo [a, b], es:

$$\int_{a}^{b} A(x) dx$$

Procedimiento para calcular volúmenes de sólidos mediante secciones transversales

- Bosqueje el sólido y una sección transversal representativa
- Determine una fórmula para el área A(x) de la sección transversal representativa
- Determine los límites de integración
- Integre A(x) para determinar el volumen

Ejemplo 1: determine el volumen de una pirámide de altura 3m, que tiene una base cuadrada de 3m por lado.

Solución:

Si tomamos una sección transversal arbitraria de la pirámide obtenemos:

Entonces, el área de la sección trasversal asociada a x es:

$$A(x) = x^2$$
.

Luego, el volumen de la pirámide es:

$$V = \int_0^3 x^2 dx = \frac{x^3}{3} \Big|_0^3 = 9m^3.$$

Aplicaremos el método de secciones transversales al cálculo de volúmenes de sólidos de revolución

Sólidos de revolución

Definición de Sólido de Revolución

Un Sólido de Revolución es aquel que se obtiene al hacer girar una porción del plano alrededor de una recta fija.

Veremos algunos ejemplos en las próximas diapositivas.

Para calcular el volumen de un sólido de revolución, vamos a emplear dos métodos:

- Método de discos,
- Método de las arandelas,

Método de discos

Sólido de revolución: método de discos

Ejemplo 2: sea $y = \sqrt{x}$. Considere la región encerrada por la gráfica de y, el eje x y las rectas x = 0 y x = 4:

Sólido de revolución: método de discos

Al hacer girar la región anterior entorno al eje x se obtiene el siguiente sólido de revolución:

Sólido de revolución: método de discos

Dado $x \in [0, 4]$, la sección transversal correspondiente es:

Entonces el área de la sección transversal A(x) es $\pi(\sqrt{x})^2$. Es decir:

$$A(x) = \pi(\sqrt{x})^2 = \pi x \to V = \int_0^4 \pi x dx = \pi 8.$$

cambios en contenidos del segundo parcial

Información para el segundo parcial (Lunes 20 de Mayo)

- Se rinde en la comisión de teoría que le corresponde a cada alumno.
- En teoría, entra desde clase 7 hasta el método de sustitución.
- En práctica, TP2-TP3 completos y hasta la sección 4 (inclusive) del TP 4.

Ejercicios de repaso, sólo turno tarde

Dada la función

$$f(x) = \frac{x^2 - 49}{x^2 + 5x - 14}.$$

Determine los intervalos de crecimiento y /o decrecimiento de f y los extremos locales (si existieran). Además, encuentre los intervalos de concavidad y verifique si existe algún punto de inflexión.

Sugerencia: factorice y simplifique pero no olvide el dominio de f.

Problema: un sólido se forma juntando dos hemisferios a los extremos de un cilindro circular recto. El volumen total del sólido es de 14 cm^3 . Encontrar el radio del cilindro que hace el área superficial mínima. Recordar que el área de una esfera de radio r es $4\pi r^2$.