AS PER LATEST NTA NOTIFICATION

CHAPTER WISE TEST

YOUR COLLEGE NAME HERE

PHYSICS JEE MAIN (2025)

Topic - Moving Charges and Magnetism

Time Allowed: 60 mins

Instructions for the Candidate:

The Paper consist of 25(Twenty-Five) Question, which are divided in to two Sections

- (a) Section A (MCQ's) Shall consist of 20 (Twenty) Questions. In which all are compulsory.
- (b) Section B (NTA) Shall Consist of 5 (Five) Questions. In which all are compulsory.

Section – A (MCQ's)

- An electron having charge 1.6 $\times~10^{-19}~C$ and a 1. mass 9×10^{-31} kg is moving with 4×10^6 ms⁻¹ speed in a magnetic field 2×10^{-1} T in a circular orbit. The force acting on electron and the radius of the circular orbit will be respectively:
 - (A) 1.28×10^{-13} N, 1.1×10^{-3} m
 - (B) $1.28 \times 10^{-13} \text{ N}, 1.1 \times 10^{-4} \text{ m}$
 - (C) $1.28 \times 10^{-14} \text{ N}, 1.1 \times 10^{-4} \text{ m}$
 - (D) $1.28 \times 10^{-14} \text{ N}, 1.1 \times 10^{-3} \text{ m}$
- 2. A north pole of strength 50 Am and south pole of strength 100 Am are separated by a distance of 10 cm in air. Find the force between them.
 - (A) $30 \times 10^{-18} \,\text{N}$ (B) $20 \times 10^{-6} \,\text{N}$
 - (C) $25 \times 10^{-3} \text{ N}$
- (D) $50 \times 10^{-3} \text{ N}$
- 3. A proton (mass m and charge +e) and an alpha – particle (mass 4m and charge +2e) are projected with the same kinetic energy at right angles to a uniform magnetic field. Which one of the following statements will be true?
 - (A) The alpha particle and the proton will go through the field in a straight line
 - (B) The alpha particle will be bent in a circular path with a smaller radius than that of the proton.

(C) The radius of the path of the alpha – particle will be greater than that of the proton.

Maximum Marks: 100

- (D) The alpha particle and the proton will be bent in a circular path with the same radius.
- 4. A current of 3 amp is flowing in a plane circular coil of radius 4 cm and number of turns 20. The coil is placed in a uniform magnetic field of magnetic induction 0.5 tesla. Then, the potential energy of the magnetic dipole in the position of stable equilibrium is:
 - (A) 0.15 J
- (B) +1500 J
- (C) 1500 J
- (D) +0.15 J
- 5. The figure shows a region of length 1 with a uniform magnetic field of 0.3 T in it and a proton entering the region with velocity $4 \times 10^5 \text{ ms}^{-1}$ making an angle 60° with the field. If the proton completes 10 revolution by

the time it crosses the region shown, I is close

to (mass of proton = 1.67×10^{-27} kg, charge of the proton = $1.6 \times 10^{-19} \,\text{C}$

MATHEMATICS 2

- Which of the following is likely to have the 6. largest resistance?
 - (A) Voltmeter of range 10 V
 - (B) A copper wire of length 1 m and diameter 3 mm
 - (C) Ammeter of range 1 A
 - (D) Moving coil galvanometer
- 7. The armature current in a DC motor is maximum when the motor has:
 - picked up maximum speed
 - ii. just started
 - iii. intermediate speed
 - iv. just been switched of
 - (A) i and ii
- (B) iii and iv
- (C) iv and i
- (D) only ii
- A wife carrying current I is shaped as shown 8. in the figure, The section AB is a quarter circle of radius r. The magnetic field is directed:

- at an angle μ /4 to the plane of the paper
- along the bisector of the angle ACB towards AB
- iii. along the bisector of the angle ACB away from AB
- iv. perpendicular to the plane of the paper and directed into the paper
- (A) only iii
- (B) ii and iii
- (C) iv and i
- (D) i and ii
- 9. A certain region has an electric field $\vec{E} = (2\hat{i} - 3\hat{j})$ N/C and a uniform magnetic field $\vec{B} = (5\hat{i} + 3\hat{j} + 4\hat{k})$ T. The force experienced by a charge 1 C moving with velocity $(\hat{i} + 2\hat{j})$ is:
 - (A) $(10\hat{i} + 7\hat{j} + 7\hat{k})$ (B) $(10\hat{i} + 7\hat{j} 7\hat{k})$

 - (C) $\left(10\hat{i}-7\hat{j}-7\hat{k}\right)$ (D) $\left(-10\hat{i}+7\hat{j}+7\hat{k}\right)$

- A circular coil of radius R carries an electric current. The magnetic field due to the coil at a point on the axis of the coil located at a distance r from the centre of the coil such that $r \gg R$, varies as:
 - (A) $\frac{1}{r^2}$

- A long wire carries a steady current. It is bent 11. into a circle of one turn and the magnetic field at the centre of the coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil will be:
 - (A) nB
- (B) $2n^2$ B
- (C) n^2 B
- (D) 2nB
- 12. The current sensitivity of a galvanometer can be increased by:
 - A. decreasing the number of turns
 - B. increasing the magnetic field
 - C. decreasing the area of the coil
 - D. decreasing the torsional constant of the spring

Choose the most appropriate answer from the options given below:

- (A) (B) and (D) only
- (B) (A) and (C) only
- (C) (B) and (C) only
- (D) (C) and (D) only
- 13. A closed – loop PQRS carrying a current is placed in a uniform magnetic field. If the magnetic forces on segments PS, SR and RQ are F₁, F₂ and F₃ respectively and are in the plane of the paper and along the directions shown, the force on the segment QP is:

(A)
$$F_3 - F_1 + F_2$$

(B)
$$\sqrt{(F_3 - F_1)^2 - F_2^2}$$

(A)
$$F_3 - F_1 + F_2$$
 (B) $\sqrt{(F_3 - F_1)^2 - F_2^2}$ (C) $\sqrt{(F_3 - F_1)^2 + F_2^2}$ (D) $F_3 - F_1 - F_2$

(D)
$$F_3 - F_1 - F_2$$

3 JEE MAIN

- Which of the following particles will describe the smallest circle when projected with the same velocity perpendicular to the magnetic field?
 - (A) α particle
- (B) Electron
- (C) Proton
- (D) Deuteron
- A charged particle is moving in a circular orbit of radius 6 cm with a uniform speed of 3×10^6 under the action of a uniform magnetic field $2 \times 10^{-4} \text{ Wb/m}^2$ at right angles to the plane of the orbit. The charge to mass ratio is:
 - (A) $5 \times 10^{12} \text{ C/kg}$ (B) $5 \times 10^9 \text{ C/kg}$
- - (C) $5 \times 10^{11} \text{ C/kg}$
- (D) $2.5 \times 10^{11} \text{ C/kg}$
- 16. A moving coil galvanometer of resistance 100Ω is converted to an ammeter by the resistance of 0.1 Ω in the circuit. Galvanometer gives full – scale deflection at 100 μ A. The minimum current in the circuit for maximum deflection is:
 - (A) 1000.1 mA
- (B) 1.001 mA
- (C) 100.1 mA
- (D) 10.01 Ma
- A straight thin conductor is bent as shown in the figure. It carries a current I ampere. The radius of the circular arc is r metre. Then, the magnetic induction at the centre of the semicircular arc is:

- (A) $\frac{\mu_0}{4\pi} \left(\frac{\pi I}{r}\right) tesla$ (B) $\frac{\mu_0}{4\pi} \left(\frac{I}{r}\right) tesla$

- A charged particle enters a region of uniform 18. magnetic field B with velocity \vec{v} at an angle θ as shown in the figure. Then the ratio of radius to pitch of the helix is:

- (A) $\tan \theta$
- (C) $\cot \theta$

- The magnetic dipole moment of a current loop 19. is independent of:
 - (A) number of turns
 - (B) magnetic field in which it is lying
 - (C) area of the loop
 - (D) current in the loop
- The magnetic field dB due to a small current 20. element $d\vec{l}$ at a distance r and an element carrying current I is:

(A)
$$d\vec{B} = \frac{\mu_0 I^2}{4\pi} \left(\frac{\vec{dl} \times \vec{r}}{r} \right)$$

(B)
$$d\vec{B} = \frac{\mu_0 I^2}{4\pi} \left(\frac{\vec{d} \times \vec{r}}{r^2} \right)$$

(C)
$$d\vec{B} = \frac{\mu_0 I}{4\pi} \left(\frac{\vec{dl} \times \vec{r}}{r} \right)$$

(D)
$$d\vec{B} = \frac{\mu_0 I}{4\pi} \left(\frac{\vec{dl} \times \vec{r}}{r^3} \right)$$

Section – B (NTA)

- 21. A charge particle of 2μ C accelerated by a potential difference of 100 V enters a region of uniform magnetic field of magnitude 4 mT at right angle to the direction of field. The charge particle completes semicircle of radius 3 cm inside magnetic field. The mass of the charge particle is $\times 10^{-18}$ kg.
- 22. A straight wire AB of mass 40 g and length 50 cm is suspended by a pair of flexible leads in uniform magnetic field of magnitude 0.40 T as shown in the figure. The magnitude of the current required in the wire to remove the tension in the supporting leads is A. $(Take g = 10ms^{-2})$

MATHEMATICS 4

23. A current I = 10 A flows in a ring of radius r = 15 cm made of a very thin wire. The tensile strength of the wire is equal to $T_0 = 1.5$ N. The ring is placed in a uniform magnetic field of strength B as shown in figure. Determine the value of B in tesla so that the ring is just going to rupture.

- 24. Two long parallel wires carrying currents 8 A and 15 A in opposite directions are placed at a distance of 7 cm from each other. A point P is at equidistant from both the wires such that the lines joining the point P to the wires are perpendicular to each other. The magnitude of magnetic field at P is _____ × 10^{-6} T. (Given: $\sqrt{2} = 1.4$)
- 25. A single turn current loop in the shape of a right-angle triangle with sides 5 cm, 12 cm, 13 cm is carrying a current of 2 A. The loop is in a uniform magnetic field of magnitude 0.75 T whose direction is parallel to the current in the 13 cm side of the loop. The magnitude of the magnetic force on the 5 cm side will be

$$\frac{x}{130}$$
 N. The value of x is _____.

SPACE FOR ROUGH WORK