프로젝트 보고서

주제명	전경과 배경 차별 효과 주기		
세부주제명			
	팀명/조번호	시간부족한	
	학번	성명	E-mail
프로젝트 수행팀	20193148	황진주	jinjoo021@naver.com

〈 주제 설명 〉

목표 (정의서 내용)

- ① 입력 영상 3개 선정 및 난이도(상, 중, 하) 설정
- ② 전경 및 배경 분리 알고리즘 선택 및 절차 정의, 영상 난이도별 분리 결과 분석
- ③ 분리 영역 대상 영상 효과 선택과 그 이유
- ④ 효과 적용 결과 정성적 분석과 개선 방법 제언

〈 대표 결과물 〉

〈 요구사항 1 〉

내용	입력 영상 3개 선정 및 난이도(상, 중, 하) 설정		
접근 방법 과 계획	객체 인식이 어려운 영상 - 영상의 밝기가 어두운 영상 - 중 - 배경과 전경이 유사한 영상 - 상 - 화질이 좋지 않은 영상 - 중 - 객체가 불분별한 상황(의자는 배경일 수도, 객체일 수도) - 상 객체 인식이 쉬운 영상(하) - 배경이 단색인 영상 - 객체의 형태가 단조로운 영상 영상개선 알고리즘 - 히스토그램 평활화 : 명암값 분포의 히스토그램을 펼쳐서 고루 퍼진 형태를 갖게 함 - 콘트라스트 스트레칭 : 히스토그램을 조절해 명암 분포가 빈약한 영상을 균일하게 함		
적용 결과 및 설명	아프로프리콜 포콜에 당대 변호에 단호하게 함 타입 충돌 문제로 인하여 적용에 어려움을 겪어 적용하지 못 하였다.		

(필요시 페이지 확장하여 작성)

내용	전경 및 배경 분리 알고리즘 선택 및 절차 정의, 영상 난이도별 분리 결과 분석		
	배경 분리 알고리즘 : 배경과 전경의 차이란?		
	 차 프레임: 제일 간단한 배경 제거 방법. 한프레임에서 다른 한 프레임을 뺀 후, 변화가 큰 부분이 전경 		
	- 평균배경방법 : > 배경모델 생성 : 각 픽셀의 평균과 표준편차를 이용 > 배경영상과 프레임간의 차이의 절대값을 누적하여 학습		
접근 방법	- OpenCV 기본 제공 함수 : > 움직이는 물체를 이전 프레임과의 비교를 통해 도출한다.		
과	=> 프레임의 개념이 필요하기 때문에 '영상'을 이용하자.		
계획	객체 인식 알고리즘 : 객체를 인지하기 위한 방법은?		
	- 평균 이동(Mean Shift) - 동적객체인지 : > 분포되어 데이터 중 밀집구간을 찾아내기 위한 기법 > 가우시안 분포라면 가우시안의 평균 위치를 도출		
	- YOLO - 객체 판별 : > 딥러닝 기반 객체 감지기 > 인식된 객체의 범위와 물체명을 알려준다.		
	=> 객체가 인식된 범위를 제외한 곳을 처리하면 배경이지 않을까?		
적용 결과 및 설명	- YOLO를 이용한 객체 판별 결과: YOLO.py참조 Image - X Image - X Image - X		

- 결과 분석

- 1. 높은 탐지율로 객체를 짚어낼 수 있음
- 2. 부분적으로 드러난 인체에 대해서도 정확히 판별 가능

- 한계점

- > 사람이 팔을 벌리고 '大'와 같은 자세를 취하면 너무 넓은 범위 가 객체로 인지되기 때문에 YOLO 만으로 배경 처리는 어려움
- > '학습된 데이터'에 대해서 객체가 한정되어 있기 때문에 모든 객체에 대한 인지는 힘듦

- 의의

- > 인지된 범위는 객체가 포함된 공간이다. 이 공간에 한하여 객체를 추적한다면, 빠르지는 않지만 불필요한 범위의 잡음을 줄일 수 있는 좋은 처리 기법일 것이다.
- OpenCV 기본 함수 이용 결과 : BackgroundSubtraction.py 참조

- 결과분석

- > 움직이는 객체에 대해서는 0값 그림자는 회색빛으로 나타남
- > 가까이 있는 물체보다는 거리가 있는 작은 물체가 잘 도출

- 처리

- > 빈공간에 대한 연결이 필요해 보여 모폴로지 열림연산 적용
- > cv2.createBackgroundSubtractorKNN 이용
- > 배경추적 결과를 마스크로 이용해 후에 배경값 도출에 이용

- 한계점

- > 이전 프레임의 값을 이용하기 때문에 카메라 이동, 빛에 민감
- > 프로그램 시작 시 물체와 배경이 동시에 등장하면, 전경또한 배경으로 인지해 잔상효과가 생김
- > 가까운 물체에 대해서는 잔상효과, 불체부분의 빈공간 처리 현상이 많이 발생

- SelfiSegmentationModule 이용

- 결과분석

- > 사람, 얼굴에 대하여 영역을 찾고, 배경을 제거하는 모듈 이용
- > 일부 신체부위에 대해서도 사람임을 인지하였다.

- 한계

- > 이름처럼 사람에 대해서만 처리하기 때문에 다른 객체는 처리 할 수 없다.
- > sigma 값을 조절하여 최대한 최적화를 하였지만, 노트북 카메라라는 한계점에 의해 주변의 일그러짐이 크게 보인다.

내용

분리 영역 대상 영상 효과 선택과 그 이유

접근 방법

과

계획

줌(ZOOM)과 같은 프로그램을 만들어보자!

- 배경 변환 : 제공되는 이미지를 이용해 인물 주변 배경 변경 - 꾸밈글 : 자신을 표현할 수 있는 지정된 간단한 꾸밈글 추가

- 제공 효과

배경	기본	기본 검은 색 배경 출력	default
	블러	가우시안 블러 적용	key = B
	이미지	선택 가능한 5가지의 배경 이미지를 제공	key = I
	꾸밈글	선택 가능한 3가지의 텍스트를 띄움	key = T
전경	오브젝트 검출	오브젝트 기반으로 검출 가능한 기능	key = O
	인물 검출	인물 기반으로 검출 가능한 기능	key = O

- 조작

O: 인물검출 모드 / 동적물체검출 모드

B : 배경 블러처리

1: 배경 임의의 이미지 사용

- W : 다음이미지 - S : 이전이미지

적용 T : 꾸밈글 출력

- A : 이전텍스트 - D : 다음텍스트

및 Q : 종료

설명

결과

- 화면구성

〈 요구사항 4 〉

내용	효과 적용 결과 정성적 분석과 개선 방법 제언
접근 방법 과 계획	테스트케이스 - 다양한 밝기 환경 적용 - 다양한 객체의 종류 - 다양한 객체의 수량 기준 - 객체범위를 넘어서거나, 일부 검출을 못 하였는가?
적용 결과 및	 개선점 이전에 도입하고자한 영역 검출 범위에 대한 처리를 적용하지 못하였다. 객체 범위에 도입하여 더 높은 처리를 할 수 있다면 좋을 것이다. 적용하고자 하였던, 밝기 개선 및 콘트라스트 조정을 오류로 인해 적용하지 못 하였다. 적용이 된다면 더욱 좋은 결과를 만들 수 있을 것이다. 시간상의 이유로 다양한 환경의 테스트가 불가능하였다.
설명	의문점 - 객체를 뚜렷하게 하기 위한 방안으로 샤프닝, 엣지검출과 같은 기법을 적용하는 것은 옳은 방법인가? - 군집화 기법들(워터쉐이드, Felzenszwalb 등)은 어떻게 객체의 검출에 이용할 수 있을까?

(필요시 페이지 확장하여 작성)

< 참고 문헌: URL, 도서 등 >

opencv 배경 제거 알고리즘

https://action713.tistory.com/entry/opencv-%EB%B0%B0%EA%B2%BD-%EC%A0%9C%EA%B1%B0-%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98

객체인지 알고리즘

https://deep-learning-study.tistory.com/275

객체인지 및 배경제거

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html

SelfiSegmentationModule

https://gr33nonline.wordpress.com/2021/07/16/course-notes-background-removal/