МП-31 Захаров Дмитро

Викладач: Півень О.Л.

§ Аксіоматичне означення ймовірностей §

Задача 1: Сторінка 8, номер A(1)

Умова. Монету підкидають тричі. Описати простір елементарних подій. Описати події: A — один раз з'явиться герб, B — при другому підкиданні з'явиться герб. Описати події: $A \cap B$, $A \cup \overline{B}$, \overline{A} .

Розв'язання. У якості ймовірностного простору візьмемо наступну множину:

$$\Omega := \{0, 1\}^3 \equiv \{\langle \omega_1, \omega_2, \omega_3 \rangle : \omega_i \in \{0, 1\}\},$$
(1.1)

де для $\omega \in \Omega$, $\omega_i = 1$ $(i \in \{1,2,3\})$ позначає, що на $i^{\text{ому}}$ кидку випав герб, а $\omega_i = 0$ – відповідно ціна.

Для події A достатньо легко перерахувати усі елементи:

$$A = \{ \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 0, 1 \rangle \}. \tag{1.2}$$

Подія B формально записується як $B=\{\omega\in\Omega:\omega_2=1\},$ але можна і перерахувати ці події:

$$B = \{ \langle 0, 1, 0 \rangle, \langle 1, 1, 0 \rangle, \langle 0, 1, 1 \rangle, \langle 1, 1, 1 \rangle \}. \tag{1.3}$$

3 події A лише одна елементарна подія $\langle 0,1,0 \rangle$, де $\omega_2=1$, тому

$$A \cap B = \{\langle 0, 1, 0 \rangle\}. \tag{1.4}$$

Для події $A \cup \overline{B}$ запишемо усі елементи \overline{B} :

$$\overline{B} \triangleq \omega \setminus B = \{ \langle 0, 0, 0 \rangle, \langle 1, 0, 0 \rangle, \langle 0, 0, 1 \rangle, \langle 1, 0, 1 \rangle \}. \tag{1.5}$$

Тому об'єднання:

$$A \cup \overline{B} = \{ \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 0, 1 \rangle, \langle 0, 0, 0 \rangle, \langle 1, 0, 1 \rangle \}$$
 (1.6)

Нарешті, знайдемо \overline{A} :

$$\overline{A} = \{ \langle 0, 0, 0 \rangle, \langle 0, 1, 1 \rangle, \langle 1, 1, 0 \rangle, \langle 1, 0, 1 \rangle, \langle 1, 1, 1 \rangle \}$$

$$(1.7)$$

Задача 2: Сторінка 8, номер В(1)

Умова. Подія A полягає в тому, що число, взяте навмання з відрізка [-10, 10] не більше 4, а подія B — модуль цього числа не перевищує 2. Що означають події: $A \cup B$, $A \cap B$, $B \setminus A$, \overline{B} , $\overline{A} \cap \overline{B}$, \overline{A} .

Розв'язання. Простором елементарних подій є $\Omega = [-10, 10]$. Подія A = [-10, 4], відповідно B = [-2, 2]. Випишемо відповіді:

$$A \cup B = [-10, 4] \cup [-2, 2] = [-10, 4] = A$$
 (2.1)

$$A \cap B = [-10, 4] \cap [-2, 2] = [-2, 2] = B$$
 (2.2)

$$B \setminus A = [-2, 2] \setminus [-10, 4] = \emptyset \tag{2.3}$$

$$\overline{B} \triangleq \Omega \setminus B = [-10, 10] \setminus [-2, 2] = [-10, -2) \cup (2, 10]$$
 (2.4)

$$A \cap \overline{B} = [-10, 4] \cap ([-10, -2) \cup (2, 10]) = [-10, -2)$$
 (2.5)

$$\overline{A} \triangleq \Omega \setminus A = [-10, 10] \setminus [-10, 4] = (4, 10] \tag{2.6}$$

Задача 3: Сторінка 11, номер 5

Умова. Відомі $p_A:=\mathbb{P}(A), p_B:=\mathbb{P}(B), p_{AB}:=\mathbb{P}(A\cap B)$. Знайти ймовірності $A\cup B, \overline{A}\cup \overline{B}, \overline{A}\cup B, \overline{A}\cap B, \overline{A}\cup B, \overline{A}\cap \overline{B}$.

Розв'язання. Для першого випадку використовуємо відомий результат:

$$\mathbb{P}(A \cup B) = p_A + p_B - p_{AB} \tag{3.1}$$

Для другого виразу помітимо, що $\overline{A} \cup \overline{B} = \overline{A \cap B} = \Omega \setminus (A \cap B)$, тому

$$\boxed{\mathbb{P}(\overline{A} \cup \overline{B}) = \mathbb{P}(\overline{A \cap B}) = 1 - p_{AB}}$$
(3.2)

Для $\overline{A} \cap B$ помітимо, що це те саме, що $B \setminus A$. Також замічаємо, що $B = (A \cap B) \cup (B \setminus A)$, причому $A \cap B$ і $B \setminus A$ не перетинаються. Таким чином, $\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(B \setminus A)$, звідки випливає $\mathbb{P}(B \setminus A) = p_B - p_{AB}$. Остаточно:

$$\left| \mathbb{P}(\overline{A} \cap B) = p_B - p_{AB} \right| \tag{3.3}$$

Для $\overline{A} \cap B$, помітимо що це в точності $\overline{A \setminus B}$, а оскільки $\mathbb{P}(A \backslash B) = p_A - p_{AB}$, тому

$$\mathbb{P}(\overline{A} \cap B) = 1 + p_{AB} - p_A \tag{3.4}$$

Нарешті,

$$\mathbb{P}(\overline{A \cup B}) = 1 + p_{AB} - p_A - p_B \tag{3.5}$$

Задача 4: Лекція. Запитання 1

Умова. Чи можуть бути рівноймовірні елементарні події у випадку зліченного простору Ω ?

Розв'язання. Від протилежного: нехай $\Omega = \{\omega_n\}_{n \in \mathbb{N}}$, причому

$$\exists q \in (0,1) : \mathbb{P}(\omega_n) = q \ \forall n \in \mathbb{N}. \tag{4.1}$$

Тоді якщо розподіл \mathbb{P} коректно задано, то $\lim_{N\to\infty}\sum_{n=1}^N\mathbb{P}(\omega_n)=1$. Проте, оскільки $\sum_{n=1}^N\mathbb{P}(\omega_n)=\sum_{n=1}^Nq=qN$, то границя суми $\lim_{N\to\infty}qN=+\infty$ – розбігається. Отже, отримали протиріччя, тому рівнойморівний розподіл не є можливим на зліченному ймовірностному просторі.

Задача 5: Лекція. Запитання 2

Умова. Підкидається монета до тих пір, доки не випаде герб. Результат – кількість підкидань. Тут $\Omega = \mathbb{N}$, де $\omega \in \mathbb{N}$ – число підкидань монети. Як означити тут $\mathbb{P}(\omega)$ для $\omega \in \mathbb{N}$?

 $Bi\partial no 6i\partial b$. Нехай ймовірність випадіння герба дорівнює θ (тобто, взагалі кажучи, монета не обов'язково чесна). Ймовірність того, що підкидання буде одне — це ймовірність випадіння ціни на першому кидку, тобто $1-\theta$. Ймовірність мати два підкидання — це ймовірність на першому підкиданні отримати герб, а на другому — ціну. Оскільки підкидання є незалежними, то маємо $\theta(1-\theta)$. Продовжуючи міркування, можемо отрмати:

$$\mathbb{P}(\omega) = \theta^{\omega - 1} (1 - \theta) \tag{5.1}$$

Щоб довести коректність цього розподіла, помітимо, що

$$\sum_{\omega \in \mathbb{N}} \mathbb{P}(\omega) = \sum_{\omega \in \mathbb{N}} \theta^{\omega - 1} (1 - \theta) = (1 - \theta) \underbrace{\sum_{\omega \in \mathbb{N}} \theta^{\omega - 1}}_{=1/(1 - \theta)} = 1.$$
 (5.2)

Задача 6: Лекція. Вправа 3

Умова. Довести властивості ймовірності на просторі $(\Omega, \mathcal{F}, \mathbb{P})$. Розв'язання. Пункти 1–3 доведені на лекції.

Пункт 4. $\forall A \in \mathcal{F} : \mathbb{P}(A) \in [0,1]$.

Доведення. Оскільки $A\subset\Omega$, а $\mathbb{P}(\Omega)=1$ за означенням, то з властивостей міри маємо $\mathbb{P}(A) \leq \mathbb{P}(\Omega) = 1$. Також оскільки міра – невід'ємна функція на σ -алгебрі підмножин, то $\mathbb{P}(A) \geq 0$.

Пункт 5. Якщо $A \subset B$, то $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$ (субтрактивність міри \mathbb{P}) та $\mathbb{P}(A) \leq \mathbb{P}(B)$ (монотонність міри \mathbb{P}).

Доведення. Помітимо, що $B = A \cup (B \setminus A)$, причому A та $B \setminus A$ не перетинаються. Тому, з адитивності міри, маємо $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A)$, звідки $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$. Оскільки міра невід'ємна, то $\mathbb{P}(B \setminus A) \geq 0$, тоді і $\mathbb{P}(B) - \mathbb{P}(A) \ge 0$, звідки випливає $\mathbb{P}(B) \ge \mathbb{P}(A)$.

Пункт 6. $\forall A, B \in \mathcal{F} : \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

Доведення. Оскільки $A = (A \cap B) \cup (A \setminus B)$, причому $A \cap B$ та $A \setminus B$ не перетинаються, тому $\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \setminus B)$, звідки $\mathbb{P}(A \setminus B) =$ $\mathbb{P}(A) - \mathbb{P}(A \cap B)$. Аналогічно $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

Тепер розкладемо $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$, а оскільки три множини в об'єднанні не перетинаються, то

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B) + \mathbb{P}(B \setminus A)
= \mathbb{P}(A) - \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(A \cap B)
= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \quad \Box$$
(6.1)

 Π ункт 7. $\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n\in\mathbb{N}}\mathbb{P}(A_n)\ \forall A_n\in\mathcal{F}(n\in\mathbb{N}).$ Доведення. Позначимо $G_n:=A_n\backslash\bigcup_{k=1}^{n-1}A_k$. Видно, що $\bigcup_{n\in\mathbb{N}}G_n=\bigcup_{n\in\mathbb{N}}A_n$, причому $G_i\cap G_j=\emptyset\ \forall i\neq j$, тому $\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}G_n\right)=\sum_{n\in\mathbb{N}}\mathbb{P}(G_n)$. Також, оскільки $G_n\subset A_n\ \forall n\in\mathbb{N}$, то і $\mathbb{P}(G_n)\leq\mathbb{P}(A_n)$, тому $\sum_{n\in\mathbb{N}}\mathbb{P}(G_n)\leq\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)$. Отже, остаточно

$$\sum_{n\in\mathbb{N}} \mathbb{P}(G_n) = \mathbb{P}\left(\bigcup_{n\in\mathbb{N}} G_n\right) = \boxed{\mathbb{P}\left(\bigcup_{n\in\mathbb{N}} A_n\right) \le \sum_{n\in\mathbb{N}} \mathbb{P}(A_n)}. \quad \Box$$
 (6.2)

Пункт 8. $A_n \in \mathcal{F}, A_n \subset A_{n+1}, \ mo\partial i \ \mathbb{P}\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$

Доведення. Розглянемо допоміжні множини $B_n := A_n \setminus A_{n-1}, B_1 := A_1.$ При такій конструкції, $A_n = \bigcup_{k=1}^n B_k$, і усі $\{B_n\}_{n\in\mathbb{N}}$ попарно не перетинаються, тому

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \mathbb{P}\left(\bigcup_{n\in\mathbb{N}}B_n\right) = \sum_{n\in\mathbb{N}}\mathbb{P}(B_n) = \lim_{N\to\infty}\sum_{n=1}^N\mathbb{P}(B_n) = \lim_{N\to\infty}\mathbb{P}(A_N). \quad \Box$$
(6.3)

Пункт 9. $A_n \in \mathcal{F}, A_n \supset A_{n+1}, \ mo\partial i \ \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$ Доведення. Ідея: якщо $A_n \supset A_{n+1}$, то $\overline{A_n} \subset \overline{A_{n+1}}$. Тому, користуючись минулим пунктом,

$$\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}A_n\right) = 1 - \mathbb{P}\left(\overline{\bigcap_{n\in\mathbb{N}}A_n}\right) = 1 - \mathbb{P}\left(\bigcup_{n\in\mathbb{N}}\overline{A}_n\right) \\
= 1 - \lim_{n\to\infty}\mathbb{P}(\overline{A}_n) = \lim_{n\to\infty}(1 - \mathbb{P}(\overline{A}_n)) = \lim_{n\to\infty}\mathbb{P}(A_n). \quad \Box$$
(6.4)

Задача 7: Лекція. Вправа 4

Умова. Навести приклад зліченного ймовірнісного простору з $\Omega = \mathbb{N}$. $Bi\partial noвi\partial b$. Наприклад, розподіл Пуасона, де відсутній нульовий елемент, тобто

$$\mathbb{P}(\omega;\lambda) := \frac{\lambda^{\omega - 1}}{(\omega - 1)!} e^{-\lambda}, \ \omega \in \mathbb{N} = \Omega. \tag{7.1}$$

Задача 8: Лекція. Вправа 5

Умова. Нехай $\Omega \subset \mathbb{R}^n$ — обмежена вимірна за Лебегом множина, μ — міра Лебега в \mathbb{R}^n та \mathcal{F} — σ -алгебра вимірних за Лебегом підмножин Ω . Припустимо, що $\mu(\Omega) \neq 0$. Тоді **геометрична ймовірність** події A визначається формулою:

$$\mathbb{P}(A) \triangleq \frac{\mu(A)}{\mu(\Omega)}.\tag{8.1}$$

Перевірити, що \mathbb{P} – ймовірнісна міра на σ –алгебрі \mathcal{F} .

Доведення. Якщо $\mu(\Omega) \neq 0$, то $\mu(\Omega) =: \gamma \in \mathbb{R}_{>0}$. Тоді очевидно, що \mathbb{P} є мірою, оскільки множення на додатню константу $\gamma^{-1} > 0$ не змінює властивостей міри. Окрім того, $\mathbb{P}(\Omega) = \frac{\mu(\Omega)}{\mu(\Omega)} = 1$, тому \mathbb{P} є і ймовірностною мірою. \square