Ejercicio práctica N2 Análisis Matemático II

Violeta Perez - Malena Pietroski - Tomás Pitinari

Consigna

- 13) Sea $f:[a,b] \to \mathbb{R}$ una funcion integrable en [a,b].
 - (a) Sean $c \in [a, b]$ y la función $G : [a, b] \to \mathbb{R}$ definida como $G(x) = \int_x^c f(t) dt$. Muestre que G es continua y, además, derivable en cada punto de continuidad de f, valiendo en tal caso G'(x) = -f(x).
 - (b) Sean $\alpha \in [a,b]$ y la función $\phi : [c,d] \to \mathbb{R}$ derivable en (c,d) tal que $\alpha < \phi(x) < b$ para todo $x \in [c,d]$. Se define la función $H : [c,d] \to \mathbb{R}$ como $H(x) = \int_{\alpha}^{\phi(x)} f(t) dt$. Muestre que H es continua y, además, derivable en cada punto x tal que $\phi(x)$ es un punto de continuidad de la función f, valiendo en tal caso $H'(x) = (f \circ \phi)(x)\phi'(x) = f[\phi(x)]\phi'(x)$.

Respuesta

13)a) Como f es integrable en [a, b], entonces por definición, f es acotada. Por lo tanto existe M tal que:

$$|f(x)| \le M, \forall x \in [a, b]$$

Para cualquier $c \in [a, b]$, suponemos un $z \in [a, b]$ y h > 0, entonces

$$G(z+h) - G(z) = \int_{z+h}^{c} f(t)dt - \int_{z}^{c} f(t)dt = \int_{z+h}^{z} f(t)dt = -\int_{z}^{z+h} f(t)dt$$

Sabiendo que $-M \le f(x) \le M$ y utilizando el teorema 27 de la Unidad 1

$$-Mh \le -\int_z^{z+h} f(t)dt \le Mh \to -Mh \le G(z) - G(z+h) \le Mh$$
 (1)

Si h < 0

$$G(z+h) - G(z) = \int_{z+h}^{z} f(t)dt \xrightarrow{Teo27} -M(-h) = Mh \le \int_{z+h}^{z} f(t)dt \to Mh \le G(z+h) - G(z) \le -Mh$$
 (2) de (1) y (2) se tiene

$$|G(z+h) - G(z)| < M|h|$$

Por lo tanto para cualquier $\varepsilon > 0$, se tiene

$$|G(z+h) - G(z)| \le \varepsilon$$

si vale $|h| < \frac{\varepsilon}{M}$, lo cual demuestra que

$$\lim_{h \to 0} G(z+h) = G(z)$$

es decir G es continua para todo $c, z \in [a, b]$. Sabiendo que G es continua en todo su dominio queremos analizar su derivabilidad. Para identificar la derivada, usamos el teorema 29 y que $c \in [a, b]$, tenemos que:

$$G(x) = \int_{x}^{c} f(t)dt = -\int_{c}^{x} f(t)dt \rightarrow -G(x) = \int_{c}^{x} f(t)dt$$

Entonces si c < x:

$$-G'(x) = f(x) \rightarrow G'(x) = -f(x)$$

Por otro lado si c > x:

$$G'(x) = -f(x)$$

Por lo tanto para todos los $c, x \in [a, b]$, se sabe que G'(x) = -f(x).

b) Podemos ver que H es una función compuesta por dos funciones, la función ϕ y $\int_{\alpha}^{x} f(t)dt$. Luego tenemos que $Dom(\phi) = [c, d] = Dom(H)$ y $Im(\phi) = (\alpha, b)$, también sabemos que $\alpha \in [a, b]$ y que al ser ϕ derivable, también es continua en (c, d) y $Im(\phi) = (a, b) = Dom(f)$. Sabemos

$$H(x) = \int_{\alpha}^{\phi(x)} f(t)dt, \forall \alpha \in [a, b]$$

Tomamos $z \in [c,d]/\phi(z) \in (\alpha,b)$, y tambien sabemos que $\exists M>0/|f(x)| \leq M$. Para un h>0 tenemos

$$H(z+h) - H(c) = \int_{\alpha}^{\phi(z+h)} f(t)dt - \int_{\alpha}^{\phi(z)} f(t)dt = \int_{\phi(z)}^{\phi(z+h)} f(t)dt$$

entonces podesmos llegar

$$-M \leq f(x) \leq M \xrightarrow{Teo27} -M(\phi(z+h)-\phi(z)) \leq \int_{\phi(z)}^{\phi(z+h)} f(t)dt \leq M(\phi(z+h)-\phi(z))$$

Que equivale a

$$|H(z+h) - H(z)| \le M|(\phi(z+h) - \phi(z))|$$

Sabiendo que ϕ es continua, tenemos que $\lim_{h\to 0}\phi(z+h)-\phi(z)=\phi(z)$, entonces

$$\lim_{h \to 0} H(z+h) - H(z) = \lim_{h \to 0} \int_{\phi(z)}^{\phi(z+h)} f(t)dt = \int_{\phi(z)}^{\phi(z)} f(t)dt = 0 \to \lim_{h \to 0} H(z+h) = H(z)$$

Con esto demostramos que H es continua para todo $z \in [c, d]$, lo que quiere decir que es continua en todo su dominio.

Ahora como sabemos que f es integrable, definimos $F(x) = \int f(t)dt$, por ende sabemos que F(x) es derivable [a,b] y es igual a f(x). Luego definimos H de otra forma

$$H(x) = \int_{\alpha}^{\phi(x)} f(t)dt = F(\phi(x)) - F(\alpha)$$

Ya sabemos que F y ϕ son derivables, por lo tanto derivamos de ambos lados

$$H'(x) = (F(\phi(x)) - F(\alpha))'$$

 α es una constante, por lo que se va, y luego aplicamos teorema de la cadena en $F(\phi(x))$ y queda

$$H'(x) = f(\phi(x)).\phi'(x)$$

Para todo $x \in (c, d)$, ya que es donde ϕ es derivable.