Práctico 1 TEOCOMP: Algoritmos codiciosos.

Mauricio Velasco

- 1. Scheduling avaricioso Suponga que tenemos N=100 trabajos que deben compartir un mismo recurso. La longitud y la prioridad del tésimo trabajo estan dadas por $\ell_t := (t-1)^2 + 4$ y $w_t = (t-5)^2$.
 - a) Escriba una implementación de un algoritmo que calcule el mínimo tiempo total requerido para cuplir esas tareas.
 - b) Escriba tablas con los tiempos mínimos requeridos y las listas de las primeras 5 y últimas 5 tareas para N=10,N=100,N=1000.
- 2. Implemente una clase Grafo_no_dirigido que represente un grafo G como lista de adyacencia. La clase debe recibir sólo el número de vértices del grafo e implementar las operaciones G.nueva_arista(i,j), G.nuevo_vertice() y G.print().
 - a) Escriba el código de su implementación.
 - b) Cuánta memoria (como función de n) requiere su clase para representar:
 - 1) Un grafo completo K_n .
 - 2) Un grafo bipartito completo $K_{n,n}$
 - 3) Un ciclo de longitud n.
 - 4) Un árbol con n vértices.
- 3. (Arboles) Recuerde que un **árbol** es un grafo conexo y acíclico. Demuestre las siguientes afirmaciones:
 - a) Todo árbol con n vértices tiene exáctamente n-1 aristas.
 - b) Las siguientes tres afirmaciones son equivalentes para todo grafo no dirigido G:
 - 1) G es un árbol.
 - 2) G es minimal conexo (es decir G es conexo y quitarle cualquier arista lo vuelve disconexo).

- 3) G es maximal acíclico (es decir G no contiene ningún ciclo y adicionarle cualquier arista nueva hace aparecer al menos un ciclo en G).
- 4. (Cuántos árboles generadores tiene un grafo?) El teorema de Birkhoff dice que el número de árboles generadores de un grafo no dirigido G es igual al producto $(\lambda_1 \dots \lambda_{n-1})/n$ donde los λ_i denotan los valores propios diferentes de cero de la matriz L = D A donde D es la matriz diagonal cuyas entradas son los grados de los vértices de G y A es la matriz de adyacencia de G. Realice los siguientes ejericios:
 - a) Si $G = K_4$ es el grafo completo de 4 vértices, escriba la matriz L, calcule los valores propios y aplique la formula de Birkhoff. Dibuje todos los árboles generadores de K_4 y verifique que la fórmula de Birkhoff se cumple en este caso.
 - b) Como es la matriz L para el grafo K_n completo con n vértices?
 - c) Use el Teorema de Birkhoff y la matriz que calculó en la parte (b) para demostrar que K_n tiene n^{n-2} árboles generadores posibles (para n=50 esto es más que el número estimado de átomos en el universo).
 - d) Escriba el código en Python de un algoritmo que calcule el número de árboles generadores de un grafo de la clase Grafo_no_dirigido del punto (1) mediante la fórmula de Birkhoff. Verifique la validez de su implementación para grafos completos comparando con la fórmula del numeral anterior. Cuál es el n más grande al que puede llegar antes de que su computador sea incapaz de terminar el cálculo?
- 5. Sea G un grafo no dirigido con pesos en las aristas. Escriba un algoritmo para construir un árbol generador de **máximo peso** para G que pueda ejecutarse en tiempo $O((n+m)\log(n))$. Justifique la validez de su respuesta.

6. (El algoritmo de Prim.) Sea G el grafo con costos en las aristas del siguiente dibujo:

- a) Ejecute a mano el algoritmo de Prim para encontrar el mínimo árbol generador para G con vértice inicial A. Escriba el vector X que representa el orden en el que se incluyen los vértices y el vector T de las aristas que lo constituyen. Dibuje el árbol generador obtenido.
- b) Ejecute a mano el algoritmo de Kruskal para encontrar el mínimo árbol generador para G con vértice inicial A.
- 7. (La propiedad de corte) Sea G un grafo no dirigido con costos en las aristas y suponga que los costos de todas las aristas son distintos. Un **corte** en G es una partición de los vértices en dos conjuntos disjuntos A y B. Una arista **cruza** el corte (A, B) si tiene un vértice en A y el otro en B.

- a) Demuestre la siguiente afirmación (llamada la propiedad de corte): Si una arista e es la más barata que cruza un corte (A, B) entonces e pertenece a todo arbol generador de mínimo costo de G.
- b) Utilice la propiedad del corte para dar una demostración alternativa de que el algoritmo de Prim produce un árbol generador de mínimo costo.
- 8. (*Kruskal vs Prim*) El objetivo de este ejercicio es hacer una comparación empírica entre los algoritmos de Prim y Kruskal.
 - a) Sea G_n el grafo completo con n-vértices con pesos $1, 2, 3, \ldots, \binom{n}{2}$ en las aristas (las aristas estan ordenadas de la manera que uds quieran, esto lleva a grafos distintos pero no cambia el análisis).
 - b) Implemente los algoritmos de Prim y Kruskal.
 - c) Escriba tablas que midan el tiempo de ejecución y la memoria utilizada para encontrar el MST para los grafos G_n para diferentes valores de n (cuál es el máximo n en el que su algoritmo funciona?).
 - d) Escriba un párrafo que resuma sus conclusiones: Es alguno de los dos algoritmos mejor que el otro en algún aspecto? Argumente su respuesta.
- 9. (Hacia un Kruskal eficiente) Investigue los siguientes puntos:
 - a) Describa de manera precisa la estructura de datos union_find.
 - b) Escriba el código en python de una implementación eficiente del algoritmo de Kruskal usando union_find.
 - c) Cálcule el tiempo $O(\bullet)$ requerido por su implementación argumentando la validez de su respuesta de manera precisa.