Exos Géom 2 - Etude des courbes planes

Exercice 1

Montrer que les courbes C et Γ de représentations paramétriques :

$$C: \left\{ \begin{array}{l} x(t) = 3t^2 + 1 \\ y(t) = 2t^3 + 1 \end{array} \right.$$
 et $\Gamma: \left\{ \begin{array}{l} x(u) = 4u^3 \\ y(u) = 3u^4 \end{array} \right.$

sont tangentes et déterminer leur(s) point(s) de contact.

Exercice 2

On considère la courbe Γ définie par la représentation paramétrique :

$$\begin{cases} x(t) = t^2 \\ y(t) = \frac{2}{3}(2t+1)^{\frac{3}{2}} , t \in \mathbb{R}. \end{cases}$$

- 1. Calculer l'abscisse curviligne en tout point M(t) de Γ en prenant pour origine des abscisses curvilignes le point de Γ correspondant à t=0.
- **2.** Calculer la longueur de la partie de Γ correspondant à $t \in [2;4]$.

Exercice 3

Calculer la longueur de l'arc paramétré Γ dans les cas suivants :

- 1. Γ est l'astroïde de représentation paramétrique $\begin{cases} x(t) = a\cos^3 t \\ y(t) = a\sin^3 t \end{cases} t \in \mathbb{R}, (a > 0 \text{ donné}).$
- 2. Γ est l'arche de cycloïde de représentation paramétrique : $\begin{cases} x(t) = t \sin t \\ y(t) = 1 \cos t \end{cases} t \in [0; 2\pi].$
- 3. Γ est la cardioïde de représentation paramétrique : $\begin{cases} x(t) = 2\cos(t) + \cos(2t) \\ y(t) = 2\sin(t) + \sin(2t) \end{cases} \quad t \in \mathbb{R}.$

Exercice 4

Calculer le rayon de courbure en tout point M(t) de l'arc paramétré défini par :

$$\left\{ \begin{array}{l} x(t) = \cos^2 t + \ln(\sin t) \\ y(t) = \sin t \, \cos t \end{array} \right. t \in \left] \frac{\pi}{4}; \frac{\pi}{2} \right[$$

Exercice 5

Trouver le point de la courbe d'équation cartésienne $y = \ln x$ en lequel la valeur absolue du rayon de courbure est minimum.

Exercice 6

Pour $\lambda \in \mathbb{R}^*$, on note Γ_{λ} la courbe d'équation cartésienne $y = \lambda x e^{-x}$. Quel est le lieu des centres de courbure C_{λ} en O à Γ_{λ} quand λ décrit \mathbb{R}^* ?

Exercice 7

- 1. Calculer la courbure pour la branche d'hyperbole d'équation $y = \frac{1}{x}$, avec x > 0.
- 2. En quel(s) point(s) est-elle maximale?

Exercice 8

Soit une fonction $\varphi: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} . On considère la courbe Γ de représentation paramétrique :

$$\begin{cases} x(t) = \int_0^t \varphi(u) \cos u du \\ y(t) = \int_0^t \varphi(u) \sin u du \end{cases}.$$

- 1. Caractériser les points stationnaires de Γ .
- 2. En supposant que φ ne s'annule pas, calculer le rayon courbure en tout point M(t) de Γ , en fonction de φ .

Exercice 9

On considère la spirale S de représentation paramétrique :

$$\begin{cases} x(t) = e^{-t} \cos t \\ y(t) = e^{-t} \sin t \end{cases} t \in \mathbb{R}^+.$$

- 1. Calculer la longueur de S.
- **2.** Calculer le rayon de courbure en tout point de S.

Exercice 10

Déterminer la développée des courbes suivantes :

1.
$$\begin{cases} x(t) = \cos t + \ln \left| \tan \frac{t}{2} \right| , t \in \left] 0, \frac{\pi}{2} \right[. \\ y(t) = \sin t \end{cases}$$

2.
$$\begin{cases} x(t) = t - \sin t \\ y(t) = 1 - \cos t \end{cases}, t \in]0, 2\pi[$$

Exercice 11

On considère la courbe Γ d'équation cartésienne $y = x^3$.

- 1. Déterminer une représentation paramétrique de la développée Γ_1 de Γ .
- **2.** Tracer Γ et Γ_1 dans un même repère.

Exercice 12

On considère la courbe Γ d'équation cartésienne $y = -\ln(\cos x), x \in \left[0; \frac{\pi}{2}\right[$.

- 1. Déterminer une représentation paramétrique de la développée Γ_1 de Γ .
- 2. Déterminer une représentation paramétrique de la développée Γ_2 de Γ_1 .
- 3. Tracer Γ, Γ_1 , et Γ_2 sur un même repère.