

#DLUPC

Day 1 Lecture 3

Perceptron

Antonio Bonafonte antonio.bonafonte@upc.edu

[course site]

+ info: https://telecombcn-dl.github.io/2018-idl/

Index

- 1. Artifical Neural Networks (ANN) and Perceptron
- 2. Linear Regression and Linear Classification
- 3. Activation Functions
- 4. Estimation of the Perceptron parameters (θ)

Introduction

ANN: Artificial Neural Networks

Proposed in 1965.

Renaissance ≈ 2010 (Deep Learning)

Inspired on biological Neural Networks

Biological Neural Networks

Human Brain

86 billion neurons

In average: 7000 synapses

(connexions)
Purkange cells:

Input: 1000 dentritic branches, tens of thousands of connexions

Output: 100 connexions

Total synapses: $\approx 10^{12}$

300 million synapses per mm³

Plasticity (learning)

Ramon y Cajal Drawings

Notation

$$\begin{array}{ll} (\mathbf{X},\mathbf{Y}) & \text{training examples} \\ \mathbf{X}=\mathbf{x}_1,\dots,\mathbf{x}_N & \text{input features} \\ \mathbf{x}_n & \text{vector with components } \mathbf{x}_n(j) \in \mathbb{R} \text{ or } \mathbf{x}_n(j) \in \{0,1\}) \\ \mathbf{Y}=y_1,\dots,y_N & \text{labels (regression: } \mathbb{R}; \text{ class. } \{0,1\}) \\ \hat{y}=f_{\theta}(\mathbf{x}) & \text{prediction by model } f_{\theta}(.) \\ \end{array}$$

Input features and output: binary (1,0), one-hot encoding or normalized real-values.

Basic component: linear regression

$$y = \mathbf{w}^T \cdot \mathbf{x} + b \equiv \bar{\mathbf{w}}^T \cdot \bar{\mathbf{x}}$$

(In the plot, x is a escalar value)

Example: x: mean speed; y: fuel comsumption km/l

Basic component: logistic regression

$$y = \sigma(\mathbf{w}^T \cdot \mathbf{x} + b) = \frac{1}{1 + e^{-(\mathbf{w}^T \cdot \mathbf{x} + b)}}$$

$$a = \mathbf{w}^T \cdot \mathbf{x} + b = \|\mathbf{w}\| \cdot \|\mathbf{x}\| \cdot \cos(\alpha) + b$$

Small $\|\mathbf{w}\| \to \text{smoother transition boundaries}$.

Basic component: logistic regression

Example: x: (mean_spectrum, mean_f0); y: IS_MUSIC

Perceptron (Neuron)

Activation:
$$a = \mathbf{w}^T \cdot \mathbf{x} + b$$
 Output: $y = f(a)$

f(.): activation function

Linear regression: f(a) = a

Logistic regression: $f(a) = \sigma(a)$

Activation functions

Activation function (non-linearities) are fundamental to combine neurons to model complex functions.

Some activation functions:

- Sigmoid $\sigma(.)$, $tanh(.) = 2 \cdot \sigma(.) 1$
- ReLU (rectified linear unit), Leaky ReLU, Parametric Leaky ReLU, ELU (exponential linear unit)
- softmax, maxout

Some Activation functions

Training

Training: estimate the parameters θ of model $f_{\theta}()$ from training data.

$$\begin{aligned} & (\mathbf{X},\mathbf{Y}) & \text{training examples} \\ & \mathbf{X} = \mathbf{x}_1, \dots, \mathbf{x}_N & \text{input features} \\ & \mathbf{x}_n & \text{vector with components } \mathbf{x}_n(j) \in \mathbb{R} \text{ or } \mathbf{x}_n(j) \in \{0,1\}) \\ & \mathbf{Y} = y_1, \dots, y_N & \text{labels (regression: } \mathbb{R}; \text{ class. } \{0,1\}) \\ & \hat{y} = f_{\theta}(\mathbf{x}) & \text{prediction by model } f_{\theta}(.) \\ & \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}}) & \text{loss function} \end{aligned}$$

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}}) \equiv \operatorname*{argmin}_{\theta} \frac{1}{N} \sum_{n=1}^{N} \ell\left(y_n, f_{\theta}(\mathbf{x}_n)\right)$$

Loss Functions

The loss function:

- Related with final metric (e.g., classification rate, number of clicks, revenue, . . .)
- Nice mathematical properties (to find $min_{\theta}(.)$).

Example (Regression loss function)

Squared error:

$$\ell(y,\hat{y}) = (y - \hat{y})^2$$

Example (Classification loss function)

Binary cross entropy:

$$\ell(y,\hat{y}) = -(y \cdot \ln \hat{y} + (1-y) \cdot \ln(1-\hat{y}))$$

Solving $\operatorname{argmin}_{\theta}(.)$

First idea:

- 1. Take derivatives of the loss with respect each parameter and equalize with zero.
- 2. Solve set of $|\theta|$ equations with $|\theta|$ variables.

This works for *losses* (e.g. squared error), easy *activation function* (identity) and architectures (e.g. one perceptron).

In general, millions of non-linear equations.

Gradient descent

Finding the minimum in θ is a key aspect on deep learning.¹

Most methods are based on the iterative-method gradient descent

- 1. Initialize: $\theta^{(0)}$, i=0
- 2. Repeat till convergence from i = 0, 1, ...:
 - Compute gradient of the loss function with respect θ at $\theta^{(i)}$
 - $\theta^{(i+1)} = \theta^{(i)} \alpha \nabla \mathcal{L}(Y, f_{\theta^{(i)}}(X))$

If the *learning rate* α is small enough,

$$\mathcal{L}\left(Y, f_{\theta^{(i+1)}}(X)\right) \leq \mathcal{L}\left(Y, f_{\theta^{(i)}}(X)\right)$$

¹An introduction in this course, D2L3 - Optimization

$$\theta^{(i+1)} = \theta^{(i)} - \alpha \nabla \mathcal{L}(Y, f_{\theta^{(i)}}(X))$$

$$\mathcal{L}(Y, f_{\theta^{(i+1)}}(X)) \leq \mathcal{L}(Y, f_{\theta^{(i)}}(X))$$

From Wikipedia

$$\theta^{(i+1)} = \theta^{(i)} - \alpha \nabla \mathcal{L} (Y, f_{\theta^{(i)}}(X))$$

$$\mathcal{L} (Y, f_{\theta^{(i+1)}}(X)) \le \mathcal{L} (Y, f_{\theta^{(i)}}(X))$$

Gradient computation

Let's assume the model $\hat{\mathbf{y}}_n = f_{\theta}(\mathbf{x}_n)$ is just a perceptron:

$$\hat{y}_n = f(z_n) = f(\mathbf{w} \cdot \mathbf{x}_n) = f(\sum_{j=1}^J w_j \cdot x_n(j))$$

Derivative with respect to a particular parameter: w_k :

$$\frac{\partial \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}})}{\partial w_k} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \ell(y_n, \hat{y}_n)}{\partial w_k}
= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \ell(y_n, \hat{y}_n)}{\partial \hat{y}_n} \cdot \frac{\partial \hat{y}_n}{\partial w_k}
= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \ell(y_n, \hat{y}_n)}{\partial \hat{y}_n} \cdot f'(z_n) \cdot \frac{\partial z_n}{\partial w_k}
= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \ell(y_n, \hat{y}_n)}{\partial \hat{y}_n} \cdot f'(z_n) \cdot x_k$$

Conclusions

- The perceptron is the basic unit in ANN
- It can be used both for linear regression and binary classification
- The weights can be estimated with iterative algorithms for any differentiable activation function and loss.
- Can be extended to neural networks (D2L1) and better optimization algorithms (D2L2)

Exercise 1: regression

Lets assume:

Loss function, squared error $\ell(y, \hat{y}) = (y - \hat{y})^2$ Activation function, identity f(z) = z

Exercise

1. Show that the derivative of the $\mathcal L$ with respect the weight vector is:

$$\frac{\partial \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}})}{\partial w_k} = \frac{2}{N} \sum_{n=1}^{N} (\hat{y} - y_n) \cdot x_n(k)$$

2. Using previous equation for k = 1, ..., J, and equalizing with 0, you can get the set of J linear equations and J variables²:

$$\mathbf{A} \cdot \mathbf{w} = \mathbf{b}$$

Find the values a_{ij} and b_i for $1 \le i, j \le J$.

 $^{^2}$ This part of the exercise only shows that in this particular case you can find a closed solution. It is not relevant to ANN

Exercise 2: classification - BCE

Lets assume:

Loss function, binary cross entropy $\ell(y,\hat{y}) = -(y \cdot \ln \hat{y} + (1-y) \cdot \ln(1-\hat{y}))$ Activation function, sigmoid $f(z) = \sigma(z)$

Exercise

1. Show that the derivative of the sigmoid

$$\sigma'(z) = \sigma(z) \cdot (1 - \sigma(z))$$

2. Show that the derivative of the ${\cal L}$ with respect the weight vector is:

$$\frac{\partial \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}})}{\partial w_k} = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n) \cdot x_n(k)$$

Exercise 3: classification - MSE

Lets assume:

Loss function, squared error $\ell(y, \hat{y}) = (y - \hat{y})^2$ Activation function, sigmoid $f(z) = \sigma(z)$

Exercise

1. Show that the derivative of the $\mathcal L$ with respect the weight vector is:

$$\frac{\partial \mathcal{L}(\mathbf{Y}, \hat{\mathbf{Y}})}{\partial w_k} = \frac{2}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n) \cdot \sigma'(z_n) \cdot x_n(k)$$

- 2. Comparing this gradient and the one using binary cross entropy, the magnitude of both increases with difference between labels and predictions, $\hat{y}_n y_n$. Do you think this is a good or bad characteristic of the algorithm?
- 3. However, the MSE loss introduces the term $\sigma'(z_n)$. Looking to the terms with big errors (e.g.: $y_n = 1$ and $\hat{y}_n \approx 0$), do you think this term helps in the convergence?