2016年全国统一高考化学试卷 (新课标Ⅲ)

一、选择题.

1. (3分)化学在生活中有着广泛的应用,下列对应关系错误的是()

选项	化学性质	实际应用		
А	CIO ₂ 具有强氧化性	自来水消毒杀菌		
В	SO ₂ 具有还原性	用作漂白剂		
С	NaHCO₃受热易分解并且生成气体	焙制糕点		
D	AI(OH) ₃ 分解吸收大量热量并有 H ₂ O 生成	阻燃剂		

Λ.	Λ.
Α.	\boldsymbol{A}

B. B

C. C

D. D

- 2. (3分)下列说法错误的是()
 - A. 乙烷光照下能与浓盐酸发生取代反应
 - B. 乙烯可以用作生产食品包装材料的原料
 - C. 乙醇室温下在水中的溶解度大于溴乙烷
 - D. 乙酸和甲酸甲酯互为同分异构体
- 3. (3分)下列有关实验的操作正确的是(

	实验	操作
Α	除去 NaHCO ₃ 固体中混有的 NH ₄ Cl	直接将固体加热
В	实验室收集 Cu 与稀硝酸反应成的	向上排空气法收集
	NO	
С	检验乙酸具有酸性	配制乙酸溶液,滴加 NaHCO ₃ 溶液有气泡
		产生
D	测定某稀硫酸的浓度	取 20.00ml 该稀硫酸于干净的锥形瓶中,
		用 0.1000mol/L 的 NaOH 标准液进行滴
		定

A. A

B. B

C. C

D. D

4. (3分)已知异丙苯的结构简式如图,下列说法错误的是()

A. 异丙苯的分子式为 C₉H₁₂

- B. 异丙苯的沸点比苯高
- C. 异丙苯中碳原子可能都处于同一平面
- D. 异丙苯和苯为同系物
- 5. (3 分)锌@空气燃料电池可用作电动车动力电源,电池的电解质溶液为 KOH 溶液,反应为 $2Zn+O_2+4OH^{@}+2H_2O$ —2Zn(OH) $_4$ ^{2®}. 下列说法正确的是 (
 - A. 充电时, 电解质溶液中 K⁺向阳极移动
 - B. 充电时, 电解质溶液中 c (OH[®]) 逐渐减小
 - C. 放电时,负极反应为: Zn+4OH[®]2e[®]─Zn(OH)₄^{2®}
 - D. 放电时, 电路中通过 2mol 电子, 消耗氧气 22.4L (标准状况)
- 6. (3分)四种短周期主族元素 W、X、Y、Z的原子序数依次增大,W、X的简单离子具有相同电子层结构,X的原子半径是短周期主族元素原子中最大的,W与Y同族,Z与X形成的离子化合物的水溶液呈中性.下列说法正确的是()
 - A. W 与 X 形成的化合物溶于水后溶液呈碱性
 - B. 简单离子半径: W < X < Z
 - C. 气态氢化物的热稳定性: W<Y
 - D. 最高价氧化物的水化物的酸性: Y>Z
- 7. (3分)下列有关电解质溶液的说法正确的是()
 - A. 向 0.1mol•L^{®1} CH₃COOH 溶液中加入少量水,溶液中<u>c(H⁺)</u>减小

 - C. 向盐酸中加入氨水至中性,溶液中 $\frac{c(NH_4^+)}{c(C1^-)} > 1$
 - D. 向 AgCl、AgBr 的饱和溶液中加入少量 AgNO₃,溶液中 $\frac{c(C1^-)}{c(Br^-)}$ 不变

二、解答题.

- 8. 过氧化钙微溶于水,溶于酸,可用作分析试剂、医用防腐剂、消毒剂.以下是一种制备过氧化钙的实验方法.回答下列问题:
 - (一) 碳酸钙的制备

- (1)步骤①加入氨水的目的是_____. 小火煮沸的作用是使沉淀颗粒长大, 有利于 .
- (2) 如图是某学生的过滤操作示意图,其操作不规范的是_____(填标号).

- a. 漏斗末端颈尖未紧靠烧杯壁
- b. 玻璃棒用作引流
- c. 将滤纸湿润, 使其紧贴漏斗壁
- d. 滤纸边缘高出漏斗
- e. 用玻璃棒在漏斗中轻轻搅动以加快过滤速度
- (二)过氧化钙的制备

- (3)步骤②的具体操作为逐滴加入稀盐酸,至溶液中尚存有少量固体,此时溶液呈_____性(填"酸"、"碱"或"中").将溶液煮沸,趁热过滤,将溶液煮沸的作用是_____.
- (4)步骤③中反应的化学方程式为_____,该反应需要在冰浴下进行,原因是 .
- (5)将过滤得到的白色结晶依次使用蒸馏水、乙醇洗涤,使用乙醇洗涤的目的是_____.

- (6)制备过氧化钙的另一种方法是:将石灰石煅烧后,直接加入双氧水反应,过滤后可得到过氧化钙产品.该工艺方法的优点是_____,产品的缺点是_____.
- 9. 煤燃烧排放的烟含有 SO_2 和 NO_x ,形成酸雨、污染大气,采用 $NaClO_2$ 溶液作为吸收剂可同时对烟气进行脱硫、脱硝。回答下列问题:
 - (1) NaClO₂ 的化学名称为_____。
 - (2) 在鼓泡反应器中通入含 SO₂、NO_x 的烟气,反应温度 323K,NaClO₂ 溶液浓度为 5×10[№] mol•L[№]1. 反应一段时间后溶液中离子浓度的分析结果如表。

离子	SO ₄ ^{2®}	SO ₃ ²	NO ₃ ²	NO ₂ ²	Cl ²
c/	8.35×10 ²⁴	6.87×10 ²⁶	1.5×10 ²⁴	1.2×10 ²⁵	3.4×10 ²³
(mol•L ²¹					
)					

- ①写出 NaClO₂ 溶液脱硝过程中主要反应的离子方程式_____。增加压强, NO 的转化率_____(填"提高"、"不变"或"降低")。
- ②随着吸收反应的进行,吸收剂溶液的 pH 逐渐_____(填"增大"、"不变"或"减小")。
- ③由实验结果可知,脱硫反应速率_____脱硝反应速率(填"大于"或"小于")原因是除了 SO₂ 和 NO 在烟气中初始浓度不同,还可能是
 - (3) 在不同温度下, $NaClO_2$ 溶液脱硫、脱硝的反应中 SO_2 和 NO 的平衡分压 P_e 如图所示。

- ①由图分析可知,反应温度升高,脱硫、脱硝反应的平衡常数均_____(填"增大"、"不变"或"减小")。
- ②反应 CIO₂[®]+2SO₃^{2®}—2SO₄^{2®}+CI[®]的平衡常数 K 表达式为 。

- (4) 如果采用 NaClO、Ca(ClO)₂替代 NaClO₂,也能得到较好的烟气脱硫效果。
- ①从化学平衡原理分析,Ca(CIO)₂相比 NaCIO 具有的优点是。
- ②已知下列反应:

$$SO_2 (g) +2OH^{2} (aq) =SO_3^{22} (aq) +H_2O (I) \triangle H_1$$

$$CIO^{2}$$
 (aq) $+SO_{3}^{22}$ (aq) $-SO_{4}^{22}$ (aq) $+CI^{2}$ (aq) $\triangle H_{2}$

$$CaSO_4$$
 (s) $\longrightarrow Ca^{2+}$ (aq) $+SO_4^{22}$ (aq) $\triangle H_3$

则反应
$$SO_2$$
 (g) $+Ca^{2+}$ (aq) $+CIO^{2}$ (aq) $+2OH^{2}$ (aq) $=$ $CaSO_4$ (s) $+H_2O$ (I) $+CI^{2}$ (aq) 的 \triangle H= 。

10. 以硅藻土为载体的五氧化二钒(V_2O_5)是接触法生产硫酸的催化剂. 从废 钒催化剂中回收 V_2O_5 既避免污染环境

又有利于资源综合利用. 废钒催化剂的主要成分为:

物质	V ₂ O ₅	V ₂ O ₄	K ₂ SO ₄	SiO ₂	Fe ₂ O ₃	Al ₂ O ₃
质量分数/%	2.2~2.9	2.8~3.1	22~28	60~65	1~2	<1

以下是一种废钒催化剂回收工艺路线:

回答下列问题:

- (1) "酸浸"时 V_2O_5 转化为 VO_2 ⁺,反应的离子方程式为_____,同时 V_2O_4 转成 VO^2 ⁺. "废渣 1"的主要成分是
- (2) "氧化"中欲使 3 mol 的 VO²⁺变为 VO₂+,则需要氧化剂 KClO₃ 至少为_____ mol.
- (3)"中和"作用之一是使钒以 V₄O₁₂^{4®}形式存在于溶液中."废渣 2"中含有_____.
- (4) "离子交换"和"洗脱"可简单表示为: 4ROH+V₄O₁₂^{4®} 高子交换 R₄V₄O₁₂+4OH® (以 ROH 为强碱性阴离子交换树脂). 为了提高洗脱效率,淋洗液应该呈___性(填"酸""碱""中").
- (5)"流出液"中阳离子最多的是_____.

(6) "沉钒"得到偏钒酸铵(NH₄VO₃)沉淀,写出"煅烧"中发生反应的化学方程 式 .

【[化学——选修 2: 化学与技术】(15 分)

11. (15 分)聚合硫酸铁(PFS)是水处理中重要的絮凝剂,如图是以回收废 铁屑为原料制备 PFS 的一种工艺流程.

回答下列问题

- (1) 废铁屑主要为表面附有大量铁锈的铁,铁锈的主要成分为 . 粉碎 过筛的目的是 .
- (2) 酸浸时最合适的酸是 , 写出铁锈与酸反应的离子方程式 .
- (3) 反应釜中加入氧化剂的作用是 , 下列氧化剂中最合适的是 (填标号).
- A. $KMnO_4$ B. Cl_2 C. H_2O_2 D. HNO_3

- (4) 聚合釜中溶液的 pH 必须控制在一定的范围内, pH 偏小时 Fe³⁺水解程度 弱,pH 偏大时则 .
- (5) 相对于常压蒸发,减压蒸发的优点是
- (6) 盐基度 B 是衡量絮凝剂絮凝效果的重要指标,定义式为 $B=\frac{3n(OH)}{n(Fe)}$ (n 为 物质的量). 为测量样品的 B 值,取样品 m g,准确加入过量盐酸,充分反 应,再加入煮沸后冷却的蒸馏水,以酚酞为指示剂,用 c mol•L™的标准 NaOH 溶液进行中和滴定(部分操作略去,已排除铁离子干扰).到终点时 消耗 NaOH 溶液 V mL. 按上述步骤做空白对照试验,消耗 NaOH 溶液 Vo mL,已知该样品中 Fe 的质量分数 w,则 B 的表达式为 .

【化学-选修 3: 物质结构与性质】(15分)

12. (15 分) 砷化镓(GaAs) 是优良的半导体材料, 可用于制作微型激光器或 太阳能电池的材料等. 回答下列问题:

- (1) 写出基态 As 原子的核外电子排布式 .
- (2) 根据元素周期律,原子半径 Ga_____As,第一电离能 Ga_____ As. (填"大于"或"小于")
- (3) AsCl₃分子的立体构型为 , 其中 As 的杂化轨道类型为 .
- (4) GaF₃ 的熔点高于 1000℃, GaCl₃ 的熔点为 77.9℃, 其原因是 .
- (5) GaAs 的熔点为 1238℃,密度为ρg•cm^{®3},其晶胞结构如图所示.该晶体的类型为_____,Ga与As以_____键键合.Ga和As的摩尔质量分别为M_{Ga}g•mol^{®1}和 M_{As}g•mol^{®1},原子半径分别为 r_{Ga}pm 和 r_{As}pm,阿伏伽德罗常数值为 N_A,则 GaAs 晶胞中原子的体积占晶胞体积的百分率为 .

四、【化学-选修 5: 有机化学基础】(15 分)

13. (15 分)端炔烃在催化剂存在下可发生偶联反应,成为 Glaser 反应.

2R□C=C□H 催化剂 R□C=C□C=C□R+H₂

该反应在研究新型发光材料、超分子化学等方面具有重要价值.下面是利用 Glaser 反应制备化合物 E 的一种合成路线:

回答下列问题:

- (1) B 的结构简式为_____, D 的化学名称为_____.
- (2)①和③的反应类型分别为 、 . . .
- (3) E 的结构简式为_____. 用 1mol E 合成 1, 4億二苯基丁烷, 理论上需要消耗氢气 mol.
- (4) 化合物 (HC ≡ C → C ≡ CH) 也可发生 Glaser 偶联反应生成聚合物,该

界	8合反应的(化学	方程式为_	·			
(5)	芳香化合	物 F	是C的同	分异构体,	其分子中只有	「两种不同化学	学环境的氢,
数	対目比为3:	1,	写出其中	3种的结构	均简式		