Reshaping DRAM Scaling by Enabling System-Memory Cooperation Computer Architecture - Guest Lecture 11(h)

Minesh Patel

SAFARI ETHzürich

Zürich · 2 November 2023

Goals of This Talk

1. Reflecting on how we build and use memory

2. Considering the indirect costs of current design practices

3. Improving how we address unanticipated problems

Executive Summary

- Problem: overcoming DRAM scaling challenges requires new solutions
- Observation: the separation of concerns between DRAM producers and consumers is a barrier to overcoming scaling
 - 1. Too rigid to adapt to unexpected challenges (e.g., Rowhammer)
 - 2. Discourages new solutions based on system-memory cooperation
- Key idea: revise the separation to encourage new solutions
- Four case studies: performance, energy-efficiency, reliability, security
 - We identify **memory testing** as the primary culprit for discouraging new solutions
- Approach: two-step plan to revise DRAM standards
 - 1. Near-term: crowdsourcing and publications
 - 2. Long-term: changes to industry-wide DRAM standards

Talk Outline

- DRAM Scaling Challenges
- Addressing Scaling: The Separation of Concerns
 - Problem 1: Inflexibility to Challenges
 - Problem 2: Overly Constraining
- Enabling System-Memory Cooperation
- Revising the Separation

DRAM

(Dynamic Random Access Memory)

~1970 2020+

56.4% of the global memory market [Yole Développement, 2022]

Chip Datasheet Publication Year

Chip Datasheet Publication Year

DRAM Scaling

- Scaling has traditionally been driven by DRAM manufacturers
 - Building efficient DRAM requires specialized technologies

Base Technology

New circuits, materials, fabrication methods, etc.

DRAM Errors

DRAM suffers from errors that cause data loss or system failure if ignored

DRAM Scaling Challenges

•Scaling becomes more difficult with higher storage density

Smaller, denser cells are less reliable

Continued scaling is **expensive** due to the **overheads** of maintaining reliable operation

Error Mitigation for Further Scaling

expanded representation (resilient to errors)

Key DRAM Scaling Challenges

Performance

Reducing the long DRAM access latency

Efficiency

Improving refresh power and performance

Reliability

Mitigating worsening memory errors

Security

Addressing worsening RowHammer vulnerability

We cannot rely on manufacturers alone to overcome DRAM scaling challenges

Talk Outline

- DRAM Scaling Challenges
- Addressing Scaling: The Separation of Concerns
 - Problem 1: Inflexibility to Challenges
 - Problem 2: Overly Constraining
- Enabling System-Memory Cooperation
- Revising the Separation

The Producer-Consumer Relationship

DRAM Producers

DRAM Consumers

DRAM manufacturers

e.g., Samsung, SK Hynix, Micron Technologies

System Design/Test/Research

e.g., Board designers, test engineers, research scientists

Producer and Consumer Responsibilities

DRAM Producers DRAM Consumers DRAM Design DRAM Use

- Specialized roles enable highly-optimized DRAM chips
- ✓ Interoperability enables widespread use of DRAM
- ✓ Preserves trade secrets among producers and consumers

Producer and Consumer Responsibilities

Limited solution space for DRAM scaling

Producer and Consumer Responsibilities

DRAM Producers

DRAM Design

DRAM Consumers

DRAM Use

Barrier to addressing scaling challenges

Observations

Two major problems inherent to the existing separation

The separation is **inflexible** when new challenges occur e.g., RowHammer, worsening memory errors

The separation constrains the solution space available to address those challenges

Talk Outline

- DRAM Scaling Challenges
- Addressing Scaling: The Separation of Concerns
 - Problem 1: Inflexibility to Challenges
 - Problem 2: Overly Constraining
- Enabling System-Memory Cooperation
- Revising the Separation

DRAM Standards

Separation of concerns is implemented by DRAM standards

DRAM Producers

DRAM Consumers

Separation of Concerns

The Evolution of Standards Over Time

- •Standards govern consumer-visible properties of DRAM chips
 - Interface, configuration, performance characteristics
 - Abstract DRAM design details away from consumers

Inflexibility of Standards

- Unfortunately, DRAM standards are slow to adapt to change
 - Requires industry-wide consensus among producers and consumers

Talk Outline

- DRAM Scaling Challenges
- Addressing Scaling: The Separation of Concerns
 - Problem 1: Inflexibility to Challenges
 - Problem 2: Overly Constraining
- Enabling System-Memory Cooperation
- Revising the Separation

System-Memory Cooperation

Highly-efficient solutions based on

a holistic understanding of how scaling impacts the system

Addressing Scaling Challenges

Example System-Memory Cooperative Solutions

To improve	Consumers can
Performance Energy & Power	Exploit slack in operating conditionsAccess and refresh timingsOperating voltage and temperature
Reliability	Protect against and test for failuresSystem-level error mitigationsDetailed qualification and validation
Security	Implement system-level defenses • RowHammer, cold-boot attacks

System-Memory Cooperation

• Problem: The separation discourages cooperative solutions

DRAM Consumers

DRAM Operating Space

Encouraged Designs Low TCO

- **Producer:** fully specified design, proprietary
- Consumer: fully supported, predictable behavior

Discouraged Designs High TCO

- **Producer:** "out-of-spec", unsupported
- **Consumer:** unknown behavior, out-of-warranty

Key Idea: Encourage Cooperative Solutions

1) Enable Cooperative Solutions

Standardized Cooperative
Operating Points

Cooperative
Solutions

Near-Term Solution

Encouraged (Low TCO)

Long-Term Solution

(2) Broaden Standards

Possible DRAM Operating Points

Standardized Operating Points

Cooperative Solutions

Talk Outline

- DRAM Scaling Challenges
- Addressing Scaling: The Separation of Concerns
 - Problem 1: Inflexibility to Challenges
 - Problem 2: Overly Constraining
- Enabling System-Memory Cooperation
- Revising the Separation

Four Case Studies

•Goal: survey system-memory cooperative solutions to understand what holds them back from widespread adoption

Performance

Reducing the long DRAM access latency

Efficiency

Improving refresh power and performance

Reliability

Mitigating worsening memory errors

This Talk

Security

Addressing worsening RowHammer vulnerability

DRAM Cell

Data Encoding

stores one bit of data

"charged"
$$= 1 \text{ or } 0$$

$$= \text{design-dependent}$$

Every capacitor leaks charge over time

Periodically restores leaked charge **to every cell** (default period = 32-64 ms)

Significant system performance and energy overhead

• DRAM refresh performance overheads in a 4-core system [Patel+, ISCA'17]

Fortunately, most DRAM cells do not fail at a longer refresh interval

Problem: Finding Fast-/Slow-Leaking Cells

- Unfortunately, finding those cells requires memory testing
 - Difficult task that relies on knowing or reverse-engineering DRAM design details
 - E.g., internal cell organization, worst-case testing parameters

Unsupported by the separation of concerns

Finding "Weak" Cells

Violates the separation

Example System-Memory Cooperative Solutions

To Improve	System designers can	
Performance Energy & Power	Exploit expendable operating marginsAccess and refresh timingsOperating voltage and temperature	
Reliability	 Protect against various failure modes System-level error mitigations Detailed qualification and validation 	
Security	Implement system-level defenses • RowHammer, cold-boot attacks	

All rely on **unstandardized information** about DRAM reliability and testing

Revision-by-Example: Case Studies

Performance

Reducing the long DRAM access latency

Efficiency

Improving refresh power and performance

Reliability

Mitigating worsening memory errors

Security

Addressing worsening RowHammer vulnerability

All are discouraged by information that standards abstract away

Talk Outline

- DRAM Scaling Challenges
- Addressing Scaling: The Separation of Concerns
 - Problem 1: Inflexibility to Challenges
 - Problem 2: Overly Constraining
- Enabling System-Memory Cooperation
- Revising the Separation

How should we revise the separation of concerns?

- •Near-term recommendations to the industry should be:
 - Achievable: do not rely on specific changes to DRAM hardware
 - Practical: preserve the commodity industry (e.g., trade secrets)
 - Backwards-compatible: preserve "drop-in use" of DRAM like today
- •Long-term recommendations can be more encompassing

Near-Term Revisions

We study the practicality of information transparency

Good middle ground

Identifying Information to Release

- Provide transparency in DRAM chip design and test
 - No physical changes to hardware
 - Key chip properties that are useful (or even necessary) for system-memory cooperation
- Choose properties that can be reverse-engineered (no longer secret)

Design Characteristic	Reverse-Engineered By	Use-Case(s) Relying on Knowing the Characteristic
Cell charge encoding convention (i.e., true- and anti-cell layout)	Testing [78, 95, 98, 189]	Data-retention error modeling and testing for mitigating refresh overheads (e.g., designing worst-case test patterns) [98, 130, 189]
On-die ECC details	Modeling and testing [95, 258]	Improving reliability (e.g., designing ECC within the memory controller) [27, 30, 101, 321], mitigating RowHammer [100, 216, 219, 222]
Target row refresh (TRR) details	Testing [100, 160]	Modeling and mitigating RowHammer [100, 160, 222]
Mapping between internal and external row addresses	Testing [69, 94, 216, 297, 299, 342]	Mitigating RowHammer [87, 94, 216, 297, 298]
Row addresses refreshed by each refresh operation	Testing [100]	Mitigating RowHammer [100], improving access timings [70,211]
Substructure organization (e.g., cell array dimensions)	Modeling [69] and testing [39,67,69]	Improving DRAM access timings [39,67,69]
Analytical model parameters (e.g., bitline capacitance)	Modeling and testing [189, 191]	Developing and using error models for improving overall reliability [276], mitigating refresh overheads (e.g., data-retention [191, 271, 275] and VRT [283, 284] models), improving access timings [69], and mitigating RowHammer [270, 343]

Table 2: Basic DRAM chip design characteristics that are typically assumed or inferred for experimental studies.

Two-Step Plan to Revise DRAM Standards

1) Enable Cooperative Solutions

Standardized Cooperative
Operating Points
Solutions

Near-Term Plan

2) Broaden Standards

Possible DRAM Operating Points

Standardized Operating Points

Cooperative Solutions

Long-Term Plan

Two-Step Plan to Revise DRAM Standards

1 Enable Cooperative Solutions

Possible DRAM Operating Points

Standardized
Operating Points

Cooperative
Solutions

Near-Term
Plan

- •Information transparency about DRAM chip design
- Communicate information in two key ways
 - 1. Directly provided by chip manufacturers (e.g., datasheets)
 - 2. Crowdsourced database built by DRAM consumers

Two-Step Plan to Revise DRAM Standards

- Broaden DRAM standards to foster cooperative designs
 - Incorporate testing and reliability information that does not exist today
 - Specific information will organically grow from:
 - System-memory cooperative solutions driven by the near-term plan
 - Industry-wide need for more efficient scaling solutions

Long-Term Plan

A Case for Transparent Reliability in DRAM Systems

Minesh Patel[†] Taha Shahroodi^{‡†} Aditya Manglik[†] A. Giray Yağlıkçı[†] Ataberk Olgun[†] Haocong Luo[†] Onur Mutlu[†] $^{\dagger}ETH \ Z\ddot{u}rich \quad ^{\ddagger}TU \ Delft$

Mass-produced commodity DRAM is the preferred choice of main memory for a broad range of computing systems due to its favorable cost-per-bit. However, today's systems have diverse system-specific needs (e.g., performance, energy, reliability) that are difficult to address using one-size-fits-all general-purpose DRAM. Unfortunately, although system designers can theoretically adapt commodity DRAM chips to meet their particular design goals (e.g., by exploiting slack in access timings to improve performance, or implementing system-level RowHammer mitigations), we observe that designers today lack the necessary insight into commodity DRAM chips' reliability characteristics to implement these techniques in practice.

who purchase, test, and/or integrate commodity DRAM chips (e.g., cloud system designers, processor and system-on-a-chip (SoC) architects, memory module designers, test and validation engineers) are free to focus on the particular challenges of the systems they work on instead of dealing with the nuances of building low-cost, high-performance DRAM.

To ensure that system designers can integrate commodity DRAM chips from any manufacturer, the DRAM interface and operating characteristics have long been standardized by the JEDEC consortium [8]. JEDEC maintains a limited set of DRAM standards for commodity DRAM chips with different target applications, e.g., general-purpose DDRn [9–11], bandwidth-

Minesh Patel, Taha Shahroodi, Aditya Manglik, A. Giray Yaglikci, Ataberk Olgun, Haocong Luo, Onur Mutlu,

"A Case for Transparent Reliability in DRAM Systems" arXiv, April 2022.

Reshaping DRAM Scaling by Enabling System-Memory Cooperation

Minesh Patel

SAFARI ETHzürich

Zürich · 2 November 2023