Логика и Алгоритмы 2 курс Задачи

31 декабря 2021 г.

Логика и алгоритмы 2021. Листок 1. Срок сдачи 19.02.2021

Каждая задача оценивается некоторым количеством баллов, которое указано в скобках после ее номера. Оценка за листок равна сумме баллов сданных задач, но не может превышать 10.

- 1. (1) Для множеств A, B и функции $f:A\to B$ показать, что $f(X)=\{y\,|\,\exists x\in X(f(x)=y)\}$ и $f^{-1}(Y)=\{x\,|\,\exists y\in Y(f(x)=y)\}$ являются множествами.
- 2. (1) Существует ли множество, содержащее в точности все кардиналы?
- 3. (1) Докажите, что любой плотный (т.е. для которого верно $\forall x \forall y \, (x < y \to \exists z (x < z \land z < y)))$ счётный линейный порядок без максимального и минимального элементов изоморфен \mathbb{Q} .
- 4. (1) Докажите, что для двух множеств A и B, таких что $A\lesssim B$ и $A\gtrsim B$, верно, что $A\sim B$. Это утверждение известно, как теорема Кантора-Бернштейна.
- 5. (баллы по пунктам) Пусть (X,<) вполне упорядоченное множество. Обозначим через $\Omega(X)$ множество всех конечных последовательностей $\langle x_1, x_2, \dots, x_n \rangle$ элементов X таких, что $x_1 \geqslant x_2 \geqslant \dots \geqslant x_n$, где n может быть произвольным.

Зададим на $\Omega(X)$ порядок: $\langle x_1, x_2, \dots, x_n \rangle$ меньше $\langle y_1, y_2, \dots, y_m \rangle$, если для некоторого $k \leqslant \min(n, m)$ верно $x_k < y_k$ и $\forall i < k \, (x_i = y_i)$, или же если n < m и $\forall i \leqslant n \, (x_i = y_i)$. Такой порядок обычно называется лексикографическим. Например для $\Omega(\mathbb{N})$ верно

$$\begin{split} &\langle 5,4,3,2,1\rangle < \langle 5,4,3,2,2\rangle; \\ &\langle 5,4,3,2,1\rangle < \langle 5,4,3,2,1,0\rangle; \\ &\langle 5,4,3,2,1\rangle < \langle 5,5\rangle. \end{split}$$

- а) (1 балл) Докажите, что $\Omega(X)$ вполне упорядочено.
- б) (2 балла) Проверьте, что $\Omega(1) \cong \omega$; $\Omega(X+1) \cong \Omega(X) \times \omega$; $\Omega(X+Y) \cong \Omega(X) \times \Omega(Y)$.
- 6. (3) Пусть ω_1 первый несчётный кардинал. Определите порядковый тип вполне упорядоченного множества $\Omega(\omega_1)$?
- 7. (3) Пусть (P,<) частично упорядоченное множество, в котором всякая цепь имеет точную верхнюю грань. Дана функция $f:P\to P$, т.ч. $f(x)\leqslant f(y)$ для всех $x\leqslant y$. Докажите, что у функции f есть неподвижная точка, т.е. $\exists z\, (f(z)=z)$.
- 8. (2) Выведете Теорему Цермело из Леммы Цорна непосредственно (в теории Цермело-Френкеля без аксиомы выбора).
- 9. (2) Докажите, что в теории Цермело-Френкеля с аксиомой выбора, но без аксиомы регулярности, докажите, что аксиома регулярности эквивалентна утверждению об отсутствии бесконечных ∈-убывающий последовательностей множеств.

Замечание. В доказательстве теоремы о рекурсии для натуральных чисел не используется аксиома регулярности.

10. (2) Пусть $X \neq \emptyset$ и $R \subset X \times X$ — ациклическое отношение на X, т.е. не существует $x_1, x_2, \dots x_n$ $(n \geqslant 1)$, таких что

$$x_1Rx_2, \dots x_{n-1}Rx_n, x_nRx_1$$

- (в частности, R иррефлексивно и не симметрично). Докажите, что существует линейный порядок продолжающий R.
- 11. (3) Докажите, что в \mathbb{R}^3 существует множество окружностей радиуса 1, такое что через каждую точку проходит ровно одна окружность. Т.е. что пространство \mathbb{R}^3 можно разбить на непересекающиеся окружности.
- 12. (2) В теории Цермело-Френкеля без аксиомы выбора докажите, что следующие утверждение эквивалентно аксиоме выбора:

У любого связного графа (неориентированного без петель) существует остовное дерево, т.е. подграф-дерево, содержащее все вершины.

Решения

Задача 1

Вопспользуемся схемой аксиом подстановки. Пусть свойство $\varphi(x,y)$ - такое, что для любого множества x айдется не более одного множества y, для которого $\varphi(x,y)$. Тогда для любого X найдется множество $Y = \{y | \exists x \in X \ \varphi(x,y) \}$

Тогда $f^{-1}(y) = \{x | \exists y \in Y \ (f(x) = y)\}$ множество, теперь воспользуемся схемой аксиом выделения. Для любого свойства φ и множества Y существует множество $Z = \{x \in Y | \varphi(x)\}$. То есть для X и свойства $\varphi(x) \leftrightarrow \exists y : f(x) = y$, существует множество $f^{-1}(Y) = \{x \in X | \varphi(x)\} = \{x \in X | \exists y : f(x) = y\}$

Задача 2

Допустим, существует множество всех кардиналов A, оно изоморфно кардиналу ω_N . Существует 2^{ω_N} множество всех подмножеств множества ω_N , по теореме с семинара известно, что для любого множества $B:|B|\not\simeq |2^B|$. Тогда существует кардинал $\omega_{N_1}:\omega_{N_1}\simeq 2^{\omega_N}$, но $\omega_{N_1}\notin A$, так как $\omega_{N_1}<|A|$ – противоречие.

Задача 3

(A,<) счетно, плотно, линейно упорядочено, $\mathbb Q$ тоже. У обоих нет минимального или максимального элемента Докажем, что они изоморфны

- 1) \mathbb{Q} , A счетные, поэтому мы можем занумеровать их элементы
- 2) Построим по шагам (элементов счетно, следовательно шагов тоже).

Пусть мы построили множества X,Y из n элементов. Построение: возьмем элемент $\mathbb{Q}\backslash X$ или $Y\backslash A$ (пусть из $Y\backslash A$) и сравниваем его со всеми остальными элементами. Он или наименьший, или наибольший, или между y_i,y_{i+1} . Найдем элемент в $\mathbb{Q}\backslash X$, состоящий в таком же отношении с элементами X. Это можно сделать, так как \mathbb{Q} плотно и не содержит минимального и максимального элемента. Теперь будем считать эти два элемента эквивалентными. На каждом шаге будем присоединять элемент из $\mathbb{Q}\backslash X$ или $Y\backslash A$ с элементом с наименьшим номером.

Задача 4

(A, <) – вполне упорядочено

Пусть $B \subset A$, $(B, <_B)$ – полне упорядоченное множество. По теореме Кантора для любых двух вполне упорядоченных множеств одно изоморфно начальному отрезку другого.

$$(B, <_B) \simeq [0, a)_A$$
$$(A, <) \simeq [0, b)_B$$

Рассмотрим $f: A \to [0,b) \subset A$, это изоморфизм и f сохраняет порядок.

Лемма из Лекции:

Даны вполне упорядоченное множество (A,<) и функция $f:A\to A$, сохраняющая порядок, тогда $a\leqslant f(a)\ \forall a\in A$

В нашем случае это также выполнено, а следовательно $\forall a \in A : a \leq f(a)$

 $[0,b)_B$ по определению это подмножество $B \subset A$, такое что $\tilde{b} \in [0,b)_B$, $\tilde{b} < \tilde{b} \Rightarrow \tilde{b} \in [0,b)_B$. У нас $\forall a \in A : a \leq f(a) \in [0,b)_B$, то есть $a \in [0,b)_B$. Значит, $A \subseteq [0,b)_B \subseteq A$, то есть $[0,b)_B = A$ и B = A, что и требовалось.

Задача 7

(P,<) частично упорядочено, всякая цепь имеет точную верхнюю грань, следовательно по лемме Цорна (P,<) имеет максимальный элемент.

Зафиксируем $a \in P$ и построим функцию

$$g:\gamma\to P\quad \gamma\text{ - ординал, такой что не существует инъекции }\gamma\to P$$

$$g=\begin{cases}g(0)=a\\g(\alpha+1)=f(g(\alpha))\\g(\alpha)=\sup\{g(\beta):\beta<\alpha\}\quad\text{если }\alpha\text{ предельный ординал}\end{cases}$$

$$\forall x\leqslant y:f(x)\leqslant f(y)\Rightarrow \forall \alpha\leqslant\beta:g(\alpha)\leqslant g(\beta)$$
 $\{g(\beta):\beta<\alpha\}$ – цепь $\forall \alpha<\gamma$

Пусть g строго возрастает, следовательно оно инъективно, но $g:\gamma\to P$ не инъекция, откуда

$$\exists \alpha < \beta < \gamma, \text{ так что } g(\alpha) = g(\beta)$$

$$g(\alpha) \leqslant g(\alpha+1) \leqslant g(\beta) = g(\alpha) \qquad g(\alpha+1) = f(g(\alpha))$$

$$f(g(\alpha)) = g(\alpha)$$

$$\exists z: f(z) = z$$

Покажем, что существует ординал α , такой что не существует инъекции $\alpha \to P$ $\alpha = \{\beta | \ \beta$ – ординал такой, что существует инъекция $\beta \to P\}$ (то есть $\forall \beta \in \alpha \ \exists P' \subseteq P : \beta \simeq |P'|)$ Возьмем инъекцию $g: \beta \to P$, некий $\gamma < \beta$ и $h: \gamma \to \beta$ – включение. $g \circ h$ – инъекция, следовательно $\gamma \in \alpha$, откуда $\beta \in \alpha, \gamma \in \beta$, то $\gamma \in \alpha$, тогда α – транзитивно, его элементы тоже, а следовательно это ординал. Если существует инъекция $\alpha \to P$, то $\alpha \in \alpha$ – противоречие.

Задача 8

Вполне упорядоченное множество $(S, <_S)$ назовем вполне упорядоченным подмножеством X, если $S \subset X$. Для данного множества X рассмотрим совокупность W(X) всех его вполне упорядоченных подмножеств. На W(X) определим отношение строгого частичного порядка \prec следующим образом: $(S, <_S) \prec (T, <_T)$, если и только если $S \subset T$ – собственный начальный отрезок $(T, <_T)$, $<_S = <_T \mid_S$.

Порядок:

транзитивность $(S,<_S)<(T,<_T),\; (T,<_T)<(M,<_M),\;$ следовательно $S\subset T$ — собственный начальный отрезок $(T,<_T),\;<_S=<_T|_S,\; T\subset M$ — собственный начальный отрезок $(M,<_M),\;<_T=<_M|_T.\;$ Тогда $S\subset T\subset M,\; S$ — собственный начальный отрезок $M,<_S=<_T|_S=<_{(M|T)|S},\;$ откуда $<_S=<_{M|T}$

Докажем, что $(W(X), \prec)$ удовлетворяет условию леммы Цорна. Рассмотрим любую цепь $C \subset W(X)$. Цепь – подмножество W(X), любые 2 элемента которого сравнимы, то есть среди любых двух элементов один является начальным отрезком другого, причем элементы – это вполне упорядоченные подмножества X. Таким образом, цепи C соответствуют возрастающая по включению цепь подмножеств X и возрастающая по включению цепь бинарных отношений на этих множествах. Пусть n – объединение этой цепи подмножеств и $<_n$ – цепи отношений.

 $<_n$ — отношение линейного порядка на n (все сравнимо). Каждое $(S_1,<_s)\in C$ — начальный отрезок $(n,<_n)$. Тогда $(n,<_n)$ — вполне упорядоченное подмножество X, следовательно это элемент W(X), также верхняя грань цепи C.

Применим к W(X) лемму Цорна. В (W(X),<) найдется некоторый максимальный элемент $(M,<_M)$. Покажем, что M=X. Допустим это не так, тогда возьмем $a\in X\backslash M$ и продолжим порядок $<_M$ на $N=M\cup\{a\}$, считая $x<_N a$, $\forall x\in M$. Тогда $(N,<_N)$ – вполне упорядоченное подмножество X, и $(M,<_M)\prec (N,<_N)$, но $(M,<_M)$ максимальный, следовательно X – это $(M,<_M)$, причем $(M,<_M)$ – вполне упорядоченное множество.

Задача 9

(утверждение 1) Пусть A – множество, $A \neq \emptyset$, R – тотальное бинарное отношение на A. Тогда существует последовательность $(a_n)_{n \in \mathbb{N}}$, такая что $a_n R a_{n+1} \ \forall n \in \mathbb{N}$

 $R(a) \neq \emptyset \ \forall a \in A$ (отношение тотальное). A разбивается на непересекающиеся классы эквивалентности, то есть A – семейство непустых классов эквивалентности. По аксиоме выбора существует функция $f: A \to A$,

такая что $\forall a \in A: f(a) \in A$, откуда $f(a) \in R(a)$, так как A разбито на классы эквивалентности. Значит, $\forall a \in A: aRf(a)$, так как $f(a) \in R(a)$

Зафиксируем $a \in A$ и рекурсивно зададим последовательность, то есть функцию из M:

$$\begin{cases} a_0 = a \\ a_{n+1} = f(a_n) \end{cases}$$

То есть последовательность выглядит так: a, f(a), f(f(a)), ...

Аксиома регулярности равносильна отсутствию бесконечной ∈-убывающей последовательности множеств.

- (⇒) Пусть существует такая последовательность, то есть f, определенная на \mathbb{N} . f(n+1) это элемент f(n) ля любого n (так как последовательность \in -убывающая). Пусть $S = \{f(n) \mid n \in \mathbb{N}\}$ множество значений f. По аксиоме регулярности $\exists B \in S$, такое что $B \cap S = \emptyset$. По определению S, B это f(k) для какого-то $k \in \mathbb{N}$. f(k) содержит f(k+1), $f(k+1) \in S$. Тогда $f(k+1) \in f(k) \cap S$. Но в пересечении пустое множество противоречие, а следовательно такого f не существует
- (\Leftarrow) Пусть $S \neq \varnothing$ является контрпримером к аксиоме регулярности, то есть $\forall s \in S: s \cap S \neq \varnothing$. Определим бинарное отношение R на $S: aRb \Leftrightarrow b \in S \cap a \neq \varnothing$. Отношение тотальное, так как иначе $\exists s_1: \exists s_2 \in S: s_2 \in S \cap s_1$ противоречит определению S. По утверждению 1 существует последовательность $(a_n) \in S$, где $a_nRa_{n+1} \ \forall n \in \mathbb{N}$. Это бесконечная убывающая цепочка противоречие, такого S не существует.

Задача 11

Используя теорему Цермело введем отношение полного порядка в \mathbb{R}^3 Луч $\{\beta: \beta \leq \alpha\} < \{\beta: \beta \leq \gamma\}$, если $\alpha < \gamma$ и не существует луча равномощного $\mathbb{R}^3 \simeq 2^\omega$

Во вполне упорядоченном множестве существует минимальный элемент a_0 , проведем через него окружность.

Затем воспользуемся трансфинитной индукцией: пусть $\forall \beta < \alpha$ проведены непересекающиеся окружности, тогда:

- 1) точка α принадлежит одной из проведенных окружностей, в этом случае мы ничего не проводим
- 2) точка α не принадлежит ни одной из проведенных окружностей, в этом случае построим окружность: Через α проходит континуум окружностей, а уже проведено $\leq \beta$ окружностей $\neq 2^{\omega}$. Выберем плоскость A, которая не содержит проведенных окружностей (это можно сделать, так как плоскостей континуум, а построенные окружности входят не более чем в β плоскостей). Каждая окружность пересекает A не более чем в 2 точках, а следовательно их меньше 2^{ω} . Проведем на A семейство окружностей, касающихся в α . Существует окружность, которую не пересекает ни одна построенная окружность (так как каждая из построенных окружностей пересекается не более чем с 2 из данного семейства).

Задача 12

 $(Выбор \Rightarrow Дерево)$

Дан связанный граф, заметим что любой максимальный подграф без циклов будет остовным деревом, а существование такого подграфа следует из леммы Цорна (порядок введен по отоншению подграфа)

(Выбор ← Дерево)

Дано непустое семейсто $(X_i)_{i\in I}$ непересекающихся непустых множеств, определим семейство одноэлементных множеств $(Y_i)_{i\in I}$ так, что $Y_i\notin X_j$ и какое-то $a\notin\bigcup_{i\in I}(X_i\cup\{Y_i\})$. Пусть $V:=\{a\}\cup(\cup_{i\in I}(X_i\cup\{Y_i\}))$. Определим связный граф G с вершинами V таким образом: для каждого $i\in I$ и $x\in X_i$ свяжем(соединим ребром) x с Y_i и a. Определим остовное дерево T графе G. Для каждого $i\in I$, каждый путь в G, проходящий через Y_i и a, проходит через элемент X_i (и для каждого i элемент свой). Так как остовное дерево является связанным подграфом G, T имеет хотя бы один путь, а так как в нем нет циклов, то такой путь ровно один. Пусть этот путь проходит через x_i в X_i , тогда $(x_i)_{i\in I}$ Принадлежит $\prod_{i\in I} X_i$.

Логика и алгоритмы 2021. Листок 2. Срок сдачи 09.04.2021

Каждая задача оценивается некоторым количеством баллов, которое указано в скобках после ее номера. Оценка за листок равна сумме баллов сданных задач, но не может превышать 10.

B задачах 2, 7, 8, 9, 12 рассматриваются сигнатуры с равенством и все модели предполагаются нормальными.

- 1. (1) Докажите, что любую булеву функцию от произвольного числа аргументов можно записать с помощью $x \leftrightarrow y$ (эквиваленция), $x \oplus y$ (сложение по модулю 2) и функции maj(x,y,z) от трех аргументов, которая равна значению, которое встречается среди аргументов x, y и z по крайней мере 2 раза.
- 2. Для сигнатуры с одним предикатным символом \leq и равенством, рассмотрим модель $M = (P(\mathbb{N}), \subset)$ (т.е. носитель состоит из всех подмножеств \mathbb{N} , а \leq интерпретируется как включение). Докажите, что в M:
 - а) $(1 \, \text{балл})$ множество $\{\{0\}\}$ не определимо,
 - б) (1 балл)множество $\{\{0\}, \{1\}, \{2\}, \ldots\}$ определимо.
- 3. (1) Приведите следующую формулу, в которой P и Q—двуместные предикатные символы, к предваренной нормальной форме

$$\forall x \exists y \big(P(x, a) \to Q(y, a) \big) \to \exists y \big(P(b, y) \to \neg \forall x Q(y, x) \big).$$

- 4. Для следующих формул проверьте выполнимость и общезначимость:
 - (a) (1 балл) $\forall x \exists y \forall z P(x, y, z) \rightarrow \exists z \forall y \exists x P(x, y, z);$
 - (b) (1 балл) $\exists x \forall y \exists z P(x, y, z) \rightarrow \forall y \exists z \exists x P(x, y, z)$.
- 5. (2) Покажите, что следующая формула выполнима, но только на бесконечных моделях:

$$\neg \exists x (\exists y (R(y,x) \land \forall z (R(x,z) \rightarrow R(y,z))) \rightarrow R(x,x)).$$

- 6. Докажите выводимость следующих формул в исчислении предикатов, не используя теорему о полноте:
 - (a) (2 балл) $(\forall x A \land \forall x B) \rightarrow \forall x (A \land B);$
 - (b) (2 балл) $\exists x [a/x](A \land B) \rightarrow (\exists x [a/x]A \land B)$, где a не входит в B;
- 7. (2) Пусть сигнатура Ω конечна и состоит из одноместных предикатных символов и равенства. Докажите, что всякая теория в сигнатуре Ω имеет не более счетного числа попарно неизоморфных счетных нормальных моделей.
- 8. (2) Докажите, что теория в сигнатуре с одним 2-местным предикатным символом R, равенством и двумя аксиомами:

$$\forall x \forall y (R(x,y) \to R(y,x))$$
 (симметричность), $\forall x R(x,x)$ (рефлексивность),

имеет бесконечно много попарно не эквивалентных расширений (в той же сигнатуре).

9. (2) Рассмотрим абелевы группы в сигнатуре $\{0,+,=\}$. Верно ли, что $\mathbb{Z}\oplus\mathbb{Q}\oplus\mathbb{Q}\equiv\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Q}$?

- 10. (1) Постройте формулу в какой-нибудь сигнатуре без равенства, имеющую 3-элементную модель, но не имеющую 2-элементных моделей.
- 11. (2) Можно ли построить в сигнатуре без равенства формулу, имеющую 2-элементную модель, но не имеющую 3-элементных моделей?

В последней задаче используются следующие сокращения:

$$\exists !x\, A(x) := \exists x(A(x) \land \forall y(A(y) \to y = x)) \text{ (где } y \text{ не входит в } A(x)),$$

$$\exists_{=n}x\, A(x) := \exists x_1 \ldots \exists x_n (A(x_1) \land \ldots \land A(x_n) \land \bigwedge \{ \neg (x_i = x_j) \mid i < j \} \land \forall y(A(y) \to (y = x_1 \lor \ldots \lor y = x_n)))$$

(где y, x_1, \ldots, x_n — различные связанные переменные, не входящие в A(x)).

- 12. (3) («Проективная геометрия») Докажите, что теория в сигнатуре $(R^2, =)$ со следующими аксиомами сильно категорична:
 - (a) $\forall x (\exists y R(y, x) \to \exists_{=3} y R(y, x)),$
 - (b) $\forall x (\exists y R(x, y) \rightarrow \exists_{=3} y R(x, y)),$
 - (c) $\forall x \forall y (x = y \lor \exists z R(z, x) \lor \exists z R(z, y) \lor \exists! z (R(x, z) \land R(y, z))),$
 - (d) $\forall x \forall y (x = y \lor \exists z R(x, z) \lor \exists z R(y, z) \lor \exists! z (R(z, x) \land R(z, y))),$
 - (e) $\forall x(\exists y R(x,y) \leftrightarrow \neg \exists y R(y,x)).$

Решения

Задача 1

Теорема о функциональной полноте. Для любой функции $\varphi : \mathbb{B}^n \to \mathbb{B}$ найдется такая формула A от n переменных, что $\varphi = \varphi_A$. При этом можно считать, что A содержит лишь связки \neg и \lor . Следовательно если выразить \neg и \lor через $x \leftrightarrow y, \ x \oplus y, \ \text{maj}(x,y,z)$

X	У	$\mathbf{x} \leftrightarrow y$	$\mathbf{x} \oplus y$	$\mathrm{maj}(x,y,x\oplus y)$	$x \oplus (x \leftrightarrow x)$
0	0	1	0	0	1
0	1	0	1	1	1
1	0	0	1	1	0
1	1	1	0	1	0

Заметим, что $\text{maj}(x, y, x \oplus y)$ соответствует $x \lor y$, а $x \oplus (x \leftrightarrow x) = x \oplus 1$ соответствует $\neg x$, а следовательно любую булеву функцию можно записать, используя только данные по условию функции.

Задача 2

(a) Рассмотрим отображение, такое что $\{0\} \leftrightarrow \{1\}$. Покажем, что это автоморфизм, то есть что если $A \subseteq B$, то $A' \subseteq B'$. Пусть $a \in A'$

$$a \neq 0, 1 \Rightarrow a \in A \Rightarrow a \in B \Rightarrow a \in B'$$

 $a = 0 \Rightarrow 1 \in A \Rightarrow 1 \in B \Rightarrow 0 \in B'$
 $a = 1 \Rightarrow 0 \in A \Rightarrow 0 \in B \Rightarrow 1 \in B'$

Итак, множество $\{\{0\}\}$ не сохранилось при рассмотренном автоморфизме, а определимые множество сохраняются при любом автоморфизме, а следовательно $\{\{0\}\}$ не явояется определимым.

(b) Зададим предикат, выражающий свойство одноэлементности множества, то есть всякое подмножество данного множества или пусто, или совпадает с ним самим. Выразим свойство пустоты множества ($x = \{\}$) формулой $\forall y \ x \leqslant y$, а также свойство равенства двух подмножеств (x = y) формулой ($x \leqslant y$) \land ($y \leqslant x$). Через это мы можем выразить свойство одноэлементности $\forall y ((y \leqslant x) \rightarrow ((y = \{\}) \lor (y = x)))$.

Задача 3

$$\forall x \exists y (P(x,a) \to Q(y,a)) \to \exists y (P(b,y) \to \neg \forall x Q(y,x))$$

$$\forall x \exists y (P(x,a) \to Q(y,a)) \to \exists z (P(b,z) \to \neg \forall t Q(z,t))$$

$$\forall x \exists y (\neg P(x,a) \lor Q(y,a)) \to \exists z (\neg P(b,z) \lor \neg \forall t Q(z,t))$$

$$\neg \forall x \exists y (\neg P(x,a) \lor Q(y,a)) \lor \exists z (\neg P(b,z) \lor \neg \forall t Q(z,t))$$

$$\neg \forall x \exists y (\neg P(x,a) \lor Q(y,a)) \lor \exists z (\neg P(b,z) \lor \exists t \neg Q(z,t))$$

$$\exists x \forall y \neg (\neg P(x,a) \lor Q(y,a)) \lor \exists z (\neg P(b,z) \lor \exists t \neg Q(z,t))$$

$$\exists x \forall y \exists z \exists t (\neg P(x,a) \lor Q(y,a)) \lor (\neg P(b,z) \lor \neg Q(z,t))$$

$$\exists x \forall y \exists z \exists t (P(x,a) \land \neg Q(y,a)) \lor (\neg P(b,z) \lor \neg Q(z,t))$$

$$\exists x \forall y \exists z \exists t (P(x,a) \lor \neg P(b,z) \lor \neg Q(z,t)) \land (\neg Q(y,a) \lor \neg P(b,z) \lor \neg Q(z,t))$$

Задача 4

(a)

$$\forall x \exists y \forall z P(x, y, z) \rightarrow \exists z \forall y \exists x P(x, y, z)$$

Рассмотрим модель целых чисел, в которой $P(x,y,z): y=x^2$. Тогда $\forall x \exists y \forall z (y=x^2)$ верно, а $\exists z \forall y \exists x (y=x^2)$ неверно, следовательно формула необщезначима.

(b)

$$\exists x \forall y \exists z P(x, y, z) \rightarrow \forall y \exists z \exists x P(x, y, z)$$

Если левая часть – истина, то существуют такие x_0, z_0 , что $\forall y: P(x,y,z) \equiv 1$, тогда правая часть также истина, так как для этой же пары x_0, z_0 все будет выполнено, а следовательно формула истина. Если левая часть ложна, то следствие может быть любым, а следовательно формула также истина. Тогда она всегда истина, а следовательно выполнима и общезначима

Задача 5

$$\neg \exists x (\exists y (R(y,x) \land \forall z (R(x,z) \rightarrow R(y,z))) \rightarrow R(x,x))$$

$$\forall x \neg (\exists y (R(y,x) \land \forall z (R(x,z) \rightarrow R(y,z))) \rightarrow R(x,x))$$

$$\forall x \neg (\exists y (R(y,x) \land \forall z (\neg R(x,z) \lor R(y,z))) \rightarrow R(x,x))$$

$$\forall x \neg (\neg \exists y (R(y,x) \land \forall z (\neg R(x,z) \lor R(y,z))) \lor R(x,x))$$

$$\forall x (\exists y (R(y,x) \land \forall z (\neg R(x,z) \lor R(y,z))) \land \neg R(x,x))$$

$$\forall x \neg R(x,x) \land \forall x \exists y (R(y,x) \land \forall z (\neg R(x,z) \lor R(y,z)))$$

$$\forall x \neg R(x,x) \land \forall x \exists y \forall z (R(y,x) \land (\neg R(x,z) \lor R(y,z)))$$

$$\forall x \exists y \forall z (\neg R(x,x) \land R(y,x) \land (\neg R(x,z) \lor R(y,z)))$$

Задача 6

(а) Правило Бернайса $\frac{A \to B}{A \to \forall x B[a/x]}$, следовательно нам достаточно доказать, что $(\forall x A \land \forall x B) \to A \land B$ выводимо.

Применим теорему о дедукции: $\Gamma \vee \{P\} \vdash Q \Leftrightarrow \Gamma \vdash P \to Q$, то есть будем выводить $A \wedge B$ из аксиом и $(\forall x \ A \wedge \forall x \ B)$

Аксиомы:

$$A \wedge B \rightarrow A$$
 (1), $A \wedge B \rightarrow B$ (2), $A \rightarrow (B \rightarrow A \wedge B)$ (3) $\forall x A[a/x] \rightarrow A[a/t]$ (4), $A[a/t] \rightarrow \exists x A[a/x]$ (5) Modus ponens: $\frac{A, A \rightarrow B}{B}$ (MP)

$$\forall x A \land \forall x B \xrightarrow{(1)} \forall x A \xrightarrow{(4)} A \xrightarrow{(*)} A \land B$$

$$\forall x A \land \forall x B \xrightarrow{(2)} \forall x B \xrightarrow{(4)} B$$

(*):
$$(A \to (B \to A \land B)) \xrightarrow{\text{(MP)}} (A \to A \land B) \xrightarrow{\text{(MP)}} A \land B$$

Задача 9

Рассмотрим формулу

$$\forall x (\forall s \ x \neq s + s) \to (\forall y (\forall t \ y \neq t + t) \to \exists w \ x + y = w + w)$$

Пусть
$$\mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{Q} = M_1$$
, $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Q} = M_2$

Эта формула всегда верна в M_1 :

Пусть $x \neq s + s \ \forall s$, это значит, что x = (нечетное, любое), так как га второй и третьей позиции рациональные числа, там можно любое число представить в виде $\frac{\text{число}}{2}$. Пусть $y \neq t + t$, тогда аналог y = (нечетное, любое, любое). Тогда x + y = (нечетное, любое, любое) + (нечетное, любое, любое) = (четное, любое, любое), то есть формула примет вид $1 \rightarrow (1 \rightarrow 1) = 1$

Если $x \neq s + s$, y = t + t, то x + y = (нечетное, любое, любое) и формула примет вид $1 \to (0 \to 0) = 1 \to 1 = 1$ Если x = s + s, $y \neq t + t$, то x + y = (нечетное, любое, любое) и формула примет вид $0 \to (1 \to 0) = 0 \to 0 = 1$ Если x = s + s, y = t + t, то x + y = (четное, любое, любое) и формула примет вид $0 \to (0 \to 1) = 0 \to 1 = 1$

Но в M_2 эта формула не всегда верна, рассмотрим следующий случай: $x=(1,0,0),\ y=(0,1,0),\ x+y=(1,1,0).$ Тогда формула примет вид $1\to (1\to 0)=1\to 0=0$, то есть они не изоморфны и утверждение задачи неверно.

Логика и алгоритмы (весна 2021) Листок N 3. Срок сдачи 15 июня.

Задачи оцениваются по 1 баллу, кроме задач 6 и 7, за которые дается 2 балла. Можно набрать не более 10 баллов.

В этом листке все сигнатуры и теории с равенством, все модели нормальны.

 $Cne\kappa mp$ замкнутой формулы — это множество мощностей ее конечных моделей.

Теории одной сигнатуры называются *эквивалентными*, если у них одни и те же модели.

Теория называется *конечно аксиоматизируемой*, если существует эквивалентная ей конечная теория.

 $A_{=n}$ — формула в сигнатуре $\{=\}$, истинная в точности в моделях мощности n.

- 1. Докажите, что ординалы $\omega \cdot 2$ и $\omega \cdot 3$ как модели сигнатуры $\{<,=\}$ не элементарно эквивалентны.
- 2. (a) Докажите, что в сигнатуре {=} спектр любой замкнутой формулы либо конечное, либо ко-конечное (т.е. дополнение к конечному) множество.
 - (b) Докажите, что всякая замкнутая формула этой сигнатуры эквивалентна булевой комбинации формул вида $A_{=n}$ (т.е. формуле, построенной из них с помощью \vee, \wedge, \neg).
- 3. Докажите, что если замкнутая формула в сигнатуре $\{+,\cdot,1,0,=\}$ истинна во всех полях характеристики 0, то она истинна в некотором поле конечной характеристики.
- 4. Докажите, что $Th(\mathbb{Q},<,=,P)$, где $\{r\mid \mathbb{Q}\models P(r)\}=(-\infty,\sqrt{2}),$ счетно категорична
- 5. Даны две теории T и S в сигнатуре Ω со следующими свойствами:
 - теория $T \cup S$ противоречива;
 - всякая модель сигнатуры Ω является либо моделью T, либо моделью S.

Докажите, что обе теории T и S конечно аксиоматизируемы.

- 6. (2 балла) Докажите, что любой бесконечный линейный порядок (X, \leq) изоморфно вкладывается в некоторое ультрапроизведение своих конечных подпорядков.
- 7. (2 балла) Докажите, что теория $Th(\mathbb{Q})$ в сигнатуре $\{+,\cdot,1,0,=\}$ не является счетно категоричной.
- 8. Пусть A, A', B, B' линейно упорядоченные множества (в сигнатуре $\{<,=\}$). Докажите, что если $A \equiv A'$ и $B \equiv B'$, то $A+B \equiv A'+B'$.
- 9. В сигнатуре $\{S, =\}$, где S одноместный функциональный символ рассмотрим теорию T с аксиомами

$$\forall x \exists ! y \, S(y) = x,$$

$$\forall x \, S^n(x) \neq x \quad (\text{для всех } n).$$

- (a) Докажите, что T не счетно категорична.
- (b) Докажите, что T категорична в любой несчетной мощности и, как следствие, теория T полна.
- 10. Докажите, что в модели ($\mathbb{Q},0,1,+,<$) операция умножения не определима.

Решения

Задача 1

Предъявим формулу, которая выполняется в одной модели, но не выполняется в другой: Существует три различных элемента, у которых нет непосредственного предшественника. То есть $A = \exists x1, x2, x3 \ (x1! = x2 \land x1! = x3 \land x2! = x3 \land \forall y \ (y < x_i \Rightarrow \exists z: \ y < z < x_i). \ w*3 \models A, \ w*2 \models A.$

Задача 2

- (а) Пусть Sp(A) спектр A. Sp(A) дополнение к $Sp(\neg(A))$, так как если A не истинна в M, то $\neg(A)$ истинна в M, а модели одинакового порядка, раз у нас сигнатура $\{=\}$, изоморфны. Тогда надо показать, что невозможно, что и Sp(A), и $Sp(\neg(A))$ бесконечны. Пусть бесконечны, тогда у A и $\neg(A)$ есть конечные модели сколь угодно большой мощности \Rightarrow по теореме о подъеме есть и сколь угодно бесконечной. Возьмем тогда такие модели бесконечной мощности k. Получается, у A и $\neg(A)$ есть модели одинаковой мощности одной сигнатуры. Как мы уже сказали, они должны быть изоморфны, то есть в них истинны одни и те же формулы, то есть в таких моделях мощности k истинны и A, и $\neg(A)$, а так не может быть.
- (b) Если $\mathrm{Sp}(A)$ конечен, то тогда у A модели мощности n_1, n_2, \ldots, n_k . А еще модели одинаковой мощности изоморфны, то есть модели мощностей n_1, \ldots, n_k будут моделями A. Значит, $A = \vee A_{=n}$ по $n = n_1, \ldots, n_k$.

Если конечен, то $Sp(\neg(A))$ конечное, тогда $\neg(A) \Leftrightarrow \forall A_{=n}$, тогда $A \Leftrightarrow \land \neg(A_{=n})$.

Задача 3

Пусть $\{B\}$ аксиоматизирует теорию поля, A замкнутая формула в сигнатуре, которая истинна в каждом поле характеристики 0. Тогда $\{B\} \vee \{1+\ldots+1\neq 0 (\text{n единиц}) | n\geqslant 1,\ n\in A\} \models A\Rightarrow$ по теореме о компактности есть натуральное m, такое что $\{B\} \vee \{1+\ldots+1\neq 0 (\text{n единиц}) | n=1,\ldots,m\} \models A\Rightarrow A$ истинна в каком-то поле char p>m

Задача 5

 $T \cup S$ противоречива \Leftrightarrow есть формула A, такая что $T \cup S \vdash A$, $T \cup S \vdash \neg(A)$. Выводы конечные по определению, так что число использующихся аксиом конечно. Пусть из T используются $\{t_1, \ldots, t_k\}$, из $S - \{s_1, \ldots, s_m\}$. В их объединении выводимы $A, \neg(A)$

Теперь покажем, что $\{t_1,\ldots,t_k\}\sim T$. Покажем, что у них одинаковые модели. Если M — модель T, то M — модель $\{t_1,\ldots,t_k\}\subset T$. Наоборот от противного. То есть M — модель $\{t_1,\ldots,t_k\}$, но не модель T. По условию M — модель или T, или S. Значит, модель S. Тогда $M\models\{s_1,\ldots,s_m\}\subset S$. Раз $M\models\{t_1,\ldots,t_k\}$ по предположению, то $M\models\{s_1,\ldots,s_m\}\vee\{t_1,\ldots,t_k\}$. А в этом объединении выводимы A и $\neg(A)$ (а значит, и истинны). Значит, $M\models A$, $\neg(A)$. Противоречие.

Значит, $T \sim \{t_1, \dots, t_k\} \Leftrightarrow T$ конечно аксиоматизируема. Аналогично S конечно аксиоматизируема

Задача 7

Расширим сигнатуру, добавив в нее константу c. Добавим в $\operatorname{Th}(Q)$ схему аксиом $\forall n \exists x : x^n = c$.

 $\operatorname{Th}(Q) \vee \{ \forall n \exists x : x^n = c \}$ выполнима по теореме о компактности (в каждой конечной подтеории есть лишь конечное число аксиом об извлечении корня. В качестве с возьмем достаточно большое рациональное число, из которого извлекаются все корни теории). По теореме о понижении мощности есть счетная элементарно эквивалентная ей модель M.

Обедним сигнатуру до исходной. Чтобы показать, что $\mathrm{Th}(Q)$ не счетно категорична, предъявим две счетные неизоморфные модели. Покажем, что это Q и M. От противного: пусть есть изоморфизм $\phi: M \sim Q$. Тогда $\phi(x) = \phi(0+x) = \phi(0) + \phi(x) \Rightarrow \phi(0) = 0, \ \phi(x) = \phi(1\cdot x) = \phi(1)\phi(x) \Rightarrow \phi(1) = 1.$ Теперь посмотрим, как выглядит $\phi(c)$. Из $\phi(c)$ должен извлекаться корень любой степени. $\phi(c)$ рациональное, так что $\phi(c)$ или 0, или 1. Но 0 и 1 мы показали, что уже заняты. Так что изоморфизма нет.

Задача 9

(а) T не счетно категорично, т.е. не все счетные модели изоморфны. Явно покажем две счетные неизоморфные модели T. $M_1=\{Z,S_1(x)=x+1\},\ M_2=\{Z,S_2(x)=x+2\}.$ От противного: пусть они изоморфны, ϕ — изоморфизм. Тогда для любого m из $M_1:\ \phi(m+1)=\phi(m)+2.$ Тогда все $\phi(m)$ для всех m из M_1 одинаковой четности. Но ϕ — биекция. Противоречие