Data Structures and Algorithms Spring 2024 — Problem Sets

by Kiril Efimovichh

June 24, 2025

Week 13. Problem set

1. Run the Floyd-Warshall algorithm [Cormen, §23.2] on the following graph. Use the alphabetic order of vertices. Show the state of distance matrix D after each iteration of outer loop in the algorithm. Since the graph has 5 vertices, you must provide five 5×5 matrices in your answer. No justification is required.

Answer:

Dist A:	A	В	С	D	E
A	0	2	+INF	-5	+INF
В	+INF	0	3	8	-4
С	1	3	0	-4	7
D	+INF	+INF	4	0	+INF
Е	6	8	+INF	1	0

Dist B:	A	В	С	D	E
A	0	2	5	-5	-2
В	+INF	0	3	8	-4
С	1	3	0	-4	-1
D	+INF	+INF	4	0	+INF
Е	6	8	11	1	0

Dist C:	A	В	С	D	E
A	0	2	5	-5	-2
В	4	0	3	-1	-4
С	1	3	0	-4	-1
D	5	7	4	0	3
Е	6	8	11	1	0

Dist D:	A	В	С	D	E
A	0	2	-1	-5	-2
В	4	0	3	-1	-4
С	1	3	0	-4	-1
D	5	7	4	0	3
Е	6	8	5	1	0

Dist E:	A	В	С	D	Е
A	0	2	-1	-5	-2
В	2	0	3	-3	-4
С	1	3	0	-4	-1
D	5	7	4	0	3
E	6	8	5	1	0

- 2. Provide a graph with exactly 4 vertices (A, B, C, D) and 4 weighted edges, such that Dijkstra's algorithm [Cormen, §22.3] does **not** give a correct shortest distance for at least one vertex:
 - (a) Provide the graph (the graph must be rendered in a clear way, text representation is not enough); Weights must be (small) integers.

Answer:

(b) Provide the result of Dijkstra's algorithm for each vertex: any shortest path **and** corresponding total weight;

Answer:

Djikstra:

$$A \rightarrow A = 0;$$

$$A \rightarrow B = 2;$$

$$A \rightarrow C = 5;$$

$$A \rightarrow D = 1;$$

(c) Provide the correct shortest path and corresponding total weight for each vertex;

Answer:

Shortest paths:

$$A \rightarrow A = 0;$$

$$A \rightarrow B = 2;$$

$$A \rightarrow C = 5;$$

$$A \rightarrow D = 0;$$

(d) Explain why Dijkstra's algorithm did not provide the correct answer (specifically for your example, generic justification is not accepted).

Answer:

Dijkstra's algorithm doesn't work with edges with negatives weights. This is because Dijkstra's algorithm works by property of triangle inequality: $\delta(S,v) \leq \delta(S,u) + \omega(u,v)$. In this example in doesn't work for S be equal to vertex A and v be equal to vertex D:

$$\delta(A, D) \le \delta(A, BC) + \omega(BC, D)$$

$$1 \le 2 - 2$$

$$1 \leq 0$$
 - FALSE

3. Since Dijkstra's shortest paths algorithm [Cormen, §22.3] does not work with negative edges in general, consider an algorithm that, for a given graph G, if it has a negative edge, finds the minimum edge in G with the weight (-W) and adds (+W) to all edges in the original graph, resulting in a new graph G^{+W} . Then the modified algorithm runs Dijkstra's algorithm on G^{+W} . Are the resulting shortest paths in G^{+W} also shortest in G? If yes, prove it. If no, provide a concrete counterexample and a justification.

Answer:

 G^{+w} :

Result:

We can find counterexample: G:

Result:

References

[Cormen] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms, Fourth Edition. The MIT Press 2022