CS & IT ENGINEERING

Theory of Computation Finite Automata:

NFA with epsilon moves

Lecture No. 11

TOPICS TO BE COVERED

NFA Vs DFA

- -> Every DFA is NFA
- -> NFA need not be DFA
- -> Min DFA need not be min NFA

DFA = NFA

I) DFA A) NFA (by definition)
I) NFA A) DFA (Subset construction)

If WEL, it has atleast one path that halts at final state. accepts L If WEL => No palk exist Every palt halfs at non-final (with & moves)

For every regular language,

- i) only one min DFA exist
- one or more min NFAs exist

Identify language accepted by NFA. Z={a,b}

$$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$$

①
$$L = \phi$$
 over $\Sigma = \{a, b\}$

(3)
$$L = \Sigma^*$$
 over $\Sigma = \{a,b\}$

Note: Min DFA may or may not be Min NFA

 $L=\varphi$ over $\Sigma=\{a,b\}$ Inf NFAS => One min DFA

Inf DFAS => One min DFA

DYLL OV MAYE MIN NFAS 7)505050 -B -C5050 30-50-50 -0-50-50

NFA	min DFA	Min NFA
8) L=(a+b)*a	2	$\frac{2}{2} \rightarrow \frac{2}{a} \rightarrow 0$
9 L=(a+b)*aa	3	3 - Par (0)
(10) L=(a+b)*abba	5	5 - Qa,b 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0

(atb)* aby A G + B by A (ab) ababe

NFA	min DFA	min NFA
(14) fw wefa,by, w =2}	4	3
(15) {w w∈{a,b}*, w ≤2}	4	3
(16) fw/wefa,63, 101>23	3	3
(F) {w weda,6}* w <2}	3	2
(8) dw/WEda,b/* 141/>23	4	4
19 dw/weda, byk, 1w/ +23	4	4

$$\xrightarrow{} \bigcirc \alpha_1 b \bigcirc \bigcirc \alpha_1 b \bigcirc \bigcirc$$

3 states

(24) KIK symbol from begin is à

For DFA: K+2 states

FOR NFA: K+1 States

*(25) KIL symbol from end is a For DFA: 2 States

FOR NFA: K+1 States/

NFA	Min DFA	Min NFA	
I) aga \) min string lingkit	K+2	K+1	
II) Xaaa X	K+1	K+1	
III) Xaaa	K+1	K+1	
$\overline{\mathbb{I}}$) $ \omega = K$	K+2	K+1	
I) IWI <k< td=""><td>K+2</td><td>K+1</td></k<>	K+2	K+1	
\overline{II}) $ M \leq K$	K+1	K+1	
VII) Kit symbol from begin is a'	K+2	KH	
ALL) K* shupo/ from ony is as	2	K+1	

Pw

Practice:

NFA -> O

6

NFA

(5)
$$L = (ab)^{\dagger} a = a(ba)^{\dagger} + 2ix^{\dagger} + 2$$

$$\begin{array}{cccc} (G) & L = (ab)^{*} b \\ & = \{b, abb, ababb, \ldots\} \end{array}$$

Q = set of states in NFA

2 = set of states

NFA

n status

= states (atmost 2 states)

> DFA ming (2 2 states)

NFA

NFA DFA [Subset Construction] Conversion from NFA to DFA

		0	6
A = A = A = A = A = A = A = A = A = A =		dA,B}	416
B {c4 dc} a,b	(AAB)	JA1B, ()	(1, A)
	*{A,D,!}	{A,B,()	dA, if
NFA = (Q, Z, S, A, 1C)	{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	JA, B}	JAJ
ANBIC) 49,6% miles and			

If NFA has n states then equivalent min DFA has atmost 2 states

If NFA has n states then equ. min DFA has max 2 states

Summary

-> NFA

-) nort: NFA witt E-mover

