- P1 | És ben sabut que per tot natural n > 0, π^n és un nombre irracional.
 - (a) Sigui a un real qualsevol. Demostra que si a és racional diferent de 0, aleshores $a\pi + 8$ és irracional.

Procedirem a demostrar-ho per reducció a l'absurd. Suposem que a és un nombre racional diferent de 0 tal que $a\pi+8$ no és irracional. Per tant, $a\pi+8$ és racional i existeixen enters $p,q\in\mathbb{Z},q\neq0$, tals que

$$a\pi + 8 = \frac{p}{q}.$$

D'altra banda, com que a és un nombre racional, existeixen uns altres enters $r, s \in \mathbb{Z}$, $s \neq 0$, tals que $a = \frac{r}{s}$. Per tant,

$$\frac{r}{s}\pi + 8 = \frac{p}{q} \implies \frac{r}{s}\pi = \frac{p}{q} - 8.$$

Ara bé, com que a és diferent de 0, també tenim que $r \neq 0$ i podem aïllar π de l'expressió anterior:

$$\pi = \frac{s}{r} \left(\frac{p}{q} - 8 \right) = \frac{sp - 8qs}{rq}.$$

Com que $sp-8qs\in\mathbb{Z}$ i $rq\in\mathbb{Z}\setminus\{0\}$, hem aconseguit escriure π com una fracció de nombres enters, fet que contradiu a la irracionalitat del nombre π . Amb aquesta contradicció queda demostrat l'enunciat.

(b) És cert el recíproc? Justifica la resposta.

El recíproc diu el següent:

Sigui a un real qualsevol, si $a\pi + 8$ és irracional, aleshores a és racional diferent de 0. Aquest enunciat és fals, i per demostrar-ho trobarem un contraexemple. Triem $a = \pi$, per tant,

$$a\pi + 8 = \pi^2 + 8$$
.

Per veure que $\pi^2 + 8$ és irracional ho farem per reducció a l'absurd. Suposem per tant que $\pi^2 + 8$ és racional, i per tant existeixen enters $p,q \in \mathbb{Z}, q \neq 0$ tals que $\pi^2 + 8 = \frac{p}{q}$. Per tant,

$$\pi^2 = \frac{p}{q} - 8 = \frac{p - 8q}{q}.$$

Com que $p-8q \in \mathbb{Z}$ i $q \in \mathbb{Z} \setminus \{0\}$, deduim que π^2 és racional, fet que es contradiu amb l'afirmació inicial que ens diu que per a tot nombre natural n>0, π^n és un nombre irracional. Amb aquesta contradicció queda demostrat que π^2+8 és irracional. Ara bé, hem trobat un a irracional tal que $a\pi+8$ és irracional, per tant queda refutat el recíproc.

P2 | Siguin *A* i *B* conjunts arbitraris.

(a) Demostra o refuta:

- **1.** $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.
- **2.** $(A \times A) \setminus (B \times B) = (A \setminus B) \times (B \setminus A)$.
- 1. La proposició és certa. Demostrarem la igualtat veient les dues inclusions:
- (⊆) Donat $a \in (A \cup B) \setminus (A \cap B)$, això vol dir que $a \in (A \cup B)$ i $a \notin (A \cap B)$. És a dir, $(a \in A \circ a \in B)$ i $(a \notin A \circ a \notin B)$. Això ens dóna quatre casos: $(a \in A \circ a \notin A) \circ (a \in A \circ a \notin B)$ o $(a \in B \circ a \notin A) \circ (a \in B \circ a \notin B)$. Tant el primer com l'últim són contradiccions, considerem els altres:

 $(a \in A \text{ i } a \notin B)$ implica que $a \in A \setminus B$ i per tant, també $a \in (A \setminus B) \cup (B \setminus A)$. $(a \in B \text{ i } a \notin A)$ implica que $a \in B \setminus A$ i per tant, també $a \in (A \setminus B) \cup (B \setminus A)$. En ambdós casos arribem on volíem.

- (⊇) Sigui $a \in (A \setminus B) \cup (B \setminus A)$ tenim que $a \in (A \setminus B)$ o $a \in (B \setminus A)$. El primer cas implica que $a \in A$ i $a \notin B$. Com que $a \in A$ tenim que $a \in A \cup B$ i com que $a \notin B$ tenim $a \notin A \cap B$, així $a \in (A \cup B) \setminus (A \cap B)$. Al segón cas, analogament intercanviant els papers de A i B obtenim el mateix.
- **2.** La proposició és falsa. La refutem amb un contraexemple: Considerant $A = \{1, 2\}$ i $B = \{2, 3\}$. Per veure que

$$(A \times A) \setminus (B \times B) \neq (A \setminus B) \times (B \setminus A)$$

ens fixem en que $(1,2) \in (A \times A) \setminus (B \times B)$ ja que $(1,2) \in A \times A$ però $(1,2) \notin B \times B$, ja que $1 \notin B$. En canvi $(1,2) \notin (A \setminus B) \times (B \setminus A)$ ja que $2 \notin B \setminus A$ perque $2 \in B$ però també $2 \in A$.

Pel principid'extensionalitat cloncluïm que aquestos dos conjunts no poden ser el mateix.

- **(b)** Demostra que $\mathcal{P}(A) = \mathcal{P}(B)$ si, i només si, A = B.
 - (\Leftarrow) Si A = B, és clar que $\mathcal{P}(A) = \mathcal{P}(B)$, ja que es tracta de la mateixa operació feta amb el mateix conjunt i per tant només estem fent servir la reflexivitat de la igualtat.

En qualsevol cas, podem provar-ho també amb el mètode habitual, si $C \in \mathcal{P}(A)$, aleshores $C \subseteq A$, però aleshores $C \subseteq A = B$, és a dir, $C \in \mathcal{P}(B)$. Analogament es prova l'altra inclusió.

(⇒) Si tenim que $\mathcal{P}(A) = \mathcal{P}(B)$ i volem provar $A \subseteq B$, és suficient adonar-se que com $A \in \mathcal{P}(A)$, aleshores $A \in \mathcal{P}(B)$, és a dir $A \subseteq B$ com volíem. L'altra direcció és anàloga intercanviant els papers de A i B.

També és vàlida la següent prova més estàndar: Donat $a \in A$, tenim que $\{a\} \subseteq A$,

és a dir $\{a\} \in \mathcal{P}(A)$ i per tant $\{a\} \in \mathcal{P}(B)$, és a dir $\{a\} \subseteq B$ que és el mateix que dir $a \in B$ com volíem, doncs $A \subseteq B$. L'altra inclusió és totalment anàloga.

P3 Considera la relació $f = \{(x, y) \in \mathbb{Z} \times \mathbb{N} : y - 1 = x^2\}.$

(a) Demostra que f és aplicació i digues raonadament si f és injectiva, si és exhaustiva i si és bijectiva.

Efectivament, una aplicació és una funció on el domini coincideix amb tot el conjunt on està definit. En el nostre cas haurem de provar que f és funció i a més

$$dom f = \{x \in \mathbb{Z} : \exists y \in \mathbb{N}, (x, y) \in f\} = \{x \in \mathbb{Z} : \exists y \in \mathbb{N}, y - 1 = x^2\} = \mathbb{Z}$$

Primerament veiem que f és una funció:

Recordem la definició de la condició funcional

 $\forall (x,y), (x,y') \in \mathbb{Z} \times \mathbb{N}$, si $(x,y), (x,y') \in f$ aleshores y = y'.

Així, donats (x,y), $(x,y') \in \mathbb{Z} \times \mathbb{N}$, tals que (x,y), $(x,y') \in f$, tenim que $y-1=x^2$ i $y'-1=x^2$, per transitivitat de la igualtat (ara que sabem el nom exacte de la propietat que utilitzem la podem dir i queda millor) tenim que y-1=y'-1 i així y=y' com volíem.

Ara, per continuar amb la demostració de que f és aplicació, notar que $dom f \subseteq \mathbb{Z}$ per definició. Per l'altra inclusió, $\mathbb{Z} \subseteq dom f$, prenem $x \in \mathbb{Z}$, i per tant si considerem $y = x^2 + 1 \in \mathbb{N}$, ja que el quadrat d'un enter és positiu, per tant natural, i sumant 1 seguirà sent-ho; és clar que $y - 1 = x^2$ i per tant $(x, y) \in f$, és a dir $x \in dom f$.

Ara, ja té sentit fer servir la notació f(z), per que sabem que per a un $z \in \mathbb{Z}$ està determinat l'únic $n \in \mathbb{N}$, tal que $(z,n) \in f$ i és a aquest n al que anomenem f(z), la imatge de z mitjançant f. A més com ja hem dit al paràgraf anterior, $f(z) = z^2 + 1$.

Volem saber si l'aplicació f és injectiva, però com que hi està involucrat el quadrat d'un nombre enter, és fàcil veure que no ho és amb un contraexemple:

$$-1, 1 \in dom \ f \ i \ f(1) = 1^2 + 1 = 2 = (-1)^2 + 1 = f(-1).$$

També si és exhaustiva, és a dir, si $rec\ f=\{y\in\mathbb{N}:\exists x\in\mathbb{Z}, f(x)=y\}$ és igual a tot el conjunt d'arribada, és a dir, si $rec\ f=\mathbb{N}$. Com que per definició $rec\ f\subseteq\mathbb{N}$, això es reduiex a provar que per a tot $n\in\mathbb{N}$ existeix un $x\in dom\ f$ tal que f(x)=y. Però hi podem observar que per exemple per al $0\in\mathbb{N}$, si existira tal enter x, es donaria $x^2+1=0$, és a dir $x=\sqrt{-1}=i$ o $x=\sqrt{-1}=-i$ però $i,-i\in\mathbb{C}\setminus\mathbb{Z}$, contradicció. Per tant no hi existeix tal enter per a 0 i f no és exhaustiva.

Una funció és bijectiva si és injectiva i exhaustiva. Per tant la nostra f no ho és ja que acabem de veure que no és ni una ni l'altra.

(b) Troba els conjunts $f(\{0,1,3,-1,5\})$, $f^{-1}(\{4\})$ i $f^{-1}(\{0,1,3,5\})$. Justifica la resposta.

Recordem que en general, la imatge d'un conjunt mitjantçant f es defineix com $f(A) = \{f(a) : a \in A\}$ donat, $A \subseteq \mathbb{Z}$. I la antiimatge d'un conjunt com $f^{-1}(B) = \{a \in dom \ f : f(a) \in B\}$, donat $B \subseteq \mathbb{N}$ del conjunt d'arribada. Així doncs:

$$f({0,1,3,-1,5}) = {f(a) : a \in {0,1,3,-1,5}} = {f(0), f(1), f(3), f(-1), f(5)} = {1,2,10,26}$$

Per a calcular $f^{-1}(\{4\}) = \{a \in dom f : f(a) = 4\}$

Trobem els $x \in \mathbb{Z}$ tal que f(x) = 4. Per que es doni això s'haurà de complir que $x^2 + 1 = 4$, és a dir $x = \sqrt{4 - 1} = \sqrt{3}$ o $x = -\sqrt{3}$. Però no hi existeixen enters complint això, per tant $f^{-1}(\{4\}) = \{a \in dom\ f: f(a) = 4\} = \emptyset$.

 $f^{-1}(\{0,1,3,5\}) = \{a \in \mathbb{N} : f(a) \in \{0,1,3,5\}\}$. Calculem en cada cas:

- $x \in \mathbb{Z}$ tal que f(x) = 0, *i.e.*, $x^2 + 1 = 0$, és a dir $x = \sqrt{-1}$ o $x = -\sqrt{-1}$. Però no hi existeixen enters complint això.
- $x \in \mathbb{Z}$ tal que f(x) = 1, *i.e.*, $x^2 + 1 = 1$, és a dir x = 0.
- $x \in \mathbb{Z}$ tal que f(x) = 3, *i.e.*, $x^2 + 1 = 3$, és a dir $x = \sqrt{2}$ o $x = -\sqrt{2}$. Però no hi existeixen enters complint això.
- $x \in \mathbb{Z}$ tal que f(x) = 5, *i.e.*, $x^2 + 1 = 5$, és a dir $x = \sqrt{4}$ o $x = -\sqrt{4}$. I obtenim -2 i 2.

I així finalment tenim que $f^{-1}(\{0,1,3,5\}) = \{a \in \mathbb{N} : f(a) \in \{0,1,3,5\}\} = \{0,-2,2\}.$

(c) Demostra que la relació \sim definida en $\mathbb Z$ per

$$n \sim m$$
 si, i només si, $f(n) = f(m)$

és d'equivalència. Dóna les classes d'equivalència $\overline{0}$, $\overline{1}$.

Per a la reflexivitat, donat $n \in \mathbb{Z}$, com que $\mathbb{Z} = dom f$, tenim que $\exists f(n)$, i per tant per reflexivitat de la igualtat als naturals, tenim que f(n) = f(n) i per tant $n \sim n$.

Per a la simetria i la transitivitat, només cal fer servir les mateixes propietats de la igualtat de números naturals. És a dir, donats $n,m\in\mathbb{Z}$ tal que $n\sim m$, això vol dir que les imatges f(n)=f(m) que per simetria de la igualtat és el mateix que dir f(m)=f(n), és a dir $m\sim n$. Per tant la relació \sim és simètrica. I si ara tenim $n,m,l\in\mathbb{Z}$ tal que $n\sim m$ i $m\sim l$, això és equivalent a f(n)=f(m) i f(m)=f(l). Per transitivitat de la igualtat, tenim que f(n)=f(l), és a dir $n\sim l$ i així hem provat que la nostra relació és transitiva.

Per a obtenir la classes de 0 i 1:

$$\overline{0} = \{x \in \mathbb{Z} : x \sim 0\}$$
 és a dir, tots el que estan relacionats amb el zero, dit d'altra manera, $\overline{0} = \{x \in \mathbb{Z} : f(x) = f(0)\} = \{x \in \mathbb{Z} : x^2 + 1 = 1\} = \{x \in \mathbb{Z} : x^2 = 0\} = \{0\}$ $\overline{1} = \{x \in \mathbb{Z} : x \sim 1\} = \{x \in \mathbb{Z} : f(x) = f(1)\} = \{x \in \mathbb{Z} : x^2 + 1 = 2\} = \{x \in \mathbb{Z} : x^2 = 1\} = \{-1, 1\}$

(d) Si n és un element arbitrari de \mathbb{Z} dóna la classe \overline{n} i digues quants elements té. Dóna una bona representació de \mathbb{Z}/\sim .

Donat $n \in \mathbb{Z}$, com abans amb els enters concrets, la classe de n, seran tots els enters relacionats amb ell, és a dir, $\overline{n} = \{x \in \mathbb{Z} : x \sim n\} = \{x \in \mathbb{Z} : f(x) = f(n)\} = \{x \in \mathbb{Z} : x^2 + 1 = n^2 + 1\} = \{x \in \mathbb{Z} : x^2 = n^2\} = \{x \in \mathbb{Z} : x = n \text{ o } x = -n\} = \{-n, n\}.$

Per tant si $n \neq 0$ la classe té dos elements i si n = 0 la classe en tindrà sols un element. Això concorda amb aquest càlcul general ja que l'oposat del 0 és el mateix 0.

Ara per donar una bona representació del conjunt quocient $\mathbb{Z}/\sim=\{\overline{z}:z\in\mathbb{Z}\}$ recordem que una bona representació no és sinó un conjunt on apareixen totes les classes però sense repeticions.

El nostre candidat serà $\Delta = \{ \overline{n} : n \in \mathbb{N} \}.$

Primer veiem que en efecte $\Delta = \mathbb{Z}/\sim$:

La inclusió $\Delta\subseteq\mathbb{Z}/\sim$ és clara, ja que es tracta d'un conjunt de classes d'equivalència de la mateixa relació \sim .

Per a veure $\mathbb{Z}/\sim\subseteq \Delta$, donada $\overline{z}\in\mathbb{Z}/\sim$, recordem que $\overline{z}=\{-z,z\}$. Per tant si $z\geqslant 0$ tindrem que $z\in\mathbb{N}$ i així, per definició $\overline{z}\in\Delta$. I si z<0, aleshores -z>0 i per tant $-z\in\mathbb{N}$ i concloem que $\overline{z}=\overline{-z}\in\Delta$.

Per provar que no hi ha repeticions, hem de demostrar que donats $n, m \in \mathbb{N}$ si $n \neq m$, aleshores $\overline{n} \neq \overline{m}$, o equivalentment, si $\overline{n} = \overline{m}$, necessàriament n = m.

Per tant, donats $n, m \in \mathbb{N}$ tals que $\overline{n} = \overline{m}$, com que $\{-n, n\} = \overline{n} = \overline{m} = \{-m, m\}$, tenim que n = m o n = -m, però com que n i m son naturals ha de ser n = m com volíem demostrar.