Worst Case Analysis for Randomly Collected Data

Justin Chen MIT

Gregory Valiant
Stanford

Paul Valiant IAS, Purdue

Traditional Statistical Estimation

Alternate View

Distributional assumptions on data values

Leverage the data collection process –

e.g.: Gaussian, i.i.d., exchangeable,
Robust statistics

without assumptions about the distribution of the data values

Our Framework

n entities, each with a hidden value x_i (bounded real number)

Goal: Estimate $mean(x_1,...,x_n)$

Modeling data collection via distribution *P* over possible samples

Subset $S \subset \{1,2,...,n\}$ drawn from P

Observe S, values x_s indexed by S, return $f(P,S,x_s)$

Performance measure: Worst-Case Expected Error

Max E [
$$(f(P,S,x_S) - mean(x_1,...,x_n))^2$$
]

Worst-case analysis over data values
Expectation over sampling process described by P

Illustrative Examples

Importance Sampling

P: each individual appears in the sample independently w.p. p_i

Snowball Sampling

P: sample generated by a viral process on a social network

Selective Prediction (Forecasting)

P: samples corresponds to past data with prediction over future data 1
[Drucker'12,Qiao/V'19]

Main Results

Min Max $S \sim P$ [($f(P,S,x_S)$ - mean($x_1,...,x_n$))²]

Thm 1 (evaluation): Given estimator f, in polytime, with poly # samples from P, we can $\pi/2$ -approximate the error of f.

Thm 2 (optimization): In poly-time, with poly # samples from P, we can find a $\pi/2$ -optimal[†] estimator f.

*We restrict f to the general class of "semilinear" estimators where the estimate is a linear combination of the sampled data (weights depending arbitrarily on P and S) $f(P, S, x_S) = \langle a_{(P,S)}, x_S \rangle$

Techniques

Exact evaluation and optimization of estimators in this regime are **NP-hard** (reduction to Max-Cut and semidefinite Grothendieck problem)

Given full description (exp size) of P, Goemans-Williamson SDP relaxation gives approximation

More work involving subsampling and convex duality give us efficient algorithms for Thms 1,2

Experiments

2-7x improvements over baselines in 3 settings

Importance Sampling

 $p_1,...,p_{25} = 0.1$ $p_{26},...,p_{50} = 0.5$

Snowball Sampling

Points in unit square recruit nearby points

Many open questions within this framework and beyond - Ask Me!