1. Find the characteristic equation for the following second order linear homogeneous differential equation with constant coefficients:

$$y'' + y' - 2y = 0$$

ANS.

$$r^2 + r - 2 = (r+2)(r-1)$$

2. Consider the ODE in Problem 1. Suppose the y = y(t) is a solution. What ODE would you expect y(t + 17) to satisfy.

ANS. y(t+17) is y(t) shifted to the left 17 units. The ODE in Problems 1 is autonomous. So any solution shifted any amount right or left is also a solution. So y(t+17) satisfies the ODE in Problem 1.

3. What is the general solution to the equation in Problem 1?

ANS. The roots of the characteristic polynomial are $r_1 = -2$ and $r_2 = 1$. So

$$y = c_1 e^{-2t} + c_2 e^t$$

4. Find the solution of the equation in Problem 1 that satisfies the initial conditions:

$$y(0) = 1,$$
 $y'(0) = 3$

ANS. First find $y' = -2c_1e^{-2t} + c_2e^t$ Now set = 0 in y and in y':

$$c_1 + c_2 = 1$$

$$-2c_1 + c_2 = 3$$

Multiply the first equation by -1 and add it to the second:

$$-3c_1 + 0 = 2$$

So $c_1 = -2/3$ and $c_2 = 5/3$. The solution is

$$y(t) = \frac{1}{3} \left(-2e^{-2t} + 5e^t \right)$$

5. Find the solution of the equation in Problem 1 that satisfies the initial conditions:

$$y(2007) = 1,$$
 $y'(2007) = 3$

ANS. Since we have already solved this problem when $t_0 = 0$ and solutions of this ODE can be shifted horizontally we simply shift the solution in problem 3 to the right by 2007:

$$y(t - 2007) = \frac{1}{3} \left(-2e^{-2(t - 2007)} + 5e^{t - 2007} \right)$$

6. Verify the Superposition Principle for the ODE in Problem 1 and functions $y_5 = e^{5t}$ and $y_6 = e^{6t}$. I.e., verify:

$$L[c_1y_5 + c_2y_6] = c_1L[y_5] + c_2L[y_6]$$

ANS. We first calculate the left hand side as follows:

On the other side we see that:

The two answers agree!

7. What can you say about the long time behavior (the limit as $t \to \infty$) of nonzero solutions of the equations

$$y'' + y' - 2y = 0$$

$$y'' + 3y' + 2y = 0$$

$$y'' - 3y' + 2y = 0$$

ANS. The gen'l solution of y'' + y' - 2y = 0 is $y = c_1 e^{-2t} + c_2 e^t$. So some solutions approach 0, others aproach $-\infty$, and others aproach ∞ , depending on the values of c_1 and c_2 .

The gen'l solution of y'' + y' - 2y = 0 is $y = c_1 e^{-2t} + c_2 e^t$. So some solutions approach 0, others approach $-\infty$, and others approach ∞ , depending on the values of c_1 and c_2 .

The gen'l solution of y'' + 3' + 2y = 0 is $y = c_1e^{-t} + c_2e^{-2t}$. So all solutions approach 0, regardless of the values of c_1 and c_2 .

The gen'l solution of y'' - 3y' + 2y = 0 is $y = c_1 e^{2t} + c_2 e^t$. So some nonzero solutions approach approach $-\infty$, and others approach ∞ , depending on the values of c_1 and c_2 .

©2009 by Moses Glasner