Nate Warner MATH 230 November 11, 2023

Homework/Worksheet 9 - Due: Wednesday, November 15

1. Use the comparison test to determine whether the series is convergent or divergent

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

Remark. Suppose we have two series a_n, b_n and $\exists N \in \mathbb{Z}^+$ s.t $0 \leqslant a_n \leqslant b_n \ \forall n \geqslant N$. If b_n converges then a_n will also converge. Conversely, if $a_n \geqslant b_n \geqslant 0 \ \forall n \geqslant N$, and b_n diverges, then a_n will also diverge

Problem 1.a. If we let b_n be the series $\sum_{n=1}^{\infty} \frac{1}{2n}$. We may conject that this series will diverge since it is know that the harmonic series $\sum \frac{1}{n}$ diverges, and multiplying a series by a constant factor will not affect the convergence or divergence. Furthermore,

$$\frac{1}{2n-1} > \frac{1}{2n}.$$

Conclusion. Thus, since $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges, we can conclude that $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ will also diverge

Problem 1.b Let b_n be the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ Since we know the sine function produces outputs in the range [-1,1], the sine function squared will produce outputs withing the range [0,1]. However, since we are only considering integer values $[1,\infty)$, $\sin^2 n$ will only produce outputs (0,1). This is because the sine function has outputs of 1 at $\frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$, and outputs of 0 at $k\pi$, $k \in \mathbb{Z}$,

Problem 1.b: Let $b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$. We know The function $\sin^2(x)$ yields values in the range [0,1], as $\sin(x)$ varies between -1 and 1. For integer values n in the range $[1, \infty)$, $\sin^2(n)$ will produce values in the interval (0,1). This is because $\sin(x)$ equals 1 at $\frac{\pi}{2} + 2k\pi$ and 0 at $k\pi$, where k is an integer, and these points are not integers. Thus we can conclude

$$\frac{\sin^2 n}{n^2} < \frac{1}{n^2}.$$

Conclusion. Since we know by the p-series $\frac{1}{n^2}$ will converge, $\frac{\sin^2 n}{n^2}$ will also converge

Problem 1.c Let b_n be the series $\sum_{n=1}^{\infty} \frac{1}{n+1}$. We know this series will diverge because it is just the harmonic series $\frac{1}{n}$ shifted over by 1. We can deduce that $\frac{1}{\sqrt{n^2+1}} > \frac{1}{n+1}$ by looking at their reciprocals

$$\sqrt{n^2 + 1} < n + 1$$

$$n^2 + 1 < (n + 1)^2$$

$$n^2 + 1 < n^2 + 2n + 1$$

$$n^2 < n^2 + 2n.$$

Conclusion. Since this is clearly a true statement, then by the reciprocal identify for inequalities, which states if $0 \le a \le b$, then $\frac{1}{a} \ge \frac{1}{b}$ it holds that $\frac{1}{\sqrt{n^2+1}} > \frac{1}{n+1}$. and since we know $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges, then $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ will also diverge.

2. Use the Limit Comparison Test to determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n^2}\right)$$

$$\text{(b)} \sum_{n=1}^{\infty} \frac{1}{4^n - 3^n}$$

(c)
$$\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{n}\right)$$

Remark. Suppose we have two series a_n , b_n where a_n , $b_n \ge 0 \,\forall n \ge 1$. Then if

- $\lim_{n\to\infty}\frac{a_n}{b_n}=L\neq 0$ or $+\infty$. Then a_n and b_n either both converge or both diverge
- $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, then if b_n converges, so does a_n
- $\lim_{n\to\infty}\frac{a_n}{b_n}=+\infty$, then if b_n diverges, so does a_n

Problem 2.a Let $b_n = \frac{1}{n^2}$, which by the p-series, converges

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\ln\left(1 + \frac{1}{n^2}\right)}{\frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{\ln\left(1 + \frac{1}{n^2}\right)}{n^{-2}}$$

$$\stackrel{H}{=} \lim_{n \to \infty} \frac{\frac{1}{1 + \frac{1}{n^2}} \cdot -\frac{2}{n^3}}{-\frac{2}{n^3}}$$

$$= \lim_{n \to \infty} \frac{-2n^3}{-2n^3\left(1 + \frac{1}{n^2}\right)}$$

$$= \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n^2}\right)}$$

$$= 1.$$

Conclusion. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, so does $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2}\right)$

Problem 2.b Choose $b_n = \frac{1}{4^n} = \left(\frac{1}{4}\right)^n$, which is a geometric series with |r| < 1 and thus converges

$$\lim_{n \to \infty} \frac{\frac{1}{4^n - 3^n}}{\frac{1}{4^n}}$$

$$= \lim_{n \to \infty} \frac{4^n}{4^n - 3^n}$$

$$= \lim_{n \to \infty} \frac{\frac{4^n}{4^n}}{\frac{4^n}{4^n} - \frac{3^n}{4^n}}$$

$$= \lim_{n \to \infty} \frac{1}{1 - \left(\frac{3}{4}\right)^n}$$

$$= 1.$$

Thus, since $\sum\limits_{n=1}^{\infty} \ \frac{1}{4^n}$ converges, so does $\sum\limits_{n=1}^{\infty} \ \frac{1}{4^n-3^n}$

Problem 2.c Choose $b_n = \frac{1}{n^2}$, which we know converges

$$\begin{split} &\lim_{n\to\infty}\frac{1-\cos\left(\frac{1}{n}\right)}{\frac{1}{n^2}} \quad \text{(Indeterminate } \frac{0}{0}\text{)} \\ &\stackrel{H}{=}\lim_{n\to\infty}\frac{\sin\left(\frac{1}{n}\right)\cdot-\frac{1}{n^2}}{-\frac{2}{n^3}} \\ &=\lim_{n\to\infty}\frac{n^3\sin\left(\frac{1}{n}\right)}{2n^2} \\ &=\frac{1}{2}\lim_{n\to\infty}n\sin\left(\frac{1}{n}\right) \\ &=\frac{1}{2}\lim_{n\to\infty}\frac{\sin\left(\frac{1}{n}\right)}{n^{-1}} \quad \text{(Indeterminate } \frac{0}{0}\text{)} \\ &\stackrel{H}{=}\frac{1}{2}\lim_{n\to\infty}\frac{\cos\left(\frac{1}{n}\right)\cdot-\frac{1}{n^2}}{-\frac{1}{n^2}} \\ &=\frac{1}{2}\lim_{n\to\infty}\cos\left(\frac{1}{n}\right) \\ &=\frac{1}{2}\cos 0 \\ &=\frac{1}{2}. \end{split}$$

Conclusion. Since $\lim_{n\to\infty} \frac{a_n}{b_n} = L \neq 0$ or $+\infty$, since b_n converges, so does a_n

3. Use the Alternating Series Test to determine whether the series is convergent or divergent.

(a)
$$\frac{2}{3} - \frac{2}{5} + \frac{2}{7} - \frac{2}{9} + \frac{2}{11} - \dots$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n+3}}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \cos^2 n$$

(d)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{1+n^4}$$

(e)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\cos n\pi}{n}$$

Problem 3a. We can see that the general term for this series is given by

$$\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{2n+1} \ .$$

Which is decreasing by

$$\frac{2}{2n+3} \leqslant \frac{2}{2n+1}.$$

And

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{2}{2n+1}$$
$$= 0.$$

Since the series is decreasing and $\lim_{n\to\infty} b_n = 0$, by Leibniz's criterion, this series will converge

Problem 3b. This series is decreasing by

$$\frac{1}{\sqrt{n+4}} \leqslant \frac{1}{\sqrt{n+3}}.$$

And

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{\sqrt{n+3}}$$
$$= 0.$$

Since the series is decreasing and $\lim_{n\to\infty} b_n = 0$, by Leibniz's criterion, this series will converge

Problem 3c. In this case, the AST does not apply because $b_n = \cos^2 n$ is not monotone decreasing $\forall n \ge 1$. In fact, because $\cos^2 n$ oscillates, there will be no such N s.t $\cos^2 n$ is monotone decreasing $\forall n \ge N$. Furthermore. Because

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \cos^2 n \neq 0.$$

This series is likely divergent

Problem 3d. We show $b_n = \frac{n^2}{1+n^4}$ is decreasing by

$$\frac{(n+1)^2}{1+(n+1)^4} \leqslant \frac{n^2}{1+n^4}.$$

And

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n^2}{1 + n^4}$$

$$= \lim_{n \to \infty} \frac{\frac{n^2}{n^4}}{\frac{1}{n^4} + \frac{n^4}{n^4}}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^4} + 1}$$

$$= \frac{0}{1}$$

$$= 0.$$

Since the series is decreasing and $\lim_{n\to\infty} b_n = 0$, by Leibniz's criterion, this series will converge

Problem 3e. Upon examination of $b_n = \cos n\pi$, we realize that this series will only ever be -1 or 1 for n in the family of integers. As $\cos x = -1$ for $(2k+1)\pi$, $k \in \mathbb{Z}$, and $\cos x = 1$ for $2k\pi$, $k \in \mathbb{Z}$, which essentially boils down to a simple deduction. For $n \in 2k+1$, $k \in \mathbb{Z}$, $\cos(n\pi) = -1$, for $n \in 2k$, $k \in \mathbb{Z}$, $\cos n\pi = 1$ and we can rewrite this series as

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(-1)^n}{n}$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n}$$

$$= \sum_{n=1}^{\infty} -\frac{1}{n}$$

$$= -\sum_{n=1}^{\infty} \frac{1}{n}.$$

Which we know diverges

4. Use the Root or Ratios Test to determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{2^{3n} (n!)^3}{(3n!)}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!}{\left(\frac{n}{e}\right)^n}$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{2n+3} \right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{(1+\ln n)^n}$$

Problem 4a. By the ratio test

$$\rho = \lim_{n \to \infty} \left| \frac{\frac{2^{3(n+1)}((n+1)!)^3}{3(n+1)!}}{\frac{2^{3n}(n!)^3}{3(n!)}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{2^{3n}2^3(n+1)^3(n!)^3}{3n!(n+1)} \cdot \frac{3n!}{2^{3n}(n!)^3} \right|$$

$$= \lim_{n \to \infty} 8(n+1)^2$$

$$= +\infty.$$

Thus, by the ratio test, this series will diverge

Problem 4b. By the ratio test

$$\rho = \lim_{n \to \infty} \left| \frac{\frac{(n+1)!}{\left(\frac{n+1}{e}\right)^{n+1}}}{\frac{n!}{\left(\frac{n}{e}\right)^n}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n!(n+1)}{\left(\frac{n+1}{e}\right)^{n+1}} \cdot \frac{\left(\frac{n}{e}\right)^n}{n!} \right|$$

$$= \lim_{n \to \infty} \frac{(n+1)\left(\frac{n}{e}\right)^n}{\left(\frac{n+1}{e}\right)^{n+1}}$$

$$= \lim_{n \to \infty} \frac{n+1 \cdot \frac{n^n}{e^n}}{\frac{(n+1)^{n+1}}{e^{n+1}}}$$

$$= \lim_{n \to \infty} \frac{(n+1)n^n e^n e}{e^n(n+1)^n(n+1)}$$

$$= \lim_{n \to \infty} \frac{en^n}{(n+1)^n}$$

$$= e \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n.$$

By Euler's definition $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \implies \frac{1}{e} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n$. This means we have $e \cdot \frac{1}{e} = 1.$

Since $\rho = 1$, the ratio test does not yield conclusive results

Problem 4c. By the root test

$$\rho = \lim_{n \to \infty} \left| \left(\frac{n-1}{2n+3} \right)^n \right|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{n-1}{2n+3}$$

$$= \frac{1}{2}.$$

Thus, by the root test, this series will converge

Problem 4d. By the root test

$$\rho = \lim_{n \to \infty} \left| \left(\frac{1}{1 + \ln n} \right)^n \right|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{1}{1 + \ln n}$$

$$= 0.$$

Thus, by the root test, this series will converge

5. Use an appropriate test to determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^3+n^2+n+1}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{n^3+3n^2+3n+1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(n-1)^n}{(n+1)^n}$$

$$(d) \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

Problem 5a. Choose $b_n = \frac{1}{n^2}$, which by the p-series, converges. We can show by a simple comparison test that $\sum_{n=1}^{\infty} \frac{n+1}{n^3+n^2+n+1}$ also converges. Since

$$\frac{n+1}{n^3 + n^2 + n + 1} \le \frac{1}{n^2}.$$

By simple comparison test, the series converges

Problem 5b. Since $|a_n| = \sum_{n=1}^{\infty} \frac{n+1}{n^3+3n^2+3n+1}$, we can compare this series to $\frac{1}{n^2}$. Since $\frac{1}{n^2}$ converges by the p-series, and

$$\frac{n+1}{n^3+3n^2+3n+1} \leqslant \frac{1}{n^2}.$$

 $\frac{n+1}{n^3+3n^2+3n+1}$ also converges, since $|a_n|$ converges, $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+1}{n^3+3n^2+3n+1}$ converges absolutely

Problem 5c. By the divergence test

$$\lim_{n \to \infty} \left(\frac{n-1}{n+1} \right)^n$$

$$= \lim_{n \to \infty} \left(\frac{n(1-\frac{1}{n})}{n(1+\frac{1}{n})} \right)^n$$

$$= \lim_{n \to \infty} \left(\frac{(1-\frac{1}{n})}{(1+\frac{1}{n})} \right)^n$$

$$= \lim_{n \to \infty} \left(\frac{(1-\frac{1}{n})}{(1+\frac{1}{n})^n} \right)^n$$

$$= \lim_{n \to \infty} \frac{(1-\frac{1}{n})^n}{(1+\frac{1}{n})^n}$$

$$= \lim_{n \to \infty} \frac{(1+\frac{-1}{n})^n}{(1+\frac{1}{n})^n}$$

Knowing Euler's definition $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$, which is generalized as $e^a = \lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n$, our limit becomes

$$\lim_{n \to \infty} \frac{e^{-1}}{e}$$

$$= \frac{1}{e^2}.$$

Since this limit is not zero, our series diverges

Problem 5.d Using the ratio test

$$\rho = \lim_{n \to \infty} \left| \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} \right|$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{2n^2}$$

$$= \frac{1}{2}.$$

Since $0 \leqslant \rho < 1$, by the ratio test, this series will converge