EXERCICE N°1 (Le corrigé)

A et B sont deux événements d'une expérience aléatoire comptant 160 issues possibles et vérifiant :

$$Card(A \cap B) = 35$$
; $Card(A) = 50$ et $Card(B) = 70$

1) Représenter la situation sous forme de tableau

	A	\overline{A}	Total
В	35	35 (=70-35)	70
\overline{B}	15 (=50-35)	75 (=90-15)	90 (=160-70)
Total	50	110 (=160-50)	160

Ce qui est entouré provient directement de l'énoncé, le reste s'obtient par calcul.

2) Calculer $p_A(B)$ et $p_B(A)$

Ici, on utilise directement la définition n°4

$$p_A(B) = \frac{Card(A \cap B)}{Card(A)} = \frac{35}{50} = 0.7$$

$$p_B(A) = \frac{Card(A \cap B)}{Card(B)} = \frac{35}{70} = 0.5$$

EXERCICE N°2 (Le corrigé)

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A) = 0.7$$
 et $Card(B) = 50$

Calculer $Card(A \cap B)$

Ici, on va utiliser la définition n°4

On sait que:

$$p_{B}(A) = \frac{Card(A \cap B)}{Card(B)}$$

En remplaçant par les données numériques, on obtient :

$$0.7 = \frac{Card(A \cap B)}{50}$$

$$Card(A \cap B) = 0.7 \times 50 = 35$$

EXERCICE N°3 (A

(Le corrigé)

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A) = 0.1$$
 et $Card(B) = 8510$

Calculer $Card(A \cap B)$

Ici, on va encore utiliser la définition n°4

On sait que:

$$p_{B}(A) = \frac{Card(A \cap B)}{Card(B)}$$

En remplaçant par les données numériques, on obtient :

$$0,1 = \frac{Card(A \cap B)}{8510}$$

$$Card(A \cap B) = 0.1 \times 8510 = 851$$

EXERCICE N°4 (Le corrigé)

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A)=0.5$$
 et $Card(A \cap B)=14$

Calculer Card(B)

Ici, on va encore utiliser la définition n°4

On sait que:

$$p_{B}(A) = \frac{Card(A \cap B)}{Card(B)}$$

En remplaçant par les données numériques, on obtient :

$$0.5 = \frac{14}{Card(B)}$$

$$Card(B) = \frac{14}{0.5} = 28$$

EXERCICE N°5 (Le corrigé)

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A)=0.3$$
 et $Card(A \cap B)=21$

Calculer Card(B)

Ici, on va encore utiliser la définition n°4

On sait que:

$$p_{B}(A) = \frac{Card(A \cap B)}{Card(B)}$$

En remplaçant par les données numériques, on obtient :

$$0.3 = \frac{21}{Card(B)}$$

$$Card(B) = \frac{21}{0.3} = 70$$

EXERCICE N°1

A et B sont deux événements d'une expérience aléatoire comptant 160 issues possibles et vérifiant :

$$Card(A \cap B) = 35$$
; $Card(A) = 50$ et $Card(B) = 70$

- 1) Représenter la situation sous forme de tableau
- 2) Calculer $p_A(B)$ et $p_B(A)$

EXERCICE N°2

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A) = 0.7$$
 et $Card(B) = 50$

Calculer $Card(A \cap B)$

EXERCICE N°3

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A) = 0.1$$
 et $Card(B) = 8510$

Calculer $Card(A \cap B)$

EXERCICE N°4

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A) = 0.5$$
 et $Card(A \cap B) = 14$

Calculer Card(B)

EXERCICE N°5

A et B sont deux événements d'une expérience aléatoire vérifiant :

$$p_B(A) = 0.3$$
 et $Card(A \cap B) = 21$

Calculer Card(B)