Teoretyczne podstawy informatyki zadanie 32

Jarosław Socha

27 kwietnia 2024

1 Treść zadania

Zadanie 32

Pokaż, że dla gramatyki bezkontekstowej G nie jest rozstrzygalne, czy $L(G) = \Sigma^*$.

2 Rozwiązanie

2.1 Problem przekroju

Weźmy instancję problemu Posta nad alfabetem Σ .

$$A = (a_1, ..., a_k)$$
 $B = (b_1, ..., b_j)$, $a_i, b_i \in \Sigma^+$

Następnie stworzymy dwie gramatyki bezkontekstowe nad alfabetem Σ' , za pomocą których rozwiążemy problem Posta.

$$\Sigma' = \Sigma \stackrel{.}{\cup} \{1, 2, ..., k\}$$

$$G_A : S_A \rightarrow a_i S_A i \mid a_i i \qquad 1 \leqslant i \leqslant k$$

$$G_B : S_B \rightarrow b_i S_B i \mid b_i i \qquad 1 \leqslant i \leqslant k$$

Gramatyka G_A wygeneruje słowa postaci $a_{i_1}a_{i_2}\dots a_{i_j}i_ji_{j-1}\dots i_1$, gramatyka G_B wygeneruje słowa analogiczne.

Jeżeli słowo w jest wyprowadzalne w obu gramatykach, to jest ono rozwiązaniem problemu Posta. Innymi słowy, rozwiązanie problemu Posta istnieje wtedy i tylko wtedy, gdy $L(G_A) \cap L(G_B) \neq \emptyset$.

Zatem problem "Czy dwie gramatyki bezkontekstowe G_A i G_B mają słowo wspólne?" jest nierozstrzygalny, ponieważ rozwiązywałby nierozstrzygalny problem Posta.

TPI zadanie 32 Jarosław Socha

2.2 Deterministyczny automat ze stosem

Teraz stworzymy deterministyczny automat ze stosem (DPDA) rozpoznający gramatykę G_A . Działanie automatu będzie wyglądało następująco:

- \bullet dopóki widzimy symbole z Σ , to wrzucamy je na stos
- gdy zobaczymy symbol $i_j \in \{1, ..., k\}$
 - za pomocą stanów sprawdzamy, czy na szczycie stosu mamy słowo a_{ij}^R . Jeśli tak, to przechodzimy dalej, do i_{j-1}
 - jeśli nie, to przechodzimy do stanu śmietnikowego
 - -do stanu śmietnikowego przechodzimy także gdy na tym etapie zobaczymy symbol z $\Sigma,$ bądź opróżniliśmy stos mając wciąż symbole w słowie do przeczytania
- jeśli stos jest pusty i nie jesteśmy w stanie śmietnikowym to akceptujemy, w przeciwnym przypadku odrzucamy słowo.

Automat ma skończoną liczbę stanów (związane ze skończonym ciągiem skończonych długości a_i) oraz jest deterministyczny, każdy krok jest jednoznaczny.

Determinizm automatu $PDA(G_A)$ pozwala nam stworzyć $PDA^C(G_A)$, wyznaczający dopełnienie języka $L(G_A)$, wystarczy zamienić wynik zwracany przez automat (tak na nie i nie na tak). Dowód dla $PDA(G_B)$ i $PDA^C(G_B)$ przebiega analogicznie.

To, że języki $L(G_A)^C$ i $L(G_B)^C$ są rozpoznawalne przez automaty ze stosem oznacza, że istnieją gramatyki bezkontekstowe, które generuja te języki.

2.3 Problem ostateczny

Weźmy gramatykę G, taką że $L(G) = L(G_A)^C \cup L(G_B)^C$. Obydwie składniowe gramatyki są bezkontekstowe, a gramatyki bezkontekstowe są zamknięte na sumę, więc gramatyka G też jest bezkontekstowa. Znając odpowiedź na pytanie $L(G) \stackrel{?}{=} \Sigma^*$ Dowiadujemy się:

- Jeśli
$$L(G) = \Sigma^*$$

$$L(G_A)^C \cap L(G_B)^C = \Sigma^*$$
$$L(G_A) \cup L(G_B) = \emptyset$$

• Jeśli
$$L(G) \neq \Sigma^*$$

$$L(G_A)^C \cap L(G_B)^C \neq \Sigma^*$$

 $L(G_A) \cup L(G_B) \neq \emptyset$

Czyli znając odpowiedź na to pytanie jesteśmy w stanie stwierdzić czy dwie gramatyki generują wspólne słowo, co jest problemem nierozstrzygalnym, zatem pytanie $L(G) \stackrel{?}{=} \Sigma^*$ dla bezkontekstowych G jest nierozstrzygalne.