Quiz 4

Deadline	Friday, 03 July 2020 at 11:59PM
Latest Submission	no submission yet
Maximum Mark	4

Question 1 (1 mark)

Consider the following graph

Which of the following gives a valid adjacency representation of this graph?

(a) O		[0]	[1]	[2]	[3]	[4]
	[0]	0	1	1	1	0
	[1]	1	0	1	0	0
	[2]	1	1	0	1	1
	[3]	1	0	1	0	0
	[4]	0	0	1	0	0
(b) O		[0]	[1]	[2]	[3]	[4]
() -		[0]				
	[0]	1	1	0	1	0
	[1]	1	1	1	0	0
	[2]	1	1	1	1	1
	[3]	1	0	1	1	0
			0	1	0	1

(c) O	[0]	[1]	[2]	[3]	[4]
	[0] 0	1	1	1	0
	[1] 0	0	1	0	0
	[2] 1	1	0	1	1
	[3] 0	1	1	0	0
	[4] 0	0	1	0	0
(d) O	[0]	[1]	[2]	[3]	[4]
	[0] 0	1	1	0	0
	[1] 0	0	1	0	0
	[2] 1	1	0	1	1
	[3] 1	0	1	0	0
	[4] 0	0	1	0	0
(e) O	None of the	ne ab	ove i	s cor	rect

Question 2 (1 mark)

Consider the following graph

If we used a standard breadth-first search, starting from vertex 0, and giving priority to lower-numbered neighbours, which path would be discovered to reach vertex 8?

(a) O	0-3-5-8
(b) O	0-3-4-5-8

(c) O	0-2-6-7-8
(d) O	0-1-2-3-4-5-8
(e) O	None of the above paths would be chosen

Question 3 (1 mark)

Consider the following graph with two connected components

Which of the following actions would convert this into a graph with a single connected component?

You must choose *all* relevant actions to obtain full marks for this question. There is more than one valid action.

(a) 🗆	add an edge between 0 and 5
(b) 🗆	add an edge between 5 and 7
(c) 🗆	add an edge between 2 and 4
(d) 🗆	add an edge between 1 and 3
(e) 🗆	add an edge between 0 and 6
(f) 🗆	add an edge between 7 and 4

Question 4 (1 mark)

How many edges are in a complete graph with N vertices?

(a) O	N-1
(b) O	N
(c) O	log ₂ N

(d) O	N(N-1)/2
(e) O	N^2

✓ Submit