Proposição

Sejam $A_1, \ldots, A_{n+1} \in \mathbb{R}^n$ pontos tais que $\overrightarrow{A_1 A_2}, \overrightarrow{A_1 A_3}, \ldots, \overrightarrow{A_1 A_{n+1}}$ são vetores linearmente independentes. Então

$$\mathbb{R}^{n} = \{\lambda_{1}A_{1} + \ldots + \lambda_{n+1}A_{n+1} : \lambda_{1}, \ldots \lambda_{n+1} \in \mathbb{R}, \sum_{i=1}^{n+1} \lambda_{i} = 1\}$$

Definição

 $Se A_1, \ldots, A_{n+1} \in \mathbb{R}^n$ são pontos tais que $\overrightarrow{A_1 A_2}, \overrightarrow{A_1 A_3}, \ldots, \overrightarrow{A_1 A_{n+1}}$ são vetores linearmente independentes, diz-se que (A_1, \ldots, A_{n+1}) é uma base afim de \mathbb{R}^n .

Definição

Se $n \ge 3$, os pontos $A, B, C, D \in \mathbb{R}^n$ dizem-se não complanares se $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$ são vetores linearmente independentes.

Exemplo

Sejam A, B, C, D pontos não complanares de \mathbb{R}^3 . Fixe-se $\delta_0 \in \mathbb{R}$.

O conjunto

$$\boldsymbol{\pi} = \left\{ \boldsymbol{\lambda} \boldsymbol{A} + \boldsymbol{\mu} \boldsymbol{B} + \boldsymbol{\gamma} \boldsymbol{C} + \delta_0 \boldsymbol{D} : \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\gamma} \in \mathbb{R}, \ \boldsymbol{\lambda} + \boldsymbol{\mu} + \boldsymbol{\gamma} + \delta_0 = \boldsymbol{1} \right\}$$

é o plano paralelo ao plano definido por A, B, C que passa pelo ponto $Q = A + \delta_0 \overrightarrow{AD}$

Subespaço afim de \mathbb{R}^n

Definição

Se $\mathcal{F} \subseteq \mathbb{R}^n$ é um conjunto não vazio, \mathcal{F} diz-se um subespaço afim (ou variedade linear) de \mathbb{R}^n se quaisquer que sejam $A, B \in \mathcal{F}$, $\{\lambda A + \mu B : \lambda, \mu \in \mathbb{R} \ e \ \lambda + \mu = 1\}$ está contido em \mathcal{F} .

Lema

Seja $\mathcal{F} \subseteq \mathbb{R}^n$ não-vazio. \mathcal{F} é subespaço afim de \mathbb{R}^n se e só se para qualquer $k \in \mathbb{N}$ e quaisquer $A_1, A_2, \ldots, A_k \in \mathcal{F}$ se tem $\alpha_1 A_1 + \ldots + \alpha_k A_k \in \mathcal{F}$ sempre que $\alpha_1, \ldots \alpha_k \in \mathbb{R}$ e $\sum_{i=1}^k \alpha_i = 1$