#### The Role of the Query

- Retrieval result hinges crucially on query
- Query construction requires / benefits from domain knowledge
- Query terms can be ambiguous
- + and operators in the query can help to
  - disambiguate ambiguous terms
  - make query more precise
  - are not well-understood by common users
- In IR, queries are normally treated as short documents themselves
- + and operators are not part of the document, but function as additional filters

#### **Retrieval Models**

#### Boolean Model

- term presence/absence → relevant/irrelevant, no ranking
- formalized query syntax, such as Boolean logic, NEAR-operators
- IR-systems of the pre-web era, as used in libraries, law enforcement etc.
- suitable for small collections, recall-oriented

#### Vector Space Model

- queries and docs are represented in a vector space
- term weighting, scoring function → graded relevance, ranking
- free text queries
- web IR systems, used as add-on in classic environments
- Probabilistic Models, e.g. Language Modeling
  - probabilistic weighting scheme, generative story
  - similar to VSM, but better theoretical footing
  - especially suited for long queries, more tolerant regarding missing terms

Retrieval models are differentiated by how they represent documents, how they represent queries, and by the relevance function.

## **Term Weights**

- Terms that are more frequent in a document characterize the document better than terms that are rare
- Term Frequency ( $tf_{t,d}$ ): The frequency of term t in document d
- tf<sub>t,d</sub> alone is unintuitive: Terms that are common in all documents in the collection are not informative
- In a document collection, rare terms are more informative than common ones (and vice versa, cf. stop words like "the")
- If a query contains a term that is rare in the collection, those documents that do contain the term are probably relevant.
- Document Frequency (df<sub>t.</sub>): Number of documents with a term
- Inverse Document Frequency (idf<sub>t</sub>):
   N: number of documents

| idf _     | $\log \frac{N}{N}$    |
|-----------|-----------------------|
| $iai_t =$ | $\log \frac{N}{df_t}$ |

|           |          |     | ·     |   |
|-----------|----------|-----|-------|---|
| Term      | Doc.#    |     | req . |   |
| ambitious | D CC III | . 2 | loq . | 1 |
| be        |          | . 2 | -     | 1 |
| brutus    |          | 1   |       | 1 |
| brutus    |          |     |       | 1 |
|           |          | 2   |       |   |
| capitol   |          | 1   |       | 1 |
| caesar    |          | 1   |       | 1 |
| caesar    |          | 2   |       | 2 |
| did       |          | 1   |       | 1 |
| enact ·   |          | 1   |       | 1 |
| hath ·    |          | · 2 |       | 1 |
| I         | J        | . 1 |       | 2 |
| i' .      | 7        | . 1 |       | 1 |
| it        |          | . 2 |       | 1 |
| julius    |          | 1   |       | 1 |
| killed    |          | 1   |       | 2 |
| let       |          | 2   |       | 1 |
| me        |          | 1   |       | 1 |
| noble     |          | 2   |       | 1 |
| so        | -        | 2   |       | 1 |
| the ·     |          | 1   |       | 1 |
| the ·     |          | . 2 |       | 1 |
| told ·    |          | . 2 |       | 1 |
| you .     |          |     |       | 1 |
| was       |          | . 2 |       | 1 |
| was       |          | . 2 |       | 1 |
| with      |          | 2   |       | 1 |
|           |          |     |       |   |
|           |          |     |       |   |
|           |          |     |       |   |

# **Inverse Document Frequency**

- There is one idf<sub>t</sub> for each term t in the collection
- Example values (for log<sub>10</sub>):

| term      | $df_t$    | idf <sub>t</sub> |
|-----------|-----------|------------------|
| calpurnia | 1         | 6                |
| animal    | 100       | 4                |
| sunday    | 1,000     | 3                |
| fly       | 10,000    | 2                |
| under     | 100,000   | 1                |
| the       | 1,000,000 | 0                |

## Tf-idf: a standard term weighting scheme in IR

tf and idf can be combined into a single term weight: Tf-idf:

$$W_{t,d} = tf_{t,d} \times \log \frac{N}{df_t}$$

- Tf-idf characterizes the weight of a term in a document, in relation to the entire collection that the document is part of
- Best-known weighting scheme in IR
- Properties
  - Increases with the number of occurrences of a term in a document
  - Increases with the rarity of a term in the entire collection
  - handles stop words naturally
- A more elaborate weighting formula:

more query words  $sim(d,q) = \sum_{w \in Q} \underbrace{tf_D(w)}_{D(w)} \times \log \underbrace{\frac{N}{df(w)}}_{D(w)}$ penalize long docs
penalize long docs

#### **Vector Space Model**

- Idea: Relevant documents are those that are most similar to the query
- Similarity is established by means of comparison, so how should we compare query and documents?
- Term overlap (on the basis of the index) does not capture document properties.
- Rather: Represent query and documents as vectors, and compare them using vector-similarity measures → Vector Space Model
- Query and documents are modelled as points / vectors in n-dimensional space, with n = number of distinct terms in the collection
- In physical space, a point is characterized by its location in three dimensions (~ values for the attributes x, y, and z).
- In vector space, each term is an attribute, and its Tf-idf value is its value (other weighting schemes are possible)

#### **Vector Space Example**

- Relevance score: use cosine similarity of the angle between vectors.
- Scales to be used with arbitrary number of terms (i.e. dimensions)
- Returns numerical similarity for each doc-query pair

$$\sin(d_1, d_2) = \vec{v}(d_1) \cdot \vec{v}(d_2)$$

$$= \frac{\vec{V}(d_1) \cdot \vec{V}(d_2)}{|\vec{V}(d_1)||\vec{V}(d_2)|}$$



Cosine similarity illustrated.  $sim(d_1, d_2) = cos \theta$ . (only two dimensions "gossip" and "jealous" shown)

#### Other sources for term weights

- Fields: For structured collections. E.g.: term in book title more important than in description
- Zones: For semi-structured collections, such as HTML documents. E.g. term in <h1>-Tag more important than in text; terms in certain frames irrelevant
- Static document weights: Some documents are more trusted than others, independent of query. Leads to tiered indices: separate indices for documents with high, medium and low ranks