École normale supérieur de Rennes L3 Science Informatique

Tours de Hanoï et pavage de penrose

Guillaume Barbier, Romain Ferrand

29 Septembre 2017

Tours de hanoï

Tour du Brahmâ, fin du monde et racine triangulaire

- ► Trois tours : Solution optimale : $\Phi(N) = 2^N 1$
- ▶ Quatre tours : $\Phi(N) = 2^{\nabla 0} + 2^{\nabla 1} + \dots + 2^{\nabla (N-1)}$ où ∇n est le plus grand entier p tel que $p(p+1)/2 \le n$.

a. Cf. http://www.cnrs.fr/insmi/spip.php?article1170

Tours de Hanoï Un beau graphique

Algorithme récursif:

Soit A, B, C les trois Tours.

Déplaçons n disque de A vers C.

- ▶ Déplacer les n − 1 plus petit de la tour A vers B
- Déplacer le plus gros disque de la tour A vers C
- ▶ Déplacer les n − 1 disques de B vers C

Tours de Hanoï Deuxième Implémentation

Problématique

Faire un affichage des tours et des disques.

Tout en utilisant une représentation claire et efficace des données.

Le Pavage de Penrose

Le Pavage de Penrose

Principe de l'algorithme

Algorithme:

- parcourir l'arbre des triangles;
- dessiner les triangle "feuilles" et leur contour.

Étapes nécessaires

- Dessiner un triangle.
- Diviser un triangle.
- Dessiner le contour d'un triangle.

Le Pavage de Penrose Le dessin des contours

Le Pavage de Penrose Le dessin des contours

Le Pavage de Penrose Animer le pavage

Comment dessiner pas à pas?

- ► Parcours en largeur de l'arbre.
- À chaque profondeur, affichage des triangles.
- Affichage des contours.

Le Pavage de Penrose

Problèmes rencontrés

Problème rencontrés :

- coût en temps et en espace;
- complexification de la modularité.