CS 7545: Machine Learning Theory

Fall 2018

Lecture 9: Zero-sum Game + Boosting

Lecturer: Jacob Abernethy Scribes: Sheng Zhang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

9.1 Zero-sum Game

Definition 9.1 (No-regret Algorithm) An algorithm \mathcal{A} is no-regret if for any sequence $\ell_1, \dots, \ell_T, \dots \in [0,1]^n$ with $p_t \in \Delta_n$ chosen as $p_t \leftarrow \mathcal{A}(\ell_1, \dots, \ell_{t-1})$, satisfies

$$\epsilon_T \triangleq \frac{1}{T} \left(\sum_{t=1}^{T} p_t^T \ell_t - \min_{p \in \Delta_n} \sum_{t=1}^{T} p^T \ell_t \right) = o(1)$$

Recall that a sequence a_1, a_2, \cdots is o(1) if $\lim_{n\to\infty} a_n = 0$. And note that

$$\min_{p \in \Delta_n} p^T \ell = \min_{i \in \{1, \cdots, n\}} e_i^T \ell$$

where e_i is the standard unit vector with the *i*th element equal to 1.

Claim: EWA is a no-regret algorithm with

$$\epsilon_T \leq \frac{\log N + \sqrt{2T\log N}}{T} = \frac{\log N}{T} + \sqrt{\frac{2\log N}{T}}$$

Theorem 9.2 (von Neumann's minimax theorem) Let $M \in [0,1]^{n \times m}$, then

$$\min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q = \max_{q \in \Delta_m} \min_{p \in \Delta_n} p^T M q$$

Proof: The weak duality

$$\min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q \geq \max_{q \in \Delta_m} \min_{p \in \Delta_n} p^T M q$$

is easy to check.

We now prove the strong duality

$$\min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q \le \max_{q \in \Delta_m} \min_{p \in \Delta_n} p^T M q$$

holds.

Let \mathcal{A} be a no-regret algorithm. We will play this game repeatedly! **Protocol**:

For $t = 1, 2, \dots, T$:

- p_t is chosen as $\mathcal{A}(\ell_1, \dots, \ell_{t-1})$.
- q_t is chosen as $q_t = \underset{q \in \Delta_m}{\operatorname{argmax}} p_t^T M q$.

Q1: How happy is the player q after T rounds?

Answer:

$$\frac{1}{T} \sum_{t=1}^{T} p_t^T M q_t = \frac{1}{T} \sum_{t=1}^{T} \max_{q \in \Delta_m} p_t^T M q$$

$$\geq \max_{q \in \Delta_m} (\frac{1}{T} \sum_{t=1}^{T} p_t)^T M q$$

$$= \max_{q \in \Delta_m} \bar{p}^T M q$$

$$\geq \min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q$$

$$\geq \min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q$$
(9.1)

Q2: How happy is the player p after T rounds?

Answer:

$$\frac{1}{T} \sum_{t=1}^{T} p_t^T M q_t = \frac{1}{T} \sum_{t=1}^{T} p_t^T \ell_t$$

$$= \frac{1}{T} \min_{p \in \Delta_n} \sum_{t=1}^{T} p^T \ell_t + \epsilon_T$$

$$= \min_{p \in \Delta_n} \frac{1}{T} \sum_{t=1}^{T} p^T M q_t + \epsilon_T$$

$$= \min_{p \in \Delta_n} p^T M (\frac{1}{T} \sum_{t=1}^{T} q_t) + \epsilon_T$$

$$= \min_{p \in \Delta_n} p^T M \bar{q} + \epsilon_T$$

$$\leq \max_{q \in \Delta_n} \min_{p \in \Delta_n} p^T M q + \epsilon_T$$

$$(9.2)$$

It follows from 9.1 and 9.2 that

$$\min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q \le \frac{1}{T} \sum_{t=1}^T p_t^T M q_t \le \max_{q \in \Delta_m} \min_{p \in \Delta_n} p^T M q + 0,$$

(as $\epsilon_T \to 0$ when $T \to \infty$)

9.2 Boosting

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm formulated by Yoav Freund and Robert Schapire, who won the 2003 Gdel Prize for their work. Boosting is simply solving a zeor-sum game.

Setup: Suppose we are given n data points $x_1, \dots, x_n \in \mathcal{X}$, their corresponding labels $y_1, \dots, y_n \in \{-1, 1\}$ and a set of Hypothesis $\mathcal{H} = \{h_1, \dots, h_m\}$, where $h_i : \mathcal{X} \to \{-1, 1\}$.

Definition 9.3 (Weak Learning Assumption $(\gamma > 0)$) For any $p \in \Delta_n$, where p_i is the weight for x_i , $\exists h \in \mathcal{H}$ satisfying

$$\mathbb{P}\left[h(x_i) \neq y_i\right] \le \frac{1}{2} - \frac{\gamma}{2}$$

Note that

$$\mathbb{P}[h(x_i) \neq y_i] = \sum_{i=1}^n p_i \cdot \mathbb{1}[h(x_i) \neq y_i]$$

$$= \sum_{i=1}^n p_i \cdot \left(\frac{1 - h(x_i)y_i}{2}\right)$$
(9.3)

Therefore,

$$\mathbb{P}\left[h(x_i) \neq y_i\right] \leq \frac{1}{2} - \frac{\gamma}{2} \Leftrightarrow \gamma \leq \sum_{i=1}^n p_i y_i h(x_i)$$

Definition 9.4 (Strong Learning Hypothesis) $\exists q \in \Delta_m$, where $m = |\mathcal{H}|$ and q_j is the weight for h_j , such that $\forall i = 1, \dots, n$,

$$\left(\sum_{j=1}^{m} q_j h_j(x_i)\right) y_i > 0 \quad \text{``q-weighted majority vote of x_i's label''}$$

Theorem 9.5 Boosting via minimax duality.

Proof: Suppose $\mathcal{H} = \{h_1, \dots, h_m\}$ satisfies the weak learning assumption, and we are given data $\mathcal{X} = \{x_1, \dots, x_n\}$. Let $M \in [-1, 1]^{n \times m}$ be a matrix such that

$$M_{ij} = h_i(x_i)y_i$$

Weak Learning Assumption $(\gamma > 0)$: $\forall p \in \Delta_n, \exists j \in [m]$ such that

$$0 < \gamma \le \sum_{i=1}^{n} p_i y_i h_j(x_i) = p^T M e_j \le \max_{j \in [m]} p^T M e_j = \max_{q \in \Delta_m} p^T M q \le \min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q$$

By von Neumann's minimax theorem, we have

$$0 < \gamma \leq \min_{p \in \Delta_n} \max_{q \in \Delta_m} p^T M q = \max_{q \in \Delta_m} \min_{p \in \Delta_n} p^T M q = \min_{p \in \Delta_n} p^T M q^* = \min_{i \in [n]} e_i^T M q^*$$

where $q^* \in \underset{q \in \Delta}{\operatorname{argmax}} \{ \min_{p \in \Delta_n} p^T M q \}.$

Hence, $\forall i = 1, \cdots, n$,

$$\left(\sum_{j=1}^{m} q_j^* h_j(x_i)\right) y_i > 0$$