Листок №ТА1 20.10.2019

Машины Тьюринга

Пусть $\Sigma' = \{0,1\} \cup \Sigma$ — конечный алфавит, $\Sigma \neq \emptyset$. Обозначим через Σ^* множество конечных слов (в том числе пустое) из алфавита Σ . Обозначим через |x| длину слова x. Пусть $Q = \{q_0, q_1, \ldots, q_r\}$ — множество состояний.

Определение. Машиной Тьюринга M называется конесное множество команд вида $qa \to q'a'Z$, где $q,q' \in Q$, $a,a' \in \Sigma'$, а $Z \in \{-1,0,1\}$. Такие команды выполняются так: «если машина находится в состоянии q и видит на ленте символ a, то она должна перейти в состояние q' поменять текущий символ на a' и сдвинуться в направлении Z». Машина начинает выполнение в начальном состоянии q_1 и выполнет команды по одной. Если машина достигает конечного (терминального) состояния q_0 , то она завершается (halts). Программа должна быть однозначной: для любых $q \in Q \setminus \{q_0\}$ и $a \in \Sigma'$ сущесвует ровно одна команда, которая начинается на q_0a .

Определение. Будем говорить, что машина M применяется κ слову $x \in \Sigma^*$, если машина M начинает работу на первой букве слова $x \in \Sigma^*$ и все остальные ячейки ленты пусты (содержат символ 0). Если машина M на входе x завершается и на ленте написанно слово y, то будем говорить, что y — результат работы машины M на входе x (обозначение M(x) = y). Временем работы машины M на входе x называется число шагов, которое M тратит на вычисление результат на слове x (обозначение $T_M(x)$).

Замечание 1. Приняты три неформальных соглашения:

- 1. При написании программ явно выписывать только «нетривиальные» команды отличные от $qa \to qa$.
- 2. Натуральные числа представляются на ленте в унарной записи число n записывается как $\underbrace{11\dots 1}$.
- 3. В начале работы головка расположена непосредственно слева от входных данных. После завершения работы результатом является то слово на ленте (последовательность букв между соседними «0»), на которое указывает головка.

Задача ТА1.1. Написать программы для машины Тьюринга:

- 1. заменяющую во входном слове из 0 и 1 все буквы 0 на 1 и наоборот;
- 2. перемещающую 0 через блок единиц $(011...1 \rightsquigarrow 11...10)$;
- 3. удвоение блока из 1;
- 4. обращения слова из 0 и 1 (пишет на выходе буквы слова в обратном порядке).
- 5. сортировка нулей и единиц в двоичном слове

Задача ТА1.2. Написать программы для машины Тьюринга, вычисляющие следующие функции натурального аргумента:

(a)
$$x + 1;$$
 (r) $|x - y|;$ (d) $2x + 1;$ (g) $f(x) = \begin{cases} x - 1, x > 0, \\ 0, x = 0; \end{cases}$ (e) $2x;$ (f) $[x - y|;$ (f) $[x - y|;$ (g) $[x - y|;$ (g) $[x - y|;$ (e) $[x - y|;$ (f) $[x - y|;$ (g) $[x - y|;$