

Summer 2020: w266 Thaddeus Segura

OVERVIEW

SQuAD v2.0

- -Scraped from Wikipedia: Context + Question
- -Predict the answer by selecting a sequence of text.
- -33% of the questions are unanswerable: return only an empty string.

-Training Examples: 130,319

-Dev Examples: 11,873

- -Average Context Length: 735.5 characters
- -Cased words are more likely to appear in question/answer than context. *use BERT Cased.

Motivation

-Initial focus was on Continual Learning.

-Could new data be incorporated without requiring retraining a full model by just training a new model on new data, then combine the predictions for an enhanced prediction.

Baseline

- -BERT Large: Cased
- -24 layers
- ~340 million parameters
- -Learning Rate: 3e-5
- -Batch Size: 24
- -Epochs: 3
- -Max sequence length: 384
- -Training time on GCP TPU's ~90 minutes
- -Total F1: 80.38
- -HasAns F1: 83.99
- -NoAns F1: 76.77

Discrete Data Presentation

- -Split the dataset into new discrete datasets.
- -Attempted a 4-way and 8-way Split.
- -BERT Large: Cased for each dataset.
- -Epochs: 4
- -Training time on GCP TPU's ~120 minutes
- -Total F1: 75.30
- -HasAns F1: 82.48
- -NoAns F1: 68.14
- -More splits = Worse results.

DNN For Model Selection

- -Use the models generated with the discrete data presentation.
- -Generate predictions for all of the training sets questions they had not seen.
- -Identify which were correct/incorrect.
- -Plug in the word embeddings to a deep neural net to predict which models will get this particular question right/wrong.
- -Absolute failure: Deep Neural Network had no understanding of language.

BERT for Multiple Choice

-Replace the Deep Neural Network from the previous approach with another Full BERT model.

-Generate top *n* predictions on each question in the training set to develop a 2nd-Order training set.

-Attempted 2-way and 5-way multichoice.

-Total F1: 67.42

-HasAns F1: 82.48

-NoAns F1: 68.14

^{*}Major Memory issues.

^{*}More choices = Worse Results

BERT for Sequence Classification

- -Classify all questions in the training set as answerable/unanswerable.
- -Run Question+Context through the BERTforSequenceClassification model.
- -Use those predictions to override predictions made by another BERT model.

-Total F1: 78.37

-HasAns F1: 76.61

-NoAns F1: 80.13 *Highest of all models.

- *Still some memory issues.
- *Hard to avoid overfitting.

Intelligent Weighting

- -Factor in Model Confidence and accuracy.
- -Manually apply a weight to the classification predictions so that they vote, not override.
- -Finally outperformed the baseline.
- -Total F1: 81.99 *Highest of all models.
- -HasAns F1: 84.10 *Highest of all models.
- -NoAns F1: 79.88
- *Still major room for improvement by tuning this further.

Results

-Intelligent Weighting delivered the best results overall.

-The Classification Model had the best performance on the unanswerable questions.

-Can this be taken further???

Ensemble Type	Total		HasAns		NoAns
	EM	F1	EM	F1	EM/F1
Baseline: BERT Large	77.09	80.39	77.41	83.99	76.77
Simple Voting: 4 Way Discrete Data	71.91	75.30	75.69	82.48	68.14
Multiple Choice: A/B on unsplit data	63.77	67.42	75.67	82.99	51.89
Classification: BERT Base	75.36	78.37	70.58	76.61	80.13
Intelligent Weighting: BERT Large +	79.04	81.99	78.19	84.10	79.88
BERT Large unsplit + Classification					

Next Steps

- -Proposed Architecture.
- -Leverage different models to create the best ensemble predictions.
- -Use an ensemble on the classification side as well.
- -If I can get the classification accuracy up, I can significantly increase its weight without adverse effects to the other answers.