Please check the examination details be	elow before ente	ering your candidate i	nformation
Candidate surname		Other names	
Centre Number Candidate N	Number		
Pearson Edexcel Inter	rnation	al Advand	ced Level
Time 1 hour 30 minutes	Paper reference	WMA	14/01
Mathematics			•
International Advanced L	ovol		
	evei		
Pure Mathematics P4			
You must have: Mathematical Formulae and Statistic	cal Tables (Ye	llow), calculator	Total Marks

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

Leave blank

1. The curve C has equation

$$xy^2 = x^2y + 6 \qquad \qquad x \neq 0 \quad y \neq 0$$

Find an equation for the tangent to C at the point P(2, 3), giving your answer in the form ax + by + c = 0 where a, b and c are integers.

(6)

Leave

	۲.			ì		
S						
	/				7	
					≺	
	2		2			
	>					
>	Κ,	à	ú		R	
	Δ	ξ	ü		Ľ	
					7	
2	S	P	Я	ν		
	Δ	ķ	ø	h	я	
	>	й	n	ú	à	
1	N	E	3	Е	Z	
	O	7	e	7	=	
		S	ä	й		
	Ŋ		2			
			₹	7	₹	
	7					
	Я	۲	٦		٠	
	(I			р		
`	2	S	2	S	z	
	У	7	7	₹	7	
	Q	ø		р	۰	
5	7.		а			
	Ŋ	۳	,	٠	7	
	G			2	2	
	y	ĸ				
	ς,	2	≤	2	s	
S	ľ	7			P	
0	à			z	_	
2	ď	7	₹	7	₹	
	Δ	,	۰	۰	۳	
	V	r	٩	ŕ	'n	
1	4	ь		ь		
	X	Γ	7	₹	7	
	N		ŝ	ú	S	
	4	Б				
	ă	ĥ	ì	6	è	
	7	Z	Σ	Z	Σ	
	a	Р	₹	Р	₹	
	Α	h	μ		p	
	Я	ú	è	4	2	
	ζ,	2	G			
	Α	۹	F	6,	ď	
	à		à	ę	7	
5	a	Ь				
	И		9	ę	7	
2	Q	2	S	2		
	4		۲	٦		
	А	ĸ.	۵			
?	1	7	۹	ŕ	۲,	
	0	7	ę			
	2	a	ė	S		
2	Ŋ	۲	۲	۲	٥	
ς		ú	à	ė	ĸ	
	М	ľ				
	ď	Ħ	ú	ú	ø,	
۱	2	S	ä	S	2	
	N	۲	7	₹	a	
	Ŋ		b	è		
5	1		7	7	7	
(>					
2	<		5		<	
5	<					
	>		2	≺		
	/		١			
b	<					
	>					
	>				5	
>					<	
	2					
	S	>		2		

Question 1 continued	blank
	Q1
(Total 6 marks)	
(10th Charks)	

Leave blank

(a) Find, in ascending powers of x, the first three non-zero terms of the binomial series expansion of

$$\sqrt[3]{1+4x^3}$$
 $|x| < \frac{1}{\sqrt[3]{4}}$

giving each coefficient as a simplified fraction.

(4)

(b) Use the expansion from part (a) with $x = \frac{1}{3}$ to find a rational approximation to $\sqrt[3]{31}$

9)

(3

Λ					
	į				
					ì
	ĕ				
	ø	4		×	
\checkmark		4			
$^{\wedge}$					
			2		
	7				۶
2	3	ζ		Ş	
8	3	3	K	í	
â	3	3	K	ĺ	
8	Z		K	1	
			<		
			< L		
			< K		
			< L		

Question 2 continued	Leave blank
(Total 7 marks)	Q2
(1 1112 (21110 1111)	

Leave blank

3. The curve C has parametric equations

$$x = 3 + 2\sin t \qquad \qquad y = \frac{6}{7 + \cos 2t} \qquad \qquad -\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$$

(a) Show that C has Cartesian equation

$$y = \frac{12}{(7-x)(1+x)} \qquad p \leqslant x \leqslant q$$

where p and q are constants to be found.

(6)

(b) Hence, find a Cartesian equation for C in the form

$$y = \frac{a}{x+b} + \frac{c}{x+d} \qquad p \leqslant x \leqslant q$$

where a, b, c and d are constants.

(3)

	Leave
Overtion 2 continued	blank
Question 3 continued	

estion 3 continued	

Leave

Question 3 continued	blank
	Q3
(Total 9 marks)	

4.

Figure 1

A regular icosahedron of side length x cm, shown in Figure 1, is expanding uniformly.

The icosahedron consists of 20 congruent equilateral triangular faces of side length xcm.

(a) Show that the surface area, $A \text{ cm}^2$, of the icosahedron is given by

$$A = 5\sqrt{3}x^2$$

(2)

Given that the volume, $V \text{cm}^3$, of the icosahedron is given by

$$V = \frac{5}{12} \left(3 + \sqrt{5} \right) x^3$$

(b) show that
$$\frac{dV}{dA} = \frac{(3+\sqrt{5})x}{8\sqrt{3}}$$

(3)

The surface area of the icosahedron is increasing at a constant rate of 0.025 cm² s⁻¹

(c) Find the rate of change of the volume of the icosahedron when x = 2, giving your answer to 2 significant figures.

		ġ			
	Ý				
	Û				4
	3				
					2
	Ì				
				2	
	S	Č			
	S	Š	ĕ	ĥ	2
	ξ	Š	Š	þ	ζ
	S	Š	2	Š	í
>	3	į	2		١

Question 4 continued	blank

estion 4 continued	

×		×
$\langle \rangle$	$\langle \rangle$	$\langle \rangle$
$^{\wedge}$	\wedge	\triangle
X.	2	ari
V	Š	w
\wedge	í	-
×ı	м	И
a		ш
		\sim
×I		e.
C)	ы	=
$^{\wedge}$	\triangle	_
×	æ	w.
×2	9	G.
$^{\wedge}$	\wedge	~~
X.		X.
a	и	n
	w.	211
Xi	~	1
×	_	Ħ
V.	S	W
0	_	-
XI	K.	Χ.
V	•	—
73	F)	
X.	x	X.
\sim	₹.	20
$^{\wedge}$	æ	n
X	7	₹.
a		
$^{\wedge}$	\wedge	
X,	×	×
ă	и	u
N	_	_
XI	K.	×
()	•	⇁
^\	25	\triangle
×	≂	⇁
$^{\circ}$		الاست
\sim	М	
X.	₹	7
O	m	-
$^{\sim}$	-in	per.
v	7	200
a	w	♥
$^{\sim}$	×	$^{\sim}$
M	MZ.	×
	7	⇁
X!	5S.,	Ζ.
W		70
C)	K)	CB
X		
V		
	2	
Xi	Ž	2
Ņ		Ž
X		
X		
X		3
X		2
		2
X		
		2

Question 4 continued
$oxed{Q4}$
(Total 8 marks)

Leave blank

5.

Figure 2

Figure 2 shows a sketch of the curve with parametric equations

$$x = \sqrt{9 - 4t} \qquad \qquad y = \frac{t^3}{\sqrt{9 + 4t}} \qquad \qquad 0 \leqslant t \leqslant \frac{9}{4}$$

The curve touches the x-axis when t = 0 and meets the y-axis when $t = \frac{9}{4}$

The region *R*, shown shaded in Figure 2, is bounded by the curve, the *x*-axis and the *y*-axis.

(a) Show that the area of R is given by

$$K \int_{0}^{\frac{9}{4}} \frac{t^3}{\sqrt{81 - 16t^2}} \, \mathrm{d}t$$

where K is a constant to be found.

(4)

(b) Using the substitution $u = 81 - 16t^2$, or otherwise, find the exact area of R.

(Solutions relying on calculator technology are not acceptable.)

(6)

	Leave
	blank
Question 5 continued	
	1

estion 5 continued	

				2		
S						
					2	
					>	
2					⋖	
					<	
	>	C		S	è	
	N		Ħ		75	
		7	۹	Ħ	4	
5		è	á		4	
	Я	L		Ľ		
		Z	S	Z		
	q	r	7	Р	≺	
	Δ	۰	۳	۰	•	
		C	۵	ú	à	
	Ŋ		2		ß	
			₹	7	₹	
Ś	2			5	2	
(X	ľ	ù	e	3	
		9	О		ч	
>	9	ù	ú	ù	1	
		S	2	S	2	
		₹	٦	г	7	
2	S	Ĥ			ú	
	a	è				
ς	4		۴	۹	ø	
	y	ĸ			\geq	
	۲,	2	S	2	S	
		3	Z	3		
	A			'n	×	
(N	6	4	4	_	
2						
	ζ,	\geq	4		ĺ	
	Ä	I.	J	L		
		6	7	₹	7	
	q			ü	≤	
5	4	Е	7	7	7	
	Ä	ĥ	ì	í	è	
	>	4	è	4	2	
>	P	E	3	E		
	0	9	e	=	е	
	Z	٠	9	6	×	
	Ŋ	d		۶	5	
		2	Σ			
S	P	7	7	5		
	À					
	У		4	ø	'n	
>		9	S	2	S	
	4		₹	7	٩	
	A	í	۵	≤	ð	
	5	2	3	7	5	
		7	7		P	
5				5	2	
	2	₹	7	₹	7	
	5		S	4	S	
୬	Q	ø	₹	7	٩	
	Δ	ŧ	۷	2	ð	
		С		S	2	
2	1	ø	2	7	٩	
	4		4	è	ą	
S	?	3	7	3	7	
Κ					Þ	
					>	
2				2		
		5	2			
	>				>	
?					١	
١	2			5	2	
	>)		>	

Question 5 continued	Leave blank
	Q5
(Total 10 marks)	
(10th 10 marks)	

Leave blank

6.	Three consecutive terms in a sequence of real numbers are given by	
	k, 1 + 2k and 3 + 3k	
	where k is a constant.	
	Use proof by contradiction to show that this sequence is not a geometric sequence.	(5)

×.	ġ	á		e	
w		2			
Vi		é	7		
\sim			7		
2	ζ	2	3	2	
å	S	2	2	ĺ	
à		Ì	2	Ì	
		2			֡
X			5		
X			3		
X			2		
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					
X					

Question 6 continued	Leave blank
	Q6
(Total 5 marks)	

Leave blank

7.

 $f(x) = \frac{1}{4}(4-x)e^x$

1 0 4 x

Figure 3

Figure 4

Figure 3 shows the design of a doorknob.

The shape of the doorknob is formed by rotating the curve shown in Figure 4 through 360° about the *x*-axis, where the units are centimetres.

The equation of the curve is given by

$$f(x) = \frac{1}{4} (4 - x)e^x$$
 $0 \le x \le 4$

(a) Show that the volume, $V \text{cm}^3$, of the doorknob is given by

$$V = K \int_0^4 (x^2 - 8x + 16) e^{2x} dx$$

where *K* is a constant to be found.

(3)

(b) Hence, find the exact value of the volume of the doorknob.

Give your answer in the form $p\pi(e^q + r)$ cm³ where p, q and r are simplified rational numbers to be found.

(5)

	bl
uestion 7 continued	

estion 7 continued	

Leave

	2		7		7
	7	/			/
		۷	4	à	ø
	Я		2		>
		7	₹	7	
	a	Ь	6		ú
	Я	E		Ľ	
	Ç!	7	₹	7	₹
	7			ù	
	М	Ľ	ы		\leq
	O	9	•	9	•
		1	2	ú	
2	q		Σ		
			,	۹	
	Κ.			۵	٤
	А	Į.		r	
	A	۹	Ρ,		4
	G	ú	2	è	6
	S	P		P	٠
١		2			
1	И	•	,	,	,
	CII				
	Л				
	И	r	١		
			0		
	-74	h	۰		
	ς.	à		ρ	7
	4			н	и
	7	_	_	_	≥
	⟨*	7	=	7	e
>	4	ì	4	Ì	4
	â	Ì	í	Ì	ĺ
>	j		j		į
	á	ì			ĺ
	á				
	1			}	
	1				

Question 7 continued	blank
	Q7
(Total 8 marks)	

Leave blank

8. With respect to a fixed origin O the points A and B have position vectors

$$\begin{pmatrix} 6 \\ 6 \\ 2 \end{pmatrix} \text{ and } \begin{pmatrix} 6 \\ 0 \\ 7 \end{pmatrix}$$

respectively.

The line l_1 passes through the points A and B.

(a) Write down an equation for l_1

Give your answer in the form $\mathbf{r} = \mathbf{p} + \lambda \mathbf{q}$, where λ is a scalar parameter.

(2)

The line l_2 has equation

$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 5 \\ 9 \end{pmatrix}$$

where μ is a scalar parameter.

(b) Show that l_1 and l_2 do **not** meet.

(4)

The point C is on l_2 where $\mu = -1$

(c) Find the acute angle between AC and $l_{\scriptscriptstyle 2}$

Give your answer in degrees to one decimal place.

(5)

	Lea
Ornestian O continued	blar
Question 8 continued	
	—

estion 8 continued		

Question	8 continue	ed

Leave blank

Q8

(Total 11 marks)

Leave blank

9. (a) Find the derivative with respect to y of

$$\frac{1}{\left(1+2\ln y\right)^2}$$

(2)

(b) Hence find a general solution to the differential equation

$$3\csc(2x)\frac{dy}{dx} = y(1+2\ln y)^3$$
 $y > 0$ $-\frac{\pi}{2} < x < \frac{\pi}{2}$

(4)

(c) Show that the particular solution of this differential equation for which y = 1 at $x = \frac{\pi}{6}$ is given by

$$y = e^{A\sec x - \frac{1}{2}}$$

where *A* is an irrational number to be found.

(5)

	blank
O	blank
Question 9 continued	

estion 9 continued	

	blank
O	blank
Question 9 continued	

Question 9 continued	Leave blank
	00
	Q9
(Total 11 marks)	
END TOTAL FOR PAPER IS 75 MARKS	