Math 104 Homework 8 Partial Solutions

UC Berkeley, Summer 2021

2. Let f be a function defined on an open interval I containing x_0 which is twice differentiable on I such that f'' is continuous at x_0 . Prove that for any $\varepsilon > 0$, there exists h > 0 such that

$$\left| \frac{f(x_0 + h) - f(x_0 - h)}{2h} - f'(x_0) \right| < h \cdot \varepsilon.$$

(Hint: Use Taylor's theorem about x_0 .)

Solution. Let $\varepsilon > 0$. Since f'' is continuous at x_0 , there exists h > 0 such that $|f''(x) - f''(x_0)| < 2\varepsilon$ for all $x \in I$ with $|x - x_0| < h$. By Taylor's theorem, there exists $\alpha_1 \in (x_0, x_0 + h)$ and $\alpha_2 \in (x_0 - h, x_0)$ such that

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(\alpha_1),$$
 $f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(\alpha_2).$

Then

$$\frac{f(x_0+h)-f(x_0-h)}{2h}=f'(x_0)+\frac{h}{4}(f''(\alpha_1)-f''(\alpha_2)),$$

SO

$$\left| \frac{f(x_0 + h) - f(x_0 - h)}{2h} - f'(x_0) \right| = \frac{h}{4} |f''(\alpha_1) - f''(\alpha_2)| \le \frac{h}{4} (|f''(\alpha_1) - f''(x_0)| + |f''(x_0) - f''(\alpha_2)|) < h \cdot \varepsilon.$$

3. (Ross 32.8) Let f be an integrable function on [a, b]. Prove that f is integrable on any closed subinterval $[c, d] \subseteq [a, b]$.

Solution. Let $\varepsilon > 0$. Let $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ be a partition of [a, b] such that $U(f, P) - L(f, P) < \varepsilon$. Let $P^* = P \cup \{c, d\}$, and let $Q = \{t \in P^* : c \le t \le d\}$ be the partition of [c, d] induced by P^* . Then $U(f, Q) - L(f, Q) \le U(f, P^*) - L(f, P^*) < \varepsilon$.

4. (a) Let $S = \{x_1, \ldots, x_n\}$ be a finite subset of [a, b]. Let f be the function

$$f(x) = \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{if } x \notin S. \end{cases}$$

Prove that f is integrable and $\int_a^b f = 0$.

(b) Let g be an integrable function on [a, b], and suppose h is a function on [a, b] such that h(x) = g(x) for all but finitely many points x in [a, b]. Prove that h is integrable and $\int_a^b h = \int_a^b g$.

Solution. (a) Let $\varepsilon > 0$. Let P be a partition of [a,b] with $\operatorname{mesh}(P) < \frac{\varepsilon}{2n}$. Then $U(f,P) - L(f,P) < 2n \cdot \frac{\varepsilon}{2n} = \varepsilon$, so f is integrable. Since L(f,P) = 0 for any partition P of [a,b], it follows that L(f) = 0, so $\int_a^b f = 0$. (b) Apply similar idea as part (a) to h - g.

5. Show that the function

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0 \end{cases}$$

is integrable on [0,1].

Solution. Let $\varepsilon > 0$. Since f is continuous on $\left[\frac{\varepsilon}{4}, 1\right]$, there exists a partition $P = \left\{\frac{\varepsilon}{4} = t_0 < t_1 < \ldots < t_n = 1\right\}$ such that $U(f, P) - L(f, P) < \frac{\varepsilon}{2}$. Let P^* be the partition of [0, 1] given by $\{0\} \cup P$. Then $U(f, P^*) - L(f, P^*) = \left(M(f, \left[0, \frac{\varepsilon}{4}\right]) - m(f, \left[0, \frac{\varepsilon}{4}\right])\right) \cdot \frac{\varepsilon}{4} + U(f, P) - L(f, P) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

8. (Ross 33.9) Let (f_n) be a sequence of integrable functions on [a,b] such that $f_n \to f$ uniformly on [a,b]. Prove that f is integrable and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.

Solution. Let $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that $|f_N(x) - f(x)| < \frac{\varepsilon}{3}$ for all $x \in [a, b]$. Let $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$ be a partition of [a, b] such that $U(f_N, P) - L(f_N, P) < \frac{\varepsilon}{3}$. Then $U(f, P) \leq U(f_N, P) + \frac{\varepsilon}{3}$ and $L(f, P) \geq L(f_N, P) - \frac{\varepsilon}{3}$ (requires more justification). Then

$$U(f,P) - L(f,P) \le U(f_N,P) + \frac{\varepsilon}{3} - \left(L(f_N,P) - \frac{\varepsilon}{3}\right) < \varepsilon.$$

9. A sequence (f_n) of integrable functions on [a,b] is said to **converge in** $L^1([a,b])$ to an integrable function f if $\lim_{n\to\infty}\int_a^b|f_n-f|=0$. Find an example of a sequence of integrable functions (f_n) on [0,1] and an integrable function f on [0,1] such that $f_n\to f$ pointwise and $\lim_{n\to 0}\int_0^1 f_n=\int_0^1 f$, but f_n does not converge to f in $L^1([0,1])$.

Solution. $f_n = n\chi_{(0,\frac{1}{n})} - n\chi_{(1-\frac{1}{n},1)}, f \equiv 0.$