2024 实验技能训练任务书

- 一、题目:基于 Arduino 的电子产品创意设计
- 二、任务与要求

使用 Arduino 和各种传感器设计一套具有一定创意的电子产品。

- 三、任务明细
 - 1、焊接练习(5分)

要求无虚焊,无短路现象,焊点光滑圆润,整洁美观。

2、电路计算分析(5分)

参照电路原理图,分析计算下列各题:

- (1) 分析 K1、R7、D2 三个元件构成电路的作用。(1分)
- (2)、说明 R1 的作用, 计算其取值范围(假定 ON LED 工作电流是 5mA, 红色发光二极管)? (1分)
- (3)、电路中 R2, R3 的作用是什么? 阻值选取有什么要求? (1分)
- (4)、U3的第一运放在电路中起什么作用?(1分)
- (5)、分析晶振 Y2 两脚外接小电容 C12、C13 的作用? (1分)
- 3、原理图和 PCB 板绘制(25 分)
 - 1)使用原理图绘制软件(Altium Designer1x等)绘制原理图;(10分)如果在已有原理图库中找不到相应的元件,需要自己绘制,注意引脚序号和功能;
 - 2) PCB 板设计(封装制作 5 分, PCB 设计 10 分)
 - a) 根据提供的元件实物和资料(见附图),绘制元件封装,5个封装,每个1分,建立自己的 PCB 封装库,并在绘制 PCB 板时使用;
 - b) 使用双面布线,禁布层尺寸(板框)见下图;元件统一放在顶层;

- c) 要求元件布局合理, 布线规范, 不使用跳线(使用跳线或者有飞线要扣分);
- d) 正确实现原理图功能, 布板整洁美观, 无错误;
- e)请在底层用字符写上自己的学号和姓名,字符适当加粗。

4、元件知识(识别、筛选与测试)(5分)

根据元件清单仔细清点和检查所发装配材料,进行元器件的识别、检测等,填写下表(**特别提醒:焊接前完成**)。

元器件		识别及检测内容					评分标准
	代号	1、2间电阻 1、3间电阻					
三端稳压IC	***	黑表笔接1脚	1.697kO	黑表笔接1脚	8.26MO	1分	检测错 不得分
	U1	红表笔接1脚	1.700kO	红表笔接1脚	4.075MO	1	(1月4万)
	代号	标出 (G、D、S)					
场效应管	Q1	D 340 s 答案:					识别错不得分
比较器	U3	管 1 2 5.602M 5.676M	3 4	5 6 5 589M \$.634 5	7 8	1分 [检测错 不得分
二极管	D1	二极管档测量值 正向读数 反向读数 .609 1.(OL)			1分	检测错 不得分	
电容	C1	测量容量值 标称值 实测值 47uF 42.96uF				1分	检测错 不得分

5、装配焊接及调试(15分)

拿到器件请对照元件清单进行清点,看是否缺少器件。然后对照提供的原理图进行装配、焊接,要求元件安装正确牢固、排列整齐,焊点光滑圆润,无毛刺、无虚焊。

焊接时要先大致了解一下哪些元件先焊,哪些元件后焊,先焊的元件不要影响后焊的元件。注意焊接完成后,先不要急着通电。要认真对着原理图检查有无元件装错、装反,集成元件的引脚间有无短路,特别是主控芯片 U5 MEGA328 由于引脚比较密要防止引脚短路,排除短路后,再检查元件引脚有无虚焊情况,可以用镊子的尖端轻推元件引脚看元件引脚是否移动,如果能移动说明存在虚焊,要进行补焊。另外还可以用万用表辅助检查线路通断和短路情况,特别是要检查一下电源输入有没有短路,具体就是测量一下 USB 插座的 1、4 间的阻值和直流供电插座的 1、2 之间的阻值,不能低于 1K。

以上检查没问题后可以用实验室的稳压电源(调到 7V)或者 USB 线供电,看电路板上电瞬间有无异常,如冒烟、芯片发烫等。无异常情况下,电源指示灯 ON 应该亮起,此时可以用万用表测量 U1、U2 稳压输出 5V 和 3.3V 是否正常,如正常此时可以用 USB 线连接电脑,应该会有提示安装 USB 转串口驱动,否则检查 U4 及外围电路。

能正常安装驱动后可以进行 Arduino 引导程序的下载,具体操作见《bootloader 烧写说明基于 USBasp》文档。

6、电路参数测试(5分)

为保证测量数据准确,最好是先将电路调试完毕后,再完成以下内容。

- 1) 电路正常工作时,用外接电源供电(7V),<mark>烧写空程序</mark>测整机工作电流为<u>23.4</u>mA。(1 分)
- 2) U3(LM358) 各引脚电压,<mark>用外接电源供电(7V),烧写空程序测</mark>:(2分)

引脚	1	2	3	4	5	6	7	8
电压值 (V)	3.7mV	3.259V	2.858V	0V	0.601V	3.510V	3.511V	4.857V

3) 使用示波器测试 U5 (Mega328) 7 和 8 脚的波形,示波器屏幕截图或拍照(2 分)

7、创意设计(35分)

使用自己调试好的 Arduino,选用合适的传感器设计一套具有一定创意的电子系统。要求使用的传感器种类不少于 3 种,个数不限。

可以1人单独设计或2人一组组队设计,提交实物现场展示验收。

创意设计报告:

- 1、系统方案(背景,需求分析,系统各部分比较与选择,方案描述,最后形成整体方案,系统整体框图等);
- 2、理论分析与计算(控制方法描述及参数计算);
- 3、电路与程序设计(系统组成,原理框图与各部分电路图,软件设计及流程图);
- 4、系统调试(测试方案及测试条件,测试结果,测试结果分析);
- 5、结论与心得;
- 6、产品展示 (照片和视频);
- 7、参考文献。

完整程序作为附件提交。

9、实验报告(5分)

- 1)报告要求完整和规范;
- 2) 完成单元电路分析及计算:

- 3) 自己画的原理图和 PCB 图, 截图在报告中, AD 文件打包;;
- 4)测试的各种数据及分析;
- 5) 记录的测试波形;
- 6) 问题分析、产生原因及解决办法;
- 7) 总结及建议:
 - ①对课程的建议;
 - ②个人小结。

10、最终提交资料

- 1) 任务书对应的报告:
- 2) 创意设计报告;
- 3) 原理图和 PCB 图以及自建原理图库、PCB 库, AD 文件打包;
- 4) 创意设计相关照片和视频,展示 PPT;
- 以上内容压缩成一个包,以学号姓名命名包文件。

四、工具仪器分配

烙铁及烙铁架各一,清洁棉1块,镊子1把,万用表一块,一个电源,一台示波器(部分仪器可能要两人共用),助焊剂一小瓶,螺丝刀根据需要自取。

五、部分元件封装(图 1-5 需自制元件库)

图 1 DC1 电源插座封装及实物

图 2 贴片铝电解电容封装

参考尺寸图:

图 3 方口 USB 座封装及实物

Land Pattern 图 4 M7 贴片二极管封装

图 5 贴片轻触开关封装

Dimensions List

T			٠.
	- 7	C.	t-i
н.	. 1		10

Contacts	Dimen:	sions	Contacts	Dimensions	
Per row	A	В	Per row	A	В
1 33	2. 54	0	21	53. 34	50. 80
2	5. 08	2. 54	22	55. 88	53. 34
3	7.62	5. 08	23	58. 42	55. 88
4.用心	10. 16	7.62	24	60. 96	58. 42
5 com	12.70	10. 16	25	63. 50	60. 96
6	15. 24	12. 70	26	66. 04	63. 50
河 門	17. 78	15. 24	27	68, 58	66, 04
8	20. 32	17. 78	28	68. 58	68. 58
9	22. 86	20. 32	29	71. 12	68. 58
10	25. 40	22. 86	30	73. 66	71. 12
11	27. 94	25. 40	31	76. 20	73.66
12	30. 48	27. 94	32	78. 74	76. 20
13	33. 02	30. 48	33	81. 28	78. 74
14	35. 56	33. 02	34	83. 82	81. 28
15	38. 10	35. 56	35	86. 36	83. 82
16	40.64	38. 10	36	88. 90	86. 36
17	43. 18	40. 64	37	91. 44	88. 90
18	45. 72	43. 18	38	93. 98	91. 44
19	48. 26	45. 72	39	96. 52	93. 98
20	50. 80	48. 26	40	101.6	96. 52

图 6 排针插座封装

图 7 0805 贴片电阻、电容封装

Dimensions shown in millimeters

图 8 QFP32 封装

BSC 是指基本值,是一个没有公差的常数,或者说误差很小可以忽略的数,用于表示需严格保证的距离,如:元件引脚的间距。

BSC SQ: BSC 后面的 SQ 大体意思是图形是方形的,横轴长度和纵轴长度一致,所以只要标注其中一个方向就可以。

尺寸中三个数字在一起中间用横线隔开的,分别表示最大值,典型值,最小值。一般画图是只要参考典型值就可以。

六、UNO 参考电路图

如看不清请参考 PDF 文件