Main Symbol Table

移动节点集合
锚点集合
第 k 层移动节点集合(到目标节点距最短路线长为 k)
移动节点数量 (除目标节点 v_0 以外)
锚点数量
网络中所有通信链路的集合
连接 V_{k-1} 和 V_k 的节点的链路集合
连接节点 i,j 的链路
节点 i 的邻居集合
节点 i 的邻居移动节点集合
节点 <i>i</i> 的邻居锚点集合
节点 i 指向 j 方向的向量
节点 i 与节点 j 的距离
$\sqrt{\lambda_{i,j}}u_{i,j}$
$\mathcal{O}\left(rac{1}{r_{i,j}^2} ight)$
$v_{i,j}v_{i,j}^{ ext{H}^{\circ}}$
FIM
部分参数 θ_1 的 EFIM
第 k 个移动节点来自相邻锚点的信息总和
空间链路耦合信息 : 第 k 层某条链路 e 对于目标节点的
耦合信息,只保留前 k_0 层的节点,断开 e 后目标节点
SPEB 的增量
前 k 层移动节点的位置参数向量
空间节点耦合信息 : 第 k 层某个节点 i 对于目标节点的
耦合信息, $\mathcal{J}^{\mathrm{SN}}(k,i,\lambda)$ 对于 λ 的偏导
只保留前 k_0 层的节点, 第 k 层某个节点 i 的 J_r 增加 λI
后,目标节点的 SPEB 增量
第 k 层移动节点与第 k+1 层移动节点耦合信息中和第
k 层有关的参数矩阵
第 k 层移动节点与第 $k-1$ 层移动节点耦合信息中和第
k 层有关的参数矩阵
第 k 层移动节点与第 k 层移动节点耦合信息中和第 k 层
有关的参数矩阵
只保留前 k 层移动节点,目标节点的 FIM
第 k 层移动节点对目标节点的耦合信息,只保留前 $k-1$
层移动节点相比只保留前 k 层移动节点,目标节点 SPEB
的减少量
泊松随机网络单位面积移动节点数的期望(移动节点密
度)
部分定理里和第 k 层移动节点有关的中间迭代值
移动节点 k 的 EFIM
移动节点 k 来自锚点的 EFIM
移动节点 k 的 EFIM 的一阶下界

$egin{aligned} \mathbf{J}_{ m e}^{ m U_1}(\mathbf{p}_k) \ \mathbf{C}_{i,j} \ & \epsilon_{i,j} \ \mathbf{J}_{ m e}^{ m L_2}(\mathbf{p}_k) \ & \mathbf{J}_{ m e}^{ m U_2}(\mathbf{p}_k) \ & \mathbf{C}_{k,j_1,j_2,j_3,j_4} \end{aligned}$	移动节点 k 的 EFIM 的一阶上界 链路 $e_{i,j}$ 的信息矩阵 一阶 EFIM 近似中 $\mathbf{C}_{i,j}$ 的系数 移动节点 k 的 EFIM 的二阶下界 移动节点 k 的 EFIM 的二阶上界 节点 k 的邻居移动节点 $j_1 \sim j_4$ 间的链路以及协作链路 e_{j_1,j_2} 与 e_{j_3,j_4} 关于节点 k 的耦合信息矩阵 二阶 EFIM 近似中 $\mathbf{C}_{k,j_1,j_2,j_3,j_4}$ 的系数 移动节点 k 的 EFIM 的二阶下界对角化 移动节点 k 的 8FIM 的二阶上界对角化 节点 k 的邻居移动节点 j_1,j_2 间的链路以及协作链路
η_{k,j_1,j_2}	e_{j_1,j_2} 关于节点 k 的耦合信息矩阵 二阶 EFIM 近似对角化后 \mathbf{C}_{k,j_1,j_2} 的系数
$v_i^{(t)}$	节点 i 在时刻 t 到 $t+1$ 时刻的位移
$w_{i,t}$	$v_i^{(t)}$ 方向的单位向量
$v_{i,t}$	$\sqrt{\lambda_{i,t}}w_{i,t} \ \mathcal{O}(rac{1}{r_{i,j}^2})$
$\lambda_{i,t}$	$\mathcal{O}(\frac{1}{r_{i,j}^2})$
$r_{i,j}$	$v_i^{(t)}$ 模长
	$v_{i,j}$ 外积
$egin{aligned} \mathbf{J_t}v_{i,j}\ \mathbf{P^{(t)}} \end{aligned}$	时刻 t 网络移动节点的空间位置向量
q	时间 $0 \sim T$ 内网络移动节点位置向量参数, $\mathbf{P}^{(0)} \sim \mathbf{P}^{(\mathrm{T})}$ 的级联
$\mathbf{J}_{\mathrm{et}}(\mathbf{q},T)$	时间 $0 \sim T$ 内网络移动节点的 FIM
\mathbf{S}_t	时刻 t 移动节点空间协作信息 FIM, $\mathbf{J}_{\mathbf{e}}(\mathbf{P}^t)$
$\mathbf{T}_{t,t+1}$	时刻 t 与时刻 $t+1$ 间移动节点时间协作信息矩阵,
~	$\operatorname{diag}(\mathbf{J}_{\mathbf{t}}(v_{0,t}), \mathbf{J}_{\mathbf{t}}(v_{1,t}), \cdots, \mathbf{J}_{\mathbf{t}}(v_{N,t}))$ 时间 $T-t$ 到 T 移动节点位置向量参数, $\mathbf{P}^{(T-t)} \sim \mathbf{P}^{(T)}$
\mathbf{q}_t	的例 $I = t$ 到 I 移列 I 总位置问重多数, I 、 I ~ I 、 I)
$\mathcal{J}^{\mathrm{TL}}(e_{i,j}^{(t)},T)$	时间链路耦合信息: 考虑在时刻 $T-t$ 连接 i,j 后断开的
, , , , , , , , , , , , , , , , , , ,	链路 $e_{i,j}^{(t)}$, 假设 $e_{i,j}^{(t)}$ 在时刻 $T-t$ 不存在, 目标节点 SPEB 增量
$\mathcal{J}^{\mathrm{TL}}(i^{(t)},T)$	时间节点耦合信息: $\mathcal{J}^{\mathrm{TL}}(i^{(t)},T,\lambda)$ 对于 λ 的偏导
$\mathcal{J}^{\mathrm{TL}}(i^{(t)},T,\lambda)$	某个节点 i 在时刻 t 来自锚点的信息增加 λI 后目标节点 SPEB 减少量
$\mathbf{J}_{\mathrm{et}}(\mathbf{q},t)$	网络在时间 $T-t\sim T$ 内的 FIM
$\mathcal{J}(t)$	只回溯 $t-1$ 个时间段目标节点 SPEB 相比回溯 t 个时间段的减少量
$oldsymbol{\Lambda}_{T-t}$	第三章定理中时刻 $T-t$ 的相关迭代中间值 (作用和第二
$\mathbf{U}_{T-t,T-t+1}$	章中 Λ_k 相似) 时刻 $T-t$ 和 $T-t+1$ 的移动节点耦合信息和时刻 $T-t$, $T-t+1$ 相关的参数矩阵(作用和第二章中 \mathbf{B}_{k-1} , \mathbf{F}_K 相似)