Deep Compressive Offloading: Speeding Up Neural Network Inference by Trading Edge Computation for Network Latency

Shuochao Yao¹, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, Tarek Abdelzaher ¹George Mason University, University of Illinois at Urbana-Champaign ¹shuochao@gmu.edu, {jinyang7, dongxin3, tianshi3, sl29, hshao5, sl29, zaher}@illinois.edu

SenSys 2020 Award

Best Paper Award

- sensys-s3-paper1: Zero-Wire: A Deterministic and Low-Latency Wireless Bus through Symbol-Synchronous Transmission of Optical Signals
 - Jonathan Oostvogels, Fan Yang (imec-DistriNet, KU Leuven); Sam Michiels, Danny Hughes (imec-DistriNet KU Leuven)
- sensys-s7-paper2: Deep Compressive Offloading: Speeding Up Neural Network Inference by Trading Edge Computation for Network Latency
 - Shuochao Yao (George Mason University); Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, Tarek Abdelzaher (UIUC)

Outline

- Background: deep learning on the edge
- Problems and Previous Work
- Compressive Sensing
- DeepCOD Framework
- Evaluation and Results
- Conclusions

Fig. 5. Architectures for deep learning inference with edge computing. (a) On-device computation. (b) Secure two-party communication. (c) Computing across edge devices with DNN model partitioning. (d) Offloading with model selection. (e) Distributed computing with DNN model partitioning.

Fast Inference Methods

Computing

across edge

devices (§IV-C)

ing

Offloading

DNN partition-

Edge devices

plus the cloud

Distributed

computing

Fig. 1. Deep learning can execute on edge devices (i.e., end devices and edge servers) and on cloud data centers.

Demo

Could we deploy Object Detection App (YoLo) on a Raspberry Pi?

√ we can deploy the object detection on a Raspberry Pi with edge offloading.

X But the network latency is not neglectable. The averaged delay is around 800 ms.

? How can we speed up

Problems and Previous Work

- Problem: high latency caused by transferring data to edge server
- Previous work
 - Decide optimal offloading point in NN based on current computing resources and network conditions
 - Intermediate data sizes of first several layers are still large
 - Use inferior but efficient local model to cut down freq of offloading requests
 - Up to 10% accuracy loss
 - Learning-based data compression: auto-encoder, compress data locally for offloading then reconstruct on the server side
 - symmetric processing burden on encoder and decoder side
- DeepCOD: asymmetric encoder/decoder framework
 - Imbalanced "autoencoder" using compressing sensing theory
 - Much less overhead on end-device, most burden on server side
 - Improves latency significantly with no degradation in inference accuracy

AutoEncoder

Performance of State-of-the-Art

sion, mobile and edge execution time.

Figure 1: A case study of image recognition application with ResNet-50 model. Google Pixel is connected to an edge with Titan V through 450Mbps WiFi. Images on the mobile device are offloaded to the edge server with various offloading techniques.

Pareto optimality (the time axis in log scale).

ference accuracy.

DeepCOD = Compressive Sensing + Deep Learning

DCT, Fourier, wavelet

 $\hat{\mathbf{z}} = \arg\min \|\mathbf{y} - \mathbf{E}G_{\theta}(\mathbf{z})\|^2$

Pretrained generative neural networks

Slow reconstruction due to iterative optimization / backpropagation

Loss in accuracy

Measurement matrix E and pretrained GNN cannot perfectly fit application-specific data

Deep compressive offloading

- Moving the computation load from online iterations steps to offline training
- Reconstruct using one-shot inference on decoder

$$\underset{\theta,\phi}{\arg\min} \|\mathbf{x} - G_{\theta}(\mathbf{E}_{\phi} \circledast \mathbf{x})\|^{2}$$
 (5)

where \circledast denotes the convolution operation, θ , and ϕ are sets of learnable parameters for decoder and encoder.

> More details on regularization and knowledge distillation

DeepCOD Framework

Figure 2: The Deep Compressive Offloading designs with a lightweight encoder on the local device to compress data and a decoder on the edge server to reconstruct.

Figure 3: The default designs and configurations of decoder and decoder structures that used in all our experiments.

DeepCOD System

FastDeeploT

$$\mathop{\arg\min}_{p\in\{1,\cdots,P\}}t_p^{(edge)}+t_p^{(local)}+d_p/B.$$

Runtime Phase

Figure 5: System overview of DeepCOD.

Implementation and Experiments Setup

- Two phones
 - Google Pixel and Nexus 6
- Two type of connections
 - WiFi (450Mbps) and LTE
- Two types of GPU on linux edge server
 - Nvidia Titan V
 - Nvidia GeForce GTX Titan X
- Three DL tasks
 - Image recognition using ResNet-50 on ImageNet dataset
 - Speech recognition using DeepSpeech
 - Object detection using YOLOv3 (demo with raspberry pi offloading)
- Five baselines
 - Offload-Intp
 - Offload-CS: DCT and wavelet basis, ISTA for reconstruction
 - Offload-Lossy: JPEG, Huffman-coding
 - Offload-AE+: enhanced auto-encoders with state-of-the-art model compression
 - Offload: no processing on offloaded data

Trade-off between Inference Acc and Compression Ratio

Table 1: Tradeoff between model inference accuracy (Top-5 classification accuracy) and compression ratio of offloaded data for image recognition service with ResNet-50 model through WiFi connection with 450Mbps bandwidth.

	Input			Block1			Block2		
	Size	tnet	Acc	Size	tnet	Acc	Size	t_{net}	Acc
DCOD	5.7KB	4.3ms	92.0%	980B	2.8ms	92.0%	245B	2.4ms	92.1%
DeepCOD	(0.97%)	(7.1%)	(-1.1%)	(0.12%)	(3.5%)	(-1.1%)	(0.02%)	(1.5%)	(-1.0%)
0.00 1.00	18.5KB	10.9ms	91.7%	94.6KB	16.0ms	80.1%	177KB	26.8ms	79.0%
Offload-CS	(3.1%)	(18.0%)	(-1.4%)	(12.1%)	(20.1%)	(-13.1%)	(11.3%)	(16.8%)	(-14.1%)
om 17.	24.8KB	12.8ms	91.8%	95.2KB	16.1ms	75.7%	178KB	26.8ms	78.8%
Offload-Intp	(4.2%)	(21.2%)	(-1.3%)	(12.1%)	(20.2%)	(-17.4%)	(11.4%)	(16.8%)	(-14.3%)
om . 11	19.5KB	12.3ms	91.7%	94.7KB	16.0ms	77.1%	178KB	26.8ms	79.0%
Offload-Lossy	(3.3%)	(20.3%)	(-1.4%)	(12.1%)	(20.1%)	(-16.0%)	(11.4%)	(16.8%)	(-14.1%)
Offload-AE+	12.2KB	7.8ms	92.0%	14.7KB	8.5ms	92.0%	17.2KB	8.6ms	92.1%
Ollioad-AE+	(2.1%)	(12.9%)	(-1.1%)	(1.9%)	(10.7%)	(-1.1%)	(1.1%)	(5.4%)	(-1.0%)
Offload	588KB	60.5ms	93.1%	784KB	79.6ms	93.1%	1568KB	159.2ms	93.1%

	Block3			Block4			
	Size	tnet	Acc	Size	tnet	Acc	
DeepCOD	184B	2.3ms	92.0%	123B	2.2ms	92.1%	
	(0.02%)	(2.9%)	(-1.1%)	(0.03%)	(5.1%)	(-1.0%)	
Offload-CS	87.4KB	15.3ms	86.5%	80.4KB	15.2ms	89.0%	
	(11.1%)	(19.2%)	(-6.6%)	(20.5%)	(35.1%)	(-4.1%)	
Offload-Intp	87.5KB	15.3ms	86.9%	80.6KB	15.2ms	89.5%	
	(11.2%)	(19.2%)	(-6.2%)	(20.6%)	(35.1%)	(-3.6%)	
Offload-Lossy	87.4KB	15.3ms	86.6%	80.8KB	15.2ms	89.1%	
	(11.1%)	(19.2%)	(-6.5%)	(20.6%)	(35.1%)	(-4.0%)	
Offload-AE+	12.3KB	7.7ms	92.0%	6.7KB	5.3ms	92.1%	
	(1.6%)	(9.7%)	(-1.1%)	(1.7%)	(12.2%)	(-1.0%)	
Offload	784KB	79.6ms	93.1%	392KB	43.3ms	93.1%	

Figure 4: An illustration of intermediate representations in ResNet-50 image recognition service.

Trade-off between Inference Acc and Compression Ratio

Table 2: Tradeoff between Word Error Rate (WER) and compression ratio of offloaded data for speech recognition service with DeepSpeech model through WiFi connection with 450Mbps bandwidth.

	Input			Layer1			Layer2		
5	Size	tnet	WER	Size	tnet	WER	Size	tnet	WER
DoonCOD	17.9KB	8.8ms	0.085	7.3KB	6.9ms	0.087	5.5KB	4.3ms	0.085
DeepCOD	(1.5%)	(8.2%)	(+0.003)	(0.2%)	(1.8%)	(+0.005)	(0.1%)	(1.1%)	(+0.003)
Offload-CS	140KB	25.8ms	0.231	551KB	50.6ms	0.144	550KB	50.5ms	0.128
Ollioau-C3	(12.1%)	(24.1%)	(+0.149)	(11.5%)	(13.4%)	(+0.062)	(11.5%)	(13.4%)	(+0.046)
Office d Trades	142KB	25.9ms	0.262	550KB	50.6ms	0.148	550KB	50.6ms	0.313
Offload-Intp	(12.3%)	(24.2%)	(+0.18)	(11.5%)	(13.4%)	(+0.066)	(11.5%)	(13.4%)	(+0.231)
Officed Lossy	144KB	25.9ms	0.264	551KB	50.6ms	0.145	551KB	50.6ms	0.135
Offload-Lossy	(12.4%)	(24.2%)	(+0.182)	(11.5%)	(13.4%)	(+0.063)	(22.4%)	(13.4%)	(+0.053)
Office J AE	21.7KB	8.9ms	0.088	45KB	23.3ms	0.09	30KB	20.3ms	0.087
Offload-AE+	(1.9%)	(8.3%)	(+0.006)	(0.9%)	(6.2%)	(+0.008)	(0.6%)	(5.4%)	(+0.005)
Offload	1158KB	107.2ms	0.082	4800KB	377.9ms	0.082	4800KB	377.9ms	0.082
	Layer3		Layer4			Layer5			
	Size	tnet	WER	Size	tnet	WER	Size	t_{net}	WER
D. COD	4.4KB	4.0ms	0.085	3.7KB	3.8ms	0.084	2.9KB	3.7ms	0.084
DeepCOD	(0.1%)	(1.1%)	(+0.003)	(0.08%)	(1.0%)	(+0.002)	(0.06%)	(1.0%)	(+0.002)
Offload-CS	552KB	50.7ms	0.145	550KB	50.5ms	0.126	550KB	50.5ms	0.131
Ollioad-C5	(11.5%)	(13.4%)	(+0.063)	(11.5%)	(13.4%)	(+0.044)	(11.5%)	(13.4%)	(+0.049)
0.00 - 1.1	551KB	50.6ms	0.099	550KB	50.5ms	0.098	550KB	50.5ms	0.191
Offload-Intp	(11.5%)	(13.4%)	(+0.017)	(11.5%)	(13.4%)	(+0.016)	(11.5%)	(13.4%)	(+0.109)
Offload-Lossy	551KB	50.6ms	0.159	551KB	50.6ms	0.119	551KB	50.6ms	0.133
Ollioad-Lossy	(11.5%)	(13.4%)	(+0.077)	(11.5%)	(13.4%)	(+0.037)	(11.5%)	(13.4%)	(+0.051)
Offload-AE+	25.5KB	16.3ms	0.087	21KB	15.4ms	0.087	16.5KB	8.4ms	0.086
Ollioau-AE+	(0.5%)	(4.3%)	(+0.005)	(0.4%)	(4.1%)	(+0.005)	(0.3%)	(2.2%)	(+0.004)
Offload	4800KB	377.9ms	0.082	4800KB	377.9ms	0.082	4800KB	377.9ms	0.082

End-to-End Latency

Figure 6: End-to-end offloading latency of image recognition through WiFi with 450Mbps bandwidth.

Figure 7: End-to-end offloading latency of speech recognition through WiFi with 450Mbps bandwidth.

Figure 8: End-to-end offloading latency of image recognition through LTE.

Figure 9: End-to-end offloading latency of speech recognition through LTE.

Impact of Bandwidth & Background Traffic

Figure 10: End-to-end offloading latency under various bandwidth conditions (y-axis log scale)

Figure 11: End-to-end offloading latency under various background network traffic.

Offline Training Overhead

Table 4: Training overhead of DeepCOD.

	DeepCOD	Original
ImageNet (1.3M Pictures)	$4.8 \pm 0.8h$	134h
LibriSpeech (300h Speech)	$1.6 \pm 0.3h$	23h

Conclusions

- DeepCOD: deep compressive offloading
- Asymmetric encoder-decoder by merging compressive sensing and deep learning
- Reduce end-to-end latency by a factor of 2-35
- At most 1% accuracy loss
- Application-agnostic, domain-agnostic