Package 'LoBrA'

October 12, 2022

Type Package
Title Generalized Spline Mixed Effect Models for Longitudinal Breath Data
Version 1.0
Date 2022-03-07
Description Automated analysis and modeling of longitudinal 'omics' data (e.g. breath 'metabolomics') using generalized spline mixed effect models. Including automated filtering of noise parameters and determination of breakpoints.
Depends R ($>= 3.5.0$)
LazyData true
License GPL-3
RoxygenNote 7.1.2
Encoding UTF-8
Imports methods, lawstat, nlme, graphics, RColorBrewer, stats, base, grDevices, qpdf
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Anne-Christin Hauschild [aut, cre] (https://orcid.org/0000-0002-7499-4373), Sandy P. Eckel [ths, com], Jan Baumbach [ths]
Maintainer Anne-Christin Hauschild <achauschild@googlemail.com></achauschild@googlemail.com>
Repository CRAN
Date/Publication 2022-03-21 18:40:04 UTC
R topics documented:
as.LOBdataset

2 as.LOBdataset

as.L0	DBdataset	Transforme Object.	ation o	of a s	ing	le l	long	gitu	dine	al a	lata	ı ma	ıtri	x i	nto	'I	LoE	3r/	1'1	Dai	ta
Index																					25
	selectComponents .					•			•				•	•	• •	•		•	•		24
	screening																				
	powerSet																				
	plotTimeSeries																				
	plotmodelSelectionI																				
	plotLDOScreening																				19
	plotGoudermanLong																				18
	plotGaudermanMod																				17
	modelGoudermanLo	-																			
	longDataExample .																				
	lobraModelSelection																				15
	LoBrA																				14
	LDOscreening-class																				14
	LDOmodelselection	-class																			13
	LDO-class																				13
	ldo																				12
	getPvalue																				12
	getOptimalSpline .																				11
	getGeneralizedGaud																				
	getColor																				
	GaudermanModelEv																				
	GaudermanLDO-cla																				
	createInformativeCo																				
	createExampleData createGoudermanDa																				
	createBGData																				5 5
	createBGComponen																				
	amanta DCC amman am	t a																			4

Description

Real signals and background noise originating from experimental settings or random events

Usage

```
as.LOBdataset(
  longData,
  name = "",
  id = "id",
  time = "time",
  type = "type",
  class = "class",
  bg = FALSE
)
```

components 3

Arguments

longData Matrix of longitudinal data containing all components

name of the dataset

id name to identify the experiment id column

time name to identify the time column type name to identify the type column class name to identify the class column

bg indicates whether the data table contains background data

Value

'LoBrA' data object

Examples

```
## Not run:

data(LoBraExample)
 name="Longitudinal Test Dataset"
 ldo<-as.LOBdataset(longDataExample, name, bg=TRUE)</pre>
```

components

'LoBrA' Data Object (LDO) for Example data set

Description

'LoBrA' example LDO created by the function 'createExampleData' and converted to an LDO by 'as.LOBdataset' function. It consist of a single matrix for all experiments, time points, types (background, experiment), class and the intensity values of all components created. The artificial data consist of 20 experiments and 100 components with 18 measurements (3 background, 15 sample). The 10 experiments are each associated to on of 2 groups (ONE and TWO). The components comprise 70 noise components and 30 components that randomly vary in their trajectories in one of three segments. Random noise is added to all intercepts, propagated and added to each time point for all samples and components separately.

Usage

components

Format

A vector of selected components from the longitudinal example data set.

Author(s)

Anne-Christin Hauschild hauschild@uni-marburg.de

createBGComponents

Simulate background noise peaks

Description

Simulating background noise signals originating from experimental settings or random events

Usage

```
createBGComponents(
  components,
  samples,
  labels,
  timepoints = 15,
  bg = 3,
  mean = 5,
  sd = 3,
  experimentSD = 2,
  randomnoise = 0.1,
  plotting = FALSE
)
```

Arguments

components number of background components to be created

samples number of experiments labels name of each experiment

 ${\tt timepoints} \qquad {\tt number\ of\ sample\ measurements}$

bg number of background measurements

mean walue of noise components

sd standard deviation value of noise for this component

experimentSD standard deviation value of each experiment for this component

randomnoise random variation changing at each time point

plotting Indicator whether the component will be plotted (TRUE) or not (FALSE)

Value

matrix of background components

createBGData 5

	+ -	DC	n ~	+ ~
crea	ıLE	:DU	IJα	La

Simulate background measurements

Description

Simulating background noise signals originating from experimental settings or random events

Usage

```
createBGData(samples = 10, bg = 3, mean = 0, sd = 1, randomnoise = 0.1)
```

Arguments

samples number of experiments

bg number of background measurements
mean mean value of noise for this component

sd standard deviation value of noise for this component

randomnoise random variation changing at each time point

Value

matrix of background measurements

createExampleData

Create example data set for 'LoBrA'

Description

Real signals and background noise originating from experimental settings or random events

Usage

```
createExampleData(
  components = c(70, 10, 10, 10),
  samples = 10,
  classes = 2,
  bg = 3,
  timepoints = rep(5, 3),
  myfile = NA
)
```

6 createGoudermanData

Arguments

components vector numbers of background and informative components to be created.

samples number of experiments per class

classes number of classes

bg number of background measurements

timepoints number of sample measurements for each spline

myfile filename of the pdf file created. Note: '.pdf' is added automatically.

Value

final matrix of example data.

Examples

createGoudermanData

Create the Gouderman Data Arrangement.

Description

Using the Gouderman methodology to create the Gouderman-Data Arrangement.

Usage

```
createGoudermanData(selectedLDO, breaks, center, timeperiod = NA, range = NA)
```

Arguments

selectedLDO Longitudinal Data Object, containing all selected metabolites to be used for the

final Gouderman model.

breaks break points for the spline model

center Time point that corresponds to the center time t0. The algorithm will test

whether there is a significant difference between the groups at this point.

timeperiod If the user defines the time period or segment, in the spline to be tested. Note, a

3 break point spline has 4 segments.

range If the user defines a range, the algorithm will test whether there is a significant

difference between the groups in this range.

Value

The function returns a 'GaudermanLDO' object. For more information @seealso 'GaudermanLDO'

Examples

```
## Not run:

data(LoBraExample)
  selectedLD0 <- selectComponents(ldo, components)
  breaks<- c(8, 12)
  center<- 12
  timeperiod <- 2;
  gaudermanLDOexample <- createGoudermanData(selectedLDO, breaks, center, timeperiod)</pre>
```

createInformativeComponents

Simulate informative peaks

Description

This function simulates signals correlated to different informative events.

Usage

```
createInformativeComponents(
  components,
  samples,
  labels,
  timepoints = c(5, 5, 5),
  bg = 3,
  mean = 5,
  sd = 3,
  segment = 1,
  slopeSD = 2,
  randomnoise = 0.5,
  plotting = FALSE
)
```

8 GaudermanLDO-class

Arguments

components number of background components to be created

samples number of experiments labels label of each experiment

timepoints number of sample measurements
bg number of background measurements

mean value of noise for the intercept of this components

sd standard deviation value of noise for the intercept of this component

segment indicating the segment, that will have an informative event (changing slope for

one class)

slopeSD standard deviation value for the generated slope of for this component (mean is

zero, therefore, the slope can be either negative or positive)

randomnoise random variation changing at each time point

plotting logical value, (default is FALSE), if TRUE the function will plot the created

time series.

Value

matrix of informative components

GaudermanLDO-class An S4 class to represent a 'Gouderman' LDO object, that was gener-

ated by the generalized gauderman algorithm.

Description

An S4 class to represent a 'Gouderman' LDO object, that was generated by the generalized gauderman algorithm.

Slots

name character Name of the new 'generalized-Gauderman' adjusted longitudinal data

dataFrames list List of 'generalized-Gauderman' modified data. One data.frame for each component.

peaknames character Vector of component names contained in this object.

k numeric Updated times for the breaks of the spline model.

times matrix Vector of updated time values.

newTimeVars character The names of the newly defined time variables of the generalized 'Gauderman' model.

ids character Vector of identifiers for the experiments

labels factor Vector of class labels for each experiment

GaudermanModelEvaluation-class

An S4 class to represent the result of the linear mixed effect modeling on a gauderman LDO.

Description

An S4 class to represent the result of the linear mixed effect modeling on a gauderman LDO.

Slots

name character Name of the new 'generalized-Gauderman' adjusted longitudinal model.

gaudermanLDO 'Generalized-Gauderman' adjusted longitudinal data object.

models list List of models generated for each component.

labels factor Vector of class labels for each experiment

pvalues matrix Matrix of p-values for the intercept as well as all slops of the spline model for each component.

correctedpvalues matrix Matrix of corrected p-values for the intercept as well as all slops of the spline model for each component.

modelparameter matrix Model parameter for each component.

getColor

Get colors for the plotting function.

Description

Get colors for the plotting function.

Usage

```
getColor(label, size)
```

Arguments

label class labels of the samples

size size of the color vector to be created

Value

col vector of colors created

```
{\tt getGeneralizedGaudermanDataFrame}
```

Create Peak Matrices for Generalized 'Gauderman' linear mixed effect regression (LMER) Model with parameterized Times

Description

Create Peak Matrices for Generalized 'Gauderman' linear mixed effect regression (LMER) Model with parameterized Times

Usage

```
getGeneralizedGaudermanDataFrame(
  peakmatrix,
  sampleIds,
  classes,
  center,
  timeperiod,
  gaudermanRange,
  k
)
```

Arguments

peakmatrix Peak matrix to be converted.

sampleIds Ids of samples in the matrix

classes Classes of samples

center Time point that corresponds to the center time t0. The algorithm will test whether there is a significant difference between the groups at this point.

timeperiod defines the time period or segment, in the spline to be tested. Note, a 3 break point spline has 4 segments.

gaudermanRange range to be tested for a significant difference between the groups.

k break points for the generalized 'Gauderman' spline model.

Value

Return the new peak matrix data frame for this peak.

getOptimalSpline 11

getOptimalSpline	Extract the optimal spline model parameters from the ModelSelection Object.

Description

The method calculates which spline model and parameters worked best with respect to the median of the specified quality measure. The median is calculated among all component models.

Usage

```
getOptimalSpline(
  lobraModelSelectionObject,
  qualityMeasure = "AIC",
  summeryfun = stats::median
)
```

Arguments

lobraModelSelectionObject

LDOmodelselection created by the 'lobraModelSelection' function. It stores all evaluated Spline models to chose from.

qualityMeasure Quality measure to be used to select the optimal spline.

summery fun Define the Summery function to be used. Default value

Define the Summery function to be used. Default value is set to stats::median. Other possible functions would be mean, for instance.

Value

The function returns a 'lobraModelSelectionObject' that contains the optimal model according to the specified quality measure. @seealso plot.modelSelectionEvaluation

```
## Not run:

data(LoBraExample)
selectedLDO <- selectComponents(ldo, components)
potentialBreaks=c(8, 12)
nknots=c(1, 2)
qualityMeasure=c("AIC", "BIC")
ldoSelect<- lobraModelSelection(selectedLDO, potentialBreaks, nknots, qualityMeasure)

optimalAIC<-getOptimalSpline(ldoSelect, qualityMeasure="AIC", summeryfun=stats::median)
message(optimalAIC@breaks);

optimalBIC<-getOptimalSpline(ldoSelect, qualityMeasure="BIC", summeryfun=base::mean)
hist(unlist(optimalBIC@quality));</pre>
```

12 Ido

getPvalue	Testing differences of groups with respect to a specific value and test.
geti value	results differences of groups with respect to a specific value and test.

Description

Testing differences of groups with respect to a specific value and test.

Usage

```
getPvalue(y, group, test)
```

Arguments

V	Values to be tested	

group corresponding groups whose difference we want to test

specific test to be used. Can be each of the following 'bf', 'levene' or 'bartlett'.

ldo 'LoBrA' Data Object (LDO) for Example data set

Description

'LoBrA' example LDO created by the function 'createExampleData' and converted to an LDO by 'as.LOBdataset' function. It consist of a single matrix for all experiments, time points, types (background, experiment), class and the intensity values of all components created. The artificial data consist of 20 experiments and 100 components with 18 measurements (3 background, 15 sample). The 10 experiments are each associated to on of 2 groups (ONE and TWO). The components comprise 70 noise components and 30 components that randomly vary in their trajectories in one of three segments. Random noise is added to all intercepts, propagated and added to each time point for all samples and components separately.

Usage

ldo

Format

A matrix representing 20 experiments. It contains values for 100 variables at 18 time points for each experiment. Object of class LDO.

Author(s)

Anne-Christin Hauschild hauschild@uni-marburg.de

LDO-class 13

LDO-class	An S4 class to represent a 'LoBrA' Data Object (LDO). It stores multiple time series data for muliple experiements and multiple Components. It allows repeated measurements of a component, irregular sampling, and unequal temporal spacing of the time points.

Description

An S4 class to represent a 'LoBrA' Data Object (LDO). It stores multiple time series data for muliple experiements and multiple Components. It allows repeated measurements of a component, irregular sampling, and unequal temporal spacing of the time points.

Slots

name character Name of the 'LDO' object

dataMatrices list List of matrices of component measurement. It contains a measurement for each time point and each experiment.

backgroundMatrices list List of matrices of background measurements. It contains a measurement for each time point and each experiment.

peaknames character Character vector of Component names

times numeric Vector of times for each time point in the data

ids character Vector of identifiers for the experiments

labels factor Vector of class labels for each experiment

LDOmodelselection-class

An S4 class to represent a model selection result based on an 'LDO'.

Description

An S4 class to represent a model selection result based on an 'LDO'.

Slots

1do LDO 'LDO' object the model selection is based on.

potentialBreaks numeric Vector of numeric values that were considered as potential break points in the model selection.

splinetype character Type of spline used.

qualityMeasure character Quality measures used during the model selection ('AIC', 'BIC' or 'LogLik')

modelList list List of all models tested.

quality list List of quality matrices, one matrix for each quality measure used. Each matrix contains the quality for each spline tested for each component.

breaks list For each tested spline, this list contains a vector of breaks.

14 LoBrA

LDOscreening-class

An S4 class to represent the screening of metabolites in an 'LDO'.

Description

An S4 class to represent the screening of metabolites in an 'LDO'.

Slots

1do LDO LDO object the screening is based on.

experimentIntercept list List of experiment intercepts.

experimentResiduals list List of experiment Residuals.

interceptPvalues matrix Matrix of experiment intercept p-values.

residualPvalues matrix Matrix of experiment Residual p-values.

selectedPeaks matrix Matrix of logical values. Each entry indicates whether a specific component is significant according to a specific test.

LoBrA

LoBrA: A package for modeling longitudinal breath data

Description

The LoBrA package provides important data objects and functions to analyze longitudinal metabolomic (breath) data.

Introduction

Novel metabolomic technologies paved the way for longitudinal analysis of exhaled air and online monitoring of fast progressing diseases. This package implements an automated analysis approach of longitudinal data from different omics technologies, such as ion mobility spectrometry of human exhaled air and demonstrates how including temporal signals increases the statistical power in biomarker identification. It can handel multiple irregular 4D time series data. More precisely, it can simultaniously handel the data of multiple experiements each observing multiple components. Therefore, it allows repeated measurements of a component, irregular sampling, and unequal temporal spacing of the time points.

LoBrA Analysis

A typical LoBrA analysis is will comprise the following steps

- 1. Background Screening: Using the function screening and selectComponents to select the Components that most likely do not originate from background noise.
- 2. Model Selection: First, a set of spline models based on different number of splits and split positions are generated by the function lobraModelSelection. Subsequently, these models are

lobraModelSelection 15

evaluated using different quality criteria, i.e. 'AIC', 'BIC' and 'LogLik'. Finally, the most appropriate model is selected.

3. Evaluation of the non-background components on the selected model, using the longitudinal 'Gouderman' linear mixed effect model in function modelGoudermanLongitudinal.

Author(s)

Maintainer: Anne-Christin Hauschild [Copyright holder]

Authors:

- · Sandrah P. Eckel
- · Jan Baumbach

lobraModelSelection

Evaluation of different spline variants.

Description

The model selection method evaluates which spline models achieve the best quality among all tested metabolites.

Usage

```
lobraModelSelection(
   selectedLDO,
   potentialBreaks = c(),
   nknots = c(0, 1, 2),
   splinetype = "linear",
   qualityMeasure = c("AIC", "BIC", "logLik")
)
```

Arguments

selectedLDO LDO containing all selected metabolites to be used for the model selection.

potentialBreaks

Vector of all possible knots to be used for the spline modeling.

nknots Vector of number of spline knots to be used. Therefore, 0 ~ no spline, 1 ~ spline

with one knot, 2 ~ spline with two knots, etc.

splinetype spline type default is 'linear'. (Currently only linear is supported.)

qualityMeasure Vector of quality measures to be used. Possible options are 'AIC', 'BIC', and

'logLik'.

Value

LDOmodelselection Object. For each quality measure the model list contains a list of models for each spline tested. Additionally, the output contains a matrix of qualities for each Spline Component pair. And finally there is a list of breaks for each spline tested.

16 longDataExample

Examples

```
## Not run:

data(LoBraExample)
potentialBreaks <- c(8,12)
selectedLDO <- selectComponents(ldo, components)
ldoSelect<- lobraModelSelection(selectedLDO, potentialBreaks, nknots=c( 1, 2))
length(ldoSelect@ldo@peaknames)</pre>
```

longDataExample

'LoBrA' Example Data Set

Description

'LoBrA' example data set created by the function 'createExampleData'. #' It consist of a single matrix for all experiments, time points, types (background, experiment), class and the intensity values of all components created. The artificial data consist of 20 experiments and 100 components with 18 measurements (3 background, 15 sample). The 10 experiments are each associated to on of 2 groups (ONE and TWO). The components comprise 70 noise components and 30 components that randomly vary in their trajectories in one of three segments. Random noise is added to all intercepts, propagated and added to each time point for all samples and components separately.

Usage

longDataExample

Format

A matrix representing 20 experiments. It contains values for 100 variables at 18 time points for each experiment.

id Experiment identifier

time Time Point of Measurement

type Type of Measurement (e.g. Background, or Sample measurement for each experiment)

class Class or Group id of the sample/ experiment

bgcomponent-x 70 random variables that represent the background noise of the experiments

components-x-x 30 components that randomly vary in their trajectories in one of three time periods, (1:4-8, 2:9-13, 3:14-18). ...

Author(s)

Anne-Christin Hauschild hauschild@uni-marburg.de

modelGoudermanLongitudinal

Fitting the Gouderman LME Model with using Gouderman-Data Arrangement.

Description

Uses the linear mixed effects modeling to build the final 'Gauderman' model. The 'Gauderman' modification enables the exact calculation of the significance of a specified section of the spline model.

Usage

```
modelGoudermanLongitudinal(mygaudermanLDO, correctionMethod = "bonferroni")
```

Arguments

```
\label{eq:manloomega} \mbox{mygaudermanLDO data object, created by the generalized 'Gauderman' algorithm (GGA).}
```

correctionMethod

```
correction for p-values. Possible methods: 'holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none'
```

Value

'GaudermanModelEvaluation' Results of the evaluation of the Fitted linear mixed effect models for the defined time periods.

Examples

```
data(LoBraExample)
selectedLD0 <- selectComponents(ldo, components)
gaudermanLD0example <- createGoudermanData(selectedLD0, breaks=c(8, 12), center=12, timeperiod=2)
evalResult<- modelGoudermanLongitudinal(gaudermanLD0example)
message(evalResult@correctedpvalues<0.005)</pre>
```

plotGaudermanModel

Plotting helper function to plot a single generalized gouderman Model

Description

Plotting helper function to plot a single generalized gouderman Model

Usage

```
plotGaudermanModel(
  data,
  labels,
  ul,
  tempmodel,
  colores,
  maincol,
  breaks,
  main,
  ylab,
  xlab
)
```

Arguments

```
data
                   data matrix used to fit the model
labels
                   class labels for all samples
ul
                   unique class labels
tempmodel
                   model to be plotted
                   predefined colors for the single samples
colores
maincol
                   predefined colors for the fitted spline
breaks
                   break points of the spline to be plotted
                   main title of the plot
main
ylab
                   y label of the plot
xlab
                   x label of the plot
```

 $\verb|plotGoudermanLongitudinalResults|$

Plotting the 'Gouderman' LME Model and Results.

Description

Plotting the 'Gouderman' LME Model and Results.

Usage

```
plotGoudermanLongitudinalResults(
   evaluationresult,
   main = "Mixed Effect Spline Model Evaluation",
   ylab = "Value",
   xlab = "Time",
   peaknames = NULL
)
```

plotLDOScreening 19

Arguments

evaluationresult

'GaudermanModelEvaluation' data object, created by the modelGouderman-

Longitudinal function.

main title of the plot
ylab y axis label
xlab x axis label

peaknames selection of peaks to be plotted

Value

No return value

```
wd <- tempdir()</pre>
data(LoBraExample)
selectedLDO <- selectComponents(ldo, components)</pre>
gaudermanLD0example <- createGoudermanData(selectedLD0, breaks=c(8, 12), center=12, timeperiod=2)</pre>
evalResult<- modelGoudermanLongitudinal(gaudermanLDOexample)</pre>
# Plot all peaks
filename<- file.path(wd, "finalModelEvaluation.pdf") ;</pre>
oldpar <- par("mfrow")</pre>
grDevices::pdf(filename, width=16, height=8);
  graphics::par(mfrow=c(1,1));
  plotGoudermanLongitudinalResults(evalResult);
par(mfrow = oldpar)
grDevices::dev.off();
#Plot a selection of Peaks
peaknames<- evalResult@gaudermanLDO@peaknames;</pre>
filename<- file.path(wd, "finalModelEvaluation-components.pdf") ;</pre>
oldpar <- par("mfrow")</pre>
grDevices::pdf(filename, width=20, height=8);
  graphics::par(mfrow=c(2,5));
  plotGoudermanLongitudinalResults(evalResult, main="", peaknames=peaknames);
par(mfrow = oldpar)
grDevices::dev.off();
```

20 plotLDOScreening

Description

For each peak two box plots are created. The first plot shows a boxplot of the Sample Intercept Comparison of the sample and the background, and the corresponding p-values. The second plot shows a boxplot of the Residual Comparison of the sample and the background, and the corresponding p-values.

Usage

```
plotLDOScreening(
  ldoscreen,
  plotAll = FALSE,
  correctionmethod = "levene",
  decs = 3,
  ask = FALSE,
  peaknames = rownames(ldoscreen@selectedPeaks)
)
```

Arguments

1doscreen LDO screening result

plotAll Select all components to be plotted. Default plots only the selected peaks using

the correction method.

correctionmethod

Version of correction method to be used to select the peaks. Valid values are

'bf', 'levene', and 'bartlett'.

decs decimal numbers of p-values to be plotted.

ask logical. Modifies the graphical parameter ask in par (If TRUE (and the R ses-

sion is interactive) the user is asked for input, before a new figure is drawn. As this applies to the device, it also affects output by packages grid and lattice. It

can be set even on non-screen devices but may have no effect there.)

peaknames Defining a list of peaks to be plotted. By default all peaks will be plotted.

Value

No return value

```
## Not run:

wd <- tempdir()
data(LoBraExample)
ldos<-screening(ldo, method= c('levene'), alpha =0.05, criteria=c(1,1))
filename<- file.path(wd, "screeningresults.pdf")
grDevices::pdf(filename, width=16, height=8)
plotLDOScreening(ldos)
grDevices::dev.off();</pre>
```

plotmodelSelectionEvaluation

Plotting results of Model Evaluation and Selection.

Description

Plotting the results of Model Evaluation and Selection. The plot shows a vertical boxplot for each spline tested starting with the best average fit according to the selected quality measure. The label of each spline can be found on the left, the median quality measure on the right. The x-axis denotes the selected quality measure.

Usage

```
plotmodelSelectionEvaluation(
   lobraModelSelectionObject,
   qualityMeasure,
   title = NULL
)
```

Arguments

lobraModelSelectionObject

Object of type LDOmodelselection that was created during the model evaluation. @seealso 'lobraModelSelection'

qualityMeasure List of quality measures to be visualized.

title Title of the plot.

Value

No return value

```
## Not run:

wd <- tempdir()
data(LoBraExample)
selectedLDO <- selectComponents(ldo, components)
ldoSelect<- lobraModelSelection(selectedLDO, potentialBreaks=c(8, 12), nknots=c(1, 2))
filename<- file.path(wd, "evaluateBestSplineAIC.pdf");
grDevices::pdf(filename, width=16, height=8);
   plotmodelSelectionEvaluation(ldoSelect, "AIC", "Best Spline Models");
grDevices::dev.off();
qualityMeasure=c("AIC", "BIC", "logLik")
filename<- file.path(wd, "evaluateBestSplineAllMeasures.pdf");</pre>
```

22 plotTimeSeries

```
grDevices::pdf(filename, width=16, height=8);
oldpar <- par("mfrow")
par(mfrow=c(3,1))
   plotmodelSelectionEvaluation(ldoSelect, qualityMeasure);
par(mfrow = oldpar)
grDevices::dev.off();</pre>
```

plotTimeSeries

Plotting function for a longitudinal data matrix (Internal Function)

Description

Plotting function for a longitudinal data matrix (Internal Function)

Usage

```
plotTimeSeries(
  myMatrix,
  main = "",
  labels = NA,
  ylab = "Expression",
  xlab = "Time Point",
  legend = "",
  col = 1:dim(myMatrix)[1]
)
```

Arguments

myMatrix longitudinal data matrix to be plotted
main Title of the plot
labels class labels of samples
ylab Label of y axis
xlab Label of x axis
legend of plot
col vector of colors for plot

Value

No return value

powerSet 23

powerSet

Creating the power set of a set.

Description

Creating the power set of a set.

Usage

```
powerSet(set)
```

Arguments

set

Set of numbers of potential spline break points.

Value

Returns power set of the given set.

screening

Screening of background or confounding components

Description

Background noise signals originating from experimental settings or random events can hugely influence the signal pattern of the breath. Background data enables the detailed evaluation and differentiation of the compounds originating primarily from the background or confounding factors as compared to those from the sample itself. The method assumes that all compounds of interest show a larger variation in the sample as compared to the background noise.

Usage

```
screening(
  ldo,
  method = c("bf", "levene", "bartlett"),
  alpha = 0.05,
  criteria = c(1, 1)
)
```

Arguments

ldo	Longitudinal Data Object
method	list of tests to perform, standard values: 'bf', 'levene' or 'bartlett'). 'bf' relates to "Brown-Forsythe" Levene-type procedure, 'levene' uses classical "Levene's" procedure and 'bartlett' applies Bartlett's test.
alpha	A numeric value to defining the cutoff to select peaks.
criteria	indicators which criteria to use for screening decision.

24 selectComponents

Value

Returns an object of type 'LDOscreening' containing the original 'ldo' object and the results of the screening. The variable 'selectedPeaks' contains a matrix including the results (TRUE = Significant, FALSE = not Significant) of the specified tests ('bf', 'levene', 'bartlett').

Examples

Not run:

```
data(LoBraExample)
method= c('bf', 'levene', 'bartlett')
alpha =0.05
criteria=c(1,1)
ldos<-screening(ldo, method, alpha, criteria)
components <- ldos@selectedPeaks[,"levene"]
components <- names(components)[components]
selectedLDO <- selectComponents(ldo, components)</pre>
```

selectComponents

Create a new 'LDO' Object that only contains the selected components.

Description

Create a new 'LDO' Object that only contains the selected components.

Usage

```
selectComponents(ldo, components, name = paste(ldo@name, " selected"))
```

Arguments

1do Longitudinal Data Object

components Component names to select for the new Ido object. Only elements from this list

that overlap with the peak names in the given ldo, are utilized.

name Name of newly created 'LDO' object.

Value

new Ido object only containing the selected components.

Index

* Breathomics	LDO, <i>15</i>
components, 3	LDO (LDO-class), 13
1do, 12	1do, 12
longDataExample, 16	LDO-class, 13
* Confounders	LDOmodelselection, 15
components, 3	LDOmodelselection
1do, 12	(LDOmodelselection-class), 13
longDataExample, 16	LDOmodelselection-class, 13
* Expression	LDOscreening (LDOscreening-class), 14
components, 3	LDOscreening-class, 14
1do, 12	LoBrA, 14
longDataExample, 16	lobraModelSelection, 14, 15
* Longitudinal-Data	longDataExample, 16
components, 3	
1do, 12	modelGoudermanLongitudinal, 15, 17
longDataExample, 16	ulatCandamanMadal 17
* Metabolomics	plotGaudermanModel, 17
components, 3	plotGoudermanLongitudinalResults, 18
1do, 12	plotLDOScreening, 19
longDataExample, 16	plotmodelSelectionEvaluation, 21
	plotTimeSeries, 22
as.LOBdataset, 2	powerSet, 23
	screening, <i>14</i> , 23
components, 3	selectComponents, 14, 24
createBGComponents, 4	Series componentes, 17, 21
createBGData, 5	
createExampleData, 5	
createGoudermanData, 6	
createInformativeComponents,7	
GaudermanLDO (GaudermanLDO-class), 8	
GaudermanLDO-class, 8	
GaudermanModelEvaluation	
(GaudermanModelEvaluation-class),	
9	
GaudermanModelEvaluation-class, 9	
getColor, 9	
getGeneralizedGaudermanDataFrame, 10	
getOptimalSpline, 11	
getPyalue 12	