

CYFROWA TECHNIKA FONICZNA

Sprawozdanie z ćwiczenia laboratoryjnego nr 1: Wykonywanie i analiza pomiarów akustycznych

Prowadzący: dr inż. Marcin Lewandowski

Wykonujący: Tomasz Skiba

Grupa: MZ02IP1

Zadanie 1 - Percepcja słuchowa

Test 1 - Phonak

Tone test

Estimates only (not a clinical audiogram!)

🤈 Right ear	10dB	10dB	10dB	10dB	10dB	10dB
C Left ear	10dB	10dB	5dB	5dB	15dB	15dB
	500Hz	1kHz	2kHz	4kHz	6kHz	8kHz

Wynik testu wskazuje na to, że mój zmysł słuchu jest w dobrej kondycji. Widoczna jest asymetria pomiędzy prawym i lewym uchem przy częstotliwościach powyżej 2kHz. Asymetria ta, może wynikać z budowy mojego ucha. Mój kanał słuchowy w uchu lewym jest szerszy niż w prawym. Może mieć to wpływ na lepsze wyniki w średnim paśmie. Natomiast to, że w wyższych pasmach wyniki z lewego ucha są gorsze, może wiązać się z tym, że w przeszłości bardzo często używałem słuchawek na jedno ucho - lewe, co może przyspieszać naturalne procesy wytracania górnego pasma z wiekiem.

Należy pamiętać, że test jest wyłącznie przybliżeniem.

Test 2 Test Blamey Saunders hears był niedostępny czasowo dla Polski, ale dostępność jego ostatnio powróciła.

Your Results

Tomasz Skiba - 07/01/2022

39/50	37/50	94/100	0/50	
Vowels correct	Words correct	Consonants correct	Words entirely missed	
Nasality		Vowel place		
Difficulty hearing nasality makes words alike. Vowel height	like like "mat" and "bat" sound	Difficulty hearing vowel place makes words like "hoard; hard; and heed" sound alike. Vowel length		
Difficulty hearing vowel height makes v sound alike. Manner	vords like "court; curt; and kit"	Difficulty hearing vowel place makes words like "hoard; hard; and heed" sound alike. Affrication		
Difficulty hearing manner makes consor Voicing		Difficulty hearing vowel place mak sound alike. Sibilance	es words like "hoard; hard; and heed"	
Difficulty hearing voicing makes words like "tough" and "duff" sound alike. Contour		Difficulty hearing vowel place makes words like "hoard; hard; and heed" sound alike. Consonant place		
Difficulty hearing contour makes words alike.	like "bout" and "bait" sound	Difficulty hearing vowel place makes words like "hoard; hard; and heed" sound alike.		

Uważam, że pomimo dobrej znajomości języka angielskiego, test ten jest niemiarodajny dla osób nie posługujących się tym językiem natywnie. Duża część nietrafionych słów mogła być spowodowana nieudaną próbą zapisu "fonetycznego" nieznanych mi słów używając złych zapisów zgłosek.

Test 3
Test ogólny

Wynik widocznie różni się od pierwszego testu. Ciężko jest mi określić powód, dla którego mój słuch w tym teście wykazuje lepsze wyniki dla wyższych częstotliwości. Na pewno istotnym czynnikiem, dla ogólnych wyników jest to w jaki sposób przebiegała kalibracja głośności. Punkt odniesienia do poziomu głośności tarcia rąk określa referencje do jakiej głośności został przystosowany test i jest względnie mniej zależny od parametrów sprzętu niż w teście 1.

Test dla niskich częstotliwości

Test dla wysokich częstotliwości

Zadanie 2 - Pomiary podstawowych parametrów dźwięku

Test 1

Do wykonania testu użyłem smartfona Xiaomi Redmi Note 8T na maksymalnych ustawieniach głośności, oraz utworu o stosunkowo ciągłej dynamice Deftones - Rocket Skates

Pomiar 1 - jedna powierzchnia odbijająca

Dźwięk jest nieco zniekształcony, słyszalne są zakłócenia w postaci syczenia w górnym paśmie. Dźwięk wydaje się płaski, pozbawiony niższego pasma.

Pomiar 2 - dwie powierzchnie odbijające

Dźwięk posiada zakłócenia zaobserwowane w pierwszym pomiarze, ale wyraźnie zmienione jest pasmo - im bliżej podłogi znajdowało się źródło dźwięku, tym więcej niższych częstotliwości (zasługa kąta odbicia względem podłogi). Przy pewnych odległościach można było doprowadzić do zbliżonego rezultatu jak w przypadku braku powierzchni odbijających.

Pomiar 3 - trzy powierzchnie odbijające

Dźwięk w wyższych częstotliwościach jest znacznie mniej słyszalny. Dominują niższe tony

Pomiary wykonywałem pod różnymi kątami padania. Największe zmiany następowały przy kątach zbliżonych do 90'.

Każdy obiekt posiada specyficzny dla kształtu i materiału współczynnik odbicia częstotliwość rezonansu, która zależy od kształtu oraz materiału z jakiego wykonany jest obiekt.

Przez płaską powierzchnię ściany, następuje dużo odbić, co było zaobserwowane przy wykonywaniu pomiarów. W przypadku jednej powierzchni odbijającej interferencja zachodzi praktycznie wyłącznie pomiędzy źródłem a dźwiękiem odbitym od ściany, nie występuje interferencja pomiędzy odbiciami, co zmienia się w przypadku kolejnych pomiarów.

Test 2Pomiary zostały wykonane przy pomocy aplikacji dbMeter oraz zwizualizowane przy pomocy skryptu, załączonego jako pomoc do sprawozdania.

Pomiar 1 - jedna powierzchnia odbijająca

Pomiar 2 - trzy powierzchnie odbijające

Zestawienie wyników pomiarów

Pomimo tego, że organoleptycznie wydawało się, że przy trzech powierzchniach odbijających wzbogacone zostało znacznie niższe pasmo, wyniki pomiarów wykazują, że wzmocnienie nastąpiło w również w zakresie wyższych częstotliwości. Zauważalne jest również zwiększenie poziomu głośności, zarówno organoleptycznie jak i na wynikach pomiaru.

Test 3

To testu przygotowana została butelka o parametrach:

Parametr	Wartość
Objętość butelki	750 ml
Pole powierzchni otworu	254,47 mm^2
Długość szyjki	85 mm

Przy pomocy kalkulatora częstotliwości rezonansowej, wykonuje obliczenia:

Obliczona częstotliwość rezonansu wynosi około 110Hz dla pustej butelki.

Wyniki pomiarów aplikacją Spectroid (ustawioną zgodnie z zaleceniami z instrukcji) i obliczeń:

Objętość butelki [ml]	Częstotliwość teoretyczna [Hz]	Częstotliwość zmierzona [Hz]
750	109.81	107
650	117.96	114
550	128.24	125
450	141.77	139

Odchylenie wyników zmierzonych od teoretycznych wynika prawdopodobnie z niskiej precyzji pomiarów butelki, która nakłada na wszystkie wyniki stały błąd. Objętość zmieniana była przez wypełnianie butelki wodą i pomiar jej wagi z tolerancją ok. 1g ~ 1ml

Na wynik również może mieć wpływ nierówne pasmo mikrofonu.