Homework Three

Kyle Kazemini

September 23, 2020

1.5.2

Problem

Find the sup and inf of the following sets. Tell whether each set has a maximum or a minimum.

- (a)(-2,8].
- $(b) \left\{ \frac{n+2}{n^2+1} \right\}.$
- (c) $\{n/m : n, m \in \mathbb{Z}, n^2 < 5m^2\}.$

Solution

- (a) Let A be the set (-2, 8]. Then clearly the inf A = -2 and $\sup A = 8$. Since $-2 \notin A$, A has no minimum element. By the same logic, since $8 \in A$, 8 is the maximum element for the set A.
- (b) Let B be the set $\left\{\frac{n+2}{n^2+1}\right\}$. Because the domain of B is N and the first element of N is 1 by Peano's first Axiom,

$$\sup B = \frac{1+2}{1^2+1} = \frac{3}{2} \cdot \frac{3}{2} \in B$$

so $\frac{3}{2}$ is the maximum element for the set B because B grows inversely with n.

We can multiply by the reciprocal of the term with the largest degree in the denominator of B to get

$$B = \left\{ \frac{\frac{n}{n^2} + \frac{2}{n^2}}{\frac{n^2}{n^2} + \frac{1}{n^2}} \right\}$$

This simplifies to:

$$\left\{ \frac{\frac{1}{n} + \frac{2}{n^2}}{1 + \frac{1}{n^2}} \right\}$$

1

From Example 1.5.3:

$$\left\{\frac{\frac{1}{n} + \frac{2}{n^2}}{1 + \frac{1}{n^2}}\right\} = \left\{\frac{0+0}{1+0}\right\} = 0$$

Thus, $\inf(B) = 0$. The set B has no minimum element because $0 \notin B$.

(c) Let C be the set $\{n/m: n, m \in \mathbb{Z}, n^2 < 5m^2\}$. Given some $n, m \in C, m \neq 0$, then we have $\frac{n}{m}$.

Square the fraction to get:

$$\left(\frac{n}{m}\right)^2 = \frac{n^2}{m^2}$$

Now make a substitution using the inequality that defines C. That is, substitute $5m^2$ for n to get:

$$\frac{n^2}{m^2} < \frac{5m^2}{m^2}$$

Simplify to get:

$$\frac{5\,\text{m}^2}{\text{m}^2} = 5$$

This gives:

$$\frac{n^2}{m^2} < 5$$

$$\Rightarrow \frac{n}{m} < \sqrt{5}$$

Using a similar argument, we can substitute $\frac{n^2}{5}$ for m to get:

$$\frac{n^2}{m^2} > \frac{\frac{n^2}{n^2}}{5} = \frac{n^2}{1} * \frac{5}{n^2}$$

After cancelling n^2 , we have

$$\frac{n^2}{m^2} > 5$$

$$\Rightarrow \frac{n}{m} > \sqrt{5}$$

Finally, from these two substitutions we have $\sup(C) = \sqrt{5}$ and $\inf(C) = \sqrt{5}$

1.5.3

Problem

Prove that if $\sup A < \infty$, then for each $n \in \mathbb{N}$ there is an element $a_n \in A$ such that $\sup(A) - 1/n < a_n \le \sup(A)$.

Solution

The statement can be proven by induction. Let P_n be the statement

"if
$$\sup(A) < \infty, \exists \ a_n \in A \text{ such that } \sup(A) - 1/n < a_n \le \sup(A)$$
"

for some arbitrary $n \in \mathbb{N}$. P_1 is the base case which states that

$$\exists a_1 \in A \text{ such that } \sup(A) - 1 < a_1 \leq \sup(A)$$

By definition, $\sup(A) \ge a_1$. Then because $\sup(A) < \infty$, $\sup(A) > \sup(A) > 1$. Thus, $\sup(A) - 1$ must be less than a_1 and a_2 is true.

Assume P_k is true for some $k \in \mathbb{N}$. That is,

$$\exists a_k \in A \text{ such that } \sup(A) - 1/k < a_k \leq \sup(A)$$

is true. For the inductive step: P_{k+1} states that

$$\exists a_{k+1} \in A \text{ such that } \sup(A) - 1/(k+1) < a_{k+1} \le \sup(A).$$

By definition, $\sup(A) \ge a_{k+1}$. Because $\sup(A) < \infty$,

$$\sup(A) - 1/(k+1) < \sup(A) - 1/k$$

Since we know that $\sup(A) - 1/k < a_k$, we can conclude that $\sup(A) - 1/(k+1) < a_{k+1}$. Thus, the statement has been proven by induction.

1.5.6

Problem

Prove part (d) of Theorem 1.5.7: $\sup(A - B) = \sup(A) - \inf(B)$.

Solution

From Theorem 1.5.7 part (c), which is proven in the textbook, $\sup A + B = \sup A + \sup B$. Then we can define -B to be the set $\{-b: b \in B\}$ From Theorem 1.5.7 part (b), which is proven in the textbook, $\sup (-A) = -\inf A$

Thus,

$$\sup(A + (-B)) = \sup A + \sup(-B)$$
 by part (c)
 $\sup A + \sup(-B) = \sup A + (-\inf B)$ by part (b)
 $\sup A + \sup(-B) = \sup A - \inf B \blacksquare$

1.5.9

Problem

Find $\sup_I f$ and $\inf_I f$ for the following functions f and sets I. Which of these is actually the maximum of the minimum of the function f on I?

$$(a)f(x) = x^2, I = [-1, 1].$$

$$(b)f(x) = \frac{x+1}{x-1}, I = (1,2).$$

$$(c) f(x) = 2x - x^2, I = [0, 1).$$

Solution

(a) By definition, we have $\sup_I f = \sup \{x^2 \colon x \in I\}$. Because $\sup_I f = 1$, $\sup_I f = f(1) = 1^2 = 1$. This is the maximum of f on I because $1 \in I$.

Similarly, by definition, we have $\inf_I f = \inf \{x^2 \colon x \in I\}$. Because $\inf_I I = -1$, $\inf_I f = f(-1) = (-1)^2 = 1$. Although $\inf_I I = -1$, \inf_I

(b) By definition, $\sup_I f = \sup\left\{\frac{x+1}{x-1} \colon x \in I\right\}$ Because $\sup_I f = 2$, $\sup_I f = f(2) = \frac{3}{1} = 3$. This is not the maximum of f on I because $3 \notin I$.

Similarly, $\inf_I f = \inf \left\{ \frac{x+1}{x-1} \colon x \in I \right\}$. Because $\inf_I f = 1$, $\inf_I f = f(1)$. f is undefined at x = 1, so $\inf_I f$ does not exist. \blacksquare

(c) By definition, $\sup_I f = \sup \{2x - x^2 \colon x \in I\}$. Because $\sup_I I = 1$, $\sup_I f = f(1) = 1$. This is not the maximum of f on I because $1 \notin I$.

By definition, $\inf_I f = \inf \{2x - x^2 : x \in I\}$. Because $\inf_I f = 0$, $\inf_I f = f(0) = 0$. This is the minimum of f on I because $0 \in I$.

2.1.1

Problem

Show that

- (a) if |x-5| < 1, then x is a number greater than 4 and less than 6;
- (b) if |x-3| < 1/2 and |y-3| < 1/2, then |x-y| < 1;
- (c) if |x-a| < 1/2 and |y-b| < 1/2, then |x+y-(a+b)| < 1.

Solution

- (a) From Theorem 2.1.1 which is proven in the textbook, |x-5| < 1 iff 5-1 < x < 5+1. Thus, |x-5| < 1 iff 4 < x < 6
- (b) Using the Triangle Inequality, which is proven in the textbook, we can combine the two inequalities to get

$$||x-3|-|y-3|| \le |(x-3)-(y-3)|$$

Since (x-3) and (y-3) are both real numbers, we can use Theorem 2.1.1 with $\epsilon=1$ to get

$$|(x-3)-(y-3)| < 1 \quad \text{which gives}$$

$$y-3-1 < x-3 < y-3+1 \quad \text{ which simplifies to}$$

$$y-1 < x < y+1$$

By Theorem 2.1.1, |x - y| < 1

(c) Using the Triangle Inequality, which is proven in the textbook, we can combine the two inequalities to get

$$||x-a|-|y-b|| \le |(x-a)-(y-b)|$$

Since (x-a) and (y-b) are both real numbers, we can use Theorem 2.1.1 with $\epsilon=1$ to get

$$|(x-a)-(y-b)|<1 \qquad \text{which gives}$$

$$y-b-1< x-a< y-b+1 \qquad \text{which simplifies to}$$

$$(y-b)+a-1< x< (y-b)+a+1$$

By Theorem 2.1.1, this gives |x+y-(a+b)| < 1

2.1.3

Problem

Put each of the following sequences in the form $a_1, a_2, a_3, \ldots, a_n, \ldots$ This requires that you compute the first 3 terms and find an expression for the nth term.

- (a) The sequence of positive odd integers.
- (b) The sequence defined inductively by $a_1 = 1$ and $a_{n+1} = -\frac{a_n}{2}$.
- (c) The sequence defined inductively by $a_1 = 1$ and $a_{n+1} = \frac{a_n}{n+1}$.

Solution

(a) $a_1 = 1, a_2 = 3, a_3 = 5$. $a_n = 2k + 1$ for some $k \in \mathbb{N}$.

This gives the sequence: 1, 3, 5, ..., 2k + 1, ...

(b)
$$a_1 = 1, a_2 = -\frac{1}{2}, a_3 = \frac{1}{4}.$$
 $a_n = -\frac{a_{n-1}}{2}.$

(b) $a_1=1, a_2=-\frac{1}{2}, a_3=\frac{1}{4}.$ $a_n=-\frac{a_{n-1}}{2}.$ This gives the sequence: $1,-\frac{1}{2},\frac{1}{4},...,-\frac{a_{n-1}}{2},...$

(c)
$$a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{8}.$$
 $a_n = \frac{a_{n-1}}{2}.$

(c) $a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{8}.$ $a_n = \frac{a_{n-1}}{n}.$ This gives the sequence: $1, \frac{1}{2}, \frac{1}{8}, ..., \frac{a_{n-1}}{n}, ...$

2.1.5

Problem

 $\lim \frac{2n-1}{3n+1}$.

Solution

Educated guess: $\lim \frac{2n-1}{3n+1} = \frac{2}{3}$.

Justification: Let $\epsilon > 0$ and let $N = \frac{5}{9\epsilon} - \frac{1}{3}$. If n > N, then $n > \frac{5}{9\epsilon} - \frac{1}{3}$ and $\frac{5}{9n+3} < \epsilon$. By definition of convergence, we have $\left|\frac{2n-1}{3n+1}-\frac{2}{3}\right|<\epsilon$. Multiplying by a common denominator gives

$$|\frac{6n-3}{9n+3} - \frac{6n+2}{9n+3}| = |\frac{-5}{9n+3}| = \frac{5}{9n+3} < \epsilon$$

6

By definition, the limit converges to $\frac{2}{3}$

2.2.3

Problem

$$\lim \frac{1}{\sqrt{n}}$$
.

Solution

Educated guess: $\lim \frac{1}{\sqrt{n}} = 0$.

Justification: Let $\epsilon > 0$ and let $N = \frac{1}{\epsilon^2}$ By definition of convergence, we have $|\frac{1}{\sqrt{n}} - 0| < \epsilon$. Plugging in N, we have $|\frac{1}{\epsilon}| < \epsilon$, which gives $\frac{1}{\epsilon} < \epsilon$. This holds for all n > N, so the proof is done by the definition of convergence.

2.2.5

Problem

$$\lim \sqrt{n^2 + n} - n$$

Solution

Educated guess: $\lim \sqrt{n^2 + n} - n = \frac{1}{2}$.

Justification: Multiplying by $\frac{\sqrt{n^2+n}+n}{\sqrt{n^2+n}+n}$ gives $\frac{n}{\sqrt{n^2+n}+n}$. Let $\epsilon>0$ and let $N=\frac{\epsilon+\sqrt{\epsilon^2+\epsilon}}{2\epsilon+2\sqrt{\epsilon^2+\epsilon}}$. By definition of convergence, we have

$$|\frac{n}{n+\sqrt{n^2+n}}-\frac{1}{2}|<\epsilon$$

Multiplying by a common denominator gives:

$$\left|\frac{2n}{2n+2\sqrt{n^2+n}} - \frac{n+\sqrt{n^2+n}}{2n+2\sqrt{n^2+n}}\right| < \epsilon$$

This simplifies to

$$\left|\frac{n+\sqrt{n^2+n}}{2n+2\sqrt{n^2+n}}\right| < \epsilon$$

Using the N value stated earlier, this gives $N < \epsilon \ \forall \ n > N$. Thus the proof is done by the definition of convergence.

7

2.2.9

Problem

Does the sequence $\{\cos(n\pi/3)\}$ have a limit? Justify your answer.

Solution

The sequence $\{\cos(n\pi/3)\}\$ does not have a limit.

Let A be the sequence $\{\cos(n\pi/3)\}$. Then let $A' = \{\cos(2k\pi)\}$ where k is defined such that 3(2k) = n (n is 3 times some even number). Finally, let $A'' = \{\cos(2k+1)\pi\}$ where k is defined such that 3(2k+1) = n (n is 3 times some odd number).

For A to converge to some number c, given $\epsilon > 0$, there must be $N \in \mathbb{R}$ such that $|A - c| < \epsilon \, \forall \, n > N$. Using the fact that $A' = 1 \, \forall \, k$ and the fact that $A'' = -1 \, \forall \, (k+1)$, we have a contradiction by Theorem 2.1.6, which is proven in the textbook. A, A', and A'' are equivalent formulations of the same sequence, but they converge to different values. \blacksquare

2.2.10

Problem

Give an example of a sequence $\{a_n\}$ which does not converge but for which the sequence $\{|a_n|\}$ does converge.

Solution

Based on the work showed in the solution of 2.2.9 and the fact that the absolute value of the codomain of \cos is [0,1], the sequence in 2.2.9 satisfies this condition.