FPGA Targeted Design: PRBS-15 Block and Pattern Detector

This project involves the design of a Pseudo-Random Binary Sequence (PRBS-15) generator and a Pattern Detector using Verilog.

Table of Contents

- Project Description
- Deliverables
- Design Overview
 - o PRBS-15 Block
 - Pattern Detector
 - Top Module
 - Serial to Parallel Converter
- Testbenches
- Bitstream Generation

Project Description

This project provides an FPGA-targeted design in Verilog, containing:

- A PRBS-15 block that outputs a custom pseudo-random sequence.
- A pattern detector block that identifies when a specific pattern repeats correctly n times.
- A serial-to-parallel module to handle resource limitations on the FPGA.

Expected Wave Form in Success Case

Expected Wave Form in failed Case

Deliverables

1. Custom PRBS-15 Block:

- o Takes a 4-byte pattern as input.
- Outputs these 4 bytes after each other n times.

• Implements a custom PRBS equation with XOR of bit 13 and bit 14.

2. Pattern Detector:

- FSM-based.
- Detects if the pattern is correctly repeated n times.
- Raises a flag once the pattern is found.

3. Serial to Parallel Converter:

 Handles limited FPGA resources by receiving 8-bit inputs serially and converting them into a 32bit parallel output.

4. Top Module:

• Integrates the PRBS-15, Pattern Detector, and Serial-to-Parallel blocks.

5. Testbenches:

• Provided for each block and the top-level module to validate the functionality.

6. Constraint File FPGA

- o constraints that your board places on designs using it
- o specific interfaces wired up to specific pins.

7. Bitstream:

The overall system is synthesized and implemented on the target FPGA using Xilinx Vivado.

Design Overview

PRBS-15 Block

This module generates a pseudo-random binary sequence using a custom PRBS-15 equation. It accepts a 32-bit input pattern and repeats it n times before applying a shift-left operation with XORing of bit 13 and bit 14 to generate the PRBS sequence.

Ports:

- clk: Clock signal.
- rst_n: Active-low reset signal.
- pattern_in: 32-bit input pattern.
- **n_repeats**: 8-bit input specifying the number of times to repeat the pattern.
- prbs_out: 8-bit output PRBS sequence.

Internal Registers:

- pattern_counter: Count the patterns to reach n_repeats.
- byte_counter: Count the 4 Bytes for every pattern.

Pattern Detector

This block uses a finite state machine (FSM) to detect if a given pattern is repeated n times in the input data stream. The FSM transitions between IDLE, MATCHING, and FOUND states to ensure that the pattern is correctly detected.

Ports:

- clk: Clock signal.
- rst_n: Active-low reset signal.
- data_in: 8-bit input data stream from the PRBS block.
- pattern: 32-bit input pattern to detect.
- **n_repeats**: 8-bit input specifying the number of times the pattern should repeat.
- pattern_found: Output flag that is asserted when the pattern is detected.

Serial to Parallel Converter

To account for FPGA resource constraints, this module allows serial data input of 8 bits, which are then converted into a 32-bit parallel output. The serial-to-parallel converter accumulates data over multiple cycles before outputting the full 32-bit data.

Ports:

- clk: Clock signal.
- **rst_n**: Active-low reset signal.
- data_serial: 8-bit serial input.
- data_parallel: 8-bit parallel output.
- **finish**: Signal asserted once the data has been completely received and converted to parallel.

Top Module

The top module integrates the PRBS-15 block, Pattern Detector, and Serial to Parallel Converter. It connects the prbs_out from the PRBS block to the data_in of the Pattern Detector, ensuring that the detector checks the PRBS sequence for repeated patterns.

Ports:

- clk: Clock signal.
- rst_n: Active-low reset signal.
- pattern_in: 32-bit input pattern.
- **n_repeats**: 8-bit input specifying the number of repeats.
- pattern_found: Output flag indicating if the pattern was detected.

Testbenches

Testbenches are provided for:

- 1. PRBS-15 Block: Validates the PRBS output for different input patterns and repeat counts.
- 2. **Pattern Detector**: Tests whether the detector correctly identifies patterns.
- 3. **Serial to Parallel Converter**: Ensures the serial data is correctly converted to parallel.
- 4. **Top Module**: Verifies the integration of the PRBS-15, Pattern Detector, and Serial-to-Parallel blocks.

1. Top_FPGA_TB

The Top_FPGA_TB testbench verifies the functionality of the top FPGA design, which integrates the PRBS-15 block, pattern detector, and the serial-to-parallel converter.

Test Cases:

• Reset Test (Test 1):

- The system is reset twice to check if the reset mechanism works as intended.
- A random 8-bit pattern is applied and repeated 3 times to check the PRBS generation and detection.

• Pattern Detection Test with Different Repeats (Test 2):

- The test checks the detection of a pattern repeated a different number of times.
- The pattern is changed and repeated 5 times to validate the flexibility of the pattern detector.

Extended Repeat Test Without Reset (Test 3):

- In this test, the system is run without resetting between tests.
- The repeat count is set to 7, and the pattern is adjusted dynamically to ensure that the pattern detector works without requiring resets between patterns.

The output includes:

- Pattern (patern): Displays the current 32-bit pattern.
- Finish Signal (finsh): Indicates when the serial-to-parallel conversion is complete.
- Pattern Counter (counter_patern): Tracks how many patterns have been processed.
- Repeats (rep): Indicates how many times the pattern has been repeated.

Top_FPGA_TB

)89)e1)fa)ee)89)e1)fa)ee)
)08

2. Top TB

The Top_TB testbench validates the top module integration, focusing on the PRBS-15 block and the pattern detector blocks, without the serial-to-parallel converter.

Test Cases:

• Initial Reset Test:

• The system is reset, and a random 32-bit pattern is generated and repeated 3 times. This test ensures proper initialization and basic functionality.

• Second Pattern Generation (Test 1):

• A second random 32-bit pattern is applied and repeated 2 times. This test checks if the pattern detector can handle multiple patterns consecutively.

• Repeat Pattern with Reset (Test 2):

• After resetting the system, a new 32-bit random pattern is applied and repeated 3 times. The test verifies that resetting clears the system and prepares it for the next pattern.

Dynamic Pattern Test (Test 3):

• The test applies a random pattern that is incremented by 1 to ensure the PRBS-15 generator and pattern detector respond correctly to changing input patterns.

• Final Random Pattern Test (Test 4):

• A final random pattern is generated to confirm the system's functionality after multiple changes in pattern and repeats.

The outputs include:

- **Pattern Found** (pattern_found1, pattern_found2): Indicates whether the pattern was successfully detected by the first and second pattern detectors.
- **PRBS Output** (prbs_out1, prbs_out2): Outputs the PRBS sequences generated by the two PRBS-15 blocks.

Top_TB

Bitstream Generation

For FPGA deployment, the bitstream generation includes the following considerations:

- A serial-to-parallel converter is introduced to handle 8-bit serial inputs in environments with limited resources.
- The overall system is synthesized and implemented on the target FPGA using Xilinx Vivado.

Block diagram

Synthesis

Timing Analysis Results

				Pulse Width	
Worst Negative Slack (WNS):	1.221 ns	Worst Hold Slack (WHS):	0.144 ns	Worst Pulse Width Slack (WPWS):	2.000 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	148	Total Number of Endpoints:	148	Total Number of Endpoints:	66

Power analysis

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power:	0.191 W
Design Power Budget:	Not Specified
Power Budget Margin:	N/A
Junction Temperature:	27.2°C
Thermal Margin:	57.8°C (4.9 W)
Effective 9JA:	11.5°C/W
Power supplied to off-chip devices:	0 W
Confidence level:	Low
<u>Launch Power Constraint Advisor</u> to invalid switching activity	find and fix

Placement

Utilization

Resource	Utilization	Available	Utilization %
LUT	32	17600	0.18
FF	60	35200	0.17
10	18	100	18.00
MMCM	1	2	50.00

