ASCHAM SCHOOL

MATHEMATICS EXTENSION 2

TRIAL EXAMINATION

2003

Time: 3 hours + 5 minutes reading time

Instructions:

Attempt all questions

All questions are of equal value

All necessary working should be shown for every question.

Full marks may not be awarded for careless or badly arranged work

A Table of Standard Integrals is provided

Approved calculators may be used

Each question should be answered in a separate booklet

Question 1

a)
$$(2-3i)(4+i) = p+iq$$
 where $p,q \in R$. Find p and q .

b) (i) Express
$$z = -\sqrt{3} + i$$
 in modulus-argument form. [2]

(ii) Hence show that
$$z^7 + 64z = 0$$
 [2]

c) Sketch the following subsets of the Argand diagram, showing important features and intercepts with the axes.

(i)
$$\{z: 1 < |z| \le 3 \text{ and } 0 < \arg z \le \frac{\pi}{2}\}$$

(ii)
$$\{z:|z+1|+|z-1|=3\}$$

(iii)
$$\{z : \arg(z-2) - \arg(z+2) = \frac{\pi}{3}\}$$
 [2]

d) Find the Cartesian form of the equation of the locus of the point z if $Re\left[\frac{z-4}{z}\right] = 0$ [3]

Question 2 Please take a new booklet

a) Find
$$\int \frac{e^{2x}}{e^x + 1} dx$$
 [2]

b) Evaluate
$$\int \tan^3 x \, dx$$
 [2]

c) Evaluate
$$\int_0^{\pi} e^x \sin x \, dx$$
 [3]

d) (i) Show that
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{x(\pi - 2x)} = \frac{2}{\pi} \ln 2$$
 [3]

(ii) Using the substitution u = a + b - x, show that $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$ [2]

(iii) Evaluate
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi - 2x)} dx$$
 [3]

Question 3 Please take a new booklet

a) A chocolate has a circular base of radius 1cm. If every section perpendicular to this base is an equilateral triangle, find the volume of chocolate needed to make a box of 40 such chocolates. [6]

b)

The arch $y = \sin x$, $0 \le x \le \pi$, is revolved around the line y = c to generate the solid shown.

(i) Show that the volume generated is given by $\pi(\pi c^2 - 4c + \frac{\pi}{2})$ [6]

(ii) Find the value of c which minimises the volume. [3]

Question 4 Please take a new booklet

- a) A ball of mass m is thrown vertically upwards under gravity, the air resistance to the motion being $\frac{mgv^2}{a^2}$ where the speed is v, a is a constant and g is the acceleration due to gravity.
 - (i) Show that during the upward motion of the ball $v \frac{dv}{dx} = \frac{-g}{a^2} (a^2 + v^2)$ where x is the upward displacement. [2]
 - (ii) Show that the greatest height reached is $\frac{a^2}{2g} \ln \left(1 + \frac{u^2}{a^2} \right)$ where u is the speed of projection. [5]

- b) A curve is defined by the parametric equations $x = \cos^3 \theta$, $y = \sin^3 \theta$ for $0 < \theta < \frac{\pi}{4}$.
 - (i) Show that the equation to the normal to the curve at the point $P(\cos^3 \phi, \sin^3 \phi)$ is $x \cos \phi y \sin \phi = \cos 2\phi$ [4]
 - (ii) The normal at P cuts the x-axis at A and the y-axis at B. Show $AB = 2cot2\phi$ [4]

Question 5 Please take a new booklet

- a) If $ax^3 + bx^2 + d = 0$ has a double root, show that $27a^2d + 4b^3 = 0$ [3]
- b) (i) Prove that $P(x) = \frac{1}{4}x^4 \frac{1}{3}x^3 2x^2 + 4x + c$ has no real zeros if $c > 9\frac{1}{3}$
 - (ii) Explain why the largest zero of P(x) is greater than 2 if c = -2. Find an approximation for the largest zero of P(x) using one application of Newton's method. [3]
- c) (i) P is any point inside a circle center O. M is the midpoint of chords AB through P. Find the locus of M. Explain your answer. [3]
 - (ii) Q is any point outside a circle center C. N is the midpoint of chords DE through Q. State the locus of N. [2]

Continued on next page

Question 6 Please take a new booklet

- a) (i) Find the five fifth roots of unity. [2]
 - (ii) If $\omega = cis \frac{2\pi}{5}$, show that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$ [3]
 - (iii) Show that $z_1 = \omega + \omega^4$ and $z_2 = \omega^2 + \omega^3$ are roots of the equation $z^2 + z 1 = 0$ [3]
- b) (i) By using the expansions of cos(x-y) and cos(x+y) show that $sin x sin y = \frac{1}{2}(cos P cos Q)$ where P = (x-y) and Q = (x+y) [3]
 - (ii) Hence prove that $\sin x + \sin 3x + \sin 5x + \dots + \sin(2n-1)x = \frac{\sin^2 nx}{\sin x}$

Question 7 Please take a new booklet

a) The graph of $y = x^3 + 3x^2 - 4$ is sketched below

- (i) Sketch the curves $y = |x^3 + 3x^2 4|$ and $y = \ln |x^3 + 3x^2 4|$ on separate axes. [3]
- (ii) Hence or otherwise determine the value of m, where m is a constant, such that the equation $2 \ln |x+2| + \ln |x-1| = m$ [4]

b) AB is a diameter of a circle whose centre is O and C is a point on the circumference such that $\angle AOC$ is acute. OC is produced to meet the tangent at A in D. Let $\angle CBD = \alpha$ and $\angle ABC = \beta$. Prove

(i)
$$\tan(\alpha + \beta) = \frac{1}{2} \tan 2\beta$$
 [3]

(ii)
$$\tan \alpha = \tan^3 \beta$$
 [3]

(iii) Calculate the value of
$$\alpha$$
 when AD = AB [2]

Question 8 Please take a new booklet

- a) (i) Show that the condition for the line y = mx + c to be tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $c^2 = a^2m^2 + b^2$ [3]
 - (iii) Hence or otherwise prove that the pair of tangents from the point (3, 4) to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ are at right angles to each other. [4]
- b) Let $I_{2n} = \int_{-1}^{1} (1 x^2)^n dx$ where $n \ge 0$

(i) Use the substitution
$$x = \sin \theta$$
 to show that $I_{2n} = \frac{2n}{2n+1} I_{2n-2}$ [3]

(ii) Show that
$$I_6 = \frac{32}{35}$$
 [2]

(iii) Deduce that
$$I_{2n} = \frac{2^{2n+1}(n!)^2}{(2n+1)!}$$
 [3]

End of Examination