

Operación del Mercado Eléctrico

Importancia en la precisión de la nominación

- Independientemente del consumo, la energía nominada en el MDA se compra a precio del MDA.
- Los desbalances se liquidan en el MTR. Si en una hora se consumió más de lo nominado, esta energía adicional se compra automáticamente a precio del MTR. En caso contrario, esta energía se vende a precio del MTR.
- Tener desviaciones entre nominación y consumo implicaría asumir el riesgo de pérdidas económicas causadas por la diferencia de precios entre mercados.
- Existen horas del día donde existe una mayor volatilidad (por lo general, de las 19 a las 24 hrs), por lo que existe un mayor riesgo a pérdidas si se tienen desviaciones entre el consumo y la nominación.

Conjunto de datos

- El conjunto de datos está formado por:
 - 9 variables numéricas
 - 1 variable de fecha
 - 1 target


```
class SelectorModelos(BaseEstimator):
    def __init__(self,model):
           A Custom BaseEstimator
        self.model=model
        self.estimator = self.model
    def fit(self, X, y=None, **kwargs):
        self.estimator.fit(X, y)
        return self
    def predict(self, X, y=None):
        return self.estimator.predict(X)
    def predict_proba(self, X):
        return self.estimator.predict_proba(X)
    def score(self, X, y):
        return self.estimator.score(X, y)
```



```
model_list=[Ridge(),Lasso(),ElasticNet(),
           RandomForestRegressor(),ExtraTreesRegressor(),
           XGBRegressor()]
params=[{'selector_model_alpha':np.logspace(-2,4,100)},
       {'selector_model_alpha':np.logspace(-2,4,100)},
        {'selector_model_alpha':np.logspace(-2,4,100),
        'selector_model_l1_ratio': list(np.linspace(0.01,0.99,25))},
        {'selector model n estimators': np.arange(50,1050,100),
         'selector_model_max_depth': list(range(1,7)),
         'selector__model__random_state':[16]},
        {'selector model n estimators': np.arange(50,1050,100),
        'selector model max_depth': list(range(1,7)),
         'selector__model__random_state':[16]},
        {'selector_model_n_estimators': np.arange(50,1050,100),
         'selector model max_depth': list(range(1,7))}
```



```
res=[]
for k,mdl in enumerate(model_list):
    pipe_tst=Pipeline(steps=[
        ('preprocessor', StandardScaler()),
        ('selector', SelectorModelos(mdl))
    gs=GridSearchCV(pipe_tst,params[k])
    gs.fit(X_train,y_train)
    res.append([gs.best_estimator_,
                gs.best_params_,
                gs.best_score_,
                gs.score(X test,y test)])
```


Resultados

Prueba: Entrenamiento con 6 meses de datos

01/07/2022	31/12/2022	15/01/2023
Datos		
Entrenamiento	Prueba	Validación

Modelo	R ² Entrenamiento	R ² Prueba
(StandardScaler(), SelectorModelos(model=Ridge(alp	0.429034	0.502714
(StandardScaler(), SelectorModelos(model=Lasso(alp	0.434199	0.507067
(StandardScaler(), SelectorModelos(model=ElasticNe	0.429853	0.502119
(Standard Scaler (), Selector Modelos (model=Random For	-0.535183	0.447369
(StandardScaler(), SelectorModelos(model=ExtraTree	-0.131433	0.543862
(Standard Scaler (), Selector Modelos (model=XGBRegres	-0.366488	0.546859

Datos de Validación		
Mejor Modelo	Lasso	
R ²	0.27	
MAPE	13.72 %	

Resultados

Prueba: Entrenamiento con 12 meses de datos

01/01/2022	31/12/2022	···· 15/01/2023
Datos		
Entrenamiento	Prueba	Validación

Modelo	R ² Entrenamiento	R ² Prueba
(StandardScaler(), SelectorModelos(model=Ridge(alp	0.505590	0.590292
(StandardScaler(), SelectorModelos(model=Lasso(alp	0.502551	0.612079
(StandardScaler(), SelectorModelos(model=ElasticNe	0.505596	0.583046
(StandardScaler(), SelectorModelos(model=RandomFor	0.321696	0.419766
(Standard Scaler (), Selector Modelos (model = Extra Tree	0.365138	0.273747
(StandardScaler(), SelectorModelos(model=XGBRegres	0.449884	0.306916

Datos de Validación	
Mejor Modelo	Lasso
R ²	0.25
MAPE	14.06 %

Resultados

Prueba: Entrenamiento con 18 meses de datos

Modelo	R ² Entrenamiento	R ² Prueba
(StandardScaler(), SelectorModelos(model=Ridge(alp	0.467684	0.884323
(StandardScaler(), SelectorModelos(model=Lasso(alp	0.467495	0.885452
(StandardScaler(), SelectorModelos(model=ElasticNe	0.468531	0.883554
(StandardScaler(), SelectorModelos(model=RandomFor	0.029043	0.789817
(StandardScaler(), SelectorModelos(model=ExtraTree	0.344083	0.820310
(StandardScaler(), SelectorModelos(model=XGBRegres	0.099191	0.826105

Datos de Validación	
Mejor Modelo	Lasso
R ²	0.61
MAPE	10.72 %

Gracias!

