Exercise Walkthrough: Borel σ -Algebra Generators

Justin Lanfermann

25. June 2025

Overview: The Goal and the Strategy

Welcome! This exercise asks us to prove that the **Borel** σ -algebra on \mathbb{R}^n , which we'll denote as \mathcal{B}^n , can be generated by two different collections of sets:

- 1. $E_1 := \{A \subseteq \mathbb{R}^n : A \text{ is open}\}, \text{ the collection of all open sets.}$
- 2. $E_2 := \{[a,b) : a,b \in \mathbb{Q}^n, a < b\}$, the collection of all half-open intervals with rational endpoints.

In the language of the script, we need to show that $\sigma(E_1) = \sigma(E_2)$.

Our Strategy: To prove that two sets (in our case, two σ -algebras) are equal, the standard method is to show mutual inclusion. That is, we will prove:

- Part 1: $\sigma(E_1) \subseteq \sigma(E_2)$
- Part 2: $\sigma(E_2) \subseteq \sigma(E_1)$

To do this, we'll use a key property of generated σ -algebras from **Lemma 1.7**[1]: $\sigma(E)$ is the *smallest* σ -algebra containing the generating set E. This means if we can show that the generating set E_i is a subset of the σ -algebra $\sigma(E_j)$, it automatically follows that $\sigma(E_i) \subseteq \sigma(E_j)$. So, our proof boils down to showing:

- Part 1: $E_1 \subseteq \sigma(E_2)$ (i.e., every open set can be constructed from half-open rational intervals).
- Part 2: $E_2 \subseteq \sigma(E_1)$ (i.e., every half-open rational interval can be constructed from open sets).

Let's tackle each part.

Part 1: Showing $\sigma(E_1) \subseteq \sigma(E_2)$

The Goal: We need to show that any open set $A \in E_1$ is also an element of $\sigma(E_2)$.

The Reasoning: The definition of a σ -algebra [2] tells us it is closed under *countable* unions. The key idea here is to represent any open set A as a *countable union* of sets from our generator E_2 .

Why is this possible? Because the set of rational numbers \mathbb{Q} is dense in the real numbers \mathbb{R} . This property extends to \mathbb{Q}^n being dense in \mathbb{R}^n [3]. This means that for any point in \mathbb{R}^n , we can find a point in \mathbb{Q}^n that is arbitrarily close. We can leverage this to "fill" any open set with a countable number of our rational intervals.

The Proof Steps:

- 1. Take an arbitrary open set. Let $A \subseteq \mathbb{R}^n$ be any open set, so $A \in E_1$.
- 2. Use the definition of an open set. For any point $x \in A$, by definition of an open set, there exists an open ball $B_{\epsilon}(x)$ with radius $\epsilon > 0$ such that $x \in B_{\epsilon}(x) \subseteq A$.
- 3. Find a rational interval inside the ball. Because \mathbb{Q}^n is dense in \mathbb{R}^n , we can find a half-open interval $I_x = [a, b)$ with rational endpoints $a, b \in \mathbb{Q}^n$ such that $x \in I_x \subseteq B_{\epsilon}(x)$. Since $B_{\epsilon}(x) \subseteq A$, we have $x \in I_x \subseteq A$.

Justification: We can always find such an interval. For instance, we can find rational coordinates $a_i < x_i$ and $b_i > x_i$ for each dimension i, and make them close enough to x_i so that the resulting box [a, b) lies entirely within the ball $B_{\epsilon}(x)$.

4. Construct the open set as a countable union. Let \mathcal{C} be the collection of all possible half-open intervals with rational endpoints: $\mathcal{C} = \{[a,b) : a,b \in \mathbb{Q}^n, a < b\}$. This collection \mathcal{C} is countable [4] because it's indexed by pairs of elements from the countable set \mathbb{Q}^n .

Now, for our open set A, we can write it as the union of all the rational intervals from C that are entirely contained within A:

$$A = \bigcup_{\{I \in \mathcal{C} \mid I \subseteq A\}} I$$

Justification: The inclusion $\bigcup \subseteq A$ is true by definition. For the other direction $(A \subseteq \bigcup)$, we showed in step 3 that for any $x \in A$, there is at least one such interval I_x in our collection that contains x. Therefore, every point in A is included in the union.

5. Conclusion for Part 1. We have just shown that any open set A can be written as a countable union of sets of the form [a,b) where $a,b \in \mathbb{Q}^n$. Since each of these intervals is in our generating set E_2 , and $\sigma(E_2)$ is closed under countable unions (by **Definition 1.5**), it must be that $A \in \sigma(E_2)$.

Since we have shown that any arbitrary set in E_1 is also in $\sigma(E_2)$, we have $E_1 \subseteq \sigma(E_2)$. By the property of the generated σ -algebra being the smallest one containing its generator, we conclude:

$$\sigma(E_1) \subset \sigma(E_2)$$

Part 2: Showing $\sigma(E_2) \subseteq \sigma(E_1)$

The Goal: We need to show that any half-open rational interval $[a, b) \in E_2$ is also an element of $\sigma(E_1)$.

The Reasoning: This part is more direct. We need to construct the set [a, b) using operations on open sets. The trick is to represent the "closed" part of the interval boundary (the '[' at a) using a countable intersection of open intervals that "shrink" towards it.

The Proof Steps:

1. Take an arbitrary rational interval. Let [a, b) be any set in E_2 , where $a, b \in \mathbb{Q}^n$ and a < b.

2

2. Construct it from open sets. Consider the following representation:

$$[a,b) = \bigcap_{k=1}^{\infty} \left(a - \frac{1}{k}, b \right)$$

where $\mathbf{1} = (1, 1, \dots, 1) \in \mathbb{R}^n$ is the vector of all ones, and the inequalities and operations are component-wise.

- 3. Analyze the construction.
 - For any integer $k \ge 1$, the set $O_k := \left(a \frac{1}{k}, b\right)$ is an open rectangle (or hyperrectangle). Every open rectangle is an open set in \mathbb{R}^n . Therefore, $O_k \in E_1$ for all k.
 - Our construction expresses [a,b) as a countable intersection of these open sets O_k .
 - Since $\sigma(E_1)$ is a σ -algebra, it is closed under countable intersections (this follows from being closed under complements and countable unions, see **Corollary 1.9**).

Justification of the set equality:

- (\subseteq): Let $x \in [a, b)$. This means $a_i \leq x_i < b_i$ for all components i. For any $k \geq 1$, we have $a_i 1/k < a_i$, so it's clear that $a_i 1/k < x_i < b_i$. Thus, $x \in (a 1/k, b)$ for all k, which means $x \in \bigcap_{k=1}^{\infty} O_k$.
- (\supseteq): Let $x \in \bigcap_{k=1}^{\infty} O_k$. This means that for every $k \ge 1$, we have $a_i 1/k < x_i < b_i$ for all i. The condition $x_i < b_i$ is immediate. The other condition, $a_i 1/k < x_i$, holds for all k. If we take the limit as $k \to \infty$, we get $a_i \le x_i$. Combining these gives $a \le x < b$, so $x \in [a, b)$.
- 4. Conclusion for Part 2. We have successfully written [a, b) as a countable intersection of open sets. Since each of these open sets is in $\sigma(E_1)$ (as they are in E_1 itself), their countable intersection must also be in $\sigma(E_1)$.

Therefore, $E_2 \subseteq \sigma(E_1)$, which implies:

$$\sigma(E_2) \subset \sigma(E_1)$$

Final Conclusion and Summary

We have successfully shown both $\sigma(E_1) \subseteq \sigma(E_2)$ and $\sigma(E_2) \subseteq \sigma(E_1)$. This allows us to conclude that the two σ -algebras are indeed identical:

$$\mathcal{B}^n = \sigma(E_1) = \sigma(E_2)$$

Key Takeaways:

- The proof hinges on the standard strategy of proving mutual set inclusion $(A = B \iff A \subseteq B \land B \subseteq A)$.
- Part 1 (open sets from rational intervals): The crucial trick was using the density of \mathbb{Q}^n in \mathbb{R}^n to build any open set from a countable union of our generator sets.
- Part 2 (rational intervals from open sets): The key was to use a countable intersection of expanding open intervals to construct the "closed" end of our half-open interval.

This result is powerful. It means that to prove something holds for all Borel sets, we often only need to prove it for a much simpler class of sets (like half-open rational intervals) and then use extension theorems.

Check Your Understanding

The solution remarks that the collection of **closed sets**, $E_5 := \{A \subseteq \mathbb{R}^n : A \text{ is closed}\}$, also generates \mathcal{B}^n . Can you sketch a quick argument for why $\sigma(E_1) = \sigma(E_5)$? Hint: What is the relationship between open and closed sets? How are σ -algebras defined with respect to that operation?

Further Reading

A natural follow-up question is: why did we use intervals with rational endpoints? Could we use real endpoints? The answer is yes, but using rational endpoints gives us a countable generating set, which is often mathematically convenient. The resulting σ -algebra is the same.

In-depth Explanations

- 1. Generator of a σ -algebra (Lemma 1.7): For any collection of subsets E of a sample space Ω , the σ -algebra generated by E, denoted $\sigma(E)$, is defined as the intersection of all possible σ -algebras on Ω that contain E. This makes it the *smallest* σ -algebra that contains every set in E. This "smallest" property is the key to our proof strategy.
- 2. σ -algebra (Definition 1.5): A collection of subsets \mathcal{A} of a sample space Ω is a σ -algebra if it satisfies three properties:
 - (i) It contains the empty set: $\emptyset \in \mathcal{A}$. (This implies $\Omega \in \mathcal{A}$ too).
 - (ii) It is closed under complementation: If $A \in \mathcal{A}$, then its complement $A^c = \Omega \setminus A$ is also in \mathcal{A} .
 - (iii) It is closed under countable unions: If $A_1, A_2, ...$ is a countable sequence of sets in \mathcal{A} , then their union $\bigcup_{i=1}^{\infty} A_i$ is also in \mathcal{A} .

These properties ensure we can perform all the standard operations of probability theory on the sets within the σ -algebra.

- 3. Density of \mathbb{Q}^n in \mathbb{R}^n : A set Q is dense in a set R if every point in R is either a point in Q or a "limit point" of Q. In simpler terms, for any point $x \in \mathbb{R}^n$ and any distance $\epsilon > 0$, you can always find a point $q \in \mathbb{Q}^n$ such that the distance between x and q is less than ϵ . This is why we can "approximate" any location in real space with a rational point, allowing us to fill open sets with rational building blocks.
- 4. Countable Sets: A set is countable if its elements can be put into a one-to-one correspondence with the natural numbers $\{1,2,3,\ldots\}$. The set of rational numbers \mathbb{Q} is countable. The Cartesian product of a finite number of countable sets is also countable, which means \mathbb{Q}^n is countable. The set \mathcal{C} of rational intervals is indexed by pairs of elements from \mathbb{Q}^n , making it countable as well. The real numbers \mathbb{R} , however, are uncountable.