Circuits logiques permettants d'additionner deux nombres binaires

Introduction

Nous savons tous maintenant additionner deux nombres binaires. Sur papier le calcul est plutôt simple.

Dans cette présentation, nous allons essayer de comprendre comment cela se passe à l'intérieur d'un ordinateur.

- -Quels outils ont permis de créer ces circuits capables d'additionner les nombres binaires ?
- -Comment fonctionnent ces circuits ?

Les Outils de réflexion

Les outils de Reflexion

La table de vérité:

Avant de faire de grosses additions sur plusieurs bits, on a définit ce que l'on appelle une table de vérité.

C'est une liste des différents résultats qu'un calcul peut donner en fonction de son opérateur :

Calcul Décimal	Résultat Décimal	Calcul binaire	Résultat binaire
0+0	0	0000 + 0000	0000
0+1	1	0000+0001	0001
1+0	1	0001+0000	0001
1+1	2	0001+0001	0010

Les portes logiques :

Afin de réaliser nos additions sans erreurs, nous avons également définit des portes logiques. lci nous allons en utiliser 3 :

- -ET (noté ∧)
- -OU (noté V)
- -XOR (noté ⊕)

Α	В	AAB	AVB	A⊕B
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Shématisation des circuits logiques lors d'une addition de deux nombres binaires

Schéma d'un demi-additionneur:

Schéma d'un additionneur complet:

Schéma d'un additionneur à propagation de retenue (Avec des poivrons)

Schéma d'un Additionneur parallèle à retenue anticipée :

Conclusion