Midterm Notes

Trig angles

Function	$\frac{\pi}{4}(45)$	$\frac{\pi}{3}(60)$	$\frac{\pi}{6}(30)$
$\sin \theta$	$\frac{2}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\cos \theta$	$\frac{2}{\sqrt{2}}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\tan \theta$	1	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$

Work

$$W = \int f(x) dx \quad OR \quad W = \int \rho \cdot d \cdot A dy$$

Integration by parts

$$\int f(x)g'(x) dx = \int f(x)g(x) - \int g(x)f'(x) dx$$

Partial Fraction Decomposition

Given some rational function

$$\frac{x+1}{(x+1)(x+3)} = \frac{A}{x+1} + \frac{B}{x+3} \implies x+1 = A(x+3) + B(x+1)$$

Solve for A and B using a system of equations then integrate. Note if we have a repeat term like $(x + 1)^2$ then;

$$\frac{x+1}{(x+1)^2(x+3)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+3}$$

Then solve as normal

Volumes by slices

$$V = \int_{x_1}^{x_2} \pi r^2(x) \, dx \quad \text{OR} \quad V = \int_{x_1}^{x^2} \pi \left(r_1^2 - r_2^2\right) \, dx$$

Volumes by shells

$$V = \int_{x_1}^{x_2} 2\pi x f(x) \, dx$$

Note: be careful about the integration bounds and radius, for example, a slice with r_1 of y = 3 and r_2 of $\sec(x) + 1$ rotated about y = 1 would be $A = \pi ((3-1)^2 - (\sec(x) + 1 - 1)^2)$.

Trig sub

- Expression Substitution $\sqrt{a^2 x^2} \qquad x = a \sin \theta$ $\sqrt{a^2 + x^2} \qquad x = a \tan \theta$ $\sqrt{x^2 a^2} \qquad x = a \sec \theta$
- 1. Draw a triangle
- 2. Define the edge lengths using pythagorean theorem
- 3. Define trig functions for the triangle
- 4. Sovle for *x* in terms of a trig function and *dx*. Ex;

$$x = \sin \theta(x)$$

$$dx = \cos\theta \ d\theta$$

Arc length

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Derived from pathagorean theorem for the infinite sum of secant lines i.e. $\sqrt{\Delta x^2 + \Delta y^2} = \sqrt{\Delta x^2 + (f'(x)\Delta x)^2}$ factor out Δx to obtain the equation

Some other useful antiderivates

$$\int \frac{1}{\sqrt{1 - x^2}} = \arcsin x + C$$

$$\int -\frac{1}{\sqrt{1 - x^2}} = \arccos x + C$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$

Surface area

$$S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Hydrostatic force

Pressure is given by

$$P = \int_{\text{deepest point}}^{\text{shallow point}} \rho \cdot area \cdot depth$$

where area is width as a function of y and height is dy and ρ is the density.

Problems that were implied to be on the exam

Work

A tank is full of water. Find the work required to pump the water out of the spout. In Exercises 25 and 26 use the fact that water weighs 62.5 lb/ft^3 .

Draw a circle and use the slice method. The function of the circle is $x^2 + y^2 = 9$ and the volume of each slice is $V = \pi x^2 \Delta y = \pi (9 - y^2) \Delta y$. Then the distance is (4 - y)

$$W = \pi \int_{-3}^{3} (9 - y^2)(4 - y) \, dy$$

Note that its in meters so we can just use 1000 kg/m^3 for density of water don't forget to convert mass to weight if using this approach, lb are a unit of weight.

Integration by parts

$$\int e^{2x} \cos(3x) \, dx$$

$$\int e^{2x} \cos(3x) \, dx = \frac{e^{2x} \cos(3x)}{2} - \int -\frac{e^{2x} 3 \sin(3x)}{2} \, dx$$

$$= \frac{e^{2x} \cos(3x)}{2} + \frac{3}{2} \int e^{2x} \sin(3x) \, dx$$

$$= \frac{e^{2x} \cos(3x)}{2} + \frac{3}{2} \left[\frac{e^{2x} \sin(3x)}{2} - \frac{3}{2} \int e^{2x} \cos(3x) \, dx \right]$$

$$= \frac{e^{2x} \cos(3x)}{2} + \frac{3e^{2x} \sin(3x)}{4} - \frac{9}{4} \int e^{2x} \cos(3x) \, dx$$

Then

$$\frac{13}{4} \int e^{2x} \cos(3x) \, dx = \frac{e^{2x} \cos(3x)}{2} + \frac{3e^{2x} \sin(3x)}{4}$$
$$= \boxed{\frac{2e^{2x} \cos(3x)}{13} + \frac{3e^{2x} \sin(3x)}{13}}$$

Trig sub

$$\int \frac{x^2}{\sqrt{9 - 25x^2}} dx = \int \left(\frac{9\sin^2\theta}{25}\right) \left(\frac{\sec\theta}{3}\right) d\theta$$

$$= \frac{9}{75} \int \sin^2\theta \sec\theta d\theta$$

$$= \frac{9}{75} \int (1 - \cos^2\theta) \sec\theta d\theta$$

$$= \frac{9}{75} \int \sec\theta - \cos^2\theta \cdot \frac{1}{\cos\theta} d\theta$$

$$= \frac{9}{75} \int \sec\theta - \cos\theta d\theta$$