KD EDUCATION ACADEMY (9582701166

Time: 3 Hour 20 Minute

STD 11 Science Chemistry kd 90+ ch-7 redox reaction

Total Marks: 200

*	Choose The Right Ar	nswer From The Giver	Options.[1 Marks Each]	[81]	
1.	The oxidation number	r of carbon in CH ₂ Cl ₂ is				
	(A) 0	(B) 2	(C) 3	(D) 5		
2.	he ratio of oxygen ato	om having -2 and -1 or	xidation numbers in ${ m S_2O_8^2}$	_ _ is .		
	(A) 1	(B) 2	(C) 3	(D) 4		
3.			g as well reducing agent?	, ,		
•	(A) H ₂	3	(B) I ₂			
	(C) H ₂ O ₂		(D) All of these			
4.	Oxidation number of 0	Cl in CaOCl ₂ is				
	(A) -1 and $+1$		— (B) +2			
	(C) -2		(D) None of these			
5.	The oxidation state of	C in diamond is:				
	(A) 0	(B) +1 KULDEEP VERMA SIR	M. 9582701166 G(C) N ¹ G(G) EMV	(D) +2		
6.	The oxidation number	r of sulphur in S ₈ , S ₂ F ₂	and H ₂ S respectively are_			
	(A) $0, +1$ and -2	One Day	$_{\text{MAT}}^{\text{to 8th}}(\hat{\mathbf{B}})_{c}^{\text{Subjects}} + 1 \text{ and } -2$			
	(C) 0, +1 and +2		1111(D)122, +1 and -2			
7.	Identify the correct st	atements with reference	sics, chemistry, (By KD Sir) e to the given reaction:			
	$\mathrm{P_4} + 3\mathrm{OH}^- +$	$3H_2O_{\text{BSE}} \rightarrow PH_3 + 3H_3$	${ m PO}_{2}^{\perp}$ NDA, CUET			
	(A) Phosphorus is undergoing reduction only அள்ளில் வருக்கள் (டிம்)					
	(B) Phosphorus is undergoing oxidation only. Gupta Hardware Bangali Colony, Sant Nagar, Burari, Delhi-110084					
	(C) Phosphorus is undergoing oxidation as well as reduction.					
	(D) Hydrogen is under	rgoing neither oxidatior	nor reduction.			
8.	In the balanced chem	•				
	$\mathrm{IO_3} + \mathrm{aI}^- + \mathrm{bH}^+ -$	$ ightarrow \mathrm{cH_2O} + \mathrm{dI_2}$				
	a, b, c, d respectively					
	(A) 5, 6, 3, 3	(B) 5, 3, 6, 3	(C) 3, 5, 3, 6	(D) 5, 6, 5, 5		
9.	$H_2SO_5 + H_2O \rightarrow H_2SO_5$ Oxidation number of s	$O_4 + H_2O_2$ sulphur in H_2SO_5 in the	above reaction is:			
	(A) 6	(B) 4	(C) 5	(D) 2		
10.	Which of the following central atom?	g arrangements represe	ent increasing oxidation nu	umber of the		
	(A) $\operatorname{CrO}_2^-, \operatorname{ClO}_3^-, \operatorname{Cro}_3^-$	$\mathrm{O_4^{2-},MnO_4^{-}}$	(B) $\mathrm{ClO}_3^-, \mathrm{CrO}_4^{2-}, \mathrm{Min}_3$	$\mathrm{nO_4^-, CrO_2^-}$		
	(C) $\operatorname{CrO}_2^-, \operatorname{ClO}_3^-, \operatorname{Mr}$		(D) $CrO_4^{2-}, MnO_4^{-}, O_4^{-}$			
11.	2	xidation state of nitroge	T , T ,	۵ / ا		
•	(A) True	addit state of fill oge	(B) False			
	, ,		(-, - : : : : : : : : : : : : : : : : : :			

	(C) Ambiguous		(D) None of these	
12.	It is found that V forn number of V in this c	ns a double salt isomorphompound is	nous with Mohr's salt. The	oxidation
((A) 3	(B) +2	(C) +4	(D) -4
13.	From the given speci reducing agent?	es such as Li, K, Ca and N	la, which of the following	is the strongest
((A) Na	(B) Li	(C) Ca	(D) K
14.	In FeCr ₂ O ₄ the oxidation (A) $+2$ and $+3$ (C) $+2$ and $+6$	tion numbers of Fe and C	r are: (B) 0 and +2 (D) +3 and +6	
15.	In the reaction, 2Na ₂	$S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2$	2Nal, l ₂ acts as:	
	(A) Oxidising agent.(C) Oxidising as well a	as reducing agent.	(B) Reducing agent.(D) None of the above	
16.	from the following. (A) It is oxidation half (B) Chromium being (C) ${\rm Cr_2O_7^{2-}}$ is a good	oxidized. d reducing agent. VERMA SIR	f-reaction such as ${ m Cr}_2{ m O}$	$^{2-}_{7}$ \longrightarrow Cr^{3+}
	(D) Chromium being	reduced. K.D. EDUG	ATION ACADEMY	
17.18.	in acidic medium will (A) 0.6 moles. (C) 7.5 moles.	MATHS, PHYS BIOLOGY, HISTO IIIT- JEE, OWING SUBSTANCES IS a good CLASS-12th BOARD CSE CLASS-1	111 (B) 10.14 moles. (CD) 0.2 moles. (D) 0.2 moles.	alate completely
19.		mber of V in $Rb_4Na[HV_1]$		
20.	If a reaction is carrie	d out in acidic medium th	nen which is used to bala	nce the equation?
((A) H ⁺ ions.	(B) OH ⁻ ions.	(C) H ⁻ ions.	(D) O^{2-} ions.
21.	Oxidation number of (A) -2	S in $S_2O_3^{2-}$ is: (B) +2	(C) +6	(D) 0
22.	Oxidation state of Fe	in Sodium Nitroprusside	is:	
((A) +3	(B) +4	(C) +2	(D) +1
23.	$xKMnO_4 + NH_3 - + MnO_3 + KOH + + MnO_3 + KOH + + + + + + + + + + + + + + + + + + +$	•	(B) x = 8, y = 6 (D) x = 8, y = 3	
24.	Consider the followin	ng chemical reaction	· · · · · · · · · · · · ·	
		$\mathrm{Gap} \longrightarrow \mathrm{MnO}_2(\mathrm{s}) + \mathrm{I}_2(\mathrm{s})$		

	Which of the following	g reactions is an oxidatio	n half-reaction?	
	(A) ${\rm MnO_4^-(aq)}$	$ ightarrow \mathrm{MnO_2(s)}$	 (B) I⁻(aq) → I₂(s). (C) Both (a) and (b). 	
	(D) None of the above	2.		
25.	The oxidation numbe	r of Phosphorus in Mg ₂ P ₂	O ₇ is:	
	(A) +3	(B) 2	(C) +5	(D) -3
26.	the nitrogen appears	10 mol of electrons to fo in the new compound, w n the oxidation number o	hat is the oxidation state	•
	(A) -1	(B) −3	(C) +3	(D) +5
27.	Oxidation state of nitr	ogen is not an integer in	:	
	(A) Hydroxyl amine (N	IH ₂ OH)	(B) Ammonia (NH ₃)	
	(C) Hydrazine (N_2H_4)		(D) Hydrazoic acid (N	₃ H)
28.	? + O_2 → $2K_2O$			
	(A) K	(B) K ₂	(C) 2K	(D) 4K
29.	The brown ring comp state of iron in this co	lex compound is formula mplex is:	ted as [Fe(H ₂ O) ₅ (NO)]SC	0 ₄ . The oxidation
	(A) 0	(B) +1	(C) +2	(D) +3
30.	The oxidation state of	f oxygen is maximum in	M. 9582701166 TION GCODEMV	
	(A) Bleaching powder	(CaOCl ₂)	(B) Oxygen difluoride	(OF ₂)
	(C) Dioxygen difluorid	e (O ₂ F ₂) One Day Oth & 10 M.	AT (D) Hydrogen peroxid	e (H ₂ O ₂)
31.	The oxidation numbe	r of cobalt in K[Co(CO) ₄]	iśh & 12th	
	(A) -1	(B) -3 MATHS, PHYSI BIOLOGY, HISTOR	ICS, CHEMISTRY, (By KD Sir) RY (C)), 1 C1 ITY, GEOGRAPHY	(D) +3
32.	Which of the following	g processes does not invo	olve oxidation of iron?	
	(A) Rusting of iron she	95% Marks in (PCM) CLASS-12th BACAD CBSE PC Socional Silver Olympiad (11 Rank) CLASS-12th DATE Of The Company o	अर्जी है आगे सप्ति बन्ने हि।	
	(B) Decolourisation of	blue CuSO ₄ solution by	F⊕ dware Bangali Colony, Sant Nagar, Burari, Delhi- 110084	
	(C) Formation of Fe(C	O) ₅ from Fe.		
	(D) Liberation of H_2 fr	om steam by iron at high	n temperature.	
33.	The value of n in the	molecular formula Be _n Al	₂ Si ₆ O ₁₈ is:	
	(A) 1	(B) 2	(C) 3	(D) 4
34.	In the reaction between gaining electrons from	en copper nitrate solution m:	n and zinc, copper ions a	are reduced by
	(A) Copper.	(B) Nitrogen.	(C) Zinc.	(D) Oxygen.
35.	When ammonium nitroxidation state of nitr	rate is gently heated, an ogen in this oxide?	oxide of nitrogen is form	ned. What is the
	(A) +4	(B) +2	(C) +3	(D) +1
36.	An element if present oxidation number:	in the free or the uncom	nbined state, its each ato	m bears an
	(A) More than 1		(B) Less than 1	
	(C) More than 2		(D) Zero.	
37.	The oxidation numbe	r of P in Na ₄ P ₂ O ₇ is:		
	(A) +3	(B) +2	(C) +5	(D) -3

38.	The average oxidatio	n number of iodine in ${ m l}_3^-$	ion is:		
	(A) -1	(B) $\frac{-1}{3}$	(C) +1	(D) $\frac{+1}{3}$	
39.	Oxidation number of	sulphur in marshall's acid	d (H ₂ S ₂ O ₈) is:		
	(A) +5	(B) +8	(C) +6	(D) +7	
40.	E^{\ominus} values of some rethe correct option:	edox couples are given be	elow. On the basis of thes	e values choose	
	$\mathrm{E}^{\ominus}\mathrm{values}:\mathrm{Br}_{2}/\;\mathrm{Br}$	$^{-}=+1.90;\;{ m Ag}^{+}/\;{ m Ag}(8)$	(S) = +0.80		
	Cu^2	$^{+}/~{ m Cu(s)}=+0.34; { m I_{2}(s)}$	$ m i)/I^-=0.54$		
	(A) Cu will reduce Br	, , , , , , , , , , , , , , , , , , , ,	(B) Cu will reduce Ag		
	(, _ :: : : : : : : : : : : : : : : : :		(C) Cu will reduce I ⁻		
	(D) Cu will reduce Br ₂				
41.	Oxidation number of	C in HCCOH is			
	(A) +2	(B) +4	(C) +3	(D) 0	
42.	that all the nitrogen a nitrogen in A?	ppears in the new compo	to form a new compound ound, what is the oxidation	_	
	_	n the oxidation state of h	M 0E007044CC	(D) -	
	(A) +1	KD ED/IC4	(C) +3	(D) +5	
43.		r of Mn in potassium perr			
	(A) +6		O (C) 1515 jects ATHS, SCIENCE & S.ST	(D) +8	
44.		04 by oxalic acid in acidic magnitude of this change	imedium, the oxidation n a?. chemistry, (By KD Sir) kv.,eco, polity, geography	umber of Mn	
	(A) 7 to 2	(B) 6 to 2 1005 Marks in Every Subjects 1004 PAGEN CREE	N(C) 5 to 2 CUET	(D) 7 to 4	
45.	The more positive the value of E^{\ominus} , the greater is the tendency of the species to get reduced. Using the standard electrode potential of redox couples given below find out which of the following is the strongest oxidising agent:				
	$\mathrm{E}^{\ominus}\mathrm{values}\mathrm{:Fe}^{3+}/\mathrm{\ Fe}$	${ m e}^{2+} = +0.77; { m I}_2({ m S})/{ m I}^{-1}$	= +0.54;		
	$\mathrm{Cu}^{2+}/\mathrm{\ Cr}$	${ m u} = +0.34; { m Ag}^+/{ m ~Ag} =$	+0.80V		
	(A) Fe ³⁺	(B) I ₂ (S)	(C) Cu ²⁺	(D) Ag ⁺	
46.	What is the oxidation number of chlorine in ${ m ClO}_3^-$?				
	(A) +5	(B) +3	(C) +4	(D) +2	
47.	Solution of potassium boiling with:	chloride or ammonium	nitrate in salt-bridge usua	ally solidified by	
	(A) Agar-agar.	(B) Starch.	(C) Cellulose.	(D) Glycogen.	
48.	In the reaction, 2KClO reduced respectively	_	nents which have been ox	kidised and	
	(A) Chlorine and oxygen.		(B) Oxygen and chlorine.		
(C) Potassium and oxygen. (D) Oxygen and potassium.				sium.	
49.	9. What is the oxidation number of Br in the compound RbBrO ₄ ?				
	(A) -1	(B) +7	(C) +1	(D) +4	
50.					

	When $tin(IV)$ chloride is treated with excess of conc. hydrochloric acid, the complex $ion(SnCl_6)^2$ – is formed. The oxidation state of tin in this complex ion is?				
	(A) +4	(B) zero	(C) -2	(D) -4	
51.	Which of the following (titrant) ?	g compounds we use in o	ur laboratory as a standa	ird solution	
	(A) KMnO ₄		(B) K ₂ Cr ₂ O ₇		
	(C) Na ₂ S ₂ O ₃		(D) All of these		
52.		$ySO_2 \rightarrow K_2SO_4 + Cr_2(SO_4)$	₄) ₃ + zH ₂ O		
	(A) 6	(B) 5	(C) 7	(D) 3	
53.	The difference in the is:	oxidation numbers of the	two types of sulphur ato	ms in Na ₂ S ₄ O ₆	
	(A) 5	(B) 4	(C) 3	(D) 6	
54.	What is the oxidation	number of Si in the comp	oound CaSiO ₃ ?		
	(A) -4	(B) +2	(C) -2	(D) +4	
55.	Standard reduction frotential of X, Y, Z are $-1.2v$, $+0.5v$, $-3.0v$ respectively, the reducing power of the metals will be:				
	(A) Y > Z > X	KULDEEP VERMA SIR	(B) $Y > X > Z_{2701166}$		
	(C) Z > X > Y	K.D. EDUCA	(D) X > Y > Z		
56.	When P reacts with ca example of.	oustic soda, the products a	are PH3 and NaH2PO2. The Street & S.ST	ne reaction is an	
	(A) Oxidation.	MATHS, PHYSIC	(B) Reduction.		
	(C) Both oxidation and	reduction.	(D) Neutralisation.		
57.	between BaO ₂ and H ₂	Graduation (B.SC Electronics Hons. Regular)	හත් සිනුවේ නැත් සිට මේ සිට	s of the reaction	
	(A) 0 and -1	5 YEARS TEACHING EXP. Add- Gali No- 21, A-1 Block Near Gupta	Har (B) ang == 01 my and ang == 20 lelhi - 110084		
	(C) -2 and 0		(D) -2 and +1		
58.		redox change.			
	(A) Intramolecular.		(B) Intermolecular.		
	(C) Disproportion.		(D) None.		
59.	In the given reaction, $CH_2 = CH_2(g) + H_2(g)$ ethene undergoes:) → CH_3 — CH_3 (g)			
	(A) Reduction process		(B) Oxidation process.		
	(C) Addition process.		(D) All of these.		
60.	The oxidation state of	Cr in K ₂ Cr ₂ O ₇ is:			
	(A) + 4	(B) +3	(C) +6	(D) +5	
61.	In MgCl ₂ , the oxidatio	n number of chlorine is:			
	(A) +1	(B) +2	(C) -1	(D) 0	
62.	The sum of oxidation	number of all the atoms i	n a neutral molecule mu	ist be zero.	
	(A) True.		(B) False.		
	(C) Ambiguous.		(D) None of these.		

63.	The oxidation numbe	r of chromium in CrO ₅ is	:			
	(A) + 6	(B) +5	(C) +10	(D) 0		
64.	Oxidation state of nitr	ogen in NH ₂ OH is:				
	(A) -3	(B) -1	(C) +2	(D) 3		
65.	Oxygen has an oxidat	tion state of +2 in.				
	(A) H ₂ O ₂	(B) OF ₂	(C) SO ₂	(D) H ₂ O		
66.		rs of sulphur in S_8 , S_2F_2	and F ₂ S respectively, are	:		
	(A) 0 , $+1$ and -2		(B) $+2$, $+1$ and -2			
	(C) 0, +1 and +2		(D) -2 , $+1$ and -2			
67.			idation number of sulphu			
	(A) SO ₂	(B) SO ₃	(C) Na ₂ S ₄ O ₈	(D) H ₂ SO ₄		
68.		rs of the sulphur atoms i d (H ₂ S ₂ O ₈) are respectiv	n peroxy monosulphuric elv.	acid (H ₂ SO ₅) and		
	(A) +8 and +7	. (<u>Z</u> - <u>Z</u> - <u>Q</u> , a	(B) +3 and +3			
	(C) +6 and +6		(D) +4 and +6			
69.	The oxidation state o	f the underlined element	in the given compound i	S:		
	BaCl2					
	(A) +2	KULDEEP VERMA SIR	(B) -2 M. 9582701166			
	(C) 0	K.D. EDUC	(D) None of these			
70.		state of central atom in (ATUS SCIENCE & S.S.T.	(D)		
	(A) 1	(B) 2	1th & 12th	(D) 4		
71.		owing shows maximum (RY,,ECO, POLITY, GEOGRAPHY	(D) C*		
70	(A) V	(B) Fe IIT- JEE,	N(C) Mn _A , cuet	(D) Cr		
72.		CLASS-10th BOARD CBSE TO In a diatom Of the Class of the	ic molecule (O2)? अर्जी हे आगे आपकी मर्जी है।	(D) 0		
	(A) +2	S YEARS TEACHING EXT. Add. Gall No. 21, A-1 Block Near Gupting) उर्जी हे आगे आएकी उर्जी है। (C) +8 ota Hardware Bangal Colony, Sant Nagar, Burari, Delhi-110084	(D) 0		
73.	(A) $[XeO_6]^{4-}$	ing, the highest oxidatior (B)XeF ₈	(C) OsO ₄	(D) RuO ₄		
74	3 -	•	•	(D) NaO ₄		
74.	(A) 3	state of Mn in the compo (B) 4	(C) 5	(D) 6		
75.			(6) 3	(5) 0		
, 5.	(A) Pb ⁺²	(B) Pb ⁺⁴	(C) Pb ⁺³	(D) Pb ⁺¹		
76.			(3) 1 5	(2) 1 2		
, 0.	(A) +2	(B) -3	(C) +3	(D) Zero		
77.		` ,	pounds shows increasing			
	•					
	(A) HIO ₄ , ICI, I ₂ , HI		(B) HI, I_2 , IC, HIO ₄			
	(C) I ₂ , HI, HIO ₄ HI		(D) ICI HIO ₄ ,HI, I ₂			
78.		g is not an example of re	dox reaction?			
	(A) $\mathrm{CuO} + \mathrm{H_2} \longrightarrow \mathrm{Cu} + \mathrm{H_2O}$					
	(B) $\operatorname{Fe_2O_3} + 3\operatorname{CO} -$	_				
	(C) $2K + F_2 \longrightarrow 2K$.F '				

(D) BaCla	$+ H_2SO_4 -$	$\longrightarrow \mathrm{BaSO}_4$	+ 2HCl
10	μ	1 11/004	/ L ab C 4	

Identify the correct statement (s) in relation to the following reaction: 79.

$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$$

- (A) Zinc is acting as an oxidant.
- (B) Chlorine is acting as a reductant.
- (C) Hydrogen ion is acting as an oxidant. (D) Zinc is acting as a reductant.
- In Ni(CO)₄, the oxidation state of Ni is? 80.
 - (A) 4

- (B) Zero
- (C) 2

(D) 8

- 81. What is the oxidation number of lithium in LiCl?

(B) -1

(C) +1

(D) 0

Answer The Following Questions In One Sentence.[1 Marks Each]

[11]

Justify that the following reactions are redox reactions: 82.

$$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$$

- What happens when Cu^{2+} is added KI solution? Indicator used in this titration? 83.
- What is the relationship between direction of current and flow of electrons by 84. convention?
- 85. What is oxidation state of Cr in $[Cr(H_2O)_6]Cl_3$
- 86. What are spectator ions? Give one example.
- What is the relationship between standard oxidation potential and standard reduction 87. potential?
- Out of Zn and Cu vessel which one will be more suitable to store 1M HCl? 88.

$$\mathrm{E}^{\circ}_{rac{\mathrm{Zn}^{2+}}{2}} = -0.76\mathrm{V}$$

- How to find strength of KMnO₄ by titrating it with Mohr's salt in acidic medium? 89.
- 90. Justify that the following reactions are redox reactions:

$$\mathsf{Fe_2O_3}(\mathsf{s}) + \mathsf{3CO}(\mathsf{g}) \to \mathsf{2Fe}(\mathsf{s}) + \mathsf{3CO_2}(\mathsf{g})$$

91. $Br_2 + 2Cl^- \rightarrow Cl_2 + 2Br^-$, will this reaction take place or not?

$${
m E}^0_{rac{{
m Br}_2}{{
m Br}^-}} = +1.09{
m V}$$

$${
m E}_{rac{{
m Cl}_2}{{
m Cl}^-}}^0 = +1.36{
m V}$$

92. Refer to the periodic table given in your book and now answer the following questions: Select the possible non metals that can show disproportionation reaction.

Given Section consists of questions of 2 marks each.

[22]

- 93. Assign oxidation number to the underlined elements in the following species: H₄P₂O₇
- 94. The compound Y Ba₂Cu₃O₇, which shows superconductivity, has copper in x oxidation state. Assume that the rare earth element yttrium is in its usual +3 oxidation state. Predict the value of x.

95.

Permanganate ion reacts with bromide ion in basic medium to give manganese dioxide and bromate ion. Write the balanced chemical equation for the reaction.

96. PbO and PbO₂ react with HCl according to following chemical equations:

$$2PbO + 4HCl \longrightarrow 2PbCl_2 + 2H_2O$$

$$PbO_2 + 4HCl \longrightarrow PbCl_2 + Cl_2 + 2H_2O$$

Why do these compounds differ in their reactivity?

- 97. In neutral or faintly alkaline solution '8' moles of peramanganate anions quantitatively oxidise this sulphate anions to produce x' moles of sulphur containing product. What is magnitude of 'X'.
- 98. i. Identify the oxidant and reductant in the following reactions:

a.
$$10 \mathrm{H^+} + 4 \mathrm{Zn(S)} + \mathrm{NO_3^-(aq)}$$

$$\longrightarrow 4\mathrm{Zn}^{2+}(\mathrm{aq}) + \mathrm{NH}_4^+(\mathrm{aq}) + 3\mathrm{H}_2\mathrm{O}$$

$$\text{b.} \quad I_2(g) + H_2(g) \longrightarrow 2Hl(g) + S(s)$$

ii. Write the anode, cathode and net cell reaction for the following cell:

$$\operatorname{Zn}(s)|\operatorname{Zn}(\operatorname{aq})||\operatorname{Br}^{-}(\operatorname{aq})|\operatorname{Br}_{2}(\operatorname{g}),\operatorname{pt}$$

- iii. Give two main functions of salt bridge.
- 99. Balance $P + HNO_3 \longrightarrow H_3PO_4 + NO_2 + H_2O$ by oxidation number method.
- 100. What happens when Cl₂ gas is passed through aqueous solution of KBr? What type of redox reaction is it?
- 101. Balance the following equation: One Day Day-1 9th & 10 MATHS, SCIENCE & S.ST

$${
m Br}_2 + {
m H}_2 {
m O}_2 \longrightarrow {
m Br} {
m O}_3^- + {
m H}_2 {
m O}$$
 (in acidic medium)

- 102. Calculate the oxidation number of phosphorus in the following species.
 - a. HPO_3^{2-}
 - b. PO_4^{3-}

10th BOARD CBSE rise in (PCM) (Zun BOARD CBSE and and ther Opposite (Tr Rank) তাইরে KD STR কো এমর্লিটি প্রাতী প্রাতির মত্তিটি

[21]

- 103. How many millimoles of potassium dichromate is required to oxidise 24mL of 0.5M Mohr's salt solution in acidic medium?
 - * Given Section consists of questions of 3 marks each.

104. Using the standard electrode potentials given in the Table, predict if the reaction between the following is feasible:

 $Br_2(aq)$ and $Fe^{2+}(aq)$.

105. One mole of N_2H_4 loses 10 moles electrons to form a new compound Y. Assuming that all the nitrogen appears in the new compound, what is the oxidation number of N in Y?

There is no change in oxidation state of H.

106. Identify the type of redox reaction taking place in the following.

i.
$$3 \stackrel{0}{\mathrm{Mg}}(\mathrm{s}) + \stackrel{0}{\mathrm{N}_2}(\mathrm{g}) \longrightarrow \stackrel{+2}{\mathrm{Mg}_3} \stackrel{-3}{\mathrm{N}_2}(\mathrm{s})$$

ii.
$$\overset{+5}{V_2}\overset{-2}{O_5}(s)$$
 5 $\overset{0}{Ca}(s)$ \longrightarrow 2 $\overset{0}{V}(s)$ +5 $\overset{+2}{Ca}\overset{-2}{O}(s)$

iii.
$$2 \overset{+1}{\mathrm{KClO}}_{3}(\mathrm{s}) \longrightarrow 2 \overset{+1}{\mathrm{KCl}}(\mathrm{s}) \ +3 \overset{0}{\mathrm{O}_{2}}(\mathrm{g})$$

iv.
$$\overset{0}{\operatorname{Ca(s)}} + \overset{+1-2}{\operatorname{H}_2\operatorname{Ol}} \overset{+2-2+1}{\longrightarrow} \overset{0}{\operatorname{Ca(OH)}_2(\operatorname{aq})} \overset{0}{+\operatorname{H}_2(\operatorname{g})}$$

v.
$$\operatorname{Br}_2(\operatorname{l}) + 2\operatorname{I}^-(\operatorname{aq}) \longrightarrow 2\operatorname{Br}^-(\operatorname{aq}) + \operatorname{I}_2(\operatorname{s})$$

- 107. How does Cu₂O act as both oxidant and reductant? Explain with proper reactions showing the change of oxidation numbers in each example.
- 108. Why does fluorine not show disporportionation reaction?
- 109. a. In the following redox reactions, identify the oxidation and reducing agents:

i.
$$H_3PO(aq) + 2HgCl_2 + 2H_2O(aq)$$

 $\longrightarrow H_3PO_4(aq) + 2Hg(l) + 4HCl(aq)$

ii.
$$O_2(g) + PtF_6g \longrightarrow O_2^+[PtF_6]^{\ominus}(s)$$

- b. Why does H₂S acts as reducing agent only whereas SO₂ acts as bot oxidant as wells as rductant?
- 110. Copper dissolves in dilute nitric acid but not in dilute HCl. Explain.
 - * Given Section consists of questions of 5 marks each.

[65]

111. Balance the following redox reactions by ion-electron method:

$$MnO_4^-(aq) + I^-(aq) \rightarrow MnO_2(s) + I_2(s)$$
 (in basic medium).

- 112. While sulphur dioxide and hydrogen peroxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?
- 113. Calculate the oxidation number of sulphur, chromium and nitrogen in $\rm H_2SO_5$, $\rm Cr_2O_7^{2-}$ and $\rm NO_3^-$. Suggest structure of these compounds. Count for the fallacy.
- 114. Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.
- 115. Write correctly the balanced equations for the following redox reactions using half reactions.

i.
$$H_2S+ Fe^{3+} \rightarrow Fe^{2+} + S + H^+$$

ii.
$$I + IO_3^- + H^+ \rightarrow I_2 + H_2O$$

iii.
$$Bi(s) + NO_3^- + H^+ \rightarrow NO_2 + Bi^{3+} + H_2O$$

iv.
$$I^- + O_2(g) + H_2O \rightarrow I^2 + OH^-$$

State what is oxidised to what and what is reduced to what in the reactions expressed by the equations?

116. i. Use the following reactions to arrange the elements A, B, C and D in order of their redox reactivity:

a.
$$A + B^+ \rightarrow At + B$$

b.
$$B + D^+ \rightarrow B^+ + D$$

c.
$$C^+ + D \rightarrow No reaction$$

d.
$$B^+C^+ \rightarrow B^+ + C$$

ii. On the basis of above redox activity series, predict which of the following reactions would you expect to occur?

a.
$$A^{+} + C \rightarrow A^{+} C^{+}$$

b.
$$A^+ + D \rightarrow A^+ D^+$$

117. a. Consider the following redox reaction that produce electricity in a galvanic cell:

i.
$$2Fe^{3+} + 2Cl^{-} \longrightarrow 2Fe^{2} + Cl_{2}(g)$$

ii.
$$Cd(s) + I_2 \longrightarrow Cd^{2+} + 2I^-$$

iii.
$$2Crs + 3Cu^{2+} \longrightarrow +3Cu(s) + 2Cr^{3+}$$

Write the anode and cathode reaction for galvanic cell.

b. Split the following redox reaction into the oxidation and reduction hay reactions:

i.
$$\operatorname{Zn} + \operatorname{Cu}^{2+} \longrightarrow 2n^{2+} + \operatorname{Cu}$$

ii.
$$\operatorname{Sn}^2 + 2\operatorname{Hg}^+ \longrightarrow \operatorname{Sn}^{4+} + \operatorname{Hg}_2^{2+}$$

118. Consider the cell reaction of an electrochemical cell:

$$Ni(s) + 2Ag^{+}(aq) \longrightarrow Ni^{2+}(aq) + 2Ag(s)$$
Answer the following questions:

- i. Write anode and cathode half reactions, science & s
- ii. Mention the direction of flow of electrons. 121
- iii. How is the electroneutrality maintained in solution of two half cells?
- iv. Write the formula for calculating standard e.m.f of this cell.
- v. How does e.m.f. change when concentration of Ag⁺ is decreased?
- 119. a. Identify the oxidising agent and reducing agent in the following reactions:

i.
$$MnO_2 + 4HCl \longrightarrow MnCl_2 + Cl_2 + 2H_2O$$

ii.
$$2MnO_4^-10Cl^- + 16H^+$$

$$\longrightarrow 2Mn^{2+} + 5Cl_2 + 8H_2O$$

b. Calculate the oxidation number of underlined elements in the following speries.

$$Pb_3O_4, H_2Cl, PO_4^{3-}$$

120. Using electron transfer concept, identify the oxidant and reductant in the following redox reactions.

i.
$$\operatorname{Zn}(s) + 2\operatorname{H}^+(\operatorname{aq}) \longrightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{H}_2(g)$$

ii.
$$2[Fe(CN)_6]^{4-}(aq) + H_2O_2(aq) + 2H^+(aq)$$

$$\longrightarrow 2[\mathrm{Fe}(\mathrm{CN})_{6}]^{3-}(\mathrm{aq}) + 2\mathrm{H}_{2}\mathrm{O}(\mathrm{l})$$

iii.
$$2[Fe(CN)_6]^{3-}(aq) + 2OH^-(aq) + H_2O_2(aq)$$

$$\longrightarrow 2[\mathrm{Fe}(\mathrm{CN})_{6}]^{4-}(\mathrm{aq}) + \mathrm{O}_{2}(\mathrm{g}) + 2\mathrm{H}_{2}(\mathrm{l})$$

$$\text{iv.} \quad \operatorname{BrO}_3^-(\operatorname{aq}) + F_2(\operatorname{g}) + 2\operatorname{OH}^-(\operatorname{aq}) \longrightarrow$$

$${
m BrO_4^-(aq)} + {
m F^-(aq)} + {
m H_2O(l)}$$

v.
$$2\text{NaClO}_3(\text{aq}) + \text{I}_2(\text{aq}) \longrightarrow 2\text{NaIO}_3(\text{aq}) + \text{Cl}_2(\text{g})$$

121. Balance the following ionic equations.

$$\mathrm{Cr}_2\mathrm{O}_7^{2-} + \mathrm{Fe}^{2+} + \mathrm{H}^+ \longrightarrow \mathrm{Cr}^{3+} + \mathrm{Fe}^{3+} + \mathrm{H}_2\mathrm{O}$$

122. Write balanced chemical equation for the following reactions:

Permanganate ion $\left(MnO_4^-\right)$ reacts with sulphur dioxide gas in acidic medium to produce Mn2+ and hydrogensulphate ion.

(Balance by ion electron method)

123. Balance the following ionic equations.

$$\mathrm{MnO_4^-} + \mathrm{SO_3^{2-}} + \mathrm{H^+} \longrightarrow \mathrm{Mn^{2+}} + \mathrm{SO_4^{2-}} + \mathrm{H_2O}$$

---- Stay away from those people who try to disparage your ambitions. ... -----

