Chapter 4 - Methods of Analysis of Resistive Circuits

Lecture 10 Section 4.3

MEMS 0031 Electrical Circuits

 $\begin{tabular}{ll} Mechanical Engineering and Materials Science Department \\ University of Pittsburgh \end{tabular}$

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

1.3 Node Voltage Analysis with ndependent Voltage Sources

Student Learning Objectives

At the end of the lecture, students should be able to:

▶ Apply Node Voltage Analysis (NVA) to circuits with independent current and voltage sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

Analysis with ndependent Voltage Sources

NVA with Independent VS

- ▶ By adding an independent VS, we remove a degree of freedom, for we are prescribing a node voltage
- ▶ Thus the number of KCL equations is as follows:

$$\# \text{KCL Eqns.} = N - \# \text{VS} - 1$$

Additionally, we will introduce the concept of a "supernode" - two nodes connected by a VS

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

► Use NVA to determine the node voltages, symbolically:

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

Example #2 - Supernode

Determine the voltage at node b:

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

► Find node voltages via NVA:

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objectives

4.3 Node Voltage Analysis with Independent Voltage Sources

- At the end of the lecture, students should be able to:
 - ▶ Apply Node Voltage Analysis (NVA) to circuits with independent current sources
 - NVA requires the sole use of KCL. We construct N-1-#VS KCL equations, applied at non-zero and non-specified, and relate the currents to voltages using Ohm's law.
 - ► A voltage source between two non-zero nodes creates a supernode, i.e. an equation that relates two node voltages - apply KCL here!
 - ► A voltage source between a non-zero and zero-voltage nodes specifies the non-zero node voltage.

Suggested Problems

At the end of the lecture, students should be able to:

► 4.3-1, 4.3-2, 4.3-3, 4.3-4, 4.3-5, 4.3-6, 4.3-7, 4.3-10, 4.3-12

Chapter 4 -Methods of Analysis of Resistive Circuits

MEMS 0031

Learning Objective

.3 Node Voltage nalysis with ndependent oltage Sources

