ELEC2141: Digital Circuit Design

Tutorial Week 7 - Sequential Circuit Design

- 1. **(4-13)** Design a sequential circuit with two D flip-flops A and B and one input X. When X = 0, the state of the circuit remains the same. When X = 1, the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 00, and then repeats. Draw the logic diagram for the circuit.
- 2. **(4-14)** The state diagram of a sequential circuit is shown below

- a. Find the state table for the circuit
- b. Make a state assignment for the circuit using 2-bit codes and find the encoded state table
- c. Find an optimized circuit implementation using D flip-flops, NAND gates and inverters
- d. Repeat parts (b) and (c) using one-hot encoding for the state assignment
- 3. **(4-16)** The circuit below is to be redesigned to cut its cost.
 - a. Find the state table for the circuit and replace the state codes with single letter identifiers. States 100 and 111 were unused in the original design
 - b. Check for and combine equivalent states
 - c. Make a state assignment such that the output is one of the state variables
 - d. Find the gate input costs of the original circuit and your circuit, assuming that the gate input cost of the D flip-flop is 14. Is the cost of the new circuit reduced?

4. Design a circuit that implements the following state diagram:

- a. Using D flip-flops
- b. Using T flip-flops
- 5. Design a circuit that implements the following state diagram:

- a. Using D flip-flops
- b. Using JK flip-flops
- 6. Find a minimal state machine equivalent to the state machine whose state table is given below.

Current	Next State, Output		
State	X = 0	X = 1	
A	Н, 1	A, 0	
В	E, 1	Н, 1	
С	E, 1	D, 1	
D	A, 0	G, 0	
Е	С, 0	E, 1	
F	D, 1	F, 0	
G	E, 1	Н, 1	
Н	F, 0	В, 0	

7. Find a minimal state machine equivalent to the state machine whose state table is:

Current	Next State		Output
State	X = 0	X = 1	Z
A	Е	С	0
В	В	С	1
С	Α	Е	1
D	Е	D	0
Е	D	В	0

- 8. **(4-20)** A Universal Serial Bus (USB) communicator link requires a circuit that produces the sequence 00000001. You are to design a synchronous sequential circuit that starts producing this sequence for input E = 1. Once the sequence starts, it completes. If E = 1, during the last output in the sequence, the sequence repeats. Otherwise, if E = 0, the output remains the constant at 1.
 - a. Draw the Moore state diagram for the circuit
 - b. Find the state table and make a state assignment
 - c. Design the circuit using D flip-flops and logic gates. A reset should be included to place in the circuit in the appropriate initial state at which *E* is examined to determine if the sequence of constant 1s is to be produced.
- 9. **(4-23)** In many communication and networking systems, the signal transmitted on the communication line uses a non-return-to-zero (NRZ) format. USB uses a specific version referred to as non-return-to-zero inverted (NRZI). A circuit that converts any message sequence of 0s and 1s to a sequence in the NRZI format is to be designed. The mapping for such a circuit is as follows:
 - a. If the message bit is a 0, then the NRZI format message contains an immediate change from 1 to 0 or from 0 to 1, depending on the current NRZI value.

b. If the message bit is a 1, then the NRZI format message remains fixed at 0 or 1, depending on the current NRZI value.

This transformation is illustrated by the following example, which assumes that the initial value of the NRZI message is 1:

Message: 10001110011010 NRZI Message: 10100001000110

- a. Find the Mealy model state diagram for the circuit.
- b. Find the state table for the circuit.
- c. Find an implementation of the circuit using D flip-flops and logic gates.
- d. Find an equivalent Moore model implementation of the circuit.