Full Brain BOLD Signal Parameter Estimation using Particle Filters

Micah Chambers

Virginia Tech Bioimaging Systems Lab

September 3, 2010

Outline

- 1 Introduction
- 2 Nonlinear Regression
 - Prior Works
 - Particle Filter
- 3 Methods
- 4 Results
 - 40 Minute Single Voxel Simulation
 - 5 Minute, Single Voxel Simulation
 - POSSUM Simulation
 - Real FMRI Data
- 5 Conclusion

Introduction

Introduction

Balloon Model

Figure: [8]

Activation Chain

Figure: [1]

BOLD State Space Model

State Vector

$$\dot{s}(t) = \epsilon u(t) - \frac{s(t)}{\tau_s} - \frac{f(t) - 1}{\tau_f}
\dot{f}(t) = s
\dot{v}(t) = \frac{f(t) - v(t)^{1/\alpha}}{\tau_0}
\dot{q}(t) = \frac{1}{\tau_0} \left(\frac{f(t)(1 - (1 - E_0)^{1/f(t)})}{E_0} - \frac{q(t)}{v(t)^{1 - 1/\alpha}} \right)$$

Output:

$$y(t) = V_0(a_1(1 - Q(t)) - a_2(1 - V(t)))$$

State Variables:

Parameters:

$$\epsilon, \tau_s, \tau_f, \alpha, \tau_0, E_0, V_0$$

Constants:

$$a_1, a_2$$

Input:

Nonlinear Regression

└─Nonlinear Regression └─Prior Works

Prior Works

Approximation Method

- Canonical Hemodynamic Response Function
 - No Parameters Estimated
 - Maximum Likelihood Possible
 - Inflexible even to changes in onset time
- 2nd Order Volterra Kernel [4]
 - Quadratic Convolution used to approximate Jacobian Matrix.
 - Volterra approximation quality is not known.

$$y(t) = k_0 + \int_{-\infty}^{\infty} k_1(s_1)x(t-s_1)ds_1 + \int_{-\infty}^{\infty} k_2(s_1, s_2)x(t-s_1)x(t-s_2)ds_1ds_2$$

Nonlinear Methods

■ Local Linearization filter, [8]

$$f(t) - f(t-1) \sim N(0, \sigma^2)$$

- Genetic Algorithms and Simulated Annealing, [10]
- Unscented Kalman Filter [5]
- Particle Filters to estimate States, [7]
 - ML estimate of Θ , [6]

Figure: Simulated Annealing can escape local minima with chaotic jumps. [?]

Figure: UKF: (a) Initial Belief (b) Noisy Measurement (c) incorporated into the belief. [9]

Particle Filter

Particle Filter

Example System Identification

- Given:
 - Elevation Map (1D)
 - Ability To Measure Elevation
- Particle Consists of the unknowns:
 - State: Location [0, 20]
 - Constant: Direction {Left, Right}

└─Nonlinear Regression └─Particle Filter

Initial Distribution

└─ Nonlinear Regression └─ Particle Filter

Measurement 1

└─Nonlinear Regression └─Particle Filter

Step Forward

Nonlinear Regression
Particle Filter

Measurement 2

Nonlinear Regression
Particle Filter

Step Forward

Particle Filter Concepts

- Weighting Function
 - Converts Discrete
 Estimates of y Into a
 Continuous Estimate of y
- Particle Density
- Resampling
 - Remove Useless Particles
- Regularized Resampling
 - Prevent Identical Particles

Particle Construction, Particle i, Time k

■ Mixture PDF, with N_p particles:

$$P(x_k) = \sum_{i=0}^{N_p} w_k^i \delta(x_k - x_k^i)$$

■ Weight Definition:

$$w_k^i \propto \frac{P(x_{0:k}^i|y_{0:k})}{q(x_{0:k}^i|y_{0:k})}$$

■ Incorporating Measurement y_k :

$$w_k^i \propto w_{k-1}^i P(y_k|x_k^i)$$

Methods

Particle Filter Setup

- Weighting function
 - Continuous, Long Tailed, Zero-Mean
 - Too wide → under-sensitivity, slow or no convergence
 - $lue{}$ Too thin ightarrow reduces robustness to noise, particle deprivation
 - For this work, $N(0, 0.005^2)$ used
- Number of particles
 - More particles give higher fidelity
 - Large Initial Particle Count (16000)
- Resampling
 - Stratified Resampling can result in truncated tails on posterior
 - Regularized Resampling can result in over smoothing and slow convergence
 - Rarely Resampled
- Prior Distribution

FMRI Noise

Preprocessing

- Drop Initial Volumes (9, 18.9s)
- Realign Over Time
- Detrend (SPM uses 1/128Hz cut off)
- Gaussian Smoothing (SPM Only)
 - Imposes Gaussianity
 - Increases SNR
 - Reduces Bonferroni Correction Requirement

Results

40 Minute Single Voxel Simulation

└─40 Minute Single Voxel Simulation

Long Run Results

└<u>40 Minute Single Voxel Simulation</u>

Long Run Covariance and Correlation

Estimated Parameter Covariance

	τ_0	α	E ₀	V_0	$ au_{s}$	τ_f	ϵ
$ au_0$	0.0004334	5.2e-05	-6.95e-05	3.3e-06	0.0001628	-2e-07	0.0001798
α	5.2e-05	7.9e-06	-6.4e-06	3e-07	1.04e-05	-1.92e-05	2.58e-05
E_0	-6.95e-05	-6.4e-06	1.9e-05	-9e-07	-4.11e-05	-3.24e-05	-3.92e-05
V_0	3.3e-06	3e-07	-9e-07	1e-07	1.1e-06	9e-07	1e-06
$ au_{S}$	0.0001628	1.04e-05	-4.11e-05	1.1e-06	0.0001589	0.0001518	7.88e-05
τ_f	-2e-07	-1.92e-05	-3.24e-05	9e-07	0.0001518	0.0002966	-2.34e-05
ϵ	0.0001798	2.58e-05	-3.92e-05	1e-06	7.88e-05	-2.34e-05	0.0001966

Estimated Parameter Correlation

	τ_0	α	E ₀	<i>V</i> ₀	$ au_{S}$	τ_f
$ au_0$						
α	0.889884					
E ₀	-0.7661395	-0.5230723				
V ₀	0.6244049	0.4239271	-0.7964774			
$ au_{S}$	0.6204843	0.295425	-0.7481253	0.3440421		
τ_f	-0.0004259	-0.3966881	-0.4314174	0.1962954	0.6990775	
ϵ	0.6158116	0.6558179	-0.641348	0.2846632	0.4458142	-0.097079

5 Minute, Single Voxel Simulation

Preprocessed Noisy Simulation vs. Underlying Signal

└ 5 Minute, Single Voxel Simulation

Estimated vs. Underlying Signal

└5 Minute, Single Voxel Simulation

Estimated Parameters

$ au_0$	α	E ₀	<i>V</i> ₀	$ au_{S}$	τ_f	ϵ	$\sum \tau$	Residual	Error
1.45	0.3	0.47	0.044	1.94	1.99	1.8	5.38		
1.2221	0.3449	0.3346	0.0714	1.6045	2.2753	1.5945	5.1019	0.003211	0.00224
1.3749	0.3318	0.3630	0.0733	1.6408	2.1030	1.5763	5.1187	0.003055	0.00223
1.1660	0.3221	0.3406	0.0822	1.6477	2.3535	1.2452	5.1672	0.003289	0.00205
1.2318	0.3271	0.3403	0.0796	1.6270	2.1852	1.3033	5.0439	0.002847	0.00147
1.1832	0.3179	0.3472	0.0821	1.5496	2.2912	1.2782	5.0240	0.003006	0.00213
1.1424	0.334	0.3473	0.0737	1.6221	2.2908	1.4025	5.0553	0.002833	0.00184
1.3004	0.3596	0.3564	0.0768	1.5641	2.1323	1.6034	4.9968	0.003028	0.00255
1.2401	0.3460	0.3398	0.0891	1.6499	2.2366	1.2900	5.1265	0.003044	0.00238
1.1709	0.3274	0.3464	0.0826	1.5373	2.2826	1.3783	4.9909	0.003345	0.0027
1.1897	0.3434	0.3355	0.0798	1.5358	2.3075	1.4277	5.0330	0.003175	0.00244
1.184	0.3405	0.3502	0.0892	1.6103	2.2793	1.1645	5.0735	0.002889	0.00188
1.2187	0.3359	0.3456	0.0800	1.599	2.2488	1.3876	5.0665	0.003066	0.00217

POSSUM Simulation

POSSUM Simulation

Mutual Information Compared with SNR

Mutual Information Compared with SNR, with threshold

POSSUM Results: Histogram

Real FMRI Data

Real FMRI Data

SPM vs. Mutual Information Map

(a) SPM Results

(b) Particle Filter Results

Results

Real FMRI Data

Particle Filter Results: Histogram

Conclusion

Conclusion

Summary:

- BOLD Parameters III-Defined
- Particle Filter Capable of good parameter BOLD estimate with 1000 particles
- Mutual Information performs well as estimate of Quality

Future Works

- Further limitations should be placed on priors, Deneux et al. [3] shows that parameters could imposed.
- Analysis of joint parameter distribution for populations
- Real Time analysis possible for multiple Voxels, similar to De Charms et al. [2]

Conclusion

Questions?

Backup

Balloon Flowchart

SPM vs. Mutual Information Map, SPM

(a) SPM Results

SPM vs. Mutual Information Map, M.I. > .15

(b) Particle Filter Results

SPM vs. Mutual Information Map, M.I. > .1

(c) Particle Filter Results

1: 37-14-7

Figure: Section 1, Estimated vs. Actual BOLD response. *t*-Score: 10.71, Mutual Information: 0.33, Residual: 0.72.

2: 34-12-7

Figure: Section 2, Estimated vs. Actual BOLD response. *t*-Score: 6.97, Mutual Information: 0.04, Residual: 1.02.

3: 23-21-7

Figure: Section 3, Estimated vs. Actual BOLD response. *t*-Score: 2.85, Mutual Information: -0.03, Residual: 0.81.

4: 33-40-4

Figure: Section 4, Estimated vs. Actual BOLD response. *t*-Score: 0.50, Mutual Information: 0.06, Residual: 0.95.

5: 29-9-13

Figure: Section 5, Estimated vs. Actual BOLD Response. *t*-Score: 4.17, Mutual Information: 0.02, Residual: 1.14.

6: 36-17-19

Figure: Section 6, Estimated vs. Actual BOLD Response. *t*-Score: 2.49, Mutual Information: .34, Residual: 0.78.

Particle Filter Results: Histogram

Bibliography

Bibliography

R. B. Buxton, Kamil Uludag, David J. Dubowitz, and Thomas Lui.

Modeling the hemodynamic response to brain activation. *Neurolmage*, 23 Suppl 1:S220–33, 2004.

R. Christopher DeCharms, Fumiko Maeda, Gary H. Glover, David Ludlow, John M. Pauly, Deepak Soneji, John D. E. Gabrieli, and Sean C. Mackey.

Control over brain activation and pain learned by using real-time functional MRI.

Proceedings of the National Academy of Sciences of the United States of America, 102(51):18626–31, December 2005.

T. Deneux and O. Faugeras.

Using nonlinear models in fMRI data analysis: model selection and activation detection.

NeuroImage, 32(4):1669-1689, 2006.

K. J. Friston, A. Mechelli, R. Turner, and C. J. Price. Nonlinear Responses in fMRI: the Balloon Model, Volterra kernels, and other Hemodynamics. *NeuroImage*, 12:466–477, 2000.

Zhenghui Hu, Xiaohu Zhao, Huafeng Liu, and Pengcheng Shi. Nonlinear Analysis of the BOLD Signal.

EURASIP Journal on Advances in Signal Processing, 2009:1–14, 2009.

Leigh A. Johnston, Eugene Duff, Iven Mareels, and Gary F. Egan.

Nonlinear estimation of the BOLD signal. *NeuroImage*, 40(2):504–14, 2007.

Bayesian Learning of Continuous Time Dynamical Systems. *PhD Thesis*, 2009.

Jorge J. Riera, Jobu Watanabe, Iwata Kazuki, Miura Naoki, Eduardo Aubert, Tohru Ozaki, and Ryuta Kawashima.

A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals.

Neurolmage, 21:547-567, 2004.

Sebastion Thrun, Wolfram Burgard, and Dieter Fox. *Probabilistic Robotics*.

MIT Press, Cambridge, MA, 2005.

Vasily A. Vakorin, Olga O. Krakovska, Ron Borowsky, and Gordon E. Sarty.

Inferring neural activity from BOLD signals through nonlinear optimization.

Neurolmage, 38(2):248-60, November 2007.

