MAC 210 – Laboratório de Métodos Numéricos

Primeiro Semestre de 2017

Segundo Exercício-Programa: Interpolação

1 Interpolação polinomial por partes bivariada

Este exercício-programa tem como objetivo generalizar métodos univariados de interpolação polinomial vistos em sala de aula para o caso bivariado. Os métodos desenvolvidos serão testados no contexto de compressão de imagens (com perdas).

Sejam n_x e n_y inteiros positivos e $a_x < b_x$ e $a_y < b_y$ reais dados. Definamos $h_x = (b_x - a_x)/n_x$, $h_y = (b_y - a_y)/n_y$ e

$$x_i = a_x + i h_x$$
, para $i = 0, \dots, n_x$,
 $y_j = a_y + j h_y$, para $j = 0, \dots, n_y$.

Desta forma temos que os pontos (x_i, y_j) para $i = 0, ..., n_x$ e $j = 0, ..., n_y$ formam uma malha com $(n_x + 1) \times (n_y + 1)$ pontos na região $[a_x, b_x] \times [a_y, b_y] \subset \mathbb{R}^2$.

Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função. Consideremos que conhecemos os valores de $f(x_i, y_j)$ para $i=0,\ldots,n_x$ e $j=0,\ldots,n_y$. Desejamos construir uma função $v:[a_x,b_x]\times[a_y,b_y]\to\mathbb{R}$ que interpole f nos $(n_x+1)\times(n_y+1)$ pontos definidos acima. A função v será definida da seguinte forma:

$$v(x,y) = s_{ij}(x,y)$$
 se $(x,y) \in [x_i, x_{i+1}] \times [y_j, y_{j+1}]$ para $i = 0, \dots, n_x - 1$ e $j = 0, \dots, n_y - 1$.

Nos resta apenas dizer como devem ser construidas as funções s_{ij} . Consideraremos duas possibilidades: (a) funções bilineares e (b) funções bicúbicas.

1.1 Caso bilinear

No caso bilinear, a função s_{ij} é dada por $s_{ij}(x,y) = s_{ij}^L(x,y)$ com

$$s_{ij}^{L}(x,y) = a_{00} + a_{10} \left(\frac{x - x_i}{h_x}\right) + a_{01} \left(\frac{y - y_j}{h_y}\right) + a_{11} \left(\frac{x - x_i}{h_x}\right) \left(\frac{y - y_j}{h_y}\right),$$

ou, no formato matricial,

$$s^L_{ij}(x,y) = \left(\begin{array}{cc} 1 & \left(\frac{x-x_i}{h_x}\right)\end{array}\right) \left(\begin{array}{cc} a_{00} & a_{01} \\ a_{10} & a_{11}\end{array}\right) \left(\begin{array}{c} 1 \\ \left(\frac{y-y_j}{h_y}\right)\end{array}\right),$$

onde os coeficientes $a_{00}, a_{01}, a_{10}, a_{11}$ são tais que a função s_{ij}^L satisfaz as condições de interpolação, dadas por

$$\begin{array}{rcl} s_{ij}^L(x_i,y_j) & = & f(x_i,y_j), \\ s_{ij}^L(x_i,y_{j+1}) & = & f(x_i,y_{j+1}), \\ s_{ij}^L(x_{i+1},y_j) & = & f(x_{i+1},y_j), \\ s_{ij}^L(x_{i+1},y_{j+1}) & = & f(x_{i+1},y_{j+1}). \end{array}$$

1.2 Caso bicúbico

No caso bicúbico, a função s_{ij} é dada por $s_{ij}(x,y) = s_{ij}^{C}(x,y)$ com

$$s_{ij}^{C}(x,y) = \begin{pmatrix} 1 & \left(\frac{x-x_{i}}{h_{x}}\right)^{2} & \left(\frac{x-x_{i}}{h_{x}}\right)^{2} & \left(\frac{x-x_{i}}{h_{x}}\right)^{3} \end{pmatrix} \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ \left(\frac{y-y_{j}}{h_{y}}\right)^{2} \\ \left(\frac{y-y_{j}}{h_{y}}\right)^{2} \\ \left(\frac{y-y_{j}}{h_{y}}\right)^{3} \end{pmatrix},$$

onde os 16 coeficientes da expressão acima são tais que a função s^C_{ij} satisfaz as 4 condições de interpolação

$$\begin{array}{rcl} s_{ij}^C(x_i, y_j) & = & f(x_i, y_j), \\ s_{ij}^C(x_i, y_{j+1}) & = & f(x_i, y_{j+1}), \\ s_{ij}^C(x_{i+1}, y_j) & = & f(x_{i+1}, y_j), \\ s_{ij}^C(x_{i+1}, y_{j+1}) & = & f(x_{i+1}, y_{j+1}). \end{array}$$

Como temos 16 coeficientes que devem ser determinados e apenas 4 condições de interpolação, precisamos de mais 12 equações para eliminar a indeterminação. Para isso, suporemos que conhecemos também, além dos valores de f nos pontos da malha, os valores das derivadas parciais $\partial_x f$ e $\partial_y f$ nos pontos da malha. Adicionando as 8 condições

$$\begin{array}{lcl} \partial_{x}s_{ij}^{C}(x_{i},y_{j}) & = & \partial_{x}f(x_{i},y_{j}), \\ \partial_{y}s_{ij}^{C}(x_{i},y_{j}) & = & \partial_{y}f(x_{i},y_{j}), \\ \partial_{x}s_{ij}^{C}(x_{i},y_{j+1}) & = & \partial_{x}f(x_{i},y_{j+1}), \\ \partial_{y}s_{ij}^{C}(x_{i},y_{j+1}) & = & \partial_{y}f(x_{i},y_{j+1}), \\ \partial_{x}s_{ij}^{C}(x_{i+1},y_{j}) & = & \partial_{x}f(x_{i+1},y_{j}), \\ \partial_{y}s_{ij}^{C}(x_{i+1},y_{j+1}) & = & \partial_{y}f(x_{i+1},y_{j+1}), \\ \partial_{y}s_{ij}^{C}(x_{i+1},y_{j+1}) & = & \partial_{y}f(x_{i+1},y_{j+1}), \\ \partial_{y}s_{ij}^{C}(x_{i+1},y_{j+1}) & = & \partial_{y}f(x_{i+1},y_{j+1}), \end{array}$$

ficam faltando apenas mais 4 equações. Para obtê-las, suporemos então que conhecemos também as derivadas segundas $\partial^2_{xy}f$ nos pontos da malha. (Poderiamos também ter suposto conhecidas $\partial^2_{xx}f$ ou ∂^2_{yy} .) Assim obtemos as 4 equações

$$\begin{array}{lcl} \partial^2_{xy} s^C_{ij}(x_i,y_j) & = & \partial^2_{xy} f(x_i,y_j), \\ \partial^2_{xy} s^C_{ij}(x_i,y_{j+1}) & = & \partial^2_{xy} f(x_i,y_{j+1}), \\ \partial^2_{xy} s^C_{ij}(x_{i+1},y_j) & = & \partial^2_{xy} f(x_{i+1},y_j), \\ \partial^2_{xy} s^C_{ij}(x_{i+1},y_{j+1}) & = & \partial^2_{xy} f(x_{i+1},y_{j+1}). \end{array}$$

2 O que deve ser feito

O **primeiro passo** consiste em deduzir uma forma eficiente de calcular os coeficientes das funções s^L_{ij} e s^C_{ij} . O relatório deve incluir um passo a passo da dedução com todas as explicações que considere necessárias.

O segundo passo é implementar uma função constroiv que recebe n_x , n_y , a_x , b_x , a_y , b_y (parâmetros estes que definem uma malha) e uma matriz com os valores de uma certa f (desconhecida para a função) nos pontos da malha e, se necessário, os valores de suas derivadas,

avaliada(s) nos pontos da malha. A função constroiv deve construir a função v e poderia ter um parâmetro adicional indicando se a função v deve ser bilinear ou bicúbica por partes. Deve também ser implementada uma função avaliav que recebe as coordenadas x e y de um ponto $(x,y) \in [a_x,b_x] \times [a_y,b_y]$ e devolve v(x,y).

O **terceiro passo** é fazer experimentos com as funções desenvolvidas acima. Os experimentos devem servir para tentar mostrar alguma coisa.

- A primeira coisa que deve ser mostrada é que tudo funciona como deveria e o mais básico é verificar se a v interpola a f nos pontos da malha. Invente várias funções f. Desenhe f, desenhe v, desenhe |f-v|. Observe que nos pontos da malha esta ultima função vale zero.
- A segunda coisa poderia ser tentar mostrar o que acontece com a v quando variamos a quantidade de pontos na malha. Seria aqui razoável escolher n_x e n_y de forma tal que $h_x = h_y = h$ e fazer experimentos com $h \to 0$. Observe o que acontece com o erro

$$\max_{(x,y)\in[a_x,b_x]\times[a_y,b_y]} \{|f(x,y) - v(x,y)|\}$$

para diferentes valores de h. Será que os experimentos mostram o comportamento do erro em função de h?

Bonus: A teoria do caso bivariado não foi abordada em sala de aula. Um bonus neste exercício programa seria, consultando a literatura, descrever o que a teoria fala sobre esse erro e verificar se a prática se comporta conforme descrito na teoria.

• A terceira e última coisa é aplicar o que foi feito à compressão de imagens com perdas. Invente uma f e desenhe-a. Pode ser em preto e branco ou colorida. Desenhar aqui significa escolher uma malha fina com "muitos" pontos, avaliar a f em cada ponto da malha, fazer uma bijeção entre os valores de f e cores e desenhar essas cores. Se for em preto e branco, você terá uma única matriz com a cor (tom de cinza) de cada pixel da imagem. Se for colorida, terá 3 matrizes, cada uma com uma das componentes RGB de cada pixel da imagem. Alem dos valores de f nos pontos da malha, precisará também guardar os valores das derivadas primeiras e segundas.

Essa imagem que você criou é a imagem que desejamos comprimir. Comprimir significa guardar a informação de f e suas derivadas para apenas um subconjunto de pontos da malha fina (quer dizer, guardar apenas os valores de f e suas derivadas em pontos de uma malha mais "grossa" que esteja contida na malha fina). Tendo feito isso, a imagem original pode ser recuperada interpolando a f nos pontos da malha grossa. A pergunta é: qual é a menor malha grossa que podemos guardar para que a qualidade da imagem recuperada ainda seja "razoável"? Certamente a resposta depende da função f pois, por exemplo, para uma função f constante quiçá seja suficiente guardar apenas a informação da f nos 4 extremos da imagem. Faça experimentos variando f tentando ilustrar a resposta a esta pergunta.

Note que as funçõs constroiv e avaliav correspondem a uma parte pequena do que deve ser feito neste trabalho. Um relatório bem escrito, completo e detalhado explicando tudo o que foi feito é essencial.