See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229235157

Identification of α-subunit Lys201 and βsubunit Lys115 at the ATP-binding sites inEscherichia coli F1-ATPase

ARTICLE in FEBS LETTERS · JUNE 1988

Impact Factor: 3.17 · DOI: 10.1016/0014-5793(88)80457-5

CITATIONS READS

23 10

5 AUTHORS, INCLUDING:

Masamitsu Futai

Osaka University, Iwate Medical University

314 PUBLICATIONS 10,833 CITATIONS

SEE PROFILE

Available from: Masamitsu Futai Retrieved on: 26 January 2016

Identification of α -subunit Lys²⁰¹ and β -subunit Lys¹⁵⁵ at the ATP-binding sites in *Escherichia coli* F₁-ATPase

Mitsuo Tagaya, Takato Noumi, Kenichi Nakano, Masamitsu Futai and Toshio Fukui

Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567, Japan

Received 25 April 1988

Binding of about 1 mol of adenosine triphosphopyridoxal to *Escherichia coli* F_1 -ATPase resulted in the nearly complete inactivation of the enzyme [(1987) J. Biol. Chem. 262, 7686–7692]. About two thirds of the label was bound to the α -subunit, and the rest to the β -subunit. The present study revealed that Lys²⁰¹ in the α -subunit and Lys¹⁵⁵ in the glycinerich region of the β -subunit are the major sites labeled with this reagent. Thus, these two residues might be located close to the γ -phosphate of the bound ATP.

F₁-ATPase; Nucleotide-binding site; Affinity label; Adenosine polyphosphopyridoxal; Glycine-rich region

1. INTRODUCTION

Escherichia coli H⁺-ATPase catalyzes ATP synthesis from ADP and inorganic orthophosphate coupled with an electrochemical gradient of protons. The catalytic portion of the enzyme, F_1 , has a structure of $\alpha_3\beta_3\gamma\delta\epsilon$ and contains six nucleotidebinding sites; three nonexchangeable (noncatalytic) and three exchangeable (catalytic) sites [1-3]. Several lines of evidence indicate that both α - and β -subunits contain nucleotide-binding sites [4-6]. A photoaffinity cross-linking study showed the presence of nucleotide-binding sites at the interface between the α - and β -subunits [7]. Cross et al. [8] suggested that the catalytic and noncatalytic sites are located in the β -subunit and at the interface between the α - and β -subunits, respectively.

We previously showed that the binding of about 1 mol of AP₃-PL to 1 mol of E. coli F₁-ATPase

Correspondence address: M. Tagaya, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567, Japan

Abbreviations: AP₃-PL, adenosine triphosphopyridoxal; FSBA, 5'-p-fluorosulfonylbenzoyl adenosine; FSBI, 5'-p-fluorosulfonylbenzoyl inosine; HPLC, high performance liquid chromatography

caused nearly complete inactivation of the enzyme [9]. About two-thirds of AP₃-PL was bound to the α -subunit, and the rest to the β -subunit. The kinetic studies of inactivation provided evidence that the reagent binds to the catalytic sites of the enzyme [9]. The results of the present study demonstrate that Lys²⁰¹ in the α -subunit and Lys¹⁵⁵ in the β -subunit are predominantly labeled with AP₃-PL. The latter residue is located in the glycine-rich region which is often observed in nucleotide-binding proteins [10,11].

2. EXPERIMENTAL

AP₃-PL was synthesized according to the method of Tagaya and Fukui [12]. Asahipak ODP $(6 \times 150 \text{ mm})$ and Synchropak RP-P $(4.1 \times 250 \text{ mm})$ were obtained from Asahi Kasei Co. and M&S Instruments, respectively. Lysyl endopeptidase was obtained from Wako Chemical. Other proteases used in this study were purchased from Worthington.

ATP-hydrolyzing activity was assayed at $37^{\circ}C$ in 50 mM Tris-HCl (pH 8.0) containing 4.0 mM ATP, 2.0 mM MgCl₂, and an appropriate amount of the enzyme. ITP-hydrolyzing activity was measured using 2.0 mM ITP and 1.0 mM MgCl₂ under similar conditions.

AP₃-PL-labeled peptides were purified as follows. About 90 mg of E. $coli\,F_1$ -ATPase (70 ml) which had been passed through a column (1.6×90 cm) of Sephadex G-50 (coarse) equilibrated with 50 mM 3-(N-morpholino)propanesulfonic acid (pH 8.0)

was incubated with 0.1 mM AP₃-PL at 25°C for 40 min. To this solution was added 1.4 ml of a freshly prepared 0.1 M NaBH₄ solution, and the mixture was left to stand for 20 min. The modified enzyme was dialyzed against 0.5 M Tris-HCl (pH 8.6) containing 13 mM EDTA, and carboxymethylated as described by Reimann et al. [13]. The carboxymethylated protein was dialyzed against water, and lyophilized. The lyophilized materials were dissolved in 2 ml of 0.1 M Tris-HCl (pH 9.0) containing 8 M urea, and then diluted with 2 ml of 0.1 M Tris-HCl (pH 9.0). The protein was digested at 37°C for 6 h with lysyl endopeptidase in the ratio of protein to protease of 100:1. The digest was applied to a column (2.3×170 cm) of Sephadex G-50 (super fine) equilibrated with 0.2 M NH₄HCO₃-NH₄OH (pH 9.0), and 3.0-ml fractions were collected. Fractions 112–123 and 147–157 were separately pooled, and lyophilized.

Fractions 112-123 (peak II): the lyophilized fragments dissolved in 1 ml of 0.1 M Tris-HCl (pH 8.0) were incubated with 20 μg of Staphylococcus V8 protease at 37°C overnight. The digest was applied to a column (2.8 × 90 cm) of Bio-Gel P-6 equilibrated with 0.2 M NH₄HCO₃-NH₄OH (pH 9.0), and 2.4-ml fractions were collected. The fluorescent material eluted as a single peak was pooled, lyophilized, and dissolved in 1 ml of 1 mM NaOH. A portion of the solution was subjected to HPLC with Asahipak ODP at a flow rate of 0.75 ml/min. The solvents used were (A) 20 mM NH₄OH-CH₃COOH (pH 9.0) containing 80% acetonitrile. Gradients were run as follows: time 0-80 min, a linear gradient of (B) from O-40%; 85-90 min, linear gradient of (B) from 40-90%.

Fractions 147-157 (peak IV): the lyophilized fragments dissolved in 0.1 M NH₄HCO₃ were incubated with 25 μ g of trypsin at 37°C for 6 h. The digest was applied to a column (2.8×90 cm) of Bio-Gel P-6 equilibrated with 0.1 M NH₄HCO₃-NH₄OH (pH 9.0), and 2.2-ml fractions were collected. The fluorescent material eluted as a single peak was pooled and lyophilized. The lyophilized material was dissolved in 1 ml of 0.1 M NH₄HCO₃, and a portion of the solution (0.1 ml) was further digested with 25 μ g of chymotrypsin at 37°C for

Fig.1. Comparison of the inactivation of the ATP- and ITP-hydrolyzing activities of F_1 -ATPase by AP₃-PL. *E. coli* F_1 -ATPase was incubated with AP₃-PL at various concentrations (4-100 μ M) at 25°C in 50 mM 3-(*N*-morpholino)propanesulfonic acid (pH 8.0). After 30 min, NaBH₄ was added to a final concentration of 2 mM to fix the inhibitor, and then ATP- (\bigcirc) and ITP- (\blacktriangle) hydrolyzing activities were measured.

10 h. The digest was applied to HPLC with Synchropak RP-P at a flow rate of 0.75 ml/min. The solvents used were (A) 0.1% trifluoroacetic acid containing 5% acetonitrile and (B) 0.1% trifluoroacetic acid containing 90% acetonitrile. Gradients were run as follows: time 0-10 min, buffer (B) 0%; time 10-70 min, a linear gradient of buffer (B) from 0-30%; time 70-75 min, a linear gradient of buffer (B) from 30-90%. The labeled peptides were purified by rechromatography with the same column under the following conditions. The solvents were (A) 10 mM CH₃COONH₄ and (B) 10 mM CH₃COONH₄ containing 90% acetonitrile. Gradients were run as follows: time 0-40 min, a linear gradient of buffer (B) from 0-15%; time 40-45 min, a linear gradient of buffer (B) from 15-90%.

3. RESULTS

Previous results suggested that AP₃-PL binds to the catalytic sites of F₁-ATPase [9]. A further criterion for the binding to the catalytic sites is the same sensitivity of ATP- and ITP-hydrolyzing activities of the enzyme to the reagent (cf. 14,15]. When ATP- and ITP-hydrolyzing activities were measured after modification of the F₁-ATPase with various concentrations of AP₃-PL, both activities were inhibited to the same degree (fig.1), supporting the binding of AP₃-PL to the catalytic sites

AP₃-PL-labeled *E. coli* F₁-ATPase was digested with lysyl endopeptidase, and a mixture of fragments were applied to a Sephadex G-50 column (fig.2). Fluorescence due to the pyridoxyl moiety of the label was eluted as four peaks. The first fluorescent peak (peak I) was eluted at a position corresponding to the void volume of the col-

Fig. 2. Gel filtration of AP_3 -PL-labeled F_1 -ATPase after digestion with lysyl endopeptidase. Details are described in section 2.

Fig.3. HPLC of AP₃-PL-labeled peptides. The elution patterns of Staphylococcus V8 protease-digested peptides of peak II (a) and trypsin-digested peptides of peak IV (b). Rechromatography of the fluorescent material in the trypsin-digested peptides of peak IV (c). Arrows indicate the peaks with fluorescence. Details are described in section 2.

umn, suggesting that peak I is the undigested material. The amount of fluorescence in peak III was much smaller than those of peaks II and IV. In the preliminary experiment using a small amount of F₁-ATPase labeled with [³H]AP₃-PL, only two radioactive peaks corresponding to peak II and IV were observed (data not shown). Therefore, peak III may be an incompletely cleaved peptide(s) or nonspecifically labeled peptide(s). We did not further analyze peaks I and III.

The peptide mixture in peak II was digested with Staphylococcus V8 protease, and the labeled peptide was purified by a combination of Bio-Gel P-6 gel chromatography and HPLC under alkaline conditions. In each purification step, essentially only one fluorescent peak was observed. As shown in fig.3a, a fluorescent peptide was eluted at 61 min on HPLC with 45% yield. Sequence analysis (table 1) showed that this peptide corresponds to a segment from Val¹⁴⁵ to Glu¹⁶¹ in the β -subunit of F₁-ATpase [16]. No phenylthiohydantoin derivative of amino acid was detectable at cycle 11. We surmise from the known sequence of the β -subunit [16] that the 11th amino acid is a labeled lysine (Lys¹⁵⁵).

Table 1

Amino acid sequences of AP₃-PL-labeled peptides

Peak II			Peak IV					
Cycle no.	Amino acid	Yield (pmol)	Major			Minor		
			Cycle no.	Amino acid	Yield (pmol)	Cycle no.	Amino acid	Yield (pmol)
1	Val	870	1	Val	110	1	Val	28
2	Gly	410	2	Ala	100	2	Ala	30
3	Leu	280	3	Ile	75	3	Ile	36
4	Phe	210	4	Gly	71	4	Gly	31
5	Gly	220	5	Gln	53	5	Gln	39
6	Gly	200	6	N.I.a		6	N.I.	
7	Ala	230	7	Ala	60	7	Ala	23
8	Gly	160	8	Ser	_	8	Ser	_
9	Val	150	9	N.I.				
10	Gly	130	10	Ile	23			
11	N.I.							
12	Thr	_						
13	Val	81						
14	Asn	76						
15	Met	89						
16	Met	94						
17	Glu	8					_	

a Not identified

The peptide mixture in peak IV was digested with trypsin, and only one fluorescent peak was observed on Bio-Gel P-6 chromatography. The fluorescent fractions were pooled, lyophilized, and then digested with chymotrypsin. Chymotryptic fragments were applied to HPLC and eluted with trifluoroacetic acid. Fluorescent materials were eluted at 30 min as a broad peak with 70% recovery (fig.3b). The peak material was applied to the same column and eluted with ammonium acetate (fig.3c). Two fluorescent peptides were eluted at 26 and 32 min in the fluorescence ratio of approx. 3:1. Sequence analyses (table 1) showed that the structures of the two peptides are the same and correspond to a segment from Val¹⁹⁶ to Ile ²⁰⁵ in the α subunit [16]. No phenylthiohydantoin derivative of amino acid was detectable at cycle 6. We surmise that the 6th amino acid is a labeled lysine (Lys²⁰¹).

4. DISCUSSION

The results of the present study demonstrate that Lys²⁰¹ in the α -subunit and Lys¹⁵⁵ in the β -subunit are the major sites labeled with AP₃-PL. These residues are completely conserved in all the known sequences of F₁-ATPases except that Lys²⁰¹ in the α -subunit is conservatively substituted by arginyl residue in the wheat chloroplast enzyme [17]. Furthermore, the regions in their vicinities, especially around Lys¹⁵⁵ in the β -subunit, are highly conserved, consistent with the idea that these residues play important roles in enzyme catalysis.

Bullough and Allison [14,15] showed that the complete inactivation of bovine F₁-ATPase is accompanied by the incorporation of 1 mol of FSBI per mol of enzyme, whereas the binding of 3 mol of FSBA per mol of enzyme is necessary for the complete inactivation. Since the noncatalytic sites are highly specific for adenine nucleotides [18], they suggested that FSBI and FSBA bind to the catalytic and noncatalytic sites, respectively. This suggestion was confirmed by the finding that 1 mol of 2-azido ATP binds to the catalytic sites per mol of F₁ and modifies the same tyrosyl residue as FSBI [8]. Thus, the binding of 1 mol of an adenine nucleotide analogue to the catalytic sites might be enough for the complete inactivation. Our previous study revealed that binding of 1 mol of AP₃-PL per mol of enzyme resulted in nearly complete inactivation [9]. In accordance with the binding of FSBI to the catalytic sites, both ATPand ITP-hydrolyzing activities decreased at the same rate [15]. Similarly, both activities showed the same sensitivities to AP₃-PL (fig.1). Based on the present findings and the detailed kinetic analysis [9], we conclude that AP₃-PL binds to the catalytic sites of the enzyme. Kironde and Cross [19] discussed the location of the catalytic and noncatalytic sites in F₁-ATPase, and proposed several models. However, the evidence accumulated is still not enough to conclude exclusively which model is correct. Since the possibility that both α - and β subunits have independent catalytic sites is unlikely, our results are consistent with the model that the catalytic sites are located at the interface between the α - and β - subunits [7].

4-Chloro-7-nitrobenzofurazan also modified Lys¹⁵⁵ in the β -subunit [20], which is within the [Gly-X-X-X-Gly-Lysconserved sequence Ser(Thr)] of nucleotide-binding proteins such as adenylate kinase [10,11]. The analysis of the mutant enzyme [21] and the results of site-directed mutagenesis studies [22,23] suggested the importance of the conserved sequence and Lys¹⁵⁵ for enzyme activity. It is generally assumed that the lysyl residue in this region is located close to the γ phosphate of the bound ATP on analogy of adenylate kinase, of which three-dimensional structure was resolved [24]. However, the exact location of the nucleotide-binding sites in adenylate kinase could not be concluded from physical studies [11,25]. We have recently demonstrated that AP₃-PL binds to Lys²¹, located in the conserved sequence, and suggested that the ϵ -amino group of Lys²¹ is in the vicinity of the γ phosphate of the bound ATP [26,27]. The present study provided the evidence that Lys¹⁵⁵ in the β subunit of F_1 -ATPase is also located close to the γ phosphate of the bound ATP.

In addition to Lys¹⁵⁵ in the β -subunit, Lys²⁰¹ in the α -subunit might also be located close to the γ -phosphate of the bound ATP. Since both subunits show considerable sequence homology [16,17], it would be expected that their secondary and tertiary structures are similar. However, AP₃-PL did not bind to Lys¹⁷⁵ in the α -subunit, a lysyl residue corresponding to Lys¹⁵⁵ in the β -subunit, suggesting that the residues involved in the binding of nucleotides are different from each other in the

two subunits. Based on the prediction of the secondary structure, Lys¹⁵⁵ in the β -subunit seems to be located in a loop between an α -helix and a β -structure [28]. Lys²⁰¹ in the α -subunit is also expected to be located at a turn between an α -helix and a β -structure [29]. The locations of the two lysyl residues are reasonable because adenine nucleotides generally bind to the edge of α/β folding ('Rossmann fold', review [30]). Yamamoto et al. [31] have recently shown that AP₃-PL binds to Lys⁶⁸⁴ in sarcoplasmic reticulum Ca²⁺-ATPase. However, no sequence homology was observed in the AP₃-PL-labeled region between F₁-ATPase and Ca²⁺-ATPase.

Acknowledgements: This work was supported by Grant-in-Aid for Scientific Research on Priority Area of 'Bioenergetics' to T.F. from the Ministry of Education, Science and Culture, Japan. M.F. is grateful for the support from the Science and Technology Agency of the Japanese Government and Mitsubishi Foundation.

REFERENCES

- Senior, A.E. and Wise, J.G. (1983) J. Membr. Biol. 73, 105-124.
- [2] Harris, D.A. (1978) Biochim. Biophys. Acta 463, 245-273.
- [3] Cross, R.L. and Nalin, C.M. (1982) J. Biol. Chem. 257, 2874-2881.
- [4] Vignais, P.V. and Lunardi, J. (1985) Annu. Rev. Biochem. 54, 977-1014.
- [5] Dunn, S.D. and Futai, M. (1980) J. Biol. Chem. 255, 113-118.
- [6] Gromet-Elhanan, Z. and Khananshvili, D. (1984) Biochemistry 23, 1022-1028.
- [7] Schafer, H.-J. and Dose, K. (1984) J. Biol. Chem. 259, 15301-15306.
- [8] Cross, R.L., Cunningham, D., Miller, C.G., Xue, Z., Zhou, J.-M. and Boyer, P.D. (1987) Proc. Natl. Acad. Sci. USA 84, 5715-5719.
- [9] Noumi, T., Tagaya, M., Miki-Takeda, K., Maeda, M., Fukui, T. and Futai, M. (1987) J. Biol. Chem. 262, 7686-7692.

- [10] Walker, J.E., Saraste, M., Runswick, M.J. and Gay, N.J. (1982) EMBO J. 1, 945-951.
- [11] Fry, D.C., Kuby, S.A. and Mildvan, A.S. (1986) Proc. Natl. Acad. Sci. USA 83, 907-911.
- [12] Tagaya, M. and Fukui, T. (1986) Biochemistry 25, 2958-2964.
- [13] Reimann, E.M., Titani, K., Ericsson, L.H., Wade, R.D., Fischer, E.H. and Walsh, K.A. (1984) Biochemistry 23, 4185-4192.
- [14] Bullough, D.A. and Allison, W.S. (1986) J. Biol. Chem. 261, 5722-5730.
- [15] Bullough, D.A. and Allison, W.S. (1986) J. Biol. Chem. 261, 14171-14177.
- [16] Kanazawa, H. and Futai, M. (1982) Ann. NY Acad. Sci. 402, 45-64.
- [17] Walker, J.E., Fearnley, I.M., Gay, N.J., Gibson, B.W., Northrop, F.D., Powell, S.J., Runswick, M.J., Saraste, M. and Tybulewicz, V.L.J. (1985) J. Mol. Biol. 184, 677-701.
- [18] Harris, D.A., Gomez-Fernandez, J.C., Klungsoyr, L. and Radda, G.K. (1978) Biochim. Biophys. Acta 504, 364–383.
- [19] Kironde, F.A.S. and Cross, R.L. (1987) J. Biol. Chem. 262, 3488-3495.
- [20] Andrews, W.W., Hill, F.C. and Allison, W.S. (1984) J. Biol. Chem. 259, 14378-14382.
- [21] Hsu, S.-Y., Noumi, T., Takeyama, M., Maeda, M., Ishibashi, S. and Futai, M. (1987) FEBS Lett. 218, 222-226.
- [22] Parsonage, D., Wilke-Mounts, S. and Senior, A.E. (1987) J. Biol. Chem. 262, 8022-8026.
- [23] Yoshida, M., Ohta, S., Hisabori, T. and Kagawa, Y. (1988) Biochim. Biophys. Acta, in press.
- [24] Schulz, G.E., Elzinga, M., Marx, F. and Schirmer, R.H. (1974) Nature 250, 120-123.
- [25] Pai, E.F., Sachsenheimer, W., Schirmer, R.H. and Schulz, G.E. (1977) J. Mol. Biol. 114, 37-45.
- [26] Tagaya, M., Yagami, T. and Fukui, T. (1987) J. Biol. Chem. 262, 8257-8261.
- [27] Yagami, T., Tagaya, M. and Fukui, T. (1988) FEBS Lett. 229, 261-264.
- [28] Parsonage, D., Duncan, T.M., Wilke-Mounts, S., Kironde, F.A.S., Hatch, L. and Senior, A.E. (1987) J. Biol. Chem. 262, 6301-6307.
- [29] Maggio, M.B., Pagan, J., Parsonage, D.P., Hatch, L. and Senior, A.E. (1987) J. Biol. Chem. 262, 8981-8984.
- [30] Holbrook, J.J., Liljas, A., Steindel, S.J. and Rossmann, M.G. (1975) in: The Enzymes (Boyer, P.D. ed.) 3rd edn, vol. XI, pp. 191-292, Academic Press, Orlando, FL.
- [31] Yamamoto, H., Tagaya, M., Fukui, T. and Kawakita, M. (1988) J. Biochem. (Tokyo) 103, 452-457.