CS254 Database Management Systems (DBMS) Lec02

Instructor: Souradyuti Paul souradyuti@iitbhilai.ac.in
14, February 2019

Example Database

STUDEN	IT		
Name	Student Number	Class	Majo
Smith	17	1	COSC
Brown	8	2	COSC

GRADE F	REPORT	
Student Number	Section- Identifier	Grade
17	85	Α
18	102	B+

Course Number	Prerequisite Number
COSC3380	COSC3320
COSC3320	COSC1310

					COURSE			
SECTION					Course Name	Course Number	Credit Hours	Department
Section-	Course	Semester	Year	Instructor	Intro to CS	COSC1310	4	COSC
Identifier	Number				Data	COSC3320	4	COSC
85	MATH2410	Fall	91	King	Structures	00000020	8.5	0000
92	COSC1310	Fall	91	Anderson	Discrete	MATH2410	3	MATH
102	COSC3320	Spring	92	Knuth	Mathematics			
135	COSC3380	Fall	92	Stone	Data Base	COSC3380	3	COSC

Data record 4 data records

Properties that Define a Database

- A database represents some aspect of the real world, sometimes called the **miniworld** or the **universe of discourse** (**UoD**). Changes to the miniworld are reflected in the database.
- A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot correctly be referred to as a database.
- A database is designed, built, and populated with data for a specific purpose. It has an intended group of users and some preconceived applications in which these users are interested.

Database
+
Database
Management
Systems =

Database Environment

Figure 1.1 A simplified database system environment.

Query in a Database Environment?

- Retrieve data
- Update data
- Store data

(Data manipulation)

What is meta data?

Figure 1.1 A simplified database system environment.

What is Metadata (= data definition)

- Data types
- Constraints of data
- Structures
- Properties that run common to various data elements

Phase 1 of Designing a Database

Requirements Specification and Analysis

Requirements Specifications and Analysis

1. **Miniworld (Universe of Discourse):** How your project is going to impact the real world (short summary)

2. Full data flow (detailed description):

- a. Who are the parties involved, what they do, and in which sequence
- b. Full details of specific constraints

3. Application requirements

- a. Update (what and when)
- b. Store (what and when)
- c. Retrieve (what and when)

Database Schema (= description of database)

Figure 2.1

Schema diagram for the database in Figure 1.2.

COURSE

Course_name	Course_number	Credit_hours	Department
-------------	---------------	--------------	------------

PREREQUISITE

Course number	Prerequisite_number
Ocaroo_mambor	Trorogaloito_nambor

SECTION

Section identifier	Course number	Semester	Year	Instructor
Gootlott_lactitition	Codico_nambor	0011100101	1 Cui	motractor

GRADE REPORT

Student_number	Section_identifier	Grade
----------------	--------------------	-------

- Structure
- Data type
- Unchangeable
- No actual instance
- Not all constraints included

Database state (snapshot)

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	C
8	85	A
8	92	Α
8	102	В
8	135	A

PREREQUISITE

Figure 1.2
A database that stores student and course information.

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Database schema vs. Database State (I)

Database State:

 Refers to the content of a database at a moment in time.

Initial Database State:

 Refers to the database state when it is initially loaded into the system.

Valid State:

 A state that satisfies the structure and constraints of the database.

Database schema vs. Database State (II)

- Distinction
 - The database schema changes very infrequently.
 - The database state changes every time the database is updated.
- Schema is also called intension.
- State is also called extension.

Three schema architecture: objective

Self-describing (schema constructs)

Insulation program from data (program-data independence

Support of Multiple views (several APIs)

Three-schema architecture: pictorially

Figure 2.2
The three-schema architecture.

Three schema architecture: description

- · Defines DBMS schemas at three levels:
 - Internal schema at the internal level to describe physical storage structures and access paths (e.g indexes).
 - Typically uses a physical data model.
 - Conceptual schema at the conceptual level to describe the structure and constraints for the whole database for a community of users.
 - Uses a conceptual or an implementation data model.
 - External schemas at the external level to describe the various user views.
 - Usually uses the same data model as the conceptual schema.

Categories of Data Models

- Conceptual (high-level, semantic) data models:
 - Provide concepts that are close to the way many users perceive data.
 - (Also called entity-based or object-based data models.)
- Physical (low-level, internal) data models:
 - Provide concepts that describe details of how data is stored in the computer. These are usually specified in an ad-hoc manner through DBMS design and administration manuals
- Implementation (representational) data models:
 - Provide concepts that fall between the above two, used by many commercial DBMS implementations (e.g. relational data models used in many commercial systems).

Three schema architecture: mappings

- Mappings among schema levels are needed to transform requests and data.
 - Programs refer to an external schema, and are mapped by the DBMS to the internal schema for execution.
 - Data extracted from the internal DBMS level is reformatted to match the user's external view (e.g. formatting the results of an SQL query for display in a Web page)

Data Independence (I)

Logical Data Independence:

 The capacity to change the conceptual schema without having to change the external schemas and their associated application programs.

Physical Data Independence:

- The capacity to change the internal schema without having to change the conceptual schema.
- For example, the internal schema may be changed when certain file structures are reorganized or new indexes are created to improve database performance

Data Independence (II)

- When a schema at a lower level is changed, only the mappings between this schema and higher-level schemas need to be changed in a DBMS that fully supports data independence.
- The higher-level schemas themselves are unchanged.
 - Hence, the application programs need not be changed since they refer to the external schemas.

Data Model Operations

Data Model Operations:

- These operations are used for specifying database retrievals and updates by referring to the constructs of the data model.
- Operations on the data model may include basic model operations (e.g. generic insert, delete, update) and user-defined operations (e.g. compute_student_gpa, update_inventory)

DBMS Languages

DDL and DML

- Data Definition Language (DDL)
- Data Manipulation Language (DML)
 - High-Level or Non-procedural Languages: These include the relational language SQL
 - May be used in a standalone way or may be embedded in a programming language
 - Low Level or Procedural Languages:
 - · These must be embedded in a programming language