第四章串

- 1、串类型的定义
- 2、串的表示和实现
- 3、串的模式匹配算法
- 4、串操作应用举例

1

1、串的定长顺序存储表示

define MAXSTRLEN 255 // 最大串长

Typedef unsignedchar Sstring[MAXSTRLEN + 1]; // 可用 0 号单元存放串长度

- •模式 P (样品、子串): 要寻找的字符串, 存于T[1] 至 T [M]之中;
- •主串:在其中寻找模式的主字符串,存于S[1]至 S [N]之中;
- 问题:在主串中寻找一个模式?如何做,更快?采用最笨的办法,一旦发现出现字符不匹配,则整个模式相对于原来的位置右移一位。如下图所示:

2、最原始的模式匹配程序:

```
int Index(SString S, SString T, int pos)

// 在主串S的第POS个字符之后, 寻找模式T的匹配位置

{    i = pos;    j = 1;
    while (i <= S[0] && j <= T[0])
    {    if (S[i] = T[j]) { ++i; ++j; }
        else { i = i - j + 2;    j = 1; }
    }
    if ( j > T[0])    return i-T[0]    // T在S中的匹配起始位置
    else return 0;
} // Index
```


3

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

•起因:降低时间代价,从最坏情况下的 O (n*m)降低到 O (n+m); 此处 n 是主串的字符个数、m 是子串的字符个数。

•历史: 70 年S.A.cook 从理论上证明可在 O (n+m) 内完成,以后由以上三人给出实现的程序。

E.g. 说明最坏情况下时间复杂性的 ○ (n*m)的实例。

每比较m = 3 次,移动模式一次。最后在主串的 n-m+1 找到主串,比较 (n-m+1)* m 次

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

说明 KMP 算法的实例:

 e.g: S = abcabcabcd
 P = abcabcabcd

 S = abcabcabcd
 P = abcabcd

三次比较省去!

S = abcabcabcd
P = abcabcd

右移一位,仍失配 本次比较省去! S = abcabcabcd
P = abcabcd

又右移一位,仍失配 本次比较省去!

再右移一位,三次比较之 后,再进行断点处的比较 ,比较上了!

问题:能否省去上述五次比较,直接进行 **S7** 和 **P4** 之间的比较呢?

5

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

省去上述五次比较,直接进行 S_i 和 P_j (即 S_7 同 P_4) 之间的比较的可能性。

• 分析: 当 S_i 和 P_j 发生失配时, S_{i-j+1} S_{i-j+2} S_{i-1} = P₁ P₂ P_{j-1}

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

• 分析: 多个前缀时, 会出现什么问题呢?

前缀:
$$P_1P_2P_3P_4 = aaaa$$

$$P_1P_2P_3 = aaa$$

$$P_1P_2 = aa$$

$$P_1 = a$$

- 1、如果,取前缀长度 k-1 = j -1 (4),则 $S_i = P_k$ 即 P_j 进行比较,白做。故 前缀长度不可以为 j 1 。
- 2、如果,取前缀长度 k-1=1 或 2 ,即前缀分别为 $P_1=a$ 或 $P_1P_2=aa$ 则正确的位置 会漏过去,不行。故:前缀长度太短也不行。

3、因此应选前缀长度 k-1 < j-1 (此例为 k-1=3)的最长的前缀。

- 3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)
- NEXT[j] 的定义: 当失配点发生在 Pj 处时,主串中的失配点将和模式中的哪一个字符进行比较。那一个字符的位置定义为 NEXT[j]。

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

求 NEXT[j]:

e.g:
$$j = 1234567$$
 $j = 12345678$ $j = 1234567$ abcabcd abaabcac aaaaaaa $NEXT[j] = 0111234$ 01122312 0123456 $NEXTVAL[j] = 0110114$ 01021302 0000000

9

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

• 利用 NEXT[j] 函数值寻找模式的程序:

10

i i+1

3、串的模式匹配算法

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)i=1

• NEXT[j] 函数值的求法:

1、由定义,next[1] = 0

2、若next[i] = j , 求 next[i+1] = ?
由已知可得:

$$P_1P_2...P_{j-1}=P_{i-j+1}P_{i-j+2}...P_{i-1}$$

①、若 P_j = P_i;则

$$P_1P_2...P_{j-1}P_j=P_{i-j+1}P_{i-j+2}...P_{i-1}P_i$$

所以, next[i+1] = j +1

②、若 P_j!= P_i; 不得认为

next[i+1] = 1; 参见下述例子:

P=abcabdabcabcwabcabdabcabdx

注意: i 是模式的指针。指针 j 为前缀个数 + 1

next[i]=12且i
P=abcabdabcabcwabcabdabcabdx

, i+1 求 next[i+1]

虽然 P₁₂ != P_j ,但P₁P₂… P₅= P_{j-5}P_{j-4}…P_{j-1} 推出: P₁P₂… P₅P₆= P_{i-5}P_{i-4}…P_{i-1} P_i由此可以推出: next[i+1]=7

- 3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)
- · KMP 算法的时间复杂性: O(n+m)n:主串长度,m:模式长度。

考察例子:

- 1、从 S 的指针观察, li 每右移一次,对应一次比较。因此,最多对应着 n 次比较。
- 2、从模式 P 进行考察,当失配时,j = next[j]。主串失配点 S_i 又将和 P_j进行比较,对应着新增加的比较次数。P 相对原来的位置右移。右移位数最多 n 次,新增加的比较次数最多为 n 次。

所以,最多的比较次数最多为 2n 次,同理生成 next[]函数值的代价也不会大于 2m。所以,总的代价<2(n+m)

12

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

• KMP 算法的不用回溯的优点:

考察例子:

S=abcabcabcabd P=abcabd 回溯 S=abcabcabcdabcabd P= abcabd 不回溯: S=abcabcabcabd P= abcabd

- •资料存于盘上
- •每个扇区 **256** 个 字节
- •模式 257 个字节
- •模式的前**256** 个 字节匹配上了
- •下一个扇区调入 内存,覆盖原来的 **256** 个字节
- •但和模式的第 **257** 个字符不同。

两种不同的处理方 法,结果不同!! 存放主串的每个扇区,一次存放

256 个字节

存放模式以 及模式的

next[]值

内存

13

3、Knuth-Morris-Pratt 模式匹配算法(KMP 算法)

如果 P_k 和 P_j 相等,那么 S_i 不可能和 P_k 相等。所以,这一步比较可以不予进行。但如 P_k 和 P_j 不相等,则有可能 S_i 可能和 P_k 相等。比较不能省略。所以,规定 P_j != P_k 可以节约比较的次数,加快匹配过程。

e.g: P=aaaab NEXT 01234 NEXTVAL 00004

14