Zusammenfassung Topologie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein metrischer Raum (X, d) besteht aus einer Menge X und einer Abbildung $d: X \times X \to \mathbb{R}_{>0}$, sodass f.a. $x, y, z \in X$ gilt:

- $\bullet \ \ d(x,y) = 0 \iff x = y \qquad \bullet \ \ d(x,y) = d(y,x) \quad \ (\text{Symmetrie})$
- $d(x,z) \le d(x,y) + d(y,z)$ (\triangle -Ungleichung)

Def. Für einen metrischen Raum (X, d) und eine Teilmenge $A \subset X$ ist $(A, d|_A)$ ein metrischer Raum und $d|_A$ heißt induzierte Metrik.

Def. Seien (X, d_X) und (Y, d_Y) metrische Räume. Eine Abbildung $f: X \to Y$ heißt **stetig**, falls für alle $x \in X$ gilt:

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x' \in X : d_X(x, x') < \delta \implies d_X(f(x), f(x')) < \epsilon.$$

Def. Die offene Kugel von Radius ϵ um $x \in X$ ist

$$B_{\epsilon}(x) := \{ p \in X \mid d(p, x) < \epsilon \}.$$

Def. Eine Teilmenge $U \subset X$ eines metrischen Raumes heißt **offen**, falls für alle $u \in U$ ein $\epsilon > 0$ existiert mit $B_{\epsilon}(u) \subset U$.

Proposition. Eine Abbildung $f: X \to Y$ zwischen metrischen Räumen ist genau dann offen, wenn für alle offenen Teilmengen $U \subset Y$ das Urbild $f^{-1}(U) \subset X$ offen ist.

Def. Ein topologischer Raum (X, \mathcal{T}) besteht aus einer Menge X und einer Menge $\tau \subset \mathcal{P}(X)$ mit den Eigenschaften

$$\bullet \ \emptyset \in \mathcal{T} \quad \bullet \ \forall U, V \in \mathcal{T} : U \cap V \in \mathcal{T} \qquad \bullet \ \forall S \subset \mathcal{T} : \bigcap_{U \in S} U \in \mathcal{T}$$

Die Elemente von \mathcal{T} werden offene Teilmengen von X genannt. Eine Teilmenge $A \subset X$ heißt abgeschlossen, falls $X \setminus A$ offen ist.

Notation. Seien im Folgenden X und Y topologische Räume.

Bsp. Die diskrete Topologie auf einer Menge X ist $\mathcal{T} = \mathcal{P}(X)$.

Bsp. Die Klumpentopologie auf einer Menge X ist $\mathcal{T} = \{\emptyset, X\}$

Def. Die Menge der offenen Teilmengen eines metrischen Raumes heißt von der Metrik **induzierte Topologie**.

Def. Sei (X, \mathcal{T}) ein topologischer Raum und $A \subset X$. Dann heißt

$$\mathcal{T}|_A := \{ U \cap A \mid U \in \mathcal{T} \}$$

Unterraumtopologie oder von \mathcal{T} induzierte Topologie.

Def. Ein topologischer Raum (X, \mathcal{T}) heißt **metrisierbar**, falls eine Metrik auf X existiert, sodass die von der Metrik induzierte Topologie mit \mathcal{T} übereinstimmt.

Def. Ein topologischer Raum (X, \mathcal{T}) heißt **Hausdorffsch**, falls gilt:

$$\forall \, x,y \in X \, : \, x \neq y \implies \exists \, U,V \in \mathcal{T} \, : \, x \in U \land y \in V \land U \cap V = \emptyset.$$

Proposition. Metrisierbare topologische Räume sind Hausdorffsch.

Def. Eine Abbildung $f: X \to Y$ zwischen topologischen Räumen (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) heißt **stetig**, falls gilt

$$\forall U \in \mathcal{T}_Y : f^{-1}(U) \in \mathcal{T}_X.$$

Bemerkung. Ist $f:X\to Y$ stetig und $A\subset X$, so ist auch $f|_A:A\to Y$ stetig.

Def. Falls $f: X \to Y$ bijektiv ist und sowohl f als auch f^{-1} stetig sind, so heißt f ein **Homöomorphismus**.

Def. Zwei topologische Räume X und Y heißen homöomorph (notiert $X \cong Y$), wenn ein Homöomorphismus zwischen X und Y existiert.

Satz. Für $n \neq m$ sind \mathbb{R}^n und \mathbb{R}^m nicht homöomorph.

Def. Sei X eine Menge und $\mathcal{T}, \mathcal{T}'$ Topologien auf X. Dann sagen wir

$$\mathcal{T} \text{ ist } \mathbf{gr\"{o}ber} \text{ als } \mathcal{T}' \ :\Longleftrightarrow \ \mathcal{T}' \text{ ist } \mathbf{feiner} \text{ als } \mathcal{T} \ :\Longleftrightarrow \ \mathcal{T} \subset \mathcal{T}'.$$

 $\textbf{Def.}\,$ Eine Menge $\mathcal{B}\subset\mathcal{T}$ offener Teilmengen eines topologischen Raumes heißt

- Basis der Topologie, falls jede offene Menge $U \in \mathcal{T}$ Vereinigung von Mengen aus \mathcal{B} ist.
- Subbasis der Topologie, falls jede offene Menge $U \in \mathcal{T}$ Vereinigung von Mengen ist, von denen jede Schnitt endlich vieler Mengen aus \mathcal{B} ist.

Bspe. • Sei (X,d) ein metrischer Raum. Dann ist $\mathcal{B} \coloneqq \{B_{\epsilon}(x) \,|\, x \in X, \epsilon > 0\}$ eine Basis der induz. Topologie auf X.

• $\mathcal{B} := \{B_{\epsilon}(x) \mid x \in \mathbb{Q}^n, \epsilon \in \mathbb{Q}_+\}$ ist eine abz. Basis von $(\mathbb{R}^n, d_{\text{eukl}})$.

Proposition. Jede Teilmenge $\mathcal{B} \subset \mathcal{P}(X)$ ist Subbasis von genau einer Topologie \mathcal{T} von X.

Def. Die Topologie heißt die von \mathcal{B} erzeugte Topologie.

Def. Sind (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume, so ist auch $(X \times Y, \mathcal{T}_X \otimes \mathcal{T}_Y)$ ein topologischer Raum mit der **Produkttopologie** $(\mathcal{T}_X \otimes \mathcal{T}_Y)$, die von

$$\mathcal{B} := \{U \times Y \mid U \in \mathcal{T}_X\} \cup \{X \times V \mid V \in \mathcal{T}_Y\}$$
 erzeugt wird.

Proposition. • Die Projektionen $\pi_X: X \times Y \to X$ und $\pi_Y: X \times Y \to Y$ sind stetig bzgl. der Produkttopologie.

• Ist \mathcal{T} eine echt gröbere Topologie auf $X \times Y$ als die Produkttopologie, so sind die Projektionen π_X und π_Y nicht beide stetig.

Def. Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume. Dann erzeugt $\mathcal{T}_X \cup \mathcal{T}_Y$ die **Summentopologie** auf $X \cup Y$.

Bemerkung. Sie ist die feinste Topologie auf $X \cup Y$, sodass die beiden Inklusionen $i_X : X \hookrightarrow X \cup Y$ und $i_Y : Y \hookrightarrow X \cup Y$ stetig sind.

Proposition. Seien X, Y, Z topologische Räume.

• Falls $X \cap Y = \emptyset$, so ist eine Abbildung $f: X \cup Y \to Z$ genau dann stetig, falls die beiden Kompositionen $f \circ i_X: X \to Z$ und $f \circ i_Y: Y \to Z$ stetig sind.

• Eine Abb. $g:Z\to X\cup Y$ ist genau dann stetig, wenn die beiden Kompositionen $\pi_X\circ g:Z\to X$ und $\pi_Y\circ g:Z\to Y$ stetig sind.

Def. Sei X ein topologischer Raum und $A \subset X$. Dann ist das **Innere** von A (notiert $\operatorname{int}(A)$) die Vereinigung aller in A enthaltenen offenen Mengen.

Bemerkung. Als Vereinigung offener Mengen ist das Innere offen.

Def. Der Abschluss \overline{A} einer Menge $A\subset X$ ist der Durchschnitt aller abgeschlossenen Mengen von X, die A enthalten.

Bemerkung. Es gilt $\overline{A} = X \setminus (\operatorname{int}(X \setminus A))$.

Def. Es sei X ein topologischer Raum, $x \in X$ und $V \subset X$. Wir nennen V eine **Umgebung** von x, falls es eine offene Teilmenge $U \subset X$ gibt mit $x \in U$ und $U \subset V$.

Proposition. Ein Punkt $x \in X$ liegt genau dann in \overline{A} , falls jede Umgebung von x einen Punkt aus A enthält.

Def. Der Rand einer Menge $A \subset X$ ist $\partial A := \overline{A} \setminus \operatorname{int}(A)$.

Proposition. Ein Punkt $x \in X$ liegt genau dann in ∂X , wenn jede Umgebung von x sowohl einen Punkt aus A wie einen Punkt aus $X \setminus A$ enthält.

Def. Ein topologischer Raum X heißt wegweise zusammenhängend, falls es für je zwei Punkte $x, y \in X$ eine stetige Abbildung $\gamma : [0,1] \to X$ mit $\gamma(0) = x$ und $\gamma(1) = y$ gibt.

Bspe. • \mathbb{R}^n ist wegzusammenhängend

- $(\{p,q\},\{\emptyset,\{p\},\{p,q\}\})$ ist wegzusammenhängend!
-] $-\infty$, $0[\cup]0, \infty[\subset \mathbb{R}$ ist nicht wegzusammenhängend.

Def. Die Äquivalenzklassen von

 $x \sim y :\iff x, y \text{ lassen sich durch einen Weg verbinden.}$

heißen Wegzusammenhangskomponenten.

Proposition. Sei $f: X \to Y$ stetig und X wegzusammenhängend. Dann ist auch f(X) bzgl. der Unterraumtopologie wegzusammenhängend.

Def. Ein topologischer Raum X heißt **zusammenhängend**, falls X nicht disjunkte Vereinigung zweier nichtleerer offener Teilmengen ist.

Bspe. $\mathbb{Q} \subset \mathbb{R}$ und $\mathbb{R} \setminus \{0\}$ sind nicht zusammenhängend.

Proposition. Sei X ein topologischer Raum. Es sind äquivalent:

1 Toposition: Del A em topologischer Itaum. Es sind aquivale

- \bullet X ist zusammenhängend.
- Für jede offene und abgeschlossene Menge $A \subset X$ gilt: $A \in \{X, \emptyset\}$.
- Jede stetige Abbildung $f: X \to \{0,1\}$ in den diskreten Raum mit zwei Elementen ist konstant.

Proposition. • Sei $f: X \to Y$ stetig und X zusammenhängend, dann ist auch f(X) zusammenhängend.

• Sind A,B zusammenhängende Teilmengen eines topologischen Raumes X und gilt $A\cap B\neq\emptyset$, dann ist auch $A\cup B$ zusammenhängend.

Korollar. Folgende Relation ist eine Äquivalenzrelation auf X:

 $x \sim y : \iff x$ und y liegen beide in einem zusammenhängenden Unterraum von X.

Def. Die Äquivalenzklassen dieser Relation heißen Komponenten.

Bsp. Die Komponenten von $\mathbb{Q} \subset \mathbb{R}$ sind genau die Ein-Punkt-Mengen. Trotzdem ist \mathbb{Q} nicht diskret!

Proposition. Die Menge [0, 1] ist zusammenhängend.

Korollar. Wegzusammenhängende Räume sind zusammenhängend.

Proposition (ZWS). Sei $f:[0,1] \to \mathbb{R}$ stetig. Gilt f(0) < 0 und f(1) > 0, so existiert ein $t \in]0,1[$ mit f(t) = 0.

Def. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in X. Die Folge (x_n) konvergiert gegen $x\in X$, falls für jede Umgebung $U\subset X$ von x ein $N\in\mathbb{N}$ existiert mit $\forall\,n\geq N\,:\,x_n\in U$.

Notation. $x = \lim_{n \to \infty} x_n$

Achtung. Das "=" ist nicht wörtlich zu verstehen!

Def. Sei $f: X \rightarrow Y$ eine Abb. zw. topol. Räumen X, Y. Dann heißt f

- stetig in $x \in X$, falls für jede Umgebung $V \subset Y$ von f(x) das Urbild $f^{-1}(V) \subset X$ eine Umgebung von x ist.
- folgenstetig in $x \in X$, falls für jede Folge $(x_n)_{n \in \mathbb{N}}$ in X mit $\lim_{n \to \infty} x_n = x$ die Bildfolge $(f(x_n))$ in Y gegen f(x) konvergiert.

Proposition. Ist f stetig in x, so ist f auch folgenstetig in x.

Def. Eine Umgebungsbasis von $x \in X$ ist eine Menge $\mathcal{B} \subset \mathcal{P}(X)$ bestehend aus Umgebungen von x, sodass jede Umgebung von x eine der Umgebungen in \mathcal{B} enthält.

Def. Der Raum X erfüllt das erste Abzählbarkeitsaxiom, falls jeder Punkt $x \in X$ eine abzählbare Umgebungsbasis besitzt.

Bemerkung. Jeder metrische Raum X erfüllt das erste Abzählbarkeitsaxiom, da für jeden Punkt $x \in X$ die Menge $\mathcal{B}_x := \{B_{1/n}(x) \mid n \in \mathbb{N}\}$ eine abzählbare Umgebungsbasis ist.

Proposition. Sei $x \in X$ ein Punkt mit abzählbarer Umgebungsbasis. Dann ist jede in x folgenstetige Abbildung $f: X \to Y$ auch stetig in x.

Def. Eine **gerichtete Menge** ist eine Menge D mit einer partiellen Ordnung $(\leq) \subset D \times D$, sodass es für $\alpha, \beta \in D$ immer ein $\gamma \in D$ mit $\gamma \geq \alpha$ und $\gamma \geq \beta$ gibt.

Def. Ein Netz in X ist eine Abbildung $\phi: D \to X$, wobei D eine gerichtete Menge ist.

Def. Sei $x \in X$ und $(x_{\alpha})_{\alpha \in D}$ ein Netz in X. Das Netz (x_{α}) **konvergiert** gegen x, falls es für jede Umgebung $U \subset X$ von x ein $\beta \in D$ gibt mit $x_{\alpha} \in U$ für alle $\alpha \geq \beta$.

Notation. $\lim_{\alpha \in D} x_{\alpha} = x$

Def. Eine Abb. $f: X \to Y$ heißt **netzstetig** in $x \in X$, falls für jedes Netz $(x_{\alpha})_{\alpha \in D}$ in X mit $\lim_{\alpha \in D} x_{\alpha} = x$ das Bildnetz $(f(x_{\alpha}))_{\alpha \in D}$ gegen f(x) konvergiert.

Proposition. Eine Abbildung $f: X \to Y$ ist genau dann stetig in $x \in X$, wenn sie netzstetig in x ist.

Proposition. Ist $A \subset X$ eine Teilmenge eines topologischen Raumes, so besteht \overline{A} genau aus den Limiten von Netzen in A, die in X konvergieren.

Def. Ein **Häufungspunkt** eines Netzes $(x_{\alpha})_{\alpha \in D}$ in X ist ein Punkt $x \in X$, sodass für jede Umgebung $U \subset X$ von x das Netz **häufig** in U ist, d. h. für alle $\alpha \in D$ existiert ein $\beta \geq \alpha$ mit $x_{\beta} \in U$.

Def. Sind D und E gerichtete Mengen, so nennen wir eine Abbildung $h: E \to D$ final, falls für alle $\delta \in D$ ein $\eta \in E$ existiert mit $h(\gamma) \ge \delta$ für alle $\gamma \ge \eta$.

Def. Ein **Unternetz** eines Netzes $\phi: D \to X$ ist eine Komposition $\phi \circ h: E \to X$ wobei $h: E \to D$ eine finale Funktion ist. Wir schreiben auch $(x_{h(\gamma)})_{\gamma \in E}$

Proposition. Sei $(x_{\alpha})_{\alpha \in D}$ ein Netz in X. Ein Punkt $x \in X$ ist genau dann Häufungspunkt von (x_{α}) , falls ein Unternetz von (x_{α}) gegen x konvergiert.

Def. Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) heißt Cauchy-Folge, falls es für jedes $\epsilon>0$ ein $N\in\mathbb{N}$ gibt mit $d(x_n,x_m)<\epsilon$ für alle $n,m\geq N$.

 $\bf Def.$ Der metrische Raum (X,d)heißt vollständig, wenn jede Cauchy-Folge in Xkonvergiert.

Achtung. Vollständigkeit ist keine Homöomorphieinvariante!

Def. Sei X eine Menge. Dann ist die Menge

$$\mathcal{B}(X) := \{ f: X \to \mathbb{R} \, | \, \sup_{x \in X} |f(x)| < \infty \}$$

der beschränkten Fktn. $X \to \mathbb{R}$ ein metrischer Raum mit

$$d(f,g) := \sup_{x \in X} |f(x) - g(x)|.$$

Proposition. Dieser Raum $(\mathcal{B}(X), d)$ ist vollständig.

Def. Sie (X,d) und (X',d') metrische Räume, so heißt $f:X\to X'$

• eine isometrische Einbettung, falls für alle $x, y \in X$ gilt:

$$d'(f(x), f(y)) = d(x, y)$$

 eine Isometrie, falls f zusätzlich bijektiv ist. In diesem Fall ist auch f⁻¹ eine Isometrie und f ein Homöomorphismus.

Proposition. Sei X ein metrischer Raum. Dann gibt es eine isometrische Einbettung von X in einen vollständigen metrischen Raum.

Def. Eine **Vervollständigung** eines metrischen Raumes X ist ein vollständiger metrischer Raum Y zusammen mit einer isometrischen Einbettung $f: X \to Y$, sodass f(X) dicht in Y liegt, d. h. $\overline{f(X)} = Y$.

Satz. Ist X ein metrischer Raum, so existiert eine Vervollständigung $X \hookrightarrow Y$.

Proposition. Es sei X ein metrischer Raum und es seien

$$f_1: X \to Y_1, \quad f_2: X \to Y_2$$

Vervollständigungen von X. Dann existiert genau eine Isometrie $\phi_{21}:Y_1\to Y_2$ mit $\phi_{21}|_{f_1(X)}=f_2\circ f_1^{-1}$.

Bsp. Die kanonische Inklusion $C_c^\infty(U) \hookrightarrow L^p(U)$ ist eine Vervollständigung von (C_c^∞, d_p) mit

$$d_p(f,g) \coloneqq \left(\int_U |f(x) - g(x)|^p dx \right)^{1/p}.$$

Def. Es sei X ein topologischer Raum. Eine **offene Überdeckung** von X ist eine Familie $(U_i)_{i \in I}$ offener Teilmengen von X mit $\bigcup_{i \in I} U_i = X$.

Def. Der Raum X heißt kompakt, falls jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt, also eine endliche Teilmenge $I_0 \subset I$ mit $\bigcup_{i \in I_0} U_i = X$.

Def. Eine Familie C von Teilmengen von X habe die **endliche Schnitteigenschaft**, falls der Schnitt je endlich vieler Mengen aus C nichtleer ist.

Proposition. Ein Raum X ist genau dann kompakt, falls jede Familie $(C_i)_{i\in I}$ von abgeschlossenen Teilmengen von X, die die endliche Schnitteigenschaft besitzt, einen nichtleeren Schnitt hat.

Bemerkung. Kompaktheit ist eine Homöomorphieinvariante.

Proposition. Jede kompakte Teilmenge eines Hausdorffraumes ist abgeschlossen.

Proposition. Ist X kompakt und $f: X \to Y$ stetig, so ist auch $f(X) \subset Y$ kompakt.

Proposition. Jeder abgeschlossene Teilraum eines kompakten Raumes ist kompakt.

Proposition. Sei $f:X\to Y$ eine bijektive stetige Abbildung von einem kompakten Raum in einen Hausdorffraum. Dann ist f ein Homöomorphismus.

Proposition. Das Einheitsintervall $[0,1] \subset \mathbb{R}$ ist kompakt.

Proposition. Seien X, Y kompakt. Dann ist auch $(X \times Y)$ kompakt.

Satz (Heine-Borel). Eine Teilmenge von \mathbb{R} ist genau dann kompakt, wenn sie beschränkt und abgeschlossen ist.

 ${\bf Satz.}$ Sei $(X_i)_{i\in I}$ eine Familie kompakter Räume. Dann ist das topologische Produkt $\prod X_i$ ebenfalls kompakt.

Def. Ein topologischer Raum X heißt folgenkompakt, wenn jede Folge $(x_n)_{n\in\mathbb{N}}$ in X eine konvergente Teilfolge besitzt.

Proposition. Es sei X ein metrischer Raum. Dann ist X genau dann kompakt, wenn X folgenkompakt ist.

Proposition. Sei X ein topologischer Raum. Dann sind äquivalent:

- X ist kompakt.
- X ist **netzkompakt**, d. h. jedes (nichtleere) Netz $(x_{\alpha})_{\alpha \in D}$ in X besitzt ein konvergentes Unternetz.

Def. Sei $(x_{\alpha})_{\alpha \in D}$ ein Netz in einem topologischen Raum X und $A \subset X$. Dann ist $(x_{\alpha})_{\alpha \in D}$ schließlich in A, falls es ein $\beta \in D$ gibt mit $x_{\alpha} \in A$ für alle $\alpha \geq \beta$.

Def. Ein Netz $(x_{\alpha})_{\alpha \in D}$ heißt **universell**, falls für jede Teilmenge $A \subset X$ das Netz entweder schließlich in A oder in $X \setminus A$ ist.

Proposition. Jedes nichtleere Netz in X besitzt ein universelles Unternetz.

Bemerkung. Der Beweis der Prop. verwendet das Lemma von Zorn.

Satz. Sei X ein topologischer Raum. Dann sind äquivalent:

- X ist kompakt.
- \bullet Jedes nichtleere universelle Netz konvergiert in X.
- ullet Jedes nichtleere Netz in X hat ein konvergentes Unternetz.

Satz (Tychonoff). Sei $(X_i)_{i \in I}$ eine Familie kompakter Räume. Dann ist das topologische Produkt $\prod_{i \in I} X_i$ ebenfalls kompakt.

Lemma. Alle Normen auf \mathbb{R}^n sind äquivalent, d. h. für je zwei Normen $\|-\|_1$ und $\|-\|_2$ existieren Zahlen $\lambda, \Lambda \in \mathbb{R}_{>0}$ mit

$$\forall v \in \mathbb{R}^n : \lambda ||v||_1 \le ||v||_2 \le \Lambda ||v||_1.$$

Lemma (Riesz). Sei (V, ||-||) ein normierter reeller VR und $C \subset V$ ein echter Untervektorraum, der abgeschlossen bzgl. ||-|| ist. Sei $0 < \delta < 1$. Dann existiert ein $v \in V \setminus C$ mit ||v|| = 1 und

$$d(v,C) \coloneqq \inf_{c \in C} ||v - c|| > 1 - \delta.$$

Lemma. Sei $(V, \|-\|)$ ein normierter VR und $C \subset V$ ein endlichdim. UVR. Dann ist C abgeschlossen bzgl. $\|-\|$.

Proposition. Sei $(V, \|-\|)$ ein normierter Vektorraum über \mathbb{R} . Die abgeschlossene Einheitskugel $B := \{v \in V \mid \|v\| \le 1\}$ ist genau dann kompakt, wenn $\dim(V) < \infty$.

Def. Sei $(V, \|-\|)$ ein normierter VR über \mathbb{R} . Der VR der beschränkten Funktionale ist der normierte VR

$$V^* := \{ f : V \to \mathbb{R} \mid f \text{ ist linear und stetig} \}$$

versehen mit der Norm $||f|| := \sup_{\|v\| \le 1} |f(v)|$.

Def. Die Schwach-*-Topologie auf V^* ist die gröbste Topologie, sodass alle Abbildungen $\phi_v : V^* \to \mathbb{R}, \ f \mapsto f(v)$ stetig sind.

Satz. $B \subset (V^*, \|-\|)$ ist kompakt, bzgl. der Schwach-*-Topologie.