Patent claims

1. A compound of formula

$$\begin{array}{c|c}
R_1 & O & O \\
N - S - N & R_3
\end{array}$$

5 wherein either

- R₁ and R₂ together with the nitrogen atom to which they are attached are piperazinyl, wherein the second nitrogen atom is substituted by (C₁₋₈)alkoxycarbonyl or by (C₈₋₁₈)aryl, which (C₈₋₁₈)aryl is substituted by one or more halogen, (C₁₋₈)haloalkyl, e.g. CF₃, aminocarbonyl,

10 or

15

25

- R_1 is hydrogen and R_2 is piperidinyl, attached via a carbon atom of the piperidinyl ring, wherein the nitrogen atom is substituted by (C_{1-6}) alkoxycarbonyl or by (C_{6-18}) aryl, and

 R_3 is (C_{6-18}) aryl or (C_{6-18}) aryl (C_{1-4}) alkyl, which aryl is substituted by one or more halogen, aminocarbonyl, or (C_{1-6}) haloalkyl.

2. A compound of claim1 selected from the group consisting of compounds of formula

$$R_{4ss} = N$$

$$N = S - N$$

$$N = S - N$$

$$N = R_{3ss}$$

$$N = R_{3ss}$$

$$N = R_{3ss}$$

wherein

- 20 a. R_{3ss} is 3,5-bis(trifluoromethyl)phenyl and R_{4ss} is 2-aminocarbonyl-5-trifluoromethylphenyl,
 - b. R_{3ss} is 2,3-dichlorophenyl, R_{4ss} is 2-aminocarbonyl-5-trifluoromethylphenyl,
 - c. R_{3ss} is 3,5-dichlorophenyl R_{4ss} is 2-aminocarbonyl-5-trifluoromethylphenyl, and
 - d. R_{3ss} is 3,5-bis(trifluoromethyl)phenyl and R_{4ss} is tert.butoxycarbonyl.

3. A compound of any one of claims 1 or 2 which is a compound of formula

$$CF_3$$
 NH_2
 NH_2

4. A compound of claim1 selected from the group consisting of compounds of formula

$$R_{4s} - N \longrightarrow N - S - N \longrightarrow R_{3s} \qquad I_{s}$$

wherein

5

10

15

a. R_{3s} is 3,5-bis(trifluoromethyl)phenyl and R_{4s} is tert.butoxycarbonyl,

b. R_{3s} is 2,3-dichlorophenyl and R_{4s} is tert.butoxycarbonyl,

c. R_{3s} is 3,5-dichlorophenyl and R_{4s} is tert.butoxycarbonyl,

d. R_{3s} is 3,5-bis(trifluoromethyl)phenyl and R_{4s} is benzyloxycarbonyl,

e. R_{3s} is 2,3-dichlorophenyl and R_{4s} is benzyloxycarbonyl,

f. R_{3s} is 3,5-dichlorophenyl and R_{4s} is benzyloxycarbonyl,

g. R_{3s} is 3,5-dichlorophenyl and R_{4s} is benzyloxycarbonyl,

h. R_{3s} is 3,5-bis(trifluoromethyl)phenyl and R_{4s} is 2-aminocarbonyl-5-trifluoromethylphenyl,

i. R_{3s} is 3,5-dichlorophenyl and R_{4s} is is 2-aminocarbonyl-5-trifluoromethylphenyl,

j. R_{3s} is 2,3-dichlorophenyl and R_{4s} is is 2-aminocarbonyl-5-trifluoromethylphenyl, and

k. R_{3s} is 2-(3,5-bis(trifluoromethyl)phenyl)ethyl and R_{4s} is is tert.butoxycarbonyl.

- A compound of any one of claims 1 to 4 in the form of a salt.
- 20 6. Use of a compound of any one of claims 1 to 5 for the manufacture of a medicament for the treatment of disorders mediated by the action of steroid sulfatase.
 - 7. A compound of any one of claims 1 to 5 for use as a pharmaceutical.

- 8. A method of treatment of disorders mediated by the action of steroid sulfatase which treatment comprises administering to a subject in need of such treatment an effective amount of a compound of any one of claims 1 to 5.
- 5 9. A pharmaceutical composition comprising a compound of any one of claims 1 to 5 in association with at least one pharmaceutical excipient.
 - 10. A pharmaceutical composition according to claim 9, further comprising another pharmaceutically active agent.

10

SC/11-Mar-03

15