Theorem: Uniqueness of Identity

Theorem: Uniqueness of Identity

Let (G, \star) be a Group. Then the identity element is unique.

Statement

If e and e' are both identity elements in G, then e = e'.

Proof

Suppose e and e' are both identity elements in the group (G, \star) .

Since e is an identity element, for all $a \in G$:

$$a \star e = e \star a = a$$

Since e' is an identity element, for all $a \in G$:

$$a \star e' = e' \star a = a$$

Now consider the element $e \star e'$:

- 1. Since e' is an identity, we have: $e \star e' = e$
- 2. Since e is an identity, we have: $e \star e' = e'$

Therefore, $e = e \star e' = e'$.

Thus, the identity element is unique. \Box

Consequences

This theorem justifies our use of "the" identity element rather than "an" identity element when discussing groups. We often denote the unique identity element as:

- ullet e or 1 in multiplicative notation
- 0 in additive notation

Related Results

- Theorem: Uniqueness of Inverses (coming soon)
- Group

Dependency Graph

Local dependency graph