Claim Listing

1. (original) A compound of formula (I),

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocycle;

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, R_aR_bN C(O)alkyl-, R_aR_bN C(O)Oalkyl-, R_aR_bN C(O)NRcalkyl-, R_fR_gC =N- and R_k O-, wherein R^1 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

R⁴ is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN-,

N₃-, R_eS-, wherein R⁴ is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, R

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 $R_a \ and \ R_b, \ at each occurrence, \ are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, <math>R_cR_dN-$, R_kO- . $R_kOalkyl-$, $R_cR_dNalkyl-$, $R_cR_dNC(O)$ alkyl-, R_cSO_2- , R_cSO_2 alkyl-, $R_cC(O)-$, $R_cC(O)$ alkyl-, $R_cOC(O)-$, $R_cOC(O)$ alkyl-, $R_cR_dNalkylC(O)-$, $R_cR_dNC(O)-$, $R_cR_dNC(O)$ alkyl-, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c),

 $-(alkyl)(NR_cR_d), -alkylSO_2NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, -C(O)NR_cR_d; \\$

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkylN(R_e)C(O)OR_f, -alkylN(R_e)SO₂NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a threeto seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently

selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, –OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSol_2 -,

m is 0, 1, 2, 3, or 4; and n is 0, 1, 2, 3, or 4; with the proviso that when A is a monocyclic ring other than

and R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_kOC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl;

and with the further proviso that when A is

and R^4 is hydroxy or R_eS -, and R^5 is hydrogen, unsubstituted alkyl, halo or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$,

 $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, arylalkenyl, arylalkenyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 2. **(original)** The compound of claim 1 wherein A is a monocyclic ring selected from the group consisting of aryl and heteroaryl.
 - 3. (original) The compound of claim 2 wherein

A is aryl; and

R² and R³, together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl, pyrimidinyl, pyridazinyl, thienyl, furanyl, pyrazolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, triazolyl, thiadiazolyl, tetrazolyl, cyclopentyl and cyclohexyl.

- 4. (original) The compound of claim 3 wherein A is phenyl.
- 5. (original) The compound of claim 4 wherein R₂ and R₃ together with the carbon atoms to which they are attached form a pyridyl ring.
 - 6. (original) The compound of claim 1 of formula (II)

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkoxyalkyl, cycloalkyl, heteroarylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN- , $R_aR_bNC(O)$ alkyl-, R_aR_bN

with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -, R_a

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cCO 0, R_cCO 1, R_cCO 2, R_cCO 2, R_cCO 3, R_cCO 4, R_cCO 5, R_cCO 6, R_cCO 6, R_cCO 8, and R_cCO 8, are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(R_c 6, -(alkyl)(R_c 7, -S(R_c 8, -R(R_c 8, -R(R_c 9), -R(R_c 8, -R(R_c 9), -R(R_c 9, -R(R_c 9), -R(R_c 9, -R(R_c 9), -R(R_c 9, -R(R_c 9), -R(R_c 9), -R(R_c 9, -R(R_c 9), -R(R_c 9, -R(R_c 9), -R(R_c 9), -R(R_c 9, -R(R_c 9), -R(R_c 9), -R(R_c 9), -R(R_c 9, -R(R_c 9), -R(

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSol_2

m is 0, 1, 2, 3, or 4; and n is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_kOC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 7. (original) The compound of claim 6 wherein R^4 is hydroxy.
- 8. **(original)** The compound of claim 7 wherein R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkyl, formylalkyl,

```
U.S. Patent Application No. 10/699,513
Response to April 10, 2007 Office action
May 10, 2007
```

one;

haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN c(O)alkyl-, R_fR_gC =N- and R_k O-.

- 9. **(original)** The compound of claim 5 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 1-[2-(1-cyclohexen-1-yl)ethyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- ethyl [3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl]acetate;
- 1-(3-anilinopropyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 3-[3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxo-1,8-naphthyridin-1(2H)-yl] propanal;
- 1-[3-(dimethylamino)propyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-{3-[[2-(dimethylamino)ethyl](methyl)amino]propyl}-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-(2-aminoethyl)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-[3-(diethylamino)propyl]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-(benzyloxy)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one;
- 1-(benzyloxy)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1,8-naphthyridin-2(1H)-one
- $3\hbox{-}(1,1\hbox{-}dioxido\hbox{-}4H\hbox{-}1,2,4\hbox{-}benzothiadiazin\hbox{-}3-yl)\hbox{-}4-hydroxy\hbox{-}1\hbox{-}isobutoxy\hbox{-}1,8-naphthyridin\hbox{-}2(1H)\hbox{-}one;$
 - 1-benzyl-4-chloro-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
 - 1-butyl-4-chloro-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
 - 4-amino-1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
 - 1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-(methylamino)-1,8-naphthyridin-2(1H)-

1-butyl-4-(dimethylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;

```
U.S. Patent Application No. 10/699,513
Response to April 10, 2007 Office action
May 10, 2007
```

```
1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydrazino-1,8-naphthyridin-2(1H)-one; 4-azido-1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one; 1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-[(2-hydroxyethyl)amino]-1,8-naphthyridin-2(1H)-one;
```

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-N-(2-phenylethyl)sulfamide;

benzyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]sulfamide;

benzyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]-1-propyldiazathiane-1-carboxylate 2,2-dioxide;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-N-propylsulfamide;

methyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

allyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

2-propynyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

2-cyanoethyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

2-(trimethylsilyl)ethyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

methyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

benzyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]-1-methyldiazathiane-1-carboxylate 2,2-dioxide;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-N-methylsulfamide;

2-aminoethyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

 $\textit{N-cyclopentyl-N'-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8])} \\ \textbf{naphthyridin-3-yl)-1,1-naphthyridin-3-yl-1,1-naphthyridin-3-yl-1,1-naphthyridin-3-yl-1,1-naphthyridin-3-yl-1,1-naphthyridin-3-yl-1,1-naphthyridin-3-yl-1,$

```
U.S. Patent Application No. 10/699,513
Response to April 10, 2007 Office action
May 10, 2007
```

dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]sulfamide;

N-cyclobutyl-N'-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]sulfamide;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-N-(4-piperidinyl)sulfamide;

N-(2-hydroxyethyl)-N'-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]sulfamide;

3-[({[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]amino}sulfonyl)amino]propanamide;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]-1-azetidinesulfonamide;

3-hydroxy-*N*-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]-1-azetidinesulfonamide;

3-amino-*N*-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]-1-pyrrolidinesulfonamide;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]-1-piperidinesulfonamide;

N-benzyl-*N*'-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]sulfamide;

ethyl 3-[({[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]amino}sulfonyl)amino]benzoate;

3-[({[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]amino}sulfonyl)amino]benzoic acid;

3-[({[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]amino}sulfonyl)amino]benzamide;

N-(2-aminoethyl)-N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]sulfamide;

ethyl 1-({[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]amino}sulfonyl)-3-piperidinecarboxylate;

methyl (2S)-1-({[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]amino}sulfonyl)-2-pyrrolidinecarboxylate;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]-1-pyrrolidinesulfonamide;

3-hydroxy-*N*-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]-1-piperidinesulfonamide; and

N-(2-furylmethyl)-3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro[1,8]naphthyridin-3-yl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxamide 2,2-dioxide.

- 10. (original) The compound of claim 4 wherein R² and R³, together with the carbon atoms to which they are attached form a thienyl ring.
 - 11. (original) The compound of claim 1 of formula (III):

$$(\mathbb{R}^6)_m \xrightarrow{S} (\mathbb{R}^5)_n$$

$$(\mathbb{R}^6)_m \xrightarrow{S} (\mathbb{III})$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxyarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl) alkyl, cycloalkyl) alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, $R_aR_bNalkyl$ -, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ NRcalkyl-, R_fR_gC =N- and R_kO -, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_7$, N_3 -, R_eS_7 , wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl,

nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -,

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O)2 R_c , -OO2, - OR_c , -N(O0) R_c , -C(O0) R_c , -C(O0) R_c , and -C(O0) R_c Rd;

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 $R_c \ and \ R_d, \ at each \ occurrence, \ are independently selected \ from the group \ consisting \ of \ hydrogen,$ $-NR_fR_h, \ -CO(R_f), \ -SR_f, \ -SO_2R_f, \ -C(O)NR_fR_h, \ -SO_2NR_fR_h, \ -C(O)OR_f, \ alkenyl, \ alkynyl, \ cycloalkyl, \ cycloalkyl, \ cycloalkenyl, \ cycloalkenyl, \ arylalkyl, \ haloalkyl, \ heteroaryl,$

heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSol_2

m is 0, 1, or 2; and n is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_kOC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 12. (original) The compound of claim 11 wherein R⁴ is hydroxy.
- 13. **(original)** The compound of claim 12 wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, R_fR_gC =N- and R_kO -.
- 14. **(original)** The compound of claim 10 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:

4-amino-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-b]pyridin-5(4H)-one;

- 6-(1,1-Dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(isobutylamino)thieno[3,2-*b*] pyridin-5(4*H*)-one;
 - 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-{[(3*S*)-3-methylcyclopentyl]amino}

thieno[3,2-b]pyridin-5(4H)-one;

- 4-{[1-cyclopropylethyl]amino}-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno [3,2-*b*]pyridin-5(4*H*)-one;
- 4-(butylamino)-6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-b]pyridin-5(4H)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-[(2-ethylbutyl)amino]-7-hydroxythieno[3,2-*b*] pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(pentylamino)thieno[3,2-b]pyridin-5(4H)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-methylbutyl)amino]thieno[3,2-*b*] pyridin-5(4*H*)-one;
- 4-[(3,3-dimethylbutyl)amino]-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno [3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-methylbenzyl)amino]thieno[3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(2-methylbenzyl)amino]thieno[3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(4-methylbenzyl)amino]thieno[3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-methylbut-2-enyl)amino]thieno [3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-(propylamino)thieno[3,2-b]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(pyridin-4-ylmethyl)amino]thieno [3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(pyridin-3-ylmethyl)amino]thieno [3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(pyridin-2-ylmethyl)amino]thieno [3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(3-methoxybenzyl)amino]thieno [3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-[(3-furylmethyl)amino]-7-hydroxythieno[3,2-*b*]pyridin-5(4*H*)-one;

- 3-({[6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-5-oxothieno[3,2-*b*]pyridin-4(5*H*)-yl]amino}methyl)benzonitrile;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(thien-3-ylmethyl)amino]thieno[3,2-*b*]pyridin-5(4*H*)-one;
- 4-(cyclobutylamino)-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-*b*] pyridin-5(4*H*)-one;
- 4-(benzylamino)-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-*b*]pyridin-5(4*H*)-one;
- 4-[(cyclohexylmethyl)amino]-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno [3,2-*b*]pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-[(1,3-thiazol-5-ylmethyl)amino] thieno[3,2-*b*]pyridin-5(4*H*)-one;
- 4-[(3-bromobenzyl)amino]-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-*b*]pyridin-5(4*H*)-one;
- 4-(cyclohexylamino)-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-*b*] pyridin-5(4*H*)-one;
- 4-(cyclopentylamino)-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-*b*] pyridin-5(4*H*)-one;
- 4-(cycloheptylamino)-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-*b*] pyridin-5(4*H*)-one;
- $6-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin-3-yl})-7-\text{hydroxy-4-}\{[(1R,3S)-3-\text{methylcyclohexyl}]$ aminothieno[3,2-b]pyridin-5(4H)-one;
- $6-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-7-\text{hydroxy}-4-\{[(1R,3R)-3-\text{methylcyclohexyl}] amino\}$ thieno[3,2-b]pyridin-5(4H)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-[(1-ethylpropyl)amino]-7-hydroxythieno[3,2-*b*] pyridin-5(4*H*)-one;
- 6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxy-4-{[1-phenylethyl]amino}thieno[3,2-*b*] pyridin-5(4*H*)-one;
- $6-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin-3-yl})-7-\text{hydroxy-4-}\{[(1R)-1-\text{methylbutyl}]\text{aminothieno} [3,2-b]\text{pyridin-5}(4H)-\text{one};$
- 4-(cyclobutylamino)-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno[3,2-*b*] pyridin-5(4*H*)-one;
 - 4-[(cyclopropylmethyl)amino]-6-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-7-hydroxythieno

[3,2-b]pyridin-5(4H)-one; and

2-({3-[4-(cyclohexylamino)-7-hydroxy-5-oxo-4,5-dihydrothieno[3,2-*b*]pyridin-6-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide.

15. (original) The compound of claim 1 of formula (IV)

$$\mathbb{R}^{4} \qquad \mathbb{N} \qquad \mathbb{N$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkynyl, aryl, arylalkenyl, arylalkenyl, arylsulfanylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ NRcalkyl-, R_fR_gC =N- and R_kO -, wherein R^1 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, aryla alkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -, R_aC

of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR $_{\rm c}$), -(alkyl)(NR $_{\rm c}$ R $_{\rm d}$), -SR $_{\rm c}$, -S(O)R $_{\rm c}$, -S(O) $_{\rm 2}$ R $_{\rm c}$, -OR $_{\rm c}$, -N(R $_{\rm c}$)(R $_{\rm d}$), -C(O)R $_{\rm c}$, -C(O)OR $_{\rm c}$ and -C(O)NR $_{\rm c}$ R $_{\rm d}$;

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O)- R_c , -S(O)- R_c , -S(O)- R_c , -OR, -N(R_c)(R_c), -C(O)OR, -C(O)OR, and -C(O)NR, R, ;

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f,

 $-C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO_2NR_fR_h, -N(R_e)C(O)NR_fR_h, -1kylN(R_e)C(O)OR_f, -1kylN(R_e)SO_2NR_fR_h, and -1kylN(R_e)C(O)NR_fR_h;$

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, –OH, -O(alkyl), -N(H)(alkyl), -N(alkyl), -S(alkyl), -S(o)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH2, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO2alkyl, -alkylN(alkyl)2, -N(H)C(O)NH2, -C(O)OH, -C(O)O(alkyl), -C(O)NH2, -C(O)NH2, -C(O)N(H)(alkyl), and -C(O)N(alkyl)2;

R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, R_aR_bNalkyl-, R_aOalkyl-, R_aR_bNC(O)-, R_aSO₂-, R_aSalkyl-, R_a(O)Salkyl-, R_aSO₂alkyl-, R_aOC(O)-,

 $R_aOC(O)$ alkyl-, $R_aC(O)$ -, $R_aC(O)$ alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

m is 0, 1, 2, 3, or 4; and n is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_kOC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 16. (original) The compound of claim 15 wherein R⁴ is hydroxy.
- 17. (original) The compound of claim 16 wherein R^1 is selected from the group consisting of R_aR_bN -, R_fR_gC =N- and R_kO -.
- 18. **(original)** The compound of claim 15 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[(1E)-phenylmethylene]amino}-2(1H)-quinolinone;

1-amino-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinone;

3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-propoxyquinolin-2(1*H*)-one;

1-(benzylamino)-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-vl)-4-hydroxyquinolin-2(1*H*)-one;

1-amino-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;

- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(1-propylbutyl)amino]quinolin-2(1H)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-[(1-ethylpropyl)amino]-4-hydroxyquinolin-2(1*H*)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(pentylamino)quinolin-2(1*H*)-one;

- 1-(cyclohexylamino)-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[(2-methyl-1,3-thiazol-4-yl)methyl] amino}quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(isopropylamino)quinolin-2(1*H*)-one;
- 1-(cyclobutylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one;
- 1-(cyclopentylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[3-methylcyclopentyl]amino} quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(tetrahydro-2*H*-pyran-4-ylamino) quinolin-2(1*H*)-one;
- $3-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-1-\{[1-\text{ethylbutyl}]\text{amino}\}-4-\text{hydroxyquinolin-}2(1H)-\text{one};$
- $3-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-4-\text{hydroxy}-1-\{[(3R)-3-\text{methylcyclohexyl}]\text{amino}\}$ quinolin-2(1*H*)-one;
- 1-(cycloheptylamino)-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-{[3-ethylcyclopentyl]amino}-4-hydroxyquinolin-2(1*H*)-one;
- $3-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-4-\text{hydroxy}-1-\{[1-\text{isopropylbutyl}]\text{amino}\}\text{quinolin}-2(1H)-\text{one};$
- $3-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-4-\text{hydroxy}-1-\{[1-\text{phenylethyl}]\text{amino}\}\text{quinolin}-2(1H)-\text{one};$
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[1-thien-3-ylethyl]amino}quinolin-2(1*H*)-one;
- 1-{[3,5-dimethylcyclohexyl]amino}-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(4-isopropylcyclohexyl)amino] quinolin-2(1*H*)-one;
 - 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[1,2,3,4-tetrahydronaphthalen-2-yl

amino]quinolin-2(1*H*)-one;

- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[3-(trifluoromethyl)cyclohexyl] amino}quinolin-2(1*H*)-one;
 - 1-(butylamino)-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(3-methylbutyl)amino]quinolin-2(1H)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-[(3-furylmethyl)amino]-4-hydroxyquinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-1-[(2-furylmethyl)amino]-4-hydroxyquinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(thien-2-ylmethyl)amino]quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(1,3-thiazol-2-ylmethyl)amino] quinolin-2(1*H*)-one;
- $3-(1,1-\text{dioxido}-4H-1,2,4-\text{benzothiadiazin}-3-\text{yl})-1-\{[(2R)-2-\text{ethyl}-3-\text{methylbutyl}]\text{amino}\}-4-\text{hydroxyquinolin}-2(1H)-\text{one};$
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(4-methylbenzyl)amino]quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(3-methylbenzyl)amino]quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(2-methylbenzyl)amino]quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-{[(3-methylthien-2-yl)methyl] amino}quinolin-2(1*H*)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(4-methoxybenzyl)amino]quinolin-2(1*H*)-one;
- $1-\{[(5-\text{chlorothien-}2-\text{yl})\text{methyl}]\text{amino}\}-3-(1,1-\text{dioxido-}4H-1,2,4-\text{benzothiadiazin-}3-\text{yl})-4-\text{hydroxy}$ quinolin-2(1*H*)-one;
- 1-{[(2-chloro-1,3-thiazol-5-yl)methyl]amino}-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1*H*)-one;
- 1-[(3-bromobenzyl)amino]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one;
 - 1-[(4-bromobenzyl)amino]-3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-

2(1H)-one;

- 1-[(2-bromobenzyl)amino]-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxyquinolin-2(1H)-one;
- 3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-[(pyridin-3-ylmethyl)amino] quinolin-2(1*H*)-one;
- 3-({[3-(1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2-oxoquinolin-1(2*H*)-yl]amino} methyl)benzonitrile;
- 2-({3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 2-({3-[1-(cyclopentylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 2-({3-[1-(cyclohexylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 2-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)oxy]acetamide;
- 2-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2-benzothiazin-7-yl}oxy)acetamide;
- 2-({3-[1-(butylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 2-[(3-{4-hydroxy-1-[(3-methylbutyl)amino]-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)oxy]acetamide;
- 3-(8-amino-7-hydroxy-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino) quinolin-2(1*H*)-one;
- 2-({8-amino-3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 2-({3-[4-hydroxy-2-oxo-1-(propylamino)-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)acetamide;
- 2-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)propanamide;
- 2-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)butanamide;
- 8-amino-3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl methanesulfonate;

```
U.S. Patent Application No. 10/699,513
Response to April 10, 2007 Office action
May 10, 2007
```

- 1-[(cyclopropylmethyl)amino]-4-hydroxy-3-(7-hydroxy-8-nitro-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-3-yl)quinolin-2(1*H*)-one;
- $3-(7-\{2-[(3S)-3-aminopyrrolidin-1-yl]-2-oxoethoxy\}-1,1-dioxido-4$ *H*-1,2,4-benzothiadiazin-3-yl)-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1*H*)-one;
- 2-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]-N-ethylacetamide;
- [(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]acetic acid;
- 3-{7-[2-(3-aminopyrrolidin-1-yl)-2-oxoethoxy]-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl}-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1H)-one;
- 3-(8-amino-7-hydroxy-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1H)-one;
- 2-[(8-amino-3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)oxy]acetamide;
- [(8-amino-3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]acetonitrile;
- 1-[(cyclopropylmethyl)amino]-4-hydroxy-3-[7-(2-hydroxyethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]quinolin-2(1H)-one;
- 1-[(cyclopropylmethyl)amino]-4-hydroxy-3-[7-(1H-imidazol-2-ylmethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]quinolin-2(1H)-one;
- 1-[(cyclopropylmethyl)amino]-3-[1,1-dioxido-7-(1,3-thiazol-2-ylmethoxy)-4H-1,2,4-benzothiadiazin-3-yl]-4-hydroxyquinolin-2(1H)-one;
- 1-[(cyclopropylmethyl)amino]-3-[7-(4,5-dihydro-1H-imidazol-2-ylmethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]-4-hydroxyquinolin-2(1H)-one;
- 2-{[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]methyl}-1,3-thiazole-4-carbonitrile;
- 3-[7-(2-aminoethoxy)-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl]-1-[(cyclopropylmethyl)amino] -4-hydroxyquinolin-2(1H)-one;
- N-{2-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)oxy]ethyl}methanesulfonamide;
- 3-{7-[(5-bromopyridin-2-yl)oxy]-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl}-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
 - 4-hydroxy-1-(isobutylamino)-3-{7-[(3-nitropyridin-2-yl)oxy]-1,1-dioxido-4H-1,2,4-

benzothiadiazin-3-yl}quinolin-2(1H)-one;

tert-butyl 3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-ylcarbamate;

3-(7-amino-1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-[(cyclopropylmethyl)amino]-4-hydroxyquinolin-2(1H)-one;

methyl 2-chloro-6-({3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}oxy)isonicotinate;

N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl} methanesulfonamide;

N-(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl)methanesulfonamide;

N-(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)methanesulfonamide;

2-{[3-(1-amino-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]oxy}acetamide;

N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}ethanesulfonamide;

benzyl 3-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}diazathiane-1-carboxylate 2,2-dioxide;

N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}-N-methylsulfamide; and

N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}sulfamide.

19. (original) The compound of claim 1 wherein:

A is heteroaryl; and

R² and R³, together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl, pyrimidinyl, pyridazinyl, thienyl, furanyl, pyrrolyl, pyrazolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, triazolyl, thiadiazolyl, tetrazolyl, cyclopentyl and cyclohexyl.

20. (original) The compound of claim 19 wherein A is thienyl.

- 21. (original) The compound of claim 20 wherein R² and R³ together with the carbon atoms to which they are attached form a phenyl ring.
 - 22. (original) The compound of claim 1 of formula (Va)

$$\mathbb{R}^{4} \qquad \mathbb{N} \qquad \mathbb{N}^{5}$$

$$\mathbb{R}^{6} \qquad \mathbb{N} \qquad \mathbb{N}$$

$$\mathbb{N} \qquad \mathbb{N}$$

$$\mathbb{$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN- , $R_aR_bNalkyl-$, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, calkyl-, calkyl-

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, aryla aryla aryla aryla aryla aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N($

arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), - SR_c , - $S(O)R_c$, - $S(O)_2R_c$, - OR_c , - OR_c , - OR_c), - OR_c

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)R_a$, - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k , - OR_k , - OR_k), wherein each OR_k is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - $OR_$

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O)-, -S(O)-, -S(O)-, -OR, -N(O)-, -C(O)-, -

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -CO(R_f), -SR_f, -SOR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h,

 $-alkylN(R_e)C(O)OR_f, -alkylN(R_e)SO_2NR_fR_h, \ and \ -alkylN(R_e)C(O)NR_fR_h; \\$

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 $R_{\rm f}, R_{\rm g}$ and $R_{\rm h}$, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each $R_{\rm f}, R_{\rm g}$ and $R_{\rm h}$ is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, $R_{\rm f}$ and $R_{\rm g}$ together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkyl-OH, -alkyl-O

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSo_2 -, R_aSo_2 -, R_aSo_2 -, R_aSo_2 -, R_aSo_2 -, R_aSo_3 -,

independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d; and

m is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_kOC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 23. (original) The compound of claim 22 wherein R⁴ is hydroxy.
- 24. **(original)** The compound of claim 23 wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, R_fR_gC =N- and R_kO -.
 - 25. (original) The compound of claim 1 of formula (Vb)

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle,

heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ NR_calkyl-, R_fR_gC =N- and R_kO -, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)R_a$, - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k , - OR_k , - OR_k), wherein each OR_k is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - $OR_$

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkyl, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ alkyl-, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl,

haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), - SR_c , - $SO()_2R_c$, -S

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, $-NR_fR_h$, $-OR_f$, $-CO(R_f)$, $-SR_f$, $-SO_2R_f$, $-C(O)NR_fR_h$, $-SO_2NR_fR_h$, $-C(O)OR_f$, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, $-(alkyl)(OR_f)$, $-(alkyl)(NR_fR_h)$, $-SR_f$, $-S(O)R_f$, $-S(O)_2R_f$, $-OR_f$, $-N(R_f)(R_h)$, $-C(O)R_f$, $-C(O)NR_fR_h$, $-C(O)N(H)NR_fR_h$, $-N(R_e)C(O)OR_f$, $-N(R_e)SO_2NR_fR_h$, $-N(R_e)C(O)NR_fR_h$, $-alkylN(R_e)C(O)OR_f$, $-alkylN(R_e)C(O)NR_fR_h$, and $-alkylN(R_e)C(O)NR_fR_h$;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 $R_{\rm f}$, $R_{\rm g}$ and $R_{\rm h}$, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each $R_{\rm f}$, $R_{\rm g}$ and $R_{\rm h}$ is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl

-alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSol_2

m is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is hydroxy or R_eS -, and R^5 is hydrogen, unsubstituted alkyl, halo or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 26. (original) The compound of claim 25 wherein R⁴ is hydroxy.
- 27. **(original)** The compound of claim 26 wherein R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkyl, formylalkyl,

- U.S. Patent Application No. 10/699,513 Response to April 10, 2007 Office action May 10, 2007
- haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN c(O)alkyl-, R_fR_gC =N- and R_k O-.
- 28. **(original)** The compound of claim 21 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- N-({3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-thieno [2,3-e][1,2,4]thiadiazin-7-yl}methyl)urea;
- 1-benzyl-4-hydroxy-3-{7-[(methoxymethoxy)methyl]-1,1-dioxido-4*H*-thieno[2,3-*e*][1,2,4] thiadiazin-3-yl}quinolin-2(1*H*)-one;
- 1-Benzyl-4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido-4*H*-thieno[2,3-*e*][1,2,4]thiadiazin-3-yl] quinolin-2(1*H*)-one;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxylic acid 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-*N*-(2-hydroxyethyl)-4*H*-thieno[2,3-*e*] [1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-2-hydroxy-1-(aminocarbonyl) ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- N-(2-amino-2-oxoethyl)-3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-2-hydroxy-1-methylethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N,N-bis(2-hydroxyethyl)-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxy-1-(hydroxymethyl)ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- $1-benzyl-4-hydroxy-3-(7-\{[(3R)-3-hydroxypyrrolidin-1-yl]carbonyl\}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl)quinolin-2(1H)-one;$
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-(3-hydroxypropyl)-4H-thieno[2,3-e] [1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(2S)-2,3-dihydroxypropyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
 - 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxymethyl)propyl]-4H-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxy-2-oxo-1,2-dih

- thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-1-(hydroxymethyl)-2-methyl propyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxybutyl]-4H-thieno[2,3-e] [1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxy-2-(4-hydroxyphenyl) ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 1-benzyl-3-[1,1-dioxido-7-(piperazin-1-ylcarbonyl)-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-4-hydroxyquinolin-2(1H)-one;
- N-[5-(aminocarbonyl)pyridin-2-yl]-3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- [3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4*H*-thieno[2,3-*e*][1,2,4] thiadiazin-7-yl]methyl carbamate;
- [3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4*H*-thieno[2,3-*e*][1,2,4] thiadiazin-7-yl]methyl aminocarbonylcarbamate;
- 3-[7-(azidomethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1-benzyl-4-hydroxy quinolin-2(1H)-one;
- 3-[7-(aminomethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1-benzyl-4-hydroxy quinolin-2(1H)-one;
- $N-\{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yl] methyl\} methanesulfonamide;$
- N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yl]methyl}nicotinamide;
- N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yl]methyl}morpholine-4-carboxamide;
- $N-\{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yl]methyl\}-2-hydroxyacetamide;$
- 1-[(cyclopropylmethyl)amino]-4-hydroxy-3-{7-[(methoxymethoxy)methyl]-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl}quinolin-2(1H)-one;
- 1-[(cyclopropylmethyl)amino]-4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido-4H-thieno[2,3-e] [1,2,4]thiadiazin-3-yl]quinolin-2(1H)-one;
- N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]methanesulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]ethanesulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]propane-1-sulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]propane-2-sulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]benzenesulfonamide; and

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]-1-phenylmethanesulfonamide.

29. (original) The compound of claim 20 wherein R² and R³, together with the carbon atoms to which they are attached form a pyridyl ring.

30. (original) The compound of claim 1 of formula (VIa)

$$\begin{array}{c|c}
R^4 & N \\
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N \\
N & N
\end{array}$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkynyl, aryl, arylalkenyl, arylalkyl, arylsulfanylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl) alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ NRcalkyl-, R_fR_gC =N- and R_kO -, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -, R_a

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 $R_a \ and \ R_b, \ at \ each \ occurrence, \ are \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen, \ alkenyl, \ alkyl, \ alkylsulfanylalkyl, \ arylalkenyl, \ arylalkyl, \ cycloalkyl, \ cycloalkyl, \ cycloalkyl, \ cycloalkyl, \ cycloalkyl, \ heteroarylalkyl, \ haloalkyl, \ heteroaryl, \ heteroarylalkenyl, \ heteroarylalkyl, \ heterocycle, \ heterocyclealkenyl, \ heterocyclealkyl, \ hydroxyalkylcarbonyl, \ nitroalkyl, \ R_cR_dN-, R_kO-. R_kOalkyl-, R_cR_dNalkyl-, R_cR_dNC(O)alkyl-, R_cSO_2-, \ R_cSO_2alkyl-, R_cC(O)-, R_cC(O)alkyl-, R_cOC(O)-, R_cOC(O)alkyl-, R_cR_dNalkylC(O)-, R_cR_dNC(O)-, \ R_cR_dNC(O)N(R_e)alkyl-, \ wherein \ R_a \ and \ R_b \ are \ substituted \ with \ 0, \ 1 \ or \ 2 \ substituents \ selected \ from \ the \ group \ consisting \ of \ alkyl, \ alkenyl, \ alkynyl, \ oxo, \ halo, \ cyano, \ nitro, \ haloalkyl, \ haloalkoxy, \ aryl, \ heteroaryl, \ heterocycle, \ arylalkyl, \ heteroarylalkyl, \ alkoxyalkoxyalkyl, \ -(alkyl)(OR_c), \ -(alkyl)(NR_cR_d), \ -SR_c, \ -S(O)R_c, \ -S(O)_2R_c, \ -OR_c, \ -N(R_c)(R_d), \ -C(O)R_c, \ -C(O)OR_c \ and \ -C(O)NR_cR_d;$

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl,

 $\label{eq:control_equation} $$ haloalkoxy, aryl, heteroaryla, heteroarylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO_2NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;$

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each

of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, –OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSO_2 -, $R_aSolkyl$ -, $R_a(O)$ -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -, $R_aC(O)$ -, $R_aC(O)$ -, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), - SR_c , - $S(O)R_c$, - $S(O)_2R_c$, - OR_c , - $N(R_c)(R_d)$, - $C(O)R_c$, - $C(O)OR_c$ and - $C(O)NR_cR_d$; and

m is 0, 1, 2, 3, or 4;

with the proviso that R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_kOC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroarylalkenyl, heteroarylalkenyl, heterocyclealkyl, heterocyclealkyl, heterocyclealkyl,

- 31. (original) The compound of claim 30 wherein R⁴ is hydroxy.
- 32. **(original)** The compound of claim 31 wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, R_fR_gC =N- and R_kO -.

33. (original) The compound of claim 1 of formula (VIb)

$$\begin{array}{c|c} & & & & \\ & &$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, cycloalkyl, arylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl) alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, $R_aR_bNalkyl$ -, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ ONR $_c$ alkyl-, R_fR_gC =N- and R_kO -, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR $_c$), -(alkyl)(NR $_c$ R $_e$), -SR $_c$, -S(O)R $_c$, -S(O) $_2$ R $_c$, -OR $_c$, -N(R $_c$)(R $_e$), -C(O)R $_c$, -C(O)OR $_c$ and -C(O)NR $_c$ R $_e$;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, R_aR_bN

R⁶ is independently selected at each occurrence from the group consisting of alkyl, alkenyl,

alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k , - OR_k , - OR_k), wherein each OR_k is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - OR_a ,

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cC(O)$ -, $R_cC(O)$ -, $R_cC(O)$ -, $R_cC(O)$ -, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O)- R_c , -S(O)- R_c , -O(R_c , -O(R_c), -C(O)- R_c , -C(O)OR, and -C(O)NR, R_c , -S(R_c)-S(R_c , -S(R_c)- R_c , -O(R_c , -N(R_c)(R_c), -C(R_c)-C(R_c , -C(R_c)-C(R_c

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkylN(R_e)C(O)OR_f, -alkylN(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the

heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 $R_{\rm f}$, $R_{\rm g}$ and $R_{\rm h}$, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each $R_{\rm f}$, $R_{\rm g}$ and $R_{\rm h}$ is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSol_2 -,

-C(O)NR_cR_d; and

m is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is hydroxy or R_eS -, and R^5 is hydrogen, unsubstituted alkyl, halo or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 34. (original) The compound of claim 33 wherein R⁴ is hydroxy.
- 35. **(original)** The compound of claim 34 wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, R_fR_gC =N- and R_kO -.
- 36. **(original)** The compound of claim 29 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:

1-butyl-4-hydroxy-3- $\{7-[(methoxymethoxy)methyl]-1,1-dioxido-4H-thieno[2,3-e][1,2,4]$ thiadiazin-3-yl $\}$ -1,8-naphthyridin-2(1H)-one;

1-butyl-4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1,8-naphthyridin-2(1H)-one;

methyl 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl)-4*H*-thieno[2,3-*e*][1,2,4] thiadiazine-7-carboxylate 1,1-dioxide;

4-hydroxy-3- $\{7-[(methoxymethoxy)methyl]-1,1-dioxido-4$ *H*-thieno[2,3-*e* $][1,2,4]thiadiazin-3-yl}-1-(3-methylbutyl)-1,8-naphthyridin-2(1$ *H*)-one; and

4-hydroxy-3-[7-(hydroxymethyl)-1,1-dioxido- 4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one.

37. (original) The compound of claim 19 wherein A is pyridyl.

38. (original) The compound of claim 1 of formula (VII)

$$\mathbb{R}^{4} \qquad \mathbb{N} \qquad \mathbb{N$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-,

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, R

R⁶ is independently selected at each occurrence from the group consisting of alkyl, alkenyl,

alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - OR_k , - OR_k , - OR_k), - OR_k , - OR_k , - OR_k , - OR_k), wherein each OR_k is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - OR_a ,

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cC(O)$ -, $R_cC(O)$ -, $R_cC(O)$ -, $R_cC(O)$ -, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O)- R_c , -S(O)- R_c , -O(R_c , -O(R_c), -C(O)- R_c , -C(O)OR, and -C(O)NR, R_c , -S(R_c)-S(R_c , -S(R_c)- R_c , -O(R_c , -N(R_c)(R_c), -C(R_c)-C(R_c , -C(R_c)-C(R_c

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkylN(R_e)C(O)OR_f, -alkylN(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the

heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSol_2 -,

-C(O)NR_cR_d; m is 0, 1, 2, 3, or 4; and n is 0, 1, 2, 3 or 4;

with the proviso that when R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_kOC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl.

- 39. (original) The compound of claim 38 wherein R⁴ is hydroxy.
- 40. **(original)** The compound of claim 39 wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, R_fR_gC =N- and R_kO -.
- 41. (original) The compound of claim 37 wherein R^2 and R^3 , together with the carbon atoms to which they are attached, form a pyridyl ring.
 - 42. (original) The compound of claim 41 wherein R⁴ is hydroxy.
- 43. **(original)** The compound of claim 42 whererin R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkenyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, R_fR_gC =N- and R_kO -.

44. (original) The compound of claim 1 having formula (I),

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocycle;

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, R_aR_bN C(O)alkyl-, R_aR_bN C(O)Oalkyl-, R_aR_bN C(O)NRcalkyl-, R_fR_gC =N- and R_k O-, wherein R^1 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, R_eS_- , wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl,

nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -,

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O)- R_c , -S(O)- R_c , -OR $_c$, -OR $_c$, -N(R_c)(R_c), -C(O)OR $_c$, and -C(O)NR $_c$ Rd;

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, $R_aSalkyl$ -, $R_a(O)Salkyl$ -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -, $R_aOC(O)$ -, $R_aC(O)$ -, $R_aC(O)$ -, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro,

```
U.S. Patent Application No. 10/699,513
Response to April 10, 2007 Office action
May 10, 2007
```

 $\label{eq:control_equation} $$ haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)_2R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d; and -$

n is 0, 1, 2, 3, or 4.

45. **(original)** The compound of claim 44 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-pyridinone;

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-5,6-dimethyl-2(1H)-pyridinone;

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-6-methyl-5-phenyl-2(1H)-pyridinone;

3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-5,6-dimethyl-1-(3-methylbutyl)-2(1H)-pyridinone;

3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(2-ethylbutyl)-4-hydroxy-5,6-dimethyl-2(1H)-pyridinone;

1-benzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-6-phenyl-2(1H)-pyridinone;

1,5-dibenzyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-6-methyl-2(1H)-pyridinone;

3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-1-(2-ethylbutyl)-4-hydroxy-6-methyl-5-phenyl-2(1H)-pyridinone;

1-butyl-3-(1,1-dioxido-4H-1,2,4-benzothiadiazin-3-yl)-2(1H)-pyridinone;

N-{3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydropyridin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}methanesulfonamide;

N-[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydropyridin-3-yl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl] methanesulfonamide;

N-[3-(4-hydroxy-2-oxo-1,2-dihydro-3-pyridinyl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl] methanesulfonamide;

N-[3-(4-hydroxy-1-isopentyl-5,6-dimethyl-2-oxo-1,2-dihydro-3-pyridinyl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]methanesulfonamide;

benzyl 3-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro-3-pyridinyl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]diazathiane-1-carboxylate 2,2-dioxide;

N-[3-(4-hydroxy-1-isopentyl-2-oxo-1,2-dihydro-3-pyridinyl)-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl]sulfamide;

- *N*-{3-[1-(cyclobutylmethyl)-4-hydroxy-2-oxo-1,2-dihydro-3-pyridinyl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl}methanesulfonamide;
- *N*-{3-[5-bromo-1-(cyclobutylmethyl)-4-hydroxy-2-oxo-1,2-dihydro-3-pyridinyl]-1,1-dioxido-4*H*-1,2,4-benzothiadiazin-7-yl} methanesulfonamide; and
- N-[3-(4-hydroxy-1-isopentyl-2-oxo-5-vinyl-1,2-dihydro-3-pyridinyl)-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl]methanesulfonamide.
- 46. (original) The compound of claim 1 wherin R² and R³, together with the carbon atoms to which they are attached, form a cycloalkyl ring.
- 47. (original) The compound of claim 1 wherin R^2 and R^3 , together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of thienyl, furanyl, pyrrolyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, oxadiazolyl, triazolyl, thiadiazolyl, tetrazolyl, phenyl, pyridyl, pyridazinyl and pyrimidinyl; wherein said ring is optionally substituted with $(R^6)_m$; wherein

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$; and m is 0, 1, 2, 3 or 4.

- 48. (original) The compound of claim 47 wherein R⁴ is hydroxy.
- 49. **(original)** The compound of claim 1 wherein R^4 is hydroxy, halo, -NH₂,-NH(alkyl), -N(alkyl)₂, -N(H)NH₂, -N₃, -N(H)(hydroxyalkyl), or R_cS -.
- 50. **(original)** The compound of claim 1 wherein A is a bicyclic ring selected from the group consisting of heterocycle and heteroaryl.
- 51. **(original)** The compound of claim 50 wherein A is selected from the group consisting of naphthyl, indolizinyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, indazolyl, benzimidazolyl, benzothiazolyl, benzosazolyl, benzosazolyl, benzothiadiazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl and naphthyridinyl, cinnolinyl and pteridinyl.

52. (original) The compound of claim 1 of formula (VIII)

$$\begin{array}{c|c}
R^4 & N & X \\
R^3 & N & N \\
R^2 & N & N \\
R & N & N \\
N & N & N \\
N$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

X is NH, N(alkyl), O or S.

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, cycloalkyl, arylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl) alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, R_aR_bN C(O)alkyl-, R_aR_bN C(O)Oalkyl-, R_iR_g C=N- and R_k O-, wherein R^1 is substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), -SR_a, -S(O)R_a, -S(O)₂R_a, -OR_k, -N(R_a)(R_b), -C(O)R_a, -C(O)OR_a and -C(O)NR_aR_b; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, -OR_a, -NR_aR_b, -SR_a, -SOR_a, -SO₂R_a, -C(O)OR_a, -C(O)NR_aR_b and -NC(O)R_a;

 R^7 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_$

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cC(O)$ alkyl-, $R_cR_dNC(O)$ -, $R_cR_dNC($

selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkylN(R_e)C(O)OR_f, -alkylN(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$,

-alkyl-OH, -alkyl-O-alkyl, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, $R_aSalkyl$ -, $R_a(O)$ -Salkyl-, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -, $R_aC(O)$ -, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

m is 0, 1, 2, 3, or 4; and n is 0, 1 or 2.

- 53. (original) The compound of claim 52 wherein R^2 and R^3 , together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$.
- 54. **(original)** The compound of claim 53 wherein R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl pyridazinyl, pyrimidinyl, pyrazolyl, cyclopentyl, cyclohexyl and thienyl.

- 55. (original) The compound of claim 54 wherein R⁴ is hydroxy.
- 56. **(original)** The compound of claim 55 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 3-(1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[8-(chloromethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-{3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-[1,3] oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl}propanoic acid;
- 3-(8-{[(2-aminoethyl)amino]methyl}-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- methyl {3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-[1,3] oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl}acetate;
- 4-hydroxy-3-(8-{[(3R)-3-hydroxypyrrolidin-1-yl]methyl}-1,1-dioxido-4H-[1,3]oxazolo[5,4-h] [1,2,4]benzothiadiazin-3-yl)-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[1,1-dioxido-8-(pyridinium-1-ylmethyl)-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-4-olate;
- 3-[1,1-dioxido-8-(pyrrolidin-1-ylmethyl)-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[8-(3-aminophenyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[8-(aminomethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 4-hydroxy-3-[8-(hydroxymethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-1-(isobutylamino)quinolin-2(1H)-one;
- 3-{8-[(butylamino)methyl]-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl}-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[9-(butylamino)-1,1-dioxido-4H,8H-[1,4]oxazino[2,3-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4] benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
- 3-[1,1-dioxido-8-(trifluoromethyl)-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;

- U.S. Patent Application No. 10/699,513 Response to April 10, 2007 Office action May 10, 2007
- 4-hydroxy-3-(8-hydroxy-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl)-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4] benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
- 3-[1,1-dioxido-8-(pentafluoroethyl)-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 3-[8-(chloromethyl)-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- {3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetonitrile;
- methyl {3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetate;
- 3-(9,9-dioxido-6H-[1,2,5]thiadiazolo[3,4-h][1,2,4]benzothiadiazin-7-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 3-(8-amino-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one; and
- 4-hydroxy-3-[8-(hydroxymethyl)-1,1-dioxido-4,9-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one.
- 57. **(original)** N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl} methanesulfonamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 58. **(original)** N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]methanesulfonamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 59. **(original)** N-(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)methanesulfonamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 60. **(original)** N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}sulfamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.

- 61. **(original)** N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}-N'-methylsulfamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 62. **(original)** A pharmaceutical composition comprising a therapeutically effective amount of a compound or combination of compounds of any one of claims 1, 57, 58, 59, 60 and 61, and a pharmaceutically acceptable carrier.
- 63. **(original)** The pharmaceutical composition of claim 62 further comprising one or more agents selected from the group consisting of a host immune modulator and a second antiviral agent, or combination thereof.
- 64. **(original)** The pharmaceutical composition of claim 63 wherein the host immune modulator is selected from the group consisting of interferon-alpha, pegylated-interferon-alpha, interferon-beta, interferon-gamma, a cytokine, a vaccine and a vaccine comprising an antigen and an adjuvant.
- 65. **(original)** The pharmaceutical composition of claim 63 wherein the second antiviral agent inhibits replication of HCV by inhibiting host cellular functions associated with viral replication.
- 66. **(original)** The pharmaceutical composition of claim 63 wherein the second antiviral agent inhibits the replication of HCV by targeting proteins of the viral genome.
- 67. **(original)** The pharmaceutical composition of claim 62 further comprising an agent or combination of agents that treat or alleviate symptoms of HCV infection including cirrhosis and inflammation of liver.
- 68. **(original)** The pharmaceutical composition of claim 62 further comprising one or more agents that treat patients for disease caused by hepatitis B (HBV) infection.
- 69. **(original)** The pharmaceutical composition of claim 68 wherein the agent that treats patients for disease caused by hepatitis B (HBV) infection is selected from the group consisting of L-deoxythymidine, adefovir, lamivudine and tenfovir.
- 70. (original) The pharmaceutical composition of claim 62 further comprising one or more agents that treat patients for disease caused by human immunodeficiency virus (HIV) infection.

- 71. **(original)** The pharmaceutical composition of claim 70 wherein the agent that treats patients for disease caused by human immunodeficiency virus (HIV) infection is selected from the group consisting of ritonavir, lopinavir, indinavir, nelfinavir, saquinavir, amprenavir, atazanavir, tipranavir, TMC-114, fosamprenavir, zidovudine, lamivudine, didanosine, stavudine, tenofovir, zalcitabine, abacavir, efavirenz, nevirapine, delavirdine, TMC-125, L-870812, S-1360, enfuvirtide (T-20) and T-1249, or any combination thereof.
- 72. (withdrawn) A method of treating or preventing infection caused by an RNA-containing virus comprising administering to a patient in need of such treatment a pharmaceutical composition of any one of claims 62, 63, 64, 65, 66, 67, 68, 69, 70 and 71.
- 73. (withdrawn) A method of inhibiting the replication of an RNA-containing virus comprising contacting said virus with a therapeuctially effective amount of a compound or combination of compounds of any one of claims 1, 57, 58, 59, 60 and 61.
- 74. (withdrawn) A method of treating or preventing infection caused by an RNA-containing virus comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound or combination of compounds of any one of claims 1, 57, 58, 59, 60 and 61.
 - 75. (withdrawn) The method of claim 72 wherein the RNA-containing virus is hepatitis C virus.

76-84. (canceled)

85. (withdrawn) A process for the preparation of a compound of formula (I)

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocycle;

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl

arylalkenyl, arylalkyl, arylsulfanylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, arylsulfonylalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, R_fR_gC =N- and R_kO -, wherein R^1 is independently substituted with 0, 1, 2 or 3 substituents independently_selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_e), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_e), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_e;

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, R_eS -, wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, R_aR_bN

R⁶ is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl,

heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 $R_a \ and \ R_b, \ at each occurrence, \ are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, <math>R_cR_dN^c$, R_kO^c , R_kO

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents

independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSO_2 -, R_aSol_2 -,

m is 0, 1, 2, 3, or 4; and n is 0, 1, 2, 3, or 4;

with the proviso that when A is a monocyclic ring other than

and R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, R

and with the further proviso that when A is

and R^4 is hydroxy or R_eS -, and R^5 is hydrogen, unsubstituted alkyl, halo or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl; comprising:

(a) contacting a compound of formula (26)

$$R^3$$
 R^2
 N
 R^1
 (26)

with carbon disulfide and a methylating agent in the presence of a base to provide a compound of formula (27)

$$R^3$$
 R^3
 R^2
 R^3
 R^2
 R^1
 R^3
 R^3

(b) contacting the compound of formula (27) with a compound of formula (13)

$$(R^5)_n$$
 SO_2NH_2
 NH_2 (13).

86. (withdrawn) A process for the preparation of a compound of formula (I),

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocycle;

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, haloalkoxyalkyl, cycloalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-

R² and R³ are independently selected from the group consisting of hydrogen, alkenyl, alkynyl,

alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, R_eS_- , wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -, $R_aSO_2N(R_f)$ -, $R_aC(O)$ -

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, R_cR_dN C(O)alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cC(O)$ -, $R_cC(O)$ -,

 $R_cR_dNC(O)Oalkyl$ -, $R_cR_dNC(O)N(R_e)alkyl$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), -SR_c, -S(O)R_c, -S(O)R_c, -OR_c, -N(O)R_c, -C(O)OR_c, -C(O)OR_c and -C(O)NR_cR_d;

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

R_f, R_g and R_h, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f, R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl,

heteroarylalkyl, –OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(O)(alkyl), -SO₂alkyl, -alkyl-OH, -alkyl-O-alkyl, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, R_aR_b Nalkyl-, R_a Oalkyl-, R_a Oalkyl-, R_aR_b NC(O)-, R_aR_b NC(O)alkyl, R_aS -, R_aS (O)-, R_aSO_2 -, R_aS alkyl-, R_a (O)Salkyl-, R_aSO_2 alkyl-, R_aOC (O)-, R_aOC (O)alkyl-, R_aC (O)-, R_aC (O)alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

m is 0, 1, 2, 3, or 4; and n is 0, 1, 2, 3, or 4;

with the proviso that when A is a monocyclic ring other than

and R^4 is alkoxy, aryloxy, hydroxy or R_eS -, and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNC(O)$ -, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$,

 $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl;

and with the further proviso that when A is

and R^4 is hydroxy or R_eS -, and R^5 is hydrogen, unsubstituted alkyl, halo or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl; comprising:

(a) contacting a compound of formula (26)

$$R^3$$
 R^2
 N
 R^1
 (26)

with tris(methylthio)methyl methyl sulfate in the presence of a base to provide a compound of formula (27)

$$R^3$$
 R^3
 R^2
 R^1
 R^1
 R^1
 R^3
 R^3

(b) contacting the compound of formula (27) with a compound of formula (13)

$$(R^5)_n$$
 SO_2NH_2
 NH_2
(13).

87. (withdrawn) A compound having formula (IX),

$$R^3$$
 R^3
 R^{11}
 R^{11}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}

or a pharmaceutically acceptable salt form, tautomer or stereoisomer thereof, wherein

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxyarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl) alkyl, cycloalkyl) alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, $R_aR_bNalkyl$ -, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ Oalkyl-, $R_aR_bNC(O)$ NR $_c$ alkyl-, R_fR_gC =N- and R_kO -, wherein R^1 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR $_c$), -(alkyl)(NR $_c$ R $_e$), -SR $_c$, -S(O)R $_c$, -S(O) $_2$ R $_c$, -OR $_c$, -N(R $_c$)(R $_e$), -C(O)R $_c$, -C(O)OR $_c$ and -C(O)NR $_c$ R $_e$;

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cR_dNC(O)$ alkyl-, $R_cC(O)$ -, $R_cR_dNC(O)$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c , -S(O)-, OR_c , -S(O)-, OR_c , -OR, -N(OR_c), -C(OR_c , -C(OR_c , and -C(OR_c)-R, -(alkyl)(OR_c), -C(OR_c , -C(OR_c)-

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, -N(R_e)C(O)NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_f , R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, $R_aSalkyl$ -, $R_a(O)$ -Salkyl-, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -, $R_aC(O)$ -, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

m is 0, 1, 2, 3, or 4; and

R¹¹ and R¹² are independently selected from the group consisting of alkyl, alkenyl and alkynyl.

88. **(withdrawn)** The compound of claim 87, or a pharmaceutically acceptable salt form, tautomer or stereoisomer thereof selected from the group consisting of:

- 1-benzyl-3-(bis(methylthio)methylene)-1H-quinoline-2,4(1*H*,3*H*)-dione;
- 3-[bis(methylthio)methylene]-1-butyl-1,8-naphthyridine-2,4(1*H*,3*H*)-dione;
- 3-[bis(methylthio)methylene]-1-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)quinoline-2,4(1H,3H)-dione;
 - 3-[bis(methylthio)methylene]-1-[(cyclopropylmethyl)amino]quinoline-2,4(1H,3H)-dione;
 - 3-[bis(methylthio)methylene]-1-(3-methylbutyl)pyridine-2,4(1*H*,3*H*)-dione;
 - 1-benzyl-3-[bis(methylthio)methylene]pyridine-2,4(1*H*,3*H*)-dione;
 - 3-[bis(methylthio)methylene]-1-(cyclobutylamino)quinoline-2,4(1H,3H)-dione; and
 - 3-[bis(methylthio)methylene]-1-(cyclobutylmethyl)pyridine-2,4(1*H*,3*H*)- dione.
- 89. (previously presented) The compound, salt, stereoisomer or tautomer of claim 1, wherein said compound comprises a core ring selected from Table 1, and each Y¹, Y², Y³ or R¹ on said core ring is independently selected at each occurrence from Table 3, Table 3, Table 4 or Table 2, respectively.
- 90. (previously presented) The compound, salt, stereoisomer or tautomer of claim 1, wherein R¹ is R_aR_bN-, and R² and R³, together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, and wherein R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl.
- 91. (previously presented) The compound, salt, stereoisomer or tautomer of claim 25, wherein R⁵ is R_aSO₂N(R_f)alkyl-, and R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl.
- 92. (**previously presented**) The compound, salt, stereoisomer or tautomer of claim 25, wherein R¹ is R_aR_bN-, and R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl,

heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl.