Reading Report

2019.5.20

1 Towards Principled Methods for Training

1.1 prove the instability and saturation when training GAN

图 1: GAN

Steps

There are 3 major steps in the training:

1.use the generator to create fake inputs based on noise

2.train the discriminator with both real and fake inputs

3.train the whole model: the model is built with the discriminator chained to the generator.

generator

The Generator G is used to approximate the actually generate distribution.

1. Given : $z \sim P(z)$, P(z) is a given prior;

2.Parameters : Σ_g

3.Mathematic: using $G(z, \Sigma_g)$ got $x \sim p_g$

Discriminator

The discriminator D is used to discriminate x (from empirical distribution or generative distribution)

1. Given :(1) x from real image; (2) x by generator G

2.Output: a scalar the probability of x from true data distribution.

Loss

$$\min_{G} \max_{D} V(D,G) = E_{x \sim P_{data}(x)}[logD(x)] + E_{z \sim P(z)}[log(1 - D(G(z)))]$$

Theoretical Results

Global Optimality of $P_g = P_{data}$

We first consider the optimal discriminator D for any given generator G

Proposition 1

For G fixed, the optimal discriminator D is :

$$D_G^*(x) = \frac{P_{data}(x)}{P_{data}(x) + P_g(x)}$$

Proof

the training criterion for the discriminator D, given any generator G, is to maximize the quantity V(G,D):

$$\begin{split} V(G,D) &= \int_{x} P_{data}(x)log(D(x))dx + \int_{z} P_{z}(z)log(1-D(g(z)))dz \\ &= \int_{x} P_{data}(x)log(D(x)) + P_{g}(x)log(1-D(x))dx \end{split} \tag{1}$$

For $\forall (a,b) \in \mathbb{R}^2 \setminus 0$, the function alogy + blog(1-y) achieves its maximum in [0,1] at $\frac{a}{a+b}$ notes

The training objective for D can be interpreted as maximizing the log-likelihood for estimating the conditional probability $P(Y = y \mid x)$, where Y indicates whether x comes from $P_{data}(with \ y = 1)$ or from $P_g(with \ y = 0)$. define

$$C(G) = \max_{D} V(G, D)$$

$$= E_{x \sim P_{data}}[log D_{G}^{*}(x)] + E_{z \sim P_{z}}[log (1 - D_{G}^{*}(z)))]$$

$$= E_{x \sim P_{data}}[log D_{G}^{*}(x)] + E_{x \sim P_{g}}[log (1 - D_{G}^{*}(z)))]$$

$$= E_{x \sim P_{data}}[log \frac{P_{data}(x)}{P_{data}(x) + P_{g}(x)}] + E_{x \sim P_{g}}[log \frac{P_{g}(x)}{P_{data}(x) + P_{g}(x)}]$$
(2)

Theorem 1

The global minimum of the virtual training criterion C(G) is achieved if and only if $P_g = P_{data}At$ that point, C(G) achieves the value -log4.

For $P_g = P_{data}, D_g^* = \frac{1}{2}$ it is easy to compute that C(G) = -log4 we can also get:

$$C(G) = -log4 + KL(P_{data} \parallel \frac{P_{data} + P_g}{2}) + KL(P_g \parallel \frac{P_{data} + P_g}{2})$$

Use Jensen–Shannon divergence we get:

$$C(G) = -log4 + 2 JSD(P_{data} \parallel P_q)$$

where Jensen-Shannon divergence is always non-negative, and zero if they are equal.

1.2 GAN by Example using Keras on Tensorflow Backend

https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0

1.3 GAN with Keras: Application to Image Deblurring

https://blog.sicara.com/keras-generative-adversarial-networks-image-deblurring-45e3ab6977b5

2 Image Blind Denoising With Generate Adversarial Network Based Noise Model

3 All you need is a good init

3.1 ideals

- Pre-initialize weights of each convolution or fc layer with orthonormal matrices.
- Normalizing the variance of the output of each layer to be equal to one.

3.2 algorithm

Algorithm 1 Layer-Sequential Unit-Variance Initialization

Input: mini-batch: $\{\widetilde{x_i}^{(i)}\}_{i=1}^m$; Parameters to be learned: W, \widetilde{b} ; Hyperparameters: ε, T **Output:** W, \widetilde{b}

- 1: Temporarily initialize W with orthonormal matrices
- 2: while t < T and $|\sigma^2 1| < \varepsilon$ do
- 3: Compute temporary output $\{\widetilde{a_i}^{(i)}\}_{i=1}^m$
- 4: Compute variance σ^2
- 5: Rescale weight $W \leftarrow \frac{W}{\sigma}$
- 6: end while