

Bad programmers worry about the code. Good programmers worry about data structures and their relationships.

- Linus Torvalds

References:

[CLRS 2.1, 10.1-10.3]

[SSS 3.1-3.2, 4.1-4.2, 4.9]

Data Structures

- We need efficient (time and space) ways to represent the data we are to process
- Common operations on data
 - Insert, delete
 - Search
 - Arrange in order
- Common data structures:
 - Array
 - Linked list
 - Stack
 - Queue

Data Structures

- Why different data structures?
 - Support different operations with different running times
 - Different algorithms require different number of each type of operations
- Algorithms/data structures are inter-dependent
 - "Algorithms + Data Structures = Programs" [N. Wirth 1976]

- Simplest, most common data structure
- Contiguous memory locations
- Direct access A[i] in O(1) time
- Search: read the entire array, worst case O(n) time
- Insert:
 - At the end: easy (but may need memory allocation)
 - At specific position: need to shift elements after that position,
 O(n) time
- Delete:
 - Shift elements, O(n) time

5 2 4 7 1

Linked List

Can we support insert/delete efficiently?

Linked list: memory locations linked by pointers

(references)

Directly available in Java

 But we need to understand how it works to analyse its running time

)		•
	5	6
	1	/
	7	3
)	2	4

Memory

Linked List

In C/C++ styled pseudocode:

```
struct node {
  int data;  // data
  node *next; // pointer
}

node *head = new node; // head of new list
```


Linked List: Search

- Linked list does not support direct access!
 - To get the i-th element, you need to go through the list → i steps
- Search for an element:
 - O(n) time

```
node* search(int x) {
  node *temp = head;
  while (temp != null && temp->data != x)
    temp = temp->next;
  return temp; // null if not found
}
```

Linked List: Insert

- Insert at a specific position:
 - If we already have a pointer to that position, then just modify pointers
 - O(1) time

```
// insert number x after node y
void insert(int x, node* y) {
  node t = new node;
  t->num = x;
  t->next = y->next;
  y->next = t;
}
```


Linked List: Delete

- Delete an element
 - Suppose we have a reference to the element (if not, search for it)
 - O(1) time

```
// delete element pointed to by x (after x)
void delete(node x) {
  x->next = x->next->next;
}
```


(we ignored boundary conditions in these insert/delete code)

Linked List: Variations

- Doubly linked list:
 - Pointers to previous and next element

- Circular linked list:
 - Last element point to first one

Support easier navigation through the list

Stacks and Queues

Stack: last-in-first-out (LIFO)

- Insert and delete at the same end (top)
- Operations:
 - Push(v): insert v to stack S
 - Pop(): return and remove top element from S
 - Top(): return (not remove) top element in S
- Queue: first-in-first-out (FIFO)

- Insert at one end (tail), delete at other end (head)
- Operations:
 - Enqueue(v): insert v into queue Q
 - Dequeue(): return and remove first element from Q

Abstract Data Structures

- Stacks and queues are abstract data structures
 - Implemented using other data structures
- Both stack or queue can be implemented using array or linked list
- Support constant time per operation
- In the following we discuss implementing them using arrays
 - Assume a maximum limit on size known

Implementing a Stack

- Using an array
 - Keep an index to the "top" of stack

```
top
```

```
Class Stack {
  int S[0..99];
  int top := -1;
  void push(int x) {
    if (top==99) print "stack overflow";
    else {top++; S[top] := x;}
  int pop() {
    if (top==-1) print "stack underflow";
    else {top--; return S[top+1];}
```

Implementing a Queue

- Using an array
 - Use two variables to keep head and tail
 - Wrap around

```
Class Queue {
  int Q[0..99];
  // NB: size 100 but stores only 99 elements
  int h := 0, t := 0;
  void Enqueue(int x) {
    if ((t+1)%100 == h) print "queue full";
    else {Q[t]:=x; t:=(t+1)%100;}
  int Dequeue() {
    if (t == h) print "queue empty";
    else {x:=Q[h]; h:=(h+1)%100; return x;}
                                                    14
```


Simple Sorting and Searching

Computers have historically spent more time sorting than doing anything else.

- D. Knuth

Linear Search

- Consider a very simple problem: search for an element
 x in an array A with n elements
- Trivial algorithm: search one by one

```
// search for input x in array A[1..n]
for i := 1 to n {
   if (A[i]==x) {
      print i;
      return;
   }
}
print "not found";
```

Time complexity: O(n)

Binary Search

- If the elements are already sorted, can we do it faster?
 - (How do you look up a word in a dictionary?)
- Binary search
 - Idea: we can reduce the search space by half by checking the middle element
 - Suppose elements sorted in increasing order
 - If middle element > x, x can only be in 1st half
 - If middle element < x, x can only be in 2nd half
 - Recursively (or iteratively) handle one of the two halves
 - (because we are now facing the same problem of smaller size)

Binary Search: Example

Search for 3

1 2 2 4 5 5 7 9 10 10 12	5>3
1 2 2 4 5 5 7 9 10 10 12	2<3
1 2 2 4 5 5 7 9 10 10 12	5>3
1 2 2 4 5 5 7 9 10 10 12	4>3

Binary Search: Non-recursive

Use two indices lo and hi to indicate the range of the array we are searching
 1 2 2 4 5 5 7 9 10 10 1

```
1 2 2 4 5 5 7 9 10 10 12
lo mid hi
1 2 2 4 5 5 7 9 10 10 12
```

```
Binary-Search(A, n, x)
{
    lo := 1, hi := n
    while (lo <= hi) {
        mid := round((lo+hi)/2)
        if (A[mid]==x) return mid // found
        else if (A[mid]>x) hi:=mid-1 // lower half
        else lo := mid+1 // upper half
    }
}
```


Binary Search: Complexity

- Content inside while loop: O(1) time
- How many times is the while loop executed?
 - Each execution reduces the range (hi lo + 1) by half
 - hi lo + 1 is n at the beginning, 1 at the end
 - $n \rightarrow n/2 \rightarrow n/4 \dots \rightarrow 2 \rightarrow 1$: log_2 n steps
 - Log n executions
- Overall time complexity O(log n)
 - Better than linear search
- See Chapter 3 for recursive version

- Problem: given n items with an ordering, arrange them in ascending/descending order
 - E.g. sorting numbers
 - How do you arrange a hand of playing cards?
- A fundamental problem
- This chapter: two simple algorithms
 - Later: advanced algorithms (so, your usual way of arranging playing cards is not optimal...)

Try the animations: http://www.sorting-algorithms.com/

Selection Sort

- Idea: find the smallest number, swap it with the first number, and repeat for the remaining numbers
- Example:
 - 158527
 - 3 5 8 5 **2** 7
 - **2 5 8 5 3 7**
 - 57
 - (5)7

Selection Sort: Algorithm

```
// sort array A[1..n]
Selection-Sort(A)
  for i := 1 \text{ to } n-1  {
    // find minimum in A[i..n]
    min := i
    for j := i+1 to n
      if (A[j] < A[min]) min := j
      // now min contains the index of
         minimum position
    swap the values of A[i] and A[min]
```


Selection Sort: Complexity

- There are two for loops
 - Outer (for i = ...): n-1 times
 - Inner (for j = ...): at most n-1 times
 - Within nested loops: O(1) time
- Time complexity: O(n²)

Insertion Sort

- Idea: maintain that A[1..i] is already sorted.
 - Insert A[i+1] in the correct position within A[1..i]
 - Now, A[1..i+1] is sorted
 - Repeat the procedure to further extend until the whole array is sorted

Example:

Insertion Sort: Algorithm

```
// sort array A[1..n]
Insertion-Sort(A)
  for i := 2 to n {
    i := i-1
    x := A[i]
    while (j>0 \text{ and } x<A[j]) {
                                            5 8 5
      A[j+1] := A[j]
      j := j−1
                            // Move backwards
    A[j+1] := x // j+1 is correct insert point
                                            5 8 5
```


Insertion Sort: Complexity

- For loop (element A[i] to be processed): n times
 - While loop (find correct position): at most n times
- O(n²) again
 - Later, we will know there are actually faster algorithms!

Binary Insertion Sort

- Do we really need O(n) time to find correct position to insert?
 - The subarray A[1..i] is already sorted
 - Binary search for the correct position!
- Binary insertion sort
 - Number of comparisons: O(n log n)
- However: we need to move the elements after insertion! (which takes O(n) time)
 - Hence, time still O(n²)

Selection vs. Insertion Sort

- Selection Sort:
 - Once a position is found for an element, it remains there
- Insertion Sort:
 - Benefits from partially-sorted input
 - Can be done on-line