Работа 4.3.2A Дифракция света на звуковой волне в жидкости.

Содержание

1	Теоретическое введение	2
2	Ход работы	3
3	Обработка результатов	6
4	Вывод	7

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Теоретическое введение

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1. Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Рис. 1: Дифракция световых волн на акустической решетке

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Схема установки. Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива F=30 см, одно деление винта микроскопа составляет 20 мкм, полоса пропускания фильтра $\lambda=6400\pm200$ Å.

2 Ход работы

1. Исследовали изменения дифракционной картины на красном свете. При увеличении частоты УЗ-генератора и приближении к 1,1 МГц проявляется дифракционная решетка: расстояние между максимумами растет.

Измерили положения x_m дифракционных максимумов с помощью микроскопического винта для пяти частот. Для каждой полосы измерили

крайние координаты и рассчитали среднее относительно нулевого максимума как координату полосы. Результаты измерений занесли в таблицах ниже. На основе каждой таблицы построили графики зависимости $x_m(m)$.

Для частоты $\nu_2=1{,}0116\pm0{,}0001$ МГц:

m	-3	-2	-1	0	1	2	3	4
l_m , дел.	2,15	2,40	2,70	3,00	3,35	3,60	3,90	4,20
r_m , дел.	2,30	2,60	2,90	3,20	3,50	3,80	4,05	4,35
x_m , дел.	2,225	2,50	2,80	3,10	3,425	3,70	3,975	4,275
x_m , MKM	-350	-240	-120	0	130	240	350	470

Рис. 3: $x_m(m)$ на частоте ν_1

2. Для частоты $\nu_1 = 1{,}2092 \pm 0{,}0001$ МГц:

m	-3	-2	-1	0	1	2	3
l_m , дел.	1,95	2,30	2,65	3,00	3,40	3,70	4,05
r_m , дел.	2,15	2,50	2,85	3,20	3,55	3,85	4,20
x_m , дел.	2,05	2,40	2,75	3,10	3,475	3,775	4,125
x_m , MKM	-420	-280	-140	0	150	240	410

3. Для частоты $\nu_3 = 2{,}9332 \pm 0{,}0001$ МГц:

m	-2	-1	0	1	2	3
l_m , дел.	1,35	2,20	3,00	3,85	4,70	5,55
r_m , дел.	1,60	2,40	3,20	4,0	4,90	5,70
x_m , дел.	1,425	2,30	3,10	3,925	4,80	5,625
x_m , MKM	-670	-320	0	330	680	1010

Рис. 4: $x_m(m)$ на частоте ν_2

Рис. 5: $x_m(m)$ на частоте ν_3

4. Дальше резонансы получать всё сложнее, к тому же в поле обзора попадает меньше полос либо полосы второго порядка не возникают. Графики по трём точкам строить бессмысленно. Для частоты $\nu_4=4,6086\pm0,0001~\mathrm{MF}$ ц:

m	-1	0	1
l_m , дел.	1,70	3,00	4,35
r_m , дел.	1,85	3,20	4,50
x_m , дел.	1,775	3,10	4,425
x_m , MKM	-530	0	530

5. Для частоты $\nu_5 = 5{,}1911 \pm 0{,}0001$ МГц:

m	-1	0	1
l_m , дел.	1,55	3,00	4,55
r_m , дел.	1,70	3,20	4,65
x_m , дел.	1,625	3,10	4,60
x_m , MKM	-590	0	600

3 Обработка результатов

По составленным таблицам и коэффициентам наклона графика определим для каждой частоты l_m/m , чтобы по формуле (4) рассчитаем длины волн Λ для всех частот.

ν , М Γ ц	1,0116	1,2092	2,9332	4,6086	5,1911
l_m/m , MKM	117,8	136	335	530	595
$\Delta(l_m/m)$, MKM	0,9	3	5	20	20
Λ , MKM	1630	1410	573	362	323
$\Delta\Lambda$, MKM	50	60	30	13	10

Построили график $\Lambda(1/\nu)$. По коэффициенту наклона определили скорость ультразвука в воде из формулы (5):

$$v = 1620 \pm 20 \; \text{m/c}.$$

Для сравнения табличное значение составляет $v=1490\ \mathrm{m/c}.$

Рис. 6: $\Lambda(1/\nu)$

4 Вывод

Изучили явление дифракции света на ультразвуковой волне в воде. Сняли зависимость длины волны ультразвука от его частоты, и по этим параметрам получили значение скорости ультразвука в воде. Сравнили значение с табличным, точность экспериментального результата составила около 10%.