(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-188644 (P2002-188644A)

(43)公開日 平成14年7月5日(2002.7.5)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

F16C 33/36

F16C 33/36

3 J 1 O 1

審査請求 有 請求項の数1 OL (全 3 頁)

(21)出願番号	特願2000-389928(P2000-389928)	(71) 出願人	394000493	
			ヒーハイスト精工株式会社	
(22)出願日	平成12年12月22日(2000.12.22)		埼玉県川越市芳野台1丁目103番地60	
		(72)発明者	尾崎 久寿弥	
			東京都板桶区大山金井町10番9号 服部ビ	
			ル ヒーハイスト精工株式会社内	
		(72)発明者	尾崎 文彦	
			東京都板橋区大山金井町10番9号 服部ビ	
			ル ヒーハイスト精工株式会社内	
		(74)代理人	100071102	
			弁理士 三觜 晃司	
		Fターム(参考) 3J101 AA15 BA02 FA02 FA42 FA44		

(54) 【発明の名称】 球面コロの製造方法

(57)【要約】

【課題】 球面コロを製造するにあたり、球体から所定の仕上げ加工することで製造する。

【解決手段】 半径 r の球体を追加工することによって 製造する。すなわち、一軸を転動軸 O とするべく一軸廻 りに、前記球体の半径 r より大きい曲率半径 R を有する 転動周面の転動部 1 1 を形成するように追加工する。こ の場合、転動周面の曲率半径 R と、転動軸 O 方向両側の 転動側部 1 2 の曲率半径 r とは、R ≫ r であり、転動軸 O に直交する方向の半径 r 1 は、前記転動側部 1 2 の曲 率半径 r よりもやや小とする。なお、転動周面の幅方向 中間部を転動部 1 1 の最大半径 r 1 の箇所とする。

1

【特許請求の範囲】

【請求項1】 転動軸中心に転動する、曲率半径Rの 転動周面を有する転動部と、この転動部の、前記転動軸 方向両側に曲率半径rの球面状転動側部とを有する球面 コロにおいて、半径rの球体を、一軸を転動軸とするべ く一軸廻りに、前記球体の半径ァより大きい曲率半径R の転動周面を形成するように追加工することを特徴とす る球面コロの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は負荷容量が大きく、 スキューをなくし、調芯性も有する球面コロを製造する にあたり、球体から所定の仕上げ加工することで製造可 能であり、製造単価も抑えることのできる、球面コロの 製造方法に関するものである。

[0002]

【従来の技術】従来、ベアリング、直動案内軸受等に使 用されている転動体としては球体が一般的であるが、負 荷容量の大きなところには図2に示すように、径D=長 用されている。また、図示は省略するが、テーパ型のコ 口もある。しかし、これら円筒コロ1、ニードル2は偏 当たり、スキュー等の問題があるので、この解決策とし て一部に太鼓コロ3が使用されている(図4参照)。こ の太鼓コロ3は、中央部を膨出させたいわゆる太鼓形状 のもので中央部の径を最大Dmaxとしている。

[0003]

【発明が解決しようとする課題】しかしながら、かかる 太鼓コロ3では、種々の加工上の課題がある。例えば、 1. 加工が難しいので、L>Dが一般的である。2. 直 30 径の寸法出しが困難である。3.回転軸方向の曲率が不 揃いになりがちである。4. 最大径Dmaxの位置のず れeが生じやすい。かかる加工上の課題は、軸受の小型 化の妨げともなっている。本発明は以上のような課題を 克服するために提案されたものであって、負荷容量が大 きく、スキューをなくし、調芯性も有する球面コロを製 造するにあたり、球体から所定の仕上げ加工すること で、製造可能であり、製造単価も抑えることのできる、 球面コロの製造方法を提供することを目的とする。

[0004]

【課題を解決するための手段】前記した課題を解決する ために、本発明では、転動軸中心に転動する、曲率半径 Rの転動周面を有する転動部と、この転動部の、前記転 動軸方向両側に曲率半径rの球面状転動側部とを有する 球面コロにおいて、半径ァの球体を、一軸を転動軸とす るべく一軸廻りに、前記球体の半径rより大きい曲率半 径Rの転動周面を形成するように追加工する球面コロの 製造方法を開示する。

【0005】本発明によれば、球体を、一軸を転動軸と するように、一軸廻りに追加工して、転動周面を得るだ 50 けであるので、転動周面の加工精度のみ留意するだけで よく、製造が容易である。

[0006]

【発明の実施の態様】次に、本発明にかかる球面コロの 製造方法について、一つの実施の態様を示し、添付の図 面に基づいて説明する。図1に本発明にかかる製造工程 によって形成された球面コロ10を示し、この球面コロ 10は、転動軸〇中心に転動する、曲率半径Rの転動周 面を有する転動部11と、この転動部11の、前記転動 10 軸〇方向両側に曲率半径rの球面状転動側部12とを有 している。前記転動部11における転動周面の曲率半径 Rと、転動軸O方向両側の転動側部12の曲率半径rと は、R≫rであり、前記転動部11の転動軸Oに直交す る方向の半径 rlは、前記転動側部 12の曲率半径 rよ りもやや小としている。なお、転動周面の幅方向中間部 が転動部11の最大半径 r1の箇所としている。

【0007】以上のような球面コロ10は、以下の工程 で製造するようにしている。前記球面コロ10は、半径 rの球体を追加工することによって製造している。すな さLの円筒コロ1や、図3に示すようなニードル2が使 20 わち、一軸を転動軸〇とするべく一軸廻りに、前記球体 の半径rより大きい曲率半径Rを有する転動周面の転動 部11を形成するように追加工する。

> 【0008】このような製造工程において、球面コロ1 0は、半径 r の球体を基に、一軸を転動軸 O とするよう に、一軸廻りに追加工して、曲率半径Rを有する転動周 面の転動部11を得るだけであるので、転動周面の加工 精度のみ留意するだけでよく、製造が容易である。換言 すれば、上記製造工程では球体を基に、一軸を転動軸の とするように、一軸廻りに追加工するだけであるから、 寸法にかかわらず容易に髙精度な球面コロを得ることが でき、前記球面コロ10を適用した、ベアリング、ブッ シュ、ガイド等の直動案内軸等の小型化に寄与すること ができる。

[0009]

【発明の効果】本発明によれば、球体を追加工して、転 動軸廻りに元の球体の半径よりも大きな曲率半径の転動 周面を形成することで、負荷容量が大きく、しかも、両 端の抵抗が少ない球面コロを製造することができ、工程 が少なく、製造単価も抑えることができる。従って、か かる球面コロを使用したベアリング、直動案内軸受、ブ ッシュの単価も抑制することができる。

[0010]

【図面の簡単な説明】

【図1】本発明にかかる球面コロの一つの実施の形態を 示す、側面図である。

【図2】現行の転動体のうちの円筒コロの一例を示し た、側面図である。

【図3】現行の転動体のうちのニードルの一例を示し た、側面図である。

【図4】現行の転動体のうちの球面コロの一例を示し

特(3)2002-188644 (P2002-188644A)

	3		4
た、側面図である。		3	太鼓コロ
【符号の説明】		1 0	球面コロ
1	円筒コロ	1 1	転動部
2	ニードル	1 2	転動側部

【図1】

【図2】

【図3】

[図4]

