Errata and Extra Tips for Lab Assignment 3 Machine Learning 1, 17/18

This document contains errata and extra tips for lab assignment 3.

Part 1: Gaussian Processes, 2. Predictive distribution

Extension of equations 6.66 and 6.67 for an arbitrary number of test points:

- Consider a data set $\mathbf{x}_{\text{train}} = (x_{\text{train},1},...,x_{\text{train},N_{\text{train}}})$, $\mathbf{t} = (t_1,...,t_{N_{\text{train}}})$, $\mathbf{x}_{\text{test}} = (x_{\text{test},1},...,x_{\text{test},N_{\text{test}}})$ and a kernel function $k(x_n,x_m)$
- **K**: $K_{n,m} = k(x_{\text{train},n}, x_{\text{train},m})$; **K** is a $N_{\text{train}} \times N_{\text{train}}$ matrix
- C: C = K + β^{-1} I; C is a $N_{\text{train}} \times N_{\text{train}}$ matrix
- k: $k_{n,m} = k(x_{\text{train},n}, x_{\text{test},m})$; k is a $N_{\text{train}} \times N_{\text{test}}$ matrix
- c: $c_{n,m} = k(x_{\text{test},n}, x_{\text{test},m}) + \beta^{-1}$; k is a $N_{\text{test}} \times N_{\text{test}}$ matrix
- Equation 6.66 becomes: $\mu = \mathbf{k}^T \mathbf{C}^{-1} \mathbf{t}$; μ is a vector with length N_{test}
- Equation 6.67 becomes: $\Sigma = \mathbf{c} \mathbf{k}^T \mathbf{C}^{-1} \mathbf{k}$; Σ is a $N_{\text{test}} \times N_{\text{test}}$ matrix

The model + target noise for every data point in the test vector \mathbf{x}_{test} is given by

$$\sigma = \sqrt{diag(\Sigma)},$$

where σ is a vector with length N_{test} .