Probabilistic Lambda Calculi

Research Project

Pedro Amorim and Eric Jackson

1 Abstract

In section 2, we introduce a probabilistic version of Call-By-Push Value. In section 3, we introduce two probabilistic lambda-calculi, λ_{IID} and λ_{PC} , which correspond to independent and identically distributed sampling and perfectly correlated sampling, respectively.

2 Probabilistic Call-By-Push-Value

2.1 Syntax

Types

CBPV types are given by $\tau = A \mid B$ where A and B are defined inductively according to the following rules:

$$A ::= U\underline{B} | A + A | A \times A | 1 | \mathbb{R}$$
$$B ::= FA | B \times B | A \to B$$

Expressions

2.2 Static Semantics

 $\overline{\Gamma \vdash^c \mathsf{rand} : F \, \mathbb{R}}$

2.3 Denotational Semantics

- 3 λ_{IID} and λ_{PC}
- 3.1 Syntax

4 Translating λ_{IID} and λ_{PC} to CBPV

Rather than defining denotational semantics for λ_{IID} and λ_{PC} , we will define a translation from each of these languages into CBPV. Then, we can use the CBPV semantics to generate denotational semantics.

4.1 Types

We begin with defining type translations from λ_{IID} and λ_{PC} to CBVP. These translations are essentially identical to the translations of CBN and CBV to CBPV presented in Levy's thesis.

 $\frac{\lambda_{IID}}{ \begin{bmatrix} \mathbf{unit} \end{bmatrix}_{IID} \triangleq F1} \qquad \frac{\lambda_{PC}}{ \begin{bmatrix} \mathbf{unit} \end{bmatrix}_{PC} \triangleq 1}$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{IID} \triangleq F \mathbb{R} \qquad \mathbb{R} \end{bmatrix}_{IID} \triangleq \mathbb{R}$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{IID} \triangleq (U \llbracket \tau_1 \rrbracket_{IID}) \to \llbracket \tau_2 \rrbracket_{IID} \qquad \mathbb{R} \tau_1 \to \tau_2 \rrbracket_{PC} \triangleq U(\llbracket \tau_1 \rrbracket_{PC} \to \llbracket F \tau_2 \rrbracket_{PC})$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{IID} \triangleq F(U \llbracket \tau_1 \rrbracket_{IID} + U \llbracket \tau_2 \rrbracket_{IID}) \qquad \mathbb{R} \tau_1 \times \tau_2 \rrbracket_{PC} \triangleq U \llbracket \tau_1 \rrbracket_{PC} \times \mathbb{R} \tau_2 \rrbracket_{PC}$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{ID} \triangleq \mathbb{R}$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{PC} \triangleq U \llbracket \tau_1 \rrbracket_{PC} \to \mathbb{R} \tau_2 \rrbracket_{PC}$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{PC} \triangleq U \llbracket \tau_1 \rrbracket_{PC} \times \mathbb{R} \tau_2 \rrbracket_{PC}$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{PC} \triangleq U \llbracket \tau_1 \rrbracket_{PC} \times \mathbb{R} \tau_2 \rrbracket_{PC}$ $\begin{bmatrix} \mathbb{R} \end{bmatrix}_{PC} \times \mathbb{R} \tau_2 \rrbracket_{PC} = U \llbracket \tau_1 \rrbracket_{PC} \times \mathbb{R} \tau_2 \rrbracket_{PC}$

4.2 Expressions

Now, we define translations from expressions in λ_{IID} and λ_{PC} to CBPV.

$$\mathcal{T}[\![x]\!]_{IID} \triangleq \mathbf{force} \ x$$

$$\mathcal{T}[\![x]\!]_{IID} \triangleq \lambda x. \ [\![e]\!]_{IID}$$

$$\mathcal{T}[\![etx = e_1 \ \mathbf{in} \ e_2]\!]_{IID} \triangleq \mathbf{let} \ x \ \mathbf{be} \ \mathcal{T}[\![e_1]\!]_{IID}. \mathcal{T}[\![e_2]\!]_{IID}$$

$$\mathcal{T}[\![e_1 e_2]\!]_{IID} \triangleq \mathbf{coin}$$

$$\mathcal{T}[\![\mathbf{coin}]\!]_{IID} \triangleq \mathbf{coin}$$

$$\mathcal{T}[\![\mathbf{rand}]\!]_{IID} \triangleq \mathbf{rand}$$

$$\mathcal{T}[\![\mathbf{inl}_{\tau_1 + \tau_2} e]\!]_{IID} \triangleq \mathbf{produce} \ \mathbf{inl} \ \mathbf{thunk} \ \mathcal{T}[\![e]\!]_{IID}$$

$$\mathcal{T}[\![\mathbf{inr}_{\tau_1 + \tau_2} e]\!]_{IID} \triangleq \mathbf{produce} \ \mathbf{inr} \ \mathbf{thunk} \ \mathcal{T}[\![e]\!]_{IID}$$

$$\mathcal{T}[\![\mathbf{case} \ e_1\mathbf{of} \ e_2|e_3]\!]_{IID} \triangleq \mathcal{T}[\![e_1]\!]_{IID} \ \mathbf{to} \ z. \ \mathbf{pm} \ z \ \mathbf{as} \ \{\mathbf{inl} \ x. \mathcal{T}[\![e_2]\!]_{IID}, \ \mathbf{inr} \ x. \mathcal{T}[\![e_3]\!]_{IID} \}$$

$$\mathcal{T}[\![(e_1, e_2)]\!]_{IID} \triangleq$$

$$\mathcal{T}[\![\#1 \ e]\!]_{IID} \triangleq$$

$$\mathcal{T}[\![\#2 \ e]\!]_{IID} \triangleq$$

$$\mathcal{T}[\![e_1 \ \mathbf{to} \ x \ \mathbf{in} \ e_2]\!]_{IID} \triangleq$$

 λ_{PC}

$$\mathcal{T}[\![x]\!]_{PC} \triangleq \mathbf{produce} \ x$$

$$\mathcal{T}[\![\lambda x.e]\!]_{PC} \triangleq \mathbf{produce} \ \mathbf{thunk} \ \lambda x. \ [\![e]\!]_{PC}$$

$$\mathcal{T}[\![\mathbf{let}x = e_1 \ \mathbf{in} \ e_2]\!]_{PC} \triangleq \mathcal{T}[\![e_1]\!]_{PC} \ \mathbf{to} \ x. \mathcal{T}[\![e_2]\!]_{PC}$$

$$\mathcal{T}[\![e_1 e_2]\!]_{PC} \triangleq \mathcal{T}[\![e_2]\!]_{PC} \ \mathbf{to} \ x. \mathcal{T}[\![e_1]\!]_{PC} \ \mathbf{to} \ f. \ x'(\mathbf{force} \ f)$$

$$\mathcal{T}[\![\mathbf{coin}]\!]_{PC} \triangleq \mathbf{produce} \ \mathbf{coin}$$

$$\mathcal{T}[\![\mathbf{rand}]\!]_{PC} \triangleq \mathbf{produce} \ \mathbf{rand}$$

$$\mathcal{T}[\![\mathbf{inl}_{\tau_1 + \tau_2} e]\!]_{PC} \triangleq \mathcal{T}[\![e]\!]_{PC} \ \mathbf{to} \ z. \ \mathbf{produce} \ \mathbf{inl} \ z$$

$$\mathcal{T}[\![\mathbf{inr}_{\tau_1 + \tau_2} e]\!]_{PC} \triangleq \mathcal{T}[\![e]\!]_{PC} \ \mathbf{to} \ z. \ \mathbf{produce} \ \mathbf{inr} \ z$$

$$\mathcal{T}[\![\mathbf{case} \ e_1 \mathbf{of} \ e_2 | e_3]\!]_{PC} \triangleq \mathcal{T}[\![e_1]\!]_{PC} \ \mathbf{to} \ z. \ \mathbf{pm} \ z \ \mathbf{as} \ \{\mathbf{inl} \ x. \mathcal{T}[\![e_2]\!]_{PC}, \ \mathbf{inr} \ x. \mathcal{T}[\![e_3]\!]_{PC} \}$$

$$\mathcal{T}[\![\![e_1, e_2]\!]_{PC} \triangleq \mathcal{T}[\![\![e_1, e_2]\!]_{PC} \triangleq \mathcal{T}[\![\![e$$

Theorem. If $\Gamma \vdash_{IID} e : \tau \ then$

 $\Gamma \vdash \llbracket e \rrbracket_{IID} : \llbracket \tau \rrbracket_{IID}$

and if $\Gamma \vdash_{PC} e : \tau$ then

$$\Gamma \vdash \llbracket e \rrbracket_{PC} : \llbracket \tau \rrbracket_{PC}$$

Proof. First, assume $\Gamma \vdash_{IID} e : \tau$. We proceed by induction on e.

- Case: e = x ... TODO!
- Case: $e = \lambda x : \tau . e'$. By inspection, $\Gamma \vdash_{IID} e : \tau \to \tau'$ for some τ' such that $\Gamma_{x:\tau} \vdash_{IID} e' : \tau'$. Then $\llbracket e \rrbracket_{IID} = \lambda x . \llbracket e' \rrbracket_{IID}$.
- TODO!

Now, assume $\Gamma \vdash_{PC} e : \tau$. TODO!

QED

Theorem. If $\Gamma \vdash_{IID} e : \tau_1 \times \tau_2 \text{ then } \llbracket e \rrbracket = \mu_1 \times \mu_2.$

Proof. TODO! QED