Optical chaos based on a laser diode with positive feedback

Eskoskin D., Khoruzhii K., Primak E.

05.03.2021

Globally we would like to transmit a high-frequency signal in encrypted form.

Here, we will consider the following steps towards this goal:

- dynamical chaos and synchronization (to encrypt and decrypt signal);
- theory of the laser evolution and its adaptation under our needs:
- realization of the positive feedback in laser: theory, modeling and practice.

Definition of dynamic chaos and applications

$\mathrm{Map}^1 f$ is **chaotic**, if

- periodic orbits are dense everywhere;
- orbits are mixed;
- \blacksquare f sensitive to the initial conditions.

Possible applications:

- random numbers generation;
- signal encryption.

¹W. Hirsch, S. Smale, Introduction to Chaos.

Synchronization

Possible² synchronization of chaotic systems:

enough to transmit
part of the signal;
configure system parameters.

The use of optics to transmit the signal allows to achieve a greater bandwidth of the channel.

UHFO (ultrahight frequency oscillations) is a characteristic to optic systems.

²M. Pecora, L. Carroll, Synchronization in Chaotic Systems, 1990.

The concept of a semiconductor laser

To start the laser idea we need to obtain:

- Solution of the Schrödinger equation in a semiconductor medium for the wavefunction of an electron;
- Induced polarization for distribution of holes and electrons in a semiconductor;
- Interaction of electrons in a semiconductor with an wave equation and outer electric field.

Electronic states in a semiconductor

We will need the Schrödinger equation:

$$H_{ ext{crystal}}\Psi_n(oldsymbol{r}) = \left[rac{oldsymbol{p}^2}{2m_0} + U_p(oldsymbol{r})
ight]\Psi_n(oldsymbol{r})$$

where $\mathbf{p} = -i\hbar\nabla$ is the momentum operator, m_0 is the free electron mass, $U_p(\mathbf{r})$ is the periodic potential of the bulk semiconductor.

The solution is the Bloch function:

$$\Psi_{n,k}(\mathbf{r}) = u_{n,k}(\mathbf{r}) \frac{1}{\sqrt{V}} e^{i\mathbf{k}\cdot\mathbf{r}}.$$

Hamilton in an outer field

In case of an optical field the Hamiltonian changes to

$$H = \frac{\boldsymbol{p} + e\boldsymbol{A}[\boldsymbol{r}, t]^2}{2m_0} + U_p(\boldsymbol{r}) = H_{\text{crystal}} + H'$$

 $\boldsymbol{A}(\boldsymbol{r},t)$ is the vector potential of the optical field. So the interaction Hamiltonian

$$H' pprox rac{e}{m_0} \boldsymbol{A}(\boldsymbol{r}, t) \cdot \boldsymbol{p}.$$

Hamilton in an outer field

For y-propagating field: $E(\mathbf{r},t) = \frac{1}{2}E_0e^{i(\beta y - \omega t)} + \text{const the Hamiltonian is}$

$$H' = \frac{1}{2}\mu(k_q, x, z)[E_0 e^{i(\beta y - \omega t)} + \text{const}]$$

where μ is the transition matrix that describes the semiconductor, k_q – quantized wavevector of the electron.

Induced polarization in an outer field

As one can obtain after rewritten density matrix in terms of carrier distributions, and in order avoid irrelevantly enormous formulas we get polarization as:

$$\mathcal{P}_{in}(\mathbf{r},t) = \frac{1}{2}\mathcal{P}_{in,0}e^{i(\beta y - \omega t)} + \text{const} =$$

$$= -\sum \frac{\xi(\mathbf{r}, k_q, x, z)}{V(k_q, x, z)} [\rho_{eh}(k_q, x, z)\mu(k_q, x, z) + \text{const}]$$

where $V(k_q, x, z)$ is the confinement volume of electrons and holes and

$$\xi(\mathbf{r}, k_q, x, z) = \begin{cases} 1, & \mathbf{r} \text{ inside V} \\ 0, & \mathbf{r} \text{ outside V} \end{cases}$$

Injection the light

For the wave porpagating along the y direction in active layer the equation is:

$$\Delta E(\mathbf{r}, t) - \mu_0 \varepsilon(\mathbf{r}) \frac{\partial^2}{\partial t^2} E(\mathbf{r}, t) = \mu_0 \frac{\partial^2}{\partial t^2} P_{in}(\mathbf{r}, t)$$
 (1)

The partial solution for this equation we will be searching in a form of

$$E(\mathbf{r}, t) = A_0(t)E_{\text{eig}}(x, z) = \frac{1}{2}E_0e^{i(\beta y - \omega t)} + \text{const.}$$

Partial solution part

Substituting in wave equation (1) the obtained polarization and solution for $E(\mathbf{r},t)$ and assuming that A(t) changes slowly we get

$$\frac{dA_0}{dt} = \frac{i\omega}{2\varepsilon_0 n_r^2} A_0 \sum_{\alpha} \Gamma(0) \frac{1}{V} |\mu(k_q, x, z)|^2 [\rho_{ee} + \rho_{hh} - 1]$$
 (2)

where

$$\Gamma(0) = \frac{\varepsilon(x,z)|E_0(x,z)|^2}{\iint \varepsilon(x,z)|E_0(x,z)|^2 dx dz}$$

is a dimensional coupling factor.

Now we can rewrite

$$\frac{dA_0}{dt} = \frac{1}{2}v_g[\Gamma(0)G - i\Gamma(0)N_r]A_0,\tag{3}$$

where $v_g = c/n_r$ for c – the speed of light in vacuum, and n_r – refraction coefficient. We will call the *gain coefficient* $g = \Gamma(0)G$. From Schrödinger equation we obtain the photon density as:

$$S = \frac{1}{2} \frac{\varepsilon_0 n_r^2 |A_0 E(0)|^2}{E_0}.$$

The laser equations

Using the equation for A_0 we obtain for the photon density (real part):

$$\frac{dS}{dt} = v_g \Gamma(0)GS. \tag{4}$$

and for electrons (holes) density (complex part):

$$\frac{dN}{dt} = -v_g GS. (5)$$

And the demensional gain coefficient is approximately:

$$G = G_0 - G_1 \frac{S}{S_s}. (6)$$

Carrier density in an outer field

Irrelevantly enormous formulas if someone really need it:

$$\frac{d}{dt}[\rho_{ee}(k_q, x, z)] = \frac{i}{\hbar}[H'\rho_{eh}(k_q, x, z) - \text{const}] - \frac{\rho_{ee}(k_q, x, z) - f_e}{\tau_e},$$

$$\frac{d}{dt}[\rho_{hh}(k_q, x, z)] = \frac{i}{\hbar}[H'\rho_{eh}(k_q, x, z) - \text{const}] - \frac{\rho_{hh}(k_q, x, z) - f_e}{\tau_e},$$

$$\frac{d}{dt}[\rho_{eh}(k_q, x, z)] = \frac{i}{\hbar}H'[\rho_{ee} + \rho_{hh} - 1] - \frac{i}{\hbar}E_{tr}\rho_{eh} - \frac{\rho_{eh}}{T_{deph}}.$$

The laser equations

And from the previous equation we can describe the quantum well laser behavior

$$\frac{dS}{dt} = \Gamma(0)G_0v_gS - \frac{S}{\tau_p}.$$

$$\frac{dN}{dt} = \frac{J}{e} - \frac{N}{\tau_n} - \Gamma G_0 v_g S.$$

Concept

Scheme

After several experiments came to this scheme with the summing amplifier:

Photodiode power is enough to not use an additional amplifier.

Realization

