02/10/2025: Sets

CSCI 246: Discrete Structures

Textbook reference: Sec. 10, Scheinerman

Graded Quiz Pickup

Quizzes are in the front of the room, grouped into four bins (A-G, H-L, M-R, S-Z) by last name. The quizzes are upside down with your last name on the back. Come find yours before, during, or after class. Only turn the quiz over if it's yours.

Today's Agenda

- Reading and problems quiz (12 mins)
- Mini-lecture (≈ 15 mins)
- Group exercises (≈ 20 mins)

Reading Quiz (Sets I)

Answer both of the following questions

- 1. How many subsets does $A = \{1, 2, 3\}$ have?
- 2. Let A be any finite set. How many subsets does A have?

Extra Credit for Reading Quiz (Sets I)

Choose one of the following and answer it.

1. Prove that the following two sets are equal:

$$E = \{x \in \mathbb{Z} : x \text{ is even}\}, \text{ and }$$

$$F = \{x \in \mathbb{Z} : x = a + b, \text{ where } a \text{ and } b \text{ are both odd} \}$$

Note: If we have done an exercise in the past which provides part of the solution, you may write "as we showed in a previous exercise (...)"

2. Let P be the set of Pythagorean triples; that is,

$$P = \{(a, b, c) : a, b, c \in \mathbb{Z} \text{ and } a^2 + b^2 = c^2\}$$

and let T be the set

$$T = \{(p, q, r) : p = x^2 - y^2, q = 2xy, r = x^2 + y^2 \text{ where } x, y \in \mathbb{Z}\}$$

Prove $T \subseteq P$.

Results on Friday's Quizzes

Problems Quiz Scores: Induction and Boolean Algebra

 $\textbf{Figure 1:} \ \ \mathsf{Median} \ \ \mathsf{Score} = 100\%, \ \ \mathsf{Mean} \ \ \mathsf{Score} = 103.7\%$

Reading Quiz Scores: Induction

Figure 2: Median Score = 2/2 (100%), Mean Score=1.6/2 (80%)

Another quick look at the List Group Exercises

Some notes on Sets I (Introduction, Subsets)

Three special sets of numbers

Definition

The <code>integers</code> are the positive whole numbers, the negative whole numbers, and zero. That is, the set of integers, denoted by $\mathbb Z$ is

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3 \ldots\}.$$

Definition

The **natural numbers** (denoted \mathbb{N}) are the non-negative integers; that is

$$\mathbb{N}=\{0,1,2,3\ldots\}.$$

Definition

The **rational numbers** (denoted \mathbb{Q}) are the numbers formed by dividing two integers a/b, where $b \neq 0$. That is,

$$\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\}.$$

Counting Subsets (Decision Tree Perspective)

Theorem 1.3.1 A set with n elements has 2^n subsets.

FIGURE 1.2. A decision tree for selecting a subset of $\{a, b, c\}$.

Source: Lovasz, Pelikan, Vesztergombi. Discrete Mathematics: Elementary and Beyond.

Counting Subsets (Enumeration Perspective)

 $Source:\ Lovasz,\ Pelikan,\ Vesztergombi.\ \textit{Discrete Mathematics: Elementary and Beyond}.$

Remark. Using a code like this, you could determine that the 233rd subset of a 10-element set $\{a_1, \ldots, a_{10}\}$ consists of elements $\{a_3, a_4, a_5, a_7, a_{10}\}$. (That's because 233 in binary is 11101001, which corresponds to the code 0011101001.)

Subtopics from reading

Scheinerman Sec. 10 (Sets I: Introduction, Subsets) covers the following subtopics

- 1. How to read and write set notation,
- 2. How to count the number of subsets of a set,
- 3. How to show one set is a subset of the other, and
- 4. How to show two sets are equal.

Today's group exercises provide additional practice on these subtopics.

- Group 1: jacob.shepherd1,samuel.hemmen,lucas.jones6
- Group 2: jonas.zeiler,alexander.goetz,julia.larsen
- $Group\ 3:\ james.brubaker, peter.buckley 1, alexander.knuts on$
- Group 4: joseph.mergenthaler,zeke.baumann,peyton.trigg
- Group 5: jeremiah.mackey,jack.fry,jacob.ketola
- Group 6: matthew.nagel,luka.derry,ryan.barrett2
- Group 7: timothy.true,micaylyn.parker,aaron.loomis
- Group 8: carsten.brooks,jacob.ruiz1,owen.obrien
- Group 9: justice.mosso,connor.graville,delanev.rubb
- Group 10: pendleton.johnston,blake.leone,adam.wyszynski
- Group 11: bridger.voss,reid.pickert,evan.schoening
- Group 12: tyler.broesel,carver.wambold,sarah.periolat
- Group 13: connor.yetter,tristan.nogacki,jakob.kominsky
- Group 14: griffin.short,emmeri.grooms,kaden.price
- Group 15: colter.huber,jett.girard,luke.donaldson1
- Group 16: devon.maurer,evan.barth,anthony.mann
- Group 17: cameron.wittrock,caitlin.hermanson,connor.mizner
- Group 18: erik.moore3,yebin.wallace,nolan.scott1
- Group 19: jada.zorn,michael.oswald,samuel.mosier
- Group 20: conner.reed1,mason.barnocky,samuel.rollins
- Group 21: john.fotheringham,derek.price4,william.elder1
- $Group\ 22:\ ethan. johnson 18, joseph. triem, lynsey. read$

Group exercises: Sets

- 1. Find the cardinality of the following sets
 - a) $\{x \in \mathbb{Z} : |x| < 10\}$
 - b) $\{x \in \mathbb{Z} : 1 \le x^2 \le 2\}$
 - c) $\{x \in \mathbb{Z} : x \in \emptyset\}$
 - d) $2^{2^{\{1,2,3\}}}$
 - e) $\{x \in 2^{\{1,2,3,4\}} : |x| = 1\}$
 - f) {{1,2}, {3,4,5}}
- 2. Let $A = \{x \in \mathbb{Z} : 4|x\}$ and $B = \{x \in \mathbb{Z} : 2|x\}$. Prove that $A \subseteq B$.
- 3. Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{x \in \mathbb{N} : x^2 < 17\}$. Prove that A = B.

Solution to group exercise #1 (a-d)

Solution.

a)
$$\left| \{ x \in \mathbb{Z} : |x| \le 10 \} \right| = \left| \{ -10, \dots, -1, 0, 1, \dots, 10 \} \right| = 21$$

b)
$$\left| \{ x \in \mathbb{Z} : 1 \le x^2 \le 2 \} \right| = \left| \{ 1 \} \right| = 1$$

c)
$$\left| \{ x \in \mathbb{Z} : x \in \emptyset \} \right| = \left| \emptyset \right| = 0$$

d) To find $2^{2^{\{1,2,3\}}}$, first recall that for any finite set A, 2^A refers to the set of all subsets of A. So setting $A \triangleq \{1,2,3\}$, we have

$$B \triangleq 2^A = 2^{\{1,2,3\}} = \left\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\right\}.$$

Now 2^B is the set of all subsets of *that*, so

$$2^{\mathcal{B}} = \left\{\emptyset, \left\{\{1\}\right\}, \left\{\{2\}\right\}, \left\{\{3\}\right\}, \left\{\{1\}, \{2\}\right\}, \dots \left\{\{1\}, \{1, 2, 3\}, \{2\}, \{1, 2\}\right\}, \dots \right\}\right\}$$

Notably, $B=2^A$ has $2^{|A|}=2^3=8$ elements, and so 2^B has $2^{|B|}=2^8$ elements. Hence, $\left|2^{2^{\{1,2,3\}}}\right|=2^8$.

Solution to group exercise #1 (e-f)

Solution.

e) To find $\left|\{x\in 2^{\{1,2,3,4\}}:|x|=1\}\right|$, we proceed similarly as in part (d). The set $B\triangleq 2^{\{1,2,3,4\}}$ refers to the set of all subsets of $\{1,2,3,4\}$. That is,

$$B = \left\{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,4\}, \dots, \{1,2,3,4\}\right\}.$$

In particular B has $2^{\lceil\{1,2,3,4\}\rceil}=2^4=16$ elements. Only four of those elements have cardinality 1, namely $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$. Hence $\left|\{x\in 2^{\{1,2,3,4\}}:|x|=1\}\right|=1.$

f)
$$|\{\{1,2\},\{3,4,5\}\}|=2$$

Solution to group exercise #2

Problem. Let $A=\{x\in\mathbb{Z}:4|x\}$ and $B=\{x\in\mathbb{Z}:2|x\}$. Prove that $A\subseteq B$.

Solution.

Annotation	Main Text
Convert Prop. to	We show that if $x \in A$, then $x \in B$.
"if-then" form	
State assumption	Let $x \in A$.
("if")	
Unravel defs.	Since, $x \in A$, we know that $4 x$. So by the
	definition of divisibility, there is some $n \in \mathbb{Z}$
	such that $x = 4n$.
*** The glue ***	We write $x = 4n = 2(2n)$
Unravel defs.	So there is an integer $c = 2n$ such that $x =$
	2c. So 2 x.
State conclusion	Hence, $x \in B$.

Solution to group exercise #3 (Big picture)

Problem. Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{x \in \mathbb{N} : x^2 < 17\}$. Prove that A = B.

Structure of solution. To show A = B, we show $A \subseteq B$ and $B \subseteq A$.

- $A \subseteq B$. We show that if $x \in A$, then $x \in B$.
- $B \subseteq A$. We show that if $x \in B$, then $x \in A$.

Solution to group exercise #3

Problem. Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{x \in \mathbb{N} : x^2 < 17\}$. Prove that A = B.

Solution. To show A = B, we show $A \subseteq B$ and $B \subseteq A$.

- $A \subseteq B$. We show that if $x \in A$, then $x \in B$. Let $x \in A$. Then $x \in \{0, 1, 2, 3, 4\}$. Then $x^2 \in \{0, 1, 4, 9, 16\}$. So $x^2 < 17$. Hence $x \in B$.
- $B \subseteq A$. We show that if $x \in B$, then $x \in A$. Let $x \in B$. Hence $x \in \mathbb{N}$ and $x^2 < 17$. By taking the square root of each side, $x^2 < 17$ implies $|x| < \sqrt{17}$. The only natural numbers satisfying $|x| < \sqrt{17}$ are 0, 1, 2, 3 and 4. Hence $x \in A$.