Interferência da escolha de outliers na ANAVA e nos testes de médias

Douglas Messias Lamounier Camargos Rezende¹, Adalto José de Souza Linhares², Anderson Eugênio Firmino³Emmanuel Arnhold⁴, Aldi Fernandes de Souza França⁵, Maurílio Antônio Damacena Silva⁶

1. Introdução

Alternativas tecnológicas baseadas no sistema de integração agricultura-pecuária (SIAP) surgiram como inovação aos empreendimentos rurais (BARCELLOS et al., 2011) pautadas na economia de escopo com maior flexibilização na diversificação de produtos e renda além de redução de riscos mercadológicos e climáticos (MARTHA JÚNIOR et al., 2011).

Nessa perspectiva, o uso do consórcio do milho verde com capim, pode ser uma alternativa importante, pois os produtores obtêm receitas rápidas com a venda do milho e indiretamente renovam as áreas de pastagem degradadas para uso na produção animal ou formação de palhada para novo ciclo em sistema de plantio direto.

No entanto, o valor elevado das espigas, leva os produtores a cultivar o milho em monocultivo, para não afetar o rendimento das espigas, porém, pesquisas mostram resultados favoráveis ao consórcio à médio e longo prazo em comparação com o sistema de monocultivo, em função dos benefícios na ciclagem de nutrientes, palhada para o sistema de plantio direto, que melhoram os atributos químicos, físicos e biológicos do solo, levando à maior eficiencia do uso da água e nutrientes nos cultivos em sucessão (SILVA et al., 2011; SALTON et al., 2014; COSER et al., 2016; CARVALHO et al., 2018).

Freitas et al. (2018) comentam sobre diferentes metodologias para avaliar a regular aspersão de água pelos bicos dos aspersores de um sistema de pivô central. As diversas metodologias utilizadas servem para estimar se a distribuição de água pelos aspersores é regular para todos os bicos, ou não. Além desse fator, o posicionamento do aspersor, mais externo ou interno em relação à rotação do pivô também podem afetar a quantidade de água ofertada à planta, devido a fatores como vento e velocidade de rotação do pivô.

Neste contexto, objetivou-se avaliar diferentes abordagens na exclusão de outiliers na produtividade de milho verde no sistema solteiro e consórciado com diferentes opções de capim de diferentes e sua influência nos resultados da ANAVA e do teste de médias de Tukey e Scott-Knott.

2. Materiais e métodos

O experimento foi conduzido no Instituto Federal Goiano, Campus Ceres, localizada no município de Ceres-GO, na latitude S 15°21'16.25 e longitude W 49°36120.83 e altitude de 560 m. Conforme a classificação de Koppen (1948) o clima da região é do tipo Aw. A área de cultivo do

¹Doutorando em Zootecnia pela Universidade Federal de Goiás - Goiânia. email: dougmes@yahoo.com.br.

²Professor de Ensino Básico e Técnico, Instituto Federal Goiano. Doutorando em Zootecnia pela Universidade Federal de Goiás - Goiânia. email: adalto.linhares@ifgoiano.edu.br

³Mestando em Zootecnia pela Universidade Federal de Goiás – Goiânia: email:

⁴Professor Associado 2, Departamento de Zootecnia – Universidade Federal de Goiás. email: earnhold@gmail.com.

⁵Professor Titular, Departamento de Zootecnia – Universidade Federal de Goiás.

⁶ Aluno Pibic, Agronomia, Instituto Federal Goiano – Campus Ceres

milho apresenta topografía plana e solo classificado como Latossolo Vermelho Distroférrico (EMBRAPA, 2006).

O delineamento experimental foi em blocos casualizados com cinco repetições para cada tratamento, totalizando de 55 unidades experimentais (UE) para avaliação dos sistemas de cultivo. Os tratamentos foram: Milho Solteiro 1 (MS1), Milho Solteiro 2 (MS2), Milho consorciado com *Brachiaria ruziziensis* (MCBR), Milho consorciado com *Brachiaria brizantha* cv. BRS Ipyporã (MCBI), Milho consorciado com Brachiaria brizantha cv. Naraés (MCBX), Milho consorciado com *Brachiaria brizantha* cv. Marandu (MCBM), Milho consorciado com *Panicum maximum* cv. BRS Tamani (MCPT), Milho consorciado com *Panicum maximum* cv. BRS Quênia (MCPQ), Milho consorciado com *Panicum maximum* cv. Mombaça (MCPMB) e Milho consorciado com *Panicum maximum* cv. BRS Zuri (MCPZ).

Cada bloco possuía dimensões de 36x6m, preparado e demarcado com enxada rotativa, em que foi semeado e adubado mecanicamente (Semeadora/adubadora de 5 linhas à vácuo) em 10 linhas de milho com espaçamento de 0,50 m no sentido longitudinal, com regulagem para deposição de 2,5 sementes de milho por m.L. (50.000 sem. ha-¹) à ±3cm, e dosagem regulada para 360 kg ha-¹ de adubo formulado granulado (5-25-15+0,5%micro total®). Em seguida transversalmente a cada 0,25 cm abriu sulcos de 6,0 m de comprimento para semeadura das sementes de capins nas 12 linhas, formando as parcelas com dimensões de 3x6 m, que constituíram os tratamentos. Os capins do gênero Panicum e Brachiaria foram implantados com taxa de semeadura de 10 e 20 kg de sementes puras incrustadas (SPI) ha-¹, respectivamente, a fim de garantir uma população maior que as 50 plântulas.m-².

O cultivo foi realizado no final do período chuvoso (Abril à Agosto/2018) para produção de milho verde e forragem para múltiplo uso (espigas, silagem, pasto e/ou feno ou palhada), com aproveitamento da resposta do sistema para continuidade em outro projeto.

Foi utilizado o milho híbrido duplo AG 1051 devido sua importância e interesse unânime entre os produtores da região para milho verde e silagem (MS1 e também nos consórcios), a outra variedade de milho foi constituída por uma varieadade crioula, muito utilizada na região (MS2). Entre as forrageiras perenes foram utilizados os cultivares convencionais e lançamentos protegidos (BRS) do gênero Brachiaria e Panicum (EMBRAPA).

Após implantação dos sistemas, e da emergência do milho e dos capins até a data da colheita das espigas de milho, foi feito o monitoramento das culturas, visando controles fitossanitários conforme recomendação da Embrapa e conhecimento de campo sobre as limitações sanitária deste material.

Quando o milho atingiu o estágio médio de V2 realizou a 1ª aplicação de inseticida, fungicida e adubo foliar. No estágio V3 realizou a 1ª adubação em cobertura com 74 kg N.ha-¹ (Nitro Gold) e no estágio V7 a 2ª cobertura com 90 kg N.ha-¹ (Nitro Mais) a fim de obter alta produtividade conforme recomendações de Ribeiro et al. (1999). Entre as coberturas realizou-se outra aplicação de inseticida, fungicida e adubo foliar, sendo repetido o controle na fase de R1 para controlar insetos que cortam os estigma (cabelos) das espigas do milho e prejudicam a polinização e fecundação, acarretando falhas na formação dos grãos.

Para avaliação da produção de milho verde, a colheita manual foi realizada após as plantas atingirem estádio R4 (grão leitoso-cremoso), cortada rente ao solo. Foram coletadas uma amostra de 12 plantas centrais de milho (4 linhas de 1,0 m central) para representar a população de 50.000 pl.ha-1 do milho. Posteriormente os resultados obtidos da massa da planta e das espigas foram tabulados e extrapolados para um hectare de área.

2.1 Análises estatísticas

Os dados foram tabulados em excel e numa primeira visualização observou-se uma falha visível durante o cultivo, na extremidade do pivô, em que a última parcela recebeu pouca água da irrigação provocada pelo vento. Diante disso, algumas situações foram levantadas e testadas na análise dos dados. 1ª situação: análise completa com todos os dados, se excluir nenhuma parcela (SC); 2ª situação: análise dos dados eliminando somente as parcelas posicionadas na extremidade externa do pivô, que foram as mais afetadas pela falha (SEE), e 3ª situação sendo a eliminação dos dados das parcelas posicionadas nos extremos tanto interno quanto externo (SEIE).

Em seguida, os dados foram submetidos à análise de variância e as médias comparadas pelos testes Tukey e Scott-Knott, com nível de significância de 5% de probabilidade para a variável produtividade de milho com auxílio do software R (R Core Team, 2013) e pacote easyanova (ARNHOLD, 2013).

A Figura 1 abaixo apresenta a distribuição das parcelas e blocos na área experimental assim como a posição no pivô central.

Fonte: Próprio autor.

FIGURA 1: Distribuição dos tratamentos por bloco e parcela experimental e localização no pivô central.

A Figura 2 apresenta a homogeneidade da aspersão de lâmina de irrigação em mm. Verificação da Homogeneidades da Lâmina de Irrigação (mm)

Fonte: Próprio autor.

FIGURA 2: Quantidade de água aspergida por bico do pivô central.

Observa-se na Figura 2 que houve redução na lâmina d'água na parte mais externa do experimento (vermelho) e que teve um excesso de água na parte interna do experimento (azul).

3. Resultados e discussões

A Tabela 1 apresenta o resultado do quadro de Análise de variância para os dados de produção de Milho solteiro e consorciado, irrigados em pivô central no campus Ceres do Instituto Federal Goiano com abordagem de todos os dados, com a exclusão das parcelas posicionadas externamente ao pivô e com a exclusão das parcelas posicionadas nos dois extremos do pivô central.

TABELA 1: Análise de variância com diferentes abordagens quanto aos dados utilizados pelo pesquisador.

	SC		SEE		SEIE	
FV	GL	QM	GL	QM	GL	QM
Trat	11	20771916.4***	11	21500838.0***	11	18858760.7***
Bloco	4	522681.2	4	1212195.0	4	1226807.4
Erro	44	1551735.3	39	772484.0	34	826789.9

Fonte: Próprio autor.

Nota-se na Tabela 1 a diminuição no QME quando foram excluídas as parcelas posicionadas no extremo externo ao pivô central e também quando foram excluídas tantos as parcelas posicionadas na parte extena quanto interna do pivô em comparação com a análise completa dos dados, demonstrando que a exclusão destas parcelas, como se fosse uma bordadura ao experimento, é uma técnica bem vinda, principalmente em situações nas quais ocorrem imprevistos ao planejamento experimental como foi o caso de ventanias e do entupimento de bico na extremidade externa do pivô. Apesar do resultado do teste F não ter modificado, provavelmente pelo grande número de tratamentos, é muito interessante notar essa diminuição no QME.

A tabela 2 apresenta os resultados do teste Scott-Knott para as três situações avaliadas. **TABELA 2**: Resultado do teste Scott-Knott para médias de tratamentos das três situações avaliadas.

		SC	\$	SEE	SEIE	
Tratamento	Média	Scott_Knott	Média	Scott_Knott	Média	Scott_Knott
MS2	18956.40	a	18956.60	a	18643.74	a
MS1	18401.64	a	18402.00	a	18402.00	a
MCBI	16234.38	b	16234.40	b	16234.40	b
MCPMA	15885.92	b	16086.80	b	15988.73	b
MCBR	15884.94	ь	16943.73	ь	16863.06	b
MCPT	15621.66	ь	16375.59	ь	16385.97	b
MCBX	15060.00	c	15551.22	ь	15575.31	b
MCBP	14760.06	c	14760.20	c	14760.20	c
MCBM	14460.00	c	14460.20	c	14460.20	c
MCPQ	13693.98	c	13694.20	c	13695.22	c
MCPMB	12752.76	d	12568.92	d	12583.74	d
MCPZ	11994.66	d	11994.80	d	11994.80	d

Fonte: Próprio autor.

A Tabela 3 apresenta os resultados para o teste Tukey para as três situações avaliadas.

TABELA 3: Resultado do teste Tukey para médias de tratamentos das três situações avaliadas.

	SC		SEE		SEIE	
Tratamento	Média	Tukey	Média	Tukey	Média	Tukey
MS2	18956.40	a	18956.60	a	18643.74	a
MS1	18401.64	ab	18402.00	ab	18402.00	a
MCBI	16234.38	bc	16234.40	cd	16234.40	bc
MCPMA	15885.92	bc	16086.80	cd	15988.73	bcd
MCBR	15884.94	bc	16943.73	abc	16863.06	ab
MCPT	15621.66	c	16375.59	bcd	16385.97	abc
MCBX	15060.00	cd	15551.22	cde	15575.31	bcd
MCBP	14760.06	cd	14760.20	de	14760.20	bcd
MCBM	14460.00	cde	14460.20	def	14460.20	cde
MCPQ	13693.98	cde	13694.20	efg	13695.22	def
MCPMB	12752.76	de	12568.92	fg	12583.74	ef
MCPZ	11994.66	e	11994.80	g	11994.80	f

Fonte: Próprio autor.

Com relação ao resultado das Tabelas 2 e 3, pode-se observar que houve a inversão na ordem de colocação dos tratamentos MCBI e MCPMA com MCBR e MCPT, o que não alterou seu agrupamento pelo teste Scott-Knott, mas alterou com relação ao teste de Tukey.

Específicamente falando do teste Scott-Knott, o único tratamento que mudou de grupo foi o Milho consorciado com Braquiaria brizantha cv. Xaraés que saiu do grupo c para o grupo b. Os demais tratamentos continuaram no mesmo grupo. Já para o teste Tukey, houve uma mudança muito mais significativa na alteração dos agrupamentos, demonstrando que a correta análise dos dados, com a eliminação de valores que foram afetados por causas externas, pode alterar a interpretação dos resultados pelo pesquisador.

4. Conclusões

A exclusão das parcelas dos extremos do pivô central melhoraram a análise dos dados, reduzindo o QME e aumentando o QMblocos. Houve diferença de posicionamento e de agrupamento entre os tratamentos devido às diferentes situações analisadas, sendo consideradas as situações sem o extremo externo a mais adequada, devido aos problemas ocorridos pelos efeitos externos que diminuíram a lâmina d'água nas parcelas experimentais. Nesta situação, o teste Scott-Knott se mostrou mais consistente no agrupamento dos tratamentos do que o teste Tukey.

Agradecimentos

Ao Instituto Federal Goiano – Campus Ceres pela área e disponibilidade do pesquisador e á Universidade Federal de Goiás.

Referências Bibliográficas

ARNHOLD, E. Package in the R environment for analysis of variance and complementary analyses. **Brazilian Journal Veterinary Research Animal Science**, São Paulo, v. 50, n. 6, p. 488-492, 2013.

BARCELLOS, J.O.J.; FILHO, L.A.Q.; CEOLIN, A.C.; GIANEZINI, M.; MCMANUS, C.; MALAFAIA, G.C.; OAIGEN, R.P. Technological innovation and entrepreneurship in animal production. **Revista Brasileira de Zootecnia**, v.40, p.189-200, 2011.

CARVALHO, A.P.V.; CARVALHO, I.D.E.; FERREIRA, P.V.; SANTOS, D.F.; PEREIRA, M.G. Potencialforrageiro de genótipos de milho com e semespigaprimáriaemdiferentessistemas de cultivo. **CiênciaAgrícola**. Rio Largo, v. 16 (1).P.43-53. 2018.

COSER, T. R.; RAMOS, M. L.G.; FIGUEIREDO, C. C.; URQUIAGA, S.; CARVALHO, A.M.; BARROS, F.V.; MENDONÇA, M.T. Nitrogen uptake efficiency of maize in monoculture and intercropped with Brachiaria humidicola and Panicum maximum in a dystrophic Red-Yellow Latosol of the Brazilian Cerrado. **Cropand Pasture Science**. v.67, n. 1, p. 47-54. 2016.

FREITAS, E. de F. M.; FARIAS, H. F. L. de; COSTA e SILVA, S. M. da; AVELINO NETO, S. Avaliação da velocidade de infiltração da água no solo e uniformidade de distribuição da água de irrigação por pivô central. **Revista Brasileira de Agricultura irrigada.**v.12, n.1, p. 2374 - 2384, 2018

MARTHA JÚNIOR, G.B.; ALVES, E.; CONTINI, E. Dimensãoeconômica de sistemas de integraçãolavoura-pecuaria. **Pesquisa Agropecuária Brasileira**. Brasília, v.46, n.10, p.1117-1126, 2011.

R CORE TEAM. R: **A language and environment for statistical computing**. R Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0, URL http://www.R-project.org/.

SALTON, J.C.; MERCANTE, F.M., TOMAZI, M.; ZANATTA, J.A.; CONCENÇO, G.; SILVA, W.M.; RETORE, M. Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. **Agriculture, EcosystemsandEnvironment**. v.190, p.4-8, 2014.

SILVA, R. F.; GUIMARÃES, M. F.; AQUINO, A. M.; MERCANTE, F. M. Análise conjunta de atributos físicos e biológicos do solo sob sistema de integração lavoura-pecuária. **Pesquisa Agropecuária Brasileira**. v.46, n.10, p.1277-1283. 2011