Komputerowa analiza szeregów czasowych - Sprawozdanie 1

Martyna Świeściak - 243014 Katarzyna Rybarczyk - 243080 17.12.2019

1 Wstęp

Tematem sprawozdania jest zastosowanie modelu regresji liniowej do sprawdzenia zależności na wybranym zbiorze danych. Przedmiotem naszych badań będzie zależność między wagą a wzrostem, o której zakładamy, że jest liniowa.

1.1 Dane

Dane użyte w zadaniu pochodzą z portalu www.kaggle.com i zawierają 10000 obserwacji – 5000 dla kobiet i 5000 dla mężczyzn. Jakość danych jest wysoka – nie istnieją puste obserwacje. Zbiory obserwacji są zauważalnie różne z uwagi na płeć (Rysunek 1), więc skupiłyśmy się wyłącznie na danych dotyczących kobiet. Waga została pobrana w funtach, więc pierwszym krokiem było przeliczenie jej na kilogramy (przyjęte zostało 1lbs = 0,45kg). Analogicznie został przeliczony wzrost z cali na centymetry (1" = 2,54cm).

Rysunek 1: Wykresy badanych zbiorów obserwacji wagi i wzrostu u mężczyzn (lewe strony wykresów) i kobiet (prawe strony wykresów).

W danych występuje dość dużo wartości odstających (Rysunek 2). Zdecydowałyśmy się zostawić je w naszej próbce, ponieważ uważamy, że dobrze obrazują rzeczywistą sytuację społeczeństwa (wiemy, że istnieją osoby bardzo niskie i bardzo wysokie, a także bardzo szczupłe i otyłe). Dodatkowo, w tym wypadku błędy pomiarowe nie miałyby znaczącego wpływu na jakość i rozrzut rozpatrywanych obserwacji.

Rysunek 2: Wykresy typu boxplot dla obserwacji dotyczących wagi oraz wzrostu kobiet

1.2 Teoretyczny model regresji liniowej

Główną ideą regresji liniowej jest przewidywanie jaką wartość przyjmie dana zmienna, gdy będziemy znali wartość innej zmiennej – w naszym wypadku chcemy oszacować wzrost kobiety na postawie jej wagi. Skorzystamy w tym celu z klasycznego modelu regresji liniowej o postaci

$$Y_i = \beta_1 x_i + \beta_0 + \xi_i,\tag{1}$$

gdzie:

- \bullet Y_i niezależne zmienne losowe
- β_0, β_1 współczynniki modelu regresji,
- x_i deterministyczne obserwacje,
- $\{\xi_i\}_{i=1}^n$ ciąg niezależnych zmiennych losowych o średniej równej zero i stałej wariancji równej σ^2 , tzn. biały szum.

W przypadku klasycznego modelu zakłada się, że ξ_i są z rozkładu normalnego. Wtedy:

$$E(Y_i) = E(\beta_0 + \beta_1 x_i + \xi_i) = \beta_0 + \beta_1 x_i, \tag{2}$$

$$Var(Y_i) = Var(\beta_0 + \beta_1 x_i + \xi_i) = Var(\xi_i) = \sigma^2.$$
(3)

2 Konstrukcja modelu

2.1 Podział danych

Chcąc nie tylko stworzyć model, ale także sprawdzić jego dokładność, zestaw danych został podzielony na dwie próbki równej długości:

- testową,
- użytą do stworzenia modelu.

Podziału dokonałyśmy na danych posortowanych ze względu na wagę – do próbki testowej wzięłyśmy co drugą obserwację. Zabieg ten miał na celu symulację sytuacji, gdzie połowę danych posiadamy do stworzenia modelu, a druga połowa to nowe obserwacje, dla których chcemy sprawdzić dopasowanie. Jednocześnie próbki powinny być dość podobne.

2.2 Statystyki liczbowe

Następnie na danych sprawdzone zostały statystyki - miary położenia, rozproszenia, asymetrii i spłaszczenia. Wyliczenia tych statystyk zostały przeprowadzone na całym zbiorze obserwacji, jak również tylko na próbce, która została użyta do stworzenia modelu (m. in. w celu sprawdzenia, czy podział jest sensowny i nie zawiera np. tylko obserwacji odstających).

	Liczba obserwacji	Średnia	Wariancja	Odchylenie standardowe	Współczynnik zmienności	Min	Max	Skośność	Kurtoza
Wzrost	5000	161,82	46,90	6,85	4,23%	137,83	186,41	-0,02	2,94
Waga	5000	61,14	73,28	8,56	14,00%	29,12	91,01	-0,01	2,93

Rysunek 3: Statystyki liczbowe dla całego zbioru obserwacji.

Obserwacje na podstawie statystyk:

- rozkłady obu zmiennych są nieznacznie lewostronnie skośne jednak bardziej symetryczny jest rozkład wagi (skośność najbliższa 0),
- rozkłady obu zmiennych są delikatnie platokurtyczne (kurtoza < 3),
- rozkłady obu zmiennych bliskie są rozkładowi normalnemu,
- pomiary wzrostu cechują się niewielkim rozproszeniem (mały współczynnik zmienności).

Dla porównania, poniżej znajduje się tabelka z wartościami statystyk liczbowych próbki użytej do stworzenia modelu. Statystyki nie różnią się znacząco od oryginalnej próbki, co oznacza, że model nie powinien być zaburzony przez wybrany podział próbki.

		Liczba obserwacji	Średnia	Wariancja	Odchylenie standardowe	Współczynnik zmienności	Min	Max	Skośność	Kurtoza
I	Wzrost	2500	161,81	48,17	6,94	4,29%	140,08	186,41	0,03	2,92
I	Waga	2500	61,14	73,29	8,56	14,00%	31,04	91,01	0,00	2,93

Rysunek 4: Statystyki liczbowe dla modelowego zbioru danych.

2.3 Wyznaczenie estymatorów

W celu stworzenia modelu na podstawie naszych danych, musimy znaleźć estymatory $\hat{\beta_0}$ i $\hat{\beta_1}$ wyznaczone metodą najmniejszych kwadratów (lub metodą największej wiarygodności), wyrażone wzorami

$$\hat{\beta}_0 = \beta_1 + \frac{\sum_{i=1}^n \xi_i(x_i - \overline{x})}{\sum_{i=1}^n (x_i - \overline{x})^2}, \qquad \hat{\beta}_1 = \frac{\sum_{i=1}^n x_i (Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2},$$
(4)

gdzie
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 i $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$.

Użyta została do tego wbudowana w R
Studio funkcja lm. Otrzymane wyniki to $\hat{\beta}_0 = 119.84$ oraz $\hat{\beta}_1 = 0.69$.

3 Analiza

Wywołując funkcję *predict* na stworzonym modelu możemy zobaczyć, jaka prosta regresji została dopasowana do naszych danych:

Rysunek 5: Prosta regresji dopasowana do badanego zbioru danych.

3.1 Dopasowanie modelu

Jakość dopasowania sprawdzamy za pomocą dwóch miar:

• R^2 , które można interpretować jako procent obserwacji położonych na dobranej prostej, tzn. im bliżej 1, tym lepiej. W naszym przypadku $R^2 \approx 0.72$, co daje dość dobry wynik.

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
 (5)

• MSE, czyli błąd średniokwadratowy, to średnia kwadratów różnic między wartością obserwowaną a estymowaną. Dla naszej estymacji mamy MSE $\approx 13.62 \mathrm{cm}^2$ czy też łatwiejsze w interpretacji (ponieważ wyrażone w tej samej jednostce, co estymowane wartości) RMSE $= \sqrt{\mathrm{MSE}} \approx 3.7 \mathrm{cm}$. Przy wartościach z zakresu między 140 a 187cm (Rysunek 4) daje to zadowalająco niski wynik.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$
 (6)

3.2 Predykcja

Następnie wykorzystana została próbka testowa do predykcji na podstawie stworzonego modelu. Chcąc sprawdzić, czy model poprawnie przewiduje wartości, musimy sprawdzić, ile obserwacji należy do przedziału ufności na poziomie α , tzn. sprawdzamy czy prawdziwa wartość $Y(x_0)$ z prawdopodobieństwem $1-\alpha$ zawiera się w przedziale:

$$\left(\hat{Y}(x_0) - t_{n-2,1-\frac{\alpha}{2}} S \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}, \hat{Y}(x_0) + t_{n-2,1-\frac{\alpha}{2}} S \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right), \tag{7}$$

gdzie $S^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$ oraz $t_{n-2,1-\frac{\alpha}{2}}$ – kwantyl rozkładu t-studenta rzędu 1 – $\frac{\alpha}{2}$ z n-2 stopniami swobody.

Poniższy wykres prezentuje dane testowe z przewidzianą prostą i przedziałami ufności dla $\alpha = 5\%$. Sprawdzając, ile obserwacji z próbki testowej faktycznie znajduje się wewnątrz przedziału ufności, otrzymujemy wynik 94.72%, co oznacza, że model został dobrany poprawnie, a zatem możemy przewidywać kolejne wartości i z dużym prawdopodobieństwem będą się one rzeczywiście znajdować wewnątrz takiego przedziału.

Rysunek 6: Predykcja wykonana dla próbki testowej.

3.3 Analiza residuów

Pamiętając o założeniach klasycznego modelu regresji liniowej, nie można zapomnieć o analizie residuów, tzn. realizacji zmiennych losowych ξ_i . Residua definiujemy jako $e_i = y_i - \hat{y_i}$, czyli odległości między rzeczywistymi danymi a prostą regresji. W tej sekcji sprawdzimy, czy uzyskane residua:

- są niezależne.
- sa z rozkładu normalnego o średniej równej zero i stałej wariancji.

W pierwszej kolejności testowana jest niezależność. Szukamy zależności na wykresie próbki oraz sprawdzamy, czy próbkowa funkcja autokorelacji, która sprawdza zależność obserwacji oddalonych o coraz większe kroki, zwróci znaczącą wartość w punktach innych niż 0.

Powyższe wykresy pozwalają nam dojść do wniosku, że residua nie są od siebie zależne.

Następnie testować będziemy, czy e_i pochodzą z rozkładu normalnego o stałej wariancji i średniej równej 0. Średnia próbkowa wynosi $\overline{e} = -1.23 \cdot 10^{-16}$, jest zatem bardzo bliska 0. Odchylenie standardowe wynosi natomiast S = 3.69, a niezmienność (brak trendu) w zależności od dopasowanych wartości prezentuje poniższy wykres:

Rysunek 7: Porównanie residuów z dopasowanymi wartościami.

Pozostaje nam zatem sprawdzenie normalności rozkładu residuów. Najprostszym testem jest wizualne porównanie dystrybuanty empirycznej z teoretyczną oraz estymatora gęstości z gęstością teoretyczną rozkładu normalnego. Testujemy zgodność próbki z rozkładem $\mathcal{N}(0, 3.69)$.

Rysunek 8: Porównanie dystrybuant

Rysunek 9: Porównanie gęstości

Widoczne jest bardzo dobre dopasowanie. Kolejnym testem wizualnym jest wykres kwantylowo-kwantylowy, tzn. wykres rozrzutu utworzony przez wykreślenie dwóch zestawów kwantyli względem siebie. Im bardziej podobne są dwa porównywane rozkłady, tym bliżej prostej y=x leżą punkty.

Poniższy wykres prezentuje dużą zależność między próbkami.

Rysunek 10: Wykres kwantylowo-kwantylowy dla zmiennych losowych z rozkładu normalnego oraz próbki residuów.

Wszystkie testy wizualne potwierdzają nasze przypuszczenia, jednak aby zyskać pewność wykorzystamy bardziej dokładne testy statystyczne. Poniżej znajdują się krótkie, teoretyczne wyjaśnienia oraz uzyskane wyniki.

- 1. Test Kołmogorowa-Smirnowa jest bardzo ważnym, nieparametrycznym testem, badającym zgodność rozkładu empirycznego (próbkowego) z rozkładami teoretycznymi (analitycznymi) poprzez sprawdzenie, czy odległości między dystrybuantą empiryczną a teoretyczną dążą do 0. Średnia p-wartość wyliczona na postawie 500 powtórzeń KStest z niezależnymi próbkami rozkładu normalnego i naszymi residuami wynosi około 98.91%.
- 2. **Test Shapiro-Wilka** jest uznawany za najlepszy test do sprawdzenia normalności rozkładu zmiennej losowej. Największą zaletą tego testu jest duża moc, czyli prawdopodobieństwo odrzucenia hipotezy H_0 , jeśli jest ona fałszywa.
 - P-wartość w tym teście dla naszych residuów wyniosła 88.83%.
- 3. **Test Jarque-Bera** z uwagi na swoją prostotę i znaną nieskomplikowaną postać rozkładu asymptotycznego jest często wykorzystywany. Konstrukcja statystyki testowej bazuje na wartościach momentów (kurtozy i skośności) wyliczonych z próby empirycznej i porównaniu ich z momentami teoretycznymi rozkładu normalnego. W tym wypadku otrzymana p-wartość wyniosła 68.69%.

4 Podsumowanie i wnioski

- Regresja liniowa to przydatne narzędzie statystyczne pozwalające nie tylko znaleźć zależność między zmiennymi, ale także przewidywać kolejne wartości.
- Hipotezę postawioną na wstępie waga i wzrost kobiet są zależne liniowo możemy uznać za słuszną. Prosta
 regresji jest dobrze dopasowana do pobranego zestawu danych, o czym świadczą wyniki uzyskane w sekcji 3.1
 oraz prawidłowa predykcja na nowych danych w sekcji 3.2.
- Model regresyjny okazał się być istotny statystycznie, tzn. "przydatny" do oszacowania wartości zmiennej zależnej (wzrostu) na podstawie wartości predyktora (wagi).
- Podział danych na próbkę modelową i testową o podobnych parametrach pozwolił na dobranie modelu oraz sprawdzenie jego mocy poprzez predykcję na innych danych.

- Przedziały ufności predykcji stworzone na podstawie poprawnie dobranego modelu pozwalają na określenie z zadanym prawdopodobieństwem, w jakim zakresie znajduje się rzeczywista wartość dla danej obserwacji.
- Analiza residuów wykazała, że z dużym prawdopodobieństwem są one niezależne i pochodzą z rozkładu normalnego o średniej równej zero i stałej wariancji. Potwierdziły to testy wizualne oraz wysokie p-wartości w testach statystycznych. Oznacza to, że poprawnie został dobrany teoretyczny model regresji liniowej.