Project Design Phase-II

Technology Stack (Architecture & Stack)

Date	30 Oct 2023
Team ID	NM2023TMID01111
Project Title	Keyword Research using Google Keyword
	Planner

Technical Architecture:

Technical architecture refers to the design and structure of a system or software application from a technical perspective. It encompasses the various components, modules, interfaces, and technologies that are used to build and support the system.

The technical architecture defines how different components of a system interact with each other and how they are organized to achieve the desired functionality. It includes decisions about hardware infrastructure, software platforms, programming languages, communication protocols, databases, and other technical aspects.

The Technical architecture of my project "Keyword Research using Google Keyword Planner" is shown below.

The various technology stacks, I used for this project is tabulated below.

Table 1: (Technical Characteristics)

A technology stack for a Keyword Research using Google Keyword Planner may vary depending on the specific requirements and the technological preferences of the organization. However, here are some commonly used technologies and components that can be part of such a system

S. No	Component	Description	Technology
1.	Backend Development	Programming languages	Java, Python, or Node.js are popular choices for backend development.
		Frameworks	Spring Boot (Java), Django (Python), or Express.js (Node.js) can provide a solid foundation for building the backend.
		Database	Relational databases like MySQL or PostgreSQL are commonly used for data storage and management.
		ORM (Object-Relational Mapping):	Hibernate (Java) or SQLAlchemy (Python) can be used to simplify database operations.
2.	Frontend Development:	Web technologies	HTML, CSS, and JavaScript form the core of web development.
		Frontend frameworks	Angular, React, or Vue.js can provide a rich and interactive user interface.
		UI libraries	Bootstrap or Material- UI offer pre-built components and styles for faster frontend development
3.	Data Management	Real-time data processing	Apache Kafka is a popular distributed streaming platform

			that can handle real-
			time data ingestion and
		Data stavess	processing.
		Data storage	MongoDB, a NoSQL
			database, can be used
			for storing and
			retrieving large
			volumes of data
			efficiently.
		Data analytics	Technologies like
			Apache Spark or
			Elasticsearch can be
			employed for data
			analysis and reporting.
4.	IoT Integration	IoT platforms	Systems like AWS IoT,
			Microsoft Azure IoT, or
			Google Cloud IoT can
			be used to connect and
			manage IoT devices
			such as food delivery.
			But here, we are
			CLOUD IOT PLATFORM
			for integrating IOT
		Protocols	MQTT or CoAP are
			commonly used
			lightweight protocols
			for IoT device
			communication.
5.	Security	Authentication and authorization	Implementing secure
	,		user authentication
			using technologies like
			OAuth or JWT (JSON
			Web Tokens) can be
			crucial for protecting
			user accounts and data.
		Encryption	Transport Layer
			Security (TLS) or Secure
			Socket Layer (SSL) can
			be employed for secure
			data transmission.
			uata transinission.

It's important to note that these technologies are just examples of our project, and the actual technology stack of our Project "LEOPSY" may vary based on specific requirements, scalability needs, existing infrastructure, and the expertise of the development team.

Table-2: Application Characteristics

The application characteristics of our LEOPSY typically include the following:

S.No	Characteristics	Description	Technology
1.	Automated food	The system should have the capability	Advanced Metering
	Reading	to automatically collect readings from	Infrastructure (AMI)
		food store installed at customer	
		locations. This eliminates the need for	
		manual reading and reduces human	
2.	Real-time Data	The system should process and	Supervisory Control
۷.	Processing	analyze meter data in real-time,	and Data Acquisition
	11000331118	enabling quick and accurate billing	(SCADA) Systems,
		calculations. It should be able to	Cloud Computing, Data
		handle a large volume of data	analytics and machine
		efficiently.	learning, telemetry
		·	system. But here we
			use Internet of things
			(IOT)
3.	Billing Accuracy	The system should ensure accurate	Automated Order
		calculation of food order and	Reading (AMR)
		generate precise bills based on the	
		collected meter data. It should take	
		into account factors like tariff rates,	
		discounts, and any applicable taxes or fees.	
4.	Usage Monitoring and	The system should provide insights	Smart Food Tracking
4.	Analysis	into food delivery patterns, allowing	and Internet of Things
	Anarysis	suppliers to monitor and analyze	(IoT) Sensors
		usage trends. This information can	(101) 3013
		help in identifying potential leaks,	
		anomalies, or opportunities for	
		conservation.	
5.	Customer Self-Service	The system should offer self-service	Web Portals and
		features that allow customers to	mobile applications,
		access their billing information, usage	Email and Text
		history, and payment records. It	Messaging.
		should provide online portals or	
		mobile applications where customers	
		can view and manage their accounts.	0.40/01
6.	Notifications and	The system should be capable of	SMS (Short Message
	Alerts	sending notifications and alerts to	Service), Email, Web
		customers regarding their billing	

		information, due dates, and any	Portals and mobile
		relevant updates. This helps in	applications
		improving communication and	
		keeping customers informed.	
7.	Integration with	The system should integrate with	Online Payment
	Payment Gateways	secure payment gateways, enabling	Gateways: Gpay,
		customers to conveniently make	Phonepe, payPal etc.,
		payments online. It should support	Bank transfer, Prepaid
		various payment methods, such as	cards or vouchers,
		credit/debit cards, bank transfers, or	Point-of-Sale (POS)
		digital wallets.	Systems (Cash on
			delivery)
8.	Data Security and	The system should prioritize data	Encryption, Data
	Privacy	security and ensure the privacy of	Backup and Disaster
		customer information. It should	Recovery, Security
		implement encryption, access	Audits and Compliance.
		controls, and adhere to data	
		protection regulations to safeguard	
		sensitive data.	
9.	Scalability and	The system should be scalable to	Load balancing,
	Performance	accommodate a growing customer	Caching, cloud
		base and handle increasing data	Computing, Content
		volumes. It should be designed to	Delivery Networks
		deliver high performance and	(CDNs), Monitoring and
		responsiveness to ensure smooth	Performance Testing
		operations.	
10.	Integration with	The system should be able to	Application
	Existing Systems	integrate with other existing systems	Programming
		used by food suppliers, such as	Interfaces (APIs),
		customer relationship management	Enterprise Service Bus
		(CRM) systems, accounting systems,	(ESB), Web services,
		or enterprise resource planning (ERP)	Message Queueing
		systems. This facilitates seamless data	Systems, Database
		exchange and streamlines overall	Integration
		operations.	

These characteristics contribute to the efficient management of food delivery processes, accurate customer invoicing, improved customer experience, and better operational insights for LEOPSY.