University of St Andrews

MAY 2010 EXAMINATION DIET SCHOOL OF MATHEMATICS & STATISTICS

MODULE CODE:

MT5823

MODULE TITLE:

Semigroup Theory

EXAM DURATION:

2 hours

EXAM INSTRUCTIONS Attempt ALL questions.

The number in square brackets shows the maximum marks obtainable for that question or

part-question.

Your answers should contain the full working

required to justify your solutions.

PLEASE DO NOT TURN OVER THIS EXAM PAPER UNTIL YOU ARE INSTRUCTED TO DO SO.

1. Let S be the semigroup generated by the transformations

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 6 & 7 & 4 & 4 & 6 & 7 & 5 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 1 & 4 & 5 & 6 & 7 & 3 \end{pmatrix}.$$

- (a) List the elements of S. Prove that S is not a monoid and that S has 4 idempotents. [4]
- (b) Prove that the set of idempotents of S forms a subsemigroup of S. [3]
- (c) State (without proof) the Vagner representation theorem for inverse semigroups. Is it true that every subsemigroup of the semigroup I_X of all partial bijections on X is inverse? [3]
- (d) Is S an inverse semigroup? How many \mathcal{R} -classes does S have? How many \mathcal{L} -classes does S have? Justify your answers. [5]
- (e) Define a simple semigroup and a Clifford semigroup. Prove that S is neither simple nor Clifford. [3]
- 2. Let $S = \mathcal{M}[T; I, \Lambda; P]$ be a Rees matrix semigroup over a semigroup T. Recall that this means that S is the set $I \times T \times \Lambda$ with multiplication

$$(i,t,\lambda)(j,u,\mu)=(i,tp_{\lambda j}u,\mu),$$

where $P = (p_{\lambda i})_{\lambda \in \Lambda, i \in I}$ is a matrix with entries from T.

- (a) Prove that if T is simple, then S is simple as well. Conclude that S is simple when T is a group. [4]
- (b) Prove that if S is regular, then so is T. [4]

(c) Let $T = \{a, b, c, d\}$ be the semigroup with multiplication table

Prove that T is regular. Find a sandwich matrix $P = (p_{\lambda i})_{\lambda \in \Lambda, i \in I}$ with entries in T such that $\mathcal{M}[T; I, \Lambda; P]$ is not regular. [Hint: Try a 1×1 matrix.] [4]

- (d) Prove that if T is regular, then the element $(i, x, \lambda) \in S$ is regular if and only if there exist $j \in I$ and $\mu \in \Lambda$ such that the set $p_{\lambda j}Tp_{\mu i}$ contains an inverse of x.
- 3. Let S be a band. Recall that this means that every element of S is an idempotent, that is, $x^2 = x$ for all $x \in S$.

You may use the following facts about S without proof: if $x, y \in S$, then

$$x\mathcal{L}y$$
 if and only if $Sx = Sy$,
 $x\mathcal{R}y$ if and only if $xS = yS$,
 $x\mathcal{D}y$ if and only if $SxS = SyS$.

- (a) Prove that every \mathcal{H} -class of S has precisely one element. [2]
- (b) Show that $\mathcal{D} = \mathcal{J}$ on S. [2]
- (c) Prove that the following are equivalent:
 - (i) $sts = st \text{ for all } s, t \in S;$
 - (ii) xS = xSx for all $x \in S$;
 - (iii) Sx = SxS for all $x \in S$;
 - (iv) $\mathcal{D} = \mathcal{L}$ on S;
 - (v) every \mathcal{R} -class of S has 1 element;

(vi) the binary relation ρ defined by

 $(s,t) \in \rho$ if and only if st = t

is a partial order.

[Hints: (v) \Rightarrow (vi) Recall that ρ is a partial order if it is reflexive, antisymmetric, and transitive.

(vi) \Rightarrow (i) Use the antisymmetry of ρ .]

[12]