

Agenda

- Introduction
- Objective
- Methodology
- Result
- Conclusion
- References

Introduction

The Billboard Hot 100 Chart remains one of the definitive ways to measure the success of a popular song.

The Million Dataset is a freely available collection of audio features and metadata for contemporary popular music tracks.

Spotify Web API was used for extracting audio features of collected songs from this two sites.

Investigation was done using machine learning techniques to predict which songs will become Billboard Hot 100 Hits.

It was able to able to predict the Billboard success of a song with ~75% accuracy using machine-learning algorithms including Logistic Regression, GDA, SVM, and Decision Trees.

Flowchart

Data Collection -

Data of approximately 4000 songs was collected from Billboard.com and the Million Song Dataset

First rows

• Spotify Web API was used for extracting audio features of collected songs from given two sites.

	Strows											
	df_index	Track	Artist	SpotifyID	danceability	energy	key	mode	speechiness	acousticness	instrumentalness	liveness
0	0	Lucid Dreams	Juice WRLD	285pBltuF7vW8TeWk8hdRR	0.511	0.566	6	0	0.2000	0.34900	0.00000	0.3400
1	1	Better Now	Post Malone	7dt6x5M1jzdTEt8oCbisTK	0.680	0.578	10	1	0.0400	0.33100	0.00000	0.1350
2	2	Drip Too Hard	Lil Baby & Gunna	78QR3Wp35dqAhFEc2qAGjE	0.897	0.662	1	0	0.2920	0.08520	0.00000	0.5340
3	3	Sicko Mode	Travis Scott	2xLMifQCjDGFmkHkpNLD9h	0.834	0.730	8	1	0.2220	0.00513	0.00000	0.1240
4	4	Youngblood	5 Seconds Of Summer	2iUXsYOEPhVqEBwsqP70rE	0.596	0.854	7	0	0.4630	0.01690	0.00000	0.1240
5	5	I Like It	Cardi	58q2HKrzhC3ozto2nDdN4z	0.816	0.726	5	0	0.1290	0.09900	0.00000	0.3720
6	6	In My Feelings	Drake	2G7V7zsVDxg1yRsu7Ew9RJ	0.835	0.626	1	1	0.1250	0.05890	0.00006	0.3960
7	7	Natural	Imagine Dragons	2FY7b99s15jUprqC0M5NCT	0.704	0.611	2	1	0.0409	0.21700	0.00000	0.0812
8	8	Trip	Ella Mai	6CTWathupliDs7U4InHnDA	0.477	0.610	11	0	0.1440	0.22500	0.00000	0.1070
9	9	I Love It	Kanye West & Lil Pump	4S8d14HvHb70ImctNgVzQQ	0.901	0.522	2	1	0.3300	0.01140	0.00000	0.2590

Danceability	Valence			
Instrumentalness	Energy			
Acousticness	Loudness			
Speechiness	Tempo			
Liveness	Mode			

Data Pre-Processing 🔆

Track and artist column consisted few of the null values which were dropped using dropna() function

```
billboard_df.info
         billboard df.isnull().sum()
Out[6]: Track
         Artist
         SpotifyID
         danceability
         energy
         kev
         mode
         speechiness
         acousticness
         instrumentalness
         liveness
         valence
         tempo
         duration ms
         loudness
         dtype: int64
```

• The target column "mode" should be having values as 0 or 1 but it was consisting some unknown values

12/5/2021 **7**

Data Pre-Processing

Spotify Id column in the dataset consisted repeated values which were necessary to remove those

Data Analysis & Visuals 🗠

From this visual, it is easily interpreted that the variables are correlated to each other.

Why it could not be?

Afterall they are features of song which go together to make a song pretty good to hear.

Data Modeling

- Two algorithms were used for data modelling which are as follows,
- SVM(Support Vector Machine)
- Random Forest

Data split was done as 75/25 into training/testing sets and separated the features as dependent and independent variables.

And both the algorithms were applied to it.

```
In [83]: #X has independent variables
X = df.iloc[:,:11]
#y has dependent variable
y = df.hit
```

```
###split data into train and test data

In [8]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=0)
```

Results

SVM classifier using linear kernel

```
In [23]: ### Implement SVM classifier
    from sklearn.svm import SVC
    SVMclassifier = SVC(kernel= "linear")
    SVMclassifier.fit(X_train, y_train)

Out[23]: SVC(kernel='linear')

In [24]: ### Prediction
    y_pred = SVMclassifier.predict(X_test)

In [27]: ### Check Accuracy
    from sklearn.metrics import accuracy_score
    score=accuracy_score(y_test,y_pred)
    score

Out[27]: 0.6800330715171559
```

Random forest classifier using 100 estimators

Looking at the results the model gaining higher accuracy was decided to be deployed

Model Deployment

- Flask is an API in python that allows model developers to build up web applications.
- The model gaining higher accuracy was random forest so flask web-application was created based on it.

Model Deployment

Continued...

Based on the song features the outcome was as below,

References

- H. Dai, "Research on SVM improved algorithm for large data classification," 2018 IEEE 3rd Int. Conf. Big Data Anal. ICBDA 2018, no. 1, pp. 181–185, 2018, doi: 10.1109/ICBDA.2018.8367673.
- M. Claesen, F. De Smet, J. A. K. Suykens, and B. De Moor, "Fast Prediction with SVM Models Containing RBF Kernels," 2014, [Online]. Available: http://arxiv.org/abs/1403.0736.
- J. R. Thompson and B. L. Licklider, "Visualizing Urban forestry: Using concept maps to assess student performance in a learning-centered classroom," J. For., vol. 109, no. 7, pp. 402–408, 2011, doi: 10.1093/jof/109.7.402.
- https://www.billboard.com/charts/hot-100
- http://millionsongdataset.com/pages/getting-dataset/
- https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
- https://builtin.com/data-science/random-forest-algorithm 5. https://www.geeksforgeeks.org

