General Relativity

By precise approach

Preliminaries

Manifolds

1. Topological Manifolds

Def 1.1 Topological Manifolds

A manifold M of dimension n is a topological space with the following properties.

- 1. M is Hausdorff
- 2. M is locally Euclidean of dimension n
- 3. M has a countable basis of open sets

Why?

- Hausdorff: In Hausdorff space, convergent sequences converge to only one point. If you want to do calculus, you should need Hausdorff space.
- Locally Euclidean: This is the main reason that why we require manifolds.
- Countable Basis: We need **partition of unity** to bring many properties of Euclidean space. For Hausdorff space, existence of partition of unity require **paracompactness**. And paracompactness follows from **second countability**. It is same as have countable basis.

1.1 Supplement

Thm 1.1.1 Paracompact \simeq Partition of unity

Let (X, τ) be a topological space that is T_1 (all points are closed). Then the following are equivalent:

- I. (X, τ) is paracompact and Hausdorff
- II. Every open cover of (X, τ) admits a subordinate partition of unity

To prove this, we need a wide background knowledge.

Def 1.1.2 Hausdorff

Given points x and y of S, if $x \neq y$, then there exist open neighborhoods U of x and Y of y in S that are disjoint: such that $U \cap V = \emptyset$.

Def 1.1.3 Locally finite cover

Let (X, τ) be a topological space.

An open cover $\{U_i \subset X\}_{i \in I}$ of X is called *locally finite* if $\forall x \in X$, there exists a neighbourhood $U_x \supset \{x\}$ such that it intersects only finitely many elements of the cover, hence such that $U_x \cap U_i \neq \emptyset$ for only a finite number of $i \in I$.

Def 1.1.4 Refinement of open covers

Let (X,τ) be a topological space, and let $\{U_i\subset X\}_{i\in I}$ be a open cover. Then a *refinement* of this open cover is a set of open subsets $\{V_j\subset X\}_{j\in J}$ which is still an open cover in itself and such that for each $j\in J$ there exists an $i\in I$ with $V_j\subset U_i$.

Def 1.1.5 Paracompact topological space

A topological space (X, τ) is called *paracompact* if every open cover of X has a refinement by a locally finite open cover.

Def 1.1.6 Partition of unity

Let (X, τ) be a topological space, and let $U_i \subset X_{i \in I}$ be an open cover. Then a partition of unity subordinate to the cover is

• a set $\{f_i\}_{i\in I}$ of continuous functions

$$f_i:X\to[0,1]$$

2) Differentiable Manifolds

Def 2.1: C^{∞} - Compatible

We say U, φ and V, ψ are C^{∞} -compatible if $U \cap V$ nonempty implies $\varphi \circ \psi^{-1}$ and $\psi \circ \varphi^{-1}$ to be diffeomorphisms of the open subsets $\varphi(U \cap V)$ and $\psi(U \cap V)$ of \mathbb{R}^n .

Def 2.2: Differentiable Structure

A differentiable or C^∞ (or smooth) structure on a topological manifold M is a family $\mathcal{U}=\{U_\alpha,\varphi_\alpha\}$ of coordinate neighborhoods such that

- 1. the U_{α} cover M,
- 2. $\forall \alpha, \beta$ the neighborhoods $U_{\alpha}, \varphi_{\alpha}$ and $U_{\beta}, \varphi_{\beta}$ are C^{∞} -compatible,
- 3. any coordinate neighborhood V, ψ compatible with every $U_{\alpha}, \varphi_{\alpha} \in \mathcal{U}$ is itself in \mathcal{U}

Def 2.3: Differentiable Manifold

A C^{∞} manifold is a topological manifold together with a C^{∞} -differentiable structure.

Thm 2.4: Uniqueness with Hausdorff

Let M be a Hausdorff space with a countable basis of open sets. If $\{V_\beta, \psi_\beta\}$ is a covering of M by C^∞ -compatible coordinate neighborhoods, then there is a unique C^∞ structure on M containing these coordinate neighborhoods.

3) Lie Group

We know \mathbb{R}^n is C^∞ -manifold & Abelian group with component-wise addition as group operation. And we can find next two maps are differentiable :

$$(x,y) \to x + y$$

 $x \to -x$

Then we can generalize these facts.

Def 3.1: Lie Group

G is a Lie group provided that the mapping of $G \times G \to G$ defined by $(x,y) \mapsto x \cdot y$ where \cdot is group operation of G and the mapping of $G \to G$ defined by $x \mapsto x^{-1}$ are both C^{∞} mappings.

3) Vector Field and One parameter group

Def 2.1: Vector Field

A Vector field X on M is a function assigning to each point p of M a vector $X_p \in T_p(M)$

$$X: M \to T(M) = \bigcup_{p \in M} T_p(M)$$

\begin{tcolorbox}[colback=white!5!white,colframe=white!75!black, title=**Def 2.2:** One Parameter Group]

2. Differentiation

2.1 Tensor fields and congruences

1) Supplement for Vector

Def 1.1: Tangent Space

We define the $tangent space\ T_p(M)$ to be the set of all mappings $X_p:C^\infty(p)\to\mathbb{R}$ satisfying the two conditions

1.

2.

with the vector space operations in $T_p(M)$ defined by

1.

2.

Thm 1.2

Let $F:M\to N$ be a C^∞ map of manifolds for $p\in M$. Then there are two homomorphisms such that

 F^* : defined by $F^*(f) =$

 F_* : defined by $F_*(X_p)f =$

When $F:M\to M$ is identity then F^*,F_* are isomorphism.

pf

Cor 1.4

If $F:M\to N$ is a diffeomorphism of M onto an open set $U\subset N$ and $p\in M$, then $F_*:T_p(M)\to T_{F(p)}(N)$ is an isomorphism onto.

Note: Coordinate reps of vector

$$X_p f = \frac{d}{dt} \left[f \circ \gamma(t) \right]$$

$$=$$

$$=$$

Since we know $F_*(u)f = u(f \circ F)$,

$$\frac{\partial}{\partial x^i}(f\circ\varphi^{-1}) =$$

Therefore

$$\therefore X_p = X_p^i E_{ip}$$