Manual d'instal·lació – TFG Surgical Instruments Server

Aquest manual té com a objectiu descriure de manera clara i estructurada el procediment necessari per instal·lar i posar en funcionament el sistema desenvolupat en el marc del Treball de Fi de Grau *Surgical Instrument Server*, realitzat per Nil Leslie Bokesa Salomón.

Al llarg del document es detallen els requisits previs, tant a nivell de maquinari com de programari, així com els passos a seguir per configurar l'entorn i assegurar-ne el correcte funcionament. També s'hi inclouen exemples visuals i recomanacions útils per facilitar la instal·lació, especialment a usuaris que no tinguin experiència prèvia amb les eines utilitzades.

L'objectiu final és proporcionar una guia fiable que permeti reproduir l'entorn de treball del projecte i garantir-ne una execució estable i operativa.

1. Requeriments del Sistema

1.1. Elements físics necessaris

- Braç robòtic Ur3e amb Teach Pendant
- Ordinador amb Windows 10/11.
- Connexió de xarxa via Ethernet o Wi-Fi dins de la mateixa subxarxa (És essencial que el robot i l'ordinador estiguin connectats a la mateixa xarxa).
- Càmera webcam
- Micròfon USB o audífons amb micròfon incorporat pel reconeixment de veu.

1.2. Programari necessari

- Interfície gràfica UR3 per al control del cobot
- Python 3.8 o superior.
- Llibreries Python: speech_recognition, pyModbus, numpy, cv2, ultralytics.
- Editor: Visual Studio Code (aquest és el que he fet servir personalment, però és opcional)

2. Requeriments del Sistema

2.1. Part de Python

- Instal·lar Python des de la web oficial: https://www.python.org/downloads/
- Instal·lar un entorn de desenvolupament com VS o des de la mateixa terminal.
- Descarregar l'arxiu codi_final.py dins de la carpeta Python que està dins de la carpeta src del repositori de GitHub del treball. Per descarregar-lo cal entrar dintre del arxiu i clickeu al botó per descarregar el raw file. La Figura q mostra un exemple de com apareix aquesta opció en la part superior dreta del arxiu.

Figura 1: Exemple de com d'escarregar arxiuis a GitHub

- Un cop descarregat l'arxiu cal guardar-lo a una carpeta
- Si heu descarregat l'interpret Visual Studio Code, és moment d'obrir-lo.
- Carpeta de treball: Crea una nova carpeta al teu ordinador que servirà
 com a directori principal del projecte. Pots posar-li el nom que vulguis (per
 exemple, projecte) i dins d'aquesta carpeta copia-hi o descarrega-hi tot
 el contingut del repositori de GitHub.
- Un cop tinguis la carpeta creada i amb els arxius descarregats, obre la consola (cmd o PowerShell a Windows) directament des d'aquest directori:

- Obre la carpeta amb l'Explorador de Fitxers.
- A la barra d'adreces (a dalt), escriu cmd i prem Enter.
- Se t'obrirà una finestra del terminal directament en aquest directori.

Figura 2: Exemple de terminal oberta dintre del directori

 Instal·lació de Ilibreries: Amb la consola oberta al directori del projecte, executa la següent comanda per instal·lar totes les Ilibreries requerides:

"pip install speechrecognition pyModbusTCP numpy opency-python ultralytics matplotlib"

```
C:\Windows\System32\cmd.e \times + \frac{1}{2} \times \frac{1}{2} \tim
```

Figura 3: Exemple d'instal·lació d'una de les llibreries

- Obrir carpeta des del entorn de desenvolupament: És recomanable obrir el projecte amb un editor com Visual Studio Code:
 - Obre Visual Studio Code.
 - Fes clic a File → Open Folder... i selecciona la carpeta del projecte.
 - A la barra lateral veuràs el fitxer codi final.py

- **Seleccionar l'interpret:** Per assegurar-te que tot funciona correctament i que les llibreries es reconeixen, selecciona l'intèrpret de Python
 - A la part inferior dreta de VS Code apareixerà un botó amb el nom de l'intèrpret actual. Si no és correcte, fes-hi clic.
 - S'obrirà un selector a la part superior. Tria la versió de Python que tens instal·lada (ha de ser 3.8 o superior).
 - Un cop seleccionat, VS Code hauria de reconèixer les llibreries i mostrar el codi amb el ressaltat de sintaxi (colors).

3. Part robòtica

Per poder executar correctament la part robòtica del projecte amb el robot UR3e, és necessari disposar del programari corresponent al braç robòtic i seguir una sèrie de passos per carregar i executar el codi.

3.1. Accés al robot Ur3e i preparació del fitxer

Els estudiants que treballin directament amb el robot UR3e físic hauran de seguir aquest procediment:

- Descarregar l'arxiu modbus_prova.urp des del repositori del projecte (GitHub).
- Copiar aquest arxiu a un pendrive USB compatible amb el sistema del robot.
- Inserir el USB al teach pendant del robot UR3e.
- Des del menú del robot, accedir al directori del pendrive i carregar el fitxer .urp dins de l'entorn de programació.

Aquest fitxer conté:

- El programa que utilitza la comunicació MODBUS.
- La configuració del TCP (Tool Center Point) y el Payload de la eina (ventosa) necessària per al funcionament correcte.

Un cop carregat, la configuració del TCP i el codi es mostraran automàticament i estaràn llestos per revisar o executar.

3.2. Execució i Connexió

Amb el fitxer modbus_prova.urp ja carregat:

- Comprova que el robot UR3e i l'ordinador des d'on s'executa el codi
 Python estiguin connectats a la mateixa xarxa local.
- Des del teu ordinador, pots iniciar el fitxer codi_final.py.
- Executa el programa des del teach pendant del robot.

Important: si el servidor MODBUS s'executa en un ordinador diferent del que té accés a la xarxa del robot, la connexió no es podrà establir correctament. Assegura't que tot el sistema estigui ben connectat i dins la mateixa subxarxa.