1992 年全国高中数学联赛试卷

第一试

	选择题	(每小斯	5 4	#: 30 4	4
一、	匹拌巡	【母小伙	$0.7T_{\odot}$	火 30 1	π

- 1. 对于每个自然数 n, 抛物线 $y=(n^2+n)x^2-(2n+1)x+1$ 与 x 轴交于 A_n , B_n 两点,以 A_nB_n 表示该两点的距离,则 $|A_1B_1|+|A_2B_2|+\cdots+|A_{1992}B_{1992}|$ 的值是(
- $(A)\frac{1991}{1992}$ $(B)\frac{1992}{1993}$ $(C)\frac{1991}{1993}$ $(D)\frac{1993}{1992}$

2.已知如图的曲线是以原点为圆心,1为半径的圆的一部分,则这一曲线的方程是(

(A)
$$(x+\sqrt{1-y^2})(y+\sqrt{1-x^2})=0$$
 (B) $(x-\sqrt{1-y^2})(y-\sqrt{1-x^2})=0$

- (C) $(x+\sqrt{1-y^2})(y-\sqrt{1-x^2})=0$ (D) $(x-\sqrt{1-y^2})(y+\sqrt{1-x^2})=0$
- 3. 设四面体四个面的面积分别为 5、5、5、5、6、它们的最大值为

 ≤ 4 (B) $3 \leq \lambda \leq 4$ (C) $2.5 \leq \lambda \leq 4.5$ (D) $3.5 \leq \lambda \leq 5.5$

- 4. 在 \triangle ABC中,角 A、B、C的对边分别记为 a、b、 $c(b\neq 1)$,且 $\frac{C}{A}$ $\frac{\sin B}{\sin A}$ 都是方程 $\log_{\sqrt{h}}$ $x=\log_{b}(4x-4)$ 的根,则 $\triangle ABC($)
 - (A) 是等腰三角形, 但不是直角三角形 (B) 是直角三角形, 但不是等腰三角形

(C) 是等腰直角三角形

- (力)不是等腰三角形,也不是直角三角形
- 5. 设复数 z_1 , z_2 在复平面上对应的点分别为 A, B, 且 $|z_1|=4$, $4z_1^2=2z_1z_2+z_2^2=0$, 0为坐 标原点,则△OAB的面积为(

 - $(A) 8\sqrt{3}$ $(B) 4\sqrt{3}$
- (*C*) $6\sqrt{3}$ (*D*) $12\sqrt{3}$
- 6. 设 f(x) 是定义在实数集 R 上的函数,且满足下列关系 f(10+x)=f(10-x), f(20-x) = f(20+x),则 f(x)是
 - (A) 偶函数, 又是周期函数
- (B) 偶函数,但不是周期函数
- (*C*) 奇函数,又是周期函数
- (D) 奇函数,但不是周期函数
- 二、填空题(每小题 5 分共 30 分)
- 1. 设 x, y, z 是实数,3x, 4y, 5z 成等比数列,且 $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{y}$, $\frac{1}{z}$ 成等差数列,则 $\frac{x}{x}$ 的值是

- 3. 从正方体的棱和各个面上的对角线中选出 k条, 使得其中任意两条线段所在的直线 都是异面直线,则 k 的最大值是_
 - 4. 设 z_1 , z_2 都是复数,且 $|z_1|=3$, $|z_2|=5$ $|z_1+z_2|=7$, 则 $\arg(\frac{z_2}{z_1})^3$ 的值是_
 - 5. 设数列 a_1 , a_2 , …, a_n , …满足 $a_1=a_2=1$, $a_3=2$, 且对任何自然数 n, 都有 $a_na_{n+1}a_{n+2}\neq 1$,

又 $a_n a_{n+1} a_{n+2} a_{n+3} = a_n + a_{n+1} + a_{n+2} + a_{n+3}$,则 $a_1 + a_2 + \cdots + a_{100}$ 的值是 .

^{2.} 在区间 $[0, \pi]$ 中,三角方程 $\cos 7x = \cos 5x$ 的解的个数是

6. 函数
$$f(x) = \sqrt{x^4 - 3x^2 - 6x + 13} - \sqrt{x^4 - x^2 + 1}$$
.的最大值是_____.
 三、(20 分)求证: $16 < \frac{4}{\sum\limits_{i=1}^{2} \sqrt{k}} < 17$.

四、 $(20 \, f)$ 设 1, m是两条 异面直线,在 1上有 A, B, C三点,且 AB=BC,过 A, B, C分别作 m的垂线 AD, BE, CF, 垂足依次是 D, E, F, 已知 AD= $\sqrt{15}$, BE= $\frac{7}{2}$ CF= $\sqrt{10}$, 求 1与 m的距离.

五、(20分)设 n是自然数,
$$f_s(\mathbf{r}) = \frac{\mathbf{r}^{\pm 1} - \mathbf{r}^{-z-1}}{\mathbf{r} - \mathbf{r}^{-1}} (\mathbf{r} \neq 0, \pm 1)$$
,令 $\mathbf{y} = \mathbf{r} + \frac{1}{\mathbf{r}}$.

- 1. 求证: $f_{zt}(\mathbf{r}) = yf_z(\mathbf{r}) f_{zt}(\mathbf{r})$, (\mathbf{n}) 1)
- 2. 用数学归纳法证明:

$$f_{z}(x) =$$

$$\begin{cases} y^{\underline{r}} - C_{x-1}^{-1} y^{\underline{r}-2} + \dots + (-1)^{\frac{r}{2}} C_{x-1}^{\frac{r}{2}} y^{\underline{r}-2} + \dots + (-1)^{\frac{n}{2}}, & (i=1, 2, \dots, \frac{n}{2}, n) \leq 3 \end{cases}$$

$$y^{\underline{r}} - C_{x-1}^{-1} y^{\underline{r}-2} + \dots + (-1)^{\frac{r}{2}} C_{x-1}^{\frac{r}{2}} + \dots + (-1)^{\frac{r}{2}} C_{x-1}^{\frac{r}{2}} y^{\underline{r}}, & (i=1, 2, \dots, \frac{n-1}{2}, n)$$

第二试

一、(35 分) 设 $A_1A_2A_3A_4$ 为 \odot O 的内接四边形, H_1 、 H_2 、 H_3 、 H_4 依次为 \triangle $A_4A_4A_4$ 、 \triangle $A_4A_4A_4$ 、 \triangle $A_4A_4A_4$ 、的垂心.求证: H_1 、 H_2 从 四点在同一个圆上,并定出该圆的圆心位置.

二、(35 分) 设集合 $S_n=\{1,2,\dots,n\}$. 若 X 是 S_n 的子集,把 X 中所有数的和称为 X 的 "容量" (规定空集的容量为 0),若 X 的容量为奇 (偶) 数,则称 X 为的奇 (偶) 子集.

- 1. 求证 S_n的奇子集与偶子集个数相等.
- 2. 求证: 当 $n \ge 3$ 时, S_n 的所有奇子集的容量之和等于所有偶子集的容量之和.
- 3. 当 n≥3 时,求 S_n 的所有奇子集的容量之和.

三、(35 分) 在平面直角坐标系中,横坐标和纵坐标都是整数的点称为格点,任取 6 个格点 $P_i(x_i, y_i)$ (i=1, 2, 3, 4, 5, 6)满足 (1) $|x_i| \le 2$, $|y_i| \le 2$, (i=1, 2, 3, 4, 5, 6),(2) 任何三点不在同一条直线上. 试证: 在以 $P_i(i=1, 2, 3, 4, 5, 6)$ 为顶点的所有三角形中,必有一个三角形,它的面积不大于 2.

1992 年全国高中数学联赛解答

第一试

一、选择题(每小题 5 分, 共 30 分)

1. 对于每个自然数 n, 抛物线 $y=(n^2+n)x^2-(2n+1)x+1$ 与 x 轴交于 A_n , B_n 两点,以 A_nB_n 表示该两点的距离,则 $|A_1B_1|+|A_2B_2|+\cdots+|A_{1992}B_{1992}|$ 的值是(

$$(A)\frac{1991}{1992}$$

$$(A)\frac{1991}{1992}$$
 $(B)\frac{1992}{1993}$ $(C)\frac{1991}{1993}$ $(D)\frac{1993}{1992}$

(c)
$$\frac{1991}{1993}$$

(D)
$$\frac{1993}{1992}$$

【答案】B

【解析】 y=((n+1)x-1)(nx-1) , ∴ $|A_nB_n|=\frac{1}{n}-\frac{1}{n+1}$, 于是 $|A_1B_1|+|A_2B_2|+\cdots+|A_{1992}B_{1992}|=\frac{1992}{1993}$, 选 B.

2. 已知如图的曲线是以原点为圆心,1 为半径的圆的一部分,则这一曲线的方程是(

(A)
$$(x+\sqrt{1-y^2})(y+\sqrt{1-x^2})=0$$
 (B) $(x-\sqrt{1-y^2})(y-\sqrt{1-x^2})=0$

(C)
$$(x+\sqrt{1-y^2})(y-\sqrt{1-x^2})=0$$
 (D) $(x-\sqrt{1-y^2})(y+\sqrt{1-x^2})=0$

$$(D) (\mathbf{r} - \sqrt{1 - \mathbf{r}^2}) (\mathbf{r} + \sqrt{1 - \mathbf{r}^2}) =$$

【解析】(x=√1-y²)=0 表示 y 轴右边的半圆,(y+√1-x²)=0 表示 = =1 x 轴下方的半圆, 故选 A.

3. 设四面体四个面的面积分别为 5、5、5、5、6、它们的最大值为

s, 记
$$\lambda = (\sum_{\substack{j=1 \ j=1}}^4 s_j)/s$$
, 则 λ 一定満足()

(A) $2 < \lambda \le 4$ (B) $3 < \lambda < 4$ (C) $2.5 < \lambda \le 4.5$

(D) $3.5 < \lambda < 5.5$

【答案】▲

【解析】 $\sum_{\Sigma} s_{\infty} \leqslant 4s$,故 $\sum_{\Sigma} s_{\infty} \leqslant 4$,又当与最大面相对的顶点向此面无限接近时, $\sum_{\Sigma} s_{\infty}$

接近 25 故选 4.

- 4. 在 $\triangle ABC$ 中,角 A, B, C的对边分别记为 a, b, $c(b \neq 1)$, \mathbf{L}_A^C , $\frac{\sin B}{\sin A}$ 都是方程 $\log_{\sqrt{b}}$ $x=\log_b(4x-4)$ 的根,则 $\triangle ABC$ (
 - (A) 是等腰三角形,但不是直角三角形 (B) 是直角三角形,但不是等腰三角形

(C) 是等腰直角三角形

(力)不是等腰三角形,也不是直角三角形

【答案】B

【解析】 $x^2=4x-4$. 根为 x=2. ∴ C=2A, $\Rightarrow B=180^{\circ}-3A$, $\sin B=2\sin A$. $\Rightarrow \sin 3A=2\sin A$, $\Rightarrow 3-4\sin^2 A=2$. $A=30^\circ$, $C=60^\circ$, $B=90^\circ$. 选 B.

5. 设复数 z_1 , z_2 在复平面上对应的点分别为 A, B, 且 $|z_1|=4$, $4z_1^2=2z_1z_2+z_2^2=0$, 0 为 坐标原点,则△OAB的面积为(

(A) $8\sqrt{3}$

(B) $4\sqrt{3}$ (C) $6\sqrt{3}$ (D) $12\sqrt{3}$

【答案】A

【解析】 $\frac{2z_1}{z_2}$ = $\cos\frac{\pi}{3}$ ± $i\sin\frac{\pi}{3}$. ∴ $|z_2|$ =8, z_1 、 z_2 的夹角=60°. $S=\frac{1}{2}$ •4•8• $\frac{\sqrt{3}}{2}$ =8 $\sqrt{3}$. 选

Α.

- 6. 设 f(x)是定义在实数集 R 上的函数,且满足下列关系 f(10+x)=f(10-x), f(20-x)=-f(20+x),则 f(x)是
 - (A) 偶函数,又是周期函数
- (B) 偶函数,但不是周期函数
- (c)奇函数,又是周期函数
- (1) 奇函数,但不是周期函数

【答案】C

[\mathbf{r} \mathbf{f} \mathbf{f}

- ∴ f(40+x)=f[20+(20+x)]=-f(20+x)=f(x). ∴ 是周期函数;
- ∴ f(-x)=f(40-x)=f(20+(20-x)=-f(20-(20-x))=-f(x). ∴ 是奇函数. 选 C.
- 二、填空题(每小题 5 分共 30 分)
- 1. 设 x, y, z 是实数,3x, 4y, 5z 成等比数列,且 $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ 成等差数列,则 $\frac{x}{z}$ 的值是

【答案】 $\frac{34}{15}$

【解析】 $16y^2 = 15xz$, $y = \frac{2xz}{x+z}$, $\Rightarrow 16 \cdot 4x^2z^2 = 15xz(x+z)^2$. 由 $xz \neq 0$, 得 $\frac{(x+z)^2}{xz} = \frac{64}{15}$, $\Rightarrow \frac{x+z}{z} = \frac{1}{15}$

 $\frac{34}{15}$.

2. 在区间 $[0, \pi]$ 中,三角方程 $\cos 7x = \cos 5x$ 的解的个数是______.

【答案】<mark>7</mark>

【解析】 $7x=5x+2k\pi$,或 $7x=-5x+2k\pi$,($k\in 2$) $\Rightarrow x=k\pi$, $x=\frac{1}{6}k\pi$ ($k\in 2$),共有7解.

【答案】4

【解析】正方体共有8个顶点,若选出的よ条线两两异面,则不能共顶点,即至多可选出4条,又可以选出4条两两异面的线(如图),故所求よ的最大值=4.

4. 设 z, z,都是复数,且 | z | =3 , | z | =5 | z +z | =7 , 则 arg (= z) ^z 的值是______.

【答案】 π

【解析】 $\cos \angle 0Z_1Z_3 = \frac{3^2+5^2-7^2}{2\times3\times5} = -\frac{1}{2}$. 即 $\angle 0Z_1Z_3 = 120^\circ$,

$$\therefore \arg(\frac{z_1}{z_1}) = \frac{\pi}{3} \frac{5\pi}{3}, \quad \therefore \arg(\frac{z_2}{z_1})^3 = \pi.$$

5、设数列 a, a, …, a, …满足 a=a=1, a=2, 且对任何自然数 n, 都有 a.a., a., ≠1, 又 a.a., a., =a+a., +a., +a., 则 a+a+…+a., 的值是____.

【答案】200

8.8.1.8.1.8.1.8.1.

 $a_{+1}a_{+2}a_{+3}a_{+4} = a_{+1} + a_{+2} + a_{+3} + a_{+6}$

相减,得 & & & (a, - an) = a, + - a, 由 & an, a, + ≠1, 得 a, + = a.

又, $a_1a_{+1}a_{+2}a_{+3}=a_1+a_{+1}+a_{+2}+a_{+3}$, $a_1=a_1=1$, $a_2=2$, 得 $a_1=4$. ∴ $a_1+a_2+\cdots+a_{2n}=25(1+1+2+4)=200$.

6. 函数
$$f(x) = \sqrt{x^4 - 3x^2 - 6x + 13} - \sqrt{x^4 - x^2 + 1}$$
 的最大值是_____.

【答案】 $\sqrt{10}$

【解析】 $f(x) = \sqrt{(x^2-2)^2 + (x-3)^2} - \sqrt{(x^2-1)^2 + x^2}$,表示点 (x, x^2) 与点A(3, 2)的距离及B(0, 1)距离差的最大值.由于此二点在抛物线两侧,故过此二点的直线必与抛物线交于两点.对于抛物线上任意一点,到此二点距离之差大于 $|AB| = \sqrt{10}$.即所求最小值为 $\sqrt{10}$.

三、(20分)求证:
$$16 < \frac{4}{\sum_{i=1}^{2} \sqrt{k}} < 17$$
.

【解析】证明:
$$\frac{1}{\sqrt{k}} = \frac{2}{\sqrt{k+1}} \leftarrow \frac{2}{\sqrt{k-1} + \sqrt{k}} = 2(\sqrt{k-1})$$
,

同时
$$\frac{1}{\sqrt{k}}$$
> $\frac{2}{\sqrt{k+1}+\sqrt{k}}$ =2($\sqrt{k+1}$ - \sqrt{k}).

于是得
$$2\sum_{k=1}^{80} (\sqrt{k+1} - \sqrt{k}) < \sum_{k=1}^{80} \frac{1}{\sqrt{k}} < 1 + 2\sum_{k=1}^{80} (\sqrt{k} - \sqrt{k+1})$$

四、 $(20 \, f)$ 设 I, m 是两条异面直线,在 I 上有 A, B, C 三点,且 AB=BC,过 A, B, C 分别作 m 的垂线 AD, BE, CF, 垂足依次是 D, E, F, 已知 AD= $\sqrt{15}$, BE= $\frac{7}{2}$ CF= $\sqrt{10}$, 求 I 与 m 的距离.

【解析】过 m作平面 a // 1,作 $AP \perp a$ 于 P, $AP \vdash 1$ 确定平面 β , $\beta \cap a = 1'$, $1' \cap m = K$. 作 $BQ \perp a$, $CR \perp a$, 垂足为 Q、 R, 则 Q、 $R \vdash 1'$,且 AP = BQ = CR = 1 与 m 的距离 d.

连 PD、QE、RF,则由三垂线定理之逆,知 PD、QE、RF 都 L m.

$$PD = \sqrt{15 - d^2}$$
, $QE = \sqrt{\frac{49}{4} - d^2}$, $RF = \sqrt{10 - d^2}$.

当 D、 E、 F在 K 同侧时 2QE=PD+RF,

$$\Rightarrow \sqrt{49-4d^2} = \sqrt{15-d^2} + \sqrt{10-d^2}$$
. 解之得 $d = \sqrt{6}$

当 D. E. F不全在 K同侧时 2QE=PD-RF, $\Rightarrow \sqrt{49-4d^2}=\sqrt{15-d^2}-\sqrt{10-d^2}$. 无实解.

\therefore 1与 \mathbb{Z} 距离为 $\sqrt{6}$.

五、(20 分)设
$$n$$
 是自然数, $f_n(x) = \frac{x^{n+1} - x^{-n-1}}{x - x^{-1}} (x \neq 0, \pm 1)$,令 $y = x + \frac{1}{x}$.

- 1. 求证: $f_{n+1}(x) = yf_n(x) f_{n-1}(x)$, $(n \ge 1)$
- 2. 用数学归纳法证明:

 $f_n(x) =$

$$\begin{cases} y^n - C_{n-1}^{-1} y^{n-2} + \dots + (-1)^{i} C_{n-i}^{i} y^{n-2i} + \dots + (-1)^{\frac{n}{2}}, & (i=1, 2, \dots, \frac{n}{2}, n) \end{pmatrix} \\ y^n - C_{n-1}^{-1} y^{n-2} + \dots + (-1)^{i} C_{n-i}^{i} + \dots + (-1)^{\frac{n-1}{2}} C_{\frac{n-1}{2}}^{\frac{n-1}{2}} y, & (i=1, 2, \dots, \frac{n-1}{2}, n) \end{pmatrix}$$
 【解析】证明: (1) 由 $\mathbf{pf}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet-1}(\mathbf{r}) = \frac{\mathbf{f}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet-1}(\mathbf{r})}{\mathbf{f}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet-1}(\mathbf{r})} = \frac{\mathbf{f}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet-1}(\mathbf{r})}{\mathbf{f}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet}(\mathbf{r})} = \frac{\mathbf{f}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet}(\mathbf{r})}{\mathbf{f}_{\bullet}(\mathbf{r})} = \frac{\mathbf{f}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet}(\mathbf{r})}{\mathbf{f}_{\bullet}(\mathbf{r})} = \frac{\mathbf{f}_{\bullet}(\mathbf{r}) - \mathbf{f}_{\bullet}(\mathbf{r})}{\mathbf{f}_{\bullet}(\mathbf{r})} = \frac{\mathbf{f}_{\bullet}(\mathbf{r})}{\mathbf{f}_{\bullet}(\mathbf{r})} = \frac{\mathbf{f$

=f=+1(x). 故证.

(2)
$$f_1(x) = x + \frac{1}{x}$$
, $f_2(x) = x^2 + 1 + x^{-2} = (x + \frac{1}{x})^2 + 1 = y^2 + 1$. 故命題对 $n = 1$, 2 成立.

设对于 ュ≤ュ(ュ≥2, ュ为正整数), 命题成立, 现证命题对于 ュニュト1 成立.

1. 若 』为偶数,则 』+1 为奇数. 由归纳假设知,对于 ューュ 及 ューュー 1,有

$$f_{x}(x) = y^{x} - C_{x-1}^{1} y^{x-2} + C_{x-2}^{2} y^{x-4} + \dots + (-1)^{2} C_{x-2}^{2} y^{x-2} + \dots + (-1)^{2} C_{x-2}^{2} y^{x-2} + \dots + (-1)^{2} C_{x-2}^{2} y^{x-2} = 0$$

$$f_{s-1}(\mathbf{x}) = \mathbf{y}^{s-1} - C_{s-1}^{1} \mathbf{y}^{s-3} + \dots + (-1)^{s-1} C_{s-1}^{s-1} \mathbf{y}^{s+1-2s} + \dots + (-1)^{\frac{s}{2}} \cdot C_{s-2}^{\frac{s}{2}} \mathbf{y}$$
 (2)

$$\therefore yf_{*}(x) - f_{-1}(x) = y^{+1} - \dots + (-1)^{2} \left(C_{-1}^{2} + C_{-1}^{2-1}\right) y^{+1-2} + \dots + (-1)^{2} \left(C_{-2}^{2} + C_{-2}^{2-1}\right) y$$

$$=y^{r+1}-C_{r+1-1}y^{r-1}+\cdots+(-1)^{\frac{r}{2}}C_{r-r+1}y^{r+1-2\frac{r}{2}}+\cdots+(-1)^{\frac{r}{2}}\cdot C_{r-\frac{r}{2}}y^{r}$$

即命題对 ===+1 成立.

2. 若 m 为奇数,则 m+1 为偶数,由归纳假设知,对于 n=m 及 n=m-1,有

$$f_{m}(x) = y^{m-1} - C_{m-2}^{-1} y^{m-2} + \dots + (-1)^{i} \cdot C_{m-i}^{-i} y^{m-2i} + \dots + (-1)^{\frac{m-1}{2}} \cdot C_{\frac{m-2}{2}}^{\frac{m-1}{2}} y$$

3

$$f_{m-1}(x) = y^{m-1} - C_{m-2}^{-1} y^{m-3} + \dots + (-1)^{i-1} C_{m-i}^{i-1} y^{m+1-2i} + \dots + (-1)^{\frac{m-1}{2}} C_{\underline{m-1}}^{\underline{m-1}}$$

4 用 y 乘③减去④,同上合并,并注意最后一项常数项为

$$-(-1)^{\frac{m-1}{2}}\underbrace{\frac{m-1}{2}}_{2} = -(-1)^{\frac{m-1}{2}}\underbrace{\frac{m+1}{2}}_{2} = (-1)^{\frac{m+1}{2}}.$$

<u>m+1</u>

于是得到 $yf_{m}(x) - f_{m-1}(x) = y^{m+1} - C_{m}^{-1}y^{m-1} + \dots + (-1)^{\frac{1}{2}}$,即仍有对于 n=m+1,命题成立 综上所述,知对于一切正整数 n,命题成立.

第二试

 $H_1H_2=A_1A_2$.

同理可知,*虽是// A.A.,是是=A.A.*; *是是// A.A.,是是=A.A.*; *是.E.// A.A.,是是=A.A.*.

故 四边形 ÆÆÆÆ≌四边形 ÆÆÆÆ.

由四边形 AAAA 有外接圆知,四边形 AAAA 也有外接圆、取 AA/的中点 A,作 AQ上AA,且 AQ=AA,则点 Q即为四边形 AAAA的外接圆圆心。

显然,△ÆÆÆ、△ÆÆÆ、 △ÆÆÆ、△ÆÆÆ的外心都是点 0,而它们的重心依次是

$$(\frac{1}{3}(\cos\beta + \cos\gamma + \cos\delta), \frac{1}{3}(\sin\beta + \sin\gamma + \sin\delta)), (\frac{1}{3}(\cos\gamma + \cos\delta + \cos\alpha), \frac{1}{3}(\sin\alpha + \sin\delta + \sin\gamma)),$$

 $(\frac{1}{3}(\cos\delta + \cos\alpha + \cos\beta), \frac{1}{3}(\sin\delta + \sin\alpha + \sin\beta)), (\frac{1}{3}(\cos\alpha + \cos\beta + \cos\gamma), \frac{1}{3}(\sin\alpha + \sin\beta + \sin\gamma)).$

从而, △ A₂A₃A₄、 △ A₃A₄A₁、 △ A₄A₁A₂、 △ A₁A₂A₃ 的垂心依次是

 $H_1(\cos \beta + \cos \gamma + \cos \delta)$, $\sin \beta + \sin \gamma + \sin \delta$, $H_2(\cos \gamma + \cos \delta + \cos \alpha)$, $\sin \alpha + \sin \delta + \sin \gamma$,

 H_3 (cos δ +cos α +cos β , sin δ +sin α +sin β), H_4 (cos α +cos β +cos γ , sin α +sin β +sin γ).

- 二、 $(35 \, \%)$ 设集合 $S_n = \{1, 2, \dots, n\}$. 若 $X \in S_n$ 的子集,把 X 中所有数的和称为 X 的 "容量" (规定空集的容量为 0),若 X 的容量为奇 (偶) 数,则称 X 为的奇 (偶) 子集.
 - 1. 求证 S₂的奇子集与偶子集个数相等.

- 2. 求证: 当 $n \ge 3$ 时, S_n 的所有奇子集的容量之和等于所有偶子集的容量之和.
 - 3. 当 元≥3 时,求 5.的所有奇子集的容量之和。

【解析】证明: (1) 对于 S的每个奇子集 A 当 $1 \in A$ 时,取 $B = A \setminus \{1\}$,当 $1 \notin A$ 时,取 $B = A \cup \{1\}$,则 B 为 S的偶子集. 反之,若 B 为 S 的偶子集,当 $1 \in B$ 时,取 $A = B \cup \{1\}$,于是在 S 的奇子集与偶子集之间建立了一个——对应,故 S 的奇子集与偶子集的个数相等。

(2) 对于任一 $i \in S_s$ i > 1,含 i 的 S_s 的子集共有 2^{-1} 个,其中必有一半是奇子集,一半是偶子集,从而每个数 i,在奇子集的和与偶子集的和中,i 所占的个数是一样的。

而对于元素 1,只要把 5.的所有子集按是否含有 3 配对 (即在上证中把 1 换成 3 来证),于是也可知 1 的奇子集与偶子集中占的个数一样,于是可知每个元素都是在奇子集中与偶子集中占的个数一样,所以 5.的所有奇子集的容量的和,与所有偶子集的容量的和相等。

- (3) 由于每个元素在奇子集中都出现 2^{-1} 次,故奇子集的容量和 = $(1+2+3+\cdots + n) \times 2^{-1} = n(n+1) \times 2^{-1}$.
- 三、(35分) 在平面直角坐标系中,任取 6 个格点 $Pi(x_i, y_i)$ (i=1, 2, 3, 4, 5, 6)满足:
 - (1), $|x_i| \leq 2$, $|y_i| \leq 2(i=1, 2, 3, 4, 5, 6)$;
 - (2) 任何三点不在一条直线上.

试证明:在以 $P_i(i=1, 2, 3, 4, 5, 6)$ 为顶点的所有三角形中,必有一个三角形的面积不大于 2.

【解析】证明 如图,满足条件的格点只能是图中 A B ···、 F 这 25 个格点中的 6 个. 把 这 25 个格点分成三个矩形。矩形 AEFJ、ROW、MRYX.

若所取的 6 个点中有三个点在上述三个矩形中的某一个中,则此三点即满足要求。

若三个矩形中均无所取 6 点中的 3 点,则必是每个矩形中有所取 的 2 个点。

- (1) 若 A A A G A R F中有所取的点,则此点与矩形 mm/x 中的两点满足要求。
- (2) 若上述 7 点均未取,则 *A、A、C、A、I、J* 中必有两点,此时 若 *I、K* 中有所取的点,则亦有三点满足要求,
- (3) 若 L、 K 亦未取,则必在 A、Q、 K、 Ø 中取了 2 点,矩形 ACH ,中取了 2 点:此时取 A、Q 两点,或 Q、 V 两点,或 K、 Ø 两点,或 C、 P 两点,或 Q、 Ø 两点,则无论 ACH ,中取任一点,与之组成三角形面积均满足要求。

若取 P、V两点,则矩形 ACH 中必有一点异于 G 取此点与 P V满足要求。 综上可知,必有满足要求的 3 点存在.

