Tutorial 3: Regression I: Linear Models

ECO3080: Machine Learning in Business

Instructor: Prof. Qihui Chen Teaching Assistant: Long Ma

September 22, 2022

■ True model (Population model):

$$y_i = \beta_0^{true} + \beta_1^{true} x_{1,i} + \beta_2^{true} x_{2,i} + \dots + \beta_k^{true} x_{k,i} + \varepsilon_i^{true}$$
(1)

■ OLS is just a tool targeting at parameters β_0 to β_k :

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1,i} + \hat{\beta}_2 x_{2,i} + \dots + \hat{\beta}_k x_{k,i} + \hat{\varepsilon}_i$$
 (2)

Impose assumptions to make sure that the estimation is "good".

Revision of Linear Regression

- How to measure this "good"?
 - Unbiasedness: "many shots" → average level;
 - $\blacksquare \ \, {\sf Consistency: "many shots"} \to {\sf under large sample;}$
 - Efficiency: "one-shot" → variance (range).
- Is this "good" always important in machine learning?
 - Trade-off between "Unbiasedness" and "Variance";
 - Goals: Causal Inference v.s. Out-of-sample Prediction.

Revision of Linear Regression

- What assumptions should we impose?
 - 1 No perfect multicollinearity: rank(X) = k + 1;
 - 2 Linearity: true model is true;
 - **3** Strong exogeneity: $\mathbb{E}[\varepsilon_i^{true}|X] = \mathbb{E}[\varepsilon_i^{true}] = 0$
 - **4** Spherical variance: $VCov(\varepsilon^{true}|X) = \sigma^2 I$;
 - **5** Gaussianity: $\varepsilon^{true}|X$ is jointly normal.
- What problems are solved under each asusmption?

Revision of Linear Regression

- Further discussions:
 - What are the differences between "i.i.d." data and time series data?
 - Will the OLS results be affected by those differences?
 - How to cope with this kind of problems?
- We might talk about this in the last few weeks.
- What we care about in machine learning are two things:
 - Prediction Accuracy (the most important issue);
 - 2 Interpretability (minor issue but also noteworthy in business/economic/financial analysis).

First Look on Data Set

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Let's look at the data set first: 506 Obs. and 14 variables

^	crim ‡	zn ‡	indus [‡]	chas [‡]	nox [‡]	rm ÷	age ‡	dis [‡]	rad [‡]	tax [‡]	ptratio [‡]	black [‡]	lstat ‡	medv [‡]
1	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
3	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
6	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
7	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
8	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2	396.90	19.15	27.1
9	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5
10	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2	386.71	17.10	18.9
11	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15.0
12	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	5	311	15.2	396.90	13.27	18.9
13	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509	5	311	15.2	390.50	15.71	21.7
14	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26	20.4
15	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	4	307	21.0	380.02	10.26	18.2

- 1 crim: per capita crime rate by town.
- 2 zn: proportion of residential land zoned for lots over 25,000 sq.ft.
- 3 indus: proportion of non-retail business acres per town.
- **4** chas: Charles River dummy variable (= 1) if tract bounds river).
- 5 nox: nitrogen oxides concentration (parts per 10 million).
- 6 rm: average number of rooms per dwelling.
- 7 age: proportion of owner-occupied units built prior to 1940.
- 8 dis: weighted mean of distances to five Boston employment centres.
- **9** rad: index of accessibility to radial highways.
- 10 tax: full-value property-tax rate per 10,000 dollar.
- 11 ptratio: pupil-teacher ratio by town.
- 12 black: $1000(Bk-0.63)^2$ where Bk is the proportion of blacks by town.
- 13 Istat: lower status of the population (percent).
- medv: median value of owner-occupied homes in 1000 dollar.

Summary Statistic

Table: Summary statistics of Boston data

Statistic	N	Mean	St. Dev.	Min	Max
crim	506	3.614	8.602	0.006	88.976
zn	506	11.364	23.322	0.000	100.000
indus	506	11.137	6.860	0.460	27.740
chas	506	0.069	0.254	0	1
nox	506	0.555	0.116	0.385	0.871
rm	506	6.285	0.703	3.561	8.780
age	506	68.575	28.149	2.900	100.000
dis	506	3.795	2.106	1.130	12.126
rad	506	9.549	8.707	1	24
tax	506	408.237	168.537	187	711
ptratio	506	18.456	2.165	12.600	22.000
black	506	356.674	91.295	0.320	396.900
lstat	506	12.653	7.141	1.730	37.970
medv	506	22.533	9.197	5.000	50.000

- Split the data set into training set and validation set.
- Run simple regression on the training set and the result is:

```
> reg1 <- lm(medv ~ lstat, data = Boston_train) # main regression
> summary(reg1) # summary results of reg1
Call:
lm(formula = medv ~ lstat. data = Boston train)
Residuals:
    Min
            10 Median
-15.017 -3.781 -1.173 1.639 24.067
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.66826
                       0.67161 51.62
                       0.04741 -20.75 <2e-16 ***
lstat
           -0.98364
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.058 on 352 degrees of freedom
Multiple R-squared: 0.5501. Adjusted R-squared: 0.5489
F-statistic: 430.5 on 1 and 352 DF, p-value: < 2.2e-16
```


School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Some other things you can do after regression:

```
> names(reg1) # all information name of reg1
 [1] "coefficients" "residuals"
                                                      "rank"
                                                                       "fitted.values"
 "assign"
                                                  "xlevels"
[10] "call"
> coef(reg1) # extract coefficients of reg1 (a vector)
(Intercept)
                  Istat
 34.6682590 -0.9836389
> confint(reg1) # get the interval estimation of parameters
                2 5 %
                          97 5 %
(Intercept) 33.347386 35.9891317
            -1.076879 -0.8903987
lstat
```

Prediction:

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ Plot:

- Potential Problems:
 - 1 Nonlinearity
 - 2 Correlation of error term
 - 3 Non-constant variance of error term
 - 4 Outliers
 - 5 High-leverage point
 - **6** Collinearity (Don't worry in simple regression)
 - 7 Not normal

Regression diagnostics (Read R in action Chapter 8):

■ Regression diagnostics:

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Include the nonlinear part (but the model is still linear in parameters)

```
> reg2 <- lm(medv ~ lstat + I(lstat^2), data = Boston_train) # main regression
> summarv(reg2)
call:
lm(formula = medv ~ lstat + I(lstat^2), data = Boston_train)
Residuals:
     Min
              10 Median
-15 1361 -3 8298 -0 4067 2 3962 24 5507
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.490434 1.061563 40.026
                                          <2e-16 ***
            -2.293491
                     0.152044 -15.084
                                          <2e-16 ***
T(1stat^2)
            0.042168
                      0.004697
                                  8.978
                                          <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.471 on 351 degrees of freedom
Multiple R-squared: 0.6342. Adjusted R-squared: 0.6321
F-statistic: 304.2 on 2 and 351 DF. p-value: < 2.2e-16
```

■ Regression diagnostics:

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ Then, let's run multiple linear regression:

```
Call:
lm(formula = medv ~ ., data = Boston)
Residuals:
    Min
            10 Median
-15.595 -2.730 -0.518
                         1.777
                                26,199
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
            3.646e+01 5.103e+00
                                   7.144 3.28e-12
crim
            -1.080e-01
                       3.286e-02
                                  -3.287 0.001087 **
zn
            4.642e-02
                      1.373e-02
                                  3.382 0.000778 ***
indus
            2.056e-02 6.150e-02
                                   0.334 0.738288
            2.687e+00 8.616e-01
                                   3.118 0.001925 **
chas
            -1.777e+01 3.820e+00 -4.651 4.25e-06
nox
            3.810e+00 4.179e-01
                                   9.116 < 2e-16 ***
rm
            6.922e-04 1.321e-02
                                   0.052 0.958229
age
            -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
dis
rad
            3.060e-01 6.635e-02
                                  4.613 5.07e-06
            -1.233e-02 3.760e-03 -3.280 0.001112 **
tax
ptratio
           -9.527e-01 1.308e-01 -7.283 1.31e-12
black
            9.312e-03 2.686e-03
                                  3.467 0.000573 ***
lstat
           -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406.
                               Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF. p-value: < 2.2e-16
```


School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ Regression diagnostics:

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Regression diagnostics:

```
> vif(reg3)
     crim      zn      indus      chas      nox      rm      age
1.792192     2.298758     3.991596     1.073995     4.393720     1.933744     3.100826
     dis     rad       tax      ptratio      black      lstat
3.955945     7.484496     9.008554     1.799084     1.348521     2.941491
```


School of Management and Economics, Chinese University of Hong Kong, Shenzhen

If you want to include interaction terms of variables or nonlinear part:

What we want to do:

regression results: see ".html" file.

Nonlinearity v.s. Prediction Power 素 神中文大學 (深圳) The Chinese University of Hong Kong, Shenzher

