Logistic Regression Mathematics

Logistic regression is used for binary classification.

The output variable Y can take values 0 or 1.

Sigmoid Function

The predicted probability is modeled using the **sigmoid function**:

$$\hat{Y}=\sigma(Z)=rac{1}{1+e^{-Z}}$$

where

$$Z = X\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n$$

- $X \rightarrow$ input matrix (with a column of ones for intercept)
- $\beta \rightarrow$ weight vector
- $\hat{Y} \rightarrow$ predicted probability (between 0 and 1)

Loss Function (Binary Cross-Entropy)

The cost function to minimize is the log loss / binary cross-entropy:

$$E(eta) = -\sum_{i=1}^n \left[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)
ight]$$

- $y_i \rightarrow$ actual label (0 or 1)
- $\hat{y}_i \rightarrow \text{predicted probability for instance } i$

Gradient Descent Update Rule

To find optimal weights, we use **gradient descent**:

$$eta_j \leftarrow eta_j - \eta \cdot rac{\partial E}{\partial eta_j}$$

where the gradient of the cost function is:

$$\frac{\partial E}{\partial \beta_i} = \sum_{i=1}^{n} (\hat{y}_i - y_i) X_{ij}$$

- $\eta \rightarrow$ learning rate
- Repeat the update until convergence

Final Prediction

Once β is optimized:

• Compute predicted probabilities:

$$\hat{Y} = \sigma(Xeta)$$

• Assign classes based on threshold (usually 0.5):

$$ext{Predicted Class} = egin{cases} 1 & ext{if } \hat{y} \geq 0.5 \\ 0 & ext{if } \hat{y} < 0.5 \end{cases}$$