

Юстина Иванова

Специалист по анализу данных

Математика для data science: Функции. Полиномы. Анализ полиномов.

Спикер

Юстина Иванова,

- •Специалист по анализу данных «ОЦРВ», Сочи
- •Инженер-программист МГТУ им. Баумана,
- Магистр по программе «Искуственный интеллект» Университета Саутгемптон

Функции

Что такое функция

https://courses.edx.org/courses/course-v1:DelftX+Calc001x+2T2019/course/#block-v1:DelftX+Calc001x+2T2019+type@chapter+block@748b996c006843d58b704b9f4755e60f

Пример функции для датасета о фильмах

Рассмотрим применение функции в контексте датасета о фильмах и актерах: функция — это некая модель, которая для каждого элемента множества актеров подбирает элемент из множества фильмов.

Способы представления функций

Табличный вид

4

10

8

-2

Программно

def func(x):
 y = x*x
 return y

Графический способ представления функции

$$y = 1 - 2^{\frac{1}{4}x^5 - x^4 + \frac{1}{4}x^3 + \frac{3}{2}x^2 + 1}$$

Допустим, есть некая функция. Мы можем проанализировать поведение функции графически и математически.

Программный способ представления функции

$$y = 1 - 2^{\frac{1}{4}x^5 - x^4 + \frac{1}{4}x^3 + \frac{3}{2}x^2 + 1}$$

```
def function(x):
    stepen = 1/4 * x ** 5 - x ** 4 + 1/4 * x ** 3 + 3/2 * x ** 2 + 1
    y = 1 - x**stepen
    return y
```


Ответы

Для каждой функции найти пару.

Упражнение

Для каждой функции найти пару.

$$f(x) = x^2$$

3

4

def func(x): return abs(x)

$$f(x) = \begin{cases} -1 & \text{for } x \leq 0 \\ 1 & \text{for } x > 0 \end{cases}$$

8 def func(x): return math.sqrt(x)

Что такое полиномиальная функция

Целая рациональная функция (также полиномиальная функция) — числовая функция одного действительного переменного вида:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = \sum_{i=0}^{n} a_i x^i.$$

На практике любую функцию можно представить в виде суммы нескольких полиномов.

Полиномиальная функция:

состоит из:

- Чисел
- •Умножения
- •Сложения
- •Переменной х

Стандартная форма полиномиальной функции

Как проверить, что функция является полиномиальной? Необходимо упростить функцию и проверить, является ли упрощенная функция стандартной формой полиномиальной функции

$$f(x) = 2x^6 + 3x^5 - \frac{3}{2}x - 3$$

$$f(x) = (x^5 - 1)(2x + 3) + \frac{1}{2}x$$

Правило упрощения функции:

- Раскрыть скобки
- •Сложить переменные
- •Упорядочить

Степень полиномиальной функции

Одним из основных показателей полиномиальной функции является её **степень**. Степень полиномиальной функции - натуральное число n - наибольший показатель степени переменной x.

$$f(x) = 2x^6 + 3x^5 - \frac{3}{2}x - 3$$
 Степень полинома = 6.

Степень определяет поведение функции при х стремящемся к бесконечности.

Степень полиномиальной функции

Рассмотрим следующий полином.

$$f(x) = 2x^3 + 8x^2 - 13x$$

X	2x^(3)	8x^(2)	-13x	f(x)
1	2	8	-13	-3
10	2,000	800	-130	2,670
100	2,000,000	80,000	-1,300	2,078,700
1,000	2,000,000,000	8,000,000	-13,000	2,007,987,000

Можно заметить, что максимальное значение функции полинома стремится к значению третьей степени при большом значении х:

$$f(x) \sim 2x^3$$

Степень полиномиальной функции

Аналогичную картину наблюдаем при отрицательных значениях х:

X	2x^(3)	8x^(2)	-13x	f(x)
-1	-2	8	13	19
-10	-2,000	800	130	-1,070
-100	-2,000,000	80,000	1,300	-1,918,700
-1,000	-2,000,000,000	8,000,000	13,000	-1,991,987,000

Таким образом, для достаточно больших положительных и отрицательных значениях х полиномиальная функция описывается слагаемым с максимальной степенью:

$$f(x) \sim 2x^3$$

Степень = 0: функция-константа

Стандартная формула:

$$\cdot f(x) = a$$

График:

•Горизонтальная линия

Степень = 1: функция — линейная

Стандартная формула:

f(x) = ax + b

График:

- •Прямая линия
- •а коэффициент пропорциональности
- •b смещение вдоль оси ОҮ

Степень = 1: пример

Линейная формула:

$$f(x) = -1/2x + 2$$

График:

$$a = -1/2$$

•
$$b = 2$$

Степень = 2: квадратичная функция

Пример: движение тела, подброшенное вверх.*

Формула изменения высоты во времени:
$$h(t) = -4,9t^2 + 6,1t + 1,4$$

Формула изменения траектории от положения х: $h(x) = 3, 3 - 0, 4x^2$

*https://images.app.goo.gl/h9hsAeWjxgHaHTvs8

Стандартная формула:

$$f(x) = ax^2 + bx + c$$

График:

- •парабола
- •а старший коэффициент
- •b младший коэффициент
- •с свободный коэффициент

Степень = 2: пример

Golden Gate в Сан-Фрасиско.*

$$h(x) \approx 0,00037x^2 - 0,475x + 230$$

Высота над уровнем моря X— в метрах от левого столба

Квадратичная функция: коэффициенты

Формула квадратичной функции:

$$f(x) = ax^2 + bx + c$$

Параметры функции:

•а - направление ветвей параболы и её растянутость b — угловой коэффициент в точке пересечения с осью ординат (x=0)
•с — координата у при

•c — координата у при x=0

Квадратичная функция: пример коэффициентов

Формула квадратичной функции:

$$f(x) = \frac{1}{2}x^2 - 3x + \frac{5}{2}$$

Координаты вершины:

$$x = \frac{-(-3)}{2 \cdot \frac{1}{2}} = 3$$

Координата у при х=0:

$$y = 5/2$$

Квадратичная функция: факторизированное представление

Формула факторизированного представления функции:

$$f(x) = a(x - p)(x - q)$$

Функция пересекает ось ОХ в двух координатах: x=p и x=q

Формула для примера:

$$f(x) = \frac{1}{2}(x-1)(x-5)$$

Квадратичная функция: альтернативное представление

Формула альтернативного представления функции:

$$f(x) = a(x - r)^2 + s$$

Вершина параболы в точке (r, s)

Формула для примера:

$$f(x) = \frac{1}{2}(x-3)^2 - 2$$

Степень выше 2

График пересекает ось ОХ не более чем n раз, где n — степень полинома

Как представить следующие функции?

График 1. Для каждого аргумента функции существует только одно значение

График 2. Для каждого аргумента функции существует как минимум два значения

Вычисление вершины через дискриминант

Функция задана в виде:

$$f(x) = ax^2 + bx + c$$

Дискриминант функции: $D=b^2-4ac$

Корни уравнения:

$$r_1 = \frac{-b + \sqrt{D}}{2a} \quad r_2 = \frac{-b - \sqrt{D}}{2a}$$

Координата х вершины параболы:

$$x = -\frac{\sigma}{2a}$$

Координата х вершины параболы:

$$S = (r_1 + r_2)/2$$

Координата у вычисляется подстановкой х в уравнение

Вычисление вершины программно

Функция задана в виде:

$$f(x) = ax^2 + bx + c$$

Корни уравнения:

numpy.roots(p)

р — коэффициенты полинома ввиде списка

Вычисление вершины с помощью производной

Функция задана в виде:

$$f(x) = ax^2 + bx + c$$

Производная функции

$$f'(x) = 2a + b$$

Производная в точке вершины равна 0:

$$f'(x) = 2a + b = 0$$

Координата х вершины параболы:

$$x = -\frac{b}{2a}$$

Координата у вершины параболы вычисляется методом подстановки

Формулы вычисления производных функций

$$(c)' = 0, (x)' = 1$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1}, x > 0, \alpha \in R$$

$$(\frac{1}{x})' = -\frac{1}{x^{2}}, x \neq 0$$

$$(a^{x})' = a^{x} \ln a, a > 0, a \neq 1$$

$$(\ln x)' = \frac{1}{x}, x > 0$$

$$(\log_{a} x)' = \frac{1}{x \ln a}, x > 0, a > 0, a \neq 1$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^{2} x}, x \neq \frac{\pi}{2} + \pi n, n \in Z$$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^{2} x}, x \neq \pi n, n \in Z$$

$$(\operatorname{sh} x)' = \operatorname{ch} x$$

$$(\operatorname{ch} x)' = \operatorname{sh} x$$

$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

$$(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

$$(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(\operatorname{arctg} x)' = \frac{1}{1 + x^2}$$

$$(\operatorname{arcctg} x)' = -\frac{1}{1 + x^2}$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}, x > 0$$

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

$$(|x|)' = \operatorname{sign} x = \begin{cases} 1, x > 0, \\ -1, x < 0, \end{cases} x \neq 0$$

Исследование функций с помощью производных

Если f`(x)>0 на интервале, то функция возрастает на данном промежутке

Исследование функций с помощью производных

Если f`(x)<0 на интервале, то функция возрастает на данном промежутке

Точки экстремума

Точка экстремума — это точка максимума либо точка минимума функции.

 $m{T_0}$ является точкой минимума функции f(x), если для всех достаточно близких точек верно неравенство $f(x) \geqslant f(x_0)$

 $oldsymbol{T_0}$ является точкой максимума функции f(x), если для всех достаточно близких точек верно неравенство $f(x) \leqslant f(x_0)$

Признак максимума.

Если функция f(x) непрерывна на промежутке (a, b), возрастает на (a,x_0) промежутке и убывает на промежутке является точкой максимума функции.

Признак минимума.

Если функция f(x) непрерывна на промежутке (a, b), убывает на (a, x_0) промежутке и возрастает (\mathcal{X}_0 , \mathcal{B}_0) промежутке то является точкой минимума функции.

Спасибо за внимание!

Юстина Иванова,

Специалист по анализу данных «ОЦРВ», Сочи