#### NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

# NASA TECHNICAL MEMORANDUM

NASA TM-78260

(WASA-TH-78260) PINITE ELEMENT HODELS OF THE SPACE SHUTTLE HAIN ENGINE (WASA) 70 p HC A04/HF A01 CSCL 21H N80-17140

Unclas G3/20 47208

## FINITE ELEMENT MODELS OF THE SPACE SHUTTLE MAIN ENGINE

By G. R. Muller Systems Dynamics Laboratory

January 1980

TE 67 8970

**NASA** 

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

## TABLE OF CONTENTS

|      |                                        | Page |
|------|----------------------------------------|------|
| ı.   | INTRODUCTION                           | 1    |
| n.   | THE HPFTP ROTOR MODEL                  | 2    |
| m.   | THE HPFTP CASE MODEL                   | 2    |
| IV.  | THE COUPLED HPFTP ROTOR AND CASE (RPL) | 3    |
| v.   | THE HPOTP ROTOR MODEL                  | 4    |
| vi.  | THE HPOTP CASE MODEL                   | 5    |
| VII. | THE COUPLED HPOTP ROTOR AND CASE (RPL) | 5    |
| VШ.  | THE SSME MODEL (RPL)                   | 6    |
| IX.  | SUMMARY                                | 7    |
| BIBL | OGRAPHY                                | 61   |

PRECEDING PAGE BLANK NOT FILMED

## LIST OF ILLUSTRATIONS

| Figure | Title                                       | Page       |
|--------|---------------------------------------------|------------|
| 1.     | HPFTP rotor model                           | 8          |
| 2.     | HPFTP rotor, mode 7                         | 9          |
| 3.     | HPFTP rotor, mode 11                        | 9          |
| 4.     | HPFTP case model                            | 10         |
| 5.     | Intrinsic stiffness element notation        | 11         |
| 6.     | HPFTP case, mode 4                          | 12         |
| 7.     | HPFTP case, mode 5                          | 12         |
| 8.     | Coupled HPFTP rotor and case (RPL), mode 8  | 13         |
| 9.     | Coupled HPFTP rotor and case (RPL), mode 10 | 13         |
| 10.    | Coupled HPFTP rotor and case (RPL), mode 14 | 14         |
| 11.    | HPOTP rotor model                           | <b>1</b> 5 |
| 12.    | HPOTP rotor, mode 7                         | 16         |
| 13.    | HPOTP rotor, mode 10                        | 16         |
| 14.    | HPOTP case model                            | 17         |
| 15.    | HPOTP case, mode 3                          | 18         |
| 16.    | HPOTP case, mode 5                          | 18         |
| 17.    | Coupled HPOTP rotor and case (RPL), mode 5  | 19         |
| 18.    | Coupled HPOTP rotor and case (RPL), mode 9  | 19         |
| 19.    | Coupled HPOTP rotor and case (RPL), mode 11 | 20         |

## LIST OF ILLUSTRATIONS (Concluded)

| Figure      | Title                                                       | Page       |
|-------------|-------------------------------------------------------------|------------|
| 20.         | Coupled HPOTP rotor and case (RPL), mode 13                 | 20         |
| 21.         | SSME model                                                  | 21         |
| 22.         | SSME (excluding turbopumps), mode 12                        | 22         |
| 23.         | SSME (excluding turbopumps), mode 15                        | 22         |
| 24.         | SSME (excluding turbopumps), mode 18                        | 23         |
| 25.         | SSME (excluding turbopumps), mode 19                        | 23         |
| 26.         | SSME (including turbopumps), mode 23                        | 24         |
| 27.         | SSME (including turbopumps), mode 30                        | 24         |
| 28.         | SSME (including turbopumps), mode 33                        | <b>2</b> 5 |
| 29.         | SSME (including turbopumps), mode 34                        | 25         |
| <b>3</b> 0. | SSME and major component spectra                            | 26         |
| 31.         | SSME measurement points                                     | 27         |
| 32.         | Comparison of SSME model and HPOTP modal survey frequencies | 28         |

## LIST OF TABLES

| Table | Title                                                       | Page |
|-------|-------------------------------------------------------------|------|
| 1.    | HPFTP Rotor Model Data                                      | 29   |
| 2.    | HPFTP Rotor Modes                                           | 31   |
| 3.    | HPFTP Case Model Data                                       | 32   |
| 4.    | HPFTP Case Modes                                            | 35   |
| 5.    | HPFTP Parametric Configurations                             | 36   |
| 6.    | HPFTP Case and Rotor Coupling Elements                      | 37   |
| 7.    | Coupled HPFTP Rotor and Case Modes (RPL)                    | 38   |
| 8.    | HPOTP Fotor Model Data                                      | 39   |
| 9.    | HPOTP Rotor Modes                                           | 41   |
| 10.   | HPOTP Case Model Data                                       | 42   |
| 11.   | HPOTP Case Modes                                            | 45   |
| 12.   | HPOTP Rotor and Case Coupling Elements                      | 46   |
| 13.   | Coupled HPOTP Rotor and Case Modes (RPL)                    | 49   |
| 14.   | SSME Model Data                                             | 50   |
| 15.   | SSME Modes (Excluding Turbopumps)                           | 57   |
| 16.   | SSME Modes (Including Turbopumps)                           | 58   |
| 17.   | Comparison of SSME Model and HPOTP Modal Survey Frequencies | 60   |

#### TECHNICAL MEMORANDUM

## FINITE ELEMENT MODELS OF THE SPACE SHUTTLE MAIN ENGINE

#### I. INTRODUCTION

This report documents the culmination of a 2 year effort from May 1976 to April 1978 to develop finite element models as input to dynamic simulations of the High Pressure Fuel Turbopump (HPFTP), the High Pressure Oxidizer Turbopump (HPOTP), and the Space Shuttle Main Engine (SSME).

These models were developed using the SPAR finite element computer program maintained by Engineering Information Systems, Inc., San Jose, California.

Mass distribution, seal and bearing stiffnesses, and empirical test data for the individual turbopumps were supplied through working papers and internal letters furnished through the SSME prime contractor, Rocketdyne Division, Rockwell International, Canoga Park, California.

Mass distribution and actuator stiffness for the SSME were provided by the Shuttle Projects Office, George C. Marshall Space Flight Center (MSFC), Alabama.

Engineering drawings were obtained from the Documentation Repository, MSFC, Alabama.

Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps).

Modal results are presented for the HPFTP rotor, HPFTP case, coupled HPFTP rotor and case, HPOTP rotor, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps).

Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey conducted at the NSTL, Bay St. Louis, Mississippi.

#### II. THE HPFTP ROTOR MODEL

The HPFTP rotor (Fig. 1) consists of a stack of three centrifugal impellers held together by a common central tie-bolt under tension. These three impellers act as a three-stage centrifugal pump when driven by the two-stage hot gas turbine threaded to the head of the tie-bolt. The rotor is supported within the HPFTP case by double ball bearings at either end, pump interstage seals, and a balance piston to limit axial translation. Nominal operating speed of the rotor is between 23 700 rpm (Minimum Power Level, MPL) and 37 360 rpm (Full Power Level, FPL).

The SPAR model of the rotor, an adaptation of a Rocketdyne model based on rotor geometry, is composed of 12 joints with 72 degrees-of-freedom and 14 beam elements of which two are Bently arms at the pump end of the rotor shaft. Dimensions, mass distribution (neglecting entraped LH<sub>2</sub>), and beam element connectivity and properties are listed in Table 1.

Table 2 lists HPFTP rotor free-free frequencies and modal descriptions through the first axial mode for the baseline "637 Hz" rotor and an interim parametric study "500 Hz" rotor which was obtained by artificially reducing Young's Modulus of the baseline rotor. The "500 Hz" rotor is discussed further in Section IV. Figures 2 and 3 depict the first two rotor free-free bending modes (dotted lines) relative to the HPFTP case. The short solid lines apparently connecting the rotor and case actually illustrate the displacement loci of rotor bearing and seal locations from the rotor neutral position.

#### III. THE HPFTP CASE MODEL

The HPFTP case (Fig. 4) which encloses and supports the HPFTP rotor is, in turn, cantilevered from the SSME via a hot gas manifold which ducts exhaust gases from the pump turbine into the SSME powerhead. A preburner powers the turbine. The case also supports two aluminum diffusers by means of internal lugs. These diffusers duct the LH<sub>2</sub> between the three rotor impellers. Instrumentation added to the case for single engine firing tests include three radial accelerometers attached to the case inlet flange; an axial and two radial accelerometers attached to the turbine flange; and an axial accelerometer, an axial Bently, and two radial Bentlys attached to the pump inlet case.

The SPAR model of the case was initially, like the rotor, an adaptation of a Rocketdyne model. However, as empirical data from Rocketdyne rap tests and static influence coefficients tests became available, the SPAR model was modified accordingly. Thus the beam element properties of the hot gas manifold were adjusted to match pump cantilever frequencies of 47 and 100 Hz. Static influence coefficients were obtained by bolting the turbine flange (joint 31) to a rigid fixture and radially loading the pump bearing support (joint 37), the first diffuser seal support (joint 35), the pump inlet flange (joint 49), and the turbine bearing support (joint 30). Stiffness values matched at these locations were  $1.366 \times 10^8$  N/m at the pump bearing support,  $2.066 \times 10^8$  N/m at the first diffuser seal support,  $5.341 \times 10^8$  N m at the pump inlet flange, and  $2.995 \times 10^8$  N/m at the turbine bearing support.

The case model is composed of 19 joints with 108 degrees-of-freedom, two intrinsic stiffness elements which simulate lug contact between diffusers and case, and 19 beam elements of which seven are accelerometer or Bently arms. Dimensions, mass distribution, intrinsic element connectivity and stiffnesses, and beam element connectivity and properties are listed in Table 3.

An intrinsic stiffness element has the same orientation and notation as a beam element (Fig. 5), but its stiffness values,  $K_{11}$ , are input directly into the SPAR program rather than computed indirectly as are beam element stiffness values from the beam element properties.

Table 4 lists 21 HPFTP case cantilever frequencies and modal descriptions. Figures 6 and 7 depict two representative case modes (dotted lines) superimposed over the case neutral position.

#### IV. THE COUPLED HPFTP ROTOR AND CASE (RPL)

Ten parametric configurations of the coupled HPFTP rotor and case were studied for their effect on pump frequencies, stability, and operating loads. Eight of these configurations involved a combination of one of the rotors of Section II, a set of the seals of Table 5, and a set of the bearing carriers of Table 5. The remaining two configurations were a modification of the HPFTP rotor and case to replace the first diffuser seal (joints 22 and 35) with the pump bearing (joints 20 and 37).

The baseline configuration, number 7, couples the rotor and case together with five intrinsic stiffness elements: two elements for the double ball bearings

 $(1.313 \times 10^8 \ \mathrm{N/m})$  and carriers in series, one element for the balance piston, and two elements for smooth seals between the impellers. The intrinsic stiffness elements for bearings/carriers and seals have only radial translational stiffnesses, and the balance piston element has only axial translational stiffness. All seal stiffness values listed in Table 6 are for the Rated Power Level (RPL) and are proportional to the square of the rotor speed.

Table 7 lists 21 frequencies and modal descriptions of the coupled baseline HPFTP rotor and case. Figures 8 through 10 depict three pump modes exhibiting significant rotor motion: translation, rocking, and bending. The short solid lines represent physical bearings/carriers and seals.

#### V. THE HPOTP ROTOR MODEL

The HPOTP rotor (Fig. 11) consists of a hollow shaft with an integral turbine disc. Over the shaft is a double centrifugal main impeller which inputs LOX at both ends and curputs at a common center. This impeller is clamped to the shaft by a nut at the pump end, splined at the center, and is free to slide axially at the turbine end. A smaller single centrifugal impeller is bolted to the pump end of the shaft and supports double ball bearings. A second turbine disc is bolted to the turbine end of the shaft. Double ball bearings and multiple seals interposed between the main impeller and the two stage turbine complete the rotor support. Nominal operating speed of the rotor is between 19 840 rpm (MPL) and 30 965 rpm (FPL).

Unlike the HPFTP rotor, the HPOTP rotor had Rocketdyne empirical data in the form of a free-free first bending frequency (dry and without turbine blades) of 475 Hz and its associated mode shape available as modeling aids. These empirical data and a rotor modeled initially upon geometry were used as input to the MOUSE (Model Optimization Using Statistical Estimation) program which computed pseudo rotor geometry necessary to match the empirical data.

The SPAR model of the rotor is composed of 15 joints with 90 degrees-of-freedom and 14 beam elements. Dimensions, mass distribution (wet, i.e., including entraped LOX and turbine blades), and beam element connectivity and properties are listed in Table 8.

Table 9 lists HPOTP rotor free-free frequencies and modal descriptions through the first axial mode. Note that entraped LOX and the turbine blades reduce the first bending frequency of the model to 470, 4 Hz. Figures 12 and 13

depict the first two rotor free-free bending modes (dotted lines) relative to the HPOTP case. The short solid lines illustrate the displacement loci of rotor bearing and seal locations from the rotor neutral position.

#### VI. THE HPOTP CASE MODEL

The HPOTP case (Fig. 14) which encloses and supports the HPOTP rotor is, in turn, cantilevered from the opposite side of the SSME from the HPFTP case via its own hot gas manifold from the SSME power head. A preburner powers the turbine. Instrumentation added to the case for single engine firing tests include three radial accelerometers attached to the turbine flange and three axial and three radial accelerometers attached to the preburner pump case.

The SPAR model of the HPOTP case, like the rotor, was not developed by Rocketdyne, but, like the HPFTP case, benefited from Rocketdyne rap tests and static influence coefficients tests. Thus the beam element properties of the hot gas manifold were adjusted to match pump cantilever frequencies of 70 Hz and 115 Hz. Static influence coefficients were obtained by bolting the turbine flange (joint 69) to a rigid fixture and loading the pump flange (between joints 65 and 67) axially and radially in the radial y and z directions. Deflection values matched at the pump flange were  $1.892 \times 10^{-4}$  m in the radial y direction and  $1.969 \times 10^{-4}$  in the radial z direction.

The case model is composed of 23 joints with 132 degrees-of-freedom, one intrinsic stiffness element which simulates the interstage ring support within the case, and 22 beam elements of which six are accelerometer arms. Dimensions, mass distribution, intrinsic stiffness element connectivity and stiffnesses, and beam element connectivity and properties are listed in Table 10.

Table 11 lists 16 HPOTP case cantilever frequencies and modal descriptions. Figures 15 and 16 depict two representative case modes (dotted lines) superimposed over the case neutral position.

#### VII. THE COUPLED HPOTP ROTOR AND CASE (RPL)

The HPOTP model was initially configured to have the capability to incorporate nine seals: two preburner impeller seals, four seals including a labyrinth seal and a hot gas seal between the turbine bearing and the two stage turbine, two turbine disc seals, and a turbine interstage seal. However, only

the hot gas seal was ultimately modeled of the four seals between the turbine bearing and the two-stage turbine. Thus the HPOTP rotor and case are coupled together by nine intrinsic stiffness elements: two elements for the preburner impeller seals, one element for the pump double bearings  $(1.401 \times 10^8 \text{ N/m})$  and carrier in series, one element for the balance piston, one element for the turbine double bearings  $(2.102 \times 10^8 \text{ N/m})$  and carrier in series, one element for the hot gas seal, two elements for the turbine disc seals, and one element for the turbine interstage seal. The intrinsic stiffness elements for bearings/carriers and seals have only radial translational stiffnesses, and the balance piston element has only axial translational stiffness. All seal stiffness values listed in Table 12 are for RPL and are proportional to the square of the rotor speed.

Table 13 lists 21 frequencies and modal descriptions of the coupled HPOTP rotor and case. Figures 17 through 20 depict four pump modes exhibiting significant rotor motion: rocking, bending, translation and, again, bending. The short solid lines represent physical bearings carriers and seals.

#### VIII. THE SSME MODEL (RPL)

The SSME, Figure 21, consists of an expansion nozzle, combustion chamber, two actuator quadrapods, the HPFTP of Section IV, and the HPOTP of Section VII.

As the SPAR program is incapable of direct input of beam elements of nonuniform cross section, it was necessary to create finite element models of short segments of the expansion nozzle (joints 1 through 11) and apply appropriate static loads and boundary conditions to these models to obtain data for equivalent intrinsic stiffness elements. Because of structural complexity, similar models were created to obtain equivalent intrinsic stiffness elements for the lower combustion chamber (joints 11 and 12), the upper powerhead (joints 14 and 15), and bipod subassemblies of the actuator quadrapods (joints 16 and 17). Not shown in Figure 21 are joints 18 and 19 which serve as actuator attach points of the single engine test fixture.

The SPAR model of the SSME (excluding turbopumps) is composed of 19 joints with 98 degrees-of-freedom; two beam elements; and 18 intrinsic stiffness elements: ten elements for the expansion nozzle, two elements for the combustion chamber and powerhead, four elements for the actuator quadrapods, and two elements for the actuators (axial translational stiffness only). Dimensions, mass distribution (wet, i.e., filled lines and pumps), intrinsic stiffness element connectivity and stiffnesses, and beam element connectivity and properties are listed in Table 14.

Table 15 lists 30 frequencies and modal descriptions of the SSME (excluding turbopumps). Figures 22 through 25 depict four representative bending modes (dotted lines) of the SSME (excluding turbopumps) superimposed over its neutral position.

Table 16 lists 80 frequencies and modal descriptions of the SSME (including turbopumps). Figures 26 through 29 depict four representative modes (dotted lines) of the SSME (including turbopumps) exhibiting significant motion of the pump rotors.

Figure 30 depicts the frequency spectra for each cantilevered pump and the SSME. Of special note is the large "deadband" for the HPOTP between 300 and 500 Hz which disappears when the pumps are coupled to the SSME.

#### IX. SUMMARY

Between August 29 and September 1, 1977, the Structural Dynamics Research Corporation (SDRC) performed a modal survey test of an SSME at the National Space Technology Laboratory, Bay St. Louis, Mississippi. The test was conducted by exciting the SSME structure with a load cell equipped hammer and measuring the response with a triaxial accelerometer at the 22 locations as noted in Figure 31. Documented results of the test comprise transfer functions, natural frequencies, modal damping valves, and mode shapes for fifteen selected modes.

The natural frequencies for the fifteen modes are compared graphically (Fig. 32) to the natural frequencies predicted by the SSME (including turbo-pumps) model.

Table 17 lists the 15 modes together with the SDRC modal descriptions against the equivalent math model frequencies. For the given frequency sample, the math model predicted nine modes within  $\pm 5$  percent, three modes within  $\pm 10$  percent, and failed to predict three modes.





Figure 2. HPFTP rotor, mode 7.



FREQUENCY (Hz) 0.150708  $\times$   $10^{\pm04}$ 

Figure 3. HPFTP rotor, mode 11.



Figure 4. HPF1P case model.





Figure 5. Intrinsic stiffness element notation.



#### FREQUENCY (Hz) 0.214439 × 10+03

Figure 6. HPFTP case, mode 4.



FREQUENCY (Hz) 0.275479 x 10<sup>+03</sup>

Figure 7. HPFTP case, mode 5.



FREQUENCY (Hz)  $0.320980 \times 10^{+03}$ 

Figure 8. Coupled HPFTP rotor and case (RPL), mode 8.



FREQUENCY (Hz)  $0.423953 \times 10^{+03}$ 

Figure 9. Coupled HPFTP rotor and case (RPL), mode 10.



FREQUENCY (Hz) 0.514957 × 10<sup>+03</sup>

Figure 10. Coupled HPFTP rotor and case (RPL), mode 14.



Chamber 4.

15



FREQUENCY (Hz) 0.470408 × 10+03

Figure 12. HPOTP rotor, mode 7.



FREQUENCY (Hz) 0.104051 × 10<sup>+04</sup>

Figure 13. HPOTP rotor, mode 10.



September 1

. ....

Figure 14. HPOTP case model.





......

FREQUENCY (Hz)  $0.262734 \times 10^{+03}$ 

Figure 15. HPOTP case, mode 3.



FREQUENCY (Hz) 0.592951 x 10+03

Figure 16. HPOTP case, mode 5.



### FREQUENCY (Hz) 0.257877 × 10<sup>+03</sup>

Figure 17. Coupled HPOTP rotor and case (RPI.), mode 5.



FREQUENCY (Hz) 0.536451 + 10+03

Figure 18. Coupled HPOTP rotor and case (RPL), mode 9.



#### FREQUENCY (Hz) 0.5995.3 x 10+03

Figure 19. Coupled HPOTP rotor and case (RPL), mode 11.





FREQUENCY (Hz) 0.843812 × 10<sup>+03</sup>

Figure 20. Coupled HPOTP rotor and case (RPL), mode 13.

Figure 21. SSME model.



Figure 22. SSME (excluding turbopumps), mode 12.



Figure 23. SSME (excluding turbopumps), mode 15.



Figure 24. SSME (excluding turbopumps), mode 18.



Figure 25. SSME (excluding turbopumps), mode 19.

Figure 26. SSME (including turbopumps), mode 23.

FREQUENCY (Hz) 0.256210 × 10+03



Figure 27. SSME (including turbopumps), mode 30.



Figure 28. SSME (including turbopumps), mode 3%.

FREQUENCY (Hz)  $0.406570 \times 10^{+03}$ 



Figure 29. SSME (including turbopumps), mode 34.

Figure 30. SSME and major component spectra.



| 1 (2)                  | HPOTP PUMP FLANGE          |
|------------------------|----------------------------|
| 3                      | HPOTP DISCHARGE VOLUTE     |
| 4 (5)                  | HPOTP TURBINE FLANGE       |
| 6 (7)                  | HPOTP PREBURNER TOP        |
| 8 (9)                  | BASE OF HPOTP MANIFOLD     |
| 10                     | MAIN INJECTOR BASE         |
| 15 (16)                | MCC INLET                  |
| 13 (14)                | MCC NOZZLE MANIFOLD        |
| 12                     | MCC TOP                    |
| 17 (18)                | HPFTP PREBURNER TOP        |
| 19 (20)                | HPFTP TURBINE FLANGE       |
| 21 (22)                | HPFTP PUMP FLANGE          |
| NOTE: POINTS IN PARENT | HESIS ARE ON THE "BACK" OF |

Figure 31. SSME measurement points.

SDRC HPOTP MODAL SURVEY FREQUENCIES (HERTZ)

> 500.3 463.6 464.7 432.5 424.9 415.5 424.9 415.5 486.6 386.5 373.2

> > SSME MODEL (INCLUDING TURBOPUMPS) FREQUENCIES (HERTZ)

331 316.9 332 391.1 390.2 300 266.1 284.1 255.2 249.7 235.2 22.4 200.7 212.6 259 138.4 126.7 126 116.1 126.7 126 99.9 100 100 67.6 79.7 125 32.7 53.4 125.7 25 38.4 39.7 125

13.5 13.7 14.7

Figure 32. Comparison of SSME model and HPOTP modal survey frequencies.

28

TABLE 1a. HPFTP ROTOR MODEL DATA

|           |        |       |     |              |                           | -                                                   | I                         |                  |
|-----------|--------|-------|-----|--------------|---------------------------|-----------------------------------------------------|---------------------------|------------------|
| Joint No. | x (m)  | y (m) | (m) | Mass<br>(kg) | $(kg-m^2 \times 10^{-2})$ | $(kg-m^2 \times 10^{-2})$ $(kg-m^2 \times 10^{-2})$ | $(kg-m^2 \times 10^{-2})$ | Description      |
| 20        | 0      | 0     | 0   | 2.688        | •                         | •                                                   | l                         | Pump Bearing     |
| 21        | 0.076  | 0     | 0   | 8.038        | 6.889                     | 3.643                                               | 3.643                     | First Impeller   |
| 22        | 0.127  | 0     | 0   | 1.781        | į                         | ł                                                   | 1                         | Seal             |
| 23        | 0.203  | 0     | 0   | 8.038        | 6.889                     | 3.643                                               | 3.643                     | Second Impeller  |
| 24        | 0.254  | 0     | 0   | 1.781        | ı                         | ١                                                   | ı                         | Seal             |
| 25        | 0.330  | 0     | 0   | 7.879        | 6.696                     | 3, 535                                              | 3, 535                    | Third Impeller   |
| 26        | 90+.0  | 0     | 0   | 5.078        | 0.293                     | 0.293                                               | 0.293                     | Impeller/Turbine |
| 27        | 0.476  | 0     | 0   | 8.042        | 6.350                     | 3,161                                               | 3.161                     | Second Turbine   |
| 28        | 0.540  | 0     | 0   | 9.775        | 6.438                     | 3, 307                                              | 3.307                     | First Turbine    |
| 53        | 0.597  | 0     | 0   | 3,175        | 0.293                     | 0.293                                               | 0.293                     | Turbine Bearing  |
| 45        | -0.051 | 0     | 0   | 1            | ı                         | ı                                                   | ı                         | Radial Bentliesa |
| 17        | -0.042 | 0.038 | 0   | ı            | i                         | 1                                                   | ı                         | Axial Bentlyb    |
|           |        |       |     | 56.275       |                           |                                                     |                           |                  |

Relative to a rectangular coordinate frame which shares a common origin and x-axis with joints 20 through 29 but rotated -110 deg about the x-axis. 4

b. Same as a. but rotated 130 deg about the x-axis.

TABLE 1b. HPFTP ROTOR MODEL DATA

. to # 45 ....

| Beam<br>No. | Joint<br>No. 1 | Joint<br>No. 2 | $(\mathbf{m}^4 \times 10^{-7})$ | $m^{-1}x$ $m^{4} \times 10^{-7}$ ) $(m^{4} \times 10^{-7})$ $(m^{4} \times 10^{-7})$ | $I_{\mathbf{z}}$ $(10^4 \times 10^{-7})$ | Area $(m^2 \times 10^{-3})$ | Material | Description       |
|-------------|----------------|----------------|---------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|----------|-------------------|
| က           | 20             | 21             | 54.926                          | 27.463                                                                               | 27.463                                   | 5.190                       | Inconel  | Pump shaft        |
| 4           | 20             | 22             | 0.409                           | 0.204                                                                                | 0.204                                    | 0.507                       | Inconel  | Tie-bolt          |
| 2           | 20             | 45             |                                 | ١                                                                                    | ı                                        | 1                           | I        | Radial Bently Arm |
| 9           | 20             | 47             | ł                               | ı                                                                                    | 1                                        | 1                           | l        | Axial Bently Arm  |
| 7           | 21             | 22             | 54.926                          | 27.463                                                                               | 27.463                                   | 5.190                       | Inconel  | Pump shaft        |
| <b>%</b>    | 22             | 23             | 54.926                          | 27.463                                                                               | 27.463                                   | 5.190                       | Inconel  | Pump shaft        |
| 6           | 22             | 24             | 0.409                           | 0.204                                                                                | 0.204                                    | 0.507                       | Inconel  | Tie-bolt          |
| 10          | 23             | 24             | 54, 926                         | 27.463                                                                               | 27.463                                   | 5. 190                      | Inconel  | Pump shaft        |
| 11          | 24             | 25             | 54.926                          | 27.463                                                                               | 27.463                                   | 5.190                       | Inconel  | Pump shaft        |
| 12          | 24             | 26             | 0.409                           | 0.204                                                                                | 0.204                                    | 0.507                       | Inconel  | Tie-bolt          |
| 13          | 25             | 56             | 54.926                          | 27.463                                                                               | 27.463                                   | 5.190                       | Inconel  | Pump shaft        |
| 14          | 56             | 27             | 68.514                          | 34.257                                                                               | 34.257                                   | 4.552                       | Inconel  | Turbine shaft     |
| 15          | 27             | 82             | 68.514                          | 34.257                                                                               | 34.257                                   | 4.552                       | Inconel  | Turbine shaft     |
| 16          | 28             | 29             | 68.514                          | 34.257                                                                               | 34.257                                   | 4.552                       | Inconel  | Turbine shaft     |
|             |                |                |                                 |                                                                                      |                                          |                             |          |                   |

TABLE 2. HPFTP ROTOR MODES

| 1-6<br>7-8<br>498.1<br>9 561.5<br>10 1117.1<br>11-12 1150.8 |                          | Description          |
|-------------------------------------------------------------|--------------------------|----------------------|
|                                                             | ı                        | Rigid Body           |
|                                                             | s. 1 637. 5 <sup>a</sup> | First Bending, Y, Z  |
|                                                             | 1.5 724.5                | First Torsion, X     |
|                                                             | 7.1 1446.1               | Second Torsion, X    |
|                                                             | 0.8 1507.1 <sup>a</sup>  | Second Bending, Y, Z |
|                                                             | 8.8 2019.4               | Third Torsion, X     |
| 14-15 1936. 5                                               | 6.5 2526.3               | Third Bending, Y, Z  |
| 16 2104.5                                                   | 4.5 2728.1               | Axial, X             |

a. Refer to Figures 2 and 3.

TABLE 3a. HPFTP CASE MODEL DATA

| $\begin{pmatrix} I_{\mathbf{z}} \\ (\text{kg-m}^2) \end{pmatrix}$ Description | 0.293 Turbine Bearing | 1.317   Turbine Case | 0.768 Pump Case | - Powerhead | 1.280   | 0.293  | 0.293 Diffuser | 0.746 Pump Case | 0.176 Pump Bearing | - Axial Accelerometer | - Axial Accelerometer | 0.088 Preburner | 0.585 Pump Case | Radial Accelerometers | Radial Accelerometers | Radial Accelerometer <sup>D</sup> | - Radial Bently | - Axial Bentlyd | - Pump Case |         |
|-------------------------------------------------------------------------------|-----------------------|----------------------|-----------------|-------------|---------|--------|----------------|-----------------|--------------------|-----------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|-----------------------------------|-----------------|-----------------|-------------|---------|
| $\frac{I}{y}$ (kg-m <sup>2</sup> )                                            | 0.293                 | 1.317                | 0.768           | 1           | 1.280   | 0.293  | 0.293          | 0.746           | 0.176              | 1                     | 1                     | 0.088           | 0.585           | ı                     | 1                     | ı                                 | 1               | 1               | ı           |         |
| $\begin{pmatrix} J_{\mathbf{x}} \\ (kg-m^2) \end{pmatrix}$                    | 0.585                 | 2.634                | 1.536           | 1           | 2.561   | 0.585  | 0.585          | 1.492           | 0.351              | 1                     | ı                     | 0.176           | 1.171           | 1                     | l                     | <br>                              | ı               | 1               | 1           |         |
| Mass<br>(kg)                                                                  | 25, 401               | 82.100               | 37, 195         | -           | 63, 503 | 36.287 | 36. 287        | 36.287          | 20.865             | 1                     | l                     | 27.216          | 40.823          | ļ                     | -                     | 1                                 | ı               | ı               | i           | 405.964 |
| (m)                                                                           | 0                     | 0                    | 0               | 0           | 0       | 0      | 0              | 0               | 0                  | 0.222                 | 0                     | 0               | 0               | 0                     | 0                     | 0                                 | 0               | 0               | 0           |         |
| y<br>(m)                                                                      | 0                     | 0                    | 0               | 0.351       | 0       | 0      | 0              | 0               | 0                  | 0                     | 0.074                 | 0               | 0               | 0                     | 0                     | 0                                 | 0               | 0.038           | 0           |         |
| (m)                                                                           | 0.597                 | 0.508                | 0.610           | 0.671       | 0.330   | 0.254  | 0.127          | 0.203           | •                  | 0.540                 | -0.101                | 0.864           | 0.064           | 0.135                 | 0.540                 | 0.135                             | -0.051          | -0.042          | 0,140       |         |
| Joint<br>No.                                                                  | 30                    | 31                   | 32              | 14          | 33      | 34     | 35             | 36              | 37                 | 38                    | 39                    | 40              | 41              | 42                    | 43                    | 44                                | 46              | 48              | 49          |         |

a. Relative to a rectangular coordinate frame which shares a common origin and X-axis with joints 14, 30 through 37, 40, 41, and 49 but rotated -45 about the X-axis.

b. Same as a. but rotated 100° about the X-axis.

c. Same as a. but rotated -110° about the X-axis.

d. Same as a. but rotated 130° about the X-axis.

TABLE 3b. HPFTP CASE MODEL DATA

e Section on a major of malling each of the malling of the malling

The designation of the second second

| Description                                                            | Turbine Case | Pump Case | Pump Case | Accelerometer Arm | Accelerometer Arm | Hot Gas Manifold | Preburner | Diffuser | Pump Case | Diffuser | Diffuser | Accelerometer Arm | Accelerometer Arm | Pump Case | Accelerometer Arm | Pump Case | Radial Bently Arm | Axial Bently Arm | Pump Case |
|------------------------------------------------------------------------|--------------|-----------|-----------|-------------------|-------------------|------------------|-----------|----------|-----------|----------|----------|-------------------|-------------------|-----------|-------------------|-----------|-------------------|------------------|-----------|
| Material                                                               | Inconel      | Inconel   | Inconel   | 1                 | I                 | Inconel          | Inconel   | Aluminum | Inconei   | Aluminum | Aluminum | •                 | ı                 | Inconel   | ı                 | Titanium  | 1                 | i                | Titanium  |
| Area $(m^2 \times 10^{-3})$                                            | 0.381        | 4.645     | 4.645     | ı                 | ı                 | 2.476            | 4.645     | 0.903    | 4.645     | 0.903    | 0.903    | ı                 | ı                 | 4.645     | 1                 | 0.839     | ı                 | ı                | 0.839     |
| $\begin{bmatrix} I_{\mathbf{z}} \\ (m^2 \times 10^{-5}) \end{bmatrix}$ | 0.441        | 9,573     | 9.573     | ı                 | ı                 | 0.701            | 9.573     | 1.432    | 9.573     | 1.432    | 1.432    | 1                 | ı                 | 9.573     | 1                 | 1.257     | 1                 | 1                | 1.257     |
| $\binom{1}{10^{-5}}$ $\binom{1}{10^{-5}}$ $\binom{1}{10^{-5}}$         | 0.441        | 9, 573    | 9, 573    | 1                 | ı                 | 8, 533           | 9.573     | 1.432    | 9, 573    | 1.432    | 1.432    | ı                 | ı                 | 9, 573    | ı                 | 1.257     | ١                 | ı                | 1.257     |
| $\binom{J}{x}$ $(m^4 \times 10^{-5})$                                  | 0,882        | 19.147    | 19.147    | -                 | ı                 | 9.240            | 19.147    | ı        | 19.147    | i        | ı        | 1                 | ı                 | 19.147    | 1                 | 2.514     | 1                 | i                | 2.514     |
| Joint<br>No. 2                                                         | 31           | 32        | 33        | é                 | 43                | 77               | 0+        | 3.4      | 36        | 35       | 41       | 44<br>C1          | 7                 | 67        | 39                | 77        | 46                | X.               | 49        |
| Joint<br>No. 1                                                         | 30           | 31        | 31        | 31                | 31                | 32               | 32        | 33       | 33        | 34       | 35       | 36                | 36                | 36        | رن<br>آ-          | 37        | 37                | 37               | 41        |
| Beam<br>No.                                                            | 17           | ž         | 19        | 20                | 21                | 22               | 23        | 24       | 25        | 36       | 27       | ς;<br>χ           | 29                | 30        | 31                | 32        | 33                | 34               | ဗ္ဗ       |

TABLE 3c. HPFTP CASE MODEL DATA

|                                                        | $\theta$ Description  | Diffuser to | Contacts |   |   | 7.846 | Case to | Diffuser  | Contacts |   |   | 3.503 |
|--------------------------------------------------------|-----------------------|-------------|----------|---|---|-------|---------|-----------|----------|---|---|-------|
|                                                        | ,                     |             |          |   |   | 7.    |         |           |          |   |   | ю     |
| Stiffness Submatrix $(K_{11} \times 10^9 \text{ N/m})$ | $^{\kappa}_{	heta}$   | Symmetric   | <b>1</b> |   | 0 | 0     |         | Symmetric | •        |   | 0 | 0     |
| matrix                                                 | $\mathbf{x}_{\theta}$ |             |          | 0 | 0 | 0     |         |           |          | 0 | 0 | 0     |
| ss Subi                                                | ۶                     |             | 0        | 0 | 0 | 0     |         |           | 0        | 0 | 0 | 0     |
| Stiffne                                                | ۸y                    | 0           | 0        | c | 0 | 0     |         | 0         | 0        | 0 | 0 | 0     |
|                                                        | ۍ<br>×                | 0           | 0        | 0 | 0 | •     | c       | 0         | 0        | 0 | 0 | 0     |
|                                                        | Joint<br>No. 2        | 35          |          |   |   |       | 36      | }         |          |   |   |       |
|                                                        | Joint<br>No. 1        | 34          |          |   |   |       | 7       |           |          |   |   |       |
|                                                        | Element<br>No.        | 19          |          |   |   |       | 90      | )<br>     |          |   |   |       |

TABLE 4. HPFTP CASE MODES

| Mode       | Frequency (Hz)     | Description                          |
|------------|--------------------|--------------------------------------|
| 1          | 50.1               | Case rocking, Y                      |
| C1         | 108.6              | Case rocking, Z                      |
| က          | 197.8              | First diffuser torsion, N            |
| **         | 214.4              | Case rocking + bending, Y            |
| ıç         | 275.5 <sup>a</sup> | Case rocking + bending, Z            |
| 9          | 367.8              | First case torsion, X                |
| <b>!</b> ~ | 428.1              | First case translation + bending, Y  |
| ,          | 493. 8             | First case bending, Z                |
| 6          | 511.2              | Turbine case bending, Y              |
| 10         | 535. 5             | Turbine case torsion                 |
| 11         | 560.9              | First diffuser bending, Z            |
| 12         | 562.1              | First diffuser bending. Y            |
| 13         | 594.7              | Turbine case bending, 2              |
| 7          | 634.9              | Case axial, X                        |
| 13.        | 658.5              | Second case torsion, X               |
| 16         | 691.3              | Hot gas manifold bending, Y          |
| 1.         | 706.1              | Second diffuser torsion, X           |
| <u>'</u>   | 708.2              | Second diffuser bending, Z           |
| 13         | 718.2              | Second diffuser bending, Y           |
| 93         | \$12.8             | Second case bending, Z               |
| 5.         | 518.1              | Second case translation + bending, Y |
|            |                    |                                      |

a. Refer to Figures 6 and 7.

TABLE 5. HPFTP PARAMETRIC CONFIGURATIONS

| Configuration Number:            | 1 | 2 | က | 4 | ű | 9 | 7 <sup>a</sup> | œ | 6 | 10 |
|----------------------------------|---|---|---|---|---|---|----------------|---|---|----|
| 500 Hz Rotor                     |   |   |   |   |   |   |                | × | × |    |
| 637 Hz Rotor                     | × | × | × | × | × | × | ×              |   |   | ×  |
| No Seals                         |   |   |   | × |   |   |                |   |   |    |
| Nominal Seals                    |   | × |   |   | × |   |                | × |   |    |
| 3-Step Seals                     |   |   | × |   |   | × |                |   | × | ×  |
| Smooth Seals                     | × |   |   |   |   |   | ×              |   |   |    |
| 1. $62/7.27 \times 10^7$ Carrier |   | × | × |   |   |   |                |   |   |    |
| 3.00 × 10° Carrier               | _ |   |   |   |   |   |                | × |   |    |
| $5.25 \times 10^8$ Carrier       | × |   |   | × | × | × | ×              |   | × | ×  |
| Inboard Bearing                  | × |   |   |   |   |   |                |   |   | ×  |
|                                  |   |   |   |   |   |   |                |   |   |    |

a. Baseline as herein documented.

TABLE 6. HPFTP CASE AND ROTOR COUPLING ELEMENTS

The every

|                                                  | Description           | Bearings and<br>Carriers |            | Balance<br>Piston |            | Smooth<br>Scals<br>(RPL) |     |
|--------------------------------------------------|-----------------------|--------------------------|------------|-------------------|------------|--------------------------|-----|
|                                                  | ٠,                    |                          | 5          |                   | 0          |                          | 0   |
| 10 <sup>8</sup> N /m)                            | $\theta_{ m y}$       | Symmetric                | <b>9</b> 0 | Symmetric         | <b>c c</b> |                          | 0   |
| (K <sub>11</sub> ×                               | $\mathbf{x}_{\theta}$ | c                        | 000        |                   | 000        | c                        | 000 |
| Stiffness Submatrix ( $K_{11} \times 10^8$ N /m) | δz                    | 1.313                    | 000        | 0                 | 000        | 0.439                    | 00  |
| Stiffness                                        | δ <sub>y</sub>        | 1.313                    |            | 9 0               | 000        | 0.439                    | 000 |
|                                                  | ××                    | 0                        | 000        | 4.553<br>0<br>0   | 000        | 000                      | 000 |
|                                                  | Joint<br>No. 2        | 37<br>30                 |            | 333               |            | 35<br>34                 |     |
|                                                  | Joint<br>No. 1        | 20<br>29                 |            | 25                |            | 51 57<br>51 57           |     |
|                                                  | Element<br>No.        | 21<br>22                 |            | 23                |            | 4 0<br>4 m               |     |

TABLE 7. COUPLED HPFTP ROTOR AND CASE MODES (RPL)

4

| TABLE 7. COUPLED HPF IF ROLOR AND CASE MODES (NFL) | Description    | Rotor free spin, X | Case rocking, Y | Case rocking, Z | Case rocking + bending, Y | Diffuser torsion | Case rocking + bending, Z | Rotor translation, Y | Rotor translation, Z | Rotor rocking, Z | Rotor rocking, Y | Rotor axial, X | Case + rotor rocking, Z | Rotor bending, Y | Rotor bending, Z | Turbine case torsion, X | Diffuser bending, Y | Diffuser bending, Z | Case+ rotor rocking, Y | Case torsion, X | Case axial, X | Turbine case bending, Z |  |
|----------------------------------------------------|----------------|--------------------|-----------------|-----------------|---------------------------|------------------|---------------------------|----------------------|----------------------|------------------|------------------|----------------|-------------------------|------------------|------------------|-------------------------|---------------------|---------------------|------------------------|-----------------|---------------|-------------------------|--|
| COUPLED RPF 1 F R                                  | Frequency (Hz) | ļ                  | 47.0            | 100.8           | 196.4                     | 197.5            | 249.8                     | 287.6                | 321.0a               | 375.1            | $424.0^{a}$      | 463.7          | 488.7                   | 513.6            | 515.0a           | 554.3                   | 574.7               | 577.4               | 599.4                  | 650.4           | 657.3         | 694.9                   |  |
| IABLE (.                                           | Mode           | 1                  | 2               | ო               | 4                         | သ                | 9                         | 2                    | ∞                    | 6                | 10               | 11             | 12                      | 13               | 14               | 15                      | 16                  | 17                  | 18                     | 19              | 20            | 23                      |  |

a. Refer to Figures 8 through 10 and Figure 30.

TABLE 8a. HPOTP ROTOR MODEL DATA

| ·····                                                             |                    |        |              |               |               |               |                 |       |       |                |       |               |        |       |       |         | _ |
|-------------------------------------------------------------------|--------------------|--------|--------------|---------------|---------------|---------------|-----------------|-------|-------|----------------|-------|---------------|--------|-------|-------|---------|---|
| Description                                                       | Preburner Impeller | Seal   | Pump Bearing | Main Impeller | Main Impeller | Main Impeller | Turbine Bearing | Seal  | Seal  | Second Turbine | Seal  | First Turbine | Seal   | Seal  | Seal  |         |   |
| ${\rm I}_{\rm z}^{\rm I}$ (kg-m <sup>2</sup> × 10 <sup>-3</sup> ) | 1.015              | 0.714  | 0.118        | 3.145         | 10.714        | 3,638         | 0.436           | 0.317 | 1     | 23.183         | 2.401 | 23.212        | 1      | 1     | 1     |         |   |
| $(kg-m^2 \times 10^{-3})$                                         | 1.015              | 0.714  | 0.118        | 3,145         | 10.714        | 3,638         | 0.436           | 0.317 | 1     | 23, 183        | 2.401 | 23.212        | ı      | 1     | ı     |         |   |
| $\frac{J}{x}$ $(kg-m^2 \times 10^{-3})$                           | 1.138              | 0.909  | 0.098        | 4.570         | 20.399        | 4.178         | 0.040           | 1.129 | ı     | 45, 731        | 4.019 | 45.825        | ı      | 1     | 1     |         |   |
| Mass<br>(kg)                                                      | 1.078              | 1.380  | 0.585        | 3, 518        | 6.074         | 3.903         | 1.543           | 1.903 | 0.851 | 5.676          | 1.549 | 6.271         | 0.303  | 1.121 | ı     | 35, 755 | ) |
| z<br>(m)                                                          | 0                  | 0      | 0            | 0             | 0             | 0             | 0               | 0     | 0     | 0              | 0     | 0             | 0      | 0     | 0     |         |   |
| y<br>(m)                                                          | 0                  | 0      | 0            | 0             | 0             | 0             | 0               | 0     | 0     | 0              | 0     | 0             | 0      | 0     | 0     |         |   |
| (m)                                                               | -0.067             | -0.040 | 0            | 0.066         | 0.133         | 0.200         | 0.280           | 0.320 | 0.399 | 0.429          | 0.457 | 0.486         | -0.086 | 0.369 | 0.340 |         |   |
| Joint<br>No.                                                      | 82                 | 51     | 52           | 53            | 54            | 55            | 26              | 57    | 58    | 29             | 09    | 61            | 62     | 63    | 87    |         |   |

TABLE 8b. HPOTP ROTOR MODEL DATA

| Description                                                                                                                                                | Preburner Shaft | Preburner Shaft | Interpump Shaft | Main Pump Shaft | Main Impeller Shaft | Main Impeller Shaft | Pump Shaft | Pump Shaft | Pump Shaft | Furbine Shaft | Pump Shaft | Turbine Shaft | Turbine Shaft | Pump Shaft |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|---------------------|---------------------|------------|------------|------------|---------------|------------|---------------|---------------|------------|
| Q                                                                                                                                                          | Preb            | Prebu           | Inter           | Main            | Main                | Main                | Pump       | Pumb       | Pumb       | Turb          | Pumb       | Turbi         | Turbi         | Pump       |
| Material                                                                                                                                                   | Steel           | Steel           | Steel           | Steel           | Steel               | Steel               | Steel      | Steel      | Steel      | Steel         | Steel      | Steel         | Steel         | Steel      |
| Area $(m^2 \times 10^{-3})$                                                                                                                                | 0,639           | 3.790           | 0.744           | 1.199           | 2, 221              | 2.456               | 2,807      | 3.132      | 3.638      | 3.838         | 3.719      | 11.338        | 14.           | 3, 1, 38   |
| $\begin{pmatrix} \mathbf{I_z} \\ (\mathbf{m^4 \times 10^{-7}}) \end{pmatrix} \begin{pmatrix} \mathbf{Area} \\ (\mathbf{m^2 \times 10^{-3}}) \end{pmatrix}$ | 0.657           | 12.532          | 0.674           | 1.085           | 5.443               | 16.000              | 18.999     | 15.074     | 18.913     | 18.907        | 17.677     | 39.280        | 18.659        | 18.913     |
| $(m^4 \times 10^{-7})$                                                                                                                                     | 0.657           | 12, 532         | 0.674           | 1.085           | 5.443               | 16.000              | 18, 939    | 15.074     | 18.913     | 18.907        | 17.677     | 39.280        | 18,659        | 18.913     |
| $\binom{J_{\mathbf{x}}}{(\mathbf{m}^4 \times 10^{-7})}$                                                                                                    | 1, 314          | 25.034          | 1.347           | 2.170           | 10.886              | 31,999              | 37.998     | 30.149     | 37.827     | 37.815        | 35, 353    | 78, 559       | 37.317        | 37.827     |
| Joint<br>No. 2                                                                                                                                             | 51              | 62              | 52              | 53              | 54                  | 55                  | 26         | 57         | 87         | 29            | 63         | 09            | 61            | 87         |
| Joint<br>No. 1                                                                                                                                             | 50              | 20              | 51              | 52              | 53                  | 54                  | 55         | 56         | 57         | 58            | 58         | 59            | 09            | 63         |
| Beam<br>No.                                                                                                                                                | 36              | 37              | 38              | 39              | 40                  | 41                  | 42         | 43         | 44         | 45            | 94         | 47            | 48            | 49         |

TABLE 9. HPOTP ROTOR MODES

ことで 名な中 最い

| Description    | Rigid Body | First Bending, Y, Z | First Torsion, X | Second Bending, Y, Z | Second Torsion, X | Third Bending, Y, Z | Axial, X |
|----------------|------------|---------------------|------------------|----------------------|-------------------|---------------------|----------|
| Frequency (Hz) |            | 470.4               | 936. 4           | $1040.5^{8}$         | 1289.0            | 1856.8              | 2484.2   |
| Mode           | 1-6        | 7-8                 | 6                | 10-11                | 12                | 13-14               | 15       |

a. Refer to Figures 12 and 13.

TABLE 10a. HPOTP CASE MODEL DATA

| The same of the sa |       | Description                        | Seal   | Seal   | Pump Bearing | Pump Case | Balance Piston | Seal   | Turbine Bearing | Seal  | Seal  | Second Turbine Stage | Seal  | First Turbine Stage | Inlet Fairing | Turbine Case | Preburner | Interstage Ring | PB45 Accelerometera | PBI 35 Accelerometera | PB180 Accelerometer | RAD1 Accelerometera | RAD2 Accelerometer | RAD3 Accelerometera | Seal  |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------|--------|--------|--------------|-----------|----------------|--------|-----------------|-------|-------|----------------------|-------|---------------------|---------------|--------------|-----------|-----------------|---------------------|-----------------------|---------------------|---------------------|--------------------|---------------------|-------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r z   | $(\mathrm{kg-m^2} \times 10^{-1})$ | 0.102  | 0.322  | 0.044        | 0.439     | 3.951          | 1.610  | 0.161           | 0.293 | 0.293 | 1, 390               | 0.410 | 0.395               | 0.293         | 17.558       | 0.585     | 0.102           | 1                   | 1                     | 1                   | )                   | 1                  | 1                   | 1     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I A   | $(kg-m^2\times 10^{-1})$           | 0.102  | 0.322  | 0.044        | 0.439     | 3.951          | 1.610  | 0.161           | 0.293 | 0.293 | 1.390                | 0.410 | 0.395               | 0.293         | 17.558       | 0.585     | 0.102           | 1                   | 1                     | ı                   | ı                   | ı                  | ı                   | ı     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 'n×   | $(kg-m^2 \times 10^{-1})$          | 0.205  | 0.644  | 0.088        | 0.878     | 7.901          | 3.219  | 0.322           | 0.585 | 0.585 | 2,780                | 0.819 | 0.790               | 0.585         | 35,117       | 1.171     | 0.205           | 1                   | ı                     | ı                   | 1                   | ,                  | ,                   | 1     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mass  | (kg)                               | 8.963  | 8.963  | 4.354        | 6.804     | 55, 338        | 29.484 | 7.620           | 9.525 | 9.525 | 11.975               | 5.352 | 3.992               | 11.975        | 105.687      | 38.102    | 2.631           | 1                   | 1                     | 1                   | 1                   | 1                  | ì                   | 1     | 320.290 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | (m)                                | 0      | 0      | 0            | •         | 0              | 0      | 0               | 0     | 0     | 0                    | 0     | 0                   | 0             | 0            | 0         | 0               | 0.127               | 0                     | 0.127               | 0.216               | 0                  | 0                   | 0     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ą     | (m)                                | 0      | 0      | 0            | •         | 0              | 0      | 0               | •     | 0     | 0                    | •     | 0                   | 0             | 0            | 0         | •               | 0                   | 0.127                 | 0                   | 0                   | -0.216             | 0.216               | 0     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×     | (m)                                | -0.086 | -0.040 | 0            | 0.022     | 0.133          | 0.320  | 0.280           | 0.369 | 0.399 | 0.429                | 0.457 | 0.486               | 0.542         | 0.574        | 0.788     | 0.457           | -0.059              | -0.029                | -0.029              | 0.305               | 0.305              | 0.305               | 0.340 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Joint | No.                                | 64     | 65     | 99           | 29        | 89             | 69     | 70              | 71    | 72    | 73                   | 7.4   | 75                  | 92            | 7.7          | 78        | 62              | 80                  | 81                    | 82                  | 83                  | 76                 | 85                  | 98    |         |

Relative to a rectangular coordinate frame which shares a common origin and x-axis with joints 64 through 79, 82, 84, and 86 but rotated 135 deg about the x-axis. e d

TABLE 10b, HPOTP CASE MODEL DATA

1. 4 C. 1. 4. 1.

| _ |                                                                                           | _ | _                   |                      |                     |                   |                   |                   |           |           |                         |         |              |                   |                   |                   |                    |                    |                    |                       |         |                       |                  |           |
|---|-------------------------------------------------------------------------------------------|---|---------------------|----------------------|---------------------|-------------------|-------------------|-------------------|-----------|-----------|-------------------------|---------|--------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|-----------------------|---------|-----------------------|------------------|-----------|
|   | Description                                                                               |   | Preburner Pump Case | Pump Bearing Support | Pump Case Partition | Accelerometer Arm | Accelerometer Arm | Accelerometer Arm | Pump Case | Pump Case | Turbine Bearing Support | Vanes   | Turbine Case | Accelerometer Arm | Accelerometer Arm | Accelerometer Arm | Pump Seals Support | Pump Seals Support | Pump Seals Support | Turbine Seals Support | Fairing | Turbine Seals Support | Hot Gas Manifold | Preburner |
|   | Material                                                                                  |   | Inconel             | Inconel              | Inconel             | ı                 | ı                 | 1                 | Inconel   | Inconel   | Inconel                 | Inconel | Inconel      | l                 | 1                 | 1                 | Inconel            | Inconei            | Inconel            | Inconel               | Inconel | Inconel               | Inconel          | Inconel   |
|   | Area $(m^2 \times 10^{-3})$                                                               |   | 8,655               | 8.655                | 17.041              | ł                 | 1                 | ı                 | 2, 205    | 2.205     | 18.065                  | 5. 290  | 6.486        | ı                 | 1                 | ĺ                 | 18.065             | 18.065             | 18.065             | 3,964                 | 4.897   | 3, 964                | 4.963            | 6.486     |
|   | $\binom{1}{\mathbf{z}}$ $(\mathbf{m}^4 \times 10^{-5})$                                   |   | 2.631               | 2.631                | 10.887              | 1                 | 1                 | ı                 | 2.733     | 2,733     | 7.908                   | 6.181   | 13, 392      | I                 | ı                 | l                 | 7.908              | 7.908              | 7.908              | 3,993                 | 5.764   | 3,993                 | 1.271            | 13, 392   |
|   | $\begin{pmatrix} I & I \\ y \\ (m^4 \times 10^{-5}) & (m^4 \times 10^{-5}) \end{pmatrix}$ |   | 2.631               | 2.631                | 10.887              | 1                 | 1                 | }                 | 2.942     | 2.942     | 7.908                   | 6.181   | 13.392       | ļ                 | 1                 | }                 | 7.908              | 7.908              | 7.908              | 3, 993                | 5.764   | 3, 993                | 5.363            | 13.392    |
|   | $\binom{J}{x}$ $(m^4 \times 10^{-5})$                                                     |   | 5. 262              | 5, 262               | 21.775              | ı                 | ı                 | i                 | 5.675     | 5.675     | 16.025                  | 12.487  | 26.785       | 1                 | i                 | 1                 | 16.025             | 16.025             | 16.025             | 7.986                 | 11.528  | 7.986                 | 6.638            | 26.785    |
|   | Joint<br>No. 2                                                                            |   | 65                  | 99                   | 67                  | 80                | 81                | 82                | 89        | 69        | 20                      | 73      | 77           | 83                | 7.8               | 383               | 98                 | 72                 | 98                 | 74                    | 92      | 7.5                   | 14               | \$2       |
|   | Joint<br>No. 1                                                                            |   | 64                  | 65                   | 65                  | 65                | 65                | 65                | 29        | 89        | 69                      | 69      | 69           | 69                | 69                | 69                | 69                 | 7.1                | 71                 | 7.3                   | 6,      | 47                    | 1.7              | i-<br>t-  |
|   | Beam<br>No.                                                                               |   | 20                  | 51                   | 52                  | 53                | Z                 | 55                | 95        | [-        | 53                      | 59      | 09           | 61                | 62                | 63                | <del>1</del> 9     | 65                 | 99                 | 67                    | 89      | 69                    | 20               | 17        |

TABLE 10c. HPOTP CASE MODEL DATA

中華原語 公司

|                | 1              |                |       | Stiffn | Stiffness Submatrix ( $K_{11} \times 10^9 \text{ N/m}$ ) | rix (K <sub>11</sub> × | 109 N/m)  |                |             |
|----------------|----------------|----------------|-------|--------|----------------------------------------------------------|------------------------|-----------|----------------|-------------|
| Element<br>No. | Joint<br>No. 1 | Joint<br>No. 2 | δx    | δ,     | $\delta_{\mathbf{z}}$                                    | θ×                     | β         | o <sup>z</sup> | Description |
| 26             | 74             | 62             | 1.016 |        |                                                          |                        |           |                | Interstage  |
|                |                |                | 0     | 0.140  |                                                          |                        | Symmetric |                | Ring        |
|                |                |                | 0     | 0      | 0.140                                                    |                        |           |                | 1           |
|                |                |                | 0     | 0      | 0                                                        | 4.553                  |           |                |             |
|                | -              |                | 0     | c      | c                                                        | 0                      | 2.277     |                |             |
|                |                |                | 0     | 0      | 0                                                        | 0                      | 0         | 2.277          |             |
|                |                |                |       |        |                                                          |                        |           |                |             |

TABLE 11. HPOTP CASE MODES

| Description    | Case rocking, Y | First case rocking, Z | Second case rocking, Z | Case axial + bending, Y | Case rocking + bending, Y | First case bending, Z | First case bending, 7 | Case bending, Y | Case axial, X | Turbine seal support, Z | Turbine seal support, Y | Second case bending, Z | Case torsion, X | Turbine seal support, Y | Turbine seal support, Z | Case rocking + bending, Z |
|----------------|-----------------|-----------------------|------------------------|-------------------------|---------------------------|-----------------------|-----------------------|-----------------|---------------|-------------------------|-------------------------|------------------------|-----------------|-------------------------|-------------------------|---------------------------|
| Frequency (Hz) | 74.8            | 124.4                 | 262.7 <sup>a</sup>     | 310.3                   | $593.0^{3}$               | 601.0                 | 678.6                 | 773.5           | 896.1         | 1007.5                  | 1009.8                  | 1048.5                 | 1172.2          | 1184.4                  | 1238.1                  | 1296.9                    |
| Mode           | -               | 2                     | က                      | -4"                     | 13                        | 9                     | (~                    | £               | 6             | 10                      | 11                      | 12                     | 13              | 77                      | 15                      | 16                        |

a. Refer to Figures 15 and 16.

TABLE 12. HPOTP ROTOR AND CASE COUPLING ELEMENTS

|                      | .Foint     |          | Stiffness 5 | Stiffness Submatrix $(K_{11} \times 10^6 \text{ N/m})$ | $K_{11} \times 10^{-1}$ | <sup>6</sup> N/m) |            |             |
|----------------------|------------|----------|-------------|--------------------------------------------------------|-------------------------|-------------------|------------|-------------|
| No. 2                | 1          | œ×       | Å<br>y      | ôz                                                     | θ×                      | by y              | <b>2</b> 0 | Description |
| 99                   |            | 0        |             |                                                        |                         |                   |            | Pump        |
|                      |            | 0        | 140.101     |                                                        |                         | Symmetric         |            | Bearing     |
| -                    | _          | 0        | 0           | 140.101                                                |                         |                   |            | and Carrier |
|                      |            | 0        | 0           | 0                                                      | 0                       |                   |            |             |
|                      |            | 0        | 0           | 0                                                      | 0                       | 0                 |            |             |
|                      |            | 0        | 6           | 0                                                      | 0                       | 0                 | 0          |             |
| 10                   |            | 0        |             |                                                        |                         |                   |            | Turbine     |
|                      |            | 0        | 210.152     |                                                        |                         | Symmetric         |            | Bearing     |
|                      |            | 0        | 0           | 210, 152                                               |                         |                   |            | and Carrier |
|                      |            | 0        | 0           | 0                                                      | 0                       |                   |            |             |
|                      |            | 0        | 0           | 0                                                      | 0                       | 0                 | 0          |             |
|                      | _          | •        | 0           | •                                                      | 0                       | 0                 | 0          |             |
| 89                   | <b>5</b> 5 | 894. 198 |             |                                                        |                         |                   |            | Balance     |
|                      |            | 0        | 0           |                                                        |                         | Symmetric         |            | Piston      |
|                      |            | •        | 0           | 0                                                      |                         |                   |            |             |
| <del>- ,     .</del> |            | 0        | 0           | 0                                                      | 0                       |                   |            |             |
|                      |            | 0        | 0           | 9                                                      | 0                       | 0                 |            |             |
|                      |            | 0        | 0           | 0                                                      | 0                       | 0                 | 0          |             |
|                      |            |          |             |                                                        |                         |                   |            |             |

TABLE 12. (Continued)

|                                                        | Description           | Preburner | Pump      | Seal  | (RPL) |   |   | • | Preburner | Pump      | Seal  | (RPL) |   |   | Hot Gas | Seal      | (RPL)  |   |   |   |
|--------------------------------------------------------|-----------------------|-----------|-----------|-------|-------|---|---|---|-----------|-----------|-------|-------|---|---|---------|-----------|--------|---|---|---|
|                                                        | $\theta$              |           |           |       |       |   | 0 |   |           |           |       |       |   | Э |         |           |        |   |   | 0 |
| <sup>6</sup> N/m)                                      | $\theta_{\mathbf{y}}$ |           | Symmetric |       |       | 0 | 0 |   |           | Symmetric |       |       | 0 | 0 |         | Symmetric | •      |   | 0 | 0 |
| ζ11 × 10                                               | ×θ                    |           |           |       | 0     | 0 | 0 |   |           |           |       | ٥     | • | 3 |         |           |        | 0 | 0 | 0 |
| bmatrix (F                                             | $\delta_{\mathbf{z}}$ |           | -         | 2.721 | 0     | 0 | 0 |   |           |           | 0.413 | 0     | 0 | 0 |         |           | 34.168 | 0 | 0 | 0 |
| Stiffness Submatrix $(K_{11} \times 10^6 \text{ N/m})$ | δy                    |           | 2, 721    | 0     | 0     | 0 | 0 |   |           | 0.413     | င     | 0     | င | 0 |         | 34, 168   | 0      | 0 | 0 | 0 |
|                                                        | κ×                    | 0         | 0         | =     | c     | 0 | 0 |   | 0         | 0         | 0     | 0     | 0 | 9 | c       | . 0       | 3      | 0 | 0 | 0 |
|                                                        | Joint<br>No. 2        | 65        |           |       |       |   |   |   | 64        |           |       |       |   |   | 7.9     |           |        |   |   |   |
|                                                        | Joint<br>No. 1        | 51        |           |       |       |   |   |   | 62        |           |       |       |   |   | 7       |           |        |   |   |   |
|                                                        | Element<br>No.        | 30        |           |       |       |   |   |   | 31        |           |       |       |   |   | 3.0     | )         |        |   |   |   |

TABLE 12. (Concluded)

|                |                |                |    | Stiffness Submatrix $(K_{11} \times 10^6 \text{ N/m})$ | ıbmatrix ( | $K_{11} \times 10$    | <sup>6</sup> N∕m)     |          |              |
|----------------|----------------|----------------|----|--------------------------------------------------------|------------|-----------------------|-----------------------|----------|--------------|
| Element<br>No. | Joint<br>No. 1 | Joint<br>No. 2 | ۰× | ô,                                                     | 29         | $\theta_{\mathbf{x}}$ | $\theta_{\mathbf{y}}$ | <b>2</b> | Description  |
| 33             | 59             | 73             | 0  |                                                        |            |                       |                       |          | Second       |
| }              |                | 7              | 0  | 0.958                                                  |            |                       | Symmetric             |          | Turbine      |
|                |                |                | 0  | 0                                                      | 0.958      |                       |                       |          | Seal         |
|                |                |                | 0  | 0                                                      | 0          | 0                     |                       |          | (RPL)        |
|                |                |                | 0  | 0                                                      | 0          | 0                     | 0                     |          |              |
|                |                |                | 0  | 0                                                      | •          | 0                     | 0                     | •        |              |
|                |                | Í              |    |                                                        |            |                       |                       |          | Interstant   |
| 8              | 09             | 62             | •  |                                                        |            |                       |                       |          | Tiner orange |
|                |                |                | 0  | 0.129                                                  |            |                       | Symmetric             |          | Seal         |
|                |                |                | د  | 0                                                      | 0.129      |                       |                       |          | (RPL)        |
|                |                |                | 0  | 0                                                      | 0          | 0                     |                       |          |              |
|                |                |                | 0  | 0                                                      | 0          | 0                     | 0                     |          |              |
|                |                |                | 0  | 0                                                      | 0          | •                     | •                     | •        |              |
| S              | 61             | 75             | 0  |                                                        |            |                       |                       |          | First        |
| 3              | ;              |                | 0  | 0.885                                                  |            |                       | Symmetric             |          | Turbine      |
|                |                |                | 0  | 0                                                      | 0.885      |                       |                       |          | Seal         |
|                |                |                | •  | 0                                                      | 0          | 0                     |                       |          | (RPL)        |
|                |                |                | 0  | ٥                                                      | 0          | 0                     | 0                     |          |              |
|                |                |                | 0  | •                                                      | 0          | 0                     | 0                     | 0        |              |

TABLE 13. COUPLFD HPOTP ROTOR AND CASE MODES (RPL)

| - Rotor Free Spin, X  69.9 Case Rocking, Y  115.1 Retor Recking, Z  237.9 Rotor Recking Y  293.0 Case Rocking + Rotor Bending, Z  293.8 Rotor Bending, Y  536.5 Rotor Bending, Y  643.8 Rotor Bending, X  643.8 Rotor Translation, X  643.8 Rotor Bending, X  643.8 Rotor Bending, X  643.8 Rotor Bending, X  691.5 Case Torsion, X  1009.5 Turbine Interstage Ring, Y  Case Axial, X  Case Axial, X | Mode        | Frequency (Hz)      | Description                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-----------------------------------|
| Gase Bocking, Y   Case Bocking, Y     115.1   Case Bocking, Z     237.9   Rotor Bocking Y     293.0   Case Bocking Hotor Bending, Z     258.5   Rotor Bending, Y     528.5   Rotor Bending, Y     536.5   Rotor Bending, Y     599.3   Rotor Translation, Z     599.3   Rotor Bending, Y     643.8   Rotor Bending, X     691.5   Case Torsion, X     691.5   Case Torsion, X     1009.5   Turbine Interstage Ring, Y     102.2   Case Axial, X     102.2   Case Axial, X     102.2   Case Axial, X     103.1.7   Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                             |             |                     |                                   |
| 69.9 Case Rocking, Y  115.1 Rotor Rocking, Z  237.9 Rotor Rocking, Z  293.0 Case Rocking + Rotor Bending, Z  293.8 Rotor Bending, Y  528.8 Rotor Bending, X  536.5 <sup>a</sup> Rotor Translation, Z  599.3 <sup>a</sup> Rotor Translation, Z  643.8 <sup>a</sup> Rotor Translation, X  643.8 <sup>a</sup> Rotor Axial, X  691.5 Case Torsion, X  1009.5 Turbine Interstage Ring, Y  Case Axial, X  Case Axial, X  Case Axial, X  Case Axial, X  1009.5 Turbine Interstage Ring, Y  Case Axial, X  Case Rocking + Bending, P                                                                                                                                                                                                                                                                                                                                                          | _           | 1                   |                                   |
| 115.1 Case Bocking, Z 237.9 Botor Bocking, Y 293.0 Case Rocking + Rotor Bending, Y 293.8 Case Rocking + Rotor Bending, Y 528.8 Rotor Bending, Y 536.5 Rotor Bending, X 599.3 Rotor Translation, X 637.0 Rotor Translation, X 643.8 Rotor Bending, Y 643.8 Rotor Translation, X 691.5 Case Torsion, X 691.5 Case Torsion, X 1009.5 Turbine Interstage Fing, Y 1012.5 Case Axial, X Case Axial, X Case Axial, X 1009.5 Turbine Interstage Ring, Y Case Axial, X                                                                                                                                                                                                                                                                                                                                                                                      | 2           | 69.6                |                                   |
| 237.9  Rotor Rocking, Z  Rotor Bocking, Y  Case Rocking + Rotor Bending, Z  Case Rocking + Rotor Bending, Y  528.8  Rotor Bending, Y  895.1  Rotor Translation, Z  643.8  Rotor Translation, X  643.8  Rotor Bending, Y  Rotor Translation, X  Case Torsion, X  Case Torsion, X  1009.5  Turbine Interstage Ring, Y  Case Axial, X  Case Axial, X  Case Axial, X  Case Axial, X  Case + Rotor Rocking + Bending, Z  Turbine Interstage Ring, Y  Case Axial, X                                                                                                                                                                                                                                                                                                                                                                                                          | က           | 115.1               | Case Rocking, Z                   |
| 257.9 <sup>a</sup> Rotor Bocking Y  293.0  Case Rocking + Rotor Bending, Z  Case Rocking + Rotor Bending, Y  528.8  Rotor Bending, Y  536.5 <sup>a</sup> Rotor Bending, Z  599.3  Rotor Translation, Y  643.8 <sup>a</sup> Rotor Translation, Y  641.8  681.3  Rotor Bending, Z  Rotor Bending, Z  Rotor Bending, X  691.5  Case Torsion, X  1009.5  Turbine Interstage Ring, Y  Turbine Interstage Ring, Y  Case Axial, X  1022.2  Case Axial, X                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del> | 237.9               | Rotor Bocking, Z                  |
| 293.0 Case Rocking + Rotor Bending, Z 293.8 Rotor Bending, Y 536.5a 536.5a Rotor Bending, Z 599.3a Rotor Translation, Z 643.8a Rotor Bending, Y 637.0 Rotor Translation, X 691.5 Case Torsion, X 893.5 Turbine Interstage Ring, Y 1012.5 Case Axial, X Case Axial, X Case + Rotor Rocking + Bending, Case + Rotor Rocking + Bending, Case + Rotor Rocking + Bending, Case Axial, X                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ıc          | 257.9 <sup>a</sup>  |                                   |
| 293. S  Rotor Bending, Y  536. 5  Rotor Bending, Z  599. 3  Rotor Translation, Z  637. 0  Rotor Translation, Y  643. 8  Rotor Bending, Y  Rotor Bending, Y  Rotor Bending, Y  Rotor Bending, X  691. 5  Case Torsion, X  1009. 5  Turbine Interstage Ring, Y  1022. 2  Case Axial, X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٠           | 293.0               | Case Rocking + Rotor Bending, 7   |
| 528. 8       Rotor Bending, Y         536. 5a       Rotor Bending, Z         599. 3a       Rotor Translation, Y         637. 0       Rotor Bending, Y         643. 8a       Rotor Bending, Y         681. 3       Rotor Bending, Z         681. 3       Rotor Axial, X         691. 5       Case Torsion, X         803. 5       Rotor Torsion, X         1009. 5       Turbine Interstage Ring, Y         1022. 2       Case Axial, X         1051. 7       Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [-          | 293.8               | Case Rocking + Rotor Bending, Y   |
| 536. 5 <sup>3</sup> Botor Translation, Z  599. 3 <sup>a</sup> Rotor Translation, X  643. 8 <sup>a</sup> Rotor Bending, Y  643. 8  691. 5  Case Torsion, X  803. 5  Rotor Axial, X  Case + Rotor Rocking + Bending, R  1009. 5  Turbine Interstage Ring, Y  Case Axial, X  Case Axial, X  Case Axial, X  Case Axial, X  Case + Rotor Rocking + Bending, Y  Case Axial, X  Case + Rotor Rocking + Bending, Y  Case + Rotor Rocking + Bending, Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x           | 528. 8              | Rotor Bending, Y                  |
| 595.1  Rotor Translation, Z  599.3  Rotor Bending, Y  643.8  681.3  Rotor Axial, X  691.5  Case Torsion, X  1009.5  Turbine Interstage Ring, Y  Turbine Interstage Ring, Y  Case Axial, X  Case + Rotor Rocking + Bending,  Turbine Interstage Ring, Y  Case Axial, X  Case Axial, X  Case Axial, X  Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6           | 536. 5 <sup>3</sup> | Rotor Bending, Z                  |
| 599.3 <sup>a</sup> Rotor Translation, Y 637.0 Rotor Bending, Y 643.8 <sup>a</sup> Rotor Bending, Z 681.3 Rotor Axial, X 691.5 Case Torsion, X 803.5 Rotor Torsion, X 1009.5 Turbine Interstage Ring, Y 1012.5 Case Axial, X Case + Rotor Rocking + Bending, Case Axial, X Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10          | 595.1               |                                   |
| 643. 8 643. 8 643. 8 644. 8 651. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11          | 599. 3 <sup>3</sup> | _                                 |
| 643. s <sup>3</sup> 681. 3  Rotor Axial, X  691. 5  Case Torsion, X  893. 5  Case + Rotor Rocking + Bending,  Rotor Torsion, X  1009. 5  Turbine Interstage Ring, Y  1022. 2  Case Axial, X  Case Axial, X  Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12          | 637.0               | Rotor Bending, Y                  |
| 681.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13          | 643. s <sup>a</sup> | Rotor Bending, Z                  |
| 8.13.5 Case Torsion, X 8.13.5 Case + Rotor Rocking + Bending, 8.36.5 Rotor Torsion, X 1009.5 Turbine Interstage Ring, 7 1012.5 Case Axial, X 1051.7 Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷.          | 681.3               | Retor Axial, X                    |
| 9.33.5 Case + Rotor Rocking + Bending, 9.36.5 Rotor Torsion, X 1009.5 Turbine Interstage Ring, Y 1012.5 Case Axial, X 1051.7 Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u></u>     | 691.5               | Case Torsion, X                   |
| 1009.5 Turbine Interstage Ring, 7 1012.5 Turbine Interstage Ring, Y 1022.2 Case Axial, X 1051.7 Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =           | 803.5               | Case + Rotor Rocking + Bending, Y |
| Turbine Interstage Fing, 7 1012.5 Turbine Interstage Ring, Y 1022.2 Case Axial, X 1051.7 Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [-          | 536, 5              | Rotor Torsion, X                  |
| 1022.2 Case Axial, X<br>1051.7 Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>5</i> H  | 1009.5              | Turbine Interstage Fing, 7        |
| 1022.2 Case Axial, X<br>1051.7 Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61          | 1012.5              | Turbine Interstage Ring, Y        |
| 1051.7 Case + Rotor Rocking + Bending,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50          | 1022.2              | Case Axial, X                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.          | 1051.7              | Case + Rotor Rocking + Bending, Z |

a. Refer to Figures 17 through 20 and Figure 30.

TABLE 14a. SSME MODEL DATA

| Joint<br>No. | × Ê   | y<br>(m) | <b>z</b><br>(m) | Mass<br>(kg) | $\frac{J}{x}$ (kg-m <sup>2</sup> ) | $\frac{1}{y}$ (kg-m²) | $\frac{\mathbf{I_z}}{\mathbf{g}}$ (kg-m <sup>2</sup> ) | Description         |
|--------------|-------|----------|-----------------|--------------|------------------------------------|-----------------------|--------------------------------------------------------|---------------------|
| -            | 0     | 0        | 0               | 43.844       | 57.791                             | 28.895                | 28.895                                                 | Novzle Exit         |
| · 8          | 0.351 | 0        | 0               | 82.817       | 102.503                            | 51.251                | 51.251                                                 | Nozzie              |
|              | 0.683 | 0        | 0               | 74.221       | 84.067                             | 42.033                | 42.033                                                 | Nozrle              |
| 4            | 0.991 | 0        | 0               | 64.641       | 64.412                             | 32.206                | 32.206                                                 | Nozzle              |
| ı.           | 1.278 | 0        | 0               | 57.216       | 50.535                             | 25.267                | 25.267                                                 | Nozzle              |
| 9            | 1.554 | 0        | 0               | 51.945       | 38.356                             | 19.257                | 19.257                                                 | Nozzle              |
| <b>!~</b>    | 1.831 | 0        | 0               | 47.042       | 28.604                             | 14.302                | 14.302                                                 | Nozzle              |
| m            | 2.108 | 0        | 0               | 41.694       | 19.033                             | 9.516                 | 9.516                                                  | Nozzle              |
| o            | 2.398 | c        | 0               | 30.985       | 9.240                              | 4.620                 | 4.620                                                  | Nozzle              |
| 10           | 2.628 | c        | 0               | 44.956       | 13.507                             | 9.746                 | 4.088                                                  | Nozzle              |
| 11           | 2.860 | 0        | •               | 217.457      | 57.610                             | 43.780                | 33.084                                                 | Thrust Chamber      |
| 12           | 3.251 | 0        | •               | 336. 339     | 119.105                            | 8512                  | 77.393                                                 | Thrust Chamber      |
| 13           | 3.419 | 0        | •               | 243.126      | 64.045                             | 50, 713               | 48.963                                                 | Powerhead           |
| 14           | 3.5%6 | 0        | 0               | 531.157      | 129.774                            | 192.392               | 80.545                                                 | Powerheada          |
| 15           | 3.952 | 0        | 0               | 314.793      | 134.629                            | 116.060               | 33.626                                                 | Gimbal              |
| 91           | 3.078 | 0.450    | -0.450          | 52.844       | 1                                  | l                     | 1                                                      | Actuator Attachment |
| 17           | 3.078 | 0.450    | 0.450           | 52.844       | 1                                  | ı                     | 1                                                      | Actuator Attachment |
| 8            | 3.4%5 | 1.053    | -1.053          | 52.844       | ı                                  | ı                     | l                                                      | Actuator Attachment |
| 19           | 3.485 | 1.053    | 1.053           | 52.844       | ı                                  | ı                     | !                                                      | Actuator Attachment |
|              |       | i        |                 | 2393.609     |                                    |                       |                                                        |                     |

Both turbopumps are inclined 10.5° to the SSME centerline with the HPFTP pump bearing at X = 2.914 m and Y = 0.743 m and the HPOTP pump bearing at X = 2.989 m and Y = -0.698 m. Refer to Figure 21. <del>.</del>

TABLE 14b. SSME MODEL DATA

|                                                                                                                                                                                       | T                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Description                                                                                                                                                                           | Combustion Chamber<br>Powerhead |
| Material                                                                                                                                                                              | Inconel<br>Inconel              |
| $^{\rm Area}_{\rm (m^2\times10^{-2})}$                                                                                                                                                | 1.473<br>4.181                  |
| $\begin{bmatrix} x \\ 10^{-4} \end{bmatrix} \begin{bmatrix} I_y \\ (m^4 \times 10^{-4}) \end{bmatrix} (m^4 \times 10^{-4}) \begin{bmatrix} m^2 \times 10^{-2} \end{bmatrix}$ Material | 4.460<br>16.976                 |
| $(m^4 \times 10^{-4})$                                                                                                                                                                | 4.460<br>16.976                 |
| .J<br>(m <sup>4</sup> ×                                                                                                                                                               | 8.919<br>33.951                 |
|                                                                                                                                                                                       | 13<br>14                        |
| Seam Joint Joint No. 2                                                                                                                                                                | 12<br>13                        |
| Beam<br>No.                                                                                                                                                                           | - 2                             |

TABLE 14c. SSME MODEL DATA

|                                                        | Description    | Nozzle    |                        | Nozzle          |                  | Nozzle    |                  |
|--------------------------------------------------------|----------------|-----------|------------------------|-----------------|------------------|-----------|------------------|
|                                                        | ς<br>σ         |           | 78,705                 |                 | 999*69           |           | 61, 543          |
| 10% N/m)                                               | 0 y            | Symmetric | 104.974<br>0           | Symmetric       | 92.874<br>0      | Symmetric | 81.971<br>0      |
| Stiffness Submatrix $(K_{11} \times 10^8 \text{ N/m})$ | × <sub>θ</sub> |           | 104, 974<br>0<br>0     |                 | 92,874<br>0<br>0 |           | 81.971<br>0<br>0 |
| ess Subma                                              | δZ             |           | 161.274<br>0<br>0<br>0 | 153, 831        | 0                | 151, 134  | 000              |
| Stiffn                                                 | δy             | 61.189    | 0<br>-10,725<br>0<br>0 | 58 <b>.37</b> 0 | -9,710<br>0      | 57,372    | -8.816<br>0<br>0 |
|                                                        | ه<br>×         | 61.189    | 0<br>0<br>10.725<br>0  | 58.370<br>0     | 9.710<br>0       | 57,372    | 0<br>8.816<br>0  |
|                                                        | Joint<br>No. 2 | 2         |                        | က               |                  | 4         |                  |
|                                                        | Joint<br>No. 1 | -         |                        | 8               |                  | က         |                  |
|                                                        | Element<br>No. | 1         |                        | 61              |                  | ო         |                  |

TABLE 14c. (Continued)

|                                            | Description           | Nozzle<br>Nozzle                              | Nozzle                                                            |
|--------------------------------------------|-----------------------|-----------------------------------------------|-------------------------------------------------------------------|
|                                            | $\mathbf{z}_{	heta}$  | 51.442                                        | 39, 895                                                           |
| 10 <sup>8</sup> N/m)                       | $\theta_{\mathbf{y}}$ | Symmetric 68, 503 0                           | 53.193 0 Symmetric 37.048                                         |
| Stiffness Submatrix ( $K_{11} \times 10^8$ | $\mathbf{x}_{\theta}$ | 68, 503<br>0<br>0                             | 53, 193<br>0<br>0<br>37, 048<br>0                                 |
| iess Subm                                  | δ.                    | 143, 131<br>0<br>0<br>0                       | 128, 193<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0   |
| Stiff                                      | δy                    | 54, 342<br>0<br>-7, 798<br>0<br>0             | -6.735<br>0<br>0<br>0<br>-5.614<br>0                              |
|                                            | δ×                    | 54.342<br>0<br>0<br>0<br>7.798<br>0<br>48.633 | 0<br>0<br>0<br>0<br>0<br>40.542<br>0<br>0<br>0<br>0<br>0<br>5.614 |
|                                            | Joint<br>No. 2        | ი                                             | 1-                                                                |
|                                            | Joint<br>No. 1        | 4 rð                                          | ဗ                                                                 |
|                                            | Element<br>No.        | 4 (3                                          | သ                                                                 |

TABLE 14c. (Continued)

|                                            | Description           | Nozzle      |                   | Nozzle          |                      | Nozzle    |                   |
|--------------------------------------------|-----------------------|-------------|-------------------|-----------------|----------------------|-----------|-------------------|
|                                            | <b>π</b>              |             | 18,224            |                 | 11.009               |           | 7.719             |
| 10 <sup>8</sup> N/m)                       | $\theta_{\mathbf{y}}$ | Symmetric   | 24.518<br>0       | Symmetric       | 15 <b>,</b> 016<br>0 | Symmetric | 10, 523<br>0      |
| Stiffness Submatrix ( $K_{11} \times 10^8$ | $\theta_{\mathbf{x}}$ |             | 24.518<br>0<br>0  |                 | 15.016<br>0<br>0     |           | 10. 523<br>0<br>0 |
| ss Submat                                  | δ_Z                   | t c         | 68. •88<br>0<br>0 | 74, 762         | 000                  | 82,029    | 000               |
| Stiffne                                    | δy                    | 33,414      | 0<br>0<br>0       | 28 <b>.</b> 143 | -4.075<br>0          | 30,892    | -3.570<br>0<br>0  |
|                                            | ××                    | 33.414<br>0 | 0<br>4.648        | 28.143          | 0<br>4.075           | 30.892    | 3.570<br>0        |
|                                            | Joint<br>No. 2        | ∞           |                   | <b>6</b>        |                      | 10        |                   |
|                                            | Joint<br>No. 1        | 7           |                   | 90              |                      | 6         |                   |
|                                            | Element<br>No.        | 7           |                   | <b>∞</b>        |                      | <b>o</b>  |                   |

TABLE 14c. (Continued)

|                                            | Description           | Nozzle           |                  | Com <b>bustion</b><br>Chamber |                  | Powerhead            |                         |
|--------------------------------------------|-----------------------|------------------|------------------|-------------------------------|------------------|----------------------|-------------------------|
|                                            | $\mathbf{z}_{\theta}$ |                  | 3,216            |                               | 0.385            |                      | 0.115                   |
| 10 <sup>8</sup> N/m)                       | $\theta_{\mathbf{y}}$ | Symmetric        | <b>4.49</b> 8    | Symmetric                     | 1,052<br>0       | Symmetric            | 0,600                   |
| Stiffness Submatrix ( $K_{11} \times 10^8$ | ×θ                    | •                | 4. 498<br>0<br>0 |                               | 1,052<br>0<br>0  | ç                    | 0 0                     |
| ss Submat                                  | z<br>y                | 57,250           | 000              | 39,176                        | 000              | 59,368               | <b>,</b> , ,            |
| Stiffne                                    | δy                    | 21.365<br>0      | -2.468<br>0<br>0 | 14.255<br>0                   | -2,788<br>0<br>0 | 26.374               | <b>-3.446</b><br>0<br>0 |
|                                            | ô<br>X                | 21.365<br>0<br>0 | 0<br>2.468<br>0  | 14.255<br>0                   | 2.788<br>0       | 26 <b>.</b> 374<br>0 | 3.446<br>0              |
|                                            | Joint<br>No. 2        | 11               |                  | 12                            |                  | 12                   |                         |
|                                            | Joint<br>No. 1        | 10               |                  | 11                            |                  | 7                    |                         |
|                                            | Element<br>No.        | 10               |                  | 11                            |                  | 12                   |                         |

TABLE 14c. (Concluded)

|   |                                                | Description           | Lower | Actuator  | Bipods |        |       |        | Upper | Actuator  | Bipods |        |       |        | Actuators |           |       |   |   |   |
|---|------------------------------------------------|-----------------------|-------|-----------|--------|--------|-------|--------|-------|-----------|--------|--------|-------|--------|-----------|-----------|-------|---|---|---|
|   |                                                | $\mathbf{z}_{\theta}$ |       |           | ·      |        |       | 0,0067 |       |           |        |        |       | 0.0047 |           |           |       |   |   | 0 |
|   | 10 <sup>8</sup> N/m)                           | $\theta_{\mathbf{y}}$ |       | Symmetric |        |        | 0,016 | 0      |       | Symmetric |        |        | 0.013 | 0      |           | Symmetric |       |   | 0 | 0 |
| • | rix ( $K_{11}$ ×                               | $\theta_{\mathbf{x}}$ |       |           |        | 0.019  | 0     | 0      |       |           |        | 0.015  | 0     | 0      |           |           |       | 0 | 0 | 0 |
| , | Stiffness Submatrix ( $ m K_{11} 	imes 10^{3}$ | $\delta_{\mathbf{z}}$ |       |           | 9,562  | 0      | 0     | 0      |       |           | 8.196  | 0      | 0     | 0      |           |           | 0.473 | 0 | 0 | 0 |
|   | Stiffne                                        | $\delta_{\mathbf{y}}$ |       | 2,662     | 0      | -0.061 | 0     | 0      |       | 1.517     | c      | -0.042 | 0     | 0      |           | 0         | 0     | 0 | 0 | 0 |
|   |                                                | δ <sub>x</sub>        | 0.343 | 0         | 0      | 0      | 0.061 | 0      | 0,182 | 0         | 0      | 0      | 0.042 | 0      | 0         | 0         | 0     | 0 | 0 | 0 |
|   |                                                | Joint<br>No. 2        | 16    | 17        |        |        |       |        | 16    | 17        |        |        |       |        | 18        | 19        |       |   |   |   |
|   |                                                | Joint<br>No. 1        | 11    | 11        |        |        |       |        | 13    | 13        |        |        |       |        | 16        | 17        |       |   |   |   |
|   |                                                | Element<br>No.        | 13    | 14        |        |        |       |        | 15    | 16        |        |        |       |        | 17        | 18        |       |   |   |   |

TABLE 15. SSME MODES (EXCLUDING TURBOPUMPS)

| Mode       | Frequency (Hz)      | Description       |
|------------|---------------------|-------------------|
| 1          | 14.1                | Rocking, Z        |
| 2          | 14.1                | Rocking, Y        |
| 3          | 16.9                | First Torsion, X  |
| 4          | 45,0                | First Bending, Z  |
| 5          | 54.1                | First Bending, Y  |
| 6          | 70.1                | Second Torsion, X |
| 7          | 86.6                | Second Bending, Z |
| 8          | 102.1               | Actuator Arms     |
| 9          | 104.6               | Actuator Arms     |
| 10         | 115.1               | Second Bending, Y |
| 11         | 190.7               | First Axial, X    |
| 12         | 240.9 <sup>a</sup>  | Third Bending, Z  |
| 13         | 261.5               | Second Bending, Y |
| 14         | 296.4               | Third Torsion, X  |
| 15         | 311. 1 <sup>a</sup> | Second Bending, Z |
| 16         | 367.3               | Fourth Torsion, X |
| 17         | 377.7               | Second Axial, X   |
| 18         | 411.7 <sup>a</sup>  | Third Bending, Y  |
| 19         | 415.3 <sup>a</sup>  | Third Bending, Z  |
| 20         | 441.1               | Third Bending, Y  |
| 21         | 462.4               | Actuator Arms     |
| 22         | 527.6               | Actuator Arms     |
| 23         | 552.4               | Third Bending, Z  |
| 24         | 596. 9              | Third Bending, Y  |
| 25         | 661.4               | Third Axial, X    |
| 26         | 668.7               | Fifth Torsion, X  |
| 27         | 686. 2              | Actuator Arms     |
| 28         | 764.9               | Fourth Axial, X   |
| 29         | 770.2               | Fourth Bending, Z |
| <b>3</b> 0 | 791.9               | Fourth Bending, Y |

a. Refer to Figures 22 through 25 and Figure 30.

TABLE 16. SSME MODES (INCLUDING TURBOPUMPS)

| Mode | Frequency (Hz)     | Description                                         |
|------|--------------------|-----------------------------------------------------|
| 1    | _                  | HPFTP Rotor Free Spin, X                            |
| 2    | ***                | HPOTP Rotor Free Spin, X                            |
| 3    | 13.5               | Engine Rocking, Y                                   |
| 4    | 13.7               | Engine Rocking, Z                                   |
| 5    | 14.7               | First Engine Torsion, X                             |
| 6    | 38.4               | First Engine Bending, Y                             |
| 7    | 39.7               | First Engine Bending, Z                             |
| 8    | 52.7               | Second Engine Torsion, X                            |
| 9    | 5 <b>3. 1</b>      | HPFTP Rocking, Y                                    |
| 10   | 67.6               | HPOTP Rocking, Y                                    |
| 11   | 79.7               | Pumps Rocking in Phase, Z                           |
| 12   | 99.9               | Actuator Arms (HPFTP Rocking, Z)                    |
| 13   | 100.0              | Actuator Arms                                       |
| 14   | 116.1              | Second Engine Bending, Y                            |
| 15   | 126.7              | First Engine Bending, Z (Pumps Rocking in Phase, 2) |
| 16   | 138.4              | Pumps Rocking Out of Phase, Z                       |
| 17   | 181.2              | First Engine Axial (Pumps Rocking, Y)               |
| 18   | 200.7              | First HPFTP Diffuser Torsion, X                     |
| 19   | 212.6              | HPFTP Case Rocking + Bending, Y (Engine Ax al)      |
| 20   | 232,4              | HPOTP Rotor Rocking, Z                              |
| 21   | 245.6              | HPOTP Rotor Rocking, Z (Engine Bending)             |
| 22   | 249.7              | HPOTP Rotor Rocking, Y                              |
| 23   | 256.2 <sup>a</sup> | Pump Rotors Rocking, Z                              |
| 24   | 266.1              | HPOTP Rotor Bending, Y (Engine Bending)             |
| 25   | 284.1              | HPOTP Case + Rotor Bending, Z                       |
| 26   | 290.1              | HPFTP Rotor Translation, Y                          |
| 27   | 300.2              | HPFTP Rotor Translation, Z (HPOTP Bending)          |
| 28   | 301.1              | HPOTP Case and Rotor Bending, Y                     |
| 29   | 316.9              | HPFTP Rotor Rocking, Z                              |
| 30   | 331.0 <sup>a</sup> | Pump Rotors Rocking, Z (Engine Bending)             |
| 31   | 373.2              | HPFTP Rotor Rocking, Z (Engine Torsion)             |
| 32   | 386.5              | HPFTP Rotor Rocking, Y (Engine Axial)               |
| 33   | 406.6 <sup>a</sup> | Pump Cases and Rotors Bending, Y (Engine Axial)     |
| 34   | 415.5 <sup>a</sup> | Third Engine Bending, Z (HPFTP Rocking)             |
| 35   | 424.9              | HPFTP Rotor Rocking, Z (Engine Bending)             |
| 36   | 432.5              | HPFTP Rotor Rocking, Y                              |
| 37   | 442.9              | Third Engine Bending, Y                             |
| 38   | 463.6              | Actuator Arms                                       |
| 39   | 464.7              | HPFTP Rotor Axial, X                                |
| 40   | 500.3              | HPFTP Case and Rotor Rocking, Z                     |

a. Refer to Figures 26 through 30.

TABLE 16. (Concluded)

| Mode       | Frequency (Hz) | Description                                     |
|------------|----------------|-------------------------------------------------|
| 41         | 5 <b>13.</b> 7 | HPFTP Rotor Bending, Y                          |
| 42         | 519.3          | HPFTP Rotor Bending, Z                          |
| 43         | 527.8          | HPOTP Rotor Bending, Y                          |
| 44         | 53 <b>3.3</b>  | Actuator Arms (HPOTP Rotor Bending, Y)          |
| 45         | 536.1          | HPOTP Rotor Bending, Z                          |
| 46         | 543.4          | HPFTP Turbine Case Torsion (Engine Bending, Z)  |
| 47         | 568.6          | HPFTP Diffuser Bending, Y (HPOTP Rotor Bending) |
| 48         | 568.8          | HPFTP Turbine Case Torsion (Engine Bending, Z)  |
| 49         | 576.8          | HPFTP Diffuser Bending, Z                       |
| 50         | 578.0          | First HPFTP Diffuser Bending, Y (HPOTP Rotor    |
|            |                | Bending)                                        |
| 51         | 596.6          | HPOTP Rotor Translation, Z                      |
| 52         | 605.8          | HPOTP Rotor Translation, Y                      |
| <b>53</b>  | 623.3          | HPOTP Rotor Bending, Y (HPFTP Rotor Rocking)    |
| 54         | 643.9          | HPOTP Rotor Bending, Z                          |
| 55         | 647.9          | Third Engine Axial, X                           |
| 56         | 650.7          | HPOTP Rotor Axial, X                            |
| 57         | 654.8          | HPFTP Case Torsion, X                           |
| 58         | 668.7          | Fifth Engine Torsion, X                         |
| 5 <b>9</b> | 671.4          | Pump Cases and Rotors Bending, Y                |
| 60         | 685.9          | Actuator Arms                                   |
| 61         | 693.2          | HPFTP Turbine Case Bending, Z                   |
| 62         | 697.1          | HPOTP Case Torsion, X                           |
| 6 <b>3</b> | 700.5          | HPOTP Rotor Axial                               |
| 64         | 710.9          | Second HPFTP Diffuser Torsion, X                |
| 65         | 718.7          | Second HPFTP Diffuser Bending, Y                |
| 66         | 728.3          | First HPFTP Rotor Torsion, X                    |
| 67         | 730.5          | Second HPFTP Rotor Torsion, X                   |
| 68         | 751.4          | HPFTP Hot Gas Manifold Bending, Y               |
| 69         | 765.9          | Fourth Engine Axial, X                          |
| 70         | 770.3          | Fourth Engine Bending, Z                        |
| 71         | 784.0          | HPOTP Rotor Axial, X (Engine Bending)           |
| 72         | 807.5          | HPOTP Rotor Axial, X (Engine Bending)           |
| 73         | 811.8          | HPFTP Rotor Bending, Z                          |
| 74         | 816.0          | HPFTP Rotor Bending, Y                          |
| 75         | 828.4          | Actuators (Engine Bending, Z)                   |
| 76         | 873.1          | Actuators (Engine Bending, Z)                   |
| 77         | 882.2          | Fifth Engine Axial (Actuators)                  |
| 78         | 895.4          | HPFTP Rotor Bending, Z                          |
| 79         | 897.9          | HPFTP Rotor Bending, Y                          |
| 80         | 911.7          | HPFTP Case Axial, X                             |

TABLE 17. COMPARISON OF SSME MODEL AND HPOTP MODAL SURVEY FREQUENCIES

| SDRC Description                                 | Z Translations, HPOTP and HPFTP In-Phase | HPOTP $\theta_{\mathbf{y}}$ | Z Translations, HPOTP and HPFTP Out-of-Phase | θ of HPOTP and HPFTP Out-of-Phase | θ of HPOTP | θ of HPOTP | HPOTP Bending in XZ Plane | HPOTP Bending in XY Plane | HPOTP and HPFTP $\theta$ , Out-of-Phase | (Complex Mode) | (Complex Mode) | HPOTP Bending in XY Plane | HPOTP θ Torsion | (Complex Mode) | (Complex Mode) |
|--------------------------------------------------|------------------------------------------|-----------------------------|----------------------------------------------|-----------------------------------|------------|------------|---------------------------|---------------------------|-----------------------------------------|----------------|----------------|---------------------------|-----------------|----------------|----------------|
| SDRC HPOTP<br>Modal Survey<br>Frequency (Hz)     | 37                                       | 75                          | 87                                           | 126                               | 194        | 259        | 300                       | 332                       | 402                                     | 405            | 417            | 424                       | 440             | 493            | 495            |
| Percent<br>Difference                            | 6.8                                      | -5.9                        | 1                                            | -9.0                              | -3,3       | +1,1       | 0.1                       | +0.3                      | 1                                       | 4.0            | +0.4           | 2.0                       | -0.7            | ł              | -1.1           |
| SSME Model (Including Turbopumps) Frequency (Hz) | 39.7                                     | 7.67                        | 1                                            | 138,4                             | 200.7      | 256.2      | 300, 2                    | 331.0                     | ı                                       | 406.6          | 415.5          | 424.9                     | 442.9           | 1              | 500.3          |

#### **BIBLIOGRAPHY**

- HFFTP Casing Rotor Modes. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-172, May 25, 1976.
- Effect of Pump Bearing Relocation on HPFTP Casing Rotor Modes. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-224, July 15, 1976.
- Effect of New Offset on Casing/Rotor Modes for HPFTP Model with Relocated Pump Bearing. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-269, August 12, 1976
- HPFTP Casing Rotor Modes. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-291, September 21, 1976.
- HPFTP Casing Rotor Modes with Diagonal Seal Stiffness. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-310, September 29, 1976.
- Locus of Roots with Variations of HPFTP. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-329, October 22, 1976.
- HPFTP Outboard Bearing Configuration Rotor Modes. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-393, December 17, 1976.
- HPFTP Inboard Bearing Configuration Rotor Modes. NASA-George C. Marshall Space Flight Center Memorandum ED23-76-395, January 11, 1977.
- Modal Data for the December 1976 Modified HPFTP Outboard Bearing Case and Modified HPFTP Inboard Bearing Case. NASA-George C. Marshall Space Flight Center Memorandum ED23-77-7, January 13, 1977.
- Modal Data for the January 1977 HPFTP Outboard Bearing Configuration Case and Inboard Bearing Configuration Case. NASA-George C. Marshall Space Flight Center Memorandum ED23-77-32, February 14, 1977.
- Modal Data for the Updated January 1977 HPFTP Outboard Bearing Configuration Case. NASA-George C. Marshall Space Flight Center Memorandum ED23-77-58, March 24, 1977.
- Modal Data for the Preliminary HPOTP Case. NASA-George C. Marshall Space Flight Center Memorandum ED23-77-72, March 17, 1977.

The second secon

### **BIBLIOGRAPHY** (Continued)

- Modal Data for the Coupled HPFTP Rotor/Case with Three-Step Seals (Case 6).

  NASA-George C. Marshall Space Flight Center Memorandum ED23-77135, June 17, 1977.
- Comparison of Modal Data for the January 1977 and Updated January 1977 (March)
  Coupled Rotor/Case HPFTP without Seals (Case 4). NASA-George C.
  Marshall Space Flight Center Memorandum ED23-77-136, June 17, 1977.
- Modal Data for the Coupled HPFTP Rotor/Case with Smooth Seals (Case 7).

  NASA-George C. Marshall Space Flight Center Memorandum ED23-77137, June 17, 1977.
- Modal Data for a Coupled HPFTP Rotor/Case Inboard Bearing HPFTP with a Smooth Seal (Case 1). NASA-George C. Marshall Space Flight Center Memorandum ED23-77-140, June 20, 1977.
- Modal Data for the HPOTP Case. NASA-George C. Marshall Space Flight Center Memorandum ED23-77-218, October 26, 1977.
- Modal Data for the HPOTP Rotor. NASA-George C. Marshall Space Flight Center Memorandum ED23-77-219, October 28, 1977.
- Modal Data for the High Pressure Oxidizer Turbopump. NASA-George C.
  Marshall Space Flight Center Memorandum ED23-77-229, November 8,
  1977.
- Modal Data for the HPOTP Case, HPOTP Rotor, and Coupled HPOTP with Individually Modeled E arings and Carriers for MPL, RPL, and FPL. NASA-George C. Marsh. Il Space Flight Center Memorandum ED23-77-238, December 5, 1977.
- Modal Analysis of the Space Shuttle Main Engine (SSME) System. NASA-George C. Marshall Space Flight Center Memorandum ED23-78-14, February 9, 1978.
- Modal Aprivals of the SSME System without the HPFTP Rotor. NASA-George C. Marshall Space Flight Center Memorandum ED23-78-23, April 11, 1978.

## **BIBLIOGRAPHY (Concluded)**

- Modal Analysis of the SSME System without the HPOTP Rotor. NASA-George C. Marshall Space Flight Center Memorandum ED23-78-24, April 11, 1978.
- Modal Analysis of the SSME System without either HP Turbopump Rotor.

  NASA-George C. Marshall Space Flight Center Memorandum ED23-7825, April 11, 1978.
- Modal Survey of an SSME High Pressure LOX Pump. Structural Dynamics Research Corporation Western Division Project No. 1329, September 16, 1977.

## **APPROVAL**

# FINITE ELEMENT MODELS OF THE SPACE SHUTTLE MAIN ENGINE

By G. R. Muller

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

G. D. HOPSON

Director, Systems Dynamics Laboratory