

DEFINIÇÃO DO TRABALHO

Tiago Pinheiro

INF05010 - Otimização Combinatória — Outubro, 2020

Problemas propostos

- 1. CV (Vertex Coloring Problem)
- 2. MLST (The minimum labeling spanning trees)
- 3. kLSF (The k-labeled Spannig Forest Problem)

VC Vertex Coloring Problem

(Fonte: Wikipedia, acessado em 22 de Setembro de 2020)

Conjuntos e parâmetros:

- Conjunto V de vertices a serem coloridos
- Conjunto E de arrestas.

Restrições:

- Dois vertices adjacentes n\u00e3o podem possuir a mesma cor.
- Todos os vertices devem possuir uma cor.

Objetivo: Reduzir o numero de cores

Solução: Uma coloração dos vertices.

Variaveis do modelo e parâmetros:

- ullet y_h são variáveis binárias que representam se a cor h está na solução
- x_{ih} são variaveis binarias que representam se um vertice i recebeu a cor h

$$\mathsf{Minimiza} \sum_{h=0}^{|V|} y_h \tag{1}$$

Sujeito a:

$$\sum_{i=1}^{|V|} x_{ih} = 1 \qquad \forall i \in V \tag{2}$$

$$x_{ih} + x_{jh} \le y_h \qquad (i,j) \in E, 1 \le h \le |V| \qquad (3)$$

$$\sum_{i=1}^{|V|} x_{i,h} \ge \sum_{i=1}^{|V|} x_{i,h+1} \qquad 1 \le h \le |V| \tag{4}$$

$$x_{ih} \in \{0, 1\} \qquad \forall i \in V, 1 \le h \le |V| \tag{5}$$

$$y_h \in \{0, 1\}$$
 $1 \le h \le |V|$ (6)

(Fonte: Malaguti et al. (2011))

MLST The minimum labeling spanning trees

(Fonte: O autor)

Conjuntos e parâmetros:

- Conjunto V de vertices.
- Conjunto E de arestas
- Conjunto L de cores
- Uma função $l: E \rightarrow L$ que mapeia para cada aresta uma cor.

Restrições:

- Para cada vertice deve existir um caminho a partir da raiz da árvore.
- Se uma aresta esta na solução então sua cor também esta.

Objetivo: Reduzir o numero de cores da árvore.

Solução: Uma árvore geradora.

Variaveis do modelo e parâmetros:

- ullet y_l são variáveis binárias que representam se a cor l está na solução
- x_{ij} são variáveis binárias que representam se a aresta $(i,j) \in E$ esta na solução ou não.
- f_{ij} são variaveis reais e representam um fluxo que passa pela aresta $(i,j) \in E$.

$$\mathsf{Minimiza} \sum_{l \in L} y_l \tag{7}$$

Sujeito a:

$$\sum_{i \in V} x_{ij} = 1 \qquad \forall j \in V - \{1\} \tag{8}$$

$$\sum_{j:(i,j)\in E} f_{ij} - \sum_{j:(i,j)\in E} f_{ji} = 1 \qquad \forall j \in V - \{1\}$$
 (9)

$$x_{ij} \le f_{ij} \le |V|x_{ij} \tag{10}$$

$$\sum_{(i,j)\in E_l} x_{ij} \le \min\{n-1, |E_l|\} y_l \qquad \forall l \in L$$
 (11)

(Continua no próximo slide)

$x_{ij} \in \{0, 1\}$	$(i,j) \in E$	(12)
$y_l \in \{0, 1\}$	$\forall l \in L$	(13)
$f_{i,i} > 0$	$(i, j) \in E$	(14)

(Fonte: Captivo et al. (2009))

kLSF
The k-labeled Spannig Forest Problem

(Fonte: Autor)

Conjuntos e parâmetros:

- Conjunto V de vertices.
- Conjunto E de arestas
- Conjunto L de cores
- Uma função $l: E \to L$ que mapeia para cada aresta uma cor.
- Um valor k_{max} definido entre $1 \le k_{max} \le |L|$

Restrições:

- O numero de cores da floresta geradora da solução deve ser menor que k_{max}
- Apenas arestas com as cores pertencente a solução devem pertencer a floresta.

Objetivo: Reduzir o numero de árvores (componentes) da floresta

Solução: Uma floresta geradora com as cores selecioandas.

Variaveis do modelo e parâmetros:

- ullet z_l são variáveis binárias que representam se a cor l está na solução
- f_{ij} são variaveis reais e representam um fluxo que passa pela aresta $(i,j) \in E$.

Sujeito a:

$$f_{sj} + \sum_{j:(i,j)\in E} f_{ij} - \sum_{j:(i,j)\in E} f_{ji} = 1$$
 $\forall j \in V$ (16)

$$0 \le f_{ij}, \ f_{ji} \le |V| z_{l(uv)} \tag{17}$$

$$0 \le f_{sj} \le |V| z_{l(uv)} \qquad \qquad j \in V \tag{18}$$

$$\sum_{l \in L} z_l \le k_{max} \tag{19}$$

$$z_l \in \{0, 1\} \qquad \forall l \in L \cup C \qquad (20)$$

(Fonte: Figueredo (2020))

THE K-LABELED SPANNIG FOREST PROBLEM OBSERVAÇÃO

Para esse último modelo, ele propõe a ideia de um grafo expandido, onde ele adiciona um vértice a mais ao grafo representado como s e uma aresta a partir desse vértice para cada um dos outros vértices, vocês podem ter mais detalhes na definição Definição 3.2.2 em Figueredo (2020)