Probability Theory HW5

段奎元

SID: 201821130049 dkuei@outlook.com

October 17, 2018

1. Page 46,13 Property 2.36

- (a) If $f_n \xrightarrow{\text{a.e.}} f$, then every subsequence $\{f_{n_k}\}$ satisfies $f_{n_k} \xrightarrow{\text{a.e.}} f$.
- (b) If $f_n \xrightarrow{\text{a.e.}} f, f_n \xrightarrow{\text{a.e.}} f'$, then f = f' a.e..
- (c) If $f_n \xrightarrow{\text{a.e.}} f, g_n = f_n \text{ a.e.}, f = g \text{ a.e.}, \text{ then } g_n \xrightarrow{\text{a.e.}} g.$
- (d) If $f_n^{(k)} \xrightarrow{\text{a.e.}} f^{(k)}, k = 1, \dots, m, g \in C(\bar{\mathbb{R}}^m)$, then

$$g(f_n^{(1)}, \cdots, f_n^{(m)}) \xrightarrow{\text{a.e.}} g(f^{(1)}, \cdots, f^{(m)}).$$

SOLUTION:

- (a) Since $f_n \xrightarrow{\text{a.e.}} f$ there exists a null set N s.t. $\forall x \in \Omega \setminus N, f_n(x) \to f(x)$. Thus for every subsequence $\{f_{n_k}\}, f_{n_k}(x) \to f(x)$, i.e. $f_{n_k} \xrightarrow{\text{a.e.}} f$.
- (b) There exist two null sets N, N' such that $\forall x \in \Omega \setminus N, f_n(x) \to f(x)$, and $\forall x \in \Omega \setminus N', f_n(x) \to f'(x)$. Thus $\forall x \in \Omega \setminus (N \cup N'), f_n(x) \to f(x), f_n(x) \to f'(x)$; then f(x) = f'(x) for any $x \in \Omega \setminus (N \cup N')$. Since $\mu(N \cup N') = 0$, we get f = f' a.e..
- (c) There exist null sets N_1, N_2, N_3 for $f_n \xrightarrow{\text{a.e.}} f, g_n = f_n$ a.e., f = g a.e. respectively. For any $x \in \Omega \setminus (\cup_{i=1}^3 N_i), f_n(x) \to f(x), g_n(x) = f_n(x), f(x) = g(x), \text{ so } g_n(x) \to g(x).$ Since $\mu(\cup_{i=1}^3 N_i) = 0$, we get $g_n \xrightarrow{\text{a.e.}} g$.
- (d) Denote $N_k = \{x \in \Omega^{(k)} \mid f_n^{(k)}(x) \not\to f^{(k)}(x)\}$, and we have $\mu(N_k) = 0$ by $f_n^{(k)} \xrightarrow{\text{a.e.}} f^{(k)}, k = 1, \dots, m$. For any $(x^{(1)}, \dots, x^{(m)}) \in \prod_{k=1}^m \Omega^{(k)} \setminus N_k$,

$$\left(f_n^{(1)}(x^{(1)}), \cdots, f_n^{(m)}(x^{(m)})\right) \to \left(f^{(1)}(x^{(1)}), \cdots, f^{(m)}(x^{(m)})\right)$$

Since $\mu(\prod_{k=1}^m \Omega^{(k)} \setminus N_k) = \mu(\prod_{k=1}^m \Omega^{(k)})$, the convergence keeps—a.e. By continuity of g, we get

$$g(f_n^{(1)}, \cdots, f_n^{(m)}) \xrightarrow{\text{a.e.}} g(f^{(1)}, \cdots, f^{(m)}).$$

2. Page 47,14 Theorem 2.38(2)

Suppose $f, f_n, n \ge 1$ are finite measurable functions. Then $f_n - f_m \xrightarrow{\text{a.e.}} 0$ if and only if

$$\forall \varepsilon > 0, \mu(\bigcap_{n=1}^{\infty} \cup_{v=1}^{\infty} \{ |f_{n+v} - f_n| \ge \varepsilon \}) = 0.$$

Specially when μ is finite, $f_n - f_m \xrightarrow{\text{a.e.}} 0$ if and only if

$$\forall \varepsilon > 0, \mu(\bigcup_{n=1}^{\infty} \{ |f_{n+\nu} - f_n| \ge \varepsilon \}) \to 0 (n \to \infty).$$

"\(\Rightarrow\)": There exists a null set A such that $\forall \varepsilon > 0$, there exists $N \in \mathbb{N}_+$ s.t. $\forall n \geq N, v \in \mathbb{N}_+, x \in \Omega \setminus A, |f_{n+v}(x) - f_n(x)| < \varepsilon$. Then $\mu(\cup_{n=N}^{\infty} \cup_{v=1}^{\infty} \{x : |f_{n+v}(x) - f_n(x)| \geq \varepsilon\}) = 0$, and apparently

$$\mu(\bigcap_{n=1}^{\infty} \bigcup_{v=1}^{\infty} \{|f_{n+v} - f_n| \ge \varepsilon\}) = 0, \mu(\bigcup_{v=1}^{\infty} \{|f_{n+v} - f_n| \ge \varepsilon\}) \to 0 (n \to \infty).$$

- "\(\xi^*:\) When μ is finite, $\mu(\cup_{v=1}^{\infty}\{|f_{n+v}-f_n|\geq\varepsilon\})\to 0 (n\to\infty)$ means $\forall \phi>0 \exists N \text{ s.t. } \mu(\cup_{v=1}^{\infty}\{|f_{n+v}-f_n|\geq\varepsilon\})<\phi$ for all $n\geq N$. Then $\mu(\cap_{n=1}^{\infty}\cup_{v=1}^{\infty}\{|f_{n+v}-f_n|\geq\varepsilon\})=0$ for all $\varepsilon>0$.
- 3. Page 47,16 Let $\xi_n = 1_{A_n}$, then $\xi_n \stackrel{\mathbb{P}}{\to} 0$ if and only if $\mathbb{P}(A_n) \to 0$.

Solution: For any $\varepsilon > 0$, $\{|\xi_n| \ge \varepsilon\} = \{A_n\}$.

$$\begin{split} \xi_n &\xrightarrow{\mathbb{P}} 0 \Leftrightarrow \forall \varepsilon > 0, \mathbb{P}(|\xi_n| \geq \varepsilon) \to 0 (n \to \infty) \\ &\Leftrightarrow \forall \varepsilon > 0, \mathbb{P}(A_n) \to 0 (n \to \infty) \end{split}$$

4. Page 47,22 For any random variable sequence ξ_n , there is a positive integer sequence a_n s.t. $a_n \xi_n \xrightarrow{\mathbb{P}} 0$.

 $\underline{\text{Solution}} \colon \quad \xi_n \xrightarrow{\mathbb{P}} 0 \Leftrightarrow \forall \varepsilon, \phi > 0 \\ \exists N > 0, \\ \mathbb{P}(|\xi_n| \geq \varepsilon) < \phi, \\ \forall n \geq N$

5. Page 47,24 Prove two theorems 2.49 and 2.50.

Theorem 2.49 If $\xi_n - \xi_n' \xrightarrow{\mathbb{P}} 0$ and $\xi_n' \xrightarrow{d} \xi$, then $\xi_n \xrightarrow{d} \xi$.

Theorem 2.50 If $\xi_n \xrightarrow{d} \xi$, $\eta_n \xrightarrow{d} a(\text{const})$, then $\xi_n + \eta_n \xrightarrow{d} \xi + a$.

SOLUTION: