Calcul différentiel Sous-variétés

Question 1/12

Définition par redressement

Réponse 1/12

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n , un voisinage ouvert V de 0 dans \mathbb{R}^n et un \mathcal{C}^k -difféomorphisme $f:U\to V$ tels que $f(M \cap U) = V \cap (\mathbb{R}^d \times \{0\})$

Question 2/12

Carte pour une variété topologique

Réponse 2/12

$$(U,\varphi)$$
 avec U un ouvert de X et $\varphi\colon U\to \varphi(U)\subset \mathbb{R}^n$ un homéomorphisme

Question 3/12

Espace tangent pour une sous-variété définie par un graphe

Réponse 3/12

$$T_x M = \{(h, d\varphi_x(h)), h \in \mathbb{R}^d\}$$

Pour $M = \{(x, \varphi(x)), x \in U\}, U$ un ouvert de \mathbb{R}^d et $\varphi: U \to \mathbb{R}^{n-d}$

Question 4/12

Espace tangent pour une sous-variété définie par paramétrisation

Réponse 4/12

$$T_x M = \operatorname{im}(\mathrm{d}h_0)$$

Question 5/12

Définition par les graphes

Réponse 5/12

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n tel que $M \cap U$ soit le graphe d'une application f de classe \mathcal{C}^k d'un ouvert de $\mathbb{R}^d \cong \mathbb{R}^d \times \{0\} \text{ dans } \mathbb{R}^{n-d} \cong \{0\} \times \mathbb{R}^{n-d}$

Question 6/12

Définition par submersion

Réponse 6/12

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n et une submersion $g:U\to\mathbb{R}^{n-p}$ de classe \mathcal{C}^k tels que $M \cap U = g^{-1}(0_{\mathbb{R}^{n-p}})$ Il suffit d'avoir la surjectivité sur M car elle se conserve localement

^{1.} dg_x est surjective pour tout x

Question 7/12

 $T_x M$

Réponse 7/12

$$\{v \in \mathbb{R}^n, \exists \gamma :] - \varepsilon, \varepsilon[\to M, \gamma(0) = x \land \gamma'(0) = v \}$$
 C'est un espace vectoriel de \mathbb{R}^n de dimension $\dim(M)$

Question 8/12

Fibré tangent

Réponse 8/12

$$\{(x,v), x \in M, v \in T_x M\}$$

Question 9/12

X est une variété topologique

Réponse 9/12

X est un espace séparé tel que pour tout $x \in X$, il existe un voisinage ouvert de x homéomorphe à un ouvert de \mathbb{R}^n

Question 10/12

Atlas pour une variété topologique

Réponse 10/12

Famille
$$((U_i, \varphi_i))_{i \in I}$$
 tel que $X = \bigcup_{i \in I} (U_i)$

Question 11/12

Définition par paramétrisation

Réponse 11/12

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $h \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n , un voisinage ouvert Ω de 0 dans \mathbb{R}^p et une appication $h:\Omega\to\mathbb{R}^n$ qui soit une immersion¹ et un homéomorphisme de classe \mathcal{C}^k sur $M \cap U$

^{1.} dh_x est injective

Question 12/12

Espace tangent pour une sous-variété définie par submersion

Réponse 12/12

$$T_x M = \bigcap_{i=1} (\ker(\mathrm{d}(g_i)_x))$$

n-d