PAP

Curs 2019/20

Lab 3: Performance characteritzation of HPC clusters

Andrea Querol de Porras

Índex

1	Str	eam																						
		1.0.1	\mathbf{C})ne-	-noc	de p	erfo	rm	ar	ıce														
		1.0.2	F	eal	c me	emo	ory b	an	dv	vio	lth													
		1.0.3	N	Jun	act	l.															•	•	•	
2	Linpack																							
	2.1	One-n	od	le p	erfo	m rm	ance																	
	2.2	Two-n	od	le p	erfo	rm	ance																	
		Peak p																						
3	HPCG																							
	3.1	One-n	od	le p	erfo	m rm	ance																	
	3.2	Kerne	els .																					
	3.3	Comp	ara	ativ	a a	mb	Lin	oac	k															

1 Stream

Aquest benchmark es centra en testejar el bandwidth a memòria. Es composa de 4 funcions: Copy, Scale, Add i Triad. La funció que fa només operacions a memoria és la de copy, per tant ens serveix per a fer la línia de memòria en un *roofline* amb dades empíriques i no teòriques.

1.0.1 One-node performance

1.0.2 Peak memory bandwidth

DDR4-2400:

$$2400 \ bits/s * (64 \ bits/8 \ bits/byte) * 6 \ channels = 115.20 \ MB/s$$

DDR4-2133:

$$2133 \ bits/s * (64 \ bits/8 \ bits/byte) * 6 \ channels = 102.38 \ MB/s$$

1.0.3 Numactl

2 Linpack

2.1 One-node performance

2.2 Two-node performance

2.3 Peak performance

La peak performance teòrica de cada core del processador Intel Xeon E5-2609 v4 és de:

 $2\;units*(256/64)\;ops_per_cicle*2\;flops_per_cycle*1.7\;GHz=27.2\;GFlops$

La peak performance teòrica del node, amb 2 processadors Intel Xeon E5-2609 v4 és de:

 $2\ proc * 8\ cores/proc * 27.2\ GFlops_per_core = 435.2\ GFlops$

3 HPCG

- 3.1 One-node performance
- 3.2 Kernels
- 3.3 Comparativa amb Linpack