Winter 2018 CS 485/585 Introduction to Cryptography

LECTURE 7

Portland State University Lecturer: Fang Song Jan. 31, 2018

DRAFT NOTE. VERSION: February 4, 2018. Email fang.song@pdx.edu for comments and corrections.

Agenda

- (Last time) PRF-OTP, Message authentication;
- PRF-MAC, Domain-extension
- Review HW1/Quiz1

Logistics

• Don't copy solutions from online forums.

MAC continued

Review the issue of data integrity and the definition of a secure MAC: existentially unforgeable under chosen-message-attacks.

 Replay attacks. The security definition itself does not prevent a simple attack in practice: copy a previous message-tag pair and resend it to an honest user at a later point. Again, consider the greedy ebay seller Mr. M, what if he keeps forwarding the money transfer request?

Two common techniques for thwarting such attacks:

- 1. Sequence number (counter)
- 2. $time-stamps\ t = S_k(\mathsf{TIME}||m)$ and verify $V_k(\mathsf{TIME}||m,t) = 1$, and TIME is "recent".

Both need synchronization to some extend.

• canonical verification.

A fixed-length eu-cma-secure MAC from PRFs

Theorem 1 ([KL: Thm. 4.6]). Π is an eu-cma MAC (for messages of length n).

Let $F_k: \{0,1\}^n \to \{0,1\}^n$ be a PRF, construct MAC scheme $\Pi = (G,S,V)$ • $G(1^n)$: $k \leftarrow \{0,1\}^n$ (random key for F_k).

- S(m): $t := F_k(m)$.
- V(m,t): compute $t':=F_k(m)$ and check $t'\stackrel{?}{=}t$. (Canonical verification)

Figure 1: A fixed-length MAC from any PRF. PRF-MAC

Intuitively forging in this scheme amounts to predict the output of a PRF on a new point, which should be infeasible, especially if we think about a truly random function. Consider a variant $\tilde{\Pi}$ where we use a truly random function $f \leftarrow \mathcal{F}$. Let \mathcal{A} be any adversary trying to produce a forgery. Let q(n) be an upper bound on its number of MAC-queries. For any candidate forgery (m^*, t^*) , where m^* is a new message, $y := f(m^*)$ is sampled uniformly at random (by the "sampleon-the-fly" interpretation of a truly random function). Therefore y would differ from t^* except with probability 2^{-n} .

Lemma 2. For any
$$A$$
, $\Pr[Mac\text{-forge}_{A \tilde{\Pi}}(n)] \leq 2^{-n}$.

Then we show that switching back to a PRF, does not make the adversary's life any easier based on the security of PRF. Therefore we conclude that PRF-MAC (Fig. 1) is eu-cma.

$$\mathbf{Lemma \ 3.} \ \left| \underbrace{\Pr[\mathit{Mac-forge}_{\mathcal{A},\Pi}(n) = 1]}_{p_{\mathcal{A},\Pi}} - \underbrace{\Pr[\mathit{Mac-forge}_{\mathcal{A},\tilde{\Pi}}(n) = 1]}_{p_{\mathcal{A},\tilde{\Pi}}} \right| \leq \operatorname{negl}(n).$$

Proof. For any A, we construct a distinguisher D and show that

$$\left| p_{\mathcal{A},\Pi} - p_{\mathcal{A},\tilde{\Pi}} \right| \leq \left| \underbrace{\Pr[D^{F_k}(1^n) = 1]}_{p_{D,k}} - \underbrace{\Pr[D^f(1^n) = 1]}_{p_{D,f}} \right| \leq \operatorname{negl}(n).$$

Distinguisher D: given 1^n and oracle access $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$:

- 1. Run $\mathcal{A}(1^n)$. Whenever \mathcal{A} makes a MAC-query on m, forward mto \mathcal{O} and return $t := \mathcal{O}(m)$.
- 2. A outputs (m^*, t^*) in the end. Let $Q = \{m_i\}$ be the list of \mathcal{A} 's MAC-queries. D does the following
 - a) Query \mathcal{O} with m^* and obtain $\hat{t} := \mathcal{O}(m^*)$.
 - b) Output 1 iff. both $\hat{t} = t$ and $m^* \notin Q$ hold.

Observe that

- if \mathcal{O} is truly random: then \mathcal{A} sees exactly as in the forgery game $\mathsf{Mac}\text{-}\mathsf{forge}_{\mathcal{A},\tilde{\Pi}}(n)$. Therefore D outputs 1 iff. \mathcal{A} produces a valid forgery (i.e. succeeds in $\mathsf{Mac}\text{-}\mathsf{forge}(n)$). We have $p_{D,f} = p_{\mathcal{A},\tilde{\Pi}}$.
- similarly, if $\mathcal{O} = F_k$ is pseudorandom, we see that $p_{D,k} = p_{\mathcal{A},\Pi}$. Thus $|p_{\mathcal{A},\Pi} - p_{\mathcal{A},\tilde{\Pi}}| = |p_{D,k} - p_{D,f}| \le \text{negl}(n)$.

MAC: domain-extension

In practice, our block ciphers work on a data block of small length, e.g. 128-bit, how do we MAC long messages? We will discuss two general approaches:

- 1. Hash-and-MAC paradigm. Apply a hash function to "compress" the input string to a shorter one that fits your MAC. $^{\rm 1}$
- 2. Direct approach: domain extension. (Below)

Given MAC on short inputs, construct a MAC on long inputs.

Natural ideas (that often fail).

- 1. block-by-block? reordering attack
- 2. including block index? $t_i := S(i||m[i])$ truncation attack ²
- 3. including message length in each block? $t_i = S(\ell || i || m[i])$.

 mix- \mathcal{C} -match attack. Consider

$$m = m[1]||m[2], t = t_1, t_2;$$

 $m' = m'[1]||m'[2], t' = t'_1, t'_2.$

Then $t_1||t_2'|$ is a valid tag for m[1]||m'[2]|.

4. additional random identifier. $S'(m[i]) := S(r||\ell||i||m[i])$. This works, but very inefficient! We will not discuss further about it. Read [KL: Thm 4.8] for details.

Domain extension for PRFs. We ask a slightly different question:

Given PRF on short inputs, construct a PRF on long inputs. i.e., given
$$F: X \to Y$$
 how to get $F': X^{\leq \ell} \to Y'$, for $\ell \geq 1$? (assume $X = Y = Y' = \{0, 1\}^n$)

If this is possible, then we will just use the PRF on longer messages to achieve message authentication on long messages. We show this is indeed possible.

¹ NEXT LECTURE

² message length is not included in the tag; how about authenticating message length in last block? it doesn't help.

Cascade and encrypted cascade (NMAC)

Cascade construction.

$$t_1 = F_k(m[1]), t_i = F_{t_{i-1}}(m[i]),$$
 and only output t_d .

It is a secure PRF if the input length is fixed. Unfortunately, you can break cascade by $extension\ attacks.$

Reading material. The extension attack can be cast into an distinguisher that tells apart cascade from truly random, since knowing $\mathsf{CASCADE}_F(x), \mathsf{CASCADE}_F(x||x')$, i.e., input strings that share x as their prefix, becomes predictable. The issue is that two messages could share the same prefix. If we exclude such attacks, cascade does becomes secure.

Definition 4 (Prefix-free set & algorithm). A set of strings $P \subseteq (\{0,1\}^n)^*$ is *prefix-free* if it does not contain the empty string (i.e. $\epsilon \notin P$), and no string $x \in P$ is a prefix of any other string $x' \in P$. We call algorithm D with oracle access to f prefix-free if D only queries on a prefix-free set.

Theorem 5. If F is a PRF, then $\mathsf{CASCADE}_F$ is a PRF against any prefix-free PPT distinguisher D.

In particular if we fixed the message length to be $\{0,1\}^{n\cdot\ell}$ for any ℓ , then the prefix-free constraint is trivally true because no string can be a prefix of another string of the same length. As an immediate consequence, we have

Corollary 6. If F is a PRF, then $\mathsf{CASCADE}_{F,\ell}$ is a eu-cma MACs for messages of length $\{0,1\}^{n\cdot\ell}$ for any fixed $\ell \geq 1$.

To obtain a fully secure PRF, a natural idea would be to introduce an encoding mechanism that ensures prefix-freeness (prefix-free encoding). Some examples⁴

- prepending message-length. Not practical since it's not suitable for data streams.
- stop bits. m[1]||0, m[2]||0, ..., m[d]||1. Inefficient.
- randomized encoding. NIST standard: CMAC. CBC with randomized prefix-free encoding.

Encrypted Cascade a.k.a **NMAC** (Nested MAC). A variant of it (using a hash function instead of a PRF in the cascade construction) called HMAC is widely used in the Internet (rfc2104).

$$\mathsf{ECAS}_{k_1,k_2}(\cdot) := F_{k_2}(\mathsf{CASCADE}_{F_{k_1}}(\cdot))$$
.

Draw Cascade

³ knowing $m, t = \mathsf{CASCADE}_F(m)$, can compute $\mathsf{CASCADE}_F(m||m')$ on any m'. [KL: Exercise 4.13]

 $^{^4}$ Read more on Boneh-Shoup Sect. 6.6.

Theorem 7. NMAC ECAS_{k_1,k_2} is a PRF.

 $\mathit{CBC\text{-}MAC}.$ Read CBC-MAC and do HW problem. Come back in a future lecture.

Draw NMAC diagram. Formal proofs are beyond the scope of this course. Read Boneh-Shoup Chapter 7 if interested. Note that both are **streaming** MACs, since we do not need to know the message length ahead of time.