Project

인공지능 관련 논문 3편 읽고, 소개/ 핵심 알고리즘/ 결과/ 본인 생각 쓰기 (편당 .5p)

16. Jaderberg, Max, et al. "Population based training of neural networks." arXiv preprint arXiv:1711.09846 (2017).

소개

주요한 hyperparameter optimization method은 parallel search와 sequential optimization으로 나눌 수 있으며, 이 두 방법론을 bridge하는 genetic algorithm 기반 population based training(PBT)를 제안함

핵심 알고리즘

- 1 랜덤 hyperparameter set과 weight으로 학습시키고자 하는 모델을 threshold까지 학습시킨다
- 2 Exploit
 - 2-1. Binary Tournament, 랜덤 모델보다 안좋으면 교체
- **2-2.** Truncation selection, 학습한 모델 성능이 모든 모델 중 하위 **20%**면, 상위 **20%** 중 랜덤하게 뽑아서 교체
- 3 Explore

only for Exploit-ed models

- 3-1. Perturb, 특정 factor multiplication
- 3-2. Resample, 리샘플링

학습 끝날 때까지 위를 반복

결과

RL > 성능 향상, MT > 비슷비슷, GAN > 성능 향상

소감

hyperparameter 최적화라는, 어찌보면 엄밀한 연구의 범위라기엔 애매할 수 있는 부분에 대해 다룬 내용이라 좋았다. 체계적으로 삽질한다는 것이 무엇일까에 대하여 생각해보게 만드는 페이퍼다.

19.Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." arXiv preprint arXiv:1803.05407 (2018).

소개

Stochastic Weights Averaging(SWA)은 Stochastic Gradient Descent(SGD)보다 robust하며, generalization에 강하고 테스트 성능이 뛰어나다. SWA는 SGD를 이용해 최적화 중 일정한주기마다 weight average를 진행하여 가중치를 업데이트하는 방법이다. 여러 주기마다가중치를 업데이트하는 것은 local solution에 대한 ensemble이라고 이해할 수 있다.

핵심 알고리즘

```
Algorithm 1 Stochastic Weight Averaging
Require:
   weights \hat{w}, LR bounds \alpha_1, \alpha_2,
   cycle length c (for constant learning rate c=1), num-
   ber of iterations n
Ensure: w_{SWA}
   w \leftarrow \hat{w} {Initialize weights with \hat{w}}
   w_{\text{SWA}} \leftarrow w
   for i \leftarrow 1, 2, \ldots, n do
       \alpha \leftarrow \alpha(i) {Calculate LR for the iteration}
       w \leftarrow w - \alpha \nabla \mathcal{L}_i(w) {Stochastic gradient update}
      if mod(i, c) = 0 then
          n_{\text{models}} \leftarrow i/c \{ \text{Number of models} \}
          w_{\text{SWA}} \leftarrow \frac{w_{\text{SWA}} \cdot \hat{n}_{\text{models}} + w}{n_{\text{models}} + 1} \text{ {Update average}}
      end if
   end for
   {Compute BatchNorm statistics for w_{SWA} weights}
```

결과 CIFAR-100, CIFAR-10 적용, SGD보다 항상 좋은 성능, FGE 대비 가성비 좋음 (연산량 적음)

			SWA				
DNN (Budget)	SGD	FGE (1 Budget)	1 Budget	1.25 Budgets	1.5 Budgets		
		CIFAR-100					
VGG-16 (200)	72.55 ± 0.10	74.26	73.91 ± 0.12	74.17 ± 0.15	74.27 ± 0.25		
ResNet-164 (150)	78.49 ± 0.36	79.84	79.77 ± 0.17	80.18 ± 0.23	80.35 ± 0.16		
WRN-28-10 (200)	80.82 ± 0.23	82.27	81.46 ± 0.23	81.91 ± 0.27	82.15 ± 0.27		
PyramidNet-272 (300)	83.41 ± 0.21	_	_	83.93 ± 0.18	84.16 ± 0.15		
CIFAR-10							
VGG-16 (200)	93.25 ± 0.16	93.52	93.59 ± 0.16	93.70 ± 0.22	93.64 ± 0.18		
ResNet-164 (150)	95.28 ± 0.10	95.45	95.56 ± 0.11	95.77 ± 0.04	95.83 ± 0.03		
WRN-28-10 (200)	96.18 ± 0.11	96.36	96.45 ± 0.11	96.64 ± 0.08	96.79 ± 0.05		
ShakeShake-2x64d (1800)	96.93 ± 0.10	-	-	97.16 ± 0.10	97.12 ± 0.06		

Prediction에 대한 ensemble이 아니라 weight에 대한 ensemble이라는 관점의 전환. 게다가, 100% 알아먹진 못했지만 prediction ensemble만큼 weight ensemble이 좋다는 증명까지. 좋은 페이퍼다!

53.Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

소개

Few shot learning. 사람이라면 (거의) 누구나 할 수 있는, 몇 개의 예시만 보고 규칙을 학습하여 적용할 수 있게 되는 것. 역대급 패러미터 스케일로 무장하여 돌아온 OpenAl의 GPT-3의 few shot learner로서의 가능성을 탐구, 확인.

핵심 알고리즘 few-shot, one-shot, zero-shot learning 세가지 방식으로 학습한 뒤 task performance 측정.

Model Name	$n_{ m params}$	n_{layers}	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

결과 문장완성 태스크

Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
SOTA	68.0^{a}	8.63^{b}	91.8 ^c	85.6^{d}
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
GPT-3 One-Shot	72.5	3.35	84.7	78.1
GPT-3 Few-Shot	86.4	1.92	87.7	79.3

번역 태스크

Setting	$En{ ightarrow}Fr$	$Fr \rightarrow En$	En \rightarrow De	$De{ ightarrow}En$	$En{ ightarrow}Ro$	$Ro{\rightarrow}En$
SOTA (Supervised)	45.6 ^a	35.0 ^b	41.2°	40.2^{d}	38.5 ^e	39.9 ^e
XLM [LC19] MASS [STQ+19] mBART [LGG+20]	33.4 <u>37.5</u>	33.3 34.9	26.4 28.3 29.8	34.3 35.2 34.0	33.3 35.2 35.0	31.8 33.1 30.5
GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	25.2 28.3 32.6	21.2 33.7 <u>39.2</u>	24.6 26.2 29.7	27.2 30.4 40.6	14.1 20.6 21.0	19.9 38.6 <u>39.5</u>

소감

논문이 너무 길어서 블로그 리뷰를 통해 나머지 내용들을 확인해 보았다. 결론적으로 소감을 말하자면, 논문이 이야기하는 바와 유사하게, GPT-3과 같이 어마어마한 데이터를 사전 학습시키는 것이 어디까지 가능할 지에 대해 생각해볼 필요는 있어 보인다. 학습 효율을 비약적으로 높인다면 얼마나 좋을까? 우리가 이 이상으로 많은 데이터를 얻지 못하게 된다면 인공지능의 발전도 멈춰야 할 것인가? 하는 문제와도 맞닿은 주제라고 본다.

재밌어 보여서 나중에 읽어볼 논문들

45. Sheng, Emily, et al. "The woman worked as a babysitter: On biases in language generation." arXiv preprint arXiv:1909.01326 (2019).

53.Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

42.Lim, Sungbin, et al. "Fast autoaugment." Advances in Neural Information Processing Systems. 2019.