

Napredni algoritmi i strukture podataka

Tjedan 1: Napredne strukture podataka

Creative Commons

- dijeliti umnožavati, distribuirati i javnosti priopćavati djelo
- prerađivati djelo

- pod sljedećim uvjetima:
 - imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
 - nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
 - dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Binarna stabla (1)

- Stabla su usmjereni aciklički grafovi
- Binarna stabla su specifična svaki čvor može imati najviše dva djeteta
 - Binarno stablo se može opisati uređenom trojkom

$$B = (L, S, R)$$

- gdje je L lijevo podstablo, S je korijen binarnog stabla B, a R je desno podstablo
- Rekurzivna definicija

Binarna stabla (2)

- Za opis odnosa između čvorova binarnog stabla koristimo rodoslovne izraze
 - Roditelj, dijete, blizanci
 - Mogu se koristiti izrazi kao : pradjed (roditelj roditelja), ujak (blizanac roditelja)
- Savršeno binarno stablo (perfect)
 - Binarno stablo kojem su sve razine do kraja popunjene čvorovima

Binarna stabla (3)

- Svojstva savršenog binarnog stabla
 - Broj čvorova $n = 2^h 1$
 - Broj listova $l = 2^{h-1}$
 - Broj unutarnjih čvorova $i = 2^{h-1} 1$
 - Visina $h = log_2(n+1) = log_2 2^h$

- Kompletno binarno stablo (*complete*) Binarno stablo koje ima sve razine, osim najdonje, potpuno popunjene čvorovima. U najdonjoj razini listovi se popunjavaju s lijeve strane.
 - Broj čvorova $n \leq 2^h 1$
 - Broj listova $l \leq 2^{h-1}$
 - Broj unutarnjih čvorova $i \le 2^{h-1} 1$

Binarna stabla (4)

 Visina kompletnog binarnog stabla – direktno vezano uz kompleksnost pretraživanja

$$h = \lceil log_2(n+1) \rceil$$

Vrijedi i

$$n = i + l \le 2^h - 1$$

- Puno binarno stablo (*full*) Binarno stablo čiji unutarnji čvorovi imaju točno dva djeteta.
- Organizacija **sortiranog** binarnog stabla B = (L, S, R)
 - Bez duplikata v(S(L)) < v(S) < v(S(R))
 - Sa duplikatima

$$v(S(L)) \le v(S) < v(S(R))$$

 $v(S(L)) < v(S) \le v(S(R))$

Operacije nad binarnim stablom (1)

- Ponovimo dodavanje vrijednosti u binarno stablo
 - Dodavanju prethodi pretraživanje
 - Nailaskom na slobodno mjesto, dodajemo novi čvor prema organizaciji binarnog stabla:
 - Lijevo ako je manji
 - Desno ako je veći

Brisanje čvorova (1)

- Prvo pronađemo čvor koji brišemo
- Tri slučaja:
 - 1. Čvor koji se briše je list
 - 2. Čvor koji se briše ima jedno dijete
 - 3. Čvor koji se briše ima oba djeteta
- 1. Čvor koji se briše je list samo obrišemo čvor

Brisanje čvorova (2)

2. Čvor ima jedno dijete – To dijete postaje novo dijete roditelja čvora koji se briše

Brisanje čvorova (3)

- 3. Čvor ima dva djeteta opcije
 - Brisanje sjedinjenjem (delete by merging) znatno mijenja strukturu
 - Brisanje kopiranjem (delete by copy) struktura se minimalno mijenja
- Brisanje sjedinjenjem
 - Naći čvor koji se briše i njegovog roditelja (ako se ne briše korijenski čvor)
 - Utvrdimo na kojoj strani je čvor koji se briše u odnosu na svojeg roditelja
 - Ako je korijenski čvor u pitanju, onda je svejedno koje podstablo uzimamo za podstablo sjedinjenja (*merging subtree*)
 - Inače imamo dvije opcije:
 - Ako je čvor koji se briše u lijevom podstablu roditelja, tada je postablo sjedinjenja njegovo desno podstablo
 - Ako je čvor koji se briše u desnom podstablu roditelja, tada je postablo sjedinjenja njegovo lijevo podstablo

Brisanje čvorova (4)

- Brisanje čvora A sjedinjenjem
 - Čvor blizanac korijenskom čvoru podstabla sjedinjenja spajamo na
 - Čvor sljedbenik ako je podstablo sjedinjenja bilo desno podstablo čvora A
 - Čvor **prethodnik** ako je podstablo sjedinjenja bilo lijevo podstablo čvora A
 - Korijen podstabla sjedinjenja spajame s roditeljem čvora koji se obrisao
 - Osim u slučaju kada se briše korijenski čvor

Brisanje čvorova (5)

• Brisanje sjedinjenjem

Brisanje čvorova (6)

- Brisanje kopiranjem
 - Svodi se na brisanje čvora bez djece ili s jednim djetetom
 - Pronađe se zamjenski čvor koji se obriše minimalno se mijenja struktura binarnog stabla
 - 1. Pronađemo čvor A koji brišemo
 - 2. Pronađemo čvor X koji sadrži direktnog prethodnika ili sljedbenika zamjenski čvor
 - Prethodnik je najdesniji čvor u lijevom podstablu A
 - Sljedbenik je najljeviji čvor u desnom podstablu A
 - 3. Prekopiramo vrijednost zamjenskog čvora X u čvor A koji se briše
 - 4. Zamjenski čvor X se ukloni

Brisanje čvorova (7)

Uravnoteženo binarno stablo (1)

Zašto nam je uravnoteženo binarno stablo zanimljivo?

• Želimo postići složenost pretraživanja od $O(log_2 n)$

- Druga krajnost degenerirano (koso) binarno stablo (degenerate) – primjer desno
 - Složenost je O(n)

Uravnoteženo binarno stablo (2)

- Za binarno stablo B=(L,S,R) definicija uravnoteženog stabla je $\forall S \ |h(L)-h(R)| \leq 1$
 - Razlika visina lijevog i desnog podstabla svakog čvora smije biti najviše 1

- Savršeno uravnoteženo binarno stablo (perfectly balanced) – uravnoteženo i kompletno
 - Sve razine osim zadnje su posve popunjene čvorovima

Stvaranje binarnog stabla (1)

(iz sortiranog polja vrijednosti)

- Na raspolaganju imamo sortirano polje (*array*) vrijednosti $V_S = \langle 1, 3, 7, 9, 11, 14, 15, 21, 24 \rangle$
- 1. Pronađemo pozicijski srednju vrijednost ν u polju
- 2. Stvorimo korijenski čvor vrijednosti v trenutnog binarnog stabla
- 3. Za podpolje lijevo od vse rekurzivno stvara lijevo podstablo
- 4. Za podpolje desno od vse rekurzivno stvara desno podstablo
- 5. Ponavljamo dok možemo stvoriti lijevo ili desno podstablo

```
function CreateBalancedTree(V_s)

n \leftarrow |S|

if n > 0 then

i \leftarrow (n \div 2) + (n \% 2)

root \leftarrow create node having value V_s[i-1]

leftChild(root) \leftarrow CreateBalancedTree(V_s[0,i-1])

rightChild(root) \leftarrow CreateBalancedTree(V_s[i,n])

return root

else

return nil
```


Stvaranje binarnog stabla (2)

(iz sortiranog polja vrijednosti)

- Ovaj algoritam ima kompleksnost $O(n \log_2 n + n)$
 - Sortiranje polja + prolaz po svim elementima polja
- Algoritam se može upotrijebiti samo u specijalnim situacijama
 - Kada imamo polje vrijednosti i od njega želimo stvoriti uravnoteženo binarno stablo
 - Koristi se relativno često, konkretni primjeri će biti kasnije u predavanjima

Ovako stvoreno binarno stablo je uravnoteženo

Rotacije u stablu (1) - desna

- Za uravnotežavanje stabala trebamo dvije operacije (rotacije) nad binarnim stablima (analogija koloture)
- Desna rotacija C oko B
 - Kako rotirati stablo da C bude između A i B, a da se sačuva poredak $v(A_L) < v(A) < v(C_L) < v(C) < v(C_R) < v(B) < v(B_R)$

Rotacije u stablu (2) - desna

Još jedna desna rotacija C oko B

- Desno dijete od C postaje lijevo dijete od B
- B postaje desno dijete od C
- C postaje dijete od bivšeg roditelja čvora B (ako postoji)

Rotacije u stablu (3) - lijeva

- Lijeva rotacija C oko B
 - Kako rotirati stablo da C bude između A i B, a da se sačuva poredak $v(B_L) < v(B) < v(C_L) < v(C) < v(C_R) < v(A) < v(A_R)$

Rotacije u stablu (4) - lijeva

Još jedna lijeva rotacija C oko B

- Lijevo dijete od C postaje desno dijete od B
- B postaje lijevo dijete od C
- C postaje dijete od bivšeg roditelja čvora B (ako postoji)

Day-Stout-Warren algoritam (DSW)

- Dvije faze algoritma
 - 1. Izrada kralježnice (koso stablo)

2. Rekurzivno lomljenje kralježnice nazad u kompletno stablo

DSW – izrada kralježnice

```
procedure RIGHTBACKBONE(root)
    B \leftarrow root
    A \leftarrow nil
    while B \neq nil do
        C \leftarrow leftChild(B)
        if C \neq nil then
            RIGHTROTATE(A, B)
            if A = nil then
                root \leftarrow C
            B \leftarrow C
        else
          Descending right to the first node that has the left child
            A \leftarrow B
            B \leftarrow rightChild(B)
```

- Prvi korak je stvaranje kralježnice od binarnog stabla – npr. desna kralježnica
- Lijevu djecu čvorova rotiramo desno

 Ponavljamo desne rotacije dok nema lijeve djece

DSW – izrada kralježnice

Primjer

DSW - lomljenje

 Strateški pozicionirane lijeve rotacije za savršeno uravnoteženo binarno stablo

```
procedure DSW(tree, n)
h \leftarrow \lceil \log_2(n+1) \rceil
i \leftarrow 2^{h-1} - 1
perform n-i rotations of every second node from the root while i > 1 do
i \leftarrow \lfloor i/2 \rfloor
perform i rotations of every second node from the root
```

- h visina binarnog stabla za n čvorova
- i broj unutarnjih čvorova
- Za desnu kralježnicu radimo lijeve rotacije kako bismo čvorove vratili u strukturu binarnog stabla

DSW – lomljenje, primjer

 $\lfloor i/2 \rfloor = \lfloor 3/2 \rfloor = 1$ lijevih rotacija za interne čvorove

dobije se savršeno binarno stablo

DSW – lomljenje, primjer

- Primjer
 - n = 10
 - To je h = 4 razine
 - Ukupni broj internih čvorova je i = 7
 - Čvorova u najdonjoj razini je 10-7=3 prvo radimo 3 lijeve rotacije svakog drugog čvora desne kralježnice, počevši od korijenskog čvora
 - Zatim radimo [7/2] = 3 lijeve rotacije svakog drugog čvora ostatka desne kralježnice, počevši od korijenskog čvora, što nam daje najdonju razinu internih čvorova
 - Zatim radimo [3/2] = 1 lijeve rotacije svakog drugog čvora ostatka desne kralježnice, počevši od korijenskog čvora, što nam daje najdonju razinu internih čvorova

DSW – lomljenje, primjer

- Ovo je globalno uravnoteživanje binarnog stabla
 - Strukturu stabla prvo uništimo da bismo ga uravnotežili
 - Složenost DSW algoritma je O(n)

Adelson-Velski-Landis binarno stablo (AVL)

Prethodni primjeri su offline uravnotežavanje

- Online uravnotežavanje dodavanje novih vrijednosti
 - Provjeriti da li je binarno stablo uravnoteženo?
 - Ako nije, uravnotežiti to stablo s minimalnim zahvatom u njegovu strukturu

To se zove lokalno uravnoteživanje

AVL (2)

- Dodavanjem novog lista možemo se kretati po putanji do korijenskog čvora, te provjeravati uravnoteženost u svakom čvoru
- Za binarno stablo B = (L, S, R) definiramo faktor ravnoteže (*balance factor*) kao

$$BF(S) = h(R) - h(L)$$

• Za sve čvorove koji imaju $-1 \le BF(S) \le 1$ smatramo da je njihovo podstablo uravnoteženo

AVL (3)

- Nakon dodavanja ažuriramo faktore ravnoteže na vertikalnoj putanji. Ako postoji čvor S sa BF(S) = -2 ili BF(S) = 2, potrebno je lokalno uravnotežavanje
- Dva slučaja čvor i njegovo dijete (ovisno o predznaku čvora):
 - Izravnati slučaj, identični predznaci BF:
 - Faktor ravnoteže čvora je +2 i desno dijete ima faktor ravnoteže 0 ili +1 desni izravnati slučaj
 - Faktor ravnoteže čvora je -2 i lijevo dijete ima faktor ravnoteže 0 ili -1 lijevi izravnati slučaj
 - Izlomljeni slučaj, strogo suprotni predznaci BF:
 - Faktor ravnoteže čvora je +2 i desno dijete ima faktor ravnoteže -1 desni izlomljeni slučaj
 - Faktor ravnoteže čvora je -2 i lijevo dijete ima faktor ravnoteže +1 lijevi izlomljeni slučaj

AVL (4)

Desni izravnati slučaj: +2 i desno dijete 0 ili +1

- Novu vrijednost dodajemo u desno podstablo čvora Q
- Radi se lijeva rotacija Q oko P
- Lijevi izravnati slučaj: -2 i lijevo dijete 0 ili -1

Radi se desna rotacija Q oko P

AVL (5)

Desni izlomljeni slučaj: +2 i desno dijete -1

- Prvo desna rotacija R oko Q
- Zatim lijeva rotacija R oko P

AVL (6)

Lijevi izlomljeni slučaj: -2 i lijevo dijete +1

- Prvo lijeva rotacija R oko Q
- Zatim desna rotacija R oko P

AVL (7)

- Brisanje vrijednosti uvijek brisanje kopiranjem
 - Kod takvog brisanja jednom od podstabala se može smanjiti visina

- Vidimo da je brisanje čvora u lijevom podstablu čvora P uzrokovalo disbalans
- To je desni izravnati slučaj

AVL (8)

```
function AVLDETECTROTATE(n)
   if balanceFactor(n) is +2 then
       n_1 \leftarrow rightChild(n)
       if balanceFactor(n_1) is 0 or +1 then
          left rotate n_1 around n
       if balanceFactor(n_1) is -1 then
           n_2 \leftarrow leftChild(n_1)
          right rotate n_2 around n_1
          left rotate n_2 around n
   else
       n_1 \leftarrow leftChild(n)
       if balanceFactor(n_1) is 0 or -1 then
          right rotate n_1 around n
       if balanceFactor(n_1) is +1 then
          n_2 \leftarrow rightChild(n_1)
          left rotate n_2 around n_1
          right rotate n_2 around n
procedure AVLBALANCE(n)
   p \leftarrow parent(n)
   if balanceFactor(n) is -2 or +2 then
       AVLDetectRotate(n)
   if p is not nil then
       AVLBALANCE(p)
```

- Složenost pretraživanja je kao i kod klasičnog binarnog stabla O(log₂n)
- Kod upisa ili brisanja vrijednosti, vraćamo se po vertikalnoj putanji natrag to korijenskog čvora što daje kompleksnost O(2log₂n)
- Teoretska visina AVL stabla je $log_2(n+1) \le h \le 1.44 log_2(n+2) 0.328$
 - Dokaz u Drozdeku

Pitanja?

