### ANALYSIS OF IMAGES SOCIAL NETWORKS AND TEXTS

# **Bigram Anchor Words Topic Model**

Ashuha Arseniy, Loukachevitch Natalia

Moscow Institute of Physics and Technology Research Computing Center of Lomonosov Moscow State University

ars.ashuha@gmail.com louk\_nat@mail.ru

April 29, 2016

#### Motivation

- Nowadays we have a lot of data, but usually it is unlabled
- ▶ We wont to extract structure from document collection **unsupervised**

# Haw can we get this goal?

- ▶ Topic modeling is a powerful tool for document collection analysis
- Unformally, topic is a semantically related set of words sample: geom rna fast dna sequence alignment nucleotides

## More formal

- ▶ Topic is a discrete distribution over words p(w|t) = p(word|topic)
- ▶ Document is a discrete distribution over topics p(t|d) = p(topic|doc)
- ▶ We want to find p(w|t), p(t|d) given p(word|doc)
- Usually we solve this problem as a matrix decomposition

# Topic modeling

#### **Topics**

| gene    | 0.04 |
|---------|------|
| dna     | 0.02 |
| genetic | 0.01 |
| ***     |      |
|         |      |

```
life
          0.02
evolve
         0.01
organism 0.01
```

| brain  | 0.04 |
|--------|------|
| neuron | 0.02 |
| nerve  | 0.01 |
|        |      |



#### **Documents**

#### Topic proportions and assignments



## Probabilistic model

$$p(word|doc) = \sum_{topic} p(word|topic)p(topic|doc)$$

- The order of words in document is not matter (bag of words)
- ▶ Topic is not depends on doc (p(word|doc, topic) = p(word|topic))

Represent it as matrix decomposition and solve this problem by MLE



## Regularization

- ▶ LDA topics and documents generated from Dirichlet distribution
- ▶ BigARTM generalize LDA, many regularizes

- + Good matrix approximation
- + A lot of implementations
- + There exist modification to take into account bigrams
- Solution is really depends on initial approximation
- Poor model of documents
- Difficult to parallelize
- Computational difficult
- Control coefficient of regularizations is really hard task

Let's assume for each topic T there exist word w that  $p(w|t) \neq 0$  if t = T



Therefore F is a just a linear composition constructed  $\Theta$  rows, anchor rows.

- 1. How can we found rows in F which corresponds to anchor words?
- 2. How can we reconstruct topic model  $(\Phi, \Theta)$  given anchor words?

- ▶ Matrix F too noisy, let's use FF<sup>t</sup>
- ightharpoonup Size of  $FF^t$  is Words imes Words therefor reduce dimension

$$FF_{words \times words}^t = H_{words \times k}$$

▶ Find almost convex hull in rows of H matrix  $\{H_{anchor_1}, ..., H_{anchor_n}\}$ 



ightharpoonup Solve **undependent** convex optimization problems: find  $c_i$  for each t

$$H_t pprox \sum_{i=1,...,T} c_{ti} H_{anchor_i}, \quad c_{it} \geq 0, \quad \sum_i c_{it} = 1, c_i = p(topic|word)$$

• Use Bayes rule to reconstruct  $\Phi = (p(word|topic))_{W \times T}$ 

- + No initial approximation
- Very well parallelize out of box
- Need to tune parameters
- Can't take into account bigrams
- Worst matrix decomposition

Our goal was propose modification witch can take into account bigrams.

# Why it is important?

- adding new information about word order in model
- better and lighter interpretability
- simple solution does not work

## There is one simple way:

- 1. precomputed bigrams
- 2. we assume that vector for bigram  $w_i w_j = H_{w_i} + H_{w_j}$
- 3. add vectors corresponds bigrams to set of points H (finding anchors)



- 4. Find anchor words
- 5. Recover topic mode
- 6. Make some PLSA steps

Bigrams can be anchor words

Interpretations good latent space in matrix H

#### **Evaluation**

#### Old anchors

- loss
- cluster
- mixtur
- synaps
- theorem
- speech
- entropi
- filter
- competit
- gain
- markov
- ▶ identif
- algorithm

## Our anchors

- mixtur
- boltzmann\_machin
- likelihood
- markov\_chain
- action
- vector\_quantiz
- network
- robot\_arm
- loss
- tangent\_distanc
- classifi
- reinforc\_learn
- speech

#### Metrics

### Metrics:

- **Perplexity** is a mean  $exp(-mean\ likelihood)$
- ▶ **Coherence** is a mean Pointwise Mutual Information
- ▶ **Unique of kernels** is a mean Jaccard distance between most probable words in topic

| Collection | Banks Articles |      |      | 20 Newsgroups |      |      | NIPS       |      |      |
|------------|----------------|------|------|---------------|------|------|------------|------|------|
| Metric     | $P_{test}$     | PMI  | U    | $P_{test}$    | PMI  | U    | $P_{test}$ | PMI  | U    |
| PL         | 2116           | 0.60 | 0.40 | 2155          | 0.31 | 0.40 | 1635       | 0.21 | 0.32 |
| AW         | 2330           | 0.63 | 0.53 | 2268          | 0.38 | 0.41 | 1505       | 0.41 | 0.38 |
| BiAW       | 2248           | 0.79 | 0.60 | 2183          | 0.68 | 0.54 | 1500       | 0.50 | 0.41 |
| AW+PL      | 2052           | 0.78 | 0.58 | 2053          | 0.54 | 0.55 | 1434       | 0.52 | 0.46 |
| BiAW+PL    | 1848           | 0.87 | 0.63 | 2027          | 0.78 | 0.64 | 1413       | 0.58 | 0.49 |

- Arora, S., Ge, R., Moitra, A.: Learning topic models going beyond svd. In: Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, IEEE (2012) 1–10
- Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Wu, Y., Zhu, M.: A practical algorithm for topic modeling with provable guarantees. arXiv preprint arXiv:1212.4777 (2012)
- B, Dobrov, N, Loukachevitch: Forming the base of terminological phrases in the texts of the subject area (2003) 201–210