Matematica per le scuole superiori

basics

CONTENTS

I	Introduzione	3
1	Esempi di programmi 1.1 Prefazione	5 5
II	Algebra	9
2	Introduzione all'algebra	13
3	Algebra sui numeri reali 3.1 Algebra lineare	15
4	Algebra vettoriale4.1Prime definizioni4.2Spazio vettoriale euclideo	17 17 19
5	Algebra complessa 5.1 Definizione 5.2 Rappresentazione nel piano complesso 5.3 Operazioni con i numeri complessi	23 23 24 24
II	Geometria analitica	25
6	Introduzione alla geometria analitica 6.1 Spazio euclideo	29 30
7	Geometria analitica nel piano 7.1 Sistemi di coordinate 7.2 Distanze e angoli 7.3 Curve nel piano 7.4 Rette nel piano 7.5 Coniche	33 33 34 35 36 39
8	Geometria analitica nello spazio 8.1 Sistemi di coordinate per lo spazio euclideo E^3 8.2 Piani nello spazio 8.3 Curve nello spazio 8.4 Rette nello spazio 8.5 Cono circolare retto e coniche	47 47 48 50 50 51

IV	V Precalcolo	53
9	Introduzione al pre-calcolo	57
10	Funzioni reali a variabile reale, $f:\mathbb{R} \to \mathbb{R}$	59
11	Polinomi	61
	11.1 Teorema binomiale	61
12	Serie e successioni	63
	12.1 Serie numeriche reali	63 65
13	Trigonometria	67
	13.1 Definizione delle funzioni trigonometriche e relazione fondamentale	67
	13.2 Angoli particolari e proprietà	68
	13.3 Formule di somma e sottrazione	68
	13.4 Werner	70 70
	13.3 Prostatetest	70
14	Esponenziale e logaritmo	71
	14.1 Definizioni e proprietà	71
	14.2 Funzione esponenziale e logaritmo	71
	14.3 e di Nepero, e^x e logaritmo naturale	71
	14.4 Esponenziale e logaritmo - dimostrazioni	72
15	Funzioni multi-variabile	73
V	Calcolo	75
16	Introduzione al calcolo	79
17	Calcolo infinitesimale	81
1,	17.1 Introduzione all'analisi	82
	17.2 Derivate	85
	17.3 Integrali	91
	17.4 Equazioni differenziali ordinarie	96
18	Introduzione al calcolo multi-variabile	99
	18.1 Limite di una funzione di più variabili	99
	18.2 Derivate di funzioni di più variabili	99
	18.3 Integrali su domini multi-dimensionali	101
19	Introduzione al calcolo vettoriale su spazi euclidei	103
	19.1 Operatori differenziali in spazi euclidei	103
	19.2 Integrali in spazi euclidei	106
V	I Statistica	107
	Introduzione alla statistica	111
- 0		

Questo libro fa parte del materiale pensato per le scuole superiori. E' disponibile la versione in .pdf scaricabile.

Obiettivi. todo

Contenuti.

Algebra

Numeri reali

Numeri complessi

Vettori

Geometria analitica

Geometrica analitica nel piano ${\cal E}^2$

Geometrica analitica nello spazio E^3

Pre-calcolo

Serie e successioni

Funzioni notevoli

- Funzioni trigonometriche
- Esponenziale e logaritmo
- Funzioni iperboliche

Calcolo

Reale, $f:D\subset\mathbb{R}\to\mathbb{R}$

- Limiti
- Derivate
- Integrali
- Equazioni differenziali

Reale multi-variabile, \$\$

Vettoriale in spazi euclidei, $f:D\subset E^n\to V$

Statistica

CONTENTS 1

2 CONTENTS

Part I

Introduzione

CHAPTER

ONE

ESEMPI DI PROGRAMMI

Esempi.

1.1 Prefazione

La presentazione degli argomenti cerca di seguire lo sviluppo storico degli argomenti, provando a cucire un filo tra poche ma fondamentali pubblicazioni.

In particolare, le parti sulla geometria analitica, il precalcolo e il calcolo vanno intese come conseguenti sia dal punto di vista logico sia dal punto di vista storico/cronologico:

- geometria analtica, Cartesio e la Geometeria, come introduzione al Discorso sul Metodo
- precalcolo, Eulero e l'Introductio
- calcolo, come inizialmente formulato da Newton e Leibniz e formalizzato nel secolo successivo

1.2 Indicazioni nazionali per i licei

"Indicazioni nazionali riguardanti gli obiettivi specifici di apprendimento concernenti le attività e gli insegnamenti compresi nei paini degli studi previsti per i percorsi liceali [...]", Ministero dell'istruzione, dell'universtià e della ricerca, 2010

1.2.1 Linee generali e competenze

- Visione storico-critica delle principali tematiche del pensiero matematico e del contesto filosofico, scientifico e tecnologico
- Attenzione a 3 momenti principali:
 - civiltà greca
 - rivoluzione scientifica del XVII secolo e nascita del calcolo infinitesimale
 - razionalismo illuministico: matematica moderna, approccio matematico ad altri campi (ingegneria, economia, biologia, scienze sociali), progresso scientifico
- 8 gruppi di concetti e metodi (7, visto che 5.,6. possono essere condensati):
 - 1. geometria euclidea
 - calcolo algebrico, geometria analitica, funzioni e noziaoni elementari dell'analisi e del calcolo differenziale e integrale

- 3. strumenti utili allo studio dei fenomeni fisici: vettori e ODE
- 4. probabilità e statistica
- 5. concetto e costruzione di modelli matematici
- 6. "
- 7. approccio assiomatico
- 8. induzione matematica

1.2.2 Obiettivi specifici di apprendimento

Primo biennio

Aritmetica e algebra

- dall'aritmetica all'algebra
- · insiemi numerici
- polinomi
- equazioni, disequazioni e sistemi
- introduzione ai vettori

Geometria

- fondamenti di geometria euclidea
 - approccio assiomatico: postulato, assioma, definizione, teorema dimostrazione
 - geometria nel piano:
 - * elementi geometrici fondamentali e costruzioni: angoli e triangoli
 - * trasformazioni: traslazioni, rotazioni, riflessioni

Relazioni e funzioni

- prime definizioni in insiemistica
- funzioni a variabile reale, rapprensentazione grafica di equazioni
 - esempi: primo e secondo grado, $1/x,\,|x|,\,$ definite a tratti

Dati e previsioni

- fondamenti di statistica descrittiva:
 - classificazione eventi: continui/discreti
 - rappresentazione dati
 - valore medio e varianza

Elementi di informatica

- familiarizzazione con strumenti informatici
- concetto di algoritmo

Secondo biennio

Aritmetica e algebra

- circonferenza e cerchio, numero π , trigonometria
- numero e di Nepero
- · numeri complessi

Geometria

- geometria analitica piana:
 - punti e rette
 - coniche **todo** controllare se previste

Relazioni e funzioni

- · equazioni polinomiali
- serie; progressioni aritmetiche e geometriche
- funzioni elementari dell'analisi: esponenziale e logaritmo

Dati e previsioni

- distribuzioni di più variabili (2): congiunta, condizionata, marginale,...
- correlazione e dipendenza, regressione
- · formula di Bayes

Quinto anno

Geometria

• geometria euclidea nello spazio

Matematica per le scuole superiori

Relazioni e funzioni

- limiti di successioni e funzioni
- continuità, derivabilità, integrabilità
- · equazioni differenziali

Dati e previsioni

- distribuzioni discrete e continue
- esempi di distribuzione: binomiale, normale, Poisson

Part II

Algebra

basics

Nov 09, 2024

Matematica	nor	Δ	COLIO	ıa	CIID	OFI	^r

INTRODUZIONE ALL'ALGEBRA

L'algebra si occupa dello studio di:

- quantità matematiche,
- operazioni, espressioni e relazioni tra le quantità matematiche,
- strutture algebriche, definite come insiemi di quantità matematiche dotati di operazioni che soddisfano delle proprietà fondamentali, dette assiomi.

In questo materiale non vengono approfonditi gli aspetti più astratti della teoria riguardanti le strutture algebriche: di questi, vengono usati solamente i concetti utili a definire dei fondamenti dell'**algebra elementare**, che si occupa di:

- oggetti matematici appartenenti a insiemi numerici (come i numeri reali \mathbb{R} , o i numeri complessi \mathbb{C}), o spazi vettoriali V, di cui sarà necessaria la definizione
- operazioni su questi oggetti matematici
- calcolo letterale e relazioni, che permettono di impostare problemi nella forma di equazioni, disequazioni, sistemi
- soluzione dei problemi algebrici

basics

Nov 09, 2024

Matematica	ner	le	scuole	sur	eriori
matcination	PCI		Soucic	JUL	

CHAPTER

THREE

ALGEBRA SUI NUMERI REALI

Numeri reali, ${\mathbb R}$

Operazioni con i numeri reali.

- Somma e sottrazione
- Moltiplicazione e divisione
- Potenza
- Esponenziale e logaritmo

Equazioni, disequazioni e sistemi di equazioni

basics

Nov 09, 2024

 $0 \min read$

3.1 Algebra lineare

basics

Nov 09, 2024

FOUR

ALGEBRA VETTORIALE

- Definizione di spazio vettoriale: struttura algebrica e proprietà delle operazioni
- Definizione di combinazione lineare, vettori linearmente indipendenti
- Definizione di base di uno spazio vettoriale
- Spazio vettoriale euclideo:
 - prodotto scalare e norma
 - base ortonormale
 - definizione del prodotto vettoriale

basics

Nov 09, 2024

2 min read

4.1 Prime definizioni

4.1.1 Definizione di spazio vettoriale

Uno spazio vettoriale è una struttura algebrica formata da:

- un insieme V, i cui elementi sono chiamati **vettori**
- un campo K (di solito quello dei numeri reali $\mathbb R$ o complessi $\mathbb C$), i cui elementi sono chiamati **scalari**
- due operazioni chiuse rispetto all'insieme V chiamate:
 - somma vettoriale
 - moltiplicazione per uno scalare, che soddisfano determinate proprietà che verranno elencate in seguito.

Un'operazione è chiusa rispetto a un'insieme, se il risultato delle operazioni è un elemento dell'insieme.

Nel seguito del capitolo verranno considerati solo campi vettoriali definiti sui numeri reali, per i quali $K=\mathbb{R}.$

Operazioni sui vettori: definizione di spazio vettoriale

• La somma tra due vettori $\mathbf{v}, \mathbf{w} \in V$ è il vettore

$$\mathbf{v} + \mathbf{w} \in V$$

• La moltiplicazione per uno scalare di un vettore $\mathbf{v} \in V$ per uno scalare $\alpha \in K$ è il vettore

$$\alpha \mathbf{v} \in V$$

Proprietà delle operazioni

• proprietà commutativa della somma

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \qquad \forall \mathbf{u}, \mathbf{v} \in V$$

• proprietà associativa della somma

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) \qquad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$$

· esistenza dell'elemento neutro della somma

$$\exists \mathbf{0}_V \in V \qquad s.t. \qquad \mathbf{u} + \mathbf{0}_V = \mathbf{u} \qquad \forall \mathbf{u} \in V$$

• esistenza dell'elemento inverso della somma

$$\forall \mathbf{u} \in V \ \exists \mathbf{u}' \in V \qquad s.t. \qquad \mathbf{u} + \mathbf{u}' = \mathbf{0}$$

• proprietà associativa del prodotto scalare

$$(\alpha\beta)\mathbf{u} = \alpha(\beta\mathbf{u}) \qquad \forall \alpha, \beta \in K, \ \mathbf{u} \in V$$

• esistenza dell'elemento neutro della moltiplicazione per uno scalare

$$\exists 1 \in K$$
 s.t. $1 \mathbf{u} = \mathbf{u} \quad \forall \mathbf{u} \in V$

• proprietà distributiva della moltiplicazione per uno scalare

$$(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$$

$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$$

Esempi

Esempio 1 - n-upla di numeri reali ordinati. Gli elementi $\mathbf{u}=(u_1,u_2,\ldots,u_N)$ formano uno spazio vettoriale sui numeri reali, con le operazioni di somma e moltiplicazione per uno scalare con la seguenti definizioni:

• somma:

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_N) + (v_1, v_2, \dots, v_N) = (u_1 + v_1, u_2 + v_2, \dots, u_N + v_N)$$

• moltiplicazione per uno scalare:

$$\alpha \mathbf{u} = \alpha(u_1, u_2, \dots, u_N) = (\alpha u_1, \alpha u_2, \dots, \alpha u_N)$$

Esempio 2 - vettori in uno spazio euclideo. Fissato un punto O in uno spazio euclideo (todo riferimenti?), si può associare a ogni punto P nello spazio il segmento orientato \overrightarrow{OP} . L'insieme dei segmenti orientati associati a ogni punto dello spazio forma uno spazio vettoriale con le operazioni di somma e moltiplicazione per uno scalare con le seguenti definizioni:

• somma: tramite il metodo del parallelogramma todo

• moltiplicazione per uno scalare: todo

Esempio 3 - spazio vettoriale delle traslazioni. In uno spazio euclideo, l'insieme delle traslazioni forma uno spazio vettoriale.

todo

Esempio 4 - polinomi di grado minore o uguale a n L'insieme dei polinomi di grado minore o uguale a n,

$$\mathbf{u} = u_n x^n + u_{n-1} x^{n-1} + \dots + u_1 x + u_0 ,$$

forma uno spazio vettoriale con le usuali definizioni di somma e moltiplicazione per uno scalare valide per i polinomi.

4.1.2 Base di uno spazio vettoriale

Combinazione lineare. Una combinazione lineare di D vettori $\{\mathbf{u}_i\}_{i=1:D}$ è data dalla somma

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_D \mathbf{u}_D \;,$$

dove i coefficienti scalari α_i vengono definiti coefficienti della combinazione lineare.

Vettori linearmente indipendenti. Un insieme di vettori $\{\mathbf{u}_i\}_{i=1:D}$ è linearmente indipendente se non è possibile esprimere uno di questi vettori in funzione degli altri. Un'altra definizione equivalente definisce un insieme di vettori linearmente indipendente se vale

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_D \mathbf{u}_D = \mathbf{0} \qquad \rightarrow \qquad \alpha_1 = \dots = \alpha_D = 0 \; ,$$

cioè una combinazione lineare di questi vettori è uguale al vettore nullo solo se tutti i coefficienti della combinazione lineare sono nulli.

Base di uno spazio vettoriale. In uno spazio vettoriale, ogni vettore può essere rappresentato come una combinazione lineare di un insieme di vettori dello spazio, opportunamente scelti. Il numero minimo di questi vettori è definita come dimensione dello spazio vettoriale.

basics

Nov 09, 2024

1 min read

4.2 Spazio vettoriale euclideo

Definizione di uno spazio vettoriale euclideo.

todo

4.2.1 Prodotto interno e distanza

Uno spazio vettoriale euclideo può essere equipaggiato con un'operazione bilineare, simmetrica (su campi reali), e semi-definita positiva, definita **prodotto interno**,

$$\cdot: V \times V \to \mathbb{R}$$
,

che permette di definire la norma di un vettore e l'angolo tra due vettori

$$\vec{u} \cdot \vec{v} := |\vec{u}| |\vec{v}| \cos \theta_{\vec{u}\vec{v}}$$
$$|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}}$$

E' semplice verificare che la definizione del prodotto interno induce la definizione della norma. Infatti, calcolando il prodotto interno tra un vettore \vec{v} e se stesso, l'angolo compreso è l'angolo nullo, $\theta_{\vec{v}\vec{v}}=0$, con $\cos\theta_{\vec{u}\vec{u}}=0$.

4.2.2 Prodotto vettoriale

Per lo spazio euclideo E^3 è possibile definire anche un'operazione bilineare, antisimmetrica, definita **prodotto vettoriale**,

$$\times: V \times V \to V$$
,

in modo tale da avere

$$\vec{u} \times \vec{v} = \hat{k} |\vec{u}| |\vec{v}| \sin \theta_{\vec{u}\vec{v}} ,$$

con il vettore \hat{k} ortogonale a entrambi i vettori \vec{u} , \vec{v} nella direzione definita dalla regola della mano destra **todo**

- todo. E in E^2 ? A volte è comodo assumere che esista una dimensione aggiuntiva, e che quindi ci si trovi in E^3 . In questo caso, il prodotto vettore di due vettori di E^2 è sempre ortogonale ad esso.
- todo. Il prodotto vettoriale può essere visto come un caso particolare di un'operazione "strana" chiamata prodotto esterno

4.2.3 Base cartesiana

In uno spazio vettoriale euclideo, E^3 , è possibile definire una base carteisana, $\{\hat{x}, \hat{y}, \hat{z}\}$, come un'insieme di vettori di norma unitaria e reciprocamente ortogonali,

$$\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$$
$$\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{z} = \hat{z} \cdot \hat{x} = 0$$

e usando il prodotto vettore per definire l'orientazione dei 3 vettori,

$$\hat{x} \times \hat{y} = \hat{z}$$
$$\hat{y} \times \hat{z} = \hat{x}$$
$$\hat{z} \times \hat{x} = \hat{y}$$

Un vettore di uno spazio vettoriale può essere sempre scritto come combinazione lineare degli elementi di una base vettoriale,

$$\vec{v} = v_x \hat{x} + v_y \hat{y} + v_z \hat{z} \; . \label{eq:vx}$$

Usando una base cartesiana, è immediato ricavare le coordinate cartesiane di un vettore \vec{v} come il prodotto interno del vettore \vec{v} per i vettori della base,

$$\begin{aligned} v_x &= \hat{x} \cdot \vec{v} \\ v_y &= \hat{y} \cdot \vec{v} \\ v_z &= \hat{z} \cdot \vec{v} \end{aligned}$$

Usando una base cartesiana, si possono scrivere:

• la somma di vettori e la moltiplicazione per uno scalare in componenti,

$$\begin{split} \vec{v} + \vec{w} &= (v_x \hat{x} + v_y \hat{y} + v_z \hat{z}) + (w_x \hat{x} + w_y \hat{y} + w_z \hat{z}) = \\ &= (v_x + w_x) \hat{x} + (v_y + w_y) \hat{y} + (v_z + w_z) \hat{z} \end{split}$$

$$\begin{split} a\vec{v} &= a(v_x\hat{x} + v_y\hat{y} + v_z\hat{z}) = \\ &= (av_x)\hat{x} + (av_y)\hat{y} + (av_z)\hat{z} \end{split}$$

• il **prodotto interno** in termini delle componenti cartesiane dei vettori

$$\begin{split} \vec{v}\cdot\vec{w} &= (v_x\hat{x} + v_y\hat{y} + v_z\hat{z})\cdot(w_x\hat{x} + w_y\hat{y} + w_z\hat{z}) = \\ &= v_xw_x + v_yw_y + v_zw_z \end{split}$$

• il **prodotto vettoriale**, in termini del determinante formale

$$\begin{split} \vec{v} \times \vec{w} &= (v_x \hat{x} + v_y \hat{y} + v_z \hat{z}) \times (w_x \hat{x} + w_y \hat{y} + w_z \hat{z}) = \\ &= (v_y w_z - v_z w_y) \hat{x} + (v_z w_x - v_x w_z) \hat{y} + (v_x w_y - v_y w_x) \hat{z} = \\ &= \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} \end{split}$$

basics

Nov 09, 2024

ALGEBRA COMPLESSA

Utilità dei numeri complessi:

- utilizzo in molti ambiti della matematica, della fisica e dell'ingegneria: soluzione ODE, soluzione PDE, teoria delle trasformate
- facile rappresentazione di funzioni armoniche, grazie all'identità di Eulero

Argomenti

- Definizioni e rappresentazioni
- Algebra:
 - operazioni
 - equazioni e disequazioni
 - teorema fondamentale dell'algebra

5.1 Definizione

I numeri complessi estendono il campo dei numeri reali, grazie all'introduzione dell'**unità immaginaria**, i, definita come la radice quadra di -1,

$$i := \sqrt{-1}$$
.

L'insieme dei numeri complessi, indicato con ℂ, è l'insieme di quei numeri che possono essere scritti come

$$z = x + iy \;,$$

 $con x, y \in \mathbb{R}$.

I numeri complessi formano la struttura algebrica di **campo** con le operazioni di somma e prodotto. Dati due numeri complessi $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$, grazie alle proprietà **todo** delle operazioni, si può scrivere

• la somma

$$z_1+z_2=(x_1+x_2)+i(y_1+y_2)\\$$

• il prodotto,

$$\begin{split} z_1 \, z_2 &= (x_1 + i y_1)(x_2 + i y_2) = \\ &= x_1 \, x_2 - y_1 \, y_2 + i (x_1 \, y_2 + x_2 \, y_1) \end{split}$$

5.2 Rappresentazione nel piano complesso

Ogni numero complesso $z=x+i\,y$ può essere rappresentato nel piano complesso, ... todo

La rappresentazione grafica suggerisce una rappresentazione alternativa, la rappresentazione polare, con il cambio di coordinate

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases} \rightarrow \begin{aligned} z = r\cos\theta + i r\sin\theta = \\ = r(\cos\theta + i\sin\theta) = re^{i\theta}, \end{cases}$$

avendo anticipato qui la formula di Eulero per l'esponenziale di un numero immaginario,

$$e^{i\theta} = \cos\theta + i\sin\theta$$
.

todo

- Riferimento alla formula di Eulero. Dimostrazione con serie? Cosa serve? Serie di Taylor? Crietri di convergenza delle serie?
- Riferimento alla definizione di esponenziale

todo Le due rappresentazioni non sono equivalenti. Mentre la rappresentazione cartesiana permette di creare una relazione biunivoca tra i numeri complessi $z=x+i\ y$ e i punti nel piano $(x,\ y)$, la rappresentazione polare assegna infiniti numeri complessi, seppur di uguale valore $r\,e^{i\theta}=r\,e^{i(\theta+n\,2\pi)}$, con $n\in\mathbb{Z}$ allo stesso punto nello spazio.

5.3 Operazioni con i numeri complessi

• somma

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

prodotto

$$z_1 \: z_2 = r_1 \, r_2 e^{i(\theta_1 + \theta_2)}$$

· valore assoluto

$$|z| = \sqrt{x^2 + y^2} = r$$

- potenza
- esponenziale
- · logaritmo

Part III Geometria analitica

basics

Nov 09, 2024

			
Matamat	ICO DOL	בוחוותם בו	superiori

INTRODUZIONE ALLA GEOMETRIA ANALITICA

- Nel 1637 Cartesio formalizzò le basi della geometria analitica, o geometria cartesiana, nel libro *Geometria*, introdotto dal suo più famoso *Discorso sul metodo*.
- Il lavoro di Cartesio fornisce strumenti fondamentali usati nella seconda metà del XVII secolo da Newton e Leibniz per sviluppare il *calcolo infinitesimale*, e contemporanemente la meccanica razionale di Newton.
- La geometria analitica si occupa dello studio delle figure geometriche nello spazio tramite l'uso di sistemi di coordinate: la scelta dei sistemi di coordinate può spesso essere arbitaria, spesso guidata da criteri di "comodità"; i
 risultati sono indipendenti dalla scelta.
- L'utilizzo di un sistema di coordinate per la descrizione dello spazio produce un legame tra la **geometria** e l'**algebra**:
 - da un lato, le entità geometriche possono essere rappresentate con funzioni, equazioni e/o disequazioni che coinvolgono le coordinate;
 - dall'altro, ai problemi algebrici si può dare un'interpretazione geometrica;

Argomenti.

Spazi euclidei

Geometria nel piano - spazio euclideo 2D, E^2

- Sistemi di coordinate Cartesiane e polari; trasformazione tra sistemi di coordinate: polari e cartesiane; cartesiano cartesiano: traslazione e rotazione
- Punti
- Rette
- Coniche todo parabola, ellisse, iperbole: def, caratteristiche, descrizione in coord. cartesiane e polari; riferimento a gravitazione in meccanica classica

Geometria nello spazio euclideo 3D, E^3

- · Sistemi di coordinate
- Punti
- · Rette
- · Piani
- · Cono e rivisitazione delle coniche
- · Superfici quadratiche

basics

Nov 09, 2024

2 min read

6.1 Spazio euclideo

Approccio storico-applicativo

- *Elementi di Euclide*: formulazione assiomatica della geometria, partendo dalla definizione di concetti primitivi e postulati (5), viene sviluppata la teoria in teoremi e corollari, tramite un procedimento deduttivo.
- Qualitativamente, la geometria di Euclide corrisponde alla concezione quotidiana dello spazio nel quale viviamo.
 Lo spazio euclideo fornisce il modello di spazio per la meccanica di Newton, formulata nel XVII secolo, e che
 rimane un ottimo modello ampiamente usato tutt'oggi per l'evoluzione di sistemi con dimensioni caratteristiche
 sufficientemente maggiori della scala atomica, e velocità caratteristiche sufficientemente minori della velocità della
 luce.
- Una definizione più moderna di uno spazio euclideo si basa sulle traslazioni (**todo** citare Bowen, *Introduction to tensors and vectors*). Sia E un insieme di elementi, definiti **punti**, e V lo *spazio vettoriale delle traslazioni*, E viene definito uno spazio euclideo se esiste una funzione $f: E \times E \to V$ che associa a due punti dell'insieme E uno e un solo vettore traslazione $v \in V$ tale che
 - 1. f(x,y) = f(x,z) + f(z,y) per ogni $x, y, z \in E$
 - 2. per $\forall x \in E, v \in V, \exists ! y \in E \text{ tale che } f(x,y) = v$
- todo Dato uno spazio euclideo, si può usare un punto O chiamato origine, per definire uno spazio vettoriale associando ogni punto P dello spazio euclideo E al vettore traslazione $\vec{v} = P O \in V$ todo differenza tra spazi vettoriali e spazi affini
- Seguendo l'approccio di Cartesio, i punti di uno spazio possono essere rappresentati da un sistema di coordinate (todo coordinate: funzioni scalari definite nello spazio). A volte non si riesce a rappresentare tutto lo spazio con un solo insieme di coordinate, ma servono più carte di coordinate, che si sovrappongano in alcune regioni, per poter ricavare una transizione tra due mappe differenti. Il numero di coordinate necessario e sufficiente a rappresentare tutti i punti dello spazio coincide con la dimensione dello spazio. In questa maniera, ogni punto x in uno spazio n-dimensionale, o in un suo sottoinsieme, può essere identificato dal valore di n funzioni scalari definite nello spazio, definite coordinate.

$$x(q^1,q^2,\dots,q^n)$$
 .

- Tra le infinite scelte possibili di un sistema di coordinate, esistono alcuni sistemi particolari, i sistemi di **coordinate** cartesiane todo definire le coordinate cartesiane associandole alle traslazioni $\{\hat{e}_k\}_{k=1:n}$
- Tra i sistemi di coordinate cartesiane, i sistemi di coordinate cartesiane ortonormali sono associati a traslazioni
 unitarie in direzioni ortogonali tra di loro. Usando un sistema di coordinate cartesiane ortogonali, è possibile
 definire uno spazio euclideo come uno spazio in cui sono valide le espressioni:

- il prodotto interno:

$$\vec{u}\cdot\vec{v}=\sum_k u^k v^k$$

– la norma di un vettore (indotta dal prodotto interno), o della distanza tra due punti che definiscono il vettore \vec{v}

$$|\vec{u}|^2 = \vec{u} \cdot \vec{u} = \sum_k u^k u^k \,,$$

ossia si può usare il teorema di Pitagora per il calcolo delle distanze.

• **todo** cenni a spazi/geometrie non euclidee: esempi, e criteri "avanzati" per la definizione (basati su curvatura, geodesiche,...), e conseguenze,...

basics

Nov 09, 2024

Matematica	nar	ΙО	CCLIO	Δ	CIID	Ari	nr
Matcillatica	DEI	ıc	Scuoi		SUP	, e i i	

GEOMETRIA ANALITICA NEL PIANO

La geometria analitica nel piano si occupa della descrizione dello spazio bidimensionale euclideo e delle entità geometriche in esso, grazie all'uso di sistemi di coordinate (q^1, q^2) .

- Sistemi di coordinate, e punti nello spazio. Vengono presentati:
 - alcuni sistemi di coordinate che risulteranno utili nello studio della geometria analitica nel piano,
 - le regole di trasformazione tra sistemi di coordinate
 - le trasformazioni degli enti geometrici; ad esempio: traslazioni, rotazioni, riflessioni,...
- **Angoli e distanze.** Viene definita la struttura di uno spazio euclideo tramite la definizione degli angoli e delle distanze usando sistemi di coordinate cartesiane ortonormali, e le definizioni di prodotto interno (**todo** e prodotto vettoriale?).
- Curve. Vengono definite le curve nel piano, come relazioni tra le coordinate di un sistema di coordinate. **todo** *l'equazione di una curva rappresenta un tra la geometria e l'algebra tipico della geometria analitica*. Vengono poi studiate alcune curve particolari:
 - Rette:
 - * equazione
 - * posizione relativa punto-retta, distanza punto-retta, posizione relativa retta-retta
 - Coniche:
 - * introduzione: ...motivazione della loro importanza (gravitazione, ottica,...)
 - def, equazioni e caratteristiche con un'oppportuna scelta del sistema di coordinate; successivamente traslazione e rotazione

* ...

7.1 Sistemi di coordinate

7.1.1 Esempi

Sistema di coordinate cartesiane ortonormale. (x, y)

Sistema di coordinate polari. (r, θ) . La legge di trasformazione delle coordinate tra un sistema di coordinate cartesiane ortonormale e un sistema di coordinate polari, con la stessa origine e l'asse x come direzione di riferimento per la misura dell'angolo θ è

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \ . \end{cases}$$

todo. Aggiungere immagine

7.1.2 Trasformazione di coordinate

Vengono discusse alcune leggi di trasformazione tra le coordinate di diversi sistemi di coordinate.

Traslazione dell'origine di due sistemi cartesiani con assi allineati.

$$\begin{cases} x' = x - x_{O'} \\ y' = x - y_{O'} \end{cases}$$
$$\underline{x'} = \underline{x} - \underline{x}_{O'}$$

Rotazione degli assi di due sistemi cartesiani con stessa origine.

$$\begin{cases} x' = x \cos \theta + y \sin \theta \\ y' = -x \sin \theta + y \cos \theta \end{cases}$$
$$x' = Rx$$

Traslazione dell'origine e rotazione degli assi di due sistemi di coordinate cartesiane.

todo L'ordine delle trasformazioni è importante

$$\begin{split} x \rightarrow T \rightarrow x' \rightarrow R \rightarrow x'' \\ \underline{x'} &= \underline{x} - \underline{x}_{O'} \\ \underline{x''} &= R\underline{x'} = R\left(\underline{x} - \underline{x}_{O'}\right) \\ x \rightarrow R \rightarrow x' \rightarrow T \rightarrow x'' \\ \underline{x'} &= R\underline{x} \\ \underline{x''} &= \underline{x'} - \underline{x'}_{O''} = R\underline{x} - \underline{x'}_{O''} \end{split}$$

Altri esempi di coordinate e trasformazioni di coordinate. todo. come esercizio?

7.2 Distanze e angoli

7.2.1 Distanza tra punti

Usando un sistema di coordinate cartesiane, la distanza tra due punti nel piano viene calcolata usando il teorema di Pitagora .

$$d_{12} = |P_2 - P_1| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In maniera equivalente viene il modulo (o lunghezza) di un vettore $\vec{v} = v_x \hat{x} + v_y \hat{y}$,

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2} \ .$$

34

7.3 Curve nel piano

Una curva nello spazio euclideo E^2 , nel piano, è un luogo dei punti del piano che possono essere identificati da una relazione tra le coordinate di un sistema di coordinate.

Esempi. todo. grafici

7.3.1 Rappresentazioni di una curva

Dato un sistema di coordinate (q^1, q^2) che descrive il piano, una curva γ può essere rappresentata in diverse maniere:

Rappresentazione esplicita.

$$\gamma:\ q^2=f(q^1)$$

todo. limiti di questa rappresentazione

Rappresentazione implicita.

$$\gamma:\ F(q^1,q^2)=0$$

todo. limiti di questa rappresentazione

Rappresentazione parametrica.

$$\gamma(s): \begin{cases} q^1 = f^1(s) \\ q^2 = f^2(s) \end{cases}$$

todo figura

7.3.2 Appartenenza di un punto a una curva

Dato un sistema di coordinate (q^1,q^2) , un punto P identificato dalle coordinate (q^1_P,q^2_P) appartiene a una curva γ se le sue coordinate soddisfano l'equazione della curva:

- se la curva è definita in forma esplicita, allora $q_P^2=f(q_P^1)$
- se la curva è definita in forma implicita, allora $F(q_P^1,q_P^2)=0$
- se la curva è definita in forma parametrica, allora esiste un valore del parametro $s=s_P$ tale che $q_P^1=f^1(s_P)$ e $q_P^2=f^2(s_P)$

7.3.3 Interesezione di curve

Dato un sistema di coordinate (q^1, q^2) , un punto P è un punto di intersezione di due curve γ_1 , γ_2 se le sue coordinate soddisfano sia l'equazione della curva γ_1 , sia l'equazione della curva γ_2

7.3.4 Interpretazione grafica di equazioni, sistemi di equazioni e diseguazioni

. . .

7.4 Rette nel piano

Per Euclide, il concetto di retta è un ente geometrico fondamentale della geometria, che rappresenta il percorso "più diretto" tra due punti distinti. Ad esempio, è l'idealizzazione di spessore nullo e di lunghezza infinita, prolungata oltre gli estremi, del segmento che si otterrebbe in un'esperienza comune tendendo un filo di lana tra due punti nello spazio senza ostacoli.

Per trovare l'equazione di una retta, si possono usare delle definizione equivalenti.

7.4.1 Definizioni ed equazione

Definizione. 1 - Passaggio per un punto e direzione. Usando gli strumenti dell'algebra vettoriale in uno spazio euclideo, i punti di una retta passante per un punto P_0 con direzione identificata dal vettore \vec{v} possono essere rappresentati dall'**equazione parametrica**,

$$P = P_0 + \lambda \vec{v}$$
.

Questa relazione può essere riscritta usando un sistema di coordinate cartesiane, con vettori della base $\{\hat{x},\hat{y}\}$

$$r: \begin{cases} x_P(\lambda) = x_{P_0} + \lambda \ v_x \\ y_P(\lambda) = y_{P_0} + \lambda \ v_y \ , \end{cases}$$

avendo indicato con (x_P,y_P) le coordinate cartesiane di un punto generico P della retta, con (x_{P_0},y_{P_0}) le coordinate del punto P_0 e con v_x , v_y le componenti cartesiane del vettore euclide $\vec{v}=v_x\hat{x}+v_y\hat{y}$, riferite al sistema di coorinate cartesiano scelto.

Definizione 2 - Luogo dei punti equidistante da due punti distinti dati. Una retta è il luogo geometrico dei punti P equidistanti da due punti distinti nel piano, P_1 , P_2 ,

$$|P - P_1| = |P - P_2|$$

Usando un sistema di coordinate cartesiane per identificare i punti, $P_1 \equiv (x_1,y_1), P_2 \equiv (x_2,y_2), P \equiv (x,y)$ per calcolare (il quadrato del)le distanze,

$$(x-x_1)^2+(y-y_1)^2=(x-x_2)^2+(y-y_2)^2$$

$$x^2-2xx_1+x_1^2+y^2-2yy_1+y_1^2=x^2-2xx_2+x_2^2+y^2-2yy_2+y_2^2$$

semplificando i termini x^2 , y^2 , e raccogliendo mettendo in evidenza le coordinate x, y, si ottiene una rappresentazione implicita della retta,

$$2(x_2-x_1)x+2(y_2-y_1)y-x_1^2-y_1^2-x_2^2-y_2^2=0\;,$$

che può essere riscritta in generale nella forma esplicita,

$$ax + by + c = 0,$$

con ovvio significato dei coefficienti a, b, c, e a, b non contemporanemante nulli (altrimenti rimarrebbe l'identità 0 = 0, corrispondente alla condizione $a = x_2 - x_1 = 0$, $b = y_2 - y_1 = 0$, corrispondente ai due punti $P_1 \equiv P_2$ coinvidenti).

Casi particolari: rette paralleli agli assi. Una retta parallela all'asse x ha l'espressione b y + c = 0, con a = 0; una retta parallela all'asse y ha l'espressione a x + c = 0, con b = 0.

Definizione 3 - intercetta con asse y **e pendenza.** Una retta può essere definita tramite il suo punto di intersezione con l'asse y e la sua pendenza, intesa come il rapporto tra le coordinate di due suoi punti, $m := \frac{\Delta y}{\Delta x}$, se la retta non è parallela all'asse y.

Se la retta **non è parallela all'asse** y rappresenta il grafico di una funzione (**todo** aggiungere riferimento), il coefficiente $b \neq 0$, e si può esplicitare la coordinata y partendo dall'equazione in forma implicita,

$$y = -\frac{a}{b}x - \frac{c}{b} = m x + q ,$$

per ottenere l'equazione della retta in forma esplicita.

7.4.2 Posizioni reciproche

Posizione reciproca di punto e retta

Un punto P o appartiene o non appartiene a una retta r. Se appartiene alla curva, la distanza tra punto e retta è nulla; se non appartiene alla curva, la distanza tra punto e retta è positiva e può essere calcolata come mostrato nella sezione Distanza punto-retta.

Punto appartenente alla retta. Una retta r passa per un punto P assegnato se le coordinate del punto P soddisfano le equazioni che descrivono la retta.

Posizione reciproca di rette

Due rette nel piano possono essere:

- · coincidenti: hanno tutti i punti in comune
- parallele: non hanno nessun punto in comune
- incidenti: si intersecano e la loro intersezione è un punto

Rette coincidenti

Due rette sono coincidenti se hanno un punto in comune e hanno la stessa direzione. In geometria analitica, due rette sono coincidenti se sono rappresentate dalla stessa equazione.

Usando la forma parametrica, due rette sono coincidenti se è possibile scrivere le loro equazioni

$$\begin{split} r_1: \ P_1(\lambda_1) &= P_{1,0} + \lambda_1 \ \vec{v}_1 \\ r_2: \ P_2(\lambda_2) &= P_{2,0} + \lambda_2 \ \vec{v}_2 \end{split}$$

7.4. Rette nel piano

con

$$\begin{cases} P_{1,0} = P_{2,0} & \text{(punto in comune)} \\ \vec{v}_1 \propto \vec{v}_2 & \text{(stessa direzione)} \end{cases}$$

Usando la forma esplicita, due rette coincidenti (non paralleli all'asse y) hanno la stessa intersezione con l'asse y e la stessa pendenza

$$\begin{cases} q_1 = q_2 & \text{(interesezione con asse } y \text{ in comune)} \\ m_1 = m_2 & \text{(stessa pendenza/direzione)} \end{cases}$$

Usando la forma implicita, due rette sono coincienti se i coefficienti di una retta sono multipli dei coefficienti dell'altra retta,

$$r_2:0=\ a_2\,x+b_2\,y+c_2=\alpha(a_1\,x+b_1\,y+c_1)\ ,$$

in modo tale da rappresentare la stessa equazione, per $\alpha=0$.

Rette parallele nel piano

Due rette sono parallele se hanno la stessa direzione. Questa condizione può essere definita usando l'equazione parametrica delle rette,

$$\vec{v}_1 \propto \vec{v}_2$$
,

usando l'equazione in forma implicita,

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} \;, (\operatorname{con} b_i \neq 0...)$$

o usando l'equazione in forma esplicita,

$$m_1 = m_2$$
.

Rette incidenti

Nel piano, se due rette non sono parallele allora sono incidenti, cioè hanno un punto in comune.

Rette incidenti perpendicolari

In geometria euclidea, due rette sono perpendicolari tra di loro se dividono il piano comune nel quale giacciono in 4 angoli retti. Questa condizione può essere definita usando l'equazione delle rette in forma parametrica,

$$\vec{v}_1 \cdot \vec{v}_2 = 0 \; ,$$

ricordandosi le proprietà del prodotto interno in spazi euclidei, e che cos $\frac{\pi}{2} = 0$. Usando l'equazione in forma implicita,

$$a_2 b_1 = -a_1 b_2$$
,

o usando l'equazione in forma esplicita (nel caso le due rette non siano parallele a un asse),

$$m_2 = -\frac{1}{m_1}$$

7.4.3 Distanza punto-retta

La distanza di un punto Q da una retta $r: P(\lambda) = P_0 + \lambda \vec{v}$ può essere calcolato in diverse maniere:

• calcolando il valore minimo della distanza tra il punto Q dato e i punti $P(\lambda)$ della retta

$$\min_{P \in r} |Q - P|$$

• trovando la retta r_{\perp} perpendicolare a r e passante per Q; trovando il punto P^* intersezione tra le due rette r, r_{\perp} , $P^* = r \cap r_{\perp}$; calcolando la distanza punto-punto tra Q e P^*

... **todo** o lasciare come esercizio

• usando il *prodotto vettoriale* tra il vettore \vec{v} e il vettore $Q-P_0$

$$d = \frac{|\vec{v} \times (Q - P)|}{|\vec{v}|} = |Q - P| \sin \theta \; .$$

7.5 Coniche

Le coniche sono curve che possono essere ottenute come intersezione tra un piano e un (doppio) cono circolare retto.

Queste curve compaiono in diversi ambiti della matematica e della fisica. Ad esempio,

- in **ottica**: le coniche hanno proprietà geometriche che risultano utili in **ottica**, e nella trasmissione delle informazioni (le antenne paraboliche si chiamano così, poiché hanno la forma di un paraboloide)
- in **astronomia**: le traiettorie di due corpi isolati soggetti alla mutua interazione gravitazionale sono delle coniche, come mostrato nell'analisi del problema dei due corpi in meccanica classica.

Le coniche possono essere definite in maniera implicita, senza fare uso di sistemi di coordinate. Partendo da definizioni implicite equivalenti, e sfruttando l'arbitrarietà nel definire il sistema di coordinate più comodo, vengono ricavate

- prima, le equazioni delle coniche in forma canonica con un'opportuna scelta di sistemi di coordinate
- poi, l'equazione in forma generale di una conica nel piano, ottenuta tramite una trasformazione rigida rototraslazione - della curva o, viceversa, delle coordinate.

Queste curve possono essere definite a partire da un punto F, detto **fuoco**, e una retta d, detta **direttrice** come verrà fatto per ricavare le *equazioni in coordinate polari* delle coniche.

7.5. Coniche 39

Definizione in termini di eccentricità

Una conica può essere definita come il luogo dei punti P dello spazio per i quali il rapporto tra la distanza dal fuoco e dalla direttrice è costante,

$$e = \frac{\operatorname{dist}(P,F)}{\operatorname{dist}(P,d)} \;.$$

Questo rapporto viene definito eccentricità della conica e il suo valore determina la figura geometrica descritta:

- e < 1, ellisse; il caso particolare della circonferenza con eccentricità nulla, con dist $(P,d) \to \infty$
- e = 1, parabola;
- e > 1, iperbole;

Esistono due fuochi e due direttrici per ogni ellisse e ogni iperbole.

E' possibile definire le coniche anche grazie alla proprietà che caratterizza la distanza dei punti della conica dai fuochi, come verrà fatto per trovare le *equazioni in coordinate cartesiane* delle coniche.

Definizione in termini di distanza dai fuochi

• una circonferenza è il luogo dei punti del piano che hanno distanza costante da un punto C,

$$|P-C|=R$$
,

• un'ellisse è il luogo dei punti del piano che hanno la somma delle distanze da due punti dati, i fuochi F_1 e F_2 , costante,

$$|P - F_1| + |P - F_2| = 2a$$
,

 una parabola è il luogo dei punti del piano equidistante da un punto F, il fuoco della parabola, e da una retta d, la direttrice

$$|P - C| = \operatorname{dist}(P, d)$$

• un'iperbole è il luogo dei punti del piano che hanno la differenza delle distanze da due punti dati, i fuochi F_1 e F_2 , costante,

$$|P - F_1| - |P - F_2| = 2a$$
,

avendo considerato il modulo delle distanze per comprendere entrambi i rami dell'iperbole

7.5.1 Forma canonica in coordinate cartesiane

Circonferenza

Una circonferenza è il luogo dei punti equidistanti da un punto C dato, detto centro della circonferenza. La distanza tra i punti del circonferenza e il centro viene definito raggio della circonferenza.

$$|P - C| = R$$

Usando un sistema di riferimento cartesiano con origine nel centro della circonferenza, l'equazione in coordinate cartesiane della circonferenza è

$$x^2 + y^2 = R^2$$
.

Dimostrazione.

Per ricavare l'equazione di una circonferenza in coordinate cartesiane, si usa la formula per il calcolo della distanza tra punti. Se si sceglie un sistema di coordinate cartesiane con origine in C s.t. $(x_C,y_C)=(0,0)$, la condizione che identifica le coordinate cartesiane (x,y) dei punti di una circonferenza di raggio R centrata in C

$$R^2 = |P - C|^2 = x^2 + y^2$$
,

cioè

$$x^2 + y^2 = R^2 .$$

Parabola

Una parabola è il luogo dei punti equidistanti da un punto F dato, detto fuoco della parabola, e da una retta d detta direttrice, non passante per F,

$$dist(P, d) = |P - F|$$

Usando un sistema di riferimento cartesiano con origine nel vertice di una parabola e asse y coincidente con il suo asse, l'equazione in coordinate cartesiane della parabola è

$$y = a x^2,$$

 $con a = \frac{1}{2d}.$

Dimostrazione.

Equazione in coordinate cartesiane. Sia d la distanza del fuoco F dalla retta direttrice d. Per la scelta del sistema di coordinate fatta, il vertice è nell'origine $V \equiv O$, il fuoco ha coordinate $F \equiv \left(0, \frac{d}{2}\right)$, e la retta direttrice ha equazione $r: y = -\frac{d}{2}$. Si usa la formula della distanza tra punti per calcolare la distanza \overline{PF} tra i punti della parabola e il fuoco, mentre la formula della distanza punto-retta nel caso di retta direttrice parallela all'asse x si riduce alla differenza tra le coordinate y del punto e della direttrice,

$$\begin{aligned} \left(\mathrm{dist}(P,d)\right)^2 &= |P-F|^2 \\ \left(y+\frac{d}{2}\right)^2 &= x^2 + \left(y-\frac{d}{2}\right)^2 \\ y^2 + dy + \frac{d^2}{4} &= x^2 + y^2 - dy + \frac{d^2}{4} \end{aligned}$$

e semplificando i termini $y^2, \frac{d^2}{4},$ si ottiene l'equazione desiderata,

$$y = \frac{1}{2d}x^2 =: a x^2.$$

Ellisse

Una ellisse è il luogo dei punti P la cui somma delle distanze da due punti F_1 , F_2 dati, detti fuochi, è costante (e uguale all'asse maggiore, 2a),

$$|P - F_1| + |P - F_2| = 2a$$
.

7.5. Coniche 41

Usando un sistema di riferimento cartesiano con origine nel centro dell'ellisse (punto medio tra i due fuochi), e asse x passante per i due fuochi, l'equazione in coordinate cartesiane dell'ellisse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ .$$

avendo indicato con a, b il semiasse maggiore e minore rispettivamente.

Dimostrazione.

Definite le coordinate dei due fuochi, $F_1 \equiv (-c,0)$, $F_2 \equiv (c,0)$, si usa la formula della distanza tra punti per trovare l'equazione richiesta,

$$|P-F_1| = 2a - |P-F_2|$$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

sviluppando i quadrati

$$x^{2} + 2cx + c^{2} + y^{2} = 4a^{2} - 4a\sqrt{(x-c)^{2} + y^{2}} + x^{2} - 2cx + c^{2} + y^{2}$$

semplificando i termini, tenendo il termine con la radice separato dagli altri termini per elevare nuovamente al quadrato,

$$4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4cx$$

si ottiene,

$$a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
$$(a^{2} - c^{2})x^{2} + a^{2}y^{2} = a^{2}(a^{2} - c^{2})$$

Considerando i punti dell'ellisse sull'asse minore, $B_{\mp} \equiv (0, \mp b)$, è facile dimostrare usando il teorema di Pitagora che $a^2 = b^2 + c^2$. Si può quindi riconoscere il quadrato del semiasse minore nell'equazione dell'ellisse e, nel caso di ellissi non-degeneri, dividere per a^2b^2 per ottenere l'espressione desiderata,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ .$$

Iperbole

Una iperbole è il luogo dei punti P la cui differenza delle distanze da due punti F_1 , F_2 dati, detti fuochi, presa in valore assoluto per comprendere entrambi i rami dell'iperbole, è costante (e uguale all'asse maggiore, 2a),

$$||P - F_1| - |P - F_2|| = 2a$$
.

Usando un sistema di riferimento cartesiano con origine nel centro dell'iperbole (punto medio tra i due fuochi), e asse x passante per i due fuochi, l'equazione in coordinate cartesiane dell'ellisse

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
.

avendo indicato con a, b il semiasse maggiore e minore rispettivamente.

Dimostrazione.

Definite le coordinate dei due fuochi, $F_1 \equiv (-c, 0)$, $F_2 \equiv (c, 0)$, si usa la formula della distanza tra punti per trovare l'equazione richiesta. Rimuovendo il modulo e considerando entrambe le possibilità di segno,

$$\begin{split} |P-F_1| &= \mp 2a + |P-F_2| \\ \sqrt{(x+c)^2 + y^2} &= \mp 2a + \sqrt{(x-c)^2 + y^2} \end{split}$$

sviluppando i quadrati

$$x^{2} + 2cx + c^{2} + y^{2} = 4a^{2} \mp 4a\sqrt{(x-c)^{2} + y^{2}} + x^{2} - 2cx + c^{2} + y^{2}$$

semplificando i termini, tenendo il termine con la radice separato dagli altri termini per elevare nuovamente al quadrato,

$$\pm 4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4cx$$

si ottiene,

$$a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
$$(a^{2} - c^{2})x^{2} + a^{2}y^{2} = a^{2}(a^{2} - c^{2})$$

A differenza del caso dell'ellisse, per un'iperbole il termine a^2-c^2 è negativo, e si può quindi scrivere

$$(c^2 - a^2)x^2 - a^2y^2 = a^2(c^2 - a^2)$$
.

Considerando l'andamento asintotico, si trovano le equazioni dei due asintoti,

$$u = \mp \frac{\sqrt{c^2 - a^2}}{a} = \mp \frac{b}{a} ,$$

avendo definito $b^2=c^2-a^2$ il semiasse maggiore. Nel caso di iperboli non-degeneri, si può dividere per a^2b^2 per ottenere l'espressione desiderata,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ .$$

7.5.2 Forma canonica in coordinate polari

Le coniche possono essere anche caratterizzate dal valore dell'eccentricità,

$$e = \frac{\text{dist(punto, fuoco)}}{\text{dist(punto, direttrice)}} = \frac{\text{dist}(P, F)}{\text{dst}(P, d)} \ .$$

Questa definizione permette di ricavare facilmente l'equazione delle coniche usando un sistema di coordinate polari, centrato nel fuoco F, e con la direzione di riferimento per la misura dell'angolo θ che punta verso la direttrice. Con questo sistema di coordinate polari,

$$\begin{aligned} \operatorname{dist}(P,F) &= r \\ \operatorname{dist}(P,d) &= |D-r\cos\theta| \end{aligned}$$

l'equazione generale delle coniche diventa

$$e\big|D-r\cos\theta\big|=r\;.$$

Questa equazione descrive tutte le coniche con eccentricità non nulla, cioè tutte le coniche tranne la circonferenza. La circonferenza si ottiene come limite dell' eccentricità $e \to 0$ e distanza $D \to \infty$, in modo tale da avere eD = R finito.

7.5. Coniche 43

7.5.3 Equazione generale delle coniche

L'equazione di una conica disposta nel piano in maniera arbitraria rispetto a un sistema di coordinate cartesiane ha l'epsressione

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0.$$

E' possibile dimostrare questa affermazione tramite una trasformazione rigida generica di roto-traslazione. In particolare, si applicherà prima una rotazione di un angolo theta e poi una traslazione $\vec{v} = x_{1,P}\hat{x}_1 + y_{1,P}\hat{y}_1$.

$$\begin{cases} x_1 = x\cos\theta + y\sin\theta \\ y_1 = -x\sin\theta + y\cos\theta \end{cases}, \qquad \begin{cases} x_2 = x_1 - x_{1,P} \\ y_2 = y_1 - y_{1,P} \end{cases}$$

Diversi tipi di coniche sono caratterizzati da diverse relazioni tra i coefficienti del polinomio di secondo grado, in particolare, dal valore del coefficiente $\Delta := B^2 - 4AC$,

• ellisse: $\Delta < 0$

• parabola: $\Delta = 0$

• iperbole: $\Delta > 0$

Dimostrazione, ellisse e iperbole

Le equazioni in forma canonica di un'ellisse e un'iperbole possono essere scritte come

$$\frac{x_2^2}{a^2} + \gamma \frac{y^2}{b^2} = 1 \qquad \to \qquad 0 = b^2 x_2^2 + \gamma a^2 y_2^2 - a^2 b^2 \; ,$$

con $\gamma=1$ per l'ellisse e $\gamma=-1$ per l'iperbole. Introducendo le trasformazioni di coordinate, si può manipolare l'espressione delle coniche

$$\begin{split} 0 &= b^2 (x_1 - x_{1,P})^2 + \gamma a^2 (y_1 - y_{1,P})^2 - a^2 b^2 = \\ &= b^2 (x \cos \theta + y \sin \theta - x_{1,P})^2 + \gamma a^2 (-x \sin \theta + y \cos \theta - y_{1,P})^2 - a^2 b^2 = \\ &= x^2 \left(b^2 \cos^2 \theta + \gamma a^2 \sin^2 \theta \right) + 2xy \left(b^2 - \gamma a^2 \right) \sin \theta \cos \theta + y^2 \left(b^2 \sin^2 \theta + \gamma a^2 \cos^2 \theta \right) \\ &+ x \left(-2b^2 x_{1,P} \cos \theta + 2\gamma a^2 y_{1,P} \sin \theta \right) + y \left(-2b^2 x_{1,P} \sin \theta - 2\gamma a^2 y_{1,P} \cos \theta \right) \\ &+ b^2 x_{1,P}^2 + \gamma a^2 y_{1,P}^2 - a^2 b^2 \end{split}$$

per calcolare il discriminante, usando la relazione $\gamma^2=1$, come

$$\begin{split} \frac{\Delta}{4} &= \frac{B^2}{4} - AC = \\ &= \left[\left(b^2 - \gamma a^2 \right) \sin \theta \cos \theta \right]^2 - \left(b^2 \cos^2 \theta + \gamma a^2 \sin^2 \theta \right) \left(b^2 \sin^2 \theta + \gamma a^2 \cos^2 \theta \right) = \\ &= b^4 \sin^2 \theta \cos^2 \theta - 2\gamma a^2 b^2 \sin^2 \theta \cos^2 \theta + a^4 \sin^2 \theta \cos^2 \theta \\ &- b^4 \sin^2 \theta \cos^2 \theta - \gamma a^2 b^2 \left(\sin^4 \theta + \cos^4 \theta \right) - a^4 \sin^2 \theta \cos^2 \theta = \\ &= -\gamma a^2 b^2 \left(\underbrace{\sin^2 \theta + \cos^2 \theta}_{=1} \right)^2 = -\gamma a^2 b^2 \end{split}$$

E quindi

- per un'ellisse, $\gamma = 1$ e $\Delta < 0$
- per un'iperbole, $\gamma = -1$ e $\Delta > 0$

Dimostrazione, parabola

Introducendo le trasformazioni di coordinate, si può manipolare l'espressione dell'equazione in forma canonica delle parabole

$$\begin{split} 0 &= ax_2^2 - y_2 = \\ &= a(x_1 - x_{1,P})^2 - y_1 + y_{1,P} = \\ &= a(x\cos\theta + y\sin\theta - x_{1,P})^2 - (-x\sin\theta + y\cos\theta) + y_{1,P} = \\ &= x^2\left(a\cos^2\theta\right) + 2xy\left(a\cos\theta\sin\theta\right) + y^2\left(a\sin^2\theta\right) \\ &+ x\left(-2ax_{1,P}\cos\theta + 2\sin\theta\right) + y\left(-2ax_{1,P}\sin\theta - 2\cos\theta\right) \\ &+ x_{1,P}^2 + y_{1,P} \end{split}$$

per poi calcolare il discrimminante,

$$\frac{\Delta}{4} = \frac{B^2}{4} - AC =$$

$$= a^2 \cos^2 \theta \sin^2 \theta - a^2 \cos^2 \theta \sin^2 \theta = 0$$

todo significato

Esercizi

7.5. Coniche 45

Matematica per le scuole superiori	

GEOMETRIA ANALITICA NELLO SPAZIO

8.1 Sistemi di coordinate per lo spazio euclideo E^3

8.1.1 Coordinate cartesiane

Le coordinate cartesiane (x,y,z) di un punto P dello spazio euclideo E^3 permettono di definire il vettore euclideo tra l'origine $O \equiv (0,0,0)$ e il punto P

$$(P-O) = x\,\hat{x} + y\,\hat{y} + z\,\hat{z}\,,$$

usando i vettori della base cartesiana $\{\hat{x}, \hat{y}, \hat{z}\}$

Distanza punto-punto

Usando le coordinate cartesiane, la distanza tra due punti $P\equiv(x_P,y_P,z_P), Q\equiv(x_Q,y_Q,z_Q)$ si può calcolare usando il teorema di Pitagora come

$$|P-Q|^2 = (x_P-x_Q)^2 + (y_P-y_Q)^2 + (z_P-z_Q)^2 \; .$$

8.1.2 Coordinate cilindriche

Dato un sistema di coordinate cartesiane, si può definire un sistema di coordinate cilindriche (R, θ, z) con la stessa origine, asse z coincidente e usando il piano x-y come origine per misurare l'angolo θ attorno all'asse z, tramite la legge di trasformazione delle coordinate

$$\begin{cases} x = R\cos\theta \\ y = R\sin\theta \\ z = z \end{cases}$$

8.1.3 Coordinate sferiche

Dato un sistema cartesiano e scelto un sistema di coordinate cilindriche come appena descritto, si può definire un sistema di coordinate sferiche (r, θ, ϕ) tramite le leggi di trasformazione di coordinate

$$\begin{cases} x = r \sin \phi \cos \theta \\ y = r \sin \phi \sin \theta \\ z = r \cos \phi \end{cases}, \qquad \begin{cases} R = r \sin \phi \\ \theta = \theta \\ z = r \cos \phi \end{cases}$$

8.2 Piani nello spazio

Per Euclide, il concetto di piano è un ente geometrico fondamentale della geometria. In geometria analitica, per trovare l'equazione di un piano si possono usare diverse definizioni equivalenti.

8.2.1 Definizioni ed equazione

Definizione 1 - Passaggio per un punto e direzione normale. Un piano π può essere definito come il luogo dei punti P dello spazio che formano un vettore (P-Q) con un punto dato Q ortogonali a un vettore \vec{n} che indica la direzione normale al piano π . Usando le proprietà del prodotto scalare,

$$(P-Q)\cdot \vec{n}=0.$$

Usando un sistema di coordinate cartesiane, si può trovare l'equazione implicita del piano π ,

$$\pi: (x - x_O)n_x + (y - y_O)n_y + (z - z_O)n_z = 0.$$
(8.1)

Osservazione. L'equazione implicita del piano è independente dal modulo del vettore \vec{n} , poiché rappresenterebbe un ininfluente fattore moltiplicativo (diverso da zero) nel termine di sinistra quando uguagliato a zero.

Definizione 2. - Passaggio per un punto e direzioni tangenti. Partendo dalla prima definizione, si possono ricavare le equazioni parametriche del piano. Dato il vettore \vec{n} , si possono trovare due vettori \vec{t}_1 , \vec{t}_2 a esso ortogonali,

$$\vec{t}_1 \cdot \vec{n} = \vec{t}_2 \cdot \vec{n} = 0 .$$

Se i due vettori non sono tra di loro allineati, o meglio proporzionali, è possibile descrivere tutti i punti del piano come una loro combinazione lineare

$$\pi:\; P = Q + \lambda_1 \vec{t}_1 + \lambda_2 \vec{t}_2 \;.$$

Definizione 3. - Luogo dei punti equidistante da due punti distinti dati. Il luogo dei punti P dello spazio equidistanti da due punti P_1 , P_2 dati è il piano identificato dalla condizione

$$|P - P_1| = |P - P_2|$$
.

Usando un sistema di coordinate cartesiane per identificare i due punti $P_1 \equiv (x_1, y_1, z_1), P_2 \equiv (x_2, y_2, z_2)$, per calcolare (il quadrato del)le distanze,

$$(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=(x-x_2)^2+(y-y_2)^2+(z-z_2)^2\\x^2-2xx_1+x_1^2+y^2-2yy_1+y_1^2+z^2-2zz_1+z_1^2=x^2-2xx_2+x_2^2+y^2-2yy_2+y_2^2+z^2-2zz_2+z_2^2$$

semplificando i termini x^2 , y^2 , z^2 e raccogliendo mettendo in evidenza le coordinate x, y, z, si ottiene una rappresentazione implicita della retta,

$$2(x_2-x_1)x+2(y_2-y_1)y+2(z_2-z_1)z-x_1^2-y_1^2-z_1^2-x_2^2-y_2^2-z_2^2=0\;, \tag{8.2}$$

che può essere riscritta in generale nella forma esplicita,

$$ax + by + cz + d = 0$$
, (8.3)

con ovvio significato dei coefficienti a, b, c, d, e a, b, c non contemporanemente nulli (altrimenti rimarrebbe l'identità 0=0, corrispondente alla condizione $a=x_2-x_1=0,$ $b=y_2-y_1=0,$ $c=z_2-z_1=0$ corrispondente ai due punti $P_1\equiv P_2$ coinvidenti).

Osservazione. Confrontando le espressioni (8.2), (8.3) con l'espressione (8.1) della prima definizione, si può riconoscere che il vettore che congiunge i due punti $P_2-P_1=(x_2-x_1)\hat{x}+(y_2-y_1)\hat{y}+(z_2-z_1)$ \hat{z} è allineato al vettore \vec{n} e ortogonale al piano π , e al vettore $a\hat{x}+b\hat{y}+c\hat{z}$.

8.2.2 Posizioni reciproche

Posizione reciproca di punto e piano

Un punto P o appartiene o non appartiene a un piano $\pi: \hat{n} \cdot (P-Q) = 0$. Se appartiene al piano, la distanza tra punto e retta è nulla; se non appartiene al piano, la distanza tra punto e piano può essere calcolata usando le proprietà del *prodotto interno in spazi euclidei*,

$$\operatorname{dist}(A,\pi) = |\hat{n} \cdot (A - Q)| = |A - Q| \cos \theta.$$

todo figura

Posizione reciproca di piani

Due piani nello spazio euclideo tridimensionale possono essere:

- coincidenti: hanno tutti i punti in comune
- paralleli: non hanno nessun punto in comune
- incidenti: si intersecano e la loro intersezione definisce una retta

8.3 Curve nello spazio

Dato un sistema di coordinate (q^1, q^2, q^3) curva γ nello spazio può essere descritta in **forma parametrica**, fornendo l'espressione delle coordinate in funzione di un parametro λ ,

$$q^k(\lambda)$$
.

Usando le coordinate cartesiane, i punti della curva sono identificati dalla famiglia di vettori euclidei

$$\gamma : \vec{r}(\lambda) = x(\lambda)\hat{x} + y(\lambda)\hat{y} + z(\lambda)\hat{z}$$

al variare del parametro λ .

Una curva può essere anche definita in forma implicita o esplicita, con un sistema di due equazioni che hanno come incognite le tre coordinate,

$$\begin{cases} F(q^1,q^2,q^3) = 0 \\ G(q^1,q^2,q^3) = 0 \end{cases}, \qquad \begin{cases} q^1 = f^1(q_3) \\ q^2 = f^2(q^3) \end{cases}$$

8.4 Rette nello spazio

8.4.1 Definizione ed equazione

Definizione 1 - Passaggio per un punto e direzione tangente. I punti P della retta r passante per il punto P_0 e con direzione \vec{v} possono essere rappresentati dall'**equazione parametrica**,

$$r: P = P_0 + \lambda \vec{v}$$
.

Questa relazione può essere scritta usando un sistema di coordidnate carteisane, con base $\{\hat{x}, \hat{y}, \hat{z}\}$,

$$\begin{cases} x_P(\lambda) = x_{P_0} + \lambda \, v_x \\ y_P(\lambda) = y_{P_0} + \lambda \, v_y \\ z_P(\lambda) = z_{P_0} + \lambda \, v_z \end{cases}$$

Definizione 2 - Interesezione di due piani incidenti. todo

8.4.2 Posizioni reciproche

Posizione reciproca di punto e retta

Un punto P o appartiene o non appartiene a una retta r.

Distanza punto-retta

Dato un punto A e una retta r, di cui sono noti un punto Q e il vettore \vec{v} , la distanza di A da r può essere calcolata come il valore assoluto della proiezione del vettore A-Q in direzione ortogonale alla direzione della retta, individuata da \vec{v} ,

$$\begin{aligned} \operatorname{dist}(A,r) &= |(A-Q) - \hat{v} \; \hat{v} \cdot (A-Q)| = \\ &= |\hat{v} \times (A-Q)| \end{aligned}$$

avendo usato il vettore unitario $\hat{v} = \frac{\vec{v}}{|\vec{v}|}$ per la proiezione.

Posizione reciproca retta e piano

Una retta r può essere:

- contenuta in un piano π : ha tutti i punti appartenenti al piano
- parallela a un piano π : non ha nessun punto appartenente al piano
- incidente a un piano π : interseca il piano in un solo punto

Posizione reciproca tra rette

Due rette possono essere:

- coincidenti: hanno tutti i punti in comune
- incidenti: si intersecano in un solo punto
- parallele: non hanno nessun punto in comune e hanno la stessa direzione; esiste un piano che contiene entrambe le rette
- sghembe: non hanno nessun punto in comune e hanno direzioni diverse; non esiste nessun piano che contiene entrambe le rette

todo verificare queste condizioni

8.5 Cono circolare retto e coniche

8.5.1 Equazione del cono

Equazioni del (doppio) cono circolare retto, usando un sistema di coordinate cilindriche,

$$r = a z$$
,

per
$$z \in (-\infty, +\infty)$$
, $\theta \in (0, 2\pi)$.

8.5.2 Coniche: intersezione tra cono e piano

Part IV

Precalcolo

basics

Nov 09, 2024

1 min read

	_	_	
Motomotico	nor l		<u> </u>
Matematica	Dei i	e Scuole	Subelloll

INTRODUZIONE AL PRE-CALCOLO

Nel gran calderone del pre-calcolo finiscono qui tutti gli argomenti propedeutici allo studio del calcolo, seguendo quanto fatto da **Eulero** - ovviamente come Eulero, ma peggio - nel 1748 nel suo "**Introductio in analysin infinitorum**", pensato come una raccolta di concetti e metodi di analisi e geometria analitica in preparazione al calcolo differenziale e integrale.

Senza fare uso di nessun concetto di calcolo differenziale o integrale, nel primo volume dell'opera Eulero fornisce alcuni **fondamenti dell'analisi** e delle **serie infinite**:

- il concetto di variabile e funzione, vol.1 cap.1-3
- le serie infinite, vol.1 cap.4
- il concetto di funzioni a più variabili, vol.1 cap.5
- le funzioni logaritmo ed esponenziale con base e, vol.1 cap.6-7
- le funzioni trigonometriche, vol.1 cap.8
- risultati sulla fattorizzazione di polinomi, todo
- numeri complessi todo riferimento all'algebra dei numeri complessi

Nel secondo volume, Eulero applica i risultati del primo volume allo studio delle **curve** e delle **superfici** nel piano e nello spazio.

basics

Nov 09, 2024

nin read			

CHAPTER

TEN

FUNZIONI REALI A VARIABILE REALE, $F:\mathbb{R} \to \mathbb{R}$

basics

Nov 09, 2024

0 min read

CHAPTER

ELEVEN

POLINOMI

. . .

11.1 Teorema binomiale

Per $p \in \mathbb{N}$,

$$\left(x+y\right)^p = \sum_{k=0}^p \binom{p}{k} \, x^k \, y^{p-k} \; ,$$

avendo indicato il coefficente binomiale

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

Per $p \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}$

basics

Nov 09, 2024

1 min read

CHAPTER

TWELVE

SERIE E SUCCESSIONI

- successioni numeriche
- · successioni di funzioni
- serie numeriche
- serie di funzioni

12.1 Serie numeriche reali

Carattere della serie

12.1.1 Criteri di convergenza

Serie a termini concordi

- Criterio del confronto.
- Criteri del confronto con serie geometrica.
 - criterio della radice
 - criterio del rapporto
- · Criterio di Raabe
- •

Serie a termini concordi

- Criterio di convergenza assoluta.
- ...

12.1.2 Esempi

Serie armonica, $\sum_{n=1}^{\infty} \frac{1}{n}$.

La serie armonica,

$$\sum_{n=1}^{\infty} \frac{1}{n} ,$$

è una serie divergente. Non è difficile dimostrare che la serie è sempre crescente e non è limitata superiormente: infatti

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{> \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{> \frac{1}{2}} + \dots \; ,$$

la somma dei primi 2^N termini della serie è maggiore di $1+\frac{N}{2},\sum_{n=1}^{2^N}\frac{1}{n}>1+\frac{N}{2}.$

Serie geometrica, $\sum_{n=1}^{\infty} a^n$.

$$\sum_{n=0}^{\infty} a^n$$

La serie risulta convergente per |a| < 1. Infatti

$$S_N = \sum_{n=0}^{N} a^n = 1 + a \sum_{n=0}^{N} -a^{N+1} = 1 - a^{N+1} + a S_N$$

$$S_N = \frac{1 - a^{N+1}}{1 - a} \; .$$

- per $|a|<1, S=\lim_{N\to\infty}=\frac{1}{1-a}$
- per $a \ge 1, S = \lim_{N \to \infty} S_N = +\infty$
- per a < 1, ...

Serie telescopiche, $\sum_{n=1}^{\infty} (A_n - A_{n+1})$.

$$\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\left(A_n-A_{n+1}\right)=A_1-\lim_{n\to\infty}A_n$$

Serie di Mengoli, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

La serie di Mengoli è un esempio di serie telescopica, con

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

e quindi la serie risulta convergente,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 - \lim_{n \to \infty} \frac{1}{n+1} = 1 \; .$$

 $e\,$ di Eulero o di Nepero, $\,e=\sum_{n=0}^{\infty}\frac{1}{n!}.$

La serie

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

converge a un numero irrazionale e, che viene definito il **numero di Eulero o di Nepero**, e il cui valore approssimato è

$$e=2.718281828 \mathrm{"e}$$
 poi la magia finisce" ,

cioè le cifre decimali successive non sono periodiche.

12.2 Serie numeriche complesse

THIRTEEN

TRIGONOMETRIA

13.1 Definizione delle funzioni trigonometriche e relazione fondamentale

13.1.1 Seno e coseno

Facendo riferimento a una circonferenza di raggio R, e scegliendo una semiretta di riferimento come origine per la misura degli angoli, positivi in senso orario, si possono definire le funzioni trigonometriche **seno** e **coseno**,

$$\sin \theta := \frac{\overline{PH}}{R}$$

$$\cos \theta := \frac{\overline{OH}}{R}$$
(13.1)

13.1.2 Relazione fondamentale della trignometria

Usando il teorema di Pitagora è immediato dimostrare la **relazione fondamentale della trigonometria** tra le funzioni seno e coseno di un angolo,

$$\sin^2\theta + \cos^2\theta = 1.$$

Nota sulla notazione. Nell'uso delle funzioni trigonometriche, $\sin^2 x$ indica il quadrato della funzione e non la composizione della funzione con se stessa,

$$\sin^2 x = (\sin x)^2 \neq \sin(\sin x) .$$

13.1.3 Altre funzioni trigonometriche

Tangente.
$$\tan \theta := \frac{\sin \theta}{\cos \theta} = \frac{\overline{PH}}{\overline{OH}}$$

Cosecante, secante, cotangente. Definizioni al limite tra l'inutile e il dannoso,

$$\csc \theta := \frac{1}{\sin \theta}$$
$$\sec \theta := \frac{1}{\cos \theta}$$
$$\cot \theta := \frac{1}{\tan \theta}$$

13.2 Angoli particolari e proprietà

Angoli particolari.

θ	$\cos \theta$	$\sin \theta$	$\tan \theta$
0	1	0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\frac{\pi}{4}}{\frac{\pi}{3}}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	0	1	$ ightarrow \infty$

Proprietà.

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$$

$$\sin(x + \pi) = -\sin x$$

$$\cos(x + \pi) = -\cos x$$

13.3 Formule di somma e sottrazione

Valgono le seguenti formule per il coseno e il seno della somma e della differenza di angoli,

$$\cos(x \mp y) = \cos x \, \cos y \pm \sin x \, \sin y$$

$$\sin(x \mp y) = \sin x \, \cos y \mp \cos x \, \sin y$$

Per completezza, come utile esercizio di geometria sulla similitudine dei triangoli, e per familiarizzare con le funzioni armoniche, si fornisce la dimostrazione della formula del coseno della somma.

Dimostrazione di $\cos(x+y) = \cos x \cos y - \sin x \sin y$

Partendo dall'interpretazione geometrica del coseno di $\alpha + \beta$,

$$\cos(\alpha+\beta) = \frac{\overline{OF}}{R}$$

è necessario esprimere la lunghezza del segmento OF come multiplo del raggio R.

Usando la similitudine dei triangoli OFE, OCA, e riconoscendo il coseno dell'angolo α ,

$$\overline{OF} = \frac{\overline{OC}}{\overline{OA}}\overline{OE} = \cos\alpha \ \overline{OE} \ .$$

La lunghezza del segmento OE può essere scritta come differenza della lunghezza di OD e quella di ED; queste ultime due lunghezze possono essere espresse come frazioni del raggio della circonferenza $R = \overline{OB}$, grazie all'uso delle funzioni trigonometriche e alla similitudine dei triangoli $(\overline{ED} = \sin \alpha \ \overline{BE} = \sin \alpha \ \overline{BD} = \sin \alpha \ \overline{OB \sin \beta})$,

$$\begin{split} \overline{OE} &= \overline{OD} - \overline{ED} = \overline{OB}\cos\beta - \overline{OB}\sin\beta \frac{\sin\alpha}{\cos\alpha} = \\ &= R\left(\cos\beta - \overline{OB}\sin\beta \frac{\sin\alpha}{\cos\alpha}\right) \end{split}$$

Sostituendo questa espressione di \overline{OE} nell'espressione di \overline{OF} , si ottiene

$$\overline{OF} = \overline{OB} \left(\cos \alpha \cos \beta - \sin \beta \sin \alpha \right)$$

dalla quale si ottiene la relazione desiderata,

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\beta\sin\alpha.$$

13.4 Werner

$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]$$

Dimostrazione di
$$\cos x \cos y = \frac{1}{2} \left[\cos(x-y) + \cos(x+y) \right]$$

Usando le formule del coseno della somma e della sottrazione di una coppia di angoli,

$$cos(x - y) = cos x cos y + sin x sin y$$
$$cos(x + y) = cos x cos y - sin x sin y$$

sommando termine a termine si ottiene

$$\cos(x - y) + \cos(x + y) = 2\cos x \cos y,$$

dalla quale risulta evidente la relazione desiderata.

13.5 Prostaferesi

Definendo p = x - y e q = x + y nelle formule di Werner, è immediato ricavare

$$\begin{split} \cos p + \cos q &= 2 \cos \left(\frac{p+q}{2}\right) \cos \left(\frac{q-p}{2}\right) \\ \cos p - \cos q &= 2 \sin \left(\frac{p+q}{2}\right) \sin \left(\frac{q-p}{2}\right) \\ \sin p + \sin q &= 2 \sin \left(\frac{p+q}{2}\right) \cos \left(\frac{q-p}{2}\right) \end{split}$$

Dimostrazione di $\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{q-p}{2}\right)$

Usando la formula di Werner per il prodotto dei coseni,

$$\cos x \cos y = \frac{1}{2} \left[\cos(x-y) + \cos(x+y) \right]$$

e definendo

$$\begin{cases} x - y = p \\ x + y = q \end{cases} \rightarrow \begin{cases} 2x = p + q \\ 2y = q - p \end{cases} \rightarrow \begin{cases} x = \frac{p+q}{2} \\ y = \frac{q-p}{2} \end{cases}$$

si ottiene

$$\cos\frac{p+q}{2}\cos\frac{q-p}{2} = \frac{1}{2}\left(\cos p + \cos q\right) \; ,$$

dalla quale è evidente la relazione desiderata.

ESPONENZIALE E LOGARITMO

14.1 Definizioni e proprietà

Nel campo reale, per ogni b > 0,

$$a = b^c \qquad \leftrightarrow \qquad c = \log_b a$$

14.2 Funzione esponenziale e logaritmo

14.3 e di Nepero, e^x e logaritmo naturale

14.3.1 Definizione di e^x

Esponenziale reale. Per ogni $x \in \mathbb{R}$, si definisce la funzione e^x come

$$\begin{split} e^x &:= \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \\ &:= \lim_{n \to \infty} \sum_{k=0}^n \frac{x^n}{n!} \end{split}$$

Si può dimostrare che

- le due definizioni sono equivalenti, e la serie è convergente per ogni $x \in \mathbb{R}$ finito
- la funzione e^x giustifica questa notazione poiché soddisfa le proprietà delle potenze, come

$$e^{x+y} = e^x e^y.$$

• la base della potenza, e, viene definita e **di Nepero**, ed è un numero reale irrazionale, il cui valore approssimato è $e \approx 2.718281828$ "e poi la magia finisce": nonostante le prime cifre decimali facciano pensare che possa essere periodico, se si scrivono le cifre successive, l'approssimazione diventa $e \approx 2.71828182845904523...$

Esponenziale complesso. Si può estendere la definizione di esponenziale anche a un numero complesso, $z \in \mathbb{C}$ todo

14.4 Esponenziale e logaritmo - dimostrazioni

14.4.1 Equivalenza delle due definizioni

14.4.2 Giustificazione della notazione e^x

$$\begin{split} e^x \, e^y &= \sum_{n=0}^\infty \frac{x^n}{n!} \sum_{m=0}^\infty \frac{y^m}{m!} = \\ &= \sum_{n=0}^\infty \sum_{m=0}^\infty \frac{y^m}{m!} \frac{x^n}{n!} = \\ &= \sum_{p=0}^\infty \sum_{m=0}^p \frac{y^m \, x^{p-m}}{m! (p-m!)} = \\ &= \sum_{p=0}^\infty \frac{1}{p!} \underbrace{\sum_{m=0}^p \frac{p!}{m! (p-m)!} y^m \, x^{p-m}}_{(x+y)^p} = \\ &= \sum_{p=0}^\infty \frac{(x+y)^p}{p!} = \\ &= e^{x+y} \;, \end{split}$$

avendo usato il teorema binomiale.

basics

Nov 09, 2024

0 min read

CHARTER	
CHAPTER	
FIFTEEN	

FUNZIONI MULTI-VARIABILE

Matematica		

Part V

Calcolo

basics

Nov 09, 2024

2 min read

Matematica per le scuole superiori	

INTRODUZIONE AL CALCOLO

Il calcolo si occupa della variazione continua di grandezze matematiche che possono essere rappresentate come funzioni di variabili indipendenti.

Gli strumenti matematici del calcolo vengono sviluppati e formalizzati tra la fine del XVII secolo e il XIX secolo, come strumenti necessari alla costruzione delle teorie fisiche della meccanica razionale di Newton prima, e della meccanica dei mezzi continui (fluidi e solidi) poi.

Newton introduce i concetti fondamentali calcolo differenziale e integrale delle funzioni di una variabile, qui chiamato *calcolo infinitesimale*, necessari allo sviluppo della meccanica: nella meccanica di Newton, il moto di un sistema meccanico è descritto dai suoi gradi di libertà in funzione della variabile tempo, e le equazioni che ne governano il moto sono equazioni differenziali ordinarie. Il lavoro di Newton, e il lavoro contemporaneo di Leibniz, parte dalla *geometria analitica*, che permette di associare una curva a una funzione, e sviluppa la risposta ad alcuni problemi riguardanti la geometria delle curve, come il calcolo della tangente a una curva, la ricerca dei minimi e dei massimi di una funzione o il calcolo delle aree.

I risultati del calcolo differenziale e integrale vengono connessi tra di loro dal **teorema fondamentale del calcolo** (**todo** aggiungere riferimento).

A Eulero si deve una prima raccolta degli strumenti utili a un'introduzione al calcolo, come discusso nel capitolo sul *precalcolo*.

Al lavoro di Johann e Jakob Bernoulli e ancora Eulero si deve l'ideazione del calcolo delle variazioni (**todo** *aggiungere una sezione?*), ampiamente sviluppato da **Lagrange** nella sua riformulazione geometrica della meccanica.

Nel corso del XVIII e del XIX secolo, il calcolo infinitesimale si sviluppo come lo strumento matematico indispensabile nei problemi di fisica: Lagrange introduce il concetto di potenziale in meccanica, mentre Green sviluppa gli strumenti del calcolo infinitesimale per funzioni di più variabili (teorema di Green, estensione del rotore allo spazio 3-dimensionale, metodo della funzione di Green) nel suo "Saggio sull'Applicazione della Analisi Matematica alle Teorie dell'Elettricità e del Magnetismo" del 1828, testo "in anticipo di 30 anni rispetto al suo tempo" secondo Einstein, ma rimasto a lungo trascurato.

Nel XIX secolo Gauss contribuì allo sviluppo del calcolo multivariabile applicato allo studio delle curve e delle superfici, e alla teoria matematica dell'elettromagnetismo.

Nel XIX secolo il calcolo infinitesimale si impose come strumento matematico fondamentale in diversi ambiti:

- · meccanica dei solidi e dei fluidi:
- diffusione del calore per conduzione
- elettromagnetismo

Cauchy diede importanti contributi allo sviluppo del calcolo complesso, successivamente sviluppato da Riemann.

Cauchy contribuì inoltre alla definizione rigorosa dei fondamenti del calcolo, portata avanti da Weierstrass nella seconda metà del XIX secolo con la definizione di limite e continuità di una funzione.

Matematica	ner l	e scuole	superior
matchiatica	PC! I	C SCUCIC	Superior

CALCOLO INFINITESIMALE

Il calcolo infinitesimale si occupa dello studio delle variazioni con continuità delle grandezze todo.

Questo capitolo presenta il calcolo infinitesimale per le funzioni reali di una variabile reale, $f:D\in\mathbb{R}\to\mathbb{R}$, come inizialmente formulate da Newton e Lebniz alla fine del XVII secolo nell'ambito dello sviluppo della meccanica classica, e successivamente formalizzate nel XIX secolo grazie all'opera, tra gli altri, di Cauchy e Weierstrass. Infine vengono introdotte le equazioni differenziali ordinarie. **todo** due parole sull'importanza delle equazioni differenziali?

La presentazione degli argomenti è invertita rispetto a questo ordine cronologico per rispettare un ordine logico: prima vengono presentati alcuni fondamenti dell'**analisi**, come sviluppati da Cauchy e Weierstrass nel XIX secolo; successivamente, questi concetti vengono utilizzati per definire e dare fondamento teorico ai concetti del **calcolo differenziale** e **integrale**, introdotti più di un secolo prima da Newton e Leibniz partendo da risultati di geometria analitica.

Argomenti del capitolo.

- Introduzione all'analisi. Viene richiamato il concetto di funzione di variabile reale a valore reale, $f: D \in \mathbb{R} \to \mathbb{R}$, e la sua rappresentazione grafica in un piano cartesiano.
 - Viene introdotto il concetto di **limite** per funzioni reali e viene usato per definire le **funzioni continue**. Vengono quindi presentati alcuni teoremi sulle funzioni continue e sui limiti che ne permettono il calcolo. Vengono presentate le forme indeterminate al finito e all'infinito, e calcolati i *limiti fondamentali*.
- *Calcolo differenziale*. Usando i concetti di limite della sezione precedente, viene introdotto il concetto di **derivata** di una funzione reale, e viene data una sua interpretazione geometrica, legata alla retta tangente al grafico della funzione. Seguono alcune proprietà e teoremi sulle derivate che permettono di valutare le *derivate fondamentali* e combinare questi risultati per il calcolo della derivata di una funzione qualsiasi. Infine viene introdotto il concetto di derivate di ordine superiore, e vengono mostrate alcune applicazioni: ricerca di punti di estremo locale e di flesso nello studio di funzione, ottimizzazione, approssimazione locale tramite sviluppi in serie polinomiali
- Calcolo integrale. Viene data la definizione di integrale di Riemann e una sua interpretazione geometrica, legata all'area sottesa dal grafico della funzione. Seguono alcune proprietà degli integrali che permettono di definire l'integrale definito e indefinito, e la primitiva di una funzione. Viene presentato il teorema fondamentale del calcolo infinitesimale, che permette di riconoscere l'operazione di integrazione come inversa dell'integrazione. Usando questo risultato, vengono valutati gli integrali fondamentali; poche regole di integrazione permettono poi di calcolare l'integrale di funzioni generiche. Infine vengono mostrate alcune applicazioni: ... todo
- Equazioni differenziali ordinarie. todo

17.1 Introduzione all'analisi

In questa sezione viene richiamato il concetto di funzione introdotto nella sezione *Precalcolo*. Viene introdotto il concetto di *limite* e definito in termini topologici (intervalli, punti di accumulazione, insiemi aperti e chiusi,...). Il concetto di limite viene utilizzato per dare una definizione di *funzione continua*. Vengono poi presentati alcuni teoremi e proprietà di limiti e funzioni continue.

17.1.1 Funzioni reali a variabile reale, $f: \mathbb{R} \to \mathbb{R}$

Definizione

Rappresentazione grafica

17.1.2 Limiti

Cenni di topologia per il calcolo

todo Punto di accumulazione e punto isolato, intorno, insiemi aperti e chiusi, limsup/liminf, max/min,... E' necessario? Il minimo indispensabile

Definizione di limite

Limite finito al finito

$$\forall \varepsilon > 0 \quad \exists U_{x_0,\delta} \quad t.c. \quad |f(x) - L| < \varepsilon \quad \forall x \in U_{x_0,\delta} \backslash \{x_0\}$$

dove la condizione sull'intorno di un punto x_0 al finito per funzioni reali può essere riscritta come $0 < |x - x_0| < \delta$ per un intorno simmetrico del punto x_0 .

Limite infinito al finito

$$\forall M>0 \quad \exists U_{x_0,\delta} \quad t.c. \quad |f(x)|>M \quad \forall x\in U_{x_0,\delta}\backslash\{x_0\}$$

dove la condizione sull'intorno di un punto x_0 al finito per funzioni reali può essere riscritta come $0<|x-x_0|<\delta$ per un intorno simmetrico del punto x_0 . Se f(x)>M allora il limite tende a $+\infty$, se f(x)<-M allora il limite tende a $-\infty$.

Limite finito all'infinito

$$\forall \varepsilon > 0 \quad \exists U_{\mp\infty,R} \quad t.c. \quad |f(x) - L| < \varepsilon \quad \forall x \in U_{\mp\infty,R}$$

dove la condizione sull'intorno di un punto all'infinito per funzioni reali può essere riscritta come x < R per un intorno di $-\infty$ o x > R per un intorno di $+\infty$.

Limite infinito all'infinito

$$\forall M > 0 \quad \exists U_{\pm \infty R} \quad t.c. \quad |f(x)| > M \quad \forall x \in U_{\pm \infty R}$$

dove la condizione sull'intorno di un punto all'infinito per funzioni reali può essere riscritta come x < R per un intorno di $-\infty$ o x > R per un intorno di $+\infty$. Se f(x) > M allora il limite tende a $+\infty$, se f(x) < -M allora il limite tende a $-\infty$.

17.1.3 Funzioni continue

Definizione

Una funzione reale $f:D\in\mathbb{R}\to\mathbb{R}$ è continua in un punto $x_0\in D$ se la funzione è definita nel punto, se esiste il limite della fuzione e coincide con il valore della funzione

$$\lim_{x\to x_0} f(x) = f(x_0) \; .$$

Una funzione reale è continua in un dominio todo o insieme? se è continua in ogni punto del dominio.

Teoremi

Teorema di Weierstrass

Data una funzione reale continua $f:[a,b] \to \mathbb{R}$ definita sull'intervallo chiuso [a,b], la funzione f(x) ammette un punto di massimo assoluto e un punto di minimo assoluto nell'intevallo [a,b].

todo Dimostrazione? Discussione più intuitiva? Figura?

Teorema della permanenza del segno

Data una funzione continua $f:D\to\mathbb{R}$ continua, e un punto $x_0\in D.$ Se $f(x_0)>0$ allora $\exists U_{x_0}$ t.c. f(x)>0 per $\forall x\in U_{x_0}\cap D.$

todo Dimostrazione? Discussione più intuitiva? Figura?

Teorema dei valori intermedi

Data una funzione $f:[a,b] \to \mathbb{R}$ continua, allora f(x) assume tutti i valori compresi tra f(a) e f(b), cioè (assumendo f(a) < f(b)) per $\forall y \in (f(a), f(b)) \ x_0 \in (a,b)$ t.c.. $f(x_0) = y$.

todo Dimostrazione? Discussione più intuitiva? Figura?

17.1.4 Teoremi sui limiti

Operazioni coi limiti

Dato un numero reale $c\in\mathbb{R}$ e i limiti $\lim_{x\to x_0}f(x)=L_1$, $\lim_{x\to x_0}g(x)=L_2$

$$\begin{split} &\lim_{x\to x_0} \left(c\cdot f(x)\right) = c\,L_1\\ &\lim_{x\to x_0} \left(f(x)\mp g(x)\right) = L_1\mp L_2\\ &\lim_{x\to x_0} \left(f(x)\cdot g(x)\right) = L_1\cdot L_2\\ &\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}\quad,\quad \text{se }L_2\neq 0 \end{split}$$

Limiti infiniti e infinitesimi

$$\lim_{x\to x_0} f(x)\to \mp\infty\;, c>0 \quad : \qquad \lim_{x\to x_0} c\cdot f(x)=\mp\infty\;...$$
 \ldots

Forme indeterminate

$$+\infty-\infty \quad , \quad 0\cdot\mp\infty \quad , \quad \frac{\mp\infty}{\mp\infty} \quad , \quad \frac{0}{0} \quad , \quad 1^\infty \quad , \quad 0^0 \quad , \quad \infty^0$$

oss. Invece non sono forme indeterminate $0^{+\infty} \to 0$ e $0^{-\infty} \to \infty$.

Teorema del confronto

Siano $f,g,h:\,X\in\mathbb{R}\to\mathbb{R},$ e dato un punto di accumulazione x_0 per X. Se

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = \ell \;,$$

ed esiste un intorno U di x_0 tale che

$$f(x) \le g(x) \le h(x) \quad \forall x \in U \cap X \{x_0\}$$
,

allora

$$\lim_{x\to x_0}g(x)=\ell\;.$$

todo Dimostrazione? Discussione più intuitiva? Figura?

Teorema di de l'Hopital

Il teorema di de l'Hopital (o di Bernoulli, **todo** *dire due parole sulla storia? Bernoulli precettore di de l'Hopital, ricava il risultato...*) è un teorema utile per il calcolo dei limiti delle forme indeterminate $\frac{0}{0}$ e $\frac{\infty}{\infty}$. Poiché il teorema coinvolge il concetto di derivata, si rimanda alla sezione del *teorema di de l'Hopital* nel capitolo sulle *derivate*.

17.1.5 Limiti fondamentali

In questa sezione vengono calcolati alcuni limiti fondamentali. Questi limiti possono essere considerati fondamentali come sinonimo di *"minimo da ricordare"* per poter calcolare limiti più generali utilizzando le *operazioni* e i *teoremi* sui limiti, e calcolare le *derivate fondamentali*. Un elenco minimo di limiti fondamentali è:

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0}\frac{1-\cos^2x}{x^2}=\frac{1}{2}$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x}{1 + x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$$

Una volta compresa l'operazione di derivazione e di sviluppo in serie, si può rivisitare i limiti notevoli todo

Limiti di successioni. Formula di Sterling

$$n! \sim \left(\frac{n}{e}\right)^n \quad \text{per } n \in \mathbb{N} \to +\infty$$

o

$$\ln n! \sim n \ln n - n \qquad \text{per } n \in \mathbb{N} \to +\infty$$

17.1.6 Infiniti e infinitesimi

17.2 Derivate

17.2.1 Definizione

Rapporto incrementale. Il rapporto incrementale di una funzione reale nel punto x viene definito come il rapporto tra la differenza dei valori della funzione e la differenza del valore della variabile indipendente

$$R[f(\cdot), x, a] := \frac{f(x+a) - f(x)}{a} . \tag{17.1}$$

Derivata. La derivata di una funzione reale in un punto x viene definita come il limite del rapporto incrementale, per l'incremento della variabile indipendente che tende a zero,

$$f'(x) = \frac{df}{dx}(x) := \lim_{a \to 0} \frac{f(x+a) - f(x)}{a}.$$
 (17.2)

todo In generale, la derivata di una funzione reale è un'altra funzione reale.

17.2.2 Regole di derivazione

Usando la definizione (17.2) di derivata e le proprietà dei limiti, è possibile dimostrare le seguenti proprietà

• linearità

$$(a f(x) + b g(x))' = a f'(x) + b g'(x)$$
(17.3)

• derivata del prodotto di funzioni

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$
 (17.4)

· derivata del rapporto di funzioni

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$
 (17.5)

17.2. Derivate 85

· derivata della funzione composta

$$\frac{d}{dx}f(g(x)) = \frac{df}{dy}\Big|_{y=g(x)} \frac{dg}{dx}\Big|_{x}$$
(17.6)

• derivata della funzione inversa, y = f(x), $x = f^{-1}(y)$

$$\left. \frac{df^{-1}}{dy} \right|_{y=f(x)} = \frac{1}{\left. \frac{dy}{dx} \right|_{x}} .$$
(17.7)

Dimostrazione della linearità dell'operazione di derivazione

todo

Dimostrazione della regola del prodotto

todo

Dimostrazione della regola del quoziente

todo

Dimostrazione della regola della funzione composta

todo

Dimostrazione della regola della funzione inversa

Si usa la regola (17.6) di derivazione della funzione composta applicata alla relazione

$$x=f^{-1}\left(f(x)\right)$$

che caratterizza la funzione inversa f^{-1} . Derivando entrambi i termini della relazione rispetto alla variabile indipendente x si ottiene

$$1 = \frac{df^{-1}}{dy}\bigg|_{y=f(x)} \frac{df(x)}{dx} \; ,$$

dalla quale segue immediatamente la regola di derivazione della funzione inversa

$$\left. \frac{df^{-1}}{dy} \right|_{y=f(x)} = \frac{1}{\left. \frac{dy}{dx} \right|_{x}} .$$

17.2.3 Teoremi

Dimostrazione

todo

Dimostrazione

todo

Dimostrazione

todo

Dimostrazione

todo Usando il teorema di Cauhcy con g(x) = x.

Dimostrazione

todo

Oss. Il teorema di de l'Hopital può essere applicato anche in successione, più di una volta, fermandosi al primo rapporto di derivate dello stesso ordine che non produce una forma indeterminata.

17.2.4 Derivate fondamentali

Usando i *limiti fondamentali*, vengono calcolate le derivate fondamentali, che a loro volta permettono il calcolo degli *integrali fondamentali*. Le derivate fondamentali e la loro combinazione con le *regole di derivazione* permettono la derivazione di funzioni generiche. Le derivate fondamentali sono:

$$\begin{split} f(x) &= x^n & f'(x) = nx^{n-1} \\ f(x) &= e^x & f'(x) = e^x \\ f(x) &= \ln x & f'(x) = \frac{1}{x} \\ f(x) &= \sin x & f'(x) = \cos x \\ f(x) &= \cos x & f'(x) = -\sin x \end{split} \tag{17.8}$$

Dimostrazione di $(x^n)'$

 $\mbox{ Usando la formua binomiale } \$(x+\varepsilon)^n = x^n + nx^{n-1}\varepsilon + f(\varepsilon^2, \varepsilon^3, \dots) \$ \ \mbox{ todo } \mbox{ aggiungere riferimento},$

$$\begin{split} \frac{d}{dx}x^n &= \lim_{\varepsilon \to 0} \frac{(x+\varepsilon)^n - x^n}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{x^n + nx^{n-1}\varepsilon + o(\varepsilon) - x^n}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(nx^{n-1} + O(\varepsilon) \right) = \\ &= nx^{n-1} \; . \end{split}$$

17.2. Derivate 87

Dimostrazione di $(e^x)'$

Usando le proprietà della funzione esponenziale e il limite $e^{\varepsilon}-1\sim \varepsilon$ per $\varepsilon\to 0$

$$\begin{split} \frac{d}{dx}e^x &= \lim_{\varepsilon \to 0} \frac{e^{x+\varepsilon} - e^x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{e^x \left(e^\varepsilon - 1\right)}{\varepsilon} = \\ &= e^x \lim_{\varepsilon \to 0} \frac{\varepsilon + o(\varepsilon)}{\varepsilon} = \\ &= e^x \lim_{\varepsilon \to 0} \left(1 + O(\varepsilon)\right) = \\ &= e^x \;. \end{split}$$

Dimostrazione di $(\ln x)'$

Usando le proprietà della funzione logaritmo naturale e il limite $\ln(1+\varepsilon)\sim\varepsilon$ per $\varepsilon\to0$, per x>0

$$\begin{split} \frac{d}{dx} \ln x &= \lim_{\varepsilon \to 0} \frac{\ln(x+\varepsilon) - \ln x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\ln\left(1 + \frac{\varepsilon}{x}\right)}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\frac{\varepsilon}{x} + o(\varepsilon)}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(\frac{1}{x} + O(\varepsilon)\right) = \\ &= \frac{1}{x} \,. \end{split}$$

Dimostrazione di $(\sin x)'$

Usando le formule di somma delle funzioni armoniche, **todo** ref, e gli infinitesimi delle funzioni $\sin \varepsilon \sim \varepsilon$, $\cos \varepsilon \sim 1 - \frac{\varepsilon^2}{2}$ per $\varepsilon \to 0$,

$$\begin{split} \frac{d}{dx}\sin(x) &= \lim_{\varepsilon \to 0} \frac{\sin(x+\varepsilon) - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\sin x \cos \varepsilon + \cos x \sin \varepsilon - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\sin x \left(1 - \frac{\varepsilon^2}{2}\right) + \varepsilon \cos x - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(\cos x + O(\varepsilon)\right) = \\ &= \cos x \;. \end{split}$$

Dimostrazione di $(\cos x)'$

Usando le formule di somma delle funzioni armoniche, **todo** ref, e gli infinitesimi delle funzioni $\sin \varepsilon \sim \varepsilon$, $\cos \varepsilon \sim 1 - \frac{\varepsilon^2}{2}$ per $\varepsilon \to 0$,

$$\begin{split} \frac{d}{dx}\cos(x) &= \lim_{\varepsilon \to 0} \frac{\cos(x+\varepsilon) - \cos x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\cos x \cos \varepsilon - \sin x \sin \varepsilon - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\cos x \left(1 - \frac{\varepsilon^2}{2}\right) - \varepsilon \sin x - \cos x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(-\sin x + O(\varepsilon)\right) = \\ &= -\sin x \;. \end{split}$$

17.2.5 Derivate di ordine superiore

Nel calcolo delle derivate di ordine superiore non c'è nulla di speciale: una volta che si è in grado di calcolare la derivata di una funzione reale, la derivata di ordine n viene calcolata applicando n volte l'operatore derivata alla funzione.

17.2.6 Applicazioni

Espansioni in serie di Taylor e MacLaurin

Le espansioni in serie di Taylor e di MacLaurin sono serie polinomiali che forniscono un'**approssimazione locale** di una funzione, *valida nell'intorno* (**todo** valutare questa espressione) di un punto.

La serie di Taylor della funzione f(x) in un intervallo centrato in x_0 è la serie

$$\begin{split} T[f(x);x_0] &= \sum_{n=0}^{\infty} \frac{f^{(n)(x_0)}}{n!} (x-x_0)^n = \\ &= f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)^2}{2!} (x-x_0)^2 + \dots \; . \end{split}$$

La serie di MacLaurin è la serie di Taylor centrata in $x_0 = 0$.

La serie di Taylor troncata al n-esimo termine fornisce un'approssimazione locale della funzione f(x) di ordine n, nel senso definito dal seguente teorema.

17.2. Derivate 89

Dimostrazione

Usando il teorema di de l'Hopital, fino a quando il rapporto non è una forma indeterminata

$$\begin{split} \lim_{x \to x_0} \frac{f(x) - T[f(x); x_0]}{x^n} &= \lim_{x \to x_0} \frac{f(x) - f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n}{x^n} = (\mathbf{H}) = \\ &= \lim_{x \to x_0} \frac{f'(x) - f'(x_0) + \frac{f''(x_0)}{1!}(x - x_0) + \dots \frac{f^{(n)}(x_0)}{(n - 1)!}(x - x_0)^{n - 1}}{n \, x^{n - 1}} = (\mathbf{H}) = \\ &= \lim_{x \to x_0} \frac{f''(x) - f''(x_0) + \dots \frac{f^{(n)}(x_0)}{(n - 2)!}(x - x_0)^{n - 2}}{n \, (n - 1) \, x^{n - 1}} = (\mathbf{H}) = \\ &= \dots \\ &= \lim_{x \to x_0} \frac{f^{(n)}(x) - f^{(n)}(x_0)}{n!} = 0 \;, \end{split}$$

si dimostra che il numeratore è un infinitesimo del denominatore. Usando la notazione dell'"o piccolo" per gli infinitesimi si può quindi scrivere l'approssimazione locale come:

$$f(x) - T[f(x), x_0] = o((x - x_0)^n)$$
,

o in maniera equivalente $f(x) = T[f(x), x_0] + o((x - x_0)^n)$.\$

Esempi

La serie di MacLaurin per le funzioni interessate nei *limiti notevoli* forniscono approssimazioni locali di ordine maggiore per $x \to 0$,

$$\begin{aligned} \cos(x) &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^5) \\ \sin(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6) \\ \ln(1+x) &= x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3) \\ (1+x)^a &= 1 + ax + a(a-1)\frac{x^2}{2} + o(x^2) \\ e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + o(x^5) \end{aligned}$$

todo Dimostrare la convergenza delle serie. Convergenza puntuale, convergenza uniforme (in un insieme di convergenza, di solito centrato in un punto e le cui dimensioni sono definite da un raggio di convergenza)

Rivisitazione limiti notevoli $\operatorname{Per} x \to 0$

$$(1+x)^a - 1 = ax + o(x)$$

$$\sin x = x + o(x)$$

$$1 - \cos x = \frac{1}{2}x^2 + o(x^3)$$

$$e^x - 1 = x + o(x)$$

$$\ln(1+x) = x + o(x)$$

Identità di Eulero. Usando l'espansione in serie di Taylor per l'esponenziale complesso e^{ix} , si ottiene

$$\begin{split} e^{ix} &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{x^5}{5!} + o(x^5) = \\ &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right) + o(x^5) = \\ &= \cos x + i\sin x \;. \end{split}$$

Studio di funzione

Ottimizzazione

17.3 Integrali

17.3.1 Definizioni

Somma di Riemann. Data una funzione continua $f:[a,b] \to \mathbb{R}$ e $P=\{x_0,x_1,\dots x_n|a=x_0 < x_1 < \dots < x_n=b\}$ partizione dell'intervallo [a,b], la somma di Riemann viene definita come

$$\sigma_P = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}) , \qquad (17.9)$$

 $\operatorname{con} \xi_k \in [x_{k-1}, x_k].$

Integrale di Riemann. Sia $\Delta x = \max_k (x_k - x_{k-1})$, l'integrale definito di Riemann è il limite per $\Delta x \to 0$ della somma di Riemann σ

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sigma_{P}. \tag{17.10}$$

Osservazione. Dato l'intervallo [a,b], per $\Delta x \to 0$ il numero di intervalli della partizione tende all'infinito, $n \to \infty$.

Interpretazione geometrica

L'integrale definito

$$\int_a^b f(x) \, dx \; ,$$

corrisponde al valore dell'area con segno tra il grafico della funzione y=f(x) e l'asse x, per valori di $x\in [a,b]$. Se la funzione è positiva in un intervallo, il contributo dell'integrale sull'intervallo è positivo; se la funzione è negativa in un intervallo, il contributo dell'integrale sull'intervallo è negativo.

Integrale definito

Proprietà dell'integrale definito

Dalla definizione (17.10) dell'integrale di Riemann seguono immediatamente le seguenti proprietà:

· linearità dell'integrale definito

17.3. Integrali 91

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx, \qquad (17.11)$$

· additività sull'intervallo

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx, \qquad (17.12)$$

• valore assoluto dell'integrale è minore dell'integrale del valore assoluto

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx \,, \tag{17.13}$$

· scambio degli estremi di integrazione

$$\int_{x=a}^{b} f(x)dx = -\int_{x=b}^{a} f(x) dx \tag{17.14}$$

Integrale indefinito

Usando la proprietà (17.12) di additività sull'intervallo dell'integrale definito,

$$\int_{a}^{x} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{x} f(t) dt,$$

si osserva che i due integrali con estremo superiore x e diverso estremo inferiore differiscono solo per una quantità indipendente da x, $\int_a^b f(t) dt$. Data la funzione f(x) e il valore a come parametero, si definisce una funzione di x

$$F(x;a) := \int_{a}^{x} f(t) dt.$$
 (17.15)

Usando questa definizione, è immediato dimostrare che l'integrale definito $\int_a^b f(t) \ dt$ è uguale alla differenza della funzione $F(\cdot;b)$ calcolata nei due estremi,

$$\begin{split} \int_{a}^{b} f(t) \; dt &= \int_{c}^{b} f(t) dt + \int_{a}^{c} f(t) dt = \\ &= \int_{c}^{b} f(t) dt - \int_{c}^{a} f(t) dt = \\ &= F(b;c) - F(a;c) \; , \end{split}$$

e che questo risultato è indipendente dal valore c, usato come parametro nella definizione della funzione F.

Data una funzione f(x), le due funzioni $F(x; a_1)$, $F(x; a_2)$ differiscono solo di un termine che dipende dai parametri a_1 , a_2 ma non dalla variabile indipendente x. La famiglia di funzioni F(x; a) ottenuta per ogni valore di a definisce quindi una funzione F(x) a meno di una costante additiva, la **funzione primitiva** della funzione f(x).

L'integrale indefinito di una funzione f(x) viene definito come,

$$\int_{-\infty}^{x} f(t) dt = F(x) + C,$$

dove la costante additiva C tiene conto dell'arbitrarietà appena discussa.

17.3.2 Teoremi

Dimostrazione

todo

Dimostrazione

Dim. Usando la definizione di derivata, le proprietà dell'integrale definito e il teorema della media,

$$\begin{split} \frac{d}{dx} \int_{a}^{x} f(y) dy &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \Big[\int_{a}^{x+\varepsilon} f(y) dy - \int_{a}^{x} f(y) dy \Big] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \Big[\int_{x}^{x+\varepsilon} f(y) dy \Big] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \varepsilon f(\xi) = \qquad \xi \in [x, x+\varepsilon] \\ &= \lim_{\varepsilon \to 0} f(\xi) = f(x). \end{split}$$

Dimostrazione

$$\begin{split} \frac{d}{dx} \int_{a(x)}^{b(x)} f(y) dy &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\int_{a(x+\varepsilon)}^{b(x+\varepsilon)} f(y) dy - \int_{a(x)}^{b(x)} f(y) dy \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\int_{a(x)}^{b(x)} f(y) dy - \int_{a(x)}^{a(x+\varepsilon)} f(y) dy + \int_{b(x)}^{b(x+\varepsilon)} f(y) dy - \int_{a(x)}^{b(x)} f(y) dy \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- \int_{a(x)}^{a(x+\varepsilon)} f(y) dy + \int_{b(x)}^{b(x+\varepsilon)} f(y) dy \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- (a(x+\varepsilon) - a(x)) f(\alpha) + (b(x+\varepsilon) - b(x)) f(\beta) \right] = \quad \alpha \in [a(x), a(x+\varepsilon)] , \quad \beta \in [b(x), b(x+\varepsilon)] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- (\varepsilon a'(x) + o(\varepsilon)) f(\alpha) + (\varepsilon b'(x) + o(\varepsilon)) f(\beta) \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- \varepsilon a'(x) f(\alpha) + \varepsilon b'(x) f(\beta) \right] = \\ &= \lim_{\varepsilon \to 0} \left[- a'(x) f(\alpha) + b'(x) f(\beta) \right] = \\ &= -a'(x) f(a(x)) + b'(x) f(b(x)) . \end{split}$$

17.3. Integrali 93

17.3.3 Integrali fondamentali

Una volta dimostrato il *teorema fondamentale del calcolo infinitesimale*, questo risultato può essere usato per valutare gli integrali fondamentali come l'operazione inversa alla derivazione applicata alle *derivate fondamentali*

$$\int x^n dx = \frac{1}{n}x^{n+1} + C \qquad (n \neq 0, n \neq -1)$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

17.3.4 Regole di integrazione

Integrazione per parti

La regola di integrazione per parti viene ottenuta integrando la regola di (7). Siano F(x), G(x) le primitive delle funzioni f(x), g(x), e quindi vale F'(x) = f(x), G'(x) = g(x). La regola di derivazione del prodotto F(x)G(x) viene scritta come

$$(F(x)G(x))' = F'(x)G(x) + F(x)G'(x) =$$

= $f(x)G(x) + F(x)g(x)$

Isolando il termine f(x)G(x) e integrando, si ottiene

$$\begin{split} \int f(x)G(x)dx &= \int (F(x)G(x))'dx - \int F(x)g(x)dx = \\ &= F(x)G(x) - \int F(x)g(x)dx \;. \end{split}$$

Integrazione con sostituzione

La regola di integrazione per parti viene ottenuta dalla regola di (7). Sia $\widetilde{F}(x)$ la funzione composta $\widetilde{F}(x) = F(y(x))$ e siano definite le derivate

$$\widetilde{f}(x) = \frac{d}{dx}\widetilde{F}(x) \qquad , \qquad f(y) = \frac{d}{dy}F(y)$$

per la regola di derivazione della funzione composta,

$$\widetilde{f}(x) := \frac{d}{dx}\widetilde{F}(x) = \frac{d}{dx}F(y(x)) = \frac{dF}{dy}(y(x))\frac{dy}{dx}(x) =: f(y(x))y'(x)\;.$$

Usando il teorema del calcolo infinitesimale

todo...

17.3.5 Tavola degli integrali indefiniti più comuni

In questa sezione vengono elencati alcuni tra gli integrali più comuni, la cui valutazione viene lasciata come esercizio, a volte svolto

$$\int dx = x + C$$

$$\int x^a dx = \frac{1}{a+1} x^{a+1} + C \qquad \text{per } a \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C \qquad \text{per } a \neq -1$$

$$\int \frac{1}{1+x^2} dx = \operatorname{atan} x + C$$

$$\int \ln x \, dx = x \, \ln x - x + C$$

$$\int \log_b x \, dx = x \, \log_b x - x \log_b e + C$$

$$\int e^{ax} \, dx = \frac{e^{ax}}{a} + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \tan x \, dx = \dots + C$$

$$\int \sinh x \, dx = \cosh x + C$$

$$\int \tanh x \, dx = \dots + C$$

17.3.6 Problemi

Calcolo integrali indefiniti

$$\int \frac{f'(x)}{f(x)} dx$$

$$\int \frac{\sin x}{\cos^2 x} dx$$

$$\int \frac{f'(x)}{f(x)} dx$$

$$\int \frac{1}{ax^2 + bx + c} dx \qquad \text{con } \Delta := b^2 - 4bc > 0$$

17.3. Integrali 95

$$\int \frac{1}{ax^2 + bx + c} dx \qquad \cot \Delta := b^2 - 4bc < 0$$

$$\int f'(x)e^{f(x)} dx = e^{f(x)} + C$$

$$\int f'(x)a^{f(x)} dx = \frac{a^{f(x)}}{\ln a} + C$$

$$\int f'(x)\cos f(x) dx = \sin f(x) + C$$

$$\int f'(x)\sin f(x) dx = -\cos f(x) + C$$

$$\int \sin^2 x dx = \dots$$

$$\int \cos^2 x dx = \dots$$

basics

Nov 09, 2024

2 min read

17.4 Equazioni differenziali ordinarie

Motivazione. In molti ambiti delle scienze compaiono equazioni differenziali ordinarie, equazioni che impongono una condizione tra una funzione reale incognita e le sue derivate. Così, ad esempio:

- le equazioni del moto in dinamica
- le equazioni della statica in meccanica delle strutture
- le equazioni che descrivono l'andamento della temperatura attraverso un mezzo, in condizioni stazionarie
- ... e in generale, in tutti i problemi in cui todo

Approccio. Mentre le motivazioni date dovrebbero essere sufficienti a convincere dell'importanza e della necessità di un'introduzione alle equazioni differenziali ordinarie, una trattazione completa dell'argomento richiede strumenti matematici più avanzati di quelli disponibili a uno studente delle scuole superiori (e spesso anche di molti studenti universitari).

Si cercherà quindi di trattare l'argomento nella maniera più rigorosa possibile per fornire gli strumenti necessari per (semplici) applicazioni nelle quali compaiono le ODE, mentre si chiederà qualche atto di fede nell'accettare alcuni risultati. Per completezza, in corrispondenza di questi atti di fede, verrà messo a disposizione un collegamento a una trattazione più completa dell'argomento.

Definizioni. Un'equazione differenziale ordinaria è una funzione che coinvolge una funzione reale di una variabile reale, incognita, e le sue derivate. Formalmente una ODE può essere scritta come

$$F(y^{(n)}(x), \dots y'(x), y(x), x) = 0$$
 , $x \in [x_0, x_1]$

Il **grado** di una ODE è l'ordine massimo della derivata che compare nell'equazione.

In generale, la soluzione di una ODE di grado n è il risultato di n operazioni di integrazione che producono n costanti arbitrarie. Affinché un problema sia definito, sono necessarie n condizioni sulla funzione incognita o sulle sue derivate.

Si possono definire alcuni problemi:

• problemi differenziali ai valori iniziali

• problemi differenziali con condizioni al contorno

Equazioni lineari a coefficienti costanti.

- Soluzione generale (senza dimostrazione): $y(x) = y_o(x) + y_p(x)$
- · Equazioni di primo grado

$$m\dot{x} + cx = f(t)$$

Soluzione dell'equazione omogenea

$$x_o(t) = Ce^{-\frac{c}{m}t}$$

• Equazioni di secondo grado

$$m\ddot{x} + c\dot{x} + kx = f(t)$$

Soluzione dell'equazione omogenea

$$s_{1,2} = \sigma \mp i\omega$$

$$\begin{split} x_o(t) &= C_1 e^{s_1 t} + C_2 e^{s_2 t} = \\ &= e^{\sigma t} \left(C_1 e^{-i\omega t} + C_2 e^{i\omega t} \right) \;, \end{split}$$

con le costanti di integrazione complesse coniugate,

$$C_1 = C_2^* = (A - iB)^* = A + iB$$

al fine di avere una soluzione reale. Ricordando che la somma di un numero complesso e del suo coniugato vale due volte la parte reale,

$$w + w^* = (u + iv) + (u + iv)^* = u + iv + u - iv = 2u = 2\text{Re}\{w\}$$

si può riscrivere la soluzione dell'equazione omogenea

$$x_o(t) = 2 \left[A \cos(\omega t) + B \sin(\omega t) \right]$$

avendo riconosciuto

$$\begin{split} \operatorname{Re}\{C_2 e^{i\omega t}\} &= \operatorname{Re}\{(A-iB)(\cos(\omega t) + i\sin(\omega t)\} = \\ &= \operatorname{Re}\{A\cos(\omega t) + B\sin(\omega t) + i\left[A\sin(\omega t) - B\cos(\omega t)\right]\}\;. \end{split}$$

Equazioni separabili: tecnica di soluzione di separazione delle variabili.

$$\frac{dy}{dx} = f(y(x)) \ g(x)$$

può essere riscritta formalmente come

$$\frac{dy}{f(y)} = g(x) \; dx$$

e integrata con le opportune condizioni

$$\tilde{F}(y(x)) - \tilde{F}(y(x_0)) = G(x) - G(x_0)$$

Esempi

• Moto rettilineo in un campo di forze costante e uniforme

$$m\ddot{x} = f =: mg$$

L'integrazione produce

$$x(t) = \frac{1}{2}gt^2 + v_0t + x_0$$

• Moto di un corpo in un campo di forze costante e uniforme e forza viscosa (lineare e quadratica)

$$\begin{cases} m\dot{v} = f + f^{visc} \\ \dot{x} = v \end{cases}$$

resistenza proporzionale alla velocità $\begin{cases} m\dot{v}+cv=mg \\ \dot{x}=v \end{cases}$

resistenza proporzionale al quadrato della velocità $\begin{cases} m\dot{v}+\frac{1}{2}\rho Sc_xv^2=mg\\ \dot{x}=v \end{cases}$

• Temperatura della testa di una termocoppia

$$\dot{E} = \dot{Q} \; ,$$

 $\mathrm{con}\,E=mcT, \dot{Q}=h(T_e-T)$

$$mc\dot{T} + hT = hT_e$$

• Distribuzione della temperatura, in un caso stazionario

$$(kT')' = \rho r$$

• Sistema massa-molla-smorzatore, libero e forzato (todo risonanza)

$$m\ddot{x} + c\dot{x} + kx = f$$

• Circuiti RLC (analogia formale con sistema MMS)

• Deformazione a trazione di una trave

$$(EAu')' = f$$

· Deformazione a flessione di una trave

$$(EJw'')'' = f$$

INTRODUZIONE AL CALCOLO MULTI-VARIABILE

basics

Nov 09, 2024

1 min read

18.1 Limite di una funzione di più variabili

Si considera una funzione f a valori reali di due variabili reali $x,y,\mathbf{x}:=(x,y)\in\mathbb{R}^2, f(x,y):\ D\in\mathbb{R}^2\to\mathbb{R}.$

Il limite al finito per $(x,y) \to (x_0,y_0)$ della funzione a più variabili f(x,y), se esiste ed è unico, è il valore al quale tende la funzione f(x,y) all'avvicinarsi di $(x,y) \to (x_0,y_0)$, in maniera indipendente dal modo di avvicinarvisi.

Più precisamente, il limite finito al finito di una funzione di più variabili

$$\ell = \lim_{(x,y) \rightarrow (x_0,y_0)} f(x,y) = \lim_{\mathbf{x} \rightarrow \mathbf{x}_0} f(x,y)$$

viene definito come quel valore ℓ che soddisfa la seguente condizione

$$\text{per } \forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} \quad \text{t.c.} \quad |f(x,y) - \ell| < \varepsilon \quad \text{per } \forall (x,y) \quad 0 < ||\mathbf{x} - \mathbf{x}_0|| < \delta_{\varepsilon} \;,$$

avendo usato una norma per le n-uple di numeri reali appartenenti a \mathbb{R}^n , per definire un'intorno di x_0 .

todo Esempi in cui il limite esiste e il limite non esiste

basics

Nov 09, 2024

1 min read

18.2 Derivate di funzioni di più variabili

18.2.1 Derivate parziali

Data una funzione di più variabili $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, la derivata parziale rispetto alla variabile x_1 , se esiste, è la derivata della funzione calcolata tenendo costanti tutte le altre variabili,

$$\frac{\partial f}{\partial x_1}(x_1,x_2,\ldots,x_n):=\lim_{h_1\to 0}\frac{f(x_1+h_1,x_2,\ldots,x_n)-f(x_1,x_2,\ldots,x_n)}{h_1}$$

La definizione analoga vale per la derivata parziale rispetto a qualsiasi altra variabile indipendente.

Ricordando il significato di infinitesimo $o(h_1)$, $\lim_{h_1\to 0}\frac{o(h_1)}{h_1}=0$, dovrebbe essere semplice convincersi che la definizione di derivata parziale rispetto a x_1 implica

$$f(x_1+h_1,\dots,x_n) - f(x_1,\dots,x_n) = h_1 \frac{\partial f}{\partial x_1}(x_1,\dots,x_n) + o(h_1) \ . \tag{18.1}$$

Si può "verificare" questa relazione inserendola nella definizione di derivata parziale e verificando che si ottiene un'identità.

18.2.2 Incremento di una funzione

Dati gli incrementi h_i delle variabili indipendenti x_i , l'incremento della funzione partendo dalla n-pla \mathbb{Z} dopo l'incremento delle variabili è

$$\Delta f(\mathbf{x}, \mathbf{h}) = f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) .$$

18.2.3 Differenziale

Il differenziale df di una funzione di più variabili a valore reale in corrispondenza della n-pla $\mathbf{x}=(x_1,x_2,\dots,x_n)$ e dell'incremento delle variabili indipendenti $\mathbf{h}=(h_1,h_2,\dots,h_n)$ può essere definito come

$$df(\mathbf{x},\mathbf{h}) = \frac{\partial f}{\partial x_1}(\mathbf{x})\,h_1 + \frac{\partial f}{\partial x_2}(\mathbf{x})\,h_2 + \dots \frac{\partial f}{\partial x_n}(\mathbf{x})\,h_n\;.$$

Il differenziale di una funzione rappresenta al primo ordine l'incremento della funzione rispetto all'incremento delle variabili indipendenti,

$$\Delta f(\mathbf{x}, \mathbf{h}) = df(\mathbf{x}, \mathbf{h}) + o(||\mathbf{h}||) .$$

Dimostrazione per una funzione di due variabili, $f(x_1, x_2)$

Usando la relazione (18.1) si può scrivere

$$\begin{split} f(x_1+h_1,x_2+h_2) &= f(x_1+h_1,x_2) + h_2 \, \partial_2 f(x_1+h_1,x_2) + o(h_2) = \\ &= f(x_1,x_2) + h_1 \, \partial_1 f(x_1,x_2) + o(h_1) \\ &\quad + h_2 \left[\partial_2 f(x_1,x_2) + h_1 \, \partial_1 \partial_2 f(x_1,x_2) + o(h_1) \right] + o(h_2) = \\ &= f(x_1,x_2) + h_1 \, \partial_1 f(x_1,x_2) + h_2 \, \partial_2 f(x_1,x_2) + o(h_1) + o(h_2) + o(h_1 \, h_2) \end{split}$$

Scegliendo una norma per l'incremento h, si può scrivere (todo sempre? Per ogni norma?)

$$f(x_1 + h_1, x_2 + h_2) = f(x_1, x_2) + h_1 \partial_1 f(x_1, x_2) + h_2 \partial_2 f(x_1, x_2) + o(||\mathbf{h}||)$$

e quindi ottenere la relazione desiderata

$$\begin{split} \Delta f(\mathbf{x}, \mathbf{h}) &= f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2) = \\ &= h_1 \, \partial_1 f(x_1, x_2) + h_2 \, \partial_2 f(x_1, x_2) + o(||\mathbf{h}||) = \\ &= df(\mathbf{x}, \mathbf{h}) + o(||\mathbf{h}||) \; . \end{split}$$

Note: Norma infinito La norma infinito di una n-pla apprtenente a \mathbb{R}^n è definita come il valore assoluto del valore massimo

$$||\mathbf{h}||_{\infty} = \max_{i} |h_i| \ .$$

Note: Norma-2 La norma-2 di una n-pla appartenente a \mathbb{R}^n è definita come la radice della somma dei quadrati delle componenti

$$||\mathbf{h}||_2 = \sqrt{h_1^2 + \dots h_n^2} \; .$$

18.3 Integrali su domini multi-dimensionali

18.3.1 Definizioni

Somma di Riemann. Data una funzione continua e limitata $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ e $\{\Omega_k\}$ una partizione del dominio Ω , una somma di Riemann viene definita come

$$\sigma = \sum_k f(\mathbf{x}_k) \mu(\Omega_k) \;,$$

essendo $\mathbf{x}_k \in \Omega_k$ e $\mu(\cdot)$ una misura dei sottoinsiemi di \mathbb{R}^n .

Integrale di Riemann. Sia $\Delta\Omega:=\max_k\mu(\Omega_k)$, l'integrale definito di Riemann è definito come il limite per $\Delta\Omega\to 0$ della somma di Riemann σ ,

$$\int_{\mathbf{x}\in\Omega}f(\mathbf{x})d\mathbf{x}:=\lim_{\Delta\Omega\to0}\sigma\;.$$

Interpretazione geometrica

Proprietà dell'integrale definito

- 18.3.2 Teoremi
- 18.3.3 Regole di integrazione
- 18.3.4 Esempi

tematica per le s	cuole superiori			
tomation por 10 o	suoio oupoiioii			

INTRODUZIONE AL CALCOLO VETTORIALE SU SPAZI EUCLIDEI

Integrali:

- calcolo di lunghezze, aree e volumi
- calcolo di proprietà fisiche di un sistema:
 - massa, centro di massa, momenti di inerzia
- calcolo di integrali particolari:
 - integrale di volume
 - flusso attraverso una superficie
 - integrale lungo una curva e circuitazione

Operatori differenziali:

- · derivata direzionale
- gradiente
- · divergenza
- · rotore

19.1 Operatori differenziali in spazi euclidei

Usando un sistema di coordinate cartesiane, un punto P nello spazio può essere identificato dal vettore euclideo tra l'origine O del sistema delle coordinate e il punto P,

$$P - O = \vec{r}_P = x \, \hat{x} + y \, \hat{y} + z \, \hat{z} = P(x, y, z) \; .$$

19.1.1 Derivata direzionale

$$\begin{split} f(P) &= f\left(P(x,y,z)\right) = F(x,y,z) \\ f(P+\alpha \vec{v}) &= f\left((x+\alpha v_x)\hat{x} + (y+\alpha v_y)\hat{y} + (z+\alpha v_z)\hat{z}\right) = F(x+\alpha v_x,y+\alpha v_y,z+\alpha v_z) \\ f(P+\alpha \vec{v}) - f(P) &= F(x+\alpha v_x,y+\alpha v_y,z+\alpha v_z) - F(x,y,z) = \\ &= \alpha v_x \, \partial_x F(x,y,z) + \alpha v_y \, \partial_y F(x,y,z) + \alpha v_z \, \partial_z F(x,y,z) + o(|\alpha|) = \\ &= \alpha v_x \, \partial_x f(P) + \alpha v_y \, \partial_y f(P) + \alpha v_z \, \partial_z f(P) + o(|\alpha|) = \\ &= \alpha \vec{v} \cdot \nabla f(P) + o(|\alpha|) \;, \end{split}$$

avendo introdotto il vettore formale **nabla**, ∇ , per definire l'operatore **gradiente** usando il sistema di coordinate carteisane,

$$\nabla f(P) = \hat{x} \, \partial_x f(P) + \hat{y} \, \partial_u f(P) + \hat{z} \, \partial_z f(P) \; .$$

19.1.2 Gradiente

Definizione, todo

Proprietà. Il gradiente di un campo scalare indica la direzione locale di massima crescita del campo.

Dimostrazione.

La derivata direzionale della funzione f nel punto P in direzione \hat{t} è definita come il prodotto scalare tra il versore \hat{t} e il gradiente della funzione calcolato nel punto P

$$\hat{t} \cdot \nabla f(P)$$
.

Ricordando la definizione di *prodotto interno in uno spazio euclideo*, è possibile dimostrare che tra tutti i possibili vettori \hat{t} l'incremento della funzione è massimo in direzione del gradiente,

$$\max_{\hat{t}} \hat{t} \cdot \nabla f(P) = \max_{\hat{t}} |\underbrace{\hat{t}}_{=1}| |\nabla f(P)| \cos \theta_{\hat{t}} = \max_{\theta_{\hat{t}}} |\nabla f(P)| \cos \theta_{\hat{t}} = |\nabla f(P)| \;,$$

quando l'angolo tra il versore \hat{t} e il gradiente $\nabla f(P)$ è nullo, $\theta_{\hat{t}} = 0$.

19.1.3 Divergenza

La divergenza di un campo vettoriale $\vec{f}(P)$ nello spazio 3-dimensionale è un campo scalare che può essere interpretato come la densità volumetrica del flusso del campo vettoriale. Usando un sistema di coordinate cartesiane, la divergenza di un campo vettoriale può essere scritta formalmente come il prodotto interno tra il vettore formale nabla e il campo vettoriale.

$$\nabla \cdot \vec{f} = \partial_x f_x + \partial_y f_y + \partial_z f_z$$

Divergenza come densità volumetrica del flusso. Dimostrazione con un cubetto elementare

Usando le coordinate cartesiane si calcola il flusso del campo vettoriale attraverso la superficie di un cubetto elementare centrato nel punto P, todo

$$\begin{split} &\Phi_{\partial\Delta V(P)}\left(\vec{f}\right) = \Delta y \Delta z \hat{x} \cdot \vec{f} \left(P + \hat{x} \frac{\Delta x}{2}\right) - \Delta y \Delta z \hat{x} \cdot \vec{f} \left(P - \hat{x} \frac{\Delta x}{2}\right) + \cdots = \\ &= \Delta y \Delta z \left[f_x \left(P + \hat{x} \frac{\Delta x}{2}\right) f_x \left(P - \hat{x} \frac{\Delta x}{2}\right)\right] + \cdots = \\ &= \Delta y \Delta z \left[f_x(P) + \frac{\Delta x}{2} \,\partial_x \,f(P) - f_x(P) + \frac{\Delta x}{2} \,\partial_x \,f(P) + o(\Delta x)\right] + \cdots = \\ &= \Delta x \Delta y \Delta z \,\partial_x \,f_x(P) + o(\Delta V) + \cdots = \\ &= \Delta V \left[\partial_x \,f_x(P) + \partial_y \,f_y(P) + \partial_z \,f_z(P)\right] + o(\Delta V) = \\ &= \Delta V \,\nabla \cdot \vec{f}(P) + o(\Delta V) \;. \end{split}$$

Divergenza come densità volumetrica del flusso. Dimostrazione con un tetraedro elementare

Usando le coordinate cartesiane si calcola il flusso del campo vettoriale attraverso la superficie di un cubetto elementare centrato nel punto P, **todo**

$$\begin{split} &\Phi_{\partial\Delta V(P)}\left(\vec{f}\right) = -\Delta S_x \hat{x} \cdot \vec{f} \left(P + \hat{y} \frac{\Delta y}{3} + \hat{z} \frac{\Delta z}{3}\right) - \Delta S_y \hat{y} \cdot \vec{f} \left(P + \hat{z} \frac{\Delta z}{3} + \hat{x} \frac{\Delta x}{3}\right) \\ &- \Delta S_z \hat{z} \cdot \vec{f} \left(P + \hat{x} \frac{\Delta x}{3} + \hat{y} \frac{\Delta y}{3}\right) + \Delta S \hat{n} \cdot \vec{f} \left(P + \hat{x} \frac{\Delta x}{3} + \hat{y} \frac{\Delta y}{3} + \hat{z} \frac{\Delta z}{3}\right) + o(\Delta V) = \\ &= -\Delta S_x \left(f_x + \frac{\Delta y}{3} \partial_y f_x + \frac{\Delta z}{3} \partial_z f_x\right) - \Delta S_y \left(f_y + \frac{\Delta z}{3} \partial_z f_y + \frac{\Delta x}{3} \partial_x f_y\right) + \\ &- \Delta S_z \left(f_z + \frac{\Delta x}{3} \partial_x f_z + \frac{\Delta y}{3} \partial_y f_z\right) + \Delta S_z \sum_{k \in \{x,y,z\}} \left[n_k \left(f_k(P) + \frac{\Delta x}{3} \partial_x f_k + n_y \frac{\Delta y}{3} \partial_y f_k + n_z \frac{\Delta z}{3} \partial_z f_k\right)\right] + \cdots + \\ &= -\Delta S_x \left(f_x + \frac{\Delta y}{3} \partial_y f_x + \frac{\Delta z}{3} \partial_z f_x\right) - \Delta S_y \left(f_y + \frac{\Delta z}{3} \partial_z f_y + \frac{\Delta x}{3} \partial_x f_y\right) + \\ &- \Delta S_z \left(f_z + \frac{\Delta x}{3} \partial_x f_z + \frac{\Delta y}{3} \partial_y f_z\right) + \sum_{k \in \{x,y,z\}} \Delta S_k \left(f_k(P) + \frac{\Delta x}{3} \partial_x f_k + n_y \frac{\Delta y}{3} \partial_y f_k + n_z \frac{\Delta z}{3} \partial_z f_k\right) + \cdots + o(\Delta x) \left(\frac{1}{3} \Delta S_x \Delta x \partial_x f_x + \frac{1}{3} \Delta S_y \Delta y \partial_y f_y + \frac{1}{3} \Delta S_z \Delta z \partial_z f_z\right) = \\ &= \Delta V \left[\partial_x f_x(P) + \partial_y f_y(P) + \partial_z f_z(P)\right] + o(\Delta V) \,. \end{split}$$

19.1.4 Rotore

Il rotore di un campo vettoriale $\vec{f}(P)$ nello spazio 3-dimensionale è un campo vettoriale che può essere interpretato come la densità di superficie di circuitazione. Usando un sistema di coordinate cartesiane, il rotore di un campo vettoriale può essere scritto formalmente come il prodotto vettoriale tra il vettore formale nabla e il campo vettoriale,

$$\begin{split} \nabla \times \vec{f} &= \hat{x} \left(\partial_y f_z - \partial_z f_y \right) + \\ &+ \hat{y} \left(\partial_z f_x - \partial_x f_z \right) + \\ &+ \hat{z} \left(\partial_x f_y - \partial_y f_x \right) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial_x & \partial_y & \partial_z \\ f_x & f_y & f_z \end{vmatrix} \,. \end{split}$$

Rotore come densità di circuitazione. Dimostrazione

Usando le coordinate cartesiane si calcola la circuitazione del campo vettoriale \vec{f} sui lati della faccia maggiore di un tetraedro con spigoli coincidenti con gli assi e di lunghezza Δx , Δy , Δz ,

$$\begin{split} \Gamma_{\partial\Delta V(P)}\left(\vec{f}\right) &= \vec{f} \left(P + \frac{\Delta x}{2}\hat{x} + \frac{\Delta y}{2}\hat{y}\right) \cdot \left(-\hat{x}\Delta x + \hat{y}\Delta y\right) + \\ &+ \vec{f} \left(P + \frac{\Delta y}{2}\hat{y} + \frac{\Delta z}{2}\hat{z}\right) \cdot \left(-\hat{y}\Delta y + \hat{z}\Delta z\right) + \\ &+ \vec{f} \left(P + \frac{\Delta z}{2}\hat{z} + \frac{\Delta x}{2}\hat{x}\right) \cdot \left(-\hat{z}\Delta z + \hat{x}\Delta x\right) = \\ &= -\Delta x \left(f_x + \frac{\Delta x}{2}\partial_x f_x + \frac{\Delta y}{2}\partial_y f_x\right) + \Delta y \left(f_y + \frac{\Delta x}{2}\partial_x f_y + \frac{\Delta y}{2}\partial_y f_y\right) \\ &- \Delta y \left(f_y + \frac{\Delta y}{2}\partial_y f_y + \frac{\Delta z}{2}\partial_z f_y\right) + \Delta z \left(f_z + \frac{\Delta y}{2}\partial_y f_z + \frac{\Delta z}{2}\partial_z f_z\right) \\ &- \Delta z \left(f_z + \frac{\Delta z}{2}\partial_z f_z + \frac{\Delta x}{2}\partial_x f_z\right) + \Delta x \left(f_x + \frac{\Delta z}{2}\partial_z f_x + \frac{\Delta x}{2}\partial_x f_x\right) = \\ &= \frac{1}{2}\Delta x \Delta y \left(\partial_x f_y - \partial_y f_x\right) + \frac{1}{2}\Delta y \Delta z \left(\partial_y f_z - \partial_z f_y\right) + \frac{1}{2}\Delta z \Delta x \left(\partial_z f_x - \partial_x f_z\right) = \\ &= \Delta S_z \left(\nabla \times \vec{f}\right)_z + \Delta S_x \left(\nabla \times \vec{f}\right)_x + \Delta S_y \left(\nabla \times \vec{f}\right)_y = \\ &= \Delta S \left(n_z \left(\nabla \times \vec{f}\right)_z n_x \left(\nabla \times \vec{f}\right)_x n_y \left(\nabla \times \vec{f}\right)_y\right) = \\ &= \Delta S \hat{n} \cdot \nabla \times \vec{f}(P) + o(\Delta S) \,. \end{split}$$

19.2 Integrali in spazi euclidei

Part VI

Statistica

basics

Nov 09, 2024

0 min read

			
Matamat	ICO DOL	בוחוותם בו	superiori

CHAPTER	
TWENTY	

INTRODUZIONE ALLA STATISTICA