Table 9.1: Transfer functions for some common linear time-invariant systems. Type System Transfer Function Integrator $\dot{y} = u$ Differentiate

		8
or	$y = \dot{u}$	s
		1

)1	y = a	8
system	$\dot{y} + ay = u$	$\frac{1}{s+a}$

First-order system	$\dot{y} + ay = u$	$\frac{1}{s+a}$	
		1	

		0 00	
ator	$\ddot{y} = u$	$\frac{1}{s^2}$	

ator	$\ddot{y} = u$	$\frac{1}{s^2}$	
------	----------------	-----------------	--

 $C(sI-A)^{-1}B+D$

 $k_{\rm p} + k_{\rm d}s + \frac{k_{\rm i}}{2}$

 $e^{-\tau s}$

Double integrator	$\ddot{y} = u$	$\frac{1}{s^2}$
		1

 $\dot{x} = Ax + Bu, \ y = Cx + Du$

 $\ddot{y} + 2\zeta\omega_0\dot{y} + \omega_0^2y = y$

 $y = k_{\rm p} u + k_{\rm d} \dot{u} + k_{\rm i} \int u$

 $y(t) = u(t - \tau)$

Damped oscillator

State space system

PID controller

Time delay