北京邮电大学 2019--2020 学年第 2 学期

《概率论与数理统计》试题(B卷,计算机学院)

考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效.

一. 填空题与选择题(每小题 4 分,共 4 0 分)
1. 设事件 A 和 B 相互独立,且 $P(A) = 0.8$, $P(A - B) = 0.4$,则事件 A 和 B 中恰
有一个发生的概率为 2.一袋中装有3个红球和2个白球,从中任取2球,已知取出的2球中有红球,则2球全为红球的概率为
3.设随机变量 X 和 Y 的方差分别为 σ^2 和 $2\sigma^2$,且 X 与 Y 的相关系数为 $\frac{1}{\sqrt{2}}$,则
$X-Y$ 与 $X+Y$ 的相关系数为 4. 设 随 机 变 量 X 和 Y 相 互 独 立 , 且 $X \sim N(0,4)$, Y 的 分 布 律 为 $P\{Y=k\} = \frac{1}{2}, \ k=1,2 \ , \ \ 则 \ P\{X+Y>0\} = \ . \ (用标准正态分布函数)$
$\Phi(z)$ 表示结果)
5.设 X_1, X_2, X_3 相互独立, X_1, X_2 均服从参数为 1 的指数分布, $X_3 \sim U(0,1)$,令
$Y = \min\{X_1, X_2, X_3\}$,则 Y 的分布函数为 $F_Y(y) =$
6. 设随机向量(X,Y)服从二维正态分布 $N(0,1,2,8,-0.5)$,则 $Z=2X+Y+1$ ~
(A) $N(0,8)$ (B) $N(0,16)$ (C) $N(2,8)$ (D) $N(2,16)$
7. 设 X_1, X_2, \dots, X_n 为来自总体 X 的样本,总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{\theta - |x|}{\theta^2}, |x| < \theta, \\ 0, & \text{ 其它} \end{cases}$$

则由中心极限定理, 当n充分大时, 样本均值 \bar{X} 近似服从正态分布

(A)
$$N(0, \frac{\sqrt{n}\theta^2}{6})$$
 (B) $N(0, \frac{\theta^2}{6\sqrt{n}})$ (C) $N(0, \frac{n\theta^2}{6})$ (D) $N(0, \frac{\theta^2}{6n})$

(B)
$$N(0, \frac{\theta^2}{6\sqrt{n}})$$

(C)
$$N(0, \frac{n\theta^2}{6})$$

(D)
$$N(0, \frac{\theta^2}{6n})$$

8.从正态总体 $N(\mathbf{u}, \sigma^2)$ 中抽取容量为n 的样本,样本均值和样本标准差分别为 \bar{x}, s, y 则总体标准差 σ 的置信度为 $1-\alpha$ 的置信区间为

(A)
$$(\frac{\sqrt{ns}}{\sqrt{\chi^2_{\alpha/2}(n)}}, \frac{\sqrt{ns}}{\sqrt{\chi^2_{1-\alpha/2}(n)}})$$

(A)
$$(\frac{\sqrt{ns}}{\sqrt{\chi_{\alpha/2}^2(n)}}, \frac{\sqrt{ns}}{\sqrt{\chi_{1-\alpha/2}^2(n)}})$$
 (B) $(\frac{\sqrt{n-1s}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{n-1s}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}})$

(C)
$$(\frac{ns^2}{\chi^2_{\alpha/2}(n)}, \frac{ns^2}{\chi^2_{1-\alpha/2}(n)})$$

(C)
$$(\frac{ns^2}{\chi^2_{\alpha/2}(n)}, \frac{ns^2}{\chi^2_{1-\alpha/2}(n)})$$
 (D) $(\frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)})$

9. 设 X_1, X_2, \dots, X_n 为来自参数为 λ 的泊松分布的样本, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则下列统

计量中为λ2的无偏估计的是

$$(A) \bar{X}^2$$

(B)
$$\overline{X}^2 - \overline{X}$$

(C)
$$\overline{X}^2 - \frac{1}{n} \overline{X}$$

(A)
$$\overline{X}^2$$
 (B) $\overline{X}^2 - \overline{X}$ (C) $\overline{X}^2 - \frac{1}{n}\overline{X}$ (D) $\overline{X}^2 + \frac{1}{n}\overline{X}$

10. 设 X_1, X_2, X_3, X_4 为来自总体 $N(0, \sigma^2)$ 的样本,令 $T = \frac{(X_1 + X_2)^2}{X_2^2 + X_2^2}$,则

(A)
$$T \sim F(1, 2)$$

(B)
$$T \sim F(2,2)$$

(C)
$$2T \sim F(1, 2)$$

(A)
$$T \sim F(1,2)$$
 (B) $T \sim F(2,2)$ (C) $2T \sim F(1,2)$ (D) $2T \sim F(2,2)$

二(10分)

某种型号器件的使用寿命X(单位:周)的分布函数为

$$F(x) = \begin{cases} 1 - \frac{100^3}{x^3}, x \ge 100, \\ 0, & \sharp : \stackrel{\sim}{\sqsubseteq} \end{cases}$$

(1) 求 $P{X > 200}$, 及D(X);

(2) 现有一大批这种器件,从中任取 4 件,Y 表示 4 件器件中其寿命大于 200 周的件数,求 $E(Y^2)$.

三(10分)

设随机变量 X 和 Y 相互独立,且 X 的分布律为 $P\{X = k\} = \frac{1}{3}$, k = 0,1,2 , Y 的分布律为 $P\{Y = -1\} = P\{Y = 1\} = \frac{1}{2}$, 令 Z = XY,

- (1)求Z的分布律;
- (2) X 与 Z 是否不相关? 是否相互独立?

 $\mathbf{U}(12 \, \mathbf{分})$ 设随机向量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{1}{2}(x+y)e^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{ } \sharp \text{ } \boxminus \end{cases}$$

- (1) 求在Y = v(v > 0)条件下, X的条件概率密度;
- (2) 求Z = X + Y的概率密度.

 $\mathbf{\Xi}(\mathbf{10}\,\mathbf{\mathcal{G}})$ 设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{3x^2}{\theta} e^{-\frac{x^3}{\theta}}, x \ge 0, \\ 0, 其他 \end{cases}$$

 $\theta \in (0,+\infty)$ 为未知参数, X_1,X_2,\cdots,X_n 为来自该总体的样本.

- (1) 设 s>0, t>0 , 求 $P\{X>t\}$, $P\{X>s+t\,|\,X>s\}$, 并 比 较 $P\{X>t\}$ 与 $P\{X>s+t\,|\,X>s\}$ 的大小;
- (2) 求 θ 的最大似然估计.

六(10分)有两种方法(A和B)可以装配某种部件,为了比较两种方法的效率. 用这两种方法分别装配8个部件,记录所用的装配时间(单位:min),并计算得样本均值和样本方差如下:

A 方法:
$$\bar{x} = 11.6$$
, $s_1^2 = 1.62$,

B 方法: $\bar{y} = 10.1$, $s_2^2 = 1.26$,

设 A, B 两种方法的装配时间分别服从正态分布 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$,

- (1) 试检验假设: $H_0: \sigma_1 = \sigma_2$ $H_1: \sigma_1 \neq \sigma_2$ (显著性水平 $\alpha = 0.1$);
- (2) 在显著性水平 $\alpha = 0.05$ 下,能否认为 A,B 两方法的平均装配时间有显著差异?($F_{0.05}(7,7) = 3.79$, $t_{0.025}(14) = 2.1448$)
- **七(8分)** 在温度 x (单位: ${}^{\circ}$ C) 对产品得率 y (单位: %) 的效应的研究中, 安排了 10 次试验,得到数据 (x_i, y_i) $(i = 1, 2, \dots, 10)$,并计算得

$$\sum_{i=1}^{10} x_i = 1450, \sum_{i=1}^{10} y_i = 670, S_{xx} = \sum_{i=1}^{10} (x_i - \overline{x})^2 = 8250, S_{xy} = \sum_{i=1}^{10} (x_i - \overline{x})(y_i - \overline{y}) = 3960,$$

$$S_{yy} = \sum_{i=1}^{10} (y_i - \overline{y})^2 = 1980.8$$
,

- (1)求线性回归方程 $\hat{y} = \hat{a} + \hat{b}x$;
- (2)在显著水平 $\alpha = 0.01$ 下,检验回归方程的显著性,即检验假设 $H_0: b=0$, $H_1: b\neq 0$.

$$(F_{0.01}(1,8) = 11.3)$$