

Distributed algorithms and computational algorithm design

Joel Rybicki HIIT, University of Helsinki

September 27, 2013 HIIT seminar, Kumpula

Joint work with

Danny Dolev

The Hebrew University of Jerusalem

Christoph Lenzen

MIT

Juho Hirvonen
Janne H. Korhonen
Jukka Suomela
HIIT and University of Helsinki

Computational algorithm design

Algorithm design

Ask the computer scientist: "Is there an algorithm **A** for problem **P**?"

Algorithm design

Ask the computer scientist: "Is there an algorithm **A** for problem **P**?"

Computational algorithm design

Ask the computer: "Is there an algorithm \mathbf{A} for problem \mathbf{P} ?"

Searching for an algorithm

- The search space is infinite
- What if there are no algorithms?

Finite search

How to make the search space finite?

- Add resource bounds: time, memory, etc.
- Restrict the class of inputs
- Restrict the model of computation

An inductive approach

Computers are good at boring calculations. People are good at generalizing.

- Solve a (difficult) base case
- Use this to solve a more general problem

Synchronous counting

The model

- n processors
- s states
- arbitrary initial state

The model

- n processors
- s states
- arbitrary initial state

Synchronous step:

- I. broadcast state
- 2. update state

The model

- n processors
- s states
- arbitrary initial state

Synchronous step:

- I. broadcast state
- 2. update state

algorithm = transition function

A simple algorithm solves the problem

Solution: Follow the leader.

(3)—

Solution: Follow the leader.

Solution: Follow the leader.

Solution: Follow the leader.

can send different messages to non-faulty nodes!

Note: Counting is easy if self-stabilization is not required (fixed starting state).

Fault-tolerant counting

The model with failures

- n processors
- s states
- arbitrary initial state
- at most f Byzantine nodes

An example

- n = 4 processors
- s = 3 states
- \bullet f = 1
- $\left(\right) 0 = ever$
- bbo = I
- 2 = auxiliary state

Algorithms

Algorithm \mathbf{A} gives a transition function for each node i:

1 observes:

1 observes:

Possible actual states:

2 is faulty:

1 observes:

Possible actual states:

- 2 is faulty:
- 3 is faulty:

1 observes:

Possible actual states:

- 2 is faulty:
- 3 is faulty:
- 4 is faulty:

Actual state:

1 observes:

Actual state: () () 1) observes: () (2) observes: () (3) observes: ()

Actual vs observed states

Actual state: () () 1) observes: () (2) observes: () (3) observes: ()

Actual vs observed states

Actual state: () () 1) observes: ()() 2) observes: () (3) observes: ()

Generalizing from a base case

Suppose we have algorithm **A** that

- solves the counting problem for n nodes
- uses s states per node
- tolerates up to f faulty nodes
- stabilizes in t steps

Generalizing from a base case

Suppose we have algorithm **A** that

- solves the counting problem for n nodes
- uses s states per node
- tolerates up to f faulty nodes
- stabilizes in t steps

There is an algorithm \mathbf{B} that solves the counting problem for n+1 with the same parameters.

Some basic facts

- How many states do we need?
 - $-s \geq 2$
- How many faults can we tolerate?
 - f < n/3
- How fast can we stabilize?
 - t > f

Prior work

Prior algorithms:

- deterministic algorithms with very large s
- randomized algorithms with small s

But are there deterministic algorithms with small s?

Given algorithm **A**, how to prove it correct?

- Let F be a set of faulty nodes, $|F| \le f$
- Construct a projection graph G_F from A
- Nodes = actual states
- Edges = possible state transitions

An example

•
$$n = 4$$

$$\bullet$$
 s = 3

•
$$F = \{1\}$$

Algorithm \mathbf{A} is correct iff for all F the graph G_F satisfies

I. G_F is loopless

 \Leftrightarrow

no deadlocks

Algorithm \mathbf{A} is correct iff for all F the graph G_F satisfies

I. G_F is loopless

 \Leftrightarrow

no deadlocks

2. All nodes have a path to **0** and **I**

 \Leftrightarrow

stabilization

Algorithm \mathbf{A} is correct iff for all F the graph G_F satisfies

I. G_F is loopless

 \Leftrightarrow

no deadlocks

2. All nodes have a path to **0** and **I**

 \Leftrightarrow

stabilization

3. $\{0,1\}$ is the only cycle

 \Leftrightarrow

counting

Finding an algorithm

The size of the search space is s^b where $b = ns^n$.

Finding an algorithm

The size of the search space is s^b where $b = ns^n$.

parameters	search space
n = 4 s = 2	$2^{64}\approx 10^{19}$

Finding an algorithm

The size of the search space is s^b where $b = ns^n$.

parameters	search space
n = 4 s = 2	$2^{64}\approx 10^{19}$
n = 4 s = 3	$3^{324} \approx 10^{154}$

SAT solving

Propositional satisfiability

Problem: Given a propositional formula Ψ,

does there exist a satisfying

variable assignment?

Propositional satisfiability

Problem: Given a propositional formula Ψ, does there exist a satisfying variable assignment?

Example I:
$$(x_1 \lor \neg x_2) \land (x_1 \to x_2)$$
 SAT

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

Propositional satisfiability

Problem: Given a propositional formula Ψ, does there exist a satisfying

variable assignment?

Example 2: $x_1 \wedge \neg x_2 \wedge (x_1 \rightarrow x_2)$ UNSAT

SAT solvers

- Fast in practice
- New solvers and techniques are developed all the time
- Input in conjunctive normal form (CNF):

$$\Psi = \bigwedge C_i$$

$$C_i = \ell_{i_1} \lor \dots \lor \ell_{i_k}$$

Proving correctness (revisited)

Algorithm \mathbf{A} is correct iff for all F the graph G_F satisfies

I. G_F is loopless

 \Leftrightarrow

no deadlocks

2. All nodes have a path to **0** and **I**

 \Leftrightarrow

stabilization

3. $\{0,1\}$ is the only cycle

 \Leftrightarrow

counting

$$x_{i,u,s}$$
 corresponds to $A_i(u) = s$

```
x_{i,u,s} corresponds to A_i(u)=s e_{q,r} denotes the presence of an edge (q,r) in a projection graph
```

```
x_{i,u,s} corresponds to A_i(u)=s e_{q,r} denotes the presence of an edge (q,r) in a projection graph p_{q,r} denotes a path q \leadsto r
```

$$x_{i,u,s}$$
 corresponds to $A_i(u) = s$

$$e_{q,r}$$
 denotes the presence of an edge $\left(q,r\right)$ in a projection graph

$$p_{q,r}$$
 denotes a path $q \rightsquigarrow r$

$$x_{i,u,s} \quad \longrightarrow \quad e_{q,r} \quad \longrightarrow \quad p_{q,r}$$

Reminder: Proving correctness

Algorithm \mathbf{A} is correct iff for all F the graph G_F satisfies

I. G_F is loopless

 \Leftrightarrow

no deadlocks

2. All nodes have a path to **0** and **I**

 \Leftrightarrow

stabilization

3. $\{0,1\}$ is the only cycle

 \Leftrightarrow

counting

Reminder: Proving correctness

Algorithm \mathbf{A} is correct iff for all F the graph G_F satisfies

I. G_F is loopless

$$\Leftrightarrow \neg e_{q,q}$$

2. All nodes have a path to **0** and **I**

$$\Leftrightarrow p_{q,0}$$

3. $\{0,1\}$ is the only cycle

$$\Leftrightarrow \neg p_{q,q} \text{ if } q \notin \{\mathbf{0}, \mathbf{1}\}$$

$$e_{\mathbf{0}, \mathbf{1}} \wedge e_{\mathbf{1}, \mathbf{0}}$$

Ex.: 4 nodes, 3 states, I faulty

```
p cnf 6120 157900
1 2 3 0
....
745 -176 -218 -227 0
....
5522 -5860 -5513 0
....
-3204 0
```

Ex.: 4 nodes, 3 states, 1 faulty

```
vars clauses
p cnf 6120 157900
1 2 3 0
745 -176 -218 -227 0
5522 -5860 -5513 0
-3204 0
```

Ex.: 4 nodes, 3 states, I faulty

```
p cnf 612
1 2 3 0 x_{0,(0201),0} \lor x_{0,(0201),1} \lor x_{0,(0201),2}
745 -176 -218 -227 0
5522 -5860 -5513 0
```

-3204 0

5522 - 5860 - 5513 0

```
p cnf 6120 157900
1 2 3 0
(p_{111*,000*} \land p_{202*,111*}) \rightarrow p_{202*,000*}
5522 -5860 -5513 0
```

-3204 0

```
p cnf 6120 157900
1 2 3 0
745 -176 -218 -227 0
5522 -5860 -5513 0
-3204 0
```

- 6120 variables and 15790 clauses
- $2^{6120} \approx 10^{1842}$ possible assignments
- plingeling solves the instance in less than 2 seconds

Main results, f = I

If $4 \le n \le 5$:

- no 2-state algorithm
- ..but 3 states suffice

Main results, f = I

If $4 \le n \le 5$:

- no 2-state algorithm
- ..but 3 states suffice

If $n \geq 6$:

- 2 states always suffice
- ..but increasing the number of states seems to yield faster algorithms

What next?

- What about f = 2?
- Instances are very large; no luck so far
- An inductive approach for f as well?

Graph coloring and max cut

Distributed graph coloring

Input: n-coloring

Output: k-coloring

Distributed graph coloring

Input: n-coloring

Output: *k*-coloring

neighborhood graph

k-coloring \Leftrightarrow algorithm

Randomized max cut

Input: random cut

Output: better cut

Randomized max cut

Input: random cut

Thanks for listening!

