(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年4月5日(05,04,2001)

PCT

(10) 国際公開番号 WO 01/24289 A1

(51) 国際特許分類7: G11C 11/15, H01L 27/105 H01L 43/08, 43/12,

PCT/JP00/06587

(21) 国際出願番号: (22) 国際出願日:

2000年9月25日(25.09.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/272379 1999年9月27日(27.09.1999) 特願2000/66532 2000年3月10日(10.03.2000) JP

- (71) 出願人 (米国を除く全ての指定国について): 松下電 器産業株式会社 (MATSUSHITA ELECTRIC INDUS-TRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市 大字門真1006番地 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 小田川明弘 (ODA-GAWA, Akihiro) [JP/JP]; 〒631-0032 奈良県奈良市菖 蒲池北3-10-7-404 Nara (JP). 平本雅祥 (HIRAMOTO,

Masayoshi) [JP/JP]; 〒630-0243 奈良県生駒市俵口町 1863-2 Nara (JP). 松川 望 (MATSUKAWA, Nozomu) [JP/JP]; 〒631-0015 奈良県奈良市学園朝日元町一丁 目498-2 高木マンション1-101 Nara (JP). 足立秀明 (ADACHI, Hideaki) [JP/JP]; 〒573-0171 大阪府枚方市 北山一丁目52-4 Osaka (JP). 榊間 博 (SAKAKIMA, Hiroshi) [JP/JP]; 〒610-0352 京都府京田辺市花住坂 20-19 Kyoto (JP).

- (74) 代理人: 山本秀策(YAMAMOTO, Shusaku); 〒540-6015 大阪府大阪市中央区城見一丁目2番27号 クリス タルタワー15階 Osaka (JP).
- (81) 指定国 (国内): JP, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類:

- 国際調査報告書
- 補正書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: MAGNETORESISTANCE EFFECT MEMORY DEVICE AND METHOD FOR PRODUCING THE SAME
- (54) 発明の名称: 磁気抵抗効果記憶素子およびその製造方法

(57) Abstract: A magnetoresistance effect memory device comprising a first ferromagnetic film, a second ferromagnetic film, a first nonmagnetic film formed between the first and second ferromagnetic films, a first conductive film adapted to produce a magnetic field for reversing the magnetization of at least one of the first and second ferromagnetic films and not in electrical contact with the films, and second and third conductive films for applying current to the first and second ferromagnetic films and the first nonmagnetic film, wherein the characteristics of reverse of the magnetization of the first ferromagnetic film with respect to a magnetic filmed are different from these of the second one, and the first nonmagnetic film contains at least a nitride.