#### Contenidos

- ▶ 5.1: Diagnóstico: Análisis de los residuos
- ▶ 5.2: La descomposición ANOVA (ANalysis Of VAriance)
- ▶ 5.3: Relaciones no lineales y transformaciones para linealización
- ▶ 5.4: El modelo de regresión lineal en forma matricial
- ▶ 5.5: Introducción a la regresión lineal múltiple

#### Bibliografía

- ▶ Newbold, P. Estadística para los Negocios y la Economía (1997).
  - Capítulos 12, 13 y 14
- ▶ Peña, D. Regresión y Diseño de Experimentos (2002).
  - Capítulos 5 y 6

#### 5.1. Diagnóstico en regresión

- Supuestos teóricos del modelo de regresión lineal simple de una var. respuesta y sobre una var. explicativa x:
  - Linealidad:  $y_i = \beta_0 + \beta_1 x_i + u_i$ , para  $i = 1, \dots, n$
  - Homogeneidad:  $\mathsf{E}\left[u_i\right] = \mathsf{0}$ , para  $i = 1, \dots, n$
  - Homocedasticidad: Var $[u_i] = \sigma^2$ , para  $i = 1, \ldots, n$
  - Independencia:  $u_i$  y  $u_j$  son independientes para  $i \neq j$
  - Normalidad:  $u_i \sim \text{Normal}(0, \sigma^2)$ , para  $i = 1, \dots, n$
- Los métodos de diagnóstico se utilizan para contrastar si tales supuestos son adecuados para los datos disponibles  $(x_i, y_i)$ ; se basan en el análisis de los residuos  $e_i = y_i \widehat{y}_i$

- ► El método más sencillo consiste en la observación visual del diagrama de puntos (x<sub>i</sub>, y<sub>i</sub>)
- ► A menudo, este sencillo pero potente método revela pautas que sugieren si el modelo teórico es o no adecuado
- Ilustraremos su uso con un ejemplo clásico. Consideremos los cuatro conjuntos de datos siguientes

TABLE 3-10 Four Data Sets

|            | A SET 1 |            | A SET 2 |  |
|------------|---------|------------|---------|--|
| X          | Y       | X          | Y       |  |
| 10.0       | 8.04    | 10.0       | 9.14    |  |
| 8.0        | 6.95    | 8.0        | 8.14    |  |
| 13.0       | 7.58    | 13.0       | 8.74    |  |
| 9.0        | 8.81    | 9.0        | 8.77    |  |
| 11.0       | 8.33    | 11.0       | 9.26    |  |
| 14.0       | 9.96    | 14.0       | 8.10    |  |
| 6.0        | 7.24    | 6.0        | 6.13    |  |
| 4.0        | 4.26    | 4.0        | 3.10    |  |
| 12.0       | 10.84   | 12.0       | 9.13    |  |
| 7.0        | 4.82    | 7.0        | 7.26    |  |
| 5.0        | 5.68    | 5.0        | 4.74    |  |
| DATA SET 3 |         | DATA SET 4 |         |  |
| X          | Y       | X          | Y       |  |
| 10.0       | 7.46    | 8.0        | 6.58    |  |
| 8.0        | 6.77    | 8.0        | 5.76    |  |
| 13.0       | 12.74   | 8.0        | 7.71    |  |
| 9.0        | 7.11    | 8.0        | 8.84    |  |
| 11.0       | 7.81    | 8.0        | 8.47    |  |
| 14.0       | 8.84    | 8.0        | 7.04    |  |
| 6.0        | 6.08    | 8.0        | 5.25    |  |
| 4.0        | 5.39    | 19.0       | 12.50   |  |
| 12.0       | 8.15    | 8.0        | 5.56    |  |
| 7.0        | 6.42    | 8.0        | 7.91    |  |
| 5.0        | 5.73    | 8.0        | 6.89    |  |

SOURCE: F. J. Anscombe, op. cit.

- Para cada uno de los cuatro conjuntos de datos anteriores, se obtiene el mismo modelo estimado de regresión lineal:
- $\hat{y}_i = 3.0 + 0.5x_i$
- ightharpoonup n = 11,  $\bar{x} = 9.0$ ,  $\bar{y} = 7.5$ ,  $r_{x,y} = 0.817$
- ightharpoonup El error estándar estimado del estimador  $\hat{eta}_1$ ,

$$\sqrt{\frac{s_R^2}{(n-1)s_x^2}},$$

toma el valor 0.118. El estadístico  $\it T$  correspondiente toma el valor  $\it T=0.5/0.118=4.237$ 

➤ Sin embargo, los diagramas de puntos correspondientes revelan que los cuatro conjuntos de datos son cualitativamente muy diferentes: ¿Qué conclusiones podemos extraer de estos diagramas?



FIGURE 3-29 Scatterplots for the four data sets of Table 3-10 SOURCE: F. J. Anscombe, op cit.

#### 5.1: análisis de los residuos

- Si la observación del diagrama de puntos no basta para descartar el modelo, se utilizan métodos de diagnóstico basados en el análisis de los residuos  $e_i = y_i \hat{y}_i$
- El análisis comienza tipificando los residuos (dividiéndolos por la cuasi-desviación típica residual): Las cantidades resultantes se denominan residuos tipificados:

$$\frac{e_i}{s_R}$$

- Bajo los supuestos del modelo de regresión lineal, los residuos tipificados son aproximadamente variables aleatorias normales estándar independientes
- Un gráfico de los residuos tipificados no debería mostrar ninguna pauta clara

#### 5.1: Diagramas de residuos

- ▶ Hay varios tipos de diagramas de residuos. Los más comunes son:
  - Diagrama de los residuos vs. x
  - Diagrama de los residuos vs.  $\hat{y}$
- Las desviaciones de los supuestos del modelo dan lugar a pautas, que se pueden identificar visualmente

### 5.1: Ej: consistencia con el modelo teórico



### 5.1: Ej: No linealidad



### 5.1: Ej: Heterocedasticidad



#### 5.1: Datos atípicos

- A partir del gráfico de la recta de regresión podemos observar datos atípicos, que presentan desviaciones sustanciales de la recta de regresión
- Los estimadores  $\widehat{\beta}_0$  y  $\widehat{\beta}_1$  de los parámetros de la recta de regresión son muy sensibles a tales datos atípicos
- Por ello, es importante identificar tales datos y comprobar si son válidos
- ► Veremos que Statgraphics permite mostrar los datos que producen "Unusual Residuals", así como "Influential Points"

#### 5.1: Normalidad de los errores

- ► Recordemos que uno de los supuestos teóricos del modelo de regresión lineal es que los errores tienen una distribución normal
- ▶ Podemos comprobar este supuesto visualmente a partir de la observación y análisis de los residuos e<sub>i</sub>, empleando varios métodos:
  - ▶ Observación del histograma de frecuencias de los residuos
  - Observación de un "Normal Probability Plot" para los residuos (desviaciones importantes de los datos de la línea recta en este gráfico indican desviaciones sustanciales del supuesto de normalidad)

#### 5.2: La descomposición ANOVA

- ANOVA: ANalysis Of VAriance
- ▶ Al ajustar un modelo de regresión lineal  $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$  a un conjunto de datos  $(x_i, y_i)$ , para  $i = 1, \ldots, n$ , podemos distinguir tres fuentes de variación en las respuestas:
  - variación debida al modelo:  $SCM = \sum_{i=1}^n (\widehat{y_i} \overline{y})^2$ , donde las siglas "SC" se refieren a "suma de cuadrados", y la "M" se refiere al "Modelo"
  - variación residual:  $SCR = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$
  - variación total: SCT =  $\sum_{i=1}^{n} (y_i \bar{y})^2$
- ▶ La descomposición ANOVA indica que SCT = SCM + SCR

#### 5.2: El coeficiente de determinación $R^2$

- ▶ La descomposición ANOVA indica que SCT = SCM + SCR
- ▶ Notemos que:  $y_i \overline{y} = (y_i \widehat{y}_i) + (\widehat{y}_i \overline{y})$
- ▶ SCM =  $\sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$  mide la variación de las respuestas debida a la regresión (explicada por los valores predichos  $\hat{y}$ )
- ▶ Por lo tanto, el cociente SCR/SCT es la proporción de variación de la respuesta no explicada por la regresión
- ▶ El cociente  $R^2 = SCM/SCT = 1 SCR/SCT$  es la proporción de variación de las respuestas explicada por la regresión; se conoce como coeficiente de determinación
- ▶ Resultado:  $R^2 = r_{xy}^2$  (coef. de correlación al cuadrado)
- ▶ Ej: si  $R^2 = 0.85$ , la variable x explica un 85% de la variación de la variable y

#### 5.2: Tabla ANOVA

| Fuente de variación | SC  | G.L. | Media             | Cociente F  |
|---------------------|-----|------|-------------------|-------------|
| Modelo              | SCM | 1    | SCM/1             | $SCM/s_R^2$ |
| Residuos/Errores    | SCR | n-2  | $SCR/(n-2)=s_R^2$ |             |
| Total               | SCT | n-1  |                   |             |

#### 5.2: Contraste de hipótesis ANOVA

- ▶ Contraste de hipótesis  $H_0$ :  $\beta_1 = 0$  vs.  $H_1$ :  $\beta_1 \neq 0$
- Consideremos el cociente

$$F = \frac{\text{SCM}/1}{\text{SCR}/(n-2)} = \frac{\text{SCM}}{s_R^2}$$

- ▶ Bajo  $H_0$ , F sigue una distribución  $F_{1,n-2}$
- ▶ Contraste a nivel  $\alpha$ : rechazar  $H_0$  si  $F > F_{1,n-2;\alpha}$

### 5.2: Ej. ANOVA



#### 5.3: Relaciones no lineales y linealización

▶ Supongamos que la parte determinista  $f(x_i; a, b)$  de la respuesta en el modelo

$$y_i = f(x_i; a, b) + u_i, \quad i = 1, ..., n$$

es una función no lineal de x que depende de dos parámetros a y b (ej:  $f(x; a, b) = ab^x$ )

- ► En algunos casos podemos aplicar transformaciones a los datos para linearizarlos, y así poder aplicar los métodos de regresión lineal
- A partir de los datos  $(x_i, y_i)$  originales, obtenemos los datos transformados  $(x'_i, y'_i)$
- Los parámetros  $\beta_0$  y  $\beta_1$  de la relación lineal entre las  $x_i'$  y las  $y_i'$  se obtienen como transformaciones de los parámetros a y b

#### 5.3: Transformaciones para linealización

- Ejemplos de transformaciones para linealización:
  - Si  $y = f(x; a, b) = ax^b$  entonces  $\log y = \log a + b \log x$ : tomamos  $y' = \log y$ ,  $x' = \log x$ ,  $\beta_0 = \log a$ ,  $\beta_1 = b$
  - ► Si  $y = f(x; a, b) = ab^x$  entonces  $\log y = \log a + (\log b)x$ : tomamos  $y' = \log y$ , x' = x,  $\beta_0 = \log a$ ,  $\beta_1 = \log b$
  - ▶ Si y = f(x; a, b) = 1/(a + bx) entonces 1/y = a + bx: tomamos y' = 1/y, x' = x,  $\beta_0 = a$ ,  $\beta_1 = b$
  - ▶ Si  $y = f(x; a, b) = \ln(ax^b)$  entonces  $y = \ln a + b \ln x$ : tomamos  $y' = y, x' = \ln x, \beta_0 = \ln a, \beta_1 = b$

### 5.4: Regresión lineal en forma matricial

▶ Recordemos el modelo de regresión lineal simple:

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, ..., n$$

Escribiendo una ecuación para cada observación obtenemos

$$y_1 = \beta_0 + \beta_1 x_1 + u_1$$
  

$$y_2 = \beta_0 + \beta_1 x_2 + u_2$$
  

$$\vdots \vdots$$
  

$$y_n = \beta_0 + \beta_1 x_n + u_n$$

### 5.4: Regresión lineal en forma matricial

▶ En forma matricial, podemos escribir

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \beta_0 + \beta_1 x_1 \\ \beta_0 + \beta_1 x_2 \\ \vdots \\ \beta_0 + \beta_1 x_n \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix},$$

o, separando los parámetros  $\beta_j$  de las  $x_i$ ,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & & \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix},$$

### 5.4: Regresión lineal en forma matricial

Escribimos la relación matricial

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix},$$

como

$$y = X\beta + u$$

 y : vector de respuestas; X : matriz de variables explicativas (o del diseño experimental); β : vector de parámetros; u : vector de errores

#### 5.4: La matriz de covarianzas de los errores

▶ Denotamos por  $Cov(\mathbf{u})$  la matriz  $n \times n$  de covarianzas de los errores; su elemento (i,j) es

$$cov(u_i, u_j) = \begin{cases} 0 & \text{si } i \neq j \\ Var[u_i] = \sigma^2 & \text{si } i = j \end{cases}$$

▶  $Cov(\mathbf{u})$  es la matriz identidad  $\mathbf{I}_{n \times n}$  multiplicada por  $\sigma^2$ :

$$\operatorname{Cov}(\mathbf{u}) = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix} = \sigma^2 \mathbf{I}$$

#### 5.4: Estimación de mínimos cuadrados

▶ El vector estimado  $\widehat{\beta}$  de mínimos cuadrados es la solución única de la ecuación matricial  $2 \times 2$  (comprueba las dimensiones)

$$(\mathbf{X}^T\mathbf{X})\,\widehat{\boldsymbol{eta}} = \mathbf{X}^T\mathbf{y},$$

es decir,

$$\widehat{oldsymbol{eta}} = \left( \mathbf{X}^{\mathcal{T}} \mathbf{X} 
ight)^{-1} \mathbf{X}^{\mathcal{T}} \mathbf{y}$$

▶ El vector  $\hat{\mathbf{y}} = (\hat{y}_i)$  de respuestas estimadas es

$$\widehat{\mathbf{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}}$$

y el vector de residuos es  $\mathbf{e} = \mathbf{y} - \widehat{\mathbf{y}}$ 

#### 5.5: El modelo de regresión lineal múltiple

- ▶ Modelo de regresión lineal simple: predecir una respuesta y a partir de una variable explicativa x
- ▶ En numerosas aplicaciones, buscamos predecir la respuesta y a partir de múltiples variables explicativas  $x_1, \ldots, x_k$
- ► Ej: predecir el precio de una casa en función de su superficie, localización, planta, y número de baños
- Ej: predecir el tamaño de un parlamento en función de la población, su tasa de crecimiento, el número de partidos políticos con representación, etc.

#### 5.5: El modelo de regresión lineal múltiple

- Modelo de regresión lineal múltiple: predecir una respuesta y a partir de múltiples variables explicativas  $x_1, \ldots, x_k$
- ▶ Tenemos *n* observaciones: para i = 1, ..., n,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$

Suponemos que las  $u_i$  son v.a. independientes con distribución  $Normal(0, \sigma^2)$ 

#### 5.5: Ajuste de mínimos cuadrados

▶ Tenemos n observaciones: para i = 1, ..., n,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$

▶ Buscamos ajustar a los datos  $(x_{i1}, x_{i2}, ..., x_{ik}, y_i)$  un hiperplano de la forma

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \widehat{\beta}_2 x_{i2} + \dots + \widehat{\beta}_k x_{ik}$$

- ▶ El residuo para la observación i es:  $e_i = y_i \hat{y}_i$
- ▶ Utilizamos la estimación de los parámetros  $\widehat{\beta}_j$  que minimiza la suma de los cuadrados de los residuos

#### 5.5: Modelo en forma matricial

Escribimos la relación matricial

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix},$$

como

$$y = X\beta + u$$

y : vector de respuestas; X : matriz de variables explicativas (o del diseño experimental); β : vector de parámetros; u : vector de errores

#### 5.5: Estimación de mínimos cuadrados de $\beta$

▶ El vector estimado  $\widehat{\beta}$  de mínimos cuadrados es la solución única de la ecuación matricial  $(k+1) \times (k+1)$  (comprueba las dimensiones)

$$\left(\mathbf{X}^{T}\mathbf{X}\right)\widehat{\boldsymbol{\beta}}=\mathbf{X}^{T}\mathbf{y},$$

como en el caso k = 1 visto anteriormente, es decir,

$$\widehat{oldsymbol{eta}} = \left( \mathbf{X}^T \mathbf{X} 
ight)^{-1} \mathbf{X}^T \mathbf{y}$$

▶ El vector  $\hat{\mathbf{y}} = (\hat{y}_i)$  de respuestas estimadas es

$$\widehat{\mathbf{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}}$$

y el vector de residuos es  $\mathbf{e} = \mathbf{y} - \widehat{\mathbf{y}}$ 

#### 5.5: Estimación de la varianza $\sigma^2$

Para el modelo de regresión lineal múltiple, estimamos la varianza  $\sigma^2$  mediante la cuasi-varianza residual,

$$s_R^2 = \frac{\sum_{i=1}^n e_i^2}{n-k-1},$$

que es un estimador insesgado (nótese que para regresión lineal simple el denominador vale n-2)

## 5.5: Distribución muestral de $\widehat{\beta}$

- ightharpoonup Bajo los supuestos del modelo, el estimador de mínimos cuadrados  $\widehat{m{\beta}}$  del vector de parámetros  ${m{\beta}}$  sigue una distribución normal multivariante
- $ightharpoonup \mathsf{E}\left[\widehat{eta}
  ight] = eta$  (i.e., es un estimador insesgado)
- lacktriangle La matriz de covarianzas de  $\widehat{eta}$  es  $\mathsf{Cov}(\widehat{eta}) = \sigma^2 \left( \mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1}$
- ▶ Estimamos Cov $(\widehat{\boldsymbol{\beta}})$  por  $s_R^2 (\mathbf{X}^T \mathbf{X})^{-1}$
- La estimación de  $Cov(\widehat{\beta})$  nos da estimaciones  $s^2(\widehat{\beta}_j)$  de la varianza  $Var(\widehat{\beta}_j)$ ;  $s(\widehat{\beta}_j)$  es el error estándar del estimador  $\widehat{\beta}_j$
- ▶ Al tipificar  $\widehat{\beta}_j$  obtenemos:  $\frac{\widehat{\beta}_j \beta_j}{s(\widehat{\beta}_j)} \sim t_{n-k-1}$  (t de Student)

# 5.5: Inferencia sobre los parámetros $\widehat{\beta}_j$

▶ Intervalo de confianza a nivel  $1 - \alpha$  para  $\beta_j$ :

$$\widehat{\beta}_{j} \pm t_{n-k-1;\alpha/2} \, s(\widehat{\beta}_{j})$$

- ▶ Contraste de hipótesis a nivel  $\alpha$  para  $H_0: \beta_i = 0$  vs.  $H_1: \beta_i \neq 0$
- ▶ Rechazar  $H_0$  si  $|T| > t_{n-k-1;\alpha/2}$ , donde  $T = \widehat{\beta}_j/s(\widehat{\beta}_j)$  es el estadístico de contraste

#### 5.5: La descomposición ANOVA

- ANOVA: ANalysis Of VAriance
- Al ajustar un modelo de regresión lineal múltiple

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \dots + \widehat{\beta}_k x_{ik}$$

a un conjunto de datos  $(x_{i1}, \ldots, x_{ik}, y_i)$ , para  $i = 1, \ldots, n$ , podemos distinguir tres fuentes de variación en las respuestas:

- variación debida a la regresión:  $SCM = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ , donde las siglas "SC" se refieren a "suma de cuadrados", y la "M" se refiere al "Modelo"
- variación residual:  $SCR = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$  variación total:  $SCT = \sum_{i=1}^{n} (y_i \bar{y})^2$
- La descomposición ANOVA indica que SCT = SCM + SCR

#### 5.5: El coeficiente de determinación $R^2$

- ▶ La descomposición ANOVA indica que SCT = SCM + SCR
- Notemos que:  $y_i \overline{y} = (y_i \widehat{y}_i) + (\widehat{y}_i \overline{y})$
- ▶ SCM =  $\sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$  mide la variación de las respuestas debida a la regresión (explicada por los valores predichos  $\widehat{y}_i$ )
- ▶ Por lo tanto, el cociente SCR/SCT es la proporción de variación de la respuesta no explicada por la regresión
- ▶ El cociente  $R^2 = \text{SCM/SCT} = 1 \text{SCR/SCT}$  es la proporción de variación de las respuestas explicada por las variables explicativas; se conoce como coeficiente de determinación múltiple
- Resultado:  $R^2 = r_{\widehat{y}y}^2$  (coef. de correlación al cuadrado)
- ▶ Ej: si  $R^2 = 0.85$ , las variables  $x_1, \ldots, x_k$  explican un 85% de la variación de la variable y

#### 5.5: Tabla ANOVA

| Fuente de variación | SC  | G.L.  | Media                                | Cociente F      |
|---------------------|-----|-------|--------------------------------------|-----------------|
| Modelo              | SCM | k     | SCM/k                                | $(SCM/k)/s_R^2$ |
| Residuos/Errores    | SCR | n-k-1 | $\frac{\mathrm{SCR}}{n-k-1} = s_R^2$ |                 |
| Total               | SCT | n-1   |                                      |                 |

#### 5.5: Contraste de hipótesis ANOVA

- ► Consideremos el contraste de hipótesis  $H_0$ :  $\beta_1 = \beta_2 = \cdots = 0$  vs.  $H_1$ :  $\beta_i \neq 0$  para algún  $j = 1, \dots, k$
- $ightharpoonup H_0$ : la respuesta no depende de las  $x_i$
- Consideremos el cociente

$$F = \frac{\text{SCM/}k}{\text{SCR/}(n-k-1)} = \frac{\text{SCM/}k}{s_R^2}$$

- ▶ Bajo  $H_0$ , F sigue una distribución  $F_{k,n-k-1}$
- ▶ Contraste a nivel  $\alpha$ : rechazar  $H_0$  si  $F > F_{k,n-k-1;\alpha}$