Puntos Importantes Ecuaciones Lineales

Pablo Darío

09/01/2024

1 Combinación Lineal

El número de entradas en un vector indica la dimensión en \mathbb{R} en la que se encuentra ese vector. El vector cuyas entradas son todas cero se llama **vector cero** y se denota con 0. Las operaciones de multiplicación escalar y suma vectorial en \mathbb{R}^n se definen entrada por entrada.

Una **combinación lineal** es la suma de un conjunto de vectores que se multiplican por ciertos escalares, la cual produce otro vector con el mismo número de entradas.

$$\mathbf{y} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_p \mathbf{v_p}$$

Una ecuación vectorial

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \dots + x_n\mathbf{v_n} = \mathbf{b}$$

tiene el mismo conjunto solución que el sistema lineal cuya matriz aumentada es

$$\begin{bmatrix} v_1 & v_2 \cdots & v_n & b \end{bmatrix}$$

En particular \mathbf{b} se puede generar por una combinación lineal de $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ si y solo si existe una solución al sistema lineal correspondiente a la matriz aumentada anterior.

Si $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}$ están en \mathbb{R}^n , entonces el conjunto de todas las combinaciones lineales de dicho conjunto se denota como $\operatorname{Gen}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}\}$ y se llama **subconjunto de** \mathbb{R}^n **generado por** $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}$. Es decir $\operatorname{Gen}\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p}\}$ es el conjunto de todos los vectores que se pueden escribir en la forma

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_p\mathbf{v_p}$$

con escalares c_1, c_2, \ldots, c_p

Preguntar si un vector \mathbf{b} está en $\text{Gen}\{v_1, v_2, \dots, v_p\}$ equivale a preguntar si la ecuación vectorial

$$x_1v_1 + x_2v_2 + \dots + x_pv_p = b$$

tiene una solución. La cual se puede reescribir como,

$$x_1 [v_1] + x_2 [v_2] + \cdots + x_p [v_p] = [b]$$

o de manera equivalente, si el sistema lineal con la matriz aumentada $\begin{bmatrix} v_1 & v_2 & \cdots & v_p & b \end{bmatrix}$ tiene una solución.

Observe que Gen $\{v_1, v_2, \dots, v_p\}$ contiene a cada múltiplo escalar de v_1 (por ejemplo), ya que $cv_1 = cv_1 + 0v_2 + \dots + 0v_p$. Por tanto, el vector cero debe estar en Gen $\{v_1, v_2, \dots, v_p\}$.

1.1 Descripción Geométrica de Gen{v} y de Gen{u, v}

Sea \mathbf{v} un vector diferente de cero en \mathbb{R}^3 . Entonces $\operatorname{Gen}\{\mathbf{v}\}$ es el conjunto de todos los múltiplos escalares de \mathbf{v} , que es el conjunto de puntos sobre la recta en en \mathbb{R}^3 que pasa por \mathbf{v} y 0.

Si \mathbf{u} y \mathbf{v} son vectores diferentes de cero en \mathbb{R}^3 , y \mathbf{v} no es un múltiplo de \mathbf{u} , entonces $\operatorname{Gen}\{\mathbf{u},\mathbf{v}\}$ es el plano en \mathbb{R}^3 que contiene a \mathbf{u} , \mathbf{v} y 0. En particular, $\operatorname{Gen}\{\mathbf{u},\mathbf{v}\}$ contiene la recta en \mathbb{R}^3 que pasa por \mathbf{u} y 0, y la recta que pasa por \mathbf{v} y 0.

Figure 1: $Gen\{u\}$ y $Gen\{u, v\}$

2 Ecuación Matricial

Si A es una matriz de $m \times n$, con columnas $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ y si x está en \mathbb{R}^n , entonces el producto de A y x, denotado como A**x**, es la combinación lineal de las columnas de A utilizando como pesos las entradas correspondientes en x, es decir,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + \dots + x_n \mathbf{a_n}$$

Si A es una matriz de $m \times n$, con columnas $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ y si \mathbf{b} está en \mathbb{R}^n , la ecuación matricial

$$A\mathbf{x} = \mathbf{b}$$

tiene el mismo conjunto solución que la ecuación vectorial

$$x_1\mathbf{a_1} + x_2\mathbf{a_2} + \dots + x_n\mathbf{a_n} = \mathbf{b}$$

la cual, a la vez tiene el mismo conjunto solución que el sistema de ecuaciones lineales cuya matriz aumentada es

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}$$

La ecuación $A\mathbf{x} = \mathbf{b}$ tiene solución si y solo si \mathbf{b} es una combinación lineal de las columas de A.

Las columnas de A generan a \mathbb{R}^m significa que cada \mathbf{b} en \mathbb{R}^m es una combinación lineal de las columnas de A; cabe recalcar que c hace referencia al número de entradas que tiene cada vector o bien el número de filas de la matriz A.

Las columnas de A o un conjunto de vectores $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ en \mathbb{R}^m genera a \mathbb{R}^m si y solo si la matriz de coeficientes tiene una posición pivote en cada fila, esto porque así la ecuación $A\mathbf{x} = \mathbf{b}$ no puede ser inconsistente o bien no puede tener filas de la siguiente manera:

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & \mathbf{b} \end{bmatrix}$$

donde \mathbf{b} sea un número diferente de 0.

Si m > n entonces las columnas de A no pueden generar a \mathbb{R}^m debido a que la matriz no puede tener una posición pivote en cada fila; esto significa que hay menos vectores que entradas en cada vector.

Ejemplo Matriz de 3×2

Matriz con 2 vectores en \mathbb{R}^3

$$\begin{bmatrix} \cdot & * \\ 0 & \cdot \\ 0 & 0 \end{bmatrix}$$

Como observamos la matriz no puede tener una posición pivote en cada fila. Dos vectores en \mathbb{R}^3 sería nada más un plano, por lo que un solo plano no puede generar a \mathbb{R}^3 .

Si m=n entonces la matriz debería tener una posción pivote en cada fila o columna, debido a que es una matriz cuadrada, esto para que las columnas de A generen a \mathbb{R}^m .

Ejemplo Matriz de 3×3

$$\begin{bmatrix} . & * & * \\ 0 & . & * \\ 0 & 0 & . \end{bmatrix}$$

Si m < n significa que tenemos más vectores de los necesarios para generar a \mathbb{R}^m por lo que si cada fila tiene una posición pivote si es posible generar a \mathbb{R}^m .

Ejemplo Matriz de 2×3

Para que las columnas de A generen a \mathbb{R}^m en una matriz de 2×3 necesitamos algunas de las siguientes matrices con pivote en cada fila.

$$\begin{bmatrix} . & 0 & * \\ 0 & . & * \end{bmatrix}, \begin{bmatrix} . & * & * \\ 0 & 0 & . \end{bmatrix}, \begin{bmatrix} 0 & . & * \\ 0 & 0 & . \end{bmatrix}$$

En este caso la ecuación $A\mathbf{x} = 0$ tiene infinitas soluciones o bien al menos una variable libre, ya que como se comentó anteriormente tenemos más vectores de los necesarios, por lo que uno o más pueden quedar libres, pero cabe aclarar que no en todos los casos donde m < n se va a generar a \mathbb{R}^m , ya que podemos tener el caso donde no todas las filas tengan pivote, ejemplo:

$$\begin{bmatrix} \cdot & * & * \\ 0 & 0 & 0 \end{bmatrix}$$

3 Independencia Lineal

Se dice que un conjunto indexado de vectores $\{v_1, ..., v_p\}$ en \mathbb{R}^n es linealmente independiente si la ecuación vectorial

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \dots + x_p\mathbf{v_p} = 0$$

solo tiene la solución trivial. Se dice que el conjunto $\{\mathbf{v_1},...,\mathbf{v_p}\}$ es linealmente dependiente si existen pesos $c_1,...,c_p$ no todos cero, tales que

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_p\mathbf{v_p} = 0$$

Para que la ecuación $A\mathbf{x} = 0$ tengo únicamente la solución trivial, todas las columnas de la matriz A deben tener un pivote.

Un conjunto que solo tiene un vector \mathbf{v} es linealmente independiente si y solo si \mathbf{v} no es el vector cero. Esto se debe a que la ecuación vectorial $x_1\mathbf{v}=0$ solo tiene la solución trivial cuando $\mathbf{v}\neq 0$. El vector cero es linealmente dependiente porque $x_10=0$ tiene muchas soluciones no triviales.

Un conjunto de dos vectores $\{v_1, v_2\}$ es linealmente dependiente si al menos uno de los vectores es un múltiplo del otro, esto debido a que son el mismo vector, por lo tanto son dependientes. El conjunto es linealmente independiente si y solo si ninguno de los vectores es un múltiplo del otro.

Un cojunto de dos o más vectores es linealmente dependiente si y solo si al menos uno de los vectores en el conjunto es una combinación lineal de los otros. Esto debido a que uno de los vectores puede ser generado por los demás, es decir ese vector no aporta nada, ya que coexiste en el plano generado por los demás.

Si m>n pueden ser tanto dependientes como independientes, pero jamás generarán a \mathbb{R}^m

Ejemplo Matriz de 3×2

Para que sean independientes: \mathbb{R}^3

$$\begin{bmatrix} \cdot & * \\ 0 & \cdot \\ 0 & 0 \end{bmatrix}$$

Para que sean dependientes (un vector es múltiplo del otro): \mathbb{R}^3

$$\begin{bmatrix} \cdot & \cdot \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Si m=n pueden ser tanto dependientes como independientes y además si son independientes generan a \mathbb{R}^m , esto es cuando todas las filas o todas las columnas de la matriz A tienen pivotes.

Ejemplo Matriz de 3×3

$$\begin{bmatrix} \cdot & * & * \\ 0 & \cdot & * \\ 0 & 0 & \cdot \end{bmatrix}$$

Si m < n el conjunto de vectores siempre van a ser linealmente dependiente, ya que es imposible que todas las columnas tengan pivote, para que generen a \mathbb{R}^m al menos m dos vectores tienen que ser independientes.

Ejemplo Matriz de 2×3

Conjunto de vectores independientes que generan a \mathbb{R}^m :

$$\begin{bmatrix} \cdot & * & * \\ 0 & \cdot & * \end{bmatrix}$$

Conjunto de vectores independientes que **no** generan a \mathbb{R}^m :

$$\begin{bmatrix} \cdot & * & * \\ 0 & 0 & 0 \end{bmatrix}$$

4 Transformación Lineal

Una transformación T de \mathbb{R}^n a \mathbb{R}^m es una regla que asigna a cada vector \mathbf{x} en \mathbb{R}^n un vector $T(\mathbf{x})$ en \mathbb{R}^m . El conjunto de \mathbb{R}^n se llama dominio de T, y \mathbb{R}^m se llama el **codominio** de T.

La notación $T: \mathbb{R}^n \to \mathbb{R}^m$ indica que el dominio T es \mathbb{R}^n y que el codominio es \mathbb{R}^m . Para \mathbf{x} en \mathbb{R}^n , el vector $T(\mathbf{x})$ en \mathbb{R}^m es la **imagen** de \mathbf{x} (bajo la acción o transformación de T). El **conjunto de todas las imágenes** $T(\mathbf{x})$ es el **rango** de T.

Para cada \mathbf{x} en \mathbb{R}^n , $T(\mathbf{x})$ se calcula como $A\mathbf{x}$, donde A es una matriz de $m \times n$. Para simplificar, algunas veces esta transformación matricial se denota como $\mathbf{x} \longmapsto A\mathbf{x}$. El dominio de T es \mathbb{R}^n cuando A tiene n columnas y el codominio de T es \mathbb{R}^m cuando las columnas de A tienen m entradas. El rango de T es el conjunto de todas las combinaciones lineales de las columnas de A porque cada imagen $T(\mathbf{x})$ es de la forma $A\mathbf{x}$.

Figure 2: Transformación Lineal

Para determinar si un vector \mathbf{b} está en el rango de una transformación T, debemos verificar si \mathbf{b} es la imagen vectorial de alguna \mathbf{x} en \mathbb{R}^m es decir si $T(\mathbf{x}) = \mathbf{b}$ para alguna \mathbf{x} . Esto es otra manera de preguntar si el sistema $A\mathbf{x} = \mathbf{b}$ es consistente.

Los vectores que se van a transformar bajo T de \mathbb{R}^n a \mathbb{R}^m tienen n entradas y los vectores resultantes tienen m entradas.

Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal, existe una única matriz A tal que

$$T(\mathbf{x}) = A\mathbf{x}$$
 para toda \mathbf{x} en \mathbb{R}^n

A es la matriz de $m \times n$ cuya j-ésima columna es el vector $T(\mathbf{e_j})$, donde $\mathbf{e_j}$ es la j-ésima columna de la matriz identidad en \mathbb{R}^n

$$A = \begin{bmatrix} T(\mathbf{e_1}) & \cdots & T(\mathbf{e_n}) \end{bmatrix}$$

El término transformación lineal se enfoca sobre una propiedad de un mapeo, mientras que la transformación matricial describe cómo se implementa tal mapeo.

4.1 Existencia y Unicidad

Se dice que un mapeo $T: \mathbb{R}^n \to \mathbb{R}^m$ es **sobre** \mathbb{R}^m si cada **b** en \mathbb{R}^m es la imagen de al menos una **x** en \mathbb{R}^n .

T mapea \mathbb{R}^n sobre \mathbb{R}^m si y solo si las columnas de A generan a \mathbb{R}^m .

Figure 3: ¿El rango de T es todo \mathbb{R}^m ?

Se dice que un mapeo $T: \mathbb{R}^n \to \mathbb{R}^m$ es uno a uno si cada b en \mathbb{R}^m es la imagen de a lo sumo una x en \mathbb{R}^n .

T es uno a uno si, para cada \mathbf{b} en \mathbb{R}^m , la ecuación $T(\mathbf{x}) = \mathbf{b}$ tiene una única solución o ninguna solución.

El mapeo de T no es uno a uno cuando algún \mathbf{b} en \mathbb{R}^m es la imagen de más de un vector en \mathbb{R}^n . Si no existe tal \mathbf{b} , entonces T es uno a uno.

T es uno a uno si y solo si la ecuación $T(\mathbf{x}) = 0$ tiene únicamente la solución trivial.

T es uno a uno si y solo si las columnas de A son linealmente independientes.

Figure 4: ¿Cada **b** es la imagen de a lo sumo un vector?

Puntos Importantes cuando m > n

Si A es una matriz de $m \times n$ donde m > n entonces las columnas de A jamás generarán a \mathbb{R}^m debido a que tiene más entradas que vectores y podemos tener una matriz inconsistente donde alguna fila sea de la forma:

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & \mathbf{b} \end{bmatrix}$$

, el conjunto de vectores de las columnas de A puede ser independientes o dependiente, recordemos que solo son independientes si todas las columnas de A tienen pivote, esto es que no existe una variable libre o bien que la ecuación $A\mathbf{x}=0$ solo tenga la solución trivial. El hecho de que sus vectores sean independientes no indica que pueden generar a \mathbb{R}^m . Una transformación $T:\mathbb{R}^n\to\mathbb{R}^m$ jamás va ser sobre \mathbb{R}^m debido a que estamos transformando a dimensiones mayores, pero si puede ser uno a uno siempre y cuando las columnas de A sean independientes o que la ecuación $A\mathbf{x}=0$ solo tenga la solución trivial.

Sus columnas jamás van a generar a \mathbb{R}^m , pero sus columnas pueden ser independientes, su transformación jamás va a ser sobre \mathbb{R}^m , pero puede ser uno a uno si sus columnas son independientes, esto es que la ecuación $A\mathbf{x} = 0$ solo tenga la solución trivial.

Ejemplo de matrices 3×2 donde sus columas son independientes y su transformación es uno a uno

$$\begin{bmatrix} \cdot & * \\ 0 & * \\ 0 & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & * \\ 0 & \cdot \\ 0 & 0 \end{bmatrix}$$

Ejemplo de matrices 3×2 donde sus columas no son independientes y su transformación no es uno a uno

$$\begin{bmatrix} \cdot & * \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Cabe recalcar que en ninguno de los 2 ejemplos las columnas de A generan a \mathbb{R}^m y la transformación no es sobre \mathbb{R}^m .

Puntos Importantes cuando m

Si A es una matriz de $m \times n$ donde m = n entonces las columnas de A generan a \mathbb{R}^m si y solo si todas sus filas tienen pivote, si esto ocurre entonces la transformación $T: \mathbb{R}^n \to \mathbb{R}^m$ es sobre \mathbb{R}^m , además significa que cada columna también tiene pivote, por lo que el conjunto de sus columnas son independientes, esto es que la transformación es uno a uno. Esto significa que la ecuación $A\mathbf{x} = 0$ solo tiene la solución trivial.

Ejemplo de 3×3 y 2×2 donde ocurren todos los eventos

$$\begin{bmatrix} \cdot & * & * \\ 0 & \cdot & * \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & * \\ 0 & \cdot \end{bmatrix}$$

Puntos Importantes cuando m < n

Si A es una matriz de $m \times n$ donde m < n entonces las columnas de A generan a \mathbb{R}^m si y solo si, cada fila tiene un pivote, esto es si al menos m vectores son independientes; además el conjunto de vectores que conforman las columnas de es linealmente dependiente y si vemos a esta matriz como una matriz transformadora, esta transformación va a ser sobre \mathbb{R}^m si y solo si las columnas de A generan a \mathbb{R}^m , además esta transformación T jamás va ser uno a uno porque las columnas de A no son linealmente dependiente. Esta transformación $T: \mathbb{R}^n \to \mathbb{R}^m$ siempre va a mapear a dimensiones menores. En esta caso la ecuación $A\mathbf{x} = 0$ tiene otras soluciones además de la trivial.

Sus columnas jamás van a ser independientes, pero puede generar a \mathbb{R}^m . Su transformación jamás va ser uno a uno, pero puede ser sobre \mathbb{R}^m (solo si las columnas de A generan \mathbb{R}^m).

Ejemplo de matrices 2×3 que generan a \mathbb{R}^2 y su transformación es sobre \mathbb{R}^2

$$\begin{bmatrix} . & 0 & * \\ 0 & . & * \end{bmatrix}, \begin{bmatrix} . & * & * \\ 0 & 0 & . \end{bmatrix}, \begin{bmatrix} 0 & . & * \\ 0 & 0 & . \end{bmatrix}$$

Ejemplo de matrices 2×3 que no generan a \mathbb{R}^2 y su transformación no es sobre \mathbb{R}^2

$$\begin{bmatrix} \cdot & * & * \\ 0 & 0 & 0 \end{bmatrix}$$

Cabe recalcar que en ninguno de los 2 ejemplos las columnas de A no son independientes y la transformación T no es uno a uno.

7