Przykładowe zadania egzaminacyjne z ISO

1. Dla problemu układanki "8" dane są następujące konfiguracje:

docelowa

1	2	3	1	2	3
8	4	5	8	X	4
7	X	6	7	6	5

początkowa

gdzie X oznacza pustą kratkę. Narysować drzewo przeszukiwania i podać liczbę węzłów sprawdzonych do czasu znalezienia stanu docelowego dla metody przeszukiwania wszerz.

2. Dla pewnego problemu dane jest przedstawione niżej drzewo przeszukiwania:

Obok każdego węzła (z prawej strony) zaznaczono wartość funkcji heurystycznej określającej przewidywany koszt ścieżki do stanu docelowego. Obok każdej gałęzi (z prawej strony) zaznaczono koszt tej gałęzi: koszt prześcia od stanu początkowego do każdego stanu jest równy sumie kosztów prowadzących do niego gałęzi. Węzeł pogrubiony reprezentuje stan docelowy. Podać, jakie stany i w jakiej kolejności będą sprawdzane przez następujące strategie wszerz i w głąb oraz jaki będzie koszt znalezionych przez nie rozwiązań.

3. Rozważmy grę w kółko i krzyżyk na planszy 3x3 (zwycięstwo: 3 kółka/krzyżyki w wierszu, kolumnie lub na przekątnej) i następującą sytuację w grze:

00_

X__

 0_X

w której jako kolejny ma wykonywać ruch gracz X. Narysować drzewo gry analizowane przez obcięty algorytm minimax sprawdzający trzy ruchy do przodu, oceniający sytuację z punktu widzenia gracza X. Podać ocenę każdego węzła, przyjmując dla węzłów, w których partia nie jest rozstrzygnięta, heurystyczną funkcję oceny określoną jako różnica między liczbą ułożonych "dwójek" gracza X dających się uzupełnić do "trójek" i liczbą takich "dwójek" dla gracza O.

4. Dana jest baza wiedzy zawierająca implikacje:

$$p_1 \wedge p_2 \rightarrow p_4, \ p_3 \wedge p_4 \rightarrow p_5, \ p_3 \wedge p_5 \rightarrow p_7, \ p_2 \wedge p_6 \rightarrow p_8, \ p_4 \wedge p_7 \rightarrow p_9, \ p_1 \wedge p_8 \rightarrow p_{10}, \ p_2 \wedge p_9 \rightarrow p_{10},$$

oraz fakty p_1, p_2, p_3 . Prześledzić proces wnioskowania wstecz dla zapytania o fakt p_{10} .

5. Dany jest następujący zbiór formuł logiki predykatów:

$$egin{aligned} P(a,d) ee P(b,d) ee P(c,d), \ P(x,y) &
ightarrow Q(x,y) \wedge
eg R(x), \
eg Q(b,d), \ W(x,z) ee S(y,z) &
ightarrow R(z), \ W(e,c), \end{aligned}$$

gdzie P, Q, R, S i W oznaczają symbole predykatowe, x, y, z oznaczają zmienne i a, b, c, d, e oznaczają stałe. Dla ułatwienia kwantyfikatory zostały wyeliminowane. Przedstawić rezolucyjny dowód dla formuły P(a,d).

- 6. W śledztwie dotyczącym zabójstwa inspektor Bayes rozważa dwie hipotezy:
 - h że główny podejrzany zabił,
 - \bullet $\neg h$ że główny podejrzany nie zabił

oraz następujące możliwe fakty:

- \bullet f_1 że na miejscu zbrodni znaleziono odciski palców głównego podejrzanego,
- f_2 że główny podejrzany nie ma alibi na czas popełnienia zabójstwa,
- f_3 że główny podejrzany miał motyw zabicia ofiary.

Zależności między takimi faktami a hipotezami opisują następujące prawdopodobieństwa:

$$P(f_1|h) = 0.7,$$
 $P(f_1|\neg h) = 0.3,$ $P(f_2|h) = 0.8,$ $P(f_3|h) = 0.9,$ $P(f_3|\neg h) = 0.5.$

W którym przypadku prawdopodobieństwo dokonania zabójstwa przez głównego podejrzanego byłoby większe:

- (a) gdyby znaleziono na miejscu zbrodniu jego odciski palców,
- (b) gdyby stwierdzono, że nie miał alibi i miał motyw?
- 7. Rozważmy dziedzinę, na której są określone trzy atrybuty dyskretne a_1 , a_2 , a_3 , odpowiednio o zbiorach wartości $\{1,2,3\}$, $\{1,2\}$, $\{1,2\}$. Zakładamy, że przykłady mogą być zaliczone do kategorii ze zbioru $\{0,1\}$. Dla tej dziedziny dany jest następujący zbiór przykładów:

x	$a_1(x)$	$a_2(x)$	$a_3(x)$	c(x)
1	1	1	1	0
2	2	1	2	0
3	2	2	1	0
4	2	2	2	0
5	3	1	1	1
6	3	1	2	1
7	1	2	1	1
8	1	2	2	1

W trakcie budowy drzewa decyzyjnego na podstawie tego zbioru przykładów jako test w korzeniu drzewa został wybrany atrybut a_1 . Dokończyć budowę drzewa, a następnie zastosować je do klasyfikacji następujących dwóch nowych przykładów:

\boldsymbol{x}	$a_1(x)$	$a_2(x)$	$a_3(x)$
9	1	1	2
10	3	2	1

8. Rozważmy dziedzinę, na której są określone trzy atrybuty dyskretne a_1 , a_2 , a_3 , odpowiednio o zbiorach wartości $\{1, 2, 3\}$, $\{1, 2\}$, $\{1, 2\}$. Zakładamy, że przykłady mogą być zaliczone do kategorii ze zbioru $\{0, 1\}$. Dla tej dziedziny dany jest następujący zbiór przykładów:

\boldsymbol{x}	$a_1(x)$	$a_2(x)$	$a_3(x)$	c(x)
1	1	1	1	0
2	2	1	2	0
3	2	2	1	0
4	2	2	2	0
5	3	1	1	1
6	3	1	2	1
7	1	2	1	1
8	1	2	2	1

Wygenerować jedną regułę na podstawie tego zbioru przykładów za pomocą algorytmu AQ, zakładając, że jako ziarno wybrany jest przykład 5, ziarna negatywne wybierane są w kolejności numerów przykładów, jakość kompleksów jest oceniana według liczby pokrywanych przykładów o kategorii zgodnej z kategorią ziarna, a w gwieździe pozostawiane są zawsze co najwyżej dwa najlepsze kompleksy.