Sequence Assembly

Task and Technologies

Outline

- Defining the sequence assembly task
- Technologies for sequencing DNA

The sequencing problem

- We want to determine the sequence of the bases that make up:
 - A single large molecule of DNA
 - The genome of a single cell
 - The genome of an individual organism
 - The genome of a species

 But we can't (currently) "read" off the sequence of an entire molecule all at once

The strategy: substrings

- We do have the ability to read or detect short pieces (substrings) of DNA
 - ✓ Sanger sequencing: 500-700 bp/read
 - Hybridization arrays: 8-30bp/probe
 - Latest technologies:
 - Short read technologies
 - Illumina Genome Analyzer: 35-300 bp/read
 - Long read technologies
 - Pacific Biosciences: ~10,000 bp/read
 - Oxford Nanopore: variable, 10,000 100,000 bp /read

Sanger sequencing

Classic sequencing technique: "Chain-termination method"

primer

TGATGCGTAGATCGATGC
ACTACGCATCTAGCTACGTACGTACGTTAGCTGAC

Replication terminated by inclusion of dideoxynucleotide (ddNTP)

ACTACGCATCTAGCTACGTACGTACGTTAGCTGAC

Sequencing gels

- Run replication in four separate test tubes
 - Each with one of some concentration of either ddATP, ddTTP, ddGTP, or ddCTP
- Depending on when ddNTP is included, different length fragments are synthesized
- Fragments separated by length with electrophoresis gel
- Sequence can be read from bands on gel

Universal DNA arrays

- Array with all possible oligonucleotides (short DNA sequence) of a certain length as probes
- Sample is labeled and then washed over array
- Hybridization is detected from labels

Reading a DNA array

Latest technologies

Illumina

- "sequencing by synthesis"
- $-\sqrt{100}$ Gb/day on one machine
- Uses fluorescently-labeled reversible nucleotide terminators
- Like Sanger, but detects added nucleotides with laser after each step

Latest technologies

- Pacific Biosciences:
 - "Sequencing by synthesis"
 - Single molecule sequencing
 - Detects addition of single fluorescently-labeled nucleotides by an immobilized DNA polymerase
 - Real-time: reads bases at the rate of DNA polymerase
 - 4 hours for sequencing with reads up to 60kb long

Oxford Nanopore

- Emerging technology
- Pocket-sized
- High error rate
- Currently in "community" program

Shotgun Sequencing Fragment Assembly

Multiple copies of sample DNA

Randomly fragment DNA

Sequence sample of fragments

Assemble reads