Last name(s)	Name	ID
Midterm EDA exam	Length: 2.5 hours	19/04/2018
,	•	•
Problem 1		(1.5 points)
(a) (0.5 pts.) Consider the funct	tions $f(n) = n^{n^2}$ and $g(n) = 2^{2^n}$	n .
	grows asymptotically faster? (
Justification:		

Note: Read n^{n^2} as $n^{(n^2)}$, and similarly 2^{2^n} as $2^{(2^n)}$.

- (b) (0.5 pts.) Assume that the inputs of size n of a certain algorithm are of the following types:
 - Type 1: for each input of this type, the algorithm takes time $\Theta(n^4)$. Moreover, the probability that the input is of this type is $\frac{1}{n^3}$.
 - Type 2: for each input of this type, the algorithm takes time $\Theta(n^3)$. Moreover, the probability that the input is of this type is $\frac{1}{n}$.
 - Type 3: for each input of this type, the algorithm takes time $\Theta(n)$. Moreover, the probability that the input is of this type is $1 \frac{1}{n^3} \frac{1}{n}$.

(0.5 pts.) Solve the recurrence $T(n)=2T(n/4)+\Theta(\sqrt{n})$. Answer: $T(n)=\Theta($). Justification:	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Answer: $T(n) = \Theta($ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	
Justification:	

Last name(s)	Name	ID	
			_

Problem 2 (2 points)

In this problem we take n as a constant. Given a vector $x_0 \in \mathbb{Z}^n$ and a square matrix $A \in \mathbb{Z}^{n \times n}$, we define the sequence $x(0), x(1), x(2), \ldots$ as:

$$x(k) = \begin{cases} x_0 & \text{if } k = 0\\ A \cdot x(k-1) & \text{if } k > 0 \end{cases}$$

For example, for n = 3, if

$$x_0 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$,

we have that

$$x(0) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $x(1) = \begin{pmatrix} 6 \\ 1 \\ 2 \end{pmatrix}$, $x(2) = \begin{pmatrix} 9 \\ 6 \\ 1 \end{pmatrix}$, ...

(a) (1 pt.) Show by induction that $x(k) = A^k \cdot x_0$ for all $k \ge 0$.

1	
	/

			fined by the ma	
tne vecto better tha	so the cost in	time as a funct	tion of k . The co	st must be
(

Last name(s)	Name	ID

Problem 3 (3.5 points)

Given a natural number x, let us consider its representation in base 3. Assume that the number of digits n in this representation is a power of 3. We split the sequence of digits in three parts of the same size x_2 , x_1 and x_0 , corresponding to the highest, middle and lowest digits of x.

For example, if $x = 102111212_3$, then $x_2 = 102_3$, $x_1 = 111_3$ and $x_0 = 212_3$.

(a) (0.5 pts.) Express x in terms of x_2 , x_1 and x_0 . No justification is needed.

$$x =$$

(b) (1 pt.) Let y be another natural number with n digits in its representation in base 3, and let us define y_2 , y_1 and y_0 analogously. Express $x \cdot y$ in terms of x_2 , x_1 , x_0 , y_2 , y_1 and y_0 . No justification is needed.

(c) (1 pt.) Express $x \cdot y$ in terms of x_2 , x_1 , x_0 , y_2 , y_1 and y_0 in such a way that strictly less than 9 products are introduced. No justification is needed.

Hint: Consider $(x_0 + x_1 + x_2) \cdot (y_0 + y_1 + y_2)$.

/			

Problem 4 (3 points)

(a) (1 pt.) Consider a recurrence of the form

$$T(n) = T(n/b) + \Theta(\log^k n)$$

where b > 1 and $k \ge 0$. Show that its solution is $T(n) = \Theta(\log^{k+1} n)$.

Justification:

Note: $\log^k n$ is short for $(\log(n))^k$.

Hint: do a change of variable.

(b) (1 pt.) Given an $n \ge 1$, a sequence of n integers a_0, \ldots, a_{n-1} is unimodal if there exists t with $0 \le t < n$ such that $a_0 < \ldots < a_{t-1} < a_t$ and $a_t > a_{t+1} > \ldots > a_{n-1}$. The element a_t is called the top of the sequence. For example, the sequence 1, 3, 5, 9, 4, 1 is unimodal, and its top is 9 (take t = 3).

Fill the gaps in the following code so that the function

bool *search* (**const** *vector* < **int**> & a, **int** x),

given a non-empty vector a that contains a unimodal sequence and an integer x, returns whether x appears in the sequence or not. No justification is needed.

Note: Given an element *x* and iterators *first*, *last* such that the interval [*first*, *last*) is sorted (increasingly or decreasingly), the function *binary_search*(*first*, *last*, *x*) returns **true** if *x* appears in the interval [*first*, *last*) and **false** otherwise, in logarithmic time in the size of the interval in the worst case.

(c) (1 pt.) Analyse the cost in time in the worst case of a call search(a, x), where a is a vector of size n > 0 that contains a unimodal sequence and x is an integer. Describe a situation in which this worst case can take place.

