Statistical Inference Project Part 1 - A Simulation Exercise

Girish Tere

Overview:

This project investigates the Exponential distribution in R and compares it with the Central Limit Theorem. The mean of the Exponential distribution is $\frac{1}{\lambda}$ and the standard deviation is also $\frac{1}{\lambda}$. A thousand simulations of the distribution of 40 exponentials would be investigated.

Simulations:

The exponential distribution can be simulated in R with rexp(n, lambda), where lambda is the rate parameter and n is the number of observations. For the purpose of all the simulations in this project, value of lambda is set to 0.2.

First we load the ggplot2 plotting library.

```
library(ggplot2)
```

We then initialize the simulation controlling variables.

```
noSim <- 1000
sampSize <- 40
lambda <- 0.2
```

Set the seed of the Random Number Generator, so that the analysis is reproducible.

```
set.seed(3)
```

Create a matrix with thousand rows corresponding to 1000 simulations and forty columns corresponding to each of 40 random simulations.

```
simulationMatrix <- matrix(rexp(n = noSim * sampSize, rate = lambda), noSim, sampSize)</pre>
```

Create a vector of thousand rows containing the mean of each row of the simulationMatrix.

```
simulationMean <- rowMeans(simulationMatrix)
```

Create a data frame containing the whole data.

```
simulationData <- data.frame(cbind(simulationMatrix, simulationMean))</pre>
```

We plot the simulation data to visualize it.

Sample Mean Versus Theoretical Mean:

The actual mean of the simulated mean sample data is 4.9866197, calculated by:

```
actualMean <- mean(simulationMean)
```

And the theoretical mean is 5, calculated by:

```
theoreticalMean <- (1 / lambda)
```

Thus, we can see that the actual mean of the simulated mean sample data is very close to the theoretical mean of original data distribution.

Sample Variance Versus Theoretical Variance:

The actual variance of the simulated mean sample data is 0.6257575, calculated by:

```
actualVariance <- var(simulationMean)
```

And the theoretical variance is 0.625, calculated by:

```
theoreticalVariance <- ((1 / lambda) ^ 2) / sampSize
```

Thus, we can see that the actual variance of the simulated mean sample data is very close to the theoretical variance of original data distribution.

Distribution:

To prove that the simulated mean sample data approximately follows the Normal distribution, we perform the following three steps:

Step 1: Create an approximate normal distribution and see how the sample data alligns with it.

Mean Density Distribution

From above histogram, the simulated mean sample data can be adequately approximated with the normal distribution.

Step 2: Compare the 95% confidence intervals of the simulated mean sample data and the theoretical normally distributed data.

```
actualConfInterval <- actualMean+c(-1,1)*1.96*sqrt(actualVariance)/sqrt(sampSize)
theoreticalConfInterval <- theoreticalMean+c(-1,1)*1.96*
sqrt(theoreticalVariance)/sqrt(sampSize)</pre>
```

Actual 95% confidence interval is [4.7414712, 5.2317681] and Theoretical 95% confidence interval is [4.755, 5.245] and we see that both of them are approximately same.

Step 3: q-q Plot for Qunatiles.

```
qqnorm(simulationMean)
qqline(simulationMean)
```

Normal Q-Q Plot

The actual quantiles also closely match the theoretical quantiles, hence the above three steps prove that the distribution is approximately normal.