Matrix Theory - Assignment 1

Name: Sri Harsha CH Roll No: AI20MTECH14007

Problem 1: Write down a unit vector in the xy-plane, making an angle of 30° with the positive direction of the x-axis?

Solution: Let us consider a unit vector \vec{a} in the xy-plane. Since the vector lies in xy-plane, any vector in this plane is formed by linear combination of \hat{i} (unit vector in direction of x-axis) and \hat{j} (unit vector in direction of y-axis).

This can be written in the form of equation as below:

$$\vec{a} = x\hat{i} + y\hat{j}$$

We know from question that \vec{a} makes an angle of 30° with the positive direction of the x-axis. Similarly, as x and y axis are perpendicular to each other, we can also infer that \vec{a} makes an angle of 60° with the positive direction of the y-axis.

From the definition of dot product we know that,

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

(a) As \vec{a} makes an angle of 30° with the positive direction of the x-axis, let us substitute $\vec{a} = \vec{a}$, $\vec{b} = \hat{i}$ (unit vector along x axis) and $\theta = 30^{\circ}$.

$$\vec{a} \cdot \hat{i} = |\vec{a}||\hat{i}|\cos 30^{\circ}$$

As \vec{a} and \vec{i} are unit vectors, their magnitude is 1. Therefore,

$$\vec{a} \cdot \hat{i} = 1 \times 1 \times \frac{\sqrt{3}}{2}$$
$$\therefore \vec{a} \cdot \hat{i} = \frac{\sqrt{3}}{2}$$

Substituting, \vec{a} from above,

$$\left(x\hat{i} + y\hat{j}\right) \cdot \hat{i} = \frac{\sqrt{3}}{2}$$

$$\implies \left[x = \frac{\sqrt{3}}{2}\right]$$

(b) Similarly, as \vec{a} makes an angle of 60° with the positive direction of the y-axis, let us substitute $\vec{a} = \vec{a}$, $\vec{b} = \hat{j}$ (unit vector along y axis) and $\theta = 60^{\circ}$.

$$\vec{a} \cdot \hat{j} = |\vec{a}||\hat{j}|\cos 60^{\circ}$$

As \vec{a} and \vec{j} are unit vectors, their magnitude is 1. Therefore,

$$\vec{a} \cdot \hat{j} = 1 \times 1 \times \frac{1}{2}$$
$$\therefore \vec{a} \cdot \hat{j} = \frac{1}{2}$$

Substituting, \vec{a} from above,

$$\left(x\hat{i} + y\hat{j} \right) \cdot \hat{j} = \frac{1}{2}$$

$$\Longrightarrow \left[y = \frac{1}{2} \right]$$

As, $\vec{a} = x\hat{i} + y\hat{j}$ Substituting x and y from above, we get

$$\implies \boxed{\vec{a} = \frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}}$$

This \vec{a} is the unit vector that makes an angle of 30° with the positive x axis.