Datos no agrupados	Datos agrupados	Covarianza
$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} f_i m_i$	$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$
$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{k} f_{i}(m_{i} - \bar{x})^{2}$	$r = \frac{S_{xy}}{S_x S_y}$
$R = X_{(n)} - X_{(1)}$	$\widetilde{x} = L_i + \frac{\frac{n}{2} - F_{i-1}}{f_i} \cdot a_i$	Probabilidad
Diagrama de cajas $RIC = Q_3 - Q_1$	$Mo = L_i + \frac{f_{i} - f_{i-1}}{(f_i - f_{i-1}) + (f_i - f_{i+1})} \cdot a_i$	$P(E) = \frac{n(E)}{n(\Omega)}$ $P(B A) = \frac{P(B \cap A)}{P(A)}$
$L_{sup} = Q_3 + 1.5RIC$ $L_{inf} = Q_1 - 1.5RIC$	$AC = \frac{X_{(n)} - X_{(1)}}{k}$; AC: Ancho de clase	$P(A) = \sum_{i=1}^{k} P(B_i) P(A B_i)$ $P(B_r A) = \frac{P(B_r) P(A B_r)}{\sum_{i=1}^{k} P(B_i) P(A B_i)}$

Variables aleatorias					
$f(x) \ge 0$		Momento con respecto al origen			
Discretas	Continuas	Discretas	Continuas		
$\sum_{x} f(x) = 1$ $F(x) = \sum_{t \le x} f(t)$	$\int_{-\infty}^{\infty} f(x) dx = 1$ $F(x) = \int_{-\infty}^{x} f(t) dt$	$E(x^r) = \sum_{x} x^r f(x)$	$E(x^r) = \int_{-\infty}^{\infty} x^r f(x) dx$		
		Momento con respecto a la media			
		$\mu_r = \sum_{x} (X - \mu)^r f(x)$			
		$\sigma^2 = E(x^2) - E^2(x)$	$; E(x^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$		

Modelos aleatorios discretos				
Distribución Binomial		Distribución Geométrica		
$X \sim B(n, p)$		$X \sim G(p)$		
$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$		$P(X = x) = p(1 - p)^{x - 1}$		
$E(X) = np \; ; \; V(X) = np(1-p)$		$E(X) = \frac{1}{p}$; $V(X) = \frac{1-p}{p^2}$		
Distribución Binomial Negativa	Distribución Hi	pergeométrica	Distribución Poisson	
$X \sim BN(k, p)$	$X \sim H(I)$		$X \sim P(\lambda)$	
$P(X = x) = {x - 1 \choose k - 1} p^k (1 - p)^{x - k}$	P(X=x):	$=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{x}}$	$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$ $E(X) = \lambda \; ; \; V(X) = \lambda$	
$E(X) = \frac{k}{p}; \ V(X) = \frac{k(1-p)}{p^2}$	$E(X) = \frac{nk}{N} \; ; \; V(X)$	$=\frac{N-n}{N-1}\binom{nk}{N}(1-\frac{k}{N})$	$E(X) = \lambda \; ; \; V(X) = \lambda$	

Modelos aleatorios continuos					
Distribución Uniforme	Distribución Normal	Distribución normal estándar			
$X \sim U(a,b)$	$X \sim N(\mu, \sigma)$	$X \sim N(0,1)$			
$f(x) = \frac{1}{b-a}; a \le X \le b$	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$			
$E(X) = \frac{a+b}{2}$; $V(X) = \frac{(b-a)^2}{12}$,	$Z = \frac{x-\mu}{\sigma}$; estandarización			
Distribución Gamma	Distribución Exponencial	Distribución Chi Cuadrado			
$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}$	$f(x) = \frac{1}{\beta}e^{-\frac{x}{\beta}}$	$X \sim G\left(\alpha = \frac{v}{2}, \beta = 2\right)$ $f(x) = \frac{1}{2} x^{\frac{v}{2} - 1} e^{-\frac{x}{2}}$			
$E(X) = \alpha \beta ; V(X) = \alpha \beta^{2}$ $\Gamma(n) = (n-1)! ; \Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$	$E(X) = \beta \ ; \ V(X) = \beta^2$	$f(x) = \frac{1}{\frac{v}{2^{\frac{v}{2}}\Gamma(\frac{v}{2})}} x^{\frac{v}{2}-1} e^{-\frac{x}{2}}$ $E(X) = v \; ; \; V(X) = 2v$			
		L(N) = V, V(N) = 2V			