Отчёт по лабораторной работе №1

Операционные системы

Бызова Мария Олеговна

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы 3.1 Создание виртуальной машины	12 12 13 15
4	Выводы	26
5	Ответы на контрольные вопросы	27
6	Домашнее задание	29
Сп	писок литературы	32

Список иллюстраций

3.1	Окно VitualBox
3.2	Создание новой виртуальной машины
3.3	Указание объёма памяти
3.4	Жёсткий диск
3.5	Графический контроллер и 3D-ускорение
3.6	Общий буфер обмена и перетаскивание объектов между хостом и
	гостевой ОС
3.7	Поддержка UEFI
3.8	Интерфейс начальной конфигурации
3.9	Запуск liveinst
3.10	Выбор языка интерфейса
	Создание аккаунта администратора
	Создание пользователя
3.13	Завершение установки операционной системы
	Просмотр и отключение оптического диска
3.15	Вход в ОС
3.16	Обновление пакетов
3.17	Установка tmux и mc
	Установка программного обеспечения для автоматического
	обновления
3.19	Запуск таймера
	Изменение файла
	Установка средств разработки
3.22	Устанока пакета dkms
	Подключение образа диска гостей ОС
3.24	Примонтировка диска и установка драйверов
3.25	Создание конфигурационного файла
	Изменение конфигурационного файла
3.27	Изменение конфигурационного файла
3.28	Создание пользователя
3.29	Создание пароля
	Установка имени хоста
	Добавление пользователя
	Подключение общей папки
3.33	Общая папка
	Установливка средства pandoc для работы с языком разметки
	Markdown с помошью менелжера пакетов

	Скачанный архив
3.36	Kaтaлor /usr/local/bin
3.37	Установка дистрибутива Texlive
6.1	Команда dmesg
6.2	Вывод команды
6.3	Koмaндa dmesg less
	Вывод команды
6.5	Версия ядра Linux (Linux version)
6.6	Частота процессора (Detected Mhz processor)
	Модель процессора (СРИО)
	Объём доступной оперативной памяти (Memory available)
	Тип обнаруженного гипервизора (Hypervisor detected)
	Тип файловой системы корневого раздела и последовательность
	монтирования файловых систем

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины.
- 2. Установка операционной системы.
- 3. Работа с операционной системой после установки.
- 4. Установка программного обеспечения для создания документации.
- 5. Дополнительные задания.

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины.

VirtualBox я устанавливала и настраивала при выполнении лабораторных работ в курсе "Архитектура компьютера и Операционные системы (раздел"Архитектура компьютера")", поэтому я сразу открываю окно приложения. Для использования графического интерфейса я запустила менеджер виртуальных машин, введя в командной строке:"VirtualBox &".(рис. 3.1)

Рис. 3.1: Окно VitualBox

Создам новую виртуальную машину в графическом интерфейсе, указав имя виртуальной машины (мой логин в дисплейном классе), тип операционной системы — Linux, Fedora. Выбираю скачанный образ операционной системы. (рис. 3.2)

Рис. 3.2: Создание новой виртуальной машины

Указываю объём основной памяти виртуальной машины размером 4096MБ (рис. 3.3)

Рис. 3.3: Указание объёма памяти

Выбираю создание нового виртуального диска, задав конфигурацию жесткого диска: загрузочный VDI. Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умолчанию, т.к. работаю на собственной технике и значение по умолчанию меня устраивает. (рис. 3.4)

Рис. 3.4: Жёсткий диск

В качестве графического контроллера ставлю VMSVGA и включаю ускорение 3D (рис. 3.5)

Рис. 3.5: Графический контроллер и 3D-ускорение

Включаю общий буфер обмена и перетаскивание объектов между хостом и гостевой ОС. (рис. 3.6)

Рис. 3.6: Общий буфер обмена и перетаскивание объектов между хостом и гостевой ОС

Включаю поддержку UEFI. (рис. 3.7)

Рис. 3.7: Поддержка UEFI

3.2 Установка операционной системы

3.2.1 Запуск приложения для установки системы

Загружаю LiveCD. Появляется интерфейс начальной конфигурации.(рис. 3.8)

Рис. 3.8: Интерфейс начальной конфигурации

Нажимаю комбинацию Win+Enter для запуска терминала. В терминале запускаю liveinst. Для перехода к раскладке окон с табами нажимаю Win+w.(рис. 3.9)

Рис. 3.9: Запуск liveinst

3.2.2 Установка системы на диск

Выбираю язык интерфейса и перехожу к настройкам установки операционной системы. Я не корректирую часовой пояс, раскладку клавиатуры и место установки ОС, так как в этом нет необходимости (рис. 3.10)

Рис. 3.10: Выбор языка интерфейса

Установливаю имя и пароль для пользователя root.(рис. 3.11)

Рис. 3.11: Создание аккаунта администратора

Установите имя и пароль для моего пользователя.(рис. 3.12)

Рис. 3.12: Создание пользователя

Далее операционная система устанавливается. После установки нажимаю "Завершить установку" (рис. 3.13)

Рис. 3.13: Завершение установки операционной системы

Диск не отключался автоматически, поэтому отключаю носитель информации с образом (рис. 3.14)

Рис. 3.14: Просмотр и отключение оптического диска

3.3 Работа с операционной системой после установки

Запускаю виртуальную машину. Вхожу в ОС под заданной мной при установке учетной записью (рис. 3.15

Рис. 3.15: Вход в ОС

Нажимаю WIN+ENTER для запуска терминала и переключаюсь на роль суперпользователя. Обновляю все пакеты (рис. 3.16

Рис. 3.16: Обновление пакетов

Устанавливаю программы для удобства работы в консоли: tmux для открытия

нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале (рис. 3.17

Рис. 3.17: Установка tmux и mc

Устанавливаю программы для автоматического обновления (рис. 3.18

```
Нет соответствия аргументу: dnd-automatic
Ошибка: Совпадений не найдено: dnd-automatic
[root@fedora ~]# dnf install dnf<mark>-</mark>automatic
```

Рис. 3.18: Установка программного обеспечения для автоматического обновления

Запускаю таймер (рис. 3.19

```
Выполнено!
[root@fedora ~]# systemctl enable --now dnf-automatic.timer

<
```

Рис. 3.19: Запуск таймера

Переместившись в директорию /etc/selinux, открываю mc, ищу нужный файл. Изменяю открытый файл: SELINUX=enforcing заменяю SELINUX=permissive, после чего перезагружаю виртуальную машину (рис. 3.20

Рис. 3.20: Изменение файла

Снова вхожу в ОС, снова запускаю терминальный мультиплексор, переключаюсь на роль суперпользователя и устанавливаю средства разработки (рис. 3.21

```
foot
mobihzova@fedora:~$ sudo -i
[sudo] пароль для mobihzova:
root@fedora:~# dnf -y group install "Development Tools"
```

Рис. 3.21: Установка средств разработки

Устанавливаю пакет dkms (рис. 3.22

Рис. 3.22: Устанока пакета dkms

В меню виртуальной машины подключаю образ диска гостевой ОС (рис. 3.23

Рис. 3.23: Подключение образа диска гостей ОС

Примонтирую диск и установлю драйвера, после чего перезагружу виртуальную машину (рис. 3.24

```
выполнено №
root@fedora:~# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
root@fedora:~# /media/VBoxLinuxAdditions.run
```

Рис. 3.24: Примонтировка диска и установка драйверов

Вхожу в ОС под заданной мной при установке учётной записью, запускаю терминальный мультиплексор tmux, создаю конфигурационный файл ~/.config/sway/config.d/95-system-keyboard-config.conf (рис. 3.25

Рис. 3.25: Создание конфигурационного файла

Отредактирую конфигурационный файл ~/.config/sway/config.d/95-system-keyboard-config.conf (рис. 3.26

Рис. 3.26: Изменение конфигурационного файла

Переключаюсь на роль супер-пользователя sudo, отредактирую конфигураци-

онный файл /etc/X11/xorg.conf.d/00-keyboard.conf, после чего перезагружу виртуальную машину (рис. 3.27

Рис. 3.27: Изменение конфигурационного файла

Вхожу в ОС под заданной мной при установке учётной записью, запускаю терминальный мультиплексор tmux. Переключаюсь на роль суперпользователя. Создаю пользователя (рис. 3.28

```
foot

mobihzova@fedora:~$ sudo -i
[sudo] пароль для mobihzova:
root@fedora:~# adduser -G wheel mobihzova
adduser: пользователь «mobihzova» уже существует
```

Рис. 3.28: Создание пользователя

Задаю пароль для пользователя (рис. 3.29

```
root@fedora:~# passwd mobihzova
Изменение пароля пользователя mobihzova.
Новый пароль:
НЕУДАЧНЫЙ ПАРОЛЬ: Пароль не прошел проверку орфографии - на основе слова
из словаря
Повторите ввод нового пароля:
passwd: данные аутентификации успешно обновлены.
root@fedora:~#
```

Рис. 3.29: Создание пароля

Установлю имя хоста, Проверю, что имя хоста установлено верно (рис. 3.30

Рис. 3.30: Установка имени хоста

Внутри виртуальной машины добавлю своего пользователя в группу vboxsf (рис. 3.31

```
Добавление пользователя mobihzova в группу vboxsf
root@fedora:~#
[0] 0:sudo* "fedora" 20:18 18
```

Рис. 3.31: Добавление пользователя

В хостовой системе подключаю разделяемую общую папку, после чего перезагружаю систему (рис. 3.32

Рис. 3.32: Подключение общей папки

Теперь папка будет монтироваться в /media/sf_work (рис. 3.33

Рис. 3.33: Общая папка

3.4 Установка программного обеспечения для создания документации

Нажмаю комбинацию Win+Enter для запуска терминала, запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя. Установливаю средство pandoc для работы с языком разметки Markdown с помощью менеджера пакетов (рис. 3.34

```
mobihzova@mobihzova:~$ sudo -i
[sudo] пароль для mobihzova:
Попробуйте ещё раз.
[sudo] пароль для mobihzova:
root@mobihzova:~# dnf -y install pandoc
```

Рис. 3.34: Установливка средства pandoc для работы с языком разметки Markdown с помощью менеджера пакетов

Скачав необходимую версию pandoc-crossref, распаковываю архив и помещаю все необходимые файлы в каталог /usr/local/bin (рис. 3.35, (рис. 3.36)

Рис. 3.35: Скачанный архив

Рис. 3.36: Kaтaлог /usr/local/bin

Установливаю дистрибутив TeXlive (рис. 3.37

```
Выполнено!
root@mobihzova:~# dnf -y install texlive-scheme-full
[0] 0:sudo*
```

Рис. 3.37: Установка дистрибутива Texlive

4 Выводы

В ходе данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Домашнее задание

Дождусь загрузки графического окружения и открою терминал. В окне терминала проанализирую последовательность загрузки системы, выполнив команду dmesg (рис. 6.1, (рис. 6.2)

Рис. 6.1: Команда dmesg

Рис. 6.2: Вывод команды

Можно просто просмотреть вывод команды при помощи dmesg | less (рис. 6.3, (рис. 6.4)

Рис. 6.3: Koмaндa dmesg | less

Рис. 6.4: Вывод команды

Получите следующую информацию:

a) Версия ядра Linux (Linux version) (рис. 6.5

```
[root@mobihzova -]# dmesg | grep -1 "Linux version"

— 0.000000] Linux version 6.7.4-200.fc39.x86_64 (mockbuild@de0c58eb5f524c20963d3b29334043cc) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), GN
J Id version 2.40-14.fc39) #1 SMP PREEMPT_DYNAMIC Mon Feb 5 22:21:14 UTC 2024
[root@mobihzova -]#
```

Рис. 6.5: Версия ядра Linux (Linux version)

б) Частота процессора (Detected Mhz processor) (рис. 6.6

```
[root@motlihzova ~]# dmesg | grep -i "Detected Mhz processor"
[root@mobihzova ~]# dmesg | grep -i "Mhz processor"
[ 0.000006] tsc: Detected 2687.996 MHz processor
[root@mobihzova ~]#
```

Рис. 6.6: Частота процессора (Detected Mhz processor)

в) Модель процессора (CPU0) (рис. 6.7

```
[root@mobihzova ~]# dmesg | grep -i "CPU0"
[ 0.262734] smpboot: <mark>CPU0</mark>: 12th Gen Intel(R) Core(TM) i7-12650H (family: 0x6, model: 0x9a, stepping: 0x3)
[root@mobihzova ~]# |
```

Рис. 6.7: Модель процессора (CPU0)

г) Объём доступной оперативной памяти (Memory available) (рис. 6.8

Рис. 6.8: Объём доступной оперативной памяти (Memory available)

д) Тип обнаруженного гипервизора (Hypervisor detected) (рис. 6.9

```
[root@nobihzova ~]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[root@nobihzova ~]# |
```

Рис. 6.9: Тип обнаруженного гипервизора (Hypervisor detected)

е) Тип файловой системы корневого раздела и последовательность монтирования файловых систем (рис. 6.10

```
[xoot@mobihzova -]# dmesg | grep -i "filesystem"

[ 2.585294] BTRF5 info (device sda3): first mount of filesystem c49fa848-c0a7-4a8f-88e1-656ebbb532d4

[ 4.675723] EXT4-7s (sda2): mounted filesystem 6b7a0117-e5ef-4238-9fed-97e07c65d049 r/w with ordered data mode. Quota mode: none.

[root@mobihzova -]# |
```

Рис. 6.10: Тип файловой системы корневого раздела и последовательность монтирования файловых систем

Список литературы

- 1. Dash P. Getting started with oracle vm virtualbox. Packt Publishing Ltd, 2013. 86 p.2. Colvin H. Virtualbox: An ultimate guide book on virtualization with virtualbox. CreateSpace Independent Publishing Platform, 2015. 70 p.
- 2. van Vugt S. Red hat rhcsa/rhce 7 cert guide: Red hat enterprise linux 7 (ex200 and ex300). Pearson IT Certification, 2016. 1008 p.4. Робачевский А., Немнюгин С., Стесик О. Операционная система unix. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 p.
- 3. Немет Э. et al. Unix и Linux: руководство системного администратора. 4-е изд. Вильямс, 2014. 1312 р.6. Колисниченко Д.Н. Самоучитель системного администратора Linux. СПб.: БХВ-Петербург, 2011. 544 р.
- 4. Robbins A. Bash pocket reference. O'Reilly Media, 2016. 156 p.