# Online plan adaptation of head and neck IMPT treatments based on cone beam CT imaging and GPU Monte Carlo simulations

P. Botas<sup>12</sup>, J. Kim<sup>3</sup>, B. Winey<sup>1</sup>, H. Paganetti<sup>1</sup>

<sup>1</sup>Massachusetts General Hospital, Boston, MA <sup>2</sup>Heidelberg University, Heidelberg, Germany <sup>3</sup>Yonsei University, Seoul, South Korea

PTCOG57, Cincinnati







#### Motivation

#### Problem:

- Proton therapy is sensitive to geometry
- Robust optimization cannot account for all scenarios
- Smaller margins: better plans

#### Problem and potential solution:

- Adaptive therapy could allow margin reduction by correcting inter-fractional geometry changes and mispositioning
- **Head and neck patients** are candidates to benefit from the technique



Fig: Head and neck patient geometry changes. Green: original CT. Red: CBCT. The arrows represent a vector field, the arrow color is a representation of their length.

## The need for adaptive proton therapy

10 head & neck patients planned without CTV margins, evaluated at 60 weeks:

- ullet Reduced margins o sensitive to errors
- Coverage deteriorates:



Fig: V95 in CTV decreases

## The need for adaptive proton therapy

## 10 head & neck patients planned without CTV margins, evaluated at 60 weeks:

- ullet Reduced margins o sensitive to errors
- Coverage deteriorates:



Fig: V95 in CTV decreases



Fig: DVHs after full treatment

## Adaptive proton therapy ingredients: the framework

## Cone Beam CT (CBCT)

A priori CT-based scatter correction WEPL error < 2% in head cases.

Park et al., Med Phys. 2015;42(8), Kim et al., Phys Med Bio. 2017;62(1)

#### Image Registration: Plastimatch

Rigid and deformable (DIR), GPU B-spline

Shackleford et al., Phys Med Biol. 2010;55(21)

## Fast GPU MC: gPMC

Accurate calculation engine developed with UT Southwestern.

Qin et al., Phys Med Biol. 2016;61(20)



## Adaptation method

#### Consists of 2 steps:

- Geometrical adaptation: Move individual spots following a deformation vector field and correct energies
- Weight tuning: Adjust the weight of the spots if necessary



Per spot  $s_i = (x_0, y_0, E_0)$ :

1: Raytrace  $s_i$  in CT  $(r_i)$ 



- 1: Raytrace  $s_i$  in CT  $(r_i)$
- 2: **Probe** VF at  $r_i$  coords:  $v_i$



- 1: Raytrace  $s_i$  in CT  $(r_i)$
- 2: **Probe** VF at  $r_i$  coords:  $v_i$
- 3: **Apply**  $v_i$  **to**  $r_i$  coords: position where the  $r_i$  should be in the CBCT



- 1: Raytrace  $s_i$  in CT  $(r_i)$
- 2: **Probe** VF at  $r_i$  coords:  $v_i$
- 3: **Apply**  $v_i$  **to**  $r_i$  coords: position where the  $r_i$  should be in the CBCT
- 4: **Apply**  $v_i$  **to**  $s \rightarrow s'_i = (x_0 + \Delta v_x, y_0 + \Delta v_y, E_0)_i$



- 1: Raytrace  $s_i$  in CT  $(r_i)$
- 2: **Probe** VF at  $r_i$  coords:  $v_i$
- 3: **Apply**  $v_i$  **to**  $r_i$  coords: position where the  $r_i$  should be in the CBCT
- 4: **Apply**  $v_i$  **to**  $s \rightarrow s'_i = (x_0 + \Delta v_x, y_0 + \Delta v_y, E_0)_i$
- 5: Raytrace  $s'_i$  in CBCT



- 1: Raytrace  $s_i$  in CT  $(r_i)$
- 2: **Probe** VF at  $r_i$  coords:  $v_i$
- 3: **Apply**  $v_i$  **to**  $r_i$  coords: position where the  $r_i$  should be in the CBCT
- 4: **Apply**  $v_i$  **to**  $s \rightarrow s'_i = (x_0 + \Delta v_x, y_0 + \Delta v_y, E_0)_i$
- 5: Raytrace  $s'_i$  in CBCT
- 6: **Get**  $\Delta E_i$



Per spot  $s_i = (x_0, y_0, E_0)$ :

- 1: Raytrace  $s_i$  in CT  $(r_i)$
- 2: **Probe** VF at  $r_i$  coords:  $v_i$
- 3: **Apply**  $v_i$  **to**  $r_i$  coords: position where the  $r_i$  should be in the CBCT
- 4: **Apply**  $v_i$  **to**  $s \rightarrow s'_i = (x_0 + \Delta v_x, y_0 + \Delta v_y, E_0)_i$
- 5: Raytrace  $s'_i$  in CBCT
- 6: **Get**  $\Delta E_i$

Spot adaptation:  $(\Delta v_x, \Delta v_y, \Delta E)_i$ 



Energy and position layers organization is distorted.

Energy and position layers organization is distorted.

Four strategies constraining the geometrical adaptation:

- Free: No constrains shifts
- Isocenter shift: Average VF in CTV
- Range shifter: Average energy shift
- Iso. + range: Average VF and energy shifts

How to create dose-influence matrices fast with MC?

How to create dose-influence matrices fast with MC?

Observation from the initial plan: 8.2% of the spots deliver 50% of the protons

How to create dose-influence matrices fast with MC?

Observation from the initial plan: 8.2% of the spots deliver 50% of the protons

Weight tuning steps:

- Simulate the geometrical adaptation with gPMC
- Score the dose per spot in region of interest

How to create dose-influence matrices fast with MC?

Observation from the initial plan: 8.2% of the spots deliver 50% of the protons

#### Weight tuning steps:

- Simulate the geometrical adaptation with gPMC
- Score the dose per spot in region of interest
- **Select set** of spots giving 50% of the dose (at least 10% of the total spots)
- Accumulate adapted dose without the set
- Calculate remaining dose for coverage in target

How to create dose-influence matrices fast with MC?

Observation from the initial plan: 8.2% of the spots deliver 50% of the protons

#### Weight tuning steps:

- Simulate the geometrical adaptation with gPMC
- Score the dose per spot in region of interest
- **Select set** of spots giving 50% of the dose (at least 10% of the total spots)
- Accumulate adapted dose without the set
- Calculate remaining dose for coverage in target
- Tune set weights to fill the remaining dose and spare OARs with original objectives/constraints

Results: all geometrical adaptations (no weight tuning)

## Results: all geometrical adaptations (no weight tuning)



## Results: all geometrical adaptations (no weight tuning)



## Results: all geometrical adaptations + weight tuning



## Results with free geometrical adaptation + weight tuning



## Timing and conclusions

Timing, timing, timing!!

| (seconds)          | Minimum | Average | Maximum | Expected          |
|--------------------|---------|---------|---------|-------------------|
| Geometrical adapt. | 11.7    | 16.9    | 26.57   | $\sim 1-5$        |
| gPMC validation    | 115.6   | 261.9   | 419.2   | $\sim 30$         |
| Weight tuning      | 12.0    | 44.8    | 198.0   | $\sim 5-120$      |
| Total              | -       | 322.7   | -       | $\sim$ 60 $-$ 120 |

Table: Current and expected times (s)

## Timing and conclusions

Timing, timing, timing!!

| (seconds)          | Minimum | Average | Maximum | Expected          |
|--------------------|---------|---------|---------|-------------------|
| Geometrical adapt. | 11.7    | 16.9    | 26.57   | $\sim 1-5$        |
| gPMC validation    | 115.6   | 261.9   | 419.2   | $\sim 30$         |
| Weight tuning      | 12.0    | 44.8    | 198.0   | $\sim 5-120$      |
| Total              | -       | 322.7   | -       | $\sim$ 60 $-$ 120 |

Table: Current and expected times (s)

#### Conclusions:

- If adaptation is needed, weight tuning is necessary
- Tuning the weight of a subset of spots might be enough
- The algorithm has the potential to be applicable online, pending hardware and parallelization
- The algorithm might allow further margin reduction



Visit https://gray.mgh.harvard.edu/!