PROGETTO SETTIMANA 9.

Per l'esercizio pratico di oggi, in allegato avremo una cattura di rete effettuata con Wireshark. Obiettivi:

- 1. Identificare ed analizzare eventuali IOC, ovvero evidenze di attacchi in corso.
- 2. In base agli IOC trovati, fate delle ipotesi sui potenziali vettori di attacco utilizzati.
- 3. Consigliare un'azione per ridurre gli impatti dell'attacco attuale ed eventualmente un simile attacco futuro.

Il file in questione è:

Fig.1

1. Identificazione e analisi degli IOC.

L'analisi del traffico di rete tramite Wireshark ha evidenziato un'attività anomala caratterizzata da intenso traffico TCP tra l'host sorgente con IP 192.168.200.150 e target con IP 192.168.200.100 (**Fig.2**).

Apply a display f	men ven					2
. Time			Destination		Length Info	
1 0.0000			192.168.200.255	BROWSER		
			192.168.200.150	TCP	74 53060 - 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810522427 TSecr=0 WS=128	
		192.168.200.100	192.168.200.150	TCP	74 33876 - 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810522428 TSecr=0 WS=128	
			192.168.200.100	TCP	74 80 53060 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSVal=4294951165 TSecr=810522427 WS=64	
			192.168.200.100	TCP	60 443 → 33876 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0	
			192.168.200.150	TCP	66 53060 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810522428 TSecr=4294951165	
			192.168.200.150	TCP	66 53060 - 80 [RST, ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810522428 TSecr=4294951165	
			PCSSystemtec_39:7d:		60 Who has 192.168.200.100? Tell 192.168.200.150	
			PCSSystemtec_fd:87:		42 192.168.200.100 is at 08:00:27:39:7d:fe	
			PCSSystemtec_fd:87:		42 Who has 192.168.200.150? Tell 192.168.200.100	
			PCSSystemtec_39:7d:		60 192.168.200.150 is at 08:00:27:fd:87:1e	
			192.168.200.150	TCP	74 41304 - 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSVal=810535437 TSecr=0 WS=128	
			192.168.200.150	TCP	74 56120 → 111 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535437 TSecr=0 WS=128	
			192.168.200.150	TCP	74 33878 - 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535437 TSecr=0 WS=128	
			192.168.200.150	TCP	74 58636 → 554 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128	
			192.168.200.150	TCP	74 52358 135 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128	
			192.168.200.150	TCP	74 46138 - 993 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128	
			192.168.200.150	TCP	74 41182 - 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSVal=810535438 TSecr=0 WS=128	
			192.168.200.100	TCP	74 23 - 41304 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294952466 TSecr=810535437 WS=64	
		192.168.200.150	192.168.200.100	TCP	74 111 - 56120 [SYN, ACK] Seq=0 ACK=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSVal=4294952466 TSecr=810535437 WS=64 60 443 - 38878 [SST. ACK] Seq=1 ACK=1 Win=0 Len=0	
		192.108.200.150	192.108.200.100	TCP	00 443 - 33878 [RSI, AUK] SEG-I ACK-I WIN-B LEN-B EA EEA EEASE [RCI AUY] SEG-I ACK-I WIN-B LEN-B	
			bytes captured (480 b			
					stemtec_39:7dife (08:00:27:39:7d 0010 00 28 00 00 40 00 40 06 28 84 c0 a8 c8 96 c0 a8 (0 0 0 (
			.200.150, Dst: 192.16			
Transmission	Control	Protocol. Src Port:	443, Dst Port: 33876,	Seq: 1.	Ack: 1, Len: 0 988 90 90 90 fc b5 90 90 90 90 90 90 90 90 90 90	
			,			

Fig.2

Si evince appunto un elevato numero di connessioni TCP in tempi molto ravvicinati sulle porte che superano la numero 60000 utilizzate tipicamente per Port Scanning o Backdoor ma le connessioni terminano bruscamente con il flag "RST, ACK". Questi flag, a primo impatto, sono appunto il segnale di un Port scanning aggressivo con tentativi continui falliti che vengono confermati dai svariati pacchetti SYN-ACK assenti dove l'handshake non viene concluso. (**Fig.3**)

```
Destination
                                                                           Protocol Length Info
Source Address: 192.168.200.150
Destination Address: 192.168.200.100
[Stream index: 1]
                      Protocol, Src Port: 765, Dst Port: 60588, Seq: 1, Ack: 1, Len: 0
Source Port: 765
Destination Port: 60588
[Stream index: 936]
 [Stream Packet Number: 2]
[Conversation completeness: Incomplete (37)]
   ..1. .... = RST: Present
   ...0 .... = FIN: Absent
.... 0... = Data: Absent
   .... .1.. = ACK: Present
   .... ..0. = SYN-ACK: Absent
         ...1 = SYN: Present
   [Completeness Flags: R··A·S]
[TCP Segment Len: 0]
Sequence Number: 1
                           (relative sequence number)
Sequence Number (raw): 0
[Next Sequence Number: 1
                                   (relative sequence number)]
                                  (relative ack number)
Acknowledgment Number: 1
Acknowledgment number: 1 (retailve ac
Acknowledgment number (raw): 3446022271
0101 .... = Header Length: 20 bytes (5)
Flags: 0x014 (RST, ACK)
000. .... = Reserved: Not set
         .... = Accurate ECN: Not set
   .... 0... = Congestion Window Reduced: Not set
   .....0.... = ECN-Echo: Not set
.....0.... = Urgent: Not set
.....1 .... = Acknowledgment: Set
         .... 0... = Push: Not set
     [Expert Info (Warning/Sequence): Connection reset (RST)]
   .... .... ..0. = Syn: Not set
   .... 0 = Fin: Not set

[TCP Flags: ······A·R··]
Window: 0
[Calculated window size: 0]
[Window size scaling factor: -1 (unknown)]
Checksum: 0xbff4 [unverified]
[Checksum Status: Unverified]
Ürgent Pointer: 0
[Timestamps]
 [SEQ/ACK analysis]
```

Fig.3

2. Ipotesi sui vettori utilizzati.

Basandoci quindi sulle informazioni ottenute fin'ora dagli IOC, possiamo ipotizzare 4 tipi d'attacco utilizzati:

- <u>Port Scanning</u>: l'host cerca di stabilire una connessione inviando vari pacchetti di dati a diverse porte dell'IP del target per determinare quali servizi sono in esecuzione e accessibili per poi sfruttarle, infatti l'invio massivo di SYN lo conferma. Qui un vettore che può essere utilizzato è <nmap> o <telnet> o <nc> o ancora <metasploit>;
- <u>DoS (Denial of Service)</u>: l'host cerca di sovraccaricare il target con un traffico eccessivo allo scopo di rendere il sistema indisponibile all'utente causando crash o malfunzionamenti generali del sistema come ad esempio un semplice rallentamento delle risorse. Qui un vettore che può essere utilizzato è <Nping>;
- <u>Lateral Movement</u>: l'host si muove attraverso la rete compromessa del target cercando di accedere ai sistemi all'interno della rete ad esempio per scalare privilegi. Qui un vettore che può essere utilizzato è l'accesso tramite SHELL o PowerShell;
- <u>Brute Force</u>: l'host tenta sistematicamente di forzare credenziali sui servizi esposti (come ad esempio SSH). Qui un vettore che può essere utilizzato è <Hydra> o <Medusa>.

Potremmo scartare le ultime 3 ipotesi in quanto:

- DoS: il volume del traffico, anche se elevato, non mostra una saturazione costante sulle prestazioni di rete o del sistema e i pacchetti mirano a porte diverse;
- Lateral Movement: sono visibili sono un host e un solo target senza coinvolgere nuovi sistemi, quindi abbiamo un traffico che si limita solo in un'unica direzione;
- Brute Force: non sono presenti ripetute connesisoni verso la stessa porta o nuovi tentativi di autenticazione, quindi manca il pattern tipico di un attacco tramite SSH.

L'analisi conferma un attacco di Port Scanning in quanto:

- Il traffico si indirizza vero una nuova porta diversa ogni volta che la precedente non presenta una rispsota SYN-ACK (**Fig.4**);
- Le porte di destinazione dell'attacco sono elevate (superano le 60000 come visto prima);
- I pacchetti sono inviati in blocco e non in modo caotico o intenso e le tempistiche di risposta indica che il sistema non è sotto stress.

```
Transmission Control Protocol, Src Port: 443, Dst P
Source Port: 443
Destination Port: 33878
[Stream index: 4]
[Stream Packet Number: 2]
[Conversation completeness: Incomplete (37)]
..1. ... = RST: Present
...0 ... = FIN: Absent
...0.. = Data: Absent
....1. = ACK: Present
....0. = SYN-ACK: Absent
....1 = SYN: Present
[Completeness Flags: R··A·S]
```

Fig.4

3. Azioni consigliati per ridurre l'impatto di questo attacco.

Una delle azioni da svolgere immediatamente di sicuro è quella di isolare il target, bloccando poi il traffico aggiungendo nuove regole nel Firewall specifiche per l'IP dell'attaccante e continuare a monitorare l'intera rete per rilevare attività simili future.

Si passa poi a disattivare eventuali servizi non necessari e "chiudere" queste porte definitivamente, monitorare più costantemente gli eventi con sistemi SIEM e infine applicare sul sistema il Least Privilege (ovvero impostare privilegi minimi a utenti, applicazioni, database e rete riducendo il più possibile potenziali danni in caso di compromissione).

CONCLUSIONE.

L'analisi mostra un tentativo d'attacco neutralizzato in quanto sono già presenti ottime contromisure quali un Firewall configurato correttamente, porte non necessarie chiuse e infine una risposta immediata alle sollecitazioni anomale senza degradazione dei servizi.

Questo attacco conferma l'importanza di un approccio alla sicurezza su più livelli e della necessità di mantenere una sorveglianza attiva per identificare tempestivamente future minacce simili e non.