

Computational Intelligence

Subject7: Fuzzy Operators, Calculations and Relations

Instructor: Ali Tourani

Agenda

- Fuzzy Operators
- Fuzzy Numbers
- Fuzzy Calculations
- Fuzzy Relations

- For Fuzzy sets \tilde{A} and \tilde{B} , the **Union** operator is defined as:
 - ightharpoonup Also known as s norms

$$\mu_{\widetilde{A}\cup\widetilde{B}}\left(y
ight)=\mu_{\widetilde{A}}ee\mu_{\widetilde{B}}\quadorall y\in U$$

- For Fuzzy sets \tilde{A} and \tilde{B} , the **Intersection** operator is defined as:
 - ► Also known as t*-norms*

$$\mu_{\widetilde{A}\cap\widetilde{B}}\left(y\right)=\mu_{\widetilde{A}}\wedge\mu_{\widetilde{B}}\quad\forall y\in U$$

For Fuzzy set \tilde{A} , the **Complement** operator is defined as:

$$\mu_{\widetilde{A}} = 1 - \mu_{\widetilde{A}}\left(y\right) \quad y \in U$$

Important:

Operation	Modifies Alpha-cut	Modifies Strong Alpha-cut
Fuzzy Union	No	No
Fuzzy Intersection	No	No
Fuzzy Complement	Yes	Yes

Fuzzy sets algebra

Commutative property

$$\widetilde{A} \cup \widetilde{B} = \widetilde{B} \cup \widetilde{A} \qquad \widetilde{A} \cap \widetilde{B} = \widetilde{B} \cap \widetilde{A}$$

$$\widetilde{A}\cap\widetilde{B}=\widetilde{B}\cap\widetilde{A}$$

Associative property

$$\widetilde{A} \cup \left(\widetilde{B} \cup \widetilde{C}\right) = \left(\widetilde{A} \cup \widetilde{B}\right) \cup \widetilde{C}$$

$$\widetilde{A} \cup \left(\widetilde{B} \cup \widetilde{C}\right) = \left(\widetilde{A} \cup \widetilde{B}\right) \cup \widetilde{C} \qquad \widetilde{A} \cap \left(\widetilde{B} \cap \widetilde{C}\right) = \left(\widetilde{A} \cup \widetilde{B}\right) \cup \widetilde{C}$$

Distributive property

$$\widetilde{A} \cup \left(\widetilde{B} \cap \widetilde{C}\right) = \left(\widetilde{A} \cup \widetilde{B}\right) \cap \left(\widetilde{A} \cup \widetilde{C}\right) \qquad \widetilde{A} \cap \left(\widetilde{B} \cup \widetilde{C}\right) = \left(\widetilde{A} \cap \widetilde{B}\right) \cup \left(\widetilde{A} \cap \widetilde{C}\right)$$

$$\widetilde{A} \cap \left(\widetilde{B} \cup \widetilde{C}\right) = \left(\widetilde{A} \cap \widetilde{B}\right) \cup \left(\widetilde{A} \cap \widetilde{C}\right)$$

Fuzzy sets algebra

Idempotent laws

$$\widetilde{A} \cup \widetilde{A} = \widetilde{A}$$

$$\widetilde{A} \cup \widetilde{A} = \widetilde{A}$$
 $\widetilde{A} \cap \widetilde{A} = \widetilde{A}$

Identity and complement expressions

$$\widetilde{A} \cup \varphi = \widetilde{A}$$

$$\widetilde{A}\cap\varphi=\varphi$$

$$\widetilde{A}\cap U=\widetilde{A}$$

$$\widetilde{A} \cup U = U$$

Fuzzy sets algebra

Other rules

If
$$\widetilde{A} \subseteq \widetilde{B} \subseteq \widetilde{C}$$
, then $\widetilde{A} \subseteq \widetilde{C}$

$$\overline{\overline{\widetilde{A}}} = \widetilde{A}$$

$$\overline{\widetilde{A}\cap\widetilde{B}}=\overline{\widetilde{A}}\cup\overline{\widetilde{B}}$$

$$\overline{\widetilde{A} \cup \widetilde{B}} = \overline{\widetilde{A}} \cap \overline{\widetilde{B}}$$

Size of a Fuzzy set

► Simply, sum of the membership degrees

$$|A| = \sum_{x \in A} \mu_A$$

Sample:

$$\tilde{A} = \{(5, 0.2), (10, 0.7), (16, 0.3), (18, 0.4), (19, 0.5)\}$$

$$\bar{\tilde{A}} = \{(5, 0.8), (10, 0.3), (16, 0.7), (18, 0.6), (19, 0.5)\}$$

$$|\tilde{A}| = 0.2 + 0.7 + 0.3 + 0.4 + 0.5 = 2.1$$

$$|\bar{\tilde{A}}| = 0.8 + 0.3 + 0.7 + 0.6 + 0.5 = 2.9$$

Multiplication operation

► Two Fuzzy sets being multiplied together:

$$\mu_{A.B}(x) = \mu_A.\mu_B$$

► A number multiplied by a Fuzzy set:

$$\mu_{a.A}(x) = a.\,\mu_A$$

► Sample:

$$A = \{(a, 0.2), (b, 0.5), (c, 0.9)\}$$

$$B = \{(a, 0.9), (b, 0.2), (c, 1)(d, 0.1)\}$$

$$A.B = \{(a, 0.18), (b, 0.1), (c, 0.9), (d, 0.1)\}$$

$$0.5 \times A = \{(a, 0.1), (b, 0.25), (c, 0.45)\}$$

► How to show a Fuzzy set based on Alpha-cut?

$$A(x)_{\alpha} = \alpha . A(x)^{\alpha}$$

$$A = \frac{0.2}{x_1} + \frac{0.4}{x_2} + \frac{0.6}{x_3} + \frac{0.8}{x_4} + \frac{1}{x_5}$$

$$A_{0.6} = \frac{0}{x_1} + \frac{0}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} + \frac{1}{x_5}$$

$$A_{0.8} = \frac{0}{x_1} + \frac{0}{x_2} + \frac{0}{x_3} + \frac{1}{x_4} + \frac{1}{x_5}$$

$$A_{0.8} = \frac{0}{x_1} + \frac{0}{x_2} + \frac{0}{x_3} + \frac{1}{x_4} + \frac{1}{x_5}$$

$$A_{0.4} = \frac{0}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} + \frac{1}{x_5}$$

$$A_{1} = \frac{0}{x_1} + \frac{0}{x_2} + \frac{0}{x_3} + \frac{0}{x_4} + \frac{1}{x_5}$$

- ► A generalization of the real numbers
- ► They refer to a connected set of possible values
- Applications:
 - Control System
 - Decision Making
 - Optimization
 - ▶ Probabilistic Reasoning

A Fuzzy number:

- ► Is a connected set of possible values
- ► Introduces the concept of uncertainty for numbers
- Has a membership degree

For a Fuzzy number *A*:

- ▶ Values can be the members of a normal Fuzzy set
- ► Alpha-cut is defined
- ► Support set (A^{0+}) is bounded
 - ► Strong Alpha-cut for α =0

Crisp vs. Fuzzy numbers

Crisp vs. Fuzzy ranges

Fuzzy MFs can be formatted in discrete functions

$$A = \begin{cases} 1 & for \ x \in [a, b] \\ l(x) & for \ x \in (-\infty, a] \\ r(x) & for \ x \in [b, \infty) \end{cases}$$

Crisp number: a = b, l(x) = r(x) = 0Fuzzy number: a = b, $l(x) = r(x) \neq 0$ Crisp range: $a \neq b$, $l(x) = r(x) \neq 0$ Fuzzy range: $a \neq b$, $l(x) = r(x) \neq 0$

Sample:

Sample:
$$Low = \begin{cases} 1 & for \ x \in [0,7] \\ l(x) = 0 & for \ x \in (-\infty, 0] \\ r(x) = \begin{cases} Something & if \ x \in (7,15) \\ 0 & if \ x \in (15, \infty) \end{cases}$$

- ► A Fuzzy set is exclusively defined on its Alpha-cuts
 - ► Alpha-cuts are closed ranges of real numbers where $\alpha \in (0,1]$
 - ▶ Thus, calculations on Alpha-cuts define the calculations on Fuzzy numbers

Calculations in Fuzzy (Interval Arithmetic)

- ► Lets consider * as any operation (addition, subtraction, multiplication and division)
- ▶ Note: division is not defined if $0 \in [c, d]$

$$[a,b] * [c,d] = \{f * g \mid a \le f \le b, c \le g \le d\}$$

Accordingly:

$$[a,b] * [c,d] = \{f * g \mid a \le f \le b, c \le g \le d\}$$

$$[a,b] + [c,d] = [a+c,b+d]$$

$$[a,b] - [c,d] = [a - \frac{d}{d}, b - \frac{c}{d}]$$

$$[a,b].[c,d] = [\min(ac,ad,bc,bd), \max(ac,ad,bc,bd)]$$

$$[a,b]/[c,d] = \left[\min\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right), \max\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right) \right]$$

Interval Arithmetic

Basic calculations on below Fuzzy numbers

$$A(x) = \begin{cases} 0\\ \frac{x+1}{2}\\ \frac{3-x}{2} \end{cases}$$

$$A(x) = \begin{cases} 0 & for \ x < -1 \ and \ x > 3 \\ \frac{x+1}{2} & for \ -1 \le x \le 1 \\ \frac{3-x}{2} & for \ 1 < x \le 3 \end{cases}$$

$$B(x) = \begin{cases} 0 & for \ x < 1 \ and \ x > 5 \\ \frac{x-1}{2} & for \ 1 \le x \le 3 \\ \frac{5-x}{2} & for \ 3 < x \le 5 \end{cases}$$

for
$$x < 1$$
 and $x > 5$
for $1 \le x \le 3$
for $3 < x \le 5$

Interval Arithmetic

► First, let's calculate Alpha

$$A(x) = \begin{cases} 0 & for \ x \le -1 \ and \ x > 3 \\ \frac{x+1}{2} & for \ -1 < x \le 1 \\ \frac{3-x}{2} & for \ 1 < x \le 3 \end{cases} \qquad A^{\alpha} = [2\alpha - 1, 3 - 2\alpha]$$

$$B(x) = \begin{cases} 0 & for \ x \le 1 \ and \ x > 5 \\ \frac{x-1}{2} & for \ 1 < x \le 3 \\ \frac{5-x}{2} & for \ 3 < x \le 5 \end{cases} \qquad B^{\alpha} = [2\alpha + 1, 5 - 2\alpha]$$

Interval Arithmetic

- ► Addition
 - ▶ We know that:

$$[a,b] + [c,d] = [a+c,b+d]$$

► Thus, for these Alpha values:

$$A^{\alpha} = [2\alpha - 1, 3 - 2\alpha]$$
 $B^{\alpha} = [2\alpha + 1, 5 - 2\alpha]$

$$(A+B)^{\alpha} = [4\alpha, 8-4\alpha]$$

Interval Arithmetic

- Addition
 - Now, let's see how will the output look like

$$(A+B)^{\alpha} = [4\alpha, 8-4\alpha]$$

$$4\alpha = x \rightarrow \alpha = x/4$$

$$8 - 4\alpha = x \rightarrow \alpha = (8 - x)/4$$

$$for \ \alpha = \frac{x}{4}: \quad \alpha = 0 \ \rightarrow x = 0 \qquad \alpha = 1 \ \rightarrow x = 4 \qquad \left[for \ \alpha = \frac{8 - x}{4}: \ \alpha = 0 \ \rightarrow x = 8 \quad \alpha = 1 \ \rightarrow x = 4 \right]$$

for
$$\alpha = \frac{8-x}{4}$$
: $\alpha = 0 \rightarrow x = 8$ $\alpha = 1 \rightarrow x = 4$

$$(A+B)(x) = \begin{cases} 0 & for \ x < 0 \ and \ x > 8 \\ \frac{x}{4} & for \ 0 \le x \le 4 \\ \frac{8-x}{4} & for \ 4 < x \le 8 \end{cases}$$

Interval Arithmetic

Addition

Interval Arithmetic

- Subtraction
 - ▶ We know that:

$$[a,b] - [c,d] = [a-d,b-c]$$

► Thus, for these Alpha values:

$$A^{\alpha} = [2\alpha - 1, 3 - 2\alpha]$$
 $B^{\alpha} = [2\alpha + 1, 5 - 2\alpha]$

$$(A-B)^{\alpha} = [4\alpha - 6, 2 - 4\alpha]$$

Interval Arithmetic

$$(A-B)^{\alpha} = [4\alpha - 6, 2 - 4\alpha]$$

- Subtraction
 - ▶ Now, let's see how will the output look like

$$4\alpha - 6 = x \rightarrow \alpha = (x+6)/4$$
$$2 - 4\alpha = x \rightarrow \alpha = (2-x)/4$$

for
$$\alpha = \frac{(x+6)}{4}$$
: $\alpha = 0 \rightarrow x = -6$ $\alpha = 1 \rightarrow x = -2$

$$for \alpha = \frac{2-x}{4}: \qquad \alpha = 0 \rightarrow x = 2 \qquad \alpha = 1 \rightarrow x = -2$$

$$(A - B)(x) = \begin{cases} 0 & for \ x < -6 \ and \ x > 2 \\ \hline x + 6 & for \ -6 \le x \le -2 \\ \hline \frac{2 - x}{4} & for \ -2 < x \le 2 \end{cases}$$

Interval Arithmetic

Subtraction

$$(A - B)(x) = \begin{cases} \frac{0}{x + 6} \\ \frac{4}{2 - x} \\ \frac{2 - x}{4} \end{cases}$$

for x < -6 and x > 2for $-6 \le x \le -2$ for $-2 < x \le 2$

Check it yourself!

Interval Arithmetic

- Multiplication
 - We know that: [a,b]. $[c,d] = [\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)]$
 - ► Thus, for these Alpha values:

$$A^{\alpha} = [2\alpha - 1, 3 - 2\alpha]$$
 $B^{\alpha} = [2\alpha + 1, 5 - 2\alpha]$

$$(A.B)^{\alpha} = \begin{cases} [-4\alpha^2 + 12\alpha - 5, 4\alpha^2 - 16\alpha + 15] & for \ \alpha \in (0, 0.5] \\ [4\alpha^2 - 1, 4\alpha^2 - 16\alpha + 15] & for \ \alpha \in (0.5, 1] \end{cases}$$

Check it yourself!

Interval Arithmetic

- Division
 - ► We know that:

$$[a,b]/[c,d] = \left[\min\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right), \max\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right) \right]$$

► Thus, for these Alpha values:

$$A^{\alpha} = [2\alpha - 1, 3 - 2\alpha]$$
 $B^{\alpha} = [2\alpha + 1, 5 - 2\alpha]$

$$(A/B)^{\alpha} = \begin{cases} [(2\alpha - 1)/(2\alpha + 1), (3 - 2\alpha)/(2\alpha + 1)] & \text{for } \alpha \in (0, 0.5] \\ [(2\alpha - 1)/(5 - 2\alpha), (3 - 2\alpha)/(2\alpha + 1)] & \text{for } \alpha \in (0.5, 1] \end{cases}$$

Check it yourself!

Interval Arithmetic

Multiplication

$$A(A.B)(x) = \begin{cases} 0, & x < -5 \text{ and } x \ge 15 \\ \frac{[3 - (4 - x)^{1/2}]}{2}, & -5 \le x < 0 \\ \frac{(1 + x)^{\frac{1}{2}}}{2}, & 0 \le x < 3 \\ \frac{[4 - (1 + x)^{\frac{1}{2}}]}{2}, & 3 \le x < 15 \end{cases}$$

Division

$$(A/B)(x) = \begin{cases} 0, & x < -1 \text{ and } x \ge 3\\ \frac{x+1}{2-2x}, & -1 \le x < 0\\ \frac{5x+1}{2+2x}, & 0 \le x < 1/3\\ \frac{3-x}{2+2x}, & 1/3 \le x < 3 \end{cases}$$

► For the Fuzzy numbers *A*, *B*, and *C*:

$$A + B = B + A$$
 and $A.B = B.A$ $(A + B) + C = A + (B + C)$ and $(A.B).C = A.(B.C)$ $A = A + 0 = 0 + A$ and $A = A.1 = 1.A$ $A.(B + C) \subseteq A.B + A.C$ $A.(B + C) = A.B + A.C$ if $b.c \ge 0$ for all $b \in B$ and $c \in C$ $a.(B + C) = a.B + a.C$ if $A = [a,a]$ $0 \in A - A$ and $1 \in \frac{A}{A}$ if $A \subseteq E$ and $B \subseteq F$, then $A * B \subseteq E * F$ where $*$ can $be+,-,.$ and $A \subseteq A$

Fuzzy Relations

We know from classical relations:

 \blacktriangleright A classic relation R is a subset of $A \times B$

$$R(x_i \mid i \in N_n) \subseteq X_1 \times X_2 \times \cdots \times X_3$$

Sample:

$$X = \{English, French\}$$
 $Y = \{Dollar, Pound, Euro, Mark\}$ $Z = \{US, Britain, Canada, France\}$

 $R(X,Y,Z) = \{(English, Dollar, US), (French, Euro, France), (English, Dollar, Canada)\}$

Fuzzy Relations

We know from classical relations:

- ightharpoonup Reflexive, *if* R(x,x)
- Irreflexive, *if* ! R(x, x)
- Symmetric, if $(x, y) \in R$, then $(y, x) \in R$
- ▶ Antisymmetric, $if(x,y) \in R$, then $(y,x) \notin R$
- ► Transitive, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$
- ► Anti-transitive, $if(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \notin R$

Fuzzy Relations

Membership degrees in relations

```
America = \{New York, Washington, Atlanta\}
Europe = \{Paris, Milan, Barcelona, Rome\}
Asia = \{Tehran, Beijing, Tokyo, Dubi\}
```

R(Europe, Asia) = 0.7 (Paris, Tehran) + 0.8 (Milan, Dubai) + 0.2 (Rome, Dubai)

Projection

▶ We can project a fuzzy relation $R \subseteq A \times B$ with respect to A or B as in the following manner

For all $x \in A, y \in B$

Projection to A:
$$\mu_{R_A}(x) = Max \ \mu_R \ (x, y)$$

Projection to B:
$$\mu_{R_R}(x) = Max \, \mu_R(x, y)$$

Projection

► For instance:

		b_1	b_2	b_3
	a_1	0.1	0.2	1.0
M_R	a_2	0.6	0.8	0.0
	a_3	0.0	1.0	0.3

 M_{R_A}

a_1	1.0
a_2	0.8
a_3	1.0

M	b_1	b_2	b_3
M_{R_B}	0.6	1.0	1.0

Projection

Projection

$X_1 = \{0,1\}$ $X_2 = \{0,1\}$	
---------------------------------	--

$$X_3 = \{0,1,2\}$$

X1	X2	Х3	R(x1, x2, x3)	l	R(x1, x2)
0	0	0	0.4] .	0.9
0	0	1	0.9	Max	0.9
0	0	2	0.2		0.9
0	1	0	1.0]	1.0
0	1	1	0.0	Max	1.0
0	1	2	0.8		1.0
1	0	0	0.5	١	0.5
1	0	1	0.3	Max	0.5
1	0	2	0.1		0.5
1	1	0	0.0]	1.0
1	1	1	0.5	- Max	1.0
1	1	2	1.0	j	1.0

Projection

X1	X2	Х3	R(x1, x2, x3)
0	0	0	0.4
0	0	1	0.9
0	0	2	0.2
0	1	0	1.0
0	1	1	0.0
0	1	2	0.8
1	0	0	0.5
1	0	1	0.3
1	0	2	0.1
1	1	0	0.0
1	1	1	0.5
1	1	2	1.0

$$X_1 = \{0,1\}$$
 $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

Max (0.4, 1.0)

R(x1, x3)			
1.0			
1.0			

Projection

X1	X2	Х3	R(x1, x2, x3)
0	0	0	0.4
0	0	1	0.9
0	0	2	0.2
0	1	0	1.0
0	1	1	0.0
0	1	2	0.8
1	0	0	0.5
1	0	1	0.3
1	0	2	0.1
1	1	0	0.0
1	1	1	0.5
1	1	2	1.0

$$X_1 = \{0,1\}$$
 $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

1.0 0.9 1.0 0.9

Max (0.9, 0.0)

Projection

X1	X2	Х3	R(x1, x2, x3)
0	0	0	0.4
0	0	1	0.9
0	0	2	0.2
0	1	0	1.0
0	1	1	0.0
0	1	2	0.8
1	0	0	0.5
1	0	1	0.3
1	0	2	0.1
1	1	0	0.0
1	1	1	0.5
1	1	2	1.0

$$X_1 = \{0,1\}$$
 $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

R(x1, x3)

1.0

0.9

0.8

1.0

0.9

0.8

Max (0.8, 0.2)

Projection

X1	X2	Х3	R(x1, x2, x3)
0	0	0	0.4
0	0	1	0.9
0	0	2	0.2
0	1	0	1.0
0	1	1	0.0
0	1	2	0.8
1	0	0	0.5
1	0	1	0.3
1	0	2	0.1
1	1	0	0.0
1	1	1	0.5
1	1	2	1.0

$$X_1 = \{0,1\}$$
 $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

R(x1, x3)

Likewise ...

1.0
0.9
0.8
1.0
0.9
0.8
0.5
0.5
1.0
0.5
0.5
1.0

Projection

$X_1 = \{0,1\}$	$X_2 = \{0,1\}$	$X_3 = \{0,1,2\}$
$X_1 = \{0,1\}$	$X_2 = \{0,1\}$	$X_3 = \{0,1,2,3,3,4,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4$

Projection

X1	X2	Х3	R(x1, x2, x3)	
0	0	0	0.4	_
0	0	1	0.9	
0	0	2	0.2	
0	1	0	1.0	
0	1	1	0.0	
0	1	2	0.8	
1	0	0	0.5	
1	0	1	0.3	
1	0	2	0.1	_
1	1	0	0.0	
1	1	1	0.5	
1	1	2	1.0	

 $X_1 = \{0,1\}$ $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

R(x2)
0.9
0.9
0.9
0.9
0.9
0.9

Max

Projection

X1	X2	Х3	R(x1, x2, x3)
0	0	0	0.4
0	0	1	0.9
0	0	2	0.2
0	1	0	1.0
0	1	1	0.0
0	1	2	0.8
1	0	0	0.5
1	0	1	0.3
1	0	2	0.1
1	1	0	0.0
1	1	1	0.5
1	1	2	1.0

$$X_1 = \{0,1\}$$
 $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

R(x2)

Likewise ...

0.9	
0.9	
0.9	
1.0	
1.0	
1.0	
0.9	
0.9	
0.9	
1.0	
1.0	
1.0	

Projection (we are reducing the dimensions and losing data)

X1	X2	Х3	R(x1, x2, x3)	R(x	1, x2)	R(x1, x3)	R(x2,	x3)	R(x:	1)	R(x2)	R(x3)
0	0	0	0.4	().9	1.0	0.5	5	1.0		0.9		1.0
0	0	1	0.9	().9	0.9	0.9)	1.0		0.9		0.9
0	0	2	0.2	().9	0.8	0.2	2	1.0)	0.9		1.0
0	1	0	1.0	1	1.0	1.0	1.0)	1.0)	1.0		1.0
0	1	1	0.0	1	1.0	0.9	0.5	5	1.0		1.0		0.9
0	1	2	0.8	1	1.0	0.8	1.0)	1.0)	1.0		1.0
1	0	0	0.5	(0.5	0.5	0.5	5	1.0		0.9		1.0
1	0	1	0.3	().5	0.5	0.9)	1.0		0.9		0.9
1	0	2	0.1	().5	1.0	0.2	2	1.0		0.9		1.0
1	1	0	0.0	1	1.0	0.5	1.0)	1.0		1.0		1.0
1	1	1	0.5	1	1.0	0.5	0.5	5	1.0)	1.0		0.9
1	1	2	1.0	1	1.0	1.0	1.0)	1.0		1.0		1.6
	Com	nutational In	tolliganca Ali Tour	ani Eall <i>'</i>	2020 2021								40

Cylinder Extension

- ► The opposite concept of Projection
- ▶ A fuzzy relation $R \subseteq A \times B$ can be extended to $A \times B \times C$ to generate a new Fuzzy set. Thus for the new Fuzzy set C(R):

$$\mu_{C(R)}(a,b,c) = \mu_R(a,b)$$

$$a \in A, b \in B, c \in C$$

► Sample:

			1	
	a_1	1.0		
M_{R_A}	a_2	8.0		
	a_3	1.0	,	
			λ <i>⁄</i> /	

	b_1	b_2	b_3
a_1	1.0	1.0	1.0
a_2	0.8	0.8	0.8
a_3	1.0	1.0	1.0

 $M_{C(R_A)}$

49

Let's say: R12 = R(x1,x2)

Cylinder Extension

$$X_1 = \{0,1\}$$
 $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

X1	X2	Х3	R123	R12	R13	R23	R1	R2	R3		Cylinder(R12,R13,R23)
0	0	0	0.4	0.9	1.0	0.5	1.0	0.9	1.0	Min	0.5
0	0	1	0.9	0.9	0.9	0.9	1.0	0.9	0.9		
0	0	2	0.2	0.9	8.0	0.2	1.0	0.9	1.0		
0	1	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
0	1	1	0.0	1.0	0.9	0.5	1.0	1.0	0.9		
0	1	2	0.8	1.0	8.0	1.0	1.0	1.0	1.0		
1	0	0	0.5	0.5	0.5	0.5	1.0	0.9	1.0	Min	0.5
1	0	1	0.3	0.5	0.5	0.9	1.0	0.9	0.9		
1	0	2	0.1	0.5	1.0	0.2	1.0	0.9	1.0		
1	1	0	0.0	1.0	0.5	1.0	1.0	1.0	1.0		
1	1	1	0.5	1.0	0.5	0.5	1.0	1.0	0.9		
1	1	2	1.0	1.0	1.0	1.0	1.0	1.0	1.0		

Cylinder Extension

$$X_1 = \{0,1\}$$
 $X_2 = \{0,1\}$ $X_3 = \{0,1,2\}$

Min

X1	X2	Х3	R123	R12	R13	R23	R1	R2	R3
0	0	0	0.4	0.9	1.0	0.5	1.0	0.9	1.0
0	0	1	0.9	0.9	0.9	0.9	1.0	0.9	0.9
0	0	2	0.2	0.9	0.8	0.2	1.0	0.9	1.0
0	1	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
0	1	1	0.0	1.0	0.9	0.5	1.0	1.0	0.9
0	1	2	0.8	1.0	0.8	1.0	1.0	1.0	1.0
1	0	0	0.5	0.5	0.5	0.5	1.0	0.9	1.0
1	0	1	0.3	0.5	0.5	0.9	1.0	0.9	0.9
1	0	2	0.1	0.5	1.0	0.2	1.0	0.9	1.0
1	1	0	0.0	1.0	0.5	1.0	1.0	1.0	1.0
1	1	1	0.5	1.0	0.5	0.5	1.0	1.0	0.9
1	1	2	1.0	1.0	1.0	1.0	1.0	1.0	1.0

0.5 0.9 0.2 1.0 0.5 0.8 0.5 0.5 0.2 0.5 0.5 0.5

Cylinder(R12,R13,R23)

What's Next?

Fuzzy Logic and Inference

Questions?

