Linear Algebra — Homework 6

19 Oct 2022 Due: 27 Oct 2022

Textbook Problems. These problems will not be graded, but you must submit solutions to receive full credit for the homework.

Problem 2.7.5.

(a) The row vector \mathbf{x}^T times A times the column y produces what number?

$$\mathbf{x}^T A \mathbf{y} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \underline{\qquad}$$

- (b) This is the row $\mathbf{x}^T A = \underline{\hspace{1cm}}$ times the column $\mathbf{y} = (0, 1, 0)$.
- (c) This is the row $\mathbf{x}^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$ times the column $A\mathbf{y} = \underline{\qquad}$.

Problem 2.7.11. Find a permutation matrix P such that PA is upper triangular. Find permutation matrices P_1 and P_2 such that P_1AP_2 is lower triangular. Multiplying A on the right by P_2 exchanges the _____ of A.

$$A = \left[\begin{array}{rrr} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5 \end{array} \right]$$

Problem 2.7.16. If $A = A^T$ and $B = B^T$, which of these matrices are certainly symmetric?

- (a) $A^2 B^2$
- (b) (A+B)(A-B)
- (c) *ABA*
- (d) ABAB

Problem 2.7.22. Find the PA = LU factorizations (and check them) for

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Problem 2.7.39. Suppose Q^T equals Q^{-1} (transpose equals inverse, so $Q^TQ = I$).

- (a) Show that the columns $\mathbf{q}_1, \dots, \mathbf{q}_n$ of Q are unit vectors: $\|\mathbf{q}_i\|^2 = 1$.
- (b) Show that every two different columns of Q are perpendicular: $\mathbf{q}_1^T \mathbf{q}_2 = 0$.
- (c) Find a 2×2 example with first entry $q_{11} = \cos \theta$ for some angle θ .

Problem 3.1.4. The matrix $A = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$ is a "vector" in the space **M** of all 2×2 matrices. Write down the zero vector in this space, the vector $\frac{1}{2}A$, and the vector -A. What matrices are in the smallest subspace containing A?

Problem 3.1.10. Which of the following subsets of \mathbb{R}^3 are actually subspaces?

- (a) The plane of vectors (b_1, b_2, b_3) with $b_1 = b_2$.
- (b) The plane of vectors with $b_1 = 1$.
- (c) The vectors with $b_1b_2b_3 = 0$.
- (d) All linear combinations of $\mathbf{v} = (1, 4, 0)$ and $\mathbf{w} = (2, 2, 2)$.
- (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
- (f) All vectors with $b_1 \leq b_2 \leq b_3$.

Problem 3.1.15.

- (a) The intersection of two planes through (0,0,0) is probably a ____ in \mathbb{R}^3 but it could be a ____. It can't be $\mathbb{Z}!$
- (b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is probably a _____ but it could be a _____.
- (c) If **S** and **T** are subspaces of \mathbb{R}^5 , show that their intersection $\mathbb{S} \cap \mathbb{T}$ is a subspace of \mathbb{R}^5 . Here $\mathbb{S} \cap \mathbb{T}$ consists of all vectors that lie in *both* subspaces. (Check that $\mathbf{x} + \mathbf{y}$ and $c\mathbf{x}$ are in $\mathbb{S} \cap \mathbb{T}$ if \mathbf{x} and \mathbf{y} are in both spaces.)

Problem 3.1.20. For which right sides (find condition(s) on b_1 , b_2 , b_3) are these systems solvable?

(a)
$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Problem 3.1.25. Suppose $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{y} = \mathbf{b}^*$ are both solvable. Then $A\mathbf{z} = \mathbf{b} + \mathbf{b}^*$ is solvable. What is \mathbf{z} ? This translates into: If \mathbf{b} and \mathbf{b}^* are in the column space $\mathbf{C}(A)$, then $\mathbf{b} + \mathbf{b}^*$ is in $\mathbf{C}(A)$.

Graded Problems. In these problems, you should check the three properties of a subspace:

- 1. Does the subset contain the zero vector **0**?
- 2. If \mathbf{v} and \mathbf{w} are in the subset, what about $\mathbf{v} + \mathbf{w}$?
- 3. If \mathbf{v} is in the subset and c is any scalar, what about $c\mathbf{v}$?

Problem 1.

- (a) Show that the subset of symmetric matrices is a subspace of the vector space \mathbf{M} of $n \times n$ matrices.
- (b) Is the subset of symmetric matrices closed under matrix multiplication? That is, if A and B are both symmetric, does AB have to be symmetric?

Problem 2. Show that the subset \mathbf{P}_n of polynomials with degree $\leq n$ is a subspace of the vector space \mathbf{F} of all real-valued functions. (Functions in \mathbf{P}_n look like $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$, with a_0, a_1, \ldots, a_n allowed to be any scalars, including 0.)