Материалы к заданию №1 лабораторного практикума по курсу «Основы теории управления» ФИТ НГУ

2010 г.

1.

Для одноконтурной системы регулирования с ПИ–регулятором определить параметры K и $T_{\rm U}$ следующими способами:

- покоординатной оптимизацией K и $T_{\rm M}$ по интегральному критерию качества;
- по параметрам переходной характеристики объекта (формулы в приложении).

Сравнить полученные системы управления между собой по интегральному критерию качества.

2.

Для одноконтурной системы регулирования с Π ИД-регулятором определить параметры K, $T_{\rm H}$, $T_{\rm C}$ следующими способами:

- покоординатной оптимизацией K и $T_{\rm U}$ по интегральному критерию качества (принять $T_{\rm I\!\!I} = T_{\rm U\!\!I}/4$ и $T_{\rm C} = T_{\rm I\!\!I}/8$).
- по параметрам переходной характеристики объекта (формулы в приложении).

Сравнить полученные системы управления между собой по интегральному критерию качества.

Сравнить ПИ- и ПИД-регуляторы между собой по интегральному критерию качества исходя из наилучших значений K и T_{M} .

3.

Предложить свои формулы настройки параметров ПИД-регулятора исходя из наилучших табличных значений K и $T_{\rm M}$. Сравнить по интегральному критерию качества регулятор, настроенный по вашим формулам, с регулятором, настроенным по формулам из приложения, для значений параметра задержки объекта T=1; 2; 10.

Исходные данные

Передаточная функция объекта составлена из звена запаздывания на время T и цепочки одинаковых апериодических звеньев с постоянной времени T_0 :

$$W(s) = \frac{\exp(-sT)}{(1+sT_0)^n} ,$$

где n — количество последовательно соединенных апериодических звеньев.

Перечень значений времени запаздывания T объекта управления представлен в табл. 1.

Таблица 1

№	1	2	3
T	0	1,5	3

Параметры n и T_0 для каждого варианта задания представлены в табл. 2. В номере варианта первая цифра — номер группы, вторая цифра — номер студента по списку в группе).

В-т	T ₀ ; n										
1-1	0,75; 3	2-1	0,76; 3	3-1	0,77; 3	4-1	0,78; 3	5-1	0,79; 3	6-1	0,80; 3
1-2	0,81; 4	2-2	0,82; 4	3-2	0,83; 4	4-2	0,84; 4	5-2	0,85; 4	6-2	0,86; 4
1-3	0,87; 5	2-3	0,88; 5	3-3	0,89; 5	4-3	0,90; 5	5-3	0,91; 5	6-3	0,92; 5
1-4	0,93; 6	2-4	0,94; 6	3-4	0,95; 6	4-4	0,96; 6	5-4	0,97; 6	6-4	0,98; 6
1-5	0,99; 3	2-5	1,00; 3	3-5	1,01; 3	4-5	1,02; 3	5-5	1,03; 3	6-5	1,04; 3
1-6	1,05; 4	2-6	1,06; 4	3-6	1,07; 4	4-6	1,08; 4	5-6	1,09; 4	6-6	1,10; 4
1-7	1,11; 5	2-7	1,12; 5	3-7	1,13; 5	4-7	1,14; 5	5-7	1,15; 5	6-7	1,16; 5
1-8	1,17; 6	2-8	1,18; 6	3-8	1,19; 6	4-8	1,20; 6	5-8	1,21; 6	6-8	1,22; 6
1-9	1,23; 3	2-9	1,24; 3	3-9	1,25; 3	4-9	1,26; 3	5-9	1,27; 3	6-9	1,28; 3
1-10	1,29; 4	2-10	1,30; 4	3-10	1,31; 4	4-10	1,32; 4	5-10	1,33; 4	6-10	1,34; 4
1-11	1,35; 5	2-11	1,36; 5	3-11	1,37; 5	4-11	1,38; 5	5-11	1,39; 5	6-11	1,40; 5
1-12	1,41; 6	2-12	1,42; 6	3-12	1,43; 6	4-12	1,44; 6	5-12	1,45; 6	6-1	1,46; 6
1-13	1,47; 3	2-13	1,48; 3	3-13	1,49; 3	4-13	1,50; 3	5-13	1,51; 3	6-13	1,52; 3
1-14	1,53; 4	2-14	1,54; 4	3-14	1,55; 4	4-14	1,56; 4	5-14	1,57; 4	6-14	1,58; 4

Приложение

Настройка регулятора по параметрам переходной характеристики объекта (Давыдов и др. Теплоэнергетика. 1995. H.10. C. 17-22).

Параметры переходной характеристики объекта управления представлены в табл. 3.

Таблица 3

n	3	4	5	6
$T_{\rm int}$	3 <i>T</i> ₀ + <i>T</i>	4 <i>T</i> ₀ + <i>T</i>	5 <i>T</i> ₀ + <i>T</i>	6 <i>T</i> ₀ + <i>T</i>
$T_{ m emk}$	0,805 T ₀	1,43 T ₀	2,10 T ₀	2,81 T ₀
T_a	3,69 T ₀	4,46 T ₀	5,12 T ₀	5,70 T ₀

 $\tau^* := T_{\text{emk}} + T$

(условное запаздывание)

ПИ-регулятор:

2) ПИД-регулятор:

 $\alpha = 0.25$:

- 1) *ПИ*-регулятор:
- 2) ПИД-регулятор:

$$\alpha = 0.4$$
:

1-й вариант формул:

$$T_{\text{H}}/T_a = 0.153 (\tau^*/T_a) + 0.362$$

 $1/K = 1.905 (\tau^*/T_a) + 0.826$

$$T_{\text{II}} = \alpha T_{\text{II}}$$
, $T_{\text{C}} = T_{\text{II}}/8$

$$T_{\rm M}/T_a = 0.186 (\tau^*/T_a) + 0.532$$

 $1/K = 1.552 (\tau^*/T_a) + 0.078$

2-й вариант формул:

$$T_{\text{H}} / T_{\text{int}} = -0.467 (\tau^* / T_{\text{int}}) + 0.624$$

$$1/K = 4.345 (\tau^* / T_{\text{int}}) - 0.151$$

$$T_{\mathrm{II}} = \alpha T_{\mathrm{II}}$$
, $T_{\mathrm{C}} = T_{\mathrm{II}}/8$

$$T_{\rm H}/T_{\rm int} = -0.150 (\tau^*/T_{\rm int}) + 0.552$$

1/K = 2.766 (\tau^*/Tint) - 0.521

Ст. преподаватель А.Н. Ангельский, доц. А.А. Ломов