

PNU Industrial Data Science Data Processing

http://www.nongshim.com/ramyun/show_knowledge?groupCode=004&groupId=7

Contents

산업데이터과학은 산업현장에서 수집된 데이터를 분석하는데 필요한 기초 소양을 강의합니다.

Data Quality
Data reduction
Data imputation

Data quality improvement

Data analytics process

- 절차를 정의하는 방식
 - SEMMA
 - Sampling, Explore, Modify, Modeling, Assesment
 - CRISP-DM:
 - B-understanding, D-understanding, D-preparation
 - Modeling, evaluation, deployment
 - KDD
 - Selection, Preprocessing, Transformation
 - Data mining, Interpretation(Evaluation)

Garbage In Garbage Out!

Data imperfection

- Missing data
 - 자료 누락
- Incorrect data
 - 잘못된 코드
- Imprecise data
 - 잘못된 측정 데이터
- Irrelevant data
 - 예측에 사용하기 힘든 자료

Table 1. Manifestation of quality issues in event log entities [6].

		Event	Event log entities							
		Case	Event	Relationship	Case attrs.	Position	Activity name	Timestamp	Resource	Event attrs.
Event	Missing data	I1	12	13	14	15	16	17	18	19
quality issues	Incorrect data	I10	l11	I12	l13	I14	l15	I16	117	I18
	Imprecise data			I19	120	I21	122	123	124	125
	Irrelevant data	126	127							

Data Quality의 중요성

Big-data vs. Big-process

Data-Process compliance

• 만약 data-process separation을 없앨 수 있다면?

Data Quality

- 1.Consistency logical relations
 - two similar IDs for two different employees
 - a non-existent entry in another table
- **2.**Accuracy the real state of things
 - · All calculations based on such data show the true result.
- 3.Completeness all needed elements
 - lots of sensor data but there's no info about the exact sensor locations
- **4. Auditability** maintenance and control
 - data quality audits regularly or on demand will help to ensure a higher level of data adequacy
- **5.Orderliness** structure and format
 - the temperature in the oven has to be measured in Fahrenheit and can't be -14 °F.

Data Reduction

Data Reduction Strategies

- **Data reduction**: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Data Reduction: Numerosity Reduction (NOT dimension reduction)

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in m-D space as the product on appropriate marginal subspaces
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Dimensional reduction

- Visualization
- Reduce noise
- Preserve only useful information
- Less time/space complexity

Principal Components Analysis

Goal: Reduce a set of numerical variables.

상관관계가 높은 측정치들이 존재할 때 유리 => 변수 축소의 여지가 많다.

The idea: Remove the overlap of information between these variable. ["Information" is measured by the sum of the variances of the variables.]

Final product: A smaller number of numerical variables that contain most of the information

For Quantitative variable

What about categorical variable? => 대응분석(Correspondence anlysis)

Principal Components Analysis

How does PCA do this?

- •Create new variables that are (weighted) linear combinations of the original variables (i.e., they are weighted averages of the original variables).
- •These linear combinations are uncorrelated (no information overlap), and only a few of them contain most of the original information.
- •The new variables are called *principal components*.

Example – Breakfast Cereals

name	mfr	type	calories	protein	rating
100%_Bran	Ν	С	70	4	68
100%_Natural_Bran	Q	С	120	3	34
All-Bran	K	С	70	4	59
All-Bran_with_Extra_Fiber	K	С	50	4	94
Almond_Delight	R	С	110	2	34
Apple_Cinnamon_Cheerios	G	С	110	2	30
Apple_Jacks	K	С	110	2	33
Basic_4	G	С	130	3	37
Bran_Chex	R	С	90	2	49
Bran_Flakes	Р	С	90	3	53
Cap'n'Crunch	Q	С	120	1	18
Cheerios	G	С	110	6	51
Cinnamon_Toast_Crunch	G	С	120	1	20

Name: name of cereal

mfr: manufacturer

type: cold or hot

calories: calories per serving

protein: grams

fat: grams

sodium: mg.

fiber: grams

Carbo(복합탄수화물): grams complex carbohydrates

sugars: grams

Potass(칼륨): mg.

vitamins: % FDA rec

shelf: display shelf (진열대 높이)

weight: oz. 1 serving

cups: in one serving

rating: consumer reports

Covariance and correlation

Covariance

$$Cov(X,Y) = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})$$
 where
$$\bar{X} = \frac{1}{N} \sum_{i=1}^{n} X_i \text{ and } \bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$
 are the means of X, Y

Correlation

$$\frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Yz)}} = \frac{\sum_{i=1}^{n} (x_{i}-\overline{x})(y_{i}-\overline{y})/(n-1)}{\sqrt{\sum_{i=1}^{n} (x_{i}-\overline{x})^{2}/(n-1)} \cdot \sqrt{\sum_{i=1}^{n} (y_{i}-\overline{y})^{2}/(n-1)}} \qquad \forall \quad \bullet$$

$$Cor(\text{calories, ratings}) = \frac{-188.68}{\sqrt{379.63}\sqrt{197.2}} = -0.69$$

69% of variance is shared between the two

Cov. matrix

Covariance matrix

$$C = \begin{pmatrix} cov(x,x) & cov(x,y) \\ cov(x,y) & cov(y,y) \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{n} \sum (x_i - m_x)^2 & \frac{1}{n} \sum (x_i - m_x)(y_i - m_y) \\ \frac{1}{n} \sum (x_i - m_x)(y_i - m_y) & \frac{1}{n} \sum (y_i - m_y)^2 \end{pmatrix}$$
calories ratings
$$= \begin{pmatrix} \frac{1}{n} \sum (x_i - m_x)(y_i - m_y) & \frac{1}{n} \sum (y_i - m_y)^2 \\ -189.68 & 197.32 \end{pmatrix}$$

- Total variance (="information") is sum of individual variances: 379.63 + 197.32
- Calories accounts for 379.63/(197.32+379.63) = 66%
- PCA
 - Want to find a new variable explain most of the variance

Principal Components

 Z_1 and Z_2 are two linear combinations.

- Z₁ has the highest variation (spread of values)
- Z₂ has the lowest variation

Eigen vector

- PCA is to find a linear combination of the variables
 - Which should explain most of the variances
 - Eigen vector
 - a nonzero vector with the same direction (change of the length) after linear transformation
- PCA
 - Projecting data onto eigenvector of Cov. matrix

Generalization

 $X_1, X_2, X_3, ... X_p$, original p variables

 Z_1 , Z_2 , Z_3 , ... Z_p , weighted averages of original variables

All pairs of Z variables have O correlation

Order Z's by variance (z_1 largest, Z_p smallest)

Usually the first few Z variables contain most of the information, and so the rest can be dropped.

PCA on full data set

- First 6 components shown
- First 2 capture 93% of the total variation
- Note: data differ slightly from text

Variable	1	2	3	4	5	6
calories	0.07624155	-0.01066097	0.61074823	-0.61706442	0.45754826	0.12601775
protein	-0.00146212	0.00873588	0.00050506	0.0019389	0.05533375	0.10379469
fat	-0.00013779	0.00271266	0.01596125	-0.02595884	-0.01839438	-0.12500292
sodium	0.98165619	0.12513085	-0.14073193	-0.00293341	0.01588042	0.02245871
fiber	-0.00479783	0.03077993	-0.01684542	0.02145976	0.00872434	0.271184
carbo	0.01486445	-0.01731863	0.01272501	0.02175146	0.35580006	-0.56089228
sugars	0.00398314	-0.00013545	0.09870714	-0.11555841	-0.29906386	0.62323487
potass	-0.119053	0.98861349	0.03619435	-0.042696	-0.04644227	-0.05091622
vitamins	0.10149482	0.01598651	0.7074821	0.69835609	-0.02556211	0.01341988
shelf	-0.00093911	0.00443601	0.01267395	0.00574066	-0.00823057	-0.05412053
weight	0.0005016	0.00098829	0.00369807	-0.0026621	0.00318591	0.00817035
cups	0.00047302	-0.00160279	0.00060208	0.00095916	0.00280366	-0.01087413
rating	-0.07615706	0.07254035	-0.30776858	0.33866307	0.75365263	0.41805118
Variance	7204.161133	4833.050293	498.4260864	357.2174377	72.47863007	4.33980322
Variance%	55.52834702	37.25226212	3.84177661	2.75336623	0.55865192	0.0334504
Cum%	55.52834702	92.78060913	96.62238312	99.37575531	99.93440247	99.96785736

Data reduction by LDA

• Find an axis which can separate best when data are projected to

Data reduction using NN: Autoencoder

- Purpose of autoencoder
 - Data reduction

Summary

- Data summarization is an important for data exploration
- Data summaries include numerical metrics (average, median, etc.) and graphical summaries
- Data reduction is useful for compressing the information in the data into a smaller subset
 - Categorical variables can be reduced by combining similar categories
 - Principal components analysis transforms an original set of numerical data into a smaller set of weighted averages of the original data that contain most of the original information in less variables.

Data Imputation

Understanding about Missing Data

- One of the most common problems we have faced in Data Cleaning/Exploratory Analysis is handling the missing values.
- The type of missing values was firstly classified by Rubin and the missing values have been classified into the following three kinds.
 - Missing at Random (MAR): Missing at random means that the propensity for a data point to be missing is not related to the missing data, but it is related to some of the observed data (자료 내의 다른 변수와 관련)
 - Missing Completely at Random (MCAR): The fact that a certain value is missing has nothing to do with its hypothetical value and with the values of other variables.
 - **Missing not at Random (MNAR):** Two possible reasons are that the missing value depends on the hypothetical value (e.g. People with high salaries generally do not want to reveal their incomes in surveys) or missing value is dependent on some other variable's value (e.g. Let's assume that females generally don't want to reveal their ages! Here the missing value in age variable is impacted by gender variable) (Missing여부가 해당변수의 값에 의해서 결정)

- Listwise deletion (complete-case analysis)
 - By far the most common approach to the missing data is to simply omit those cases with the missing data and analyse the remaining data.
 - This approach is known as the complete case (or available case) analysis or list-wise deletion.

	Mobile Package	Download Speed	Data Limit Usage
У ₁	Fast	157	80%
y ₂	Lite	99	70%
y ₃	Fast	167	10%
y ₄	Fast	NA	80%
y ₅	Lite	76	70%
У ₆	Fast	155	10%
y ₇	NA	NA	95%
y ₈	Lite	76	77%
У 9	Fast	180	NA

- Pairwise deletion (available-case analysis)
 - Only the missing observations are ignored and analysis is done on variables present.
 - If there is missing data elsewhere in the data set, the existing values are used. Since a pairwise deletion uses all information observed, it preserves more information than the listwise deletion.

	Mobile Package	Download Speed	Data Limit Usage
y ₁	Fast	157	80%
y ₂	Lite	99	70%
y ₃	Fast	167	10%
y ₄	Fast	NA	80%
y ₅	Lite	76	70%
y ₆	Fast	155	10%
y ₇	NA	NA	95%
y ₈	Lite	76	77%
y ₉	Fast	180	NA

- Column deletion (available-variable analysis)
 - If there are too many data missing for a variable it may be an option to delete the variable or the column from the dataset.
 - This should be the last option and need to check if model performance improves after deletion of variable.

	Mobile Package	Download Speed	Data Limit Usage
y ₁	Fast	NA	80%
y ₂	Lite	NA	70%
y ₃	Fast	167	10%
y ₄	Fast	NA	80%
y ₅	Lite	NA	70%
y ₆	Fast	155	10%
y ₇	Fast	NA	95%
y ₈	Lite	NA	77%
y ₉	Fast	180	80%

- Simple Imputation(Mean, Median and Mode)
 - In this simple imputation technique goal is to replace missing data with statistical estimates of the missing values. Mean, Median or Mode can be used as imputation value.
 - Ex) Mean = 130, Median = 155, Mode = 200

	Mobile Package	Download Speed	Data Limit Usage
У ₁	Fast	157	80%
y ₂	Lite	99	70%
y ₃	Fast	167	10%
y ₄	Fast	NA	80%
y ₅	Lite	76	70%
y ₆	Fast	155	10%
y ₇	Fast	NA	95%
y ₈	Lite	76	77%
y ₉	Fast	180	80%

- Time Series Specific Method (LOCF, NOCB and Linear Interpolation)
 - Last Observation Carried Forward(LOCF)
 - If data is time-series data, one of the most widely used imputation methods.
 - Whenever a value is missing, it is replaced with the last observed value.

	Date	Download Speed	Data Limit Usage
У ₁	1-MAR	157	80%
y ₂	2-MAR	99	70%
y ₃	3-MAR	167	10%
y ₄	4-MAR	NA	80%
y ₅	5-MAR	76	70%
У ₆	6-MAR	155	10%
y ₇	7-MAR	NA	95%
y ₈	8-MAR	76	77%
y ₉	9-MAR	NA	80%

- Time Series Specific Method (LOCF, NOCB and Linear Interpolation)
 - Next Observation Carried Backward(NOCB)
 - A similar approach like LOCF which works in the opposite direction by taking the first observation after the missing value and **c**arrying it backward

	Date	Download Speed	Data Limit Usage
У ₁	1-MAR	157	80%
y ₂	2-MAR	99	70%
y ₃	3-MAR	167	10%
y ₄	4-MAR	NA	80%
y ₅	5-MAR	76	70%
y ₆	6-MAR	NA	10%
y ₇	7-MAR	NA	95%
y ₈	8-MAR	76	77%
y ₉	9-MAR	180	80%

- Time Series Specific Method (LOCF, NOCB and Linear Interpolation)
 - Linear Interpolation
 - Interpolation is a mathematical method that adjusts a function to data and uses this function to extrapolate the missing data.
 - The simplest type of interpolation is the linear interpolation, that makes a mean between the values before the missing data and the value after.

	Date	Download Speed	Data Limit Usage
y ₁	1-MAR	157	80%
y ₂	2-MAR	99	70%
y ₃	3-MAR	167	10%
y ₄	4-MAR	NA	80%
y ₅	5-MAR	76	70%
y ₆	6-MAR	NA	10%
y ₇	7-MAR	150	95%
y ₈	8-MAR	76	77%
y ₉	9-MAR	180	80%

- Time Series Specific Method (LOCF, NOCB and Linear Interpolation)
 - Linear Interpolation
 - Interpolation is a mathematical method that adjusts a function to data and uses this function to extrapolate the missing data.
 - The simplest type of interpolation is the linear interpolation, that makes a mean between the values before the missing data and the value after.

	Date	Download Speed	Data Limit Usage
y ₁	1-MAR	157	80%
y ₂	2-MAR	99	70%
y ₃	3-MAR	167	10%
y ₄	4-MAR	NA	80%
y ₅	5-MAR	76	70%
y ₆	6-MAR	NA	10%
y ₇	7-MAR	150	95%
y ₈	8-MAR	76	77%
y ₉	9-MAR	180	80%

- Multiple Imputation
 - Multiple imputation (MI) is a statistical technique for dealing with missing data.
 - The Multiple imputation includes the following 3 components.
 - Generate missing value: To use the distribution of the observed data to estimate a set of plausible values for the missing data.
 - Imputation and Analysis: Missing values are replaced by several estimated values, and are analyzed separately equally to obtain parameter estimates.
 - Pooling: The estimates are combined to obtain a set of parameter estimates.

 MI technique has various methods depending on how data is imputed, and there are various imputation method such as MICE (Multiple Imputation by Chain Equation), Random Forest Imputation, KNN Imputation, Expectation-Maximization Imputation.

• Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

• Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Simple Imputation using mean

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

• Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Simple Imputation using mean

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

Age back to NA

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Simple Imputation using mean

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Regression Age ~ Income + Gender

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Predict Age

• Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Simple Imputation using mean

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

	→
Age back	to
NA	

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Regression Age ~ Income + Gender

Age	Income	Gender
33	12.771	F
18	12,000	F
35.3	13,542	М

Predict Age

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Regression Age ~ Income + Gender

Age	Income	Gender
33	NA	F
18	12,000	F
35.3	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
35.3	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

Income	Gender
12.771	F
12,000	F
13,542	М
	12.771 12,000

Regression Age ~ Income + Gender

Age	Income	Gender
33	NA	F
18	12,000	F
35.3	13,542	М
-		

Age	Income	Gender
33	12.771	F
18	12,000	F
35.3	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Predict	Age	

Age	Income	Gender	
33	NA	F	
18	12,000	F	
35.3	13,542	М	

Regression

Income ~ Age + Gender

Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М
NA	13,542	М

Regression Age ~ Income + Gender

Age	Income	Gender
33	NA	F
18	12,000	F
35.3	13,542	М

Age	Income	Gender
33	12.771	F
18	12,000	F
35.3	13,542	М

4	
	Predict Age

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Regression
Income ~ Age + Gender

Age	Income	Gender
33	NA	F
18	12,000	F
35.3	13,542	М

Predict Income

Age	Income	Gender
33	13.103	F
18	12,000	F
35.3	13,542	М

Understanding for MICE – Single Iteration

Age	Income	Gender
33	NA	F
18	12,000	NA
NA	13,542	М

Simple Imputation using mean

Age	Income	Gender
33	12.771	F
18	12,000	F
25.5	13,542	М

Age back to NA

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Regression Age ~ Income + Gender

Age	Income	Gender
33	NA	F
18	12,000	F
35.3	13,542	М

Income back to NA

Age	Income	Gender
33	12.771	F
18	12,000	F
35.3	13,542	М

Predict Age

Age	Income	Gender
33	12.771	F
18	12,000	F
NA	13,542	М

Regression Income ~ Age + Gender

Age	Income	Gender
33	NA	F
18	12,000	F
35.3	13,542	М

Predict Income

Age	Income	Gender
33	33 13.103	
18	12,000	F
35.3	13,542	М

...the same for Gender Gender back to NA Regression Predict Gender

	Age	Income	Gender
	33	13.103	F
Α	18	12,000	М
Ī	35.3	13,542	М

• Understanding for MICE – Multiple Iterations

Other Multiple Imputation Techniques

- Random Forest Imputation
 - Random Forest is a nonparametric replacement method that can be applied to various types of variables that work well on both randomly missing and non-randomly missing data.
 - One caveat is that random forests work best on large datasets, and using random forests on small datasets risks over-consensus.
- K Nearest Neighbor Imputation
 - k-NN replaces missing attribute values based on the nearest *K* neighbor and neighbors are determined by distance measurements.
 - When K neighbors are determined, the missing value is replaced by taking the mean / medium or mode of the known attribute value of the missing attribute.
- Expectation-Maximization Imputation
 - EM (Expectation-Maximization) is a type of maximum likelihood method that can be used to create a new data set, and all missing values are replaced with values estimated by the maximum likelihood method
 - The EM algorithm consists of 3 phase
 - 1) Expected phase: Estimated various parameters(e.g. variance, covariance and mean) using list-specific deletions.
 - 2) Imputation phase: Use these estimates to create a regression equation that predicts missing data.
 - 3) Maximizing phase: Uses these equations to fill in the missing data.
 - Then repeat the expected step with the new parameters. The new regression equation is determined to "fill" the missing data. Expectation and maximization steps are repeated until the system stabilizes.

Likelihood based Multiple Imputation by Event chain for Repairing Event Log

	Case	ase Activity Resource		Part Desc.
e_1	Case ₁	Turning & Milling	Machine 4	Cable Head
e_2	Case ₁	Turning & Milling	Machine 4	Cable Head
e_3	Case ₁	Turning & Milling	Machine 4	Cable Head
e_4	Case ₁	Turning & Milling	Machine 4	Cable Head
e_5	Case ₁	Turning & Milling Q.C	Quality Check 1	Cable Head
e_6	Case ₁	Laser Marking	Machine 7	Cable Head
e_7	Case ₁	Lapping	Machine 1	Cable Head
e_8	Case ₁	Lapping	Machine 1	Cable Head
e_g	Case ₁	Lapping	Machine 1	Cable Head
e_{10}	Case ₁	Lapping	Machine 1	Cable Head
e_{11}	Case ₁	Round Grinding	Machine 3	Cable Head
e ₁₂	Case ₁	Round Grinding	Machine 3	Cable Head
e ₁₃	Case ₁	Final Inspection Q.C.	Quality Check 1	Cable Head
e_{14}	Case ₁	Final Inspection Q.C.	Quality Check 1	Cable Head
e ₁₅	Case ₁	Final Inspection Q.C.	Quality Check 1	Cable Head
e ₁₆	Case ₁	Packing	Packing	Cable Head
e ₁₇	Case ₂	Turning & Milling	Machine 9	Spur Gear
e ₁₈	Case ₂	Turning Q.C.	Quality Check 1	Spur Gear
e ₁₉	Case ₂	Turning & Milling	Machine 9	Spur Gear
e_{20}	Case ₂	Turning & Milling	Machine 9	Spur Gear
	•••			

Start Time	End Time
2012-01-29 23:24	2012-01-30 05:43
2012-01-30 05:44	2012-01-30 06:42
2012-01-30 06:59	2012-01-30 07:21
2012-01-30 07:21	2012-01-30 10:58
2012-01-31 13:20	2012-01-31 14:50
2012-02-01 08:18	2012-02-01 08:27
2012-02-14 00:00	2012-02-14 01:15
2012-02-14 00:00	2012-02-14 01:15
2012-02-14 09:05	2012-02-14 10:20
2012-02-14 09:05	2012-02-14 09:38
2012-02-14 09:13	2012-02-14 13:37
2012-02-14 13:37	2012-02-14 15:27
2012-02-16 06:59	2012-02-16 07:59
2012-02-16 12:11	2012-02-16 16:12
2012-02-16 12:43	2012-02-16 13:58
2012-02-17 00:00	2012-02-17 01:00
2012-01-17 07:01	2012-01-17 11:05
2012-01-17 11:06	2012-01-17 11:15
2012-01-17 19:24	2012-01-17 20:01
2012-01-17 20:01	2012-01-17 23:43

Factory Operation Event Log Example

Likelihood based Multiple Imputation by Event chain for Repairing Event Log

	Mobile Package	Download Speed	Data Limit Usage
y ₁	NA	157	80%
y ₂	Lite	99	NA
y ₃	Fast	167	10%
У ₄	Fast	NA	80%

Each included in a case are dependent.

General Data Set with missing

VS

	Case	Activity	Resource	Part Desc.
e_1	Case ₁	NA	NA Machine 4	
e_2	Case ₁	Turning & Milling	ning & Milling NA	
e_3	Case ₁	Turning & Milling	Machine 4	NA
e_4	Case ₁	Turning & Milling	Machine 4	Cable Head
e_5	Case ₁	NA	NA	Cable Head
		•••		

Start Time	End Time
2012-01-29 23:24	2012-01-30 05:43
2012-01-30 05:44	2012-01-30 06:42
2012-01-30 06:59	2012-01-30 07:21
2012-01-30 07:21	2012-01-30 10:58
2012-01-31 13:20	2012-01-31 14:50
	•••

Observation included in a case are dependent.

Event Log Structure with missing

Likelihood based Multiple Imputation by Event chain for Repairing Event Log

	Case	Activity	
e_1	Case ₁	Turning & Milling	
e_2	Case ₁	Turning & Milling	
e_3	Case ₁	Turning & Milling	
e_4	Case ₁	Turning & Milling	
e_5	Case ₁	Turning & Milling Q.C	
e_6	Case ₁	Laser Marking	
e_7	Case ₁	Lapping	
e_8	Case ₁	Lapping	
e_g	Case ₁	Lapping	
e_{10}	Case ₁	Lapping	
e_{11}	Case ₁	Round Grinding	
e_{12}	Case ₁	Round Grinding	
e ₁₃	Case ₁	Final Inspection Q.C.	
e ₁₄	Case ₁	Final Inspection Q.C.	
e ₁₅	Case ₁	Final Inspection Q.C.	
e_{16}	Case ₁	Packing	

Event

Fitting Target
Distribution Using
Event Chain

Event Chain

- Likelihood based Multiple Imputation by Event chain for Repairing Event Log
 - We developed the concept of an event chain that can reflect sequential information contained in one case for dealing with missing events.
 - By converting the events included in the event into an event chain, and replacing the event value that can
 approximate the distribution of the event chain instead of missing, we developed a restoration method
 that can restore the restored event log to the original log.

- Likelihood based Multiple Imputation using Event chain for Repairing Event Log
 - Case Study: Korea Steel Company Event Log Data with MIEC(Multiple Imputation by Chained Equations, Expectation-Maximizing Imputation, Random Forest Imputation, K Nearest Neighbor Imputation)

Missing Rate	MICE	ЕМВІ	RFI	KNNI	MIEC
5%	48.9%	51.3%	60.1%	44.4%	93.2%
10%	44.3%	45.5%	59.8%	42.1%	91.0%
15%	34.7%	36.9%	50.3%	40.3%	88.7%
20%	28.5%	30.1%	47.7%	32.2%	80.4%

Performance Event Imputation method using MIEC (Korea Steel Company Event log)

