CHE352: SIMULATION LAB 8

Name: Bhavishya Gupta

Roll No- 220295

Question 1

<u>Sensitivity 1</u>: Optimum Entrainer rate was determined by varying the net entrainer rate over net duty of the columns.

Minimum Entrainer flow rate: 193.507 kmol/h of Benzene recycle rate from column 2 to CSTR 1 $\,$

Benzene flow rate in entrainer: 192.448 kmol/h

Recycled Benzene from rad-frac: 92.241 kmol/h

Fresh Makeup Benzene: 100.207 kmol/h

Minimum Overall Energy consumed: 3690.219 kW

Sensitivity 2: Total duty was further minimised by varying the distillate rate of the second column

Minimum Overall Energy consumed: 3689.311 kW

DOF Controlled: Benzene Purity in "BENRCY" stream

Final Value: 0.989

Sensitivity 3: Duty was again reduced by varying the reboiler duty of the second column

Minimum Overall Energy consumed: 3484.453 kW

DOF Controlled: Benzene Impurity in "C2B" stream

Final Value: 6.86 x 10⁻⁵

Sensitivity 4: Duty was again reduced by varying the distillate to feed ratio of the third column

Minimum Overall Energy consumed: 3483.458 kW

DOF Controlled: EB Impurity in "RECYDEB" stream

Final Value: 0.0012214

Most Dominant Degree of Freedom: Benzene Impurity in Colum 2 bottoms controlled by Column 2 reboiler duty (as this is the case that affected column 2 the most).

Question 2

Overall Material balance: -

Stream	Total	Ethane	Ethylene	Benzene	Diethyl	Ethyl
	Flow	mole	mole	mole	Benzene	Benzene
	(kmol/h)	fraction	fraction	fraction	mole	mole
					fraction	fraction
Feed	105.26	0.05	0.95	0	0	0
Makeup	100.207	0	0	1	0	0
Distillate:	5.56054	0.946	0.000109	0.05333	5.786 x 10 ⁻⁹	6.485 x 10 ⁻⁵
column 1						

Distillate:	99.9106	0	0	7.219 x 10 ⁻⁵	0.000927804	0.999
column 3						
Loss of moles in conversion during reaction	99.996	_	_	_		

Overall Operational Energy Balance: -

Equipment	Net Duty (kW)		
Column 1: Reboiler	636.028		
Column 2: Reboiler	1011.8		
Column 3: Reboiler	1835.6312		
Column 1: Condenser	-60.255		
Column 2: Condenser	-1862.333		
Column 3: Condenser	-1881.9029		

Question 3

Composition profile column C1:-

Composition profile column C2:-

Composition profile column C3:-

Temperature profile column C1:-

Temperature profile column C2:-

Temperature profile column C3:-

Question 4

Col	No	Reboi	Conde	Condens	Reboile	Reboiler	Steam	Condenser	Steam	Diam	Tray
um	of	ler	nser	or duty	r duty	temp	used in	temp	used in	eter	space
n	tray	type	type	(kW)	(kW)	difference	reboiler	difference (K)	condensor	(m)	(m)
	S					(K)					
C1	11	Partia	Partial	-60.255	636.028	4.778	Нр	81.245	Cooling	0.669	0.609
		l							water	4617	6
C2	24	Partia	Total	-	1011.8	0.855	Мр	1.688	Cooling	1.217	0.609
		l		1862.333					water	3070	6
										8	
C3	29	Partia	Total	-	1835.63	0.482	Нр	0.431	Cooling	1.308	0.609
		l		1881.902	115				water	0559	6
				91						4	

Column	Column Cost Tray Cost		Condensor	Reboiler Cap	Total capital	
	(*1.0e+05\$)	(*1.0e+03\$)	cap cost	cost	cost	
			(*1.0e+06\$)	(*1.0e+06\$)	(*1.0e+06\$)	
C1	0.5521	0.1137	0.0087	0.1946	0.2586	
C2	1.9203	0.8925	1.0012	0.8051	1.9992	
C3	2.4136	1.1884	2.4481	1.7210	4.4117	

TCC = 6.6696*10^6\$

YOC = 1.0686*10^6 \$ (from circulating fluid used in reb and con of all columns)

PBP = 3 years

TAC = 3.2918*10^6 \$

Appendix:

Code Used for Calculating TAC (MATLAB): -

```
Colm cost(i)=17640*col data(i,7)^1.066*(0.6096*col data(i,2)+1.2*0.6096*(col data(i,1))
)-col data(i,2)))^0.8092;
end
Tray_cost=zeros(1,3);
for i=1:3
    A=pi*col_data(i,7)^2/4;
    Cp=exp(2.994+0.446*log(A)+0.396*log(A)^2);
    N=col_data(i,2);
    if N<20
    Fq=exp(0.477+0.085*log(N)-0.347*log(N)^2);
    else
        Fq=1;
    end
    Tray cost(i)=Cp*N*1.8*Fq;
end
conden_cap_cost=zeros(1,3);
HTC_C=0.568;
for i=1:3
   delta_T=col_data(i,6);
   Q_cond=abs(col_data(i,3));
   A=Q cond/(HTC C*delta T);
   conden_cap_cost(i)=7296*A^0.65;
end
reb_cap_cost=zeros(1,3);
HTC R=0.852;
for i=1:3
   delta_T=col_data(i,5);
   Q reb=col data(i,4);
   A=Q_reb/(HTC_R*delta_T);
   reb cap cost(i) = 7296*A^0.65;
end
reactor_cost=zeros(1,2);
for i=1:2
    V=200*10^-6;
    asp rat=2;
    D=(V/asp_rat/pi*4)^(1/3);
    L=D*asp rat;
    reactor_cost(i)=17640*D^1.066*L^0.802;
end
Total_Cap_cost_columns=Colm_cost+conden_cap_cost+Tray_cost+reb_cap_cost;
Total_Cap_cost_of_all=sum(Total_Cap_cost_columns)+sum(reactor_cost);
%% OPERATING COST
LPS cost=7.78;%GJ^-1
MPS_cost=8.22;
HPS_cost=9.8;
CW cost=0.354;
```

```
Cond_op_cost=CW_cost*sum(abs(col_data(:,3)))/10^6*365*24*60*60;

Reb_op_cost=(HPS_cost*(col_data(1,4)+col_data(3,4))+MPS_cost*col_data(2,4))/10^6*365*
24*60*60;

Total_op_cost=Cond_op_cost+Reb_op_cost;

TCC=Total_Cap_cost_of_all;
YOC=Total_op_cost;
PBP=3;
TAC=TCC/PBP+YOC;
```