Public Key Encryption

Chanathip Namprempre

Faculty of Engineering Thammasat University

Agenda: Public Key Encryption

- 1. Basic math
- 2. Syntax of PKE
- 3. Security Definitions
- 4. Constructions

Outline

Basic Math

RSA Math

Syntax of Public Key Encryption

Security Definitions of PKE

PKE Schemes

Basic math

- $ightharpoonup Z_N = \{0, \dots, N-1\}$
- ▶ $\mathbf{Z}_N^* = \{x \in \mathbf{Z}_N | x \text{ and } N \text{ are co-prime.}\}$
- $ightharpoonup \mathbf{Z}_N^* = \text{set of invertible elements in } \mathbf{Z}_N$
- ► Easy operations modulo N: addition, multiplication, exponentiation, inversion

Basic math

Group theory basic

Suppose G is a group with operation \cdot .

- ▶ Order of G = |G|
- ▶ Order of $x \in G$: ord $_G(x) = |\langle x \rangle| = \{ \text{ smallest } a > 0 \text{ such that } x^a = 1 \text{ in } G \}$ So,

$$x^{\operatorname{ord}_G(x)} = 1.$$

- For any $x \in G$, $\langle x \rangle = \{x^0, x^1, \dots, x^{\operatorname{ord}_G(x)-1}\}$ is a subgroup of G.
- For any subgroup S of G, |S| |G|.
- For any element $x \in G$, $\operatorname{ord}_G(x) |G|$
- ▶ For any element $x \in G$, $x^i = x^{i \mod |G|}$

Basic math

Structure of \mathbf{Z}_p^*

Let p be a prime.

- $ightharpoonup \mathbf{Z}_{p}^{*} = \{1, 2, \dots, p-1\}$
- $ightharpoonup \mathbf{Z}_p^*$ is cyclic.
- Fermat's theorem: If p is prime, then $\forall x \in \mathbf{Z}_p^*$, $x^{p-1} \equiv 1$.

 Fermat's theorem can be used to test whether a number p is prime. If p is chosen at random, there's a very small chance that p would pass this test yet isn't prime.
- ► There's a generator $g \in \mathbf{Z}_p^*$ such that $\{1, g, g^2, g^3, \dots, g^{p-2}\} = \mathbf{Z}_p^*$.
- ▶ Not everything in \mathbf{Z}_{p}^{*} is a generator.
- ▶ Lagrange Thm: $\forall x \in \mathbf{Z}_p^*, \operatorname{ord}_p(x) | p-1$

Recall definition

 $\mathbf{Z}_{N}^{*} = \text{set of invertible elements in } \mathbf{Z}_{N}$

Let N be an integer.

- ▶ Euler's phi function: $\phi(N) = |Z_N^*|$
- ▶ Euler's theorem: For any integer N, $\forall x \in \mathbf{Z}_N^*, x^{\phi(N)} = 1$.
- ▶ If N = pq where p and q are distinct primes, then $\phi(N) = (p-1)(q-1)$.

Let N be an integer.

- Solving linear equations in \mathbf{Z}_N is easy. For $a,b\in\mathbf{Z}_N$, $ax+b\equiv 0$ Solution: $x\equiv -b\cdot a^{-1}$ in \mathbf{Z}_N . Use Euclidean algorithm.
- ▶ Solving higher degree polynomial in \mathbf{Z}_N is more complicated, e.g.,

$$x^3 - 12 \equiv 0 \pmod{15}$$

Outline

Basic Math

RSA Math

Syntax of Public Key Encryption

Security Definitions of PKE

PKE Schemes

RSA

Notation

Let $N, e \ge 1$ be integers.

The RSA function associated to N, e is $RSA_{N,e}: \mathbf{Z}_N^* \to \mathbf{Z}_N^*$ defined by

$$RSA_{N,e}(x) = x^e \mod N$$
 for all $x \in \mathbf{Z}_N^*$.

Claim

Let $N \geq 2$, $e, d \in \mathbf{Z}_{\phi(N)}^*$ be integers such that

$$ed \equiv 1 \pmod{\phi(N)}$$
.

i.e., $[d = e^{-1} \text{ in } \mathbf{Z}_{\phi(N)}^*]$. Then,

 $RSA_{N,e}$ is a permutation over \mathbf{Z}_{N}^{*} ; $RSA_{N,d}^{-1} = RSA_{N,e}$; $RSA_{N,e}^{-1} = RSA_{N,d}$.

RSA: $RSA_{N,e}$ and $RSA_{N,d}$ are inverses of each other

Let $x \in \mathbf{Z}_N^*$

Then,

$$RSA_{N,d}(RSA_{N,e}(x)) \equiv (x^e)^d$$
$$\equiv x^{ed \mod \phi(N)}$$
$$\equiv x^1 \equiv x$$

The second equation holds because $\phi(N)$ is the order of the group \mathbf{Z}_N^* .

Similarly, we can show that $RSA_{N,e}(RSA_{N,d}(y)) = y$ for all $y \in \mathbf{Z}_N^*$.

RSA (cont.)

Notice

 $RSA_{N,e}(\cdot)$ and $RSA_{N,d}(\cdot)$ are efficiently computable.

Intuition for security: one-wayness of RSA

Given N, e, y, it's hard to compute $RSA_{N,e}^{-1}(y)$ without d.

Modulus Generator

Definition

A modulus generator with associated security parameter $k \geq 2$ is a randomized algorithm taking no inputs & returning integers N, p, q such that

- 1. p, q are distinct, odd primes.
- 2. N = pq
- 3. $2^{k-1} \le N < 2^k$

RSA Generator : K_{rsa}

Definition

An RSA generator with associated security parameter $k \geq 2$ is a randomized algorithm taking no inputs & returning ((N,e),(N,p,q,d)) such that N,e,p,q,d are integers and

- 1. p, q are distinct, odd primes.
- 2. N = pq
- 3. $2^{k-1} \le N < 2^k$
- **4**. $e, d \in \mathbf{Z}_{\phi(N)}^*$
- 5. $ed \equiv 1 \pmod{\phi(N)}$

Outline

Basic Math

RSA Math

Syntax of Public Key Encryption

Security Definitions of PKE

PKE Schemes

Syntax of PKE

Syntax

A public key encryption scheme PKE = (K, E, D) is a triple of algorithms.

alg	input	output	notation	maybe randomized?	maybe stateful?
\mathcal{K}	- (pk, sk) ∈ Keys(PKE)	key <i>pk</i> , <i>sk</i> ciphertext	$(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{K}$ $C \stackrel{\$}{\leftarrow} \mathcal{E}_{pk}(M)$	yes yes	no yes
\mathcal{D}	$M \in \{0,1\}^*$ $(pk, sk) \in Keys(PKE)$ $C \in \{0,1\}^*$	$C \in \{0,1\}^* \cup \{\bot\}$ plaintext $M \in \{0,1\}^* \cup \{\bot\}$	$M \leftarrow \mathcal{D}_{sk}(C)$	no	no

Correctness

For all $(pk, sk) \in Keys(PKE)$ and all $M \in \{0, 1\}^*$,

$$\mathsf{Pr}\left[\ C = \bot \ \mathsf{OR} \ \mathcal{D}_{\mathit{sk}}(C) = M \ : \ C \overset{\$}{\leftarrow} \mathcal{E}_{\mathit{pk}}(M) \ \right] = 1 \ .$$

Outline

Basic Math

RSA Math

Syntax of Public Key Encryption

Security Definitions of PKE

PKE Schemes

Privacy notion for PKE: Indistinguishability against CPA

Let $PKE = (KG, \mathcal{E}, \mathcal{D})$ be a PKE scheme, and let A be an adversary with access to an oracle.

Subroutine Initialize
$$b \overset{\$}{\leftarrow} \{0,1\}$$
; $(pk,sk) \overset{\$}{\leftarrow} \mathsf{KG}$ Return pk

Subroutine $\mathsf{Enc}(M_0,M_1)$ If $|M_0| \neq |M_1|$ then return \bot Return $\mathsf{Enc}_{pk}(M_b)$

Subroutine Finalize(d)
Return (d = b)

Experiment $\mathbf{Exp}^{\mathrm{ind-cpa}}_{\mathsf{PKE}}(A)$

 $pk \overset{\$}{\leftarrow} \text{Initialize}$ $d \overset{\$}{\leftarrow} A^{\text{Enc}}(pk)$ Return Finalize(d)

ind-cpa advantage of A mounting a CPA against PKE:

$$\mathsf{Adv}^{\mathrm{ind\text{-}cpa}}_\mathsf{PKE}(A) = 2 \cdot \mathsf{Pr} \left[\ \mathsf{Exp}^{\mathrm{ind\text{-}cpa}}_\mathsf{PKE}(A) \Rightarrow \mathsf{true} \ \right] - 1 \ .$$

Privacy notion for PKE: Indistinguishability against CCA

Let $PKE = (KG, \mathcal{E}, \mathcal{D})$ be a PKE scheme, and let A be an adversary with access to an oracle.

```
Subroutine Initialize
     b \stackrel{\$}{\leftarrow} \{0,1\}; (pk,sk) \stackrel{\$}{\leftarrow} KG
     S \leftarrow \emptyset; Return pk
Subroutine Enc(M_0, M_1)
     If |M_0| \neq |M_1| then return \perp
     C \stackrel{\$}{\leftarrow} \operatorname{Enc}(pk, M_b)
     S \leftarrow S \cup \{C\}; Return C
```

Initialize

 $d \stackrel{\$}{\leftarrow} A^{\text{Enc}, \text{Dec}}$ Return Finalize(d)

Experiment $\mathbf{Exp}_{\mathsf{PKF}}^{\mathsf{ind-cca}}(A)$

Return Dec(sk, C)Subroutine Finalize(d) Return (d = b)

Subroutine Dec(C)

ind-cca advantage:

If $C \in S$ then return \bot

 $Adv_{PKF}^{ind-cca}(A) = 2 \cdot Pr \left[Exp_{PKF}^{ind-cca}(A) \Rightarrow true \right] - 1$.

Outline

Basic Math

RSA Math

Syntax of Public Key Encryption

Security Definitions of PKE

PKE Schemes

ElGamal PKE modulo prime

Let p be a prime and g a generator of \mathbf{Z}_p^* . ElGamal PKE is (KG, \mathcal{E} , \mathcal{D}) as follows.

$$\begin{array}{c|ccccc} \textbf{Alg} \ \mathsf{KG} & & & \mathsf{Alg} \ \mathcal{E}_X(M) \\ x \overset{\$}{\leftarrow} \mathbf{Z}_{p-1} & & & & \mathsf{Y} \leftarrow g^y \\ X \leftarrow g^x & & & \mathsf{K} \leftarrow X^y \\ \mathsf{Return} \ (X,x) & & & \mathsf{Return} \ (Y,W) \end{array} \qquad \begin{array}{c|ccccc} \mathsf{Alg} \ \mathcal{D}_{\mathsf{X}}(Y,W) \\ \mathsf{K} \leftarrow Y^x \\ M \leftarrow W \cdot \mathsf{K}^{-1} \\ \mathsf{Return} \ M \end{array}$$

In \mathbf{Z}_{p}^{*} , ElGamal PKE is NOT IND-CPA secure.

<u>Hint</u>: Use $M_0 = g$ and $M_1 = 1$. What are the Jacobi symbols of these messages?

ElGamal PKE modulo prime

Let p be a prime and g a generator of \mathbf{Z}_p^* . ElGamal PKE is (KG, \mathcal{E} , \mathcal{D}) as follows.

In \mathbf{Z}_{p}^{*} , ElGamal PKE is NOT IND-CPA secure.

<u>Hint</u>: Use $M_0 = g$ and $M_1 = 1$. What are the Jacobi symbols of these messages?

Basic math intermission

Quadratic Residue

Let p be an odd prime, and let g be a generator for \mathbf{Z}_p^* .

- ln \mathbf{Z}_p^* , the map $x \to x^2$ is a 2-to-1 function.
- ▶ QR: $x \in \mathbf{Z}_p$ is a quadratic residue (QR) iff it has a square root in \mathbf{Z}_p
- ▶ Legendre/Jacobi symbol of x over $p = J_p(x) = x^{(p-1)/2}$

$$egin{aligned} J_{
ho}(x) &\in \{1,-1\} \ x ext{ is a QR iff } J_{
ho}(x) &= 1 \ J_{
ho}(xy) &= J_{
ho}(x) \cdot J_{
ho}(y) \ J_{
ho}(x^{-1}) &= J_{
ho}(x) \ J_{
ho}(g^{ab}) &= 1 ext{ iff } J_{
ho}(g^a) &= 1 ext{ or } J_{
ho}(g^b) &= 1 \end{aligned}$$

Basic math intermission

Quadratic Residue (cont.)

Try it with p=11

а	1	2	3	4	5	6	7	8	9	10
<i>a</i> ² mod 11										
J ₁₁ (a)										
a^{-1}										
$J_{11}(a^{-1})$										

ElGamal PKE modulo prime: NOT IND-CPA

If we ask the encryption oracle Enc(g,1) and call what we get back (Y, W_0) if it's a left oracle and (Y, W_1) if it's a right oracle, then we have

```
Algorithm A(X):
(Y,W) \stackrel{5}{\leftarrow} \operatorname{Enc}(g,1) \; ; \; J^* \leftarrow J_p(W)
switch (J_p(X),J_p(Y)):
case (1,1): case (-1,1): case (1,-1):
If J^*=-1 then return ? else return ?
case (-1,-1):
If J^*=-1 then return ? else return ?
```

ElGamal PKE is ok in certain other groups

However, ElGamal PKE is secure in any group where DDH is hard. e.g., prime-order subgroups of \mathbf{Z}_p^* , elliptic curve groups of prime order

DHIES PKE

Let $G = \langle g \rangle$ be a group of order $m, H : \{0,1\}^* \to \{0,1\}^k$ be a hash function, and $AE = (KG_{ae}, \mathcal{E}_{ae}, \mathcal{D}_{ae})$ be an AE scheme with k-bit keys. DHIES PKE is $(KG, \mathcal{E}, \mathcal{D})$ as follows.

$$\begin{array}{c|ccccc} \textbf{Alg } \mathsf{KG} & & \textbf{Alg } \mathcal{E}_X(M) \\ x \overset{\$}{\leftarrow} \textbf{Z}_m & & y \overset{\$}{\leftarrow} \textbf{Z}_m \,; \, Y \leftarrow g^y \\ X \leftarrow g^x & & Z \leftarrow X^y \\ \mathsf{Return } (X,x) & & K \leftarrow H(Y\|Z) \\ & & C \overset{\$}{\leftarrow} \mathcal{E}_{ae}(K,M) \\ & & \mathsf{Return } (Y,C) & & \mathsf{Return } M \end{array}$$

Textbook RSA

Textbook RSA is insecure!

Alg KGAlg
$$\mathcal{E}_{pk}(M)$$
Alg $\mathcal{D}_{sk}(C)$ $(N, p, q, e, d) \stackrel{\$}{\leftarrow} K_{rsa}$ $C \leftarrow M^e \mod N$ $M \leftarrow C^d \mod N$ $pk \leftarrow (N, e)$ Return C Return M

Adversary gets $C = M^e \pmod{N}$. Suppose M is 64 bits long. If $M = M_1 \cdot M_2$ where $M_1, M_2 < 2^{34}$ (This happens with prob. approx 20%), then

$$C/M_1^e = M_2^e \pmod{N}$$

Meet in the middle attack:

- 1. Build table $C/1^e, C/2^e, ... C/2^{34e}$
- 2. For $M_2 = 0, \dots, 2^{34}$, test if M_2^e is in table.
- 3. Output matching $M = M_1 \cdot M_2$

Time: much less than 2⁶

Textbook RSA

Textbook RSA is insecure!

Alg KGAlg
$$\mathcal{E}_{pk}(M)$$
Alg $\mathcal{D}_{sk}(C)$ $(N, p, q, e, d) \overset{\$}{\leftarrow} K_{rsa}$ $C \leftarrow M^e \mod N$ $M \leftarrow C^d \mod N$ $pk \leftarrow (N, e)$ Return C Return M

Adversary gets $C=M^e\pmod N$. Suppose M is 64 bits long. If $M=M_1\cdot M_2$ where $M_1,M_2<2^{34}$ (This happens with prob. approx 20%), then

$$C/M_1^e = M_2^e \pmod{N}$$

Meet in the middle attack:

- 1. Build table $C/1^e$, $C/2^e$, ... $C/2^{34e}$
- 2. For $M_2 = 0, \dots, 2^{34}$, test if M_2^e is in table.
- 3. Output matching $M = M_1 \cdot M_2$

Time: much less than 2⁶⁴

Textbook RSA

Textbook RSA is insecure!

Alg KG
$$(N, p, q, e, d) \stackrel{\$}{\leftarrow} K_{rsa}$$

 $pk \leftarrow (N, e)$
 $sk \leftarrow (N, d)$
Return (pk, sk) Alg $\mathcal{E}_{pk}(M)$
 $C \leftarrow M^e \mod N$
Return C Alg $\mathcal{D}_{sk}(C)$
 $M \leftarrow C^d \mod N$
Return M

Adversary gets $C = M^e \pmod{N}$. Suppose M is 64 bits long. If $M = M_1 \cdot M_2$ where $M_1, M_2 < 2^{34}$ (This happens with prob. approx 20%), then

$$C/M_1^e = M_2^e \pmod{N}$$

Meet in the middle attack:

- 1. Build table $C/1^e, C/2^e, ..., C/2^{34e}$
- 2. For $M_2 = 0, \dots, 2^{34}$, test if M_2^e is in table.
- 3. Output matching $M = M_1 \cdot M_2$

Time: much less than 264

SRSA

Let $H: \{0,1\}^* \to \{0,1\}^k$ be a hash function, and $AE = (KG_{ae}, \mathcal{E}_{ae}, \mathcal{D}_{ae})$ be an AE scheme with k-bit keys. SRSA PKE is $(KG, \mathcal{E}, \mathcal{D})$ as follows.

Alg KGAlg
$$\mathcal{E}_{pk}(M)$$
Alg $\mathcal{D}_{sk}(C_1, C_2)$ $(N, p, q, e, d) \stackrel{\$}{\leftarrow} K_{rsa}$ $x \stackrel{\$}{\leftarrow} \mathbf{Z}_N^*$ $x \leftarrow C_1^d \mod N$ $pk \leftarrow (N, e)$ $K \leftarrow H(x)$ $K \leftarrow H(x)$ $sk \leftarrow (N, d)$ $C_1 \leftarrow x^e \mod N$ $K \leftarrow H(x)$ Return (pk, sk) $C_2 \leftarrow \mathcal{E}_{ae}(K, M)$ Return M

Hybrid encryption

Conceptually, SRSA follows a common paradigm:

PKE = KEM + DEM

- 1. Use a trapdoor function (TDF) and a hash to encapsulate an ephemeral symmetric key
- 2. Use AE to encapsulate the payload

Note: KEM schemes are actually defined slightly differently from what's shown here. We use the above presentation for simplicity.

One-wayness of RSA against known-exponent attacks

Definition

Let K_{rsa} be an RSA generator with security parameter k. Let A be an algorithm.

Experiment
$$\mathbf{Exp}_{K_{rsa}}^{\mathrm{ow-kea}}(A)$$

$$((N, e), (N, p, q, d)) \stackrel{\$}{\leftarrow} K_{rsa}$$

$$x \stackrel{\$}{\leftarrow} \mathbf{Z}_{N}^{*}; y \leftarrow x^{e} \mod N$$

$$x' \stackrel{\$}{\leftarrow} A(N, e, y)$$
If $x = x'$ then 1 else 0

$$\mathsf{Adv}^{\mathrm{ow\text{-}kea}}_{\mathcal{K}_{\mathit{rsa}}}(\mathit{A}) = \mathsf{Pr}\left[\; \mathsf{Exp}^{\mathrm{ow\text{-}kea}}_{\mathcal{K}_{\mathit{rsa}}}(\mathit{A}) = 1\;\right]\;.$$

One-wayness of RSA against chosen-exponent attacks

Definition

Let K_{mod} be an modulus generator with security parameter k. Let A be an algorithm.

```
Experiment \mathbf{Exp}_{K_{mod}}^{\mathrm{ow-cea}}(A)
(N, p, q) \overset{\$}{\leftarrow} K_{mod}
y \overset{\$}{\leftarrow} \mathbf{Z}_{N}^{*}
(x, e) \overset{\$}{\leftarrow} A(N, y)
If x^{e} \equiv y \pmod{N} and e > 1 then return 1 else return 0
\mathbf{Adv}_{K_{mod}}^{\mathrm{ow-cea}}(A) = \Pr\left[\mathbf{Exp}_{K_{mod}}^{\mathrm{ow-cea}}(A) = 1\right].
```

PKCS1 encryption

PKCS1 padding (02 is the mode number):

- ▶ The entire thing is the value that gets RSA-encrypted.
- "02" is written as a 16-bit binary string.
- "random pad" doesn't contain FF.
- Widely deployed

Bleichenbacher attack: An attacker tests to see if 16 MSBs of plaintext is 02.

Bleichenbacher attack (simplified)

Bleichenbacher attack uses the server as a padding oracle.

- ► <u>Success</u>: the first two bytes are 02.
- Failure: the first two bytes are not 02.

Simplified attack:

- ▶ Suppose $N = 2^n$
- ► Suppose instead of revealing whether the first 2 bytes are 02, the server reveals whether the MSB is 1.
- ► Suppose adversary snoops a ciphertext *C*
- ► Adversary sends *C* and gets MSB
- Adversary sends 2^eC and gets 2nd most MSB $[2^eC = (2M)^e$ so we shift M to the left 1 position]
- ▶ adversary sends 4^eC and gets 3rd most MSB $[4^eC = (4M)^e$ so we shift M to the left 2 positions]
- **>** ...

Preventing Bleichenbacher attack: HTTPS

Bleichenbacher attack uses the server as a padding oracle.

So for HTTPS (RFC 5246):

- 1. Generate a random string R of 46 bytes
- 2. Decrypt the ciphertext to get M
- 3. If PKCS1 padding check fails for M, then the decryption is R.

OAEP: Optimal Asymmetric Encryption Padding [BR94]

$\mathsf{Theorem}$

If RSA is a trapdoor permutation, then RSA-OAEP is CCA secure in the random oracle model.

- ▶ OAEP+ replaces $010 \cdots 0$ with W(m,r) where W is a hash function. This works for any trapdoor permutation, not just RSA.
- ▶ SAEP+ replaces $010 \cdots 0$ with W(m, r) where W is a hash function and removes G. This works for RSA.