Technische Universität Berlin Fakultät II – Institut für Mathematik Bärwolff, Neitzel, Penn-Karras

SS 2011 20.07.2011

Juli-Klausur ${\bf Analysis~II~f\"{u}r~Ingenieure}$

Name:	Vorname: Studiengang: .				
Neben einem handbeschriebenen A4 Bladassen.	tt mit Notizen s	ind keine	Hilfsmit	tel zuge-	
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht gewe		zugeben.	Mit Ble	istift ge-	
Geben Sie im Rechenteil immer den volls wenn nichts anderes gesagt ist, immer ei				rständnist	eil,
Die Bearbeitungszeit beträgt 90 Minut e	en.				
Die Gesamtklausur ist mit 30 von 60 Pur Teile der Klausur mindestens 10 von 30		,	edem de	er beiden	
Korrektur					
	1	2	3	Σ	
			1		

4

5

 Σ

1. Aufgabe 10 Punkte

a) Der Bereich $B \subset \mathbb{R}^2$ im 1. Quadranten sei begrenzt durch die Kurven

$$y = x^2$$
, $y = 2 - x^2$, $x = 0$.

Skizzieren Sie B und berechnen Sie $\iint\limits_{R} xydxdy.$

b) Berechnen Sie den Fluss des Vektorfeldes

$$ec{v}\colon \mathbb{R}^3 o \mathbb{R}^3, \quad ec{v}(x,y,z) = \left(egin{array}{c} y \ -x \ xz \end{array}
ight)$$

durch die Fläche F, die durch

$$ec{x}(u,arphi) = \left(egin{array}{c} u\cosarphi \ u\sinarphi \ u^3 \end{array}
ight), \quad 0 \leq arphi \leq rac{\pi}{2}, \quad 0 \leq u \leq 1$$

parametrisiert ist.

2. Aufgabe 10 Punkte

Gegeben sei das Vektorfeld

$$ec{v}\colon \mathbb{R}^3 o \mathbb{R}^3, \quad ec{v}(x,y,z) = \left(egin{array}{c} 2x - y\cos z \ z - x\cos z \ y + xy\sin z \end{array}
ight)$$

- a) Berechnen Sie alle Potentiale von \vec{v} .
- b) Bestimmen Sie $\operatorname{grad}\operatorname{div}\vec{v}$ und $\operatorname{rot}\operatorname{rot}\vec{v}$.

3. Aufgabe 10 Punkte

Gegeben sei die Funktion

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = x^2 e^{-(x^2 + y^2)}$$

Bestimmen Sie alle kritischen Punkte von f und entscheiden Sie, wo lokale Maxima und lokale Minima vorliegen. Begründen Sie, dass das globale Minimum in unendlich vielen Punkten angenommen wird.

4. Aufgabe 12 Punkte

- a) Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \frac{1}{4}x^4 + y^2$. Weisen Sie nach, dass die Tangentialebene an die durch z = f(x,y) definierte Fläche im Punkt $(1,1,\frac{5}{4})$ parallel zur Ebene z = x + 2y ist.
- b) Stellen Sie den Körper

$$K=\left\{\left.(x,y,z)\,
ight|0\leq z\leq\sqrt{4-x^2-y^2}
ight\}$$

in Zylinderkoordinaten dar und bestimmen Sie das Integral $\iiint\limits_K z dx dy dz.$

c) Begründen Sie, dass die Abbildung

$$ec{f}\colon \mathbb{R}^2 o \mathbb{R}^3, \quad ec{f}(x,y) = \left(egin{array}{c} xy \ y^2 \sin x \ y \end{array}
ight)$$

differenzierbar ist und geben Sie die Funktionalmatrix an.

5. Aufgabe 10 Punkte

- a) Geben Sie (ohne Begründung) Teilmengen $A,B,C\subset\mathbb{R}^2$ mit folgenden Eigen
 - i) A ist beschränkt, aber nicht abgeschlossen
 - ii) B ist abgeschlossen, aber nicht kompakt
 - iii) C ist offen, aber nicht konvex.
- b) Untersuchen Sie die Folgen

$$ec{x}_k = \left(egin{array}{c} (-1)^k \ \operatorname{arctan}(k) \end{array}
ight), \quad ec{y}_k = \left(egin{array}{c} rac{1}{k}\cos(k\pi) \ 1 + rac{1}{k} \end{array}
ight)$$

auf Konvergenz und geben Sie ggf. den Grenzwert an.

- c) Eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ sei in (0,0) nicht stetig. Geben Sie (ohne Begründung) für jede der folgenden Aussagen an, ob diese aus den Voraussetzungen gefolgert werden kann oder nicht.
 - i) f ist an der Stelle (0,0) nicht partiell nach x differenzierbar
 - ii) $\lim_{k \to \infty} f(\frac{1}{k}, 0) \neq f(0, 0)$
 - iii) fnimmt an der Stelle (0,0)kein Extremum an
 - iv) f ist an der Stelle (0,0) nicht differenzierbar

6. Aufgabe 8 Punkte

Gegeben seien das Vektorfeld

$$ec{v}\colon \mathbb{R}^3 o \mathbb{R}^3, \quad ec{v}(x,y,z) = \left(egin{array}{c} x \ 2y \ 3z \end{array}
ight)$$

sowie der Quader $Q=\left\{(x,\,y,\,z)\in\mathbb{R}^3\,|\, -1\leq x\leq 1,\quad -1\leq y\leq 1,\quad -1\leq z\leq 1\right\}$ mit Rand ∂Q , dessen Normalen nach außen gerichtet sind.

Bestimmen Sie das Flussintegral $\iint\limits_{\partial O} \vec{v} \cdot d\vec{O}$.