Languages

Languages

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

We will use small alphabets:
$$\Sigma = \{a, b\}$$

Strings

a

ab

abba

baba

aaabbbaabd

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaac

$$w = a_1 a_2 \cdots a_n$$

ababaaabbl

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

|a|=1

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

 $|aa| = 2$

Recursive Definition of Length

For any letter:
$$|a| = 1$$

For any string wa:
$$|wa| = |w| + 1$$

Example:
$$|abba| = |abb| + 1$$

 $= |ab| + 1 + 1$
 $= |a| + 1 + 1 + 1$
 $= 1 + 1 + 1 + 1$
 $= 1 + 1 + 1 + 1$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$
$$|uv| = |u| + |v| = 3 + 5 = 8$$

Proof of Concatenation Length

Claim:
$$|uv| = |u| + |v|$$

Proof: By induction on the length |v|

Induction basis:
$$|v| = 1$$

From definition of length:

$$|uv| = |u| + 1 = |u| + |v|$$

Inductive hypothesis:
$$|uv| = |u| + |v|$$

for
$$|v| = 1, 2, ..., n$$

Inductive step: we will prove
$$|uv| = |u| + |v|$$

for
$$|v| = n+1$$

Inductive Step

Write
$$v = wa$$
, where $|w| = n$, $|a| = 1$

From definition of length:
$$|uv| = |uwa| = |uw| + 1$$

 $|wa| = |w| + 1$

From inductive hypothesis: |uw| = |u| + |w|

Thus:
$$|uv| = |u| + |w| + 1 = |u| + |wa| = |u| + |v|$$

Empty String

A string with no letters: λ

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
a <u>bbab</u>	bbab

Prefix and Suffix

abbab

Prefixes	Suffixes
λ	abbab
a	bbab
ab	bab
abb	ab
abba	b

abbab

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 $\Sigma^+\colon$ the set of all possible strings from alphabet Σ except $\,\lambda$

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Language

A language is any subset of Σ^*

Example:
$$\Sigma = \{a,b\}$$

 $\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,\ldots\}$

Languages:
$$\{\lambda\}$$
 $\{a,aa,aab\}$ $\{\lambda,abba,baba,aa,ab,aaaaaa\}$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\left. egin{array}{ll} \lambda & & & \\ ab & & & \\ aabb & & & \\ aaaaabbbbb \end{array}
ight) \in L \qquad abb
otin L$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example: $\{a,ab,ba\}\{b,aa\}$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = \underbrace{LL\cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\{a,bb\}^* = \begin{cases} \lambda, \\ a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \ldots \end{cases}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

= $L^* - \{\lambda\}$

$$\{a,bb\}^{+} = \begin{cases} a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,... \end{cases}$$

Finite Automata

Finite Automaton

Finite Accepter

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Output: "accept"

Rejection

Input finished

Another Example

Input finished

Rejection

Input finished

Output: "reject"

Formalities

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F : set of final states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \rightarrow Q$$

$$\delta(q_0,a)=q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

δ	а	Ь	
<i>9</i> 0	91	<i>9</i> ₅	
91	<i>9</i> 5	92	
92	92	93	
<i>9</i> ₃	94	95	a,b
94	9 5	95	
9 5	9 5	<i>9</i> ₅	95
b a b a,b			
$- (q_0) \xrightarrow{a} (q_1) \xrightarrow{b} (q_2) \xrightarrow{b} (q_3) \xrightarrow{a} (q_4)$			

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta^*(q_0,ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q_0 to q_1 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q,wa) = \delta(\delta^*(q,w),a)$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

Languages Accepted by DFAs Take DFA $\,M$

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that drive M to a final state}

Example

$$L(M) = \{abba\}$$

Another Example

$$L(M) = \{\lambda, ab, abba\}$$

M

Formally

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \mathcal{S}^* (q_0, w) \in F \}$$
 alphabet transition initial final function state states

Observation

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

More Examples

$$L(M) = \{a^n b : n \ge 0\}$$

L(M)= { all substrings with prefix ab }

L(M) = { all strings without substring 001 }

Regular Languages

A language L is regular if there is a DFA M such that L = L(M)

All regular languages form a language family

Example

The language $L = \{awa: w \in \{a,b\}^*\}$ is regular:

