Natural Language Processing Basics

Yingyu Liang

University of Wisconsin-Madison

Natural language Processing (NLP)

The processing of the human languages by computers

- One of the oldest AI tasks
- One of the most important AI tasks
- One of the hottest AI tasks nowadays

Difficulty

• Difficulty 1: ambiguous, typically no formal description

• Example: "We saw her duck."

How many different meanings?

Difficulty

• Difficulty 1: ambiguous, typically no formal description

- Example: "We saw her duck."
- 1. We looked at a duck that belonged to her.
- 2. We looked at her quickly squat down to avoid something.
- 3. We use a saw to cut her duck.

Difficulty

• Difficulty 2: computers do not have human concepts

- Example: "She like little animals. For example, yesterday we saw her duck."
- 1. We looked at a duck that belonged to her.
- 2. We looked at her quickly squat down to avoid something.
- 3. We use a saw to cut her duck.

Words

Preprocess

Zipf's Law

Preprocess

- Corpus: often a set of text documents
- Tokenization or text normalization: turn corpus into sequence(s) of tokens

- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.

Preprocess

• Tokenization or text normalization: turn data into sequence(s) of tokens

- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.
- 3. Remove stopwords: the, of, a, with, ...

Preprocess

• Tokenization or text normalization: turn data into sequence(s) of tokens

- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.
- 3. Remove stopwords: the, of, a, with, ...
- 4. Case folding: lower-case all characters.
 - Sometimes can be tricky, like US and us
- 5. Stemming/Lemmatization (optional): looks, looked, looking \rightarrow look

Vocabulary

Given the preprocessed text

- Word token: occurrences of a word
- Word type: unique word as a dictionary entry (i.e., unique tokens)

- Vocabulary: the set of word types
 - Often 10k to 1 million on different corpora
 - Often remove too rare words

Zipf's Law

- Word count f, word rank r
- Zipf's law: $f * r \approx \text{constant}$

Word	Count f	${\rm rank}\ r$	fr
the	3332	1	3332
and	2972	2	5944
\mathbf{a}	1775	3	5235
he	877	10	8770
but	410	20	8400
be	294	30	8820
$_{ m there}$	222	40	8880
one	172	50	8600
two	104	100	10400
turned	51	200	10200
comes	16	500	8000
family	8	1000	8000
brushed	4	2000	8000
Could	2	4000	8000
Applausive	1	8000	8000

Zipf's law on the corpus *Tom Sawyer*

Text: Bag-of-Words Representation

Bag-of-Words

tf-idf

Bag-of-Words

How to represent a piece of text (sentence/document) as numbers?

- Let m denote the size of the vocabulary
- Given a document d, let c(w,d) denote the #occurrence of w in d
- Bag-of-Words representation of the document

$$v_d = [c(w_1, d), c(w_2, d), ..., c(w_m, d)]/Z_d$$

• Often $Z_d = \sum_w c(w, d)$

Example

 Preprocessed text: this is a good sentence this is another good sentence

BoW representation:

$$[c('a',d)/Z_d,c('is',d)/Z_d,...,c('example',d)/Z_d]$$

- What is Z_d ?
- What is $c('a',d)/Z_d$?
- What is $c('example', d)/Z_d$?

tf-idf

tf: normalized term frequency

$$tf_w = \frac{c(w,d)}{\max_{v} c(v,d)}$$

idf: inverse document frequency

$$idf_w = \log \frac{\text{total #doucments}}{\text{#documents containing } w}$$

- tf-idf: tf- $idf_w = tf_w * idf_w$
- Representation of the document

$$v_d = [tf - idf_{w_1}, tf - idf_{w_2}, \dots, tf - idf_{w_m}]$$

Cosine Similarity

How to measure similarities between pieces of text?

- Given the document vectors, can use any similarity notion on vectors
- Commonly used in NLP: cosine of the angle between the two vectors

$$sim(x,y) = \frac{x^{\top}y}{\sqrt{x^{\top}x}\sqrt{y^{\top}y}}$$

Text: statistical Language Model

Statistical language model

N-gram

Smoothing

Probabilistic view

- Use probabilistic distribution to model the language
- Dates back to Shannon (information theory; bits in the message)

Statistical language model

- Language model: probability distribution over sequences of tokens
- Typically, tokens are words, and distribution is discrete

Tokens can also be characters or even bytes

• Sentence: "the quick brown fox jumps over the lazy dog"

Tokens: x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

Statistical language model

• For simplification, consider fixed length sequence of tokens (sentence)

$$(x_1, x_2, x_3, ..., x_{\tau-1}, x_{\tau})$$

Probabilistic model:

$$P[x_1, x_2, x_3, ..., x_{\tau-1}, x_{\tau}]$$

Unigram model

• Unigram model: define the probability of the sequence as the product of the probabilities of the tokens in the sequence

$$P[x_1, x_2, ..., x_{\tau}] = \prod_{t=1}^{\tau} P[x_t]$$

Independence!

A simple unigram example

• Sentence: "the dog ran away"

```
\hat{P}[the\ dog\ ran\ away] = \hat{P}[the]\,\hat{P}[dog]\,\hat{P}[ran]\,\hat{P}[away]
```

• How to estimate $\hat{P}[the]$ on the training corpus?

A simple unigram example

• Sentence: "the dog ran away"

 $\hat{P}[the\ dog\ ran\ away] = \hat{P}[the]\hat{P}[dog]\hat{P}[ran]\hat{P}[away]$

• How to estimate $\hat{P}[the]$ on the training corpus?

Word	Count f
the	3332
and	2972
\mathbf{a}	1775
he	877
$_{ m but}$	410
be	294
there	222
one	172

n-gram model

• n-gram: sequence of n tokens

• n-gram model: define the conditional probability of the n-th token given the preceding n-1 tokens

$$P[x_1, x_2, ..., x_{\tau}] = P[x_1, ..., x_{n-1}] \prod_{t=n}^{\tau} P[x_t | x_{t-n+1}, ..., x_{t-1}]$$

n-gram model

• n-gram: sequence of n tokens

• n-gram model: define the conditional probability of the n-th token given the preceding n-1 tokens

$$P[x_1, x_2, ..., x_{\tau}] = P[x_1, ..., x_{n-1}] \prod_{t=n}^{\tau} P[x_t | x_{t-n+1}, ..., x_{t-1}]$$

Markovian assumptions

Typical *n*-gram model

- n = 1: unigram
- n=2: bigram
- n = 3: trigram

Training *n*-gram model

• Straightforward counting: counting the co-occurrence of the grams

For all grams $(x_{t-n+1}, ..., x_{t-1}, x_t)$

- 1. count and estimate $\hat{P}[x_{t-n+1}, ..., x_{t-1}, x_t]$
- 2. count and estimate $\hat{P}[x_{t-n+1}, ..., x_{t-1}]$
- 3. compute

$$\hat{P}[x_t|x_{t-n+1},...,x_{t-1}] = \frac{P[x_{t-n+1},...,x_{t-1},x_t]}{\hat{P}[x_{t-n+1},...,x_{t-1}]}$$

A simple trigram example

• Sentence: "the dog ran away"

```
\hat{P}[the\ dog\ ran\ away] = \hat{P}[the\ dog\ ran]\ \hat{P}[away|dog\ ran]
```

$$\hat{P}[the\ dog\ ran\ away] = \hat{P}[the\ dog\ ran] \frac{\hat{P}[dog\ ran\ away]}{\hat{P}[dog\ ran]}$$

Drawback

• Sparsity issue: $\hat{P}[...]$ most likely to be 0

- Bad case: "dog ran away" never appear in the training corpus, so $\hat{P}[dog\ ran\ away] = 0$
- Even worse: "dog ran" never appear in the training corpus, so $\hat{P}[dog \ ran] = 0$

Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all n-grams pseudocount $\lfloor dog \rfloor = \operatorname{actualcount} \lfloor dog \rfloor + 1$

Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all n-grams pseudocount $\lfloor dog \rfloor = \operatorname{actualcount} \lfloor dog \rfloor + 1$

$$\hat{P}[dog] = \frac{\text{pseudocount}[dog]}{\text{pseudo length of the corpus}} = \frac{\text{pseudocount}[dog]}{\text{actual length of the corpus}} + |V|$$

• Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all n-grams pseudocount[$dog\ ran\ away$] = actualcount[$dog\ ran\ away$] + 1 pseudocount[$dog\ ran$] = ?

Basic method: adding non-zero probability mass to zero entries

• Example: Laplace smoothing that adds one count to all n-grams pseudocount[$dog\ ran\ away$] = actualcount[$dog\ ran\ away$] + 1 pseudocount[$dog\ ran$] = actualcount[$dog\ ran$] + |V|

```
\hat{P}[away|dog\ ran] \approx \frac{\text{pseudocount}[dog\ ran\ away]}{\text{pseudocount}[dog\ ran]}
since #bigrams \approx#trigrams on the corpus
```

Example

 Preprocessed text: this is a good sentence this is another good sentence

- How many unigrams?
- How many bigrams?
- Estimate $\hat{P}[is|this]$ without using Laplace smoothing
- Estimate $\hat{P}[is|this]$ using Laplace smoothing (|V| = 10000)

- Basic method: adding non-zero probability mass to zero entries
 - Example: Laplace smoothing

- Back-off methods: restore to lower order statistics
 - Example: if $\widehat{P}[away|dog\ ran]$ does not work, use $\widehat{P}[away|ran]$ as replacement
- Mixture methods: use a linear combination of $\hat{P}[away|ran]$ and $\hat{P}[away|dog\;ran]$

Another drawback

• High dimesion: # of grams too large

- Vocabulary size: about 10k=2^14
- #trigram: about 2^42

Rectify: clustering

- Class-based language models: cluster tokens into classes; replace each token with its class
- Significantly reduces the vocabulary size; also address sparsity issue

Combinations of smoothing and clustering are also possible