

1/10

Figure 1A**Figure 1B**

2/10

Figure 2

3/10

Figure 3

4/10

Figure 4

<i>Virus</i>	<i>Designation</i>	<i>Promoters/Transgenes</i>
rV-CEA(6D)/B7-1/ICAM-1/LFA-3	rV-CEA(6D)/TRICOM	p40 CEA(6D) p30 LFA-3 B ICAM-1 sEL B7-1
rF-CEA(6D)/B7-1/ICAM-1/LFA-3	rF-CEA(6D)/TRICOM	p40 CEA(6D) p30 LFA-3 B ICAM-1 sEL B7-1
rF-MUC-1/B7-1/ICAM-1/LFA-3	rF-MUC-1/TRICOM	p40 MUC-1 p30 LFA-3 B ICAM-1 sEL B7-1
rV-CEA(6D)/MUC-1(93L)/B7-1/ICAM-1/LFA-3	rV-CEA/MUC/TRICOM	p40 CEA(6D) sEL MUC-1(93L) p30 LFA-3 B ICAM-1 sEL B7-1
rF-CEA(6D)/MUC-1(93L)/B7-1/ICAM-1/LFA-3	rF-CEA/MUC/TRICOM	p40 CEA(6D) sEL MUC-1(93L) p30 LFA-3 B ICAM-1 sEL B7-1

Figure 5

6/10

Figure 6

7/10

Figure 7

8/10

Figure 8

9/10

1 ATGACACCAGG GCGCCCGG TCCTTCCTTC CTCATCTGC TCCCTACAGT GCTTACAGTT
 61 GTTACGGGTT CTCCTCATC AGGCTCTTC CCAGCTGGAG AAAGCGAAC TTGGCTTAC
 121 CGAAGATT CAGTCGCCAG CTCTACTTG ACGATGCTC TGTGATGAC AACCTCCGTA
 181 CTCCTCGGCC ACAGCCCCGG TTCAAGCTTC TCCACACTC AGGCAAGGA TGTGACTCTG
 241 GCCCGGGCCA CGAACCGGC TTCAGGTTA GCTGCGCTTC GGGGACGAGG TGTGACTCTG
 301 GRACCGTTA CTAGACCGC TTAGGAGC CTCAGGCTTC ACTGCAACAC CGGCACTGG CGAACATCA
 361 CCTCCGTATA CTCGGCGGC TCCCTGGCTT ACCTGCACTC AGGCGCGGC AGGACATCG
 421 GCACCTGATA CAGACCTGC ACCTGCACTC AGGCGCGGC AGGACATCG TGTGACTAGT
 481 GCGCCGGATA CGGCGCCCGC TCCC GGTTACAGT ACCGCAACGC CGGCCCAAGG GTCACAAAGC
 541 GCACTGGATA CGGGCGGC ACCCGGGAGT ACCGCAACAC CGGCAACGG GTCACAAAGC
 601 GCGCAGACA CTGAGCCCTC GCGAGGGTG ACTGCGCTC CGGGCGGATG TGTGACCTCA
 661 GCTCTGACA CGAGGCCAG CCAGGCTTCG ACTCTGTCG ACAGCTGTC CTCCTCCAC CCACTCTGAT
 721 GCTTACCAA CGCCAGGCCAG CAGAGGCTT CCAATTCTCA TTCCCAAGCA CGGCAACGG
 781 ACTCTTACCA CCTTGGCGCG CCATAGGCC AGAGCTGATG CGAGTAGAAC TCACTATGG
 841 AGCTTACCTC CTCACCCG CTCGAATAC AGGGCTTC CCGGGGGTC TACGGGGTC
 901 TCTTCTTTC TCTCTGCTT TCACTTCA AACCTCACTG TTAATCTC TTCTGGAGAT
 961 CCCGACCCG ACTTACACCA AGAGCTGAG AGAGACATT CTGAATCTT TTCTGGGTT
 1021 TATTAACAG GGGTTTTCTT GGGCTCTTC AATTTAAAGT TCAAGCCAGG ATCTGGTG
 1081 GCACTATGA CTCTGGCTT CCGAGAGCTT ACCCTATG TCCACAGCT GGAAGACAG
 1141 TCTGATGAT ATTAAACGG AGCAGCTCT CGATTAACG TCACTATTC AGAGCTGAGC
 1201 GTCAGTGTATG TSCCATTCG TTTCCTTC CAGCTGGG CGGGGGGC CGGGGGGC
 1261 ATCGGGCTGC TCTCTGCTG CTCTGGCTG GTCGGCTGG CGGGGGGG
 1321 TGGGGTCT GAGCTGGCGS CGGAAGCTCC ACCTACACCA CCCATGGGGG CTAATGGCC
 1381 GATCTTACCA ATCCATGAG CGAGTACCC CAGGTTCTG AAGCTTCTG TGCGAGCGC
 1441 CCTAGCGATA CGATCGTGTG CCCCTATAG AAGCTTCTG CAGGTTAATG ACTCTGCA
 1501 CTCCTTACA CAAACCCAGC AGTGGCGGCC ACTCTGCA ACTCTGAG

SEQUENCE OF wMUC-1(6)

Figure 9

10/10

Figure 10

AMINO ACID SEQUENCE OF WMUC-1(6),