Sensor-fixed coordinate system (S)

- Output of node's accelerometer, gyroscope verified to follow this convention
- Sensor coordinate system is right hand

Earth-fixed coordinate system (G)

- Global coordinate system is right hand
- Node represented in the "zero" position (yaw=0, pitch=0, roll=0)

Representation of rotations

- BlueSense reports the orientation of the sensor-fixed coordinate system (S) with respect to the earth-fixed coordinate system (G)
- The orientation is represented by a quaternion $q_{S\leftarrow G}$
- The quaternion q_{S←G} can be used to rotate a vector represented in earth-coordinates G into sensor-coordinates S

Earth-fixed (G) to sensor-fixed (S) mapping

- Application: finding local coordinates of a target provided by its absolute coordinates
- Example: star at coordinate $p_G=(-1,2,0)$ in the earth-fixed (G) coordinate system
 - As the node is in the zero position, the star coordinate is also (-1,2,0) in the sensor-fixed coordinate system.
 - $-q_{S\leftarrow G} = (1,0,0,0)$
 - p_s =quatrotate($q_{S \leftarrow G}, p_G$) = (-1,2,0)

Node local coordinate system

Global (earth) coordinate system

Earth-fixed (G) to sensor-fixed (S) mapping

- The sensor rotates by ~-20° along the Z axis
 - $q_{S \leftarrow G} = (+.98, 0, 0, -.2)$
 - p_S =quatrotate($q_{S \leftarrow G}, p_G$) = (-1.7, 1.4, 0)

Sensor-fixed (S) to earth-fixed (G) mapping

- Application: find earth coordinates of a target located in sensor coordinates; rendering
- Example: rendering of the edge of the node at coordinate $p_S=(-1,1,0)$ in the sensor-fixed (S) coordinate system
 - As the node is in the zero position, the star coordinate is also (-1,1,0) in the earth-fixed coordinate system.

Node local coordinate system

Global (earth) coordinate system

Sensor-fixed (S) to earth-fixed (G) mapping

- The sensor rotates by ~-20° along the Z axis
 - $-q_{S\leftarrow G} = (+.98, 0, 0, -.2)$
 - $q_{G \leftarrow S} = q_{S \leftarrow G}' = (0.98, 0, 0, +.2)$
 - p_G =quatrotate($q_{G \leftarrow S}, p_S$) = (-0.53, 1.31, 0)

Provided by the sensor Complex conjugate

