Greedy Algorithms

Neelima Gupta ngupta@cs.du.ac.in

Table of Contents

- SPP (Dijkstra): Correctness and Time Complexity: Dijkstra
- MST (Kruskal): Correctness and Time Complexity: Kruskal

Shortest Path Problem

Given a directed graph G = (V, E) with edge lengths ℓ and a pair s, t of the vertices. Aim is to find a shortest path from s to t.

Djikstra's Algorithm

- At any point of time, maintain a set S of explored nodes, for which, shortest path has been computed. Initially, $S \leftarrow \{s\}, d[s] \leftarrow 0.1$
- Greedy Choice: Repeatedly choose unexplored node $v \notin S$ which minimizes, $\pi(v) = \min_{e=(u,v): u \in S} d[u] + \ell_e$.
- Add v to S, and set $d[v] \leftarrow \pi(v)$.

¹Slides are based on https://www.cs.princeton.edu/ wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsII:pdf

Djikstra's Algorithm

- Initialize $S \leftarrow \{s\}, d[s] \leftarrow 0$.
- Greedy Choice: Repeatedly choose unexplored node $v \notin S$ which minimizes, $\pi(v) = \min_{e=(u,v): u \in S} d[u] + \ell_e$.
- Add v to S, and set $d[v] \leftarrow \pi(v)$.
- To recover path, set $pred[v] \leftarrow u$ that achieves the min.

Let P_u denotes the s-u path consisting of Djikstra's edges. Then clearly, $d[u] = \ell(P_u)$ from the algorithm.

Invariant: For each node $u \in S : P_u$ is a shortest s - u path i.e., d[u] = length of a shortest sâu path.

Proof by Induction

Base Case: |S| = 1 is easy since $S = \{s\}$ and d[s] = 0 Induction Hypothesis: Assume true for $|S| \ge 1$.

• Let v be the next node added to S. Suppose v is added via u i.e. using the edge (u, v).

• $P_V = P_U$ followed by (u, v).

Let P_u denotes the s-u path consisting of Djikstra's edges. Then clearly, $d[u] = \ell(P_u)$ from the algorithm.

Invariant: For each node $u \in S$: P_u is a shortest s - u path i.e., d[u] = length of a shortest sâu path.

Proof by Induction:

Base Case: |S| = 1 is easy since $S = \{s\}$ and d[s] = 0 Induction Hypothesis: Assume true for $|S| \ge 1$.

• Let v be the next node added to S. Suppose v is added via u i.e. using the edge (u, v).

• $P_V = P_U$ followed by (u, v). $\ell(P_V) = \ell(P_U) + \ell_{(U,V)} = d[U] + \ell_{(U,V)} = \pi(V)$

Let P_u denotes the s-u path consisting of Djikstra's edges. Then clearly, $d[u] = \ell(P_u)$ from the algorithm.

Invariant: For each node $u \in S$: P_u is a shortest s - u path i.e., d[u] = length of a shortest sâu path.

Proof by Induction:

Base Case: |S| = 1 is easy since $S = \{s\}$ and d[s] = 0 Induction Hypothesis: Assume true for $|S| \ge 1$.

 Let v be the next node added to S. Suppose v is added via u i.e. using the edge (u, v).

• $P_v = P_u$ followed by (u, v). $\ell(P_v) = \ell(P_u) + \ell_{(u,v)} = d[u] + \ell_{(u,v)} = \pi(v)$

- Consider any other sâv path P (need not consist of Djikstra's edges). Claim: $\ell(P) \ge \pi(V)$.
- Let e = (x, y) be the first edge in P that leaves S, and let P' be the sub-path from S to X.

- Consider any other sâv path P (need not consist of Djikstra's edges). Claim: $\ell(P) \ge \pi(v)$.
- Let e = (x, y) be the first edge in P that leaves S, and let P' be the sub-path from s to x.

• The length of P is already $\geq \pi(v)$ as soon as it reaches y. (why?)

Recall that $\pi(y) = \min_{e=(u,y): u \in S} \{d[u] + \ell_e\}$. Hence

$$\pi(y) \le d[x] + \ell_{(x,y)}$$

 $\leq \ell(P') + \ell_{(x,y)}$ (by induction hypothesis)

(P' is some path from s to x not necessarily consisting of the edges picked by DA).

And, since DA chose v and not y, we have $\pi(v) \leq \pi(y)$.

• The length of P is already $\geq \pi(v)$ as soon as it reaches y. (why?) Recall that $\pi(y) = \min_{e=(u,v): u \in S} \{d[u] + \ell_e\}$. Hence

$$\pi(y) \le d[x] + \ell_{(x,y)}$$

 $\le \ell(P') + \ell_{(x,y)}$ (by induction hypothesis)

(P' is some path from s to x not necessarily consisting of the edges picked by DA).

And, since DA chose v and not y, we have $\pi(v) \leq \pi(y)$.

Thus,

Efficient Implementation

Critical optimization 1. For each unexplored node $v \notin S$: explicitly maintain $\pi[v]$ instead of computing directly from definition

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

- For each $v \notin S$: $\pi(v)$ can only decrease (because set S increases).
- More specifically, suppose u is added to S and there is an edge e = (u, v) leaving u. Then, it suffices to update:

$$\pi[v] \leftarrow \min \left\{ \pi[v], \ \pi[u] + \ell_e \right\}$$

recall: for each $u \in S$,

 $\pi[u] = d[u] = \text{length of shortest } s \sim u \text{ path}$

2

 $https://www.cs.princeton.edu/\ wayne/kleinberg-tardos/pdf/04GreedyAlgorithms II:pdf_{\tt QQC} and the control of the control o$

²Slide is taken from

Analysis

Operation	Number of times the operation is called for algorithm under consideration	Time taken by the operation	Total Time
Enqueue	<i>V</i>	$O(\log V)$	$O(V \log V)$
Decrease-key	E	$O(\log V)$	$O(E \log V)$
Extract-Min	<i>V</i> − 1	$O(\log V)$	$O(V \log V)$

Table: Data Structure: Priority Queue

Total time = $O((E + V) \log V) = O(E \log V)$ for a connected graph.

Spanning Tree

Spanning Tree

Given a connected undirected graph G = (V, E), a spanning tree is a tree that spans all the vertices.

Minimum Spanning Tree

Minimum Spanning Tree

Given a connected undirected graph G = (V, E) with weights on edges, a minimum spanning tree is a spanning tree with minimum total weight.

Kruskal Algorithm

- Sort the edges in the increasing order of their weights -e₁, e₂...e_m.
- While there are more edges and we have selected < n - 1 edges do Select the next edge if it does not form a cycle and discard it otherwise.

Min-Cut Property

Cut

A cut is a non trivial partition of the node set V into S and $V \setminus S$, where $S \neq \phi, V$.

Cutset

The cutset $(S, V \setminus S)$ defined by $S \subset V$ is the set of edges connecting S to $V \setminus S$.

Cut Property

The cheapest edge in every cutset belongs to the MST.

Min-Cut Property

Cut

A cut is a non trivial partition of the node set V into S and $V \setminus S$, where $S \neq \phi, V$.

Cutset

The cutset $(S, V \setminus S)$ defined by $S \subset V$ is the set of edges connecting S to $V \setminus S$.

Cut Property

The cheapest edge in every cutset belongs to the MST.

Correctness of Kruskal Algorithm: The Plan

- Acyclic ...by design
- Claim: Every edge selected by KA belongs to the MST. Proof:
 - We will prove that the edge picked by Kruskal is the cheapest edge in a cutset. Hence the claim follows by the Min-Cut Property

 (n -1) edges picked by KA and the fact that they do not form a cycle implies that the set of edges are same as that of MST. Hence proved.

Correctness of Kruskal Algorithm: The Plan

- Acyclic ...by design
- Claim: Every edge selected by KA belongs to the MST. Proof:
 - We will prove that the edge picked by Kruskal is the cheapest edge in a cutset. Hence the claim follows by the Min-Cut Property

 (n -1) edges picked by KA and the fact that they do not form a cycle implies that the set of edges are same as that of MST.
 Hence proved.

Let $e_i = (v, w)$ be an edge picked by Kruskal at some point of time.

Let $e_j = (v, w)$ be an edge picked by Kruskal at some point of time.

S: Set of vertices reachable from v using Kruskal edges when e_j was picked

Let $e_i = (v, w)$ be an edge picked by Kruskal at some point of time.

S: Set of vertices reachable from v using Kruskal edges when e_j was picked

Edges $e_1, e_2 \dots e_{j-1}$ could not have connected S and $V \setminus S$ for else x would be reahable from v when e_j was picked.

Let $e_i = (v, w)$ be an edge picked by Kruskal at some point of time.

S: Set of vertices reachable from v using Kruskal edges when e_j was picked

Edges $e_1, e_2 \dots e_{j-1}$ could not have connected S and $V \setminus S$ for else x would be reahable from v when e_j was picked.

Proof of Cut Property

Property: Let e = (v, w) be the minimum weight edge in a cut-set $(S, V \setminus S)$. Then, MST contains e.

T is an MST not containing e.

Claim: T' = T - e' + e is a spanning tree with w(T') < w(T).

A contradiction.

Proof of Cut Property

Property: Let e = (v, w) be the minimum weight edge in a cut-set $(S, V \setminus S)$. Then, MST contains e.

T is an MST not containing e.

Claim: T' = T - e' + e is a spanning tree with w(T') < w(T).

A contradiction.

Proof of Cut Property

Property: Let e = (v, w) be the minimum weight edge in a cut-set $(S, V \setminus S)$. Then, MST contains e.

T is an MST not containing e.

Claim: T' = T - e' + e is a spanning tree with w(T') < w(T).

A contradiction.

Implementation

- Disjoint Union-Find Structure
- Find(u): Given a node u, the operation Find(u) will return the name of the set containing u.
- Union(A, B): Take two sets A and B and merge them to a single set.

Union Find

Alternate Representation

Merge all into u_{11}

Time Complexity

Or Merge all into u_{10}

Time Complexity

Implementation

```
If find(u)!= find(v)
then Union (find(u),find(v))
//include that edge in the set
```

Time Complexity

- Sorting takes *mlogm* time, where *m* is the number of edges.
- Find takes constant time.
- *Union* is performed at most n-1 times, where n is the number of vertices.
- Total number of pointer updates over all Union operations is O(nlogn).
- Thus total time is O(mlogn).