Experimento #9

LED e Fotodiodo

Objetivo: Introdução ao comportamento geral dos LEDs e dos Fotodiodos. Caracterização elétrica de LEDs, com a obtenção das curvas I-V características. Diferenciação dos modos: Fotocondutivo e Fotovoltaico.

Material:

- Multímetro Digital – Modelo: ______ - LEDs: Vermelhos (10mm) (x2)

- Fonte DC (x2) – Modelo:______ - Gerador – Modelo:_____

- Resistores: $1 \text{ k}\Omega$: ______+/-______[Ω] (1W) - Trimpot Multivoltas (0 a 2 M Ω)

1 M Ω : ______+/-_____[Ω] (Partes I e II)

<u>Parte-I</u>: Construa o circuito do optoacoplador, da Figura-A. Use $V_{DC1} = 0$ a 25V, e $V_{DC2} = 12$ V. Preencha a tabela a partir das medidas de tensão realizadas no circuito do LED1 (Emissor de Luz) e no circuito do LED2 (Fotodiodo Receptor) operando no <u>Modo Fotocondutivo</u>. Plote os pontos P_{LED2} vs. P_{LED1} . Plote a curva do modelo proposto ajustado aos pontos experimentais pelo <u>Método dos Mínimos Quadrados</u>, com o programa **Optoacoplador.sce**. Observe que a potência P_{LED2} é positiva, em razão da dissipação de energia no LED2.

V _{DC1}	V_1	V_2	V _{LED1}	I _{LED1}	P _{LED1}	P _{LED2}
0						
5						
10						
15						
20						
25						

 $\mathbf{R} = \underline{\hspace{1cm}} + / - \underline{\hspace{1cm}} [\Omega]$ (Escala do Voltímetro: $\underline{\hspace{1cm}}$).

<u>Parte-II</u>: Monte o circuito do optoacoplador da Figura-B. Use $V_{DC1} = 0$ a 25V. Preencha a tabela a partir das medidas de tensão realizadas no circuito do LED1 (Emissor de Luz) e no circuito do LED2 (Fotodiodo Receptor) operando no <u>Modo Fotovoltaico</u>. Plote os pontos P_{LED2} vs. P_{LED1} . Plote a curva do modelo proposto ajustado aos pontos experimentais pelo <u>Método dos Mínimos Quadrados</u>, com o programa **Optoacoplador.sce**. Observe que a potência P_{LED2} é negativa, em razão da geração fotovoltaica de energia no LED2.

Obs: O valor da resistência <u>efetiva</u> $\mathbf{R} = (1 \text{ M}\Omega \text{ // } \mathbf{R}_{Voltímetro})$, e depende da escala escolhida no voltímetro, e deve ser medida, nas Partes I e II.

V_{DC1}	V_1	\mathbf{V}_2	V_{LED1}	I_{LED1}	$\mathbf{P}_{\mathbf{LED1}}$	$\mathbf{P}_{\mathbf{LED2}}$
0						
5						
10						
15						
20						
25						

Figura-B

 ${f R}$ = _____+/-____ [Ω] (Escala do Voltímetro: _____).

P.FDE - 2/2024 Prof. Marcus V. Batistuta

ilversidade de Brasilia

Parte-III: Monte o circuito do optoacoplador da Figura-C. Use $V_{DC1} = 25V$ para alimentar o LED1 (Emissor de Luz), e uma resistência variável com valor ajustável $R_{Trimpot} = 0$ a 2 MΩ. (Trimpot Multivoltas). Preencha a tabela calculando os valores da corrente no LED2 (Fotodiodo Receptor) operando no Modo Fotovoltaico, a partir das medidas da resistência R (Ajustada com o Trimpot) e da tensão no circuito (V_{LED2}). Plote o gráfico dos pontos I_{LED2} vs. V_{LED2} , rebatidos do quarto quadrante para o primeiro quadrante, com a troca do sinal da corrente. Plote a curva do modelo proposto ajustado aos pontos experimentais pelo Método dos Mínimos Quadrados, modificando o programa Optoacoplador.sce. Inclua a nova versão do programa no seu relatório. Obs: O valor da resistência $R = (R_{Trimpot} // R_{Voltímetro})$, e deve ser medido em separado na escala específica escolhida para medir V_{LED2} . (A melhor escala é aquela que maximiza o número de dígitos significativos em todas as medidas). O último valor a ser medido: $R = R_{Voltímetro}$ (Com o Trimpot removido: $R_{Trimpot} = \infty$). Tente obter valores igualmente espaçados para R, contando o número de voltas no Trimpot.

Obs: Use capacitor (~ 0,1μF) em paralelo com o Trimpot, para reduzir o ruído nas medidas, se necessário.

EXTRA:

a) [1,0 ponto] *Optoacoplador*: No modo fotocondutivo, no circuito da Figura-A, aplique uma onda quadrada no LED1 (Terminal \mathbf{V}_{DC1}) com amplitude de $10\mathbf{V}_{p-p}$ (Offset de 5,0V). Anote a amplitude da tensão em \mathbf{V}_2 para a frequência de 1,0 KHz: $\mathbf{V}_{2p-p} =$ _______. Descubra a maior frequência possível de operação: $\mathbf{f} =$ _______.

b) [1,0 ponto] <i>Opto</i>	acoplador Amplificado: No mesmo modo fotocondutivo modifique o circuito da Figura-
A, adicionando um	BJT para amplificar o sinal. Aplique uma onda quadrada no LED1 (Terminal \mathbf{V}_{DC1}) com
amplitude de $10V_{p-p}$	(Offset de 5,0V). Anote a amplitude da tensão em V_2 para a frequência de 1,0 KHz:
V ₂ , , , –	Descubra a major frequência possível de operação: f -

QUESTIONÁRIO:

- a) **PESQUISA**: Encontre um circuito integrado optoacoplador <u>comercial</u>, descrevendo onde e como são utilizados, as suas características técnicas principais, incluídas a tensão máxima de isolamento e a frequência máxima de operação.
- **b**) Identifique para qual valor efetivo de \mathbf{R} seria obtida a potência elétrica máxima $\mathbf{P}_{LED2} = \mathbf{P}_{max}$ entregue pelo LED2, calculando a partir dos dados experimentais da Parte-III (Figura-C). Explique o seu resultado.

P.FDE - 2/2024 Prof. Marcus V. Batistuta