${f B2}$ $\triangle ABC$ において、 $AB=\sqrt{3}$ 、 $BC=\sqrt{7}$ 、CA=1 である。また、辺 BC の中点を M とする。

- (1) cosBの値を求めよ。
- (2) △ABC の外接円の半径を求めよ。また、線分 AM の長さを求めよ。
- (3) △ABM の外接円の半径を求めよ。また、△ABC の外接円の中心を O₁、△ABM の外接円の中心を O₂とするとき、△MO₁O₂の面積を求めよ。 (配点 20)

15/1

- **B3** x の 3 次式 $P(x) = x^3 + (b-a)x^2 + (a-ab)x-a^2$ (a, b は 0 でない実数の定数) がある。
 - (1) P(x) を x-a で割ったときの商を求めよ。
 - (2) b=1 とする。3 次方程式 P(x)=0 が重解をもつとき, a の値とこのときの重解を求めよ。
 - (3) 3次方程式 P(x)=0 の解が k, 2k (kは0でない実数) の 2つだけであるとき, a, b の値を求めよ。

【選択問題】 数学B受験者は、次のB4 \sim B8 のうちから2題を選んで解答せよ。

 $\mathbf{B4}$ 座標平面上に 2 点 A(3, 2), B(1, -2)を通る円 $K: x^2+y^2-8x+ay+b=0$ (a, bは定数)がある。

(1) a, bの値を求めよ。

1

- (2) 円Kの中心Cの座標を求めよ。また、点Aにおける円Kの接線の方程式を求めよ。
- (3) 直線 AB と円 K で囲まれた 2 つの部分のうち、小さい方を D (境界線を含む)とする。点 (x, y) が領域 D 内を動くとき、x-y の最大値、最小値をそれぞれ求めよ。(配点 20)

B5 右の図のように、原点 O を中心とする半径 2 の円の周上に 2 点 A(2,0)、B($-\sqrt{2}$, $\sqrt{2}$)をとる。弧 AB上に点 P を \angle AOP = α $\left(0 < \alpha < \frac{\pi}{2}\right)$ となるようにとり、点 P から α 軸に垂線 PH を下ろす。また、 $\sin \alpha + \cos \alpha = t$ とする。

- (1) $\sin \alpha \cos \alpha$ を t を用いて表せ。
- (2) ∠POB を α を用いて表せ。また、△OBP の面積を sin α, cos α を用いて表せ。
- (3) 四角形 OBPH の面積 S を t を用いて表せ。また、 $\sin 2\alpha = \frac{4}{5}$ のとき、S の値を求めよ。 (配点 20)

THE RESIDENCE OF THE PARTY OF T

- **B6** 関数 $f(x) = 2x^3 3(a+1)x^2 + 6ax + a$ (a は定数) がある。
 - (1) f'(x) = 0 を満たすxの値を求めよ。
 - (2) a>1 のとき, 関数 f(x) の極小値とそのときのxの値を求めよ。
 - (3) x>1 において, y=f(x) のグラフがx軸とただ1つの共有点をもつようなaの値の範囲を求めよ。 (配点 20)

- **B7** 等差数列 $\{a_n\}$ があり、 $a_2=-53$ 、 $a_3-2a_4=41$ を満たしている。また、数列 $\{b_n\}$ の初項から第 n 項までの和を S_n とするとき、 $S_n=n^2-12n$ $(n=1, 2, 3, \dots)$ を満たしている。
 - (1) 数列 {a_n} の一般項 a_n を n を用いて表せ。
 - (2) 数列 {b_n} の一般項 b_n を n を用いて表せ。
 - (3) $\sum_{k=1}^{20} |a_k| \le nb_n$ を満たす最小の自然数 n の値を求めよ。 (配点 20)

- $oxed{B8}$ 平面上に $\triangle OAB$ があり, $\overline{OA}=\overline{a}$, $\overline{OB}=\overline{b}$ とする。また,辺 AB を 1:2 に内分する点を C,線分 OC を 3:2 に内分する点を D とする。
 - (1) \overrightarrow{OC} , \overrightarrow{OD} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
 - (2) 線分 BD を 5:3 に内分する点を E とするとき, \overrightarrow{CE} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また,辺 OB 上に $\overrightarrow{OF} = t\overrightarrow{b}$ (0 < t < 1) を満たす点 F をとる。3 点 C,E,F が一直線上にあるとき,t の値を求めよ。
 - (3) OA=3, OB=4 とする。(2)で求めた t の値における点 F に対し, $\angle ODF=90^\circ$ となるとき,内積 $\overrightarrow{a}\cdot\overrightarrow{b}$ の値を求めよ。 (配点 20)

CONTRACTOR OF THE PROPERTY OF