Homework 2: Mathematical Statistics (MATH-UA 234)

Due 09/22 at the beginning of class on Gradescope

Problem 1. Solve each of the following:

- (a) Let X be any random variable with $\mathbb{E}[X] = 0$. Show that $\mathbb{E}[X^4] \geq \mathbb{E}[X^2]^2$.
- (b) Suppose $X \sim \text{Exp}(1)$. Then, as in Example 3.30, the moment generating function is $\psi_X(t) = 1/(1-t)$. Use the moment generating function to find $\mathbb{E}[X^k]$, for integer $k \geq 0$.
- (c) Let $X \sim \text{Exp}(1)$ and let $Y = \cos(X)$. Find $\mathbb{E}[Y]$.
- (d) Let X, Y be random variables. Show that $CoV[X, Y] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$.

Problem 2. Suppose X and Y are random variables with joint probability mass function,

$$f_{X,Y}(x,y) = \mathbb{P}[X = x, Y = y] = \begin{cases} .1 & X = -1, Y = 1 \\ .3 & X = -1, Y = -1 \\ .2 & X = 1, Y = 1 \\ .4 & X = 1, Y = -1 \end{cases}$$

- (a) Compute the marginal probability mass function, $f_X(x) = \mathbb{P}[X = x]$.
- (b) Compute $f(y) = \mathbb{E}[X|Y = y]$.
- (c) Compute $\mathbb{E}[X]$ using the marginal pmf and then using the the law of iterated expectation. Do the results agree?

Problem 3 (Wasserman 3.4 (statistics of a random walk)). A particle starts at the origin of the real line and moves along the line in jumps of one unit. For each jump the probability is p that the particle will jump one unit to the left and the probability is 1-p that the particle will jump one unit to the right. Let X_n be the position of the particle after n jumps. Find $\mathbb{E}[X_n]$ and $\mathbb{V}[X_n]$. (This is known as a random walk.)

Problem 4 (Wasserman 3.15 (variance of a mixture)). Let

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{3}(x+y) & 0 \le x \le 1, 0 \le y \le 2\\ 0 & otherwise. \end{cases}$$

Find $\mathbb{V}[2X-3Y+8]$.

Problem 5 (Wasserman 5.4 (convergence)).

Let $X_1, X_2, ...$ be a sequence of random variables such that

$$\mathbb{P}[X_n = 1/n] = 1 - 1/n^2, \quad \mathbb{P}[X_n = n] = 1/n^2.$$

- (a) Does X_n converge in probability to any random variable? If so, prove this. If no such variable exists, explain why not.
- (b) Does X_n converge in quadratic mean? If so, prove this. If no such variable exists, explain why not.

Problem 6. Describe an instance of one of the probability concepts we've seen recently in the course which you noticed in a different part of your life (e.g. in other classes, on the subway, at the park, in the dorm, etc.).

problems with a textbook reference are based on, but not identical to, the given reference