SIPM 09:22 21 March 2023 Learning Frair Representation using a Parametric Integral Probability Metric ICML '22 X: Non Sensitine random input nector. 5 : Binary Sensitine random input vector. Y; output nariable. $h: \chi_{\chi}\{0,1\} \rightarrow \mathcal{I}$ encoding function $Z:=h(\chi,S)$ representation. fo: I -> xx{0,19 decoding function. Four Representation learning. Lreconstruction (foh) + x d(P, h, P, h) where h(x,s)/s=s~ Ps d(Poh, P,h) = sup [[l(S, voh(x,s))] Computation issues.

Can't say that $d(P_0^h, P_1^h) \leq \varepsilon =$ bound on predictor's fairness. Ø-fairness of prediction model: DP (f) = | E[pof(x,s)|S=0]- E[pof(x,s) [S=1] 1PM-based deviance. Proposed method: $d_{\gamma}(P_{o}, P_{i}) = \sup_{v \in \gamma} E[v(z)] - E[v(z)]$ $U_{\nu}(P_{o}, P_{i}) \leq \varepsilon$ DP (foh) = [E[Øofoh(x,s)] - E[Øofoh(x,s)] SE if Øof EV Proposed parametric family for V Vsig = {6 (oTN+u): OF RM, uERY where 6 is the sigmoid function. dysig (Po, Pi) < E =) sup sup P (aTU, <t) - P(aU, <t) | <e Let 7 = 1+e-1/8 $\gamma | P(a^T U_o \leq t) - P(a^T U_i \leq t) | = | 1 - \eta | P(a^T U_o \leq t) - (1 - \eta | P(a^T U_i \leq t)) |$ = $|-\gamma P(a^T U, \epsilon [t-s, t]) - \gamma P(a^T U, \leq t-s) - |$ $|-\gamma P(a^T U, \epsilon [t-s, t]) - \gamma P(a^T U, \leq t-s)|$ $\leq \eta \leq P(a^{T}U_{s} \leq t - 8) + 8 \in \{0,1\}$ $| 1 - \eta P(a^{T}U_{s} \leq t - 8) - (1 - \eta P(a^{T}U_{s} \leq t - 8)) |$ $l \leq P(a^T U_s \leq t - S) + s \in \{0,1\}$ $\geq \left[\frac{1-\eta}{\delta \epsilon} \rho(a^{T}U_{\lambda} \leq t^{-\delta}) - E \left[\frac{\sigma(a^{T}U_{1}-t)}{\delta^{2}} \right] \right]$ $-\frac{E\left[6\left(\frac{a^{T}U_{0}-t}{\varsigma^{2}}\right)+E\left[6\left(\frac{a^{T}U_{0}-t}{\varsigma^{2}}\right)\right]}{\varsigma^{2}}$ $= \mathcal{I} \underbrace{\mathcal{E}}_{s \in \{0,1\}} P(a^{\mathsf{T}} U_{s} \leq t - \delta) + \underbrace{\mathcal{E}}_{s \in \{0,1\}} \left[\underbrace{\mathcal{E}}_{s \in \{0,1\}} \left(\underbrace{a^{\mathsf{T}} U_{r} - t}_{s^{2}} \right) \right] - \left(\underbrace{1 - \gamma}_{s \in \{0,1\}} P(a^{\mathsf{T}} U_{s} \leq t - \delta) \right) \right]$ $-\frac{E}{6}\left(\frac{aTu_{o}-t}{s^{2}}\right)$ $\begin{array}{c|c}
\leq \eta \leq P(a^{T}U_{s} \leq t - \delta) + \\
\leq \left[\sum_{\delta \in \{0,1\}} \left[\sum_{\delta \in \{0,$ $\left| E\left[6\left(\frac{a^{T}U_{1}-t}{s^{2}} \right) \right] - E\left[6\left(\frac{a^{T}U_{0}-t}{s^{2}} \right) \right] \right|$ < 7 2 E + 4 E + E