U.T.4. ALGEBRA RELACIONAL

El Álgebra relacional consta de un conjunto de operaciones que tomando como entrada una o dos relaciones producen como resultado otra nueva relación. Se basa en la teoría de conjuntos.

Hay ocho operadores en el álgebra relacional:

4 1.- BÁSICAS:

- 1.1.- UNARIAS (Sólo necesitan un campo de la tabla para funcionar)
 - ✓ SELECCIÓN
 - ✓ PROYECCION
- 1.2.- BINARIAS (Al menos precisan dos campos para funcionar)
 - ✓ UNION
 - ✓ DIFERENCIA
 - ✓ PRODUCTO CARTESIANO

2.- DERIVADAS

INTERSECCION COCIENTE JOIN

1.1.- OPERACIONES BÁSICAS UNARIAS

1.1.1- Selectionar (0)

- ✓ Permite hacer una selección de un subconjunto de registros de una tabla.
- ✓ La selección, permite extraer todas las filas que cumplen una condición determinada.
- ✓ Esta condición permite la utilización de los operadores de comparación (=,>,<,>=,<=,<>) además de los conectores lógicos (and , or, not)
- ✓ El grado del resultado es igual al de la tabla tras la operación y la cardinalidad del resultado puede ser igual o menor.

Extrae tuplas de una relación dada que satisfacen una condición específica.

Símbolo: σ (sigma)

Término Común: (WHERE)

Notación: σ condición (Relación)

Ejemplos:

N_Sucursal	#Prestamo	\$Importe
Miraflores	P-17	200,000
La Aurora	P-23	400,000
Lima Cercado	P-15	300,000
Chacarilla	P-14	300,000
Primavera	P-93	100,000
Surquillo	P-11	180,000
La Molina	P-16	260,000

 $\sigma_{N \text{ Sucursal} = < Miraflores>} (Prestamo)$

N_Sucursal	#Prestamo	\$Importe
Miraflores	P-17	200,000

PERSONA

COD	Nombre	Apellido_1	Apellido_2	Sexo	Dirección	Telefono	Salario
71134534	Juan	Mesa	Uribe	M	Cra 25 22-1	2567532	1,600,000
23423445	Ana María	Betancur	Bermudez	F	Cra 45 11-13	3433444	1,300,000
12453535	Gloria	Betancur	Garces	F	Tr. 12 43-5	4445775	1,700,000
75556743	Pedro	Ochoa	Pelaez	M	Cll.6ta 14-45	2686885	1,200,000
43533322	Patricia	Angel	Guzmán	F	Cll. 45 23-1	2674563	1,350,000
78900456	Carlos	Betancur	Agudelo	M	Cir. 5 12-5	4445775	1,500,000

a. **O** COD = 71134534 (PERSONA)

Resultado:

COD	Nombre	Apellido_1	Apellido_2	Sexo	Dirección	Telefono	Salario
71134534	Juan	Mesa	Uribe	M	Cra 25 22-1	2567532	1,600,000

b. $\sigma_{\text{sexo}} = F'(\text{PERSONA})$

Resultado:

COD	Nombre	Apellido_1	Apellido_2	Sexo	Dirección	Telefono	Salario
23423445	Ana María	Betancur	Bermudez	F	Cra 45 11-13	3433444	1,300,000
12453535	Gloria	Betancur	Garces	F	Tr. 12 43-5	4445775	1,700,000
43533322	Patricia	Angel	Guzmán	F	Cll. 45 23-1	2674563	1,350,000

c. O (Apellido 1 ='Betancur') y (sexo='F') (PERSONA)

Resultado:

COD	Nombre	Apellido_1	Apellido_2	Sexo	Dirección	Telefono	Salario
23423445	Ana María	Betancur	Bermudez	F	Cra 45 11-13	3433444	1,300,000
12453535	Gloria	Betancur	Garces	F	Tr. 12 43-5	4445775	1,700,000

d. \mathbf{O} (sexo = 'M'') o (Salario >=1.350.000) (PERSONA)

Resultado:

COD	Nombre	Apellido_1	Apellido_2	Sexo	Dirección	Telefono	Salario
71134534	Juan	Mesa	Uribe	M	Cra 25 22-1	2567532	1,600,000
75556743	Pedro	Ochoa	Pelaez	M	Cll.6ta 14-45	2686885	1,200,000
43533322	Patricia	Angel	Guzmán	F	Cll. 45 23-1	2674563	1,350,000
78900456	Carlos	Betancur	Agudelo	M	Cir. 5 12-5	4445775	1,500,000
12453535	Gloria	Betancur	Garces	F	Tr. 12 43-5	4445775	1,700,000

1.1.2.- Proyectar (**□**)

- ✓ Esta operación permite seleccionar algunas columnas de una tabla.
- ✓ El grado del resultado es igual o menor al de la tabla tras la operación y la cardinalidad del resultado permanece igual.

Notación: $\Pi_{\text{atributo 1, atributo 2, ... Atributo n}}$ (Relación)

Ejemplos:

Π # Préstamo, \$ Importe (Préstamo)

#Prestamo	\$Importe
P-17	200,000
P-23	400,000
P-15	300,000
P-14	300,000
P-93	100,000
P-11	180,000
P-16	260,000

a. π COD, nombre, Apellido_1, Apellido_2 (PERSONA)

Resultado

COD	Nombre	Apellido_1	Apellido_2
71134534	Juan	Mesa	Uribe
23423445	Ana María	Betancur	Bermudez
12453535	Gloria	Betancur	Garces
75556743	Pedro	Ochoa	Pelaez
43533322	Patricia	Angel	Guzmán
78900456	Carlos	Betancur	Agudelo

b. π COD, salario (PERSONA)

Resultado:

	Salario
71134534	1,600,000
23423445	
12453535	
75556743	1,200,000
43533322	1,350,000
78900456	1,500,000

COMBINACIÓN DE SELECCIÓN CON PROYECCIÓN:

- ✓ Esta operación permite seleccionar algunas columnas de una selección de registros de una tabla en función de unas condiciones.
- ✓ El grado del resultado es igual o menor al de la tabla tras la operación y la cardinalidad también puede ser igual o menor.

La operación SELECCIÓN combinada con la operación PROYECCIÓN, puede tener el formato:

Ejemplo:

 π COD, nombre, salario (σ (sexo = 'M") y (Salario >=1.550,000) (PERSONA))

Resultado:

COD	Nombre	Salario
71134534	Juan	1,600,000

VISTAS:

El resultado de las operaciones pueden ser llevados a tablas temporales (vistas) de la siguiente forma:

 $\texttt{REL_TEMP} \leftarrow \pi \texttt{COD}, \texttt{nombre}, \texttt{salario} \ (\sigma \texttt{(sexo = 'M'') o (Salario >= 1,350,000)} \ (\texttt{PERSONA)} \)$

Resultado:

REL_T EMP	COD	Nombre	Salario
	71134534	Juan	1,600,000
	12453535	Gloria	1,700,000
	75556743	Pedro	1,200,000
	43533322	Patricia	1,350,000
	78900456	Carlos	1,500,000

1.2.- OPERACIONES BASICAS BINARIAS

1.2.1.- UNION •

- ✓ La unión de dos tablas R y S, es otra tabla que contiene las tuplas que están en R, o en S, o en ambas, eliminándose las tuplas duplicadas
- ✓ Las dos tablas deben ser compatibles, es decir, definidas sobre el mismo conjunto de atributos

Las relaciones deben ser **Compatibles**: la misma cantidad de atributos, y los atributos correspondientes deben provenir del mismo dominio

Ejemplos:

Se desea averiguar todos los clientes que tienen una cuenta, un préstamo o ambos:

Titular_cuenta

N_Cliente	#Cuenta
Santos	C-101
Gómez	C-215
López	C-102
Abril	C-305
González	C-201
Santos	C-217
Rodríguez	C-222

Prestatario

N_Cliente	#Prestamo
Santos	P-17
Gómez	P-23
López	P-15
Soto	P-14
Pérez	P-93
Gómez	P-11
Fernández	P-16

 $\Pi_{\text{ N Cliente}}$ (Titular_cuenta) $\cup \Pi_{\text{ N Cliente}}$ (Prestatario)

ciita) O I I	1
N_Cliente	
González	
Santos	
Rodríguez	l
López	
Abril	l
Soto	
Pérez	1
Gómez	l
Fernández	

JUGA ASI

COD	Nombre	Apellido_1	Apellido_2	Cod_EQUIPO
123232	Pedro	Climon	Cereza	ASI2T
665543	Elena	Raiz	Serrano	ASI2T
827654	Gloria	Tierra	Pelaez	ASI1M

JUGA DAI

COD	Nombre	Apellido_1	Apellido_2	Cod_EQUIPO
889272	Luis	Garcia	Prat	DAI2T
827654	Ernesto	Villa	Grande	DAI2M
827655	Eva	Tierra	Pelaez	DAI1M
789009	Carlos	Arias	Arias	DAI2M

JUGADORES0607= JUGA ASI UNION JUGA DAI

COD	Nombre	Apellido_1	Apellido_2	Cod_EQUIPO
123232	Pedro	Climon	Cereza	ASI2T
665543	Elena	Raiz	Serrano	ASI2T
827654	Gloria	Tierra	Pelaez	ASI1M
889272	Luis	Garcia	cia Prat DAI2	
827654	Ernesto	Villa	Grande	DAI2M
827655	Eva	Tierra	Pelaez	DAI1M
789009	Carlos	Arias	Arias	DAI2M

1.2.2.- **DIFERENCIA** -

- ✓ La diferencia de dos tablas R y S, es otra relación que contiene las tuplas que están en la relación R, pero no están en S
- ✓ Ry S deben ser compatibles

Dadas dos relaciones específicas, construye una tercera relación formada por todas las tuplas de la primera relación que no aparecen en la segunda.

Símbolo: -

Notación: R1 – **R2** Término Común: MINUS

Las relaciones deben ser Compatibles

Ejemplo

Se desea averiguar todos los clientes que tienen abierta una cuenta, pero que no tienen concedido ningún préstamo:

 $\Pi_{\text{N Cliente}}$ (Titular_cuenta) – $\Pi_{\text{N Cliente}}$ (Prestatario)

EQUIPOS06

EQUIPO	CICLO	CURSO	GRUPO	TURNO	
ASI1M	ASI 1		NULL	MAÑANA	
ASI2M	ASI	2	NULL	MAÑANA	
ASI1T	ASI	1	NULL	TARDE	
ESO2A	ESO	2	A	NULL	

EQUIPOS07

EQUIPO	CICLO	CURSO	GRUPO	TURNO	
ASI1M	ASI	1	NULL	MAÑANA	
ASI2M	ASI	2	NULL	MAÑANA	
ASI1T	ASI	1	NULL	TARDE	
ASI2T	ASI	2	NULL	TARDE	
GS1	GARANTIA SOCIAL	NULL	1	NULL	

EQUIPOS NUEVOS = EQUIPOS07-EQUIPOS06

EQUIPO	CICLO	CURSO	GRUPO	TURNO
ASI2T	ASI	2	NULL	TARDE
GS1	GARANTIA SOCIAL	NULL	1	NULL

1.2.3.- PRODUCTO CARTESIANO X

- ✓ El producto cartesiano de dos tablas R y S es el conjunto de combinar todas las filas de R con todas las filas de S.
- √ No es necesario que R y S sean compatibles

En ocasiones, que de una consulta resulte un producto cartesiano se debe a no especificar las relaciones entre las tablas de forma adecuada.

Dadas dos relaciones específicas, construye una tercera relación que contiene todas las combinaciones posibles de tuplas, una de cada una de las relaciones.

Símbolo: X

Término Común: TIMES

Ejemplo

EQUIPOS_NUEVOS

Cod_EQUIPO	CICLO	CURSO	GRUPO	TURNO
ASI2T	ASI	2	NULL	TARDE
IGS1	GARANTIA SOCIAL	NULL	1	NULL

JUGA_ASI

COD	Nombre	Apellido_1	Apellido_2	Cod_EQUIPO
123232	Pedro	Climon	Cereza	ASI2T
665543	Elena	Raiz	Serrano	ASI2T
827654	Gloria	Tierra	Pelaez	ASI1M

PRODUCTO = JUGA ASI X EQUIPOS NUEVOS

COD	Nombre	Apellido_1	Apellido_2	Juega_ASI.Cod_EQUIPO	Equipos_Nuevos.Cod_EQUIPO	CICLO	CURSO	GRUPO	TURNO
123232	Pedro	Climon	Cereza	ASI2T	ASI2T	ASI	2	NULL	TARDE
123232	Pedro	Climon	Cereza	ASI2T	GS1	GARANTIA SOCIAL	NULL	1	NULL
665543	Elena	Raiz	Serrano	ASI2T	ASI2T	ASI	2	NULL	TARDE
665543	Elena	Raiz	Serrano	ASI2T		GARANTIA SOCIAL	NULL	1	NULL
827654	Gloria	Tierra	Pelaez	ASI1M	ASI2T	ASI	2	NULL	TARDE
827654	Gloria	Tierra	Pelaez	ASIIM	GS1	GARANTIA SOCIAL	NULL	1	NULL

2.- OPERACIONES DERIVADAS

2.1.- JOIN: Unión Natural (Natural Join)

- El resultado del join es una relación que puede tener atributos de ambas tablas y se obtiene combinando las tuplas de ambas que tengan el mismo valor en uno o varios atributos comunes (esa igualdad entre campos debe especificarse en una condición)
- √ Si no se especifica la igualdad entre uno o más campos se produce un producto cartesiano.
- ✓ Normalmente la operación de join se realiza entre los atributos comunes de dos tablas que corresponden a la clave primaria de una tabla y la clave foránea correspondiente de la otra tabla
- También es muy común un join con una clave de una tabla intermedia que me permita llegar a la información de otra tabla.
- ✓ Se expresa como la combinación de una proyección y una selección en la que la condición principal es la igualdad entre los campos comunes.

Símbolo: O

Término Común: JOIN

Notación: R1 @ R2

específicas, construye una tercera relación que combina ciertas selecciones, proyección y un producto cartesiano en una sola operación.

Dadas dos relaciones

Ejemplo

Averiguar los nombres de todos los clientes que tienen concedido un préstamo, el importe de éste y la sucursal donde se lo otorgaron"

(Prestatario Θ Préstamo)

N_Cliente	#Prestamo
Santos	P-17
Gómez	P-23
López	P-15
Soto	P-14
Pérez	P-93
Gómez	P-11
Fernández	P-16

N_Sucursal	#Prestamo	\$Importe
Miraflores	P-17	200,000
La Aurora	P-23	400,000
Lima Cercado	P-15	300,000
Chacarilla	P-14	300,000
Primavera	P-93	100,000
Surquillo	P-11	180,000
La Molina	P-16	260,000

N_Cliente	N_Sucursal	#Prestamo	\$Importe
Santos	Miraflores	P-17	200,000
Gómez	La Aurora	P-23	400,000
López	Lima Cercado	P-15	300,000
Soto	Chacarilla	P-14	300,000
Pérez	Primavera	P-93	100,000
Gómez	Surquillo	P-11	180,000
Fernández	La Molina	P-16	260,000

JUGADORES

COD	Nombre	Apellido_1	Apellido_2	Cod_EQUIPO
123232	Pedro	Climon	Cereza	ASI2T
665543	Elena	Raiz	Serrano	ASI2T
827654	Gloria	Tierra	Pelaez	ASI1M
889272	Luis	Garcia	Prat	DAI2T
827654	Ernesto	Villa	Grande	DAI2M
827655	Eva	Tierra	Pelaez	DAI1M
789009	Carlos	Arias	Arias	DAI2M

EQUIPOS

EQUIPO	CICLO	CURSO	GRUPO	TURNO
ASI1M	ASI	1	NULL	MAÑANA
ASI2M	ASI	2	NULL	MAÑANA
ASI1T	ASI	1	NULL	TARDE
ASI2T	ASI	2	NULL	TARDE
GS1	GARANTIA SOCIAL	NULL	1	NULL

Ejemplo: Mostrar con un join los jugadores del turno de tarde:

 π (jugadores.nombre, jugadores.apellido_1, jugadores.apellido_2, equipo.equipo) σ (jugadores.cod_equipo = equipo.equipo) AND (equipo.turno='t') (Jugadores, equipos);

Nombre	Apellido_1	Apellido_2	Cod_EQUIPO
Pedro	Climon	Cereza	ASI2T
Elena	Raiz	Serrano	ASI2T
Luis	Garcia	Prat	DAI2T

2.2.- INTERSECCION ∩

- ✓ La intersección de dos tablas, R y S da como resultado el conjunto de todas las filas que se encuentran en las dos, tanto en la relación R como en S. (las comunes)
- ✓ R y S deben ser compatibles
 ✓ Equivale a la operación = R (R S)

Dadas dos relaciones *Compatibles* específicas, construye una tercera relación formada por todas las tuplas que aparecen en ambas relaciones.

Símbolo: ∩

Término Común: INTERSECT

Notación: R1 ∩ R2

Equivalencia: $R1 \cap R2 = R1 - (R1 - R2)$

Averiguar los clientes que tienen un préstamo concedido y una cuenta abierta

$\Pi_{\text{N Cliente}}$ (Prestatario) $\cap \Pi_{\text{N Cliente}}$ (Titular-cuenta)

Titular_cuenta

N_Cliente #Cuenta Santos C-101

Gómez	C-215
López	C-102
Abril	C-305
González	C-201
Santos	C-217
Rodríguez	C-222

Prestatario

N_Cliente	#Prestamo
Santos	P-17
Gómez	P-23
López	P-15
Soto	P-14
Pérez	P-93
Gómez	P-11
Fernández	P-16

EQUIPOS06

EQUIPO	CICLO	CURSO	GRUPO	TURNO
ASI1M	ASI	1	NULL	MAÑANA
ASI2M	ASI	2	NULL	MAÑANA
ASI1T	ASI	1	NULL	TARDE
ESO2A	ESO	2	A	NULL

EQUIPOS07

EQUIPO	CICLO	CURSO	GRUPO	TURNO
ASI1M	ASI	1	NULL	MAÑANA
ASI2M	ASI	2	NULL	MAÑANA
ASI1T	ASI	1	NULL	TARDE
ASI2T	ASI	2	NULL	TARDE
GS1	GARANTIA SOCIAL	NULL	1	NULL

COMUNES = EQUIPOS06 n EQUIPOS07

EQUIPO	CICLO	CURSO	GRUPO	TURNO
ASI1M	ASI	1	NULL	MAÑANA
ASI2M	ASI	2	NULL	MAÑANA
ASI1T	ASI	1	NULL	TARDE

2.3.- DIVISION /

- ✓ La división entre R y S da como resultado una relación con los campos que están en R pero no en S y que contiene las tuplas de que están combinadas con todas y cada una de las tuplas de S.
- ✓ Condiciones:

- Grado(R) > grado (S)
- Conjunto atributos de S incluido en el conjunto de atributos de R

EJEMPLO:

Hallar los clientes que tengan cuentas en TODAS las sucursales de SURCO

Primavera

R2 = $\prod_{\text{N cliente, N sucursal}}$ (Titular-cuenta Θ Cuenta)

N_Cliente	N_Sucursal
González	Chacarilla
Gómez	La Aurora
López	Lima Cercado
Abril	Chacarilla
González	Primavera
Santos	La Molina
Rodríguez	Surquillo

 $\prod_{\text{ N cliente, N sucursal}} (\text{ Titular-cuenta } \Theta \text{ Cuenta}) \div$

 $\prod_{N \text{ sucursal}} (\sigma_{N \text{ Distrito = Surco}} (\text{ Sucursal}))$

N_Cliente
González

EQUIPO	CICLO	CURSO	GRUPO	TURNO
ASI1M	ASI	1	NULL	MAÑANA
ASI2M	ASI	2	NULL	MAÑANA
ASI1T	ASI	1	NULL	TARDE