1

Assignment-1

AI24BTECH11019-PRATHEEK

C.Multipe Choice Questions

- 1) Given positive integers r > 1, n > 2 and that coefficient of (3r) th terms in the binomial expansion of $(1 + x)^{2n}$ are equal. Then (1983 - 1Mark)
 - a) n = 2r
- c) n = 3r
- b) n = 2r + 1
- d) none of these
- 2) The coefficient of x^4 in $\left(\frac{x}{2} \frac{3}{x^2}\right)^{10}$ is (1983 1Mark)

- c) $\frac{450}{263}$ d) none of these
- expression $\left(x + \left(x^3 1\right)^{\frac{1}{2}}\right)^5$ $\left(x-\left(x^3-1\right)^{\frac{1}{2}}\right)^5$ is a polynomial of degree (1992 - 2Marks)
 - a) 5

c) 7

b) 6

- d) 8
- 4) If in the expansion of $(1+x)^m (1-x)^n$, the coefficients of x and x^2 are 3 and -6 respectively, then m is (1999 - 2Marks)
 - a) 6

c) 12

b) 9

- 5) For $2 \le r \le n$, $\binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} = (200)^n$

- 6) In the binomial expansion of $(a-b)^n$, $n \ge 5$, t the sum of of the 5^{th} and 6^{th} terms is zero. Then a/b equals (2001S)

- a) (n-5)/6
- c) 5/(n-4)
- b) (n-4)/5
- d) 6/(n-5)
- 7) The sum $\sum_{i=0}^{9} {10 \choose i} {20 \choose m-i}$, (where ${p \choose q} = 0$ if p < 10q) is maximum when m is (2002S)
 - a) 5

c) 15

b) 10

- d) 20
- 8) Coefficient of t^{24} in $(1+t^{2^{12}})(1+t^{12})(1+t^{24})$ is (2003S)

- 9) If ${}^{n-1}C_r = (k^2 3) {}^nC_{r+1}$ then $(k \in)$ (2004S)

 - a) (-8, -2] b) $[2, \infty)$ c) $\left[-\sqrt{3}, \sqrt{3}\right]$ d) $(\sqrt{3}, 2]$
- 10) The value where (2005S)
- 11) For $0, 1 \cdots, 10,$ C_r denote, respectively coefficients of x^r in the expansions of $(1+x)^{10}$, $(1+x)^{20}$ and $(1+x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C10A_r)$ is equal to
 - a) $B_{10} C_{10}$ c) 0 b) $A_{10} \left(B_{10}^2 C_{10} A_{10} \right)$ d) $C_{10} B_{10}$

- 12) Coefficient of x^{11} in the of $(1 + x^2)^4 (1 + x^3)^7 (1 + x^4)^{12}$ is the

- a) 1051
- c) 1113
- b) 1106
- d) 1120

D.MCQs with One or More than One Correct

- 1) If c_r stands for nC_r , the the sum of the series $\frac{2(\frac{n}{2}!)(\frac{n}{2}!)}{n!} \left[C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n (n+1) C_n^2 \right],$ where n is an even positive integer is equal (1992 - 2Marks)
 - a) 0

- d) $(-1)^n n$
- e) none of these
- a) 0 b) $(-1)^{\frac{n}{2}}(n+1)$ c) $(-1)^{\frac{n}{2}}(n+2)$
- 2) If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals (1998 2*Marks*)
 - a) $(n-1) a_n$
- b) na_n
- c) $\frac{1}{2}na_n$ d) None of The above