FOR ARCTIC DAM 100-M

$$X_0 = -4000000$$
 $Y_0 = 4100000$
 $X_0 = X_0 + (m + \frac{1}{2})(100)$
 $X_0 = Y_0 - (n + \frac{1}{2})(100)$
 $X_0 = (m + \frac{1}{2})(100)$
 $Y_0 = (n + \frac{1}{2})(100)$

REMA Peninsula

160- m

8000 COLUMNS

$$X_{CEL} = X_0 + (m + \frac{1}{2})(100)$$

 $Y_{CEL} = Y_0 - (n + \frac{1}{2})(100)$

$$X - X_0 = (m + \frac{1}{2})(100) \Rightarrow \boxed{m = \frac{X - X_0}{100} - \frac{1}{2}}$$

$$Y - Y_0 = -(n + \frac{1}{2})(100) \Rightarrow \boxed{n = \frac{Y_0 - Y}{100} - \frac{1}{2}}$$

REMA 160-m

$$X_0 = -2700000$$
 $Y_0 = 2300000$

$$x_{cal} = x_0 + (m + \frac{1}{2})(100) = m = \frac{x - x_0}{100} - \frac{1}{2}$$

 $y_{cal} = y_0 - (n + \frac{1}{2})(100) = N = \frac{y_0 - y}{100} - \frac{1}{2}$

EGM 2008 1'X1' GRID

GRID HAS I COLUMN OF ZEROS

AT EACH END. NO IDEA WHY. $\Delta LAT = \frac{1}{60} DEC = \Delta LON$ BROWS = (90-(-90))*60+1 = |0.80| COLUMNS = (360-0)*(0+2 = 21602) ENTRIES ARE FLOAT *4

 $X_{0} = 0$ $0 \le m \angle 21602$ $Y_{0} = +90$ $0 \le n \angle 16801$ $X_{cel} = X_{0} + m(\frac{1}{60}) \Rightarrow m = 60(X_{cell} - X_{0})$ $Y_{cell} = Y_{0} = n(\frac{1}{60}) \Rightarrow n = 60(Y_{6} - Y_{cell})$