CE 388 – FUNDAMENTALS OF STEEL DESIGN

CHAPTER 1: GENERAL CONCEPTS IN DESIGN AND PROPERTIES OF STEEL

- In general, the amount of steel used in construction industry is proportional with the degree of industrial development.
- In developed countries, steel is in competition with reinforced concrete for almost all types of structures.

- Types of steel structures:
 - Framed structures
 - □ Tensile structures
 - □ Thin-plate structures

- Framed Structures:
 - Multi-story frames
 - Industrial buildings
 - □ Towers
 - □ Space structures (domes, barrel vaults)
 - □ Bridges
 - □ Stadiums, etc.

A multi-story steel frame (Bank of China Building, Hong Kong)

A steel dome in Nagoya, Japan

A barrel vault structure

Space structures

A steel tranmission tower structure

A steel industrial building

A steel bridge (Sdyney Harbour Bridge, Australia)

A steel stadium

- Tensile Structures:
 - Also referred to as cable structures or suspension-type structures
 - □ Examples of bridge tensile structures:
 - · Suspension bridges
 - · Cable stayed bridges

A cable-stayed bridge

A suspension bridge

- In the design tension cables plays an important role
- Very light structures can be built using high-strength cables

- Thin-plate Structures:
 - □ Examples of these structures are
 - · Liquid storage tanks
 - Shell roofs

Liquid storage tanks

A steel shell roof

Advantages and Disadvantages of Steel

- Advantages:
 - High strength → less dead load and smaller dimensions (more preferable for bridges, highrise buildings and poor foundation conditions).

Advantages and Disadvantages of Steel

2. Ductility: steel can undergo large plastic deformation before failure.

A typical stress-strain diagram

Advantages due to ductility:

- i) High impact resistance (such as blast or earthquake
- ii) High energy absorption capacity
- iii) Exhibition of sample warning by excessive deflections (sudden failure does not occur)

Advantages and Disadvantages of Steel

- 3. Predictable material properties
 - Homogeneity and isotropy
 - Perfectly elastic up to yield stress
 - Steel properties do not change considerably with time
- 4. Speed of erection
- 5. Ease of repair

Advantages and Disadvantages of Steel

- 6. Adaptation to prefabrication
- 7. Repetitive use
- 8. Expanding existing structures

Advantages and Disadvantages of Steel

- Disadvantages:
 - 1. General cost (more costly than others)
 - 2. Fireproofing
 - At about 600°C, steel strength completely vanishes.
 - Encasing steel members (fire proofing technique)
 - → increases cost and dead load

Advantages and Disadvantages of Steel

- 3. Maintenance
 - Steel tends to corrode when exposed to air.
 - Should be painted regularly → increases maintenance cost
- 4. Susceptibility to buckling
 - Steel members are more susceptibe to buckling due to relatively smaller sizes

Mechanical Properties of Structural Steel

Stress-strain diagram for steels having a yield plateau:

Mechanical Properties of Structural Steel

Stress-strain diagram for steels without a yield plateau:

- □ Do not exhibit a yield plateau.
- □ The yield stress is generally defined as the stress corresponding to 0.002 permanent strain or 0.005 strain.

Chemical Composition and Types

Structural steel

- Addition of carbon increases steel strength, but decreases ductility
- Steel types used in constructurion industry:
 - Structual carbon steels
 - □ High-strength low-alloy steels
 - ☐ Heat treated low-alloy or carbon steels

Chemical Composition and Types

- Structural carbon steels:
 - □ carbon content between 0.15-0.29 %
 - □ exhibits a marked yield plateau
 - □ has yield stress between 2400-3500 kg/cm²
- High-stregth low alloy steels:
 - □ has yield stress between 2800-5000 kg/cm²
 - exhibits a marked yield plateau
- Heat-treated low alloy and carbon steels
 - obtained by quenching and tempering of low-alloy or carbon steels
 - □ has yield stress between 5500-7000 kg/cm²
 - □ do not have a definite yield point

Structural Shapes

- Structural shapes:
 - Standard shapes
 - Built-up shapes

Structural Shapes

- HP-Shapes:
 - □ Wide-flange shapes with square cross-section
 - Often used as driven piles for foundation support

Structural Shapes

- S-Shapes (I-Sections):
 - □ Have relatively narrow flanges compared to their depth
 - □ Infrequently used in construction
 - □ Used in cases where heavy point loads are applied to the flanges, such as in monorails for the support of hung cranes

Structural Shapes

- C-Shapes (Channel Sections):
 - Used as bracing or tie members, components of built-up cross sections or members that frame openings
 - Standard designation

Structural Shapes

- L-Shapes (Angle Sections):
 - Commonly used singly or in pairs as bracing members and tension members
 - Standard designation

- WT-Shapes (T Sections):
 - □ Tees that are produced by cutting wide-flange sections from the half (e.g., WT18x105 ← W36x210)
 - □ Used for special beam applications and as components in connections and trusses

Elastic and Inelastic Behaviour of Steel For nominal loads, the beam behaves elastically Flexural formula: Applied moment Stress $\rightarrow \sigma = \frac{My}{I}$ Distance from neutral axis Moment of inertia Stress in the extreme fiber $\sigma_b = \frac{Mc}{I} = \frac{M}{W}$ Elastic section modulus

Elastic and Inelastic Behaviour of Steel

- Inelastic behaviour:
 - ☐ If the loading is increased further, the fibers adjacent to the extreme fiber also reaches yield stress, that is, yielding spreads throughout the section

Elastic and Inelastic Behaviour of Steel

- Plastic moment capacity:
 - ☐ The entire section reaches the yield stress

$$\begin{aligned} \boldsymbol{M}_{p} &= \boldsymbol{F_{c}} * \boldsymbol{d_{1}} + \boldsymbol{F_{t}} * \boldsymbol{d_{2}} \\ \uparrow & \\ \text{Plastic moment} \\ \text{capacity} \end{aligned}$$

Elastic and Inelastic Behaviour of Steel

Example: section properties

Design Approaches

- Design approaches:
 - □ Allowable Stress Design (ASD) Working Stress Design
 - □ Load and Resistance Factor Design (LRFD)

- Allowable Stress Design (ASD)
 - \Box Under actual loads the stress in a member is not to exceed an allowable value F_{all}

Design Approaches

- Load and Resistance Factor Design (LRFD)
 - □ Both the load effect (Q, member force) and resistance (R, strength) are assumed to have a normal distribution

Figure 1.10 Probability Distribution, R and Q.

 \square If Q \leq R, the structure is safe

Occurences of failure

□ Safety of the structure is a function of the size of this overlapping area

Design Approaches

Factored (increased) = $\sum \gamma_i Q_i$ load effects

Reduced strength (resistance, capacity) = ϕR_n

Factored load effects ≤ Reduced strength

$$\sum \gamma_i Q_i \leq \phi R_n$$

- ϕ (the resistance or capacity reduction factor) takes into account the uncertanities in the calculation of resistance.
 - $\phi = 0.85$ (for columns)
 - $\phi = 0.75$ or 0.90 (for tension members)
 - $\phi = 0.90$ for bending and shear in beams

Design Approaches

- γ_i (load factor for load effect i) takes into account the uncertanities in the calculation of load effect i.
- □ Load combinations in LRFD:
 - 1.4D
 - 1.2D + 1.6L +0.5S
 - 1.2D + 1.6S + (0.5W or 0.8W)
 - 1.2D + 1.6W + 0.5L +0.5S

D: dead load, L:live load, W:wind load, S: snow load

Example: comparison of ASD and LRFD design approaches

Design Specifications

- National:
 - □ TS648 : Building Code for Steel Structures
- International:
 - □ AISC-ASD : American Institute of Steel Construction Allowable Stress Design
 - □ AISC-LRDF : American Institute of Steel
 Construction Load and Resistance Factor Design

Steel Grades

■ In TS648:

□ St37 or Fe37:

- Ordinary structural steel
- Ultimate strength: $\sigma_d = 3700-4500 \text{ kgf/cm}^2$
- \sim Yield stress: $\sigma_a = 2400 \text{ kgf/cm}^2$

□ St52 or Fe52:

- High stregth steel
- Ultimate strength: σ_d = 5200-6200 kgf/cm²
- Field stress: $\sigma_a = 3600 \text{ kgf/cm}^2$

Material properties:

- $\sigma_p = 0.8 (\sigma_a)$
- $\rho_W = 7.85 \text{x} 10^{-3} \text{ kg/cm}^3$

Table 1.4 Properties of Steel (From TS 648

Type of Steel	Tensile Strength Gd kgf/cm ² (N/mm ²)	Yield Stress Oa kgf/cm² (N/mm²)	Modulus of Elasticity E kgf/cm ² (N/nm ²)	Shear Modulus G kgf/cm ² (N/mm ²)
Fe 33	3300-5000 (324-490)	1900 (186)	2100 000 (206182)	810 000 (79434)
Fe 34	3400-4200 (333-412)	2100 (206)		
Fe 37	3700-4500 (363-491)	2400 (235)		
Fe 42	4200-5000 (412-490)	2600 (255)		
Fe 46	4400-5400 (431-530)	2900 (284)		
Fe 50	5000-6000 (490-588)	3000 (294)		
Fe 52	5200-6200 (510-608)	3600 (353)		
Fe 60	6000-7200 (588-706)	3400 (333)		
Fe 70	7000-8500 (686-834)	3700 (363)		

hese values are for sections with thicknesses equal to or $f = 16 \cdot \text{tc} \cdot 40$ mm, decrease the yield stress values by 100 9.8 N/mm^2). If $40 \text{ ct} \cdot c = 100 \text{ nm}$, decrease the yield stress value.

Steel Grades

In AISC:

Classification:

- Carbon Steel (A36, A53, A500, A501, A529)
- High-strength low alloy steel (A572, A618, A913, A992)
- Corrosion resistant high-strength low alloy steel (A242, A588, A847)

□ A36:

- Ordinary structural steel
- Ultimate strength: σ_d = 58-80 ksi
- Yield stress: $F_y = 36$ ksi

