Econometría Aplicada Diferencia en Diferencia (DiD) Aplicación

Edinson Tolentino MSc Economics

email: edinson.tolentino@gmail.com

Twitter: @edutoleraymondi

Educate Peru

Contenido

Diferencias en Differencias (DiD)

Aplicación

| EDÚCATE PERÚ | CONSULTORES

Método de DiD

¿Por que no usar un modelo MCO?, dicha metodología puede fallar en el objetivo de medir un efecto causal, ejemplo clásico a través de variables omitidas.

En consecuencia, si nostros estamos interesados en evaluar politicas, deberiamos tener en cuenta los problemas relacionados a los sesgo de variables omitidas, debens er variables no observadas a nivel de las unidades de observación.

Por tanto, el **Metodo de Diferencia en Diferencias** es utilizado para comprender el efecto de una intervención

Tales evaluaciones de impacto o politicas o programas son a menudo temas relacionados con **evaluación de programas**, los cuales pueden ser estudiados como **experimentos naturales**

| EDÚCATE PERÚ | CONSULTORES

Método de DiD

Supongamos que evaluamos el impacto de un programa o politica, llamado tratamiento sobre una variable productor Y sobre una población de individuos

Individuos que pertenecen a dos grupos , D = (C, T), donde:

- ightharpoonup D = C, aquellos individuos que no reciven el tratamiento , grupo control
- $lackbox{D} = T$, aquellos individuos que reciven el tratamiento , grupo tratamiento

Observamos a los individuos en dos periodos , t = (0,1) donde:

- Periodo = 0, indica un periodo antes de que el grupo de trataiento reciva el tratamiento , periodo de pre-tratamiento
- Periodo = 1, indica un periodo despues de que el grupo de trataiento reciva el tratamiento, periodo de post-tratamiento

Método de DiD

El producto Y_{it} es modelado por la siguiente ecuación:

$$Y_{it} = \alpha + \beta D_i + \gamma Periodo_t + \delta (D_i * Periodo_t) + \varepsilon_{it}$$

Donde δ es el estimador diferencias en diferencias

- El primer es el estimador de diferencias sobre el tiempo (periodo antes y despues) en el producto
- Segundo es el estimador de diferencias sobre los grupo de control y tratamiento
- Po ultimo, toma la diferencia entre estas diferencias realizadas.

| EDÚCATE PERÚ | CONSULTORES

Método de DiD

Efecto de la política usando solo periodos previos y posteriores para el grupo T, ignorando la tendencia temporal general

Efecto de la política utilizando solo la comparación T y C de la intervención posterior, ignorando las diferencias preexistentes entre los grupos T y C

Método de DiD

Efecto de la política tomando en cuenta la diferencia pre-existente entre T y C tanto como las diferencias generales de tendencia en el tiempo (Diff - in - Diff).

Aplicación: Introducción

La presente aplicación busca analizar la polica de reparto de utilidades para empresas formales con mayor numero de trabajadores (mas de 20 trabajadores)

El objetivo es poder evaluación el rol de dicha política (reparto de utilidades) sobre trabajadores que poseean mas de 20 empleados.

| EDÚCATE PERÚ | CONSULTORES

Estadisticas descriptivas

Cuadro: Summary Statistics

	Firms	Promedio	Medium	Min.	Max.	Std
Valuee-Added per employees S/.	1872	86,972.29	55,243.32	-111372.90	3804393.50	163,441
Value-Added (S/. Millones soles)	1872	18.31	6.23	-1.79	804.44	47
Capital (S/. Millones soles)	1872	9.35	1.46	0.00	666.69	36

Fuente: EEA - INEI Elaboracion: Autor

Estadisticas descriptivas

Cuadro: Mean values before and after the 2014 reform

	Treated		Control		Difference
	Pre-reform	Post-reform	Pre-reform	Post-reform	diff
Log(Value-Added per employees)	10.90	10.92	11.87	11.92	-0.03
	(0.68)	(0.74)	(0.79)	(0.83)	
Log(Capital ratio)	9.45	9.41	10.75	10.85	0.04
,	(1.57)	(1.56)	(1.68)	(1.78)	
Observations	1059	624	121	65	1683

Desviacion estandar en parentesis.

Fuente: EEA - INEI.

Elaboracion: Autor

Nota: mean values in log.

Modelo

Modelo empirico

$$log(Y_i) = \beta_0 + \beta_1 Policy_i + \beta_2 Treat_{i,t} + \lambda_t + \varepsilon_i$$

Cuadro: Difference in Difference

	Log(Productivity)
Policy	-0.03
	(0.13)
Mayor 20 employees	-0.97***
, ,	(0.08)
Constant	11.84***
	(0.07)
Observations	1863
Adj. R ²	0.14
Year FE	
Sectors FE	
Controls	

Fuente: EEA - INEL

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.