Przygotowanie środowiska

Wymagany Python 3.5.

Wirtualne środowisko (opcjonalnie)

```
$ python3 -m venv env  # instalacja venv
$ source env/bin/activate  # aktywacja venv
... praca w wirtualnym środowisku ...
$ deactivate  # deaktywacja venv
```

Instalacja pakietów

Podczas instalacji pakietów pod Linuksem, potrzebny jest kompilator gcc-fortran.

```
$ pip3 install -r requirements.txt
```

Instalacja korpusów

Należy uruchomić skrypt instalacyjny, który rozpakowywuje korpus PWr z pliku kpwr-1.2.6-disamb.7z a korpus polski pobiera ze źródła.

```
$ ./installCorpuses.sh
```

Instalacja NLTK

Do tokenizacji słów w podanym tekście użyto NLTK. Dwie opcje instalacji:

1. Interaktywna instalacja w interpreterze:

```
>>> import nltk
>>> nltk.download()
```

2. Instalacja poprzez linię komend:

```
$ sudo python -m nltk.downloader -d /usr/local/share/nltk_data all Dane NLTK zostaną zainstalowane w katalogu /usr/local/share/nltk_data.
```

Instalacja CUDA

- Pobranie paczki instalującej repozytorium Nvidii ze strony: https://developer.nvidia.com/cudadownloads, testowana wersja: Linux Ubuntu 14.04, architektura x86_64, paczka deb (local).
- 2. Instalacja repozytorium w systemie:
 - \$ dpkg -i cuda-repo-ubuntu1404-7-5-local 7.5-18 amd64.deb`
- 3. Instalacja sterowników i środowiska CUDA:
 - \$ apt-get update && apt-get install -y cuda
- 4. Restart maszyny w celu załadowania sterowników Nvidii zamiast Nouveau.
- 5. Instalacja Nvidia cuDNN (biblioteki wspomagające sieci neuronowe): należy umieścić zawartość archiwum cudnn-7.0-linux-x64-v4.0-prod.tgz w folderze /usr/local/cuda. Do ściągnięcia ze strony https://developer.nvidia.com/rdp/form/cudnn-download-survey.
- 6. Instalacja modułu tensorflow dla Pythona.

Korzystanie z programu

Konfiguracja środowiska

Należy dodać folder zawierający projekt do zmiennej środowiskowej PYTHONPATH. Jeśli akurat się w nim znajdujemy (jest on katalogiem bieżącym), można to zrobić np. poprzez:

\$ export PYTHONPATH="\${PYTHONPATH}:\${PWD}"

Aby wykonać powyższą komendę wraz z włączeniem venv, wystarczy pobrać zawartość pliku prepare do shella poprzez:

\$ source prepare

Ustawienia ścieżek

Skrypty korzystają ze ścieżek konfigurowalnych za pomocą pliku src/settings.py.

Konwersja plików xml do csv

Projekt zawiera skrypt umożliwiający konwersję plików xmlowych do formatu csv:

Tworzenie bazy końcówek

Do stworzenia bazy końcówek służy plik src/scripts/suffix_creator.py.

Tagger - uczenie klasyfikatorów

```
\ python3 src/tagger_trainer.py -h \ # więcej o ustawianiu liczby rdzeni \ python3 src/tagger_trainer.py
```

Domyślnie podczas uczenia używane są wszystkie rdzenie procesora - jeden rdzeń na algorytm. Logi związane z uczeniem zapisywane są do pliku tagger_factory.log.

Testowanie taggera

```
$ python3 src/tagger_tester.py # pojedyncze słowo
$ python3 src/text_tagger.py # tekst
Skrypt zapyta się o słowo/tekst do klasyfikacji.
```

Uruchomienie benchmarka

\$ python3 src/benchmark.py

Wyniki pomiarów działania programu

Dokładność modeli w bazie

	Dokładność Dokładność	
	[%] -	[%] -
	korpus	korpus
	uczący	uczący
Nazwa algorytmu	PWr	national
Support Vector Machine	56.468	54.949
Decision Trees	57.246	55.671
Stochastic Gradient Descent	53.627	53.121
Logistic Regression	55.571	55.307
Naive Bayes	54.141	52.813
K Neighbors	50.168	50.255
Neural Networks	55.801	54.692

Czas uczenia

Nazwa algorytmu	Korpus uczący PWr (h:m:s)	Korpus uczący national (h:m:s)
Support Vector Machine	2:05:03	45:46:28
Decision Trees	0:00:30	0:02:24
Stochastic Gradient Descent	0:00:29	0:02:09
Logistic Regression	0:01:02	0.05.41
Naive Bayes	0:00:21	0:01:51
K Neighbors	0:00:23	0:01:49
Neural Networks	0:35:20	2:21:40

Pomiar czasowy wykonany na procesorze Intel(R) Core(TM) i
5-2540M CPU @ $2.60\mathrm{GHz}.$