Machine Learning Theory

Spring 2021

Lecture 2: Concentration Inequalities

Lecturer: Liwei Wang Scribe: Baihe Huang, Bi'an Du, Zichen Wu, Yuanchen Qiu

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Recap

Recall Chernoff inequality and Chebyshev inequality from last lecture.

Theorem 2.1.1 (Chernoff Inequality). Let X be a random variable that is non-negative with moment generating function $\mathbb{E}e^{tX}$. Then $\forall k > 0$,

$$\mathbb{P}(X \ge k) \le \inf_{t>0} e^{-tk} \mathbb{E}[e^{tX}].$$

Theorem 2.1.2 (Chebyshev Inequality). Let random variables $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(1, p)$. We have

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\epsilon\right)\leq\frac{\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}/n\right)}{\epsilon^{2}}=\frac{p(1-p)}{n\epsilon^{2}}$$

Notice that Chebyshev inequality only uses second moment information of random variables, therefore its convergence rate is only inversely proportional.

From law of large number, we naturally expect

$$\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\epsilon)\leq e^{-O(n)}.$$

2.2 Concentration Inequalities

2.2.1 Backgrounds of information theory

Definition 2.2.1 (Entropy). Let X be a random variable with probability mass function $p = (p_1, p_2, ...)$. The entropy of X is defined by

$$H(X) := \begin{cases} \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} \text{ (bits)} \\ \sum_{i} p_{i} \ln \frac{1}{p_{i}} \text{ (nats)} \end{cases}$$

Remark 2.2.2. The entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent in the variable's possible outcomes.

Definition 2.2.3 (Relative Entropy). For two probability mass functions $P = (p_1, p_2, ...)$ and $Q = (q_1, q_2, ...)$, the relative entropy from Q to P is defined to be

$$D(P||Q) := \begin{cases} \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}} \text{ (bits)} \\ \sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}} \text{ (nats)} \end{cases}$$

In particular, for two Bernoulli random variables P = (p, 1 - p), Q = (q, 1 - q)

$$D_B^{(e)}(p||q) := p \ln \frac{p}{q} + (1-p) \ln \frac{1-p}{1-q}$$

Remark 2.2.4. Relative entropy measures the difference of two distributions, but this relation is asymmetric. Note that $D(P||Q) \ge 0$ for any P, Q and usually $D(P||Q) \ne D(Q||P)$.

2.2.2 Chernoff Bound

Theorem 2.2.5. Let X_1, X_2, \ldots, X_n be n iid Bernoulli random variables satisfying $\mathbb{E}[X_i] = p, \forall i \in [n]$. Then for all $\epsilon > 0$ we have

$$\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\epsilon)\leq e^{-nD_{B}^{(\epsilon)}(p+\epsilon||p)}.$$

Proof. By Chernoff inequality,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\epsilon\right)\leq\inf_{t>0}e^{-t(p+\epsilon)}\mathbb{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right].$$

Notice that

$$\mathbb{E}[e^{t\sum_{i=1}^{n} X_i}] = \prod_{i=1}^{n} \mathbb{E}[e^{tX_i}] = (pe^t + 1 - p)^n.$$
(2.1)

It thus follows that

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\epsilon\right)\leq\inf_{t>0}e^{-nt(p+\epsilon)}\cdot(pe^{t}+1-p)^{n}$$

$$\leq e^{-nD_{B}^{(e)}(p+\epsilon||p)}.$$

The last step is a simple calculation and left as homework.

Theorem 2.2.6. Let X_1, \ldots, X_n be n random variables satisfying $X_i \in [0, 1]$ and $\mathbb{E}[X_i] = p, \forall i \in [n]$. Then for all $\epsilon > 0$, we have

$$\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\epsilon)\leq e^{-nD_{B}^{(\epsilon)}(p+\epsilon||p)}.$$

Proof. Notice that exponent function is convex. By Jensen's inequality, we have

$$\mathbb{E}[e^{tX}] \le \mathbb{E}[Xe^t] + \mathbb{E}[(1-X)e^0] = pe^t + 1 - p. \tag{2.2}$$

It thus follows that

$$\mathbb{E}[e^{t\sum_{i=1}^{n} X_i}] \le (pe^t + 1 - p)^n.$$

Replacing Eq (2.1) by this inequality, the rest of the proof is the same as Theorem 2.2.5.

Theorem 2.2.7. Let X_1, \ldots, X_n be n random variables satisfying $X_i \in [0,1]$ and $\mathbb{E}[X_i] = p_i, \forall i \in [n]$. Mark $p = \frac{1}{n} \sum_{i=1}^{n} p_i$, then for all $\epsilon > 0$ we have

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n} X_i - p \ge \epsilon\right) \le e^{-nD_B^{(\epsilon)}(p+\epsilon||p)}.$$

Proof. Notice that logarithmic function is concave. By Jensen's inequality, we have

$$\frac{\sum_{i=1}^{n} \ln(1 - p_i + p_i e^t)}{n} \le \ln(1 - p + p e^t),$$

then combining this with Eq (2.2)

$$\mathbb{E}[e^{t\sum_{i=1}^{n} X_i}] \le \prod_{i=1}^{n} (1 - p_i + p_i e^t)$$

$$\le (1 - p + p e^t)^n.$$

Replacing Eq (2.1) by this inequality, the rest of the proof is the same as Theorem 2.2.5.

Remark 2.2.8. The other side of tail bound can be proved similarly.

Lemma 2.2.9. (left as homework, find when the gap reaches infimum) $D_B^{(e)}(p+\epsilon||p) \geq 2\epsilon^2$.

Plugging this lemma into Theorem 2.2.7, we have the following bound.

Theorem 2.2.10 (Additive Chernoff Bound). Let X_1, \ldots, X_n be n random variables satisfying $X_i \in [0, 1]$ and $\mathbb{E}[X_i] = p_i, \forall i \in [n]$. Let $p = \frac{1}{n} \sum_{i=1}^n p_i$, then for all $\epsilon > 0$ we have

$$\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geq\epsilon)\leq e^{-2n\epsilon^{2}}.$$

Remark 2.2.11. Note that Chernoff inequality requires X_i are mutually independent, while pairwise independence suffices for Chebyshev inequality.

2.2.3 Hoeffding's inequality

Theorem 2.2.12 (Hoeffding's inequality). Let $X_1, X_2, ... X_n$ be n independent random variables in $[a_i, b_i]$. Let $\mu = \frac{\sum_{i=1}^n E[X_i]}{n}$, then we have

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\geq\epsilon\right)\leq e^{\frac{-2n^{2}\epsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}}.$$

2.2.4 Draw with/without replacement in a population

For N numbers $a_1, a_2, ..., a_N \in \{0, 1\}$, let $p = \frac{1}{N} \sum_{i=1}^{N} a_i$. We consider the following cases.

Draw with replacement $x_1, x_2, ..., x_n$ are randomly drawn with replacement from $\{a_1, a_2, ..., a_N\}$. Then X_i are iid Bernoulli random variables with $\mathbb{E}[X_i] = p$. This case is essentially the same as Theorem 2.2.5.

Draw without replacement $y_1, y_2, ..., y_n$ are randomly drawn without replacement from $\{a_1, a_2, ..., a_N\}$. Now $y_1, ..., y_n$ are dependent. However, we can also show that:

$$\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}y_i - p \ge \epsilon) \le e^{-2n\epsilon^2}.$$

Proof. It suffices to proof

$$\mathbb{E}\left[e^{t\sum_{i=1}^{n}y_{i}}\right] \leq \mathbb{E}\left[e^{t\sum_{i=1}^{n}x_{i}}\right],\tag{2.3}$$

namely the moment generation function is consistently less than the case where we draw with replacement. To prove this we expand moment generation functions into polynomials

$$\mathbb{E}[e^{t\sum_{i=1}^{n} x_i}] = 1 + t\mathbb{E}[\sum_{i=1}^{n} x_i] + \frac{t^2}{2}\mathbb{E}[(\sum_{i=1}^{n} x_i)^2] + \dots$$

Notice that every polynomial terms look like $f(t)\mathbb{E}[\prod_{i\in I}x_i]=f(t)\mathbb{P}(\prod_{i\in I}x_i=1)$ where f(t) is a polynomial function of t. For the case where numbers are drawn without replacement, we have $f(t)\mathbb{E}[\prod_{i\in I}y_i]=f(t)\mathbb{P}(\prod_{i\in I}y_i=1)$. Now $\prod_{i\in I}y_i=1$ holds only when $y_i=1, \forall i\in T$, which happens with less probability when drawn without replacement. Then we have

$$\mathbb{E}(\prod_{i\in I} y_i) \le \mathbb{E}(\prod_{i\in I} x_i)$$

and thus Eq (2.3) holds.

2.2.5 McDiarmid Inequality

Chernoff bound is a special case of McDiarmid inequality.

Theorem 2.2.13 (McDiarmid's inequality). Let $X_1, \ldots, X_n \in \mathcal{X}$ be n independent random variables and there exists constant c_1, \ldots, c_n such that $f : \mathcal{X} \mapsto \mathbb{R}$ satisfies

$$|f(x_1,...,x_i,...,x_n) - f(x_1,...,x_i',...,x_n)| \le c_i$$

for all $i \in [n]$ and $\forall x_1, x_2, ..., x_n, x_i' \in \mathcal{X}$. Then for all $\epsilon > 0$ we have

$$\mathbb{P}(|f(x_1, ..., x_n) - \mathbb{E}[f(x_1, ..., x_n)]| \ge \epsilon) \le \exp(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}).$$

2.3 VC Theory (Uniform Convergence Theory for ERM)

Binary classification We consider learning a hypothesis f from n data points $(x_1, y_1), \ldots, (x_n, y_n)$ sampled from \mathcal{D} , where $x_i \in \mathbb{R}^d$, $y_i \in \{\pm 1\}$. Training error can thus be written as $\frac{1}{n} \sum_{i=1}^n \mathbb{1}[y_i \neq f(x_i)]$. We can also represent test error as $\mathbf{P}_{(x,y)\sim\mathcal{D}}(y\neq f(x))$.

Notice that $\mathbb{E}[\mathbb{1}(y_i \neq f(x_i))] = \mathbf{P}_{(x,y) \sim \mathcal{D}}(y \neq f(x))$. Generalization gap measures the gap between training loss and population loss. Fix f, $\mathbb{1}[y_i \neq f(x_i)]$ are iid Bernoulli variables. Thus we can show by Theorem 2.2.5 that for any $\epsilon > 0$

$$\mathbb{P}\left(\mathbf{P}_{(x,y)\sim\mathcal{D}}(y\neq f(x)) - \frac{1}{n}\sum_{i=1}^{n}\mathbb{1}[y_i\neq f(x_i)] \geq \epsilon\right) \leq e^{-2n\epsilon^2}.$$

This inequality seems to be conflicted with overfitting phenomenon. Actually, the function \hat{f} is learned depending on the training data so that $\mathbb{1}[y_i = \hat{f}(x_i)]$ are not independent. We therefore cannot bound the error and may suffer from overfitting.

References

- [1] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1. MIT press Cambridge, 2016.
- [2] Hang Li. Statistical learning method. Tsinghua university press, pages 95–115, 2012.
- [3] Rostamizadeh. A Mohri. M and TALWALKAR. A. Foundations of Machine Learning. MIT Press, 2012.
- [4] Wikipedia. Concentration inequality. https://en.wikipedia.org/wiki/Concentration_inequality, 2021. [Online].
- [5] Wikipedia. Inequalities in information theory. https://en.wikipedia.org/wiki/Inequalities_in_information_theory, 2021. [Online].
- [6] Wikipedia. Vapnik-Chervonenkis theory. https://en.wikipedia.org/wiki/Vapnik%E2%80% 93Chervonenkis_theory, 2021. [Online].