vol. 25, N 3

МЕХАНИЗМЫ ИЗМЕНЕНИЯ ЭЛЕКТРИЧЕСКИХ И ФОТОЭЛЕКТРИЧЕСКИХ СВОЙСТВ МОНОКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ Zn_Cd1 _Te ПОЛ ДЕЙСТВИЕМ УЛЬТРАЗВУКА

Гарягдыев Г., Городецкий И. Я., Джумаев Б. Р., Корсунская Н. Е., Раренко И. М., Шейнкман М. К.

Исследовано влияние ультразвука на электрические, фотоэлектрические и люминесцентные свойства кристаллов Zn₂Cd_{1-x}Te. Показано, что действие $\sqrt{3}$ на электрические и фотоэлектрические характеристики кристаллов $\mathrm{Zn}_x\mathrm{Cd}_{1-x}\mathrm{Te}$ обусловлено двумя процессами: 1) увеличением плотности дислокаций с последующим стеканием на них подвижных акцепторов, определяющих проводимость; 2) отходом этих акцепторов от дислокаций в объем кристалла. Первый процесс доминирует в образцах с малой плотностью дислокаций ($<10^5~{\rm cm}^{-2}$) и приводит к уменьшению проводимости $^{\rm c}_{\rm r}$, интенсивности люминесценции W и величины фототока I_{Φ} . Второй процесс доминирует в образцах с большой величиной $\gamma \ (>10^6 \ {
m cm}^{-2})$ и приводит к росту $\sigma_r, \ I_h$ и W .

Известно [1, 2], что облучение ультразвуком (УЗ) может приводить к изменению различных свойств полупроводников и приборов на их основе, что позволяет в ряде случаев улучшить их характеристики, например стабильность. Имеется ряд работ, в которых исследовалось влияние ультразвуковой обра-

ботки (УЗО) на фотоэлектрические и люминесцентные свойства гексагональных кристаллов ${
m A^{II}B^{VI}}$ [3]. Наблюдавшиеся изменения объяснялись взаимодействием точечных дефектов с заряженными дислокациями. Однако сопоставление изменений характеристик кристаллов с дислокационной структурой не было проведено. Поэтому в настоящей работе выполнено исследование влияния УЗО на электрические, фотоэлектрические и люминесцентные свойства кристаллов ${
m Zn}_x{
m Cd}_{1-x}{
m Te}$ (0 $\leqslant x \leqslant$ 1) параллельно с контролем плотности дислокаций. Отметим, что действие УЗО на кубические кристаллы ${
m A^{II}B^{
u I}}$, каковыми являются кристаллы $Zn_xCd_{1-x}Te$, вообще ранее не изучалось.

Для решения поставленной задачи на исходных и обработанных УЗ образцах были исследованы изменения темнового тока $(I_{ extbf{r}} \sim extsf{\sigma}_{ extbf{r}})$, фототока $(I_{ extbf{d}})$ и фотолюминесценции (W) образцов $\mathrm{Zn}_x\mathrm{Cd}_{1-x}\mathrm{Te}$ в результате УЗО, а также процессы их релаксации после прекращения УЗО. Одновременно до и после УЗО металлографическим методом определялась плотность дислокаций (ү, см-2).

Экспериментальные результаты

объемные специально не легированные монокристаллы Исслеповались р-типа, на которые наносились медные электроды. УЗ колебания возбуждались в кристаллах путем приклеивания их к пластине пьезоэлектрика, к которой прикладывалось напряжение определенной частоты, соответствующей резонансу пластины. Напряжение варьировалось в пределах $U=10\div 50~\mathrm{B.}$ Обработка проводилась при 300 К в течение 1 ч.

Определение плотности дислокаций. Для определения у образцы обрабатывались селективным травителем следующего состава:

7 ч $HNO_3 + 10$ ч $H_2O + 2$ ч $Cr_2O_7 + 0.01$ ч $AgNO_3$.

30 10 2.0 R, KDM

В результате травления на плоскости (110) в местах выхода дислокаций вытравливались характерные треугольные ямки. Подсчет ямок травления производился при помощи кристаллографического микроскопа ММР-2Р. На поверхности образца выбиралось 5—6 типичных участков и подсчитывалось количество

106 Рис. 1. Значения величин плотности дислокаций γ для разных значений сопротивления Rразличных образцов $Zn_xCd_{1-x}Te$.

выходов дислокаций. Затем результаты усреднялись. На рис. 1 приведены значения величины плотности дислокаций γ в образцах с разным x и с различными значениями равновесной проводимости с... Как видно из рисунка, между величинами ү и од независимо от состава образца существует корреляция: с ростом у проводимость уменьшается.

Рис. 2. Зависимость темнового тока I_{τ} от температуры для образцов $\mathrm{Zn}_x\mathrm{Cd}_{1-x}\mathrm{Te}$ (x=0.7). Плотность дислокаций 7, см⁻²: $a=8\cdot 10^4$, $b=2\cdot 10^4$. $b=10^4$. $b=10^4$ — исходное состояние, $b=10^4$ — после УЗО. $b=10^4$ — 10, $b=10^4$ — 30, $b=10^4$ — 55.

темнового тока от 1/T до и после УЗО для образцов двух групп, различающихся плотностью дислокаций и соответственно проводимостью: а) для образца с $\gamma < 10^5$ см⁻² (группа I, x=0.7); δ) $\gamma > 10^6$ см⁻² (группа II, x=0.7). Кривая I соответствует исходному состоянию образца, а кривые 2-5 — состоянию после УЗО различной плотности мощности.

Равновесная проводимость. На рис. 2, а, б приведены типичные зависимости

Действие УЗО с $U\!=\!10~\mathrm{B}$ на образцы первой группы приводит к уменьшению их проводимости. Последующая обработка (U=10—40 $\hat{\mathbf{B}}$) может в разных образцах I группы либо не влиять на σ_{r} , либо вызывать ее уменьшение или рост. В образцах группы II УЗО с U=10-40 В вызывает увеличение σ_{r} . УЗО с $U \geqslant 50~{
m B}$, как правило, приводит к уменьшению $\sigma_{
m r}$ в образцах обеих

m B образцах с $10^5 \leqslant \gamma \leqslant 10^6$ перечисленные выше эффекты проявлялись

Hзменение спектральных зависимостей фототока. $I_{\phi}\left(\lambda
ight)$ в результате $\mathbf{y}3\mathbf{0}$ коррелирует с изменениями σ_{τ} : I_{ϕ} (λ) уменьшается во всем спектральном интервале при уменьшении от и увеличивается при ее увеличении. Новых максимумов ФП при этом не возникает.

Рис. 3. Спектры примесной фотолюминесценции кристаллов (x=0.7). 7, см-2: $a = 8 \cdot 10^4$, $\sigma = 2 \cdot 10^6$. I = исходное состояние, <math>2 = 4 = спектры ФЛ после УЗО. U, B: I = 10, 2 = 20, 3 = 30.

 Φ отолюминесценция. На всех исследованных кристаллах $\mathrm{Zn}_x\mathrm{Cd}_{1-x}\mathrm{Te}$ наблюдалась одна примесная полоса ФЛ (рис. 3).

УЗО существенно влияет на ее интенсивность, но не приводит к появлению новых полос. Изменение интенсивности $\Phi\Pi$, так же как и I_{\star} (λ), во всех случаях коррели-

рует с изменениями величин I_{π} .

Сопоставление результатов воздействия УЗО на $I_{\mathbf{r}},\ I_{\mathbf{b}}$ (λ) и W позволяет утверждать, что изменение свойств монокристаллов $\mathrm{Zn}_x\mathrm{Cd}_{1-x}\mathrm{Te}$ в результате $ilde{ extbf{y}}30^{\circ}$ связано с изменением концентрации N_{a} в объеме кристаллов дефектов, обусловливающих равновесную проводимость, и не связано с контактными явлениями. При этом изменение фототока и интенсивности люминесценции обусловлено, очевидно, изменением степени компенсации образцов и связанным с этим увеличением или уменьшением заполнения центров чувствительности неравновесными носителями [4].

Обсуждение результатов

Наблюдавшаяся нами корреляция между плотностью дислокаций и величиной I_{\star} позволяет предположить, что одной из причин изменений свойств кристаллов после УЗО является размножение дислокаций. Действительно, уменьшение $I_{\mathtt{r}}$ с ростом γ означает, по-видимому, что дислокации являются стоками для дефектов акцепторного типа, определяющими величину 🔩 При малой величине ү значительная концентрация дефектов N_{a} остается не захваченной дислокациями. Поэтому естественно предположить, что уменьшение от в образцах I типа обусловлено увеличением плотности дислокаций, что, в принципе, может происходить при УЗО, и стеканием на них из объема кристалла подвижных дефектов, наличие которых подтверждается опытами по их дрейфу в электрическом поле.

Это предположение подтверждается экспериментально опытами по селектив-

(рис. 2). Если же она достигает $\sim 10^6$ см $^{-2}$, то последующая УЗО, как и в кри сталлах II группы, приводит к росту I_{τ} . Если уменьшение проводимости при УЗО в кристаллах І группы связано с уходом подвижных акцепторов на вновь образовавшиеся дислокации, увеличение проводимости в кристаллах II группы естественно связать с обратным

ному травлению. В образцах I группы после УЗО уже с $U=10~\mathrm{B}$ наблюдается увеличение ү. В кристаллах II группы заметного увеличения ү не наблюдалось при U < 50 В, так как добавка, вызванная УЗО, сравнима с исходной γ . Если после первой УЗО в кристаллах І группы величина у остается значительно меньше 10^6 см⁻², то последующая обработка снова приводит к уменьшению I_-

процессом - отходом акцепторов от дислокаций. Отметим, что процесс отхода подвижных дефектов от дислокации в объем кристалла должен быть заметнее при большом ү и малом од. Таким образом, результаты воздействия УЗО на кристаллы Zn_xCd_{1-x}Te с раз-

ной плотностью дислокаций хорошо объясняются конкуренцией двух процессов: 1) размножением дислокаций и стеканием на них дефектов из объема; 2) отходом дефектов во время УЗО от дислокаций в объем. 1 Это подтверждается и результатами исследования старения образцов, поп-

вергавшихся УЗО. Поскольку при увеличении γN_{μ} уменьшается в результате установления равновесного распределения дефектов между дислокациями и объемом, кристаллы после УЗО не должны изменять свои свойства со временем. Как показывает эксперимент, в кристаллах І группы после УЗО старение

действительно отсутствует. Если изменение свойств кристаллов II группы в результате УЗО связано с отходом акцепторов от стоков, то возникающее после УЗО состояние кристалла должно быть неравновесным, и со временем отошедшие от дислокаций дефекты должны на них вернуться. Это должно привести к уменьшению проводимости

со временем после УЗО, что и наблюдается на опыте. Список литературы

[1] Здебский А. П., Остапенко С. С., Савчук А. У., Шейнкман М. К. // Письма ЖТФ. 1984. Т. 10. В. 20. С. 1243—1247.

Островский И. В., Лысенко В. Н. // ФТТ. 1982. Т. 24. В. 4. С. 1206-1208.

[3] Здебский А. П., Миронюк Н. В., Остапенко С. С., Ханат Л. Н., Гарягдыев Г. // ФТП. 1987. Т. 21. В. 5. С. 935.

[4] Лашкарев В. Е., Любченко А. В., Шейнкман М. К. Неравновесные процессы в фото-

проводниках. Киев, 1981. 264 с.

Институт полупроводников АН УССР Киев

Получена 3.01.1990

процесс.

Принята к печати 31.10.1990

¹ Уменьшение I_r при $U \geqslant 50$ В в кристаллах обеих групп связано, по-видимому, с дальнейшим существенным увеличением ү, при котором снова становится доминирующим первый