1. Análisis con cyclictest.

cyclictest										
	Labor	atorios	RaspberryPi							
	Kernel NO RT		Kernel NO RT		Kernel RT					
	Latencia	Latencia	Latencia	Latencia	Latencia	Latencia				
	media	max (ns)	media	max (ns)	media	max (ns)				
	(ns)		(ns)		(ns)					
S1	2837	27060483	21143	167991	23051	66814				
S2	5289	26382695	25452	300103	15142	79648				
S3	4884	25901115	21215	144248	23515	106506				

2. Análisis con cyclictestURJC

cyclictestURJC									
	Labor	atorios	RaspberryPi						
	Kernel NO RT		Kernel NO RT		Kernel RT				
	Latencia media (ns)	Latencia max (ns)	Latencia media (ns)	Latencia max (ns)	Latencia media (ns)	Latencia max (ns)			
S1	7244	21537199	29184	76617	28083	75578			
S2	14969	28146926	32659	107542	26673	88763			
S3	9279	25861762	26917	97503	26887	86337			

Tanto en la tabla como en la graficas, podemos apreciar claramente las diferencias entre el kernel no RT y el kernel que si no es.

Comenzando con el caso idle, podemos ver como en ambos casos se tienen picos de latencia altos, sin embargo, en el kernel RT la desviación estándar en menor, lo que nos indica que los datos están más agrupados, algo comprensible pues el kernel RT trata ser un sistema más determinista.

Este comportamiento es igual en los casos de Hackbench y Bonnie, tenemos el kernel RT con mayores picos de latencia, pero con menor desviación estándar que el kernel no RT.