PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-083165

(43) Date of publication of application: 19.03.2003

(51)Int.CI.

F02F 11/00 F16J 15/08

(21)Application number: 2001-277472

(71)Applicant: NOK CORP

(22)Date of filing:

13.09.2001

(72)Inventor: ISHIZUKA KOJIRO

(54) CYLINDER HEAD GASKET

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a cylinder head gasket 1 having superior sealability and capable of being inexpensively manufactured.

SOLUTION: This cylinder head gasket is composed of a foundation plate 11 made of an aluminum material and having plural bores 11a corresponding to a combustion chamber, and bore seals 12 made of a rubber elastic material and mounted around bores 11a of the foundation plate 11. The bore seals 12 are fitted in grooves 111U, 111L formed along the circumference of the bores 11a on both faces of the foundation plate 11, seal lips 121U, 121L are projected to the thickness direction of the foundation plate 11, and running-off deformation permitting spaces S1 in compressing the bore seals 12 are formed respectively between the seal lip 121U, 121L and the groove 111U, 111L. The seal lips 121U, 121L get good results in self-sealing function by the combustion gas pressure in the combustion chamber.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(II)特許出願公開番号 特開2003-83165 (P2003-83165A)

(43)公開日 平成15年3月19日(2003.3.19)

(51) Int.Cl.7		厳別記号	FΙ	•	テーマコード(参考)
F 0 2 F	11/00		F 0 2 F	11/00	L . 3 J 0 4 0
		•			В
F 1 6 J	15/08		F 1 6 J	15/08	Α

審査請求 未請求 請求項の数5 OL (全 9 頁)

(21)出願番号	特願2001-277472(P2001-277472)	(71) 出願人 000004385
•		エヌオーケー株式会社
(22)出願日	平成13年9月13日(2001.9.13)	東京都港区芝大門 1 丁目12番15号
	•	·
		(72)発明者 石塚 浩次郎
		福島県二本松市宮戸30番地 エヌオーケー
		株式会社内
		(74)代理人 100071205
-	·	弁理士 野本 陽一
	·	Fターム(参考) 3J040 AA01 AA11 BA07 EA01 EA15
		EA36 FA01 FA02 HA17
	•]	

(54)【発明の名称】 シリンダヘッドガスケット

(57)【要約】

【課題】 シール性に優れ、かつ低コストで生産すると との可能なシリンダヘッドガスケット 1 を提供する。 【解決手段】 燃焼室と対応する複数のボア 1 1 a が開

設されたアルミ材製の基板11と、この基板11におけるボア11aの周囲に設けられたゴム状弾性材料製のボアシール12とからなる。ボアシール12は、基板11の両面にボア11aの周囲に沿って形成した溝111U、111L内に形成されて、シールリップ121U、121Lが基板11の厚さ方向へ突出しており、シールリップ121U、121Lと溝111U、111Lの内側面との間に、ボアシール12の圧縮時の逃げ変形許容空間S1が形成されている。シールリップ121U、121Lは、燃焼室内の燃焼ガス圧力によってセルフシール機能を奏する。

【特許請求の範囲】・

【請求項1】 内燃機関のシリンダブロック(2)とシ リンダヘッド(3)との対向面間に介在されるシリンダ ヘッドガスケット(1)において、前記シリンダブロッ ク(2)及びシリンダヘッド(3)の各燃焼室(4)と 対応する複数のボア(11a)が開設された金属製の基 板(11)と、この基板(11)における前記ボア(1 1 a) の周囲に連続して設けられたゴム状弾性材料製の ボアシール(12)とからなることを特徴とするシリン ダヘッドガスケット。

【請求項2】 基板(11)がアルミ材からなることを 特徴とする請求項1に記載のシリンダヘッドガスケッ

【請求項3】 ボアシール(12)が、基板(11)の 両面にボア(11a)の周囲に沿って形成した溝(11 10、1111)内に成形されて、先端のシールリップ (121U, 121L)が基板(11)の厚さ方向へ突 出しており、前記シールリップ(121U、121L) と前記溝(111U, 111L)の内側面との間に前記 ボアシール(12)の圧縮時の逃げ変形許容空間(S 1)が形成されたことを特徴とする請求項1又は2に記 載のシリンダヘッドガスケット。

【請求項4】 シリンダブロック(2)及びシリンダへ ッド(3)とチェーンケース(5)との三面合わせ部 (X, Y) に対応して、基板(11) の端部に、前記シ リンダブロック(2)、シリンダヘッド(3)及びチェ ーンケース(5)と密接されるゴム状弾性材料製の第二 シール(13)が設けられたことを特徴とする請求項1 乃至3のいずれかに記載のシリンダへッドガスケット。 【請求項5】 基板(11)に、潤滑油を通すオイル穴 30 (11c)及び冷却水を通す水穴(11d)が開設さ れ、前記基板(11)に、前記オイル穴(11c)の周 囲に設けられたゴム状弾性材料製のオイル穴用シール (14) と、前記水穴(11d)の周囲に設けられたゴ ム状弾性材料製の水穴用シール(15)を備えることを 特徴とする請求項1乃至4のいずれかに記載のシリンダ ヘッドガスケット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ガソリンエンジン 等におけるシリンダヘッドとシリンダブロックとの対向 面間に介在されるシリンダヘッドガスケットに関する。 [0002]

【従来の技術】内燃機関、例えば多気筒のガソリンエン ジンにおいては、シリンダブロックとシリンダヘッドと の対向面間に、シリンダヘッドガスケットが介装されて一 いる。図9は、従来の技術によるシリンダヘッドガスケ ットを概略的に示す説明図で、すなわち図9(A)~ (C) に示されるシリンダヘッドガスケット100は、

ばね銅鈑等、適当な弾性を有する金属板からなり、シリ ンダブロック110の各燃焼室110aや、と対応する 複数のボア101や、オイルを通すための油穴やエンジ ン冷却水を通すための冷却水穴と対応する複数の開口部 (図示省略)が開設され、ボア101の周囲や各開□部 の周囲に沿って、それぞれシール用のビード102が形 成された構造を有する。また、ビード102の内周側に は、このシリンダブロック110とシリンダヘッド12 0の対向面間でのビード102のつぶし量を制限すると 共に、ビード102をつぶすことによる所定の面圧を得っ るために、ストッパ103が周設されている。

[0003]

【発明が解決しようとする課題】との種のシリンダへっ ドガスケット100は、図9(A)のように、一枚の金 属板からなるものもあるが、この場合、燃焼室110a での燃焼時の燃焼ガス圧力を受けてシリンダヘッド12 0が上下に振動すると、ビード102もこれに追随して 変形を受けるため、振動による変位量が大きい場合は金 属疲労を起こす恐れがある。したがってこのような金属 疲労が起こりにくくするには、図9(B)及び(C)の 20 ように、複数枚の金属板を重ねて、一枚当たりの変位量 を軽減する必要があり、コスト髙となっていた。また、 図9(A)のように、一枚の金属板からなるものの場合 は、ストッパ103を溶接等によって取り付けなければ ならず、コスト高になっていた。

【0004】近年、ガソリンエンジンにおいては、シリ ンダブロック110及びシリンダヘッド120がアルミ 製のものが多用されており、このような場合、高面圧を 得るためにシリンダヘットガスケット100の締め付け 力を大きくすると、シリンダブロック110及びシリン ダヘッド120にボア変形やカムジャーナル変形が過大 となるおそれがあり、また、締め付け力によるヘタリが 生じたり、シリンダヘッドガスケット100との接触面 が損傷したりするおそれがある。また、シリンダヘッド ガスケット100をステンレスばね鋼鈑からなるものと することによって、ビード102に所要の弾性を与えて いるが、ステンレスばね鋼鈑は高価であり、しかもアル ミ製のシリンダブロック110及びシリンダヘッド12 0との線膨張係数の相違によって、これらシリンダプロ ック110及びシリンタヘッド120に対してボア10 1の軸心と直角方向の摩擦を起こし、摩耗や破損を生じ るおそれがある。

【0005】シリンダヘッドガスケット100を、ステ ンレスばね鋼鈑等の表面に予め合成ゴム層を塗布したプ リコート素材を打ち抜きプレスして製作する場合、プレ ス廃材には合成ゴム層が付着しているため、このプレス 廃材のリサイクル利用が困難である。これに対し、金属 板の打ち抜きプレス後に合成ゴム層の塗布を行うアフタ ーコートにおいては、フローコータやスプレーなどによ 例えば表面に薄い合成ゴム層を塗布した薄いステンレス 50 る塗布方法を採用した場合、合成ゴムの歩留まりが悪

く、しかも塗布した合成ゴムがボア101や外縁部で裏回りして、合成ゴム層の層厚の大きい部分ができてしまい、スクリーン印刷による塗布方法を採用した場合は、未加硫ゴム材を片面に塗布して乾燥させた後、裏面に塗布して乾燥させてから加硫する必要があり、工程が煩雑である。

【0006】また、シリンダブロック110及びシリンダヘッド120と、チェーンケース(図示省略)との三面合わせ部では、寸法の僅かな誤差や熱膨張差によって、シリンダブロック110、シリンダヘッド120、10チェーンケース及びシリンダヘッドガスケット100の間で段差を発生するため、この部分のシールが困難である。そこで従来は、エンジン組立時に、シリンダヘッドガスケット100の外縁部における前記三面合わせ部と対応する部分に、常温硬化シリコーンゴム等からなるFIPG(Formed-in-Place Gasket)を塗布している。FIPGは被状パッキンとも呼ばれ、被状で塗布された後、常温で架橋硬化してゴム状弾性体となることにより、シール機能を奏するものであるが、このようなFIPGの塗布作業が必要であることによって、エンジン組 20立作業の煩雑化を来していた。

【0007】本発明は、上述のような問題に鑑みてなされたもので、その技術的課題は、シール性に優れ、しかも低コストで生産することの可能なシリンダヘッドガスケットを提供することにある。

[0008]

【課題を解決するための手段】従来の技術的課題は、本発明によって有効に解決することができる。すなわち請求項1の発明に係るシリンダヘッドガスケットは、内燃機関のシリンダブロックとシリンダヘッドとの対向面間 30 に介在されるものであって、前記シリンダブロック及びシリンダヘッドの各燃焼室と対応する複数のボアが開設された金属製の基板と、この基板における前記ボアの周囲に連続して設けられたゴム状弾性材料製のボアシールとからなるものである。

【0009】請求項2の発明に係るシリンダヘッドガスケットは、請求項1に記載の構成において、基板がアルミ材からなるものである。なお、ここでいうアルミ材とは、アルミニウムのほか、アルミニウム合金を含めていう。

【0010】請求項3の発明に係るシリンダヘッドガスケットは、請求項1又は2に記載の構成において、ボアシールが、基板の両面にボアの周囲に沿って形成した構内に成形されて、その先端のシールリップが前記基板の厚さ方向へ突出しており、前記シールリップと前記構の内側面との間に前記ボアシールの圧縮時の逃げ変形許容空間が形成されたものである。

【0011】請求項4の発明に係るシリンダヘッドガスケットは、請求項1乃至3のいずれかに記載の構成において、シリンダブロック及びシリンダヘッドとチェーン

ケースとの合わせ部に対応する基板の端部に、前記シリンダブロック、シリンダヘッド及びチェーンケースと密接されるゴム状弾性材料製の第二シールが設けられたものである。

【0012】請求項5の発明に係るシリンダヘッドガスケットは、請求項1乃至4のいずれかに記載の構成において、基板に、潤滑油を通すオイル穴及び冷却水を通す水穴が開設され、前記基板に、前記オイル穴の周囲に設けられたゴム状弾性材料製のオイル穴用シールと、前記水穴の周囲に設けられたゴム状弾性材料製の水穴用シールを備えるものである。

[0013]

【発明の実施の形態】図1は、本発明に係るシリンダヘッドガスケットの好ましい実施の形態を示す概略的な平面図、図2は図1におけるII-II線で切断した断面図、図3は内燃機関のシリンダブロックとシリンダヘッドとの対向面間に装着した状態を図1におけるII-II線と対応する位置で切断した断面図、図4は、シリンダブロック、シリンダヘッド及びチェーンケースとシリンダヘッドガスケットとの関係を示す説明図である。

【0014】図1に示されるように、本発明に係るシリンダヘッドガスケット1は、薄いアルミ板からなる基板11と、この基板11に一体的に成形されたゴム状弾性材料からなるボアシール12、第二シール13、オイル穴用シール14及び水穴用シール15とを備え、図4に示されるように、ガソリンエンジン等におけるシリンダブロック2と、シリンダヘッド3と、チェーンケース5との間に介在されるものである。

【0015】図1に示されるように、基板11には、シリンダブロック2からシリンダヘッド3の内面にかけて形成される燃焼室4と対応する複数のボア11a、及びシリンダヘッド3とシリンダブロック2とを緊結するボルトを挿通するための複数のボルト穴11b、潤滑油を通すためのオイル穴11c、シリンダブロック2の周囲に設けられたウォータージャケット(図示省略)へエンジン冷却水を通すための水穴11dが開設されている。図示の例のものは、四気筒用であり、したがって、ボア11aは四つの燃焼室4とそれぞれ対応して形成されている。

40 【0016】ボアシール12は、シリンダブロック2とシリンダヘッド3の間から燃焼室4の燃焼ガスが漏れるのを防止するものであって、各ボア11aの周囲に設けられている。詳しくは、図2に示されるように、基板11の上下両面には、各ボア11aの周囲に沿って、円周状に連続した溝111U、111Lが形成されており、ボアシール12は、この溝111U、111Lに設けられていて、シリコーンゴム、フッ素ゴムあるいは耐熱NBR等のような、耐熱性及び耐油性を有するゴム状弾性材料で成形され、基板11の厚さ方向に対して互いに対50称に形成されたシールリップ121U、121Lが、溝

30

111U、111L内から基板11の上下面より外側ま で突出している。

【0017】基板11の上下両面の溝111U、111 し間には、この溝111U、111Lの円周方向所定間 陽で連通穴112が貫通しており、ポアシール12は、 そのシールリップ121U、121Lが、連通穴112 内に形成された橋絡部122を介して互いに連続して形 成されている。すなわち、連通穴112は、ボアシール 12を加硫成形する際に、基板 11の溝111U, 11 1 しのうち一方に充填した成形用のゴム材料を、他方の 溝へ流し込むために形成されたものである。また、上記 のように、上下のシールリップ1210,121Lは、 橋絡部122を介して互いに連続し、これによって溝1 110,111しに拘束されているため、特に溝底面に 接着する必要はない。

【0018】連通穴112は、溝111U、111Lの 底面における内周寄りの位置、詳しくはボアシール12 のシールリップ121U、121Lの頂部よりも内周側 の位置に、溝1110、111Lの円周方向適当な間隔 で、それぞれ複数開設されている。また、溝111U、 111Lの両内側面111a, 111bとシールリップ 121U、121Lとの間は、それぞれ逃げ変形許容空 間S1となっている。

【0019】ところで、図4に示されるように、シリン ダブロック2、シリンダヘッド3及びチェーンケース5 の三面合わせ部は、二種類の形態がある。 すなわち図4 における(A)のように、チェーンケース5がシリンダ ブロック2及びシリンダヘッド3の双方の外側面に跨っ て取り付けられたものと、同(B)のように、シリンダ ヘッド3が、シリンダブロック2及びチェーンケース5 の双方の上面に跨って取り付けられたものがあり、シリ ンダヘッドガスケットlの端部形状は、(A)又は (B) の形態に対応して形成される。

【0.020】図5は、図4(A)に示されるシリンダブ ロック2、シリンダヘッド3及びチェーンケース5の三 。 面合わせ部Xと対応するシリンダヘッドガスケット1の 端部形状を示す平面図、図6(A)は、図5におけるA - A 線で切断した断面図、図6(B)は、図5における B-B線で切断した断面図である。

【0021】すなわち、図4(A)に示されるような形 40 態をなす三面合わせ部Xの場合は、シリンダヘッドガス ケット1は、シリンダブロック2とシリンダヘッド3と の間に介在されると共に、その一端laが三面合わせ部 Xに位置し、チェーンケース5の内側面と対向してい る。詳しくは、チェーンケース5には、クランクシャファ トの駆動力をカムシャフトへ伝達してバルブを駆動させ るためのチェーンの通路となる空間(図示省略)、が形成 されており、シリンダヘッドガスケット1の基板11の 一端には、図1及び図5に示されるように、上述したチ ェーン通路空間と対応する切欠11eが形成されてお

り、その両側の張出部llfの先端が、三面合わせ部X に位置している。そして第二シール13は、この張出部 11fの先端に設けられている。

【0022】基板11には、切欠11eから両側の張出 部11fの先端にかけて、その上下両面に、図6に示さ れるような断面形状の溝113U、113Lが連続して 形成されており、第二シール13は、この溝113U、 113しに設けられている。また、溝113U、113 しは、三面合わせ部Xに位置する部分では、図6(A) に示されるように、基板11の張出部11fの先端へ開 放された断面し字形をなし、それ以外の部分、すなわち 切欠11eに沿って延びる部分は、図6(B)に示され るように、浅いコ字形の断面形状をなしている。

【0023】チェーンケース5内のチェーン通路空間内 を走行するチェーンには、潤滑油が供給されるようにな っており、第二シール13は、この潤滑油を密封対象と して、前記チェーン通路空間を、シリンダブロック2、 シリンダヘッド3及びチェーンケース5の三面合わせ部 Xにおいて密閉するものである。この第二シール13 20 は、ゴム状弾性材料で成形されたものであって、三面合 わせ部Xに位置する部分では、図6(A)に示されるよ うに、基板11の張出部11fの先端を包囲するように 形成された三面シール部131を有し、それ以外の部 分、すなわち切欠11eに沿って延びる部分は、図6 (B) に示されるように、溝113U, 113L内から 基板11の上下面より外側まで突出すると共に基板11 の厚さ方向に対して互いに対称に形成されたシールリッ プ132U、132Lを有する。また、溝113U、1 13 Lの両内側面とシールリップ132U、132Lと の間は、それぞれ逃げ変形許容空間S2となっている。 【0024】溝113U、113L間は、この溝113 U、113Lの底面にその延長方向適当な間隔で複数開 設された連通穴114を介して連通しており、第二シー ル13は、両面の溝113U,113L間で連通穴11 4内に形成された橋絡部133を介して互いに橋絡され ている。すなわち、連通穴114は、第二シール13を 加硫成形する際に、基板11における溝113U,11 3 Lのうちの一方に充填した成形用のゴム材料を他方の 溝へ流し込むために形成されたもので、第二シール13 は、橋絡部133によって溝113U、113Lに拘束 されるため、特に溝底面に対して接着する必要はない。 【0025】次に図7は、図4(B)に示される三面合 わせ部Yと対応するシリンダヘッドガスケット1の端部 形状を示すもので、(A)は平面図、(B)は下面図、 図8(A)は、図7(A)におけるA-A線で切断した

【0026】すなわち、図4(B)に示されるような形 態をなす三面合わせ部Yの場合、シリンダヘッドガスケ 50 ット1は、シリンダブロック2及びチェーンケース5

断面図、図8 (B) は、図7 (B) におけるB-B線で

切断した断面図である。

と、その双方の上面に跨って取り付けられたシリンダへ ッド3との間に介在され、チェーンケース5の上面に位 置する部分1bには、図7に示されるように、基板11 に、チェーンケース5に形成されたチェーン通路空間に 対応する開口部11gが開設されている。そして、第二 シール13は、この開口部11gの周囲に沿って、基板 11の上下両面に、環状に連続して設けられている。ま た、第二シール13は、図7(A)に示されるシリンダ ヘッドガスケット1の上面側と、図7(B)に示される シリンダヘッドガスケット1の下面側とで、形状が異な 10 っており、すなわち上面側では全周均一な幅で形成され ているのに対し、下面側では三面合わせ部Yに位置する 部分が、幅広に形成されている。

【0027】詳しくは、基板11には、チェーン通路用 の開口部11gの周囲に沿って、その上下両面に、図8 に示されるような断面コ字形の溝115U、115Lが 環状に連続して形成されており、チェーン通路内の密封 性を確保するための環状の第二シール13は、この溝1 15 U、115 Lに設けられている。第二シール13は ゴム状弾性材料で成形されたものであって、図8に示さ れるように、溝115U、115L内から基板11の上 下面より外側まで突出すると共に、基板11の厚さ方向 に対して互いに対称に形成されたシールリップ132 U, 132 Lを有し、溝115 U, 115 Lの両内側面 とシールリップ132U、132Lとの間は、それぞれ 逃げ変形許容空間S3となっている。

【0028】三面合わせ部Yの位置(周方向二箇所)で は、図8(B)に示されるように、下面側の溝115L が、上面側の溝115 Uよりも部分的に幅広に形成さ れ、これに対応して、下面側のシールリップ132L も、上面側のシールリップ132Uより部分的に幅広の 扁平形状に形成され、この幅広部分が、図4(B)に示 されるシリンダブロック2の上面及びチェーンケース5 の上面に跨って密接されるようになっている。

【0029】溝115U、115L間は、との溝115 U. 115Lの底面にその延長方向適当な間隔で複数開 設された連通穴116を介して連通しており、第二シー ル13は、両面の溝115,115間で連通穴116内 に形成された橋絡部134を介して互いに橋絡されてい る。すなわち、連通穴116は、第二シール13を加硫 成形する際に、基板11における溝115U,115L のうちの一方に充填した成形用のゴム材料を他方の溝へ 流し込むために形成されたもので、第二シール13は、 橋絡部134によって溝115U,115Lに拘束され るため、特に溝底面に接着する必要はない。

【0030】図1に示されるオイル穴用シール14は、 オイル穴11c内を通る潤滑油が、シリンダブロック2 とシリンダヘッド3の間から漏れるのを防止するもので あって、各オイル穴11cの周囲に設けられている。そ

あり、すなわち基板11の両面の溝に、ゴム状弾性材料 で成形され、互いに対称のシールリップを有する。

【0031】図1に示される水穴用シール15は、水穴 11 d内を通るエンジン冷却水が、シリンダブロック2 とシリンダヘッド3の間から漏れるのを防止するもので あって、各ボアシール12の外周側を包括して取り囲む ように設けられている。その断面形状は、図2に示され るボアシール12と同様であり、すなわち基板11の両 面の溝に、ゴム状弾性材料で成形され、互いに対称のシ ールリップを有する。そして、水穴11dは各ボアシー ル12と、水穴用シール15の間に位置して基板11に 開設されており、すなわちとの水穴11dを通るエンジ ン冷却水は、内周側 (ボア11a側) への漏れがボアシ ール12によって遮断され、外周側への漏れが水穴用シ ール.15によって遮断される。

【0032】以上のように構成されたシリンダヘッドガ スケット1は、アルミ板を打ち抜きプレスした基板11 に、ゴム状弾性材料からなるボアシール12、第二シー ル13、オイル穴用シール14及び水穴用シール15を 一度に成形することによって製作することができ、ま た、第二シール13、オイル穴用シール14及び水穴用 シール15は、ボアシール12のような耐熱性を必要と しないため、NBR等よりも安価なゴム材料を使用する ことができ、したがって製造コストを低減することがで きる。しかもこのシリンダヘッドガスケット1は、図3 に示されるように一枚で使用されるものであって、金属 ビードによりシールする従来のシリンダヘッドガスケッ トのように、ビードの応力を緩和する目的で複数枚を積 層するといった必要がないため、安価に提供することが 30 できる。

【0033】また、基板11を製作するためのアルミ板 の表面には、合成ゴム層等のコーティングを施す必要が ないため、打ち抜きによって生じるアルミ板の端材は、 リサイクル使用が可能である。

【0034】シリンダヘッドガスケット1は、図1に示 される各ポルト穴11bに挿通されるボルトによって、 シリンダブロック2とシリンダヘッド3との間で挟圧さ れる。とのため、未装着状態では、図2に示されるよう に溝111U, 111L内から基板11の上下面より外 側まで突出していた各ボアシール12のシールリップ1 210、121しが、図3に示されるように基板11の 厚さ方向両側から圧縮され、その反力によって、シリン ダブロック2の上面2a及びシリンダヘッド3の下面3 aに圧接される。また、図6又は図8に示される溝11 3U, 113L又は115U, 115L内から基板11 の表面高さより外側まで突出していた第二シール13の 各シールリップ132U、132Lや、オイル穴用シー ル14及び水穴用シール15のシールリップも同様に、 基板11の厚さ方向両側から圧縮され、その反力によっ の断面形状は、図2に示されるボアシール12と同様で 50 て、シリンダブロック2の上面及びシリンダヘッド3の

,

下面に圧接される。

【0035】図3には、シリンダブロック2及びシリンダヘッド3の上面2a及び下面3aに対するボアシール12の接触面圧の分布が多数の矢印で示されている。すなわち、未装着状態におけるボアシール12のシールリップ121U、121Lの頂部に相当する部分で、圧縮によるつぶし量が最も大きくなるため、ボアシール12の接触面圧は、この部分で最も大きくなる。そして、溝11U、111L内では、圧縮応力によってシールリップ121U、121Lが、その両側の逃げ空間へ向け 10て横方向(ボアシール12の径方向)へ変形するため、幅の広いシール面が形成される。

9

【0036】更に、燃焼室4内で発生する燃焼ガスの圧力Pは、基板11とシリンダブロック2及びシリンダヘッド3との隙間Gから、ボアシール12を溝111U、111Lにおける外周側の内側面111bへ押し付けるように作用し、これによる反力が、ボアシール12をシリンダブロック2の上面2a及びシリンダヘッド3の下面3aに圧接させるように作用する。したがって、圧力Pに応じてシール面圧が変化するセルフシール機能を奏20する。

【0037】また、ボアシール12の成形の際に成形用のゴム材料を廻すための連通穴112は、接触面圧が大きくなる領域よりも内周側(ボア11a側)に位置するように形成されており、しかも燃焼ガスの圧力Pを受けて、ボアシール12は溝111U、111L内における外周側へ偏在するようになるため、連通穴112の存在によって接触面圧が不足する部分は生じない。

【0038】したがって、ボアシール12は、燃焼室4内で発生する高温高圧の燃焼ガスに対する優れたシール30性を発揮するものである。しかも、燃焼ガスの圧力Pをシリンダブロック2及びシリンダヘッド3の上面2a及び下面3aへの押し付け力に変換するセルフシール機能を奏するため、シリンダブロック2とシリンダヘッド3との間での締め付け荷重を、金属ビードにつぶしを与えることによってシールを行う場合のように大きくする必要はない。また、ボアシール12がゴム状弾性材料からなるものであるため、シリンダヘッド3の上下振動に伴う変形によって疲労を起こすようなことはなく、シリンダヘッド3及びシリンダブロック2の上面2a及び下面403aの歪も有効に吸収することができる。

【0039】一方、第二シール13は、図5及び図6に示される形態の場合は、図4(A)に示されるシリンダブロック2とシリンダヘッド3とチェーンケース5との三面合わせ部Xにおいて、図6(A)に示される三面シール部131の上面131aがシリンダヘッド3の端部下面と密接され、三面シール部131の端面131cが、チェーンケース5の内側面と密接される。また、図7及び図8に示される形態

の場合は、図8(A)に示される上側のシールリップ132Uが、シリンダヘッド3の下面におけるチェーン通路空間の周囲の部分と密接され、下側のシールリップ132Lが、シリンダブロック2及びチェーンケース5の上面におけるチェーン通路空間の周囲の部分と密接される。しかも、シリンダブロック2の上面とチェーンケース5の上面との境界位置には、図8(B)に示されるように、幅広に形成された下側のシールリップ132Lが密接される。

【0040】 このため、シリンダブロック2、シリンダヘッド3及びチェーンケース5との三面合わせ部Yを良好にシールすることができ、従来のようにFIPG等の塗布により三面合わせ部をシールする必要がない。

【0041】オイル穴用シール14及び水穴用シール15も、ボアシール12と同様の構造を有するものであることから、オイル穴11c内を通る潤滑油の圧力、あるいは水穴11d内を通るエンジン冷却水の圧力によって、シールリップがセルフシール作用を発揮し、優れたシール性を奏する。

【0042】なお、本発明は、図示の実施の形態に限定されるものではなく、例えばボアシール12におけるシールリップ121U、121Lや、第二シール13におけるシールリップ132U、132Lの断面形状を山形に形成する等、種々の変更が可能である。また、これらボアシール12、第二シール13、オイル穴用シール14及び水穴用シール15は、成形の際に、基板11に一体的に接着したものであっても良い。

[0043]

とができる。

【発明の効果】請求項1の発明に係るシリンダヘッドガ スケットによれば、基板に開設されたボアの周囲にゴム 状弾性材料製のボアシールが連続して形成されたもので あるため、シリンダヘッドの振動によるシール部の破損 を防止することができ、シリンダヘッドの振幅を考慮し て複数積層して用いる必要もない。また、基板の表面に 薄い合成ゴム層を被着する必要もないため、構造が簡素 であり、低コストで提供することができる。しかも、基 板となる金属板の表面に薄い合成ゴム層を被着しないの で、基板を製作するときに金属板を打ち抜くことによっ て発生する端材をリサイクル利用することができる。 【0044】また、ボアシールがゴム状弾性材料からな るため、従来のように金属からなるビードをつぶしてシ ールする場合に比較して、シリンダヘッドガスケットに 対する締め付け力を著しく低減でき、その結果、シリン ダブロックやシリンダヘッドの歪やヘタリを防止するこ

【0045】請求項2の発明に係るシリンダヘッドガスケットによれば、基板がアルミ材からなるものであるため、アルミ製のシリンダブロック及びシリンダヘッドと線膨張係数の差による摩擦を生じるととがなく、シール50 性が損なわれない。

【0046】請求項3の発明に係るシリンダヘッドガス ケットによれば、ボアシールが、基板の両面にボアの周 囲に沿って形成した溝内に設けられているため、燃焼ガ スの圧力をシリンダブロック及びシリンダヘッドへの押 し付け力に変換するセルフシール機能によって、小さい 締め付け荷重で優れたシール性を発揮することができ

11

【0047】請求項4の発明に係るシリンダヘッドガス ケットによれば、シリンダブロック及びシリンダヘッド とチェーンケースとの三面合わせ部が、基板の端部に設 10 けられた第二シールによってシールされるため、FIP G等を塗布することによってこの部分のシールを図る必 要がなくなり、組み付けの際の煩雑さを解消することが できる。また、第二シールは、耐熱性を必要としないた め、安価なゴム状弾性材料を用いることができ、ボアシ ールの成形の際に同時に成形することができるため、シ リンダヘッドガスケットを低コストで提供することがで きる。

【0048】請求項5の発明に係るシリンダヘッドガス ケットによれば、オイル穴を通る潤滑油の漏れを防止す 20 るオイル穴用シール、及び水穴を通る冷却水の漏れを防 止する水穴用シールも、ゴム状弾性材料からなるため、 シリンダヘッドの振動によるシール部の破損を防止する ととができ、従来のように金属からなるビードをつぶし てシールする場合に比較して、シリンダヘッドガスケッ トに対する締め付け力を著しく低減でき、その結果、シ リンダブロックやシリンダヘッドの歪やヘタリを防止す ることができる。また、オイル穴用シール及び水穴用シ ールは、耐熱性を必要としないため、安価なゴム状弾性 材料を用いることができ、ボアシールの成形の際に同時 30 に成形することができるため、シリンダヘッドガスケッ トを低コストで提供することができる。

【図面の簡単な説明】

【図1】本発明に係るシリンダヘッドガスケットの好ま しい実施の形態を示す概略的な平面図である。

【図2】図1におけるII-II線で切断して示す断面図で ある。

【図3】上記実施の形態において、内燃機関のシリンダ ブロックとシリンダヘッドとの間に装着した状態を図1 におけるII-II線と対応する位置で切断して示す断面図 40 X, Y 三面合わせ部 である。

【図4】シリンダブロック、シリンダヘッド及びチェー ンケースとシリンダヘッドガスケットとの関係を示す説 明図である。

12

【図5】図4(A)に示される三面合わせ部と対応する シリンダヘッドガスケットの端部形状を示す平面図であ る。

【図6】第二シールを示すもので、(A)は図5におけ るA-A線で切断した断面図、(B)は図5におけるB B線で切断した断面図である。

【図7】図4(B)に示される三面合わせ部と対応する シリンダヘッドガスケットの端部形状を示すもので、

(A) は平面図、(B) は下面図である。

【図8】第二シールを示すもので、(A)は図7におけ るA – A線で切断した断面図、(B)は図7におけるB - B線で切断した断面図である。

【図9】従来の技術によるシリンダヘッドガスケットを 概略的に示す説明図である。

【符号の説明】

1 シリンダヘッドガスケット

11 基板

11a ボア

111U, 111L, 113U, 113L, 115U,

115L 溝

112, 114, 116 連通穴

12 ボアシール

121U、121L、132U、132L シールリゥ

122, 133, 134 橋絡部

13 第二シール

131 三面シール部

14 オイル穴用シール

15 水穴用シール

2 シリンダブロック

2 a 上面

3 シリンダヘッド

3 a 下面

4 燃焼室

5 チェーンケース

S1, S2, S3 逃げ変形許容空間

(図1)

[図2]

[図3]

[図4]

[図5]

【図6】

(A)

(B)

【図7】

【図9】

[図8]

