INE5429-07208 Segurança em Computação Criptografia Assimétrica e Integridade

Prof. Jean Everson Martina

O que vimos na aula passada:

- Modos de Operação
- Números Primos
- Teoremas de Fermat e Euler
- Testes de Primalidade
- Geradores de Números Aleatórios
- Logaritmo Discreto
- Propriedades de Criptosistemas de Chave Publica

Requisitos de Chave Pública

- Fácil (computacionalmente) gerar um par (de chaves)
- Fácil para o remetente operar com a chave pública
- Fácil para o destinatário operar com a chave privada
- Impossível determinar Kr a partir de Ku
- Impossível recuperar M conhecendo Ku e C

RSA

- 1977, Rivest, Shamir e Adelman / MIT
- É o algoritmo mais aceito
 - Base para a Web
 - Base para assinatura digital no Brasil
- Texto claro e texto cifrado são inteiros mod n
- n é normalmente 1024 bits (309 dígitos)
- É baseado em exponenciação mod p
- Algoritimo:
 - Blocos do tamanho de n
 - o C = Me mod n
 - o $M = C^d \mod n = ((M^e)^d) \mod n = M^{ed} \mod n$
 - Todos conhecem n, o remetente conhece e, o destinatário conhece d
 - Chave Pública → (n, e)
 - \circ Chave Privada \rightarrow (n, d)

RSA - Requisitos

- e, d, n são escolhidos para satisfazer M^{ed}
 mod n = M para todo M < n
- Para isso "e" e "d" devem ser multiplicativas inversas mod $\phi(n) \to e.d$ mod $\phi(n) = 1$
 - o e.d \equiv 1 mod $\phi(n) \rightarrow d \equiv e-1 \mod \phi(n)$
 - o $gcd(\phi(n),d)=1 e gcd(\phi(n),e)=1$
- p, q primos: privados e escolhidos
- n = p.q: publico e calculado
- e | gcd(φ(n),e) = 1 ^ 1 < e < φ(n): publico e
 calculado
- $d \equiv e^{-1} \pmod{\phi(n)}$
- Chave pública (e, n)
- Chave privada (d, n)

RSA na Prática

Geração de Chaves

- o p = 17 e q = 11
- o n = porque = 17 x 11 = 187
- $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$
- \circ e = 7, gcd(160, 7) = 1 $^{\circ}$ 1 < 7 < 160
- o d | de \equiv 1(mod 160) $\hat{}$ d < 160 \rightarrow d = 23
- o 23 x 7 = 161
- \circ Ku = {7, 187}, Kr = {23, 187}

Cifragem

- Texto Claro = 88
- 887 mod 187 = 11
- Texto cifrado = 11
- 1123 mod 187 = 88
- Computacionalmente intensivo de fazer com números grande
- Teorema chinês do resto torna possível

RSA - Considerações Computacionais

- Exponenciação mod p requer truques matemáticos
- O e acaba sendo fixo em 65537 e 17. O
 Número 3 sofre ataques se utilizado
 muitas vezes
- d tem que ser grande para evitar força bruta
- Gerar chaves pode ser demorado pois precisamos do teste de primalidade várias vezes em um número muito grande

RSA Factoring Challenge

RSA number	Decimal digits	Binary digits	Cash prize offered	Factored on	Factored by	
RSA-100	100	330	US\$1,000 ^[4]	April 1, 1991 ^[5]	Arjen K. Lenstra	
RSA-110	110	364	US\$4,429 ^[4]	April 14, 1992 ^[5]	Arjen K. Lenstra and M.S. Manasse	
RSA-120	120	397	\$5,898[4]	July 9, 1993 ^[6]	T. Denny et al.	
RSA-129 [**]	129	426	US\$100	April 26, 1994 ^[5]	Arjen K. Lenstra et al.	
RSA-130	130	430	US\$14,527 ^[4]	April 10, 1996	Arjen K. Lenstra et al.	
RSA-140	140	463	US\$17,226	February 2, 1999	Herman te Riele et al.	
RSA-150	150	496		April 16, 2004	Kazumaro Aoki et al.	
RSA-155	155	512	\$9,383[4]	August 22, 1999	Herman te Riele et al.	
RSA-160	160	530		April 1, 2003	Jens Franke et al., University of Bonn	
RSA-170 [*]	170	563		December 29, 2009	D. Bonenberger and M. Krone [***]	
RSA-576	174	576	US\$10,000	December 3, 2003	Jens Franke et al., University of Bonn	
RSA-180 [*]	180	596		May 8, 2010	S. A. Danilov and I. A. Popovyan, Moscow State University[7]	
RSA-190 [*]	190	629		November 8, 2010	A. Timofeev and I. A. Popovyan	
RSA-640	193	640	US\$20,000	November 2, 2005	Jens Franke et al., University of Bonn	
RSA-200 [*] ?	200	663		May 9, 2005	Jens Franke et al., University of Bonn	
RSA-210 [*]	210	696		September 26, 2013 ^[8]	Ryan Propper	
RSA-704 [*]	212	704	US\$30,000	July 2, 2012	Shi Bai, Emmanuel Thomé and Paul Zimmermann	
RSA-220 [*]	220	729		May 13, 2016	S. Bai, P. Gaudry, A. Kruppa, E. Thomé and P. Zimmermann	
RSA-230 [*]	230	762		August 15, 2018	Samuel S. Gross, Noblis, Inc. ₽	
RSA-232	232	768				
RSA-768 [*]	232	768	US\$50,000	December 12, 2009	Thorsten Kleinjung et al.	
RSA-240	240	795				
RSA-250	250	829				
RSA-260	260	862				
RSA-270	270	895				
RSA-896	270	896	US\$75,000			
RSA-280	280	928				
RSA-290	290	962				
RSA-300	300	995				
RSA-309	309	1024				
RSA-1024	309	1024	US\$100,000			

Troca de Chaves Diffie-Hellman

- Primeiro algoritmo publicado de chave pública
- Sozinho é suscetível a ataque MITM
- Objetivo: Troca segura de parâmetros para estabelecer uma chave de sessão
- O algoritmo depende da dificuldade de calcular logaritmos discretos
- Raiz primitiva \rightarrow a mod p ... a^{p-1} mod p
- $b \equiv a^i \pmod{p}$ onde $0 \le i \le p \rightarrow dlog_{a,p}(b)$

Diffie-Hellman - Algoritmo

- Parâmetros:
 - q numero primo, α raiz primitiva de q → públicos
 - Xa e Xb números aleatórios < q
 - Geração de chave:
 - Ya = α^{Xa} mod q e Yb = α^{Xb} mod q
- Segredo:
 - K = (Yb)^{Xa} mod q
 - \circ K = $(Ya)^{Xb}$ mod q
- O adversários só sabe q, α ,Ya e Yb

- q = 353, $\alpha = 3$, Xa = 97 e Xb = 233
- A computa:

$$\circ$$
 Ya = 3^{97} mod $353 = 40$

B computa:

$$\circ$$
 Yb = 3^{233} mod 353 = 248

A deriva:

$$\circ$$
 K = 248⁹⁷ mod 353 = 160

B deriva:

$$\circ$$
 K = 40^{233} mod 353 = 160

Curvas Elípticas

- Resposta ao tamanho de chaves RSA
 - Custo computacional crescente
- Mesma segurança com chaves menores
- Menos processamento
- Teoria antiga, pratica nova
- Pouca criptoanálise → Menos confiança
- Muito mais difícil de entender e explicar
- Cifradores de chave pública são baseados em grupos abelianos (ex. Diffie-Hellman)
 - CE tem adição e multiplicação
- Multiplicação é repetição de adição
- É uma equação com duas variáveis e coeficientes
- Restritos a elementos de um corpo finito
- Resulta em grupos abelianos finitos

Criptografia em Curvas Elípticas

- ECDH Elliptic Curve Diffie-Hellman
- ECIES Elliptic Curve Integrated Encryption Scheme
- ECDSA Elliptic Curve Digital Signature Algorithm
- É fácil de converter algoritmos que usem logaritmo discreto como problema base
 - o Pois o requisito é o grupo abeliano

Elliptic-Curve Digital Signature Algorithm (ECDSA)

ECC key size (bits)	RSA key size (bits)	Key size ratio	AES key size (bits)	
163	1,024	1:6	W 189	
256	3,072	1:12	128	
384	7,680	1:20	192	
512	15,360	1:30	256	

Table 1

Autenticação de Mensagens

- Garantia de que a mensagem esta integra e que foi enviada por alguém válido
- Cifragem garante autenticação
- Assinatura eletrônica garante autenticação de mensagens
- Ataques:
 - Mascaramento:
 - Origem fraudulenta
 - Modificação de conteúdo:
 - Alteração da carga da mensagem
 - Modificação de seqüência:
 - Reordenamento de mensagens
 - Modificação de tempo:
 - Replay e prevenção de entrega

Funções de Autenticação

- Autenticação acontece em dois níveis
 - Autenticador
 - Alto nível
- Autenticadores:
 - Cifragem
 - Message Authentication Codes
 - Funções HASH
- Alto nível → Protocolos criptográficos

Autenticação - Cifragem

- Provê autenticação usando algoritmos criptográficos
- Autenticação por cifragem pode ser dividida em:
 - Simétrica
 - Somente A e B compartilha a chave K
 - Assimétrica
 - Autenticação pelo uso da chave privada
- A autenticação é baseada na manutenção dos segredos da chaves que devem ser protegidas

Autenticação – Códigos de Autenticação de Mensagens

- Resumo da mensagem baseado em chave simétrica
- MAC = C(K,M)
- Calcula-se dos dois lados usando os mesmos parâmetros para confirmar
- É similar a cifragem mas não tem reversão
- Quando Usar:
 - Mensagem enviada a vários destinatários
 - Não é possível decifrar tudo então usa-se checagem MAC seletiva
 - Verificação de integridade de programas
 - Não é necessário sigilo

Integridade – Funções HASH

- São similares a MAC mas não tem chaves
- Prove propriedades como efeito avalanche
- Garante que o homomorfismo da mensagem não afeta a assinatura
- Provê uma camada de integridade diferente da autenticação
- Quando Usar:
 - Cifragem é lerdo, então HASH é mais eficiente só para integridade
 - Cifragem pode ser computacionalmente caro em software e em hardware
 - Quando o algoritmo criptográfico tem problemas com homomorfismo
 - ex. RSA

HASH – Descrição/Requisitos

- Função de caminho único, M variável,
 H(M) Fixo
- Produz uma impressão digital de um arquivo
- Requisitos:
 - Fácil de computar para qualquer M
 - É impossível achar M tendo H(M) → caminho unico
 - O H(y)=H(x) ^ x≠y impossível → 1a.
 Pre-imagem
 - Achar (x,y) | H(x)=H(y) impossível → 2a.
 Pre-imagem

Paradoxo do Aniversário

- Um grupo maior que 23 pessoas têm probabilidade maior que 50% de terem a mesma data de aniversário.
- 2^{m/2} variações da mensagem com o mesmo significado → 2m/2 variações fraudulentas
- A probabilidade de sucesso é maior que 50%
- Se oferece a versão fraudulenta e se usa a versão variada.

Dear Anthony,

```
This letter is to introduce { you to } {Mr. } Alfred { P. }
Barton, the { new } { chief } jewellery buyer for { our } the }
Northern { European } { area division } He { will take } over { the }
responsibility for { all the whole of } our interests in { watches and jewellery jewellery and watches }
in the { area region } please { afford give } him { every all the } help he { may need } recide }
to { seek out } the most { modern } lines for the { top high } end of the
market. He is { empowered authorized } to receive on our behalf { samples } of the
 { latest } { watch and jewellery products, { up subject } to a { limit maximum }
of ten thousand dollars. He will { carry } a signed copy of this { letter }
as proof of identity. An order with his signature, which is { appended }
{ authorizes allows } you to charge the cost to this company at the { above head office }
address. We \left\{\begin{array}{c} \text{fully} \\ --\end{array}\right\} expect that our \left\{\begin{array}{c} \text{level} \\ \text{volume} \end{array}\right\} of orders will increase in
the {following \atop next} year and {trust \atop hope} that the new appointment will {be \atop prove}
{ advantageous } to both our companies.
```

Secure Hash Algorithm

	SHA-1	SHA-256	SHA-384	SHA-512
Message digest size	160	256	384	512
Message size	<264	<2 ⁶⁴	<2128	<2128
Block size	512	512	1024	1024
Word size	32	32	64	64
Number of steps	80	64	80	80
Security	80	128	192	256

- NIST FIPS 180/1993 FIPS 180-1/1995
 FIPS 180-2/2002
- Baseado no MD4
- RFC 3174 FIPS + Código C de referência
- SHA-1, SHA-256, SHA-384, SHA-512
- SHA-1 não recomendada pois tem colisões em 2⁶⁹

SHA-512

SHA-512

Ch =
$$(\land) \otimes (\neg \land)$$

Maj = $(\land) \otimes (\land) \otimes (\land)$
 $\sum a = R^{28} \otimes R^{34} \otimes R^{39}$
 $\sum e = R^{14} \otimes R^{18} \otimes R^{41}$

HMAC

- MAC baseado em função HASH
- Objetivos:
 - Mais rápido que cifragem
 - Funções HASH amplamente disponíveis
- RFC 2104 /FIPS 198 → como adicionar um chave a um HASH
- Usado em SSL e IPSEC
- Objetivos:
 - Usar funções HASH sem modificação
 - Permitir trocar a função HASH
 - Preservar a performance do HASH
 - Usar chave de maneira simples
 - Ter toda análise criptográfica baseada no função HASH

Próximas Aulas

- Prática:
 - Trabalho Individual II

- Teórica:
 - Assinatura Digital e Protocolos Criptográficos

Perguntas?

jean.martina@ufsc.br