import pandas as pd
import numpy as np

data = pd.read_csv('/content/breast-cancer-data.csv')

data.head()

С→

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn
0	842302	M	17.99	10.38	122.80	1001.0	
1	842517	M	20.57	17.77	132.90	1326.0	
2	84300903	M	19.69	21.25	130.00	1203.0	
3	84348301	M	11.42	20.38	77.58	386.1	
4	84358402	M	20.29	14.34	135.10	1297.0	

data.info()

₽

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):
```

#	Column	Non-Null Count	Dtype				
0	id	569 non-null	int64				
1	diagnosis	569 non-null	object				
2	radius_mean	569 non-null	float64				
3	texture mean	569 non-null	float64				
4	perimeter_mean	569 non-null	float64				
5	area_mean	569 non-null	float64				
6	smoothness_mean	569 non-null	float64				
7	compactness_mean	569 non-null	float64				
8	concavity_mean	569 non-null	float64				
9	concave points_mean	569 non-null	float64				
10	symmetry_mean	569 non-null	float64				
11	fractal_dimension_mean	569 non-null	float64				
12	radius_se	569 non-null	float64				
13	texture_se	569 non-null	float64				
14	perimeter_se	569 non-null	float64				
15	area_se	569 non-null	float64				
16	smoothness_se	569 non-null	float64				
17	compactness_se	569 non-null	float64				
18	concavity_se	569 non-null	float64				
19	concave points_se	569 non-null	float64				
20	symmetry_se	569 non-null	float64				
21	<pre>fractal_dimension_se</pre>	569 non-null	float64				
22	radius_worst	569 non-null	float64				
23	texture_worst	569 non-null	float64				
24	perimeter_worst	569 non-null	float64				
25	area_worst	569 non-null	float64				
26	smoothness_worst	569 non-null	float64				
27	compactness_worst	569 non-null	float64				
28	concavity_worst	569 non-null	float64				
29	concave points_worst	569 non-null	float64				
30	symmetry_worst	569 non-null	float64				
31	fractal_dimension_worst		float64				
dtypes: float64(30), int64(1), object(1)							
memory usage: 142.4+ KB							

data.isnull().sum()

Г⇒

```
id
                        0
                        0
diagnosis
radius_mean
                        0
texture_mean
                        0
perimeter_mean
                      0
area_mean
                       0
smoothness_mean
                       0
compactness_mean
concavity_mean
                      0
concave points_mean
symmetry_mean
fractal_dimension_mean 0
radius_se
                       0
texture_se
perimeter_se
area_se
smoothness_se
compactness_se
                       0
concavity_se
                       0
concave points_se
symmetry_se
                       0
fractal_dimension_se 0
radius_worst
texture_worst
                      0
perimeter_worst
area_worst
smoothness_worst
compactness_worst
concavity_worst
concave points_worst 0
symmetry worst
fractal_dimension_worst 0
dtype: int64
```

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

target_data = data['diagnosis']

target_data = le.fit_transform(target_data)

data.drop('diagnosis',axis=1,inplace=True)

data.columns

D
```

```
'smoothness_mean', 'compactness_mean', 'concavity_mean',
          'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
          'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
          'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
          'fractal_dimension_se', 'radius_worst', 'texture_worst',
          'perimeter_worst', 'area_worst', 'smoothness_worst',
          'compactness_worst', 'concavity_worst', 'concave points_worst',
          'symmetry_worst', 'fractal_dimension_worst'],
         dtype='object')
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(data)
  StandardScaler(copy=True, with_mean=True, with_std=True)
scaled_data = scaler.transform(data)
scaled_data
  array([[-0.23640517, 1.09706398, -2.07333501, ..., 2.29607613,
           2.75062224, 1.93701461],
          [-0.23640344, 1.82982061, -0.35363241, ..., 1.0870843,
          -0.24388967, 0.28118999],
          [0.43174109, 1.57988811, 0.45618695, ..., 1.95500035,
           1.152255 , 0.20139121],
          [-0.23572747, 0.70228425, 2.0455738, ..., 0.41406869,
          -1.10454895, -0.31840916],
          [-0.23572517, 1.83834103, 2.33645719, ..., 2.28998549,
           1.91908301, 2.21963528],
          [-0.24240586, -1.80840125, 1.22179204, ..., -1.74506282,
           -0.04813821, -0.75120669]])
from sklearn.decomposition import PCA
pca = PCA(n components=2)
pca.fit(scaled_data)
  PCA(copy=True, iterated_power='auto', n_components=2, random_state=None,
       svd solver='auto', tol=0.0, whiten=False)
x pca = pca.transform(scaled data)
scaled_data.shape
   (569, 31)
```

Index(['id', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',

```
x_pca.shape
   (569, 2)
x_pca
   array([[ 9.18319983, 1.97127137],
          [ 2.38329766, -3.75345877],
          [ 5.74247239, -1.08035048],
          [ 1.2518901 , -1.89397674],
          [10.36503528, 1.69639755],
          [-5.47826365, -0.67278804]])
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
plt.figure(figsize=(20,10))
sns.scatterplot(x_pca[:,0],x_pca[:,1],cmap='viridis')
   <matplotlib.axes._subplots.AxesSubplot at 0x7feabdb7d978>
    10
     5
    -5
                -5
                                                                              5
```

```
array([[ 0.02291216, 0.21891302, 0.10384388, 0.22753491, 0.22104577,
           0.14241471, 0.2390673, 0.25828025, 0.26073811, 0.13797774,
           0.06414779, 0.20611747, 0.01741339, 0.21144652, 0.20307642,
           0.01467821, 0.1702884, 0.15354367, 0.18340675, 0.04241552,
           0.10249607, 0.22800935, 0.10451545, 0.23663734, 0.22493214,
           0.12782441, 0.20988456, 0.22860218, 0.2507462, 0.12267993,
           0.13156024],
          [-0.03406849, -0.2332714, -0.0600442, -0.214589, -0.23066882,
           0.18642221, 0.15245473, 0.06054163, -0.03416739, 0.19068498,
           0.36653106, -0.1059357, 0.08954779, -0.08980704, -0.15277129,
           0.20318988, 0.23250336, 0.19684608, 0.12996518, 0.18355863,
           0.27958414, -0.21929604, -0.04550122, -0.19929599, -0.21898546,
           0.17256296, 0.14425364, 0.09852652, -0.00753437, 0.14261944,
           0.27570208]])
pca.explained_variance_ratio_
  array([0.42864701, 0.18376792])
pca_3 = PCA(n_components=3)
pca_3.fit(scaled_data)
x_pca_3 = pca_3.transform(scaled_data)
x_pca_3.shape
   (569, 3)
pca_3.explained_variance_ratio_
  array([0.42864701, 0.18376792, 0.09146436])
from sklearn.model_selection import train_test_split
train_data, test_data, train_output, test_output = train_test_split( data, target_data,
train data = scaler.transform(train data)
test data = scaler.transform(test data)
train_data = pca.transform(train_data)
test_data = pca.transform(test_data)
from sklearn.linear model import LogisticRegression
logisticRegr = LogisticRegression(solver = 'lbfgs')
logisticRegr.fit(train_data, train_output)
  LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                     intercept_scaling=1, l1_ratio=None, max_iter=100,
                     multi_class='auto', n_jobs=None, penalty='12',
                     random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                     warm start=False)
```

```
logistickegr.score(test_data, test_output)
```

0.9473684210526315

```
train_data, test_data, train_output, test_output = train_test_split( data, target_data,
    train_data = scaler.transform(train_data)
    test_data = scaler.transform(test_data)

train_data = pca_3.transform(train_data)
    test_data = pca_3.transform(test_data)
    logisticRegr = LogisticRegression(solver = 'lbfgs')

logisticRegr.fit(train_data, train_output)
    logisticRegr.score(test_data, test_output)
```

0.9415204678362573