ECON 4002.01 Problem Set 4 Hui-Jun Chen

Answers

A

2 C 3 B

1

- 4 D
- 5 B
- 6 A7 D
- 8 B
- 9 C
- 10 D
- 10 D
- 11 D
- 13 C
- 14 D
- 15 A
- 15 A
- 17 B
- 18 A
- 19 D
- 20 C
- 21 B
- 21 B
- 23 D
- 24 A

Question 1

Consider a model that is **similar to** (not exactly the same!) Lecture 17 RBC model but with several differences:

1. Now consumer values leisure in date 1. The lifetime utility function is given

by

$$U(C, N, C', N') = \ln C + \ln(1 - N) + \ln C' + \ln(1 - N').$$

First, we start by defining the competitive equilibrium:

(1) Given the exogenous quantities A

(A) $\{G, G', z, z', K\}$

(B) $\{G, G', z, z'\}$

(C) $\{G, G'\}$

(D) $\{z, z', K\}$

a competitive equilibrium is a set of

(2) consumer choices C

(A) $\{C, C', N_S, S\}$

- (B) $\{N_S, N'_S, l, l', S\}$
- (C) $\{C, C', N_S, N'_S, l, l', S\}$
- (D) $\{C, C', S\}$

(3) firm choices B

- (A) $\{Y, Y', N_D, N'_D, I, K'\}$
- (B) $\{Y, Y', \pi, \pi', N_D, N'_D, I, K'\}$
- (C) $\{Y, Y', \pi, \pi', I, K'\}$
- (D) $\{\pi, \pi', N_D, N'_D, I, K'\}$

(4) government choices D

(A) $\{G, G', T, T', B\}$

(B) $\{G, G', B\}$

(C) $\{G, G', T, T'\}$

(D) $\{T, T', B\}$

(5) and prices B

(A) $\{w, w', q\}$

(B) $\{w, w', r\}$

(C) $\{q, q', r\}$

(D) $\{r, r', q\}$

such that

1.

(6) Taken A

(A) $\{w, w', r, \pi, \pi'\}$

(B) $\{w, w', r\}$

(C) $\{w, w', \pi, \pi'\}$

(D) $\{r, \pi, \pi'\}$

as given,

(7) consumer chooses <u>D</u>

(A) $\{r', N_S, N_S'\}$

(B) $\{C', K, K'\}$

(C) $\{r', K, K'\}$

(D) $\{C', N_S, N_S'\}$

to solve

$$\max_{C',N_S,N_S'} \ln \left(wN_S + \pi - T + \frac{w'N_S' + \pi' - T' - C'}{1+r} \right) + \ln C' + \ln (1 - N_S) + \ln (1 - N_S')$$

where we can back out $\{C,S,l,l'\}$.

2.

8 Taken B as given,

(A) $\{w, w', q\}$

(B) $\{w, w', r\}$

(C) $\{q, q', r\}$

(D) $\{r, r', q\}$

(9) firm chooses <u>C</u>

(A) $\{H_D, H'_D, K'\}$

(B) $\{N_D, N'_D, C'\}$

(C) $\{N_D, N'_D, K'\}$

(D) $\{\pi, \pi', K'\}$

to solve

$$\max_{N_D,N_D',K'} zK^{\alpha} N_D^{1-\alpha} - wN_D - [K' - (1-\delta)K] + \frac{z'(K')^{\alpha} (N_D')^{1-\alpha} - w'N_D' + (1-\delta)K'}{1+r}$$

where we can back out $\{Y,Y',\pi,\pi',I\}$.

3.

(10) Taxes and deficit satisfy ______

(A)
$$T + \frac{T'}{1+q} = G + \frac{G'}{1+q}$$
 (B) $T + \frac{T'}{1+r} = G + \frac{G'}{1+r}$

(B)
$$T + \frac{T'}{1+r} = G + \frac{G'}{1+r}$$

(C)
$$T + \frac{T'}{1+w} = G + \frac{G'}{1+w}$$

(D)
$$\pi + \frac{\pi'}{1+r} = G + \frac{G'}{1+r}$$

and
$$G - T = B$$
.

4. All markets clear: (i) labor, $N_S = N_D$ & $N_S' = N_D'$; (ii) goods, Y = C + G& Y' = C' + G'; (iii) bonds at date 0, S = B.

After defining the competitive equilibrium, now we are going to solve this model.

Step 1: Labor market

From the lecture, we know that the current marginal product of labor (MPN)(11) will equal to current wage. $MPN = \underline{D}$

(A)
$$z'(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

(B)
$$z(1-\alpha)\left(\frac{K'}{N_D}\right)^{\alpha}$$

(C)
$$z'(1-\alpha)\left(\frac{K'}{N'_D}\right)^{\alpha}$$

(D)
$$z(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

and thus the current labor demand N_D given the wage w is ______

(A)
$$N_D = \left(\frac{z'(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(B)
$$N_D = \left(\frac{z(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K$$

(C)
$$N_D = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(D)
$$N_D = \left(\frac{z'(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K'$$

(13) From the lecture, we know that the future marginal product of labor (MPN')will equal to future wage. MPN' = _ C

(A)
$$z'(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

(B)
$$z(1-\alpha)\left(\frac{K'}{N_D}\right)^{\alpha}$$

(C)
$$z'(1-\alpha)\left(\frac{K'}{N'_D}\right)^{\alpha}$$

(D)
$$z(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

(A)
$$N'_D = \left(\frac{z'(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(B)
$$N'_D = \left(\frac{z(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K$$

(C)
$$N'_D = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(D)
$$N_D' = \left(\frac{z'(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K'$$

In the labor supply part, we know that the marginal rate of substitution between leisure and consumption $MRS_{l,C}$ equals to the wage.

(15) $MRS_{l,C} = \underline{\mathbf{A}}$

(A)
$$\frac{C}{1-N_S}$$

(B)
$$\frac{1-N_S}{C}$$

(C)
$$\frac{N_S}{1-C}$$

(D)
$$\frac{N_S'}{1-N_S}$$

In the saving part, we know that the marginal rate of substitution between current and future consumption $MRS_{C,C'}$ equals to the real interest rate (1+r)

 $\mathbf{16} \quad MRS_{C,C'} = \mathbf{\underline{C}}$

(A)
$$\frac{N_S'}{N_S}$$

(B)
$$\frac{C}{C'}$$

(C)
$$\frac{C'}{C}$$

(D)
$$\frac{N_S}{N_S'}$$

Solve for C', we get $\underline{\mathbf{B}}$

$$(A) \quad C' = (1+r)N_S$$

(B)
$$C' = (1+r)C$$

(C)
$$C' = (1+r)C'$$

(D)
$$C' = (1+r)N_S'$$

Start from now we denote the income that is not directly affected by consumer choice as x and x', similar to Lecture 17.

Substitute C' using your answer in 17 into the budget constraint and solve for C, we get A

(A)
$$C = \frac{1}{2} \left(w N_S + x + \frac{x'}{1+r} \right)$$

(A)
$$C = \frac{1}{2} \left(w N_S + x + \frac{x'}{1+r} \right)$$
 (B) $C = \frac{1}{1+\beta} \left(w N_S + x + \frac{x'}{1+r} \right)$

(C)
$$C = \frac{1}{1+\beta} \left(w N_S + C' + \frac{C'}{1+r} \right)$$

(C)
$$C = \frac{1}{1+\beta} \left(wN_S + C' + \frac{C'}{1+r} \right)$$
 (D) $C = \frac{1}{2} \left(wN_S + N'_S + \frac{N'_S}{1+r} \right)$

Substitute your answer of 18 into your answer in 15, we can solve the labor

$$(A) \quad \frac{1}{3} - \frac{2}{3w} \left(x + \frac{x'}{1+r} \right)$$

(B)
$$\frac{2}{3} - \frac{w}{3} \left(x + \frac{x'}{1+r} \right)$$

(C)
$$\frac{2}{5} - \frac{5}{3w} \left(x + \frac{x'}{1+r} \right)$$

(D)
$$\frac{2}{3} - \frac{1}{3w} \left(x + \frac{x'}{1+r} \right)$$

From 12 we solve for labor demand N_D . From 19 we solve for labor supply N_S . If for this question we let $\alpha = 1$, then we can solve the wage w as a function of real interest rate r as C

(A)
$$w^*(r) = x + \frac{x'}{1+r}$$

(B)
$$w^*(r) = \frac{1}{3} \left(x + \frac{x'}{1+r} \right)$$

(C)
$$w^*(r) = \frac{1}{2} \left(x + \frac{x'}{1+r} \right)$$

(D)
$$w^*(r) = zK \left(x + \frac{x'}{1+r} \right)$$

For the output demand curve, we know that the optimal investment schedule is given by $MPK' - \delta = r$.

We know that the MPK' is ___B__

(A)
$$\alpha z K^{\alpha-1} N^{1-\alpha}$$

(B)
$$\alpha z' K'^{\alpha-1} N'^{1-\alpha}$$

(C)
$$(1-\alpha)z'K'^{\alpha}N'^{-\alpha}$$

(D)
$$\alpha z K^{\alpha} N^{-\alpha}$$

We can solve the optimal investment schedule and get $K' = \underline{\mathbb{C}}$

(A)
$$\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}}N'$$

(B)
$$\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}N$$

(C)
$$\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N'$$

(D)
$$\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}}N$$

- and the investment I_D is determined by capital accumulation process $K^\prime (1 \delta$) K and is **D**
 - (A) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}} N' (1-\delta)K$ (B) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N (1-\delta)K$
 - (C) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}}N (1-\delta)K$ (D) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}N' (1-\delta)K$
- Based on your answer in 23, the investment demand I_D is __A_ in future labor N'.
 - increasing (A)
- no related (B)
- decreasing (C)