1 point
1.
When $\mathcal{KL}(q p)$ is equal to zero?
Never.
$p(x) = cq(x), orall x \in X$ and different c .
$\bigcap p(x)=q(x), orall x\in X.$
point 2.
Consider true ditribution $p(x)$ which we want to approximate with some distribution $q(x)$ minimizing either forward $(\mathcal{KL}(p q))$ or reverse $(\mathcal{KL}(q p))$ \mathcal{KL} -divergence. We call zero-forcing the effect when $q(x)$ is forced to be 0 in some areas even if $p(x)>0$. We call zero-avoiding the effect when $q(x)=0$ is avoid whenever $p(x)>0$. Select true statements.
$\mathcal{KL}(q p)$ is zero-forcing.
$\mathcal{KL}(q p)$ is zero-avoiding.
$\mathcal{KL}(p q)$ is zero-forcing.
$\mathcal{KL}(p q)$ is zero-avoiding.

1 point

3.

Consider we learn true bimodal distribution p(x) (blue line) with Gaussian distribution q(x) (orange line) by minimizing reverse \mathcal{KL} -divergence $\mathcal{KL}(q||p)$. Which distribution will be fitted?

() a

(b)

1 point

4.

What variational family is used in mean field approximation method?

- Gaussian distribution
- Any distributions we want
- Factorised distribution

point

Choose update formula for mean field.

- $igg(\log q_j(x_j) = \mathbb{E}_{x_{-j}} \log p(x) + const.$
- $\log q_j(x_j) = \mathbb{E}_{x_{-i}} \log p(x).$
- $q_j(x_j) = \mathbb{E}_{x_{-j}} p(x) + const.$

1 point

6.

Can we calculate every factorized distribution for one step?

- No, we should update all factorized distributions one after another until they converge.
- Yes, they depend only on joint distribution.

I, **Saurabh Kumar Pandey**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

\mathbb{Q}

 \bowtie