Formal Languages Non-Deterministic Automata

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet = $\{a\}$

Alphabet = $\{a\}$

All input is consumed

Input cannot be consumed

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

There is a computation: all the input is consumed and the automaton is in an accepting state

Example

aa is accepted by the NFA:

computation

accepts aa

14

Rejection example

An NFA rejects a string:

when there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

L(M)?

Language accepted: $L = \{aa\}$

Lambda Transitions

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

L(M)?

Language accepted: $L = \{aa\}$

Another NFA Example: L(M)?

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example: L(M)?

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

•The λ symbol never appears on the input tape

·Simple automata: Languages?

$$M_1$$
 q_0

$$L(M_1) = \{ \}$$

$$L(M_2) = \{\lambda\}$$

λ-transition in deterministic automata?

·NFAs are interesting because we can express languages easier than FAs

·NFAs are interesting because we can express languages easier than FAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input alphabet, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q_j$$

L(M)?

The Language of an NFA $\,M\,$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\Rightarrow \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$a$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a \quad a$$

$$q_1$$

$$b \quad q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4 \qquad q_5$$

$$a \qquad a$$

$$q_0 \qquad a \qquad q_1 \qquad b \qquad q_2 \qquad \lambda \qquad q_3$$

$$\delta^*(q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$eq F$$

$$L(M) = \{\lambda\} \cup \{ab\}^* \{aa\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, q_j, ..., q_k, ...\}$$

and there is some $q_k \in F$ (accepting state)

$$w \in L(M) \qquad \delta^*(q_0, w)$$

$$q_i \qquad q_k \in F$$