Тема 4.

Координатни системи

1. Афинно пространство

Нека V е векторно пространство над числовото поле \mathbb{K} .

Определение 4.1. Непразно множество \mathcal{A} се нарича $a\phi u n ho$ (moчково) npocmpahcmeo, ceopsaho c V, ако съществува изображение, съпоставящо на всяка наредена двойка (M,N) от елементи на \mathcal{A} еднозначно вектор от V (който означаваме с \overrightarrow{MN}) по такъв начин, че да са в сила следните свойства (аксиоми):

- 1) ако $M,N,P\in\mathcal{A}$, то $\overrightarrow{MN}+\overrightarrow{NP}=\overrightarrow{MP}$ (релация на Шал);
- 2) ако $M \in \mathcal{A}, a \in V$, то съществува точно един елемент $N \in \mathcal{A},$ за който $\overrightarrow{MN} = a.$

Елементите на \mathcal{A} се наричат *точки*. Размерността на V се нарича размерност на \mathcal{A} , означаваме dim \mathcal{A} .

Ако положим в 1) M=N=P, получаваме $\overrightarrow{MM}=o$. Сега, ако положим в 1) M=P, имаме $\overrightarrow{MN}=-\overrightarrow{NM}$. Ако $\overrightarrow{MN}=\overrightarrow{PQ}$, от 1) следва $\overrightarrow{MP}=\overrightarrow{NQ}$ за произволни точки M,N,P,Q.

Пример 4.1. Геометричното векторно пространство е пример на реално тримерно афинно пространство.

Пример 4.2. Полагаме $\mathcal{A} = V$ и на произволни елементи $M = m, \ N = n$ от \mathcal{A} съпоставяме вектора $\overrightarrow{MN} = n - m$ от V. Следователно по този начин всяко векторно пространство може да се разглежда като афинно.

В частност нека разгледаме \mathbb{R}^n . Ако $A(a_1, a_2, ..., a_n)$, $B(b_1, b_2, ..., b_n)$ са точки от афинното пространство \mathbb{R}^n , то векторът \overrightarrow{AB} от векторното пространство \mathbb{R}^n се определя от формулата

$$\overrightarrow{AB} = (b_1 - a_1, b_2 - a_2, ..., b_n - a_n).$$

Обратно, всяко афинно пространство може да бъде превърнато във векторно по следния начин. Нека фиксираме точка O от афинното пространство \mathcal{A} . Ако M е произволна точка, то векторът \overrightarrow{OM} се нарича paduyc-вектор на т. M относно т. O. В \mathcal{A} дефинираме линейни действия с точки, като ги отъждествяваме със съответните им радиус-вектори:

$$M+N=P$$
, ако $\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{OP};$ $\lambda M=N,$ ако $\lambda \overrightarrow{OM}=\overrightarrow{ON}$ за произволни $M,N,P\in\mathcal{A},~\lambda\in\mathbb{R}.$

По този начин \mathcal{A} се превръща във векторно пространство, чийто нулев вектор е фиксираната точка O.

2. Координатни системи

Определение 4.2. *Координатна система* на n-мерно афинно пространство \mathcal{A} , свързано с векторно пространство V, се нарича всяка съвкупност, състояща се от точка $O \in \mathcal{A}$ и база $\{e_1, e_2, ..., e_n\} \in V$. Означаваме $Oe_1, e_2, ..., e_n$. Точката O се нарича начало, а векторите $e_1, e_2, ..., e_n$ – координатни вектори на координатната система $Oe_1, e_2, ..., e_n$.

За всяка точка $M \in \mathcal{A}$ векторът \overrightarrow{OM} се нарича радиус-вектор на т. M .

Определение 4.3. Координатите на m. $M \in \mathcal{A}$ относно координатната система $Oe_1, e_2, ..., e_n$ се наричат координатите на радиус-вектора \overrightarrow{OM} относно базата $\{e_1, e_2, ..., e_n\}$, т. е. числата от наредената n-торка $(x_1, x_2, ..., x_n)$, определена от равенството

$$\overrightarrow{OM} = x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

Записваме $M(x_1, x_2, ..., x_n)$.

Теорема 4.1. Ако относно една координатна система са дадени точките $M(x_1, x_2, ..., x_n)$ и $N(y_1, y_2, ..., y_n)$, то $\overrightarrow{MN}(y_1 - x_1, y_2 - x_2, ..., y_n - x_n)$.

Доказателство. Имаме

$$\overrightarrow{OM} = x_1 e_1 + x_2 e_2 + ... + x_n e_n, \quad \overrightarrow{ON} = y_1 e_1 + y_2 e_2 + ... + y_n e_n.$$
 Тогава

$$\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} = \overrightarrow{ON} - \overrightarrow{OM} = (y_1 - x_1, y_2 - x_2, ..., y_n - x_n).$$

Както се отнасят векторите, така се отнасят и съответните им координати. Ако $a(a_1, a_2, ..., a_n), b(b_1, b_2, ..., b_n)$ относно дадена база на V, то са в сила равенствата:

$$a + b(a_1 + b_1, a_2 + b_2, ..., a_n + b_n),$$

 $\lambda a(\lambda a_1, \lambda a_2, ..., \lambda a_n).$

Пример 4.3. Ако n=1, т. е. \mathcal{A} е права, координатната система $O\vec{e}_1$ се състои от точка O и ненулев вектор \vec{e}_1 . Ако $M\in\mathcal{A}$, равенството $\overrightarrow{OM}=x\vec{e}_1$ определя единствената координата x на M относно тази система. За тази точка записваме M(x). Правата, определена от O и \vec{e}_1 (която съвпада с \mathcal{A} в този случай), са нарича $oc\ (abcuucha\ oc\)$. Можем да означим системата $O\vec{e}_1$ с Ox.

Точка O има координати O(0), тъй като нейният радиус-вектор е $\overrightarrow{OO} = \overrightarrow{o} = 0 \overrightarrow{e_1}$. Очевидно $\overrightarrow{e_1} = 1 \overrightarrow{e_1}$ и следователно $\overrightarrow{e_1}(1)$. Ако $\overrightarrow{e_1} = \overrightarrow{OA_1}$, то $\overrightarrow{OA_1}$ е радиус-вектор на A_1 и следователно $A_1(1)$.

Пример 4.4. Нека n=2, т. е. \mathcal{A} е равнина. Координатната система $O\vec{e}_1\vec{e}_2$ се състои от точка O и неколинеарни вектори \vec{e}_1 и \vec{e}_2 . Ако $M\in\mathcal{A}$, равенството $\overrightarrow{OM}=x\vec{e}_1+y\vec{e}_2$ определя координатите (x,y) на M относно тази система. Казваме, че x и y са съответно abcuuca и opduhama на M. Правите, определени от O и векторите \vec{e}_1 и \vec{e}_2 се наричат съответно abcuucha и opduhamha oc и се означават с $O\vec{e}_1=Ox$ и $O\vec{e}_2=Oy$. $O\vec{e}_1\vec{e}_2$ се означава още с Oxy.

Отново имаме O(0,0), тъй като $\overrightarrow{OO} = \overrightarrow{o} = 0\overrightarrow{e}_1 + 0\overrightarrow{e}_2$. За базисните вектори е изпълнено:

$$\vec{e}_1 = 1\vec{e}_1 + 0\vec{e}_2, \qquad \vec{e}_2 = 0\vec{e}_1 + 1\vec{e}_2.$$

Следователно $\vec{e}_1(1,0),\ \vec{e}_2(0,1).$ Ако $\vec{e}_1=\overrightarrow{OA_1},\ \vec{e}_2=\overrightarrow{OA_2},$ то $A_1(1,0),\ A_2(0,1).$

Пример 4.5. Нека n=3, т. е. \mathcal{A} е тримерно афинно пространство. Координатната система $O\vec{e}_1\vec{e}_2\vec{e}_3$ се състои от точка O и некомпланарни вектори \vec{e}_1 , \vec{e}_2 и \vec{e}_3 . Ако $M\in\mathcal{A}$, равенството $\overrightarrow{OM}=x\vec{e}_1+y\vec{e}_2+z\vec{e}_3$ определя координатите (x,y,z) на M относно тази система. Казваме, че x,y и z са съответно abcuuca, opduhama и anликаma на M. Правите, определени от O и векторите \vec{e}_1 , \vec{e}_2 и \vec{e}_3 се наричат съответно abcuucha, opduhamha ос и annukamha ос и се означават с $O\vec{e}_1=Ox$, $O\vec{e}_2=Oy$ и $O\vec{e}_3=Oz$. $O\vec{e}_1\vec{e}_2\vec{e}_3$ се означава още с Oxyz.

Аналогично на предишните два примера имаме: O(0,0,0), $\vec{e}_1(1,0,0)$, $\vec{e}_2(0,1,0)$ и $\vec{e}_3(0,0,1)$.

Пример 4.6. Даден е успоредник ABCD с пресечна точка на диагоналите $AC \cap BD = P$. Въведете координатна система с център точката A и намерете координатите на P относно тази система.

Координатната система ще се състои от т. A(0,0) и два линейно независими вектора с начало т. A. Такива са например \overrightarrow{AB} и \overrightarrow{AD} . Затова можем да положим $\overrightarrow{e_1} = \overrightarrow{AB}$ и $\overrightarrow{e_2} = \overrightarrow{AD}$. Координатите на точките B и D съвпадат с тези на съответните им радиус-вектори. Следователно, B(1,0), D(0,1). Известно е, че диагоналът $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{e_1} + \overrightarrow{e_2} = (1,0) + (0,1) = (1,1)$, т. е. C(1,1). Знаем още,

че P е среда на AC, откъдето получаваме $\overrightarrow{AP} = \frac{1}{2}\overrightarrow{AC}$. Същата зависимост е изпълнена и за съответните координати на двете точки. Така получаваме $P\left(\frac{1}{2},\frac{1}{2}\right)$.

Друг избор на координатна система с начало т. \overrightarrow{A} може да бъде, например, с координатни вектори $\overrightarrow{e}_1' = \overrightarrow{AB}, \overrightarrow{e}_2' = \overrightarrow{AC}$. Относно тази система B(1,0), а C(0,1). Тогава от $\overrightarrow{AP} = \frac{1}{2}\overrightarrow{AC}$ следва $P(0,\frac{1}{2})$.

Ако координатните оси са взаимно перпендикулярни, координатната система се нарича *ортогонална*.

Ако координатните вектори са единични, координатната система се нарича *нормирана*.

Ако координатните оси са взаимно перпендикулярни и координатните вектори са единични, координатната система се нарича *ортонормирана*.

3. Просто отношение на три точки

Нека A, B, P са три различни точки, които лежат върху една права. Тогава съществува число $\lambda \neq 0$ така, че

$$\overrightarrow{AP} = \lambda \overrightarrow{BP}. \tag{4.1}$$

Определение 4.4. Числото λ , определено от равенството (4.1), се нарича *просто отношение* на точките A, B и P, взети в този ред и се означава с $\lambda = (ABP)$.

Следователно

$$|\lambda| = \frac{|\overrightarrow{AP}|}{|\overrightarrow{BP}|}.$$

За произволна точка O от (4.1) получаваме

$$\overrightarrow{OP} = \frac{\overrightarrow{OA} - \lambda \overrightarrow{OB}}{1 - \lambda}.$$
(4.2)

Ако A(a), B(b), M(x) относно $K = O\vec{e}_1$, то от (4.2) следва

$$x = \frac{a - \lambda b}{1 - \lambda}.$$

Изпълнено е $\lambda < 0$, точно когато P принадлежи на отсечката AB и $\lambda > 0$, точно когато P лежи вън от отсечката AB.

В частност, ако P е среда на отсечката AB, то от $\overrightarrow{AP}=-\overrightarrow{BP}$ следва, че (ABP)=-1.

Теорема 4.2. (Менелай) Нека ABC е произволен триъгълник и точките A_1 , B_1 и C_1 са съответно от правите BC, CA и AB. Тогава A_1 , B_1 и C_1 лежат върху една права, точно когато

$$(ABC_1).(BCA_1).(CAB_1) = 1,$$

т. е. точно когато

$$\frac{AC_1}{BC_1} \cdot \frac{BA_1}{CA_1} \cdot \frac{CB_1}{AB_1} = 1.$$

 Φ иг. 4.5

Теорема 4.3. (Чева) Нека ABC е произволен триъгълник и точките A_1 , B_1 и C_1 са съответно от правите BC, CA и AB. Тогава правите AA_1 , BB_1 и CC_1 се пресичат в една точка или са успоредни помежду си, точно когато

$$(ABC_1).(BCA_1).(CAB_1) = -1,$$

т. е. точно когато

$$\frac{AC_1}{BC_1} \cdot \frac{BA_1}{CA_1} \cdot \frac{CB_1}{AB_1} = 1.$$

Фиг. 4.6

Използвана литература

- 1. Д. Мекеров, Н. Начев, Ст. Миховски, Е. Павлов, Линейна алгебра и аналитична геометрия, Пловдив, 1997.
- 2. L. Hogben, Handbook of linear algebra, CRC, 2007.
- 3. D. C. Lay, *Linear algebra and its applications*, University of Maryland.
- 4. C. D. Meyer, Matrix analysis and applied linear algebra, SIAM.
- 5. G. Strang, Linear algebra and its applications, 3rd ed., MIT, 1988.