有关等度连续函数序列一致有界性的问题1

杜升华2

§1问题

在高等分析课上,我们学习了如下形式的 Arzelà-Ascoli 定理:

设 $K \subset \mathbb{R}^d$ 为紧集, $\{f_n\} \subset C(K)$ 满足:(1)一致有界,即 $\|f_n\| \coloneqq \sup_{x \in K} |f_n(x)| \le C$, $\forall n \ge 1$ (C 与 n 无 关);(2) 等 度 连 续 ,即 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使 得 当 $x, y \in K$, $|x-y| < \delta$ 时 , $\sup_{n \ge 1} |f_n(x) - f_n(y)| < \varepsilon \text{ 。 则存在子列} \{f_{n_k}\} \text{ 使得} \{f_{n_k}\}_{k=1}^{\infty} \text{ 在 } K \text{ 上一致收敛,即 } \exists f \in C(K) \text{ 使得} \|f_{n_k} - f\| \to 0 \ (k \to \infty) \text{ 。}$

由于证明过程中只用到逐点有界的条件,但根据卓里奇的教材,一致有界是一个必要条件, 所以有同学提出这样的问题:是否{f_n}的一致有界性可由逐点有界和题目的其他条件推出?或 者考虑一个更强些的命题:是否紧集上逐点有界的连续函数序列一定是一致有界的? 以下是我在课后给出的结论和证明——

§ 2 紧集上逐点有界的**等度**连续函数序列必一致有界

设 X 是一个度量空间, $K \subset X$ 是一个紧集, $f_n \in C(K,\mathbb{R})$ 是 K 上的等度连续函数序列, $\forall x \in K$,序列 $\{f_n(x)\}$ 有界,则函数序列 $\{f_n\}$ 在 K 上一致有界。

证明: 假设不然,那么 $\sup_{n\geq 1} \left| f_n(x) \right| = +\infty$ 。对于 1,存在 $x_1 \in K$ 使得 $\sup_{n\geq 1} \left| f_n(x_1) \right| > 1$;对于 2,存在 $x_2 \in K$ 使得 $\sup_{n\geq 1} \left| f_n(x_2) \right| > 2$; … … ;对于 $k \in \mathbb{N}$,存在 $x_k \in K$ 使得 $\sup_{n\geq 1} \left| f_n(x_k) \right| > k$ ……由此得到紧集 K 中序列 $\{x_k\}$,它有在 K 中收敛的子列 $\{x_{k_j}\}$,设 $\lim_{j \to \infty} x_{k_j} = x_0$ 。而序列 $\{f_n(x_0)\}$ 是有界的,设 $\sup_{n\geq 1} \left| f_n(x_0) \right| = M$ 。由函数序列 $\{f_n\}$ 在 K 上等度连续知 $\exists \delta > 0$ 使得 $\forall x, y \in K$, $d(x,y) < \delta$ 有 $\left| f_n(x) - f_n(y) \right| < 1$, $\forall n \geq 1$ 。 特别地,当 $x \in B(x_0,\delta)$ 时, $\left| f_n(x) \right| < \left| f_n(x_0) \right| + 1 \le M + 1$, $\forall n \geq 1$ 。 但是当 j 充分大时,有 $d(x_{k_j},x_0) < \delta$ 且 $\sup_{n\geq 1} \left| f_n(x_{k_j}) \right| \ge k_j \ge j > M + 1$,矛盾。

也可直接证明: 由等度连续定义, $\exists \delta > 0$ 使得 $\forall x, y \in K$, $d(x, y) < \delta$ 有 $\left| f_n(x) - f_n(y) \right| < 1$,

¹ 本文根据作者在 2007 年春季学期高等分析课程学习期间推导出的结果整理而成。

² 基科 58-基数 53

 $\forall n \geq 1$ 。 $\bigcup_{x \in K} B(x, \delta)$ 构成紧集 K 的开覆盖,从中可取出有限覆盖: $\bigcup_{i=1}^N B(x_i, \delta) \supset K$ 。 令

$$M = \max_{1 \leq i \leq N} \left\{ \sup_{n \geq 1} \left| f_n(x_i) \right| \right\} + 1 \, , \quad \forall x \in K \, , \quad \exists x_i \notin \exists x \in B(x_i, \delta) \, , \quad \text{if } \left| f_n(x) - f_n(x_i) \right| < 1 \, , \quad \forall n \geq 1 \, .$$

于是有 $|f_n(x)| < |f_n(x_i)| + 1 \le \sup_{n \ge 1} |f_n(x_i)| + 1 \le M$ 。由 $x \le n$ 的任意性知函数序列 $\{f_n\}$ 在 K 上一致有界。

值得注意的是,条件中"等度"二字不能去掉。因为可以构造出随着 n 的增大在某一点处变化得越来越"厉害"的函数序列。下面举一个反例:

设
$$K = [0,2]$$
 为 \mathbb{R} 中紧集, $f_n(x) = \begin{cases} n^2 x, & 0 \le x \le \frac{1}{n} \\ 2n - n^2 x, & \frac{1}{n} \le x \le \frac{2}{n}, \end{cases}$ 它的图像是底边在 x 轴上、 $0, \quad \frac{2}{n} \le x \le 2$

以 $\left(\frac{1}{n},n\right)$ 为顶点的等腰三角形的两腰以及 x 轴上的一条线段。 $\{f_n\}_{n=1}^{\infty}$ 显然是[0,2] 上的连续函数序列,且不难验证它们在每一点处都是有界的,但显然并不一致有界。

§3相关问题

任课老师对我的上述证明表示肯定,并指出可能只要"函数列在某一点处的函数数列有界"加上"等度连续"即可推出"一致有界"。后来补充说当紧集 K 不连通时上述命题不总成立,而连通时应当成立。于是我对此作了严格证明——

§ 4 在连通紧集内某点处有界的等度连续函数序列一致有界

设 K 是度量空间 X 内的连通紧集, $\{f_n\}$ 是 K 上的等度连续函数序列, $x_0 \in K$,数列 $\{f_n(x_0)\}$ 有界,则 $\{f_n\}$ 在 K 上一致有界。

证明:根据已证明的"紧集上逐点有界的等度连续函数序列必一致有界"的命题,只需证 $\{f_n\}$ 在K上逐点有界。

由 $\{f_n\}$ 等度连续知, $\exists \delta > 0$ 使得 $\forall x, y \in K$,只要 $d(x, y) < \delta$ 就有 $|f_n(x) - f_n(y)| < 1$, $\forall n \ge 1$ 。

设 $E = \{x \in K \mid \exists M > 0, \forall n \geq 1, |f_n(x)| < M\}$,来证明 $E \not\in K$ 中的非空开闭集。非空性是已知的。

任取 $x_1 \in E$,设 $\sup_{n \ge 1} |f_n(x_1)| = M$ 。考虑 K 中开集 $B(x_1, \delta) \cap K$, $\forall x \in B(x_1, \delta) \cap K$, 有

 $|f_n(x)| \le |f_n(x_1)| + |f_n(x) - f_n(x_1)| < M + 1$, $\forall n \ge 1$, $\text{the } B(x_1, \delta) \cap K \subset E$, $E \not\in K \oplus F \not\in S^3$.

任取 $x_2 \in K \setminus E$ 。考虑 K 中开集 $B(x_2, \delta) \cap K$,假设 $\exists a \in B(x_2, \delta) \cap K$ 使得 $\{f_n(a)\}$ 有界,设 $\sup_{n \geq 1} |f_n(a)| = M$,则 $|f_n(x_2)| \leq |f_n(a)| + |f_n(x_2) - f_n(a)| < M + 1$, $\forall n \geq 1$ 。由此推出 $x_2 \in E$,矛盾。故 $\forall x \in B(x_2, \delta) \cap K$, $\{f_n(x)\}$ 无界,即 $B(x_2, \delta) \cap K \subset K \setminus E$,所以 $K \setminus E$ 是 K 中开集,也即 E 是 K 中闭集。

由 K 的连通性知 E=K,即 $\{f_n\}$ 在 K 上逐点有界,从而一致有界。

注: K的紧性要在"逐点有界"推"一致有界"这一步用到。

§5 结论

至此,我们可以把开头提到的 \mathbb{R}^d 中紧集上的 Arzelà-Ascoli 定理在更弱的条件下表述出来 4 :

设(X,d)是一个度量空间, $K \subset X$ 是一个紧集, $f_n \in C(K,\mathbb{R})$ 是 K 上的等度连续函数序列, 并满足如下两条件之一: ① $\forall x \in K$,序列 $\{f_n(x)\}$ 有界; ②K 是连通集,且 $\exists x_0 \in K$ 使得序列 $\{f_n(x_0)\}$ 有界。则存在子列 $\{f_{n_k}\}$ 使得 $\{f_{n_k}\}_{k=1}^\infty$ 在 K 上一致收敛。

数学名言

一个没有几分诗人气的数学家永远成不了一个完全的数学家。

----[德] **K**•维尔斯特拉斯

一个名副其实的科学家,尤其是一个数学家,他在工作中会感受到与艺术家相同的巨大愉快。

——[法] H•庞加莱

在"真正的数学"中,存在着严肃性、寓意深远、美丽、一般性、深刻性、意外性、必然性和 经济性。

——[英] G•H•哈代

 $^{^3}$ 所谓 "E 是 K 中开集"是指相对开集(诱导拓扑意义下的开集),即存在 X 中开集 U 使得 $E=K\cap U$ 。事实上,这里可以取 $U=\bigcup_{E}B(x_1,\delta)$ 。对于下文中的 $K\setminus E$ 也是如此。

 $^{^4}$ 前面的 \mathbb{R}^d 显然可以替换为任意一个度量空间(X,d)。