Упражнение 1. Рассмотрим группу диэдра D_6 . Найти в ней силовскую 2-подгруппу \mathcal{P}_2 и силовскую 3-подгруппу \mathcal{P}_3 такие, чтобы \mathcal{P}_3 была нормальной. Рассмотрим множество $S = \mathcal{P}_3 \times \mathcal{P}_2$:

$$S = \{ (\sigma, \tau) \mid \sigma \in \mathcal{P}_3, \tau \in \mathcal{P}_2 \}$$

Рассмотрим отображение $\varphi:S\to D_6$, которое перемножает компоненты кортежа:

$$\varphi((\sigma,\tau)) = \sigma\tau$$

Ввести на S структуру группы, так чтобы отображение φ стало изоморфизмом.

Решение. $12=4\cdot 3\Rightarrow$ силовские 2-подгруппы имеют порядок $2^2=4$, силовские 3-подгруппы имеют порядок $3^1=3$.

Обозначение. Поворот на 60t ($60t \in [0, 360)$) градусов это ρ_t . Зафиксируем произвольную ось симметрии, тогда τ_t — отражение относительно оси, повернутой на 30t градусов относительно фиксированной оси ($30t \in [0, 180)$). Все сложения и вычитания в индексах операций выполняются по модулю 6.

Несложно заметить, что $\{e, \tau_0, \rho_3, \tau_3\}$ образуют подгруппу размера 4, пусть она будет \mathcal{P}_2 . $\mathcal{P}_3 = \{e, \rho_2, \rho_4\}$. Нормальность:

- 1. Поскольку повороты коммутируют между собой, $\rho_i \mathcal{P}_3 \rho_i^{-1} = \rho_i \rho_i^{-1} \mathcal{P}_3 = \mathcal{P}_3$.
- 2. (a) e очевидно нормален

(b)
$$\tau_i \rho_2 \tau_i^{-1} = \tau_{i-2} \tau_i = \rho_{-2} = \rho_4$$

(c)
$$\tau_i \rho_4 \tau_i^{-1} = \tau_{i-4} \tau_i = \rho_{-4} = \rho_2$$

 $e_S = (e, e)$ — очевидно.

Воспользуемся сопряжением:

$$(\sigma, \tau) \circ (\sigma', \tau') \coloneqq (\sigma \tau \sigma' \tau^{-1}, \tau \tau')$$

Интуитивное пояснение нахождения этой операции: нормальность \mathcal{P}_3 явно требуется не случайно, поэтому воспользуемся тем, что $\tau \sigma \tau^{-1} \in \mathcal{P}_3$ — тут есть 4 варианта навешивания штрихов. Для второго элемента результата вариантов два: $\tau \tau'$ и $\tau' \tau$ (отбрасывать τ или τ' не кажется содержательным). Мы ещё забыли σ' (или σ , в зависимости от штрихов в сопряжении), поэтому домножим на него в первом элементе результата. После небольшого перебора находится искомая операция.

Примечание. То, что φ — изоморфизм, показано в задаче 3.

M3*37y2019 30.10.2021

Упражнение 2. Рассмотрим группу порядка 35. Рассмотрим некоторую её силовскую 5-подгруппу \mathcal{P}_5 . Показать, что она единственна.

Примечание. Показать, что количество n_5 силовских 5-подгрупп равно: $n_5 = 1$

Доказательство. $35 = 5 \cdot 7 \Rightarrow n_5 \equiv 1 \mod 5$ и $\frac{35}{5} : n_5$ по третьей теореме Силова¹. У 7 два делителя: 1 и 7. $7 \not\equiv 1 \mod 5, 1 \equiv 1 \mod 5 \Rightarrow n_5 = 1$.

Упражнение 3. Рассмотрим группу G порядка 119. Пусть \mathcal{P}_7 — её силовская 7-подгруппа. Показать, что \mathcal{P}_7 нормально. Показать, что фактор-группа G/\mathcal{P}_7 — циклическая группа. Показать, что группа G абелева.

Примечание. см. задачу 1

Решение. $119 = 7 \cdot 17 \Rightarrow |\mathcal{P}_7| = 7 \Rightarrow |G/\mathcal{P}_7| = \frac{|G|}{|\mathcal{P}_7|} = \frac{119}{7} = 17 -$ простое число $\Rightarrow G/\mathcal{P}_7$ — циклическая группа.

Аналогично предыдущей задаче $n_7 \equiv 1 \mod 5, 17$: $n_7 \Rightarrow n_7 = 1$, т.е. \mathcal{P}_7 — единственная силовская 7-подгруппа. $|g\mathcal{P}_7g^{-1}| = |\mathcal{P}_7|$, но $g\mathcal{P}_7g^{-1}$ также является силовской 7-подгруппой. В силу единственности $g\mathcal{P}_7g^{-1} = \mathcal{P}_7 \Rightarrow \mathcal{P}_7$ нормальна.

По первой теореме Силова $\exists \mathcal{P}_{17}.\ \mathcal{P}_7 \times \mathcal{P}_{17} \cong G$ по изоморфизму $\varphi:(a,b)\mapsto ab$, где операция на $\mathcal{P}_7,\mathcal{P}_{17}$ есть $(a,b)\circ(c,d)=(abcb^{-1},bd)$:

$$abcd = \varphi(a,b)\varphi(c,d) \stackrel{?}{=} \varphi((a,b)\circ(c,d)) = \varphi((abcb^{-1},bd)) = abcd$$

Т.к 7 и 17 простые числа, \mathcal{P}_7 и \mathcal{P}_{17} циклические, а следовательно абелевы. Пусть $\mathcal{P}_7 = \langle g \rangle$, $\mathcal{P}_{17} = \langle h \rangle$. Покажем, что $g^i h^j = h^j g^i$, тогда:

$$(g^i,h^j)\circ (g^k,h^l)=(g^ih^jg^kh^{-j},h^{j+l})=(g^{i+k},h^{j+l})=(g^k,h^l)\circ (g^i,h^j)$$

, то есть $\mathcal{P}_7 \times \mathcal{P}_{17}$ абелева, тогда G абелева как изоморфная абелевой.

Для этого покажем $g^ih=hg^i$, тогда , тогда искомое будет верно по индукции ($g^ih^{j+1}=g^ihh^j=hg^ih^j=h^{j+1}g^i$)

$$\langle a = g^i, b = hg^j \quad ab = g^ihg^j = h(h^{-1}g^ih)g^j = hg^kg^j = hg^{k+j} \quad ba = hg^{i+j}$$

, где $g^k = h^{-1}g^i h$, такое k существует по нормальности \mathcal{P}_7 .

$$g^k = h^{-1}g^i h$$
$$hg^k = g^i h$$

M3*37y2019 30.10.2021

 $^{^1}$ Второй факт, кажется, не рассматривался на лекции, но он очевиден. Я взял его с википедии, страница "Теоремы Силова".

$$g^{-i}hg^{k} = h$$

$$(g^{-i}hg^{k})^{17} = h^{17}$$

$$(g^{-i}hg^{k})^{17} = e$$

$$g^{-i}hg^{k-i}hg^{k-i}\dots g^{k} = e$$

$$(hg^{k-i})^{17} = e$$

Таким образом, $hg^{k-i}\in\mathcal{P}_{17}{}^2$, тогда $g^{k-i}=1\Rightarrow k-i\equiv 0\mod 7\Rightarrow ab=hg^{k+j}=hg^{i+j}=ba$

M3*37y2019 30.10.2021

 $[\]overline{{}^2$ Точнее, $hg^{k-i} \in \varphi^{-1}(\mathcal{P}_{17})$