MATHEMATICS 271 L01 FALL 2015 QUIZ 1 SOLUTIONS

- 1. Write the *negation* (in good English) of each of the following statements. The answer "It is not the case that ..." is **not** acceptable.
- (a) For all real numbers x and y, if x is rational and y is irrational then x + y and xy are irrational.

Solution: There are real numbers x and y so that x is rational and y is irrational, but x + y or xy are rational.

(b) For all integers x and y, if $x^2 + 3x = y^2 + 3y$ then x = y or x = -y.

Solution: There are integers x and y so that $x^2 + 3x = y^2 + 3y$, but $x \neq y$ and $x \neq -y$.

(c) For all integers y, there exists an integer x so that $y = x^2 - 2x$.

Solution: There is an integer y so that for all integers $x, y \neq x^2 - 2x$.

(d) There exists an integer n so that for all integers m, $2 \nmid n-m$ or $3 \nmid n-m$.

Solution: For all integers n, there exists an integers m so that $2 \mid n-m$ and $3 \mid n-m$.

2. Prove that the statement: "There exists an integer n so that for all integers m, n+m is odd and n-m is even." is **false** by writing out its negation and prove that.

Solution: Its negation is: "For all integers n, there exists an integer m so that n + m is even or n - m is odd." and below is a proof of the negation.

Suppose that n is an integer. Let m = -n. Then m is an integer and n + m = 0 which is even.

- **3**. Let \mathcal{P} be the statement: "For all integers a and b, if $a \mid bc$ then $a \mid b$ or $a \mid c$."
- (a) Prove that \mathcal{P} is false.

Solution: \mathcal{P} is false because with the integers a=4 and b=c=2, we have $bc=6=a=a\times 1$ where $1\in\mathbb{Z}$, but $a\nmid b$ and $a\nmid c$ since $4\nmid 2$.

(b) Write out the converse of \mathcal{P} . Prove that the converse of \mathcal{P} is true.

Solution: The converse of \mathcal{P} is: "For all integers a and b, if $a \mid b$ or $a \mid c$ then $a \mid bc$." and below is a proof of the converse.

Let a and b be integers so that $a \mid b$ or $a \mid c$. Then we have two cases:

Case 1: $a \mid b$. Then b = ak for some integer k, and therefore bc = (ak) c = a(kc) where kc is an integer. This implies $a \mid bc$.

Case 2: $a \mid c$. Then c = am for some integer m, and therefore bc = b(am) = a(bm) where bm is an integer. This implies $a \mid bc$.

(c) Write out the contrapositive of \mathcal{P} . Is the contrapositive of \mathcal{P} true? Explain.

Solution: The contrapositive of \mathcal{P} is: "For all integers a and b, if $a \nmid b$ and $a \nmid c$ then $a \nmid bc$."

The contrapositive of \mathcal{P} is false because it is logically equivalent to P which is proven to be false in part (a).