Project 2 - Reproducible Research

Rich Huebner January 25, 2016

Introduction & Synopsis

The basic goal of this assignment was to explore the NOAA Storm Database and answer some basic questions about severe weather events. Data is from the National Weather Service storm data, and is available here. The data contains the occurrence of storms and other significant weather phenomena having sufficient intensity to cause loss of life, injuries, property damage, etc. The analysis uses the Storm database to answer the questions listed below. All code and processing steps are shown below, along with the results. The data is processed to standarize/normalize some of the values.

The data had to be preprocessed prior to conducting the actual analysis, and prior to determining the answers to the questions. Preprocessing involved ensuring that NAs (no value) were converted to zeros. Additionally, the data had to be aggregated by the event type (EVTYPE) as well, so there are functions in the preprocessing that do that as well.

Libraries Used in this Analysis The following libraries are used in the analysis.

ggplot2 for graphing and plotting dplyr for subsetting and data manipulation

Data Set Information Detailed Documentation here: https://d396qusza40orc.cloudfront.net/repdata% 2Fpeer2_doc%2Fpd01016005curr.pdf

Data Set here: https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2

The data set file, when extracted, is about 500Mb. Loading the file upon first running the script takes time, so please be patient.

Data Analysis and Questions in this Study The data analysis addressed the following questions:

- 1. Across the U.S., which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?
- 2. Across the U.S., which types of events have the greatest economic consequences?

Data Processing

Load the required libraries for R.

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

```
setwd("D:\\data\\RProjects\\RResearch_Project2")
data <- read.csv("repdata-data-StormData.csv", header=TRUE, sep=",")
head(data)</pre>
```

Load the data set into R.

##		STATE	I	BGN_DATE	BGN_TIME	TIME_	ZONE	COUNTY	COUNT	YNAME	STATE
##	1	1	4/18/1950	0:00:00	0130		CST	97	M	OBILE	AL
##	2	1	4/18/1950	0:00:00	0145		CST	3	BA	LDWIN	AL
##	3	1	2/20/1951	0:00:00	1600		CST	57	FA	YETTE	AL
##	4	1	6/8/1951	0:00:00	0900		CST	89	MA	DISON	AL
##	5	1	11/15/1951	0:00:00	1500		CST	43	CU	LLMAN	AL
##	6	1	11/15/1951	0:00:00	2000		CST	77	LAUDE	RDALE	AL
##		EVTYPE :	BGN_RANGE F	BGN_AZI E	BGN_LOCAT	I END_	DATE	END_TIM	Æ COU	NTY_E	ID
##	1	TORNADO	0								0
##	2	TORNADO	0								0
##	3	TORNADO	0								0
##	4	TORNADO	0								0
##	5	TORNADO	0								0
##	6	TORNADO	0								0
##		COUNTYEN	DN END_RANG	GE END_AZ	ZI END_LO	CATI L	ENGTH	WIDTH	F MAG	FATAI	LITIES
##	1		NA	0			14.0	100	3 0		0
##	2		NA	0			2.0	150	2 0		0
##			NA	0			0.1				0
##			NA	0			0.0				0
##	5		NA	0			0.0				0
##	6		NA	0			1.5				0
##			PROPDMG PR			CROPD	MGEXP	WFO ST	TATEOF	FIC Z	ONENAMES
##		15			0						
##	2	0	2.5	ŀ	0						
##		2			0 >						
##		2			0						
##		2			0						
##	6	6	2.5								
##			LONGITUDE		_	_	REMAR	KS REFI			
##		3040		30	051	8806			1		
##	_	3042			0	0			2		
##		3340			0	0			3		
##	_	3458			0	0			4		
##		3412			0	0			5		
##	6	3450	8748		0	0			6		

Clean the data by normalizing the data set.

```
#### First, I will only use the variables I need in this analysis. So, create a subset.
scols = c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")
subdata <- data[scols]</pre>
```

```
#### Fill in Os for anything that's missing in the dataset
subdata[subdata$FATALITIES == ""] <- 0
subdata[subdata$INJURIES == ""] <- 0
subdata[subdata$PROPDMG == ""] <- 0
subdata[subdata$CROPDMG == ""] <- 0</pre>
```

Update event names – essentially normalizing them, "wind, WiNd" = "WIND"

```
##
     EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 1 TORNADO
                  0
                         15
                              25.0
                         0
## 2 TORNADO
                 0
                               2.5
                                          K
                                                 0
                 0
## 3 TORNADO
                         2
                              25.0
                                         K
                                                 0
                 0
                         2
                              2.5
## 4 TORNADO
                                         K
                                                 0
## 5 TORNADO
                 0
                          2
                               2.5
                                          K
                                                 0
## 6 TORNADO
                  0
                          6
                               2.5
                                          K
                                                 0
```

```
#### Clean the data by normalizing the data set. "WInd, wind" = "WIND"

subdata$PROPDMGEXP[subdata$PROPDMGEXP == ""] <- 0

subdata$EVTYPE <- gsub("^HEAT$", "EXCESSIVE HEAT", subdata$EVTYPE )

subdata$EVTYPE <- gsub("^TSTM WIND$", "THUNDERSTORM WIND", subdata$EVTYPE)

subdata$EVTYPE <- gsub("^THUNDERSTORM WIND$", "THUNDERSTORM WIND", subdata$EVTYPE)</pre>
```

```
f <- aggregate(subdata$FATALITIES, by=list(subdata$EVTYPE), sum, na.rm = TRUE)
names(f) <- c("Category", "Total")
fsort <- f[order(-f$Total), ]
topf <- fsort[1:10, ]
topf$Category <- factor(topf$Category, levels=topf$Category, ordered=TRUE)</pre>
```

Get aggregated data on fatalities.

```
e <- aggregate(subdata$PROPDMG, by=list(subdata$EVTYPE), sum, na.rm=TRUE)
names(e) <- c("Category", "Total")
esort <- e[order(-e$Total), ]
tope <- esort[1:10, ]
tope$Category <- factor(tope$Category, levels=tope$Category, ordered=TRUE)</pre>
```

Get aggregated data on economic consequences

Results

Q 1. Across the U.S., which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health? Here's a plot of the data to answer question #1.

Solution: Based on the graph, the MOST harmful with respect to population health is the TORNADO, followed by EXCESSIVE HEAT and FLASH FLOODING.

Q 2. Across the U.S., which types of events have the greatest economic consequences? Here's the second plot. This one addresses question #2.

In terms of greatest economic impact, the TORNADO is the highest, followed by THUNDERSTORM WINDS and FLASH FLOODING.