V defines $V^{v} = Hom(V, F)$

Q let U sub V be a linear subspace do we then have U' sub V'?

A no: dual to inclusion i : U to V is i^v : V^v to U^v [instead:]

Df the annihilator Ann_{V'}(U) sub V' is def by $\{\theta \text{ in } V' \mid \theta(u) = 0 \text{ for all } u \text{ in } U\}$

<u>Lem</u>

recall:

- 1) Ann_ $\{V^{v}\}(U)$ is a linear subspace of V^{v}
- 2) U sub U' iff

Ann_{V'}(U') sub Ann_{V'}(U)

Pf 1) if θ , θ' in Ann(U) and α in F, then $(\theta + \theta')(u) = \theta(u) + \theta'(u) = 0$ $(\alpha \cdot \theta)(u) = \alpha \cdot \theta(u) = 0$

2) suppose U sub U'
pick φ in Ann_{V'}(U')
for all u in U, have u in U'
so φ(u) = 0
so φ in Ann_{V'}(U)

other direction is also boring

recall: if V is finite-dim'l, then dim $V^v = \dim V$

Q what is dim Ann_{V'}(U) in terms of dim V, dim U? [note: U larger means Ann(U) smaller]
A [guess] dim Ann_{V'}(U) = dim V – dim U

[note: dim $U = dim U^v$] [relate Ann, V^v , U^v ?]

<u>Lem</u> Ann_ $\{V^{\vee}\}(U) = \ker(i^{\vee} : V^{\vee} \text{ to } U^{\vee})$

Pf what is i^v?

 $i^{v}(\theta) = \theta|_{U}$ [restrict the domain]

now, θ in Ann_{V'}(U) iff θ |_U is zero iff θ in ker(i') \square

[so it remains to show $im(i^v) = U^v$]

Lem if V is finite-dim'l and U sub V then V' to U' is surjective

Pf pick ψ in U' want to exhibit θ in V' s.t. θ |_U = ψ

lem from a long time ago:

any basis of U can be extended to one of V
so pick u_1, ..., u_ℓ, v_1, ..., v_m s.t.

u's form a basis of U

u's and v's form a basis of V

let θ be def by $\theta(u_i) = \psi(u_i)$ $\theta(v_j) = \text{anything!}$

Thm 1 dim Ann_
$$\{V^{V}\}(U)$$
 = dim V – dim U

$$\frac{Pf}{dim Ann} = \dim V^{v} - im(i^{v})$$

$$= \dim V^{v} - \dim U^{v}$$

$$= \dim V - \dim U$$

[putting the last lemma in context:]

- 1) if V is fin. dim. and T inj., then T' is surj.
- if T is surj., then T' is inj.[with no hypotheses of fin-dim'lity]

Thm 2 in turn follows from Thm 3 below:

Df let T : U to V be any lin map let Ω be any vector space

pullback T^{v} : $Hom(V, \Omega)$ to $Hom(U, \Omega)$ is def by

$$\mathsf{T}^{\mathsf{v}}(\mathsf{\theta}) = \mathsf{\theta} \, \circ \, \mathsf{T}$$

Thm 3 above:

- 1) if V is fin. dim. and T inj., then T' is surj.
- 2) if T is surj., then T' is inj.

to prove 2): suppose T surj. pick θ , θ' : V to Ω s.t. $T^{v}(\theta) = T^{v}(\theta')$ want to show $\theta = \theta'$ $T^{v}(\theta) = T^{v}(\theta')$ says $\theta(T(u)) = \theta'(T(u))$ for all u in U while $\theta = \theta'$ says $\theta(v) = \theta'(v)$ for all v in V

but for all v in V, can pick u in U s.t. T(u) = v because T surj.

then
$$\theta(v) = \theta(T(u)) = \theta'(T(u)) = \theta'(v)$$

Rem to show T^v inj., would have been easier to show $ker(T^v) = \{0\}$ but this proof generalizes:

(<u>Thm</u>) for any sets X, Y, Z and map f : X to Y if f is surj., then

Maps(Y, Z) to Maps(X, Z) is inj. θ mapsto $\theta \circ f$

(Axler §3E) have seen:

giving a lin. subsp. of V is equiv to giving a vector space U and inj. lin. map i : U to V key: i injective iff U is iso to im(i)

[what about surj. lin. maps out of V?]

<u>Df</u> suppose U is a lin. subsp. of V set $v + U = \{v + u \mid u \text{ in } U\}$ for all v in V

warning: v + U = v' + U whenever v - v' in U

the linear quotient of V by U is the vec. sp. formed as follows from $V/U = \{v + U \mid v \text{ in V}\}$ ["V mod U"]:

for all
$$v + U$$
 and $w + U$ and a in F :
 $(v + U) + (w + U) = (v + w) + U$
 $a \cdot (v + U) = a \cdot v + U$

Pf if
$$v + U = v' + U$$
 and $w + U = w' + U$
then $(v + w) - (v' + w')$
 $= (v - v') + (w - w')$
in $U + U$
in U
so $(v + w) + U = (v' + w') + U$

pf that • is well-defined is similar

now see:

giving a lin. quotient of V is equiv to giving a vector sp. W and surj. lin. map q: V to W key: q surjective iff W is iso to V/ker(q)

more parallels:

lin. subsp. U to V gives lin. quotient V' to U' when V is fin. dim'l

lin. quot. V to V/U gives lin. subsp. (V/U)^v to V^v [naturally suggests:]

<u>Lem</u> Ann_{ V^{\vee} }(U) = im($(V/U)^{\vee}$ to V^{\vee})

Pf let q : V to V/U be the quotient map
$$q^{v}$$
 : $(V/U)^{v}$ to V^{v} is given by pullback: $q^{v}(\psi) = \psi \circ q$

key: latter occurs iff ker(
$$\theta$$
) supset ker(q) = U

"only if": PS4, #3

"if": if ker(θ) supset U

then $\psi(v + U) = \theta(v)$ well-def, lin.

so $\theta = \psi \circ q$ for some ψ iff $\theta \mid U$ is zero

Summary for any V: U inj V surj V/U dualizes to (V/U)^v inj V^v to U^v

and:

- $(V/U)^v$ iso to Ann_ $\{V^v\}(U)$
- for V fin. dim'l, the last map is surj