Graph and discrete structure

Louis Esperet (GSCOP) - 4 lectures. Lecture 4

Reminder

Th: planar graphs are 5-list-colorable

Th(Voigt): There are planar graphs that are not 4-list-colorable.

Course

Proof with probability

Relation between ω and α

 $\omega(G) =$ size of the largest clique.

 $\alpha(G)=$ size of the largest stable set = independence number.

$$\omega(G) \leq \chi(G)$$

Obs : If G has n vertices, $\chi(G) \geq n/\alpha(G)$

List coloring

Mycielski 1955

Construction of triangle-free graphs of arbitrarily large chromatic numbers.

Exemple G_4

Proof of Th.

 G_i is triangle free and $\chi(G_i)=i$

By contradiction.

 \exists color class C , \forall vertex $v \in C.$ v does not see some color class.

Erdos 49

The girth of a graph = the length of the shortest cycle.

For any g and any k,\exists a graph of girth $\geq g$ and chormatic number ≥ 4 .

triangle-free \Leftrightarrow girth \geq 4.

Birth of the *probabilistic method*.

Exemple

Every graph of m edges has a partition V_1,V_2 of its vertex set with $\geq m/2$ edges between V_1 and V_2 .

Probabilistic version

For each vertex put it in V_1 with prob 1/2.

What is $\emph{expectation}$ of th enumber of edges between V_1 and V_2 ?

 ${\sf Expectation} = \#edges \times {\sf probability} \ {\sf that} \ {\sf a} \ {\sf given} \ {\sf edge} \ e \ {\sf is} \ {\sf between} \ V_1 \ {\sf and} \ V_2.$

$$1/2 * 1/2 + 1/2 * 1/2 = 1/2$$

We proved that the expectation is m/2.

There is a partition V_1, V_2 with m/2 edges between V_1 and V_2 .

Proof for g = 4

Assignement: do it for all g.

G(n,p) binomial random graph.

n vertices. For each u, v add an edge between u and v independently with prob p.

- 1. prove that G(n, p) is triangle free.
- 2. prove that $\chi(G(n,p)) \leq k$.

We are going to show taht $lpha(G(n,k)) \leq n/2k$

Proof 1

$$\mathbb{E}(\# ext{ triangles }) = inom{n}{3} imes p \leq rac{n^3}{6} imes p^3 \leq rac{n}{6}$$

$$p=n^{rac{-2}{3}}$$

Markov inequality

$$X \geq 0$$
 random variable, $\mathbb{P}(X \geq k) \leq rac{\mathbb{E}(X)}{k}$

Proof (next)

![...]

Corollary

If $X \geq 0$ is an integer random variable.

$$\mathbb{P}(X \neq 0) \leq \mathbb{E}(X)$$

$$X \neq 0 \Leftrightarrow X \geq 1$$

$$\mathbb{E}(\# \text{ triangle }) \leq \frac{n}{6}$$

Markov:

$$\mathbb{P}(\# ext{ triangle} \leq rac{n}{2}) \leq rac{n}{6}/rac{n}{2} \leq rac{1}{3}$$

Proof of 2

 $\mathbb{P}(G$ has a stable set of size $n/2k) \leq \mathbb{E}(X)$

X:# stable set of size n/2k.

$$\mathbb{E}(X) = inom{n}{\frac{n}{2k}} imes \mathbb{P}(ext{ a given set of size } n/2k ext{ is a stable set })$$

$$\leq n^{n/2k} \cdot (1-p)^{n/2k}$$

$$1 - p \le \exp(-p)$$

$$\mathbb{E}(X) \leq n^{n/2k} \cdot \exp(-p \cdot n/2k(n/2k-1) \cdot 1/2)$$

...

Exercice

Give another planar graph that is not 4-list-colorable.