Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2020

Guía Práctica 1 Ejercicios Entregables Resueltos

Integrantes: Andrés M. Hense, Victoria Espil

Ejercicio 5.h Determinar, utilizando tablas de verdad, si las siguientes fórmulas son tautologias, contradicciones o contingencias.

 $\bullet ((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$

Respuesta

p	q	r	$(p \land (q \lor r))$	$((p \land q) \lor (p \land r))$	$((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$	
0	0	0	0	0	1	
0	0	1	0	0	1	
0	1	0	0	0	1	
0	1	1	0	0	1	Tautologia
1	0	0	0	0	1	
1	0	1	1	1	1	
1	1	0	1	1	1	
1	1	1	1	1	1	

Ejercicio 16.d Determinar los valores de verdad de las siguientes proposiciones cuando el valor de verdad de b y c es verdadero, el de a es falso y el de x e y es indefinido

 $\bullet (\neg (c \vee_L y) \leftrightarrow (\neg c \wedge_L \neg y))$

Respuesta

$$\begin{aligned} (\neg(c \vee_L y) \leftrightarrow (\neg c \wedge_L \neg y)) &= (\neg(True \vee_L \bot) \leftrightarrow (\neg True \wedge_L \neg \bot)) \\ &= (\neg True \leftrightarrow (False \wedge_L \neg \bot)) \\ &= (False \leftrightarrow False) \\ &= True \end{aligned}$$

Ejercicio 18.V Determinar para cada aparición de variables, si dicha aparición se encuentra libre o ligada. En caso de estar ligada, aclarar a qué cuantificador lo está.

 $(\forall j : \mathbb{Z})(j \le 0 \to (\forall j : \mathbb{Z})(j > 0 \to j \ne 0))$

Respuesta

$$(\forall_1 j_1 : \mathbb{Z})(j_{1_1} \leq 0 \rightarrow (\forall_2 j_2 : \mathbb{Z})(j_{2_1} > 0 \rightarrow j_{2_2} \neq 0))$$

 j_1 esta ligada a \forall_1 , y es llamada en j_{1_1}
 j_2 esta ligada a \forall_2 , y es llamada en j_{2_1} y j_{2_2}

Ejercicio 20.h Escriba los siguientes predicados y funciones en el lenguaje de especificación:

■ $pred\ mayorPrimoQueDivide\ (x:\mathbb{Z},y:\mathbb{Z})$, que sea verdadero si y es el mayor primo que divide a x.

Respuesta

```
■ pred esPrimo (x : \mathbb{Z}) {
(x > 1)(\forall i : \mathbb{N})(1 < i < x \rightarrow_L x \bmod i \neq 0)
}
■ pred mayorPrimoQueDivide (x : \mathbb{Z}, y : \mathbb{Z}) {
esPrimo(y) \land_L (x \bmod y = 0) \land
(\forall i : \mathbb{N})((abs(y) < i < abs(x) \land_L (x \bmod i = 0)) \rightarrow \neg esPrimo(i))
}
```