

Segmentez des clients d'un site e-commerce

Mark Creasey

Sommaire

Segmentation des clients d'un site d'e-commerce

01 Présentation de la problématique

02 Analyse exploratoire et feature engineering

03 Modélisations effectuées

04 Modèle sélectionné

05 Simulation de stabilité

06 Conclusion

01 Présentation de la problématique

Mission - Segmentation des clients

Pour améliorer les actions du marketing

- comprendre les différents types
 d'utilisateurs
- fournir à l'équipe marketing une description actionnable
- une proposition de contrat de maintenance (fréquence à laquelle la segmentation doit être mise à jour pour rester pertinente)

Contraintes

- Source de données:
 - o anonymisées
 - o période limitée de 18 mois
 - o 9 fichiers CSV à intégrer
- Format des livrables
 - Suivre PEP8

[olist] - solution de vente en ligne

Interprétation du problématique

La plateforme Olist

Les démarches

- Nettoyage fusion de données par client
- Analyse exploratoire des dimensions disponibles
- Feature engineering: Sélection / création
 d'indicateurs de comportement
- Modélisation : Segmentation des clients
- Interprétation: actions à prendre
- Evaluation de la stabilité de segmentation

02 Nettoyage et analyse exploratoire

Les données

La plateforme Olist - tables

customers clients geolocation orders (delivery) order reviews commandes order payments order_items products commande categories items sellers geolocation,

 Téléchargeable sur https://www.kaggle.com/olistbr/brazilian-ecommerce

Préparation des données

Feature engineering

- Confort financier
 - Nombre de commandes
 - Montant total dépensé
- Moyen de paiements
 - Mode de paiement préféré
- Satisfaction
 - Note moyenne des avis postés

Accessibilité

 Délai de livraison (date prévisionnelle vs. date de livraison)

Produits:

- Simplification de catégorie (segmentation produit)
- Catégorie préférée

Analyse financier: nombre de commandes croissant

Nombre de commandes

- Croissant pendant 1 an, puis stable
- Stabilité des segments ???

Nombre de commandes par mois

Montant dépensé

97% des clients ont fait seulement un commande

Moyenne valeur des commandes par mois

Analyse financier : Moyen et nombre de paiements

Moyenne de paiement indépendant du valeur

valeur

 55% des commandes sont payés en plusieurs fois

Analyse accessibilité : 80% du commerce en 6 états

80% achats en 6 états du sud

80% des ventes de 3 états (SP, PR, MG)

Analyse accessibilité : Délai de livraison

Influence de délai de livraison sur le review score

Délai de livraison vs. distance entre client et vendeur

Analyse produits : simplification de catégories

> 56 catégories

Groupement manuelle en 10 catégories

Analyse satisfactions : Review Score

La plupart des review scores sont 5/5

- Review score varie par catégorie
 - Temps de livraison?
 - Qualité / localisation vendeur ?
 - Expectations client?

Review score par catégorie simplifié

03. Modélisations effectuées

1. Segmentation RFM (Récence, Fréquence, Monétaire)

- Scoring RFM
 - R = Récence en 4 bins (quantiles)
 - F = Fréquence en 3 bins (1,2, plus)
 - M = Montant moyenne en 4 bins (quantiles)

 Incite à faire du marketing au plus récent (97% clients ont fait une seule commande)

• Score = R + F + M

Segments identifiés par segmentation RFM

Segmentation par RFM - monetary vs recency

customer segment

- Can't Lose Them
- Champions
- Loyal
- Potential
- Promising
- Needs Attention
- Require Activation

2. Segmentation Kmeans (Récence, Fréquence, Monétaire)

Segmentation par Kmeans (K=7)

Segments identifiés par segmentation KMeans (k=7) sur features RFM

3. Segmentation KMeans – choix du nombre de clusters (k)

Cohérence

- Inertia (distortion)
- Calinski Harabasz
- Davies_Bouldin

Forme

Silhouette

Stabilité

 Mesure de la reproductibilité des clusters sur échantillons aléatoires

Kmeans – silhouette scores


```
FEATURES =
  ['MonetaryValue',
  'Frequency',
  'review_score',
  'mean_nb_payments'
  ,'delivery_delay']
```

Kmeans (k=7) – Visualisation t-SNE

- Fréquent acheteurs au milieu
- Gros dépensiers à droite
- Petits achats à gauche

 La moyenne de paiement est aussi discriminatoire

Clustering Agglomerative

Meilleurs scores avec linkage Ward, k=7

- Segmentation similaire à Kmeans
- Très chronophage

DBSCAN

Les résultats sont très sensibles au choix d'hyperparamètres

DBSCAN - effet de [eps, min_samples] sur silhouette score

'Frequency',

Meilleurs résultats presque identiques au Kmeans (k=7)

04 Le modèle final sélectionné

05 Simulation de stabilité

Segments par Kmeans (k=7) (année février 2017-8)

Segmentation des clients - t0 (dernier achat entre 01-02-2017 et 31-01-2018)

Petit heureux (27.4 %)

Frequency

Monetary Value

Segments change pendant le temps

Segmentation des clients - t6 (dernier achat entre 01-08-2017 et 31-07-2018)

mean_nb_payments review score

Frequent heureux (1.5 %) Frequent insatisfait (1.6 %) Grand heureux (25.3 %) Frequency Frequency Frequency MonetaryValue delivery delay Montetary Value delivery delay MonetaryValue mean nb payments review score mean nb payments review score mean nb payments review score Petit heureux (31.3 %) Petit insatisfait (16.3 %) Très insatisfait (10.2 %) Frequency Frequency Frequency Montetary Value Montetary Value Montetary Value delivery da delivery delay delivery de

mean_nb_payments review score

mean nb payments review score

Grand insatisfait (13.7 %)

Frequency

mean nb payments review score

delivery delay

MonetaryValue

Evolution des segments dans le temps

Le segment 'fréquent' divise en 2 segments (satisfait/insatisfait)

Les segments très insatisfait et grand insatisfait devient 1 segment seul

```
FEATURES =
['MonetaryValue',
'Frequency',
'review_score',
'mean_nb_payments',
'delivery_delay']
```


Profil des segments (février 2017-8)

KMeans (k=7): box plots for clustering features

4	Grand insatisfait
2	Moyenne heureux
1	Moyenne insatisfait
6	Fréquent, assez satisfait
5	Très insatisfait
3	Petit insatisfait
0	Petit heureux

Profil des segments – Moyens de paiement

Fréquent (seg 1.)

plutôt carte de credit

Grand/moyenne dépense (Seg. 2,3,6)

toujours carte de crédit

Petits dépensiers (seg 4,5,7)

- beaucoup de transfert bancaire (boleto)
- Beaucoup de vouchers

Seg 1	Fréquent
Seg 2	Moyenne heureux
Seg 3	Moyenne insatisfait
Seg 4	Petit heureux
Seg 5	Petit insatisfait
Seg 6	Grand insatisfait
Seg 7	Petit heureux

Profil des segments – catégories préférées

Fréquent (Seg 1)

Parfum, santé, chambre et salle de bains

Grand/moyenne (Seg. 2,3,6)

- Parfum/santé (satisfait 2)
- meubles (insatisfait 3 et 6)

Petits dépensiers (seg 4,5,7)

Office tech

Seg 1	Fréquent
Seg 2	Moyenne heureux
Seg 3	Moyenne insatisfait
Seg 4	Petit heureux
Seg 5	Petit insatisfait
Seg 6	Grand insatisfait
Seg 7	Petit heureux

Stabilité des segments

La segmentation reste stable pendant 2 mois

Meilleur stabilité pour 7 segments

Stabilité des clusters - percent_outliers=0

ARI Score = Adjusted Rand Index

Indique le similarité de la segmentation entre 2 partitions

06 Conclusion et améliorations à faire

Améliorations à faire

- Comprendre mieux pourquoi les clients sont insatisfaits.
- Ajouter des variables catégoriques aux segmentation
 - Kprototype avec les catégories préférées one-hot encoded
- Analyse NLP des commentaires et titres des 'customer reviews'
- Segmentation par Kmeans semble très instable
 - Vérifier la stabilité des segments pour des dates de début différents

Questions

images: Mark Creasey

mrcreasey@gmail.com

Merci!