

1 **IN THE CLAIMS**

2 Please cancel claims 13 and 19-30, and add new claims ____-____.

3

4 1. - 30. (Cancelled)

5

6 31. (New) A method for coating glass for use in a solid state standard, said method comprising the
7 steps of:

8 applying a layer of a first fluorescent material;

9 applying a layer of a second fluorescent material, said second fluorescent material being
10 different from said first fluorescent material;; and

11 applying a layer of a third fluorescent material;

12 wherein each said layer is baked between each said application.

13

14 32. (New) A method according to claim 31, wherein said method is used to coat optical glass.

15

16 33. (New) A method according to claim 31, wherein said method is used to coat optical quartz.

17

18 34. (New) A method according to claim 31, wherein said layer is selected from a group consisting
19 of BaF₂, CaF₂, CsI, KBr, KCl, KRS-5, NaCl, HFO₂, MgO, Fluroisothiocyanate (FITC), Fluorescene,
20 Rhodamine B, Quinine Sulfate, Bodipy and Green Fluorescent Protein.

1 35. (New) A method according to claim 31, wherein said first fluorescent material is substantially
2 similar to said third fluorescent material.

3

4 36. (New) A method according to claim 31, wherein said fluorescent material has a known
5 absorption wavelength.

6

7 37. (New) A method according to claim 31, wherein said baking takes place at approximately at
8 250 degrees Centigrade.

9

10 38. (New) A method for coating glass for use in a solid state standard, said method comprising the
11 steps of:

12 applying a layer of a first absorbent material;

13 applying a layer of a second absorbent material, said second absorbent material being
14 different from said first absorbent material;; and

15 applying a layer of a third absorbent material;

16 wherein each said layer is baked between each said application.

17

18 39. (New) A method according to claim 38, wherein said method is used to coat optical glass.

19

20 40. (New) A method according to claim 38, wherein said method is used to coat optical quartz.

1 41. (New) A method according to claim 38, wherein said layer is selected from a group consisting
2 of AgBr, AgCl, Al₂O₃, CdTe, Ge, Si, SiO₂, TiO₂, ZnS, and ZnSe.

3
4 42. (New) A method according to claim 38, wherein said first absorbent material is substantially
5 similar to said third absorbent material.

6
7 43. (New) A method according to claim 38, wherein said absorbent material has a known
8 absorption wavelength.

9
10 44. (New) A method according to claim 38, wherein said baking takes place at approximately at
11 250 degrees Centigrade.

12
13 45. (New) A method for coating glass for use in a solid state standard, said method comprising the
14 steps of:

15 applying a primary layer of TiO₂;
16 applying one or more layers of SiO₂; and
17 applying a final layer of TiO₂;

18 wherein each layer is baked between said applications.

19
20 46. (New) A method according to claim 45, wherein said method is used to coat optical glass.

1 46. (New) A method according to claim 45, wherein said method is used to coat optical quartz.

2

3 47. (New) A method according to claim 45, wherein said baking takes place at approximately at
4 250 degrees Centigrade.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21