widsnoy's template

1.	数论	<u> </u>	1
	1.1.	原根	1
	1.2.	解不定方程	2
		中国剩余定理	
		卢卡斯定理	
	1.5.	BSGS	6
	1.6.	数论函数	7
		莫比乌斯反演	
	1.8.	整除分块	8
	1.9.	区间筛	8
	1.10	. Min25 筛	8
2.	图论	}	10
	2.1.	找环	10
	2.2.	SPFA	11
	2.3.	连通分量	12
		2.3.1. 有向图强连通分量	12
		2.3.2. 强连通分量(incremental)	
		2.3.3. 割点和桥	
		2.3.4. 点双	15
		2.3.5. 边双	17
	2.4.	二分图匹配	18
		2.4.1. 匈牙利算法	18
		2.4.2. KM	18
	2.5.	网络流	18
		2.5.1. 网络最大流	18
		2.5.2. 最小费用最大流	19
	2.6.	2-SAT	20
		2.6.1. 搜索	20
		2.6.2. tarjan	21
	2.7.	生成树	21
		2.7.1. Prime	21
	2.8.	圆方树	22
	2.9.	欧拉回路	24
	2.10	. 无向图三/四元环计数	26
	2.11	. 虚树	27
	2.12	. 最近公共祖先	28
3.		<u> </u>	
		子集卷积	
		线性基	
		 高斯消元	
4	多项		31

hdu-t05: widsnoy, WQhuanm, xu826281112

4.1. NTT	. 31
4.2. 任意模数 NTT	. 35
数据结构	. 38
5.1. 李超树	. 38
5.2. 兔队线段树	. 39
5.3. 平衡树	. 40
5.4. 文艺平衡树	. 43
字符串	. 45
6.1. KMP	. 45
6.2. Z function	. 45
6.3. SA	. 45
6.4. AC 自动机	. 46
6.5. Manacher	
7.1. fastio	. 47
7.2. 高精度	
7.4. 对拍	. 55
	4.2. 任意模数 NTT 数据结构 5.1. 李超树 5.2. 兔队线段树 5.3. 平衡树 5.4. 文艺平衡树 字符串 6.1. KMP 6.2. Z function 6.3. SA 6.4. AC 自动机 6.5. Manacher 杂项 7.1. fastio 7.2. 高精度 7.3. 手写 bitset

1. 数论

1.1. 原根

- 阶: $\operatorname{ord}_m(a)$ 是最小的正整数 n 使 $a^n \equiv 1 \pmod{m}$
- 原根: 若 g 满足 (g,m)=1 且 $\operatorname{ord}_m(g)=\varphi(m)$ 则 g 是 m 的原根。若 m 是质数,有 $g^i \operatorname{mod} m, 0 < i < m$ 的取值各不相同。

原根的应用:m 是质数时,若求 $a_k = \sum_{i*j \bmod m=k} f_i * g_j$ 可以通过原根转化为卷积形式(要求 0 处无取值)。具体而言,[1,m-1] 可以映射到 $g^{[1,m-1]}$,原式变为 $a_{g^k} = \sum_{g^{i+j \bmod (m-1)}=g^k} f_{g^i} * g_{g^j}$,令 $f_i = f_{g^i}$ 则 $a_k = \sum_{(i+j) \bmod (m-1)=k} f_i * g_j$

```
1 int q[10005];
2 int getG(int n) {
      int i, j, t = 0;
       for (i = 2; (ll)(i * i) < n - 1; i++) {
           if ((n - 1) \% i == 0) q[t++] = i, q[t++] = (n - 1) / i;
6
7
       for (i = 2; ; i++) {
8
           for (j = 0; j < t; j++) if (fpow(i, q[j], n) == 1) break;
9
           if (j == t) return i;
10
       }
11
       return -1;
12 }
13
14 vector<int> fpow(int kth) {
       if (kth == 0) return e;
15
16
       auto r = fpow(kth - 1);
17
       r = multiply(r, r);
       for (int i = p - 1; i < r.size(); i++) r[i % (p - 1)] = (r[i % (p - 1)])
18
  1)] + r[i]) % mod;
       r.resize(p - 1);
19
20
       if (kk[kth] == '1') {
21
           r = multiply(r, e);
22
           for (int i = p - 1; i < r.size(); i++) r[i % (p - 1)] = (r[i %
   (p - 1)] + r[i]) % mod;
23
           r.resize(p - 1);
24
       }
       return r;
25
26 }
27 void MAIN() {
28
       g = getG(p);
29
       int tmp = 1;
       for (int i = 1; i < p; i++) {
30
31
           tmp = tmp * 111 * g % p;
32
           mp[tmp] = i % (p - 1);
33
       }
34
       e.resize(p - 1);
       for (int i = 0; i ; <math>i++) e[i] = 0;
35
       for (int i = 0; i < p; i++) {
36
           for (int j = 0; j \le i; j++) {
37
```

1.2. 解不定方程

给出 a,b,c,x1,x2,y1,y2,求满足 ax+by+c=0,且 x∈[x1,x2],y∈[y1,y2]的整数解有多少对? 输入格式

第一行包含 7 个整数, a,b,c,x1,x2,y1,y2, 整数间用空格隔开。

a,b,c,x1,x2,y1,y2 的绝对值不超过10⁸。

```
1 #define y1 miku
2
3 ll a, b, c, x1, x2, y1, y2;
4 ll exgcd(ll a, ll b, ll &x, ll &y) {
      if (b) {
          ll d = exgcd(b, a % b, y, x);
7
           return y -= a / b * x, d;
8
       } return x = 1, y = 0, a;
9 }
10
11 pll get up(ll a, ll b, ll x1, ll x2) {
12
      //x2>=ax+b>=x1
13
      if (a == 0) return (b >= x1 \&\& b <= x2)? (pll){-1e18, 1e18}: (pll)
  {1, 0};
14
       ll L, R;
15
       ll l = (x1 - b) / a - 3;
16
       for (L = 1; L * a + b < x1; L++);
       ll r = (x2 - b) / a + 3;
17
       for (R = r; R * a + b > x2; R--);
18
19
      return {L, R};
20 }
21 pll get_dn(ll a, ll b, ll x1, ll x2) {
22
      //x2>=ax+b>=x1
23
       if (a == 0) return (b >= x1 \&\& b <= x2)? (pll){-1e18, 1e18}: (pll)
   \{1, 0\};
24
      ll L, R;
25
       ll l = (x2 - b) / a - 3;
       for (L = 1; L * a + b > x2; L++);
26
27
       ll r = (x1 - b) / a + 3;
28
       for (R = r; R * a + b < x1; R--);
29
       return {L, R};
30 }
31
32 void MAIN() {
33
       cin >> a >> b >> c >> x1 >> x2 >> y1 >> y2;
```

```
if (a == 0 \&\& b == 0) return cout << (c == 0) * (y2 - y1 + 1) * (x2
   - x1 + 1) << '\n', void();
      ll x, y, d = exgcd(a, b, x, y);
35
36
       c = -c;
       if (c % d != 0) return cout << "0\n", void();
37
38
       x *= c / d, y *= c / d;
39
       ll sx = b / d, sy = -a / d;
      //x + k * sx y + k * sy
40
      // 0 \le 3 - k \le 4 [-1,3] [0,4]
41
42
       auto A = (sx > 0 ? get up(sx, x, x1, x2) : get dn(sx, x, x1, x2));
43
       auto B = (sy > 0 ? get up(sy, y, y1, y2) : get dn(sy, y, y1, y2));
44
       A.fi = max(A.fi, B.fi), A.se = min(A.se, B.se);
       cout << max(0ll, A.se - A.fi + 1) << '\n';</pre>
45
46 }
```

1.3. 中国剩余定理

考虑合并两个同余方程

$$\begin{cases} x \equiv a_1 (\operatorname{mod} m_1) \\ x \equiv a_2 (\operatorname{mod} m_2) \end{cases}$$

改写为不定方程形式

$$\begin{cases} x + m_1 y = a_1 \\ x + m_2 y = a_2 \end{cases}$$

取解集公共部分 $x=a_1-m_1y_1=a_2-m_2y_2$,若 $\gcd(m_1,m_2)|\ (a_1-a_2)$ 有解,可以得 到 $x=k\mathrm{lcm}(m_1,m_2)+a_2-m_2y_2$ 化为同余方程的形式: $x\equiv a_2-m_2y_2\pmod{\mathrm{lcm}(m_1,m_2)}$

```
1 ll n, m, a;
2 ll exgcd(ll a, ll b, ll &x, ll &y) {
3 	 if (b != 0) {
          ll g = exgcd(b, a % b, y, x);
         return y -= a / b * x, g;
6
      } return x = 1, y = 0, a;
7 }
8 ll getinv(ll a, ll mod) {
      ll x, y;
      exgcd(a, mod, x, y);
11
      x = (x % mod + mod) % mod;
12
      return x;
13 }
14 int get(ll x) {
15
       return x < 0 ? -1 : 1;
16 }
17 ll mul(ll a, ll b, ll mod) {
18
      ll res = 0;
19
      if (a == 0 || b == 0) return 0;
      ll f = get(a) * get(b);
20
```

```
a = abs(a), b = abs(b);
       for (; b; b >>= 1, a = (a + a) \% \mod 1 if (b \& 1) res = (res + a) \%
  mod;
23
       res *= f;
       if (res < 0) res += mod;
25
       return res;
26 }
27 // m 互质
28 // int main() {
29 //
          cin >> n;
30 //
         ll phi = 1;
31 //
         for (int i = 1; i <= n; i++) {
32 //
              cin >> m[i] >> a[i];
33 //
              phi *= m[i];
34 // }
35 // ll ans = 0;
36 // for (int i = 1; i <= n; i++) {
37 //
              ll p = phi / m[i], q = getinv(p, m[i]);
38 //
              ans += mul(p, mul(q, a[i], phi), phi);
39 //
              ans %= phi;
40 //
         }
41 //
          cout << ans << '\n';
42 // }
43 int main() {
44
       cin >> n;
45
       cin >> m >> a;
46
       for (int i = 2; i \le n; i++) {
47
           ll nm, na;
48
           cin >> nm >> na;
           ll x, y;
49
50
           ll g = exgcd(m, -nm, x, y), d = (na - a) / g, md = abs(nm / g);
51
           if ((na - a) % g) return -1;
52
           x = mul(x, d, md);
53
           ll lc = abs(m / g);
54
           lc *= nm;
55
           a = (a + mul(m, x, lc)) % lc;
56
           m = lc;
57
       }
58
       cout << a << '\n';
59 }
```

1.4. 卢卡斯定理

• p 为质数

$$\binom{n}{m} \bmod p = \left(\left\lfloor \frac{n}{p} \right\rfloor \right) \binom{n \bmod p}{m \bmod p} \bmod p$$

• p 不为质数

其中 calc(n, x, p) 计算 $\frac{n!}{x^y}$ mod p 的结果, 其中 y 是 n! 含有 x 的个数

如果 p 是质数,利用 Wilson 定理 $(p-1)! \equiv -1 \pmod{p}$ 可以 $O(\log P)$ 的计算 calc。其他情况可以通过预处理 $\frac{n!}{n \text{以内所} \pi p \text{febb} n \text{span}}$ 达到同样的效果。

```
1 ll exgcd(ll a, ll b, ll &x, ll &y) {
2
       if (b) {
3
           ll d = exgcd(b, a % b, y, x);
           return y -= a / b * x, d;
5
       } else return x = 1, y = 0, a;
6 }
7 int getinv(ll v, ll mod) {
       ll x, y;
       exgcd(v, mod, x, y);
10
       return (x % mod + mod) % mod;
11 }
12 ll fpow(ll a, ll b, ll p) {
13
       ll res = 1;
       for (; b; b >>= 1, a = a * 1ll * a % p) if (b & 1) res = res * 1ll *
14
   a % p;
15
      return res;
16 }
17 ll calc(ll n, ll x, ll p) {
18
       if (n == 0) return 1;
19
       ll s = 1;
20
       for (ll i = 1; i \le p; i++) if (i % x) s = s * i % p;
21
       s = fpow(s, n / p, p);
       for (ll i = n / p * p + 1; i \le n; i + +) if (i % x) s = i % p * s %
22
  p;
23
       return calc(n / x, x, p) * 111 * s % p;
24 }
25 int get(ll x) {
26
       return x < 0 ? -1 : 1;
27 }
28 ll mul(ll a, ll b, ll mod) {
       ll res = 0;
29
30
       if (a == 0 || b == 0) return 0;
31
       ll f = get(a) * get(b);
       a = abs(a), b = abs(b);
32
       for (; b; b >>= 1, a = (a + a) \% \mod 1 if (b \& 1) res = (res + a) \%
33
   mod;
34
       res *= f;
35
       if (res < 0) res += mod;
       return res;
36
37 }
38 ll sublucas(ll n, ll m, ll x, ll p) {
       ll cnt = 0;
40
       for (ll i = n; i;) cnt += (i = i / x);
41
       for (ll i = m; i; ) cnt -= (i = i / x);
42
       for (ll i = n - m; i; ) cnt -= (i = i / x);
43
      return fpow(x, cnt, p) * calc(n, x, p) % p * getinv(calc(m, x, p),
  p) % p * getinv(calc(n - m, x, p), p) % p;
44 }
45 ll lucas(ll n, ll m, ll p) {
```

```
46
       int cnt = 0;
47
       ll a[21], mo[21];
       for (ll i = 2; i * i <= p; i++) if (p % i == 0) {
48
49
           mo[++cnt] = 1;
50
           while (p \% i == 0) mo[cnt] *= i, p /= i;
51
           a[cnt] = sublucas(n, m, i, mo[cnt]);
52
       }
53
       if (p != 1) mo[++cnt] = p, a[cnt] = sublucas(n, m, p, mo[cnt]);
54
       ll phi = 1;
55
       for (int i = 1; i <= cnt; i++) phi *= mo[i];</pre>
56
       ll ans = 0;
57
       for (int i = 1; i <= cnt; i++) {
58
           ll p = phi / mo[i], q = getinv(p, mo[i]);
59
           ans += mul(p, mul(q, a[i], phi), phi);
60
           ans %= phi;
61
       }
62
       return ans;
63 }
```

1.5. **BSGS**

求解 $a^x \equiv n \pmod{p}$, a, p 不一定互质

```
1 int fpow(int a, int b, int p) {
       int res = 1;
2
3
       for (; b; b >>= 1, a = a * 1ll * a % p) if (b & 1) res = res * 1ll *
   a % p;
4
       return res;
5 }
6 ll exgcd(ll a, ll b, ll &x, ll &y) {
      if (b == 0) return x = 1, y = 0, a;
7
8
       ll d = exgcd(b, a % b, y, x);
9
       y -= a / b * x;
10
       return d;
11 }
12 int inv(int a, int p) {
13
       ll x, y;
14
       ll g = exgcd(a, p, x, y);
15
       if (g != 1) return -1;
       return (x % p + p) % p;
16
17 }
18 int BSGS(int a, int b, int p) {
19
       if (p == 1) return 1;
20
       unordered map<int, int> x;
21
       int m = sqrt(p + 0.5) + 1;
22
       int v = inv(fpow(a, m, p), p);
23
       int e = 1;
24
       for(int i = 1; i <= m; i++) {
25
           e = e * 111 * a % p;
26
           if(!x.count(e)) x[e] = i;
27
       }
```

```
28
       for(int i = 0; i <= m; i++) {
29
           if(x.count(b)) return i * m + x[b];
           b = b * 111 * v % p;
31
32
       return -1;
33 }
34 pii exBSGS(int a, int n, int p) {
35
       int d, q = 0, sum = 1;
36
       if (n == 1) return \{0, \gcd(a, p) == 1 ? BSGS(a, 1, p) : 0\};
37
       a %= p, n %= p;
38
       while ((d = gcd(a, p)) != 1) {
39
           if(n % d) return {-1, -1};
40
           q++; n /= d; p /= d;
41
           sum = (sum * 111 * a / d) % p;
42
           if(sum == n) return \{q, gcd(a, p) == 1 ? BSGS(a, 1, p) : 0\};
43
44
       int v = inv(sum, p);
       n = n * 111 * v % p;
45
46
       int ans = BSGS(a, n, p);
47
       if(ans == -1) return {-1, -1};
48
       return {ans + q, BSGS(a, 1, p)};
49 }
```

1.6. 数论函数

1.
$$\varphi(n)=n\prod\left(1-\frac{1}{p}\right)$$
2.
$$\mu(n)=\begin{cases} 1, n=1\\ (-1)^{\text{质因} \mathcal{F}}\uparrow \mathfrak{B}, n\\ 0, n \text{ 有平方因}\mathcal{F} \end{cases}$$

3.
$$\mu * id = \varphi, \mu * 1 = \varepsilon, \varphi * 1 = id$$

• 有一个表格, $a_{i,j} = \gcd(i,j)$,支持某一列一行乘一个数,查询整个表格的和。

因为 $\gcd(n,m) = \sum_{i|n \wedge i|m} \varphi(i)$,对每个 $\varphi(i)$ 维护一个大小为 $\left\lfloor \frac{n}{i} \right\rfloor$ 的表格,初始值全是 $\varphi(i),(x,y)$ 对应 (x*i,y*i)。对大表格的修改可以转化为对小表格的修改,只需要对每行每列维护一个懒标记就行。

1.7. 莫比乌斯反演

1. 若
$$f(n) = \sum_{d|n} g(d)$$
, 则 $g(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) f(d)$

$$\sum_{d|n} \mu\left(\frac{n}{d}\right) f(d) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \sum_{k|d} g(k)$$

$$= \sum_{k|n} g(k) \sum_{d|\frac{n}{k}} \mu(d)$$

$$= \sum_{k|n} g(k) \left[\frac{n}{k} = 1\right] = g(n)$$

2. 若
$$f(n) = \sum_{n|d} g(d)$$
, 则 $g(n) = \sum_{n|d} \mu \left(\frac{d}{n}\right) f(d)$

hdu-t05: widsnoy, WQhuanm, xu826281112

3.
$$d(nm) = \sum_{i|n} \sum_{j|m} [\gcd(i,j) = 1]$$

常见的一些推式子套路:

- 1. 证明是否积性函数,只需要观察是否满足 $f(p^i)f(q^j)=f(p^iq^j)$ 即可,用线性筛积性函数也是同理。
- 2. 形如 $\sum_{d|n}\mu(d)\sum_{k|\frac{n}{d}}\varphi(k)\lfloor\frac{n}{dk}\rfloor$ 的式子,这时候令 T=dk,枚举 T 就能得到 d,k 一个卷积的形式。如果是底数和指数,这时候不能线性筛,但是可以调和级数暴力算函数值。

1.8. 整除分块

1. 下取整

```
1 for (int i = 1, j; i <= min(n, m); i = j + 1) {
2     j = min(n / (n / i), m / (m / i));
3     // n / {i,...,j} = n / i
4 }</pre>
```

1. 上取整

$$\left\lceil \frac{n}{i} \right\rceil = \left\lfloor \frac{n+i-1}{i} \right\rfloor = \left\lfloor \frac{n-1}{i} \right\rfloor + 1$$

1.9. 区间筛

• 求解一个区间内的素数

如果是合数那么一定不大于 \sqrt{x} 的约数,使用这个范围内的数埃氏筛即可。

1.10. Min25 筛

能在 $O\left(\frac{n^{\frac{3}{4}}}{\log(n)}\right)$ 时间求出 $F(n)=\sum_{i=1}^n f(i)$ 的值,要求积性函数能快速求出 $f\left(p^k\right)$ 处的点值。

• 定义 R(i) 表示 i 的最小质因子

$$G(n,j) = \sum_{i=1}^n f(i) \left[i \in \text{prime} \lor R(i) > P_j \right]$$

考虑递推

$$G(n,j) = \begin{cases} G(n,j-1) \text{ IF } p_j \times p_j > n \\ G(n,j-1) - f\big(p_j\big) \Big(G\Big(\frac{n}{p_j},j-1\Big) - \sum_{i=1}^{j-1} f(p_i)\Big) \text{ IF } p_j \times p_j \leq n \end{cases}$$

根据整除分块,G 函数的第一维只用 \sqrt{n} 种取值,将其存在 w[] 中,且用 id1[] 和 id2[] 分别存数字对应的下标位置。因为最后只需要知道 G(x, pcnt) 所以第二维可以滚掉。

• 定义
$$S(n,j) = \sum_{i=1}^{n} f(i) [R(i) \ge p_j]$$

质数部分答案显然为 $G(n,\mathrm{pcnt}) - \sum_{i=1}^{j-1} f(p_i)$,合数部分考虑提出最小的质因子 p^k ,得 到 S(n,j) 的递推式

$$S(n,j) = G(n, \text{pcnt}) - \sum_{i=1}^{j-1} f(p_i) + \sum_{i=j}^{\text{pcnt}} \sum_{k=1}^{p_i^{k+1} \le n} f \Big(p^k \Big) S \bigg(\frac{n}{p^k}, j+1 \bigg) + f \Big(p^{k+1} \Big)$$

递归边界是 $n = 1 \lor p_i > n, S(n, j) = 0$

```
\sum_{i=1}^n f(i) = S(n,1) + f(1)
```

```
1 #include <cstdio>
 2 #include <cmath>
4 typedef long long ll;
 5 const int N = 4e6 + 5, MOD = 1e9 + 7;
6 const ll i6 = 166666668, i2 = 5000000004;
7 ll n, id1[N], id2[N], su1[N], su2[N], p[N], sqr, w[N], g[N], h[N];
8 int cnt, m;
9 bool vis[N];
10
11 ll add(ll a, ll b) {a %= MOD, b %= MOD; return (a + b >= MOD) ? a + b -
   MOD : a + b;
12 ll mul(ll a, ll b) {a %= MOD, b %= MOD; return a * b % MOD;}
13 ll dec(ll a, ll b) {a %= MOD, b %= MOD; return ((a - b) % MOD + MOD) %
   MOD;}
14
15 void init(int m) {
16 for (ll i = 2; i \le m; i++) {
     if (!vis[i]) p[++cnt] = i, su1[cnt] = add(su1[cnt - 1], i), su2[cnt]
   = add(su2[cnt - 1], mul(i, i));
18
     for (int j = 1; j \le cnt \&\& i * p[j] \le m; j++) {
        vis[p[j] * i] = 1;
         if (i % p[j] == 0) break;
21
       }
22
     }
23 }
24
25 ll S(ll x, int y) {
     if (p[y] > x || x <= 1) return 0;
     int k = (x \le sqr) ? id1[x] : id2[n / x];
27
28
     ll res = dec(dec(g[k], h[k]), dec(su2[y - 1], su1[y - 1]));
29
     for (int i = y; i \le cnt \&\& p[i] * p[i] <= x; i++) {
       ll pow1 = p[i], pow2 = p[i] * p[i];
       for (int e = 1; pow2 \le x; pow1 = pow2, pow2 *= p[i], e++) {
31
32
         ll tmp = mul(mul(pow1, dec(pow1, \frac{1}{1})), S(x / pow1, \frac{i + 1}{1});
33
         tmp = add(tmp, mul(pow2, dec(pow2, 1)));
34
         res = add(res, tmp);
35
       }
36
     }
37
     return res;
38 }
39
40 int main() {
       scanf("%lld", &n);
```

```
42
     sqr = sqrt(n + 0.5) + 1;
43
     init(sqr);
     for (ll l = 1, r; l <= n; l = r + 1) {
44
45
           r = n / (n / l);
46
       w[++m] = n / l;
47
       g[m] = mul(w[m] % MOD, (w[m] + 1) % MOD);
48
       g[m] = mul(g[m], (2 * w[m] + 1) % MOD);
49
       g[m] = mul(g[m], i6);
50
           g[m] = dec(g[m], 1);
51
       h[m] = mul(w[m] % MOD, (w[m] + 1) % MOD);;
52
         h[m] = mul(h[m], i2);
53
       h[m] = dec(h[m], 1);
         (w[m] \le sqr) ? id1[w[m]] = m : id2[r] = m;
54
55
    }
56
    for (int j = 1; j <= cnt; j++)
       for (int i = 1; i \le m \&\& p[j] * p[j] \le w[i]; i++) {
57
58
         int k = (w[i] / p[j] \le sqr)? id1[w[i] / p[j]]: id2[n / (w[i] / p[j])]
   p[j])];
59
           g[i] = dec(g[i], mul(mul(p[j], p[j]), dec(g[k], su2[j - 1])));
60
         h[i] = dec(h[i], mul(p[j], dec(h[k], sul[j - 1])));
61
       }
     //printf("%lld\n", g[1] - h[1]);
63
     printf("%lld\n", add(S(n, 1), 1));
64
     return 0;
65 }
```

2. 图论

2.1. 找环

```
1 const int N = 5e5 + 5;
2 int n, m, col[N], pre[N], pre edg[N];
3 vector<pii> G[N];
4 vector<vector<int>>> resp, rese;
5 //point
6 void get_cyc(int u, int v) {
7
      if (!resp.empty()) return;
8
       vector<int> cyc;
9
       cyc.push back(v);
10
       while (true) {
11
           v = pre[v];
12
           if (v == 0) break;
13
           cyc.push back(v);
14
           if (v == u) break;
15
       }
16
       reverse(cyc.begin(), cyc.end());
17
       resp.push back(cyc);
18 }
19 // edge
20 void get cyc(int u, int v, int id) {
```

```
21
       if (!rese.empty()) return;
22
       vector<int> cyc;
23
       cyc.push_back(id);
24
       while (true) {
25
           if (pre[v] == 0) break;
26
           cyc.push_back(pre_edg[v]);
27
           v = pre[v];
28
           if (v == u) break;
29
       }
30
       reverse(cyc.begin(), cyc.end());
31
       rese.push back(cyc);
32 }
33 void dfs(int u, int edg) {
34
       col[u] = 1;
35
       for (auto [v, id] : G[u]) if (id != edg) {
36
           if (col[v] == 1) {
37
               get cyc(v, u);
38
               get_cyc(v, u, id);
39
           } else if (col[v] == 0) {
40
               pre[v] = u;
41
               pre edg[v] = id;
42
               dfs(v, id);
43
           }
44
       }
45
       col[u] = 2;
46 }
47 void MAIN() {
48
       cin >> n >> m;
49
       for (int i = 1; i \le m; i++) {
50
           int u, v; cin >> u >> v;
51
           // G[u].push back({v, i});
52
           // G[v].push back({u, i});
53
       }
       for (int i = 1; i \le n; i++) if (!col[i]) dfs(i, -1);
54
55 }
```

2.2. SPFA

```
1 mt19937 64 rng(chrono::steady clock::now().time since epoch().count());
2
3 \text{ const int mod} = 998244353;
4 const int N = 5e5 + 5;
5 const ll inf = le17;
6 int n, m, s, t, q[N], ql, qr;
7 int vis[N], fr[N];
8 ll dis[N];
9 vector<pii> G[N];
10 void MAIN() {
       cin >> n >> m >> t;
11
12
       for (int i = 1; i <= m; i++) {
13
           int u, v, w;
```

```
14
           cin >> u >> v >> w;
15
           G[u].push back({v, w});
16
       }
17
       for (int i = 0; i <= n; i++) dis[i] = inf;</pre>
18
       dis[s] = 0; q[qr] = s; vis[s] = 1;
19
       while (ql <= qr) {
20
           if (rng() % (qr - ql + 1) == 0) sort(q + ql, q + qr + 1, [](int)
x, int y) {
21
               return dis[x] < dis[y];</pre>
22
           });
23
           int u = q[ql++];
24
           vis[u] = 0;
25
           for (auto [v, w] : G[u]) {
26
               if (dis[u] + w < dis[v]) {
27
                   dis[v] = dis[u] + w;
28
                    fr[v] = u;
29
                    if (!vis[v]) {
30
                        if (ql > 0) q[--ql] = v;
31
                        else q[++qr] = v;
32
                        vis[v] = 1;
33
                   }
34
               }
35
           }
36
       }
37
       if (dis[t] == inf) {
38
           cout << "-1\n";
39
           return;
40
       }
41
       cout << dis[t] << ' ';</pre>
42
       vector<pii> stk;
43
       while (t != s) {
44
           stk.push back({fr[t], t});
45
           t = fr[t];
46
       }
47
       reverse(stk.begin(), stk.end());
48
       cout << stk.size() << '\n';</pre>
49
       for (auto [u, v] : stk) cout << u << ' ' << v << '\n';
50 }
```

2.3. 连通分量

2.3.1. 有向图强连通分量

```
1 const int N = 5e5 + 5;
2 int n, m, dfc, dfn[N], low[N], stk[N], top, idx[N], in_stk[N], scc_cnt;
3 vector<int> G[N];
4
5 void tarjan(int u) {
6    low[u] = dfn[u] = ++dfc;
7    stk[++top] = u;
8    in_stk[u] = 1;
```

```
for (int v : G[u]) {
10
           if (!dfn[v]) {
11
               tarjan(v);
12
               low[u] = min(low[u], low[v]);
13
           } else if (in stk[v]) low[u] = min(dfn[v], low[u]);
14
       }
15
       if (low[u] == dfn[u]) {
16
          int x;
17
           scc cnt++;
18
           do {
19
               x = stk[top--];
20
               idx[x] = scc cnt;
21
               in stk[x] = 0;
22
           } while (x != u);
23
       }
24 }
25
26 void MAIN() {
       for (int i = 1; i \le n; i++) low[i] = dfn[i] = idx[i] = in stk[i] =
27
  0 ;
28
       dfc = scc cnt = top = 0;
29
       cin >> n >> m;
       for (int i = 1; i \le n; i++) if (!dfn[i]) tarjan(i);
31 }
```

2.3.2. 强连通分量(incremental)

edge[3] 保存了每条边的两个点在同一个强连通分量的时间。调用的时候右端点时间要大一位,因为可能有些边到最后也不能在一个强连通分量中。

```
1 int n, m, Q, s[N];
2 vector<array<int, 4>> edge;
3 vector<int> G[N];
4 struct DSU {
5
       int fa[N], dep[N], top;
6
       pii stk[N];
7
       void init(int n) {
8
           top = 0;
9
           iota(fa, fa + n + 1, \theta);
10
           fill(dep, dep + n + 1, 1);
11
       }
       int find(int u) {
12
13
           return u == fa[u] ? u : find(fa[u]);
14
       }
15
      void merge(int u, int v) {
           u = find(u), v = find(v);
16
17
           if (u == v) return;
           if (dep[u] > dep[v]) swap(u, v);
18
19
           stk[++top] = \{u, (dep[u] == dep[v] ? v : -1)\};
20
           fa[u] = v;
21
           dep[v] += (dep[u] == dep[v]);
```

```
22
       }
23
       void rev(int tim) {
24
           while (tim < top) {</pre>
25
               auto [u, v] = stk[top--];
26
               fa[u] = u;
27
               if (v != -1) dep[v]--;
28
           }
29
       }
30 } D;
31 int stk[N], top, dfc, dfn[N], low[N], in_stk[N];
32 void tarjan(int u) {
33
       low[u] = dfn[u] = ++dfc;
       stk[++top] = u;
34
35
       in stk[u] = 1;
36
       for (int v : G[u]) {
37
           if (!dfn[v]) {
38
               tarjan(v);
39
               low[u] = min(low[u], low[v]);
40
           } else if (in_stk[v]) low[u] = min(dfn[v], low[u]);
41
       }
       if (low[u] == dfn[u]) {
42
43
           int x;
44
           do {
45
               x = stk[top--];
46
               D.merge(x, u);
47
               in stk[x] = 0;
48
           } while (x != u);
49
       }
50 }
51
52 void solve(int l, int r, int a, int b) {
53
       if (l == r) {
54
           for (int i = a; i <= b; i++) edge[i][3] = l;</pre>
55
           return;
56
       }
57
       int mid = (l + r) \gg 1;
58
       vector<int> node;
59
       for (int i = a; i <= b; i++) if (edge[i][0] <= mid) {</pre>
60
           int u = D.find(edge[i][1]), v = D.find(edge[i][2]);
61
           if (u != v) node.push_back(u), node.push_back(v),
   G[u].push back(v);
62
       }
63
       int otp = D.top;
64
       for (int x : node) if (!dfn[x]) tarjan(x);
65
       vector<array<int, 4>> e1, e2;
66
       for (int i = a; i <= b; i++) {
67
           int u = D.find(edge[i][1]), v = D.find(edge[i][2]);
68
           if (edge[i][0] > mid || u != v) e2.push_back(edge[i]);
69
           else el.push back(edge[i]);
70
       }
71
       int s1 = e1.size(), s2 = e2.size();
72
       for (int i = a; i < a + s1; i++) edge[i] = e1[i - a];
```

```
73
       for (int i = a + s1; i \le b; i++) edge[i] = e2[i - a - s1];
74
       dfc = 0;
75
       for (int x : node) dfn[x] = low[x] = 0, vector < int > ().swap(G[x]);
       vector<int>().swap(node);
76
77
       vector<array<int, 4>>().swap(e1);
       vector<array<int, 4>>().swap(e2);
78
79
       solve(mid + 1, r, a + s1, b);
80
       D.rev(otp);
81
       solve(l, mid, a, a + s1 - 1);
82 }
```

2.3.3. 割点和桥

```
1 int dfn[N], low[N], dfs_clock;
2 bool iscut[N], vis[N];
3 void dfs(int u, int fa) {
       dfn[u] = low[u] = ++dfs_clock;
5
      vis[u] = 1;
6
      int child = 0;
7
      for (int v : e[u]) {
8
          if (v == fa) continue;
9
          if (!dfn[v]) {
10
              dfs(v, u);
11
              low[u] = min(low[u], low[v]);
12
              child++;
13
              if (low[v] >= dfn[u]) iscut[u] = 1;
14
          } else if (dfn[u] > dfn[v] \&\& v != fa) low[u] = min(low[u],
dfn[v]);
15
         if (fa == 0 \&\& child == 1) iscut[u] = 0;
16
     }
17 }
```

2.3.4. 点双

```
1 #include <cstdio>
2 #include <vector>
3 using namespace std;
4 const int N = 5e5 + 5, M = 2e6 + 5;
5 int n, m;
6
7 struct edge {
8    int to, nt;
9 } e[M << 1];
10
11 int hd[N], tot = 1;
12
13 void add(int u, int v) { e[++tot] = (edge){v, hd[u]}, hd[u] = tot; }
14
15 void uadd(int u, int v) { add(u, v), add(v, u); }
16</pre>
```

```
17 int ans;
18 int dfn[N], low[N], bcc cnt;
19 int sta[N], top, cnt;
20 bool cut[N];
21 vector<int> dcc[N];
22 int root;
23
24 void tarjan(int u) {
     dfn[u] = low[u] = ++bcc\_cnt, sta[++top] = u;
26 if (u == root \&\& hd[u] == 0) {
27
       dcc[++cnt].push back(u);
28
       return;
     }
29
30 int f = 0;
31 for (int i = hd[u]; i; i = e[i].nt) {
32
      int v = e[i].to;
33
       if (!dfn[v]) {
34
        tarjan(v);
35
         low[u] = min(low[u], low[v]);
36
         if (low[v] >= dfn[u]) {
37
           if (++f > 1 || u != root) cut[u] = true;
38
           cnt++;
39
           do dcc[cnt].push_back(sta[top--]);
           while (sta[top + 1] != v);
40
41
           dcc[cnt].push_back(u);
42
         }
43
       } else
44
         low[u] = min(low[u], dfn[v]);
45
     }
46 }
47
48 int main() {
49 scanf("%d%d", &n, &m);
50
    int u, v;
51 for (int i = 1; i \le m; i++) {
     scanf("%d%d", &u, &v);
53
       if (u != v) uadd(u, v);
54
55 for (int i = 1; i \le n; i++)
56
     if (!dfn[i]) root = i, tarjan(i);
57 printf("%d\n", cnt);
58 for (int i = 1; i \le cnt; i++) {
59
       printf("%llu ", dcc[i].size());
       for (int j = 0; j < dcc[i].size(); j++) printf("%d ", dcc[i][j]);</pre>
60
61
     printf("\n");
62
     }
63
     return 0;
64 }
```

2.3.5. 边双

```
1 #include <algorithm>
2 #include <cstdio>
3 #include <vector>
5 using namespace std;
6 const int N = 5e5 + 5, M = 2e6 + 5;
7 int n, m, ans;
8 int tot = 1, hd[N];
9
10 struct edge {
11 int to, nt;
12 \} e[M << 1];
13
14 void add(int u, int v) { e[++tot].to = v, e[tot].nt = hd[u], hd[u] =
  tot; }
15
16 void uadd(int u, int v) { add(u, v), add(v, u); }
18 bool bz[M << 1];</pre>
19 int bcc cnt, dfn[N], low[N], vis bcc[N];
20 vector<vector<int>> bcc;
21
22 void tarjan(int x, int in) {
23 dfn[x] = low[x] = ++bcc cnt;
24 for (int i = hd[x]; i; i = e[i].nt) {
25
     int v = e[i].to;
26
      if (dfn[v] == 0) {
        tarjan(v, i);
27
28
       if (dfn[x] < low[v]) bz[i] = bz[i ^ 1] = 1;
29
        low[x] = min(low[x], low[v]);
30 } else if (i != (in ^ 1))
31
        low[x] = min(low[x], dfn[v]);
32
     }
33 }
34
35 void dfs(int x, int id) {
36 vis_bcc[x] = id, bcc[id - 1].push_back(x);
37 for (int i = hd[x]; i; i = e[i].nt) {
38
      int v = e[i].to;
39
      if (vis_bcc[v] || bz[i]) continue;
40
       dfs(v, id);
41
     }
42 }
43
44 int main() {
45 scanf("%d%d", &n, &m);
46 int u, v;
47 for (int i = 1; i \le m; i++) {
48
     scanf("%d%d", &u, &v);
49
       if (u == v) continue;
50
      uadd(u, v);
```

```
51
     }
   for (int i = 1; i <= n; i++)
      if (dfn[i] == 0) tarjan(i, 0);
54 for (int i = 1; i <= n; i++)
55
      if (vis bcc[i] == 0) {
56
         bcc.push back(vector<int>());
57
         dfs(i, ++ans);
58
       }
59 printf("%d\n", ans);
60 for (int i = 0; i < ans; i++) {
     printf("%llu", bcc[i].size());
61
62
       for (int j = 0; j < bcc[i].size(); j++) printf(" %d", bcc[i][j]);</pre>
63
       printf("\n");
64 }
65 return 0;
66 }
```

2.4. 二分图匹配

2.4.1. 匈牙利算法

mch 记录的是右部点匹配的左部点

```
1 int mch[maxn], vis[maxn];
2 std::vector<int> e[maxn];
3 bool dfs(const int u, const int tag) {
       for (auto v : e[u]) {
5
           if (vis[v] == tag) continue;
6
           vis[v] = tag;
7
           if (!mch[v] || dfs(mch[v], tag)) return mch[v] = u, 1;
8
       }
9
       return 0;
10 }
11 int main() {
12
       int ans = 0;
13
       for (int i = 1; i \le n; ++i) if (dfs(i, i)) ++ans;
14 }
```

2.4.2. KM

2.5. 网络流

2.5.1. 网络最大流

```
int head[N], cur[N], ecnt, d[N];
struct Edge {
   int nxt, v, flow, cap;
}e[];
void add_edge(int u, int v, int flow, int cap) {
   e[ecnt] = {head[u], v, flow, cap}; head[u] = ecnt++;
   e[ecnt] = {head[v], u, flow, 0}; head[v] = ecnt++;
```

```
8 }
9 bool bfs() {
10
       memset(vis, 0, sizeof vis);
11
       std::queue<int> q;
12
       q.push(s);
13
       vis[s] = 1;
14
       d[s] = 0;
15
       while (!q.empty()) {
16
           int u = q.front();
17
           q.pop();
18
           for (int i = head[u]; i != -1; i = e[i].nxt) {
19
               int v = e[i].v;
20
               if (vis[v] || e[i].flow >= e[i].cap) continue;
21
               d[v] = d[u] + 1;
22
               vis[v] = 1;
23
               q.push(v);
24
           }
25
       }
26
       return vis[t];
27 }
28 int dfs(int u, int a) {
29
       if (u == t || !a) return a;
30
       int flow = 0, f;
31
       for (int\& i = cur[u]; i != -1; i = e[i].nxt) {
32
           int v = e[i].v;
           if (d[u] + 1 == d[v] \&\& (f = dfs(v, std::min(a, e[i].cap -
33
   e[i].flow))) > 0) {
34
               e[i].flow += f;
35
               e[i ^1].flow -= f;
36
               flow += f;
37
               a -= f;
38
               if (!a) break;
39
           }
40
       }
41
       return flow;
42 }
43
```

2.5.2. 最小费用最大流

```
1 const int inf = le9;
2 int head[N], cur[N], ecnt, dis[N], s, t, n, m, mincost;
3 bool vis[N];
4 struct Edge {
5    int nxt, v, flow, cap, w;
6 }e[100002];
7 void add_edge(int u, int v, int flow, int cap, int w) {
8    e[ecnt] = {head[u], v, flow, cap, w}; head[u] = ecnt++;
9    e[ecnt] = {head[v], u, flow, 0, -w}; head[v] = ecnt++;
10 }
11 bool spfa(int s, int t) {
```

```
12
       std::fill(vis + s, vis + t + 1, 0);
13
       std::fill(dis + s, dis + t + 1, inf);
14
       std::queue<int> q;
15
       q.push(s);
16
       dis[s] = 0;
17
       vis[s] = 1;
18
       while (!q.empty()) {
19
           int u = q.front();
20
           q.pop();
21
           vis[u] = 0;
22
           for (int i = head[u]; i != -1; i = e[i].nxt) {
23
               int v = e[i].v;
24
               if (e[i].flow < e[i].cap & dis[u] + e[i].w < dis[v]) {
25
                   dis[v] = dis[u] + e[i].w;
26
                   if (!vis[v]) vis[v] = 1, q.push(v);
27
               }
28
           }
29
       }
30
       return dis[t] != inf;
31 }
32 int dfs(int u, int a) {
33
       if (vis[u]) return 0;
       if (u == t || !a) return a;
34
35
       vis[u] = 1;
36
       int flow = 0, f;
       for (int& i = cur[u]; i != -1; i = e[i].nxt) {
37
38
           int v = e[i].v;
           if (dis[u] + e[i].w == dis[v] \&\& (f = dfs(v, std::min(a, v)))
39
   e[i].cap - e[i].flow))) > 0) {
40
               e[i].flow += f;
41
               e[i ^1].flow -= f;
42
               flow += f;
43
               mincost += e[i].w * f;
44
               a -= f;
45
               if (!a) break;
46
           }
47
       }
48
       vis[u] = 0;
49
       return flow;
50 }
```

2.6. 2-SAT

2 * u 代表不选择,2 * u + 1 代表选择。

2.6.1. 搜索

```
1 vector<int> G[N * 2];
2 bool mark[N * 2];
3 int stk[N], top;
4 void build_G() {
5    for (int i = 1; i <= n; i++) {</pre>
```

```
6
           int u, v;
7
           G[2 * u + 1].push back(2 * v);
8
           G[2 * v + 1].push_back(2 * u);
9
       }
10 }
11 bool dfs(int u) {
12
       if (mark[u ^ 1]) return false;
13
       if (mark[u]) return true;
14
       mark[u] = 1;
15
       stk[++top] = u;
16
       for (int v : G[u]) {
17
           if (!dfs(v)) return false;
18
       }
19
       return true;
20 }
21 bool 2 sat() {
22
       for (int i = 1; i <= n; i++) {
           if (!mark[i * 2] && !mark[i * 2 + 1]) {
23
24
               top = 0;
25
               if (!dfs(2 * i)) {
26
                   while (top) mark[stk[top--]] = 0;
27
                   if (!dfs(2 * i + 1)) return 0;
28
               }
29
           }
30
       }
31
       return 1;
32 }
```

2.6.2. tarjan

如果对于一个 \mathbf{x} sccno 比它的反状态 $\mathbf{x} \wedge 1$ 的 sccno 要小,那么我们用 \mathbf{x} 这个状态当做答案,否则用它的反状态当做答案。

2.7. 生成树

2.7.1. Prime

```
1 int n, m;
2 vector<pii>> G[N];
3 ll dis[N];
4 int vis[N];
5 void MAIN() {
       cin >> n >> m;
6
7
       for (int i = 1; i <= m; i++) {
8
           int u, v, w;
9
           cin >> u >> v >> w;
10
           G[u].push back({v, w});
11
           G[v].push_back({u, w});
12
       }
       for (int i = 1; i \le n; i++) dis[i] = 1e18, vis[i] = 0;
13
14
       priority queue<pair<ll, int>> q;
15
       dis[1] = 0;
```

```
16
       q.push({-dis[1], 1});
17
       ll ans = 0;
18
       while (!q.empty()) {
19
           auto [val, u] = q.top(); q.pop();
           if (vis[u]) continue;
20
21
           vis[u] = 1;
22
           ans -= val;
23
           for (auto [v, w] : G[u]) if (dis[v] > w) {
24
               dis[v] = w;
25
               q.push({-w, v});
26
           }
27
       }
28
       cout << ans << '\n';
29 }
```

2.8. 圆方树

记得开两倍空间。

```
1 void tarjan(int u) {
2
       stk[++top] = u;
3
       low[u] = dfn[u] = ++dfc;
4
       for (int v : G[u]) {
5
           if (!dfn[v]) {
6
               tarjan(v);
7
               low[u] = min(low[u], low[v]);
8
               if (low[v] == dfn[u]) {
9
                   cnt++;
10
                    for (int x = 0; x != v; --top) {
11
                       x = stk[top];
12
                       T[cnt].push back(x);
13
                       T[x].push back(cnt);
14
                       val[cnt]++;
15
                   }
16
                   T[cnt].push_back(u);
17
                   T[u].push back(cnt);
18
                   val[cnt]++;
19
20
           } else low[u] = min(low[u], dfn[v]);
21
       }
22 }
23 // 调用
24 \text{ cnt} = n;
25 for (int i = 1; i <= n; i++) if (!dfn[i]) {
26
       tarjan(i);
27
       --top;
28 }
```

• 静态仙人掌最短路。边权设置为到点双顶点的最短距离。

```
1 void tarjan(int u) {
2
       stk[++top] = u;
       dfn[u] = low[u] = ++dfc;
3
4
       for (auto [v, w] : G[u]) if (!dfn[v]) {
5
           dis[v] = dis[u] + w;
6
           tarjan(v);
7
           low[u] = min(low[u], low[v]);
8
           if (low[v] == dfn[u]) {
9
               ++cnt;
10
               val[cnt] = cyc[stk[top]] + dis[stk[top]] - dis[u];
11
               for (int x = 0; x != v; --top) {
12
                   x = stk[top];
13
                   //assert(val[cnt] >= (dis[x] - dis[u]));
14
                   int w = min(dis[x] - dis[u], val[cnt] - (dis[x] -
   dis[u]));
15
                   T[cnt].push back({x, w});
16
                   T[x].push back({cnt, w});
17
               }
18
               T[cnt].push_back({u, 0});
19
               T[u].push back({cnt, 0});
20
           }
21
       } else if (dfn[v] < dfn[u]) {</pre>
22
           cyc[u] = w;
23
           low[u] = min(low[u], dfn[v]);
24
       }
25 }
26
27 void dfs(int u, int fa) {
28
       faz[0][u] = fa;
29
       for (int k = 1; k < M; k++) faz[k][u] = faz[k - 1][faz[k - 1][u]];
       for (auto [v, w] : T[u]) if (v != fa) {
31
           dep[v] = dep[u] + 1;
32
           ff[v] = ff[u] + w;
33
           dfs(v, u);
34
       }
35 }
36 int dist(int u, int v) {
       int tu = u, tv = v;
37
       if (dep[u] < dep[v]) swap(u, v);</pre>
38
39
       int det = dep[u] - dep[v];
40
       for (int k = 0; k < M; k++) if ((det >> k) & 1) u = faz[k][u];
41
       int lca:
42
       if (u == v) lca = u;
43
       else {
44
           for (int k = M - 1; k \ge 0; k - -) if (faz[k][u] != faz[k][v]) {
45
               u = faz[k][u]; v = faz[k][v];
46
           }
47
           lca = faz[0][u];
48
       }
49
       if (lca <= n) return ff[tu] + ff[tv] - ff[lca] * 2;</pre>
50
       int tm = min(abs(dis[u] - dis[v]), val[lca] - abs(dis[u] - dis[v]));
51
       return ff[tu] - ff[u] + ff[tv] - ff[v] + tm;
```

```
52 }
```

• 圆方树上 dp

以单源最短路为例,原点记录该点出发是否返回的最长路,方点记录顶点出发经过环上所能走到的最长路。

```
1 void dfs(int u, int fa) {
2
       for (int v : T[u]) if (v != fa) dfs(v, u);
3
       if (u <= n) {
4
           int mx = 0;
           /*
6
           这里必须设为 0 而不是 -\inf, 或者在平凡方点转移的时候要 \max(dp[0],
  dp[1])
7
           hack: 4 4
           1 2
8
9
           2 3
10
           3 4
11
           4 2
12
           */
13
           for (int v : T[u]) if (v != fa) {
14
               dp[u][1] += dp[v][1];
15
               mx = max(mx, dp[v][0] - dp[v][1]);
16
               dp[u][0] += dp[v][1];
17
           }
          dp[u][0] += mx;
18
       } else {
19
20
           int sum = 1;
21
           dp[u][1] = 1;
22
           for (int v : T[u]) if (v != fa) {
23
               dp[u][1] += dp[v][1] + 1;
24
               dp[u][0] = max(dp[u][0], sum + dp[v][0]);
25
               sum += dp[v][1] + 1;
26
           }
27
           sum = 1;
28
           reverse(T[u].begin(), T[u].end());
29
           for (int v : T[u]) if (v != fa) {
30
               dp[u][0] = max(dp[u][0], sum + dp[v][0]);
31
               sum += dp[v][1] + 1;
32
           }
33
           if (val[u] == 2) dp[u][1] = 0;
34
35 }
```

2.9. 欧拉回路

• 有向图

```
1 void dfs(int u) {
2    for (int &i = hd[u]; i < G[u].size(); ) dfs(G[u][i++]);</pre>
```

```
stk.push back(u);
4 }
5 int check() {
       int mo = 0, le = 0, st = 1;
       for (int i = 1; i <= n; i++) {</pre>
7
8
           if (abs(in[i] - out[i]) > 1) return -1;
9
           if (in[i] > out[i]) le++;
10
           if (in[i] < out[i]) mo++, st = i;</pre>
11
       }
12
       if (mo > 1 || le > 1 || mo + le == 1) return -1;
13
       return st;
14 }
15
16 void MAIN() {
17
       cin >> n >> m;
       for (int i = 1; i <= m; i++) {
18
19
           int u, v;
20
           cin >> u >> v;
21
           in[v]++; out[u]++;
22
           G[u].push_back(v);
23
       }
24
       for (int i = 1; i <= n; i++) sort(G[i].begin(), G[i].end());</pre>
25
       int tmp = check();
26
       if (tmp == -1) cout << "No\n";
27
       else {
28
           dfs(tmp);
29
           copy(stk.rbegin(), stk.rend(), ostream iterator<int>(cout, "
  "));
30
           cout << '\n';
31
       }
32 }
```

• 无向图

```
1 void dfs(int u) {
       for (int &i = hd[u]; i < G[u].size(); ) {</pre>
3
           while (i < G[u].size() \&\& cnt[u][G[u][i]] == 0) ++i;
           if (i == G[u].size()) break;
5
           cnt[u][G[u][i]]--;
6
           cnt[G[u][i]][u]--;
7
           dfs(G[u][i++]);
8
       }
9
       stk.push_back(u);
10 }
11 int check() {
12
       int odd = 0, st = -1;
       for (int i = 1; i \le n; i++) {
13
14
           if (deg[i] == 0) continue;
15
           if (st == -1) st = i;
16
           if (deg[i] & 1) {
17
               ++odd;
```

```
18
               if (odd == 1) st = i;
19
           }
20
       }
21
       if (odd > 2) return -1;
22
       return st;
23 }
24
25 void MAIN() {
26
       n = 500;
27
       cin >> m;
28
       for (int i = 1; i \le m; i++) {
29
           int u, v;
           cin >> u >> v;
31
           ++deg[u]; ++deg[v];
32
           G[u].push_back(v);
33
           G[v].push back(u);
34
           ++cnt[u][v];
35
           ++cnt[v][u];
36
       }
37
       for (int i = 1; i <= n; i++) sort(G[i].begin(), G[i].end());</pre>
38
       int tmp = check();
39
       if (tmp == -1) cout << "No\n";
       else {
40
41
           dfs(tmp);
           copy(stk.rbegin(), stk.rend(), ostream_iterator<int>(cout,
   "\n"));
43
      }
44 }
```

2.10. 无向图三/四元环计数

• 三元环

```
1 int vis[N];
2 vector<int> G[N];
3 ll main() {
       ll cnt = 0;
       for (int i = 0; i < m; i++) {
           if (deg[ed[i].fi] == deg[ed[i].se] \&\& ed[i].fi > ed[i].se)
   swap(ed[i].fi, ed[i].se);
7
           if (deg[ed[i].fi] > deg[ed[i].se]) swap(ed[i].fi, ed[i].se);
8
           G[ed[i].fi].push back(ed[i].se);
9
       }
       for (int u = 1; u <= n; u++) {</pre>
10
11
           for (int v : G[u]) vis[v] = 1;
12
           for (int v : G[u]) for (int w : G[v]) if (vis[w]) ++cnt;
13
           for (int v : G[u]) vis[v] = 0;
14
       }
15
       return cnt;
16 }
```

• 四元环

统计 $c? b \rightarrow a \leftarrow d? c$ 的数目,因为最大度数点 a 不同,所以不会算重。

```
1 int n, m, deg[N], cnt[N];
2 bool bigger(int a, int b) {
       return deg[a] > deg[b] \mid \mid (deg[a] == deg[b] \&\& a > b);
4 }
5 void MAIN() {
6
       cin >> n >> m;
7
       for (int i = 1; i \le m; i++) {
8
           int u, v;
9
           cin >> u >> v;
10
           ed.push back({u, v});
11
           G[u].push back(v);
12
           G[v].push back(u);
13
           ++deg[u]; ++deg[v];
14
       }
15
       for (auto [u, v] : ed) {
16
           if (bigger(v, u)) swap(u, v);
17
           T[u].push back(v);
18
       }
19
       ll ans = 0;
20
       for (int a = 1; a <= n; a++) {
           for (int b : T[a]) {
21
22
               for (int c : G[b]) {
23
                    if (c == a || bigger(c, a)) continue;
24
                    ans += cnt[c];
25
                   ++cnt[c];
26
               }
27
           }
28
           for (int b : T[a]) for (int c : G[b]) cnt[c] = 0;
29
       }
30
       cout << ans << '\n';</pre>
31 }
```

2.11. 虚树

需要保证 LCA(0, u) = 0

```
1 int solve(vector<int>po) {
2
       sort(po.begin(), po.end(), [](int x, int y) {
3
           return dfn[x] < dfn[y];</pre>
4
       });
5
       int ans = 0;
6
       top = 0;
7
       stk[++top] = 0;
       for (int u : po) {
8
9
           int lca = LCA(u, stk[top]);
10
           if (lca == stk[top]) stk[++top] = u;
           else {
11
               for (int i = top; i \ge 2 \&\& dep[stk[i - 1]] \ge dep[lca];
12
   i--) {
```

```
13
                 // ans += ff[stk[i]] - ff[stk[i - 1]] - (vis[stk[i]] ?
   val[stk[i]]: 0);
                // cout << stk[i] << ' ' << stk[i - 1] << ' ' <<
14
  ff[stk[i]] - ff[stk[i - 1]] - (vis[stk[i]] ? val[stk[i]]: 0) << '\n';
15
                   add edge(stk[i], stk[i - 1]);
16
                   --top;
17
               }
               if (stk[top] != lca) {
18
19
                 // cout << lca << ' ' << stk[top] << ' ' << ff[stk[top]]
   - ff[lca] - (vis[stk[top]] ? val[stk[top]] : 0) << '\n';</pre>
20
                 // ans += ff[stk[top]] - ff[lca] - (vis[stk[top]] ?
   val[stk[top]] : 0);
21
                   add edge(stk[top], lca);
22
                   stk[top] = lca;
23
24
               stk[++top] = u;
25
           }
26
       }
27
       for (int i = 2; i < top; i++) {
        // cout << stk[i + 1] << ' ' << stk[i] << ' ' << ff[stk[i + 1]] -
28
  ff[stk[i]] - (vis[stk[i + 1]] ? val[stk[i + 1]] : 0) << '\n';</pre>
29
         // ans += ff[stk[i + 1]] - ff[stk[i]] - (vis[stk[i + 1]] ?
   val[stk[i + 1]] : 0);
30
           add_edge(stk[i + 1], stk[i]);
31
32
      //ans += (vis[stk[2]] ? 0 : val[stk[2]]);
33
       return ans;
34 }
```

2.12. 最近公共祖先

```
1 // 倍增
2 int faz[N][20], dep[N];
3 void dfs(int u, int fa) {
4
       faz[u][0] = fa;
5
       dep[u] = dep[fa] + 1;
       for (int i = 1; i < 20; i++) faz[u][i] = faz[faz[u][i - 1]][i - 1];
7
       for (int v : G[u]) if (v != fa) {
8
           dfs(v, u);
9
       }
10 }
11 int LCA(int u, int v) {
12
       if (dep[u] < dep[v]) swap(u, v);</pre>
13
       int d = dep[u] - dep[v];
14
       for (int i = 0; i < 20; i++) if ((d >> i) & 1) u = faz[u][i];
15
       if (v == u) return u;
16
       for (int i = 19; i >= 0; i--) if (faz[u][i] != faz[v][i])
17
           u = faz[u][i], v = faz[v][i];
18
       return faz[u][0];
19 }
20
```

```
21 //树剖
22 int dfc, dfn[N], rnk[N], siz[N], top[N], dep[N], son[N], faz[N];
23 void dfs1(int u, int fa) {
       dep[u] = dep[fa] + 1;
25
       siz[u] = 1;
26
       son[u] = -1;
27
       faz[u] = fa;
28
       for (int v : G[u]) {
29
           if (v == fa) continue;
30
           dfs1(v, u);
31
           siz[u] += siz[v];
32
           if (son[u] == -1 \mid | siz[son[u]] < siz[v]) son[u] = v;
33
       }
34 }
35 void dfs2(int u, int fa, int tp) {
36
       dfn[u] = ++dfc;
37
       rnk[dfc] = u;
38
       top[u] = tp;
39
       if (son[u] != -1) dfs2(son[u], u, tp);
40
       for (int v : G[u]) {
41
           if (v == fa || v == son[u]) continue;
42
           dfs2(v, u, v);
43
       }
44 }
45 int LCA(int u, int v) {
46
       while (top[u] != top[v]) {
47
           if (dep[top[u]] > dep[top[v]])
48
               u = faz[top[u]];
49
           else
50
               v = faz[top[v]];
51
52
       return dep[u] > dep[v] ? v : u;
53 }
54
55 // O(1) query
57 int dfn[N], faz[N], dep[N], rnk[N], dfc, st[N][20];
58 void dfs(int u, int fa) {
       dfn[u] = ++dfc; faz[u] = fa; dep[u] = dep[fa] + 1; rnk[dfc] = u;
       for (auto [v, w] : G[u]) if (v != fa) dfs(v, u);
60
61 }
62 int LCA(int u, int v) {
       if (u == v) return u;
63
       if (dfn[u] > dfn[v]) swap(u, v);
64
65
       int l = dfn[u] + 1, r = dfn[v];
       int k = _{lg}(r - l + 1);
66
       return dep[st[l][k]] < dep[st[r - (1 << k) + 1][k]] ? faz[st[l]
   [k]: faz[st[r - (1 << k) + 1][k]];
68 }
69
70 int main() {
71
       dfs(1, 0);
```

```
72  dep[0] = n + 1;
73  for (int i = 1; i <= n; i++) st[i][0] = rnk[i];
74  for (int j = 1; j < 20; j++) {
75     for (int i = 1; i <= n; i++) {
76     st[i][j] = dep[st[i][j - 1]] <= dep[st[min(n, i + (1 << (j - 1)))][j - 1]] ? st[i][j - 1] : st[min(n, i + (1 << (j - 1)))][j - 1];
77   }
78  }
79 }</pre>
```

3. 数学

3.1. 子集卷积

高维前缀和

```
1 for (int k = 0; k < 20; k++) {
2    for (int i = 0; i < (1 << 20); i++) if ((i >> k) & 1) {
3        f[i] = f[i] + f[i ^ (1 << k)];
4    }
5 }</pre>
```

高维后缀和

```
1 for (int k = 0; k < 20; k++) {
2    for (int i = 0; i < (1 << 20); i++) if ((i >> k) & 1) {
3       f[i] = f[i] + f[i ^ (1 << k)];
4    }
5 }</pre>
```

高维差分

```
1 for (int k = 0; k < 20; k++) {
2    for (int i = 0; i < (1 << 20); i++) if ((i >> k) & 1) {
3        f[i] = f[i] - f[i ^ (1 << k)];
4    }
5 }</pre>
```

3.2. 线性基

```
9
                   }
10
                   v ^= a[i];
11
               } else {
12
                   a[i] = v;
13
                   pos[i] = p;
14
                   return;
15
               }
16
          }
17
       }
18 } b[N];
19
20 LinerBasis operator + (LinerBasis a, LinerBasis b) {
21
       for (int i = 19; i \ge 0; i - -) {
           if (b.a[i]) a.add(b.a[i], b.pos[i]);
22
23
       }
24
       return a;
25 }
```

3.3. 高斯消元

```
1 namespace Gauss {
       bitset<258> a[256 + 256 + 5];
 2
3
       int n;
4
       void push(const bitset<258>& x) {
5
           a[++n] = x;
6
7
       bool solve(int m) {
8
           int k = 1;
9
           for (int i = 1; i \le m; i++) {
10
               if (k > n) break;
               for (int j = k + 1; j \le n; j++) if (a[j][i] > 0) {
11
12
                    swap(a[k], a[j]);
13
                   break;
14
               }
15
               if (a[k][i] == 0) break;
16
               for (int j = 1; j \le n; j++) if (j != k \&\& a[j][i]) {
                   a[j] ^= a[k];
17
18
               }
19
               ++k;
20
21
           for (int i = k; i <= n; i++) if (a[i][m + 1]) return false;</pre>
22
           return true;
23
       }
24 }
```

4. 多项式

4.1. NTT

这个板子很慢

```
1 #include <bits/stdc++.h>
2 using namespace std;
4 typedef vector<int> poly;
5 const int mod = 998244353;
6 const int N = 4000000 + 5;
7
8 int rf[32][N];
9 int fpow(int a, int b) {
10
       int res = 1;
11
       for (; b; b >>= 1, a = a * 1ll * a % mod) if (b & 1)
12
            res = res * 111 * a % mod;
13
       return res;
14 }
15 void init(int n) {
       assert(n < N);</pre>
17
       int lg = lg(n);
18
       static vector<bool> bt(32, 0);
19
       if (bt[lg] == 1) return;
20
       bt[lg] = 1;
21
       for (int i = 0; i < n; i++) rf[lg][i] = (rf[lg][i >> 1] >> 1) + ((i)
 \& 1) ? (n >> 1) : 0);
22 }
23 void ntt(poly &x, int lim, int op) {
       int lg = \underline{\hspace{0.1cm}} lg(lim), gn, g, tmp;;
       for (int i = 0; i < lim; i++) if (i < rf[lg][i]) swap(x[i], x[rf[lg]</pre>
25
   [i]]);
26
       for (int len = 2; len <= lim; len <<= 1) {</pre>
           int k = (len >> 1);
27
28
           gn = fpow(3, (mod - 1) / len);
29
           for (int i = 0; i < \lim; i += len) {
                g = 1;
31
                for (int j = 0; j < k; j++, g = gn * 1ll * g % mod) {
32
                    tmp = x[i + j + k] * 111 * g % mod;
33
                    x[i + j + k] = (x[i + j] - tmp + mod) % mod;
34
                    x[i + j] = (x[i + j] + tmp) % mod;
35
                }
36
           }
37
       }
38
       if (op == -1) {
39
           reverse(x.begin() + 1, x.begin() + lim);
40
           int inv = fpow(lim, mod - 2);
41
           for (int i = 0; i < \lim; i++) x[i] = x[i] * 111 * inv % mod;
42
       }
43 }
44 poly multiply(const poly &a, const poly &b) {
45
       assert(!a.empty() && !b.empty());
46
       int lim = 1;
47
       while (lim + 1 < int(a.size() + b.size())) lim <<= 1;</pre>
48
       init(lim);
49
       poly pa = a, pb = b;
50
       while (pa.size() < lim) pa.push back(0);</pre>
```

```
51
        while (pb.size() < lim) pb.push_back(0);</pre>
52
        ntt(pa, lim, 1); ntt(pb, lim, 1);
53
        for (int i = 0; i < lim; i++) pa[i] = pa[i] * 1ll * pb[i] % mod;</pre>
54
        ntt(pa, lim, -1);
55
        while (int(pa.size()) + 1 > int(a.size() + b.size())) pa.pop back();
56
        return pa;
57 }
58 poly prod poly(const vector<poly>& vec) { // init vector, too slow
        int n = vec.size();
60
        auto calc = [\&] (const auto &self, int l, int r) -> poly {
61
            if (l == r) return vec[l];
62
            int mid = (l + r) \gg 1;
            return multiply(self(self, l, mid), self(self, mid + 1, r));
63
64
        };
65
        return calc(calc, 0, n - 1);
66 }
67
68 // Semi-Online-Convolution
69 poly semi_online_convolution(const poly& g, int n, int op = 0) {
70
        assert(n == g.size());
71
        poly f(n, 0);
72
        f[0] = 1;
        auto CDQ = [\&] (const auto &self, int l, int r) -> void {
73
74
            if (l == r) {
75
                // exp
76
                if (op == 1 \&\& l > 0) f[l] = f[l] * 1ll * fpow(l, mod - 2) %
   mod;
77
                return;
78
            }
79
            int mid = (l + r) \gg 1;
80
            self(self, l, mid);
81
            poly a, b;
            for (int i = l; i <= mid; i++) a.push back(f[i]);</pre>
82
            for (int i = 0; i \le r - l - 1; i++) b.push back(g[i + 1]);
83
84
            a = multiply(a, b);
85
            for (int i = mid + 1; i \le r; i + +) f[i] = (f[i] + a[i - l - 1])
   % mod;
86
            self(self, mid + 1, r);
87
        };
88
        CDQ(CDQ, 0, n - 1);
89
        return f;
90 }
91
92 poly getinv(const poly &a) {
93
        assert(!a.empty());
94
        poly res = \{fpow(a[0], mod - 2)\}, na = \{a[0]\};
95
        int lim = 1;
        while (lim < int(a.size())) lim <<= 1;</pre>
96
97
        for (int len = 2; len <= lim; len <<= 1) {</pre>
98
            while (na.size() < len) {</pre>
99
                int tmp = na.size();
                 if (tmp < a.size()) na.push back(a[tmp]);</pre>
100
```

```
101
                 else na.push back(0);
102
            }
103
            auto tmp = multiply(na, res);
104
            for (auto &x : tmp) x = (x > 0 ? mod - x : x);
            tmp[0] = ((tmp[0] + 2) >= mod) \&\& (tmp[0] -= mod);
105
106
            tmp = multiply(res, tmp);
107
            while (tmp.size() > len) tmp.pop back();
108
            res = tmp;
109
        }
110
        while (res.size() > a.size()) res.pop_back();
111
        return res;
112 }
113 poly exp(const poly &g) {
114
        int n = g.size();
115
        poly b(n, 0);
        for (int i = 1; i < n; i++) b[i] = i * 1ll * g[i] % mod;
116
117
        return semi online convolution(b, n, 1);
118 }
119 poly ln(const poly &A) {
120
        int n = A.size();
121
        auto C = getinv(A);
        poly A1(n, 0);
122
123
        for (int i = 0; i < n - 1; i++) A1[i] = (i + 1) * 111 * A[i + 1] %
    mod;
124
        C = multiply(C, A1);
125
        for (int i = n - 1; i > 0; i - -) C[i] = C[i - 1] * 1ll * fpow(i, mod
   - 2) % mod;
126
        C[0] = 0;
        while (C.size() > n) C.pop_back();
127
128
        return C;
129 }
130 poly quick pow(poly &a, int k, int k mod phi, bool is k bigger than mod
    = false) {
131
        assert(!a.empty());
        int n = a.size(), t = -1, b;
132
        for (int i = 0; i < n; i++) if (a[i]) {
133
            t = i, b = a[i];
134
135
            break;
136
        }
137
        if (t == -1 \mid | t \& is_k \underline{bigger} \underline{than} \underline{mod} \mid | k * 1ll * t >= n) return
    poly(n, 0);
138
        poly f;
139
        for (int i = 0; i < n; i++) {
140
            if (i + t < n) f.push_back(a[i + t] * 1ll * fpow(b, mod - 2) %</pre>
    mod);
141
            else f.push back(0);
142
        }
        f = ln(f);
143
144
        for (auto \&x : f) x = x * 111 * k % mod;
145
        f = exp(f);
146
        poly res;
147
        for (int i = 0; i < k * t; i++) res.push back(0);
```

```
148
        int fb = fpow(b, k_mod_phi);
149
        for (int i = k * t; i < n; i++) res.push back(f[i - k * t] * 111 *
   fb % mod);
       return res;
150
151 }
152
153 int main() {
154
        ios::sync with stdio(0); cin.tie(0);
155
        int n, k = 0, k_{mod_phi} = 0, isb = 0;
156
        string s;
157
        cin >> n >> s;
158
        for (auto ch : s) {
159
            if ((ch - '0') + k * 10ll >= mod) isb = 1;
160
            k = ((ch - '0') + k * 1011) % mod;
161
            k \mod phi = ((ch - '0') + k \mod phi * 1011) % 998244352;
162
        }
163
        poly a(n);
164
        for (auto \&x: a) cin >> x;
165
        a = quick_pow(a, k, k_mod_phi, isb);
166
        while (a.size() > n) a.pop back();
        for (auto x : a) cout << x << ' ';</pre>
167
168
        return 0;
169 }
```

4.2. 任意模数 NTT

模数小于 109

```
1 #include <bits/stdc++.h>
   2 using namespace std;
   4 typedef complex<double> cp;
   5 typedef vector<cp> poly;
   6 typedef long long ll;
   8 const int N = 4000000 + 5;
  9 const double pi = acos(-1);
10
11 int rf[26][N];
12 void init(int n) {
13
                                assert(n < N);</pre>
                                  int lg = lg(n);
14
15
                                  static vector<bool> bt(26, 0);
16
                                  if (bt[lg] == 1) return;
17
                                  bt[lg] = 1;
                                  for (int i = 0; i < n; i++) rf[lg][i] = (rf[lg][i >> 1] >> 1) + ((i-1)^2 + (i-1)^2 + (i-
            \& 1) ? (n >> 1) : 0);
19 }
20 void fft(poly &x, int lim, int op) {
                                 int lg = __lg(lim);
21
```

```
22
       for (int i = 0; i < lim; i++) if (i < rf[lg][i]) swap(x[i], x[rf[lg]</pre>
   [i]]);
23
       for (int len = 2; len <= lim; len <<= 1) {</pre>
24
           int k = (len >> 1);
25
           for (int i = 0; i < \lim; i += len) {
26
                for (int j = 0; j < k; j++) {
27
                    cp w(cos(pi * j / k), op * sin(pi * j / k));
28
                    cp tmp = w * x[i + j + k];
29
                    x[i + j + k] = x[i + j] - tmp;
30
                    x[i + j] = x[i + j] + tmp;
31
               }
32
           }
33
       }
34
       if (op == -1) for (int i = 0; i < lim; i++) x[i] /= lim;
35 }
36 poly multiply(const poly &a, const poly &b) {
37
       assert(!a.empty() && !b.empty());
38
       int lim = 1;
39
       while (lim + 1 < int(a.size() + b.size())) lim <<= 1;</pre>
40
       init(lim);
41
       poly pa = a, pb = b;
42
       pa.resize(lim);
43
       pb.resize(lim);
44
       for (int i = 0; i < \lim; i++) pa[i] = (cp){pa[i].real(),}
   pb[i].real());
45
       fft(pa, lim, 1);
       pb[0] = conj(pa[0]);
46
47
       for (int i = 1; i < lim; i++) pb[lim - i] = conj(pa[i]);</pre>
48
       for (int i = 0; i < \lim; i++) {
49
           pa[i] = (pa[i] + pb[i]) * (pa[i] - pb[i]) / cp({0, 4});
50
       }
51
       fft(pa, lim, -1);
52
       pa.resize(int(a.size() + b.size()) - 1);
53
       return pa;
54 }
55 vector<int> MTT(const vector<int> &a, const vector<int> &b, const int
   mod) {
56
       const int B = (1 << 15) - 1, M = (1 << 15);
57
       int lim = 1;
58
       while (lim + 1 < int(a.size() + b.size())) lim <<= 1;</pre>
59
       init(lim);
60
       poly pa(lim), pb(lim);
61
       auto get = [](const vector<int>& v, int pos) -> int {
62
           if (pos >= v.size()) return 0;
63
           else return v[pos];
64
       };
65
       for (int i = 0; i < \lim; i++) pa[i] = (cp){get(a, i)} >> 15, get(a,
   i) & B};
66
       fft(pa, lim, 1);
67
       pb[0] = conj(pa[0]);
       for (int i = 1; i < lim; i++) pb[lim - i] = conj(pa[i]);</pre>
68
       poly A0(lim), A1(lim);
```

```
70
        for (int i = 0; i < \lim; i++) {
 71
            A0[i] = (pa[i] + pb[i]) / (cp){2, 0};
 72
            A1[i] = (pa[i] - pb[i]) / (cp){0, 2};
 73
        }
 74
        for (int i = 0; i < \lim; i++) pa[i] = (cp)\{get(b, i) >> 15, get(b, i)\}
    i) & B};
 75
        fft(pa, lim, 1);
 76
        pb[0] = conj(pa[0]);
        for (int i = 1; i < lim; i++) pb[lim - i] = conj(pa[i]);</pre>
 77
 78
        poly B0(lim), B1(lim);
 79
        for (int i = 0; i < \lim; i++) {
 80
            B0[i] = (pa[i] + pb[i]) / (cp){2, 0};
 81
            B1[i] = (pa[i] - pb[i]) / (cp){0, 2};
 82
        }
        for (int i = 0; i < lim; i++) {</pre>
 83
 84
            pa[i] = A0[i] * B0[i];
 85
            pb[i] = A0[i] * B1[i];
            A0[i] = pa[i];
 86
 87
            pa[i] = A1[i] * B1[i];
            B1[i] = pb[i];
 88
 89
            B0[i] = A1[i] * B0[i];
 90
            A1[i] = pa[i];
 91
            pa[i] = A0[i] + (cp)\{0, 1\} * A1[i];
            pb[i] = B0[i] + (cp)\{0, 1\} * B1[i];
 92
 93
        }
 94
        fft(pa, lim, -1); fft(pb, lim, -1);
 95
        vector<int> res(int(a.size() + b.size()) - 1);
        const int M2 = M * 1ll * M % mod;
 96
 97
        for (int i = 0; i < res.size(); i++) {</pre>
 98
            ll a0 = round(pa[i].real()), a1 = round(pa[i].imag()), b0 =
    round(pb[i].real()), b1 = round(pb[i].imag());
 99
            a0 %= mod; a1 %= mod; b0 %= mod; b1 %= mod;
            res[i] = (a0 * 111 * M2 % mod + a1 + (b0 + b1) % mod * 111 * M %
100
    mod) % mod;
101
       }
102
        return res;
103 }
104
105 int main() {
106 #ifdef LOCAL
107
        freopen("miku.in", "r", stdin);
        freopen("miku.out", "w", stdout);
108
109 #endif
110
        ios::sync with stdio(0); cin.tie(0);
111
        int n, m, p;
112
        cin >> n >> m >> p;
113
        vector<int> a(n + 1), b(m + 1);
114
        for (auto \&x: a) cin >> x;
115
        for (auto &x : b) cin >> x;
116
        auto res = MTT(a, b, p);
117
        for (auto x : res) cout << x << ' ';</pre>
118 }
```

5. 数据结构

5.1. 李超树

```
1 \begin{lstlisting}
 2 struct Line {
3 ll k, b:
4 } lin[N];
5 int lcnt;
6 int add line(ll k, ll b) {
   lin[++lcnt] = \{k, b\};
8 return lcnt;
9 }
10 struct node {
11 int ls, rs, u;
12 } tr[N << 2];
13 int tot;
14 ll calc(int u, ll x) {
15 return lin[u].k * x + lin[u].b;
16 }
17 bool cmp(int u, int v, ll x) {
18 return calc(u, x) <= calc(v, x); // 如果要求最大值,只需要修改为大于等于
19 }
20 void pushdown(int &p, int l, int r, int v) {
21 if (!p) p = ++tot;
22 if (l == r) return;
    int mid = (l + r) \gg 1;
int \&u = tr[p].u, b = cmp(v, u, mid);
25 if (b) swap(u, v);
    int bl = cmp(v, u, l), br = cmp(v, u, r);
26
    if (bl) pushdown(tr[p].ls, l, mid, v);
27
28
    if (br) pushdown(tr[p].rs, mid + 1, r, v);
29 }
30 void update(int &p, int l, int r, int L, int R, int v) {
    if (l > R || r < L) return;</pre>
     if (!p) p = ++tot;
33
    int mid = (l + r) \gg 1;
    if (l >= L \&\& r <= R) return pushdown(p, l, r, v), void();
35
     update(tr[p].ls, l, mid, L, R, v);
    update(tr[p].rs, mid + 1, r, L, R, v);
36
37 }
38 ll query(int p, int l, int r, ll pos) {
39 if (!p) return 1e16;
    ll res = calc(tr[p].u, pos);
41
    int mid = (l + r) \gg 1;
42
    if (l == r) return res;
43 if (pos <= mid) {
      res = min(res, query(tr[p].ls, l, mid, pos));
44
45
     } else res = min(res, query(tr[p].rs, mid + 1, r, pos));
46
     return res;
47 }
48
```

```
49 int main() {
50  lin[0].b = le16;
51  return 0;
52 }
```

5.2. 兔队线段树

求有多少个严格前缀最大值。

线段树保存每个区间为子问题时右部分的答案 res(可以不需要信息可减),和区间的最大值 mx。

calc 考虑一段区间之前有 x 大的数时,区间此时前缀最大数的树目。

- 1. $x \ge \text{val[lson]}$, ans = calc(rson)
- 2. x < val[lson], ans = calc(lson) + res[p]

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 using ll = long long;
5 const int N = 1e5 + 5;
6 #define lson (p << 1)
7 #define rson ((p << 1) | 1)
8 \# define mid ((l + r) >> 1)
9 int n, m;
10 struct node {
11 int s, a, b;
12 } tr[N << 2];
13 bool cmp(int a, int b, int c, int d) {
       if (d == 0 \&\& b == 0) return 0;
14
15
      if (d == 0 \&\& a == 0) return 0;
      if (d == 0) return 1;
16
17
      return a * 111 * d > c * 111 * b;
18 }
19 int calc(int p, int l, int r, int c, int d) {
      if (l == r)
20
21
          return cmp(tr[p].a, tr[p].b, c, d);
22
       if (cmp(tr[lson].a, tr[lson].b, c, d)) {
23
          return calc(lson, l, mid, c, d) + tr[p].s;
24
25
       return calc(rson, mid + 1, r, c, d);
26 }
27 void modify(int p, int l, int r, int pos, int v) {
28
      if (l == r) {
29
          tr[p] = \{0, v, pos\};
           return;
31
       }
       if (pos <= mid) modify(lson, l, mid, pos, v);</pre>
32
33
       else modify(rson, mid + 1, r, pos, v);
34
       if (cmp(tr[lson].a, tr[lson].b, tr[rson].a, tr[rson].b)) {
```

```
35
           tr[p] = tr[lson];
       } else tr[p] = tr[rson];
37
       tr[p].s = calc(rson, mid + 1, r, tr[lson].a, tr[lson].b);
38 }
39
40 int main() {
41
       scanf("%d %d", &n, &m);
42
       while (m--) {
43
           int x, y;
44
           scanf("%d %d", &x, &y);
45
           modify(1, 1, n, x, y);
46
           printf("%d\n", calc(1, 1, n, 0, 0));
47
       }
48
       return 0;
```

5.3. 平衡树

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 using ll = long long;
5 #define rank abcdefg
6 const int mod = 998244353;
7 const int N = 1e5 + 5;
9 int tot, fa[N], tr[N][2], sz[N], cnt[N], val[N], rt;
11 void maintain(int x) {
      sz[x] = sz[tr[x][0]] + sz[tr[x][1]] + cnt[x];
13 }
14 int getdir(int x) {
15     return tr[fa[x]][1] == x;
16 }
17 void clear(int x) {
      fa[x] = sz[x] = cnt[x] = tr[x][0] = tr[x][1] = val[x] = 0;
18
19 }
20 int create(int v) {
21
      ++tot;
22
      val[tot] = v;
23
      sz[tot] = cnt[tot] = 1;
24
      return tot;
25 }
26 void rotate(int x) {
      if (x == rt) return;
27
28
      int y = fa[x], z = fa[y], d = getdir(x);
      tr[y][d] = tr[x][d^1];
29
      if (tr[x][d ^ 1]) fa[tr[x][d ^ 1]] = y;
30
31
      fa[y] = x;
32
      tr[x][d ^ 1] = y;
33
      fa[x] = z;
34
      if (z) tr[z][y == tr[z][1]] = x;
```

```
35
       maintain(y);
36
       maintain(x);
37 }
38 void splay(int x) {
       for (int f = fa[x]; f = fa[x], f; rotate(x)) {
39
40
           if (fa[f]) rotate(getdir(f) == getdir(x) ? f : x);
41
       }
42
       rt = x;
43 }
44 void insert(int v) {
45
       if (!rt) {
46
           rt = create(v);
47
           return;
48
       }
49
       int u = rt, f = 0;
50
       while (true) {
51
           if (val[u] == v) {
52
               cnt[u]++;
53
               maintain(u);
54
               maintain(f);
55
               splay(u);
56
               return;
57
           }
58
           f = u, u = tr[u][v > val[u]];
59
           if (u == 0) {
60
               int id;
61
               fa[id = create(v)] = f;
62
               tr[f][v > val[f]] = id;
63
               maintain(f);
64
               splay(id);
65
               return;
66
           }
67
       }
68 }
69
70 int rank(int v) {
71
       int rk = 0;
       int u = rt;
72
73
       while (u) {
74
           if (val[u] == v) {
75
               rk += sz[tr[u][0]];
76
               splay(u);
77
               return rk + 1;
78
79
           if (v < val[u]) {</pre>
80
               u = tr[u][0];
81
           } else {
82
               rk += sz[tr[u][0]] + cnt[u];
               u = tr[u][1];
83
84
           }
85
       }
86
       return -1;
```

```
87 }
 88
 89 int kth(int x) {
        int u = rt;
 91
        while (u) {
 92
            if (sz[tr[u][0]] + cnt[u] >= x \& sz[tr[u][0]] < x) return
    val[u];
 93
            if (x <= sz[tr[u][0]]) {</pre>
 94
                u = tr[u][0];
 95
            } else {
 96
               x \rightarrow sz[tr[u][0]] + cnt[u];
 97
                u = tr[u][1];
 98
            }
 99
        }
100
       return u ? val[u] : -1;
101 }
102 int pre() {
103
       int u = tr[rt][0];
104
        if (!u) return val[rt];
105
        while (true) {
            if (tr[u][1] == 0) return splay(u), val[u];
106
107
            u = tr[u][1];
108
        }
109
        return 233;
110 }
111 int suf() {
112
        int u = tr[rt][1];
        if (!u) return val[rt];
113
114
        while (true) {
115
            if (tr[u][0] == 0) return splay(u), val[u];
116
            u = tr[u][0];
117
        }
118
        return 233;
119 }
120 void del(int v) {
121
        if (rank(v) == -1) return;
122
        if (cnt[rt] > 1) {
123
            cnt[rt]--;
124
            return;
125
        }
        if (!tr[rt][1] && !tr[rt][0]) {
126
            clear(rt), rt = 0;
127
128
        } else if (!tr[rt][0]) {
129
            int x = rt;
130
            rt = tr[x][1];
131
            fa[rt] = 0;
132
            clear(x);
133
        } else if (!tr[rt][1]) {
134
            int x = rt;
135
            rt = tr[x][0];
136
            fa[rt] = 0;
137
            clear(x);
```

```
138
        } else {
139
            int cur = rt, y = tr[cur][1];
140
            pre();
141
            tr[rt][1] = y;
142
            fa[y] = rt;
143
            clear(cur);
144
            maintain(rt);
145
        }
146 }
147
148 int main() {
149
        int n, opt, x;
150
151
        for (scanf("%d", &n); n; --n) {
152
            scanf("%d%d", &opt, &x);
153
154
            if (opt == 1)
155
               insert(x);
156
            else if (opt == 2)
157
                del(x);
158
            else if (opt == 3)
159
                printf("%d\n", rank(x));
160
            else if (opt == 4)
161
                printf("%d\n", kth(x));
162
            else if (opt == 5)
163
                insert(x), printf("%d\n", pre()), del(x);
164
165
                insert(x), printf("%d\n", suf()), del(x);
166
        }
167
168
        return 0;
169 }
```

5.4. 文艺平衡树

```
1 # include<iostream>
2 # include<cstdio>
3 # include<cstring>
4 # include<cstdlib>
5 using namespace std;
6 const int MAX=1e5+1;
7 int n,m,tot,rt;
8 struct Treap{
9
       int pos[MAX],siz[MAX],w[MAX];
10
       int son[MAX][2];
11
       bool fl[MAX];
12
       void pus(int x)
13
       {
14
           siz[x]=siz[son[x][0]]+siz[son[x][1]]+1;
15
       }
16
       int build(int x)
```

```
17
       {
18
           w[++tot]=x,siz[tot]=1,pos[tot]=rand();
19
           return tot;
20
       }
21
       void down(int x)
22
23
           swap(son[x][0],son[x][1]);
24
           if(son[x][0]) fl[son[x][0]]^=1;
25
           if(son[x][1]) fl[son[x][1]]^=1;
26
           fl[x]=0;
27
       }
28
       int merge(int x,int y)
29
       {
30
           if(!x||!y) return x+y;
31
           if(pos[x]<pos[y])</pre>
32
           {
33
                if(fl[x]) down(x);
34
                son[x][1] = merge(son[x][1],y);
35
                pus(x);
36
                return x;
37
           }
38
           if(fl[y]) down(y);
39
           son[y][0] = merge(x, son[y][0]);
40
           pus(y);
41
            return y;
42
       }
43
       void split(int i,int k,int &x,int &y)
44
45
           if(!i)
46
           {
47
                x=y=0;
48
                return;
49
           }
50
           if(fl[i]) down(i);
51
           if(siz[son[i][0]]<k)</pre>
           x=i, split(son[i][1], k-siz[son[i][0]]-1, son[i][1], y);
52
53
54
           y=i,split(son[i][0],k,x,son[i][0]);
55
           pus(i);
56
       }
57
       void coutt(int i)
58
59
           if(!i) return;
60
           if(fl[i]) down(i);
           coutt(son[i][0]);
61
62
           printf("%d ",w[i]);
63
           coutt(son[i][1]);
64
65 }Tree;
66 int main()
67 {
68
       scanf("%d%d",&n,&m);
```

```
69
        for(int i=1;i<=n;i++)</pre>
70
          rt=Tree.merge(rt,Tree.build(i));
71
       for(int i=1;i<=m;i++)</pre>
72
         {
73
              int l,r,a,b,c;
74
              scanf("%d%d",&l,&r);
75
              Tree.split(rt,l-1,a,b);
76
           Tree.split(b, r-l+1, b, c);
77
           Tree.fl[b]^=1;
78
            rt=Tree.merge(a,Tree.merge(b,c));
79
         }
80
       Tree.coutt(rt);
81
       return 0;
82 }
```

6. 字符串

6.1. KMP

```
1 int n = strlen(s + 1);
2 for (int i = 2; i <= n; i++) {
3    int j = k[i - 1];
4    while (j != 0 && s[i] != s[j + 1]) j = k[j];
5    if (s[i] == s[j + 1]) k[i] = j + 1;
6    else k[i] = 0;
7 }</pre>
```

6.2. Z function

```
for (int i = 2, l = 0, r = 0; i <= n; i++) {
   if (r >= i && r - i + 1 > z[i - l + 1]) {
      z[i] = z[i - l + 1];
   } else {
      z[i] = max(0, r - i + 1);
      while (z[i] < n - i + 1 && s[z[i] + 1] == s[i + z[i]]) ++z[i];
   }
   if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
}
```

6.3. **SA**

```
1 int sa[N], ork[N], rk[N], cnt[N], id[N], h[N], M, n;
2 char s[N];
3 int mn[22][N];
4 int lcp(int a, int b) {
5    if (a == b) return n - a + 1;
6    if (rk[a] > rk[b]) swap(a, b);
7   int l = rk[a] + 1, r = rk[b];
8   int len = r - l + 1, k = __lg(len);
```

```
return min(mn[k][l], mn[k][r - (1 << k) + 1]);
10 }
11 void MAIN() {
                 scanf("%s", s + 1);
12
13
                 n = strlen(s + 1);
14
                 for (int i = 1; i \le n; i++) M = \max(M, (int)s[i]);
15
                 for (int i = 1; i \le n; i++) if ((int)(s[i]) > M) M = (int)(s[i]);
16
                 for (int i = 1; i \le n; i++) cnt[rk[i] = s[i]]++;
17
                 for (int i = 0; i <= M; i++) cnt[i] += cnt[i - 1];</pre>
18
                  for (int i = n; i; i--) sa[cnt[rk[i]]--] = i;
                  for (int w = 1, p; w < n; w <<= 1, M = p) {
19
20
                            p = 0;
21
                            for (int i = n; i > n - w; i--) id[++p] = i;
22
                            for (int i = 1; i \le n; i++) if (sa[i] > w) id[++p] = sa[i] - w;
23
                            for (int i = 0; i \le M; i++) cnt[i] = 0;
                            for (int i = 1; i <= n; i++) cnt[rk[i]]++;</pre>
24
                            for (int i = 1; i <= M; i++) cnt[i] += cnt[i - 1];</pre>
25
26
                            for (int i = n; i; i--) sa[cnt[rk[id[i]]]--] = id[i];
                            p = 0;
27
28
                            for (int i = 0; i \le n; i++) ork[i] = rk[i];
29
                            for (int i = 1; i \le n; i++) {
                                     if (ork[sa[i]] == ork[sa[i - 1]] && ork[sa[i] + w] ==
       ork[sa[i - 1] + w]) rk[sa[i]] = p;
31
                                     else rk[sa[i]] = ++p;
32
33
                           if (p == n) break;
34
                 }
35
                 for (int i = 1, k = 0; i \le n; i++) {
36
                            if (rk[i] == 1) continue;
37
                            if (k) k--;
38
                            while (s[i + k] == s[sa[rk[i] - 1] + k]) k++;
39
                            h[rk[i]] = k;
40
                 }
                 for (int i = 1; i \le n; i++) mn[0][i] = h[i];
41
42
                  for (int j = 1; j < 22; j++) {
43
                            for (int i = 1; i \le n; i++) {
                                      mn[j][i] = min(mn[j - 1][i], mn[j - 1][min(n, i + (1 << (j - 1)[min(n, i + (i << (j - 1)[min(n, i + (i << (i << (i << (j - 1)[min(n, i << (i << (
44
       1)))]);
45
                            }
46
                 }
47 }
```

6.4. AC 自动机

```
1 int ch[N][26], tot, fail[N], e[N];
2 void insert(const char *s) {
3   int u = 0, n = strlen(s + 1);
4   for (int i = 1; i <= n; i++) {
5      if (!ch[u][s[i] - 'a']) ch[u][s[i] - 'a'] = ++tot;
6      u = ch[u][s[i] - 'a'];
7  }</pre>
```

```
e[u] += 1;
9 }
10 void build() {
11 queue<int> q;
for (int i = 0; i \le 25; i++) if (ch[0][i]) q.push(ch[0][i]);
13 while (!q.empty()) {
int now = q.front(); q.pop();
15
      for (int i = 0; i < 26; i++) {
16
        if (ch[now][i]) fail[ch[now][i]] = ch[fail[now]][i],
q.push(ch[now][i]);
else ch[now][i] = ch[fail[now]][i];
18
      }
19 }
20 }
21 int query(const char *s) {
int u = 0, n = strlen(s + 1), res = 0;
23
      for (int i = 1; i \le n; i++){
        u = ch[u][s[i] - 'a'];
24
25
        for (int j = u; j \& e[j] != -1; j = fail[j]) {
26
         res += e[j];
27
         e[j] = -1;
        }
28
29
      }
30
      return res;
31 }
```

6.5. Manacher

对于第 i 个字符为对称轴:

- 1. 如果回文串长为奇数, $\frac{d[2*i]}{2}$ 是半径加上自己的长度
- 2. 如果长为偶数, $\frac{d[2*i-1]}{2}$ 是半径的长度, 方向向右.

```
1 int n, d[N * 2];
2 char s[N];
3
4 for (int i = 1; i <= n; i++) t[i * 2] = s[i], t[i * 2 - 1] = '#';
5 t[n * 2 + 1] = '#';
6 m = n * 2 + 1;
7 for (int i = 1, l = 0, r = 0; i <= m; i++) {
    int k = i <= r ? min(d[r - i + l], r - i + 1) : 1;
    while (i + k <= m && i - k >= 1 && t[i + k] == t[i - k]) k++;
10    d[i] = k--;
11    if (i + k > r) r = i + k, l = i - k;
12 }
```

7. 杂项

7.1. fastio

来自 oiwiki

```
1 // #define DEBUG 1 // 调试开关
2 struct IO {
3 #define MAXSIZE (1 << 20)</pre>
4 #define isdigit(x) (x \geq '0' && x \leq '9')
5 char buf[MAXSIZE], *p1, *p2;
6 char pbuf[MAXSIZE], *pp;
7 #if DEBUG
8 #else
9 IO(): p1(buf), p2(buf), pp(pbuf) {}
10
11 ~IO() { fwrite(pbuf, 1, pp - pbuf, stdout); }
12 #endif
13 char gc() {
14 #if DEBUG // 调试,可显示字符
15 return getchar();
16 #endif
if (p1 == p2) p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
     return p1 == p2 ? ' ' : *p1++;
18
19
    }
20
21 bool blank(char ch) {
     return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
22
23
24
25 template <class T>
26 void read(T &x) {
27
      double tmp = 1;
28
      bool sign = false;
29
      x = 0;
      char ch = gc();
31
      for (; !isdigit(ch); ch = qc())
32
       if (ch == '-') sign = 1;
33
      for (; isdigit(ch); ch = gc()) x = x * 10 + (ch - '0');
34
      if (ch == '.')
35
        for (ch = gc(); isdigit(ch); ch = gc())
36
          tmp /= 10.0, x += tmp * (ch - '0');
37
      if (sign) x = -x;
38
    }
39
40 void read(char *s) {
41
     char ch = gc();
42
      for (; blank(ch); ch = gc());
      for (; !blank(ch); ch = gc()) *s++ = ch;
43
44
      *s = 0;
45
    }
46
47
    void read(char &c) { for (c = gc(); blank(c); c = gc()); }
48
49 void push(const char &c) {
50 #if DEBUG // 调试,可显示字符
51
     putchar(c);
52 #else
```

```
if (pp - pbuf == MAXSIZE) fwrite(pbuf, 1, MAXSIZE, stdout), pp =
  pbuf;
*pp++ = c;
55 #endif
56 }
57
58 template <class T>
59 void write(T x) {
60
     if (x < 0) x = -x, push('-'); // 负数输出
61
      static T sta[35];
62
      T top = 0;
63
      do {
64
      sta[top++] = x % 10, x /= 10;
65
     } while (x);
66
     while (top) push(sta[--top] + '0');
67
   }
68
69 template <class T>
    void write(T x, char lastChar) {
70
71
    write(x), push(lastChar);
72 }
73 } io;
74
```

7.2. 高精度

来自 oiwiki

```
1 constexpr int MAXN = 9999;
2 // MAXN 是一位中最大的数字
3 constexpr int MAXSIZE = 10024;
4 // MAXSIZE 是位数
5 constexpr int DLEN = 4;
7 // DLEN 记录压几位
8 struct Big {
9 int a[MAXSIZE], len;
10 bool flag; // 标记符号'-'
11
12 Big() {
13 len = 1;
14
     memset(a, 0, sizeof a);
15
      flag = false;
16
    }
17
18 Big(const int);
19 Big(const char*);
20
    Big(const Big&);
21
    Big& operator=(const Big&);
22
    Big operator+(const Big&) const;
23
    Big operator-(const Big&) const;
```

```
Big operator*(const Big&) const;
    Big operator/(const int&) const;
26
    // TODO: Big / Big;
27
    Big operator^(const int&) const;
28
   // TODO: Big ^ Big;
29
30
   // TODO: Big 位运算;
31
32 int operator%(const int&) const;
33 // TODO: Big ^ Big;
34 bool operator<(const Big&) const;
    bool operator<(const int& t) const;</pre>
35
36
    void print() const;
37 };
38
39 Big::Big(const int b) {
40 int c, d = b;
41 len = 0;
42 // memset(a,0,sizeof a);
43 CLR(a);
44 while (d > MAXN) {
   c = d - (d / (MAXN + 1) * (MAXN + 1));
45
46
      d = d / (MAXN + 1);
47
      a[len++] = c;
48
    }
49
    a[len++] = d;
50 }
51
52 Big::Big(const char* s) {
53 int t, k, index, l;
54 CLR(a);
l = strlen(s);
len = l / DLEN;
57    if (l % DLEN) ++len;
index = 0;
59 for (int i = l - 1; i \ge 0; i -= DLEN) {
60 	 t = 0;
      k = i - DLEN + 1;
61
     if (k < 0) k = 0;
      g(j, k, i) t = t * 10 + s[j] - '0';
63
64
      a[index++] = t;
65
    }
66 }
67
68 Big::Big(const Big& T) : len(T.len) {
69 CLR(a);
70 f(i, 0, len) a[i] = T.a[i];
71 // TODO: 重载此处?
72 }
73
74 Big& Big::operator=(const Big& T) {
75 CLR(a);
```

```
76
      len = T.len;
      f(i, 0, len) a[i] = T.a[i];
 78
      return *this;
 79 }
 80
 81 Big Big::operator+(const Big& T) const {
      Big t(*this);
 83 int big = len;
 84 if (T.len > len) big = T.len;
 85 f(i, 0, big) {
 86
      t.a[i] += T.a[i];
        if (t.a[i] > MAXN) {
 87
 88
         ++t.a[i + 1];
 89
         t.a[i] -= MAXN + 1;
 90
        }
 91
     }
 92 if (t.a[big])
 93 t.len = big + 1;
 94
      else
 95
        t.len = big;
 96 return t;
 97 }
 98
 99 Big Big::operator-(const Big& T) const {
100 int big;
101
     bool ctf;
102
      Big t1, t2;
103
     if (*this < T) {
104
       t1 = T;
105
      t2 = *this;
106
      ctf = true;
107
     } else {
108
       t1 = *this;
109
        t2 = T;
110
        ctf = false;
111
     }
112
      big = t1.len;
113 int j = 0;
114
     f(i, 0, big) {
115
       if (t1.a[i] < t2.a[i]) {</pre>
116
         j = i + 1;
117
          while (t1.a[j] == 0) ++j;
118
          --t1.a[j--];
119
          // WTF?
120
         while (j > i) t1.a[j--] += MAXN;
121
         t1.a[i] += MAXN + 1 - t2.a[i];
122
        } else
123
         t1.a[i] -= t2.a[i];
124
125
      t1.len = big;
126
     while (t1.len > 1 && t1.a[t1.len - 1] == 0) {
127
       --t1.len;
```

```
128
     --big;
129 }
     if (ctf) t1.a[big - 1] = -t1.a[big - 1];
130
131
      return t1;
132 }
133
134 Big Big::operator*(const Big& T) const {
      Big res;
135
136
      int up;
     int te, tee;
137
138
     f(i, 0, len) {
139
       up = 0;
       f(j, 0, T.len) {
140
141
        te = a[i] * T.a[j] + res.a[i + j] + up;
142
         if (te > MAXN) {
143
           tee = te - te / (MAXN + 1) * (MAXN + 1);
144
            up = te / (MAXN + 1);
            res.a[i + j] = tee;
145
146
          } else {
147
            up = 0;
148
            res.a[i + j] = te;
149
          }
150
        }
151
       if (up) res.a[i + T.len] = up;
152
153
      res.len = len + T.len;
154
      while (res.len > 1 && res.a[res.len - 1] == 0) --res.len;
155
      return res;
156 }
157
158 Big Big::operator/(const int& b) const {
      Big res;
159
160
     int down = 0;
161 gd(i, len - 1, 0) {
162
       res.a[i] = (a[i] + down * (MAXN + 1)) / b;
163
        down = a[i] + down * (MAXN + 1) - res.a[i] * b;
164
165 res.len = len;
      while (res.len > 1 && res.a[res.len - 1] == 0) --res.len;
167
      return res;
168 }
169
170 int Big::operator%(const int& b) const {
171 int d = 0;
172
      gd(i, len - 1, 0) d = (d * (MAXN + 1) % b + a[i]) % b;
173
      return d;
174 }
175
176 Big Big::operator^(const int& n) const {
177 Big t(n), res(1);
178 int y = n;
179
      while (y) {
```

```
180
        if (y & 1) res = res * t;
181
      t = t * t;
182
        y >>= 1;
183 }
184
      return res;
185 }
186
187 bool Big::operator<(const Big& T) const {
      int ln;
if (len < T.len) return true;</pre>
190 if (len == T.len) {
191
        ln = len - 1;
192
        while (\ln >= 0 \&\& a[\ln] == T.a[\ln]) -- \ln;
193
      if (ln >= 0 && a[ln] < T.a[ln]) return true;</pre>
194
       return false;
195 }
196
      return false;
197 }
198
199 bool Big::operator<(const int& t) const {</pre>
200 Big tee(t);
201
      return *this < tee;</pre>
202 }
203
204 void Big::print() const {
205 printf("%d", a[len - 1]);
206 gd(i, len - 2, 0) { printf("%04d", a[i]); }
207 }
208
209 void print(const Big& s) {
210 int len = s.len;
211 printf("%d", s.a[len - 1]);
212 gd(i, len - 2, 0) { printf("%04d", s.a[i]); }
213 }
```

7.3. 手写 bitset

```
1 struct Bitset {
       #define For(i,a,b) for(int i=a,i##end=b; i<=i##end; i++)</pre>
3
       #define foR(i,a,b) for(int i=a,i##end=b; i>=i##end; i--)
4
       using uint = unsigned int;
5
       using ull = unsigned long long;
6
       vector < ull > bit; int len;
       Bitset(int x = n) {x = (x >> 6) + 1; bit.resize(x); len = x;}
7
       void resize(int x) {bit.resize((x \gg 6) + 1); len = (x \gg 6) + 1
   1; For(i, 0, len-1) bit[i] = 0;}
9
       void set1(int x) {bit[x>>6] |= (1ull << (x&63));}
       void set0(int x) {bit[x>>6] &= (~(1ull<<(x&63)));}
10
       void flip(int x) {bit[x>>6] ^= (1ull<<(x&63));}</pre>
11
12
       bool operator [] (int x) {return (bit[x>>6] >> (x&63)) & 1;}
13
       bool any() {For(i, 0, len-1) if(bit[i]) return 1; return 0;}
```

```
14
       Bitset operator ~ () const {Bitset res(len); For(i, 0, len-1)
   res.bit[i] = ~bit[i];return res;}
       Bitset operator | (const Bitset &b) const {Bitset res(len); For(i,
   0, len-1) res.bit[i] = bit[i] | b.bit[i]; return res;}
       Bitset operator & (const Bitset &b) const {Bitset res(len); For(i,
   0, len-1) res.bit[i] = bit[i] & b.bit[i]; return res;}
       Bitset operator ^ (const Bitset &b) const {Bitset res(len); For(i,
17
   0, len-1) res.bit[i] = bit[i] ^ b.bit[i];return res;}
       void operator &= (const Bitset &b) {For(i, 0, len-1) bit[i] &=
   b.bit[i];}
19
       void operator |= (const Bitset &b) {For(i, 0, len-1) bit[i] |=
   b.bit[i];}
20
       void operator ^= (const Bitset &b) {For(i, 0, len-1) bit[i] ^=
   b.bit[i];}
21
       Bitset operator << (const int t) const {</pre>
           Bitset res(len); int high = t \gg 6, low = t \& 63; ull lst = 0;
22
23
           for(int i = 0; i + high < len; i++) {
24
               res.bit[i + high] = (lst | (bit[i] << low));</pre>
25
               if(low) lst = (bit[i] >> (64 - low));
26
           }
27
           return res;
28
       }
29
       Bitset operator >> (const int t) const {
30
           Bitset res(len); int high = t \gg 6, low = t \& 63; ull lst = 0;
31
           for(int i = len - 1; i >= high; i--) {
32
               res.bit[i - high] = (lst | (bit[i] >> low));
33
               if(low) lst = (bit[i] << (64 - low));</pre>
34
           }
35
           return res;
36
       }
37
       void operator <<= (const int t) {</pre>
38
           int high = t \gg 6, low = t \& 63;
39
           for(int i = len - high - 1; ~i; i--) {
40
               bit[i + high] = (bit[i] << low);
41
               if(low \&\& i) bit[i + high] |= (bit[i - 1] >> (64 - low));
42
           }
43
           for(int i = 0; i < min(high, len - 1); i++) bit[i] = 0;
44
       }
       void operator >>= (const int t) {
45
46
           int high = t \gg 6, low = t \& 63;
47
           for(int i = high; i < len; i++) {</pre>
48
               bit[i - high] = (bit[i] >> low);
49
               if(low \&\& i != len) bit[i - high] |= (bit[i + 1] << (64 -
   low));
50
51
           for(int i = max(len - high, 0); i < len; i++) bit[i] = 0;
52
53
       ull get(int x) {
54
           int t = x >> 6, q = x \& 63;
55
           if (q == 63) return bit[t];
           return bit[t] & ((1ull << (q + 1)) - 1);</pre>
56
57
       }
```

```
ull get(int l, int r) {
58
59
           int lt = (l >> 6), rt = (r >> 6);
60
          if (lt == rt) {
61
              if ((l \& 63) == 0) return get(r);
62
              return (get(r) - get(l - 1)) >> ((l & 63));
63
            ull a = (l \& 63) == 0 ? (bit[lt]) : ((bit[lt] - get(l - 1)) >>
           return a + (get(r) << (64 - (l & 63)));
66
       }
67 }
```

7.4. 对拍

```
1 #!/usr/bin/bash
2 g++ ./my.cpp -o my -std=c++17 -fsanitize=undefined
3 g++ ./std.cpp -o std -std=c++17 -fsanitize=undefined
4 g++ ./data.cpp -o data -std=c++17 -fsanitize=undefined
5 cnt=0;
6 while true; do
7 ./data > data.in
8 ./my < data.in > my.out
9 ./std < data.in > std.out
if diff my.out std.out; then
11 let cnt++;
12
     echo "# $cnt AC";
13 else
echo "WA";
15
     break;
16 fi
17 done
```