# CISC 372 Advanced Data Analytics L5 – Infrastructure & Preprocessing

https://l1nna.com/372

# Today

- KDD Process
- Data Attributes
- Data Characteristics
- Data Preprocessing

# **KDD Data Flow Process** Pattern Evaluation Data Mining **Task-relevant Data Data Warehouse** † Selection Data Cleaning \_\_ Data Integration **Databases**

## Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
  - sales database: customers, store items, sales
  - medical database: patients, treatments
  - university database: students, professors, courses
- Also called *samples*, *examples*, *instances*, *data points*, *objects*, *tuples*, and *records*.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

### **Attributes**

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
  - E.g., customer \_ID, name, address
- Types:
  - Nominal (aka categorical)
  - Binary (aka binominal)
  - Ordinal
  - Continuous

## Attribute Types

- Nominal: categories, states, or "names of things"
  - Hair\_color = {auburn, black, blond, brown, grey, red, white}
  - marital status, occupation
- Binary (aka binominal)
  - Nominal attribute with only 2 states (0 and 1)
  - Symmetric binary: both outcomes equally important
    - e.g., gender
  - <u>Asymmetric binary</u>: outcomes not equally important.
    - e.g., medical test (positive vs. negative)
    - Convention: assign 1 to most important outcome (e.g., HIV positive)

# Attribute Types

#### Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

#### Continuous Attribute

- Has real numbers as attribute values
  - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits

## Types of Data Sets

- Record
  - Relational records
  - Data matrix, e.g., numerical matrix, crosstabs
- Transaction data
- Document data
- Graph and network
  - World Wide Web
  - Social or information networks
  - Molecular Structures
- Ordered
  - Video data: sequence of images
  - Temporal data: time-series
  - Sequential Data: transaction sequences
  - Genetic sequence data
- Spatial, image and multimedia:
  - Spatial data: maps
  - Image data
  - Video data



| Month     | REGION 1 | REGION 2 | REGION 3 | REGION 4 | REGION 5 | TOTAL |
|-----------|----------|----------|----------|----------|----------|-------|
| April     | 13       | 33       | 76       | 2        | 47       | 171   |
| May       | 17       | 55       | 209      | 1        | 143      | 425   |
| June      | 8        | 63       | 221      | 1        | 127      | 420   |
| July      | 13       | 104      | 240      | 6        | 123      | 486   |
| August    | 18       | 121      | 274      | 9        | 111      | 533   |
| September | 25       | 160      | 239      | 2        | 88       | 514   |
| October   | 9        | 88       | 295      | 2        | 127      | 521   |
| November  | 2        | 86       | 292      | 2        | 120      | 502   |
| December  | 1        | 128      | 232      | 6        | 155      | 522   |
| TOTAL     | 106      | 838      | 2078     | 31       | 1041     | 4094  |

# Important Characteristics of Structured Data

- Dimensionality
  - Curse of dimensionality
- Sparsity
  - Only presence counts
- Resolution
  - Patterns depend on the scale
- Distribution
  - Centrality and dispersion



(b) 6 Objects in One Unit Bin



(c) 4 Objects in One Unit Bin

# Important Characteristics of Structured Data

- Dimensionality
  - Curse of dimensionality
- Sparsity
  - Only presence counts
- Resolution
  - Patterns depend on the scale
- Distribution
  - Centrality and dispersion





# Data Does not Come Prepared (mostly)

- Data cleaning
  - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
  - Remove the irrelevant or redundant attributes
    - e.g., do not need both age and birth year
- Data transformation
  - Generalize and/or normalize data
    - e.g. do not need to know specific address of a customer, city or postal code is good enough.

# Data Does not Come Prepared (mostly)

- Data cleaning
  - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
  - Remove the irrelevant or redundant attributes
    - e.g., do not need both age and birth year
- Data transformation
  - Generalize and/or normalize data
    - e.g. do not need to know specific address of a customer, city or postal code is good enough.

## Normalization

- Scaling individual samples to have unit norm.
- Could be L1 norm or L2 norm

Very important for vector space model (think about dot-

product)

```
1 from sklearn import preprocessing
 2 import numpy as np
 3 from numpy.linalg import norm
 5 X train = np.array([[ 1., -1., 2.],
                       [2., 0., 0.],
                       [0., 1., -1.]
 8 X scaled = preprocessing.normalize(X train, norm='12')
10 print(X scaled)
11 print('norm', norm(X scaled, axis=1))
12 print('std', X scaled.std(axis=0))
13 print('mean', X scaled.mean(axis=0))
  0.40824829 -0.40824829 0.81649658]
               0.70710678 -0.70710678]]
norm [1. 1. 1.]
    [0.41053309 0.46075826 0.62254262]
mean [0.4694161 0.0996195 0.03646327]
```

### Standardization

- A common requirement
  - Making the feature a Gaussian with zero mean and unit variance

```
1 from sklearn import preprocessing
     2 import numpy as np
     3 X train = np.array([[ 1., -1., 2.],
                      [ 2., 0., 0.],
     4
                         [0., 1., -1.]
     5
     6 X scaled = preprocessing.scale(X train)
     8 print(X scaled)
     9 print('mean', X scaled.mean(axis=0))
    10 print('std', X scaled.std(axis=0))
F→ [ 0. -1.22474487 1.33630621]
   [ 1.22474487 0. -0.26726124]
    [-1.22474487 1.22474487 -1.06904497]]
   mean [0. 0. 0.]
    std [1. 1. 1.]
```

# Categorical Encoding

 Converting categorical attribute (aka nominal) into numeric features (or a one-hot encoding vector)

```
1 from sklearn import preprocessing
     2 import numpy as np
     3 from numpy.linalg import norm
     5 enc = preprocessing.OrdinalEncoder()
     6 X = [
     7 ['male', 'from US', 'uses Safari'],
         ['female', 'from Europe', 'uses Firefox']]
     9 enc.fit(X)
    10
    11 enc.transform([
                       ['female', 'from US', 'uses Safari']
    12
                       1)
    13
\Gamma_{\rightarrow} array([[0., 1., 1.]])
```

## Continuous Values? Discretization

Bin-based Discretization

```
1 from sklearn import preprocessing
     2 import numpy as np
     3 from numpy.linalg import norm
     4
     5 X = np.array([[ -3., 5., 15 ],
                         [ 0., 6., 14],
     6
                         [ 6., 3., 11 ]])
     9 est = preprocessing.KBinsDiscretizer(
           n bins=[3, 2, 2], encode='ordinal'
    10
          ).fit(X)
    11
    12
    13 est.transform(X)
array([[0., 1., 1.],
           [1., 1., 1.],
           [2., 0., 0.]])
```

## Continuous Values? Discretization

Thresholding numerical features => binominal