ECE M146 Discussion 5 Solution Introduction to Machine Learning Friday, May 10, 2019

Instructor: Lara Dolecek

TA: Zehui (Alex) Chen, Ruiyi (John) Wu

1. Discriminative v.s. Generative

So far, we have learned two approaches for binary classification in class. The generative approach model the prior $P(C_i)$ and class conditional distribution $P(x|C_i)$. The discriminative approach model $P(C_i|x)$ directly. Taking the Naive Bayes classifier for binary feature and label as an example. It model the class prior as a biased coin and model the class conditional distribution for each feature and each class also as a biased coin. From page 122 of the book A Course in Machine Learning, we learned that to make a decision, we can use $sign(w^Tx + b)$ for some w and b. Learning w and b is then a discriminative approach!

- (a) What is w and b in terms of the parameters of Naive Bayes classifier? **Solution:** See page 122 of the book A Course in Machine Learning.
- (b) Suppose we have D features, how many parameters does the Naive Bayes classifier have? How many parameters does the linear model have? Solution: 2D + 1 for Naive Bayes and D + 1 for linear model.
- (c) Can you compare discriminative approach with generative approach given the above example?

Solution: Linear model has less parameters thus need less data to train. Naive Bayes classifier is generative thus can be used to generate new data points.

2. More about Discriminative v.s. Generative

Let $p(x|C_1) \sim 0.4\mathbb{N}(0.2, 0.1) + 0.6\mathbb{N}(0.5, 0.1)$. Let $p(x|C_2) \sim \mathbb{N}(0.7, 0.1)$. In MAT-LAB, plot the two class conditional distribution and find the decision boundary. Let $P(C_1) = P(C_2) = 0.5$, what is the equation to find the posterior distribution for C_1 and C_2 . Find and plot the posterior distribution for C_1 and C_2 .

Find the maximum likelihood decision boundary using both the class conditional distribution and the posterior distribution. Comment on your observation.

Solution:

We notice that the bi-modal shape of the class conditional distribution is lost after we compute the posterior distribution.

3. Repeat HW5 P2 with the mushroom data given in Discussion 3. **Solution:**Please refer to the solution of HW5 question 4.