Soft Constraints for Large Self-organizing Systems

Contents

1	Intr 1.1 1.2	Motivation	5 5
2	App 2.1	Distributed Power Systems 2.1.1 The Unit Commitment Problem 2.1.2 Complexity of the Problem 2.1.3 Related Work Self-organizing Robotic Systems 2.2.1 Task Allocation in Reconfigurable Swarms [ECAS'16] 2.2.2 Self-organizing Resource-Flow Systems 2.2.3 Related Work	7 7 7 7 7 7 7
I	2.3 So	Preference-oriented Adaptive Systems 2.3.1 Exam Appointment Scheduling	7 7 7 7 7
3		ndations	11
J	3.1	Self-organization – Designing Systems to Adapt	12
	3.2	Controlling Emergence – The Restore Invariant Approach 3.2.1 Corridors of Correct Behavior	12 12
	3.3	lems	12 12 12 12 12 12
	5.4	3.4.1 Branch-and-Bound Search	12 12

2 CONTENTS

		3.4.2 I	Large-Neighborhood Search	12			
		3.4.3	Optimization in Constraint Programming Solvers	12			
	3.5	Modelin	ng Languages	12			
		3.5.1 1	MiniZinc and MiniSearch	12			
		3.5.2 I	Essence	12			
		3.5.3	Numberjack	12			
4	Soft	t Constr	eaints with Constraint Preferences	13			
-	4.1		tive Specification using Constraint Preferences [SGAI'13]*	13			
	1.1	-	Syntax	13			
			Semantics – Dominance Properties	13			
			Transforming Constraint Preferences to Weighted Con-	10			
			straints	13			
			Evaluation in the Energy Scenario [SEN-MAS'14]*	13			
	4.2		tions of Constraint Preferences	13			
			Distributed Energy Management [SEN-MAS'14]*	13			
			Multi-User Multi-Display Content Selection [ModRef'15] .	13			
		1.2.2	inative ober mater bisprey content sciential [mounter 10].	10			
5			Algebraic Structures for Soft Constraints [Constraint	ts'17] 15	5		
	5.1		ting Concrete Soft Constraint Formalisms – Requirements				
			als	15			
	5.2		nship of Constraint Preferences with General Formalisms				
			14]*	15			
	5.3	_	g Algebraic Structures from Partial Orders	15			
			Free Construction of Partial Valuation Structures over	4 5			
			Partial Orders [Constraints'17]*	15			
		5.3.2 I	Free Construction of C-Semirings over Partial Valuation	1 5			
	- 4		Structures [Constraints'17]*	15			
	5.4		1 5				
			g'15]*	15			
			Direct Product to Form Pareto-Orderings	15			
		5.4.2 I	Lexicographic Product to Form Hierarchical Precedence .	15			
6	Mir	niBrass -	- A Modeling Language for Soft Constraints[Constra	aints'17]	* 17		
	6.1		w				
	6.2	0 1	eclarations	18			
	6.3		rpes with Example Usages	18			
			Comparative Specifications	18			
			Cost-based Specifications	18			
			Real-Valued Specifications	18			
	6.4	Operato	ors – Direct and Lexicographic Products	18			
	6.5	A User-	friendly Graphical Modeling Interface	18			
	6.6		ency Checks and Utilities	18			
	6.7						
	6.8	PVS-bas	sed Generic Search	18			
			Branch-and-Bound	18			
			Large Neighborhood Search	18			
		6.8.3	Adaptive Large Neighborhood Search	18			

CONTENTS 3

7	Eva	luatior	ı	19
	7.1	Model	ing Application Scenarios in MiniBrass	19
		7.1.1	Unit Commitment in Distributed Power Systems	19
		7.1.2	Task Allocation in Reconfigurable Swarms	19
		7.1.3	Self-organizing Resource-Flow Systems	19
		7.1.4	Multi-User Multi-Display Content Selection	19
		7.1.5	Mentor-Matching and Appointment Scheduling	19
	7.2	Bench	mark Instances	19
		7.2.1	Comparing Performance: Encoded Weighted CSP versus Native Toulbar2	19
		7.2.2	Comparing Models: Smyth-Optimization versus Weighted-Optimization	19
		7.2.3	Comparing Search Heuristics: Most Important First ver-	
		704	sus Default	19
		7.2.4	Efficiency of Generic Heuristics	19
II	Se	elf-org	ganized Hierarchical Power Systems	21
8	Fou	ndatio	ns	23
	8.1	Decen	tralized Power Management	23
		8.1.1	Current and Future Power Management Systems	23
		8.1.2	Smart Grids	23
	8.2	Mathe	ematical Programming	23
		8.2.1	Linear Programming	23
		8.2.2	Mixed Integer Programming	23
9	Aut	onomo	ous Virtual Power Plants to Decompose Distributed	l
			mitment [Vw. Steghöfer, Anders, Siefert]	25
	9.1		chies of Autonomous Virtual Power Plants [Vw. Anders] .	25
	9.2		To Manage Uncertainty [Vw. Anders]	25
	9.3		Constraints in AVPPs [SEN-MAS'14]*	25
10	Sup	ply Au	ntomata to Specify the Dynamics of Prosumers [TCCI	·'15]* 27
	10.1	Challe	enges in Unit-Commitment	27
	10.2	Existin	ng Formulations	27
	10.3	Auton	nata-based Specification of Optimization Problems	27
		10.3.1	Syntax	27
			Semantics	27
		10.3.3	Translation to Mixed Integer Programs	27
	10.4	Examp	ples	27
		10.4.1	Modeling Cold and Hot Start-up	27
		10.4.2	Scheduling a Biogas-Plant	27
	10.5	Relate	d Work	27
11	Abs	tractio	on of Collective Behavior [ICAART'14]* [TCCI'15]*	29
_			ning Simple Representations of Production Spaces	29
			ng Efficient Bounds for Future Time Steps	29
			ating Approximate Functions for Collectives	29
			Principle of Sampling Function Points	29

4 CONTENTS

	11.4.1 Regio-Central Robust Optimization [SAOS'14] 11.4.2 Market-Based Robust Optimization [TAAS'15] [SASO'15]	29 29 29 29 29
Eval	luation	31
	[TCCI'15]*	31 31
12.3	Improving Accuracy of Sampling Abstraction by Active Learning [TAAS'15]*	31
Con	clusion, Discussion, and Future Challenges	33
13.2		
	11.5 Eval 12.1 12.2 12.3 Con 13.1 13.2	 11.4 Relationship with Unit-Commitment Algorithms

Introduction

- 1.1 Motivation
- 1.2 Contributions of the Thesis

Application Scenarios

2.1	Distributed	Power	Systems
-----	-------------	-------	---------

- 2.1.1 The Unit Commitment Problem
- 2.1.2 Complexity of the Problem
- 2.1.3 Related Work
- 2.2 Self-organizing Robotic Systems
- 2.2.1 Task Allocation in Reconfigurable Swarms [ECAS'16]
- 2.2.2 Self-organizing Resource-Flow Systems
- 2.2.3 Related Work
- 2.3 Preference-oriented Adaptive Systems
- 2.3.1 Exam Appointment Scheduling
- 2.3.2 Mentor Matching [Constraints'17]*
- 2.3.3 Multi-User Multi-Display Exhibitions [ModRef'15]*
- 2.3.4 Related Work

Part I

Soft Constraints for Corridors of Optimal Behavior

Foundations

- 3.1 Self-organization Designing Systems to Adapt
- 3.2 Controlling Emergence The Restore Invariant Approach
- 3.2.1 Corridors of Correct Behavior
- 3.2.2 Classical Constraint Programming for Combinatorial Problems
- 3.3 Over-Constrainedness in Practical Problems
 From Correctness to Optimality
- 3.3.1 Partial Constraint Satisfaction
- 3.3.2 Specific Soft Constraint Formalisms
- 3.3.3 Algebraic Structures for Soft Constraints
- 3.4 Algorithms to Solve Soft Constraint Problems
- 3.4.1 Branch-and-Bound Search
- 3.4.2 Large-Neighborhood Search
- 3.4.3 Optimization in Constraint Programming Solvers
- 3.5 Modeling Languages
- 3.5.1 MiniZinc and MiniSearch
- 3.5.2 Essence
- 3.5.3 Numberjack

Soft Constraints with Constraint Preferences

- 4.1 Qualitative Specification using Constraint Preferences [SGAI'13]*
- 4.1.1 Syntax
- 4.1.2 Semantics Dominance Properties
- 4.1.3 Transforming Constraint Preferences to Weighted Constraints
- 4.1.4 Evaluation in the Energy Scenario [SEN-MAS'14]*
- 4.2 Applications of Constraint Preferences
- 4.2.1 Distributed Energy Management [SEN-MAS'14]*
- 4.2.2 Multi-User Multi-Display Content Selection [Mod-Ref'15]

$14 CHAPTER\ 4.\ SOFT\ CONSTRAINTS\ WITH\ CONSTRAINT\ PREFERENCES$

Designing Algebraic Structures for Soft Constraints [Constraints'17]

- 5.1 Abstracting Concrete Soft Constraint Formalisms Requirements and Goals
- 5.2 Relationship of Constraint Preferences with General Formalisms [ICTAI'14]*
- 5.3 Building Algebraic Structures from Partial Orders
- 5.3.1 Free Construction of Partial Valuation Structures over Partial Orders [Constraints'17]*
- 5.3.2 Free Construction of C-Semirings over Partial Valuation Structures [Constraints'17]*
- 5.4 Mapping Organizations Combinations of Preference Structures [Wirsing'15]*
- 5.4.1 Direct Product to Form Pareto-Orderings
- 5.4.2 Lexicographic Product to Form Hierarchical Precedence

 $16 CHAPTER\ 5.\ DESIGNING\ ALGEBRAIC\ STRUCTURES\ FOR\ SOFT\ CONSTRAINTS\ [CONSTRAINTS\]$

MiniBrass – A Modeling Language for Soft Constraints[Constraints'17]*

- 6.1 Workflow
- 6.2 Type Declarations
- 6.3 PVS Types with Example Usages
- 6.3.1 Comparative Specifications

The Free PVS

Constraint Preferences

6.3.2 Cost-based Specifications

Max CSP

Weighted Constraints

Cost Function Networks

6.3.3 Real-Valued Specifications

Fuzzy Constraints

Probabilistic Constraints

Possibilistic Constraints

- 6.4 Operators Direct and Lexicographic Products
- 6.5 A User-friendly Graphical Modeling Interface
- 6.6 Consistency Checks and Utilities
- 6.7 Soft Global Constraints
- 6.8 PVS-based Generic Search
- 6.8.1 Branch-and-Bound

Evaluation

- 7.1 Modeling Application Scenarios in MiniBrass
- 7.1.1 Unit Commitment in Distributed Power Systems
- 7.1.2 Task Allocation in Reconfigurable Swarms
- 7.1.3 Self-organizing Resource-Flow Systems
- 7.1.4 Multi-User Multi-Display Content Selection
- 7.1.5 Mentor-Matching and Appointment Scheduling
- 7.2 Benchmark Instances
- 7.2.1 Comparing Performance: Encoded Weighted CSP versus Native Toulbar2
- 7.2.3 Comparing Search Heuristics: Most Important First versus Default
- 7.2.4 Efficiency of Generic Heuristics

Part II Self-organized Hierarchical Power Systems

Foundations

- 8.1 Decentralized Power Management
- 8.1.1 Current and Future Power Management Systems
- 8.1.2 Smart Grids
- 8.2 Mathematical Programming
- 8.2.1 Linear Programming
- 8.2.2 Mixed Integer Programming

Autonomous Virtual Power Plants to Decompose Distributed Unit Commitment [Vw. Steghöfer, Anders, Siefert]

- 9.1 Hierarchies of Autonomous Virtual Power Plants [Vw. Anders]
- 9.2 Trust To Manage Uncertainty [Vw. Anders]
- 9.3 Soft Constraints in AVPPs [SEN-MAS'14]*

26 CHAPTER~9.~~AUTONOMOUS~VIRTUAL~POWER~PLANTS~TO~DECOMPOSE~DISTRIBUTED

Supply Automata to Specify the Dynamics of Prosumers [TCCI'15]*

- 10.1 Challenges in Unit-Commitment
- 10.2 Existing Formulations
- 10.3 Automata-based Specification of Optimization Problems
- 10.3.1 Syntax
- 10.3.2 Semantics
- 10.3.3 Translation to Mixed Integer Programs
- 10.4 Examples
- 10.4.1 Modeling Cold and Hot Start-up
- 10.4.2 Scheduling a Biogas-Plant
- 10.5 Related Work

28CHAPTER 10. SUPPLY AUTOMATA TO SPECIFY THE DYNAMICS OF PROSUMERS [TCCI'

Abstraction of Collective Behavior [ICAART'14]* [TCCI'15]*

- 11.1 Obtaining Simple Representations of Production Spaces
- 11.2 Deriving Efficient Bounds for Future Time Steps
- 11.3 Calculating Approximate Functions for Collectives
- 11.3.1 Principle of Sampling Function Points
- 11.3.2 Selection by means of Active Learning [SASO'15']*
- 11.4 Relationship with Unit-Commitment Algorithms
- 11.4.1 Regio-Central Robust Optimization [SAOS'14]
- 11.4.2 Market-Based Robust Optimization [TAAS'15] [SASO'15]
- 11.5 Related Work

30 CHAPTER~11.~ABSTRACTION~OF~COLLECTIVE~BEHAVIOR~[ICAART'14]*~[TCCI'15]*

Evaluation

- 12.1 Efficiency of Abstractions in a Regio-Central Setting [ICAART'14]* [TCCI'15]*
- 12.2 Efficiency of Abstractions in a Market-Based Setting [TAAS'15]*
- 12.3 Improving Accuracy of Sampling Abstraction by Active Learning [TAAS'15]*

Conclusion, Discussion, and Future Challenges

- 13.1 Summary of Research Contributions
- 13.2 Open Research Challenges