Project Title: Dual Output Classification Model

Client Name: Subhan

Developer Name: Ahmad Ali Rafique

Date: 25/11/2024

1. Overview

This project involves training a deep learning model to classify images into two categories:

- 1. Student Classification (Correct/Wrong Pose)
- 2. Uniform Classification (Correct/Wrong Uniform)
- 3. Batch card detection (Wear/Not Wear)

The model is designed to accurately predict both outputs simultaneously, achieving exceptional performance metrics on the provided dataset.

2. Dataset Details

The dataset provided by the client was organized as follows:

- Main Folder: Subhan Model Data
 Subfolders
 (Students):
 - o Amna Abdulaziz Alshehhi
 - o Dana Waleed Alzarooni o Shoug Ahmed Alzarooni
- Inside Each Subfolder:
 - o correct folder (images of correct

poses/uniforms)

wrong folder (images of incorrect poses/uniforms)

Preprocessing Steps:

- 1. All images were resized to **224x224 pixels** for compatibility with the deep learning model.
- 2. Data augmentation techniques were applied:
 - Random flips
 - o Rotations o
 - Normalization
- 3. The dataset was split into: o 80% for Training o 20% for Testing

3. Model Architecture

The model used is a **Convolutional Neural Network (CNN)** with a dual-output structure to predict:

- Student Classification Output
- Uniform Classification Output

Architecture Details:

- **Backbone Model:** Pre-trained on ImageNet (e.g., ResNet50).
- Custom Layers:
 - Shared Layers: Extracted features from images using convolutional and pooling layers.
 - Student Classification Head:
 - + Fully connected layers with softmax activation for binary classification. **Uniform Classification Head:**
 - + Fully connected layers with softmax activation for binary classification.

Optimization:

• Loss Function: o Categorical Crossentropy (for both outputs)

Optimizer: AdamLearning Rate: 0.001

Evaluation Metrics:

• Accuracy for both outputs.

4. Performance Metrics

The model was evaluated on the test dataset. Below are the results:

- Total Loss: 0.832 Student Output:
 - Loss: 0.346 Accuracy:98.9%
- Uniform Output:

```
Loss: 0.481 Accuracy:93.6%
```

These metrics indicate that the model performs exceptionally well and is highly reliable for the given task.

5. Usage Instructions

A. Integration

The trained model is saved in the format compatible with Python scripts. Follow these steps to integrate it into the provided Python script:

1. Load the Model:

```
python Copy
code
from tensorflow.keras.models import load_model
model = load model('model name.h5')
```

2. Input Images:

- o Ensure input images are resized to **224x224 pixels** and normalized.
- 3. **Prediction:** Use the following code to get predictions:

```
python Copy
code
predictions = model.predict(image_array) student_output
= predictions['student_output'] uniform_output =
predictions['uniform output']
```

B. Dependencies

Install the following dependencies to use the model:

- **Python Version:** 3.8+
- Libraries: 0

 $TensorFlow \mathrel{\circ}$

NumPy

- OpenCV
- o Matplotlib

Install using:

bash
Copy
code
pip install tensorflow numpy opency-python matplotlib

9. Deliverables

- 1. Trained Model: dual_output_model.h5
- 2. Python Script for Testing
- 3. Dataset Preprocessing Script

10. Contact Information

If you have any questions or need further assistance, feel free to contact me:

- Email: arsbussiness786@gmail.com
- **Phone:** 0328-9460713
- GitHub Portfolio: https://github.com/Ahmad-Ali-Rafique