Review of OCV test steps

- In this lesson, you will learn how to process the OCV test data to compute coulombic efficiency and total capacity
- Recall the test steps for OCV testing:
 - 1–2. Soak cell at test temperature; discharge from 100 % SOC to $v_{\rm min}$ (note: this is not the same thing as 0% SOC)
 - 3–4. Soak cell at 25 °C; dis/charge cell to 0 % SOC (now equivalent to $v_{\rm min}$)
 - 5–6. Soak cell at test temperature; charge from 0 % SOC to $v_{\rm max}$ (not 100 % SOC)
 - 7–8. Soak cell at 25 °C; dis/charge cell to 100 % SOC (now equivalent to $v_{\rm max}$)
- With careful consideration of the meaning of each of these steps, we can compute coulombic efficiency and total capacity

Dr. Gregory L. Plett University of Colorado Colorado Spri

Processing data for 25 °C

- Easiest case because all steps are executed at 25 °C—no other temperatures are involved
- One method to compute SOC uses $z[k] = z[0] \frac{1}{Q} \sum_{j=0}^{k-1} \eta[j]i[j]$ where, in our case, z[k] = z[0] = 1 (cancels out)
- Multiply by -Q, split summation into discharging and charging sets

$$0 = \sum_{\text{discharge}} i[j] + \sum_{\text{charge}} \eta[k]i[j]$$

■ Since $\eta[k] = \eta(25\,^{\circ}\text{C})$ in all steps, compute the coulombic efficiency at 25 $\,^{\circ}\text{C}$ as $\eta(25\,^{\circ}\text{C}) = \frac{\text{total absolute ampere-hours discharged in all steps at } 25\,^{\circ}\text{C}}{\text{total absolute ampere-hours charged in all steps at } 25\,^{\circ}\text{C}}$

Dr. Gregory L. Plett University of Colorado Colorado Spr

Processing data for other temperatures

- Tests collect data at temperature T and at 25 °C
- Still have z[k] = z[0] = 1, but now have

$$\begin{split} 0 &= \sum_{\text{discharge}} i[j] + \sum_{\text{charge at } T} \eta[k] i[j] + \sum_{\text{charge at 25 °C}} \eta[k] i[j] \\ &= \sum_{\text{discharge}} i[j] + \eta(T) \sum_{\text{charge at } T} i[j] + \eta(25\,^{\circ}\text{C}) \sum_{\text{charge at 25 °C}} i[j] \end{split}$$

■ Compute coulombic efficiency at test temperature *T*:

$$\eta(T) = \frac{\text{total absolute ampere-hours discharged}}{\text{total absolute ampere-hours charged at temperature }T} \\ - \eta(25\,^{\circ}\text{C}) \frac{\text{total absolute ampere-hours charged at 25\,^{\circ}\text{C}}}{\text{total absolute ampere-hours charged at temperature }T}$$

Capacity estimation for 25 °C

- Theoretically, total capacity Q is not a function of temperature
- But, can verify this experimentally as well
- Note that SOC is 100% at start of test and 0% at end of step 4
- Again, use SOC relationship where, now, z[k] = 0 and z[0] = 1

$$z[k] = z[0] - \sum_{j=0}^{k-1} \frac{\eta[j]i[j]}{Q}$$

■ Summing over all data in steps 1–4 gives Q in ampere-seconds

$$Q(25\,{}^{\circ}\text{C}) = \sum_{j=0}^{k-1} \eta[j]i[j]$$

Dr. Gregory L. Plett University of Colorado Colorado Spring

Equivalent Circuit Cell Model Simulation | Identifying parameters of static model

Capacity estimation for other temperatures

- SOC is still 100% at start of test and 0% at end of step 4
- Again, use SOC relationship where z[k] = 0 and z[0] = 1

$$z[k] = z[0] - \sum_{j=0}^{k-1} \frac{\eta[j]i[j]}{Q}$$

■ Summing over all data in steps 1–4 gives *Q* in ampere-seconds

$$1 = \sum_{\text{data at } 25\,^{\circ}\text{C}} \frac{\eta(25\,^{\circ}\text{C})i[j]}{Q(25\,^{\circ}\text{C})} + \sum_{\text{data at } T} \frac{\eta(T)i[j]}{Q(T)}$$

■ Note: Assumed $Q(25\,^{\circ}\text{C}) = Q(T)$ when computing $\eta(T)$, but can solve simultaneous equations for Q(T) and $\eta(T)$ if not convinced this is true

Dr. Gregory L. Plett | University of Colorado Colorado Spri

Equivalent Circuit Cell Model Simulation | Identifying parameters of static model | 5 of 7

2.2.3: How to determine a cell's coulombic efficiency and total capacity

Sample results

- Coulombic efficiency should always be less than one, but experimental accuracy of accumulated ampere hours inexact
- Also function of rate: different tests could be implemented to extract this information
- Total capacity not a function of temperature (within experimental error) as expected

Summary

- Calculate absolute sum of ampere-hours discharged
- Calculate absolute sum of ampere-hours charged at 25 °C
- Calculate absolute sum of ampere-hours charged at all other temperatures
- Compute $\eta(25\,^{\circ}\text{C})$, $\eta(T)$ for other temperatures of interest
- Compute $Q(25\,^{\circ}\text{C})$, Q(T) for other temperatures of interest
- While total capacity is not a function of temperature, there is a strong temperature dependence on discharge capacity and charge capacity

Dr. Gregory L. Plett University of Colorado Colorado Springs

Equivalent Circuit Cell Model Simulation | Identifying parameters of static model