1º G. I. Informática

Curso 2010 – 2011 Página 1 de 7

Ejercicios resueltos

Temas 9 y 10: Diseño Secuencial: Registros y Contadores

Ejercicio 2

Utilizando tantos registros de desplazamiento circular de cuatro bits como sean necesarios, diseñar un sistema que genere ininterrumpidamente la secuencia 3, 5, 0, 7. Los registros de desplazamiento deben ser inicializados correctamente a través de las entradas asíncronas antes de que comience la generación de la secuencia.

Ejercicio 3

Diseñar un registro de desplazamiento de 4 bits que, dependiendo de dos señales de control S_1 y S_0 , realice las siguientes operaciones:

S_1	S_0	Operación
0	0	Bloqueo
0	1	Carga serie
1	0	Complemento de su contenido
1	1	Puesta a cero

1º G. I. Informática

Curso 2010 – 2011 Página 2 de 7

Ejercicios resueltos

Temas 9 y 10: Diseño Secuencial: Registros y Contadores

Ejercicio 6

Diseñar un contador síncrono módulo 7 ascendente/descendente con biestables tipo D.

1º G. I. Informática

Curso 2010 – 2011 Página 3 de 7

Ejercicios resueltos

Temas 9 y 10: Diseño Secuencial: Registros y Contadores

Ejercicio 7

Utilizando biestables tipo T diseñar un contador ascendente/descendente módulo 6 con salida de acarreo.

1º G. I. Informática

Curso 2010 – 2011 Página 4 de 7

Ejercicios resueltos

Temas 9 y 10: Diseño Secuencial: Registros y Contadores

Ejercicio 9

Diseñar un contador síncrono de tres bits que, dependiendo de una señal de control IP, realice la cuenta de números impares cuando IP = 0 (1,3,5,7) y de números pares cuando IP = 1 (0,2,4,6). Sintetizarlo utilizando biestables tipo D.

			1P=0		19=1			
a	a,	می	a,	۵,	ao	Q	۵	۹,
0	0	0	0	٥	١.	U	- 1	0
0	0		O	١	ŧ	0	ľ	0
O	•	0	0	((١	0	٥
O	ι	·	l	0	1	ı	0	0
	0	0	lı	0	l	١,	١	0
(Ó	1	t	ι	١	(ι	0
·	•	0	1	ŧ	1	0	0	0
,	•	·	0	O	١.	0	0	0

Table de exertación del luestable tajo D

an anti D

o o o

i i

i o o

1º G. I. Informática

Curso 2010 – 2011 Página 5 de 7

Ejercicios resueltos

Temas 9 y 10: Diseño Secuencial: Registros y Contadores

Ejercicio 10

Utilizando biestables J-K diseñar un contador síncrono modulo 3 que tenga además dos señales de control síncronas de *enable* (E) y *reset* (R). Cuando E = 1 el contador cuenta y cuando E = 0 mantiene la cuenta que tenga en ese momento hasta que E valga de nuevo 1, momento en el que continúa la cuenta. Cuando R = 0 el contador debe volver al estado inicial.

	K =	o	R=1		
	£ =0	E 21	E=0	E=1	
مرمي	م, می	a, a,	۵,۵٫	۵, ۵,	
00	00	00	0 0	01	
01	00	ပပ	01	10	
١٥	00	00	10	00	
()	° 0	၀၀	00	00	

a _m a _n	44() J	k
00	0	×
01	1 1	*
1 0	· } ×	ţ
()	\ ×	٥

1º G. I. Informática

Curso 2010 – 2011 Página 6 de 7

Ejercicios resueltos

Temas 9 y 10: Diseño Secuencial: Registros y Contadores

Ejercicio 12

Diseñar un contador binario módulo 4 con dos entradas síncronas S_1 y S_0 , salida de acarreo y una entrada asíncrona de Reset. Implementarlo utilizando biestables tipo T. Las señales S_1 y S_0 indican el modo de funcionamiento del contador según la siguiente tabla:

S_1	S_0	Operación
0	0	Cuenta par
0	1	Cuenta impar
1	0	Inhabilitación de cuenta
1	1	Reset síncrono

1º G. I. Informática

Curso 2010 – 2011 Página 7 de 7

Ejercicios resueltos

Temas 9 y 10: Diseño Secuencial: Registros y Contadores

Ejercicio 13

Obtener un biestable tipo D a partir de uno tipo T.

Ejercicio 14

Obtener un biestable tipo J-K a partir de uno tipo D.

