生活理念对设计优化分裂算法的帮助

— 以改造 ADMM 求解三个可分离算子问题为例

何 炳 生

南京大学数学系 南京大学管理科学与工程国际研究中心

Email: hebma@nju.edu.cn Homepage: math.nju.edu.cn/~hebma

摘要. 乘子交替方向法(Alternating Directions Method of Multipliers), 简称交替方向法 (ADMM), 是求解含两个可分离算子的凸优化问题的有效工具, 人们很想将这类算法推广到多个算子的问题上. 对三个算子的问题, 直接推广的方法试算很多例子照样收敛, 但生活理念的直觉告诉我们, 由于存在某种不公平性, 在一般条件下要保证理论收敛不太可能. 在致力于给出一些能够求解多个可分离算子凸优化问题的修正 ADMM 方法后, 举出了直接推广的 ADMM 对三个或者三个以上算子问题不收敛的例子. 本文从生活理念的角度, 解释为什么直接推广的 ADMM 对三个算子的问题不能保证收敛. 将 ADMM 改造成能求解含三个可分离算子的问题, 又是根据的什么生活理念. 数学知识与生活理念相辅相成, 是我职业生涯的一个主要体验.

关键词. 可分离算子的凸优化, 交替方向法, 分裂收缩算法.

1 引 言

交替方向法是求解凸优化的一类分裂收缩算法.这类方法的迭代过程中,要求解的子问题往往是一个简单的凸优化.它的目标函数是两个凸函数的和,其中一个凸函数不一定光滑.说这类子问题简单,是指问题的解有显式表达式,或是我们不太费劲就能求得一个符合要求的近似解.通篇,在分析算法收敛性时,我们常常要用到下面的引理.

Lemma 1.1. 设 $\mathcal{X} \subset \Re^n$ 是闭凸集, $\theta(x)$ 和 f(x) 都是凸函数, 其中 f(x) 可微. 记 x^* 是 凸优化问题 $\min\{\theta(x) + f(x) | x \in \mathcal{X}\}$ 的解. 我们有

$$x^* = \arg\min\{\theta(x) + f(x) \mid x \in \mathcal{X}\}\tag{1.1a}$$

的充分必要条件是

$$x^* \in \mathcal{X}, \quad \theta(x) - \theta(x^*) + (x - x^*)^T \nabla f(x^*) \ge 0, \quad \forall x \in \mathcal{X}.$$
 (1.1b)

通俗的说, 如果用极大代替极小, 这个引理就相当于瞎子爬山原理.

2 线性约束的凸优化

由于本文讨论的方法都和增广 Lagrange 乘子法有关, 我们先从线性约束的凸优化谈起. 设 $\mathcal{X} \subset \Re^n$ 是闭凸集, $A \in \Re^{m \times n}$, $b \in \Re^m$. 考虑线性约束的凸优化问题

$$\min\{\theta(x) \mid Ax = b, \ x \in \mathcal{X}\}. \tag{2.1}$$

它的 Lagrange 函数是定义在 $\mathcal{X} \times \mathbb{R}^m$ 上的

$$L(x,\lambda) = \theta(x) - \lambda^{T}(Ax - b). \tag{2.2}$$

2.1 Lagrange 函数 (2.2) 鞍点等价的变分不等式

我们讨论问题 (2.1) 的 Lagrange 函数 (2.2) 的鞍点. 如果一对 $(x^*, \lambda^*) \in \mathcal{X} \times \Re^m$ 满足

$$L_{\lambda \in \Re^m}(x^*, \lambda) \le L(x^*, \lambda^*) \le L_{x \in \mathcal{X}}(x, \lambda^*),$$

则称为 Lagrange 函数 (2.2) 的鞍点. 上面的不等式关系可以写成

$$\left\{ \begin{array}{ll} x^* \in \mathcal{X}, & L(x,\lambda^*) - L(x^*,\lambda^*) \geq 0, & \forall \, x \in \mathcal{X}, \\ \lambda^* \in \Re^m, & L(x^*,\lambda^*) - L(x^*,\lambda) \geq 0, & \forall \, \lambda \in \Re^m. \end{array} \right.$$

也就是

$$\begin{cases} x^* = \arg\min\{L(x,\lambda^*)|x \in \mathcal{X}\}, \\ \lambda^* = \arg\max\{L(x^*,\lambda)|\lambda \in \Re^m\}. \end{cases}$$

利用 (2.2) 和引理 1.1, 上述优化问题的最优性条件是

$$\begin{cases} x^* \in \mathcal{X}, & \theta(x) - \theta(x^*) + (x - x^*)^T (-A^T \lambda^*) \ge 0, & \forall x \in \mathcal{X}, \\ \lambda^* \in \Re^m, & (\lambda - \lambda^*)^T (Ax^* - b) \ge 0, & \forall \lambda \in \Re^m. \end{cases}$$

换句话说, 鞍点就是变分不等式

$$w^* \in \Omega, \quad \theta(x) - \theta(x^*) + (w - w^*)^T F(w^*) \ge 0, \quad \forall w \in \Omega,$$
 (2.3a)

的解, 其中

$$w = \begin{pmatrix} x \\ \lambda \end{pmatrix}, \quad F(w) = \begin{pmatrix} -A^T \lambda \\ Ax - b \end{pmatrix} \quad \text{II} \quad \Omega = \mathcal{X} \times \Re^m.$$
 (2.3b)

注意到, 这样的 F, 总满足 $(w - \bar{w})^T (w - F(\bar{w})) = 0$.

2.2 求解问题 (2.1) 的增广 Lagrange 乘子法

凸优化问题 (2.1) 的的增广 Lagrange 函数由它的 Lagrange 函数 $L(x,\lambda)$ (2.2) 和一个由等式线性约束的二次函数 $\frac{\beta}{2}||Ax-b||^2$ 组成, 即

$$\mathcal{L}_{\beta}(x,\lambda) = \theta(x) - \lambda^{T}(Ax - b) + \frac{\beta}{2} ||Ax - b||^{2}, \qquad (\beta > 0 \ \text{是等式约束的罚参数}).$$

增广 Lagrange 乘子法(Augmented Lagrangian Method)

增广 Lagrange 乘子法 (ALM) 的 k-次迭代从一个给定的 λ^k 开始, 通过

$$\begin{cases} x^{k+1} = \arg\min\{\mathcal{L}_{\beta}(x,\lambda^{k}) \mid x \in \mathcal{X}\}, \\ \lambda^{k+1} = \lambda^{k} - \beta(Ax^{k+1} - b), \end{cases}$$
(2.4)

完成, 为下一次迭代提供了一个新的 λ^{k+1} . 在变分不等式 (2.3) 中, x 是原始变量, λ 是对偶变量. 而在算法 (2.4) 中, x^{k+1} 是根据 λ^k 计算得来的结果. 因此, 我们称

x 为算法的中间变量 (intermidiate variable), λ 为核心变量 (essential variable).

根据优化问题的最优性条件 (1.1), 算法 (2.4) 提供的 $w^{k+1} = (x^{k+1}, \lambda^{k+1}) \in \Omega$ 满足

$$\begin{cases} \theta(x) - \theta(x^{k+1}) + (x - x^{k+1})^T \{ -A^T \lambda^k + \beta A^T (Ax^{k+1} - b) \} & \geq 0, \ \forall x \in \mathcal{X}, \\ (\lambda - \lambda^{k+1})^T \{ (Ax^{k+1} - b) + \frac{1}{\beta} (\lambda^{k+1} - \lambda^k) \} & \geq 0, \ \forall \lambda \in \Re^m. \end{cases}$$

进一步利用关系式 $\lambda^{k+1} = \lambda^k - \beta(Ax^{k+1} - b)$, 上式可以改写成:

$$w^{k+1} \in \Omega, \quad \theta(x) - \theta(x^{k+1}) + \left(\frac{x - x^{k+1}}{\lambda - \lambda^{k+1}}\right)^T \left(\frac{-A^T \lambda^{k+1}}{(Ax^{k+1} - b) + \frac{1}{\beta}(\lambda^{k+1} - \lambda^k)}\right) \ge 0, \quad \forall w \in \Omega.$$

接着利用 (2.3) 的记号, 可以把上式写成更紧凑的式子:

$$w^{k+1} \in \Omega, \qquad \theta(x) - \theta(x^{k+1}) + (w - x^{k+1})^T F(w^{k+1})$$

 $\geq (\lambda - \lambda^{k+1})^T \frac{1}{\beta} (\lambda^k - \lambda^{k+1}), \quad \forall w \in \Omega.$ (2.5)

变分不等式 (2.5) 中, 如果 $\lambda^k = \lambda^{k+1}$, 那么 w^{k+1} 就是变分不等式 (2.3) 的解. 将 (2.5) 中的任意 $w \in \Omega$ 设成一个固定的解点 w^* , 我们得到

$$(\lambda^{k+1} - \lambda^*)^T \frac{1}{\beta} (\lambda^k - \lambda^{k+1}) \ge \theta(x^{k+1}) - \theta(x^*) + (w^{k+1} - w^*)^T F(w^{k+1}). \tag{2.6}$$

利用 $(w^{k+1} - w^*)^T F(w^{k+1}) = (w^{k+1} - w^*)^T F(w^*)$ 和 w^* 的最优性, 即

$$\theta(x^{k+1}) - \theta(x^*) + (w^{k+1} - w^*)^T F(w^*) \ge 0,$$

推得 (2.6) 的右端非负, 最终得到

$$(\lambda^{k+1} - \lambda^*)^T (\lambda^k - \lambda^{k+1}) \ge 0. \tag{2.7}$$

在恒等式

$$||b||^2 = ||a||^2 - ||a - b||^2 - 2b^T(a - b),$$

中置 $a = \lambda^k - \lambda^*$ 和 $b = \lambda^{k+1} - \lambda^*$, 并利用 (2.7), 就有

$$\|\lambda^{k+1} - \lambda^*\|^2 \le \|\lambda^k - \lambda^*\|^2 - \|\lambda^k - \lambda^{k+1}\|^2. \tag{2.8}$$

这个核心变量序列 $\{\lambda^k\}$ 收缩的不等式, 是增广 Lagrange 乘子法收敛的关键保证.

3 两个可分离算子的凸优化问题

考虑两个可分离算子的线性约束凸优化问题

$$\min\{\theta_1(x) + \theta_2(y) \mid Ax + By = b, \ x \in \mathcal{X}, y \in \mathcal{Y}\}. \tag{3.1}$$

它的 Lagrange 函数是

$$L^{2}(x, y, \lambda) = \theta_{1}(x) + \theta_{2}(y) - \lambda^{T}(Ax + By - b).$$
(3.2)

3.1 Lagrange 函数 (3.2) 鞍点等价的变分不等式

与 $\S 2.1$ 中同样的分析告知我们, Lagrange 函数 (3.2) 的鞍点 $((x^*, y^*), \lambda^*)$ 是变分不等式

$$w^* \in \Omega, \quad \theta(u) - \theta(u^*) + (w - w^*)^T F(w^*) \ge 0, \quad \forall w \in \Omega,$$
 (3.3a)

的解, 其中

$$w = \begin{pmatrix} x \\ y \\ \lambda \end{pmatrix}, \quad u = \begin{pmatrix} x \\ y \end{pmatrix}, \qquad F(w) = \begin{pmatrix} -A^T \lambda \\ -B^T \lambda \\ Ax + By - b \end{pmatrix},$$
 (3.3b)

$$\theta(u) = \theta_1(x) + \theta_2(y), \qquad \text{fl} \qquad \Omega = \mathcal{X} \times \mathcal{Y} \times \Re^m.$$

凸优化问题 (3.1) 的的增广 Lagrange 函数由它的 Lagrange 函数 $L^2(x,y,\lambda)$ (3.2) 和等式 线性约束的二次函数 $\frac{\beta}{2}||Ax+By-b||^2$ 组成, 即

$$\mathcal{L}_{\beta}^{2}(x,y,\lambda) = \theta_{1}(x) + \theta_{2}(y) - \lambda^{T}(Ax + By - b) + \frac{\beta}{2} ||Ax + By - b||^{2},$$
 (3.4)

其中 $\beta > 0$ 是等式约束的罚参数. 如果我们用增广 Lagrange 乘子法求解问题 (3.1), k-次 迭代从一个给定的 λ^k 开始, 通过

$$\begin{cases}
(x^{k+1}, y^{k+1}) &= \arg\min\{\mathcal{L}^2_{\beta}(x, y, \lambda^k) \mid x \in \mathcal{X}, y \in \mathcal{Y}\}, \\
\lambda^{k+1} &= \lambda^k - \beta(Ax^{k+1} + By^{k+1} - b),
\end{cases} (3.5)$$

完成. 此时, 迭代中的核心变量还是 λ , 还会有 (2.8) 这样的收缩不等式. **方法的缺点**是问题 (3.1) 的可分离性质没有得到利用!

3.2 求解问题 (3.1) 的乘子交替方向法

用乘子交替方向法(Alternating Directions Method of Multipliers) [4, 5] 求解问题 (3.1), k-次迭代从给定的 (y^k, λ^k) 开始, 通过

$$\begin{cases} x^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{2}(x, y^{k}, \lambda^{k}) \mid x \in \mathcal{X}\}, \\ y^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{2}(x^{k+1}, y, \lambda^{k}) \mid y \in \mathcal{Y}\}, \\ \lambda^{k+1} = \lambda^{k} - \beta(Ax^{k+1} + By^{k+1} - b), \end{cases}$$
(3.6)

完成, 为下一次迭代提供了一个新的 (y^{k+1}, λ^{k+1}) .

- 在乘子交替方向法 (3.6) 中, x-子问题和 y-子问题是利用了问题 (3.1) 的可分离性质分别求解的.
- 从 (3.5) 到 (3.6), 乘子交替方向法(ADMM)可以看作是松弛了的增广 Lagrange 乘子 法(ALM).

ADMM 方法 (3.6) 求解 (3.1), x^{k+1} 是由给定的 (y^k, λ^k), 通过计算得到的, 因此是中间变量. 我们把变量 w 去掉中间变量剩余的部分称为核心变量.

在这个 ADMM 方法中, 核心变量则是 $v=(y,\lambda)$. y 和 λ 分别是核心变量中的原始部分和对偶部分. 由 (3.6) 生成的序列 $\{v^k=(y^k,\lambda^k)\}$ 满足

$$||v^{k+1} - v^*||_H^2 \le ||v^k - v^*||_H^2 - ||v^k - v^{k+1}||_H^2, \tag{3.7}$$

其中

$$v = \left(\begin{array}{c} y \\ \lambda \end{array} \right), \qquad H = \left(\begin{array}{cc} \beta B^T B & 0 \\ 0 & \frac{1}{\beta} I \end{array} \right).$$

不等式 (3.7) 表明核心变量序列 $\{v^k = (y^k, \lambda^k)\}$ 收缩,它是保证乘子交替方向法收敛的关键不等式.一个比较简单的证明可以参考我主页上系列讲义 [13] 的第 11 讲.证明与 $\S 2.2$ 中证明增广 Lagrange 乘子法一样,利用变分不等式为工具,得到与 (2.5), (2.7) 相仿 (但不尽相同)的式子,最后得到 (3.7).

ADMM 被认为是求解含两个可分离算子的凸优化问题非常有效的方法 [1], 近年来在图像处理, 稀疏优化中发现大量应用. 算法可以解释为

核心变量的原始部分 y 跟核心变量的对偶部分 λ 对弈.

ADMM 收敛的原因是核心变量 $v = (y, \lambda)$ 中的原始部分 y 和对偶部分 λ 是对等的. 我们证明了 ADMM 同时具有遍历意义和非遍历意义下 O(1/t) 的收敛性质 [10, 11].

4 三个可分离算子的凸优化问题

我们继续考虑三个可分离算子的线性约束凸优化问题

$$\min\{\theta_1(x) + \theta_2(y) + \theta_3(z) \mid Ax + By + Cz = b, x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}\}. \tag{4.1}$$

它的 Lagrange 函数是

$$L^{3}(x, y, z, \lambda) = \theta_{1}(x) + \theta_{2}(y) + \theta_{3}(z) - \lambda^{T}(Ax + By + Cz - b).$$
 (4.2)

4.1 Lagrange 函数 (4.2) 鞍点等价的变分不等式

与前面同样的分析告知我们, Lagrange 函数 (4.2) 的鞍点 $((x^*, y^*, z^*), \lambda^*)$ 是变分不等式

$$w^* \in \Omega, \quad \theta(u) - \theta(u^*) + (w - w^*)^T F(w^*) \ge 0, \quad \forall w \in \Omega,$$
 (4.3a)

的解, 其中

$$w = \begin{pmatrix} x \\ y \\ z \\ \lambda \end{pmatrix}, \quad u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad F(w) = \begin{pmatrix} -A^T \lambda \\ -B^T \lambda \\ -C^T \lambda \\ Ax + B + Cz - b \end{pmatrix}, \tag{4.3b}$$

$$\theta(u) = \theta_1(x) + \theta_2(y) + \theta_3(z), \qquad \Omega = \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \times \Re^m$$

凸优化问题 (4.1) 的的增广 Lagrange 函数由它的 Lagrange 函数 $L^3(x,y,z,\lambda)$ (4.2) 和等式线性约束的二次函数 $\frac{\beta}{2}||Ax+By+Cz-b||^2$ 组成, 即

$$\mathcal{L}_{\beta}^{3}(x,y,z,\lambda) = \theta_{1}(x) + \theta_{2}(y) + \theta_{3}(z) - \lambda^{T}(Ax + By + Cz - b) + \frac{\beta}{2} ||Ax + By + Cz - b||^{2}.$$
(4.4)

如果我们不将 y 和 z 分离, 而是把 (y,z) 捆在一起, 采用 ADMM (3.6) 去求解, 迭代公式 就是

$$\begin{cases} x^{k+1} &= \arg\min\{\mathcal{L}_{\beta}^{3}(x, y^{k}, z^{k}, \lambda^{k}) \mid x \in \mathcal{X}\}, \\ (y^{k+1}, z^{k+1}) &= \arg\min\{\mathcal{L}_{\beta}^{3}(x^{k+1}, y, z, \lambda^{k}) \mid y \in \mathcal{Y}, z \in \mathcal{Z}\}, \\ \lambda^{k+1} &= \lambda^{k} - \beta(Ax^{k+1} + By^{k+1} + Cz^{k+1} - b). \end{cases}$$
(4.5)

这样方法是收敛的. **缺点** 是原问题本来具备的 y 和 z 的可分离性质没有得到充分利用!

4.2 直接推广的 ADMM 对三个可分离算子的问题不能保证收敛

人们自然想到直接推广 ADMM (**Direct Extension of ADMM**) 来求解三个可分离算子的问题. 如果我们用直接推广的乘子交替方向法求解问题 (4.1), k-次迭代从一个给定的 (y^k, z^k, λ^k) 开始, 通过

$$\begin{cases} x^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x, y^{k}, z^{k}, \lambda^{k}) \mid x \in \mathcal{X}\}, \\ y^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x^{k+1}, y, z^{k}, \lambda^{k}) \mid y \in \mathcal{Y}\}, \\ z^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x^{k+1}, y^{k+1}, z, \lambda^{k}) \mid z \in \mathcal{Z}\}, \\ \lambda^{k+1} = \lambda^{k} - \beta(Ax^{k+1} + By^{k+1} + Cz^{k+1} - b), \end{cases}$$

$$(4.6)$$

给出新的 $(y^{k+1}, z^{k+1}, \lambda^{k+1})$. **就像机械图纸,为有讨论的共同语言,我们建议只把** (4.6) **称做 ADMM 的直接推广.** 在任何一点与 (4.6) 不同的,都是某种修正的格式.

相当长的一段时间内, 人们不知道 (4.6) 是否收敛. 直觉让我们认为不能保证收敛. 原因是, 用 (4.6) 处理三个算子的问题, 采用相应的术语, 核心变量 $v = (y, z, \lambda)$, 其中

(y, z) 是核心变量的原始部分 (primal part), λ 是核心变量的对偶部分 (dual part). 问题是对核心变量的原始部分中的 y 和 z 的两部分, 算法 (4.6) 是不公平的(unfair).

- 在求解 y-子问题时, 只能用 $(x^{k+1}, z^k, \lambda^k)$ 的信息, 因为 z^k 尚未更新;
- 在求解 z-子问题时, 因为新的 y^{k+1} 已经有了, 就用 $(x^{k+1}, y^{k+1}, \lambda^k)$ 的信息.

用直接推广的 ADMM 来求解三个可分离算子的问题 (4.1), 很多实际计算还是成功的. 但是, 犹如一个家长带了这两个孩子 (核心变量中的原始部分 y 和 z) 去跟人家(核心变量中的对偶部分 λ) 对弈, 家长对自己的两个孩子(y 和z) 就不公平, 难免那个意识到不公的孩子消极怠工, 影响终极目标的实现.

在一时也没有举出不收敛的例子的那段时间, 我们针对算法 (4.6) 内在的不公平性, 先做了一些修正的 ADMM [7, 8], 用来处理多个算子的问题. 论文 [7] 2012 年上半年就在 SIAM J. Optim. 发表, 同期撰写的 [8], 2015 年初才在 IMA Numer. Analysis 发表, 都受到了一定的关注. 这些方法我们将在下一节中具体介绍.

我们当然希望发表在论文 [7,8] 中的修正方法是必要的, 所以一直想从最简单的线性方程组着手, 证明方法 (4.6) 不能保证收敛. 直到 2013 年下半年, 经过多人合作努力, 借助计算机, 才对三个或者三个以上算子的问题找到了不收敛的例子 [2].

将求解一个线性方程组作为问题 (4.1) 的特例. 问题是:

min
$$0 \cdot x + 0 \cdot y + 0 \cdot z$$

s.t $Ax + By + Cz = 0$. $\sharp \Phi$ $(A, B, C) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$. (4.7)

由于矩阵 (A, B, C) 非奇异, 问题 (4.7) 的惟一解是

$$\begin{pmatrix} x^* \\ y^* \\ z^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad 相应的最优乘子 \quad \lambda^* = \begin{pmatrix} \lambda_1^* \\ \lambda_2^* \\ \lambda_3^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

用直接推广的ADMM (4.6) 求解这个问题, 核心变量是 $v, v^T = (y, z, \lambda_1, \lambda_2, \lambda_3)$. 迭代公式可以化为

$$v^{k+1} = Mv^k, \qquad \sharp \Phi \qquad M = \frac{1}{162} \begin{pmatrix} 144 & -9 & -9 & -9 & 18 \\ 8 & 157 & -5 & 13 & -8 \\ 64 & 122 & 122 & -58 & -64 \\ 56 & -35 & -35 & 91 & -56 \\ -88 & -26 & -26 & -62 & 88 \end{pmatrix}. \tag{4.8}$$

因此, 我们就有

$$v^{k+1} = Mv^k = \dots = M^{k+1}v^0$$

对 (4.8) 中的矩阵 M, 恰有 $\rho(M) > 1$. 可以选一个非零的 v^0 开始, 采用上述迭代, 就有 $\lim_{k\to\infty}\|v^k\| = +\infty$. 说明算法 (4.6) 对一般的三个算子的问题 (4.1) 不能保证收敛. 实际计算中, 我们从任何一个随机的 $v^0 \neq 0 \in \Re^5$ 出发, 用 (4.8) 迭代, 都有 $\lim_{k\to\infty}\|v^k\| = +\infty$.

5 改造 ADMM 成求解三个算子问题的收敛方法

既然算法 (4.6) 对一般的三个算子的问题 (4.1) 不能保证收敛的原因是它在求解子问题时对原始核心变量中的 y 和 z 的两部分不公平, 因此, 我们考虑改造 ADMM 成求解三个算子问题的收敛方法的路, 就自然成了以下两条:

- 1. 将 (4.6) 提供的 y^{k+1} 和 z^{k+1} 改造, 对 (4.6) 造成的不公平进行适当找补;
- 2. 对算法 (4.6) 本身进行改造, 使得它处理原始核心变量中 y 和 z 两部分时公平.

5.1 找补校正的方法

第一条路子, 是对 (4.6) 生成的 y^{k+1} 和 z^{k+1} 进行找补(校正). 二次分配中能让不公平变公平的方法很多, 这里的校正通过

$$\begin{pmatrix} y^{k+1} \\ z^{k+1} \end{pmatrix} := \begin{pmatrix} y^k \\ z^k \end{pmatrix} - \nu \begin{pmatrix} I & -(B^TB)^{-1}B^TC \\ 0 & I \end{pmatrix} \begin{pmatrix} y^k - y^{k+1} \\ z^k - z^{k+1} \end{pmatrix}, \quad \nu \in (0,1] \quad (5.1)$$

实现. 这里用赋值号 (:=), 表示 (5.1) 右端的 (y^{k+1}, z^{k+1}) 是直接推广的乘子交替方向法 (4.6) 提供的.

注意到,略去子问题中的常数项,直接推广的交替方向法 (4.6) 可以写成它的等价形式

$$\begin{cases} x^{k+1} = \arg\min\{\theta_{1}(x) - (\lambda^{k})^{T}(Ax) + \frac{\beta}{2} \|Ax + By^{k} + Cz^{k} - b\|^{2} | x \in \mathcal{X}\}, \\ y^{k+1} = \arg\min\{\theta_{2}(y) - (\lambda^{k})^{T}(By) + \frac{\beta}{2} \|Ax^{k+1} + By + Cz^{k} - b\|^{2} | y \in \mathcal{Y}\}, \\ z^{k+1} = \arg\min\{\theta_{3}(z) - (\lambda^{k})^{T}(Cz) + \frac{\beta}{2} \|Ax^{k+1} + By^{k+1} + Cz - b\|^{2} | z \in \mathcal{Z}\}, \\ \lambda^{k+1} = \lambda^{k} - \beta(Ax^{k+1} + By^{k+1} + Cz^{k+1} - b). \end{cases}$$

$$(5.2)$$

从 (5.2) 可以看出, 开始执行 k-次迭代需要的是 (By^k,Cz^k,λ^k) . 因此, 为下一次迭代我们也只要提供 $(By^{k+1},Cz^{k+1},\lambda^{k+1})$. 由 (5.1), 这组 (By^{k+1},Cz^{k+1}) 可以由

$$\begin{pmatrix} By^{k+1} \\ Cz^{k+1} \end{pmatrix} := \begin{pmatrix} By^k \\ Cz^k \end{pmatrix} - \nu \begin{pmatrix} I & -I \\ 0 & I \end{pmatrix} \begin{pmatrix} B(y^k - y^{k+1}) \\ C(z^k - z^{k+1}) \end{pmatrix}, \quad \nu \in (0,1]$$
 (5.3)

提供, 右端的 (y^{k+1}, z^{k+1}) 是由 (4.6) 提供的. 这样, 我们就无需计算 $(B^TB)^{-1}$. 这是变动最小、最简单的一种校正. 特别地, 当 $\nu=1$, 就只要对 By 进行校正, 公式就简化成

$$By^{k+1} := By^{k+1} + C(z^k - z^{k+1}). (5.4)$$

采用 $\nu=1$, 不能保证每步都(向解集靠拢)收缩, 只能保证在遍历意义下(所有迭代点的算术 平均向解集)收敛. 在实际计算中[7], 我们取 $\nu=[0.9,0.95]$, 称这个方法为**《带高斯回代的交替方向法》(Alternating direction method with Gaussian back substitution)**.

为什么要在 (5.1) 的右端取个小于 1 的常数 ν 呢? 注意到 (4.5)是能保证收敛的, 其中

核心变量的原始部分 (y,z) 跟核心变量的对偶部分 λ 对弈.

从 (4.5) 到 (4.6), 松弛了的是核心变量中原始部分 $(y \ \pi \ z)$ 的子问题求解. 所以, 在总体找补的时候, 加个适当的缩小量 $\nu \in [0.9, 0.95]$ 是合理的.

5.2 强制平等的方法

按照第二条路子, 对算法 (4.6) 进行改造, 使得它公平处理原始核心变量中 y 和 z 两部分. 一个简单的想法就是在求解 z-子问题时, 即使 y^{k+1} 已经有了, 我们还是只用 y^k 的信息. 这样就导致了下面的算法:

$$\begin{cases} x^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x, y^{k}, z^{k}, \lambda^{k}) \mid x \in \mathcal{X}\}, \\ y^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x^{k+1}, y, z^{k}, \lambda^{k}) \mid y \in \mathcal{Y}\}, \\ z^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x^{k+1}, y^{k}, z, \lambda^{k}) \mid z \in \mathcal{Z}\}, \\ \lambda^{k+1} = \lambda^{k} - \beta(Ax^{k+1} + By^{k+1} + Cz^{k+1} - b) \end{cases}$$

与收敛的方法 (4.5) 比较, 相当于将 (4.5) 中的

$$(y^{k+1},z^{k+1}) = \arg\min \big\{ \mathcal{L}_{\beta}^3(x^{k+1},y,z,\lambda^k) \; \big| \; y \in \mathcal{Y}, z \in \mathcal{Z} \big\},$$

改成了

$$\begin{cases} y^{k+1} = \arg\min\{\mathcal{L}^3_{\beta}(x^{k+1}, y, z^k, \lambda^k) \mid y \in \mathcal{Y}\}, \\ z^{k+1} = \arg\min\{\mathcal{L}^3_{\beta}(x^{k+1}, y^k, z, \lambda^k) \mid z \in \mathcal{Z}\}. \end{cases}$$

这样做, 原问题的可分离的性质利用了, 对 y 和 z 也公平了, 但是也有点太自由化了. 想放松就放松, 显然是不行的, 也可以举出这样做不收敛的例子.

怎么办? 我们在平等平行处理 y 和 z 子问题的时候, 目标函数后面都额外再加一个正则项, 迭代法变成

$$\begin{cases}
 x^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x, y^{k}, z^{k}, \lambda^{k}) \mid x \in \mathcal{X}\}, \\
 y^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x^{k+1}, y, z^{k}, \lambda^{k}) + \frac{\tau\beta}{2} \|B(y - y^{k})\|^{2} | y \in \mathcal{Y}\}, \\
 z^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x^{k+1}, y^{k}, z, \lambda^{k}) + \frac{\tau\beta}{2} \|C(z - z^{k})\|^{2} | z \in \mathcal{Z}\}, \\
 \lambda^{k+1} = \lambda^{k} - \beta(Ax^{k+1} + By^{k+1} + Cz^{k+1} - b),
\end{cases} (5.5)$$

其中 $\tau > 1$. 加正则项的意义就是在**自由化**的情况下再加上个**自我约束机制**.

略去算法 (5.5) 中 y 和 z 子问题的常数项, 方法也可以改写成等价的

$$\begin{cases} x^{k+1} = \arg\min\{\mathcal{L}_{\beta}^{3}(x, y^{k}, z^{k}, \lambda^{k}) \mid x \in \mathcal{X}\}, \\ \lambda^{k+\frac{1}{2}} = \lambda^{k} - \beta(Ax^{k+1} + By^{k} + Cz^{k} - b), \\ y^{k+1} = \arg\min\{\theta_{2}(y) - (\lambda^{k+\frac{1}{2}})^{T}By + \frac{\mu\beta}{2} \|B(y - y^{k})\|^{2} | y \in \mathcal{Y}\}, \\ z^{k+1} = \arg\min\{\theta_{3}(z) - (\lambda^{k+\frac{1}{2}})^{T}Cz + \frac{\mu\beta}{2} \|C(z - z^{k})\|^{2} | z \in \mathcal{Z}\}, \\ \lambda^{k+1} = \lambda^{k} - \beta(Ax^{k+1} + By^{k+1} + Cz^{k+1} - b), \end{cases}$$
(5.6)

其中 $\mu = \tau + 1 > 2$. 对这两个算法等价性有兴趣的读者, 只要验证它们 y 和 z-子问题的最优性条件相同就是了. 我们在 2010 年就提出了算法 (5.6), 随即被 UCLA 教授 Standy Osher 的课题组当年就在论文 [3] 中有超过半页的实质引用. 论文处理的非负矩阵分解和降维问题, 其数学模型就是 (4.1). 文中称我们的方法为 ADMM-Like Method.

这一节提到的对三个算子问题改造过的 ADMM 类算法, 是 [7, 8] 中处理多个算子方法的特例. 详细的收敛性证明可以查阅我主页上的报告 [12].

6 统一框架下的算法描述和收敛条件

我们将要求解的问题都看成形如 (4.3) 的变分不等式, 也就是

$$w^* \in \Omega$$
, $\theta(u) - \theta(u^*) + (w - w^*)^T F(w^*) \ge 0$, $\forall w \in \Omega$.

核心变量是 v, 是在 w 中去掉中间变量 x 以后的部分分量. 把算法都归结为如下的预测-校正方法的统一框架:

[**预测.**] 对给定的 v^k , 求得一个 \tilde{w}^k , 使得

$$\tilde{w}^k \in \Omega, \ \theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k) \ge (v - \tilde{v}^k)^T Q(v^k - \tilde{v}^k), \ \forall w \in \Omega,$$
 (6.1a)

其中 Q 不一定对称, 但是要求 $Q^T + Q$ 正定.

[**校正**.] 给出新迭代点 v^{k+1} 的校正公式为

$$v^{k+1} = v^k - M(v^k - \tilde{v}^k). (6.1b)$$

将收敛性条件也归纳成下面两条

收敛性条件

对算法 (6.1) 中的矩阵 Q 和 M, 有正定矩阵 H, 使得

$$HM = Q. (6.2a)$$

并且

$$G = Q^T + Q - M^T H M \succ 0$$
, (至少半正定). (6.2b)

在这个统一框架和相应的收敛性条件下,能够帮助我们构造新的收敛算法 [6],证明收敛性就变得特别容易,收敛速率的分析也迎刃而解.这一节只验证 §5 中修正的方法,可以纳入算法框架 (6.1),并且满足收敛性条件 (6.2).证明放到 §7 中去陈述.

6.1 找补校正的方法

我们用 (5.2) 的输出 $x^{k+1}, y^{k+1}, z^{k+1}$ 定义辅助的预测变量 $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{z}^k, \tilde{\lambda}^k)$, 其中

$$(\tilde{x}^k, \tilde{y}^k, \tilde{z}^k) = (x^{k+1}, y^{k+1}, z^{k+1}), \tag{6.3a}$$

$$\tilde{\lambda}^k = \lambda^k - \beta (A\tilde{x}^k + By^k + Cz^k - b). \tag{6.3b}$$

根据优化问题的最优性条件 (1.1), 用 $\tilde{x}^k = x^{k+1}$ 和 (6.3b), 可以将 (5.2) 中 x-子问题的最优性条件写成

$$\tilde{x}^k \in \mathcal{X}, \ \theta_1(x) - \theta_1(\tilde{x}^k) + (x - \tilde{x}^k)^T (-A^T \tilde{\lambda}^k) \ge 0, \ \forall x \in \mathcal{X}.$$
 (6.4a)

根据同样的道理, 对 y 和 z-子问题的最优性条件, 分别有

$$\tilde{y}^k \in \mathcal{Y}, \ \theta_2(y) - \theta_2(\tilde{y}^k) + (y - \tilde{y}^k)^T (-B^T \tilde{\lambda}^k) \ge (y - \tilde{y}^k)^T \beta B^T B(y^k - \tilde{y}^k), \ \forall y \in \mathcal{Y}.$$
 (6.4b)

$$\tilde{z}^k \in \mathcal{Z}, \quad \theta_3(z) - \theta_3(\tilde{z}^k) + (z - \tilde{z}^k)^T \left(-C^T \tilde{\lambda}^k \right)$$

 $> (z - \tilde{z}^k)^T \left(\beta C^T B(y^k - \tilde{y}^k) + \beta C^T C(z^k - \tilde{z}^k) \right), \quad \forall z \in \mathcal{Z}. \quad (6.4c)$

根据关系式 (6.3b), 等式

$$(A\tilde{x}^k + B\tilde{y}^k + C\tilde{z}^k - b) - B(\tilde{y}^k - y^k) - C(\tilde{z}^k - z^k) + \frac{1}{\beta}(\tilde{\lambda}^k - \lambda^k) = 0$$

可以写成变分不等式的形式

$$\tilde{\lambda}^{k} \in \Re^{m}, \quad (\lambda - \tilde{\lambda}^{k})^{T} (A\tilde{x}^{k} + B\tilde{y}^{k} + C\tilde{z}^{k} - b)$$

$$\geq (\lambda - \tilde{\lambda}^{k})^{T} \{-B(y^{k} - \tilde{y}^{k}) - C(z^{k} - \tilde{z}^{k}) + \frac{1}{\beta} (\lambda^{k} - \tilde{\lambda}^{k})\}, \ \forall \lambda \in \Re^{m}. \tag{6.4d}$$

利用变分不等式 (4.3), 我们可以将 (6.4) 中的结果表述成下面的引理.

Lemma 6.1. 设 $(x^{k+1}, y^{k+1}, z^{k+1})$ 根据给定的 v^k 由 (5.2) 生成. 那么, 由 (6.3) 定义的 预测点 \tilde{w}^k 满足

$$\tilde{w}^k \in \Omega, \ \theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k) \ge (v - \tilde{v}^k)^T Q(v^k - \tilde{v}^k), \ \forall \ w \in \Omega,$$
 (6.5)

其中

$$Q = \begin{pmatrix} \beta B^T B & 0 & 0\\ \beta C^T B & \beta C^T C & 0\\ -B & -C & \frac{1}{\beta} I_m \end{pmatrix}. \tag{6.6}$$

我们接着来给出校正矩阵. 首先, 由定义 (6.3a), 对 y 和 z 进行校正的公式 (5.1) 则是

$$\begin{pmatrix} y^{k+1} \\ z^{k+1} \end{pmatrix} = \begin{pmatrix} y^k \\ z^k \end{pmatrix} - \begin{pmatrix} \nu I & -\nu (B^T B)^{-1} B^T C \\ 0 & \nu I \end{pmatrix} \begin{pmatrix} y^k - \tilde{y}^k \\ z^k - \tilde{z}^k \end{pmatrix}. \tag{6.7a}$$

另外, 用 $(\tilde{y}^k, \tilde{z}^k, \tilde{\lambda}^k)$, 那个由 (5.2) 生成, 无需校正的 λ^{k+1} 可以写成

$$\lambda^{k+1} = \lambda^k - \beta \left(Ax^{k+1} + By^{k+1} + Cz^{k+1} - b \right)$$

$$= \lambda^k - \left[-\beta B(y^k - \tilde{y}^k) - \beta C(z^k - \tilde{z}^k) + (\lambda^k - \tilde{\lambda}^k) \right]$$
(6.7b)

因此,将(6.7)写在一起就是

$$v^{k+1} = v^k - M(v^k - \tilde{v}^k),$$

其中

$$M = \begin{pmatrix} \nu I & -\nu (B^T B)^{-1} B^T C & 0\\ 0 & \nu I & 0\\ -\beta B & -\beta C & I_m \end{pmatrix}.$$
 (6.8)

这样, 我们对 85.1 中的找补校正方法, 纳入了预测-校正方法框架 (6.1).

最后我们来验证收敛性条件. 首先, 矩阵 Q 可以写成分块的形式

$$Q = \begin{pmatrix} \beta Q_0 & 0 \\ -\mathcal{A} & \frac{1}{\beta} I_m \end{pmatrix}, \quad \sharp \div \quad Q_0 = \begin{pmatrix} B^T B & 0 \\ C^T B & \beta C^T C \end{pmatrix}, \quad \mathcal{A} = (B, C).$$

我们记

$$D_0 = \begin{pmatrix} B^T B & 0 \\ 0 & C^T C \end{pmatrix}$$
 则有 $Q_0^T + Q_0 = D_0 + \mathcal{A}^T \mathcal{A}$.

利用这些符号, 对 (6.8) 中的矩阵 M, 就可以写成

$$M = \begin{pmatrix} \nu Q_0^{-T} D_0 & 0 \\ -\beta \mathcal{A} & I \end{pmatrix} \qquad \text{``chiğita E} \qquad M^{-1} = \begin{pmatrix} \frac{1}{\nu} D_0^{-1} Q_0^T & 0 \\ \frac{1}{\nu} \beta \mathcal{A} D_0^{-1} Q_0^T & I \end{pmatrix}. \tag{6.9}$$

要问是否有正定矩阵 H 使得 HM = Q, 只要验证矩阵

$$H = QM^{-1} = \begin{pmatrix} \beta Q_0 & 0 \\ -\mathcal{A} & \frac{1}{\beta} I_m \end{pmatrix} \begin{pmatrix} \frac{1}{\nu} D_0^{-1} Q_0^T & 0 \\ \frac{1}{\nu} \beta \mathcal{A} D_0^{-1} Q_0^T & I \end{pmatrix} = \begin{pmatrix} \frac{1}{\nu} \beta Q_0 D_0^{-1} Q_0^T & 0 \\ 0 & \frac{1}{\beta} I \end{pmatrix}$$

是否正定, 确实, 矩阵 H 是正定的. 进而我们验证矩阵 G 的正定性. 根据 (6.2b) 对矩阵 G 的定义, 利用 HM=Q 和 $Q_0^T+Q_0=D_0+\mathcal{A}^T\mathcal{A}$, 就会得到

$$G = Q^{T} + Q - M^{T}HM = Q^{T} + Q - Q^{T}M$$

$$= (Q^{T} + Q) - \begin{pmatrix} \beta Q_{0}^{T} & -\mathcal{A}^{T} \\ 0 & \frac{1}{\beta}I_{m} \end{pmatrix} \begin{pmatrix} \nu Q_{0}^{-T}D_{0} & 0 \\ -\beta \mathcal{A} & I \end{pmatrix}$$

$$= \begin{pmatrix} \beta(Q_{0}^{T} + Q_{0}) & -\mathcal{A}^{T} \\ -\mathcal{A} & \frac{2}{\beta}I_{m} \end{pmatrix} - \begin{pmatrix} \beta(\nu D_{0} + \mathcal{A}^{T}\mathcal{A}) & -\mathcal{A}^{T} \\ -\mathcal{A} & \frac{2}{\beta}I_{m} \end{pmatrix}$$

$$= \begin{pmatrix} (1 - \nu)\beta D_{0} & 0 \\ 0 & \frac{1}{\beta}I_{m} \end{pmatrix} \succ 0, \quad (\boxtimes \bowtie \nu \in (0, 1)).$$

至此,证明了找补校正的方法纳入框架 (6.1) 后,相应的收敛性条件 (6.2) 是也得到满足的.

最后我们想说一下, 为什么这个方法叫做 ADMM with Gaussian back Substitution 呢? 利用 (6.9) 中矩阵 M 的表达式, 校正 (6.7a) 可以写成

$$\begin{pmatrix} y^{k+1} \\ z^{k+1} \end{pmatrix} = \begin{pmatrix} y^k \\ z^k \end{pmatrix} - \nu Q_0^{-T} D_0 \begin{pmatrix} y^k - \tilde{y}^k \\ z^k - \tilde{z}^k \end{pmatrix}.$$

实际计算中, 它是通过

$$Q_0^T \begin{pmatrix} y^{k+1} - y^k \\ z^{k+1} - z^k \end{pmatrix} = \nu D_0 \begin{pmatrix} \tilde{y}^k - y^k \\ \tilde{z}^k - z^k \end{pmatrix}$$
 (6.10)

来实现, 注意到 (6.10) 中的矩阵 Q_0^T 是一个上三角矩阵, 这样先后求得 z^{k+1} , y^{k+1} 的过程 我们把它说成是高斯回代.

6.2 强制平等的方法

为了利用统一框架 (6.1) 及其相应的收敛性条件 (6.2), 我们以 (5.6) 的输出 $x^{k+1}, y^{k+1}, z^{k+1}$ 定义辅助的预测变量 $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{z}^k, \tilde{\lambda}^k)$, 其中

$$(\tilde{x}^k, \tilde{y}^k, \tilde{z}^k) = (x^{k+1}, y^{k+1}, z^{k+1}),$$

$$(6.11a)$$

$$\tilde{\lambda}^k = \lambda^k - \beta(A\tilde{x}^k + By^k + Cz^k - b). \tag{6.11b}$$

根据优化问题的最优性条件 (1.1), 用 $\tilde{x}^k = x^{k+1}$ 和 (6.11b), 可以将 (5.6) 中 x-子问题的最优性条件写成

$$\tilde{x}^k \in \mathcal{X}, \ \theta_1(x) - \theta_1(\tilde{x}^k) + (x - \tilde{x}^k)^T (-A^T \tilde{\lambda}^k) \ge 0, \ \forall x \in \mathcal{X}.$$
 (6.12a)

由于 $\tilde{\lambda}^k = \lambda^{k+\frac{1}{2}}$, (5.6) 中 y 和 z 子问题是平行求解的, 它们的最优性条件分别有

$$\tilde{y}^k \in \mathcal{Y}, \quad \theta_2(y) - \theta_2(\tilde{y}^k) + (y - \tilde{y}^k)^T (-B^T \tilde{\lambda}^k) \ge (y - \tilde{y}^k)^T \mu \beta B^T B(y^k - \tilde{y}^k), \quad \forall y \in \mathcal{Y}. \quad (6.12b)$$

 $\tilde{z}^k \in \mathcal{Z}$, $\theta_3(z) - \theta_3(\tilde{z}^k) + (z - \tilde{z}^k)^T (-C^T \tilde{\lambda}^k) \ge (z - \tilde{z}^k)^T \mu \beta C^T C(\tilde{z}^k - z^k)$, $\forall z \in \mathcal{Z}$. (6.12c) 同样, 由等式 (6.11b) 得到

$$\tilde{\lambda}^k \in \Re^m, \ (\lambda^k - \tilde{\lambda}^k)^T (A\tilde{x}^k + B\tilde{y}^k + C\tilde{z}^k - b)$$

$$\geq (\lambda^k - \tilde{\lambda}^k)^T \{-B(y^k - \tilde{y}^k) - C(z^k - \tilde{z}^k) + \frac{1}{\beta}(\lambda^k - \tilde{\lambda}^k)\}, \ \forall \lambda \in \Re^m. \ (6.12d)$$

利用变分不等式 (4.3), 我们可以将 (6.12) 中的结果表述成下面的引理.

Lemma 6.2. 设 $(x^{k+1},y^{k+1},z^{k+1})$ 根据给定的 v^k 由 (5.6) 生成. 那么, 由 (6.11) 定义的 预测点 \tilde{w}^k 满足

$$\theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k) \ge (v - \tilde{v}^k)^T Q(v^k - \tilde{v}^k), \ \forall \ w \in \Omega,$$
 (6.13)

其中

$$Q = \begin{pmatrix} \mu \beta B^{T} B & 0 & 0 \\ 0 & \mu \beta C^{T} C & 0 \\ -B & -C & \frac{1}{\beta} I_{m} \end{pmatrix}.$$
 (6.14)

我们接着来找出校正矩阵. 在迭代法 (5.6) 中不含校正, 为了用统一框架证明算法的收敛性, 我们根据 (6.11) 定义了 $\tilde{w}^k = (\tilde{x}^k, \tilde{y}^k, \tilde{z}^k, \tilde{\lambda}^k)$. 将这个 \tilde{w}^k 看做预测点, 再找出用 $v^k = (y^k, z^k, \lambda^k)$ 和 $\tilde{v}^k = (\tilde{y}^k, \tilde{z}^k, \tilde{\lambda}^k)$ 表示 $v^{k+1} = (y^{k+1}, z^{k+1}, \lambda^{k+1})$ 的关系式. 由于

$$y^{k+1} = \tilde{y}^k, \qquad z^{k+1} = \tilde{z}^k,$$
 (6.15a)

和

$$\lambda^{k+1} = \lambda^{k} - \beta (Ax^{k+1} + By^{k+1} + Cz^{k+1} - b)$$

$$= \lambda^{k} - \left[-\beta B(y^{k} - \tilde{y}^{k}) - \beta C(z^{k} - \tilde{z}^{k}) + (\lambda^{k} - \tilde{\lambda}^{k}) \right]$$
(6.15b)

这个校正公式可以写成

$$\begin{pmatrix} y^{k+1} \\ z^{k+1} \\ \lambda^{k+1} \end{pmatrix} = \begin{pmatrix} y^k \\ z^k \\ \lambda^k \end{pmatrix} - \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ -\beta B & -\beta C & I_m \end{pmatrix} \begin{pmatrix} y^k - \tilde{y}^k \\ z^k - \tilde{z}^k \\ \lambda^k - \tilde{\lambda}^k \end{pmatrix}.$$

换句话说, 我们有

$$v^{k+1} = v^k - M(v^k - \tilde{v}^k), \quad \sharp \Phi \quad M = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ -\beta B & -\beta C & I_m \end{pmatrix}.$$
 (6.16)

这样, 我们对 §5.2 中强制平等的方法, 纳入了预测-校正方法框架 (6.1).

最后我们来验证收敛性条件. 要问是否有正定矩阵 H 使得 HM = Q, 只要验证矩阵

$$H = QM^{-1} = \begin{pmatrix} \mu \beta B^{T}B & 0 & 0 \\ 0 & \mu \beta C^{T}C & 0 \\ -B & -C & \frac{1}{\beta}I_{m} \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ \beta B & \beta C & I_{m} \end{pmatrix}$$
$$= \begin{pmatrix} \mu \beta B^{T}B & 0 & 0 \\ 0 & \mu \beta C^{T}C & 0 \\ 0 & 0 & \frac{1}{\beta}I \end{pmatrix}, \tag{6.17}$$

上式表示矩阵 H 是正定的. 进而我们验证矩阵 G 的正定性. 根据定义和 Q = HM, 有

$$\begin{split} G &= Q^T + Q - M^T H M = Q^T + Q - Q^T M \\ &= \begin{pmatrix} 2\mu\beta B^T B & 0 & -B^T \\ 0 & 2\mu\beta C^T C & -C^T \\ -B & -C & \frac{2}{\beta}I_m \end{pmatrix} - \begin{pmatrix} \mu\beta B^T B & 0 & -B^T \\ 0 & \mu\beta C^T C & -C^T \\ 0 & 0 & \frac{1}{\beta}I_m \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ -\beta B & -\beta C & I_m \end{pmatrix}. \end{split}$$

继续进行一些基本的矩阵运算就能得到

$$G = \begin{pmatrix} (\mu - 2)\beta B^T B & 0 & 0\\ 0 & (\mu - 2)\beta C^T C & 0\\ 0 & 0 & \frac{1}{\beta} I \end{pmatrix} + \beta \begin{pmatrix} B^T B & -B^T C & 0\\ -C^T B & C^T C & 0\\ 0 & 0 & 0 \end{pmatrix}.$$
(6.18)

上式右端的最后一个矩阵半正定. 所以, 由于 $\mu > 2$, 矩阵 G 是正定的. 我们把 §5.2 中的强制平等的方法, 纳入了预测-校正方法框架 (6.1) 后, 证明了它满足收敛性条件 (6.2).

7 收缩性质和收敛速率的证明

对形如 (4.3) 的变分不等式, 这一节利用统一框架 (6.1) 和条件 (6.2) 证明收敛性.

Lemma 7.1. 求解变分不等式 (4.3), 如果条件 (6.2) 满足, 由算法 (6.1) 生成的点满足

$$\tilde{w}^{k} \in \Omega, \quad \theta(u) - \theta(\tilde{u}^{k}) + (w - \tilde{w}^{k})^{T} F(\tilde{w}^{k}) \\
\geq \frac{1}{2} (\|v - v^{k+1}\|_{H}^{2} - \|v - v^{k}\|_{H}^{2}) + \frac{1}{2} \|v^{k} - \tilde{v}^{k}\|_{G}^{2}, \quad \forall w \in \Omega.$$
(7.1)

证明. 由 (6.1b) 生成新的迭代点. 由于 Q = HM, 这时 (6.1a) 就可以改写成

$$\tilde{w}^k \in \Omega, \ \theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k) \ge (v - \tilde{v}^k)^T H(v^k - v^{k+1}), \ \forall w \in \Omega,$$
 (7.2) 对右端的 $(v - \tilde{v}^k)^T H(v^k - v^{k+1}),$ 用恒等式

$$(a-b)^{T}H(c-d) = \frac{1}{2}(\|a-d\|_{H}^{2} - \|a-c\|_{H}^{2}) + \frac{1}{2}(\|c-b\|_{H}^{2} - \|d-b\|_{H}^{2}), \tag{7.3}$$

进行处理,就有

$$\theta(u) - \theta(\tilde{u}^k) + (w - \tilde{w}^k)^T F(\tilde{w}^k)$$

$$\geq \frac{1}{2} (\|v - v^{k+1}\|_H^2 - \|v - v^k\|_H^2) + \frac{1}{2} (\|v^k - \tilde{v}^k\|_H^2 - \|v^{k+1} - \tilde{v}^k\|_H^2), \ \forall w \in \Omega. \ (7.4)$$

对 (7.4) 右端的最后一部分, 利用 (6.1b), HM = Q 和(6.2b) 中对矩阵 G 的定义, 我们有

$$\begin{split} &\frac{1}{2} \left(\| v^k - \tilde{v}^k \|_H^2 - \| v^{k+1} - \tilde{v}^k \|_H^2 \right) = \frac{1}{2} \left(\| v^k - \tilde{v}^k \|_H^2 - \| (v^k - \tilde{v}^k) - M(v^k - \tilde{v}^k) \|_H^2 \right) \\ &= &\frac{1}{2} \left((v^k - \tilde{v}^k)^T (HM + M^T H - M^T HM)(v^k - \tilde{v}^k) \right) = \frac{1}{2} \| v^k - \tilde{v}^k \|_G^2. \end{split}$$

将上述结果代入 (7.4) 右端, 就得到 (7.1), 引理 7.1 得证. □

Theorem 7.1. 对变分不等式问题 (4.3), 由算法框架 (6.1) 生成的核心变量序列 $\{v^k\}$, 在条件 (6.2) 满足的时候, 有收缩性质

$$\|v^{k+1} - v^*\|_H^2 \le \|v^k - v^*\|_H^2 - \|v^k - \tilde{v}^k\|_G^2, \quad \forall v^* \in \mathcal{V}^*. \tag{7.5}$$

证明. 用 w^* 替代 (7.1) 中任意的 $w \in \Omega$ 并利用单调性, 就得到定理的结论. \square

因为 G 正定, 序列 $\{v^k\}$ 是在 H-模下收缩的, (7.5) 是方法收敛的关键不等式. 此外, 利用 (7.1), 马上得到 O(1/t) 收敛速率的结论.

Theorem 7.2. 对变分不等式问题 (4.3), 算法 (6.1) 在条件 (6.2) 满足的时候有遍历意义下的 O(1/t) 收敛速率, 即对任意正整数 t, 都有

$$\theta(\tilde{u}_t) - \theta(u) + (\tilde{w}_t - w)^T F(w) \le \frac{1}{2(t+1)} \|v - v^0\|_H^2, \ \forall w \in \Omega,$$
 (7.6)

其中 $\tilde{w}_t = \frac{1}{(t+1)} \left(\sum_{k=0}^t \tilde{w}^k \right)$ 是预测序列的算术平均.

证明. 首先, 利用 $(w - \tilde{w}^k)^T F(\tilde{w}^k) = (w - \tilde{w}^k)^T F(w)$, 由 (7.1) 可以得到

$$\theta(\tilde{u}^k) - \theta(u) + (\tilde{w}^k - w)^T F(w) + \frac{1}{2} \|v - v^{k+1}\|_H^2 \le \frac{1}{2} \|v - v^k\|_H^2, \quad \forall w \in \Omega.$$
 (7.7)

将上式从 $k=0,1,\ldots,t$ 累加, 再利用凸函数的性质 $\theta\left(\frac{1}{t+1}\sum_{k=0}^{t}\tilde{u}^{k}\right)\leq\frac{1}{t+1}\left(\sum_{k=0}^{t}\theta(\tilde{u}^{k})\right)$, 就得到 (7.6). 定理得证.

8 结论与体会

讲述这些算法, 只用到微积分中的梯度, 和线性代数中的矩阵基本运算的知识. 引理 1.1 是凸优化的一阶最优性条件. 用鞍点, 无非是将原问题的解和对偶解一起考虑. 现实生活中, 一个极小总和一个极大联系在一起. 一些基本想法, 还真跟脚在泥土里浸过几年很有关系. 大学数学与日常生活的理念相辅相成, 是本文想说的道理.

爱美之心,人皆有之. 数学之美,不是纯数学的专利,应用与计算也不一定就那么枯燥无味. 用了 §6 的算法框架和收敛性条件, §7 用一页左右的篇幅就给出了收缩性和收敛速率的证明. 不管研究档次高与低,都力求找到简单统一的规律. 简单,有人才会看懂使用;统一,自己才有美的享受.

References

- [1] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, *Foun. Trends Mach. Learn.*, **3**, 1-122, 2010.
- [2] C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM for multiblock convex minimization problems is not necessarily convergent, to appear in Mathematical Programming, Series A.
- [3] E. Esser, M. Möller, S. Osher, G. Sapiro and J. Xin, A convex model for non-negative matrix factorization and dimensionality reduction on physical space, *IEEE Trans. Imag. Process.*, **21**(7), 3239-3252, 2012.
- [4] D. Gabay, Applications of the method of multipliers to variational inequalities, Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems, edited by M. Fortin and R. Glowinski, North Holland, Amsterdam, The Netherlands, pp. 299–331, 1983.
- [5] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.
- [6] B. S. He, H. Liu, Z.R. Wang and X.M. Yuan, A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM Journal on Optimization 24, 1011-1040, 2014.
- [7] B. S. He, M. Tao and X.M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization 22, 313-340, 2012.
- [8] B.S. He, M. Tao and X.M. Yuan, A splitting method for separable convex programming, IMA Journal of Numerical Analysis, 31, 394-426, 2015.
- [9] B. S. He, M. H. Xu, and X. M. Yuan, Solving large-scale least squares covariance matrix problems by alternating direction methods, *SIAM Journal on Matrix Analysis and Applications* **32**(2011), 136-152.
- [10] B. S. He and X. M. Yuan, On the O(1/n) convergence rate of the alternating direction method, SIAM J. Numerical Analysis **50**, 700-709, 2012.
- [11] B. S. He and X. M. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating directions method of multipliers, *Numerische Mathematik*, online published.
- [12] 何炳生, 凸优化的一阶分裂算法—变分不等式为工具的统一框架, 见 http://math.nju.edu. cn/~hebma 中的《My Talk》
- [13] 何炳生, 凸优化和单调变分不等式的收缩算法, 见 http://math.nju.edu.cn/~hebma 中的系列 讲义.