ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 21 luglio 2015

Esercizio A

$R_1 = 1 \text{ k}\Omega$	$R_{11} = 200 \text{ k}\Omega$
$R_3 = 92.5 \text{ k}\Omega$	$R_{12}=2750\;\Omega$
$R_4 = 10 \text{ k}\Omega$	$R_{13} = 100 \Omega$
$R_5 = 50 \Omega$	$R_{14} = 1 k\Omega$
$R_6 = 1450 \Omega$	$C_1 = 1 \mu F$
$R_7 = 1 k\Omega$	$C_2 = 100 \text{ nF}$
$R_8 = 5 k\Omega$	$C_3=1 \mu F$
$R_9 = 4 \text{ k}\Omega$	$C_4=2 \text{ nF}$
$R_{10} = 100 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = 1$ V. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₂ in modo che, in condizioni di riposo, la tensione sul drain di Q₂ sia 12.5 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₂. (R: R₂ = 3816.49)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: V_U/V_i = -6.48)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 109.8$ Hz; $f_{p1} = 2431.3$ Hz; $f_{z2} = 716.2$ Hz; $f_{p2} = 688.4$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 20669.5$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{AB}(\overline{C}D + \overline{D}E) + \overline{C}(\overline{B} + \overline{A}\overline{D}) + \overline{D}E$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_5 = 2 k\Omega$
$R_2 = 2 k\Omega$	C = 47 nF
$R_3 = 2.5 \text{ k}\Omega$	$V_{CC} = 6 V$
$R_4 = 50 \Omega$	

Il circuito IC_1 è un NE555 alimentato a $\mathbf{V}_{CC} = \mathbf{6V}$, Q_1 ha una $R_{on} = 0$ e $V_T = -1V$; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 7114.4 Hz)