## TRABAJO PRACTICO Nº 3 (Segunda Parte)

## LOGICA DE PREDICADOS DE PRIMER ORDEN

1. Sea L un lenguaje de primer orden que tiene un símbolo de constante c, un símbolo de relación unaria A, un símbolo de relación binaria B y un símbolo de función unaria f. En el lenguaje L sea el modelo  $M = \langle D, \{A, B\}, \{f\}, \{c\} \rangle$  donde  $D = \{1, 2, 3\}$   $A^D = \{1\}$   $B^D = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$   $f^D(1) = 1$   $f^D(2) = 3$   $f^D(3) = 2$   $c^D = 2$ 

Determine si cada una de las siguientes fórmulas es válida bajo una valuación, válida, o falsa en el modelo dado. Justifique en cada caso.

- (a)  $\forall x B(x, x) \to \exists x \exists y (B(x, y) \land B(f(y), x))$
- (b)  $\forall x (B(x,y) \to B(f(x), f(y)))$
- (c)  $\exists x (B(x, f(y)) \rightarrow \neg A(x)) \lor \forall x \neg A(x)$
- (d)  $\forall x (\neg B(x, y) \rightarrow A(x))$
- 2. Dado el conjunto de datos de la Tabla 1 y el siguiente conjunto de relaciones:

| Tabla 1 | Edad | País      | Deporte | Ocupación   |
|---------|------|-----------|---------|-------------|
| Andrea  | 35   | Argentina | Tenis   | Ama de casa |
| Beatriz | 17   | Uruguay   | Hockey  | Contadora   |
| Carlos  | 55   | Paraguay  | Tenis   | Empleado    |
| Julio   | 35   | Brasil    | Fútbol  | Contratista |
| Eduardo | 38   | Argentina | Tenis   | Comerciante |

$$\begin{split} P^D(x,y) &= \{(x,y) \in D^2 : x \text{ vive en el mismo país que } y\} \\ E^D(x,y) &= \{(x,y) \in D^2 : x \text{ tiene la misma edad que } y\} \\ O^D(x,y) &= \{(x,y) \in D^2 : x \text{ tiene la misma ocupación que } y\} \\ A^D(x,y) &= \{(x,y) \in D^2 : x \text{ practica el mismo deporte que } y, \text{ y ambos son argentinos}\} \end{split}$$

- (a) Describir por extensión los conjuntos  $P^D$ ,  $E^D$ ,  $O^D$  y  $A^D$  siendo el dominio  $D = \{Andrea, Beatriz, Carlos, Julio, Eduardo\}$
- (b) Si es posible, dar un ejemplo de fórmula válida, fórmula válida bajo una valuación y fórmula falsa en base al modelo definido.
- 3. Dada la siguiente fórmula definida en un lenguaje de primer orden  $L: \forall x(A(x) \to A(f(x)))$ , ¿existe un modelo en el que dicha fórmula sea falsa? Si su respuesta es afirmativa, defínalo. En otro caso, explique el por qué de la no existencia.
- 4. Sea L un lenguaje de primer orden que tiene un símbolo de constante c, un símbolo de relación binaria A. En el lenguaje L sea el modelo  $M = < D, \{A\}, \{\}, \{c\} >$ donde  $D = \{$ María, Juan, Luis $\}$   $A^D = \{$ (María, María), (Juan, María), (Luis, María) $\}$   $c^D =$ María

Y dada la siguiente oración en lenguaje natural:

"Nadie que admire a los que admiran a María, la admira a ella"

Formalícela en la lógica de predicados de primer orden y analice su validez en el modelo dado. En caso de que no sea válida, y de ser posible, proponga una modificación al modelo dado para que sí lo sea.

5. Sea el lenguaje de primer orden L que tiene un símbolo de constante c, un símbolo de función unaria  $f_1$ , dos símbolos de funciones binarias  $f_2$  y  $f_3$ , dos símbolos de predicados binarios  $P_1$  y  $P_2$ , y dado el modelo  $M_1 = \langle D, \{=, <\}, \{suc, +, *\}, \{0\} \rangle$  donde D = N (conjunto de los números naturales) es el dominio  $c^N = 0$   $P_1^D(x,y) = \{(x,y) \in D \times D : x = y\}$   $P_2^D(x,y) = \{(x,y) \in D \times D : x < y\}$   $f_1^D(x) = suc(x) = x + 1$   $f_2^D(x,y) = x + y$   $f_3^D(x,y) = x * y$ 

Usando el lenguaje dado represente mediante fórmulas cada una de las siguientes oraciones:

- (a) 0 no tiene sucesor.
- (b) 0 es el predecesor de 1.
- (c) Todo número natural tiene un sucesor.
- (d) Si dos números tienen el mismo sucesor son iguales.
- (e) El sucesor del sucesor de cualquier número es mayor que el sucesor de ese mismo número.
- 6. Sea L un lenguaje de primer orden que tiene dos símbolos de constante c y d, cuatro símbolos de relación binaria A, B, C y E, un símbolo de función binaria f, y un símbolo de función unaria g. En el lenguaje L, sea el modelo

$$\begin{aligned} &M = < D, \{A^D, B^D, C^D, E^D\}, \{f^D, g^D\}, \{c^D, d^D\} > \text{donde } D = \{x \in \{a, b\}^* \ y \ x \neq \varepsilon\} \ c^D = a \\ &d^D = b \\ &g^D(x) = x^R \text{ (reversa de x)} & f^D(x, y) = x.y \text{ (x concatenada con y)} \\ &A^D(x, y) = \{(x, y) \in D^2 : \text{x es prefijo de y}\} \text{ (es decir } y = x.z \text{ para } z \in \{a, b\}^*) \\ &B^D(x, y) = \{(x, y) \in D^2 : x \text{ es subcadena de } y\} \\ &C^D(x, y) = \{(x, y) \in D^2 : x \text{ tiene la misma longitud que } y\} \end{aligned}$$

Determine si cada una de las siguientes fórmulas es válida, válida bajo una valuación o falsa en el modelo dado. Justifique en cada caso. Para las fórmulas válidas bajo una valuación, dé una valuación que las satisfaga.

- (a)  $\forall x \exists y (E(x,y) \land A(y,x) \rightarrow C(x,y))$
- (b)  $\forall x E(x, g(x)) \land \exists x \exists y (A(x, y) \land \neg B(x, y))$
- (c)  $\forall y \exists x (A(x,y) \to A(g(x),g(g(y))))$
- (d)  $\forall x \exists y B(y, x) \rightarrow \forall x \exists y C(x, g(y))$
- 7. Defina al menos dos modelos para un lenguaje de primer orden con únicamente un símbolo de relación binario P, y traduzca las fórmulas dadas a oraciones apropiadas en lenguaje natural:
  - (a)  $\forall x \forall y (P(x,y) \rightarrow P(y,x))$
  - (b)  $\forall x P(x, x)$
  - (c)  $\forall x \forall y \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z))$



8. Considerando la imagen dada del mundo de los naipes:

(Corazón y diamante son rojos y trébol y pica, negros)

Consideremos los siguientes predicados:

Par(a) significa que el naipe a tiene un valor par.

Negro(a) significa que el naipe a es de color negro.

Rojo(a) significa que el naipe a es de color rojo.

Entre(a,b,c) significa que el naipe a se encuentra entre b y c.

Derecha(a, b) significa que el naipe a está inmediatamente a la derecha de b.

Mismocolor(a, b) significa que los naipes a y b son del mismo color.

Juntos(a, b) significa que los naipes a y b están juntos.

- 1. Usando los predicados dados, defina un modelo que represente el mismo mundo que la imagen anterior.
- 2. Determine si las siguientes fórmulas son falsas, válidas o válidas bajo una valuación en el modelo definido.
- (a)  $\forall x (Rojo(x) \longrightarrow Par(x))$
- (b)  $\exists x (\neg Par(x) \land Rojo(x))$
- (c)  $\neg \exists x (Rojo(x) \land \neg Par(x))$
- (d)  $\forall x \forall y (Mismocolor(x, y) \longrightarrow \neg Juntos(x, y))$
- (e)  $\exists x \exists y (Rojo(x) \land Rojo(y) \land \neg \exists z (\neg Rojo(z) \land Entre(z, x, y)))$
- (f)  $\forall x (Par(x) \longrightarrow \exists y \exists z (\neg Par(y) \land \neg Par(z) \land Entre(x, y, z)))$
- (g)  $\forall x (\neg Rojo(x) \longrightarrow \exists y (Rojo(y) \land Derecha(x, y)))$
- (h)  $\forall x(Negro(x) \longrightarrow \exists y(Rojo(y) \land (Derecha(x,y) \lor Derecha(y,x))))$
- (i)  $\forall x (Rojo(x) \longrightarrow \exists y \exists z (Negro(y) \land negro(z) \land Derecha(x,y) \land Derecha(z,x)))$
- 9. Dado el siguiente árbol binario rotulado con letras del dominio  $D = \{a, b, c, d, e, f, g, h, i\}$

y los siguientes predicados:

 $P^{D}(x) = \{x \in D : \text{el nodo } x \text{ tiene padre } \}$ 

 $H^D(x) = \{x \in D : \text{el nodo } x \text{ tiene hijos } \}$ 

 $L^{D}(x,y) = \{(x,y) \in D^{2} : \text{el nodo } x \text{ es hijo izquierdo del nodo } y\}$ 

 $R^D(x,y) = \{(x,y) \in D^2 : \text{el nodo } x \text{ es hijo derecho del nodo } y\}$ 



- (a) Defina por extensión los conjuntos  $P^D,\,H^D,\,L^D$  y  $R^D$
- (b) Determine si cada una de las siguientes fórmulas es válida, válida bajo una valuación o falsa en el modelo dado. Para las fórmulas válidas bajo una valuación, dé una valuación que las satisfaga.
  - 1.  $\forall x (H(x) \to P(x))$
  - 2.  $\exists x L(y, x) \lor \forall x \exists y R(y, x)$
  - 3.  $(P(x) \lor H(x)) \land \exists x (P(x) \land \exists y L(y,x) \land \exists z R(z,x))$
- 10. Usando la herramienta FOLST:
  - (a) Defina un modelo en el frame Granja.
  - (b) Defina dos fórmulas que sean válidas y dos fórmulas que sean falsas en el modelo definido.
- 11. Dadas las siguientes fórmulas

$$\exists x \exists y (EsCapital(x) \land EstaEnEuropa(x) \land EstaMasAlSur(x,y)) \\ \forall x (EstaEnAmerica(x) \rightarrow HayConexion(x, \text{ buenos aires}))$$

Usando la herramienta FOLST

- (a) Defina, si es posible, un modelo en el frame Mundo en el que ambas sean válidas.
- (b) Defina, si es posible, un modelo en el frame Mundo en el que ambas sean falsas.
- 12. Para cada uno de los siguientes incisos, determine cuál/cuáles de las afirmaciones son correctas y cuáles no. Justifique en cada caso.
  - (a)  $\exists x (A(x) \land B(x))$  es equivalente a  $\exists x A(x) \land \exists x B(x)$
  - (b)  $\forall x (A(x) \land B(x))$  es equivalente a  $\forall x A(x) \land \forall x B(x)$
  - (c)  $\forall x (A(x) \lor B(x))$  es equivalente a  $\forall x A(x) \lor \forall x B(x)$
  - (d)  $\exists x (A(x) \lor B(x))$  es equivalente a  $\exists x A(x) \lor \exists x B(x)$
  - (e) Ninguna de las anteriores es cierta.
- 13. Defina para cada una de las siguientes fórmulas un modelo en donde sea válida y un modelo en donde sea falsa (cuando sea posible). Justifique la elección del modelo en cada caso.
  - (a)  $\forall x R(x) \rightarrow \exists x R(x)$
  - (b)  $\exists x \forall y A(x,y) \rightarrow \forall x \exists y A(x,y)$
  - (c)  $\neg \exists x (\neg (D(x) \lor D(x))$
  - (d)  $\exists x A(x,y) \rightarrow \forall x A(x,y)$
  - (e)  $\forall x (A(x) \lor B(x)) \to \forall x A(x) \lor \forall x B(x)$

- (f)  $\exists x A(x) \lor \exists x B(x) \to \exists x (A(x) \lor B(x))$
- 14. Sea el lenguaje de primer orden L que tiene dos símbolos de constante c,d y un símbolo de relación binario P, y dado el modelo  $M=< D,\{P\},\{\},\{c,d\}>$  donde

$$P^{D}(x,y) = \{(x,y) \in D \times D : x \le y\}$$
  $c^{D} = 0$   $d^{D} = 1$ 

Determine y justifique si las siguientes afirmaciones son o no correctas

- (a) P(c,x) es válida bajo una valuación en M.
- (b) P(c,x) es válida en M.
- (c)  $\forall x P(c, x)$  es lógicamente válida.
- (d)  $\forall x \exists y P(x, y)$  es válida en M.
- (e)  $\exists y \forall x P(x, y)$  es válida en M.
- (f)  $P(d,c) \wedge \neg P(d,c)$  es contradictoria.
- 15. Sea L un lenguaje de primer orden que tiene un símbolo de constante c, un símbolo de relación binaria A y un símbolo de función binaria f. En el lenguaje L sea el modelo

 $M = \langle D, \{A\}, \{f\}, \{c\} \rangle$  donde D = N (conjunto de los números naturales),

$$A^D = \{(x,y) \in D^2 : x \ge y\} \qquad f^D(x,y) = \{z \in D : (x,y) \in D^2; z = x + y\} \qquad c^D = 0$$

Escribir en todos los casos que sea posible (cuando no sea posible fundamentar por qué), fórmulas bien formadas en el lenguaje L que sean:

- (a) falsa en M, pero no contradictoria.
- (b) contradictoria
- (c) válida bajo una valuación en M, pero no válida en M
- (d) válida en M, pero no válida bajo una valuación en M
- (e) válida en M, pero no lógicamente válida
- (f) lógicamente válida
- (g) lógicamente válida pero no válida en  ${\cal M}$
- (h) contradictoria, pero no falsa en  ${\cal M}$
- 16. Para cada una de las siguientes fórmulas, encuentre si es posible un modelo en el cual la última fórmula sea falsa pero las primeras sean válidas:
  - (a)  $\exists x A(x) \to \exists x B(x), B(a), \forall x (A(x) \to B(x))$  siendo a constante
  - (b)  $\forall x \forall y (A(x) \land A(y) \rightarrow C(x,y)), \exists x A(x), \exists x A(f(x)), \exists x C(f(x),x)$