Homework Assignment # 1

Due date: Wednesday, November 1

Remark. Here I use the book below as reference. Download Digital Version

[L] JOHN M.LEE, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, **218** (2012), 2nd Edition.

1. Let

$$O(n, \mathbb{R}) = \{ A \in Mat(n, \mathbb{R}) : AA^T = I \}.$$

Show that $O(n, \mathbb{R})$ is a smooth manifold of dimension $\frac{n(n-1)}{2}$.

Proof. Let $S(n,\mathbb{R})$ denote the set of symmetric $n \times n$ matrices, which is easily seen to be a linear subspace of $Mat(n,\mathbb{R})$ of dimension n(n+1)/2. Define $\varphi: GL(n,\mathbb{R}) \to S(n,\mathbb{R})$ by $\varphi(A) = AA^T$, then $O(n,\mathbb{R}) = \varphi^{-1}(I)$ and φ is smooth since each components of φ is a polynomial of components of A. If we can prove that I is a regular value of φ , then by Corollary 5.14 Regular Level Set Theorem Of [L], we know that $O(n,\mathbb{R})$ is a embedded submanifold of $GL(n,\mathbb{R})$, and its dimension is $n^2 - n(n+1)/2 = n(n-1)/2$ ($\dim GL(n,\mathbb{R}) - S(n,\mathbb{R})$).

Let $A \in \mathrm{O}(n,\mathbb{R})$, we will show that $\varphi_* : T_A\mathrm{GL}(n,\mathbb{R}) \to T_{\varphi(A)}\mathrm{S}(n,\mathbb{R})$ is surjective. For any $X \in T_A\mathrm{GL}(n,\mathbb{R}) \cong \mathrm{Mat}(n,\mathbb{R})$ (which will be proved in Problem 4), assume $\gamma : (-\epsilon,\epsilon) \to \mathrm{GL}(n,\mathbb{R})$ be a smooth curve on $\mathrm{GL}(n,\mathbb{R})$ such that $\gamma(t) = A + tX$, which satisfies $\gamma(0) = A$ and $\gamma'(0) = X$. Then

$$\varphi_*(X) = \varphi_*(\gamma'(0)) = \frac{d}{dt}\Big|_{t=0} \varphi(\gamma(t)) = XA^T + AX^T.$$
 (1)

For any $C \in S(n, \mathbb{R})$, we have

$$\varphi_*(CA/2) = CAA^T/2 + AA^TC^T/2 = C/2 + C^T/2 = C,$$

i.e. $\varphi_*|_A$ is surjective. The proof is complete.

Remark. Here, we use some results such as identifying tangent vectors to a finite-dimensional linear space with elements of the space itself (Proposition 3.13 of [L]), Regular Value and Submersion Theorem or Regular Level Set Theorem.

2. Let $f_i(x_1, \dots, x_n)$, $i = 1, \dots, N-n$ be collection of smooth functions such that

$$\operatorname{rank}\left\{\frac{\partial f_i}{\partial x_j}\right\} = N - n. \tag{2}$$

Define the smooth manifold M by the nonlinear equations,

$$M = {\mathbf{x} : f_i(\mathbf{x}) = 0, i = 1, \dots, N - n}.$$

Show that the tangent space $T_{\mathbf{x}_0}$ to M at point \mathbf{x}_0 is defined by the linear equations,

$$T_{\mathbf{x}_0} = {\mathbf{X} : \langle \mathbf{X}, \operatorname{grad} f_i(\mathbf{x}_0) \rangle = 0, \ i = 1, \dots, N - n}.$$

Remark. First, we show that M is a manifold of dimension n. Since rank $\left\{\frac{\partial f_i}{\partial x_j}\right\} =$

N-n, we assume that the matrix $\left(\frac{\partial f_i}{\partial x_j}\right)_{(N-n)\times(N-n)}$ is invertible at some given point \mathbf{x}_0 for convenience, where $1\leqslant i,j\leqslant N-n$. Hence by Implicit Function Theorem, there exist neighbourhood $V_0\subset\mathbb{R}^{N-n}$ of $(\mathbf{x}_1,\cdots,\mathbf{x}_{N-n})=p$ and $W_0\subset\mathbb{R}^n$ of $(\mathbf{x}_{N-n+1},\cdots,\mathbf{x}_N)=q$ and a smooth map $\varphi:W_0\to V_0$ such that

$$f_i(x_1, \dots, x_N) = 0, \ i = 1, \dots, N - n$$

for any $(x_1, \dots, x_N) \in V_0 \times W_0$ if and only if $\varphi(x_{N-n+1}, \dots, x_N) = (x_1, \dots, x_{N-n})$. Thus we can construct a diffeomorphism $\phi: (V_0 \times W_0) \cap M \to W_0$ send (x_1, \dots, x_N) to (x_{N-n+1}, \dots, x_N) , which is a local coordinate map. Now, it is easy to see M is a manifold of dimension n.

Proof. Of course, we can prove this is a manifolds in another way by some useful theorems in [L]. Define $\varphi : \mathbb{R}^N \to \mathbb{R}^{N-n}$ by

$$\varphi(x) = (f_1(x), \cdots, f_{N-n}(x)),$$

then $M = \varphi^{-1}(0)$. Note that (2) means φ is a submersion, by Corollary 5.13 Submersion Level Set Theorem of [L], it follows that $M = \varphi^{-1}(0)$ is an embedded manifold with dimension n.

By Proposition 5.38 of [L], $T_{\mathbf{x_0}} = \ker d\varphi_{\mathbf{x_0}}$. For any $\mathbf{X} \in T_{\mathbf{x_0}}(\mathbb{R}^N)$, let $\gamma : (-\epsilon, \epsilon) \to \mathbb{R}^N$ such that $\gamma(0) = \mathbf{x_0}$ and $\gamma'(0) = \mathbf{X}$. Then, one has

$$d\varphi_{\mathbf{x}_0}(\mathbf{X}) = \left(\frac{df_1(\gamma(t))}{dt}\Big|_{t=0}, \cdots, \frac{df_{N-n}(\gamma(t))}{dt}\Big|_{t=0}\right).$$

By Chain Rule, it follows that

$$\frac{df_i(\gamma(t))}{dt}\Big|_{t=0} = \sum_{i=1}^N \frac{\partial f_i}{\partial x_i}\Big|_{\mathbf{x}_0} \frac{dx_i}{dt}\Big|_{t=0} = \langle \mathbf{X}, \operatorname{grad} f_i(\mathbf{x}_0) \rangle.$$

That means $T_{\mathbf{x_0}} = \ker d\varphi_{\mathbf{x_0}} = \{\mathbf{X} : \langle \mathbf{X}, \operatorname{grad} f_i(\mathbf{x_0}) \rangle = 0, \ i = 1, \dots, N - n\}.$

Remark. In fact, what I used it is equivalent to the problem. And here we actually identify the tangent space as a subspace of $T_{\mathbf{x}_0}(\mathbb{R}^N)$, so all what we need is the Chain Rule.

3. Let $X \in T_p(M)$ be a tangent vector defined as a linear functional on F(M) satisfying the Leibniz Rule,

$$X(fg) = X(f)g(p) + X(g)f(p).$$
(3)

Show that X(const) = 0.

Proof. Since X is linear, it suffices to show that X(1) = 0, where 1 means the constant map (hence smooth) sending M to 1. By (3), we obtain that

$$X(1 \cdot 1) = X(1) \cdot 1 + X(1) \cdot 1 \implies X(1) = 2X(1).$$

Hence
$$X(1) = 0$$
.

- 4. Prove the following equations concerning the tangent spaces of the "matrix" manifolds.
 - $T_I(GL(n, \mathbb{R})) = \mathfrak{gl}(n, \mathbb{R}) = Mat(n, \mathbb{R}).$
 - $T_I(SL(n,\mathbb{R})) = \mathfrak{sl}(n,\mathbb{R}) \equiv \{A \in Mat(n,\mathbb{R}) : tr A = 0\}.$
 - $T_I(O(n, \mathbb{R})) = \mathfrak{so}(n, \mathbb{R}) \equiv \{A \in \operatorname{Mat}(n, \mathbb{R}) : A = -A^T\}.$
 - $T_B(SL(n\mathbb{R})) = B\mathfrak{sl}(n,\mathbb{R}) = \mathfrak{sl}(n,\mathbb{R})B$.

Proof. As above (Remark of Problem 1), we always identify tangent vectors to a finite-dimensional linear space with elements of the space itself. Hence

$$T_I(\mathrm{Mat}(n,\mathbb{R})) = \mathrm{Mat}(n,\mathbb{R}).$$

Since $\det : \operatorname{Mat}(n, \mathbb{R}) \to \mathbb{R}$ is continuous and smooth, it follows that $\operatorname{GL}(n, \mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\})$ is open in $\operatorname{Mat}(n, \mathbb{R})$. From the local property (Proposition 3.9 of [L]) of tangent vectors, it follows that

$$\mathfrak{gl}(n,\mathbb{R}) = T_I(\mathrm{GL}(n,\mathbb{R})) = T_I(\mathrm{Mat}(n,\mathbb{R})) = \mathrm{Mat}(n,\mathbb{R}).$$

For any $X \in T_I(GL(n,\mathbb{R}))$, there exists a smooth curve $\gamma : (-\epsilon, \epsilon) \to GL(n,\mathbb{R})$ such that $\gamma(t) = I + tX$ satisfies $\gamma(0) = I$ and $\gamma'(0) = X$. It follows that

$$\det_*(X) = \frac{d}{dt}\Big|_{t=0} \det(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \det(I + tX) = \operatorname{tr} X. \tag{4}$$

Note that (4) *also means that*

$$\det_*: T_I \mathrm{GL}(n,\mathbb{R}) \to R$$

is surjective, which also means det is a submersion. Hence $T_I(SL(n,\mathbb{R})) = \mathfrak{sl}(n,\mathbb{R}) = Ker \det_* = \{A \in Mat(n,\mathbb{R}) : tr A = 0\}$ by Proposition 5.38 of [L].

Similarly, from the process of Problem 1 and (1), one has

$$T_I(\mathcal{O}(n,\mathbb{R})) = \mathfrak{so}(n,\mathbb{R}) = \operatorname{Ker} \varphi_* = \{ A \in \operatorname{Mat}(n,\mathbb{R}) : A = -A^T \}.$$

For any $X \in T_B(GL(n,\mathbb{R}))$, there exists a smooth curve $\gamma : (-\epsilon, \epsilon) \to GL(n,\mathbb{R})$ such that $\gamma(t) = B + tX$ satisfies $\gamma(0) = B$ and $\gamma'(0) = X$. It follows that

$$\begin{split} \det_*(X) &= \left. \frac{d}{dt} \right|_{t=0} \det(\gamma(t)) = \frac{d}{dt} \right|_{t=0} \det(B + tX) \\ &= \left. \frac{d}{dt} \right|_{t=0} \det B \cdot \det(I + tB^{-1}X) = \det B \cdot \frac{d}{dt} \right|_{t=0} \det(I + tB^{-1}X) \\ &= \operatorname{tr}(B^{-1}X). \end{split}$$

By Proposition 5.38 of [L], this means $B^{-1}X \in \mathfrak{sl}(n,\mathbb{R})$ if and only if $X \in T_B(\mathrm{SL}(n,\mathbb{R}))$, i.e. $T_B(\mathrm{SL}(n,\mathbb{R})) = B\mathfrak{sl}(n,\mathbb{R})$. In fact, $T_B(\mathrm{SL}(n,\mathbb{R})) = B\mathfrak{sl}(n,\mathbb{R})$ can be done by easy dimensional argument. Similarly, using $\det(B+tX) = \det(I+XB^{-1}) \det B$ will deduce $T_B(\mathrm{SL}(n,\mathbb{R})) = \mathfrak{sl}(n,\mathbb{R})B$.

5. Let \wedge be $n \times n$ diagonal matrix whose diagonal entries are $\lambda_1, \dots, \lambda_n$ and they are all different, i.e. $\lambda_i \neq \lambda_k, i \neq k$. Define

$$O_{\wedge} = \{ g \wedge g^{-1}, \ g \in \operatorname{GL}(n, \mathbb{R}) \}.$$

Prove that O_{\wedge} is a smooth manifold of dimension n(n-1) and

$$T_A(O_{\wedge}) = \{ [A, X], \quad X \in \operatorname{Mat}(n, \mathbb{R}) \}.$$

Proof. Note that there is a natural left smooth action of $GL(n, \mathbb{R})$ on $Mat(n, \mathbb{R})$, which is defined by

$$\Phi: \mathrm{GL}(n,\mathbb{R}) \times \mathrm{Mat}(n,\mathbb{R}) \to \mathrm{Mat}(n,\mathbb{R}) \quad \Phi(g,A) = gAg^{-1}.$$

Then, the isotropy group (stabilizer of \wedge) $G_{\wedge} = \Phi^{-1}(\wedge)$ is closed and $\operatorname{GL}(n,\mathbb{R})$ acts transitively on O_{\wedge} . Then by Theorem 21.20 of [L], O_{\wedge} has an unique smooth manifold structure with respect to which the given action is smooth. Furthermore, with this structure, $\dim O_{\wedge} = \dim \operatorname{GL}(n,\mathbb{R}) - \dim G_{\wedge}$. From the condition of \wedge , $g \in G_{\wedge}$ if and only if g is diagonal and invertible. Consequently, it is easy to see G_{\wedge} is of dimension n, which means $\dim O_{\wedge} = n(n-1)$.

Define φ *by*

$$\varphi: \mathrm{GL}(n,\mathbb{R}) \to O_{\wedge}, \quad \varphi(g) = g \wedge g^{-1}.$$

Then φ is a submersion by Theorem 4.14 Global Rank Theorem of [L], since φ is surjective. Now, we will determine $T_A(O_{\wedge})$. Since $A \in O_{\wedge}$, we can assume $A = g \wedge g^{-1}$ for some $g \in GL(n, \mathbb{R})$. Note that φ_* is surjective, then $T_A(O_{\wedge}) = \varphi_*(T_gGL(n, \mathbb{R}))$. For any $X \in T_gGL(n, \mathbb{R}) = Mat(n, \mathbb{R})$, there exists a smooth curve $\gamma : (-\epsilon, \epsilon) \to GL(n, \mathbb{R})$ such that $\gamma(t) = g + tX$ satisfying $\gamma(0) = g$ and $\gamma'(0) = X$. Then

$$\varphi_*(X) = \varphi_*(\gamma'(0)) = \frac{d}{dt}\Big|_{t=0} \varphi(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} (g+tX) \wedge (g+tX)^{-1}.$$
 (5)

Denote $\mu(t)=(g+tX)\wedge(g+tX)^{-1}$, then $(g+tX)\wedge=\mu(t)(g+tX)$. It follows that

$$\frac{d}{dt}\Big|_{t=0}(g+tX)\wedge = \frac{d}{dt}\Big|_{t=0}(\mu(t)(g+tX)) = \frac{d}{dt}\Big|_{t=0}\mu(t)g+\mu(0)X,$$

i.e.

$$X \wedge = g \frac{d}{dt} \Big|_{t=0} \mu(t) + g \wedge g^{-1}X \Longrightarrow \frac{d}{dt} \Big|_{t=0} \mu(t) = [Xg^{-1}, g \wedge g^{-1}].$$

Note that $A = g \wedge g^{-1}$ and $\operatorname{Mat}(n, \mathbb{R})g^{-1} = \operatorname{Mat}(n, \mathbb{R})$, we deduce that

$$T_A(O_{\wedge}) = \{ [A, X], \quad X \in \operatorname{Mat}(n, \mathbb{R}) \},$$

thus completing the proof.

Remark. Of course, we have a smooth map $f : GL(n, \mathbb{R}) \to M$ defined by $f(g) = g \wedge g^{-1}$. Moreover, $G_{\wedge} = f^{-1}(\wedge)$ is a closed subgroup of $GL(n, \mathbb{R})$. Hence, by Theorem 21.17 Homogeneous Space Construction Theorem of [L], $GL(n, \mathbb{R})/G_{\wedge}$ is

a smooth manifold with dimension $\dim \operatorname{GL}(n,\mathbb{R}) - \dim G_{\wedge}$ and the quotient map $\pi: \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})/G_{\wedge}$ is a submersion. Let $G = \operatorname{GL}(n,\mathbb{R})$ and $H = G_{\wedge}$, we can construct a commutative diagram below. Moreover, by Theorem 4.29 Characteristic Property of Surjective Smooth Submersions of [L], it follows that \tilde{f} is smooth.

It is easy to see \tilde{f} is an equivariant map and injective, then \tilde{f} is a immersion. Hence deduce that the image of \tilde{f} is smooth manifold, i.e., O_{\wedge} is a manifold. This is just a restatement of Theorem 21.20 of [L].

6. Show that

$$\omega^1 \wedge \omega^2 = (-1)^{\deg \omega^1 \deg \omega^2} \omega^2 \wedge \omega^1.$$

Proof. Denote $\deg \omega^1$ and $\deg \omega^2$ by m_1 and m_2 , respectively. Define a permutation σ in symmetric group $S_{m_1+m_2}$ such that

$$\sigma(1) = m_2 + 1, \sigma(2) = m_2 + 2, \dots, \sigma(m_1) = m_2 + m_1,$$

 $\sigma(m_1 + 1) = 1, \sigma(m_1 + 2) = 2, \dots, \sigma(m_1 + m_2) = m_2.$

The sign of σ is equal to $(-1)^{m_1m_2}$ by counting the inversion number. Now for any smooth vector field $X_1, \dots, X_{m_1+m_2}$, we have

$$m_1! m_2! (\omega^1 \wedge \omega^2) (X_1, \dots, X_{m_1 + m_2})$$

$$= \sum_{\tau \sigma \in S_{m_1 + m_2}} (\operatorname{sign} \tau \sigma) \omega^1 (X_{\tau \sigma(1)}, \dots, X_{\tau \sigma(m_1)}) \omega^2 (X_{\tau \sigma(m_1 + 1)}, \dots, X_{\tau \sigma(m_1 + m_2)})$$

$$= \sum_{\tau \in S_{m_1 + m_2}} (\operatorname{sign} \tau) (\operatorname{sign} \sigma) \omega^1 (X_{\tau(m_2 + 1)}, \dots, X_{\tau(m_1 + m_2)}) \omega^2 (X_{\tau(1)}, \dots, X_{\tau(m_2)})$$

$$= (\operatorname{sign} \sigma) \sum_{\tau \in S_{m_1 + m_2}} (\operatorname{sign} \tau) \omega^2 (X_{\tau(1)}, \dots, X_{\tau(m_2)}) \omega^1 (X_{\tau(m_2 + 1)}, \dots, X_{\tau(m_1 + m_2)})$$

$$= (\operatorname{sign} \sigma) m_1! m_2! (\omega^2 \wedge \omega^1) (X_1, \dots, X_{m_1 + m_2}),$$

i.e.
$$\omega^1 \wedge \omega^2 = (-1)^{\deg \omega^1 \deg \omega^2} \omega^2 \wedge \omega^1$$
, since $X_1, \dots, X_{m_1+m_2}$ are arbitrary.

7. Let $F: M \to N$ be a smooth map between two smooth manifolds. Show that the operations F^* and d commute, i.e.

$$F^*(d\omega) = dF^*(\omega), \quad \forall \omega \in \wedge^k(N).$$
 (6)

Proof. Here we acknowledge that d has local property, i.e. d is determined by local condition rather than global ones (of course this is true by the definition in class). Note that d and F^* are linear, it suffices to show (6) for $f dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_k}$, where $f \in C^{\infty}(M)$ and $\{x^i\}$ is a local smooth coordinate system.

We have

$$F^{*}(d(fdx^{i_{1}} \wedge dx^{i_{2}} \wedge \cdots \wedge dx^{i_{k}}))$$

$$= F^{*}(df \wedge dx^{i_{1}} \wedge dx^{i_{2}} \wedge \cdots \wedge dx^{i_{k}})$$

$$= F^{*}(df) \wedge F^{*}(dx^{i_{1}}) \wedge F^{*}(dx^{i_{2}}) \wedge \cdots \wedge F^{*}(dx^{i_{k}})$$

$$= d(f \circ F) \wedge F^{*}(dx^{i_{1}}) \wedge F^{*}(dx^{i_{2}}) \wedge \cdots \wedge F^{*}(dx^{i_{k}})$$

$$= d((f \circ F)F^{*}(dx^{i_{1}}) \wedge F^{*}(dx^{i_{2}}) \wedge \cdots \wedge F^{*}(dx^{i_{k}})$$

$$= d(F^{*}(f)F^{*}(dx^{i_{1}}) \wedge F^{*}(dx^{i_{2}}) \wedge \cdots \wedge F^{*}(dx^{i_{k}})$$

$$= d(F^{*}(fdx^{i_{1}} \wedge dx^{i_{2}} \wedge \cdots \wedge dx^{i_{k}})),$$

here we use the facts that $F^*(\mu \wedge \nu) = F^*\mu \wedge F^*\nu$, the associativity of wedge product and $F^*f = f \circ F$ for any $f \in C^{\infty}(N)$.

Remark. Actually, we can also do it globally. Since we have the invariant formula for exterior derivatives, i.e.

$$d\omega(X_1, \dots, X_{k+1}) = \sum_{1 \le i \le k+1} (-1)^{i-1} X_i (\omega(X_1, \dots, \hat{X}_i, \dots, X_{k+1}))$$
$$+ \sum_{1 \le i < j \le k+1} \omega([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{k+1}),$$

we can argue it by the similar facts used above.

8. Let $T^*(M)$ be the co-tangent bundle of a smooth manifold M. Define the linear differential form $\theta \in \wedge^1(T^*(M))$ by the equations,

$$\langle X, \theta(x) \rangle = \langle \pi_*(X), x \rangle, \quad \forall \ x \in T^*(M), \text{ and } \forall \ X \in T_x(T^*(M)),$$
 (7)

where π is a natural projection,

$$\pi: T^*(M) \to M$$
.

Let (q_1, \dots, q_n) be the local coordinates on M and $(q^1, \dots, q^n, p_1, \dots, p_n)$ be the induced local coordinates on $T^*(M)$. Show that,

$$\theta = \sum_{j=1}^{n} p_j dq^j.$$

Proof. For any $x \in T^*(M)$, choose a local coordinate (φ, U) of $\pi(x)$ on M. Let $\varphi(\pi(x)) = (q^1, \dots, q^n)$, if under the local coordinate system, we have

$$x = \sum_{j=1}^{n} p_j dq^j \big|_{\pi(x)}.$$

Then, the induced local coordinate system $(\hat{\varphi}, U \times \mathbb{R}^n)$ of $T^*(M)$ that maps x to $(q^1, \dots, q^n, p_1, \dots, p_n)$. Now, we use (y^1, \dots, y^n) and (x^1, \dots, x^{2n}) to express local system (φ, U) and $(\hat{\varphi}, U \times \mathbb{R}^n)$, respectively.

Note that if $\hat{\varphi}(x) = (x^1, \cdots, x^{2n})$, then

$$\varphi \circ \pi \circ \hat{\varphi}^{-1}(x^1, \cdots, x^{2n}) = (y^1, \cdots, y^n)$$

and

$$x = \sum_{j=1}^{n} x^{n+j} dx^{j} \Big|_{\pi(x)}$$
 (8)

where $y^i = x^i$ for any $i = 1, \dots, n$. Hence

$$\pi_* \left(\frac{\partial}{\partial x^j} \Big|_x \right) = \sum_{i=1}^n \frac{\partial y^i}{\partial x^j} \frac{\partial}{\partial y^i} \Big|_{\pi(x)} = \begin{cases} \frac{\partial}{\partial y^j} \Big|_{\pi(x)}, & 1 \leqslant j \leqslant n; \\ 0, & n+1 \leqslant j \leqslant 2n. \end{cases}$$
(9)

Of course, we have

$$\theta(x) = \sum_{i=1}^{2n} \left\langle \frac{\partial}{\partial x^i} \Big|_x, \theta(x) \right\rangle dx^i \Big|_x. \tag{10}$$

From (7), (9) and (8), it follows that

$$\left\langle \frac{\partial}{\partial x^i} \Big|_x, \theta(x) \right\rangle = \left\langle \pi_* \left(\frac{\partial}{\partial x^i} \Big|_x \right), x \right\rangle = \left\{ \begin{array}{ll} x^{n+i}, & 1 \leqslant i \leqslant n; \\ 0, & n+1 \leqslant i \leqslant 2n. \end{array} \right.$$
 (11)

Combining (10), (11) and $(x^1, \dots, x^{2n}) = (q^1, \dots, q^n, p_1, \dots, p_n)$, we deduce that

$$\theta = \sum_{j=1}^{n} p_j dq^j.$$

Here we use (x^1, \dots, x^{2n}) to substitute $(q^1, \dots, q^n, p_1, \dots, p_n)$ in order to avoid ambiguity.

9. Let Ω be the Kirillov form defined on the SO(3)-orbits,

$$O_{C_0} = \{ gC_0g^{-1}, g \in SO(3), C_0 \subset \mathfrak{so}(3) \} \subset \mathfrak{so}(3).$$

That is,

$$\Omega(C)(X_1, X_2) = \text{tr } (C[A_1, A_2]), \quad C \in O_{C_0},$$

where $X_j \equiv [A_j, C] \in T_C(O_{C_0})$.

Show that the form Ω admits the following representation in the spherical coordinates (ϕ, θ) ,

$$\Omega = f(r)\sin\phi d\phi \wedge d\theta,$$

where f(r) is a function of the orbit's invariant,

$$r = \left(-\frac{1}{2} \text{tr } C_0^2\right)^{1/2}.$$

Find f(r).

Solution. From the class, we know that if we identify $X = \begin{pmatrix} 0 & x_1 & x_2 \\ -x_1 & 0 & x_3 \\ -x_2 & -x_3 & 0 \end{pmatrix} \in$

 $\mathfrak{so}(3)$ as $\mathbf{X} = (x_1, x_2, x_3)^T \in \mathbb{R}^3$, then for any $X, Y \in \mathfrak{so}(3)$, we have

$$\operatorname{tr}(XY) = -2\mathbf{X} \cdot \mathbf{Y}$$
 and $[X, Y] = -\mathbf{X} \times \mathbf{Y}$.

Then

$$\Omega(C)(X_1, X_2) = \text{tr } (C[A_1, A_2]) = 2\mathbf{C} \cdot (\mathbf{A}_1 \times \mathbf{A}_2).$$

We have already calculated $\tilde{\Omega}(C)(X_1,X_2)=\frac{1}{2}\mathrm{tr}\left(C[X_1,X_2]\right)$ in class. Here, we restate the arguments. One has

$$\tilde{\Omega}(C)(X_1, X_2) = \mathbf{C} \cdot (\mathbf{X}_1 \times \mathbf{X}_2)
= c_1(X_1^2 X_2^3 - X_1^3 X_2^2) + c_2(X_1^3 X_2^1 - X_1^1 X_2^3) + c_3(X_1^1 X_2^2 - X_1^2 X_2^1)
= c_1 dx^2 \wedge dx^3(X_1, X_2) + c_2 dx^3 \wedge dx^1(X_1, X_2) + c_3 dx^1 \wedge dx^2(X_1, X_2).$$

It follows that $\tilde{\Omega} = x^1 dx^2 \wedge dx^3 + x^2 dx^3 \wedge dx^1 + x^3 dx^1 \wedge dx^2$.

For any $C \in O_{C_0}$, one has

$$-2\|\mathbf{C}\|^2 = \operatorname{tr}C^2 = \operatorname{tr}(qC_0q^{-1})^2 = \operatorname{tr}C_0^2 = -2\|\mathbf{C}_0\|^2 = -2r^2.$$

Hence, we can deduce that

$$O_{C_0} \subset \{ \mathbf{C} \in \mathbb{R}^3 : \|\mathbf{C}\| = r \}.$$

Let $x^1 = r \sin \phi \cos \theta$, $x_2 = r \sin \phi \sin \theta$ and $x_3 = r \cos \phi$, then we have

$$\tilde{\Omega} = r^3 \sin \phi d\theta \wedge d\phi.$$

Since
$$\tilde{\Omega}(C)(X_1, X_2) = \mathbf{C} \cdot (\mathbf{X}_1 \times \mathbf{X}_2)$$
 and

$$\mathbf{C} \cdot (\mathbf{X}_1 \times \mathbf{X}_2) = \mathbf{C} \cdot [(\mathbf{A}_1 \times \mathbf{C}) \times (\mathbf{A}_2 \times \mathbf{C})] = \|\mathbf{C}\|^2 \mathbf{C} \cdot (\mathbf{A}_1 \times \mathbf{A}_2),$$

it follows that

$$\Omega = 2\tilde{\Omega} \div \|\mathbf{C}\|^2 = 2r\sin\phi d\theta \wedge d\phi = -2r\sin\phi d\phi \wedge d\theta,$$

i.e.,
$$f(r) = -2r$$
.

Historic Remark about Darboux Theorem

The Darboux theorem was first proved (in a slightly different form) by Gaston Darboux in 1882, in connection with his work on ordinary differential equations arising in classical mechanics. The proof in [L] was discovered in 1971 by Alan Weinstein, based on a technique due to Jurgen Moser.

Weinstein's proof of the Darboux theorem is based on the theory of timedependent flows (see Theorem 9.48 of [L]). Page 571 of [L]