Cheatsheet für Bumerik

Paul Brinkmeier

13. Februar 2020

Inhaltsverzeichnis

1	Einf	Einführung											3							
	1.1	Normalisierte Glei	tpunktdarstell	lung																3
	1.2	Maschinengenauig																		3
	1.3	IEEE-Standard D	ouble Precision	n-Forma	t.															3
	1.4	Kondition eines P																		3
	1.5	Stabilität eines Ve	rfahrens																	3
	1.6	Auslöschung																•		3
2	Dire	ekte Lösungsverf	ahren für LC	GS																3
	2.1	LR-Zerlegung																		4
	2.2	Cholesky-Zerlegun	g																	4
	2.3	QR-Zerlegung																		4
		2.3.1 Householde	er-Transformat	tionen .																4
		2.3.2 Konkrete I	Householder-Tr	ransform	atio	n.														5
3	Inte	rpolation und A	pproximatio:	n																5
	3.1	Polynominterpolat																		5
	3.2	Kubische Spline-In																		7
4	Numerische Integration											8								
	4.1	Quadraturformeln																		8
			on QF																	8
			che QF																	8
5	Eige	enwertprobleme																		9
	5.1	Vektoriteration .																		9
		5.1.1 Inverse Vel	storiteration.																	9
6	Iter	Iterative Verfahren von LGS												10						
	6.1	Allgemeine lineare	Iteration																	10
	6.2										10									
			fahren																	10
			el-Verfahren .																	10
			dige LR-Zerleg																	11
	6.3	Konvergenz von Ja																		11
	6.4 Algorithmus									11										
7	Gru	ndwissen																		11
•	7.1	Matrizen																		11
		7.1.1 Symmetrische Matrizen								11										
			Intrizen																	11
			le Matrizen																	11
			nen																	11
																				12
		2.80						•				•		•	٠.	•	•	•	•	

1 Einführung

1.1 Normalisierte Gleitpunktdarstellung

Zahl z wird dargestellt durch: $B^e * m$

Seien L_e , L_m die Länge des Exponenten, bzw. der Mantissse und a_l , $c_l \in \{0, 1, ..., B-1\}$

Exponent:
$$e_{min} \le e = e_{min} + \sum_{l=0}^{L_e-1} c_l B^l \le e_{min} + B_e^L - 1 = e_{max}$$

Mantisse: $m=B^{-1} \leq |\pm \sum\limits_{l=1}^{L_m} a_l B^{-l}| < 1$

1.2 Maschinengenauigkeit

eps :=
$$\frac{B^{1-L_m}}{2}$$

Kleinste Zahl die auf 1 addiert werden kann um eine Zahl > 1 zu erhalten:

Mantisse länger \Rightarrow eps kleiner \Rightarrow Darstellung genauer

1.3 IEEE-Standard Double Precision-Format

Basis B = 2, insgesamt 64-Bit aufgeteilt in:

- 1-Bit Vorzeichen
- 52-Bit Mantisse
- 11-Bit Exponent

Kleinste Zahl > 1 normalerweise: 1 + 2eps

Hier: 1 + eps

(durch Normalisierung 1. Bit von Mantisse = 1 vorausgesetzt \Rightarrow kann ignoriert werden, somit 1 Bit mehr für Mantisse)

1.4 Kondition eines Problems

Auswirkungen von Eingabefehlern (z.B. durch beschränkte Darstellbarkeit reeller Zahlen) auf die Lösung bei optimalem Lösungsverfahren?

1.5 Stabilität eines Verfahrens

Auswirkungen von Fehlern im Lösungsverfahren (Approximations- oder Rundungsfehler) auf Lösung?

1.6 Auslöschung

Kondition einer Summe x + y mit $y \approx -x$ schlecht

(Differenz zweier *fast* gleich großer Zahlen führt zum Verlust signifikanter Bits, rundungsfehlerbehaftete Bits bilden die vorderen Nachkommastellen der Lösung)

2 Direkte Lösungsverfahren für LGS

Wir wollen Lineare Gleichungssysteme der Form $\mathbf{A}\mathbf{x} = \mathbf{b}$ lösen. Sei im Folgenden die Matrix $A \in \mathbb{R}^{N \times N}$ und $b \in \mathbb{R}^{N}$.

2.1 LR-Zerlegung

Eine reguläre Matrix besitzt genau dann eine LR-Zerlegung der Form A = LR, bzw. PA = LR (wobei L eine untere Dreiecks-, R obere Dreiecks- und P eine Permutationsmatrix ist) wenn

- 1. $A_{[1:n,1:n]}$ für alle $n=1,\,\dots,N$ regulär ist
- 2. A strikt Diagonaldominant ist
- 3. PA eine der anderen Anforderungen erfüllt

Die Zerlegung ist eindeutig und kann in $\frac{1}{3}N^3$ Operationen berechnet werden.

Berechnung:

P wird durch Spaltenpivotwahl bei der Bestimmung von L und R ermittelt.

- 1. Löse $L\mathbf{y} = \mathbf{b}$ (durch Vorwärtssubsitution)
- 2. Löse $R\mathbf{x} = \mathbf{y}$ (durch Rückwärtssubstitution)

Beispiele im Skript: Beispiel 6, Seite 19 und Beispiel 7, Seite 21

2.2 Cholesky-Zerlegung

Eine reguläre Matrix A besitzt genau dann eine Cholesky-Zerlegung der Form $A = LL^T$, wenn sie symmetrisch und positiv definit ist. Im Unterschied zur LR-Zerlegung kann L hier auch Werte $\neq 1$ auf der Hauptdiagonalen enthalten.

Die Zerlegung ist eindeutig und kann in $\frac{1}{6}N^3$ Operationen berechnet werden.

Berechnung:

- 1. Löse $L\mathbf{y} = \mathbf{b}$ (durch Vorwärtssubsitution)
- 2. Löse $L^T \mathbf{x} = \mathbf{v}$ (durch Rückwärtssubstitution)

2.3 QR-Zerlegung

Für jede Matrix $A \in \mathbb{R}^{M \times N}$, mit $M \geq N$ und maximalem Rang existiert eine Zerlegung der Form A = QR.

Hierbei ist $Q \in \mathbb{R}^{M \times M}$ eine Orthogonale Matrix und $R \in \mathbb{R}^{M \times N} = \begin{pmatrix} \bar{R} \\ 0 \end{pmatrix}$, mit $\bar{R} \in \mathbb{R}^{N \times N}$ ist obere Dreiecksmatrix.

Berechnung:

- 1. Bestimme Q und R mittels Householder-Transformationen
- 2. Löse $Q\mathbf{c} = \mathbf{b} \ (Q^{-1} = Q^T, \text{ also } \mathbf{c} = Q^Tb)$
- 3. Löse $R\mathbf{x} = \mathbf{c}$

Die QR-Zerlegung ist besonders stabil, benötigt jedoch $\frac{2}{3}N^3$ Operationen.

2.3.1 Householder-Transformationen

Wir suchen eine symmetrische, orthogonale Matrix Q der Form:

$$Q = I_M - 2\mathbf{w}\mathbf{w}^T$$
, wobei $\mathbf{w} = \frac{\mathbf{v} - \sigma \mathbf{e}^1}{||\mathbf{v} - \sigma \mathbf{e}^1||_2}$ und $\sigma = \begin{cases} -||\mathbf{v}||_2 & \text{falls } \mathbf{v}_1 > 0\\ ||\mathbf{v}||_2 & \text{falls } \mathbf{v}_1 \le 0 \end{cases}$

Sodass: $Q\mathbf{v} = \sigma e^1 = (\sigma \ 0 \dots 0)^T$

2.3.2 Konkrete Householder-Transformation

Sei \mathbf{a}^1 die erste Spalte von $A^{M\times N}$ und Q_1 eine HT wie oben definiert. Mit $Q_1\mathbf{a}^1=r_{11}\mathbf{e}^1\in\mathbb{R}^M, r_{11}=-\mathrm{sign}(a_1^1)||a^1||_2$ und geeignetem $r_{12}\in\mathbb{R}^{N-1}$ und $A^{(1)}\in\mathbb{R}^{(M-1)\times(N-1)}$ erhält man:

$$Q_1 A = \begin{pmatrix} r_{11} & r_{12}^T \\ 0_{M-1} & A^{(1)} \end{pmatrix}$$

Da $A^{(1)}$ auch maximalen Rang hat existiert auch $A^{(1)} = Q_{22}R_{22}$. Wir definieren

$$Q_2 = \begin{pmatrix} 1 & 0_{M-1}^T \\ 0_{M-1} & Q_{22} \end{pmatrix} \text{ und } R = \begin{pmatrix} r_{11} & r_{12}^T \\ 0_{N-1} & R_{22} \end{pmatrix}$$

Wiederhole M-mal. Es gilt: A = QR (mit $Q = Q_1Q_2 \dots Q_M$)

Beachte: Sei $a^j = j$ -te Spalte von A und j = 0, ..., N. $A^{(1)}$ und r_{12} können ohne explizites Q_1 berechnet werden:

$$Q_1 a^j = a^j - 2w_1^T a^j w_1$$

3 Interpolation und Approximation

Weiherstraßscher Approximationssatz Sei $f:[a,b] \to \mathbb{R}$ stetig. Dann gilt:

$$\forall \epsilon > 0 : \exists N \in \mathbb{N}, p \in \mathbb{P}^N : \max_{x \in [a,b]} |f(x) - p(x)| \le \epsilon$$
 (1)

3.1 Polynominterpolation

Lagrange-Polynome Das *n*-te Lagrange-Polynom zu N+1 Stützwerten $f_n(x)=f(x_n)$ ist gegeben durch:

$$L_n(x) = \prod_{m=0, m \neq n}^{N} \frac{x - x_m}{x_n - x_m}$$
 (2)

f(x) lässt sich dann interpolieren durch p(x) mit:

$$p(x) = \sum_{n=0}^{N} f_n L_n(x)$$
(3)

- Für $f_n = 0$ muss man L_n also gar nicht berechnen.
- \bullet Ein Lagrange-Polynom hat immer den Grad N.
- Lagrange-Interpolation ist für hohe N schlecht konditioniert und liegt außerdem in O(n).

Newton-Darstellung

$$p_{0,N}(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_N \prod_{m=0}^{N-1} x - x_m$$
(4)

- Lässt einfach durch das Horner-Schema auswerten.
- $p_{0,N}(x) = p_{0,N-1}(x) + a_N w_N(x)$ mit

$$w_n(x) = \prod_{m=0}^{n-1} (x - x_m)$$
 (5)

Naive Koeffizientenbestimmung

$$f_0 = p(x_0) = a_0 (6)$$

$$f_1 = p(x_1) = a_0 + (x_1 - x_0)a_1 \tag{7}$$

$$f_2 = p(x_2) = a_0 + (x_2 - x_0)a_1 + (x_2 - x_1)a_2$$
(8)

- Problem: 2n Additionen, 2(n-1) Multiplikationen, 1 Division für a_n .
- \rightsquigarrow Insgesamt N(N+1) Additionen, N(N-1) Multiplikationen, N Divisionen.

Lemma von Aitken

$$p_{n,k}(x) = \frac{(x_n - x)p_{n+1,k}(x) - (x_k - x)p_{n,k-1}(x)}{x_n - x_k}$$
(9)

Dividierte Differenzen

$$f_{n,k} = \begin{cases} f_n & n = k \\ \frac{f_{n,k-1} - f_{n+1,k}}{x_n - x_k} & \text{sonst} \end{cases}$$
 (10)

- $\frac{N(N+1)}{2}$ Divisionen
- N(N+1) Additionen
- $p(x) = \sum_{m=0}^{N} f_{0,m} w_m(x)$

Lebesgue-Konstante Bezüglich der Stützstellen $x_0, ..., X_N$:

$$\Lambda_N = \max \sum_{x \in [a,b]}^N |L_n(x)| \tag{11}$$

• Λ_N ist nur von der relativen Lage der Stützstellen zueinander abhängig.

Interpolationsfehler Der maximale Interpolationsfehler eines Interpolationspolynoms p(x) zu f(x) mit N+1 Stützstellen $(x_0$ bis $x_N)$ ist:

$$\max_{x \in [a,b]} |f(x) - p(x)| \le \max_{x \in [a,b]} |w_{N+1}(x)| \frac{\max_{x \in [a,b]} |f^{(N+1)}(x)|}{(N+1)!}$$
(12)

Optimale (Tschebyscheff-) Stützstellen Wählt man die N+1 Stützstellen x_n genau als die Nullstellen des Tschebyscheff-Polynoms $T_{N+1}(x)$, wobei

$$T_0(x) = 1 \tag{13}$$

$$T_1(x) = x (14)$$

$$T_{n+1}(x) = 2x \cdot T_n(x) - T_{n-1}(x) \tag{15}$$

$$T_n(x) = \cos(n \cdot \arccos x) \tag{16}$$

$$T_n(\cos\left(\frac{2n+1}{2N+2}\pi\right)) = 0\tag{17}$$

so wird $\max_{x \in [-1,1]} |w_{N+1}(x)|$ minimal, und zwar 2^{-N} . Mit mehr Stützstellen sinkt also der Fehler.

Es gilt:

- $\forall x \in \mathbb{R} : |T_N(x)| \le 1$
- $\deg(T_N) = N$

- $T_N(x) = 2^{N-1}x + ...$ für $N \ge 1$
- $\langle T_0,...,T_N \rangle = \mathbb{P}^N$ (die T_n bilden 1 Basis von \mathbb{P}^N)
- \bullet T_N hat Nverschiedene reelle Nullstellen x_n mit $x_n \in [-1,1]$

Tschebyscheff-Darstellung

$$p(x) = \frac{c_0}{2} + \sum_{n=1}^{N} c_n T_n(x)$$
(18)

- Tschebyscheff-Darstellung ist eindeutig.
- Berechnung von c_n im Fall $N+1=2^k\colon O(N*\log N)$ durch FFT

Clenshaw-Algorithmus Sei p(x) gegeben als

$$p(x) = \frac{c_0}{2} + \sum_{n=1}^{N} c_n T_n(x)$$
(19)

Dann lässt sich p(x) folgendermaßen an der Stelle x auswerten:

$$d_{N+2} = 0 (20)$$

$$d_{N+1} = 0 (21)$$

$$d_n = c_n + 2xd_{n+1} - d_{n+2} (22)$$

$$p(x) = \frac{1}{2}(d_0 - d_2) \tag{23}$$

 \bullet 2N Additionen, N+2 Multiplikationen

3.2 Kubische Spline-Interpolation

Seien (x_k, y_k) Stützstellen für $k \in \{0, ..., N\}$ mit

$$a = x_0 < x_1 < \dots < x_N = b (24)$$

Ziel: Finde s(x) mit

- Interpolation: $s(x_n) = y_n$
- ullet Glattheit: s zweimal stetig diff'bar und

$$\int_{a}^{b} |s''(b)|^2 \, \mathrm{d}x \tag{25}$$

minimal. Vorgehen:

$$s(x) = \begin{cases} s_1(x) & x \in [x_0, x_1] \\ s_2(x) & x \in [x_1, x_2] \\ & \vdots \\ s_N(x) & x \in [x_{N-1}, x_N] \end{cases}$$
 (26)

Wobei aus 25 folgen muss:

$$s_n'(x_n) = s_{n+1}'(x_n) (27)$$

$$s_n''(x_n) = s_{n+1}''(x_n) \tag{28}$$

4 Numerische Integration

4.1 Quadraturformeln

Allgemeine Darstellung

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \sum_{k=1}^{s} b_{k} f(a + c_{k}(b - a)) \tag{29}$$

 b_k nennt man Gewichte, c_k Knoten der Formel. Typischerweise: $b_k, c_k \in [0, 1]$.

- Rechteckregel: s = 1, (1, 0)
- Mittelpunktregel: $s = 1, (1, \frac{1}{2})$
- Trapezregel: $s = 2, (\frac{1}{2}, 0), (\frac{1}{2}, 1)$
- Simpsonregel: $s = 3, (\frac{1}{6}, 0), (\frac{4}{6}, \frac{1}{2}), (\frac{1}{6}, 1)$

Ein paar Fakten zu QF:

• Eine QF ist durch die Gewichte $b_1, ..., b_s$ und Knoten $c_1 < ... < c_s$ eindeutig bestimmt.

4.1.1 Ordnung von QF

Besitzt eine Quadraturformel die Ordnung p, so gilt liefert sie für alle $f \in \mathbb{P}_{p-1}$ den exakten Wert des Riemann-Integrals

$$\int_{a}^{b} f(x) \, \mathrm{d}x \tag{30}$$

Eine QF besitzt genau dann die Ordnung p, wenn für alle $q \in \{1,...,p\} \subset \mathbb{N}$, aber nicht mehr für q = p + 1, gilt:

$$\sum_{k=1}^{s} b_k c_k^{q-1} = \frac{1}{q} \tag{31}$$

4.1.2 Symmetrische QF

Eine QF heißt symmetrisch, falls gilt:

$$c_k = 1 - c_{s+1-k} (32)$$

$$b_k = b_{s+1-k} \tag{33}$$

D.h. die Knoten sind symmetrisch um $\frac{1}{2}$ angeordnet und die Gewichte sind symmetrisch verteilt.

• Symmetrische QF besitzen immer eine gerade Ordnung.

Gauß-Quadraturformeln Es existiert eine eindeutige Quadraturformel der Ordnung 2s. Sie ist gegeben durch

$$c_k = \frac{1}{2}(1 + \gamma_k) \tag{34}$$

für $k \in \{1, ..., s\}$, wobei die γ_k die Nullstellen des Legendre-Polynoms vom Grad s sind. Die Gewichte sind dann eindeutig bestimmt durch

$$b_k = \int_0^1 L_k(x) \, \mathrm{d}x \tag{35}$$

Dabei ist L_k das k-te Legendre-Polynom, bspw.:

$$L_0(x) = 1 \tag{36}$$

$$L_1(x) = x (37)$$

$$L_2(x) = \frac{1}{2}(3x^2 - 1) \tag{38}$$

• Gauß-Quadraturformeln sind monoton.

5 Eigenwertprobleme

Grundlegendes Problem: berechne Eigenwerte λ zu Eigenvektoren v einer quadratischen Matrix. Anwendungen: bspw. Eigenschwingung einer Membran, spektrale Bisektion.

EW-EV-Gleichung Sei $A \in \mathbb{R}^{N \times N}$. Dann heißen $v \in \mathbb{R}^{\mathbb{N}} \setminus \{0\}$ Eigenvektor und $\lambda \in \mathbb{R}$ dazugehöriger Eigenwert von A, gdw.:

$$Av = \lambda v \tag{39}$$

Die "Wirkungsweise" von A auf v ist also einfach zu verstehen (Stauchung/Streckung).

- A hat EW \Leftrightarrow A ist singulär $\Leftrightarrow \exists \lambda \in \mathbb{R} : \det(A \lambda I_N) = 0$.
- $\det(A \lambda I_N)$ ist ein Polynom in λ , genannt charakteristisches Polynom von A.
- Aber: EW nicht wie bisher über c.P. berechnen, da schlecht konditioniert.

Konditionszahl Seien $u, v \in \mathbb{R}^N$ normiert, $Av = \lambda v, u^{\top} A = u^{\top} \lambda \ (\Leftrightarrow A^{\top} u = \lambda u)$. Dann heißt

$$\frac{1}{|u^{\top}v|} \tag{40}$$

die Konditionszahl von λ .

•
$$\frac{1}{|u^{\top}v|} \overset{\text{(CSU)}}{\geq} \frac{1}{\|u\|_2 \|v\|_2} = 1$$

Merke: Für $A = A^{\top}$ gilt: $u \in \{v, -v\}$, d.h.

$$\frac{1}{|v^{\top}v|} = 1 \tag{41}$$

Symmetrische Matrizen sind also perfekt konditioniert.

5.1 Vektoriteration

5.1.1 Inverse Vektoriteration

$$Av = \lambda v \Leftrightarrow v = \lambda A^{-1}v \Leftrightarrow A^{-1}v = \frac{1}{\lambda}v \tag{42}$$

 \leadsto EV von A und A^{-1} sind identisch, $\operatorname{spec}(A^{-1}) = \frac{1}{\operatorname{spec}(A)}.$

6 Iterative Verfahren von LGS

Löse Ax = b, wobei

- N sehr groß,
- A dünn besetzt
- und/oder keine exakte Lösung notig ist.

(Beispielsweise spektrale Bisektion).

Direkte Verfahren (LR, Cholesky, QR) sind hier ungeeignet, da sie aufwändig sind und "fill-in" aufweisen, d.h. die Zerlegungsmatrizen sind (fast) voll besetzt, selbst wenn A dünn besetzt ist.

Alternative: Iterative Verfahren.

6.1 Allgemeine lineare Iteration

Seien A, "Vorkonditionierer" B regulär, idealerweise mit

$$\operatorname{cond}(B^{-1}A) \stackrel{\text{viel}}{<} \operatorname{cond}(A) \tag{43}$$

Dann gilt:

$$Ax = b \Leftrightarrow B^{-1}Ax = B^{-1}b \Leftrightarrow x = (I_N - B^{-1}A)x + B^{-1}b = x + B^{-1}(b - Ax)$$
 (44)

Solche Gleichungen nennt man Fixpunktgleichungen.

Fixpunktiteration Eine solche Fixpunktgleichung kann durch eine Fixpunktiteration gelöst werden, wenn

$$\rho(I_N - B^{-1}A) < 1 \tag{45}$$

mit dem Spektralradius $\rho(M) = \max |\operatorname{spec}(M)|$. Ausgehend von einem Startwert $x^0 \in \mathbb{R}^N$ berechne für k = 0, 1, ...:

$$x^{k+1} = x^k + B^{-1}r^k (46)$$

mit dem Residuum $r^k = b - Ax^k$. Nach der Bedingung ist A regulär und die Fixpunktiteration konvergiert linear gegen eine eindeutige Lösung x_* von Ax = b.

6.2 Beispiele für iterative Verfahren

Zerlege A = L + D + R, wobei L eine strikte untere Dreiecksmatrix, R eine strikte obere Dreiecksmatrix und entsprechend D eine Diagonalmatrix ist.

6.2.1 Jacobi-Verfahren

Wähle B = D.

- Auch Gesamtschrittverfahren genannt.
- Einfach parallelisierbar wegen komponentenweiser Multiplikation.

6.2.2 Gauß-Seidel-Verfahren

Wähle B = L + D (immer noch untere Dreicksmatrix).

- Auch Einzelschrittverfahren.
- Einfach nacheinander berechenbar, aber nicht parallelisierbar.

6.2.3 Unvollständige LR-Zerlegung

Wähle $B=M\cdot S$, wobei $A\approx MS$ "unvollst. LR-Zerlegung". Die unvollständige LR-Zerlegung $(A_{j,k}=0\Rightarrow (MS)_{j,k}=0)$ vermeidet Fill-In, liefert aber kein genaues Resultat.

6.3 Konvergenz von Jacobi- und Gauß-Seidel-Verfahren

Ist A strikt diagonaldominant, so konvergieren sowohl das Jacobi- als auch das Gauß-Seidel-Verfahren für jeden Startwert $x^0 \in \mathbb{R}^N$ gegen die Lösung x_* von Ax = b.

In der Regel konvergiert das Gauß-Seidel-Verfahren schneller als das Jacobi-Verfahren (es ist aber nicht so gut parallelisierbar).

6.4 Algorithmus

- 1. Wähle $x^0 \in \mathbb{R}^N$, $\epsilon > 0$ und setze $r^0 = b Ax^0$, k = 0.
- 2. Löse $Bc^k = r^k$ nach c^k .
 - $\bullet \ x^{k+1} = x^k + c^k$
 - $\bullet \ r^{k+1} = r^k Ac^k$
- 3. Falls $||r^k|| < \epsilon ||b||$, STOP. Ansonsten erhöhe k und gehe zu Schritt 2.

Merke: Das LGS in Schritt 2 muss leichter zu Lösen sein als Ax = b, bspw. ist es trivial beim Jacobi-Verfahren, da B eine Diagonalmatrix ist und einfach beim Gauß-Seidel-Verfahren durch Vorwärtssubstitution.

7 Grundwissen

7.1 Matrizen

Im folgenden: $A \in \mathbb{R}^{N \times N}$.

7.1.1 Symmetrische Matrizen

$$A$$
 ist symmetrisch" (47)

$$\Leftrightarrow A = A^{\top} \tag{48}$$

7.1.2 Reguläre Matrizen

"
$$A$$
 ist regulär" (49)

$$\Leftrightarrow$$
, A ist invertierbar" (50)

$$\Leftrightarrow \exists A^{-1} : AA^{-1} = A^{-1}A = I_N \tag{51}$$

7.1.3 Orthogonale Matrizen

7.1.4 Matrixnormen

Spaltensummennorm Größte betragliche Summe einer Spalte:

$$||A||_1 = \max_{m=1,\dots,N} \sum_{n=1}^{N} |a_{nm}|$$
(52)

Zeilensummennorm Größte betragliche Summe einer Zeile:

$$||A||_{\infty} = \max_{n=1,\dots,N} \sum_{m=1}^{N} |a_{nm}|$$
(53)

Spektralnorm Wurzel des größten EW von $A^{\top}A$:

$$\|A\|_2 = \sqrt{\max \operatorname{spec}(A^\top A)} \tag{54}$$

7.1.5 Eigenwerte

Seien $v \in \mathbb{R}^N, \lambda \in \mathbb{R}.$ vheißt Eigenvektor zum Eigenwert λ genau dann wenn:

$$Av = \lambda v \tag{55}$$

 A^{-1} hat die EW $\frac{1}{\lambda}$ zu denselben EV v:

$$Av = \lambda v \Leftrightarrow v = \lambda A^{-1}v \Leftrightarrow A^{-1}v = \frac{1}{\lambda}v \tag{56}$$

 $A - \lambda^* I_N$ hat die EW $\lambda - \lambda^*$ zu denselben EV v:

$$(A - \lambda^* I_N)v = Av - \lambda^* I_N v = \lambda v - \lambda^* v = (\lambda - \lambda^*)v$$
(57)