Einführung in die Algebra

BLATT 8

Jendrik Stelzner

9. Dezember 2013

Aufgabe 8.1.

(i)

Da $rs \cdot 1 = rs \cdot 1$ für alle $(r,s) \in R \times S$ mit $1 \in S$ ist \sim reflexiv. Die Symmetrie von \sim ergibt sich direkt aus der Symmetrie der Gleichheit. Für $(r,s), (r',s'), (r'',s'') \in R \times S$ mit $(r,s) \sim (r',s') \sim (r'',s'')$ gibt es $t,\tilde{t} \in S$ mit

$$rs't = r'st \text{ und}$$
 (1)

$$r's''\tilde{t} = r''s'\tilde{t}. (2)$$

Wegen der Abgeschlossenheit von S unter Multiplikation ist auch $s't\tilde{t}\in S$, und wegen der Kommutativität von R daher

$$rs''s't\tilde{t} = r's''st\tilde{t} = r''s'st\tilde{t} = r''ss't\tilde{t}.$$

Also ist $(r, s'') \sim (r'', s)$ und \sim daher transitiv.

(ii)

Aus der Notation der Restklassen und der Definition von \sim folgt direkt, dass für alle $(r,s),(r',s')\in R\times S$

$$\frac{r}{s} = \frac{r'}{s'} \Leftrightarrow \text{ es gibt } t \in S \text{ mit } rs't = r'st. \tag{3}$$

Zunächst die Wohldefiniertheit: Seien $(r,s), (\tilde{r},\tilde{s}) \in R \times S$ mit $(r,s) \sim (\tilde{r},\tilde{s})$. Dann gibt es $t \in S$ mit $r\tilde{s}t = \tilde{r}st$. Wegen der Kommutativität von R ist daher für alle $(r',s') \in R \times S$

$$(rs'+r's)\tilde{s}s't = rs'\tilde{s}s't + r's\tilde{s}s't = \tilde{r}s'ss't + r's\tilde{s}s't = (\tilde{r}s',r'\tilde{s})ss't,$$

und

$$rr'\tilde{s}s't = \tilde{r}r'ss't.$$

Da die Ausdrücke

$$\frac{rs' + r's}{ss'}$$
 und $\frac{rr'}{ss'}$

wegen der Kommutativität von R symmetrisch in (r,s) und (r',s') sind folgt damit wegen (3) die Wohldefiniertheit.

Es ist klar, dass $R[S^{-1}]$ unter Addition und Multiplikation abgeschlossen ist. Die Addition ist assoziativ und kommutativ, da wegen der Kommutatvität von R für alle $\frac{r}{s}, \frac{r'}{s''}, \frac{r''}{s''} \in R[S^{-1}]$

$$\begin{split} \frac{r}{s} + \left(\frac{r'}{s'} + \frac{r''}{s''}\right) &= \frac{r}{s} + \frac{r's'' + r''s'}{s's''} = \frac{rs's'' + r'ss'' + r''ss'}{ss's''} \\ &= \frac{rs' + r's}{ss'} + \frac{r''}{s''} = \left(\frac{r}{s} + \frac{r'}{s'}\right) + \frac{r''}{s''}, \end{split}$$

sowie

$$\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'} = \frac{r's + rs'}{s's} = \frac{r'}{s'} + \frac{r}{s}.$$

Das Element $\frac{0}{1} \in R[S^{-1}]$ ist bezüglich der Addition neutral, da für alle $\frac{r}{s} \in R[S^{-1}]$

$$\frac{r}{s} + \frac{0}{1} = \frac{r \cdot 1 + s \cdot 0}{s \cdot 1} = \frac{r}{s},$$

und $\frac{r}{s} \in R[S^{-1}]$ hat als additives Inverses $\frac{-r}{s}$, da

$$\frac{r}{s} + \frac{-r}{s} = \frac{rs - rs}{s^2} = \frac{0}{s^2} = \frac{0}{1}$$

denn aus der Definition von \sim folgt offenbar direkt, dass $\frac{0}{s}=\frac{0}{1}$ für alle $s\in S$, und wegen der Abgeschlossenheit von S bezüglich der Multiplikation ist $s^2\in S$. Also ist $R[S^{-1}]$ bezüglich der Addition eine abelsche Gruppe.

Da Multiplikation ist assoziativ und kommutativ, da für alle $\frac{r}{s},\frac{r'}{s'},\frac{r''}{s''}\in R[S^{-1}]$

$$\frac{r}{s}\left(\frac{r'}{s'}\frac{r''}{s''}\right) = \frac{r}{s}\frac{r'r''}{s's''} = \frac{rr'r''}{ss's''} = \frac{rr'}{ss'}\frac{r''}{s''} = \left(\frac{r}{s}\frac{r'}{s'}\right)\frac{r''}{s''},$$

und wegen der Kommutativität von R

$$\frac{r}{s}\frac{r'}{s'} = \frac{rr'}{ss'} = \frac{r'r}{s's} = \frac{r'}{s'}\frac{r}{s}.$$

Das Element $\frac{1}{1}\in R[S^{-1}]$ ist das multiplikativ Neutrale in $R[S^{-1}],$ da für alle $\frac{r}{s}\in R[S^{-1}]$

$$\frac{1}{1}\frac{r}{s} = \frac{r}{s}\frac{1}{1} = \frac{r \cdot 1}{s \cdot 1} = \frac{r}{s}.$$

Dies zeigt, dass $R[S^{-1}]$ bezüglich der Multiplikation ein abelsches Monoid ist. Zum Nachweis des Distributivgesetzes bemerken wir zunächst:

Bemerkung 1. Für alle $\frac{r}{s} \in R[S^{-1}]$ und $t \in S$ gilt nach (3) die Kürzungsregel

$$\frac{rt}{st} = \frac{r}{s},$$

denn wegen der Kommutativität von R ist $rts \cdot 1 = rst \cdot 1$ mit $1 \in S$. Insbesondere gilt für alle $s \in S$

$$\frac{s}{1} \cdot \frac{1}{s} = \frac{s}{s} = \frac{1}{1}.$$

Mit der obigen Bemerkung erhalten wir, dass für alle $\frac{r}{s}, \frac{r'}{s'}, \frac{r''}{s''} \in R[S^{-1}]$

$$\begin{split} \frac{r}{s} \left(\frac{r'}{s'} + \frac{r''}{s''} \right) &= \frac{r}{s} \frac{r's'' + r''s'}{s's''} = \frac{rr's'' + rr''s'}{ss's''} \\ &= \frac{rr'ss' + rr''ss'}{s^2s's''} = \frac{rr'}{ss'} + \frac{rr''}{ss''} = \frac{r}{s} \frac{r'}{s'} + \frac{r}{s} \frac{r''}{s''}. \end{split}$$

Dies zeigt, dass $R[S^{-1}]$ ein kommutativer Ring (mit Einselement) ist.

(iii)

Da für alle $r, r' \in R$

$$\varphi(r+r') = \frac{r'+r}{1} = \frac{r \cdot 1 + r' \cdot 1}{1^2} = \frac{r}{1} + \frac{r'}{1} = \varphi(r) + \varphi(r'),$$

und

$$\varphi(rr') = \frac{rr'}{1} = \frac{rr'}{1^2} = \frac{r}{1}\frac{r'}{1} = \varphi(r)\varphi(r')$$

sowie

$$\varphi(1_R) = \frac{1}{1} = 1_{R[S^{-1}]}$$

ist φ ein Ringhomomorphismus. Aus Bemerkung 1 folgt, dass $\varphi(S)\subseteq (R[S^{-1}])^*$. Wir bemerken auch direkt, dass φ nicht zwangsweise injektiv ist: Ist $R\neq 0$ und $0\in S$, etwa S=R oder $S=\{0,1\}$, so ist offenbar $R[S^{-1}]\cong 0$, also $\varphi=0$ und wegen $R\neq 0$ damit nicht injektiv.

Für einen Homomorphismus $\psi_S:R[S^{-1}]\to R'$ mit $\psi=\psi_S\circ\varphi$ muss für alle $r\in R$ und $s\in S$

$$\psi_S\left(\frac{r}{1}\right) = \psi_S(\varphi(r)) = \psi(r)$$

und daher

$$\psi_S\left(\frac{1}{s}\right) = \psi_S\left(\left(\frac{s}{1}\right)^{-1}\right) = \psi_S\left(\frac{s}{1}\right)^{-1} = \psi_S(s)^{-1},$$

da ψ_S durch Einschränkung einen Gruppenhomomorphismus von $(R[S^{-1}])^*$ nach $(R')^*$ induziert. Also ist ψ_S durch

$$\psi_S\left(\frac{r}{s}\right) = \psi_S\left(\frac{r}{1}\frac{1}{s}\right) = \psi_S\left(\frac{r}{1}\right)\psi_S\left(\frac{1}{s}\right) = \psi(r)\psi(s)^{-1}$$

für alle $\frac{r}{s}\in R[S^{-1}]$ eindeutig bestimmt. Definiert man ψ_S auf diese Art, so handelt es sich bei ψ_S um einen Ringhomomorphismus, denn für alle $\frac{r}{s},\frac{r'}{s'}\in R[S^{-1}]$ ist

$$\psi_{S}\left(\frac{r}{s} + \frac{r'}{s'}\right) = \psi_{S}\left(\frac{rs' + r's}{ss'}\right) = \psi(rs' + r's)\psi(ss)^{-1}$$

$$= (\psi(r)\psi(s') + \psi(r')\psi(s))\psi(s)^{-1}\psi(s')^{-1}\psi$$

$$= \psi(r)\psi(s)^{-1} + \psi(r')\psi(s')^{-1} = \psi_{S}\left(\frac{r}{s}\right) + \psi_{S}\left(\frac{r'}{s'}\right),$$

sowie

$$\psi_S\left(\frac{r}{s}\frac{r'}{s'}\right) = \psi_S\left(\frac{rr'}{ss'}\right) = \psi(rr')\psi(ss')^{-1}$$

$$= \psi(r)\psi(r')\psi(s)^{-1}\psi(s')^{-1}$$

$$= \psi(r)\psi(s)^{-1}\psi(r')\psi(s')^{-1} = \psi_S\left(\frac{r}{s}\right)\psi_S\left(\frac{r'}{s'}\right),$$

und inbesondere

$$\psi_S\left(1_{R[S^{-1}]}\right) = \psi_S\left(\frac{1}{1}\right) = \psi(1)\psi(1)^{-1} = 1_{R'}.$$