Problem Set Linearization

Xincheng Qiu OSE Lab 2019

July 2019

Exercise 1. For the Brock and Mirman model in use Uhlig's notation to analytically find the values of the following matrices: F, G, H, L, M, N as functions of the parameters. Given these find the values of P & Q, also as functions of the parameters. Imposing our calibrated parameter values, plot the three-dimensional surface plot for the policy function $K' = \Phi(K, z)$. Compare this with the closed form solution and the solution you found using the grid search method in exercise 8 from the DSGE chapter.

Solution. The Euler equation from the Brock and Mirman model is

$$\frac{1}{e^{z_t}K_t^{\alpha} - K_{t+1}} = \beta E_t \left\{ \frac{\alpha e^{z_{t+1}} K_{t+1}^{\alpha - 1}}{e^{z_{t+1}} K_{t+1}^{\alpha} - K_{t+2}} \right\},\,$$

which can be rewritten as

$$E_t \left\{ \frac{\beta \alpha e^{z_{t+1}} K_{t+1}^{\alpha - 1} \left(e^{z_t} K_t^{\alpha} - K_{t+1} \right)}{e^{z_{t+1}} K_{t+1}^{\alpha} - K_{t+2}} \right\} = 1.$$

Denote $\mathcal{I} = \{K_{t+2}, K_{t+1}, K_t, z_{t+1}, z_t\}$. In the steady state with $\overline{z} = 0$, we have

$$\overline{K} = (\alpha \beta)^{\frac{1}{1-\alpha}}.$$

Apply a first-order Taylor expansion with respect to K_{t+2} , K_{t+1} , K_t , Z_{t+1} , Z_t by evaluating at the steady state, then we can recover the Uhlig matrices:

$$F = \frac{\beta \alpha \overline{K}^{\alpha - 1}}{\overline{K}^{\alpha} - \overline{K}}$$

$$G = -\frac{\beta \alpha \overline{K}^{\alpha - 1} \left(\overline{K}^{\alpha - 1} + \alpha \right)}{\overline{K}^{\alpha} - \overline{K}}$$

$$H = \frac{\beta \alpha^2 \overline{K}^{2\alpha - 2}}{\overline{K}^{\alpha} - \overline{K}}$$

$$L = -\frac{\beta \alpha \overline{K}^{\alpha}}{\overline{K}^{\alpha} - \overline{K}}$$

$$M = \frac{\beta \alpha \overline{K}^{2\alpha - 1}}{\overline{K}^{\alpha} - \overline{K}}$$

and $N = \rho$. The matrices P, Q are such that

$$FP^2 + GP + H = 0$$

$$FQN + (FP + G)Q + (LN + M) = 0.$$

Thus we can solve for

$$P = \frac{-G \pm \sqrt{G^2 - 4FH}}{2F}$$

$$Q = -\frac{LN + M}{FN + FP + G}$$

Note that under the calibrated parameters, P = 2.55, 0.40 and we pick the one with P < 1. The policy function can be linearly approximated by

$$\tilde{K}_{t+1} = P\tilde{K}_t + Q\tilde{z}_t,$$

i.e.,

$$K_{t+1} = P\left(K_t - \overline{K}\right) + Qz_t + \overline{K}.$$

From Problem Set 1 we know the closed form solution is

$$K_{t+1} = \alpha \beta e^{z_t} K_t^{\alpha}.$$

Both three-dimensional surface plot are shown in PS_Linear.ipynb.

Exercise 2. Repeat the above exercise using $k \equiv \ln K$ in place of K as the endogenous state variable.

Solution. Note that $k \equiv \ln K$ and hence $K = e^k$. Now the Euler equation can be written as

$$E_{t} \left\{ \frac{\beta \alpha e^{z_{t+1}} e^{k_{t+1}(\alpha - 1)} \left(e^{z_{t}} e^{k_{t}\alpha} - e^{k_{t+1}} \right)}{e^{z_{t+1}} e^{k_{t+1}\alpha} - e^{k_{t+2}}} \right\} = 1.$$

Differentiation with respect to $k_{t+2}, k_{t+1}, k_t, z_{t+1}, z_t$ by evaluating at the steady state gives

rise to the Uhlig matrices:

$$F = \frac{\beta \alpha e^{\overline{k}\alpha}}{\left(e^{\overline{k}\alpha} - e^{\overline{k}}\right)} = \frac{\beta \alpha \overline{K}^{\alpha}}{\overline{K}^{\alpha} - \overline{K}}$$

$$G = -\frac{\beta \alpha e^{\overline{k}\alpha} \left(e^{\overline{k}(\alpha - 1)} + \alpha\right)}{e^{\overline{k}\alpha} - e^{\overline{k}}} = -\frac{\beta \alpha \overline{K}^{\alpha} \left(\overline{K}^{\alpha - 1} + \alpha\right)}{\overline{K}^{\alpha} - \overline{K}}$$

$$H = \frac{\beta \alpha^{2} e^{\overline{k}(2\alpha - 1)}}{e^{\overline{k}\alpha} - e^{\overline{k}}} = \frac{\beta \alpha^{2} \overline{K}^{2\alpha - 1}}{\overline{K}^{\alpha} - \overline{K}}$$

$$L = -\frac{\beta \alpha e^{\overline{k}\alpha}}{e^{\overline{k}\alpha} - e^{\overline{k}}} = -\frac{\beta \alpha \overline{K}^{\alpha}}{\overline{K}^{\alpha} - \overline{K}}$$

$$M = \frac{\beta \alpha e^{\overline{k}(2\alpha - 1)}}{e^{\overline{k}\alpha} - e^{\overline{k}}} = \frac{\beta \alpha \overline{K}^{2\alpha - 1}}{\overline{K}^{\alpha} - \overline{K}}$$

By the same procedure we can obtain P and Q. Now we have the approximation

$$\tilde{k}_{t+1} = P\tilde{k}_t + Q\tilde{z}_t,$$

i.e.,

$$\ln K_{t+1} - \ln \overline{K} = P\left(\ln K_t - \ln \overline{K}\right) + Qz_t$$

Equivalently,

$$K_{t+1} = \exp\left\{P\left(\ln K_t - \ln \overline{K}\right) + Qz_t + \ln \overline{K}\right\}$$

The three-dimensional plot is drawn in PS_Linear.ipynb.

Exercise 3. Do the necessary tedious matrix algebra necessary to transform equation (5) into (8).

Solution. From equation (5) we have

$$E_t \left\{ F \tilde{X}_{t+1} + G \tilde{X}_t + H \tilde{X}_{t-1} + L \tilde{Z}_{t+1} + M \tilde{Z}_t \right\} = 0.$$

Plug in $\tilde{Z}_{t+1} = N\tilde{Z}_t + \varepsilon_{t+1}$, $\tilde{X}_t = P\tilde{X}_{t-1} + Q\tilde{Z}_t$ and $\tilde{X}_{t+1} = P\tilde{X}_t + Q\tilde{Z}_{t+1} = P\left(P\tilde{X}_{t-1} + Q\tilde{Z}_t\right) + Q\left(N\tilde{Z}_t + \varepsilon_{t+1}\right)$, then

$$0 = E_{t} \left\{ F \tilde{X}_{t+1} + G \tilde{X}_{t} + H \tilde{X}_{t-1} + L \tilde{Z}_{t+1} + M \tilde{Z}_{t} \right\}$$

$$= E_{t} \left\{ F \left(P^{2} \tilde{X}_{t-1} + P Q \tilde{Z}_{t} + Q N \tilde{Z}_{t} + Q \varepsilon_{t+1} \right) + G \left(P \tilde{X}_{t-1} + Q \tilde{Z}_{t} \right) + H \tilde{X}_{t-1} + L \left(N \tilde{Z}_{t} + \varepsilon_{t+1} \right) + M \tilde{Z}_{t} \right\}$$

$$= \left(F P^{2} + G P + H \right) \tilde{X}_{t-1} + \left(F Q N + (F P + G) Q + (L N + M) \right) \tilde{Z}_{t}$$

Therefore,

$$FP^{2} + GP + H = 0$$

$$FQN + (FP + G)Q + (LN + M) = 0.$$

Exercise 4. For the baseline tax model, find the steady state values of k, c, r, w, ℓ, T, y and i, numerically. Assume $u(c_t, \ell_t) = \frac{c_t^{1-\gamma}-1}{1-\gamma} + a\frac{(1-\ell_t)^{1-\xi}-1}{1-\xi}$ and $F(K_t, L_t, z_t) = K_t^{\alpha} (L_t e^{z_t})^{1-\alpha}$. Use the following parameter values: $\gamma = 2.5, \xi = 1.5, \beta = .98, \alpha = .40, a = .5, \delta = .10, \overline{z} = 0, \rho_z = .9$ and $\tau = .05$.

Solution. The characterizing Euler equations are

$$c_t^{-\gamma} = \beta E_t \left\{ c_{t+1}^{-\gamma} \left[(r_{t+1} - \delta) (1 - \tau) + 1 \right] \right\}$$
$$a (1 - l_t)^{-\xi} = c_t^{-\gamma} w_t (1 - \tau)$$

with definition equations giving rise to r_t, w_t, T_t, c_t once we have k_t, l_t solved:

$$r_{t} = \alpha k_{t}^{\alpha - 1} l_{t}^{1 - \alpha} e^{z_{t}(1 - \alpha)}$$

$$w_{t} = (1 - \alpha) k_{t}^{\alpha} l_{t}^{-\alpha} e^{z_{t}(1 - \alpha)}$$

$$T_{t} = \tau \left[w_{t} l_{t} + (r_{t} - \delta) k_{t} \right]$$

$$c_{t} = (1 - \tau) \left[w_{t} l_{t} + (r_{t} - \delta) k_{t} \right] + k_{t} + T_{t} - k_{t+1}.$$

We can solve for the steady state using LinApp_FindSS.py. The numerical steady states found are

$$\overline{k} = 4.23, \overline{c} = 0.86, \overline{r} = 0.12, \overline{w} = 1.33, \overline{\ell} = 0.58, \overline{T} = 0.04, \overline{y} = 1.28, \overline{i} = 0.42$$

Exercise 5. For the same model as above, find $\frac{\partial y}{\partial x}$ for $y \in \{\overline{k}, \overline{c}, \overline{r}, \overline{w}, \overline{\ell}, \overline{T}, \overline{y}, \overline{i}\}$ and $x \in \{\delta, \tau, \overline{z}, \alpha, \gamma, \xi, \beta, a\}$ using numerical techniques.

Solution. I use the centered differentiation with $h = 10^{-6}$. The results are presented in PS_Linear.ipynb.

Exercise 6. For the same model as above, let $X_t = \{k_{t-1}, \ell_{t-1}\}$. Find the values of F, G, H, L, M, N, P and Q.

Solution. We need to modify X to include l in addition to k, as required. The values of the Uhlig matrices are reported in PS_Linear.ipynb.

For Exercise 7, 8, and 9, see PS_Linear.ipynb.