Autenticação em aplicações web

Notas para a UC de "Segurança Informática" Inverno de 11/12

Pedro Félix (pedrofelix em cc.isel.ipl.pt)
Instituto Superior de Engenharia de Lisboa

Limitações práticas

- Deployability
 - Protocolo HTTP
 - "User-agent"
- Aceitação por parte do utilizador
- Desempenho

Objectivos do atacante

- Falsificação existencial
 - Obter um autenticador válido
- Falsificação selectiva
 - Dado um utilizador, obter um autenticador válido para esse utilizador
- Obtenção da chave usada na criação de autenticadores

Classificação do atacante

- Atacante interrogativo
 - É utilizador do sistema
 - Interroga o sistema sobre a validade de autenticadores e observa as respostas
- Atacante observador
 - Capacidade de observar todas as mensagens de e para o servidor
- Atacante activo
 - Capacidade de observar e alterar todas as mensagens de e para o servidor
 - Atacante do modelo de Dolev-Yao

Fases

- O protocolo HTTP n\u00e3o possui estado a autentica\u00e7\u00e3o tem de ser realizada em todos os pedidos
- Duas fases na autenticação
- Fase 1
 - Apresentação das credenciais pelo utilizador (ex.:"username+password")
 - Obtenção dum autenticador
- Fase 2
 - Apresentação do autenticador automaticamente pelo "user-agent"

Autenticadores: "cookies" vs. URLs

- "Cookies"
 - Dependente da aceitação por parte do "user-agent"
 - Persistência entre sessões
 - Acesso em código de cliente
- URL
 - Acesso em código de cliente
 - Está presente no "header" "Referer"

Autenticadores: implementação

- Identificador de sessão
 - Informação sobre a sessão presente no servidor
 - "Cookie" contém o identificador (chave) para aceder a essa informação
 - Deve ser computacionalmente infazível criar um identificador válido
 - Geração criptográfica de números aleatórios
- "Message Authentication Code"
 - Informação sobre a sessão presente no "cookie"
 - "Cookie" protegido por um MAC
 - Se a confidencialidade for requisito, cifrar o conteúdo do "cookie"
 - Maior escalabilidade chaves partilhadas por todos os servidores do "web farm"

Autenticadores: implementação

- Associar autenticador a atributos do cliente
 - Endereço, "user-agent"
- Mecanismo de validade temporal próprio
 - Não utilizar o mecanismo dos "cookies"
 - Limite da validade temporal
 - Presente na informação de sessão
 - Presente no "cookie" (protegido pelo MAC)
- "Logout"/Revogação
 - Invalidar a sessão
 - Colocar o "cookie" numa lista de revogação (até à expiração da validade)
- Protecção dos "cookies"
 - Protecção do transporte através do uso de SSL
 - Protecção no cliente flag "HttpOnly" (IExplorer)

Ataques de dicionário "online"

- Atacante interrogativo
- Técnicas clássicas de protecção:
 - Atraso na resposta/"backoff"
 - Bloqueamento
- Problemas das técnicas clássicas
 - Dificuldade de implementação no cenário web
 - Disponibilidade do serviço
 - Ataques globais
- Ataques de dicionário globais
 - Ataque a qualquer utilizador do sistema

Bloqueamento: problemas

- Implementação típica
 - 1. Obter a informação de verificação do utilizador (v) ou se a conta está bloqueada
 - 2. Verificar a informação de autenticação g(v)(a)
 - 3. Se o resultado é falso, actualizar o número de tentativas de autenticação do utilizador
- Problemas:
 - Número de tentativas realizadas em simultâneo entre os passos 1 e 3 maior do que o número de tentativas permitidas
 - Seriar o processamento da autenticação coloca problemas de implementação
 - Disponibilidade

Atraso: problemas

- Implementação típica
 - 1. Obter a informação de verificação do utilizador (v) ou se a conta está bloqueada
 - 2. Verificar a informação de autenticação g(v)(a)
 - 3. Esperar tempo constante ou dependente do número de tentativas erradas
 - 4. Apresentar o resultado ao utilizador
- Problemas:
 - Número de tentativas realizadas em simultâneo entre os passos 1 e 3
 - Seriar o processamento da autenticação coloca problemas de implementação e de disponibilidade
 - Alguns cálculos
 - Seja N o número de pedidos aceites por unidade de tempo
 - Seja T o atraso inserido pelo pedido
 - Tempo para o teste de M candidatos = T + M/N

Solução: aumentar o custo dos pedidos

- Diminuir o número de pedidos realizados através do aumento do seu custo para o cliente
- Desafio computacional que tem de ser calculado pelo "user-agent" cliente antes da realização do pedido
 - Necessita de computação do lado do cliente (ex. Javascript)
- CAPTCHA "Completely Automated Public Turing Test to Tell Computers and Humans Apart" - http://www.captcha.net/
 - Fácil para humanos
 - Difícil para computadores

Utilização de CAPTCHA (1)

- Técnica 1
 - Requerer a resposta a um CAPTCHA como condição à realização da autenticação
- Problemas
 - Aceitação por parte do utilizador
 - Custo computacional para o servidor
 - Geração
 - Armazenamento

Utilização de CAPTCHA (2)

- Técnica 2
 - Com probabilidade P, requerer a resposta a um CAPTCHA como condição à realização da autenticação
- Se P for pequeno
 - Diminui o custo computacional para o servidor
 - Aumenta a aceitabilidade do utilizador
- Problema
 - Atacante ignora os casos em que é requerido CAPTCHA

Utilização de CAPTCHA (3)

- Técnica 3
 - Requerer CAPTCHA apenas depois duma autenticação errada
- Se P for pequeno
 - Aumenta a aceitabilidade do utilizador
- Problema
 - Não protege contra ataques globais

Algoritmo de Pinkas e Sander (1)

 Requisito: Colocação de "cookies" persistentes nos "user-agents" onde foi realizada uma autenticação com sucesso

Algoritmo de Pinkas e Sander (2)

- PRF(user,pw):
 - Se (user,pw) existem em M, retornar M[(user,pw)]
 - Gerar $b \in \{0,1\}$ com probabilidade $Pr\{b=1\} = p$
 - M[(user,pw)] = b
 - retornar b
- Aceitabilidade
 - Utilizador com "cookie"
 - (user,pw) correcto nunca responde a CAPTCHAs
 - (user,pw) incorrecto responde a CAPTCHAs com probabilidade p
 - Utilizador sem "cookie"
 - responde sempre a CAPTCHAs (tipicamente só uma vez, depois fica com "cookie")

Algoritmo de Pinkas e Sander (3)

Custo computacional

- Se os utilizadores tiverem "cookies", a geração de CAPTCHAS é realizada apenas nas tentativas erradas e com probabilidade p
- O CAPTCHA associado a cada par (user,pw) pode ser sempre o mesmo (armazenar os CAPTCHAs associados a pares válidos)

Segurança

- Considerando que o conjunto de "passwords" prováveis tem dimensão N
- A "password" correcta pertence a um conjunto de dimensão pN, em que o teste obriga à resposta do CAPTCHA
- Número médio de tentativas com CAPTCHA = pN/2
- Custo médio = pN/2 x Custo de resolver o CAPTCHA
- É fundamental que o atacante não obtenha informação sobre a correcção da password através de outras formas (ex. tempo de resposta)

Referências

 Securing Passwords Against Dictionary Attacks, Benny Pinkas and Tomas Sander, 2002