첫번째: CGE 모형 소개

강성원

KEI

2016.08.03

개관

차 례

모형 개관

- 1. 축차 동태 1국 일반균형 모형
- 2. 산업(Activity)과 재화(Commodity)를 구분
- 3. 구성요소
 - ▶ 산업: 중간재와 생산요소를 구입하여 제품을 생산하고 시장에 공급
 - 7개 산업: 4개 에너지 산업 (전력, 석탄, 석유, 가스-열), 에너지 집약적 산업, 에너지 비 집약 산업, 농업
 - 가계: 생산요소 판매 수익(요소수입)과 이전소득을 재원으로 제품을 구입하고 나머지를 저축
 - ▶ 기관(정부, 해외, 저축-투자): 비시장 경제주체
 - 정부: 조세를 징수하여 제품을 구입하고 가계이전소득 및 산업보조금을 지출하고 나머지는 저축
 - ▶ 해외: 수입품 판매 수익으로 수출품을 구입하고 나머지는 저축
 - ▶ 저축-투자: 가계, 정부, 해외부문의 저축을 집적하여 제품(투자재)를 구입
 - ▶ 시장균형: 제품 및 생산요소의 수요와 급이 일치하는 가격을 파악
 - ▶ 동태방정식: 자본축적, 인구변동 등 시간 경과에 따른 변화를 반영

4. 입력자료

- 사회회계행렬 (Social Accounting Matrix): 경제주체간 거래관계를 행렬로 표시
- 온실가스-산엽연관표: 특정 재화의 특성 산업 투입에 따른 온실가스 배출량을 표시

4/1

흐름도

2010 SAM

	ELEC-a	GASHeat- a	OIL-a	COAL-a	ENIT-a	NEINT-a	AGRI-a	CO2-a	ELEC-c	GASHeat-	OIL-c	COAL~	ENIT-c	NEINT-c	AGRI-c	002-0	Labor	Capital	Househol d	GoV	NRES	Ptaxin	Ptaxetc	Tarrif	YTAX	5-1	ROW
LEC-a	0								41534.49				0	0						2427.788					0	0	-
JASHeat-	۰	۰						۰	۰	30161.79			0	0						116.0256					0	0	П
DIL-a					0		0	0			103050.7		0	0		0				49.77111			-		0	0	-
OAL-a						-						6912.343	0							1.195342					0	0	
NIT-a	0				0		0	0		0			532006.5	0		0	0			1692.023				0	0	0	-
NEINT-a	0				0		0						0	2387212		0	0			749.6459				0	0	0	
kGRI-a					0		0	0					0	0	52969.02	0	0			55.90367				0	0	0	
:02-a	0												0	0		5092.352				0					0	0	
LEC-c	556.757	64,474	815.588	72.901	7486.617	24804.22	272.211	0					0	0		0	0		7975.42					0	0	0	83.7
ASHeat-	8575.153	20534.6	470.029	0.785	3160.66	8720.109	9.565	0	۰	۰			0	0					7870.849	0					0	455.704	18.0
DIL-c	2300.089	681.308	88242.81	67.988	52686.65	22582.39	1682,669	0		0			0	0					10533.37	0					0	2220.658	40993.1
OAL-c	8892.316	469.276		5046.834	8129.638	286.481	103.351	0		0			0	0		0			81.243	0					0	-909.442	23.0
NIT-c	639,452	61.631	2806.869	355.885	239669.9	247991.8	1451.984	0					0	0		0	0		28337.58					0	0	2189.022	140680
VEINT-c	7651.798	1518.722	7589.852	808.42	93588.16	1034045	17100.04	0			0	0	0	٥		0	0		527027.6	183108.5				0	0	370461.2	449400
kGRI-c	1.268	0.281	1.534	2.866	1430.396	41220.78	3685.653	0		0			0	0	0	0	0		14509.49	0				0	0	1949.319	776.43
:02-0	2427.788	116.0256	49.77111	1.195342	1692.025	749.6455	55.90367	0	۰	0			0	0						0					0	0	
abor	3438.079	925.373	1112.996	141.264	46078.63	480825.7	3828.25	0	۰	0			0	0		0	0							0	0	0	
Capital	9153.961	3779.67	\$012.656	441.533	65433.41	497873.2	23425.29	۰	۰	٥	۰	۰						-	۰	٥				۰	0	0	\vdash
tousehol I	٥	٥	0	۰	۰		0	٥	٥	۰	۰	۰	0	0			\$16150.3	S95119.7	۰	39046	1075.434			۰	0	0	
3oV	0		0		0		0	5092.352					0	0		0	0			0		140961.3	13654.05	0	83753	0	
NRES	-47.827	-5.84	369.524	-1.204	6563.552	-2947.48	-2.314	0		0	0	•	0	0	0	0	0		0	0				0	0	0	
taxin	263.253	2110.82	1487.932	-26.574	6848.875	30835.63	486,808	0		0			0	0					46452.57	0					0	31724.56	20677.
taxeto	110.188	21.479	141.412	1.645	930.019	11473.85	975.517			0			0	0				-	0	0					0	0	
arrif						-				0			0	0											0	0	
TAX	0	0		0	0					0			0	0				-	83753	0					0	0	
i-I	0	0		0	0	-				0			0	0					450050.3	16113.83	2853.031				0	0	-60976
ow									97.461	19653.69	113890.6	15211.04	127127.8	305088.1	10608.94											0	1

2010 온실가스-산업연관표

	ELEC-a	GASHeat-a	OIL-a	COAL-a	ENIT-a	NEINT-a	AGRI-a	Household	Total
GASHeat-c	439	43	1	0	55	200	0	171	908
OIL-c	105	16	49	1	785	517	45	289	1807
COAL-c	1884	57	0	0	852	32	11	9	2846
process	0	0	0	0	291	0	0	0	291
Total	2428	116	50	1	1983	750	56	469	5852

Toy 생산함수: All ind

표준모형 생산함수: All ind

차 례

차 례

11/1

GAMS program 구조 (1):Declaration

1. Title

\$TITLE Hybrid model top down module trial version

Declaration: Set

```
SET
A(AC) /ELEC-a, GASHeat-a, OIL-a, COAL-a, ENIT-a, NEINT-a, AGRI-a /
```

3. Declaration: Parameter

```
PARAMETERS alpha_nres(A) net residue to output ratio
```

4. Declaration: Variable

Variables VA(A)

Demand for Value Added composite

5. Data loading

```
table sam(ACT,ACTP) data in CSV format
$Ondelim
$include b_sam_br_g.csv
$Offdelim
```

6. Declaration:Equation

```
Equations
AspPr(C) Absorption Price PA f of PD and PMT;
AspPr(C)$((SAM('ROW',C) ne 0) and (sum(A,SAM(A,C))>0))..
(1/alphaq(C))*(((deltaq(C))**(sigmaq(C))*(PD(C))
```

GAMS program 구조 (2): Solving Model

1. calibration and initialization

```
PC0(A) = 1;
```

2. Declaration: Model

```
Model
BR 7 ind model
/ImPr.XMT
ResI/;
```

3. setting up initial values

```
PC.L(A) = PCO(A)
```

4. solve and save results

```
Loop (t,SOLVE BR Using MCP;
PCREP(A,t) = PC.L(A) ;
Ks.Fx('Capital')=Ks.L('Capital')*(1-delta)+sum(C,XAF.L('S-I',C));
);
```

5. display results

```
display warlasrep;
```

6. export output

차 례

Production: zero profit + input demand

- 1. 각각의 nest 마다 가상의 생산자가 존재: 투입재를 조합해서 복합재를 구성
- 2. Zero profit condition (Each nest): P = MC, PQ = TC
- 3. input demand (Each nest): $X_i^d = f(P_i, P_j, P_q, Q)$

Production: Top nest (Leontief), zero profit condition

 $(ActR_a)$

 $PC_a \cdot \alpha_a^{nres} \cdot XC_a + \sum_{a} PA_c \cdot ica_{c,a} XC_a + PVAE_a QVAE_a$

$$\geq PC_a(1-tain_a-taex_a)XC_a+crevI*crevIw_a*CREV_a$$
 ActR(A) \$ (sum(C, SAM(A,C))>0 and not ghg('process',A))..
 PC(A) *alpha_nres(A) *XC(A)
 +sum(C\$M(C), PA(C) *ica(C,A) *XC(A))
 +PVAE(A) *QVAE(A)
 =g=
 PC(A) * (1-ta_in(A)-ta_ex(A)) *XC(A)
 +crevI*crevIw(A) *CREV(A);

$$(ActRp_a) \qquad PC_a \cdot \alpha^n res_a \cdot XC_a + \sum_c PA_c \cdot ica_{c,a}XC_a + \sum_{gc} \theta_{gc,a}^p XC_a \cdot gtax_{gc} + PVAE_a QVAE_a$$

 $\geq PC_a(1-tain_a-taex_a)XC_a + crevI*crevIw_a*CREV_a$
 ActRp(A) \$ (ghg('process',A) ne 0)..
 PC(A) *alpha_nres(A) *XC(A)
 +sum(C\$M(C),PA(C) *ica(C,A) *XC(A)
 +sum(C\$M(C),PA(C) *ica(C,A) *XC(A)
 +sum(GC,thetaP(GC,A) *XC(A) *gtax(GC))
 +PVAE(A) *QVAE(A)
 =g=
 PC(A) * (1-ta_in(A)-ta_ex(A)) *XC(A)
 +crevI*crevIw(A) *CREV(A);

Production: Top nest (Leontief), input demand

$$(QVAED_a)$$
 $QVAE_a = XC_a$

QVAED(A) \$ (sum(C, SAM(A, C)) > 0) ..QVAE(A) = e=XC(A);

$$(INTDM_{c,a}) \hspace{1cm} XAP_{c,a} = ica_{c,a}XC_a$$

$$(INTDG_{gc,a})$$
 $QINTG_{gc,a} = \theta_{gc,a}^P XC_a$

INTGD(GC,A)\$(ghg('process',A)>0)..QINTG(GC,A)===thetaP(GC,A)*XC(A);

Production: 에너지-부가가치 복합재 (QVAE:CES)

1. Zero Profit condition: $P = MC [VAEPr_a]$

$$PVAE_{a} = (1/\alpha_{a}^{VAE}) \cdot \left[\delta_{XEP,a}^{\sigma_{d}^{VAE}} PEP_{a}^{(1-\sigma_{d}^{VAE})} + \delta_{VA,a}^{\sigma_{d}^{VAE}} PVA_{a}^{(1-\sigma_{d}^{VAE})}\right]^{1/(1-\sigma_{d}^{VAE})}$$

$$VAEPr(A) \$ (sum(C, SAM(A, C)) > 0) ..PVAE(A) = e \cdot (1/alphaaVAE(A)) * ($$

$$(eltaXEP(A) **sigmaaVAE(A) *PEP(A) ** (1-sigmaaVAE(A)) + deltaVA(A) **sigmaaVAE(A) *PVA(A) ** (1-sigmaaVAE(A))) * * (1/(1-sigmaaVAE(A))) ;$$

2. input demand: VA_a [$XVAD_a$], XEP_a [$XEPD_a$]

$$(XVAD_a) \qquad VA_a = \delta_{VA,a}^{\sigma_d^{VAE}} \left[\frac{PVAE_a}{PVA_a} \right]^{\sigma_a^{VAE}} \alpha_a^{VAE} (\sigma_a^{VAE} - 1) QVAE_a$$

XVAD(A) \$ (sum(C, SAM(A, C)) > 0)..

$$\begin{tabular}{ll} VA (A) = & = (deltaVA (A) **sigmaaVAE (A)) * ((PVAE (A) / PVA (A)) **sigmaaVAE (A)) * (alphaaVAE (A) **(sigmaaVAE (A) -1)) *QVAE (A); \\ \end{tabular}$$

$$(XEPD_a)$$
 $XEP_a = \delta_{XEP,a}^{q^NAE} \left[\frac{PVAE_a}{PEP_a} \right]^{\sigma_a^{q^NAE}} \alpha_a^{VAE} (\sigma_a^{VAE} - 1) QVAE_a$

Production: 부가가치 복합재 (VA:Cobb-Douglas)

1. Zero Profit condition: $P = MC [VAPr_a]$

$$(VAPr_a) \qquad PVA_a \quad = \quad \prod_k \left[\frac{R_k}{\lambda_k \lambda_{k,a}} \delta_{k,a}^f \right]^{\delta_{k,a}^f} \prod_l \left[\frac{W_l}{\lambda^T \lambda_a \delta_{l,a}^f} \right]^{\delta_{l,a}^f}$$

```
VAPr(A) $ (sum(C,SAM(A,C))>0) ..PVA(A) = e =
(
    prod(K,(R(K)/(lambdak*lambdaka(A)*deltaf(K,A)))**(deltaf(K,A)))*
    prod(L,(W(L)/(lambdat*lambda(A)*deltaf(L,A)))**(deltaf(L,A)))
);
```

2. input demand: L_a^d [LDA_{l,a}], K_a^d [KDA_{k,a}]

$$(LDA_{l,a}) \hspace{1cm} L_a^d = \delta_{l,a}^f \left[\frac{PVA_a}{W_l} \right] VA_a$$

$$(KDA_{k,a})$$
 $K_a^d = \delta_{k,a}^f \left[\frac{PVA_a}{R_k} \right] VA_a$

Production: 에너지 복합재 (XEP:Cobb-Douglas)

1. Zero Profit condition: $P = MC [XEPr_a]$

$$(XEPr_a) \qquad PEP_a \qquad = \qquad \prod_{c \in ELECC} \left[\frac{PA_c}{\delta_{c,a}^c} \right]^{\delta_{c,a}^c} \left[\frac{PFL_a}{1 - \sum_{c \in ELECC} \delta_{c,a}^c} \right]^{1 - \sum_{c \in ELECC} \delta_{c,a}^c}$$

$$\begin{split} \text{XEPr} &(A) \$ \left(\text{sum} \left(\text{C}, \text{SAM} \left(\text{A}, \text{C} \right) \right) > 0 \right) . . \text{PEP} \left(\text{A} \right) = = \\ & \text{prod} \left(\text{C} \$ \text{ELECC} \left(\text{C} \right), \left(\text{PA} \left(\text{C} \right) \middle/ \text{deltaC} \left(\text{C}, \text{A} \right) \right) \right) * * \left(\text{deltaC} \left(\text{C}, \text{A} \right) \right) \right) * \\ & \left(\text{PFL} \left(\text{A} \right) \middle/ \left(1 - \text{sum} \left(\text{C} \$ \text{ELECC} \left(\text{C} \right), \text{deltaC} \left(\text{C}, \text{A} \right) \right) \right) \right) * * \left(1 - \text{sum} \left(\text{C} \$ \text{ELECC} \left(\text{C} \right), \text{deltaC} \left(\text{C}, \text{A} \right) \right) \right) ; \end{aligned}$$

2. input demand: XFL_a [$XFLD_a$], $XAP_{c,a|c \in ELECC}$ [$INTDE_{c,a}$]

$$(XFLD_a)$$
 $XFL_a = \left(1 - \sum_{c \in ELECC} \delta^c_{c,a}\right) \left[\frac{PEP_a}{PFL_a}\right] XEP_a$

$$(INTDE_{c,a}) \qquad XAP_{c,a|c \in ELECC} = \delta_{c,a}^{c} \left[\frac{PEP_{a}}{PA_{c}} \right] XEP_{a}$$

$$\label{eq:interpolation} \begin{split} & \text{INTDE}\left(C,A\right) \$ \left(\text{ELECC}\left(C\right) \text{ and } \text{SAM}\left(C,A\right) \$ \text{ELECC}\left(C\right) > 0\right) \text{.} \\ & \text{XAP}\left(C,A\right) = e = & \text{deltaC}\left(C,A\right) * \left(\text{PEP}\left(A\right) \middle/ \text{PA}\left(C\right)\right) * \text{XEP}\left(A\right); \end{split}$$

Production: 화석연료 복합재 (XFL:CES),Zero Profit Condition

Zero Profit condition: $P = MC [XFLPr0_a], [XFLPr1_a]$

Production: 화석연료 복합재 (XFL:CES), Input demand

Input Demand: $XLFL_a$ [$XLFLD1_a$, $XLFLD0_a$], $QNEG_{c,a|c \in sfuel}$ [$NEGDS_{c,a}$]

$$(NEGDS_{c,a}) \qquad QNEG_{c,a|c \in sfuel} = \delta_{c,a}^{C} \left[\frac{\sigma_{a}^{XFL}}{PNEG_{c,a}} \right]^{\sigma_{a}^{XFL}} AEEI_{c,a}^{(\sigma_{a}^{XFL}-1)} XFL_{a}$$

$$(XLFLD1_{a|\Sigma_{c \in sfuel} \ sam(c,a) > 0}) \qquad XLFL_a = (1 - \sum_{c \in sfuel} \delta_{c,a}^C)^{\sigma_a^{XFL}} \left[\frac{PFL_a}{PLFL_a} \right]^{\sigma_a^{XFL}} XFL_a$$

..XLFL(A) = e=
(1-sum(C\$sfuel(C), deltaC(C, A))) **sigmaaXFL(A)
*(PFL(A)/PLFL(A)) **(sigmaaXFL(A))

XLFLD1(A)\$(sum(C\$sfuel(C),SAM(C,A) >0))

*XFL(A);

$$(XLFLD0_{a|\sum_{c \in sfuel} sam(c,a)=0})$$
 $XLFL_a = XFL_a$

XLFLD0(A) \$ (sum(C\$sfuel(C), SAM(C,A)=0)) ..XLFL(A) = e = XFL(A);

Production: Gas-Oil 복합재 (XLFL:Cobb-Douglas)

1. Zero Profit condition: $P = MC [XLFLPr1_a]$

$$(XLFLPr1_a) \qquad PLFL_a = \prod_{c \in Lfuel} \left[\frac{PNEG_{c,a}}{\delta^c_{c,a} \cdot AEEI_{c,a}} \right]^{\delta^C_{c,a}}$$

XLFLPr1(A)\$(Lfuelmix(A) eq 1)..PLFL(A)=e=
prod(C\$LfuelA(A,C),(PNEG(C,A)/(deltaC(C,A)*AEEI(C,A)))**deltaC(C,A));

2. Input Demand: $QNEG_{c,a|c \in Lfuel}$ [$NEGDL1_{c,a}$]

$$(NEGDL1_{c,a})$$
 $QNEG_{c,a|c\in Lfuel} = \delta_{c,a}^{C} \frac{PLFL_a}{PNEG_{c,a}} XLFL_a$

 $\label{eq:negDL1} $$ (C,A) $ (Lfuel(C) and Lfuelmix(A) eq 1) \\ ... $$ QNEG(C,A) = e = deltaC(C,A) * (PLFL(A)/PNEG(C,A)) * XLFL(A); $$$

Production: 화석연료-온실가스 복합재 (QNEG:Leontief)

1. Zero Profit condition: $P = MC [NEGPr_{c,a|c \in fuel}]$

$$(NEGPr_{c,a}) \qquad PNGE_{c,a} = PA_c + \sum_{gc} \theta^{E}_{gc,c,a} \cdot gtax_{gc}$$

NEGPr(C,A) \$ (ghg(C,A) >0) ..PA(C) +sum(GC,thetaE(GC,C,A) *gtax(GC)) =e=PNEG(C,A);

2. Input Demand: $QCE_{c,a|c \in fuel}$ [$NELQCEDL1_{c,a}$], $QGE_{gc,c,a|c \in fuel}$ [$GD_{gc,c,a|c \in fuel}$]

$$\begin{aligned} &(NELQCEDL1_{c,a|c \in fuel}) & QCE_{c,a} = QNEG_{c,a} \\ &(GD_{gc,c,a|c \in fuel}) & QGE_{gc,c,a} = \theta^E_{gc,c,a} QNEG_{c,a} \end{aligned}$$

NELQCED(ENC, A) \$ (SAM(ENC, A) > 0)
..QCE(ENC, A) = e = QNEG(ENC, A);
GD(GC, ENC, A) \$ (ghg(ENC, A) > 0)
..QGE(GC, ENC, A) = e = thetaE(GC, ENC, A) * QNEG(ENC, A);

Production: 산업산출(XC_a)= 상품생산($XP_{c|c=a}$)

1. Zero Profit condition: $P = MC [ComPr_c]$

$$(ComPr_{c,a})$$
 $\sum_{a} \theta_{a,c} PC_a = PP_c$

ComPr(C) \$ (sum(A, SAM(A, C)) > 0) ..sum(A\$XPXC(C, A), theta(A, C) *PC(A)) = g = PP(C);

2. Input Demand: XCa [ActDCa]

$$(ActDC_a) XC_a = \sum_c \theta_{a,c} X P_c$$

차 례

Trade: 해외부문(ROW)+수출 결정

1. 해외부문

- ▶ 해외: 수입품을 판매하고 그 수익으로 수출품을 구입하고 나머지를 저축
- ▶ 수입: 교역조건에 따라 시장수요의 일부분은 수입하여 충당
- ▶ 지출: 교역조건에 따라 수출된 국내산출의 일부분을 구입
- ▶ 해외 청산: 수입 = 수출+해외저축

Equations

- ▶ 수입가격: 국제가격과 국내가격 관계
- ▶ 수입업자 zero profit: Armington 복합재 가격 결정
- ▶ 수입, 국산 수요 결정
- 수출가격: 국제가격과 국내가격 관계
- ▶ 국내생산자 zero profit : CET 복합재 가격 결정
- 수출, 내수 공급 결정
- ▶ 해외부문 balance

수입-내수-수출 관계: Armingtion and CET

수입의 결정: Armington 복합재 생산의 input demand

- 수입가격: 해외가격에 환율을 적용한 국내가를 지불하고 수입세를 납부한 후 소비자가격에 전가
- ▶ 총수요-수입수요-내수수요 관계식: 수입업자 zero profit condition

$$PA_cXA_c = PD_cXD_c + PMT_cXMT_c$$

▶ 수입, 내수 수요::주어진 총수요를 충당하는데 비용을 최소화하는 내수-수입 조합 = Armington 복합재 생산

$$\begin{aligned} & \text{min} & & PD_c XD_c + PMT_c XMT_c \\ & & s.t & & XA_c = \alpha_c^q (\delta_c^q XD_c^{-\rho_c^q} + (1 - \delta_c^q) XMT_c^{-\rho_c^q})^{-\frac{1}{\rho_c^q}} \end{aligned}$$

수입업자= Armington 복합재 생산자, zero profit condition

1. 수입재 국내가격 [*ImPr_c*]

$$(ImPr_c) pwm_c(1+tm_c)EXR = PMT_c$$

ImPr(C) \$ (SAM('ROW',C) ne 0)..pwm(C) * (1+tm(C)) *EXR=g=PMT(C);

2. zero profit condition: $P = MC [AspPr_c]$

 $(AspPr_c)$

**(1/(1-sigmag(C))))=g=PA(C);

$$PA_{c} = (1/\alpha_{c}^{q}) [\delta_{c}^{q} \sigma_{c}^{q} PD_{c}^{(1-\sigma_{c}^{q})} + (1-\delta_{c}^{q}) \sigma_{c}^{q} PMT_{c}^{(1-\sigma_{c}^{q})}]^{(1/(1-\sigma_{c}^{q}))}$$

$$AspPr(C) \$ ((SAM('ROW',C) ne 0) and (sum(A,SAM(A,C))>0))$$

$$..(1/alphaq(C)) * (((deltaq(C)) **(sigmaq(C)) * (PD(C)) ** (1-sigmaq(C)) + (1-deltaq(C)) **sigmaq(C) * (PMT(C)) ** (1-sigmaq(C)))$$

수입업자= Armington 복합재 생산자, input demand

Input demand: $XD_c [XDD_c] XMT_c [XMTD_c]$

$$(XDD_c) XD_c = \delta_c^q \sigma_c^q \left[\frac{PA_c}{PD_c} \right]^{\sigma_c^q} \alpha_c^q (\sigma_c^q - 1) XA_c$$

```
XDD(C)$((SAM('ROW',C) ne 0) and (sum(A,SAM(A,C))>0))
..XD(C)
=g=
(deltaq(C)**sigmaq(C))*((PA(C)/(PD(C)))**sigmaq(C))
*(alphaq(C)**(sigmaq(C)-1))*XA(C);
```

$$(XMTD_c) XMT_c = \delta_c^q \sigma_c^q \left[\frac{PA_c}{PMT_c} \right]^{\sigma_c^q} \alpha_c^q (\sigma_c^q - 1) XA_c$$

```
XMTD(C)$((SAM('ROW',C) ne 0) and (sum(A,SAM(A,C))>0))
..XMT(C)
=g=
((1-deltaq(C))**sigmaq(C))*((PA(C)/(PMT(C)))**sigmaq(C))*((alphaq(C)**(sigmaq(C)-1))*XA(C);
```

수출의 결정: 상품생산자의 output diversification

- 수출가격: 수출세를 지불하고 해외가격으로 판매하여 이를 환전한 수입을 취득
 - ▶ 해외가격에 대해서는 가격수용자이기 때문에 수출세만큼 손실 발생
- ▶ 총산출-수출공급-내수공급 관계식: 생산자의 revenue max condition

$$PP_cXP_c = PD_cXD_c + PET_cES_c$$

▶ 수출, 내수 공급:주어진 산출물을 판매하여 수익을 극대화하는 수출-내수 조합. CET 햠수 사용

$$\max \qquad PET_cES_c + PD_cXD_c$$

$$s.t. \quad XP_c = \alpha_c^t (\delta_c^t E S_c^{\rho_c^t} + (1 - \delta_c^t) X D_c^{\rho_c^t})^{\frac{1}{\rho_c^t}}$$

생산자 revenue maximization solution

수출재 가격 [ExPr_c]

$$(ExPr_c)$$
 $pwe_c(1-te_c)EXR = PET_c$

ExPr(C) \$ (SAM(C, 'ROW') ne 0)..PET(C)=g=pwe(C)*(1-te(C))*EXR;

2. zero profit condition: $P = MC [ProdPr_c]$

$$\begin{split} (ProdPr_c) \\ PP_c &= (1/\alpha_c^t)[\delta_c^t{}^{\sigma_c^t}PET_c{}^{(1-\sigma_c^t)} + (1-\delta_c^t)^{\sigma_c^t}PD_c{}^{(1-\sigma_c^t)}]^{(1/(1-\sigma_c^t))} \\ \left(\rho_c^t = 1 - (1/\sigma_c^t) \qquad \sigma_c^t = \frac{1}{1-\rho_c^t}\right) \end{split}$$

```
ProdPr(C)$((SAM(C,'ROW') ne 0) and (sum(A,SAM(A,C))>0))
..PP(C)=g=
(1/alphat(C))*
(((deltat(C))**(sigmat(C))*(PET(C))**(1-sigmat(c))+
(1-deltat(C))**(sigmat(C))*(PD(C))**(1-sigmat(c)))
**(1/(1-sigmat(C)));
```

생산자의 Supply decision

Output supply : XD_c [XDS_c] ES_c [ESS_c]

$$(XDS_c) XD_c = (1 - \delta_c^t)^{\sigma_c^t} \left[\frac{PP_c}{PD_c} \right]^{\sigma_c^t} \alpha_c^{q(\sigma_c^t - 1)} XP_c$$

XDS(C)\$(SAM(C,'ROW') ne 0)

- ..((1-deltat(C))**sigmat(C))*((PP(C)/PD(C))**sigmat(C))
- * (alphat (C) ** (sigmat (C) -1)) *XP (C) =g=XD (C);

$$(ESS_c) ES_c = \delta_c^t \sigma_c^t \left[\frac{PP_c}{PET_c} \right]^{\sigma_c^t} \alpha_c^{t(\sigma_c^t - 1)} X P_c$$

ESS(C)\$(SAM(C,'ROW') ne 0)

- ..(deltat(C) **sigmat(C)) *((PP(C)/PET(C)) **sigmat(C))
- *(alphat(C) ** (sigmat(C) -1)) *XP(C) =g=ES(C);

해외: Trade balance

1. Trade balance [CAB]

(CAB)
$$\sum_{c} pwm_{c}XMT_{c} = \sum_{c} pwe_{c}ES_{c} + FSAV + tm_{in}(\sum_{c} PMT_{c}XMT_{c}/EXR)$$

```
CAB..
sum(C$(SAM('ROW',C) ne 0),pwm(C)*XMT(C))
=e=
sum(C$(SAM(C,'ROW') ne 0),pwe(C)*ES(C))
+FSAV
+(tm_{in})*(sum(C$(SAM('ROW',C) ne 0),PMT(C)*XMT(C))/EXR);
```

Trade balance adjustment [ForS]

$$(ForS)$$
 $FSAV = fasv0*FSAD$
 $FASD(t+1) = FASD(t) \times (1+TBg(t))$

FSAV, EXR 중 하나는 fix. 나머지는 조정되는데 현재 모형은 FSAV가 수출입 전망에 맞추어 모형 외부에서 삽입되고 EXR가 조정

```
ForS..FSAV=e=fsav0*FSAD;
FSAD=FSAD*(1+TBg(t));
```


차 례

가계: Income balance + Consumption Demand

- 1. 소득 수취 \rightarrow 감가상각(강제저축) \rightarrow 조세지불 \rightarrow 소비, 재량저축
 - ▶ 소득 = 요소소득 + 이전소득 + 잔폐물 판매소득
 - ▶ 소득세 = 소득세율*(소득-감가상각)
 - ▶ 가처분소득 = (1-소득세율)*(소득-감가상각)
 - ▶ 소비 = 한계소비성향*가처분소득
 - ▶ 저축 = 한계저축성향*가처분소득+감가상각

2. Equations

- ▶ 재량소비, 재량저축: Roy's identity
- ▶ income balance: Roy's identity를 사용하면 redundant. 포함되지 않음
- ▶ 소득, 총저축 정의식은 포함

가계:Income definition

1. 요소소득 : LY_h [HouseLY_h], KY_h [HouseKY_h]

$$(HouseLY_h) \hspace{1cm} LY_h = \sum_{L} shr_{L,h} L_l^s W_l$$

$$(HouseKY_h) \hspace{1cm} KY_h = \sum_{L} shr_{K,h} K_k^s R_k$$

$$\begin{aligned} & \text{HouseLY (H) ..LY (H) = e=sum (L, shr (L, H) *Ls (L) *W (L));} \\ & \text{HouseKY (H) ..KY (H) = e=sum (K, shr (K, H) *Ks (K) *R (K));} \end{aligned}$$

2. 이전소득: TR_h [Tras_h]

$$(Tras_h) \quad TR_h = tr0_{per,h} \cdot cpi \cdot Oldpop + crev_h \cdot crevhshr_h \cdot TCREV$$

 $\label{eq:tras} \mbox{Tras} \mbox{(H)} \mbox{..Tr} \mbox{(H)} = \mbox{e=tr0_per} \mbox{(H)} \times \mbox{cpi*Oldpop+crevh*crevh_share} \mbox{(H)} \times \mbox{TCREV};$

3. 총소득: YH_h [HouseY_h]

$$(HouseY_h)$$
 $YH_h = LY_h + KY_h + TR_h + ResinC;$

HouseY(H)..YH(H) = e=LY(H)+KY(H)+TR(H)+ResinC;

4. 가처분소득: YD_h [HouseYD_h]

$$(HouseYD_h) \quad YD_h = (1 - TINSR) \cdot \left[LY_h + KY_h + TR_h + ResinC - \delta \sum_k shr_{k,h} K_k^s \right]$$

$$\label{eq:houseYD} \begin{aligned} &\text{HouseYD} \text{ (H)} \dots \text{YD} \text{ (H)} \\ &= &\text{e=} (1-\text{TINSR}) * (\text{LY} \text{ (H)} + \text{KY} \text{ (H)} + \text{TR} \text{ (H)} + \text{ResinC-delta} * \text{sum} \left(K, \text{ shr} \left(K, \text{ H} \right) * Ks \left(K \right) \right) \right); \end{aligned}$$

가계:Consumption and Saving

1. consumption: $XAC_{c,h}$ [HouseD_{c,h}]

$$(HouseD_{c,h})$$
 $XAC_{c,h} = \frac{\mu_{c,h}YD_h}{PA_c(1+tc_{in})}$

```
HouseD(C,H)$(SAM(C,'Household') ne 0)
..XAC(C,H)=e=mu(C,H)*(YD(H)/(PA(C)*(1+tc_{in})));
```

2. savings: 한계저축성향, 저축

```
\begin{split} & \texttt{Saver}(\texttt{H}) \dots \texttt{MPS}(\texttt{H}) = \texttt{e} = \texttt{mus}(\texttt{H}) \text{;} \\ & \texttt{Hsave}(\texttt{H}) \dots \texttt{SH}(\texttt{H}) = \texttt{e} = \texttt{MPS}(\texttt{H}) \times \texttt{YD}(\texttt{H}) + \texttt{delta} \times \texttt{sum}(\texttt{K}, \texttt{shr}(\texttt{K}, \texttt{H}) \times \texttt{Ks}(\texttt{K})) \text{;} \\ & \texttt{holds}(\texttt{H}) \dots \texttt{SH}(\texttt{H}) = \texttt{e} = \texttt{MPS}(\texttt{H}) \times \texttt{YD}(\texttt{H}) + \texttt{delta} \times \texttt{sum}(\texttt{K}, \texttt{shr}(\texttt{K}, \texttt{H}) \times \texttt{Ks}(\texttt{K})) \text{;} \\ & \texttt{holds}(\texttt{H}) \dots \texttt{SH}(\texttt{H}) = \texttt{e} = \texttt{MPS}(\texttt{H}) \times \texttt{YD}(\texttt{H}) + \texttt{delta} \times \texttt{sum}(\texttt{K}, \texttt{shr}(\texttt{K}, \texttt{H}) \times \texttt{Ks}(\texttt{K})) \text{;} \\ & \texttt{holds}(\texttt{H}) \dots \texttt{SH}(\texttt{H}) = \texttt{e} = \texttt{MPS}(\texttt{H}) \times \texttt{YD}(\texttt{H}) + \texttt{delta} \times \texttt{sum}(\texttt{K}, \texttt{shr}(\texttt{K}, \texttt{H}) \times \texttt{Ks}(\texttt{K})) \text{;} \\ & \texttt{holds}(\texttt{H}) \dots \texttt{holds}(\texttt{H}) = \texttt{holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \text{;} \\ & \texttt{holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \text{;} \\ & \texttt{holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \text{;} \\ & \texttt{holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \text{;} \\ & \texttt{holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \text{;} \\ & \texttt{holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \text{;} \\ & \texttt{holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \times \texttt{Holds}(\texttt{H}) \text{;} \\ & \texttt{holds}(\texttt{H}) \times \texttt{Holds}
```

40/1

정부: 수입, 지출, 예산균형

- 1. 정부: 정부수입을 정부소비 및 정부저축에 사용
 - ▶ 정부 수입: 조세
 - ▶ 수출입: 관세, 수출세
 - ▶ 간접세: 순생산물세(PTAXin), 기타생산세(PTAXex)
 - ▶ 탄소세(TCREV)
 - 소득세(YTAX)
 - ▶ 정부 지출: 정부소비, 이전지출
 - 정부소비:정부가 생산물을 구입하여 시장수요의 일부 구성
 - 이전지출:정부가 가계에 소득을 이전
 - ▶ 정부 예산균형식: 정부수입 = 정부지출 + 정부저축

Equations

- ▶ 정부 수입
 - ▶ 세율 정의식
- ▶ 정부 지출: 소비지출, 이전지출
- ▶ 예산 균형식 : 정부 저축

정부:수입

1. 정부수입: YG [GovI]

$$\begin{split} (GovI) & YG &= \sum_{a}(tain_{a}+taex_{a})PC_{a}XC_{a} + \sum_{c}(tm_{c})\cdot pwm_{c}\cdot XMT_{c}\cdot EXR + \sum_{c}(te_{c})\cdot pwe_{c}\cdot ES_{c}\cdot EXR \\ & + \quad TINSR\cdot \left[\sum_{h}(YH_{h}-\delta\sum_{k}shr_{k,h}K_{k}^{s})\right] \\ & + \quad \sum_{gc,a}gtax_{gc}QINTG_{gc,a} + \sum_{gc,c,a}gtax_{gc}QGE_{gc,c,a} \\ & + \quad (tc_{in})\sum_{c,h}PA_{c}XAC_{c,h} + (tg_{in})\sum_{c}PA_{c}XAF_{gov,c} + (tiv_{in})\sum_{c}PA_{c}XAF_{s-i,c} + (tm_{in})\sum_{c}PMT_{c}XMT_{c} \\ & \\ & \\ \text{GovI}..YG=e=\\ & \\ \text{sum}\left(\text{S}\left(\text{sum}\left(\text{C},\text{SAM}\left(\text{A},\text{C}\right)\right)>0\right), \left(\text{ta_in}\left(\text{A}\right) + \text{ta_ex}\left(\text{A}\right)\right) *PC\left(\text{A}\right) *XC\left(\text{A}\right)\right) \\ & \\ + \text{sum}\left(\text{C}\left(\text{SAM}\left(\text{C},\text{SAM}\left(\text{C}\right)\right)>0\right), \left(\text{ta_in}\left(\text{A}\right) + \text{ta_ex}\left(\text{A}\right)\right) *PC\left(\text{A}\right) *XC\left(\text{A}\right)\right) \\ & \\ + \text{sum}\left(\text{C}\left(\text{SAM}\left(\text{C},\text{CA}\right)\right)>0\right), \left(\text{ta_in}\left(\text{A}\right) + \text{ta_ex}\left(\text{A}\right)\right) *PC\left(\text{A}\right) *XC\left(\text{A}\right)\right) \end{split}$$

```
GOV1.1G-G-Sum(C,SAM(A,C))>0), (ta_in(A)+ta_ex(A))*PC(A)*XC(A))
+sum(C$(SAM('ROW',C) ne 0),tm(C)*pwm(C)*XMT(C)*EXR)
+sum(C$(SAM(C,'ROW') ne 0),te(C)*pwe(C)*E$(C)*EXR)
+(TINSR)*sum(H, (YH(H)-delta*sum(K,shr(K,H)*Ks(K))))
+sum((GC,A)$(ghg('process',A)>0),gtax(GC)*QINTG(GC,A))
+sum((GC,C,A)$(ghg(C,A)>0),gtax(GC)*QEE(GC,C,A))
+tc_{in}*sum((C,H)$(SAM(C,'Household') ne 0),PA(C)*XAC(C,H))
+tg_{in}*sum(C$(SAM(C,'Sov') ne 0),PA(C)*XAF('Sov',C))
+tiv_{in}*sum(C$(SAM(C,'Sov'))
+tm {in}*sum(C$(SAM(C,'SOV',C))
+tm {in}*sum(C$(SAM(C,'SOV',C))
+tm {in}*sum(C$(SAM(C,'ROW',C)) ne 0),PMT(C)*XMT(C));
```

정부:지출, 예산균형

1. 정부 지출: $XAF_{gov,c}$ [$GovE_c$], TR_h [$Tras_h$]

$$XAF_{gov,c} = qgr0_c \cdot \frac{\sum_c PA_c XA_c}{PA_c (1 + tg_{in})} + \frac{qg0_c}{\sum_c qg0_c} \frac{crevc \cdot TCREV}{PA_c (1 + tg_{in})}$$

$$\begin{split} & \text{GovE}\left(\text{C}\right) \$ \left(\text{SAM}\left(\text{C,'Gov'}\right) \text{ ne } 0 \right) \\ & ... \text{XAF}\left(\text{'Gov'},\text{C}\right) = & \text{e} = \text{qgr0}\left(\text{C}\right) * \text{sum}\left(\text{CP,PA}\left(\text{CP}\right) * \text{XA}\left(\text{CP}\right)\right) * \left(1/\left(\text{PA}\left(\text{C}\right) * \left(1 + \text{tg}_{\text{A}}\left\{\text{in}\right\}\right)\right)\right) \\ & + \left(\text{qg0}\left(\text{C}\right) / \text{sum}\left(\text{CP,qg0}\left(\text{C}\right)\right)\right) * \text{crevc*TCREV}/\left(\text{PA}\left(\text{C}\right) * \left(1 + \text{tg}_{\text{A}}\left\{\text{in}\right\}\right)\right); \end{aligned}$$

2. 예산균형: [GovB], 정부저축(SG) 결정

$$SG = YG - \sum_{c} PA_{c}(1 + tg_{in})XAF_{gov,c} - \sum_{h} TR_{h} - crevI * TCREV$$

GovB..SG=e=

$$\begin{tabular}{ll} YG-sum(C$(SAM(C,'Gov') ne 0),PA(C)*(1+tg_{in})*XAF('Gov',C)) \\ -sum(H,TR(H))-crevI*TCREV; \end{tabular}$$

예산균형은 정부저축 혹은 소득세율을 조정하여 달성. 현재 소득세율이 fix 되어 정부저축이 조정

3. 소득세율: [Ytax] 실효소득세율 TINSR 결정

$$(Ytax) \quad TINSR = \frac{\sum_{h} (YH_{h} - \delta \sum_{k} shr_{k,h} K_{k}^{x}) * TINSO - crevtax * TCREV}{\sum_{h} (YH_{h} - \delta \sum_{k} shr_{k,h} K_{k}^{x})}$$

 $\label{eq:continuous} $$ Ytax..TINSR=e = (sum(H, (YH(H)-delta*sum(K,shr(K,H)*Ks(K))))*TINSO-crevtax*TCREV)/sum(H, (YH(H)-delta*sum(K,shr(K,H)*Ks(K))));$

44/1

저축-투자: 투자 결정? Warlas dummy 결정

- 1. 저축-투자 부문: 정부, 민간, 해외저축과 투자소비 잔폐물 수입으로 투자재 구입
- 2. 투자수요: $XAF_{s-i,c}$ [Inv_D] 초기치의 일정 배수

$$(InvD_c)$$
 $XAF_{s-i,c} = qinv0_c \cdot IVAD$

InvD(C) \$ $(SAM(C, 'S-I') ne 0) .. XAF('S-I', C) = e = qinv_o(C) *IVAD;$

3. 투자-저축 균형: [InvM], Warlas dummy (Warlas) 결정

$$(InvM) \qquad PA(t+tiv_{in})XAF_{s-i,c} = Warlas + \sum_{h} SH_{h} + SG + FSAV * EXR + ResinI;$$

InvM..

sum(C\$(SAM(C,'S-I') ne 0),PA(C)*(1+tiv_{in})*XAF('S-I',C))
=e=Warlas+sum(H,SH(H))+SG+FSAV*EXR+ResinI;

- 4. 상품시장 청산에 의해 결정된 투자지출의 합은 Warlas=0 인 투자-저축 균형을 만족(Warlas' law)
- 5. 개별 투자수요는 상품시장 청산에 의해 결정되는 투자수요의 합을 초기치의 비중에 따라 배분
- 6. 현재 저축-투자 청산은 MPS가 고정되어 있어서 IVAD를 조정하여 달성
 - ▶ 투자를 외삽하려면 MPS를 고정시키는 방정식을 없애고 투자를 고정하는 방정식을 도입

시장청산조건: 요소시장

$$(LabM_l)$$
 $L_l^s = \sum_a LD_{l,a}$ $(CapM_k)$ $K_l^s = \sum_a KD_{k,a}$

LabM(L)..Ls(L) =g=sum(A\$(SAM(L,A)>0),LD(L,A)); CapM(K)..Ks(K) =g=sum(A\$(SAM(K,A)>0),KD(K,A));

2. 요소공급: Reduced form 노동 공급 [$Labsup_l$], Capital Evolution

$$(Labsup_l) \qquad \qquad L_l^s = LW_l^0 (1 - TINSR) \left[\frac{W_l}{cpi} \right]^{s_l^L}$$

$$K_{k,0}^s = K_0$$

$$K_{k,t+1}^s = (1 - \delta)K_{k,t}^s + \sum_c XAF_{s-i,c}$$

$$\begin{split} & \text{Labsup}\left(L\right) \ldots Ls\left(L\right) = & \text{e=Lw0}\left(L\right) \star \left(\left(\left(1 - \text{TINSR}\right) \star \left(W\left(L\right) / \text{cpi}\right)\right) \star \star \text{epsilon_L}\left(L\right)\right); \\ & \text{Ks.Fx}\left(K\right) & = & \text{Ks0}\left(K\right) \\ & \text{Ks.Fx}\left('\text{Capital'}\right) = & \text{Ks.L}\left('\text{Capital'}\right) \star \left(1 - \text{delta}\right) + \text{sum}\left(C, \text{XAF.L}\left('\text{S-I'}, C\right)\right); \\ \end{aligned}$$

시장청산조건: 생산물시장

생산물시장: 국내수요 = 아밍턴 재화 공급 [$ComMENCN_c$ (화석연료이외), $ComMENC_c$ (화석연료)]

$$(ComMENCN_c) \qquad XA^c = \sum_a XAP_{c,a} + \sum_h XAC_{c,h} + \sum_{fin = \{gov,s-i\}} XAF_{fin,c}$$

$$(ComMENC_c) \qquad XA^c = \sum_a QCE_{c,a} + \sum_h XAC_{c,h} + \sum_{fin = \{gov,s-i\}} XAF_{fin,c}$$

ComMENCN(C)\$(ENCN(C))

- ..XA(C) = g = sum(A\$XAPA(C,A),XAP(C,A))
- +sum(H\$XACH(H,C),XAC(C,H))+sum(FD\$FD_C(C,FD),XAF(FD,C)); ComMENC(C)\$(ENC(C))
- ..XA(C) = g = sum(A\$XEPA(C,A),QCE(C,A))
- +sum(H\$XACH(H,C),XAC(C,H))+sum(FD\$FD_C(C,FD),XAF(FD,C));

Etc: Normalization, 잔폐물 수입

Normalization [Norm]: cpi =1, cwrt_c guarantees initial period cpi=1

$$(Norm) cpi = \sum_{c} PA_{c} * cwrt_{c}$$

Norm..cpi=e=sum(C,PA(C)*cwrt(C));

 잔페물 수입 [ResC, Resl]: sum of residue demand = residue supply from household and investment

$$\begin{array}{ll} (ResC) & ResinC = \theta_c^{Res} \cdot \sum_a PC_a \alpha_a^{nres} XC_a \\ \\ (ResI) & ResinI = \theta_{iv}^{Res} \cdot \sum_a PC_a \alpha_a^{nres} XC_a \end{array}$$

```
\label{eq:ResC.ResinC} $\operatorname{ResinC} = \operatorname{thetaRes_c} * \operatorname{sum} (A \ (\operatorname{SAM}(A,C)) > 0) \ , PC(A) * \operatorname{alpha\_nres}(A) * \operatorname{XC}(A)); $\operatorname{ResI..ResinI} = \operatorname{e} \operatorname{thetaRes\_iv} * \operatorname{sum} (A \ (\operatorname{SAM}(A,C)) > 0) \ , PC(A) * \operatorname{alpha\_nres}(A) * \operatorname{XC}(A)); $\operatorname{ResinI} = \operatorname{A}(A,C) > 0) \ , PC(A) * \operatorname{Alpha\_nres}(A) * \operatorname{XC}(A)); $\operatorname{ResinC} = \operatorname{A}(A,C) > 0) \ , PC(A) * \operatorname{Alpha\_nres}(A) * \operatorname{XC}(A)); $\operatorname{Alpha\_nres}(A) * \operatorname{XC}(A) > 0; $\operatorname{Alpha\_nres}(A) * \operatorname{Alpha\_nres}(A) * \operatorname{XC}(A) > 0; $\operatorname{Alpha\_nres}(A) * \operatorname{Alpha\_nres}(A) * \operatorname{
```

Etc: 탄소세수

Carbon tax revenue [$Creve_a$ (no process emission), $Crevp_a$ (with process), $TCREV_{sum}$ (total)]

$$\begin{split} \textit{CREVE}_{a} & \textit{CREV}_{a|\text{No process emission}} = \sum_{gc} \textit{gtax}_{gc} [\sum_{c,a} \textit{QGE}_{gc,c,a}] \\ \textit{CREVEP}_{a} & \textit{CREV}_{a|\text{With process emission}} = \sum_{gc} \textit{gtax}_{gc} [\sum_{c,a} \textit{QGE}_{gc,c,a}] + \sum_{gc} \textit{gtax}_{gc} \textit{QINTG}_{gc,a} \\ \textit{TCREV sum} & \textit{TCREV} = \sum_{a} \textit{CREV}_{a} \end{split}$$

```
CREVE(A)$(ghg('process',A) eq 0)
..CREV(A)=e=sum(GC,gtax(GC)*sum(C$fuelA(A,C),QGE(GC,C,A)));
CREVP(A)$(ghg('process',A) ne 0)
..CREV(A)=e=sum(GC,gtax(GC)*sum(C$fuelA(A,C),QGE(GC,C,A)))
+sum(GC,gtax(GC)*QINTG(GC,A));
TCREVsum..TCREV=e=sum(A,CREV(A));
```

Dynamics: 자본, 고용, 노령인구, 노동생산성, 무역수지,탄소세

```
K_{k,t+1}^{s} = (1 - \delta)K_{k,t}^{s} + \sum_{c} XAF_{s-i,c}
                               자본
                               고용
                                          LW_{t+1}^{0} = LW_{t}^{0} \cdot (1 + g_{t}^{L})
                                          OldPop_{t+1} = OldPop_t \cdot (1 + g_t^{OP})
                           노령인구
                                          \lambda_{t+1}^T = \lambda_t^T + lpgrow_t
                         노동생산성
                           무역수지
                                          FASD_{t+1} = FASD_t \times (1 + g_t^{TB})
                             탄소세
                                          gtax_{GC t+1} = gtax_{gc t} + gtaxPolicy_{gc t}
Ks.Fx('Capital')=Ks.L('Capital')*(1-delta)+sum(C,XAF.L('S-I',C));
Lw0(L) = Lw0(L) * (1+lgrow(t));
Oldpop=Oldpop*(1+Oldpopg(t));
FSAD=FSAD*(1+TBq(t));
lambdat=lambdat+lpgrow(t);
gtax(GC)=gtax(GC)+gtax_policy(GC,t);
```

인구, 경제성장, 탄소세

- ▶ 고용: 통계청 인구전망에 2010년 연령별 취업률 적용
- ▶ 노령인구: 통계청 인구전망
- ▶ 국제수지:중장기 환경전망 및 대응전략(2012) 위탁연구 성과 활용
- ▶ 경제성장: 2010~20년간 연평균 3.0% 성장
- ▶ 탄소세: 2016년 1만원/toe 에서 연 1만원/toe씩 5년간 인상
- ▶ 산업구조는 사전에 설정하지 않았고, AEEI는 불변으로 가정

탄소세

gtax (10000 원/toe)

gtax

배출량

▶ 2020년 CO2 배출량 19.6% 감축 가능

원단위배출량

▶ 2020년 CO2 배출량/GDP 18.9% 감축 가능

GDP loss

- ▶ 탄소세로 인한 GDP 손실: BAU GDP 0.18%(2016)~0.95%(2020)
 - ▶ 2016~2020 GDP 손실/BAU GDP 평균= 0.56%

탄소세와 산별 총소비 증가율

- ▶ 에너지 산업 증가율 하락 > 비 에너지 산업 증가율 하락
 - ▶ 에너지 산업 share 하락
- ▶ 비 에너지 Sector: 에너지 집약 산업 증가율 하락> 타 산업 증가율 하락
 - ▶ 에너지 집약 산업 (EINT)share 감소
- ▶ 에너지 Sector: 석탄 증가율 하락 > 기타 에너지 산업 증가율 하락
 - ▶ 석탄 share 감소

총소비 증가율: 산업

산별 총소비 증가율 (2010-20)

에너지-비에너지 비중 변화

비에너지 secter 비중 변화

에너지 secter 비중 변화

Discussion

- ▶ 감축은 Energy mix 변화보다는 산출 하락이 주도
 - ▶ 석탄-비석탄 에너지복합재 대체탄력성 0.5: 너무 낮은가?
- ▶ 에너지 Sector 내에서는 석탄 비중 하락이 뚜렷
 - ▶ '전력화(Electrification)'현상이 나타나지 않음
 - 전력의 석탄 의존도가 높아서 탄소세부과 이후 타 에너지원 보다 가격경쟁력이 악화
 - Gas 와 Oil이 비석탄복합재로 석탄과 대체되다 보니 석유의 share가 증가하는 현상 발생

전력가격/비전력에너지복합재가격

• • •

감사합니다.