"Network anatomy and in vivo physiology of visual cortical neurons"

Davi Bock, et. al, 2015 Presented by Joshua Vogelstein

Outline

- Opportunity
- Challenge
- Action
- Resolution
- Discussion

Opportunity

- Serial Section Electron Microscopy (SSEM) is enabling relatively highthroughput anatomy
- Two-photon microscopy of calcium physiology imaging (2P Cal) is enabling relatively high-throughput physiology
- We can better understand the brain by understanding structure in terms of function and vice versa
- We don't understand the relationship between connectivity and tuning properties in V1 of mouse
- Previous hypothesis: that inhibitory interneurons in the mouse primary visual cortex receive dense, convergent input from nearby excitatory (pyramidal) neurons with widely varying preferred stimulus orientations

Challenge

- SSEM is relatively slow
- 2PCal might degrade EM data
- Not clear how to register EM and 2P data
- Tracing EM data is hard

Action

- Build TEMCA
- Collect "pilot" 2P data
- Register and trace manually
- Analyze relationship between connectivity and tuning

Resolution

- 2P does not seem to significantly degrade EM quality
- EM data can be manually traced
- EM & 2P data can be manually co-registered
- Convergent inhibitory connections are independent of tuning properties

Discussion

- 2P doesn't degrade EM too much
- Don't fret aligning 2P & EM
- Scalable EM and manual sparse tracing is totally doable
- Seems like convergence onto inhibitory neurons is independent of tuning, now can confirm that and check other stuff
- We need automatic tools for graph inference from EM data

Thank you. Questions?

Stats	C. Priebe, M Maggioni, D Dunson, G Sapiro, B Caffo, M Miller
Code	Randal Burns, OPEN CONNECTOME PROJECT
Data	C Reid, M Milham, K Deisseroth, J Lichtman, S Smith, M Ahrens
Funds	TRA (NIH), XDATA & GRAPHS (DARPA), BIGDATA & CRCNS (NIH/NSF)
Love	yummy, family, friends, earth, universe, multiverse!?

e: jovo@jhu.edu, c:443.858.9911 w: jovo.me, openconnecto.me