

Fabricación de estructuras ISOGRID, Cálculo de admisibles y ejercicio 2021

MUSE 2021

Fabricación de estructuras ISOGRID

- Aunque el diseño de estructuras isogrid metálicas data del programa Apolo, su uso es limitado debido a múltiples factores:
 - Problemas de fatiga debidos al fresado químico (microgrietas)
 - Costes de fabricación muy altos respecto a otras estrategias de rigidización
 - Capacidad/coste de fabricación de grandes tamaños limitada.
 - Costes de inspección no destructiva muy altos

Aluminum isogrid used in McDonnell-Douglas launch vehicle components

La fabricación de estructuras isogrid en material compuesto presenta diferencias sustanciales respecto al material metálico:

- Fabricación aditiva vs sustractiva ahorro de material
- Problemas de fatiga vs despegue rigidizadores tolerancia al daño y diseño
- Problemas de mecanizado vs problemas laminado de cruces Requiere métodos alternativos de fabricación de los elementos rigidizadores
 - Laminado
 - Curado

Stanford's TRIG structure

Fabricación de estructuras isogrid-lattice mediante Filament Winding

Ventajas

Laminación sencilla y automática

Desventajas

- Proporción fibra-resina no uniforme
- Tensión inducida en las fibras durante la laminación
- Distribución no uniforme del material a lo largo del nervio
- Torsión de las mechas que redunda en una falta de uniformidad

Fabricación de estructuras isogrid-lattice mediante Fiber Placement

- Minimiza las desventajas de la fabricación por FW
- Se han realizado desarrollos adaptados para este tipo de estructuras
- Problemas en cruces: diferentes estrategias de laminación
 - Cortes
 - Steering

 Comparación de las diferentes estrategias de laminación

Estrategia de laminación con cortes en el cruce de nervios

 Perdida de continuidad de las fibras en los elementos rigidizadores

Estrategia de laminación con steering en el cruce de nervios

 Geometría del cruce modificada

Compactación mediante módulos de silicona (sistema modular)

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES

POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

Cálculo de Admisibles y valores de diseño

REGLA GENERAL" para las propiedades mecánicas del material:

√ "Valores Diseño" módulos

√ "Valores Diseño" resistencias > Valor base

✓ Propiedades dominadas fibra > Normalizadas

✓ Propiedades dominadas matriz >No-normalizadas

Normalizar: convertir o ajustar a un contenido volumétrico en fibra dado (de referencia para diseño), usualmente el 60%.

- Los <u>valores admisibles</u> de diseño (design allowables) son los valores que garantizan la respuesta mecánica del material en las condiciones críticas de servicio previstas en el diseño. Para ello es necesario conocer la distribución estadística de una propiedad, para lo que se debe de disponer de ensayos de una población de "n" valores
- Existen dos bases para calcular estos valores:
 - <u>Valor de diseño "base A"</u>, es aquel valor de la propiedad considerada tal que al menos el <u>99%</u> de la población de valores sea igual o superior a él con un nivel de confianza del <u>95%</u>.
 - Valor de diseño "base B", es aquel valor de la propiedad considerada tal que al menos el 90% de la población de valores sea igual o superior a él con un nivel de confianza del 95%.

MÁSTER UNIVERSIDAD POLITÉCNICA DE MADRID

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

B-basis
A-basis

--- P=0.01 Quantile

P=0.1 Quantile

Experimental data
Normal distribution

¿Cómo hacemos esto en la práctica?

- Aplicaciones
- Excel
- MATLAB Apps Distribution Fitter

- Introducir los datos de los valores cuya distribución se quiere conocer y ver cual es la distribución que mejor se ajusta
 - Valorar la Weibull, normal y lognormal solo...aunque otras se puedan ajustar mejor.
 Hacer los cálculos solo para la que mejor se ajuste

Birnbaum-Saunders Burr EpsilonSkewNormal Exponential Extreme Value Gamma Generalized Extreme Value Generalized Pareto Half Normal Inverse Gaussian Log-Logistic Logistic Lognormal Nakagami Non-parametric Normal Rayleigh Rician Stable t Location-Scale

Distribution: Normal
Log likelihood: 34.7617
Domain: -Inf < y < Inf
Mean: 1.29795
Variance: 0.00190352

Parameter Estimate Std. Err. mu 1.29795 0.00975583 sigma 0.0436294 0.00717263

Estimated covariance of parameter estimates:

mu sigma

mu 9.51762e-05 -6.31145e-19

- Dos metodologías para el cálculo del admisible
 - Numérica: Por medio de integración de la curva de distribución que se obtiene directamente de Matlab
 - Analítica: Por medio de los parámetros de la distribución elegida

Todos los documentos de propiedades del material están disponibles en el NIAR:

- https://www.wichita.edu/industry and defense/NIAR/Research/hexcel8552.php
 - 8552 NCAMP Process Specification y 8552 NCAMP Material Base Specification:
 Documentos que definen los detalles del proceso en base a los que se obtienen las propiedades del material
 - Material Specification: Especificaciones comerciales del material
 - Material Property Data Report: Datos de los ensayos "en crudo"
 - Statistical Analysis Report: Cálculo de las propiedades basadas en los datos de los ensayos

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES

Hexcel Corporation - Hexcel 8552 IM7 Unidirectional

Resin:

POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

Material Specification: NMS 128/2

Prepreg Material:

Process Specification: NPS 81228 "M" Cure Cycle

Fiber:

IM7 unidirectional

Hexcel 8552

Lot 3

Hexcel 8552 IM7 Unidirectional Tape **Lamina Properties Summary**

Tg(dry): 406.43° F Tg(wet): 321.41 ° F Tg METHOD: DMA (SRM 18-94)

Date of fiber manufacture Date of resin manufacture Date of prepreg manufacture

1/26/2007 2/28/2007 2/28/2007

Lot 1

Lot 2 12/25/2006 2/5/2007 1/24/2007 3/1/2007 1/24/2007 3/1/2007 9/2007 to 10/2007

1/22/2008 to 3/4/2010 Date of testing Date of data submittal

4/5/2010

Date of composite manufacture

LAMINA MECHANICAL PROPERTY SUMMARY Data reported as: Normalized & Measured (Normalized by CPT=0.0072 inch)

	CTD Mean		RTD	lean	ETD	ETD Mean		ETW Mean	
	Normalized	Measured	Normalized	Measured	Normalized	Measured	Normalized	Measured	
F ₁ ^{tu} [ksi]									
from LT	357.39	353.70	362.69	371.08			333.50	327.96	
from UNTO*	286.78	281.57	324.62	320.79			346.85	340.46	
E ₁ ^t [Msi]	22.57	22.33	22.99	23.51			24.00	23.77	
v ₁₂ ^t		0.270		0.316				0.393	
- •									
F ₂ ^{tu} [ksi]		9.60	-	9.29			_	3.49	
E ₂ ^t [Msi]		1.46		1.30				0.81	
LINTO Ctrop of the Resid	452.50	440.00	474.20	400.40			470.00	475.00	
UNTO Strength [ksi]	152.58	149.90	171.38	169.16	_		179.23	175.98	
UNTO Modulus [Msi]	11.92	11.71	11.99	11.85			11.94	11.74	
F ₁ ^{cu} [ksi]	296.49	291.99	248.94	251.13	201.93	199.50	173.00	172.58	
from UNC0*	250.45	231.33	240.54	231.13	201.93	199.50	175.00	172.30	
nom onco									
E ₁ ° [Msi]	20.68	20.53	20.04	20.44	20.25	20.00	20.37	20.65	
v ₁₂ °		0.362		0.356		0.374		0.383	
*12									
F2 ^{cu} [ksi]	_	55.31	_	41.44	-		l –	19.02	
E ₂ ^c [Msi]	_	1.53		1.41	-		l –	1.18	
V21 °		0.028		0.024			_	0.018	
UNCO Strength [ksi]	113.26	111.64	94.51	95.11	75.53	75.13	64.28	64.03	
UNCO Modulus [Msi]	7.75	7.64	7.47	7.52	7.57	7.53	7.74	7.82	
ν		0.041	_	0.035		0.030	_	0.017	
of UNC0									
F ₁₂ ^{80.2%} [ksi]	-	11.29	-	7.76	-		_	3.31	
F ₁₂ ^{emax} [ksi]	_	16.56	-		-		_		
F ₁₂ 85%etrain [ksi]		-	-	13.22	-		-	5.54	
G ₁₂ ⁸ [Msi]		0.86		0.68				0.31	

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

Longitudinal Tension Properties (LT) -- (CTD) Strength & Modulus HEXCEL 8552 - IM7 UNI PREPREG

normalizing tolv 0.0072

Specimen	Hexcel	Hexcel Cure	Prepreg	Cure Cycle	Strength	Modulus	Poisson's	Avg. Specimen	# Plies in	Failure
Number	Batch #	Cycle	Lot#	#	[ksi]	[Msi]	Ratio	Thickn. [in]	Laminate	Mode
HFIJA116B	Α	M1	1	1	322.580	22.211	0.213	0.044	6	LGM/SGM
HFIJA117B	Α	M1	1	1	344.115	21.742	0.260	0.044	6	LGM/SGM
HFIJA118B	Α	M1	1	1	347.430	22.315	0.223	0.044	6	XGM
HFIJA119B	Α	M1	1	1	357.922	22.822	0.241	0.043	6	XGM
HFIJA11AB	Α	M1	1	1	340.005	21.777	0.271	0.043	6	LGM/SGM
HFIJA216B	Α	M2	1	2	345.794	22.348	0.292	0.044	6	LGM/SGM
HFIJA217B	Α	M2	1	2	357.079	21.911	0.270	0.044	6	LGM/SGM
HFIJA218B	Α	M2	1	2	382.177	22.309	0.260	0.044	6	LGM/SGM
HFIJB116B	В	M1	2	1	372.292	22.689	0.249	0.043	6	XGM
HFIJB117B	В	M1	2	1	363.978	22.690	0.270	0.043	6	XGM
HFIJB118B	В	M1	2	1	372.635	22.583	0.273	0.044	6	XGM
HFIJB119B	В	M1	2	1	381.972	22.914	0.287	0.044	6	XGM
HFIJB11AB	В	M1	2	1	338.611	21.767	0.263	0.044	6	LGM/SGM
HFIJB216B	В	M2	2	2	356.433	22.119	0.282	0.043	6	XGM
HFIJB217B	В	M2	2	2	378.947	22.968	0.260	0.043	6	LGM/SGM
HFIJB218B	В	M2	2	2	357.856	21.870	0.259	0.044	6	XGM
HFIJC116B	С	M1	3	1	351.051	22.324	0.265	0.044	6	XGM
HFIJC117B	С	M1	3	1	350.530	22.293	0.299	0.045	6	XGM
HFIJC118B	С	M1	3	11	383.478	22.583	0.297	0.044	6	XGM
HFIJC216B	С	M2	3	2	342.104	22.203	0.316	0.044	6	SGM/LGM
HFIJC217B	С	M2	3	2	348.534	22.476	0.299	0.044	6	XGM
HFIJC218B	С	M2	3	2	349.867	22.421	0.295	0.044	6	XGM

Avg. t _{ply}	Strengthnorm	Modulusnorm
[in]	[ksi]	[Msi]
0.0073	325.692	22.425
0.0073	349.426	22.078
0.0073	351.451	22.573
0.0072	359.717	22.937
0.0072		21.852
0.0073	350.730	22.667
0.0073	364.105	22.342
0.0073	365.950	22.541
0.0072	369.851	22.540
0.0071	359.906	22.438
0.0073	376.229	22.801
0.0073	364.904	23.099
0.0073	341.805	22.103
0.0072	355.058	22.034
0.0072	379.970	23.030
0.0073	360.617	22.039
0.0073	356.197	22.651
0.0075	363.513	23.119
0.0074	373.715	23.219
0.0073	346.196	22.468
0.0073	352.015	22.832
0.0073	354.321	22.708

Average	353.700	22.333	0.270	Average _{norm} 0	0.0073	357.389	22.568
Standard Dev.	13.087	0.368	0.025	Standard Dev.norm		12.620	0.387
Coeff. of Var. [%]	3.700	1.646	9.317	Coeff. of Var. [%]norm		3.531	1.717
Min.	322.580	21.742	0.213	Min. 0	0.0071	325.692	21.852
Max.	378.947	22.968	0.316	Max. 0	0.0075	379.970	23.219
Number of Spec.	22	22	22	Number of Spec.	22	22	22

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

Hexcel 8552 IM7 Unidirectional Tape F₁^{tu} Strength From LT Normalized

Ejercicio MUSE 2021

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

- Geometría: refuerzos verticales, horizontales y helicoidales con el siguiente ancho
 - $-b_h = 3mm$
 - $-b_v = 5 \text{mm}$
 - $b_c = 5 mm),$

• Los refuerzos helicoidales formarán γ =55º respecto a la base inferior y serán perpendiculares respecto a la base superior γ =0º

LATTICE (CELOSIA)

Grupo 1: María Elena Piqueras, Daniel del Rio, Andrés Pedraza, David Estébanez, Anabel Soria: 15kN con un desplazamiento máximo de 0,5mm

Grupo 2: Andrea Bravo, Laura García, Diego Mataix, Marina Merchán, Siro Muela: 15kN con un desplazamiento máximo de 0,5mm

ISOGRID

Grupo 3: David Huergo, Noelia Martínez, Miguel Ramiro, Pablo Romero, José María Vergara: 30kN con un desplazamiento máximo de 0,5mm

Grupo 4: Maria Alonso, Daniel Navajas, Pablo Zapatero, Javier Vega, Rafael Luque, Gonzalo Moreno: 30kN con un desplazamiento máximo de 2mm

MÁSTER UNIVERSITARIO EN SISTEMAS ESPACIALES POR LA UNIVERSIDAD POLITÉCNICA DE MADRID

CQUAD4 Quadrilateral Plate Element Connection

Defines an isoparametric membrane-bending or plane strain quadrilateral plate element.

Format:

1	2	3	4	5	6	7	(8)	9	10
CQUAD4	EID	PID	GI	G2	G3	G4	THETA or MCID	ZOFFS	
		TFLAG	TI	T2	T3	T4			

Example:

CQUAD4	HI	203	31	74	75	32	2,6	0.3	
			1,77	2.04	2.09	1.80			

Field	Contents					
EID	Element identification number. (0 < Integer < 100,000,000)					
PID	Property identification number of a PSHELL, PCOMP, PCOMPG or PLPLANE entry. (Integer > 0; Default = EID)					
Gi	Grid point identification numbers of connection points. (Integers > 0, all unique.)					
THETA	Material property orientation angle in degrees. THETA is ignored for hyperelastic elements. See Figure 8-53. See Remark 10. (Real; Default = 0.0)					
ICID	Material coordinate system identification number. The x-axis of the material coordinate system is determined by projecting the T1-axis of the MCID coordinate system onto the surface of the shell element as follows:					
	CORD1R, x-axis of MCID the coordinate is projected onto shell surface and the CORD2R material angle is measured from the G1-G2 line to the to the projected x-axis					
	CORD1C, r-axis of MCID the coordinate is projected onto shell surface through CORD2C the element center and the material angle is measured from the G1-G2 CORD1S, CORD2S					
	Use DIAG 38 to print the computed THETA values. MCID is ignored for hyperelastic elements. For SOL 600, only CORD2R is allowed. See Remark 10.					

(Integer ≥ 0; If blank, then THETA = 0.0 is assumed.)

Figure 8-52 MCID Coordinate System Definition

Visualización en Patran

Utilities > Display > Plot Material Orientation

Mallado regular

- Hay que refinarlo para evitar soluciones espureas
- Definir la forma de los elementos para poder combinarlo con la orientación de los rigidizadores

Mallado Irregular

- Problema con las orientaciones
- Problema con el número de elementos y la distorsión de los mismos

Modo de fallo de las estructuras: PANDEO

Recomendaciones

- Buscar una estrategia de mallado que evite elementos "distorsionados" (usar CQUAD4)
- Verificar desde la geometría la orientación de los ejes elemento y de los ejes material
- Realizar una estrategia de laminado para cumplir las condiciones de diseño
- Evitar mallados densos propensos a elementos distorsionados