README.md

xmanas07 / Digital-electronics-1

Digital-electronics-1

úkol 1: Preparation tasks

Table with button connections on Nexys A7 board

Button	Connection	
BTNL	P17	
BTNR	M17	
BTNU	M18	
BTND	P18	
BTNC	N17	

Table with calculated values

	ber of Number of clk periods in hex	Number of clk periods in binary
--	-------------------------------------	---------------------------------

0

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1A80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"F_4240"	b"1111_0100_0010_0100_0000"
220 ms	25 000 000	x"17D_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2FA_F080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

úkol 2: Bidirectional counter

VHDL architecture (cnt_up_down)

```
begin
   -- p_cnt_up_down:
   -- Clocked process with synchronous reset which implements n-bit
   -- up/down counter.
   p_cnt_up_down : process(clk)
   begin
       if rising_edge(clk) then
          if (reset = '1') then
                                -- Synchronous reset
              s_cnt_local <= (others => '0'); -- Clear all bits
          -- TEST COUNTER DIRECTION HERE
              if (reset = '1') then
                  s_cnt_local <= (others => '0');
              else
                 s_cnt_local <= s_cnt_local + 1;</pre>
              end if;
          end if;
      end if;
   end process p_cnt_up_down;
   -- Output must be retyped from "unsigned" to "std_logic_vector"
```

```
cnt_o <= std_logic_vector(s_cnt_local);
end architecture behavioral;</pre>
```

VHDL reset stimulus proces (tb_cnt_up_down)

```
-- Reset generation process
   _____
   p_reset_gen : process
   begin
      s_reset <= '0';</pre>
      wait for 12 ns;
      -- Reset activated
      s_reset <= '1';</pre>
      wait for 73 ns;
      s_reset <= '0';</pre>
      wait;
   end process p_reset_gen;
   -- Data generation process
   ______
   p_stimulus : process
   begin
      report "Stimulus process started" severity note;
      -- Enable counting
      s_en <= '1';
      -- Change counter direction
      s_cnt_up <= '1';
      wait for 380 ns;
      s_cnt_up <= '0';
      wait for 220 ns;
      -- Disable counting
      s_en <= '0';
      report "Stimulus process finished" severity note;
      wait;
   end process p_stimulus;
end architecture testbench;
```

Screenshot with waveforms

úkol 3: Top level

VHDL source (top.vhd)

```
entity top is
port(
       CLK100MHZ : in std_logic; -- Main clock
               : in std_logic;
                                                       -- Synchronous reset
               : in std_logic_VECTOR(0 downto 0);
                                                      -- Enable input
               : out std_logic_VECTOR(3 downto 0); -- Direction of the counter
               : out std_logic;
       CA
               : out std_logic;
       CB
               : out std_logic;
       CC
       CD
               : out std_logic;
       CE
              : out std_logic;
       CF
              : out std_logic;
               : out std_logic;
       CG
               : out std_logic_VECTOR(8-1 downto 0)
   );
end top;
-- Architecture body for top level
architecture Behavioral of top is
    -- Internal clock enable
   signal s_en : std_logic;
   -- Internal counter
   signal s_cnt : std_logic_vector(4 - 1 downto 0);
begin
   -- Instance (copy) of clock enable entity
   clk_en0 : entity work.clock_enable
       generic map(
           --- WRITE YOUR CODE HERE
                  => 100000000
           g_MAX
       port map(
           --- WRITE YOUR CODE HERE
                   => CLK100MHZ,
           clk
                   => BTNC,
           reset
```

```
ce_o => s_en
    );
-- Instance (copy) of cnt_up_down entity
bin_cnt0 : entity work.cnt_up_down
    generic map(
         --- WRITE YOUR CODE HERE
        g_CNT_WIDTH => 4
    )
    port map(
         --- WRITE YOUR CODE HERE
        clk
                     => CLK100MHZ,
         reset
                    => BTNC,
        en i
                    => s_en,
        cnt_up_i \Longrightarrow SW(0),
        cnt_o => s_cnt
    );
-- Display input value on LEDs
LED(3 downto 0) <= s_cnt;</pre>
-- Instance (copy) of hex_7seg entity
hex2seg : entity work.hex_7seg
    port map(
        hex_i => s_cnt,
         seg_o(6) \Rightarrow CA
         seg_o(5) \Rightarrow CB
         seg_o(4) \Rightarrow CC,
         seg_o(3) \Rightarrow CD,
         seg_o(2) \Rightarrow CE
         seg_o(1) \Rightarrow CF,
         seg_o(0) \Rightarrow CG
    );
-- Connect one common anode to 3.3V
AN <= b"1111 1110";
```

Image of the top layer including both counters, ie a 4-bit bidirectional counter from Part 4 and a 16-bit counter with a 10 ms time base

end architecture Behavioral;

