Introduction and Set Theory

AMC-12

September 20, 2021

Index

Intensive Lecture

Review

Index

Intensive Lecture

2 Review

Introduction to AMC12 I

- Algebra:
 - Systems of Linear Equations;
 - Quadratics & Polynomials;
 - Exponents & Logarithms;
 - Inequalities;
 - Sequences & Series;
 - Trigonometric Functions;
 - Complex Number;
 - · ...

Introduction to AMC12 II

- Geometry:
 - Triangle;
 - Circle;
 - Quadrilateral;
 - Analytical Geometry;
 - Solid Geometry;
 - **•** ...

Introduction to AMC12 III

- Number Theory:
 - Devisibility;
 - Prime and Factorization;
 - Greatest Common Devisor & Least Common multiple;
 - Congruence;
 - Fermat's little theorem & Euler Theorem;
 - **.**..

Introduction to AMC12 IV

- Combinatorics:
 - Fundamental Counting Principles;
 - Permutation and Combination;
 - Probability;
 - Binomial Theorem;

Set Theory

Definition 1 (Set)

A **set** is a collection of distinct objects, called elements of the set. A set can be defined by describing the contents, or by listing the elements of the set, enclosed in curly brackets.

Example:

- The set of all even numbers:
- The set of all books written about travel to Chile;
- {1,3,9,12};
- {red, orange, yellow, green, blue, indigo, purple}.

Notations

- Commonly, we will use a variable to represent a set: $A = \{1, 2, 3, 4\}$;
- The symbol \in means "is an element of": $2 \in A, 5 \notin A$;
- A set that contains no elements, {}, is called the empty set and is notated ∅;
- |A| or Card(A) means the cardinal of A, i.e. the number of elements in A;
- A subset of a set A is another set that contains only elements from the set A, but may not contain all the elements of A: $\{1\} \subseteq \{1,2\}, \{3\} \nsubseteq \{1,2\};$
- A proper subset is a subset not identical to the original set: $\{1\} \subsetneq \{1,2\}$.

Operations

- **Union**: The union of two sets contains all the elements contained in either set (or both sets). The union is notated $A \bigcup B$. More formally, $x \in A \bigcup B$ if $x \in A$ or $x \in B$ (or both);
- Intersection: The intersection of two sets only the elements that are in both sets. The intersection is notated $A \cap B$. More formally, $x \in A \cap B$ if $x \in A$ and $x \in B$;
- **Complement**: The complement of a set A contains everything that is in the **universal set** U but not in the set A. The complement is notated \bar{A} or $U \setminus A$.

Venn Diagram

Definition 2 (Venn diagram)

A Venn diagram represents each set by a circle, usually drawn inside of a containing box representing the universal set. Overlapping area indicate elements common to both sets.

Principle of Inclusion-Exclusion:

•
$$|A \bigcup B| = |A| + |B| - |A \cap B|$$
;

•
$$|A \bigcup B \bigcup C| =$$

 $|A| + |B| + |C| - |A \cap B| -$
 $|B \cap C| - |C \cap A| + |A \cap B \cap C|.$

Index

1 Intensive Lecture

Review

A Short Review

- Definition;
- Notations: in, subset, proper subset;
- Operations: union, intersection, complement;
- Venn diagram and the inclusion-exclusion principle.

