CS2040S Data Structures and Algorithms

Hashing II

Today: More Hashing!

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

Midterm

Thurs. March 10 6:30pm

- Location: MPSH
- Room assignment on Coursemology
- 13+ rooms

Bring to quiz:

- One double-sided sheet of paper with any notes you like.
- Pens/pencils.
- You may not use anything else. (No calculators, no phones, etc.)

Today: More Hashing!

Java hashing

Collision resolution: open addressing

Table (re)sizing

Review: Symbol Table Abstract Data Type

Which of the following is *not* typically a symbol table operation?

- 1. insert(key, data)
- 2. delete(key)
- 3. successor(key)
- 4. search(key)
- 5. None of the above.

Review: Symbol Table Abstract Data Type

Which of the following is *not* typically a symbol table operation?

- 1. insert(key, data)
- 2. delete(key)
- 3. successor(key)
- 4. search(key)
- 5. None of the above.

Abstract Data Types

Symbol Table

public interface	SymbolTable	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Direct Access Tables

Attempt #1: Use a table, indexed by keys.

0	null
1	null
2	item1
3	null
4	null
23456	item3
6	null
7	null
8	item2
9	null

Universe U= $\{0..9\}$ of size m = 10.

(key, value)

(2, item1)

(8, item2)

(5, item3)

Assume keys are distinct.

Direct Access Tables

Problems:

- Too much space
 - If keys are integers, then table-size > 4 billion

- What if keys are not integers?
 - Where do you put the key/value "(hippopotamus, bob)"?
 - Where do you put 3.14159...?

Hash Functions

Problem:

- Huge universe U of possible keys.
- Smaller number n of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Hash Functions

Define hash function $h: U \rightarrow \{1..m\}$

- Store key k in bucket h(k).

Hash Functions

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if:

$$h(k_1) = h(k_2)$$

- Unavoidable!
 - The table size is smaller than the universe size.
 - The pigeonhole principle says:
 - There must exist two keys that map to the same bucket.
 - Some keys must collide!

Chaining

Each bucket contains a linked list of items.

Chaining

Each bucket contains a linked list of items.

Hashing with Chaining

Operations:

- insert(key, value)
 - Calculate h(key)
 - Lookup h(key) and add (key, value) to the linked list.

- search(key)
 - Calculate h(key)
 - Search for (key, value) in the linked list.

Hashing with Chaining

What if all keys hash to the same bucket!

- Worst-case search costs O(n)
- Oh no!

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Assume hash function has this property, even if it may not!

Intuition:

- Each key is put in a random bucket.
- Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Why don't we just insert each key into a random bucket (instead of using h)?

Searching would be very slow. How do you find the item?

Review: Collisions

Assume m = table size, n = number of keys, and m=n. Assume simple uniform hashing assumption. Then what is the probability that two keys collide?

- 1. 1/2
- 2. 1/n
- $3. 1/n^2$
- 4. $1/n^3$
- 5. I don't understand

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / bucket.

Expected search time = 1 + expected # items per bucket

linked list traversal

hash function + array access

A little probability

$$E(X(i, j)) = 1/m$$

Calculate expected number of items in bucket b:

$$\mathbf{E}(\Sigma_{i} \mathbf{X}(i, \mathbf{b})) = \Sigma_{i} \mathbf{E} (\mathbf{X}(i, \mathbf{b}))$$

$$= \Sigma_{i} 1/m$$

$$= n/m$$

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - *m* buckets
- Define: load(hash table) = n/m

= average # items / buckets.

- Expected search time = 1 + n/m

hash function + array access

linked list traversal

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Assume:
 - *n* items
 - $m = \Omega(n)$ buckets, e.g., m = 2n

- Expected search time = 1 + n/m= O(1)

Hashing with Chaining

Searching:

- Expected search time = 1 + n/m = O(1)
- Worst-case search time = O(n)

Inserting:

- Worst-case insertion time = O(1)

** In this case, inserting allows duplicates...

Preventing duplicates requires searching.

Hashing with Chaining

What if you insert n elements in your hash table?

What is the expected *maximum* cost?

- Analogy:
 - Throw n balls in m = n bins.
 - What is the maximum number of balls in a bin?

Cost: $\Theta(\log n / \log \log n)$

(See CS5330 for a proof.)

Hashing: Recap

Problem: coping with large universe of keys

- Number of possible keys is very, very large.
- Direct Access Table takes too much space

Hash functions

- Use hash function to map keys to buckets.
- Sometimes, keys collide (inevitably!)
- Use linked list to store multiple keys in one bucket.

Analyze performance with simple uniform hashing.

- Expected number of keys / bucket is O(n/m) = O(1).

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

java.util.Map

```
public interface java.util.Map<Key, Value>
           void clear()
                                         removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
          Value get (Object k)
                                         get value for k
          Value put (Key k, Value v) adds (k,v) to table
          Value remove (Object k) remove mapping for k
                                         number of entries
            int size()
```

java.util.Map

Parameterized by key and value. Not necessarily comparable

```
public interface java.util.Map<Key, Value>
           void clear()
                                         removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
          Value get (Object k)
                                        get value for k
          Value put (Key k, Value v) adds (k,v) to table
          Value
                remove(Object k) remove mapping for k
                                        number of entries
            int size()
```

java.util.Map

Search by key.

public interface	<pre>java.util.Map<key, value=""></key,></pre>	
void	clear()	removes all entries
boolean	containsKey(Object k)	is k in the map?
boolean	containsValue(Object v)	is v in the map?
Value	get(Object k)	get value for k
Value	put(Key k, Value v)	adds (k,v) to table
Value	remove(Object k)	remove mapping for k
int	size()	number of entries

java.util.Map

Search by value. (May not be efficient.)

```
public interface java.util.Map<Key, Value>
           void clear()
                                         removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
          Value get (Object k)
                                         get value for k
          Value put (Key k, Value v) adds (k,v) to table
          Value
                remove(Object k) remove mapping for k
                                        number of entries
            int size()
```

java.util.Map

Can use any Object as key?

```
public interface java.util.Map<Key, Value>
           void clear()
                                         removes all entries
        boolean containsKey(Object k) is k in the map?
        boolean contains Value (Object v) is v in the map?
                get(Object k)
          Value
                                         get value for k
          Value put (Key k, Value v) adds (k, v) to table
          Value
                remove(Object k) remove mapping for k
                                        number of entries
            int size()
```

java.util.Map

Put new (key, value) in table.

```
public interface java.util.Map<Key, Value>
            void clear()
                                          removes all entries
        boolean containsKey(Object k) is k in the map?
                 contains Value (Object v) is v in the map?
        boolean
                 get(Object k)
           Value
                                          get value for k
           Value put (Key k, Value v)
                                          adds (k, v) to table
           Value
                 remove(Object k)
                                          remove mapping for k
                                          number of entries
             int size()
```

Map Interface in Java

java.util.Map<Key, Value>

- No duplicate keys allowed.
- No mutable keys

If you use an *object* as a key, then you can't modify that object later.

Symbol Table

Key Mutability

```
SymbolTable<Time, Plane> t =
            new SymbolTable<Time, Plane>();
Time t1 = new Time(9:00);
Time t2 = new Time(9:15);
t.insert(t1, "SQ0001");
t.insert(t2, "SQ0002");
                               What time does
                               this plane depart at?
t1.setTime(10:00);
x = \text{new Time (9:00)};
t.search(x);
```

Symbol Table Moral: Keys should be immutable.

Key Mutability

Examples: Integer, String

```
SymbolTable<Time, Plane> t =
           new SymbolTable<Time, Plane>();
Time t1 = new Time(9:00);
Time t2 = new Time(9:15);
t.insert(t1, "SQ0001");
t.insert(t2, "SQ0002");
t1.setTime(10:00);
x = \text{new Time (9:00)};
t.search(x);
```

Design Decisions

Allow duplicate keys?

- No: need to search on insertion
- Yes: faster insertion

What to do if user inserts duplicate key?

- Replace existing key.
- Add new value (i.e., key has two values).
- Error.

Insert empty/null value?

- Deletes existing (key, value) pair.
- Creates a null value.
- Error.

Symbol Tables in Java

java.util.Map

public interface	java.util.Map	<key, value=""></key,>
Set <map.entry<key, value=""></map.entry<key,>	entrySet()	set of all mappings
Set <key></key>	keySet()	set of all keys
Collection <value></value>	values()	collection of all values

Note: not sorted

not necessarily efficient to work with these sets/collections.

What is wrong here?

Example:

There is a bug here!

```
Map<String, Integer> ageMap = new Map<String, Integer>();
ageMap.put("Alice", 32);
ageMap.put("Bernice", 84);
ageMap.put("Charlie", 7);

Integer age = ageMap.get("Alice")
```

- Key-type: String
- Value-type: Integer

What is wrong here?

Example:

Map is an interface!
Cannot instantiate an interface.

```
Map<String, Integer> ageMap = new Map<String, Integer>();

ageMap.put("Alice", 32);

ageMap.put("Bernice", 84);

ageMap.put("Charlie", 7);

Integer age = ageMap.get("Alice")
```

- Key-type: String
- Value-type: Integer

Map Class in Java

Example: HashMap

```
Map<String, Integer> ageMap = new HashMap<String, Integer>();
ageMap.put("Alice", 32);
ageMap.put("Bernice", 84);
ageMap.put("Charlie", 7);

Integer age = ageMap.get("Alice");
System.out.println("Alice's age is: " + age + ".");
```

- Key-type: String
- Value-type: Integer

Map Class in Java

Example: HashMap

```
Map<String, Integer> ageMap = new HashMap<String, Integer>();
ageMap.put("Alice", 32);
ageMap.put("Bernice", null);
ageMap.put("Charlie", 7);

Integer age = ageMap.get("Bob");
if (age==null){
    System.out.println("Bob's age is unknown.");
}
```

- Returns "null" when key is not in map.
- Returns "null" when value is null.

Map Classes in Java

HashMap

Symbol Table

- containsKey
- contains Value
- entrySet
- get
- isEmpty
- keySet
- put
- putAll
- remove
- values

TreeMap

Dictionary

- containsKey
- contains Value
- entrySet
- get
- isEmpty
- keySet
- put
- putAll
- remove
- values

Map Classes in Java

HashMap

Symbol Table

TreeMap

Dictionary

- ceilingEntry
- ceilingKey
- descendingKeySet
- firstEntry
- firstKey
- floorEntry
- floorKey
- headMap
- higherEntry
- higherKey
- ... (and more)

Lots of functionality

Wide Interfaces

VS.

Narrow Interfaces

Limited functionality

Lots of functionality

- Java
- No guarantee of efficiency.
- Easy to use (badly).

Wide Interfaces

VS.

Narrow Interfaces

Limited functionality

- Enforces proper use.
- Restricts usage.

Hashing in Java

How does your program know which hash function to use?

```
HashMap<MyFoo, Integer> hmap = new ...
MyFoo foo = new MyFoo();
hmap.put(foo, 8);
```

Every object supports the method:

```
int hashCode()
```

Java Object

Every class implicitly extends Object

public class	Object	
Object	clone()	creates a copy
boolean	equals(Object obj)	is obj equal to this?
void	finalize()	used by garbage collector
Class	getClass()	returns class
int	hashCode()	calculates hash code
void	notify()	wakes up a waiting thread
void	notifyAll()	wakes up all waiting threads
String	toString()	returns string representation
void	wait()	wait until notified

Hashing in Java

How does your program know which hash function to use?

```
HashMap<MyFoo, Integer> hmap = new ...
MyFoo foo = new MyFoo();
int hash = foo.hashCode();
hmap.put(foo, 8);
```

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode. No random hashcodes!

Is it legal for every object to return 32?

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.

Is it *legal* for every object to return 32? (YES)

Every object supports the method:

```
int hashCode()
```

Default Java implementation:

- hashCode returns the memory location of the object
- Every object hashes to a different location

Must implement/override hashCode () for your class.

Java Library Classes

Integer

Long

String

Integer

```
public int hashCode() {
      return value;
                                                Rules:
                                                  Always returns the same value, if the object hasn't
                                               - If two objects are equal, then they return the same
Note: hashcode is always a 32-bit integer.
```

Note: every 32-bit integer gets a unique hashcode.

What do you do for smaller hash tables? Can there be collisions?

```
public int hashCode() {
  return (int)(value ^ (value >>> 32));
}
```


String

```
public int hashCode() {
  int h = hash; // only calculate hash once
  if (h == 0 && count > 0) { // empty = 0}
       int off = offset;
       char val[] = value;
       int len = count;
       for (int i = 0; i < len; i++) {
            h = 31*h + val[off++];
       hash = h;
  return h;
```

String

HashCode calculation:

hash =
$$s[0]*31^{(n-1)} + s[1]*31^{(n-2)} + s[2]*31^{(n-3)} + ... + s[n-2]*31 + s[n-1]$$

Why did they choose 31?

String

HashCode calculation:

hash =
$$s[0]*31^{(n-1)} + s[1]*31^{(n-2)} + s[2]*31^{(n-3)} + ... + s[n-2]*31 + s[n-1]$$

Why did they choose 31? Prime, 2^5-1

```
public class Pair {
 private int first;
 private int second;
 Pair(int a, int b) {
    first = a;
    second = b;
```

```
public void testPair() {
 HashMap<Pair, Integer> htable =
        new HashMap<Pair, Integer>();
 Pair one = new Pair (20, 40);
 htable.put(one, 7);
 Pair two = new Pair (20, 40);
 int question = htable.get(two);
```

htable.get(new Pair(20, 40)) == ?

- 1. 1
- 2. 7
- 3. 11
- ✓4. null


```
Pair one = new Pair(20, 40);
Pair two = new Pair(20, 40);
one.hashCode() != two.hashCode()
```

```
Pair one = new Pair (20, 40);
Pair two = new Pair (20, 40);
htable.put(one, "first item");
htable.get(one) - "first item"
htable.get(two) - null
```

```
public class Pair {
 private int first;
 private int second;
 Pair(int a, int b) {
    first = a;
    second = b;
 int hashCode(){
    return (first ^ second);
```

```
Pair one = new Pair (20, 40);
Pair two = new Pair (20, 40);
htable.put(one, "first item");
htable.get(one) - "first item"
htable.get(two) - null
one.equals(two) - false
```

Every object supports the method:

```
int hashCode()
```

Rules:

- Always returns the same value, if the object hasn't changed.
- If two objects are equal, then they return the same hashCode.
- Must redefine .equals to be consistent with hashCode.

```
Pair one = new Pair (20, 20);
Pair two = new Pair (20, 20);
htable.put(one, "first item");
htable.get(one) => "first item"
htable.get(two) => null
```

Every object supports the method:

```
boolean equals (Object o)
```

Rules:

- Reflexive: $x.equals(x) \rightarrow true$
- Symmetric: x.equals(y) == y.equals(x)
- **Transitive**: x.equals(y), y.equals(z) \rightarrow x.equals(z)
- Consistent: always returns the same answer
- Null is null: x.equals(null) → false

Every object supports the method:

```
boolean equals (Object o)
```

```
boolean equals(Object p) {
  if (p == null) return false;
  if (p == this) return true;
  if (!(p instanceOf Pair)) return false;
  Pair pair = (Pair)p;
  if (pair.first != first) return false;
  if (pair.second != second) return false;
  return true;
```

Java HashMap

```
public V get(Object key) {
  if (key == null) return getForNullKey();
   int hash = hash(key.hashCode());
  for (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
        e = e.next)
     Object k;
      if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

Java HashMap

```
// This function ensures that hashCodes that differ only
// by constant multiples at each bit position have a
// bounded number of collisions (approximately 8 at
// default load factor).

static int hash(int h) {
  h ^= (h >>> 20) ^ (h >>> 12);
  return h ^ (h >>> 7) ^ (h >>> 4);
}
```

Java HashMap

```
public V get(Object key) {
  if (key == null) return getForNullKey();
   int hash = hash(key.hashCode());
  for (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
        e = e.next)
     Object k;
      if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

Java HashMap

```
public V get(Object key) {
  if (key == null) return getForNullKey();
   int hash = hash(key.hashCode());
  for (Entry<K, V> e = table[indexFor(hash, table.length)];
        e != null;
        e = e.next)
     Object k;
      if (e.hash==hash \&\&((k=e.key)==key)||key.equals(k)))
         return e.value;
  return null;
```

Java checks if the key is equal to the item in the hash table before returning it!

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

100 passengers board the airplane in a random order.

An airplane has 100 seats.

100 passengers board the airplane in a random

Passenger 1 is Mr. Burns.

Mr. Burns sits in a random seat.

An airplane has 100 seats.

- Sits in their assigned seat, if it is free.
- Otherwise, sits in a random seat.

An airplane has 100 seats.

You are passenger #100.

What is the probability your seat is free when you board?

An airplane has 100 seats.

What is the probability your seat is free when you board?

Problem Solving techniques:

Try a plane with 2 seats. Try a plane with 3 seats.

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing

Review

Hash Tables

- Store each item from the symbol table in a table.
- Use hash function to map each key to a bucket.

Resolving Collisions

- Basic problem:
 - What to do when two items hash to the same bucket?

- Solution 1: Chaining
 - Insert item into a linked list.

- Solution 2: Open Addressing
 - Find another free bucket.

Advantages:

- No linked lists!
- All data directly stored in the table.
- One item per slot.

0	null
1	null
2	A
2 3	null
4	null
56	null
6	null
7	null
8	В
9	null

On collision:

Hash Function re-defined:

```
h(\text{key, i}): U \rightarrow \{1..m\}
```

Two parameters:

- key : the thing to map
- i : number of collisions

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$


```
hash-insert(key, data)
1. int i = 1;
                                          // Try every bucket
2. while (i \le m) {
3.
        int bucket = h(key, i);
        if (T[bucket] == null) { // Found an empty bucket
4.
5.
              T[bucket] = {key, data}; // Insert key/data
                                           // Return
6.
              return success;
7.
8.
   <u>i++;</u>
9. }
10.throw new TableFullException(); // Table full!
```

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$


```
hash-search (key)
1. int i = 1;
2. while (i \le m) {
3.
       int bucket = h(key, i);
       if (T[bucket] == null) // Empty bucket!
4.
5.
             return key-not-found;
6.
       if (T[bucket].key == key) // Full bucket.
7.
                  return T[bucket].data;
8. i++;
9. }
10.return key-not-found; // Exhausted entire table.
```

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

del	lete(k	ey)
U	,	(

- Find key to delete
- Remove it from table.
- Set bucket to null.

0	null
1	G
2	A
2 3	C
4	D
4 5	NULL
6	null
7	null
8	В
9	null

What is wrong with delete?

- ✓1. Search may fail to find an element.
 - 2. The table will have gaps in it.
 - 3. Space is used inefficiently.
 - 4. If the key is inserted again, it may end up in a different bucket.

insert(key)

insert(key)

insert(key)

delete(G)

search(key)

0	null
1	NULL
2	A
3	C
4	D
5	key
6	null
7	null
8	В
9	null

insert(key)

delete(G)

search(key)

Probe sequence.

3

1

5

	0	null
	1	NULL
	2	A
7	3	C
•	4	D
	5	key
	6	null
	7	null
	8	В
	9	null

insert(key)

Not found!

Hash Function re-defined:

$$h(\text{key, i}): U \rightarrow \{1..m\}$$

del	lete	(k	ey)	

- Find key to delete
- Remove it from table.
- Set bucket to DELETED.

(Tombstone value.)

0	null
1	G
2	A
3	C
4	D
4 5	DELETED
6	null
7	null
8	В
9	ทบ11

insert(key)

What happens when an insert finds a DELETED cell?

- 1. Overwrite the deleted cell.
 - 2. Continue probing.
 - 3. Fail.

Hash Functions

Two properties of a good hash function:

- 1. h(key, i) enumerates all possible buckets.
 - For every bucket *j*, there is some *i* such that:

$$h(key, i) = j$$

- The hash function is permutation of $\{1..m\}$.
- For linear probing: true!

What goes wrong if the sequence is not a permutation?

- 1. Search incorrectly returns key-not-found.
- 2. Delete fails.
- 3. Insert puts a key in the wrong place
- 4. Returns table-full even when there is still space left.

Hash Functions

Two properties of a good hash function:

2. Simple Uniform Hashing Assumption

Every key is equally likely to be mapped to every bucket, independently of every other key.

For h(*key*, 1)?

For every h(key, i)?

Hash Functions

Two properties of a good hash function:

2. <u>Uniform</u> Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432

•

Hash Functions

Two properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

• 1 2 3 4 Pr(1/m)

• 1243 Pr(0) NOT Linear Probing

• 1 4 2 3 Pr(0)

• 1 4 3 2 Pr(0)

•

Linear Probing

Problem with linear probing: clusters

- If there is a cluster, then there is a higher probability that the next h(k) will hit the cluster.

Linear Probing

Problem with linear probing: clusters

If the table is 1/4 full, then there will be clusters of size:

Linear probing

In practice, linear probing is faster!

- Why? Caching!
- It is cheap to access nearby array cells.
 - Example: access T[17]
 - Cache loads: T[10..50]
 - Almost 0 cost to access T[18], T[19], T[20], ...
- If the table is 1/4 full, then there will be clusters of size: $\theta(\log n)$
 - Cache may hold entire cluster!
 - No worse than wacky probe sequence.

That conversation again...

Professor (for the last 30 years):

"Linear probing is bad because it leads to clusters and bad performance. We need uniform hashing."

Punk in the front row:

"But I ran some experiments and linear probing seems really fast."

Professor:

"Maybe your experiments were too small, or just weren't very well done. Let me prove to you that uniform hashing is good."

Punk in the front row goes and starts a billion dollar startup doing high performance data processing.

Student sitting next to punk in the front row goes to grad school and proves that linear probing really is faster.

Open Addressing

Properties of a good hash function:

2. Uniform Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432

•

Double Hashing

• Start with two ordinary hash functions:

$$f(k)$$
, $g(k)$

• Define new hash function:

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

- Note:
 - Since f(k) is good, f(k, 1) is "almost" random.
 - Since g(k) is good, the probe sequence is "almost" random.

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

- Assume not: then for some distinct i, j < m:

$$f(k) + i \cdot g(k) = f(k) + j \cdot g(k) \mod m$$

- $\rightarrow i \cdot g(k) = j \cdot g(k) \mod m$
- \rightarrow $(i-j)\cdot g(k) = 0 \mod m$
- \rightarrow g(k) not relatively prime to m, since (i-j \neq 0 mod m)

Double Hashing

Hash function

$$h(k, i) = f(k) + i \cdot g(k) \mod m$$

Claim: if g(k) is relatively prime to m, then h(k, i) hits all buckets.

Example: if $(m = 2^r)$, then choose g(k) odd.

If (m==n), what is the expected insert time, under uniform hashing assumption?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. None of the above.

• Chaining:

- When (m==n), we can still add new items to the hash table.
- We can still search efficiently.

Open addressing:

- When (m==n), the table is full.
- We cannot insert any more items.
- We cannot search efficiently.

Average # items / bucket

Define:

- Load $\alpha = n/m$
- Assume α < 1.

Define:

- Load $\alpha = n / m$
- Assume $\alpha < 1$.

Claim:

For *n* items, in a table of size *m*, assuming *uniform hashing*, the expected cost of an operation is:

Average # items / bucket

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

Proof of Claim:

First probe: probability that
 first bucket is full is: n/m

- Second probe: if first bucket is full, then the probability that the second bucket is also full: (n-1)/(m-1)

- Third probe: probability is full: (n-2)/(m-2)

Proof of Claim:

Expected cost:

Proof of Claim:

– Expected cost:

Proof of Claim:

Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$
First probe Second probe Third probe

Proof of Claim:

Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

– Note:

$$\frac{n-i}{m-i} \le \frac{n}{m} \le \alpha$$

Proof of Claim:

– Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

Proof of Claim:

Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

Proof of Claim:

Expected cost:

$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\dots \right) \right) \right)$$

$$\leq 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$$

$$\leq \frac{1}{1-\alpha}$$

Define:

- Load $\alpha = n / m$
- Assume $\alpha < 1$.

Claim:

For *n* items, in a table of size *m*, assuming *uniform hashing*, the expected cost of an operation is:

Average # items / bucket

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Advantages...

Open addressing:

- Saves space
 - Empty slots vs. linked lists.
- Rarely allocate memory
 - No new list-node allocations.
- Better cache performance
 - Table all in one place in memory
 - Fewer accesses to bring table into cache.
 - Linked lists can wander all over the memory.

Disadvantages...

Open addressing:

- More sensitive to choice of hash functions.
 - Clustering is a common problem.
 - See issues with linear probing.
- More sensitive to load.
 - Performance degrades badly as $\alpha \rightarrow 1$.

Disadvantages...

Open addressing:

- Performance degrades badly as $\alpha \rightarrow 1$.

Today

Java hashing

• Collision resolution: open addressing

• Table (re)sizing