Problema B

Bacon Number

Carlinhos adora filmes, e recentemente tem estado fascinado com o número de Bacon, mais conhecido como *Bacon Number*, que é definido da seguinte forma.

- O número de Bacon do ator Kevin Bacon é igual a 0;
- Se o menor número de Bacon de um ator com quem X tenha aparecido em um mesmo filme for b, o número de bacon do ator X é b+1.

Ou seja, o número de Bacon mede o menor caminho entre qualquer ator e o ator Kevin Bacon, em que dois atores são conectados se eles apareceram juntos em um mesmo filme.

Carlinhos está interessado em um problema mais geral: dados dois atores, como conectá-los através de filmes e atores intermediários? São dados N filmes, e, para cada filme, quais dos M atores existentes atuaram nele. Carlinhos quer responder Q consultas: na i-ésima delas, queremos computar alguma forma de conectar o ator x_i com o ator y_i . Devemos achar alguma sequência $x_i = a_1, f_1, a_2, f_2, \ldots, f_{k-1}, a_k = y_i$, em que $1 \le a_j \le N$ são atores e $1 \le f_j \le M$ são filmes, e o ator a_j atuou nos filmes f_{j-1} e f_j , ou indicar que não existe tal sequência.

Entrada

Na primeira linha da entrada, são fornecidos dois inteiros N ($1 \le N \le 100$) e M ($1 \le M \le 10^6$), o número de filmes e o número de atores. Seguem N linhas. Na i-ésima delas, o primeiro inteiro n_i ($1 \le n_i \le M$) denota o número de atores no filme i. Seguem n_i números em ordem crescente separados por espaço: os índices, de 1 a M, dos atores que atuaram no filme i. Na próxima linha, leia um número Q ($1 \le Q \le 10^4$): o número de consultas. As próximas Q linhas descrevem as consultas. Na i-ésima delas, leia dois números x_i, y_i ($1 \le x_i \ne y_i \le M$), os atores que queremos conectar. É garantido que o número total de atores nos filmes é no máximo 10^6 . Isto é, $\sum_i n_i \le 10^6$.

Saída

Para cada uma das consultas, se não existe sequência, imprima uma linha com -1. Caso contrário, imprima duas linhas. Na primeira, o número de atores k_i ($2 \le k_i \le 10^6$) em alguma maneira de conectar x_i e y_i . Na segunda, imprima a sequência como descrita, com k_i atores e $k_i - 1$ filmes, de maneira alternada. Se houver mais de uma maneira de conectar os atores, imprima qualquer uma delas.

Exemplo de entrada 1	Exemplo de saída 1
4 6	2
3 1 2 5	1 1 5
3 1 3 5	3
2 2 4	1 1 2 3 4
1 6	4
4	3 2 1 1 2 3 4
1 5	-1
1 4	
3 4	
1 6	