Введение

Здесь содержатся знания maxim4133 о математике. Принятые обозначения:

- \forall **квантор всеобщности**. Обозначение условия, которое верно для всех указанных элементов. Читается как «для всех», «для каждого», «для любого» или «все», «каждый», «любой».
- \exists **квантор существования**. Обозначение условия, которое верно хотя бы для одного из указанных элементов. Читается как «существует», «найдётся».
- Э! **квантор существования и единственности**. Обозначение условия, которое верно ровно для одного из указанных элементов. Читается как «существует единственный».
- : «что», «такой (такие)», «что», «так, что», «обладающий свойством».
- ullet \Rightarrow символ следствия. Читается как «если..., то...».
- \Leftrightarrow символ эквивалентности (равносильности). Читается как «тогда и только тогда, когда», «ровно/в точности тогда, когда».
- \wedge знак конъюнкции. Высказывание, полученное при связывании двух других высказываний конъюнкцией, истинно ровно тогда, когда оба связываемых высказываний истинны.
- V знак дизъюнкции. Высказывание, полученное при связывании двух других высказываний дизъюнкцией, истинно ровно тогда, когда истинно хотя бы одно из связываемых высказываний. Дизъюнкция имеет более низкий приоритет по сравнению с конъюнкцией.

Оглавление

1	Дискретная математика				
	1.1	Графи	<u> </u>	3	
		1.1.1	Связность графов	4	
		1.1.2	Эйлеровы графы	4	
		1.1.3	Гамильтоновы графы	1	
	1.2	Дерев		6	
		1.2.1	Остовы	7	
2	Линейная алгебра				
	2.1	Линей	іные комбинации	Ĝ	
	2.2	Матри	щы	Ĝ	
		2.2.1	Операции над матрицами	G	
		2.2.2	Определитель матрицы	10	
		2.2.3	Ранг матрицы	14	
3	Математический анализ				
		3.0.1	Локальный экстремум функции нескольких переменных	16	
		3.0.2	Метод наименьших квадратов	17	
		3.0.3	Условный экстремум	18	
4	Теория множеств				
	4.1	Множ	ества	19	
		4.1.1		19	
		4.1.2		19	
		4.1.3		20	
		4.1.4		20	
5	Раз	ное		22	

Дискретная математика

1.1 Графы

Графом называется пара множеств G=(V,E), где V — множество вершин графа, $E\subseteq V^2$ — множество рёбер графа.

Если $e=\{u,v\},\,e\in E,$ то говорят, что:

- \bullet ребро e соединяет вершины u и v;
- u и v концы ребра e;
- ребро e инцидентно вершинам u и v;
- \bullet вершины u и v инцидентны ребру e.

В дальнейшем будем рассматривать только конечные графы.

На рисунках вершины графа изображают точками, а рёбра $e = \{u, v\}$ — кривыми, соединяющими точки, которые изображают вершины u и v.

Вершины называются соседними, если их соединяет ребро, иначе — несоседними.

Ребро вида $e = \{u, u\}$ называется **петлёй**.

Граф, в котором любые две вершины соединены ребром, называется **полным** и обозначается K_n , где n — число вершин в нём.

Графы $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$ называются **изоморфными**, если существует биекция $\varphi\colon V_1\to V_2$ такая, что $\forall u,v\in V_1\; ((u,v)\in E_1\Leftrightarrow (\varphi(u),\varphi(v))\in E_2),$ иначе — **неизоморфными**.

 φ называется изоморфизмом.

Число рёбер в графе G, инцидентных вершине u, называется **степенью** вершины и обозначается $\deg_G u$.

Лемма 1.1.1 (о рукопожатиях).

Рис. 1.1: Граф K_5

$$\sum_{u \in V} \deg_G u = 2|E|$$

где G = (V, E) -граф.

Доказательство (методом математической индукции).

• База индукции. |E|=0: в таком графе $\displaystyle\sum_{u\in V}\deg u=0.$

• Шаг индукции. Пусть лемма верна для |E| = n. Докажем её для |E| = n+1. Для этого достаточно заметить, что каждое новое ребро увеличивает степени двух вершин на 1.

Маршрутом в графе G = (V, E) называется последовательность вершин и рёбер вида $(v_1; e_1; v_2; \dots; e_k; v_{k+1})$, где $e_i = \{v_i, v_{i+1}\}$.

Маршрут, в котором все рёбра различны, называется цепью.

Цепь, в которой все вершины, за исключением, может быть, первой и последней, различны, называется **простой**.

Маршрут, в котором первая и последняя вершины совпадают, называется замкнутым.

Замкнутая цепь называется циклом.

Маршрут, соединяющий вершины u и v, называется (u, v)-маршрутом.

Лемма 1.1.2. (u, v)-маршрут содержит (u, v)-простую цепь.

Доказательство. Пусть $(u=v_1;e_1;v_2;\ldots;e_k;v_{k+1}=v)$ — не простая цепь, тогда $\exists i< j:v_i=v_j$. Уберём из маршрута подпоследовательность $(e_i;v_{i+1};\ldots;e_{j-1};v_j)$, получим маршрут, в котором совпадающих вершин на одну меньше. Повторяя, получим простую цепь, являющуюся частью данного маршрута. \blacksquare

Лемма 1.1.3. Любой цикл содержит простой цикл. Доказательство аналогично предыдущему.

Лемма 1.1.4. Если в графе есть две различные простые цепи, соединяющие одни и те же вершины, то в этом графе есть простой цикл.

Доказательство. Пусть $(u=v_1;e_1;v_2;\ldots;e_n;v_{n+1}=v), (u=v_1';e_1';v_2';\ldots;e_m';v_{m+1}=v)$ — простые цепи. Найдём наименьшее $i\colon e_i\neq e_i',$ тогда $(v_i;e_i;v_{i+1};\ldots;e_n;v_{n+1}=v_{m+1}';e_m';\ldots;e_i';v_i'=v_i)$ — цикл, значит, можно получить простой цикл. \blacksquare

1.1.1 Связность графов

Вершины u и v называются **связанными**, если существует (u,v)-маршрут, иначе — **несвязанными**.

Граф называется связным, если в нём любые две вершины связаны, иначе — несвязным.

Граф G' = (V', E') называется подграфом графа G = (V, E), если $V' \subseteq V$ и $E' \subseteq E$.

Компонентой связности графа называется его максимальный (относительно включения) связный подграф.

1.1.2 Эйлеровы графы

Цикл, содержащий все рёбра графа, называется эйлеровым.

Граф, содержащий эйлеров цикл, называется эйлеровым.

Теорема 1.1.1. Связный граф эйлеров ⇔ степени всех вершин чётны.

Доказательство.

1. \Rightarrow . Пусть в графе есть эйлеров цикл. Выберем вершину v_0 в этом цикле и начнём обходить его. При каждом посещении вершины $v \neq v_0$ её степень увеличивается на 2. Т. о., если посетить её k раз, то $\deg v = 2k \dot{:} 2$.

Для v_0 степень увеличивается на 1 в начале обхода, на 1 в конце обхода и на 2 при промежуточных посещениях. Т. о., её степень чётна.

2. \Leftarrow . Пусть степени всех вершин чётны. Выберём цепь $C = (v_0; e_0; v_1; e_1; \dots; e_{k-1}; v_k)$ наибольшей длины. Все рёбра, инцидентные v_k , присутствуют в этой цепи, иначе её можно было бы удлинить.

Докажем методом от противного, что $v_0 = v_k$. Пусть $v_0 \neq v_k$. При прохождении вершины $v_i = v_k$, где 0 < i < k, степень v_k увеличивается на 2. Также проходим по ребру e_{k-1} , тогда степень v_k нечётна. Противоречие.

Докажем методом от противного, что C содержит все рёбра. Пусть найдётся ребро $e=\{u,v\}$, не входящее в C. Возьмём первое ребро $e'=\{v_i,v'\}$ из (v_0,u) -маршрута, не входящее в C. Тогда цепь $(v';e';v_i;e_i;\ldots;e_{k-1};v_k=v_0;e_0;v_1;e_1;\ldots;v_{i-1})$ длиннее, чем C. Противоречие.

Алгоритмы нахождения эйлерова цикла

1. Алгоритм Флёри (очень медленный).

- (а) Выберем произвольную вершину.
- (b) Пусть находимся в вершине v. Выберем ребро, инцидентное ей, которое должно быть мостом, только если не осталось других рёбер.
- (с) Проходим по выбранному ребру и вычёркиваем его.
- (d) Повторяем, пока есть рёбра.

2. Алгоритм объединения циклов.

- (а) Выберем произвольную вершину.
- (b) Выбираем любое непосещённое ребро и идём по нему.
- (с) Повторяем, пока не вернёмся в начальную вершину.
- (d) Получим цикл C. Если он не эйлеров, то $\exists u \in C, \ e = \{u, u'\} : u' \notin C$. Повторяем шаги 2a-2c для начальной вершины u. Получим цикл C', рёбра которого не совпадают с рёбрами C. Объединим эти циклы и получим новый. Повторяем шаг 2d.

Цепь называется эйлеровым путём, если она не является циклом и содержит все рёбра.

Граф называется полуэйлеровым, если в нём есть эйлеров путь.

Теорема 1.1.2. Cвязный граф полуэйлеров \Leftrightarrow cтепени двух вершин нечётны, а oстальных — чётны. Доказательство.

- $1. \Rightarrow$. Пусть в графе есть эйлеров путь. Соединив его концы ребром, получим эйлеров цикл. Степени соединённых вершин увеличились каждая на 1, значит, они были нечётными, а степени остальных вершин чётными.
- ⇐. Пусть степени двух вершин нечётны, а остальных чётны. Соединим нечётные вершины ребром, тогда можно получить эйлеров цикл. Убрав из него добавленное ребро, получим эйлеров путь.

1.1.3 Гамильтоновы графы

Простой цикл, содержащий все вершины графа, называется гамильтоновым.

Граф называется гамильтоновым, если в нём есть гамильтонов цикл.

Теорема 1.1.3 (Дирака). Если в графе G = (V, E) с $n \geqslant 3$ вершинами $\forall u \in V \deg u \geqslant \frac{n}{2}$, то граф гамильтонов.

Доказательство.

- 1. Докажем методом от противного, что граф связный. Пусть он несвязный. Выберем компоненту связности G'=(V',E') с наименьшим числом вершин, тогда $|V'|\leqslant \frac{n}{2}$. Возьмём $v\in V'$, тогда $\deg v\leqslant |V'|-1<\frac{n}{2}$. Противоречие с условием.
- 2. Выберем цепь $C=(v_0;e_0;v_1;\dots;e_{k-1};v_k)$ максимальной длины. Тогда все вершины, соседние с v_0 , лежат в этой цепи, иначе можно увеличить длину цепи. Среди v_1,v_2,\dots,v_k не менее $\frac{n}{2}$ вершин, соседних с v_0 , т. к. $\deg v_0\geqslant \frac{n}{2}$. Аналогично для v_k .

Найдутся v_{i-1} и v_i такие, что v_{i-1} соседняя с v_k , а v_i — с v_0 .

Докажем, что $(v_i; e_{i+1}; \dots; v_k; e; v_{i-1}; e_{i-1}; \dots; v_0; e'; v_i)$ — гамильтонов цикл, методом от противного. Предположим обратное, тогда есть вершина u, не входящая в цикл, и существует (v_0, u) -маршрут. Значит, существует ребро, инцидентное одной из вершин цикла, но не входящее в него, и можно получить более длинную цепь. Противоречие.

Теорема 1.1.4 (Оре). Если в графе с $n \ge 3$ вершинами для любых двух несмежных вершин u u v $degu + degv \ge n$, то граф гамильтонов.

Доказательство.

1. Докажем методом от противного, что граф связный. Пусть он несвязный, тогда в нём найдутся хотя бы две компоненты связности $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$. Пусть $u \in V_1$, $v \in V_2$. u и v несмежные, тогда

$$\deg u \leqslant |V_1| - 1, \ \deg v \leqslant |V_2| - 1 \Rightarrow \deg u + \deg vopbr \leqslant |V_1| + |V_2| - 2 \leqslant n - 2$$

Противоречие с условием.

2. Докажем, что граф гамильтонов. Выберем цепь $W = (v_0; e_0; v_1; \dots; e_{k-1}; v_k)$ наибольшей длины. В ней содержатся все вершины, соседние с v_0 или с v_k . Т. о., среди вершин v_1, \dots, v_k $deg v_0$ соседних с v_0 . Аналогично для v_k .

 $\deg v_0 + \deg v_k \geqslant n$, тогда найдутся v_i и v_{i+1} такие, что v_i соседняя с v_k , а $v_{i+1} - c v_0$. $(v_{i+1}; e_{i+1}; \dots; v_k; e; v_i; e_{i-1}; v_{i-1}; \dots; e_0; v_0; e'; v_{i+1})$ — гамильтонов цикл (доказательство аналогично доказательству в теореме 1.1.3 (Дирака)).

1.2 Деревья

Граф без циклов называется лесом.

Связный лес называется деревом.

Ребро называется мостом, если при его удалении увеличивается число компонент связности.

Утверждение 1.2.1. Ребро — мост ровно тогда, когда оно не содержится в цикле.

Доказательство.

- 1. Докажем методом от противного, что если ребро содержится в цикле, то оно не является мостом. Пусть ребро e содержится в цикле $W = v_0 e_0 \dots u e v \dots v_k, u'$ и v' смежные вершины.
 - (a) Если в этом маршруте нет ребра e, то при его удалении из графа u' и v' останутся смежными.
 - (b) Если $u'=v'_0e'_0\dots uev\dots e_mv'_m=v'$ маршрут, соединяющий u' и v', тогда при удалении e из графа u' и v' соединяет маршрут $u'=v'_0e'_0\dots u\dots e_0v_0=v_ke_{k-1}\dots v\dots e_mv'_m=v'$.
- 2. Пусть e=(u,v) не является мостом, тогда u,v лежат в одной компоненте связности. Удалим e из графа, тогда число компонент связности не изменилось, значит, u и v также лежат в одной компоненте связности, τ ./, e. существует цепь, соединяющая u и v: $u=v_0e_0\dots e_{k-1}v_k=v$. Тогда в исходном графе существует цикл $u=v_0e_0\dots e_{k-1}v_k=veu$.

Теорема 1.2.1. Следующие утверждения о графе G c n вершинами эквивалентны:

- $1. \ G-$ дерево.
- 2. G связный и имеет n-1 ребро.
- 3. G связный и каждое его ребро мост.
- 4. G не содержит циклов и имеет n-1 ребро.
- 5. Любые две вершины графа G соединены ровно одной простой цепью.
- 6. G не содержит циклов и добавление ребра приводит к появлению цикла.

Доказательство.

- Докажем 1) \Rightarrow 3). Связность следует из определения дерева. В силу пред. утв. каждое ребро мост.
- Докажем $3) \Rightarrow 2$). Связность по предположению. Докажем методом математической индукции, что в графе n-1 ребро.
 - *База индукции*. Для n = 1, 2 очевидно.

- Шаг индукции. Пусть для графов с числом вершин, меньшим n, Возьмём мост e и удалим его. Получим две компоненты связности $G_1=(V_1,E_1),\ G_2=(V_2,E_2).$ По предположению индукции $|E_1|=|V_1|-1,\ |E_2|=|V_2|-1.$ В исходном графе рёбер $|E_1|+|E_2|+1=|V_1|+|V_2|-1=n-1.$
- Докажем $2) \Rightarrow 4$). В G n-1 ребро по предположению. Докажем методом математической индукции, что G не содержит циклов.
 - *База индукции*. Для n = 1, 2 очевидно.
 - *Шаг индукции*. Докажем, что в графе есть вершина степени 1. $\forall u \ degu \geqslant 1$. $\forall u \ degu \geqslant 2 \Rightarrow 2|E| = \sum_{u \in V} degu \geqslant 2n \Rightarrow n-1 = |E| \geqslant n$. Значит, в графе найдётся вершина степени 1. Удалим её и инцидентное ей ребро. Полученный граф содержит n-1 вершину и удовлетворяет утверждению 2). По предположению индукции он не содержит циклов, тогда и исходный граф не содержит циклов.
- Докажем 4) \Rightarrow 5). Докажем связность методом математической индукции.
 - *База индукции*. Для n=1,2 очевидно.
 - Шаг индукции. Пусть в графе k компонент связности: $G_1=(V_1,E_1),\ G_2=(V_2,E_2),\ \dots,$ $G_k=(V_k,E_k).$ Они являются деревьями.

 $|E_1|=|V_1|-1,\,|E_2|=|V_2|-1,\,\ldots,\,|E_k|=|V_k|-1.$ $n-1=|E_1|+\ldots+|E_k|=n-k\Rightarrow k=1,$ значит, граф связный.

Пусть существуют вершины u, v такие, что их соединяют две простые цепи, тогда в графе есть цикл, что противоречит предположению. Тогда эти вершины соединены ровно одной простой цепью.

- Докажем 5) \Rightarrow 6). Предположим, что в графе есть цикл $v_0e_0v_1e_1\dots v_k=v_0$, тогда есть две простые цепи $v_0e_0\dots v_{k-1}$ и $v_{k-1}e_kv_k=v_0$, соединяющие v_0 и v_{k-1} , что противоречит предположению. Докажем, что добавление ребра приводит к появлению ровно одного цикла. Рассмотрим несоседних вершины u и v. По предположению есть цепь $u=v_0e_0\dots v_k=v$, соединяющая их. Тогда $u=v_0e_0\dots v_k=veu$ цикл, где e-(u,v)-маршрут. Пусть есть 2 цикла, соединяющих u и v. Удалим e, цикл останется. Получили исходный граф, в котором нет циклов. Противоречие.
- 6) \Rightarrow 1). Докажем связность. Рассмотрим вершины u и v. Если они не соединены ребром, то соединим и по предположению получим цикл $v_0e_0\dots uev\dots e_{k-1}v_k=v_0$. Тогда $u\dots e_0v_0=v_ke_{k-1}\dots v-(u,v)$ -маршрут. Противоречие.

1.2.1 Остовы

Остовом графа G=(V,E) называется его подграф G'=(V',E') такой, что V=V' и G' — дерево.

Утверждение 1.2.2. Любой связный граф содержит остов.

Утверждение 1.2.3. Если граф не является деревом, то в нём несколько остовов.

Пусть G = (V, E) — граф. **Весом** называется функция $\alpha \colon E \to \mathbb{R}^+$.

Весом ребра $e \in E$ называется $\alpha(e)$.

Весом графа называется $\sum_{e \in E} \alpha(e)$.

Алгоритмы нахождения остова минимального веса

Пусть дан граф G=(V,E) и весовая функция $\alpha\colon E\to R^+.$ Строим остов наименьшего веса T=(V,P).

1. Алгоритм Краскала

- (a) Выбираем ребро $e \in E$ с наименьшим весом: $T_1 = (V, \{e\}) = (V, P_1)$.
- (b) Выбираем ребро $e \in E$ с наименьшим весом такое, что $e \notin P_i$ и добавление этого ребра не приводит к образованию цикла в T. $T_{i+1} = (V, P_i \cup \{e\})$.

(c) Повторяем шаг 2 (|V| - 2) раз.

Доказательство. Пусть T=(V,P) — построенный остов, где $P=\{e_1,e_2,\ldots,e_{n-1}\},e_1,e_2,\ldots,e_{n-1}$ — рёбра в порядке их добавления в остов, а также D=(V,M) — другой остов, где $M=\{e'_1,e'_2,\ldots,e'_{n-1}\},e'_1,e'_2,\ldots,e'_{n-1}$ — рёбра в порядке неубывания их весов.

Если $T \neq D$, то пусть i — наименьшее число такое, что $e_i \neq e_i'$. Рассмотрим $D' = (V, M \cup \{e_i\})$. В этом графе ровно один цикл, причём e_i входит в цикл.

Данный цикл содержит ребро $e' \notin \{e_1, \dots, e_i\}$: $\alpha(e_i) \leqslant \alpha(e'_i)$, т. к. e_1, \dots, e_i не образуют цикл. Если $\alpha(e') < \alpha(e_i)$, то на i-м шаге алгоритм выбрал бы e' вместо e_i , т. к. e_1, \dots, e_{i-1}, e' не образуют цикл, потому что иначе D содержал бы цикл.

Пусть $D_1 = (V, M \cup \{e_i\} \setminus \{e_i'\})$. Этот граф — остов, причём $\alpha(D_1) \leqslant \alpha(D)$ и у T и D_1 на 1 общее ребро больше, чем у T и D. Повторяя, получим $D_k = T$. Значит, вес построенного остова не превосходит веса любого другого остова.

- 2. **Алгоритм Прима** Строится последовательность деревьев $S_1 \subset S_2 \subset ... \subset S_n$.
 - (a) Выбираем произвольную вершину $v. S_1 = (\{v\}, \emptyset).$
 - (b) Пусть $S_i = (V_i, E_i)$. Находим ребро $e \in E$ наименьшего веса, инцидентное одной из вершин v_i , добавление которого не приводит к образованию цикла. e' = (u, v), где $u \in V_i$, $v \notin V_i$. $S_{i+1} = V_i \cup \{v\}, E_i \cup \{e'\}$.
 - (c) Повторяем шаг 2 (n-1) раз. S_n искомый остов.

Линейная алгебра

2.1 Линейные комбинации

Выражение, построенное на множестве элементов путём сложения этих элементов, умноженных на некоторые коэффициенты, называется **линейной комбинацией**. Если все коэффициенты линейной комбинации равны нулю, то она называется **тривиальной**, иначе — **нетривиальной**.

2.2 Матрицы

Матрицей называется прямоугольная таблица из чисел, содержащая m строк и n столбцов, и обозначается

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Числа m и n называются порядками матрицы.

Если m=n, то матрица называется **квадратной**, а число m=n — её **порядком**. **Главной** называется диагональ квадратной матрицы, состоящая из элементов $a_{11}, a_{22}, \ldots, a_{nn}$, а **побочной** — состоящая из элементов $a_{n1}, a_{n-12}, \ldots, a_{1n}$.

i-я строка матрицы обозначается A_i , j-й столбец — A^j .

Две матрицы называются **равными**, если их порядки и соответствующие элементы совпадают, иначе — **неравными**.

2.2.1 Операции над матрицами

Матрица, все элементы которой равны 0, называется **нулевой** и обозначается O.

Квадратная матрица, в которой элементы главной диагонали равны 1, а остальные — 0, называется единичной и обозначается E.

Над матрицами определены следующие операции:

• Сложение. Определено только над матрицами одинакового размера.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{vmatrix}$$

Пусть A, B, C — матрицы. Свойства сложения:

- коммутативность: A + B = B + A
- ассоциативность: (A + B) + C = A + (B + C)

• Умножение на число.

$$\lambda \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{vmatrix}$$

Пусть α, β — числа, A, B — матрицы. Свойства умножения на число:

- ассоциативность: $(\alpha \cdot \beta) \cdot A = \alpha \cdot (\beta \cdot A)$
- дистрибутивность относительно сложения чисел: $(\alpha + \beta) \cdot A = \alpha \cdot A + \beta \cdot A$
- дистрибутивность относительно сложения матриц: $\alpha \cdot (A+B) = \alpha \cdot A + \alpha \cdot B$
- Умножение. $A \cdot B$ определено, только если количество столбцов в матрице A совпадает с количеством строк в матрице B.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mk} \end{vmatrix} \cdot \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{kn} \end{vmatrix} = \begin{vmatrix} \sum a_{1i}b_{i1} & \sum a_{1i}b_{i2} & \cdots & \sum a_{1i}b_{in} \\ \sum a_{2i}b_{i1} & \sum a_{2i}b_{i2} & \cdots & \sum a_{2i}b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum a_{mi}b_{i1} & \sum a_{mi}b_{i2} & \cdots & \sum a_{mi}b_{in} \end{vmatrix}$$

где суммирование производится по i от 1 до k.

Пусть λ — число, A, B, C — матрицы. Свойства умножения:

- ассоциативность: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- дистрибутивность: $(A+B)\cdot C=A\cdot C+B\cdot C,\,A\cdot (B+C)=A\cdot B+A\cdot C$
- ассоциативность и коммутативность относительно умножения на число: $(\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B) = A \cdot (\lambda \cdot B)$

2.2.2 Определитель матрицы

Определителем порядка n, соответствующим квадратной матрице A порядка n, называется число, равное

$$\Delta = \det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{\sigma = (i_1; \dots; i_n) \in S_n} (-1)^{|\sigma|} a_{1\,i_1} a_{2\,i_2} \cdots a_{n\,i_n}, \ |\sigma| = \begin{cases} 0, \sigma \text{ чётная} \\ 1, \sigma \text{ нечётная} \end{cases}$$
(2.1)

где S_n — множество всех перестановок n-элементного множества. Свойства определителя:

• Если элементы какой-либо строки или столбца определителя имеют общий множитель λ , то его можно вынести за знак определителя.

Доказательство.

$$\Delta = \sum (-1)^{|\sigma|} a_{1 \, i_1} a_{2 \, i_2} \cdot \ldots \cdot a_{n \, i_n}$$

Каждое слагаемое имеет множитель из каждой строки, а также из каждого столбца, т. к. σ является перестановкой и содержит все номера столбцов от 1 до n включительно. Тогда все слагаемые имеют общий множитель λ , поэтому его можно вынести за скобки.

• Если какая-либо строка или столбец определителя состоит из нулей, то он равен 0.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{|\sigma|} a_{1\,i_{1}} \cdot \dots \cdot a_{n\,i_{n}} =$$

| Каждое слагаемое содержит ровно 1 элемент из i-й строки и поэтому имеет вид |

$$= \sum (-1)^{|\sigma|} a_{1 \, i_1} \cdot \ldots \cdot a_{k-1 \, i_{k-1}} (a_{k \, i_k} + b_{k \, i_k}) a_{k+1 \, i_{k+1}} \cdot \ldots \cdot a_{n \, i_n} =$$

$$= \sum (-1)^{|\sigma|} a_{1 \, i_1} \cdot \ldots \cdot a_{k \, i_k} \cdot \ldots \cdot a_{n \, i_n} + \sum (-1)^{|\sigma|} a_{1 \, i_1} \cdot \ldots \cdot b_{k \, i_k} \cdot \ldots \cdot a_{n \, i_n} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

- Если в определителе поменять две строки или два столбца местами, то он изменит знак.
 - Доказательство. При перестановке строк или столбцов местами все перестановки в формуле (2.1) меняют чётность, значит, каждое слагаемое меняет знак, тогда и определитель меняет знак. ■
- Если в определителе две строки или два столбца совпадают, то он равен 0.

Доказательство. Если поменять местами совпадающие строки или столбцы, то он, с одной стороны, не изменится, а с другой, поменяет знак. Значит, определитель равен 0. ■

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} & \lambda a_{i2} & \cdots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \cdots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

Пусть дана матрица

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Алгебраическим дополнением элемента a_{ij} называется число, равное

$$A_{ij} = (-1)^{i+j} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1j-1} & a_{1j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1} & \cdots & a_{i-1j-1} & a_{i-1j+1} & \cdots & a_{i-1n} \\ a_{i+1} & \cdots & a_{i+1j-1} & a_{i+1j+1} & \cdots & a_{i+1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj-1} & a_{nj+1} & \cdots & a_{nn} \end{vmatrix}$$

Лемма 2.2.1.

$$\begin{vmatrix} a & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Доказательство.

ESISCTBO.
$$\begin{vmatrix} a & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

$$= \sum a \cdot a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} + \sum 0 \cdot a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} + \ldots + \sum 0 \cdot a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= a \sum a_{2 \, i_{2}} \cdot \ldots \cdot a_{n \, i_{n}} = a \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Теорема 2.2.1. Любой определитель можно **разложить** по элементам произвольной строки или столбца:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

где A_{ij} — алгебраическое дополнение элемента a_{ij} .

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i-1} \cdot \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{i-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i-1} \cdot \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i+1} \cdot \begin{vmatrix} a_{i1} & 0 & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n11} & a_{i-12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots &$$

$$+(-1)^{i+n}a_{in} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1\,n-1} \\ \vdots & \ddots & \vdots \\ a_{i-1\,1} & \cdots & a_{i-1\,n-1} \\ a_{i+1\,1} & \cdots & a_{i+1\,n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,n-1} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij}$$

Аналогично доказывается

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Транспонированием матрицы или определителя называется операция, в результате которой строки меняются местами со столбцами с сохранением порядка следования:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^T = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

Полученная матрица или определитель называется **транспонированной** по отношению к исходной. **Утверждение 2.2.1.** Определитель транспонированной матрицы равен определителю исходной. Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{1j} A_{1j} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

2.2.3 Ранг матрицы

Строка (столбец) матрицы называется **линейно зависимой**, если она является линейной комбинацией остальных строк (столбцов), иначе — **линейно независимой**.

Рангом матрицы называется максимальное количество её линейно независимых строк.

Минором k-го порядка матрицы называется определитель, содержащий только те её элементы, которые стоят на пересечении некоторых k строк и k столбцов. Минор, отличный от нуля, называется **базисным**.

Теорема 2.2.2. Ранг матрицы равен наибольшему порядку базисного минора.

Доказательство. Пусть

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

 M_k — базисный минор k-го (наибольшего) порядка. При перестановке строк и столбцов минора равенство с нулём сохраняется, значит, без ограничения общности можно считать, что

$$M_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

 $M_k \neq 0$, значит, строки A_1, \dots, A_k линейно независимы.

$$M_{k+1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} & a_{1j} \\ a_{21} & a_{22} & \cdots & a_{2k} & a_{2j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & a_{kj} \\ a_{i1} & a_{i2} & \cdots & a_{ik} & a_{ij} \end{vmatrix} = 0$$

т. к. M_k — базисный минор наибольшего порядка. Тогда

$$a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{kj}A_{kj} + a_{ij}A_{ij} = 0, \ A_{ij} = M_k \neq 0 \Rightarrow$$

$$\Rightarrow a_{ij} = -\frac{A_{1j}}{A_{ij}}a_{1j} - \frac{A_{2j}}{A_{ij}}a_{2j} - \dots - \frac{A_{kj}}{A_{ij}}a_{kj}$$

где $A_{1j},\dots,A_{kj},A_{ij}$ — алгебраические дополнения $a_{1j},\dots,a_{kj},a_{ij}$. $A_{1j},\dots,A_{kj},A_{ij}$ не зависят от j, тогда A_i — линейная комбинация A_1,\dots,A_k , значит, k — ранг матрицы A.

Рангом матрицы по строкам (столбцам) называется максимальное количество её линейно независимых строк (столбцов).

Следствие 2.2.1. *Ранг матрицы по строкам равен рангу матрицы по столбцам.* Для доказательства достаточно заметить, что определитель транспонированной матрицы равен определителю исходной.

Математический анализ

3.0.1 Локальный экстремум функции нескольких переменных

Точка $\overline{x_0} = (x_{10}, \dots, x_{n0})$ называется **точкой локального минимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если $\overline{x_0} \in D(f)$ и существует проколотая окрестность $\dot{U}(\overline{x_0})$: $\forall \overline{x} \in \dot{U}(\overline{x_0}) \ f(\overline{x}) > f(\overline{x_0})$.

Точка $\overline{x_0} = (x_{10}, \dots, x_{n0})$ называется **точкой локального максимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если $\overline{x_0} \in D(f)$ и существует проколотая окрестность $\dot{U}(\overline{x_0}) : \forall \overline{x} \in \dot{U}(\overline{x_0}) \ f(\overline{x}) < f(\overline{x_0})$.

Точки локального минимума и максимума называются точками локального экстремума.

Теорема 3.0.1 (необходимое условие локального экстремума). В точке локального экстремума частные производные функции равны нулю или не существуют.

Доказательство. Пусть $\overline{x_0}=(x_{10},\dots,x_{n0})$ — точка экстремума функции $f(\overline{x})$, дифференцируемой в точке $\overline{x_0}$. Рассмотрим $g(x)=f(x_{10},\dots,x_{k-10},x,x_{k+10},\dots,x_{n0})$. $\overline{x_0}$ — точка экстремума $f(\overline{x})$, тогда x_{k0} — точка экстремума g(x), значит, $g'(x_{k0})=0$ или не существует. Тогда $f'_{x_k}(x_{k0})=0$ или не существует. \blacksquare

Теорема 3.0.2 (достаточное условие локального экстремума функции двух переменных). Пусть дана функция f(x,y). Если

1.
$$f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$$

2.
$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$$

то (x_0, y_0) — точка локального экстремума f(x, y).

- 1. (x_0,y_0) точка локального минимума, если $f''_{xx}(x_0,y_0)>0$ или $f''_{yy}(x_0,y_0)>0$.
- 2. (x_0,y_0) точка локального максимума, если $f_{xx}^{\prime\prime}(x_0,y_0)<0$ или $f_{yy}^{\prime\prime}(x_0,y_0)<0$.

Доказательство. По формуле Тейлора

$$f(x,y) - f(x_0, y_0) = f(x_0, y_0) + df(x_0, y_0) + \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0))) - f(x_0, y_0) =$$

$$= \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0)))$$

значит, $f(x,y) - f(x_0,y_0)$ сохраняет знак, если $d^2 f(x_0,y_0)$ сохраняет знак.

$$d^{2}f(x_{0}, y_{0}) = f_{xx}''(x_{0}, y_{0})dx^{2} + 2f_{xy}''(x_{0}, y_{0})dxdy + f_{yy}''(x_{0}, y_{0})dy^{2} =$$

$$= \left(f_{xx}''(x_{0}, y_{0}) + 2f_{xy}''(x_{0}, y_{0})\frac{dy}{dx} + f_{yy}''(x_{0}, y_{0})\left(\frac{dy}{dx}\right)^{2}\right)dx^{2}$$

Т. о., (x_0, y_0) — точка локального экстремума f(x, y), если $d^2 f(x_0, y_0)$ сохраняет знак, т. е. при

$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$$

$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) < 0 \Leftrightarrow$$

$$\Leftrightarrow f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) > (f_{xy}''(x_0, y_0))^2 \Rightarrow f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) > 0$$

значит, $f''_{xx}(x_0, y_0)$ и $f''_{yy}(x_0, y_0)$ одного знака.

- 1. Если $f_{xx}''(x_0,y_0)>0$ \forall $f_{yy}''(x_0,y_0)>0$ \Rightarrow $d^2f(x_0,y_0)>0$, тогда (x_0,y_0) точка локального минимума.
- 2. Если $f_{xx}''(x_0,y_0)<0 \lor f_{yy}''(x_0,y_0)<0 \Rightarrow d^2f(x_0,y_0)<0$, тогда (x_0,y_0) точка локального максимума.

Теорема 3.0.3 (достаточное условие локального экстремума). Пусть дана функция $f(\overline{x}) = f(x_1, \dots, x_n)$. Точка $\overline{x_0} = (x_{10}, \dots, x_{n0})$ — точка локального экстремума $f(\overline{x})$, если

1.
$$f'_{x_1}(\overline{x_0}) = \ldots = f'_{x_n}(\overline{x_0}) = 0$$

2.
$$\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f_{x_ix_j}''(\overline{x_0})dx_idx_j$$
 сохраняет знак.

1.
$$\overline{x_0}$$
 — точка локального минимума, если $\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f_{x_ix_j}''(\overline{x_0})dx_idx_j>0.$

2.
$$\overline{x_0}$$
 — точка локального максимума, если $\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f''_{x_ix_j}(\overline{x_0})dx_idx_j<0.$

Доказательство. По формуле Тейлора

$$f(\overline{x}) - f(\overline{x_0}) = f(\overline{x_0}) + df(\overline{x_0}) + \frac{d^2 f(\overline{x_0})}{2!} + o(\rho^2(\overline{x}, \overline{x_0})) - f(\overline{x_0}) = \frac{d^2 f(\overline{x_0})}{2!} + o(\rho^2(\overline{x}, \overline{x_0}))$$

значит, $f(\overline{x}) - f(\overline{x_0})$ сохраняет знак, если $d^2 f(\overline{x_0})$ сохраняет знак.

$$d^{2}f(\overline{x_{0}}) = \sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}} f_{x_{i}x_{j}}''(\overline{x_{0}})dx_{i}dx_{j}$$

1. Если
$$\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f_{x_ix_j}''(\overline{x_0})dx_idx_j>0 \Leftrightarrow d^2f(\overline{x_0})>0$$
, то $\overline{x_0}$ — точка локального минимума.

2. Если
$$\sum_{\substack{i=1,n\\j=1,n}}f_{x_ix_j}''(\overline{x_0})dx_idx_j<0\Leftrightarrow d^2f(\overline{x_0})<0$$
, то $\overline{x_0}$ — точка локального максимума.

При практическом применении теоремы 3.0.3 полезен критерий Сильвестра.

3.0.2 Метод наименьших квадратов

Пусть даны точки x_1, \ldots, x_n и требуется найти аппроксимирующую прямую для значений некоторой функции f(x) в этих точках. Уравнение прямой — y = Ax + B. Найдём точку, в которой сумма

$$S(A,B) = \sum_{i=1}^{n} (Ax_i + B - f(x_i))^2$$

принимает наименьшее значение.

$$S_A' = \sum 2x_i(Ax_i + B - f(x_i))$$

$$\begin{cases} S_A' = 0 \\ S_B' = 0 \end{cases} \Leftrightarrow \begin{cases} A \sum_i x_i^2 + B \sum_i x_i = \sum_i x_i f(x_i) \\ A \sum_i x_i + Bn = \sum_i f(x_i) \end{cases} \Leftrightarrow \begin{cases} A \sum_i x_i^2 + B \sum_i x_i = \sum_i x_i f(x_i) \\ A \sum_i x_i + Bn = \sum_i f(x_i) \end{cases} \Leftrightarrow \begin{cases} A = \frac{n \sum_i x_i f(x_i) - \sum_i x_i \sum_i f(x_i)}{n \sum_i x_i^2 - \left(\sum_i x_i\right)^2} \\ B = \frac{\sum_i x_i^2 \sum_i f(x_i) - \sum_i x_i \sum_i x_i f(x_i)}{n \sum_i x_i^2 - \left(\sum_i x_i\right)^2} \end{cases}$$

Найденные значения A и B — искомые коэффициенты в уравнении аппроксимирующей прямой. Для оценки точности аппроксимации можно найти коэффициент корреляции по формуле

$$r = \sqrt{\frac{\sum (f(x_i) - \tilde{y})^2 - \sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}} = \sqrt{1 - \frac{\sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}}$$

где $\tilde{y} = \frac{1}{n} \sum f(x_i)$, $\tilde{y_i} = Ax_i + B$, а значение коэффициента r тем ближе к единице, чем точнее аппроксимация.

3.0.3 Условный экстремум

Пусть дана функция $f(x_1,...,x_n)$, переменные которой удовлетворяют условиям

$$\begin{cases} g_1(x_1, \dots, x_n) = 0 \\ \vdots \\ g_m(x_1, \dots, x_n) = 0 \end{cases}$$

Для нахождения её экстремумов (называемых условными) введём функцию Лагранжа

$$L(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)+\lambda_1q_1(x_1,\ldots,x_n)+\ldots+\lambda_mq_m(x_1,\ldots,x_n)$$

и исследуем её. Её экстремумы являются условными экстремумами функции f.

Теория множеств

4.1 Множества

Множество — основное понятие. Некоторые числовые множества:

- $\mathbb{N} = \{1, 2, 3, \dots\}$ множество натуральных чисел.
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ множество целых чисел.
- $\mathbb{Q}=\left\{\frac{m}{n}\mid m\in\mathbb{Z}\wedge n\in\mathbb{N}\right\}$ множество рациональных чисел.
- ullet \mathbb{I} множество иррациональных чисел.
- ullet \mathbb{R} множество действительных (вещественных) чисел.
- ullet \mathbb{C} множество комплексных чисел.

4.1.1 Отношения между множествами

Пусть A, B — множества. Между ними определены следующие отношения:

• A включено в B (является **подмножеством** B):

$$A \subseteq B \Leftrightarrow \forall a \in A \ a \in B$$

Нередко вместо знака \subseteq пишется знак \subset .

A равно В:

$$A = B \Leftrightarrow \forall a \ (a \in A \Leftrightarrow a \in B)$$

• A строго включено в B:

$$A\subset B \Leftrightarrow A\subseteq B \land A=B$$

4.1.2 Операции над множествами

Пусть A, B — множества. Над ними определены следующие операции:

• Объединение:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

• Пересечение:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

• Разность:

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

• Симметрическая разность:

$$A\triangle B = \{x \mid x \in A \land x \notin B \lor x \notin A \land x \in B\}$$

• Дополнение до U, где $A \subseteq U$:

$$\overline{A} = \{ x \in U \mid x \notin A \}$$

• Декартово произведение:

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

• Декартова степень:

$$A^n = \underbrace{A \times A \times \ldots \times A}_{n}$$

4.1.3 Функции

Пусть A и B — множества. **Функцией** f называется правило, ставящее в соответствие каждому элементу $a \in A$ единственный элемент $f(a) \in B$.

A называется **областью определения** функции f.

B называется **областью значений** функции f.

a называется **прообразом** f(a).

f(a) называется **образом** a.

Функция $f: A \to B$ называется **инъективной (инъекцией)**, если $\forall x, y \in A \ (x \neq y \Rightarrow f(x) \neq f(y))$.

Функция $f: A \to B$ называется сюръективной (сюръекцией), если $\forall b \in B \; \exists a \in A \colon f(a) = b$.

Функция $f: A \to B$ называется биективной (биекцией), если она инъективная и сюръективная.

4.1.4 Мощность множеств

Множества A и B называются равномощными (имеют одинаковую мощность), если существует биекция $f \colon A \to B$, иначе — неравномощными.

Для конечных множеств это означает, что у них одинаковое количество элементов.

Мощностью конечного множества A называется количество |A| его элементов.

Множество всех подмножеств множества A обозначается

$$\mathcal{P}(A) = \{ x \mid x \subseteq A \}$$

Множество всех подмножеств множества A мощности k обозначается

$$\mathcal{P}_k(A) = \{ x \subseteq A \mid |x| = k \}$$

Теорема 4.1.1 (Кантора). *Множества А и* $\mathcal{P}(A)$ *не равномощны.*

Доказательство (методом от противного). Пусть $f \colon A \to \mathcal{P}(A)$ — биекция. Рассмотрим множество

$$X = \{a \in A \mid a \notin f(a)\} \Rightarrow X \subset A \Rightarrow X \in \mathcal{P}(A)$$

f — биекция, тогда $\exists b \in A \colon f(b) = X$. Возможны два случая:

- 1. Пусть $b \in X \Rightarrow b \in f(b) \Rightarrow b \notin X$. Противоречие.
- 2. Пусть $b \notin X \Rightarrow b \in f(b) \Rightarrow b \in X$. Противоречие.

В обоих случаях получили противоречие.

Теорема 4.1.2. Пусть дано множество A: |A| = n, тогда $|\mathcal{P}_k(A)| = C_n^k$.

Доказательство (методом математической индукции).

• База индукции. n = 0:

$$|A| = 0 \Rightarrow A = \emptyset \Rightarrow \mathcal{P}(A) = \{\emptyset\} \Rightarrow |\mathcal{P}_0(A)| = 1 = C_0^0$$

- Шаг индукции. Пусть теорема верна для n. Докажем её для n+1. Пусть $X\subset A,\, |X|=k,\, a\in A.$ Подсчитаем количество таких X. Возможны два случая:
 - 1. Пусть $a \notin X \Rightarrow X \subset A \setminus \{a\}$, тогда таких X C_n^k .
 - 2. Пусть $a \in X$, тогда таких X столько же, сколько множеств $X \setminus \{a\} \subset A \setminus \{a\}$, т. е. C_n^{k-1} .

Тогда $|\mathcal{P}(A)| = C_n^{k-1} + C_n^k = C_{n+1}^k$.

Разное