BORN AGAIN NEURAL NETWORKS

Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti, and Anima Anankdumar

furlanel@usc.edu,zlipton@cmu,michaelt@nari.ee.ethz.ch,itti@usc.edu,anima@amazon.com

CONTRIBUTION

We present a simple re-training procedure between teacher and students. We report improvement of the student validation error across multiple datasets and architecture classes reaching sota on Cifar-100.

To experimetally identify the source of these gains we propose two distillation objectives:

- Confidence-Weighted by Teacher Max (CWTM)
- 2. Dark Knowledge with Permuted Predictions (DKPP)

BORN AGAIN MODELS

The single-sample gradient of the cross-entropy between student logits z_j and target logits t_j with respect to the ith output is given by:

$$\frac{\partial \mathcal{L}_{i}}{\partial z_{i}} = q_{i} - p_{i} = \frac{e^{z_{i}}}{\sum_{j=1}^{n} e^{z_{j}}} - \frac{e^{t_{i}}}{\sum_{j=1}^{n} e^{t_{j}}}.$$
 (3)

When the target probability distribution function corresponds to the ground truth * one-hot label $p_* = y_* = 1$ this reduces to:

$$\frac{\partial \mathcal{L}_*}{\partial z_*} = q_* - y_* = \frac{e^{z_*}}{\sum_{i=1}^n e^{z_i}} - 1 \tag{4}$$

In Knowledge Distillation (KD) the loss is:

$$\sum_{s=1}^{b} (q_{*,s} - p_{*,s}) + \sum_{s=1}^{b} \sum_{i=1}^{n-1} (q_{i,s} - p_{i,s}), \quad (5)$$

The second term corresponds to the information incoming from all the wrong outputs, i.e. **dark knowledge**. The first term corresponds to the gradient from the correct choice and can be written as

$$\frac{1}{b} \sum_{s=1}^{b} (q_{*,s} - p_{*,s} y_{*,s}) \tag{6}$$

In Eq. (6) the teacher prediction $p_{*,s}$ can be interpreted as a scaling factor of the ground truth gradient of (4).

In importance weighting of samples the gradient of each sample in a mini-batch is balanced based on its importance weight w_s .]:

$$\sum_{s=1}^{b} \frac{w_s}{\sum_{u=1}^{b} w_u} (q_{*,s} - y_{*,s}) \tag{7}$$

When the importance weights correspond to the output of a teacher for the correct dimension

$$\sum_{s=1}^{b} \frac{p_{*,s}}{\sum_{u=1}^{b} p_{*,u}} (q_{*,s} - y_{*,s}). \tag{8}$$

SEQUENCE OF IDENTICAL TEACHING SELVES

K-steps Born Again Neural Network

 $\min_{\theta_k} \mathcal{L}(y, f(x, \theta_k)) + \mathcal{L}(f(x, \arg\min_{\theta_{k-1}} \mathcal{L}(y, f(x, \theta_{k-1}))), f(x, \theta_k))$

	•	•		-					
Cifar-100	Teacher	BAN	BAN+L	BAN-1	BAN-2	BAN-3	Ens*2	Ens*3	
DenseNet-112-33	18.25	16.95	17.68	17.61	17.22	16.59	15.77	15.68	
DenseNet-90-60	17.69	16.69	16.93	16.62	16.44	16.72	15.39	15.74	
DenseNet-80-80	17.16	16.36	16.5	16.26	16.30	15.5	15.46	15.14	
DenseNet-80-120	16.87	16.00	16.41	16.13	16.13		15.13	14.9	

Penn-Tree Bank	Parameters	Teacher Val	BAN+L Val	Teacher Test	BAN+L Test
ConvLSTM	19M	83.69	80.27	80.05	76.97
LSTM	52M	75.11	71.19	71.87	68.56

CWTM & DKPP

In Confidence Weighted by Teacher Max (CWTM), we weight each example in the student's loss function by the confidence of the teacher model on that example:

$$\sum_{s=1}^{b} \frac{\max p_{.,s}}{\sum_{u=1}^{b} \max p_{.,u}} (q_{*,s} - y_{*,s}). \tag{1}$$

In dark knowledge with Permuted Predictions (DKPP), we permute the non-argmax outputs of the teacher's predicted distribution.

$$\sum_{s=1}^{b} \sum_{i=1}^{n} \frac{\partial \mathcal{L}_{i,s}}{\partial z_{i,s}} = \sum_{s=1}^{b} (q_{*,s} - \max p_{.,s}) + \sum_{s=1}^{b} \sum_{i=1}^{n-1} q_{i,s} - \phi(p_{j,s}),$$
(2)

where $\phi(p_{j,s})$ are the permuted outputs of the teacher.

Network	CWTM	DKPP
DenseNet-112-33	17.84	17.84
DenseNet-90-60	17.42	17.43
DenseNet-80-80	17.16	16.84
DenseNet-80-120	17.12	16.34

BAN-RESNET

$DenseNet \mapsto Resnet$						
DenseNet 90-60	Parameters	Baseline	BAN			
ResNet-1001	10.2 M	22.71	/			
ResNet-14-0.5	7.3 M	20.28	18.8			
ResNet-14-1	17.7 M	18.84	17.39			
Wide-ResNet-1-1	20.9 M	20.4	19.12			
Match-Wide-ResNet-2-1	43.1 M	18.83	17.42			
Wide-ResNet-4-0.5	24.3 M	19.63	17.13			
Wide-ResNet-4-1	87.3 M	18.77	17.18			

Resnet \mapsto DenseNet						
Cifar100	Teacher	BAN	Dense-90-60			
Wide-ResNet-28-1	30.05	29.43	24.93			
Wide-ResNet-28-2	25.32	24.38	18.49			
Wide-ResNet-28-5	20.88	20.93	17.52			
Wide-ResNet-28-10	19.08	18.25	16.79			
	1					

REFERENCES

[1] Breiman, Leo, and Nong Shang. "Born again trees."