

Operating Systems

Lecture 1 Introduction

JinpengChen Email: jpchen@bupt.edu.cn

- Computer System Overview
- What is an Operating System?
- History of Operating Systems
- The Operating System Zoo
- Supplement Knowledge

Two questions?

- In a computer system, what kinds of hardware devices are there?
- How to put the hardware devices into a system? What structure?

Computer System Organization

Computer-system operation

- One or more CPUs, device controllers connect through common bus providing access to shared memory.
- **Concurrent** execution of CPUs and devices competing for memory cycles.

Computer System Organization

Computer-system operation

- Each device controller is in charge of a particular device style
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffer
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt

- Interrupt transfers control to interrupt service routine through interrupt vector, which contains addresses of all the service routine
- Interrupt architecture must save the address of the interrupt instruction
- Incoming interrupt are disabled while another interrupt is being processed to prevent a lost interrupt
- Trap: a trap is a software-generated interrupt caused either by an error or a user request
- An operating system is interrupt driven

- OS preserves the state of the CPU by storing register and program counter
- Determines which type of interrupt has occurred:
 - Polling
 - Vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

- After I/O starts, control returns to program ,two ways
 - Synchronous: Only upon I/O completion
 - ✓ Wait instruction idles the CPU until the next interrupt
 - ✓ Wait loop(contention for memory access)
 - Asynchronous: without waiting for I/O completion
 - ✓ System call --request to the operating system to allow user to wait for I/O completion
 - ✓ Device-status table--contains entry for each I/O device indicating its type, address, and state.
 - ✓ Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.

Two I/O methods

- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfer blocks of data from buffer storage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than the one interrupt per type.

- Performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- When accessing, first check in the cache,
 - if In: use it directly
 - Not in: get from upper storage system, and leave a copy in the cache

Coherency and consistency

- Coherency Information in use copied from slower to faster storage temporarily
- Migration of Integer A from Disk to Register

- The same data may appear in different level of the storage system
- Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recently updated value

Performance of Various Levels of Storage

Movement between levels of storage hierarchy can be explicit or implicit

Leve1	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	<1KB	>16MB	>16GB	>100GB
Implementation	custom memory with	on-chip or off-chip	CMOS DRAM	magnetic disk
technology	multiple ports, CMOS	CMOS SRAM		
Access time (ns)	0.25-0.5	0.5—25	80—250	5,000.000
Bandwidth (MB/sec)	20,000-100,000	5000-10,000	1000-5000	20—150
Managed by	compiler	hardware	0S	0S
Backed by	cache	main memory	disk	CD or tape

Computer System Components

Computer system can be divided into four components:

- Hardware provides basic computing resources (CPU, memory, I/O devices).
- Operating system controls and coordinates the use of the hardware among the various application programs for the various users.
- Application programs— define the ways in which the system resources are used to solve the computing problems of the users (Word processors, compilers, web browsers, database systems, video games).
- ** Users (people, machines, other computers)

Four Components of a Computer System

Computer System overview

Computer instruction

- 2 指令是计算机运行的最小的功能单元,是指挥计算机硬件运行的命令
- 算数运算指令、逻辑运算指令、移位操作指令、数据传送指令、输入输出指令、转移指令等

Instruction format

操作码

操作数1

操作数2

• • • • •

Example:

模仿 小鸡

加 1 2

- Computer System overview
- What is an Operating System?
- History of Operating Systems
- The Operating System Zoo
- Supplement Knowledge

Why operating system?

如果程序员直接对硬件编程.....

• 编写一个程序

Input: a name, such as Wukong

Output: Hello, Wukong!

♥ 如果直接对硬件编程......

- 键盘、显示器显示的工作原理?
- 如何把缓冲区的数据拷贝到内存?
- 如何在屏幕的某个特定位置显示某个字符?

• • • • •

◆ 怎么办?

- Adds an intermediary between the computer user and the computer hardware:
 - ✓ Manages the computer hardware
 - ✓ Provides a basis for application programs
- This intermediary is operating system

• There are a lot of definitions.

Do you know?

❖ 不同人眼中的OS是不同的

- OS设计者:如何管理CPU、内存、I/O设备等系统部件, 使之能正常运转
- 应用程序开发人员: API应用程序编程接口

```
int MessageBox (...);
HWND CreatWindow (...);
int DrawText (...);
BOOL PlaySound (...);
HDC BeginPaint (...);
```


- Computer system = hardware + software (+data)
 - Operating System(操作系统, OS) is the first software layer on the physical hardware, and can be viewed as the first expansion of computer hardware system.
 - All applications running in the OSes, more or less, directly or indirectly, call the OS functions. For example, the simplest program "helloworld".

Definition from Wikipedia

An operating system (OS) hardware and applications; is an interface between it is responsible for the management and coordination of activities and the sharing of the limited resources of the computer.

- ♦ 没有一个统一的、适用的定义!
- An Operating System is a program that
 - Manages the computer hardware
 - Provides a basis for application programs
 - Acts as an intermediary between the computer user and the computer hardware
- OS is a resource allocator that
 - Manages and allocates all resources (管理和分配资源)
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program that
 - Controls execution of programs to prevent errors and improper use of the computer
 - controls operations of I/O devices

3/12/2018 BUPTSSE 25

◆ Kernel – the one program running at all times (all else being application programs). -- 全时运行的一个程序

- A set of programs that control and manage computer hardware and software, and organize computer's workflow so as to make the computer system convenient for users to use reasonably and efficiently.
- ◆ 控制和管理计算机软硬件资源,合理组织计算机工作流程,方便用户合理使用计算机的程序的集合。
- ◆操作系统是一组控制和管理计算机软硬件资源、合理地对各类作业进行调度以及方便用户的程序的集合

Operating System Goals

- Operating system purpose: Provide an environment in which a user can execute programs.
- ◆ 在计算机硬件上配置OS的(设计)目标有以下几点
 - **convenience**(方便性)
 - ✓ Execute user programs and make solving user problems easier
 - ✓ Make the computer system convenient to use
 - Effectiveness(有效性)
 - ✓ Use the computer hardware in an efficient manner (提高软硬件资源的利用率)
 - Extensibility(可扩充性)
 - ✓ 适应软硬件的发展需求
 - openness(开放性)
 - ✓ 可移植性、互操作性
- ◆ 方便性和有效性是操作系统最重要的两个目标。

3/12/2018 BUPTSSE 28

Roles of operating system

- ♦ 对操作系统作用的理解,有不同的观点
 - 用户与计算机硬件系统之间的接口(interface)
 - ✓ 命令接口(Command Line Interface, CLI)、
 - ✓ 图形用户接口(Graphical User Interface, GUI)
 - ✓ 编程接口(系统调用接口(system call))

Moles of operating system

- ◆ 对操作系统作用的理解,有不同的观点
 - 计算机资源的管理者(resource allocator)
 - ✓ 四类资源:处理机、存储器、I/O设备、文件

Roles of operating system

- ♦ 对操作系统作用的理解,有不同的观点
 - 扩充机器(或虚拟机Virtual Machine)
 - ✓ 虚拟机:覆盖了软件的机器
 - ✓ 层次性

- Computer System overview
- What is an Operating System?
- History of Operating Systems
- The Operating System Zoo
- Supplement Knowledge

- Phase 1: 1945-1955 (硬件昂贵, 无操作系统)
- Some switches of the sound of
- Computer designer is: builder, programmer, operator, and "sys admin"
- A physicist who wanted to calculate the trajectory of a missile would sign up for an hour on the computer in advance.
- ✓ When his time came, he would come into the room, feed in his program from punched cards or paper tape, watch the lights flash, maybe do a little debugging, get a print-out, and leave.

History of Operating Systems

- ◆ Phase 2: 1955-1965 (硬件昂贵,人力便宜)
- Universities started to buy computers (spending millions of dollars)
- OS: batch system
- Programming language: FORTRAN & Assembly
- **Computer:** Mainframes
- Low CPU utilization -- slow mechanical I/O devices

♦ Phase 2: 1955-1965 (硬件昂贵,人力便宜)

- bring cards to 1401
- read cards to tape
- put tape on 7094 which does computing
- put tape on 1401 which prints output

作业=程序+数据+处理步骤

- ♦ Phase 2: 1955-1965 (硬件昂贵,人力便宜)
- Hire an operator 设置一个操作员
- User ≠operator
- Reduce setup time by batching similar jobs 批量处理同类作业减少了设置时间
- OS's main task: Automatic job sequencing automatically transfers control from one job to another.
- Resident monitor
- ✓ initial control in monitor 初始化管理程序
- ✓ control transfers to job 转换控制到作业

- Phase 2: 1965-1980 (Multiprogrammed Batch Systems)
 - Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them.
 - Multiprogramming increases CPU utilization by organizing jobs such that CPU always has one to execute.

3/12/2018 BUPTSSE 38

History of Operating Systems

Phase 2: 1965-1980 (Multiprogrammed Batch Systems)
Simple batch system: Job A (blue red) Job B (Yellow green)

batch system: Job A (blue red) Job B (Yellow green)

History of Operating Systems

- Phase 2: 1965-1980 (Multiprogrammed Batch Systems)
 - OS Features Needed for Multiprogramming
 - ✓ I/O routine supplied by the system.
 - ✓ Memory management— the system must allocate the memory to several jobs.
 - ✓ CPU scheduling the system must choose among several jobs ready to run.
 - ✓ Allocation of devices.

- Phase 2: 1965-1980 (Multiprogrammed Batch Systems)
 - OS Features Needed for Multiprogramming
 - ✓ Improve CPU utilization 7%--100% (in theory)
 - ✓ Improve memory and I/O devices utilization
 - ✓ Increase system throughput

Characteristics of Multiprogrammed Batch Systems:

多道性、无序性、调度性 (两级)

- Phase 2: 1965-1980 (Multiprogrammed Batch Systems)
 - **Can** you tell me the concept of "Multiprogramming"?
 - ✓ 两个/两个以上的作业同时入主存
 - ✓ 处于宏观运行状态
 - ✓ 共享所有系统资源

History of Operating Systems

- Phase 3: 1975-1980 (Timesharing Systems)
 - Requirements: User need interaction with computer
 - ✓ Response time < 1 sec
 - Solutions
 - ✓ Share CPU by time pieces (时间片)
 - ✓ Time-sharing (multitasking)
 - ** Users share Main frame
 - ✓ One main frame VS. Multi users & Multi terminal
 - Time-sharing system is a logical extension of multiprogramming
 - 丝 经典操作系统: CTSS、MULTICS、UNIX

- Phase 4: 1980-now (Multiprogrammed Batch Systems)
 - personal computers were developed after LSI (Large Scale Integration) circuits were invented.
 - First Microcomputer:
 - ✓ Intel 8080 CPU + attached 8-inch floppy disk
 - ✓ First disk based OS: CP/M (Control Program for Microcomputers)
 - Programming languages: C/C++, Java,
 - OS: DOS, Windows, MacOS, Linux

History of Operating Systems

- Phase 4: 1980-now (Multiprogrammed Batch Systems)
 - Bill Gates suggested IBM that they should look at CP/M (by Gary Kildall)
 - The biggest mistake of all:
 - ✓ Kindall refused to sign a non-disclosure agreement
 - ✓ IBM went back to Bill Gates and signed a contract with him to write an OS for their new home computer
 - MS-DOS was based on QDOS, the "Quick and Dirty Operating System" written by Tim Paterson of Seattle Computer Products
 - QDOS was based on Gary Kildall's CP/M
 - Microsoft bought the rights to QDOS for \$50,000

- Computer System overview
- What is an Operating System?
- History of Operating Systems
- The Operating System Zoo
- Supplement Knowledge

- Mainframe operating systems
 - Room-size computers
 - High I/O capacity
 - Offers:
 - ✓ Batched OS(no interaction, such as large reports)
 - ✓ Multiprogrammed OS(large number of small requests)
 - ✓ Time-sharing OS(multiple users sitting in front of clients)

- Server operating systems
 - Offer services like print, file, or web
 - UNIX, Windows 2000, Linux
- Multiprocessor operating systems
 - Parallel computing
- Personal computer operating systems
 - Single user with a good GUI, such as Windows 98, Windows 2000, Macintosh OS, Linux

- Real-time operating systems
 - E.g. industrial process control systems where each job must be completed in the specified time.
 - Hard real-time (nuclear reactor control systems) or soft-real time systems (e.g multimedia systems) depending on the acceptance of missing deadlines
- Embedded operating systems
 - Real-time systems with some resource constraints like memory, CPU, power.
- Smart card operating systems
 - Extremely primitive OS running on credit card-sized devices with a CPU.

Mainframe operating systems

The OS

- was always resident in memory
- automatically transferred control from one job to another
- Batching
 - Programmers submitted jobs in a job control language (shell...)
 - Operators batched together jobs with similar needs and run them as a group

Time-Sharing Systems

- Time-Sharing Systems
 - The CPU is multiplexed多路 among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
 - A job is swapped in and out of memory to the disk.
 - On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next "control statement" not from a card reader, but rather from the user's keyboard.
 - On-line system must be available for users to access data and code.

Time-Sharing Systems

主机

- ♠ Real-Time Systems (专用系统)
- Often used as a control device in a dedicated application such as
- ✓ controlling scientific experiments,
- medical imaging systems,
- ✓ industrial control systems, and some display systems.
- Well-defined fixed-time constraints. 严格的时间限制

- Real-Time Systems
- Hard real-time system 硬实时系统
- ✓ Secondary storage limited or absent, data stored in short-term memory, or read-only memory (ROM)
- ✓ Conflicts with time-sharing systems, not supported by general-purpose operating systems.
- Soft real-time system 软实时系统
- ✓ Limited utility in industrial control or robotics
- ✓ Useful in applications (multimedia, virtual reality) requiring advanced operating-system features.

- Personal-Computer Systems
- Personal computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Can adopt technology developed for larger operating system, often individuals have sole use of computer and do not need advanced CPU utilization of protection features.

可采用大型操作系统研发的技术,个人独占计算机不需要高级CPU使用的保护技术

- Parallel Systems
- Multiprocessor systems with more than one CPU in close communication.
- Tightly coupled system 紧耦合系统 processors share memory and a clock; communication usually takes place through the shared memory.
- Advantages of parallel system:
- ✓ Increased throughput 吞吐量
- ✓ Economical
- ✓ Increased reliability

graceful degradation 故障时性能降低不大 fail-soft systems 软失效系统

- Parallel Systems
- Symmetric multiprocessing (SMP)对称多处理
- ✓ Each processor runs an identical copy of the operating system.
- ✓ Many processes can run at once without performance deterioration.
- ✓ Most modern operating systems support SMP
- Asymmetric multiprocessing非对称多处理器
- ✓ Each processor is assigned a specific task; master processor schedules and allocates work to slave processors.
- ✓ More common in extremely large systems

- Distributed Systems
- Distribute the computation among several physical processors.
- Loosely coupled system each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.
- Advantages of distributed systems.
- Resources Sharing
- ✓ Computation speed up
- ✓ Reliability
- ✓ Communications

- Distributed Systems
- Network Operating System
- ✓ provides file sharing
- ✓ provides communication scheme
- ✓ runs independently from other computers on the network
- Distributed Operating System
- ✓ less autonomy between computers
- ✓ gives the impression there is a single operating system controlling the network.

- Computer System overview
- What is an Operating System?
- History of Operating Systems
- The Operating System Zoo
- Hardware features required by OS
 - (Supplement Knowledge)

◆任何系统软件都是对硬件系统的延伸,都是建立在硬件基础上的,离不开硬件设施的支持,而操作系统更是直接依赖于硬件,与硬件的关系尤为密切

3/12/2018 BUPTSSE 50

- Hardware protection
- System call
- Memory protection
- Interrupt architecture
- I/O systems
- Timer systems

- Hardware protection
- A properly designed OS must ensure that an incorrect (or malicious) program cannot cause other programs to execute incorrectly.
 - ✓ When in dead loop
 - ✓ When sharing recourses
 - ✓ When one erroneous program might modify the program or data of another program, or even the OS
- Hardware must provide protection
 - ✓ Dual-Mode Operation
 - ✓ I/O protection
 - ✓ Memory protection
 - ✓ CPU protection

- ◆ Protected instruction (特权指令- privileged instruction)
- ☎ 有些指令只有操作系统才有权使用,比如:
 - ✓ 访问某些硬件资源的指令,这些硬件资源禁止用户程序直接访问;
 - ✓ 对I/O设备的直接访问指令,如磁盘、打印机等;
 - ✓ 对内存管理状态进行操作的指令(页表指针、刷新TLB等);
 - ✓ 某些特殊的状态位的设置指令;
 - ✓ 停机指令

3/12/2018 BUPTSSE 53

如何从硬件上实现OS的这个要求?

- ♥ 处理器的状态
- 根据运行程序对资源和机器指令的使用权限,把处理器设置为不同的状态;
- 多数系统将处理器工作状态分为管态(kernel mode)和 目态(User mode):
- ✓ 管态:操作系统的管理程序运行时的状态,较高的特权级别,又称为特权态、系统态、内核态
- ✓ 处理机处于管态时:可以执行所有的指令(包括特权指令)、使用所有的资源,并具有改变处理机状态的能力。
- ✓ 目态:用户程序运行时的状态,较低的特权优先级,又称 为普通态(普态)、用户态
- ✓ 在此状态下,禁止使用特权指令,不能直接使用系

3/12/2018 BUPTSSE 54

如何从硬件上实现OS的这个要求?

统资源与改变CPU状态,并且只能访问用户程序所在的存储空间;

✓ 有些系统将处理器状态划分为:核心状态、管理状态和用户程序状态三种。

- ✓ 386、486、Pentium系列都支持4个处理器特权级别 (特权环Ro、R1、R2和R3);
- ✓ 从R0到R3特权能力一次降低;
- ✓ Ro相当于双状态系统的管态;
- ✓ R3相当于目态;
- ✓ R1和R2介于两者之间,他们能够运行的指令集合具有包含关系:

 $I_{R3} \subseteq I_{R2} \subseteq I_{R1} \subseteq I_{R0}$

- № 各个级别有保护性检查(地址校验、I/O限制)
- 特权级别之间的转换方式不尽相同
- 四个级别运行不同类别的程序:
 - ✓ Ro-运行OS核心代码;
 - ✓ R1-运行关键设备驱动程序和I/O处理例程;
 - ✓ R2-运行其他受保护共享代码,如语言系统运行环境
 - ✓ R3-运行各种用户程序
- 现有基于x86系列处理器的操作系统,多数UNIX、 Linux以及Windows系列大都只用了Ro和R3两个特权 级别

◆ CPU怎么来判断当前运行的程序是系统程序还是 用户程序?

- ◆ 一个专门的寄存器,用来指示处理机的状态, PSW (Program Status Word),通常包括:
- CPU的工作状态码-指明管态还是目态,用来说明当前在 CPU上执行的是操作系统还是一般用户,从而决定其是否 可以使用特权指令或拥有 其他的特殊权利;
- ★件码-反映指令执行后的结果特征;
- 中段屏蔽码-指出是否允许中断
- **#**

Question:如果CPU只有两个状态:系统态、内核态,用几位来描述CPU状态?

◆ CPU状态之间如何转换?

- ◆ 管态到目态 通过设置PSW(修改程序状态字)来实现
- 目态到管态用户程序无法直接修改程序状态字
- 那么用户程序如何才能去做一些带有"特权"的 事情(如I/O)呢?

解决方法--

Hardware features required by OS

- Protected instruction
- System call
- Memory protection
- Interrupt architecture
- I/O systems
- Timer systems

- 用户程序通过特殊的访管指令,来请求操作系统 为其提供某种功能的服务,系统调用指令实现的 一般过程是
- ≌ 当CPU执行访管指令时,即引起访管中断;
- 处理器保存中断点的程序执行上下文环境(PSW、PC和 其他的一些寄存器), CPU切换到管态;
- □ 中断处理程序开始工作,调用相应的系统服务;
- 中段处理结束后,恢复被中断程序的上下文环境,CPU恢 复为目态,回到中断点继续执行。

用户程序

OS内核

管态 (系统态)

3/12/2018 BUPTSSE 64

Hardware features required by OS

- Protected instruction
- System call
- ◆ Memory protection (存储管理讲)
- Interrupt architecture
- I/O systems
- Timer systems

- 用中断对于操作系统的重要性 就像机器中驱动齿轮一样
- ◆ 当有人把操作系统称为是由 "中断驱动"或者"中断事件驱动"

- ♦ 什么是中断?
- 指的是由于某个事件的发生,改变了正在CPU上执行的指令顺序;
- 这种事件对应于CPU芯片内部或者外部的硬件电路所生成的电信号
- 中断处理的过程:
- 当中断事件发生时,CPU暂停正在执行的程序,保留现场后自动转去执行相应事件的处理程序,带处理完成后返回断点,继续执行被打断的程序。

- ♦ Intel公司的文档,中断可以分为两大类: 同步中断和异步中断
- 同步中断,指当CPU正在执行指令的时候,由CPU的控制单元所发出的指令,也称为"异常"
- ✓ CPU检测到的异常包括:错误Fault、陷阱Trap、中止Abort,例如:算数溢出、被零除用户态下使用了特权指令等
- ✓ 程序设定的异常,即程序通过int、int3等指令来发出的中断请求,也称为软中断,主要用来实现系统调用服务

- □ 异步中断,指其他的硬件设备在任意时刻发出的 中断,简称为"中断"
 - ✓ 可屏蔽中断,即I/O中断,它是当外部设备或通道操作正常结束或发生错误时所发生的的中断。 比如,打印机完成、缺纸、读磁盘时驱动器中没有磁盘等
 - ✓ 不可屏蔽中断, 比如由掉电、存储器校验错等 硬件故障引起的硬件中断
- 每一个中断或者异常都用一个o-255之间的整数 来标识,称为中断向量,系统根据中断向量来为 每一个中断或异常指定相应的处理程序

- ◆ I/O系统,完成计算机系统中信息的输入输出
- ♦ 时钟
- 时钟是操作系统运行时必不可少的硬件设施,在操作系统中需要时钟支持的工作有:
- 在分时系统中,间隔时钟实现进程间按时间片轮转
- ★ 在实时系统中,按要求的间隔输出正确的时间信号 给实时的控制设备
- 记录用户和系统所需的绝对时间(年月日时分秒)

Hardware features required by OS

- Protected instruction
- System call
- ◆ Memory protection (存储管理讲)
- Interrupt architecture
- I/O systems
- Timer systems

End of Chapter 1