Object Detection on Digital Breast Tomosynthesis Images with YOLO

Joy Fu 05/11/2021

Background

- Digital Breast Tomosynthesis (DBT)
 - More accurate
 - More time-consuming
- Automated methods
 - Computer-aided detection
 - Computer-aided diagnosis
- Objective
 - Object detection on DBT
 - Lower specificity and precision (while not resulting in a significant increase in sensitivity)

- Object detection
 - Finding all the objects in an image and drawing the so-called bounding boxes around them
 - Two general groups
 - Algorithms based on classification: RCNN, Fast-RCNN, RetinaNet, etc.
 - Algorithms based on regression: YOLO, Single Shot Multibox Detector (SSD), etc.
- Regression-based object detection
 - Faster, but less accurate in general
- YOLO
 - Reframe object detection as a single regression problem (convolution network)
 - You Only Look Once at an image to predict what objects are present and where they are
 - Uses features from the entire image to predict
 - Predicts all bounding boxes across all classes for an image simultaneously

- Unified detection
 - Divides the input image into an S × S grid
 - Each grid cell predicts B bounding boxes and confidence scores for those boxes

- Each bounding box consists of 5 predictions
 - **(x, y)**: center of the box
 - width, height
 - confidence
- Each grid cell also predicts C conditional class probabilities

$$Pr(Class_i|Object)$$

At test time: class-specific confidence scores for each box

$$Pr(Class_i|Object) * Pr(Object) * IOU_{pred}^{truth} = Pr(Class_i) * IOU_{pred}^{truth}$$

- Full network architecture
 - 24 convolutional layers followed by 2 fully connected layers
 - 1 × 1 reduction layers
 - Optimize for sum-squared error

Pros

- Extremely fast
- Reasons globally about the image when making predictions
- Learns generalizable representations of objects

Cons

- Lags behind in accuracy
- Struggles with small objects

Method: Workflow

- Built the dataset and convert to YOLO format
- Two configuration files
 - Specify architecture to be used
 - Number of classes
- Train-test (0.9-0.1) split

$$\circ$$
 N_{train} = 179, N_{test} = 21

- Model training
 - Labels: benign, cancer, (background)
- Model evaluation
 - Multiple metrics

100 -

80 -

Preliminary results

Model: YOLOv5s (the smallest YOLOv5)

- Using their default architecture and parameters
- Image size 640
- Batch 16
- Epochs 40
- ~ 2hrs to train

Preliminary results

Model: YOLOv5s (the smallest YOLOv5)

- Using their default architecture and parameters
- Image size 640
- Batch 16
- Epochs 40
- ~ 2hrs to train

Preliminary results

True label: benign

Predict: YOLOv5s (the smallest YOLOv5)

- Using best weights trained
- Confidence 0.1

Predict: YOLOv5s (the smallest YOLOv5)

- Using best weights trained
- Confidence 0.02

Preliminary results

Predict: YOLOv5s (the smallest YOLOv5)

- Using best weights trained
- Confidence 0.02

Preliminary results

Predict: YOLOv5s (the smallest YOLOv5)

- Using best weights trained
- Confidence 0.02

Preliminary results

True label: benign

Reflections and future works

- The current model is not ideal for ROI detection and classification
- The current train-test split doesn't include cancer in the test set
- Try larger YOLOv5 frameworks

