Chapter 10FIR Digital Filter Design

Zhiliang LIU
Zhiliang_Liu@uestc.edu.cn
5/17/2019

10.1 Preliminary Considerations

10.1.1 Basic Approaches to FIR Filter Design

- Unlike IIR digital filter design, FIR filter design have no connection with the design of analog filters.
- The design of FIR filters is based on a direct approximation of the specified magnitude response, with added requirement that the phase response be linear.

10.1.1 Basic Approaches to FIR Filter Design

The real-coefficient FIR filters are described by a transfer function that is a polynomial in z^{-1} .

Always guaranteed stable!

Two Basic Approaches:

The first method is based on *Windowed Fourier Series*.

The second method is <u>Frequency Sampling</u> <u>Approach</u> (based on inversed DFT to the frequency samples).

10.2 FIR Filter Design Based on Windowed Fourier Series

10.2.1 Least Integral-Squared Error Design of FIR Filters

Let $H_d(e^{j\omega})$ denote the desired frequency response

$$H_{d}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_{d}[n]e^{-j\omega n} \cdots (10.7)$$

where

$$h_{d}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{d}(e^{j\omega}) e^{j\omega n} d\omega, \quad -\infty \le n \le \infty \cdots (10.8)$$

• In general, $H_d(e^{j\omega})$ is piecewise constant with sharp transitions between bands, in which case, $\{h_d[n]\}$ is of infinite length and noncausal.

Objective

Find a finite-duration $\{h_t[n]\}$ of length 2M+1 whose DTFT $H_t(e^{j\omega})$ approximates the desired DTFT $H_d(e^{j\omega})$ in some sense.

$$H_{d}(e^{j\omega}) \xrightarrow{IDTFT} h_{d}[n] \xrightarrow{Truncation} h_{t}[n] = h_{d}[n]w_{R}[n] \xrightarrow{DTFT} H_{t}(e^{j\omega})$$

Commonly used approximation criterion: minimize the integral-squared error

$$\Phi = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| H_{t}(e^{j\omega}) - H_{d}(e^{j\omega}) \right|^{2} d\omega \cdots (10.9)$$

where

$$H_{t}(e^{j\omega}) = \sum_{n=-M}^{M} h_{t}[n]e^{-j\omega n} \cdots (10.10)$$

Using Parseval's relation we can write

$$\Phi = \sum_{n=-\infty}^{\infty} |h_{t}[n] - h_{d}[n]|^{2}$$

$$= \sum_{n=-M}^{M} |h_{t}[n] - h_{d}[n]|^{2} + \sum_{n=-\infty}^{-M-1} h_{d}^{2}[n] + \sum_{n=M+1}^{\infty} h_{d}^{2}[n]$$

It follows from the above that Φ is minimum when $h_t[n] = h_d[n]$ for $-M \le n \le M$

⇒ Best finite-length approximation to ideal infinitelength impulse response in the mean-square sense is obtained by <u>truncation</u>

$$h_{t}[n] = h_{d}[n] \cdot w_{R}[n]$$

$$w_{R}[n] = \begin{cases} 1, & 0 \le |n| \le M \\ 0, & \text{otherwise} \end{cases}$$
 Recta

Rectangular Window

 A causal FIR filter with an impulse response h[n] can be derived from h_t[n] by delaying:

$$h[n] = h_t[n - M]$$

FIR filter h[n]---linear phase

$$h_t[n]$$
---zero phase

They have the same magnitude response.

$$H(e^{j\omega}) = H_{t}(e^{j\omega})e^{-j\omega M}$$

10.2.2 Gibbs Phenomenon (10.2.3)

$$h_t[n] = h_d[n] \cdot w[n]$$

In the frequency domain

Periodic continuous convolution

$$H_{t}(e^{j\omega}) = \frac{1}{2\pi} \int_{\pi}^{\pi} H_{d}(e^{j\varphi}) \Psi(e^{j(\omega-\varphi)}) d\varphi$$

Where $H_t(e^{j\omega})$ and $\psi(e^{j\omega})$ are the DTFTs of $h_t[n]$ and w[n], respectively

- As an example, the LPF design is studied
- A rectangular window is used to achieve simple truncation:

$$w_R[n] = \begin{cases} 1, & 0 \le |n| \le M \\ 0, & \text{otherwise} \end{cases}$$

$$\psi_{R}(e^{j\omega}) = \frac{\sin(\omega(2M+1)/2)}{\sin(\omega/2)}$$

 $\uparrow M \rightarrow$ width of main lobe \downarrow

Area under each lobe remains constant while width of each lobe decreases with an increase in M.

• Thus $H_t(e^{j\omega})$ is obtained by a periodic continuous convolution of $H_d(e^{j\omega})$ with $\psi(e^{j\omega})$.

• The LPF amplitude response will have oscillatory behavior shown in next slide.

oscillatory behavior

- Observation:
- ↑M (length of the lowpass filter) →↑ number of ripples (both passband and stopband) with corresponding ripple widths \
- Height of the largest ripples remain the same independent of length

• Ripples in $H_t(e^{j\omega})$ around the point of discontinuity occur more closely but with no decrease in amplitude as M increases

---Gibbs phenomenon

 Gibbs phenomenon - Oscillatory behavior in the magnitude responses of causal FIR LPFs obtained by truncating the impulse response coefficients of ideal filter.

Why Gibbs phenomenon?

Rectangular window has an abrupt transition to zero outside the range $-M \le n \le M$, which results in Gibbs phenomenon in $H_t(e^{j\omega})$.

- Gibbs phenomenon can be reduced:
- (1) w[n] or $\psi(e^{j\omega})$: Using a window that tapers smoothly to zero at each end, or
- (2) $h_d[n]$ or $H_d(e^{j\omega})$: Providing a smooth transition from passband to stopband in the magnitude specifications

• Similar oscillatory behavior observed in the magnitude responses of the truncated versions of other types of ideal filters (HP, BP, BS).

10.2.3 Fixed Window Functions (10.2.4)

- Using a tapered window causes the height of the sidelobes to diminish, with a increased main lobe width resulting in a wider transition at the discontinuity
- Rectangular:

$$w[n] = 1, -M \le n \le M$$

Hann:

$$w[n] = 0.5 + 0.5\cos[2\pi n/(2M+1)], -M \le n \le M$$

Hamming:

$$w[n] = 0.54 + 0.46\cos[2\pi n/(2M+1)], -M \le n \le M$$

Blackman:

$$w[n] = 0.42 + 0.5\cos[2\pi n/(2M+1)] + 0.08\cos[4\pi n/(2M+1)]$$

Rectangular Window

Hanning Window

$w[n] = 0.5 + 0.5\cos[2\pi n/(2M+1)], -M \le n \le M$

Hamming Window

$w[n] = 0.54 + 0.46\cos[2\pi n/(2M+1)], -M \le n \le M$

Blackman Window

 $w[n] = 0.42 + 0.5\cos[2\pi n/(2M+1)] + 0.08\cos[4\pi n/(2M+1)], -M \le n \le M$

Plots of magnitudes of the DTFTs of these windows for M = 25 are shown below

Rectangular and Blackman windows

Performance of a window function in LPF design

Observe

$$H_{t}(e^{j(\omega_{c}+\Delta\omega)}) + H_{t}(e^{j(\omega_{c}-\Delta\omega)}) \cong 1$$

$$H_{t}(e^{j\omega_{c}}) \cong 0.5$$

- Distance between the locations of the maximum passband deviation and minimum stopband value $\cong \Delta_{\text{ML}}$
- Width of transition band

$$\Delta \omega = \omega_s - \omega_p < \Delta_{ML}$$

In addition,

$$\Delta \omega \approx c / M$$

where c is a constant for most practical purposes

- To ensure a fast transition from passband to stopband, window should have a very small main lobe width---↑M
- To reduce the passband and stopband ripple, the area under the sidelobes should be very small---↓ M (very small M)
- Unfortunately, these two requirements are contradictory.

We have to trade-off between the specifications. As a result Table 10.2 is shown in next slide.

Table 10.2 Properties of some fixed window functions

---- Correlated

Type of windows	Main lobe width Δ _{ML}	Relative sidelobe level A _{sl}	Minimum stopband attenuation	Transition bandwidth Δω
Rectangular	4π/(2M+1)	13.3dB	20.9dB	0.92π/Μ
Hann	8π/(2M+1)	31.5dB	43.9dB	3.11π/M
Hamming	8π/(2M+1)	42.7dB	54.5dB	3.32π/M
Blackman	12π/(2M+1)	75.3dB	75.3dB	5.56π/M

Correlated

10.2.4 Adjustable Window Functions (10.2.5)

There are two adjustable window functions.

One of them is *Dolph-Chebyshev* window (Eqs. (10.34) ~ (10.38)).

Another is the most widely used *Kaiser window*.

Kaiser window

$$w[n] = \frac{I_0(\beta \sqrt{1 - \left[\frac{n}{M}\right]^2})}{I_0(\beta)}, -M \le n \le M$$

where,

$$I_{0}(u) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ju \sin y} dy \approx 1 + \sum_{k=1}^{\infty} \left| \frac{\frac{u}{2}}{k!} \right|^{2}$$

(zero-order Bessel function)

We can adjust β to modify the window function. So, it is called as <u>adjustable window</u> <u>function</u>. Eqs. (10.41) and (10.42) give how to get β and N.

10.2.5 Estimation of the Filter Order (10.1.2)

For the design of FIR LPF, the order *N* is directly estimated from the digital filter specification. Several authors have advanced formulas. For example,

Kaiser's formula:

$$N \approx \frac{-20 \log_{10} (\sqrt{\delta_{P} \delta_{S}}) - 13}{14.6(\omega_{S} - \omega_{P})/(2\pi)} \qquad(10.3)$$

Bellanger's formula:

$$N \cong \frac{2 \log_{10} (10 \delta_P \delta_S)}{3(\omega_S - \omega_P)/(2\pi)} - 1 \qquad(10.4)$$

Hermann's formula:

$$N \cong \frac{D_{\infty}(\delta_{P}, \delta_{S}) - F(\delta_{P}, \delta_{S})[(\omega_{S} - \omega_{P})/2\pi]^{2}}{(\omega_{S} - \omega_{P})/(2\pi)}$$
.....(10.5)

Read P462~465 and understand the situations of these formulas.

Table 10.1 Comparison of FIR filter orders

Filter No.	Actual	Kaiser's	Bellanger's	Hermann's
	Order	Formula	Formula	Formula
1	159	158	163	151
2	38	34	37	37
3	14	12	13	12

Common points of FIR filter order formulas

- (i) All above formulas are used in case $\omega_s > \omega_P$.
- (ii) Interchange δ_S , δ_P , the order of FIR are same.
- (iii) Ripples δ_S , δ_P are decreased, the order of FIR is increased.
- (iv) Transition bandwidth $\omega_s \omega_P$ is decreased, the order of FIR is increased.

10.2.6 Low pass FIR filter design

Design Steps for Windowed Low Pass FIR Filters

(1) Choose a pass band edge frequency in Hz:

$$f_c = (f_p + f_s)/2$$

(2) Calculate $\omega_c = 2\pi f_c/f_T$, the infinite impulse response for an ideal low pass filter:

$$h_d[n] = \sin(n\omega_c)/n\pi$$

(3) Choose a window based on the specifications (Table 10.2).

- (4) Calculate FIR from $h_t[n] = h_d[n]w[n]$, notice it is noncausal.
- (5) Shift $h_t[n]$ to the right by M to make the filter causal $h[n] = h_t[n-M]$

The performance of designed filter should be testified!

FIR Filter Design Example

The specifications of a low pass filter:

Pass band edge f_p 2kHz

Stop band edge f_s 3kHz

Minimum stop band attenuation 40dB

Sampling frequency f_T 10kHz

Design

(1) Transition width
$$\Delta f = 3 - 2 = 1 \text{ kHz}$$

$$f_c = (2000+3000)/2 = 2500 \text{Hz}$$

$$\omega_c = 2\pi f_c/f_T = 2\pi 2500/10000 = 0.5\pi$$

- (2) $h_d[n] = \sin(n\omega_c)/n\pi = \sin(0.5\pi n)/n\pi$
- (3) Choose Hanning window (Table 10.2, 40dB required)

Transition Width $\Delta\omega$ = $2\pi\Delta f/f_T$ = $2\pi 1000/10000$ = 0.2π

```
M = 3.11\pi/\Delta\omega = 15.55, the least M = 16, choose order N = 2M = 32, length N+1 = 33 w[n] = 0.5 + 0.5\cos(2\pi n/33)
```

- (4) $h_t[n] = h_d[n]w[n] = [\sin(0.5\pi n)/n] w[n],$
- (5) $h[n] = h_t[n-M] = h_t[n-16]$

Type I linear-phase FIR LPF

•
$$H(e^{j\omega p}) = -0.06 \text{ dB at } \omega_p = 2.013 \text{kHz}$$

•
$$H(e^{j\omega s}) = -40 \text{ dB at } \omega_s = 2.976 \text{kHz}$$

n	h _t [n]	w[n]	h[n]	New n
-16	(0.0000)	0. 0023	(0.0000)	0
-15	(0.0004)	0. 0203	(0. 0212)	1
-14	0.0000	0. 0556	0.0000	2
-13	0. 0026	0. 1070	0. 0245	3
-12	(0.0000)	0. 1726	(0.0000)	4

10.2.7 Impulse Response of Ideal Filters (10.2.2)

Zero-phase frequency response

$H_{\rm IP}({\rm e}^{j\omega})$

Ideal lowpass filter

$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}, -\infty \le n \le \infty$$

Ideal highpass filter

$$h_{HP}[n] = \begin{cases} 1 - \frac{\omega_c}{\pi}, & n = 0 \\ -\frac{\sin \omega_c n}{\pi n}, & n \neq 0 \end{cases}$$

How to get?

Ideal bandpass filter

$$H_{\rm BP}({\rm e}^{j\omega})$$

$$-\pi -\omega {\rm c} 2^{-\omega} {\rm c} 1 \qquad \omega {\rm c} 1 \qquad \omega {\rm c} 2 \qquad \pi$$

$$h_{BP}[n] = \begin{cases} \frac{\sin \omega_{c2}n}{\pi n} - \frac{\sin \omega_{c1}n}{\pi n}, & n \neq 0 \\ \frac{\omega_{c2}}{\pi} - \frac{\omega_{c1}}{\pi}, & n = 0 \end{cases}$$

Ideal bandstop filter

$$h_{BS}[n] = \begin{cases} 1 - \frac{\omega_{c2} - \omega_{c1}}{\pi}, & n = 0\\ \frac{\sin \omega_{c1} n}{\pi n} - \frac{\sin \omega_{c2} n}{\pi n}, & n \neq 0 \end{cases}$$

Ideal multi-band filter

$$H_{ML}(e^{j\omega}) \qquad \qquad H_{ML}(e^{j\omega}) = A_{k},$$

$$\omega_{k-1} \leq \omega \leq \omega_{k},$$

$$\omega_{0} = 0, \omega_{L} = \pi$$

$$k = 1, 2, ..., L$$

$$A_{L+1} = 0$$

$$h_{ML}[n] = \sum_{\ell=1}^{L} (A_{\ell} - A_{\ell+1}) \frac{\sin(\omega_{\ell} n)}{\pi n}$$

Ideal discrete-time Hilbert transformer

$$H_{HT}(e^{j\omega}) = \begin{cases} j, & -\pi < \omega < 0 \\ -j, & 0 < \omega < \pi \end{cases}$$

$$h_{HT} [n] = \begin{cases} 0, & \text{for } n \text{ even} \\ 2/\pi n, & \text{for } n \text{ odd} \end{cases}$$

How to get?

Hilbert transformer (90-degree phase shifter)

$$h_{HT}[n] = \frac{1}{2\pi} \int_{-\pi}^{0} je^{j\omega n} d\omega +$$

$$\frac{1}{2\pi} \int_0^{\pi} (-j)e^{j\omega n} d\omega = \frac{2\sin^2(\frac{n\pi}{2})}{n\pi}$$

$$n \neq 0, and, h_{HT}[0] = 0, h_{HT}[n] = \frac{1}{n\pi}[1 - (-1)^n]_{45}$$

Ideal discrete-time differentiator

$$H_{DIF}(e^{j\omega}) = j\omega, \quad 0 \le |\omega| \le \pi$$

$$h_{DIF} [n] = \begin{cases} 0, & n = 0 \\ \frac{\cos \pi n}{n}, & n \neq 0 \end{cases}$$

How to get?

Differentiator

$$H_{DIF}\left(e^{j\omega}\right) = j\omega, 0 \leq \left|\omega\right| \leq \pi$$

$$h_{DIF} [n] = \frac{1}{2\pi} \int_0^{\pi} j\omega e^{j\omega n} d\omega$$

$$+ \frac{1}{2\pi} \int_{\pi}^{2\pi} j(\omega - 2\pi) e^{j\omega n} d\omega = \frac{\cos(n\pi)}{\pi} - \frac{\sin(n\pi)}{\pi}$$

$$= \left\{ \begin{array}{l} 0, n = 0 \\ \frac{\cos(n\pi)}{n}, |n| \neq 0 \end{array} \right\}$$

In another way, let $H_a(j\Omega) = j\Omega P_{2\pi}(\Omega)$

47

and using inverse FT, we get

$$h_a(t) = \frac{\sin(\pi t)}{\pi t} * \delta'(t) = \frac{\cos(\pi t)}{t} - \frac{\sin(\pi t)}{\pi t^2}$$

 $t \rightarrow n$, we get

$$h_{DIF}[n] = \frac{\cos(n\pi)}{n} - \frac{\sin(n\pi)}{\pi n^2}$$

The 2M+1-point linear phase FIR

$$H_{diff}(e^{j\omega}) = (j\omega)e^{-jM\omega}, (-\pi < \omega < \pi)$$

$$h_{diff}[n] = \frac{\cos \pi (n - M)}{(n - M)} - \frac{\sin \pi (n - M)}{\pi (n - M)}$$

10.2.8 FIR Filter Design Example (appended)

Example: Bandpass FIR Filter Design

FIR bandpass filter :

center frequency 4kHz

pass band edges
 3.5 and 4.5 kHz

• sampling frequency f_T =22kHz

• transition width $\Delta f = 500 \text{Hz}$

Minimum stop band attenuation 50 dB

Design

Equivalent LPF filter:

Example 3: FIR LPF Filter Design

A linear phase FIR LPF (Type 1) designed Using Kaiser window with the following specifications:

$$\omega_p = 0.3\pi$$
, $\omega_s = 0.5\pi$,

Minimum stopband attenuation $\alpha = 40 dB$

Design

$$\omega_c = (\omega_p + \omega_s) / 2 = 0.4\pi$$

From Eq. (10.44) (21 $\leq \alpha_s \leq 50$), we get

$$\beta = 0.5842 (\alpha_s - 21)^4 + 0.07886 (\alpha_s - 21)$$

$$\beta = 0.5842(19)^{0.4} + 0.07886 \times 19 = 3.3953$$

From Eq. (10.45), we get

$$N = \frac{40 - 8}{2.285(0.2\pi)} = 22.2886$$

- Choose N = 24 (Type 1), implying M = 12
- Hence $h_t[n] = \{\sin(0.4\pi n)/\pi n\}w[n], -12 \le n \le 12$

where w[n] is the *n*-th coefficient of a length-25 Kaiser window with β = 3.3953

$h[n] = h_t[n-M] = h_t[n-12]$

10.3 FIR Filter Design Based on Frequncy Sampling Approach (Problem 10.31)

The method of using window is an approximation in time-domain. The idea can be used in frequency-Domain.

10.3.1 The method

$$H_{d}(e^{j\omega}) \xrightarrow{Sampling} H(k) \xrightarrow{IDFT} h[n] \xrightarrow{DTFT} H(e^{j\omega})$$

10.3.1 The method

Let $H(k) = H(e^{j\frac{2\pi}{N+1}k})$ denote the sampling values of N+1point FIR filter $H(e^{j\omega})$ designed. We do

$$H(k) = H_{d}(e^{e^{j\frac{2\pi}{N+1}k}}) - \frac{approximation}{} \rightarrow H_{d}(e^{j\omega})$$

$$\downarrow$$

$$H(e^{j\omega}) - \frac{approximation}{} \rightarrow H_{d}(e^{j\omega})$$

Normally, $H(k) = H_d(k)$. The impulse response h[n] can be derived from IDFT of H(k).

It is noticed that H(k) must satisfy the constraint to the linear phase FIR. 55

The Design Steps:

- (1) Determine $H(e^{j\omega})$.
- (2) From ideal filter, the values of H(k) are computed (linear phase).
- (3) From the IDFT of H(k), h[n] is derived.

10.3.2 Design Examples

Design a linear phase FIR BPF, with the passband edge frequencies at 500Hz and 700Hz. The sampling frequency is $f_s = 3.3$ KHz, and the order N=32 (length 33).

Design

(1) Determination of H(k). $N = 32, f_s = 3.3$ KHz,

$$\Delta f = \frac{fs}{N+1} = 0.1 \text{KHz}$$
 (discrimination)

BPF and linear phase are both required. The length is 33 (odd).

So, we choose Type 1 FIR.

That means:

$$H(\omega) = H(2\pi - \omega)$$

$$\theta(\omega) = -M \omega = -16\omega \text{ and }, \omega_k = \frac{2\pi}{33}k$$

$$H(k) = H(e^{j\frac{2\pi}{N+1}k}) = \begin{cases} 1 \cdot e^{-j\frac{32\pi}{33}k}, k = 5.6.7, 26.27.28\\ 0, \text{ others} \end{cases}$$

N+1-points IDFT

$$h[n] = \frac{1}{N+1} \sum_{k=0}^{N} H(k) W_{N+1}^{-kn} = \frac{1}{33} \sum_{k=0}^{32} H(k) e^{j\frac{2\pi}{33}kn}$$

$$= \frac{1}{33} \left\{ e^{-j\frac{32\pi}{33}5} e^{j\frac{2\pi}{33}5n} + e^{-j\frac{32\pi}{33}28} e^{j\frac{2\pi}{33}28n} + e^{-j\frac{32\pi}{33}6n} + e^{-j\frac{32\pi}{33}6n} + e^{-j\frac{32\pi}{33}27n} e^{j\frac{2\pi}{33}27n} \right\}$$

$$+e^{-j\frac{32\pi}{33}7}e^{j\frac{2\pi}{33}7n}+e^{-j\frac{32\pi}{33}26}e^{j\frac{2\pi}{33}26n}$$

$$= \frac{1}{33} \left\{ 2\cos(\frac{2\pi}{33}5(n-16)) + 2\cos(\frac{2\pi}{33}6(n-16)) + 2\cos(\frac{2\pi}{33}7(n-16)) \right\}$$

DTFT

$$H(e^{j\omega}) = e^{-j\frac{16}{33}\omega} \left[\cos 16 \omega \cos 17 \omega\right] \cdot \left[\frac{1.78}{0.58 - \cos \omega} + \frac{1.68}{0.42 - \cos \omega}\right]$$

The better design is to append one or more samples of magnitude on the transition band.

For example, a LPF with one sample of magnitude on the transition band is shown bellow.

It should be noted that the frequency sampling approach is convenient to some <u>narrow filters</u>.

Example: Design a linear phase FIR LPF by using frequency sampling approach. The length is *N*+1 = 15. The magnitude values sampled are

$$H_{k} = \begin{cases} 1, & k = 0 \\ 0.5, & k = 1,14 \\ 0, & k = 2,3,... 13 \end{cases}$$

(1) Determination of H(k). N=14, and linear phase

$$\theta(\omega) = -\frac{N}{2}\omega = -M\omega = -7\omega$$
 (Type 1)

So,

$$H(k) = H_{k} \cdot e^{-j\frac{N}{2} \cdot \frac{2\pi}{N+1}k} = \begin{cases} 1, & k = 0 \\ 0.5e^{-j\frac{14}{15}\pi}, & k = 1 \\ 0, & k = 2 \sim 13 \end{cases}$$

$$\begin{bmatrix} 0.5e^{-j\frac{14}{15} \times 14\pi}, & k = 14 \end{bmatrix}$$

$$\begin{vmatrix} 1, & k = 0 \\ \\ 0.5e^{-j\frac{14}{15}\pi}, & k = 1 \end{vmatrix}$$

$$0, k = 2 \sim 13$$

$$0.5e^{-j\frac{-j}{15}\times 14\pi}, \quad k=14$$

(2) Computation of h[n]

N+1-points IDFT

$$h[n] = \frac{1}{N+1} \sum_{k=0}^{N} H(k) W_{N+1}^{-kn} = \frac{1}{15} [1 + \frac{1}{2} e^{-j\frac{14}{15}\pi} \cdot e^{j\frac{2\pi}{15}n} + e^{-j\frac{14}{15}\pi}]$$

$$\frac{1}{2}e^{-j\frac{14\times14}{15}\pi}\cdot e^{j\frac{2\pi}{15}\times14n}$$

$$h[n] = \frac{1}{15} \left[1 + \cos\left(\frac{2n\pi}{15} - \frac{14\pi}{15}\right) \right] = \frac{1}{15} \left[1 + \cos\left(\frac{2\pi}{15}(n-7)\right) \right]$$

$n=0,1,\cdots 14$

(2) The Structure

Direct-Form

The computational complexity:15 multiplications (*N*+1), and 14 additions (*N*).

Other structure?

10.4 window-based FIR Filter Design Using MATLAB(10.5.4)

Window Generation

```
w = hann(L)
```

w = hamming(L)

w = blackman(L)

w = kaiser(L, beta)

FIR Filter Summary

FIR Filters

Filter Design Method	Description	Filter Functions
Windowing	Apply window to truncated inverse Fourier transform of specified "brick wall" filter	fir1, fir2, kaiserord
Multiband with Transition Bands	Equiripple or least squares approach over sub-bands of the frequency range	firls, firpm, firpmord
Constrained Least Squares	Minimize squared integral error over entire frequency range subject to maximum error constraints	fircls, fircls1
Arbitrary Response	Arbitrary responses, including nonlinear phase and complex filters	cfirpm
Raised Cosine	Lowpass response with smooth, sinusoidal transition	rcosdesign

Example 10.25

```
% Lowpass Filter Design Using the Kaiser Window
fpts = input('Type the band edges = ');
mag = input('Type the desired magnitude values
= ');
dev = input('Type the ripples in each band = ');
[N,Wn,beta,ftype] = kaiserord(fpts, mag, dev);
kw = kaiser(N+1, beta);
b = fir1(N, Wn, kw);
[h,omega] = freqz(b,1,512);
plot(omega/pi,20*log10(abs(h)));
grid;
xlabel('\omega/\pi');
ylabel('Gain, dB');
```

```
Type in the bandedges = [0.3 0.4]

Type in the desired magnitude values = [1 0]

Type in the ripples in each band = [0.003162 0.003162]
```


Example 10.26

Use the same program as example 10.25

```
By modifying b = fir1(N,Wn,'high',kw);
```

Type in the bandedges = $[0.4 \ 0.55]$

Type in the desired magnitude values = [0 1]

Type in the ripples in each band = $[0.02 \ 0.02]$

```
N = 26
Wn = 0.4750
beta = 2.6523
ftype = high
```


Multilevel Filter Design

$$N=100, f = [0 \ 0.28 \ 0.3 \ 0.5 \ 0.52 \ 1],$$

 $m = [0.3 \ 0.3 \ 1.0 \ 1.0 \ 0.7 \ 0.7]$

$$b = fir2(N, f, m)$$

Fig.10.31

Example (differentiator) (length = , N = 11, Type 4)

Example (differentiator) (length=51, *N*=50, type3)

Note: Type 3 or 4 can be used in practice for a low pass differentiator.

Fig.10.23(a)

Example (FIR Hilbert transformer) (length = 21, *N* = 20, type3) Note: This is a real

Fig.10.24(a)

Test 1

• Design a low pass FIR digital filter with M = 1, ω_c =0.5 π , and rectangular window.

$$h[n] = \{0.5\pi, 0.5, 0.5\pi\}$$

Test 2 (From Chapter 7)

Test 1

• Design a linear-phase (Type 1), FIR (length 3), low-pass filter (LPF). Let $\omega_1 = \pi/4$ in the passband, $\omega_2 = 3\pi/4$ in the stopband.

Test

- h[n] = [0.3536, 0.5, 0.3536]
- $H(e^{j\omega}) = 0.7072\cos\omega + 0.5$
- $\theta(\omega) = -\omega$

95

Similar to Test 1, but using a different solution.

Test 3

• 1D Gaussian filter: $f(x) = e^{-\frac{x}{2\sigma^2}}$

Denoising

Additive Gaussian Noise

Test 3

```
b = gausswin(10);
b = b/sum(b);
% freqz(b);
t = linspace(0,3*pi)';
x = square(t);
x_filtering = filter(b,1,x);
plot([x,x_filtering]);
```


Thanks!

Any questions?