Missing Data: Theory and Practice

Marco Morales mam2519@columbia.edu

GR5069
Topics in Applied Data Science for Social Scientists
Spring 2018
Columbia University

The nature of the problem

			economic	
unit	age	income	perceptions	education
1	33	25	3	14
2	22	?	-2	12
3	50	300	0	?
4	?	220	1	20
5	18	?	-1	11
6	45	180	2	13
7	76	50	-3	16
8	29	98	?	14

Consequences of the problem

- most algorithms assume no missingness in the data
 - typically not the case
- most common causes of data missingness:
 - item non-response: units provide information selectively (not everyone wants to reveal their income)
 - unit non-response: "units" provide no information (consequence of war)
 - lost information: miscoded information, lost records

Consequences of the problem

- potential biases:
 - projections outside of the support region
 - projections based on samples different from target population
 - incorrect underestimated variances (relevant on inferential problems)
- Fundamental problem: not using all available information
- Consequence: we may be generating valid inferences/predictions for the wrong population

Some theory and notation

where

 $D: \{D_{obs}, D_{miss}\}$ $D_{miss} =$ missing data $D_{obs} =$ observed data $M: \{1,0\} =$ missingness indicator matrix

Data Missingness mechanisms

Missing Completely at Random (MCAR): the probability of missingness is independent from the data (D)

$$P(M|D) = P(M)$$

Missing at Random (MAR): the probability of missingness only depends on observed data (D_{obs})

$$P(M|D_{obs}) = P(M|D)$$

Non-Ignorable (NI): the probability of missingness depends both on observed (Dobs) and unobserved (Dmiss) data

$$P(M|D_{obs}, D_{miss}) = P(M|D)$$

Data Missingness mechanisms

Mechanism	Predict using
Missing Completely at Random (MCAR)	_
Missing at Random (MAR)	D_{obs}
Non-ignorable (NI)	D_{obs} & D_{miss}

- data imputation can be used to address data missingness
 - imputation would only work under MAR
- MAR is an assumption (not directly verifiable)
 - ... but supported by some sort of theory about how missingness was generated

Missing Data Imputation methods

- imputation methods have been devised to handle missingness
 - hot/cold deck imputation: missing data is provided by a "nearest neighbor" donor unit
 - mean imputation: missing data is provided by the mean of observed data
 - regression-based imputation: missing data is generated by a regression model, conditional on observed data
 - multiple imputation: regression-based imputation that produces m vales for each missing value, conditional on observed data

Mean Imputation

Regression-based imputation

Imputation methods

- single-value imputations may have important shortcomings:
 - potential bias in point estimates
 - understate uncertainty surrounding imputed values (underestimate variances)
- multiple imputation overcomes some of these shortcomings
 - assigns m plausible values from a conditional distribution
 - provide variance estimates that converge to the true variance
- particularly important when trying to generate valid inferences

Multiple Imputation

Multiple Imputation - Rubin (1977)

- 1) **impute** *m* values for each missing data
 - employ an algorithm to impute missing data m times
 - existing data remain unchanged
 - a stochastic value is assigned for missing values
- 2) **analyze** each one of the *m* data bases
 - use each of m data bases as if it had full information
 - perform analyses on each data base: compute descriptive statistics, regression, etc
- 3) **combine** *m* estimates to compute point estimates and variances of quantities of interest(*q*)

Multiple Imputation - quantities of interest (q)

Point estimates of quantities of interest

$$\tilde{q} = \frac{1}{m} \sum_{j=1}^{m} q_j \tag{1}$$

where

 $\tilde{q}=$ point estimate of quantities of interest

 $q_j = \text{quantity of interest for imputation } j$

m = number of imputations

Multiple Imputation - quantities of interest (q)

- Variance of the point estimate of the quantity of interest
- sum of within and between imputation variance

$$SE(q)^{2} = \bar{w} + b$$

$$= \frac{1}{m} \sum_{j=1}^{m} SE(q_{j})^{2} + \left(1 + \frac{1}{m}\right) \frac{\sum_{j=1}^{m} (q_{j} - \bar{q})^{2}}{m - 1}$$
(2)

where

 $\bar{w} = within$ imputation variance

b = between imputation variance

 $\tilde{q} = \text{point}$ estimate of the quantity of interest

 $q_i = \text{quantity of interest on imputation } j$

m = number of imputations

Multiple Imputation - quantities of interest (q)

q is distributed t with degrees of freedom defined by

$$d.f. = (m-1) \left[1 + \frac{1}{m+1} \frac{\bar{w}}{b} \right]^2$$
 (3)

where

 $\bar{w} = \textit{within}$ imputation variance

b = between imputation variance

m = number of imputations

Multiple Imputation - advantages

- Accurately reflects imputation uncertainty
 - imputation with useful information have low variances
 - includes between imputation variance to avoid underestimating the general variance

Imputation Software

- packages
 - ▶ mi
 - ▶ mice
 - ► Amelia

Missing Data in Big Data environments

- there seems to be a belief that as size tends towards big data, missingness becomes less relevant
 - belief that asymptotics kick in and solve everything
 - belief that large samples are, by definition, unbiased
 - a number of <u>implementations</u> of common classifiers handle missing data natively
- problem: missingness may be generating a biased sample of observed data... regardless of size
- ► consequence: biased training and testing sets ≠ general population

Missing Data in Big Data environments

- question: how good are these algorithms at recovering the original data distribution if using a biased sample (Zadrozny 2004)?
 - **local learners:** output depends asymptotically on P(y|x)
 - logistic regression, hard margin SVM
 - ▶ **global learners:** output depends asymptotically on P(y|x) and P(x)
 - Bayesian classifiers, decision trees, soft margin SVM
- results: local learners not affected by sample selection bias, but global learners are

Missing Data: Theory and Practice

Marco Morales mam2519@columbia.edu

GR5069
Topics in Applied Data Science for Social Scientists
Spring 2018
Columbia University