Assignment 2

Siwon Kim

Electrical and Computer Engineering
Seoul National University

http://data.snu.ac.kr

Copyright © Data Science Laboratory, Seoul National University. This material is for educational uses only. Some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

Assignment Objectives

- Part 1: Implementing CNN
 - To understand CNN architecture before using the TensorFlow
 - Implement forward / backward passes for
 (1) convolution layer and (2) max pooling layer
- Part 2: Training CNN
 - Learn how to define, train, and evaluate CNNs with TensorFlow
 - Explore various hyperparameters to design a better CNN model
- Part 3: Visualizing CNN
 - Learn how to visualize and interpret a trained CNN model
 - Implement the codes for generating (1) image-specific class saliency maps,
 (2) class representative images, and (3) adversarial examples

CIFAR10 Dataset

- Consists of 32x32x3 color images in 10 classes
- Training set: 40k instances
- Validation set: 10k instances
- Test set: 10k instances

- *Model training
- *Model evaluation and selection
- *Final model testing

Convolutional Neural Networks (CNNs)

Simply neural networks that use convolution in their layers

Convolution layer

- Three key ideas behind CNN
 - Local connectivity
 - Invariance to location
 - Invariance to local transition
 Pooling layer

Fully Connected Layer and Convolution Layer

Fully connected layer

32x32x3 image -> stretch to 3072 x 1

Convolution layer

Convolution and Cross-correlation

Convolution

$$S(i,j) = (I*K)(i,j)$$

$$= \sum_{m} \sum_{n} I(i-m,i-n)K(m,n)$$

$$f$$

$$g$$

Cross-correlation

$$S(i,j) = (I * K)(i,j)$$

$$= \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

$$g$$

$$g * f$$

 Many NN libraries implement cross-correlation but call it convolution (without kernel flipping)

Convolution Layer

 Input is convolved with a set of filters, giving feature maps (without kernel flipping)

- Filter (aka kernel or convolution matrix)
 - Different filters extract different features (e.g. edges)
 - Filter weights: trained with data
 - Weight sharing & local connectivity

Convolution Example

source: [Angermueller et al., 2016]

source: [Goodfellow et al., 2016]

Convolution with Stride

The number of pixels between adjacent receptive fields
 down-sampling the output of full convolution function

7x7 input 3x3 filter with stride 1

→ 5x5 output

7x7 input 3x3 filter with stride 2

→ 3x3 output

Zero-padding

Implicitly zero-pad input to make it wider

type	output		# zeros padded		
туре			left	right	total
same	m	k even	$\lfloor \frac{k-1}{2} \rfloor$	$\lfloor \frac{k-1}{2} \rfloor + 1$	k-1
		k odd	$\frac{k-1}{2}$	$\frac{k-1}{2}$	
$\mathbf{valid} \ \ m-(k-1)$			0	0	0

(m: input width; k: kernel width; s = 1)

Examples

Pooling Layer

- Nonlinear down-sampling
 - Aggregates statistics of local features (with max or average operation)
 - Reduced variance: provides invariance to local transformations

source: [Angermueller et al., 2016, Thériault et al., 2013]

Inception model (a.k.a GoogLeNet)

- Deeper network with computational efficiency
 - ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2014 winner
 (6.7% top 5 error)
 - 22 layers with 5 million parameters (12x less than AlexNet *ILSVRC 2012 winner)
 - Efficient "Inception" module

Inception module

- Local network topology composing the Inception model
 - Apply parallel filter operations on the input from previous layer
 - Multiple filter sizes for convolution (1x1, 3x3, 5x5)
 - 1x1 convolution for dimensionality reduction

Inception module

1x1 convolution

Image-specific class saliency maps

- How to tell which pixels matter for classification?
- Visualize the degree to which each pixel affects the classification
- Compute gradient of unnormalized class score with respect to image pixels,
 take absolute value and max over RGB channels

Given image Class label: Collie

Saliency map

Class representative images

Generate an image I* that achieves a high score for the class y

$$I^* = \arg \max_{I} s_y(I) - R(I)$$
$$R(I) = \lambda ||I||_2^2$$

- Starting with a random noise, perform gradient ascent on a target class
- L2 regularization and periodic Gaussian blur regularization

Class representative image

Target class: Collie

Adversarial examples

- Make the CNN model to miss-classify a given image into a target class
- Starting with a given image (cf. random noise), perform gradient ascent over the image to maximize the target class score
- Stop when the network classifies the image as the target class
- **L2 regularization** to normalize the gradients

Given imageClass label: Collie

Adversarial example Target class: Tarantula

Difference

Magnified difference (10x)

How To Install Assignment Files

- Assignment files
 - Utils/*
 - Assignment2-1_Implementing_CNN.ipynb
 - Assignment2-2 Training CNN.ipynb
 - Assignment2-3 Visualizing CNN.ipynb
 - CollectSubmission.sh
- Install assignment files
 - tar zxvf assignment2.tar.gz
 - sudo chmod 755 CollectSubmission.sh
 - jupyter notebook
- Open the notebooks on your browser and get started

Submitting your work

- Submitting your work
 - DO NOT clear the final outputs
 - After you are done all three parts
 - √ \$./CollectSubmission.sh team_#
 - ✓ Upload the team_#.tar.gz on ETL
 - ✓ Your team_# is in the excel file, http://etl.snu.ac.kr/mod/ubboard/article.php?id=724723&bwid=1535905

Important Notes

- DUE: 10/15/2018, We do not accept late submissions!
- PLEASE read the notes on the notebooks carefully
- Google first before mailing TAs
- TA email: deeplearning.snu@gmail.com

