# Аналоговая электроника и техника измерений.

Динамическое звено.

Элементы ТАУ. Понятие обратной связи. Устойчивость замкнутых систем. Генераторы.

#### Динамическое звено.



Динамическое звено – четырехполюсник (в общем случае не симметричный и не взаимный) для которого мы определили направление прохода сигнала. Работа звена описывается передаточной функцией:

$$W(s) = \frac{U_{\text{BMX}}(s)}{U_{\text{BX}}(s)}$$



#### Последовательное и параллельное соединение звеньев.



$$W(s) = \prod_{i=1}^{n} W_i(s)$$

$$W(s) = \sum_{i=1}^{n} W_i(s)$$



#### Системы регулирования.

Система управления (регулирования) — набор устройств (звеньев) позволяющих изменять параметры объекта регулирования (устройство или часть системы выполняющее какую-либо функцию) в соответствии с заданным законом управления.

**Система автоматического управления** не требует участия человека для работы. В системе автоматизированного управления рутинные процессы (сбор и анализ данных) выполняет автомат (программируемое устройство) но конечное решение по управлению системой принимает оператор.

Поведение объекта управления, определяется **выходными величинами**. Внешняя среда оказывает влияние на каждый объект управления. Это влияние называют **входными воздействиями**.

Входные воздействия разделяются на группы. Те из них, которые обеспечивают желаемое изменение поведения объекта, называются управляющими. Другие, мешающие достижению цели, называются возмущающими воздействиями или помехами.

#### Классификация систем автоматического регулирования.

#### По задаче:

- системы стабилизации (поддержание фиксированной величины параметра),
- системы программного управления (по заданной, известной заранее функции),
- следящие системы (квазислучайный закон управления).

#### По наличию обратных связей:

- с отрицательной обратной связью (сигнал обратной связи вычитается из уставки),
- с положительной обратной связью,
- разомкнутые системы (обратная связь отсутствует).

По вносимому в сигнал фазовому сдвигу системы делят на минимально и не минимально-фазовые.

#### Системы автоматического регулирования.

#### Структура системы управления



Разница входного управляющего воздействия (уставки) и выходного значения называется **ошибкой управления.** Устройство регулятора с управлением по ошибке:



#### ПИД -регулятор.

Примем  $u_1(t)$  - входное управляющее воздействие,  $u_2(t)$  – сигнал возвращаемый датчиком обратной связи. Ошибка регулирования  $e(t)=u_1(t)-u_2(t)$ 

Математическое соотношение описывающее работу ПИД-регулятора:

$$V(t) = K_P \cdot e(t) + K_I \cdot \int_0^t e(\tau)d\tau + K_d \frac{de(t)}{dt}$$





#### Понятие минимально-фазовых систем

Для минимально-фазовой системы, т.е. такой системы которая обеспечивает минимально возможный фазовый сдвиг, передаточная функция записывается следующим образом:

$$W(s) = \frac{(s+b_m)(s+b_{m-1})\cdots(s+b_1)}{(s+a_n)(s+a_{n-1})\cdots(s+a_1)}$$

Отсюда видно, что система является минимально-фазовой, если нули и полюса ее передаточной функции лежат в левой полуплоскости комплексной плоскости. При этом действительные части корней полиномов будут меньше нуля, что означает затухающий характер всех процессов протекающих в системе.

#### Понятие минимально-фазовых систем

Для не минимально-фазовой системы в свою очередь запишем:

$$W(s) = \frac{(s - b_m)(s + b_{m-1})\cdots(s + b_1)}{(s + a_n)(s + a_{n-1})\cdots(s + a_1)}$$

Преобразуем выражение:

$$W(s) = \frac{(s+b_m)(s+b_{m-1})\cdots(s+b_1)}{(s+a_n)(s+a_{n-1})\cdots(s+a_1)} \cdot \frac{(s-b_m)}{(s+b_m)}$$

Здесь видно, что к функции минимально-фазовой системы добавлено еще одно звено, со своим фазовым сдвигом. Особенностью не минимально-фазовой системы является то, что нет однозначной связи между фазовой и амплитудной частотными характеристиками.

#### Замкнутые системы.

Передаточная функция для замкнутой системы (системы с обратной связью):

$$W(s) = \frac{W_1(s)}{1 - W_1(s)W_2(s)}$$



Особая точка (полюс передаточной функции):

$$W_1(s)W_2(s) = 1$$

#### Понятие устойчивости

**Условие устойчивости системы** заключается в том, что после прекращения действия внешних возмущений система возвращается в исходное состояние.

$$a_n \frac{d^n U(t)}{dt^n} + a_{n-1} \frac{d^{n-1} U(t)}{dt^{n-1}} + \dots + a_0 U(t) = 0$$

$$U(t) = \sum_{i=1}^{n} C_i e^{p_i t}$$

Это означает, что корни характеристического уравнения должны быть либо отрицательными действительными либо комплексными с отрицательными действительными частями.

Критерий устойчивости : **система устойчива, если действительные части всех корней характеристического уравнения отрицательны (алгебраический критерий).** 

### Критерий устойчивости

$$W(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

Корни характеристического уравнения являются полюсами передаточной функции. Передаточная функция не должна иметь полюсов в правой комплексной полуплоскости. Т.е. произведение  $W_1(s)W_2(s)$  не может быть равно 1.

Для упрощения работы составлен критерий определения устойчивости по АФЧХ:

если при изменении частоты от 0 до ∞ фаза не достигает значения 180°, цепь устойчива при любом значении модуля коэффициента передачи, либо если модуль коэффициента передачи меньше 1 то цепь устойчива при любом значении фазы.

Эти утверждения верны только для минимально фазовых цепей.

#### Генераторы

**Генератор** — это устройство, не имеющее входного сигнала, но производящее на выходе сигналы определенной формы и частоты. Условие возникновения генерации (нестабильное состояние схемы) получим из выражения для коэффициента усиления схемы с обратной связью:

$$W_1(j\omega)W_2(j\omega) = 1$$

Это соотношение называют критерием Баркгаузена.



$$|W_1||W_2|=1$$
,  $\qquad \varphi=0;2\pi;...$ 

Эти соотношения называются балансом амплитуд и балансом фаз соответственно. Баланс амплитуд означает, что незатухающие колебания в замкнутом контуре могут существовать когда усилитель компенсирует потери в схеме обратной связи. Условие баланса фаз означает, что восполнение энергии в системе производится в такт ее собственным колебаниям.

#### Генераторы на основе резонансного контура.

Генератор на основе ОУ. Для узла по правилу Кирхгофа запишем:

$$\frac{U_1 - U_0}{R} + C\frac{dU_0}{dt} + \frac{1}{L} \int U_0 dt = 0$$

Продифференцируем разделим на  ${\it C}$  и учтем, что  $U_1=kU_0$ , здесь k коэффициент передачи ОУ

$$\frac{d^{2}U_{0}}{dt^{2}} + \frac{k-1}{RC} \cdot \frac{dU_{0}}{dt} + \frac{1}{LC}U_{0} = 0$$

Решение этого уравнения:

$$U_0 = Ae^{-\frac{k-1}{2RC}t}\sin(\sqrt{\frac{1}{LC} - \frac{k-1}{2RC}}t)$$

 $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$ 

Видно что при k равном 1 колебания не затухающие и с фиксированной частотой.

# Генераторы синусоидального сигнала с использованием отрицательных и положительных обратных связей

$$U_0 = U_- \left( 1 + \frac{Z_2}{Z_1} \right)$$
  $U_+ = U_0 \frac{Z_3}{Z_3 + Z_4}$ 



Если разорвать ветвь между выходом и  $Z_4$ , и подать на нее входной сигнал  $U_1$  то:

$$U_0 = U_1 \left( 1 + \frac{Z_2}{Z_1} \right) \frac{Z_3}{Z_3 + Z_4} \qquad \text{if} \qquad W(j\omega) = \frac{U_0}{U_1} = \left( 1 + \frac{Z_2}{Z_1} \right) \frac{Z_3}{Z_3 + Z_4}$$

Полученная ЧПФ должна удовлетворять критерию Баркгаузена.

#### Генераторы синусоидального сигнала

Для схемы генератора на основе моста Вина:

$$W(j\omega) = \left(1 + \frac{R_2}{R_1}\right) \frac{1}{1 + \frac{R_3}{R_4} + \frac{C_2}{C_1} + j(\omega R_3 C_1 - \omega R_4 C_2)}$$



При C1=C2=C и R3=R4=R, все слагаемые с  $\omega$  в уравнении сократятся. Устройство будет работать в стабильном режиме.

$$W_2 = 1/3$$
,  $W_1 = 3$ ,  $\omega = 1/RC$ .

#### Генераторы синусоидального сигнала

Генератор на основе фазосдвигающей цепи.



Для расчета принимается, что фазосдвигающие звенья являются независимыми друг от друга и каждое звено сдвигает фазу на 60°. Это будет при  $\omega=\sqrt{3}/_{RC}$  , тогда  $|W_2|=(^1\!/_2)^3$  и  $R2=8\cdot R1$  . В реальности условие независимости не выполняется, и коэффициент усиления и частота будут отличаться от указанной.

#### Генераторы синусоидального сигнала

**Квадратурный генератор.** Каждое RC звено вносит фазовый сдвиг по 90°. Идея квадратурного генератора лежит в использовании того факта, что двойное интегрирование синусоиды даёт инвертирование синусоидального сигнала, то есть происходит сдвиг сигнала по фазе на 180°. Колебания возникают на частоте:

 $\omega = \frac{1}{RC}.$ 

$$W(j\omega) = (\frac{1}{j\omega RC})^2$$



# Генератор с компенсацией потерь

Компенсацию потерь можно реализовать за счет устройства с отрицательным сопротивлением (тунельный диод).

$$R_{\text{диф}} = \frac{dU}{dI}$$





#### Генераторы на основе резонансного контура.

Простейший генератор на транзисторе с трансформаторной обратной связью. Частота колебаний определяется собственной частотой контура и добротностью цепи.



# Релаксационные генераторы

$$C\frac{dU_C}{dt} = \pm \frac{U_S - U_C}{R}$$

$$U_C = U_S - (U_S + U_S \frac{R1}{R1 + R2})e^{-t/RC}$$

$$T = 2RC \cdot ln(1 + \frac{2R1}{R2})$$





#### Генераторы управляемые напряжением

ГУН (Voltage Controlled Oscilator - VCO) — устройство, выходная частота которого зависит от величины управляющего напряжения. Используются в системах ФАПЧ, системах приема-передачи сигналов и т.д.

ГУН на основе ОУ. Скорость заряда  $\mathit{C}$ , а следовательно и частота определяется напряжением  $U_1$ .

ГУН на основе **варикапа**. На этой схеме можно построить простейший частотный модулятор сигнала ( $U_1$  - информационный сигнал).

