

Numerične metode v tehniki

Optimizacija

Aleksander GRM

aleksander.grm@fpp.uni-lj.si

Vsebina

- Uvod
- Metoda najmanjših kvadratov Linearni problem
- Metoda najmanjših kvadratov Nelinearni problem
- Linearno programiranje

Uvod

Poglavje optimizacija se spušča v področje matematike, kjer iščemo ekstrem določene funkcije, ki ima lahko različne oblike in podatke.

Tako ločimo optimizacijo v osnovi na dva problema

- regresijske metode: iščemo optimalno prilagojeno funkcijo na merske podatke, da bo napaka med matematičnim modelom in merskimi podatki najmanjša,
- iskanje ekstrema: imamo dan matematičen model, kjer pa si želimo poiskati ekstrem zadanega problema (minimum ali maksimum).

Metoda najmanjših kvadratov – Linearni problem

Imamo meritev sile upora med prostim padom

Naloga: Poišči koeficiente a_0 , a_1 in a_2 za oba modela upora

$$F_d = a_0 + a_1 v$$
, $F_d = a_0 + a_2 v^2$,

tako, da se izmerjeni podatki najbolje prilegajo matematičnemu modelu upora. Kateri model je boljši?

Opis problema

Oba modela imata po dve neznanki, vendar imamo 18 meritev, kar pomeni

imamo več enačb kakor neznank \rightarrow sistem je predoločen!

Kako se lotimo takega problema?

Vsak sistem enačb zapišemo lahko v matrični obliki

$$\mathbf{A}\mathbf{x}=\mathbf{b}$$
.

Za naš primer meritev in modela velja $\mathbf{A} \in \mathbb{R}^{18 \times 2}$, $\mathbf{x} \in \mathbb{R}^2$ in $\mathbf{b} \in \mathbb{R}^{18}$.

Za izbrane koeficiente je mera napake določena kot

$$\|\mathbf{A}x - \mathbf{b}\|.$$

Če za normo izberemo kvadratno normo $\| \|_2$, dobimo linearni problem najmanjših kvadratov (LPNK).

Pri reševanju LPNK, je model lahko polinomskega tipa, ne more pa biti nelinearen. Če uspemo prevesti nelinearen problem na linearen ga je mogoče rešiti z uporabo LPNK!

Imamo pare meritvenih točk $\{(y_1, b_1), (y_2, b_2), \dots, (y_m, b_m)\}$. Naša zahteva je poiskati optimalne koeficiente a_i , ki reši sistem enačb **najbolje** (za najmanjšo napako).

Poišči takšen $\mathbf{x} = \{a_0, a_1\}$ tako da rešiš

$$\min_{\mathbf{x}} \|\mathbf{A} \mathbf{x} - \mathbf{b}\|_2$$

Rešitev predoločenega sistema po metodi najmanjših kvadratov

Naj bo $\mathbf{A} \in \mathbb{R}^{m \times n}$, kjer velja m > n, rk $(\mathbf{A}) = n$, $b \in \mathbb{R}^m$. Vektorju $\mathbf{x} \in \mathbb{R}^n$, ki minimizira napako

$$\min_{\mathbf{x}} \|\mathbf{A} \, \mathbf{x} - \mathbf{b}\|_2,$$

pravimo rešitev predoločenega sistema po metodi najmanjših kvadratov.

Tak x seveda obstaja in je določen enolično.

Če predoločen sistem množimo z leve z matriko \mathbf{A}^{\top} , dobimo normalni sistem

$$\mathbf{A}^{\top}\mathbf{A}\ x = \mathbf{A}^{\top}\mathbf{b}.$$

Naj bo $\mathbf{A} \in \mathbb{R}^{m \times n}$ polnega ranka. Matrika $\mathbf{A}^{\top} \mathbf{A} \in \mathbb{R}^{n \times n}$ je neizrojena, sa je pozitivno definitna. Posledica je, da je rešitev x enolična.

Trditev

Normalni sistem ima enolično rešitev.

Izrek

Rešitev normalnega sistema je rešitev predoločenega sistema linearnih enačb po metodi najmanjših kvadratov.

Dokaz Imejmo skalarno polje f in ga razvijemo okoli točke \mathbf{x}_0 z uporabo **Taylor**jeve vrste

$$f(\mathbf{x}) = f(\mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)^{\top} \nabla f(\mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)^{\top} \mathbf{H} f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + \cdots$$

Naj bo sedaj skalarno polje f napaka

$$f(x) := \|\mathbf{A} x - \mathbf{b}\|_2 = (\mathbf{A} x - \mathbf{b})(\mathbf{A} x - \mathbf{b}),$$

Tedaj je

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\top}\mathbf{A}\ \mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b}.$$

V ekstremni točki ${\it x}$ mora biti $\nabla {\it f}({\it x})=0$, tako hitro sledi

$$\mathbf{A}^{\top}\mathbf{A} \mathbf{x} = \mathbf{A}^{\top}\mathbf{b}.$$

Hessian $\mathbf{H} = \mathbf{A}^{\top} \mathbf{A}$ je pozitivno definitna matrika, torej je x res minimum.

Naj bo $\mathbf{A} \in \mathbb{R}^{m,n}$, $m \geq n$ polnega ranka. Poiščemo rešitev normalnega sistema

$$\mathbf{A}^{\top}\mathbf{A} \ x = \mathbf{A}^{\top}b.$$

Ker je matrika $\mathbf{A}^{\top}\mathbf{A}$ s.p.d. (simetrično pozitivno definitna), lahko za reševanje normalnega sistema uporabimo razcep **Cholesky**:

- $oldsymbol{0}$ izračunaj razcep Cholekega $oldsymbol{\mathsf{B}} = oldsymbol{\mathsf{V}}oldsymbol{\mathsf{V}}^{ op}$
- lacktriangledown reši spodnje trikotni sistem $\mathbf{V} y = c$
- reši zgornje trikotni sistem $\mathbf{V}^{\top} x = y$

Normalni sistem je najpreprostejši način reševanja predoločenega sistema, ni pa najstabilnejši.

Poglej si metodo QR razcepa, kjer je A = QR!

Metoda najmanjših kvadratov - Nelinearni problem

Linearno programiranje