

大模型

• 主讲人: 王靖辉

Stable Diffusion

拳击手

悬崖瀑布 水彩画 麦田秋天 油画 树林溪流 水墨画 漫画脸+微笑

改发色+ 长发

01 大模型概述

02 大模型组成结构

03 | 大模型应用场景

大模型概述

大模型概述

定义

大模型是指容量较大,用于深度学习任务的模型,通常具有海量的参数和复杂的架构。具有更好的通用性,可以通过预训练或其他方式在大型数据集上进行学习,再通过微调高效地处理计算机视觉、自然语言处理等复杂任务。

大模型概述-起源

深度学习

过拟合问题

泛化能力有限

数据依赖性强

需要大量人工干预

图像识别

手势估计

车道线检测

路径规划

目标检测

语言识别

文本翻译

等等

大模型

泛化能力较强

仅需要微调

需要较少的人工干预

大模型概述-特点

- 1、拥有数以亿计的参 数和权重
- 2、能够在海量数据上 进行学习和建模
- 1、无标签数据开展预训练
- 2、使用迁移学习进行微调
- 1、多个不同的组件组成
- 2、根据不同任务和领域 的需求进行调整和改进
- 1、适应不同的语言、领域 和任务
- 2、应用于不同类型的问题

02 大模型组成结构

大模型组成结构

CNN

RNN

LSTM

Transformer

优点:

局部感知和权值共享

层次化特征提取

缺点:

缺乏全局感知

对输入尺寸敏感

应用场景:

图像分类

目标检测

语义分割

优点:

处理序列数据

短距离依赖

缺点:

计算效率低

应用场景:

自然语言处理

语音识别

优点:

长距离依赖

缺点:

计算复杂性

参数数量较多

应用场景:

自然语言处理

时间序列预测

优点:

长距离依赖

强大的语义理解

缺点:

计算资源消耗较大

训练难度较高

应用场景:

机器翻译

文本生成

文本分类和情感分析

序列到序列任务

大模型组成结构-CNN

卷积神经网络CNN

基本组成:

1) 卷积层 (带有激活函数): 提取图像局部特征

2) 池化层: 数据降维

3) 全连接层:特征表示,信息整合

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	323
2 (2.22)	33
	222
8 035	(2)(3)

Image

Convolved feature

Convolved Feature

Pooled feature

大模型组成结构-RNN

循环神经网络RNN

● 具有内部环状连接的人工神经网络,即一个序列当前的输出与前面的输出也有关,隐藏层之间的节点不再无连接而是有连接的。

大模型组成结构-LSTM

长短期记忆网络LSTM

循环神经网络中的隐状态 h 存储了历史信息,可以看作是一种记忆,但这是一种短期记忆因为隐状态每个时刻都会被重写,而长期记忆可以看作是网络参数,隐含了从训练数据中学到的经验,其更新周期要远远慢于短期记忆。

Transformer

● 模型架构

抛弃了传统的CNN和RNN,整个网络结构完全是由Attention机制组成,通过搭建编码器和解码器,在NLP任务中取得优异成绩。

● 基本原理

Attention (注意力) 机制从关注全部到关注重点,将有限的注意力集中在重点信息上,从而节省资源,快速获得最有效的信息。

Attention

Attention为一种注意力机制,它将一个序列的不同位置联系起来, 以计算序列 的表示。作用为全局关联权重,然后做输入的加权和。

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Input

Embedding

Queries

Keys

Values

Score

$$q_1 \cdot k_1 = 112$$

Machines

$$q_1 \cdot k_2 = 96$$

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

Input	Thinking	Machines	
Embedding	X1	X ₂	
Queries	q ₁	q ₂	
Keys	k ₁	k ₂	
Values	V ₁	V ₂	
Score	$q_1 \cdot k_1 = 112$	q ₁ • k ₂ = 96	
Divide by 8 ($\sqrt{d_k}$)	14	12	
Softmax	0.88	0.12	

应 行业大模型 通用大模型 场 内容生成 金融大模型 医疗大模型 C端应用 AI图片 工业大模型 景 单模态大模型 多模态大模型 支持模态 科学计算大模型 其他大模型 自然语言处理大模型 计算机视觉大模型 重点领域 基 主流语言大模型架构 础 框 **GPT Transformer CNN MLP** 架

ChatGPT

Codellama2

Stable diffusion

Codellama2生成代码

ChatGPT生成大纲

Autolabelimg自动标注

Stable Diffusion

拳击手

悬崖瀑布 水彩画 麦田秋天 油画 树林溪流 水墨画 漫画脸+微笑

改发色+ 长发

5月,百度Apollo汽车智能化业务展示了以大模型为基础的新一代Al智舱探索成果

大模型的应用场景-争议

01 偏见和不公平性: 02 缺乏透明度和可解释性

滥用和恶意用途

05 对人类工作的影响

资源消耗和环境成本

THANKS

