Vzorová písomka UMA - 2021/2022 - 25 bodov - čas 1h 40m - asi

1. Zistite a ukážte, či postupnosť je ohraničená a monotónna a napíšte pre ňu vyjadrenie pomocou rekurentného vzťahu

a)
$$\left\{3 + \frac{2n}{n+1}\right\}_{n=1}^{\infty}$$

b) BONUS
$$\left\{ \frac{2n}{n+1} + \frac{n+1}{3n} \right\}_{n=1}^{\infty}$$

- 2. Určte a_1 a q geometrickej postupnosti, ak platí $a_1+a_4=18$ a $a_2+a_3=12$.
- 3. Doplňte tabuľku pre aritmetické postupnosti

a_1	d	n	a_n	S_n
-6	$\frac{3}{4}$		$15\frac{3}{4}$	330
	2		-10	-360

4. Určte definičný obor

a)
$$f: y = \frac{\sqrt{\ln(x-1)}}{x^2 - 4}$$

b)
$$f: y = \frac{\sqrt{x^2 - 5x + 6}}{\ln(2x - 5)} - \sqrt{-x}$$

- 5. Nakreslite grafy funkcií a napíšte ich základné vlastnosti podľa schémy
 - 1. Definičný obor D(f)
 - 2. Obor hodnôt H(f)
 - 3. Je párna? (overte výpočotm) Je nepárna? (overte výpočotm) Je prostá? (overte výpočotm) Je spojitá na svojom D(f)
 - 4. Je ohraničená zdola / zhora?
 - 5. Má maximum / minimum kde a akú hodnotu nadobúda?
 - 6. Je rastúca / klesajúca (na akých intervaloch)?

a)
$$f: y = -2x^2 + 4x - 1$$

b)
$$f: y = (x-2)^3 + 5$$

BONUS: Potvrďte, že je ohraničená, rastúca/klesajúca na príslušných intervaloch exaktným výpočtom – podľa definície

- 6. Nakreslite graf lineárnej lomenej funkcie a na základe grafu popíšte jej vlastnosti
 - 1. Definičný obor D(f)
 - 2. Obor hodnôt H(f)
 - 3. Je párna? (overte výpočotm) Je nepárna? (overte výpočotm) Je prostá? (overte výpočotm) Je spojitá na svojom D(f)
 - 4. Je ohraničená zdola / zhora?

- 5. Má maximum / minimum kde a akú hodnotu nadobúda?
- 6. Je rastúca / klesajúca (na akých intervaloch)?
- 7. Vypočítajte asymptoty funkcie.
- 8. Vypočítajte priesečníky s osami \vec{x} a \vec{y} .

$$a) \quad y = \frac{3x+3}{x+2}$$

b)
$$y = \frac{2x+4}{x} - \frac{7x+2}{2x}$$

BONUS: Potvrďte, že je ohraničená, rastúca/klesajúca na príslušných intervaloch exaktným výpočtom – podľa definície

- 7. Nakreslite grafy funkcií a napíšte ich základné vlastnosti podľa schémy
 - 1. Definičný obor D(f)
 - 2. Obor hodnôt H(f)
 - 3. Je párna? (overte výpočotm) Je nepárna? (overte výpočotm) Je prostá? (overte výpočotm) Je spojitá na svojom D(f)
 - 4. Je ohraničená zdola / zhora?
 - 5. Má maximum / minimum kde a akú hodnotu nadobúda?
 - 6. Je rastúca / klesajúca (na akých intervaloch)?

a)
$$f: y = 2 + 3^{x-2}$$

b)
$$f: y = -2 - \left(\frac{1}{2}\right)^{-x+3}$$

8. Vyriešte exponenciálnu rovnicu

$$\left(\frac{7}{3}\right)^{1-3x} \cdot \frac{9}{49} = \left(\frac{49}{9}\right)^{1-2x}$$

9. Vyriešte exponenciálnu nerovnicu

$$\left(\frac{1}{4}\right)^{\frac{3x^2-1}{2}} \le \left(\frac{1}{8}\right)^{\frac{x+1}{3}}$$