

Gradient Descent

Towards Neural Networks

Justin Stevens Undergraduate AI Society April 2nd, 2019

Outline

- Decision Making
 - Perceptrons
 - Activation Functions
- Classifying Digits through MNIST

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

- Are the tickets cheap or expensive?
- Do I have the time to go?
- Do I care about the team they're playing?

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

- Are the tickets cheap or expensive?
- Do I have the time to go?
- Do I care about the team they're playing?

We'll make my decision by encoding each possible input as a vector $\bar{\mathbf{x}}$:

Let's say I'm deciding on a given day whether or not to go to an Edmonton Oilers game. Here are the factors that will influence my decision:

- Are the tickets cheap or expensive?
- Do I have the time to go?
- Do I care about the team they're playing?

We'll make my decision by encoding each possible input as a vector $\bar{\mathbf{x}}$:

Ticket Prices	Availability	Interest	x
Cheap	Yes	Yes	(1, 1, 1)
Cheap	No	No	(1,0,0)
Cheap	Yes	No	(1, 1, 0)
Cheap	No	Yes	(1,0,1)
Expensive	Yes	Yes	(0,1,1)
Expensive	No	No	(0,0,0)
Expensive	No	Yes	(0,0,1)
Expensive	Yes	No	(0, 1, 0)

How Will I Make my Decision?

Let's say I don't care much about price, but I do care about my availability and interest. In this case, the corresponding weights might be $\bar{\mathbf{w}} = (1, 6, 3)$.

How Will I Make my Decision?

Let's say I don't care much about price, but I do care about my availability and interest. In this case, the corresponding weights might be $\bar{\mathbf{w}}=(1,6,3)$. We can then compute the dot product $\bar{\mathbf{w}}\cdot\bar{\mathbf{x}}$ for each possible input:

Ticket Prices	Availability	Interest	x	$\bar{\mathbf{w}} \cdot \bar{\mathbf{x}}$
Cheap	Yes	Yes	(1, 1, 1)	10
Cheap	No	No	(1,0,0)	1
Cheap	Yes	No	(1, 1, 0)	7
Cheap	No	Yes	(1, 0, 1)	4
Expensive	Yes	Yes	(0, 1, 1)	9
Expensive	No	No	(0,0,0)	0
Expensive	No	Yes	(0,0,1)	3
Expensive	Yes	No	(0, 1, 0)	6

How Will I Make my Decision?

Let's say I don't care much about price, but I do care about my availability and interest. In this case, the corresponding weights might be $\bar{\mathbf{w}}=(1,6,3)$. We can then compute the dot product $\bar{\mathbf{w}}\cdot\bar{\mathbf{x}}$ for each possible input:

Ticket Prices	Availability	Interest	x	$\bar{\mathbf{w}} \cdot \bar{\mathbf{x}}$
Cheap	Yes	Yes	(1, 1, 1)	10
Cheap	No	No	(1,0,0)	1
Cheap	Yes	No	(1, 1, 0)	7
Cheap	No	Yes	(1, 0, 1)	4
Expensive	Yes	Yes	(0, 1, 1)	9
Expensive	No	No	(0,0,0)	0
Expensive	No	Yes	(0,0,1)	3
Expensive	Yes	No	(0, 1, 0)	6

We can now define my **activation threshold**, t, which will determine whether or not I go to the game, represented in binary.

Formula for Decision Making

The general formula for my decision to go to the Oilers game is

$$\mathrm{output} = \begin{cases} 0 & \text{ if } \bar{\mathbf{w}} \cdot \bar{\mathbf{x}} < t \\ 1 & \text{ if } \bar{\mathbf{w}} \cdot \bar{\mathbf{x}} \geq t. \end{cases}$$

Formula for Decision Making

The general formula for my decision to go to the Oilers game is

$$\mathsf{output} = \begin{cases} 0 & \text{if } \bar{\mathbf{w}} \cdot \bar{\mathbf{x}} < t \\ 1 & \text{if } \bar{\mathbf{w}} \cdot \bar{\mathbf{x}} \ge t. \end{cases}$$

For instance, if t=9, we see I'll only go if I'm both available and interested.

Formula for Decision Making

The general formula for my decision to go to the Oilers game is

$$\mathsf{output} = \begin{cases} 0 & \mathsf{if } \bar{\mathbf{w}} \cdot \bar{\mathbf{x}} < t \\ 1 & \mathsf{if } \bar{\mathbf{w}} \cdot \bar{\mathbf{x}} \ge t. \end{cases}$$

For instance, if t = 9, we see I'll only go if I'm both available and interested. If t = 7, I'll also go if the tickets are cheap and I'm available:

Ticket Prices	Availability	Interest	x	$\bar{\mathbf{x}} \cdot \bar{\mathbf{w}}$
Cheap	Yes	Yes	(1, 1, 1)	10
Cheap	No	No	(1, 0, 0)	1
Cheap	Yes	No	(1, 1, 0)	7
Cheap	No	Yes	(1, 0, 1)	4
Expensive	Yes	Yes	(0, 1, 1)	9
Expensive	No	No	(0,0,0)	0
Expensive	No	Yes	(0, 0, 1)	3
Expensive	Yes	No	(0, 1, 0)	6

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

Figure 1: Source: Nielsen

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

Figure 1: Source: Nielsen

Each of these lines collect evidence and are weighted to produce an output.

This is a simplified model of a **perceptron**. The idea was developed by Frank Rosenblatt at Cornell in 1957, and is often used in psychology.

Figure 1: Source: Nielsen

Each of these lines collect evidence and are weighted to produce an output. In practice, our inputs and outputs don't necessarily have to be binary; they can be real-valued. We therefore have to define a new activation function.

Introducing the Bias

Instead of comparing our weighted sum to a threshold, we instead *add* a bias, b, to our weighted sum. We write this as $\mathbf{\bar{w}} \cdot \mathbf{\bar{x}} + b$ instead.

Introducing the Bias

Instead of comparing our weighted sum to a threshold, we instead add a bias, b, to our weighted sum. We write this as $\bar{\mathbf{w}} \cdot \bar{\mathbf{x}} + b$ instead. Then

$$\mathsf{output} = egin{cases} 0 & \mathsf{if} \ ar{\mathbf{w}} \cdot ar{\mathbf{x}} + b < 0 \ 1 & \mathsf{if} \ ar{\mathbf{w}} \cdot ar{\mathbf{x}} + b \geq 0. \end{cases}$$

This is known as the *heaviside step function*. We'll extend our model to multiple outputs soon, but first we'll examine other activation functions.

Introducing the Bias

Instead of comparing our weighted sum to a threshold, we instead add a bias, b, to our weighted sum. We write this as $\mathbf{\bar{w}} \cdot \mathbf{\bar{x}} + b$ instead. Then

$$\mathsf{output} = egin{cases} 0 & \mathsf{if} \ ar{\mathbf{w}} \cdot ar{\mathbf{x}} + b < 0 \ 1 & \mathsf{if} \ ar{\mathbf{w}} \cdot ar{\mathbf{x}} + b \geq 0. \end{cases}$$

This is known as the *heaviside step function*. We'll extend our model to multiple outputs soon, but first we'll examine other activation functions.

Rectified Linear Unit

If we want our outputs to be non-negative, we use the rectified linear unit,

$$f(x) = \max\{0, x\}.$$

Rectified Linear Unit

If we want our outputs to be non-negative, we use the rectified linear unit,

$$f(x) = \max\{0, x\}.$$

Graphically, we can see:

Figure 2: Rectifier, and a smooth approximation $log(1 + e^x)$. (Source: Wikipedia).

Sigmoid Function

As we saw above, our output doesn't necessarily have to be a 0 or 1; using a rectified linear unit, it can be any non-negative number. However, for computational purposes, it's easiest if our outputs live in the range (0,1).

Sigmoid Function

As we saw above, our output doesn't necessarily have to be a 0 or 1; using a rectified linear unit, it can be any non-negative number. However, for computational purposes, it's easiest if our outputs live in the range (0,1). We now define the **sigmoid** or logistic function, $\sigma(z) = \frac{1}{1+e^{-z}}$.

Sigmoid Function

As we saw above, our output doesn't necessarily have to be a 0 or 1; using a rectified linear unit, it can be any non-negative number. However, for computational purposes, it's easiest if our outputs live in the range (0,1). We now define the **sigmoid** or logistic function, $\sigma(z) = \frac{1}{1+e^{-z}}$. Graphically,

Figure 3: As $z \to \infty$, we see $\sigma(z) \to 1$. Alternatively, as $z \to -\infty$, $\sigma(z) \to 0$. (Source: Towards Data Science).

Outline

- Decision Making
- Classifying Digits through MNIST
 - Defining the Problem
 - References

Example Images

In **supervised learning** problems, we're given a set of training data with labels, which we try to learn. We'll use a generalization of the perceptron with different neurons, for which we try to learn the best possible weights.

Example Images

In **supervised learning** problems, we're given a set of training data with labels, which we try to learn. We'll use a generalization of the perceptron with different neurons, for which we try to learn the best possible weights.

Figure 4: How would you devise a system for a **computer** to classify the digits? How can we best utilize the data set, known as MNIST? (*Source: Nielsen*)

• The MNIST database contains seventy thousand handwritten digits.

- The MNIST database contains seventy thousand handwritten digits.
 - Each data-point contains both an image, and the desired digit.
 - 60,000 images are designated for training, and 10,000 for testing:

```
import tensorflow as tf
from tensorflow import keras
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
```

- The MNIST database contains seventy thousand handwritten digits.
 - Each data-point contains both an image, and the desired digit.
 - \bullet 60,000 images are designated for training, and 10,000 for testing:

```
import tensorflow as tf
from tensorflow import keras
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
```

• Each image contains pixels ranging 0 to 255, in decreasing darkness.

- The MNIST database contains seventy thousand handwritten digits.
 - Each data-point contains both an image, and the desired digit.
 - \bullet 60,000 images are designated for training, and 10,000 for testing:

```
import tensorflow as tf
from tensorflow import keras
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
```

- Each image contains pixels ranging 0 to 255, in decreasing darkness.
- An individual image is a 28×28 array of pixels.

- The MNIST database contains seventy thousand handwritten digits.
 - Each data-point contains both an image, and the desired digit.
 - $\bullet~60,000$ images are designated for training, and 10,000 for testing:

```
import tensorflow as tf
from tensorflow import keras
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
```

- Each image contains pixels ranging 0 to 255, in decreasing darkness.
- An individual image is a 28×28 array of pixels.
- The desired digit is represented as a number from 0 to 9.

- The MNIST database contains seventy thousand handwritten digits.
 - Each data-point contains both an image, and the desired digit.
 - ullet 60,000 images are designated for training, and 10,000 for testing:

```
import tensorflow as tf
from tensorflow import keras
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
```

- Each image contains pixels ranging 0 to 255, in decreasing darkness.
- An individual image is a 28×28 array of pixels.
- The desired digit is represented as a number from 0 to 9.

We'll build a model from the training images that will learn to classify digits!

What we're building towards

Figure 5: A simple neural network structure. The input vectors on the left hand side have $28 \times 28 = 784$ inputs for each pixel, and the output layer has 10 digits. (*Source: Nielsen*)

Extending our Model

All of our weights and bias will be initialized from a normal distribution with mean 0 and standard deviation 1.

Figure 6: Source: Daniel Alvarez, InTech

Hidden Layer

The role of the **hidden layer** is to hold intermediate calculations. These will in turn be used to compute the output layer. To produce the hidden layer, we must have an 784×15 weight matrix, as seen below:

$$W = \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1,15} \\ w_{21} & w_{22} & \cdots & w_{2,15} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ w_{784,1} & w_{784,2} & \cdots & w_{784,15} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_{784} \end{pmatrix}.$$

We take the dot product of each **column** with our input vector \mathbf{x} . We then add our bias vector, \mathbf{b} , which is 15×1 . We finally apply our activation:

$$\mathbf{h} = \sigma(W^T \mathbf{x} + \mathbf{b}).$$

We must now define a transformation from \mathbb{R}^{15} to \mathbb{R}^{10} , which we can do using a 10×15 weight matrix \hat{W} . We can then add a 10×1 bias vector, $\hat{\mathbf{b}}$.

We must now define a transformation from \mathbb{R}^{15} to \mathbb{R}^{10} , which we can do using a 10×15 weight matrix \hat{W} . We can then add a 10×1 bias vector, $\hat{\mathbf{b}}$. We aren't done yet! We want the output to be the probability an image is a specific digit. To do so, we use a **softmax** activation.

We must now define a transformation from \mathbb{R}^{15} to \mathbb{R}^{10} , which we can do using a 10×15 weight matrix \hat{W} . We can then add a 10×1 bias vector, $\hat{\mathbf{b}}$. We aren't done yet! We want the output to be the probability an image is a specific digit. To do so, we use a **softmax** activation. The formula is

$$\operatorname{softmax}(\mathbf{z})_j = \frac{e^{\mathbf{z}_j}}{\sum_{k=1}^{10} e^{\mathbf{z}_k}}, \quad 1 \leq j \leq 10.$$

We must now define a transformation from \mathbb{R}^{15} to \mathbb{R}^{10} , which we can do using a 10×15 weight matrix \hat{W} . We can then add a 10×1 bias vector, $\hat{\mathbf{b}}$. We aren't done yet! We want the output to be the probability an image is a specific digit. To do so, we use a **softmax** activation. The formula is

$$\operatorname{softmax}(\mathbf{z})_j = \frac{e^{\mathbf{z}_j}}{\sum_{k=1}^{10} e^{\mathbf{z}_k}}, \quad 1 \leq j \leq 10.$$

Notice the sum of these values will always be 1.

We must now define a transformation from \mathbb{R}^{15} to \mathbb{R}^{10} , which we can do using a 10×15 weight matrix \hat{W} . We can then add a 10×1 bias vector, $\hat{\mathbf{b}}$. We aren't done yet! We want the output to be the probability an image is a specific digit. To do so, we use a **softmax** activation. The formula is

softmax
$$(\mathbf{z})_j = \frac{e^{\mathbf{z}_j}}{\sum_{k=1}^{10} e^{\mathbf{z}_k}}, \quad 1 \le j \le 10.$$

Notice the sum of these values will always be 1. The full computation is

$$\mathbf{o} = \operatorname{softmax}\left(\hat{W}\mathbf{h} + \hat{\mathbf{b}}\right)$$
 .

We must now define a transformation from \mathbb{R}^{15} to \mathbb{R}^{10} , which we can do using a 10×15 weight matrix \hat{W} . We can then add a 10×1 bias vector, $\hat{\mathbf{b}}$. We aren't done yet! We want the output to be the probability an image is a specific digit. To do so, we use a **softmax** activation. The formula is

softmax
$$(\mathbf{z})_j = \frac{e^{\mathbf{z}_j}}{\sum_{k=1}^{10} e^{\mathbf{z}_k}}, \quad 1 \le j \le 10.$$

Notice the sum of these values will always be 1. The full computation is

$$\mathbf{o} = \operatorname{softmax}\left(\hat{W}\mathbf{h} + \hat{\mathbf{b}}\right).$$

For instance, softmax(
$$\begin{pmatrix} 4\\2\\1 \end{pmatrix}$$
) = $\begin{pmatrix} 0.8438\\0.1142\\0.0420 \end{pmatrix}$ has max probability 84.38%.

One Hot Encoding

Once we've computed the output, we need a way to compare it to our desired result. However, \mathbf{o} is a 10×1 vector, whereas our desired digit $y_{\text{train}}(\mathbf{x})$ is a scalar. We therefore encode the digit as a 10×1 vector:

One Hot Encoding

Once we've computed the output, we need a way to compare it to our desired result. However, \mathbf{o} is a 10×1 vector, whereas our desired digit $y_{\text{train}}(\mathbf{x})$ is a scalar. We therefore encode the digit as a 10×1 vector:

/1\	/ 0\	/ 0\		/ 0\	
0	1	0		0	
0	0	1		0	
:	:	:		:	
(o <i>)</i>	(o <i>)</i>	(o <i>)</i>		$\backslash 1$	
0	1	2		9	_

One Hot Encoding

Once we've computed the output, we need a way to compare it to our desired result. However, \mathbf{o} is a 10×1 vector, whereas our desired digit $y_{\text{train}}(\mathbf{x})$ is a scalar. We therefore encode the digit as a 10×1 vector:

The code for this is relatively simple:

```
y_test=keras.utils.to_categorical(y_test, num_classes=10)
y_train=keras.utils.to_categorical(y_train, num_classes=10)
```

Negative Log Likelihood

highlighted in red

To compute how accurate our model was at predicting a given value, we need a **loss** function. In this case, it's easiest to use *negative log likelihood*.

Figure 7: Source: LJ Mirand

To compute the loss for an individual training example, \mathbf{x} , with one-hot encoded label $y_{\text{train}}(\mathbf{x})$, and output \mathbf{o} , we compute

$$L(\mathbf{x}) = -y_{\mathsf{train}}(\mathbf{x}) \cdot \log \mathbf{o} = -\log(o_j),$$

where j is the true label.

Training Parameters

Notice, in total we have $784 \times 15 + 15 \times 1 + 10 \times 15 + 10 \times 1 = 11,935$ parameters to train on.

Training Parameters

Notice, in total we have $784 \times 15 + 15 \times 1 + 10 \times 15 + 10 \times 1 = 11,935$ parameters to train on. Now, how much does our output depend on each of these parameters?

Training Parameters

Notice, in total we have $784 \times 15 + 15 \times 1 + 10 \times 15 + 10 \times 1 = 11,935$ parameters to train on. Now, how much does our output depend on each of these parameters? To answer this, we need the chain rule from calculus.

References

- Michael Nielsen: Using neural nets to recognize handwritten digits
- Towards Data Science: A Beginner's Guide to Neural Networks
- 3d Visualizing a Neural Network
- Understanding softmax and the negative log-likelihood