

KRYSTIAN SELDER

METODA MONTE CARLO

CO TO?

Podstawą metody Monte Carlo jest losowe próbkowanie przestrzeni rozwiązań mające na celu rozwiązanie rozpatrywanego zagadnienia.

DLACZEGO?

Metoda ta znalazła zastosowanie do symulacji losowego zachowania się neutronów w materiałach rozszczepialnych.

Wraz z rozwojem mocy obliczeniowych komputerów zaczęto ją wykorzystywać do symulacji wielu fizycznych i matematycznych zagadnień.

Pod nazwą Monte Carlo nie kryje się jedna konkretna metoda obliczeniowa, a raczej cała klasa zbliżonych do siebie metod, których podstawowe założenia bazują na jednym algorytmie:

Krok 1: Definicja przestrzeni możliwych danych wejściowych,

Krok 2: Losowe określenie danych wejściowych z wcześniej określonej przestrzeni,

Krok 3: Przeprowadzenie obliczeń o charakterze probabilistycznym wykorzystując w/w dane wejściowe,

Krok 4: Przeprowadzenie agregacji uzyskanych wyników w jedno rozwiązanie końcowe.

SZACOVANIE LICZBY PI

3.1	L415926535	89793238462643	383279
50288	3419716939	93751058209749	445923
078164	1062862089	98628034825342	117067
9821	48086	5132	
823	06647	09384	
46	09550	58223	
17	25359	4081	
	2848	1117	
	4502	8410	
	2701	9385	
	21105	55964	
	46229	48954	
	9303	81964	
	4288	10975	
	66593	34461	
2	284756	48233	
	78678	31652	71
20	19091	456485	66
923	34603	48610454	326648
2133	3936	07260249	14127
3724	1587	0066063	1558
8174	188	152092	096

Przy całkowicie losowych rzutach ilość trafień w kwadratowy obszar i ilość trafień w tarcze są proporcjonalne do tych dwóch obszarów.

 $\frac{\text{ilosc trafien w okragla tarcze}}{\text{ilosc trafien w kwadratowy obszar}} = \frac{\text{okragly obszar tarczy}}{\text{obszar kwadratu}}$

$$\frac{\text{ilosc trafien w okragla tarcze}}{\text{ilosc trafien w kwadratowy obszar}} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

$$\pi = 4 \frac{\text{ilosc trafien w okragla tarcze}}{\text{ilosc trafien w kwadratowy obszar}}$$

RUCHY BROWNA

Ruchy Browna, czyli chaotyczne ruchy drobnych ziarenek zawieszonych w cieczy, są dowodem na to, że materia składa się z atomów i cząsteczek. Są one obserwowalną manifestacją ruchów cząsteczek, z których składa się ciecz.

SYMULACJA

- Symulacja ruchów Browna metodą Monte Carlo wykorzystywana jest zazwyczaj w celu poznania możliwej trasy, zgodnie z którą będzie poruszać się cząsteczka. Tego rodzaju symulacje mogą generować sztuczne wykresy giełdowe, dźwięki (np. szum czerwony), trasy losowego błądzenia oraz różnego rodzaju kształty (np. płatki śniegu).
- W celu utworzenia szkicu trasy, którą poruszała się cząsteczka, możemy wykorzystać graficzne możliwości języków programowania.
- Aby zwizualizować proces losowego poruszania się cząsteczki w płynie, zakładamy, że każda kolizja powoduje przemieszczenie się cząsteczki o określoną długość w dowolnym kierunku. W tym celu losujemy kąt, a następnie dokonujemy jej przesunięcia o wybraną długość pod wylosowanym kątem.

PRZYKLAD

EKSPERYMENT

Wcześniej przedstawione zagadnienie znane jest także jako błądzenie losowe. Spróbujmy przeprowadzić prosty eksperyment za pomocą metody Monte Carlo. Umieśćmy cząsteczkę na osi liczbowej w punkcie 0. W każdej kolejnej iteracji niech cząsteczka porusza się losowo w prawo lub lewo o 1. Po k (np. 20) iteracjach zapiszmy pozycję cząsteczki. Eksperyment powtórzmy n (np. 10 000) razy. Na koniec stwórzmy wykres słupkowy, w którym na osi poziomej znajdzie się odległość cząstki od położenia początkowego, a na osi pionowej liczba prób, które zakończyły się na tej pozycji.

WYNIK PRZYKŁADOWEGO EKSPERYMENTU:

Przeprowadzony eksperyment to nic innego jak puszczone kulki na desce Galtona. Kulka zaczyna swoją wędrówkę od góry, a następnie natrafia na przeszkodę, która powoduje jej ruch w lewo lub w prawo z jednakowym prawdopodobieństwem.

Eksperyment wizualizuje rozkład dwumianowy (w Polsce zwany także rozkładem Bernoulliego), który w nieskończoności dąży do rozkładu normalnego, znanego jako rozkład Gaussa.

PROCES WIENERA

Przeprowadzony eksperyment doprowadza nas do procesu Wienera, który w gruncie rzeczy jest dokładnie tym samym, co ruchy Browna, czyli matematycznym opisem chaotycznego ruchu cząsteczki w płynie. Za pomocą tego procesu oraz metody Monte Carlo możemy przeprowadzić symulację ruchów Browna, która dużo lepiej odzwierciedla poruszanie się cząsteczki w naturze. Proces ten w celu wyznaczenia następnego położenia cząsteczki wykorzystuje funkcję rozkładu prawdopodobieństwa Gaussa.

POWYŻSZY KSZTAŁT MOŻNA ZASTOSOWAĆ JAKO LOSOWO WYGENEROWANY PROFIL HIPSOMETRYCZNY LUB WYKRES GIEŁDOWY.

DZIĘKUJĘ ZA UWAGĘ