Χ

(https://swayam.gov.in)

(https://swayam.gov.in/nc_details/NPTEL)

harshaldharpure9922@gmail.com v

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Introduction to Large Language Models (LLMs) (course)

Click to register for Certification exam

(https://examform.nptel.a

If already registered, click to check your payment status

Course outline

About NPTEL

()

How does an NPTEL online course work? ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 11: Assignment 11

The due date for submitting this assignment has passed.

Due on 2025-04-09, 23:59 IST.

Assignment submitted on 2025-04-05, 21:33 IST

1) What is the main modification that SimplE makes to DistMult-like models to handle	1 point
asymmetric relations?	

- Replacing entity embeddings with random fixed vectors
- Introducing separate entity embeddings for subject and object roles, along with inverse relations
- Restricting the rank of the relation tensor to 1
- Using negative sampling for half of the triple set

Yes, the answer is correct.

Score: 1

Accepted Answers:

Introducing separate entity embeddings for subject and object roles, along with inverse relations

- 2) Which statements correctly characterize the basic DistMult approach for knowledge **1 point** graph completion?
 - \square Each relation r is parameterized by a full D×D matrix that can capture asymmetric relations.
 - The relation embedding is a diagonal matrix, leading to a multiplicative interaction of entity embeddings.
 - DistMult struggles with non-symmetric relations because score(s, r, o) = $a_s^T M_r a_o$ is inherently symmetric in s and o.

Week 4 ()	DistMult's performance is typically tested only on fully symmetric KGs.	
	Yes, the answer is correct.	
Week 5 ()	Score: 1 Accepted Answers:	
Week 6 ()	The relation embedding is a diagonal matrix, leading to a multiplicative interaction of entity embeddings.	
Week 7 ()	DistMult struggles with non-symmetric relations because score(s, r, o) = $a_s^T M_r a_o$ is inherently symmetric in s and o.	ly
Week 8 ()	3) Which statements about the ComplEx extension of DistMult are true?	ooint
Week 9 ()	It uses complex-valued embeddings to better capture asymmetric or anti-symmetric relations.	
Week 10 ()	☐ It replaces the multiplication in DistMult with element-wise addition of real-valued vectors	3.
Week 11 ()	For a perfectly symmetric relation, one could set the imaginary part of the relation embedding to zero.	
O Lec 33 :	ComplEx requires each entity vector to be unit norm in the complex plane.	
Knowledge and Retrieval:	Yes, the answer is correct. Score: 1	
Multiplicative	Accepted Answers:	
models (unit? unit=98&lesson	It uses complex-valued embeddings to better capture asymmetric or anti-symmetric relations For a perfectly symmetric relation, one could set the imaginary part of the relation embedding	
=100)	zero.	, 10
O Lec 34 :		
Knowledge and	4) Which best describes the main advantage of using a factorized representation (e.g., 1,	ooint
Retrieval: Modeling	DistMult, ComplEx) for large KGs?	
Hierarchies	It enforces that every relation in the KG be perfectly symmetric.	
(unit?	It ensures each entity is stored as a one-hot vector, simplifying nearest-neighbour querie	es.
unit=98&lesson =101)	It collapses the entire KG into a single scalar value.	
O Lec 35 :	It significantly reduces parameters and enables generalization to unseen triples by captu	ıring
Knowledge and	low-rank structure.	
Retrieval: Temporal	Yes, the answer is correct. Score: 1	
Knowledge	Accepted Answers:	
Graphs (unit?	It significantly reduces parameters and enables generalization to unseen triples by capturing	low-
unit=98&lesson =102)	rank structure.	
Lecture	5) Which statement best describes the reshaping of a 3D KG tensor X ∈R ^{E × R × E} into a 1 µ	ooint
Material (unit?	matrix factorization problem?	
unit=98&lesson	One axis remains for subject, one axis remains for object, and relations are combined in	to a
=103)	single expanded axis.	io a
Feedback Form	The subject dimension is repeated to match the relation dimension, resulting in a 2D ma	trix.
(unit? unit=98&lesson	Each subject–relation pair is collapsed into a single dimension, while objects remain as	
=104)	separate entries.	

Quiz: Week 11: Assignment11(assessment?name=99)

Week 12 ()

Year 2025 Solutions ()

The entire KG is vectorized into a 1D array and then factorized with an SVD approach.
No, the answer is incorrect. Score: 0
Accepted Answers: Each subject–relation pair is collapsed into a single dimension, while objects remain as separate entries.
6) Which key property of hierarchical relationships (e.g. is-a, transitivity) motivates the exploration of specialized embedding methods over standard Euclidean KG embeddings?
Symmetry in the relation (A, is-a, B) implying (B, is-a, A)
Frequent presence of cycles in hierarchical graphs
$lacktriangle$ Transitivity in the form (camel, is-a, mammal) and (mammal, is-a, animal) \Longrightarrow (camel,is-a,animal)
The high dimensionality of the entity embeddings
Yes, the answer is correct. Score: 1
Accepted Answers: Transitivity in the form (camel, is-a, mammal) and (mammal, is-a, animal) ⇒ (camel,is-a,animal)
7) Which of the following statements correctly describe hyperbolic (Poincare) embeddings <i>1 point</i> for hierarchical data?
They map nodes onto a disk (or ball) such that large branching factors can be represented with lower distortion than in Euclidean space.
Distance grows slowly near the center and becomes infinite near the boundary, making it naturally suited for tree-like structures.
☐ They require each node to be embedded on the surface of the Poincare disk of radius 1.
They can achieve arbitrarily low distortion embeddings for trees with the same dimension as Euclidean space.
No, the answer is incorrect. Score: 0
Accepted Answers: They map nodes onto a disk (or ball) such that large branching factors can be represented with lower distortion than in Euclidean space.
Distance grows slowly near the center and becomes infinite near the boundary, making it naturally suited for tree-like structures.
8) Why might a partial-order-based approach (like order embeddings) be beneficial for 1 point modelling 'is-a' relationships compared to purely distance-based approaches?
They explicitly encode the ancestor–descendant relation as a coordinate-wise inequality or containment.
☐ They can represent negative correlations (i.e., sibling vs. ancestor) more easily than distance metrics.
They inherently guarantee transitive closure of the hierarchy in the learned embedding space.

They do not rely on pairwise distances but use a notion of coordinate-wise ordering or interval containment.	
No, the answer is incorrect. Score: 0	
Accepted Answers: They explicitly encode the ancestor–descendant relation as a coordinate-wise inequality or containment.	
They do not rely on pairwise distances but use a notion of coordinate-wise ordering or interval containment.	
9) Which statement about box embeddings in hierarchical modelling is most accurate? 1 poi	int
 Each entity or type is assigned a single real-valued vector, ignoring bounding volumes. Containment I_x ⊆ I_y across all dimensions encodes x≺y . 	
They rely on spherical distances around a central node to measure tree depth.They cannot be used to represent set intersections or partial overlap.	
Yes, the answer is correct. Score: 1	
Accepted Answers: Containment $I_x \subseteq I_y$ across all dimensions encodes $x < y$.	
10) What is a key challenge with axis-aligned open-cone (order) embeddings for hierarchical KG data?	int
They enforce that all sibling categories have identical cone apices, which causes overlap.	
They require symmetrical relationships for all edges.	
They do not allow partial orders to be extended to total orders.	
The volume (measure) of cones is the same regardless of how "broad" or "narrow" the cone is, making sub-categories indistinguishable by volume.	е
Yes, the answer is correct. Score: 1	
Accepted Answers: The volume (measure) of cones is the same regardless of how "broad" or "narrow" the cone is, making sub-categories indistinguishable by volume.	