Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Exame de Análise Matemática I (parte 1) - Engenharia Informática

23 de fevereiro de 2022 Duração: 1h15m

- A avaliação do portfólio de actividades do CeaMatE substitui a resposta ao grupo 1.
- Não é permitido utilizar máquina de calcular ou telemóvel durante a prova.

 $[0.5\,val.]$ 1. (a) Identifique a igualdade que é verdadeira:

i)
$$\arcsin(x) = \frac{1}{\sin(x)}$$
;

ii)
$$\frac{2+x}{x} = 3;$$

iii)
$$e^{x^2} = (e^x)^2$$
;

iv)
$$\log_3(3^{2a}) = 2a$$
.

 $[0.5 \, val.]$ (b) O valor numérico da expressão $\arccos\left(-2\cos\left(\frac{29\pi}{3}\right)\right)$ é:

- i) π ;
- ii) 0;
- iii) $-\pi$;
- iv) 2π .

[0.5 val.] (c) A função inversa de $f(x) = 2 + e^{3x-1}$ é:

i)
$$g(x) = \frac{1}{2 + e^{3x-1}};$$

ii)
$$g(x) = 2 + \ln(3x - 1)$$
;

iii)
$$g(x) = -2 - \ln(-3x + 1)$$
;

iv)
$$g(x) = \frac{1 + \ln(x - 2)}{3}$$
.

 $[0.5\,val.]$ (d) Identifique a igualdade que é <u>falsa</u>:

i)
$$\arcsin(-0.5) = -\frac{\pi}{6}$$
;

ii)
$$\arcsin(\sin(-\pi)) = -\pi$$
;

iii)
$$\arccos(-0.5) = \frac{2\pi}{3}$$
;

iv)
$$\cos\left(\frac{5\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right)$$
.

 $[1.0 \, val.]$ 2. A equação $3^{-x} - x - 2 = 0$ tem apenas uma solução real, pertencente ao intervalo [-2, 0].

- (a) Recorrendo ao método gráfico, justifique a afirmação anterior.
- (b) Efectue 3 iterações do método da bisseção, para determinar uma estimativa para a solução da equação dada. Indique um majorante para o erro dessa estimativa.

Nota: $\sqrt{3} \simeq 1.73$, $\sqrt[4]{3} \simeq 1.32$

[2.0 val.] 3. Calcule as seguintes primitivas:

(a)
$$\int \frac{x}{\sqrt{4-9x^4}} \, dx;$$

(b)
$$\int \frac{\sqrt[3]{x^2} + \cos\left(-\frac{2}{x}\right)}{x^2} dx$$
.

[1.0 val.] 4. Considere o integral definido $\int_{-\pi}^{\pi} \cos(x) dx$.

Recorrendo a uma regra de integração numérica e a uma partição em 4 sub-intervalos, determine uma estimativa para o integral.

 $[5.0 \, val.]$ 5. Considere a região \mathcal{A} , sombreada, da figura seguinte.

- (a) Defina a região $\mathcal A$ na forma $\left\{(x,y)\in\mathbb R^2:\ a\leq y\leq b\ \land\ f(y)\leq x\leq g(y)\right\}.$
- (b) Usando integrais, calcule a área de A.
- (c) Usando integrais, indique expressões simplificadas para o volume dos sólidos que se obtêm pela rotação da região $\mathcal A$ em torno do eixo:
 - i) Ox;
 - ii) Oy.
- (d) Indique uma expressão simplificada que permita calcular o perímetro da região A.

Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Exame de Análise Matemática I (parte 2) - Engenharia Informática

23 de fevereiro de 2022 Duração: 1h15m

- Não é permitido utilizar máquina de calcular ou telemóvel durante a prova.

[2.0 val.] 1. Considere o gráfico seguinte.

(a) Classifique, justificando, as seguintes expressões:

$$\text{(I)} \ \int_0^1 \frac{x}{\sqrt{x^2-1}} \, dx \, ; \quad \text{(II)} \ \int_1^2 \frac{x}{\sqrt{x^2-1}} \, dx \, ; \quad \text{(III)} \ \int_2^3 \frac{x}{\sqrt{x^2-1}} \, dx \, ; \quad \text{(IV)} \ \int_3^{+\infty} \frac{x}{\sqrt{x^2-1}} \, dx \, .$$

No que se segue, note que $\int \frac{x}{\sqrt{x^2-1}} dx = \sqrt{x^2-1} + c$, $c \in \mathbb{R}$.

(b) Determine a natureza do integral impróprio de 1ª espécie.

(c) Determine, justificando, a natureza da série $\sum_{n=0}^{+\infty} \frac{n}{\sqrt{n^2-1}}$.

2. Calcule as seguintes primitivas: $[4.0 \, val.]$

(a)
$$\int x \operatorname{arctg}(x) dx$$
;

(b)
$$\int \tan^3(x)\cos(x)\,dx;$$

(c)
$$\int \frac{x-2}{(x-1)(x^2-3x+2)} dx.$$

 $[1.0\,val.]$ $\,$ 3. Determine, o centro e o intervalo de convergência da série de potências

$$\sum_{n=1}^{+\infty} \frac{(x-1)^n}{2^n} \, .$$

- i) um integral indefinido;
- ii) um integral definido;
- iii) um integral impróprio de 1ª espécie;
- iv) um integral impróprio de 2ª espécie.

[0.5 val.] (b) Identifique a proposição verdadeira:

i)
$$\int x e^x dx = x \int e^x dx;$$

ii)
$$\int x e^x dx = \frac{x^2}{2} e^x + c, \quad c \in \mathbb{R};$$

iii)
$$\int x e^x dx = e^x x - \int e^x dx;$$

iv)
$$\int x e^x dx = \frac{x^2}{2} e^x - \int e^x dx$$
.

[0.5 val.] (c) Considere o integral $I = \int_0^4 \frac{\sqrt{x}}{1 + \sqrt{x}} dx$ e a mudança de variável definida por $x = t^2$. Uma expressão equivalente de I é dada por (escolha a opção correta):

i)
$$\int_0^4 \frac{t}{1+t} dt$$
;

ii)
$$\int_0^2 \frac{t}{1+t} dt$$
;

iii)
$$\int_0^4 \frac{2t^2}{1+t} dt$$
;

iv)
$$\int_0^2 \frac{2t^2}{1+t} dt$$
.

 $[0.5 \, val.]$ (d) A expressão $\sum_{n=1}^{+\infty} (2^n - 2^{n-1})$ define (escolha a opção correta):

- i) uma série de Mengoli, convergente;
- ii) uma série geométrica, convergente;
- iii) uma série geométrica, divergente;
- iv) uma série de Dirichlet, divergente.