Solenoid electron lenses

Fundamentals and design

22.06.2020

Structure

- 1 Motivation
- 2 Magnetic lens overview
 - General notions
 - Lens imperfections
- 3 Project methodology
 - Aim
 - Model
 - Optimization
- 4 Software demo
- 5 Summary, perspective

Motivation

- Magnetic lenses important components of particle accelerators, microscopes
- Electromagnet solenoids physical foundation of more advanced magnetic lenses
- Design constraints:
 - Power consumption
 - Physical size, material usage
 - Characteristic parameters for interaction with other machine components

Figure: Schematic¹ of AREAL, an electron bunch-research oriented linac²

¹Grigoryan2014.

²Grigoryan2011.

Structure

- 1 Motivation
- 2 Magnetic lens overview
 - General notions
 - Lens imperfections
- 3 Project methodology
 - Aim
 - Model
 - Optimization
- 4 Software demo
- 5 Summary, perspective

Electron optics

Definition

Classic optics

- Light ray photons
- •Can pass through optically transparent solids
- •Bends due to refractive index difference between media

Electron optics

- •Electron beam electrons
- Gets absorbed/loses energy due to interactions with atoms in media
- •Bends due to Coulomb and Lorentz forces in the presense of external EM-fields

Requirements

A lens must have the following properties:

- deflection increases with increasing deviation of the beam from the optic axis;
- electron energy should not change, or change negligebly;
- symmetry of deflection on all sides of the optical axis;
- methods and laws of classical optics (such as thin lens formula and approximation, matrix formalism) are assumed to be applicable.

Solenoids

(a) A solenoid with S as optical axis¹

(b) Cross-section of a magnetic lens²

¹a optics.

²Egerton.

Solenoids

Figure: A solenoid cross-section along the optic axis¹

(3)

$$F_{\varphi} = e \left(B_z v_r - v_z B_r \right) \tag{1}$$

$$F_r = -e \left(v_z B_z \right) \tag{2}$$

$$\gamma m \left(\ddot{r} - r \dot{\varphi}^2 \right) = -e r \dot{\varphi} B_z \tag{4}$$

$$\gamma m \frac{d}{dt} \left(r^2 \dot{\varphi} \right) = -e r \left(\dot{r} B_z + B_r \dot{z} \right) \tag{5}$$

$$\gamma m\ddot{z} = er\dot{\varphi}B_r \tag{6}$$

 $F_z = e (v_{\varphi} B_r)$

8 / 24

¹Egerton.

Electron path equations

•From (5) follows:

$$\dot{\varphi} = \frac{e}{2\gamma m} B_z \tag{9}$$

$$B_z(z,r) = \sum_n \frac{(-1)^n}{n! \, n!} \left(\frac{r}{2}\right)^{2n} \frac{\partial^{2n} B_{z, axis}}{\partial z^{2n}} \tag{7}$$
•From (4) and (6) follows:

$$B_{r}(z,r) = \sum_{n} \frac{(-1)^{n}}{n! (n-1)!} \left(\frac{r}{2}\right)^{2n-1} \frac{\partial^{2n-1} B_{z, axis}}{\partial z^{2n-1}}$$
(8)
$$\ddot{r} = -\left(\frac{e}{2am}\right)^{2} r B_{z}^{2}$$
(10)

$$B_{r}(z,r) = \sum_{n} \frac{(-1)}{n! (n-1)!} \left(\frac{r}{2}\right)^{2n-1} \frac{\partial D_{z, axis}}{\partial z^{2n-1}}$$
(8)
$$\ddot{r} = -\left(\frac{e}{2\gamma m}\right)^{2} r B_{z}^{2}$$
(10)

$$\ddot{z} = -\left(\frac{e}{2\gamma m}\right)^2 r^2 B_z B_z'$$

$$\ddot{r} = r'' \dot{z}^2 \approx r'' \left(\beta c\right)^2 \Rightarrow r'' = \left(\frac{e}{2p_*}\right)^2 r B_z^2 \tag{12}$$

$$-\frac{r'}{r} = \frac{1}{f} \underset{\text{integrate (12)}}{\Rightarrow} \frac{1}{f} = \left(\frac{e}{2p_z}\right)^2 \int_{z}^{\infty} B_z^2 dz := \left(\frac{e}{2p_z}\right)^2 F_2$$
 (13)

(11)

Magnetic field of solenoid

- (a) Single-wind solenoid¹
- **(b)** Solenoid with multilayred windings¹
- (c) Fields produced by two coils with same N and L=b

Approximate field of the solenoid $(b)^1$:

Field of the solenoid (a):

$$B_Z(z) = \frac{\mu_0 n I}{2} \left(\frac{\triangle z}{\sqrt{R^2 + \triangle z^2}} - \frac{\triangle z^*}{\sqrt{R^2 + \triangle z^{*2}}} \right)$$
(14)

$$\triangle z = z - L/2 \tag{15}$$

$$B_{Z}(z) \approx \frac{\mu_{0}NI}{4} \left(\frac{Rc^{2}}{\left(z^{2} + Rc^{2}\right)^{3/2}} + \frac{Rc^{*2}}{\left(z^{2} + Rc^{*2}\right)^{3/2}} \right)$$
 (1)

$$Rc = R_{sq} + c$$
, $R_{sq} = R_m \left(1 + \frac{a^2}{24R_m^2} \right)$, $c^2 = \frac{b^2 - a^2}{12}$ (17)

¹Disser.

Lens impefections

There are 3 main limitations to consider when designing a solenoid lens:

_		
Soi	irc	Δ,
200	uı c	٠.

•Chromatic aberration Spread of electron energies

•RMS Emittance growth Spread of eletron coordinates in position-and-momentum phase space

•Spherical aberration Real lens \rightarrow different refraction based on distance from axis

Emittance:

$$\epsilon_{n,rms} = \frac{1}{mc} \sqrt{\left\langle x^2 \right\rangle \left\langle \tilde{p}_x^2 \right\rangle - \left\langle x \tilde{p}_x \right\rangle^2} = \frac{1}{mc} \left(\frac{e^2 \sigma^4}{3\sqrt{2} p_{z,0}} F_3 + \frac{e^4 \sigma^4}{24\sqrt{2} p_{z,0}^3} F_4 \right) \tag{18}$$

Chromatic aberration:

$$r_c \approx \alpha f \left(\triangle E_0 / E_0\right) \approx \alpha C_c \left(\triangle E_0 / E_0\right)$$
 (19)

Lens impefections

Spherical aberration¹

$$\triangle f = c \cdot x^2 \tag{20}$$

$$x \approx f \cdot tan(\alpha)$$
 (21)

$$r_s = \triangle f \cdot \tan(\alpha) \approx c \cdot f^2 \tan(\alpha)^3$$
 (22)

$$= C_{s} \cdot \left(\frac{r_{in}}{f - \frac{C_{s}r_{in}^{2}}{f^{2}}}\right)^{3} \tag{23}$$

$$F_3 = -\int \frac{B_z B_z^{\prime\prime}}{2} dz \tag{24}$$

$$F_4 = \int B_Z^4 dz \tag{25}$$

$$C_{S} = \frac{e}{96m\tilde{U}} \int \left(\frac{2e}{m\tilde{U}} B_{z}^{4} + 5\left(B_{z}^{\prime}\right)^{2} - B_{z}B_{z}^{\prime\prime}\right) R^{4} dz$$
 (26)
$$e^{2}R^{4} \qquad e^{4}R^{4}$$

 $=\frac{e^2R^4}{4p_{z,0}^2}F_3+\frac{e^4R^4}{12p_{z,0}^4}F_4\tag{27}$

Figure: Illustration of beam radius change due to spherical aberration

¹Egerton.

Structure

- 1 Motivation
- 2 Magnetic lens overview
 - General notions
 - Lens imperfections
- 3 Project methodology
 - Aim
 - Model
 - Optimization
- 4 Software demo
- 5 Summary, perspective

Project task

Simple solenoid lens design:

- ▶ Monochromatic e beam, fixed beam radius R
- ▶ Target FWHM, peak B_z , f
- Optimize geometry, current for minimal spheric aberration

Figure: Generalized design process

Solenoid model

► Rectangular cross-section solenoid¹

 $R_{sq} = R_m \left(1 + \frac{a^2}{24R^2} \right).$

Two-loop field approximation:

$$B_z\left(z
ight)pprox rac{\mu_0 NI}{4}\left(rac{Rc^2}{\left(z^2+Rc^2
ight)^{3/2}}+rac{Rc^{*2}}{\left(z^2+Rc^{*2}
ight)^{3/2}}
ight);$$
 $Rc=R_{sq}+c, ext{ where } c^2=rac{b^2-a^2}{12},$ Figure: S

Figure: Solenoid geometry: R_m - mean radius

a - transverse width

b - axial length

Parameters: geometry, scaling factor $N \cdot I$ [Ampere-Turns]

¹Disser.

Field integrals

For an axial beam, only the on-axis B_z is of significance¹. The field's optical properties are described in terms of:

$$F_{1} = \int B_{z}dz$$

$$F_{3} = \int -\frac{B_{z}'' \cdot B_{z}}{2}dz$$

$$F_{4} = \int B_{z}^{4}dz$$

$$F_{5} = \int B_{z}^{4}dz$$

whereas the integration domain is $(-\infty, \infty)$.

¹Disser.

Solenoid characteristics

- ► Effective field length *⇒* FWHM
- ► Focal length:

$$f = \left(\frac{2p_z}{e}\right)^2 \frac{1}{F_2}$$

Aberration coefficient:

$$c_s = \frac{e^2 R^4}{4 p_{z,0}^2} F_3 + \frac{e^4 R^4}{12 p_{z,0}^4} F_4$$

Considerations:

- Geometry size, material usage
- Scaling factor power, material usage
- ightharpoonup f, FWHM, c_s : interaction with other components, fitness to purpose

Optimization

Constrained Trust Region algorithm¹: Iterative gradient search process; minimize merit function m(p) of parameters $p = (s, R_m, a, b)$:

$$m(p) = c_s(p) + k \cdot |C(p)|_2, \quad \Delta p \leq R_T;$$

 $C(p) = (C_1, C_2, ..., C_n)(p)$ - measure of constraint violation;

Interior Point Algorithm²: Solves a sequence of approximate optimization problems, by transforming the original problem $\min_{x} f(x)$, $h(x) = 0 \land g(x) \le 0$ into $\min_{x} f(x) = \min_{x,s} f(x) - \mu \sum_{x} \ln(s_i)$, $h(x) = 0 \land g(x) + s = 0$.

¹scipyctr.

²sqp

Interior point Algorithm results

Retrieved parameters

Opt.	parameters
REG	AE ¹

Height a mm	Width b mm
17.6	17.6
99.5	41.8

Max	field	B_Z	mΤ
105			
79			

 $\frac{\text{RMS emi. } \epsilon_{\textit{n.rms}}}{3.4e - 10m}$ 7.9e - 11m

¹Disser.

Interior point Algorithm results

F₃ Integral

Figure: F_3 integral

Perspective

Subtitle

Summary

Subtitle

Thank you for your attention!

References I