1 Seria Fourier continuă

i) în reprezentare trigonometrică:

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos n\omega_0 t + b_n \sin n\omega_0 t,$$

$$\forall t_1 \le t \le t_1 + T_0 \text{ și } T_0 = \frac{2\pi}{\omega_0}.$$

cu coeficientii:

$$\begin{split} a_0 &= \frac{\int_{T_0} f(t) \mathrm{d}t}{\int_{T_0} 1 \mathrm{d}t} = \frac{1}{T_0} \int_{T_0} f(t) \mathrm{d}t, \\ a_n &= \frac{\int_{T_0} f(t) \cos n\omega_0 t \mathrm{d}t}{\int_{T_0} \cos^2 n\omega_0 t \mathrm{d}t} = \frac{2}{T_0} \int_{T_0} f(t) \cos n\omega_0 t \mathrm{d}t, \ \forall n \geq 1 \\ b_n &= \frac{\int_{T_0} f(t) \sin n\omega_0 t \mathrm{d}t}{\int_{T_0} \sin^2 n\omega_0 t \mathrm{d}t} = \frac{2}{T_0} \int_{T_0} f(t) \sin n\omega_0 t \mathrm{d}t, \ \forall n \geq 1. \end{split}$$

ii) în reprezentare compactă:

$$f(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n), \quad \forall t_1 \le t \le t_1 + T_0.$$

cu coeficienții:

$$C_0=a_0;$$
 $C_n=\sqrt{a_n^2+b_n^2},$ $C_n\geq 0,$
$$\theta_n=\arctan\left(\frac{-b_n}{a_n}\right),$$
 $n\geq 1.$

iii) în reprezentare exponențială:

$$f(t) = \sum_{n = -\infty}^{\infty} D_n e^{jn\omega_0 t}, \quad \forall t_1 \le t \le t_1 + T_0$$

cu coeficienții:

$$D_n = \frac{1}{T_0} \int_{T_0} f(t) e^{-jn\omega_0 t} dt.$$

- iv) echivalente:
 - trigonometric clasic ⇒ trigonomeric compact:

$$C_n = \sqrt{a_n^2 + b_n^2}, \ \theta_n = \arctan\left(\frac{-b_n}{a_n}\right), \ n \ge 1.$$

• trigonometric clasic \Rightarrow exponential:

$$D_n = \frac{a_n - jb_n}{2}, \ D_{-n} = \frac{a_n + jb_n}{2}, \ \forall n \ge 1$$

• trigonometric compact \Rightarrow exponential:

$$D_n = \frac{C_n}{2} e^{j\theta_n}, \ D_{-n} = \frac{C_n}{2} e^{-j\theta_n}, \ n \ge 1$$

- pt. o funcție pară, f(t) = f(-t), avem $b_n = 0$; pt. o funcție impară, f(t) = -f(-t), avem $a_0 = a_n = 0$;
- dacă f(t) este pară atunci $D_n = \frac{a_n}{2}$;
- dacă f(t) este impară atunci $D_n = -(-1)^n \frac{jb_n}{2}$.

2 Transformata Fourier continuă

i) transformata Fourier:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

ii) transformata Fourier inversă:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Table 1: Transformări Fourier uzuale		
$\mathbf{f}(\mathbf{t})$	$\mathbf{F}(\omega)$	
$e^{-at}1(t)$	$\frac{1}{a+j\omega}$, $a>0$	
$e^{at}1(-t)$	$\frac{1}{a-j\omega}$, $a>0$	
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}, \qquad a > 0$	
$te^{-at}1(t)$	$\frac{1}{(a+j\omega)^2}, \qquad a > 0$	
$t^n e^{-at} 1(t)$	$\frac{n!}{(a+j\omega)^{n+1}}, \qquad a > 0$	
$\delta(t)$	1	
1	$2\pi\delta(\omega)$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
$\sin \omega_0 t$	$j\pi[\delta(\omega-\omega_0)-\delta(\omega-\omega_0)]$	
1 (t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
$\operatorname{sgn} t$	$\frac{2}{j\omega}$	
$\cos \omega_0 t 1(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
$\sin \omega_0 t 1(t)$	$\frac{\pi}{2j} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{\omega_0}{\omega_0^2 - \omega^2}$	
$e^{-at}\sin\omega_0 t 1(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	
$e^{-at}\cos\omega_0t1(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=0}^{\infty} \delta(\omega - n\omega_0), \qquad \omega_0 = \frac{2\pi}{T}$	
$ \begin{array}{c} $	$ \frac{n = -\infty}{\sigma \sqrt{2\pi} e^{-\frac{\sigma^2 \omega^2}{2}}} $	

Table 2: Proprietăti ale transformatei Fourier

Operație	f(t)	$\mathbf{F}(\omega)$
adunare	$f_1(t) + f_2(t)$	$F_1\omega + F_2(\omega)$
multiplicare cu scalar	kf(t)	$kF(\omega)$
simetrie	F(t)	$2\pi f(-\omega)$
scalare în timp	f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
deplasare în timp	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
deplasare în frecvență	$f(t)e^{j\omega_0t}$	$F(\omega-\omega_0)$
convoluție în timp	$f_1(t) * f_2(t)$	$F_1(\omega)F_2(\omega)$
convoluție în frecvență	$f_1(t)f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$
diferențiere în timp	$\frac{d^n f}{d^n}$	$(j\omega)^n F(\omega)$
integrare în timp	$\int_{-\infty}^{t} f(x)dx$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$
derivare în frecvență	tf(t)	$j\frac{\mathrm{d}}{\mathrm{d}\omega}F(\omega)$