ELT 492 - Tópicos Especiais II - Circuitos Trifásicos

Prova - 15/07/2020

Observações:

- esta prova deverá ser feita em uma folha A4 branca (sem pauta). Coloque seu nome e matrícula na primeira folha antes de iniciar.
- cada questão deverá ser iniciada em uma nova página;
- não esqueça de enumerar as questões e suas alternativas na sua folha antes de iniciar a resolução.
- ao finalizar, digitalize a prova em um único arquivo pdf e envie via PVANet no prazo estipulado (até às 16h). O arquivo deve ser nomeado de acordo com a matrícula, como 42949.pdf;
- A prova contém 3 questões.
- Utilize 2 casas decimais nas respostas.
- Deixar todas as respostas na forma polar.
- para as questões 1 e 2, **abc** = 3 primeiros dígitos de sua matrícula e **e** o último digito. Exemplo: matrícula **42957** implica que abce = 4297.

Questão 1 (15 pontos)

A imagem seguinte mostra um sistema trifásico na sequência acb, com van = (127 + j0) V, contendo duas cargas conectadas:

- Um chuveiro de fator de potência unitário conectado entre as fases A e B. A potência ativa P do chuveiro é igual a **abce** W (veja observação na primeira página).
- Um motor de 10CV, fator de potência igual a 0,86 indutivo, rendimento igual a 0,6 é ligado entre as fases B e C.

Calcule os fasores das correntes de linha la, lb e lc; e o fasor da corrente de neutro In.

Questão 2 (15 pontos)

No circuito abaixo composto por uma carga trifásica equilibrada **indutiva** \dot{Z} e uma resistência R, foram feitas as seguintes medições: $V_{AN} = 115.5 \text{ V}$ (tensão da fonte), sequência de fases direta, leitura dos wattímetros: $W_1 = abce$ W (Leia as observações na folha 1 desta prova) e $W_2 = 3464W$. Considere V_{AN} como referência (zero grau). Determine:

- a) As tensões de fase e de linha da fonte (2 pontos);
- b) A potência ativa, reativa e aparente total do sistema, com base na leitura dos wattímetros (3 pontos).
- c) A potência consumida por R (2 pontos).
- d) A potência aparente da carga trifásica ¿Z (3 pontos).
- e) O fator de potência da carga trifásica **Z** (2 pontos).
- f) O fasor de corrente (I_A) na carga Z, conforme imagem (3 pontos).

Questão 3 (10 pontos)

Os valores nominais dos equipamentos mostrados no SEP de 4 barras a seguir são (tensões de linha e potência aparente trifásica):

Gerador 1	500 MVA, 13.8 kV, Xg1 = j0,20 pu	T ₁ (Δ-Y)	500 MVA, 13.8kV (Δ) / 500kV (Y), XT1 = j0,12 pu
Gerador 2	750 MVA, 18 kV, Xg2 = j0,18 pu	T ₂ (Δ-Y)	750 MVA, 18kV (Δ) / 500kV (Y), XT2 = j0,10 pu
Gerador 3	1000 MVA, 20 kV, Xg3 = j0,17 pu	T ₃ (Δ-Y)	1000 MVA, 20kV (Δ) / 500 kV (Y), XT3= j0,10 pu
Cada trecho da linha de transmissão (X12, X23 e X24) é de j50 Ω, conforme figura.			

Com base nessas informações, determine o diagrama de reatâncias em **p.u**., utilizando como **base 1000MVA e 20kV na área do gerador G3**. Utilize 2 casas decimais após a vírgula.