MYO THIDA

ALGORITHMS & STRUCTURE

Myo Thida

WHATIS DATA STRUCTURE?

COMPUTER MEMORY

```
000000000 = 0
000000001 = 1
00101001 = 41
100000000 = 128
111111111 = 255
```

- The program and its data are loaded from the storage device (like an SSD or HDD) into RAM.
- The CPU (Central Processing Unit) processes the data in RAM as it executes the instructions provided by the program.
- Any changes made to the data during the program's execution may be temporarily stored in RAM.
- Data is saved in binary format.

Classification of Data Structure

Image Credit to https://www.geeksforgeeks.org/

ARRAYS

- Most popular data structure.
- A linear data structure that collects elements of the same data type and
- Stores them in contiguous and adjacent memory locations.

	Memory Location	Value
0	0x2b4aa796b10	16
1	0x2b4aa796c10	24
2	0x2b4aa796d90	36
3	0x2b4aa796e90	44
4	0x2b4aa796f90	52
5	0x2b4aa796c50	26
6	0x2b4aa796db0	37
7	0x2b4aa796d50	34
8	0x2b4aa7c5050	56
9	0x2b4aa7c5310	78

 $MY_ARRAY = [16, 24, 36, 44, 52, 26, 37, 34, 56, 78]$

ARRAYS

• Arrays work on an index system starting from 0 to (n-1), where n is the size of the array.

MY_ARRAY [O]?

MY_ARRAY[4]?

MY_ARRAY[10]?

	Memory Location	Value
0	0x2b4aa796b10	16
1	0x2b4aa796c10	24
2	0x2b4aa796d90	36
3	0x2b4aa796e90	44
4	0x2b4aa796f90	52
5	0x2b4aa796c50	26
6	0x2b4aa796db0	37
7	0x2b4aa796d50	34
8	0x2b4aa7c5050	56
9	0x2b4aa7c5310	78

ARRAYSIN PYTHON

- No built-in data type
- Need to import using array or numpy.
- Need to enclose using .array function.
- Contain elements of the same data types.
- Can apply direct arithmetic operations.

```
my\_array = np.array([16, 24, 36, 44, 52, 26, 37, 34, 56, 78])
```

2D ARRAYS IN PYTHON

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

```
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
```

https://numpy.org/doc/stable/user/absolute_beginners.html

2D ARRAYS IN PYTHON

```
a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
```

https://numpy.org/doc/stable/user/absolute_beginners.html

ARRAY FUNCTIONS

- np.array(),
- np.zeros(),
- np.ones(),
- np.empty(),
- np.arange(),
- np.linspace()

```
np.zeros(3)
 ✓ 0.0s
array([0., 0., 0.])
   np.ones(4)
 ✓ 0.0s
array([1., 1., 1., 1.])
   np.arange(5)
 ✓ 0.0s
```

array([0, 1, 2, 3, 4])

ARRAY FUNCTIONS

• Generate a sequence of 21 evenly spaced numbers between 0 and 100.

```
np.linspace(0,100, 21)

v 0.0s

array([ 0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 50., 55., 60., 65., 70., 75., 80., 85., 90., 95., 100.])
```

PYTHON BUILT-IN DATA TYPE LIST

PYTHON-LISTS

MY_LIST = [16, 24, 36, 'NAME', 52, 'AGE']

- Built-in data type
- Enclose using square bracket []
- Can contain elements of the different data types.
- Cannot apply direct arithmetic operations.

	Memory Location	Value
0	0x2b4aa796b10	16
1	0x2b4aa796c10	24
2	0x2b4aa796d90	36
3	0x2b4aa7c8130	name
4	0x2b4aa796f90	52
5	0x2b4c9c0e270	age

PYTHON BUILT-IN LISTS

 $MY_LIST = [16, 24, 36, 44, 52, 26, 37, 34, 56, 78]$

0 0x2b4aa796b10 16 1 0x2b4aa796c10 24 2 0x2b4aa796d90 36 3 0x2b4aa796e90 44 4 0x2b4aa796f90 52 5 0x2b4aa796c50 26 6 0x2b4aa796db0 37 7 0x2b4aa796d50 34 8 0x2b4aa7c5050 56 0 0x2b4aa7c5050 78		Memory Location	Value
2 0x2b4aa796d90 36 3 0x2b4aa796e90 44 4 0x2b4aa796f90 52 5 0x2b4aa796c50 26 6 0x2b4aa796db0 37 7 0x2b4aa796d50 34 8 0x2b4aa7c5050 56	0	0x2b4aa796b10	16
3 0x2b4aa796e90 44 4 0x2b4aa796f90 52 5 0x2b4aa796c50 26 6 0x2b4aa796db0 37 7 0x2b4aa796d50 34 8 0x2b4aa7c5050 56	1	0x2b4aa796c10	24
4 0x2b4aa796f90 52 5 0x2b4aa796c50 26 6 0x2b4aa796db0 37 7 0x2b4aa796d50 34 8 0x2b4aa7c5050 56	2	0x2b4aa796d90	36
5 0x2b4aa796c50 26 6 0x2b4aa796db0 37 7 0x2b4aa796d50 34 8 0x2b4aa7c5050 56	3	0x2b4aa796e90	44
6 0x2b4aa796db0 37 7 0x2b4aa796d50 34 8 0x2b4aa7c5050 56	4	0x2b4aa796f90	52
7 0x2b4aa796d50 34 8 0x2b4aa7c5050 56	5	0x2b4aa796c50	26
8 0x2b4aa7c5050 56	6	0x2b4aa796db0	37
	7	0x2b4aa796d50	34
0 0.25455755210 70	8	0x2b4aa7c5050	56
9 0x2b4aa7C5310 78	9	0x2b4aa7c5310	78

procedure $max(a_1, a_2, \ldots, a_n)$: integers)

 $max := a_1$

for i := 2 to n

if $max < a_i$ then $max := a_i$

return *max*{*max* is the largest element}

ARRAY & LIST EXERCISES

- Write an algorithm to find the sum of all even numbers in an array without using built-in functions.
 - Instance: my_array = [3, 4, 5, 8, 13, 54]
- Write an algorithm to find the maximum element in an array without using built-in functions.
 - Instance: my_array = [3, 4, 5, 68, 13, 54])
- Write an algorithm to move all zeros to the end of the given array of integers while maintaining the order of non-zero elements.

THANK YOU!

Feel free to approach me if you have any questions.