

Advanced Database SystemsIntroduction

Strategic project of TBU in Zlín, reg. no. CZ.02.2.69/0.0/0.0/16_015/0002204

Content

- Current trends in data management & computing
- Big Data
- Relational vs. NoSQL databases
 - the value of relational databases
 - new requirements and NoSQL features
 - flexible data models
- Types of NoSQL databases
 - key-value stores, document databases, column-family databases, graph databases
- Zdenka Prokopova principles and examples

Current Trends: Big Data

Current Trends: Big Users

Current Trends: Cloud Computing

Big Data

"Big data is high volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization." (Gartner, 2012)

It's estimated that 2.5 QUINTILLION BYTES

\$ 2.3 THIS LIGH GLOCKEYTES 1

Volume SCALE OF DATA

Most companies in the U.S. have at least

OD TERABYTES

188,000 GREADYTES) of data stored

The New York Stock Exchange captures.

WORLD PEPULATION: 7 BILLION

1 TB OF TRADE INFORMATION

during each trading session

that monitor items such as fuel level and tire pressure

ANALYSIS OF STREAMING DATA

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

- almost 2.5 connections per person on earth

Modern cars have close to 00 SENSORS

The FOUR V's of Big Data

break big data into four dimensions. Values. Velocity, Variety and Veracity

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

THE BILLION GREAT/TEXT

Variety

DIFFERENT FORMS OF DATA

4 BILLION+ HOURS OF VIDEO

By 2014, it's anticipated

WEARABLE, WIRELESS

HEALTH MONITORS

there will be

28 MILLION

are watched on YouTube each month

30 BILLION PIECES OF CONTENT

are shared on Facebook

are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS

don't trust the information they use to make decisions

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

in one survey were unsure of how much of their data was. inaccurate

Veracity

UNCERTAINTY OF DATA

Data volume is increasing exponentially

Zdenka Prokopova TBU in Zlín

TBU in Zlín

Various data types, formats and structures

Data is being generated fast and need to be processed fast

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

Velocity

ANALYSIS OF STREAMING DATA

By 2016, it is projected there will be

 almost 2.5 connections per person on earth

Processing (Big) Data

- OLTP: Online Transaction Processing (DBMSs)
 - Database applications
 - Storing, querying, multi-user access
- OLAP: Online Analytical Processing (Warehousing)
 - Answer multi-dimensional analytical queries
 - Financial/marketing reporting, budgeting, forecasting, ...
- RTAP: Real-Time Analytic Processing (Big Data Architecture & Technology)
 - Data gathered & processed in real-time (streaming)
 - Real-time and history data combined

Technologies for Big Data

- Distributed file systems (GFS, HDFS, etc.)
- MapReduce
 - and other models for distributed programming
- NoSQL databases
- Grid computing, cloud computing
- Large-scale machine learning

Relational Database Management Systems

- RDBMS are predominant database technologies
 - o first defined in 1970 by Edgar Codd of IBM's Research Lab
- Data modeled as relations (tables)
 - object = tuple of attribute values
 - tables contain objects of the same type
 - tables interconnected via foreign keys
- Relational calculus, SQL query language

The Value of Relational Databases

- A (mostly) standard data model
- Many well developed technologies
 - physical organization of the data
 - search indexes: B+-Trees, hash indexes
 - query optimization, search operator implementations
- Good concurrency control (ACID)
 - transactions: atomicity, consistency, isolation, durability
- Many reliable integration mechanisms
 - o "shared database integration" of applications

New Requirements on Data Management Trends Requirements

- Volume of data
- Cloud comp. (laaS)
- Velocity of data
- Big users

- Real data scalability
 - massive database distribution
 - O dynamic resource management
 - horizontally scaling systems
- Frequent update operations
- Massive read throughput
- Flexible database schema

NoSQL Databases

- What is "NoSQL"?
 - o term used in late 90s for a different type of technology: Carlo Strozzi: http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/
 - o "Not Only SQL"?
 - but many RDBMS are also "not just SQL"

"NoSQL is an accidental term with no precise definition"

 first used at an informal meetup in 2009 in San Francisco (presentations from Voldemort, Cassandra, Dynomite, HBase, Hypertable, CouchDB, and MongoDB)

NoSQL Databases

- NoSQL: Database technologies that are (mostly):
 - Not using the relational model (nor the SQL language)
 - Designed to run on large clusters (horizontally scalable)
 - No schema fields can be freely added to any record
 - Open source
 - Based on the needs of 21st century web estates

NoSQL Databases

- Other characteristics (often true):
 - easy replication support (fault-tolerance, query efficiency)
 - simple API
 - eventually consistent (not ACID)

Assumptions about Data and Usage

	RDBMS	NoSQL	
integrity is mission-critical		OK as long as most data is correct	
data format	data formatconsistent, well-definedunknown or inconsistent		
data	is of long-term value	is expected to be replaced	
growth	predictable, linear growth	unpredictable growth (exponential?)	
querying non-programmers writing queries only programm		only programmers writing queries	
fault regular backups tolerance		automatic data replication	
distribution access through master server data sharding (partitioning)		data sharding (partitioning)	

The End of Relational Databases?

- Relational databases are not going away
- Many projects would use RDBMS also because of:
 - maturity/stability,
 - available support
 - familiarity

We should see RDBMS as one option for data storage

Polyglot persistence – using different data stores in different circumstances

Data Model: Aggregates

- The model by which the database organizes data
- Each NoSQL type has a different data model
 - o Key-value, document, column-family, graph
 - First three are oriented on aggregates

Aggregate

- A data unit with a complex structure
 - Not simply a tuple like in RDBMS
- An aggregate is a collection of related objects that we wish to treat as a unit

Example: UML Model of an e-shop

Example: Relational Model

Customer	
Id	Name
1	Martin

0rders		
Id	CustomerId	ShippingAddressId
99	1	. 77

Product		
Id	Name	
27	NoSQL Distilled	

BillingAddress		
Id	CustomerId	AddressId
55	1	77

OrderItem			
Id	OrderId	ProductId	Price
100	99	27	32.45

Address		
Id	City	
77	Chicago	

OrderPayment					
	Id	OrderId	CardNumber	BillingAddressId	txnId
	33	99	1000-1000	55	abelif879rft

Relational Model: Aggregate Ignorant

- Relational databases are aggregate-ignorant
 - It is not a bad thing, it is a feature
 - Allows to easily look at the data in different ways
 - Best choice when there is no primary structure for data manipulation

Example: NoSQL Solution


```
// in customers
"id":1,
"name": "Martin",
"billingAddress":[{"city":"Chicago"}]
// in orders
"id":99,
"customerId":1,
"orderItems":[
  "productId":27,
  "price": 32.45,
  "productName": "NoSQL Distilled"
"shippingAddress":[{"city":"Chicago"}]
"orderPayment":[
    "ccinfo":"1000-1000-1000-1000",
    "txnId": "abelif879rft",
    "billingAddress": {"city": "Chicago"}
```


NoSQL Databases: Aggregate-oriented

- NoSQL databases are typically either:
 - schemaless (with implicit schema maintained by application)
 - o or aggregate-oriented (more or less explicit schema)

Aggregate-oriented:

- There is no general strategy to set aggregate boundaries
- Aggregates give the database information about which bits of data will be manipulated together
- Zdenka Prokopova TBU in Zlín

Which should be stored on the same node

Aggregate-oriented

Aggregates

- Helps greatly with running on a cluster of nodes
 - o Minimize the number of nodes accessed during a search

- Impact on concurrency control:
 - NoSQL databases typically support atomic manipulation of a single aggregate at a time

Four Basic Types of NoSQL Databases

- Key-value stores
- Document databases
- Column-family stores
- Graph databases

Key-value Stores: Representatives

LevelDB

NOSQL DATABASE

Document Databases: Basics

- Basic concept of data: Document
- Documents are self-describing pieces of data
 - Hierarchical tree data structures
 - Nested associative arrays (maps), collections, scalars
 - XML, JSON (JavaScript Object Notation), BSON, ...
- Documents in a collection should be "similar"
 - Their schema can differ
- Documents stored in the value part of key-value
 - Key-value stores where the values are examinable
 - Building search indexes on various keys/fields

Document Databases: Representatives

Column-family Stores: Basics

- wide-column, columnar
- Data model: rows that have many columns associated with a row key
- Column families are groups of related data (columns) that are often accessed together
 - e.g., for a customer we typically access all profile information at the same time, but not customer's orders

Column-family Stores: Representatives

Graph Databases

- To store entities and relationships between them
 - Nodes are instances of objects
 - o Nodes have properties, e.g., name
 - Edges have directional significance
 - Edges have types e.g., likes, friend, ...
- Nodes are organized by relationships
 - Allow to find interesting patterns
 - example: Get all nodes that are "employee" of "Big Company"

and that "likes" "NoSQL Distilled"

Graph Databases: Example

Graph Databases: Representatives

One Example of NoSQL Usage

facebook

Facebook: Database Technology Behind

Apache Hadoop http://hadoop.apache.org/

- Hadoop File System (HDFS)
 - over 100 PB in a single HDFS cluster
- an open source implementation of MapReduce:
 - Enables efficient calculations on massive amounts of data

Apache Hive http://hive.apache.org/

- SQL-like access to Hadoop-stored data
- integration of MapReduce query evaluation

Facebook: Database Technology Behind

Apache HBase http://hbase.apache.org/

- o a Hadoop column-family database
- used for e-mails, instant messaging and SMS
- replacement for MySQL and Cassandra

Memcached http://memcached.org/

- distributed key-value store
- used as a cache between web servers and MySQL servers since the beginning of FB

Facebook: Database Technology Behind

Apache Giraph http://giraph.apache.org/

- o graph database
- facebook users and connections is one very large graph
- used since 2013 for various analytic tasks

RocksDB http://rocksdb.org/

DB-Engines Ranking

	Rank				
Feb 2022	Jan 2022	Feb 2021	DBMS	Database Model	
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🚺	
2.	2.	2.	MySQL 🚹	Relational, Multi-model 👔	
3.	3.	3.	Microsoft SQL Server 🗄	Relational, Multi-model 🚺	
4.	4.	4.	PostgreSQL 🔠 🗐	Relational, Multi-model 🚺	
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🔞	
6.	6.	↑ 7.	Redis 😷	Key-value, Multi-model 🚺	
7.	7.	4 6.	IBM Db2	Relational, Multi-model 👔	
8.	8.	8.	Elasticsearch	Search engine, Multi-model 👔	
9.	9.	↑ 11.	Microsoft Access	Relational	
10.	10.	4 9.	SQLite 🚹	Relational	
11.	11.	↓ 10.	Cassandra 🚹	Wide column	
12.	12.	12.	MariaDB 🔠	Relational, Multi-model 🚺	

DBMS popularity per category

© 2022, DB-Engines.com

References

- Erl, T., Khattak, W., & Buhler, P. (2016). Big Data Fundamentals: Concepts,
 Drivers \& Techniques: Prentice Hall Press.
- Sadalage, P. J., & Fowler, M. (2013). *NoSQL distilled: a brief guide to the emerging world of polyglot persistence*: Pearson Education.
- Strauch, C., Sites, U.-L. S., & Kriha, W. (2011). NoSQL databases. *Lecture Notes, Stuttgart Media University, 20*.
- DB-Engines Ranking. (2019). Retrieved from https://db-engines.com/en/ranking
- Gain the insights, advice and tools (2019). Retrieved from https://www.gartner.com/en

References

- RNDr. Irena Holubova, Ph.D. MMF UK course PA195: NoSQL Databases
- Data science and big data analytics. (2018). New York, NY: Springer Berlin Heidelberg.
- Deka, G. C. (2017). NoSQL: database for storage and retrieval of data in cloud. Boca Raton, FL: CRC Press, Taylor & Francis Group.
- Perkins, L., Redmond, E., & Wilson, J. R. (2018). Seven databases in seven weeks: a guide to modern databases and the NoSQL movement (Second edition. ed.). Raleigh, North Carolina: The Pragmatic Bookshelf.
- Wiese, L. (2015). Advanced data management: for SQL, NoSQL, cloud and distributed databases. Berlin; Boston: De Gruyter, Oldenbourg.

Questions?

Strategic project of TBU in Zlín, reg. no. CZ.02.2.69/0.0/0.0/16_015/0002204