DIPARTIMENTO DI SCIENZE MATEMATICHE, FISICHE ED INFORMATICHE Corso di Laurea in Informatica

Congestione e QoS

RETI DI CALCOLATORI - a.a. 2022/2023 Roberto Alfieri

Il livello trasporto: sommario

PARTE I

- ▶ Scopo del livello Trasporto
- ▶ L'indirizzamento
- ▶ II modello client/server
- ▶ II protocollo UDP
- I servizi orientati alla connessione
- ▶ II protocollo TCP

PARTE II

- ▶ Congestione, Qualità del Servizio
- ▶ Algoritmi Slow start, Tahoe, Fast Recovery, RED, segnalazione esplicita
- QoS e controllo del traffico
- Servizi differenziati e integrati

RIFERIMENTI

- Reti di Calcolatori, A. Tanenbaum, ed. Pearson
- Reti di calcolatori e Internet, Forouzan , Ed. McGraw-Hill

Controllo della Congestione

Quando troppi pacchetti sono presenti in una porzione della rete le prestazioni si degradano e la rete si dice congestionata. La congestione ha effetto su tutti i parametri della rete: velocità, ritardo, jitter e affidabilità.

Per **Controllo della Congestione** si intendono le procedure per prevenire la congestione prima che si verifichi (controllo proattivo) o gestirla quando si è verificata (controllo reattivo).

Coinvolge il comportamento dei terminali (Host) e dei nodi di transito (Router).

Può essere svolto a vari livelli (generalmente a livello Rete e a livello Trasporto in TCP).

Controllo della congestione di TCP

In TCP l'host gestisce la congestione mediante l'introduzione di una ulteriore finestra denominata **Congestion Window** (cwnd).

La finestra effettivamente utilizzata in trasmissione (awnd) è la finestra più piccola tra la finestra indicata dal ricevente (rwnd) e la finestra di congestione (cwnd)

awnd = min (cwnd, rwnd) >= LastByteSent - LastByteAcked

La Congestion Window **cwnd** dovrà essere regolata mediante opportuni algoritmi. I principali sono:

- controllo proattivo: Algoritmo Slow Start. Nelle nuove connessioni TCP la cwnd inizia con un valore basso e cresce lentamente.
- controllo reattivo: Algoritmi Tahoe e Reno. Si assume che i pacchetti persi siano causati da congestione. La cwnd viene ridotta a seguito di un time-out.
- controllo reattivo: La cwnd viene ridotta a seguito di segnalazione implicita (algoritmo RED) o esplicita (ECN) di congestione.

Gestione della cwnd: Algoritmo Slow Start

- 1) Controllo proattivo: **Slow Start**Il mittente imposta cwnd=MSS e la
 raddoppia ad ogni invio fino a quando:
- cwnd raggiunge la dimensione della finestra del ricevente rwnd
- cwnd raggiunge una soglia
 (threshold, valore iniziale tipico 64KB)
 Raggiungendo la soglia l'aumento diventa lineare

2) Controllo reattivo: TAHOE

Se scade il timer siamo in congestione e si ritorna a Slow Start (cwnd=MSS) con soglia portata alla metà della corrente cwnd

Il crollo repentino del cwnd decongestiona la rete ma limita temporaneamente la velocità di ricezione / trasmissione dei dati.

Controllo reattivo con fast recovery (TCP Reno)

TCP Reno migliora il Tahoe distinguendo tra 2 motivi per la perdita di dati:

- 1) Dovuto al timeout del Timer → rete molto congestionata: cwnd= MSS
- 2) Ricezione di 3 ACK duplicati → Fast recovery: cwnd = new threshold

Infatti, se un segmento viene perduto ma non i successivi, ogni segmento arrivato fuori sequenza comporta la generazione di un ACK con la **conferma degli ultimi dati ricevuti in sequenza corretta**; siccome in virtù del meccanismo a finestra i segmenti sono spesso inviati uno di seguito all'altro in gruppi; se quello perso non è l'ultimo, è probabile che gli ACK arrivino prima dello scadere

del timer.

Algoritmo RED (Random Early Detection)

RED è metodo (sia proattivo che reattivo) per gestire la congestione a livello Rete.

L' algoritmo interviene sulla coda di pacchetti nel buffer di spedizione dei router, definendo 2 soglie Tmin e Tmax.

Quando arriva un nuovo pacchetto P il router controlla il numero X di pacchetti in coda:

- Se X < Tmin P viene accodato
- Se Tmin < X < Tmax P viene scartato (probabilità p=f(X)) o accodato (p=1-f(X))
- Se X > Tmax P viene scartato

Segnalazione implicita di congestione

L'eliminazione precoce dei pacchetti comporta l'invio di 3 ACK duplicati o lo scadere dell'RTO del mittente, quindi rappresenta anche una **segnalazione implicita del router al mittente** riguardo una situazione di allarme, il quale interviene con un controllo reattivo (e.g. TCP Reno).

Segnalazione esplicita di congestione: ECN

Il **router può avvisare esplicitamente il mittente** mediante l'invio di un pacchetto speciale detto Choke packet. Quando il mittente riceve il Choke packet deve ridurre il traffico inviato.

La tecnica attualmente in uso è denominata ECN (Explicit Congestion Notification) ed è definita nell'RFC 3168 (vedi http://en.wikipedia.org/wiki/Explicit Congestion Notification) ECN può lavorare sia a livello IP che TCP.

ECN in IPv4: per la segnalazione da Router a mittente

utilizza 2 bit del campo DiffServ nell'intestazione IP (11 = Congestion Encountered)
 Il router può utilizzare questo metodo anziché scartare il pacchetto con RED

ECN in TCP: per le segnalazioni end-to-end

- utilizza i bit ECN-Echo (ECE) e Congestion Window Reduced (CWR) di TCP.

In entrambi i casi (IP e TCP) il mittente reagisce a livello di trasporto attivando il controllo reattivo con Fast Recovery (come se fossero arrivati 3 ACK duplicati).

Nota: ECN è implementato in Linux 2.4+ e nei router Cisco dalla versione 12.2(8)

Qualità del Servizio (QoS)

Due processi che utilizzano la rete ricevono un servizio di comunicazione.

La Qualità del Servizio (QoS) fa riferimento all'aderenza del servizio ricevuto in relazione a 4 parametri primari della comunicazione:

Affidabilità, Ritardo, Jitter e Banda, a cui l'applicazione è più o meno sensibile.

- ▶ Affidabilità : Garanzia della consegna dei dati spediti
- ▶ Ritardo : Tempo necessario per la consegna
- Jitter : Variabilità del ritardo.
- Banda : Velocità nella trasmissione dei dati

Gestione della QoS

La gestione della QoS (eventuale) può essere concordata tra utente e fornitore del servizio attraverso un accordo preliminare denominato **Service Level Agreement (SLA)** attraverso il quale il fornitore si impegna garantire una determinato livello di QoS.

La QoS può essere realizzata in due modi:

- ▶ per **Singolo Flusso.** Al momento dell'apertura del canale è possibile applicare specifiche tecniche di QoS quali **il controllo di accesso o la prenotazione di risorse.** Per poter effettuare la prenotazione è necessaria la "commutazione di pacchetto a circuito virtuale" in cui i flussi vengono specificati all'interno del pacchetto (flow label) e i router vengono individuati e riservati nella fase di attivazione della connessione:
 - In IPv4 è possibile realizzarla mediante isole MPLS.
 - IPv6 prevede l'etichetta di flusso (Flow Label) nell'intestazione, ma al momento non è utilizzata.
- per Classi di Servizio in cui vengono raggruppate le applicazioni con esigenze comuni rispetto ai parametri della comunicazione.
 - □ I servizi sono offerti da un insieme di Router che costituiscono un domino amministrativo. L'amministrazione definisce una serie di classi di sevizio. I pacchetti del mittente contengono un campo che consente ai Router di classificare il pacchetto e applicare Policy specifiche.

Esempi di Classi di Servizio : la rete ATM

L'ATM Forum ha definito 4 classi di servizio:

Classe A:

▶ CBR (Constant Bitrate): Velocità costante. Esempio telefonia.

Classe B:

▶ VBR-RT (Real Time Variable BitRate) where end-to-end delay is critical, such as interactive video conferencing.

Classe C:

▶ VBR-NRT (non-real time traffic), where delay is not so critical, such as video playback, training tapes and video mail messages.

Classe D: (Best Effort)

▶ ABR (Average BitRate) e UBR (Unspecified BitRate) : Esempio trasferimento File, visione di un film via Internet, ...

Classi di Servizio: Servizi Differenziati (DiffServ)

I Servizi Differenziati (DS) sono stati introdotti in Internet nel 1998 con l' RFC 2474 per il supporto delle classi di servizio in IPv4 e IPv6.

Nelle **reti IPv4** viene utilizzato il campo **Type of Service (6 bit)** che con l'RFC 2474 diventa **Differentiated Service (DS) field** per la codifica delle Classi di Servizio.

In IPv6 le classi possono essere codificate nel campo Traffic Class.

Le classi di servizio DiffServ più comuni sono:

- ▶ Default Forwarding. Best effort
- **Expedited forwarding (EF)** dedicated to low-loss, low-latency traffic, suitable for voice. Typical networks will limit EF traffic to no more than 30%.
- Voice Admit (VA). has identical characteristics to the EF, but Voice Admit traffic is also admitted by the network using a Call Admission Control (CAC) procedure.
- Assured Forwarding (AF). AF allows the operator to provide assurance of delivery as long as the traffic does not exceed some subscribed rate. Traffic that exceeds the subscription rate faces a higher probability of being dropped if congestion occurs.

Riferimenti: https://en.wikipedia.org/wiki/Differentiated_services

Implementazione della QoS: Controllo del traffico

Le principali tecniche per l'implementazione della QoS basata sulle Classi sono relative alla gestione e il controllo del traffico sulle code di spedizione (di host e router).

Soluzioni principali:

- Code a priorità: vengono definite diverse classi di priorità e create una coda per classe. I pacchetti in arrivo vengono classificati ed inseriti in una di queste classi.
 Le code ad alta priorità vengono servite prima; se non ci sono pacchetti in coda si passa alla coda con priorità inferiore.
- code pesate: Ad ogni classe viene associato un peso; il numero di pacchetti inoltrati è proporzionale al peso della coda.
- Vantaggio: le code con meno peso vengono comunque servite.
- Code a velocità limitata: Si utilizzano quando si vuole limitare la velocità massima, ad esempio quando al mittente è stato offerto un determinato servizio.
- Leaky Bucket e Token Bucket sono algoritmi utilizzati per la limitazione della velocità.

Leaky Bucket e Token Bucket

- ▶ Leaky Bucket (imbuto) : I dati da spedire possono arrivare a qualsiasi velocità, ma vengono accodati e rispediti ad un tasso costante e limitato.
- ▶ **Token Bucket**: E' più flessibile grazie ai Token. Un Token rappresenta il diritto a spedire a spedire un pacchetto. I Token vengono forniti al trasmettitore a intervalli regolari di tempo.

