University of Tlemcen

Academic year 2023-2024

Faculty of Sciences

(L1 ING-INF)

Department of Informatic

Algebra (First Year)

Worksheet N°1/ "Logic - Modes of Reasoning"

Exercise 01: Solve in \mathbb{R} the following equations and inequations:

- 1	$(1) x^2 - 3x + 1 = 0$	$(2) x^2 - 2\sqrt{3}x + 3 = 0$	$(3) 2x^2 - 4x + 6 = 0$
	$(4) x^2 - 3x + 1 > 0$	$(5) x^2 - 3x + 1 \le 0$	$(6) x^2 - 3x + 6 > 0$
Ī	$(7) x^2 - 2\sqrt{3}x + 3 > 0$	$(8)\sqrt{x^2 - 3x} > 2$	$(9)\sqrt{x^2 + x - 2} > 1$

Exercise 02: Let P, Q, R be three assertions.

(1) Draw up the truth table of the following assertion:

$$(A): \lceil (P \land Q) \Leftrightarrow \overline{R} \rceil \Rightarrow \lceil \overline{Q} \lor (Q \Rightarrow P) \rceil.$$

(2) Without using the truth table let us show that this proposition is true.

$$(Q \wedge \overline{R}) \Rightarrow [(P \Rightarrow R) \vee (P \wedge \overline{R})].$$

(3) Say if the following assertions are true or false and write their negation.

$$(a) \, \forall x \in \mathbb{R}, x < 5 \Rightarrow x^2 < 25.$$

$$(b) \forall x, y \in \mathbb{R}, x > y \Rightarrow x^2 > y^2.$$

$$(c) \forall x, y \in \mathbb{R}^+, x < y \Rightarrow \sqrt{x} < \sqrt{y}.$$

$$(d): (\forall x \in \mathbb{R}) (\exists y \in \mathbb{Z}); (3x + y < 0).$$

$$(e) \forall x, y \in \mathbb{R}, \exists n \in \mathbb{N}, nx > y.$$

$$(f): (\exists x \in \mathbb{R}) (\forall y \in \mathbb{N}): -5x + 2y > 1.$$

$$(g) \forall x \in \mathbb{R}, \exists y \in \mathbb{R}^*, x^2 + 2xy + 3 > 0.$$

Exercise 03: Prove that:

(1) $\forall n \in \mathbb{N}^*, \sqrt{n^2 + 1}$ is not an integer.

(2) (Additional) $\forall n \in \mathbb{N}^*, \sqrt{n+1} + \sqrt{n}$ is not an integer.

(3) $\forall n \in \mathbb{N}^*, 7^n + 6n - 1$ is a multiple of 12.

(4) $\forall n \in \mathbb{N}^*, 2^{n-1} \le n!$, with $n! = n(n-1)(n-2) \times ... \times 1$ and 0! = 1.

(5)

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Exercise 04:

(1) Let a and p be two natural integers, prove that :

 $(p \text{ prime integer and } p \text{ divide } a^2) \Rightarrow p \text{ divide } a.$

- (2) (a) If p is a prime integer then \sqrt{p} is an irrational number.
 - (b) deduce that, $\sqrt{2} + \sqrt{3}$ is irrational number.
- (3) Prove that:

$$\sqrt{2} + \sqrt{3} + \sqrt{6} \notin \mathbb{Q}$$
.

Sincere wishes you success (MESSIRDI BACHIR)