ALGEBRA II

Licenciatura en Ciencias Matemáticas

1. Clasificar, con detalle, todos los grupos de orden 4. (1.5 puntos)

Solución.

Es uno de los ejercicios propuestos en la colección de problemas complementarios.

(Puede razonarse también, teniendo en cuenta que los grupos de orden p^2 son abelianos. Así, por el teorema de clasificación, los únicos grupos de orden 4 son

$$\mathbb{Z}/4\mathbb{Z} \ y \ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.)$$

2. Sea G el grupo diedral $D_4=\{\langle f,g\rangle: f^4=1,\ g^2=1,\ fgf=g\}.$ Determinar el centralizador

 $C_G(g)$.

(1.5 puntos)

Solución.

De la relación

$$fgf = g \tag{*}$$

se sigue $fg=gf^3$, con lo que $f,f^3\notin C_G(g)$. De igual manera, de (*) se tiene que $f^2gf^2=g$, con lo que $f^2g=gf^2$. Como $C_G(g)\neq D_4$, forzosamnete $[D_4:C_G(g)]\geq 2$, y como el subgrupo $K=\{1,g,f^2,gf^2\}$ de $C_G(g)$ tiene índice 2 en D_4 , se concluye ya que $C_G(g)=\{1,g,f^2,gf^2\}$.

3. Definir el concepto de serie de composición de un grupo G. Construir una serie de composición del grupo S_4 . (2 puntos)

Solución.

Por el ejemplo 6.1.6 (y las notas) tenemos la serie normal

$$\{1\} \subset V \subset A_4 \subset S_4$$
,

donde V es el 4-grupo de Klein $V = \{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(1, 3)\}$, que no es simple. Tomando $K = \{1, (1, 2)(3, 4)\}$, se obtiene la serie de composición

$$\{1\} \subset K \subset V \subset A_4 \subset S_4.$$

4. Sean G un grupo finito y simple, p un número primo y H un subgrupo de G con [G:H]=p. Demostrar que p^2 no divide al orden de G, y que p es el mayor divisor primo del orden de G. (2 puntos)

Solución.

Es el ejercicio 56 de nuestro libro de texto.

5. Calcular el orden de cada uno de los elementos del grupo abeliano Z_{16}^* . Estudiar el subgrupo generado por cada uno de ellos. ¿Existe en Z_{16}^* algún subgrupo isomorfo al 4-grupo de Klein? Calcular los coeficientes de torsión de Z_{16}^* . (3 puntos)

Solución.

Tenemos $Z_{16}^*=\{\overline{1},\overline{3},\overline{5},\overline{7},\overline{9},\overline{11},\overline{13},\overline{15}\}$. Realizando multiplicaciones sucesivas, obtenemos

$$\begin{split} &\left\langle \overline{7}\right\rangle &=& \{\overline{1},\overline{7}\},\left\langle \overline{9}\right\rangle = \{\overline{1},\overline{9}\},\left\langle \overline{15}\right\rangle = \{\overline{1},\overline{15}\}\\ &\left\langle \overline{3}\right\rangle &=& \left\langle \overline{11}\right\rangle = \{\overline{1},\overline{3},\overline{9},\overline{11}\},\left\langle \overline{5}\right\rangle = \left\langle \overline{13}\right\rangle = \{\overline{1},\overline{5},\overline{9},\overline{13}\}, \end{split}$$

de donde se deduce fácilmente los órdenes de cada uno de los elementos de Z_{16}^* . Por otra parte, como $\overline{7}$ y $\overline{9}$ tienen orden 2 y $\overline{7} \cdot \overline{9} = \overline{15}$, se concluye que $\{\overline{1}, \overline{7}, \overline{9}, \overline{15}\}$ es un 4-grupo de Klein dentro de Z_{16}^* .

Calculemos los coeficientes de torsión. Se tiene $o(Z_{16}^*) = 8 = m_1 m_2 \cdots m_r$ donde m_i divide a m_{i-1} . Como además m_1 ha de ser el mayor de los órdenes de los elementos en Z_{16}^* , se tiene $m_1 = 4$, con lo que $m_2 = 2$, y se concluye.