4 The oxides nitrogen monoxide (NO) and nitrogen dioxide (NO₂) both contribute to atmospheric pollution.

The table gives some data for these oxides and for oxygen.

	S [⊕] /JK ⁻¹ mol ⁻¹	ΔH _f [⇔] / kJ mol ^{−1}
O ₂ (g)	211	0
NO(g)	205	+90
NO ₂ (g)	240	+34

Nitrogen monoxide is formed in internal combustion engines. When nitrogen monoxide comes into contact with air, it reacts with oxygen to form nitrogen dioxide.

$$NO(g) + \frac{1}{2}O_2(g) \longrightarrow NO_2(g)$$

4 (a)	Calculate the enthalpy change for this reaction.	
		(2 marks)
4 (b)	Calculate the entropy change for this reaction.	
		(2 marks)

4 (c)	Calculate the temperature below which this reaction is spontaneous.
	(2 marks)
4 (d)	Suggest one reason why nitrogen dioxide is not formed by this reaction in an internal combustion engine.
	(1 mark)
4 (e)	Write an equation to show how nitrogen monoxide is formed in an internal combustion engine.
	(1 mark)
4 (f)	Use your equation from part (e) to explain why the free-energy change for the reaction to form nitrogen monoxide stays approximately constant at different temperatures.
	(2 marks) 1

Turn over ▶

