

Machine Learning Artificial Neural Network

Nikhil Dhiman Computational Molecular Biology (COMB) Lab

Agenda Overview

- What is Artificial Neural Network?
- 02 Biological Inspiration
- 03 Structure of a Neural Network
- Neuron Mathematical Representation

- 05 Activation Function
- 06 Feed Forward Neural Network
- Backpropagation & Cost Function

What is Artificial Neural Network?

Definition

- A neural network is a <u>machine learning</u> program, or model, that makes decisions in a manner similar to the human brain, by using processes that mimic the way biological neurons work together to identify phenomena, weigh options and arrive at conclusions.
- In short:
 - Mathematical model inspired by the human brain
 - Consists of interconnected layers of artificial neurons
 - Learns from data through training to predict or classify outcomes

Biological Inspiration

• Human brain: billions of neurons interconnected

Structure of a Neural Network

- Neural networks consist of interconnected nodes (also called neurons).
- Each node receives signals, processes them, and passes output to connected downstream nodes.
- Nodes are grouped into three types of layers:
 - o Input Layer: Receives raw input data
 - Hidden Layers: Perform intermediate computations
 - Output Layer: Produces final result
- Data flows from left to right through the network known as a forward pass.

Neuron Mathematical Representation

Given inputs $x_1, x_2, ..., x_n$ with corresponding weights $w_1, w_2, ..., w_n$ and a bias b, the neuron computes:

$$z = \sum_{i=1}^n w_i x_i + b = w^T x + b$$

Why Do We Need Non-Linearity in Neural Networks?

- Without non-linearity, a neural network composed of multiple layers would behave like a single-layer linear model
- No matter how many layers, the output would still be a linear transformation of the input.
- Non-linear activation functions:
 - o Introduce curved decision boundaries.
 - Allow the model to learn complex mappings from inputs to outputs.
 - Enable networks to stack layers meaningfully each layer can extract different abstract features.
- Linear model: Can separate data with a straight line (or plane).
- Non-linear model: Can separate complex shapes, like spirals or XOR patterns.

Activation Functions (φ)

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Know more about Activation Functions

Feed Forward Neural Network

• A Feedforward Neural Network (FNN) is the simplest type of artificial neural network where data moves in only one direction:

Input Layer→Hidden Layers→Output Layer

- No cycles or loops (unlike recurrent networks)
- Each neuron in one layer is connected to every neuron in the next layer (fully connected)
- Ideal for tasks like classification, regression, image recognition

Backpropagation

- Backpropagation (short for "backward propagation of errors") is the algorithm used to train neural networks by adjusting weights.
- Steps:
 - Forward pass: Compute output using current weights
 - o Compute loss: Compare predicted output with actual label using a loss function
 - Backward pass:
 - Calculate error gradients using the chain rule
 - Propagate errors back from output to input
 - Update weights: Adjust weights using gradient descent:

$$w = w - \alpha \cdot \frac{\partial L}{\partial w}$$

Cost Function

- A cost function (also called a loss function) measures the difference between predicted outputs and actual target values.
- It provides a quantitative signal for how well the model is performing.
- The goal of training is to minimize this cost over time.

Task Type	Cost Function	Description
Regression	Mean Squared Error (MSE)	Penalizes large errors heavily
Binary Classification	Binary Cross-Entropy	Measures log loss between true/predicted probs
Multi-Class Classification	Categorical Cross-Entropy	Extension of binary cross-entropy

Thank You

Computational Molecular Biology (COMB) Lab