Weather Conditions and Climate Change with ClimateWins

Colin Widner 8/21/24

Video Presentation

Agenda

- Objective and Hypotheses
- Data and Biases
- Data Optimization
- Supervised Machine Learning
- Summary and Recommendation

Objective and Hypothesis

 Objective: ClimateWins, a European nonprofit, wants to use machine learning to help predict the consequences of climate change around Europe, and potentially, the world.

Hypotheses:

- How is machine learning used? Is it applicable to weather data?
- ClimateWins has heard of ethical concerns surrounding machine learning and Al. Are there concerns specific to this project?
- Historically, What have been the minimums and maximums in temperature been?
- Can machine learning be used to predict whether weather conditions will be favorable on a certain day? (If so, could it be possible to predict danger?)

Data and Biases

- The data, collected by the European Climate Assessment and Data Set Project, was collected from 18 different weather stations throughout Europe.
- The data set contains records such as temperature, wind speed, and more every day from the late 1800s to 2022.

Biases

- Collection Bias: Changes in the instrumentation and measurement methods of the weather stations could lead to a collection bias.
- Sampling Bias: With a sample size of only 18 stations, there could be a sampling bias when compared to the other numerous stations throughout Europe.
- Temporal Bias: With a wide range of years in the dataset, some of the older data might not represent the current trends which might skew results.

Data Optimization

- The data was optimized through Gradient
 Descent to find the optimal parameters to
 minimize the error in our machine learning
 algorithm.
- First, the temperatures of all weather stations in a year were plotted.
- The temperature of one station for the year was then plotted with a scatterplot.
- A loss function was plotted to show the deviation between the predicted and actual temperature value.
- Finally, the loss function is plotted to find the local minimum, which optimizes the model.

K-Nearest Neighbors

 K-nearest neighbors is used to determine which group each data point belongs in based on what group it's nearest neighbors are in.

• Test Set Accuracy: 88%

Decision Tree

 A decision tree is used to narrow down a solution by asking more and more specific questions

- Training Set Accuracy: **100**%
- Test Set Accuracy: **69**%

 There might be overfitting happening due to the high training set accuracy and low test set accuracy.

Artificial Neural Network

An Artificial Neural Network (ANN)
is used to compute and answer by
using a linear combination of inputs
that are then multiplied by weights.

- Training Set Accuracy: **87**%
- Test Set Accuracy: 83%

Conclusion and Next Steps

Conclusions

- Machine learning can be used to help predict weather patterns.
- The KNN model had the highest accuracy rating when compared to the Decision Tree and ANN models.

Next Steps

- Continue testing supervised and unsupervised machine learning algorithms and optimize them.
- Combine supervised and unsupervised models to create a climate model that helps predict future climate trends.
- o Prune decision tree to get better accuracy.

Thank You!

Colin Widner

<u>GitHub</u>