Линейная алгебра и геометрия первое полугодие 1 курса Задачи А.Л. Городенцев

16 декабря 2019 г.

Содержание

1	Афа	инная плоскость	4
	1.1	ГЛ1 1	4
	1.2	Γ Л 1 2	5
	1.3	$\Gamma\Pi1~3~\dots\dots$	6
	1.4	$\Gamma \Pi 1 \; 4 \; \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	6
	1.5	$\Gamma\Pi1\ 5$	7
	1.6	ГЛ1 6	7
	1.7	$\Gamma\Pi1$ 7	8
	1.8	ГЛ1 8	8
	1.9	ГЛ1 9	8
2	Груг	па движений евклидовой плоскости	10
	2.1	ГЛ2 1	10
	2.2	$\Gamma \Pi 2 2 $	10
	2.3	ГЛ2 3	10
	2.4	Γ Л 2 4	10
	2.5	Γ Л $2~5~$	10
	2.6	Γ Л $2~6~$	
	2.7	Γ Л 2 7	
	2.8	ГЛ2 8	
	2.9	Γ Л 2 9	
3	Мно	омерие	12
	3.1	Γ Л $\overline{3}$ 1	12
	3.2	$\Gamma \Pi 3 \; 2$	12
	3.3	$\Gamma \Pi 3 \; 3 \; \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	12
	3.4	$\Gamma\Pi3~4~\dots$	13
	3.5	$\Gamma\Pi3~5$	
	3.6	Γ Л 3 6	
	3.7	$\Gamma \overline{\Pi3}\ 7$	
	3.8	ГЛЗ 8	
	3.9	ГЛЗ 9	
	3.0		
4	Лин	йные отображения и матрицы	15
	4.1	$\Gamma \Pi 4 \; 1 \; \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
	4.2	$\Gamma\Pi4~2~$	15
	4.3	$\Gamma\Pi4~3~$	15
	4.4	$\Gamma \Pi 4\; 4\; \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
	4.5	$\Gamma\Pi4~5~$	15
	4.6	$\Gamma\Pi4~6~\dots\dots$	
	4.7	$\Gamma \Pi 4\ 7$	16
	4.8	ГЛ48	16
	4.9	ГЛ4 9	16
	4.10	ГЛ4 10	
	4.11	ГЛ4 11*	
		$\Gamma \Pi 4~12^*$	
5	Грас	смановы многочлены и определители	18
	5.1	ГЛ5 1	
	5.2	$\Gamma\Pi5$ 2^*	18
	5.3	Γ Д 5 3	18
	5.4	Γ Д 5 4	18
	5.5	Γ Д 5	18
	5.6	$\Gamma\Pi 5 \; 6^*$	19
	5.7	$\Gamma \overline{ 15}\ 7$	19
	5.8	ГЛ5 8	
	5.9	$\Gamma \Pi 5~9$	
		$\Gamma \Pi 5 \ 10^*$	
		$\Gamma \Pi 5 \ 11 \ \dots $	
		ГЛ5 12*	$\frac{21}{21}$

6	Лин	ейные операторы на конечномерном пространстве	22	
	6.1	ГЛ6 1	22	
	6.2	$\Gamma \Pi 6 \ 2$		
	6.3	ГЛ6 3		
	6.4	ГЛ6 4		
	6.5	$\Gamma \Pi 6 \; 5 \; \ldots \; \ldots$		
	6.6	ГЛ6 6		
	6.7	ГЛ6 7		
	6.8	ГЛ68	22	
	6.9	ГЛ6 9		
	6.10	ГЛ6 10		
	6.11	ГЛ6 11		
7 Евклидова геометрия				
	7.1	Γ Л 7 1	23	
	7.2	Γ Л 7 2	23	
	7.3	ГЛ7 3	23	
	7.4	ГЛ7 4	23	
	7.5	$\Gamma\Pi7~5^*$	23	
	7.6	Γ Л 7 6	23	
	7.7	Γ Л 7	23	
	7.8	ГЛ78	24	

1 Аффинная плоскость

1.1 ГЛ1 1

A)

Пусть точки трапеции A,B,C,D, где $AD\parallel BD$. Рассмотрим базис, начало которого A, базис-векторы AB и AD.

Тогда точки имеют координаты

$$A = (0, 0)$$

$$B = (1, 0)$$

$$C = (1, \alpha)$$

$$D = (0, 1)$$

Откуда

AB:

$$\det\begin{pmatrix} 1 & x \\ 0 & y \end{pmatrix} = \det\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow x \cdot 0 + y \cdot 1 = 0$$

CD

$$\det\begin{pmatrix}1&x\\\alpha-1&y\end{pmatrix}=\det\begin{pmatrix}1&0\\\alpha-1&1\end{pmatrix}$$

$$\Leftrightarrow y - x \cdot \alpha + x = 1$$

$$\Leftrightarrow x \cdot (1 - \alpha) + y \cdot 1 = 0$$

$$AB \cap CD : x \cdot 0 + y \cdot 1 = 0$$

$$\Rightarrow x = \frac{1}{\alpha - 1}$$
 $y = 0$

$$x \cdot (1 - \alpha) + y \cdot 1 = 0$$

$$\Rightarrow$$

AC:

$$\det\begin{pmatrix} 1 & x \\ \alpha & y \end{pmatrix} = \det\begin{pmatrix} 1 & 0 \\ \alpha & 0 \end{pmatrix} \Leftrightarrow x \cdot (-\alpha) + y \cdot 1 = 0$$

BD:

$$\det\begin{pmatrix} 1 & x \\ -1 & y \end{pmatrix} = \det\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \Leftrightarrow x \cdot 1 + y \cdot 1 = 1$$

$$AC \cap BD : x \cdot (-\alpha) + y \cdot 1 = 0$$

$$\Rightarrow \quad x = \frac{1}{\alpha + 1} \quad y = \frac{\alpha}{\alpha + 1}$$

$$x \cdot 1 + y \cdot 1 = 1 \Rightarrow$$

$$M_1:(0;\frac{1}{2})$$

$$M_2:(1;\frac{\alpha}{2})$$

 M_1M_2 :

$$\det\begin{pmatrix} 1 & x \\ \frac{\alpha-1}{2} & y \end{pmatrix} = \det\begin{pmatrix} 1 & 0 \\ \frac{\alpha-1}{2} & \frac{1}{2} \end{pmatrix} \quad \Leftrightarrow \quad x \cdot (\frac{1-\alpha}{2}) + y = \frac{1}{2}$$

Заметим что $AB\cap CD$ и $AC\cap BD$ принадлежат этой прямой

$$\frac{1}{\alpha - 1} \cdot \frac{1 - \alpha}{2} + 0 = \frac{1}{2} \quad \frac{1}{\alpha + 1} \cdot \frac{1 - \alpha}{2} + \frac{\alpha}{\alpha + 1} = \frac{1}{2}$$

Б)

Пусть дан четырёхугольник ABCD, середины AC и BD - M_1 и M_2 соотв. Рассмотрим базис, центр которого A, базисные вектора AB и AD. Тогда координаты точек

A:(0;0),

B:(1;0),

 $C:(\alpha;\beta)$

D:(0;1)

$$M_1:(\frac{\alpha}{2};\frac{\beta}{2})$$

$$M_2:(\frac{1}{2};\frac{1}{2})$$

Далее прямые -

AB:

$$\det\begin{pmatrix} 1 & x \\ 0 & y \end{pmatrix} = \det\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow x \cdot 0 + y \cdot 1 = 0$$

CD

$$\det \begin{pmatrix} \alpha & x \\ \beta - 1 & y \end{pmatrix} = \det \begin{pmatrix} \alpha & 0 \\ \beta - 1 & 1 \end{pmatrix} \Leftrightarrow -x \cdot (\beta - 1) + y \cdot \alpha = \alpha$$

$$AB \cap CD : \begin{cases} x \cdot 0 + y \cdot 1 = 0 \\ -x \cdot (\beta - 1) + y \cdot \alpha = \alpha \end{cases} \Leftrightarrow y = 0; x = -\frac{\alpha}{\beta - 1}$$

Аналогично

AD:

$$\det\begin{pmatrix} 0 & x \\ 1 & y \end{pmatrix} = \det\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \Leftrightarrow x \cdot (-1) + y \cdot 0 = 0$$

$$BC: \det \begin{pmatrix} \alpha-1 & x \\ \beta & y \end{pmatrix} = \det \begin{pmatrix} \alpha-1 & 0 \\ \beta & 0 \end{pmatrix} \Leftrightarrow -x \cdot (\beta) + y \cdot (\alpha-1) = -\beta$$

$$AD \cap BC : \begin{cases} -x \cdot 1 + y \cdot 0 = 0 \\ -x \cdot \beta + y \cdot (\alpha - 1) = -\beta \end{cases} \Leftrightarrow y = -\frac{\beta}{\alpha - 1} \quad x = 0$$

Таким образом середина $AB\cap CD$ и $AC\cap BD$, точка М имеет координаты $M\colon (-\frac{\alpha}{2\cdot(\beta-1)};-\frac{\beta}{2\cdot(\alpha-1)})$

Покажем что $M_1,\, M_2$ и M лежат на одной прямой . $M_1 M_2$:

$$\det\begin{pmatrix} \frac{\alpha-1}{2} & x \\ \frac{\beta-1}{2} & y \end{pmatrix} = \det\begin{pmatrix} \frac{\alpha-1}{2} & \frac{1}{2} \\ \frac{\beta-1}{2} & \frac{1}{2} \end{pmatrix} \Leftrightarrow -x \cdot \frac{\beta-1}{2} + y \cdot \frac{\alpha-1}{2} = \frac{\alpha-1}{4} - \frac{\beta-1}{4}$$

Подставив в это выражение координаты точки M получим

$$-(-\frac{\alpha}{2 \cdot (\beta - 1)}) \cdot \frac{\beta - 1}{2} + (-\frac{\beta}{2 \cdot (\alpha - 1)}) \cdot \frac{\alpha - 1}{2} = \frac{\alpha - 1}{4} - \frac{\beta - 1}{4}$$

1.2 ГЛ12

Предположим q составное, то есть существует такие a и b, что $a,b \neq 0$ и ab = q. Тогда для точек (0,0) и (0,a) верно, что через них проходят 2 прямые, а именно с векторами (0,1) и (b,1), при этом очевидно, что эти прямые не совпадают. Из этого следует, что при составном q, F_q не является аффинной плоскостью, поэтому q простое. Заметим, что каждая прямая содержит ровно q точек, так как каждой прямой можно сопоставить вектор \overrightarrow{v} , который в ней содержится и рассмотреть точки $a_1, a_2, ..., a_q$, где a_1 - случайная точка на прямой, остальные a задаются рекуррентно: $a_x = a_{x-1} + \overrightarrow{v}$. Очевидно, что $a_1 = a_{q+1}$, так как $\overrightarrow{v}q = (0,0)$, при этом если есть точка b, принадлежащая прямой и не являющаяся одной из $a_1, a_2, ..., a_q$, то \overrightarrow{v} пропорционален $b-a_1\Rightarrow\overrightarrow{v}k_1+(b-a_1)\cdot k_2=0\Rightarrow\overrightarrow{v}\frac{-k_1}{k_2}=(b-a_1)$, при этом $\frac{-k_1}{k_2}$ однозначно определена на F_q при простом $q\Rightarrow b$ принадлежит множеству $a_n\Rightarrow$ на каждой прямой q точек \Rightarrow всего прямых $=\frac{q^2(q^2-1)}{q(q-1)}=q\cdot (q+1)$

1.3 ГЛ13

Обозначим через z_1 , z_2 , ..., z_m вершины ломаной, где s_1 лежит между z_1 и z_2 , ..., s_m лежит между z_m и z_1 .

Заметим, что

$$x_n = 2 \cdot s_n - x_{n-1}$$

Где $x_i = \overrightarrow{x_i x_0}, \ s_i = \overrightarrow{s_i x_0}, \ z_i = \overrightarrow{z_i x_0}$

Откуда

$$\begin{aligned} x_m &= 2 \cdot s_m - x_{m-1} \\ x_m &= 2 \cdot s_m - \left(2 \cdot s_{m-1} - x_{m-2}\right) = 2 \cdot \left(s_m - s_{m-1}\right) + x_{m-2} \\ \dots \\ x_m &= 2 \cdot \left(s_m - s_{m-1} +, \dots, +s_1\right) - x_0 \end{aligned}$$

Заметим, что $s_i = \frac{z_i + z_{i+1}}{2}$ (*i* рассматривается по mod *m*) из чего получаем, что

$$2 \cdot (s_m - s_{m-1} +, ..., +s_1) - x_0 = (z_1 + z_m) - (z_m + z_{m-1}) + (z_{m-1} + z_{m-2}) -, ..., +(z_2 + z_1) - x_0 = z_1 \cdot 2 - x_0 = x_m$$

Из чего очевидно, что середина x_0x_m , т.е. z_1 является вершиной ломаной.

1.4 ГЛ14

Да, так как барицентр каждой из групп точек P и Q (точки p_i и q_i) обладает свойством

$$\sum_{i} \overrightarrow{c_p p_i} \cdot \mu_i = 0$$

$$\sum_{j} \overrightarrow{c_q q_j} \cdot v_j = 0$$

В то время как барицентр c_p и c_q с весами $\sum \mu_i = P$ и $\sum v_j = Q$ соответственно, причем |P|, |Q| > 0. Пусть c - такая точка, что

$$\overrightarrow{cc_p} \cdot P + \overrightarrow{cc_q} \cdot Q = 0$$

При этом для каждого p_i верно, что

$$\overrightarrow{cc_p} + \overrightarrow{c_pp_i} = \overrightarrow{cp_i}$$

Из чего следует, что сложив выражения $\sum_i \overrightarrow{c_p p_i} \cdot \mu_i = 0$, $\sum_j \overrightarrow{c_q q_j} \cdot v_j = 0$ и $\overrightarrow{cc_p} \cdot P + \overrightarrow{cc_q} \cdot Q = 0$, получается

$$\left(\sum_{i} \overrightarrow{c_{p}p_{i}} \cdot \mu_{i} + \overrightarrow{cc_{p}} \cdot P\right) + \left(\sum_{j} \overrightarrow{c_{q}q_{j}} \cdot v_{j} + \overrightarrow{cc_{q}} \cdot Q\right) = 0$$

Что равносильно

$$\sum_{i} \overrightarrow{cp_i} \cdot \mu_i + \sum_{j} \overrightarrow{cq_j} \cdot v_j = 0$$

Из чего следует то, что c является барицентром всей системы.

1.5 ГЛ15

Докажем, что возможность расставить массы α , β и γ равносильна тому, что a_1 , b_1 и c_1 являются основаниями чевиан.

1. (Массы \Rightarrow Чевианы)

Возможность расставить массы означает, что центр масс находится на прямых aa_1 , bb_1 и cc_1 , из чего следует пересечение этих прямых в одной точке.

2. (Чевианы \Rightarrow Массы)

Если прямые пересекаются в одной точке, то точку пересечения можно выбрать как центр масс.

1)

Теперь заметим, что если можно расставить массы, то можно рассмотреть отношение, в котором барицентры сторон делят стороны:

$$\alpha_b : \alpha_c = \beta : \gamma$$
$$\beta_c : \beta_a = \gamma : \alpha$$
$$\gamma_a : \gamma_b = \alpha : \beta$$

И тогда
$$\frac{\alpha_b \cdot \beta_c \cdot \gamma_a}{\alpha_c \cdot \beta_a \cdot \gamma_b} = \frac{\beta \cdot \gamma \cdot \alpha}{\gamma \cdot \alpha \cdot \beta} = 1$$
 Т.е. $aa_1,\ bb_1,\ cc_1$ это чевианы 2)

В свою очередь, если равенство $\left(\frac{\alpha_b \cdot \beta_c \cdot \gamma_a}{\alpha_c \cdot \beta_a \cdot \gamma_b} = 1\right)$ верно, то можно расставить массы γ_a , γ_b и $\frac{\alpha_b \cdot \gamma_a}{\alpha_c}$ так, что: c_1 является барицентром A и B ($\gamma_a : \gamma_b = \gamma_a : \gamma_b$); a_1 является барицентром B и C ($\frac{\alpha_b \cdot \gamma_a}{\alpha_c} : \gamma_a = \alpha_b : \alpha_c$); b_1 является барицентром A и C ($\frac{\alpha_b \cdot \gamma_a}{\alpha_c} : \gamma_b = \beta_a : \beta_c$);

1.6 ГЛ16

Заметим, что барицентрические координаты точек

$$\begin{array}{c} a_1(0 \quad ; -|\overrightarrow{a_1c}|; |\overrightarrow{a_1b}| \) \\ b_1(|\overrightarrow{b_1c}| \quad ; 0 \quad ; -|\overrightarrow{b_1a}|) \\ c_1(-|\overrightarrow{c_1b}| \; ; |\overrightarrow{c_1a}| \; ; 0 \quad) \end{array}$$

Заметим, что если $a_1b_1c_1$ - прямая \Leftrightarrow

 c_1 представимо в виде линейной комбинации точек a_1 и $b_1 \Leftrightarrow$

$$x_1 \cdot a_1 + x_2 \cdot b_1 = c_1 \Leftrightarrow \overrightarrow{b_1 c} \cdot x_2 = -\overrightarrow{c_1 b} \Leftrightarrow$$

$$x_2 = - \frac{\overrightarrow{c_1 b}}{\overrightarrow{b_1 c}} \overrightarrow{c_1 d} = - \overrightarrow{a_1 c} \cdot x_1 \Leftrightarrow$$

$$x_1 = - \overrightarrow{\overline{c_1 a}} \overrightarrow{\overline{a_1 b}} \cdot x_1 - \overrightarrow{b_1 a} \cdot x_2 = 0 \Leftrightarrow$$

$$\overrightarrow{a_1b} \cdot x_1 = \overrightarrow{b_1a} \cdot x_2 \Leftrightarrow$$

$$\overrightarrow{a_1b} \cdot \overrightarrow{c_1a} \cdot \overrightarrow{b_1c} = \overrightarrow{a_1c} \cdot \overrightarrow{c_1b} \cdot \overrightarrow{b_1a} \Leftrightarrow$$

$$(\overrightarrow{a_1b}:\overrightarrow{a_1c})\cdot(\overrightarrow{c_1a}:\overrightarrow{c_1b})\cdot(\overrightarrow{b_1c}:\overrightarrow{b_1a})=1$$

что и требовалось доказать

1.7 ГЛ17

A)

Заметим, что если один четырёхугольник перешёл в другой, то отношение отрезков на диагоналях сохраняется, образ пересечения диагоналей это пересечение диагоналей образного четырёхугольника. При этом, если 2 четырёхугольника ABCD и EFGH имеют одинаковое отношение отрезков на диагоналях ($\frac{AO}{AC} = \frac{EU}{EG} = \alpha$; $\frac{BO}{BD} = \frac{FU}{FH} = \beta$), то можно перевести один в другой аффинным преобразованием, а именно переведя треугольник ABC в EFG, тогда O будет иметь барицентрические координаты (α ; 1; 1- α) относительно ABC. Такие же координаты имеет и точка U, относительно EFG. Аналогично D: ($\alpha \cdot (1-\beta)$; 1; $(1-\alpha) \cdot (1-\beta)$) (с точностью до домножения на константу), имеет такие же кординаты, что и H относительно EFG. Ответ: да

Б) Заметим, что отношения отрезков диагоналей равны отношению оснований трапеции ABCD ($BC \parallel AD$), так как рассмотрим репер $(A, \overrightarrow{AC}, \overrightarrow{AD})$, тогда точка B - $(1; -\alpha)$, D - (0; 1). Заметим, что O имеет координаты $(\frac{1}{1+\alpha}; 0)$, так как $\overrightarrow{v} = (1; -1-\alpha)$, BOD лежат на одной прямой $\Leftrightarrow \det(O, \overrightarrow{v}) = \det((0; 1), \overrightarrow{v}) \Leftrightarrow \frac{1}{1+\alpha} \cdot (-1) \cdot (1+\alpha) = -(1) \cdot (1) \Leftrightarrow -1 = -1$. Откуда следует, что ответ такой же, что и в (7A). Ответ: да

1.8 ГЛ18

1.9 ГЛ19

Впишем правильный многоугольник в окружность радиуса r=1, тогда все векторы $|v_1|=|v_2|=...=|v_n|=1$ и, если S_1 - площадь правильного многоугольника, то $S_1<\pi r^2=\pi 1^2=\pi$. Обозначим $S_2=\det(v_1,v_2)+\det(v_2,v_3)+...+\det(v_n,v_1)$, тогда если $S_2>2\pi$, то $S_2>2S_1$. Приведем пример такого п-угольника, для которого это выполнено

Рассмотрим 20-угольник, разобьем его вершины на 5 групп по 4 вершины, причем в каждую группу входят вершины, идущие через 5. И занумерыем вершины так: A_1 , A_5 , A_9 , A_{13} , A_{17} , A_2 , A_6 , A_{10} , A_{14} , A_{18} , A_3 , A_7 , A_{11} , A_{15} , A_{19} , A_4 , A_8 , A_{12} , A_{16} , A_{20} .

Тогда каждая из групп будет образовывать квадрат со стороной $\sqrt{2}$, а все остальные треугольники будут положительной площади, так как если мы рассмотрим 2 подряд идущие точки из разных групп, то их площадь будет положительна, так как направленный угол, образованый этими 2 векторами будет $< 180^o$, так как они идут через 6 других точек, а в одной полуплоскости находятся 10 точек $\Rightarrow S_2 > 5 \cdot (\sqrt{2})^2 > 2\pi > 2S_1$, что и требовалось.

2 Группа движений евклидовой плоскости

2.1 ГЛ2 1

Пусть $O_3 = S_{O_2}(O_1)$. Легко проверить, что $S_{O_3} = S_{O_2} \circ S_{O_1} \circ S_{O_2}$. Поэтому если O_1 и O_2 — центры симметрии фигуры, то и O_3 — центр симметрии, причем $O_3 \neq O_1$ и $O_3 \neq O_2$.

2.2 ГЛ2 2

сохраняется только s)

Заметим, что есть 2 последовательности преобразований: отражение \circ поворот и поворот \circ отражение В (1) случае $s\mapsto s\mapsto s_1$, так как при повороте s переходит в себя, а при отражении $s\mapsto s_1$ Во (2) случае $s\mapsto s_1\mapsto s_2$, так как при отражении $s\mapsto s_1$, а при повороте $s_1\mapsto s_2$ (так как приповороте

Если поворот и отражение коммутируют, то $s_1 = s_2 \Rightarrow s_1$ лежит на прямой $\Rightarrow s$ лежит на прямой, т.е. мы доказали, что если преобразования коммутируют, то $s \in l$

Теперь докажем обратное - т.е. что если центр симметрии на прямой, то преобразования коммутируют. Рассмотрим те же 2 случая:

Пусть наша прямая перпендикулярна оси координат x, тогда рассмотрим любую точку на этой оси - по координате x она не сдвинется (так как если рассматривать все по координате x, то оба преобразования просто отражаеют точку, а два отражения = Id), а по оси y она сдвинется на $2|y_1-y_s|$, где y_1 координата по y рассматриваемой точки, а y_s координата по y точки s), тогда эти композиции движений коммутативны, так как положения точек при обоих последовательностях преобразований совпали.

2.3 ГЛ2 3

 $(\mathfrak{s})\Rightarrow (\mathfrak{a})$ и $(\mathfrak{s})\Rightarrow (\mathfrak{d})$ — можно просто нарисовать каждый из случаев и разобрать, куда переходят точки при отражениях относительно этих прямых. В случае параллельности оба пункта((a) и (б)) очевидновыполнены. Если же все прямые проходят через одну точку, то $\sigma_{l_1}\circ\sigma_{l_2}\circ\sigma_{l_3}=\sigma_{l_3}\circ\sigma_{l_2}\circ\sigma_{l_1}$ так как $\sigma_{l_1}\circ\sigma_{l_3}=\sigma_{l_3}\circ\sigma_{l_1}$ можно рассмотреть как поворот, а σ_{l_2} - отражение. Также $\sigma_{l_1}\circ\sigma_{l_2}\circ\sigma_{l_3}$ - симметрия, так как длины сохранились, ориентация изменилась.

 $(a) \Rightarrow (B)$

2.4 ГЛ2 4

A)

Пусть l - отражение относительно прямой, \overrightarrow{v} сдвиг относительно вектора, где $v=v_1\cdot a+v_2\cdot b$ - $v_1\parallel l$ и $v_2\perp l$. Тогда движение это симметрия со сдвигом $v_1\cdot a$ относительно прямой $l+\frac{v_2\cdot b}{2}$. Заметим, что если рассмотреть базис $(0,\,v_1,\,v_2)$, то движение переводит точку $(x_1,\,x_2)$ в $(x_1+a,\,2l-x_1+v_2\cdot b)=(x_1+a,\,2(l+\frac{v_2\cdot b}{2})-x_1)$, поэтому оба движения одинаковы.

B)

2.5 ГЛ2 5

A)

Заметим, что поворот переводит точку x в $(x-a)\cdot e_{\alpha}+a=x\cdot e_{\alpha}+a\cdot (1-e_{\alpha})$, где a - центр поворота, $e_{\alpha}=\cos\alpha+i\cdot\sin\alpha$.

Тогда два повотрота переводят x в $x \cdot e_{\alpha} \cdot e_{\beta} + a \cdot (1 - e_{\alpha}) \cdot e_{\beta} + b \cdot (1 - e_{\beta})$. Тогда если $e_{\alpha}e_{\beta} = 1$, то преобразование является сдвигом на вектор $a \cdot (1 - e_{\alpha}) \cdot e_{\beta} + b \cdot (1 - e_{\beta})$. Если же $e_{\alpha}e_{\beta} \neq 1$, то преобразование это поворот относительно $\frac{a \cdot (1 - e_{\alpha}) \cdot e_{\beta} + b \cdot (1 - e_{\beta})}{1 - (e_{\alpha} \cdot e_{\beta})}$ на $(e_{\alpha} \cdot e_{\beta})$, то есть на $\alpha + \beta$

В) Заметим, что симметрия переводит x в $\frac{\overline{x-a}}{e_{\alpha}} \cdot e_{\alpha} + a = \overline{x} \cdot \frac{e_{\alpha}}{\overline{e_{\alpha}}} + a \cdot (1 - \frac{e_{\alpha}}{\overline{e_{\alpha}}}) = \overline{x} \cdot e_{2\alpha} + a \cdot (1 - e_{2\alpha})$, где прямая вида $x = k \cdot e_{\alpha} + a$ для комплексного x и вещественных \underline{k} и a. Тогда 2 скользящие симметрии переводят x в $x \cdot \overline{e_{2\alpha}} \cdot e_{2\beta} + \overline{a} \cdot (1 - e_{2\alpha}) \cdot e_{2\beta} + b \cdot (1 - e_{2\beta}) + \overline{v_1} \cdot e_{2\beta} + v_2$ что является сдвигом при $\overline{e_{2\alpha}} \cdot e_{2\beta} = 1$, то есть если прямые параллельны. Сдвиг $\overline{a \cdot (1 - e_{2\alpha}) \cdot e_{2\beta} + b \cdot (1 - e_{2\beta}) + \overline{v_1} \cdot e_{2\beta} + v_2}$. При $\overline{e_{2\alpha}} \cdot e_{2\beta} \neq 1$ это поворот на угол $e_{2\alpha} \cdot e_{2\beta}$, то есть $2\alpha + 2\beta$, и центр - $\overline{a \cdot (1 - e_{2\alpha}) \cdot e_{2\beta} + b \cdot (1 - e_{2\beta}) + \overline{v_1} \cdot e_{2\beta} + v_2}$

2.6 ГЛ2 6

A)

Пусть задан треугольник ABC, серединные перпендикуляры выбираются в следующем порядке: AB, BC, CA. Тогда точка A переходит после этой композиции в себя, точка пересечения серединных перпендикуляров O также переходит в себя, откуда следует, что для композиции прямая AO - неподвижна, при этом прямые пересекаются в одной точке, значит композиция - отражение, откуда следует, что это отражение относительно прямой AO.

- В) Пусть треугольник ABC, биссектрисы выбираются в следующем порядке: AI, BI, CI, где I пересечение биссектрис. Тогда проекция I на AC (B_I) переходит после этой композиции в себя (определим точки A_I и C_I аналогично, тогда $B_I \mapsto C_I \mapsto A_I \mapsto B_I$), точка пересечения биссектрис I также переходит в себя, откуда следует, что для композиции прямая B_II неподвижна, при этом прямые пересекаются в одной точке, значит композиция отражение, откуда следует, что это отражение относительно прямой B_II .
- С) Пусть квадрат ABCD. Также пусть порядок отражения следующий: AB, BC, CD, DA. Заметим, что композиция отражений относительно AB и $BC \Leftrightarrow$ повороту на 180° относительно B, аналогично для композиции CD и $DA \Leftrightarrow$ повороту на 180° относительно D, откуда следует, что композиция относительно AB сторон AB композиции поворотов относительно AB и AB, что равно параллельному сдвигу в сторону удвоенного вектора ABD.
- 2.7 ГЛ2 7
- 2.8 ГЛ28
- A)
- B)
- C)

2.9 ГЛ2 9

Пусть треугольник ABC построен: A на l_1 , B на l_2 , C на l_3 . При повороте на 60° вокруг A, тогда $C \to B$, $l_3 \to l$, тогда точка пересечения l_2 и l - B. Тогда возьмём на l_1 точку A. Образ прямой l_3 при повороте на 60° вокруг A пересекает l_2 в B

3 Многомерие

3.1 ГЛ3 1

сперва построим 1-мерные пространства(прямые через 0), их $\frac{q^n-1}{q-1}$ потом для каждого из них выбираем вторые вектора которых может быть q^n-q (так как он не может заканчиваться в точке на первой прямой). Так мы получили двумерные пространства натянутые на эти пары векторов, их $\frac{(q^n-1)(q^n-q)}{q-1}$ каждое из них содержит q^2-1 ненулевых точек, поэтому разных двумерных пространств получаем $\frac{(q^n-1)(q^n-q)}{(q-1)(q^2-1)}$. Далее, по индукции:

$$\prod_{i=1}^{k} (q^n - q^{i-1})$$

$$\prod_{i=1}^{k} (q^k - q^{i-1})$$

3.2 ГЛ3 2

Заметим, что в любом k мерном подпространстве можно выбрать репер. Этот репер задаётся k+1 точкой, при этом они должны быть общего положения, так как вектора, образуемые парами из первой и остальных точек, должны быть линейно независимы. Тогда количество подпространств размерности k: $\frac{q^n(q^n-1)(q^n-q)(q^n-q^2)...(q^n-q^{k-1})}{q^k(q^k-1)(q^k-q)(q^k-q^2)...(q^k-q^{k-1})},$ так как числитель – количество способов выбрать упорядоченное множество k+1 точек, знаменатель – количество таких упорядоченных множеств в одном пространстве.

3.3 ГЛ3 3

A)

Рассмотрим следующие 6 плоскости проходящие через (0, 0, 0, 0): $(a_1, a_2, 0, 0)$, $(a_1, 0, a_3, 0)$, $(a_1, 0, 0, a_4)$, $(0, a_2, a_3, 0)$, $(0, a_2, 0, a_4)$, $(0, 0, a_3, a_4)$, где a_i – параметры. Покажем, что любая плоскость содержит хотя бы 1 точку с хотя бы двумя нулевыми координатами. Рассмотрим базисные вектора: они линейно независимы. Заметим, что тогда есть пара линейно независимых координат у этих векторов, так как иначе можем считать что первый вектор (1, 1, 1, 1) (можем считать, что он один из следующих: (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1),

(0, 0, 0, 1).

Тогда второй вектор $(\alpha, \alpha, \alpha, \alpha)$, откуда следует, что они линейно зависимы. Рассмотрим эту пару координат. Тогда заметим, что существует точка в этой плоскости с нулями в этих координтах, а все такие точки принадлежат шести плоскостям, проходящим через 0, откуда следует, что любая плоскость пересекает хотя бы одну из 6 плоскостей.

Б)

Заметим, что все плоскости, пересекающие плоскость $(a_1, a_2, 0, 0)$, вида (x_1, x_2, a_3, a_4) , где x_i - константы, a_i - параметры. Тогда для пары плоскостей $(a_1, a_2, 0, 0)$ и $(0, 0, a_3, a_4)$ верно, что нет плоскости, пересекающие обе в одной точке.

3.4 ГЛ3 4

А)
$$(U+V)\cap (W+U)\cap (V+W)=(U+W)\cap V+(U+V)\cap W$$

Представим V как $[v_1,\ v_2,\ \ldots],\ U$ как $[u_1,\ u_2,\ \ldots],\ W$ как $[w_1,\ w_2,\ \ldots]$

Тогда заметим, что если $v_i \notin U + W$, то мы можем выкинуть v_i из V и тогда уравнение останется верным. Тогда проведем такую операцию "выкидывания" для U, V, W и получим U_1, V_1, W_1 .

Теперь рассмотрим уравнение, заметим что в правой части есть как w (так как $w \subset (u+v) \cdot w$), так и v (так как $v \subset (u+v) \cdot v$), а следовательно там есть и u ($u \subset v+w$).

В)
$$(U+V)\cap (W+U)\cap (V+W)\subseteq (U\cap V)+(W\cap U)+(V\cap W)$$
 Пусть $U=[1,1],\ V=[0,1]\ ,W=[1,0]$ - заметим что для таких множест уравнение имеет вид: $U+V+W\subseteq 0$, что очевидно неверно

$$\mathbf{B}^*)(U+V)\cap (W+U)\cap (V+W)\supseteq (U\cap V)+(W\cap U)+(V\cap W)$$
 Представим V как $[v_1,\ v_2,\ \ldots],\ U$ как $[u_1,\ u_2,\ \ldots],\ W$ как $[w_1,\ w_2,\ \ldots]$

Тогда заметим, что если $v_i \notin U+W$, то мы можем выкинуть v_i из V и тогда уравнение останется верным. Тогда проведем такую операцию "выкидывания" для U,V,W и получим U_1,V_1,W_1 . Тогда правая часть не меньше левой и все что входит в $(U\cap V)+(W\cap U)+(V\cap W)$, входити в $(U+V)\cap (W+U)\cap (V+W)$

 Γ)

3.5 ГЛ3 5

3.6 ГЛ3 6

Заметим, что базис объединения подпространств не больше, чем объединение базисов этих подпространств. Заметим, что если нельзя построить отображение из объединения базисов в базис всего пространства, то пространство "больше"объединения подпространств. Заметим, что 2*X X если X бесконечно, откуда следует, что k*X X для всякого целого k, поэтому нельзя построить отображение из объединения базисов в базис пространства.

A)

Б)

3.7 ГЛ3 7

Рассмотрим куб(\mathbf{R}^3), для куба существует прямая, непересекающая его ребра(\mathbf{R}^1), один изпримеров этой прмой - прямая соединяющая середины противоположных сторон. Увеличим размерность на 1, теперь куб в размерности \mathbf{R}^4 и прямая стала плоскостью \mathbf{R}^2 , причем эта прямая не пересекает ни одну плоскость гиперкуба по построению.

3.8 ГЛ38

Куб из задачи (7) пересекается с плоскостью $\sum_i x_i = c$ при $c = [-2, \ 2]$ так как $\sum_i x_i = c \Leftrightarrow x_1 + x_2 + x_3 + x_4 = c$. Заметим что куб имеет координаты $\forall i: |x_i| < \frac{1}{2}$, а 4-мерная гиперплоскость $x_1 + x_2 + x_3 + x_4 = c$ перпендикулярна прямой соединяющей точки $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ и $\left(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right)$ – тогда, так как эти две точки являются противоположными вершинами куба, то плоскость пересекает куб в том случае, если она пересекает этот (соединяющий точки $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ и $\left(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right)$) отрезок. То есть $x_1 + x_2 + x_3 + x_4 \in [-2, 2]$.

3.9 ГЛ3 9

Набор векторов $\nu_0,\ \nu_1,\ \dots,\ \nu_n\in\mathbb{R}^n,\ n$ из n+1 образуют базис A) $w\in\mathbb{R}^n$ представим как $w=\sum x_ie_i;\ \sum x_i=0$ Б)

Рассмотрим набор из n векторов, образующий базис, пусть это $\nu_1, \nu_2, \ldots, \nu_n$. Тогда ν_0 выражается через все остальные вектора – заметим, что тогда $\nu_0 = a_1\nu_1 + \ldots + a_n\nu_n$, тогда заметим, что если $\forall i: a_i \neq 0$, то любой вектор можно заменить на ν_0 имеет ненулевую ортогональную проекцию, если же $\exists i: a_i = 0$, без ограничения общности $a_1 = 0$, то набор векторов ν_2, \ldots, ν_n является базисом в \mathbb{R}^{n-1} , а $\nu_1, \nu_2, \ldots, \nu_n$ базисом не является.

B)

4 Линейные отображения и матрицы

4.1 ГЛ4 1

Пусть верхняя левая клетка, граничащая по точке с прямоугольником имеет координаты (0,0) и в ней записано число $a_{(0\ 0)}$. Тогда в каждой клетке записано число $a_{(i\ j)}$. Причем если мы рассматриваем прямоугольник $n\times m$ то для точек $a_{(i\ j)}$ $i\in[1,\ n];\ j\in[1,m];$ выполнено: $a_{(i\ j)}=\frac{a_{(i+1\ j+1)}+a_{(i+1\ j-1)}+a_{(i-1\ j+1)}+a_{(i-1\ j-1)}}{4}$. Тогда

4.2 ГЛ4 2

Заметим, что по числам в четырех вершинах однозначно восстанавливаются оставшиеся (в предположении, что на грани также можно написать числа так, чтобы сумма сходящихся в вершине граней была равна значению в вершине). Пронумеруем вершины следующим образом: в верхнем квадрате по кругу от 1 до 4, каждая пара противоположных вершин имеет сумму 9. Тогда по значениям в вершинах 1, 2, 3 и 8. Заметим, что сумма во всех противоположных вершинах одинакова, так как их сумма равна сумме всех граней. Также четвертая вершина в верхнем квадрате однозначно задаётся, так как $b_1 - b_2 - b_3 + b_4 = 0$ (грань этого квадрата посчитана 4 раза: 2 со знаком +, 2 с -. Противоположная сторона не учитывается, а каждая "боковая" грань посчитана 2 раза с разными знаками). Откуда следует, что по значениям b_1, b_2, b_3, b_8 однозначно задаются оставшиеся значения, откуда вытекают условия на b_i . Покажем, что при любых значениях в четырех вершинах есть решение, и покажем, какие они. Рассмотрим матрицу:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & | & b_1 \\ 1 & 1 & 0 & 1 & 0 & 0 & | & b_2 \\ 1 & 0 & 1 & 0 & 1 & 0 & | & b_3 \\ 0 & 0 & 0 & 1 & 1 & 1 & | & b_8 \end{pmatrix}$$

Приведём её к ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & | & b_1 \\ 0 & 0 & -1 & 1 & 0 & 0 & | & b_2 - b_1 \\ 0 & -1 & 0 & 0 & 1 & 0 & | & b_3 - b_1 \\ 0 & 0 & 0 & 1 & 1 & 1 & | & b_8 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & | & b_1 \\ 0 & 1 & 0 & 0 & -1 & 0 & | & b_1 - b_3 \\ 0 & 0 & 1 & -1 & 0 & 0 & | & b_1 - b_2 \\ 0 & 0 & 0 & 1 & 1 & 1 & | & b_8 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -1 & | & b_2 + b_3 - b_1 - b_8 \\ 0 & 1 & 0 & 0 & -1 & 0 & | & b_1 - b_3 \\ 0 & 0 & 1 & 0 & 1 & 1 & | & b_1 - b_2 + b_8 \\ 0 & 0 & 0 & 1 & 1 & 1 & | & b_8 \end{pmatrix}$$

Заметим, что значения на гранях не задаются однозначно, а зависят от значений x_5 , x_6 (значения на гранях $-x_i$), откуда следуют решения в зависимости от b_i , x_5 , x_6 .

4.3 ГЛ4 3

Ядро имеет нулевое пересечение с образом, откуда следует, что $V = \ker F + \operatorname{im} F$ (так как $\dim \ker F + \dim \operatorname{im} F = \dim V$). Докажем, что F проецирует на $\operatorname{im} F$: рассмотрев базисы $\ker F$ и $\operatorname{im} F$ можно заметить, что при разложении x и F(x) в виде линейной комбинации, вектора из $\ker F$ занулятся в F(x), а вектора из $\operatorname{im} F$ останутся теми же.

4.4 ГЛ4 4

4.5 ГЛ45

Пусть $X=x_1+x_2+\ldots+x_r$ (где rank X=r, rank $x_i=1$ и x_i пока что "неизвестны"), тогда приведём левую часть к ступенчатому виду (сначала горизонтальному, потом вертикальному), копируя действия в правую часть. Теперь такие x_i точно существуют, откуда следует, что применяя оперции в обратном порядке мы получим r матриц ранга 1, сумма которых равна X. Покажем что меньше r быть не может. Рассмотрим пространство A, в котором вектора из X порождающие. В нем dim A=r и если $X=x_1+x_2+\ldots+x_{r-1}$, то A лежит в линейной оболочке пространств, образованных из $x_1, x_2, \ldots, x_{r-1}$, но размерность этих пространств равна 1, откуда их линейная оболочка имеет размерность не более чем r-1.

4.6 ГЛ4 6

(б) и (в) независимы. Пример: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ и $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $U_1 \cap U_2 = 0, W_1 \cap W_2 = W_2$ аналогичный пример в обратную сторону для транспонированных матриц.

4.7 ГЛ47

A)

 $\dim \operatorname{im} A + \dim \ker A = \dim \operatorname{im}(B A) + \dim \ker(B A)$

Покажем, что $\dim(\operatorname{im} A \cap \ker B) = \dim \ker(B A) - \dim \ker(A)$

(1): Заметим, что $\ker(A) \in \ker(B \ A)$, поэтому $\dim(\ker(B \ A)/\ker(A)) = \dim\ker(B \ A) - \dim\ker(A)$, при этом нетрудно видеть, что $\operatorname{im} A \cap \ker B = \ker(B \ A)/\ker(A)$ откуда следует (1) (откуда очевидно утверждение задачи).

B)

из предыдущего пункта:

$$\dim \operatorname{im} A = \dim \operatorname{im}(B \ A) + \dim(\operatorname{im} A \cap \ker B)$$
$$\dim \operatorname{im} AC = \dim \operatorname{im}(B \ AC) + \dim(\operatorname{im} AC \cap \ker B)$$

Откуда требуется доказать, что

 $-\dim(\operatorname{im} A\cap\ker B)\leq -\dim(\operatorname{im} AC\cap\ker B), \text{ то есть }\dim(\operatorname{im} A\cap\ker B)\geq \dim(\operatorname{im} AC\cap\ker B), \text{ что верно, так как }\operatorname{im} AC\in\operatorname{im} A.$

4.8 ГЛ48

A)

Рассмотрим матрицы
$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$. Заметим, что $A^2 = B^2 = 0$, при этом $A + B = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ \Rightarrow $\det(A+B) = -4$ \Rightarrow $\det(A+B)^k \neq 0$ \Rightarrow $(A+B)^K \neq 0$

Ответ: да.

Пусть $A^N = 0$, $B^M = 0$.

Тогда

$$(A+B)^{N+M} = A^{N+M} + \binom{N+M}{1} \cdot A^{N+M-1} \cdot B + \ldots + \binom{N+M}{M} A^N \cdot B^M + \ldots + B^{M+N} = A^N \cdot A^M + A^N \cdot \binom{N+M}{1} \cdot A^{M-1} \cdot B + \ldots + A^N \cdot B^M + \ldots + B^M \cdot B^N = 0 + 0 + \ldots + 0 + \ldots + 0 = 0$$

(заметим, что мы явно пользуемся тем, что AB=BA при разложении по биному Ньютона). C)

4.9 ГЛ4 9

A)

Пусть $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Тогда $\beta = 0 \Leftrightarrow \det A = 0, \ \alpha = 0 \Leftrightarrow a+d=0$. То есть c и d однозначно выражаются через a и b : $d = -a, c = -\frac{a^2}{b}$, при этом для любых a и b с такими c и d: $A^2 = 0$

Заметим, что $\det(A\ B)=\det A\times \det B$, откуда если $A^3=0$, то $\det A=0$, откуда если рассмотреть некоторое B, для которого $B^2\neq 0$: $B^2+\alpha B=0$, то $B^3+\alpha B^2=0$, откуда он может быть корнем $X^3=0$ при $\alpha=0$, но тогда $B^2=0$. Поэтому нет корней из $X^3=0$, не являющимися корнями $X^2=0$, при этом очевидно, что все корни из $X^2=0$ являются корнями из $X^3=0$.

C)

Пусть $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Тогда $\beta=1 \Leftrightarrow \det A=1,\ \alpha=0 \Leftrightarrow a+d=0.$ То есть c и d однозначно выражаются через a и b : $d=-a, c=-\frac{1+a^2}{b},$ при этом для любых a и b с такими c и d: $A^2=-E$

- 4.10 ГЛ4 10
- 4.11 ГЛ4 11*
- 4.12 ГЛ4 12*

Если $A \neq E \cdot v$, где v – матрица 1 на n (что равносильно $\exists i,j: i \neq j, \ a_{i\ j} \neq 0$), то рассмотрим 2 матрицы X,Y: $\operatorname{Tr}(X) = \operatorname{Tr}(Y) = 0, \ (X - Y) = B$, где в B все элементы нулевые кроме $a_{j\ i}$. Тогда $\operatorname{Tr}(AX) \neq \operatorname{Tr}(AY)$, так как AX - AY = AB, а $\operatorname{Tr}(B) \neq 0$. Тогда $A = E \cdot v$. И если $\operatorname{Tr}(AX) = 0$, то $a_{1\ 1} \cdot x_{1\ 1} + \dots + a_{i\ i} \cdot x_{i\ i} + \dots + a_{n\ n} \cdot x_{n\ n} = 0$ при $\sum xi\ i = 0$. Рассмотрим $\exists l, m: a_{l\ l} \neq a_{m\ m}$, при замене $x_{l\ l}$ на $x_{l\ l} + 1$ и $x_{m\ m}$ на $x_{m\ m} - 1 - \sum xi\ i$ не изменится, но $\sum a_{i\ i} \cdot x_{i\ i}$ увеличится на $a_{l\ l} - a_{m\ m}$. Тогда если A удовлетворяет условию, то такой пары l, m нет. Откуда $A = E \cdot c$, где — некое число, подходит.

5 Грассмановы многочлены и определители

5.1 ГЛ5 1

$$\det \begin{pmatrix} 3 & 2 & 7 \\ 5 & 2 & 7 \\ x & y & z \end{pmatrix} = 14y - 4z = 2(7y - 2z)$$

5.2 ГЛ5 2*

Итоговая матрица имеет вид:

$$A = \begin{pmatrix} a_{1\ 1} & a_{1\ 2} & a_{1\ 3} \\ a_{2\ 1} & a_{2\ 2} & a_{2\ 3} \\ a_{3\ 1} & a_{3\ 2} & a_{3\ 3} \end{pmatrix}$$

Её определитель:

$$\det A = (a_{1\ 1} \cdot a_{2\ 2} \cdot a_{3\ 3} + a_{1\ 2} \cdot a_{2\ 3} \cdot a_{3\ 1} + a_{1\ 3} \cdot a_{2\ 1} \cdot a_{3\ 2}) - (a_{3\ 1} \cdot a_{2\ 2} \cdot a_{1\ 3} + a_{3\ 2} \cdot a_{2\ 3} \cdot a_{1\ 1} + a_{3\ 3} \cdot a_{2\ 1} \cdot a_{1\ 2})$$

Заметим, что если первый поставит 0 в угол, то, независимо от действий второго, первый ставит 0 в любой из углов, имебщих общую сторону с изначальным углом. И тогда после следующего хода, независимо от того как пошёл соперник, надо потавить на \circ или \times в зависимости от того, какая тройка необнулилась:

$$\begin{pmatrix} 0 & \circ \\ \circ & \\ 0 & \circ \end{pmatrix} \qquad \begin{pmatrix} 0 & \times \\ & & \times \\ 0 & \times \end{pmatrix}$$

5.3 ГЛ5 3

5.4 ГЛ5 4

5.5 ГЛ5 5

Изначальная матрица:

$$A = \begin{vmatrix} a_{1\ 1} & a_{1\ 2} & \dots & a_{1\ n} \\ a_{2\ 1} & a_{2\ 2} & \dots & a_{2\ n} \\ \dots & & & \dots \\ a_{m\ 1} & a_{m\ 2} & \dots & a_{m\ n} \end{vmatrix}_{m \times n}$$

Пусть ее минор $t < \min(m, n)$

Без ограничения общности предположим, что верхний левый минор $\neq 0$:

$$\Delta = A \begin{pmatrix} 1 & 2 & \dots & \tau \\ 1 & 2 & \dots & \tau \end{pmatrix}$$

Рассмотрим систему

$$\begin{cases} a_{1} \, _{1}x_{1} + \dots + a_{1} \, _{\tau}x_{\tau} = a_{1} \, _{q} \\ \dots \\ a_{\tau} \, _{1}x_{1} + \dots + a_{\tau} \, _{\tau}x_{\tau} = a_{\tau} \, _{q} \\ q \in \{\tau + 1, \, \dots, \, n\} \end{cases}$$

Эта система совместна и имеет единственное решение поскольку определитель матрицы левых частей, по условию, отличен от нуля.

18

Запишем ее решение:

$$x_{i} = \frac{\begin{vmatrix} a_{1 \ 1} & \cdots & a_{1 \ i-1} & a_{1 \ i} & a_{1 \ i+1} & \cdots & a_{1 \ \tau} \\ a_{2 \ 1} & \cdots & a_{2 \ i-1} & a_{2 \ i} & a_{2 \ i+1} & \cdots & a_{2 \ \tau} \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ a_{\tau \ 1} & \cdots & a_{\tau \ i-1} & a_{\tau \ i} & a_{\tau \ i+1} & \cdots & a_{\tau \ \tau} \end{vmatrix}}{\Delta}$$

Докажем, что этот же набор является решением и уравнения

$$a_{s 1}x_1 + \cdots + a_{s \tau}x_{\tau} = a_{s q}$$
 при $\forall s \in \{\tau + 1, \dots, m\}$

Подставим решения и домножим все на Δ :

$$a_{s\ q}\Delta - a_{s\ \tau} \begin{vmatrix} a_{1\ 1} & a_{1\ 2} & \dots & a_{1\ \tau-1} & a_{1\ q} \\ a_{2\ 1} & a_{2\ 2} & \dots & a_{2\ \tau-1} & a_{2\ q} \\ \vdots & & \vdots & & \vdots \\ a_{\tau\ 1} & a_{\tau\ 2} & \dots & a_{\tau\ \tau-1} & a_{\tau\ q} \end{vmatrix} - a_{s\ \tau-1} \begin{vmatrix} a_{1\ 1} & \dots & a_{1\ q} & a_{1\ \tau} \\ a_{2\ 1} & \dots & a_{2\ q} & a_{2\ \tau} \\ \vdots & & & \vdots \\ a_{\tau\ 1} & \dots & a_{p\ q} & a_{\tau\ \tau} \end{vmatrix} - \dots - a_{s\ 1} \begin{vmatrix} a_{1\ q} & a_{1\ 2} & \dots & a_{1\ \tau} \\ a_{2\ q} & a_{2\ 2} & \dots & a_{2\ \tau} \\ \vdots & & & \vdots \\ a_{\tau\ q} & a_{2\ q} & \dots & a_{\tau\ \tau} \end{vmatrix}$$

последнее выражение представляет собой разложение определителя

$$\begin{vmatrix} a_{1\ 1} & \dots & a_{1\ \tau} & a_{1\ q} \\ a_{2\ 1} & \dots & a_{2\ \tau} & a_{2\ q} \\ \vdots & & & \vdots \\ a_{\tau\ 1} & \dots & a_{\tau\ \tau} & a_{\tau\ q} \\ a_{s\ 1} & \dots & a_{s\ \tau} & a_{s\ q} \end{vmatrix}$$

Этот определитель равен 0

$$\begin{cases} a_{1} \ _{1}x_{1} + \dots + a_{1} \ _{\tau}x_{\tau} = a_{1} \ _{q} \\ \dots \\ a_{\tau} \ _{1}x_{1} + \dots + a_{\tau} \ _{\tau}x_{\tau} = a_{\tau} \ _{q} \\ a_{\tau+1} \ _{1}x_{1} + \dots + a_{\tau+1} \ _{\tau}x_{\tau} = a_{\tau+1} \ _{q} \\ \dots \\ a_{m} \ _{1}x_{1} + \dots + a_{m} \ _{\tau}x_{\tau} = a_{m} \ _{q} \end{cases}$$

Но это означает, что столбец матрицы A с номером q является линейной комбинацией первых τ столбцов этой матрицы. Поскольку это утверждение справедливо для любого значения $q \in \{\tau+1,\ldots,n\}$, то заключаем, что ранг системы столбцов матрицы A равен τ .

5.6 ГЛ5 6*

5.7 ГЛ5 7

$$\frac{\partial^k \det(A)}{\partial a_{i_1 j_1} \partial a_{i_2 j_2} \dots \partial a_{i_k j_k}}$$

Если $i_k = i_l, \ j_k = j_l,$ то мы получим 0 в первой строке

Если $i_k \neq i_l, \ j_k \neq j_l$, то раскладывая по i-ой строке: все члены кроме $a_{i_k j_k}$ зануляются, так как количество споособов перенести строку наверх $(-1)^{i_k+1}$, количество способов перенести стобец с $a_{i_k j_k}$ на первое место $(-1)^{j_k+1}$. Откуда $(-1)^{i_k+1} \cdot (-1)^{j_k+1} = (-1)^{i+j+2} = (-1)^{i+j}$ тогда $\frac{\partial \det(A)}{\partial a_{i_k j_k}} = \det(-1)^{i_k+j_k} \cdot A_{i_k j_k}$ По индукции получим:

$$\frac{\partial^k \det(A)}{\partial a_{i_1j_1} \, \partial a_{i_2j_2} \dots \partial a_{i_kj_k}} = \det(-1)^{i_1+j_1+\dots+i_k+j_k} \cdot A_{(i_1j_1)\dots(i_kj_k)}$$

5.8 ГЛ5 8

Заметим, что мы рассматриваем матрицу Кирхгофа

Определитель матрицы Кирхгофа равен нулю $\det K = 0$:

$$\det K = \begin{vmatrix} k_{1,1} & k_{1,2} & \cdots & k_{1,n} \\ k_{2,1} & k_{2,2} & \cdots & k_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{n,1} & k_{n,2} & \cdots & k_{n,n} \end{vmatrix}$$

Прибавим к первой строке все остальные строки:

$$\begin{vmatrix} k_{1,1} + k_{2,1} + \dots + k_{n,1} & k_{1,2} + k_{2,2} + \dots + k_{n,2} & \dots & k_{1,n} + k_{2,n} + \dots + k_{n,n} \\ k_{2,1} & k_{2,2} & \dots & k_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{n,1} & k_{n,2} & \dots & k_{n,n} \end{vmatrix}$$

Так как сумма элементов каждого столбца равна 0, получим:

$$\det K = \begin{vmatrix} 0 & 0 & \cdots & 0 \\ k_{2,1} & k_{2,2} & \cdots & k_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{n,1} & k_{n,2} & \cdots & k_{n,n} \end{vmatrix} = 0$$

E*)

B*)

5.9 ГЛ5 9

A) Да $A_{12}A_{34} - A_{13}A_{24} + A_{14}A_{23} = 0$ Пример:

$$\begin{pmatrix} 1 & 3 & 3 & 1 \\ -1 & -1 & 1 & 2 \end{pmatrix}$$
$$2 \cdot 5 - 4 \cdot 7 + 3 \cdot 6 = 0$$

Б)
$$A_{12}A_{34}-A_{13}A_{24}+A_{14}A_{23}=0$$
 Тогда $A_{12}A_{34}+A_{14}A_{23}=A_{13}A_{24}$

$$\begin{aligned} 1. & \left\{3,4,5,6,7,8\right\} & 6\cdot 8 = 48 \\ & 3\cdot 4 + 5\cdot 7 = 12 + 35 \neq 48 \\ & 3\cdot 5 + 4\cdot 7 = 15 + 28 \neq 48 \\ & 3\cdot 7 + 4\cdot 5 = 21 + 20 \neq 48 \end{aligned}$$

2.
$$\{3, 4, 5, 6, 7, 8\}$$
 $5 \cdot 8 = 40$
 $3 \cdot 4 + 6 \cdot 7 = 12 + 42 \neq 40$
 $3 \cdot 6 + 4 \cdot 7 = 18 + 28 \neq 40$
 $3 \cdot 7 + 4 \cdot 6 = 21 + 24 \neq 40$

3.
$$\{3,4,5,6,7,8\}$$
 $4 \cdot 8 = 32$
 $3 \cdot 5 + 6 \cdot 7 = 15 + 42 \neq 32$
 $3 \cdot 6 + 5 \cdot 7 = 18 + 35 \neq 32$
 $3 \cdot 7 + 5 \cdot 6 = 21 + 30 \neq 32$

Следовательно такой матрицы нет

- 5.10 ГЛ5 10*
- 5.11 ГЛ5 11
- A)
- Б)
- B*)
- 5.12 ГЛ5 12*

б Линейные операторы на конечномерном пространстве

- 6.1 ГЛ6 1
- 6.2 ГЛ6 2
- 6.3 ГЛ6 3
- 6.4 ГЛ6 4
- 6.5 ГЛ6 5
- A)
- Б)
- 6.6 ГЛ6 6
- 6.7 ГЛ6 7
- 6.8 ГЛ6 8
- 6.9 ГЛ6 9
- 6.10 ГЛ6 10
- 6.11 ГЛ6 11

7 Евклидова геометрия

7.1 ГЛ7 1

Да, всегда найдется

7.2 ГЛ7 2

Нет, неверно

$$\cos(a,b) = \frac{a \cdot b}{|a| \cdot |b|}$$

Пусть a, b лежит в \mathbb{R}^3 , будем проектировать гиперплоскость (xy)

$$\vec{a} = (1, 1, 1) \rightarrow \vec{a}_1 = (1, 1, 0)$$

 $\vec{b} = (1, 2, -5) \rightarrow \vec{b}_1 = (1, 2, 0)$

Тогда $\vec{a}\vec{b}=1+2-5=-2<0$ тогда угол тупой Но $\vec{a}_1\vec{b}_1=1+2=3>0$ тогда угол острый

7.3 ГЛ7 3

Очевидно, что в каждой размерности \mathbb{R}^n есть хотя бы n гиперплоскостей, относительно которых симметричен куб. Далее заметим, что плоскость относительно которой куб симметричен также может проходить через пары противоположных ребер (в размерности \mathbb{R}^n это гиперплоскостей размерности \mathbb{R}^{n-2} ровно $n \cdot (n-1) \cdot 2$). Заметим, что для \mathbb{R}^n есть ровно $\dim(\mathbb{R}^n) + \frac{n \cdot (n-1) \cdot 2}{2} = n + n \cdot (n-1) = n \cdot n$. Тогда для $4 \colon 4 \cdot 4 = 16$

7.4 ГЛ7 4

$$\Delta_n = \left\{ x \in \mathbb{R}^{n+1} | \sum x_i = 1, x_i \ge 0 \right\}$$
A)

Б)

7.5 ГЛ7 5*

Рассмотрим октаплекс $\{3,4,3\}$ A)

$$\begin{array}{ccccc} 0 & 1 & 2 & \{3\} & 3 & \{3,4\} \\ 24 & 96 & 96 & 24 \end{array}$$

Б)

B)

Правильные октаэдры $\{3,4\}$

 Γ)

Правильные треугольники {3}

7.6 ГЛ7 6

7.7 ГЛ7 7

A)
$$\sigma_{\pi_1} \circ \sigma_{\pi_2} = \rho_{v,\varphi}$$

$$\mathbf{B})\ \sigma_{\pi_1} \circ \sigma_{\pi_2} = \tau_v$$

- B) $\sigma_{\pi} \circ \varrho_{u,\varphi} \circ \sigma_{\pi} = \varrho_{v,\psi}$
- Γ) $\varrho_{u,\varphi} \circ \varrho_{w,\psi} = \tau_v \circ \varrho_{v,\vartheta}$
- Д) $\varrho u, \varphi \circ \sigma_{\pi} \circ \varrho_{u,-\varphi} = \sigma_{\pi_2}$
- E) $\varrho_{u,\varphi} \circ \sigma_{\pi_1} = \sigma_{\pi_2}$
- Ж) $\tau_{u_2} \circ \sigma_{\pi_2} \circ \tau_{u_1} \circ \sigma_{\pi_1} = \tau_v \circ \varrho_{v,\varphi}$

7.8 ГЛ7 8

A)

Рассмотрим

Тогда $\varrho_{AD} \circ \varrho_{AC} \circ \varrho_{AB}$ является поворотом вокруг оси $\perp AC$ и проходящей через A на $\frac{\pi}{4}$ Б)