$\mathcal{S} = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\triangle + \mathcal{K} \right)_{\alpha\beta} \right)^{-1}$ $4\,\partial_{\beta}\mathcal{R}_{\alpha\,i\,\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{\beta}\mathcal{R}_{\alpha\theta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 8\,\partial_{\beta}\mathcal{R}_{i\,\theta\alpha}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 2\,\partial_{i}\mathcal{R}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{\theta}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{\theta}\mathcal{R}_{\alpha\,i\,\beta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} + 2\,\partial_{\alpha}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{\alpha}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\alpha}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{\alpha}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\alpha}\mathcal{R}^{\alpha\beta\,i} + 2\,\partial_{\alpha}\mathcal{R}_{\alpha\beta\,i}\,\partial^{\alpha}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{\alpha}\mathcal{R}^{\alpha\beta\,i} - 2\,\partial_{\alpha}\mathcal{R}^{\alpha\beta\,i}$ $\frac{1}{2} t \cdot \left(2 \,\, \mathcal{R}^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \,\, \mathcal{R}^{\phantom{\alpha_{i}} \theta}_{\phantom{\alpha_{i}} \theta} - 4 \,\, \mathcal{R}^{\phantom{\alpha_{i}} \theta}_{\phantom{\alpha_{i}} \theta} \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}}} + 4 \,\, \mathcal{R}^{\phantom{\alpha_{i}} \theta}_{\phantom{\alpha_{i}} \theta} \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 \,\, \partial_{i} f^{\theta}_{\phantom{\alpha_{i}} \theta} \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} + 4 \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \,\, \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} - 2 \,\, \partial_{\alpha} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} \,\, \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} - 2 \,\, \partial_{\alpha} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} + 4 \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 \,\, \partial_{\alpha} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} + 4 \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 \,\, \partial_{\alpha} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} + 4 \,\, \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} - 2 \,\, \partial_{\alpha} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \theta} - 2 \,\,$

Wave operator

 $0^{+}_{f}\|_{+}$ $-i\sqrt{2}kt$. $-2k^{2}t$. 0

PSALTer results panel

Spin-parity form	Covariant form	Multiplicities
$^{0^+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1
$-2 i k^{0^+} \sigma^{\parallel} + 0^+ \tau^{\parallel} = 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- ₁ ^{\alpha} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3
$i k \cdot 1^+ \sigma^{\perp}^{\alpha\beta} + \cdot 1^+ \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k \frac{2^{+}}{\cdot \sigma} \ ^{\alpha \beta} + \frac{2^{+}}{\cdot \tau} \ ^{\alpha \beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}\right)^{-1}$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}{}_{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}{}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}{}_{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \chi} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\ \delta} = 0$	
	$6 \ i \ k^X \ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 \ i \ k^X \ \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 \ i \ k^X \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 \ i \ k^X \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi\tau} (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon} = 0$	
Total expected gauge generators:		16

Massive spectrum

Pole residue: $\left| -\frac{1}{2} \right| > 0$

		ri			
	Square mass:	$-\frac{\frac{t}{1}}{2r} > 0$			
	Spin:	2			
	Parity:	Odd			
Massless spectrum					

(No particles)

Unitarity conditions

r. < 0 && t. > 0