Lecture Summary: March 13, 2023

• Logistic regression

1. Simple logistic regression model

Responses (Y_i, x_i) , i = 1, ..., n. Y_i binary (i.e., $Y_i = 0$ or 1).

Assume $logit(p_i) = \beta_0 + \beta_1 x_i$, i = 1, ..., n, where $p_i = P(Y_i = 1)$ and logit(p) = log[p/(1-p)] (natural logarithm).

Solve for p_i : $p_i = e^{\beta_0 + \beta_1 x_i} / (1 + e^{\beta_0 + \beta_1 x_i})$.

Log-likelihood function

Likelihood: $L = \prod_{i=1}^n f(Y_i)$, where $f(Y_i) = p_i^{Y_i} (1 - p_i)^{1-Y_i}$.

Log-likelihood:

$$\log L = \sum_{i=1}^{n} \log[f(Y_i)]$$

$$= \sum_{i=1}^{n} \{Y_i \operatorname{logit}(p_i) + \log(1 - p_i)\}$$

$$= \sum_{i=1}^{n} \{Y_i(\beta_0 + \beta_1 x_i) - \log(1 + e^{\beta_0 + \beta_1 x_i})\}.$$

Maximum likelihood

Find $\hat{\beta}_0, \hat{\beta}_1$ that maximize the log-likelihood over β_0, β_1 .