Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition

Harry Lewis

October 12, 2010

Reading: Sipser, pp. 119-128.

The Top-Down CFG → PDA construction, revisited

Transitions:

• $\delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S\$)\}$

"Start by putting S\$ on the stack, & go to q_{loop} "

• $\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w)\}$ for each rule $A \to w$

"Remove a variable from the top of the stack and replace it with a corresponding righthand side"

• $\delta(q_{\text{loop}}, \sigma, \sigma) = \{(q_{\text{loop}}, \varepsilon)\}$ for each $\sigma \in \Sigma$

"Pop a terminal symbol from the stack if it matches the next input symbol"

• $\delta(q_{\text{loop}}, \varepsilon, \$) = \{(q_{\text{accept}}, \varepsilon)\}.$

"Go to accept state if stack contains only \$."

The Dual Bottom-Up CFG → PDA Construction

- $\delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, \$)\}$
 - "Start by putting \$ on the stack, & go to q_{loop} "
- $\delta(q_{\text{loop}}, \sigma, \varepsilon) = \{(q_{\text{loop}}, \sigma)\}$ for each $\sigma \in \Sigma$
 - "Shift input symbols onto the stack"
- $\delta(q_{\text{loop}}, \varepsilon, w^R) = \{(q_{\text{loop}}, A) : A \to w) \text{ is a rule of } G\}$
 - "Reduce right-hand sides on the stack to corresponding left-hand sides"
- $\delta(q_{\text{loop}}, \varepsilon, S\$) = \{(q_{\text{accept}}, \varepsilon)\}$
 - "Accept if the stack consists just of S above the bottom-marker"

Context-Free Recognition

- Goal: Given CFG G and string w to determine if $w \in L(G)$
- First attempt: Construct a PDA M from G and run M on w.

• Brute-Force Method:

Check all parse trees of height up to some upper limit depending on G and |w|

Exponentially costly

• Better:

- 1. Transform G into Chomsky normal form (CNF) (once for G)
- 2. Apply a special algorithm for CNF grammars (once for each w)

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- the only possible rule with ε as the RHS is $S \to \varepsilon$ (Of course, this rule occurs iff $\varepsilon \in L(G)$)
- Every other rule is of the form
 - 1) $X \rightarrow YZ$ where X, Y, Z are variables
 - 2) $X \rightarrow \sigma$

where X is variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- ε -rule: one of the form $X \to \varepsilon$
- Long Rule: one of the form $X \to \alpha$ where $|\alpha| > 2$.
- Unit Rule : One of the form $X \to Y$ where $X,Y \in V$
- Terminal-Generating Rule: one of the form $X \to \alpha$ where $\alpha \notin V^*$ and $|\alpha| > 1$ (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules In Order:

- 1. All ε -rules, except maybe $S \to \varepsilon$
- 2. All unit rules
- 3. All long rules
- 4. All terminal-generating rules
 - While eliminating rules of type j, we make sure not to reintroduce rules of type i < j.

Eliminating ε **-Rules**

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$ where α contains n occurrences of Y, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.)

e.g.

$$X \to aYZbY \implies$$

(Why does this terminate?)

Eliminating Unit and Long Rules

- 2. To eliminate unit rules, repeatedly do the following:
 - a. Pick a unit rule $A \rightarrow B$ and remove it.
 - b. For every rule $B \to u$, add rule $A \to u$ unless this is a unit rule that was previously removed.
- 3. To eliminate long rules, repeatedly do the following:
 - a. Remove a long rule $A \to u_1 u_2 \cdots u_k$, where each $u_i \in V \cup \Sigma$ and $k \geq 3$.
 - b. Replace with rules

$$A \to u_1 A_1, A_1 \to u_2 A_2, \dots, A_{k-2} \to u_{k-1} u_k$$
, where A_1, \dots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

- 4. To eliminate terminal-generating rules:
 - a. For each terminal a introduce a new nonterminal A.
 - b. Add the rules $A \rightarrow a$
 - c. "Capitalize" existing rules, e.g.

replace
$$X \rightarrow aY$$
 with $X \rightarrow AY$

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$S \to XX$$

$$X \to aXb|\varepsilon$$

Benefit of CNF for Deciding if $w \in L(G)$

• Observation: If $S \Rightarrow XY \Rightarrow^* w$, then w = uv, $X \Rightarrow^* u$, $Y \Rightarrow^* v$ where u, v are *strictly shorter* than w.

• **Divide and Conquer:** can decide whether S yields w by recursively determining which variables yield substrings of w.

• **Dynamic Programming:** record answers to all subproblems to avoid repeating work.

Determining $w \in L(G)$, for G in CNF

Let $w = a_1 \dots a_n$, $a_i \in \Sigma$.

Determine sets S_{ij} $(1 \le i \le j \le n)$:

$$S_{ij} = \{X : X \stackrel{*}{\Rightarrow} a_i \dots a_j, X \text{ variable of } G\}$$

• $w \in L(G)$ iff start symbol $\in S_{1n}$

Filling in the Matrix

• Calculate S_{ij} by induction on j-i

$$(j-i=0)$$
 $S_{ii}=\{X:X\to a_i \text{ is a rule of } G\}$ $(j-i>0)$ $X\in S_{ij}$ iff $\exists \text{ rule } X\to YZ$ $\exists k:i\leq k< j$ such that $Y\in S_{ik}$ $Z\in S_{k+1,j}$

e.g. w = abaabb

The Chomsky Normal Form Parsing Algorithm

for
$$i \leftarrow 1$$
 to n do

$$S_{ii} = \{X : X \rightarrow a_i \text{ is a rule } \}$$

for
$$d \leftarrow 1$$
 to $n-1$ do

for
$$i \leftarrow 1$$
 to $n - d$ do

$$S_{i,i+d} \leftarrow \bigcup_{j=i}^{i+d-1} \left\{ \begin{matrix} X: X \to YZ \text{ is a rule,} \\ Y \in S_{ij}, Z \in S_{j+1,i+d} \end{matrix} \right\}$$

Complexity: $\mathcal{O}(n^3)$.

Of what does this triply nested loop remind you?

Of what does this triply nested loop remind you?

- Matrix Multiplication
- In fact, better matrix multiplication algorithms yield (asymptotically) better general context free parsing algorithms
- Strassen's algorithm requires $O(n^{2.81})$ instead of $O(n^3)$ multiplications

Summary of Context-Free Recognition

- CFL to PDA reduction yields nondeterministic automaton
- By use of Chomsky Normal Form and dynamic programming, there is a general $O(n^3)$ non-stack-based algorithm
- The deterministic CFLs are the languages recognizable by deterministic PDAs
- E.g. $\{wcw^R: w \in \{a,b\}^*\}$ is a deterministic CFL but $\{ww^R: w \in \{a,b\}^*\}$ (even palindromes) is not
- Methods used in compliers are deterministic stack-based algorithms, requiring that the source language be deterministic CF or a special type of deterministic CF (LR(k), etc.).

Beyond Context-Free Languages

- A Context-Sensitive Grammar allows rules of the form $\alpha \to \beta$, where α and β are strings and $|\alpha| \le |\beta|$, so long as α contains at least one nonterminal.
- The possibility of using rules such as $aB \rightarrow aDE$ makes the grammar "sensitive to context"
- Is there an algorithm for determining whether $w \in L(G)$ where G is a CSG?
- But the field moved, and now we also move, from syntactic structures to computational difficulty