(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-230524

(43)公開日 平成10年(1998)9月2日

(51) Int.Cl. ⁸	酸別記号	FΙ		
B29C 33	3/38	B 2 9 C	33/38	
G11B 7	7/26 5 1 1	G11B	7/26	511
// B29L 17	7: 00			

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号	84 EE WO 2020	/71) 以時 1 000005100
(21)山殿田芍	特願平9-36265	(71) 出顧人 000005108
		株式会社日立製作所
(22)出顧日	平成9年(1997)2月20日	東京都千代田区神田駿河台四丁目 6 番地
		(71) 出願人 000005810
		日立マクセル株式会社
		大阪府茨木市丑寅1丁目1番88号
		(72)発明者 吉井 正樹
		神奈川県横浜市戸塚区吉田町292番地 株
		式会社日立製作所生産技術研究所内
		(72)発明者 蔵本 浩樹
		神奈川県横浜市戸塚区吉田町292番地 株
		式会社日立製作所生産技術研究所内
		(74)代理人 弁理士 富田 和子
		・最終頁に続く

(54) 【発明の名称】 光ディスク基板の成形型および製造方法

(57)【要約】

【課題】基板の外縁ぎりぎりまで記録領域として利用できる光ディスク基板の作製。

【解決手段】光ディスク基板の外周側面を成形するための成形面46が断熱層13により構成されている光ディスク基板用成形型41を用いる。断熱層13は、基板外周部における充填樹脂の急冷による熱応力の発生を抑制し、基板複屈折の増大を防止する。

【特許請求の範囲】

【請求項1】光ディスク基板を成形するための成形型に おいて、

上記光ディスク基板の外周側面を成形するための成形面 が、断熱層により構成されていることを特徴とする光デ ィスク基板用成形型。

【請求項2】請求項1において、

上記断熱層は、

熱伝導率が4.0W/m・K以下の材料からなり、 ビッカース硬度が400以上であることを特徴とする光 10

【請求項3】請求項2において、

ディスク基板用成形型。

上記断熱層は、

イットリア安定化ジルコニアまたはチタン酸バリウムか らなることを特徴とする光ディスク基板用成形型。

【請求項4】請求項2において、

上記断熱層は厚さが0.3mm以上であることを特徴と する光ディスク基板用成形型。

【請求項5】請求項1において、

上記光ディスク基板の情報ピットを備える面を形成する 20 ためのスタンパと、

上記スタンパを支持するためのコアと、

上記スタンパおよび上記コアの間に設けられた断熱部材 とを、さらに備えることを特徴とする光ディスク基板用 成形型。

【請求項6】請求項1記載の光ディスク基板用成形型を 用いて成形する工程を有することを特徴とする光ディス ク基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスク基板の 成形型および製造方法に関する。

[0002]

【従来の技術】光ディスク基板は、従来より、成形型を 用いた射出成形により成形されている。この成形型40 は、図4に例示するように、固定型42と可動型41と を備える。可動型41は、情報ピットやレーザ案内溝を 形成するための凸部 1 1を有するニッケル製のスタンパ 4と、このスタンパ4を保持するためのスタンパ内周ホ と、中心穴形成ポンチ9と、エジェクタ10と、冷却回 路12とを備える。一方、固定型42は、固定型コア5 bと冷却回路12とを有する。なお、図4は光ディスク 基板6の離型前の状態を、両型41,42を分離した状 態で図示したものである。また、点線で示した領域43 内の拡大図を、円43a内に模式的に示す。

【0003】この固定型42と可動型41とを合わせる と、可動型41のスタンパ内周ホルダ7とスタンパ外周 ホルダ8とにより可動キャビティ内に装着・固定された スタンパ4の表面成形面44と、固定キャビティ42の 50 スとしては、例えばチタン酸パリウム(TiO::50

コア5 bの裏面成形面45と、スタンパ外周ホルダ8の 外周側面成形面46とに囲まれた成形用の間隙が形成さ れる。この成形用間隙に、基板中心に設けられたゲート 47より溶融した樹脂を充填し、冷却して固化させた 後、成形型40を開いて、エジクタ10により成形品を 離型させて取り出すことにより、光ディスク基板 6 が得

[0004]

られる。

【発明が解決しようとする課題】最近になって、基板の 記憶容量を増大が望まれている。しかし、上述したよう な従来の方法により成形された基板では、外周部の復屈 折 (レターデーション) が急激に増大するため、外縁か ら約2mm以内の領域を記録領域とすることはできなか った。そこで、本発明は、従来より記憶可能な領域の広 い光ディスク基板を作製することのできる製造方法およ び成形型を提供することを目的とする。

[0005]

【課題を解決するための手段】上記課題を解決するた め、外周部の複屈折が増大する現象について鋭意検討し た結果、その原因は、溶融樹脂がキャビティ外周壁に到 達・接触した際に、該溶融樹脂が急冷(樹脂のガラス転 移点温度以下に急冷)されるためであることがわかっ た。溶融した樹脂がガラス転移点温度以下に急冷されて 固化すると、急冷による熱応力により、複屈折(レター デーション)が急激に増大するのである。

【0006】そとで、本発明では、光ディスク基板の外 周側面を成形するための成形面が断熱層により構成され ている光ディスク基板用成形型と、該成形型を用いて成 形する工程を有する光ディスク基板の製造方法とが提供 される。基板外周側面を形成するための成形面に設けら れた断熱層は、基板外周部における充填樹脂の急冷によ る熱応力の発生を抑制し、基板複屈折の増大を防止す る。従って、本発明によれば、基板の外縁ぎりぎりまで 記録領域として利用することができる。

[0007]

30

【発明の実施の形態】本発明に用いられる断熱層の材料 としては、熱伝導率4.0W/m·K以下、薄膜の状態 でのビッカース硬度400以上のものが望ましい。熱伝 導率が高いと、断熱層の実効が図れない。また、硬度が ルダ7 およびスタンパ外周ホルダ8 と、可動型コア5 a 40 低いと、樹脂充填時の圧力により成形時に基板が変形し てしまうためである。このような熱伝導率およびビッカ ース硬度を備える材料としては、例えば、ジルコニア系 セラミックスや、チタニア系セラミックスが挙げられ、 これらのいずれも本発明の断熱層に適用できる。

> 【0008】ジルコニア系セラミックスとしては、例え ば、イットリア安定化ジルコニア(ZrO,:92モル %, Y,O,:82モル%) がある。このセラミックスの 熱伝導率は約3.7W/m·Kであり、ピッカース硬度 は500~600である。また、チタニア系セラミック

モル%, Ba〇:50モル%) が挙げられる。このこの セラミックスの熱伝導率は約2.9W/m·Kであり、 ビッカース硬度は400~500である。

【0009】とのようなセラミックスからなる断熱層 は、あらかじめセラミック組成物を焼結して形成した板 状部材を成形型の所定部材に貼付する方法や、該所定部 材表面にスパッタリングによって形成する方法などがあ るが、薄い膜を速く形成することができるため、溶射法 により形成することが望ましい。また、特に平坦な成形 面が要求される場合には、溶射法により形成した膜の表 10 面を、さらに研磨してもよい。

【0010】成形工程における熱応力の発生は、成形型 キャビティの壁面によって充填樹脂が急冷(樹脂のガラ ス転移点温度以下に急冷) されることに起因する。この 熱応力の発生を抑制するには、少なくとも樹脂が充填さ れた時点においてキャビティ壁面における温度が樹脂の ガラス転移点温度以上になっていることが必要である。 【0011】そこで、断熱層に用いる断熱材の熱伝導率 を4.0 W/m・Kとし、成形型温度125℃、樹脂温 度350℃の条件で成形した場合のキャビティ壁と充填 20 樹脂との境界面の温度を求めた。結果を図2に示す。な お、ことでは、成形用間隙に樹脂が充填されて、その外 端が外周側面成形面に接触するまでの時間を0.2秒と 見積り、樹脂導入後0.2秒経過時の樹脂温度を求め た。また、成形型キャビティの材質はステンレス鋼(熱 伝導率:25W/m·K)とし、充填樹脂は、光ディス ク基板の材料として通常用いられるポリカーボネート樹 脂(熱伝導率: 0. 188 W/m・K、ガラス転移点温 度:147℃)とした。ちなみに、断熱層がない場合 (樹脂が直接、金型鋼材に接触する場合)、境界面の温 30 度は約136℃となる。

【0012】図2からわかるように、断熱材の熱伝導率 が4.0W/m·Kであれば、断熱層の厚みが0.3m m以上の場合に、充填樹脂と断熱層との界面の温度が、 基板材料であるポリカーボネート樹脂のガラス転移点温 度(147℃)以上になる。従って、断熱材の厚みは 0. 3 m m 以上とすることが望ましい。

【0013】また、本発明の成形型は、スタンパ4と可 動コア5aとの間に断熱部材を備えることが望ましい。 この断熱部材により、成形用間隙に充填された樹脂の外 周部の冷却速度を遅くすることで、基板全体の冷却速度 を均一にすることができる。従って、スタンパ4のパタ ーンの転写性が均一かつ良好になり、さらに、得られた 成形品の離型・取り出しによる変形を回避することがで きる。

【0014】この断熱部材は、例えば、図5に示す部材 51のように、内周部から外周部に向けて、中心からの 距離に応じて徐々に厚くなる形状にしてもよい。このよ うにすれば、外周部を十分に厚くしても、基板の冷却時

うにする場合、外縁部の厚さは0.2mm以上とすると とが望ましく、内縁部の厚さは1.0mm以下とすると とが望ましい。また、断熱部材の厚さを均一にしてもよ い。この場合も、その厚さを0.2mm~1.0mmに することが望ましい。厚さが0.2mm以上であれば、 樹脂が外周部に達してもまだその温度が熱変形温度以上 であるため十分な転写性が確保でき、1.0mm以下で あれば、直径120mmの基板の冷却時間が2秒以下に 抑えられるため十分な生産性が確保できる。

【0015】以下、本発明の実施例を図面を用いて説明

<実施例1>

(1) 成形型

まず、本実施例の成形型について説明する。本実施例の 成形型の可動型41のスタンパ4周辺部を、図1に示 す。本実施例の可動型41は、この図1に示すように、 スタンパ外周ホルダ8の外周側面成形面46が断熱層1 3により覆われている。成形型のこれ以外の構成は、図 4に示した成形型と同様である。

【0016】この断熱層13は、イットリア安定化ジル からなり、幅10mm、膜厚0.3mmの帯状薄膜であ る。この膜のビッカース硬度は500~600である。 なお、本実施例ではこのジルコニア断熱層を溶射法によ り形成した。すなわち、プラズマ・パウダー・スプレイ 法によって、セラミックス粉末を3000℃以上に加熱 溶融させ、100~300 m/砂の速度でスタンパ外周 ホルダ8の所定の領域に溶射することにより、断熱層1 3を形成した。

【0017】また、本実施例の成形型におけるスタンパ 4は、外径(直径) 140mm、内径(直径20m m)、厚さ0.3mmの、中央に貫通孔を有する円盤状 をしており、ニッケルからなる。また、その成形面44 の外径(直径)は120mmである。なお、本実施例で は、成形型の断熱層およびスタンパ以外の部分には、ス テンレス鋼(熱伝導率:25W/m·K)を用いた。

【0018】(2)基板の成形

上述の成形型を125℃に保持し、その成形用間隙に、 溶融させ350℃に保持したポリカーボネート樹脂(帝 人化成(株)「パンライトAD5503」)を充填し、 冷却した後、離型して、直径120mm、厚さ10mm の光ディスク基板を作製した。このポリカーボネート樹 脂の熱伝導率は0.188W/m・Kであり、ガラス転 移点温度は147℃である。得られた基板の複屈折分布 を図3に「○」として示す。

【0019】本実施例では、基板外周側面での充填直後 の溶融樹脂の温度がポリカーボネート樹脂のガラス転移 点温度以上となるため、いわゆる急冷状態にはならな い。そのため、図3からわかるように、外縁近傍におけ 間が過度に長くなるのを回避することができる。このよ 50 る熱応力の発生が抑制され、半径59.5mm以内の領

域が、記憶領域として利用可能な複屈折分布を有していた。

【0020】なお、本実施例では、スタンパ外周ホルダ8が基板外周側面を形成するための成形面(キャビティ壁面)を備えているが、本発明はこれに限られない。型の構造によっては、基板外周側面の成形面を備える部材として、単純にリング状の外周端形成部品が用いられる場合などがあるが、このような場合も、基板外周側面の成形面を備える部材の外成形面に断熱層を設ければよい。

【0021】<比較例>図4に示した従来の成形型40を用いた他は実施例1と同様にして光ディスク基板を作製し、得られた基板の複屈折分布を測定した。結果を図3に「●」として示す。この結果からわかるように、従来の成形型40を用いて形成された基板では、基板外縁から約2mm内側のところまでは、複屈折(レターデーション)の増大のため記録領域として採用できなかった。すなわち、本比較例により得られた半径60mmの基板では、基板中心から半径58mm以内の領域しか記憶領域として使用することができなかった。

【0022】<実施例2>スタンパ4と可動コア5aと の間に、イットリア安定化ジルコニア(ZrO::92 モル%, Y,O,:82モル%) からなる断熱部材51を 設けたことの他は、実施例1と同様の成形型を用い、実 施例1と同様にして光ディスク基板を作製したところ、 実施例1と同様に、記憶領域として、中心から半径5 9. 5 mmまでの領域を記憶領域として利用可能な基板 が得られた。なお、断熱部材51は、図5に示すように スタンパ4の裏面(成形面44の反対側の面)全面を覆 うように設けられた、外径(直径)140mm、内径 (直径20mm)の、中央に貫通孔を有する円盤状部材 である。この断熱部材51の内周部の厚さは0.13m mであり、中心からの距離に応じて徐々に厚くなって、 外周部では0.6mmに達する。この断熱部材51は、 あらかじめセラミック組成物を焼成し、面度0.01m m以下、表面あらさ(Ra) O. 3μm以下に研磨して 所定の形状に加工して形成され、この部材51の分だけ 薄くした可動コア5 a に、エポキシ系接着材を用いて貼 付されている。

【0023】本実施例によれば、基板外周部の複屈折を 低く抑え、記憶領域として利用することのできる範囲を 広く確保することができるという実施例1の効果に加えて、さらに、サブミクロンオーダの情報ピットやレーザ 案内溝の精密転写を精度よく行なうことができ、また、 基板の反り変形を小さく抑えることができた。

【0024】<実施例3>図6に示すように、スタンパ4と可動コア5 aとの間に設けられた断熱部材61の厚さを均一にしたことの他は、実施例2と同様にして光ディスク基板を作製したところ、実施例2と同様の良好な基板を得ることができた。なお、本実施例の断熱部材61は、厚さが0.2 mmであり、実施例1に比べて0.2 mm縛くした可動コア5 aの表面に、実施例1と同様の溶射法により成膜し、平面度0.01 mm以下、表面あらさ(Ra)0.3 μ m以下に研磨して形成した。【0025】

【発明の効果】以上に説明したように、本発明によれば、基板外縁ぎりぎりまで記憶領域として利用可能な、記憶可能な領域の広い光ディスク基板が提供される。

【図面の簡単な説明】

【図1】 実施例1の光ディスク基板用成形型の可動型 20 部の部分断面図である。

【図2】 断熱層の厚みと、外周側面成形面における充填樹脂の温度との関係を示すグラフである。

【図3】 実施例1 および比較例における光ディスク基板の複屈折分布を示すグラフである。

【図4】 従来の光ディスク基板用成形型の断面図である。

【図5】 実施例2の光ディスク基板用成形型の可動型 部の部分断面図である。

【図6】 実施例3の光ディスク基板用成形型の可動型 0 部の部分断面図である。

【符号の説明】

4…スタンパ、5a…可動型コア、5b…固定型コア、6…光ディスク基板、7…スタンパ内周ホルダ、8…スタンパ外周ホルダ、9…中心穴形成ポンチ、10…エジェクタ、11…情報ピットまたはレーザ光案内溝を形成するための凸部、12…冷却回路、13…断熱層、40…従来の成形型、41…可動型、42…固定型、43…スタンパの成形面を示す拡大領域、43a…拡大図、44…基板表面の成形面、45…基板裏面の成形面、46…基板外周側面の成形面、47…樹脂導入用ゲート、51、61…スタンパ裏面の断熱部材。

)

【図2】

図 2 充填樹脂の金型キャビティ壁面における温度

【図3】

基板の復屈折(レターデーション)分布(図3)

【図5】

【図4】

フロントページの続き

(72)発明者 鈴木 重久

大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内