PoliSci 4782 Political Analysis II

Probability Distributions and Generalized Linear Models

Seamus Wagner

The Ohio State University

Probability as a Model

$$Prob(Y|M) \equiv Prob(Data|Model)$$

where $M = (f, g, \mathbf{X}, \beta, \eta)$

- 1 assume a model formula (f, g) with unknown parameters (β, η) ;
- 2 feed data (X and y) into the model to estimate those parameters to get the complete model formula;
- 3 use the model to predict Y

Probability

 $Pr(\cdot)$ is defined by three axioms:

- 1 $Pr(y) \ge 0$ for any event y
- 2 $Pr(\phi) = 1$, where $\phi \ni \{Y | y_1, y_2, \dots y_n\}$
- 3 if y_1, y_2, \dots, y_n are mutually exclusive, $Pr(y_1 \cup y_2 \cup \dots \cup y_n) = Pr(y_1) + Pr(y_2) + \dots + Pr(y_n)$

Probability Mass Function (for discrete variables)

- $\sum_{all\ V} Pr(Y) = 1$
- $Pr(a \le Y \le b) = \sum_{a \le Y \le b} Pr(y) = Pr(Y \le b) Pr(Y \le a)$

Probability Density Function (for continuous variables)

- $\int_{-\infty}^{\infty} f(y) dy = 1$
- $Pr(a \le Y \le b) = \int_a^b f(y)dy = \int_{-\infty}^b f(y)dy \int_{-\infty}^a f(y)dy$

Linear Models Based on the Normal Distribution

$$E(Y) = \mu = \beta X$$
, where $Y \sim \mathcal{N}(\mu, \sigma^2)$

- Simple linear regression is based on the assumption that $Y \sim N(\mu, \sigma^2)$
 - \bullet or at least the normal is a good approximation of the actual probability density of Y
- We can think of some aspects of *Y* to examine the validity of this assumption:
 - value assignment of Y (continuous and $-\infty \le y \le \infty$)
 - distribution of y in our sample (unimodal, symmetric/not terribly skewed, not terribly peaky or flat, etc.)

Linear Regression

$$M = (f, g, \boldsymbol{X}, \beta, \sigma^2)$$

- f is $\mathcal{N}(\mu, \sigma^2)$
- ullet $g=eta {m X}$, without any additional transformation (the simplest form)
- \bullet effect parameters β and ancillary parameter σ^2 need to be estimated

Estimation of β in OLS

The methodological idea is to minimize the sum of mean square errors to find the best β :

$$min \sum_{i=1}^{n} \epsilon_i^2 \text{ or } min \sum_{i=1}^{n} (y_i - \mathbf{X}_i \beta)^2$$

Mathematically, it leads to the following estimator:

$$\hat{\beta} = (\boldsymbol{X}^T \boldsymbol{X}) \boldsymbol{X}^T \boldsymbol{Y}$$

where X^T is the transpose of the original matrix X in linear algebra.

Estimation of σ^2 in OLS

$$\hat{\sigma}^2 = \frac{1}{n-k} \sum_{i=1}^n \hat{\epsilon_i}^2$$

where n is the number of observations; k is the number of effect parameters (including the intercept); $\hat{\epsilon}$ is regression residual.

Estimation Uncertainty of β in OLS

The estimation uncertainty of $\hat{\beta}$ is indicated by its standard error:

$$se(\hat{\beta}) = \sqrt{\frac{\hat{\sigma^2}}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

where x_i is the value for that explanatory variable X in observation i and \bar{x} is the mean of X in the sample.

Deciding Statistical Significance: CI

Confidence intervals are computed by

$$\hat{\beta} \pm [q_t \times \operatorname{se}(\hat{\beta})]$$

where the value for q_t is the appropriate t quantile for a given confidence level (conventionally 95%).

• As a rule of thumb, in a sample of $N \ge 50$, we can assume $q_t \approx 2$ at 95% confidence level. So the confidence interval is:

$$(\hat{\beta} - 2 \times se(\hat{\beta}), \hat{\beta} + 2 \times se(\hat{\beta}))$$

• If 0 is included in the CI, $\hat{\beta}$ is statistically insignificant at the given level; otherwise, significant.

Deciding Statistical Significance: T-Score Test

- Another way to test significance is a two-tailed t-score test (we get a non-zero estimate simply by chance).
- It is expressed as

$$H_0$$
: $\beta = 0$,

$$H_1:\beta\neq 0$$
,

where H_0 is the null hypothesis (we get a our non-zero estimated value simply by chance) and H_1 is the alternative hypothesis.

• Like all other statistical tests, we gain confidence in H_1 by falsifying H_0 .

Deciding Statistical Significance: T-Score Test

• In light of our null hypothesis, we calculate a t statistic in which β^* is set equal to 0:

$$t(df = n - k) = \frac{\hat{\beta} - \beta^*}{\operatorname{se}(\hat{\beta})}.$$

- *k* is the number of effect parameters (including the intercept) and *df* stands for degree of freedom.
- The t with the chosen df will correspond to a probability, which tells us how likely we observe something as extreme or more extreme as what we find in our data if the true β were 0.
- If this probability is sufficiently low (conventionally lower than 5%), we are confident in rejecting H_0 and believing $\hat{\beta}$.

Preparing for Transition to Generalized Linear Model

- Generalized linear model (GLM) is an extension of linear model (LM).
- In LM, we have

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
 probability density of Y $g(\mu) = \mu = \mathbf{X}\boldsymbol{\beta}$ link function $E(Y) = \mu = g^{-1}(\mathbf{X}\boldsymbol{\beta})$ mean function

• In other words, we do not need a special link function $g(\cdot)$ to travel between μ and $X\beta$ in LM.

Transition to GLM

- The probability distribution of Y becomes much flexible:
 - binary outcomes: whether to vote
 - count outcomes: number of protests
 - ordered categorical outcomes: high, medium, or low income
 - unordered categorical outcomes: White, African American, etc.
 - duration outcomes: incumbency of the president
- In GLM, a context-specific $g(\cdot)$ needs to be invented to seamlessly connect μ to $\mathbf{X}\boldsymbol{\beta}$.

$$Y \sim f(\mu, \eta)$$
 probability density of Y $g(\mu) = X\beta$ link function $\mu = g^{-1}(X\beta)$ mean function

Common GLMs in a Nutshell

Common distributions with typical uses and canonical link functions

Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X} oldsymbol{eta} = g(\mu)$	Mean function
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}\boldsymbol{\beta} = \mu$	$\mu = \mathbf{X}\boldsymbol{\beta}$
Exponential	real: $(0,+\infty)$	Exponential-response data, scale parameters	Negative inverse	$\mathbf{X}\boldsymbol{eta} = -\mu^{-1}$	$\mu = -(\mathbf{X}\boldsymbol{\beta})^{-1}$
Gamma					
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}\boldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$
Poisson	integer: $0,1,2,\ldots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}\boldsymbol{eta})$
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence	Logit	$\mathbf{X}\boldsymbol{\beta} = \ln\!\left(\frac{\mu}{1-\mu}\right)$	$\mu = \frac{\exp(\mathbf{X}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}\boldsymbol{\beta})} = \frac{1}{1 + \exp(-\mathbf{X}\boldsymbol{\beta})}$
Binomial	integer: $0,1,\ldots,N$	count of # of "yes" occurrences out of N yes/no occurrences			
Categorical	integer: $[0,K)$	outcome of single K-way occurrence			
	K-vector of integer: $[0,1]$, where exactly one element in the vector has the value 1				
Multinomial	$ extit{ iny K-vector of integer: } [0,N]$	count of occurrences of different types (1 K) out of N total K-way occurrences			

https://en.wikipedia.org/wiki/Generalized_linear_model = 9

What Comes Next?

- Linear regression analysis in R (this week)
- Theoretical foundations for model estimation (next week)
- Maximum likelihood estimation as the mainstream method for estimating GLM (next week)