CS 6501 Natural Language Processing

Sequence Labeling (I)

Yangfeng Ji

September 12, 2018

Department of Computer Science University of Virginia

Overview

- 1. Problem Formulation
- 2. Sequential Modeling
- 3. Viterbi Decoding
- 4. Parameter Estimation
- 5. Applications

Problem Formulation

Part of Speech (POS)

- A way to categorize words with similar grammatical properties
- Common English POS tags
 - NOUN: used to name persons, things, animals, places etc.
 - e.g., Tom Hanks, yesterday, Grounds
 - VERB: show an action or state e.g., fight, was
 - PRONOUN: replacement of nouns e.g., she, his, it, theirs
 - ADJECTIVE: used to describe a noun or a pronoun e.g., large, beautiful

Part of Speech (II)

- Common English POS tags (cont.)
 - ► ADVERB: used to describe adjectives, verbs, or another adverb
 - e.g., gracefully, yesterday, very
 - PREPOSITION: specify location or a location in time e.g., above, near, since
 - conjunction: join words, phrases, or clauses together e.g., and, for
 - ► INTERJECTION: convey strong emotions e.g., Ouch, Hey

POS Tagging

Example

Teacher Strikes Idle Children

- Teacher_{Noun} Strikes_{Noun} Idle_{Verb} Children_{Noun}
- ► Teacher_{Noun} Strikes_{Verb} Idle_{Adj} Children_{Noun}

[Eisenstein, 2018, Chap 8]

Goal

From a training set, to learn a mapping f,

$$f: x \to y \tag{1}$$

where

- x: a sentence
- \triangleright *y*: the POS tag sequence of *x*

Sequence Labeling as Classification

$$f: x \to y \tag{2}$$

For example

- \triangleright x: entire sentence
- ▶ *y*: entire sequence
- ightharpoonup P(y|x)

Example

Teacher_{Noun} Strikes_{Verb} Idle_{Adj} Children_{Noun}

Sequence Labeling as Classification

$$f: x \to y \tag{2}$$

For example

- ► *x*: only one token
- \triangleright *y*: only the corresponding tag
- $ightharpoonup P(y_i|x_i)$

Example

Teacher_{Noun} Strikes_{Verb} Idle_{Adj} Children_{Noun}

Sequence Labeling as Classification

Example

The trash can is in the garage

- ightharpoonup f: logistic regression
- x: the target token (e.g., can) and its surroundings (e.g., trash, is)
 - ► MODAL VERB: can be
 - NOUN
- ▶ y: the corresponding tag

Sequential Decision

Example

they can fish

- they_{Pronoun} can_{Modal_Verb} fish_{Verb}
- they_{Pronoun} can_{Verb} fish_{Noun}

[Eisenstein, 2018]

Sequential Decision

Example

they can fish

- they_{Pronoun} can_{Modal_Verb} fish_{Verb}
- they_{Pronoun} can_{Verb} fish_{Noun}

The dependency between $\{y_i\}$

[Eisenstein, 2018]

Sequential Modeling

Generative Models

- \triangleright observation x
- ► target variable *y*

$$P(x, y) = P(x|y) \cdot P(y)$$
(3)

Inference: Bayes rule

$$P(y|x) = \frac{P(x|y) \cdot P(y)}{P(x)} \tag{4}$$

P(y)

$$P(x, y) = P(x|y) \cdot P(y)$$
 (5)

P(y)

$$P(x, y) = P(x|y) \cdot P(y)$$
 (5)

Factorization

$$P(y) = \prod_{i=1} \underbrace{P(y_i|y_{i-1})}_{\text{Transition probability, Markov chain}} \tag{6}$$

Graphical model

P(x|y)

$$P(x, y) = P(x|y) \cdot P(y)$$
 (7)

P(x|y)

$$P(x, y) = P(x|y) \cdot P(y) \tag{7}$$

Factorization

$$P(x|y) = \prod_{i=1} \underbrace{P(x_i|y_i)}_{\text{Emission probability}}$$
(8)

Graphical model

Hidden Markov Models

$$P(x, y) = \prod_{i=1} \left\{ P(y_i|y_{i-1})P(x_i|y_i) \right\}$$
 (9)

Graphical model

- ➤ *x*: observation (e.g., sentences)
- ▶ *y*: hidden variables (e.g., POS sequences)

Viterbi Decoding

Formulation

$$\hat{y} = \arg\max_{y} P(x, y) \tag{10}$$

Formulation

$$\hat{y} = \arg\max_{y} P(x, y) \tag{10}$$

Dependency

$$P(x, y) = \prod_{i=1} \left\{ P(y_i|y_{i-1})P(x_i|y_i) \right\}$$
 (11)

The value of y_i depends on

- \triangleright y_{i-1} via $P(y_i|y_{i-1})$
- \triangleright y_{i+1} via $P(y_{i+1}|y_i)$
- $ightharpoonup x_i \text{ via } P(x_i|y_i)$

START and STOP

Graphical model

Factorization

Factorize P(x, y) with respect to (x_i, y_i)

$$P(x, y) = P(x_{\leq i-1}, y_{\leq i-1}) \cdot P(x_i, y_i | y_{\leq i-1}) \cdot P(x_{\geq i+1}, y_{\geq i+1} | y_i)$$

$$= P(x_{\leq i-1}, y_{\leq i-1}) \cdot P(x_i | y_i) \cdot P(y_i | y_{i-1})$$

$$\cdot P(x_{\geq i+1}, y_{\geq i+1} | y_i)$$

Factorization

Factorize P(x, y) with respect to (x_i, y_i)

$$P(x, y) = P(x_{\leq i-1}, y_{\leq i-1}) \cdot P(x_i, y_i | y_{\leq i-1}) \cdot P(x_{\geq i+1}, y_{\geq i+1} | y_i)$$

$$= P(x_{\leq i-1}, y_{\leq i-1}) \cdot P(x_i | y_i) \cdot P(y_i | y_{i-1})$$

$$\cdot P(x_{\geq i+1}, y_{\geq i+1} | y_i)$$

Three components

$$\underbrace{P(x_{\leq i-1}, y_{\leq i-1})}_{\text{past}} \cdot \underbrace{P(x_i|y_i) \cdot P(y_i|y_{i-1})}_{\text{present}} \cdot \underbrace{P(x_{\geq i+1}, y_{\geq i+1}|y_i)}_{\text{future}}$$
(12)

Basic Idea of Decoding

Three components

$$\underbrace{P(x_{\leq i-1}, y_{\leq i-1})}_{\text{past}} \cdot \underbrace{P(x_i|y_i) \cdot P(y_i|y_{i-1})}_{\text{present}} \cdot \underbrace{P(x_{\geq i+1}, y_{\geq i+1}|y_i)}_{\text{future}}$$
(13)

- ► Forward enumerating:
 - Start from y_1 , for every possible value of y_i , from the best path from y_{i-1}
 - $ightharpoonup \arg \max_{y_{i-1}} P(x_{\leq i-1}, y_{\leq i-1}) \cdot P(x_i|y_i) \cdot P(y_i|y_{i-1})$
 - ▶ Depends on past and present states $\{y_{\leq i}\}$

Basic Idea of Decoding

Three components

$$\underbrace{P(x_{\leq i-1}, y_{\leq i-1})}_{\text{past}} \cdot \underbrace{P(x_i|y_i) \cdot P(y_i|y_{i-1})}_{\text{present}} \cdot \underbrace{P(x_{\geq i+1}, y_{\geq i+1}|y_i)}_{\text{future}}$$
(13)

- ► Forward enumerating:
 - Start from y_1 , for every possible value of y_i , from the best path from y_{i-1}
 - ► $arg \max_{y_{i-1}} P(x_{\leq i-1}, y_{\leq i-1}) \cdot P(x_i|y_i) \cdot P(y_i|y_{i-1})$
 - ▶ Depends on past and present states $\{y_{\leq i}\}$
- Backward tracing:
 - ▶ Start from y_T = STOP, for a given y_{i+1} find the best y_i
 - ▶ Depends on future states $y_{\geq i+1}$

A Few More Notations

- \triangleright v_{i-1} : score function associated with the past states
- \triangleright s_i : score function associated with the present state

From

$$\arg \max_{y_{i-1}} P(x_{\leq i-1}, y_{\leq i-1}) \cdot P(x_i|y_i) \cdot P(y_i|y_{i-1})$$

to

$$\arg \max_{y_{i-1}} s_i(y_i, y_{i-1}) + v_{i-1}(y_{i-1})$$

Example (I)

Example (II)

Viterbi Algorithm

Algorithm 11 The Viterbi algorithm. Each $s_m(k,k')$ is a local score for tag $y_m=k$ and $y_{m-1}=k'$.

```
\begin{split} & \text{for } k \in \{0, \dots K\} \text{ do} \\ & v_1(k) = s_1(k, \lozenge) \\ & \text{for } m \in \{2, \dots, M\} \text{ do} \\ & \text{ for } k \in \{0, \dots, K\} \text{ do} \\ & v_m(k) = \max_{k'} s_m(k, k') + v_{m-1}(k') \\ & b_m(k) = \operatorname{argmax}_{k'} s_m(k, k') + v_{m-1}(k') \\ & y_M = \operatorname{argmax}_k s_{M+1}(\blacklozenge, k) + v_M(k) \\ & \text{ for } m \in \{M-1, \dots 1\} \text{ do} \\ & y_m = b_m(y_{m+1}) \\ & \text{ return } y_{1:M} \end{split}
```

[Eisenstein, 2018]

Example (III)

	they	can	fish
N	-2	-3	-3
V	-10	-1	-3

	N	V	♦
\Diamond	-1	-2	$-\infty$
N	-3	-1	-1
V	-1	-3	-1

- (a) Emission scores (b) Transition scores
 - fish

can

Complexity

- ► *T*: sentence length
- ► *K*: possible tags

- $ightharpoonup T \cdot K$ slots on trellis
- ► *K* computations for each slot

Therefore, total time complexity is $O(TK^2)$

Parameter Estimation

Training Corpus

$$P(x_i|y_i) = ?$$

 $P(y_i|y_{i-1}) = ?$ (14)

Training corpus

- they_{PRON} can_{VERB} fish_{NOUN}
- teacher_{NOUN} strikes_{VERB} idle_{ADJ} children_{NOUN}
- **.** . . .

MLE

Transition probability

$$P(y_i|y_{i-1}) \approx \frac{c(y_i, y_{i-1})}{c(y_{i-1})}$$
 (15)

Emission probability

$$P(x_i|y_i) \approx \frac{c(x_i, y_i)}{c(y_i)} \tag{16}$$

Applications

Parts of Speech

- "Open classes"
 - Nouns
 - Verbs
 - Adjectives
 - Adverbs
 - Numbers
- "Closed classes"
 - Modal verbs
 - ► Prepositions (e.g., on, to)
 - Particles (e.g., off, up)
 - ▶ Determiners (e.g., the, some)
 - Pronouns (e.g., she, they)
 - ► Conjunctions (e.g., and, or)

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

45 taggs, about 40 pages of guidelines [Marcus et al., 1993]

Why We Need POS?

- Disambiguation
 - ► they_{PRP} can_{MD} fish_{VB}

Why We Need POS?

- Disambiguation
 - they_{PRP} can_{MD} fish_{VB}
- Basic component for syntactic parsing

Why We Need POS?

- Disambiguation
 - they_{PRP} can_{MD} fish_{VB}
- Basic component for syntactic parsing

- Word prediction in speech recognition
 - Personal pronouns (I, you, he) are likely to be followed by verbs

Example

Atlantis touched down at Kennedy Space Center

Example

Example

Tag set

- ▶ B: beginning
- ► I: inside
- O: outside

Example

 $\hbox{[Atlantis]}_{MSIC} \hbox{ touched down at [Kennedy Space } \\ \hbox{Center]}_{LOC}$

Tag set

- ▶ B: beginning
- ► I: inside
- O: outside

Summary

- Sequence labeling problems
 - Part-of-Speech tagging
 - Named entity recognition
- Viterbi decoding
- Parameter estimation

Reference

Eisenstein, J. (2018). Natural Language Processing. MIT Press.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated corpus of english: The penn treebank. *Computational linguistics*, 19(2):313–330.

Smith, N. A. (2018). Natural language processing: Lecture notes.