Sample Answer Lab12: χ^2 -Test and Kernel Density

Handout date: Wednesday, November 20, 2019

Due date: Wednesday, December 4, 2019 at the beginning of the lecture as hardcopy

This lab counts 4 % toward your total grade

Objectives: In this lab you practice the χ^2 -test under different scenarios and generate spatial kernel density maps.

Task 1: Impact of Cell Counts [1 point]

Below you find two 2×3 cross-tabulations of the variables "R" and "C". You can do the calculations with \P by entering these tables as matrices into \P .

Table A

Table B

[a] For each table calculate the *expected probabilities* under the assumption independence between both variables' "R" and "C". Round the probabilities up to 3 significant digits.

	C1	C2	C3
R1	0.166	0.179	0.193
R2	0.142	0.154	0. 166

	C1	C2	C3
R1	0.166	0.179	0.193
R2	0.142	0.154	0. 166

Table A

Table B

[b] For each table calculate their χ^2 -test statistics and their associated p-values.

```
(mx1 <- matrix (c (9,3,7,6,5,9), nrow=2, ncol=3))
(chi1 <- chisq.test(mx1))

X-squared = 4.0128, df = 2, p-value = 0.1345

(mx2 <- matrix(c(18,6,14,12,10,18), nrow=2, ncol=3))
( chi1 <- chisq.test(mx2) )

X-squared = 8.0255, df = 2, p-value = 0.01808</pre>
```

[c] Interpret the magnitude of the χ^2 -test statistics and their associated p-values in the light that the counts in Table B are just twice as large as in Table A.

Given identical cross-tabulation probabilities, the χ^2 -test statistics is sensitive to the sample size. As the sample size doubles so does the χ^2 -test statistics. Thus, while the degrees of freedom remain constant,

a χ^2 -test statistics for larger samples will become significant and rejects the independence null hypothesis

Task 2: Violation of Assumptions and Recovery [1 point]

An instructor of an undergraduate statistics class is interested if there is a gender bias in the grade distribution in her class. The final grades by gender are

You may enter this table as matrix into <a>
.

[a] Specify a proper *null hypothesis* and its associated alternative hypothesis.

H₀: Grades is nothing related with gender. H_0 : $\pi_{grade|male} = \pi_{grade|female} \ \ \forall \ grades$

H₁: Grades would vary from gender. H_1 : $\pi_{grade|male} \neq \pi_{grade|female}$ for at least one grade

[b] Perform the χ^2 -test at the error probability $\alpha=0.05$.

```
(mx3 <- matrix(c(6,17,10,3,2,7,12,6,2,2), nrow=5, ncol=2))
(chi3 <- chisq.test(mx3) )
X-squared = 0.94713, df = 4, p-value = 0.9177</pre>
```

Tips: usually we put class as the row and compared datasets as column. [c] What assumptions for the χ^2 -test are not satisfied.

Because p-value is larger than 0.05, so we fail to reject the null hypothesis.

Expected:

```
Female Male
[1,] 7.373134 5.626866
[2,] 16.447761 12.552239
[3,] 9.074627 6.925373
[4,] 2.835821 2.164179
[5,] 2.268657 1.731343
```

[d] Explain how you could change the cross-tabulation to bring it into agreement with the assumptions. Re-enter the modified cross-tabulation.

 χ^2 -test require expected cell frequencies are larger than 5, so we could aggregate class C D F together as a class with poor grade, so the table would as follow:

	Good grade	Fair grade	Poor grade
Female	6	17	15

Male	7	12	10
	l *		

```
(mx4 <- matrix(c(6,17,15,7,12,10), nrow=3, ncol=2))
( chi1 <- chisq.test(mx4) )
X-squared = 0.74345, df = 2, p-value = 0.6895</pre>
```

[e] Perform another χ^2 -test on the modified cross-tabulation and interpret its outcome with regards to the instructor's concerns about a gender bias in the course grades.

```
( chi1 <- chisq.test(mx4) )
X-squared = 0.74345, df = 2, p-value = 0.6895</pre>
```

Again, we fail to reject the null hypothesis.

Task 3: Goodness of Fit χ^2 -Test [1 point]

In Task 1 of Lab10 you calculated the distribution of the grid-cell counts and evaluated the expected counts assuming the data would follow a Poisson-distribution.

[a] Formulate the null hypothesis and the alternative hypothesis whether the observed distribution of grid cell counts follows a Poisson distribution.

H0: The overserved data follow Poisson distribution (No variance exists)

H1: The overserved data do not follow Poisson distribution.

[b] Calculate the goodness of fit χ^2 -test statistic and its p-value. Make sure that the underlying assumptions are satisfied. Justify any aggregation of classes.

Raw:

	Prob	Observed	Expected
0	0.04978707	0	0.796593
1	0.1493612	4	2.389779
2	0.2240418	2	3.584669
3	0.2240418	5	3.584669
4	0.1680314	3	2.688502
5	0.1008188	0	1.613101
6	0.05040941	1	0.806551
7+	0.03350854	1	0.536137

Aggerated:

	Observed	Expected
<=2	6	6.77
= 3	5	3.58

The test statistic is $\chi^2 = \sum_{i=1}^k z_i^2$ with $z_i^2 = \frac{(f_i - F_i)^2}{F_i}$

$$\chi^2 = \frac{(6 - 6.77)^2}{6.77} + \frac{(5 - 3.58)^2}{3.58} + \frac{(5 - 5.64)^2}{5.64}$$
$$= 0.7234419$$

pchisq(q = 0.7234419, df = 1, lower.tail=FALSE)

0.3950172

[c] Explain what degrees of freedom you needed to use.

Degrees of freedom = 3 (for the number of classes) – 1 (for the estimated intensity λ) – 1 (so the observed number of counts match the expected number of counts)= 1

Task 4: Spatial Kernel Density and Bandwidth [1 point]

You already worked with kernel densities in the univariate setting in Task 4 of LabO3. Now you will apply kernel densities in a spatial setting. Go to the "User guides, package vignettes and other documentation" in the package **DallasTracts** and open the **R-code**. Copy the code into RStudio's editor and run the code up to line 148.

Generate and show the kernel density maps using the code in lines 142-148 with bandwidths of 2000, 4000 and 8000 meters. Hint: the bandwidth is set with the **sigma**-parameter.

Which is the most appropriate bandwidth describing the spatial coverage of the grocery stores in Dallas County?

The bandwidths with $\sigma = 4000$ meters is the best displays the spatial distribution of the grocery stores.

The bandwidths with $\sigma = 2000$ meters is too fragmented.

The bandwidths with $\sigma=8000$ meters over-smooths the distribution of stores and makes it almost homogeneous throughout Dallas county.