Paper Title

Jaouhara Chanchaf UM6P

ABSTRACT

300 word description of the project

PVLDB Reference Format:

Jaouhara Chanchaf and Karima Echihabi. Paper Title, 15(10): XXX-XXX, 2022.

doi:XX.XX/XXX.XX

1 INTRODUCTION

• Use case 1: Keyword Query

A data scientist wants to retrieve datasets with information related to Biomass Power Companies. Initially, The user decides to start the search with a keyword-query $Q_{0,0} = (\{\text{"biomass"}, \text{"power"}, \text{"companies"}\}, k = 10)$. The search engine returns thirty datasets but none seem relevant to the user. To retrieve more results the user decides to run the same query and increase k, $Q_{0,1} = (\{\text{"biomass"}, \text{"power"}, \text{"companies"}\}, k = 20)$. After the second attempt the search engine returns Table 1 (at position #31) which contains data about biomass power plants per company. The user decides to keep Table 1 and continue to search for other relevant tables.

• Use case 2: Join Query Table 1 is relevant to $Q_{0,1}$ as it contains a list of biomass power plants, their location and capacity in Mega-Watt. However the user wants to include other information related to the prime mover of each plant, its status (operational or not), its start date etc. For that the user selects a set of plants based in California, and perform a join query on the "Plant" column in Table 1 to explore other tables that may complement Table 1 with more information.

To avoid running the join query multiple times, the user chooses a high k value at the expense of query time. $Q_{1,0} = (\sigma_{Location="\%CA\%"}(\text{Table 1})$, Join column: "Plant", k=100). The search engine returned 381 results. After skimming through the list of result, the user finds Table 2 at position #121. Table 2 can be joined with Table 1 on column "Plant name".

Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.

doi:XX.XX/XXX.XX

Karima Echihabi UM6P

Because the user has no prior knowledge of the total dataset size nor the optimal k value to retrieve relevant results in the least time possible, the user chooses k values randomly until he/she finds a relevant table.

In use case 2 the user is unaware that the same result could be retrieved at position #5 with k = 10.

Due to a large number of results, It is also possible that the user does not notice the desired result and decides to further increase k. For example, suppose that in use case 2 the user did not notice the result at position #121 and decided to submit $Q_{1,1} = (\sigma_{Location="\%CA\%"}(\text{Table 1})$, Join column: "Plant", k = 200). The search engine will return 755 results, and Table 2 would be at position #235.

2 DEFINITIONS AND TERMINOLOGY

Dataset Discovery.

Keyword and Join Queries.

Incremental Query Answering.

3 SYSTEM ARCHITECTURE

4 DEMONSTRATION

ACKNOWLEDGMENTS

We sincerely thank X, Y and Z.

REFERENCES

- K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim. The Lernaean Hydra of Data Series Similarity Search: An Experimental Evaluation of the State of the Art. PVLDB, 12(2), 2018.
- [2] PhDComics. Graduate Student Work Output. https://phdcomics.com/comics/archive.php?comicid=124, 2022.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International License. Visit

https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this license. For any use beyond those covered by this license, obtain permission by emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights licensed to the VLDB Endowment

Company	Plant	Location	Feedstock	Capacity (MW)	
Wheelabrator Technologies Inc.	Wheelabrator Shasta Energy Co. Inc.	Anderson - CA	Logging and Mill Residue/Ag Residue	50	
Greenleaf Power LLC	Desert View	Mecca - CA	Ag Residue/Urban Wood Waste	47	
Greenleaf Power LLC	Honey Lake	Wendel - CA	Mill and Logging Residue/Forest Thinning/Urban Woodwaste	30	
Covanta	Covanta Delano	Delano - CA	Orchard and Vineyard Prunings/Nut Shells/Stone Fruit Pits	58	

Table 1: U.S. Biomass Power Plants

Category	Plant ID	Plant Name	Unit	Status	Start Date	Retire Date	Prime mover ID	Prime Mover Description	Capacity	net MWh
Е	E0027	Desert View Power (Mecca Plant)	GEN1	OP	1991/11/1	-	ST	Steam Tur- bine	54.15	351291
Е	E0041	HL Power Company (Honey Lake)	GEN 1	OP	1989/7/26	-	ST	Steam Tur- bine	35.5	200712
Е	E0029	Covanta Delano, Inc	Delano 1-2	OP	1990/6/12	-	ST	Steam Tur- bine	58	322731
Е	E0086	Wheelabrator Shasta	Units 1-3	OP	1987/1/1	-	ST	Steam Tur- bine	54.9	405628
•••				•••						

Table 2: Annual Generation - Plant Unit