вариант	ф.	номер	група	поток	курс	от	предишна	година?
${f A}$								
Име:								

Второ контролно по ИС (теория), 16.01.16

Зад 1. а) Формулирайте S_n^m -теоремата за m=3 и n=1. б) Докажете, че съществува рекурсивна функция h, такава че за всички естествени числа a,b,c:

$$\varphi_{h(a,b,c)}(x) \simeq ax^2 + bx + c$$

за всяко $x \in N$.

- ${f 2}$ зад. Да означим с ${\cal F}_n$ съвкупността на всички n-местни частични функциии в N.
- а) Дефинирайте универсална функция за даден клас $\mathcal{K}\subseteq F_2.$
- б) Нека U е универсална функция за класа $\mathcal{P}r_1$ на всички едноместни примитивно рекурсивни функции. Докажете, че U не може да е примитивно рекурсивна.

Зад 3. а) Формулирайте Втората теорема за рекурсия. 6) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a=\varphi_{2a}$.

вариант	ф.	номер	група	поток	курс	от	предишна	година?
A								
Име:								

Второ контролно по ИС (теория), 16.01.16

Зад 1. а) Формулирайте S_n^m -теоремата за m=3 и n=1. б) Докажете, че съществува рекурсивна функция h, такава че за всички естествени числа a,b,c:

$$\varphi_{h(a,b,c)}(x) \simeq ax^2 + bx + c$$

за всяко $x \in N$.

- **2 зад.** Да означим с \mathcal{F}_n съвкупността на всички n-местни частични функциии в N.
- а) Дефинирайте универсална функция за даден клас $\mathcal{K}\subseteq F_2$.
- б) Нека U е универсална функция за класа $\mathcal{P}r_1$ на всички едноместни примитивно рекурсивни функции. Докажете, че U не може да е примитивно рекурсивна.

Зад 3. а) Формулирайте Втората теорема за рекурсия. 6) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a=\varphi_{2a}$.

вариант	ф.	номер	група	поток	курс	от	предишна	година?
A								
Име:								

Второ контролно по ИС (теория), 16.01.16

Зад 1. а) Формулирайте S_n^m -теоремата за m=3 и n=1. б) Докажете, че съществува рекурсивна функция h, такава че за всички естествени числа a,b,c:

$$\varphi_{h(a,b,c)}(x) \simeq ax^2 + bx + c$$

за всяко $x \in N$.

- **2 зад.** Да означим с \mathcal{F}_n съвкупността на всички n-местни частични функциии в N.
- а) Дефинирайте универсална функция за даден клас $\mathcal{K}\subseteq F_2$.
- б) Нека U е универсална функция за класа $\mathcal{P}r_1$ на всички едноместни примитивно рекурсивни функции. Докажете, че U не може да е примитивно рекурсивна.

Зад 3. а) Формулирайте Втората теорема за рекурсия. б) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a=\varphi_{2a}$.

вариант	ф.	номер	група	поток	курс	от	предишна	година?
\mathbf{B}								
Име:								

Второ контролно по ИС (теория), 16.01.16

 ${f 3}$ ад ${f 1}.$ а) Формулирайте S_n^m -теоремата за m=1 и n=2. 6) Докажете, че съществува рекурсивна функция h, такава че за всяко естествено число k:

$$\varphi_{h(k)}^{(2)}(x,y) \simeq kxy$$

за всички $x,y \in N$.

- **2 зад.** Да означим с \mathcal{F}_n съвкупността на всички n-местни частични функциии в N.
- а) Дефинирайте универсална функция за даден клас $\mathcal{K} \subseteq F_3$.
- б) Докажете, че класът \mathcal{R}_1 на всички едноместни рекурсивни функции няма универсална функция.

Зад 3. а) Формулирайте теоремата за определимост по рекурсия.

б) Докажете, че съществува поне едно естествено число a, такова че φ_a е функцията ax^2 .

вариант	ф.	номер	група	поток	курс	от	предишна	година?
В								
Име:								

Второ контролно по ИС (теория), 16.01.16

Зад 1. а) Формулирайте S_n^m -теоремата за m=1 и n=2. б) Докажете, че съществува рекурсивна функция h, такава че за всяко естествено число k:

$$\varphi_{h(k)}^{(2)}(x,y) \simeq kxy$$

за всички $x, y \in N$.

- ${\bf 2}$ зад. Да означим с ${\cal F}_n$ съвкупността на всички $n\textsubscript{\text{-Mecthu}}$ частични функциии в N.
- а) Дефинирайте универсална функция за даден клас $\mathcal{K}\subseteq F_3.$
- б) Докажете, че класът \mathcal{R}_1 на всички едноместни рекурсивни функции няма универсална функция.

 ${\bf 3aд}\ {\bf 3.}\ {\bf a})$ Формулирайте теоремата за определимост по рекурсия.

б) Докажете, че съществува поне едно естествено число a, такова че φ_a е функцията ax^2 .

вариант	ф.	номер	група	поток	курс	от	предишна	година?
В								
Име:								

Второ контролно по ИС (теория), 16.01.16

Зад 1. а) Формулирайте S_n^m -теоремата за m=1 и n=2. б) Докажете, че съществува рекурсивна функция h, такава че за всяко естествено число k:

$$\varphi_{h(k)}^{(2)}(x,y) \simeq kxy$$

за всички $x, y \in N$.

- **2 зад.** Да означим с \mathcal{F}_n съвкупността на всички n-местни частични функциии в N.
- а) Дефинирайте универсална функция за даден клас $\mathcal{K}\subseteq F_3.$
- б) Докажете, че класът \mathcal{R}_1 на всички едноместни рекурсивни функции няма универсална функция.

Зад 3. а) Формулирайте теоремата за определимост по рекурсия.

б) Докажете, че съществува поне едно естествено число a, такова че φ_a е функцията ax^2 .