ENEL 476 – Assignment #2 W2020

Due on Wednesday March 5 at 5 pm in D2L Dropbox

1. The electric field of a uniform plane wave is given by:

$$E_s(z)=10e^{j0.2z} a_v V/m.$$

If the phase velocity of the wave is 1.5×10^8 m/s and the relative permeability of the medium is μ_r =2.4, find the following:

- wavelength (λ)
- frequency (f)
- relative permittivity (ε_r)
- magnetic field (H(z,t)).
- 2. Dry soil is characterized by ε_r =2.5, μ_r =1 and σ =10⁻⁴ S/m. At each of the following frequencies, determine if soil may be considered a good conductor, then calculate α , β , λ , η and v_p (phase velocity).
 - 60 Hz
 - 1 MHz
 - 1 GHz
- 3. The electric field of a UPW propagating in a non-magnetic (μ_r =1) medium is given by:

$$E(x,t)=25 e^{-30x} \cos (2\pi x \cdot 10^9 t - 40x) a_z V/m$$

Find $\mathbf{H}(x,t)$.

- 4. You are investigating monitoring hydration with microwave sensors placed in contact with the arm. The field in the arm (incident field) is modeled as a uniform plane wave propagating in tissue (ϵ_r =40, μ_r =1, σ =0.9 S/m). The frequency of operation is 2.45 GHz. The electric field amplitude in the arm (tissue) and adjacent to the transmitting sensor is 15 V/m. The electric field is oriented in the –x direction and propagates in the z direction.
 - a) Is the tissue a good conductor?
 - b) Calculate the attenuation constant, α .
 - c) Calculate the phase constant, β .
 - d) Calculate the intrinsic impedance, η.
 - e) Find an expression for the electric field (E(z,t)).
 - f) Find an expression for the magnetic field (H(z,t)).
 - g) Calculate the time-averaged Poynting vector in the tissue ($\mathbf{P}_{av}(z)$). If the wave travels 7 cm through the tissues, by how much is the power density reduced?