CS 544 Final Project

Adults Census Income

Tzupin Kuo

U36-17-2777

Introduction – Adults Census Income

Topic:

An individual's annual income results from various factors. Intuitively, it is influenced by the individual's education level, age, gender, occupation, and etc.

Source From:

https://www.kaggle.com/uciml/adult-census-income

Acknowledgement:

This data was extracted from the 1994 Census bureau database by Ronny Kohavi and Barry Becker (UCI machine learning repository)

Introduction

15 Attributes

```
Continuous - age, fnlwgt(final weight), educational_num, capital.gain, capital.loss, hours.per.week
```

Categorical - occupation, relationship, race, gender, native.country, workclass, education, marital.status

Class - Income (1. >50K 2. <=50K)

Imputing the missing values

The missing values contribute much to this attribute workclass

> sort(table(adult\$	workclass))					
Never-worked 10 Self-emp-not-inc 3862	Without-pay 21 Private 33906	Federal-gov 1432	Self-emp-inc 1695	State-gov 1981	? 2799	Local-gov 3136

Imputing the missing values makes the attribute occupation biased towards the upper end

sort(table(adult	Soccupation))						
Armed-Forces 15 Sales 5504	Priv-house-serv 242 Adm-clerical 5611	983	1446	Farming-fishing Handlers-cleaners 1490 2077 Prof-specialty 6172	10.00	? Machine-op-inspct 2809 3022	Other-service 4923

Imputing the missing values

native.country has the third maximum and lower end is much low compared to missing values

ing-US(Guam-USVI-et	Laos Outlyi	Scotland	Honduras	Hungary	Holand-Netherlands
	23	21	20	⁻ 19	1
Irela	Thailand	Hong	Cambodia	Trinadad&Tobago	Yugoslavia
	30	30	28	27	23
Ir	Nicaragua	Greece	Peru	Ecuador	France
	49	49	46	4.5	38
Pola	Vietnam	Columbia	Haiti	Portugal	Taiwan
	86	85	75	67	65
Sou	Jamaica	Italy	Dominican-Republic	Japan	Guatemala
1	106	105	103	92	88
Cana	El-Salvador	India	Cuba	England	China
1	155	151	138	127	122
United-Stat	Mexico		Philippines	Germany	Puerto-Rico
438	951	857	295	206	184

Removing the missing values

Because we found out that imputing missing values is not the best option, we need to remove the rows of data of those missing values.

Final cleaned dataset has 45,222

- class(income <= 50K) has 34,013 (75.21%) (original: 37,155)
- class(income >50K) has 11,208 (24.79%) (original: 11,687)

Analysis – Age vs Income

Age ranges from 17 - 90

Analysis – Gender vs Income

Male

<= 50 K : 20,988 > 50 K : 9,539

Female

<= 50 K : 13,026 > 50 K : 1,669

Male vs Female Income

People who earned > 50K per year and received education up to high school

People who earned > 50K per year and received education after high school

People who earned <= 50K per year and received education up to high school

People who earned <= 50K per year and received education after high school

High School Graduate Variation Analysis

High School Graduate Variation

Analysis – Years of Education vs Income

Green: Income >50K

Red: Income <=50K

Analysis – Hours/Week vs Income

Analysis – Final Weights

- > Main predictor of the class
- Most values are in the lower end
- Need to split the set into upper/lower

Boxplot for FinalWeight

Analysis – Final Weights

Distribution of the values in this attribute is wide-spread

Central Limit Theorem

> Distribution of Means for various sample size

Central Limit Theorem

Mean and Standard Deviation of the samples

Sample size increases

- The mean of samples are around the population mean
- The standard deviation of samples decreases

Sample sizes

Population standard deviation:

Sample sizes

Sampling

Sampling results

```
unique(adult$native.country) # All conuntries taken by the po
 [1] "United-States"
                                    "Peru"
                                                                   'Guatemala"
                                                                                                 "Mexico"
                                                                                                                                "Dominican-Republic"
[6] "Ireland"
                                    "Germany"
                                                                   "Philippines"
                                                                                                 "Thailand"
                                                                                                                                "Haiti"
[11] "El-Salvador"
                                    "Puerto-Rico"
                                                                   "Vietnam'
                                                                                                 "South"
                                                                                                                                "Columbia"
[16] "Japan"
                                    "India"
                                                                  "Cambodia"
                                                                                                 "Poland"
                                                                                                                                "Laos"
[21] "England"
                                   "Cuba"
                                                                   "Taiwan"
                                                                                                 "Italy"
                                                                                                                                "Canada"
[26] "Portugal"
                                    "China"
                                                                                                 "Hondur as"
                                                                   "Nicaragua"
                                                                                                                                "Iran"
[31] "Scotland"
                                   "Jamaica"
                                                                  "Ecuador"
                                                                                                 "Yugoslavia"
                                                                                                                                "Hungary"
[36] "Hona"
                                   "Greece"
                                                                  "Trinadad&Tobago"
                                                                                                 "Outlying-US(Guam-USVI-etc)" "France"
[41] "Holand-Netherlands"
> length(unique(adult$native.country)) # the number of all countries, which is 41
[1] 41
```

```
> nrow(table(adult.srs.w.rep$native.country))
[1] 40
> nrow(table(adult.srs.wo.rep$native.country))
[1] 40
> nrow(table(adult.sys$native.country))
[1] 40
> nrow(table(adult.sys.unequal$native.country))
[1] 38
> nrow(table(adult.strata$native.country))
[1] 41
```

Stratified sampling effectively picked up the samples with all 41 countries included

Confidence Intervals

Confidence Intervals - 80% & 90%

Population Mean falls inside the Confidence Intervals

Population Mean: 189734.7

```
Sample.size : 5
80% confidence intervals = 93168.6 - 214111.4
80% confidence intervals = 193268.8 - 314211.6
80% confidence intervals = 275804.6 - 396747.4
Sample.size: 10
80% confidence intervals = 104354.3 - 189873.7
80% confidence intervals = 140879.1 - 226398.5
80% confidence intervals = 137640.6 - 223160
Sample.size : 50
80% confidence intervals = 168829.3 - 207074.8
80% confidence intervals = 178119.7 - 216365.2
80% confidence intervals = 191721.9 - 229967.4
Sample.size: 100
80% confidence intervals = 169269.3 - 196312.9
80% confidence intervals = 189430.8 - 216474.4
80% confidence intervals = 180042 - 207085.7
Sample.size: 200
80% confidence intervals = 182669.5 - 201792.2
80% confidence intervals = 183368.9 - 202491.6
80% confidence intervals = 174512.3 - 193635
Sample.size : 500
80% confidence intervals = 181294.1 - 193388.4
80% confidence intervals = 188696.8 - 200791.1
80% confidence intervals = 183644.2 - 195738.5
```

```
Sample.size : 5
90% confidence intervals = 174330 - 329760.4
90% confidence intervals = 143400.2 - 298830.6
90% confidence intervals = 75647.2 - 231077.6
Sample.size : 10
90% confidence intervals = 97273.75 - 207179.6
90% confidence intervals = 138113.6 - 248019.4
90% confidence intervals = 140349.2 - 250255
Sample.size: 50
90% confidence intervals = 156566.8 - 205718.2
90% confidence intervals = 168660.6 - 217812
90% confidence intervals = 155145.9 - 204297.3
Sample.size: 100
90% confidence intervals = 175087.4 - 209842.7
90% confidence intervals = 166754.7 - 201510
90% confidence intervals = 180906.4 - 215661.7
Sample.size: 200
90% confidence intervals = 190176.6 - 214752.3
90% confidence intervals = 181088.6 - 205664.3
90% confidence intervals = 185063.6 - 209639.3
Sample.size: 500
90% confidence intervals = 178699.3 - 194242.3
90% confidence intervals = 179941.4 - 195484.5
90% confidence intervals = 174830.2 - 190373.2
```

Confidence Intervals

Graph for CI Limits

CS 544

Thank You

Foundations of Analytics

Final Project

Dataset: Adult Census Income

Student: Tzupin Kuo

StudentID: U36-17-2777

