Voie_Lactee

- 1 La différence de magnitude apparente entre les séquences principales de deux amas d'étoiles, dans un diagramme couleur-magnitude, nous
 - A indique le degré d'évolution des amas
 - B dit s'il s'agit d'amas ouverts ou globulaires
 - C donne l'âge relatif des deux amas
 - D donne la distance relative des deux amas
- 2 Les amas d'étoiles sont utiles parce qu'ils contiennent des étoiles qui
 - A ont toutes à peu près le même âge
 - B couvrent un grand éventail d'âges
 - C sont toutes à peu près au même stage d'évolution
 - D ont toutes à peu près le même âge et la même distance
- 3 La raison principale pour laquelle des étoiles d'un amas ont des apparences différentes est
 - A leur couleur
 - B leur rayon
 - C leur masse
 - D leur composition chimique
 - E leur température
- 4 Les étoiles jeunes contiennent plus de "métaux" que les vieilles étoiles parce qu'elles
 - A sont plus chaudes
 - B sont plus massives
 - C n'ont pas utilisé autant leurs métaux pour produire de l'énergie
 - D se sont formées à partir de gas contenant déjà des métaux produits par les vieilles étoiles
- 5 La meilleure façon de mesurer la masse de notre Galaxie est de
 - A compter le nombre d'étoiles dans le ciel
 - B compter le nombre d'amas dans le ciel
 - C compter le nombre d'étoiles chaudes et massives de la séquence principale
 - D mesurer la quantité d'hydrogène interstellaire
 - E de mesurer la courbe de rotation de la Galaxie

Voie_Lactee

- 6 Par rapport aux étoiles du disque comme le Soleil, les étoiles du halo de la Galaxie se sont formées
 - A plus tôt, ce qui leur a permis d'accumuler plus d'éléments lourds
 - B plus tard, ce qui fait qu'elles ont épuisé leurs éléments lourds
 - C plus tôt, à partir de matériel presque primordial, et donc moins riche en éléments lourds
 - D plus tard, ce qui leur a permis d'accumuler plus d'éléments lourds
- 7 La raison principale pour laquelle on ne trouve pas d'étoiles O massives dans le halo Galactique est que ces étoiles
 - A sont trop massives pour être éjectées dans le halo à partir du disque
 - B sont tellement massives qu'elles "s'installent" dans le disque mince
 - C ont une durée de vie trop courte pour avoir persisté dans le halo jusqu'à aujourd'hui
 - D sont plus près de nous dans le disque que dans un halo étendu