Task: Price Range vs. Online Delivery and Table Booking

3.3.1 Analyze if there is a relationship between the price range and the availability of online delivery and table booking.

```
In [1]: import pandas as pd
    data = pd.read_csv(r"C:\Users\HP\OneDrive\Documents\Cognifyz Internship Program\Dataset.
    data
```

:		Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longi
-	0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.02
	1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.01
	2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri- La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.05
	3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.05
	4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.05
	9546	5915730	Naml) Gurme	208	��stanbul	Kemanke�� Karamustafa Pa��a Mahallesi, R\ht\m	Karak ∳ _y	Karak�_y, ��stanbul	28.97
	9547	5908749	Ceviz A��ac۱	208	��stanbul	Ko��uyolu Mahallesi, Muhittin ��st�_nda�� Cadd	Ko �� uyolu	Ko��uyolu, ��stanbul	29.04
	9548	5915807	Huqqa	208	��stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru�_e��me	Kuru�_e��me, ��stanbul	29.03
	9549	5916112	A���k Kahve	208	��stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru�_e��me	Kuru�_e��me, ��stanbul	29.03
	9550	5927402	Walter's Coffee Roastery	208	��stanbul	Cafea��a Mahallesi, Bademalt\ Sokak, No 21/B,	Moda	Moda, ��stanbul	29.02

9551 rows × 21 columns

```
In [18]: # Create columns for price range, delivery availability, and booking availability
In [2]: data['Price range'] = pd.to_numeric(data['Price range'], errors='coerce')
In [3]: data['Price range']
```

```
0
                     3
    Out[3]:
                     3
             2
                     4
             3
                     4
                     4
             9546
                     3
             9547
                     3
             9548
                     4
             9549
                     4
             9550
                     2
             Name: Price range, Length: 9551, dtype: int64
    In [9]:
             data['PriceRange'] = pd.cut(data['Price range'], bins=[0, 1, 2, 3, 4, 5], labels=['$','$
             data['PriceRange']
   In [10]:
                      $$$
   Out[10]:
                      $$$
                     $$$$
             2
             3
                     $$$$
             4
                     $$$$
             9546
                      $$$
             9547
                      $$$
             9548
                     $$$$
             9549
                     $$$$
             9550
                        $$
             Name: PriceRange, Length: 9551, dtype: category
             Categories (5, object): ['$' < '$$' < '$$$' < '$$$$' < '$$$$']
   In [11]: data['Delivery'] = data['Has Online delivery'].map({True:1, False:0})
             data['Delivery']
   In [12]:
                    NaN
   Out[12]:
             1
                    NaN
             2
                    NaN
             3
                    NaN
             4
                    NaN
                     . .
             9546
                    NaN
             9547
                    NaN
             9548
                    NaN
             9549
                    NaN
             9550
                    NaN
             Name: Delivery, Length: 9551, dtype: float64
   In [13]:
             data['Booking'] = data['Has Table booking'].map({True:1, False:0})
   In [14]:
             data['Booking']
             0
                    NaN
  Out[14]:
             1
                    NaN
             2
                    NaN
             3
                    NaN
             4
                    NaN
                     . .
             9546
                    NaN
             9547
                    NaN
             9548
                    NaN
             9549
                    NaN
             9550
                    NaN
                            Length: 9551, dtype: float64
Loading [MathJax]/extensions/Safe.js
```

```
In [ ]: # Analyze correlations
In [15]:
         print(data[['PriceRange', 'Delivery', 'Booking']].corr())
                   Delivery
                             Booking
         Delivery
                        NaN
                                  NaN
                                  NaN
         Booking
                        NaN
         # ANOVA test for difference in means of delivery availability by price range and booking
In [ ]: |
In [16]:
         import scipy.stats as stats
         stats.f_oneway(data[data['PriceRange']=='$']['Delivery'],
                         data[data['PriceRange']=='$$']['Delivery'],
                         data[data['PriceRange']=='$$$']['Delivery'],
                         data[data['PriceRange']=='$$$$']['Delivery'])
         F_onewayResult(statistic=nan, pvalue=nan)
Out[16]:
In [17]:
         import scipy.stats as stats
         stats.f_oneway(data[data['PriceRange']=='$']['Booking'],
                         data[data['PriceRange']=='$$']['Booking'],
                         data[data['PriceRange']=='$$$']['Booking'],
                         data[data['PriceRange']=='$$$$']['Booking'])
         F_onewayResult(statistic=nan, pvalue=nan)
Out[17]:
```

3.3.2 Determine if higher-priced restaurants are more likely to offer these services.

```
In [21]: # Create price buckets
          price_buckets = [0, 20, 40, 60, 80, 100]
          data['PriceRange'] = pd.cut(data['Price range'], bins=price_buckets)
In [22]: data['PriceRange']
                  (0, 20]
Out[22]:
                  (0, 20]
                  (0, 20]
         3
                  (0, 20]
                  (0, 20]
         9546
                  (0, 20]
         9547
                  (0, 20]
         9548
                  (0, 20]
         9549
                  (0, 20]
                  (0, 20]
         9550
         Name: PriceRange, Length: 9551, dtype: category
         Categories (5, interval[int64, right]): [(0, 20] < (20, 40] < (40, 60] < (60, 80] < (80, 60)
         100]]
In [23]:
         # Create columns for delivery and booking
          data['Delivery'] = data['Has Online delivery'].map({True:1, False:0})
          data['Booking'] = data['Has Table booking'].map({True:1, False:0})
         data['Delivery']
In [24]:
```

```
0
                 NaN
Out[24]:
                 NaN
          2
                 NaN
          3
                 NaN
          4
                 NaN
                  . .
          9546
                 NaN
          9547
                 NaN
          9548
                 NaN
          9549
                 NaN
          9550
                 NaN
          Name: Delivery, Length: 9551, dtype: float64
In [25]:
          data['Booking']
                 NaN
Out[25]:
                 NaN
          2
                 NaN
          3
                 NaN
          4
                 NaN
                  . .
          9546
                 NaN
          9547
                 NaN
          9548
                 NaN
          9549
                 NaN
          9550
                 NaN
          Name: Booking, Length: 9551, dtype: float64
          # Groupby price range and get mean of delivery and booking
In [26]:
          means = data.groupby('PriceRange')[['Delivery', 'Booking']].mean()
In [27]:
          means
Out[27]:
                     Delivery Booking
          PriceRange
              (0, 20]
                        NaN
                                NaN
             (20, 40]
                                NaN
                        NaN
             (40, 60]
                        NaN
                                NaN
             (60, 80]
                        NaN
                                NaN
            (80, 100]
                        NaN
                                NaN
In [28]: # Plot the means
          import matplotlib.pyplot as plt
          means.plot(kind='bar')
          plt.title('Availability by Price Range')
          plt.ylabel('Mean Availability')
          Text(0, 0.5, 'Mean Availability')
Out[28]:
```

Availability by Price Range


```
In [29]:
         from scipy.stats import f_oneway
         f_oneway(data[data['PriceRange']==(0, 20)]['Delivery'],
In [31]:
                   data[data['PriceRange']==(20, 40)]['Delivery'],
                   data[data['PriceRange']==(40, 60)]['Delivery'])
         C:\Users\HP\anaconda3\lib\site-packages\scipy\stats\_stats_py.py:3869: DegenerateDataWar
         ning: at least one input has length 0
           warnings.warn(stats.DegenerateDataWarning('at least one input '
         F_onewayResult(statistic=nan, pvalue=nan)
Out[31]:
In [32]:
         f_oneway(data[data['PriceRange']==(0, 20)]['Booking'],
                  data[data['PriceRange']==(20, 40)]['Booking'],
                  data[data['PriceRange']==(40, 60)]['Booking'])
         F_onewayResult(statistic=nan, pvalue=nan)
Out[32]:
 In [
```