

KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

Magspektroszkópiai gyakorlatok

Katona Dávid

Mérőtársak: Máthé Marcell, Olar Alex

Mérés dátuma: 2018. 04. 05.

Tartalomjegyzék

1.	A m	iérés c	élja									2
2.	Elm	életi h	áttér									2
	2.1.	Gamm	na-spektroszkópia									2
			pektroszkópia									2
3.	Mér	őberer	ndezések									3
	3.1.	Gamm	na-spektroszkópia									3
			pektroszkópia									4
4.	Mérési eredmények 4											
	4.1.	Gamm	na-spektroszkópia									4
			Kalibráció ¹³⁷ Cs és ⁶⁰ Co spektrum felvételével									4
			⁴⁰ K aktivitása NaCl és KCl mintában									7
	4.2.		pektroszkópia									9
			Kezdeti kalibráció									9
		4.2.2.	40=									9
		4.2.3.	00									
		_	Háttér									13
		-·-· ··			•		•	•	•	•	•	

1. A mérés célja

A mérés cél
ja $^{137}\mathrm{Cs}$ és $^{60}\mathrm{Co}$ $\gamma\text{-spektrumának felvétele szcintillációs és félvezető$ detektorral, a γ -fotonok energiáinak ismeretében a csatornaszám-energia összefüggés megadása (kalibráció), valamint NaCl és KCl mintákban lévő ⁴⁰K relatív aktivitásának meghatározása.

A mérés további célja 137 Cs és 90 Sr β -spektrumának felvétele szcintillációs detektorral. Itt a kalibrációt a $^{137}\mathrm{Cs}$ spektrumában detektálható konverziós elektron mérésével végezzük.

2. Elméleti háttér

2.1. Gamma-spektroszkópia

A γ -bomlás során az atommag energiáját egy foton formájában sugározza ki, melynek energiája megfelel az atommag két állapota közti energiakülönbségnek. A kisugárzott foton detektálásában három folyamat játszik szerepet, amellyel a γ -foton kölcsönhat a detektor anyagával. Ezek: i.) fotoeffektus ii.) Compton szórás és iii.) párkeltés.

A fotoeffektus során a foton teljes energiáját átadja egy erősen kötött elektronnak. Ennek valószínűsége Z^5 -nel arányos. A kilökést követő Röntgen-sugárzás nagy valószínűséggel elnyelődik a szcintillációs kristályban, további elektronkilökődést eredményezve, így a γ -foton teljes energiája a kristályban elnyelődik.

A Compton-szórás során rugalmatlan szórást szenved a foton, az energiaátadás szögfüggő, így folytonos spektrumot (Compton-hát) eredményez, melynek határozott maximuma van (Compton-él, 180deg-os visszaszórás). Valószínűsége Z-vel egyenesen arányos. A spektrumban megjelenhet a detektoron kívüli anyagról visszaszórt, majd a detektorba belépő fotonok energiája is.

Egy 1022keV feletti energiájú foton pozitron-elektron párt kelthet, azonban 1.4MeVfeletti energiákon válik dominánsá. Calószínűsége Z^2 -tel arányos. Az elektron és a pozitron kinetikus energiáját leadja, majd a pozitron annihilálódik, így két γ -foton keletkezik. Összességében E - 511keV vagy E - 1022keV energiát ad át a detektornak.

2.2. Béta-spektroszkópia

Háromféle gyenge kölcsönhatással járó átmenet létezik: i.) β^+ ii.) β^- és iii.) elektronbefogás (1. egyenlet).

$$p^{+} = n + e^{+} + \nu \tag{1a}$$

$$n = p^{+} + e^{-} + \bar{\nu} \tag{1b}$$

$$n = p^{+} + e^{-} + \bar{\nu}$$

$$p^{+} + e^{-} = n + \nu$$
(1b)
(1c)

Az egyenletekből látható, hogy β -bomlás során az elektron/pozitron mellett antineutrínó/neutrínó is keletkezik, amely energiát és impulzust visz el. Ezáltal az elektron/pozitron energiaspektruma folytonos. Ennek eloszlását írja le a 2. egyenlet, ahol p az impulzus, E az elektron energiája, m_e a nyugalmi tömege, E_m az átmenet energiája, F(Z, E) a Fermi-függvény, $S_n(E)$ a tiltottságot figyelembe vevő korrekció.

$$N^{\pm}(E) = Kp(E + m_e c^2)(E_m - E)^2 F^{\pm}(Z, E) S_n(E)$$
(2)

Bevezetve $W := E/(m_ec^2) + 1$, $W_m := E_m/(m_ec^2) + 1$ mennyiségeket, valamint G = pF/W módosított Fermi-függvényt, feltételezve $S_n(E)$ állandóságát, a kifejezés átalakítható úgy, hogy a W függvényében egyenest kapjunk (Fermi-Curie-egyenes, 3. egyenlet), melyről leolvasható az energiaszintek közti különbség.

$$\sqrt{\frac{N}{GW^2}} = K'(W_m - W) \tag{3}$$

3. Mérőberendezések

3.1. Gamma-spektroszkópia

A γ -spektroszkópiai méréseket kétféle detektorral végezzük. Először szcintillációs detektorral viszgáljuk a γ -spektrumot. Ebben egy NaI(Tl) kristály van, amely a Tl magas rendszáma miatt nagy valószínűséggel nyeli el a γ -fotonokat, valamint a NaI kristály jó szcintillációs tulajdonságokkal bír. A sugárzás hatására kék felvillanások keletkeznek, melyek a fotokatódba csapódva fotoeffektussal elektronokat löknek ki. Ezt a fotoelektron-sokszorozó detektálható jellé erősíti. A méréshez használt detektor¹:

Gamma gyártmányú, ND-305/g típusú, 80049 gyári számú mérőfej, gamma szcintillátorral, nagyfeszültség: NB 215.2 1000 V.

A mérőlánc: a rack jobb szélén lévő, Canberra gyártmányú, 2012 típusú spektroszkópiaia erősítő; negatív bemeneti polaritás, $(4 \cdot 6.0)$ erősítés, unip. kimenet.

Az analizátor: Atomki gyártmányú, PalmtopMCA típusú 512 csatornás analizátor.

A spektrumot ezután félvezető detektorral is megmértük, ehhez nagy tisztaságú germánium detektort (HPGe) használtunk. A nagy tisztaságú félvezetőben alacsony nagyon kevés szabad töltéshordozó van. Ionizáló sugárzás hatására az energiával arányos mennyiségű szabad töltéshordozó keletkezik, amely mérhető jelet eredményez az elektródákon.

Ennek beállításai²:

A Debrecenből - javításként kapott - PalmtopMCA mérésbe állítása:

Tc 241:

10.7,0 erősítés, + bemenet, P/z állás, unipol. kimenet. Így a teteje 3,78 MeV 935 ADC:

10 V, inp. bemenet;

- néha vannak 6 V-os, "levágott fejű" impulzusok
- threshold: 40 ch
- peaking time: 13 us (20->13); pocsék p/z-vel

¹http://atomfizika.elte.hu/muszerek/MSP/MSP beall 01.html

²http://atomfizika.elte.hu/muszerek/hpge/beall20150916.txt

3.2. Béta-spektroszkópia

 β -spektroszkópia során szintén szcintillációs detektort alkalmazunk. A szcintilláló anyag kis rendszámú, amely a kis áthatolóképeségű β -sugárzáshoz előnyösebb, a γ -sugárzás nem zavar jelentős mértékben a magas kitevőjű Z-függés miatt. Ennek beállításai³:

Detektor: Gamma gyártmányú, ND-319/g típusú, 92020 gyári számú mérőfej, béta szcintillátorral.

Mérőlánc: 1/10-es frekvenciakompenzált feszültségosztó; Canberra gyártmányú, 2012 típusú spektroszkópiaia erősítő; negatív bemeneti polaritás, $(8\cdot 6.0)$ erősítés, unip. kimenet

Analizátor: Atomki gyártmányú, PalmtopMCA analizátor; 10 V-os bemenet, 512 csatorna.

4. Mérési eredmények

4.1. Gamma-spektroszkópia

4.1.1. Kalibráció ¹³⁷Cs és ⁶⁰Co spektrum felvételével

 $^{137}\mathrm{Cs}$ és $^{60}\mathrm{Co}$ szcintillációs detektorral regisztrált $\gamma\text{-spektrumát}$ mutatja az 1. ábra. A mérési idő 400s volt.

1. ábra. $^{137}\mathrm{Cs}$ és $^{60}\mathrm{Co}$ szcintillációs detektorral regisztrált $\gamma\text{-spektruma}$

³http://atomfizika.elte.hu/muszerek/BET/BET beall 01.html

csúcs	A	μ	σ	В
137 Cs (662 keV , szci.)	884 ± 21	87.95 ± 0.08	5.477 ± 0.19	613 ± 23
60 Co (1173 keV , szci.)	270 ± 33	154.3 ± 0.3	7.05 ± 0.90	310 ± 35
60 Co (1333 keV , szci.)	66.3 ± 17.3	172.9 ± 0.6	2.37 ± 0.88	369 ± 14
137 Cs (662 keV , HPGe)	76.1 ± 3.1	715.4 ± 0.04	0.840 ± 0.05	1.38 ± 1.27
⁶⁰ Co (1173keV, HPGe)	79.95 ± 1.46	1267.88 ± 0.02	0.884 ± 0.019	1.05 ± 0.45
60 Co (1333 keV , HPGe)	75.7 ± 0.7	1440.19 ± 0.01	0.881 ± 0.01	-0.05 ± 0.19
NaCl	25.5 ± 3.1	190 ± 1	10.6 ± 1.9	4.35 ± 24
KCl	56.8 ± 5.2	191.2 ± 0.4	7.19 ± 0.92	15.8 ± 5.6

1. táblázat. Az illesztett Gauss-görbék pataméterei

A spektrumon három csúcs látható, melyek energiái: Cs: 662keV, Co: 1173keV, 1333keV. A csúcsokra mérőtársam $f(x) = Ae^{-\frac{(x-\mu)^2}{2\sigma^2}} + B$ alakú Gauss-görbéket illesztett, melyek közepeire az ismert energiák fügvényében egyenest illesztett (2. ábra). $E = A \cdot x + B$ kalibrációs egyenes paraméterei: $A = (7.85 \pm 0.16)keV$, $B = (-30 \pm 23)keV$.

2. ábra. Kalibrációs egyenes szcintillációs gamma-detektorra

A detektor felbontása a 60 Co 1333keV-os csúcsának félértékszélessége alapján: $\Delta=2.36\cdot\sigma=2.36\cdot(18.6\pm7.0)keV=(43.8\pm16.5)keV$. A nagy bizonytalanság a rövid mérési időnek tudható be.

A HPGe detektorral felvett $^{137}\mathrm{Cs}$ és $^{60}\mathrm{Co}$ $\gamma\text{-spektrum látható a 3. ábrán.}$

3. ábra. 137 Cs és 60 Co HPGe detektorral regisztrált γ -spektruma

Látható, hogy a csúcsok félértékszélessége jóval kisebb a szcintillációs detektorhoz viszonyítva, azaz az energiafelbontás sokkal jobb. A csúcsok helyét az előzőekhez hasonlóan Gauss-illesztéssel határozta meg mérőtársam. Az illszetett kalibrációs egyenes látható a 4. ábrán. A kalibrációs egyenes paraméterei: $A=(0.9256\pm0.0007)keV$, $B=(-0.23\pm0.81)keV$. A detektor felbontása a $^{60}\mathrm{Co}$ 1333keV-os csúcsának félértékszélessége alapján: $\Delta=2.36\cdot\sigma=2.36\cdot(0.816\pm0.011)keV=(1.93\pm0.03)keV$. Látható, hogy a HPGe detektor energiafelbontása 23-szor jobb a szcintillációs detektoréhoz képest.

4. ábra. Kalibrációs egyenes HPGe gamma-detektorra

4.1.2. $^{40}\mathrm{K}$ aktivitása NaCl és KCl mintában

NaCl minta γ -spektrumát vettük fel 1200 s hosszan, melyet az 5. ábra mutat.

5. ábra. NaCl spektruma. A $^{40}\mathrm{K\text{-}cs\acute{u}cs}$ 1500keV-nál látható

Ezután felvettük KCl spektrumát is 600 s hosszan, melyet a 6. ábra mutat.

6. ábra. KCl spektruma. A $^{40}\mathrm{K\text{-}csúcs}$ 1500keV-nál látható

A relatív intenzitások meghatározásához a csúcsokra mérőtársam Gauss-görbét illesztett, melyek integráljainak arányából (amely arányos $A\sigma$ -val) megkapható az aktivitások aránya (az eltérő mérési idő miatt ezt egy 2-es faktorral korrigálni kell).

$$\frac{dN_{KCl}/dt}{dN_{NaCl}/dt} = \frac{2A_{KCl} \cdot \sigma_{KCl}}{A_{NaCl} \cdot \sigma_{NaCl}} = 3.02 \pm 0.08 \tag{4}$$

4.2. Béta-spektroszkópia

4.2.1. Kezdeti kalibráció

A kalibrációt 137 Cs konverziós elektronjainak energiájával végezzük (630 keV), feltételezve, hogy a küszöbcsatornához tartozó energia 1 keV. Így a két pontra egyenest illesztve kapjuk a kalibrációs összefüggést, melynek egyenlete: E(x) = (10.64x - 138.32)keV.

4.2.2. ¹³⁷Cs béta-spektruma

A 137 Cs spektrumát mutatja a 7. ábra. A 3. egyenlet szerint eltranszformált spektrumot mutatja a 8. ábra. Egyenest a (74.48-383.04)keV (W:1.1457-1.7496) tartományra illesztettük, melyen $r^2=0.9906$ volt. Az illesztett egyenes (y=mx+c) paraméterei: $m=-54.7\pm1.1$, $c=1.99\pm0.07$, melyből $E_{max}=(504\pm18)keV$.

7. ábra. $^{137}\mathrm{Cs}~\beta\text{-spektruma}.$ A konverziós elektron csúcsával kalibráltuk a műszert.

8. ábra. $^{137}\mathrm{Cs}$ eltranszformált $\beta\text{-spektruma}$

4.2.3. ⁹⁰Sr béta-spektruma

A 90 Sr spektrumát a 9. ábra mutatja, az előzőek szerint transzformált spektrum pedig a 10. ábrán látható. Egyenest a (808.64-1979.04)keV~(W:2.5824-4.8782)tartományra illesztettük. Az illesztett egyenes (y=mx+c) paraméterei: $m=-6.66\pm0.12,~c=5.56\pm0.22,$ melyből $E_{max}=(2330\pm93)keV$.

9. ábra. $^{90}{\rm Sr}~\beta\text{-spektruma}.$ A konverziós elektron csúcsával kalibráltuk a műszert.

10. ábra. $^{90}\mathrm{Sr}$ eltranszformált $\beta\text{-spektruma}$

Az irodalmi értékek legjobb megközelítésével a kalibráció finomítható. Az így kapott kalibrációs összefüggés: E(x)=(13.95x-181.35)keV.

4.2.4. Háttér

10 órás háttérmérés eredménye látható a 11. ábrán. Ezt a mérés során azért nem kell levonni, mert a mérés időtartama alatt a háttérből eredő hiba a mérés időtartamára (300s) átszámolva kisebb, mint a beütések statisztikus hibája (\sqrt{N}) .

11. ábra. Háttér 10 órás mérése