Analys Problem 7

Robin Boregrim

November 26, 2017

Innehållsförteckning

1	Uppgiften	2
2	Lösning	2
	2.1 Svar	4

1 Uppgiften

Beräkna dubbelintegralen

$$\iint_D \sin(\sqrt{x^2 + y^2}) \ dxdy$$

där Där det område som bestäms av olikheterna 0 < y < x och $\pi^2 < x^2 + y^2 < 4\pi^2.$

2 Lösning

För att lätare lösa problemet så gör vi ett variabel byte till polära koordinater. Vi vill då få en dubbelintegral som beror på variablerna roch θ där

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ x = r\sin\theta \\ y = r\cos\theta \end{cases}$$

Vi skriver om dubbelintegralen med de nya variablerna

$$\iint_{D} \sin(\sqrt{x^2 + y^2}) \ dxdy = \iint_{E} \sin(r)r \ drd\theta.$$

Sen behöver vi beräkna gränerna för dessa variabler. Gränserna för r kan beräknas på följande sätt

$$\pi^2 < x^2 + y^2 < 4\pi^2 \Leftrightarrow$$

$$\pi^2 < r^2 < 4\pi^2 \Leftrightarrow$$

$$\pi < r < 2\pi$$

Eftersom att r är roten av summan av två kvadrater behöver vi inte ta hänsyn till några negativa värden för r.

Gränserna till θ kan beräknas igenom att observera olikheten

$$0 < y < x$$
.

Där kan vi se att y är begränsad av kurvorna y = 0 och y = x.

Vinkeln för y=x är $\frac{\pi}{4},$ detta betyder att gränserna för θ är

$$0 < \theta < \frac{\pi}{4}.$$

Vi kan nu beräkna dubbel integralen.

$$\iint_{E} \sin(r)r \ dr d\theta =$$

$$\int_{\pi}^{2\pi} \left(\int_{0}^{\frac{\pi}{4}} \sin(r)r \ d\theta \right) dr =$$

$$\int_{\pi}^{2\pi} \sin(r)r \left(\int_{0}^{\frac{\pi}{4}} 1 \ d\theta \right) dr =$$

$$\int_{\pi}^{2\pi} \sin(r)r \left(\left[\theta \right]_{0}^{\frac{\pi}{4}} \right) dr =$$

$$\int_{\pi}^{2\pi} \sin(r)r \left(\frac{\pi}{4} \right) dr =$$

$$\frac{\pi}{4} \int_{\pi}^{2\pi} \sin(r)r \ dr =$$

$$\frac{\pi}{4} \left(\left[-\cos(r)r \right]_{\pi}^{2\pi} - \int_{\pi}^{2\pi} -\cos(r) \ dr \right) =$$

$$\frac{\pi}{4} \left(-\cos(2\pi)2\pi + \cos(\pi)\pi - \left[-\sin(r) \right]_{\pi}^{2\pi} \right) =$$

$$\frac{\pi}{4} \left(-2\pi - \pi + \sin(2\pi) - \sin(\pi) \right) =$$

$$\frac{\pi}{4} \left(-3\pi + 0 - 0 \right) =$$

$$-\frac{3\pi^2}{4}.$$

2.1 Svar

$$\iint_{D} \sin(\sqrt{x^2 + y^2}) \ dx dy = -\frac{3\pi^2}{4}.$$