LISTING OF CLAIMS:

1	1.	(Currently Amended) Apparatus for automatically dispensing a fluid comprising:
2		a) a container adapted to carry a supply of fluid;
3		b) a valve connected to said container, wherein actuation of said valve
4		dispenses the fluid;
5		c) an apparatus position indicator proximally associated with said container;
6		d) an object sensor positioned near said valve, wherein said object sensor
7		monitors an area below where said valve dispenses, wherein upon detection
8		of an object, said valve dispenses the fluid; and
9		e) wherein [[the]] during initial positioning of the apparatus in an area,
10		activates said apparatus position indicator, such that said apparatus position
11		indicator generates provides an appropriate signal until said indication
12		when said object sensor is properly positioned in said area.
1	2.	(Previously Presented) The apparatus according to Claim 1, wherein said apparatus
2		position indicator includes at least one illumination device that illuminates when said
3		object sensor is properly positioned in said area.
1	3.	(Previously Presented) The apparatus according to Claim 1, wherein said apparatus
2		position indicator includes at least one illumination device that illuminates until said
3		object sensor is properly positioned in said area.
1	4.	(Currently Amended) A method for installing an automated fluid dispenser,
2		comprising:
3		a) providing a fluid dispenser, for carrying a container, a valve connected to
4		said container wherein actuation of said valve dispenses a fluid carried by
5		said container when installed, an apparatus position indicator carried by
6		said fluid dispenser, and an object sensor positioned near said valve carried
7		by said fluid dispenser;
8		b) connecting a power source to at least said apparatus position indicator and
9		said object sensor;
10		c) positioning said fluid dispenser in at least one prospective mounting
11		location;

12		d) emitting from said object sensor a test signal to ensure proper positioning
13		of said fluid dispenser; and
14		e) if necessary, repeating steps c) and d) until said apparatus position indicator
15		provides a positive an indication of said fluid dispenser's placement that
16		the prospective mounting location is a proper mounting location.
1	5.	(Currently Amended) The method according to Claim 4, further comprising:
2		marking a position of said fluid dispenser's positive placement proper
3		mounting location; and
4		permanently installing said fluid dispenser at said position.
1	6.	(Currently Amended) The method according to Claim [[5]] 4, further comprising:
2		installing [[said]] a container in said fluid dispenser.
1	7.	(Currently Amended) Apparatus for dispensing a measured quantity of fluid,
2		comprising:
3		a) an object sensor;
4		b) a container carrying a supply of fluid;
5		c) a dispense mechanism coupled to said container to control an amount of the
6		fluid to be dispensed;
7		d) a pump actuator mechanism coupled to said object sensor, wherein
8		detection of an object by said object sensor cycles said pump actuator
9		mechanism to engage said dispense mechanism which dispenses a
10		measured quantity of the fluid;
11		e) a processor coupled to said object sensor and said pump actuator to control
12		at least one operating feature maintained thereby; and
13		f) a hidden switch carried by [[said container]] the apparatus, wherein
14		actuation of said hidden switch places said processor in an operational
15		feature mode that enables modification of said at least one operating
16		feature.
1	8.	(Original) The apparatus accordingly to Claim 7, further comprising:
2		at least one illuminating indicia connected to said processor wherein entry into
3		said operational feature mode is indicated by said at least one illuminating indicia.

1	9.	(Original) The apparatus according to Claim 8, further comprising:
2		at least two lights, wherein said lights are sequentially illuminated to indicate
3		where an object should be placed for receipt of the fluid; and
4		wherein entry into said operational feature mode allows enablement or
5		disablement of said at least two lights.
1	10.	(Curently Amended) The apparatus according to Claim [[8]] 7, wherein entry into
2		said operational feature mode allows selection of a number of cycles of said pump
3		actuator mechanism to control an amount of dispensed fluid upon detection of an
4		object.
1	11.	(Currently Amended) The apparatus according to Claim [[8]] 7, wherein entry into
2		said operational feature mode allows selection of a size of said dispense mechanism
1	12.	(Currently Amended) The apparatus according to Claim [[8]] 7, further comprising:
2		a low level indicator connected to said processor,
3		wherein entry into said operational feature mode allows selection of a number
4		of cycles of said pump actuator mechanism to control an amount of dispensed fluid
5		upon detection of an object,
6		wherein entry into said operational feature allows selection of a size of said
7		dispense mechanism, and
8		wherein said processor calculates when the fluid in a given size of container
9		will be depleted to a predetermined level based upon said number of cycles and size
10		of said dispense mechanism.
1	13.	(Currently Amended) The apparatus according to Claim [[8]] 7, further comprising:
2		a timer connected to said processor, said timer initiated upon actuation of said
3		hidden switch to allow for servicing of the apparatus.
1	14.	(Original) The apparatus according to Claim 13, wherein said object sensor is
2		disabled while said timer is running.

(Original) The apparatus according to Claim 14, wherein said object sensor is re-1 enabled upon either expiration of said timer or re-actuation of said hidden switch. 2 16. (Currently Amended) Apparatus for dispensing a measured quantity of fluid, 1 comprising: 2 a) a container carrying a supply of fluid; 3 b) a dispense mechanism coupled to said container to control an amount of the 4 fluid to be dispensed; 5 c) a pump actuator mechanism coupled to an object sensor, wherein detection 6 of an object by said object sensor cycles said pump actuator mechanism to 7 8 engage said dispense mechanism which dispenses a measured quantity of 9 the fluid; and 10 d) a timer having a predetermined period of time, said timer associated with 11 said dispense mechanism, said timer actuated upon dispensing of said fluid from said-dispense mechanism, wherein said dispense mechanism is 12 13 disabled if a predetermined number of dispense events occur within-said 14 predetermined period of time said timer being utilized to disable said dispense mechanism to mitigate excessive dispensing of the fluid. 15 1 17. (Currently Amended) The apparatus according to claim [[16]] 27, wherein said 2 dispense mechanism is re-enabled upon completion of a second period of time. ı (Currently Amended) The apparatus according to claim [[17]] 27, wherein said predetermined period of time is about 15 seconds and said predetermined number of 2 dispense events is about 5. 3 1 19. (Original) The apparatus according to claim 17, wherein said second period of time 2 is about 45 seconds. 20. (Canceled) 1 1 21. (Currently Amended) Apparatus for dispensing a measured quantity of fluid, comprising: 2 3 an object sensor which generates an object signal upon detection of an object; 4 a container carrying a supply of fluid; Page 6 of 11

5		a dispense mechanism coupled to said container to control an amount of the
6		fluid to be dispensed;
7		a pump actuator mechanism eoupled to said object sensor, wherein detection of
8		an object by said object sensor cycles said pump actuator mechanism to engage said
9		dispense mechanism which dispenses a measured quantity of the fluid and wherein
10		said pump actuator mechanism converts rotational motion to linear motion to cycle
11		said dispense mechanism;
12		a control circuit having a processor to receive said object signal, wherein said
13		processor generates a cycle signal received by said pump actuator mechanism to
14		actuate said dispense mechanism;
15		a motor carried by said pump actuator mechanism having a motor for cycling
16		said pump actuator mechanism, wherein a motor drive input signal is generated by
17		said processor said motor having a drive input; and
18		a motor position sensor coupled to said pump actuator mechanism to detect an
19		end of dispense cycle, said motor sensor detecting a position of said motor and
20		[[generating]] generate a brake input signal when said motor position end of
21		dispense cycle is detected;
22		wherein generation of said brake input signal connects said motor drive input
23		signal to ground to effectively brake said motor pump actuator mechanism.
1	22.	(Currently Amended) Apparatus for dispensing a measured quantity of fluid,
2		comprising:
3		an object sensor which generates an object signal upon detection of an object;
4		a container carrying a supply of fluid;
5		a dispense mechanism coupled to said container to control an amount of the
6		fluid to be dispensed;
7		a pump actuator mechanism coupled to said object sensor, wherein detection of
8		an object by said object sensor cycles said pump actuator mechanism to engage said
9		dispense mechanism which dispenses a measured quantity of the fluid and wherein
10		said pump actuator mechanism converts rotational motion to linear motion to cycle
11		said dispense mechanism;
12		a control circuit having a processor to receive said object signal, wherein said
13		processor generates a cycle signal received by said pump actuator mechanism to
14		actuate said dispense mechanism[[:]]

15 a-motor-carried by said-pump actuator-mechanism, wherein a motor-drive signal is generated by said processor to actuate said cycle signal is used to drive a 16 motor and said pump actuator mechanism; and 17 an overload circuit carried by said control circuit, wherein if said overload 18 circuit detects a voltage value in excess of a predetermined threshold, an overload 19 signal is generated and received by said processor which in turn stops generation of 20 said motor drive signal. 21 1 23. (Currently Amended) Apparatus for dispensing a measured quantity of fluid, 2 comprising: 3 an object sensor which generates an object signal upon detection of an object; 4 a container carrying a supply of fluid; a dispense mechanism coupled to said container to control an amount of the 5 fluid to be dispensed; 6 7 a pump actuator mechanism coupled to said object sensor, wherein detection of 8 an object by said object sensor cycles said pump actuator mechanism to engage said dispense mechanism which dispenses a measured quantity of the fluid and wherein 9 10 said pump actuator mechanism converts rotational motion to linear motion to cycle said dispense mechanism; and 11 a control circuit having a processor to receive said object signal, said control 12 13 circuit comprising a sensor circuit for [[carrying]] said object sensor, and a systems 14 circuit for [[carrying]] said processor, wherein said sensor circuit and said systems 15 circuit are maintained on their own respective circuit boards to minimize interference 16 therebetween, and wherein said processor generates a cycle signal received by said 17 pump actuator mechanism to actuate said dispense mechanism. 1 24. (Original) The apparatus according to said Claim 23, wherein each said respective 2 circuit board functions as a shielded backplane. 25. (Currently Amended) An apparatus for dispensing a measured quantity of fluid 1 2 comprising: a housing adapted to carry a container that carries a supply of fluid; 3 a dispense mechanism adapted to be coupled to the container to control an 4

amount of the fluid to be dispensed;

5

3

container.

an object sensor carried by said housing; 6 a pump actuator mechanism coupled to said object sensor, wherein detection of 7 an object by said object sensor cycles said pump actuator mechanism to engage said 8 dispense mechanism which dispenses a measured quantity of the fluid, wherein said 9 pump actuator mechanism shuts down if said object sensor detects excessive use. 10 1 26. (Previously Presented) The apparatus according to claim 25, further comprising: 2 a dispense timer having a dispense time period; and a disable timer having a disable time period, wherein both said dispense timer 3 4 and said disable timer are associated with said pump actuator mechanism such that during said dispense time period if a predetermined number of dispense events are 5 detected, said pump actuator mechanism is disabled for said disable time period. 6 27. (New) The apparatus according to claim 16, wherein the dispense mechanism is 1 disabled after a predetermined time period if a predetermined number of dispense 2 events occur within said predetermined period of time. 3 1 (New) The apparatus according to claim 1, wherein said apparatus position 2 indicator provides an indication when said object sensor is properly positioned in 3 said area and a different indication when said object sensor is improperly positioned. 1 (New) The apparatus according to claim 7, wherein entry into said operational 2 feature mode allows a modification associated with a type of the fluid in said