Problem	3	5.00	5() ()	5() ()	5()()	D() ()	5() ()
step	N'	<i>D(t),p(t)</i>	D(u),p(u)	<i>D(v),p(v)</i>	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	X	∞	∞	3,x	6,x	6,x	8,x
1	XV	7,v	6,v	3,x	6,x	6,x	8,x
2	xvu	7,v	6,v	3,x	6,x	6,x	8,x
3	xvuw	7,v	6,v	3,x	6,x	6,x	8,x
4	xvuwy	7,v	6,v	3,x	6,x	6,x	8,x
5	xvuwyt	7,v	6,v	3,x	6,x	6,x	8,x
6	xvuwytz	7,v	6,v	3,x	6,x	6,x	8,x

Problem 4

a)								
	Step	N'	D(x), p(x)	<i>D(u),p(u)</i>	<i>D(v),p(v)</i>	<i>D(w),p(w)</i>	D(y),p(y)	D(z),p(z)
	0	t	∞	2,t	4,t	∞	7,t	∞
	1	tu	∞	2,t	4,t	5,u	7,t	∞
	2	tuv	7,v	2,t	4,t	5,u	7,t	∞
	3	tuvw	7,v	2,t	4,t	5,u	7,t	∞
	4	tuvwx	7,v	2,t	4,t	5,u	7,t	15,x
	5	tuvwxy	7,v	2,t	4,t	5,u	7,t	15,x
	6	tuvwxyz	7,v	2,t	4,t	5,u	7 . t	15,x

Problem 5

	Cost	Cost to				
	u	V	X	У	Z	
v	∞	∞	∞	∞	∞	
From x	∞	∞	∞	∞	∞	
Z	∞	6	2	∞	0	

		u	v	X	у	Z			
From	V X Z	1 ∞ 7	0 3 5	3 0 2	∞ 3 5	6 2 0			
	Cost to								
		u	v	X	y	Z			
From	V X Z	1 4 6	0 3 5	3 0 2	3 3 5	5 2 0			
Cost to									
		u	V	X	У	Z			
From	V X Z	1 4 6	0 3 5	3 0 2	3 3 5	5 2 0			

Problem 7

- a) Dx(w) = 2, Dx(y) = 4, Dx(u) = 7
- b) First consider what happens if c(x,y) changes. If c(x,y) becomes larger or smaller (as long as $c(x,y) \ge 1$), the least cost path from x to u will still have cost at least 7. Thus a change in c(x,y) (if $c(x,y) \ge 1$) will not cause x to inform its neighbors of any changes.

If $c(x,y) = \delta < 1$, then the least cost path now passes through y and has cost $\delta + 6$.

Now consider if c(x,w) changes. If $c(x,w) = \varepsilon \le 1$, then the least-cost path to u continues to pass through w and its cost changes to $5 + \varepsilon$; x will inform its neighbors of this new cost. If $c(x,w) = \delta > 6$, then the least cost path now passes through y and has cost 11; again x will inform its neighbors of this new cost.

c) Any change in link cost c(x,y) (and as long as c(x,y) >= 1) will not cause x to inform its neighbors of a new minimum-cost path to u.

Problem 15

- a) Il because this interface begins the least cost path from 1d towards the gateway router 1c.
- b) I2. Both routes have equal AS-PATH length but I2 begins the path that has the closest NEXT-HOP router.

c) I1. I1 begins the path that has the shortest AS-PATH.

Problem 16

One way for C to force B to hand over all of B's traffic to D on the east coast is for C to only advertise its route to D via its east coast peering point with C.

Problem 17

X's view of the topology

W's view of the topology

In the above solution, X does not know about the AC link since X does not receive an advertised route to w or to y that contain the AC link (i.e., X receives no advertisement containing both AS A and AS C on the path to a destination.