HEC 2014

Exercice avec préparation 1

1. Question de cours : Définition de l'indépendance de deux variables aléatoires discrètes. Lien entre indépendance et covariance.

Soit X et Y deux variables aléatoires discrètes finies à valeurs dans \mathbb{N} , définies sur un espace probabilisé (Ω, \mathscr{A}, P) . On suppose que $X(\Omega) \subset \llbracket 0, n \rrbracket$ et $Y(\Omega) \subset \llbracket 0, m \rrbracket$, où n et m sont deux entiers de \mathbb{N}^* .

Pour tout couple $(i,j) \in \llbracket 0,n \rrbracket \times \llbracket 0,m \rrbracket$, on pose : $p_{i,j} = \mathbb{P}([X=i] \cap [Y=j])$.

Soit F_X et F_Y les deux fonctions de $\mathbb R$ dans $\mathbb R$ définies par : $F_X(x) = \sum_{i=0}^n \mathbb P([X=i]) x^i$ et

$$F_Y(x) = \sum_{j=0}^m \mathbb{P}([Y=j])x^j.$$

Soit Z = (X, Y) et G_Z la fonction de \mathbb{R}^2 dans \mathbb{R} définie par : $G_Z(x, y) = \sum_{i=0}^n \sum_{j=0}^m p_{i,j} x^i y^j$.

- 2. Donner la valeur de $G_Z(1,1)$ et exprimer les espérances de X, Y et XY, puis la covariance de (X,Y) à l'aide des dérivées partielles premières et secondes de G_Z au point (1,1).
- 3. Soit f une fonction polynomiale de deux variables définies sur \mathbb{R}^2 par : $f(x,y) = \sum_{i=0}^n \sum_{j=0}^m a_{i,j} x^i y^j$ avec $a_{i,j} \in \mathbb{R}$.

On suppose que pour tout couple $(x, y) \in \mathbb{R}^2$, on a f(x, y) = 0.

- a) Montrer que pour tout $(i,j) \in [0,n] \times [0,m]$, on a $a_{i,j} = 0$.
- b) En déduire que X et Y sont indépendantes, si et seulement si, pour tout $(x, y) \in \mathbb{R}^2$, $G_Z(x, y) = F_X(x)F_Y(y)$. (on pourra poser : $a_{i,j} = p_{i,j} \mathbb{P}([X = i]) \mathbb{P}([Y = j])$).
- 4. Une urne contient des jetons portant chacun une des lettres A, B ou C. La proportion des jetons portant la lettre A est p, celle des jetons portant la lettre B est q et celle des jetons portant la lettre C est r, où p, q et r sont trois réels strictement positifs vérifiant p + q + r = 1.
 Soit n ∈ N*. On effectue n tirages d'un jeton avec remise dans cette urne. On note X (resp. Y) la variable aléatoire égale au nombre de jetons tirés portant la lettre A (resp. B) à l'issue de ces n
 - a) Quelles sont les lois de X et Y respectivement? Déterminer F_X et F_Y .
 - b) Déterminer la loi de Z. En déduire G_Z .
 - c) Les variables aléatoires X et Y sont-elles indépendantes?
 - d) Calculer la covariance de (X,Y). Le signe de cette covariance était-il prévisible?

Exercice sans préparation 1

Soit $n \in \mathbb{N}^*$ et A une matrice de $\mathscr{M}_n(\mathbb{R})$ telle que :

$$A^t A A^t A A = I$$

où I est la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que la matrice A est symétrique.
- 2. Déterminer A.

Exercice avec préparation 2

1. Question de cours : Définition et représentation graphique de la fonction partie entière. On note E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} et F le sous-espace vectoriel de E engendré par les quatre fonctions f_0 , f_1 , f_2 et f_3 définies par :

$$\forall x \in \mathbb{R}, \ f_0(x) = 1, \ f_1(x) = x, \ f_2(x) = e^x, \ f_3(x) = xe^x.$$

- 2. On note : $\mathscr{B} = (f_0, f_1, f_2, f_3)$.
 - a) Montrer que \mathscr{B} est une base de F.
 - b) Montrer que toutes les fonctions de F sont continues et dérivables sur \mathbb{R} .
- 3. Soit Φ l'application définie par : pour tout $f \in F$, $\Phi(f) = f'$, où f' est la dérivée de f.
 - a) Justifier que Φ est un endomorphisme de F et écrire la matrice M de Φ dans la base \mathscr{B} .
 - b) L'endomorphisme Φ est-il diagonalisable?
 - c) Montrer que f_3 appartient à $\operatorname{Im}(\Phi)$ et résoudre dans F l'équation : $\Phi(f) = f_3$.
- 4. On note G l'ensemble des fonctions g de E telles que :

$$\forall x \in \mathbb{R}, \ g(x+1) - g(x) = 0.$$

- a) Montrer que G est un sous-espace vectoriel de E et trouver $F \cap G$.
- b) Trouver un élément de G qui n'appartienne pas à F.
- 5. Trouver toutes les fonctions de F vérifiant : $\forall x \in \mathbb{R}, f(x+1-f(x)) = (e-1)f'(x)$.

Exercice sans préparation 2

Soit p un réel de]0,1[et q=1-p. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur un espace probabilisé (Ω,\mathscr{A},P) , de même loi de Bernoulli telle que : $\forall k\in\mathbb{N}^*, \mathbb{P}([X_k=1])=p$ et $\mathbb{P}([X_k=0])=q$. Pour n entier de \mathbb{N}^* , on définit pour tout $k\in[1,n]$ la variable aléatoire $Y_k=X_k+X_{k+1}$.

- 1. a) Calculer pour tout $k \in [1, n]$, $Cov(Y_k, Y_{k+1})$.
 - **b)** Montrer que $0 < \text{Cov}(Y_k, Y_{k+1}) \leqslant \frac{1}{4}$.
- 2. Calculer pour tout couple (k, l) tel que $1 \le k < l \le n$, $Cov(Y_k, Y_l)$.
- 3. On note ε un réel strictement positif fixé. Montrer que $\lim_{n\to+\infty} \mathbb{P}\left(\left[\left|\frac{1}{n}\sum_{k=1}^n Y_k 2p\right| > \varepsilon\right]\right) = 0.$

Exercice avec préparation 3

1. Question de cours : Définition de deux matrices semblables.

Soit E un espace vectoriel sur \mathbb{R} de dimension 2. On note $\mathscr{L}(E)$ l'ensemble des endomorphismes de E.

Pour toute matrice $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$, on note D et T les deux applications suivantes :

$$D: \left\{ \begin{array}{ccc} \mathscr{M}_2(\mathbb{R}) & \to & \mathbb{R} \\ A & \mapsto & ad-bc \end{array} \right. \quad \text{et} \quad T: \left\{ \begin{array}{ccc} \mathscr{M}_2(\mathbb{R}) & \to & \mathbb{R} \\ A & \mapsto & a+d \end{array} \right.$$

- 2. Soit A et B deux matrices de $\mathcal{M}_2(\mathbb{R})$.
 - a) Exprimer D(AB) en fonction de D(A) et D(B). Montrer que T(AB) = T(BA).
 - b) En déduire que si A et B sont semblables, on a D(A) = D(B) et T(A) = T(B).
- 3. Déterminer $\ker(D)$ et $\ker(T)$. Quelle est la dimension de $\ker(T)$? Dorénavant, si $u \in \ll E$ de matrice A dans une base \mathscr{B} de E, on note : D(u) = D(A) et T(u) = T(A).
- 4. On note id_E l'endomorphisme identité de E. Exprimer $u^2 = u \circ u$ en fonction de u et id_E .
- 5. Soit $u \in \mathcal{L}(E)$ et $\mathcal{S}_0 = \{v \in \mathcal{L}(E) | u \circ v v \circ u = 0\}$. Montrer que \mathcal{S}_0 est un espace vectoriel contenant $\{P(u), P \in \mathbb{R}[X]\}$.
- **6.** Soit $u \in \mathcal{L}(E)$ avec $u \neq 0$. On pose : $S = \{v \in \mathcal{L}(E) | u \circ v v \circ u = u\}$.
 - a) Montrer que si S est non vide, alors l'endomorphisme u ne peut être bijectif. En déduire une condition nécessaire et suffisante portant sur u^2 pour que S soit non vide.
 - b) On suppose que S est non vide. Établir l'existence d'une base $\mathcal{B}_1 = (e_1, e_2)$ de E dans laquelle la matrice M_u de u d'écrit $M_u = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et déterminer la forme générale de la matrice des éléments v de S dans cette même base.
 - c) On suppose que S est non vide. Montrer que $S = \{v_0 + \alpha i d_E + \beta u, \alpha, \beta \in \mathbb{R}\}$ où v_0 est un endomorphisme non inversible de E à déterminer.

Exercice sans préparation 3

Soit k et λ deux réels et soir f la fonction définie sur $\mathbb R$ à valeurs réelles donnée par :

$$f(t) = \begin{cases} kte^{-\lambda t} & \text{si } t \geqslant 0\\ 0 & \text{sinon} \end{cases}$$

- 1. Exprimer k en fonction de λ pour que f soit une densité de probabilité. On note X une variable aléatoire réelle ayant f pour densité.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, la variable aléatoire X admet un moment d'ordre n que l'on calculera.

Exercice avec préparation 4

1. Question de cours : Loi d'un couple de variables aléatoires discrètes. Lois marginales. Lois conditionnelles.

Soit c un réel strictement positif et soit X et Y deux variables aléatoires à valeurs dans $\mathbb N$ définies sur un espace probabilisé $(\Omega, \mathscr A, P)$, telles que :

$$\forall (i,j) \in \mathbb{N}^2, \ \mathbb{P}([X=i] \cap [Y=j]) = c \frac{i+j}{i!j!}.$$

- 2. a) Montrer que pour tout $i \in \mathbb{N}$, on a : $\mathbb{P}([X=i]) = c \frac{(i+1)}{i!}$ e. En déduire la valeur de c.
 - b) Montrer que X admet une espérance et une variance et les calculer.
 - c) Les variables aléatoires X et Y sont-elles indépendantes?
- 3. a) Déterminer la loi de X + Y 1.
 - b) En déduire la variance de X + Y.
 - c) Calculer la covariance de X et de X+5Y. Les variables aléatoires X et X+5Y sont-elles indépendantes?
- 4. On pose : $Z = \frac{1}{X+1}$.
 - a) Montrer que Z admet une espérance et la calculer.
 - b) Déterminer pour $i \in \mathbb{N}$, la loi conditionnelle de Y sachant [X = i].
 - c) Pour $A \in \mathcal{A}$, on pose : $g_A(Y) = \sum_{k=0}^{+\infty} k P_A([Y=k])$. Établir l'existence d'une fonction affine f telle que, pour tout $\omega \in \Omega$, on a : $g_{[X=X(\omega)]}(Y) = f(Z(\omega))$.

Exercice sans préparation 4

- 1. La somme de deux matrices diagonalisables est-elle diagonalisable?
- 2. La somme de deux matrices inversibles est-elle inversible?
- 3. Montrer que toute matrice carrée est la somme de deux matrices inversibles?

Exercice avec préparation 5

On note $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 et $\mathbb{R}_2[X]$ l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à 2.

Dans tout l'exercice, A est une matrice de $\mathcal{M}_3(\mathbb{R})$ ayant trois valeurs propres distinctes, notées λ_1 , λ_2 et λ_3 .

- 1. Question de cours : Définition d'un polynôme annulateur d'une matrice. Lien avec les valeurs propres.
- 2. a) Donner en fonction de λ_1 , λ_2 et λ_3 , un polynôme annulateur de A de degré 3.
 - b) Peut-on trouver un polynôme annulateur de A de degré 1 ou de degré 2?
- 3. Soit φ l'application de $\mathbb{R}_2[X]$ dans \mathbb{R}^3 qui à tout polynôme $P \in \mathbb{R}_2[X]$, associe le triplet $(P(\lambda_1^5), P(\lambda_2^5), P(\lambda_3^5))$.
 - a) Montrer que l'application φ est linéaire.
 - **b)** Déterminer $\ker(\varphi)$.
 - c) L'application φ est-elle un isomorphisme de $\mathbb{R}_2[X]$ sur \mathbb{R}^3 ?
 - d) Établir l'existence d'un unique polynôme $Q \in \mathbb{R}_2[X]$ tel que : pour tout $i \in [1,3]$, $Q(\lambda_i^5) = \lambda_i$.
 - e) Soit T le polynôme défini par : $T(X) = Q(X^5) X$. Montrer que le polynôme T est un polynôme annulateur de A.
- 4. On note \mathcal{E} et \mathcal{F} les deux sous-ensembles de $\mathcal{M}_3(\mathbb{R})$ suivants :

$$\mathcal{E} = \{ N \in \mathcal{M}_3(\mathbb{R}) \setminus AN = NA \} \text{ et } \mathcal{F} = \{ N \in \mathcal{M}_3(\mathbb{R}) \setminus A^5N = NA^5 \}.$$

Déduire des questions précédentes que $\mathcal{E} = \mathcal{F}$.

Exercice sans préparation 5

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) , indépendantes et de même loi exponentielle de paramètre $\lambda > 0$.

Pour $n \in \mathbb{N}^*$, on pose : $M_n = \max(X_1, \dots, X_n)$ et on admet que M_n est une variable aléatoire définie sur (Ω, \mathcal{A}, P) .

- 1. Déterminer la loi de M_n .
- 2. Montrer que l'application g qui à tout réel x associe $g(x) = e^{-x} \exp(-e^{-x})$ est une densité de probabilité.
- 3. Soit Y une variable aléatoire définie sur (Ω, \mathcal{A}, P) de densité g. Montrer que la suite de variables aléatoires $(\lambda M_n - \ln(n))_{n \geqslant 1}$ converge en loi vers Y.

Exercice avec préparation 6

- 1. Question de cours : Définition de la convergence d'une série numérique (à termes réels).

 Dans tout l'exercice, a est un réel strictement supérieur à 1.
- 2. a) Montrer que pour tout $n \in \mathbb{N}^*$, l'intégrale $\int_0^{+\infty} \frac{dt}{(1+t^a)^n}$ est convergente. On pose alors pour tout $n \in \mathbb{N}^*$: $u_n(a) = \int_0^{+\infty} \frac{dt}{(1+t^a)^n}$.
 - b) Établir la convergence de la suite $(u_n(a))_{n\in\mathbb{N}^*}$.
- 3. a) Montrer que pour tout $n \in \mathbb{N}^*$, on a : $u_n(a) = an(u_n(a) u_{n+1}(a))$. En déduire $u_n(a)$ en fonction de $u_1(a)$.
 - **b)** Montrer que la série de terme général $\left(\frac{u_n(a)}{an}\right)$ est convergente.
 - c) En déduire la limite de la suite $(u_n(a))_{n\in\mathbb{N}^*}$.
- 4. On pose pour tout $n \in \mathbb{N}^*$: $w_n(a) = \ln(u_n(a)) + \frac{\ln(n)}{a}$.
 - a) Montrer que la série de terme général $(w_{n+1}(a) w_n(a))$ est convergente.
 - b) En déduire l'existence d'un réel K(a) tel que $u_n(a)$ soit équivalent à $\frac{K(a)}{n^{\frac{1}{a}}}$ lorsque n tend vers $+\infty$.

Exercice sans préparation 6

Les variables aléatoires sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

Soit X une variable aléatoire qui suit la loi de Poisson de paramètre $\lambda > 0$ et soit Y une variable aléatoire indépendante de X telle que : $Y(\Omega) = \{1,2\}$, $\mathbb{P}([Y=1]) = \mathbb{P}([Y=2]) = \frac{1}{2}$.

On pose : Z = XY.

- 1. Déterminer la loi de Z.
- 2. On admet que : $\sum_{k=0}^{+\infty} \frac{\lambda^{2k}}{(2k)!} = \frac{e^{\lambda} + e^{-\lambda}}{2}$. Quelle est la probabilité que Z prenne des valeurs paires?

Exercice avec préparation 7

1. Question de cours : Critères de convergence d'une intégrale impropre.

Préciser la nature de l'intégrale $\int_a^{+\infty} \frac{dt}{t^{\alpha}}$, où a est un réel strictement positif et α un réel quelconque. Soit T une variable aléatoire d''finie sur un espace probabilisé (Ω, \mathcal{A}, P) , suivnt la loi normale centrée réduite.

On note Φ et φ respectivement, la fonction de répartition et une densité de T.

- 2. a) À l'aide de l'inégalité de Bienaymé-Tchebychev, montrer que pour tout x>0, on a : $0\leqslant 1-\Phi(x)\leqslant \frac{1}{2x^2}.$
 - b) En déduire que l'intégrale $\int_0^{+\infty} (1 \Phi(x)) dx$ est convergente et calculer sa valeur.
- 3. On note φ' la dérivée de φ .
 - a) Déterminer pour tout $x \in \mathbb{R}$, une relation entre $\varphi'(x)$ et $\varphi(x)$.
 - **b)** En déduire, à l'aide de deux intégrations par parties, que pour tout $x \in \mathbb{R}_+^*$, on a : $\frac{1}{x} \frac{1}{x^3} \leqslant \frac{1 \Phi(x)}{\varphi(x)} \leqslant \frac{1}{x}$.
 - c) Donner un équivalent de $1 \Phi(x)$ quand x tend vers $+\infty$.
- 4. Soit a > 0. Calculer $\lim_{x \to +\infty} \left(P_{[T>x]} \left[T > x + \frac{a}{x} \right] \right)$.

Exercice sans préparation 7

Soit D la matrice définie par : $D = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$.

- 1. Déterminer les matrices $A \in \mathcal{M}_2(\mathbb{R})$ telles que AD = DA.
- 2. En déduire les matrices $M \in \mathcal{M}_2(\mathbb{R})$ qui vérifient $M^3 2M = D$.

Exercice avec préparation 8

1. Question de cours : Définition de deux matrices semblables. Soit f un endomorphisme de \mathbb{R}^3 dont la matrice A dans la base canonique de \mathbb{R}^3 est donnée par :

$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

On note id l'endomorphisme identité de \mathbb{R}^3 et on pose : $f^2 = f \circ f$.

- 2. a) Montrer que $2f f^2 = id$.
 - b) Montrer que l'endomorphisme f est un automorphisme. Quel est l'automorphisme réciproque de f?
 - c) Montrer que f admet l'unique valeur propre 1. L'endomorphisme f est-il diagonalisable?
 - d) Déterminer le sous-espace propre associé à la valeur propre 1. Quelle est sa dimension?
- 3. a) Calculer pour tout $n \in \mathbb{N}$, A^n en fonction de n.
 - b) Le résultat précédent s'étend-t-il au cas où $n \in \mathbb{Z}$?
- 4. Déterminer une base (u, v, w) de \mathbb{R}^3 dans laquelle la matrice de f est la matrice $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice sans préparation 8 Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) et suivant toutes la loi uniforme sur l'intervalle [0, 1].

- 1. Pour tout entier $k \ge 1$, déterminer une densité de la variable aléatoire $Y_k = \max(X_1, X_2, \dots, X_k)$.
- 2. Déterminer une densité de la variable aléatoire $Z_k = -Y_k$.

Exercice avec préparation 9

1. Question de cours : Énoncer une condition nécessaire et suffisante de diagonalisabilité d'un endomorphisme.

On considère la matrice $A \in \mathcal{M}_2(\mathbb{R})$ définie par $A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$.

- 2. On note $\mathcal{M}_{2,1}(\mathbb{R})$ l'espace vectoriel des matrices à 2 lignes et 1 colonne à coefficients réels. Soit u l'endomorphisme de $\mathcal{M}_{2,1}(\mathbb{R})$ défini par : pour tout $X \in \mathcal{M}_{2,1}(\mathbb{R})$, u(X) = AX.
 - a) Déterminer une base de ker(u) et une base de Im(u).
 - b) L'endomorphisme u est-il diagonalisable?
 - c) Calculer pour tout $n \in \mathbb{N}^*$, la matrice A^n .
- 3. Soit v l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : pour tout $M \in \mathcal{M}_2(\mathbb{R})$, v(M) = AM. On note $\mathcal{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ la base canonique de $\mathcal{M}_2(\mathbb{R})$ et on rappelle que :

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- a) Écrire la matrice V de l'endomorphisme v dans la base \mathscr{B} .
- b) Déterminer une base de ker(v) et une base de Im(v).
- c) L'endomorphisme v est-il diagonalisable?

Exercice sans préparation 9

Soit n un entier supérieur ou égal à 2. On dispose de n urnes U_1, U_2, \ldots, U_n contenant chacune trois boules. Dans l'ensemble des 3n boules, une seule est rouge, les autres étant bleues.

Sachant que l'on a tiré sans remise deux boules bleues dans l'urne U_1 , quelle est la probabilité que l'urne U_2 contienne la boule rouge?