■ Chapitre 3 ■

Algèbre linéaire

Notations.

- $\blacksquare \mathbb{K}$ désigne \mathbb{R} ou \mathbb{C} .
- $\blacksquare I$ désigne un ensemble non vide.
- \blacksquare (m,n) désigne un couple d'entiers naturels tels que $m \neq 0$.
- $\blacksquare E, F$ désignent des \mathbb{K} -espaces vectoriels.

I. Espaces vectoriels

I.1 Familles de vecteurs

Définition 1 (Combinaison linéaire).

Soit $(e_i)_{i\in I}$ une famille de vecteurs de E. Le vecteur x est une combinaison linéaire de la famille $(e_i)_{i\in I}$ s'il existe une famille $(\lambda_i)_{i\in I}$ de scalaires presque tous nuls (i.e. $\{i\in I ; \lambda_i\neq 0\}$ est fini, noté $\{\lambda_{i_j}, j\in [1,p]\}$) telle que

$$x = \sum_{i \in I} \lambda_i e_i = \sum_{j=1}^p \lambda_{i_j} e_{i_j}.$$

Remarque.

On étend, de la même manière, les notions de famille libre, génératrice, base, coordonnées à des familles quelconques de vecteurs de E.

Exercice 1.

- **1.** Soit $(P_i)_{i\in\mathbb{N}}$ une famille de polynômes non nuls et à degrés échelonnés, i.e. pour tout $i\in\mathbb{N}$, $0 \leq \deg(P_i) < \deg(P_{i+1})$. Alors, $(P_i)_{i\in\mathbb{N}}$ est une famille libre.
- **2.** Montrer que la famille $(f_a: x \mapsto e^{ax})_{a \in \mathbb{R}}$ est libre.

I.2 Produit d'espaces vectoriels

Propriété 1.

Soit $(E_i)_{i \in [\![1,m]\!]}$ une famille d'espaces vectoriels. Alors, $E_1 \times \cdots \times E_m$ est un \mathbb{K} -espace vectoriel.

Exercice 2. Montrer que \mathbb{K}^n est un espace vectoriel.

Propriété 2.

Soit $(E_i)_{i \in [\![1,m]\!]}$ une famille d'espaces vectoriels. Si, pour tout $i \in [\![1,m]\!]$, l'espace vectoriel E_i est de dimension finie, alors $E_1 \times \cdots \times E_m$ est de dimension finie et

$$\dim \left(\underset{i=1}{\overset{m}{\times}} E_i \right) = \sum_{i=1}^m \dim(E_i).$$

Exercice 3. Déterminer la dimension du \mathbb{K} -espace vectoriel \mathbb{K}^n .

I.3 Somme de sous-espaces vectoriels

Définition 2 (Somme & Somme directe).

Soit $(E_i)_{i \in [1,m]}$ une famille de sous-espaces vectoriels de E.

(i). La somme $\sum_{i=1}^{m} E_i$ est l'ensemble

$$\sum_{i=1}^{m} E_i = \left\{ \sum_{i=1}^{m} x_i, (x_i)_{i \in [1,m]} \in \underset{i=1}{\overset{m}{\times}} E_i \right\}.$$

- (ii). La somme $\sum_{i=1}^{m} E_i$ est directe, notée $\bigoplus_{i=1}^{m} E_i$, si la décomposition de tout vecteur $x \in \sum_{i=1}^{m} E_i$ sous la forme $\sum_{i=1}^{m} x_i$ est unique.
- (iii). Si $E = E_i \oplus E_j$, les sous-espaces vectoriels E_i et E_j sont des sous-espaces vectoriels supplémentaires de E.

Exercice 4.

- **1.** Montrer que $\mathbb{K}_n[X] = \sum_{k=0}^n \operatorname{Vect} \{X^k\}$.
- 2. Représenter graphiquement 3 sous-espaces vectoriels de \mathbb{R}^3 qui sont en somme directe.

Proposition 3.

La somme $\sum_{i=1}^{m} E_i$ est directe si et seulement si

$$\forall (x_i) \in \underset{i=1}{\overset{m}{\times}} E_i, \left(\sum_{i=1}^m x_i = 0_E \implies \forall i \in [1, m], x_i = 0_E\right)$$

Exercice 5. Montrer que si $\bigoplus_{i=1}^{m} E_i$, alors pour tout $(i,j) \in I^2$ tel que $i \neq j$, $E_i \cap E_j = \{0_E\}$. Montrer que la réciproque est fausse.

Définition 3 (Base adaptée).

On suppose que E est de dimension finie.

- (i). Soit F un sous-espace vectoriel de E. La famille (e_i) , base de E, est une base adaptée à F s'il existe une renumérotation des vecteurs et un entier naturel p non nul tels que (e_1, \ldots, e_p) soit une base de F.
- (ii). On suppose que $E = \bigoplus_{i=1}^m E_i$. La famille $(e_{i,j})$ est une base adaptée à la décomposition en somme directe de E si, pour tout entier $i \in [1, m]$, la famille $(e_{i,j})_{j \in [1, m_i]}$ est une base de E_i .

Exercice 6.

1. Soit $(e_i)_{i \in [\![1,n]\!]}$ une base de E. Pour tout $i \in [\![1,n]\!]$, on note $E_i = \text{Vect}\{e_i\}$. Montrer que $E = \bigoplus_{i=1}^n E_i$.

2. Si $E = \bigoplus_{i=1}^{m} E_i$ et, pour tout $i \in [1, m]$, \mathscr{B}_i est une base de E_i , montrer que la juxtaposition $\bigcup_{i=1}^{m} \mathscr{B}_i$ est une base de E.

Théorème 1 (Somme & Dimension).

Soient $(E_i)_{i \in [\![1,m]\!]}$ des sous-espaces vectoriels de dimension finie de E. Alors, $\sum_{i=1}^m E_i$ est de dimension finie et

$$\dim\left(\sum_{i=1}^{m} E_i\right) \leqslant \sum_{i=1}^{m} \dim(E_i).$$

De plus, dim $\left(\sum_{i=1}^{m} E_i\right) = \sum_{i=1}^{m} \dim(E_i)$ si et seulement si la somme est directe.

Exercice 7.

- **1.** On suppose que $\dim(E) \geqslant 3$. Montrer que deux hyperplans de E ne sont jamais en somme directe.
- **2.** En notant $\mathscr{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathscr{M}_n(\mathbb{R})$ et $\mathscr{T}_n(\mathbb{R})$ l'ensemble des matrices triangulaires supérieures, montrer que $\mathscr{S}_n(\mathbb{R}) + \mathscr{T}_n(\mathbb{R}) = \mathscr{M}_n(\mathbb{R})$. Cette somme est-elle directe?

II. Applications linéaires & Matrices

Exercice 8. (Commutant) Soit $A \in \mathscr{M}_n(\mathbb{K})$. Montrer que le commutant $\mathscr{C}(A)$ de A, défini par $\mathscr{C}(A) = \{M \in \mathscr{M}_n(\mathbb{K}) ; AM = MA\}$ est un espace vectoriel.

II.1 Applications linéaires

Théorème 2 (Somme directe & Applications linéaires).

On suppose que $E = \bigoplus_{i=1}^{m} E_i$. Pour tout indice $i \in [\![1,m]\!]$, on considère une application linéaire φ_i de E_i dans F. Alors, il existe une unique application linéaire φ de E dans F telle que pour tout $i \in [\![1,m]\!]$, la restriction de φ à E_i soit égale à φ_i .

Exercice 9. Soit E un espace vectoriel de dimension finie et u, v deux endomorphismes de E. On pose $\varphi : \mathscr{L}(E) \to \mathscr{L}(E)$, $f \mapsto u \circ f \circ v$. Montrer que $\varphi = 0_{\mathscr{L}(E(E))}$ si et seulement si $u = 0_{\mathscr{L}(E)}$ ou $v = 0_{\mathscr{L}(E)}$.

Exercice 10. On suppose que $E = \bigoplus_{i=1}^{m} E_i$. Pour tout $i \in [1, m]$, on note p_i l'application qui à tout vecteur $x = \sum_{i=1}^{m} x_i$ associe le vecteur x_i .

- **1.** Montrer que p_i est un projecteur puis que, si $i \neq j$, alors $p_i p_j = 0_{\mathscr{L}(E)}$.
- **2.** Déterminer $\sum_{i=1}^{m} p_i$.

Réciproquement, soit (p_i) une famille d'applications linéaires telles que pour tout $(i,j) \in [1,m]^2$, $p_i p_j = \delta_{i,j} p_i$ et $\mathrm{Id}_E = \sum_{i=1}^m p_i$. Pour tout entier $i \in [1,m]$, on pose $E_i = p_i(E)$.

3. Montrer que $E = \bigoplus_{i=1}^m E_i$.

Théorème 3 (Théorème du rang).

Soit $\varphi \in \mathcal{L}(E, F)$. L'application linéaire φ définit un isomorphisme de tout supplémentaire de $\operatorname{Ker} \varphi$ dans $\operatorname{Im} \varphi$.

En particulier, si E et $\operatorname{Im} \varphi$ sont de dimension finie, alors

$$\dim (\operatorname{Ker} \varphi) + \operatorname{Rg}(\varphi) = \dim E.$$

Exercice 11. (Matrices équivalentes) Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ une matrice de rang r. Montrer qu'il existe $P \in \mathcal{G}\ell_n(\mathbb{K})$ et $Q \in \mathcal{G}\ell_p(\mathbb{K})$ telles que $A = P\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}Q$.

Définition 4 (Stabilité, Endomorphisme induit).

Soit $\varphi \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. L'espace vectoriel F est stable par φ si $\varphi(F) \subset F$.

La restriction de φ à F, i.e. l'endomorphisme u de F dans F, défini pour tout vecteur $x \in F$ par $u(x) = \varphi(x)$ est l'endomorphisme induit par φ sur F.

Exercice 12. Montrer que, pour tout entier naturel n, l'espace vectoriel $\mathbb{K}_n[X]$ est stable par dérivation polynomiale.

Théorème 4 (Commutativité & Stabilité).

Soient φ et ψ deux endomorphismes qui commutent. Alors, Im φ et Ker φ sont stables par ψ .

Propriété 4.

Soient (E_1, \ldots, E_m) des sous-espaces vectoriels de E tels que $E = \bigoplus_{i=1}^m E_i$ et φ un endomorphisme de E. L'endomorphisme φ stabilise tous les espaces E_i si et seulement si pour toute base \mathscr{B} adaptée à la décomposition de E, il existe des matrices A_1, \ldots, A_m telles que

$$\operatorname{Mat}_{\mathscr{B}}(\varphi) = \begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & & A_m \end{pmatrix}.$$

Exercice 13.

- 1. Déterminer la matrice d'un projecteur p dans une base adaptée à la décomposition $E = \operatorname{Im} p \oplus \operatorname{Ker} p$.
- 2. Reprendre la question précédente dans le cadre d'une symétrie.

II.2 Opérations sur les matrices définies par blocs

Notations.

Soit
$$A \in \mathcal{M}_{n,p}(\mathbb{K})$$
. On notera $A = \begin{bmatrix} L_1 \\ \vdots \\ L_n \end{bmatrix} = \begin{bmatrix} C_1 & \cdots & C_p \end{bmatrix}$.
Si $B \in \mathcal{M}_{q,n}(\mathbb{K})$, alors $BA = \begin{bmatrix} BC_1 & \cdots & BC_p \end{bmatrix}$.

lacksquare Plus généralement, $A_{i,j} \in \mathscr{M}_{n_i,p_j}$, $\sum\limits_{i=1}^m n_i = n$ et $\sum\limits_{i=1}^q p_j = p$, on peut décomposer une matrice Aen blocs

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,q} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,q} \end{pmatrix}.$$

Soient $A = (A_{i,j})$ et $B = (B_{i,j})$ deux matrices décomposées en blocs et $\lambda \in \mathbb{K}$. Sous réserve de compatibilité des tailles des blocs,

- (i). $A + \lambda B = (A_{i,j} + \lambda B_{i,j}).$
- $(ii). \ AB = (C_{i,j})$ se décompose en blocs, où $C_{i,j} = \sum A_{i,k} B_{k,j}.$

II.3 Classes de similitude

Définition 5 (Trace d'un matrice carrée).

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. La trace de A, notée Tr(a), est définie par

$$Tr(A) = \sum_{i=1}^{n} a_{i,i}.$$

Exercice 14. Déterminer $Tr(0_n)$ et $Tr(I_n)$.

Propriété 6 (Propriétés de la trace).

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$.

- (i). Tr : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ est une forme linéaire.
- (ii). Tr(AB) = Tr(BA).
- (iii). Pour tout entier naturel m, $Tr((AB)^m) = Tr((BA)^m)$.
- (iv). Pour toute matrice $P \in \mathcal{G}\ell_n(\mathbb{K})$, $\text{Tr}(P^{-1}AP) = \text{Tr}(A)$.

Exercice 15. Déterminer la dimension ainsi qu'une base du noyau de l'application linéaire trace.

Définition 6 (Matrices semblables).

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$. Les matrices A et B sont semblables s'il existe une matrice inversible $P \in \mathcal{G}\ell_n(\mathbb{K})$ telle que

$$A = PBP^{-1}.$$

Exercice 16. Soit A une matrice scalaire. Déterminer l'ensemble des matrices semblables à A.

Propriétés 7 (Classe de similitude).

- (i). La relation binaire être semblable est une relation d'équivalence. La classe d'équivalence associée à une matrice A est sa classe de similitude.
- (ii). Si A et B sont semblables, alors Tr(A) = Tr(B).

Exercice 17.

1. Montrer que la réciproque au (ii) est fausse.

- 2. Montrer que la trace est un invariant de similitude.
- 3. Montrer que le rang est un invariant de similitude.

Théorème 5 (Interprétation géométrique).

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Les matrices A et B sont semblables si et seulement si ce sont les matrices d'un même endomorphisme φ sur un espace vectoriel de dimension n.

Définition 7.

Soit $\varphi \in \mathcal{L}(E)$. La trace de φ est la trace de la matrice de φ dans une base \mathscr{B} de E.

Exercice 18. Montrer que pour tout projecteur p, Tr(p) = Rg(p).

II.4 Polynômes d'endomorphismes

Définition 8 (Polynômes & Matrices).

Soient $M \in \mathcal{M}_n(\mathbb{K})$, $\varphi \in \mathcal{L}(E)$ et $P = \sum_{k=0}^d a_k X^k \in \mathbb{K}[X]$.

(i). Le polynôme de la matrice M, noté P(M), est la matrice définie par

$$P(M) = a_0 I_n + \sum_{k=1}^{d} a_k M^k.$$

(ii). Le polynôme de l'endomorphisme φ , noté $P(\varphi)$, est l'endomorphisme défini par

$$P(\varphi) = a_0 \operatorname{Id}_E + \sum_{k=1}^d a_k \varphi^k.$$

Exercice 19.

1. Soit
$$P = X^2 - 3X + 2$$
. Calculer $P(0_2)$, $P(I_2)$, $P\left(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\right)$, $P\left(\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}\right)$, $P\left(\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}\right)$.

- 2. Proposer un algorithme permettant d'évaluer un polynôme de matrices.
- **3.** Soient $D = \text{Diag}\{\lambda_1, \ldots, \lambda_n\}$ une matrice diagonale et $P \in \mathbb{K}[X]$. Exprimer P(D).
- **4.** Soient $P \in \mathbb{K}[X]$, $M \in \mathcal{M}_n(\mathbb{K})$ et $Q \in \mathcal{G}\ell_n(\mathbb{K})$. Exprimer $P(QMQ^{-1})$ en fonction de P(M).

Propriété 8

Soient $(P,Q) \in \mathbb{K}[X]^2$ et $\varphi \in \mathcal{L}(E)$. Alors,

- (i). $(P+Q)(\varphi) = P(\varphi) + Q(\varphi)$.
- (ii). $(PQ)(\varphi) = P(\varphi) \circ Q(\varphi) = Q(\varphi) \circ P(\varphi)$. (iii). $(P \circ Q)(\varphi) = P(Q(\varphi))$.

Exercice 20. Énoncer la propriété analogue pour les polynômes de matrices.

Définition 9 (Polynôme annulateur).

Soient $P \in \mathbb{K}[X]$, $M \in \mathcal{M}_n(\mathbb{K})$ et $\varphi \in \mathcal{L}(E)$. Le polynôme P est un polynôme annulateur de la matrice M (resp. de l'endomorphisme φ) si $P \neq 0$ et $P(M) = 0_n$ (resp. $P(\varphi) = 0_{\mathscr{L}(E)}$).

Exercice 21.

- 1. Montrer que toute matrice carrée d'ordre n possède un polynôme annulateur de degré au plus n^2 .
- **2.** Montrer que, si A est une matrice inversible, alors A^{-1} est un polynôme en A. En déduire que, si A et B commutent, alors A^{-1} et B commutent.

Propriété 9.

Soient $M \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$ tel que P(M) = 0. Si le coefficient constant de P est non nul, alors M est inversible.

Exercice 22.

- **1.** En utilisant le polynôme $P = X^3 2X^2 1$, montrer que la matrice $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est inversible et déterminer son inverse.
- **2.** Soit $A = \begin{pmatrix} -1 & 15 & 0 \\ 6 & 8 & 0 \\ 3 & -3 & 14 \end{pmatrix}$.
 - **a)** Calculer $A^2 7A 98I_3$.
 - **b)** En déduire, pour tout $n \in \mathbb{N}$, des réels u_n , v_n tels que $A^n = u_n A + v_n I_3$.

III. Formes linéaires & Hyperplans

Dans cette partie, n désigne un entier naturel non nul et E est un \mathbb{K} -espace vectoriel de dimension n.

Définition 10 (Forme linéaire).

Une forme linéaire est une application linéaire de E dans \mathbb{K} .

Exercice 23. Donner des exemples de formes linéaires.

Propriété 10 (Applications linéaires coordonnées).

Soit (e_1, \ldots, e_n) une base de E. Pour tout $i \in [1, n]$, on note $\varphi_i : E \to \mathbb{K}$, $\sum_{k=1}^n x_k e_k \mapsto x_i$. Alors, la famille $(\varphi_1, \ldots, \varphi_n)$ est une base de $\mathscr{L}(E, \mathbb{K})$. Ces applications linéaires sont les applications linéaires coordonnées associées à la base (e_1, \ldots, e_n) .

Exercice 24. Soit $n \in \mathbb{N}^*$. Déterminer les applications linéaires coordonnées associées à la base canonique de \mathbb{R}^n .

Définition 11 (Hyperplan).

Un sous-espace vectoriel H de E est un hyperplan de E si dim(H) = n - 1.

Exercice 25. Décrire un hyperplan de $\mathcal{M}_n(\mathbb{K})$ déjà rencontré.

Théorème 6 (Hyperplan & Formes linéaires).

- (i). Si φ est une forme linéaire sur E non nulle, alors $\operatorname{Ker} \varphi$ est un hyperplan de E.
- (ii). Soit H un hyperplan de E. Il existe une forme linéaire φ_0 telle que $H = \text{Ker } \varphi_0$. De plus, si φ est une forme linéaire telle que $\text{Ker } \varphi = H$, alors il existe $\lambda \in \mathbb{K}$ tel que $\varphi = \lambda \varphi_0$.

Exercice 26. Illustrer ce théorème en dimensions 2 et 3.

Corollaire 7 (Hyperplans & Équations).

Soit $\mathscr{B}=(e_1,\ldots,e_n)$ une base de E. L'espace vectoriel H est un hyperplan de E si et seulement s'il existe un n-uplet non nul $(a_1,\ldots,a_n)\in\mathbb{K}^n$ tel que $H=\left\{x=\sum_{i=1}^n x_ie_i\in E\;;\;\sum_{i=1}^n a_ix_i=0\right\}$. L'équation $\sum_{i=1}^n a_ix_i=0$ est une équation cartésienne de l'hyperplan H.

Exercice 27.

- 1. Illustrer ce théorème en dimensions 2 et 3.
- **2.** Déterminer une condition nécessaire et suffisante pour que deux hyperplans d'équations respectives $\sum_{k=1}^{n} a_k x_k = 0$ et $\sum_{k=1}^{n} b_k x_k = 0$ soient égaux.

6,9

Quelques propriétés des endomorphismes nilpotents

Exercice 28. Soient E un espace vectoriel de dimension finie n non nulle et $\varphi \in \mathcal{L}(E)$ un endomorphisme nilpotent, i.e. il existe un entier naturel m non nul tel que $\varphi^m = 0_{\mathcal{L}(E)}$.

1. Montrer qu'il existe un unique entier naturel p tel que $\varphi^{p-1} \neq 0$ et $\varphi^p = 0$. Cet entier est l'indice de nilpotence de φ .

2. Montrer que $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est la matrice d'un endomorphisme nilpotent. Proposer d'autres matrices d'endomorphismes nilpotents.

3. L'ensemble des endomorphismes nilpotents est-il un sous-espace vectoriel de $\mathcal{L}(E)$? Dans toute la suite, φ désigne un endomorphisme nilpotent d'indice de nilpotence égal à p.

4. Montrer qu'il existe un vecteur $x_0 \in E$ tel que la famille $\mathscr{L} = (x_0, \varphi(x_0), \dots, \varphi^{p-1}(x_0))$ soit une famille libre.

5. En déduire que $p \leq n$.

6. Lorsque p = n, déterminer $\operatorname{Mat}_{\mathscr{L}}(\varphi)$.

7. Montrer que $\{0\} \subset \operatorname{Ker} \varphi \subset \cdots \subset \operatorname{Ker} \varphi^{p-1} \subset E$, où toutes les inclusions sont strictes. En déduire qu'il existe une base (e_1, \ldots, e_n) de E telle que pour tout entier k appartenant à [1, n], $\varphi(\operatorname{Vect}\{e_1, \ldots, e_k\}) \subset \operatorname{Vect}\{e_1, \ldots, e_{k-1}\}$. En déduire qu'il existe une base de E dans laquelle la matrice de φ est triangulaire stricte.

On s'intéresse maintenant à la réciproque du dernier résultat.

8. Soit (e_1,\ldots,e_n) une base de E. Pour tout $k\in [1,n]$, on pose $V_k=\mathrm{Vect}\,\{e_1,\ldots,e_k\}$ et $V_0=\{0\}$. Soit $f\in \mathscr{L}(E)$ tel que, pour tout $k\in [1,n]$, $f(V_k)\subset V_{k-1}$. Montrer que f est nilpotent.

7 Programme officiel (PCSI)

Systèmes linéaires et calcul matriciel (p. 17)

Polynômes (p. 21)

Espaces vectoriels et applications linéaires (p. 22)

Matrices et déterminants - A - Matrices (p. 25)

↑ Programme officiel (PSI)

Algèbre linéaire

A - Compléments sur les espaces vectoriels, les endomorphismes et les matrices (p. 6); sauf c) Déterminants