

TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II Chương 3 Đại số Boolean

8/23/2023

Nội dung

- ■Đại số Boolean
- ■Cổng luận lý
- ■Tối ưu luận lý
- Phương pháp Karnaugh
- ■Bài tập

Đại số Boolean (1/8) – Định nghĩa

- Đại số Boolean (luận lý nhị phân) là một cấu trúc đại số liên quan đến việc thao tác với các biến luận lý nhị phân (biến luận lý)
 - □Biến luận lý chỉ mang 2 giá trị: 0 và 1, cao và thấp, đúng và sai, ...
 - □ Thao tác luận lý: AND (·, &), OR (+, |), NOT (~, ¯)
- Ví dụ: A và B là 2 biến luận lý nhị phân:
 - $\square A \cdot B = A \& B = AND(A, B) = AB$

 - $\square \sim A = \overline{A}$

Đại số Boolean (2/8) – Định nghĩa

- Một tập B khác rỗng cùng với các thao tác (phép toán) AND (·), OR (+) và NOT (¯) được gọi là một đại số Boolean nếu các tiên đề sau đây được thỏa mãn với mọi x, y, $z \notin B$
 - □ Tiên đề 1: Cấu trúc đóng với các phép toán · và +.Nếu $x, y \in B$ thì: $(x + y) \in B$ và $x \cdot y \in B$
 - □ Tiên đề 2: Tồn tại phần tử trung hòa. Tồn tại 2 phần tử trung hòa khác nhau thuộc *B*, ký hiệu là 0 và 1 sao cho:

$$\blacksquare x \cdot 1 = 1 \cdot x = x$$

$$x + 0 = 0 + x = x$$

Đại số Boolean (3/8) – Định nghĩa

■ Tiên đề 3: Tính giao hoán

$$\square x \cdot y = y \cdot x$$

$$\square x + y = y + x$$

Tiên đề 4: Tính phân phối

$$\square x \cdot (y+z) = x \cdot y + x \cdot z$$

$$\square x + y \cdot z = (x + y)(x + z)$$

■ Tiên đề 5: Tồn tại phần tử bù. Với mọi $x \in B$, tồn tại duy nhất $\overline{x} \in B$ (\overline{x} được gọi là phần tử bù của x)sao cho:

$$\Box x \cdot \overline{x} = \overline{x} \cdot x = 0$$
DUTER ENGINEERING

$$\Box x + \overline{x} = \overline{x} + x = 1$$

Tiên đề 6: Tồn tại ít nhất 2 phần tử $x, y \in B$ sao cho $x \neq y$

Đại số Boolean (4/8) – Hàm Boolean

- Kết hợp các biến, hằng số, toán tử, dấu ngoặc tạo thành một **Biểu thức Boolean**.
 - \square Ví dụ: x + yz
- Kết hợp theo thứ tự: 1 tên hàm, 1 dấu bằng và cuối cùng là 1 biểu thức Boolean sẽ cho chúng ta được một Hàm Boolean (Hàm Boolean Dạng chuẩn)
 - \square Ví dụ: f(x, y, z) = x + yz

Đại số Boolean (5/8) – Bảng chân trị

■ **Bảng chân trị** (hay còn gọi là bảng tổ hợp) thể hiện mối quan hệ giữa giá trị của một hàm Boolean và các biến của hàm đó

Đại số Boolean (6/8) – Dạng chính tắc

Dạng chính tắc là dạng biểu diễn hàm Boolean bằng tổng của các minterm khiến hàm Boolean có giá trị 1 (1-minterm) hoặc tích của các maxterm khiến hàm Boolean có giá trị 0 (0-maxterm)

Biến			Minterm		Maxterm		
X	y	Z	Biểu thức	Ký hiệu	Biểu thức	Ký hiệu	
0	0	0	$\bar{x} \bar{y} \bar{z}$	m_0	x + y + z	M_0	
0	0	1	$\bar{x} \bar{y} z$	m_1	$x + y + \bar{z}$	M_1	
0	1	0	$\bar{x} y \bar{z}$	m_2	$x + \overline{y} + z$	M_2	
0	1	1	$\bar{x} y z$	m_3	$x + \overline{y} + \overline{z}$	M_3	
1	0	0	χÿ̄z	m_4	$\overline{x} + y + z$	M_4	
1	0	1	χÿz	m ₅	$\bar{x} + y + \bar{z}$	M_5	
1	1	0	хӯz	m ₆	$\overline{x} + \overline{y} + z$	M_6	
1	1	1	хух	m_7	$\overline{x} + \overline{y} + \overline{z}$	M_7	

Đại số Boolean (7/8) – Tính đối ngẫu

- Biểu thức: x + yz
- $\blacksquare \text{ Hàm: } f(x, y, z) = x + yz$
- Nếu một biểu thức Boolean là đúng thì biểu thức đối ngẫu của nó cũng đúng khi thay:
 - **□**0 ↔ 1
 - □ AND ↔ OR
- Ví dụ:

 - $\square x \cdot \overline{x} = \overline{x} \cdot x = 0$ đối ngẫu $x + \overline{x} = \overline{x} + x = 1$

Đại số Boolean (8/8) – Định lý

Định lý 1: Tính lũy đẳng

$$\square x + x = x$$

$$\square x \cdot x = x$$

■ Định lý 2: Tính <mark>nu</mark>ốt

$$\Box x + 1 = 1$$

$$\Box x \cdot 0 = 0$$

Dịnh lý 3: Tính hấp thụ

$$\square x + x \cdot y = x$$

$$\square x(x+y) = x$$

Định lý 4: Tính phủ định của phủ định

$$\Rightarrow \overline{\overline{x}} = x$$

Định lý 5: Tính kết hợp

$$\triangleright x + (y + z) = (x + y) + z$$

$$\triangleright x(y \cdot z) = (x \cdot y)z$$

Định lý 6: Định lý De-Morgan

$$\sum \overline{x + y} = \overline{x} \cdot \overline{y}$$

$$\sum \overline{x \cdot y} = \overline{x} + \overline{y}$$

Cổng luận lý

- Cổng luận lý là thiết bị điện tử có đặc điểm sau:
 - ☐ Chức năng: Thực hiện một phép toán luận lý
 - Cấu tạo: Có ít nhất 1 ngõ vào và có duy nhất 1 ngõ ra

Tên	Ký hiệu	Hàm Boolean	Bảng chân trị		
			_A B	F	
			0 0	0	
AND		F = AB	0 1	0	
			1 0	0	
			1 1	1	
		F = A + B	A B	F	
			0 0	0	
OR			0 1	1	
			1 0	1	
			1 1	1	
	->0-		A	<u>F_</u>	
NOT		$\mathbf{F} = \overline{\mathbf{A}}$	0	1	
			1	0	

Tên	Ký hiệu	Hàm		
AND		F = ABC		
OR		F = A + B + C		
NAND		$F = \overline{ABC}$		

Tối ưu luận lý (1/2)

■ Tiên đề 2: Tồn tại phần tử trung hòa

$$\square x \cdot 1 = 1 \cdot x = x$$

$$\Box x + 0 = 0 + x = x$$

Tiên đề 5: Tồn tại phần tử bù

$$\square x \cdot \overline{x} = \overline{x} \cdot x = 0$$

$$\Box x + \overline{x} = \overline{x} + x = 1$$

Tối ưu luận lý là làm giảm số lượng tổng/tích hoặc số lượng biến hoặc phần bù của nó trong mỗi tổng/tích

• Định lý 1: Tính lũy đẳng

$$\triangleright x + x = x$$

$$\triangleright x \cdot x = x$$

• Định lý 2: Tính nuốt

$$> x + 1 = 1$$

$$> x \cdot 0 = 0$$

• Định lý 3: Tính hấp thụ

$$\triangleright x + x \cdot y = x$$

$$\triangleright x(x+y)=x$$

Tối ưu luận lý (2/2)

$$f(x, y, z) = x + y\overline{z} + xy$$

$$f(x, y, z) = (x + y)(\overline{z} + x + y)$$

- Có nhiều định lý và tiên đề
 - ➤ Nên sử dụng định lý nào? Tiên đề nào?
- Biểu thức đã tối ưu hay chưa?
 - Làm sao để phán đoán là biểu thức chưa tối ưu?

Phương pháp Karnaugh (1/6) – Cơ sở

- K-map là phương pháp tối ưu luận lý bằng hình học trực quan dựa trên các tính chất của đại số Boolean:
 - $\square xy + x\overline{y} = x(y + \overline{y}) = x \cdot 1 = x$
 - Tổng của hai tích khác nhau đúng 1 bit thì kết quả sẽ rút gọn được bit khác nhau
 - ☐ Tổng của 2 1-minterm khác nhau đúng 1 bit?
 - $\square(x+y)(x+\overline{y}) = x + y\overline{y} = x + 0 = x$
 - Tích của hai tổng khác nhau đúng 1 bit thì kết quả sẽ rút gọn được bit khác nhau
 - ☐Tích của 2 0-maxterm khác nhau đúng 1 bit?

Phương pháp Karnaugh (2/6) – Cấu trúc

- K-map là mảng 2 chiều các ô
 - \square Số lượng $\hat{o} = 2^n$ (*n* là số biến)
 - \square Số lượng ô trên mỗi chiều = 2^i (i là số biến được gán trên mỗi chiều)
 - ☐ Mỗi ô được gán 1 tổ hợp theo mã Gray: 2 chuỗi bit liên tiếp khác nhau 1 bit

Phương pháp Karnaugh (3/6) – Cấu trúc

<u>x</u>	у	z	$oxed{\int}$	f	yz				
0	0	0	m_0/M_0	x		00	01	11	10
0	0	1	m_1/M_1		0	m_0	m_1	m_3	m_2
0	1	0	m_2/M_2		1	m_4	m_5	m_7	m_6
0	1	1	m_3/M_3						
1	0	0	m_4/M_4	f	yz				
1	0	1	m_5/M_5	x		00	01	11	10
1	1	0	m_6/M_6		0	M_0	M_1	M_3	M_2
1	γŲΙ	VIP 1	m_7/M_7			M_4	M_5	M_7	M_6

Phương pháp Karnaugh (4/6) – Nguyên tắc

- Gom các nhóm 2^k ô liền kề với $k \ge 0$
 - $\square k$ là số biến được tối ưu trong mỗi nhóm
 - ☐Gom các 1-minterm -> Tổng các tích có giá trị 1
 - ☐Gom các 0-maxterm -> Tích các tổng có giá trị 0
- Mỗi nhóm phải có ít nhất 1 ô không thuộc các nhóm khác
 - ☐ Tránh trường hợp dư thừa các tích/tổng mà các nhóm khác đã bao phủ
- Số lần gom phải ít nhất
 - Số tích/tổng của biểu thức cuối cùng là ít nhất

Phương pháp Karnaugh (5/6)

$$F(x, y, z) = \sum m(1, 3, 4, 7)$$

$$F(x, y, z) = \overline{x}z + yz + x\overline{y}\overline{z}$$

$$F(a, b, c) = (b + \overline{c})(\overline{a} + c)$$

Phương pháp Karnaugh (6/6)

$$f(x, y, z) = \overline{x}(x + y + \overline{z})$$

$$f(x, y, z) = \overline{x}(x + y + \overline{z})$$

$$0 \quad 0 \quad 1 \quad 10$$

$$0 \quad 0 \quad 0$$

$$F(x, y, z) = \overline{x}(y + \overline{z})$$

Quiz

 $F(A, B, C, D) = A\overline{B}C + \overline{A}BC + \overline{A}BCD + CD$

Bài tập (1/2)

- Trình bày sự khác nhau giữa số học nhị phân và luận lý nhị phân (đại số Boolean)?
- Chứng minh 6 định lý của đại số Boolean?
- Trình bày các phương pháp biểu diễn một hàm Boolean? Ưu và nhược điểm của mỗi phương pháp là gì?
- Tối ưu luận lý bằng phương pháp đại số Boolean:

$$\square F(A, B, C) = AB + A\overline{B}C + AB\overline{C}$$

$$\square F(X, Y, Z) = (X + Y)(X + \overline{Y})(X + Y + Z)$$

Bài tập (2/2)

- Lập bảng chân trị và sau đó tối ưu luận lý bằng phương pháp K-map cho các hàm Boolean sau:
 - \square F(A,B,C,D) = \sum m(1, 3, 5, 7, 9,10,11,15)
- Sử dụng K-map để tìm các 1-minterm và 0-maxterm, sau đó tối ưu luận lý các hàm Boolean sau:
 - \square F(A, B, C, D) = A \overline{B} C + \overline{A} B + \overline{A} C + CD
 - \Box F(A, B, C, D) = (A + B + C)(\overline{A} + B)(B + C + D)

THẢO LUẬN

