Guia Álgebra - Práctica 1

Lorenzo Durante

27 de agosto de 2025

1. Introducción

Esta es la resolución de la primer guía de ejercicios de Álgebra 1 para Ciencias de la Computación en la UBA.

2. Conjuntos

- 2.1. Dado el conjunto $A = \{1, 2, 3\}$, determinar cuáles de las siguientes afirmaciones son verdaderas.
 - I) $1 \in \mathcal{A}$
 - II) $\{1\} \subseteq \mathcal{A}$
 - III) $\{2,1\} \subseteq \mathcal{A}$
 - IV) $\{1,3\} \in \mathcal{A}$
 - $v) \{2\} \in \mathcal{A}$

Resolución

- I) $1 \in A$: el número 1 es un elemento que pertenece al conjunto A.
- II) $\{1\} \subseteq A$: el conjunto $\{1\}$ está contenido en A, ya que todos sus elementos pertenecen a A.
- III) $\{2,1\}\subseteq A$: el conjunto $\{2,1\}$ es un subconjunto de A, pues tanto 1 como 2 pertenecen a A.
- IV) $\{1,3\} \notin A$: el conjunto $\{1,3\}$ no es un elemento de A, es decir, A no contiene a $\{1,3\}$ como uno de sus elementos.
- v) $\{2\} \notin A$: el elemento $\{2\}$ no pertenece al conjunto A.
- 2.2. Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}\}$, determinar cuáles de las siguientes afirmaciones son verdaderas.
 - I) $3 \in A$

VII) $\{\{1,2\}\}\subseteq A$

II) $\{3\} \subseteq A$

VIII) $\{\{1,2\},3\} \subseteq A$

III) $\{3\} \in A$

 $IX) \emptyset \in A$

IV) $\{\{3\}\}\subseteq A$

 $X) \emptyset \subseteq A$

 $v) \{1,2\} \in A$

XI) $A \in A$

 $VI) \{1,2\} \subseteq A$

XII) $A \subseteq A$

Resolución

- I) $3 \notin A$: es falso ya que el número 3 no es un elemento del conjunto A.
- II) $\{3\} \not\subseteq A$: es falso ya que no todos los elementos estan contenidos por el conjunto A. En este caso, el elemento 3 no existe en el conjunto A.
- III) $\{3\} \in A$: es verdadero porque el elemento $\{3\}$ pertenece en el conjunto A.
- IV) $\{\{3\}\}\$ \subseteq A: es verdadero ya que todos los elementos dentro del conjunto $\{\{3\}\}\$ pertenecen al conjunto A. En este caso, el unico elemento es $\{3\}$ y este pertence a el conjunto A.
- v) $\{1,2\} \in A$: esto es verdadero ya que el elemento $\{1,2\}$ pertenece al conjunto A.
- VI) $\{1,2\}\subseteq A$: es verdadero porque todos los elementos del conjunto $\{1,2\}$ pertenecen al conjunto A.
- VII) $\{\{1,2\}\}\subseteq A$: es verdadero porque todos los elementos del conjunto $\{\{1,2\}\}$ pertenecen al conjunto A. En este caso, $\{1,2\}$ pertenece al conjunto A.
- VIII) $\{\{1,2\},3\} \not\subseteq A$: es falso ya que no todos los elementos pertenecen al conjunto. En este caso el elemento $\{1,2\}$ pertenece pero el elemento 3 no pertenece.
- IX) $\emptyset \not\subseteq A$: es falso ya que ninguno de los elementos del conjunto A es \emptyset .
- x) $\emptyset \subseteq A$: es verdadero ya que el elemento vacío es subconjunto de todos los conjuntos por definición ya que no contiene elementos que pueda contradecir la condición.
- XI) $A \notin A$: es falso ya que dentro de A no existe ningun subconjunto que sea A.
- XII) $A \in A$: es verdadero ya que todo conjunto es subconjunto de si por definición.

3. Determinar si $A \subseteq B$ en cada uno de los siguientes casos.

- I) $A = \{1, 2, 3\}, B = \{5, 4, 3, 2, 1\}$
- II) $A = \{1, 2, 3\}, B = \{1, 2, \{3\}, -3\}$
- III) $A = \{x \in \mathbb{R} \mid 2 < |x| < 3\}, \quad B = \{x \in \mathbb{R} \mid x^2 < 3\}$
- IV) $A = \{\emptyset\}, \quad B = \emptyset$

Resolución

- I) $A \subseteq B$
- II) $A \not\subseteq B$
- III) $A \not\subseteq B$

$$A = [-3, -2] \cup (2, 3)$$

$$B = (-\sqrt{3}, \sqrt{3})$$

Entonces, $A \nsubseteq B$ Por ejemplo, $-2.5 \in A$ pero $-2.5 \notin B$.

IV) $A \not\subseteq B$

2.3. Dados los subconjuntos

$$A = \{1, -2, 7, 3\},\$$

$$B = \{1, \{3\}, 10\},\$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

del conjunto referencial

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\},\$$

hallar

- I) $A \cap (B \triangle C)$
- II) $(A \cap B) \triangle (A \cap C)$
- III) $A^c \cap B^c \cap C^c$

Resolución

I) $A \cap (B \triangle C) = \{1, -2, 3\}$

Pienso el ejercicio por partes primero veo analizo $B\triangle C$. La diferencia simétrica "marca" lo que no esta en la intersección entre los dos conjuntos.

$$B = \{1, \{3\}, 10\}$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

$$B\triangle C = \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\}$$

Sea $D = B \triangle C$, evaluemos ahora la intersección entre A y D.

$$A = \{1, -2, 7, 3\},$$

$$D = \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\}$$

$$A \cap D = \{1, -2, 3\}$$

Entonces, el resultado de la interesección es $\{1, -2, 3\}$

II) $(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$

Primero analizo la primer interesección.

$$A = \{1, -2, 7, 3\}$$
$$B = \{1, \{3\}, 10\}$$
$$A \cap B = \{1\}$$

Ahora analizo la segunda intersección

$$A = \{1, -2, 7, 3\}$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

$$A \cap C = \{-2, 3\}$$

Ahora podemos calcular la diferencia simétrica

$$A \cap B = \{1\}$$
$$A \cap C = \{-2, 3\}$$
$$(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$$

III)
$$A^C \cap B^c \cap C^C = \emptyset$$

El complemento es todo lo que no esta en el conjunto pero si esta en el universo de referencia V. Primero, calculamos el primer complemento.

$$A = \{1, -2, 7, 3\}$$

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$$

$$A^C = \{\{3\}, 10, \{1, 2, 3\}\}$$

Luego, calculamos el segundo complemento.

$$B = \{1, \{3\}, 10\}$$

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$$

$$B^{C} = \{-2, 7, \{1, 2, 3\}, 3\}$$

Por ultimo, calculamos el tercer complemento.

$$\begin{split} C &= \{-2, \{1, 2, 3\}, 3\} \\ V &= \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\} \\ C^C &= \{1, \{3\}, 7, 10\} \end{split}$$

Con los tres complementos calculamos las intersecciones:

$$A^C = \{\{3\}, 10, \{1, 2, 3\}\}$$

$$B^C = \{-2, 7, \{1, 2, 3\}, 3\}$$

$$C^C = \{1, \{3\}, 7, 10\}$$

$$A^C \cap B^C \cap C^C = \emptyset$$