

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES HELIUM ACTIVITY HELIUM RESEARCH CENTER INTERNAL REPORT

COMPRESSIBILITY DATA FOR HELIUM AT 0° C AND PRESSURES TO 800

ATMOSPHERES FITTED TO AN EQUATION OF THE FORM

$$Z_{r} = 1 + BP_{r} + CP_{r}^{2} + DP_{r}^{3}$$

$$BY$$

-	Ted	C.	Bri	ggs	

BRANCH		Fundamental Research	
PROJECT	NO.	5570	

HD 9660 .H43 M56 no.97 DATE

AMARILLO, TEXAS

August 1966

9660 . H43 M56 no.97

HD

Report No. 97

1

HELIUM RESEARCH CENTER

INTERNAL REPORT

COMPRESSIBILITY DATA FOR HELIUM AT 0° C AND PRESSURES TO 800 ATMOSPHERES FITTED TO AN EQUATION OF THE FORM $Z_r = 1 + BP_r + CP_r^2 + DP_r^3$

By

Ted C. Briggs

Branch of Fundamental Research

Project 5570

August 1966

BLM Library Denver Federal Center Bldg. 50, OC-521 P.O. Box 25047 Denver, CO 80225

BLM Library Danver Federal Centur Bidg. 50, 60-523 P.O. Box 25047 Denver, CO. 80x25

CONTENTS

Abst	tract	Page 5
Intr	roduction	5
	ults of fitting the 0°C helium compressibility ata to equation (2)	7
Disc	cussion of results	104
Refe	erences	105
	TABLES	
1.	Experimental pressures, calculated pressures, constants, standard errors, variances, and covariances	8
2.	Variances and covariances at even increments of pressure	31
3.	Compressibility factors and standard errors at even increments of pressure	53
4.	Compressibility apparatus zero pressure volume ratio	75
5.	Values for the constant B of equation (2) for helium at 0° C	76
6.	Values for the constant C of equation (2) for helium at 0° C	77
7.	Values for the constant D of equation (2) for helium at 0° C	79
8.	Compressibility factor for helium at 0° C and 1 atmosphere calculated from equation (2)	80
9.	Compressibility factor for helium at 0° C and 700 atmospheres calculated from equation (2)	81
10.	Compressibility apparatus zero pressure volume ratio, Run No. HE-0-9 and Run No. HE-0-13 omitted	83

BEWSTWON

A CONTRACTOR OF THE PARTY OF TH	
todies the Carlo Man No. 18-0-9 and the Man No. 18-0-43 mailted	

CONTENTS (Con.)

		Page
11.	Values for the constant B of equation (2) for helium at 0° C, Run No. HE-0-9 and HE-0-13 omitted	. 84
12.	Values for the constant C of equation (2) for helium at 0° C, Run No. HE-0-9 and Run No. HE-0-13 omitted	. 85
13.	Values for the constant D of equation (2) for helium at 0°C, Run No. HE-0-9 and Run No. HE-0-13 omitted	. 86
14.	Compressibility factor for helium at 0°C and 1 atmosphere calculated from equation (2), Run No. HE-0-9 and Run No. HE-0-13 omitted	. 87
15.	Compressibility factor for helium at 0° C and 700 atmospheres calculated from equation (2), Run No. HE-0-9 and Run No. HE-0-13 omitted	. 89
16.	Pressure residuals for the experimental data fitted to equation (1), R=1	. 90
17.	Pressure residuals for the experimental data fitted to equation (1), R=2	. 91
18.	Pressure residuals for the experimental data fitted to equation (1), R=3	. 92
19.	Pressure residuals for the experimental data fitted to equation (1), R=4	. 93
20.	Pressure residuals for the experimental data fitted to equation (1), R=5	. 94
21.	Pressure residuals for the experimental data fitted to equation (1), R=6	. 95
22.	Pressure residuals for the experimental data fitted to equation (1), R=7	. 96
23.	Pressure residuals for the experimental data fitted to equation (2), R=1	. 97
24.	Pressure residuals for the experimental data fitted to equation (2), R=2	. 98

(LD03) STKSTEDS

Values for the constant b or equation (2) for helium at 0° C. Rom We HE-G-9 and AE-U-ES	
Compressibility Distor too believing of condi-	
Pressure rectingly tar tar experimental lets	
Pressur's residuals for the expertmental first	

CONTENTS (Con.)

			Page
25.		residuals for the experimental data	0.0
	fitted	to equation (2), R=3	. 99
26.		residuals for the experimental data	
	fitted	to equation (2), $R=4$. 100
27.	Pressure	residuals for the experimental data	
		to equation (2), $R=5$. 101
20	Decague	regiduals for the experimental data	
20.		residuals for the experimental data to equation (2), R=6	102
	TILLEG	to equation (2), K=0 · · · · · · · · · · · · · · · · · · ·	. 102
29.		residuals for the experimental data	
	fitted	to equation (2), $R=7$. 103

(nob) EERSTIND

		Pressure	
	Les nontregue of the carpendant		

COMPRESSIBILITY DATA FOR HELIUM AT 0° C AND PRESSURES TO 800 ATMOSPHERES FITTED TO AN EQUATION OF THE

FORM
$$Z_r = 1 + BP_r + CP_r^2 + DP_r^3$$

by

Ted C. Briggs
$$\frac{1}{}$$

ABSTRACT

The 0° C helium compressibility data of Helium Research Center Internal Report No. 88 $(3)^{2/}$ were fitted to an equation of the form $Z_r = 1 + BP_r + CP_r^2 + DP_r^3$ using a non-linear least squares technique. Results of least squares treatment are presented.

INTRODUCTION

Twenty-two compressibility runs were made with helium at 0° C. Data from the twenty-two runs were fitted to equation (1) by a least squares technique.

$$Z_{r} = 1 + BP_{r} + CP_{r}^{2} = \left(\frac{Z_{o}}{P_{o}}\right)f_{r}N^{r}P_{r}$$
 (1)

^{1/} Research chemist, Helium Research Center, Bureau of Mines, Amarillo, Texas.

Underlined numbers in parentheses refer to items in the list of references at the end of this report.

TO SOO ATMOSPHERES PITTED TO AS EQUATION OF THE

10 + 500 + 500 + 1 - 18 MART

va

Mangara C. Pagaral

TOARESON

The D' C believe companies that a state of the face of

DESCRIPTION OF THE PARTY OF THE

A VA TI) metropo es traste van sur mal-trast at met tret

A 194 (1) - 30 - 10 - 10 - 10

(13

Li Camerol , the Line C. and Company Version of Minney , Landon of Minney ,

In the section of the same and of this section is the section of t

 Z_r = compressibility factor at P_r

 P_r = pressure after the rth expansion

B = constant evaluated from the experimental pressures

C = constant evaluated from the experimental pressures

P = pressure before the first expansion

r = expansion number = R

 Z_{o} = compressibility factor at P_{o}

 f_r = factor to correct for elastic pressure distortion of the compressibility bombs

N = isothermal volume ratio at zero pressure

A description of the experimental apparatus and experimental procedure used to obtain data for the twenty-two runs, treatment of the experimental observations, and the results of the least squares fitting of the data to equation (1) were recorded in Helium Research Center Internal Report No. 88 (3).

Examination of the column of differences between the observed and calculated pressures of table 5 of Internal Report No. 88 ($\underline{3}$) revealed that the signs of the residuals for the various runs were not random. The nonrandomness of the residuals suggested equation (1) did not adequately represent the experimental data.

The same experimental data for the twenty-two compressibility runs at 0° C were fitted to equation (2) using a least squares technique.

" - compressibility Landon - "

nother two die out reside agreeout " "

I . Countries avaiuated from the expertmental presents

C = constant evaluated from the experimental needs of a

of Pressure better the first expansion

R = remain notempas = 7

Z = compressibility factor - Z

In the community of the state o

someons ores to older sunday torredical - H

A description of the experimental spearage on experiment of procedure used to cutain data for the company runs, resonance of the experimental observations, and the complete of the lens aquerus firsting of the data or equation (1) more recorded to Bellow Russerell Center Internal Report No. 88 (3).

branched the colorest to a line of the colorest to a line of the colorest to a colores

The simu experimented date for the the threaty-two compressions of the C were dilited to equation (2) oning a least aquaria

$$Z_{r} = 1 + BP_{r} + CP_{r}^{2} + DP_{r}^{3} = \left(\frac{Z_{o}}{P_{o}}\right)f_{r}N^{r}P_{r}$$
 (2)

D = constant evaluated from the experimental pressures

Details of the method used in this least squares treatment of Burnett compressibility data can be found in Helium Research Center Internal Reports No. 85 (2) and No. 86 (1).

The extensive calculations required for the data treatment were carried out by using an IBM 1401 computer, and the results of the computer calculations were printed out directly on multilith masters.

RESULTS OF FITTING THE 0° C HELIUM COMPRESSIBILITY DATA TO EQUATION (2)

The pressure expansion numbers are listed in table 1 under the column heading R. The experimental pressures in absolute atmospheres, the calculated pressures in absolute atmospheres, the differences between the experimental pressures and the least squares calculated pressures, and the relative differences of the experimental and calculated pressures are printed out in table 1 for each of the twenty-two compressibility runs. The quantities are listed in "E format" $(5.361188596E-04=5.361188596\times10^{-4})$.

A weighting factor of 1 was used for all the calculations, and the sum of squares of the weighted residuals is printed out in table 1 for each run.

The least squares calculated constants for equation (2) (N, B, C, and D), and the standard errors of the constants (SN, SB, SC, and SD) are printed out in table 1 for each of the twenty-two runs.

Details of the nervot used in this least square treature.

Details of the nervot used in this least square treatment of the section is the first square to the section of t

The value of the value of the temperature of the regular of the re

RESULTS OF FIFTING THE CO. O. MILITARY COMMISSIONS THE PROPERTY OF THE PROPERT

The pressure expansion numbers are itseed in table I order that deligns heading at the supering I. The supering transmiss is the theology attached the column depends of the supering at the supering of the supering transmiss and the last tense expanses and the formation of the supering transmiss and the supering transmiss of the explicit market and the columns of the supering transmiss of the supering transmiss of the supering transmission of the s

the sum of epigens of the head had a transmission to reduce the college and the salts and a sum of epigens of the head that a sum of epigens of the head that a sum of epigens of the head of the head

The least equeries rationand constants for songtones rate of the Con and C, and D), and the standard out on an one of the contents (bit of the rate of

RUN NO. HE-0-1

R	P,OBS.,ATM.	P, CAL., ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	6.4728895E&02	6.4728895E&02	0.00000E-99	0.00000E-99
2	2.8125289E&02 1.3168470E&02 6.3853510E&01	2.8125289E&02 1.3168478E&02 6.3853183E&01	7.18885E-06 -8.72145E-05 3.27430E-04	2.55601E-08 -6.62298E-07
4	3.1491659E&01 1.5661273E&01	3.1491868E&01 1.5661882E&01	-2.08617E-04 -6.09214E-04	5.12784E-06 -6.62453E-06 -3.88994E-05
6	7.8217009E-00 3.9151145E-00	7.8215536E-00 3.9141936E-00	1.47235E-04 9.20857E-04	1.88240E-05 2.35205E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.39918E-06

CONSTANTS AND STANDARD ERRORS

N	1.994104930E-00	SN	6.91275E-05
В	5.361188596E-04	SB	1.21414E-06
C	-6.944230880E-08	SC	3.12574E-09
D	1.909621205E-11	SD	2.76621E-12

S2N	4.77862E-09
S2B	1.47414E-12
S2C	9.77028E-18
SZD	7.65194E-24
S2BC	-3.76511E-15
S2BD	3.30739E-18
S2BN	-8.09421E-11
S2CD	-8.63582E-21
SZCN	2.00110E-13
S2DN	-1.73652E-16

TABLE 1 - EXPERIMENTAL PRESSURES CALGULARED PLESSURES.

RUN NO. HE-G-1

SUM OF MEIGHTED SUMPRES OF THE RESIDUALS 1. SOULAR-ON

CONSTANTS AND STRUCKER PAR DEC

-

RUN NO. HE-0-2

	D ODC ATM	D CAL ATH	0.000 0.041	P,OBSP,CAL.
R	P,OBS.,ATM.	P, CAL., ATM.	P.OBSP,CAL.	P,OBS.
0	6.9039330E&02	6.9039330E&02	0.00000E-99	0.00000E-99
1	2.9760733E&02	2.9760732E&02	9.77942E-06	3.28601E-08
2	1.3883415E&02	1.3883427E&02	-1.25101E-04	-9.01086E-07
3	6.7203083E&01	6.7202556E&01	5.27348E-04	7.84709E-06
4	3.3114887E&01	3.3115530E&01	-6.42524E-04	-1.94029E-05
5	1.6462213E&01	1.6462457E&01	-2.43833E-04	-1.48116E-05
6	8.2197040E-00	8.2196494E-00	5.45774E-05	6.63983E-06
7	4.1139611E-00	4.1129921E-00	9.69016E-04	2.35543E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.70810E-06

CONSTANTS AND STANDARD ERRORS

N	1.994100354E-00	SN	7.23983E-05
В	5.360446432E-04	SB	1.20448E-06
C	-6.891640779E-08	SC	2.91792E-09
D	1.833273902E-11	SD	2.43035E-12

SZN	5.24152E-09
S2B	1.45078E-12
S2C	8.51429E-18
S2D	5.90664E-24
S2BC	-3.48676E-15
S2BD	2.88289E-18
S2BN	-8.41015E-11
S2CD	-7.08304E-21
SZCN	1.95645E-13
SZDN	-1.59821E-16

TABLE 1. - EXHERIHENTAL PRESSURES, CALCURATED PRESSURES, CONSTANTS, STANDARD ERHORS, VARIABLES,

KUN NO. HE-U-Z

	PUREL LASE.		
		A.SOSPSSORCOS Z.ST.OUTSSECOS I.SERSALSECOS O.ZEOSOBSECOS S.SILARBYECOS I.ESERTECOS A.ZITTOAUE.OO A.IISTELLE.OO	

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.70610F-DA

CONSTANTS AND STANDARD CHRONE

RUN NO. HE-0-3

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	7.0128236E&02	7.0128236E&02	0.00000E-99	0.00000E-99
1	3.0170799E&02	3.0170798E&02	1.06401E-05	3.52663E-08
2	1.4061376E&02	1.4061390E&02	-1.33782E-04	-9.51419E-07
3	6.8033559E&01	6.8033024E&01	5.35729E-04	7.87448E-06
4	3.3517320E&01	3.3517838E&01	-5.18572E-04	-1.54717E-05
5	1.6660572E&01	1.6661089E&01	-5.17513E-04	-3.10621E-05
6	8.3186011E-00	8.3186642E-00	-6.30330E-05	-7.57736E-06
7	4.1639855E-00	4.1625875E-00	1.39802E-03	3.35741E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 2.80019E-06

CONSTANTS AND STANDARD ERRORS

N	1.994013206E-00	SN	9.15046E-05
B	5.374195870E-04	SB	1.50283E-06
C	-7.090761621E-08	SC	3.58710E-09
D	1.932476211E-11	SD	2.94402E-12

SZN	8.37309E-09
S2B	2.25851E-12
S2C	1.28672E-17
S2D	8.66727E-24
S2BC	-5.34810E-15
S2BD	4.35728E-18
S2BN	-1.32628E-10
S2CD	-1.05478E-20
S2CN	3.03985E-13
SZDN	-2-44705F-16

. ZBRUZZBEN OSTALUDZAL _ ZBRUZZBRO_ LANGERSSKI - 1 8J6A7

RUM NO. DE-0-3 -

0.000008-99 3.328636-03 -0.008208-03 -1.008208-03 -7.577366-03 3.337416-04		DIEM TON

SUN OF METCHTED SOURCES OF THE RECTOURLS 2.80019E-00

CHESTARYS AND STRANGERS SERGES

RUN NO. HE-0-4

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL.
0	7.0574520E&02	7.0574520E&02	0.00000E-99	0.00000E-99
1	3.0337137E&02	3.0337136E&02	5.64098E-06	1.85943E-08
2	1.4133952E&02	1.4133959E&02	-7.37015E-05	-5.21450E-07
3	6.8373652E&01	6.8373330E&01	3.22066E-04	4.71038E-06
4	3.3682135E&01	3.3682559E&01	-4.24254E-04	-1.25958E-05
5	1.6741807E&01	1.6741990E&01	-1.82718E-04	-1.09139E-05
6	8.3590666E-00	8.3586743E-00	3.92285E-04	4.69292E-05
7	4.1826390E-00	4.1824414E-00	1.97639E-04	4.72523E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 5.15517E-07

CONSTANTS AND STANDARD ERRORS

N	1.994081748E-00	SN	3.90576E-05
B	5.361394634E-04	SB	6.37993E-07
C	-6.840318929E-08	SC	1.51389E-09
D	1.763751763E-11	SD	1.23515E-12

SZN	1.52550E-09
S2B	4.07035E-13
S2C	2.29186E-18
S2D	1.52561E-24
S2BC	-9.58197E-16
S2BD	7.76078E-19
S2BN	-2.40327E-11
S2CD	-1.86765E-21
S2CN	5.47603E-14
S2DN	-4.38223F-17

TABLE 1. - EXPENIENT DESCRIPTION OF THE COLUMN CALCULATED FRESHINGS.

ROW NO. HE-C-4

SUM OF HEIGHTED SQUARES OF THE RESTOURLS DETERMENT

CONSTANTS AND STANDARD CARDER

PERMANERANCE AND CHYARLANCE

RUN NO. HE-0-5

P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
6.9787955E&02	6.9787955E&02	0.00000E-99	0.00000E-99
3.0041472E&02	3.0041471E&02	9.96965E-06	3.31863E-08
1-4005441E&02	1.4005454E&02	-1.24516E-04	-8.89059E-07
6.7772168E&01	6.7771677E&01	4.90833E-04	7.24240E-06
3.3390191E&01	3.3390629E&01	-4.37985E-04	-1.31171E-05
1.6597313E&01	1.6597863E&01	-5.49943E-04	-3.31345E-05
8.2868246E-00	8.2869082E-00	-8.36152E-05	-1.00901E-05
4.1479419E-00	4.1465544E-00	1.38747E-03	3.34496E-04
	6.9787955E&02 3.0041472E&02 1.4005441E&02 6.7772168E&01 3.3390191E&01 1.6597313E&01 8.2868246E-00	6.9787955E&02 6.9787955E&02 3.0041472E&02 3.0041471E&02 1.4005441E&02 1.4005454E&02 6.7772168E&01 6.7771677E&01 3.3390191E&01 3.3390629E&01 1.6597313E&01 1.6597863E&01 8.2868246E-00 8.2869082E-00	6.9787955E&02 6.9787955E&02 0.00000E-99 3.0041472E&02 3.0041471E&02 9.96965E-06 1.4005441E&02 1.4005454E&02 -1.24516E-04 6.7772168E&01 6.7771677E&01 4.90833E-04 3.3390191E&01 3.3390629E&01 -4.37985E-04 1.6597313E&01 1.6597863E&01 -5.49943E-04 8.2868246E-00 8.2869082E-00 -8.36152E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 2.68285E-06

CONSTANTS AND STANDARD ERRORS

N 1	.994105641E-00	SN	8.99370E-05
B 5	.365329037E-04	SB	1.48292E-06
C -7	.014594551E-08	SC	3.55620E-09
D 1	.938267144E-11	SD	2.93217E-12

S2N	8.08867E-09
S2B	2.19905E-12
S2C	1.26466E-17
SZD	8.59765E-24
S2BC	-5.23179E-15
S2BD	4.28223E-18
S2BN	-1.28627E-10
S2CD	-1.04148E-20
S2CN	2.96206E-13
S2DN	-2.39543E-16

TABLE 1- - EXPENSE OF LAW CANCULATED PRESSURES. CONSTANTS, STANDARD GROUPS, YEAR ANGELS.

R-D-3H DO WATE

SUM OF WEIGHTED SQUARUS OF THE RESIDUALS 2 YOURSELDS

COMMITTER AND STRUCKED PRICES

VARIABLES AND COVATABLES

RUN NO. HE-0-6

R	P,OBS.,ATM.	POCALO, ATM.	P,OBSP,CAL.	P,OBSP,CAL.
0	7.0298868E&02	7.0298868E&02	0.00000E-99	0.00000E-99
1	3.0233845E&02	3.0233843E&02	1.28907E-05	4.26369E-08
2	1.4088835E&02	1.4088851E&02	-1.63583E-04	-1.16108E-06
3	6.8163698E&01	6.8163029E&01	6.68810E-04	9.81182E-06
4	3.3579834E&01	3.3580536E&01	-7.01802E-04	-2.08995E-05
5	1.6690781E&01	1.6691382E&01	-6.00959E-04	-3.60055E-05
6	8.3334615E-00	8.3332743E-00	1.87184E-04	2.24617E-05
7	4.1709998E-00	4.1696172E-00	1.38264E-03	3.31489E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 3.27465E-06

CONSTANTS AND STANDARD ERRORS

N	1.994160628E-00	SN	9.87659E-05
В	5.347946028E-04	SB	1.61828E-06
C	-6.487982103E-08	SC	3.85431E-09
D	1.462940356E-11	SD	3.15624E-12

SZN	9.75471E-09
S2B	2.61885E-12
S2C	1.48557E-17
S2D	9.96188E-24
S2BC	-6.18795E-15
S2BD	5.03027E-18
S2BN	-1.54149E-10
S2CD	-1.21505E-20
SZCN	3.52548E-13
S2DN	-2.83165E-16

TABLE 1: - EMPERIMENTAL INVESSIONS CALCULATED PRESSURES.

RUN NO. HE-D-6

SUM OF METCHTED LUDGERES OF THE HELIDURE STREET SO HUE

CONSTANTS AND SYANGLED RESIDED

VARIABLES AND COVARIANTES

RUN NO. HE-0-7

			P,OBSP,CAL.
P.OBS.,ATM.	P.CAL. ATM.	P,OBSP,CAL.	P,OBS.
7.0208680EE02	7.0208680E&02	0.00000E-99	0.00000E-99
3.0200812E&02	3.0200812E802	4.25962E-06	1.41043E-08
1.4074887E&02	1.4074893E&02	-5.42586E-05	-3.85499E-07
6.8097837EE01	6.8097612E&01	2.25243E-04	3.30764E-06
3.3548005E&01	3.3548268E&01	-2.63538E-04	-7.85557E-06
1.6674984E&01	1.6675074E&01	-8.99902E-05	-5.39672E-06
8.3248260E-00	8.3249383E-00	-1.12353E-04	-1.34961E-05
4.1658969E-00	4.1653342E-00	5.62664E-04	1.35064E-04
	7.0208680E&02 3.0200812E&02 1.4074887E&02 6.8097837E&01 3.3548005E&01 1.6674984E&01 8.3248260E-00	7.0208680E&02 7.0208680E&02 3.0200812E&02 3.0200812E&02 1.4074887E&02 1.4074893E&02 6.8097837E&01 6.8097612E&01 3.3548005E&01 3.3548268E&01 1.6674984E&01 1.6675074E&01 8.3248260E-00 8.3249383E-00	7.0208680E&02 7.0208680E&02 0.00000E-99 3.0200812E&02 3.0200812E&02 4.25962E-06 1.4074887E&02 1.4074893E&02 -5.42586E-05 6.8097837E&01 6.8097612E&01 2.25243E-04 3.3548005E&01 3.3548268E&01 -2.63538E-04 1.6674984E&01 1.6675074E&01 -8.99902E-05 8.3248260E-00 8.3249383E-00 -1.12353E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 4.60461E-07

CONSTANTS AND STANDARD ERRORS

N	1.994221537E-00	SN 3.70743E-05
B	5.344341608E-04	SB 6.08047E-07
C	-6.528667964E-08	SC 1.44999E-09
D	1.530120221E-11	SD 1.18881E-12

SZN	1.37450E-09
S2B	3.69721E-13
S2C	2.10249E-18
S2D	1.41328E-24
S2BC	-8.74682E-16
S2BD	7.11897E-19
S2BN	-2.17414E-11
SZCD	-1.72171E-21
S2CN	4.97858E-14
S2DN	-4.00356E-17

TABLE 1 - EXCESSIONED AND COMPAND STATES PARTIES.

T-D-SE DE HUS

SUM OF MELCHILD STRANGE IN THE RESIDENCE STRUCKES OF

COULTANTS AND STRUCKED PRODUCTS

SHARRANDE AND EDUNATION

RUN NO. HE-0-8

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	7.0061130E&02	7.0061130E&02	0.00000E-99	0.00000E-99
1	3.0144846E&02	3.0144845E&02	5.51140E-06	1.82830E-08
2	1.4050824E&02	1.4050831E&02	-6.99893E-05	-4.98115E-07
3	6.7985497E&01	6.7985210E&01	2.87501E-04	4.22886E-06
4	3.3494053E&01	3.3494363E&01	-3.10769E-04	-9.27835E-06
5	1.6648795E&01	1.6649023E&01	-2.28571E-04	-1.37289E-05
6	8.3123743E-00	8.3123250E-00	4.93463E-05	5.93649E-06
7	4.1598289E-00	4.1592274E-00	6.01499E-04	1.44597E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 6.00645E-07

CONSTANTS AND STANDARD ERRORS

N	1.994118630E-00	SN	4.24145E-05
В	5.359183887E-04	SB	6.97011E-07
C	-6.911866851E-08	SC	1.66539E-09
D	1.866578011E-11	SD	1.36812E-12

SZN	1.79899E-09
S2B	4.85824E-13
S2C	2.77354E-18
S2D	1.87175E-24
S2BC	-1.15160E-15
S2BD	9.39137E-19
S2BN	-2.85123E-11
S2CD	-2.27572E-21
S2CN	6.54181E-14
SZDN	-5.27106E-17

AND THE REAL PROPERTY OF THE P

-y-s-sH -sk hus

PE-000000000 80-00000000 70-0000000 00-00000000 00-00000000		

VOU-SEASON ASSESSED AND ASSESSED AND ASSESSED ASSESSED ASSESSED.

SHOWN DURCHARD THE STRATCHOL

PERSONAL PROPERTY OF PERSONS AND PERSONS ASSESSMENT OF PERSONS ASSESSMENT ASSESSMENT OF

RUN NO. HE-0-9

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	6.8457479E&02	6.8457479E&02	0.00000E-99	0.00000E-99
1	2.9540775E&02	2.9540775E&02	2.39915E-06	8.12150E-09
2	1.3787047EE02	1.3787048E&02	-1.72805E-05	-1.25338E-07
3	6.6752988E&01	6.6753056E&01	-6.81255E-05	-1.02056E-06
4	3.2896560E&01	3.2895811E&01	7.49021E-04	2.27689E-05
5	1.6350585E&01	1.6351971EE01	-1.38578E-03	-8.47546E-05
6	8.1629533E-00	8.1632520E-00	-2.98652E-04	-3.65862E-05
7	4.0856389E-00	4.0839944E-00	1.64453E-03	4.02515E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 5.28007E-06

CONSTANTS AND STANDARD ERRORS

N	1.994563189E-00	SN	1.28225E-04
В	5.291090411E-04	SB	2.14640E-06
C	-5.230765870E-08	SC	5.24277E-09
D	4.528069539E-12	SD	4.40184E-12

SZN	1.64417E-08
S2B	4.60707E-12
S2C	2.74867E-17
SZD	1.93761E-23
S2BC	-1.11640E-14
S2BD	9.30472E-18
S2BN	-2.65431E-10
SZCD	-2.30499E-20
S2CN	6.22583E-13
SZDN	-5-12660F-16

TABLE 1. - CYPTRIMENTAL PRESSURES, CALCULATED PRESSURES, CALCULATED PRESSURES, CONTRIBUTES, CONT

RUM NEL HE-0-0-

SUB-STOURTS STANDINGS OF THE SESSIBILITY OF THE SESSIBILITY OF THE

CONSTANTS AND STANDARD EMBORS

RUN NO. HE-0-10

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	7.0727559E&02	7.0727559E&02	0.00000E-99	0.00000E-99
1	3.0394992E&02	3.0394992E&02	-3.71980E-06	-1.22382E-08
2	1.4159267E&02	1.4159262E&02	5.46836E-05	3.86203E-07
3	6.8490921E&01	6.8491226E&01	-3.05618E-04	-4.46216E-06
4	3.3738977E&01	3.3738230E&01	7.47242E-04	2.21477E-05
5	1.6767501E&01	1.6768271E801	-7.69300E-04	-4.58804E-05
6	8.3712273E-00	8.3710325E-00	1.94876E-04	2.32792E-05
7	4.1883028E-00	4.1882232E-00	7.95664E-05	1.89972E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.29090E-06

CONSTANTS AND STANDARD ERRORS

N	1.994284259E-00	SN	6.17038E-05
B	5.339012082E-04	SB	1.00569E-06
C	-6.442053062E-08	SC	2.38181E-09
D	1.473351037E-11	SD	1.93936E-12

SZN	3.80736E-09
S2B	1.01142E-12
S2C	5.67305E-18
S2D	3.76112E-24
S2BC	-2.37640E-15
S2BD	1.92085E-18
S2BN	-5.98491E-11
S2CD	-4.61367E-21
S2CN	1.36108E-13
S2DN	-1.08702E-16

TANKE I - EXPERIMENTAL PRESIDENCE CALCULATED PRESSURES.

KUM ND. HE-D-ID

AU-INCOME. I SUNDERSON THE STREET, IN STREET, BUT NO.

CONSTANTS AND STREET, CHARLES

PARTAMETE AND COVARIANCES

RUN NO. HE-0-11

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	7.0340360E&02	7.0340360E&02	0.00000E-99	0.00000E-99
1	3.0249876E&02	3.0249876E&02	4.13587E-06	1.36723E-08
2	1.4096179E&02	1.4096184E&02	-5.17086E-05	-3.66827E-07
3	6.8196393E&01	6.8196193E&01	2.00721E-04	2.94329E-06
4	3.3595563E&01	3.3595697E&01	-1.34226E-04	-3.99537E-06
5	1.6697915E&01	1.6698384E&01	-4.69838E-04	-2.81375E-05
6	8.3369834E-00	8.3365248E-00	4.58634E-04	5.50120E-05
7	4.1713507E-00	4.1711267E-00	2.24016E-04	5.37036E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 5.42274E-07

CONSTANTS AND STANDARD ERRORS

N	1.994213518E-00	SN	4.01723E-05
В	5.349595430E-04	SB	6.57863E-07
C	-6.675389830E-08	SC	1.56603E-09
D	1.657850192E-11	SD	1.28169E-12

SZN	1.61381E-09
S2B	4.32784E-13
S2C	2.45245E-18
S2D	1.64274E-24
S2BC	-1.02207E-15
S2BD	8.30400E-19
S2BN	-2.54883E-11
SZCD	-2.00477E-21
S2CN	5.82630E-14
SZDN	-4.67708E-17

TABLE 1. - EXPLICATAL PRESIDES, CALCULATED PRESCURES, COMPLEMENTS, STANFARD REGIONS, VARIANCES,

FI-0-3H . DM MUR

ADMINISTRATED PROPERTY OF THE WESTON OF MESTAGE OF MASSES

COUNTRIES AND STANDARD STORYS

VANISATION AND CONVEYING SAV

RUN NO. HE-0-12

R	P,OBS.,ATM.	P, CAL., ATM.	P.OBSP.CAL.	P,OBSP,CAL. P,OBS.
0	6.9905324E&02	6.9905324E&02	0.00000E-99	0.00000E-99
1	3.0086678E&02	3.0086678E&02	1.36011E-06	4.52064E-09
2	1.4025209E&02	1.4025211E&02	-1.12450E-05	-8.01775E-08
3	6.7865373E&01	6.7865392E&01	-1.89750E-05	-2.79598E-07
4	3.3435772E&01	3.3435426E&01	3.46675E-04	1.03684E-05
5	1.6618379E&01	1.6619108E&01	-7.28224E-04	-4.38204E-05
6	8.2969111E-00	8.2968890E-00	2.20475E-05	2.65732E-06
7	4.1518777E-00	4.1512022E-00	6.75482E-04	1.62693E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.10774E-06

CONSTANTS AND STANDARD ERRORS

N	1.994289860E-00	SN	5.77129E-05
1.3			
B	5.335874740E-04	SB	9.49847E-07
C	-6.350558279E-08	SC	2.27443E-09
n	1.393544536F-11	SD	1.87236F-12

SZN	3.33078E-09
S2B	9.02210E-13
S2C	5.17305E-18
SZD	3.50575E-24
S2BC	-2.14325E-15
S2BD	1.75149E-18
SZBN	-5.28692E-11
S2CD	-4.25345E-21
S2CN	1.21565E-13
SZDN	-9.81560E-17

AND THE REAL PROPERTY OF THE PARTY OF THE PA

STATE OF BUILDING

PERSONAL PROPERTY OF THE PROPE

PRINCIPAL DEPONETT UNA ETHATERIOR

NAMES OF TAXABLE PARTIES.

RUN NO. HE-0-13

				P,OBSP,CAL.
R	P, OBS., ATM.	P, CAL., ATM.	P.OBSP.CAL.	P,OBS.
0	7.1102445E&02	7.1102445E&02	0.0000E-99	0.00000E-99
1	3.0535233E&02	3.0535226E&02	7.01806E-05	2.29835E-07
2	1.4213544E&02	1.4213637E&02	-9.21671E-04	-6.48445E-06
3	6.8777416E&01	6.8773377E&01	4.03862E-03	5.87202E-05
4	3.3877134E&01	3.3882634E&01	-5.49968E-03	-1.62342E-04
5	1.6837357E&01	1.6838452E&01	-1.09532E-03	-6.50532E-05
6	8.4059564E-00	8.4037746E-00	2.18178E-03	2.59551E-04
7	4.2075898E-00	4.2030250E-00	4.56474E-03	1.08488E-03

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 7.42082E-05

CONSTANTS AND STANDARD ERRORS

N	1.995260954E-00	SN	4.65937E-04
В	5.031886651E-04	SB	7.53695E-06
C	2.938049137E-08	SC	1.77670E-08
D	-6.797656002E-11	SD	1.43950E-11

S2N	2.17097E-07
S2B	5.68056E-11
S2C	3.15667E-16
S2D	2.07218E-22
S2BC	-1.32846E-13
S2BD	1.06849E-16
S2BN	-3.38673E-09
SZCD	-2.55451E-19
S2CN	7.66591E-12
S2DN	-6.09204E-15

PARTIES AND THE PARTY OF THE PA

KI-D-BH LOW MUN

SUM- DE METERNES DE THE SENERAL SE TRAITE SU MUZ

SOURCE ON STRATEGIC

NAME OF STREET AND COMMISSIONS

RUN NO. HE-0-14

R	P,OBS.,ATM.	P, CAL., ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	6.9853895E&02	6.9853895E&02	0.00000E-99	0.00000E-99
1	3.0067567E802	3.0067566E&02	7.52292E-06	2.50200E-08
2	1.4016953E&02	1.4016962E&02	-9.58683E-05	-6.83945E-07
3	6.7826865E&01	6.7826467E&01	3.98071E-04	5.86893E-06
4	3.3416347E&01	3.3416801EE01	-4.54229E-04	-1.35930E-05
5	1.6609979E&01	1.6610230E&01	-2.50927E-04	-1.51070E-05
6	8.2927140E-00	8.2926848E-00	2.92619E-05	3.52863E-06
7	4.1500376E-00	4.1492239E-00	8.13731E-04	1.96078E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.10001E-06

CONSTANTS AND STANDARD ERRORS

N	1.994223593E-00	SN	5.75442E-05
В	5.346487378E-04	SB	9.47783E-07
C	-6.604315507E-08	SC	2.27096E-09
D	1.599945605E-11	SD	1.87078E-12

S2N	3.31133E-09
S2B	8.98292E-13
S2C	5.15727E-18
S2D	3.49982E-24
S2BC	-2.13533E-15
S2BD	1.74620E-18
S2BN	-5.26002E-11
SZCD	-4.24336E-21
SZCN	1.21025E-13
S2DN	-9.77863E-17

AND THE PARTY OF T

MI-D-3H -DE MIA

	SUBSTARVAUOLE SUBSTARVAUOLE TOBSCARVAUOLE TO	

SUM OF METODOTAL DEVAMES OF THE MESTONALS LATEROLET HE HES

CHIEFTON'S AND STANDARD SHADAS

ASTROLES FOR COASTANCES

RUN NO. HE-0-15

				P,OBSP,CAL.
R	P,OBS.,ATM.	POCALOGATM.	P,OBSP,CAL.	P,OBS.
^	7.0725396E&02	7.0725396E802	0.00000E-99	0.00000E-99
0				
1	3.0393974E&02	3.0393974E&02	5.45062E-06	1.79332E-08
2	1.4158487E&02	1.4158493E&02	-6.67456E-05	-4.71417E-07
3 -	6.8487098E&01	6.8486852E&01	2.45783E-04	3.58875E-06
4	3.3735978E&01	3.3736098E&01	-1.20224E-04	-3.56370E-06
5	1.6766788E&01	1.6767326E&01	-5.37189E-04	-3.20389E-05
6	8.3707330E-00	8.3706461E-00	8.68669E-05	1.03774E-05
7	4.1888843E-00	4.1880801E-00	8.04179E-04	1.91979E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.02217E-06

CONSTANTS AND STANDARD ERRORS

N 1.994256630E-00	SN	5.49104E-05
B 5.343897700E-04	SB	8.95060E-07
C -6.496332459E-08	SC	2.11979E-09
D 1.494396759E-11	SD	1.72604E-12

S 2N	3.01516E-09
S2B	8.01133E-13
S2C	4.49351E-18
S2D	2.97924E-24
S2BC	-1.88230E-15
S2BD	1.52150E-18
S2BN	-4.74010E-11
S2CD	-3.65447E-21
SZCN	1.07798E-13
SZDN	-8-60952F-17

TABLE 1. - LEGERLARIAL PRESENTANT LARREST VARIABLES.

OT-G-SH . OH NUN

DESCRIPTION OF THE RESIDENCE OF THE RESIDENCE OF THE PARTY OF THE PART

CHARLES AND STREET, SPAN STREET

VARIABLE AND COVARIANCES

RUN NO. HE-0-16

				P,OBSP,CAL.
R	P,OBS.,ATM.	P & CAL . ATM.	P,OBSP,CAL.	P,OBS.
0	7.0575241E802	7.0575241E802	0.00000E-99	0.00000E-99
1	3.0337578E&02	3.0337578E&02	1.85452E-06	6.11296E-09
2	1.4134198E&02	1.4134200E&02	-2.36745E-05	-1.67498E-07
3	6.8374213E&01	6.8374115E&01	9.80058E-05	1.43337E-06
4	3.3681291E&01	3.3681399E&01	-1.07433E-04	-3.18969E-06
5	1.6740047E&01	1.6740132E&01	-8.45180E-05	-5.04885E-06
6	8.3570058E-00	8.3569552E-00	5.05869E-05	6.05324E-06
7	4.1813150E-00	4.1811436E-00	1.71467E-04	4.10080E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 6.08144E-08

CONSTANTS AND STANDARD ERRORS

N	1.994312169E-00	SN	1.34170E-05
В	5.335040069E-04	SB	2.19064E-07
C	-6.337225197E-08	SC	5.19879E-10
D	1.387081755E-11	SD	4.24165E-13

SZN	1.80017E-10
S2B	4.79892E-14
S2C	2.70274E-19
SZD	1.79916E-25
S2BC	-1.12984E-16
S2BD	9.15115E-20
S2BN	-2.83470E-12
S2CD	-2.20250E-22
S2CN	6.45986E-15
S2DN	-5.16962E-18

ASSURES OF THE STATE OF THE STA

RISH NULL WIFE DELIG

THE RELIGIOUS SPECIAL SHE WAS NOT THE WAS NOT THE WAY

CONTRACTOR OF THE PERSON OF TH

VARIANCES AND COUNTERNEES

RUN NO. HE-0-17

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	6.9911233E&02	6.9911233E&02	0.00000E-99	0.00000E-99
1	3.0088594E&02	3.0088594E&02	-7.76368E-07	-2.58027E-09
2	1.4025861E&02	1.4025860E&02	1.06708E-05	7.60797E-08
3	6.7867489E&01	6.7867542E&01	-5.31910E-05	-7.83748E-07
4	3.3436121E&01	3.3436011E&01	1.09839E-04	3.28505E-06
5	1.6619056E&01	1.6619161E&01	-1.04971E-04	-6.31635E-06
6	8-2968869E-00	8.2967958E-00	9.10776E-05	1.09773E-05
7	4.1510115E-00	4.1510950E-00	-8.34544E-05	-2.01046E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 4.12873E-08

CONSTANTS AND STANDARD ERRORS

N	1.994319395E-00	SN	1.11415E-05
B	5.335331716E-04	SB	1.83351E-07
C	-6.339454168E-08	SC	4.39012E-10
D	1.383291980E-11	SD	3.61378E-13

SZN	1.24133E-10
S2B	3.36178E-14
SZC	1.92731E-19
S2D	1.30594E-25
S2BC	-7.98560E-17
S2BD	6.52546E-20
S2BN	-1.97016E-12
S2CD	-1.58458E-22
S2CN	4.52984E-15
SZDN	-3.65727E-18

TABLE 1. - EXPLANTAL PRESSURES CALCULATED PRESSURES, CARRIAGES, VARIABLES, CONSTANCES, VARIABLES, V

TI-0-SH JOH MUS

	1.40258018602 0.78676896601 1.354361216601 0.2368668601 0.2368668601	

SUM OF MELCHTED SOUTHERS OF THE RESIDUALS WITHDISH OF MUZ

CONSTANTS AND STRUCTURE EXCENSE

RUN NO. HE-0-18

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	7.0498797E&02	7.0498797E&02	0.0000E-99	0.00000E-99
1	3.0309166E&02	3.0309167E&02	-2.99395E-06	-9.87803E-09
2	1.4121823E&02	1.4121820E&02	3.42711E-05	2.42681E-07
3	6.8316532E&01	6.8316634E&01	-1.02819E-04	-1.50504E-06
4	3.3653188E&01	3.3653236E&01	-4.77297E-05	-1.41828E-06
5	1.6726144E&01	1.6725862E&01	2.82041E-04	1.68623E-05
6	8.3501239E-00	8.3495967E-00	5.27150E-04	6.31308E-05
7	4.1762502E-00	4.1773181E-00	-1.06788E-03	-2.55704E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.51185E-06

CONSTANTS AND STANDARD ERRORS

N 1.994394407E-00	SN	6.69573E-05
B 5.322844433E-04	SB	1.09403E-06
C -6.060369445E-08	SC	2.59909E-09
D 1.161922911E-11	SD	2.12274E-12

S2N	4.48329E-09
S2B	1.19690E-12
SZC	6.75529E-18
S2D	4.50606E-24
S2BC	-2.82095E-15
S2BD	2.28715E-18
S2BN	-7.06486E-11
S2CD	-5.51061E-21
S2CN	1.61168E-13
SZDN	-1.29109E-16

TABLE ! - 1 SUBSTRUCTION OF THE PROPERTY VARIANCES.

SI-D-SH - DM MUR

SUM DE MUICHTEU EQUARES DE THE RESIDUALS (STINGLIN SE MUZ

CONSTANTS AND STANDARD CHARGO

ANDRESS OF THE STREET, AND

RUN NO. HE-0-19

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	6.9586241E&02	6.9586241E&02	0.00000E-99	0.00000E-99
1	2.9965869E&02	2.9965869E&02	-6.03195E-07	-2.01294E-09
2	1.3972241E&02	1.3972240E&02	1.20424E-05	8.61883E-08
3	6.7615486E&01	6.7615582E&01	-9.54432E-05	-1.41155E-06
4	3.3314160EE01	3.3313842E&01	3.18756E-04	9.56821E-06
5	1.6558741E&01	1.6559082E&01	-3.40774E-04	-2.05797E-05
6	8.2667975E-00	8.2670540E-00	-2.56492E-04	-3.10268E-05
7	4.1368299E-00	4.1363245E-00	5.05336E-04	1.22155E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 5.48141E-07

CONSTANTS AND STANDARD ERRORS

N	1.994273282E-00	SN	4.07534E-05
В	5.346326295E-04	SB	6.73381E-07
C	-6.583531445E-08	SC	1.61937E-09
D	1.579513130E-11	SD	1.33885E-12

SZN	1.66084E-09
S2B	4.53442E-13
S2C	2.62236E-18
SZD	1.79253E-24
S2BC	-1.08181E-15
S2BD	8.87884E-19
S2BN	-2.64666E-11
SZCD	-2.16549E-21
S2CN	6.11188E-14
SZDN	-4.95614E-17

37

AND THE PART OF A PROPERTY OF A PARTY OF A P

PI-D-SH LOW NOW

SUM OF MELENTED SOURCES OF THE RESIDUALS STREET

ZINDARA GRAGNATZ DIM CTRETZHOLIZA

VARIABLES AND COVACIANCES

RUN NO. HE-0-20

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	6.8620552E&02	6.8620552E&02	0.00000E-99	0.00000E-99
1	2.9602082E&02	2.9602082E&02	2.62804E-06	8.87789E-09
2	1.3813812E&02	1.3813815E&02	-3.13665E-05	-2.27066E-07
3	6.6875363E&01	6.6875256E&01	1.06999E-04	1.59998E-06
4	3.2955262E&01	3.2955255E&01	6.33209E-06	1.92142E-07
5	1.6381782E&01	1.6382216E&01	-4.33714E-04	-2.64754E-05
6	8.1792899E-00	8.1790174E-00	2.72437E-04	3.33082E-05
7	4.0925711E-00	4.0923019E-00	2.69220E-04	6.57826E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 3.47289E-07

CONSTANTS AND STANDARD ERRORS

N	1.994313062E-00	SN	3.28161E-05
В	5.338932226E-04	SB	5.48560E-07
C	-6.414424732E-08	SC	1.33671E-09
D	1.446665089E-11	SD	1.11977E-12

S2N	1.07690E-09
S2B	3.00918E-13
S2C	1.78680E-18
S2D	1.25389E-24
S2BC	-7.27463E-16
S2BD	6.04938E-19
· S2BN	-1.73612E-11
S2CD	-1.49500E-21
S2CN	4.06247E-14
S2DN	-3.33767E-17

AND COUNTY OF THE PROPERTY OF

BS-0-SH -CH VON

#0-900000.0 #0-300075.5- #0-300075.5- #0-350000.1 #0-350000.5- #0-350000.5		

TO- WESTERS SHUDISES BUT TO REPORTED BY NO. WILL

CONSTANTS AND STANDARD ENGINEER

		11152 .

RUN NO. HE-0-21

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL.
0	7.7435393E&02	7.7435393E&02	0.00000E-99	0.00000E-99
1	3.2882507E&02	3.2882506E&02	9.09106E-06	2.76471E-08
2	1.5234062E&02	1.5234074E&02	-1.19684E-04	-7.85637E-07
3	7.3499612E&01	7.3499100E&01	5.12534E-04	6.97329E-06
4:	3.6158408E&01	3.6159025E&01	-6.17593E-04	-1.70802E-05
5	1.7959522E&01	1.7959885E&01	-3.62650E-04	-2.01926E-05
6	8.9632908E-00	8.9628967E-00	3.94142E-04	4.39730E-05
7	4.4841902E-00	4.4835196E-00	6.70613E-04	1.49550E-04

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.39510E-06

CONSTANTS AND STANDARD ERRORS

N	1.994351545E-00	SN	5.95698E-05
	5.326044978E-04	1000000	
_	-6.072347342E-08		1,95871E-09
	1.147232944E-11		1.46499E-12

SZN	3.54857E-09
S28	8.10863E-13
S2C	3.83657E-18
S2D	2.14620E-24
S2BC	-1.74975E-15
S2BD	1.29932E-18
S2BN	-5.17381E-11
S2CD	-2.86616E-21
S2CN	1.08059E-13
SZDN	-7.92985E-17

CHRIST DAY OF TANK AND TANK AND THE PROPERTY OF THE PARTY OF THE PARTY

AUN NO. HE-D-25

0.000008-09 2.764716-08 -7.856476-07 -1.708028-08 -2.019286-08 4.897308-08		

SUM DE VELENTED SQUARES OF THE LESTONIES L'SURIOR-OF

EXCHANG STRANGA CHARGE

AND SHORE THE CONNECTED

RUN NO. HE-0-22

R	P,OBS.,ATM.	P,CAL.,ATM.	P,OBSP,CAL.	P,OBSP,CAL. P,OBS.
0	5.8218590E&02	5.8218590E&02	0.00000E-99	0.00000E-99
1	2.5608357E&02	2.5608357E&02	1.00971E-06	3.94289E-09
2	1.2058177E&02	1.2058178E&02	-1.09306E-05	-9.06494E-08
3	5.8627782E&01	5.8627754E&01	2.82302E-05	4.81517E-07
4	2.8951908E&01	2.8951851E&01	5.64233E-05	1.94886E-06
5	1.4406838E&01	1.4407097E&01	-2.59446E-04	-1.80085E-05
6	7.1967975E-00	7.1966462E-00	1.51299E-04	2.10232E-05
7	3.6018337E-00	3.6017138E-00	1.19972E-04	3.33088E-05

SUM OF WEIGHTED SQUARES OF THE RESIDUALS 1.08698E-07

CONSTANTS AND STANDARD ERRORS

N	1.994313160E-00	SN	2.10668E-05
В	5.339842895E-04	SB	4.04809E-07
C	-6.528185895E-08	SC	1.15236E-09
D	1.629876851E-11	SD	1.12714E-12

S2N	4.43813E-10
S2B	1.63871E-13
S2C	1.32794E-18
S2D	1.27046E-24
S2BC	-4.62816E-16
S2BD	4.49283E-19
S2BN	-8.22373E-12
S2CD	-1.29723E-21
SZCN	2.24827E-14
SZDN	-2.15564E-17

ASSESSED STREET, CONTRACT ASSESSED AND ASSESSED AND ASSESSED.

RUN NO. HE-0-22

SUM OF WEIGHTED SQUARES OF THE RESTUURS INCOME.

SADERS THATTHE DAY STATEMENT CRACKE

The variances of the constants were designated as S2N, S2B, S2C, and S2D. The covariances of the constants were designated as S2BC, S2BD, S2BN, S2CD, S2CN, and S2DN. The variances and covariances of the constants are recorded in table 1.

The variances of pressures calculated at nominal increments of pressure and the covariances of BP, CP, and DP at nominal increments of pressure are recorded in table 2 under the headings S2P, S2BP, S2CP, and S2DP, respectively.

Compressibility factors and standard errors of the compressibility factors calculated at nominal increments of pressure are listed in table 3 under the headings Z and SZ, respectively.

Values of the compressibility apparatus zero pressure volume ratio (N) for each of the twenty-two runs are recorded in table 4 along with the value of the average N, the standard error in the average N, the average standard error of N, and the standard error of a single N.

Values for the constant B of equation (2) for helium at 0° C are recorded in table 5 for each of the twenty-two compressibility runs along with the average B, the standard error of the average B, the average standard error of B, and the standard error of a single B.

Values for the constant C of equation (2) for helium at 0° C are recorded in table 6 for each of the twenty-two runs along with the average C, the standard error of the average C, the average standard error of a single C.

STRO, BERT, SIRN, SICO, SECH, and STOM. The performers has conserved as

The variables of presences relatively and the second of the property of the presence of the pr

Description of the second lands in a second lands of the second of the s

A state of the company of the company and the contract of the

The second second contract of the date and I which is defined as a second secon

Vertices for the condition of the superstance of the superstance of the same are superstance of the supersta

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-1

PRESSURE, ATM.	S2P	S2BP	SZCP
1.000E-00	2.04038E-08	1.59024E-10	-3.86422E-13
2.000E-00	4.81086E-08	2.39590E-10	-5.79105E-13
5.000E-00	1.16234E-07	3.51943E-10	-8.38741E-13
1.000EE01	1.64620E-07	3.68226E-10	-8.53148E-13
2.500E&01	1.55786E-07	7.62434E-11	-8.34608E-14
5.000E&01	2.84623E-07	-4.13578E-10	1.12706E-12
7.500E&01	3.67244E-07	-5.36652E-10	1.36226E-12
1.000E&02	3.09055E-07	-3.13888E-10	7.06373E-13
1.250E&02	3.85221E-07	1.28229E-10	-4.99684E-13
1.500E&02	7.93406E-07	6.44368E-10	-1.87271E-12
2.000E&02	1.83746E-06	1.36450E-09	-3.72515E-12
2.500E&02	1.03860E-06	9.86501E-10	-2.62046E-12
3.000E&02	1.37145E-06	-9.44996E-10	2.60209E-12
3.500E&02	1.64595E-05	-4.43313E-09	1.19164E-11
4.000E&02	6.34188E-05	-9.01277E-09	2.40706E-11
4.500E&02	1.43492E-04	-1.37460E-08	3.65766E-11
5.000E&02	2.21775E-04	-1.72232E-08	4.57132E-11
6.000E&02	1.13458E-04	-1.24286E-08	3.28775E-11
7.000E&02	4.90112E-04	2.59617E-08	-6.85285E-11
8.000E&02	1.14486E-02	1.25888E-07	-3.31788E-10
9.000E&02	7.48509E-02	3.22634E-07	-8.49362E-10
1.000E&03	3.11185E-01	6.58978E-07	-1.73328E-09

PRESSURE, ATM.

S2DP

PRESSURE, AIM	3204
1.000E-00	3.33212E-16
2.000E-00	4.98376E-16
5.000E-00	7.18008E-16
1.000E&01	7.22503E-16
2.500E&01	4.04109E-17
5.000E&01	-1.00728E-15
7.500E&01	-1.18634E-15
1.000E&02	-5.80903E-16
1.250E&02	5.03613E-16
1.500E&02	1.72660E-15
2.000E&02	3.35305E-15
2.500E&02	2.32816E-15
3.000E&02	-2.36620E-15
3.500E&02	-1.06946E-14
4.000E&02	-2.15343E-14
4.500E&02	-3.26670E-14
5.000E&02	-4.07811E-14
6.000E&02	-2.92878E-14
7.000E&02	6.09906E-14
8.000E&02	2.95104E-13
9.000E&02	7.55097E-13
1.000E&03	1.54035E-12

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCHEMENTS OF PRESSURE

BUN NO. HE-C-1

		PRESSURE
	/	
	8	

SHEV

PRESSURE, BIM.

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO.	HE-0-2	
PRESSURE, ATM.	S2P	S2BP	SZCP
1 0005 00	2 2107/5 00	8 /0/105 10	2 0510/5 13
1.000E-00	2.31976E-08	1.68412E-10	-3.85184E-13
2.000E-00 5.000E-00	5.52136E-08 1.36231F-07	2.55147E-10	-5.80577E-13 -8.53259E-13
	1.98273E-07	3.80049E-10	
1.000E&01 2.500E&01	1.89965E-07	4.07690E-10 1.17630E-10	-8.91823E-13 -1.67618E-13
5.000E&01	3.26239E-07	-4°150525E-10	1.07792E-12
7.500E&01	4.50436E-07	-5.96647E-10	1.43973E-12
1.000E&02	3.92901E-07	-4.22068E-10	9.34760E-13
1.250E&02	4.11247E-07	-1.03437E-12	-1.56284E-13
1.500E&02	7.73905E-07	5.31907E-10	-1.49853E-12
2.000E&02	2.11937E-06	1.41816E-09	-3.66819E-12
2.500E&02	1.81944E-06	1.37049E-09	-3.45554E-12
3.000E&02	6.11257E-07	-1.39807E-10	4.15946E-13
3.500E&02	9.64476E-06	-3°25374E-09	8.26431E-12
4.000E&02	4.80304E-05	-7.70698E-09	1.94086E-11
4.500E&02	1.28176E-04	-1.28242E-08	3.21564E-11
5.000E&02	2.34702E-04	-1.75191E-08	4.38042E-11
6.000E&02	2.77774E-04	-1.92547E-08	4.79676E-11
7.000E&02	1.12455E-05	3.89596E-09	-9.68307E-12
8.000E&02	4.15276E-03	7.51371E-08	-1.86441E-10
9.000E&02	3.67345E-02	2.24035E-07	-5.55234E-10
1.000E&03	1.72653E-01	4.86605E-07	-1.20483E-09
PRESSURE,	ATM	\$2	DP
1,0000-0			0.00-10
1.000E-0			23E-16
2.000E-			72E-16
5.000E-0			15E-16
1.000E&			90E-16
2.500E&C			76E-16
5.000E&		-9.102	
7.500E&01			05E-15
1.000E&02		-7.406	
1.250E&C			43E-16
1.500E&0			57E-15
2.000E&I			64E-15
2°500EE02		60706	65E-15

2.500EE02 3.000E&02 -3.82171E-16 3.500E&02 -6.99450E-15 -1.63560E-14 4.000E&02 -2.70444E-14 4.500E&02 5.000E&02 -3.67937E-14 6.000E&02 -4.02269E-14 8.11251E-15 7.000E&02 8.000E&02 1.56095E-13 9.000E&02 4.64629E-13 1.00783E-12 1.000E&03

TABLE 2. - VARIANCES AND COVARIANCES OF EVEN THEOREMS OF PRESSURE

SHOULD NO HERODO

#1-347000.0 OI-3540001 NO-367010.0 OO-3000.0 O	#1-380000.		

PRESSURE. SING.

10.0000.1 10.0000.1 10.0000.5 10.0000.5 10.0000.1 10.00000.1 10.000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.0000.1 10.000

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-3

PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	3.73817E-08	2.66819E-10	-6.01302E-13
2.000E-00	8.91708E-08	4.04762E-10	-9.07547E-13
5.000E-00	2.21102E-07	6.04865E-10	-1.33835E-12
1.000E&01	3.23866E-07	6.52592E-10	-1.40757E-12
2.500E&01	3.11555E-07	2.00565E-10	-2.93713E-13
5.000E&01	5.26516E-07	-6.47670E-10	1.66298E-12
7.500E&01	7.37877E-07	-9°54050E-10	2.27351E-12
1.000E&02	6.51336E-07	-7.00742E-10	1.54098E-12
1.250E&02	6.58323E-07	-5.29089E-11	-1.17339E-13
1.500E&02	1.20159E-06	7.83395E-10	-2.19577E-12
2.000E&02	3.39956E-06	2.22436E-09	-5.67901E-12
2.500E&02	3.17243E-06	2.26972E-09	-5.64788E-12
3.000E&02	9.04549E-07	7.10787E-11	-8.17181E-14
3.500E&02	1.29149E-05	-4.63666E-09	1.16188E-11
4.000E&02	6.91868E-05	-1.15073E-08	2.85686E-11
4.500E&02	1.92362E-04	-1.95743E-08	4.83778E-11
5.000E&02	3.65419E-04	-2.72502E-08	6.71521E-11
6.000E&02	4.93173E-04	-3.19947E-08	7.85484E-11
7.000E&02	2.85672E-07	-7.74485E-10	1.89688E-12
8.000EE02	4.82712E-03	1.01046E-07	-2.47073E-10
9.000E&02	4.74855E-02	3.17741E-07	-7.75966E-10
1.000E&03	2.31814E-01	7.03379E-07	-1.71610E-09
ODECCHOE	A Y 4.4	co	D.0
PRESSURE	AIMO	\$2	UP

KLJJUKL 9 ATTO	3201
1.000E-00	4.81088E-16
2.000E-00	7.24759E-16
5.000E-00	1.06357E-15
1.000E&01	1.10791E-15
2.500E&01	1.90026E-16
5.000E&01	-1.38517E-15
7.500E&01	-1.84569E-15
1.000E&02	-1.20770E-15
1.250E&02	1.80903E-16
1.500E&02	1.90272E-15
2.000E&02	4.75620E-15
2.500E&02	4.67854E-15
3.000E&02	2.05786E-17
3.500E&02	-9.69623E-15
4.000E&02	-2.37290E-14
4.500E&02	-4.00979E-14
5.000E&02	-5.55860E-14
6.000E&02	-6.49140E-14
7.000E&02	-1.56605E-15
8.000E&02	2.03842E-13
9.000E&02	6.39866E-13
1.000E&03	1.41455E-12

8-0-JH -DH BUS

· OI MARKET		

.074 .37022389

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-4

PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	6.83331E-09	4.84341E-11	-1.08513E-13
2.000E-00	1.63150E-08	7.35130E-11	-1.63869E-13
5.000E-00	4.05351E-08	1.10000E-10	-2.41989E-13
1.000EE01	5.95305E-08	1.18953E-10	-2.55141E-13
2.500E&01	5.73727E-08	3.74543E-11	-5.53541E-14
5.000E&01	9.63143E-08	-1.16828E-10	2.98631E-13
7.500E&01	1.35770E-07	-1.73797E-10	4.12113E-13
1.000E&02	1.20458E-07	-1。29517E-10	2.83973E-13
1.250E&02	1.20153E-07	-1.33400E-11	-1.19950E-14
1.500E&02	2.16429E-07	1.37845E-10	-3.85758E-13
2.000E&02	6.19899E-07	4.01960E-10	-1.02098E-12
2.500E&02	5.97316E-07	4.18767E-10	-1.03658E-12
3.000E&02	1.64061E-07	3.35034E-11	-6.59586E-14
3.500E&02	2.18595E-06	-8.04894E-10	2.00629E-12
4.000E&02	1.20793E-05	-2.03866E-09	5.03279E-12
4.500E&02	3.41554E-05	-3。49955E-09	8.59970E-12
5.000E&02	6.58367E-05	-4.90860E-09	1.20266E-11
6.000E&02	9.32796E-05	-5.90596E-09	1.44155E-11
7.000E&02	9.98040E-07	-6.14468E-10	1.49623E-12
8.000E&02	7.67254E-04	1.71004E-08	-4.15700E-11
9.000E&02	7.91826E-03	5.50781E-08	-1.33724E-10
1.000E&03	3.92602E-02	1.22877E-07	-2.98049E-10

PRESSURE, ATM.	S2DP
1.000E-00	8.63103E-17
2.000E-00	1.30098E-16
5.000E-00	1.91187E-16
1.000E&01	1.99671E-16
2.500E&01	3.59705E-17
5.000E&01	-2.47377E-16
7.500E&01	-3.32712E-16
1.000E&02	-2.21560E-16
1.250E&02	2.48956E-17
1.500E&02	3.32771E-16
2.000E&02	8.50266E-16
2.500E&02	8.53870E-16
3.000E&02	4.60771E-17
3.500E&02	-1.66490E-15
4.000E&02	-4.15596E-15
4.500E&02	-7.08620E-15
5.000E&02	-9.89684E-15
6.000E&02	-1.18432E-14
7.000E&02	-1.22801E-15
8.000E&02	3.40944E-14
9.000E&02	1.09620E-13
1.000E&03	2.44229E-13

DESCRIPTION OF PERSONS AND DESCRIPTION OF PERSONS ASSESSED FOR ASSESSED OF PERSONS

N-D-SH LOS SELD

#		

THE STATE OF THE S

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-5

PRESSURE, ATM.	SZP	S2BP	S2CP
1.000E-00	3.60084E-08	2.58378E-10	-5.85012E-13
2.000E-00	8.58359E-08	3.91799E-10	-8.82591E-13
5.000E-00	2.12508E-07	5.84903E-10	-1.30017E-12
1.000EE01	3.10657E-07	6.29931E-10	-1.36478E-12
2.500E&01	2.98460E-07	1.89918E-10	-2.76011E-13
5.000E&01	5.06949E-07	-6.30215E-10	1.62403E-12
7.500E&01	7.07193E-07	-9.21303E-10	2.20422E-12
1.000E&02	6.21861E-07	-6.68965E-10	1.47459E-12
1.250E&02	6.35222E-07	-3.57548E-11	-1.52575E-13
1.500E&02	1.17096E-06	7.76646E-10	-2.18012E-12
2.000E&02	3.28045E-06	2.16128E-09	-5.54071E-12
2.500E&02	2.98416E-06	2.16909E-09	-5.42011E-12
3.000E&02	8.86113E-07	-1.85770E-11	1.39992E-13
3.500E&02	1.32024E-05	-4.64638E-09	1.16928E-11
4.000E&02	6.90913E-05	-1.13578E-08	2.83249E-11
4.500E&02	1.89642E-04	-1.91866E-08	4.76367E-11
5.000E&02	3.56211E-04	-2.65558E-08	6.57423E-11
6.000E&02	4.62411E-04	-3.05753E-08	7.54115E-11
7.000E&02	7.82337E-07	1.26483E-09	-3.11224E-12
8.000E&02	5.16700E-03	1.03167E-07	-2.53434E-10
9.000E&02	4.90992E-02	3.18836E-07	-7.82272E-10
1.000E&03	2.36887E-01	7.01653E-07	-1.71988E-09
PRESSURE,	ATM.	\$21	DP

*	COSSILY ATTI	320.
	1.000E-00	4°70210E-16
	2.000E-00	7.08069E-16
	5.000E-00	1.03796E-15
	1.000E&01	1.07907E-15
	2.500E&01	1.77866E-16
	5.000E&01	-1.35855E-15
	7.500E&01	-1.79720E-15
	1.000E&02	-1.15969E-15
	1.250E&02	2.08752E-16
	1.500E&02	1.89589E-15
	2.000E&02	4.66085E-15
	2.500E&02	4.50955E-15
	3.000E&02	-1.63439E-16
	3.500E&02	-9.80095E-15
	4.000E&02	-2°36335E-14
	4.500E&02	-3.96644E-14
	5.000E&02	-5.46690E-14
	6.000E&02	-6.26085E-14
	7.000E&02	2.58129E-15
	8.000E&02	2°10053E-13
	9.000E&02	6.48043E-13
	1.000E&03	1.42421E-12

DANGE 2. - VARIANCES AND SUPERINGES AT EVER DISSESSION OF STREET

BUT NO HE-OVE

THE STATE A THE STATE OF THE ST

. Zurings f

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO.	HE-0-6	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	4.35959E-08	3.10290E-10	-6.97764E-13
2.000E-00	1.04032E-07	4.70807E-10	-1.05336E-12
5.000E-00	2.58158E-07	7.03927E-10	-1.55423E-12
1.000E&01	3.78535E-07	7.60158E-10	-1.63623E-12
2.500E&01	3.64403E-07	2.35854E-10	-3.46728E-13
5.000E&01	6.14228E-07	-7.51393E-10	1.92615E-12
7.500E&01	8.62768E-07	-1.11107E-09	2.64289E-12
1.000E&02	7.63050E-07	-8.20665E-10	1.80283E-12
1.250EE02	7.67286E-07	-7.06691E-11	-1.13622E-13
1.500E&02	1.39363E-06	9.00548E-10	-2.52267E-12
2.000E&02	3.96246E-06	2.58302E-09	-6.58219E-12
2.500E&02	3.74389E-06	2.65696E-09	-6.59871E-12
3.000E&02	1.04997E-06	1.33154E-10	-2.20809E-13
3.500E&02	1.46406E-05	-5.30447E-09	1.32661E-11
4.000E&02	7.93634E-05	-1.32658E-08	3.28654E-11
4°500E802	2.22079E-04	-2.26437E-08	5.58450E-11
5.000E&02	4.24215E-04	-3.16131E-08	7.77371E-11
6.000EE02	5.83250E-04	-3.74653E-08	9.17815E-11
7.000E&02	1.77564E-06	-2.07917E-09	5.08137E-12
8.000E&02	5.33177E-03	1.14354E-07	-2.79008E-10
9.000E&02	5.33079E-02	3.62519E-07	-8.83405E-10
1.000E&03	2.61155E-01	8.03920E-07	-1.95715E-09
PRESSURE	o ATM.	\$2	DP
1.000E-	-00	5.570	25E-16
2.000E-00		8.39343E-16	
5.000E		1.23241E-15	
1.000E			09E-15
2.500E			56E-16
5.000E	103	-1.601	03E-15
7.500E	103	-2.141	07E-15
1.000E&02		-1.410	55E-15
1.250E&02		1.90826E-16	
1.500E	£02	2.182	23E-15
2.000E	£02	5.500	82E-15
3 FAOF		Fr. 1 5m 1	EIF 3E

5.45456E-15 2.500E&02 3.000E&02 1.28481E-16 3.500E&02 -1.10472E-14 4.000E&02 -2.72376E-14 4.500E&02 -4.61841E-14 -6.42044E-14 5.000E&02 6.000E&02 -7.56805E-14 7.000E&02 -4.18576E-15 2.29673E-13 8.000E&02 9.000E&02 7.26829E-13 1.000E&03 1.60963E-12

TABLE 2. - VALLENGES AND STREET, AT LAST THE STREET OF PARTSONS

A-D OF THE PERSON

	\$.000000000000000000000000000000000000

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	6.13797E-09	4.37448E-11	-9.84927E-14
2.000E-00	1.46444E-08	6.63676E-11	-1.48672E-13
5.000E-00	3.63266E-08	9.92040E-11	-2.19305E-13
1.000E&01	5.32393E-08	1.07079E-10	-2.30762E-13
2.500E&01	5.12376E-08	3.30638E-11	-4.85199E-14
5.000E&01	8.64767E-08	-1.06066E-10	2.72158E-13
7.500E&01	1.21326E-07	-1.56535E-10	3.72745E-13
1.000E&02	1.07198E-07	-1.15293E-10	2.53446E-13
1.250E&02	1.08073E-07	-9.30759E-12	-1.76571E-14
1.500E&02	1.96788E-07	1.27723E-10	-3.57937E-13
2.000E&02	5.58121E-07	3.64459E-10	-9.29755E-13
2.500E&02	5.23978E-07	3.73345E-10	-9.28258E-13
3.000E&02	1.48177E-07	1.50539E-11	-2.18786E-14
3.500E&02	2.09297E-06	-7.54453E-10	1.88897E-12
4.000E&02	1.12762E-05	-1.87927E-09	4.66139E-12
4.500E&02	3.14492E-05	-3.20203E-09	7.90661E-12
5.000E&02	5.99011E-05	-4.46377E-09	1.09898E-11
6.000E&02	8.15562E-05	-5.26415E-09	1.29117E-11
7.000E&02	1.23144E-07	-2.05737E-10	5.03428E-13
8.000E&02	7.72547E-04	1.63556E-08	-3.99548E-11
9.000E&02	7.65310E-03	5.16109E-08	-1.25923E-10
1.000E&03	3.73902E-02	1.14295E-07	-2.78597E-10

PRESSURE, ATM.

S2DP

1.000E-00	7.87208E-17
2.000E-00	1.18606E-16
5.000E-00	1.74102E-16
1.000E&01	1.81451E-16
2.500E&01	3.14237E-17
5.000E&01	-2.26474E-16
7.500E&01	-3.02311E-16
1.000E&02	-1.98480E-16
1.250E&02	2.83079E-17
1.500E&02	3.09922E-16
2.000E&02	7.77903E-16
2.500E&02	7.68186E-16
3.000E&02	1.04309E-17
3.500E&02	-1.57483E-15
4.000E&02	-3.86777E-15
4.500E&02	-6.54661E-15
5.000E&02	-9.08760E-15
6.000E&02	-1.06594E-14
7.000E&02	-4°15195E-16
8.000E&02	3.29294E-14
9.000E&02	1.03729E-13
1.000E&03	2.29404E-13
2000000	the Comment of the dealer

FABLE 2. - VARIANCES AND COVARYANCES AT EVEN THEREFOLDS OF PRESENTS OF PRESSURE

NUM NO. HE OFF

##	Al-Sissen	# 1-215000.1		
				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

SZUP

PRESSURE, AVA.

00-3000-1 00-30000-1 1033000-1 1033000-1 1033000-1 5033000-1 5033000-1 5033000-1 5033000-1 5033000-1 5033000-1 5033000-1

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	8.02585E-09	5.73388E-11	-1.29351E-13
2.000E-00	1.91426E-08	8.69762E-11	-1.95215E-13
5.000E-00	4.74521E-08	1.29950E-10	-2.87826E-13
1.000E&01	6.94823E-08	1.40157E-10	-3.02605E-13
2.500E&01	6.68285E-08	4.29210E-11	-6.27785E-14
5.000E&01	1.13042E-07	-1.39314E-10	3.58002E-13
7.500E&01	1.58281E-07	-2.04921E-10	4.88766E-13
1.000E&02	1.39615E-07	-1.50187E-10	3.30470E-13
1.250E&02	1.41395E-07	-1.07166E-11	-2.68566E-14
1.500E&02	2.58567E-07	1.69118E-10	-4.74210E-13
2.000E&02	7.30153E-07	4.78334E-10	-1.22234E-12
2.500E&02	6.77990E-07	4.86516E-10	-1.21174E-12
3.000E&02	1.94747E-07	1.14142E-11	-7.91738E-15
3.500E&02	2.80704E-06	-1.00348E-09	2.51694E-12
4.000E&02	1.49680E-05	-2.48289E-09	6.17024E-12
4.500E&02	4.15124E-05	-4.21780E-09	1.04346E-11
5.000E&02	7.86889E-05	-5.86525E-09	1.44681E-11
6.000E&02	1.05413E-04	-6.86075E-09	1.68604E-11
7.000E&02	1.40560E-08	-7.96803E-11	1.95352E-13
8.000E802	1.05920E-03	2.19536E-08	-5.37342E-11
9.000E&02	1.03470E-02	6.87922E-08	-1.68170E-10
1.000EE03	5.03889E-02	1.52097E-07	-3.71464E-10
PRESSURE,	ATM.	\$2	DP
1 0005	22	+ -025	005 1/

•	
1.000E-00	1.03588E-16
2.000E-00	1.56044E-16
5.000E-00	2.28948E-16
1.000E&01	2.38403E-16
2.500E&01	4.05924E-17
5.000E&01	-2.98458E-16
7.500E&01	-3.97145E-16
1.000E&02	-2.59187E-16
1.250E&02	4.02883E-17
1.500E&02	4.11223E-16
2.000E&02	1.02464E-15
2.500E&02	1.00467E-15
3.000E&02	-3.61921E-18
3.500E&02	-2.10233E-15
4.000E&02	-5.12973E-15
4.500E&02	-8.65684E-15
5.000E&02	-1.19873E-14
6.000E&02	-1.39468E-14
7.000E&02	-1.61433E-16
8.000E&02	4.43737E-14
9.000E&02	1.38804E-13
1.000E&03	3.06480E-13

TABLE 21 - VARIANCES AND CONTRACTOR AND THE THE PURE OF PRESSURE

NUMBER OF STREET

	NO-SERVED A PROPERTY OF THE PR	1.000000000000000000000000000000000000

1750

TERSTONE, ATM.

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	7.23655E-08	5.29969E-10	-1.22210E-12
2.000E-00	1.72040E-07	8.02357E-10	-1.84072E-12
5.000E-00	4.23383E-07	1.19306E-09	-2.70034E-12
1.000E&01	6.14111E-07	1.27586E-09	-2.81290E-12
2.500E&01	5.87248E-07	3.55050E-10	-4.96934E-13
5.000E&01	1.01707E-06	-1.31649E-09	3.44137E-12
7.500E&01	1.39274E-06	-1.86793E-09	4.53887E-12
1.000E&02	1.20752E-06	-1.29334E-09	2.87491E-12
1.250E&02	1.28971E-06	5.24998E-11	-6.36658E-13
1.500E&02	2.46502E-06	1.73840E-09	-4.91429E-12
2.000EE02	6.62775E-06	4.48690E-09	-1.16901E-11
2.500E&02	5.42580E-06	4.20269E-09	-1.06739E-11
3.000E&02	2.07048E-06	-7.67873E-10	2.15728E-12
3.500E&02	3.31828E-05	-1.08224E-08	2.76961E-11
4.000E&02	1.59213E-04	-2.50452E-08	6.35715E-11
4.500E&02	4.15670E-04	-4.11887E-08	1.04107E-10
5.000E&02	7.45554E-04	-5.56739E-08	1.40328E-10
6.000E&02	8.14359E-04	-5.87715E-08	1.47600E-10
7.000E&02	9.64367E-05	2.03364E-08	-5.09557E-11
8.000E&02	1.52138E-02	2.56338E=07	-6.41252E-10
9.000E&02	1.27176E-01	7.42978E-07	-1.85638E-09
1.000E&03	5.81758E-01	1.59201E-06	-3.97403E-09
PRESSURE	, ATM.	\$2	DP
	~ ~		

	020.
1.000E-00	· 1.00012E-15
2.000E-00	1.50353E-15
5.000E-00	2.19467E-15
1.000E&01	2.26356E-15
2.500E&01	3.12799E-16
5.000E&01	-2.92786E-15
7.500E&01	-3.76404E-15
1.000E&02	-2.29083E-15
1.250E&02	7.13257E-16
1.500E&02	4.33533E-15
2.000E&02	1.00053E-14
2.500E&02	9.03391E-15
3.000E&02	-1.93516E-15
3.500E&02	-2.36209E-14
4.000E&02	-5.39958E-14
4.500E&02	-8.82528E-14
5.000E&02	-1.18808E-13
6.000E&02	-1.24770E-13
7.000E&02	4.30322E-14
8.000E&02	5.41174E-13
9.000E&02	1.56589E-12
1.000E&03	3.35087E-12

TABLE 2. - VENTENETS AND COURTENESS OF SVENT THEREXENTS OF PRESSURE

P-Q-SH ON BUT

\$1-301555.1- 01-300005.2 00-300051.1 00-30000.2 00-300000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-30000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-3000000.2 00-30000000000000000000000000000000000	\$1-301556.1- 01-304005.2 00-30005.1 00-3000.2 10-30000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2 10-300000.2		
			50-3000-1 103-3000-2 103-3000-2 103-3000-2 103-3000-2 103-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2 503-3000-2

9055

PRESSURE, ATM.

-1-351800-f ·

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	KUN NU.	HE-0-10	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	1.70679E-08	1.20666E-10	-2.69828E-13
2.000E-00	4.07643E-08	1.83182E-10	-4.07555E-13
5.000E-00	1.01353E-07	2.74229E-10	-6.02140E-13
1.000EE01	1.48989E-07	2.96788E-10	-6.35426E-13
2.500E&01	1.43691E-07	9.42272E-11	-1.39696E-13
5.000E&01	2.40654E-07	-2.90426E-10	7.41306E-13
7.500E&01	3.39928E-07	-4.33543E-10	1.02637E-12
1.000E&02	3.02137E-07	-3.24701E-10	7.11260E-13
1.000E&02	3.00012E-07	-3.64784E-11	-2.18637E-14
1.500E&02	5.37876E-07	3.39664E-10	-9.50171E-13
2.000E&02	1.54715E-06	9°99918E-10	-2.53554E-12
2.500E&02	1.50725E-06	1.04915E-09	-2.59255E-12
3.000E&02	4.10133E-07	1.01040E-10	-2.07621E-13
3.500E&02	5.31587E-06	-1.97424E-09	4.91252E-12
4.000E&02	2°97010E-05	-5.03709E-09	1.24118E-11
4.500E&02	8.44784E-05	-8.67414E-09	2.12754E-11
5.000E&02	1.63649E-04	-1.21978E-08	2.98295E-11
6.000E&02	2.35594E-04	-1.47947E-08	3.60427E-11
7.000E&02	3.93094E-06	-1.92225E-09	4.67174E-12
8.000E&02	1.82364E-03	4.15576E-08	-1.00830E-10
9.000E&02	1.91298E-02	1.34947E-07	-3°27011E-10
1.000E&03	9.52484E-02	3.01698E-07	-7.30384E-10
PRESSURE,	ATM	\$2	DP
1.000E-	00	2.141	88E-16
2.000E-	00	3.229	18E-16
5.000E-	00	4.747	85E-16
1.000E&	01	4.963	05E-16
2.500E&	01	9.090	29E-17
5.000E&	01	-6.129	28E-16
7.500E&	01	-8.270	66E-16
1.000E&	02	-5.540	89E-16
1.250E&	02	5.523	77E-17
1.500E&	02	8.184	18E-16
2.000E&	02	2.107	51E-15
2.500E&	02	2.131	47E-15
3.000E&	02	1.503	68E-16
3.500E&	02	-4.068	80E-15
4.000E&	02	-1.022	90E-14
4.500E&	02	-1.749	60E-14
5.000E&	02	-2.449	78E-14
6.000E&	02	-2.955	19E-14
7.000E&	02	-3.826	55E-15
8°000E8	02	8.253	09E-14

2.67527E-13

5.97290E-13

9.000E&02

1.000E&03

TABLE 2 - - VASCANCES: AND COVAR AND COVAR THESE OF PASSENCE

DY-H-SKI STIN KUAL

	#U-DEVENDENT 10-DEVENDENT 10	00-3000-1 00-3000-1 1039000-1 1039000-2 1039000-1 5039000-1 5039000-2 5039000-2 5039000-2 5039000-2 5039000-2 5039000-2

-052

PRESENCE AFE

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO. I	HE-0-11	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	7.21392E-09	5.13113E-11	-1.15326E-13
2.000E-00	1.72159E-08	7.78591E-11	-1.74109E-13
5.000E-00	4.27300E-08	1.16425E-10	-2.56930E-13
1.000E&01	6.26710E-08	1.25752E-10	-2.70548E-13
2.500E&01	6.03455E-08	3.91055E-11	-5.75395E-14
5.000E&01	1.01653E-07	-1.24182E-10	3.18211E-13
7.500E&01	1.42863E-07	-1.83798E-10	4.37013E-13
1.000E&02	1.26414E-07	-1.35951E-10	2.98590E-13
1.250E&02	1.26950E-07	-1.20803E-11	-1.78063E-14
1.500E&02	2.30266E-07	1.48450E-10	-4.15810E-13
2.000E&02	6.55412E-07	4.26905E-10	-1.08737E-12
2.500E&02	6.21157E-07	4.40002E-10	-1.09226E-12
3.000E&02	1.73605E-07	2°41215E-11	-4.17364E-14
3.500E&02	2.40421E-06	-8.73284E-10	2.18303E-12
4.000E&02	1.30710E-05	-2.18824E-09	5.41861E-12
4.500E&02	3.66362E-05	-3.73849E-09	9.21544E-12
5.000E&02	7.00843E-05	-5.22327E-09	1.28376E-11
6.000E&02	9.68263E-05	-6.20533E-09	1.51939E-11
7.000E&02	3.79551E-07	-3.90766E-10	9.54522E-13
8.000E&02	8.72059E-04	1.88000E-08	-4.58463E-11
9.000E&02	8.76710E-03	5.97634E-08	-1.45559E-10
1.000E&03	4.30728E-02	1.32720E-07	-3.22944E-10
PRESSURE 9	ATM	\$21	DP
1.000E-	00	9.201	47E-17
2.000E-	00	1.386	57E-16
5.000E-	00	2.036	19E-16
1.000E&	01	2.123	73E-16
2.500E&	01	3.731	35E-17
5.000E&	01	-2.643	64E-16
7.500E&	01	-3.538	52E-16

1.000E&02 1.250E&02 1.500E&02 2.000E&02 2.500E&02 3.000E&02 3.500E&02 4.000E&02 4.500E&02 5.000E&02 6.000E&02 7.000E&02 8.000E&02 9.000E&02 1.000E&03

-2.33523E-16 3.07183E-17 3.59549E-16 9.08261E-16 9.02410E-16 2.55743E-17 -1.81695E-15 -4.48833E-15 -7.61708E-15 -1.05970E-14 -1.25216E-14 -7.85854E-16 3.77189E-14 1.19695E-13

2.65455E-13

Tropian - ar Mus

E1-345881-1- E1-346881-5- E1-368881-5- E1-368881-5- E1		

.MYE - 10022384

AL-SERVICE

AL-SER

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO.	HE-0-12	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	1.48367E-08	1.06234E-10	-2.40173E-13
2.000E-00	3.53769E-08	1.61116E-10	-3.62400E-13
5.000E-00	8.76368E-08	2.40615E-10	-5.34075E-13
1.000EE01	1.28211E-07	2.59309E-10	-5.61017E-13
2.500E&01	1.23247E-07	7.87279E-11	-1.14766E-13
5.000E&01	2.08951E-07	-2.58695E-10	6.65899E-13
7.500E&01	2.91972E-07	-3.79226E-10	9.06175E-13
1.000E&02	2.57092E-07	-2.76504E-10	6.09097E-13
1.250E&02	2.61611E-07	-1.69692E-11	-5.70257E-14
1.500E&02	4.80606E-07	3.16766E-10	-8.88835E-13
2.000E&02	1.35144E-06	8.87851E-10	-2.27313E-12
2.500E&02	1.24071E-06	8 · 96381E-10	-2.23689E-12
3.000E&02	3.62657E-07	5.02009E-12	2.57373E-14
3.500E&02	5.33294E-06	-1.88879E-09	4.74676E-12
4.000E&02	2.81401E-05	-4.64153E-09	1.15585E-11
4.500E&02	7.75884E-05	-7.85986E-09	1.94858E-11
5.000E&02	1.46302E-04	-1.09003E-08	2.69453E-11
6.000E&02	1.92448E-04	-1.26339E-08	3.11142E-11
7.000E&02	6.33731E-08	2.30579E-10	-5.66517E-13
8.000E&02	2.04941E-03	4.16172E-08	-1.02081E-10
9.000E&02	1.96602E-02	1.29230E-07	-3.16593E-10
1.000E&03	9.49411E-02	2.84524E-07	-6.96374E-10
PRESSURE	ATM	S2	DP
1.000E-	-00	1.927	39E-16
2.000E-00		2.902	85E-16
5.000E-00		4.257	03E-16
1.000E&01		4.428	90E-16
2.500E8	101	7.407	53E-17
5.000E8	:01	-5.562	29E-16
7.500E&01		-7.377	58E-16

2.000E-00
5.000E-00
1.000E&01
2.500E&01
5.000E&01
7.500E&01
1.000E&02
1.250E&02
1.500E&02
2.000E&02
2.500E&02
3.000E&02
3.500E&02
4.000E&02
4.500E&02
5.000E&02
6.000E&02
7.000E&02
8.000E&02
9.000E&02
700000000

1.000E&03

7.37758E-16 -4.78467E-16 8.09113E-17 7.72018E-16 1.90928E-15 1.85832E-15 -4.04973E-17 -3.97274E-15 -9.62919E-15 -1.61993E-14 -2.23716E-14 -2.57911E-14 4.69128E-16 8.44746E-14 2.61855E-13

5.75750E-13

	00-20000-5 00-20000-5 10-20000-6 10-20000-6 10-20000-5 50-20000-5 50-20000-5 50-20000-5 50-20000-5 50-20000-5 50-20000-5

.

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

		112 0 13	
PRESSURE, ATM.	SZP	S2BP	SZCP
1.000E-00	9.74840E-07	6.83429E-09	-1.52109E-11
2.000E-00	2.33057E-06	1.03808E-08	-2.29881E-11
5.000E-00	5.80684E-06	1.55609E-08	-3.40106E-11
1.000E&01	8°55839E-06	1.68784E-08	-3.59765E-11
2.500E&01	8.26702E-06	5.47461E-09	-8.18074E-12
5.000E&01	1.37573E-05	-1.63645E-08	4.16248E-11
7.500E&01	1.95372E-05	-2.46461E-08	5.81166E-11
1.000E&02	1.74411E-05	-1.86773E-08	4.08111E-11
1.250E&02	1.71388E-05	-2.48456E-09	-2.20686E-13
1.500E&02	3.04438E-05	1.88120E-08	-5.25593E-11
2.000E&02	8.87627E-05	5.66773E-08	-1.43116E-10
2.500E&02	8.89127E-05	6.05278E-08	-1.48932E-10
3.000E&02	2.36635E-05	8.15806E-09	-1.77213E-11
3°500E&02	2.86996E-04	-1.08265E-07	2.68207E-10
4.000E&02	1.65029E-03	-2.81325E-07	6.89957E-10
4.500E&02	4.75940E-03	-4.88027E-07	1.19132E-09
5.000E&02	9.31337E-03	-6.89828E-07	1.67889E-09
6.000E&02	1.38078E-02	-8.49127E-07	2.05869E-09
7.000E&02	4.87035E-04	-1.60411E-07	3.87975E-10
	8.84278E-02	2.16954E-06	
8.000E&02			-5.23847E-09
9.000E&02	9.34651E-01	7.07180E-06	-1.70537E-08
1.000E&03	4.49675E-00	1.55414E-05	-3.74419E-08
PRESSURE,	ATMo	52	DP
1.000E-	00	1.201	46E-14
2.000E-	00	1.812	41E-14
5.000E-	00	2.668	53E-14
1.000E8	01	2.796	35E-14
2.500E8	.01	5.340	50E-15
5.000E8	01	-3°425	82E-14
7.500E8	01	-4.661	22E-14
1.000E8	.02	-3.166	91E-14
1.250E&	.02	2.275	41E-15
1.500E8	.02	4.509	87E-14
2.000E8	.02	1.183	89E-13
2.500E&	.02	1.218	65E-13
3.000E8	.02	1.338	12E-14
3.500E8	02	-2.210	76E-13
4.000E8	102	-5.658	02E-13
4.500E&	02	-9.748	11E-13
5.000E8	02	-1.371	92E-12
6.000E8	02	-1.679	49E-12
7.000E8	102	-3.161	91E-13
33000.8	02	4.266	25E-12
		5 000	4 paper 9 4

1.38815E-11

3.04652E-11

8.000E&02 9.000E&02

1.000E&03

AND STREET, AND STREET, AND ADDRESS OF THE PARTY OF THE SECOND AND ADDRESS OF THE SECOND

KIND HOL HE-D-13

II-SIBRICATO SUBBRICATO SUBBRICAT			
		AN STREET, S AN ACCOUNTY AND A	100 200 2 5 100 2 5

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO.	HE-0-14	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	1.47460E-08	1.05678E-10	-2.39071E-13
2.000E-00	3.51567E-08	1.60262E-10	-3.60713E-13
5.000E-00	8.70697E-08	2.39303E-10	-5.31501E-13
1.000EE01	1.27341E-07	2.57824E-10	-5.58147E-13
2.500E&01	1.22382E-07	7.80499E-11	-1.13638E-13
5.000E&01	2.07644E-07	-2.57515E-10	6.63189E-13
7.500E&01	2.89943E-07	-3.77063E-10	9.01494E-13
1.000E&02	2.55160E-07	-2.74450E-10	6.04752E-13
1.250E&02	2.60061E-07	-1.59354E-11	-5.91038E-14
1.500E&02	4.78441E-07	3.16172E-10	-8.87336E-13
2.000E&02	1.34324E-06	8.83518E-10	-2.26333E-12
2.500E&02	1.22842E-06	8.89772E-10	-2.22168E-12
3.000E&02	3.61421E-07	-3.21514E-13	3.89553E-14
3.500E&02	5.34492E-06	-1.88795E-09	4.74745E-12
4.000E&02	2.81042E-05	-4.62903E-09	1.15347E-11
4.500E&02	7.73396E-05	-7.83058E-09	1.94256E-11
5.000E&02	1.45588E-04	-1.08504E-08	2.68390E-11
6.000E&02	1.90406E-04	-1.25395E-08	3.09018E-11
7.000E&02	1.50884E-07	3.55015E-10	-8.72812E-13
8.000E&02	2.07057E-03	4°17405E-08	-1.02450E-10
9.000E&02	1.97774E-02	1.29332E-07	-3.17051E-10
1.000E&03	9.54495E-02	2.84663E-07	-6.97170E-10
PRESSURE	o ATM.	\$2	DP
1.000E	-00	1.919	84E-16
2.000E	-00	2.891	28E-16
5.000E	-00	4,,239	36E-16
1.000E&01		4.409	16E-16
2.500E&01		7.33002E-17	
5.000E	103	-5.543	16E-16
7.500E	103	-7.344	14E-16
		1 750	***

1.000E&02 1.250E&02 1.500E&02 2.000E&02 2.500E&02 3.000E&02 3.500E&02 4.000E&02 4.500E&02 5.000E&02 6.000E&02 7.000E&02 8.000E&02 9.000E&02 1.000E&03 5.76801E-13

-4.75293E-16 8.25380E-17 7.71124E-16 1.90228E-15 1.84688E-15 -5.14818E-17 -3.97591E-15 -9.61575E-15 -1.61602E-14 -2.22984E-14 -2.56324E-14 7.23260E-16 8.48377E-14 2.62413E-13

THE PARTY OF THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY AND THE PARTY.

AL-O-TH ABE BUS

		100000000 1000000000000000000000000000

THE STREET

AT - SECRET AT A S

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO.	HE-0-15	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	1.35168E-08	9.55705E-11	-2.13709E-13
2.000E-00	3.22827E-08	1.45083E-10	-3.22790E-13
5.000E-00	8.02634E-08	2.17191E-10	-4.76898E-13
1.000E&01	1.17982E-07	2.35054E-10	-5.03251E-13
2.500E&01	1.13779E-07	7.46140E-11	-1.10608E-13
5.000E&01	1.90569E-07	-2.30029E-10	5.87137E-13
7.500E&01	2.69173E-07	-3.43355E-10	8.12859E-13
1.000E&02	2.39235E-07	-2.57122E-10	5.63213E-13
1.250E&02	2.37578E-07	-2.88223E-11	-1.74834E-14
1.500E&02	4.26005E-07	2.69097E-10	-7.52734E-13
2.000E&02	1.22528E-06	7.91989E-10	-2.00826E-12
2.500E&02	1.19343E-06	8.30869E-10	-2.05313E-12
3.000E&02	3.24759E-07	7.97816E-11	-1.63835E-13
3.500E&02	4.21157E-06	-1.56402E-09	3.89173E-12
4.000E&02	2.35262E-05	-3。98988E-09	9.83137E-12
4.500E&02	6.69073E-05	-6.87034E-09	1.68511E-11
5.000E&02	1.29597E-04	-9.66081E-09	2.36250E-11
6.000E&02	1.86520E-04	-1.17158E-08	2.85419E-11
7.000E&02	3.09474E-06	-1.51796E-09	3.68915E-12
8.000E&02	1.44491E-03	3.29221E-08	-7.98776E-11
9.000E&02	1.51531E-02	1.06892E-07	-2.59026E-10
1.000E&03	7.54434E-02	2.38968E-07	-5.78519E-10
PRESSURE	ATMo	\$2	DP
1.000E-	00	1.696	45E-16
2.000E-	00	2.557	62E-16
5.000E-	00	3.760	40E-16
1.000E&			76E-16
2.500E&			21E-17
5.000E&		-4.854	
7.500E&		-6.550	
1.000E&		-4.387	
1.250E&			65E-17
1.500E&			63E-16
2.000E&			28E-15
2.500E&			01E-15
3.000E&			99E-16
3°500E8		-3.223	
4.000E&		-8.102	
4°500E&		-1.385	
5.000E&	UZ	-1.940	205-14

6.000E&02 7.000E&02

8.000E&02

9.000E&02

1.000E&03

-2.34024E-14

-3.02179E-15 6.53825E-14

2.11913E-13

4.73109E-13

INCIDENTAL OF PROPERTY OF PARTY OF PARTY OF PROPERTY OF PROPERTY OF PROPERTY.

ST-41-TH -THE PARTY

TOTAL CONTROL OF THE PROPERTY OF THE PROPERTY

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	KUN NU.	HF-0-10	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	8.06000E-10	5.71154E-12	-1.27979E-14
2.000E-00	1.92443E-09	8.66905E-12	-1.93267E-14
5.000E-00	4.78156E-09	1.29720E-11	-2.85409E-14
1.000E&01	7.02271E-09	1.40283E-11	-3.00933E-14
2.500E&01	6.76875E-09	4.41800E-12	-6.53138E-15
5.000E801	1.13620E-08	-1.37771E-11	3.52209E-14
7.500E&01	1.60174E-08	-2.04973E-11	4.86099E-14
1.000E&02	1.42114E-08	-1.52767E-11	3.34999E-14
1.250E&02	1.41737E-08	-1.57581E-12	-1.40790E-15
1.500E&02	2.55305E-08	1.62555E-11	-4.54958E-14
2.000E&02	7.31420E-08	4.74109E-11	-1.20437E-13
2.500E&02	7.04934E-08	4.94000E-11	-1.22295E-13
3.000E&02	1.93538E-08	3.95917E-12	-7.79974E-15
3.500E&02	2.57951E-07	-9.49444E-11	2.36684E-13
4.000E&02	1.42573E-06	-2.40501E-10	5.93780E-13
4.500E&02	4.03178E-06	-4.12858E-10	1.01465E-12
5.000E&02	7.77165E-06	-5.79094E-10	1.41899E-12
6.000E&02	1.10095E-05	-6.96705E-10	1.70072E-12
7.000E&02	1.18009E-07	-7.25522E-11	1.76683E-13
8.000E&02	9.03909E-05	2.01542E-09	-4.89988E-12
9.000E&02	9.31547E-04	6.48684E-09	-1.57511E-11
1.000E&03	4。60937E-03	1.44572E-08	-3.50706E-11
PRESSURE	ATM.	52	DP
1.000E-	00	1.017	94E-17
2.000E-	00	1.534	40E-17
5.000E-	00	2.254	95E-17
1.000E8	01	2.355	11E-17
2.500E8	01	4.244	77E-18
5.000E8	01	-2.917	64E-17
7.500E&	Ol	-3.924	
1.000E8		-2.613	
1.250E8			60E-18
1.500E8	02		70E-17

5.000E&01
7.500E&01
1.000E&02
1.250E&02
1.500E&02
2.000E&02
2.500E&02
3.000E&02
4.000E&02
4.500E&02
5.000E&02
7.000E&02
8.000E&02
9.000E&02

1.000E&03

1.53440E-17
2.25495E-17
2.35511E-17
4.24477E-18
-2.91764E-17
-3.92450E-17
-2.61379E-17
2.93060E-18
3.92470E-17
1.00299E-16
1.00739E-16
5.45152E-18
-1.96411E-16
-4.90334E-16
-8.36086E-16
-1.16771E-15
-1.39726E-15
-1.45011E-16
4.01876E-15
1.29120E-14

2.87381E-14

SHIPPERSON TO STREET, AND STREET, AND THE PARTY OF PARTY

WE-D-SH . DR WAR

USE OFFICE STREET, STR

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO. 1	HE-0-17		
PRESSURE, ATM.	S2P	S2BP	S 2CP	
1.000E-00	5.52921E-10	3.95873E-12	-8.94929E-15	
2.000E-00	1.31840E-09	6.00389E-12	-1.35037E-14	
5.000E-00	3.26607E-09	8.96649E-12	-1.99009E-14	
1.000E&01	4.77839E-09	9.66330E-12	-2.09052E-14	
2.500E&01	4.59363E-09	2.93435E-12	-4.27766E-15	
5.000E&01	7.78761E-09	-9.63989E-12	2.48125E-14	
7.500EE01	1.08822E-08	-1.41325E-11	3.37683E-14	
1.000E&02	9.58269E-09	-1.03058E-11	2.27015E-14	
1.250E&02	9.74985E-09	-6.35323E-13	-2.11762E-15	
1.500E&02	1.79094E-08	1.18010E-11	-3.31125E-14	
2.000E&02	5.03681E-08	3.30854E-11	-8.47028E-14	
2.500E&02	4.62584E-08	3.34114E-11	-8.33727E-14	
3.000E&02	1.35120E-08	2.07071E-13	9.08880E-16	
3.500E&02	1.98586E-07	-7.03528E-11	1.76794E-13	
4.000E&02	1.04825E-06	-1.72924E-10	4.30600E-13	
4.500E&02	2.89084E-06	-2.92858E-10	7.25997E-13	
5.000E&02	5.45204E-06	-4.06185E-10	1.00401E-12	
6.000E&02	7.17638E-06	-4.70939E-10	1.15973E-12	
7.000E&02	2.07496E-09	8.05384E-12	-1.97864E-14	
8.000E&02	7.62423E-05	1.54948E-09	-3.80042E-12	
9.000E&02	7.31802E-04	4.81278E-09	-1.17898E-11	
1.000E&03	3.53444E-03	1.05970E-08	-2.59346E-11	
PRESSURE,	ATM	\$2	DP	
1.000E-	00	7.181	28E-18	
2.000E-	00	1.08157E-17		
5.000E-	00	1.58615E-17		
1.000E&		1.650	22E-17	
2.500E&	01		96E-18	
5.000E&	01	-2.072	46E-17	
7.500E&		-2.749		
1.000E&		-1.783		
1.250E&			69E-18	
1 50056	A2	2 075	005 17	

2.87589E-17 1.500E&02 7.11398E-17 2.000E&02 2.500E&02 6.92580E-17 3.000E&02 -1.46703E-18 3.500E&02 -1.47955E-16 -3.58696E-16 4.000E&02 4.500E&02 -6.03506E-16 5.000E&02 -8.33530E-16 -9.61254E-16 6.000E&02 7.000E&02 1.63838E-17 8.000E&02 3.14471E-15 9.000E&02 9.75071E-15 1.000E&03 2.14407E-14

TABLE 2 -- VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

ALD NO. HE-B-IT

		0.00-15000-4
	BA-EYOUGIS-E.	

9/15/2

PERSONAL ATM.

10000000.1 1000000.1 1000000.1 1000000.1 1000000.1 1000000.1 1000000.1 1000000.1 1000000.1 1000000.1 1000000.1 1000000.1

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

RIIN NO. HE-0-18

RUN NO. HE-0-18			
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	2.00584E-08	1.42291E-10	-3.19171E-13
2.000E-00	4.78856E-08	2.15953E-10	-4.81953E-13
5.000E-00	1.18941E-07	3.23076E-10	-7.11566E-13
1.000E&01	1.74619E-07	3.49249E-10	-7.49956E-13
2.500E&01	1.68266E-07	1.09545E-10	-1.61713E-13
5.000E&01	2.82767E-07	-3.43623E-10	8.79187E-13
7.500E&01	3.98231E-07	-5.10387E-10	1.21149E-12
1.000E&02	3.53024E-07	-3.79476E-10	8.32624E-13
1.250E&02	3.52863E-07	-3.74027E-11	-3.96903E-14
1.500E&02	6.37063E-07	4.07203E-10	-1.14003E-12
2.000E&02	1.82154E-06	1.18227E-09	-3.00612E-12
2.500E&02	1.74626E-06	1.22763E-09	-3.04204E-12
3.000E&02	4.81849E-07	8.84327E-11	-1.69121E-13
3.500E&02	6.50790E-06	-2.38431E-09	5.94946E-12
4.000E&02	3.57806E-05	-6.01844E-09	1.48741E-11
4.500E&02	1.00892E-04	-1.03154E-08	2.53778E-11
5.000E&02	1.93992E-04	-1.44502E-08	3.54452E-11
6.000E&02	2.72533E-04	-1.73122E-08	4.23050E-11
7.000E&02	2.22635E-06	-1.57384E-09	3.83674E-12
8.000E&02	2.30265E-03	5.08032E-08	-1.23641E-10
9.000E&02	2.35060E-02	1.62738E-07	-3.95570E-10
1.000E&03	1.15826E-01	3.61938E-07	-8.78923E-10
PRESSURE	, ATM.	\$2	DP
1.000E	-00	2.541	26E-16
2.000E			24E-16
5.000E	-00		59E-16
1.000E			01E-16
2 5005	001	1 050	2/# 3/

1.000E-00	2.54126E-16
2.000E-00	3.83024E-16
5.000E-00	5.62759E-16
1.000E&01	5.87501E-16
2.500E&01	1.05026E-16
5.000E&01	-7.28997E-16
7.500E&01	-9.79035E-16
1.000E&02	-6.50155E-16
1.250E&02	7.69395E-17
1.500E&02	9.84213E-16
2.000E&02	2.50593E-15
2.500E&02	2.50828E-15
3.000E&02	1.15050E-16
3.500E&02	-4.94192E-15
4.000E&02	-1.22951E-14
4.500E&02	-2.09327E-14
5.000E&02	-2.91980E-14
6.000E&02	-3.47918E-14
7.000E&02	-3.15218E-15
8.000E&02	1.01510E-13
9.000E&02	3.24601E-13
1.000E&03	7.20953E-13

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN AWERERING OF PRESSURE

BI-0-3H JON MUS

	1.0000E.00 2.0000E.00 1.0000E.00 2.5000E.00 1.0000E.00 1.0000E.00 2.5000E.00 2.5000E.00 2.5000E.00 3.5000

0000

PRESSURE, ATM.

	683000 5

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-19			
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	7.37937E-09	5.31101E-11	-1.20585E-13
2.000E-00	1.75837E-08	8.05158E-11	-1.81879E-13
5.000E-00	4.34946E-08	1.20127E-10	-2.67765E-13
1.000E&01	6.35100E-08	1.29239E-10	-2.80749E-13
2.500E&01	6.09764E-08	3.85127E-11	-5.56956E-14
5.000E&01	1.03881E-07	-1.29920E-10	3.35528E-13
7.500E&01	1.44516E-07	-1.89076E-10	4.53443E-13
1.000E&02	1.26796E-07	-1.36346E-10	3.00964E-13
1.250E&02	1.30352E-07	-5.46035E-12	-3.61558E-14
1.500E&02	2.41684E-07	1.61863E-10	-4.54806E-13
2.000E&02	6.73163E-07	4.45216E-10	-1.14417E-12
2.500E&02	6.03129E-07	4.42424E-10	-1.10828E-12
3.000E&02	1.84209E-07	-1.44912E-11	5.57250E-14
3.500E&02	2.80149E-06	-9.74352E-10	2.45824E-12
4.000E&02	1.44646E-05	-2.36120E-09	5.90435E-12
4.500E&02	3.94028E-05	-3.97249E-09	9.88980E-12
5.000E&02	7.35072E-05	-5.47894E-09	1.36010E-11
6.000E&02	9.31326E-05	-6.23162E-09	1.54121E-11
7.000EE02	6.24105E-07	5.13032E-10	-1.26586E-12
8.000E&02	1.12350E-03	2.18465E-08	-5.38154E-11
9.000E&02	1.04491E-02	6.67943E-08	-1.64335E-10
1.000E&03	4.99532E-02	1.46318E-07	-3.59649E-10
PRESSURE	, ATM.	\$2	D P
1.0008	00	9.718	49E-17
2.000E-00		1.46310E-16	
5.0008	E-00	2.143	40E-16
1.0001	103	2.225	64E-16
2.500	103	3.579	09E-17
5.0008	103	-2.813	93E-16
7.5008	103	-3.706	59E-16
		0 071	

TOOOC OO	
2.000E-00	
5.000E-00	
1.000E&01	
2.500E&01	
5.000E&01	
7.500E&01	
1.000E&02	
1.250E&02	
1.500E&02	
2.000E&02	
2.500E&02	
3.000E&02	
3.500E&02	
4.000E&02	
4.500E&02	
5.000E&02	
6.000E&02	
7.000E&02	
8.000E&02	
9.000E&02	
1.000E&03	

9.71849E-17
1.46310E-16
2.14340E-16
2.22564E-16
3.57909E-17
-2.81393E-16
-3.70659E-16
-2.37172E-16
4.70734E-17
3.96351E-16
9.64987E-16
9.24482E-16
-5.63099E-17
-2.06586E-15
-4.93964E-15
-8.25689E-15
-1.13407E-14
-1.28303E-14
1.05275E-15
4.47251E-14
1.36508E-13
2.98632E-13

TABLE 2. - MASI ANGES AND COMPANIES AT EVEN INCREMENTS OF PRESSURE

CY-G-BH - GH NUS

\$2000000-13 \$2000000-13 \$20000000-13 \$200000000-13 \$200000000-13 \$200000000-13 \$2000000000-13 \$2000000000000000000000000000000000000	00-31001E-1 80-31001E-1 80-3001E538 80-3001E538 80-3001E538 10-310000 10-310000 10-310000 10-310000 10-310000 10-310000 10-310000 10-310000 10-310000	1.000085001 1.00008501 1.00008501 1.00008501 1.00008502 1.00008502 2.00008502 3.00008502 3.00008502

- mas a representa

103-3000-3 103-300-3 103-300-3 103-300-3 103-300-3 103-300-3 103-300-3 103-3 1

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	KON NOS	116 0 20	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	4.74796E-09	3.46956E-11	-7.98180E-14
2.000E-00	1.12910E-08	5.25376E-11	-1.20243E-13
5.000E-00	2.78056E-08	7.81563E-11	-1.76481E-13
1.000EE01	4.03678E-08	8.36500E-11	-1.84002E-13
2.500E&01	3.86223E-08	2.35096E-11	-3.30649E-14
5.000E&01	6.67419E-08	-8.59998E-11	2.24383E-13
7.500E&01	9.15989E-08	-1.22457E-10	2.96957E-13
1.000E&02	7.95472E-08	-8.52975E-11	1.89396E-13
1.250E&02	8.44826E-08	2.42290E-12	-3.90264E-14
1.500E&02	1.60776E-07	1.12616E-10	-3.18019E-13
2.000E&02	4.34428E-07	2.93245E-10	-7.62416E-13
2.500E&02	3.60408E-07	2.77093E-10	-7.02279E-13
3.000E&02	1.32440E-07	-4.41937E-11	1.25418E-13
3.500E&02	2.11738E-06	-6.97447E-10	1.78099E-12
4.000E&02	1.02630E-05	-1.62431E-09	4.11359E-12
4.500E&02	2.69592E-05	-2.68009E-09	6.75860E-12
5.000E&02	4.86433E-05	-3.63371E-09	9.13775E-12
6.000E802	5.44091E-05	-3.88193E-09	9.72655E-12
7.000E&02	4.97494E-06	1.18035E-09	-2.95065E-12
8.000E&02	9.57450E-04	1.64332E-08	-4.10132E-11
9.000E&02	8.15017E-03	4.80653E-08	-1.19814E-10
1.000E&03	3.77002E-02	1.03567E-07	-2.57925E-10
PRESSURE,	ATM.	\$2	DP
1.000E-	00	6.517	35E-17
2.000E-	00	9.799	67E-17

1.000E-00	6.51735E-17
2.000E-00	9.79967E-17
5.000E-00	1.43113E-16
1.000E&01	1.47742E-16
2.500E&01	2.08833E-17
5.000E&01	-1.90498E-16
7.500E&01	-2.45743E-16
1.000E&02	-1.50674E-16
1.250E&02	4.43207E-17
1.500E&02	2.80044E-16
2.000E&02	6.51132E-16
2.500E&02	5.93115E-16
3.000E&02	-1.12962E-16
3.500E&02	-1.51566E-15
4.000E&02	-3°48624E-15
4.500E&02	-5.71656E-15
5.000E&02	-7.71921E-15
6.000E&02	-8.20370E-15
7.000E&02	2.48625E-15
8.000E&02	3.45349E-14
9.000E&02	1.00838E-13
1.000E&03	2.16993E-13

DS-0-9H . DV 105

######################################		00-3000-0 00-3000-0 1033000-1 1033000-1 1033000-1 1033000-1 5033000-1 5033000-1 5033000-1 5033000-1 5033000-1 5033000-1 5033000-1

nni:

1.4221226-15
2.422126-15
2.422226-15
3.422226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15
-1.222226-15

PRESSURE - BTR.

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	RUN NO.	HE-0-21	
PRESSURE, ATM.	S2P	S2BP	S2CP
1.000E-00	1.66944E-08	1.07020E-10	-2.19864E-13
2.000E-00	4.03705E-08	1.63651E-10	-3.34596E-13
5.000E-00	1.03171E-07	2.49416E-10	-5.03711E-13
1.000E&01	1.57194E-07	2.78415E-10	-5.49638E-13
2.500E&01	1.56489E-07	1.16758E-10	-1.82227E-13
5.000E&01	2.37193E-07	-2.31259E-10	5.54701E-13
7.500E&01	3.60016E-07	-3.97834E-10	8.76017E-13
1.000E&02	3.47875E-07	-3.53877E-10	7.34464E-13
1.250E&02	3.04648E-07	-1.45451E-10	2.38312E-13
1.500E&02	4.33905E-07	1.61642E-10	-4.64380E-13
2.000E&02	1.39053E-06	8.00259E-10	-1.88690E-12
2.500E&02	1.96856E-06	1.07523E09	-2.46038E-12
3.000E&02	8.70482E-07	6.36204E-10	-1.42008E-12
3.500E&02	1.35812E-06	-6.99233E-10	1.62492E-12
4.000E&02	1.32762E-05	-2.93370E-09	6.66719E-12 1.32919E-11
4.500E&02	4.95577E-05	-5.88560E-09	
5.000E&02 6.000E&02	1.17262E-04 2.82357E-04	-9.18799E-09 -1.44545E-08	2.06748E-11 3.23829E-11
7.000E&02	1.96324E-04	-1.21366E-08	2.71168E-11
8.000E&02	6.88535E-05	7.21829E-09	-1.60978E-11
9.000E&02	4.09689E-03	5.58440E-08	-1.24370E-10
1.000E&03	2.89224E-02	1.48696E-07	-3.30812E-10
100005403	20072212 02	18100702 01	30300122 10
PRESSUI	RE, ATM.	S2	DP
1.00	0E-00	1.604	03E-16
2.00	0E-00	2.436	85E-16
5.00	0E-00	3.652	22E-16
1.000	0E&01	3.952	03E-16
2.50	0E&01	1.182	54E-16
	0E&01	-4.240	59E-16
	0E&01	-6.515	
1.000		-5.333	
	0E&02	-1.522	
	0E&02		21E-16
	0E&02		03E-15
2.50	0E&02	1.864	73E-15

2.500E&02 1.86473E-15 3.000E&02 1.06307E-15 3.500E&02 -1.24722E-15 -5.05672E-15 4.000E&02 -1.00506E-14 4.500E&02 5.000E&02 -1.56074E-14 -2.43994E-14 6.000EE02 7.000E&02 -2.04085E-14 8.000E&02 1.21062E-14 9.34796E-14 9.000E&02 1.000E&03 2.48541E-13

TABLE 2. - VARIANCES AND COVARIANCES AT CHEN INCRCMENTS OF PRESSURE

IN-D-SH JON WOR

	1.000000000000000000000000000000000000

F 20 2

NAME OF STREET

102-000-5 102-00

TABLE 2. - VARIANCES AND COVARIANCES AT EVEN INCREMENTS OF PRESSURE

	KOM MO.	ne-0-22	
PRESSURE, ATM.	S2P	S2BP	SZCP
1.000E-00	1.78194E-09	1.56364E-11	-4.19953E-14
2.000E-00	4.13336E-09	2.33305E-11	-6.23058E-14
5.000E-00	9.62675E-09	3.34335E-11	-8.79196E-14
1.000E&01	1.30048E-08	3.34055E-11	-8.50332E-14
2.500E&01	1.22884E-08	1.93508E-12	5.83981E-15
5.000E&01	2.42997E-08	-4.32118E-11	1.27886E-13
7.500E&01	2.75325E-08	-4.66242E-11	1.28228E-13
1.000E&02	2.36673E-08	-1.53005E-11	3.02573E-14
1.250E&02	4.12233E-08	3.41016E-11	-1.16878E-13
1.500E&02	8.66378E-08	8.40764E-11	-2.62362E-13
2.000E&02	1.34992E-07	1.25834E-10	-3.76008E-13
2.500E&02	3.49623E-08	2.19559E-11	-5.93982E-14
3.000E&02	5.45276E-07	-2.57533E-10	7.69688E-13
3.500E&02	3.30254E-06	-6.79866E-10	2.01164E-12
4.000E&02	9.06295E-06	-1.14807E-09	3.38112E-12
4.500E&02	1.51919E-05	-1.50072E-09	4.40653E-12
5.000E&02	1.52434E-05	-1.51224E-09	4.43088E-12
6.000E&02	3.29289E-06	7.07924E-10	-2.06821E-12
7.000E&02	4.79428E-04	8.57832E-09	-2.50139E-11
8.000E&02	4.43204E-03	2.61558E-08	-7.61656E-11
9.000E&02	2.20672E-02	5.84816E-08	-1.70123E-10
1.000E&03	8.01026E-02	1.11591E-07	-3.24360E-10
PRESSU	RE, ATM.	\$2	DP
PLODDERGE	1-4401780	ATTE-TO No.	MIA 12 E-114
	0E-00		82E-17
	0E-00		58E-17
5.000	0E-00	8,306	82F-17

1.000E-00	3.99982E-17
2.000E-00	5.92158E-17
5.000E-00	8.30682E-17
1.000E&01	7.93237E-17
2.500E&01	-9.39694E-18
5.000E&01	-1.25576E-16
7.500E&01	-1.22304E-16
1.000E&02	-2.36352E-17
1.250E&02	1.21935E-16
1.500E&02	2.64560E-16
2.000E&02	3.72485E-16
2.500E&02	5.52681E-17
3.000E&02	-7.65848E-16
3.500E&02	-1.99130E-15
4.000E&02	-3.33950E-15
4.500E&02	-4.34636E-15
5.000E&02	-4.36625E-15
6.000E&02	2.03547E-15
7.000E&02	2.45979E-14
8.000E&02	7.48556E-14
9.000E&02	1.67125E-13
1.000E&03	3.18538E-13

TABLE 2. - VARIANCES AND KOVARIANCES AT SUBSTBURGEROUTS OF PRESSURE

RUN NU. HE-0-22

	PD-34R18F_J PD-34R18F_J PD-34R18F_J PD-34R18F_J PD-34R8SS_J PD-34R8SS_J PD-34R8S_J	

0.002

PAREZZENS PAR

TABLE 3. - COMPRESSIBILITY FACTORS AND STANDARD ERRORS AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-1

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005360494E-00	1.28161E-06
2.000E-00	1.0010719601E-00	2.52219E-06
5.000E-00	1.0026788606E-00	6.14962E-06
1.000E&01	1.0053542634E-00	1.19975E-05
2.500E&01	1.0133598684E-00	2.84944E-05
5.000E&01	1.0266347242E-00	5.31248E-05
7.500E&01	1.0398263576E-00	7.45610E-05
1.000E&02	1.0529365590E-00	9.30521E-05
1.250E&02	1.0659671186E-00	1.08802E-04
1.500E&02	1.0789198267E-00	1.22011E-04
2.000E&02	1.1045988492E-00	1.41623E-04
2.500E&02	1.1299879489E-00	1.53623E-04
3.000E&02	1.1551014478E-00	1.59909E-04
3.500E&02	1.1799536681E-00	1.62525E-04
4.000E&02	1.2045589320E-00	1.63624E-04
4.500E&02	1.2289315616E-00	1.65443E-04
5.000E&02	1.2530858791E-00	1.70304E-04
6.000E&02	1.3007968664E-00	1.99534E-04
7.000E&02	1.3478064711E-00	2.75990E-04
8.000E&02	1.3942292706E-00	4.29547E-04
9.000E&02	1.4401798421E-00	6.91462E-04
1.000E&03	1.4857727628E-00	1.09417E-03

1-0-3H _ OH WUR

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005359757E-00	1.27694E-06
2.000E-00	1.0010718137E-00	2.51152E-06
5.000E-00	1.0026785025E-00	6.12026E-06
1.000E&01	1.0053535731E-00	1.19401E-05
2.500E&01	1.0133583297E-00	2.83953E-05
5.000E&01	1.0266322327E-00	5.31134E-05
7.500E&01	1.0398234275E-00	7.48264E-05
1.000E&02	1.0529336329E-00	9.37631E-05
1.250E&02	1.0659645676E-00	1.10103E-04
1.500E&02	1.0789179503E-00	1.24016E-04
2.000E&02	1.1045989342E-00	1.45265E-04
2.500E&02	1.1299903343E-00	1.58985E-04
3.000E&02	1.1551059002E-00	1.66798E-04
3.500E&02	1.1799593813E-00	1.70461E-04
4.000E&02	1.2045645273E-00	1.71846E-04
4.500E&02	1.2289350877E-00	1.72901E-04
5.000E&02	1.2530848120E-00	1.75642E-04
6.000E&02	1.3007767507E-00	1.94867E-04
7.000E&02	1.3477503399E-00	2.49691E-04
8.000E&02	1.3941155759E-00	3.65515E-04
9.000E&02	1.4399824553E-00	5.70163E-04
1.000E&03	1.4854609744E-00	8.92114E-04

TABLE 1. - EDWERSTEINING THE PARTIES AND STANDARD BURDES AT EVEN

S-0 BILLIAM BOR

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005373486E-00	1.59521E-06
2.000E-00	1.0010745556E-00	3.13693E-06
5.000E-00	1.0026853276E-00	7.64288E-06
1.000E&01	1.0053671244E-00	1.49100E-05
2.500E&01	1.0133914743E-00	3.54672E-05
5.000E&01	1.0266961259E-00	6.63906E-05
7.500E&01	1.0399157663E-00	9.36134E-05
1.000E&02	1.0530522073E-00	1.17416E-04
1.250E&02	1.0661072605E-00	1.38015E-04
1.500E&02	1.0790827377E-00	1.55618E-04
2.000E&02	1.1048022108E-00	1.82670E-04
2.500E&02	1.1302251201E-00	2.00349E-04
3.000E&02	1.1553659592E-00	2.10601E-04
3.500E&02	1.1802392216E-00	2.15546E-04
4.000E&02	1.2048594010E-00	2.17441E-04
4.500E&02	1.2292409908E-00	2.18642E-04
5.000E&02	1.2533984847E-00	2.21587E-04
6.000E&02	1.3010991590E-00	2.43134E-04
7.000E&02	1.3480773724E-00	3.06095E-04
8.000E&02	1.3944490734E-00	4.40882E-04
9.000E&02	1.4403302108E-00	6.81318E-04
1.000E&03	1.4858367329E-00	1.06208E-03

E-0-3H JOY MUS

DO-SERVEDO I

DO

1.00008-00
1.00008001
2.00008001
1.00008001
1.00008001
2.00008002
2.00008002
3.00008002
3.00008002
3.00008002
3.00008002
3.00008002
3.00008002

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005360710E-00	6.77415E-07
2.000E-00	1.0010720054E-00	1.33207E-06
5.000E-00	1.0026789894E-00	3.24544E-06
1.000E&01	1.0053545719E-00	6.33146E-06
2.500E&01	1.0133610101E-00	1.50630E-05
5.000E&01	1.0266381698E-00	2.82049E-05
7.500E&01	1.0398331326E-00	3.97837E-05
1.000E&02	1.0529475519E-00	4.99175E-05
1.250E&02	1.0659830813E-00	5.86978E-05
1.500E&02	1.0789413743E-00	6.62107E-05
2.000E&02	1.1046328652E-00	7.77855E-05
2.500E&02	1.1300352527E-00	8.53842E-05
3.000E&02	1.1551617649E-00	8.98217E-05
3.500E&02	1.1800256300E-00	9.19846E-05
4.000E&02	1.2046400762E-00	9.28180E-05
4.500E&02	1.2290183315E-00	9.33103E-05
5.000E&02	1.2531736241E-00	9.44834E-05
6.000E&02	1.3008682337E-00	1.03231E-04
7.000E&02	1.3478297302E-00	1.29067E-04
8.000E&02	1.3941639386E-00	1.84672E-04
9.000E&02	1.4399766841E-00	2.84198E-04
1.000E&03	1.4853737917E-00	4.42115E-04

TABLE 3. - COMPRESSIBILITY ENCIONS AND STANDARD ERRORS AT EVEN

AND-SH - DM MUR

255

3

Janu 38022303

TO STORES OF STREET STR

1.0000E001
1.0000E001
1.0000E001
1.0000E001
1.0000E002

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005364627E-00	1.57338E-06
2.000E-00	1.0010727853E-00	3.09421E-06
5.000E-00	1.0026809132E-00	7.53936E-06
1.000E&01	1.0053583338E-00	1.47084E-05
2.500E&01	1.0133697842E-00	3.49852E-05
5.000E&01	1.0266537031E-00	6.54733E-05
7.500E&01	1.0398535739E-00	9.22946E-05
1.000E&02	1.0529712135E-00	1.15727E-04
1.250E&02	1.0660084393E-00	1.35987E-04
1.500E&02	1.0789670683E-00	1.53280E-04
2.000E&02	1.1046558042E-00	1.79805E-04
2.500E&02	1.1300519585E-00	1.97073E-04
3.000E&02	1.1551700681E-00	2.07031E-04
3.500E&02	1.1800246700E-00	2.11790E-04
4.000E&02	1.2046303011E-00	2.13602E-04
4.500E&02	1.2290014986E-00	2.14815E-04
5.000E&02	1.2531527994E-00	2.17858E-04
6.000E&02	1.3008538588E-00	2.39844E-04
7.000E&02	1.3478497756E-00	3.03616E-04
8.000E&02	1.3942568456E-00	4.39614E-04
9.000E&02	1.4401913649E-00	6.81567E-04
1.000E&03	1.4857696296E-00	1.06409E-03

FABLE 3. - COMPRESSESSION FACTORS AND STANDARD FRADRIC AT EVER

Largenzasanda-co	

PRESSURE, ATM.	Z -	SZ
1.000E-00	1.0005347297E-00	1.71756E-06
2.000E-00	1.0010693298E-00	3.37767E-06
5.000E-00	1.0026723528E-00	8.22996E-06
1.000E&01	1.0053414726E-00	1.60562E-05
2.500E&01	1.0133295437E-00	3.81975E-05
5.000E&01	1.0265793592E-00	7.15107E-05
7.500E&01	1.0397508179E-00	1.00845E-04
1.000E&02	1.0528452914E-00	1.26503E-04
1.250E&02	1.0658641512E-00	1.48717E-04
1.500E&02	1.0788087686E-00	1.67709E-04
2.000E&02	1.1044807629E-00	1.96923E-04
2.500E&02	1.1298722463E-00	2.16046E-04
3.000E&02	1.1549941908E-00	2.27164E-04
3.500E&02	1.1798575685E-00	2.32544E-04
4.000E&02	1.2044733515E-00	2.34606E-04
4.500E&02	1.2288525119E-00	2.35876E-04
5.000E&02	1.2530060215E-00	2.38968E-04
6.000E&02	1.3006799772E-00	2.61781E-04
7.000E&02	1.3475829950E-00	3.28702E-04
8.000E&02	1.3938028514E-00	4.72130E-04
9.000E&02	1.4394273227E-00	7.27925E-04
1.000E&03	1.4845441853E-00	1.13243E-03

TABLE 3. - COMPRESSIBILITY FALTONS AND STANDARD EXHORS AT EVEN

3-0-3H - ON MUR

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005343688E-00	6.45266E-07
2.000E-00	1.0010686072E-00	1.26897E-06
5.000E-00	1.0026705405E-00	3.09202E-06
1.000E801	1.0053378282E-00	6.03242E-06
2.500E&01	1.0133202889E-00	1.43508E-05
5.000E&01	1.0265604039E-00	2.68650E-05
7.500E&01	1.0397217796E-00	3.78827E-05
1.000E&02	1.0528058504E-00	4.75173E-05
1.250E&02	1.0658140509E-00	5.58568E-05
1.500E&02	1.0787478153E-00	6.29842E-05
2.000E&02	1.1043977746E-00	7.39425E-05
2.500E&02	1.1297672040E-00	8.11084E-05
3.000E&02	1.1548675795E-00	8.52684E-05
3.500E&02	1.1797103770E-00	8.72769E-05
4.000E&02	1.2043070725E-00	8.80451E-05
4.500E&02	1.2286691418E-00	8.85249E-05
5.000E&02	1.2528080608E-00	8.97006E-05
6.000E&02	1.3004623515E-00	9.83467E-05
7.000E&02	1.3473617519E-00	1.23662E-04
8.000E&02	1.3935980692E-00	1.77875E-04
9.000E&02	1.4392631107E-00	2.74523E-04
1.000E&03	1.4844486834E-00	4.27355E-04

THOUSAND NO. HE-DHT

PRESSURE, ATM.	Z .	SZ
1.000E-00	1.0005358492E-00	7.39684E-07
2.000E-00	1.0010715604E-00	1.45463E-06
5.000E-00	1.0026778663E-00	3.54430E-06
1.000EE01	1.0053522906E-00	6.91458E-06
2.500E&01	1.0133550522E-00	1.64483E-05
5.000E&01	1.0266254559E-00	3.07881E-05
7.500E&01	1.0398129612E-00	4.34098E-05
1.000E&02	1.0529193179E-00	5.44435E-05
1.250E&02	1.0659462760E-00	6.39906E-05
1.500E&02	1.0788955852E-00	7.21464E-05
2.000E&02	1.1045682572E-00	8.46753E-05
2.500E&02	1.1299513332E-00	9.28558E-05
3.000E&02	1.1550588125E-00	9.75939E-05
3.500E&02	1.1799046945E-00	9.98741E-05
4.000E&02	1.2045029784E-00	1.00745E-04
4.500E&02	1.2288676637E-00	1.01302E-04
5.000E&02	1.2530127497E-00	1.02679E-04
6.000E&02	1.3007001211E-00	1.12735E-04
7.000E&02	1.3476770871E-00	1.42090E-04
8.000E&02	1.3940556426E-00	2.04893E-04
9.000E&02	1.4399477821E-00	3.16866E-04
1.000E&03	1.4854655003E-00	4.94121E-04

TABLE 3 - - KORPRESSIONLIN PACTORS AND STANDARD PRODUCT AT EVEN

B-C-SH JON WUS

	KESSURIL AT NO.
10-30-30-1-1	

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005290567E-00	2.27254E-06
2.000E-00	1.0010580088E-00	4.47081E-06
5.000E-00	1.0026442380E-00	1.08980E-05
1.000E&01	1.0052858641E-00	2.12646E-05
2.500E&01	1.0131951044E-00	5.05696E-05
5.000E&01	1.0263252489E-00	9.45546E-05
7.500E&01	1.0393908577E-00	1.33142E-04
1.000E&02	1.0523923556E-00	1.66745E-04
1.250E&02	1.0653301668E-00	1.95691E-04
1.500E&02	1.0782047160E-00	2.20289E-04
2.000E&02	1.1037657264E-00	2.57720E-04
2.500E&02	1.1290787827E-00	2.81724E-04
3.000E&02	1.1541472809E-00	2.95244E-04
3.500E&02	1.1789746172E-00	3.01473E-04
4.000E&02	1.2035641875E-00	3.03804E-04
4.500E&02	1.2279193879E-00	3.05778E-04
5.000E&02	1.2520436146E-00	3.11054E-04
6.000E&02	1.2996127305E-00	3.47328E-04
7.000EE02	1.3462987039E-00	4.49352E-04
8.000E&02	1.3921287029E-00	6.62671E-04
9.000E&02	1.4371298962E-00	1.03569E-03
1.000E&03	1.4813294520E-00	1.61613E-03

TABLE 3. - COMPRESSINGLIV FACTORS AND STANDARD ERRORS AT EVEN

An-enalite al	

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005338368E-00	1.06774E-06
2.000E-00	1.0010675448E-00	2.09969E-06
5.000E-00	1.0026678973E-00	5.11591E-06
1.000E&01	1.0053325847E-00	9.98101E-06
2.500E&01	1.0133074975E-00	2.37477E-05
5.000E&01	1.0265358507E-00	4.44716E-05
7.500E&01	1.0396864408E-00	6.27350E-05
1.000E&02	1.0527606490E-00	7.87240E-05
1.250E&02	1.0657598566E-00	9.25824E-05
1.500E&02	1.0786854448E-00	1.04445E-04
2.000E&02	1.1043212885E-00	1.22736E-04
2.500E&02	1.1296792300E-00	1.34762E-04
3.000E&02	1.1547703195E-00	1.41800E-04
3.500E&02	1.1796056071E-00	1.45241E-04
4.000E&02	1.2041961430E-00	1.46568E-04
4.500E&02	1.2285529774E-00	1.47332E-04
5.000E&02	1.2526871602E-00	1.49138E-04
6.000E&02	1.3003317721E-00	1.62714E-04
7.000E&02	1.3472183798E-00	2.02960E-04
8.000E&02	1.3934353843E-00	2.89695E-04
9.000E&02	1.4390711867E-00	4.45001E-04
1.000E&03	1.4842141880E-00	6.91294E-04

TABLE 3. - COMPRESSIBILITY PACTORS AND STANDARD ERRORS AT BUEN

GI-D-SH . ON MUR

PRESSURE, ATA. Z

00-300000.1
00-300000.1
00-300000.1
00-300000.1
00-300000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1
00-3000000.1

1.0000E.00 2.0000E.00 2.0000E.01 3.000E.02 1.5000E.02 1.5000E.02 2.5000E.02 2.5000E.02 3.5000E.02 4.5000E.02 4.5000E

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005348928E-00	6.98262E-07
2.000E-00	1.0010696522E-00	1.37315E-06
5.000E-00	1.0026731309E-00	3.34575E-06
1.000E&01	1.0053429366E-00	6.52735E-06
2.500E&01	1.0133325264E-00	1.55286E-05
5.000E&01	1.0265831647E-00	2.90722E-05
7.500E&01	1.0397534691E-00	4.09993E-05
1.000E&02	1.0528449938E-00	5.14323E-05
1.250E&02	1.0658592931E-00	6.04661E-05
1.500E&02	1.0787979211E-00	6.81900E-05
2.000E&02	1.1044543806E-00	8.00740E-05
2.500E&02	1.1298268062E-00	8.78562E-05
3.000E&02	1.1549276316E-00	9.23834E-05
3.500E&02	1.1797692907E-00	9.45766E-05
4.000E&02	1.2043642176E-00	9.54174E-05
4.500E&02	1.2287248459E-00	9.59318E-05
5.000E&02	1.2528636096E-00	9.71805E-05
6.000E&02	1.3005252788E-00	1.06412E-04
7.000E&02	1.3474486961E-00	1.33529E-04
8.000E&02	1.3937333324E-00	1.91715E-04
9.000E&02	1.4394786589E-00	2.95619E-04
1.000E&03	1.4847841466E-00	4.60174E-04

11-0-3H *ON NO.

1.0000E.00 2.0000E.01 2.0000E.01 3.000E.01 1.0000E.02 2.0000E.02 3.000E.02 3.000E.02 3.000E.02 3.000E.02 3.000E.02 3.000E.02 3.000E.02 3.000E.02 3.000E.02 3.000E.02

Z	SZ
1.0005335239E-00	1.00759E-06
1.0010669210E-00	1.98164E-06
1.0026663514E-00	4.82886E-06
1.0053295381E-00	9.42116E-06
1.0133002136E-00	2.24111E-05
1.0265223516E-00	4.19456E-05
1.0396677206E-00	5.91336E-05
1.0527376270E-00	7.41534E-05
1.0657333771E-00	8.71436E-05
1.0786562776E-00	9.82352E-05
1.1042887550E-00	1.15258E-04
1.1296455109E-00	1.26354E-04
1.1547369967E-00	1.32763E-04
1.1795736642E-00	1.35833E-04
1.2041659648E-00	1.37001E-04
1.2285243502E-00	1.37767E-04
1.2526592719E-00	1.39682E-04
1.3003005308E-00	1.53602E-04
1.3471733540E-00	1.94072E-04
1.3933613542E-00	2.80390E-04
1.4389481442E-00	4.33793E-04
1.4840173365E-00	6.75768E-04
	1.0005335239E-00 1.0010669210E-00 1.0026663514E-00 1.0053295381E-00 1.0133002136E-00 1.0265223516E-00 1.0396677206E-00 1.0527376270E-00 1.0657333771E-00 1.0786562776E-00 1.1042887550E-00 1.1296455109E-00 1.1296455109E-00 1.1795736642E-00 1.2041659648E-00 1.2285243502E-00 1.2526592719E-00 1.3003005308E-00 1.3471733540E-00 1.3933613542E-00 1.4389481442E-00

TABLE 3. - COMPRESSIBILITY FACTORS AND STANDARD SHADES AT BYEN

SI-D-SH - DM MUN

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005032179E-00	7.97814E-06
2.000E-00	1.0010064943E-00	1.57003E-05
5.000E-00	1.0025166693E-00	3.82913E-05
1.000E&01	1.0050347567E-00	7.47579E-05
2.500E&01	1.0125970173E-00	1.78014E-04
5.000E&01	1.0252243874E-00	3.33514E-04
7.500E&01	1.0378757375E-00	4.70595E-04
1.000E&02	1.0505446948E-00	5.90669E-04
1.250E&02	1.0632248865E-00	6.94827E-04
1.500E&02	1.0759099399E-00	7.84087E-04
2.000E&02	1.1012691401E-00	9.22012E-04
2.500E&02	1.1265713132E-00	1.01302E-03
3.000E&02	1.1517654766E-00	1.06651E-03
3.500E&02	1.1768006479E-00	1.09272E-03
4.000E&02	1.2016258448E-00	1.10269E-03
4.500E&02	1.2261900847E-00	1.10804E-03
5.000E&02	1.2504423853E-00	1.12082E-03
6.000E&02	1.2978072389E-00	1.21957E-03
7.000E&02	1.3433125462E-00	1.51237E-03
8.000E&02	1.3865504478E-00	2.13289E-03
9.000E&02	1.4271130843E-00	3.21114E-03
1.000E&03	1.4645925964E-00	4.84800E-03

TABLE 3. - COMPRESSIBILITY FACTORS STANDARD ERIORS AT EVEN

ADM NO. HE-0-13

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005345827E-00	1.00546E-06
2.000E-00	1.0010690334E-00	1.97742E-06
5.000E-00	1.0026715946E-00	4.81844E-06
1.000E&01	1.0053398990E-00	9.40061E-06
2.500E&01	1.0133251914E-00	2.23614E-05
5.000E&01	1.0265693289E-00	4.18509E-05
7.500E&01	1.0397339123E-00	5.89979E-05
1.000E&02	1.0528204416E-00	7.39804E-05
1.250E&02	1.0658304168E-00	8.69367E-05
1.500E&02	1.0787653378E-00	9.79977E-05
2.000E&02	1.1044160170E-00	1.14969E-04
2.500E&02	1.1297844787E-00	1.26025E-04
3.000E&02	1.1548827227E-00	1.32407E-04
3.500E&02	1.1797227484E-00	1.35461E-04
4.000E&02	1.2043165555E-00	1.36623E-04
4.500E&02	1.2286761435E-00	1.37392E-04
5.000E&02	1.2528135121E-00	1.39318E-04
6.000EE02	1.3004695893E-00	1.53278E-04
7.000E&02	1.3473807839E-00	1.93821E-04
8.000E&02	1.3936430925E-00	2.80280E-04
9.000E&02	1.4393525119E-00	4.33985E-04
1.000E&03	1.4846050388E-00	6.76634E-04

TABLE 3. - COMPRESSIBILITY FACTORS AND STANDARD ERRORS AT EVEN

RISH NG. HE-O-LA

	*. MYA JERUZZEBR
00-37582752000.1	00-3000-F
OR-SETTERSTRANS_I	
	SOMEONE . P

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005343248E-00	9.50329E-07
2.000E-00	1.0010685198E-00	1.86878E-06
5.000E-00	1.0026703266E-00	4.55322E-06
1.000E&01	1.0053374163E-00	8.88311E-06
2.500E&01	1.0133193756E-00	2.11353E-05
5.000E&01	1.0265589481E-00	3.95792E-05
7.500E&01	1.0397201185E-00	5.58335E-05
1.000E&02	1.0528042877E-00	7.00637E-05
1.250E&02	1.0658128567E-00	8.23977E-05
1.500E&02	1.0787472265E-00	9.29558E-05
2.000E&02	1.1043989727E-00	1.09235E-04
2.500E&02	1.1297707342E-00	1.19938E-04
3.000E&02	1.1548737189E-00	1.26202E-04
3.500E&02	1.1797191348E-00	1.29265E-04
4.000E&02	1.2043181900E-00	1.30446E-04
4.500E&02	1.2286820923E-00	1.31128E-04
5.000E&02	1.2528220498E-00	1.32736E-04
6.000E&02	1.3004749621E-00	1.44823E-04
7.000E&02	1.3473665908E-00	1.80648E-04
8.000E&02	1.3935865997E-00	2.57849E-04
9.000E&02	1.4392246525E-00	3.96079E-04
1.000E&03	1.4843704130E-00	6.15291E-04

BUN NO. HE-0-15

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005334406E-00	2.32534E-07
2.000E-00	1.0010667546E-00	4.57288E-07
5.000E-00	1.0026659374E-00	1.11422E-06
1.000E&01	1.0053287167E-00	2.17384E-06
2.500E&01	1.0132982092E-00	5.17205E-06
5.000E&01	1.0265185035E-00	9.68457E-06
7.500E&01	1.0396621833E-00	1.36601E-05
1.000E&02	1.0527305489E-00	1.71394E-05
1.250E&02	1.0657249008E-00	2.01539E-05
1.500E&02	1.0786465393E-00	2.27331E-05
2.000E&02	1.1042768778E-00	2.67065E-05
2.500E&02	1.1296319675E-00	2.93147E-05
3.000E&02	1.1547222114E-00	3.08375E-05
3.500E&02	1.1795580128E-00	3.15791E-05
4.000E&02	1.2041497747E-00	3.18641E-05
4.500E&02	1-2285079003E-00	3.20321E-05
5.000E&02	1.2526427926E-00	3.24340E-05
6.000E&02	1.3002844900E-00	3.54368E-05
7.000E&02	1.3471580917E-00	4.43060E-05
8.000E&02	1.3933468228E-00	6.33806E-05
9.000E&02	1.4389339081E-00	9.74779E-05
1.000EE03	1.4840025724E-00	1.51476E-04

AL-O-SH -CH MUR

40-318384 P		
		1.2505142
	1.1296TIS6TSE-00	

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005334697E-00	1.94497E-07
2.000E-00	1.0010668128E-00	3.82522E-07
5.000E-00	1.0026660827E-00	9.32129E-07
1.000E&01	1.0053290060E-00	1.81859E-06
2.500E&01	1.0132989238E-00	4.32610E-06
5.000E&01	1.0265199013E-00	8.09693E-06
7.500E&01	1.0396642293E-00	1.14148E-05
1.000E&02	1.0527332046E-00	1.43142E-05
1.250E&02	1.0657281241E-00	1.68218E-05
1.500E&02	1.0786502846E-00	1.89630E-05
2.000E&02	1.1042815160E-00	2.22493E-05
2.500E&02	1.1296372734E-00	2.43914E-05
3.000E&02	1.1547279315E-00	2.56288E-05
3.500E&02	1.1795638651E-00	2.62216E-05
4.000E&02	1.2041554488E-00	2.64470E-05
4.500E&02	1.2285130573E-00	2.65947E-05
5.000E&02	1.2526470653E-00	2.69640E-05
6.000E&02	1.3002857786E-00	2.96494E-05
7.000E&02	1.3471545861E-00	3.74580E-05
8.000E&02	1.3933364855E-00	5.41136E-05
9.000E&02	1.4389144742E-00	8.37139E-05
1.000E&03	1.4839715497E-00	1.30403E-04

KINN NO. HE-0-17

	00-3000.5
	3,500000

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005322238E-00	1.16105E-06
2.000E-00	1.0010643265E-00	2.28336E-06
5.000E-00	1.0026599085E-00	5.56389E-06
1.000E&01	1.0053167956E-00	1.08554E-05
2.500E&01	1.0132694153E-00	2.58277E-05
5.000E&01	1.0264641653E-00	4.83597E-05
7.500E&01	1.0395853393E-00	6.82075E-05
1.000E&02	1.0526340266E-00	8.55743E-05
1.250E&02	1.0656113164E-00	1.00617E-04
1.500E&02	1.0785182982E-00	1.13485E-04
2.000E&02	1.1041256947E-00	1.33300E-04
2.500E&02	1.1294649303E-00	1.46297E-04
3.000E&02	1.1545447196E-00	1.53874E-04
3.500E&02	1.1793737770E-00	1.57556E-04
4.000E&02	1.2039608168E-00	1.58968E-04
4.500E&02	1.2283145536E-00	1.59810E-04
5.000E&02	1.2524437016E-00	1.61837E-04
6.000E&02	1.3000630894E-00	1.76949E-04
7.000E&02	1.3468886956E-00	2.21498E-04
8.000E&02	1.3929902355E-00	3.17166E-04
9.000E&02	1.4384374245E-00	4.87920E-04
1.000E&03	1.4832999780E-00	7.57882E-04

BI-D-SH -DH MUN

1.00-3825223386-00 1.00-38293936-00 1.00-38293936-00 1.00-38293936-00 1.00-38293936-00 1.00-38293936-00 1.00-38293936-00 1.00-38293936-00 1.20-38293936-00 1.20-38293936-00 1.20-38293936-00 1.20-38293936-00 1.20-38293936-00 1.20-38293936-00 1.20-38293936-00 1.20-38293936-00 1.20-38293936-00 1.00005501
1.00005501
1.00005501
1.00005501
1.00005501
1.00005501
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502
1.00005502

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005345668E-00	7.14169E-07
2.000E-00	1.0010690020E-00	1.40459E-06
5.000E-00	1.0026715192E-00	3.42272E-06
1.000EE01	1.0053397585E-00	6.67765E-06
2.500E&01	1.0133249154E-00	1.58831E-05
5.000E&01	1.0265690175E-00	2.97208E-05
7.500E&01	1.0397337871E-00	4.18890E-05
1.000E&02	1.0528207049E-00	5.25145E-05
1.250E&02	1.0658312517E-00	6.16964E-05
1.500E&02	1.0787669084E-00	6.95284E-05
2.000E&02	1.1044194743E-00	8.15269E-05
2.500E&02	1.1297902491E-00	8.93205E-05
3.000E&02	1.1548910791E-00	9.37987E-05
3.500E&02	1.1797338105E-00	9.59270E-05
4.000E&02	1.2043302899E-00	9.67337E-05
4.500E&02	1.2286923634E-00	9.72921E-05
5.000E&02	1.2528318775E-00	9.87118E-05
6.000E&02	1.3004906129E-00	1.08896E-04
7.000E&02	1.3474012666E-00	1.38296E-04
8.000E&02	1.3936586096E-00	2.00783E-04
9.000E&02	1.4393574126E-00	3.11605E-04
1.000E&03	1.4845924464E-00	4.86259E-04

RUN NO. HE-0-19

,

	* 7973 2802239

TABLE 3. - COMPRESSIBILITY FACTORS AND STANDARD ERRORS AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-20

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005338290E-00	5.81182E-07
2.000E-00	1.0010675299E-00	1.14321E-06
5.000E-00	1.0026678643E-00	2.78620E-06
1.000E&01	1.0053325322E-00	5.43596E-06
2.500E&01	1.0133074664E-00	1.29265E-05
5.000E&01	1.0265361088E-00	2.41721E-05
7.500E&01	1.0396872834E-00	3.40418E-05
1.000E&02	1.0527623464E-00	4.26406E-05
1.250E&02	1.0657626541E-00	5.00513E-05
1.500E&02	1.0786895627E-00	5.63529E-05
2.000E&02	1.1043286078E-00	6.59515E-05
2.500E&02	1.1296903316E-00	7.21194E-05
3.000E&02	1.1547855841E-00	7.56051E-05
3.500E&02	1.1796252152E-00	7.72203E-05
4.000E&02	1.2042200751E-00	7.78277E-05
4.500E&02	1.2285810136E-00	7.83267E-05
5.000E&02	1.2527188808E-00	7.96471E-05
6.000E&02	1.3003688011E-00	8.87688E-05
7.000E&02	1.3472566359E-00	1.14537E-04
8.000E&02	1.3934691851E-00	1.68656E-04
9.000E&02	1.4390932485E-00	2.63795E-04
1.000E&03	1.4842156262E-00	4.12794E-04

OS-0-BH . OH INCH

	RESSURE, ATH.

TABLE 3.- COMPRESSIBILITY FACTORS AND STANDARD ERRORS AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-21

PRESSURE, ATM.	Z -	SZ
1.000E-00	1.0005325437E-00	9.62207E-07
2.000E-00	1.0010649661E-00	1.89051E-06
5.000E-00	1.0026615058E-00	4.60226E-06
1.000E&01	1.0053199841E-00	8.97752E-06
2.500E&01	1.0132773395E-00	2.13912E-05
5.000E&01	1.0264798502E-00	4.02178E-05
7.500E&01	1.0396086076E-00	5.69988E-05
1.000E&02	1.0526646873E-00	7.18873E-05
1.250E&02	1.0656491648E-00	8.49935E-05
1.500E&02	1.0785631156E-00	9.64168E-05
2.000E&02	1.1041837392E-00	1.14613E-04
2.500E&02	1.1295351625E-00	1.27312E-04
3.000E&02	1.1546259896E-00	1.35436E-04
3.500E&02	1.1794648248E-00	1.39992E-04
4.000E&02	1.2040602724E-00	1.42072E-04
4.500E&02	1.2284209366E-00	1.42828E-04
5.000E&02	1.2525554217E-00	1.43461E-04
6.000E&02	1.3001802714E-00	1.49372E-04
7.000E&02	1.3470036554E-00	1.70707E-04
8.000E&02	1.3930944079E-00	2.21021E-04
9.000E&02	1.4385213627E-00	3.16647E-04
1.000E&03	1.4833533538E-00	4.74726E-04

TABLE 3. - COMPRESSIBLITY PACTORS AND STANDARD PRESSIBLE EVEN DE PRESSIBLE

ALM NO. HE-0-21

	PRESSURE, ATH- > ,

TABLE 3.- COMPRESSIBILITY FACTORS AND STANDARD ERRORS AT EVEN INCREMENTS OF PRESSURE

RUN NO. HE-0-22

PRESSURE, ATM.	Z	SZ
1.000E-00	1.0005339190E-00	4.24388E-07
2.000E-00	1.0010677075E-00	8.35963E-07
5.000E-00	1.0026682914E-00	2.03989E-06
1.000E&01	1.0053333310E-00	3.97920E-06
2.500E&01	1.0133090607E-00	9.42653E-06
5.000E&01	1.0265380471E-00	1.74684E-05
7.500E&01	1.0396884873E-00	2.43481E-05
1.000E&02	1.0527619091E-00	3.01621E-05
1.250E&02	1.0657598406E-00	3.49949E-05
1.500E&02	1.0786838099E-00	3.89303E-05
2.000E&02	1.1043159736E-00	4.44598E-05
2.500E&02	1.1296706244E-00	4.74912E-05
3.000E&02	1.1547599863E-00	4.88278E-05
3.500E&02	1.1795962833E-00	4.93240E-05
4.000E&02	1.2041917395E-00	4.98691E-05
4.500E&02	1.2285585791E-00	5.13873E-05
5.000E&02	1.2527090260E-00	5.48741E-05
6.000E&02	1.3004096384E-00	7.24967E-05
7.000E&02	1.3473913693E-00	1.13797E-04
8.000E&02	1.3937520113E-00	1.90905E-04
9.000E&02	1.4395893570E-00	3.16181E-04
1.000E&03	1.4850011990E-00	5.02809E-04

TABLE 3.- COMPRESSIBILITY FACTORS AND STANDARD CHARRS AT FYEN

RUN NO. HE-0-22

	. THIY ANYESSAU
	8.000=000=8

TABLE 4. - Compressibility apparatus zero pressure volume ratio

Run No.	N	Deviation from average N
HE-0-1	1.994105 <u>+</u> 0.000069	-0.000134
HE-0-2	1.994100 <u>+</u> 0.000072	-0.000139
HE-0-3	1.994013 <u>+</u> 0.000092	-0.000226
HE-0-4	1.994082 ± 0.000039	-0.000157
HE-0-5	1.994106 ± 0.000090	-0.000133
HE-0-6	1.994161 <u>+</u> 0.000099	-0.000078
HE-0-7	1.994222 ± 0.000037	-0.000017
HE-0-8	1.994119 ± 0.000042	-0.000120
HE-0-9	1.994563 ± 0.000128	+0.000324
HE-0-10	1.994284 <u>+</u> 0.000062	+0.000045
HE-0-11	1.994214 ± 0.000040	-0.000025
HE-0-12	1.994290 <u>+</u> 0.000058	+0.000051
<u>1</u> /HE-0-13	1.995261 <u>+</u> 0.000466	+0.001022
HE-0-14	1.994224 <u>+</u> 0.000058	-0.000015
HE-0-15	1.994257 ± 0.000055	+0.000018
HE-0-16	1.994312 ± 0.000013	+0.000073
HE-0-17	1.994319 <u>+</u> 0.000011	+0.000080
HE-0-18	1.994394 ± 0.000067	+0.000155
HE-0-19	1.994273 ± 0.000041	+0.000034
HE-0-20	1.994313 ± 0.000033	+0.000074
HE-0-21	1.994352 ± 0.000060	+0.000113
HE-0-22	1.994313 ± 0.000021	+0.000074
Average standar	94239 ± 0.000028 d error of N = ± 0.000057 of a single N = ± 0.000127	

^{1/} The value of N for this run was omitted from the calculations.

		Rich No.
	SY0000.0 = 001486.1	
	grecon.c e closes i	
40.000165		
NE0000 On		

TABLE 5. - Values for the constant B of equation (2) for helium $\underline{at\ 0^{\circ}\ C}$

Run No.	$B \times 10^4$, atm ⁻¹	(Deviation from average B) x 10 ⁴ , atm ⁻¹
HE-0-1	5.36119 ± 0.01214	+0.01717
HE-0-2	5.36045 ± 0.01204	+0.01643
HE-0-3	5.37420 <u>+</u> 0.01503	+0.03018
HE-0-4	5.36139 <u>+</u> 0.00638	+0.01737
HE-0-5	5.36533 ± 0.01483	+0.02131
HE-0-6	5.34795 ± 0.01618	+0.00393
HE-0-7	5.34434 ± 0.00608	+0.00032
HE-0-8	5.35918 ± 0.00697	+0.01516
HE-0-9	5.29109 ± 0.02146	-0.05293
HE-0-10	5.33901 ± 0.01006	-0.00501
HE-0-11	5.34960 <u>+</u> 0.00658	+0.00558
HE-0-12	5.33587 ± 0.00950	-0.00815
<u>1</u> /HE-0-13	5.03189 ± 0.07537	-0.31213
HE-0-14	5.34649 ± 0.00948	+0.00247
HE-0-15	5.34390 ± 0.00895	-0.00012
HE-0-16	5.33504 ± 0.00219	-0.00898
HE-0-17	5.33533 ± 0.00183	-0.00869
HE-0-18	5.32284 ± 0.01094	-0.02118
HE-0-19	5.34633 ± 0.00673	+0.00231
HE-0-20	5.33893 ± 0.00549	-0.00509
HE-0-21	5.32604 ± 0.00900	-0.01798
HE-0-22	5.33984 ± 0.00405	-0.00418
Average B = 5.34402 x Average standard error Standard error of a s:	$10^{-4} \pm 0.00390 \times 10^{-4} \text{ atm}^{-1}$ c of B = $\pm 0.00933 \times 10^{-4} \text{ at}$ ingle B = $\pm 0.01787 \times 10^{-4} \text{ at}$	-m-1 atm-1

 $[\]underline{1}$ / The value of B for this run was omitted from the calculations.

TABLE 5. - Values for the constant h of equation (2) for nelign

A sear , Por a B	
victoro F ciracre *	
9.38739 ± 0.00639	

Average arror of a single B w 1 notest 10 to down

political transfer of training to man stat and 8 to surlay out 12

TABLE 6. - Values for the constant C of equation (2) for helium at 0° C

Run No.	$C \times 10^8$, atm ⁻²	(Deviation from average C) x 10 ⁸ , atm ⁻²
HE-0-1	-6.9442 <u>+</u> 0.3126	-0.4278
HE-0-2	-6.8916 ± 0.2918	-0.3752
HE-0-3	-7.0908 <u>+</u> 0.3587	-0.5744
HE-0-4	-6.8403 <u>+</u> 0.1514	-0.3239
HE-0-5	-7.0146 ± 0.3556	-0.4982
HE-0-6	-6.4880 ± 0.3854	+0.0284
HE-0-7	-6.5287 <u>+</u> 0.1450	-0.0123
HE-0-8	-6.9119 ± 0.1665	-0.3955
HE-0-9	-5.2308 ± 0.5243	+1.2856
HE-0-10	-6.4421 <u>+</u> 0.2382	+0.0743
HE-0-11	-6.6754 ± 0.1566	-0.1590
HE-0-12	-6.3506 <u>+</u> 0.2274	+0.1658
<u>1</u> /HE-0-13	+2.9380 <u>+</u> 1.7767	+9.4544
HE-0-14	-6.6043 ± 0.2271	-0.0879
HE-0-15	-6.4963 <u>+</u> 0.2120	+0.0201
HE-0-16	-6.3372 ± 0.0520	+0.1792
HE-0-17	-6.3395 <u>+</u> 0.0439	+0.1769
HE-0-18	-6.0604 <u>+</u> 0.2599	+0.4560
HE-0-19	-6.5835 ± 0.1619	-0.0671
HE-0-20	-6.4144 ± 0.1337	+0.1020
HE-0-21	-6.0723 ± 0.1959	+0.4441
HE-0-22	-6.5282 ± 0.1152	-0.0118
	-8	-2

Average C = $-6.5164 \times 10^{-8} \pm 0.0895 \times 10^{-8} \text{ atm}^{-2}$ Average standard error of C = $\pm 0.2245 \times 10^{-8} \text{ atm}^{-2}$ Standard error of a single C = $\pm 0.4103 \times 10^{-8} \text{ atm}^{-2}$

^{1/} The value of C for this run was omitted from the calculations.

CARLE 6. - Values for the constant C of squarton (?) for hellow at 0 c

C sc 10 ⁸ , atm-2	
asic.n + same.a-	
8185 0 ± 8188.85	
DK15.0 4 8ARA a-	

Average standard error of a sunta command error of a sunta command

the control of a control of the cont

Values for the constant D of equation (2) for helium at 0° C are recorded in table 7 for each of the twenty-two runs along with the average D, the standard error of the average D, the average standard error of D, and the standard error of a single D.

Values for the compressibility factor (Z) for helium at 0° C and 1 atmosphere calculated from equation (2) are recorded in table 8 for each of the twenty-two runs. The average Z, the standard error of the average Z, the average standard error of Z, and the standard error of a single Z for helium at 0° C and 1 atmosphere are recorded in table 8.

Values for the compressibility factor (Z) for helium at 0° C and 700 atmospheres calculated from equation (2) are recorded in table 9. The average Z, the standard error of the average Z, the average standard error of Z, and the standard error of a single Z for helium at 0° C and 700 atmospheres are recorded in table 9.

Data for Run No. HE-0-13 are not consistent with the data of the other runs; therefore, data for Run No. HE-0-13 were omitted from the calculations of the various average quantities and standard errors of tables 4, 5, 6, 7, 8, and 9.

Examination of tables 4, 5, 6, 7, 8, and 9 reveals that the deviations of Run No. HE-O-9 from the various tabulated average quantities are about three times the calculated standard errors of the single measurements; therefore, the possibility of an error exists in the data of Run No. HE-O-9. Additional tables were prepared omitting the data for Run No. HE-O-9 and Run No. HE-O-13 from the calculations of the various average quantities and standard errors.

Values for the consider D of equation (2) for helium at 0° C are recorded in table 7 for each of the twenty-two tune along with the sverage D, the standard error of the sverage D, the sverage D, the standard error of the sverage D, the standard error of the sverage D, the sverage

Values for the compressibility factor (2) for believe at U or and I among that I attended to table and I attended to the time to the time to the section (2) and the seconded to table at the section of the section of the section I. The section of the section of

Values for the numerous bility factor (2) for helium at 10° C and 700 standards calculated in table 9. The average 2, the standard error of the average 2 like average 2, and the standard error of a color 2 and the for helium at 0° C and 100 accupances are consided to rath at Data for East Wo. NE-0-11 error and recent at the color runes therefore, units for East No. NE-0-11 were andrewd from the calculations of the various average quantities and stendard errors of the various average quantities and stendard errors of tables 4 % 5 % one 0.

Examinations of Run No. RE-O-9 from the various cabulated sewrage deviations of Run No. RE-O-9 from the various cabulated sewrage squantities are about them the calculated standard errors of the stagle measurements; therefore, the possibility of an error example at the date of Run No. RE-O-9 Additional tables were presented onitities the date for Non No. NE-O-9 and Run No. NE-O-15 from the coleulations of the various average quantities and standard over

TABLE 7. - Values for the constant D of equation (2) for helium at 0° C

Run No.	$D \times 10^{11}$, atm ⁻³	(Deviation from average D) x 10 ¹¹ , atm
HE-0-1	1.910 <u>+</u> 0.277	+0.384
HE-0-2	1.833 ± 0.243	+0.307
HE-0-3	1.932 <u>+</u> 0.294	+0.406
HE-0-4	1.764 <u>+</u> 0.124	+0.238
HE-0-5	1.938 <u>+</u> 0.293	+0.412
HE-0-6	1.463 <u>+</u> 0.316	-0.063
HE-0-7	1.530 ± 0.119	+0.004
HE-0-8	1.867 ± 0.137	+0.341
HE-0-9	0.453 <u>+</u> 0.440	-1.073
HE-0-10	1.473 <u>+</u> 0.194	-0.053
HE-0-11	1.658 <u>+</u> 0.128	+0.132
HE-0-12	1.394 <u>+</u> 0.187	-0.132
<u>1</u> /HE-0-13	-6.798 <u>+</u> 1.440	-8.324
HE-0-14	1.600 ± 0.187	+0.074
HE-0-15	1.494 <u>+</u> 0.173	-0.032
HE-0-16	1.387 ± 0.042	-0.139
HE-0-17	1.383 <u>+</u> 0.036	-0.143
HE-0-18	1.162 ± 0.212	-0.364
HE-0-19	1.580 ± 0.134	+0.054
HE-0-20	1.447 ± 0.112	-0.079
HE-0-21	1.147 ± 0.146	-0.379
HE-0-22	1.630 ± 0.113	+0.104
	$1.526 \times 10^{-11} \pm 0.074 \times 10^{-11} \text{ atm}^{-3}$	2
Average stand	dard error of D = $\pm 0.186 \times 10^{-11}$ a	tm o
Standard erro	or of a single $D = \pm 0.338 \times 10^{-11}$	atm -

^{1/} The value of D for this run was omitted from the calculations.

TABLE 7. - Values for rise compared D of countries (2) for heller to C

	. 443'0 F 016'1	. 1-0-3H
	£45.0 2 E68.1	
3		

Average standard error of D = + 0.074 x 10 11 ots -1 ots standard error of D = + 0.074 x 10 11 ots -1 ots -

TABLE 8. - Compressibility factor for helium at 0° C and 1 atmosphere calculated from equation (2)

Run No.	Compressibility factor, Z	Deviation from average Z
HE-0-1	$1.000536049 \pm 0.000001282$	+0.000001712
HE-0-2	$1.000535976 \pm 0.000001277$	+0.000001639
HE-0-3	$1.000537349 \pm 0.000001595$	+0.000003012
HE-0-4	$1.000536071 \pm 0.000000677$	+0.000001734
HE-0-5	$1.000536463 \pm 0.000001573$	+0.000002126
HE-0-6	$1.000534730 \pm 0.000001718$	+0.000000393
HE-0-7	$1.000534369 \pm 0.000000645$	+0.00000032
HE-0-8	$1.000535849 \pm 0.000000740$	+0.000001512
HE-0-9	$1.000529057 \pm 0.000002273$	-0.000005280
HE-0-10	$1.000533837 \pm 0.000001068$	-0.00000500
HE-0-11	$1.000534893 \pm 0.000000698$	+0.000000556
HE-0-12	$1.000533524 \pm 0.000001008$	-0.000000813
<u>1</u> /HE-0-13	$1.000503218 \pm 0.000007978$	-0.000031119
HE-0-14	$1.000534583 \pm 0.000001005$	+0.000000246
HE-0-15	$1.000534325 \pm 0.000000950$	-0.00000012
HE-0-16	$1.000533441 \pm 0.000000233$	-0.00000896
HE-0-17	$1.000533470 \pm 0.000000194$	-0.00000867
HE-0-18	$1.000532224 \pm 0.000001161$	-0.000002113
HE-0-19	$1.000534567 \pm 0.000000714$	+0.00000230
HE-0-20	$1.000533829 \pm 0.000000581$	-0.00000508
HE-0-21	$1.000532544 \pm 0.000000962$	-0.000001793
HE-0-22	$1.000533919 \pm 0.000000424$	-0.000000418

Average Z = 1.000534337 + 0.000000389

Average standard error of $Z = \pm 0.000000989$

Standard error of a single $Z = \pm 0.000001782$

^{1/} The value of Z for this run was omitted from the calculations.

TABLE 8. - Compressibility factor for helton at 0' c and I appositure coloniated from councilon (2)

Compressibility factor, Z	
1.000536049 ± 0.00000282	1-0-38
1. odosasara + o. omogizza	
	HB-0-12
1.000333918 ± 0.00000024	

If the value of a for this run was overeed from the college and

TABLE 9. - Compressibility factor for helium at 0° C and 700 atmospheres calculated from equation (2)

Run No.	Compressibility factor, Z	Deviation from average Z
HE-0-1	1.347806 <u>+</u> 0.000276	+0.000421
HE-0-2	1.347750 <u>+</u> 0.000250	+0.000365
HE-0-3	1.348077 ± 0.000306	+0.000692
HE-0-4	1.347830 <u>+</u> 0.000129	+0.000445
HE-0-5	1.347850 <u>+</u> 0.000304	+0.000465
HE-0-6	1.347583 ± 0.000329	+0.000198
HE-0-7	1.347362 <u>+</u> 0.000124	-0.000023
HE-0-8	1.347677 ± 0.000142	+0.000292
HE-0-9	1.346299 <u>+</u> 0.000449	-0.001086
HE-0-10	1.347218 ± 0.000203	-0.000167
HE-0-11	1.347449 ± 0.000134	+0.000064
HE-0-12	1.347173 ± 0.000194	-0.000212
<u>1</u> /HE-0-13	1.343313 ± 0.001512	-0.004072
HE-0-14	1.347381 ± 0.000194	-0.000004
HE-0-15	1.347367 ± 0.000181	-0.000018
HE-0-16	1.347158 <u>+</u> 0.000044	-0.000227
HE-0-17	1.347155 ± 0.000037	-0.000230
HE-0-18	1.346889 ± 0.000221	-0.000496
HE-0-19	1.347401 <u>+</u> 0.000138	+0.000016
HE-0-20	1.347257 ± 0.000115	-0.000128
HE-0-21	1.347004 ± 0.000171	-0.000381
HE-0-22	1.347391 ± 0.000114	+0.000006
	347385 ± 0.000086 rd error of $Z = \pm 0.000193$	

^{1/} The value of Z for this run was omitted from the calculations.

Standard error of a single $Z = \pm 0.000394$

TABLE 9. - Comprehensibility factor for helica st 0" C and 100

	,	HE-0-1
pesono.o ± natitae.d.":		
		EE-0-16
9 1000 P 1651 T 0 . 0001 P		

Average standard error of Z = 0.000192 Average standard error of Z = 0.000192 Standard error of a single Z = ± 0.000192

If The value of 5 for this run has outtree from the calculations.

Table 10 contains values of the compressibility apparatus zero pressure volume ratio (N), the average N, the standard error in the average N, the average standard error of N, and the standard error of a single N. Data for Run No. HE-0-9 and Run No. HE-0-13 were omitted from the calculations of the average N and the various standard errors of table 10.

Table 11 contains values of the constant B of equation (2) for helium at 0° C, the average B, the standard error of the average B, the average standard error of B, and the standard error of a single B. Data for Run No. HE-0-9 and Run No. HE-0-13 were not used in the calculation of the average B or the various standard errors of table 11.

Table 12 contains values of the constant C of equation (2) for helium at 0° C, the average C, the standard error of the average C, the average standard error of C, and the standard error of a single C. Data for Run No. HE-0-9 and Run No. HE-0-13 were not used in the calculation of the average B or the various standard errors of table 12.

Table 13 contains values of the constant D of equation (2) for helium at 0°C, the average D, the standard error of the average D, the average standard error of D, and the standard error of a single D. Data for Run No. HE-O-9 and Run No. HE-O-13 were not used in the calculation of the average D or the various standard errors of table 13.

Table 14 contains compressibility factors for helium at 0° C and 1 atmosphere calculated from equation (2), the average value of

Table 10 contains values of the compressibility apparatus note pressure volume ratio (S); the average N, the standard arror in the average N, the average N, and the wideston of the the value of a single N. Tera vio: N. No. 18-0-9 and Rup No. 18-0-13 were constituted from the salesianistions of the average N and the was face assumed and every of the salesianism.

Table 11 command values of the command B of equation (1) the believe at the sentings B. believe at the sentings B. the standard transit of the sentings B. the standard transit of the sentings B. Date for S.m W. He-fi-1 and the season of the standard transit of the standard of the stand

Table 12 contents values of the constant C of species (2) 100 believe at U C, the sverupe C, the standard error of the sverupe C, the average standard error of the sverupe C. The average standard error of the standard error of a standard C. Data for Non-No HS-O-9 and Non-NO-D-13 with our one man in the calculation of the sverupe S or the various standard errors of table 12.

Table 13 contains values at the constant is all equation (2) for helder at 0° C. the average D, the analysis of the average of a single the average braided error of a single D. Data for the St. HE-O-S and the standard error on a single calculation of the distribute of the option of the option of the option of the option of the distribute of the option of the distribute of the option of the option of the option of the distribute of the option of the optio

Tuble 16 contains compressibility factors for believe at 0° C

TABLE 10. - Compressibility apparatus zero pressure volume ratio,

Run No. HE-0-9 and Run No. HE-0-13 omitted

	Run No.	N	Deviation from average N
	HE-0-1	1.994105 <u>+</u> 0.000069	-0.000118
	HE-0-2	1.994100 <u>+</u> 0.000072	-0.000123
	HE-0-3	1.994013 <u>+</u> 0.000092	-0.000210
	HE-0-4	1.994082 <u>+</u> 0.000039	-0.000141
	HE-0-5	1.994106 <u>+</u> 0.000090	-0.000117
4	HE-0-6	1.994161 <u>+</u> 0.000099	-0.000062
	HE-0-7	1.994222 <u>+</u> 0.000037	-0.000001
	HE-0-8	1.994119 <u>+</u> 0.000042	-0.000104
1	/HE-0-9	1.994563 <u>+</u> 0.000128	+0.000340
	HE-0-10	1.994284 <u>+</u> 0.000062	+0.000061
	HE-0-11	1.994214 <u>+</u> 0.000040	-0.000009
	HE-0-12	1.994290 <u>+</u> 0.000058	+0.000067
1	/HE-0-13	1.995261 <u>+</u> 0.000466	+0.001038
	HE-0-14	1.994224 <u>+</u> 0.000058	+0.000001
	HE-0-15	1.994257 <u>+</u> 0.000055	+0.000034
	HE-0-16	1.994312 <u>+</u> 0.000013	+0.000089
	HE-0-17	1.994319 <u>+</u> 0.000011	+0.000096
	HE-0-18	1.994394 <u>+</u> 0.000067	+0.000171
	HE-0-19	1.994273 <u>+</u> 0.000041	+0.000050
	HE-0-20	1.994313 <u>+</u> 0.000033	+0.000090
	HE-0-21	1.994352 <u>+</u> 0.000060	+0.000129
	HE-0-22	1.994313 <u>+</u> 0.000021	+0.000090
	Average N = 1.994223 ± Average standard error		
	0. 1 1	1 2 0 000106	

 $[\]underline{1}$ / The value of N for this run was omitted from the calculations.

Standard error of a single $N = \pm 0.000106$

itopopo i colveril , ,	S-0-3H
1.999013 ± 0.000032	E-0-3H
	HE-0-10

TABLE 11. - Values for the constant B of equation (2) for helium at 0° C, Run No. HE-0-9 and Run No. HE-0-13 omitted

Run No.	$B \times 10^4$, atm ⁻¹	(Deviation from average B) x 10 ⁴ , atm ⁻¹
HE-0-1	5.36119 ± 0.01214	+0.01453
HE-0-2	5.36045 <u>+</u> 0.01204	+0.01379
HE-0-3	5.37420 <u>+</u> 0.01503	+0.02754
HE-0-4	5.36139 <u>+</u> 0.00638	+0.01473
HE-0-5	5.36533 <u>+</u> 0.01483	+0.01867
HE-0-6	5.34795 <u>+</u> 0.01618	+0.00129
HE-0-7	5.34434 ± 0.00608	-0.00232
HE-0-8	5.35918 <u>+</u> 0.00697	+0.01252
<u>1</u> /HE-0-9	5.29109 <u>+</u> 0.02146	-0.05557
HE-0-10	5.33901 <u>+</u> 0.01006	-0.00765
HE-0-11	5.34960 <u>+</u> 0.00658	+0.00294
HE-0-12	5.33587 <u>+</u> 0.00950	-0.01079
<u>1</u> /HE-0-13	5.03189 ± 0.07537	-0.31477
HE-0-14	5.34649 <u>+</u> 0.00948	-0.00017
HE-0-15	5.34390 <u>+</u> 0.00895	-0.00276
HE-0-16	5.33504 <u>+</u> 0.00219	-0.01162
HE-0-17	5.33533 ± 0.00183	-0.01133
HE-0-18	5.32284 ± 0.01094	-0.02382
HE-0-19	5.34633 ± 0.00673	-0.00033
HE-0-20	5.33893 <u>+</u> 0.00549	-0.00773
HE-0-21	5.32604 ± 0.00900	-0.02062
HE-0-22	5.33984 ± 0.00405	-0.00682
	$4666 \times 10^{-4} \pm 0.00301 \times 10^{-4}$	
	d error of B = \pm 0.00872 x 10	
Standard error	of a single $B = \pm 0.01346$ atm	n - 1

^{1/} The value of B for this run was omitted from the calculations.

TABLE II: - Velyer in (I) and teams to E specience with the capture - iII TABLE to the contract of the contrac

	, 1-0-SH
1 S.35049 ± 0.01204	

THE PARTIES OF THE PA

The value of 2 for this ray was entired from the collection of the collections.

TABLE 12. - Values for the constant C of equation (2) for helium at 0° C, Run No. HE-0-9 and Run No. HE-0-13 omitted

Run No.	$C \times 10^8$, atm ⁻²	(Deviation from average C) $\times 10^8$, atm ⁻²
HE-0-1	-6.9442 <u>+</u> 0.3126	-0.3635
HE-0-2	-6.8916 <u>+</u> 0.2918	-0.3109
HE-0-3	-7.0908 <u>+</u> 0.3587	-0.5101
HE-0-4	-6.8403 ± 0.1514	-0.2596
HE-0-5	-7.0146 <u>+</u> 0.3556	-0.4339
HE-0-6	-6.4880 <u>+</u> 0.3854	+0.0927
HE-0-7	-6.5287 <u>+</u> 0.1450	+0.0520
HE-0-8	-6.9119 <u>+</u> 0.1665	-0.3312
<u>1</u> /HE-0-9	-5.2308 <u>+</u> 0.5243	+1.3499
HE-0-10	-6.4421 ± 0.2382	+0.1386
HE-0-11	-6.6754 ± 0.1566	-0.0947
HE-0-12	-6.3506 <u>+</u> 0.2274	+0.2301
<u>1</u> /HE-0-13	+2.9380 <u>+</u> 1.7767	+9.5187
HE-0-14	-6.6043 <u>+</u> 0.2271	-0.0236
HE-0-15	-6.4963 <u>+</u> 0.2120	+0.0844
HE-0-16	-6.3372 <u>+</u> 0.0520	+0.2435
HE-0-17	-6.3395 <u>+</u> 0.0439	+0.2412
HE-0-18	-6.0604 <u>+</u> 0.2599	+0.5203
HE-0-19	-6.5835 ± 0.1619	-0.0028
HE-0-20	-6.4144 ± 0.1337	+0.1663
HE-0-21	-6.0723 ± 0.1959	+0.5084
HE-0-22	-6.5282 <u>+</u> 0.1152	+0.0525
Average C = -	$-6.5807 \times 10^{-8} \pm 0.0655 \times 10^{-8} \text{ atm}^{-2}$	
	dard error of $C = \pm 0.2095 \times 10^{-8}$ atm	
Standard erro	or of a single $C = \pm 0.2930 \times 10^{-8}$ atm	-2

 $[\]underline{1}/$ The value of C for this run was omitted from the calculations.

TABLE 12. - Values for the constant C of equation (2) for bellion at

	1-0-21
4182.0 ± 3108.8 /	
5815, U <u>+</u> U.SAA-8-	

Af The value of C for this ten was contrid from the colculations.

TABLE 13. - Values for the constant D of equation (2) for helium at 0° C, Run No. HE-0-9 and Run No. HE-0-13 omitted

Run No.	$D \times 10^{11}$, atm ⁻³	(Deviation from average D) x 10 ¹¹ , atm ⁻³
HE-0-1	1.910 ± 0.277	+0.330
HE-0-2	1.833 <u>+</u> 0.243	+0.253
HE-0-3	1.932 <u>+</u> 0.294	+0.352
HE-0-4	1.764 ± 0.124	+0.184
HE-0-5	1.938 ± 0.293	+0.358
HE-0-6	1.463 ± 0.316	-0.117
HE-0-7	1.530 ± 0.119	-0.050
HE-0-8	1.867 ± 0.137	+0.287
<u>1</u> /HE-0-9	0.453 <u>+</u> 0.440	-1.127
HE-0-10	1.473 ± 0.194	-0.107
HE-0-11	1.658 ± 0.128	+0.078
HE-0-12	1.394 <u>+</u> 0.187	-0.186
<u>1</u> /HE-0-13	-6.798 <u>+</u> 1.440	-8.378
HE-0-14	1.600 ± 0.187	+0.202
HE-0-15	1.494 ± 0.173	-0.086
HE-0-16	1.387 <u>+</u> 0.042	-0.193
HE-0-17	1.383 ± 0.036	-0.197
HE-0-18	1.162 <u>+</u> 0.212	-0.418
HE-0-19	1.580 <u>+</u> 0.134	0.000
HE-0-20	1.447 <u>+</u> 0.112	-0.133
HE-0-21	1.147 <u>+</u> 0.146	-0.433
HE-0-22	1.630 ± 0.113	+0.050
	$30 \times 10^{-11} \pm 0.053 \times 10^{-11} \text{ atm}^{-3}$	
Average standard	lerror of D = $\pm 0.173 \times 10^{-11}$ a	atm ⁻³
Standard error o	of a single D = $\pm 0.238 \times 10^{-11}$	atm -3

1/ The value of D for this run was omitted from the calculations.

THE PARTY AND ADDRESS OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.

	, 1-0-3H
£45.0 ± 252 1	

Average 2 - 1.580 x 10 0 = 0.053 x 10 1 and 1 an

TABLE 14. - Compressibility factor for helium at 0° C and 1

atmosphere calculated from equation (2), Run

No. HE-0-9 and Run No. HE-0-13 omitted

Run No.	Compressibility factor, Z	Deviation from average Z
HE-0-1	$1.000536049 \pm 0.000001282$	+0.000001448
HE-0-2	$1.000535976 \pm 0.000001277$	+0.000001375
HE-0-3	$1.000537349 \pm 0.000001595$	+0.000002748
HE-0-4	$1.000536071 \pm 0.000000677$	+0.000001470
HE-0-5	$1.000536463 \pm 0.000001573$	+0.000001862
HE-0-6	$1.000534730 \pm 0.000001718$	+0.000000129
HE-0-7	$1.000534369 \pm 0.000000645$	-0.000000232
HE-0-8	$1.000535849 \pm 0.000000740$	+0.000001248
<u>1</u> /HE-0-9	$1.000529057 \pm 0.000002273$	-0.000005544
HE-0-10	$1.000533837 \pm 0.000001068$	-0.000000764
HE-0-11	$1.000534893 \pm 0.000000698$	+0.000000292
HE-0-12	$1.000533524 \pm 0.000001008$	-0.000001077
<u>1</u> /HE-0-13	$1.000503218 \pm 0.000007978$	-0.000031383
HE-0-14	$1.000534583 \pm 0.000001005$	-0.00000018
HE-0-15	$1.000534325 \pm 0.000000950$	-0.000000276
HE-0-16	$1.000533441 \pm 0.000000233$	-0.000001160
HE-0-17	$1.000533470 \pm 0.000000194$	-0.000001131
HE-0-18	$1.000532224 \pm 0.000001161$	-0.000002377
HE-0-19	$1.000534567 \pm 0.000000714$	-0.00000034
HE-0-20	$1.000533829 \pm 0.000000581$	-0.000000772
HE-0-21	$1.000532544 \pm 0.000000962$	-0 , 000002057
HE-0-22	$1.000533919 \pm 0.000000424$	-0.00000682

Average Z = $1.000534601 \pm 0.000000300$ Average standard error of Z = ± 0.000000925 Standard error of a single Z = ± 0.000001343

^{1/} The value of Z for this run was omitted from the calculations.

I be a 3 'U le multed out total vil bill requestion - Al Blaat mult (S) colleges entit by right out to be green and the bost of the bill off

	581100000 D ± 0A0882000.4	T-0-EH
	1.000535336 ± 0.000001237	

projectuates of 2 for this run was opticed in me the cutculations.

the compressibility factor (Z), the standard error of the average Z, the average standard error of Z, and the standard error of a single Z. Data for Run No. HE-O-9 and Run No. HE-O-13 were not used in the calculation of the average Z or the various standard errors of table 14.

Table 15 contains compressibility factors for helium at 0° C and 700 atmospheres calculated from equation (2), the average value of the compressibility factor (Z), the standard error of the average Z, the average standard error of Z, and the standard error of a single Z. Data for Run No. HE-0-9 and Run No. HE-0-13 were not used in the calculations of the average Z or the various standard errors of table 15.

Tables of pressure residuals (P,obs. - P,cal.) were compiled for all of the runs with initial pressures (P_0) of about 700 atmospheres. The tables were prepared for expansion numbers 1, 2, ... 7. Data for Run No. HE-0-9 and Run No. HE-0-13 were not used in the calculations of the average pressure residuals or the various standard errors.

The signs of the pressure residuals should be random among the various runs at the same expansion number, provided the experimental data are adequately represented by the selected functional form.

Tables of residuals were prepared for the experimental data fitted to equation (1), and for the experimental data fitted to equation (2). Table 5 of Helium Research Center Internal Report No. 88 (3) was used to prepare tables 16, 17, 18, 19, 20, 21, and 22 of this report. Table 1 of this report was used to prepare tables 23, 24, 25, 26, 27, 28, and 29 of this report.

the compressibility factor (2), the standard siror of the average at the standard siror of a single the average standard arror of a single 2. Data for Ron No. HE-O-9 and Run No. HE-O-11 were not used in the the calculation of the average 2 or the vertous standard errors of table 14.

Table 15 contents compressed from equation (2), the servage value of the compressibility factor (1), the scendard error of the everage value of the compressibility factor (1), the scendard error of the everage 2, the eventual error of a single 2. Date for Run No. HE 0-0 and Run No. HE-0-13 were not used in the calculations of the scendard errors

The tables were propored for expension newhert L. S. . T. Date for Run No. HE-O-9 and Run No. HE-O-9 and Run No. HE-O-13 were not made to the tablestant of the sverage presence tables of the vertex scanson arrows

The signs of the processor recorded absorber and to sender and selection for the open solution of the open solutio

Tables of residuals were propared for the experimental data fitted to equation (1), and for the experimental data fitted to equation (2). Table 5 of Selium Research Center Internal Report No. 88 (2) was used to prepare tables 16, 17, 18, 19, 20, 21, and 22 of this report, was used to prepare tables 13, 25, 25, 25, 25, 25, and 29 of this report.

Z

TABLE 15. - Compressibility factor for helium at 0° C and 700 atmospheres calculated from equation (2), Run

No. HE-0-9 and Run No. HE-0-13 omitted

Run No.	Compressibility factor, Z	Deviation from average
HE-0-1	1.347806 ± 0.000276	+0.000367
HE-0-2	1.347750 ± 0.000250	+0.000311
HE-0-3	1.348077 <u>+</u> 0.000306	+0.000638
HE-0-4	1.347830 <u>+</u> 0.000129	+0.000391
HE-0-5	1.347850 <u>+</u> 0.000304	+0.000411
HE-0-6	1.347583 <u>+</u> 0.000329	+0.000144
HE-0-7	1.347362 ± 0.000124	-0.000077
HE-0-8	1.347677 ± 0.000142	+0.000238
<u>1</u> /HE-0-9	1.346299 <u>+</u> 0.000449	-0.001140
HE-0-10	1.347218 ± 0.000203	-0.000221
HE-0-11	1.347449 ± 0.000134	+0.000010
HE-0-12	1.347173 ± 0.000194	-0.000266
<u>1</u> /HE-0-13	1.343313 ± 0.001512	-0.004126
HE-0-14	1.347381 ± 0.000194	-0.000058
HE-0-15	1.347367 <u>+</u> 0.000181	-0.000072
HE-0-16	1.347158 ± 0.000044	-0.000281
HE-0-17	1.347155 <u>+</u> 0.000037	-0.000284
HE-0-18	1.346889 <u>+</u> 0.000221	-0 . 000.550
HE-0-19	1.347401 <u>+</u> 0.000138	-0.000038
HE-0-20	1.347257 ± 0.000115	-0.000182
HE-0-21	1.347004 ± 0.000171	-0.000435
HE-0-22	1.347391 ± 0.000114	-0.000048
Average stan	1.347439 <u>+</u> 0.000070 dard error of Z = <u>+</u> 0.000180 or of a single Z = <u>+</u> 0.000313	

^{1/} The value of Z for this run was omitted from the calculations.

District 15 . Comments the first reason for the second to the second to

	, 4-0-3H
1.347750 ± 0.000218	

TABLE 16. - Pressure residuals for the experimental data fitted to equation (1), R=1

Run No.	$(P,obsP,cal.)x10^4$,atm	Deviation from average (P,obsP,cal.)x10 ⁴ ,atm
HE-0-2	-4.495	-0.381
HE-0-3	-4.991	-0.877
HE-0-4	-4.694	-0.580
HE-0-5	-4.931	-0.817
HE-0-6	-3.761	+0.353
HE-0-7	-4.009	+0.105
HE-0-8	-4.853	-0.739
<u>1</u> /HE-0-9	-1.079	+3.035
HE-0-10	-4.034	+0.080
HE-0-11	-4.376	-0.262
HE-0-12	-3.624	+0.490
<u>1</u> /HE-0-13	+19.495	+23.609
HE-0-14	-4.091	+0.023
HE-0-15	-3.999	+0.115
HE-0-16	-3.718	+0.396
HE-0-17	-3.620	+0.494
HE-0-18	-3.149	+0.965
HE-0-19	-4.067	+0.047
HE-0-20	-3.525	+0.589
Standard error	of a single $(P,obsP,cal.) = \pm 0.130$ of a run were omitted from the calc	$0.537 \times 10^{-4} \text{ atm}$

TANKE 10. - Pressure regardance for the experience of alkalitation of the contract of the cont

		Rum No.
		, 2-0-31
	10 - 0-	
WA.DH		

TABLE 17. - Pressure residuals for the experimental data fitted to equation (1), R=2

Run No.	$(P,obsP,cal.)x10^3$,atm	Deviation from average (P,obsP,cal.)x10 ³ ,atm
HE-0-2	+2.368	+0.160
HE-0-3	+2.640	+0.432
HE-0-4	+2.514	+0.306
HE-0-5	+2.611	+0.403
HE-0-6	+1.954	-0.254
HE-0-7	+2.151	-0.057
HE-0-8	+2.601	+0.393
<u>1</u> /HE-0-9	+0.581	-1.627
HE-0-10	+2.233	+0.025
HE-0-11	+2.353	+0.145
HE-0-12	+1.967	-0.241
<u>1</u> /HE-0-13	-11.174	-13.382
HE-0-14	+2.170	-0.038
HE-0-15	+2.142	-0.066
HE-0-16	+2.012	-0.196
HE-0-17	+1.975	-0.233
HE-0-18	+1.733	-0.475
HE-0-19	+2.219	+0.011
HE-0-20	+1.894	-0.314
Average	$(P,obsP,cal.) = +2.208 \times 10^{-3} \pm 0.066$	\times 10 $^{-3}$ atm

Average (P,obs.-P,cal.) = $+2.208 \times 10^{-3} \pm 0.066 \times 10^{-3}$ atm Standard error of a single (P,obs.-P,cal.) = $\pm 0.273 \times 10^{-3}$ atm 1/ Data for this run were omitted from the calculations.

to being the same reading for the experimental data figure of the figure of

	ME-0-2
Blood St.	

TABLE 18. - Pressure residuals for the experimental data fitted to equation (1), R=3

Run No.	$(P,obsP,cal.) \times 10^3$,atm	Deviation from average (P,obsP,cal.)x10 ³ ,atm
HE-0-2	-3.151	-0.015
HE-0-3	-3.565	-0.429
HE-0-4	-3.506	-0.370
HE-0-5	-3.551	-0.415
HE-0-6	-2.463	+0.673
HE-0-7	-3.035	+0.101
HE-0-8	-3.660	-0.524
<u>1</u> /HE-0-9	-0.950	+2.186
HE-0-10	-3.529	-0.393
HE-0-11	-3.355	-0.219
HE-0-12	-2.943	+0.193
<u>1</u> /HE-0-13	+19.216	+22.352
HE-0-14	-2.950	+0.186
HE-0-15	-3.023	+0.113
HE-0-16	-2.913	+0.223
HE-0-17	-2.956	+0.180
HE-0-18	-2.616	+0.520
HE-0-19	-3.355	-0.219
HE-0-20	-2.733	+0.403
	-P,cal.) = $-3.136 \times 10^{-3} \pm 0.088$ of a single (P,obsP,cal.) = ± 0	

TABLE 18. - Pressure regaduals for the experimental data flered to

	man, Eola(.Iso, 9ado, W)	
	121.E-	HE-0-2
	-3.565	
-0.210		

Average (P.obs.-P.cai.) - -1 136 x 10 ± 0.088 x 10 arm Standard error of a single (E.obs.-P.cai.) = 5 0.381 x 10 arm in a single (E.obs.-P.cai.) = 5 0.381 x 10 arm in a single (E.obs.-P.cai.) = 5 0.381 x 10 arm in a single from the colculations.

TABLE 19. - Pressure residuals for the experimental data fitted to equation (1), R=4

Run No.	(P,obsP,cal.)x10 ³ ,atm	Deviation from average (P,obsP,cal.)x10 ³ ,atm
HE-0-2	-1.520	-0.571
HE-0-3	-1.493	-0.544
HE-0-4	-1.332	-0.383
HE-0-5	-1.399	-0.450
HE-0-6	-1.445	-0.496
HE-0-7	-1.038	-0.089
HE-0-8	-1.249	-0.300
<u>1</u> /HE-0-9	+0.538	+1.487
HE-0-10	-0.016	+0.933
HE-0-11	-0.978	-0.029
HE-0-12	-0.348	+0.601
<u>1</u> /HE-0-13	-1.904	-0.955
HE-0-14	-1.250	-0.301
HE-0-15	-0.895	+0.054
HE-0-16	-0.821	+0.128
HE-0-17	-0.580	+0.369
HE-0-18	-0.644	+0.305
HE-0-19	-0.457	+0.492
HE-0-20	-0.672	+0.277
	1.) = $-0.949 \times 10^{-3} \pm 0.109$ single (P,obsP,cal.) = ± 0	2

Top bourse of burgaranger and adjusted by an arments - . Si Halan

	HE-0-2
284.1-	

TABLE 20. - Pressure residuals for the experimental data fitted to equation (1), R=5

Run No.	(P,obsP,cal.)x10 ³ ,atm	Deviation from average (P,obsP,cal.)x10 ³ ,atm
HE-0-2	+1.331	+0.243
HE-0-3	+1.239	+0.151
HE-0-4	+1.458	+0.370
HE-0-5	+1.181	+0.093
HE-0-6	+0.741	-0.347
HE-0-7	+1.307	+0.219
HE-0-8	+1.462	+0.374
<u>1</u> /HE-0-9	-1.009	-2.097
HE-0-10	+0.612	-0.476
HE-0-11	+1.054	-0.034
HE-0-12	+0 . 524	-0.564
<u>1</u> /HE-0-13	-7.595	-8.683
HE-0-14	+1.183	+0.095
HE-0-15	+0.864	-0.224
HE-0-16	+1.206	+0.118
HE-0-17	+1.139	+0.051
HE-0-18	+1.359	+0.271
HE-0-19	+1.055	-0.033
HE-0-20	+0.782	-0.306
	$(-P, cal.) = +1.088 \times 10^{-3} \pm 0.070$	2

Average (P,obs.-P,cal.) = $+1.088 \times 10^{-3} \pm 0.070 \times 10^{-3}$ atm Standard error of a single (P,obs.-P,cal.) = $\pm 0.288 \times 10^{-3}$ atm 1/ Data for this run were omitted from the calculations.

TABLE 20. - Eressuce residuals for the ensertment data litted to

	\$-0-99
CET-14	E-0-3H

TABLE 21. - Pressure residuals for the experimental data fitted to equation (1), R=6

Run No.	(P,obsP,cal.)x10 ³ ,atm	Deviation from average (P,obsP,cal.)x10 ³ ,atm
HE-0-2	+2.326	+0.150
HE-0-3	+2.468	+0.292
HE-0-4	+2.755	+0.579
HE-0-5	+2.412	+0.236
HE-0-6	+2.120	-0.056
HE-0-7	+1.900	-0.276
HE-0-8	+2.486	+0.310
<u>1</u> /HE-0-9	+0.246	-1.930
HE-0-10	+2.184	+0.008
HE-0-11	+2.654	+0.478
HE-0-12	+1.827	-0.349
<u>1</u> /HE-0-13	-7.179	-9.355
HE-0-14	+2.096	-0.080
HE-0-15	+2.104	-0.072
HE-0-16	+1.909	-0.267
HE-0-17	+1.883	-0.293
HE-0-18	+2.078	-0.098
HE-0-19	+1.756	-0.420
HE-0-20	+2.027	-0.149
	$(a1.) = +2.176 \times 10^{-3} \pm 0.072$ a single (P,obsP,cal.) = \pm (

of benefit and interest and relations of the little of the

	HE-0-2
004,24	

TABLE 22. - Pressure residuals for the experimental data fitted to equation (1), R=7

Run No.	(P,obsP,cal.)x10 ³ ,atm	Deviation from average (P,obsP,cal.)x10 ³ ,atm
HE-0-2	+2.983	+0.631
HE-0-3	+3.641	+1.289
HE-0-4	+2.291	-0.061
HE-0-5	+3.599	+1.247
HE-0-6	+3.095	+0.743
HE-0-7	+2.346	-0.006
HE-0-8	+2.761	+0.409
<u>1</u> /HE-0-9	+2.127	-0.225
HE-0-10	+1.842	-0.510
HE-0-11	+2.169	-0.183
HE-0-12	+2.275	-0.077
<u>1</u> /HE-0-13	-3.728	-6.080
HE-0-14	+2.645	+0.293
HE-0-15	+2.591	+0.239
HE-0-16	+1.818	-0.534
HE-0-17	+1.505	-0.847
HE-0-18	+0.306	-2.046
HE-0-19	+2.289	-0.063
HE-0-20	+1.824	-0.528
Standard error of a s	1.) = $+2.352 \times 10^{-3} \pm 0.194$ single (P,obsP,cal.) = \pm were omitted from the cal	$0.800 \times 10^{-3} \text{ atm}$

TABLE 17. - President regulated for the experimental data fitted to

. 607.54	TG-0-2
Laborate	

TABLE 23. - Pressure residuals for the experimental data fitted to equation (2), R=1

Run No.	(P,obsP,cal.)x10 ⁵ ,atm	Deviation from average (P,obsP,cal.)x10 ⁵ ,atm
	1.761	
HE-0-2	+0.978	+0.545
HE-0-3	+1.064	+0.631
HE-0-4	+0.564	+0.131
HE-0-5	+0.997	+0.564
HE-0-6	+1.289	+0.856
HE-0-7	+0.426	-0.007
HE-0-8	+0.551	+0.118
<u>1</u> /HE-0-9	+0.240	-0.193
HE-0-10	-0.372	-0.805
HE-0-11	+0.414	-0.019
HE-0-12	+0.136	-0.297
<u>1</u> /HE-0-13	+7.018	+6.585
HE-0-14	+0.752	+0.319
HE-0-15	+0.545	+0.112
HE-0-16	+0.185	-0.248
HE-0-17	-0.078	-0.511
HE-0-18	-0.299	-0.732
HE-0-19	-0.060	-0.493
HE-0-20	+0.263	-0.170 .
	$(cal.) = +0.433 \times 10^{-5} \pm 0.118$ a single (P,obsP,cal.) = \pm (_

TABLE 23 - Pressure residuals for the experimental detaintend of

	· S-0-3H

TABLE 24. - Pressure residuals for the experimental data fitted to equation (2), R=2

Run No.	(P,obsP,cal.)x10 ⁴ ,atm	Deviation from average (P,obsP,cal.)x10 ⁴ ,atm
HE-0-2	-1.251	-0.713
HE-0-3	-1.338	-0.800
HE-0-4	-0.737	-0.199
HE-0-5	-1.245	-0.707
HE-0-6	-1.636	-1.098
HE-0-7	-0.543	-0.005
HE-0-8	-0.700	-0.162
<u>1</u> /HE-0-9	-0.173	+0.365
HE-0-10	+0.547	+1.085
HE-0-11	-0.517	+0.021
HE-0-12	-0.112	+0.426
<u>1</u> /HE-0-13	-9.217	-8.679
HE-0-14	-0.959	-0.421
HE-0-15	-0.667	-0.129
HE-0-16	-0.237	+0.301
HE-0-17	+0.107	+0.645
HE-0-18	+0.343	+0.881
HE-0-19	+0.120	+0.658
HE-0-20	-0.314	+0.224
	cal.) = $-0.538 \times 10^{-4} \pm 0.151$ a single (P,obsP,cal.) = \pm	

TABLE 24. - Pressure regiduals for the experimental data (thred to) equation (2), Rel

-1.251 -	HE-0-2
BEE. In	

the form of a single (P. ohn, P. ohn, P. ohn of a lot of the call of the call of the later of the call of the call

TABLE 25. - Pressure residuals for the experimental data fitted to equation (2), R=3

Run No.	(P,obsP,ca1.)x10 ⁴ ,atm	Deviation from average (P,obsP,cal.)x10 ⁴ ,atm
HE-0-2	+5.273	+3.196
HE-0-3	+5.357	+3.280
HE-0-4	+3.221	+1.144
HE-0-5	+4.908	+2.831
HE-0-6	+6.688	+4.611
HE-0-7	+2.252	+0.175
HE-0-8	+2.875	+0.798
<u>1</u> /HE-0-9	-0.681	-2.758
HE-0-10	-3.056	-5.133
HE-0-11	+2.007	-0.070
HE-0-12	-0.190	-2.267
<u>1</u> /HE-0-13	+40.386	+38.309
HE-0-14	+3.981	+1.904
HE-0-15	+2.458	+0.381
HE-0-16	+0.980	-1.097
HE-0-17	-0.532	-2.609
HE-0-18	-1.028	-3.105
HE-0-19	-0.954	-3.031
HE-0-20	+1.070	-1.007
	$-P, cal.$) = $+2.077 \times 10^{-4} \pm 0.651$,

Average (P,obs.-P,cal.) = $+2.077 \times 10^{-4} \pm 0.651 \times 10^{-4}$ atm Standard error of a single (P,obs.-P,cal.) = $\pm 2.685 \times 10^{-4}$ atm

^{1/} Data for this run were omitted from the calculations.

	min, "Dir(.180,%-1850.9)		
		,	
	, /·		
190-1-			

Average (P.one - P.c.) - 10 a (O.c. - (.D.o.) - 10 oc.) sgreet

TABLE 26. - Pressure residuals for the experimental data fitted to equation (2), R=4

Run No.	(P,obsP,cal.)x10 ⁴ ,atm	Deviation from average (P,obsP,cal.)x10 ⁴ ,atm
HE-0-2	-6.425	-4.875
HE-0-3	-5.186	-3.636
HE-0-4	-4.243	-2.693
HE-0-5	-4.380	-2.830
HE-0-6	-7.018	-5.468
HE-0-7	-2.635	-1.085
HE-0-8	-3.108	-1.558
<u>1</u> /HE-0-9	+7.490	+9.040
HE-0-10	+7.472	+9.022
HE-0-11	-1.342	+0.208
HE-0-12	+3.467	+5.017
<u>1</u> /HE-0-13	-54.997	-53.447
HE-0-14	-4.542	-2.992
HE-0-15	-1.202	+0.348
HE-0-16	-1.074	+0.476
HE-0-17	+1.098	+2.648
HE-0-18	-0.477	+1.073
HE-0-19	+3.188	+4.738
HE-0-20	+0.063	+1.613
	.) = $-1.550 \times 10^{-4} \pm 0.929$ single (P,obsP,cal.) = ± 3	

TABLE 26. - Ivessure residuals for the experimental data firred to equation (1), Red

25.8. A-	· 650.0-	HE-0-2
	68I.2-	

TABLE 27. - Pressure residuals for the experimental data fitted to equation (2), R=5

Run No.	$(P,obsP,cal.)x10^4,atm$	Deviation from average (P,obsP,cal.)x10 ⁴ ,at
HE-0-2	-2.438	+1.004
HE-0-3	-5.175	-1.733
HE-0-4	-1.827	+1.615
HE-0-5	-5.499	-2.057
HE-0-6	-6.010	-2.568
HE-0-7	-0.900	+2.542
HE-0-8	-2.286	+1.156
<u>1</u> /HE-0-9	-13.858	-10.416
HE-0-10	-7.693	-4.251
HE-0-11	-4.698	-1.256
HE-0-12	-7.282	-3.840
<u>1</u> /HE-0-13	-10.953	-7.511
HE-0-14	-2.509	+0.933
HE-0-15	-5.372	-1.930
HE-0-16	-0.845	+2.597
HE-0-17	-1.050	+2.392
HE-0-18	+2.820	+6.262
HE-0-19	-3.408	+0.034
HE-0-20	-4.337	-0.895
	$P, cal.$) = -3.442 x $10^{-4} \pm 0.655$ E a single (P,obsP,cal.) = \pm	

TABLE 27. - Presence residuals for the experimental arts of treed and

Deviation from average		
	-2.638 -	BE-0-2
	271.2-	
		RE-0-7
510,00		

TABLE 28. - Pressure residuals for the experimental data fitted to equation (2), R=6

Run No.	(P,obsP,cal.)x10 ⁴ ,atm	Deviation from average (P,obsP,cal.)x10 ⁴ ,atm		
HE-0-2	+0.546	-0.293		
HE-0-3	-0.630	-1.469		
HE-0-4	+3.923	+3.084		
HE-0-5	-0.836	-1.675		
HE-0-6	+1.872	+1.033		
HE-0-7	-1.124	-1.963		
HE-0-8	+0.493	-0.346		
<u>1</u> /HE-0-9	-2.987	-3.826		
HE-0-10	+1.949	+1.110		
HE-0-11	+4.586	+3.747		
HE-0-12	+0.220	-0.619		
<u>1</u> /HE-0-13	+21.818	+20.979		
HE-0-14	+0.293	-0.546		
HE-0-15	+0.869	+0.030		
HE-0-16	+0.506	-0.333		
HE-0-17	+0.911	+0.072		
HE-0-18	+0.527	-0.312		
HE-0-19	-2.565	-3.404		
HE-0-20	+2 .724	+1.885		
Average (P,obsP,cal.) = $+0.839 \times 10^{-4} \pm 0.433 \times 10^{-4}$ atm Standard error of a single (P,obsP,cal.) = $\pm 1.784 \times 10^{-4}$ atm				

TABLE 28: - Pressure residuals for the executarity data fired to

. 300.00	HE-0-2.
080-09-	

TABLE 29. - Pressure residuals for the experimental data fitted to equation (2), R=7

Run No.	(P,obsP,cal.)x10 ³ , atm	Deviation from average (P,obsP,cal.)x10 ³ ,atm		
HE-0-2	+0.969	+0.446		
HE-0-3	+1.398	+0.875		
HE-0-4	+0.198	-0.325		
HE-0-5	+1.387	+0.864		
HE-0-6	+1.383	+0.860		
HE-0-7	+0.563	+0.040		
HE-0-8	+0.601	+0.078		
<u>1</u> /HE-0-9	+1.645	+1.122		
HE-0-10	+0.080	-0.443		
HE-0-11	+0.224	-0.299		
HE-0-12	+0.675	+0.152		
<u>1</u> /HE-0-13	+4.565	+4.042		
HE-0-14	+0.814	+0.291		
HE-0-15	+0.804	+0.281		
HE-0-16	+0.171	-0.352		
HE-0-17	-0.083	-0.606		
HE-0-18	-1.068	-1.591		
HE-0-19	+0.505	-0.018		
HE-0-20	+0.269	-0.254		
Average (P,obsP,cal.) = $\pm 0.523 \times 10^{-3} \pm 0.150 \times 10^{-3}$ atm Standard error of a single (P,obsP,cal.) = $\pm 0.619 \times 10^{-3}$ atm 1/ Data for this run were omitted from the calculations.				

TABLE 39. - Eresour regiduals for the experimental data filted re

888.04	HE-0-2
236:34-	

DISCUSSION OF RESULTS

A comparison of table 5 of Internal Report No. 88 (3) with table 1 of this report shows smaller pressure residuals (P,obs. - P,cal.) and smaller sums of the squares of the residuals when the 0° C helium compressibility data are fitted to equation (2).

The signs of the pressure residuals are not random when the experimental data are fitted to equation (1). This can be observed in tables 16 through 22.

The signs of the pressure residuals are somewhat random when the experimental data are fitted to equation (2). This can be discovered by examination of tables 23 through 29.

I conclude that equation (2) is a better representation than equation (1) of the 0° C helium compressibility data of this investigation.

DISCUSSION OF REPORTS

A comparison of table 5 of interenal Report No. 88 (3) with table 1 of this report shows smaller pressure residuals (F.obs. - F.osi.) and smaller sums of the squares of the residuals when the

O" C'helium compressibility data sto fittad to equation (2).

The signs of the pressure residuels are not readom when the experimental data are fitted to equation (1). This can be observed in tables in through 22.

The signs of the pressure residuals are comewhat random when the experimental data are fitted to equation (2). This can be discovered by examination of tables 23 through 30.

I conclude that equation (2) is a batter representation than equation (1) of the C° C believe compressibility data of this investigation.

REFERENCES

- Barieau, Robert E. and B. J. Dalton. Method for Treating PVT
 Data from a Burnett Compressibility Apparatus. Helium Research
 Center Internal Report No. 86, April 1966, 61 pp.
- 2. _____. Non-Linear Regression and the Principle of Least

 Squares. The Method of Evaluating the Constants and the Calculation of Variances and Covariances. Helium Research Center

 Internal Report No. 85, April 1966, 55 pp.
- 3. Briggs, T. C. Compressibility Data for Helium at 0° C and Pressures to 800 Atmospheres. Helium Research Center Internal Report No. 88, March 1966, 111 pp.

NEFERSKIES

- L. Barteau, Robert E. and B. J. Dalkon. Nothod for Treating FUT
 Dara Arom a Burnett Compressibility Apparatus. Nation Research
 Center Internal Report No. 26, April 1966, 61 pp.
- Squares. The Method of Shaldaring the Constants and the Calculation of Variances and Constants and the Constants and the Context Latton of Variances and Covariances. Notice Sussairch Center Internal Report No. 85, April 1956, 55 pp.
- A. Briggs. T. C. Compressibility Data for Helium at O' C and Pressures to 800 Armospheres. Helium Research Certer Internal Report

