EN.530.663: Robot Motion Planning Homework 9

Jin Seob Kim, Ph.D. Senior Lecturer, ME Dept., LCSR, JHU

due: 04/16/2021, midnight EST to Gradescope

This is exclusively used for Spring 2021 EN.530.663 RMP students, and is not to be posted, shared, or otherwise distributed.

Problems

- 1. Write a Matlab function code for the *vertical cell decomposition* for planar rigid-body robot cases (as shown in the handout). Note that you can use vertical cell decomposition or cylindrical vertical cell decomposition. The specification of the code is the following:
 - The input includes:
 - $-q_I$ and q_G : initial and goal position of the robot.
 - CB: C-obstacles (as a cell array; this includes the orientation of the robot already)
 - bounds: coordinates of the vertices of the rectangular box (environment or the world).
 - other inputs as necessary
 - The output includes:
 - the set of vertices of the graph
 - the weighted adjacency matrix for the graph
 - n_{init} , n_{goal} : the node numbers for q_I and q_G in the graph.
 - other outputs as necessary

Specifically, implement:

- function [V, G, n_init, n_goal] = vertical_cell_decomposition(qI, qG, CB, bounds)
 - $qI, qG: 2 \times 1 array$
 - CB: a cell array. Each element is a 2×1 array representing one C_{obs}.
 - bounds: 2×4 array. Start from the bottom left corner and in CCW order.
 - V: $2 \times n$ array of vertices
 - G: $n \times n$ array of the weighted adjacency matrix for the graph
 - n_init, n_goal: node numbers for qI and qG
 - You can have additional inputs and outputs if necessary.
- A MATLAB script "RMP_HW9_VCD_test.m" is provided for you to test your code. The script contains two test examples. The second test case is made a bit tricky and could be challenging. In this test case, the C-obstacles of two objects overlap.

RMP (EN.530.663)

Submission Guideline

• Submit all your Matlab codes in a single .zip file. Name your single zip file submission as "YourName_HW9.zip". For example, "JinSeobKim_HW9.zip" for a single zip file. Submission will be done through the Gradescope.

- Please make sure to include *all the necessary files*, even files that were submitted in the previous homework assignments (of course the codes must be updated if necessary so as to be error-free). If TAs try to run your function and it does not run, then your submission will have a significant points deduction.
- Make as much comments as possible so that the TAs can easily read your codes.