工程矩阵理论试卷 (A)

2006年10月

系别学号		
-------------	--	--

一. (20%) 记 $C^{2\times2}$ 为复数域C上的 2×2 矩阵全体在通常的运算下所构成的复数域上的

线性空间,矩阵
$$A = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $V = \left\{ X \in C^{2\times 2} \mid AX = XA \right\}$ 。

1. 证明 $V \in C^{2\times 2}$ 的子空间,并求V的基和维数;

2. 假设
$$C^{2\times 2}$$
的子空间 $W = \left\{ \begin{pmatrix} a & 0 \\ a-b & b \end{pmatrix} | \forall a,b \in C \right\}$, 求 W 的基和维数;

3. 求 $V+W,V\cap W$ 的基和维数。

二. (12%) 假设矩阵
$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & -3 & 1 \end{pmatrix}$$
, 试求 A 的广义逆矩阵 A^+ 。

$$\Xi$$
. (16%) 设矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$.

1. 分别求 A 的特征多项式及 Jordan 标准型;

- 2. 写出 A 的最小多项式;
- 3. 将 e^{At} 表示成关于A的次数不超过2的多项式,并求 e^{At} 。

- 四. (20%)记 $C^{2\times 2}$ 为复数域C上的 2×2 矩阵全体在通常的运算下所构成的复数域上的 线性空间,对固定的矩阵 $A,B\in C^{2\times 2}$,定义 $C^{2\times 2}$ 上的变换如下:对任意 $X\in C^{2\times 2}$,f(X)=AXB。
 - 1. 证明:对给定的矩阵 $A, B \in C^{2\times 2}$, $f \in C^{2\times 2}$ 上的线性变换;
 - 2. 设 $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ 。分别求 E_{11} , E_{12} , E_{21} , E_{22} 在f 下的像,并求f 在 $C^{2\times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵M;

3. 假设 $A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, 求 f 的值域 R(f) 及核子空间 K(f) 的各一组基及它们的维数:

4. 问: $C^{2\times 2} = R(f) \oplus K(f)$ 是否成立? 为什么?

五.
$$(12\%)$$
设矩阵 $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & x & 0 \\ 4 & 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 2 & y \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

1. 根据x的不同的值,讨论矩阵A的所有可能的Jordan标准形;

2. 若A与B是相似的,问:参数x,y应满足什么条件?试说明理由。

六. (10%)假设 R^3 的由 ξ_1 , ξ_2 生成的子空间 $V = L(\xi_1, \xi_2)$, 其中 $\xi_1 = (0,1,0), \; \xi_2 = (1,0,2) \; \text{。 } \; \text{设} \; \eta = (1,0,1) \; \text{。 } \; \text{在} V \; \text{中求向量} \; \eta_0 \; \text{, 使得}$ $\|\eta - \eta_0\| = \min_{\xi \in V} \|\eta - \xi\| \; \text{。}$

七. (10%)证明题

1. 证明: Hermite 阵和酉矩阵都是正规阵。试举一例说明存在这样的正规阵,它既不是 Hermite 矩阵,也不是酉矩阵。

2. 若n维列向量 $\alpha \in C^n$ 的长度小于 2,证明: $4I - \alpha \alpha^H$ 是正定矩阵。