Class49

Note: $T: \overline{X} \to \overline{Y}$ Banach spaces. Then either $T\overline{X}$ 1st category or $T\overline{X} = \overline{Y}$ (cf. p.144, Ex.4.6.5) (Homework)

(Inverse mapping Thm)

 \overline{X} , \overline{Y} Banach spaces

 $T: \overline{X} \to \overline{Y}$ 1-1, onto, bdd linear tiaraf.

Then $T^{-1}: \overline{Y} \to \overline{X}$ onto, bdd linear tiaraf.

Pf: Check: T^{-1} bdd $\Leftrightarrow T^{-1}$ conti.

Let $G \subseteq \overline{X}$ open

Check: $(T^{-1})(G)$ open in \overline{Y}

Note: In general not true for nonlinear mapping

Ex. $f(t) = (\cos t, \sin t) : [0, 2\pi) \rightarrow \text{circle. Then } f_{1-1}, \text{ onto, conti., but } f^{-1} \text{ not conti at } (1,0)$

Cov. 2. $(\overline{\underline{X}}, \|\cdot\|_2), (\overline{\underline{X}}, \|\cdot\|_2)$ Banach spaces

If $\exists K > 0 \ni ||x||_1 \le K \cdot ||x||_2 \quad \forall x \in \overline{\underline{X}}$, then $||\cdot||_1 \sim ||\cdot||_2$

Pf.: Let $I: (\overline{X}, \|\cdot\|_2) \rightarrow (\overline{X}, \|\cdot\|_1)$ be the identity mapping.

Then *I* 1-1, onto, bdd linear transf.

$$\Rightarrow I^{-1}: \left(\overline{\underline{X}}, \|\cdot\|_{1}\right) \rightarrow \left(\overline{\underline{X}}, \|\cdot\|_{2}\right) \text{ bdd}$$

Closed graph thm.:

 $\underline{\overline{X}}, \overline{Y}$ Banach spaces

 $T: \overline{X} \to \overline{Y}$ linear transf.

Assume $G_T = \{(x, Tx) : x \in \overline{X}\} \subseteq \overline{X} \times \overline{Y} \text{ (graph of } T) \text{ is closed}$

Then T is bdd.

 \overline{Y}

Pf.: $:: G_T$ closed subspace of $\underline{X} \times \overline{Y}$

$$\left(\begin{array}{c} (x,Tx) + (y,Ty) = (x+y,T(x+y)) \in G_T \\ \lambda(x,Tx) = (\lambda x,\lambda Tx) \in G_T \end{array} \right)$$

Assume $(\underline{\overline{X}} \times \overline{Y}, |||), ||x, y|| = ||x|| + ||y||$, Banach space

 $\Rightarrow G_T$ Banach space

Let
$$J: G_T \to \overline{X}$$
 be $\ni J(x,Tx) = x$

Then J, 1-1, onto, bdd linear transf. $\left(: ||x|| \le ||(x, Tx)|| = ||x|| + ||Tx|| \right)$

Cov. 1 $\Rightarrow J^{-1}1-1$, onto, bdd linear transf.: $\overline{\underline{X}} \to G_T$

$$||T - X|| \le K \cdot ||x|| \quad \forall x \in \overline{X}$$

$$||(x, Tx)|| \quad ||x|| + ||Tx||$$

$$\Rightarrow ||Tx|| \le (K - 1) \quad \forall x \in \overline{X}$$

$$\Rightarrow T \text{ bdd}$$

Note 1. Not true if T not linear.

Ex.
$$T: \Box \rightarrow \Box \rightarrow T(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Then G_T closed, but T not conti. at 0

Note 1. Open massive thm \Leftrightarrow closed graph thm

(x,Tx)

closed graph thm:

Note: Closed graph theorem \Rightarrow Inverse mapping thm

Pf: \overline{X} , \overline{Y} Banach spaces

Let $T.\overline{X} \to \overline{Y}$ 1-1, onto, bdd, linear transf.

Check. $T^{-1}: \overline{Y} \to \underline{\overline{X}} \text{ bdd}$

 $\rightarrow \overline{X}$

Check.
$$G(T^{-1}) = \{(y, T^{-1}y) | y \in \overline{Y}\}$$
 closed Say, $(y_n, T^{-1}y_n) \to (y, x)$
 $\therefore y_n \to y \& T^{-1}y_n \to x$
 $\Rightarrow y_n \to Tx$
 $\therefore y = Tx$
 $\therefore x = T^{-1}y$

inverse mapping thm

$$(y,x) = (y,T^{-1}y) \in G(T^{-1})$$

Note: ⇒ Open mapping thm.

Let $T: \overline{X} \to \overline{Y}$ onto, bdd

Pf.: Check: T open

Let $G \subseteq \overline{\underline{X}}$ open

Check: TG open

Consider \tilde{T} : $\overline{\underline{X}}$ /ker $T \to \overline{Y}$ 1-1, onto, bdd linear transf. $\Rightarrow \tilde{T}$ open

Let $\pi : \overline{X} / \ker T : \pi(x) = \tilde{x}$

Then π open $\Rightarrow T = \tilde{T}^{0\pi}$ is open

 $\therefore \overline{X}$ /ker T has norm $\|\tilde{x}\| = \inf \{ \|y\| : y - x \in \ker T \}$

Then Banach space

Check: $\pi(\lbrace x: ||x-x_0|| < \gamma \rbrace)$ is open = $\lbrace \tilde{x}: ||x-x_0|| < \gamma \rbrace$

Conclusion: "open mapping thm", "inverse mapping thm" & "closed graph thm" are all equiv.

Note: $T: \overline{\underline{X}} \to \overline{Y}$ linear, $\overline{\underline{X}}, \overline{Y}$ Banach spaces

 $T \text{ bdd} \Leftrightarrow "x_n \to x \Rightarrow Tx_n \to Tx".$

Closed graph thm \Rightarrow Check: " $x_n \rightarrow x \& Tx_n \rightarrow y \Rightarrow Tx = y$ "