9 Доверительное оценивание

- 1. Построить график функции $y_{1-\alpha+\beta}-y_{\beta}$ для $\beta\in(0,\alpha),$ где y_t квантиль распределения
 - (a) N(0,1),
 - (b) Gamma(n, 1), n = 1, 2, 5, 10, 100,
 - (c) R[0,1],
 - (d) Beta(a, b), a = b = 5, a = 10, b = 2, a = 20, b = 1.

Рассмотреть одно любое значение α , например, $\alpha = 0.001, 0.05, 0.1$. Сделать вывод о выборе оптимального β для построения доверительного интервала на основе статистики с нашим распределением.

- 2. $X_1, ..., X_n \sim R[0, \theta]$.
 - (a) Построить асимптотический доверительный интервал, используя \overline{X} . Найти эмпирически доверительную вероятность этого интервала (построить 1000 выборок, подсчитать долю тех, для которых интервал накрыл истинное значение параметра, для n=20,50,100.
 - (b) Построить точный доверительный интервал, используя достаточную статистику. Сравнить средние длины точного и асимптотического интервалов при n=20,50,100.
- 3. $X_1,...,X_n \sim Bern(\theta)$. Построить асимптотический доверительный интервал двумя способами с помощью \overline{X} , сравнить средние длины полученных интервалов (генерировать 1000 выборок, по каждой строить оба интервала, посчитать и показать средние длины) для $\theta=0.1,\,0.4,\,0.5,\,0.9$ и $n=20,\,50,\,100$.
- 4. * $X_1, ..., X_n \sim Gamma(\theta, 1)$. Построить асимптотический доверительный интервал для θ на основе ОМП.
- 5. ** Построить доверительный эллипс для параметра (μ_1, μ_2) по выборке из $\mathcal{N}(\vec{\mu}, \Sigma)$ распределения, где а) $\Sigma = E$ б) Σ имеет 1 и 2 на диагонали и 0.5 вне. Для построения можно использовать confidence_ellipse из matplotlib. Как меняется эллипс при измении размера выборки: взять n = 10, 100, 500.
- 6. ** $X_1,...,X_n \sim R[\theta_1,\theta_2]$. Построить доверительное множество для (θ_1,θ_2) с помощью $X_{(1)},X_{(n)},$ изобразить для разных (θ_1,θ_2) .