Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 10

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$4 - \frac{1}{4} = \frac{15}{4}$	3p
	$\frac{15}{4} \cdot \frac{8}{15} = 2$	2p
2.	$f(1) = 5 \Leftrightarrow 1 + m = 5$	3p
	m = 4	2p
3.	$x^2 + x + 1 = 1 \Leftrightarrow x^2 + x = 0$	2p
	x = -1 sau $x = 0$, care convin	3 p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	Numerele din mulțimea A care verifică egalitatea dată sunt 2 și 4, deci sunt 2 cazuri	2p
	favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{9}$	2
	nr. cazuri posibile 9	2p
5.	MN = 4, $NP = 3$, $MP = 5$	3р
	$P_{\Delta MNP} = 4 + 3 + 5 = 12$	2p
6.	$\sin 120^\circ = \frac{\sqrt{3}}{2}, \cos 30^\circ = \frac{\sqrt{3}}{2}$	2p
	$\sin^2 120^\circ - \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = 0$	3p

SUBIECTUL al II-lea

(30 de puncte)

		1
1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 3 & -4 \end{vmatrix} = 1 \cdot (-4) - 3 \cdot 3 =$	3p
	=-4-9=-13	2 p
b)	$A \cdot B = \begin{pmatrix} 8 & 8 \\ -2 & -2 \end{pmatrix}$	2p
	$B \cdot A = \begin{pmatrix} 8 & -2 \\ 8 & -2 \end{pmatrix} \Rightarrow A \cdot B - B \cdot A = \begin{pmatrix} 0 & 10 \\ -10 & 0 \end{pmatrix}$	3p
c)	$B \cdot B = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}, \ B \cdot B - xI_2 = \begin{pmatrix} 8 - x & 8 \\ 8 & 8 - x \end{pmatrix} \Rightarrow \det(B \cdot B - xI_2) = \begin{vmatrix} 8 - x & 8 \\ 8 & 8 - x \end{vmatrix} = x^2 - 16x$	3p
	$x^2 - 16x = 0 \Leftrightarrow x = 0 \text{ sau } x = 16$	2 p
2.a)	$f(1) = 1^3 + 3 \cdot 1^2 - 1 - 3 =$	3p
	=1+3-1-3=0	2p
b)	Câtul este $X^2 + 5X + 9$	3 p
	Restul este 15	2 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 10

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

Ī	c)	$x_1 + x_2 + x_3 = -3$, $x_1x_2 + x_2x_3 + x_3x_1 = -1$	2p
		$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_3x_1) = 9 - 2 \cdot (-1) = 11$	3 p

1.a)	$f'(x) = 6x^2 - 6 =$	3p
	$= 6(x^2 - 1) = 6(x - 1)(x + 1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} =$	2p
	= f'(1) = 0	3 p
c)	$x \in [-1,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[-1,1]$	2p
	Cum $f(-1) = 8$ și $f(1) = 0$, obținem $0 \le f(x) \le 8$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{0}^{1} (f(x) - 5x) dx = \int_{0}^{1} (x^{2} + 5x - 5x) dx = \int_{0}^{1} x^{2} dx =$	2p
	$=\frac{x^3}{3}\Big _{0}^{1}=\frac{1}{3}-0=\frac{1}{3}$	3p

b)	$F'(x) = \left(\frac{1}{3}x^3 + \frac{5}{2}x^2 + 2017\right)' = \frac{1}{3} \cdot 3x^2 + \frac{5}{2} \cdot 2x =$	3p

(30 de puncte)

SUBIECTUL al III-lea