1 Wzory

Informacja zdarzenia A:

$$I(A) = -\log_x P(A)$$

Entropia źródła X ze zdarzeniami A_1, \ldots, A_n :

$$H(X) = \sum_{i=1}^{n} P(A_i)I(A_i)$$

Średnia długość kodu C:

$$I(\mathcal{C}) = \sum_{i=1}^{n} P(\mathcal{C}_i) \cdot l_i$$

Nierówność Krafta (warunek konieczny jednoznacznej dekodowalności):

$$K(\mathcal{C}) = \sum_{i=1}^{n} 2^{-l_i} \le 1$$

Współczynnik informacji kodu \mathcal{C} :

$$\frac{1}{n}\log|\mathcal{C}|$$

2 Kod Huffmana

Znajdź dwa najrzadziej występujące elementy i połącz je w jeden element o prawdopodobieństwie p_1+p_2 . Rozróżnij je 0 lub 1. Powtórz ten krok na liście n-1 długiej aż zostanie jeden element.

Jeśli nie znamy prawdopodobieństw, to możemy drzewo tworzyć dynamicznie, traktując ilość wystąpień jako wagę, które łączymy tworząc poddrzewa.

3 Kod Shannon-Fano

Dla symboli a_1,\ldots,a_n o prawdopodobieństwach p_1,\ldots,p_n , ustalmy kody długości $l_n=\lceil -\log p_i \rceil$. Następnie zdefiniujmy zmienne pomocnicze $w_1,\ldots w_n$ jako:

$$w_1=0, w_j=\sum_{i=1}^{j-1}2^{l_j-l_i}$$

Jeżeli $\lceil \log w_j \rceil = l_j$ to j-te słowo kodowe jest binarną reprezentacją w_j . Jeżeli $\lceil \log w_j \rceil < l_j$ to reprezentację uzupełniamy zerami z lewej strony.

4 Kod Tunstalla

Chcemy stworzyć kod na n bitach dla a_1,\ldots,a_m symboli o prawdopodobieństwach p_1,\ldots,p_m . Tworzenie kodu Tunstalla polega na iteracyjnym wyborze ze zbioru symbolu o największym prawdopodobieństwie S i łączenie go z wszystkimi innymi symbolami tworząc symbole Sa_m , nadając im prawdopodobieństwa $P\cdot p_m$. Proces ten powtarzamy aż do uzyskania kodu o długości n.

5 Kodowanie Eliasa

$$n = \lfloor \log_2(x) \rfloor + 1$$

5.1 γ

$$\gamma(x) = 0^{n-1}(x)_2$$

5.2 δ

$$\delta(x) = \gamma(n) + (x)_2$$

5.3 ω

Na koniec umieszczane jest 0, potem kodowana jest liczba k=x. Potem ten krok jest powtarzany dla k=n-1 gdzie n to liczba bitów z poprzedniego kroku

$$\omega(x) = \omega(n-1) + (x)_2 + 0$$

6 Kodowanie Fibonacciego

$$f_0 = f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} : n \ge 2$$

$$x = \sum_{i=0} a_i \cdot f_i, a_i \in \{0, 1\}$$

7 Kodowanie arytmetyczne

- [l, p) = [0, 1)
- d = p l
- $p = l + d \cdot F(j+1)$
- l = l + F(j)d

8 Kodowanie słownikowe

8.1 LZ77

$$(o, l, k) = \mathcal{C}_{i-o} \cdots \mathcal{C}_{i-o+l} k$$

8.2 LZ78

- 1. Szukaj w słowniku najdłuższy prefiks aktualnego okna, jeśli nie znajdziesz to użyj $\epsilon.$
- 2. Dodaj prefiks + znak do słownika.
- Zakoduj symbol jako (i, k), gdzie i to numer prefiksu w słowniku, a k to symbol.

$$(i,k) = s(i) + k$$

8.3 LZW

Podobne do LZ78, tylko że zaczynamy ze słownikiem.

$$(i) = s(i)$$

9 bzip2/BWT

Układamy tabelę z dwoma kolumnami. Pierwsza kolumna to słowo posortowane leksykograficznie. Druga kolumna to poprzedni znak. Na podstawie tej tabeli zapisujemy ostatnią kolumnę, i numer wiersza w którym w pierwszej kolumnie znajduje się początek słowa, a w drugiej kolumnie jego koniec.

е	h					
h	0	0	1	2	3	4
ll	е	е	h	1	l	0
lo	1	2	0	3	4	1
0	1					

10 Move To Front

Jest to transformacja zmniejszająca entropię. Zaczynamy od tabeli liter ze słowa posortowanych alfabetycznie. Następnie dla każdej litery ze słowa kodujemy jej pozycję w tabeli, a następnie przesuwamy ją na początek tabeli. W ten sposób hello to 11203.

11 PPM

Poprzez zbudowanie drzewa kontekstowego, które wyraża prawdopodobieństwo wystąpienia symbolu w danym kontekście, można potem zbudować bardzo dobry kod. W tym przypadku mamy kontekst o długości

Kontekst	Symbol	Licznik	
th	ESC	1	
	i	1	
hi	ESC	1	
	s	1	
is	ESC	1	
	-	1	
S-	ESC	1	
	i	1	
-i	ESC	1	
	s	1	

12 Kody Hamminga

$$G_H(3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$H_H(3) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$