HOMEWORK 7 - MATH402B

DUE: WEDNESDAY NOVEMBER 22ND

- (1) Let $X = \{a, b\}$ be a set. Write down all possible equivalence relations on X.
- (2) Describe and classify all groups that contain no proper subgroups, i.e. the only subgroups are the group itself and the subgroup containing only the identity. (Hint: consider for an element of the group the subgroup generated by it).
- (3) Let $SL(n,\mathbb{R})$ be the set of $n \times n$ matrices with real coefficients and determinant 1. We already proved in class that $SL(n,\mathbb{R})$ is a normal subgroup of $GL(n,\mathbb{R})$. Compute the quotient $GL(n,\mathbb{R})/SL(n,\mathbb{R})$. (Hint, use the proof that $SL(n,\mathbb{R})$ is normal and the first homomorphism theorem).
- (4) Use the First Homomorphism Theorem to give a different proof that every cyclic group is isomorphic to either \mathbb{Z} or \mathbb{Z}_n for some n as follows: let $G = \langle a \rangle$ be a cyclic group and let $\varphi : \mathbb{Z} \to G$ be the function defined as $\varphi(k) = a^k$ for every $k \in \mathbb{Z}$.
 - Show that φ is an homomorphism and compute its kernel (your answer should depend on the order of a).
 - Use the first homomorphism theorem to deduce that $G \cong \mathbb{Z}$ or $G \cong \mathbb{Z}_n$.
- (5) Show that A_4 contains subgroups of order 1,2,3,4,12 but NO subgroup of order 6. This shows that the "converse" of Lagrange Theorem can fail (i.e. if $d \mid G \mid$ there might not be a subgroup of G of order d).
- (6) Give an example of a cyclic subgroup of S_4 which is not normal. This shows that abelian subgroups of a group G might fail to be normal.
- (7) Let $Q = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$ be the subset of $GL(2, \mathbb{C})$ where

$$1 = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \qquad \mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Show that

- $\mathbf{i}^4 = \mathbf{j}^4 = \mathbf{k}^4 = 1$, $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$, $\mathbf{i}\mathbf{j} = \mathbf{k} = -\mathbf{j}\mathbf{i}$, $\mathbf{j}\mathbf{k} = \mathbf{i} = -\mathbf{k}\mathbf{j}$, $\mathbf{k}\mathbf{i} = \mathbf{j} = -\mathbf{i}\mathbf{k}$, $\mathbf{i}^3 = -\mathbf{i}$, $\mathbf{j}^3 = -\mathbf{j}$, $\mathbf{k}^3 = -\mathbf{k}$.
- \mathcal{Q} is a non-abelian subgroup of $GL(2,\mathbb{C})$.
- The only subgroups of \mathcal{Q} are $\langle \mathbf{i} \rangle, \langle \mathbf{j} \rangle, \langle \mathbf{k} \rangle$ and $C(\mathcal{Q})$ (i.e. the center of \mathcal{Q}). Moreover all subgroups are normal.
- Show that $Q = \langle \mathbf{i} \rangle \cup \langle \mathbf{j} \rangle \cup \langle \mathbf{k} \rangle$.

The group Q is called the *quaternion group* and its a non-abelian group of order 8, where every subgroup is normal.