The Entity-Relationship Model (Part II)

R &G - Chapter 2

Last Lecture

- ER model: model data conceptually
 - Entities & entity set
 - Relationships & relationship set
 - Keys (superkey, candidate keys, primary keys)

E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Ellipses represent attributes
- Underline indicates primary key attributes

Today's Lecture

- Basic ER diagram design issues:
 - Cardinality constraints in ER diagram
 - Participation constraint
 - Weak entities

Cardinality Constraints in E-R Diagram

- Cardinality ratio of R: the number of entities of E2 that an entity of E1 can possibly be associated thru R
- Four possibilities are usually specified:
 - one-to-one (1:1)
 - one-to-many (1:N)
 - many-to-one (N:1)
 - many-to-many (M:N)

One-to-One (1:1) Relationship

- An entity in A is associated with at most one entity in B and vice versa
- e.g. A: driver, B: driver's license
- More examples?
- ER diagram of (1:1) relationship

Two arrows are in ER diagram: each arrow pointing to the relationship

ER diagram

One-to-Many (1:N) Relationship

- One-to-many from A to B
 - An entity in A is associated with any number of entities in B
 - An entity in B is associated with at most one entity in A
 - e.g. A: biological-mother, B: children
 - More examples of 1:N relationships?

1-to-Many

Many-to-1

ER Diagram of 1:N Relationship

Assume:

- R is a 1:N relationship between A and B
- A is the entity set at 1-side
- B is the entity set at m-side
- The line between R & B must be arrowed: arrow points to A

Many-to-Many (M:N) Relationship

- many-to-many from A to B:
 - An entity in A is associated with any number of entities in B and vice versa
- e.g. A: student, B: course
- More examples?
- ER diagram of (M:N) relationship

Many-to-Many

Exercise 1

- An employee can work in many departments; a dept can have many employees.
 - What is the cardinality constraint of Works_In relationship?

- In contrast, each dept has at most one manager. Each manager can manage multiple departments.
 - What is the cardinality constraint of Manages relationship?
 - How to present this constraint in ER diagram?

Exercise 1 (Cont.)

Putting two relationships together

Exercise 2

- What are the cardinality constraints of following relationships?
 - A: Country; B: Capital.
 - A: Course; B: student.
 - A: Movie; B: Director.
 - A: Movie; B: actor.
 - A: Person; B: email address.
 - A: book; B: author
 - A: doctor; B: patient

Exercise 3

 If each team can only have 1 leader, but each student can be the leader of multiple teams, what's the cardinality constraint of the *LeaderOf* relationship?

 If each team can have multiple leaders, but each student can be the leader of at most 1 team, what's the cardinality constraint of the *LeaderOf* relationship?

Today's Lecture

- Basic ER diagram design issues:
 - Cardinality constraints in ER diagram
 - Participation constraint
 - Weak entities

Participation Constraints

- An entity set may participate in a relation either totally or partially.
 - Total participation: Every entity in the set is involved in some association of the relationship.
 - Partial participation: Not all entities in the set are involved in association of the relationship.
- In ER diagram: total participation is represented in bold line

Participation constraints in ER diagrm

Example: Total Participation

- Facts:
 - Every employee works in at least one department
 - Every department has at least one employee
- What are the participation constraints in ER diagram?

Example: Partial Participation

- Fact:
 - Not every employee manages a department
- So this a partial participation between Employees and Manages

Question

– What is the participation constraint for the fact that "every department must have a manager"?

Exercise 5

 When does the Student entity set has total participation constraint with MemberOf relationship?

 When does the student entity set has partial participation constraint with LeaderOf relationship?

Today's Lecture

- Basic ER diagram design issues:
 - Cardinality constraints in ER diagram
 - Participation constraint
 - Weak entities

Strong and Weak Entities

- In practice, some entities can exist independently.
 - E.g., Student entity;
 - These entities are strong.
- Some entities depend on other entities
 - The existence of team entity depends on the existence of LabSession entity.
 - These entities are weak.

Weak Entity Sets

- Weak entity set: An entity set whose members owe their existence to some entity in a strong entity set.
 - The strong entity: the owner entity set.
 - The relationship between owner and weak entity sets: the identifying relationship.
 - Weak entities must relate to the owner entity set via a total participation, one-to-many relationship set
 - With the weak entity set at the many-side.

Weak Entity Sets in ER Diagram

- Weak entity set W: rectangle of bold line
- Identifying relationship R: diamond in bold line
- Line connecting R and W:
 - Bold line (total participation)
 - Arrow points to R (one-to-many relationship)

Weak entity set in ER diagram

Key of Weak Entities

- A weak entity set only have a "partial key" (dashed underline)
- Key of weak entities
 - Key = <u>primary key</u> of the owner entity + <u>partial key</u> of itself
 - Example: Key of *Dependents* entity: (ssn, pname)

What's the key of *Team* entity?

Exercise 7

Facts:

- The university provides several courses, each course has its name, ID, and number of credits.
- A popular course may have several sections, each taught by a different professor. Each section has its own ID, classroom and meeting times.
- It is possible that the sections of different courses may have the same ID.

Question:

 Design the ER diagram of the course and section entitity sets, and the has relationship between them.

Summary: E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Ellipses represent attributes
- Underline indicates primary key attributes
- **Arrow** indicates 1-to-many relationship (leaving the many- side, point to the 1- side)
- Bold line indicates total relationship

Summary: Line Types

Plain lines mean many-to-many constraint

 Arrows mean the other side has a cardinality of one (1:N constraint)

A thick line requires total participation

