Curso de Graduação em Engenharia de Controle e Automação
Departamento de Engenharia Elétrica - FT - UnB
Disciplina: Dispositivos e Circuitos Eletrônicos - Período 2003.2
Professor: Geovany Araújo Borges
Prova 2: Retificadores, Ceifadores e Transistor Bipolar - Data: 29/10/2003

Nome: Matrícula:		
	Nome	Matrícula

Instruções:

- Tempo máximo de duração: 2 horas.
- Explique o desenvolvimento das questões. Resultados sem explicações e sem desenvolvimentos não serão aceitos;
- Não use aproximações, exceto quando explicitamente indicado;
- Não é permitido o uso de máquina calculadora;
- Quando forem solicitados resultados analíticos (*i.e.*, fórmulas literais), estes devem ser desenvolvidos envolvendo as variáveis de interesse e os parâmetros do modelo. Outras variáveis dependentes não devem estar presentes nas fórmulas.

Principais fórmulas:

- Diodo retificador: usar o modelo queda de tensão constante com parâmetro V_{DO}
- Diodo Zener: usar o modelo bateria mais resistência:
 - Na polarização direta, parâmetros V_{DO} e r_D
 - Na ruptura, parâmetros V_{ZO} e r_Z
- Transistor bipolar:
 - Modelo físico:

$$i_C = \begin{cases} I_S \exp(v_{BE}/V_T)(1 + v_{CE}/V_A) & \text{para transistor NPN em modo ativo} \\ I_S \exp(v_{EB}/V_T)(1 + v_{EC}/V_A) & \text{para transistor PNP em modo ativo} \end{cases}$$

- Relação entre as correntes: $i_C = \beta i_B$ $i_C = \alpha i_E$ $i_E = i_C + i_B$
- Parâmetro de condução da JBE: $v_{BE} > V_{BE}$ (NPN) ou $v_{EB} > V_{EB}$ (PNP)
- Parâmetro que delimita a saturação: $0 < v_{CE} \le V_{CESAT}$ (NPN) ou $0 < v_{EC} \le V_{ECSAT}$ (PNP)

Questões:

- 1. No circuito da Figura 1 , $v_E(t)$ é uma onda quadrada de valor mínimo 0 Volts, valor máximo 10 Volts, e período T. Considerar que $V_{DO} = 0,7$ Volts e que 5RC < T/2 (*i.e.*, o capacitor alcançou regime permanente em menos de meio período de $v_E(t)$). Pede-se:
 - (a) Analisar o circuito e esboçar o gráfico da tensão de saída $v_S(t)$ para $V_B = 10$ Volts (pontos: 0,5). Quais os valores máximo e mínimo de $v_S(t)$? (pontos: 0,5)
 - (b) Analisar o circuito e esboçar o gráfico da tensão de saída $v_S(t)$ para $V_B = 5$ Volts (pontos: 1,0). Quais os valores máximo e mínimo de $v_S(t)$? (pontos: 0,5)
- 2. Para o circuito da Figura 2, considerar $r_D = r_Z = 0$. Analisar o circuito e esboçar a curva característica $v_S \times v_E$ (pontos: 2,5).

Figura 1: Circuito da questão 1.

Figura 2: Circuito da questão 2.

- 3. No circuito da Figura 3, $R_B=1~k\Omega$. Em condução, a JBE apresenta uma queda de tensão constante $V_{EB}=0,7$ Volts.
 - (a) Analisar o circuito e determinar β , v_B e v_E quando I=7 mA e $v_C=-4V$ (pontos: 1,5)
 - (b) Usando o valor de β calculado no quesito anterior, qual o valor mínimo da corrente I que faz o transistor entrar em saturação? Considere V_{ECSAT} como um parâmetro (**pontos: 1,0**)
- 4. Na Figura 4, um transistor Darlington é usado no projeto de uma porta inversora capaz de acionar uma carga R_L . Os transistores T_1 e T_2 possuem ganho de emissor comum β_1 e β_2 , respectivamente, que podem ser diferentes. Sendo transistores do mesmo modelo, o fabricante especifica que $\beta \in [\beta_{\min}, \beta_{\max}]$. A tensão de alimentação V_{CC} é tal que $V_{CC} > 5V_{BE}$.
 - (a) Que tensões espera-se ter entre os pinos base e emissor (v_{BE}) e entre os pinos coletor e o emissor (v_{CE}) que caracterizam o corte (**pontos: 0,5**) e a saturação (**pontos: 0,5**) Obs.: Na saturação do transistor Darlington, os dois transistores estão na região de saturação. No corte, basta um dos transistores estar na região de corte.
 - (b) Para projetar este circuito como porta lógica, deve-se garantir que o transistor opere nos modos corte e saturação. Neste sentido, pede-se que seja determinada uma relação de projeto de R_B de modo a garantir o funcionamento correto do circuito. Considerar que o sinal de entrada $v_E(t)$ é uma onda quadrada de valor mínimo $-V_{CC}/2$, valor máximo $+V_{CC}/2$, e período T. (pontos: 1,5)

BOA PROVA!

Figura 3: Circuito da questão 3.

Figura 4: Circuito da questão 4.