SC1015 Mini Project

IMDB Top 2000 Movies Dataset

Chin Wei Hao U2322704F Chin Hui Qi, Cheryl U2321555A Christopher Lim Wai Ming U2322618D

Lab Group FCE2, Team 2

Table of contents

01

02

03

Our Motivation

You can describe the topic of the section here

Exploratory Data Analysis

You can describe the topic of the section here

Data Preparation

You can describe the topic of the section here

04

Machine Learning

You can describe the topic of the section here

05

Outcome

You can describe the topic of the section here

O1 Introduction

IMDB Rating

Practical Motivation

Objective:

Determine the influence of various factors (such as Metascore, Votes, Duration, Gross value) on the IMDb ratings of the top 2000 movies.

Primary Data Points in our dataset: Duration, IMDb ratings, Gross Value, Metascore, Votes Other Data Points in our dataset: Name of movie, Release Year, Genre, Director, Cast O2
Exploratory Data
Analysis

Initial Data Insights

```
[2]: # Import datasets
  data = pd.read_csv('imdb_top_2000_movies.csv')
  data.head()
```

[2]:		Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross
	0	The Godfather	1972	175	9.2	100.0	2,002,655	Crime, Drama	Francis Ford Coppola	Marlon Brando	\$134.97M
	1	The Godfather Part II	1974	202	9.0	90.0	1,358,608	Crime, Drama	Francis Ford Coppola	Al Pacino	\$57.30M
	2	Ordinary People	1980	124	7.7	86.0	56,476	Drama	Robert Redford	Donald Sutherland	\$54.80M
	3	Lawrence of Arabia	1962	218	8.3	100.0	313,044	Adventure, Biography, Drama	David Lean	Peter O'Toole	\$44.82M
	4	Straw Dogs	1971	113	7.4	73.0	64,331	Crime, Drama, Thriller	Sam Peckinpah	Dustin Hoffman	NaN

Preliminary exploration

```
[3]: df = pd.DataFrame(data)
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Movie Name	2000 non-null	object
1	Release Year	2000 non-null	object
2	Duration	2000 non-null	int64
3	IMDB Rating	2000 non-null	float64
4	Metascore	1919 non-null	float64
5	Votes	2000 non-null	object
6	Genre	2000 non-null	object
7	Director	2000 non-null	object
8	Cast	2000 non-null	object
9	Gross	1903 non-null	object
100	C7 / - 1		

dtypes: float64(2), int64(1), object(7)

memory usage: 156.4+ KB

Text(0.5, 1.0, 'Top 15 Genres')

O3
Data preparation
& cleaning

Data Preparation

```
[3]: # Remove all commas convert object to float for Votes
data['Votes'] = data['Votes'].str.replace(',', ')
data['Votes'] = data['Votes'].str.replace(',', ')

# Remove $ sign and M symbol and convert to float for Gross
data['Gross'] = data['Gross'].str.-replace('s', '')
data['Gross'] = data['Gross'].str.-replace('M', '')
data['Gross'] = data['Gross'].str.veplace('M', '')
data['Gross'] = data['Gross'].str.vepla
```

	Movie Name	Release Year	Duration	IMDB Rating	Metascore	Votes	Genre	Director	Cast	Gross
0	The Godfather	1972.0	175	9.2	100.0	2002655.0	Crime, Drama	Francis Ford Coppola	Marlon Brando	134970000.0
1	The Godfather Part II	1974.0	202	9.0	90.0	1358608.0	Crime, Drama	Francis Ford Coppola	Al Pacino	57300000.0
2	Ordinary People	1980.0	124	7.7	86.0	56476.0	Drama	Robert Redford	Donald Sutherland	54800000.0
3	Lawrence of Arabia	1962.0	218	8.3	100.0	313044.0	Adventure, Biography, Drama	David Lean	Peter O'Toole	44820000.0
4	Straw Dogs	1971.0	113	7.4	73.0	64331.0	Crime, Drama, Thriller	Sam Peckinpah	Dustin Hoffman	NaN
			***				***	-	-	
1995	The Young Victoria	2009.0	105	7.2	64.0	66235.0	Biography, Drama, History	Jean-Marc Vallée	Emily Blunt	11000000.0
1996	Tooth Fairy	NaN	101	5.0	36.0	49527.0	Comedy, Family, Fantasy	Michael Lembeck	Dwayne Johnson	60020000.0
1997	The Informant!	2009.0	108	6.5	66.0	67318.0	Biography, Comedy, Crime	Steven Soderbergh	Matt Damon	33310000.0
1998	Youth in Revolt	2009.0	90	6.4	63.0	75956.0	Comedy, Drama, Romance	Miguel Arteta	Michael Cera	15280000.0
1999	Quarantine	2008.0	89	6.0	53.0	77075.0	Horror, Sci-Fi, Thriller	John Erick Dowdle	Jennifer Carpenter	31690000.0

2000 rows × 10 columns

Keep	Remove		
 Duration, IMDb ratings Gross Value Metascore Votes Release Year 	 Name of movie Genre Director Cast 		

Cleaning data

[6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Movie Name	2000 non-null	object
1	Release Year	1921 non-null	float64
2	Duration	2000 non-null	int64
3	IMDB Rating	2000 non-null	float64
4	Metascore	1919 non-null	float64
5	Votes	2000 non-null	float64
6	Genre	2000 non-null	object
7	Director	2000 non-null	object
8	Cast	2000 non-null	object
9	Gross	1903 non-null	float64
-	es: float64(5) ry usage: 156.	, int64(1), obje 4+ KB	ct(4)

Analysis of data

Analysis of data

Heatmap

O4 Machine Learning

Regression, Decision Tree, Random Forest

Regression

IMDB Rating vs Metascore

IMDB Rating vs Votes

Intercept of Regression Coefficients of Regression : b = [4.5455173] : a = [[0.03909264]]

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Train Dataset : 0.5733895815463212 : 0.36699191732906405

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Test Dataset : 0.563041155223023 : 0.31406405115077946

Intercept of Regression Coefficients of Regression : b = [6.42455104] : a = [[2.50708159e-06]]

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Train Dataset : 0.08738906508938515 : 0.7869578513104797

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Test Dataset : 0.11139791960741419 : 0.7025562930518372

IMDB Rating vs Gross

Intercept of Regression Coefficients of Regression

: b = [6.97735058] : a = [[-1.8426805e-09]]

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Train Dataset : 0.008315503020466797 : 0.814371021646203

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Test Dataset : 0.004015663672795378 : 0.8098473878865355

IMDB Rating vs Duration

Intercept of Regression : b = [6.4246543] : a = [[2.631455e-06]] Coefficients of Regression

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE) : 0.8631824808673789

Train Dataset : 0.09849251217694732 : 0.7450839952763629

Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.06118727426560344 Mean Squared Error (MSE) : 0.8499283539214618 Root Mean Squared Error (RMSE) : 0.9219155893689301

IMDB Rating vs Duration+Gross+Votes+MetaScore

Decision Tree

IMDB Rating vs Votes

Goodness of Fit of Model Train Dataset

Classification Accuracy : 0.8421828908554573

TPR for train : 0.9946761313220941 FPR for train : 0.9082969432314411

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.8259587020648967

TPR for train : 0.9755244755244755 FPR for train : 0.9811320754716981

IMDB Rating vs Metascore

Goodness of Fit of Model Train Dataset
Classification Accuracy : 0.883480825958702

TPR for train : 0.9654561558901683 FPR for train : 0.5242290748898678

Goodness of Fit of Model Test Dataset Classification Accuracy : 0.887905604719764

TPR for train : 0.9471830985915493 FPR for train : 0.418181818181818181

IMDB Rating vs Gross

Goodness of Fit of Model Train Dataset

Classification Accuracy : 0.8366261398176292

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.8333333333333334

TPR for train : 0.9856115107913669 FPR for train : 0.9807692307692307

IMDB Rating vs Duration

Goodness of Fit of Model Train Dataset

Classification Accuracy : 0.8320668693009119

TPR for train : 0.9990850869167429 FPR for train : 0.9865470852017937

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.8333333333333333

TPR for train : 0.9963768115942029

FPR for train : 1.0

IMDB Rating vs Duration+Gross+Votes+MetaScore

Goodness of Fit of Model Train Dataset
Classification Accuracy : 0.9354103343465046

TPR for train : 0.9762773722627737 FPR for train : 0.2681818181818182

Goodness of Fit of Model Test Dataset

Classification Accuracy : 0.8484848484848485

TPR for train : 0.9304029304029304 FPR for train : 0.543859649122807

Visualizing alpha

	alpha	mean_accuracy	std
55	0.002228	0.877662	0.015077
56	0.002293	0.877662	0.015077
57	0.002453	0.880709	0.016333
58	0.002486	0.881470	0.015380
59	0.003018	0.884509	0.016335
60	0.003096	0.884509	0.016335
61	0.004362	0.885260	0.011857
62	0.004383	0.885260	0.011857
63	0.008712	0.878416	0.013840
63	0.008712	0.878416	0.0138

	alpha	mean_accuracy	std	
61	0.004362	0.88526	0.011857	

Cost Complexity Pruning

Metascore <= 39.5 gini = 0.278 samples = 1316 value = [220, 1096] class = Higher than 6

Votes <= 140184.0 gini = 0.424 samples = 180 value = [125, 55] class = Lower than 6

Metascore <= 54.5 gini = 0.153 samples = 1136 value = [95, 1041] class = Higher than 6

Duration <= 129.0 gini = 0.33 samples = 139 value = [110, 29] class = Lower than 6

gini = 0.464 samples = 41 value = [15, 26]

gini = 0.337samples = 349 value = [75, 274] class = Higher than 6 class = Higher than 6

gini = 0.05 samples = 787 value = [20, 767] lass = Higher than 6

Gross <= 32830000.0 aini = 0.302samples = 135 value = [110, 25] class = Lower than 6

gini = 0.0samples = 4 value = [0, 4] ass = Higher than 6

Votes <= 71568.0 gini = 0.434 samples = 66 value = [45, 21] class = Lower than 6

aini = 0.109samples = 69 value = [65, 4] class = Lower than 6

gini = 0.219samples = 40 value = [35, 5] class = Lower than 6 class = Higher than 6

aini = 0.473samples = 26 value = [10, 16]

Cost Complexity Pruning

Goodness of Fit of Model Train Dataset
Classification Accuracy : 0.9019756838905775

TPR for train : 0.9917883211678832 FPR for train : 0.545454545454545454

Goodness of Fit of Model Test Dataset
Classification Accuracy : 0.8515151515151516

Classification Accuracy : 0.85 TPR for train : 0.978021978021978 FPR for train : 0.7543859649122807

Random Forest

Mean Squared Error: 0.2891176221590909 R-squared: 0.6898316378080778 Feature Importance Metascore Votes Gross Duration 0.1 0.0 0.2 0.3 0.4 0.5 0.6

Data Insights/Conclusion

- 1. All in all, we found that Metascore has the highest correlation with IMDB Ratings
- 2. Dataset is skewed towards higher IMDB Ratings due to nature of our dataset.
- 3. Model created using Decision tree has a high False Positive Rate
- 4. Model for Logistic Regression created using this data can only predict IMDB rating above 6 due to the dataset constraints.
- 5. Multivariate linear regression produced the most accurate results in predicting the ratings of the movie as compared to using univariate regression, with Metascore being the most important variable.