ArXiv Research Papers Auto-Tagging

Ivan Mitriakhin

May 2024

Abstract

This project proposes a solution to the multilabel classification task. The report presents a dataset consiting of 536,914 research papers stored on arXiv. Given a research paper's title and abstract, the model predicts the arXiv tags associated to the paper (out of 155 tags in total). This work solves the problem by fine-tuning the latest version of DeBERTa. https://github.com/ivan-mitriakhin/arxiv-auto-tagging.

1 Introduction

ArXiv is a widely used open-access repository that consists of scientific research papers in 8 fields, namely: Computer Science, Economics, Electrical Engineering and Systems Science, Mathematics, Physics, Quantitative Biology, Quantitative Finance, and Statistics.

According to [Boboris, 2023], the arXiv submission rate reached a new mile-stone of 20,710 per month in October 2023. Therefore, a huge number of papers are being submitted every month. Moreover, each time a paper is being submitted, authors need to categorize their work by themselves, which might be extremely time-consuming as there is, as it was already stated above, a total of 8 primary categories that are further divided into a total of 155 sub-categories (also called tags). For instance, Computer Science category is divided into 30 sub-categories (such as cs.AI, cs.AR, etc.), and Physics category is divided into 51 sub-categories, which is the highest number of sub-categories in a category.

The goal of this work is to achieve a comfortable and consistent user experience by automatically tagging their work based on its title and abstract. In order to achieve this, DeBERTa model is going to be fine-tuned.

1.1 Team

This project was fully prepared by Ivan Mitriakhin.

2 Related Work

First of all, there is already an existing automatic classification system made by arXiv and is available via arXiv API. However, their approach differs from the one discussed in this study. In terms of specifics, there are two algorithms implemented by arXiv that compare full texts (remember, this work uses titles and abstracts only) of newly submitted papers to the existing body of nearly 600,000 previously classified articles and they are based on the common TF-IDF cosine distance measure and the asymmetric Kullback-Leibler divergence. There is no exact metric or result stated, only that the algorithms achieve the "sufficient accuracy" [arXiv.org, nd].

Furthermore, a study done by [Scharpf et al., 2020] analyzes how different encodings of natural and mathematical affect classification of arXiv papers with mathematical content. Three different datasets consisting of 4900 arXiv documents, 3500 sections, and 1400 abstracts associated only with 14 sub-categories were used. It was shown that MLP (Multilayer perceptron) alongside with TF-IDF encoding attained the best result of an accuracy score of \sim 61.6%.

Moving forward, there is an article by [Mitson, 2023]. It presents an approach based only on titles of papers and utilizes a various number of models. It starts off with simple ones like SVM and Logistic Regression, and eventually uses complex models like CNN, GRU, and Bidirectional-LSTM reaching accuracy score of $\sim 75\%$ with CNN.

Lastly, there is a work of [Nielsen, 2021]. The approach is similar to the one used in this report as, given a title and an abstract of a paper, the system predicts a list of tags. The study introduces a well-defined metric: sample-average F1 score. The model utilized is SHA-RNN that achieves F1 score of $\sim 93\%$ and $\sim 65\%$ on the categories and all the sub-categories, respectively.

3 Dataset

It was decided that the dataset mentioned in [Nielsen, 2021] to be used as the foundation for this project. However, the original dataset is deprecated because it has already been 3 years since the publication of the work. During those years arXiv added 7 new tags and 2 new categories to the original 148 tags and 6 categories mentioned in the study, totaling 155 tags and 8 categories respectively. You can find all the tags and categories on Tab. 1. Also, it was decided to reduce the size of the original dataset (the aforementioned one includes 1,278,035 papers) due to the lack of computational resources.

3.1 Data collection

To address this issue, we propose a renewed dataset. To collect the data, a metadata file of an official arXiv dataset¹ published by Cornell University was used. It was decided to collect papers published in the past 14 years, resulting in 1,893,462 papers in total. For each paper its id, title, abstract and tags associated with it were collected. The next step was to clean the data of tags that were not arXiv ones (such as ACM, MSC classes, etc.). Then, the dataset was split into 155 datasets, each containing papers associated with one of 155

¹https://www.kaggle.com/datasets/Cornell-University/arxiv

Category	Related Tags	# of Tags	Total $\#$ of Tags
Computer Science	cs	40	
Economics	econ	3	
Electrical Engineering	eess	4	
and Systems Science			
Mathematics	math	32	
	astro-ph		
	cond-mat		
	gr-qc		155
	hep		100
Physics	math-ph	51	
	nlin		
	nucl		
	physics		
	quant-ph		
Quantitative Biology	q-bio	10	
Quantitative Finance	q-fin	9	
Statistics	stat	6	

Table 1: arXiv categories with sub-categories (tags) related to them. For each category there is a number of tags presented. Summing up all of these tags we get a total of 155 arXiv tags.

tags. For each dataset, $\min\{N, 4500\}$ papers were randomly sampled, where N is the length of the dataset. All those 155 randomly sampled datasets were concatenated into one. After that, the data was cleaned of duplicates. The resulting dataset² contains 536,914 rows. The 50 most frequent tags of the dataset are presented on Fig. 1.

The original [Nielsen, 2021] classification model was evaluated on two datasets: the one where classes are the tags, and the other where classes are the categories. So a similar dataset was built where 155 tags were grouped into 8 categories, they are presented on Fig. 2.

3.2 Train test split

Lastly, both datasets were split into train and test using **sklearn** library. You can find the details on Tab. 2.

 $^{^2 {\}tt https://www.kaggle.com/datasets/ivanmitriakhin/arxiv-titles-abstracts-and-tags}$

Figure 1: 50 most frequent tags. Note that, since multiple tags per paper are possible, the sum of number above exceeds.

Figure 2: Histogram of categories distribution. Remember that multiple categories per paper are possible.

	Train	Test
Articles	504,699	32,215
Total # of articles	536,914	

Table 2: Statistics of the arXiv data. The data was split into train and test. The test size is set to 6% of the length of the dataset

4 Model Description

4.1 BERT

BERT was first introduced by [Devlin et al., 2019], it stands for Bidirectional Encoder Representations with Transformers. It is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create models for a wide range of tasks. BERT's model architecture is a multi-layer bidirectional Transformer encoder which is originally suggested and described in [Vaswani et al., 2017]. You can find the original Transformer encoder architecture on Fig. 3. BERT expands the original architecture by adding multiple self-attention heads. For instance, BERT base has 12 layers in total, hidden size of 768, and 12 self-attention heads.

Figure 3: The original Transformer encoder architecture.

4.2 DeBERTa

DeBERTA [He et al., 2021] stands for Decoding-enhanced BERT with disentangled attention. It improves BERT using two techniques: disentangled attention and enchanced mask decoder.

Disentangled attention. In BERT, each word in the input layer is represented using a vector which is the sum of its word (content) embedding and position embedding. Each word in DeBERTa is represented using two vectors that encode its content and position, respectively, and the attention weights among words are computed using disentangled matrices based on their contents and relative positions, respectively. This is motivated by the observation that the attention weight of a word pair depends on not only their contents but their relative positions.

Let $H \in R^{N \times d}$ represent the input vectors, $H_o \in R^{N \times d}$ the output of self-attention, $W_{q,c}, W_{k,c}, W_{v,c} \in R^{d \times d}$ the projection matrices, $\tilde{A} \in R^{N \times N}$ the attention matrix, N the length of the input sequence, and d the dimension of hidden states. The disentangled self-attention is represented with relative position bias as (1), where Q_c, K_c and V_c are the projected content vectors generated using projection matrices $W_{q,c}, W_{k,c}, W_{v,c}$ respectively, $P \in R^{2k \times d}$ represents the relative position embedding vectors shared across all layers (i.e., staying fixed during forward propagation), and Q_r and K_r are projected relative position vectors generated using projection matrices $W_{q,r}, W_{k,r}$, respectively.

$$\begin{aligned} Q_{c} &= HW_{q,c}, K_{c} = HW_{k,c}, V_{c} = HW_{v,c}, Q_{r} = PW_{q,r}, K_{r} = PW_{k,r} \\ \tilde{A}_{i,j} &= Q_{i}^{c}K_{j}^{c\dagger} + Q_{i}^{c}K_{\delta(i,j)}^{r}^{\dagger} + K_{j}^{c}Q_{\delta(j,i)}^{r}^{\dagger} \\ H_{o} &= \operatorname{softmax}(\frac{\tilde{A}}{\sqrt{3d}})V_{c} \end{aligned} \tag{1}$$

 $\tilde{A}_{i,j}$ is the element of attention matrix \tilde{A} , representing the attention score from token i to token j. Q_i^c is the i-th row of Q_c . K_j^c is the j-th row of K_c . $K_{\delta(i,j)}^r$ is the $\delta(i,j)$ -th row of K_r with regarding to relative distance $\delta(i,j)$. $Q_{\delta(j,i)}^r$ is the $\delta(j,i)$ -th row of Q_r with regarding to relative distance $\delta(j,i)$. k is denoted as the maximum relative distance, $\delta(i,j) \in [0,2k)$ as the relative distance from token i to token j, which is defined as:

$$\delta(i,j) = \begin{cases} 0 & \text{for } i-j \le -k \\ 2k-1 & \text{for } i-j \ge k \\ i-j+k & \text{others.} \end{cases}$$
 (2)

Enhanced mask decoder. Like BERT, DeBERTa is pre-trained using masked language modeling (MLM). MLM is a task, where a model is taught to use the words surrounding a mask token to predict what the masked word should be. DeBERTa uses the content and position information of the context words for MLM. The disentangled attention mechanism already considers the contents and relative positions of the context words, but not the absolute

positions of these words. The BERT model incorporates absolute positions in the input layer. In DeBERTa they are incorporated right after all the Transformer layers but before the softmax layer for masked token prediction. In this way, DeBERTa captures the relative positions in all the Transformer layers and only uses absolute positions as complementary information when decoding the masked words.

5 Experiments

5.1 Metrics

In this study, the sample-average F1 score is used as the evaluation metric. Let y be the set of true (sample, label) pairs, \hat{y} be the set of predicted (sample, label) pairs, L be the set of labels, S be the set of samples, y_s be the subset of y with sample s (i.e. $y_s := \{(s', l) \in y | s' = s\}$), similarly \hat{y}_s be a subset of \hat{y} . Also, for some sets A and B:

$$P(A,B) := \frac{|A \cap B|}{|B|}, R(A,B) := \frac{|A \cap B|}{|A|}, F_1(A,B) := 2 \times \frac{P(A,B) \times R(A,B)}{P(A,B) + R(A,B)}$$
(3)

Then the sample-average F1 score is defined as:

$$\frac{1}{|S|} \sum_{s \in S} F_1(y_s, \hat{y}_s) \tag{4}$$

5.2 Experiment Setup

The **deberta-v3-base**³ model provided by Microsoft on Huggingface was chosen. You can find information on the train test split in 3.2. The model was evaluated on the test (validation) dataset after every epoch. The setup was the following:

- Maximum sequence length = 230
- AdamW optimizer with learning rate set to 10^{-5} .
- Number of epochs = 18.
- Batch size = 64.
- BCEWithLogitsLoss.
- Dropout rate = 0.1

 $^{^3 {\}tt https://huggingface.co/microsoft/deberta-v3-base}$

6 Results

The model reached a peak of $\sim 64.6\%$ F1 score on the 14th epoch, which is very close to the $\sim 65\%$ score claimed by Nielsen. It is a great achievement because our model was trained on a dataset that is almost 2.4 times smaller than the one used originally. The validation curve can be found on Fig.4.

You can find the model inference on a recent randomly chosen paper⁴ (it was checked that the paper wasn't contained in our dataset) from arXiv repository on Tab. 3.

Figure 4: Validation curve.

7 Conclusion

In this work, the problem of multilabel classification was solved. In order to to this, the dataset consisting of research papers' ids, titles, abstracts and tags was collected from the official metadata of arXiv papers. The latest version of DeBERTa was fine-tuned on the collected dataset in order to achieve a result similar to other models given a smaller dataset.

⁴https://arxiv.org/abs/2405.09783

Title	LLM and Simulation as Bilevel Optimizers: A New Paradigm to	
	Advance Physical Scientific Discovery	
Abstract	Large Language Models have recently gained significant attents	
	in scientific discovery for their extensive knowledge and advanced	
	reasoning capabilities. However, they encounter challenges in ef-	
	fectively simulating observational feedback and grounding it with	
	language to propel advancements in physical scientific discovery.	
	Conversely, human scientists undertake scientific discovery by for-	
	mulating hypotheses, conducting experiments, and revising theo-	
	ries through observational analysis. Inspired by this, we propose	
	to enhance the knowledge-driven, abstract reasoning abilities of	
	LLMs with the computational strength of simulations. We in-	
	troduce Scientific Generative Agent (SGA), a bilevel optimization	
	framework: LLMs act as knowledgeable and versatile thinkers,	
	proposing scientific hypotheses and reason about discrete compo-	
	nents, such as physics equations or molecule structures; mean-	
	while, simulations function as experimental platforms, providing	
	observational feedback and optimizing via differentiability for con-	
	tinuous parts, such as physical parameters. We conduct extensive	
	experiments to demonstrate our framework's efficacy in constitu-	
	tive law discovery and molecular design, unveiling novel solutions	
	that differ from conventional human expectations yet remain co-	
	herent upon analysis.	
Predicted tags	cs.LG, cs.AI, cs.CE, cs.CL	
Actual tags	cs.LG, cs.AI, cs.CE	

Table 3: Model inference on a randomly chosen paper.

References

- [arXiv.org, nd] arXiv.org (n.d.). API for arXiv categorization. https://info.arxiv.org/help/api/classify.html. Accessed 29-04-2024.
- [Boboris, 2023] Boboris, K. (2023). ArXiv sets new record for monthly submissions. https://blog.arxiv.org/2023/11/03/arxiv-sets-new-record-for-monthly-submissions. Accessed 28-04-2024.
- [Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding.
- [He et al., 2021] He, P., Liu, X., Gao, J., and Chen, W. (2021). Deberta: Decoding-enhanced bert with disentangled attention.
- [Mitson, 2023] Mitson, R. (2023). ArXiv search: Generating tags from paper titles. https://wandb.ai/wandb_fc/articles/reports/arXiv-Search-Generating-Tags-from-Paper-Titles--Vmlldzo1NDUz0Dc2. Accessed 29-04-2024.
- [Nielsen, 2021] Nielsen, S. (2021). Scholarly: Category classification of scientific papers. https://github.com/saattrupdan/scholarly/tree/master?tab=readme-ov-file. Accessed 30-04-2024.
- [Scharpf et al., 2020] Scharpf, P. et al. (2020). Classification and clustering of arxiv documents, sections, and abstracts, comparing encodings of natural and mathematical language. https://arxiv.org/abs/2005.11021.
- [Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. *CoRR*, abs/1706.03762.