Bab

V

LIMIT DAN KONTINUITAS FUNGSI

Limit Barisan dan Konvergensi

DEFINISI:

Bilangan-bilangan $c_1, c_2, c_3, ..., c_n$ disebut barisan bilangan tak hingga.

c_n disebut suku umum dari barisan.

Bilangan n, (n = 1, 2, 3, ...) adalah nomor urut atau indeks yang menunjukkan letak bilangan tersebut dalam barisan.

Catatan (1):

Suku umum dari barisan, yaitu c_n merupakan suatu fungsi dari n atau $c_n = f(n)$.

Contoh (5.1):

Barisan 1, ½, ⅓, ¼,, suku umumnya dapat kita tulis: $c_n = \frac{1}{n}$. Kita dapat menyebut barisan di atas sebagai barisan $\{c_n\} = \{\frac{1}{n}\}$.

Contoh (5.2):

Barisan 1, $\frac{1}{4}$, $\frac{1}{27}$, $\frac{1}{256}$, ... suku umumnya adalah $c_n = \frac{1}{n^n}$. Barisannya adalah $\{c_n\} = \{\frac{1}{n^n}\}$.

DEFINISI:

Suatu barisan {c_n} dikatakan mempunyai limit 1 bila untuk setiap bilangan ∈ > 0 dapat dicari suatu nomor indeks n₀ sedemikian sehingga untuk $n \ge n_0$ berlaku $l - \epsilon < C_n < l + \epsilon$ (atau $|C_n - l| < \epsilon$.

Artinya jika l adalah limit dari $\{c_n\}$ maka c_n mendekati l jika n mendekati tak terhingga.

Ditulis
$$C_n \to l$$
 bila $n \to \infty$, atau: $\lim_{n \to \infty} C_n = l$

Contoh (5.4):

Buktikan bahwa barisan $\{C_n\} = \{\frac{1}{n^2}\}$ mempunyai limit.

Bukti:

Misalkan ∈ adalah suatu bilangan positif yang diketahui (bagaimanapun kecilnya), arausid gannades shitan alid ashlad annar inli

Kita cari
$$c_n \ge \epsilon$$
 jadi $\frac{1}{n^2} \ge \epsilon \to \frac{1}{\epsilon} \ge n^2 \to n^2 \le \frac{1}{\epsilon} \to (n^2 - \frac{1}{\epsilon}) \le 0$

$$\to (n - \frac{1}{\sqrt{\epsilon}})(n + \frac{1}{\sqrt{\epsilon}}) < 0 \to -\frac{1}{\sqrt{\epsilon}} \le n \le \frac{1}{\sqrt{\epsilon}}$$

Jadi banyaknya n hingga. Mulai dari suatu nomor indeks n_0 , $(n_0 > \frac{1}{\epsilon})$ akan berlaku $\frac{1}{n^2} < \epsilon$ untuk setiap $n \ge n_0$. Dan karena $\frac{1}{n^2}$ positif maka berlaku $-\epsilon < \frac{1}{n^2} < \epsilon$ atau $0 - \epsilon < \frac{1}{n^2} < 0 + \epsilon$ atau $\frac{1}{n^2} - 0 < \epsilon$.

Berarti barisan $\{c_n\} = \{\frac{1}{n^2}\}$ mempunyai limit 0.

DEFINISI:

Suatu barisan disebut konvergen jika barisan itu mempunyai limit, dan dalam hal lain disebut divergen.

mendekati 🗠 daripada 2na Ditulia lim (2n -

Catatan (2):

Jika suatu barisan konvergen maka limitnya tunggal (unik).

(a)
$$\lim_{n \to \infty} \frac{n}{2n+1} = \lim_{n \to \infty} \frac{1}{(2n+1/n)} = \frac{1}{2+0} = \frac{1}{2}$$

Barisan $\{c_n\} = \{\frac{n}{2n+1}\}$ konvergen.

Barisan
$$\{c_n\} = \{\frac{n}{2n+1}\}\$$
 konvergen.
(b) $\lim_{n\to\infty} \frac{3n^2 + 2n^2 + 7}{n+5} = \lim_{n\to\infty} \frac{3 + 2/n + 7/n^2}{1/n^2 + 5/n^3}$

$$= \frac{3 + 0 + 0}{0 + 0} = \infty.$$
 Barisan tersebut divergen.

Catatan (3):

Limit yang Tak Sebenarnya

- (1) Kalau $\lim_{n\to\infty} c_n = +\infty$, dikatakan juga bahwa barisan mempunyai limit yang tak sebenarnya $+\infty$.

 Hal mana berlaku bila untuk sebarang bilangan positif M (bagaimanapun besarnya) dapat dicari suatu nomor indeks n_0 sedemikian sehingga $c_n > M$, untuk setiap $n > n_0$.
- (2) Kalau lim c_n = -∞, dikatakan juga bahwa barisan mempunyai limit yang tak sebenarnya -∞. Hal mana berlaku, bila untuk sekarang bilangan positif M (bagaimana besarnya), dapat dicari suatu nomor indeks n₀, sedemikian sehingga c_n < -M, untuk setiap n > n_n.
- (3) {c_n} divergen jika {c_n} mempunyai limit yang tak sebenarnya atau tak mempunyai limit sama sekali.

Contoh:

(a)
$$\{c_n\} = \{\frac{n^2}{2n+2}\}$$
 divergen, karena $\lim_{n\to\infty} \frac{n^2}{2n-n^n} = \infty$

(b) $\{c_n\} = \{2n - n^2\}$. Mulai dari n = 2 berlaku $c_n < 0$, n^2 lebih cepat mendekati ∞ daripada 2n. Ditulis $\lim_{n \to \infty} (2n - n^2) = -\infty$.

(c)
$$\{c_n\} = \{(-1)^n\}$$
 makind a liquid near thought to death make the make the constraint of the liquid that $\{c_n\} = \{-1, bila \ n \ ganjil \}$

(Aidii) is a possible of the liquid that $\{c_n\} = \{c_n\}$ is the liquid that $\{c_n\} = \{c_n\} = \{c_n\}$ is the liquid parameter of the liquid that $\{c_n\} = \{c_n\} = \{c_n$

atau: -1, 1, -1, 1, Barisan ini tidak mempunyai limit sama sekali.

Catatan (4): Sifat-sifat Limit Barisan

Bila $\lim_{n\to\infty} c_n = l \text{ dan } \lim_{n\to\infty} d_n = m, \text{ maka:}$

- (1) $\lim_{n\to\infty} (c_n + d_n) = \lim_{n\to\infty} c_n \pm \lim_{n\to\infty} d_n = l \pm m$. $\lim_{n\to\infty} k c_n = k \lim_{n\to\infty} c_n = k l$, bila k sebarang bilangan riil.

(2)
$$\lim_{n \to \infty} (c_n.d_n) = (\lim_{n \to \infty} c_n)(\lim_{n \to \infty} d_n) = l m.$$
(3)
$$\lim_{n \to \infty} \frac{1}{c_n} = \frac{1}{\lim_{n \to \infty} c_n} = \frac{1}{l},$$

bila semua suku $c_n \neq 0$ dan $l \neq 0$.

- (4) $\lim_{n\to\infty} \frac{d_n}{c_n} = (\lim_{n\to\infty} d_n)/\lim_{n\to\infty} (c_n) = m/l,$ bila semua suku $c_n \neq 0$ dan $l \neq 0$.
- (5) $\lim_{n\to\infty} (c_n)^P = (\lim_{n\to\infty} c_n)^P = l^P$ untuk sebarang P bilangan riil dan
- (6) $\lim_{n\to\infty} p^{c_n} = P_{n\to\infty}^{\lim C_n} = p^l$, untuk sebarang P bilangan riil dan $P^l =$

Contoh (5.7):

a.
$$\lim_{n\to\infty}\frac{1+2+3+...+n}{n^2}$$
; numerical gray nearest 5.2

1 + 2 + 3 + ... + n adalah suatu deret hitung dengan n buah suku. Suku pertama = 1, suku terakhir = n, dan beda = 1. Jadi, $1 + 2 + 3 + ... + n = \frac{1}{2}n(1 + n)$

$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{2}n(1 \cdot + n)}{n^2}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{2}n + \frac{1}{2}n^2}{n^2}$$

$$= \lim_{n \to \infty} \frac{\frac{1/2n + \frac{1/2}{2}}{1}}{1} = \frac{1/2}{2}$$

b.
$$\lim_{n\to\infty}\frac{n!}{n^2}$$

$$\lim_{n \to \infty} \frac{n(n-1)(n-2) \dots 3.2.1}{n \ n \ n \dots n.n.n}$$

dengan menggunakan perluasan sifat (2), maka:

$$\lim_{n \to \infty} \frac{n!}{n^n} = \lim_{n \to \infty} (n/n) \cdot \lim_{n \to \infty} (n-1)/n \cdot \lim_{n \to \infty} (n-2)/n \cdot \dots \cdot \lim_{n \to \infty} (1/n)$$

$$= 1 \cdot 1 \cdot 1 \cdot \dots \cdot 0 \cdot 0 = 0$$

c.
$$\lim_{n\to\infty} \frac{\sqrt{n^2 + n + 1}}{\sqrt{4n^2 + 2n}}$$

$$= \lim_{n \to \infty} \sqrt{\frac{n^2 + n + 1}{4n^2 + 2n}} = (n) \quad \text{and} \quad (n + n) = (n)$$

$$= \sqrt{\lim_{n \to \infty} \frac{n^2 + n + 1}{4n^2 + 2n}}$$

$$= \sqrt{\lim_{n \to \infty} \frac{1 + 1/n + 1/n^2}{4 + 2/n}}$$

$$= \sqrt{\frac{1}{4}} = \frac{1}{2}.$$

5.2 Barisan-barisan yang Istimewa

1.
$$\{C^n\} = \{\sqrt[n]{a}\} = \{a^{1/n}\}, a \text{ bilangan positif.}$$
berlaku $\lim_{n \to \infty} c_n = 1.$

2.
$$\{c_n\} = \{\sqrt[n]{n}\} = \{n^{1/n}\}, \text{ berlaku } \lim_{n \to \infty} c_n = 1.$$

3.
$$\{c_n\} = \{\sqrt{f(n)} - \sqrt{g(n)}\}\$$
 berlaku $\lim_{n \to \infty} c_n = \lim_{n \to \infty} \{\sqrt{f(n)} - \sqrt{g(n)}\}\$ 4. $\{c_n\} = \{a^n\}, a \neq 0, a \neq 1, a \neq w1.$

4.
$$\{c_n\} = \{a^n\}, a \neq 0, a \neq 1, a \neq w1.$$

Jika a > 1, maka
$$\lim_{n\to\infty} c_n = +\infty$$
 (divergen).
 $-1 < a < 1$, maka $\lim_{n\to\infty} c_n = 0$ (konvergen).
 $a < -1$, maka $\{c_n\}$ divergen.

5.
$$\{c_n\} = \{(1 + \frac{1}{n})^n\}$$
 dengan $n \ge 1$, atau:
 $\{d_n\} = \{(1 - \frac{1}{n})^{-n}\}$ dengan $n \ge 2$, berlaku:
a. $\lim_{n \to \infty} c_n = e$, b. $\lim_{n \to \infty} d_n = e$.

Hasil (a) sudah dibuktikan pada Bab 2 mengenai Binomium Newton, sedangkan (b):

$$\lim_{n \to \infty} (1 - \frac{1}{n})^{-n} = \lim_{n \to \infty} (\frac{n-1}{n})^{-n} = \lim_{n \to \infty} (\frac{n}{n-1})^{n}$$

$$= \lim_{n \to \infty} (\frac{n-1+1}{n-1})^{n} = \lim_{n \to \infty} (1 + \frac{1}{n-1})^{n}$$

$$= \lim_{n \to \infty} (1 + \frac{1}{n-1})^{n-1} \cdot \lim_{n \to \infty} (1 + \frac{1}{n-1})^{n}$$

$$= \lim_{n \to \infty} (1 + \frac{1}{n-1})^{n-1} \cdot \lim_{n \to \infty} (1 + \frac{1}{n-1})$$

$$= \lim_{n \to \infty} (1 + \frac{1}{n-1})^{n-1} \cdot 1 = e.1 = e.$$

Contoh (5.8):

a.
$$\lim_{n \to \infty} \sqrt[n]{n \cdot 2^n} = \lim_{n \to \infty} 2 \sqrt[n]{n}$$

$$= 2 \lim_{n \to \infty} \sqrt[n]{n} = 2 \cdot 1 = 2.$$

b.
$$\lim_{n \to \infty} (\sqrt{4n^2 + n} + \sqrt{9n^2 - n} - 5n)$$

Misalkan $1 = \lim_{n \to \infty} (\sqrt{4n^2 + n} + \sqrt{9n^2 - n} - 5n)$
Jadi, $1 = \lim_{n \to \infty} (\sqrt{4n^2 + n} - 2n + \sqrt{9n^2 - n} - 3n)$
 $= \lim_{n \to \infty} (\sqrt{4n^2 + n} - 2n) + \lim_{n \to \infty} (\sqrt{9n^2 - n} - 3n)$
 $= \lim_{n \to \infty} (\sqrt{4n^2 + n} - 2n) + \lim_{n \to \infty} (\sqrt{9n^2 - n} - 3n)$

$$\lim_{n \to \infty} (\sqrt{4n^2 + n} - 2n) = \lim_{n \to \infty} (\sqrt{4n^2 + n} - 2n) \frac{\sqrt{4n^2 + n} + 2n}{\sqrt{4n^2 + n} + 2n}$$

Fred (a) sudah dibuktikan pada Babi2 mengenal Bi

$$= \lim_{n \to \infty} \frac{4n^2 + n - 4n^2}{\sqrt{4n^2 + n} + 2n} = \lim_{n \to \infty} \frac{n}{\sqrt{4n^2 + n} + 2n}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{4 + 1/n} + 2} = \frac{1}{4}$$

Sedangkan
$$\lim_{n\to\infty} (\sqrt{9n^2 - (n - 3n)}) = -\frac{1}{6}$$

Jadi,
$$l = \frac{1}{4} - \frac{1}{6} = \frac{1}{12}$$

c.
$$\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^{n+1} = \lim_{n\to\infty} \left(\frac{n+1-1}{n+1}\right)^{n+1}$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^{n+1} = \lim_{n \to \infty} \frac{1}{\left(1 - \frac{1}{(n+1)}\right)^{-(n+1)}}$$

$$= \frac{1}{\lim_{n \to \infty} (1 - 1/(n+1))^{-(n+1)}}$$

$$= \frac{1}{\lim_{n+1\to\infty} (1 - 1/(n+1))^{-(n+1)}} = 1/e$$