Sistemas de Numeração

Bases numéricas:

decimal

binária

hexadecimal

octal

outras...

Sistema Decimal (base 10)

Sistema Binário (base 2)

Sistema octal (base 8) e hexadecimal (base 16)

0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Decimal	Binário	Octal	Hexadecimal
0	00000000	000	00
1	00000001	001	01
2	00000010	002	02
3	00000011	003	03
4	00000100	004	04
5	00000101	005	05
6	00000110	006	06
7	00000111	007	07
8	00001000	010	08
9	00001001	011	09
10	00001010	012	<i>O</i> A
11	00001011	<i>0</i> 13	OB
12	00001100	014	OC
13	00001101	015	OD
14	00001110	016	<i>O</i> E
15	00001111	017	OF
16	00010000	020	10
17	00010001	021	11.
18	00010010	022	12
:	:	:	:
etc.	etc.	etc.	etc.

Sistema de numeração

Um sistema de numeração é composto por:

Base - b

e.g.
$$B = 16$$

Alfabeto Ordenado - conjunto de b símbolos distintos (dígitos)

Número - corresponde a uma sequência de dígitos.

e.g.
$$N_{(b)} \Leftrightarrow \dots d_2 d_1 d_0, d_{-1} d_{-2} \dots$$

Valor do Dígito (peso) - função do símb. e da pos. na sequência.

e.g.
$$p_2 = d_2 b^2$$

Exemplo:

S.N. : Decimal	Binário	Octal	Hexadecimal
2888610	101011102	5270 ₈	$A32C_{16}$

CONVERSÃO DE BASES ($b_1 \neq 10$ para a base $b_2 = 10$)

A conversão de um número numa base diferente de 10 para a base decimal reduz-se a representar esse número como um polinómio e de seguida determinar o equivalente decimal (ver Determinação do Equivalente Decimal)

CONVERSÃO DE BASES ($b_1 = 10$ para a base $b_2 \neq 10$)

A conversão de um número na base 10 para uma base diferente realiza-se em duas fases:

- A parte inteira é convertida segundo o método das divisões sucessivas.
- (2) A parte fraccionária é convertida segundo o método das multiplicações sucessivas.

Exemplo:

S.N.: Decimal

Binário

Hexadecimal

$$14, \dots_{(16)}$$

O número a converter e os quocientes sucessivos são divididos pela base.

A sequência de restos constitui o resultado da conversão.

1º resto = dígito menos significativo

MUDANÇA DE SISTEMA DE NUMERAÇÃO

CONVERSÃO DE BASES ($b_1 = 10$ para a base $b_2 \neq 10$) (cont.)

Exemplo: (cont)

C M . Decimal

S.N.: Decimal		Binario	Hexadecimai
20,35 ₍₁₀₎	→	10100,0101(2)	14,59 ₍₁₆₎
		0,35	0,35
		X 2	_ X 16
		0)70	210
		X 2	35
		(1) 40	(5) 60
		X 2	X 16
		(0) 80	360
		X 2	60
		1 60	9)60

Dimánia

Haradaaimal

CONVERSÃO DE BASES ($b_1 = 2^t$ para a base $b_2 = 2$ e vice-versa)

Atendendo às propriedades das potências facilmente se infere que:

- (1) Na conversão da base 2^t para a base 2, transforma-se cada dígito da base 2^t em t bits da base 2.
- (2) Na conversão da base 2 para a base 2^t, transforma-se cada t bits da base 2 num dígito da base 2^t.

Exemplo:

Binário

Hexadecimal

Códigos Binários

CÓDIGOS BINÁRIOS

CÓDIGO BINÁRIO

No presente contexto, por código binário, entende-se o código que estabelece a correspondência entre palavras escritas num qualquer sistema de numeração e palavras constituídas por caracteres binários.

e.g.
$$12_{(10)} <> 1100_{(2)}$$

CÓDIGO BINÁRIO NATURAL (CBN)

Código ponderado, gerado pelo sistema de numeração de base 2, em que os pesos das colunas são sucessivamente 2ⁿ⁻¹, 2ⁿ⁻², ..., 2¹, 2⁰.

CÓDIGO BINÁRIO REFLECTIDO (CBR) ou CÓDIGO DE GRAY

Código não ponderado, obtido do CBN por troca de símbolos do alfabeto binário, i.e., na primeira coluna temos 01 10 em vez de 01 01 do CBN, na segunda coluna temos 00 11 11 00 em vez de 00 11 00 11 do CBN etc., daí a designação de CB reflectido.

	CBN		CBR	
Γ0¯		000		000
1		001		001
2		010		011
3		011		010
4	🖴	100		110
5		101		111
6		110		101
[7]		111_		100

Números binários sem sinal

Adição binária

(a) Bit
$$O_1$$
, $1 + O = 1_2$

(b) Bit 1,
$$O + 1 = 1_2$$

(c) Bit 2,
$$O + O = O_2$$

(a) Bit 3,
$$1 + 1 = 10_2$$

(e) Bit 4,
$$1 + 1 + vai_um = 11_2$$

(e) Bit 4,
$$1 + 1 + vai_um = 11_2$$
 (f) Bit 5, $1 + O + vai_um = 10_2$

(g) Bit 6,
$$O + O + vai_um = 1_2$$

(h) Bit 7,
$$O + O = O_2$$

$$57_{10} + 26_{10} = 83_{10}$$

Subtração binária

Subtração Padrão

Equivalente em complemento de nove

Vai-um do MSB para o

around-

carry"

LSB End-

Subtração padrão

Equivalente em complemento de dez

Subtração binária

Subtração padrão

$$57_{10} - 30_{10} = 27_{10}$$

Subtração padrão

Equivalente em complemento de dois

Subtração binária-técnica

Números binários com bit de sinal

Números binários com bit de sinal

Representação sinal-magnitude de números decimais

Binário com sinal

Multiplicação binária - algoritmo de Booth

Funções Lógicas/Portas Lógicas

George Boole (1815-1864) Claude Shannon (~ 1930)

Operações Lógicas Básicas

AND			
X	Y	X.Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR		
X	Y	X + Y
0	0	0
0	1	1
1	0	1
1	1	1

NOT			
X	$\overline{\mathbf{X}}$		
0	1		
1	0		

Funções Lógicas/Portas Lógicas

$$y = a$$

$$y = a \& b$$

$$y = a \mid b$$

$$y = a ^b$$

$$\frac{a}{b} \sum_{OR} y$$

$$y = \overline{a}$$

$$y = \overline{a \mid b}$$

$$y = \overline{a \wedge b}$$

Funções Lógicas/Portas Lógicas

Função Lógica Básica	Símbolo Gráfico da Porta	Equação Booleana
AND	$A \longrightarrow Y$	$Y = A \cdot B$
OR	$A \longrightarrow Y$	Y = A + B
XOR	$A \longrightarrow Y$	$Y = A \oplus B$
NOT	$A \longrightarrow Y$	$Y = \overline{A}$
NAND	$A \longrightarrow Y$	$Y = \overline{A \cdot B}$
NOR	$A \longrightarrow B \longrightarrow Y$	$Y = \overline{A + B}$
XNOR	$A \longrightarrow B \longrightarrow Y$	$Y = \overline{A \oplus B}$