

Jhon Jairo Padilla Aguilar, PhD. UPB Bucaramanga

Congestión

- Sucede cuando el número de paquetes que se transmite sobre una red comienza a acercarse al límite de la capacidad de gestión de esta
- Como consecuencia, las prestaciones de la red disminuyen drásticamente

Control de la congestión

 El objetivo es mantener el número de paquetes en la red por debajo del nivel para el que decaen dramáticamente las prestaciones

El fenómeno

- Una red de datos es una red de colas
- En cada nodo existe una cola de paquetes asociada a cada enlace de salida
- El tamaño de las colas crece sin límite si la velocidad de llegada de paquetes es mayor que la velocidad de salida.
- En esta situación, el retardo de las colas tiende a infinito

Colas en un nodo

El fenómeno

- En la práctica si la velocidad de llegada es mayor o igual al 80% de la velocidad de salida, el tamaño de las colas crece drásticamente
- El tamaño de las colas es finito por lo que se desbordan, perdiéndose paquetes

Alternativas ante la congestión

- Descartar los paquetes de entrada para los que no exista memoria disponible
- El nodo podría implementar un método de control de flujo sobre sus vecinos de forma que el tráfico sea manejable

Problemas con el control de flujo

La congestión en un punto se propaga a toda la red

Funcionamiento ideal de una red

- Condiciones ideales:
 - Memorias temporales infinitas
 - No existe costo asociado a la transmisión de paquetes ni al control de congestión
- Rendimiento: # de paquetes entregados al Host Destino
- Carga: # de paquetes transmitidos por los sistemas finales origen
- Potencia = Rendimiento / Retardo

Desempeño Ideal de una red

Funcionamiento real de una red

- Condiciones reales:
 - Memorias temporales finitas (se rebosan)
 - El control de congestión consume capacidad de la red debido al intercambio de señales de control

Efectos de la congestión sin control

elay

Estado de no congestión

- El rendimiento de la red aumenta conforme lo hace la carga
- Llega un momento en que si la carga sigue creciendo, el rendimiento de la red aumenta pero en menor proporción (congestión moderada)

Congestión moderada

- La red sigue cursando el tráfico que le entra pero con un incremento en el retardo cada vez mayor
- Comportamiento real:
 - La carga no se distribuye uniformemente a través de la red
 - La red trata de equilibrar cargas encaminando paquetes por zonas menos congestionadas
 - Los nodos intercambian mayor señalización para evadir la congestión
 - Se reduce la capacidad disponible para datos

Congestión Severa

- A medida que aumenta la carga, el tamaño de las colas sigue creciendo
- Se llega a un momento en que el rendimiento decae al aumentar la carga de entrada (hasta casi cero)
 - Memorias temporales finitas que se rebosan y pierden paquetes
 - Se deben retransmitir los paquetes rechazados (sist.finales) además de los nuevos
 - Se deben retransmitir paquetes cuya confirmación tarda demasiado (capa de transporte)

Control de Congestión

- Mecanismos existentes:
 - Contrapresión
 - Paquetes de obstrucción
 - Señalización implícita de la congestión
 - Señalización explícita de la congestión

Mecanismos para el control de la congestión

Contrapresión

- Efecto similar a la contrapresión en fluidos que caen por un tubo
- Si se cierra el extremo final del tubo, el líquido ejerce una presión hacia el origen, donde el flujo es nulo
- Puede hacerse a nivel de enlaces o conexiones lógicas
- Se usan los métodos de control de flujo

Contrapresión

La restricción de flujo se propaga desde el destino por los nodos de la ruta hacia el origen

Contrapresión

- Se puede aplicar selectivamente a algunas conexiones lógicas de mayor tráfico
- Se puede usar en redes orientadas a conexión y permiten control de flujo a nivel de enlace
- Ejemplo: X.25 (FR, ATM, Internet no presentan esta característica)

Paquetes de obstrucción

- Al presentarse congestión en un nodo, este envía un paquete de control por la ruta inversa del paquete hasta el nodo origen o estación origen, que deberá reducir el tráfico
- Ejemplo: Protocolo ICMP (Internet Control Message Protocol)

Ejemplo: Control de congestión con ICMP

- ICMP tiene un mensaje de ralentización del emisor (SOURCE QUENCH)
- Puede ser enviado por un nodo o por el sistema final destino (se ha llenado su memoria temporal y debe rechazar datagramas IP)
- Se envía un mensaje SOURCE QUENCH por cada Datagrama IP rechazado
- El sistema final origen reduce la velocidad de emisión de paquetes hasta que no reciba más paquetes de ralentización

Señalización implícita de la congestión

- Las estaciones emisoras detectan la congestión de la red y reducen el flujo de paquetes automáticamente
- Forma de detección de la congestión:
 - Se incrementa excesivamente el retardo de los paquetes enviados y el número de paquetes rechazados por el destino
- Es responsabilidad de los sistemas finales (no precisa acciones por parte de los nodos)
- Efectiva en redes no orientadas a conexión (internet)

Ejemplo: Internet

- No hay conexiones lógicas en la red
- Se establecen conexiones lógicas entre los sistemas finales usando el protocolo TCP (que usa control de flujo)
- TCP usa mecanismos de control de congestión con señalización implícita de la congestión

Señalización explícita de la congestión

- La red alerta a los sistemas finales acerca del incremento de la congestión en la red
- Los sistemas finales toman medidas oportunas para reducir la carga de entrada a la red
- Operan sobre redes orientadas a conexión (FR, ATM)
- Controlan el flujo de paquetes de conexiones individuales
- Puede hacerse: hacia atrás, hacia adelante

Señalización hacia atrás

- Se envía un mensaje de notificación de congestión en sentido opuesto al sentido en que viajan los paquetes de una conexión lógica
- El mensaje indica que los paquetes transmitidos sobre esta conexión lógica pueden encontrar recursos congestionados
- Formas de envío del mensaje:
 - Alterando bits en la cabecera de un paquete de datos encabezado con la dirección del emisor
 - Con un paquete de control diferente a los datos

Señalización hacia adelante

- El mensaje de notificación de congestión se envía en el mismo sentido de los paquetes de datos
- El mensaje indica que un paquete dado sobre una conexión lógica dada ha encontrado recursos congestionados
- Formas de transmitirlo: (bits, paquetes de control)

Señalización hacia adelante

- En algunos sistemas, el sistema final destino recibe la notificación y devuelve un eco de ella sobre la conexión lógica hacia el emisor
- En otros sistemas el sistema final destino realiza un control de flujo sobre el sistema final origen (a nivel de capa de transporte)

Tipos de señalización explícita

 Otra clasificación puede hacerse según el criterio de control de flujo usado

Binarias:

- Usan alteración de bits
- El emisor reduce su flujo al recibir la notificación

Basadas en crédito:

- Se proporciona un crédito (octetos o paquetes) al emisor de una conexión lógica
- Cuando se agota el crédito no se envían más datos
- Usados con control de flujo extremo-extremo

Basadas en velocidad:

- Se le proporciona explícitamente un límite máximo de velocidad de emisión de paquetes al emisor
- Esto lo puede hacer cualquier nodo a lo largo de la ruta
- Se hace mediante un mensaje de control