

B41 Sept 20 Lec 1 Notes

Cylindrical Coordinates

In Cylindrical coordinates, a point P(x,y,z) has coordinates (r,0,z).

- (i), r is the distance between P and the Z axis.
- (ii) 0 is the usual polar angle measured counterclockwise from the positive x-axis.
- (iii) As in Cartesian Coordinates, the z coordinate is the signed vector distance between P and the XY plane.

X=rcos θ y=rsin θ Z=Z $0 \le r < \infty$, $0 \le \theta \le 2\pi$ $= \infty \le Z < \infty$

Spherical Coordinates

In spherical coordinates, a point P(x,y,z) has coordinates (p,θ,ϕ)

- .(i) P is the distance from the origin to P.
- (ii) 0 is the same angle as in cylindrical coordinates
- (iii) ϕ is the angle between the positive Z axis and the line DP.

 $X = P \sin \phi \cos \theta$ $y = P \sin \phi \sin \theta$ $z = P \cos \phi$ $0 \le P \le \infty$ $0 \le \theta \le 2\pi$ $0 \le \phi \le \pi$

θ= avctan 뜻

$$\phi = \pm \arctan \frac{\sqrt{x^2 + y^2}}{2}$$

Graphs of functions

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function Z = f(x,y) with $(x,y) \in U \subset \mathbb{R}^2$.

Graph of f = { (x,y,f(x,y)) | (x,y)& U}

Definition: Let f: U - R with UCR"

Graph of f = { (x, x2, ..., xn, f(x, x2, ..., xn)) | (x, x2, ..., xn) ∈ Rn}

Level Sets, curves, and surfaces

Definition:

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ and let $K \subset \mathbb{R}$. The level set of f at value K is defined to be the set of those point $x \in U$ at which f(x) = k.

The level set of $f = \{(x,k) \mid x \in U\}$

If n=2, it is said to be level curve. If n=3, it is said to be level surface.

The level curves of a function fof two variables are the curves flxy)=k, where kt range(f).