

sadness

- ---- 1 drooping upper evelids
- · 2 losing focus in eyes
- 3 slight pulling down of lip corners

anger

- 1 eyebrows down and together
- 2 eyes glare
- -3 narrowing of the lips

contempt

- 1 lip corner tightened and raised on only one side of face

disgust

- nose wrinkling
 - · ②upper lip raised

surprise

- Lasts for only one second: - 1 eyebrows raised
- -3 mouth open

Facial Expression Recognition

Tao Yuan (ty353) I Huang (ih265)

Problem Statement

Predict people's emotion based on their facial expression

Dataset

- Toronto Faces Dataset
- 32 by 32 greyscale
- 2925 labeled images, 98058 unlabeled images
- label: identity and emotion

(g) Neutral

Supervised Learning

kNN	64%
Logistic Regression	73%
Linear SVM	71%
MLP	75%

RBF Kernel

- 80% accuracy
- PCA for dimension reduction

The RBF kernel $K(x, x') = \exp(-\gamma ||x - x'||^2)$ is one of the most popular kernel functions. It adds a "bump" around each data point:

$$f(\boldsymbol{x}) = \sum_{i=1}^{m} \alpha_i \exp(-\gamma ||\boldsymbol{x}_i - \boldsymbol{x}||^2) + b$$

Semi-Supervised Learning

- Small amount of labeled data with a large amount of unlabeled data
- Label Propagation
- Label Spreading

Ensemble modeling

- MLP, logistic regression, RBF SVM
- 84% accuracy

Next Step

 Further take advantage of the unlabeled images

