MACHINE LEARNING FOR DEVELOPERS – A SHORT INTRODUCTION

Software Engineer vs. Data Engineer vs. Data Scientist

- Software Engineer
 "builds applications and systems"
- Data Engineer "builds systems that consolidate, store, and retrieve data from the various applications and systems […]"
- Data Scientist
 "builds analysis on top of data.
 This may come in the form of [...]
 a machine learning algorithm that is
 then implemented into the code base
 by software engineers and data engineers"

definitions taken from http://101.datascience.community/2016/11/28/data-scientists-data-engineers-software-engineers-the-difference-according-to-linkedin/

2

AlphaGo

"The original **AlphaGo** first *learned from studying 30* million moves of expert human play"

"By contrast, **AlphaGo Zero** *never* saw humans play. Instead, it began by knowing only the rules of the game. "

source: https://theconversation.com/googles-new-go-playing-ai-learns-fast-and-even-thrashed-its-former-self-85979

Regression: predict continues numeric valued output

Regression: predict continues numeric valued output

Regression: predict continues numeric valued output

Regression: predict continues numeric valued output

Classification: predict a discrete number of category values

Features – the input data

- Input of a prediction is a feature vector
- A "feature is an individual measurable property or characteristic of a phenomenon being observe" (taken from wikipedia)
- Challenge is to identify and extract the relevant features.

num	size (m²)	rooms	age	
1	90	2	23	
2	101	3	3	
19754	1330	11	12	

key features

num	size (KiB)	#attachm.	dkim?	?TEXT?
1	21	0	1	?
2	421	3	0	?

Vectorizing text

 In most cases text will be preprocessed.
 E.g. tokenizing, stop-words, lower-casing, normalizing URLs/ email addresses, stemming, ...

- Usually, a vocabulary list of the most "important" words is used to build the feature vector.
- The vocabulary list may be generated based on the training data. E.g. by using the TF-IDF approach

Prediction

Prediction function

Prediction function

- Essentially, a **prediction function** is a function which takes the feature vector (x) and returns the prediction value (y).
- Also called *target* or *hypothesis* function.

$$y = h_{\theta}(x)$$

Usage example:

```
// target function h (which is output of the learn process)
Function<Double[], Double> h = ...;
// set the feature vector with house size=101 and number-of-rooms=3
Double[] x = new Double[] \{ 101.0, 3.0 \};
// and predict the house price (label)
double y = h.apply(x);
```

Prediction function

- Essentially, a prediction function is a function which takes the feature vector (x) and returns the prediction value (y).
- Also called target or hypothesis function.

$$y = h_{\theta}(x)$$

Usage example:

```
// target function h (which is output of the learn process)
Function<Double[], Double> h = ...;

// set the feature vector with house size=101 and number-of-rooms=3
Double[] x = new Double[] { 101.0, 3.0 };

// and predict the house price (label)
double y = h.apply(x);
```


Which machine learning algorithm to use?

Which algorithm?

$$h_{\theta}(x) = ... algorithm ...$$

Which machine learning algorithm to use?

Which algorithm?

$$h_{\theta}(x) = ... algorithm ...$$

Some supervising algorithms

Algorithm	Problem Type	Easy to explain ?	Average predictive accuracy	Training speed	Prediction speed	parameter tuning needed?	Works with small num. of observations	Handles lots of irrelevant features well
KNN	Either	Yes	Lower	Fast	Depends on n	Minimal	No	No
Linear regression	Regression	Yes	Lower	Fast	Fast	None	Yes	No
Logistic regression	Classification	Somewhat	Lower	Fast	Fast	None	Yes	No
Naive Bayes	Classification	Somewhat	Lower	Fast	Fast	Some	Yes	Yes
Decision trees	Either	Somewhat	Lower	Fast	Fast	Some	No	No
AdaBoost	Either	No	Higher	Slow	Fast	Some	No	Yes
Neural networks	Either	No	Higher	Slow	Fast	Lots	No	Yes

taken from http://www.dataschool.io/comparing-supervised-learning-algorithms/

Which machine learning algorithm to use?

Which algorithm?

$$h_{\theta}(x) = ... algorithm ...$$

Some supervising algorithms

Algorithm	Problem Type	Easy to explain ?	Average predictive accuracy	Training speed	Prediction speed	parameter tuning needed?	Works with small num. of observations	Handles lots of irrelevant features well
KNN	Either	Yes	Lower	Fast	Depends on n	Minimal	No	No
Linear regression	Regression	Yes	Lower	Fast	Fast	None	Yes	No
Logistic regression	Classification	Somewhat	Lower	Fast	Fast	None	Yes	No
Naive Bayes	Classification	Somewhat	Lower	Fast	Fast	Some	Yes	Yes
Decision trees	Either	Somewhat	Lower	Fast	Fast	Some	No	No
AdaBoost	Either	No	Higher	Slow	Fast	Some	No	Yes
Neural networks	Either	No	Higher	Slow	Fast	Lots	No	Yes

taken from http://www.dataschool.io/comparing-supervised-learning-algorithms/

Linear Regression

Linear regression models the relationship between the input feature vector (x) and a the response label (y).

$$h_{\theta}(x) = \theta_0 * 1 + \theta_1 * x_1 + ... + \theta_n * x_n = \theta^T * x$$

Thetas θ are used within a learning process to adapt the regression function based on the training data.

Linear Regression

 Linear regression models the relationship between the input feature vector (x) and a the response label (y).

$$h_{\theta}(x) = \theta_0 * 1 + \theta_1 * x_1 + \dots + \theta_n * x_n = \theta^T * x$$

- Thetas θ are used within a learning process to adapt the regression function based on the training data.
- Simple example

Linear Regression

 Linear regression models the relationship between the input feature vector (x) and a the response label (y).

$$h_{\theta}(x) = \theta_0 * 1 + \theta_1 * x_1 + \dots + \theta_n * x_n = \theta^T * x$$

- Thetas θ are used within a learning process to adapt the regression function based on the training data.
- Simple example

Process the prediction function

 Creating a new instance of the regression function with the theta vector. The theta vector is result of a previous train process

```
Double[] thetas = new Double[] { 1.004579, 5.286822 }; LinearRegressionFunction func = new LinearRegressionFunction(thetas); h_{\theta}(x) = 1.004579*1 + 5.286822*x_1
```

• .. and predict the house price based on house size of 155 m². The first element of the feature vector (x_0) has to be 1 for computational reasons

```
Double[] features = new Double[] { 1.0, 155.0 };  
double predictedPrice = func.apply(features);  
h_{\theta}(x) = 1.004579 * 1 + 5.286822 * 155.0
```

Prediction graph incl. real price-size pairs

$$h_{\theta}(x) = 1.004579 * 1 + 5.286822 * x_1$$
 (with $x_1 = size$)

How do you know that the used theta values { 1.004579, 5.286822 } are the best fit?

Evaluate the prediction function

- Evaluate the prediction functions to identify the theta vector θ which produces the best fitting prediction.
- E.g.:

$$h_{\theta}(x) = 1.001391 * 1 + 2.058826 * size$$

$$h_{\theta}(x) = 1.003745 * 1 + 3.912451 * size$$
Evaluate
$$h_{\theta}(x) = 1.004579 * 1 + 5.286822 * size$$

Evaluate the prediction function

- Evaluate the prediction functions to identify the theta vector θ which produces the best fitting prediction.
- E.g.:

$$h_{\theta}(x) = 1.001391 * 1 + 2.058826 * \text{size}$$

$$h_{\theta}(x) = 1.003745 * 1 + 3.912451 * \text{size}$$

$$J(\theta)$$

$$h_{\theta}(x) = 1.004579 * 1 + 5.286822 * \text{size}$$

Evaluate the prediction function

- Evaluate the prediction functions to identify the theta vector θ which produces the best fitting prediction.
- E.g.:

$$h_{\theta}(x) = 1.001391 * 1 + 2.058826 * size$$

$$h_{\theta}(x) = 1.003745 * 1 + 3.912451 * size$$

$$J(\theta)$$

$$h_{\theta}(x) = 1.004579 * 1 + 5.286822 * size$$

 Requires test data including labels (which represents the right "answer")

Linear Regression - Cost function

 To identify the best-fitting theta parameter vector, you need a cost function, which will evaluate how well the prediction function performs.

$$J(\theta) = \frac{1}{2 * m} * \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Linear Regression - Cost function

 To identify the best-fitting theta parameter vector, you need a cost function, which will evaluate how well the prediction function performs.

$$J(\theta) = \frac{1}{2 * m} * \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Simple example:

Linear Regression - Cost function

 To identify the best-fitting theta parameter vector, you need a cost function, which will evaluate how well the prediction function performs.

Evaluate the prediction function - examples

$$h_{\theta}(x) = 1.001391 * 1 + 2.058826 * \text{size}$$

69,829

Evaluate the prediction function - examples

■ How to get the best fitting Theta vector: minimize $J(\theta)$

How to get the best fitting prediction function (theta parameters)?

linear regression

algorithm

$$h_{\theta}(x) = \theta^T * x$$

Learner

minimize

 $J(\theta)$

prediction function

$$h_{\theta}(x) = ?? * x_0 + ?? * x_1 + ...?$$

How to get the best fitting prediction function (theta parameters)?

algorithm

$$h_{\theta}(x) = \theta^T * x$$

Learner

minimize

 $J(\theta)$

 $h_{\theta}(x) = 1.004579 * x_0 + 5.286822 * x_1$

labelled train data

How to get the best fitting prediction function (theta parameters)?

Minimizing the cost function – Gradient descent

 Gradient descent minimizes the cost function, meaning that it's used to find the theta combinations that produces the *lowest cost* J(θ) based on the training data.

```
repeat { \theta_{0} := \theta_{0} - \alpha * \frac{1}{m} * \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) * x_{0}^{(i)} \theta_{1} := \theta_{1} - \alpha * \frac{1}{m} * \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) * x_{1}^{(i)} ... \theta_{n} := \theta_{n} - \alpha * \frac{1}{m} * \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) * x_{n}^{(i)} }
```

- Within each iteration a new value will be computed for each theta parameter: θ_0 , θ_1 , ... and θ_n in parallel.
- Requires high calculating power, potentially

Minimizing the cost function – Gradient descent

 Gradient descent minimizes the cost function, meaning that it's used to find the theta combinations that produces the *lowest cost* J(θ) based on the training data.

- Within each iteration a new value will be computed for each theta parameter: θ_0 , θ_1 , ... and θ_n in parallel.
- Requires high calculating power, potentially

Gradient decent – a simple Java-based implementation

```
static LinearRegressionFunction train(LinearRegressionFunction targetFunction,
                                      List<Double[]> dataset,
                                      List<Double> labels,
                                      double alpha) {
  int m = dataset.size();
 Double[] thetaVector = targetFunction.getThetas();
 Double[] newThetaVector = new Double[thetaVector.length];
  for (int j = 0; j < thetaVector.length; j++) { // new theta of each element
    double sumErrors = 0;
    for (int i = 0; i < m; i++) {
      Double[] featureVector = dataset.get(i);
      double error = targetFunction.apply(featureVector) - labels.get(i);
      sumErrors += error * featureVector[j];
   // compute the new theta value
   double gradient = (1.0 / m) * sumErrors;
   newThetaVector[j] = thetaVector[j] - alpha * gradient;
  return new LinearRegressionFunction (newThetaVector);
```

Train

Train the regression function

```
LinearRegressionFunction func = new LinearRegressionFunction(new Double[] { 1.0, 1.0 });
for (int i = 0; i < 1000; i++) {
    func = Learner.train(func, dataset, labels, 0.1);
    graph.print(i, Cost.cost(func, dataset, labels));
}</pre>
```

Graphs

Underfitting

- Underfitting occurs when the machine learning algorithm can not capture the underlying trend of the data.
- Underfitting is often due to an excessively simple model such as

$$h_{\theta}(x) = \theta_0 * 1 + \theta_1 * size$$

A common way to correct underfitting is to

add more features

$$h_{\theta}(x) = \theta_0 * 1 + \theta_1 * size + \theta_2 * rooms + \dots$$

add polynomial features

$$h_{\theta}(x) = \theta_0 * 1 + \theta_1 * size + \theta_2 * size^2 + \dots$$

 Adding more features often requires additional feature scaling which standardize the range of independent variables

Playing with the number of parameters

Example:

- If you add too many features, you could end up with a prediction function that is overfitting.
- Overfitting occurs when the function fits the training data too well, by capturing noise or random fluctuations in the training data.

Detecting Overfitting

 Holdout method: Use e.g. 60% of the labelled data to train models. Use the remaining untouched labelled data for *cross-validation* and final *tests*

Detecting Overfitting

- Holdout method: Use e.g. 60% of the labelled data to train models. Use the remaining untouched labelled data for cross-validation and final tests
- Examples

cost with train examples

cost with untouched examples

cost with train examples

cost with train examples

cost with untouched examples

Detecting Overfitting

- Holdout method: Use e.g. 60% of the labelled data to train models. Use the remaining untouched labelled data for cross-validation and final tests
- Examples

well-fitting cost with train examples
 cost with untouched examples
 overfitting cost with train examples
 cost with untouched examples

- Possible options to avoid overfitting
 - Use a larger set of training data.
 - Use an improved machine learning algorithm by considering regularization.
 - Use fewer features

Machine learing libraries and tools

- In practice, you will likely rely on machine learning frameworks, libraries, and tools.
- Some examples

Software	Creator	Written in	Interface
Torch	Ronan Collobert, Koray Kavukcuoglu, Clement Farabet	C, Lua	Lua, LuaJIT, C, utility library for C++/OpenCL
Caffe2	Facebook	C++, Python	Python, MATLAB
Scikit-learn	David Cournapeau	C++, Python	Python
Microsoft Cognitive Toolkit	Microsoft Research	C++	Python, C++, Command line, BrainScript
TensorFlow	Google Brain team	C++, Python	Python, Java, C/C++, Go, R
Spark ML	Apache Software Fundation	Scala	Python, Java, Scala
Deeplearning4j	Skymind engineering team; Deeplearning4j community;	C++, Java	Python, Java, Scala, Clojure
Weka	University of Waikato	Java	Java

Parts taken from https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

Literature

Andrew Ng's <u>Machine Learning course</u> (~11 weeks, for free)

Udacity's <u>Intro to Machine Learning</u> (~10 weeks, for free)

