Statystyka stosowana 2023/2024

Lista 4

- Dla rozkładu lognormalnego wyznacz wartość średnią, następnie sprawdź, czy średnia z próby
 jest nieobciążonym estymatorem parametru średniej. Wysymuluj próbę prostą z rozkładu
 lognormalnego i na podstawie Metody Monte Carlo sprawdź własności estymatora.
- 2. Rozpatrzmy próbę prostą $X_1,...,X_n$ oraz statystykę $U=\max\{X_1,...,X_n\}$. Znajdź rozkład statystyki U dla próby z następujących rozkładów:
 - (a) normalnego,
 - (b) lognormalnego,
 - (c) Pareto.

Narysuj dystrybu
anty empiryczne statystyki U dla rozpatrywanych rozkładów.

- 3. Sprawdź czy estymator wariancji $S_1 = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ jest estymatorem nieobciążonym dla rozkładu lognormalnego. Porównaj z estymatorem $S_2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$
- 4. Niech $X_1, ..., X_n$ oznacza losową próbę prostą z rozkładu dwumianowego $\mathcal{B}(m, p)$ gdzie $p \in (0, 1)$ Znajdź estymator największej wiarygodności parametru
 - (a) p
 - (b) p^2 .
- 5. Niech $X_1, ..., X_n$ oznacza losową próbę prostą z rozkładu Laplace'a $\mathcal{L}(0, 1/\lambda)$ o gęstości

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x|}, \ x \in R.$$

Wyznacz estymator największej wiarygodności parametru λ .

6. Niech $X_1,...,X_n$ oznacza losową próbę z przesuniętego rozkładu Pareto $\mathcal{P}(x_0,\alpha)$ o gęstości

$$f(x) = \frac{\alpha}{x_0} \left(\frac{x_0}{x}\right)^{\alpha+1} 1_{(x_0,\infty)}(x), \ x_0 > 0, \ \alpha > 0.$$

Wyznacz estymator największej wiarygodności parametru (x_0, α) . Zaprogramuj tę procedurę w wybranym środowisku.

7. (a) Pokaż, że jeśli X ma rozkład wykładniczy z parametrem $\lambda=1,$ wówczas $Y=X+\theta$ ma gęstość daną następującym wzorem:

$$f(x) = e^{-(x-\theta)}, \ x > \theta. \tag{1}$$

- (b) Napisz procedurę do symulacji zmiennych zmiennych losowych z rozkładu o gęstości danej wzorem (1).
- (c) Wyznacz estymator parametru θ wykorzystując metodę największej wiarygodności.
- (d) Wykorzystując metodę Monte Carlo sprawdź poprawność estymatora.
- 8. Niech $X_1, ..., X_{2n+1}$ będzie próbą prostą z rozkładu normalnego z nieznaną średnią μ oraz wariancją $\sigma^2 = 1$. Rozważmy dwa estymatory parametru μ : próbkowa średnia oraz próbkowa mediana. Aby sprawdzić, który estymator jest lepszy wysumuluj próbę ze standardowego rozkładu normalnego i znajdź błąd średniokwadratowy dla obydwu estymatorów. Powtórz tą procedurę 100 razy aby uzyskać próbkową wartość oczekiwaną błędu estymacji. Jakie wnioski możesz wyciągnąć na podstawie tego eksperymentu?
- 9. Niech X będzie zmienną losową o rozkładzie danym następującym wzorem

$$f(x) = (a+1)x^{a}, \quad 0 < x < 1. \tag{2}$$

Znajdź estymator parametru a wykorzystując metodę największej wiarygodności.

10. Niech $X_1,...,X_7$ będzie próbą prostą z rozkładu normalnego ze średnią μ i wariancją σ^2 . Rozpatrzmy dwa estymatory μ :

$$\Theta_1 = \frac{X_1 + \dots + X_7}{7}, \quad \Theta_2 = \frac{2X_1 - X_6 + X_4}{2}.$$

- (a) Która statystyka jest lepszym estymatorem parametru μ ?
- (b) Znajdź rozkłady statystyk Θ_1 oraz Θ_2 .
- (c) Wysymuluj 1000 razy $X_1, ..., X_7$ i wyznacz na tej podstawie wartości statystyk Θ_1 oraz Θ_2 . Policz ich dystrybuanty empiryczne i porównaj z dystrybuantami rozkładów wyznaczonych w punkcie (b).