

- 1. How to navigate a swarm around jamming areas?
- Particle Swarm Optimization (PSO) Algorithm + Path Planning Algorithm
- 2. How to maximizing communication quality between agents?
 - Communication-aware formation control

Rigid Formation

The formation of groups of mobile agents in which all inter-agent distances remain constant is called **rigid**.

The **relative distance** between agent i and agent j is denoted by

$$r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} = ||q_i - q_j||.$$

Let R > 0 denote the **communication range** between two agents. The neighboring set of agent i can be denoted by

$$N_i = \{j \in \mathcal{V} \mid r_{ij} \leq R\}.$$

Graph Theory

A **graph** G is a pair of $(\mathcal{V}, \mathcal{E})$ consisting of a set of **vertices** $\mathcal{V} = \{1, 2, ..., i, ..., j, ..., n\}$ and a set of ordered pairs of the vertices called **edges** $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$. I.e., $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}, i \neq j\}$. Here, we assume that G has no **self-edges** and **undirected**.

Antenna Near-field and Far-field

Far-field

The communication channel quality in antenna far-field is:

$$f_{ij} = \exp\left(-\alpha(2^{\delta} - 1)\left(\frac{r_{ij}}{r_0}\right)^{\upsilon}\right).$$

Near-field

A simple model of antenna near-field communication quality is:

$$n_{ij} = \frac{r_{ij}}{\sqrt{r_{ij}^2 + r_0^2}}$$

where

 r_0 : antenna field separator,

 r_{ij} : distance between agent i and agent j.

Signal Scattering Effect

When a traveling wave encounters a change in the wave impedance, it will reflect, at least partially. If the reflection is not total, it will also partially transmit into the new impedance.

Path Loss Effect

The reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. As a result, the received signal power level is several orders below the transmitted power level.

Interference Effect

When a signal is disrupted as it travels along the communication channel between its source and receiver. It may cause only a temporary loss of a signal and may affect the quality of the communication.

Interaction Model

The interaction model is denoted by

$$\phi(r_{ij}) = n_{ij} \cdot f_{ij} = \frac{r_{ij}}{\sqrt{r_{ij}^2 + r_0^2}} \cdot \exp\left(-\alpha(2^{\delta} - 1)\left(\frac{r_{ij}}{r_0}\right)^{\nu}\right).$$

To maximizes the communication performance, we take the first-order derivative of the interaction model,

$$\frac{d\phi}{dr_{ij}} = \phi(r_{ij}) = \frac{-\beta v(r_{ij})^{v+2} - \beta v r_0^2 (r_{ij})^v + r_0^{v+2}}{\sqrt{(r_{ij}^2 + r_0^2)^3}} \cdot \exp\left(-\beta \left(\frac{r_{ij}}{r_0}\right)^v\right).$$

A gradient controller moves agents to maximize communication performance.

Gradient Control Model

The gradient control model of agent i is denoted by

$$G_i = \sum_{j \in N_i} [\nabla_{q_i} \phi(r_{ij})] = \sum_{j \in N_i} [\phi(r_{ij}) \cdot e_{ij}]$$

where
$$e_{ij} = (q_i - q_j)/\sqrt{r_{ij}}$$
.

Particle Swarm Optimization (PSO) is a biology inspired algorithm.

It is commonly used in multi-robot path planning.

Particle Swarm Optimization

Destination

Fitness Function

The fitness value of agent i is:

$$f_i = d_{\text{dest}} \cdot w_{\text{dest}} - \log_{10} \left(h_{\text{jam}} \right) \cdot w_{\text{jam}},$$

where

- d_{dest} is the distance from agent to destination.
- h_{jam} is the distance from agent to jam point.
- w_{dest} and w_{jam} are adjustable weight to the distance vector.

Discretized Environment

Simulation Environments

Theta*

Jump Point Search

Breadth First Search

Greedy Best First Search

A*

Dijkstra

- A* is identified as the most effective approach.
- Proposed a novel control strategy for swarm navigation in the presence of unknown jamming areas.
- Ensures efficient navigation, formation maintenance, and robust communication through extensive simulations in all 30 simulations.

