Лекция 6.

Проверка статистических гипотез

 $\exists \vec{X} = (X_1, \dots, X_n)$ из некоторого распределения F

Def. <u>Гипотезой</u> H называется предположение о распределении наблюдаемой случайной величины.

Доказать какое-то утверждение с помощью методов матстатистики невозможно - можно лишь с какой-то долей уверенности утверждать

Def. Гипотеза называется <u>простой</u>, если она однозначно определяет распределение: $H: F = F_1$, где F_1 - распределение известного типа с известными параметрами

В противном случае гипотеза называется сложной - она является объединением конечного или бесконечного числа гипотез

Например, «величина X принадлежит нормальному распределению» - сложная гипотеза, а «величина X принадлежит нормальному распределению с матожиданием a=1 и дисперсией $\sigma^2=1$ » - простая

В общем случае работаем со схемой из двух или более гипотез. В ходе проверки принимается ровна одна из них. Мы ограничемся самой простой схемой из 2 гипотез: H_0 - основная (нулевая) гипотеза, $H_1 = \overline{H_0}$ - альтернативная (конкурирующая) гипотеза, состоящая в том, что основная гипотеза неверна

Основная гипотеза H_0 принимается или отклоняется при помощи статистики критерия K

$$K(X_1,\ldots,X_n)\longrightarrow \mathbb{R}=\overline{S}\cup S\longrightarrow (H_0,H_1)$$
 $\begin{cases} H_0, & \text{если } K(X_1,\ldots,X_n)\in \overline{S} \\ H_1, & \text{если } K(X_1,\ldots,X_n)\in S \end{cases}$

Вместо «гипотеза доказана» лучше употреблять «гипотеза принимается/отвергается» Область S называется критической областью, а точка $t_{\rm kp}$ на границе областей называется критической

Def. Ошибка первого рода состоит в том, что H_0 отклоняется, хотя она верна. Аналогично, ошибка второго рода состоит в том, что H_1 отклоняется, хотя она верна.

Def. Вероятность α ошибки первого рода называется уровнем значимости критерия. Вероятность ошибки второго рода обозначаем β . Мощностью критерия называется вероятность $1 - \beta$ (вероятность недопущения ошибки второго рода)

Ясно, что критерий будет тем лучше, чем меньше вероятности ошибок α и β . При увеличении объема выборки уменьшаются обе вероятности. При фиксированном объему попытки уменьшить одну вероятность увеличат другую

Одним из способов является фиксация одной вероятности (принято α) и уменьшение другой

Построение критериев согласия

Def. Говорят, что критерий K является критерием асимптотического уровня ε , если вероятность ошибки первого рода $\alpha \longrightarrow \varepsilon$

Def. Критерий K для проверки гипотезы H_0 называется состоятельным, если вероятность ошибки второго рода $\beta \underset{n \to \infty}{\longrightarrow} 0$

Def. Критерием согласия уровня ε называем состоятельный критерий асимптотического уровня ε

Обычно критерий согласия строится по следующей схеме: берется статистика $K(X_1, \ldots, K_n)$, обладающая свойствами:

- 1. Если H_0 верна, то $K(X_1,\ldots,X_n) \rightrightarrows Z$, где Z известное распределение
- 2. Если H_0 неверна, то есть верна H_1 , то $K(X_1, ..., X_n) \xrightarrow[n \to \infty]{p} \infty$ (достаточно сильно отклоняться от распределения Z)

Построенный таким образом критерий является критерием согласия, то есть обладает свойствами

- 1. критерия асимптотического уровня
- 2. состоятельного критерия

Пусть $t_{\rm kp}$ - критическая точка такая, что $P(|Z|>t_{\rm kp})=\varepsilon$ - заданный уровень ошибки первого рода

$$\begin{cases} H_0, & \text{если } |K| < t_{\text{кр}} \\ H_1, & \text{если } |K| \ge t_{\text{кр}} \end{cases}$$

- 1. Тогда $\alpha = P(|K| \ge t_{\rm kp} \mid H_0) = 1 P(|K| < t_{\rm kp} \mid H_0) = 1 (F_K(t_{\rm kp}) F_K(t_{\rm kp})) = 0$ $F_K(t_{\rm kp}) \xrightarrow{F_K(t) \xrightarrow{n \to \infty} F_Z(t)} 1 (F_Z(t_{\rm kp}) F_Z(t_{\rm kp})) = 0$ $F_K(t_{\rm kp}) = 0$
- 2. Если H_1 верна, то $|K| \xrightarrow{p} \infty$, то есть $\forall C \ P(|K| > C \mid H_1) \xrightarrow{p} 1 \Longrightarrow \beta = P(|K| < C \mid H_1) \xrightarrow{p} 0$

Гипотеза о среднем нормальной совокупности при известной дисперсии

$$\exists \vec{X} = (X_1, \dots, X_n)$$
 из $N(a, \sigma^2)$, причем σ^2 известен.

Проверяется гипотеза, что $H_0: a = a_0$, против $H_1: a \neq a_0$ для уровня значимости α

1. По пункту 1 теоремы, если
$$H_0: a=a_0$$
 верна, то $K=\sqrt{n}\frac{\overline{x}-a_0}{\sigma}=\sqrt{n}\frac{\overline{x}-a}{\sigma}\in N(0,1)$

2. Если верна
$$H_1: a \neq a_0$$
, то $|K| = \sqrt{n} \left| \frac{\overline{x} - a_0}{\sigma} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{\sigma} + \frac{a - a_0}{\sigma} \right| =$

$$= \left| \underbrace{\sqrt{n} \frac{\overline{x} - a}{\sigma}}_{\in N(0,1), \text{ограничен по вероятности}} + \underbrace{\sqrt{n} \frac{a - a_0}{\sigma}}_{\text{const}} \right| \xrightarrow{p} \infty$$

Для уровня значимости α находим $t_{\rm KP}$ такую, что $\alpha = P(|K| \ge t_{\rm KP} \mid H_0) = P(|Z| \ge t_{\rm KP}) \Longrightarrow P(|Z| < t_{\rm KP}) = 2F_0(t_{\rm KP}) - 1 = 1 - \alpha$ $F_0(t_{\rm KP}) = 1 - \frac{\alpha}{2}$ - то есть $t_{\rm KP}$ - квантиль стандартного нормального распределения уровня $1 - \frac{\alpha}{2}$ H_0 , если $|K| < t_{\rm KP}$ H_1 , если $|K| \ge t_{\rm KP}$

Гипотеза о среднем нормальной совокупности при неизвестной дисперсии

1. По пункту 4 основной теоремы, если $H_0: a=a_0$ верна, то $K=\sqrt{n}\frac{\overline{x}-a_0}{S}=\sqrt{n}\frac{\overline{x}-a}{S}\in T_{n-1}$

2. Если верна
$$H_1: a \neq a_0$$
, то $|K| = \sqrt{n} \left| \frac{\overline{x} - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S} \right| = \sqrt{n} \left| \frac{\overline{x} - a}{S} + \frac{a - a_0}{S}$

Аналогично получаем t_{kp} - квантиль распределения T_{n-1} уровня $1-\frac{\alpha}{2}$

Доверительные интервалы как критерии гипотез по параматрам распределения

 $\exists (X_1,\ldots,X_n)$ из F_{θ} , где F_{θ} - распределение известного типа с неизвестным параметром θ Проверяется гипотеза, что $H_0: \theta = \theta_0$, против $H_1: \theta \neq \theta_0$

Допустим, что для θ построен доверительный интервал $(\theta_{\gamma}^-, \theta_{\gamma}^+)$, то есть $P(\theta_{\gamma}^- < \theta < \theta_{\gamma}^+) = \gamma$.

Тогда критерий
$$\begin{cases} H_0, & \text{если } \theta_0 \in (\theta_\gamma^-, \theta_\gamma^+) \\ H_1, & \text{если } \theta_0 \notin (\theta_\gamma^-, \theta_\gamma^+) \end{cases}$$
 будет уровня $\alpha = 1 - \gamma$
$$\alpha = P(\theta_0 \notin (\theta_\gamma^-, \theta_\gamma^+) \mid H_0) = 1 - P(\theta_0 \in (\theta_\gamma^-, \theta_\gamma^+) \mid X \in F_{\theta_0}) = 1 - \gamma$$

Поэтому доверительные интервалы можно использовать для проверки гипотез

Но почему в схеме $\begin{cases} H_0: \ a=\overline{x} \\ H_1: \ a\neq \overline{x} \end{cases}$ основная гипотеза всегда верна, тогда как выборочно среднее на практике почти всегда не равняется матожиданию. Потому что ...

А вот нефиг такие гипотезы вообще выдвигать

© Блаженов А. В.

Критерий вероятности появления события

 $\Box P(A) = p$ - вероятность успеха при одном испытании. При достаточно большом количестве испытаний n событие A появилось m раз. Проверяется $H_0: p = p_0$ против $H_1: p \neq p_0$ В качестве статистики критерия возьмем величину $K = \frac{m - np_0}{\sqrt{np_0q_0}}$

- 1. Если H_0 верна, то $K = \frac{m-np}{\sqrt{npq}} \rightrightarrows N(0,1)$ по ЦПТ
- 2. Lab.

Из тех же соображений $t_{\rm kp}$ - квантиль N(0,1) уровня $1-\frac{\alpha}{2}$

$$\left\{ egin{aligned} H_0: p = p_0, & ext{ если } |K| < t_{ ext{kp}} \ H_1: p
et p_0 & ext{ если } |K| \ge t_{ ext{kp}} \end{aligned}
ight.$$

Ex. При посеве 4000 семян 970 всходов оказались рецессивного цвета, а 3030 - доминантного. Проверим гипотезу $H_0: p=\frac{1}{4}$ - Мендель прав, против $H_1: p=\frac{1}{4}$ - Мендель не прав, для уровня значимости - 0.05

$$K = \frac{m - np_0}{\sqrt{np_0q_0}} = \frac{970 - 4000 \cdot \frac{1}{4}}{\sqrt{4000\frac{1}{4}\frac{3}{4}}} \approx -1.095$$

Так как $|K| = 1.095 < 1.96 = t_{\rm kp}$, то $H_0: p = \frac{1}{4}$ верна