Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture # 10

Definition of Conditional PMF

How does the distribution of y change with x?

$$p_{Y|X}(y|x) = P(Y = y|X = x) = \frac{P(Y = y \cap X = x)}{P(X = x)} = \frac{p_{XY}(x, y)}{p_X(x)}$$

Conditional PMF of Y given X = 2

			Y		
		1	2	3	
	0	1/8	0	0	1/8
_	1	0	1/4	1/8	3/8
^	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8

$$p_{Y|X}(1|2) = \frac{p_{XY}(2,1)}{p_X(2)} = \frac{0}{3/8} = 0$$

$$p_{Y|X}(2|2) = \frac{p_{XY}(2,2)}{p_X(2)} = \frac{1/4}{3/8} = \frac{2}{3}$$

$$p_{Y|X}(3|2) = \frac{p_{XY}(2,3)}{p_X(2)} = \frac{1/8}{3/8} = \frac{1}{3}$$

What is $p_{X|Y}(1|2)$?

			Y		
		1	2	3	
	0	1/8	0	0	
X	1	0	1/4	1/8	
^	2	0	1/4	1/8	
	3	1/8	0	0	
		1/4	1/2	1/4	

What is $p_{X|Y}(1|2)$?

			Y		
		1	2	3	
	0	1/8	0	0	
X	1	0	1/4	1/8	
^	2	0	1/4	1/8	
	3	1/8	0	0	
		1/4	1/2	1/4	

$$p_{X|Y}(1|2) = \frac{p_{XY}(1,2)}{p_{Y}(2)} = \frac{1/4}{1/2} = \frac{1/2}{1/2}$$
 (1)

What is $p_{X|Y}(1|2)$?

			Y		
		1	2	3	
	0	1/8	0	0	
X	1	0	1/4	1/8	
^	2	0	1/4	1/8	
	3	1/8	0	0	
		1/4	1/2	1/4	

$$p_{X|Y}(1|2) = \frac{p_{XY}(1,2)}{p_{Y}(2)} = \frac{1/4}{1/2} = \frac{1/2}{1/2}$$
 (1)

Similarly:

$$p_{X|Y}(0|2) = 0$$
, $p_{X|Y}(2|2) = 1/2$, $p_{X|Y}(3|2) = 0$

Independent RVs: Joint Equals Product of Marginals

Definition

Two discrete RVs are independent if and only if

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$

for all pairs (x, y) in the support.

Equivalent Definition

$$p_{Y|X}(y|x) = p_Y(y) \text{ and } p_{X|Y}(x|y) = p_X(x)$$

for all pairs (x, y) in the support.

Are X and Y Independent?

(A = YES, B = NO)

			Y		
		1	2	3	
	0	1/8	0	0	1/8
Χ	1	0	1/4	1/8	3/8
^	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

Are X and Y Independent?

$$(A = YES, B = NO)$$

			Y		
		1	2	3	
	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
X	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

$$p_{XY}(2,1) = 0$$

 $p_X(2) \times p_Y(1) = (3/8) \times (1/4) \neq 0$

Therefore X and Y are *not* independent.

Conditional Expectation

Intuition

E[Y|X] = "best guess" of realization that Y after observing realization of X.

E[Y|X] is a Random Variable

While E[Y] is a constant, E[Y|X] is a function of X, hence a Random Variable.

$$E[Y|X=x]$$
 is a Constant

The constant E[Y|X=x] is the "guess" of Y if we see X=x.

Calculating
$$E[Y|X=x]$$

Take the mean of the conditional pmf of Y given X = x.

Conditional Expectation: E[Y|X=2]

			Y		
		1	2	3	
	0	1/8	0	0	1/8
X	1	0	1/4	1/8	3/8
^	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

We showed above that the conditional pmf of Y|X=2 is:

$$p_{Y|X}(1|2) = 0$$
 $p_{Y|X}(2|2) = 2/3$ $p_{Y|X}(3|2) = 1/3$

Hence

$$E[Y|X=2] = 2 \times 2/3 + 3 \times 1/3 = 7/3$$

Conditional Expectation: E[Y|X=0]

			Y		
		1	2	3	
	0	1/8	0	0	1/8
X	1	0	1/4	1/8	3/8
^	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

The conditional pmf of Y|X=0 is

$$p_{Y|X}(1|0) = 1$$
 $p_{Y|X}(2|0) = 0$ $p_{Y|X}(3|0) = 0$

Hence E[Y|X=0]=1

Calculate E[Y|X=3]

			Y		
		1	2	3	
· ·	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
X	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

The conditional pmf of Y|X=3 is

$$p_{Y|X}(1|3) = 1$$
 $p_{Y|X}(2|3) = 0$ $p_{Y|X}(3|3) = 0$

Hence E[Y|X = 3] = 1

Calculate E[Y|X=1]

			Y		
		1	2	3	
· ·	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
X	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

Calculate E[Y|X=1]

			Y		
		1	2	3	
	0	1/8	0	0	1/8
X	1	0	1/4	1/8	3/8
^	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

The conditional pmf of Y|X=1 is

$$p_{Y|X}(1|1) = 0$$
 $p_{Y|X}(2|1) = 2/3$ $p_{Y|X}(3|1) = 1/3$

Hence

$$E[Y|X=1] = 2 \times 2/3 + 3 \times 1/3 = 7/3$$

E[Y|X] is a Random Variable

For this example:

$$E[Y|X] = \begin{cases} 1 & X = 0 \\ 7/3 & X = 1 \\ 7/3 & X = 2 \\ 1 & X = 3 \end{cases}$$

From above the marginal distribution of X is:

$$P(X = 0) = 1/8$$
 $P(X = 1) = 3/8$
 $P(X = 2) = 3/8$ $P(X = 3) = 1/8$

E[Y|X] takes the value 1 with prob. 1/4 and 7/3 with prob. 3/4.

The Law of Iterated Expectations

E[Y|X] is an RV so what is its expectation?

For any RVs X and Y

$$E[E[Y|X]] = E[Y]$$

Option proof HERE. (Helpful for Econ 104...)

Law of Iterated Expectations for Our Example

Marginal pmf of Y

$$P(Y = 1) = 1/4$$

 $P(Y = 2) = 1/2$

$$P(Y = 3) = 1/4$$

$$E[Y] = 1 \times 1/4 + 2 \times 1/2 + 3 \times 1/4$$

E[Y|X]

$$E[Y|X] = \begin{cases} 1 & \text{w/ prob. } 1/4 \\ 7/3 & \text{w/ prob. } 3/4 \end{cases}$$
 $E[E[Y|X]] = 1 \times 1/4 + 7/3 \times 3/4$
 $= 2$

Expectation of Function of Two Discrete RVs

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{XY}(x,y)$$

Some Extremely Important Examples

Same For Continuous Random Variables

Let
$$\mu_X = E[X], \mu_Y = E[Y]$$

Covariance

$$\sigma_{XY} = Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

Correlation

$$\rho_{XY} = Corr(X, Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Shortcut Formula for Covariance

Much easier for calculating:

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

I'll mention this again in a few slides. . .

			Y		
		1	2	3	
· ·	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
X	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

$$E[X] = 3/8 + 2 \times 3/8 + 3 \times 1/8 = 3/2$$

$$E[Y] = 1/4 + 2 \times 1/2 + 3 \times 1/4 = 2$$

			Y		
		1	2	3	
X	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

$$E[X] = 3/8 + 2 \times 3/8 + 3 \times 1/8 = 3/2$$

$$E[Y] = 1/4 + 2 \times 1/2 + 3 \times 1/4 = 2$$

$$E[XY] = 1/4 \times (2+4) + 1/8 \times (3+6+3)$$

$$= 3$$

			Y		
		1	2	3	
X	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

$$E[X] = 3/8 + 2 \times 3/8 + 3 \times 1/8 = 3/2$$

$$E[Y] = 1/4 + 2 \times 1/2 + 3 \times 1/4 = 2$$

$$E[XY] = 1/4 \times (2+4) + 1/8 \times (3+6+3)$$

$$= 3$$

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

			Y		
		1	2	3	
X	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

$$E[X] = 3/8 + 2 \times 3/8 + 3 \times 1/8 = 3/2$$

$$E[Y] = 1/4 + 2 \times 1/2 + 3 \times 1/4 = 2$$

$$E[XY] = 1/4 \times (2+4) + 1/8 \times (3+6+3)$$

$$= 3$$

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$
$$= 3 - 3/2 \times 2 = 0$$

			Y		
		1	2	3	
Х	0	1/8	0	0	1/8
	1	0	1/4	1/8	3/8
	2	0	1/4	1/8	3/8
	3	1/8	0	0	1/8
		1/4	1/2	1/4	

$$E[X] = 3/8 + 2 \times 3/8 + 3 \times 1/8 = 3/2$$

$$E[Y] = 1/4 + 2 \times 1/2 + 3 \times 1/4 = 2$$

$$E[XY] = 1/4 \times (2+4) + 1/8 \times (3+6+3)$$

$$= 3$$

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

$$= 3 - 3/2 \times 2 = 0$$

$$Corr(X, Y) = Cov(X, Y)/[SD(X)SD(Y)] = 0$$

Zero Covariance versus Independence

- From this example we learn that zero covariance (correlation) does not imply independence.
- However, it turns out that independence does imply zero covariance (correlation).

Optional proof that independence implies zero covariance HERE.

Linearity of Expectation, Again

Holds for Continuous RVs as well, but different proof.

In general, $E[g(X, Y)] \neq g(E[X], E[Y])$. The key exception is when g is a linear function:

$$E[aX + bY + c] = aE[X] + bE[Y] + c$$

where X, Y are random variables and a, b, c are constants. Optional proof $\boxed{\mathsf{HERE}}$.

$$Var(X) = E[(X - \mu)^2] =$$

$$Var(X) = E[(X - \mu)^2] = E[X^2 - 2\mu X + \mu^2]$$

=

$$Var(X) = E[(X - \mu)^{2}] = E[X^{2} - 2\mu X + \mu^{2}]$$
$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$
$$=$$

$$Var(X) = E[(X - \mu)^{2}] = E[X^{2} - 2\mu X + \mu^{2}]$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$=$$

By the Linearity of Expectation,

$$Var(X) = E[(X - \mu)^{2}] = E[X^{2} - 2\mu X + \mu^{2}]$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

We saw in a previous lecture that it's typically much easier to calculate variances using the shortcut formula.

Another Application: Shortcut Formula for Covariance

Similar to Shortcut for Variance: in fact Var(X) = Cov(X, X)

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= E[XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y]$$

$$\vdots$$

$$= E[XY] - E[X]E[Y]$$

You'll fill in the details for homework...

Expected Value of Sum = Sum of Expected Values

Repeatedly applying the linearity of expectation,

$$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$$

regardless of how the RVs X_1, \ldots, X_n are related to each other. In particular it doesn't matter if they're dependent or independent.

Independent and Identically Distributed (iid) RVs

Example

 $X_1, X_2, \dots X_n \sim \text{iid Bernoulli}(p)$

Independent

Realization of one of the RVs gives no information about the others.

Identically Distributed

Each X_i is the same kind of RV, with the same values for any parameters. (Hence same pmf, cdf, mean, variance, etc.)

Binomial(n, p) Random Variable

Definition

Sum of n independent Bernoulli RVs, each with probability of "success," i.e. 1, equal to p

Parameters

p= probability of "success," n=# of trials

Support

$$\{0, 1, 2, \ldots, n\}$$

Using Our New Notation

Let $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p)$, $Y = X_1 + X_2 + \ldots + X_n$. Then $Y \sim \text{Binomial}(n, p)$.

Which of these is the PMF of a Binomial (n, p) RV?

(a)
$$p(x) = p^{x}(1-p)^{n-x}$$

(b)
$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

(c)
$$p(x) = \binom{x}{n} p^x$$

(d)
$$p(x) = \binom{n}{x} p^{n-x} (1-p)^x$$

(e)
$$p(x) = p^n(1-p)^x$$

Which of these is the PMF of a Binomial(n, p) RV?

(a)
$$p(x) = p^{x}(1-p)^{n-x}$$

(b)
$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

(c)
$$p(x) = \binom{x}{n} p^x$$

(d)
$$p(x) = \binom{n}{x} p^{n-x} (1-p)^x$$

(e)
$$p(x) = p^n(1-p)^x$$

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

Expected Value of Binomial RV

Use the fact that a Binomial(n, p) RV is defined as the sum of n iid Bernoulli(p) Random Variables and the Linearity of Expectation:

$$E[Y] = E[X_1 + X_2 + ... + X_n] = E[X_1] + E[X_2] + ... + E[X_n]$$

= $p + p + ... + p$
= np

$$Var(aX + bY) = E\left[\left\{\left(aX + bY\right) - E[aX + bY]\right\}^{2}\right]$$

$$Var(aX + bY) = E[\{(aX + bY) - E[aX + bY]\}^2]$$

= $E[\{a(X - \mu_X) + b(Y - \mu_Y)\}^2]$

$$Var(aX + bY) = E \left[\{ (aX + bY) - E[aX + bY] \}^{2} \right]$$

$$= E \left[\{ a(X - \mu_{X}) + b(Y - \mu_{Y}) \}^{2} \right]$$

$$= E \left[a^{2}(X - \mu_{X})^{2} + b^{2}(Y - \mu_{Y})^{2} + 2ab(X - \mu_{X})(Y - \mu_{Y}) \right]$$

$$Var(aX + bY) = E \left[\{ (aX + bY) - E[aX + bY] \}^{2} \right]$$

$$= E \left[\{ a(X - \mu_{X}) + b(Y - \mu_{Y}) \}^{2} \right]$$

$$= E \left[a^{2}(X - \mu_{X})^{2} + b^{2}(Y - \mu_{Y})^{2} + 2ab(X - \mu_{X})(Y - \mu_{Y}) \right]$$

$$= a^{2}E[(X - \mu_{X})^{2}] + b^{2}E[(Y - \mu_{Y})^{2}] + 2abE[(X - \mu_{X})(Y - \mu_{Y})]$$

$$Var(aX + bY) = E \left[\{ (aX + bY) - E[aX + bY] \}^{2} \right]$$

$$= E \left[\{ a(X - \mu_{X}) + b(Y - \mu_{Y}) \}^{2} \right]$$

$$= E \left[a^{2}(X - \mu_{X})^{2} + b^{2}(Y - \mu_{Y})^{2} + 2ab(X - \mu_{X})(Y - \mu_{Y}) \right]$$

$$= a^{2}E[(X - \mu_{X})^{2}] + b^{2}E[(Y - \mu_{Y})^{2}] + 2abE[(X - \mu_{X})(Y - \mu_{Y})]$$

$$= a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

Since $\sigma_{XY} = \rho \sigma_X \sigma_Y$, this is sometimes written as:

$$Var(aX + bY) = a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y$$

Independence
$$\Rightarrow Var(X + Y) = Var(X) + Var(Y)$$

X and Y independent $\Longrightarrow Cov(X,Y)=0$. Hence, independence implies

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

= $Var(X) + Var(Y)$

Also true for three or more RVs

If
$$X_1, X_2, \ldots, X_n$$
 are independent, then

$$Var(X_1 + X_2 + \dots X_n) = Var(X_1) + Var(X_2) + \dots + Var(X_n)$$

Crucial Distinction

Expected Value

Always true that

$$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$$

Variance

Not true in general that

$$Var[X_1 + X_2 + ... + X_n] = Var[X_1] + Var[X_2] + ... + Var[X_n]$$
 except in the special case where $X_1, ... X_n$ are independent (or at least uncorrelated).

Variance of Binomial Random Variable

Definition from Sequence of Bernoulli Trials

If
$$X_1, X_2, \ldots, X_n \sim \mathsf{iid}$$
 Bernoulli(p) then
$$Y = X_1 + X_2 + \ldots + X_n \sim \mathsf{Binomial}(n, p)$$

Using Independence

$$Var[Y] = Var[X_1 + X_2 + ... + X_n]$$

$$= Var[X_1] + Var[X_2] + ... + Var[X_n]$$

$$=$$

Variance of Binomial Random Variable

Definition from Sequence of Bernoulli Trials

If
$$X_1, X_2, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Bernoulli}(p) \; \mathsf{then}$$

$$Y = X_1 + X_2 + \ldots + X_n \sim \mathsf{Binomial}(n, p)$$

Using Independence

$$Var[Y] = Var[X_1 + X_2 + ... + X_n]$$

$$= Var[X_1] + Var[X_2] + ... + Var[X_n]$$

$$= p(1-p) + p(1-p) + ... + p(1-p)$$

$$=$$

Variance of Binomial Random Variable

Definition from Sequence of Bernoulli Trials

If
$$X_1, X_2, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Bernoulli}(p) \; \mathsf{then}$$

$$Y = X_1 + X_2 + \ldots + X_n \sim \mathsf{Binomial}(n, p)$$

Using Independence

$$Var[Y] = Var[X_1 + X_2 + ... + X_n]$$

$$= Var[X_1] + Var[X_2] + ... + Var[X_n]$$

$$= p(1-p) + p(1-p) + ... + p(1-p)$$

$$= np(1-p)$$