

Problem R-08N ($C_{11}H_{18}O_2$). You are given the partial 500 MHz 1H NMR spectrum of a cis/trans mixture of partially deuterated cyclohexyl acrylates and asked to assign the signals and determine the position of deuteration. **Only one vinyl position of one isomer is partially deuterated**.

(a) Analyze and assign each of the signals listed below. Report multiplicities and couplings in the standard format (there may be more than one signal at a chemical shift position). For each indicate whether it belongs to the cis or the trans isomer.

δ 5.64	(cis or trans)	
δ 5.74	(cis or trans)	
δ 6.05	(cis or trans)	
	,	
S 6 95	(cis or trans)	
δ 6.85	(cis or trans)	

(b) Determine the position and extent of deuteration, as well as the ratio of cis and trans isomers, and indicate this on the structures below. Briefly summarize the evidence.

$$CO_2$$
Et CO_2 Et

9

Problem R-08N ($C_{11}H_{18}O_2$). You are given the partial 500 MHz 1H NMR spectrum of a cis/trans mixture of partially deuterated cyclohexyl acrylates and asked to assign the signals and determine the position of deuteration. **Only one vinyl position of one isomer is partially deuterated**.

- (a) Analyze and assign each of the signals listed below. Report multiplicities and couplings in the standard format (there may be more than one signal at a chemical shift position). For each indicate whether it belongs to the cis or the trans isomer.
- 2 δ 5.64 (cis or trans) dd, J = 11, 2 Hz
- 2 δ 5.74 (cis or trans) dd, J = 16, 2 Hz
- 5 δ 6.05 (cis or trans) dd, J = 10, 11 Hz + d of 1:1:1 triplets, J = 10, 2.0 Hz
- 2 δ 6.85 (cis or trans) dd, J = 16, 7 Hz
 - (b) Determine the position and extent of deuteration, as well as the ratio of cis and trans isomers, and indicate this on the structures below. Briefly summarize the evidence.

$$H$$
 CO_2Et
 H
 CO_2Et
 CO

- 3 10.0 4.84 = 5.16 CO_2Et 51.6% d
- 2 30.4% trans 69.6% cis

2 Explanation

