Pascal Lehmann STOCH SoSe 2019

1 Präsenzübung 1

1.1 Aufgabe 1.1

- a) Es seien M,N beliege Mengen und $T:M\to N$ eine Abbildung. Zeigen Sie: $T^{-1}(A^C)=(T^{-1}(A))^C$. Erinnerung an Schreibweise $T^{-1}(A)=\{a\in M:T(a)\in B\}$ und $T(A):=\{T(a):a\in A\}$ und setze $A\subset N$ und $B\subset M$.
- b) Es seien $(\Omega_1, \mathscr{F}_1)$, $(\Omega_2, \mathscr{F}_2)$ und $(\Omega_3, \mathscr{F}_3)$ messbare Räume (oder auch Messräume) und $f: (\Omega_1, \mathscr{F}_1) \to (\Omega_2, \mathscr{F}_2)$, $g: (\Omega_1, \mathscr{F}_1) \to (\Omega_2, \mathscr{F}_2)$ messbare Funktionen. Zeigen Sie, dass dann auch die Komposition $g \circ f: (\Omega_1, \mathscr{F}_1) \to (\Omega_3, \mathscr{F}_3)$ messbar ist.
- c) Es sei Ω eine überabzählbare Menge. Zeigen Sie, dass

$$\mathscr{F}:=\left\{A\subset\Omega:A\text{ ist abz\"{a}hlbar }\vee A^{C}\text{ ist abz\"{a}hlbar}\right\}$$

eine σ -Algebra über Ω ist.

Beweis. a)

$$\left\{a \in T^{-1}(A^C)\right\} \Leftrightarrow \exists b \in B^C : T(a) = b$$

$$\stackrel{(!)}{\Leftrightarrow} \exists c \in B : T(a) = c$$

$$\Leftrightarrow a \notin \{T \in A\}$$

$$\Leftrightarrow a \in \{T \in A\}^C = a \in (T^{-1}(A))^C$$

Nun muss man sich noch (!) klar machen. Das ganz gilt, da T eine Abbildung ist, also wird jedem Element in M genau ein Element in N zugeordnet.

" \Rightarrow " folgt aus der Eigenschaft, dass für jedes Element in M höchstens ein Element in N abgebildet wird.

"

←" Analog Argument.

b)
$$\forall A \in \mathscr{F}_3$$
 gilt $(g \circ f)^{-1}(A) = f^{-1} \circ \underbrace{\mathscr{F}_2}_{g^{-1}(A)} \in f^{-1}(\mathscr{F}_2) \subset \mathscr{F}_1$

- c) Dafür muss man nur die drei Axiome der σ -Algebra nachweisen.
 - $\Sigma_1 : \Omega^C = \emptyset$ ist abzählbar $\Rightarrow \Omega \in \mathscr{F}$
 - Σ_2 :

$$A \in \mathscr{F} \Leftrightarrow \#A \leq \#\mathbb{N} \text{ oder } \#A^C \leq \#\mathbb{N}$$

 $\Leftrightarrow \#A^C \leq \#\mathbb{N} \text{ oder } \#(A^C)^C = A \leq \#\mathbb{N}$
 $\Leftrightarrow A^C \in \mathscr{F}$

• Σ_3 : Sei $(A_n)_{n\in\mathbb{N}}\subset \mathscr{F}$. Zwei Fälle sind zu bearbeiten.

Blatt 1 Version: 7. April 2019 Seite 1

Pascal Lehmann STOCH SoSe 2019

Fall 1: Es werden genau die Mengen A_n ausgewählt, welche abzählbar sind. Dann folgt aber das auch die Vereinigung $\bigcup_{n\in\mathbb{N}}A_n$ von abzählbare vielen abzählbaren Mengen eine abzählbare Menge sind, also $A\in\mathcal{F}$.

 $Fall\ 2$: Eine Menge, z.B. A_{n_0} , ist überabzählbar. Dann folgt aber aus der Definition von \mathscr{F} , das Komplement von $A_{n_0}^C$ abzählbar ist. Damit folgt für die Folge, dass $(A_n)_{n\in\mathbb{N}}$ gilt.

$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)^C=\bigcap_{n\in\mathbb{N}}A_n^C\subset A_{n_0}^C,$$

damit ist auch das Komplement von $A=\bigcup_{n\in\mathbb{N}}A_n$ abzählbar und liegt in \mathscr{F}

Damit wurde nachgewiesen, das \mathscr{F} eine σ -Algebra ist.

Blatt 1 Version: 7. April 2019 Seite 2