Lycée Berthollet MPSI² 2023-24

Exercices sur les relations et applications

Relations

Exercice 1 On considère, sur E = [1, 5] les relations binaires dont les graphes suivent :

```
 G_1 = \{(1,3), (1,4), (2,2), (3,1), (3,4), (4,1), (4,3), (5,5)\} 
G_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}
```

- $G_3 = \{(1,1),(1,2),(2,2),(3,3),(4,4),(5,5)\}$

 $- G_4 = \{(1,1),(1,3),(1,4),(2,2),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4),(5,5)\}$

 $G_5 = \{(1,1),(1,2),(2,2),(2,3),(3,3),(3,4),(4,4),(4,5)\}$

Dessiner leurs graphes sur des diagrammes de Venn, puis discuter de leurs propriétés (reflexivité, symétrie, antisymétrie, transitivité). Dire lesquelles sont des relations d'équivalence et décrire alors leurs classes d'équivalence.

Exercice 2 Soit *E* un ensemble. Montrer que l'inclusion est une relation d'ordre sur l'ensemble des parties de *E*. Cet ordre est-il total?

Exercice 3 (*) Discuter l'existence de bornes supérieures et inférieures pour l'ordre précédent (on pourra penser à des intersections ou des réunions).

Exercice 4 $(\star\star)$ Soit E un ensemble fixé. On considère \mathcal{E} l'ensemble de toutes les relations binaires sur E et on définit une relation binaire \prec sur \mathcal{E} par

$$\forall (R_1, R_2) \in \mathcal{E}^2, (R_1 \prec R_2 \iff (\forall (x, y) \in E^2, (xR_1y \Longrightarrow xR_2y))).$$

- 1. Pour R_1 et R_2 dans \mathcal{E} , traduire $R_1 \prec R_2$ en termes des graphes de R_1 et R_2 .
- 2. En déduire que \prec est une relation d'ordre.
- 3. On note \mathcal{E}_{eq} la partie de \mathcal{E} constituée par les relations d'équivalence sur E. Pour tout $R_0 \in \mathcal{E}$, montrer que l'ensemble $\{R \in \mathcal{E}_{eq} | R_0 \prec R\}$ des relations d'équivalence majorant R_0 possède un minimum. (indication : considérer l'intersection des graphes des relations d'équivalence majorant R_0).

Remarque : ce minimum est appelé la relation d'équivalence engendrée par R_0

Applications

Exercice 5 Construire à l'aide de diagrammes de Venn des exemples d'applications qui sont ou ne sont pas surjectives (resp. injectives, bijectives). Même question avec des graphes de fonctions à valeurs réelles dont les ensembles de définition sont des parties de \mathbb{R} .

Exercice 6 Soient E, F deux ensembles et $f \in F^E$. On définit la relation \mathcal{R} sur E ainsi : si $x, y \in E$, $x\mathcal{R}y \iff f(x) = f(y)$. Montrer que \mathcal{R} est une relation d'équivalence.

Dessiner ses classes d'équivalence sur un diagramme de Venn dans un cas explicite d'application entre ensembles finis.

Exercice 7 On considère la relation \mathcal{R} suivante sur $\mathbb{R}^{\mathbb{R}}$:

$$\forall (f,g) \in (\mathbb{R}^{\mathbb{R}})^2, f \Re g \iff f^{-1}(\{0\}) \subset g^{-1}(\{0\}).$$

Cette relation est-elle une relation d'équivalence? une relation d'ordre?

Exercice 8 Construire deux applications f et g de \mathbb{N} vers \mathbb{N} non bijectives telles que $g \circ f = Id_{\mathbb{N}}$.

Exercice 9 Montrer que si $f \in F^E$ et $g \in G^F$ sont injectives (respectivement surjectives), alors $g \circ f$ aussi.

Exercice 10 Soient $f: E \longmapsto F$ et $g: F \longmapsto G$. Que peut-on déduire du fait que $g \circ f$ est injective (resp. surjective)?

Exercice 11 Soit $f: E \longmapsto F$, telle que $E \neq \emptyset$. Montrer que f est injective (resp. surjective) si et seulement s'il existe une application $r: F \longmapsto E$ (resp. $s: F \longmapsto E$) telle que $r \circ f = Id_E$ (resp. $f \circ s = Id_F$). Dans ce cas, r (resp. s) est appelé une *rétraction* (resp. *section*). On admettra qu'on peut choisir simultanément un élément par ensemble lorsqu'on est en présence d'une famille quelconque d'ensembles non vides (Axiome du choix).

Exercice 12 Soit $f: E \longrightarrow F$. Comparer, pour $A, A \subset E$ et $B, B' \subset F: f(A \cup A')$ et $f(A) \cup f(A')$, $f(A \cap A')$ et $f(A) \cap f(A')$, $f^{-1}(B \cup B')$ et $f^{-1}(B) \cup f^{-1}(B')$, $f^{-1}(B \cap B')$ et $f^{-1}(B) \cap f^{-1}(B')$, $f(E \setminus A)$ et $F \setminus f(A)$, $f^{-1}(F \setminus B)$ et $E \setminus f^{-1}(B)$.

Exhiber des contrexemples à chaque fois qu'il n'y a pas égalité et dire quelle(s) hypothèse(s) sur *f* il suffirait de rajouter pour que l'égalité ait lieu.

Exercice 13 (*) Soient A, B et C trois ensembles. Construire une bijection entre $C^{A \times B}$ et $(C^A)^B$.

Exercice 14 $(\star\star)$ On veut montrer qu'il n'existe pas d'application $f: \mathbb{N} \longmapsto \mathbb{N}$ telle que $\forall n \in \mathbb{N}, f(f(n)) = n + 1997$. Raisonnons par l'absurde en supposant que f existe.

- 1. Est-il possible que *f* soit bijective?
- 2. Montrer que f est injective.
- 3. Montrer que, pour tout $n \in \mathbb{N}$, f(n+1997) = f(n) + 1997. En déduire que si $n \ge 1997$, alors $f(n) \ge 1997$.
- 4. Soient $A = \{0, 1, \dots, 1996\}$, $B = f(A) \cap A$ et $C = A \setminus B$. Montrer que B = f(C).
- 5. Conclure.

Exercice 15 $(\star \star \star)$ *Théorème de Cantor-Bernstein.* Soient $f: E \longrightarrow F$ et $g: F \longrightarrow E$, supposées toutes deux injectives. On veut montrer qu'il existe une bijection de E vers F.

On pose $h = g \circ f$, $R = E \setminus g(F)$ et $\mathcal{F} = \{M \in \mathcal{P}(E) | R \cup h(M) \subset M\}$.

- 1. Montrer que $A = \bigcap_{M \in \mathcal{T}} M$ est un élément de \mathcal{F} .
- 2. Montrer par l'absurde que $A = R \cup h(A)$ (on pourra considérer $x \in A \setminus R \cup h(A)$ et $A \setminus \{x\}$).
- 3. Soient A' = f(A), $B' = F \setminus A'$ et B = g(B'). Montrer que B et h(A) sont disjoints, puis que B et A le sont.
- 4. Montrer que $B = E \setminus A$. Pour cela, soit $x \in E \setminus A$; montrer que $x \notin R$. Il s'écrit alors x = g(y) avec $y \in F$; montrer que $y \in B'$ en raisonnant par l'absurde.
- 5. Construire une bijection de *E* vers *F*.