Две задачи теории метода Монте-Карло для решения уравнений баланса в пространстве мер

Румянцев Николай Алексеевич, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н. В.В. Некруткин Рецензент — к.ф.-м.н. Н.Э. Голяндина

Санкт-Петербург 2008г

Тематика, техника, литература. Задачи.

ТЕМАТИКА: Вероятностное решение уравнений баланса в пространстве мер.

ТЕХНИКА: (n,k)-частичные марковские скачкообразные процессы.

ЛИТЕРАТУРА: N. Golyandina and V. Nekrutkin, 1999.

- Анализ смещения и дисперсии оценок при больших n;
- Идея введения искусственного взаимодействия.

ДВЕ ЗАДАЧИ ДИПЛОМА:

- Уточнение вида смещения при k > 2;
- Изучение трудоемкости алгоритмов с искусственным взаимодействием в линейных задачах.

N. Golyandina and V. Nekrutkin

• УРАВНЕНИЕ БАЛАНСА

$$d\mu_t/dt = B(\mu_t) - \mu_t, \quad \mu_t|_{t=0} = \mu \in H.$$

H — распределения в $(D,\mathcal{B}),\ B(\nu)\in H$ при $\nu\in H.$ Есть условия на $D,\ B.$

- \bullet ФУНКЦИОНАЛ: $\psi(\mu_t)$, $\psi \in \mathbf{C}^2(H)$.
- ПРОЦЕСС: марковский скачкообразный, n частиц движутся в D.
 - Начальное положение: п независимых с. в., имеющих распределение μ ;
 - Время между скачками:
 - показательное с $\lambda = n/k$;
 - Скачок:
 - а) выбор k частиц из n;
 - b) эти частицы совершают скачок согласно переходной функции B_k

РЕЗУЛЬТАТ:

- а) смещение и дисперсия имеют порядок 1/n (выбор B_k),
- b) коэффициенты сложные (явный вид).

Уточнение вида смещения

БЫЛО:

Главный член смещения: kc_1/n .

ПРЕДЛОЖЕНИЕ:

На самом деле: $2c_1/n + (k-2)c_2/n$ при k>2.

Замечание

- Коэффициенты сложные (явный вид);
- При k = 2 то же самое;
- ullet При k>2 есть примеры, когда $c_1\equiv c_2$ и когда $c_1\not\equiv c_2$;
- На среднеквадратическом отклонении поправка не сказывается.

Линейная задача

ЛИНЕЙНАЯ ЗАДАЧА:

• Линейное уравнение

$$d\mu_t/dt = \int_D T(\cdot; u)\mu_t(du) - \mu_t = B(\mu_t) - \mu_t, \quad \mu_t|_{t=0} = \mu \in H,$$

где $T(\cdot;u)\in H$ для всех $u\in D$;

• Линейный функционал $J(t)=\psi(\mu_t)=\int_D g d\mu_t,\ g\in {f C}(D).$

ИЗВЕСТНО: Если

- $\zeta(t)$ скачкообразный марковский процесс в D;
- начальное распределение μ;
- инфинитезимальные характеристики $\lambda = 1$ и $T(\cdot, u)$,

то

$$\mathsf{E}g(\zeta(t)) = J(t).$$

Обратное уравнение Колмогорова.

S-процесс

ОПРЕДЕЛЕНИЕ: n независимых копий процесса $\zeta(t)$. Обозначение — ${f S}$.

ОЦЕНКА: $\omega_n^{(\mathbf{s})} = \omega_n(g,t)$ — выборочное среднее (несмещенная).

Стандартная процедура.

ДИСПЕРСИЯ: $\mathsf{D}\big(\omega_n^{(\mathbf{s})}\big) = \sigma_S^2/n.$

ДРУГОЕ ОПИСАНИЕ: совместное движение n независимых копий процесса $\zeta(t)$.

ТРУДОЕМКОСТЬ моделирования на одну частицу:

$$L_{\mathbf{S}} = (t\Im_{\mathbf{S}} + \Im_0)\,\sigma_S^2.$$

 $\Im_{\mathbf{S}}$ — затраты на один скачок процесса;

 \Im_0 — затраты на начальное распределение.

Альтернатива: процесс $\mathbf{B}_{arphi}^{(k)}$

ОПИСАНИЕ:

Случайная величина ω и функция $\varphi(\omega,u)$ такие, что $\mathcal{L}(\varphi(\omega,u))=T(\,\cdot\,;u).$

ПРОЦЕСС:

- Частота скачков: n/k;
- Скачок:
 - (u_1, \ldots, u_n) положение перед скачком;
 - выбирается k частиц;
 - ullet их координаты u_{i_1},\dots,u_{i_k} изменяются по правилу $u'_{i_j}\leftarrow arphi(\omega,u_{i_j}).$

 $\mathsf{BAЖHO}$: ω одно и то же для всех частиц!

Предложение

- 1. Несмещенная оценка.
- 2. Дисперсия: $n\mathsf{D}\big(\omega_n^{(\varphi)}\big) = \sigma_S^2 + (k-1)V_{\mathbf{B}_{\varphi}}(\psi,t,\mu) + o(1).$

 $\mathbb{V} = V_{\mathbf{B}_{arphi}}/\sigma_{\mathbf{S}}^2$ — основная дисперсионная характеристика.

СРАВНЕНИЕ:

- ullet дисперсии: $\mathsf{D}ig(\omega_n^{(\mathbf{s})}ig) \leq \mathsf{D}ig(\omega_n^{(oldsymbol{arphi})}ig) \leq k \mathsf{D}ig(\omega_n^{(\mathbf{s})}ig); \quad (0 \leq \mathbb{V} \leq 1).$
- ullet число скачков: у ${f B}_{arphi}^{(k)}$ в k раз меньше;
- ullet моделирование скачка: у $\mathbf{B}_{arphi}^{(k)}$ дополнительные операции.

 ${\sf N}$ дея: если эти операции быстрые, то трудоемкость ${f B}_{arphi}^{(k)}$ м. б. меньше, чем ${f S}$.

ОТНОШЕНИЕ ТРУДОЕМКОСТЕЙ:

$$L_{\mathbf{B}_{\varphi}}(k)/L_{\mathbf{S}} = \frac{t\Im_{\mathbf{B}}/k + \Im_{0}}{t\Im_{\mathbf{S}} + \Im_{0}} \Bigg(1 + (k-1)\mathbb{V}\Bigg),$$

- ullet $\Im_{\mathbf{B}}$ и $\Im_{\mathbf{S}}$ затраты на одно столкновение для процессов.
- \Im_0 затраты на начальное распределение.

Процесс $\mathbf{B}_{\varphi}^{(k)}$: оптимальное k

ЗАТРАТЫ (вычисляются таймированием):

- ullet $c(\omega)=c(T)$ моделирование ω ; $c(\lambda)$ моделирование момента скачка;
- ullet c(arphi) вычисление arphi; kc(p) выбор k координат из n.

ЗАТРАТЫ НА СКАЧОК на одну частицу:

S-процесс: $\Im_{\mathbf{S}} = c(T) + c(\lambda);$

$$\mathbf{B}_{arphi}^{(k)}$$
-процесс: $\Im_{\mathbf{B}} = c(T) + c(\lambda) + k(c(arphi) + c(p))$.

 $\mathsf{OПТИМАЛЬНОЕ}\ k$ для $\mathbf{B}_{arphi}^{(k)}$ -процесса.

$$k_{opt}^2 \approx \frac{c(T) + c(\lambda)}{c(\varphi) + c(p) + \Im_0/t} \left(\frac{1}{\mathbb{V}} - 1\right).$$

 $\mathsf{MAKCИMAЛЬHOE}$ отношение трудоемкостей: при $t \to \infty$ и $\mathbb{V} \to 0$

$$\frac{L_{\mathbf{S}}}{L_{\mathbf{B}_{\varphi}}(k_{opt})} \to \mathcal{C} = \frac{c(T) + c(\lambda)}{c(\varphi) + c(p)} .$$

Процесс $\mathbf{B}_{arphi}^{(k)}$: примеры

УРАВНЕНИЕ: $D=\mathbb{R};\ T(\,\cdot\,;u)=\mathbf{N}(u,1),\ \mu_0=\mathbf{N}(0,4);\ \mu_t=\mathbf{N}(0,t+4).$

ВЗАИМОДЕЙСТВИЕ: $\omega \in \mathbf{N}(0,1)$, $\varphi(\omega,u) = \omega + u$.

ЗАТРАТЫ (моделирование): $c(\varphi)=1$, c(T)=18, c(p)=10 и $c(\lambda)=16$.

ПРИМЕРЫ.

- ullet Функционал: $\psi_1(\mu_t(\mu)) = \int_{\mathbb{R}} u^2 \, \mu_t(du) = t+4;$
- ullet Функционал: $\psi_2(\mu_t(\mu))=\int_{\mathbb{R}}\cos u\,\mu_t(du)=e^{-\left(1-1/\sqrt{e}
 ight)t-2}$

Рис.: Оптимальные k в зависимости от t (логарифмическая шкала).

${\sf C}$ равнение ${f B}_{\!arphi}^{(k)}$ и ${f S}$ -алгоритмов: Теория

Рис.: Отношения $L_{\mathbf{S}}/L_{\mathbf{B}_{oldsymbol{arphi}}}(k_{opt})$ для функционалов ψ_1 и ψ_2 .

Обе функции стремятся к $\mathcal{C}=34/11 \approx 3.1.$

Сравнение $\mathbf{B}_{\omega}^{(k)}$ и \mathbf{S} -алгоритмов: Моделирование

ПРИНЦИПЫ СРАВНЕНИЯ.

Для фиксированных k и t :

- ullet Есть аналитические формулы для обеих дисперсий $\sigma^2_{B_{arphi}}$ и σ^2_S (проверка моделированием).
- Подбор числа частиц $n_{B_{arphi}}$ и n_S обратно пропорционально дисперсиям. Формула:

$$n_{B_{\varphi}} = \left(1 + (k-1)\mathbb{V}\right)n_{S}.$$

- N раз моделируются оба процесса.
- Сравниваются средние времена моделирования.

В экспериментах: n_S от 10^3 до 10^4 (в зависимости от k), N — от 10^4 до $2\cdot 10^4$.

Сравнение $\mathbf{B}_{arphi}^{(k)}$ и \mathbf{S} -алгоритмов: теория и таймирование.

ВОПРОС: насколько теоретическая трудоемкость соответствует таймированию?

Таблица: Функционал ψ_1 . Отношение трудоемкостей и средних времен таймирования.

t	5	10	15
k_{opt}	5	6	7
$L_{\rm S}/L_{{ m B}_{arphi}}$	1.31	1.43	1.53
$\tau_S/\tau_{B_{\varphi}}$	1.41	1.45	1.51

Таблица: Функционал ψ_2 . Отношение трудоемкостей и средних времен таймирования.

t	3	7
k_{opt}	23	82
$L_{\rm S}/L_{{ m B}_{arphi}}$	2.00	2.54
$\tau_S/\tau_{B_{\varphi}}$	2.23	2.70

ВЫВОД: хорошее соответствие.

Сравнение $\mathbf{B}_{arphi}^{(k)}$ и \mathbf{S} -алгоритмов: оптимальное k.

$\mathsf{BO\PiPOC}$: соответствие оптимальных k

Рис.: Функционал ψ_1 . Отношение $au_S/ au_{B_{oldsymbol{arphi}}}$ при разных k.

Для ψ_2 аналогично (немного похуже).

ОПРЕДЕЛЕНИЕ:

- ullet m независимых реализаций (k,k)-частичного процесса;
- ullet у каждой скачок как у ${f B}_{\omega}^{(k)}$ -процесса.

ОЦЕНКА: выборочное среднее (несмещенная).

Преимущество над $\mathbf{B}_{\omega}^{(k)}$: Доверительные интервалы

ПРИНЦИПЫ СРАВНЕНИЯ (только таймирование).

- Выбор числа частиц аналогично предыдущему;
- ullet Для $\mathbf{S}^{(k)}_{\omega}$ замена дисперсии выборочной.

PEЗУЛЬТАТЫ: функционал ψ_1 .

- ullet $k_{opt}(5)=5$, трудоемкость в 1.3 раза меньше ${f S}$, совпадает с ${f B}_{arphi}^{(k)}$;
- $oldsymbol{\bullet}$ $k_{opt}(15)=3$, трудоемкость в 1.1 раза меньше ${f S}$, в 1.5 раза больше ${f B}_{arphi}^{(k)}$

Сравнение алгоритмов $\mathbf{S},\,\mathbf{B}_{arphi}^{(k)}$ и $\mathbf{S}_{arphi}^{(k)}$. Графики

РЕЗУЛЬТАТЫ: Функционал ψ_2 .

- ullet $k_{opt}(3)=20$, трудоемкость в 3.8 раз меньше ${f S}$, в 1.7 раза меньше ${f B}_{arphi}^{(k)}$;
- ullet $k_{opt}(7)=30$, трудоемкость в 5 раз меньше ${f S}$, в 1.5 раза меньше ${f B}_{arphi}^{(k)}$.

Рис.: Функционал ψ_2 . Отношения $au_S/ au_{S_{arphi}}$ (сверху) и $au_{B_{arphi}}/ au_{S_{arphi}}$ (снизу) при t=3.

Выводы

ОБЩИЙ ВЫВОД: изучались 2 процесса с искусственным взаимодействием.

Перспективность процесса $\mathbf{B}_{arphi}^{(k)}$ для больших времен, когда

Моделирование процесса S стоит дорого, а взаимодействия — дешево.
 Формально,

$$\frac{c(T) + c(\lambda)}{c(\varphi) + c(p)} > 1.$$

• Дисперсия новой оценки не слишком большая. Формально,

$$\mathbb{V} = rac{1}{k-1} \left(rac{\sigma_{\mathbf{B}}^2}{\sigma_S^2} - 1
ight)$$
 мало.

Процесс $\mathbf{S}_{\omega}^{(k)}$:

- Возможность построения доверительных интервалов.
- Недостаток теории.
- ullet Качественно похоже на ${f B}_{arphi}^{(k)}$ (эксперименты).

