First pass of Quick select, the worst-case recurrence relation was:

$$T(n) = T(n-1) + \Theta(n)$$

=> $T(n) \in \Theta(n^2)$.

What if I can guarantee my partition element "showes off" a 90-age each time? Then, recursion would be

$$T(n) = T(n/p) + \Theta(n)$$

=> T(n) & (nlogn) by Master's Theor

So, we will change line 4 frome

4: per Chase a pivot pen

At the "Median of Medians" opproach

Have: A= an array of length n, unsortal Want: central-ish pivot (at least 6(1/16)) are on Both sides ob it ER 71 (Gen) (D) Divide A into Kapaups of size 5. (L'OCI) (2) For each group, calculate the median m; (3) Find the median by calling	Hedian of Medians approach
(2) For each group, calculate the median m; (3) Find the median by calling (k) Quick Select (2mi31=1, K/2) Low than directly below it bigger than directly below it it group is a column of values Imagine: re-arranged so sorted by median element Then, I know:	Have: A= on array of length n, unsorted
it group is a column of values I madine: re-arranged so sorted by median element Then, I know: $\frac{1}{2}$ $\frac{1}{2}$ And there are $\frac{1}{2}$ Smalled median $\frac{1}{2}$ Smalled median $\frac{1}{2}$ Smalled median $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ And there are $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ There are $\frac{1}{2}$	T(k) Buick SELECT (Emizin K/2)
every it is bigger than elements in [2	it group's a column of values I madine: re-arranged so sorted by median element Then, I know: And there are $\binom{K}{2}$, $3 = \binom{n/s}{2}$, 3 smaller $\binom{m}{2}$ are $\binom{m}{2}$, $3 = \binom{n/s}{2}$, 3
	every It is bigger true colours and medians

Lets' Revisit The recoverce relation Cusing line #s from Monday) $T(n) = \Theta(1)$, lines 1-3 + O(n) + O (1/5) + T(1/5), new line 4 + T(7/10 n), now worst-case
recurrence in lines 8-12 = T (3n) + T(3) + O(n) But wait! Now there are 2 recomence relations Let's look and theat recursion thee "cost of h $\frac{1}{(\pi)^{2}n} \Theta(\eta) \longrightarrow \Theta(\eta)$ $\frac{1}{(\pi)^{2}n} \Theta(\eta) \longrightarrow \Theta(\eta)$ $\frac{1}{(\pi)^{2}n} \Theta(\eta) \longrightarrow \Theta(\eta)$ $\frac{1}{(\pi)^{2}n} \Theta(\eta)$

 $77n) \leq c.n \stackrel{\circ}{\underset{i=0}{\sum}} (\frac{9}{10})^i$, a geometric 1^m level: $\Theta(4)^n$ 1^m level: $\Theta(4)^n$ level: $\Theta(4)$

What if ... We used groups of size 3 instead?

1) What is the recurrence relation? $T(n) = T(\frac{3}{3}) + T(\frac{2n}{3}) + \Theta(n)$

2) What is the asymptotics of that RR? Use MT on the following:

 $T(n) \leq 2T(\frac{2n}{3}) + \Theta(n)$ $T(n) \geq 2T(\frac{2n}{3}) + \Theta(n)$