Lukuteorian kertausta ja syvennystä

Tehtäviä jaollisuudesta

- **1.** Olkoot a, b, c ja d kokonaislukuja, joille $a \neq c$ ja $(a c) \mid (ab + cd)$. Osoita, että $(a c) \mid (ad + bc)$.
- **2.** Olkoon n pariton positiivinen kokonaisluku. Osoita, että $24 \mid (n^3 n)$.
- **3.** Olkoon p alkuluku, jolle myös p^2+2 on alkuluku. Osoita, että tällöin myös p^3+2 on alkuluku.
- 4. Mitä p voi olla, jos p, p+10 ja p+14 ovat kaikki alkulukuja?
- 5. Olkoon p alkuluku. Etsi kaikki positiiviset kokonaisluvut x ja y, joille

$$x^2 - u^2 = p.$$

6. Olkoon p alkuluku. Etsi kaikki positiiviset kokonaisluvut x ja y, joille

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{p}.$$

7. Etsi kaikki positiiviset kokonaisluvut x, y ja z, joille

$$4xy - x - y = z^2.$$

8. Etsi kaikki positiiviset kokonaisluvut x, y, joille

$$y^2 = x^3 + 7$$
.

- **9.** Osoita, että positiivisella kokonaisluvulla n on pariton määrä tekijöitä jos ja vain jos n on neliöluku.
- **10.** Olkoon a positiivinen kokonaisluku, jolle 2^a-1 on alkuluku. Osoita, että tällöin $2^{n-1}(2^n-1)$ on täydellinen luku.
- 11. Todista seuraava seitsemällä jaollisuussääntö: Olkoon n vähintään kolminumeroinen positiivinen kokonaisluku, jonka viimeinen numero on d. Lasketaan m = (n d)/10 2d. Tällöin $7 \mid n$ jos ja vain jos $7 \mid m$.
- 12. Voiko neliöluvun numeroiden summa olla 1977?

Kongruenssit

- 13. Olkoon m positiivinen kokonaisluku, ja olkoon P kokonaislukukertoiminen polynomi. Osoita, että jos kokonaisluvuille x ja y pätee $x \equiv y \pmod{m}$, niin myös $P(x) \equiv P(y) \pmod{m}$. Osoita lisäksi, että jos $x \neq y$, niin pätee myös $(x-y) \mid (P(x)-P(y))$.
- 14. Olkoon p pariton alkuluku, ja olkoot x_1, x_2, \ldots, x_p kokonaislukuja, joille

$$x_1^{p-1} + x_2^{p-1} + \ldots + x_p^{p-1} \equiv 0 \pmod{p}.$$

1

Osoita, että tällöin $x_k \equiv x_\ell \pmod{p}$ joillakin $k, \ell \in \{1, 2, \dots, p\}$, joille $k \neq \ell$.

- **15.** Olkoot P ja Q kokonaislukukertoimisia polynomeja, joille P(1000)=1000, P(2001)=2000 ja Q(0)=5. Etsi kaikki kokonaislukuratkaisut x yhtälölle Q(P(x))=0.
- **16.** Etsi kokonaisluvut n, joille $\varphi(n) = n/2$.
- 17. Olkoon n positiivinen kokonaisluku. Osoita, että on olemassa n peräkkäistä kokonaislukua, joista jokainen on jaollinen ainakin kahdella eri alkuluvulla.
- 18. Olkoon p pariton alkuluku. Mitä ovat

$$1^2 \cdot 3^2 \cdot 5^2 \cdot \dots \cdot (p-2)^2$$
 ja $2^2 \cdot 4^2 \cdot 6^2 \cdot \dots \cdot (p-1)^2$

modulo p?

19. Olkoon p pariton alkuluku. Osoita, että jos $p \equiv 1 \pmod{4}$, niin

$$\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv -1 \pmod{p},$$

ja että jos $p \equiv -1 \pmod{4}$, niin

$$\left(\frac{p-1}{2}\right)! \equiv 1 \quad \text{tai} \quad -1 \pmod{p}.$$

Joidenkin yhtälöiden kokonaislukuratkaisuista

20. Osoita, että yhtälöllä

$$x^3 + y^3 + z^3 = 3^n$$

on kokonaislukuratkaisu jokaisella positiivisella kokonaisluvulla n.

21. Etsi kaikki positiiviset kokonaisluvut x ja y, joille

$$x^3 + y^4 = 7.$$

22. Olkoon palkuluku, ja olkoon $p \neq 3$. Etsi kaikki positiiviset kokonaisluvut $x,\,y$ ja z, joille

$$x^3 + 3y^3 + 9z^3 - 3pxyz = 0.$$

23. Etsi kaikki positiiviset kokonaisluvut x, y ja z, joille

$$x^2 + y^2 + z^2 - 2xyz = 0.$$

24. Etsi kaikki positiiviset kokonaisluvut x ja y, joille

$$x^6 + 3x^3 + 1 = y^4.$$

25. Etsi kaikki positiiviset kokonaisluvut x ja y, joille

$$x(x+1)(x+2)(x+3) = y^4$$
.

Vihjeitä

- 1. Tarkastele lukujen ad + bc ja ab + cd erotusta.
- **2.** Totea, että $n^3 = (n-1) n (n+1)$.
- **3.** Tarkastele ensin tapausta $p \neq 3$. Mitä $p^2 + 2$ on modulo 3?
- 4. Tarkastele lukuja modulo 3.
- 5. Kirjoita $x^2-y^2=(x+y)\,(x-y)$, ja hyödynnä yksikäsitteistä tekijöihinjakoa.
- **6.** Yhtälön voi kirjoittaa muodossa $(x-p)(y-p)=p^2$, ja jälleen yksikäsitteinen tekijöihinjako on hyödyllinen.
- 7. Muokkaa yhtälöä niin, että vasen puoli täydentyy tuloksi (4x-1)(4y-1). Tässä on hyödyllistä tietää, että jos q on alkuluku, jolle $q \equiv 3 \pmod 4$, niin -1 ei ole neliönjäännös modulo q.
- 8. Tässä on luonnollista aloittaa kirjoittamalla yhtälö muodossa $y^2+1=x^3+8$. Jaa oikea puoli tekijöihin ja käsittele erikseen tapauksia $2 \mid x$ ja $2 \nmid x$. Tapauksessa $2 \nmid x$ tarkastele oikean puolen toisen asteen tekijää, ja muista, milloin -1 on neliönjäännös modulo alkuluku.
- **9.** Jos luvun n > 1 alkutekijähajotelma on

$$n = \prod_{\ell=1}^r p_\ell^{\alpha_\ell}, \quad \text{niin} \quad d(n) = \prod_{\ell=1}^r (\alpha_\ell + 1).$$

10. Luvun n sanotaan olevan täydellinen, jos $\sigma(n)=2n$. Jos luvun n>1 alkutekijähajotelma on

$$n = \prod_{\ell=1}^{r} p_{\ell}^{\alpha_{\ell}}, \quad \text{niin} \quad \sigma(n) = \prod_{\ell=1}^{r} \left(1 + p_{\ell} + p_{\ell}^{2} + \ldots + p_{\ell}^{\alpha_{\ell}} \right) = \prod_{\ell=1}^{r} \frac{p_{\ell}^{\alpha_{\ell}+1} - 1}{p_{\ell} - 1}.$$

- **11.** Tarkastele suoraan kongruenssia $m \equiv 0 \pmod{7}$, ja yritä johtaa siitä $n \equiv 0 \pmod{7}$, ja kääntäen.
- 12. Kolmella ja yhdeksällä jaollisuussäännöt ovat tässä molemmat hyödyllisiä.
- **13.** Jos $x \equiv y \pmod{m}$, niin myös $x^2 \equiv y^2 \pmod{m}$, $x^3 \equiv y^3 \pmod{m}$, ...
- **14.** Fermat'n pienen lauseen nojalla $x^{p-1} \equiv 1 \pmod{p}$, kun x on kokonaisluku, jolle $x \not\equiv 0 \pmod{p}$.
- **15.** Jos kokonaisluvuille x ja y pätee $x \equiv y \pmod 2$, niin myös $P(x) \equiv P(y) \pmod 2$.
- **16.** Jos luvun n > 1 alkutekijähajotelma on

$$n = \prod_{\ell=1}^r p_\ell^{\alpha_\ell}, \quad \text{niin} \quad \varphi(n) = n \prod_{\ell=1}^r \frac{p_\ell - 1}{p_\ell}.$$

17. Kokeile kiinalaista jäännöslausetta niin, että moduluksina on sopivia kahden eri alkuluvun tuloja.

3

- **18.** Wilsonin lause on tässä hyödyllinen, samoin kuin havainto, että kaikille kokonaisluvuille k pätee $k \equiv (-1) (p k) \pmod{p}$.
- 19. Wilsonin lause on tässä hyödyllinen, samoin kuin havainto, että kaikille kokonaisluvuille k pätee $k \equiv (-1) (p-k) \pmod{p}$.
- **20.** Totea, että riittää tarkastella tapauksia $n \in \{0, 1, 2\}$.
- 21. Mitä tapahtuu, jos tarkastelet yhtälöä modulo 13?
- **22.** Totea ensin, että 3 | x, seuraavaksi, että 3 | y, ja sitten, että 3 | z. Voiko tässä toteuttaa äärettömän laskeutumisen?
- **23.** Totea ensin, etteivät kaikki tuntemattomat voi olla parittomia. Totea sitten, että $x^2+y^2+z^2\equiv 0\pmod 4$. Mitä tästä seuraa lukujen x,y ja z parillisuudelle? Voisiko tässä toteuttaa äärettömän laskeutumisen?
- **24.** Millaisia lukuja ovat x^6 , $(x^3 + 1)^2$ ja $(x^3 + 2)^2$?
- **25.** Millaisia lukuja ovat x^4 , $(x+1)^4$ ja $(x+2)^4$?

Ratkaisuita

1. Aloitetaan toteamalla, että

$$(ad + bc) - (ab + cd) = ad - cd - ab + cb = (a - c)d + (c - a)b = (a - c)(d - b).$$

Tämän vuoksi, jos toinen luvuista ad+bc ja ab+cd on jaollinen luvulla a-c, niin myös toisenkin on oltava.

2. Todetaan ensin, että $n^3-n=(n-1)\,n\,(n+1)$. Koska tässä on kolme peräkkäistä kokonaislukua, jonkin niistä on oltava jaollinen kolmella. Toisaalta, koska n on pariton, niin luvut $n\pm 1$ ovat parillisia, ja peräkkäisinä parillisina lukuina toinen niistä on jaolinen neljällä. Yhdistämällä nämä havainnot saadaan

$$24 = 2 \cdot 3 \cdot 4 \mid (n-1) n (n+1) = n^3 - n.$$

- **3.** Jos $p \neq 3$, niin $p \equiv \pm 1 \pmod 3$, ja edelleen $p^2 + 2 \equiv 1 + 2 \equiv 0 \pmod 3$. Mutta toisaalta $p^2 + 2 \geqslant 2^2 + 2 > 3$, eli nyt $p^2 + 2$ ei voisikaan olla alkuluku. Siis ainoa mahdollisuus on p = 3, jolloin $p^2 + 2 = 11$ ja $p^3 + 2 = 29$ ovat molemmat alkulukuja.
- 4. Modulo kolme kyseiset luvut ovat

$$p \equiv p$$
, $p + 10 \equiv p + 1$, ja $p + 14 \equiv p + 2 \pmod{3}$.

Siispä jokin luvuista p, p+10 ja p+12 on kolmella jaollinen. Koska p+14>p+10>3, voi olla ainoastaan p=3. Tällöin p+10=13 ja p+14=17 ovat alkulukuja, eli p=3 tosiaan on mahdollinen arvo.

5. Yhtälöstä seuraa, että

$$(x+y)(x-y) = p.$$

Koska x+y>0 ja p>0, on myös x-y>0. Siis x>y ja $x\pm y$ ovat luvun p positiivisia tekijöitä. Koska luvun p ainoat positiiviset tekijät ovat 1 ja p, voi olla ainoastaan

$$x + y = p$$
, ja $x - y = 1$.

Tällä yhtälöparilla on täsmälleen yksi rationaalinen ratkaisu, nimittäin

$$x = \frac{p+1}{2}$$
, ja $y = \frac{p-1}{2}$.

Tämä on kokonaislukuratkaisu täsmälleen silloin kun p on pariton.

6. Lavennetaan ja kerrotaan kaikki auki, jolloin saadaan ensin

$$p(x+y) = xy$$
, ja sitten $(x-p)(y-p) = p^2$.

Nyt x-p on luvun p^2 tekijä ja voi olla vain ja ainoastaan p^2 , p, 1, -1, -p tai $-p^2$, jolloin tekijän y-p täytyy vastaavasti olla 1, p, p^2 , $-p^2$, -p tai -1. Yhtälöparien

$$\begin{cases} x - p = p^2, \\ y - p = 1, \end{cases} \begin{cases} x - p = p, \\ y - p = p, \end{cases} \begin{cases} x - p = 1, \\ y - p = p^2, \end{cases}$$
$$\begin{cases} x - p = -1, \\ y - p = -p^2, \end{cases} \begin{cases} x - p = -p, \\ y - p = -p, \end{cases} \text{ ja } \begin{cases} x - p = -p^2, \\ y - p = -1, \end{cases}$$

ratkaisut ovat

$$\begin{cases} x = p^2 + p, & \begin{cases} x = 2p, & \begin{cases} x = p + 1, \\ y = p + 1, \end{cases} & \begin{cases} x = p + 1, & \begin{cases} x = p - 1, \\ y = p - p^2, \end{cases} & \begin{cases} x = p - p^2, \\ y = p - 1, \end{cases} \end{cases}$$

joista ainoastaan kolme ensimmäistä ovat positiivisia kokonaislukuratkaisuita.

7. Kirjoitetaan yhtälö muodossa

$$(4x-1)(4y-1) = (2z)^2 + 1.$$

Vasemman puolen tekijä 4x-1 on varmasti positiivinen ja pariton. Sen kaikki alkulukutekijät q ovat $\equiv \pm 1 \pmod 4$. Jos ne kaikki olisivat $\equiv 1 \pmod 4$, olisi myös 4x-1 tällaisten lukujen tulona $\equiv 1 \pmod 4$, mitä se ei ole. Siispä luvulla 4x-1 on ainakin yksi alkulukutekijä q, jolle $q \equiv -1 \pmod 4$. Mutta nyt

$$q \mid ((2z)^2 + 1), \text{ eli } -1 \equiv (2z)^2 \pmod{q},$$

mikä on mahdotonta. Täten halutunlaisia ratkaisuita ei ole.

8. Todetaan ensin, että jos x on parillinen, niin

$$y^2 \equiv x^3 + 7 \equiv 0 + 3 \equiv 3 \pmod{4}$$
,

mikä on mahdotonta. Siis on oltava 2
†x,eli $x\equiv \pm 1\pmod 4$. Yhtälöstä seuraa, että

$$y^{2} + 1 = x^{3} + 8 = x^{3} + 2^{3} = (x+2)(x^{2} - 2x + 4)$$
.

Ensinnäkin

$$x^{2} - 2x + 4 = (x - 1)^{2} + 3 > 0,$$

ja toisaalta

$$x^2 - 2x + 4 \equiv 1 \mp 2 + 4 \equiv -1 \pmod{4}$$
.

Tekijä x^2-2x+4 on siis positiivinen ja pariton, ja sen kaikki alkulukutekijät ovat $\equiv \pm 1 \pmod 4$. Jos ne kaikki olisivat $\equiv 1 \pmod 4$, niin myös x^2-2x+4 olisi sellaisten lukujen tulona $\equiv 1 \pmod 4$, mitä se ei ole. Siispä luvulla x^2-2x+4 on oltava ainakin yksi alkulukutekijä q, jolle $q \equiv -1 \pmod 4$. Mutta nyt

$$q \mid (y^2 + 1)$$
, eli $-1 \equiv y^2 \pmod{q}$,

mikä on mahdotonta.

9. Todetaan ensiksi, että $n=1^2$ vain ja ainoastaan silloin kun d(n)=1. Voimme siis tarkastella tilannetta, missä n>1 ja d(n)>1. Olkoon luvun n kanoninen alkutekijähajotelma

$$n = \prod_{\ell=1}^{r} p_{\ell}^{\alpha_{\ell}},$$

missä $r \in \mathbb{Z}_+$, $p_1 < p_2 < \ldots < p_r$ ovat eri alkulukuja ja eksponentit $\alpha_1, \alpha_2, \ldots$, α_r ovat positiivisia kokonaislukuja. Tällöin luvun tekijöiden lukumäärä on

$$d(n) = \prod_{\ell=1}^{r} (\alpha_{\ell} + 1).$$

Tämä tulo on pariton jos ja vain jos sen jokainen tulontekijä on pariton. Toisin sanoen, $2 \nmid d(n)$ täsmälleen silloin kun eksponenteista $\alpha_1, \alpha_2, \ldots, \alpha_r$ jokainen on parillinen, mikä taas puolestaan pitää paikkaansa täsmälleen silloin kun n on neliöluku.

10. Olkoon kokonaisluvun n > 1 kanoninen alkutekijähajotelma

$$n = \prod_{\ell=1}^{r} p_{\ell}^{\alpha_{\ell}},$$

missä $r \in \mathbb{Z}_+$, $p_1 < p_2 < \ldots < p_r$ ovat eri alkulukuja, ja eksponentit $\alpha_1, \alpha_2, \ldots, \alpha_r$ ovat positiivisia kokonaislukuja. Tällöin luvun n tekijöiden summa on

$$\sigma(n) = \prod_{\ell=1}^{r} \left(1 + p_{\ell} + p_{\ell}^{2} + \ldots + p_{\ell}^{\alpha_{\ell}} \right) = \prod_{\ell=1}^{r} \frac{p_{\ell}^{\alpha_{\ell}+1} - 1}{p_{\ell} - 1}.$$

Erityisesti, jos $a \in \mathbb{Z}_+$ on sellainen, että $2^a - 1$ on alkuluku, niin kyseessä on pariton alkuluku. Voimme sitten laskea suoraan, että

$$\sigma \left(2^{a-1} \left(2^a - 1 \right) \right) = \frac{2^{a-1+1} - 1}{2-1} \cdot \left(1 + 2^a - 1 \right) = \left(2^a - 1 \right) \cdot 2^a = 2 \cdot 2^{a-1} \left(2^a - 1 \right).$$

11. Jos $m \equiv 0 \pmod{7}$, niin $(n-d)/10 \equiv 2d \pmod{7}$. Kertomalla puolittain luvulla 10 tästä seuraa, että $n-d \equiv 20d \pmod{7}$, eli $n \equiv 21d \equiv 0 \pmod{7}$.

Kääntäen, jos $n \equiv 0 \pmod{7}$, niin $n \equiv 21d \pmod{7}$, ja $n-d \equiv 20d \pmod{7}$. Kertomalla puolittain luvulla 5 saadaan

$$\frac{n-d}{10} \equiv 5 \cdot 10 \cdot \frac{n-d}{10} \equiv 5 (n-d) \equiv 100d \equiv 2d \pmod{7},$$

mistä seuraa, että $m \equiv 0 \pmod{7}$, kuten pitääkin.

- 12. Merkitään positiivisen kokonaisluvun n numeroiden summaa s(n). Tunnetusti $n \equiv s(n) \pmod 3$ ja $n \equiv s(n) \pmod 9$. Jos nyt olisi $s(a^2) = 1977$ jollakin positiivisella kokonaisluvulla a, niin koska $3 \mid 1977$, olisi $3 \mid a^2$. Edelleen, olisi $3 \mid a$ ja $9 \mid a^2$, ja olisi oltava $9 \mid 1977$. Mutta itse asiassa $9 \nmid 1977$. Siis neliöluvun numeroiden summa ei koskaan voi olla 1977.
- 13. Olkoon polynomi P(x) vaikkapa

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0,$$

missä $n \in \mathbb{Z}_+ \cup \{0\}$ ja a_0, a_1, \ldots, a_n ovat kokonaislukuja. Nyt

Laskemalla nämä viimeiset kongruenssit yhteen saadaan $P(x) \equiv P(y) \pmod{m}$. Jos $x \neq y$, niin sijoittamalla m = |x - y| nähdään, että $P(x) \equiv P(y) \pmod{(x - y)}$, sillä onhan varmasti $x \equiv y \pmod{(x - y)}$.

14. Tehdään vastaoletus: oletetaan, että luvut x_1, x_2, \ldots, x_p ovat pareittain epäkongruentteja modulo p. Tällöin jokainen niistä on kongruentti täsmälleen yhden luvuista $1, 2, \ldots, p$ kanssa modulo p, ja kääntäen. Mutta nyt Fermat'n pienen lauseen nojalla

$$x_1^{p-1} + x_2^{p-1} + \ldots + x_{p-1}^{p-1} + x_p^{p-1} \equiv 1 + 1 + \ldots + 1 + 0 \equiv p - 1 \not\equiv 0 \pmod{p},$$

vastoin tehtävänannon oletuksia.

15. Tunnetusti $P(x) \equiv P(y) \pmod{2}$ aina kun kokonaisluvuille x ja y pätee $x \equiv y \pmod{2}$. Jos $x \equiv 0 \pmod{2}$, niin $x \equiv 1000 \pmod{2}$, ja

$$P(x) \equiv P(1000) = 1000 \equiv 0 \pmod{2}$$
.

Jos taas $x \equiv 1 \pmod{2}$, niin $x \equiv 2001 \pmod{2}$, ja

$$P(x) \equiv P(2001) = 2000 \equiv 0 \pmod{2}$$
.

Siis kaikilla $x \in \mathbb{Z}$ pätee $P(x) \equiv 0 \pmod{2}$. Siirtymällä nyt tarkastelemaan polynomin Q arvoja, tästä seuraa, että kaikilla $x \in \mathbb{Z}$ pätee

$$Q(P(x)) \equiv Q(0) = 5 \equiv 1 \not\equiv 0 \pmod{2},$$

eli kaikki lausekkeen Q(P(x)) arvot ovat parittomia eikä yhtälöllä Q(P(x))=0 voi olla kokonaislukuratkaisuita.

16. Koska $\varphi(n)$ on kokonaisluku, on oltava 2 | n. Jos $n=2^{\alpha}$, missä $\alpha\in\mathbb{Z}_{+}$, niin

$$\varphi(n) = 2^{\alpha} \cdot \frac{2-1}{2} = \frac{2^{\alpha}}{2},$$

eli luvun kaksi potenssit ovat halutunlaisia lukuja. Oletetaan sitten, että n on parillinen mutta ei luvun kaksi potenssi.

Olkoon luvun n kanoninen alkutekijähajotelma

$$n = \prod_{\ell=1}^{r} p_{\ell}^{\alpha_{\ell}},$$

missä $r \in \mathbb{Z}_+$, $r \geqslant 2$, $2 = p_1 < p_2 < \ldots < p_r$ ovat eri alkulukuja, ja eksponentit $\alpha_1, \alpha_2, \ldots, \alpha_r$ ovat positiivisia kokonaislukuja. Tunnetusti

$$\varphi(n) = n \prod_{\ell=1}^{r} \frac{p_{\ell} - 1}{p_{\ell}}.$$

Yhtälön $\varphi(n) = n/2$ voi kirjoittaa nyt muotoon

$$2^{\alpha_1} \cdot \frac{2-1}{2} \cdot \prod_{\ell=2}^r p_{\ell}^{\alpha_{\ell}} \cdot \frac{p_{\ell}-1}{p_{\ell}} = \frac{1}{2} \cdot 2^{\alpha_1} \prod_{\ell=2}^r p_{\ell}^{\alpha_{\ell}},$$

tai sievemmin muodossa

$$\prod_{\ell=2}^r p_\ell^{\alpha_\ell} \cdot \frac{p_\ell - 1}{p_\ell} = \prod_{\ell=2}^r p_\ell^{\alpha_\ell}.$$

Mutta koska jokainen tekijä $(p_\ell-1)/p_\ell<1$, on vasen puoli varmasti pienempi kuin oikea puoli, ja muita halutunlaisia lukuja, kuin luvun kaksi potenssit, ei ole.

17. Valitaan jotkin 2n eri alkulukua $p_1 < p_2 < p_3 < p_4 < \ldots < p_{2n-1} < p_{2n}$, mikä on varmasti mahdollista, sillä onhan alkulukuja äärettömän monta. Kiinalaisen jäännöslauseen nojalla on olemassa kokonaisluku x, jolle pätee

$$\begin{cases} x \equiv 0 \pmod{p_1 p_2}, \\ x \equiv -1 \pmod{p_3 p_4}, \\ x \equiv -2 \pmod{p_5 p_6}, \\ \dots \\ x \equiv -(n-1) \pmod{p_{2n-1} p_{2n}}. \end{cases}$$

Nyt siis luvut x, x + 1, ..., x + (n - 1) ovat n peräkkäistä kokonaislukua, joista x on jaollinen eri alkuluvuilla p_1 ja p_2 , luku x + 1 on jaollinen eri alkuluvuilla p_3 ja p_4 , ja niin edelleen, ja väite on todistettu.

18. Lasketaan $1^2 \cdot 3^5 \cdot \ldots \cdot (p-2)^2$ modulo p. Täysin samanlaisella argumentilla voi myös selvittää, mitä on $2^2 \cdot 4^2 \cdot \ldots \cdot (p-1)^2$ modulo p. Wilsonin lauseen nojalla

$$1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \dots \cdot (p-2)^{2}$$

$$\equiv 1 \cdot (p-2) \cdot 3 \cdot (p-4) \cdot 5 \cdot (p-6) \cdot \dots \cdot (p-4) \cdot 3 \cdot (p-2) \cdot 1$$

$$\equiv 1 \cdot (-1) \cdot 2 \cdot 3 \cdot (-1) \cdot 4 \cdot 5 \cdot (-1) \cdot 6 \cdot \dots$$

$$\cdot (p-4) \cdot (-1) \cdot (p-3) \cdot (p-2) \cdot (-1) \cdot (p-1)$$

$$\equiv (-1)^{(p-1)/2} \cdot (p-1)! \equiv (-1)^{(p-1)/2} \cdot (-1) \equiv (-1)^{(p+1)/2} \pmod{p}$$

19. Wilsonin lauseen nojalla

$$\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv \left(\frac{p-1}{2}\right)! \left(\frac{p-1}{2}\right)! \\
\equiv \left(\frac{p-1}{2}\right)! \cdot \frac{p-1}{2} \cdot \frac{p-3}{2} \cdot \dots \cdot 3 \cdot 2 \cdot 1 \\
\equiv \left(\frac{p-1}{2}\right)! \cdot (-1)\frac{p+1}{2} \cdot (-1)\frac{p+3}{2} \cdot \dots \\
\cdot (-1)(p-3) \cdot (-1)(p-2) \cdot (-1)(p-1) \\
\equiv (p-1)! \cdot (-1)^{(p-1)/2} \equiv (-1) \cdot (-1)^{(p-1)/2} \equiv (-1)^{(p+1)/2} \pmod{p}.$$

Jos $p \equiv 1 \pmod{4}$, niin (p+1)/2 on pariton, ja $(((p-1)/2)!)^2 \equiv -1 \pmod{p}$. Jos taas $p \equiv -1 \pmod{4}$, niin (p+1)/2 on parillinen, ja $(((p-1)/2)!)^2 \equiv 1 \pmod{p}$, mistä seuraa myös, että ((p-1)/2)! on $\equiv 1$ tai $-1 \pmod{p}$.

 ${\bf 20.}\,$ Jos ei-negatiivisella kokonaisluvulla non olemassa kokonaisluvut $x,\,y$ ja z, joille

$$3^n = x^3 + y^3 + z^3,$$

niin varmasti

$$3^{n+3} = 3^3 \cdot 3^n = (3x)^3 + (3y)^3 + (3z)^3.$$

Riittää siis todistaa väite tapauksissa $n \in \{0, 1, 2\}$. Mutta nämä tapaukset ovat helppoja tarkistaa; onhan

$$1 = 1^3 + 0^3 + 0^3$$
, $3 = 1^3 + 1^3 + 1^3$, ia $3^2 = 9 = 8 + 1 + 0 = 2^3 + 1^3 + 0^3$.

21. Tarkastellaan yhtälöä modulo 13. Ensinnäkin, jos $n \in \mathbb{Z}$, niin $n^3 \equiv 0, 1, 5, 8$ tai 12 (mod 13). Lisäksi $n^4 \equiv 0, 1, 3$ tai 9 (mod 13). Suoraan yhteenlaskuja tekemällä todetaan, että annetussa yhtälössä vasen puoli voi olla vain

$$x^3 + y^4 \equiv 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11$$
tai 12 (mod 13).

Erityisesti $x^3 + y^4$ ei koskaan voi olla $\equiv 7 \pmod{13}$, eikä annetulla yhtälöllä siis voi olla kokonaislukuratkaisuita.

22. Oletetaan, että yhtälöllä on jokin positiivinen kokonaislukuratkaisu x, y, z. Koska x on positiivinen kokonaisluku, löytyy ratkaisu, jossa x on mahdollisimman pieni. Nyt siis tälle ratkaisulle pätee

$$x^3 + 3y^3 + 9z^3 - 3pxyz = 0.$$

Koska kaikki muut termit ovat kolmella jaollisia, on oltava 3 | x^3 , jolloin myös 3 | x. Voidaan siis kirjoittaa $x=3\xi$ jollakin $\xi\in\mathbb{Z}_+$. Sijoittamalla tämä takaisin yhtälöon saadaan

$$27\xi^3 + 3y^3 + 9z^3 - 9p\xi yz = 0.$$

Nyt kaikki muut termit ovat yhdeksällä jaollisia, joten 9 | $3y^3$, eli 3 | y^3 , ja edelleen 3 | y. Nyt voidaan kirjoittaa $y=3\eta$ jollakin $\eta\in\mathbb{Z}_+$. Sijoittamalla takaisin yhtälöön saadaan

$$27\xi^3 + 81\eta^2 + 9z^3 - 27p\xi\eta z = 0.$$

Koska kaikki muuta termit ovat 27 jaollisia, on 27 | $9z^3$, eli 3 | z^3 , ja edelleen 3 | z. Voidaan siis kirjoittaa $z=3\zeta$ jollakin $\zeta\in\mathbb{Z}_+$, ja sijoittamalla takaisin yhtälöön saadaan

$$27\xi^3 + 81\eta^3 + 243\zeta^3 - 81p\xi\eta\zeta = 0,$$

tai sievemmin

$$\xi^3 + 3\eta^3 + 9\zeta^3 - 3p\xi\eta\zeta = 0.$$

Mutta nyt ξ , η , ζ on myös positiivinen kokonaislukuratkaisu alkuperäiselle yhtälölle, ja $\xi < x$, vastoin ratkaisun x, y, z valintaa. Tämä ristiriita osoittaa, ettei alkuperäisellä yhtälöllä ole positiivisia kokonaislukuratkaisuita.

23. Oletetaan, että annetulla yhtälöllä olisi jokin positiivinen kokonaislukuratkaisu x, y, z. Todetaan aluksi, että jos x, y ja z olisivat kaikki parittomia, niin yhtälön vasen puoli olisi pariton, mutta oikea puoli parillinen. Siis ainakin yhden luvuista x, y ja z täytyy olla parillinen. Mutta nyt

$$x^2 + y^2 + z^2 \equiv 2xyz \equiv 0 \pmod{4},$$

ja koska jokainen neliö on $\equiv 0$ tai 1 (mod 4), on oltava $x\equiv y\equiv z\equiv 0$ (mod 2). Merkitään $x=2x_2,\ y=2y_2$ ja $z=2z_2$, missä $x_2,y_2,z_2\in\mathbb{Z}_+$. Nyt $x_2,\ y_2$ ja z_2 toteuttavat yhtälön

$$x_2^2 + y_2^2 + z_2^2 - 4x_2y_2z_2 = 0.$$

Oletetaan seuraavaksi, että meillä on jollakin kokonaisluvulla $n\geqslant 2$ positiivinen kokonaislukuratkaisu $x_n,\,y_n,\,z_n$ yhtälölle

$$x_n^2 + y_n^2 + z_n^2 - 2^n x_n y_n z_n = 0.$$

Tällöin

$$x_n^2 + y_n^2 + z_n^2 \equiv 0 \pmod{4},$$

eli jälleen voidaan kirjoittaa $x_n=2x_{n+1},\ y_n=2y_{n+1}$ ja $z_n=2z_{n+1}$ joillakin $x_{n+1},\ y_{n+1},\ z_{n+1}\in\mathbb{Z}_+$. Sijoittamalla lukujen $x_n,\ y_n$ ja z_n toteuttamaan yhtälöön saadaan

$$x_{n+1}^2 + y_{n+1}^2 + z_{n+1}^2 - 2^{n+1}x_{n+1}y_{n+1}z_{n+1} = 0.$$

Tällä tavalla induktiolla saadaan jono x, x_2, x_3, \ldots positiivisia kokonaislukuja, joille $x > x_2 > x_3 > \ldots$, mikä on mahdotonta. Siis alkuperäisellä yhtälöllä ei voi olla positiivisia kokonaislukuratkaisuita.

24. Annetusta yhtälöstä seuraa, että

$$(x^3)^2 < x^6 + 3x^3 + 1 = y^4 = x^6 + 3x^3 + 1 < x^6 + 4x^3 + 4 = (x^3 + 2)^2$$

eli on oltava $y^2 = x^3 + 1$. Mutta nyt annettu yhtälö muuttuu muotoon

$$x^6 + 3x^3 + 1 = x^6 + 2x^3 + 1$$
,

mistä seuraa $x^3 = 0$, mikä on mahdotonta, koska luvun x piti olla positiivinen kokonaisluku. Siis positiivisia kokonaislukuratkaisuita ei ole.

25. Annetusta yhtälöstä seuraa, että

$$x^4 < x(x+1)(x+2)(x+3) = y^4$$
,

ja että

$$y^4 = x^4 + 6x^3 + 11x^2 + 6x < x^4 + 8x^3 + 24x^2 + 32x + 16 = (x+2)^4.$$

On siis oltava y=x+1. Mutta nyt annetusta yhtälöstä seuraakin, että

$$x^4 + 6x^3 + 11x^2 + 6x = x^4 + 4x^3 + 6x^2 + 4x + 1$$

mikä sievenee muotoon

$$2x^3 + 5x^2 + 2x = 1.$$

Tämä viimeinen yhtälö ei voi päteä, koska x oli positiivinen kokonaisluku, ja siten $x\geqslant 1$ ja $2x^3+5x^2+2x\geqslant 2+5+2>1.$