

ECE PhD QE CNSIP 2006 Problem1 - Rhea

Print

ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2006

Question

1

Let \mathbf{U}_n be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence \mathbf{X}_n , $n \geq 1$, is given by $\mathbf{X}_n = \frac{1}{2} \mathbf{U}_n + \left(\frac{1}{2}\right)^2 \mathbf{U}_{n-1} + \dots + \left(\frac{1}{2}\right)^n \mathbf{U}_1$.

(a) (15 points)

Find the mean and variance of \mathbf{X}_n .

(b) (15 points)

Find the characteristic function of \mathbf{X}_n .

(c) (10 points)

Does the sequence \mathbf{X}_n converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.

Click here to view student answers and discussions

2

Let Φ be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let $\mathbf X$ be a normal random variable with mean μ and variance 1. We want to find $E[\Phi(\mathbf X)]$.

(a) (10 points)

First show that $E[\Phi(\mathbf{X})] = P(\mathbf{Z} \leq \mathbf{X})$, where \mathbf{Z} is a standard normal random variable independent of \mathbf{X} . Hint: Use an intermediate random variable \mathbf{I} defined as

(b) (10 points)

Now use the result from Part (a) to show that $E[\Phi(\mathbf{X})] = \Phi\Big(rac{\mu}{\sqrt{2}}\Big)$.

3 (15 points)

Let $\mathbf{Y}(t)$ be the output of linear system with impulse response h(t) and input $\mathbf{X}(t) + \mathbf{N}(t)$, where $\mathbf{X}(t)$ and $\mathbf{N}(t)$ are jointly wide-sense stationary independent random processes. If $\mathbf{Z}(t) = \mathbf{X}(t) - \mathbf{Y}(t)$, find the power spectral density $S_{\mathbf{Z}}(\omega)$ in terms of $S_{\mathbf{X}}(\omega)$, $S_{\mathbf{N}}(\omega)$, $m_{\mathbf{X}} = E[\mathbf{X}]$, and $m_{\mathbf{Y}} = E[\mathbf{Y}]$.

Click here to view student answers and discussions

4

Suppose customer orders arrive according to an i.i.d. Bernoulli random process \mathbf{X}_n with parameter p. Thus, an order arrives at time index n (i.e., $\mathbf{X}_n=1$) with probability p; if an order does not arrive at time index n, then $\mathbf{X}_n=0$. When an order arrives, its size is an exponential random variable with parameter λ . Let \mathbf{S}_n be the total size of all orders up to time n.

(a) (20 points)

Find the mean and autocorrelation function of \mathbf{S}_n .

(b) (5 points)

Is \mathbf{S}_n a stationary random process? Explain.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Retrieved from "https://www.projectrhea.org/rhea/index.php?title=ECE_PhD_QE_CNSIP_2006_Problem1&oldid=69419"
Categories: ECE | QE | CNSIP | Problem solving | Random variables | Probability
Shortcuts

Help Main Wiki Page Random Page Special
Pages Log in
Search

Search
Scarcii

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Read more »

Dr. Paul Garrett

This page was last modified on 10 March 2015, at 09:35. This page has been accessed 7,273 times.