12,2,2015									
7)	A	75	C	AUB	C=>7(AVA)	7(AG)B)	I		
	()	0	0	6	0	0	0		2AVBVC
	0	0	(.	0;	l	0	0		AUBURC
	0	l	O-	t	<u>ağ</u>	1	ſ	7A1817C	
	0	l	T.	Ĩ	0	l	0		AV7BUTC
	Ţ	0	Ó	J	1	1	l	ANTBATC	
	l	0	J	1	0	(0		7AUBUZE
	(Ţ	0	1	(0	\bigcirc		7477876
	(ţ		1	0	0		1	7AV7BV7C

12 brana disjunktivna oblika: (7ANBA7C)v (ANTBA7C)

12 brana konjunktivna oblika: (AVBVC) N (AVBV7C) N (AV7BV7C)

N. (7AUBV7C) N (7AU7BVC) N (7AU7BVC)

Vezje 1 7 A - 7 B - 7 C - 1

2) a) Moramo pokazati refleksivnost, tranzitivnost in anti simetričnost

refleksivnost x Rx (=) x+x je sodo in x EX

= 2x je sodo A XEX

to je tautologija torej je ?
refleksiven

tranzitivnost: (x+y je sodo in x xy) in (y+z je sodo iny xx)

=>

(x+z je sodo in x x x)

Vemo da xéy ryét =) xét

Da vidimo da x+t je sodo napisamo

x+t = (x+y) + (y+t) - 2y

vemo da x+y je sodo in y+t je sodo

torej je \$ sestenk sodo. 2y je tudi

Sodo Ratlika dueh sodih stevilk je sodo.

antisimetrië nost: xlynyRx => x=y

To sled: kar x=y ny=x=) x=y

- 2 minimalni elementi 213 923
- c) R-vaksivalui element
- e) ne, ker obstaja par elementou ki nimajo definiramega infin sup upr. (5,6)
- 3) ACBASC => AGBOC (xeA=) xeB) A(xeA=) xeC) (xeBAxeC) (xeA=) xeB) A(xeA=) xeC) (xeBAxeC)

4) a) A Λ ($\Lambda \in \mathcal{B}$) => \mathcal{B} Pravilua b) $\Lambda \wedge \tau \Lambda => \mathcal{B}$ Pravilua c) $(\Lambda => \mathcal{B}) \wedge (\mathcal{B} => c) => (c => \Lambda)$ nepravilua d) $(\tau \wedge \Lambda \wedge (\Lambda \in \mathcal{B})) => \mathcal{B}$ nepravilua

6) f-'(EUF) = f-'(E) U f-'(F) f(x) = EUF (=) f(x) = E V f(x) = F (=) f-'(E) U f-'(F)

7) a) DA S) DA C) NE d) NE

8/a) RzoR(= {(1,1), (2,2), (3,3), (4,4)} slika = 21,2,3,43

bijektivna

b) RzoR, = {(1,3), (2,1), (3,4), (4,3)} slika = {1,3,43

tijektivna in ni injektivna torej n

10)

DEAUBUC

25