ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ЖУРНАЛ ПРАКТИКИ

Студента 1 курса	Сыроежкина Кирилла Геннадьевича (Фамилия, имя. отчество)
Факультет №8 <u>«Информационные техно</u> л	погии и прикладная математика»
Кафедра 804 <u>«Теория вероятностей и к</u>	омпьютерное моделирование»
Учебная группа <u>М8О-104Б-18</u>	
Направление <u>01.03.04.</u> <u>Пр</u>	<u>икладная математика</u> (название направления)
Вид практики <u>учебная</u> (учебная, производственная (вычисл в <u>Московском авиационном институте</u> (наименование предприятия,	
Руководитель практики от МАИ <u>Зайн</u> ФИ	
<u>Сыроежкин К. Г.</u> / (подпись студ	/ " <u>11</u> " <u>июля</u> 2019 г. _(дата)

1. Место и сроки проведения практики

Дата начала практики "28" <u>июня</u> 2019 г. Дата окончания практики "11" <u>июля</u> 2019 г.

Наименование предприятия <u>МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ</u>
(НАЦИОНАЛЬНЫЙ <u>ИССЛЕДОВАТЕЛЬСКИЙ</u>

<u>УНИВЕРСИТЕТ)</u>

Название структурного подразделения) <u>кафедра 804</u>

2. Инструктаж по технике безопасности

(подпись проводившего)

"<u>28</u>" <u>июня</u> 2019 г.

(дата проведения)

Индивидуальное задание студенту

- 1. Проанализировать состояние современного прикладного программного обеспечения, возможности его использования для решения учебных задач.
- 2. Пакет MS Office. Текстовый процессор Microsoft Word, Функциональные возможности.
- 3. Функциональные возможности табличного процессора MS Excel.
- 4. Изучить основные принципы работы в MATLAB. Научная графика в MATLAB.
- 5. Построить и оформить графики функций в декартовых и полярных координатах, и функции, заданной параметрически:
 - 1) $y = e^{y_1}$ $y_1 = -x^2$;

<u> Зайцева О.Б.</u>

3.

- 2) $r = \cos \cos 5t$, $t = [0; 2\pi]$;
- 3) $x = -t + \frac{t^2}{2}$, $y = -t + \frac{t^3}{3}$.
- 6. Исследовать функцию и построить график $y = 2x + 4 \operatorname{arcctg} x$
- 7. Исследовать функцию, заданную параметрически, и построить график $x = a \cos \cos 2t$, $y = a \cos \cos 3t$ (a > 0).

2

4. План выполнения индивидуального задания

1. Ознакомление с местом п	рохождения практики, средствами обеспечения
безопасной работы.	
2. Составление рабочего пла	ана и графика выполнения задания.
3. Поиск и анализ литератур	оных источников по тематике практики.
4. Функциональные возмож	ности Microsoft Word.
5. Функциональные возмож	ности табличного процессора MS Excel.
6. Основные принципы рабо	оты в MATLAB.
7. Научная графика в МАТІ	LAB.
8. Решение индивидуальных	х задач.
9. Подготовка к защите прав	ктики. Оформление отчета.
10.Защита результатов прак	тики.
Руководитель практики от	<i>МАИ</i> : Зайнева О.Б. / /
1 уковобитело приктики от	
	(Фамилия, имя, отчество) (Подпись)
Сыроежкин К. Г.	/ " <u>28</u> " <u>июня</u> 2019 г.
(ФИО)	(подпись студента) (дата)
5.Отзыв руководителя праг	ктики
Сыроежкин Кирилл посетил	•
Задание выполнено вовремя	
	тью соответствует индивидуальному заданию
Оценка за практику «отличн	10»
Руководитель	<u>Зайцева О.Б.</u> //
	(Фамилия, имя, отчество) (Подпись)
"11" 2010 =	
" <u>11" июля</u> 2019 г.	

Отчет студента

Задание 1. Построить график функции.

$$y = e^{y_1}, \quad y_1 = -x^2.$$

grid on;

Minx=-2.5; % нижняя граница оси х Махх=2.5; % верхняя граница оси х Miny=-2.5; % нижняя граница оси у Маху=2.5; % верхняя граница оси у OX=[Minx Maxx]; OY=[Miny Maxy]; $Z=[0\ 0]$; % линия координат х=-2.5:0.01:2.5; % шаг по оси х у1=-х.^2; %функция у1 у=ехр(у1);%функция у hold on; %Рисуем plot(x, y, 'k-', 'LineWidth',3); plot(OX,Z, 'r:', 'LineWidth',3); plot(Z,OY, 'r:', 'LineWidth',3); xlabel('Ox'); ylabel('Oy'); title('y=e^y1','FontAngle','italic');

Задание 2. Построить график функции r=r(t) в полярной системе координат.

 $r = \cos \cos 5t$, $t = [0; 2\pi]$; t=0:0.001:2*pi; % t polar(t, $\cos(5*t)$); %Рисуем график title('r = $\cos 5t$ ');

Задание 3. Построить график функции, заданной параметрически.

$$x = -t + \frac{t^2}{2}$$
, $y = -t + \frac{t^3}{3}$.

Minx=-60; % нижняя граница оси x

Махх=60; % верхняя граница оси х

Міпу=400; % нижняя граница оси у

Маху=-400; % верхняя граница оси у

 $Z=[0\ 0]; \%$ линия координат

OX=[Minx Maxx]; %ось х

OY=[Miny Maxy]; % ось у

t=-10:0.001:10; %параметр

 $x=-t+t.^2/2; % функция по х$

y=-t+t.^3/3; %функция по у

hold on; %Рисуем

plot(x,y, 'k-', 'LineWidth',3);

plot(OX,Z, 'r:', 'LineWidth',3);

plot(Z,OY, 'r:', 'LineWidth',3);

xlabel('Ox');

ylabel('Oy'); title(' x=-t+t.^2/2, y=-t+t.^3/3','FontAngle','italic'); grid on; hold off; %конец рисования

Задания 4, 5. Исследование функций и построение графиков.

Алгоритм:

- 1) найти область определения;
- 2) проверка чётность, нечётность, периодичность;
- 3) точки пересечения графика функции с осями координат;
- 4) точки разрыва, их классификация;
- 5) определить промежутки возрастания, убывания, точки экстремума;
- 6) определить промежутки выпуклости вверх, вниз, точки;
- 7) определить наклонные асимптоты;

Задание 4. Исследовать функцию и начертить её график. y = 2x + 4arcctg x

Исследование

1)Очевидно, что x ∈ $(-\infty; +\infty);$

2)Функция нечётная, так как

$$y(-x) = -y(x)$$
, T.e $y(-x) = -2x - 4arcctgx = -(2 + 4arcctgx)$,

3)При
$$x = 0 \Rightarrow y = 2\pi$$
;

При
$$y = 0 \Rightarrow x = -5.95$$

$$4) 2x + 4 \operatorname{arcctg} x = -\infty,$$

$$2x + 4arcctg x = \infty$$

$$2x + 4arcctg x = 2\pi,$$

$$2x + 4arcctg x = 2\pi$$

$$2x + 4arcctg x = 2 + \pi,$$

$$2x + 4arcctg x = 2 + \pi,$$

=> точек разрыва нет;

5)
$$y'(x) = (2x + 4 \operatorname{arcctg} x)' = 2 - \frac{4}{x^2 + 1}$$

$$2 - \frac{4}{x^2 + 1} = 0 \qquad (x^2 + 1 > 0)$$

$$2x^2 + 2 = 4x^2 = 1x = 1$$
 или $x = -1$

При $x \in (-\infty, -1]$ y — возрастает, при $x \in [-1, 1]$ y — убывает, а при $x \in [1, +\infty)$ y — возрас

$$x = -1 -$$
максимум (y=3 π -2)

$$x = 1 - \text{минимум} (y=2+ \pi)$$

6)
$$y''(x) = (2 - \frac{4}{x^2 + 1})' = \frac{4 \cdot 2x}{(x^2 + 1)^2} = \frac{8x}{(x^2 + 1)^2}$$

$$\frac{8x}{(x^2+1)^2} = 0 \qquad (x^2+1)^2 > 0$$

$$8x = 0x = 0$$

=> при x \in $(-\infty;0)$ график функции выпуклый, а при x \in $(0;+\infty)$ график функции вог

$$x=0$$
 – точка перегиба ($y=2\pi$)

7)Найдем асимптоты:

$$y = kx + b$$

Тогда, при
$$x \rightarrow +\infty$$

$$k = \frac{2x + 4arcctgx}{x} = 2 + 0 = 2$$

$$b = 2x + 4arcctg \ x - 2x = 4arcctg \ x = 0_{x \to +\infty}$$

=> Наклонная асимптота имеет вид у=2х;

При
$$x \rightarrow -\infty$$

$$y = kx + b$$

$$k = \frac{2x + 4arcctgx}{x} = 2 - 0 = 2$$

$$b = 2x + 4arcctg \ x - 2x = 4arcctg \ x = 4_{x \to -\infty} \ \pi$$

=> Наклонная асимптота имеет вид $y=2x+4\pi$;

Вертикальных асимптот нет (следствие из пункта 1)

X	(-∞; -5.95]	-5.95	[-5.95;-1]	-1	[-1;0]	0	[0;1]	1	[1;+ ∞)
у	y<0	0	y>0	3 π -2	y>0	2 π	y>0	2+ π(точка	y>0
				(точка		(точка		минимума)	
				максимум		перегиба			
				a))			
y'	y'>0		y'>0		y'<0		y'<0		у'>0 возрастает
	возрастает		возрастает		убывае		убывае		
					T		Т		
y''	у''<0 выпуклая		y''<0		y''<0		y''>0		y''>0
			выпуклая		выпукл		вогнут		вогнутая
					ая		ая		

Программа:

Minx=-10; % нижняя граница оси х

Махх=10; % верхняя граница оси х

Miny=-20; % нижняя граница оси у

Маху=30; % верхняя граница оси у

OX=[Minx Maxx]; %ось ох

OY=[Miny Maxy]; %ось оу

Z=[0 0]; % линия координат

x=-9:0.01:9; % шаг по оси х %функция у1

y=4*(pi/2-atan(x))+2*x;%функция у

syms x1;

у_op=4*(pi/2-atan(x1))+2*x1; %функция у для вычисления пределов и производных

fprintf('Предел к бесконечности=%f\nПредел к минус

бесконечности=%f\nПредел к 0+=%f\nПредел к 0-=%f\nПредел к 1+=%f\nПредел к 1-=%f\nR+=%f\nk+=%f\nb+=%f\nb+=%f\nDepsa производная =%s\nBторая производная = %s\n',...

limit(y_op, x1, inf), limit(y_op, x1, -inf), limit(y_op, x1, 0, 'right'), limit(y_op, x1, 0, 'left'),...

limit(y_op, x1, 1, 'right'), limit(y_op, x1, 1, 'left'), limit(y_op/x1, x1, inf), limit(y_op/x1, x1, -inf),...

 $limit((y_op-x1*limit(y_op/x1, x1, +inf)), x1, inf), limit(y_op-x1*limit(y_op/x1, x1, -inf), x1, -inf), ...$

diff(y_op, x1,1), diff(y_op, x1,2)); %вычисляем пределы

```
asimptota1=x*limit(y op/x1, x1, +inf)+limit((y op-x1*limit(y op/x1, x1, +inf)), x1,
inf): %асимтота1
asimptota2=x*limit(y op/x1, x1, -inf)+limit((y op-x1*limit(y op/x1, x1, -inf)), x1,
-inf); %acumtota2
hold on; %Рисуем
plot(x, y, 'k-', 'LineWidth',3);
plot(OX,Z, 'r:', 'LineWidth',3);
plot(Z,OY, 'r:', 'LineWidth',3);
plot(x, asimptota1, 'k:', 'LineWidth',3);
plot(x, asimptota2, 'k:', 'LineWidth',3);
xlabel('Ox');
ylabel('Oy');
title('y=2*x+4*acot(x)','FontAngle','italic');
grid on;
hold off; %конец рисования
В результате в терминале мы видим следующее сообщение:
» task4
Предел к бесконечности=Inf
Предел к минус бесконечности=-Inf
Предел к 0+=6.283185
Предел к 0-=6.283185
Предел к 1+ = 5.141593
Предел к 1- = 5.141593
k+=2.000000
k = 2.000000
b+=0.000000
b = 12.566371
Первая производная = 2 - 4/(x1^2 + 1)
Вторая производная = (8*x1)/(x1^2 + 1)^2
```


Где черным пунктиром нарисована асимптота у=2х и асимптота у=2х+4 π , а черной линией график функции у=2*x+4*acot(x).

Задание 5. Исследовать и начертить кривую, заданную в параметрически. $x = a \cos \cos 2t$, $y = a \cos \cos 3t$ (a > 0).

Исследование

1.Построим график функции $x = a \cos \cos 2t$ (a > 0).

1)
$$t \in (-\infty; +\infty)$$
;

2) Очевидно, что x(t) – периодическая и чётная функция.

$$3)t = 0$$
, при $x = a$ (амплитуда колебания a); $x = 0$, при $t = \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in \mathbb{Z} \implies$

период колебания равен $\frac{\pi}{4}*4 = \pi$

4)
$$x'(t) = (a \cos \cos 2t)' = -2a \sin \sin 2t = >$$

- $2a \sin \sin 2t = 0t = \pi k, \ k \in \mathbb{Z}; \ t = \frac{\pi}{2} + \pi k$

При $t \in \left[-\frac{\pi}{2} + \pi k; \pi k\right]$, где $k \in \mathbb{Z}$ функция x возрАстает, а при $t \in [\pi k; \frac{\pi}{2} + \pi k]$, где $k \in \mathbb{Z}$ x убыва

При $t=\pi k$ (x=a), где $k \in \mathbb{Z}$ максимумы

При $t = \frac{\pi}{2} + \pi k$ (x=-a), $k \in \mathbb{Z}$ минимумы

5)
$$x''(t) = (-2a \sin \sin 2t)' = -4a \cos \cos 2t$$

$$-4a\cos\cos 2t = 04a\cos\cos 2t = 0\cos\cos 2t = 0$$

 $t = \frac{\pi}{4} + \frac{\pi k}{2}, \ k \in \mathbb{Z}$ — точки перегиба (x=0)

 $\left[-\frac{\pi}{4} + \frac{\pi k}{2}; \frac{\pi}{4} + \frac{\pi k}{2}\right]$ при k- чётное и 0, то x выпуклый

 $\left[-\frac{\pi}{4} + \frac{\pi k}{2}; \frac{\pi}{4} + \frac{\pi k}{2}\right]$ при k — нечётное, то х вогнутый

6) Точек разрыва нет.

7)
$$\frac{a\cos\cos 2t}{t} = 0$$
 $a\cos\cos 2t = -a, a >$ При $t \to -\infty$ аналогично

Асимптот нет

8)Параметр а является амплитудой колебания => при увеличении / уменьшении а, амплитуда (максимумы и минимумы по х также) будет меняться в зависимости от него. a>0 => колебания начинаются только с положительного х.

На основе имеющейся у нас информации построим график x(t)

- 2.Построим график функции $y = a \cos \cos 3t$ (a > 0).
- 1) $t \in (-\infty; +\infty)$:
- 2) Очевидно, что y(t) периодическая и чётная функция.

$$(3)t=0$$
, при $y=a$ (амплитуда колебания a); $y=0$, при $t=\frac{\pi}{6}+\frac{\pi k}{3},\ k\in Z$

период колебания равен $\frac{\pi}{6} * 4 = \frac{2\pi}{3}$

4)
$$y'(t) = (a\cos\cos 3t)' = -3a\sin\sin 3t = >$$

- $3a\sin\sin 3t = 0t = \frac{2\pi k}{3}, k \in \mathbb{Z}; t = \frac{\pi}{3} + \frac{2\pi k}{3};$ где $k \in \mathbb{Z}$

При $t \in \left[-\frac{\pi}{3} + \frac{2\pi k}{3} \right]$, где $k \in \mathbb{Z}$ у возростает, а при $t \in \left[\frac{2\pi k}{3} \right]$, где $k \in \mathbb{Z}$ у убывает

$$\frac{2\pi k}{3}$$
 , где k \in Z — максимумы (y=a) $\frac{\pi}{3}+\frac{2\pi k}{3}$, где k \in Z — минимумы (y=-a)

5)
$$y''(t) = (-3a\sin\sin 3t)' = -9a\cos 3t - 9a\cos 3t = 0\cos 3t = 0$$

 $t = \frac{\pi}{6} + \frac{\pi k}{3}$, $k \in \mathbb{Z}$ – точки перегиба $(y = 0)[-\frac{\pi}{6} + \frac{\pi k}{3}; \frac{\pi}{6} + \frac{\pi k}{3}]$ при k – чётное и 0, то у

 $\left[-\frac{\pi}{6} + \frac{\pi k}{3}; \frac{\pi}{6} + \frac{\pi k}{3}\right]$ при k- нечётное, то у вогнутый

6) Точек разрыва нет.

7)
$$\frac{a\cos\cos 3t}{} = 0$$
 $a\cos\cos 3t = -a, a >$ При $t \to -\infty$ аналогично

Асимптот нет.

8)Параметр а является амплитудой колебания => при увеличении / уменьшении а, амплитуда (максимумы и минимумы по у) будет меняться в зависимости от него. а>0 => колебания начинаются только с положительного у.

На основе имеющейся у нас информации построим график y(t)

3. Функции: $a\cos 3t$ и $a\cos 2t$ ($t \in (-\infty; +\infty)$) периодические с периодом $\frac{2\pi}{3}$ и π , достаточно рассмотреть изменение параметра в пределах от 0 до π , при этом областью изменения х будет отрезок [- а, а] и областью изменения у будет отрезок [-a, a].

функция не является: чётной, нечётной, периодичной. График функции симметричен относительно прямой x = 0.

4. Пересечение с ОХ:

T1 (
$$\frac{a}{2}$$
,0)

Пересечение с осью ОУ

T3
$$(0, -\frac{\sqrt{2}a}{2},)$$

T4 $(0, \frac{\sqrt{2}a}{2})$

T4
$$(0, \frac{\sqrt{2}a}{2})$$

5. точек разрыва не существует

6.
$$y'_{x}(t) = \frac{y'_{t}}{x'_{t}} = \frac{3 \sin \sin 3t}{2 \sin \sin 2t}$$

6.
$$y'_{x}(t) = \frac{y'_{t}}{x'_{t}} = \frac{3 \sin \sin 3t}{2 \sin \sin 2t}$$

 $\frac{3 \sin \sin 3t}{2 \sin \sin 2t} = 0$ $3 \sin \sin 3t + 2 \sin \sin 2t = 0$

$$t \neq \frac{\pi k}{2}, \ k \in \mathbb{Z} \ t = \frac{\pi k}{3}, k \in \mathbb{Z}$$

Получаем следующие промежутки возрастания/убывания.

t	$(0; \frac{\pi}{3}]$	$\left[\frac{\pi}{3},\frac{\pi}{2}\right)$	$\left(\frac{\pi}{2};\frac{2\pi}{3}\right]$	$\left[\frac{2\pi}{3};\pi\right]$
$y'_{x}(t)$	(+)↑	(−) ↓	(+)↑	(−)↓
x	-a/2 <x<a< th=""><th>-a<x<-a 2<="" th=""><th>-a<x<-a 2<="" th=""><th>-a/2<x<a< th=""></x<a<></th></x<-a></th></x<-a></th></x<a<>	-a <x<-a 2<="" th=""><th>-a<x<-a 2<="" th=""><th>-a/2<x<a< th=""></x<a<></th></x<-a></th></x<-a>	-a <x<-a 2<="" th=""><th>-a/2<x<a< th=""></x<a<></th></x<-a>	-a/2 <x<a< th=""></x<a<>

y	-a <y<a< th=""><th>-a<y<0< th=""><th>0<y<a< th=""><th>-a<y<a< th=""><th></th></y<a<></th></y<a<></th></y<0<></th></y<a<>	-a <y<0< th=""><th>0<y<a< th=""><th>-a<y<a< th=""><th></th></y<a<></th></y<a<></th></y<0<>	0 <y<a< th=""><th>-a<y<a< th=""><th></th></y<a<></th></y<a<>	-a <y<a< th=""><th></th></y<a<>			
7. $y''_{xt}(t)$	$= \left(\frac{3\sin\sin 3t}{2\sin\sin 2t}\right)' =$	18 cos cos 3t sin	sin 2t–12cos2tsi 42t	$\frac{n3t}{22t} = \frac{9\cos\cos 3t\sin\sin 3t}{22t}$	2t-6cos2tsin3t		
$y''_{x^2}(t) = \frac{y''_{xt}(t)}{x'_t} = -\frac{9\cos\cos3t\sin\sin2t - 6\cos2t\sin3t}{4a2t} \Longrightarrow B \ 1$ и 2 долях график функции выпуклый,							
в 3 и 4 во	гнутый. (<i>t</i> ∈(0	$(\frac{\pi}{2}) \Longrightarrow -a <$	x < a, 0 < a	$(y < a y''_{x^2}(-) \cap; t$			
$\in (\frac{\pi}{2}; \pi)$	$\Rightarrow -a < x < a$	-a < y < 0	$0y''_{x^2}(+)U)$				

8. асимптот не существует

Построим график функции. Так как а>0 график будет иметь следующий вид

<u>Программа</u>


```
Minx=-1; % нижняя граница оси х
Махх=1; % верхняя граница оси х
Miny=-1; % нижняя граница оси у
Маху=1; % верхняя граница оси у
OX=[Minx Maxx]; %ось ох
OY=[Miny Maxy]; %ось оу
Z=[0 0]; % линия координат
t=0:0.01:pi;
x=cos(t.*2);
y=cos(t.*3);
hold on
grid on;
plot(OX,Z, 'r:', 'LineWidth',3);
plot(Z,OY, 'r:', 'LineWidth',3);
plot(x,y, 'k-', 'LineWidth',3);
xlabel('0x');
ylabel('Oy');
title('y=cos(3x), x=cos(2x)', 'FontAngle', 'italic');
hold off;
```

```
Проверка
```

```
syms t;
syms a;
y=a*cos(3*t);
x=a*cos(2*t);
dy=diff(y,t);
dx=diff(x,t);
dyx=dy/dx;
d2ytx=diff(dyx,t);
d2ytx=d2ytx/dx;
fprintf('y''=%s\nx''=%s\nyx''(t)=%s\nyxt''''(t)=%s\n', dy, dx, dyx,
d2ytx, d2yxx );
```

<u>Терминал</u>

```
y'=-3*a*sin(3*t)
x'=-2*a*sin(2*t)
```

```
yx'(t)=(3*sin(3*t))/(2*sin(2*t))
yxt''(t)=(9*cos(3*t))/(2*sin(2*t)) - (3*cos(2*t)*sin(3*t))/sin(2*t)^2
yxx''(t)=-((9*cos(3*t))/(2*sin(2*t)) -
(3*cos(2*t)*sin(3*t))/sin(2*t)^2)/(2*a*sin(2*t))
```