

Integrantes

Guilherme Augusto

Marcos Aurélio

Entendimento do Problema

- Os vazamentos de petróleo são eventos ambientais desastrosos que tem impactos significativos no ecossistema marinho e nas comunidades dependentes. Tornando a recuperação desses ecossistemas um desafio complexo onde requer uma abordagem multidisciplinar.
- Já no estudo de Impactos do Vazamento de óleo no Nordeste (Prof. Marcelo Soares e Prof. Emanuelle Fontenele Rabelo, 2021), destaca os impactos econômicos e sociais do derramamento de óleo, afetando principalmente a população litorânea e a economia local baseada no turismo e na pesca como duradouros, necessitando apoio financeiro e políticas públicas para ajudar a comunidade a se recuperar.

- As imagens de satélite são divididas em menores chamadas patches
- Suponha que uma imagem de satélite tenha uma resolução de 4000 x 4000 pixels.
- Patches de (4000/100 = 40).Se quisermos dividir essa imagem em patches de 100 x 100 pixels, a imagem será dividida em 40 x 40 patches (4000/100 = 40)

Coleta dos Dados

Pre-processamento dos Dados

	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_10	f_40	f_41	f_42	f_43	f_44	f_45	f_46	f_47	f_48	f_49
0	-1.240922	1.152390	1.346434	-0.793007	0.129657	1.469091	-0.185871	-0.345107	3.165389	-0.343460	0.611105	1.913877	0.800597	0.950757	0.216514	-0.255448	-0.383248	3.686767	0.388730	-0.058377
1	-1.225524	11.389546	-1.033273	-0.057342	2.114766	14.374844	0.618905	-2.207407	7.100184	-2.226754	0.611105	4.810555	15.485710	17.486286	11.381341	-0.878152	-0.383248	6.362181	0.387769	-0.639664
2	-1.210126	-0.112818	1.252645	-0.502492	0.085544	-0.125929	-0.222058	-0.498440	-0.073589	-0.454242	0.611105	0.465538	-0.248340	-0.197438	-0.449905	0.858654	2.609278	3.460466	0.395456	-0.096212
3	-1.194727	0.449611	1.440556	-1.101091	-0.399705	0.583114	-0.066295	-0.322804	1.725979	-0.343460	0.611105	5.101741	0.467147	0.370349	0.286675	1.654442	2.609278	4.336762	0.382004	-0.017102
4	-1.179329	-0.010794	0.419520	-0.823188	-1.039352	0.002691	-0.142604	-0.584864	-0.072364	-0.565024	0.611105	0.385669	0.395889	0.481449	0.022483	-0.484237	-0.383248	3.072971	0.381043	-0.264751
5 rows × 49 columns																				

Legenda:

- F_1 : Reflexão de Radar (SAR);
- F_2: Intensidade de Pixel;
- F_3: Cor (Banda RGB 1);
- F_4 : Cor (Banda RGB 2);
- F_5: Cor (Banda RGB 3);
- F_6: Índice de Vegetação por Diferença Normalizada (NDVI);
- F_7 : Índice de Água por Diferença Normalizada (NDWI);
- F_8 : Média da Intensidade de Pixel;
- F_9 : Desvio Padrão da Intensidade de Pixel;
- F_10: Curtose;
- F_11 : Assimetria;
- F_12: Média da Reflexão de Radar;
- F_13: Desvio Padrão da Reflexão de Radar;
- F_14 : Curto da Reflexão de Radar;
- F_15 : Assimetria da Reflexão de Radar;
- F_16: Textura (Características de Haralick Contraste);
- F_17 : Textura (Características de Haralick Dissimilaridade);

- F_18 : Textura (Características de Haralick -
- Homogeneidade);
- F_19: Textura (Características de Haralick Energia);
- F 20 : Textura (Características de Haralick Correlação);
- F_21 : Variância;
- F_22 : Entropia;
- F_23 : Área da Mancha;
- F 24 : Perímetro da Mancha;
- F 25 : Raio Médio da Mancha;
- F_26: Diâmetro Equivalente;
- F_27 : Excentricidade;
- F_28 : Circularidade;
- F_29 : Rugosidade;
- F_30 : Albedo;
- F_31 : Reflexão de Luz Visível;
- F_32: Reflexão de Infravermelho;
- F_33 : Reflexão de Microondas;

- F_34 : Reflexão de Ultravioleta;
- F_35: Reflexão de Radar de Alta Resolução;
- F_36 : Reflexão de Radar de Baixa Resolução;
- F_37 : Reflexão de Radar de Média Resolução;
- F_38 : Reflexão de Radar de Alta Frequência;
- F_39 : Reflexão de Radar de Baixa Frequência;
- F_40 : Reflexão de Radar de Frequência Média;
- F_41 : Reflexão de Radar de Alta Potência;
- F_42: Reflexão de Radar de Baixa Potência;
- F_43: Reflexão de Radar de Potência Média;
- F_44 : Reflexão de Radar de Alta Sensibilidade;
- F_45 : Reflexão de Radar de Baixa Sensibilidade;
- F_46: Reflexão de Radar de Sensibilidade Média;
- F_47 : Reflexão de Radar de Alta Precisão;
- F 48: Reflexão de Radar de Baixa Precisão;
- F_49: Reflexão de Radar de Precisão Média.

Pre-processamento dos Dados

StandardScaler: Normaliza as variáveis independentes para que todas estejam na mesma escala (média 0 e desvio padrão 1).

Criar uma instância de StandardScaler scaler = StandardScaler()

Ajustar e transformar os dados X_normalized = scaler.fit_transform(X)

Converter de volta para um DataFrame com os nomes das colunas originais X = pd.DataFrame(data=X_normalized, columns=X.columns) 80%

Dado de treino

20%

Dado de Teste

Modelos Usados

Rede Neural

Projetada para conter rótulos de dados de entrada com base em suas características.
Esse tipo de tarefa é comum no reconhecimento de imagem, classificação de texto, entre outros.

Regressão Logística

Modelo de classificação estatístico que prevê a probabilidade de um evento acontecer.

Árvore de decisão

Algoritmo de aprendizado de máquina supervisionado que é utilizado para classificação e para regressão.

Árvore de Decisão

Impureza de Gini

Ela fornece mais informações sobre a distribuição de dados por nó do que a precisão de classificação usada para relatar a precisão da árvore.

Ganho de informação

Mede a redução de entropia após uma divisão

Entropia

A entropia de Shannon mede a incerteza ou a quantidade de informação contida em uma variável aleatória.

Cálculos de divisão

A árvore decide onde dividir com base em valores numéricos ou categorias para minimizar as impurezas

Diagrama da arvore e nós promissores

Nós com a Condição F_3 <= -0.957:

- Índice de Gini: 0.0
- Amostras: 17
- Valores: [0, 17]
- Classe Predominante: Com Vazamento

Nós com a Condição F_38 <= -0.138:

- Índice de Gini: 0.0
- Amostras: 24
- Valores: [0, 24]
- Classe Predominante: Com Vazamento

Nós com a Condição F_43 <= 0.217:

- Índice de Gini: 0,215
- Amostras: 77
- Valores: [68, 9]
- Classe Predominante: Sem Vazamento

Legenda

F_3 : Cor (Banda RGB 1);

F_38 : Reflexão de Radar de Alta Frequência; F_43 : Reflexão de Radar de Potência Média.

Metricas para Avaliação

Precision

A precisão é a razão entre verdadeiros positivos (TP) e o total de predições positivas (TP + FP). Indica apenas as instâncias em que o modelo anterior é realmente positivo.

Fórmula: Precisão = TP / (TP + FP)

Recall

Também conhecido como sensibilidade, é a razão entre verdadeiros positivos (TP) e o total de instâncias reais positivas (TP + FN). Indica quantas instâncias positivas reais o modelo conseguiu capturar .

Fórmula :Recall = TP / (TP + FN)

F1-score

É a média harmônica entre a precisão e o recall. Ele fornece uma única métrica que combina ambos os aspectos, sendo útil quando há um desequilíbrio entre as classes.

Fórmula: F1-Score = 2 *
(Precisão * Recall) / (Precisão + Recall)

Accuracy

A acurácia é a razão entre o número de predições corretas e o total de predições.

Fórmula :Acurácia = (TP + TN) / (TP + TN + FP + FN)

1. Árvore de Decisão

Relatório de classificação do Árvore de Decisão: precision recall f1-score support 0.99 0.88 0.93 183 0.94 176 0.89 0.99 0.93 accuracy 359 0.93 359 macro avg 0.94 0.93 weighted avg 0.94 0.93 0.93 359

OT AVALIAÇÃO DE MODELOS

02

2. Rede neural

Relatório de	classificação			
	precision	recall	f1-score	support
0	0.99	0.92	0.95	183
1	0.93	0.99	0.96	176
accuracy			0.96	359
macro avg	0.96	0.96	0.96	359
weighted avg	0.96	0.96	0.96	359

3. Regressão logística

03

Relatório de	classificação precision		Neural: f1-score	support
0	1.00	0.97	0.99	183
1	0.97	1.00	0.99	176
accuracy			0.99	359
macro avg	0.99	0.99	0.99	359
weighted avg	0.99	0.99	0.99	359

Acurácia dos modelos

Reflexão final

https://colab.research.google.com/drive/1SL8Wg4w7nWkePKHYn3lLAyVWAbCKaJLp?usp=sharing

 Com base nos resultados acima, a Rede Neural (MLP) parece ser o melhor modelo para este conjunto de dados devido à sua alta acurácia (99%) e excelente equilíbrio entre precisão e revogação para ambas as classes. No entanto, vale lembrar que as Redes Neurais são mais complexas e podem exigir mais recursos computacionais.

Melhor Modelo:

 Se você busca interpretabilidade e um modelo mais simples, a Árvore de Decisão pode ser uma boa escolha. Já a Regressão Logística pode ser útil se você precisar de um modelo linear e menos complexo.

Participantes x %Esforço

Participantes	% Esforço
Guilherme Augusto	100%
Marcos Aurélio	100%