MIT 2.853/2.854 Introduction to Manufacturing Systems

Manufacturing Systems Overview

Stanley B. Gershwin

Laboratory for Manufacturing and Productivity
Massachusetts Institute of Technology
gershwin@mit.edu

Background

• In 1993, the ink-jet printer market was taking off explosively, and manufacturers were competing intensively for market share.

 Manufacturers could sell all they could produce. Demand was much greater than production capacity.

 Hewlett Packard was designing and producing its printers in Vancouver, Washington (near Portland, Oregon).

HP's needs

- Maintain quality.
- Meet increased demand and increase market share.
 - * Target: 300,000 printers/month.
 - * Capacity with existing manual assembly: 200,000 printers/month.
- Meet profit and revenue targets.
- Keep employment stable.

Printer Production

HP invested \$25,000,000 in "Eclipse," a new system for automated assembly of the print engine.

Two Eclipses were installed.

Printer Production

Design philosophy: minimal — essentially zero — buffer space.

The Problem

- Machine efficiencies¹ were estimated to be about .99.
- Operation times were estimated to be 9 seconds, and constant.
 - \star Consequently, the total production rate was estimated to be about 370,000 units/month.
- BUT data was collected when the first two machines were installed:
 - * Efficiency was less than .99.
 - * Operation times were variable, often greater than 9 seconds.

Actual production rate would be about 125,000 units/month.

¹(to be defined)

The Problem

 HP tried to analyze the system by simulation. They consulted a vendor, but the project appeared to be too large and complex to produce useful results in time to affect the system design.

* This was because they tried to include too much detail.

• Infeasible changes: adding labor, redesigning machines.

The Solution

 Feasible change: visiting researcher proposed adding a small amount of buffer space within Eclipse.

 Design and analysis tools: described in the second part of this course.

The Solution

- Empty pallet buffer.
- WIP (work in process) space between subassembly lines and main line.
- WIP space on main line.
- Buffer sizes were large enough to hold about 30 minutes worth of material.
 This is a small multiple of the mean time to repair (MTTR) of the machines.

Comparison

10

Consequences

• Increased factory capacity — to over 250,000 units/month.

• Capital cost of changes was about \$1,400,000.

• Incremental revenues of about \$280,000,000.

• Labor productivity increased by about 50%.

Reasons for Success

- Early intervention (before too much of the system was built).
- Rapid response by visiting researcher was possible because much research work had already been done.
- HP managers' flexibility.
- The new analysis tool was fast, easy to use, and was at the right level of detail.
 - * It only dealt with important features of the system.
 - * It did not require much data.

12

Course Overview

Message

- Manufacturing systems can be understood like any complex engineered system.
- Engineers must have intuition about these systems in order to design and operate them most effectively.
- Such intuition can be developed by studying the elements of the system and their interactions.
- Using intuition and appropriate design tools can have a big payoff.

Course Overview

Goals

- To explain important measures of system performance.
- To show the importance of random, potentially disruptive events in factories.
- To give some intuition about behavior of these systems.
- To describe and justify some quantitative tools and methods.
- But *not* to describe all current common-sense approaches.

Approach

 To focus on important factory phenomena that can be analyzed quantitatively.

• To develop or describe mathematical models of these phenomena.

• To study the required mathematics, only as deeply as needed.

Problems

• Manufacturing System Engineering (MSE) is not as advanced as other branches of engineering.

 Practitioners are sometimes encouraged to rely on slogans or black boxes.

• A gap exists between theoreticians and practitioners.

Problems

- The research literature is incomplete,
 - \star ... but practitioners are often unaware of what does exist.

• Terminology, notation, basic assumptions are not standardized.

- There is typically a separation of product, process, and system design.
 - \star They should be done simultaneously or iteratively, *not* sequentially.

Problems

• Confusion about objectives:

- * maximize capacity?
- ⋆ minimize capacity variability?
- * maximize capacity utilization?
- * minimize lead time?
- * minimize lead time variability?
- * maximize profit?

Product Realization

Products, Processes, Machines, Buffers, and Operating Policy

Rule proliferation

• When a system is not well understood, rules proliferate.

This is because rules are developed to regulate behavior.

• But the rules lead to unexpected, undesirable behavior. (Why?)

New rules are developed to regulate the new behavior.

Et cetera.

Rule proliferation

Example

- A factory starts with one rule: do the latest jobs first .
- Over time, more and more jobs are later and later.
- A new rule is added: treat the highest priority customers' orders as though their due dates are two weeks earlier than they are.
- The low priority customers find other suppliers, but the factory is still late.
- Why?

Rule proliferation

Why?

 There are significant setup times from part family to part family. If setup times are not considered, changeovers will occur too often, and waste capacity.

 Any rules that do not consider setup times in this factory will perform poorly.

Definitions

- *Manufacturing:* the transformation of material into something useful and portable.
- Manufacturing System: A manufacturing system is a set of machines, transportation elements, computers, storage buffers, people, and other items that are used together for manufacturing. These items are resources.
 - * Alternate terms:
 - ► Factory
 - ► Production system
 - ► Fabrication facility
- Subsets of manufacturing systems, which are themselves systems, are sometimes called *cells*, *work centers*, or *work stations*.

- Frequent new product introductions.
- Product lifetimes often short.
- Process lifetimes often short.

This leads to frequent building and rebuilding of factories.

There is little time for improving the factory after it is built; it must be built right.

Consequent Needs

- Tools to predict the performance of proposed factory designs.
- Tools for optimal factory design.
- Tools for optimal real-time management (control) of factories.
- Manufacturing Systems Engineering professionals who understand factories as complex systems.

Quantity, Quality, and Variability

- Design Quality the design of products that give customers what they want or would like to have *(features)*.
 - ★ Examples: Fuel economy in cars. Advanced electronics, attractive styling in cell phones.
- Manufacturing Quality the manufacturing of products to avoid giving customers what they don't want or would not like to have (bugs).
 - * Examples: Exploding airbags in cars. Exploding batteries in cell phones.

This course is about manufacturing, not product design.

Quantity, Quality, and Variability

• Quantity – how much is produced and when it is produced.

• Quality – *how well* it is produced.

In this course, we focus *mostly* on *quantity*.

General Statement: Variability is the enemy of manufacturing.

Styles for Demand Satisfaction

- Make to Stock (Off the Shelf):
 - * items available when a customer arrives
 - appropriate for large volumes, limited product variety, cheap raw materials

- Make to Order:
 - * production started only after order arrives
 - * appropriate for custom products, low volumes, expensive raw materials

Conflicting Objectives

Make to Stock:

* large finished goods inventories needed to prevent stockouts

* small finished goods inventories needed to keep costs low

Conflicting Objectives

Make to Order:

* excess production capacity (low utilization) needed to allow early, reliable delivery promises

* minimal production capacity (high utilization) needed to to keep costs low

Concepts

 Complexity: collections of things have properties that are non-obvious functions of the properties of the things collected.

• Non-synchronism (especially randomness) and its consequences: Factories do not run like clockwork.

Operation

Nothing happens until everything is present.

Waiting

Whatever does not arrive last must wait.

• Inventory: parts waiting.

• Under-utilization: machines waiting.

• *Idle work force:* operators waiting.

Waiting

- Reductions in the availability, or ...
- Increased variability in the availability ...

... of any one of these items increases waiting in the rest of them and reduces performance of the system.

Kinds of Systems

Flow shop

... or Flow line, Transfer line, or Production line.

Traditionally used for high volume, low variety production.

What are the buffers for?

Kinds of Systems

Assembly system

Assembly systems are *trees*, and may involve *thousands* of parts.

Kinds of Systems

Assembly system

Bill of Materials of a large electronic product

Closed loop (1)

Pallets or fixtures travel in a closed loop. Routes are determined. The number of pallets in the loop is constant.

Reentrant loops (2)

Reentrant loops (2)

Routes are determined. The number of parts in the loop varies. Semiconductor fabrication is highly reentrant.

Rework loop (3)

Routes are random. The number of parts in the loop varies.

Kinds of Systems

Job shop

- Machines not organized according to process flow.
- Often, machines grouped by department:
 - * mill department
 - * lathe department
 - * etc.
- Great variety of products.
- Different products follow different paths.
- Complex management.

- Many factory performance measures are about time, such as
 - * production rate: how much is made in a given time.
 - * lead time: how much time before delivery.

43

- * cycle time: how much time a part spends in the factory.
- * delivery reliability: how often a factory delivers on time.
- * capital pay-back period: the time before the company get its investment back.

Even inventory can be described in time units:

"we are holding x weeks of inventory"

means

"customer demand could consume all our inventory in x weeks."

• Time appears in two forms:

- * delay
- * capacity utilization

• Every action has impact on both.

Time Delay

- An operation that takes 10 minutes adds 10 minutes to the delay that
 - * a workpiece experiences while undergoing that operation;
 - $\star\,$ every other workpiece experiences that is waiting while the first is being processed.
- A machine stoppage that lasts 10 minutes adds 10 minutes to the delay that
 - every workpiece that is waiting to be processed at that machine experiences.
 - * Machine stoppages are caused by failures, maintenance, blocking, starvation, set-up changes and other causes.
- The sum of all the delays that a part experiences during production is the extra time that a part spends in a factory beyond the time required for its operations.
 - * That is often between 10 and 100 times the total operation time.

Capacity Utilization

- An operation that takes 10 minutes takes up 10 minutes of the available time of
 - * a machine,
 - * an operator,
 - * or other resources.
- Similarly for machine stoppages.
- Since there are a limited number of minutes of each resource that are available in a day, there are a limited number of operations that can be done in a day.
- In other words, this is the limit on the factory's production rate.

Production Rate

- Operation Time: the time that a machine takes to do an operation.
- *Production Rate:* the average number of parts produced in a time unit. (Also called *throughput*.)

If nothing interesting ever happens (no failures, etc.),

Production rate =
$$\frac{1}{\text{operation time}}$$

... but something interesting always happens.

Capacity

- Capacity: the maximum possible production rate of a manufacturing system, for systems that are making only one part type.
 - * Short term capacity: determined by the resources available right now.
 - * Long term capacity: determined by the average resource availability.
- Capacity is harder to define for systems making more than one part type. Since it is hard to define, it is *very* hard to calculate.