BKM to BBD method

Binbin Wang

Binbin1.wang@intel.com

12/12/2022

BBD method

Reciprocity + paraxial approximation

Under paraxial and weak phase approximation, the BF and ABF image's PCTF is inversely symmetry. See Appendix in attached manuscript.

Acquire BF and ABF images*

- Consider your spatial resolution with accelerate voltage and half convergence angles
 - For example, you need >10 mrad for atomic resolution imaging; ~ 200 urad for nanoscale imaging at 300 kV
- Once you decided the convergence angle, check the Fig. 1 what is the critical defocus in your experiment

Fig.1. Critical defocus at different k and accelerate voltage (note the k is $\sim \frac{1}{4}$ of the convergence angle).

- Load your sample, find ROI and focus there on STEM mode
- Checking both BF, ABF, ADF images if possible and make BF detector cover > ½ the transmitted disk while the ABF is <1/2, which can provide you the optimized PCTF (See Fig.2)
- Under focus you probe and acquire the BF/ABF image at same time if you are using segmented detector; although the pixel array direct electron detector is preferred for better performance (you need postprocess you image to get virtual BF/ABF images)

Fig.2. PCTF v.s. BF/ABF detector ratio

^{*} This could either be done by segmented detectors or pixel area detectors

Data process

Prepare:

Data: MoS_2 , focus -4 nm.

- 1. Open folder in Demo
- 2. Create a folder and put two images acquired following last slide
- 3. Open the script BBD_Post_Process.m
- 4. Set up the file path and run the script (answering question pop up)

Data output

If the script run success, you can see output below:

Reconstructed phase in different method