AUTHOR: K.H.L.B.GAYATHRI

DATA SCIENCE & BUSINESS ANALYTICS TASKS.

TASK-3-EXPLORATORY DATA ANALYSIS RETAIL.

Problem Statement: Perform 'Exploratory Data Analysis' on dataset 'SampleSuperstore' This task is about Exploratory Data Analysis - Retail where the task focuses on a business manager who will try to find out weak areas where he can work to make more profit.

DATASET: SAMPLESUPERSTORE.CSV (https://bit.ly/3i4rbWl (https://bit.ly/3i4rbWl))

Importing Libraries

In [1]:

- 1 %matplotlib inline
- 2 import numpy as np
- 3 import pandas as pd
- 4 import matplotlib.pyplot as plt
- 5 import seaborn as sns

In [3]:

- 1 import warnings
- 2 warnings.filterwarnings('ignore')

In [13]:

- 1 df=pd.read_csv("SampleSuperstore.csv")
 - 2 df.head()

Out[13]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage
4									>

```
In [12]:
```

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):
                   Non-Null Count Dtype
     Column
                   _____
_ _ _
                                   ----
     Ship Mode
0
                   9994 non-null
                                   object
 1
     Segment
                   9994 non-null
                                   object
 2
     Country
                   9994 non-null
                                   object
 3
     City
                   9994 non-null
                                   object
 4
     State
                   9994 non-null
                                   object
 5
     Postal Code
                   9994 non-null
                                   int64
 6
                   9994 non-null
                                   object
     Region
 7
     Category
                   9994 non-null
                                   object
    Sub-Category 9994 non-null
 8
                                   object
 9
     Sales
                   9994 non-null
                                   float64
 10 Quantity
                   9994 non-null
                                   int64
 11 Discount
                   9994 non-null
                                   float64
                                   float64
 12 Profit
                   9994 non-null
dtypes: float64(3), int64(2), object(8)
memory usage: 1015.1+ KB
In [14]:
 1 df.isnull().sum()
Out[14]:
Ship Mode
                0
Segment
                0
Country
                0
                0
City
State
                0
Postal Code
                0
                0
Region
Category
Sub-Category
Sales
Quantity
                0
Discount
                0
Profit
                0
dtype: int64
In [15]:
   df.columns
Out[15]:
Index(['Ship Mode', 'Segment', 'Country', 'City', 'State', 'Postal Code',
       'Region', 'Category', 'Sub-Category', 'Sales', 'Quantity', 'Discoun
t',
       'Profit'],
      dtype='object')
```

```
In [16]:
 1 df.shape
Out[16]:
(9994, 13)
In [17]:
 1 df.nunique()
Out[17]:
Ship Mode
                   4
                   3
Segment
Country
                   1
City
                 531
                  49
State
Postal Code
                 631
Region
                   4
Category
                   3
Sub-Category
                  17
Sales
                5825
Quantity
                  14
Discount
                  12
Profit
                7287
dtype: int64
```

Exploratory Data Analysis

In [35]:

```
plt.figure(figsize=(8,5))
sns.kdeplot(df['Sales'],color='red',label='Sales',shade=True)
sns.kdeplot(df['Profit'],color='Blue',label='Profit',shade=True)
plt.xlim([-100,1000])
plt.legend()
```

Out[35]:

<matplotlib.legend.Legend at 0x164320a2fa0>

Analysis using Pairplot of each column

[1] Based on the Catagory

In [40]:

1 sns.pairplot(df,hue='Category')

Out[40]:

<seaborn.axisgrid.PairGrid at 0x1643e08eeb0>

[2] Based on Region

In [42]:

1 sns.pairplot(df,hue='Region')

Out[42]:

<seaborn.axisgrid.PairGrid at 0x16438a12e20>

[3] Based on the segment

In [43]:

1 sns.pairplot(df,hue='Segment')

Out[43]:

<seaborn.axisgrid.PairGrid at 0x1644779cb20>

In [44]:

1 df.corr()

Out[44]:

	Postal Code	Sales	Quantity	Discount	Profit
Postal Code	1.000000	-0.023854	0.012761	0.058443	-0.029961
Sales	-0.023854	1.000000	0.200795	-0.028190	0.479064
Quantity	0.012761	0.200795	1.000000	0.008623	0.066253
Discount	0.058443	-0.028190	0.008623	1.000000	-0.219487
Profit	-0.029961	0.479064	0.066253	-0.219487	1.000000

Heatmap for Correlation

In [45]:

```
sns.heatmap(df.corr(),cmap='rocket_r',annot=True)
```

Out[45]:

<AxesSubplot:>

From above Heatmap:

- i)Sales and Profit are Moderately Correlated.
- ii)Discount and Profit are Negatively Correlated.
- iii)Quantity and Profit are less Moderately Correlated.

Count plot of each column

In [4]:

1 df['Ship Mode'].value_counts()

Out[4]:

Standard Class 5968 Second Class 1945 First Class 1538 Same Day 543

Name: Ship Mode, dtype: int64

In [5]:

```
1 sns.countplot(x=df['Ship Mode'])
```

Out[5]:

<AxesSubplot:xlabel='Ship Mode', ylabel='count'>

In [6]:

1 df['Segment'].value_counts()

Out[6]:

Consumer 5191 Corporate 3020 Home Office 1783

Name: Segment, dtype: int64

In []:

1

In []:

1

In [9]:

```
1 sns.countplot(x = 'Segment',data = df, palette = 'rainbow')
```

Out[9]:

<AxesSubplot:xlabel='Segment', ylabel='count'>

In [10]:

1 df['Category'].value_counts()

Out[10]:

Office Supplies 6026
Furniture 2121
Technology 1847
Name: Category, dtype: int64

In [11]:

```
1 sns.countplot(x='Category',data=df,palette='tab10')
```

Out[11]:

<AxesSubplot:xlabel='Category', ylabel='count'>

In [67]:

```
fig, axs = plt.subplots(ncols=2, nrows = 2, figsize = (10,10))
sns.distplot(df['Sales'], color = 'red', ax = axs[0][0])
sns.distplot(df['Profit'], color = 'green', ax = axs[0][1])
sns.distplot(df['Quantity'], color = 'orange', ax = axs[1][0])
sns.distplot(df['Discount'], color = 'blue', ax = axs[1][1])
axs[0][0].set_title('Sales Distribution', fontsize = 20)
axs[0][1].set_title('Profit Distribution', fontsize = 20)
axs[1][0].set_title('Quantity distribution', fontsize = 20)
axs[1][1].set_title('Discount Distribution', fontsize = 20)
plt.show()
```

Statewise Deal Analysis

```
In [68]:
```

```
1 df['Country'].value_counts()
```

Out[68]:

United States 9994

Name: Country, dtype: int64

```
In [69]:
```

```
1 df1 = df['State'].value_counts()
2 df1.head(10)
```

Out[69]:

California 2001 New York 1128 Texas 985 Pennsylvania 587 Washington 506 Illinois 492 Ohio 469 Florida 383 Michigan 255 North Carolina 249 Name: State, dtype: int64

In [70]:

```
df1.plot(kind='bar',figsize=(15,5))
plt.ylabel('Frequency / Number of deals')
plt.xlabel('States')

plt.title('State Wise Dealings', fontsize = 20)
plt.show()
```


Here is top 3 state where deals are Highest. i)Califonia ii)New York iii)Texas

Wyoming: Lowest Number of deal

```
In [71]:
```

```
1 df['State'].value_counts().mean()
```

Out[71]:

203.9591836734694

Average number of deal per state is 204.

City Wise analysis of the dealing

In [76]:

```
1 df2 = df['City'].value_counts()
2 df2=df2.head(50)
```

In [77]:

```
df2.plot(kind='bar',figsize=(15,5))
plt.ylabel('Frequency / Number of deals')
plt.xlabel('City')

plt.title('City Wise Dealings', fontsize = 20)
plt.show()
```


Here is top 3 city where deals are Highest.

- 1. New York City
- 2. Los Angeles
- 3. Philadelphia

In [78]:

```
1 df['City'].value_counts().mean()
```

Out[78]:

18.821092278719398

Average number of deal per city is 19.

Segment wise analysis of Profit, Discount and sell

In [79]:

```
1 df['Segment'].value_counts()
2
```

Out[79]:

Consumer 5191 Corporate 3020 Home Office 1783

Name: Segment, dtype: int64

In [80]:

```
df_segment= df.groupby(['Segment'])[['Sales', 'Discount', 'Profit']].mean()
df_segment
```

Out[80]:

 Segment
 Discount
 Profit

 Consumer
 223.733644
 0.158141
 25.836873

 Corporate
 233.823300
 0.158228
 30.456667

 Home Office
 240.972041
 0.147128
 33.818664

In [81]:

Out[81]:

Text(0.5, 1.0, 'Segment wise analysis of Sale, Discount, profit')

Statewise analysis of Profit Discount and sell

In [82]:

```
1 df['State'].value_counts().head(10)
```

Out[82]:

California 2001 New York 1128 Texas 985 Pennsylvania 587 Washington 506 Illinois 492 Ohio 469 Florida 383 Michigan 255 North Carolina 249 Name: State, dtype: int64

In [83]:

```
df_state= df.groupby(['State'])[['Sales', 'Discount', 'Profit']].mean()
df_state.head(10)
```

Out[83]:

	Sales	Discount	Profit
State			
Alabama	319.846557	0.000000	94.865989
Arizona	157.508933	0.303571	-15.303235
Arkansas	194.635500	0.000000	66.811452
California	228.729451	0.072764	38.171608
Colorado	176.418231	0.316484	-35.867351
Connecticut	163.223866	0.007317	42.823071
Delaware	285.948635	0.006250	103.930988
District of Columbia	286.502000	0.000000	105.958930
Florida	233.612815	0.299347	-8.875461
Georgia	266.825217	0.000000	88.315453

[1] Statewise Profit Analysis

In [86]:

```
df_state1=df_state.sort_values('Profit')

df_state1[['Profit']].plot(kind = 'bar', figsize = (15,4))

plt.title('State wise Profit Analysis', fontsize = 20)

plt.ylabel('Profit per Sate')

plt.xlabel('States')

plt.show()
```


RESULT

Vermont: Highest Profit

Ohio: Lowest Profit

[2] Statewise Sale Analysis

In [89]:

Out[89]:

Text(0.5, 1.0, 'State wise analysis of Sale')

State wise analysis of Sale

Highest amount of sales= Wyoming(11.8%)
Lowest amount of sales= South Dakota(0.8%)

[3] Statewise Discount Analysis

In [95]:

```
df_state1['Discount'].plot(kind='bar',figsize=(18,5))
plt.title('State wise analysis of Discount', fontsize=20)
```

Out[95]:

Text(0.5, 1.0, 'State wise analysis of Discount')

Citywise Analysis of the Profit

In [96]:

```
df_city= df.groupby(['City'])[['Sales', 'Discount', 'Profit']].mean()
df_city = df_city.sort_values('Profit')
df_city.head()
```

Out[96]:

	Sales	Discount	Profit
City			
Bethlehem	337.926800	0.380000	-200.619160
Champaign	151.960000	0.600000	-182.352000
Oswego	107.326000	0.600000	-178.709200
Round Rock	693.436114	0.274286	-169.061614
Lancaster	215 031826	0.315217	-157 371052

In [97]:

```
#1.Low Profit
df_city['Profit'].head(30).plot(kind='bar',figsize=(15,5),color = 'Pink')
plt.title('City wise analysis of Sale, Discount, profit')
```

Out[97]:

Text(0.5, 1.0, 'City wise analysis of Sale, Discount, profit')

In [98]:

```
#2. High Profit
df_city['Profit'].tail(30).plot(kind='bar',figsize=(15,5),color = 'Pink')
plt.title('City wise analysis of Sale, Discount, profit')
```

Out[98]:

Text(0.5, 1.0, 'City wise analysis of Sale, Discount, profit')

30 CITIES WHICH HAS PROFIT IN POSITIVE
30 CITIES WHICH HAS PROFIT IN NEGATIVE THE BALANCE IS PRETTY GOOD HERE!

QUANTITY WISE SALES, PROFIT AND DISCOUNT ANALYSIS

In [99]:

```
df_quantity = df.groupby(['Quantity'])[['Sales', 'Discount', 'Profit']].mean()
df_quantity.head(10)
```

Out[99]:

	Sales	Discount	Profit
Quantity			
1	59.234632	0.152959	8.276396
2	120.354488	0.154858	16.006831
3	175.201578	0.153329	23.667715
4	271.764059	0.157708	37.131310
5	337.936339	0.157146	40.257394
6	362.101960	0.166556	18.051517
7	395.888393	0.161980	56.579163
8	458.210802	0.171595	42.244342
9	498.083683	0.147946	68.557716
10	422.046737	0.190702	35.862404

In [100]:

```
#1. sales 2. Discount 3. Profit
  df_quantity.plot.pie(subplots=True,
3
                       autopct='%1.1f%%',
4
                       figsize=(20, 20),
5
                        pctdistance=0.69,
                       startangle=90,
                                          # start angle 90° (Africa)
6
7
                       shadow=True,
                       labels = df_quantity.index)
8
  plt.title('Quantity wise analysis of Sale, Discount, profit')
```

Out[100]:

Text(0.5, 1.0, 'Quantity wise analysis of Sale, Discount, profit')

CATAGORY WISE SALES DISCOUNT AND PROFIT

In [101]:

```
df_category = df.groupby(['Category'])[['Sales', 'Discount', 'Profit']].mean()
df_category
```

Out[101]:

		Sales	Discount	Profit
(Category			
F	urniture	349.834887	0.173923	8.699327
Office	Supplies	119.324101	0.157285	20.327050
Tec	hnology	452.709276	0.132323	78.752002

In [102]:

Out[102]:

Sub-Category wise Sales, Profit and Discount

In [107]:

```
df_sub_category = df.groupby(['Sub-Category'])[['Sales', 'Discount', 'Profit']].mean
df_sub_category.head(10)
```

Out[107]:

	Sales	Discount	Profit
Sub-Category			
Accessories	215.974604	0.078452	54.111788
Appliances	230.755710	0.166524	38.922758
Art	34.068834	0.074874	8.200737
Binders	133.560560	0.372292	19.843574
Bookcases	503.859633	0.211140	-15.230509
Chairs	532.332420	0.170178	43.095894
Copiers	2198.941618	0.161765	817.909190
Envelopes	64.867724	0.080315	27.418019
Fasteners	13.936774	0.082028	4.375660
Furnishings	95.825668	0.138349	13.645918

[1] BASED ON THE SALES

Supplies

Storage

In [108]:

```
plt.figure(figsize = (15,15))
plt.pie(df_sub_category['Sales'], labels = df_sub_category.index, autopct = '%1.1f%%
plt.title('Sub-Category Wise Sales Analysis', fontsize = 20)
plt.legend()
plt.xticks(rotation = 90)
plt.show()
```


[2] BASED ON THE DISCOUNT

Machines

In [109]:

```
plt.figure(figsize = (15,15))
  plt.pie(df_sub_category['Discount'], labels = df_sub_category.index, autopct = '%1.1
  plt.title('Sub-Category Wise Discount Analysis', fontsize = 20)
 plt.legend()
  plt.xticks(rotation = 90)
  plt.show()
7
```


Phones

Paper

[3] BASED ON THE PROFIT

In [110]:

Out[110]:

<AxesSubplot:xlabel='Sub-Category'>

REGION WISE ANALYSIS

In [111]:

```
df_region = df.groupby(['Region'])[['Sales', 'Discount', 'Profit']].mean()
df_region
```

Out[111]:

	Sales	Discount	Profit
Region			
Central	215.772661	0.240353	17.092709
East	238.336110	0.145365	32.135808
South	241.803645	0.147253	28.857673
West	226.493233	0.109335	33.849032

In [112]:

Out[112]:

SHIP MODE WISE ANALYSIS

In [113]:

```
1 df['Ship Mode'].value_counts()
```

Out[113]:

Standard Class 5968 Second Class 1945 First Class 1538 Same Day 543

Name: Ship Mode, dtype: int64

In [114]:

```
df_shipmode = df.groupby(['Ship Mode'])[['Sales', 'Discount', 'Profit']].mean()
```

In [115]:

Out[115]:

Profit and Discount is high in First Class Sales is high for Same day ship

RESULT AND CONCLUSION

Profit is more than that of sale but there are some areas where profit could be increased.

Profit and Discount is high in First Class

Sales is high for Same day ship

Sub-category: Copier: High Profit & sales

Sub-category: Binders, Machines and then tables have high Discount.

Category: Maximun sales and Profit obtain in Technology.

Category: Minimun profit obtain in Furniture

State: Vermont: Highest Profit

State: Ohio: Lowest Profit

Segment: Home-office: High Profit & sales

Here is top 3 city where deals are Highest.

New York City

Los Angeles

Philadelphia

Sales and Profit are Moderately Correlated.

Quantity and Profit are less Moderately Correlated.

Discount and Profit are Negatively Correlated

Here is top 3 state where deals are Highest.

Califonia

New York

Texas

Wyoming: Lowest Number of deal, Highest amount of sales= Wyoming(11.8%)

Lowest amount of sales= South Dakota(0.8%)

THANK YOU