STOR 320 Data Transformation I

Lecture 3

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Introduction

- Read Chapter 3
- Goal: Their Data

 Your Data
- Covers:
 - Data Subsetting
 - Data Ordering
 - Variable Selecting
 - Variable Creating
- Help: dplyr Package in R

NYC Flights Meta Data

- Requirements:
 - > install.packages(nycflights13)
 - > library(nycflights13)
- All 2013 Flights from NYC
 - US Bureau of Trans. Statistics
- To View all Data, Use > View(flights)
- For more information, > ?flights

NYC Flights Data

```
flights
# A tibble: 336,776 x 19
   year month
                 day dep_time sched_dep_time dep_delay arr_time sched_arr_time
   <int> <int> <int>
                                                   <db7>
                         <int>
                                         <int>
                                                             <int>
                                                                             <int>
   2013
                           517
                                           515
                                                               830
                                                                               819
   2013
                           533
                                           529
                                                               850
                                                                               830
   2013
                           542
                                           540
                                                               923
                                                                               850
                                                          <u>1</u>004
   2013
                           544
                                           545
                                                                              1022
                                           600
                                                       <del>-6</del> 812
   2013
                           554
                                                                               837
   2013
                           554
                                           558
                                                       -4 740
                                                                               728
   2013
                           555
                                           600
                                                               913
                                                                               854
               1
                                                      -3 709
   2013
                           557
                                           600
                                                                               723
   2013
                           557
                                           600
                                                               838
                                                                               846
   2013
                           558
                                           600
                                                               753
                                                                               745
  ... with 336,766 more rows, and 11 more variables: arr_delay \langle dbl \rangle,
   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
    air_time <db1>, distance <db1>, hour <db1>, minute <db1>, time_hour <dttm>
```

- Four Different Types of Variables
 - \int = integer
 - dbl = double
 - chr = character
 - dttm = date and times

- Other Types of Variables
 - Igl = logical (TRUE or FALSE)
 - fctr = factor
 - date/= dates

Basics of dplyr

- 5 Key Functions
 - filter() = Chooses Observations
 Based on Values
 - arrange() = Sorts Observations
 - select() = Chooses Variables
 - mutate() = Creates New Variables
 - summarise() = Generates
 Statistics From Data

Basics of dplyr

- Function Usage
 - First, Specify the Dataset
 - Next, Specify What to Do with the Data
 - Result is a New Dataset
- Powerful When Used With group_by() Function

Comparisons

- Important Operators
 - Less Than (<)
 - Greater Than (>)
 - Not Equal (!=)
 - Equal (==)
- Returns TRUE or FALSE

```
``{r}
                                                 ₩ 🔻 🕨
x=3
y=4
x < y
x>y
x!=y
x==y
 [1] TRUE
 [1] FALSE
 [1] TRUE
 [1] FALSE
```

Comparisons

- Numerical Precision
 - Problem

```
> x=1/49
> y=49
> x*y==1
[1] FALSE
> near(x*y,1)
[1] TRUE
```

Solution

```
> x*y
[1] 1
> near(x*y,1)
[1] TRUE
```

Logical Operators

- Boolean Logic
 - And (&)
 - Or (|)
 - Not (!)
- Example

```
> x = TRUE
> y = FALSE
> # Basic
> x&y
[1] FALSE
> xly
[1] TRUE
> !x
[1] FALSE
> # Combined
> |x||y
[1] TRUE
> !(x&y)
[1] TRUE
> !x&!y
[1] FALSE
```

Missing Values

- Represented by NA
 - Enduring Questions
 - To Impute or Not Impute
 - To Ignore or Not Ignore
 - Handling Should Be Explained
 - Be Careful When Performing Operations on Missing Data

```
NA > 5

#> [1] NA

10 == NA

#> [1] NA

NA + 10

#> [1] NA

NA / 2

#> [1] NA
```

Missing Values

```
> male.age=c(NA, 20, 21, 35, 22, NA)
> female.age=c(21,NA,23,33,22,NA)
 age.data=tibble(ma=male.age,fa=female.age)
> age.data
 A tibble: 6 x 2
           fa
     ma
  <db1> <db1>
           21
     NA
     20
           NA
     21
           23
     35
           33
     22
           22
     NA
           NA
> is.na(male.age)
     TRUE FALSE FALSE FALSE
> na.omit(age.data)
# A tibble: 3 x 2
           fa
     ma
  <db1> <db1>
     21
           23
     35
           33
     22
           22
> mean(male.age)
[1] NA
> mean(male.age,na.rm=T)
[1] 24.5
```

filter()

- Used to Subset Observations Based on Their Values
 - Selects Row if TRUE
 - Removes Row if FALSE
- Examples:
 - All Flights from 9/13/2018 Out of LaGuardia Airport
- > filter(flights, month==9,day==13,origin =="LGA")
 - All Dec. or Nov. Flights
 - > filter(flights, month==11|month==12)
 - > filter(flights, month %in% c(11,12))

filter()

- Examples:
 - Don't Want Flights with Unusual Delays (> 120 min.)
- > filter(flights, !(arr_delay>120 | dep_delay>120))
- > filter(flights, arr_delay <= 120, dep_delay <= 120)</pre>
 - Want Flights with No Delays
- > filter(flights, dep_delay==0, arr_delay==0)
- > filter(flights, dep_delay==0 & arr_delay==0)

!(x & y) = !x | !y

filter()

- Examples:
 - Want Flights Missing Air Time
 - > filter(flights, is.na(air_time))
 - Do not Want Flights Missing Air Time
 - > filter(flights, !is.na(air_time))
 - Remove All Cases with Missing Values
 - > na.omit(flights)

arrange()

- Used to Sort Observations
- Sort flights by date

arrange()

Sorting Experiment

year <int></int>	month <int></int>	day <int></int>	dep_time <int></int>	sched_dep_time <int></int>	dep_delay <dbl></dbl>	arr_time	sched_arr_time
2013	7	1	1	2029	212	236	2359
2013	6	1	2	2359	3	341	350
2013	7	1	2	2359	3	344	344
2013	3	1	4	2159	125	318	56
2013	11	1	5	2359	6	352	345
2013	5	1	9	1655	434	308	2020

							₽ *	
year <int></int>	month <int></int>	day <int></int>	dep_time <int></int>	sched_dep_time <int></int>	dep_delay «dbl»	arr_time <int></int>	sched_arr_time <int></int>	
2013	1	31	1	2100	181	124	2225	
2013	1	31	4	2359	5	455	444	
2013	1	31	7	2359	8	453	437	
2013	7	31	10	2359	11	344	340	
2013	1	31	12	2250	82	132	7	
2013	12	31	13	2359	14	439	437	

arrange()

Handling NA

select()

- Used to Select Variables
- Why? Not All Variables are Created Equal
- Need to Know Variable Names

```
names(flights)
    "year"
                                         "day"
                       "month"
     "dep_time"
                       "sched_dep_time" "dep_delay"
                       "sched_arr_time" "arr_delay"
     "arr_time"
     "carrier"
                       "flight"
                                         "tailnum"
     "origin"
                       "dest"
                                         "air_time"
     "distance"
                       "hour"
                                         "minute"
[19] "time_hour"
```

Basic Examples

select()

Select Only Year, Month, Day

```
> data1=select(flights,year,month,day)
> names(data1)
[1] "year" "month" "day"
```

 Select All Variables Between dep_time to arr_delay

 Deselect All Variables Between dep_time to arr delay

```
> data3=select(flights,-(dep_time:arr_delay))
> names(data3)
  [1] "year" "month" "day"
  [4] "carrier" "flight" "tailnum"
  [7] "origin" "dest" "air_time"
  [10] "distance" "hour" "minute"
  [13] "time_hour"
```

select()

Select Based on Column Index

```
> length(names(flights))
[1] 19
> data4=select(flights,c(1,3,8,12))
> names(data4)
[1] "year"
[2] "day"
[3] "sched_arr_time"
[4] "tailnum"
```

Deselect Based on Column Index

```
> length(names(flights))
[1] 19
> data5=select(flights,-c(1,3,8,12))
> names(data5)
     "month"
     "dep_time"
    "sched_dep_time"
     "dep_delay"
 [4]
 [5]
    "arr_time"
 [6]
     "arr_delay"
     "carrier"
 [7]
     "flight"
 [8]
     "origin"
 [9]
[10]
     "dest"
[11]
     "air_time"
     "distance"
     "hour"
[13]
[14]
     "minute"
     "time_hour"
```

Select Based on Text

select()

starts_with("TEXT")

```
> data6=select(flights,starts_with("dep"))
> names(data6)
[1] "dep_time" "dep_delay"
```

ends_with("TEXT")

```
> data7=select(flights,ends_with("delay"))
> names(data7)
[1] "dep_delay" "arr_delay"
```

contains("TEXT")

```
> data8=select(flights,contains("ar"))
> names(data8)
[1] "year" "arr_time"
[3] "sched_arr_time" "arr_delay"
[5] "carrier"
```

Others

select()

- Renaming Variables
 - Can Use select()

```
> data9=select(flights,yr=year)
> names(data9)
[1] "yr"
```

• But Use rename()

```
data10=rename(flights,yr=year)
names(data10)
   "yr"
                     "month"
   "day"
                     "dep_time"
   "sched_dep_time" "dep_delay"
   "arr_time"
                     "sched_arr_time"
                     "carrier"
   "arr_delay"
   "flight"
                     "tailnum"
   "origin"
                     "dest"
   "air_time"
                     "distance"
   "hour"
                     "minute"
   "time_hour"
```

select()

Reordering Variables

```
head(flights)
# A tibble: 6 x 19
  year month
                day dep_time sched_dep_time
  <int> <int> <int>
                       <int>
                                       <int>
  2013
                         517
                                         515
  2013
                         533
                                         529
  2013
                         542
                                         540
  2013
                         544
                                         545
  2013
                         554
                                         600
  2013
                         554
                                         558
  ... with 14 more variables: dep_delay <db1>,
    arr_time <int>, sched_arr_time <int>,
   arr_delay <db1>, carrier <chr>,
   flight <int>, tailnum <chr>, origin <chr>,
    dest <chr>, air_time <db1>, distance <db1>,
   hour <db1>, minute <db1>, time_hour <dttm>
 data11=select(flights,dep_time,arr_time,
                air_time,everything())
 head(data11)
# A tibble: 6 x 19
  dep_time arr_time air_time vear month
                       <db1> <int> <int> <int>
     <int>
              <int>
       517
                830
                         227
                              2013
       533
                850
                         227
                              2013
       542
                923
                         160
                              2013
       544
               1004
                         183
                              2013
                                              1
       554
                812
                         116
                              2013
                                              1
                                              1
       554
                740
                         150 2013
  ... with 13 more variables:
    sched_dep_time <int>, dep_delay <db1>,
    sched_arr_time <int>, arr_delay <dbl>,
    carrier <chr>, flight <int>, tailnum <chr>,
    origin <chr>, dest <chr>, distance <db1>,
    hour <db1>, minute <db1>, time_hour <dttm>
```

- Used to Create New Variables
 - Creative New Metrics
 - Modify Units
 - Transform Variables
 - Unique Identifiers
 - Numeric to Categorical
 - Categorical to Numeric
- Reduced Dataset

Example of mutate()

Example of transmute()

dep_time, arr_time

Actual departure and arrival times (format HHMM or HMM), local tz.

Plethora of Examples

Basic and Modular Arithmetic

$$517 = 100 * 5 + 17$$

= $100 * (517 \%/\% 100) + (517 \%\% 100)$

- Plethora of Examples
 - Nonlinear Transformation

- Plethora of Examples
 - Offsets: lead() and lag()

- Plethora of Examples
 - Cumulative and Rolling Aggregates

- cumsum()
- cumprod()
- cummin()
- cummax()
- cummean()

dest==" <mark>C</mark>	filter(flights,origin=="LGA", LE",carrier=="UA"),dep_delay, dep_delay=cumsum(dep_delay))
dep_delay <dbl></dbl>	<i>□</i>
0	0
-1	-1
4	3
3	6
-6	0
-5	-5

- Plethora of Examples
 - Ranking
 - min_rank()
 - percent_rank()
 - cume_dist()
 - ntile()

Information

- Tutorial 3
 - Practice
 - filter()
 - arrange()
 - select()
 - mutate()
 - Introduced
 - Piping %>%
 - group_by()
 - summarize()