Elementos de Reconocimiento Visual

Práctica Filtros y bordes

1. Hallar la convolución discreta x*h

2. a) Determinar la convolución de x(m,n) que viene dada por

con las señales:

b) Muestre que en general la convolución de dos arrays de dimensión $(M_1 \times N_1)$ y $(M_2 \times N_2)$ es otro array de dimensión $(M_1 + M_2 - 1) \times (N_1 + N_2 - 1)$.

- 3. Implementar el algoritmo de *Unsharp Masking* analizando diferentes valores de σ para el filtro gaussiano y diferentes valores del factor 'a' que controla el nivel de nitidez. Elegir imágenes en escala de grises representativas donde la mejora sea apreciable.
- 4. Implementar el Detector de borde por método de gradiente para los siguientes operadores de gradiente:
 - a) Roberts.
 - b) Prewitt.
 - c) Sobel

Retornar imágenes binarias aplicando umbrales sobre la magnitud de los gradientes.

- 5. Implementar los siguientes detectores de borde:
 - a) Método del Laplaciano
 - b) Método del Laplaciano con evaluación local de varianza

Mostrar versiones binarias luego de realizar el cruce por cero (zero crossing). Aplicarlos a versiones contaminadas de las imágenes Lena y test con ruido gaussiano aditivo para distintos valores de σ y con ruido Rayleigh multiplicativo para algún $\xi > 0$.

- 6. Aplicar un realce de bordes mediante *Unsharp Masking* a test.png y a lena.png. Además, realizar el realce luego de contaminar con:
 - a) Ruido Gaussiano aditivo con distintos valores de σ y $\mu = 0$.
 - b) Ruido Rayleigh multiplicativo para distintos valores de ξ .
 - c) Ruido impulsivo (Salt & Pepper) de intensidad variable.

Analizar los resultados obtenidos.

- 7. a) (Opcional) Implementar el método de detección de bordes de Canny.
 - b) Aplicar Canny en al menos dos imágenes y a sus versiones contaminadas con diferentes tipos e intensidades de ruidos.
 - c) Comparar Canny con los métodos basados en gradiente de los primeros dos ítems.