①方程式 $2x^2 + 7x + 2 = 0$ を解きなさい。

解の公式より, $x=rac{-7\pm\sqrt{7^2-4 imes2 imes2}}{2 imes2}$ $=rac{-7\pm\sqrt{33}}{2}$

$$x = \frac{-7 \pm \sqrt{33}}{4}$$

⑥ 関数 $y=ax^2$ について, x の変域が $-4 \le x \le 9$ のとき y の変域は $0 \le y \le 3$ である。 a の値を求めなさい。

yが0以上の値をとるから,グラフは上に開いた放物線になる。よって,yの最大値3はx=9のときの値である。 $y=ax^2$ にx=9,y=3を代入して,

$$3 = a \times 9^2 \quad a = \frac{1}{27}$$

$$a=rac{1}{27}$$

②方程式 $2x^2 - 9x + 7 = 0$ を解きなさい。

解の公式より、 $x = \frac{-(-9) \pm \sqrt{(-9)^2 - 4 \times 2 \times 7}}{2 \times 2}$ $= \frac{9 \pm \sqrt{25}}{4} = \frac{9 \pm 5}{4}$ $x = \frac{9 + 5}{4} = \frac{7}{2}, \ x = \frac{9 - 5}{4} = 1$

 $x = \frac{7}{2}, \ \ x = 1$

⑦ 関数 $y = ax^2$ について, x の変域が $-2 \le x \le 1$ のとき y の変域は $0 \le y \le 20$ である。 a の値を求めなさい。

yが0以上の値をとるから,グラフは上に開いた放物線になる。 よって,yの最大値20はx=-2のときの値である。 $y=ax^2$ にx=-2,y=20を代入して,

$$y = ax^{2}$$
に $x = -2$, $y = 20$ を代入 $20 = a \times (-2)^{2}$ $a = 5$

a = 5

③方程式 $2x^2 - 4x - 3 = 0$ を解きなさい。

解の公式より、 $x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 2 \times (-3)}}{2 \times 2}$ $= \frac{4 \pm \sqrt{40}}{4}$ $= \frac{4 \pm 2\sqrt{10}}{4} = \frac{2 \pm \sqrt{10}}{2}$

 $x=rac{2\pm\sqrt{10}}{2}$

⑧ 関数 $y=3x^2$ で、x の値が 2 から 4 まで増加するときの変化の割合を求めなさい。

xの増加量は 4-2=2

yの増加量は $3 \times 4^2 - 3 \times 2^2 = 48 - 12 = 36$

したがって,変化の割合は $\frac{36}{2} = 18$

18

④方程式 $3x^2 = -4x$ を解きなさい。

 $3x^{2} = -4x$ $3x^{2} + 4x = 0$ x(3x + 4) = 0 $x = 0, x = -\frac{4}{3}$

⑨関数 $y=ax^2$ で、x の値が 3 から 6 まで増加するときの変化の割合が -18 であった。このときの a の値を求めなさい。

$$x=3$$
のとき, $y=a imes 3^2=9a$
 $x=6$ のとき, $y=a imes 6^2=36a$

したがって,変化の割合は $\frac{36a-9a}{6-3}=\frac{27a}{3}=9a$

9a = -18 a = -2

a=-2

⑤ 関数 $y=rac{2}{5}x^2$ について, x の変域が $-5 \le x \le 10$ のときの y の変域を求めなさい。

yは、x = 0のとき最小値0、x = 10のとき最大値40をとるからyの変域は、 $0 \le y \le 40$

数 y = -6x + 5 の変化の割合と等しいとき, a の値を求めなさい。 x = 4のとき, $y = a \times 4^2 = 16a$ x = 5のとき, $y = a \times 5^2 = 25a$

したがって、変化の割合は $\frac{25a-16a}{5-4}=9a$

1次関数 y=-6x+5 の変化の割合は-6

$$9a = -6$$
 $a = -\frac{2}{3}$

 $a=-rac{2}{3}$

 $0 \le y \le 40$

 $x = 0, \quad x = -\frac{1}{3}$