6

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-240759

(43) Date of publication of application: 07.09.1999

(51)Int.CI.

CO4B 35/495 HO1L 41/09 HO1L 41/187

(21)Application number: 10-047104

(71)Applicant: KYOCERA CORP

(22)Date of filing:

27.02.1998

(72)Inventor: NAKAI YASUHIRO

HAYASHI HARUMI FUKUOKA SHUICHI

(54) PIEZOELECTRIC PORCELAIN FOR ACTUATOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a non-lead metal-based piezoelectric porcelain having a high Curie temperature of $\geq 150^{\circ}$ C and a piezoelectric strain constant (d33) in a practical use level of ≥ 80 pC/N.

SOLUTION: This piezoelectric porcelain consists mainly of crystal particles comprising a tungsten bronze type compound oxide expressed by the formula: Sr2NaNb5O15 in which a part of Nb is substituted by V and/or Ta. Therein, part of Sr is preferably replaced by at least one or more kinds of elements selected from Mg, Ca and Ba, and part of Na is desirably replaced by K. The piezoelectric porcelain is especially expressed by the atomic ratio composition formula: (Sr2-aAa)x(Na1-bKb)y(Nb5-cVc)O15 [0.10≤(a)≤0.65; 0.20≤(b)≤0.80; 0<(c)≤0.10; 0.96≤(x)≤1.04; 0.80≤(y)≤1.20; A is at least one kind of Mg, Ca and Ba].

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-240759

(43)公開日 平成11年(1999)9月7日

(51) Int.Cl. 6		識別記号	F I			
C 0 4 B	35/495		C04B	35/00	J	
HOIL	41/09		H01L	41/08	С	
	41/187			41/18	101J	

審査請求 未請求 請求項の数5 OL (全 6 頁)

(21)出願番号	特願平10-47104	(71)出顧人	000006633 京セラ株式会社		
(22)出顧日	平成10年(1998) 2月27日	京都府京都市伏見区竹田島羽殿			
		(72)発明者	中井 泰広		
		V	鹿児島県国分市山下町1番4号 京セラ株		
			式会社総合研究所内		
		(72)発明者	林春美		
			鹿児島県国分市山下町1番4号 京セラ株		
			式会社総合研究所内		
		(72)発明者	福岡修一		
			鹿児島県国分市山下町1番4号 京セラ株		
			式会社総合研究所内		

(54) 【発明の名称】 アクチュエータ用圧電磁器

(57)【要約】

【課題】キュリー温度が150℃以上と高く、80pC /N以上の実用レベルの圧電歪み定数(d,,)を有する 非鉛系の圧電磁器を提供する。

【解決手段】一般式: Sr_2 Na Nb, O_1 ,で表わされるタングステンブロンズ型複合酸化物からなり、Nbの一部をVおよび/またはTa で置換した結晶粒子を主体とするものである。CCr、Sr の一部がMg、Ca およびBa のうち少なくとも 1 種で置換されるとともに、Na の一部がKで置換されていることが望ましい。特に、原子比による組成式を、(Sr_{1-a} A。)。(Na 1-b K。)。(Nb,-c V。) O_1 , と表わした時、O. $10 \le a \le 0$. 65、0. $20 \le b \le 0$. 80、 $0 < c \le 0$. 10、0. $96 \le x \le 1$. 04、0. $80 \le y \le 1$. 20 を満足する。AはMg、Ca およびBa のうち少なくとも 1 種である。

. 1

【特許請求の範囲】

【請求項1】一般式:Sr、NaNb、O1,で表わされ るタングステンブロンズ型複合酸化物からなり、Nbの 一部をVおよび/またはTaで置換した結晶粒子を主体 とすることを特徴とするアクチュエータ用圧電磁器。

【請求項2】Srの一部がMg、CaおよびBaのうち 少なくとも一種で置換されるとともに、Naの一部がK で置換されていることを特徴とする請求項1記載のアク チュエータ用圧電磁器。

【請求項3】原子比による組成式を

 $(Sr_{2-a}A_a)_x (Na_{1-b}K_b)_y (Nb$ s-c V_c) O₁,

と表わした時、前記a、b、c、xおよびyが

 $0.10 \le a \le 0.65$

 $0.20 \le b \le 0.80$

 $0 < c \le 0.10$

0. $9.6 \le x \le 1.04$

0. $80 \le y \le 1.20$

A・・・Mg、CaおよびBaのうち少なくとも1種 を満足することを特徴とする請求項1または2記載のア 20 ステンブロンズ型単結晶の比誘電率($\epsilon_{
m 337}$ $/\epsilon_{
m e}$)、 クチュエータ用圧電磁器。

【請求項4】原子比による組成式を

 $(Sr_{2-a}A_a)_x (Na_{1-b}K_b)_y (Nb_{3-c}Ta$ () O₁,

と表わした時、前記a、b、c、xおよびyが

0. $10 \le a \le 0.65$

 $0.20 \le b \le 0.80$

 $0 < c \le 0.50$

 $0.96 \le x \le 1.04$

0. $80 \le y \le 1$. 20

A・・・Mg、CaおよびBaのうち少なくとも1種 を満足することを特徴とする請求項1または2記載のア クチュエータ用圧電磁器。

【請求項5】請求項3または4に記載の主成分100重 量部に対して、Cuおよび/またはMnをCuO、Mn O, 換算で合計 O. 1~1.5 重量部含有することを特 徴とするアクチュエータ用圧電磁器。

【発明の詳細な説明】

[0001]

電磁器に関し、特に、精密工作機械における位置決め、 光学装置の光路長制御、流量制御用バルブ、超音波モー タ、あるいは自動車のブレーキ装置等に使用するアクチ ュエータ用圧電磁器に関する。

[0002]

【従来技術】圧電材料を利用したアクチュエータは、圧 電現象を介して発生する歪みおよび力を機械的駆動源と して用いるものであり、精密工作機械における位置決 め、光学装置の光路長制御、流量制御用バルブ、超音波 モータ、あるいは自動車のブレーキ装置等への応用が展 50 系の圧電磁器を提供することを目的とする。

開されている。アクチュエータに用いる圧電材料として は、圧電性に優れるという点からチタン酸ジルコン酸鉛 (PZT) が最も幅広く利用されてきた。しかしなが ら、最近、鉛系廃棄物が酸性雨等に当たると鉛が溶出 し、環境に悪影響を与えることから、自重の約60%の 割合で鉛を含有するPZTの代替として利用できる鉛を 含まない圧電材料が求められている。

【0003】鉛を含有しないアクチュエータ用の圧電材 料として、BaTiO、系磁器組成物の利用が考えられ 10 る。例えば、特開平2-159079号公報および特開 平2-29430号公報では、BaTiO,系圧電磁器 組成物を利用することが提案されている。BaTiO。 系磁器組成物は、比誘電率(ε,,,, /ε。) および電気 機械結合係数(k,,)が高いという特徴を有し、300 p C / N前後の大きな圧電歪み定数(d₃₃)を示すこと から、積層型アクチュエータ用の圧電材料として利用可 能である。

【0004】一方、Ferroelectrics,1994,Vol.160,P265 には、Sr_{2-x} Ca_x NaNb_y O₁,で表されるタング 圧電歪み定数(d₁₁)、キュリー温度(T_e)について 記載されている。との文献によれば、上記単結晶では、 比誘電率($\varepsilon_{337}/\varepsilon_{0}$)が1700、圧電歪み定数 (d₃₃)が270pC/N、キュリー温度(T_c)が2 70℃という特性を有しているため、アクチュエータ用 として優れている。

[0005]

【発明が解決しようとする課題】しかしながら、上記特 開平2-159079号公報および特開平2-2943 30 0号公報に開示されているBaTiO、系磁器組成物で は、300pC/N前後の大きな圧電歪み定数(d,,) が得られるものの、BaTiO,自身のキュリー温度 (T.)が約120℃と低く、より大きな圧電歪み定数 (d,,)を得るにはキュリー温度の低下が避けられない ことから、圧電材料として利用できる使用温度の上限は 高くとも100℃程度であり、これを越える温度環境下 での利用ができないという問題があった。

【0006】一方、本発明者等は、上記文献に記載され たSr_{2-x} Ca_x NaNb₅ O₁₅で表されるタングステ 【発明の属する技術分野】本発明はアクチュエータ用圧 40 ンプロンズ型単結晶と、同様な組成で圧電磁器を作製し たところ、室温での比誘電率 ($\epsilon_{jj\tau} / \epsilon_{o}$) およびキ ュリー温度(T,)は単結晶とほぼ同程度の特性を有す るが、圧電歪み定数 (d,,) が50~60pC/Nと低 くなり、アクチュエータ用の圧電磁器としては利用でき るレベルではないことが判った。

> 【0007】本発明は、一般式: Sr, NaNb, O,, で表わされるタングステンプロンズ型複合酸化物におい て、キュリー温度が150°C以上と高く、80pC/N 以上の実用レベルの圧電歪み定数(d,,)を有する非鉛

[0008]

【0010】また、原子比による組成式を、(Sr_{z-1} A。)、(Na_{1-1} K。)、(Nb_{1-1} Ta。) O_{11} と表わした時、前記a、b、c、x およびyが、0.10 $\le a \le 0.65$ 、 $0.20 \le b \le 0.80$ 、 $0 < c \le 0.50$ 、 $0.96 \le x \le 1.04$ 、 $0.80 \le y \le 1.20$ を満足することが望ましい。ここで、A は、M g、C a およびB a のうち少なくとも 1 種である。【0011】本発明のアクチュエータ用圧電磁器は、上記組成式で表わされる主成分 100 重量部に対して、C u および/またはM n E C U O、E M n E O、換算で合計 E 0、E 1 E 1 E 5 重量部含有することが望ましい。

【作用】本発明のアクチュエータ用圧電磁器は、一般式:Sr, NaNb, O_1 , で表されるタングステンブロ 30ンズ型複合酸化物からなり、NbO一部をV および/またはTa で置換した結晶粒子を主体とするため、キュリー温度(T_c)を150 で以上と高くできるとともに、比誘電率($\varepsilon_{1,17}$ / ε_o)および/または電気機械結合係数($k_{1,1}$)を向上して、圧電歪み定数($d_{1,1}$)を80 pC/N以上と実用的レベルまで向上できる。

【0013】また、本発明のアクチュエータ用圧電磁器は、環境に悪影響を与える鉛を含有せず、ビスマス等の揮発成分も含有しないことから、大気中で焼成できるので製造が容易である。

[0016]

【発明の実施の形態】本発明のアクチュエータ用圧電磁器は、一般式: Sr_* Na Nb, O_1 , で表されるタングステンプロンズ型複合酸化物からなり、Nbの一部をV および/またはTa で置換した結晶粒子を主体とするものである。このように従来知られている Sr_* Na Nb, O_1 , ONbの一部を、V、Ta で置換することにより、比誘電率($\varepsilon_{1,1,7}$ / ε 。)および/または電気機械結合係数($k_{1,1}$)を向上して、圧電歪み定数($d_{1,1}$)を高くできる。

【0017】また、Sro一部をMg、Ca およびBa のうち少なくと1 種で置換するとともに、Nao一部を K で置換することが望ましい。このように置換することにより、キュリー温度(T_c)を高くでき、比誘電率($\varepsilon_{1,17}$ $/\varepsilon_o$) および電気機械結合係数(k_{13})をさ らに向上できる。

【0018】本発明のアクチュエータ用圧電磁器では、特に、原子比による組成式を(Sr₂₋₂ A₂)_x (Na₁₋₃ K₃) 、(Nb₃₋₄ B₅) O₁, と表わした時、前記 20 a, b, c, xおよびyが、0.10≦a≦0.65、0.20≦b≦0.80、0.96≦x≦1.04、0.80≦y≦1.20を満足し、BがVの場合には0<c≦0.10、BがTaの場合には0<c≤0.50を満足することが望ましい。ここで、AはMg、CaおよびBaのうち少なくとも1種以上である。

【0020】上記主成分において、NaとKの割合を表わすbを0.20≦b≦0.80の範囲とした理由は、この範囲おいてキュリー温度(T。)が高く、高い比誘電率(ϵ ,,,, $/\epsilon$ 。)および電気機械結合係数(k,,)を有する磁器を得ることができるからである。つまり、bが0.20よりも小さい場合には電気機械結合係数(k,,)が低下し、0.80よりも大きい場合にはキュリー温度(T。)が低下するからである。bは、特に、電気機械結合係数(k,,) に優れるという点から、bは0.50≦b≦0.80であることが望ましい。【0021】また、上記主成分において、Nbの一部を特定の金属元素B(Vおよび/またはTa)でこだけ置

特定の金属元素 B (V および/または T a) c c だけ置換するが、V で置換する場合には、c は 0 < c \leq 0 . 1 0 、T a で置換する場合には 0 < c \leq 0 . 5 0 を満足するものである。

【0022】Nbの一部をVで置換する場合には置換し 50 過ぎると焼結性の悪化を招くので、cは0.10以下で あることが望ましい。一方、Nbの一部をTaで置換する場には、置換量が増えるに従ってキュリー温度

【0023】さらに、上記主成分におけるxを0.96 $\leq x \leq 1$.04の範囲とした理由は、xが0.96未満である場合には磁器中に異相が生じ易く、圧電歪み定数 (d_{jj})が低下し、1.04よりも大きい場合には磁器の焼結性が悪化するために圧電歪み定数 (d_{jj})が小さくなるからである。

【0024】 yを0.80 \leq y \leq 1.20の範囲とした 理由は、yが0.80未満である場合には比誘電率(ϵ よびMnO。を添加することが 加量が多いと磁器中に顕著に異 電特性が低下するからである。 である。 破器の焼結性が良く、大きい圧電歪み定数 (d,,)を示すという点から、xは0.98 \leq x \leq 1.02、yは0.90 \leq y \leq 1.10の範囲であることが 望ましい。 が得られるが、この場合は合語 よびMnO。を添加すること 面量が多いと磁器中に顕著に異 電特性が低下するからである。 【0031】また、Cuおよび MnO。換算で所定量含有する よび/またはMnO。粉末のみ よび/またはMnO。粉末のみ よび/またはMnO。粉末のみ よび/またはMnを含む化合物 らに、SrCO。、MgCO。

【0025】さらに、本発明では、原子比による組成式を(Sr_{1-} 。A。)、(Na_{1-} 。K。)、(Nb_{5-} 。B。) O_{15} からなる主成分100重量部に対し、Cu および/またはMn をCu O、Mn O、換算で合計0.1~1.5 重量部を含有することが望ましいが、これは焼成温度を低下させ、磁器の製造を容易にするためである。 Cu およびMn の添加量の範囲を合計0.1~1.5 重量部とした理由は、添加量が0.1 重節来満である場合には添加効果がほとんど認められず、1.5 重量部よりも多い場合には磁器中に異相が生じ易く、磁器の圧電性が顕著に低下するからである。特に、磁器の焼成温度が低く、大きな圧電歪み定数(d_{5+})を示すという点から、Cu および/またはMn の添加量は合計0.4~1.0 重量部であることが望ましい。

【0026】なお、本発明のアクチュエータ用圧電磁器は、一般式: $(Sr_{2-a}A_a)$ 、 $(Na_{1-b}K_b)$ 、 $(Nb_{3-c}B_c)O_{13}$ で表されるタングステンプロンズ型結晶相を主結晶相とするもので、Cu および/またはMn を含有する場合には、Cn ちの金属元素の大部分が上記主結晶相に固溶した結晶相となるが、一部主結晶相の粒界に存在する場合もある。

【0027】本発明のアクチュエータ用圧電磁器では、Rb、Ce、Fe、Al、Si等の不可避不純物が混入する場合がある。また、プレス成形の金型等から、Ni Cr Mo Ni等の金属元素が混入する場合もあ

る。さらに、温度特性や耐熱性を向上するために、Li、Cr、Co等を添加しても良い。

【0028】本発明のアクチュエータ用圧電磁器は、例えば、次のようにして製造することができる。先ず、S r C O, 、 M g C O, 、 C a C O, 、 B a C O, 、 N a, C O, 、 K, C O, , N b, O, 、 V, O, 、 T a, O, 、 C u OおよびM n O, の各粉末を所定の割合で混合し、900~1100℃で2~5時間仮焼した後、粉砕することにより所望の組成の圧電材料の粉末を得る。10 【0029】この粉末に有機バインダーを混合し、金型プレス、静水圧プレス等により所望の形状に成形した後、1100~1300℃で2~5時間焼成することにより磁器を得る。これを必要に応じて所望の厚さに加工して使用する。

【0030】尚、CuOおよび/またはMnO、は調合時だけでなく、仮焼後・粉砕前に添加しても同様な結果が得られるが、この場合は合計1重量部以下のCuOおよびMnO、を添加することが望ましい。これよりも添加量が多いと磁器中に顕著に異相が生じ易く、磁器の圧電特性が低下するからである。

【0031】また、Cuおよび/またはMnはCuO、MnO, 換算で所定量含有するものであるが、CuOおよび/またはMnO, 粉末のみならず、その他のCuおよび/またはMnを含む化合物粉末であっても良い。さらに、SrCO,、MgCO,、CaCO,、BaCO,、Na, CO,、K, CO,、Nb, O,、V,O,、Ta,O,、CuOおよびMnO,粉末は、それぞれの金属元素を含有する酸化物、炭酸塩、酢酸塩等の化合物、もしくは有機金属等の化合物のいずれであっても、焼成により酸化物となるものであれば問題ない。【0032】

【実施例】出発原料として、 $SrCO_3$ 、、 $MgCO_3$ 、 $CaCO_3$ 、 $BaCO_3$ 、 Na_2CO_3 、 K_2CO_3 、 K_3CO_3 K_3CO_3

【0033】次いで、この混合物を乾燥した後、大気中で1000℃で3時間仮焼し、該仮焼物を再び上記ボールミルで粉砕した。その後、この粉砕物にバインダー(PVA)を混合して造粒した。得られた粉末を1.5 t/cm²の圧力で直径5 mm、厚さ8 mmの寸法からなる円柱にプレス成形した。

する場合がある。また、プレス成形の金型等から、N 【0034】これらの成形体をMgOからなる板に並i、Cr、Mo、Ni等の金属元素が混入する場合もあ 50 べ、表1の試料では大気中において1240~1300

でで5時間焼成し、表2の試料では表2に示す温度で5時間焼成した。得られた磁器について、X線回折パターンの測定を行い、ビークの解析を行なったところ、本発明の試料ではSr、NaNb、O₁、で表されるタングステンブロンズ型複合酸化物からなり、Nbの一部をVおよび/またはTaで置換した結晶粒子を主体とすることを確認した。

【0035】得られた圧電磁器に銀電極を焼き付け、150℃のシリコンオイル中で8kV/mmの直流電界を印加して分極処理した。

【0036】そして、比誘電率 (E₁₁₇ / E_e) および*

* 縦方向の共振・反共振周波数を室温下においてインピー ダンスアナライザーを用いて測定し、電気機械結合係数 (k,,) および弾性コンプライアンス(S,,,) を算出 し、磁器の圧電歪み定数(d,,) を求めた。

【0037】また、上記圧電磁器の比誘電率を温度の関数としてプロットすることにより強誘電相と常誘電相の相転移点の温度(キュリー温度(T。))を求めた。これらの結果を表1むよび表2に記載した。

[0038]

10 【表1】

	A	原子出	1	B 原子比							E 33T	kзз	dss	Tc
No.	Mg	Ca	Ba	Y	Ta	х	У	а	b	С	/ E •	%	pC/N	r
1	1.00	_	_	1.00	_	1.00	1.00	0, 10	0.50	0.02	1554	26	80	20
2	1.00	_	_	1.00	_	1.00	1.00	0.20	0.50	0.02	1856	28	95	20
3	1.00	_	_	1.00		1.00	1.00	0, 30	0.50	0.02	1869	30	102	20
. 4	1.00	_	_	1,00		1.00	1.00	0.50	0.50	0.02	1953	29	101	20
5	1.00	_	-	1.00	-	1,00	1.00	0. 65	0.50	0.02	1507	27	82	21
6	1.00	-	_	1,00	-	1.00	1.00	0.30	0, 20	0.02	1798	24	80	24
7	1.00		_	1.00	-	1.00	1.00	0.30	0. 30	0.02	1829	25	84	22
8	1.00	_	_	1.00	-	1.00	1.00	0.30	0.80	0, 02	1870	32	109	15
9	1.00	-		1.00	— ·	0.96	1.00	0.30	0, 50	0.02	1784	24	80	20
10	1.00	-	_	1.00	-	0.98	1.00	0, 30	0.50	0.02	1798	27	90	20
11	1.00	-	-	1.00	_	1.02	1.00	0.30	0, 50	0.02	1858	29	98	20
12	1.00	-	_	1.00		1.04	1.00	0.30	0.50	0.02	1633	26	82	21
13	1.00	-	-	1.00	-	1.00	0.80	0.30	0, 50	0.02	1625	26	82	19
14	1.00	-	-	1.00	_ !	1.00	0.90	0.30	0.50	0.02	1726	29	95	20
15	1.00	-	_	1.00	-	1.00	1.10	0.30	0.50	0.02	1872	28	95	21
16	1.00	-	_	1.00	_	1.00	1.20	0.30	0, 50	0.02	1856	26	88	22
*17	1.00	-	_	-	_	1.00	1.00	0.30	0.50	_	1825	22	69	20
* 18	_	1.00	_	-	_	1.00	1.00	0.30	_	-	1756	20	59	27
19	1.00	-	-	1.00	-	1,00	1.00	0.30	0.50	0.02	1865	30	102	20
20	1.00	-	-	1.00	-	1.00	1.00	0.30	0.50	0.05	1825	31	104	21
21	1.00	-	_	1.00	-	1.00	1.00	0.30	0.50	0.08	1806	29	97	22
22	1.00	-	—	1.00	-	1,00	1.00	0.30	0.50	0.10	1793	26	86	22
23	1,00	-	—	_	1.00	1.00	1.00	0.30	0.50	0.05	1898	26	89	20
24	1.00		-	-	1.00	1.00	1.00	0.30	0.50	0.10	1907	28	96	19
25	1.00	_	_	-	1.00	1.00	1.00	0.30	0.50	0.30	1922	31	107	17
26	1.00	-		_	1.00	1.00	1.00	0.30	0.50	0.50	1958	32	111	15
27	0.95	0.05	-	1.00	_	1.00	1.00	0.30	0.50	0.02	1830	29	99	20
28	0.90	0.05	0.05	1.00	-	1.00	1.00	0.30	0.50	0.02	1835	32	109	22
29	-	1.00	-	1.00	-	1.00	1.00	0.30	0.50	0.02	1802	28	94	22
30	0.05	0.95	-	1.00		1.00	1,00	0.30	0.50	0.02	1886	29	100	22
31	0.05	0.90	0.05	1.00	-	1.00	1.00	0,30	0.50	0.02	1705	33	108	22

*印は本発明の範囲外の試料を示す。

[0039]

* * 【表2】

武料	添加物wt部		€ 3 3 T	ks3	dss	Tc	焼成温度
No.	CuO. MnO ₂		1 € 0	%	pC/N	C	
32 33 34 35 36 37 38 39	- 0. 20 - 0. 05 0. 10 0. 20 0. 40 0. 50	 0. 20 0. 05 0. 10 0. 20 0. 40 0. 50	1886 1865 1893 1880 1882 1899 1861 1854	29 29 27 29 29 30 31 30	100 99 93 102 102 103 106 102	222 223 224 220 220 221 220 222	1240 1220 1230 1200 1190 1180 1160 1150
40	0.75	0.75	1823	28	97	220	1140
	1.00	1.00	1528	25	80	200	1100

【0040】 これらの表1 および表2より、本発明の試料では何れも150℃以上の高いキュリー温度を有して 20 おり、100℃の温度環境下でも使用可能であり、しかも、圧電歪み定数(d,,)が80 p C / N以上、特には100 p C / N以上となることが判る。

【0041】一方、Nbの一部をVやTaで置換しない比較例の試料No.17では圧電歪み定数(d,,)が低いことが判る。また、組成式S-r,-Na-N-b,-Q₁,のS-rの一部をCaで置換した従来の組成では、圧電歪み定数(d,,)が59pC/Nと低いことが判る(No.18)。

【0042】また、SrのMg、Ca、Baによる置換 30 および36)。 量aが0.10から0.65の間で圧電歪み定数 【0046】-

(d,,)のピークを有し(試料No.1~5)、NaのKによる置換量bが0.2から0.8に増加すると圧電歪み定数(d,,)は次第に増加するものの、キュリー温度(T,)が低下していくことが判る(試料No.6~8)。

【0043】さらに、NbのVによる置換量 c は0.0 2~0.10の間で圧電歪み定数 (d,,)のピークを有 し、キュリー温度 (T,)が次第に高くなることが判る (試料No.19~22)。また、NbのTaによる置換 40 量 c は 0.05~0.50の間で圧電歪み定数 (d,,) が次第に高くなるが、キュリー温度 (T,)が次第に低 くなることが判る (試料No.23~26)。

【0044】また、xが0.96~1.04の間で圧電

歪み定数(d,,)のピークが存在し、かつキュリー温度 (T,)が次第に高くなることが判る(試料No.9~1 2)。 yが0、80~1、20の間で圧電歪み定数(d,,)のピークが存在し、かつキュリー温度(T,)が次第に高くなることが判る(試料No.13~16)。

【0045】さらに、CuO、MnO、の含有量が増加するにつれて、圧電歪み定数(d,,)等の特性を殆ど劣化させずに焼成温度を低くできることが判る(試料No.32~41)。また、CuO、MnO、はこれらを同時に添加することが圧電特性を劣化させずに焼成温度を低下させる点で望ましいことが判る(試料No.32~34および36)

【0046】一方、CuO、MnO。の添加量が合計 1.5重量部よりも多くなると圧電歪み定数(d,,)が 低下することが判る(試料No.41)。 【0047】

【発明の効果】以上のように、本発明によるアクチュエータ用圧電磁器によれば、キュリー温度(T_c)が150℃よりも高く、80pC/N以上の圧電歪み定数(d_g))を有しており、積層型アクチュエータ用の圧電材料として実用化できるレベルの非鉛系圧電材料が提供できる。鉛を含有していないので、酸性雨による鉛の溶出により環境に悪影響を与える心配がない圧電材料である。また、本発明による圧電磁器は、焼成が容易で低温焼成が可能であるので製造コストを低減することができる。