[논문리뷰] Improving Language Understanding by Generative Pre-Training

250910 BOAZ WEEK8 과제

💢 등장 배경

- 준지도 학습: unlabelled 데이터가 많은 상황에서 사용하는 방법
 - 。 한계
 - 1. 어떤 학습 목표가 좋은 지가 없었고,
 - 2. 학습된 표현을 다른 작업에 전이하는 방법도 확실치 않았다.
 - → 작업마다 방법을 새로 설계, 범용성 ↓
- ⇒ 11 비지도 사전학습 (언어모델링) + 2 소량의 지도 데이터로 Fine-tuning 을 조합하자!

Framework

Unsupervised pre-training

특정 태스크를 목표로 학습 하기 위한 labelled 데이터 부족 \rightarrow 처음에는 비지도 학습을 통해 GPT를 사전 훈련!

- 여느 LLM과 동일하게 "특정한 단어가 만약 i번째라면 i-1 부터 i-k번째까지의 단어를 보고, i번째가 나올 가능성을 최대화하는 방법"
- 우도 최대화를 loss function 으로 한다.

maximize the following likelihood:

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

구조 = Transformer Decoder
(12-layer, hidden size 768, heads 12, 총 1.17억 파라미터)

$$\begin{aligned} h_0 &= UW_e + W_p \\ h_l &= \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n] \\ P(u) &= \texttt{softmax}(h_n W_e^T) \end{aligned}$$

- 1. input sequence 를 받아 word embedding , Positional embedding 수행
 - 이때 h 0 가 위의 식으로 표현됨
- 2. 그 다음부터 hidden state 를 decoder block 에 계속 넣어 학습시킴
 - (논문에서는 decoder block = 12개)
- 3. 최종 hidden state 값을 활용하여 확률값 출력

? 왜 decoder를 사용했을까?

- GPT는 자연어 생성이나 자연어 모델링에 초점이 맞춰져 있어, seq2seq2 구조에서, 문맥벡터를 사용해 다른 시퀀스를 생성하는 decoder만을 사용
- Encoder는 단어의 vector로 출력되는 반면, Decoder는 확률값으로 표현되기 때문에 어떤 token이 나와야 할 지 예측할 수 있다.

Supervised Fine-tuning

사전학습 된 모델에 labeled data를 가지고 target task에 맞게 모델을 fine-tuning 하자!

W_y (linear output layer)를 추가해서 라벨에 대한 예측값을 만드는 방식

$$P(y|x^1,\ldots,x^m)= extsf{softmax}(h_l^mW_y).$$
3 objective to maximize:
$$L_2(\mathcal{C})=\sum_{(x,y)}\log P(y|x^1,\ldots,x^m).$$

• 추가적으로 논문의 저자들은, L2 function 에 L1 function을 더하는 auxiliary objective를 추가하여 성능을 높임(L3).

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

- 구조는 바꾸지 않고, 마지막 층에 태스크에 맞는 head 추가
- \Rightarrow 새로운 architecture를 추가하던 기존 연구들과 다르게, GPT-1은 traversal-style을 가진 구조화된 input으로 전이 학습을 최소한의 변화를 통해 가능

Experiments

Dataset

Table 1: A list of the different tasks and datasets used in our experiments.

Task	Datasets			
Natural language inference	SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]			
Question Answering	RACE [30], Story Cloze [40]			
Sentence similarity	MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]			
Classification	Stanford Sentiment Treebank-2 [54], CoLA [65]			

• TASK (총 12개)

- 1. Classification : 텍스트 입력을 Transformer로 인코딩 후 선형결합하여 클래스 라벨을 예측하는 과제
- 2. Natural Language Inference : 전제(premise)가 가설(hypothesis)을 의미적으로 함의하는지 여부(Yes/No)를 판별하는 과제
- 3. Semantic Similarity : 두 문장의 의미적 유사도를 0~1 실수 값으로 추정
- 4. Question answering and commonsense reasoning : 주어진 문맥에 대해 여러 선택지 중 가장 적합한 답변을 확률 기반으로 선택하는 과제
- 12개의 task 중에 9개의 Dataset에서 SOTA 달성

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	89.3	-	-	-
Stochastic Answer Network [35] (3x)	80.6	80.1	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	-	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	60.2	50.3	53.3
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

Method	Classification		Semantic Similarity			GLUE
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	-	-	-	-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	81.0	-	-
Single-task BiLSTM + ELMo + Attn [64]	35.0	90.2	80.2	55.5	66.1	64.8
Multi-task BiLSTM + ELMo + Attn [64]	18.9	91.6	83.5	72.8	63.3	<u>68.9</u>
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8