Sciences Pour l'Environnement

Parcours Gestion de l'Environnement et Écologie Littorale

Analyse de données / Data analysis

B. Simon-Bouhet

Université de La Rochelle

First semester

proportions

6. Analyzing

Outline

4. Estimating with uncertainty

The sampling distribution of an estimate Measuring the uncertainty of an estimate Confidence intervals Error bars

5. Hypothesis testing

Making and using statistical hypotheses
Hypothesis testing: an example
Errors in hypothesis testing
When the null hypothesis is not rejected
One-sided tests
Hypothesis testing vs. confidence intervals

6. Analyzing proportions

The binomial distribution

Testing a proportion: the binomial test Estimating proportions

Definition

The binomial distribution provides the probability distribution for the number of "successes" in a fixed number of independent trials, when the probability of success is the same in each trial.

$$Pr(X \text{ successes}) = \binom{n}{X} \cdot p^X \cdot (1-p)^{(n-X)}$$

avec

$$\binom{n}{X} = \frac{n!}{X!(n-X)!}$$

Example: probability of observing 4 left-handed flowers in the offspring, with n=27 flowers and $p=\frac{1}{4}$:

$$Pr(X=4) = \frac{27!}{4!(27-4)!} \cdot 0.25^4 \cdot (1-0.25)^{(27-4)} = 0.09171$$

Example: probability of observing 4 left-handed flowers in the offspring, with n=27 flowers and $p=\frac{1}{4}$:

$$Pr(X=4) = \frac{27!}{4!(27-4)!} \cdot 0.25^4 \cdot (1 - 0.25)^{(27-4)} = 0.09171$$

In R:

```
dbinom(x = 4, size = 27, prob = 0.25)
[1] 0.09171623
```

By using the same function, we get the sampling distribution of left-handed flowers in the offspring, with n=27 flowers and $p=\frac{1}{4}$:

```
AllProb <- dbinom(x = 0:27, size = 27, prob = 0.25)
AllProb
 [1] 4.233057e-04 3.809751e-03 1.650892e-02 4.585812e-02
 [5] 9.171623e-02 1.406316e-01 1.718830e-01 1.718830e-01
 [9] 1.432358e-01 1.007956e-01 6.047736e-02 3.115500e-02
[13] 1.384667e-02 5.325641e-03 1.775214e-03 5.128395e-04
[17] 1.282099e-04 2.765311e-05 5.120947e-06 8.085705e-07
[21] 1.078094e-07 1.197882e-08 1.088984e-09 7.891188e-11
[25] 4.383993e-12 1.753597e-13 4.496403e-15 5.551115e-17
tibble(x = 0:27, AllProb) \%
  ggplot(aes(x, AllProb)) +
  geom_col(fill = mycol, color = "grey20") +
  labs(x = "Number of left-handed flowers", y = "Probability") +
  scale_x_continuous(breaks = seq(from = 0, to = 27, by = 3))
```


Sampling distribution of the proportion

If there are X successes out of n trials, the estimated proportion of successes is:

$$\hat{p} = \frac{X}{n}$$

We can use the same theoretical population of flowers having a true proportion of success p=0.25 to illustrate the sampling distribution of the sample proportion \hat{p} .

Sampling distribution of the proportion

The standard error of the mean quantifies the uncertainty associated with a sample mean:

$$\mathrm{SE}_{\overline{Y}} = \frac{s}{\sqrt{n}}$$

Likewise, the standard error $\sigma_{\hat{p}}$ quantifies the uncertainty associated with an estimated proportion \hat{p} :

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

As for the mean, since the true value p is often unknown, the estimated standard error is calculated using the estimate of the proportion \hat{p} :

$$\mathsf{SE}_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Outline

4. Estimating with uncertainty

The sampling distribution of an estimate Measuring the uncertainty of an estimate Confidence intervals Error bars

5. Hypothesis testing

Making and using statistical hypotheses
Hypothesis testing: an example
Errors in hypothesis testing
When the null hypothesis is not rejected
One-sided tests
Hypothesis testing vs. confidence intervals

6. Analyzing proportions

The binomial distribution

Testing a proportion: the binomial test

Estimating proportions

The binomial test

Definition

The binomial test uses data to test whether a population proportion (p) matches a null expectation (p_0) for the proportion.

- ightharpoonup H₀: the relative frequency of successes in the population is p_0 .
- \blacktriangleright H_A: the relative frequency of successes in the population is not p_0 .

Some data to work with

Sex and the X chromosome

Data from Wang et al. (2001). 10 out of 25 genes ($\hat{p}=0.4$) on the X chromosome.

Sex and the X chromosome

I. State the hypotheses

- ► H_0 : the probability that a spermatogenesis gene falls on the X chromosome is p = 0.061.
- ► H_A: the probability that a spermatogenesis gene falls on the X chromosome is something other than 0.061 ($p \neq 0.061$).

2. Compute the test statistic

For a binomial test, the test statistic is the number of success, here, 10 spermatogenesis genes on the X chrmosome.

Sex and the X chromosome

3. Compute the P-value

Under the null hypothesis, the expected number of spermatogenesis genes falling on the X chromosome is:

$$p_0 \times n = 0.061 \times 25 = 1.525$$

Since we observed more than 1.525 spermatogenesis genes on the X chromosome (i.e. 10), we have to calculate the probability that 10 or more spermatogenesis genes fall on the X chromosome simply by chance, using the binomial distribution:

$$Pr(X \ge 10) = Pr(10) + Pr(11) + \dots + Pr(25) = 9.9 \times 10^{-7}$$

The *P*-value is twice that number since the test is two-sided:

$$P = 2 \times Pr(X \ge 10) = 2(9.9 \times 10^{-7}) = 1.98 \times 10^{-6}$$

Sex and the X chromosome

3. Compute the P-value

In R, we can compute the P-values manually:

```
2 * sum(dbinom(x = 10:25, size = 25, p = 0.061))
[1] 1.987976e-06
```

Sex and the X chromosome

3. Compute the P-value

Or we could use the built-in binom.test() function:

```
binom.test(x = 10, n = 25, p = 0.061)
^^IExact binomial test
data: 10 and 25
number of successes = 10, number of trials = 25,
p-value = 9.94e-07
alternative hypothesis: true probability of success is not equal to 0.061
95 percent confidence interval:
0.2112548 0.6133465
sample estimates:
probability of success
                   0.4
```

Sex and the X chromosome

4. Draw the appropriate conclusion

Here, P is much smaller thant the significance level $\alpha = 0.05$.

We reject H_0 . Here is what we would conclude in a report:

Conclusion

"There is a disproportionate number of spermatogenesis genes on the X chromosome (0.40, SE =0.10; binomial test, n=25, P<0.001)."

Outline

4. Estimating with uncertainty

The sampling distribution of an estimate Measuring the uncertainty of an estimate Confidence intervals Error bars

5. Hypothesis testing

Making and using statistical hypotheses
Hypothesis testing: an example
Errors in hypothesis testing
When the null hypothesis is not rejected
One-sided tests
Hypothesis testing vs. confidence intervals

6. Analyzing proportions

The binomial distribution
Testing a proportion: the binomial test
Estimating proportions

Estimating proportions

Sex and the X chromosome

Proportion:

$$\hat{p} = \frac{X}{n} = \frac{10}{25} = 0.40$$

Standard Error of proportions:

$$\mathsf{SE}_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.4(1-0.4)}{25}} = 0.10$$

Confidence interval of a proportion (Agresti-Coull method):

First, define p' as:

$$p' = \frac{X+2}{n+4}$$

Then, use the following formula:

$$p' - 1.96\sqrt{\frac{p'(1-p')}{n+4}}$$

Confidence intervals: a lot of methods

Sex and the X chromosome

```
library(binom)
binom.confint(x = 10, n = 25)
          method x n mean
                                     lower
   agresti-coull 10 25 0.4000000 0.2336047 0.5930338
      asymptotic 10 25 0.4000000 0.2079635 0.5920365
3
           bayes 10 25 0.4038462 0.2227432 0.5889367
4
         cloglog 10 25 0.4000000 0.2128160 0.5812317
5
           exact 10 25 0.4000000 0.2112548 0.6133465
6
           logit 10 25 0.4000000 0.2304775 0.5974104
          probit 10 25 0.4000000 0.2265040 0.5962745
8
         profile 10 25 0.4000000 0.2247930 0.5947951
9
             lrt 10 25 0.4000000 0.2247577 0.5948050
10
       prop.test 10 25 0.4000000 0.2181192 0.6110970
11
          wilson 10 25 0.4000000 0.2340330 0.5926054
```

Here, all methods confirm that $p_0 = 0.061$ is not among the most likely values for the true population paramter p.

References

- Bisazza A, Cantalupo C, Robins A, Rogers LJ, Vallortigara G (1996) Right-pawedness in toads. *Nature*, **379**, 408.
- Frick RW (1996) The appropriate use of null hypothesis testing. *Psychological Methods*, 1, 379–390.
- Hubbard T, Andrews D, Caccamo M, et al. (2005) Ensembl 2005. Nucleic Acids Research, 33, D447–D453.
- Jesson LK, Barrett SCH (2002) The genetics of mirror-image flowers. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269, 1835–1839.
- Wang PJ, McCarrey JR, Yang F, Page DC (2001) An abundance of X-linked genes expressed in spermatogonia. *Nature Genetics*, **27**, 422–426.