

APUNTES DEL CURSO 2019-2020 IMPARTIDO POR MARGARITA OTERO

Rafael Sánchez

Revisión del 12 de septiembre de 2019 a las 02:03.

Índice general

I Sintaxis y semántica de primer orden				
1.	Estructuras y lenguajes de primer orden 1.1. Introducción	8		
	Apéndices Índices	11 13		

ÍNDICE GENERAL

Parte I

Sintaxis y semántica de primer orden

Capítulo 1

Estructuras y lenguajes de primer orden

Introducción 1.1.

Definición 1 (Estructura). Una estructura (de primer orden) \mathcal{A} consta de un conjunto no vacío A(universo) y un conjunto de funciones, relaciones y elementos del universo.

Puede parecer una definición algo abstracta, así que vamos a ver algunos ejemplos:

Ejemplo 1 (Estructuras. Ejemplos)

Definición 2 (Lenguaje). Un lenguaje (de primer orden) consta de:

- Para cada $n \in \mathbb{N}^*$ un conjunto \mathcal{F}_n de símbolos de funciones n-arias.
- Para cada $m \in \mathbb{N}^*$ un conjunto \mathcal{R}_m de símbolos de relaciones m-arias.
- Un conjunto \mathcal{C} de constantes.

Además de conjuntos de símbolos lógicos, variables $\{v_i\}_{i\in\mathbb{N}}$, cuantificadores (\exists, \forall) , conectores $(\land, \lor, \Longleftrightarrow)$, \Longrightarrow), símbolos de igualdad =, y paréntesis (). No se suelen especificar en la declaración del lenguaje.

Ejemplo 2 (Lenguajes. Ejemplos)

- $L = \{*, e\}$
- $L = \{\cdot, 1\}$
- $L = \{+, 0\}$ $L = \{\cdot, ^{-1}, 1\}$

Además, para hablar del comportamiento de los reales vamos a usar el lenguaje:

$$L = \{+, -, \cdot, 0, 1, \leq \}$$

Es importante destacar que cuando escribimos + en la declaración del lenguaje no nos referimos a la función: $+: \mathbb{R}^2 \to \mathbb{R}$ si no a un símbolo que luego interpretamos como tal función en la estructura.

1.2. L-estructuras

Definición 3 (L-estructura). Dado un lenguaje 2 L, una L-estructura \mathcal{A} o una interpretación de L consta de:

- un universo $A \neq \emptyset$
- una función n-aria $f^A:A^n\to A$ para cada símbolo de función $f\in\mathcal{F}_n$
- una relación m-aria $R^{\mathcal{A}} \subseteq A^m$ para cada símbolo de relación $R \in \mathcal{R}_m$
- un elemento $e^{\mathcal{A}} \in A$ para cada constante $c \in \mathcal{C}$.

Notación. En la definición anterior:

 $L = \mathcal{F} \cup \mathcal{R} \cup \mathcal{C}$ (lenguaje), $\mathcal{F} = \bigcup_{n \in \mathbb{N}^*} \mathcal{F}_n$ (símbolos de función), $\mathcal{R} = \bigcup_{m \in \mathbb{N}^*} \mathcal{R}_m$ (símbolos de relación), \mathcal{C} constantes.

Además, para cada símbolo $s \in L$, $s^{\mathcal{A}}$ es la interpretación de s a \mathcal{A} .

Ejemplo 3 (*L-estructura*. *Ejemplos*)

- $R = \langle \mathbb{R}, +^R, -^R, \cdot^R, \leq^R, 0^R, 1^R \rangle$ (interpretación del lenguaje de los reales con el universo \mathbb{R}). $\mathcal{A} = \langle A, +^A, -^A, \cdot^A, \leq^A, 0^A, 1^A \rangle$.

$$+, -, \cdot \in \mathcal{F}_2 \implies +^{\mathcal{A}}, -^{\mathcal{A}}, \cdot^{\mathcal{A}} : A^2 \to A$$

 $\leq \in R_2 \implies \leq^{\mathcal{A}} \in A^2; \quad 0, 1 \in \mathcal{C} \implies 0^{\mathcal{A}}, 1^{\mathcal{A}} \in A$

Observación. Podríamos intentar interpretar el lenguaje de los reales del ejemplo 2 con el universo $A = \mathbb{C}$, sin embargo, aunque podemos interpretar $+, -, \cdot, 0$ y 1 de la forma habitual, no existe una interpretación de \leq en \mathbb{C} .

Ejemplo 4 (Lenguajes comunes)

- $L_{\emptyset} = \{\}$. Es el lenguaje vacío, sigue teniendo símbolos generales. Sirve para expresar propiedades tales como: Existen tres elementos $(\exists x_1, x_2, x_3)$.
- $L_{<} = {<}$. Lenguaje para conjuntos ordenados. Con $< \in R_2$.
- $L_{grupos} = \{+, -, 0\}$ (aditivo), $\{\cdot, ^{-1}, 1\}$ (multiplicativo). Lenguaje para grupos. Con $+, \cdot \in \mathcal{F}_2$; $-,^{-1} \in \mathcal{F}_1; 0, 1 \in \mathcal{C}.$
- $L_{cuerpos} = \{+, -, \cdot, 0, 1\}$. Lenguaje para cuerpos.
- $L_{aritmtica} = \{+,\cdot,0,1,\leq\}$. Lenguaje para la aritmética. También podemos considerar añadir otro símbolo de función S, cuya interpretación natural sería la función sucesor.
- $L_{conj} = \{ \in \}$. Lenguaje para conjuntos. Todo se puede escribir con este lenguaje.

1.2.1. Subestructuras

Definición 4 (Subestructura de una L-estructura). Sean \mathcal{B}, \mathcal{A} L-estructuras (con universos \mathcal{B} y \mathcal{A} respectivamente), decimos que \mathcal{A} es una subestructura de \mathcal{B} ($\mathcal{A} \subseteq \mathcal{B}$) si:

- $f^{\mathcal{A}} = f^{\mathcal{B}}|_{A^n}$ para cada $f \in \mathcal{F}_n$. $R^{\mathcal{A}} = R^{\mathcal{B}} \cap A^m$ para cada $R \in R_m$.
- $C^{\mathcal{A}} = C^{\mathcal{B}}$
- $A \subseteq B$

Ejemplo 5 (Subestructuras. Ejemplos)

Sean los lenguajes: $L_1 = \{+, 0\}, L_2 = \{+, -, 0\}$. Vamos a considerar las L_1 -estructuras:

$$W = \langle \mathbb{N}, +^W, 0^W \rangle; \ Z = \langle \mathbb{Z}, +^Z, 0^Z \rangle$$

Donde es fácil ver que se cumplen las condiciones de subestructura y podemos afirmar que $W \subseteq Z$. Sin

1.3. HOMOMORFISMOS

9

embargo, si consideramos las L_2 -estructuras:

$$W' = \langle \mathbb{N}, +^{W'}, -^{W'}, 0 \rangle; \ Z' = \langle \mathbb{Z}, +^{Z'}, -^{Z'}, 0 \rangle$$

Vamos a dar una definición de -W' ya que el opuesto no está bien definido en \mathbb{N} . -W': $n \to 0$. Con esta interpretación es fácil ver que no se cumple que $-W' = f^{Z'}\Big|_{\mathbb{N}}$ ya que:

$$-W'(2) = 0$$
 y sin embargo $-Z'(2) = -2$

Observación. Consideremos el lenguaje $L_{<} = \{<\}$ de conjuntos ordenados, y las L-estructuras $\mathcal{A} =$ $\langle A, < \rangle$, $\mathcal{B} = \langle B, < \rangle$ (que sólo tienen una relación). Es fácil ver que:

$$A \subseteq \mathcal{B} \iff A \subseteq B \text{ (suponemos } <^{\mathcal{A}} = <^{\mathcal{B}} \cap A^2)$$

1.3. Homomorfismos

Definición 5 (Homomorfismo y monomorfismo). Sean \mathcal{A} , \mathcal{B} L-estructuras y $\varphi: A \to B$ una función, decimos que $\varphi: \mathcal{A} \to \mathcal{B}$ es un homomorfismo de \mathcal{A} en \mathcal{B} si:

- 1. $\forall a_1, \ldots, a_n \in A$ se cumple: $\varphi(f^{\mathcal{A}}(a_1, \ldots, a_n)) = f^{\mathcal{B}}(\varphi(a_1), \ldots, \varphi(a_n))$ 2. $\forall a_1, \ldots, a_n \in A$ se cumple: $(a_1, \ldots, a_m) \in R^{\mathcal{A}} \Longrightarrow (\varphi(a_1), \ldots, \varphi(a_m) \in \mathcal{B})$ 3. $\forall c \in \mathcal{C}$ se cumple: $\varphi(c^{\mathcal{A}}) = c^{\mathcal{B}}$

Además, si la segunda condición resulta ser necesaria y suficiente, φ es un monomorfismo.

Ejemplo 6 (*Ejemplo de monomorfismo*)

Sean $\mathcal{A} = \langle A, +, 0 \rangle$, $\mathcal{B} = \langle B, +, 0 \rangle$ y $\varphi(a+b) = \varphi(a) + \varphi(b)$; $\varphi(0) = 0$. Es fácil ver que φ es un homomorfismo. Además, la única relación es la igualdad (que existe aunque no se especifique) y como $\varphi(a) = \varphi(b) \iff a = b \text{ estamos ante un monomorfismo.}$

Parte II

Apéndices

Capítulo 2

Índices

Lista de definiciones

1.	Definición (Estructura)
2.	Definición (Lenguaje)
3.	Definición (L-estructura)
4.	Definición (Subestructura de una L-estructura)
	Definición (Homomorfismo y monomorfismo)

Lista de teoremas

18 LISTA DE TEOREMAS

Lista de ejemplos

1.	Ejemplo (Estructuras. Ejemplos)	7
2.	Ejemplo (Lenguajes. Ejemplos)	7
3.	Ejemplo (L-estructura. Ejemplos)	8
4.	Ejemplo (Lenguajes comunes)	8
5.	Ejemplo (Subestructuras. Ejemplos)	8
6.	Ejemplo (Ejemplo de monomorfismo)	9

20 LISTA DE EJEMPLOS

Lista de ejercicios