REGLERTEKNIK D3

(Kurs ERE 102)

Tentamen 23 augusti 2012

Tid: 0830-1230

Lokal: Maskinsalar

Lärare: Claes Lindeborg tel. 7723719

Tentamenssalarna besöks ca. Kl 0930 och 1130

Tentamen omfattar 30 poäng, där betyg 3 fordrar 12p., betyg 4 18p. samt betyg 5 24p.

Tillåtna hjälpmedel:

Formelsamling i Reglerteknik D3

Formelblad FILTER

Bodediagram

Matematiska och fysikaliska tabeller, typ BETA och Physics Handbook

Valfri kalkylator (dock ej laptop-dator)

Lösningarna anslås efter tentamen på avdelningens anslagstavla samt på kursens hemsida

Tentamensresultaten meddelas via LADOK senast 6 september.

Granskning av rättning kan ske den 6 och 7 september kl 1200-1300 på avdelningen

LYCKA TILL!

Institutionen för Signaler och system

Chalmers tekniska högskola

1b. Ett system G(s) är sammansatt av ett antal faktorer vilka är uppritade i Bode-diagrammet.

Uppgift:

Para ihop de fem kurvorna med ett urval av nedanstående uppgifter (T ex 1B, 2E osv).

Systemet har:

A. En pol i origo

B. En pol i $\omega = 2$

C. En pol i $\omega = 10$

D. Ett nollställe i $\omega = 2$

E. Ett nollställe i $\omega = 10$

... F. Ett nollställe i $\omega = 50$

G. En dubbelpol i $\omega = 50$

H. En konstant förstärkning K = 5.

Motivering behövs ej!

(2 p)

1c. Givet:
$$G(s) = \frac{7s^2 + 18s + 15}{(s+3)(s+1-j2)(s+1+j2)}$$

Figuren visar ett impulssvar av G(s) med början (t=0) och slutet utelämnade.

Uppgift: Bestäm impulssvaret vid $t = 0^{+}$ och $t \to \infty$.

1d.

Infästningen av roderlänken i servot nedan kan antingen göras direkt på hydraulkolvstången (läge 0) eller så låter man en del av roderkraften återföras till styrsignalen (läge 1 och 2).

= STYRSPAKEN

Uppgift:

Beskriv hur operatören upplever skillnaderna i servots funktion för läge 0, 1 resp 2.

(2p)

2.

En vagn befinner sig i vila 1 meter från en vägg vid t < 0. Vagnen påverkas av en kraft (enhetsimpuls) vid t = 0.

m= vagnens massa k= fjäderkonstant Bortse från friktionen

Mechanical system.

Uppgift: Beräkna x(t) för t≥0

En dynamisk länk skall undersökas genom frekvensanalys. Fyra experiment utfördes. Fig. a-d. De streckade linjerna är insignalerna och de heldragna frekvenssvaren. Insignalen anslöts vid t = 0.

<u>Uppgift</u>: Uppskatta det återkopplade systemets fas- och amplitudmarginaler (enhetsåterkoppling).

(4 p)

4. Betrakta det återkopplade systemet nedan.

$$F(s) = K_p(1 + \frac{1}{sT_i})$$

$$G_{process}(s) = \frac{4}{1 + 2s}$$

$$G_{givare}(s) = \frac{1}{1 + 0.1s}$$

a) Sätt F(s) = 1 Rita ett Bodediagram och avgör stabilitetsfrågan. Vad blir överkorsningsfrekvensen?

(2p)

Dimensionera PI-regulatorn så att överkorsningsfrekvensen och fasmarginalen blir

$$\omega_c = 0.4\omega_{G150}$$

$$\varphi_m = 45^o \tag{3p}$$

där ω_{G150} är den frekvens där $G(s) = G_{process}(s)G_{givare}(s)$ har en fasvridning på ca -150° .

Figuren visar pol/nollställediagram för två system A och B. (x: pol; o: nollställe)

Uppgift:

- a) Skissa Bodediagrammets faskurva för system A (2p)
- b) Samma uppgift men för system B (1p)
- c) Är något av systemen av icke-minfaskaraktär? Motivera! (1p)
- 6. Saxat ur en lärobok:

5.2 Butterworthfiltrets överföringsfunktion

Vi inleder med en sats som även skulle kunna fungera som definition på ett Butterworthfilter:

Sats 5.1 Ett Butterworthfilter är ett allpolfilter (dvs inga ändliga nollställen existerar) där överföringsfunktionens poler är jämnt fördelade på en cirkel i splanet.

Om filtret är av udda ordning ligger en pol på negativa σ -axeln. Vinkeln mellan polerna är π/n , där n är filterordningen och första polen bildar vinkeln $\pi/2n$ med j ω -axeln. Figur 5.1a och 5.1b visar polernas positioner för ett andra respektive tredje ordningens Butterworthfilter.

Fig 5.1a Andra ordningens Butterworth

Fig 5.1b Tredje ordningens Butterworth

<u>Uppgift:</u>

Härled överföringsfunktionen G(s) för ett andra ordningens Butterworthfilter. Antag cirkelns radie är ω_R samt att filtrets lågfrekvensförstärkning är G_0 (3 p)

7. Beräkna tillståndsvektorn x(t) med hjälp av begreppet övergångsmatris då u är en stegfunktion med start vid t=0. Antag vidare att x(0)=0.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

(4)

LÖSNING. TENTAMEN D3 REGLERTEKNIK ERE 102 23/8;20/2
1a/ Ell måboarde som koligen ar klahtigt
och som allowalist ban paverha ett malys-
semlfat. På liknande satt skris en regleing om den ar baserad på felakk information.
Olika metode for all ta bort della matorien
Junes. Tvarigheten ar aft Mulja en outlier
fan est extremt men horrelet watorie.
16/ 1H; 2A; 3B; 4E; 5G
1c/ Begepmelse varidesselsen $y_0 = y(0^+) = \lim_{s \to \infty} s \cdot 1 \cdot G(s) = \lim_{s \to \infty} \frac{7s^3 + 18s^3 + 15s}{s^3 + kermen} = \frac{1}{s^3}$ $\frac{7s^3}{s^3} = 7;$
Shibrar Regsahen $y = y(f \Rightarrow \infty) = \lim_{s \to 0} s \cdot l \cdot G(s) = \lim_{s \to 0} \frac{7s^3 + 18s^3 + 15s}{5 - limes} = 0;$
Stabilt system da alla rottema till har elso, har neg. realche
$\frac{g_{s}}{2s} = 0$

I samband med manuell styrning (roderservot) är det däremot inte alltid fördelaktigast att helt frikoppla reglaget (spaken) från lastkrafterna, vilket inträffar då roderlänken är direkt fäst till hydraulkolvstången (läge 0 i figuren). Operatören upplever då spaken som lös och sladdrig. Att hålla i den ger ingen känsla för vindkrafter etc som verkar på rodret. En ur ergonomisk synpunkt bättre lösning är att flytta länkfästet till ett läge motsvarande 1 i figuren. En liten andel av roderkraften (motsvarande kvoten mellan avståndet 0-1 och spakens längd) fortplantas till spakknoppen med "rätt tecken", dvs operatören känner en liten del av det motstånd rodret gör mot rörelsen direkt i reglaget. En tränad operatör kan normalt utnyttja denna information om lastförhållandena till att åstadkomma bättre avvägda manuella styråtgärder.

Flyttning av länken till läge 2 leder också till att motsvarande andel av roderkraften känns i spaken, fast nu med "fel" riktning så att systemet blir svårstyrt — och tenderar mot instabilitet. Manuella styrfunktioner, där muskelarbete förstärks med mekanisk servoverkan i enlighet med ovanstående principresonemang, förekommer ofta vid farkoststyrning. Två alldagliga exempel är servostyrning och servobromsar i bilar.

Yvar: Am = 2 ; Im = 30°

Alas we = 2 rad/seh samt ett stabilt system (formula)

10 wayso kan avolaras ur Diag. eller berahmas enligt nedan

$$G(s) = G_{process}(s)G_{givare}(s) = \frac{4}{1+2s} \frac{1}{1+0.1s} \quad .$$

$$\begin{cases} |G(j\omega)| = \frac{4}{\sqrt{1 + (2\omega)^2}} \frac{1}{\sqrt{1 + (0.1\omega)^2}} \\ \arg G(j\omega) = -\arctan(2\omega) - \arctan(0.1\omega) \end{cases}$$

Bestäm nu ω_{G150} vilket är den frekvens där $G(s)=G_{process}(s)G_{givare}(s)$ har en fasvridning på ca -150° . Ur uttrycket ovan kan vi genom att rita upp fasvridingenskurvan i Bodediagrammet eller enklare genom att på miniräknaren pröva lite olika värden på ω , för att få fram ω_{G150} . Detta ger oss

 $\omega_{G150} \approx 18.5 \text{ rad/}s$

Välj nu $\omega_c=0.4\omega_{G150}\approx 7.4~\mathrm{rad/}s.$

$$rg G(j\omega_c) \approx -123^o.$$
 $rg F(j\omega) = -90^o + \arctan(T_i\omega)$

$$\arg L(j\omega) = \arg F(j\omega) + \arg G(j\omega)$$

$$\arg L(j\omega_c) = \arg F(j\omega_c) + \arg G(j\omega_c) = -180^o + 45^o = -135^o$$

$$\Rightarrow$$

$$\arg F(j\omega_c) = -135^o - \arg G(j\omega_c) = -12.4^o$$

$$\arg F(j\omega_c) = -90^o + \arctan(T_i\omega_c) = -12.4^o$$

$$\Rightarrow ...$$

$$T_i\omega_c = 4.56$$

$$\Rightarrow$$

$$T_i \approx 0.62$$

Vi har nu valt ω_c och T_i så vi får rätt fasmarginal. Det som återstår är att välja K_p så kretsöverföringen har förstärkningen 1 vid ω_c , eftersom det är på detta sätt som ω_c är definierad.

$$|L(j\omega_c)| = 1 \Rightarrow |F(j\omega_c)||G(j\omega_c)|$$

$$\Rightarrow$$

$$|F(j\omega_c)| = \frac{1}{|G(j\omega_c)|} = 0.22.$$

$$|F(j\omega_c)| = K_p \frac{\sqrt{1 + (T_i\omega_c)^2}}{T_i\omega_c} = \frac{1}{0.22} \Rightarrow \underline{K_p \approx 4.5}$$

Andra ordningen film innebar 2 poler p, och p z dar
$$p_{1,2} = -u_R \cos \frac{\pi}{4} \pm j \omega_R \sin \frac{\pi}{4} = -\frac{\omega_R}{V_Z} \pm j \frac{\omega_R}{V_Z}$$

Juga nollställen => kombant é taljaren, satt = K

$$(5(8)) = \frac{K}{(8 + \frac{\omega_R}{\sqrt{2}} - \frac{1}{2} \frac{\omega_R}{\sqrt{2}}) \left(8 + \frac{\omega_R}{\sqrt{2}} + \frac{1}{2} \frac{\omega_R}{\sqrt{2}}\right)}$$

$$= \frac{1}{8^{2} + \frac{8\omega_{R}}{\sqrt{2}} + \frac{8\omega_{R}}{\sqrt{2}} + \frac{8\omega_{R}}{\sqrt{2}} + \frac{\omega_{R}^{2}}{\sqrt{2}} + \frac{1}{2} + \frac{1}$$

$$= \frac{K}{8^2 + 28 \frac{\omega_R}{V_2^2} + 2 \frac{\omega_R^2}{2}} i \text{ Lagfreho. asympt.} : \frac{K}{\omega_R^2} = 60$$

