Lesson 14: Inference for Several Means (ANOVA)

Homework

Solutions

3 4

5

Problem	Part	Solution
1	-	ANOVA is a test for equality of several means. It allows us to compare the means for
		several groups in one hypothesis test.
2	-	a. An F -distribution is right skewed. A t -distribution is bell-shaped.

- b. The values of F are never negative. The values of t can be positive or negative.
- c. The P-value for the ANOVA test is always the area in the right tail in an F-distribution. We will

6

Yes, the requirements are satisfied. The requirements that were checked were the following: -The observations are normally distributed within each group. This was checked by creating histogra

Problem	Part	Solution
7	-	H_0 : All the means are equal
		H_a : At least one of the means differs
8	-	F = 2.932
		df = 3 and 34
9	-	P-value = 0.047
10	-	P-value = $0.047 < 0.05 = \alpha$
		reject the null hypothesis
11	-	There is sufficient evidence to suggest that there is a difference in the mean protein
		requirements of the individuals in the four groups.

12 -
13 -
Control: n = 7, mean = 0.453, Std. Dev. = 0.391
MON: n = 7, mean = 0.521, Std. Dev. = 0.325
SAFF: n = 7, mean = 3.363, Std. Dev. = 0.774
SAFF/MON: n = 7, mean = 5.151, Std. Dev. = 0.729

No, not all of the requirements are satisfied. The requirements that were checked were the following:
-The observations are normally distributed within each group. This was checked by creating histogra-

Problem	Part	Solution
15	-	H_0 : All the means are equal
		H_a : At least one of the means differs
16	-	F = 106.217
		df = 3 and 24
17	-	P-value = 0
18	-	P-value = $0 < 0.05 = \alpha$
		reject the null hypothesis
19	-	There is sufficient evidence to suggest that there is a difference in the mean CLA
		content in milk fat for at least one of the four diets.
20	-	It would be worth figuring out which of the diets produced the highest CLA content
		and then possibly encouraging the use of that diet more than the others.