

Plan de la présentation

- 1) Problématique métier
- 2) Description des données
- 3) Nettoyage et feature engineering
- 4) Développement d'un modèle prédictif :
 - choix du modèle et prise en main
 - rééquilibrage de la classe cible
- 5) Optimisation du modèle en tenant compte d'une fonction de coût métier
- 6) Feature importances globale et locale
- 7) Conception d'une API de prédiction et d'un dashboard interactif
- 8) Conclusion

Problématique de la société "Prêt à dépenser"

Contexte:

- société qui propose des crédits à la consommation.
- besoin d'un outil de scoring pour déterminer si un client remboursera son crédit.
- volonté de transparence sur le scoring, pour les clients.

Missions confiées :

- développer un modèle de scoring qui donnera une prédiction sur la probabilité de défaut d'un client.
- construire un dashboard interactif pour les chargés de relation client avec explications transparentes.

Présentation des données

Source : https://www.kaggle.com/c/home-credit-default-risk 8 fichiers de données tabulaires

provenant d'une compétition Kaggle

Description des données source:

- train dataset : 307000 demandes de crédits et leur issue (variable binaire "TARGET").
- test dataset : 49000 demandes de crédits sans connaissance de l'issue.
- 218 variables : données détaillées sur le client : emploi, cadre de vie, historique de crédit, de tenue de compte bancaire, ...

Nettoyage et feature engineering

Basé sur le kernel Kaggle de jsaguiar :

- disponible à : https://www.kaggle.com/jsaguiar/lightgbm-with-simple-features/script
- kernel exploitant toutes les tables de données.
- nettoyage de valeurs aberrantes.
- ajout de **226 variables par feature engineering** (transformations des principales features métier) : vitesse de remboursement du crédit, taux d'endettement, etc...

Principaux changements réalisés dans le kernel de jsaguiar :

- remplacement du one-hot-encoding par un **encodage ordinal** des variables catégorielles (pertinence LGBM) : on passe de 795 à 434 variables, post encodage.
- adaptations spécifiques pour tests de balanced datasets (imputations).

Brève discussion autour des données

Dimension du dataframe utilisé pour la modélisation : 307511 lignes * 431 colonnes Valeurs manquantes : 37%

Problème majeur : déséquilibre du dataset pour la variable binaire prédite

Analyse exploratoire complète disponible via le dashboard :

Lien vers le dashboard

Choix des métriques

Importance de choisir les bonnes métriques pour l'évaluation du modèle :

- exactitude (accuracy) facilement élevée lorsque la spécificité augmente → mauvais choix.

- AUC-ROC:

- intègre la courbe ROC sur toutes les valeurs de spécificité.
- utilisé pour le pré-développement du modèle.
- point de comparaison : compétition Kaggle.

- fonction coût métier :

- utilisée pour l'optimisation finale du modèle.

Développement d'un modèle prédictif – choix de l'algorithme

Modèle choisi : Light Gradient Boosting Machine

Algorithme de type « boosting de gradient » sur des forêts aléatoires. Particularités :

- variables continues regroupées en classes (binning) → « Light ».
- la croissance des arbres se fait par feuille plutôt que par profondeur → convergence rapide.

Et d'être précis :

- ignore les NaN durant le split, et les alloue au mieux post-split.

Remarques sur la préparation des données :

- données catégorielles : ordinal encoding (vs one-hot : gros gain sur le nb de variables à entrainer).
- données manquantes : non imputées (vs autres modèles de ML : gros avantage en terme de prédiction).

Note : pas de test comparatif possible avec des méthode de ML classiques de sklearn car les données entrantes contiennent des variables catégorielles encodées ordinalement et des valeurs NaN.

Développement d'un modèle prédictif – prise en main

Prise en main du couple { données, modèle LGBM } :

- optimisation a minima des paramètres LGBM.
- entrainement sur les données du « train set ».
- validation sur le « test set ».
- score ROC-AUC obtenu dans la compétition Kaggle : 0.78 (vs 0.81 pour le modèle gagnant).

⇒ prise en main des données et du modèle : validée

Gestion de l'imbalanced data

Approches testées pour rééquilibrer la classe cible (modules imbalearn et lgbm) :

Méthode de rééquilibrage	Variation AUC-ROC	Commentaire	
Aucune (référence)	0 (réf)	-	
Random over-sampling	+0.001	Temps de calcul en hausse	
Random under-sampling	-0.005	Temps de calcul en baisse	
SMOTE	-0.070	Imputation des NaN obligatoire fait chuter le score	
Paramètre LGBM : is_unbalance=True			
Paramètre LGBM : scale_pos_weight=3 (varié de 1 à 10 (optimum pour 3))	+0.002	increase the overall performance metric of your model, it will also result in <u>poor</u> estimates of the individual class probabilities"	

Tests réalisés comparativement avec LGBM (paramètres par défaut). Les datasets de référence peuvent varier d'un test à l'autre. Scoring effectué par une soumission du dataset « test » à Kaggle (pour garantir l'absence de data leak).

- ⇒ Pas d'amélioration significatives du score AUC-ROC.
- ⇒ Optimisation du modèle en conservant le déséquilibre dans le dataset.

Plan de la présentation

- 1) Problématique métier
- 2) Description des données
- 3) Nettoyage et feature engineering
- 4) Développement d'un modèle prédictif :
 - choix du modèle et prise en main
 - rééquilibrage de la classe cible
- 5) Optimisation du modèle en tenant compte d'une fonction de coût métier
- 6) Feature importances (globale et locale)
- 7) Conception d'une API de prédiction et d'un dashboard interactif
- 8) Conclusion

Définition d'une fonction de coût métier

Hypothèses pour les candidats au crédit :

Objet	Coût par client	Classe	
octroi de crédit à un client qui fait défaut	100	Faux négatif (FN)	
octroi de crédit à un client qui ne fait pas défaut	-10	Vrai négatif (TN)	
refus de crédit à un client qui aurait fait défaut	0	Vrai positif (TP)	
refus de crédit à un client qui n'aurait pas fait défaut	0	Faux positif (FP)	
frais généraux pour chaque client	1	-	

Fonction de coût (rapportée à un client) :

$$Co\hat{\mathbf{u}}t = \frac{100*FN-10*TN+1*(TP+TN+FP+FN)}{TP+TN+FP+FN}$$

Modèle LGBM optimisé sur fonction de coût métier - entrainement

Schéma synoptique simplifié :

Split 9 / 1 du jeu de données entre jeu d'entrainement et jeu de validation Jeu d'entrainement partagé en 5 plis stratifiés de validation croisée

Entrainement de LGBM sur un jeu de 4 plis (5 fois) Recherche de l'optimum de la fonction de coût sur les jeux de 4 plis (5 fois)

5 validations sur les 5èmes plis (calcul du coût) Calcul de la moyenne du coût sur les 5 jeux de validation croisée Répétition étapes 3 à 6 sur tous les jeux d'hyperparamètres de LGBM

Le coût le plus bas désigne les jeu d'hyperparamètres retenus

Hyperparamètre optimisé	Valeur optimum
num_leaves : max number of leaves in one tree	15
num_iterations : number of boosting iterations	200
min_data_in_leaf: minimal number of data in one leaf (can be used to deal with over-fitting)	40
learning_rate	0.05
seuil de probabilité de défaut	0.087

Modèle LGBM optimisé sur fonction de coût métier - résultat

Coût métier (moyenne par client) en fonction du seuil de probabilité de défaut :

Le couple (modèle entrainé, seuil optimum), issu de l'optimisation, donne un coût métier proche en passant du jeu d'entrainement au jeu de validation.

Distributions de probabilité de défaut des clients

Calculées avec le modèle LGBM optimisé sur la fonction de coût métier et un jeu de validation :

→ bonne séparation des clients selon la variable cible (défaut de crédit).

Feature importance globale

Par la méthode des permutations :

Par analyse de la distribution des valeurs SHAP :

- → Cohérence des résultats entre les deux méthodes
- → Features les plus importantes : EXT SOURCE {1|2|3}

Feature importance locale par SHAP

Exemple (client 324806):

- → Indique aux chargés de clientèle quelles données du client ont un impact fort pour l'attribution d'un crédit.
- → Les valeurs SHAP sont des logarithmes d'odds ratios ; elles sont donc **additives**.
- → Analyse disponible pour tous les clients dans le dashboard (calcul en temps réel).

Déploiement web d'une API et d'un dashboard interactif

Resources utilisées :

		Solution	Tâche	Liens
		GitHub	Versionnage	https://github.com/JM-JO/Projet-7api_ml https://github.com/JM-JO/Projet-7dashboard-streamlit
•	•	FastAPI	Framework de développement d'APIs RESTful	-
		Streamlit	Framework de développement de dashboards	-
	K	Heroku	Hébergement de l'API Hébergement du dashboard	https://project7-api-ml.herokuapp.com/ https://project7-dashboard-streamlit.herokuapp.com/

Déploiement web d'une API et d'un dashboard interactif

Rendu du dashboard:

- → précalculs des graphes les plus courants (permet rendu plus rapide).
- → probabilité de défaut pour un client et ses SHAP values calculés en temps réel sur le serveur API.

Déploiement web d'une API et d'un dashboard interactif

Rendu du dashboard (suite):

Lien vers le dashboard

Conclusion

Mise au point d'un modèle de classification :

- basé sur toutes les tables du dataset Kaggle.
- utilisant LightGBM.
- avec une bonne performance de base : AUC-ROC = 0.78.

Spécialisation de l'outil en créant un scoring basé sur une fonction de coût métier.

Analyse des prédictions par **SHAP** pour transparence / simplicité d'analyse du scoring par le client.

Déploiement dans le cloud d'un dashboard interactif, et d'une API de prédiction (score et SHAP).

Perspectives:

- Pousser l'optimisation du modèle :
 - sur un plus grand nombre d'hyperparamètres (y compris rééquilibrage de classe cible).
 - avec des rééquilibrages de dataset.
 - avec une optimisation bayesienne (hyperopt).
- Accélérer l'affichage du dashboard (utiliser un framework avec meilleure gestion du cache).