Text-mining to detect comparative p-hacking in PubMed & Dietary Supplement Subset

Kroeger CM, Brown AW, Allison DB

Nutrition Obesity Research Center, University of Alabama at Birmingham, AL, USA

Abstract

Background P-hacking (making methodological decisions during the research process after viewing data to obtain a desired p-value) inflates type 1 error rates [1-3]. Numerous p-values are needed to assess p-hacking prevalence [4], and text-mining can help to efficiently extract p-values from scientific literature [5]. Our previous findings using a comparative technique suggest p-hacking occurs more frequently when investigators use atypical statistical analyses (nonparametric statistics, data transformations) compared to common analyses (t-tests, ANOVA) [6].

Objective 1) replicate our previous findings, 2) observe whether our method is useful in a subset of literature, when sample size decreases, and 3) repeat steps 1-2 using conceptually refined search criteria.

Design We used our original and a refined method to search PubMed and PubMed's Dietary Supplement Subset for: 1) p-values within 0.01 interval bins ranging from 0.03 to 0.06, 2) common statistical analyses and 3) atypical analyses. Associations between analysis choice and p-value bins within each condition were assessed by chi-square tests.

Results Findings from our original method were replicated. Atypical analyses yielded p-values in the 0.05* bin 19% less often than expected and in the 0.04* bin 3% more often than expected (p=0.0311, n=10954) – a hallmark of p-hacking. When using the refined model, analysis type was not associated with p-values in each bin (p=0.2397, n=12416). Likewise, no associations were seen within the Dietary Supplement PubMed Subset for original and refined models (p=0.8375, n=311; p=0.6084, n=363).

Conclusion The replication of our findings using our original method but failure to replicate using a conceptually refined method suggests our method of simple text mining may not be robust to small refinements, and neither method provided evidence of p-hacking (differential p-value distributions) between analysis types within the Dietary Supplement subset. Limitations of small subset sample size and imprecise p-values relative to test type may confound results. Ongoing work aims to investigate factors that can improve robustness and efficiently extract p-values and matched statistical models to enhance power.

Tables

Table 1. Original Search Query in PubMed

Search	PubMed Query		Items	Time
		Atypical + 0.06*		
#22	#14 AND #12		181	11:18
#21	#14 AND #11	Atypical + 0.05*	103	11:17
#20	#14 AND #10	Atypical + 0.04*	1011	11:17
#19	#14 AND #9	Atypical + 0.03*	1209	11:17
#18	#13 AND #12	Common + 0.06*	465	11:16
#17	#13 AND #11	Common + 0.05*	364	11:16
#16	#13 AND #10	Common + 0.04*	2480	11:16
#15	#13 AND #9	Common + 0.03*	3134	11:15
#14	#8 NOT #7		162910	11:11
#13	#7 NOT #8		83881	11:11
#12	#6 NOT (#1 OR #3 OR #5)		17059	11:10
#11	#5 NOT (#1 OR #3 OR #6)		10323	11:08
#10	#3 NOT (#1 OR #5 OR #6)		90871	11:07
#9	#1 NOT (#3 OR #5 OR #6)		111569	11:06
	nonparametric [tiab] parametric [tiab] OR [tiab] OR "wilcoxon r kruskal-wallis [tiab] ([tiab] OR transforma	, II		
#8	(outlier* [tiab] AND remov* [tiab])		166384	11:04
#7	t-test [tiab] OR anova [tiab] OR ancova [tiab] OR "mixed model" [tiab]		a 87355	11:02
#6	p=.06* [tiab] OR p=0.06* [tiab]		25343	11:01
#5	p=.05* [tiab] OR p=0.05* [tiab]		16409	10:59
#3	p=.04* [tiab] OR p=0.04* [tiab]		130032	10:55
#1	p=.03* [tiab] OR p=0.03* [tiab]		151564	10:53

Table 2. Refined Search Query in PubMed

Annual Scientific Meeting, 2014.

"non parametric" [tiab] OR wilcoxon-mannwhitney [tiab] OR mann-whitney [tiab] OR u-test [tiab] OR wilcoxon [tiab] OR log-transformed [tiab] OR "log transformed" [tiab] "t test" [tiab] OR t-student [tiab] OR ANOVA [tiab] OR "parametric tests" [tiab]

Figures

Figure 1. Replication of Original Text-Mining Methods in PubMed

Figure 2. Refined Text-Mining Methods in PubMed

Figure 3. Original Methods in PubMed Dietary Supplement Subset

Figure 4. Refined Methods in PubMed Dietary Supplement Subset

Funding Provided by: NIH (F32DK107157)

References [1] Motulsky HJ. Common misconceptions about data analysis and statistics. Naunyn-Schmiedeberg's Arch Pharmacol (2014) 387:1017-1023. [2] Simonsohn U, et al. P-curve: a key to the file drawer. J Exp Psychol Gen (2014) 143 (2):534-47. [3] Masicampo EJ, et al. A peculiar prevalence of p values just below .05. Q J Exp Psychol (Hove) (2012) 65(11):2271-9. [4] Gadbury & Allison. Inappropriate fiddling with statistical analyses to obtain a desirable p-value: Tests to detect its presence in published literature. PLOS One. 2012. [5] Head ML et al. The extent and consequences of P-Hacking in Science of p-value fiddling using a rapid, high-volume, systematic method. Advances and Controversies in Clinical Nutrition. ASN