Shell Sort

Biostatistics 615/815 Lecture 7

Last Lecture ...

- Properties of Sorting Algorithms
 - Adaptive
 - Stable
- Elementary Sorting Algorithms
 - Selection Sort
 - Insertion Sort
 - Bubble Sort

Selection Insertion Bubble

Recap

Selection, Insertion, Bubble Sorts

- Can you think of:
 - One property that all of these share?
 - One useful advantage for Selection sort?
 - One useful advantage for Insertion sort?

Situations where these sorts can be used?

Today ...

- Shellsort
 - An algorithm that beats the O(N²) barrier
 - Suitable performance for general use
- Very popular
 - It is the basis of the default R sort() function
- Tunable algorithm
 - Can use different orderings for comparisons

Shellsort

- Donald L. Shell (1959)
 - A High-Speed Sorting Procedure
 Communications of the Association for Computing Machinery 2:30-32
 - Systems Analyst working at GE
 - Back then, most computers read punch-cards
- Also called:
 - Diminishing increment sort
 - "Comb" sort
 - "Gap" sort

Intuition

- Insertion sort is effective:
 - For small datasets
 - For data that is nearly sorted
- Insertion sort is inefficient when:
 - Elements must move far in array

The Idea ...

- Allow elements to move large steps
- Bring elements close to final location
 - First, ensure array is nearly sorted ...
 - ... then, run insertion sort
- How?
 - Sort interleaved arrays first

Shellsort Recipe

- Decreasing sequence of step sizes h
 - Every sequence must end at 1
 - ..., 8, 4, 2, 1
- For each h, sort sub-arrays that start at arbitrary element and include every hth element
 - if h = 4
 - Sub-array with elements 1, 5, 9, 13 ...
 - Sub-array with elements 2, 6, 10, 14 ...
 - Sub-array with elements 3, 7, 11, 15 ...
 - Sub-array with elements 4, 8, 12, 16 ...

Shellsort Notes

- Any decreasing sequence that ends at 1 will do...
 - The final pass ensures array is sorted
- Different sequences can dramatically increase (or decrease) performance
- Code is similar to insertion sort

Sub-arrays when Increment is 5

5-sorting an array

Elements in each subarray color coded

C Code: Shellsort

```
void sort(Item a[], int sequence[], int start, int stop)
   int step, i;
   for (int step = 0; sequence[step] >= 1; step++)
      int inc = sequence[step];
      for (i = start + inc; i <= stop; i++)</pre>
         int j = i;
         Item val = a[i];
         while ((j >= start + inc) \&\& val < a[j - inc])
            a[j] = a[j - inc];
            j -= inc;
         a[j] = val;
```

Pictorial Representation

Array gradually gains order

 Eventually, we approach the ideal case where insertion sort is O(N)

C Code: Using a Shell Sort

```
#include "stdlib.h"
#include "stdio.h"
#define Item int
void sort(Item a[], int sequence[], int start, int stop);
int main(int argc, char * argv[])
  printf("This program uses shell sort to sort a random array\n\n");
   printf(" Parameters: [array-size]\n\n");
   int size = 100;
   if (argc > 1) size = atoi(argv[1]);
   int sequence[] = { 364, 121, 40, 13, 4, 1, 0};
   int * array = (int *) malloc(sizeof(int) * size);
   srand(123456);
  printf("Generating %d random elements ...\n", size);
   for (int i = 0; i < size; i++)</pre>
       array[i] = rand();
   printf("Sorting elements ...\n", size);
   sort(array, sequence, 0, size - 1);
   printf("The sorted array is ...\n");
   for (int i = 0; i < size; i++)</pre>
      printf("%d ", array[i]);
   printf("\n");
   free(array);
```

Note on Example Code: Declaring Variables "Late"

- Instead of declaring variables immediately after opening a {} block, wait until first use
 - Possibility introduced with C++
- Supported by most modern C compilers
 - In UNIX, use g++ instead of gcc to compile

Running Time (in seconds)

N	Pow2	Knuth	Merged	Seq1	Seq2
125000	1	0	0	0	0
250000	2	0	0	1	0
500000	6	1	1	0	1
1000000	14	2	2	1	2
2000000	42	5	2	4	3
4000000	118	10	6	7	8

 $Pow2 - 1, 2, 4, 8, 16 \dots (2^{i})$

Knuth − 1, 4, 13, 40, ... (3 * previous + 1)

Seq1 – 1, 5, 41, 209, ... $(4^i - 3 * 2^i + 1)$

Seq2 - 1, 19, 109, 505 ... $(9 * 4^i - 9 * 2^i + 1)$

Merged – Alternate between Seq1 and Seq2

Not Sensitive to Input ...

Increment Sequences

- Good:
 - Consecutive numbers are relatively prime
 - Increments decrease roughly exponentially
- An example of a bad sequence:
 - **1**, 2, 4, 8, 16, 32 ...
 - What happens if the largest values are all in odd positions?

Shellsort Properties

Not very well understood

- For good increment sequences, requires time proportional to
 - N (log N)²
 - **N**1.25
- We will discuss them briefly

Definition: h-Sorted Array

- An array where taking every hth element (starting anywhere) yields a sorted array
- Corresponds to a set of several* sorted arrays interleaved together
 - * There could be h such arrays

- If we h-sort an array that is k-ordered...
- Result is an h- and k- ordered array
- h-sort preserves k-order!

 Seems tricky to prove, but considering a set of 4 elements as they are sorted in parallel makes things clear...

- Result of h-sorting an array that is kordered is an h- and k- ordered array
- Consider 4 elements, in k-ordered array:
 - \circ a[i] \leftarrow a[i+k]
 - \circ a[i+h] <= a[i+k+h]
- After h-sorting, a[i] contains minimum and a[i+k+h] contains maximum of all 4

- If h and k are relatively prime ...
- Items that are more than (h-1)(k-1) steps apart must be in order
 - Possible to step from one to the other using steps size h or k
 - That is, by stepping through elements known to be in order.
- Insertion sort requires no more (h-1)(k-1) comparisons per item to sort array that is h- and k-sorted
 - Or (h-1)(k-1)/g comparisons to carry a g-sort

- Consider h and k sorted arrays
 - Say h = 4 and k = 5
- Elements that must be in order

- Consider h and k sorted arrays
 - Say h = 4 and k = 5
- More elements that must be in order

 Combining the previous series gives the desired property that elements (h-1)(k-1) elements away must be in order

An optimal series?

- Considering the two previous properties...
- A series where every sub-array is known to be 2- and 3- ordered could be sorted with a single round of comparisons
- Is it possible to construct series of increments that ensures this?
 - Before h-sorting, ensure 2h and 3h sort have been done ...

Optimal Performance?

- Consider a triangle of increments:
 - Each element is:
 - double the number above to the right
 - three times the number above to the left
 - < log₂N log₃N increments

Optimal Performance?

- Start from bottom to top, right to left
- After first row, every sub-array is 3-sorted and 2-sorted
 - No more than 1 exchange!
- In total, there are ~ log₂N log₃N / 2 increments
 - About N (log N)² performance possible

Today's Summary: Shellsort

- Breaks the N² barrier
 - Does not compare all pairs of elements, ever!

 Average and worst-case performance similar

Difficult to analyze precisely

Reading

Sedgewick, Chapter 6