5 分出と合併の schema

[sthms7]

定理 5.1. R を関係式とし, x と y を異なる文字とする. また u と v を共に x 及び y と異なり, R の中に自由変数として現れない文字とする. このとき次の 1), 2) が成り立つ.

- 1) $\forall y(\exists u(\forall x(R \to x \in u)))$ ならば、 $\forall v(\operatorname{Set}_x(\exists y(y \in v \land R)))$.
- 2) y が定数でなく, $\exists u(\forall x(R \to x \in u))$ が成り立てば, $\forall v(\operatorname{Set}_x(\exists y(y \in v \land R)))$.

[sthms7a]

定理 5.2. a を集合とし, R を関係式とする. また x と y を異なる文字とし, x は a の中に自由変数として現れないとする. また v を x, y と異なり, R の中に自由変数として現れない文字とする. このとき

$$(5.36) \qquad \forall y(\forall x(R \to x \in a)) \to \forall v(\operatorname{Set}_x(\exists y(y \in v \land R)))$$

が成り立つ. またこのことから, 次の1)-4) が成り立つ.

- 1) $\forall y(\forall x(R \to x \in a))$ ならば, $\forall v(\operatorname{Set}_x(\exists y(y \in v \land R)))$.
- 2) y が定数でなく, $\forall x(R \to x \in a)$ が成り立てば, $\forall v(\operatorname{Set}_x(\exists y(y \in v \land R)))$.
- 3) x が定数でなく, $\forall y(R \to x \in a)$ が成り立てば, $\forall v(\operatorname{Set}_x(\exists y(y \in v \land R)))$.
- 4) x と y が共に定数でなく, $R \to x \in a$ が成り立てば, $\forall v(\operatorname{Set}_x(\exists y(y \in v \land R)))$.

[sthms7b]

定理 5.3. b を集合とし, R を関係式とする. また x と y を互いに異なり, 共に b の中に自由変数として現れない文字とする. また u を x, y と異なり, R の中に自由変数として現れない文字とする. このとき

$$(5.39) \qquad \forall y(\exists u(\forall x(R \to x \in u))) \to \operatorname{Set}_x(\exists y(y \in b \land R))$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $\forall y(\exists u(\forall x(R \to x \in u)))$ ならば、 $\exists y(y \in b \land R)$ は x について集合を作り得る.
- 2) y が定数でなく、 $\exists u(\forall x(R \to x \in u))$ が成り立てば、 $\exists y(y \in b \land R)$ は x について集合を作り得る.

[sthms7ab]

定理 5.4. a と b を集合とし、R を関係式とする. また x と y を異なる文字とし、x は a 及び b の中に自由変数 として現れず、y は b の中に自由変数として現れないとする. このとき

$$(5.42) \qquad \forall y(\forall x(R \to x \in a)) \to \operatorname{Set}_x(\exists y(y \in b \land R))$$

が成り立つ. またこのことから, 次の1)-4) が成り立つ.

- 1) $\forall y(\forall x(R \to x \in a))$ ならば、 $\exists y(y \in b \land R)$ は x について集合を作り得る.
- 2) y が定数でなく, $\forall x(R \to x \in a)$ が成り立てば, $\exists y(y \in b \land R)$ は x について集合を作り得る.

- 3) x が定数でなく, $\forall y(R \to x \in a)$ が成り立てば, $\exists y(y \in b \land R)$ は x について集合を作り得る.
- 4) $x \ge y$ が共に定数でなく, $R \to x \in a$ が成り立てば、 $\exists y (y \in b \land R)$ は x について集合を作り得る.

[sthmssetsm]

定理 5.5. a を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき関係式 $x \in a \land R$ は x について集合を作り得る.

[sthmssetbasis]

$$(5.60) b \in \{x \in a \mid R\} \leftrightarrow b \in a \land (b|x)(R)$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $b \in \{x \in a \mid R\}$ ならば, $b \in a$ と (b|x)(R) が共に成り立つ.
- 2) $b \in a$ と (b|x)(R) が共に成り立てば, $b \in \{x \in a \mid R\}$.

[sthmssetsubseta]

定理 5.7. a を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$\{x \in a \mid R\} \subset a$$

が成り立つ.

[sthmssetsubsetb]

定理 5.8. $a \, \mathsf{b} \, b \, \mathsf{e} \, \mathsf{f} \, \mathsf{f} \, \mathsf{f} \, \mathsf{e} \, \mathsf{g} \, \mathsf{f} \, \mathsf{f} \, \mathsf{g} \, \mathsf{f} \, \mathsf$

$$a \subset b \to \{x \in a \mid R\} \subset b, \ b \subset \{x \in a \mid R\} \to b \subset a$$

が成り立つ. またこれらから, 次の 1), 2) が成り立つ.

- 1) $a \subset b$ ならば, $\{x \in a \mid R\} \subset b$.
- 2) $b \subset \{x \in a \mid R\}$ ならば, $b \subset a$.

[sthmbsubsetsset]

定理 5.9. $a \ge b$ を集合, R を関係式とし, x を $a \ge b$ の中に自由変数として現れない文字とする. このとき

$$(5.66) b \subset \{x \in a \mid R\} \leftrightarrow b \subset a \land (\forall x \in b)(R)$$

が成り立つ. またこのことから, 次の1), 2), 3) が成り立つ.

- 1) $b \subset \{x \in a \mid R\}$ ならば, $b \subset a$ と $(\forall x \in b)(R)$ が共に成り立つ.
- 2) $b \subset a$ と $(\forall x \in b)(R)$ が共に成り立てば、 $b \subset \{x \in a \mid R\}$.
- 3) x が定数でなく, $b \subset a$ と $x \in b \to R$ が共に成り立てば, $b \subset \{x \in a \mid R\}$.

[sthmsset=a]

定理 5.10. a を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(5.72) \qquad (\forall x \in a)(R) \leftrightarrow \{x \in a \mid R\} = a$$

が成り立つ. 特に

$$(5.73) \qquad \forall x(R) \to \{x \in a \mid R\} = a$$

が成り立つ. またこれらから, 次の 1)-4) が成り立つ.

- 1) $(\forall x \in a)(R)$ ならば, $\{x \in a \mid R\} = a$. また $\{x \in a \mid R\} = a$ ならば, $(\forall x \in a)(R)$.
- 2) x が定数でなく, $x \in a \rightarrow R$ が成り立てば, $\{x \in a \mid R\} = a$.
- 3) $\forall x(R)$ ならば, $\{x \in a \mid R\} = a$.
- 4) x が定数でなく, R が成り立てば, $\{x \in a \mid R\} = a$.

[sthmsset=arfree]

定理 5.11. a を集合, R を関係式とし, x をこれらの中に自由変数として現れない文字とする. このとき

$$(5.80) R \to \{x \in a \mid R\} = a$$

が成り立つ. またこのことから, 次の(5.81)が成り立つ.

[sthmssetsubsetiset]

定理 5.12. a を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

が成り立つ. またこのことから, 次の (5.85) が成り立つ.

$$(5.85)$$
 Rがxについて集合を作り得るならば、 $\{x \in a \mid R\} \subset \{x \mid R\}$.

[sthmalltiset=sset]

定理 5.13. a を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(5.88) \qquad \forall x(R \to x \in a) \leftrightarrow \operatorname{Set}_{x}(R) \land \{x \mid R\} = \{x \in a \mid R\}$$

が成り立つ. またこのことから, 次の1), 2), 3) が成り立つ.

- 1) $\forall x(R \to x \in a)$ ならば, R は x について集合を作り得る. またこのとき $\{x \mid R\} = \{x \in a \mid R\}$ が成り立つ.
- 2) x が定数でなく, $R \to x \in a$ が成り立てば, R は x について集合を作り得る. またこのとき $\{x \mid R\} = \{x \in a \mid R\}$ が成り立つ.
 - 3) R が x について集合を作り得るとき, $\{x \mid R\} = \{x \in a \mid R\}$ ならば, $\forall x (R \to x \in a)$.

[sthmalltisetsubseta]

定理 5.14. a を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(5.93) \qquad \forall x(R \to x \in a) \leftrightarrow \operatorname{Set}_x(R) \land \{x \mid R\} \subset a$$

が成り立つ. またこのことから,次の1),2),3)が成り立つ.

- 1) $\forall x(R \to x \in a)$ ならば、R は x について集合を作り得る. またこのとき $\{x \mid R\} \subset a$ が成り立つ.
- 2) x が定数でなく, $R \to x \in a$ が成り立てば, R は x について集合を作り得る. またこのとき $\{x \mid R\} \subset a$ が成り立つ.
 - 3) R が x について集合を作り得るとき, $\{x \mid R\} \subset a$ ならば, $\forall x (R \to x \in a)$.

[sthmssetsubset]

定理 5.15. a と b を集合, R を関係式とし, x を a と b の中に自由変数として現れない文字とする. このとき

$$(5.96) a \subset b \to \{x \in a \mid R\} \subset \{x \in b \mid R\}$$

が成り立つ. またこのことから, 次の (5.97) が成り立つ.

$$(5.97) a \subset b \text{ α-sit}, \{x \in a \mid R\} \subset \{x \in b \mid R\}.$$

[sthmsset=]

$$(5.102) a = b \to \{x \in a \mid R\} = \{x \in b \mid R\}$$

が成り立つ. またこのことから, 次の (5.103) が成り立つ.

$$(5.103) a = b \ \text{tb,} \ \{x \in a \mid R\} = \{x \in b \mid R\}.$$

[sthmalltssetsubset]

定理 5.17. a を集合, R と S を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(5.104) \qquad (\forall x \in a)(R \to S) \leftrightarrow \{x \in a \mid R\} \subset \{x \in a \mid S\}$$

が成り立つ. 特に

$$(5.105) \qquad \forall x(R \to S) \to \{x \in a \mid R\} \subset \{x \in a \mid S\}$$

が成り立つ. またこれらから, 次の1)-4)が成り立つ.

- 1) $(\forall x \in a)(R \to S)$ ならば, $\{x \in a \mid R\} \subset \{x \in a \mid S\}$. また $\{x \in a \mid R\} \subset \{x \in a \mid S\}$ ならば, $(\forall x \in a)(R \to S)$.
 - (x) 2) (x) 2) が成り立てば、(x) 3 が成り立てば、(x) 3 に (x) 4 に (x) 3 に (x) 5 に (x) 6 に (x) 7 に (x) 6 に (x) 7 に (x) 8 に (x) 9 に (x
 - 3) $\forall x(R \to S)$ ならば, $\{x \in a \mid R\} \subset \{x \in a \mid S\}$.
 - 4) x が定数でなく, $R \to S$ が成り立てば, $\{x \in a \mid R\} \subset \{x \in a \mid S\}$.

[sthmallegsset=]

定理 5.18. a を集合, R と S を関係式とし, x を文字とする. このとき

$$(5.111) \qquad (\forall x \in a)(R \leftrightarrow S) \to \{x \in a \mid R\} = \{x \in a \mid S\}$$

が成り立つ. 特に

$$(5.112) \qquad \forall x (R \leftrightarrow S) \rightarrow \{x \in a \mid R\} = \{x \in a \mid S\}$$

が成り立つ. またこれらから, 次の 1)-4) が成り立つ.

- 1) $(\forall x \in a)(R \leftrightarrow S)$ ならば, $\{x \in a \mid R\} = \{x \in a \mid S\}$.
- (2) x が定数でなく, $x \in a \rightarrow (R \leftrightarrow S)$ が成り立てば, $\{x \in a \mid R\} = \{x \in a \mid S\}$.
- 3) $\forall x(R \leftrightarrow S)$ ならば, $\{x \in a \mid R\} = \{x \in a \mid S\}$.
- 4) x が定数でなく, $R \leftrightarrow S$ が成り立てば, $\{x \in a \mid R\} = \{x \in a \mid S\}$.

[sthmalleqsset=eq]

定理 5.19. a を集合, R と S を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(5.116) \qquad (\forall x \in a)(R \leftrightarrow S) \leftrightarrow \{x \in a \mid R\} = \{x \in a \mid S\}$$

が成り立つ. またこのことから, 次の (5.117) が成り立つ.

$$\{x \in a \mid R\} = \{x \in a \mid S\} \text{ \mathcal{X} is, } (\forall x \in a)(R \leftrightarrow S).$$

[sthmspinsset]

定理 5.20. a を集合, R と S を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(5.121) \qquad (\exists x \in \{x \in a \mid R\})(S) \leftrightarrow (\exists x \in a)(R \land S),$$

$$(5.122) \qquad (\forall x \in \{x \in a \mid R\})(S) \leftrightarrow (\forall x \in a)(R \to S),$$

$$(!x \in \{x \in a \mid R\})(S) \leftrightarrow (!x \in a)(R \land S),$$

$$(5.124) \qquad (\exists! x \in \{x \in a \mid R\})(S) \leftrightarrow (\exists! x \in a)(R \land S)$$

がすべて成り立つ. またこれらから, 次の1)-4) が成り立つ.

- 1) $(\exists x \in \{x \in a \mid R\})(S)$ ならば, $(\exists x \in a)(R \land S)$. また $(\exists x \in a)(R \land S)$ ならば, $(\exists x \in \{x \in a \mid R\})(S)$.
- 2) $(\forall x \in \{x \in a \mid R\})(S)$ ならば, $(\forall x \in a)(R \to S)$. また $(\forall x \in a)(R \to S)$ ならば, $(\forall x \in \{x \in a \mid R\})(S)$.
 - 3) $(!x \in \{x \in a \mid R\})(S)$ ならば, $(!x \in a)(R \land S)$. また $(!x \in a)(R \land S)$ ならば, $(!x \in \{x \in a \mid R\})(S)$.
 - $(4) (\exists ! x \in \{x \in a \mid R\})(S)$ ならば, $(\exists ! x \in a)(R \land S)$. また $(\exists ! x \in a)(R \land S)$ ならば, $(\exists ! x \in \{x \in a \mid R\})(S)$.

[sthmisetsset]

定理 5.21. R と S を関係式とし, x を文字とする. このとき

(5.136)
$$Set_x(R) \to \{x \in \{x \mid R\} \mid S\} = \{x \mid R \land S\},\$$

(5.137)
$$Set_x(R) \to \{x \in \{x \mid R\} \mid S\} = \{x \mid S \land R\}$$

が共に成り立つ. またこれらから, 次の (5.138) が成り立つ.

[sthmssetsset]

定理 5.22. a を集合, R と S を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$\{x \in \{x \in a \mid R\} \mid S\} = \{x \in a \mid R \land S\},\$$

$$\{x \in \{x \in a \mid R\} \mid S\} = \{x \in a \mid S \land R\}$$

が共に成り立つ.

[sthm!sm]

定理 5.23. R を関係式とし, x を文字とするとき,

$$(5.157) !x(R) \leftrightarrow \operatorname{Set}_{x}(R) \land \{x \mid R\} \subset \{\tau_{x}(R)\}$$

が成り立つ. またこのことから, 次の1), 2) が成り立つ.

- 1) !x(R) ならば, R は x について集合を作り得る. 更に $\{x \mid R\} \subset \{\tau_x(R)\}$ が成り立つ.
- 2) R が x について集合を作り得るとする. このとき $\{x \mid R\} \subset \{\tau_x(R)\}$ ならば, !x(R).

[sthmsmimp]

定理 5.24. R を関係式とし, x を文字とする. また y を x と異なり, R の中に自由変数として現れない文字とする. このとき

(5.161)
$$\operatorname{Set}_{x}(R) \leftrightarrow \exists y (\forall x (R \to x \in y))$$

が成り立つ. またこのことから, 次の1), 2) が成り立つ.

- 1) R が x について集合を作り得るならば、 $\exists y(\forall x(R \rightarrow x \in y))$.
- 2) $\exists y (\forall x (R \to x \in y))$ ならば, R は x について集合を作り得る.

[sthmsmfree]

定理 5.25. R を関係式とし、x を R の中に自由変数として現れない文字とする. このとき

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) R が x について集合を作り得るならば、 $\neg R$.
- 2) $\neg R$ ならば、R は x について集合を作り得る.

[sthmall&sm]

定理 5.26. R を関係式とし, x を文字とするとき,

$$(5.172) \qquad \forall x(R) \to \neg \operatorname{Set}_x(R),$$

$$(5.173) \qquad \forall x(\neg R) \to \operatorname{Set}_x(R)$$

が共に成り立つ. またこれらから, 次の 1)-4) が成り立つ.

- 1) $\forall x(R)$ ならば, R は x について集合を作り得ない.
- 2) x が定数でなく, R が成り立てば, R は x について集合を作り得ない.
- 3) $\forall x(\neg R)$ ならば, R は x について集合を作り得る.
- 4) x が定数でなく、 $\neg R$ が成り立てば、R は x について集合を作り得る.

[sthmalltsm]

定理 5.27. R と S を関係式とし, x を文字とする. このとき

$$(5.181) \forall x(R \to S) \to (\operatorname{Set}_x(S) \to \operatorname{Set}_x(R))$$

が成り立つ. またこのことから, 次の1)—4) が成り立つ.

- 1) $\forall x(R \to S)$ ならば, $\operatorname{Set}_x(S) \to \operatorname{Set}_x(R)$.
- 2) x が定数でなく, $R \to S$ が成り立てば, $\operatorname{Set}_x(S) \to \operatorname{Set}_x(R)$.
- 3) $\forall x(R \to S)$ であり、かつ S が x について集合を作り得るならば、R は x について集合を作り得る。またこのとき $\{x \mid R\} \subset \{x \mid S\}$ が成り立つ。
- 4) x が定数でなく, $R \to S$ が成り立ち, かつ S が x について集合を作り得るならば, R は x について集合を作り得る。またこのとき $\{x \mid R\} \subset \{x \mid S\}$ が成り立つ。

[sthmosetsm]

定理 5.28. a と T を集合とし, x を a の中に自由変数として現れない文字とする. また y を x と異なり, a 及び T の中に自由変数として現れない文字とする. このとき関係式 $\exists x(x \in a \land y = T)$ は y について集合を作り得る.

[sthmosetbasis]

定理 5.29. a, b, T を集合とし, x を a 及び b の中に自由変数として現れない文字とする. このとき

$$(5.198) b \in \{T\}_{x \in a} \leftrightarrow \exists x (x \in a \land b = T)$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $b \in \{T\}_{x \in a}$ ならば、 $\exists x (x \in a \land b = T)$.
- 2) $\exists x(x \in a \land b = T)$ ならば, $b \in \{T\}_{x \in a}$.

[sthmosetfund]

定理 5.30. a, T, U を集合とし, $x \in a$ の中に自由変数として現れない文字とする. このとき

$$(5.204) U \in a \to (U|x)(T) \in \{T\}_{x \in a}$$

が成り立つ. またこのことから, 次の(5.205)が成り立つ.

$$(5.205)$$
 $U \in a$ ならば, $(U|x)(T) \in \{T\}_{x \in a}$.

[sthmosetsubsetb]

定理 5.31. a, b, T を集合とし, x を a 及び b の中に自由変数として現れない文字とする. このとき

$$(5.210) \qquad (\forall x \in a)(T \in b) \leftrightarrow \{T\}_{x \in a} \subset b$$

が成り立つ. 特に

$$(5.211) \forall x(T \in b) \to \{T\}_{x \in a} \subset b$$

が成り立つ. またこれらから, 次の 1)-4) が成り立つ.

- 1) $(\forall x \in a)(T \in b)$ ならば, $\{T\}_{x \in a} \subset b$. また $\{T\}_{x \in a} \subset b$ ならば, $(\forall x \in a)(T \in b)$.
- 2) x が定数でなく, $x \in a \to T \in b$ が成り立てば, $\{T\}_{x \in a} \subset b$.
- 3) $\forall x(T \in b)$ ならば, $\{T\}_{x \in a} \subset b$.
- 4) x が定数でなく, $T \in b$ が成り立てば, $\{T\}_{x \in a} \subset b$.

[sthmosetsubset]

定理 5.32. a, b, T を集合とし, x を a 及び b の中に自由変数として現れない文字とする. このとき

$$(5.224) a \subset b \to \{T\}_{x \in a} \subset \{T\}_{x \in b}$$

が成り立つ. またこのことから, 次の (5.225) が成り立つ.

$$(5.225) a \subset b$$
ならば、 $\{T\}_{x \in a} \subset \{T\}_{x \in b}$.

[sthmoset=]

定理 5.33. a, b, T を集合とし, x を a 及び b の中に自由変数として現れない文字とする. このとき

$$(5.229) a = b \to \{T\}_{x \in a} = \{T\}_{x \in b}$$

が成り立つ. またこのことから, 次の (5.230) が成り立つ.

$$(5.230) a = b \ \text{t} \ \text{t}, \ \{T\}_{x \in a} = \{T\}_{x \in b}.$$

[sthmt=uoset=]

定理 5.34. a, T, U を集合とし, x を文字とする. このとき

$$(5.231) (\forall x \in a)(T = U) \to \{T\}_{x \in a} = \{U\}_{x \in a}$$

が成り立つ. 特に

$$(5.232) \qquad \forall x(T=U) \to \{T\}_{x \in a} = \{U\}_{x \in a}$$

が成り立つ. またこれらから, 次の 1)-4) が成り立つ.

- 1) $(\forall x \in a)(T = U)$ ならば, $\{T\}_{x \in a} = \{U\}_{x \in a}$.
- 2) x が定数でなく, $x \in a \to T = U$ が成り立てば, $\{T\}_{x \in a} = \{U\}_{x \in a}$.
- 3) $\forall x(T = U)$ ならば, $\{T\}_{x \in a} = \{U\}_{x \in a}$.
- 4) x が定数でなく, T = U が成り立てば, $\{T\}_{x \in a} = \{U\}_{x \in a}$.

[sthmspinoset]

定理 5.35. a と T を集合, R を関係式とし, x を a 及び R の中に自由変数として現れない文字とする. また y を x と異なり, a 及び T の中に自由変数として現れない文字とする. このとき

$$(5.238) \qquad (\exists y \in \{T\}_{x \in a})(R) \leftrightarrow (\exists x \in a)((T|y)(R)),$$

$$(5.239) \qquad (\forall y \in \{T\}_{x \in a})(R) \leftrightarrow (\forall x \in a)((T|y)(R)),$$

$$(!x \in a)((T|y)(R)) \to (!y \in \{T\}_{x \in a})(R),$$

$$(5.241) (\exists! x \in a)((T|y)(R)) \to (\exists! y \in \{T\}_{x \in a})(R)$$

がすべて成り立つ. またこれらから, 次の 1)-4) が成り立つ.

- 1) $(\exists y \in \{T\}_{x \in a})(R)$ ならば, $(\exists x \in a)((T|y)(R))$. また $(\exists x \in a)((T|y)(R))$ ならば, $(\exists y \in \{T\}_{x \in a})(R)$.
- $2) \ (\forall y \in \{T\}_{x \in a})(R) \ \text{t is, } (\forall x \in a)((T|y)(R)). \ \text{t is, } (\forall x \in a)((T|y)(R)) \ \text{t is, } (\forall y \in \{T\}_{x \in a})(R).$
- 3) $(!x \in a)((T|y)(R))$ ならば, $(!y \in \{T\}_{x \in a})(R)$.
- 4) $(\exists!x \in a)((T|y)(R))$ ならば, $(\exists!y \in \{T\}_{x \in a})(R)$.

[sthmisetoset]

定理 5.36. a と T を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) R が x について集合を作り得るならば, $a \in \{T\}_{x \in \{x|R\}} \leftrightarrow \exists x (R \land a = T)$.
- 2) R が x について集合を作り得るとする. このとき $a \in \{T\}_{x \in \{x|R\}}$ ならば、 $\exists x (R \land a = T)$. またこのとき $\exists x (R \land a = T)$ ならば、 $a \in \{T\}_{x \in \{x|R\}}$.

[sthmisetosetfund]

定理 5.37. $T \ge U$ を集合, R を関係式とし, x を文字とする. このとき

(5.260)
$$\operatorname{Set}_{x}(R) \to ((U|x)(R) \to (U|x)(T) \in \{T\}_{x \in \{x|R\}})$$

が成り立つ. またこのことから, 次の1), 2) が成り立つ.

- 1) R が x について集合を作り得るならば, $(U|x)(R) \to (U|x)(T) \in \{T\}_{x \in \{x|R\}}$.
- 2) R が x について集合を作り得るとする. このとき (U|x)(R) ならば, $(U|x)(T) \in \{T\}_{x \in \{x|R\}}$.

[sthmuopairoset]

定理 5.38. a, b, T を集合とし, x を a 及び b の中に自由変数として現れない文字とする. このとき

$$\{T\}_{x \in \{a,b\}} = \{(a|x)(T), (b|x)(T)\}\$$

が成り立つ.

[sthmsingletonoset]

定理 5.39. a と T を集合とし, x を a の中に自由変数として現れない文字とする. このとき

$$\{T\}_{x \in \{a\}} = \{(a|x)(T)\}\$$

が成り立つ.

[sthmssetoset]

定理 5.40. a, b, T を集合, R を関係式とし, x を a 及び b の中に自由変数として現れない文字とする. このとき

$$(5.272) b \in \{T\}_{x \in \{x \in a \mid R\}} \leftrightarrow (\exists x \in a)(R \land b = T)$$

が成り立つ. またこのことから, 次の 1), 2) が成り立つ.

- 1) $b \in \{T\}_{x \in \{x \in a \mid R\}}$ ならば, $(\exists x \in a)(R \land b = T)$.
- 2) $(\exists x \in a)(R \land b = T)$ ならば、 $b \in \{T\}_{x \in \{x \in a|R\}}$.

[sthmssetosetfund]

定理 5.41. a, T, U を集合, R を関係式とし, x を a の中に自由変数として現れない文字とする. このとき

$$(5.275) U \in a \land (U|x)(R) \to (U|x)(T) \in \{T\}_{x \in \{x \in a|R\}}$$

が成り立つ. またこのことから, 次の (5.276) が成り立つ.

[sthmsset&oset]

定理 5.42. a と T を集合, R を関係式とし, x を a 及び R の中に自由変数として現れない文字とする. また y を x と異なり, a 及び T の中に自由変数として現れない文字とする. このとき

$$\{y \in \{T\}_{x \in a} \mid R\} = \{T\}_{x \in \{x \in a \mid (T \mid y)(R)\}}$$

が成り立つ.

[sthmosetoset]

定理 5.43. a, T, U を集合とし, x を a 及び U の中に自由変数として現れない文字とする. また y を x と異なり, a 及び T の中に自由変数として現れない文字とする. このとき

$$\{U\}_{y \in \{T\}_{x \in a}} = \{(T|y)(U)\}_{x \in a}$$

が成り立つ.