On singular cotangent homotopies coming from the Poisson Sigma Model

Alejandro Cabrera

- Universidade Federal do Rio de Janeiro -

Friday Fish Seminar -- October 2020

Intro: the semiclassical limit in the PSM and quantization
Our singular homotopies and groupoid triangles
Conclussions and outlook

Plan:

Introduction

orrost.	Given a Poisson manifold	M, π)			
they the columnity	4				
$f_1 + f_2 = f_1 + f_2 + f_3 + f_4$ quantization by star products	Slmiclassial lim (h > c		(local/formal) symplectic groupoids		
[Kont] -	= ⁽ 97	7	MoR? F: R^ -> Rli		
quantum PSM (on disk)	50 km		(x)		
r Sivi (OII disk)		=	ak(P1)P2/X) Ctop		
		rig	t-50 "SChi		
Xx arroc		oeal Sympl Gp = TXA (M, T)	·		
Rmk: classical hamilto	onian picture of PSM on IxI and t	the Weinstein	groupoid integr (M,		
[catt-Fel]	TÉ -> T	*M ot	Joshs		
Dans of Miles	$T(I \times I) \rightarrow$, TAM	cd homet.		
	~~s ((of hom)	? (M,M)		
Composition: "Y" homotopies					
41	<u> </u>				

The semiclassical contribution to PSM

M E R open "coordinate space"

A - (A++1)(24) + 12, X(22) - 12, X(23)

D dunk
23 -> X
21 -> 22

 $X: D \rightarrow M$ $P \in S2^{1}(D, X!T*M)$ "fields"

 $A(X,\eta) := \int_{D} \left[\eta_{j} \wedge dX^{j} + \frac{1}{2} \pi^{jk}(X) \eta_{j} \wedge \eta_{k} \right]$ PSM action Tk, So - St oit points $(X, \mathcal{V}) : TD \longrightarrow TM$ olyt. morth,

Heuristically $(C_{\frac{1}{2}}^{\frac{1}{2}})_{(x)} \longrightarrow S_{p} = A' |_{cut. ts}$ of A'

(M,A) word.

~~ A', (PDE)

(A fact

Our main result

(M, Tr) wordinate Paisson.

• families of robution of (PDE) exist and their germs

are classified by triangles in a conomical local integration G_m = (M, T)

also

arisk

Triangle

For each family of rolutions $(X, 2, | k_3)$, $S_P := A'(X, N, | k_3) \text{ defines a Generating function for } G_P$ $L_7(k_1, k_2, \chi)$ $L_7(k_1, k_2, \chi)$ $L_7(k_1, k_2, \chi)$

gr(m) & G x G x G gr(d5) G & T*M

idea describe loc. Mymfl. gd. str.
integr. (MITT)

through mays (X,K) on D and

The functional A' and the system of PDEs

$$A'(X, \eta, p_3) = \int_{D} \left[\eta_j \wedge dX^j + \frac{1}{2} \pi^{jk}(X) \eta_j \wedge \eta_k \right] + p_{1j} \delta_{z_1}(X^j) + p_{2j} \delta_{z_2}(X^j) - p_{3j} (\delta_{z_3}(X^j) - x).$$

Directly distribution

DE) P1/2/2 X

$$d\eta_{j} + \frac{1}{2}\partial_{x^{j}}\pi^{ab}(X)\eta_{a} \wedge \eta_{b} = -p_{1j}\delta_{z_{1}} - p_{2j}\delta_{z_{2}} + p_{3j}\delta_{z_{3}}$$

$$dX^{j} = \pi^{ij}(X)\eta_{i} \text{ at points in } int(D)$$

$$\delta_{z_{3}}(X) = x$$

$$i_{\partial D}^{*}\eta = 0$$

Rmk: singular cotangent "Y" homotopies

Rmk:

$$\delta_{z_k}(X) = \lim_{\epsilon \to 0} \frac{1}{\pi} \int_{a(\epsilon)}^{b(\epsilon)} X(z_k + \epsilon e^{i\theta}) d\theta,$$

$$\gamma^{ij}(x) = \gamma^{ij}$$

eqs for
$$\gamma$$
: $d\eta = -k_1 S_{21} - k_2 S_{22} + k_3 S_{23}$
 $SD \gamma = 0$
 $N(8F)$ $d * N = 0$

$$\Rightarrow p_3 = p_4 + p_2$$

$$\Gamma_{z_0} := \frac{1}{4\pi i} \left[d_z ln \left(\frac{(z - z_0)(1 - z\bar{z}_0)}{(\bar{z} - \bar{z}_0)(1 - \bar{z}z_0)} \right) + zd\bar{z} - \bar{z}dz \right]$$

$$z_0 \in \partial D, \text{ then } i_{\partial D}^* \Gamma_{z_0} = 0, d\Gamma_{z_0} = \delta_{z_0} - \frac{1}{\pi} dx \wedge dy \text{ and } d \star \Gamma_{z_0} = 0.$$

$$\mathcal{N} = - \mathcal{V}_1 \cdot \mathcal{V}_{z_1} - \mathcal{V}_2 \cdot \mathcal{V}_{z_2}$$

$$+ \left(\mathcal{V}_1 + \mathcal{V}_2 \right) \cdot \mathcal{V}_{z_2}$$

$$X(z) = X(z_0) + \int_{\gamma} \pi^{\sharp} \eta,$$

Jumps
$$X^{j}(\gamma_{k}(1)) - X^{j}(\gamma_{k}(0)) = -\pi^{ij} p_{ki},$$

$$\mathbb{R} = 1, 2,3$$

$$\Rightarrow A |_{Nol} = (P_1 + P_2) \times + \frac{1}{2} \pi(P_1 P_2) \qquad (\forall (X, N) \text{ nol not } (X))$$

Rmk:
$$M = \mathbb{R}^2 / \overline{H} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 conominal

 $c: D \setminus \{z_1, z_2, z_3\} \to \Delta_2 = \{(t, s) \in \mathbb{R}^2 : t + s \le 1, t, s \ge 0\},$

General solutions: singular homotopies and groupoid elements

singular y hours.

The definited by the Sek s on PDE

The canonical (local) integration

(M,T) coord. ~ comon lor-synt gd Gran [Kaz]

$$\oint \sim \mathcal{O}$$

$$\int_0^1 du \, \varphi_{\pi,p}^u(\alpha_\pi(x,p)) = x$$

We I Sign Xx: Ux ET M IN M rowree Xx (x,p) = x + O(p) " strid sympl. realization"

Cos, Day, We] lox, gd
shurture

$$\phi_{u}^{\alpha^{*}f}(z) = m(z, \phi_{u}^{\alpha^{*}f}(\alpha(z))),$$

how flows on $(T^{*}M, W_{c})$
 $\Rightarrow i_{MN}(x, b) = (x, -b)$

Technical details about Disks ← Triangles

Defs: "strong" solutions and families

$$z_{k,\epsilon}^* \eta = \sigma_k p_k \frac{d\theta}{\pi} + O(\epsilon)$$
 Strong solution on punctured disk

$$U \times TD_* \to T^*M, (p_1, p_2, x, z, \dot{z}) \mapsto (X_{p_1, p_2, x}(z), i_{\dot{z}} \eta^{p_1, p_2, x}|_z, p_3(p_1, p_2, x))$$

family of solutions

 $g:D_*\to P_G,\ -\omega_G^\flat(DR_{g^{-1}}dg)=(X,\eta),\ g(z_2^+)=1_{X(z_2^+)}.$ integrate punctured disk

Lemma: how the singularities in the algebroid map determine the groupoid disk

$$lim_{\epsilon \to 0} g(z_k + \epsilon e^{i\theta}) = \phi_{u_k(\theta)}^{-\sigma_k p_k \beta_\pi}(g(z_k^+)), \ k = 1, 2, 3$$

$$g_3 = m_{\pi}(g_1, g_2)$$

$$g_k = (\delta_{z_k}(X), p_k), k = 1, 2, 3,$$

Def: G₂-triangle

$$\hat{g}:\Delta_2 o T^*M$$
 and ed by $(
darkonian |
darkonian |$

 $\hat{g}:\Delta_2\to T^*M$ Right invar generated by (p_1,p_2,χ) gen by

dask in Gir/: Lie (Gift (M.M)

Thomese of forameterization

C: DX 47 Az -> triangles in GA

$$\hat{g} \mapsto -\omega_c(d(\hat{g} \circ c)(\hat{g} \circ c)^{-1}) \equiv (\chi, h)$$
 defo 1:1 corresp. of Jenns

[Gz- hagles] Solutions (PDE)TT

The generating function property

$$\int_{0}^{\infty} \int_{0}^{\infty} \int$$

 $gr(m_G) =_{M^{(3)}} \{ ((\widehat{\partial_{p_1}S}, p_1), (\widehat{\partial_{p_2}S}, p_2), (x, \widehat{\partial_xS})) : (p_1, p_2, x) \in X \} \subset \overline{T^*M} \times \overline{T^*M} \times T^*M.$

groupoid axioms

$$S(p_1, p_2, \bar{x}) + S(\bar{p}, p_3, x) - \bar{p}(\bar{x}) = S(p_1, \tilde{p}, x) + S(p_2, p_3, \tilde{x}) - \tilde{p}(\tilde{x}),$$

$$\bar{x} = \partial_{p_1} S(\bar{p}, p_3, x), \ \bar{p} = \partial_x S(p_1, p_2, \bar{x}), \ \tilde{x} = \partial_{p_2} S(p_1, \tilde{p}, x), \ \tilde{p} = \partial_x S(p_2, p_3, \tilde{x}).$$

Vor integr Gran admits a consuical gen funct. Sa (AC)

gem uniquely charact. by Son (0,0,x)=0

Back to the main result:

Sp(tylz,x):= A(X,N,X)

Ly ha gen fund

taitzix

for Gran

Ideas:

 $p_3 =_{0 \times 0 \times M} \partial_x S_{\pi}.$

 $= \delta_{z_1}(X_{p_1,p_2,x})$ $\partial_{p_1} S_P(p_1, p_2, x)$

 $\partial_{p_2} S_P(p_1, p_2, x)$ $= \delta_{z_2}(X_{p_1,p_2,x})$

 $\partial_x S_P(p_1, p_2, x)$ $= p_3(p_1, p_2, x).$

the case of linear Poisson: BCH and gauge theory	
The SGA eq. from 3-simplices	
general manifolds M: focus on triangles	
Formal expansions	Compatible 1/2-densities
other boundary conditions:Morita modules	Other surfaces
Integrability of M and quantization	

Conclussions and outlook