Checksums - CRCs

- Cyclic Redundancy Check polynomials
- View data bits, **D** as a binary number
- Choose r+1 bit pattern (generator), G
- Goal: choose r CRC bits, R such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G and divides <D,R> by G
 - if non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- Widely used in practice (ATM, HDLC)

Multiple access links

Three types of 'links'

- 1. Point-to-point (single wire, eg PPP, SLIP)
- 2. Broadcast (shared wire or medium, eg Ethernet, Wavelan etc)

3. Switched (eg switched Ethernet, ATM etc)

Multiple access protocols

- Single shared communication channel
- Two or more simultaneous transmissions by nodes: interference
 - only one node can send successfully at a time
- Multiple access protocol
 - distributed algorithm that determines how stations share channel, ie determine when station can transmit
 - communication about channel sharing must use channel itself!
 - what to look for in multiple access protocols
 - synchronous or asynchronous
 - information needed about other stations
 - robustness (eg to channel errors)
 - performance

Multiple access protocols - taxonomy

Three broad classes:

- 1) Channel partitioning
- Divide channel into smaller 'pieces' (time slots, frequency)
- Allocate piece to node for exclusive use
- 2) Random access
- Allow collisions (deal with them)
- 'Recover' from collisions
- 3) 'Taking turns'
- Tightly coordinate shared access to avoid collisions

Goal: efficient, fair, simple, decentralised

Time Division Multiple Access (TDMA)

- Access to channel in 'rounds'
- Each station gets fixed length slot (length = packet transmission time) in each round
- Unused slots go idle

Frequency Division Multiple Access (FDMA)

- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle

eg 6-station LAN, 1,3,4 have packets, frequency bands 2,5,6 idle

Code Division Multiple Access (CDMA)

- Unique 'code' assigned to each user, ie code set partitioning
- Used mostly in wireless broadcast channels (cellular, satellite etc)
- All users share same frequency, but each user has own 'chipping' sequence (ie code) to encode data
- Encoded signal = (original data) X (chipping sequence)
- Decoding: inner product of encoded signal and chipping sequence
- Allows multiple users to 'coexist' and transmit simultaneously with minimal interference (if codes are 'orthogonal')

CDMA encode/decode sequence

sender channel output Z_{i,m} data $d_0 = 1$ bits slot 1 slot 0 code 111 1 1111 channel channel output output slot 1 \leftarrow slot 0 \rightarrow $d_{i} = \sum_{m=1}^{M} Z_{i,m} \cdot c_{m}$ d₀ = 1 d₁ = -1 slot 0 slot 1 received received input input receiver code 111 1

CDMA interference

Random access protocols introduction

- When node has packet to send
 - transmit at full channel data rate R
 - no a priori coordination among nodes
- Two or more transmitting nodes > collision
- Random access MAC protocol specifies
 - how to detect collisions
 - how to recover from collisions (eg via delayed retransmissions)
- These examples will be covered in the next podcast episode
 - Slotted ALOHA
 - ALOHA
 - CSMA and CSMA/CD

Slotted ALOHA

- Time is divided into equal size slots (= packet transmit time)
- Node with new arriving packet: transmit at beginning of next slot
- If there's a collision: re-transmit the packet in future slots with probability p, until successful

Slotted ALOHA - efficiency

Q: What is the maximum fraction of slots that are successful?

A: Suppose N stations have packets to send

- each transmits in slot with probability p
- probability of successful transmission, S is:

by single node:
$$S = p(1-p)^{(N-1)}$$

$$= Np(1-p)^{(N-1)}$$

...choosing optimum p as n -> infinity...

$$= 1/e = 0.37 \text{ as N} -> infinity$$

At best:

channel use for useful transmissions 37% of time!

Pure ALOHA

- Unslotted ALOHA: simpler, no synchronisation
- Packet needs transmission
 - send without awaiting for beginning of slot
- Collision probability increases
 - packet sent at t₀ collides with other packets sent in [t₀-1, t₀+1]

Pure ALOHA - efficiency

P (success by given node)

= P(node transmits). P(no other node transmits in $[p_0-1,p_0]$. P(no other node transmits in $[p_0-1,p_0]$

= p.(1-p).(1-p)

= Np.(1-p).(1-p)

...choosing optimum p as n > infinity...

P (success by any of N nodes)

protocol constrains effective channel throughput!

Carrier Sense Multiple Access (CSMA)

CSMA - listen before transmit

- If channel sensed idle: transmit entire packet
- If channel sensed busy, defer transmission
 - persistent CSMA: retry immediately with probability p when channel becomes idle (may cause instability)
 - non-persistent CSMA: retry after random interval
- Human analogy: don't interrupt others!

CSMA collisions

- Collisions can occur due to propagation delay
- Collision means: entire packet transmission time is wasted up to two packet times...

NOTE

- The propagation delay determines the collision detection time!
- Don't forget the speed of light!

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- Collisions detected within short time
- Colliding transmissions aborted, reducing channel wastage
- Persistent or non-persistent retransmission

Collision detection:

- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs: receiver shut off while transmitting

Human analogy: the polite conversationalist

Taking turns

Channel partitioning MAC protocols

- Share channel efficiently at high load
- Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- Efficient at low load: single node can fully utilise channel
- High load: collision overhead

Taking turns protocols

Look for best of both worlds!

Taking turns protocols

Polling

- Master node invites slave nodes to transmit in turn
- Request to 'Send' and 'Clear to Send' messages
- Concerns
 - polling overhead
 - latency
 - single point of failure (master)

Taking turns protocols (cont.)

Token passing

- Control token passed from one node to next sequentially
- Token message
- Concerns
 - token overhead
 - latency
 - single point of failure (token)

Reservation based protocols

Distributed polling

- Time divided into slots
- Begins with N short reservation slots
 - reservation slot time equal to channel end-end propagation delay
 - station with message to send posts reservation
 - reservation seen by all stations
- After reservation slots, message transmissions ordered by known priority

