Задание 13 (на 06.05).

[CC 60.] Докажите, что $\mathbf{MAM} = \mathbf{AM}$ (и $\mathbf{MAM}_1 = \mathbf{AM}_1$, данный факт можно использовать в задаче 57).

СС 61. Покажите, что $\mathbf{AM} \subseteq \Pi_2$.

СС 62. Пусть есть оракул, который считает перманент матрицы $n \times n$ над полем \mathbb{F} верно для доли матриц $1 - \frac{1}{3n}$. Пусть $|\mathbb{F}| > 3n$). Докажите, что используя этот оракул можно построить вероятностный полиномиальный по времени алгоритм, который для каждой матрицы с большой вероятностью находит ее перманент.

 $|\mathbf{CC}|$ 63. Докажите, что если $\mathbf{NP} \subseteq \mathbf{PCP}(o(\log n), 1)$, то $\mathbf{P} = \mathbf{NP}$.

СС 64. Докажите, что:

- (a) если GI NP-полный язык, то $co NP \subseteq AM$;
- (б) если ${\tt GI-NP}$ -полный язык, то $\Sigma_2\subseteq {\tt MAM}$.
- (в) если ${ t GI-NP}$ -полный язык, то ${ t PH}=\Sigma_2\cap\Pi_2$

СС 10. Докажите, что:

(a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a \in 2,3,\ldots,n-1$ при котором $a^{n-1} \equiv 1 \pmod n$, а $a^{\frac{n-1}{q}} \not\equiv 1 \pmod n$;

CC 26. (подсказка: **NEXP**^{NP}vs.**NEXP**) Докажите, что если **P** = **NP**, то существует язык из **EXP**, схемная сложность которого не меньше $\frac{2^n}{10n}$.

CC 33. Докажите, что задача CircuitEval P-полная.

СС 44. Покажите, что:

(B) $\mathbf{BPP} \subseteq \mathbf{BPTime}(n^{\log n}) \subsetneq \mathbf{BPTime}(2^n)$.

СС 45. Определим язык

QNR = $\{(y, m) \mid y$ не является квадратичным вычетом по модулю $m\}$.

Докажите, что $QNR \in \mathbf{IP}$.

Определим класс **UP**. $L \in \mathbf{UP}$, если существует такая недетерминированная машина Тьюринга M, что для любого x выполнено: M(x) = L(x) и существует не более одной подсказки, которая принимается машиной M.

СС 54. Докажите, что:

- (a) язык простых чисел лежит в классе **UP**;
- (б) если $USAT \in UP$, то NP = co NP.

[CC 55.] Покажите, что существует такой оракул A и язык $L \in \mathbf{NP}^A$, что L не сводится по Тьюрингу к 3SAT, даже если сведение может использовать оракул A.

 \mathbf{CC} 57. Покажите, что $\mathbf{AM} = \mathbf{AM}_1$

[CC 59.] Покажите, что если $PSPACE \subseteq P/poly$, то PSPACE = MA (подсказака: используйте IP = PSPACE).