Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 1

з дисципліни «МНД» на тему «ЗАГАЛЬНІ ПРИНЦИПИ ОРГАНІЗАЦІЇ ЕКСПЕРИМЕНТІВ З ДОВІЛЬНИМИ ЗНАЧЕННЯМИ ФАКТОРІВ»

ВИКОНАЛА: студентка II курсу ФІОТ групи IB-91 Бузулук М.В. Залікова - 9103

> ПЕРЕВІРИВ: ac. Регіда П. Г.

Мета: Вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Завдання:

- 1) Використовуючи програму генерації випадкових чисел, провести трьохфакторний експеримент в восьми точках (три стовбці і вісім рядків в матриці планування заповнити її випадковими числами). Рекомендовано взяти обмеження до 20 при генерації випадкових чисел, але врахувати можливість зміни обмеження на вимогу викладача. Програма створюється на основі будь-якої мови високого рівня.
- 2) Визначити значення функції відгукув для кожної точки плану за формулою лінійної регресії:

```
Y = a0 + a1 X1 + a2 X2 + a3 X3.
```

де а0, а1, а2, а3 довільно вибрані (для кожного студента різні) коефіцієнти, постійні протягом усього часу проведення експерименту.

- 3) Виконати нормування факторів. Визначити значення нульових рівнів факторів. Знайти значення відгуку для нульових рівнів факторів і прийняти його за еталонне $\mathbf{Y}_{\text{эт}}$.
- 4) Знайти точку плану, що задовольняє критерію вибору оптимальності (див. табл.1). Варіанти обираються по номеру в списку в журналі викладача.

Варіанти завдання:

103 $\max(Y)$	
---------------	--

Лістинг програми:

```
import random as rd
import numpy as np
import prettytable as pt

#давайте згенеруємо три масива по 8 елементів. Кожен з таких масивів
#буде набором значень кожного з іксів у кожному з експериментів
X1 = np.array([rd.randint(1, 20) for i in range(8)])
X2 = np.array([rd.randint(1, 20) for i in range(8)])
X3 = np.array([rd.randint(1, 20) for i in range(8)])
# тепер наші довільно задані коефіцієнти
```

```
a0 = 2
a1 = 3
a2 = 7
a3 = 4
# створимо масив зі значень функцій відгуку в точках експериментів
Y = np.array([a0+a1*X1[i]+ a2*X2[i]+a3*X3[i] for i in range(8)])
Imax = np.where(Y == max(Y))[0][0]
# тепер знайдемо необхідні значення нульового рівня для наборів іксів
x01 = (\max(X1) + \min(X1))/2
x02 = (max(X2) + min(X2))/2
x03 = (max(X3)+min(X3))/2
# ну, і інтервали зміни фактора)
dx1 = x01 - min(X1)
dx2 = x02 - min(X2)
dx3 = x03 - min(X3)
# тепер нормовані значення для кожного фактора
Xn1 = np.array([(X1[i]-x01)/dx1 for i in range(8)])
Xn2 = np.array([(X2[i]-x02)/dx2 for i in range(8)])
Xn3 = np.array([(X3[i]-x03)/dx3 for i in range(8)])
# і еталонний Ү
Yet = a0+a1*x01+ a2*x02+a3*x03
# створимо табличку і внесемо в неї знайдені значення
table = pt.PrettyTable()
table.field_names = ['Nº', 'x1', 'x2', 'x3', 'Y', ' ', 'XN1', 'XN2', 'XN3']
for i in range(8):
    table.add_row([i+1, X1[i], X2[i], X3[i], Y[i], '', round(Xn1[i], 3), round(X
n2[i], 3), round(Xn3[i], 3)])
table.add_row(['x0', x01, x02, x03, Yet, ' ', '-', '-'])
table.add_row(['dx', dx1, dx2, dx3, '-', ' ', '-', '-'])
# виводимо нашу прєлєсть у світ
print(table)
print('Точка плану, що задовольняє заданому критерію оптимальості -
(', X1[Imax],';', X2[Imax], ';', X3[Imax],')')
```

Результат роботи програми:

+ 	x1	x2	x3	+ Y	 	+ XN1	+ XN2	XN3		
+ 1	2	 4	4	 52	 	+ -1.0	+ -0.714	 -0.625		
2	17	14	4	167		0.667	0.714	-0.625		
3	12	6	3	92		0.111	-0.429	-0.75		
4	17	6	10	135		0.667	-0.429	0.125		
5	8	11	17	171		-0.333	0.286	1.0		
6	20	2	1	80		1.0	-1.0	-1.0		
7	13	11	4	134		0.222	0.286	-0.625		
8	14	16	4	172		0.333	1.0	-0.625		
x0	11.0	9.0	9.0	134.0		-	-	-		
dx	9.0	7.0	8.0	-		-	-	-		
·+++										
Точка плану, що задовольняє заданому критерію оптимальості - (14 ; 16 ; 4										

Контрольні питання:

1. З чого складається план експерименту?

Сукупність усіх точок плану - векторів Xi (для i = 1, 2, ..., N) утворює план експерименту. Таким чином, план експерименту описується матрицею, яка містить N рядків і K стовбців. Кожен рядок матриці означає точку плану експерименту, а стовпчик — фактор експерименту.

2. Що називається спектром плану?

Сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактора (різних строк матриці планування), називається спектром плану.

3. Чим відрізняються активні та пасивні експерименти?

В пасивному експерименті існують контрольовані, але некеровані вхідні параметри — ми не маємо можливості втручатись в хід проведення експерименту, і виступаємо в ролі пасивного користувача. В активному — існують керовані і контрольовані вхідні параметри — ми самі являємось адміністраторами нашої системи.

4. Чим характеризується об'єкт досліджень? Дайте визначення факторному простору.

Об'єкт досліджень розглядається як «чорний ящик». Аналізуються деякі властивості та якості, які можуть описуватися числовими значеннями. Вектор $X_1...X_\kappa$ представляє собою групу контрольованих та керованих величин, котрі можуть змінюватись необхідним чином при проведенні експерименту, Цю групу характеристик $X_1...X_\kappa$ також називають факторами або керованими впливами.

Факторний простір — це множина зовнішніх і внутрішніх параметрів моделі, значення яких дослідник може контролювати в ході підготовки і проведення модельного експерименту.