### Университет ИТМО

Факультет программной инженерии и компьютерной техники
Направление подготовки 09.03.04 Программная инженерия
Дисциплина «Вычислительная математика»

#### Отчёт

Лабораторная работа №2 Вариант 8

Выполнил:

Попов Дмитрий Юрьевич

P3213

Преподаватель:

Машина Екатерина Алексеевна

# Цель работы

Научиться решать нелинейные уравнения и системы нелинейных уравнений различными способами. Написать программу, которая делает это относительно функций, начальных приближений, количества итераций и точности вычисления. Вывести соответствующие графики.

### Описание используемых методов

#### Метод Ньютона (касательных)

**Идея метода**: функция y=f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня  $x^*=x_n$  принимается точка пересечения касательной с осью абсцисс.

$$x_1 = x_0 - h_0$$

$$h_0 = \frac{f(x_0)}{\tan \alpha} = \frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$



Рабочая формула метода:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Критерий окончания итерационного процесса:

$$|x_n-x_{n-1}|\leq arepsilon$$
 или  $|rac{f(x_n)}{f'(x_n)}|\leq arepsilon$  или  $|m{f}(m{x_n})|\leq m{arepsilon}$ 

Приближенное значение корня:  $x^* = x_n$ 

# Метод хорд

<u>Идея метода:</u> функция y = f(x) на отрезке [a, b] заменяется хордой и в качестве приближенного значения корня принимается точка пересечения хорды с осью абсцисс.

Уравнение хорды, проходящей через точки Aig(a,f(a)ig) и Big(b,f(b)ig):

$$\frac{y-f(a)}{f(b)-f(a)} = \frac{x-a}{b-a}$$

Точка пересечения хорды с осью абсцисс (y = 0):  $x = a - \frac{b-a}{f(b)-f(a)} f(a)$ 

#### Алгоритм метода:

 $\underline{0}$  шаг: Находим интервал изоляции корня  $[a_0,b_0]$ 

1 шаг: Вычисляем 
$$x_0$$
:  $x_0 = a_0 - \frac{b_0 - a_0}{f(b_0) - f(a_0)} f(a_0)$ 

2 шаг: Вычисляем  $f(x_0)$ .

<u>3 шаг:</u> В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки:  $[a_0, x_0]$  либо  $[b_0, x_0]$ .

<u>4 шаг:</u> Вычисляем  $x_1$  и т.д (повторяем 1-3 шаги).

Рабочая формула метода:

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Критерии окончания итерационного процесса:  $|x_n-x_{n-1}|\leq \varepsilon$  или  $|a_n-b_n|\leq \varepsilon$  или  $|f(x_n)|\leq \varepsilon$  Приближенное значение корня:  $x^*=x_n$ 

## Метод простой итерации

Уравнение f(x) = 0 приведем к эквивалентному виду:  $x = \varphi(x)$ , выразив x из исходного уравнения.

Зная начальное приближение:  $x_0 \in [a, b]$ , найдем очередные приближения:

$$x_1 = \varphi(x_0) \to x_2 = \varphi(x_1) \dots$$

Рабочая формула метода:  $x_{i+1} = \varphi(x_i)$ 

Условия сходимости метода простой итерации определяются следующей теоремой.

**Теорема**. Если на отрезке локализации [a, b] функция  $\varphi(x)$  определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\varphi'(x)| < q$ , где  $0 \le q < 1$  , то независимо от выбора начального приближения  $x_0 \in [a,b]$  итерационная последовательность  $\{x_n\}$  метода будет сходится к корню уравнения.

#### Достаточное условие сходимости метода:

 $|\varphi'(x)| \le q < 1$ , где q – некоторая константа (коэффициент Липшица или коэффициент сжатия)

Чем меньше q, тем выше скорость сходимости.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 (при  $0 < q \le 0.5$ )

$$|x_n - x_{n-1}| < \frac{1-q}{q} \varepsilon$$
 (при  $0.5 < q < 1$ )

Можно ограничиться:  $|x_n - x_{n-1}| \le \varepsilon$ 

## Первая часть

#### Функция

$$3x^3 + 1.7x^2 - 15.42x + 6.89$$

# График функции



## Корни

 $x_1 = -2.74445$ 

 $x_2 = 0.498258$ 

 $x_3 = 1.67953$ 

## Поиск крайнего левого корня методом хорд

|         |         |         | X:-2.74   | 45      |        |             |
|---------|---------|---------|-----------|---------|--------|-------------|
|         |         |         | f(X):0.00 | 02      |        |             |
|         |         | Коли    | чество ит | ераций: | 5      |             |
| а       | b       | x       | f(a)      | f(b)    | f(x)   | x_i+1 - x_i |
| -3.0000 | -2.0000 | -2.6206 | -12.5500  | 20.5300 | 4.9826 | 0.3794      |
| -3.0000 | -2.6206 | -2.7284 | -12.5500  | 4.9826  | 0.6836 | 0.1078      |
| -3.0000 | -2.7284 | -2.7425 | -12.5500  | 0.6836  | 0.0857 | 0.0140      |
| -3.0000 | -2.7425 | -2.7442 | -12.5500  | 0.0857  | 0.0106 | 0.0017      |
| -3.0000 | -2.7442 | -2.7444 | -12.5500  | 0.0106  | 0.0013 | 0.0002      |
| -3.0000 | -2.7444 | -2.7445 | -12.5500  | 0.0013  | 0.0002 | 0.0000      |

#### Поиск центрального корня методом Ньютона

|        |        |        | X:0.4   | 4983    |         |             |
|--------|--------|--------|---------|---------|---------|-------------|
|        |        |        | f(X):-0 | 0.0003  |         |             |
|        |        | Кол    | ичество | итераци | ій:6    |             |
| a      | b      | x      | f(a)    | f(b)    | f(x)    | x_i+1 - x_i |
| 0.0000 | 1.0000 | 0.6427 | 6.8900  | -3.8300 | -1.5220 | 0.6427      |
| 0.0000 | 0.6427 | 0.5264 | 6.8900  | -1.5220 | -0.3188 | 0.1163      |
| 0.0000 | 0.5264 | 0.5032 | 6.8900  | -0.3188 | -0.0561 | 0.0233      |
| 0.0000 | 0.5032 | 0.4991 | 6.8900  | -0.0561 | -0.0095 | 0.0041      |
| 0.0000 | 0.4991 | 0.4984 | 6.8900  | -0.0095 | -0.0016 | 0.0007      |
|        | 0.4004 | 0.4083 | 6.8900  | -0.0016 | -0.0003 | 0.0001      |

# Поиск крайнего правого корня методом простых итераций

|        |        | X:1.6796       |             |
|--------|--------|----------------|-------------|
|        |        | f(X):0.0005    |             |
|        | Колич  | ество итераций | :10         |
| x_i    | x_i+1  | f(x_i+1)       | x_i+1 - x_i |
| 2.0000 | 1.7534 | 1.2515         | 0.2466      |
| 1.7534 | 1.7084 | 0.4662         | 0.0450      |
| 1.7084 | 1.6916 | 0.1915         | 0.0168      |
| 1.6916 | 1.6847 | 0.0814         | 0.0069      |
| 1.6847 | 1.6818 | 0.0351         | 0.0029      |
| 1.6818 | 1.6805 | 0.0152         | 0.0013      |
| 1.6805 | 1.6800 | 0.0066         | 0.0005      |
| 1.6800 | 1.6797 | 0.0029         | 0.0002      |
| 1.6797 | 1.6796 | 0.0013         | 0.0001      |
| 1.6796 | 1.6796 | 0.0005         | 0.0000      |

# Вторая часть

#### Система

$$\begin{cases} tgxy = x^2\\ 0.8x^2 + 2y^2 = 1 \end{cases}$$

## График



#### Решения методом Ньютона

| (7, 1).(0.00 | 000, -0.7071)  |
|--------------|----------------|
| Количеств    | о итераций:5   |
| X            | Υ              |
| 0.7495       | -0.6502        |
| 0.2292       | -0.7767        |
| 0.0559       | -0.7172        |
| 0.0044       | -0.7079        |
| 0.0000       | -0.7071        |
| 0.0000       | -0.7071        |
| Невазки:(0   | .0000, 0.0000) |

## Код программы

https://github.com/llunistsil/Computational-Math-2024/tree/main/P3213/Popov\_368679/lab2

### Вывод

В результате выполнения данной лабораторной работы были изучены методы для решения нелинейных уравнений и систем их них.

Для решения уравнений были использованы метод Ньютона, хорд и простых итераций. Для решения систем нелинейных уравнений был использован метод Ньютона.

Также была написана программа, реализующая методы решений.