

Mathematical Expressions of the Pharmacokinetic and Pharmacodynamic Models implemented in the Monolix software

Julie Bertrand and France Mentré

INSERM U738, Paris Diderot University

Programmers : Marc Lavielle, Hector Mesa and Kaelig Chatel (INRIA)

September 2008

Monolix 2.4 was developed with the financial support of Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica N.V.

Contents

1	Pha	rmaco	kinetic models 3
	1.1	One c	ompartment models
		1.1.1	IV bolus
			1.1.1.1 Linear elimination
			1.1.1.2 Michaelis Menten elimination
		1.1.2	IV infusion
			1.1.2.1 Linear elimination
			1.1.2.2 Michaelis Menten elimination
		1.1.3	First order absorption
			1.1.3.1 Linear elimination
			1.1.3.2 Michaelis Menten elimination
		1.1.4	Zero order absorption
			1.1.4.1 Linear elimination
			1.1.4.2 Michaelis Menten elimination
	1.2	Two c	ompartments models
		1.2.1	IV bolus
			1.2.1.1 Linear elimination
			1.2.1.2 Michaelis Menten elimination
		1.2.2	IV infusion
			1.2.2.1 linear elimination
			1.2.2.2 Michaelis Menten elimination
		1.2.3	First order absorption
			1.2.3.1 Linear elimination
			1.2.3.2 Michaelis Menten elimination
		1.2.4	Zero order absorption
			1.2.4.1 Linear elimination
			1.2.4.2 Michaelis Menten elimination
	1.3	Three	compartment models
		1.3.1	IV bolus
			1.3.1.1 Linear elimination
			1.3.1.2 Michaelis Menten elimination
		1.3.2	IV infusion
			1.3.2.1 linear elimination
			1.3.2.2 Michaelis Menten elimination
		1.3.3	First order absorption

			1.3.3.1	Linear elimination											44
			1.3.3.2	Michaelis Menten elimination											46
		1.3.4	Zero ord	er absorption											47
			1.3.4.1	Linear elimination											48
			1.3.4.2	Michaelis Menten elimination											52
2	Pha	Pharmacodynamic models										54			
	2.1	Immed	diate resp	onse models											54
		2.1.1	Drug ac	ion models \dots . \dots . \dots .											55
		2.1.2	Baseline	$/disease models \dots \dots \dots$											55
		2.1.3	Monolix	model functions											56
	2.2	Turno	ver respon	se models											58
		2.2.1	Models	with impact on the input (R_{in})											58
		2.2.2	Models	with impact on the output (k_{ou})	(t) .										59
\mathbf{A}	ppen	dix													61
	- App	endix I	: list of m	odels in PK library											62
				nodels in PKe0 library											
				models in PD library											

Chapter 1

Pharmacokinetic models

The equations in the ensuing chapter describe the pharmacokinetic models implemented in the Monolix software. The presentation of the models is organised as follows:

- First level: number of compartment
 - One compartment
 - Two compartments
 - Three compartments
- Second level: route of administration
 - IV bolus
 - Infusion
 - First order absorption
 - Zero order absorption
- Third level: elimination process
 - Linear
 - Michaelis-Menten
- Fourth level: existence of a lag time for first and zero order absorption only

• Last level: administration profile

The equations express the concentration C(t) in the central compartment at a time t after the last drug administration.

- Single dose: at time t after dose D given at time t_D $(t \ge t_D)$
- Multiples doses: at time t after n doses D_i (i = 1, ...n) given at time t_{D_i} $(t \ge t_{D_n})$
- Steady state: at a time t after dose D given at time t_D after repeated administration of dose D given at interval τ ($t \ge t_D$) (only for linear elimination)

NB1: For infusion, the duration of infusion is Tinf for single dose and $Tinf_i$ (i = 1, ...n) for multiple doses; D and D_i are the total doses administrated.

For multiple doses, the delay between successive doses is supposed to be greater than infusion duration and absorption duration $(t_{D_{i+1}} - t_{D_i} > Tinf_i)$ and $t_{D_{i+1}} - t_{D_i} > Tk_0$.

For steady state, the interval τ is supposed to be greater than infusion duration and absorption duration ($\tau > Tinf$ and $\tau > Tk_0$).

NB2: For models with 1 and 2 compartments, equations C(t) express concentration in the central compartment at a time t after drug administration and are in the PK library (Appendix I). PK/PD analysis, with intermediate response models, can use concentration C(t) in the central compartment but alternatively concentration $C_e(t)$ in the effect compartment. In that case a model in library PKe0 (Appendix II) should be used.

There is an additionnal parameter to estimate, k_{e0} the equilibrium rate constant between central and effect compartment.

For each model the equation for $C_e(t)$ is given after the corresponding one for C(t).

1.1 One compartment models

Parameters

- V = volume of distribution
- k = elimination rate constant
- Cl = clearance of elimination
- $V_m = \text{maximum elimination rate (in amount per time unit)}$
- K_m = Michaelis-Menten constant (in concentration unit)
- k_a = absorption rate constant
- Tlag = lag time
- Tk_0 = absorption duration for zero order absorption

NB: V and Cl are apparent volume and oral clearance for extra-vascular administration.

Parameterisation

There are two parameterisations for one compartment models, (V and k) or (V and Cl). The equations are given for the first parameterisation (V, k). The equations for the second parameterisation (V, Cl) are derived using $k = \frac{Cl}{V}$.

1.1.1 IV bolus

1.1.1.1 Linear elimination

• single dose

$$C(t) = \frac{D}{V} e^{-k(t-t_D)}$$

$$C_e(t) = \frac{D}{V} \frac{k_{e0}}{(k_{e0} - k)} \left(e^{-k(t-t_D)} - e^{-k_{e0}(t-t_D)} \right)$$
(1.1)

• multiple doses

$$C(t) = \sum_{i=1}^{n} \frac{D_i}{V} e^{-k(t-t_{D_i})}$$

$$C_e(t) = \sum_{i=1}^{n} \frac{D_i}{V} \frac{k_{e0}}{(k_{e0} - k)} \left(e^{-k(t-t_{D_i})} - e^{-k_{e0}(t-t_{D_i})} \right)$$
(1.2)

• steady state

$$C(t) = \frac{D}{V} \frac{e^{-k(t-t_D)}}{1 - e^{-k\tau}}$$

$$C_e(t) = \frac{D}{V} \frac{k_{e0}}{(k_{e0} - k)} \left(\frac{e^{-k(t-t_D)}}{1 - e^{-k\tau}} - \frac{e^{-k_{e0}(t-t_D)}}{1 - e^{-k_{e0}\tau}} \right)$$
(1.3)

Equations 1.1 to 1.3 correspond to models n°1: bolus_1cpt_Vk and n°2: bolus_1cpt_VCl.

1.1.1.2 Michaelis Menten elimination

• single dose

Initial conditions:
$$\begin{cases} C(t) &= 0 \text{ for } t < t_D \\ C_e(t) &= 0 \text{ for } t \le t_D \\ C(t_D) &= \frac{D}{V} \end{cases}$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{\frac{V_m}{K_m + C}}$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$(1.4)$$

• multiple doses

 $C^{(n)}\left(t\right)$ is the concentration after the n^{th} dose.

$$C(t) = 0 \text{ for } t < t_{D_1}$$

$$C_e(t) = 0 \text{ for } t \le t_{D_1}$$

$$C(t_{D_1}) = C^{(1)}(t_{D_1}) = \frac{D_1}{V}$$

$$C(t_{D_n}) = C^{(n)}(t_{D_n}) = C^{(n-1)}(t_{D_n}) + \frac{D_n}{V}$$
and when $t \ne t_{D_i}$:
$$\begin{cases} \frac{dC}{dt} = -\frac{V_m \times C}{V_m + C} \\ \frac{dC_e}{dt} = k_{e0}(C - C_e) \end{cases}$$

$$(1.5)$$

Equations 1.4 and 1.5 correspond to model n°3: bolus_1cpt_VVmKm.

1.1.2 IV infusion

1.1.2.1Linear elimination

$$C(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{kV} \left(1 - e^{-k(t - t_D)} \right) & \text{if } t - t_D \le Tinf, \\ \frac{D}{Tinf} \frac{1}{kV} \left(1 - e^{-kTinf} \right) e^{-k(t - t_D - Tinf)} & \text{if not.} \end{cases}$$

$$(1.6)$$

single dose
$$C(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{kV} \left(1 - e^{-k(t-t_D)} \right) & \text{if } t - t_D \leq Tinf, \\ \frac{D}{Tinf} \frac{1}{kV} \left(1 - e^{-kTinf} \right) e^{-k(t-t_D - Tinf)} & \text{if not.} \end{cases}$$

$$C_e(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \left(1 - e^{-k(t-t_D)} \right) - k \left(1 - e^{-k_{e0}(t-t_D)} \right) \right] & \text{if } t - t_D \leq Tinf, \\ \frac{D}{Tinf} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \left(1 - e^{-kTinf} \right) e^{-k(t-t_D - Tinf)} \right] & \text{if not.} \end{cases}$$

$$(1.6)$$

multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tinf_i} \frac{1}{kV} \left(1 - e^{-kTinf_i} \right) e^{-k\left(t - t_{D_i} - Tinf_i\right)} \\ + \frac{D_n}{Tinf_n} \frac{1}{kV} \left(1 - e^{-k(t - t_{D_n})} \right) \\ \sum_{i=1}^{n} \frac{D_i}{Tinf_i} \frac{1}{kV} \left(1 - e^{-kTinf_i} \right) e^{-k\left(t - t_{D_i} - Tinf_i\right)} & \text{if not.} \end{cases}$$

$$(1.7)$$

$$C_{e}(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{Tinf_{i}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0}(1 - e^{-kTinf_{i}})e^{-k(t - t_{D_{i}} - Tinf_{i})} \\ -k(1 - e^{-k_{e0}Tinf_{i}})e^{-k_{e0}(t - t_{D_{i}} - Tinf_{i})} \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tinf_{n}, \\ + \frac{D_{n}}{Tinf_{n}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0}\left(1 - e^{-k(t - t_{D_{n}})}\right) \\ -k\left(1 - e^{-k(t - t_{D_{n}})}\right) \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tinf_{n}, \\ \sum_{i=1}^{n} \frac{D_{i}}{Tinf_{i}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0}\left(1 - e^{-kTinf_{i}}\right)e^{-k(t - t_{D_{i}} - Tinf_{i})} \\ -k\left(1 - e^{-k_{e0}Tinf_{i}}\right)e^{-k_{e0}(t - t_{D_{i}} - Tinf_{i})} \end{bmatrix} & \text{if not.} \end{cases}$$

• steady state

$$C(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{kV} \left[\left(1 - e^{-k(t-t_D)} \right) + e^{-k\tau} \frac{\left(1 - e^{-kTinf} \right) e^{-k(t-t_D - Tinf)}}{1 - e^{-k\tau}} \right] & \text{if } (t - t_D) \le Tinf, \\ \frac{D}{Tinf} \frac{1}{kV} \frac{\left(1 - e^{-kTinf} \right) e^{-k(t-t_D - Tinf)}}{1 - e^{-k\tau}} & \text{if not.} \end{cases}$$

$$C_{e}(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \left[(1 - e^{-k(t - t_{D})}) + e^{-k\tau} \frac{(1 - e^{-kTinf}) e^{-k(t - t_{D} - Tinf)}}{1 - e^{-k\tau}} \right] & \text{if } t - t_{D} \\ -k \left[(1 - e^{-k_{e0}(t - t_{D})}) + e^{-k_{e0}\tau} \frac{(1 - e^{-k_{e0}Tinf}) e^{-k_{e0}(t - t_{D} - Tinf)}}{1 - e^{-k_{e0}\tau}} \right] & \leq Tinf, \\ \frac{D}{Tinf} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \frac{(1 - e^{-kTinf}) e^{-k(t - t_{D} - Tinf)}}{1 - e^{-k\tau}} - k \frac{(1 - e^{-k_{e0}Tinf}) e^{-k_{e0}(t - t_{D} - Tinf)}}{1 - e^{-k_{e0}\tau}} \right] & \text{if not.} \end{cases}$$

Equations 1.6 to 1.8 correspond to models n°4: infusion_1cpt_Vk and n°5: infusion_1cpt_VCl.

1.1.2.2 Michaelis Menten elimination

• single dose

Initial condition:
$$C(t) = 0$$
 for $t < t_D$

$$C_e(t) = 0 \text{ for } t < t_D$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{V} & \text{if } 0 \le t - t_D \le Tinf \\ 0 & \text{if not.} \end{cases}$$
(1.9)

• multiple doses

Initial condition:
$$C(t) = 0$$
 for $t < t_{D_1}$

$$C_e(t) = 0 \text{ for } t < t_{D_1}$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} \frac{D_i}{Tinf_i} \frac{1}{V} & \text{if } 0 \le t - t_{D_i} \le Tinf_i, \\ 0 & \text{if not.} \end{cases}$$

$$(1.10)$$

Equations 1.9 and 1.10 correspond to model n°6: infusion_1cpt_VVmKm.

1.1.3 First order absorption

1.1.3.1 Linear elimination

• in absence of a lag time

- single dose
$$C(t) = \frac{D}{V} \frac{k_a}{k_a - k} \left(e^{-k(t - t_D)} - e^{-k_a(t - t_D)} \right)$$

$$C_e(t) = \frac{Dk_a k_{e0}}{V} \left(\frac{e^{-k_a(t - t_D)}}{(k - k_a)(k_{e0} - k_a)} + \frac{e^{-k(t - t_D)}}{(k_a - k)(k_{e0} - k)} + \frac{e^{-k_{e0}(t - t_D)}}{(k_a - k_{e0})(k - k_{e0})} \right)$$

$$(1.11)$$

- multiple doses

$$C(t) = \sum_{i=1}^{n} \frac{D_i}{V} \frac{k_a}{k_a - k} \left(e^{-k(t - t_{D_i})} - e^{-k_a(t - t_{D_i})} \right)$$
(1.12)

$$C_{e}(t) = \sum_{i=1}^{n} \frac{D_{i}k_{a}k_{e0}}{V} \left(\frac{e^{-k_{a}(t-t_{D_{i}})}}{(k-k_{a})(k_{e0}-k_{a})} + \frac{e^{-k(t-t_{D_{i}})}}{(k_{a}-k)(k_{e0}-k)} + \frac{e^{-k(t-t_{D_{i}})}}{(k_{a}-k_{e0})(k-k_{e0})} \right)$$

- steady state

$$C(t) = \frac{D}{V} \frac{k_a}{k_a - k} \left(\frac{e^{-k(t - t_D)}}{1 - e^{-k\tau}} - \frac{e^{-k_a(t - t_D)}}{1 - e^{-k_a\tau}} \right)$$
(1.13)

$$C_{e}\left(t\right) = \frac{Dk_{a}k_{e0}}{V} \begin{pmatrix} \frac{e^{-k_{a}(t-t_{D})}}{(k-k_{a})\left(k_{e0}-k_{a}\right)\left(1-e^{-k_{a}\tau}\right)} \\ + \frac{e^{-k(t-t_{D})}}{(k_{a}-k)\left(k_{e0}-k\right)\left(1-e^{-k\tau}\right)} \\ + \frac{e^{-k_{e0}(t-t_{D})}}{(k_{a}-k_{e0})\left(k-k_{e0}\right)\left(1-e^{-k_{e0}\tau}\right)} \end{pmatrix}$$

Equations 1.11 to 1.13 correspond to models n°7: oral1_1cpt_kaVk and n°8: oral1_1cpt_kaVCl.

- in presence of a lag time
 - single dose

$$C(t) = \begin{cases} 0 & \text{if } t - t_D \le T lag, \\ \frac{D}{V} \frac{k_a}{k_a - k} \left(e^{-k(t - t_D - T lag)} - e^{-k_a(t - t_D - T lag)} \right) & \text{if not.} \end{cases}$$
(1.14)

$$C_{e}\left(t\right) = \begin{cases} 0 & \text{if } t - t_{D} \leq Tlag, \\ \frac{Dk_{a}k_{e0}}{V} \left(\frac{e^{-k_{a}(t - t_{D} - Tlag)}}{(k - k_{a})\left(k_{e0} - k_{a}\right)} + \frac{e^{-k(t - t_{D} - Tlag)}}{(k_{a} - k)\left(k_{e0} - k\right)} + \frac{e^{-k_{e0}(t - t_{D} - Tlag)}}{(k_{a} - k_{e0})\left(k - k_{e0}\right)} \right) & \text{if not.} \end{cases}$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{V} \frac{k_{a}}{k_{a} - k} \left(e^{-k\left(t - t_{D_{i}} - T lag\right)} - e^{-k_{a}\left(t - t_{D_{i}} - T lag\right)} \right) & \text{if } t - t_{D_{n}} \leq T lag, \\ \sum_{i=1}^{n} \frac{D_{i}}{V} \frac{k_{a}}{k_{a} - k} \left(e^{-k\left(t - t_{D_{i}} - T lag\right)} - e^{-k_{a}\left(t - t_{D_{i}} - T lag\right)} \right) & \text{if not.} \end{cases}$$

$$C_{e}(t) = \begin{cases} \sum_{i=1}^{n-1} \left[\frac{D_{i} k_{a} k_{e0}}{V} \left(\frac{e^{-k_{a}\left(t - t_{D_{i}} - T lag\right)}}{(k - k_{a})\left(k_{e0} - k_{a}\right)} + \frac{e^{-k\left(t - t_{D_{i}} - T lag\right)}}{(k_{a} - k_{i})\left(k_{e0} - k_{i}\right)} \right) \right] & \text{if } t - t_{D_{i}} \leq T lag, \\ \sum_{i=1}^{n} \left[\frac{D_{i} k_{a} k_{e0}}{V} \left(\frac{e^{-k_{a}\left(t - t_{D_{i}} - T lag\right)}}{(k - k_{a})\left(k_{e0} - k_{a}\right)} + \frac{e^{-k\left(t - t_{D_{i}} - T lag\right)}}{(k_{a} - k_{i})\left(k_{e0} - k_{i}\right)} \right) \right] & \text{if not.} \end{cases}$$

$$= \begin{cases} \sum_{i=1}^{n-1} \left[\frac{D_{i} k_{a} k_{e0}}{V} \left(\frac{e^{-k_{a}\left(t - t_{D_{i}} - T lag\right)}}{(k - k_{a})\left(k_{e0} - k_{a}\right)} + \frac{e^{-k\left(t - t_{D_{i}} - T lag\right)}}{(k_{a} - k_{i})\left(k_{e0} - k_{i}\right)} + \frac{e^{-k\left(t - t_{D_{i}} - T lag\right)}}{(k_{a} - k_{e0})\left(k - k_{e0}\right)} \right) \right] & \text{if not.} \end{cases}$$

- steady state

$$C(t) = \begin{cases} \frac{D}{V} \frac{k_a}{k_a - k} \left(\frac{e^{-k(t - t_D + \tau - Tlag)}}{1 - e^{-k\tau}} - \frac{e^{-k_a(t - t_D + \tau - Tlag)}}{1 - e^{-k_a\tau}} \right) & \text{if } t - t_D < Tlag \\ \frac{D}{V} \frac{k_a}{k_a - k} \left(\frac{e^{-k(t - t_D - Tlag)}}{1 - e^{-k\tau}} - \frac{e^{-k_a(t - t_D - Tlag)}}{1 - e^{-k_a\tau}} \right) & \text{if not.} \end{cases}$$

$$C(t) = \begin{cases} \frac{Dk_a k_{e0}}{V} \left(\frac{e^{-k_a(t - t_D + \tau - Tlag)}}{(k - k_a) (k_{e0} - k_a) (1 - e^{-k_a\tau})} + \frac{e^{-k(t - t_D + \tau - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D + \tau - Tlag)}}{(k_a - k_e) (k_e - k_e) (1 - e^{-k_e \tau})} + \frac{e^{-k_e(t - t_D - Tlag)}}{(k_a - k_e) (k_e - k_a) (1 - e^{-k_a\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k_a) (1 - e^{-k_a\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k_a\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_{e0} - k) (1 - e^{-k\tau})} + \frac{e^{-k(t - t_D - Tlag)}}{(k_a - k) (k_e - k) (k_e - k) (1 - e^{-k\tau})} + \frac{e^{-k\tau}}{(k_e - k) (k_e - k) (k_e$$

Equations 1.14 to 1.16 correspond to models n°10: orall_lcpt_TlagkaVk and n°11: orall_lcpt_TlagkaVCl.

1.1.3.2 Michaelis Menten elimination

- in absence of a lag time
 - single dose

Initial condition:
$$C(t) = 0$$
 for $t < t_D$

$$C_e(t) = 0 \text{ for } t < t_D$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \frac{D}{V} k_a e^{-k_a (t - t_D)}$$
(1.17)

- multiple doses

Initial condition:
$$C(t) = 0$$
 for $t < t_{D_1}$

$$C_e(t) = 0 \text{ for } t < t_{D_1}$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \sum_{i=1}^{n} \frac{D_i}{V} k_a e^{-k_a (t - t_{D_i})}$$

$$(1.18)$$

Equations 1.17 and 1.18 correspond to model n°9: oral1_1cpt_kaVVmKm.

- in presence of a lag time
 - single dose

Initial condition:
$$C(t) = 0$$
 for $t < t_D$

$$C_e(t) = 0 \text{ for } t < t_D$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} 0 & \text{if } t - t_D < T lag, \\ \frac{D}{V} k_a e^{-k_a (t - t_D - T lag)} & \text{if not.} \end{cases}$$

$$(1.19)$$

- multiple doses

Initial condition:
$$C(t) = 0$$
 for $t < t_{D_1}$

$$C_e(t) = 0 \text{ for } t < t_{D_1}$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{V} k_a e^{-k_a (t - t_{D_i} - T lag)} & \text{if } t - t_{D_n} < T lag, \\ \sum_{i=1}^{n} \frac{D_i}{V} k_a e^{-k_a (t - t_{D_i} - T lag)} & \text{if not.} \end{cases}$$
(1.20)

Equations 1.19 and 1.20 correspond to model n°12: oral1_1cpt_TlagkaVVmKm.

1.1.4 Zero order absorption

1.1.4.1 Linear elimination

• in absence of a lag time

$$C(t) = \begin{cases} \frac{D}{Tk_0} \frac{1}{kV} \left(1 - e^{-k(t - t_D)} \right) & \text{if } t - t_D \le Tk_0, \\ \frac{D}{Tk_0} \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k(t - t_D - Tk_0)} & \text{if not.} \end{cases}$$

$$\left(\frac{D}{Tk_0} \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k(t - t_D - Tk_0)} - k \left(1 - e^{-k_{e0}(t - t_D)} \right) \right) & \text{if } t - t_D \le Tk_0.$$

$$\left(\frac{D}{Tk_0} \frac{1}{kV} \left(1 - e^{-k(t - t_D)} \right) - k \left(1 - e^{-k_{e0}(t - t_D)} \right) \right) & \text{if } t - t_D \le Tk_0.$$

$$C_{e}(t) = \begin{cases} \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \left(1 - e^{-k(t - t_{D})} \right) - k \left(1 - e^{-k_{e0}(t - t_{D})} \right) \right] & \text{if } t - t_{D} \le Tk_{0}, \\ \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \left(1 - e^{-kTk_{0}} \right) e^{-k(t - t_{D} - Tk_{0})} - k \left(1 - e^{-k_{e0}Tk_{0}} \right) e^{-k(t - t_{D} - Tk_{0})} \right] & \text{if not.} \end{cases}$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k\left(t - t_{D_i} - Tk_0\right)} \\ + \frac{D_n}{Tk_0} \frac{1}{kV} \left(1 - e^{-k\left(t - t_{D_n}\right)} \right) \end{cases}$$
 if $t - t_{D_n} \le Tk_0$,
$$\left\{ \sum_{i=1}^{n} \frac{D_i}{Tk_0} \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k\left(t - t_{D_i} - Tk_0\right)} \right\}$$
 if not.
$$(1.22)$$

$$C_{e}(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0}(1 - e^{-kTk_{0}})e^{-k(t - t_{D_{i}} - Tk_{0})} \\ -k(1 - e^{-ke_{0}Tk_{0}})e^{-ke_{0}(t - t_{D_{i}} - Tk_{0})} \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tk_{0}, \\ + \frac{D_{n}}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \left(1 - e^{-k(t - t_{D_{n}})}\right) \\ -k\left(1 - e^{-k(t - t_{D_{n}})}\right) \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tk_{0}, \\ \sum_{i=1}^{n} \frac{D_{i}}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \left(1 - e^{-kTk_{0}}\right) e^{-k(t - t_{D_{i}} - Tk_{0})} \\ -k\left(1 - e^{-kE_{0}Tk_{0}}\right) e^{-k(t - t_{D_{i}} - Tk_{0})} \end{bmatrix} & \text{if not.} \end{cases}$$

- steady state

$$C(t) = \begin{cases} \frac{D}{Tk_0} \frac{1}{kV} \left[\left(1 - e^{-k(t-t_D)} \right) + e^{-k\tau} \frac{\left(1 - e^{-kTk_0} \right) e^{-k(t-t_D - Tk_0)}}{1 - e^{-k\tau}} \right] & \text{if } t - t_D \le Tk_0, \\ \frac{D}{Tk_0} \frac{1}{kV} \frac{\left(1 - e^{-kTk_0} \right) e^{-k(t-t_D - Tk_0)}}{1 - e^{-k\tau}} & \text{if not.} \end{cases}$$
(1.23)

$$C_{e}(t) = \begin{cases} \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \left[\left(1 - e^{-k(t - t_{D})} \right) + e^{-k\tau} \frac{\left(1 - e^{-kTk_{0}} \right) e^{-k(t - t_{D} - Tk_{0})}}{1 - e^{-k\tau}} \right] \\ -k \left[\left(1 - e^{-k_{e0}(t - t_{D})} \right) + e^{-k_{e0}\tau} \frac{\left(1 - e^{-k_{e0}Tk_{0}} \right) e^{-k_{e0}(t - t_{D} - Tk_{0})}}{1 - e^{-k_{e0}\tau}} \right] & \leq Tk_{0}, \\ \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \frac{\left(1 - e^{-kTk_{0}} \right) e^{-k(t - t_{D} - Tk_{0})}}{1 - e^{-k\tau}} - k \frac{\left(1 - e^{-k_{e0}Tk_{0}} \right) e^{-k_{e0}(t - t_{D} - Tk_{0})}}{1 - e^{-k_{e0}\tau}} \right] & \text{if not.} \end{cases}$$

Equations 1.21 to 1.23 correspond to models $n^{\circ}13$: oral0_1cpt_Tk0Vk and $n^{\circ}14$: oral0_1cpt_Tk0VCl.

• in presence of a lag time

- single dose

$$C(t) = \begin{cases} 0 & \text{if } t - t_D \le T lag, \\ \frac{D}{T k_0} \frac{1}{kV} \left(1 - e^{-k(t - t_D - T lag)} \right) & \text{if } T lag < t - t_D \le T lag + T k_0, \\ \frac{D}{T k_0} \frac{1}{kV} \left(1 - e^{-kT k_0} \right) e^{-k(t - t_D - T lag - T k_0)} & \text{if not.} \end{cases}$$
(1.24)

$$C_{e}\left(t\right) = \begin{cases} 0 & \text{if } t - t_{D} \leq Tlag, \\ \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \left(1 - e^{-k(t - t_{D} - Tlag)}\right) - k\left(1 - e^{-k_{e0}(t - t_{D} - Tlag)}\right)\right] & \text{if } Tlag < t - t_{D} \\ \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \left[k_{e0} \left(1 - e^{-kTk_{0}}\right) e^{-k(t - t_{D} - Tlag - Tk_{0})} - k\left(1 - e^{-kt_{e0}Tk_{0}}\right) e^{-kt_{e0}(t - t_{D} - Tlag - Tk_{0})}\right] & \text{if not.} \end{cases}$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k\left(t - t_{D_i} - Tlag - Tk_0\right)} & \text{if } t - t_{D_n} \le Tlag, \\ \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k\left(t - t_{D_i} - Tlag - Tk_0\right)} & \text{if } Tlag < t - t_{D_n} \\ + \frac{D_n}{Tk_0} \frac{1}{kV} \left(1 - e^{-k(t - t_{D_i} - Tlag)} \right) & \le Tlag + Tk_0, \end{cases}$$

$$\left\{ \sum_{i=1}^{n} \frac{D_i}{Tk_0} \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k\left(t - t_{D_i} - Tlag - Tk_0\right)} & \text{if not.} \right\}$$

$$\left\{ \sum_{i=1}^{n-1} D_i \frac{1}{kV} \left(1 - e^{-kTk_0} \right) e^{-k\left(t - t_{D_i} - Tlag - Tk_0\right)} \right\}$$

$$C_{e}\left(t\right) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \left(1 - e^{-kTk_{0}}\right) e^{-k\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} \\ -k\left(1 - e^{-k_{e0}Tk_{0}}\right) e^{-k_{e0}\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tlag, \\ \sum_{i=1}^{n-1} \frac{D_{i}}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0}(1 - e^{-kTk_{0}}) e^{-k\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} \\ -k\left(1 - e^{-k_{e0}Tk_{0}}\right) e^{-k_{e0}\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} \end{bmatrix} & \text{if } Tlag < t - t_{D_{n}} \\ + \frac{D_{n}}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \left(1 - e^{-k\left(t - t_{D_{n}} - Tlag}\right)\right) \\ -k\left(1 - e^{-k_{e0}\left(t - t_{D_{n}} - Tlag}\right)\right) \end{bmatrix} & \leq Tlag + Tk_{0}, \\ \sum_{i=1}^{n} \frac{D_{i}}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \left(1 - e^{-kTk_{0}}\right) e^{-k\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} \\ -k\left(1 - e^{-k_{e0}Tk_{0}}\right) e^{-k_{e0}\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} \end{bmatrix} & \text{if not.} \end{cases}$$

- steady state

$$C(t) = \begin{cases} \frac{D}{Tk_0} \frac{1}{kV} \frac{\left(1 - e^{-kTk_0}\right) e^{-k(t - t_D + \tau - Tlag - Tk_0)}}{1 - e^{-k\tau}} & t - t_D \le Tlag, \\ \frac{D}{Tk_0} \frac{1}{kV} \left[\frac{\left(1 - e^{-k(t - t_D - Tlag)}\right)}{1 - e^{-k\tau} \left(1 - e^{-kTk_0}\right) e^{-k(t - t_D - Tlag - Tk_0)}} \right] & \text{if } Tlag < t - t_D \le Tlag + Tk_0, \\ \frac{D}{Tk_0} \frac{1}{kV} \frac{\left(1 - e^{-kTk_0}\right) e^{-k(t - t_D - Tlag - Tk_0)}}{1 - e^{-k\tau}} & \text{if not.} \end{cases}$$

$$(1.26)$$

$$C_{e}\left(t\right) = \begin{cases} \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \frac{\left(1 - e^{-kTk_{0}}\right) e^{-k(t - t_{D} + \tau - Tlag - Tk_{0})}}{1 - e^{-k\tau}} \\ -k \frac{\left(1 - e^{-k_{e0}Tk_{0}}\right) e^{-k_{e0}(t - t_{D} + \tau - Tlag - Tk_{0})}}{1 - e^{-k\epsilon_{e0}\tau}} \end{bmatrix} & t - t_{D} \leq Tlag, \\ \frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \begin{bmatrix} \left(1 - e^{-k(t - t_{D} - Tlag)}\right) \\ + e^{-k\tau} \frac{\left(1 - e^{-kTk_{0}}\right) e^{-k(t - t_{D} - Tlag - Tk_{0})}}{1 - e^{-k\tau}} \end{bmatrix} & \text{if } Tlag < t - t_{D} \\ \leq Tlag + Tk_{0}, \\ -k \begin{bmatrix} \left(1 - e^{-k_{e0}\tau} \frac{\left(1 - e^{-k_{e0}Tk_{0}}\right) e^{-k_{e0}(t - t_{D} - Tlag - Tk_{0})}}{1 - e^{-k\epsilon_{0}\tau}} \end{bmatrix} & \text{if not.} \end{cases}$$

$$\frac{D}{Tk_{0}} \frac{1}{kV(k_{e0} - k)} \begin{bmatrix} k_{e0} \frac{\left(1 - e^{-kTk_{0}}\right) e^{-k(t - t_{D} - Tlag - Tk_{0})}}{1 - e^{-k\tau}} \\ -k \frac{\left(1 - e^{-k_{e0}Tk_{0}}\right) e^{-k_{e0}(t - t_{D} - Tlag - Tk_{0})}}{1 - e^{-k\epsilon_{0}\tau}} \end{bmatrix} & \text{if not.} \end{cases}$$

Equations 1.24 to 1.26 correspond to models n°16: oral0_1cpt_TlagTk0Vk and n°17: oral0_1cpt_TlagTk0VCl.

1.1.4.2 Michaelis Menten elimination

- in absence of a lag time
 - single dose

Initial condition:
$$C(t) = 0$$
 for $t < t_D$

$$C_e(t) = 0 \text{ for } t < t_D$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} \frac{D}{Tk_0} \frac{1}{V} & \text{if } 0 \le t - t_D \le Tk_0 \\ 0 & \text{if not.} \end{cases}$$

$$(1.27)$$

- multiple doses

Initial condition:
$$C(t) = 0$$
 for $t < t_{D_1}$

$$C_e(t) = 0 \text{ for } t < t_{D_1}$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} \frac{D_i}{Tk_0} \frac{1}{V} & \text{if } 0 \le t - t_{D_i} \le Tk_0, \\ 0 & \text{if not.} \end{cases}$$

$$(1.28)$$

Equations 1.27 and 1.28 correspond to model n°15: oral0_1cpt_Tk0VVmKm.

- in presence of a lag time
 - single dose

Initial condition:
$$C(t) = 0$$
 for $t < t_D$

$$C_e(t) = 0 \text{ for } t < t_D$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} 0 & \text{if } 0 \le t - t_D \le T lag, \\ \frac{D}{Tk_0} \frac{1}{V} & \text{if } T lag < t - t_D \le T lag + Tk_0, \\ 0 & \text{if not.} \end{cases}$$

$$(1.29)$$

multiple doses

Initial condition:
$$C(t) = 0$$
 for $t < t_{D_1}$

$$C_e(t) = 0 \text{ for } t < t_{D_1}$$

$$\frac{dC}{dt} = -\frac{\frac{V_m}{V} \times C}{K_m + C} + input$$

$$\frac{dC_e}{dt} = k_{e0} (C - C_e)$$

$$input(t) = \begin{cases} 0 & \text{if } 0 \le t - t_{D_i} \le Tlag, \\ \frac{D_i}{Tk_0} \frac{1}{V} & \text{if } Tlag < t - t_{D_i} \le Tlag + Tk_0, \\ 0 & \text{if not.} \end{cases}$$

$$(1.30)$$

Equations 1.29 and 1.30 correspond to model n°18: oral0_1cpt_TlagTk0VVmKm.

1.2 Two compartments models

The two compartments model implemented in Monolix is described in figure 1.1.

Figure 1.1: A mammillary model with two compartments, parameterized in micro-constants V, k, k_{12} and k_{21} (a) or with Cl, V_1 , Q and V_2 (b)

Parameters

- $V = V_1$ = volume of distribution of first compartment
- k = elimination rate constant
- Cl = clearance of elimination
- $V_m = \text{maximum elimination rate (amount per time unit)}$
- K_m = Michaelis-Menten constant (concentration unit)
- $k_{12} = \text{distribution rate constant from compartment 1 to compartment 2}$
- $k_{21} = \text{distribution rate constant from compartment 2 to compartment 1}$
- Q = inter-compartmental clearance
- V_2 = volume of distribution of second compartment
- k_a = absorption rate constant
- Tlag = lag time
- Tk_0 = absorption duration for zero order absorption
- α = first rate constant
- $\beta = \text{second rate constant}$

- A = first macro-constant
- B = second macro-constant

NB: V_1 , V_2 , Cl and Q are apparent volumes and clearances for extra-vascular administration.

Parameterisation

There are three parameterisations for two compartment models: $(V, k, k_{12} \text{ and } k_{21})$, $(Cl, V_1, Q \text{ and } V_2)$ or $(\alpha, \beta, A \text{ and } B)$ except for Michaelis-Menten elimination where the last parameterisation is not used. The second parameterisation terms are derived using:

- $V_1 = V$
- $Cl = k \times V_1$
- $Q = k_{12} \times V_1$
- $V_2 = \frac{k_{12}}{k_{21}} \times V_1$
- $\bullet \ \frac{V_1}{V_2} = \frac{k_{21}}{k_{12}}$

The equations are given for the third parameterisation with:

$$\bullet \ \alpha = \frac{k_{21}k}{\beta} = \frac{\frac{Q}{V_2}\frac{Cl}{V_1}}{\beta}$$

$$\bullet \ \beta = \begin{cases} \frac{1}{2} \left[k_{12} + k_{21} + k - \sqrt{(k_{12} + k_{21} + k)^2 - 4k_{21}k} \right] \\ \frac{1}{2} \left[\frac{Q}{V_1} + \frac{Q}{V_2} + \frac{Cl}{V_1} - \sqrt{\left(\frac{Q}{V_1} + \frac{Q}{V_2} + \frac{Cl}{V_1}\right)^2 - 4\frac{Q}{V_2}\frac{Cl}{V_1}} \right] \end{cases}$$

The link between A and B and the parameters of the first and second parameterisations depends on the input and are given in each subsection.

In the following, $C(t) = C_1$ represent the drug concentration in the first compartment and C_2 represents the drug concentration in the second compartment

1.2.1 IV bolus

•
$$A = \frac{1}{V} \frac{\alpha - k_{21}}{\alpha - \beta} = \frac{1}{V_1} \frac{\alpha - \frac{Q}{V_2}}{\alpha - \beta}$$

$$\bullet \ B = \frac{1}{V} \frac{\beta - k_{21}}{\beta - \alpha} = \frac{1}{V_1} \frac{\beta - \frac{Q}{V_2}}{\beta - \alpha}$$

$$A^e = \frac{k_{e0}A}{k_{e0} - \alpha}$$

$$\bullet \ B^e = \frac{k_{e0}B}{k_{e0} - \beta}$$

1.2.1.1 Linear elimination

• single dose

$$C(t) = D\left(Ae^{-\alpha(t-t_D)} + Be^{-\beta(t-t_D)}\right)$$

$$C_e(t) = D\left(A^e e^{-\alpha(t-t_D)} + B^e e^{-\beta(t-t_D)} - (A^e + B^e)e^{-k_{e0}(t-t_D)}\right)$$
(1.31)

• multiple doses

$$C(t) = \sum_{i=1}^{n} D_i \left(A e^{-\alpha (t - t_{D_i})} + B e^{-\beta (t - t_{D_i})} \right)$$

$$C_e(t) = \sum_{i=1}^{n} D_i \left(A^e e^{-\alpha (t - t_{D_i})} + B^e e^{-\beta (t - t_{D_i})} - (A^e + B^e) e^{-k_{e0}(t - t_{D_i})} \right)$$
(1.32)

• steady state

$$C(t) = D\left(\frac{Ae^{-\alpha t}}{1 - e^{-\alpha \tau}} + \frac{Be^{-\beta t}}{1 - e^{-\beta \tau}}\right)$$

$$C_{e}(t) = D\left(\frac{A^{e}e^{-\alpha(t-t_{D})}}{1 - e^{-\alpha \tau}} + \frac{B^{e}e^{-\beta(t-t_{D})}}{1 - e^{-\beta \tau}} - \frac{(A^{e} + B^{e})e^{-k_{e0}(t-t_{D})}}{1 - e^{-k_{e0}\tau}}\right)$$
(1.33)

Equations 1.31 to 1.33 correspond to models n°19: bolus_2cpt_Vkk12k21, n°20: bolus_2cpt_ClV1QV2 and n°21: bolus_2cpt_alphabetaAB.

1.2.1.2 Michaelis Menten elimination

• single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D} \\ C_{1}(t_{D}) = \frac{D}{V} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2}$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$(1.34)$$

multiple doses

 $C_{1}^{(n)}\left(t\right)$ is the concentration in the first compartment after the n^{th} dose.

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$C_{1}(t_{D_{1}}) = C_{1}^{(1)}(t_{D_{1}}) = \frac{D_{1}}{V}$$

$$C_{1}(t_{D_{n}}) = C_{1}^{(n)}(t_{D_{n}}) = C_{1}^{(n-1)}(t_{D_{n}}) + \frac{D_{n}}{V}$$

$$C_{1}(t_{D_{n}}) = C_{1}^{(n)}(t_{D_{n}}) = C_{1}^{(n-1)}(t_{D_{n}}) + \frac{D_{n}}{V}$$

$$\begin{cases} \frac{dC_{1}}{dt} = -\frac{V_{m} \times C_{1}}{V_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} \\ \frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2} \\ \frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e}) \end{cases}$$

$$(1.35)$$

Equations 1.34 and 1.35 correspond to models n°22: bolus_2cpt_Vk12k21VmKm and n°23: bolus_2cpt_V1QV2VmKm.

1.2.2 IV infusion

•
$$A = \frac{1}{V} \frac{\alpha - k_{21}}{\alpha - \beta} = \frac{1}{V_1} \frac{\alpha - \frac{Q}{V_2}}{\alpha - \beta}$$

$$\bullet \ B = \frac{1}{V} \frac{\beta - k_{21}}{\beta - \alpha} = \frac{1}{V_1} \frac{\beta - \frac{Q}{V_2}}{\beta - \alpha}$$

$$A^e = \frac{k_{e0}A}{k_{e0} - \alpha}$$

$$\bullet \ B^e = \frac{k_{e0}B}{k_{e0} - \beta}$$

1.2.2.1 linear elimination

• single dose

$$C(t) = \begin{cases} \frac{D}{Tinf} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha(t - t_D)} \right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta(t - t_D)} \right) \end{bmatrix} & \text{if } t - t_D \leq Tinf, \\ \frac{D}{Tinf} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tinf} \right) e^{-\alpha(t - t_D - Tinf)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tinf} \right) e^{-\beta(t - t_D - Tinf)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.36)$$

$$C_{e}(t) = \begin{cases} \frac{D}{Tinf} \begin{bmatrix} \frac{A^{e}}{\alpha} \left(1 - e^{-\alpha(t - t_{D})} \right) \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta(t - t_{D})} \right) \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}(t - t_{D})} \right) \end{bmatrix} & \text{if } t - t_{D} \leq Tinf, \\ \frac{D}{Tinf} \begin{bmatrix} \frac{A^{e}}{\alpha} \left(1 - e^{-\alpha Tinf} \right) e^{-\alpha(t - t_{D} - Tinf)} \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta Tinf} \right) e^{-\beta(t - t_{D} - Tinf)} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}Tinf} \right) e^{-k_{e0}(t - t_{D} - Tinf)} \end{bmatrix} & \text{if not.} \end{cases}$$

• multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{Tinf_{i}} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tinf_{i}}\right) e^{-\alpha \left(t - t_{D_{i}} - Tinf_{i}\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tinf_{i}}\right) e^{-\beta \left(t - t_{D_{i}} - Tinf_{i}\right)} \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tinf, \\ + \frac{D}{Tinf_{n}} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha \left(t - t_{D_{n}}\right)}\right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta \left(t - t_{D_{n}}\right)}\right) \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tinf, \\ \sum_{i=1}^{n} \frac{D_{i}}{Tinf_{i}} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tinf_{i}}\right) e^{-\alpha \left(t - t_{D_{i}} - Tinf_{i}\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tinf_{i}}\right) e^{-\beta \left(t - t_{D_{i}} - Tinf_{i}\right)} \end{bmatrix} & \text{if not.} \end{cases} \end{cases}$$

$$C_{e}(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{Tinf_{i}} \begin{bmatrix} \frac{A^{e}}{\alpha} \left(1 - e^{-\alpha Tinf_{i}}\right) e^{-\alpha \left(t - t_{D_{i}} - Tinf_{i}\right)} \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta Tinf_{i}}\right) e^{-\beta \left(t - t_{D_{i}} - Tinf_{i}\right)} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{k_{e0}Tinf_{i}}\right) e^{-k_{e0}\left(t - t_{D_{i}} - Tinf_{i}\right)} \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tinf, \\ + \frac{D}{Tinf_{n}} \begin{bmatrix} \frac{A^{e}}{\alpha} \left(1 - e^{-\alpha \left(t - t_{D_{n}}\right)}\right) \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta \left(t - t_{D_{n}}\right)}\right) \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}\left(t - t_{D_{i}} - Tinf_{i}\right)} \right) \\ - \frac{A^{e} + B^{e}}{\beta} \left(1 - e^{-\beta Tinf_{i}}\right) e^{-\alpha \left(t - t_{D_{i}} - Tinf_{i}\right)} \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta Tinf_{i}}\right) e^{-\beta \left(t - t_{D_{i}} - Tinf_{i}\right)} \end{cases} & \text{if not.} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}Tinf_{i}}\right) e^{-k_{e0}\left(t - t_{D_{i}} - Tinf_{i}\right)} \end{cases} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}Tinf_{i}}\right) e^{-k_{e0}\left(t - t_{D_{i}} - Tinf_{i}\right)} \end{cases} & \text{if not.} \end{cases}$$

• steady state

$$C(t) = \begin{cases} \frac{D}{Tinf} \begin{bmatrix} \frac{A}{\alpha} \begin{pmatrix} (1 - e^{-\alpha(t-t_D)}) \\ + e^{-\alpha\tau} \frac{(1 - e^{-\alpha Tinf}) e^{-\alpha(t-t_D - Tinf)}}{1 - e^{-\alpha\tau}} \end{pmatrix} \\ + \frac{B}{\beta} \begin{pmatrix} (1 - e^{-\beta(t-t_D)}) \\ + e^{-\beta\tau} \frac{(1 - e^{-\beta Tinf}) e^{-\beta(t-t_D - Tinf)}}{1 - e^{-\beta\tau}} \end{pmatrix} \end{bmatrix} & \text{if } t - t_D \leq Tinf, \\ \frac{D}{Tinf} \begin{bmatrix} \frac{A}{\alpha} \left(\frac{(1 - e^{-\alpha Tinf}) e^{-\alpha(t-t_D - Tinf)}}{1 - e^{-\alpha\tau}} \right) \\ + \frac{B}{\beta} \left(\frac{(1 - e^{-\beta Tinf}) e^{-\beta(t-t_D - Tinf)}}{1 - e^{-\beta\tau}} \right) \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.38)$$

$$C_{e}(t) = \begin{cases} \frac{A^{e}}{\alpha} \begin{pmatrix} (1 - e^{-\alpha(t - t_{D})}) \\ + e^{-\alpha\tau} \frac{(1 - e^{-\alpha T inf}) e^{-\alpha(t - t_{D} - T inf)}}{1 - e^{-\alpha\tau}} \end{pmatrix} \\ + \frac{B^{e}}{\beta} \begin{pmatrix} (1 - e^{-\beta(t - t_{D})}) \\ + e^{-\beta\tau} \frac{(1 - e^{-\beta T inf}) e^{-\beta(t - t_{D} - T inf)}}{1 - e^{-\beta\tau}} \end{pmatrix} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \begin{pmatrix} (1 - e^{-k_{e0}(t - t_{D})}) \\ + e^{-k_{e0}\tau} \frac{(1 - e^{-k_{e0}T inf}) e^{-k_{e0}(t - t_{D} - T inf)}}{1 - e^{-k_{e0}\tau}} \end{pmatrix} \\ \frac{D}{T inf} \begin{pmatrix} \frac{A^{e}}{\alpha} \begin{pmatrix} \frac{(1 - e^{-\alpha T inf}) e^{-\alpha(t - t_{D} - T inf)}}{1 - e^{-\alpha\tau}} \end{pmatrix} \\ - \frac{A^{e} + B^{e}}{\beta} \begin{pmatrix} \frac{(1 - e^{-\beta T inf}) e^{-\beta(t - t_{D} - T inf)}}{1 - e^{-\beta\tau}} \end{pmatrix} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \begin{pmatrix} \frac{(1 - e^{-k_{e0}T inf}) e^{-k_{e0}(t - t_{D} - T inf)}}{1 - e^{-k_{e0}\tau}} \end{pmatrix} \end{cases}$$
 if not.

Equations 1.36 to 1.38 correspond to models n^2 4: infusion_2cpt_Vkk12k21, n^2 5: infusion_2cpt_ClV1QV2 and n^2 6: infusion_2cpt_alphabetaAB.

1.2.2.2 Michaelis Menten elimination

• single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{V} & \text{if } 0 \leq t - t_{D} \leq Tinf \\ 0 & \text{if not.} \end{cases}$$

$$(1.39)$$

• multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \begin{cases} \frac{D_{i}}{Tinf_{i}} \frac{1}{V} & \text{if } 0 \leq t - t_{D_{i}} \leq Tinf_{i}, \\ 0 & \text{if not.} \end{cases}$$

$$(1.40)$$

Equations 1.39 and 1.40 correspond to models n°27: infusion_2cpt_Vk12k21VmKm and n°28: infusion_2cpt_V1QV2VmKm.

1.2.3 First order absorption

•
$$A = \frac{k_a}{V} \frac{k_{21} - \alpha}{(k_a - \alpha)(\beta - \alpha)} = \frac{k_a}{V_1} \frac{\frac{Q}{V_2} - \alpha}{(k_a - \alpha)(\beta - \alpha)}$$

•
$$B = \frac{k_a}{V} \frac{k_{21} - \beta}{(k_a - \beta)(\alpha - \beta)} = \frac{k_a}{V_1} \frac{\frac{Q}{V_2} - \beta}{(k_a - \beta)(\alpha - \beta)}$$

$$A^e = \frac{k_{e0}A}{k_{e0} - \alpha}$$

$$\bullet \ B^e = \frac{k_{e0}B}{k_{e0} - \beta}$$

•
$$C^e = -\frac{A^e(k_a - \alpha) + B^e(k_a - \beta)}{k_a - k_{e0}}$$

1.2.3.1 Linear elimination

• in absence of a lag time

$$C(t) = D \left(Ae^{-\alpha(t-t_D)} + Be^{-\beta(t-t_D)} - (A+B)e^{-k_a(t-t_D)} \right)$$

$$C_e(t) = D \left(A^e e^{-\alpha(t-t_D)} + B^e e^{-\beta(t-t_D)} + C^e e^{-k_{e0}(t-t_D)} - (A^e + B^e + C^e)e^{-k_a(t-t_D)} \right)$$
(1.41)

- multiple doses

$$C(t) = \sum_{i=1}^{n} D_i \left(A e^{-\alpha (t - t_{D_i})} + B e^{-\beta (t - t_{D_i})} - (A + B) e^{-k_a (t - t_{D_i})} \right)$$
(1.42)

$$C_e(t) = \sum_{i=1}^n D_i \left(A^e e^{-\alpha(t-t_{D_i})} + B^e e^{-\beta(t-t_{D_i})} + C^e e^{-k_{e0}(t-t_{D_i})} - (A^e + B^e + C^e) e^{-k_a(t-t_{D_i})} \right)$$

$$C(t) = D\left(\frac{Ae^{-\alpha(t-t_D)}}{1 - e^{-\alpha\tau}} + \frac{Be^{-\beta(t-t_D)}}{1 - e^{-\beta\tau}} - \frac{(A+B)e^{-k_a(t-t_D)}}{1 - e^{-k_a\tau}}\right)$$

$$C_e(t) = D\left(\frac{A^e e^{-\alpha(t-t_D)}}{1 - e^{-\alpha\tau}} + \frac{B^e e^{-\beta(t-t_D)}}{1 - e^{-\beta\tau}} + \frac{C^e e^{-k_{e0}(t-t_D)}}{1 - e^{-\beta\tau}} - \frac{(A^e + B^e + C^e)e^{-k_a(t-t_D)}}{1 - e^{-k_a\tau}}\right)$$

$$(1.43)$$

Equations 1.41 to 1.43 correspond to models $n^{\circ}29$: oral1_2cpt_kaVkk12k21, $n^{\circ}30$: oral1_2cpt_kaClV1QV2 and $n^{\circ}31$: oral1_2cpt_kaalphabetaAB.

- in presence of a lag time
 - single dose

$$C(t) = \begin{cases} 0 & \text{if } t - t_D \le T lag, \\ D \begin{bmatrix} Ae^{-\alpha(t - t_D - T lag)} + Be^{-\beta(t - t_D - T lag)} \\ -(A + B)e^{-k_a(t - t_D - T lag)} \end{bmatrix} & \text{if not.} \end{cases}$$
(1.44)

$$C_{e}\left(t\right) = \begin{cases} 0 & \text{if } t - t_{D} \leq Tlag, \\ D\left[A^{e}e^{-\alpha(t - t_{D} - Tlag)} + B^{e}e^{-\beta(t - t_{D} - Tlag)} + C^{e}e^{-k_{e0}(t - t_{D} - Tlag)} \right] & \text{if not.} \end{cases}$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} D_i \begin{bmatrix} Ae^{-\alpha(t-t_{D_i}-Tlag)} + Be^{-\beta(t-t_{D_i}-Tlag)} \\ -(A+B)e^{-k_a(t-t_{D_i}-Tlag)} \end{bmatrix} & \text{if } t-t_{D_n} \le Tlag, \\ -(A+B)e^{-k_a(t-t_{D_i}-Tlag)} \end{bmatrix} \\ \sum_{i=1}^{n} D_i \begin{bmatrix} Ae^{-\alpha(t-t_{D_i}-Tlag)} + Be^{-\beta(t-t_{D_i}-Tlag)} \\ -(A+B)e^{-k_a(t-t_{D_i}-Tlag)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.45)$$

$$C_{e}(t) = \begin{cases} \sum_{i=1}^{n-1} D_{i} \begin{bmatrix} A^{e}e^{-\alpha(t-t_{D_{i}}-Tlag)} + B^{e}e^{-\beta(t-t_{D_{i}}-Tlag)} + C^{e}e^{-k_{e0}(t-t_{D_{i}}-Tlag)} \\ -(A^{e} + B^{e} + C^{e})e^{-k_{a}(t-t_{D_{i}}-Tlag)} \end{bmatrix} & \text{if } t - t_{D_{n}} \leq Tlag, \\ \sum_{i=1}^{n} D_{i} \begin{bmatrix} A^{e}e^{-\alpha(t-t_{D_{i}}-Tlag)} + B^{e}e^{-\beta(t-t_{D_{i}}-Tlag)} + C^{e}e^{-k_{e0}(t-t_{D_{i}}-Tlag)} \\ -(A^{e} + B^{e} + C^{e})e^{-k_{a}(t-t_{D_{i}}-Tlag)} \end{bmatrix} & \text{if not.} \end{cases}$$

steady state

$$C(t) = \begin{cases} D \begin{bmatrix} \frac{Ae^{-\alpha(t-t_D+\tau-Tlag)}}{1-e^{-\alpha\tau}} + \frac{Be^{-\beta(t-t_D+\tau-Tlag)}}{1-e^{-\beta\tau}} \\ -\frac{(A+B)e^{-k_a(t-t_D+\tau-Tlag)}}{1-e^{-k_a\tau}} \end{bmatrix} & \text{if } t-t_D < Tlag, \\ -\frac{Ae^{-\alpha(t-t_D-Tlag)}}{1-e^{-\alpha\tau}} + \frac{Be^{-\beta(t-t_D-Tlag)}}{1-e^{-\beta\tau}} \\ -\frac{(A+B)e^{-k_a(t-t_D-Tlag)}}{1-e^{-k_a\tau}} \end{bmatrix} & \text{if not.} \end{cases}$$

$$C(t) = \begin{cases} D \begin{bmatrix} \frac{A^ee^{-\alpha(t-t_D+\tau-Tlag)}}{1-e^{-\alpha\tau}} + \frac{B^ee^{-\beta(t-t_D+\tau-Tlag)}}{1-e^{-k_a\tau}} \\ + \frac{C^ee^{-k_c0(t-t_D+\tau-Tlag)}}{1-e^{-k_a\tau}} \\ -\frac{(A^e+B^e+C^e)e^{-k_a(t-t_D+\tau-Tlag)}}{1-e^{-k_a\tau}} \end{bmatrix} & \text{if } t-t_D < Tlag, \\ -\frac{(A^e+B^e+C^e)e^{-k_a(t-t_D+\tau-Tlag)}}{1-e^{-k_a\tau}} \\ D \begin{bmatrix} \frac{A^ee^{-\alpha(t-t_D-Tlag)}}}{1-e^{-\alpha\tau}} + \frac{B^ee^{-\beta(t-t_D-Tlag)}}{1-e^{-k_a\tau}} \\ + \frac{C^ee^{-k_c0(t-t_D-Tlag)}}{1-e^{-k_a\tau}} \end{bmatrix} & \text{if not.} \end{cases}$$

Equations 1.44 to 1.46 correspond to models n°34: oral1_2cpt_TlagkaVkk12k21, n°35: oral1_2cpt_TlagkaClV1QV2 and n°36: oral1_2cpt_TlagkaalphabetaAB.

1.2.3.2 Michaelis Menten elimination

- in absence of a lag time
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \frac{D}{V}k_{a}e^{-k_{a}(t - t_{D})}$$

$$(1.47)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \sum_{i=1}^{n} \frac{D_{i}}{V} k_{a} e^{-k_{a}(t - t_{D_{i}})}$$

$$(1.48)$$

Equations 1.47 and 1.48 correspond to models $n^{\circ}32$: oral1_2cpt_kaVk12k21VmKm and $n^{\circ}33$: oral1_2cpt_kaV1QV2VmKm.

- in presence of a lag time
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \begin{cases} 0 & \text{if } t - t_{D} < Tlag, \\ \frac{D}{V}k_{a}e^{-k_{a}(t - t_{D} - Tlag)} & \text{if not.} \end{cases}$$

$$(1.49)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0} (C_{1} - C_{e})$$

$$input(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{V} k_{a} e^{-k_{a}(t - t_{D_{i}} - T lag)} & \text{if } t - t_{D_{n}} < T lag, \\ \sum_{i=1}^{n} \frac{D_{i}}{V} k_{a} e^{-k_{a}(t - t_{D_{i}} - T lag)} & \text{if not.} \end{cases}$$

$$(1.50)$$

Equations 1.49 and 1.50 correspond to models n°37: oral1_2cpt_TlagkaVk12k21VmKm and n°38: oral1_2cpt_TlagkaV1QV2VmKm.

1.2.4 Zero order absorption

•
$$A = \frac{1}{V} \frac{\alpha - k_{21}}{\alpha - \beta} = \frac{1}{V_1} \frac{\alpha - \frac{Q}{V_2}}{\alpha - \beta}$$

$$\bullet \ B = \frac{1}{V} \frac{\beta - k_{21}}{\beta - \alpha} = \frac{1}{V_1} \frac{\beta - \frac{Q}{V_2}}{\beta - \alpha}$$

$$A^e = \frac{k_{e0}A}{k_{e0} - \alpha}$$

$$\bullet \ B^e = \frac{k_{e0}B}{k_{e0} - \beta}$$

1.2.4.1 Linear elimination

- in absence of a lagtime
 - single dose

$$C(t) = \begin{cases} \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha(t - t_D)} \right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta(t - t_D)} \right) \end{bmatrix} & \text{if } t - t_D \le Tk_0, \\ \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha(t - t_D - Tk_0)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta(t - t_D - Tk_0)} \end{bmatrix} & \text{if not.} \end{cases}$$
(1.51)

$$C_{e}(t) = \begin{cases} \frac{D}{Tk_{0}} \begin{bmatrix} \frac{A^{e}}{\alpha} \left(1 - e^{-\alpha(t - t_{D})}\right) \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta(t - t_{D})}\right) \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}(t - t_{D})}\right) \end{bmatrix} & \text{if } t - t_{D} \leq Tk_{0}, \\ \frac{D}{Tk_{0}} \begin{bmatrix} \frac{A^{e}}{\alpha} \left(1 - e^{-\alpha Tk_{0}}\right) e^{-\alpha(t - t_{D} - Tk_{0})} \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta(t - t_{D} - Tk_{0})} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}Tk_{0}}\right) e^{-k_{e0}(t - t_{D} - Tk_{0})} \end{bmatrix} & \text{if not.} \end{cases}$$

multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \left[-\frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha \left(t - t_{D_i} - Tk_0 \right)} \right] \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta \left(t - t_{D_i} - Tk_0 \right)} \end{cases} & \text{if } t - t_{D_n} \leq Tk_0, \\ + \frac{D_n}{Tk_0} \left[-\frac{A}{\alpha} \left(1 - e^{-\alpha \left(t - t_{D_n} \right)} \right) \right] \\ + \frac{B}{\beta} \left(1 - e^{-\beta \left(t - t_{D_n} \right)} \right) \right] \\ \sum_{i=1}^{n} \frac{D_i}{Tk_0} \left[-\frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha \left(t - t_{D_i} - Tk_0 \right)} \right] & \text{if not.} \end{cases} \\ \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \left[-\frac{A^e}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha \left(t - t_{D_i} - Tk_0 \right)} \right] \\ + \frac{B^e}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta \left(t - t_{D_i} - Tk_0 \right)} \\ -\frac{A^e + B^e}{ke_0} \left(1 - e^{-\alpha \left(t - t_{D_i} \right)} \right) e^{-\beta \left(t - t_{D_i} - Tk_0 \right)} \\ -\frac{A^e + B^e}{\beta} \left(1 - e^{-\alpha \left(t - t_{D_n} \right)} \right) \\ -\frac{A^e + B^e}{ke_0} \left(1 - e^{-\beta \left(t - t_{D_i} \right)} \right) \\ -\frac{A^e + B^e}{ke_0} \left(1 - e^{-\beta Tk_0} \right) e^{-\alpha \left(t - t_{D_i} - Tk_0 \right)} \\ -\frac{A^e + B^e}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta \left(t - t_{D_i} - Tk_0 \right)} \\ -\frac{A^e + B^e}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta \left(t - t_{D_i} - Tk_0 \right)} \\ -\frac{A^e + B^e}{ke_0} \left(1 - e^{-ke_0 Tk_0} \right) e^{-ke_0 \left(t - t_{D_i} - Tk_0 \right)} \end{cases} & \text{if not.} \end{cases}$$

steady state

$$C(t) = \begin{cases} \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(\frac{(1 - e^{-\alpha(t - t_D)})}{1 - e^{-\alpha T}} \right) \\ + e^{-\alpha \tau} \frac{(1 - e^{-\alpha Tk_0}) e^{-\alpha(t - t_D - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{(1 - e^{-\beta(t - t_D)})}{1 - e^{-\beta Tk_0}} \right) e^{-\beta(t - t_D - Tk_0)} \\ + e^{-\beta \tau} \frac{(1 - e^{-\beta Tk_0}) e^{-\beta(t - t_D - Tk_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(\frac{(1 - e^{-\alpha Tk_0}) e^{-\alpha(t - t_D - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{(1 - e^{-\beta Tk_0}) e^{-\beta(t - t_D - Tk_0)}}{1 - e^{-\beta \tau}} \right) \end{bmatrix} & \text{if not.} \end{cases}$$

Equations 1.51 to 1.53 correspond to models $n^{\circ}39$: oral0_2cpt_Tk0Vkk12k21, $n^{\circ}40$: oral0_2cpt_Tk0ClV1QV2 and $n^{\circ}41$: oral0_2cpt_Tk0alphabetaAB.

- in presence of a lag time
 - single dose

$$C(t) = \begin{cases} 0 & \text{if } t - t_D \leq T lag, \\ \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha(t - t_D - T lag)} \right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta(t - t_D - T lag)} \right) \end{bmatrix} & \text{if } T lag < t - t_D \\ \leq T lag + T k_0, \\ \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha T k_0} \right) e^{-\alpha(t - t_D - T lag - T k_0)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta T k_0} \right) e^{-\beta(t - t_D - T lag - T k_0)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.54)$$

$$C_{e}(t) = \begin{cases} 0 & \text{if } t - t_{D} \leq Tlag, \\ \frac{D}{Tk_{0}} \left[\frac{A^{e}}{\alpha} \left(1 - e^{-\alpha(t - t_{D} - Tlag)} \right) \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta(t - t_{D} - Tlag)} \right) \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}(t - t_{D} - Tlag)} \right) \right] & \leq Tlag + Tk_{0}, \\ \frac{D}{Tk_{0}} \left[\frac{A^{e}}{\alpha} \left(1 - e^{-\alpha Tk_{0}} \right) e^{-\alpha(t - t_{D} - Tlag - Tk_{0})} \\ + \frac{B^{e}}{\beta} \left(1 - e^{-\beta Tk_{0}} \right) e^{-\beta(t - t_{D} - Tlag - Tk_{0})} \\ - \frac{A^{e} + B^{e}}{k_{e0}} \left(1 - e^{-k_{e0}Tk_{0}} \right) e^{-k_{e0}(t - t_{D} - Tlag - Tk_{0})} \right] & \text{if not.} \end{cases}$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha \left(t - t_{D_i} - Tlag - Tk_0 \right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta \left(t - t_{D_i} - Tlag - Tk_0 \right)} \end{bmatrix} & \text{if } t - t_{D_n} \leq Tlag, \\ \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha \left(t - t_{D_i} - Tlag - Tk_0 \right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta \left(t - t_{D_i} - Tlag - Tk_0 \right)} \end{bmatrix} & \text{if } Tlag < t - t_{D_n} \\ + \frac{D_n}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha (t - t_{D_n} - Tlag)} \right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta (t - t_{D_n} - Tlag)} \right) \end{bmatrix} & \leq Tlag + Tk_0, \\ \sum_{i=1}^{n} \frac{D_i}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha \left(t - t_{D_i} - Tlag - Tk_0 \right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta \left(t - t_{D_i} - Tlag - Tk_0 \right)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.55)$$

$$C_{e}\left(t\right) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{Tk_{0}} \left[\frac{A^{e}}{\alpha}\left(1 - e^{-\alpha Tk_{0}}\right) e^{-\alpha\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} + \frac{B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{k_{e0}}\left(1 - e^{-\alpha Tk_{0}}\right) e^{-\alpha\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} + \frac{B^{e}}{\beta}\left(1 - e^{-\alpha Tk_{0}}\right) e^{-\alpha\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{k_{e0}}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{k_{e0}}\left(1 - e^{-\alpha\left(t - t_{D_{n}} - Tlag\right)}\right) + \frac{B^{e}}{\beta}\left(1 - e^{-\beta\left(t - t_{D_{n}} - Tlag\right)}\right) - \frac{A^{e} + B^{e}}{k_{e0}}\left(1 - e^{-\beta\left(t - t_{D_{n}} - Tlag\right)}\right) - \frac{A^{e} + B^{e}}{k_{e0}}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\alpha\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)} - \frac{A^{e} + B^{e}}{\beta}\left(1 - e^{-\beta Tk_{0}}\right) e^{-\beta\left(t - t_{D_{i}} - Tlag - Tk_{0}\right)}$$

- steady state

$$C(t) = \begin{cases} \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(\frac{(1 - e^{-\alpha Tk_0}) e^{-\alpha(t - t_D + \tau - Tlag - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{(1 - e^{-\beta Tk_0}) e^{-\beta(t - t_D + \tau - Tlag - Tk_0)}}{1 - e^{-\beta \tau}} \right) \end{bmatrix} & \text{if } t - t_D \le Tlag, \end{cases}$$

$$C(t) = \begin{cases} \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(\frac{(1 - e^{-\alpha(t - t_D - Tlag)})}{1 - e^{-\alpha \tau}} \right) \\ + e^{-\alpha \tau} \frac{(1 - e^{-\alpha Tk_0}) e^{-\alpha(t - t_D - Tlag - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{(1 - e^{-\beta Tk_0}) e^{-\beta(t - t_D - Tlag - Tk_0)}}{1 - e^{-\beta \tau}} \right) \end{bmatrix} & \text{if } Tlag < t - t_D \\ \le Tlag + Tk_0, \end{cases}$$

$$\frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(\frac{(1 - e^{-\alpha Tk_0}) e^{-\alpha(t - t_D - Tlag - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{(1 - e^{-\beta Tk_0}) e^{-\beta(t - t_D - Tlag - Tk_0)}}{1 - e^{-\beta \tau}} \right) \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.56)$$

$$\begin{cases} \frac{D}{Tk_0} \left\{ \frac{A^e}{\alpha} \left(\frac{\left(1 - e^{-\alpha Tk_0}\right) e^{-\alpha (t - t_D + \tau - Tlag - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B^e}{\beta} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-\beta (t - t_D + \tau - Tlag - Tk_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-k_{e0}Tk_0}\right) e^{-k_{e0}(t - t_D + \tau - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\alpha (t - t_D - Tlag)}\right) e^{-\alpha (t - t_D - Tlag - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ + e^{-\alpha \tau} \frac{\left(1 - e^{-\alpha Tk_0}\right) e^{-\alpha (t - t_D - Tlag - Tk_0)}}{1 - e^{-\alpha \tau}} \right) \\ - \frac{B^e}{\beta} \left(\frac{\left(1 - e^{-\beta (t - t_D - Tlag)}\right) e^{-\beta (t - t_D - Tlag - Tk_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-k_{e0}Tk_0}\right) e^{-\beta (t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{A^e}{\beta} \left(\frac{\left(1 - e^{-\alpha Tk_0}\right) e^{-\alpha (t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{B^e}{\beta} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-\beta (t - t_D - Tlag - Tk_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-\beta (t - t_D - Tlag - Tk_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-\beta (t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}{1 - e^{-k_{e0}\tau}}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}}{1 - e^{-k_{e0}\tau}}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}}{1 - e^{-k_{e0}\tau}}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}(t - t_D - Tlag - Tk_0)}}}{1 - e^{-k_{e0}\tau}}} \right) \\ - \frac{A^e + B^e}{k_{e0}} \left(\frac{\left(1 - e^{-\beta Tk_0}\right) e^{-k_{e0}\tau}}}{1 - e^{-k_{e0}\tau}}} \right$$

Equations 1.54 to 1.56 correspond to models n°44: oral0_2cpt_TlagTk0Vkk12k21, n°45: oral0_2cpt_TlagTk0ClV1QV2 and n°46: oral0_2cpt_TlagTk0alphabetaAB.

1.2.4.2 Michaelis Menten elimination

- in absence of a lagtime
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \begin{cases} \frac{D}{Tk_{0}} \frac{1}{V} & \text{if } 0 \leq t - t_{D} \leq Tk_{0} \\ 0 & \text{if not.} \end{cases}$$

$$(1.57)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \begin{cases} \frac{D_{i}}{Tk_{0}} \frac{1}{V} & \text{if } 0 \leq t - t_{D_{i}} \leq Tk_{0}, \\ 0 & \text{if not.} \end{cases}$$

$$(1.58)$$

Equations 1.57 and 1.58 correspond to models n^42 : oral0_2cpt_Tk0Vk12k21VmKm and n^43 : oral0_2cpt_Tk0V1QV2VmKm.

- in presence of a lag time
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \begin{cases} 0 & \text{if } 0 \leq t - t_{D} \leq Tlag, \\ \frac{D}{Tk_{0}} \frac{1}{V} & \text{if } Tlag < t - t_{D} \leq Tlag + Tk_{0}, \\ 0 & \text{if not.} \end{cases}$$

$$(1.59)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \\ C_{e}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{e}}{dt} = k_{e0}(C_{1} - C_{e})$$

$$input(t) = \begin{cases} 0 & \text{if } 0 \leq t - t_{D_{i}} \leq Tlag, \\ \frac{D_{i}}{Tk_{0}} \frac{1}{V} & \text{if } Tlag < t - t_{D_{i}} \leq Tlag + Tk_{0}, \\ 0 & \text{if not.} \end{cases}$$

$$(1.60)$$

Equations 1.59 and 1.60 correspond to models $n^{\circ}47$: oral0_2cpt_TlagTk0Vk12k21VmKm and $n^{\circ}48$: oral0_2cpt_TlagTk0V1QV2VmKm.

1.3 Three compartment models

The three compartment model implemented in Monolix is described in figure 1.2.

Figure 1.2: The mammillary model with three compartments implemented in Monolix, parameterized in micro-constants V, k, k_{12} , k_{21} , k_{13} and k_{31} (a) or with Cl, V_1 , Q_2 , V_2 Q_3 and V_3 (b)

Parameters

- $V = V_1$ = volume of distribution of first compartment
- k = elimination rate constant
- Cl = clearance of elimination
- $V_m = \text{maximum elimination rate (amount per time unit)}$
- K_m = Michaelis-Menten constant (concentration unit)
- $k_{12} = \text{distribution rate constant from compartment 1 to compartment 2}$
- $k_{21} = \text{distribution rate constant from compartment 2 to compartment 1}$
- Q_2 = inter-compartmental clearance from compartment 1 to compartment 2
- V_2 = volume of distribution of second compartment
- \bullet $k_{13} =$ distribution rate constant from compartment 1 to compartment 3
- $k_{31} = \text{distribution rate constant from compartment 3 to compartment 1}$
- Q_3 = inter-compartmental clearance from compartment 1 to compartment 3

- V_3 = volume of distribution of third compartment
- k_a = absorption rate constant
- Tlag = lag time
- Tk_0 = absorption duration for zero order absorption
- $\alpha = \text{first rate constant}$
- $\beta = \text{second rate constant}$
- γ = third rate constant
- A = first macro-constant
- B = second macro-constant
- C = third macro-constant

NB: V_1 , V_2 , V_3 , Cl, Q_2 and Q_3 are apparent volumes and clearances for extra-vascular administration.

Parameterisation

There are three parameterisations for three compartment models: $(V, k, k_{12}, k_{21}, k_{13} \text{ and } k_{31})$, $(Cl, V_1, Q_2, V_2, Q_3 \text{ and } V_3)$ or $(\alpha, \beta, \gamma, A, B \text{ and } C)$ except for Michaelis-Menten elimination where the last parameterisation is not used. The second parameterisation terms are derived using:

- \bullet $V_1 = V$
- $Cl = k \times V_1$
- $\bullet \ Q_2 = k_{12} \times V_1$
- $V_2 = \frac{k_{12}}{k_{21}} \times V_1$
- $Q_3 = k_{13} \times V_1$
- $V_3 = \frac{k_{13}}{k_{31}} \times V_1$

The equations are given for the third parameterisation with:

$$\bullet \ a_0 = kk_{21}k_{31} = \frac{Cl}{V_1} \frac{Q_2}{V_2} \frac{Q_3}{V_3}$$

$$\bullet \ a_1 = \begin{cases} kk_{31} + k_{21}k_{31} + k_{21}k_{13} + kk_{21} + k_{31}k_{12} \\ \frac{Cl}{V_1}\frac{Q_3}{V_3} + \frac{Q_2}{V_2}\frac{Q_3}{V_3} + \frac{Q_2}{V_2}\frac{Q_3}{V_1} + \frac{Cl}{V_1}\frac{Q_2}{V_2} + \frac{Q_3}{V_3}\frac{Q_2}{V_1} \end{cases}$$

•
$$a_2 = \begin{cases} k + k_{12} + k_{13} + k_{21} + k_{31} \\ \frac{Cl}{V_1} + \frac{Q_2}{V_1} + \frac{Q_3}{V_1} + \frac{Q_2}{V_2} + \frac{Q_3}{V_3} \end{cases}$$

•
$$p = a_1 - a_2^2/3$$

•
$$q = 2a_2^3/27 - a_1a_2/3 + a_0$$

•
$$r_1 = \sqrt{-(p^3/27)}$$

•
$$r_2 = 2r_1^{1/3}$$

•
$$\phi = \arccos\left(-\frac{q}{2r_1}\right)/3$$

•
$$\alpha = -(\cos(\phi) r_2 - a_2/3)$$

•
$$\beta = -\left(\cos\left(\phi + \frac{2\pi}{3}\right)r_2 - a_2/3\right)$$

•
$$\gamma = -\left(\cos\left(\phi + \frac{4\pi}{3}\right)r_2 - a_2/3\right)$$

The link between A, B, C and the parameters of the first and second parameterisations depends on the input and are given in each subsection.

In the following, $C(t) = C_1$ represents the drug concentration in the first compartment, C_2 represents the drug concentration in the second compartment and C_3 represents the drug concentration in the third compartment.

1.3.1 IV bolus

•
$$A = \frac{1}{V} \frac{k_{21} - \alpha}{\alpha - \beta} \frac{k_{31} - \alpha}{\alpha - \gamma} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \alpha}{\alpha - \beta} \frac{\frac{Q_3}{V_3} - \alpha}{\alpha - \gamma}$$

•
$$B = \frac{1}{V} \frac{k_{21} - \beta}{\beta - \alpha} \frac{k_{31} - \beta}{\beta - \gamma} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \beta}{\beta - \alpha} \frac{\frac{Q_3}{V_3} - \beta}{\beta - \gamma}$$

•
$$C = \frac{1}{V} \frac{k_{21} - \gamma}{\gamma - \beta} \frac{k_{31} - \gamma}{\gamma - \alpha} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \gamma}{\gamma - \beta} \frac{\frac{Q_3}{V_3} - \gamma}{\gamma - \alpha}$$

1.3.1.1 Linear elimination

• single dose

$$C(t) = D\left(Ae^{-\alpha(t-t_D)} + Be^{-\beta(t-t_D)} + Ce^{-\gamma(t-t_D)}\right)$$
(1.61)

• multiple doses

$$C(t) = \sum_{i=1}^{n} D_i \left(A e^{-\alpha(t-tD_i)} + B e^{-\beta(t-tD_i)} + C e^{-\gamma(t-tD_i)} \right)$$
 (1.62)

• steady state

$$C(t) = D\left(\frac{Ae^{-\alpha(t-t_D)}}{1 - e^{-\alpha\tau}} + \frac{Be^{-\beta(t-t_D)}}{1 - e^{-\beta\tau}} + \frac{Ce^{-\gamma(t-t_D)}}{1 - e^{-\gamma\tau}}\right)$$
(1.63)

Equations 1.61 to 1.63 correspond to models n°49: bolus_3cpt_Vkk12k21k13k31, n°50: bolus_2cpt_ClV1Q2V2Q3V3 and n°51: bolus_3cpt_alphabetagammaABC.

1.3.1.2 Michaelis Menten elimination

• single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = & 0 \text{ for } t < t_{D} \\ C_{2}(t) = & 0 \text{ for } t \leq t_{D} \\ C_{3}(t) = & 0 \text{ for } t \leq t_{D} \\ C_{1}(t_{D}) = & \frac{D}{V} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3}$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$(1.64)$$

• multiple doses

 $C_{1}^{(n)}(t)$ is the concentration in the first compartment after the n^{th} dose.

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \\ C_{3}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$C_{1}(t_{D_{1}}) = C_{1}^{(1)}(t_{D_{1}}) = \frac{D_{1}}{V}$$

$$C_{1}(t_{D_{n}}) = C_{1}^{(n)}(t_{D_{n}}) = C_{1}^{(n-1)}(t_{D_{n}}) + \frac{D_{n}}{V}$$

$$\begin{cases} \frac{dC_{1}}{dt} = -\frac{V_{m} \times C_{1}}{V_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} \\ \frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2} \\ \frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3} \end{cases}$$

$$(1.65)$$

Equations 1.64 and 1.65 correspond to models $n^{\circ}52$: bolus_3cpt_Vk12k21k13k31VmKm and $n^{\circ}53$: bolus_3cpt_V1Q2V2Q3V3VmKm.

1.3.2 IV infusion

$$\bullet \ A = \frac{1}{V} \frac{k_{21} - \alpha}{\alpha - \beta} \frac{k_{31} - \alpha}{\alpha - \gamma} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \alpha}{\alpha - \beta} \frac{\frac{Q_3}{V_3} - \alpha}{\alpha - \gamma}$$

$$\bullet \ B = \frac{1}{V} \frac{k_{21} - \beta}{\beta - \alpha} \frac{k_{31} - \beta}{\beta - \gamma} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \beta}{\beta - \alpha} \frac{\frac{Q_3}{V_3} - \beta}{\beta - \gamma}$$

$$\bullet \ C = \frac{1}{V} \frac{k_{21} - \gamma}{\gamma - \beta} \frac{k_{31} - \gamma}{\gamma - \alpha} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \gamma}{\gamma - \beta} \frac{\frac{Q_3}{V_3} - \gamma}{\gamma - \alpha}$$

1.3.2.1 linear elimination

• single dose

$$C(t) = \begin{cases} \frac{D}{Tinf} \begin{bmatrix} \frac{A}{\alpha} (1 - e^{-\alpha(t - t_D)}) \\ + \frac{B}{\beta} (1 - e^{-\beta(t - t_D)}) \\ + \frac{C}{\gamma} (1 - e^{-\gamma(t - t_D)}) \end{bmatrix} & \text{if } t - t_D \leq Tinf, \\ \frac{D}{Tinf} \begin{bmatrix} \frac{A}{\alpha} (1 - e^{-\alpha Tinf}) e^{-\alpha(t - t_D - Tinf)} \\ + \frac{B}{\beta} (1 - e^{-\beta Tinf}) e^{-\beta(t - t_D - Tinf)} \\ + \frac{C}{\gamma} (1 - e^{-\gamma Tinf}) e^{-\gamma(t - t_D - Tinf)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.66)$$

• multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tinf_i} & \frac{A}{\alpha} \left(1 - e^{-\alpha Tinf_i}\right) e^{-\alpha \left(t - t_{D_i} - Tinf_i\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tinf_i}\right) e^{-\beta \left(t - t_{D_i} - Tinf_i\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tinf_i}\right) e^{-\gamma \left(t - t_{D_i} - Tinf_i\right)} \end{cases} & \text{if } t - t_{D_n} \le Tinf, \\ + \frac{D}{Tinf_n} & \frac{A}{\alpha} \left(1 - e^{-\alpha (t - t_{D_n})}\right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta (t - t_{D_n})}\right) \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma (t - t_{D_n})}\right) \end{bmatrix} & \text{if } t - t_{D_n} \le Tinf, \end{cases} \\ \sum_{i=1}^{n} \frac{D_i}{Tinf_i} & \frac{A}{\alpha} \left(1 - e^{-\alpha Tinf_i}\right) e^{-\alpha (t - t_{D_i} - Tinf_i)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tinf_i}\right) e^{-\beta (t - t_{D_i} - Tinf_i)} & \text{if not.} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tinf_i}\right) e^{-\gamma (t - t_{D_i} - Tinf_i)} \end{cases} & \text{if not.} \end{cases}$$

• steady state

$$C(t) = \begin{cases} \frac{A}{\alpha} \begin{pmatrix} (1 - e^{-\alpha(t - t_D)}) \\ + e^{-\alpha\tau} \frac{(1 - e^{-\alpha Tinf}) e^{-\alpha(t - t_D - Tinf)}}{1 - e^{-\alpha\tau}} \end{pmatrix} \\ + \frac{B}{\beta} \begin{pmatrix} (1 - e^{-\beta(t - t_D)}) \\ + e^{-\beta\tau} \frac{(1 - e^{-\beta Tinf}) e^{-\beta(t - t_D - Tinf)}}{1 - e^{-\beta\tau}} \end{pmatrix} \\ + \frac{C}{\gamma} \begin{pmatrix} (1 - e^{-\gamma(t - t_D)}) \\ + e^{-\gamma\tau} \frac{(1 - e^{-\gamma Tinf}) e^{-\gamma(t - t_D - Tinf)}}{1 - e^{-\gamma\tau}} \end{pmatrix} \\ \frac{D}{Tinf} \begin{pmatrix} \frac{A}{\alpha} \left(\frac{(1 - e^{-\alpha Tinf}) e^{-\alpha(t - t_D - Tinf)}}{1 - e^{-\alpha\tau}} \right) \\ + \frac{B}{\beta} \left(\frac{(1 - e^{-\beta Tinf}) e^{-\beta(t - t_D - Tinf)}}{1 - e^{-\beta\tau}} \right) \\ + \frac{C}{\gamma} \left(\frac{(1 - e^{-\gamma Tinf}) e^{-\gamma(t - t_D - Tinf)}}{1 - e^{-\gamma\tau}} \right) \end{cases}$$
 if not. (1.68)

Equations 1.66 to 1.68 correspond to models n°54: infusion_3cpt_Vkk12k21k13k31, n°55: infusion_3cpt_ClV1Q2V2Q3V3 and n°56: infusion_3cpt_alphabetagammaABC.

1.3.2.2 Michaelis Menten elimination

• single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} \frac{D}{Tinf} \frac{1}{V} & \text{if } 0 \leq t - t_{D} \leq Tinf \\ 0 & \text{if not.} \end{cases}$$

$$(1.69)$$

• multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} \frac{D_{i}}{Tinf_{i}} \frac{1}{V} & \text{if } 0 \leq t - t_{D_{i}} \leq Tinf_{i}, \\ 0 & \text{if not.} \end{cases}$$

$$(1.70)$$

Equations 1.69 and 1.70 correspond to models $n^{\circ}57$: infusion_3cpt_Vk12k21k13k31VmKm and $n^{\circ}58$: infusion_3cpt_V1Q2V2Q3V3VmKm.

1.3.3 First order absorption

•
$$A = \frac{1}{V} \frac{k_a}{k_a - \alpha} \frac{k_{21} - \alpha}{\alpha - \beta} \frac{k_{31} - \alpha}{\alpha - \gamma} = \frac{1}{V_1} \frac{k_a}{k_a - \alpha} \frac{\frac{Q_2}{V_2} - \alpha}{\alpha - \beta} \frac{\frac{Q_3}{V_3} - \alpha}{\alpha - \gamma}$$

•
$$B = \frac{1}{V} \frac{k_a}{k_a - \beta} \frac{k_{21} - \beta}{\beta - \alpha} \frac{k_{31} - \beta}{\beta - \gamma} = \frac{1}{V_1} \frac{k_a}{k_a - \beta} \frac{\frac{Q_2}{V_2} - \beta}{\beta - \alpha} \frac{\frac{Q_3}{V_3} - \beta}{\beta - \gamma}$$

•
$$C = \frac{1}{V} \frac{k_a}{k_a - \gamma} \frac{k_{21} - \gamma}{\gamma - \beta} \frac{k_{31} - \gamma}{\gamma - \alpha} = \frac{1}{V_1} \frac{k_a}{k_a - \gamma} \frac{\frac{Q_2}{V_2} - \gamma}{\gamma - \beta} \frac{\frac{Q_3}{V_3} - \gamma}{\gamma - \alpha}$$

1.3.3.1 Linear elimination

- in absence of a lag time
 - single dose

$$C(t) = D\left(Ae^{-\alpha(t-t_D)} + Be^{-\beta(t-t_D)} + Ce^{-\gamma(t-t_D)} - (A+B+C)e^{-k_a(t-t_D)}\right)$$
(1.71)

- multiple doses

$$C(t) = \sum_{i=1}^{n} D_i \left(A e^{-\alpha (t - t_{D_i})} + B e^{-\beta (t - t_{D_i})} + C e^{-\gamma (t - t_{D_i})} - (A + B + C) e^{-k_a (t - t_{D_i})} \right)$$
(1.72)

- steady state

$$C(t) = D\left(\frac{Ae^{-\alpha(t-t_D)}}{1 - e^{-\alpha\tau}} + \frac{Be^{-\beta(t-t_D)}}{1 - e^{-\beta\tau}} + \frac{Ce^{-\gamma(t-t_D)}}{1 - e^{-\gamma\tau}} - \frac{(A+B+C)e^{-k_a(t-t_D)}}{1 - e^{-k_a\tau}}\right)$$
(1.73)

Equations 1.71 to 1.73 correspond to models n°59: oral1_3cpt_kaVkk12k21k13k31, n°60: oral1_3cpt_kaClV1Q2V2Q3V3 and n°61: oral1_3cpt_kaalphabetagammaABC.

- in presence of a lag time
 - single dose

$$C(t) = \begin{cases} 0 & \text{if } t - t_D \le T lag, \\ D \left[A e^{-\alpha(t - t_D - T lag)} + B e^{-\beta(t - t_D - T lag)} + B e^{-\beta(t - t_D - T lag)} \right] & \text{if not.} \end{cases}$$

$$(1.74)$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} D_i \begin{bmatrix} Ae^{-\alpha(t-t_{D_i}-Tlag)} + Be^{-\beta(t-t_{D_i}-Tlag)} \\ + Ce^{-\gamma(t-t_{D_i}-Tlag)} - (A+B+C)e^{-k_a(t-t_{D_i}-Tlag)} \end{bmatrix} & \text{if } t-t_{D_n} \le Tlag, \\ \sum_{i=1}^{n} D_i \begin{bmatrix} Ae^{-\alpha(t-t_{D_i}-Tlag)} + Be^{-\beta(t-t_{D_i}-Tlag)} \\ + Ce^{-\gamma(t-t_{D_i}-Tlag)} - (A+B+C)e^{-k_a(t-t_{D_i}-Tlag)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.75)$$

- steady state

$$C\left(t\right) = \begin{cases} D \left[\frac{Ae^{-\alpha(t-t_D+\tau-Tlag)}}{1-e^{-\alpha\tau}} + \frac{Be^{-\beta(t-t_D+\tau-Tlag)}}{1-e^{-\beta\tau}} \\ + \frac{Ce^{-\gamma(t-t_D+\tau-Tlag)}}{1-e^{-\gamma\tau}} - \frac{(A+B+C)e^{-k_a(t-t_D+\tau-Tlag)}}{1-e^{-k_a\tau}} \right] & \text{if } t-t_D < Tlag, \\ D \left[\frac{Ae^{-\alpha(t-t_D-Tlag)}}{1-e^{-\alpha\tau}} + \frac{Be^{-\beta(t-t_D-Tlag)}}{1-e^{-\beta\tau}} \\ + \frac{Ce^{-\gamma(t-t_D-Tlag)}}{1-e^{-\gamma\tau}} - \frac{(A+B+C)e^{-k_a(t-t_D-Tlag)}}{1-e^{-k_a\tau}} \right] & \text{if not.} \end{cases}$$

$$(1.76)$$

Equations 1.74 to 1.76 correspond to models $n^{\circ}64$: oral1_3cpt_TlagkaVkk12k21k13K31, $n^{\circ}65$: oral1_3cpt_TlagkaClV1Q2V2Q3V3 and $n^{\circ}66$: oral1_3cpt_TlagkaalphabetagammaABC.

1.3.3.2 Michaelis Menten elimination

- in absence of a lag time
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{3}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input \\ \frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \frac{D}{V}k_{a}e^{-k_{a}(t-t_{D})}$$

$$(1.77)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \\ C_{3}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \sum_{i=1}^{n} \frac{D_{i}}{V} k_{a} e^{-k_{a}(t - t_{D_{i}})}$$

$$(1.78)$$

Equations 1.77 and 1.78 correspond to models $n^{\circ}62$: oral1_3cpt_kaVk12k21k13k31VmKm and $n^{\circ}63$: oral1_3cpt_kaV1Q2V2Q3V3VmKm.

- in presence of a lag time
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} 0 & \text{if } t - t_{D} < Tlag, \\ \frac{D}{V}k_{a}e^{-k_{a}(t - t_{D} - Tlag)} & \text{if not.} \end{cases}$$

$$(1.79)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_{i}}{V} k_{a}e^{-k_{a}(t - t_{D_{i}} - T lag)} & \text{if } t - t_{D_{n}} < T lag, \\ \sum_{i=1}^{n} \frac{D_{i}}{V} k_{a}e^{-k_{a}(t - t_{D_{i}} - T lag)} & \text{if not.} \end{cases}$$

Equations 1.79 and 1.80 correspond to models n°67: oral1_3cpt_TlagkaVk12k21k13k31VmKm and n°68: oral1_3cpt_TlagkaV1Q2V2Q3V3VmKm.

1.3.4 Zero order absorption

•
$$A = \frac{1}{V} \frac{k_{21} - \alpha}{\alpha - \beta} \frac{k_{31} - \alpha}{\alpha - \gamma} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \alpha}{\alpha - \beta} \frac{\frac{Q_3}{V_3} - \alpha}{\alpha - \gamma}$$

•
$$B = \frac{1}{V} \frac{k_{21} - \beta}{\beta - \alpha} \frac{k_{31} - \beta}{\beta - \gamma} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \beta}{\beta - \alpha} \frac{\frac{Q_3}{V_3} - \beta}{\beta - \gamma}$$

$$\bullet \ C = \frac{1}{V} \frac{k_{21} - \gamma}{\gamma - \beta} \frac{k_{31} - \gamma}{\gamma - \alpha} = \frac{1}{V_1} \frac{\frac{Q_2}{V_2} - \gamma}{\gamma - \beta} \frac{\frac{Q_3}{V_3} - \gamma}{\gamma - \alpha}$$

1.3.4.1 Linear elimination

- in absence of a lagtime
 - single dose

$$C(t) = \begin{cases} \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha(t - t_D)} \right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta(t - t_D)} \right) \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma(t - t_D)} \right) \end{bmatrix} & \text{if } t - t_D \le Tk_0, \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma(t - t_D)} \right) \end{bmatrix} \\ \frac{D}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0} \right) e^{-\alpha(t - t_D - Tk_0)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0} \right) e^{-\beta(t - t_D - Tk_0)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0} \right) e^{-\gamma(t - t_D - Tk_0)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.81)$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha T k_0}\right) e^{-\alpha \left(t - t_{D_i} - T k_0\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta T k_0}\right) e^{-\beta \left(t - t_{D_i} - T k_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma T k_0}\right) e^{-\gamma \left(t - t_{D_i} - T k_0\right)} \end{bmatrix} & \text{if } t - t_{D_n} \le T k_0, \\ + \frac{D_n}{Tk_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha (t - t_{D_n})}\right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta (t - t_{D_n})}\right) \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma (t - t_{D_n})}\right) \end{bmatrix} & \text{if } t - t_{D_n} \le T k_0, \end{cases}$$

$$\sum_{i=1}^{n} \frac{D_i}{T k_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha T k_0}\right) e^{-\alpha (t - t_{D_i} - T k_0)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta T k_0}\right) e^{-\alpha (t - t_{D_i} - T k_0)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma T k_0}\right) e^{-\gamma (t - t_{D_i} - T k_0)} \end{bmatrix} & \text{if not.} \end{cases}$$

- steady state

$$C(t) = \begin{cases} \frac{A}{\alpha} \left(\frac{1 - e^{-\alpha(t - t_D)}}{+ e^{-\alpha \tau}} \frac{1 - e^{-\alpha T k_0}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{1 - e^{-\beta(t - t_D)}}{1 - e^{-\beta \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{1 - e^{-\beta(t - t_D)}}{1 - e^{-\beta \tau}} \right) \\ + \frac{C}{\gamma} \left(\frac{1 - e^{-\beta T k_0}}{1 - e^{-\beta T k_0}} \right) e^{-\beta(t - t_D - T k_0)} \\ + \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma(t - t_D)}}{1 - e^{-\gamma \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{1 - e^{-\alpha T k_0}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{1 - e^{-\beta T k_0}}{1 - e^{-\beta \tau}} \right) e^{-\beta(t - t_D - T k_0)} \\ + \frac{C}{\gamma} \left(\frac{1 - e^{-\beta T k_0}}{1 - e^{-\beta \tau}} \right) e^{-\beta(t - t_D - T k_0)} \\ + \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} e^{-\gamma(t - t_D - T k_0)} \\ - \frac{C}{\gamma} \left(\frac{1 - e^{-\gamma T k_0}}{1 - e^{-\gamma \tau}} \right) e^{-\gamma(t - t_D - T k_0)} e^{-\gamma(t - t_D -$$

Equations 1.81 to 1.83 correspond to models $n^{\circ}69$: oral0_3cpt_Tk0Vkk12k21k13K31, $n^{\circ}70$: oral0_3cpt_Tk0ClV1Q2V2Q3V3 and $n^{\circ}71$: oral0_3cpt_Tk0alphabetagammaABC.

- in presence of a lag time
 - single dose

$$C(t) = \begin{cases} 0 & \text{if } t - t_D \leq T lag, \\ \frac{A}{\alpha} \left(1 - e^{-\alpha(t - t_D - T lag)} \right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta(t - t_D - T lag)} \right) \\ + \frac{C}{\gamma} \left(1 - e^{-\beta(t - t_D - T lag)} \right) \\ + \frac{A}{\gamma} \left(1 - e^{-\gamma(t - t_D - T lag)} \right) \end{cases} & \text{if } T lag < t - t_D \leq T lag + T k_0, \\ \frac{D}{T k_0} \begin{bmatrix} \frac{A}{\alpha} \left(1 - e^{-\alpha T k_0} \right) e^{-\alpha(t - t_D - T lag - T k_0)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta T k_0} \right) e^{-\alpha(t - t_D - T lag - T k_0)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma T k_0} \right) e^{-\gamma(t - t_D - T lag - T k_0)} \end{bmatrix} & \text{if not.} \end{cases}$$

$$(1.84)$$

- multiple doses

$$C(t) = \begin{cases} \sum_{i=1}^{n-1} \frac{D_i}{Tk_0} & \frac{A}{\alpha} \left(1 - e^{-\alpha Tk_0}\right) e^{-\alpha \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0}\right) e^{-\beta \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\alpha Tk_0}\right) e^{-\alpha \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0}\right) e^{-\alpha \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\beta Tk_0}\right) e^{-\beta \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\alpha \left(t - t_{D_n} - Tlag\right)}\right) \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma \left(t - t_{D_n} - Tlag\right)}\right) \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)}\right) \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0}\right) e^{-\alpha \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0}\right) e^{-\beta \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{B}{\beta} \left(1 - e^{-\beta Tk_0}\right) e^{-\beta \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag - Tk_0\right)} \\ + \frac{C}{\gamma} \left(1 - e^{-\gamma Tk_0}\right) e^{-\gamma \left(t - t_{D_i} - Tlag$$

- steady state

$$C(t) = \begin{cases} \frac{A}{\alpha} \left(\frac{\left(1 - e^{-\alpha T k_0}\right) e^{-\alpha (t - t_D + \tau - T lag - T k_0)}}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{\left(1 - e^{-\beta T k_0}\right) e^{-\beta (t - t_D + \tau - T lag - T k_0)}}{1 - e^{-\beta \tau}} \right) \\ + \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\gamma T k_0}\right) e^{-\gamma (t - t_D + \tau - T lag - T k_0)}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{A}{\alpha} \left(\frac{\left(1 - e^{-\alpha (t - t_D - T lag)}\right)}{1 - e^{-\alpha \tau}} \right) \\ + e^{-\alpha \tau} \frac{\left(1 - e^{-\alpha (t - t_D - T lag - T k_0)}\right)}{1 - e^{-\alpha \tau}} \right) \\ + \frac{B}{\beta} \left(\frac{\left(1 - e^{-\beta (t - t_D - T lag - T k_0)}\right)}{1 - e^{-\beta \tau}} \right) \\ + \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\beta (t - t_D - T lag - T k_0)}\right)}{1 - e^{-\beta \tau}} \right) \\ + \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\gamma (t - t_D - T lag - T k_0)}\right)}{1 - e^{-\gamma \tau}} \right) \\ - \frac{A}{\alpha} \left(\frac{\left(1 - e^{-\alpha T k_0}\right) e^{-\alpha (t - t_D - T lag - T k_0)}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{D}{T k_0} + \frac{B}{\beta} \left(\frac{\left(1 - e^{-\beta T k_0}\right) e^{-\beta (t - t_D - T lag - T k_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\beta T k_0}\right) e^{-\beta (t - t_D - T lag - T k_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\gamma T k_0}\right) e^{-\beta (t - t_D - T lag - T k_0)}}{1 - e^{-\beta \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\gamma T k_0}\right) e^{-\beta (t - t_D - T lag - T k_0)}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\gamma T k_0}\right) e^{-\beta (t - t_D - T lag - T k_0)}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\gamma T k_0}\right) e^{-\beta (t - t_D - T lag - T k_0)}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{\left(1 - e^{-\gamma T k_0}\right) e^{-\beta (t - t_D - T lag - T k_0)}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{C}{\gamma} \left(\frac{C}{\gamma} \right) e^{-\gamma (t - t_D - T lag - T k_0)}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{C}{\gamma} \left(\frac{C}{\gamma} \right) e^{-\beta (t - t_D - T lag - T k_0}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{C}{\gamma} \left(\frac{C}{\gamma} \right) e^{-\beta (t - t_D - T lag - T k_0}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{C}{\gamma} \left(\frac{C}{\gamma} \right) e^{-\gamma (t - t_D - T lag - T k_0}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{C}{\gamma} \left(\frac{C}{\gamma} \right) e^{-\gamma (t - t_D - T lag - T k_0}}{1 - e^{-\gamma \tau}} \right) \\ - \frac{C}{\gamma} \left(\frac{C}{\gamma} \right) e^{-\gamma (t - t_D - T lag - T k_0} \right)$$

Equations 1.84 to 1.86 correspond to models $n^\circ 74$: oral0_3cpt_TlagTk0Vkk12k21k13K31, $n^\circ 75$: oral0_3cpt_TlagTk0ClV1Q2V2Q3V3 and $n^\circ 76$: oral0_3cpt_TlagTk0alphabetagammaABC.

1.3.4.2 Michaelis Menten elimination

- in absence of a lagtime
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{3}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} \frac{D}{Tk_{0}} \frac{1}{V} & \text{if } 0 \leq t - t_{D} \leq Tk_{0} \\ 0 & \text{if not.} \end{cases}$$

$$(1.87)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} \frac{D_{i}}{Tk_{0}} \frac{1}{V} & \text{if } 0 \leq t - t_{D_{i}} \leq Tk_{0}, \\ 0 & \text{if not.} \end{cases}$$

$$(1.88)$$

Equations 1.87 and 1.88 correspond to models $n^{\circ}72:$ oral0_3cpt_Tk0Vk12k21k13k31VmKm and $n^{\circ}73:$ oral0_3cpt_Tk0V1Q2V2Q3V3VmKm.

- in presence of a lag time
 - single dose

Initial conditions:
$$\begin{cases} C_{1}(t) = 0 \text{ for } t < t_{D} \\ C_{2}(t) = 0 \text{ for } t \leq t_{D} \\ C_{3}(t) = 0 \text{ for } t \leq t_{D} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} 0 & \text{if } 0 \leq t - t_{D} \leq Tlag, \\ \frac{D}{Tk_{0}} \frac{1}{V} & \text{if } Tlag < t - t_{D} \leq Tlag + Tk_{0}, \\ 0 & \text{if not.} \end{cases}$$

$$(1.89)$$

- multiple doses

Initial conditions:
$$\begin{cases} C_{1}(t) = & 0 \text{ for } t < t_{D_{1}} \\ C_{2}(t) = & 0 \text{ for } t \leq t_{D_{1}} \\ C_{3}(t) = & 0 \text{ for } t \leq t_{D_{1}} \end{cases}$$

$$\frac{dC_{1}}{dt} = -\frac{\frac{V_{m}}{V} \times C_{1}}{K_{m} + C_{1}} - k_{12}C_{1} + k_{12}C_{2} - k_{13}C_{1} + k_{13}C_{3} + input$$

$$\frac{dC_{2}}{dt} = k_{21}C_{1} - k_{21}C_{2} \qquad (1.90)$$

$$\frac{dC_{3}}{dt} = k_{31}C_{1} - k_{31}C_{3}$$

$$input(t) = \begin{cases} 0 & \text{if } 0 \leq t - t_{D_{i}} \leq Tlag, \\ \frac{D_{i}}{Tk_{0}} \frac{1}{V} & \text{if } Tlag < t - t_{D_{i}} \leq Tlag + Tk_{0}, \\ 0 & \text{if not.} \end{cases}$$

Equations 1.89 and 1.90 correspond to models $n^{\circ}77$: oral0_3cpt_TlagTk0Vk12k21k13k31VmKm and $n^{\circ}78$: oral0_3cpt_TlagTk0V1Q2V2Q3V3VmKm.

Chapter 2

Pharmacodynamic models

This chapter describe the pharmacodynamic models implemented in the Monolix software. Some of these pharmacodynamic models can be used alone or linked to any pharmacokinetic model. Some can only be used linked to any pharmacokinetic model. Two different type of models are presented here:

- The immediate response models (alone or linked to a pharmacokinetic model)
- The turnover models (only linked to a pharmacokinetic model)

2.1 Immediate response models

For these response models, the effect E(t) is expressed as:

$$E(t) = A(t) + S(t) \tag{2.1}$$

where A(t) represents the model of drug action and S(t) corresponds to the baseline/disease model. A(t) is a function of the concentration C(t) in the central compartment or of the concentration $C_e(t)$ in the effect compartment (not available for three compartments models).

The drug action models are presented in section 2.1.1 for C(t). The baseline/disease models are presented in section 2.1.2. Any combination of those two models is available in the Monolix library and their name are given in section 2.1.3.

Parameters

- $A_{lin} = \text{constant associated to } C(t)$
- $A_{quad} = \text{constant}$ associated to the square of C(t)
- $A_{log} = \text{constant associated to the logarithm of } C(t)$
- $E_{max} = \text{maximal agonistic response}$
- $I_{max} = \text{maximal antagonistic response}$
- $C_{50} = \text{concentration to get half of the maximal response (=drug potency)}$

- $\gamma = \text{sigmoidicity factor}$
- S_0 = baseline value of the studied effect
- k_{prog} = rate constant of disease progression

2.1.1 Drug action models

• linear model

$$A(t) = A_{lin}C(t) \tag{2.2}$$

quadratic model

$$A(t) = A_{lin}C(t) + A_{quad}C(t)^{2}$$
(2.3)

• logarithmic model

$$A(t) = A_{log}log(C(t))$$
(2.4)

• E_{max} model

$$A(t) = \frac{E_{max}C(t)}{C(t) + C_{50}}$$

$$(2.5)$$

• sigmoïd E_{max} model

$$A(t) = \frac{E_{max}C(t)^{\gamma}}{C(t)^{\gamma} + C_{50}^{\gamma}}$$
(2.6)

• I_{max} model

$$A(t) = 1 - \frac{I_{max}C(t)}{C(t) + C_{50}}$$
(2.7)

• sigmoïd I_{max} model

$$A(t) = 1 - \frac{I_{max}C(t)^{\gamma}}{C(t)^{\gamma} + C_{50}^{\gamma}}$$
(2.8)

2.1.2 Baseline/disease models

• null baseline

$$S\left(t\right) = 0\tag{2.9}$$

• constant baseline with no disease progression

$$S\left(t\right) = S_0 \tag{2.10}$$

• linear disease progression

$$S\left(t\right) = S_0 + k_{prog}t\tag{2.11}$$

• exponential disease increase

$$S(t) = S_0 e^{-k_{prog}t} (2.12)$$

• exponential disease decrease

$$S(t) = S_0 \left(1 - e^{-k_{prog}t} \right) \tag{2.13}$$

NB: Only, for the I_{max} models (equation (2.7) and (2.8)) A(t) is not added to S(t) but S_0 is multiplied by A(t) in the expression of S(t). For instance, For I_{max} model with linear baseline we have

$$E\left(t\right) = S_0 * A\left(t\right) + k_{proq}t$$

2.1.3 Monolix model functions

Any combination of the 9 drug action models and 5 baseline/disease models is available in Monolix.

For instance, the combination of an E_{max} model for the drug action (2.5) and a constant baseline with no disease progression model (2.10) will result in the following equation:

$$E(t) = S_0 + \frac{E_{max}C(t)}{C(t) + C_{50}}$$
(2.14)

which corresponds to the model n°17: immed_Emax_const in the PD library (Appendix III).

As a second example, the combination of an I_{max} model for the drug action (2.7) with a linear progression as baseline/disease model (2.11) will give:

$$E(t) = S_0(1 - \frac{I_{max}C(t)}{C(t) + C_{50}}) + k_{prog}t$$
(2.15)

which corresponds to the model n°28: immed_lmax_lin.

The following table reports the name and numbers of the models.

Baseline/disease models

Exponential	n°5: _lin_dexp	$ m n^o 10$: _quad_dexp	$ m n^{\circ}15$: _log_dexp	$ m n^{\circ}20$: _Emax_dexp	лах_ехр ${ m n}^{\circ}25$: _gammaEmax_dexp	n°30: _lmax_dexp	ax_exp n°35: _gammalmax_dexp
Exponential	n°4: _lin_exp	${ m n}^{\circ}9$: _quad_exp	n°14: _log_exp	$\mathrm{n}^{\circ}19$: _Emax_exp	$\mathrm{n}^{\circ}24$: _gammaEmax_exp	$\mathrm{n}^{\circ}29$: _lmax_exp	n°34: _gammalmax_exp
Linear	n°3: _lin_lin	${ m n}^{\circ}8$: _quad_lin	$ m n^{\circ}13$: _log_lin	$\mathrm{n}^{\circ}18$: _Emax_lin	$ m n^{\circ}23:$ _gammaEmax_lin	$\mathrm{n}^{\circ}28$: _lmax_lin	n°33: _gammalmax_lin
Constant	n°2: _lin_const	$ m n^{\circ}7$: _quad_const	$ m n^{\circ}12:$ _log_const	$\mathrm{n}^{\circ}17$: _Emax_const	$ m n^{\circ}22:$ _gammaEmax_const	$ m n^{\circ}27$: _lmax_const	n°32: _gammalmax_const
Null	n°1: _lin_null	$ m n^{\circ}6:~$ _quad_null	$ m n^{\circ}11:$ _log_null	$\rm n^{\circ}16$: _Emax_null	n°21: _gammaEmax_null	n°26: _lmax_null	n°31: _gammalmax_null
Drug action	Linear	Quadratic	Logarithmic	E_{max}	Sigmoid E_{max}	I_{max}	Sigmoïd I _{max}

Table 2.1: Immediate response model functions implemented in the Monolix library classed by drug action model (rows) and baseline/disease model (columns). The prefix immed has to be added to get the full name function

2.2 Turnover response models

In these models, the drug is not acting on the effect E directly but rather on R_{in} or k_{out} as represented in figure 2.1.

Figure 2.1: turnover model of the effect E

Thus the system is described with differential equations, given $\frac{dE}{dt}$ as a function of R_{in} , k_{out} and C(t) the drug concentration at time t.

The initial condition is: while C(t) = 0, $E(t) = \frac{R_{in}}{k_{out}}$.

NB: In the version 2.4 of Monolix, turnover models of the library can only be linked to single dose PK models. An example using MLXTRAN for multiple doses is provided in the folder *my library*.

Parameters

- $E_{max} = \text{maximal agonistic response}$
- $I_{max} = \text{maximal antagonistic response}$
- C_{50} = concentration to get half of the maximal response (=drug potency)
- $\gamma = \text{sigmoidicity factor}$
- $R_{in} = \text{input (synthesis) rate}$
- $k_{out} = \text{output (elimination) rate constant}$

2.2.1 Models with impact on the input (R_{in})

• E_{max} model

$$\frac{dE}{dt} = R_{in} \left(1 + \frac{E_{max}C}{C + C_{50}} \right) - k_{out}E \tag{2.16}$$

Equation 2.16 corresponds to model n°36: turn_input_Emax.

• sigmoïd E_{max} model

$$\frac{dE}{dt} = R_{in} \left(1 + \frac{E_{max}C^{\gamma}}{C^{\gamma} + C_{50}^{\gamma}} \right) - k_{out}E$$
(2.17)

Equation 2.17 corresponds to model n°37: turn_input_gammaEmax.

• I_{max} model

$$\frac{dE}{dt} = R_{in} \left(1 - \frac{I_{max}C}{C + C_{50}} \right) - k_{out}E \tag{2.18}$$

Equation 2.18 corresponds to model n°38: turn_input_lmax.

• sigmoïd I_{max} model

$$\frac{dE}{dt} = R_{in} \left(1 - \frac{I_{max}C^{\gamma}}{C^{\gamma} + C_{50}^{\gamma}} \right) - k_{out}E \tag{2.19}$$

Equation 2.19 corresponds to model n°39: turn_input_gammalmax.

• full I_{max} model

$$\frac{dE}{dt} = R_{in} \left(1 - \frac{C}{C + C_{50}} \right) - k_{out}E \tag{2.20}$$

Equation 2.20 corresponds to model n°40: turn_input_lmaxfull.

• sigmoïd full I_{max} model

$$\frac{dE}{dt} = R_{in} \left(1 - \frac{C^{\gamma}}{C^{\gamma} + C_{50}^{\gamma}} \right) - k_{out}E \tag{2.21}$$

Equation 2.21 corresponds to model n°41: turn_input_gammalmaxfull.

2.2.2 Models with impact on the output (k_{out})

• E_{max} model

$$\frac{dE}{dt} = R_{in} - k_{out} \left(1 + \frac{E_{max}C}{C + C_{50}} \right) E \tag{2.22}$$

Equation 2.22 corresponds to model n°42: turn_output_Emax.

• sigmoïd E_{max} model

$$\frac{dE}{dt} = R_{in} - k_{out} \left(1 + \frac{E_{max}C^{\gamma}}{C^{\gamma} + C_{50}^{\gamma}} \right) E \tag{2.23}$$

Equation 2.23 corresponds to model n°43: turn_output_gammaEmax.

• I_{max} model

$$\frac{dE}{dt} = R_{in} - k_{out} \left(1 - \frac{I_{max}C}{C + C_{50}} \right) E \tag{2.24}$$

Equation 2.24 corresponds to model n°44: turn_output_lmax.

• sigmoïd I_{max} model

$$\frac{dE}{dt} = R_{in} - k_{out} \left(1 - \frac{I_{max} C^{\gamma}}{C^{\gamma} + C_{50}^{\gamma}} \right) E \tag{2.25}$$

Equation 2.25 corresponds to model n°45: turn_output_gammalmax.

• full I_{max} model

$$\frac{dE}{dt} = R_{in} - k_{out} \left(1 - \frac{C}{C + C_{50}} \right) E \tag{2.26}$$

Equation 2.26 corresponds to model n°46: turn_output_lmaxfull.

• sigmoïd full I_{max} model

$$\frac{dE}{dt} = R_{in} - k_{out} \left(1 - \frac{C^{\gamma}}{C^{\gamma} + C_{50}^{\gamma}} \right) E \tag{2.27}$$

Equation 2.27 corresponds to model n°47: turn_output_gammalmaxfull.

Appendix

List and names of the PK, PKe0 and PD models available in Monolix (version 2.4)

Appendix I: list of models in PK library

Input n. cpt Elimination lag IV-bolus 1 1st order IV-bolus 1 1st order IV-bolus 1 Michaelis-Menten IV-infusion 1 1st order IV-infusion 1 1st order IV-infusion 1 1st order 1st order 1 1st order 1st order 1 1st order 1st order 1 1st order	r. cp		no n	Parameterisation V,K V,Cl V,Vm,Km V,K V,Cl V,K V,Cl V,Cl	å ×××	Available md md x x x x x x x	∞ × × × ×
Name	n		ag time no no no no	Parameterisation V,K V,Cl V,Vm,Km V,K V,Cl V,K V,Cl	å ×××	Available md	8 × × ×
Name	n. cpt		ag time no	Parameterisation V,K V,Cl V,Vm,Km V,K V,Cl V,K V,Cl	₩ × × × × ×	P ××××××××××××××××××××××××××××××××××××	00 × × × ×
bolus_1cpt_Vk IV-bolus 1		1st order 1st order Michaelis-Menten 1st order 1st order Michaelis-Menten	222222	V,K V,CI V,CI V,CI V,MKM	× × × ×	××× ×××	××
bolus_1cpt_VC IV-bolus 1 1st order		1st order Michaelis-Menten 1st order 1st order Michaelis-Menten	00 00 00 00 00 00 00 00 00 00 00 00 00	V,CI V,K V,CI V,CI V,MKM	××××	× × × ×	×
Dolus_1cpt_VVmKm		Michaelis-Menten 1st order 1st order Michaelis-Menten	0 0 0 0	V,Vm,Km V,Cl V,Cl	× ××	× ××	××
infusion_1cpt_VK IV-infusion 1 1st order infusion_1cpt_VCI IV-infusion 1 1st order infusion_1cpt_VVmKm IV-infusion 1 Michaelis-Menten oral1_1cpt_kaVk 1st order 1 st order oral1_1cpt_kaVCI 1st order 1 st order oral1_1cpt_kaVVMKm 1st order 1 st order		1st order 1st order Michaelis-Menten	0 0 0	V,k V,Cl V,Vm,Km	××	×××	××
Infusion 1cpt_VK		1st order 1st order Michaelis-Menten	2 2 2	V V V V V V V V V V V V V V V V V V V	××	×××	××
Infusion_1cpt_VC IV-infusion 1 1st order		1st order Michaelis-Menten	00 00	V,OI V,Vm.Km	×	××	×
Infusion_1cpt_VVmKm		Michaelis-Menten	OU	V.Vm.Km		×	
oral1_1cpt_kaVk 1st order 1 1st order oral1_1cpt_kaVCl 1st order 1 1st order oral1_1cpt_kaVVmKm 1st order 1 Michaelis-Menten	order 1	1			×		
oral1_1cpt_kaVk 1st order 1 1st order oral1_1cpt_kaVCl 1st order 1 1st order oral1_1cpt_kaVVmKm 1st order 1 Michaelis-Menten	order 1	4-4					
oral 1 1cpt kaVCl 1st order 1 1st order oral 1 1ct kaVVmKm 1st order 1 Michaelis-Menten	order 1	IST order	no	ka, V, K	×	×	×
1st order 1 Michaelis-Menten		1st order	no	ka, V, Cl	×	×	×
	_	Michaelis-Menten	no	ka, V, Vm, Km	×	×	
10 oral1_1cpt_TlagkaVk 1st order 1 1st order yes	order 1	1st order	yes	Tlag, ka, V, k	×	×	×
11 oral1_1cpt_TlagkaVCl 1st order 1 1st order yes	order 1	1st order	yes	Tlag, ka, V, Cl	×	×	×
12 oral1_1cpt_TlagkaVVmKm 1st order 1 Michaelis-Menten yes	_	vlichaelis-Menten	yes	Tlag, ka, V, Vm, Km	×	×	
13 oralo_1cpt_Tk0Vk 0 order 1 1st order no	der 1	1st order	no	Tk0,V,k	×	×	×
14 oral0_1cpt_Tk0VCl 0 order 1 1st order no	der 1	1st order	ou Ou	Tk0,v,cl	×	×	×
15 oral0_1cpt_Tk0VVmKm 0 order 1 Michaelis-Menten no	_	Michaelis-Menten	no	Tk0,V,Vm, Km	×	×	
16 oral0_1cpt_TlagTk0Vk 0 order 1 1st order yes	der 1	1st order	yes	Tlag, Tk0,V,k	×	×	×
17 oral0_1cpt_TlagTk0VCl 0 order 1 1st order yes	der 1	1st order	yes	Tlag, Tk0,V,Cl	×	×	×
18 oralO_1cpt_TlagTk0VVmKm 0 order 1 Michaelis-Menten yes	_	Vichaelis-Menten	yes	Tlag, Tk0,V,Vm, Km	×	×	

×	×	×			>	< >	< >	<		×	×	×			×	×	×			×	×	×			×	×	×		
×	×	×	×	×	>	< >	< >	< ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	>	< >	< >	< ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
V, K, K12, K21	CI, V1, Q, V2	alpha, beta, A, B	V, K12, K21, Vm, Km	V1, Q, V2, Vm, Km	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7,5,8,12,132,132,1 CLV4 O V3	alpha beta A R	V K12 K21 Vm Km	V1, Q, V2, Vm,Km	ka,V, K, K12, K21	ka, Cl, V1, Q, V2	ka, alpha, beta, A, B	ka,V, k12, k21, Km, Vm	ka, V1, Q, V2, Km, Vm	Tlag, ka,V, k, k12, k21	Tlag, ka, CI, V1, Q, V2	Tlag, ka, alpha, beta, A, B	Tlag, ka, V, k12, k21, Km, Vm	Tlag, ka, V1, Q, V2, Vm, Km	Tk0, V, K, K12, K21	Tk0, CI, V1, Q, V2	Tk0, alpha, beta, A, B	Tk0,V, k12, k21, Km, Vm	Tk0, V1, Q, V2, Km, Vm	Tlag, Tk0, V, k, k12, k21	Tlag, Tk0, CI, V1, Q, V2	Tlag, Tk0, alpha, beta, A, B	Tlag, Tk0,V, k12, k21, Km, Vm	Tlag. Tk0. V1. Q. V2. Km. Vm
2	2	00	00	2	8	2 2	2 2	2 2	2	01	2	01	01	00	yes	yes	yes	yes	yes	01	00	20	2	00	yes	yes	yes	yes	ves
1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1et order	1et order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten
7	2	2	2	2	c	1 0	4 0	1 0	2	2	7	7	7	2	2	7	2	2	7	2	2	7	7	2	7	7	2	7	2
IV-bolus	IV-bolus	IV-bolus	IV-bolus	IV-bolus	IV inflicion	IV inflicion	IV-inflision	IV-infusion	IV-infusion	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order
bolus_2cpt_Vkk12k21	bolus_2cpt_CIV1QV2	bolus_2cpt_alphabetaAB	bolus_2cpt_Vk12k21VmKm	bolus_2cpt_V1QV2VmKm	inflicion 2cot VIV/12I/21	influeion 2cpt CN/10//2	IIIIusioii _2cpt_CIV I≪VZ infiicion 2cnt alphabetaAR	infusion 2cpt Vk12k21VmKm	infusion_2cpt_V1QV2VmKm	oral1 2cpt kaVkk12k21	oral1_2cpt_kaClV1QV2	oral1_2cpt_kaalphabetaAB	oral1_2cpt_kaVk12k21VmKm	oral1_2cpt_kaV1QV2VmKm	oral1_2cpt_TlagkaVkk12k21	oral1_2cpt_TlagkaClV1QV2	oral1_2cpt_TlagkaalphabetaAB	oral1_2cpt_TlagkaVk12k21VmKm	oral1_2cpt_TlagkaV1QV2VmKm	oral0_2cpt_Tk0Vkk12k21	oral0_2cpt_Tk0CIV1QV2	oral0_2cpt_Tk0alphabetaAB	oral0_2cpt_Tk0Vk12k21VmKm	oral0_2cpt_Tk0V1QV2VmKm	oral0_2cpt_TlagTk0Vkk12k21	oral0_2cpt_TlagTk0CIV1QV2	oral0_2cpt_TlagTk0alphabetaAB	oral0_2cpt_TlagTk0Vk12k21VmKm	oralo 2cpt TlagTk0V1QV2VmKm
19	20	21	22	23	5	1 K	28	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48

×	×	×			×	×	×			×	×	×			×	×	×			×	×	×			×	×	×		
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	:
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
V, K, K12, K21, K13, K31	CI, V1, Q2, V2, Q3, V3	alpha, beta, gamma, A, B, C	V, K12, K21, K13, K31, Vm, Km	V1, Q2, V2, Q3, V3, Vm, Km	× × × × × × × × × × × × × × × × × × ×	CI, V1, Q2, V2, Q3, V3	alpha, beta, gamma, A, B, C	V, K12, K21, K13, K31, Vm, Km	V1, Q2, V2, Q3, V3, Vm, Km	ka, V, k, k12, k21, k13, k31	ka, Cl, V1, Q2, V2, Q3, V3	ka, alpha, beta, gamma, A, B, C	ka,V, k12, k21, k13, k31, Vm, Km	ka, V1, Q2, V2, Q3, V3, Vm, Km	Tlag, ka, V, k, k12, k21, k13, k31	Tlag, ka, Cl, V1, Q2, V2, Q3, V3	Tlag, ka, alpha, beta, gamma, A, B, C	Tlag, ka, V, k12, k21, k13, k31, Vm, Km	Tlag, ka, V1, Q2, V2, Q3, V3, Vm, Km	Tk0. V. K. K12. K21. K13. K31	Tk0, CI, V1, Q2, V2, Q3, V3	Tk0, alpha, beta, gamma, A, B, C	Tk0, V, k12, k21, k13, k31, Vm, Km	Tk0, V1, Q2, V2, Q3, V3, Vm, Km	Tlag, Tk0, V, k, k12, k21, k13, k31	Tlag, Tk0, CI, V1, Q2, V2, Q3, V3	Tlag, Tk0, alpha, beta, gamma, A, B, C	Tlag, Tk0, V, k12, k21, k13, k31, Vm, Km	
2	9	00	2	20	2	2	92	2	2	2	2	2	2	20	yes	yes	yes	yes	yes	2	2	00	2	00	yes	yes	yes	yes	
1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	A 40 - 10 - 10 - 10 4 - 10 - 10
က	က	က	က	က	m	က	m	n	က	n	ю	m	m	က	က	က	8	က	m	n	က	က	က	က	က	8	က	က	,
IV-bolus	IV-bolus	IV-bolus	IV-bolus	IV-bolus	IV-infusion	IV-infusion	IV-infusion	IV-infusion	IV-infusion	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	3
bolus_3cpt_Vkk12k21k13k31	bolus_3cpt_CIV1Q2V2Q3V3	bolus_3cpt_alphabetagammaABC	bolus_3cpt_Vk12V12k13k31VmKm	bolus_3cpt_V1Q2V2Q3V3VmKm	infusion 3cpt VKK12K21K13K31	infusion 3cpt CIV1Q2V2Q3V3	infusion 3cpt alphabetagammaABC	infusion 3cpt VK12V12K13K31VmKm	infusion_3cpt_V1Q2V2Q3V3VmKm	oral1 3cpt kaVkk12k21k13k31	oral1_3cpt_kaClV1Q2V2Q3V3	oral1_3cpt_kaalphabetagammaABC	oral1_3cpt_kaVk12V12k13k31VmKm	oral1_3cpt_kaV1Q2V2Q3V3VmKm	oral1_3cpt_TlagkaVkk12k21k13k31	oral1_3cpt_TlagkaClV1Q2V2Q3V3	oral1_3cpt_TlagkaalphabetagammaABC	oral1_3cpt_TlagkaVk12V12k13k31VmKm	oral1_3cpt_TlagkaV1Q2V2Q3V3VmKm	oral0 3cpt Tk0Vkk12k21k13k31	oral0_3cpt_Tk0CIV1Q2V2Q3V3	oral0_3cpt_Tk0alphabetagammaABC	oral0_3cpt_Tk0Vk12V12k13k31VmKm	oral0_3cpt_Tk0V1Q2V2Q3V3VmKm	oral0_3cpt_TlagTk0Vkk12k21k13k31	oral0_3cpt_TlagTk0CIV1Q2V2Q3V3	oral0_3cpt_TlagTk0alphabetagammaABC	oral0_3cpt_TlagTk0Vk12V12k13k31VmKm	Total (0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (1)
49	20	51	52	53	54	55	56	25	58	59	09	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75	9/	77	10

Appendix II: list of models in PKe0 library

Library of PKe0	Library of PKe0 Models (J. Bertrand and F. Mentré)								
last release: 15/09/08	03/08								
								Available	
Model	Name	Input	n. cpt	Elimination	lag time	Parameterisation	ps	pm	SS
_	bolus_1cpt_Vkke0	IV-bolus	_	1st order	OU OU	V,K,Ke0	×	×	×
2	bolus_1cpt_VClke0	IV-bolus	-	1st order	no	V,CI,ke0	×	×	×
n	bolus_1cpt_VVmKmke0	IV-bolus	_	Michaelis-Menten	OU	V,Vm,Km,ke0	×	×	
4	infusion 1cpt Vkke0	IV-infusion	-	1st order	2	N KeO	×	×	><
r.	infusion 1cpt VClke0	IV-infusion	_	1st order	01	V,CI,ke0	×	×	×
9	infusion_1cpt_VVmKmke0	IV-infusion	_	Michaelis-Menten	00	V,Vm,Km,ke0	×	×	
7	oral1_1cpt_kaVkke0	1st order	_	1st order	no	ka,V,k,ke0	×	×	×
00	oral1_1cpt_kaVClke0	1st order	_	1st order	no	ka,V,CI,ke0	×	×	×
0	oral1_1cpt_kaVVmKmke0	1st order	_	Michaelis-Menten	OU	ka,V,Vm,Km,ke0	×	×	
10	oral1_1cpt_TlagkaVkke0	1st order	-	1st order	yes	Tlag,ka,V,k,ke0	×	×	×
	oral1_1cpt_TlagkaVClke0	1st order	_	1st order	yes	Tlag, ka, V, CI, ke0	×	×	×
12	oral1_1cpt_TlagkaVVmKmke0	1st order	_	Michaelis-Menten	yes	Tlag, ka, V, Vm, Km, ke0	×	×	
2	oral0 1cpt Tk0Vkke0	0 order	-	1st order	01	Tk0.V.k.ke0	×	×	×
14	oral0_1cpt_Tk0VClke0	0 order	_	1st order	OU.	Tk0,V,CI,ke0	×	×	×
15	oral0_1cpt_Tk0VVmKmke0	0 order	-	Michaelis-Menten	no	Tk0,V,Vm, Km,ke0	×	×	
16	oral0_1cpt_TlagTk0Vkke0	0 order	_	1st order	yes	Tlag, Tk0,V,k,ke0	×	×	×
17	oral0_1cpt_TlagTk0VClke0	0 order	_	1st order	yes	Tlag, Tk0,V,CI,ke0	×	×	×
8	oral0_1cpt_TlagTk0VVmKmke0	0 order	_	Michaelis-Menten	yes	Tlag, Tk0,V,Vm, Km,ke0	×	×	

×	×	×				×	×	×				×	×	×			×	×	×				×	×	×			×	×	×		
×	×	×	×	×		×	×	×	×	×		×	×	×	×	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×
×	×	×	×	×		×	×	×	×	×		×	×	×	×	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×
V, K, K12, K21, Ke0	CI, V1, Q, V2, ke0	alpha, beta, A, B, ke0	V, K12, K21, Vm, Km, ke0	V1, Q, V2, Vm, Km, ke0	, ke0	V, K, K12, K21, Ke0	Cl, V1, Q, V2, ke0	alpha, beta, A, B, ke0	V, K12, K21, Vm, Km, ke0	V1, Q, V2, Vm,Km, ke0	, ke0	ka,V, K, K12, K21, ke0	ka, Cl, V1, Q, V2, ke0	ka, alpha, beta, A, B, ke0	ka,V, k12, k21, Km, Vm, ke0	ka, V1, Q, V2, Km, Vm, ke0	Tlag, ka, V, k, k12, k21, ke0	Tlag, ka, Cl, V1, Q, V2, ke0	Tlag, ka, alpha, beta, A, B, ke0	Tlag, ka, V, k12, k21, Km, Vm, ke0	Tlag, ka, V1, Q, V2, Vm, Km, ke0	, ke0	Tk0, V, k, k12, k21, ke0	Tk0, CI, V1, Q, V2, ke0	Tk0, alpha, beta, A, B, ke0	Tk0,V, k12, k21, Km, Vm, ke0	Tk0, V1, Q, V2, Km, Vm, ke0	Tlag, Tk0, V, k, k12, k21, ke0	Tlag, Tk0, CI, V1, Q, V2, ke0	Tlag, Tk0, alpha, beta, A, B, ke0	Tlag, Tk0,V, k12, k21, Km, Vm, ke0	Tlag, Tk0, V1, Q, V2, Km, Vm, ke0
00	00	ou	no	00		ou	ou	ou	00	ou		00	ou	ou	ou	ou	yes	yes	yes	yes	yes		00	ou	no	ou	ou 0	yes	yes	yes	yes	yes
1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten		1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten		1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten		1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten	1st order	1st order	1st order	Michaelis-Menten	Michaelis-Menten
2	2	2	2	2		2	2	2	2	2		2	2	2	2	2	2	2	2	2	2		2	2	2	2	2	2	2	2	7	2
IV-bolus	IV-bolus	IV-bolus	IV-bolus	IV-bolus		IV-infusion	IV-infusion	IV-infusion	IV-infusion	IV-infusion		1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order	1st order		0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order	0 order
bolus_2cpt_Vkk12k21ke0	bolus_2cpt_CIV1QV2ke0	bolus 2cpt alphabetaABke0	bolus_2cpt_VK12k21VmKmke0	bolus_2cpt_V1QV2VmKmke0		infusion_2cpt_Vkk12k21ke0	infusion_2cpt_CIV1QV2ke0	infusion_2cpt_alphabetaABke0	infusion_2cpt_Vk12k21VmKmke0	infusion_2cpt_V1QV2VmKmke0		oral1_2cpt_kaVkk12k21ke0	oral1_2cpt_kaCIV1QV2ke0	oral1_2cpt_kaalphabetaABke0	oral1_2cpt_kaVk12k21VmKmke0	oral1_2cpt_kaV1QV2VmKmke0	oral1_2cpt_TlagkaVkk12k21ke0	oral1_2cpt_TlagkaCIV1QV2ke0	oral1_2cpt_TlagkaalphabetaABke0	oral1_2cpt_TlagkaVk12k21VmKmke0	oral1_2cpt_TlagkaV1QV2VmKmke0		oral0_2cpt_Tk0Vkk12k21ke0	oral0_2cpt_Tk0CIV1QV2ke0	oral0_2cpt_Tk0alphabetaABke0	oral0_2cpt_Tk0Vk12k21VmKmke0	oral0_2cpt_Tk0V1QV2VmKmke0	oral0_2cpt_TlagTk0Vkk12k21ke0	oral0_2cpt_TlagTk0CIV1QV2ke0	oral0_2cpt_TlagTk0alphabetaABke0	oral0_2cpt_TlagTk0Vk12k21VmKmke0	oralo_2cpt_TlagTk0V1QV2VmKmke0
19	20	21	22	23		24	25	26	27	28		59	30	31	32	33	34	35	36	37	38		39	40	41	42	43	4	45	46	47	48

Appendix III: list of models in PD library

Library of PD N	Library of PD Models (J. Bertrand and F. Mentré)						
last release: 17/06/08	106/08						
Model	Name	Link to PK	Type of response	Drug action model	Baseline/disease model	Parameterisation	Available
~	immed lin null	optional	immediate	linear	llnu	Alin	×
2	immed lin_const	optional	immediate	linear	constant	Alin, S0	×
က	immed_lin_lin	optional	immediate	linear	linear	Alin, kprog, S0	×
4	immed_lin_exp	optional	immediate	linear	exponential	Alin, kprog, S0	×
5	immed_lin_dexp	optional	immediate	linear	exponential decreasing	Alin, kprog, S0	×
9	immed_quad_null	optional	immediate	quadratic	llnu	Aquad, Alin	×
7	immed quad const	optional	immediate	quadratic	constant	Aquad, Alin, S0	×
00	immed quad lin	optional	immediate	quadratic	linear	Aquad, Alin, kprog, S0	×
0	immed_quad_exp	optional	immediate	quadratic	exponential	Aquad, Alin, kprog, S0	×
10	immed_duad_dexp	optional	immediate	quadratic	exponential decreasing	Aquad, Alin, kprog, S0	×
	immed_log_null	optional	immediate	logarithmic	llnu	Alog	×
12	immed_log_const	optional	immediate	logarithmic	constant	Alog, S0	×
13	immed_log_lin	optional	immediate	logarithmic	linear	Alog, kprog, S0	×
4	immed_log_exp	optional	immediate	logarithmic	exponential	Alog, kprog, S0	×
15	immed_log_dexp	optional	immediate	logarithmic	exponential decreasing	Alog, kprog, S0	×
16	immed_Emax_null	optional	immediate	Emax	llnu	Emax, C50	×
17	immed_Emax_const	optional	immediate	Emax	constant	Emax, C50, S0	×
18	immed_Emax_lin	optional	immediate	Emax	linear	Emax, C50, kprog, S0	×
19	immed_Emax_exp	optional	immediate	Emax	exponential	Emax, C50, kprog, S0	×
20	immed_Emax_dexp	optional	immediate	Emax	exponential decreasing	Emax, C50, kprog, S0	×
21	immed_gammaEmax_null	optional	immediate	sigmoid Emax	llnu	gamma, Emax, C50	×
22	immed_gammaEmax_const	optional	immediate	sigmoid Emax	constant	gamma, Emax, C50, S0	×
23	immed_gammaEmax_lin	optional	immediate	sigmoid Emax	linear	gamma, Emax, C50, kprog, S0	×
24	immed_gammaEmax_exp	optional	immediate	sigmoid Emax	exponential	gamma, Emax, C50, kprog, S0	×
25	immed_gammaEmax_dexp	optional	immediate	sigmoid Emax	exponential decreasing	gamma, Emax, C50, kprog, S0	×

26	immed_Imax_null ^a	optional	immediate	lmax	llnu	lmax, C50	×
27	immed_Imax_const ^a	optional	immediate	lmax	constant	lmax, C50, S0	×
28	immed_lmax_lin ^a	optional	immediate	lmax	linear	lmax, C50, kprog, S0	×
29	immed_Imax_expª	optional	immediate	lmax	exponential	lmax, C50, kprog, S0	×
30	immed_lmax_dexp ^a	optional	immediate	lmax	exponential decreasing	lmax, C50, kprog, S0	×
31	immed_gammalmax_nulla	optional	immediate	sigmoid Imax	llnu	gamma, Imax, C50	×
32	immed_gammalmax_const	optional	immediate	sigmoid Imax	constant	gamma, Imax, C50, S0	×
33	immed_gammalmax_lina	optional	immediate	sigmoid Imax	linear	gamma, Imax, C50, kprog, S0	×
34	immed_gammalmax_expª	optional	immediate	sigmoid Imax	exponential	gamma, Imax, C50, kprog, S0	×
35	immed_gammalmax_dexpª	optional	immediate	sigmoid Imax	exponential decreasing	gamma, Imax, C50, kprog, S0	×
36	tum_input_Emax ^b	required	turnover	Emaxinput	Rin/kout	Rin, kout, Emax, C50	×
37	turn_input_gammaEmax ^b	required	turnover	sigmoid Emax/input	Rin/kout	gamma, Rin, kout, Emax, C50	×
38	turn_input_lmax ^b	required	turnover	Imax/input	Rin/kout	Rin, kout, Imax, C50	×
39	turn_input_gammalmax ^b	required	turnover	sigmoid Imax/input	Rin/kout	gamma, Rin, kout, Imax, C50	×
40	turn_input_Imaxfull ^{b,c}	required	turnover	full Imax/input	Rin/kout	Rin, kout, C50	×
4	turn_input_gammalmaxfull ^{b,c}	required	turnover	sigmoid full Imax/input	Rin/kout	gamma, Rin, kout, C50	×
,	ء ا			-	:		
4.5	turn_output_Emax	reduired	turnover	Emaxontput	Kin/Kout	Kin, kout, Emax, C50	×
43	tum_output_gammaEmax ^b	required	turnover	sigmoid Emax/output	Rin/kout	gamma, Rin, kout, Emax, C50	×
44	turn_output_Imax	required	turnover	Imax/ouput	Rin/kout	Rin, kout, Imax, C50	×
45	turn_output_gammalmax ^b	required	turnover	sigmoid Imax/ouput	Rin/kout	gamma, Rin, kout, Imax, C50	×
46	turn_output_Imaxfull ^{b,c}	required	turnover	full Imax/ouput	Rin/kout	Rin, kout, C50	×
47	turn_output_gammalmaxfull ^{b,c}	required	turnover	sigmoid full Imax/ouput	Rin/kout	gamma, Rin, kout, C50	×
a for Imax direc	afor Inax direct reconnee models, drug effect is acting	 	On baceline SO through a product	_ t			
^b Available only	Available only for single dose PK						
c full Imax mea	c full Imax means Imax is fixed equal to 1						