Universidade de Aveiro

Departamento de Matemática

Cálculo II - Agrupamento 3

2021/2022

Soluções do 2º Teste (Versão 1)

- 1. (a) 3x + 2z 7 = 0
 - (b) $\frac{1+e^2}{\sqrt{3}}$
 - (c) a função admite mínimo global mas não máximo global.
 - (d) $2e^8$
 - (e) $y = \ln x + C_1 \cos(\ln x) + C_2 \sin(\ln x), C_1, C_2 \in \mathbb{R}.$

(f)
$$F(s) = \frac{s-2}{s^2-4s+13}$$
, $s > 2$.

- 2. Os candidatos a extremantes locais são $(3, -\frac{3}{2})$ e $(-1, \frac{5}{2})$. Nota: $(3, -\frac{3}{2})$ é mínimo local e $(-1, \frac{5}{2})$ é ponto de sela.
- 3. Como f é contínua e D é um conjunto compacto, o Teorema de Weierstrass garante a existência de mínimo e máximo globais. Usando o Método dos Multiplicadores de Lagrange, conclui-se que f(10, -6) = 68 é o máximo global e f(-10, 6) = -68 é o mínimo global.
- 4. O integral geral é $y=\frac{1}{Cx^4-x^4\ln x},\,C\in\mathbb{R}$ e y=0 é solução singular.
- 5. (a) $y_h = C_1 e^{2x} + C_2 e^{-3x}$, $C_1, C_2 \in \mathbb{R}$.
 - (b) $y_p = \frac{6}{5}xe^{2x}$
 - (c) $y = y_h + y_p = C_1 e^{2x} + C_2 e^{-3x} + \frac{6}{5} x e^{2x}$, $C_1, C_2 \in \mathbb{R}$.
- 6. (a)
 - (b) $y(t) = \frac{1}{4} (1 e^{-t} te^{-t}), \quad t \ge 0.$