BOOTCAMP DATA ANALYTICS

FINAL PROJECT

.https://www.linkedin.com/in/flor-garcia-ortiz/

OBJECTIVE

Develop a model to predict the life expectancy of a person, based on given parameters of the provided dataset from WHO.

1 Data

2 Models

3 Results

1 Data

SOURCE

- Dataset from WHO available in Kaggle
- https://www.kaggle.com/code/w recked22/life-expectancyregression/data

EXPLORATION

- NaN
- Outliers?
- Variables:
 1.'country' High cardinality
 2.'year' ¿relevant?

DATA PROCESSING

2938 rows 22 columns

CLEANING

- Removed or transformed NaN
- Outliers affect data distribution significantly?
- Means in the case of 'country' and 'year' are equal? - ANOVA test
- What is the best way to deal with high cardinality for 'country'?

CORRELATION MATRIX

BOX PLOT

2 Models

DATA1

- 1. NaNs are removed.
- 2. Outliers are removed.
- 3. Year variable is removed.

1444 ROWS/21 COL

DATA2

- 1. Countries are transformed into an ordinal categorical variable: country_rank
- 2. NaNs are treated with KNN.
- 3. Outliers are removed.

2650 ROWS/22 COL

DATA3

- 1. Countries are transformed into an ordinal categorical variable: country_rank
- 2. NaNs are removed.
- 3. Outliers are NOT removed.

1649 ROWS/22 COL

LINEAR REGRESSION

StandarScaler - Num OneHotEncoder - Cat

Variable 'country'

K-NN

StandarScaler - Num OneHotEncoder - Cat

Variable 'country_rank'

RANDOM FOREST

StandarScaler - Num OneHotEncoder - Cat

Variable 'country_rank'

3 Results

K-NN

RANDOM FOREST

Error metric	
MAE	
MSE	
RMSE	
MAPE	
R2	

Error metric

MAE MSE

RMSE

MAPE

R2

Irain	lest
1.0046	1.1162
2.4717	3.0637
1.5721	1.7503
1.4603	1.6614
0.9649	0.9544

Train	Test
1.5131	1.4635
4.8696	4.4836
2.2067	2.1175
2.1774	2.1485
0.9204	0.9258

Error metric	Train	Test
MAE	1.3911	1.4479
MSE	4.0121	4.3728
RMSE	2.0030	2.0911
MAPE	2.0557	2.1704
R2	0.9481	0.9433

data1

Train	Test
1.4635	1.9089
5.3406	8.3232
2.3110	2.8850
2.1873	2.8829
0.9241	0.8761

data2

Train	Test
1.3087	1.6435
3.9093	5.1835
1.9772	2.2767
1.8835	2.3776
0.9361	0.9142

data3

Train	Test
1.4192	1.8922
4.4377	7.1752
2.1066	2.6786
2.1102	2.8443
0.9426	0.9070

Train	Test
0.4259	1.1631
0.5007	3.6889
0.7076	1.9207
0.6318	1.7408
0.9929	0.9451

Train	Test
0.3692	1.0434
0.3967	2.6968
0.6298	1.6422
0.5288	1.5116
0.9935	0.9554

Train	Test
0.3904	1.0490
0.3898	2.7948
0.6243	1.6718
0.5782	1.5826
0.9950	0.9638

DATA 3 - RANDOM FOREST

Conclusions

