Example: Determinant for a 2×2 matrix.

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Definition

If A is an $n \times n$ matrix then for $1 \le i, j \le n$ the (i, j)-minor of A is the matrix A_{ij} obtained by deleting the i^{th} row and j^{th} column of A.

Example.

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

Definition

Let A be an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

- **1)** If n = 1, i.e. $A = [a_{11}]$, then $\det A = a_{11}$
- 2) If n > 1 then

$$\det A = (-1)^{1+1} a_{11} \cdot \det A_{11} + (-1)^{1+2} a_{12} \cdot \det A_{12} \cdots \cdots \cdots + (-1)^{1+n} a_{1n} \cdot \det A_{1n}$$

Example. (n = 2)

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Note

If A is a 2×2 matrix

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

then $\det A = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

Example. (n=3)

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

A direct way of computing the determinant of a $3\times 3\ \text{matrix}$

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

Example (n=4)

$$A = \left[\begin{array}{rrrr} 1 & 0 & 2 & 0 \\ 0 & 4 & 0 & 1 \\ 2 & 1 & 6 & 1 \\ 3 & 5 & 7 & 0 \end{array} \right]$$

Note. In order to compute the determinant of an $n \times n$ matrix in this way we need to compute:

E.g. for a 25×25 matrix we would need to compute

$$25 \cdot 24 \cdot 23 \cdot \ldots \cdot 3 = 7,755,605,021,665,492,992,000,000$$

determinants of 2×2 matrices.

Next: How to compute determinants faster.

Definition

If A is an $n \times n$ matrix and $1 \le i, j \le n$ then the ij-cofactor of A is the number

$$C_{ij} = (-1)^{i+j} \det A_{ij}$$

Example.

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

Note. By the definition of the determinant we have:

$$\det A = a_{11}C_{11} + a_{12}C_{12} + \ldots + a_{1n}C_{1n}$$