Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation

Hugo Berard

COMP-767 Reinforcement Learning, McGill University

TD with Linear Approximation

Let's define the error function:

$$MSBE = ||V_{\theta} - TV_{\theta}||_{D}^{2}$$

We can project TV_{θ} on the linear space $\mathcal{M} = \{V_{\theta} = \Phi\theta | \theta \in \mathbb{R}^n\}$:

$$MSPBE = ||V_{\theta} - \Pi T V_{\theta}||_{D}^{2}$$

where $\Pi = \Phi(\Phi^T D \Phi)^{-1} \Phi^T D$ is the projection operator.

We can rewrite the error:

$$MSPBE = \mathbb{E}[\delta\phi]^{\mathsf{T}}\mathbb{E}[\phi\phi^{\mathsf{T}}]^{-1}\mathbb{E}[\delta\phi]$$

where
$$\mathbb{E}[\phi\phi^T] = \sum_s d_s\phi_s\phi_s^T = \Phi^T D\Phi$$
 and $\mathbb{E}[\delta\phi^T] = \sum_s d_s\phi_s(R_s + \gamma \sum_s' P_{ss'}V_{\theta}(s') - V_{\theta}(s)) = \Phi^T D(TV_{\theta} - V_{\theta})$

TD with Linear Approximation

If we take the gradient with respect to the parameters we can derive two algorithms:

GTD2:

$$-\frac{1}{2}\nabla \textit{MSPBE} = \mathbb{E}[(\phi - \gamma \phi')\phi^{\mathsf{T}}]\omega$$

where $\omega = \mathbb{E}[\phi\phi^{\mathsf{T}}]^{-1}\mathbb{E}[\delta\phi]$

If we approximate ω with a linear predictor, we get the update rules: $\theta_{k+1} = \theta_k + \alpha_k (\phi_k - \gamma \phi_k') (\phi_b^T \omega_k)$ and $\omega_{k+1} = \omega_k + \beta_k (\delta_k - \phi_b^T \omega_k) \phi_k$

TDC:

$$-\frac{1}{2}\nabla \mathsf{MSPBE} = \mathbb{E}[\delta\phi] - \gamma \mathbb{E}[\phi'\phi^{\mathsf{T}}]\omega$$

If we approximate ω with a linear predictor, we get the update rules: $\theta_{k+1} = \theta_k + \alpha_k (\delta_k \phi_k - \gamma \phi_b' (\phi_b^T \omega_k))$

Nonlinear Temporal Difference Learning

Let's define the tangent space $T\mathcal{M}_{\theta}$ as the plane orthogonal to the normal of \mathcal{M} at θ and that passes through the origin.

$$T\mathcal{M}_{\theta} = \{\Phi_{\theta} a | a \in \mathbb{R}^n\}$$
 where $(\Phi_{\theta})_{s,i} = \frac{\partial}{\partial \theta_i} V_{\theta}(s)$.

The projection operator Π_{θ} on TM_{θ} is thus similar to the linear case:

$$\Pi_{\theta} = \Phi_{\theta} (\Phi_{\theta}^{\mathsf{T}} D \Phi_{\theta})^{-1} \Phi_{\theta}^{\mathsf{T}} D$$

and the objective functions becomes:

$$MSPBE = ||\Pi_{\theta}(V_{\theta} - TV_{\theta})||_{D}^{2}$$

Similarly to the linear case we can rewrite the error:

$$MSPBE = \mathbb{E}[\delta \nabla V_{\theta}(s)]^{T} \mathbb{E}[\nabla V_{\theta}(s) \nabla V_{\theta}(s)]^{-1} \mathbb{E}[\delta \nabla V_{\theta}(s)]$$

Nonlinear Temporal Difference Learning

As in the linear case we can derive two gradient update:

$$-\frac{1}{2}\nabla MSPBE = -\mathbb{E}[(\gamma\phi' - \phi)\phi^{\mathsf{T}}\omega] + h(\theta,\omega) = -\mathbb{E}[\delta\phi] + \gamma\mathbb{E}[\phi'\phi^{\mathsf{T}}]\omega + h(\theta,\omega)$$

with
$$h(\theta, \omega) = -\mathbb{E}[(\delta - \phi^{\mathsf{T}}\omega)\nabla^2 V_{\theta}(s)\omega]$$

and the updates becomes:

- GTD2:
$$\theta_{k+1} = \Gamma(\theta_k + \alpha_k((\phi_k - \gamma \phi_k')(\phi_k^T \omega_k) - h_k))$$

- TDC:
$$\theta_{k+1} = \Gamma(\theta_k + \alpha_k(\delta_k \phi_k - \gamma \phi_k'(\phi_k^T \omega_k) - h_k))$$

and
$$h_{k+1} = (\delta_k - \phi_k^\mathsf{T} \omega_k) \nabla^2 V_{\theta_k}(s_k) \omega_k$$

where Γ is a projection on a compact set, and is necessary for convergence proof

Convergence proof

Let's rewrite the updates:

$$\omega_{k+1} = \omega_k + \beta_k (f(\theta_k, \omega_k) + M_{k+1})$$

$$\theta_{k+1} = \theta_k + \alpha_k (g(\theta_k, \omega_k) + N_{k+1})$$
 with
$$f(\theta_k, \omega_k) = \mathbb{E}[\delta_k \phi_k | \theta_k] - \mathbb{E}[\phi_k \phi_k^T | \theta_k] \omega_k,$$

$$M_{k+1} = (\delta_k - \phi_k^T \omega_k) \phi_k - f(\theta_k, \omega_k),$$

$$g(\theta_k, \omega_k) = \mathbb{E}[(phi_k - \gamma \phi_k') \phi_k^T \omega_k - h_k | \theta_k, \omega_k], \text{ and }$$

$$N_{k+1} = ((\phi_k - \gamma \phi_k') \phi_k^T \omega_k - h_k) - g(\theta_k, \omega_k)$$

Convergence proof

We need to show that:

- a) f and g are Lipshchitz continuous over a compact set \mathcal{B} .
- b) $\mathbb{E}[M_{k+1}|\theta_k,\omega_k]=0$ and $\mathbb{E}[N_{k+1}|\theta_k,\omega_k]=0$
- c) $(\omega_k(\theta), \theta)$ almost surely stays in \mathcal{B} for any initial $(\omega_0(\theta), \theta) \in \mathcal{B}$
- d) (ω, θ_k) almost surely stays in $\mathcal B$ for any initial $(\omega, \theta_0) \in \mathcal B$

From these conditions it follows that θ_R converges almost surely to the equilibria: $\dot{\theta} = \hat{\Gamma}(-\frac{1}{2}\nabla MSPBE)(\theta)$, where $\hat{\Gamma}v(\theta)$ is the projection to the of v on the tangent space of the compact set \mathcal{C} at θ .

Convergence proof

- a) is satisfied if V_{θ} is 3 times differentiable.
- b) is straight forward from the definition of M_{k+1} and N_{k+1}
- c) $w_k(\theta)$ converges to ω_{θ} which stays bounded if θ comes from a bounded set.
- d) $\theta_k \in \mathcal{C}$ and \mathcal{C} is a compact set thus θ_k is bounded.