

Devoir surveillé nº 2

Correction

Exercice 1. 1. On effectue le changement de variable $t = \ln x$:

$$I_{A} = \int_{e}^{A} \frac{1}{x (\ln x)^{\beta}} dx = \int_{1}^{\ln A} \frac{1}{t^{\beta}} dt = \begin{cases} \frac{1}{\beta - 1} - \frac{1}{(\beta - 1)(\ln A)^{\beta - 1}} & \text{si } \beta \neq 1, \\ \ln(\ln A) & \text{si } \beta = 1. \end{cases}$$

2. D'après la question précédente, si $\beta \le 1$ alors I_A diverge vers $+\infty$ lorsque $A \to +\infty$, et si $\beta > 1$ alors I_A converge vers $\frac{1}{\beta-1}$. Ainsi, l'intégrale I est convergente si et seulement si $\beta > 1$ et dans ce cas :

$$I = \int_{e}^{+\infty} \frac{1}{x(\ln x)^{\beta}} dx = \frac{1}{\beta - 1}.$$

Exercice 2.

1. a. Le dénominateur de F se factorise en $X^2(2X-1)$, donc la décomposition en éléments simples de F est de la forme :

$$F(X) = \frac{1}{X^2(2X-1)} = \frac{a}{X} + \frac{b}{X^2} + \frac{c}{2X-1},$$

avec $a, b, c \in \mathbb{R}$. On trouve b et c par multiplication-évaluation :

• $X^2F(X) = \frac{1}{2X-1} = aX + b + \frac{cX^2}{2X-1}$, donc en évaluant en X = 0, on obtient b = -1.

• $(2X-1)F(X) = \frac{1}{X^2} = \frac{a(2X-1)}{X} - \frac{(2X-1)}{X^2} + c$, donc en évaluant en $X = \frac{1}{2}$, on obtient c = 4.

Ainsi:

$$F(X) = \frac{a}{X} - \frac{1}{X^2} + \frac{4}{2X - 1}.$$

Pour trouver a, on peut évaluer en une valeur quelconque (autre que 0 et $\frac{1}{2}$), ou regarder la limite de xF(x) lorsque $x \to +\infty$. Cette dernière option nous dit que 0 = a + 2, donc a = -2. La décomposition en éléments simples de F est :

$$F(X) = -\frac{2}{X^2} - \frac{1}{X^2} + \frac{4}{2X - 1}.$$

b. Le polynôme $X^2 + 1$ est irréductible sur \mathbb{R} , donc la décomposition en éléments simples de G est de la forme :

$$G(X) = \frac{a}{X - 1} + \frac{bX + c}{X^2 + 1},$$

avec $a,b,c\in\mathbb{R}$. On trouve les coefficients par multiplication-évaluation :

• $(X-1)G(X) = \frac{X}{X^2+1} = a + \frac{bX+c}{X^2+1}(X-1)$, donc en évaluant en X=1, on obtient $a = \frac{1}{2}$.

• $(X^2 + 1)G(X) = \frac{X}{X-1} = \frac{1}{2} \frac{X^2 + 1}{X-1} + bX + c$, donc en évaluant en X = i, on obtient :

$$bi + c = \frac{i}{i-1} = \frac{i(-i-1)}{2} = \frac{1}{2} - \frac{1}{2}i,$$

donc $b = -\frac{1}{2}$ et $c = \frac{1}{2}$.

La décomposition en éléments simples de *G* est :

$$G(X) = \frac{1}{2} \frac{1}{X - 1} + \frac{1}{2} \frac{1 - X}{X^2 + 1}.$$

2. Remarquons que le polynôme $X^2 + 2X + 5$ a un discriminant strictement négatif, donc la fonction $u(x) = x^2 + 2x + 5$ est strictement positive sur \mathbb{R} (en particulier, elle ne s'annule pas). La fonction f est de la forme $\frac{u'}{u}$ donc les primitives de f sont les fonctions de la forme :

$$F(x) = \ln(x^2 + 2x + 5) + C,$$

avec $C \in \mathbb{R}$ une constante.

3. Posons h = 2g - f, c'est-à-dire :

$$h(x) = \frac{2x+6}{x^2+2x+5} - \frac{2x+2}{x^2+2x+5} = \frac{4}{x^2+2x+5}.$$

Cherchons les primitives de h. On écrit le dénominateur sous forme canonique :

$$h(x) = \frac{4}{x^2 + 2x + 5} = \frac{4}{(x+1)^2 + 4} = \frac{1}{\left(\frac{x+1}{2}\right)^2 + 1}.$$

On reconnait une fonction de la forme $\frac{1}{u^2+1}$ avec u une fonction affine. Les primitives de h sont les fonctions la forme :

$$H(x) = 2\arctan\left(\frac{x+1}{2}\right) + C,$$

avec $C \in \mathbb{R}$ une constante. Puisque $g = \frac{1}{2}f + \frac{1}{2}h$, les primitives de g sont les fonctions de la forme :

$$G(x) = \frac{1}{2}\ln(x^2 + 2x + 5) + \arctan(\frac{x+1}{2}) + C,$$

avec $C \in \mathbb{R}$ une constante.

Exercice 3.

1. La fonction $x \mapsto \frac{\sin x}{2025 + \cos x} e^{-x}$ est continue sur \mathbb{R}_+ donc intégrable sur tout intervalle [0,A] avec A > 0; l'intégrale I_1 est généralisée en $+\infty$. On a la majoration :

$$\left| \frac{\sin x}{2025 + \cos x} e^{-x} \right| \le e^{-x},$$

et e^{-x} est intégrable sur \mathbb{R}_+ , donc I_1 est absolument convergente.

2. La fonction $x \mapsto \frac{\sqrt{x+1}}{x^2+x}$ est continue sur $]0,+\infty[$, donc elle est intégrable sur tout intervalle $[\varepsilon,A]$ avec $0 < \varepsilon < A$; l'intégrale I_2 est généralisée en 0 et en $+\infty$. Au voisinage de 0, la fonction est positive et on a l'équivalent :

$$\frac{\sqrt{x+1}}{x^2+x} \underset{x\to 0^+}{\sim} \frac{1}{x}.$$

Or la fonction $x\mapsto \frac{1}{x}$ n'est pas intégrable au voisinage de 0 (Riemann), donc $x\mapsto \frac{\sqrt{x+1}}{x^2+x}$ n'est pas intégrable en 0. L'intégrale I_2 est divergente.

3. La fonction $x \mapsto \frac{x^{3/2}}{1-\cos x}$ est continue sur l'intervalle $\left[0,\frac{\pi}{2}\right]$ donc elle est intégrable sur tout intervalle $\left[\varepsilon,\frac{\pi}{2}\right]$ avec $0 < \varepsilon < \frac{\pi}{2}$; l'intégrale I_3 est généralisée en 0. Au voisinage de 0, la fonction est positive et on a l'équivalent :

$$\frac{x^{3/2}}{1 - \cos x} \sim \frac{x^{3/2}}{\frac{x^2}{2}} = \frac{2}{\sqrt{x}}.$$

Or la fonction $\frac{1}{\sqrt{x}}$ est intégrale au voisinage de 0 (Riemann), donc I_3 est convergente.

4. La fonction $x \mapsto \frac{\sqrt{x}}{\ln(1+x^a)}$ est continue sur l'intervalle]0,1] donc elle est intégrable sur tout intervalle $[\varepsilon,1]$ avec $0 < \varepsilon < 1$; l'intégrale I_4 est généralisée en 0. Au voisinage de 0, la fonction est positive et on a l'équivalent :

$$\frac{\sqrt{x}}{\ln(1+x^{\alpha})} \underset{x \to 0^{+}}{\sim} \frac{\sqrt{x}}{x^{\alpha}} = \frac{1}{x^{\alpha-\frac{1}{2}}}.$$

Or $x\mapsto x^{\alpha-\frac{1}{2}}$ est intégrable au voisinage de 0 si et seulement si $\alpha-\frac{1}{2}<1$ (Riemann), c'est-à-dire $\alpha<\frac{3}{2}$. Ainsi, I_4 est convergente si et seulement si $\alpha<\frac{3}{2}$.