Errata-Corrige from Lecture1:

To install packages in anaconda on ECB machines, on the anaconda prompt run

conda config --set ssl_verify false

then you can run conda install your-package-name

Solutions to the assignments:

1.

True

Out[2]:

```
In [1]:
        def Pascal(n):
             row = [1]
             T=[row]
             for in range(n):
                  row=[1+r for 1,r in zip(row+[0], [0]+row)]
                  T.append(row)
             return T
         Pascal(6)
Out[1]: [[1],
         [1, 1],
          [1, 2, 1],
          [1, 3, 3, 1],
          [1, 4, 6, 4, 1],
          [1, 5, 10, 10, 5, 1],
          [1, 6, 15, 20, 15, 6, 1]]
In [2]: | \mathbf{def} | \mathbf{bin} | \exp(x,y,n):
             return sum([x**(n-k) * y**k *coeff for k,coeff in zip(range(n+1),Pascal(n)[-1])
         ])])
         def verify binomial theorem(x,y,n):
             return bin exp(x,y,n) == (x+y)**n
         verify binomial theorem(253,28,52)
```

```
In [3]:
        #sum lines form the bottom to the top and maximise sums
        def solution(A):
            A=[[int(d) for d in str(n)] for n in A] #list becomes list of lists
            while len(A) > 1:
                e1=A[-1]#last level
                e2=A[-2]#penultimate level
                s1=[e1[n] +e2[n] for n in range(len(e2))] #sum below
                s2=[e1[n+1]+e2[n] for n in range(len(e2))] #sum below right
                MS=[max(a,b)  for a,b in zip(s1,s2)]
                                                         #max of possible sums
                A[-2]=MS #Replace penultimate line with MS
                A.pop() #Remove last line
            return A[0][0]
In [4]:
        ####Generate long triangle
        def gen T(L):
            from random import randint, seed
            seed(100)
            T=[];
            for n in range(L):
                T.append(randint(10**(n), 10**(n+1)-1))
            return T
In [5]:
        solution([7,38,810,2744,45265])
         30
Out[5]:
In [6]:
        solution(gen T(50))
         333
Out[6]:
```

```
In [7]:
        #redefine solution to keep track of maxima
         def solution(A):
             A=[[int(d) for d in str(n)] for n in A]
             qlobal M
             M = []
             for l in range(len(A)-1):
                 e1=A[-1]#last level
                 e2=A[-2]#penultimate level
                 s1=[e1[n]+e2[n] for n in range(len(e2))] #sum below
                 s2=[e1[n+1]+e2[n] for n in range(len(e2))] #sum below right
                 MS=[max(a,b) \text{ for } a,b \text{ in } zip(s1,s2)]
                                                            #max of possible sums
                 A[-2]=MS #Replace penultimate line with MS
                 A.pop() #Remove last line
                 M.append(MS)
             return A[0][0]
         def find path(A):
                 qlobal M
                 S=solution(A)
                 A=[[int(d) for d in str(n)] for n in A]
                 ch el=[M[-1][0]];path=[1]
                 for n in range(2, len(M)+1):
                     if M[-n][path[-1]-1]>M[-n][path[-1]]:
                         path.append(path[-1])
                     else:
                         path.append(path[-1]+1)
                 #add last element of path
                 if A[-1][path[-1]-1]>A[-1][path[-1]]:
                     path.append(path[-1])
                 else:
                     path.append(path[-1]+1)
                 return path
         #function to print triangle out of vector and path
         def print sol tree(A, start = 0):
             S=solution(A)
             path=find path(A)
             sm=0;
```

```
for n in range(len(A)):
        D=[int(d) for d in str(A[n])];
        for d in range(len(D)):
            if d+1==path[n]:
                if n>=start:
                    print("\x1b[31m"+str(D[d])+"\x1b[0m",end="", flush=True)]
                sm+=D[d]
            elif n>=start:
                print(D[d],end="", flush=True)
        if n>=start:
            print()
    if n>=start:
        print(" "*path[-2]+" \x1b[1;31m"+str(S)+" \x1b[0m")]
    if sm==S and n>=start:
        print(sm==S)
    else:
        print(sm==S)
        print("Error!")
    return sm==S
cond=print sol tree(gen T(50),35)
```

```
418744425182106254762324765268583738 \\ 8517027184494201168094853201776174995 \\ 19905495404807847318174851463000018942 \\ 211190092620649635838104821711183330845 \\ 8726513375633751610457942716768734238283 \\ 89399357577698226976873855548857615377619 \\ 368644597566770658191227891180199031930058 \\ 7641876277040658233068710319771596314829353 \\ 37027850249890306589849593995595782274793195 \\ 780384603136050422247697990613367538901646873 \\ 6083671798297876918069677488887949895817468912 \\ 89731873933709622126568196609975917250560892768 \\ 304579873520784682720034826644804968407591091808 \\ 1367712352974592097373652119073990828810352961386 \\ 59744921223361202330047087747395949536721275921715
```

A Python Lecture Series

Lecture 2

by Luca Mingarelli

Lecture 2

Content:

- I/O
- Modules
- NumPy and SciPy
- Pandas
- Matplotlib
- Importing data from the web

Input/Output

To write in a file:

```
In [8]: f = open('a_work_file', 'w') # opens the file workfile
    #more specifically it creates a file object
    f.write('This is a test\n')
    for n in range(5):
        f.write(str(n)+'\n')
    f.close()

In [9]: !ls #notice a new file!

ECB Python Lectures - Lecture 2 slides.pdf
    ECB Python Lectures - Lecture 2.ipynb
    ECB Python Lectures - Lecture 2.slides.html
    a_work_file
    img
    res
```

To read from a file:

Iterating over a file

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads to simple code.

File modes

- Read-only: r
- Write-only: w
 - Note: Create a new file or overwrite existing file.
- Append to a file: a
- Read and Write: r+
- Binary mode: b

It is good practice to use the with keyword when dealing with file objects. The advantage is that the file is properly closed after its suite finishes, even if an exception is raised at some point (using with is also much shorter than writing equivalent try-finally blocks).

```
In [12]:
          with open('A new test', 'w') as f:
              f.write('This is a NEW test\n\n')
              for n in range(6):
                  f.write(f'\{n\} squared is \{n**2\}\setminus n') # A formatted string - notice the 'f'
           at the beginning of the string
In [13]:
          with open('A new test', 'r') as f:
              print(f.read())
          This is a NEW test
          0 squared is 0
          1 squared is 1
          2 squared is 4
          3 squared is 9
          4 squared is 16
          5 squared is 25
```

Modules

i.e. how to write reusable code

A module is a file containing Python definitions and statements. The file name is the module name with the suffix .py appended.

```
In [14]: %%writefile my_new_module.py

def a_complicated_function():
    print("Working... Done.")

Writing my_new_module.py

In [15]: # import my_new_module as mnm
    from my_new_module import a_complicated_function
    a_complicated_function()

Working... Done.
```

```
In [16]: !mkdir MODULES
In [17]: %%writefile MODULES/module2.py
    def function2():
        print("Working... Done.")
```

Writing MODULES/module2.py

We could now call this as MODULES.module2.function2. However, to make our life easier we can instead write the following init .py file (notice the .!):

Most of the useful operations needed for scientific computing are contained within some module (e.g. **NumPy**, **SciPy**, etc.).

This means that in order to access them we will need to import that module as

• import module,

or giving it an alias as

• import module as md.

Then we will be able to call the function as module.specific_function() or as md.specific_function(). Alternatively we can import the required tool/function as

• from module import specific funtion.

NumPy and its arrays

NumPy provides an efficient extension package to Python for multidimensional arrays.

```
In [20]: | import numpy as np
          x = np.array([1,2,3])
          # convert list to numpy array object
          X
Out[20]: array([1, 2, 3])
In [21]: ###--- Notice that
          ###--- More on this later.
Out[21]: array([2, 4, 6])
In [22]: x = \text{np.linspace}(0,10,11) \# as in Matlab!
Out[22]: array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
In [23]: x = \text{np.arange}(1.5, 10, 2) \# \text{ same as Matlab's } [1.5:2:10]
Out[23]: array([1.5, 3.5, 5.5, 7.5, 9.5])
```

NumPy's number types and associated risk (overflow)

```
In [24]: | x=np.array([0,1])
         print("x =",x,"and has dtype", x.dtype)
         x = [0 \ 1] and has dtype int64
In [25]: | x=np.array([0,1], dtype = np.int8)
         x[:] = 2**7-1
          print("x =",x,"and has dtype",x.dtype)
         x = [127 127] and has dtype int8
In [26]: print("x + 1 = ", x + 1, "\t (because dtype is")
                ,x.dtype,"!)")
         x + 1 = [-128 - 128] (because dtype is int8!)
In [27]: x=np.array([2**63-1,2**63-1])
          print("x[0] = ",x[0],"and has dtype",x.dtype)
          sum(x)
         x[0] = 9223372036854775807 and has dtype int64
         /anaconda/lib/python3.6/site-packages/ipykernel_launcher.py:3: RuntimeWarning:
         overflow encountered in long scalars
           This is separate from the ipykernel package so we can avoid doing imports un
         til
Out[27]: -2
```

Some of NumPy arrays' attributes and methods

```
In [28]: x.ndim
Out[28]: 1
In [29]:
        x.shape
Out[29]:
        (2,)
In [30]:
        len(x)
Out[30]: 2
In [31]: x = np.array([[0, 1, 2], [3, 4, 5]]) # 2 x 3 array
In [32]:
         x.shape
Out[32]: (2, 3)
In [33]: x.mean() ## an ojbject's method
Out[33]: 2.5
In [34]:
        x.dtype ## data type
Out[34]: dtype('int64')
```

```
In [35]: print("itemsize:", x.itemsize, "bytes")
    print("nbytes:", x.nbytes, "bytes")
```

itemsize: 8 bytes
nbytes: 48 bytes

Higher dimensional arrays

```
In [36]:
         np.zeros((2,3))
         array([[0., 0., 0.],
Out[36]:
                 [0., 0., 0.]]
In [37]:
         np.ones((2,2))
          array([[1., 1.],
Out[37]:
                 [1., 1.]])
In [38]:
         np.eye(3)
         array([[1., 0., 0.],
Out[38]:
                 [0., 1., 0.],
                 [0., 0., 1.]])
In [39]:
         np.diag(range(1,5))
         array([[1, 0, 0, 0],
Out[39]:
                 [0, 2, 0, 0],
                 [0, 0, 3, 0],
                 [0, 0, 0, 4]]
```

Indexing and Slicing

Recall: x[start:stop:step]; when any is omitted the default values are start=0, stop=size, step=1

```
In [40]: X
Out[40]: array([[0, 1, 2],
                 [3, 4, 5]])
In [41]: | print('x[0] = ', x[0])
          print('x[1] = ', x[1])
         x[0] = [0 1 2]
         x[1] = [3 \ 4 \ 5]
In [42]: | x[0][-1]
Out[42]: 2
In [43]: |x[0,-1]|
Out[43]: 2
In [44]: | x[:,::-1]
Out[44]: array([[2, 1, 0],
                 [5, 4, 3]])
```

[0 1 2]

IMPORTANT 1: Be carefull about the datatype:

```
In [47]: | print('type: ',x.dtype)
         x[:,:] = np.pi
         type: int64
Out[47]: array([[3, 3, 3],
                [3, 3, 3]])
In [48]: y = x.astype(bool)
         # y = y.astype(float)
         print('type: ',y.dtype)
         y[:,:] = np.pi
         type: bool
Out[48]: array([[ True, True, True],
                 [ True, True, True]])
```

IMPORTANT 2: Slices return views, NOT copies!

This behavior is quite useful: when working with large datasets, we can access and process pieces of these datasets without the need to copy the data.

Copying NumPy arrays

Reshaping

Concatenation

Although np.vstack and np.hstack might be clearer:

[7, 8, 9]])

Use np.dstack to stack arrays along higher dimensional axis.

Splitting

```
In [59]: |Z1 = np.vstack([x, Z]).reshape((9,))
         print(Z1)
         x, y, z = np.split(Z1,[3,5])
         print(x,y,z)
         [1 2 3 4 5 6 7 8 9]
         [1 2 3] [4 5] [6 7 8 9]
In [60]: Z = np.arange(16).reshape((4, 4))
         print(Z)
         [[ 0 1 2 3]
          [4567]
          [ 8 9 10 11]
          [12 13 14 15]]
In [61]:
         upper, lower = np.vsplit(Z, [2])
         print('Upper part:\n',upper)
         print('-'*15)
         print('Lower part: \n',lower)
         Upper part:
          [[0 1 2 3]
          [4 5 6 7]]
         Lower part:
          [[ 8 9 10 11]
          [12 13 14 15]]
```

```
In [62]: left, right = np.hsplit(Z, [2])
    print('Left part:\n',left)
    print('-'*15)
    print('Right part:\n',right)
Left part:
    [[ 0   1]
    [ 4   5]
    [ 8   9]
    [12  13]]
```

Right part: [[2 3]

[6 7] [10 11] [14 15]]

Operations on NumPy arrays

Whenever possible, avoid looping: it's slow!

Instead it is advisable to make use of **NumPy**'s built in functions. These are highly optimised and are applied elementwise.

The most common functions (trigonometric, exponentials, logarithms, etc.) can be found within **NumPy**. More specialised functions on the other hand, can be found in **SciPy**, within the sub-module scipy.special:

More *special* mathematical functions can be found <u>here</u> (https://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special).

Even when computing aggregates: use NumPy's functions.

```
In [66]: 

x = np.arange(1000)
%timeit sum(x)
%timeit x.sum()
%timeit np.sum(x) # the same as above!

133 \mu s \pm 3.97 \mu s per loop (mean \pm std. dev. of 7 runs, 10000 loops each)
5.81 \mu s \pm 551 ns per loop (mean \pm std. dev. of 7 runs, 100000 loops each)
7.81 \mu s \pm 259 ns per loop (mean \pm std. dev. of 7 runs, 100000 loops each)

In [67]: 
%timeit max(x)
%timeit np.max(x) # the same as above!

93.4 \mu s \pm 1.04 \mu s per loop (mean \pm std. dev. of 7 runs, 10000 loops each)
6.95 \mu s \pm 249 ns per loop (mean \pm std. dev. of 7 runs, 10000 loops each)
```

8.4 μ s ± 289 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Same for max and min.

These operations can also be done along one axis only:

```
In [68]:
         print(Z)
         print("\nSum columns:")
         Z.sum(axis = 1)
         [0 1 2 3]
          [4567]
          [ 8 9 10 11]
          [12 13 14 15]]
         Sum columns:
Out[68]: array([ 6, 22, 38, 54])
In [69]: print("Max along columns:")
         print(Z.max(axis = 0))
         print("\nMax along rows:")
         print(Z.max(axis = 1))
         Max along columns:
         [12 13 14 15]
         Max along rows:
         [ 3 7 11 15]
```

A summary of available aggregation functions

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

Boolean operations

```
In [70]: x = \text{np.array}([1,2,3,4,5,6])
 x>3
```

Out[70]: array([False, False, False, True, True])

Operator	Equivalent function
==	np.equal
<	np.less
>	np.greater
!=	np.not_equal
<=	np.less_equal
>=	np.greater equal

Masks

A boolean array can be used to index which element to extract from a second array:

```
In [71]: print(x)
    print(x>3)
    x[x>3]

[1 2 3 4 5 6]
    [False False False True True]
Out[71]: array([4, 5, 6])
```

Fancy indexing

Moreover:

[5, 2]])

When using fancy indexing, the output has the same shape as the index.

Broadcasting

Broadcasting is a feature allowing for binary operations to be performed on arrays with different shapes.

[2]] -----x+y= [[0 1 2] [1 2 3]

[2 3 4]]

Rules of Broadcasting:

np.arange(3)+5

np.ones((3,3))+np.arange(3)

+

+

			7
1	1	1	
1	1	1	
1	1	1	

np.arange(3).reshape((3, 1))+np.arange(3)

	/		\overline{Z}	
0		0		0
	/		\angle	
1		1		1
			Z	
2		2		2
	/			

			$\overline{}$
0	1	2	J
1	2	3	
2	3	4	

Copy NumPy arrays (Deep-copy)

Pandas

Main data structures in Pandas:

- Series
- DataFrames

Series

0.1

Out[82]:

Be careful however about operations between different Series

```
In [83]: | s1 = pd.Series({'a': 0.1, 'b': 1.2, 'c': 2.3})
         s2 = pd.Series({'a': 1.0, 'b': 2.0, 'c': 3.0})
         s3 = pd.Series({'c': 0.1, 'd': 1.2, 'e': 2.3})
In [84]: s1 + s2
Out[84]: a 1.1
             3.2
              5.3
         dtype: float64
In [85]: s1 + s3
              NaN
Out[85]:
              NaN
         b
         c 2.4
         d
              NaN
              NaN
         dtype: float64
```

```
In [86]: s1 = pd.Series([1,2,3],index=['a'] * 3)
s2 = pd.Series([4,5],index=['a'] * 2)
s1 + s2 #for non-unique indices: broadcasting to all common indices.
```

```
Out[86]: a 5
a 6
a 6
a 7
a 7
a 8
dtype: int64
```

It is possible to access the underlying arrays through the attributes values and index

```
In [87]: | print(type(s3.values))
         s3.values
         <class 'numpy.ndarray'>
Out[87]: array([0.1, 1.2, 2.3])
In [88]: | s3.index = ['First', 'Second', 'Third']
         print(s3)
         s3.index[1]
         First.
                   0.1
                  1.2
         Second
         Third
                   2.3
         dtype: float64
Out[88]: 'Second'
In [89]: s = pd.Series([10,20,30],
                       index=[13,2,89])
         ## Now indexing is ambiguous!
         s[2]
         # s[0] # Error
Out[89]: 20
```

```
Out[90]: 13 10 2 20 dtype: int64

In [91]: s.loc[89] # s.loc[[13,89]] ##i.e. fancy indexing works
```

In [90]: | s.iloc[0:2] ## s.iloc[0:2] ##i.e. slicing works

Out[91]: 30

Notable Methods of the Series data structure

Accessed as my_series.method()

Name	Description
head() and tail()	Display the first five and the last five rows respectively (first/last n rows if n is given as an argument)
isnull()	Returns a Series with same indices and boolean values indicating where the values are NaNs or Nulls
notnull()	Negation of isnull()
iloc()	Access integer location of a Series
loc()	Access location according to indexing of the Series
describe()	Returns summary and statistics of the Series
unique()	Returns the unique elements of a Series
drop(index)	Drops elements with the selected index
dropna()	Drops all NaNs and Nulls elements
fillna(value)	Fills all NaNs and Nulls with value
append(series)	Appends a Series to another Series

DataFrame

Dataframes are a collection of Series.

```
In [92]: | df = pd.DataFrame(np.array([[1,2],[3,4]]))
          df
Out[92]:
           0 1 2
In [93]: | df.columns = ['col1','col2']
          df.index = ['row1','row2']
          df
Out[93]:
               col1 col2
           row1 1
           row2 3
In [94]:
          pd.DataFrame(np.array([[1,2],[3,4]]),columns=['col1','col2'], index = ['row1','row
          2'])
Out[94]:
               col1 col2
           row1 1
           row2 3
```

```
In [211]: s1 = pd.Series(np.arange(0,5))
s2 = pd.Series(np.arange(1,4))
s3 = pd.Series(np.arange(2,3))
pd.DataFrame({'col1': s1, 'col2': s2, 'col3': s3})
```

Out[211]:

	col1	col2	col3
0	0	1.0	2.0
1	1	2.0	NaN
2	2	3.0	NaN
3	3	NaN	NaN
4	4	NaN	NaN

mean 2.000000 2.0 2.0 1.581139 1.0 NaN std 0.000000 1.0 2.0 min 25% 1.000000 1.5 2.0 2.000000 2.0 50% 2.0 3.000000 2.5 75% 2.0 4.000000 3.0 2.0 max

In [214]: df.sum() ### NaN automatically diregarded!

Out[214]: col1 10.0 col2 6.0 col3 2.0 dtype: float64

Selecting columns ...

```
In [215]: | print(df['col1'])
          print(type(df['col1']))
               0.0
          0
               1.0
               2.0
          3
               3.0
               4.0
          Name: col1, dtype: float64
          <class 'pandas.core.series.Series'>
In [216]:
          print(df[['col1','col3']])
          print(type(df[['col1','col3']]))
             col1 col3
            0.0
                  2.0
          1 1.0
                  NaN
          2 2.0
                  NaN
          3 3.0
                   NaN
              4.0
                   NaN
          <class 'pandas.core.frame.DataFrame'>
```

... selecting rows...

```
In [217]: df[2:4]
```

...and of course: selecting rows and columns...

```
In [218]: df[2:4][['col2']]
```

...deleting columns...

```
In [219]: df2 = df.copy() #Recall the `issue` in numpy?
           del df2['col2']
           df2
Out[219]:
              col1 col3
            0 0.0 2.0
            1 1.0 NaN
            2 2.0
                 NaN
            3 3.0
                  NaN
            4 4.0
                  NaN
In [220]:
           df2.pop('col1')
                 0.0
Out[220]:
                1.0
                2.0
            3
                 3.0
                 4.0
           Name: col1, dtype: float64
In [221]:
           df2
Out[221]:
               col3
            0 2.0
            1 NaN
            2 NaN
            3 NaN
            4 NaN
```

```
In [222]: df2 = df.drop(['coll','col3'],axis = 1)
    df2
```

Out[222]:

	col2
0	1.0
1	2.0
2	3.0
3	NaN
4	NaN

In [223]: df

Out[223]:

	col1	col2	col3
0	0.0	1.0	2.0
1	1.0	2.0	NaN
2	2.0	3.0	NaN
3	3.0	NaN	NaN
4	4.0	NaN	NaN

Data import with Pandas

<u>CSV files (pandas.read_csv)</u>

Comma-separated value files can be easily read using pandas.read csv:

```
csv_data = pd.read_csv('file.csv')
```

Exel files (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html)

```
csv_data = pd.read_excel('file.xlsx')
```

pandas.read_excel requires two arguments: the name of the file and the name of the sheet.

Moreover, more optional arguments can be parsed to these functions to specify where to start reading from, how many rows to read, etc.

Additionally, pd.read_stata, pd.read_sql, pd.read_json, and more (https://pandas.pydata.org/pandas-docs/stable/reference/io.html)

What to do with missing data?

- None Missing data inside of dataframe of type object
- Nan Missing numerical data

```
In [95]: # None + 1
    np.nan +1

Out[95]: nan

In [226]: pd.Series([1, np.nan, 2, None])
    ## Notice both the mapping None -> NaN
    ## as well as int -> float

Out[226]: 0     1.0
     1     NaN
     2     2.0
     3     NaN
     dtype: float64
```

Detection of missing data

```
In [227]:
            df.count() #count non-missing elements
            col1
Out[227]:
            col2
            col3
                     1
            dtype: int64
In [228]:
            df.notnull() # opposite: df.isnull()
Out[228]:
               col1 col2 col3
             0 True True
                       True
             1 True True
                        False
             2 True True
                       False
             3 True False False
             4 True False False
In [229]:
            df['col2'][df['col2'].notnull()]
                  1.0
Out[229]:
                  2.0
                  3.0
            Name: col2, dtype: float64
```

Dropping missing values

Filling missing values

```
In [235]: df.fillna(0)
    df
```

Out[235]:

	col1	col2	col3
0	0.0	1.0	2.0
1	1.0	2.0	NaN
2	2.0	3.0	NaN
3	3.0	NaN	NaN
4	4.0	NaN	NaN

```
In [233]: # forward-fill
    df.fillna(method='ffill') #bfill for back-fill
```

Out[233]:

	col1	col2	col3
0	0.0	1.0	2.0
1	1.0	2.0	2.0
2	2.0	3.0	2.0
3	3.0	3.0	2.0
4	4.0	3.0	2.0

```
In [234]: # change axis
df.fillna(method='ffill',axis = 1)
```

Out[234]:

	col1	col2	col3
0	0.0	1.0	2.0
1	1.0	2.0	2.0
2	2.0	3.0	3.0
3	3.0	3.0	3.0
4	4.0	4.0	4.0

Out[236]:

	Α	В	С	D
0	12.0	NaN	20.0	14.0
1	4.0	2.0	16.0	3.0
2	5.0	54.0	NaN	NaN
3	NaN	3.0	3.0	NaN
4	1.0	NaN	8.0	6.0

```
In [237]: # to interpolate the missing values
df. (method ='linear', limit_direction ='forward',axis = 1)
```

Out[237]:

	Α	В	С	D
0	12.0	16.0	20.0	14.0
1	4.0	2.0	16.0	3.0
2	5.0	54.0	54.0	54.0
3	NaN	3.0	3.0	3.0
4	1.0	4.5	8.0	6.0

Alternatively:

- linear: Ignore the index and treat the values as equally spaced.
- time: Works on daily and higher resolution data to interpolate given length of interval.
- index, values: use the actual numerical values of the index.
- pad: Fill in NaNs using existing values.
- nearest, zero, slinear, quadratic, cubic, spline, barycentric, polynomial
- krogh, piecewise_polynomial, spline, pchip, akima

<u>More here (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html)</u>.

Probability and Statistics

Random generators

```
In [239]:
          import random as rnd
          rnd.random() ## Uniform in [0,1)
           0.2707940270988064
Out[239]:
In [240]:
          # uniform in range
          rnd.uniform(1,10)
           6.628778659683503
Out[240]:
In [241]:
          #simulate die
          rnd.randint(1,6)
Out[241]: 6
In [245]: | greetings = ['Hi', 'Hello', 'Welcome!', 'Hola']
          rnd.choice(greetings)
           'Welcome!'
Out[245]:
In [246]: #Simulate wheel spins
          colors = ['R', 'B', 'G'] # Red, Black and Green
          rnd.choices(colors, weights=[18,18,2], k =10)
         ['R', 'R', 'B', 'R', 'B', 'R', 'R', 'G', 'R', 'B']
Out[246]:
```

```
In [247]: # Shuffle cards
          deck = list(range(1,53)) ## 52 cards
          rnd.shuffle(deck)
          print(deck)
```

[13, 32, 34, 15, 14, 24, 5, 46, 48, 18, 28, 17, 3, 44, 38, 26, 20, 1, 51, 33, 12, 8, 40, 29, 22, 4, 35, 30, 16, 52, 21, 42, 25, 23, 11, 39, 43, 9, 49, 50, 3 6, 47, 41, 19, 6, 45, 7, 31, 10, 37, 2, 27]

In [248]: | #Sample a hand from the deck hand = rnd.sample(deck, k=5)print(hand)## only unique values

[32, 49, 23, 37, 5]

NumPy random generators

```
In [249]:
            import numpy.random as rnd
In [250]: ## UNIFORM
           print(rnd.rand(3,4))
           [[0.51846552 0.66827394 0.82240748 0.60246942]
            [0.52696974 0.90829626 0.37089569 0.84264402]
            [0.12407456 0.39154479 0.2680074 0.78966815]]
In [251]: ## STANDARD NORMAL
           print(rnd.randn(3,4))
           [[ 0.53121684    1.8907553    1.9218723    0.50584662]
            [-0.52137642 \quad 1.01327556 \quad 0.59665253 \quad 2.05572702]
            [-0.61345248 \quad 0.12035755 \quad -0.91156546 \quad -0.14825564]]
In [252]: | ## UNIFORM INTEGERS
           print(rnd.randint(0,100,(3,4)))
           [[35 32 34 55]
            [83 84 55 98]
            [97 46 71 87]]
In [253]: | rnd.shuffle(deck)
           print(deck)
           [12, 8, 34, 11, 6, 21, 3, 19, 38, 25, 43, 31, 40, 52, 36, 24, 51, 10, 18, 49,
           15, 1, 50, 39, 42, 47, 45, 23, 17, 33, 44, 48, 30, 13, 20, 7, 46, 32, 27, 28,
           5, 16, 22, 2, 14, 35, 37, 9, 26, 4, 29, 41]
```

Function	Description		
uniform(a,b,k)	Returns k draws from $U(a,b)$.		
$normal(\mu, \sigma, k)$	Returns k draws from $\mathcal{N}(\mu,\sigma)$.		
$multivariate_normal(\mu, \Sigma, k)$	Returns k draws from $\mathcal{N}(\vec{\mu},\Sigma)$.		
$lognormal(\mu,\sigma,k)$	Returns k draws from LogNormal (μ, σ) .		
standard_t(v,k)	Returns k draws from Student-t(ν).		
chisquare(nu,k)	Returns k draws from $\chi^2_{\rm v}$.		
poisson(λ,k)	Returns k draws from Poisson(λ).		
binomial(n,p,k)	Returns k draws from $B(n, p)$.		
binomial(1,p,k)	Returns k draws from Bernoulli (p) .		
multinomial(n,p,k)	Returns k draws from Multinomial (n, \vec{p}) (n trials, and a list of probabilities p).		
exponential(λ,k)	Returns k draws from Exponential(λ).		
f(v1,v2,k)	Returns k draws from $F_{ u_1, u_2}$.		
$gamma(\alpha, \theta, k)$	Returns k draws from $\Gamma(\alpha,\theta)$ (α and θ the shape and scale parameters).		
and more			

Note 1: call as rnd.function_name(...).

Note 2: the argument k is optional.

Note 3: replace k with (k,1) to obtain a $k \times l$ matrix instead.

More advanced statistical analysis packages

- statismodels (http://www.statsmodels.org/stable/index.html): mainly to estimate statistical models, and perform statistical tests. Includes: Linear Regression, Generalized Linear Models, Generalized Estimating Equations, Robust Linear Models, Linear Mixed Effects Models, Regression with Discrete Dependent Variables, ANOVA, Time Series analysis, Models for Survival and Duration Analysis, Statistics (e.g. Multiple Tests, Sample Size Calculations etc.), Nonparametric Methods, Generalized Method of Moments, Empirical Likelihood, ...
- <u>PyMC (http://pymc-devs.github.io/pymc/)</u>: for Bayesian statistical models and fitting algorithms, including MCMC and Gaussian Processes.
- <u>scikit-learn (https://scikit-learn.org/stable/)</u>: for machine learning, data mining, and data analysis, including supervised and unsupervised learning. Includes tools for: Classification, Regression, Clustering, Dimensionality reduction, Model selection.

Matplotlib - A brief tour

```
In [96]: %matplotlib inline
import matplotlib.pyplot as plt

In [97]: x = np.linspace(0,6,1000)
y = np.sin(x)
plt.plot(x,y)
plt.show()
## actually not necessary here,
## but needed in IPython
#or from command line
```



```
In [98]: #It is possible to change the style as
with plt.style.context(
    'fivethirtyeight'):
    plt.plot(x,y);plt.ylim([-1.1,1.1])
```


`plt.style.use('style-name')` to change across all the notebook; `plt.style.available` to obtain all available styles. [More info here](https://jakevdp.github.io/PythonDataScienceHandbook/04.11-settings-and-stylesheets.html).

```
In [99]: | ## Plotting
         import seaborn as sns
         sns.set(rc={'figure.figsize':(8,5.5)})
         plt.plot(x,y);
         plt.plot(x,np.cos(2*x),'--');
         plt.xlabel('x');plt.legend(['sine of x','$\cos(2x)$'],loc='lower left');
         plt.ylim((-1.5, 1.5));
         plt.twinx(); ## creates new y-axis
         plt.plot(x,np.log(x+1),color = 'tab:red');
         plt.grid(None)
         plt.ylabel('\$\log(x+1)\$');plt.legend(['\$\log(x+1)\$']);
         plt.ylim((-1,2));
         plt.xlim((0,6));
         # ## Export (Right click and download!)
         plt.savefig('img/my plot.png',dpi=500,transparent=True);
         # ## dpi = dots-per-inch; transparent sets alpha-channel to 0
```



```
In [100]: for k in range(10):
    plt.plot(x,np.sin(2*x+k/4));
```


Line Styles

```
In [101]: plt.plot(x, x + 0, linestyle='solid')
   plt.plot(x, x + 1, linestyle='dashed')
   plt.plot(x, x + 2, linestyle='dashdot')
   plt.plot(x, x + 3, linestyle='dotted');
   # For short, you can use the following codes:
   plt.plot(x, x + 0.25, linestyle='-',alpha= 0.5) # solid
   plt.plot(x, x + 1.25, linestyle='--',alpha= 0.5) # dashed
   plt.plot(x, x + 2.25, linestyle='--',alpha= 0.5) # dashdot
   plt.plot(x, x + 3.25, linestyle='--',alpha= 0.5); # dotted
```


Scatter Plots

```
In [102]: x = np.linspace(0, 10, 30)
y = np.sin(x)
plt.plot(x, y, 'o');# '-o'
```


Markers

Alternatively, Scatter Plot with plt.scatter

```
In [104]: x = np.linspace(0,39,40)
y = np.sin(x/5)
colors = y
sizes = 10*x
plt.scatter(x,y,c=colors,cmap='viridis',s=sizes, alpha = 0.5)
plt.colorbar(); # show color scale
```


More colormaps here (https://matplotlib.org/examples/color/colormaps_reference.html).

Histograms

```
In [105]: data = np.random.randn(1000)
   plt.hist(data, bins=30, density=True, alpha=0.5, histtype='stepfilled');
```



```
In [106]: x1 = np.random.normal(0, 0.8, 1000)
    x2 = np.random.normal(-2, 1, 1000)
    x3 = np.random.normal(3, 2, 1000)

## by the way, we can pass the same options to multiple plots!
    kwargs = dict(histtype='stepfilled', alpha=0.5, density=True, bins=40)
    plt.hist(x1, **kwargs)
    plt.hist(x2, **kwargs);
    plt.hist(x3, **kwargs);
```


Subplots - by hand

```
In [107]: x = np.linspace(0, 6,1000)
    ax1 = plt.axes() # standard axes
    ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])
    ax1.plot(x,np.sin(x));
    ax2.plot(x,np.sin(x)*np.cos(x**2));
```


Subplots - with plt.subplot

Subplots - or with plt.subplots

to share axis

Subplots - or with plt.GridSpec

for more complicated arrangements

```
In [110]: grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)
    plt.subplot(grid[0, 0])
    plt.plot(x,np.sin(x)*np.cos(x))
    plt.subplot(grid[0, 1:])
    plt.plot(x,np.sin(x)**(2)*np.cos(x))
    plt.subplot(grid[1, :2])
    plt.plot(x,np.sin(x)**(3)*np.cos(x))
    plt.subplot(grid[1, 2]);
    plt.plot(x,np.sin(x)**(4)*np.cos(x));
```


A few more complicated plots

```
In [111]: | # Double donut
          # Make data: consider 3 groups and 7 subgroups
          group names=['groupA', 'groupB', 'groupC']
          group size=[12,11,30]
          subgroup names=['A.1', 'A.2', 'A.3', 'B.1', 'B.2', 'C.1', 'C.2', 'C.3', 'C.4', 'C.
          5'1
          subgroup size=[4,3,5,6,5,10,5,5,4,6]
          # Create colors
          a, b, c=[plt.cm.Blues, plt.cm.Reds, plt.cm.Greens]
          # First Ring (outside)
          fig, ax = plt.subplots()
          mypie, = ax.pie(group size, radius=1.3, labels=group names,
                            colors=[a(0.6), b(0.6), c(0.6)])
          plt.setp( mypie, width=0.3, edgecolor='white')
          # Second Ring (Inside)
          mypie2, = ax.pie(subgroup size, radius=1.3-0.3, labels=subgroup names,
                             labeldistance=0.7,
                             colors=[a(0.5), a(0.4), a(0.3), b(0.5), b(0.4),
                                     c(0.6), c(0.5), c(0.4), c(0.3), c(0.2)])
          plt.setp( mypie2, width=0.4, edgecolor='white')
          plt.margins(0,0)
```

```
In [ ]: | %%capture
        ## prevents cell to print output
        from mpl toolkits.mplot3d import Axes3D
        import pandas as pd
        data = pd.read csv('res/vulcano.csv')
        # Transform data to a long format
        df=data.unstack().reset index()
        df.columns=["X","Y","Z"]
        # And transform the old column name in something numeric
        df['X']=pd.Categorical(df['X'])
        df['X']=df['X'].cat.codes
        for angle in range (0,360,1):
            # Make the plot
            fig = plt.figure()
            ax = fig.gca(projection='3d')
            ax.plot_trisurf(df['Y'], df['X'], df['Z'], cmap=plt.cm.viridis, linewidth=0.2)
            # Set the angle of the camera
            ax.view init(30,angle)
            # Save it
            filename='./img/PNG/ANIMATION/Vulcano step'+str(angle)+'.png'
            plt.savefig(filename, dpi=180)
```

A very brief tour of Seaborn

```
In [112]: import pandas as pd
    data = np.random.multivariate_normal(
        [0, 0], [[5, 2], [2, 2]],
        size=2000)
    data = pd.DataFrame(
        data, columns=['x', 'y'])
    data.head(5)
```

Out[112]:

		х	У		
	0	2.900026	1.941117		
	1	-1.362563	-0.649883		
•	2	-0.278481	-1.442579		
,	3	-2.836998	-1.331469		
	4	1.841642	0.246689		

Visualise the joint distribution


```
In [116]: tips = sns.load_dataset("tips")
    tips.head() ##tips to restaurant staff
```

Out[116]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Column	Description
total_bill	Total bill including tax [USD]
tip	Tip [USD]
sex	Sex of person paying
smoker	Smoker in party?
day	Day of the week
time	Time of the day
size	Size of the party

In [118]: sns.lmplot(x="total_bill", y="tip", hue="smoker", data=tips);

In [119]: sns.lmplot(x="total_bill", y="tip", hue="smoker", col="time", data=tips);

In [120]: sns.lmplot(x="total_bill", y="tip", hue="smoker",col="time", row="sex", data=tips
);


```
In [121]: tips['tip_pct'] = 100 * tips['tip'] / tips['total_bill']
grid = sns.FacetGrid(tips, row="sex", col="time", margin_titles=True)
grid.map(plt.hist, "tip_pct", bins=np.linspace(0, 40, 15));
```


Importing data from the web

i.e. <u>Pandas' DataReader (https://pandas-datareader.readthedocs.io/en/latest/index.html)</u>

Remote Data Access to:

- FRED
- World Bank
- OECD
- Eurostat
- Yahoo Finance
- ..

and more (https://pandas-datareader.readthedocs.io/en/latest/remote data.html).

Suppose we want recent data on economic growth for the EU founder countries.

To download data from, say, the WorldBank, we must know the exact indicator of the data we want to read.

```
In [123]: from pandas_datareader import wb
# wb.search('gdp')
wb.search('gdp.*capita.*const').iloc[:,:2]
### `.*` indicates that any text in that position is a match
```

Out[123]:

Id			name
646 6.0.GDPpc_constant		6.0.GDPpc_constant	GDP per capita, PPP (constant 2011 internation
9116 NY.GDP.PCAP.KD		NY.GDP.PCAP.KD	GDP per capita (constant 2010 US\$)
	9118	NY.GDP.PCAP.KN	GDP per capita (constant LCU)
,	9120	NY.GDP.PCAP.PP.KD	GDP per capita, PPP (constant 2011 internation
,	9121	NY.GDP.PCAP.PP.KD.87	GDP per capita, PPP (constant 1987 internation

```
Out[124]: 'NY.GDP.PCAP.KD'
```

We create a list of country indicators:

```
In [125]: countries = ['DE', 'FR', 'IT', 'NL', 'BE', 'LU']
In [126]: data = wb.download(indicator='NY.GDP.PCAP.KD', country=countries, start=1991, end=20
18)
## rearrange data
GDP = data.reset_index().pivot('year', 'country')
GDP.head(4)
```

Out[126]:

NY.GDP.PCAP.KD

country	Belgium	France	Germany	Italy	Luxembourg	Netherlands
year						
1991	33586.958310	32855.995990	33742.219217	31292.053095	70667.238370	36063.470851
1992	33962.986386	33216.008996	34130.852398	31531.690020	71003.669122	36402.472894
1993	33505.165503	32869.778973	33583.006036	31243.679023	72999.737640	36604.233482
1994	34479.937552	33515.713512	34289.124749	31909.236711	74763.871165	37461.566161

At this point, we can easily compute each country's growth as

```
In [127]: GROWTH = 100 * GDP.pct_change()
    GROWTH.head(5)
```

Out[127]:

N1.GDP.PCAP.ND							
C	ountry	Belgium	France	Germany	Italy	Luxembourg	Netherlands
	year						
1	L991	NaN	NaN	NaN	NaN	NaN	NaN
1	1992	1.119566	1.095730	1.151771	0.765808	0.476077	0.940015
1	1993	-1.347999	-1.042359	-1.605135	-0.913402	2.811219	0.554250
1	L994	2.909319	1.965132	2.102607	2.130215	2.416630	2.342168
1	1995	2.170550	1.716968	1.439068	2.885202	0.017300	2.607973

NVCDDDCADKD

(It is also possible to automatically generate a LT_EX table as GROWTH.tail(6).round(2).to_latex('my_table.tex'). This creates a file called my_table.tex in the current directory.)

Finally, we plot the results:

```
In [128]: GROWTH.columns = countries
   GROWTH.plot();
```


Suppose we want to regress change in consumption (as Personal Consumption Expenditures) on the change in gdp:

$$\Delta \ln(c_t) = \alpha + \beta \Delta \ln(y_t) + \epsilon_t$$

Out[130]:

	PCEC	GDP
DATE		
1947-01-01	156.161	243.164
1947-04-01	160.031	245.968
1947-07-01	163.543	249.585
1947-10-01	167.672	259.745
1948-01-01	170.372	265.742
1948-04-01	174.142	272.567
1948-07-01	177.072	279.196
1948-10-01	177.928	280.366

In [131]: usdata.plot();

In [132]: import statsmodels.formula.api as smf smf.ols('PCEC ~ GDP', np.log(usdata).diff()).fit().summary()

Out[132]:

OLS Regression Results

Dep. Variable:	PCEC	R-squared:	0.491
Model:	OLS	Adj. R-squared:	0.490
Method:	Least Squares	F-statistic:	276.2
Date:	Fri, 10 May 2019	Prob (F-statistic):	7.07e-44
Time:	19:00:28	Log-Likelihood:	1027.8
No. Observations:	288	AIC:	-2052.
Df Residuals:	286	BIC:	-2044.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0061	0.001	8.730	0.000	0.005	0.008
GDP	0.6162	0.037	16.620	0.000	0.543	0.689

Omnibus:	103.655	Durbin-Watson:	2.537
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1131.340
Skew:	-1.117	Prob(JB):	2.15e-246
Kurtosis:	12.449	Cond. No.	91.9

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The sample covers a long period (\sim 70y of quarterly observation), thus it is reasonable to wonder whether the parameters are constant.

Let us estimate with a rolling sample. In particular, consider 24 quarterly observations rolling window.

```
In [133]: growth=(100*np.log(usdata).diff())[1:]
    T, _ = growth.shape ###---- T = # of observations
    h = 24

In [134]: def window_β(k): return smf.ols('PCEC~GDP',growth[k-h:k]).fit().params['GDP']
```

```
In [135]: growth.loc[h-1:,'\beta'] = [window_\beta(k) for k in range(h,T+1)] growth[['\beta']].plot();
```


Another example

```
In [136]: # AAPL AMZN and GOOGL stocks
    from pandas_datareader import data
    tickers = ['AAPL', 'AMZN', 'GOOGL']
    start_date, end_date = '2010-01-01', '2019-05-10'
    df = data.get_data_yahoo(tickers, start_date, end_date)
    df.head()
```

Out[136]: Attributes High

Attributes High			Low			Open		Close		
Symbols	AAPL	AMZN	GOOGL	AAPL	AMZN	GOOGL	AAPL	AMZN	GOOGL	AAPL
Date										
2010-01- 04	30.642857	136.610001	315.070068	30.340000	133.139999	312.432434	30.490000	136.250000	313.788788	30.572857
2010-01- 05	30.798571	135.479996	314.234222	30.464285	131.809998	311.081085	30.657143	133.429993	313.903900	30.625713
2010-01- 06	30.747143	134.729996	313.243256	30.107143	131.649994	303.483490	30.625713	134.600006	313.243256	30.138571
2010-01- 07	30.285715	132.320007	305.305298	29.864286	128.800003	296.621613	30.250000	132.009995	305.005005	30.082857
2010-01- 08	30.285715	133.679993	301.926941	29.865715	129.029999	294.849854	30.042856	130.559998	296.296295	30.282858

```
In [137]: df['Close'].plot();
```



```
In [138]: ##Plotting
amzn = df['Close']["AMZN"]
# Calculate moving averages of the closing prices rolling at 20 and 100 days
roll1_amzn = amzn.rolling(window=20).mean()
roll2_amzn = amzn.rolling(window=100).mean()
fig, ax = plt.subplots(figsize=(16,8))
ax.plot(amzn, label='AMZN')
ax.plot(roll1_amzn, label='20 days rolling')
ax.plot(roll2_amzn, label='100 days rolling')
ax.set_xlabel('Date')
ax.set_ylabel('Closing price (USD)')
ax.legend();
```


Choropleth Maps

True

```
In [140]: from pandas_datareader import wb
wb.search('gdp.*capita.*current').iloc[:,:2]
### `.*` indicates that any text in that position is
```

Out[140]:

	iu	Haille
9114	NY.GDP.PCAP.CD	GDP per capita (current US\$)
9115	NY.GDP.PCAP.CN	GDP per capita (current LCU)
9119	NY.GDP.PCAP.PP.CD	GDP per capita, PPP (current international \$)

```
In [141]: GDP = wb.download(indicator='NY.GDP.PCAP.CD',country=countries,start=2017, end=2017)
    GDP = GDP.reset_index().drop(columns=['year'])## rearrange data
    GDP = GDP.rename(columns = {'NY.GDP.PCAP.CD':'GDP'})
    GDP.transpose()
```

Out[141]:

	0	1	2	3	4	5	6	7	8	9	•••	18	19	
country	Austria	Belgium	Bulgaria	Cyprus	Czech Republic	Germany	Denmark	Spain	Estonia	Finland		Luxembourg	Latvia	Ma
GDP	47380.8	43467.4	8228.01	25658.8	20379.9	44665.5	57218.9	28208.3	20200.4	45804.7		104499	15684.6	26

2 rows × 28 columns

```
In [142]: from datetime import date
    import currency_converter as CC### Data from ECB
    c = CC.CurrencyConverter()
    usd_eur = c.convert(1, 'EUR', 'USD', date=date(2017,3,21))
    GDP['GDP'] /= usd_eur
    GDP.transpose()
```

Out[142]:

	0	1	2	3	4	5	6	7	8	9	•••	18	19	
country	Austria	Belgium	Bulgaria	Cyprus	Czech Republic	Germany	Denmark	Spain	Estonia	Finland		Luxembourg	Latvia	Malta
GDP	43863	40240.2	7617.12	23753.7	18866.8	41349.3	52970.6	26114	18700.6	42403.9		96740.2	14520.1	24762

2 rows × 28 columns

Out[143]:

	0	1	2	3	4	5	6	7	8	9	•••	18	19	20	
country	AUT	BEL	BGR	CYP	CZE	DEU	DNK	ESP	EST	FIN		LUX	LVA	MLT	N
GDP	43863	40240.2	7617.12	23753.7	18866.8	41349.3	52970.6	26114	18700.6	42403.9		96740.2	14520.1	24762.3	44

2 rows × 28 columns

```
In [144]: | ## Choropleth
          import folium
          from branca import colormap
          map data = pd.DataFrame({
               'A3': list(GDP['country']),
               'value': list(GDP['GDP']/1000)
          })
          map dict = map data.set index('A3')['value'].to dict()
          vmin = min(map dict.values())
          vmax = max(map dict.values())
          color scale = colormap.linear.Blues 09.scale(vmin, vmax )
          ###### try dir(colormap.linear) for more colormaps
          # color scale = colormap.LinearColormap(['azure', 'darkblue'], vmin = vmin, vmax = vmax)
          # color scale = colormap.LinearColormap(['yellow', 'red'], vmin = vmin, vmax = vmax)
          color scale = color scale.to step(index=range(0,100,5))# 0,70,10
          color scale.caption = 'GDP per capita [K€]'
          def get color(feature, border = False):
              value = map dict.get(feature['properties']['A3'])
               if not border:### SET FILLING COLOR
                  if value is None:
                       return '#DDDDDD' # MISSING -> gray
                         return 'white' # MISSING -> white
                   else:
                       return color scale(value)
               else:
                             ### SET BORDER COLOR
                   if value is None:
                       return None # MISSING -> no color
                   else:
                      return 'black'
          m = folium.Map(
              tiles=None, #Stamen Terrain, OpenStreetMap, Stamen Toner, Mapbox Bright, and Mapbox Control R
           oom
               location = [50, 15],
               zoom start = 4
          folium.GeoJson(
               data = './res/world geo.json files/coastline cty 10km.geo.json',
```

In [145]: m Out[145]: 60 70 80 90 + GDP per capita [K€] Leaflet (http://leafletjs.com)

In []: m.save('map.html')

End of Lecture 2