

Algorithms for Computational Logic Overview of Satisfiability Modulo Theories

based on slides of João Marques-Silva and Mikoláš Janota

IST, ULisboa

- Propositional satisfiability (SAT)
 - Modern SAT algorithms CDCL
- Propositional encodings
 - Cardinality constraints, PB constraints, etc.

- Propositional satisfiability (SAT)
 - Modern SAT algorithms CDCL
- Propositional encodings
 - Cardinality constraints, PB constraints, etc.
- Overconstrained problems
 - Optimization
 - Minimal sets

- Propositional satisfiability (SAT)
 - Modern SAT algorithms CDCL
- Propositional encodings
 - Cardinality constraints, PB constraints, etc.
- Overconstrained problems
 - Optimization
 - Minimal sets
- Duality

- Propositional satisfiability (SAT)
 - Modern SAT algorithms CDCL
- Propositional encodings
 - Cardinality constraints, PB constraints, etc.
- Overconstrained problems
 - Optimization
 - Minimal sets
- Duality
- Satisfiability Modulo Theories (SMT)
- Other topics:
 - Answer Set Programming (ASP)

Outline

What is SMT?

Application Examples

A Glimpse of SMT

Eager Encodings

Lazy Solving

Outline

What is SMT?

Application Examples
Encoding a scheduling problem
Encoding symbolic execution

A Glimpse of SMT

Eager Encodings

Lazy Solving

• FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic
- these fragments are called theories

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic
- these fragments are called theories
- e.g. $(d-c=1) \wedge ((d<5) \vee (c>10))$ is satisfiable with example solutions $\{c=11, d=12\}, \{c=1, d=2\}.$

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic
- these fragments are called theories
- e.g. $(d c = 1) \land ((d < 5) \lor (c > 10))$ is satisfiable with example solutions $\{c = 11, d = 12\}, \{c = 1, d = 2\}.$
- interpreted functions, predicates, and constants, e.g. +, -, =, <, 5.

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic
- these fragments are called theories
- e.g. $(d-c=1) \land ((d < 5) \lor (c > 10))$ is satisfiable with example solutions $\{c=11, d=12\}, \{c=1, d=2\}.$
- interpreted functions, predicates, and constants, e.g. +, -, =, <, 5.
- ullet uninterpreted functions, predicates, and constants, e.g. f,c.

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic
- these fragments are called theories
- e.g. $(d-c=1) \land ((d < 5) \lor (c > 10))$ is satisfiable with example solutions $\{c=11, d=12\}, \{c=1, d=2\}.$
- interpreted functions, predicates, and constants, e.g. +,-,=,<,5.
- ullet uninterpreted functions, predicates, and constants, e.g. f,c.
- e.g. f(c) > c is satisfied by $\{f(x) = x + 1, c = 100\}$

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic
- these fragments are called theories
- e.g. $(d-c=1) \wedge ((d<5) \vee (c>10))$ is satisfiable with example solutions $\{c=11, d=12\}, \{c=1, d=2\}.$
- interpreted functions, predicates, and constants, e.g. +,-,=,<,5.
- ullet uninterpreted functions, predicates, and constants, e.g. f,c.
- e.g. f(c) > c is satisfied by $\{f(x) = x + 1, c = 100\}$
- term: f(c), atom: f(c) > d, literal: $\neg (f(c) > d)$, proposition: $(c < d) \lor (d > z)$

- FOL: functions, predicates, quantifiers, e.g. $(\forall x \exists y)(f(x,y))$
- FOL is generally undecidable but it is semi-decidable.
- SMT: satisfiability of fragments of FOL
- Example fragment: integer linear arithmetic
- these fragments are called theories
- e.g. $(d c = 1) \land ((d < 5) \lor (c > 10))$ is satisfiable with example solutions $\{c = 11, d = 12\}, \{c = 1, d = 2\}.$
- interpreted functions, predicates, and constants, e.g. +,-,=,<,5.
- ullet uninterpreted functions, predicates, and constants, e.g. f,c.
- e.g. f(c) > c is satisfied by $\{f(x) = x + 1, c = 100\}$
- term: f(c), atom: f(c) > d, literal: $\neg (f(c) > d)$, proposition: $(c < d) \lor (d > z)$
- congruence: $(t_1 = s_1 \land t_2 = s_2) \to f(t_1, t_2) = f(s_1, s_2)$

• All variables integer

- All variables integer
- Solve:

$$((x_4 - x_2 \le 3) \lor (x_4 - x_3 \ge 5)) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_2 - x_1 \le 2) \land (x_3 - x_2 \le -1) \land ((x_3 - x_4 \le -2) \lor (x_4 - x_3 \ge 2))$$

- All variables integer
- Solve:

$$((x_4 - x_2 \le 3) \lor (x_4 - x_3 \ge 5)) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_2 - x_1 \le 2) \land (x_3 - x_2 \le -1) \land ((x_3 - x_4 \le -2) \lor (x_4 - x_3 \ge 2))$$

Integer difference logic (with Boolean structure)

- All variables integer
- Solve:

$$((x_4 - x_2 \le 3) \lor (x_4 - x_3 \ge 5)) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_2 - x_1 \le 2) \land (x_3 - x_2 \le -1) \land ((x_3 - x_4 \le -2) \lor (x_4 - x_3 \ge 2))$$

- Integer difference logic (with Boolean structure)
- Unsatisfiable (Why?)
- How to solve formulas like the above?

Outline

What is SMT?

Application Examples
Encoding a scheduling problem
Encoding symbolic execution

A Glimpse of SMT

Eager Encodings

Lazy Solving

A scheduling example

Standard job-shop scheduling formulation:

[Moura&Bjorner'11]

- $-\ n$ jobs, each composed of m tasks to be performed chronologically on m machines
 - $ightharpoonup d_{i,j}$: duration of task j for job i

A scheduling example

Standard job-shop scheduling formulation:

[Moura&Bjorner'11]

- $-\ n$ jobs, each composed of m tasks to be performed chronologically on m machines
 - $ightharpoonup d_{i,j}$: duration of task j for job i
- Types of constraints:
 - ▶ Precedence: between two tasks in the same job
 - Resource: No two different tasks requiring the same machine can execute simultaneously
 - ▶ All jobs must terminate by a time limit max

A scheduling example

Standard job-shop scheduling formulation:

[Moura&Bjorner'11]

- $-\ n$ jobs, each composed of m tasks to be performed chronologically on m machines
 - $ightharpoonup d_{i,j}$: duration of task j for job i
- Types of constraints:
 - ▶ Precedence: between two tasks in the same job
 - Resource: No two different tasks requiring the same machine can execute simultaneously
 - ► All jobs must terminate by a time limit *max*
- An example (task has number of time units and assigned machine):

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

with max = 8

- An SMT model for job-shop scheduling:
 - $t_{i,j}$: start time for task j of job i
 - Example:

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

with $\max = 8$

- An SMT model for job-shop scheduling:
 - $t_{i,j}$: start time for task j of job i
 - Example:

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	$\overline{2}$	3

with max = 8

- An SMT model for job-shop scheduling:
 - $t_{i,j}$: start time for task j of job i
 - Example:

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

with max = 8

- Formulation:

$$\begin{array}{l} (t_{1,1} \geq 0) \wedge (t_{1,2} \geq t_{1,1} + 2) \wedge (t_{1,2} + 1 \leq 8) \wedge \\ (t_{2,1} \geq 0) \wedge (t_{2,2} \geq t_{2,1} + 3) \wedge (t_{2,2} + 1 \leq 8) \wedge \\ (t_{3,1} \geq 0) \wedge (t_{3,2} \geq t_{3,1} + 2) \wedge (t_{3,2} + 3 \leq 8) \wedge \\ ((t_{1,1} \geq t_{2,1} + 3) \vee (t_{2,1} \geq t_{1,1} + 2)) \wedge \\ ((t_{1,1} \geq t_{3,1} + 2) \vee (t_{3,1} \geq t_{1,1} + 2)) \wedge \\ ((t_{2,1} \geq t_{3,1} + 2) \vee (t_{3,1} \geq t_{2,1} + 3)) \wedge \\ ((t_{1,2} \geq t_{2,2} + 1) \vee (t_{2,2} \geq t_{1,2} + 1)) \wedge \\ ((t_{1,2} \geq t_{3,2} + 3) \vee (t_{3,2} \geq t_{2,2} + 1)) \wedge \\ ((t_{2,2} \geq t_{3,2} + 3) \vee (t_{3,2} \geq t_{2,2} + 1)) \end{array}$$

- An SMT model for job-shop scheduling:
 - $t_{i,j}$: start time for task j of job i
 - Example:

$d_{i,j}$	Machine 1	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

with max = 8

Formulation:

$$(t_{1,1} \ge 0) \wedge (t_{1,2} \ge t_{1,1} + 2) \wedge (t_{1,2} + 1 \le 8) \wedge (t_{2,1} \ge 0) \wedge (t_{2,2} \ge t_{2,1} + 3) \wedge (t_{2,2} + 1 \le 8) \wedge (t_{3,1} \ge 0) \wedge (t_{3,2} \ge t_{3,1} + 2) \wedge (t_{3,2} + 3 \le 8) \wedge ((t_{1,1} \ge t_{2,1} + 3) \vee (t_{2,1} \ge t_{1,1} + 2)) \wedge ((t_{1,1} \ge t_{3,1} + 2) \vee (t_{3,1} \ge t_{1,1} + 2)) \wedge ((t_{2,1} \ge t_{3,1} + 2) \vee (t_{3,1} \ge t_{2,1} + 3)) \wedge ((t_{1,2} \ge t_{2,2} + 1) \vee (t_{2,2} \ge t_{1,2} + 1)) \wedge ((t_{1,2} \ge t_{3,2} + 3) \vee (t_{3,2} \ge t_{1,2} + 1)) \wedge ((t_{2,2} \ge t_{3,2} + 3) \vee (t_{3,2} \ge t_{2,2} + 1))$$

- Integer difference logic with Boolean structure
 - ▶ Model: $t_{1,1} = 5$; $t_{1,2} = 7$; $t_{2,1} = 2$; $t_{2,2} = 6$; $t_{3,1} = 0$; $t_{3,2} = 3$;

Example C program:

```
int GCD(int x, int y) {
   while (true) {
    int m = x % y;
    if (m == 0) return y;
    x = y;
    y = m;
  }
}
```

[E.g. Moura&Bjorner'11]

Example C program:

```
[E.g. Moura&Bjorner'11]
```

```
int GCD(int x, int y) {
   while (true) {
    int m = x % y;
    if (m == 0) return y;
    x = y;
    y = m;
}
```

- Can the while loop test be executed exactly twice?
 - If so, which inputs allow this to happen?

Problem formulation as SMT formula:

Problem formulation as SMT formula:

```
First build SSA Program
by loop unrolling
(now variables do not change)
int GCD(int x0, int y0) {
  int m0 = x0 \% y0;
  assert(m0 != 0);
  int x1 = y0;
  int y1 = m0;
  int m1 = x1 \% y1;
  assert(m1 = 0);
```

Problem formulation as SMT formula:

```
First build SSA Program
by loop unrolling
(now variables do not change)
int GCD(int x0, int y0) {
  int m0 = x0 \% y0;
  assert(m0 != 0);
  int x1 = y0;
  int y1 = m0;
  int m1 = x1 \% y1;
  assert(m1 = 0);
```

Path Formula in SMT

```
 (m_0 = x_0 \% y_0) \land \\ \neg (m_0 = 0) \land \\ (x_1 = y_0) \land \\ (y_1 = m_0) \land \\ (m_1 = x_1 \% y_1) \land \\ (m_1 = 0)
```

Problem formulation as SMT formula:

```
First build SSA Program
by loop unrolling
(now variables do not change)
int GCD(int x0, int y0) {
  int m0 = x0 % y0;
  assert(m0 != 0);
  int x1 = y0;
  int y1 = m0;
  int m1 = x1 % y1;
  assert(m1 = 0);
```

Path Formula in SMT

```
(m_0 = x_0 \% y_0) \land \\ \neg (m_0 = 0) \land \\ (x_1 = y_0) \land \\ (y_1 = m_0) \land \\ (m_1 = x_1 \% y_1) \land \\ (m_1 = 0)
```

Note: SSA denotes static single assignment form

Software testing with symbolic execution (Cont.)

Problem formulation as SMT formula:

```
C Program
int GCD(int x, int y) {
  while (true) {
    int m = x % y;
    if (m == 0) return y;
    x = y;
    y = m;
  }
}
```

Software testing with symbolic execution (Cont.)

Problem formulation as SMT formula:

```
C Program
int GCD(int x, int y) {
  while (true) {
    int m = x % y;
    if (m == 0) return y;
    x = y;
    y = m;
  }
}
```

Solution

Model:

```
x_0 = 2; y_0 = 4; m_0 = 2;

x_1 = 4; y_1 = 2; m_1 = 0;
```

• Function call: GCD(2,4)

Software testing with symbolic execution (Cont.)

Problem formulation as SMT formula:

```
C Program
int GCD(int x, int y) {
   while (true) {
     int m = x % y;
     if (m == 0) return y;
     x = y;
     y = m;
   }
}
```

Solution

Model:

```
x_0 = 2; y_0 = 4; m_0 = 2;

x_1 = 4; y_1 = 2; m_1 = 0;
```

• Function call: GCD(2,4)

- Recall: This testing approach is known as dynamic symbolic execution
 - Example tools: CUTE, Klee, DART, SAGE, Pex, Yogi

Remark on SW Verification and Testing

- SW verification & testing one of the main driving forces behind SMT
- Testing: Increasing test coverage (which input reaches a given path?)
- Verification: proving correctness, absence of crashes, security, etc.
- Implications for security: prove that your program/protocol is secure

Outline

What is SMT?

Application Examples

Encoding a scheduling problem
Encoding symbolic execution

A Glimpse of SMT

Eager Encodings

Lazy Solving

- Equality with Uninterpreted Functions (EUF)
- Is this formula satisfiable?

$$[a \times (f(b) + f(c)) = d] \wedge [b \times (f(a) + f(c)) \neq d] \wedge [a = b]$$

- Equality with Uninterpreted Functions (EUF)
- Is this formula satisfiable?

$$[a \times (f(b) + f(c)) = d] \wedge [b \times (f(a) + f(c)) \neq d] \wedge [a = b]$$

- Formula is unsatisfiable

- Equality with Uninterpreted Functions (EUF)
- Is this formula satisfiable?

$$[a \times (f(b) + f(c)) = d] \wedge [b \times (f(a) + f(c)) \neq d] \wedge [a = b]$$

- Formula is unsatisfiable
- And this formula?

$$[h(a, g(f(b), f(c))) = d] \wedge [h(b, g(f(a), f(c))) \neq d] \wedge [a = b]$$

- Equality with Uninterpreted Functions (EUF)
- Is this formula satisfiable?

$$[a \times (f(b) + f(c)) = d] \wedge [b \times (f(a) + f(c)) \neq d] \wedge [a = b]$$

- Formula is unsatisfiable
- And this formula?

$$[h(a, g(f(b), f(c))) = d] \wedge [h(b, g(f(a), f(c))) \neq d] \wedge [a = b]$$

- Formula is also unsatisfiable

- Equality with Uninterpreted Functions (EUF)
- Is this formula satisfiable?

$$[a \times (f(b) + f(c)) = d] \wedge [b \times (f(a) + f(c)) \neq d] \wedge [a = b]$$

- Formula is unsatisfiable
- And this formula?

$$[h(a, g(f(b), f(c))) = d] \wedge [h(b, g(f(a), f(c))) \neq d] \wedge [a = b]$$

- Formula is also unsatisfiable
- Useful: Abstract non-supported operations (functions)
 - E.g. multiplication; ALUs in circuits; etc.

Example Theories - Arithmetic

- Wide range of applications
- Variables are either integers or reals
- Fragments can be solved with more efficient methods
 - Bounds

$$\blacktriangleright x \bowtie k, \bowtie \in \{<,>,\leq,\geq,=\}$$

- Difference Logic

$$\blacktriangleright x - y \bowtie k, \bowtie \in \{<, >, \leq, \geq, =\}$$

- UTVPI (Unit Two-Variable Per Inequality)

$$\blacktriangleright \pm x \pm y \bowtie k, \bowtie \in \{<,>,\leq,\geq,=\}$$

- Linear Arithmetic

$$\triangleright \sum a_i x_i \bowtie k, \bowtie \in \{<,>,\leq,\geq,=\}$$

- Non-Linear Arithmetic

► E.g.
$$3xy - 4x^2z - 4y \le 10$$

• Bit vectors

- Bit vectors
- Arrays

- Bit vectors
- Arrays
- Pointer logic

- Bit vectors
- Arrays
- Pointer logic
- Quantified theories, e.g. quantified linear integer arithmetic is decidable

Eager approaches

- Eager approaches
 - Encode problem to CNF and solve with SAT solver (1 SAT call)

- Eager approaches
 - Encode problem to CNF and solve with SAT solver (1 SAT call)

Lazy approaches

- Eager approaches
 - Encode problem to CNF and solve with SAT solver (1 SAT call)

- Lazy approaches
 - Embed SAT solver with theory solver(s) (many SAT calls); theory solvers are responsible for deciding conjunctions of literals

Outline

What is SMT?

Application Examples
Encoding a scheduling problem
Encoding symbolic execution

A Glimpse of SMT

Eager Encodings

Lazy Solving

Bounded integers encoded as Boolean variables (log variables)

- Bounded integers encoded as Boolean variables (log variables)
- Encode AtMost-k, AtLeast-k, and pseudo-Boolean constraints to CNF.

- Bounded integers encoded as Boolean variables (log variables)
- Encode AtMost-k, AtLeast-k, and pseudo-Boolean constraints to CNF.
- Recall: Can encode arbitrary propositional constraints to CNF.

- Bounded integers encoded as Boolean variables (log variables)
- Encode AtMost-k, AtLeast-k, and pseudo-Boolean constraints to CNF.
- Recall: Can encode arbitrary propositional constraints to CNF.
- Terms replaced by constants and encode congruence explicitly

- Bounded integers encoded as Boolean variables (log variables)
- Encode AtMost-k, AtLeast-k, and pseudo-Boolean constraints to CNF.
- Recall: Can encode arbitrary propositional constraints to CNF.
- Terms replaced by constants and encode congruence explicitly
 - E.g. replace f(a), f(b), f(c) with A, B, C

- Bounded integers encoded as Boolean variables (log variables)
- Encode AtMost-k, AtLeast-k, and pseudo-Boolean constraints to CNF.
- Recall: Can encode arbitrary propositional constraints to CNF.
- Terms replaced by constants and encode congruence explicitly
 - E.g. replace f(a), f(b), f(c) with A, B, C
 - Generate implications capturing congruence.

$$a = b \rightarrow A = B$$

 $a = c \rightarrow A = C$
 $b = c \rightarrow B = C$

- Bounded integers encoded as Boolean variables (log variables)
- Encode AtMost-k, AtLeast-k, and pseudo-Boolean constraints to CNF.
- Recall: Can encode arbitrary propositional constraints to CNF.
- Terms replaced by constants and encode congruence explicitly
 - E.g. replace f(a), f(b), f(c) with A, B, C
 - Generate implications capturing congruence.

$$a = b \rightarrow A = B$$

 $a = c \rightarrow A = C$
 $b = c \rightarrow B = C$

• Formula with only equality and n constants is satisfiable iff it has a model of size at most n. (small model property). [E.g. Phueli et al. '02]. Constants encoded as bounded integers 1..n.

• Finding a model of finite size n can be encoded as SAT.

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.
- equality: $(a_k, \ldots, a_0) = (b_k, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots k} (a_i \Leftrightarrow b_i)$

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.
- equality: $(a_k, \ldots, a_0) = (b_k, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots k} (a_i \Leftrightarrow b_i)$
- inequality: $(a_k, \ldots, a_0) < (b_k, \ldots, b_0) \longrightarrow (\neg a_k \wedge b_k) \vee ((a_k \Leftrightarrow b_k) \wedge (a_{k-1}, \ldots, a_0) < (b_{k-1}, \ldots, b_0))$

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.
- equality: $(a_k, \ldots, a_0) = (b_k, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots k} (a_i \Leftrightarrow b_i)$
- inequality: $(a_k, \ldots, a_0) < (b_k, \ldots, b_0) \longrightarrow (\neg a_k \land b_k) \lor ((a_k \Leftrightarrow b_k) \land (a_{k-1}, \ldots, a_0) < (b_{k-1}, \ldots, b_0))$
- Other operations can be encoded, e.g. summation and multiplication by school method.

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.
- equality: $(a_k, \ldots, a_0) = (b_k, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots k} (a_i \Leftrightarrow b_i)$
- inequality: $(a_k, \ldots, a_0) < (b_k, \ldots, b_0) \longrightarrow (\neg a_k \wedge b_k) \vee ((a_k \Leftrightarrow b_k) \wedge (a_{k-1}, \ldots, a_0) < (b_{k-1}, \ldots, b_0))$
- Other operations can be encoded, e.g. summation and multiplication by school method.
- unary-encoding: elements are represented by n Boolean variables with $a_i \Rightarrow a_{i-1}$ for $i \in 1..n$.

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.
- equality: $(a_k, \ldots, a_0) = (b_k, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots k} (a_i \Leftrightarrow b_i)$
- inequality: $(a_k, \ldots, a_0) < (b_k, \ldots, b_0)$ \longrightarrow $(\neg a_k \land b_k) \lor ((a_k \Leftrightarrow b_k) \land (a_{k-1}, \ldots, a_0) < (b_{k-1}, \ldots, b_0))$
- Other operations can be encoded, e.g. summation and multiplication by school method.
- unary-encoding: elements are represented by n Boolean variables with $a_i \Rightarrow a_{i-1}$ for $i \in 1..n$.
- equality: $(a_n, \ldots, a_0) = (b_n, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots n} (a_i \Leftrightarrow b_i)$

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.
- equality: $(a_k, \ldots, a_0) = (b_k, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots k} (a_i \Leftrightarrow b_i)$
- inequality: $(a_k, \ldots, a_0) < (b_k, \ldots, b_0) \longrightarrow (\neg a_k \land b_k) \lor ((a_k \Leftrightarrow b_k) \land (a_{k-1}, \ldots, a_0) < (b_{k-1}, \ldots, b_0))$
- Other operations can be encoded, e.g. summation and multiplication by school method.
- unary-encoding: elements are represented by n Boolean variables with $a_i \Rightarrow a_{i-1}$ for $i \in 1..n$.
- equality: $(a_n, \ldots, a_0) = (b_n, \ldots, b_0) \longleftrightarrow \bigwedge_{i \in 0 \ldots n} (a_i \Leftrightarrow b_i)$
- inequality: $(a_n, \ldots, a_0) < (b_n, \ldots, b_0) \leadsto \bigvee_{i \in [0, n]} (\neg a_i \wedge b_i)$

- Finding a model of finite size n can be encoded as SAT.
- log-encoding: elements of the universe are represented by $k = \lceil \log_2 n \rceil$ Boolean variables.
- equality: $(a_k, \ldots, a_0) = (b_k, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots k} (a_i \Leftrightarrow b_i)$
- inequality: $(a_k, \ldots, a_0) < (b_k, \ldots, b_0) \longrightarrow (\neg a_k \land b_k) \lor ((a_k \Leftrightarrow b_k) \land (a_{k-1}, \ldots, a_0) < (b_{k-1}, \ldots, b_0))$
- Other operations can be encoded, e.g. summation and multiplication by school method.
- unary-encoding: elements are represented by n Boolean variables with $a_i \Rightarrow a_{i-1}$ for $i \in 1..n$.
- equality: $(a_n, \ldots, a_0) = (b_n, \ldots, b_0) \longrightarrow \bigwedge_{i \in 0 \ldots n} (a_i \Leftrightarrow b_i)$
- inequality: $(a_n, \ldots, a_0) < (b_n, \ldots, b_0) \leadsto \bigvee_{i \in [0, n]} (\neg a_i \wedge b_i)$
- Note: log-encoding smaller but unary tends to give better behavior in SAT solvers.

• **Idea**: in some theories, satisfiability can be encoded into finding a finite model.

- Idea: in some theories, satisfiability can be encoded into finding a finite model.
- A formula with only equality and n variables is satisfiable iff it has a model of at most size n.

- Idea: in some theories, satisfiability can be encoded into finding a finite model.
- A formula with only equality and n variables is satisfiable iff it has a model of at most size n.
- Why? For any larger model \mathcal{A}' construct \mathcal{A} by considering only elements used to interpret the variables in the formula.

- Idea: in some theories, satisfiability can be encoded into finding a finite model.
- A formula with only equality and n variables is satisfiable iff it has a model of at most size n.
- Why? For any larger model A' construct A by considering only elements used to interpret the variables in the formula.
- $(x_1 = x_2) \lor (x_1 = x_3) \land (x_3 \neq x_2)$ is decided by looking for a model up to size 3.

What about Integer Difference Logic?

- What about Integer Difference Logic?
- Let s be the sum of absolute values of weights and n number of variables.

- What about Integer Difference Logic?
- Let s be the sum of absolute values of weights and n number of variables.
- It is sufficient to look for a model with integers in 0..(s+n).

- What about Integer Difference Logic?
- Let s be the sum of absolute values of weights and n number of variables.
- It is sufficient to look for a model with integers in 0..(s+n).
- Why?

- What about Integer Difference Logic?
- Let s be the sum of absolute values of weights and n number of variables.
- It is sufficient to look for a model with integers in 0..(s+n).
- Why?
 - Any solution can be shifted so it starts at 0.

- What about Integer Difference Logic?
- Let s be the sum of absolute values of weights and n number of variables.
- It is sufficient to look for a model with integers in 0..(s+n).
- Why?
 - Any solution can be shifted so it starts at 0.
 - "Compress" any solution while preserving the satisfiability of the same literals.

• $\neg(x_1 - x_0 \le 4) \land (x_1 - x_2 \le -2)$, model: $x_0 = -2$, $x_1 = 5$, $x_2 = 8$

- $\neg(x_1 x_0 \le 4) \land (x_1 x_2 \le -2)$, model: $x_0 = -2$, $x_1 = 5$, $x_2 = 8$
- rewrite as: $x_1 x_0 \ge 5$, $x_2 x_1 \ge 2$

- $\neg(x_1 x_0 \le 4) \land (x_1 x_2 \le -2)$, model: $x_0 = -2$, $x_1 = 5$, $x_2 = 8$
- rewrite as: $x_1 x_0 \ge 5$, $x_2 x_1 \ge 2$

- $\neg(x_1 x_0 \le 4) \land (x_1 x_2 \le -2)$, model: $x_0 = -2$, $x_1 = 5$, $x_2 = 8$
- rewrite as: $x_1 x_0 \ge 5$, $x_2 x_1 \ge 2$

- $\neg(x_1 x_0 \le 4) \land (x_1 x_2 \le -2)$, model: $x_0 = -2$, $x_1 = 5$, $x_2 = 8$
- rewrite as: $x_1 x_0 \ge 5$, $x_2 x_1 \ge 2$

- $\neg(x_1 x_0 \le 4) \land (x_1 x_2 \le -2)$, model: $x_0 = -2$, $x_1 = 5$, $x_2 = 8$
- rewrite as: $x_1 x_0 \ge 5$, $x_2 x_1 \ge 2$

- $\neg(x_1 x_0 \le 4) \land (x_1 x_2 \le -2)$, model: $x_0 = -2$, $x_1 = 5$, $x_2 = 8$
- rewrite as: $x_1 x_0 \ge 5$, $x_2 x_1 \ge 2$

- Max number: 0 + 5 + 2
- Note that: 5=4+1, that is why we add 1 for each variable since original constraints may be negated

• For each application $f(\vec{a})$ introduce a fresh variable f_a

- For each application $f(\vec{a})$ introduce a fresh variable f_a
- For each pair of applications $f(\vec{a})$, $f(\vec{c})$ add the implication $\vec{a} = \vec{c} \Rightarrow f_{\vec{a}} = f_{\vec{c}}$.

- For each application $f(\vec{a})$ introduce a fresh variable f_a
- For each pair of applications $f(\vec{a})$, $f(\vec{c})$ add the implication $\vec{a} = \vec{c} \Rightarrow f_{\vec{a}} = f_{\vec{c}}$.

Example

- For each application $f(\vec{a})$ introduce a fresh variable f_a
- For each pair of applications $f(\vec{a})$, $f(\vec{c})$ add the implication $\vec{a} = \vec{c} \Rightarrow f_{\vec{a}} = f_{\vec{c}}$.

Example

• $f(a) \neq f(c) \land (a = c \lor f(a) = c)$

- For each application $f(\vec{a})$ introduce a fresh variable f_a
- For each pair of applications $f(\vec{a})$, $f(\vec{c})$ add the implication $\vec{a} = \vec{c} \Rightarrow f_{\vec{a}} = f_{\vec{c}}$.

Example

- $f(a) \neq f(c) \land (a = c \lor f(a) = c)$
- $f_a \neq f_c \land (a = c \lor f_a = c) \land (a = c \Rightarrow f_a = f_c)$

Careful: Need to consider also sub-terms.

Example

Careful: Need to consider also sub-terms.

Example

• $f(f(a)) = f(a) \wedge f(f(f(a))) \neq f(a)$

Careful: Need to consider also sub-terms.

Example

- $f(f(a)) = f(a) \wedge f(f(f(a))) \neq f(a)$
- Applications: $\{f(a), f(f(a)), f(f(f(a)))\}$

Careful: Need to consider also sub-terms.

Example

- $f(f(a)) = f(a) \wedge f(f(f(a))) \neq f(a)$
- Applications: $\{f(a), f(f(a)), f(f(f(a)))\}$
- Reduction:

$$f_{f(a)} = f_a \land f_{f(f(a))} \neq f_a$$

$$\land \quad a = f_a \Rightarrow f_a = f_{f(a)}$$

$$\land \quad a = f_{f(a)} \Rightarrow f_a = f_{f(f(a))}$$

$$\land \quad f_a = f_{f(a)} \Rightarrow f_{f(a)} = f_{f(f(a))}$$

Careful: Need to consider also sub-terms.

Example

- $f(f(a)) = f(a) \wedge f(f(f(a))) \neq f(a)$
- Applications: $\{f(a), f(f(a)), f(f(f(a)))\}$
- Reduction:

$$f_{f(a)} = f_a \land f_{f(f(a))} \neq f_a$$

$$\land \quad a = f_a \Rightarrow f_a = f_{f(a)}$$

$$\land \quad a = f_{f(a)} \Rightarrow f_a = f_{f(f(a))}$$

$$\land \quad f_a = f_{f(a)} \Rightarrow f_{f(a)} = f_{f(f(a))}$$

• Propagate $f_{f(a)} = f_a$ in last implication $\longrightarrow f_{f(a)} = f_{f(f(a))}$

Careful: Need to consider also sub-terms.

Example

- $f(f(a)) = f(a) \wedge f(f(f(a))) \neq f(a)$
- Applications: $\{f(a), f(f(a)), f(f(f(a)))\}$
- Reduction:

$$f_{f(a)} = f_a \land f_{f(f(a))} \neq f_a$$

$$\land \quad a = f_a \Rightarrow f_a = f_{f(a)}$$

$$\land \quad a = f_{f(a)} \Rightarrow f_a = f_{f(f(a))}$$

$$\land \quad f_a = f_{f(a)} \Rightarrow f_{f(a)} = f_{f(f(a))}$$

- Propagate $f_{f(a)} = f_a$ in last implication $\longrightarrow f_{f(a)} = f_{f(f(a))}$
- Transitivity of $f_{f(a)} = f_a$ and $f_{f(a)} = f_{f(f(a))} \longleftrightarrow f_a = f_{f(f(a))}$

Careful: Need to consider also sub-terms.

Example

- $f(f(a)) = f(a) \wedge f(f(f(a))) \neq f(a)$
- Applications: $\{f(a), f(f(a)), f(f(f(a)))\}$
- Reduction:

$$f_{f(a)} = f_a \land f_{f(f(a))} \neq f_a$$

$$\land \quad a = f_a \Rightarrow f_a = f_{f(a)}$$

$$\land \quad a = f_{f(a)} \Rightarrow f_a = f_{f(f(a))}$$

$$\land \quad f_a = f_{f(a)} \Rightarrow f_{f(a)} = f_{f(f(a))}$$

- Propagate $f_{f(a)} = f_a$ in last implication $\longrightarrow f_{f(a)} = f_{f(f(a))}$
- Transitivity of $f_{f(a)} = f_a$ and $f_{f(a)} = f_{f(f(a))} \longleftrightarrow f_a = f_{f(f(a))}$
- Contradiction $f_a = f_{f(f(a))}$ and $f_a \neq f_{f(f(a))} \longrightarrow$ unsatisfiable

Outline

What is SMT?

Application Examples

Encoding a scheduling problem
Encoding symbolic execution

A Glimpse of SMT

Eager Encodings

Lazy Solving

• Use SAT for Boolean structure.

- Use SAT for Boolean structure.
- Use theory solver for conjunctions of literals.

- Use SAT for Boolean structure.
- Use theory solver for conjunctions of literals.
- Conceptually the following is needed:

- Use SAT for Boolean structure.
- Use theory solver for conjunctions of literals.
- Conceptually the following is needed:
 - $\mathcal{T}2\mathcal{B}$: abstracts theory formula to Boolean formula, e.g.

$$\mathcal{T}2\mathcal{B}((x < y) \lor \neg(z > y)) \longleftrightarrow e_{x < y} \lor \neg e_{z > y}$$

- Use SAT for Boolean structure.
- Use theory solver for conjunctions of literals.
- Conceptually the following is needed:
 - $\mathcal{T}2\mathcal{B}$: abstracts theory formula to Boolean formula, e.g.

$$\mathcal{T}2\mathcal{B}((x < y) \vee \neg(z > y)) \longleftrightarrow e_{x < y} \vee \neg e_{z > y}$$

– $\mathcal{B}2\mathcal{T}$: converts Boolean literal to theory literal, e.g.

$$\mathcal{B}2\mathcal{T}(\neg e_{z>y}) \leadsto \neg(z>y)$$

- Use SAT for Boolean structure.
- Use theory solver for conjunctions of literals.
- Conceptually the following is needed:
 - $\mathcal{T}2\mathcal{B}$: abstracts theory formula to Boolean formula, e.g.

$$\mathcal{T}2\mathcal{B}((x < y) \lor \neg(z > y)) \longleftrightarrow e_{x < y} \lor \neg e_{z > y}$$

– $\mathcal{B}2\mathcal{T}$: converts Boolean literal to theory literal, e.g.

$$\mathcal{B}2\mathcal{T}(\neg e_{z>y}) \leadsto \neg(z>y)$$

- \mathcal{T} -SAT(\mathcal{L}): theory solver for set of literals \mathcal{L} determines whether \mathcal{T} -satisfiable or \mathcal{T} -unsatisfiable.

Lazy solving

- Use SAT for Boolean structure.
- Use theory solver for conjunctions of literals.
- Conceptually the following is needed:
 - $\mathcal{T}2\mathcal{B}$: abstracts theory formula to Boolean formula, e.g.

$$\mathcal{T}2\mathcal{B}((x < y) \lor \neg(z > y)) \longleftrightarrow e_{x < y} \lor \neg e_{z > y}$$

– $\mathcal{B}2\mathcal{T}$: converts Boolean literal to theory literal, e.g.

$$\mathcal{B}2\mathcal{T}(\neg e_{z>y}) \rightsquigarrow \neg(z>y)$$

- \mathcal{T} -SAT(\mathcal{L}): theory solver for set of literals \mathcal{L} determines whether \mathcal{T} -satisfiable or \mathcal{T} -unsatisfiable.
- If unsatisfiable, provides explanation $\mathcal{L}'\subseteq\mathcal{L}$ so that \mathcal{L}' is also \mathcal{T} -unsatisfiable.

Lazy solving

- Use SAT for Boolean structure.
- Use theory solver for conjunctions of literals.
- Conceptually the following is needed:
 - $\mathcal{T}2\mathcal{B}$: abstracts theory formula to Boolean formula, e.g.

$$\mathcal{T}2\mathcal{B}((x < y) \lor \neg(z > y)) \longleftrightarrow e_{x < y} \lor \neg e_{z > y}$$

– $\mathcal{B}2\mathcal{T}$: converts Boolean literal to theory literal, e.g.

$$\mathcal{B}2\mathcal{T}(\neg e_{z>y}) \rightsquigarrow \neg(z>y)$$

- \mathcal{T} -SAT(\mathcal{L}): theory solver for set of literals \mathcal{L} determines whether \mathcal{T} -satisfiable or \mathcal{T} -unsatisfiable.
- If unsatisfiable, provides explanation $\mathcal{L}' \subseteq \mathcal{L}$ so that \mathcal{L}' is also \mathcal{T} -unsatisfiable.
- SAT(α): SAT solver for formula α determines if SAT or UNSAT. If SAT, provides model as a set of true literals.

Example SMT formula:

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d)) \land c \neq d$$

• Represent Boolean structure as CNF formula:

$$(x) \wedge (\neg y \vee z) \wedge (\neg w)$$

SAT	Bool Model	EUF	Explanation clause
Outcome		Outcome	(sent to SAT solver)

Example SMT formula:

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d)) \land c \neq d$$

• Represent Boolean structure as CNF formula:

$$(x) \wedge (\neg y \vee z) \wedge (\neg w)$$

SAT Outcome	Bool Model	EUF Outcome	Explanation clause (sent to SAT solver)
SAT	$\{x, \neg y, \neg w\}$	UNSAT	$(\neg x \lor y \lor w)$

• Example SMT formula:

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d)) \land c \neq d$$

• Represent Boolean structure as CNF formula:

$$(x) \wedge (\neg y \vee z) \wedge (\neg w)$$

SAT Outcome	Bool Model	EUF Outcome	Explanation clause (sent to SAT solver)
SAT	$\{x, \neg y, \neg w\}$	UNSAT	$(\neg x \lor y \lor w)$
SAT	$\{x,y,z,\neg w\}$	UNSAT	$(\neg x \vee \neg y \vee \neg z \vee w)$

Example SMT formula:

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d)) \land c \neq d$$

Represent Boolean structure as CNF formula:

$$(x) \wedge (\neg y \vee z) \wedge (\neg w)$$

SAT Outcome	Bool Model	EUF Outcome	Explanation clause (sent to SAT solver)
SAT	$\{x, \neg y, \neg w\}$	UNSAT	$(\neg x \lor y \lor w)$
SAT	$\{x,y,z,\neg w\}$	UNSAT	$(\neg x \vee \neg y \vee \neg z \vee w)$
UNSAT	$(x) \wedge (\neg y \vee z) \wedge (\neg x \vee y \vee w) \wedge (\neg w) \wedge (\neg x \vee \neg y \vee \neg z \vee w)$		

Lazy solving

```
input: formula \phi in theory \mathcal{T}
   output: truth value
1 \alpha \leftarrow \mathcal{T}2\mathcal{B}(\phi)
                                                                       // abstract input formula
2 while true do
        (res, \tau) \leftarrow SAT(\alpha)
                                                                                    // Boolean model
       if res = false then return false
    \mathcal{L} \leftarrow \bigcup_{l \in \tau} \mathcal{B}2\mathcal{T}(l)
                                                                     // convert to theory model
6 (res, \mathcal{L}') \leftarrow \mathcal{T}\text{-SAT}(\mathcal{L})
                                                                                       // theory check
         if res = true then return true
        \alpha \leftarrow \alpha \land \bigvee_{l \in \mathcal{L}'} \neg \mathcal{T}2\mathcal{B}(l)
                                                                               // block explanation
9 end
```

• Divide the set of literals \mathcal{L} into positive E and negative D.

- Divide the set of literals \mathcal{L} into positive E and negative D.
- Build a set of all sub-terms S in \mathcal{L} .

- Divide the set of literals \mathcal{L} into positive E and negative D.
- Build a set of all sub-terms S in L.
- Build congruence closure as a partitioning of S.

- Divide the set of literals \mathcal{L} into positive E and negative D.
- Build a set of all sub-terms S in C.
- Build congruence closure as a partitioning of S.
 - Put each term $t \in S$ in its own partition.

- Divide the set of literals \mathcal{L} into positive E and negative D.
- Build a set of all sub-terms S in L.
- Build congruence closure as a partitioning of S.
 - Put each term $t \in S$ in its own partition.
 - For each $(s = t) \in E$, merge partitions of s and t.

- Divide the set of literals \mathcal{L} into positive E and negative D.
- Build a set of all sub-terms S in C.
- Build congruence closure as a partitioning of S.
 - Put each term $t \in S$ in its own partition.
 - For each $(s = t) \in E$, merge partitions of s and t.
 - For s_1, \ldots, s_k and t_1, \ldots, t_k s.t. s_i is in the same partition as t_i , merge partitions of $f(s_1, \ldots, s_k)$ and $f(t_1, \ldots, t_k)$.

- Divide the set of literals \mathcal{L} into positive E and negative D.
- Build a set of all sub-terms S in C.
- Build congruence closure as a partitioning of S.
 - Put each term $t \in S$ in its own partition.
 - For each $(s = t) \in E$, merge partitions of s and t.
 - For s_1, \ldots, s_k and t_1, \ldots, t_k s.t. s_i is in the same partition as t_i , merge partitions of $f(s_1, \ldots, s_k)$ and $f(t_1, \ldots, t_k)$.
 - Repeat until no congruence applies.

- Divide the set of literals \mathcal{L} into positive E and negative D.
- Build a set of all sub-terms S in L.
- Build congruence closure as a partitioning of S.
 - Put each term $t \in S$ in its own partition.
 - For each $(s = t) \in E$, merge partitions of s and t.
 - For s_1, \ldots, s_k and t_1, \ldots, t_k s.t. s_i is in the same partition as t_i , merge partitions of $f(s_1, \ldots, s_k)$ and $f(t_1, \ldots, t_k)$.
 - Repeat until no congruence applies.
- If there is a $s \neq t \in D$, s.t. s and t are in the same partition, return unsatisfiable otherwise satisfiable.

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

$$\{\{a\},\{b\},\{f(a,b)\},\{f(f(a,b),b)\}\}$$

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

$$\begin{split} & \{\{a\},\{b\},\{f(a,b)\},\{f(f(a,b),b)\}\} \\ & \{\{a,f(a,b)\},\{b\},\{f(f(a,b),b)\}\} \end{split}$$

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

$$\begin{aligned} & \{\{a\}, \{b\}, \{f(a,b)\}, \{f(f(a,b),b)\}\} \\ & \{\{a, f(a,b)\}, \{b\}, \{f(f(a,b),b)\}\} \\ & \{\{a, f(a,b), f(f(a,b),b)\}, \{b\}\}\} \end{aligned}$$

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

 Congruence closure algorithm – iteratively merge equivalence classes:

$$\begin{split} & \{\{a\}, \{b\}, \{f(a,b)\}, \{f(f(a,b),b)\}\} \\ & \{\{a, f(a,b)\}, \{b\}, \{f(f(a,b),b)\}\} \\ & \{\{a, f(a,b), f(f(a,b),b)\}, \{b\}\}\} \end{split}$$

- But $f(f(a,b),b) \neq a$.

$$f(a,b) = a \wedge f(f(a,b),b) \neq a$$

$$\begin{aligned} & \{\{a\}, \{b\}, \{f(a,b)\}, \{f(f(a,b),b)\}\} \\ & \{\{a, f(a,b)\}, \{b\}, \{f(f(a,b),b)\}\} \\ & \{\{a, f(a,b), f(f(a,b),b)\}, \{b\}\}\} \end{aligned}$$

- But $f(f(a,b),b) \neq a$.
- Formula is unsatisfiable.

Integer Difference Logic: Theory Solver

- Integer variables
- Conjunction of linear inequalities of the form $x_i x_j \le k$

Integer Difference Logic: Theory Solver

- Integer variables
- Conjunction of linear inequalities of the form $x_i x_j \le k$
- Algorithm:
 - Add edge between x_j and x_i with weight k, for inequality $x_i-x_j \leq k$

Integer Difference Logic: Theory Solver

- Integer variables
- Conjunction of linear inequalities of the form $x_i x_i \le k$
- Algorithm:
 - Add edge between x_j and x_i with weight k, for inequality $x_i x_i \le k$
 - Add additional source vertex x_0
 - Add edge from x_0 to x_i , for each other vertex x_i
 - Use Bellman-Ford algorithm to check for negative cycles
 - ▶ Negative cycle: Elimination of variables in (some) inequalities yields $0 \le -k$, k > 0

$$(x_4 - x_2 \le 3) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_3 - x_2 \le -1) \land (x_3 - x_4 \le -2)$$

$$(x_4 - x_2 \le 3) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_3 - x_2 \le -1) \land (x_3 - x_4 \le -2)$$

$$(x_4 - x_2 \le 3) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_3 - x_2 \le -1) \land (x_3 - x_4 \le -2)$$

Satisfiable:

$$x_1 = -4$$

$$x_2 = 0$$

$$x_3 = -2$$

$$x_4 = 0$$

$$x_i = \mathsf{dist}(x_0, x_i)$$

$$(x_4 - x_2 \le 3) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_2 - x_1 \le 2) \land (x_3 - x_2 \le -1) \land (x_3 - x_4 \le -2)$$

$$(x_4 - x_2 \le 3) \wedge (x_4 - x_3 \le 6) \wedge (x_1 - x_2 \le -1) \wedge (x_1 - x_3 \le -2) \wedge (x_1 - x_4 \le -1) \wedge (x_2 - x_1 \le 2) \wedge (x_3 - x_2 \le -1) \wedge (x_3 - x_4 \le -2)$$

$$(x_4 - x_2 \le 3) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_2 - x_1 \le 2) \land (x_3 - x_2 \le -1) \land (x_3 - x_4 \le -2)$$

Unsatisfiable

$$x_2 - x_1 \le 2$$

$$x_3 - x_2 \le -1$$

$$x_1 - x_3 \le -2$$

Sum: $0 \le -1$

Note: Cycle serves as explanation, UNSAT as long as present.

$$-\neg(x-y\leq c)$$

$$- \neg (x - y \le c)$$
$$- \leadsto x - y > c$$

$$-\neg(x-y \le c)$$

$$- \leadsto x-y > c$$

$$- \leadsto y-x < -c$$

$$\begin{array}{ll} - \neg (x-y \leq c) \\ - & \longleftrightarrow x-y > c \\ - & \longleftrightarrow y-x < -c \\ - & \longleftrightarrow y-x \leq -c-1 \end{array}$$

IDL: Theory Solver

• Convert all literals to positive (i.e. remove negations):

$$-\neg(x-y \le c)$$

$$- \leadsto x-y > c$$

$$- \leadsto y-x < -c$$

$$- \leadsto y-x \le -c-1$$

 Note: Also possible on reals/rationals but care is needed because we cannot directly convert strict inequalities to non-strict ones.

Recap example for IDL

Example SMT formula:

$$\begin{array}{l} ((x_4-x_2\leq 3)\vee (x_4-x_3\geq 5))\wedge (x_4-x_3\leq 6)\wedge \\ (x_1-x_2\leq -1)\wedge (x_1-x_3\leq -2)\wedge (x_1-x_4\leq -1)\wedge (x_2-x_1\leq 2)\wedge \\ (x_3-x_2\leq -1)\wedge ((x_3-x_4\leq -2)\vee (x_4-x_3\geq 2)) \end{array}$$

Represent Boolean structure as CNF formula:

$$(a \lor b) \land (c) \land (d) \land (e) \land (f) \land (g) \land (h) \land (i \lor j)$$

Interaction between SAT solver & theory solver (IDL):

SAT	Boolean model	IDL Outcome	Explanation clause
Outcome			(sent to SAT solver)

Recap example for IDL

Example SMT formula:

$$((x_4 - x_2 \le 3) \lor (x_4 - x_3 \ge 5)) \land (x_4 - x_3 \le 6) \land (x_1 - x_2 \le -1) \land (x_1 - x_3 \le -2) \land (x_1 - x_4 \le -1) \land (x_2 - x_1 \le 2) \land (x_3 - x_2 \le -1) \land ((x_3 - x_4 \le -2) \lor (x_4 - x_3 \ge 2))$$

Represent Boolean structure as CNF formula:

$$(a \lor b) \land (c) \land (d) \land (e) \land (f) \land (g) \land (h) \land (i \lor j)$$

Interaction between SAT solver & theory solver (IDL):

SAT Outcome	Boolean model	IDL Outcome	Explanation clause (sent to SAT solver)
SAT	$\{a,c,\ldots,h,i\}$	UNSAT	$(\neg e \vee \neg g \vee \neg h)$

Recap example for IDL

Example SMT formula:

$$\begin{array}{l} ((x_4 - x_2 \leq 3) \vee (x_4 - x_3 \geq 5)) \wedge (x_4 - x_3 \leq 6) \wedge \\ (x_1 - x_2 \leq -1) \wedge (x_1 - x_3 \leq -2) \wedge (x_1 - x_4 \leq -1) \wedge (x_2 - x_1 \leq 2) \wedge \\ (x_3 - x_2 \leq -1) \wedge ((x_3 - x_4 \leq -2) \vee (x_4 - x_3 \geq 2)) \end{array}$$

Represent Boolean structure as CNF formula:

$$(a \lor b) \land (c) \land (d) \land (e) \land (f) \land (g) \land (h) \land (i \lor j)$$

Interaction between SAT solver & theory solver (IDL):

SAT Outcome	Boolean model	IDL Outcome	Explanation clause (sent to SAT solver)
SAT	$\{a,c,\ldots,h,i\}$	UNSAT	$(\neg e \vee \neg g \vee \neg h)$
UNSAT	$(e) \wedge (g) \wedge (h) \wedge (\neg e \vee \neg g \vee \neg h)$		

Lazy approaches – remarks

- Why are they called lazy?
 - Theory solver called only as needed, to check T-consistency
- Key properties:
 - Avoiding large encodings
 - Modular implementation
 - ▶ Easy to add theory solvers
 - Currently, the most efficient algorithms
 - Clear separation between Boolean and theory domains
- Widely used by modern SMT solvers
 - Z3, Yices, OpenSMT, MathSAT, CVC, Barcelogic, etc.

Lazy approaches – Key Techniques

- Key techniques in all efficient SMT solvers:
 - Check T-consistency of partial assignments
 - Given T-inconsistent assignment M, compute $M' \subseteq M$ and add $\neg M'$ as a clause
 - Given T-inconsistent assignment, backtrack to where assignment is T-consistent

• What is $\mathsf{DPLL}(T)$?

$$\mathsf{DPLL}(T) = \mathsf{DPLL}(X) + T\operatorname{\mathsf{-Solver}}$$

$$\mathsf{DPLL}(T) = \mathsf{DPLL}(X) + T\text{-Solver}$$

- DPLL(*X*)
 - SAT solver capable of enumerating models

$$\mathsf{DPLL}(T) = \mathsf{DPLL}(X) + T\text{-Solver}$$

- DPLL(*X*)
 - SAT solver capable of enumerating models
 - Preferable: partial model detection

$$\mathsf{DPLL}(T) = \mathsf{DPLL}(X) + T\text{-Solver}$$

- DPLL(*X*)
 - SAT solver capable of enumerating models
 - Preferable: partial model detection
 - Cannot use: pure literals, blocked literals, etc.

$$\mathsf{DPLL}(T) = \mathsf{DPLL}(X) + T\text{-Solver}$$

- DPLL(*X*)
 - SAT solver capable of enumerating models
 - Preferable: partial model detection
 - Cannot use: pure literals, blocked literals, etc.
- *T*-Solver:

$$\mathsf{DPLL}(T) = \mathsf{DPLL}(X) + T\text{-Solver}$$

- DPLL(X)
 - SAT solver capable of enumerating models
 - Preferable: partial model detection
 - Cannot use: pure literals, blocked literals, etc.
- *T*-Solver:
 - Checks T-consistency of conjunctions of literals
 - Performs theory propagation
 - Computes explanations of inconsistency
 - Note: T-propagation should be incremental and backtrackable