

Sur l'étude de l'entropie des applications méromorphes

Henry de Thelin

Résumé

Nous construisons un espace adapté à l'étude de l'entropie des applications méromorphes en utilisant des limites projectives. Nous en déduisons un principe variationnel pour ces applications.

Abstract

We construct a space which is useful in order to study the entropy of meromorphic maps by using projective limits. We deduce a variational principle for meromorphic maps.

Mots-clefs : dynamique complexe, entropie.

Classification : 32H50, 32Qxx.

Introduction

Soit X une variété complexe compacte de dimension k et $f : X \rightarrow X$ une application méromorphe dominante. C'est la donnée d'un sous-ensemble analytique $\Gamma(f)$ irréductible de dimension k dans $X \times X$ (le graphe de f) avec $p_{1|\Gamma(f)} : \Gamma(f) \rightarrow X$ la restriction à $\Gamma(f)$ de la projection sur la première coordonnée holomorphe, surjective et dont les fibres génériques sont réduites à un point, et $p_{2|\Gamma(f)} : \Gamma(f) \rightarrow X$ la restriction à $\Gamma(f)$ de la projection sur la deuxième coordonnée holomorphe et surjective.

L'application f est holomorphe en dehors d'un sous-ensemble analytique I de X qui est l'ensemble des points x avec $\{p_1^{-1}(x)\} \cap \Gamma(f)$ de dimension supérieure ou égale à 1. L'ensemble I est de codimension au moins 2.

Un enjeu majeur en dynamique méromorphe est de calculer l'entropie topologique $h_{top}(f)$ de f . En effet cette question est liée à l'existence de mesures hyperboliques pour f (voir [4]).

Pour certaines variétés complexes compactes, on a l'existence d'outils qui permettent d'étudier cette entropie : ce sont les degrés dynamiques. Voici leurs constructions : pour

(X, ω) variété kählerienne compacte et $l = 0, \dots, k$, si on note $[\Gamma(f)]$ le courant d'intégration sur $\Gamma(f)$, la forme $f^*(\omega^l) = (p_1)_*(p_2^*(\omega^l) \wedge [\Gamma(f)])$ est à coefficients L^1 . On peut donc considérer

$$\delta_l(f) = \int f^*(\omega^l) \wedge \omega^{k-l},$$

et le l -ème degré dynamique est défini par $d_l = \lim_{n \rightarrow +\infty} (\delta_l(f^n))^{1/n}$. L'existence de cette limite a été obtenue par A. Russakovskii et B. Shiffman dans le cas où $X = \mathbb{P}^k(\mathbb{C})$ (voir [13]) et par T.-C. Dinh et N. Sibony quand (X, ω) est une variété kählerienne compacte (voir [5] et [6]).

Dans ce contexte, M. Gromov (voir [8]) pour le cas où f est holomorphe et T.-C. Dinh et N. Sibony (voir [5] et [6]) pour le cas méromorphe ont montré que l'entropie topologique de f est toujours majorée par $\max_{l=0, \dots, k} \log d_l$.

Il y a de nombreux travaux qui portent sur la minoration de cette entropie topologique ainsi que sur la construction de mesures avec une entropie métrique maximale. La situation est beaucoup plus délicate que pour les applications lisses : par exemple, il existe des applications méromorphes de $\mathbb{P}^2(\mathbb{C})$ avec $d_1 = d_2 = 2$ (le degré topologique vaut donc 2) qui sont d'entropie nulle (voir [9]). Dans ce type d'exemple la dynamique se concentre en particulier sur l'ensemble d'indétermination. Dans [9], V. Guedj conjecture que lorsqu'il y a un degré dynamique qui domine strictement tous les autres alors $h_{top}(f) = \max_{l=0, \dots, k} \log d_l$.

L'idée dans cet article va être de considérer des éclatements de X dans le lieu d'indétermination de f et de relever f en une application méromorphe dans cet espace. Ensuite nous recommencerons avec la nouvelle application et nous produirons donc une suite d'espaces X_n et des applications méromorphes $F_n : X_n \rightarrow X_n$ qui relèvent f . Enfin, il s'agira de prendre une limite projective sur les (X_n) . Nous obtiendrons ainsi un espace particulièrement bien adapté à l'étude de la dynamique de f . Signalons qu'une telle construction a été réalisée dans [11] pour un cas particulier et notons aussi le lien avec [2] et [3] où les auteurs considèrent l'espace constitué de tous les éclatements de la variété.

Nous détaillerons le procédé d'éclatements dans le paragraphe 1. Nous aboutirons à une situation qui peut être formalisée de la façon plus générale suivante.

Notons $X_0 = X$ et $F_0 = f$ et admettons que l'on ait une suite (X_n) de variétés complexes compactes de dimension k et $F_n : X_n \rightarrow X_n$ une suite d'applications méromorphes dominantes telles que pour tout $n \geq 1$ on ait le diagramme commutatif suivant :

$$\begin{array}{ccc} X_n & \xrightarrow{\quad F_n \quad} & X_n \\ \pi_n \downarrow & \searrow s_n & \downarrow \pi_n \\ X_{n-1} & \xrightarrow{\quad F_{n-1} \quad} & X_{n-1} \end{array}$$

où $\pi_n : X_n \rightarrow X_{n-1}$ est holomorphe, surjective et avec ses fibres génériques réduites à un point et $s_n : X_n \rightarrow X_{n-1}$ holomorphe et surjective. Nous supposerons aussi que

$$\{x \in X_{n-1} \text{ , } \dim(\pi_n^{-1}(x)) \geq 1\} \subset I(F_{n-1})$$

où $I(F_{n-1})$ est l'ensemble d'indétermination de F_{n-1} .

On considère alors la limite projective $X_\infty = \varprojlim X_n$ qui est simplement ici

$$X_\infty = \{(x_n) \in \prod_{n \geq 0} X_n, \pi_n(x_n) = x_{n-1} \text{ pour tout } n \geq 1\}.$$

Nous munissons X_n d'une métrique $dist_n$ compatible avec sa topologie (pour tout $n \geq 0$) et sur X_∞ on définit la métrique

$$\delta(\hat{x}, \hat{y}) = \sum_{n=0}^{+\infty} \frac{dist_n(x_n, y_n)}{\alpha_n diam(X_n)}$$

avec $\hat{x} = (x_n)$ et $\hat{y} = (y_n)$ dans X_∞ , $diam(X_n)$ le diamètre de X_n pour $dist_n$ et (α_n) une suite de réels strictement positifs avec $\sum_{n \geq 0} \frac{1}{\alpha_n} < +\infty$. Cette métrique rend X_∞ compact.

Nous allons maintenant définir un opérateur $\sigma : X_\infty \rightarrow X_\infty$ qui va relever f .

Pour $\hat{x} = (x_n) \in X_\infty$, on pose

$$\sigma(\hat{x}) = (s_n(x_n))_{n \geq 1} \in X_\infty.$$

L'opérateur σ résout l'indétermination de f . En effet, on a

Proposition 1. *L'application σ est continue.*

Nous avons plusieurs systèmes dynamiques : les $F_n : X_n \rightarrow X_n$ (dont le système initial $f : X \rightarrow X$) et $\sigma : X_\infty \rightarrow X_\infty$. Le premier objectif de cet article est de donner le lien entre ces quantités :

Théorème 2. *La suite $(h_{top}(F_n))_n$ est croissante et*

$$h_{top}(\sigma) = \sup_{n \geq 0} h_{top}(F_n).$$

Pour l'exemple de V. Guedj énoncé plus haut, nous verrons que $h_{top}(\sigma) = \log 2 = \max \log d_i$. Cela renforce l'idée que σ résout l'indétermination de f .

Remarquons que l'espace X_∞ et l'application σ dépendent de la suite (X_n) considérée. Nous donnerons au paragraphe 1 un exemple de construction mais il peut très bien y en avoir d'autres. Par ailleurs, nous verrons que les quantités ci-dessus ne dépendent pas du choix des distances $dist_n$ ou de la suite (α_n) .

Le second objectif de cet article est de donner une application de la construction de l'espace X_∞ .

Pour $A \subset X$, on pose $f^{-1}(A) = p_1(p_2^{-1}(A) \cap \Gamma(f))$ et

$$\widetilde{f^{-n}(A)} = f^{-1}(\cdots (f^{-1}(A)) \cdots)$$

où le f^{-1} apparaît n fois (pour $n \in \mathbb{N}$). Remarquons que $\widetilde{f^{-n}(A)}$ peut-être différent de $f^{-n}(A)$, en particulier quand f n'est pas algébriquement stable.

Le deuxième théorème de cet article est le principe variationnel suivant :

Théorème 3. *On suppose tous les $\widetilde{f^{-n}(I)}$ disjoints pour $n \in \mathbb{N}$. Alors*

$$h_{top}(\sigma) = h_{top}(f) = \sup\{h_\nu(f), \nu \text{ ergodique et } \nu(I) = 0\}.$$

Remarquons que le principe variationnel n'est pas vrai en toute généralité (voir l'exemple 3.1 de [9]), il est donc nécessaire de mettre une hypothèse sur l'ensemble d'indétermination.

Notons aussi que ce théorème est plus fort que le principe variationnel classique, qui est

$$h_{top}(f) = \sup\{h_\nu(f), \nu \text{ ergodique et } \nu(I) = 0\}.$$

Voici le plan de cet article : dans un premier paragraphe, nous donnons une construction possible des espaces X_n et des diagrammes précédents. Dans le second, nous prouvons la proposition 1 et le théorème 2. Ensuite nous détaillerons le calcul de $h_{top}(\sigma)$ sur un exemple : celui de V. Guedj où $d_1 = d_2 = 2$ et $h_{top}(f) = 0$. Nous verrons que dans ce cas $h_{top}(\sigma) = \log 2$. Enfin, dans le dernier paragraphe, nous démontrerons le principe variationnel.

Remerciement : je remercie Tien-Cuong Dinh pour les discussions que nous avons eues au sujet de cet article.

1 Construction des suites d'éclatements

Dans ce paragraphe nous produisons une suite de variétés complexes compactes (X_n) et d'applications méromorphes $F_n : X_n \rightarrow X_n$ qui vérifient le formalisme général donné dans l'introduction.

On part de la variété complexe compacte $X_0 = X$ de dimension k , munie d'une distance $dist_0$ et de $F_0 = f$ méromorphe dominante de X dans X .

Les singularités de $\Gamma(f)$ sont dans $p_1^{-1}(I) \cap \Gamma(f)$. D'après le théorème de désingularisation d'Hironaka (voir [10]), il existe une variété complexe compacte $\widetilde{X \times X}$, une sous-variété $\widetilde{\Gamma(f)}$ de $\widetilde{X \times X}$ et une application holomorphe $\pi : \widetilde{X \times X} \rightarrow X \times X$ (qui est une composée d'éclatements) telles que π soit un biholomorphisme de $\widetilde{\Gamma(f)} \setminus (\pi^{-1}(p_1^{-1}(I) \cap \Gamma(f)))$ dans $\Gamma(f) \setminus (p_1^{-1}(I) \cap \Gamma(f))$. On a $\pi(\widetilde{\Gamma(f)}) = \Gamma(f)$.

Remarquons que lorsque X est kähleriennne, $X \times X$ l'est aussi. En particulier, sous cette hypothèse, $\widetilde{X \times X}$ est une variété kähleriennne par un théorème de Blanchard (voir [1]) et $\widetilde{\Gamma(f)}$ aussi en tant que sous-variété de $\widetilde{X \times X}$.

Notons $X_1 = \widetilde{\Gamma(f)}$, $\pi_1 = p_1 \circ \pi$ et $s_1 = p_2 \circ \pi$. On a π_1 holomorphe, surjective avec ses fibres génériques réduites à un point et s_1 holomorphe et surjective. Ainsi on obtient le diagramme

$$\begin{array}{ccc}
X_1 & & \\
\pi_1 \downarrow & \searrow s_1 & \\
X_0 & \xrightarrow{F_0} & X_0
\end{array}$$

L'application π_1 est biméromorphe. On peut donc considérer $F_1 = \pi_1^{-1} \circ F_0 \circ \pi_1$ qui est bien définie en dehors d'un sous-ensemble analytique de X_1 . En prenant l'adhérence du graphe de F_1 dans $X_1 \times X_1$ on obtient ainsi une nouvelle application méromorphe $F_1 : X_1 \longrightarrow X_1$. Comme F_0 est dominante, F_1 l'est aussi. On a bien obtenu le diagramme voulu dans l'introduction avec $n = 1$. Remarquons aussi que par construction

$$\{x \in X_0 \text{ , } \dim(\pi_1^{-1}(x)) \geq 1\} \subset I(F_0) = I.$$

On peut maintenant recommencer tout ce que l'on vient de faire avec X_1 à la place de X_0 et F_1 au lieu de F_0 . En itérant le procédé, on obtient ainsi une suite de variétés complexes compactes (X_n) de dimension k et des applications méromorphes $F_n : X_n \longrightarrow X_n$ qui vérifient les conditions demandées dans l'introduction.

Remarquons que lorsque $X = X_0$ est kählérienne, tous les X_n le sont aussi. Comme T.-C. Dinh et N. Sibony ont montré que les degrés dynamiques sont des invariants biméromorphes (voir [5] p. 961), on en déduit par récurrence que

Lemme 4. *Lorsque X est kählérienne, on a*

$$d_l(F_n) = d_l(F_0) = d_l(f)$$

pour tout $l = 0, \dots, k$ et $n \geq 0$.

2 Démonstration de la proposition 1 et du théorème 2

Dans ce paragraphe, nous allons tout d'abord montrer que les résultats ne dépendent pas des distances $dist_n$ sur X_n et de la suite (α_n) choisies. Ensuite, nous donnerons une construction de distances qui permettront de simplifier les preuves. Nous montrerons alors la continuité de σ (proposition 1), puis que la suite $(h_{top}(F_n))_n$ est croissante. Enfin, nous prouverons l'égalité

$$h_{top}(\sigma) = \sup_{n \geq 0} h_{top}(F_n).$$

2.1 Indépendance des résultats aux métriques

Tout d'abord, comme X_n est compacte, l'entropie topologique $h_{top}(F_n)$ ne dépend pas de la métrique $dist_n$ (qui définit sa topologie) que l'on a choisie (voir la proposition

3.1.2 de [12]). Cela provient du fait que deux métriques topologiquement équivalentes sont uniformément équivalentes.

Considérons maintenant deux métriques sur X_∞ construites comme dans l'introduction :

$$\delta(\hat{x}, \hat{y}) = \sum_{n=0}^{+\infty} \frac{\text{dist}_n(x_n, y_n)}{\alpha_n \text{diam}(X_n)} \text{ et } \delta'(\hat{x}, \hat{y}) = \sum_{n=0}^{+\infty} \frac{\text{dist}'_n(x_n, y_n)}{\beta_n \text{diam}'(X_n)}$$

avec $\hat{x} = (x_n)$ et $\hat{y} = (y_n)$ dans X_∞ , dist_n et dist'_n des métriques sur X_n qui définissent sa topologie, $\text{diam}(X_n)$ le diamètre de X_n pour dist_n , $\text{diam}'(X_n)$ celui pour dist'_n , (α_n) et (β_n) des suites de réels strictement positifs avec $\alpha = \sum_{n \geq 0} \frac{1}{\alpha_n} < +\infty$ et $\beta = \sum_{n \geq 0} \frac{1}{\beta_n} < +\infty$.

Montrons qu'elles sont topologiquement équivalentes. Comme X_∞ est compact, on aura comme précédemment que l'entropie topologique de σ pour δ sera la même que l'entropie topologique de σ pour δ' .

Soit $\epsilon > 0$. On choisit $n_0 \in \mathbb{N}$ tel que $\sum_{n \geq n_0} \frac{1}{\alpha_n} < \frac{\epsilon}{2}$.

Fixons n compris entre 0 et $n_0 - 1$. L'application $Id : (X_n, \text{dist}'_n) \rightarrow (X_n, \text{dist}_n)$ est uniformément continue. Il existe donc $\eta_n > 0$ tel que pour tout $x, y \in X_n$ avec $\text{dist}'_n(x, y) < \eta_n$ on ait $\text{dist}_n(x, y) < \frac{\epsilon}{2\alpha} \text{diam}(X_n)$.

Soit

$$\eta = \min_{n=0, \dots, n_0-1} \left(\frac{\eta_n}{\beta_n \text{diam}'(X_n)} \right).$$

Pour $\hat{x} = (x_n)$ et $\hat{y} = (y_n)$ dans X_∞ avec

$$\delta'(\hat{x}, \hat{y}) = \sum_{n=0}^{+\infty} \frac{\text{dist}'_n(x_n, y_n)}{\beta_n \text{diam}'(X_n)} < \eta$$

on a $\text{dist}'(x_n, y_n) < \eta_n$ pour $n = 0, \dots, n_0 - 1$. D'où

$$\begin{aligned} \delta(\hat{x}, \hat{y}) &= \sum_{n=0}^{+\infty} \frac{\text{dist}_n(x_n, y_n)}{\alpha_n \text{diam}(X_n)} \leq \sum_{n=0}^{n_0-1} \frac{\text{dist}_n(x_n, y_n)}{\alpha_n \text{diam}(X_n)} + \frac{\epsilon}{2} \\ &\leq \sum_{n=0}^{n_0-1} \frac{\epsilon \text{diam}(X_n)}{2\alpha \alpha_n \text{diam}(X_n)} + \frac{\epsilon}{2} \leq \epsilon. \end{aligned}$$

L'application $Id : (X_\infty, \delta') \rightarrow (X_\infty, \delta)$ est donc uniformément continue. Par le même raisonnement, on montre que $Id : (X_\infty, \delta) \rightarrow (X_\infty, \delta')$ l'est aussi, d'où l'équivalence des métriques δ et δ' .

L'entropie topologique $h_{top}(\sigma)$ et la continuité de σ sont donc indépendantes du choix des métriques dist_n sur X_n et de la suite (α_n) .

Nous allons maintenant construire une suite de distances $dist_n$ sur X_n qui aura une propriété de croissance qui permettra de simplifier les démonstrations.

Pour cela, on part de métriques $dist'_n$ (pour $n \in \mathbb{N}$) qui définissent la topologie de X_n . En particulier, les applications $\pi_n : X_n \rightarrow X_{n-1}$ sont holomorphes donc continues. Notons $dist_0 = dist'_0$ et $dist_1(x, y) = dist'_1(x, y) + dist_0(\pi_1(x), \pi_1(y))$ (pour $x, y \in X_1$). On a $dist_1$ et $dist'_1$ topologiquement équivalentes car π_1 est continue. En recommençant le procédé, on obtient une suite de distances $dist_n$ qui vérifient que pour tout $n \geq 1$ et tout $x, y \in X_n$, on a $dist_n(x, y) \geq dist_{n-1}(\pi_1(x), \pi_1(y))$.

Comme on a vu que les résultats ne dépendent pas du choix des distances $dist_n$ sur X_n ainsi que de la suite (α_n) , dans toute la suite de l'article, nous prendrons la suite de distances $dist_n$ que nous venons de construire et $(\alpha_n) = (2^n)$.

Ainsi

$$\delta(\hat{x}, \hat{y}) = \sum_{n=0}^{+\infty} \frac{dist_n(x_n, y_n)}{2^n diam(X_n)}.$$

2.2 Continuité de σ

Fixons $\hat{x} = (x_n) \in X_\infty$ et $\epsilon > 0$. Soit $(\widehat{x_m})$ une suite de X_∞ qui converge vers \hat{x} .

On écrit $\widehat{x_m} = (x_{m,n})$ avec $x_{m,n} \in X_n$ pour tout $n \geq 0$. En particulier, par définition de σ , on a $\sigma(\widehat{x_m}) = (s_n(x_{m,n}))_{n \geq 1}$ et $\sigma(\hat{x}) = (s_n(x_n))_{n \geq 1}$.

Pour n_0 assez grand on a $\sum_{n \geq n_0} \frac{1}{2^n} < \frac{\epsilon}{2}$ et alors

$$\begin{aligned} \delta(\sigma(\widehat{x_m}), \sigma(\hat{x})) &= \sum_{n=0}^{n_0-1} \frac{dist_n(s_{n+1}(x_{m,n+1}), s_{n+1}(x_{n+1}))}{2^n diam(X_n)} \\ &\quad + \sum_{n=n_0}^{+\infty} \frac{dist_n(s_{n+1}(x_{m,n+1}), s_{n+1}(x_{n+1}))}{2^n diam(X_n)} \\ &\leq \sum_{n=0}^{n_0-1} \frac{dist_n(s_{n+1}(x_{m,n+1}), s_{n+1}(x_{n+1}))}{2^n diam(X_n)} + \frac{\epsilon}{2}. \end{aligned}$$

Comme on a $(\widehat{x_m})$ qui converge vers \hat{x} quand $m \rightarrow +\infty$, la suite $(x_{m,n})_m$ converge vers x_n quand $m \rightarrow +\infty$ pour $dist_n$ (pour tout $n \geq 0$). Les applications s_n sont holomorphes donc $(s_n(x_{m,n}))_m$ converge vers $s_n(x_n)$ quand m tend vers l'infini pour la métrique $dist_{n-1}$ pour tout $n \geq 1$.

En particulier, $\sum_{n=0}^{n_0-1} \frac{dist_n(s_{n+1}(x_{m,n+1}), s_{n+1}(x_{n+1}))}{2^n diam(X_n)}$ converge vers 0 quand $m \rightarrow +\infty$ car il n'y a qu'un nombre fini de termes dans la somme : cette quantité est donc plus petite que $\frac{\epsilon}{2}$ pour m assez grand et la proposition 1 est démontrée.

2.3 Croissance de $(h_{top}(F_n))_n$

Rappelons tout d'abord la définition de $(h_{top}(F_n))_n$ (voir par exemple [9]). Notons pour cela

$$\Omega_n = X_n \setminus \cup_{m \in \mathbb{N}} F_n^{-m}(I(F_n))$$

où $I(F_n)$ est l'ensemble d'indétermination de F_n . L'ensemble Ω_n est dense dans X_n car F_n est dominante et il est invariant par F_n . Alors, on a

$$h_{top}(F_n) = \lim_{\epsilon \rightarrow 0} \limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \epsilon)\text{-séparé dans } \Omega_n \text{ pour } F_n).$$

Montrons que la suite $(h_{top}(F_n))_n$ est croissante. On fixe $n \geq 1$.

Soit $\gamma > 0$. Pour ϵ assez petit, on a

$$\limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ens. } (m, \epsilon)\text{-séparé dans } \Omega_{n-1} \text{ pour } F_{n-1}) \geq h_{top}(F_{n-1}) - \gamma.$$

Soit $m_0 \in \mathbb{N}$. On peut trouver $m \geq m_0$ et $\{x_1, \dots, x_N\}$ un ensemble (m, ϵ) -séparé dans Ω_{n-1} pour F_{n-1} avec $N \geq e^{(h_{top}(F_{n-1}) - 2\gamma)m}$.

Si on fixe une forme volume sur X_{n-1} , on voit que l'ensemble $\pi_n(\cup_{m \in \mathbb{N}} F_n^{-m}(I(F_n)))$ est de volume nul car F_n est dominante et π_n holomorphe. Il en est de même du complémentaire de Ω_{n-1} . En particulier, quitte à bouger un peu les x_i , on peut produire des points x'_1, \dots, x'_N qui sont $(m, \frac{\epsilon}{2})$ -séparés pour F_{n-1} et dans $\Omega_{n-1} \setminus \pi_n(\cup_{m \in \mathbb{N}} F_n^{-m}(I(F_n)))$. En effet, comme les points x_i sont dans Ω_{n-1} , les itérées de F_{n-1} sont continues en ces points là.

L'application π_n est surjective, on peut donc trouver y_1, \dots, y_N dans X_n avec $\pi_n(y_i) = x'_i$ pour $i = 1, \dots, N$. Par construction les y_i sont dans Ω_n .

Montrons maintenant que les points y_i sont $(m, \frac{\epsilon}{2})$ -séparés pour F_n .

Si $i \neq j$ avec $1 \leq i, j \leq N$, les points x'_i et x'_j sont $(m, \frac{\epsilon}{2})$ -séparés pour F_{n-1} . Il existe donc $0 \leq l \leq m-1$ avec $dist_{n-1}(F_{n-1}^l(x'_i), F_{n-1}^l(x'_j)) \geq \frac{\epsilon}{2}$. Par l'hypothèse faite sur les distances, on a

$$dist_n(F_n^l(y_i), F_n^l(y_j)) \geq dist_{n-1}(\pi_n(F_n^l(y_i)), \pi_n(F_n^l(y_j))).$$

Par définition, on a $\pi_n \circ F_n^l = F_{n-1}^l \circ \pi_n$ en dehors d'un sous-ensemble analytique de X_n . Comme y_i est dans Ω_n , on a F_n^l continue en y_i et puisque $x'_i = \pi_n(y_i)$ est dans Ω_{n-1} , on a F_{n-1}^l continue en $\pi_n(y_i)$. On a donc $\pi_n(F_n^l(y_i)) = F_{n-1}^l(\pi_n(y_i))$. Il en est de même pour y_j . En combinant cela avec l'inégalité ci-dessus, on obtient

$$dist_n(F_n^l(y_i), F_n^l(y_j)) \geq dist_{n-1}(F_{n-1}^l(x'_i), F_{n-1}^l(x'_j)) \geq \frac{\epsilon}{2}.$$

On a donc montré que pour tout m_0 , il existe $m \geq m_0$ et un ensemble G de Ω_n qui est $(m, \frac{\epsilon}{2})$ -séparé pour F_n avec $\#G \geq e^{(h_{top}(F_{n-1}) - 2\gamma)m}$.

En particulier,

$$\limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \frac{\epsilon}{2})\text{-séparé dans } \Omega_n \text{ pour } F_n) \geq h_{top}(F_{n-1}) - 2\gamma.$$

En faisant tendre ϵ puis γ vers 0, on obtient $h_{top}(F_n) \geq h_{top}(F_{n-1})$. C'est ce que l'on voulait démontrer.

2.4 Démonstration de l'égalité $h_{top}(\sigma) = \sup_{n \geq 0} h_{top}(F_n)$

Nous commençons par montrer que pour tout $n \geq 0$ on a $h_{top}(\sigma) \geq h_{top}(F_n)$ puis que $h_{top}(\sigma) = \sup_{n \geq 0} h_{top}(F_n)$.

2.4.1 Preuve de $h_{top}(\sigma) \geq h_{top}(F_n)$

Soit $\gamma > 0$. Pour ϵ assez petit, on a

$$\limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \epsilon)\text{-séparé dans } \Omega_n \text{ pour } F_n) \geq h_{top}(F_n) - \gamma.$$

Soit $m_0 \in \mathbb{N}$. On peut trouver $m \geq m_0$ et $\{x_1, \dots, x_N\}$ un ensemble (m, ϵ) -séparé dans Ω_n pour F_n avec $N \geq e^{(h_{top}(F_n) - 2\gamma)m}$.

Les applications π_l sont surjectives, il existe donc $\hat{x}_i \in X_\infty$ avec

$$\hat{x}_i = (\dots, x_i, \pi_n(x_i), \dots, \pi_1(\dots(\pi_n(x_i))))$$

pour $i = 1, \dots, N$.

Montrons que les points \hat{x}_i sont $\left(m, \frac{\epsilon}{2^n diam(X_n)}\right)$ -séparés dans X_∞ pour σ .

Soit $1 \leq i, j \leq N$ avec $i \neq j$. On a l'existence de $0 \leq l \leq m - 1$ avec

$$dist_n(F_n^l(x_i), F_n^l(x_j)) \geq \epsilon.$$

Maintenant,

$$\delta(\sigma^l(\hat{x}_i), \sigma^l(\hat{x}_j)) = \sum_{p=0}^{+\infty} \frac{dist_p((\sigma^l(\hat{x}_i))_p, (\sigma^l(\hat{x}_j))_p)}{2^p diam(X_p)}$$

où $\sigma^l(\hat{x}_i) = (\dots, (\sigma^l(\hat{x}_i))_p, \dots, (\sigma^l(\hat{x}_i))_0)$.

Calculons $(\sigma^l(\hat{x}_i))_p$.

Notons $\hat{x}_i = (\dots, x_{i,p}, \dots, x_{i,0})$ (avec $x_{i,n} = x_i$). On a

$$\sigma(\widehat{x}_i) = (\cdots, s_{p+1}(x_{i,p+1}), \cdots, s_1(x_{i,1}))$$

et en recommençant l fois

$$\sigma^l(\widehat{x}_i) = (\cdots, s_{p+1} \circ \cdots \circ s_{p+l}(x_{i,p+l}), \cdots, s_1 \circ \cdots \circ s_l(x_{i,l})).$$

Ainsi $(\sigma^l(\widehat{x}_i))_p = s_{p+1} \circ \cdots \circ s_{p+l}(x_{i,p+l})$ pour $p \geq 0$. Mais

Lemme 5. Pour tout $l \geq 1$ et $p \geq 0$, on a $F_p^l \circ \pi_{p+1} \circ \cdots \circ \pi_{p+l} = s_{p+1} \circ \cdots \circ s_{p+l}$.

Démonstration. Rappelons que lorsque $h : X \rightarrow Y$ et $g : Y \rightarrow Z$ sont des applications méromorphes dominantes entre variétés complexes compactes, la composée $g \circ h$ est définie par son graphe dans $X \times Z$ obtenu en prenant l'adhérence dans $X \times Z$ de l'ensemble des points $\{(x, g(h(x))) \mid x \notin I(h), h(x) \notin I(g)\}$. Par ailleurs deux applications méromorphes dominantes sont égales si elles ont même graphe, ou ce qui revient au même, si elles coïncident sur un ouvert où elles sont toutes les deux holomorphes.

Fixons $p \geq 0$ et faisons une récurrence sur $l \geq 1$.

Pour $l = 1$ on a $F_p \circ \pi_{p+1} = s_{p+1}$ grâce au diagramme que l'on a supposé dans l'introduction.

Supposons la propriété vraie au rang l . L'ensemble

$$\mathcal{E} = \{x \in X_{p+l} \mid F_p^q \circ \pi_{p+1} \circ \cdots \circ \pi_{p+l}(x) \notin I(F_p) \text{ pour } q = 0, \dots, l\}$$

est le complémentaire d'un sous-ensemble analytique de X_{p+l} car F_p et les π_m sont dominantes.

Si $x \in \pi_{p+l+1}^{-1}(\mathcal{E})$, on a

$$F_p^{l+1} \circ \pi_{p+1} \circ \cdots \circ \pi_{p+l+1}(x) = F_p \circ s_{p+1} \circ \cdots \circ s_{p+l} \circ \pi_{p+l+1}(x)$$

par hypothèse de récurrence.

Maintenant soit

$$\mathcal{F} = \{x \in X_{p+l+1} \mid s_{p+q} \circ \cdots \circ s_{p+l} \circ \pi_{p+l+1}(x) \notin I(F_{p+q-1}) \text{ pour } q = 1, \dots, l+1\}.$$

\mathcal{F} est le complémentaire d'un sous-ensemble analytique de X_{p+l+1} et par le diagramme, si $x \in \mathcal{F}$ on a

$$\begin{aligned} F_p \circ s_{p+1} \circ \cdots \circ s_{p+l} \circ \pi_{p+l+1}(x) &= s_{p+1} \circ F_{p+1} \circ s_{p+2} \circ \cdots \circ s_{p+l} \circ \pi_{p+l+1}(x) = \cdots \\ &= s_{p+1} \circ \cdots \circ s_{p+l} \circ F_{p+l} \circ \pi_{p+l+1}(x) \\ &= s_{p+1} \circ \cdots \circ s_{p+l} \circ s_{p+l+1}(x). \end{aligned}$$

Pour $x \in \pi_{p+l+1}^{-1}(\mathcal{E}) \cap \mathcal{F}$ on a bien

$$F_p^{l+1} \circ \pi_{p+1} \circ \cdots \circ \pi_{p+l+1}(x) = s_{p+1} \circ \cdots \circ s_{p+l} \circ s_{p+l+1}(x)$$

ce qui démontre le lemme. \square

Comme le point $\pi_{n+1} \circ \cdots \circ \pi_{n+l}(x_{i,n+l}) = x_{i,n} = x_i \in \Omega_n$ (là où les F_n^l sont holomorphes), en appliquant le lemme précédent pour $p = n$, on obtient

$$(\sigma^l(\widehat{x}_i))_n = F_n^l \circ \pi_{n+1} \circ \cdots \circ \pi_{n+l}(x_{i,n+l}) = F_n^l(x_i).$$

De même $(\sigma^l(\widehat{x}_j))_n = F_n^l(x_j)$. Finalement,

$$\begin{aligned} \delta(\sigma^l(\widehat{x}_i), \sigma^l(\widehat{x}_j)) &= \sum_{p=0}^{+\infty} \frac{\text{dist}_p((\sigma^l(\widehat{x}_i))_p, (\sigma^l(\widehat{x}_j))_p)}{2^p \text{diam}(X_p)} \\ &\geq \frac{\text{dist}_n((\sigma^l(\widehat{x}_i))_n, (\sigma^l(\widehat{x}_j))_n)}{2^n \text{diam}(X_n)} \\ &= \frac{\text{dist}_n(F_n^l(x_i), F_n^l(x_j))}{2^n \text{diam}(X_n)} \geq \frac{\epsilon}{2^n \text{diam}(X_n)}. \end{aligned}$$

Les points \widehat{x}_i sont donc bien $\left(m, \frac{\epsilon}{2^n \text{diam}(X_n)}\right)$ -séparés.

Ainsi,

$$\begin{aligned} \limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \frac{\epsilon}{2^n \text{diam}(X_n)})\text{-séparé dans } X_\infty \text{ pour } \sigma) \\ \geq h_{top}(F_n) - 2\gamma. \end{aligned}$$

En faisant tendre ϵ puis γ vers 0, on obtient

$$h_{top}(\sigma) \geq h_{top}(F_n)$$

pour tout $n \geq 0$.

2.4.2 Fin de la preuve de $h_{top}(\sigma) = \sup_{n \geq 0} h_{top}(F_n)$

Soit $\gamma > 0$. Pour ϵ assez petit, on a

$$\limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \epsilon)\text{-séparé dans } X_\infty \text{ pour } \sigma) \geq h_{top}(\sigma) - \gamma.$$

Soit $n_0 \in \mathbb{N}$ tel que $\sum_{n \geq n_0} \frac{1}{2^n} < \frac{\epsilon}{4}$. On fixe $m \geq 1$ et on considère $\widehat{x}_1, \dots, \widehat{x}_N$ un ensemble maximal (m, ϵ) -séparé dans X_∞ pour l'application σ et la métrique δ .

Notons

$$\begin{aligned}\mathcal{I} = \cup_{q \geq 0} F_{m+n_0}^{-q}(I(F_{m+n_0})) \cup \pi_{m+n_0}^{-1}(\cup_{q \geq 0} F_{m+n_0-1}^{-q}(I(F_{m+n_0-1}))) \cup \\ \dots \cup (\pi_1 \circ \dots \circ \pi_{m+n_0})^{-1}(\cup_{q \geq 0} F_0^{-q}(I(F_0))).\end{aligned}$$

Chaque \hat{x}_i s'écrit $\hat{x}_i = (\dots, x_{i,p}, \dots, x_{i,0})$.

Si on met une forme volume sur X_{m+n_0} , on a que \mathcal{I} est de mesure nulle (car les F_p et les π_p sont dominantes). En particulier, on peut trouver $x'_{i,m+n_0} \in X_{m+n_0} \setminus \mathcal{I}$ suffisamment proche de $x_{i,m+n_0}$ pour que

$$dist_{q-1}(s_q \circ \dots \circ s_p \circ \pi_{p+1} \circ \dots \circ \pi_{m+n_0}(x_{i,m+n_0}), s_q \circ \dots \circ s_p \circ \pi_{p+1} \circ \dots \circ \pi_{m+n_0}(x'_{i,m+n_0})) < \frac{\epsilon}{8}$$

pour tout $p = 0, \dots, m+n_0$ et $q = 1, \dots, p+1$. En effet toutes les applications $s_q \circ \dots \circ s_p \circ \pi_{p+1} \circ \dots \circ \pi_{m+n_0}$ sont holomorphes donc continues.

Comme les π_q sont surjectives on peut compléter $x'_{i,m+n_0}$ pour obtenir un point $\hat{x}'_i \in X_\infty$

$$\hat{x}'_i = (\dots, x'_{i,m+n_0}, \pi_{m+n_0}(x'_{i,m+n_0}), \dots, \pi_1 \circ \dots \circ \pi_{m+n_0}(x'_{i,m+n_0})).$$

Par construction, si on écrit $\hat{x}'_i = (\dots, x'_{i,p}, \dots, x'_{i,0})$, on a

$$x'_{i,n} \in \Omega_n = X_n \setminus \cup_{m \in \mathbb{N}} F_n^{-m}(I(F_n))$$

pour $n = 0, \dots, m+n_0$.

Montrons que les points $x'_{1,n_0}, \dots, x'_{N,n_0}$ sont $(m, \frac{\epsilon}{8})$ -séparés pour F_{n_0} .

Soit $1 \leq i, j \leq N$ avec $i \neq j$. Il existe $1 \leq l \leq m-1$ avec

$$\begin{aligned}\epsilon \leq \delta(\sigma^l(\hat{x}_i), \sigma^l(\hat{x}_j)) &= \sum_{p=0}^{+\infty} \frac{dist_p((\sigma^l(\hat{x}_i))_p, (\sigma^l(\hat{x}_j))_p)}{2^p diam(X_p)} \\ &\leq \sum_{p=0}^{n_0-1} \frac{dist_p((\sigma^l(\hat{x}_i))_p, (\sigma^l(\hat{x}_j))_p)}{2^p diam(X_p)} + \frac{\epsilon}{4} \\ &\leq \sum_{p=0}^{n_0-1} \frac{dist_p((\sigma^l(\hat{x}_i))_p, (\sigma^l(\hat{x}'_i))_p)}{2^p diam(X_p)} + \sum_{p=0}^{n_0-1} \frac{dist_p((\sigma^l(\hat{x}'_i))_p, (\sigma^l(\hat{x}'_j))_p)}{2^p diam(X_p)} \\ &+ \sum_{p=0}^{n_0-1} \frac{dist_p((\sigma^l(\hat{x}'_j))_p, (\sigma^l(\hat{x}_j))_p)}{2^p diam(X_p)} + \frac{\epsilon}{4}.\end{aligned}$$

Mais par le calcul fait juste avant le lemme 5 on a

$$(\sigma^l(\widehat{x}_i))_p = s_{p+1} \circ \cdots \circ s_{p+l}(x_{i,p+l}) = s_{p+1} \circ \cdots \circ s_{p+l} \circ \pi_{p+l+1} \circ \cdots \circ \pi_{m+n_0}(x_{i,m+n_0})$$

pour $p \geq 0$ (et de même pour \widehat{x}'_i , \widehat{x}_j et \widehat{x}'_j).

En particulier,

$$\begin{aligned} & \sum_{p=0}^{n_0-1} \frac{\text{dist}_p((\sigma^l(\widehat{x}_i))_p, (\sigma^l(\widehat{x}'_i))_p)}{2^p \text{diam}(X_p)} \\ &= \sum_{p=0}^{n_0-1} \frac{\text{dist}_p(s_{p+1} \circ \cdots \circ s_{p+l}(x_{i,p+l}), s_{p+1} \circ \cdots \circ s_{p+l}(x'_{i,p+l}))}{2^p \text{diam}(X_p)} \\ &\leq \sum_{p=0}^{n_0-1} \frac{\epsilon/8}{2^p \text{diam}(X_p)} \leq \frac{\epsilon}{4} \end{aligned}$$

(pour la dernière inégalité, on utilise que $\text{diam}(X_p) \geq \text{diam}(X_0)$ grâce à l'hypothèse sur les distances et on peut supposer que le diamètre de X_0 vaut au moins 1).

Il en est de même en remplaçant i par j .

Ainsi

$$\epsilon \leq \delta(\sigma^l(\widehat{x}_i), \sigma^l(\widehat{x}_j)) \leq \sum_{p=0}^{n_0-1} \frac{\text{dist}_p((\sigma^l(\widehat{x}'_i))_p, (\sigma^l(\widehat{x}'_j))_p)}{2^p \text{diam}(X_p)} + \frac{3\epsilon}{4}.$$

En utilisant le lemme 5, on a

$$(\sigma^l(\widehat{x}'_i))_p = s_{p+1} \circ \cdots \circ s_{p+l}(x'_{i,p+l}) = F_p^l \circ \pi_{p+1} \circ \cdots \circ \pi_{p+l}(x'_{i,p+l}) = F_p^l(x'_{i,p+l})$$

pour $p = 0, \dots, n_0 - 1$ et $l = 0, \dots, m - 1$ car $x'_{i,n} \in \Omega_n$ pour $n = 0, \dots, m + n_0$, ce qui implique que

$$\frac{\epsilon}{4} \leq \sum_{p=0}^{n_0-1} \frac{\text{dist}_p(F_p^l(x'_{i,p}), F_p^l(x'_{j,p}))}{2^p \text{diam}(X_p)}.$$

Maintenant, pour $p = 1, \dots, n_0$, on a

$$\begin{aligned} \text{dist}_p(F_p^l(x'_{i,p}), F_p^l(x'_{j,p})) &\geq \text{dist}_{p-1}(\pi_p(F_p^l(x'_{i,p})), \pi_p(F_p^l(x'_{j,p}))) \\ &= \text{dist}_{p-1}(F_{p-1}^l(\pi_p(x'_{i,p})), F_{p-1}^l(\pi_p(x'_{j,p}))) \\ &= \text{dist}_{p-1}(F_{p-1}^l(x'_{i,p-1}), F_{p-1}^l(x'_{j,p-1})) \end{aligned}$$

toujours parce que les $x'_{i,n}$ sont dans Ω_n pour $n = 0, \dots, m + n_0$ et $i = 1, \dots, N$.

En itérant cette inégalité, on obtient ainsi

$$\frac{\epsilon}{4} \leq \sum_{p=0}^{n_0-1} \frac{dist_{n_0}(F_{n_0}^l(x'_{i,n_0}), F_{n_0}^l(x'_{j,n_0}))}{2^p diam(X_p)} \leq 2 dist_{n_0}(F_{n_0}^l(x'_{i,n_0}), F_{n_0}^l(x'_{j,n_0})).$$

On a bien montré que les points x'_{i,n_0} sont $(m, \frac{\epsilon}{8})$ -séparés pour F_{n_0} .

Comme cette propriété est vraie pour tout $m \geq 1$, on a

$$\begin{aligned} & \limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \frac{\epsilon}{8})\text{-séparé dans } X_{n_0} \text{ pour } F_{n_0}) \\ & \geq \limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \epsilon)\text{-séparé dans } X_\infty \text{ pour } \sigma) \geq h_{top}(\sigma) - \gamma. \end{aligned}$$

Par ailleurs, comme

$$h_{top}(F_{n_0}) \geq \limsup_{m \rightarrow +\infty} \frac{1}{m} \log \max(\#G, G \text{ ensemble } (m, \frac{\epsilon}{8})\text{-séparé dans } X_{n_0} \text{ pour } F_{n_0}),$$

on a $h_{top}(F_{n_0}) \geq h_{top}(\sigma) - \gamma$ et ainsi

$$\sup_{n \geq 0} h_{top}(F_n) \geq h_{top}(\sigma) - \gamma.$$

Cela termine la démonstration du théorème.

3 Un exemple de calcul de l'entropie $h_{top}(\sigma)$

Considérons un exemple dû à V. Guedj (voir l'exemple 1.4 dans [9]). Il s'agit de l'application méromorphe $f : \mathbb{P}^2(\mathbb{C}) \rightarrow \mathbb{P}^2(\mathbb{C})$ définie par

$$f([z : w : t]) = [z^2 : wt + t^2 : t^2].$$

L'ensemble d'indétermination est $I = [0 : 1 : 0]$, les degrés dynamiques d_1 et d_2 sont égaux à 2 et $h_{top}(f) = 0$ (voir [9]).

Maintenant, on fait un éclatement de $\mathbb{P}^2(\mathbb{C})$ en I . On note $\widehat{\mathbb{P}^2(\mathbb{C})}$ la surface complexe compacte ainsi obtenue et $e_1 : \widehat{\mathbb{P}^2(\mathbb{C})} \rightarrow \mathbb{P}^2(\mathbb{C})$ l'éclatement.

$\widehat{\mathbb{P}^2(\mathbb{C})}$ est obtenue en recollant $\mathbb{P}^2(\mathbb{C}) \setminus \{I\}$ avec

$$\Gamma = \{((z, t), [\alpha : \beta]) \in U \times \mathbb{P}^1(\mathbb{C}) \mid z\beta = t\alpha\}$$

via $((z, t), [\alpha : \beta]) \mapsto [z : 1 : t]$, où U est un petit voisinage de $(0, 0) \in \mathbb{C}^2$ (voir [7] p.182). Ici on a pris la carte ($w = 1$) dans $\mathbb{P}^2(\mathbb{C})$.

L'application $f \circ e_1$ est holomorphe en dehors de $e_1^{-1}(I)$. Montrons qu'elle est méromorphe sur le diviseur exceptionnel et cherchons son point d'indétermination.

Pour cela on écrit tout d'abord e_1 en coordonnées : on se place sur la carte ($w = 1$) de $\mathbb{P}^2(\mathbb{C})$ et ($\alpha = 1$) de $\widehat{\mathbb{P}^2(\mathbb{C})}$ et on a $e_1(z, \beta) = (z, z\beta)$ d'où

$$f \circ e_1(z, \beta) = [z^2 : z\beta + (z\beta)^2 : (z\beta)^2] = [z : \beta + z\beta^2 : z\beta^2]$$

qui est encore méromorphe en $(0, 0)$.

Dans l'autre carte ($\beta = 1$) de $\widehat{\mathbb{P}^2(\mathbb{C})}$ on a $e_1(t, \alpha) = (t\alpha, t)$ d'où

$$f \circ e_1(t, \alpha) = [(t\alpha)^2 : t + t^2 : t^2] = [t\alpha^2 : 1 + t : t]$$

qui est holomorphe (car t est proche de 0).

L'application $f \circ e_1 : \widehat{\mathbb{P}^2(\mathbb{C})} \rightarrow \mathbb{P}^2(\mathbb{C})$ est donc méromorphe et son point d'indétermination \widehat{I} est $(0, 0)$ dans la carte ($\alpha = 1$).

L'application e_1 est biméromorphe. On peut donc considérer $G = e_1^{-1} \circ f \circ e_1$ qui est bien définie en dehors d'un sous-ensemble analytique de $\widehat{\mathbb{P}^2(\mathbb{C})}$. En prenant l'adhérence du graphe de G dans $\widehat{\mathbb{P}^2(\mathbb{C})} \times \widehat{\mathbb{P}^2(\mathbb{C})}$ on obtient ainsi une nouvelle application méromorphe $G : \widehat{\mathbb{P}^2(\mathbb{C})} \rightarrow \widehat{\mathbb{P}^2(\mathbb{C})}$. Comme f est dominante, G l'est aussi.

Notons $dist_0$ la métrique de Fubini-Study de $\mathbb{P}^2(\mathbb{C})$. Comme à la fin du paragraphe 2.1, on peut munir $\widehat{\mathbb{P}^2(\mathbb{C})}$ d'une métrique $dist'$ qui définit toujours sa topologie avec $dist'(x, y) \geq dist_0(e_1(x), e_1(y))$.

En notant $F_0 = f$, $X_0 = \mathbb{P}^2(\mathbb{C})$, l'espace $\widehat{\mathbb{P}^2(\mathbb{C})}$ n'est pas le X_1 recherché car $f \circ e_1$ est encore méromorphe en \widehat{I} .

C'est pourquoi, nous éclatons maintenant $\widehat{\mathbb{P}^2(\mathbb{C})}$ en ce point. Nous obtenons ainsi une nouvelle surface complexe compacte X_1 et on note $e_2 : X_1 \rightarrow \widehat{\mathbb{P}^2(\mathbb{C})}$ l'application éclatement.

Montrons que $f \circ e_1 \circ e_2$ est holomorphe.

X_1 est obtenue en recollant $\widehat{\mathbb{P}^2(\mathbb{C})} \setminus \widehat{I}$ avec

$$\Gamma' = \{((z, \beta), [u : v]) \in V \times \mathbb{P}^1(\mathbb{C}), zv = \beta u\}$$

en utilisant $((z, \beta), [u : v]) \rightarrow (z, \beta)$ (où V est un petit voisinage de $(0, 0) \in \mathbb{C}^2$).

L'application $f \circ e_1 \circ e_2$ est holomorphe en dehors de $e_2^{-1}(\widehat{I})$. Pour les autres points écrivons $f \circ e_1 \circ e_2$ en coordonnées.

Dans la carte ($u = 1$), on a $e_2(z, v) = (z, zv)$ d'où

$$f \circ e_1 \circ e_2(z, v) = f \circ e_1(z, zv) = [z : zv + z(zv)^2 : z(zv)^2] = [1 : v + (zv)^2 : (zv)^2]$$

qui est holomorphe et dans la carte ($v = 1$), on a $e_2(\beta, u) = (\beta u, \beta)$ d'où

$$f \circ e_1 \circ e_2(\beta, u) = f \circ e_1(\beta u, \beta) = [\beta u : \beta + \beta u \beta^2 : \beta u \beta^2] = [u : 1 + u \beta^2 : u \beta^2]$$

qui est aussi holomorphe (quand u est proche de 0).

En notant $F_0 = f$, $X_0 = \mathbb{P}^2(\mathbb{C})$, $\pi_1 = e_1 \circ e_2$ et $s_1 = f \circ e_1 \circ e_2$, on a donc obtenu le diagramme

$$\begin{array}{ccc} X_1 & & \\ \downarrow \pi_1 & \searrow s_1 & \\ X_0 & \xrightarrow{F_0} & X_0 \end{array}$$

avec π_1 holomorphe, surjective avec ses fibres génériques réduites à un point et s_1 holomorphe et surjective.

L'application π_1 est biméromorphe. On peut donc considérer $F_1 = \pi_1^{-1} \circ F_0 \circ \pi_1$ qui est bien définie en dehors d'un sous-ensemble analytique de X_1 . En prenant l'adhérence du graphe de F_1 dans $X_1 \times X_1$ on obtient ainsi une nouvelle application méromorphe $F_1 : X_1 \rightarrow X_1$. Comme F_0 est dominante, F_1 l'est aussi. On a bien obtenu le diagramme

$$\begin{array}{ccc} X_1 & \xrightarrow{F_1} & X_1 \\ \downarrow \pi_1 & \searrow s_1 & \downarrow \pi_1 \\ X_0 & \xrightarrow{F_0} & X_0 \end{array}$$

Comme à la fin du paragraphe 2.1, on peut munir X_1 d'une métrique $dist_1$ qui vérifie

$$dist_1(x, y) \geq dist'(e_2(x), e_2(y)) \geq dist_0(e_1 \circ e_2(x), e_1 \circ e_2(y)) = dist_0(\pi_1(x), \pi_1(y)).$$

Montrons maintenant

Proposition 6. *On a $h_{top}(F_1) = \log 2$.*

Démonstration. Tout d'abord, par T.-C. Dinh et N. Sibony (voir [5] et [6]), on a d'une part que les degrés dynamiques sont des invariants biméromorphes (en particulier les degrés dynamiques de F_1 sont égaux à ceux de F_0) et d'autre part que

$$h_{top}(F_1) \leq \max_{i=0,1,2} \log d_i(F_1) = \log 2.$$

Maintenant, la même démonstration qu'au paragraphe 2.3 implique que $h_{top}(F_1) \geq h_{top}(G)$. Pour montrer la proposition il suffit donc de voir que $h_{top}(G) \geq \log 2$.

Dans la carte ($\beta = 1$) de $\widehat{\mathbb{P}^2(\mathbb{C})}$ on a vu que

$$F_0 \circ e_1(t, \alpha) = [(t\alpha)^2 : t + t^2 : t^2] = [t\alpha^2 : 1 + t : t].$$

On a donc, pour t proche de 0,

$$\begin{aligned} G(t, \alpha) &= \left(\left(\frac{t\alpha^2}{1+t}, \frac{t}{1+t} \right), \left[\frac{t\alpha^2}{1+t} : \frac{t}{1+t} \right] \right) \\ &= \left(\left(\frac{t\alpha^2}{1+t}, \frac{t}{1+t} \right), [\alpha^2 : 1] \right). \end{aligned}$$

Si on considère la carte ($\beta = 1$) au but, cela s'écrit $G(t, \alpha) = \left(\frac{t}{1+t}, \alpha^2 \right)$.

Le diviseur exceptionnel E a pour équation ($t = 0$) dans cette carte de $\widehat{\mathbb{P}^2(\mathbb{C})}$. Si on considère le cercle $|\alpha| = 1$ dans E , il est invariant par G et la dynamique dessus est $\alpha \rightarrow \alpha^2$. Cela implique que $h_{top}(G) \geq \log 2$.

□

Considérons une suite de diagramme comme dans l'introduction que l'on construit à partir de X_1 et F_1 . On a vu que $h_{top}(\sigma) = \sup_n h_{top}(F_n)$ ce qui implique que $h_{top}(\sigma) \geq h_{top}(F_1) \geq \log 2$. Mais comme les degrés dynamiques des F_n sont égaux à ceux de F_0 , par [5] et [6], on a $\sup_n h_{top}(F_n) \leq \log 2$ c'est-à-dire,

Corollaire 7. *On a $h_{top}(\sigma) = \log 2$.*

4 Démonstration du principe variationnel

Dans ce paragraphe, on suppose que les $\widetilde{f^{-m}(I)}$ sont disjoints (pour $m \in \mathbb{N}$). Fixons $n \in \mathbb{N}$ et considérons l'application $F_n : X_n \rightarrow X_n$ comme dans l'introduction. Son ensemble d'indétermination sera encore noté $I(F_n)$. Dans un premier temps nous allons montrer le

Lemme 8. *Pour $m \in \mathbb{N}$, les ensembles $\widetilde{F_n^{-m}(I(F_n))}$ sont disjoints.*

Démonstration. Nous démontrons ce résultat par récurrence sur n .

Pour $n = 0$, c'est l'hypothèse car $\widetilde{F_0} = f$. On suppose maintenant la propriété vraie au rang $n - 1$ avec $n \geq 1$. Si les $\widetilde{F_n^{-m}(I(F_n))}$ ne sont pas disjoints, soit

$$x \in \widetilde{F_n^{-m}(I(F_n))} \cap \widetilde{F_n^{-q}(I(F_n))}$$

avec $q > m$. Les entiers m et q sont choisis minimaux, c'est-à-dire que l'on prend le plus petit $m \geq 0$ tel que $\widetilde{F_n^{-m}(I(F_n))}$ rencontre un autre $\widetilde{F_n^{-q}(I(F_n))}$, puis le plus petit q qui vérifie cette propriété (on a donc $q > m$).

Soit Γ_{F_n} le graphe de F_n dans $X_n \times X_n$. Par récurrence, on voit que pour $m \geq 1$, $x \in \widetilde{F_n^{-m}(A)}$ est équivalent à l'existence de points x_0, \dots, x_m avec $(x_i, x_{i+1}) \in \Gamma_{F_n}$ pour $i = 0, \dots, m - 1$ (nous appellerons **chaîne** de F_n une telle suite), $x_0 = x$ et $x_m \in A$.

Ici, on a $x \in F_n^{-m}(\widetilde{I(F_n)}) \cap F_n^{-q}(\widetilde{I(F_n)})$. Il existe donc deux chaînes x_0, \dots, x_m et x'_0, \dots, x'_q avec $x_0 = x'_0 = x$, $x_m \in I(F_n)$ et $x'_q \in I(F_n)$.

Comme le m est minimal, les points x_0, \dots, x_{m-1} ne sont pas dans $I(F_n)$. Par ailleurs, si $y \in X_n \setminus I(F_n)$, il existe un unique $z \in X_n$ avec $(y, z) \in \Gamma_{F_n}$. De là, on en déduit que

$$x_0 = x'_0, \dots, x_m = x'_m.$$

En particulier, dans la chaîne x'_0, \dots, x'_q , on a x'_m et x'_q qui sont dans $I(F_n)$.

Remarquons que pour $y, z \in X_n$ avec $(y, z) \in \Gamma_{F_n}$, on a $(\pi_n(y), \pi_n(z)) \in \Gamma_{F_{n-1}}$. En effet, le graphe Γ_{F_n} est l'adhérence des points de la forme $\{(y, F_n(y)), y \notin I(F_n)\}$. On peut donc trouver une suite (y_p) qui converge vers y avec $y_p \notin I(F_n)$ et $(F_n(y_p))$ qui tend vers z quand $p \rightarrow +\infty$. Comme $\pi_n^{-1}(I(F_{n-1}))$ est un sous-ensemble analytique de X_n (car π_n est dominante), quitte à bouger un peu les y_p , on peut supposer que $\pi_n(y_p) \notin I(F_{n-1})$. Ainsi, par continuité de π_n , la suite $(\pi_n(y_p))$ converge vers $\pi_n(y)$ et $F_{n-1} \circ \pi_n(y_p) = \pi_n \circ F_n(y_p)$ vers $\pi_n(z)$ quand $p \rightarrow +\infty$. Cela signifie bien que $(\pi_n(y), \pi_n(z)) \in \Gamma_{F_{n-1}}$.

En utilisant cette remarque, on obtient que $\pi_n(x'_0), \dots, \pi_n(x'_q)$ est une chaîne pour F_{n-1} .

Maintenant, montrons le

Fait : On a $I(F_n) \subset \pi_n^{-1}(F_{n-1}^{-1}(I(F_{n-1})))$.

Soit $y \in X_n \setminus \pi_n^{-1}(F_{n-1}^{-1}(I(F_{n-1})))$. Il y a deux possibilités :

- si $\pi_n(y) \in I(F_{n-1})$, alors $s_n(y) \notin I(F_{n-1})$ sinon comme $\pi_n(y), s_n(y)$ est une chaîne pour F_{n-1} , on aurait $I(F_{n-1}) \cap F_{n-1}^{-1}(I(F_{n-1})) \neq \emptyset$ ce qui contredirait l'hypothèse de récurrence. Ainsi $s_n(y) \notin I(F_{n-1})$ et alors $\pi_n^{-1} \circ s_n$ est holomorphe en y car

$$\{x \in X_{n-1}, \dim(\pi_n^{-1}(x)) \geq 1\} \subset I(F_{n-1}).$$

Cela implique que $y \notin I(F_n)$.

- si $\pi_n(y) \notin I(F_{n-1})$, alors $F_{n-1} \circ \pi_n(y)$ est bien défini et ne se trouve pas dans $I(F_{n-1})$. En particulier, $\pi_n^{-1} \circ F_{n-1} \circ \pi_n$ est holomorphe en y et donc $y \notin I(F_n)$.

En utilisant ce fait, on a que $\pi_n(x'_0), \dots, \pi_n(x'_q)$ forme une chaîne pour F_{n-1} avec $\pi_n(x'_m) \in F_{n-1}^{-1}(I(F_{n-1}))$ et $\pi_n(x'_q) \in F_{n-1}^{-1}(I(F_{n-1}))$. Autrement dit,

$$F_{n-1}^{-1}(I(F_{n-1})) \cap F_{n-1}^{-q+m-1}(\widetilde{I(F_{n-1})}) \neq \emptyset.$$

Cela contredit l'hypothèse de récurrence et termine ainsi la preuve du lemme. \square

Passons maintenant à la démonstration du principe variationnel (le théorème 3).

Soit $\gamma > 0$. Comme X_∞ est un espace métrique compact et que σ est continue, on peut appliquer le principe variationnel à ce système dynamique, c'est-à-dire qu'il existe une probabilité ergodique $\hat{\nu}$, invariante par σ , telle que

$$h_{\hat{\nu}}(\sigma) \geq h_{top}(\sigma) - \gamma.$$

Soit

$$\widehat{\Omega} = \{\widehat{x} = (x_n) \in X_\infty, x_n \notin \cup_{m \geq 0} \widetilde{F_n^{-m}(I(F_n))} \text{ pour tout } n \in \mathbb{N}\}.$$

Montrons tout d'abord que $\widehat{\nu}(\widehat{\Omega}) = 1$.

Si $\widehat{\nu}(\widehat{\Omega}^c) > 0$, il existe $n, m \in \mathbb{N}$ avec

$$\widehat{\nu}(\{\widehat{x} = (x_n) \in X_\infty, x_n \in \widetilde{F_n^{-m}(I(F_n))}\}) > 0.$$

On note \widehat{B} cet ensemble $\{\widehat{x} = (x_n) \in X_\infty, x_n \in \widetilde{F_n^{-m}(I(F_n))}\}$. Par le théorème de récurrence de Poincaré, il existe $l \geq 1$ avec $\sigma^{-l}(\widehat{B}) \cap \widehat{B} \neq \emptyset$. Soit $\widehat{x} \in \sigma^{-l}(\widehat{B}) \cap \widehat{B}$. Si on écrit $\widehat{x} = (x_n)$, on a déjà vu que

$$\sigma^l(\widehat{x}) = (\cdots, s_{p+1} \circ \cdots \circ s_{p+l}(x_{p+l}), \cdots, s_1 \circ \cdots \circ s_l(x_l)).$$

On a donc $x_n \in \widetilde{F_n^{-m}(I(F_n))}$ et $(\sigma^l(\widehat{x}))_n = s_{n+1} \circ \cdots \circ s_{n+l}(x_{n+l}) \in \widetilde{F_n^{-m}(I(F_n))}$.

Mais

Lemme 9.

$$\pi_{n+1} \circ \cdots \circ \pi_{n+l}(x_{n+l}), \pi_{n+1} \circ \cdots \circ \pi_{n+l-1} \circ s_{n+l}(x_{n+l}), \cdots, s_{n+1} \circ \cdots \circ s_{n+l}(x_{n+l})$$

est une chaîne pour F_n .

Démonstration. Tout d'abord, pour tout $y \in X_{p+1}$ et tout $p \geq 0$, les points $\pi_{p+1}(y), s_{p+1}(y)$ forment une chaîne pour F_p .

En particulier, $\pi_{p+1} \circ s_{p+2} \circ \cdots \circ s_{n+l}(x_{n+l}), s_{p+1} \circ s_{p+2} \circ \cdots \circ s_{n+l}(x_{n+l})$ est une chaîne pour F_p (pour tout $p = n, \dots, n+l-1$).

Ensuite, en utilisant la remarque faite dans la preuve du lemme précédent, on a

$$\pi_{n+1} \circ \cdots \circ \pi_{p+1} \circ s_{p+2} \circ \cdots \circ s_{n+l}(x_{n+l}), \pi_{n+1} \circ \cdots \circ \pi_p \circ s_{p+1} \circ s_{p+2} \circ \cdots \circ s_{n+l}(x_{n+l})$$

qui forme une chaîne pour F_n pour tout $p = n, \dots, n+l-1$. Cela démontre le lemme. \square

Comme $\widetilde{\pi_{n+1} \circ \cdots \circ \pi_{n+l}(x_{n+l})} = x_n$, on a donc obtenu une chaîne pour F_n qui part de $x_n \in \widetilde{F_n^{-m}(I(F_n))}$ et qui va jusqu'à $s_{n+1} \circ \cdots \circ s_{n+l}(x_{n+l}) \in \widetilde{F_n^{-m}(I(F_n))}$. Cela implique que

$$\widetilde{F_n^{-m}(I(F_n))} \cap \widetilde{F_n^{-m-l}(I(F_n))} \neq \emptyset$$

et on obtient ainsi une contradiction.

Nous avons donc montré que $\widehat{\nu}(\widehat{\Omega}) = 1$.

Considérons maintenant $p : X_\infty \longrightarrow X_0 = X$ qui à $\hat{x} = (x_n)$ associe $p(\hat{x}) = x_0$.

Tout d'abord, par définition de $\widehat{\Omega}$, on a $p(\widehat{\Omega}) \subset \Omega = X \setminus \cup_{n \geq 0} f^{-n}(I)$. Ensuite, p est injective sur $\widehat{\Omega}$. On a même une propriété un peu plus forte : en effet, soit $p(\hat{x}) = x_0 = p(\hat{x}')$ avec $\hat{x} = (x_n) \in \widehat{\Omega}$ et $\hat{x}' = (x'_n)$ un point quelconque de X_∞ . Si $\hat{x} \neq \hat{x}'$, on considère $l \geq 1$ le plus entier tel que $x_l \neq x'_l$. Mais $x_{l-1} = \pi_l(x_l) = \pi_l(x'_l)$ n'est pas dans $I(F_{l-1})$ car $\hat{x} \in \widehat{\Omega}$ et par hypothèse

$$\{x \in X_{l-1} \text{ , } \dim(\pi_l^{-1}(x)) \geq 1\} \subset I(F_{l-1}).$$

Autrement dit, $\pi_l(x_l)$ et $\pi_l(x'_l)$ vivent là où π_l^{-1} est holomorphe : on a donc $x_l = x'_l$, ce qui est une contradiction.

Montrons que p est un homéomorphisme de $\widehat{\Omega}$ sur son image. Tout d'abord, par définition de δ ,

$$\delta(\hat{x}, \hat{x}') \geq \frac{dist_0(x_0, x'_0)}{diam(X_0)} = \frac{dist_0(p(\hat{x}), p(\hat{x}'))}{diam(X_0)}$$

donc p est continue (sur tout X_∞). Ensuite, soit $x_0 \in p(\widehat{\Omega})$ et (y_n) une suite de $p(\widehat{\Omega})$ qui converge vers x_0 . Si la suite $(p^{-1}(y_n))$ ne converge pas vers $p^{-1}(x_0)$, il existe $\epsilon > 0$ et une sous-suite $(p^{-1}(y_{\psi(n)}))$ qui reste à distance au moins ϵ de $p^{-1}(x_0)$ pour la métrique δ . Comme X_∞ est compact, on peut trouver une sous-suite $(p^{-1}(y_{\varphi(n)}))$ de $(p^{-1}(y_{\psi(n)}))$ qui converge vers $\hat{z} \in X_\infty$. On a déjà que $\delta(\hat{z}, p^{-1}(x_0)) \geq \epsilon$. Ensuite, la continuité de p sur tout X_∞ implique que $(p(p^{-1}(y_{\varphi(n)})))$ converge vers $p(\hat{z})$, autrement dit, $p(\hat{z}) = x_0$. Comme $x_0 \in p(\widehat{\Omega})$ la propriété plus forte que l'injectivité que l'on a montrée donne que $\hat{z} = p^{-1}(x_0)$. Cela contredit $\delta(\hat{z}, p^{-1}(x_0)) \geq \epsilon$. L'application p est donc un homéomorphisme de $\widehat{\Omega}$ sur $p(\widehat{\Omega})$. Enfin, on a le diagramme commutatif

$$\begin{array}{ccc} \widehat{\Omega} & \xrightarrow{\sigma} & \widehat{\Omega} \\ p \downarrow & & \downarrow p \\ p(\widehat{\Omega}) & \xrightarrow{f} & p(\widehat{\Omega}) \end{array}$$

En effet, soit $\hat{x} = (x_n) \in \widehat{\Omega}$, on a $\sigma(\hat{x}) = (s_n(x_n))_{n \geq 1}$, d'où $p(\sigma(\hat{x})) = s_1(x_1)$. Le point $x_0 = \pi_1(x_1)$ n'est pas dans $I(F_0) = I$ car $\hat{x} \in \widehat{\Omega}$. On a donc

$$p(\sigma(\hat{x})) = s_1(x_1) = f \circ \pi_1(x_1) = f(x_0) = f \circ p(\sigma(\hat{x})).$$

De là, on obtient que la mesure $\nu = p_*(\widehat{\nu})$ est invariante par f , vit dans Ω et son entropie est égale à celle de $\widehat{\nu}$.

En particulier,

$$\sup\{h_\mu(f) \text{ , } \mu \text{ ergodique et } \mu(I) = 0\} \geq h_\nu(f) = h_{\widehat{\nu}}(\sigma) \geq h_{top}(\sigma) - \gamma.$$

Quand on a une probabilité invariante μ avec $\mu(I) = 0$ alors $\mu(\Omega) = 1$ par invariance. Comme on a toujours $\sup\{h_\mu(f), \mu \text{ ergodique et } \mu(\Omega) = 1\} \leq h_{top}(f) \leq h_{top}(\sigma)$ (voir [9] pour la première inégalité et le théorème 2 pour la seconde), le principe variationnel est démontré.

Références

- [1] A. Blanchard, *Sur les variétés analytiques complexes*, Ann. Sci. Ecole Norm. Sup., **73** (1956), 157-202.
- [2] S. Boucksom, C. Favre et M. Jonsson, *Degree growth of meromorphic surface maps*, Duke Math. J., **141** (2008), 519-538.
- [3] S. Cantat, *Sur les groupes de transformations birationnelles des surfaces*, Ann. of Math., **174** (2011), 299-340.
- [4] H. De Thélin, *Sur les exposants de Lyapounov des applications méromorphes*, Invent. Math., **172** (2008), 89-116.
- [5] T.-C. Dinh et N. Sibony, *Regularization of currents and entropy*, Ann. Sci. Ecole Norm. Sup., **37** (2004), 959-971.
- [6] T.-C Dinh et N. Sibony, *Une borne supérieure pour l'entropie topologique d'une application rationnelle*, Ann. of Math., **161** (2005), 1637-1644.
- [7] P. Griffiths et J. Harris, *Principles of algebraic geometry*, Pure and Applied Mathematics, Wiley-Interscience, 1978.
- [8] M. Gromov, *On the entropy of holomorphic maps*, Enseign. Math., **49** (2003), 217-235.
- [9] V. Guedj, *Entropie topologique des applications méromorphes*, Ergodic Theory Dynam. Systems, **25** (2005), 1847-1855.
- [10] H. Hironaka, *Desingularization of complex-analytic varieties*, Actes Congrès Intern. Math., Tome 2 (1970), 627-631.
- [11] J.H. Hubbard et P. Papadopol, *Newton's method applied to two quadratic equations in \mathbb{C}^2 viewed as a global dynamical system*, Mem. Amer. Math. Soc., **191** (2008), n°891.
- [12] A. Katok et B. Hasselblatt, *Introduction to the modern theory of dynamical systems*, Encycl. of Math. and its Appl., vol. 54, Cambridge University Press, (1995).
- [13] A. Russakovskii et B. Shiffman, *Value distribution for sequences of rational mappings and complex dynamics*, Indiana Univ. Math. J., **46** (1997), 897-932.

Henry De Thélin, Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France.

dethelin@math.univ-paris13.fr