Encryption Dokumentáció

Ujhelyi Bence

1.	Hiera	archikus	s mutató										1
	1.1.	Osztály	/hierarchia					 	 	 	 	 	1
2.	Oszt	álymuta	ató										3
	2.1.	Osztály	/lista					 	 	 	 	 	3
3.	Fájln	nutató											5
	3.1.	Fájllista	a					 	 	 	 	 	5
4.	Oszt	ályok d	okumentá	ciója									7
	4.1.	Caesai	osztályre	ferencia				 	 	 	 	 	7
		4.1.1.	Részletes	s leírás				 	 	 	 	 	8
		4.1.2.	Tagfüggv	ények dokum	entációja			 	 	 	 	 	8
			4.1.2.1.	decrypt() .				 	 	 	 	 	8
			4.1.2.2.	encrypt() .				 	 	 	 	 	8
			4.1.2.3.	get_private_	key()			 	 	 	 	 	8
			4.1.2.4.	get_public_k	ey()			 	 	 	 	 	9
	4.2.	Encryp	tion osztál	yreferencia				 	 	 	 	 	9
		4.2.1.	Részletes	s leírás				 	 	 	 	 	9
		4.2.2.	Konstrukt	orok és destr	uktorok d	okumen	tációja	 	 	 	 	 	10
			4.2.2.1.	\sim Encryption	()			 	 	 	 	 	10
		4.2.3.	Tagfüggv	ények dokum	entációja			 	 	 	 	 	10
			4.2.3.1.	decrypt() .				 	 	 	 	 	10
			4.2.3.2.	encrypt() .				 	 	 	 	 	10
			4.2.3.3.	get_private_	key()			 	 	 	 	 	10
			4.2.3.4.	get_public_k	.ey()			 	 	 	 	 	11
	4.3.	RSA os	sztályrefer	encia				 	 	 	 	 	11
		4.3.1.	Részletes	s leírás				 	 	 	 	 	12
		4.3.2.	Konstrukt	orok és destr	uktorok d	okumen	tációja	 	 	 	 	 	12
			4.3.2.1.	RSA()				 	 	 	 	 	12
		4.3.3.	Tagfüggv	ények dokum	entációja			 	 	 	 	 	12
			4.3.3.1.	decrypt() .				 	 	 	 	 	12
			4.3.3.2.	encrypt() .				 	 	 	 	 	13
			4.3.3.3.	get_private_	key()			 	 	 	 	 	14
			4.3.3.4.	get_public_k	ey()			 	 	 	 	 	14
5.	Fájlo	k doku	mentációj	a									15
	5.1.	Caesai	cpp fájlre	ferencia				 	 	 	 	 	15
		5.1.1.	Részletes	s leírás				 	 	 	 	 	15
	5.2.	Caesai	r.hpp fájlre	ferencia				 	 	 	 	 	15
		5.2.1.	Részletes	s leírás				 	 	 	 	 	16
	5.3.	Caesai	r.hpp					 	 	 	 	 	16
	5.4.	Encryp	tion.hpp fá	ijlreferencia				 	 	 	 	 	16
		5.4.1.	Részletes	s leírás				 	 	 	 	 	17

5.5.	Encryption.hpp	17
5.6.	main.cpp fájlreferencia	17
	5.6.1. Részletes leírás	18
	5.6.2. Függvények dokumentációja	18
	5.6.2.1. main()	18
5.7.	RSA.cpp fájlreferencia	18
	5.7.1. Részletes leírás	18
	5.7.2. Változók dokumentációja	19
	5.7.2.1. RSA_ALPHABET_SIZE	19
5.8.	RSA.hpp fájlreferencia	19
	5.8.1. Részletes leírás	19
5.9.	RSA.hpp	20
Tárgymi	utató	21

Hierarchikus mutató

1.1. Osztályhierarchia

Majdnem (de nem teljesen) betűrendbe szedett leszármazási lista:

Encryption																						9
Caesar	 						 				 									 		7
DCA																					- 1	1

2 Hierarchikus mutató

Osztálymutató

2.1. Osztálylista

Az összes osztály, struktúra, unió és interfész listája rövid leírásokkal:

Caesar	
	Caesar osztály
Encrypti	on
	Encryption osztály
RSA	
	RSA osztály

4 Osztálymutató

Fájlmutató

3.1. Fájllista

Az összes dokumentált fájl listája rövid leírásokkal:

Caesar.cpp	
Caesar.hpp	
Encryption.hpp	
main.cpp	
RSA.cpp	
RSA.hpp	

6 Fájlmutató

Osztályok dokumentációja

4.1. Caesar osztályreferencia

Caesar osztály.

#include <Caesar.hpp>

A Caesar osztály származási diagramja:

Publikus tagfüggvények

- · Caesar (int shift)
- std::string encrypt (const std::string &text) const override encrypt függvény
- std::string decrypt (const std::string &secrettext) const override decrypt függvény
- std::string get_public_key () const override get_public_key függvény
- std::string get_private_key () const override get_private_key függvény

Publikus tagfüggvények a(z) Encryption osztályból származnak

- virtual ~Encryption ()=default
 - Destruktor.
- virtual std::string encrypt (const std::string &plaintext) const =0 encrypt függvény.
- virtual std::string decrypt (const std::string &ciphertext) const =0 decrypt függvény.
- virtual std::string get_public_key () const =0
 - get_public_key() függvény.
- virtual std::string get_private_key () const =0 get_private_key() függvény.

4.1.1. Részletes leírás

Caesar osztály.

4.1.2. Tagfüggvények dokumentációja

4.1.2.1. decrypt()

decrypt függvény

Paraméterek

secrettext	Titkos szöveg
------------	---------------

Visszatérési érték

Visszafejtett szöveg

Visszafejti a titkos szöveget

Megvalósítja a következőket: Encryption.

4.1.2.2. encrypt()

encrypt függvény

Paraméterek

```
text Titkosítandó szöveg
```

Visszatérési érték

Titkosított szöveg Titkosítja a beérkező sztringet és visszaadja a titkosított sztringet;

Megvalósítja a következőket: Encryption.

4.1.2.3. get_private_key()

```
std::string Caesar::get_private_key ( ) const [override], [virtual]
get_private_key függvény
```

A kompatibilitás miatt muszáj inicializálni a függvént, még akkor is ha nem ad vissza semmit

Megvalósítja a következőket: Encryption.

4.1.2.4. get_public_key()

```
std::string Caesar::get_public_key ( ) const [override], [virtual]
get_public_key függvény
```

A kompatibilitás miatt muszáj inicializálni a függvént, még akkor is ha nem ad vissza semmit

Megvalósítja a következőket: Encryption.

Ez a dokumentáció az osztályról a következő fájlok alapján készült:

- · Caesar.hpp
- · Caesar.cpp

4.2. Encryption osztályreferencia

Encryption osztály.

```
#include <Encryption.hpp>
```

Az Encryption osztály származási diagramja:

Publikus tagfüggvények

- virtual ~Encryption ()=default Destruktor.
- virtual std::string encrypt (const std::string &plaintext) const =0 encrypt függvény.
- virtual std::string decrypt (const std::string &ciphertext) const =0 decrypt függvény.
- virtual std::string get_public_key () const =0 get_public_key() függvény.
- virtual std::string get_private_key () const =0
 get_private_key() függvény.

4.2.1. Részletes leírás

Encryption osztály.

Absztrakt titkosító osztály.

4.2.2. Konstruktorok és destruktorok dokumentációja

4.2.2.1. ∼Encryption()

```
\label{lem:virtual} \mbox{ virtual Encryption::$$\sim$ Encryption ( ) [virtual], [default]$}
```

Destruktor.

Virtuális destruktor.

4.2.3. Tagfüggvények dokumentációja

4.2.3.1. decrypt()

decrypt függvény.

Titkosítás feloldásáért felelős függvény.

Megvalósítják a következők: Caesar és RSA.

4.2.3.2. encrypt()

encrypt függvény.

Titkosító függvény.

Megvalósítják a következők: RSA és Caesar.

4.2.3.3. get_private_key()

```
virtual std::string Encryption::get_private_key ( ) const [pure virtual]
get_private_key() függvény .
```

RSA-hoz a privát kulcs lekérdezése.

Megvalósítják a következők: Caesar és RSA.

4.2.3.4. get_public_key()

```
virtual std::string Encryption::get_public_key ( ) const [pure virtual]
get_public_key() függvény.
```

RSA-hoz a nyilvános kulcs lekérdezése.

Megvalósítják a következők: Caesar és RSA.

Ez a dokumentáció az osztályról a következő fájl alapján készült:

· Encryption.hpp

4.3. RSA osztályreferencia

```
RSA osztály.
```

```
#include <RSA.hpp>
```

A RSA osztály származási diagramja:

Publikus tagfüggvények

• RSA ()

Érték nélküli konstruktor.

- std::string encrypt (const std::string &eredeti) const override encrypt függvény
- std::string decrypt (const std::string &titkos) const override decrypt függvény
- std::string get_public_key () const override get_public_key függvény
- std::string get_private_key () const override get_private_key függvény

Publikus tagfüggvények a(z) Encryption osztályból származnak

• virtual \sim Encryption ()=default

Destruktor.

- virtual std::string encrypt (const std::string &plaintext) const =0 encrypt függvény.
- virtual std::string decrypt (const std::string &ciphertext) const =0 decrypt függvény.
- virtual std::string get_public_key () const =0

get_public_key() függvény.

virtual std::string get_private_key () const =0

get_private_key() függvény .

4.3.1. Részletes leírás

RSA osztály.

4.3.2. Konstruktorok és destruktorok dokumentációja

4.3.2.1. RSA()

```
RSA::RSA ( )
```

Érték nélküli konstruktor.

- 1. Létrehoz két véletlenszerű prímszámot, p-t és q-t. A generateRandomPrime() függvényt használja ezek generálására. A p a [10000, 20000] tartományban generált prímszám lesz, míg a q a [20000, 30000] tartományban generált prímszám lesz.
- 2. Kiszámítja a pí (totiense) értékét, amely a (p 1) * (q 1) eredménye lesz.
- 3. Beállítja a nyilvános kulcsot (publicKey) a 65537 értékre, amely egy gyakran használt nyilvános relatív prím.
- 4. Iteratív módon növeli az e értékét egészen addig, amíg nem talál olyan értéket, amely relatív prím pí-vel. Ehhez a gcd(e, phi) függvényt használja, amely az e és pí legnagyobb közös osztóját adja vissza. Amint talál egy ilyen értéket, a ciklus megszakad.
- 5. Kiszámítja a privát kulcsot (privateKey) a publicKey moduláris inverzével pí modulo szerint. Ehhez a modularInverse() függvényt használja.

Ez a konstruktor tehát egy új RSA objektumot hoz létre és inicializálja a nyilvános és privát kulcsokat a fenti lépések szerint.

4.3.3. Tagfüggvények dokumentációja

4.3.3.1. decrypt()

decrypt függvény

Paraméterek

titkos A visszafejtendő sztring

Visszatérési érték

Eredeti üzenet

Visszafejti a titkosított sztringet.

1. Létrehoz egy üres stringet, decryptedText, amelybe majd beilleszti a visszafejtett karaktereket.

- 2. Létrehoz egy üres stringet, token, amelybe az aktuális titkosított karaktert tárolja.
- 3. Az endPos változóba elmenti az első szóköz pozícióját a 'titkos' stringben, vagy std::string::npos-t(végtelen értéket), ha nem talál szóközt.
- 4. Amíg van újabb szóköz a 'titkos' stringben (vagyis van újabb token), a következő lépéseket végzi el: -A token értékét beállítja a 'titkos' stringben található részletre (startPos és endPos között). -A token-t átkonvertálja unsigned long long típussá a std::strtoull() függvény segítségével, amely az értékét 10-es számrendszerben olvassa ki a stringből. -Az m értékét inicializálja. -Ha az c értéke megegyezik a RSA_ALPHABET_SIZE-szal, akkor az m értékét visszaállítja szóközként (visszaállítja a korábban speciális értékként kezelt szóközt), Különben kiszámolja az m értékét az RSA algoritmus segítségével. Ehhez a modularExponentiation() metódust használja a c karaktert átkonvertálva az 'a' értéktől kezdve számmá, majd a privateKey kitevővel emeli hatványra a RSA_ALPHABET_SIZE modulon belül. -Az m karaktert hozzáadja a decryptedText stringhez, miután explicit konvertálja char típusra. -Beállítja az startPos értékét az aktuális szóköz pozíciójának + 1 értékre. -Újra meghatározza az endPos értékét a következő szóköz pozíciójára a 'titkos' stringben, ha van még token. Ehhez az endPos értékét úgy módosítja, hogy az endPos-t az aktuális részleten belül adjon hozzá a startPos értékhez.
- 5. Visszaadja a decryptedText stringet, amely tartalmazza

Megvalósítja a következőket: Encryption.

4.3.3.2. encrypt()

encrypt függvény

Paraméterek

eredeti A titkosítandó sztring

Visszatérési érték

Titkosított sztring Titkosítja a paraméterként kapott stringet

- 1. Először ellenőrzi az eredeti üzenet minden karakterét, hogy azok betűk vagy szóközök-e. Ha talál olyan karaktert, ami nem betű és nem szóköz, akkor kiírja a "Nem szabályos karakter" üzenetet, és "Error" értéket ad vissza.
- 2. Létrehoz két üres stringet: titkos és eredeti2. Az eredeti2 a toLowerCase() függvény segítségével átalakítja az eredeti üzenetet kisbetűssé.
- 3. Iterál az eredeti stringen a karakterek szerint.
- 4. Az aktuális karaktert (aktualis) leellenőrzi, hogy egy szóköz-e. Ha igen, akkor a c értékét a RSA_ ← ALPHABET_SIZE-ra állítja, ami különleges értékkel jelöli a szóközt. Ha nem szóköz, akkor kiszámolja a karakter titkosított értékét az RSA algoritmus segítségével. Ehhez a modularExponentiation() metódust használja a karaktert átkonvertálva az 'a' értéktől kezdve számmá, majd a publicKey kitevővel emeli hatványra a RSA_ALPHABET_SIZE modulon belül.
- 5. A c értékét átkonvertálja sztringgé (cStr), melyben minden számjegyet külön karakterként tárol.
- 6. Hozzáadja a cStr-t és egy szóközt a titkos stringhez, így az aktuális karakter titkosított értékét hozzáadja a titkos üzenethez.
- 7. Amikor végzett az összes karakterrel, visszaadja a titkos stringet, ami tartalmazza a titkosított üzenetet.

Megvalósítja a következőket: Encryption.

4.3.3.3. get_private_key()

```
std::string RSA::get_private_key ( ) const [override], [virtual]
get_private_key függvény
```

Visszatérési érték

A titkos kulcs A függvény visszaadja a titkos kulcsot

Megvalósítja a következőket: Encryption.

4.3.3.4. get_public_key()

```
std::string RSA::get_public_key ( ) const [override], [virtual]
get_public_key függvény
```

Visszatérési érték

A nyílt kulcs A függvény visszaadja a nyílt kulcsot

Megvalósítja a következőket: Encryption.

Ez a dokumentáció az osztályról a következő fájlok alapján készült:

- RSA.hpp
- RSA.cpp

Fájlok dokumentációja

5.1. Caesar.cpp fájlreferencia

```
#include <iostream>
#include <string>
#include "Caesar.hpp"
```

5.1.1. Részletes leírás

```
Szerző
```

```
Ujhelyi Bence ( ujhelyibence@gmail.com)
```

Verzió

0.1

Dátum

2023-05-15

5.2. Caesar.hpp fájlreferencia

```
#include <iostream>
#include <string>
#include "Encryption.hpp"
```

Osztályok

· class Caesar

Caesar osztály.

5.2.1. Részletes leírás

```
Szerző
```

```
Ujhelyi Bence ( ujhelyibence@gmail.com)
```

Verzió

0.1

Dátum

2023-05-15

5.3. Caesar.hpp

Ugrás a fájl dokumentációjához.

```
00009 #ifndef CAESAR_HPP
00010 #define CAESAR_HPP
00011
00012 #include <iostream>
00013 #include <string>
00014 #include "Encryption.hpp"
00017 class Caesar : public Encryption {
00018 private:
00019
         // shift_char függvény
00020
00021
        static char shift_char(char c, int shift) {
         if (!isalpha(c)) return c;
char base = isupper(c) ? 'A' : 'a';
return (c - base + shift + 26) % 26 + base;
00022
00023
00024
00025
        // shift változó int shift_;
00026
00027
00028 public:
00029
00030
          // Konstruktor
00031
         Caesar(int shift) : shift_(shift) {}
00032
        // encrypt függvény deklarációja
std::string encrypt(const std::string& text) const override;
00033
00034
00036
          // decrypt függvény deklarációja
00037
         std::string decrypt(const std::string& secrettext) const override;
00038
        // get_public_key függvény deklarációja
std::string get_public_key() const override;
00039
00040
00041
00042
          // get_private_key függvény deklarációja
00043
         std::string get_private_key() const override;
00044
00045 };
00046
00047 #endif
```

5.4. Encryption.hpp fájlreferencia

```
#include <iostream>
#include <string>
#include <stdexcept>
```

5.5 Encryption.hpp 17

Osztályok

class Encryption
 Encryption osztály.

5.4.1. Részletes leírás

```
Szerző

Ujhelyi Bence ( ujhelyibence@gmail.com)

Verzió

0.1

Dátum
```

5.5. Encryption.hpp

2023-05-15

Ugrás a fájl dokumentációjához.

```
00001
00009 #ifndef ENCRYPTION_HPP
00010 #define ENCRYPTION_HPP
00012 #include <iostream>
00013 #include <string>
00014 #include <stdexcept>
00015
00017
00020 class Encryption {
00021 public:
00022
00024
00028
       virtual ~Encryption() = default;
00029
00034
       virtual std::string encrypt(const std::string& plaintext) const = 0;
00035
00037
00040
       virtual std::string decrypt(const std::string& ciphertext) const = 0;
00041
00043
00046
       virtual std::string get_public_key() const = 0;
00047
00049
00052
       virtual std::string get_private_key() const = 0;
00053 };
00054
00055 #endif
```

5.6. main.cpp fájlreferencia

```
#include <iostream>
#include <string>
#include "Encryption.hpp"
#include "RSA.hpp"
#include "Caesar.hpp"
```

Függvények

```
• int main ()

Main függvény.
```

5.6.1. Részletes leírás

```
Szerző

Ujhelyi Bence ( ujhelyibence@gmail.com)

Dátum

2023-05-15
```

5.6.2. Függvények dokumentációja

```
5.6.2.1. main()
int main ( )
Main függvény.
Teszteli a komponenseket
```

5.7. RSA.cpp fájlreferencia

```
#include "RSA.hpp"
#include <iostream>
#include <cstring>
#include <string>
#include <random>
#include <sstream>
#include <cstdlib>
#include <ctime>
```

Változók

```
    const unsigned long long RSA_ALPHABET_SIZE = 26
    RSA_ALPHABET_SIZE.
```

5.7.1. Részletes leírás

Szerző

Ujhelyi Bence

Dátum

2023-05-28

5.7.2. Változók dokumentációja

5.7.2.1. RSA_ALPHABET_SIZE

```
const unsigned long long RSA_ALPHABET_SIZE = 26
```

 ${\sf RSA_ALPHABET_SIZE}.$

Az rsa-hoz használt abc nagysága.

5.8. RSA.hpp fájlreferencia

```
#include "Encryption.hpp"
```

Osztályok

• class RSA RSA osztály.

5.8.1. Részletes leírás

```
Szerző
```

Ujhelyi Bence (ujhelyibence@gmail.com)

Verzió

0.1

Dátum

2023-05-15

5.9. RSA.hpp

Ugrás a fájl dokumentációjához.

```
00001
00009 #ifndef RSA HPP
00010 #define RSA_HPP
00012 #include "Encryption.hpp"
00013
00015 class RSA : public Encryption {
00016 private:
00017
          unsigned long long publicKey;
00020
00022
          unsigned long long privateKey;
00023
00024
          // generateRandomPrime függvény
00025
          unsigned long long generateRandomPrime(unsigned long long min, unsigned long long max) const;
00026
00027
00028
          bool isPrime (unsigned long long num) const;
00029
00030
          // modularExponentiation függvény
     unsigned long long modularExponentiation(unsigned long long base, unsigned long long exponent, unsigned long long modulus) const;
00031
00032
00033
          // modularInverse függvény
00034
          unsigned long long modularInverse (unsigned long long a, unsigned long long m) const;
00035
00036
          // gcd függvény
00037
          unsigned long long gcd(unsigned long long a, unsigned long long b) const;
00039
          // findSpace függvény
00040
          size_t findSpace(const std::string& str) const;
00041
00042
          // getRandomNumber függvény
00043
          unsigned long long getRandomNumber(unsigned long long min, unsigned long long max) const;
00044
00045
          // toLowerCase függvény
00046
          std::string toLowerCase(const std::string& str) const;
00047
00048 public:
00049
           // Default konstruktor
00051
          RSA();
00052
00053
          // encrypt függvény
          std::string encrypt(const std::string& eredeti) const override;
00054
00055
00056
          // decrypt függvény
          std::string decrypt (const std::string& titkos) const override;
00058
00059
          // get_public_key függvény
          std::string get_public_key() const override;
00060
00061
00062
          // get_private_key függvény
          std::string get_private_key() const override;
00063
00064 };
00065
00066 #endif
```

Tárgymutató

```
\sim\!\!\text{Encryption}
     Encryption, 10
Caesar, 7
    decrypt, 8
     encrypt, 8
     get_private_key, 8
     get_public_key, 8
Caesar.cpp, 15
Caesar.hpp, 15
decrypt
     Caesar, 8
     Encryption, 10
     RSA, 12
encrypt
     Caesar, 8
     Encryption, 10
     RSA, 13
Encryption, 9
     \simEncryption, 10
     decrypt, 10
     encrypt, 10
     get_private_key, 10
     get_public_key, 10
Encryption.hpp, 16
get_private_key
     Caesar, 8
     Encryption, 10
     RSA, 13
get_public_key
     Caesar, 8
     Encryption, 10
     RSA, 14
main
     main.cpp, 18
main.cpp, 17
     main, 18
RSA, 11
     decrypt, 12
     encrypt, 13
     get_private_key, 13
     get_public_key, 14
     RSA, 12
RSA.cpp, 18
```

RSA.hpp, 19 RSA_ALPHABET_SIZE RSA.cpp, 19

RSA_ALPHABET_SIZE, 19