Assessment Schedule – 2019

Scholarship Calculus (93202)

Evidence Statement

Q	Solution	
ONE (a)	x is real where $x \neq \pm 1$	
(b)	None! Since $(x-2)^2 \ge 0$ for all real $x, -(x-2)^2 \le 0$ and $\ln \alpha$ is defined only for $\alpha > 0$.	
(c)(i)	$6 \times \frac{5!}{2!(5-2)!} \times 1 = 60$ or $6 \times {5 \choose 4} = 60$	
(ii)	$\frac{6!}{2!(6-2)!} \times \frac{4!}{2!(4-2)!} \times 1 = 90 \text{or } \binom{6}{2} \times \binom{4}{2} = 90$	
(d)	CASE 1: $x \ge 4, x + 1$ and $x - 4$ are both positive, so $(x+1)-(x-4)\ge 1$ $5\ge 1$ This is true for all x and $x \ge 4$ is a possible solution. CASE 2: $-1 \le x \le 4$, and so $x + 1$ is positive, $x - 4$ is negative, but $(x+1)+(x-4)\ge 1$ $2x-3\ge 1$ $x\ge 2$ Which extends the initial solution. CASE 3: $x < 1$; $x + 1$, $x - 4$ both negative $-(x+1)+(x-4)\ge 1$ $-5\ge 1$ This is false for all real values of x . So the solution to $ x+1 - x-4 \ge 1$ is $x \ge 2$	
	Or: $y = x+1 $ $y = x-4 $ $x + 1 - (4-x) \ge 1$ $x \ge 2$	

(e)
$$\sin^4 A + \cos^4 A = \frac{2}{3}$$
$$\sin^4 A + 2\sin^2 A \cos^2 A + \cos^4 A = \frac{2}{3} + 2\sin^2 A \cos^2 A$$
$$\left(\sin^2 A + \cos^2 A\right)^2 = \frac{2}{3} + 2\sin^2 A \cos^2 A$$
$$1 - \frac{2}{3} = 2\sin^2 A \cos^2 A$$
$$\frac{1}{3} = \frac{1}{2} \left(4\sin^2 A \cos^2 A\right)$$
$$\frac{2}{3} = \left(2\sin A \cos A\right)^2$$
$$\pm \sqrt{\frac{2}{3}} = \sin 2A$$

Since $90^{\circ} < A < 180^{\circ}$, then $180^{\circ} < 2A < 360^{\circ}$.

Therefore, $\sin 2A < 0$. We consider only the negative solution, i.e.

$$\sin 2A = -\sqrt{\frac{2}{3}} = -\frac{\sqrt{6}}{3} = -\frac{2}{\sqrt{6}}$$

Q	Solution	
TWO (a)	Multiplying through by $\sqrt{x} \times \sqrt{x-2}$ gives $x-2-x = \frac{k}{4}\sqrt{x} \times \sqrt{x-2}$	
	Squaring both sides: $4 = \frac{k^2}{16}x(x-2)$ or $k^2x^2 - 2k^2x - 64 = 0$	
	Using discriminant $\Delta = 4k^4 + 256k^2 \ge 0$ for all real k ,	
	there are no real values of k for which the equation will have imaginary roots.	
(b)	$\log(x^2 + y^2) = \log 130$, so $x^2 + y^2 = 130$ A	
	$\log \frac{x+y}{x-y} = \log 8$, so $7x - 9y = 0$ and $x = \frac{9y}{7}$ B	
	Sub B into A: $\frac{81y^2}{49} + y^2 = 130$ and $y = \pm 7$, and $x = \pm 9$.	
	However, for the logarithms to be valid, we require	
	$\frac{x+y}{x-y} > 0$, therefore $x = 9$, $y = 7$	
(c)	Using symmetry, the required area equals the area of 1 quadrant multiplied by 4.	
	In the first quadrant, $y = x\sqrt{1-x^2}$	
	$Area = 4 \int_{0}^{1} x \sqrt{1 - x^2} dx$	
	$= -2\int_{0}^{1} (-2x)\sqrt{1-x^{2}} dx$	
	Area = $4\int_{0}^{1} x\sqrt{1-x^{2}} dx$ = $-2\int_{0}^{1} (-2x)\sqrt{1-x^{2}} dx$ = $-2\left[\left(\frac{2}{3}\right)\left(1-x^{2}\right)^{\frac{3}{2}}\right]_{0}^{1}$	
	$=\frac{-4}{3}\left(\left(0\right)^{\frac{3}{2}}-\left(1\right)^{\frac{3}{2}}\right)$	
	$=\frac{-4}{3}\times\left(-1\right)=\frac{4}{3}$	
(d)	Consider the following areas:	
	Let area of $ABC = X_1$, area of $BCP = X_2$, area of $CAP = X_3$, and area of $ABP = X_4$	
	Then $\frac{X_2}{X_1} = \frac{\frac{1}{2} \times BC \times \text{altitude from } P \text{ to } BC}{\frac{1}{2} \times BC \times \text{altitude from } A \text{ to } BC}$	
	$\frac{X_1}{2} \times BC \times \text{altitude from } A \text{ to } BC$	
	$= \frac{\text{altitude from } P \text{ to } BC}{\text{altitude from } A \text{ to } BC}$	
	$= \frac{A'P}{A'A} \text{ (similar triangles)}$	
	A A	
	Similarly, $\frac{X_3}{X_1} = \frac{PB'}{BB'}$ and $\frac{X_4}{X_1} = \frac{PC'}{CC'}$	
	Adding gives: $\frac{A'P}{AA'} + \frac{PB'}{BB'} + \frac{PC'}{CC'} = \frac{X_2}{X_1} + \frac{X_3}{X_1} + \frac{X_4}{X_1} = \frac{X_2 + X_3 + X_4}{X_1} = 1$	

Q	Solution
THREE (a)	$f'(4) = \lim_{h \to 0} \left[\frac{\left((4+h)^2 - 4(4+h) + 3 \right)^2 - 9}{h} \right]$ $= \lim_{h \to 0} \left[\frac{\left(h^2 + 4h + 3 \right)^2 - 9}{h} \right]$ $= \lim_{h \to 0} \left[\frac{h^4 + 8h^3 + 22h^2 + 24h + 9 - 9}{h} \right] \text{ Or: } \lim_{h \to 0} \left[\frac{\left(h^2 + 4h \right) \left(h^2 + 4h + 6 \right)}{h} \right]$ $= \lim_{h \to 0} \left[h^3 + 8h^2 + 22h + 24 \right] \text{ Or: } \lim_{h \to 0} \left(h + 4 \right) \left(h^2 + 4h + 6 \right)$ $= 24$
(b)	At time t , $\left[x(t)\right]^2 + \left[y(t)\right]^2 = 25$. Differentiating gives $2x(t) \times \frac{dx}{dt} + 2y(t) \times \frac{dy}{dt} = 0$ If at $t = t_0$, $x(t_0) = 3$, $y(t_0) = 4$, and $y'(t_0) = -2$, then $2 \times 3 \times x'(t_0) + 2 \times 4 \times (-2) = 0 \text{ and } x'(t_0) = \frac{8}{3}$ Or: $x^2 + y^2 = 25$ $2x + 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx}\Big _{(3,4)} = -\frac{3}{4}$ $\frac{dx}{dt} = \frac{dx}{dy} \cdot \frac{dy}{dt}$ $= -\frac{4}{3} \times -2 = \frac{8}{3}$

(c) Since the diagonal of the lake is 2 km, and half-way between the huts, A is 1 km from the lake, and:

$$AC = DB$$
 and $CD \parallel AB$

$$AC^2 = (1+x)^2 + x^2$$

$$AC = \sqrt{(1+x)^2 + x^2}$$

And CD =
$$2 - 2x$$

Let the time taken =
$$T = \frac{2 \times AC}{3} + \frac{CD}{2.5}$$

$$T = \frac{2\sqrt{(1+x)^2 + x^2}}{3} + \frac{2-2x}{2.5}$$

$$\frac{dT}{dx} = \frac{2 \times 0.5(2+4x)}{3\sqrt{(1+x)^2 + x^2}} - \frac{4}{5}$$

When
$$\frac{dT}{dx} = 0$$

When
$$\frac{dz}{dx} = 0$$

 $6\sqrt{(1+x)^2 + x^2} = 2.5(2+4x)$

$$36(1+2x+2x^2) = 25+100x+100x^2$$

$$28x^2 + 28x - 11 = 0$$

$$x = -\frac{1}{2} + \frac{3}{\sqrt{14}} = 0.3018$$
 km or $x = -1.3018$. Ignore the negative result.

x = 0.3018 km is the x coordinate for a stationary point.

To show a local minimum: check the second derivative or use the first derivative and interval test.

$$T'' = \frac{2(2x^2 + 2x + 1) - (2x + 1)^2}{3(2x^2 + 2x + 1)\sqrt{2x^2 + 2x + 1}}$$

$$T''(x=0.3018)=0.2794 > 0$$

Or

x	0.2	0.3018	0.4
$\frac{dT}{dx} = \frac{2 \times 0.5(2 + 4x)}{3\sqrt{(1+x)^2 + x^2}} - \frac{4}{5}$	-0.0328	0	0.0242
Gradient	< 0	= 0	> 0

Check the end points to show it's the actual minimum over the domain:

$$x = 0$$
: $T = 1.467$

$$x = 1$$
: $T = 1.491$

$$x = 0.3018$$
: $T = 1.449$

Q	Solution	
FOUR (a)	$\left[p(m)\right]^{2} = a^{2} - \frac{2a(a-b)}{t_{p}}t + \frac{\left(a-b\right)^{2}}{t_{p}^{2}}t^{2}$	
	$p(f) = 1 - p(m) = 1 - \left(a - \frac{a - b}{t_p}t\right) = \left(1 - a\right) + \frac{a - b}{t_p}t$	
	$\left[p(f)\right]^{2} = 1 - 2a + a^{2} + \frac{2(a-b)}{t_{p}}t - \frac{2a(a-b)}{t_{p}}t + \frac{(a-b)^{2}}{t_{p}^{2}}t^{2}$	
	$T = \frac{1}{t_p} \int_0^{t_p} \left\{ 1 - 2a + 2a^2 + \frac{2(a-b)}{t_p} t - \frac{4a(a-b)}{t_p} t + \frac{2(a-b)^2}{t_p^2} t^2 \right\} dt$	
	$= \frac{1}{t_p} \left[t - 2at + 2a^2t + \frac{2(a-b)}{2t_p} t^2 - \frac{4a(a-b)}{2t_p} t^2 + \frac{2(a-b)^2}{3t_p^2} t^3 \right]_0^{t_p}$	
	$= 1 - 2a + 2a^{2} + (a - b) - 2a(a - b) + \frac{2}{3}(a - b)^{2}$	
	$=1-a+b(2a-1)+\frac{2}{3}(a-b)^2$	
	Or: Use reversed chain rule or substitution	
	$T = \frac{1}{t_p} \int_0^{t_p} \left[a - \frac{\left(a - b \right)}{t_p} t \right]^2 + \left[1 - a + \frac{\left(a - b \right)}{t_p} t \right]^2 dt$	
	$= \frac{1}{t_p} \times \frac{1}{3} \left\{ \left[a - \frac{\left(a - b \right)}{t_p} t \right]^3 \times \frac{-t_p}{a - b} + \left[1 - a + \frac{\left(a - b \right)}{t_p} t \right]^3 \times \frac{t_p}{a - b} \right\}_0^{t_p}$	
	$= \frac{1}{3(a-b)} \left[\left(-b^3 + (1-b)^3 \right) - \left(-a^3 + (1-a)^3 \right) \right]$	
	$= 1 - a + b(2a - 1) + \frac{2}{3}(a - b)^{2}$	

(b)
$$y = ux$$

$$\frac{dy}{dx} = \frac{du}{dx}x + u$$

$$4x^{2} \left(\frac{du}{dx}x + u\right) = (ux)^{2} - 2x(ux)$$

$$4x^{3} \frac{du}{dx} + 4x^{2}u = u^{2}x^{2} - 2ux^{2}$$

$$4x \frac{du}{dx} = u^{2} - 6u$$

$$\int \frac{4du}{u(u-6)} = \int \frac{dx}{x}$$
Now
$$\frac{4}{u(u-6)} = \frac{A}{u} + \frac{B}{u-6}$$

$$4 = A(u-6) + Bu$$
Hence
$$-6A = 4 \Rightarrow A = -\frac{2}{3} \text{ and } Au + Bu = 0 \Rightarrow B = \frac{2}{3}$$
Substituting into the separated DE

$$\int \frac{-2}{3u} du + \int \frac{2}{3(u-6)} du = \int \frac{dx}{x}$$

$$\frac{-2}{3}\ln|u| + \frac{2}{3}\ln|u - 6| = \ln|x| + c$$

But
$$u = \frac{y}{x}$$
.
A general solution is:

$$\frac{-2}{3}\ln\left|\frac{y}{x}\right| + \frac{2}{3}\ln\left|\frac{y}{x}\right| - 6 = \ln\left|x\right| + c \text{ (or equivalent)}$$

$$\ln\left|\frac{\frac{y}{x} - 6}{\frac{y}{x}}\right|^{\frac{2}{3}} = \ln\left|kx\right|$$

$$\left| \frac{\frac{y}{x} - 6}{\frac{y}{x}} \right|^{\frac{2}{3}} = kx$$

$$\frac{\frac{y}{x} - 6}{\frac{y}{x}} = Ax^{\frac{3}{2}}$$

$$y = \frac{6x}{1 - Ax^{\frac{3}{2}}}$$

Given
$$f(1) = -6$$

$$-6 = \frac{6}{1-A}$$
 so $A = 2$, from which $f(4) = -1.6$

Q	Solution
FIVE (a) $\frac{w-1}{w+1} = \frac{\cos\theta + i\sin\theta - 1}{\cos\theta + i\sin\theta + 1}$ $= \frac{\cos\theta - 1 + i\sin\theta}{\cos\theta + 1 + i\sin\theta}$ $= \frac{-2\sin^2\frac{\theta}{2} + i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2} + i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$ $= \frac{2\sin\frac{\theta}{2}}{2\cos\frac{\theta}{2}} \left(\frac{-\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}}{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}} \right)$	
	$ \begin{aligned} &2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right) \\ &= \tan\frac{\theta}{2}\left(\frac{\left(-\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}\right)\left(\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}\right)}{\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)\left(\cos\frac{\theta}{2} - i\sin\frac{\theta}{2}\right)}\right) \\ &= \tan\frac{\theta}{2} \times i\left(\frac{\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}}{\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}}\right) \\ &= i\tan\frac{\theta}{2} \end{aligned} $
	Or: $\angle BOC = 90^{\circ}$ $\angle CBO = \frac{1}{2}\theta$
(b)(i)	$\tan \phi = \frac{b \sin \theta}{a \cos \theta} = \frac{b}{a} \tan \theta$

(ii) Let
$$f(\theta) = \tan(\theta - \phi)$$
.
Since $f(\theta)$ increases as $\theta - \phi$ increases, we shall now maximise $f(\theta)$.

$$f(\theta) = \frac{\tan\theta - \tan\phi}{1 + \tan\theta \tan\phi} = \frac{\tan\theta - \frac{b}{a}\tan\theta}{1 + \tan\theta \frac{b}{a}\tan\theta} = \frac{\tan\theta(a - b)}{a + b\tan^2\theta}$$

$$f'(\theta) = \frac{(a - b)\sec^2\theta(a + b\tan^2\theta) - (a - b)\tan\theta 2b\tan\theta \sec^2\theta}{(a + b\tan^2\theta)^2}$$

$$f'(0) = 0 \text{ when the numerator } = 0$$

$$(a - b)\sec^2\theta(a + b\tan^2\theta) - (a - b)\tan\theta 2b\tan\theta \sec^2\theta = 0$$

$$(a - b)\sec^2\theta[a + b\tan^2\theta - 2b\tan^2\theta] = 0$$

$$\sec^2\theta \neq 0 \text{ for any } \theta \text{ and } a \neq b; \text{ hence we require a value(s) for } \theta \text{ where } a - b\tan^2\theta = 0$$

$$\tan\theta = \pm\sqrt{\frac{a}{b}}$$
Since $\theta - \phi = 0$ at the x and y intercepts, $\theta = \tan^{-1}\left(\pm\sqrt{\frac{a}{b}}\right)$ is where $|\theta - \phi|$ is max $|\phi| = \tan^{-1}\pm\sqrt{\frac{b}{a}}$

Sufficiency Statement

Score 1–4, no award	Score 5–6, Scholarship	Score 7–8, Oustanding Scholarship
Shows understanding of relevant mathematical concepts, and some progress towards solution to problems.	Application of high-level mathematical knowledge and skills, leading to partial solutions to complex problems.	Application of high-level mathematical knowledge and skills, perception, and insight / convincing communication shown in finding correct solutions to complex problems.

Cut Scores

Scholarship	Outstanding Scholarship
21 – 33	34 – 40