Data science with F#: Analysing social networks

Evelina Gabasova

Twitter @evelgab Blog evelinag.com

 $= \frac{\Gamma\left(K^{(d)}\alpha_d\right)}{\left(\Gamma(\alpha_d)\right)^{K^{(d)}}} \times \frac{\Gamma(\beta)}{\prod_{i_1=1}^{K^{(1)}} \cdots \prod_{i_D=1}^{K^{(D)}} \Gamma\left(\beta \times \pi_{i_1}^{(1)} \times \cdots \times \pi_{i_D}^{(D)}\right)} \times$

 $p\left(\boldsymbol{\pi}^{(d)}\middle|\alpha_d,\beta,\boldsymbol{\pi}\right)$

 $\propto p\left(\boldsymbol{\pi}^{(d)}\middle|\alpha_d\right) \ p\left(\boldsymbol{\pi}\middle|\boldsymbol{\pi}^{(1)},\ldots,\boldsymbol{\pi}^{(D)},\beta\right)$

 $= \left\{ \frac{\Gamma\left(K^{(d)}\alpha_d\right)}{\left(\Gamma(\alpha_d)\right)^{K^{(d)}}} \prod_{i=1}^{K^{(d)}} \left(\pi_k^{(d)}\right)^{\alpha_d - 1} \right\} \times$

Why network science

- gene interaction networks
- disease spreading
- cascading failures in power grids
- brain connections
- social networks

Social network analysis

Karate club network

Social network analysis

Twitter networks

Ego network

Downloading data from Twitter

- 1) List of nodes
- Connections between nodes

Twitter API allows only 15 requests every 15 minutes to list connections.

DOWNLOADING DATA FROM TWITTER

Downloading data from Twitter

Twitter is not consistent and networks are dynamic

Adjacency matrix

ADJACENCY MATRIX

Degrees

Degrees

DEGREES

Degrees

Degree distribution

Scale-free networks

Power law

$$P(d) \sim d^{-\gamma}$$

- Networks growing over time with preferential
 - attachment
- Hubs
- Robustness

Your friends have more friends than you do.

TOP RANKING USERS

Centrality with PageRank

Your followers are not created equal.

Random surfer model

Centrality with PageRank

+ random jumps

CENTRALITY WITH PAGERANK

PageRank changes

February

- 1. migueldeicaza (0.033130)
- 2. dsyme (0.032783)
- 3. tomaspetricek (0.027756)
- 4. LincolnAtkinson (0.021993)
- 5. VisualFSharp (0.020233)
- 6. c4fsharp (0.019720)
- 7. rickasaurus (0.019189)
- 8. ptrelford (0.018099)
- 9. 1tgr (0.016525)
- 10. sforkmann (0.014970)

September

- 1. dsyme (0.028640)
- 2. migueldeicaza (0.024808)
- 3. VisualFSharp (0.024479)
- 4. tomaspetricek (0.021066)
- 5. c4fsharp (0.019612)
- 6. rickasaurus (0.014272)
- 7. sforkmann (0.013471)
- 8. 1tgr (0.012768)
- 9. ptrelford (0.012669)
- 10. FSPowerTools (0.012113)

VISUALISATION WITH D3.JS

So who's my most central follower?

- 1) dsyme
- 2) tomaspetricek
- 3) rickasaurus
- 4) ptrelford
- 5) sforkmann
- 6) brandewinder
- 7) sergey_tihon
- 8) rachelreese
- 9) ScottWlaschin
- 10) 7fsharp9

So who's my most central follower?

- 1) dsyme
- 2) tomaspetricek
- 3) rickasaurus
- 4) ptrelford
- 5) sforkmann
- 6) brandewinder
- 7) sergey_tihon
- 8) rachelreese
- 9) ScottWlaschin
- 10) 7fsharp9

Thank you!