

Vorlesung Fertigungstechnik

Prof. Dr.-Ing. Klaus Dröder, 11. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Kapitel 5:

Fügen

Prof. Dr.-Ing. Klaus Dröder, 11. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Einheiten der Vorlesung Fertigungstechnik Ergänzung Kapitel 3: Umformen

Fertigungshauptgruppe nach DIN 8582

Umformen eines festen Körpers, wobei der plastische Zustand im Wesentlichen durch eine ein- oder mehrachsige Zugbeanspruchung herbeigeführt wird.

Zugumformen

Streckziehen

Streckziehen ist nach DIN 8585 ein Zugumformverfahren, bei dem der Rohling die sog. Platine an zwei gegenüberliegenden Seiten fest eingeklemmt und durch einen Ziehstempel zum fertigen Bauteil ausgeformt wird. Es entstehen nur Zugspannungen.

Zugumformen

Einfaches und tangentiales Streckziehen

Einfaches Streckziehen

Quelle: Handbuch für Technisches Produktdesign

Fertigungshauptgruppe nach DIN 8582

Umformen eines festen Körpers, wobei der plastische Zustand im Wesentlichen durch eine Biegebeanspruchung herbeigeführt wird.

Biegeumformen

Gesenkbiegen

Gesenkbiegen gehört nach DIN 8586 zu den Verfahren des Biegeumformens und lässt sich durch den jeweiligen Maschinenaufbau in die Untergruppe der Biegeverfahren zuordnen, die mit einer gradlinigen Werkzeugbewegung verfahren.

Biegeumformen

Spannungs- und Dehnungsverteilung beim Biegen

Idealplastischer Werkstoff

- Spanungszustand bei Belastung
- Spanungszustand nach Rückfederung

 ϵ_{el} - elastische Dehnung

 ϵ_{pl} - plastische Dehnung

Biegeumformen

Problem Rückfederung

- Eigenspannungen im Bauteil führen zum Rückfedern
- Eigenspannungszustand nach der Verformung ist werkstoffabhängig
- Fließverhalten bei Belastungsumkehr abhängig von der Verformungsgeschichte

Links: Rückfederungseffekt (grün) und Referenzgeometrie (silbern) für ein Strukturteil. Rechts: Die Rückfederung in z-Richtung wird durch unterschiedliche Farben dargestellt.

Fertigungshauptgruppe nach DIN 8582

Umformen eines festen Körpers, wobei der plastische Zustand im Wesentlichen durch eine Biegebeanspruchung herbeigeführt wird.

Schubumformung nach DIN 8587

Kurze Wiederholung – Umformen

Welchem Spannungszustand ist nach DIN 8583 das Gesenkschmieden zugeordnet? (Forumsfrage)

- A) Zugumformen
- B) Druckumformen richtig
- C) Zug-Druckumformen
- D) Schubumformen

Umfrage starten

ID = anke.mueller@tubraunschweig.de Umfrage noch nicht gestartet

Kurze Wiederholung – Umformen

Was ist ein Tailored Blank?

- A) Ein wärmebehandeltes und poliertes Blechhalbzeug
- B) Eine Blechplatine mit unterschiedlichen Blechdicken und/oder Werkstoffgüten
- C) Eine taillierte Bank

Kurze Wiederholung – Umformen

Welches ist <u>kein</u> Vorteil des Druckumformverfahrens Verzahnungswalzen?

- A) Kurze Prozesszeiten
- B) Umformung erfolgt bei geringen
 Zugspannungen
- C) Spiegelblanke Oberflächen
- D) Kaltverfestigung führt zu Festigkeitssteigerung

Einheiten der Vorlesung Fertigungstechnik Einteilung der Fertigungsverfahren nach DIN 8580

Einteilung der Fertigungsverfahren nach DIN 8580 Zusatzmodule und Zusammenhalt Zusammenhalt Zusammenhalt Zusammenhalt Schwerpunkte schaffen beibehalten vermindern vermehren Trennen 4.1 Grundlagen der Zerspannung Mess-4.2 Spanen mit geom. best. Schneide Stoffeigentechnik / Generative Hybrider Urformen **Umformen** Fügen **Beschichten** schaften Prozess-4.3 Spanen mit geom. unbest. Schneide Fertigung Leichtbau überwachändern 4.4. Abtragen ung Bildquellen: Pexels

Einheiten der Vorlesung Fertigungstechnik Fügen

Einteilung der Fertigungsverfahren nach DIN 8580 Zusammenhalt Zusammenhalt Zusammenhalt Zusatzmodule und Zusammenhalt Schwerpunkte schaffen beibehalten vermindern vermehren Fügen Bildquellen: Pexels

Ziel der heutigen Vorlesung

Stoff-, Form- und Kraftschluss

Fertigungsverfahren nach DIN 8593

Fügen ist das auf Dauer angelegte Verbinden oder sonstige Zusammenbringen von zwei oder mehr Werkstücken geometrisch bestimmter Form oder von eben solchen Werkstücken mit formlosem Stoff. Dabei wird jeweils der Zusammenhalt örtlich geschaffen und im Ganzen vermehrt.

Zusammensetzen

Zusammensetzen ist Fügen, bei dem der Zusammenhalt der Fügeteile durch Schwerkraft (Reibung), Formschluss, Federkraft oder eine Kombination davon bewirkt wird.

Zusammensetzen

Verfahren	Anwendungsbeispiele
Auflegen, Aufsetzen, Schichten	Zylinderkopfdichtung, Lamellen von Transformatorkernen, Auflegen von Dachziegeln, Aufsetzen einer Laufkatze bei einer Krananlage
Einlegen	Passfeder in Nut, Kugeln in Kugellager, Drahtwicklung in Nuten von Elektromotoren, Isolierbahnen in Deckenkonstruktionen
Ineinandersc hieben	Teleskoprohre, Schwalbenschwanzverbindung, Aufschieben eines Steckkontaktes, Einschieben eines Verbindungsbolzens
Einhängen	Zugfedern
Einrenken	Glühlampe in Swan-Fassung, Bajonettverschluss bei Druckluftleitungen oder Verbindung von Objektiv mit Fotoapparat, Teleskop oder Kamera
Federnd einspreizend	Federringe in Nuten von Bohrungen, Schnappverbindungen

Füllen ist eine Sammelbenennung für das Einbringen von gas-oder dampfförmigen, flüssigen oder pastenförmigen Stoffen, ferner von pulverigen oder körnigen Stoffen oder kleinen Körpern in hohle oder poröse Körper.

Verfahren	Anwendungsbeispiele
Einfüllen	Neongas in Leuchtstoffröhren, Bremsflüssigkeit in Bremszylinder, Metallstücke in Filtergehäuse
Tränken	Isolierlack in elektrischen Wicklungen, Öl in Sintereisen, Fasereinlage eines Seils mit Schmiermittel
Imprägnieren	Zeltbahnen, Kleidungsstücke

Quelle: DIN8593 T2.Brunst

Anpressen, Einpressen

Anpressen, Einpressen ist eine Sammelbenennung für die Verfahren, bei denen beim Fügen die Fügeteile sowie etwaige Hilfsfügeteile im wesentlichen nur elastisch verformt werden und ungewolltes Lösen durch Kraftschluss verhindert wird.

Anpressen, Einpressen

Verfahren	Anwendungsbeispiele
Schrauben	An-, Auf-, Ein-, Ver- und Festschrauben; Anpressen mittels selbsthemmenden Gewindes an den Werkstücken, Schrauben oder Muttern
Klemmen	Anpressen mit Hilfsteilen, indem ein Außenteil elastisch zusammengebogen oder ein Innenteil elastisch aufgebogen wird (Schlauchklemmen, Lüsterklemmen, Drahtseilklemmen)
Klammern	Fügen mehrerer Teile durch Andrücken mit einer federnden Klammer oder Schraubklammer
Press- passungen	Einpressen, Verkeilen, Einschlagen, Einschießen, Schrumpfen, Dehnen und Einwalzen

Video: Blechbearbeitung Nieten Einpressen Prozess/ Riveting

Fügen durch Urformen

Fügen durch Urformen ist eine Sammelbenennung für die Verfahren, bei denen entweder zu einem Werkstück ein Ergänzungsstück aus formlosem Stoff gebildet wird oder bei denen mehrere Fügeteile durch dazwischengebrachten formlosen Stoff verbunden oder bei denen in den formlosen Stoff Metallteile o. Ä. eingelegt werden.

Fügen durch Urformen

Verfahren	Anwendungsbeispiele
Ausgießen	Lagerschalen in Gehäusen, Führungs-und Tragflächen auf Schlitten
Einbetten	Umspritzen einer Buchse, Eingießen von Führungsbahnen, Einvulkanisieren von Drahtlitzen
Vergießen	Vergießen von Seilenden in Seilhülse, Deckel in Hülse
Ummanteln	Kabel mit Isolierung, Rohr mit Dämmstoff, Draht mit Kunststoff, Schweißelektroden
Kitten	Befestigen und Abdichten einer Glasplatte in einem Rahmen

An-/
Umspritzen
eines
Kleingetriebes
(OutsertTechnik)

Quelle: www.plastverarbeiter.de

Ummanteln

Fügen durch Umformen

Fügen durch Umformen ist eine Sammelbenennung für die Verfahren, bei denen entweder die Fügeteile oder Hilfsfügeteile örtlich umgeformt werden. Die Verbindung ist im Allgemeinen durch Formschluss gegen ungewolltes Lösen gesichert.

Fügen durch Umformen

Verfahren	Anwendungsbeispiele
Bördeln	Brems- und Hydraulikleitungen, Rohrenden in der Kältetechnik, Kotflügel
Falzen	Verbinden der Innen-und Außenteile von Autotüren, Falzdeckeldosen, Papier- und Buchdruck
Kerben	Feinwerktechnik, Verdrahtung
Durchsetzfügen	Karosseriebau, Leichtmetallbau, Klimaanlagen
Stanznieten	Karosseriebau, Gas- und flüssigkeitsdichte Bauteile (Oberfläche wird nicht durchbrochen)

Durchsetzfügen (Clinchen)

- 1. Stempel
- Matrize
- 3. Niederhalter
- 4. Auswerfer)

Durchsetzfügen (Clinchen) ist das Fügen von Werkstücken aus Blech, Rohroder Profilteilen durch gemeinsames Durchsetzen in Verbindung mit Einschneiden und nachfolgendem Stauchen.

Quelle: DSV BV Schwaben

Stanznieten

- Niederhalter
- 2. Stempel
- 3. Stanzniet
- 4. Bauteile (Bleche)
- 5. Matrize

Stanznieten Video

Stanznieten

Das Stanznieten kommt vorwiegend beim Fügen von Blechen ,Stangpressprofilen und deren Kombination im gesamten A2 Space Frame zum Einsatz.

Nieten ist Fügen durch Stauchen eines bolzenförmigen Hilfsfügeteils.

Quelle: Audi AG

SSP239_065

Fertigungsverfahren nach DIN 8593

Schweißen ein Fügeverfahren, bei dem zwei oder mehr Fügeteile verbunden werden, wobei eine Kontinuität der Werkstoffe der zu verbindenden Fügeteile unter Anwendung von Wärme und/oder Druck hergestellt wird (mit oder ohne Schweißzusatzwerkstoff).

Fügen durch Schweißen

Anwendung im Automobilbau

Lasernähte im Automobilbau

- Laserschweißen
- MIG-Schweißen

Quelle: VW AG

Fügen durch Schweißen

Schmelzschweißverfahren - Laserschweißen

Tiefschweißen

- 1. Plasmawolke
- 2. Schmelze
- 3. Dampfkanal
- 4. Schweißtiefe

4

Quelle: rofin

Fügen durch Schweißen Schmelzschweißverfahren - Laserschweißen

Vorteile des Laserschweißens:

- + Kein Werkzeugverschleiß, berührungslose Bearbeitung
- Unterschiedliche Materialien und Stärken schweißbar
- Hohe Automatisierbarkeit
- Hohe Verfahrens- und Geometrieflexibilität
- + Geringe thermische Werkstoffbeeinflussung
- + Sehr geringe Überlappbreiten realisierbar (Leichtbau)

Punkt- und Nahtschweißen

Fügen durch Schweißen

Schmelzschweißverfahren - MIG-Schweißen

MIG = Metall-Inert-Gas

- Metalldraht wird durch Schweißpistole geführt und in einem Lichtbogen geschmolzen
- Schweißdraht = stromführende Elektrode und einzubringendes Schweißgut
- Ein durch die Gasdüse fließendes Schutzgas schützt den Lichtbogen und das Schmelzgut
- Inert-Gas = Argon, Helium o.ä.

Einteilung elementarer Fügeverbindungen

Fertigungsverfahren nach DIN 8593

Löten ist ein Fügeprozess, bei dem ein geschmolzenes Lot genutzt wird. Das geschmolzene Lot benetzt die Oberflächen des Grundwerkstoffes und wird während oder bei Ende des Aufheizens in einen engen, zwischen den zu fügenden Teilen befindlichen Spalt hineingezogen.

Fügen durch Löten

Verfahren

Löten

- Stoffschlüssiges Fügen und Beschichten von Werkstoffen mit Hilfe eines geschmolzenen Zusatzmetalls, dem Lot
- Die Schmelztemperatur des Lotes liegt unterhalb der Schmelztemperatur der zu verbindenden Werkstoffe
- Das Lot benetzt den Grundwerkstoff, durch Diffusion erfolgt eine Legierungsbildung in der Werkstoffrandzone

Lötverfahren und Arbeitstempertur						
Weichlöten	Hartlöten	Hochtemperaturlöten				
Unter 450°C Mit Flussmittel	Über 450°C Mit Flussmittel, unter Schutzgas oder im Vakuum	Über 900°C Unter Schutzgas oder im Vakuum				

Fügen durch Löten

Anwendung im Automobilbau

Einteilung elementarer Fügeverbindungen

Fertigungsverfahren nach DIN 8593

Kleben ist ein Fügeprozess, bei dem ein nichtmetallischer Werkstoff Fügeteile durch Flächenhaftung und innere Festigkeit (Adhäsion und Kohäsion) verbinden kann.

Fügen durch Kleben

Verfahren

Kleben

Stoffschlüssiges Fügen mittels eines Klebstoffs

Klebstoff

ein nicht-metallischer Werkstoff, der Fügeteile durch Adhäsion und Köhasion verbindet

Fügen durch Kleben

Anwendungen im Automobilbau

Quelle: colour-europe

Fügen durch Kleben

Beanspruchungsgerechtes Kleben

Umwandlung in Zug- und Druckbeanspruchung =gut

Schälbeanspruchung = schlecht

Versteifung = gut

Umwandlung in Zugscherbelastung = gut

Zugschälbeanspruchung = sehr schlecht

Versteifung = gut

Klebefläche vergrößern

oder

Ende umfalten!

Rollschälbeanspruchung = sehr schlecht

WF 370-19-00

Fügen

Vergleich ausgewählter Verfahren

gut mässig schlecht	Werk- stoff- vielfalt	Festigkeit auf kl. Fläche	Flächige Kraftein- leitung	Schädi- gung des Fügeteils	Tempe- raturbe- anspr.	Verzug
Kleben						
Metallschweißen						
Punktschweißen						
Kunststoffschweißen						
Löten von Metall						
Löten von Glas						
Schrauben						
Nieten						
Stanznieten						
Durchsetzfügen						

gut mässig schlecht	Korro- sions- hemmung	Dichtig- keit	Flexibilität, Dämpfung	Trans- parenz	Hybrid- fügen	Unauf- fälligkeit, Design
Kleben						
Metallschweißen						
Punktschweißen						
Kunststoffschweißen						
Löten von Metall						
Löten von Glas						
Schrauben						
Nieten						
Stanznieten						
Durchsetzfügen						

gut mässig schlecht	Fixieren	Prozess- dauer	Lebens- dauer- vorhers.	Wieder- lösbar- keit	Repa- rierbar- keit-	Qualitäts -prüfung
Kleben						
Metallschweißen						
Punktschweißen						
Kunststoffschweißen						
Löten von Metall						
Löten von Glas						
Schrauben						
Nieten						
Stanznieten						
Durchsetzfügen						

Quelle: Fraunhofer IFAM

Fügetechnische Herausforderungen

Quelle: Audi

Integration von hochfesten Stahlbauteilen in Aluminium-Strukturen

- B-Säule aus warmumgeformtem und partiell vergütetem Stahlblech
- Einbindung in die ASF ® -Struktur durch FDS mit Vorloch und Strukturklebstoff
- Platzsparendes Punktschweißen von 22 MnB5 und HC 340
- Anbindung HC 340 an aluminium-Außenhaut mit Stanznieten

Denkanstöße

Vertiefungen

- 1. Nennen Sie vier Gruppen der Hauptgruppe Fügen!
- 2. In welche Gruppe ist das Verfahren Durchsetzfügen einzuordnen? Skizzieren Sie den Ablauf des Durchsetzfügens!
- 3. Was unterscheidet das Löten und das Schweißen im Wesentlichen?
- 4. Nennen Sie 3 Vorteile des Laserschweißens!
- 5. Skizzieren Sie zwei beanspruchungsgerechte Klebverbindungen!

Formulieren Sie eine **geeignete Klausuraufgabe** zu den Inhalten des heutigen Themas der Vorlesung und posten Sie diese im StudIP.

Etwa 30 % der von Ihnen formulierten Fragen werden in der Klausur verwendet!

Vorlesung Fertigungstechnik

Prof. Dr.-Ing. Klaus Dröder, 11. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik