Übungsserie 2

Lösung

Aufgabe 1:

a) Für die 15-stellige Mantisse im Dualsystem gibt es 2^{14} verschiedene Möglichkeiten (die erste Nachkommaziffer muss ja 1 sein). Zusammen mit dem Vorzeichen gibt es also 2^{15} Möglichkeiten. Für den 5-stelligen Exponenten im Dualsystem gibt es 2^5 Möglichkeiten, inkl. Vorzeichen also 2^6-1 (da die Null doppelt gezälhlt wurde). Insgesamt gibt es also $2^{15} \cdot (2^6-1) = 2064384$ Möglichkeiten. Nimmt man die Zahl Null noch hinzu ergibt dies 2064385 Möglichkeiten.

b) $eps = 5 \cdot 10^{-16}$

c) $eps_1=2^{-52}$, $eps_2=8\cdot 16^{-14}=2^{-53}$. Wegen $eps_2< eps_1$ rechnet die Maschine mit der 14-stellingen Hexadezimalarithmetik genauer.

.

Aufgabe 2:

a) Vergleich der beiden Darstellungen:

b) & c) Vergleich der beiden Darstellungen:

Aufgabe 3:

Vergleich der beiden Iterationsgleichungen:

Aufgabe 4:

Mit vortlaufender Halbierung von eps während $eps+1\neq eps$ noch erfüllt ist, erhält man eps=2.2204e-16 (Achtung: diese Notation is gleichbedeutend wie $2.2204\cdot 10^{-16}$), welches 2^{-52} entspricht. Damit ist die Basis

 $B=2\ \mathrm{und}\ \mathrm{die}\ \mathrm{Anzahl}\ \mathrm{Mantisse}\text{-}\mathrm{Stellen}\ 52.$

Mit vortlaufender Verdoppelung von q_{max} während $q_{max}+1 \neq q_{max}$ noch erfüllt ist, erhält man $q_{max}=4.5036e+15$, welches gerade dem Kehrwert 1/eps entspricht.