Capturing rare events with the heterogeneous multiscale method

David Kelly

Eric Vanden-Eijnden

Courant Institute New York University New York NY www.dtbkelly.com

October 1, 2016

SIAM MPE 16, Philadelphia, PE

Fast-slow systems

Fast slow SDEs:

$$\frac{dX^{\varepsilon}}{dt} = f(X^{\varepsilon}, \mathbf{Y}^{\varepsilon})
\frac{d\mathbf{Y}^{\varepsilon}}{dt} = \varepsilon^{-1}g(X^{\varepsilon}, \mathbf{Y}^{\varepsilon}) + \varepsilon^{-1/2}\sigma(X^{\varepsilon}, \mathbf{Y}^{\varepsilon})\frac{dW}{dt}$$

where $\varepsilon \ll 1$.

Let Y_x be 'virtual fast process' with frozen x:

$$\frac{d\mathbf{Y}_{x}}{dt} = g(x, \mathbf{Y}_{x}) + \sigma(x, \mathbf{Y}_{x}) \frac{dW}{dt}$$

Assume that Y_x has an ergodic invariant measure μ_x and is sufficiently mixing.

David Kelly (CIMS) HMM rare events October 1, 2016 2 / 19

Averaging

The slow variables satisfy an averaging principle

$$X^{\varepsilon} \rightarrow_{a.s.} \overline{X}$$
 where $\frac{d\overline{X}}{dt} = F(\overline{X})$

and
$$F(x) = \int f(x, y) \mu_x(dy)$$
.

A simple metastable example

Suppose $\mu > 0$ and

$$\frac{dX^{\varepsilon}}{dt} = \frac{\mathbf{Y}^{\varepsilon}}{\mathbf{Y}^{\varepsilon}} - (X^{\varepsilon})^{3}$$
$$d\mathbf{Y}^{\varepsilon} = \frac{\theta}{\varepsilon} (\mu X^{\varepsilon} - \mathbf{Y}^{\varepsilon}) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW$$

This has averaged equation $\frac{d\overline{X}}{dt} = \mu \overline{X} - \overline{X}^3$. Symmetric double-well potential w/equilibria at $\pm \sqrt{\mu}$ and saddle at origin.

When $\varepsilon \ll 1$, the long time behavior of X^{ε} will be qualitatively different to the averaged system. The system exhibits hopping between wells due to fluctuations from the average.

David Kelly (CIMS) HMM rare events October 1, 2016 4/1

The central limit theorem describes small fluctuations about the average.

If we let $Z^{\varepsilon} = \varepsilon^{-1/2}(X^{\varepsilon} - \overline{X})$ then one can show $Z^{\varepsilon} \to_w \overline{Z}$ where

$$d\overline{Z} = B_0(\overline{X})\overline{Z}dt + \eta(\overline{X})dV$$

where V is a std Brownian motion and

$$B_0(x) = \int \nabla_x f(x, y) \mu_x(dy)$$

$$+ \int_0^\infty \int \nabla_y \mathbf{E}_y(\tilde{f}(x, \mathbf{Y}_x(\tau))) \nabla_x b(x, y) \mu_x(dy) d\tau$$

$$\eta(x) \eta^T(x) = \int_0^\infty \mathbf{E} \tilde{f}(x, \mathbf{Y}_x(\tau)) \tilde{f}(x, \mathbf{Y}_x(0)))^T d\tau$$

where $\tilde{f}(x, y) = f(x, y) - F(x)$.

Suppose X^{ε} satisfies a large deviations principle:

$$\lim_{\varepsilon \to 0} \varepsilon \log \mathbf{P}(X^{\varepsilon} \in \Gamma) = -\inf_{\gamma \in \Gamma} \mathcal{S}_{[0,T]}(\gamma)$$

for a set Γ of continuous paths $\gamma:[0,T]\to\mathbb{R}^d$ in the slow state space.

A large deviation principle quantifies many important features of O(1) fluctuations in metastable systems.

For instance, suppose that $D \subset \mathbb{R}^d$ is open w/ smooth boundary ∂D , and x^* is an asymptotically stable equilibrium for the averaged system $\frac{d\overline{X}}{dt} = F(\overline{X})$.

Define the transition time $\tau^{\varepsilon} = \inf\{t > 0 : X^{\varepsilon} \notin D\}$. Define the quasi-potential

$$\mathcal{V}(x,y) = \inf_{T>0} \inf_{\gamma(0)=x,\gamma(T)=y} \mathcal{S}_{[0,T]}(\gamma)$$

Then the mean first passage/exit time is given by

$$\lim_{\varepsilon \to 0} \varepsilon \log \mathbf{E} \tau^{\varepsilon} = \inf_{y \in \partial D} \mathcal{V}(x, y)$$

David Kelly (CIMS) HMM rare events October 1, 2016 7/19

For FS systems, Varadhan's Lemma (reverse) tells us the following:

Let $u(t,x) = \lim_{\varepsilon \to 0} \varepsilon \log \mathbf{E}_x \exp(\varepsilon \varphi(X^{\varepsilon}(t)))$. If u satisfies the Hamilton-Jacobi equation

$$\partial_t u = \mathcal{H}(x, \nabla u)$$
 , $u(0, x) = \varphi$

for suitable class of φ , then X^{ε} satisfies an LDP with rate function

$$\mathcal{S}_{[0,T]}(\gamma) = \int_0^T \mathcal{L}(\gamma(s),\dot{\gamma}(s)) ds$$

where ${\mathcal L}$ is the Lagrangian associated with the Hamiltonian ${\mathcal H}$

$$\mathcal{L}(x,\beta) = \sup_{\theta} (\theta \cdot \beta - \mathcal{H}(x,\theta)) .$$

Moral of the story: we can identify LDPs via the associated HJ equation.

David Kelly (CIMS) HMM rare events October 1, 2016 8 / 19

Heterogeneous multi scale method for FS systems

A simple numerical scheme for the slow variables $x_n^{\varepsilon} \approx X^{\varepsilon}(n\Delta t)$ when $\varepsilon \ll 1$:

$$x_{n+1}^{\varepsilon} = x_n^{\varepsilon} + \int_{n\Delta t}^{(n+1)\Delta t} f(x_n^{\varepsilon}, \frac{\mathbf{Y}_{x_n^{\varepsilon}}^{\varepsilon}(s)) ds$$

Then approximate the integral by simulating the virtual fast process on mesh size $\delta t \ll \Delta t$

$$\int_{n\Delta t}^{(n+1)\Delta t} f(x_n^{\varepsilon}, \frac{\mathbf{Y}_{x_n^{\varepsilon}}^{\varepsilon}(s)) ds \approx \sum_{j=0}^{N-1} f(x_n^{\varepsilon}, \frac{\mathbf{y}_{n,j}^{\varepsilon}}{s}) \delta t$$

where $N\delta t = \Delta t$ and (for instance) is given by Euler-Maruyama

$$\mathbf{y}_{n,j+1}^{\varepsilon} = \mathbf{y}_{n,j}^{\varepsilon} + \varepsilon^{-1} \mathbf{g}(\mathbf{x}_{n}^{\varepsilon}, \mathbf{y}_{n,j}^{\varepsilon}) \delta t + \varepsilon^{-1/2} \sigma(\mathbf{x}_{n}^{\varepsilon}, \mathbf{y}_{n,j}^{\varepsilon}) \sqrt{\delta t} \xi_{n,j}$$

for
$$i = 0, ..., N - 1$$
.

David Kelly (CIMS)

Speeding up the method

The key observation of HMM is that one does not need the virtual process Y^{ε}_{x} over the whole window $[n\Delta t, (n+1)\Delta t)$, but only over a fraction of it $[n\Delta t, (n+1/\lambda)\Delta t]$ for some $\lambda \geq 1$.

By the ergodic theorem

$$\frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} f(x_n^{\varepsilon}, \frac{\mathbf{Y}_{x_n^{\varepsilon}}^{\varepsilon}(s)) ds \approx F(x_n^{\varepsilon}) \approx \frac{\lambda}{\Delta t} \int_{n\Delta t}^{(n+1/\lambda)\Delta t} f(x_n^{\varepsilon}, \frac{\mathbf{Y}_{x_n^{\varepsilon}}^{\varepsilon}(s)) ds$$

provided that $\Delta t/\varepsilon$ and $\Delta t/(\varepsilon\lambda)$ are larger than the mixing time for Y_x .

HMM rare events October 1, 2016 10 / 19

HMM summary

The update $x_n^{\varepsilon} \mapsto x_{n+1}^{\varepsilon}$ works in two steps

1 - **Micro step**: Compute an approximation $F_{n,\lambda}(x_n^{arepsilon})$ of the integral

$$\frac{\lambda}{\Delta t} \int_{n\Delta t}^{(n+1/\lambda)\Delta t} f(x_n^{\varepsilon}, \mathbf{Y}_{x_n^{\varepsilon}}^{\varepsilon}(s)) ds$$

by simulating the virtual fast process $Y_{\chi_n^\varepsilon}^\varepsilon$ over the window $[n\Delta t, (n+1/\lambda)\Delta t)$. Requires $\delta t \ll \Delta t$, $\delta t \ll \varepsilon$ and $\Delta t/(\varepsilon\lambda)$ larger than mixing time.

2 - Macro step: $x_{n+1}^{\varepsilon} = x_n^{\varepsilon} + F_{n,\lambda}(x_n^{\varepsilon})\Delta t$

David Kelly (CIMS) HMM rare events October 1, 2016

11 / 19

We know that HMM is **consistent with the averaging principle**. That is, as $\varepsilon \to 0$ the sequence x_n^{ε} defined by HMM converges to

$$\overline{\mathbf{x}}_{n+1} = \overline{\mathbf{x}}_n + F(\overline{\mathbf{x}}_n) \Delta t$$

which is a consistent numerical method for the averaged equation $\frac{d\overline{X}}{dt} = F(\overline{X})$.

What about fluctuations?

- $\frac{1}{Z}$ Let $z_n^{\varepsilon} = \varepsilon^{-1/2} (x_n^{\varepsilon} \overline{x}_n)$. Does z_n^{ε} converge to a numerical scheme for \overline{Z} as $\varepsilon \to 0$?
- **2** Let $u_{n,\lambda}(x) = \lim_{\varepsilon \to 0} \varepsilon \log \mathbf{E}_x \exp(\varepsilon^{-1} \varphi(\mathbf{x}_n^{\varepsilon}))$. Is $u_{n,\lambda}$ a numerical method for the true HJ equation?

David Kelly (CIMS) HMM rare events October 1, 2016 12 / 19

HMM Fluctuations are inflated by λ

As $\varepsilon \to 0$, z_n^{ε} converges to \overline{z}_n , which is a numerical scheme for the SDE

$$d\overline{Z}_{\lambda} = B_0(\overline{X})\overline{Z}_{\lambda}dt + \sqrt{\lambda}\eta(\overline{X})dV.$$

Moreover, we find that $u_{\lambda,n}(x)$ is a numerical method for the HJ equation

$$\partial_t \mathbf{u}_{\lambda} = \frac{1}{\lambda} \mathcal{H}(\mathbf{x}, \lambda \nabla \mathbf{u}_{\lambda})$$

where \mathcal{H} is the true Hamiltonian for X^{ε} .In particular, the quasi-potential is $\mathcal{V}_{\lambda}(x,y)=\lambda^{-1}\mathcal{V}(x,y)$. It follows that mean first passage times will shrink

$$\mathbf{E} au_arepsilonsymp \exp\left(rac{1}{arepsilon\lambda}\mathcal{V}(x^*,\partial D)
ight)$$

David Kelly (CIMS) HMM rare events October 1, 2016 13 / 19

Why the inflation?

In the HMM approximation, with $\lambda \in \mathbb{Z}$, we are essentially replacing

$$\int_{n\Delta t}^{(n+1/\lambda)\Delta t} f(x, \mathbf{Y}_{x}^{\varepsilon}(s)) ds + \cdots + \int_{(n+(\lambda-1)/\lambda)\Delta t}^{(n+1)\Delta t} f(x, \mathbf{Y}_{x}^{\varepsilon}(s)) ds$$

with

$$\int_{n\Delta t}^{(n+1/\lambda)\Delta t} f(x, \mathbf{Y}_{x}^{\varepsilon}(s)) ds + \cdots + \int_{n\Delta t}^{(n+1/\lambda)\Delta t} f(x, \mathbf{Y}_{x}^{\varepsilon}(s)) ds$$

ie. Replace sum of λ weakly correlated random variables with $\lambda \times$ first random variable. Clearly this inflates the variance.

David Kelly (CIMS) HMM rare events

14 / 19

Parallel HMM

There is a simple way to fix the problem. The update $x_n^\varepsilon\mapsto x_{n+1}^\varepsilon$ works in two steps

 ${f 1}$ - λ parallel micro steps: Compute an approximation $F_{n,\lambda}(x_n^{\varepsilon})$ of the integral

$$\sum_{k=1}^{\lambda} \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1/\lambda)\Delta t} f(\mathbf{x}_{n}^{\varepsilon}, \mathbf{Y}_{\mathbf{x}_{n}^{\varepsilon}, k}^{\varepsilon}(s)) ds$$

by simulating λ independent copies of the virtual fast processes $Y_{x_n^{\varepsilon},k}^{\varepsilon}$ for $k=1,\ldots,\lambda$ over the window $[n\Delta t,(n+1/\lambda)\Delta t)$.

2 - Macro step: $\mathbf{x}_{n+1}^{\varepsilon} = \mathbf{x}_{n}^{\varepsilon} + F_{n,\lambda}(\mathbf{x}_{n}^{\varepsilon})\Delta t$

David Kelly (CIMS) HMM rare events October 1, 2016 15 / 19

Parallel HMM

- Since the virtual fast processes are independent, they can be simulated in parallel. This is a kind of parallel-in-time method.
- We can show that this method is in fact consistent with X^{ε} at both the level of small fluctuations and large deviations.

David Kelly (CIMS) HMM rare events October 1, 2016 16 / 19

Small fluctuations example I

Suppose $\mu < 1$ and

$$\frac{dX^{\varepsilon}}{dt} = \frac{\mathbf{Y}^{\varepsilon}}{\mathbf{X}^{\varepsilon}} - X^{\varepsilon}$$
$$d\mathbf{Y}^{\varepsilon} = \frac{\theta}{\varepsilon} (\mu X^{\varepsilon} - \mathbf{Y}^{\varepsilon}) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW$$

This has averaged equation $\frac{d\overline{X}}{dt} = (\mu - 1)\overline{X}$.

Large deviations example

Suppose $\mu > 0$ and

$$\frac{dX^{\varepsilon}}{dt} = \mathbf{Y}^{\varepsilon} - (X^{\varepsilon})^{3}$$
$$d\mathbf{Y}^{\varepsilon} = \frac{\theta}{\varepsilon} (\mu X^{\varepsilon} - \mathbf{Y}^{\varepsilon}) dt + \frac{\sigma}{\sqrt{\varepsilon}} dW$$

This has averaged equation $\frac{d\overline{X}}{dt} = \mu \overline{X} - \overline{X}^3$.

Figure: Mean first passage time

References

D. Kelly, E. Vanden-Eijnden. *Capturing rare events with the heterogeneous multiscale method.* **arXiv** (2016).

All my slides are on my website (www.dtbkelly.com) Thank you!

David Kelly (CIMS) HMM rare events October 1, 2016 19 / 19