Матан, лекции

1 Повторение

Задачи и темы, которые мы будем обсуждать в новом семестре: многообразия, дифференциальные формы на них, криволинейные интегралы, интегралы от параметров, формула Стокса, формула Остроградского, γ -, β -функции.

Интеграл от функции произвольного знака это разность интегралов компонент. В случаях, когда оба слогаемых не бесконечные, такая разность имеет смысл.

Интеграл комплекснозначной функции это сумма интегралов вещественных компонент функции.

$$\int_{E} f d\mu = \int_{E} \operatorname{Re} f d\mu + \int_{E} \operatorname{Im} f d\mu$$

Монотонность интеграла.

$$\int_{E} (f_1 + f_2) \geqslant \int_{E} f_1 = \infty$$

Теорема 1 (Теорема Леви для последовательности). Если f_n неотрицательные измеримые на E функции и $f_n \uparrow f$ возрастая сходится поточечно к f, то

$$\lim_{E} \int_{E} f_{n} d\mu = \int \lim_{E} f_{n} d\mu = \int f d\mu$$

Теорема 2 (Теорема Леви для рядов). Если f_n неотрицательные измеримые на E функции, то интеграл от ряда совпадает с суммой ряда из интегралов.

$$\int_{E} \sum_{n=1}^{\infty} f_n d\mu = \sum_{n=1}^{\infty} = \sum_{n=1}^{\infty} \int_{E} f_n d\mu$$

Доказатель ство. Пусть $S_n(x)=\sum\limits_{n=1}^{\infty}f_n(x)$ — частичная сумма. $S(x)=\sum\limits_{n=1}^{\infty}f_n(x)=\lim\limits_{n\to\infty}S_n(x)$

Пример 1. Функция, которая не удовлетворяет условиям теоремы Леви:

$$f_k(x) = \xi_{[k,k+1]}(x)$$

$$\int_{[0,+\infty]} f_k(x) d\mu = \int_{[k,k+1]} f_k(x) d\mu = 1$$
$$\int f(x) d\mu = \int_{[0,+\infty]} 0 d\mu = 0$$

Замечание 1. 1. Для $f \in S(E)$ $|f| \in L(E, \mu)$ тогда и только тогда, когда $f \in L(E, \mu)$.

2. Если интеграл $\int_E f d\mu$ определен, то $\int_E |f| d\mu \geqslant |\int_E f d\mu|$.

Доказательство.

Отсутпление про суммируемую мажоранту.

Если функция имеет суммируемую мажоранту, то сама она является суммируемой.

... $L_1(E,\mu)$: две функиции эквивалентны по мере на E, если они совпадают почти везде на E. Другими словами, мера подмножества E, на котором функции принимают разные значения, равна нулю.

$$||f||_1 = \int_E |f| d\mu$$

Элементы $L_1(E,\mu)$ могут быть определены не на всём E целиком, но на множестве полной меры.

$$|f+g| \leqslant |f| + |g|$$

Эта норма невырожденная. Если $f \in S_+(E)$ и $\int f\mu = 0$, то f = 0 почти всюду на E.

Теорема 3 (Счётная аддитивность интеграла). Пусть $f \in S(E)$ $E = \bigcup_{k=1}^{\infty} E_k, E_k \in ?$ определн $\int_E f d\mu$. Тогда

$$\int_{E} f d\mu = \sum_{k=1}^{\infty} \int_{E_{k}} f d\mu$$

Доказательство. ...

Теорема 4 (О приближении интеграла интегралом по множеству конечной меры). Пусть мера E конечна и $f \in L(E,\mu)$ суммиурема. Тогда

$$orall \epsilon > 0 \exists E_0 \subset E: \mu(E_0) < +\infty$$
и $\int_{E \backslash E_0} |f| d\mu < \epsilon$

Доказательство. Не умаляя общности $f\geqslant 0$ на E. Продложим f нулем вне E. J(A)= $\int_A f d\mu$ — мера. $E_K = E\{f > \frac{1}{k}\}, E_* = E\{f > 0\} = \bigcup_{k=1}^{\infty} \hat{E}_k$.

Непрерывность меры снизу E_k — множества конечной меры.

Научились приближать с любой точностью интеграл интегралом по множествам конечной меры.

Теорема Фато и теорема Лебега.

Теорема 5. Пусть f_k

 $inS_+(E)$ для всех $k\in\mathbb{N}$. Тогда $\varliminf_{k\in\infty}\leqslant\varliminf\int_E f_k(x)$. И если $f_k(x)\to f(x)$ на E, то $\int_E f(x)\leqslant\varliminf\int_E f_k(x)$

Теорема 6 (Теорема Лебега о мажорированной сходимости). Пусть $f_n \to f$ сходится почти везде на E и $\Phi \in L(E,\mu)$: $\forall k \in \mathbb{N}|f_k| \leqslant \Phi$ почти везде на E. Тогда $f \in L(E,\mu)$ и $\lim_{k \to \infty} \int_E f d\mu$.

Интеграл положительнозначной функции определяет меру. Интеграл функции это разность мер компонент. Такая разность называется заряд.

Теорема 7 (Фубини).

$$x = (x_1, \dots, x_k)$$
$$y = (y_1, \dots, y_m)$$
$$f(x, y) \in \mathcal{L}(E, \lambda_{k+m})$$
$$E \in \mathcal{A}_{k+m}$$

TO:

1. Для почти всех $x \in \mathbb{R}^k$ $g(\cdot) = f(x, \cdot) \in \mathcal{L}(E(x, \cdot))$

2.
$$I(x) = \int_{E(x,\cdot)} f(x,y) d\lambda_m(y) \in \mathcal{L}\left(\mathbb{R}^k\right)$$

3.

$$\int_{E} f(x, y) d\lambda_{k+m}(x, y) = \int_{\mathbb{R}^{k}} \left(\int_{E(x, \cdot)} f(x, y) d\lambda_{m}(y) \right) d\lambda_{k}(x)$$

Пример 2. $E=A \times \{0\} \subseteq \mathbb{R}^{k+m}$ $0 \in \mathbb{R}^n$ A — неизмеримое в \mathbb{R}^k

E – измеримо в \mathbb{R}^{k+m}

 $Pr_x(E) = A$ — неизмеримое

Если $Pr_x(E)$ измеримо, то вместо интеграла по \mathbb{R}^k можно написать интеграл по проекции

Рис. 1: Переход в интегралу по проекции

Замечание. Если E – компактное или открытое, то $Pr_x(E)$ измеримо.

 $Pr_x(E) = \Phi(E)$, где $\Phi(x,y) \equiv x$ – отображение проектирования

Если E – компактное, то $\Phi(E)$ – компактное. Если открытое, то открытое.

Пример 3. 1.

$$\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy = I_1$$
$$\int_0^1 dy \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx = I_2$$

Если интегралы существуют, то они антиравны.

$$I_1 = \int_0^1 \frac{y}{(x^2 + y^2)} \Big|_{y=0}^{y=1} dx = \int_0^1 \frac{1}{x^2 + 1} - 0 dx = \operatorname{arctg} x |_0^1 = \frac{\pi}{4}.$$

Вывод: функция $f(x,y) \not\in \mathcal{L}\left([0,1]^2,\lambda_2\right)$

2.

$$\int_{-1}^{1} dx \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dy$$
$$\int_{-1}^{1} dy \int_{-1}^{1} \frac{xy}{(x^2 + y^2)^2} dx$$

$$f \in \mathcal{L}^2\left([-1,1]^2\right) \iff |f| \in \mathcal{L}\left([-1,1]^2\right) \implies |f| \in \mathcal{L}\left([-1,1]^2\right)$$

$$\iint_{[0,1]^2} f\left(x,y\right) dy = \int_0^1 dx \int_0^1 \frac{xy}{\left(x^2 + y^2\right)^2} dx$$

<.....>

Утверждение 1. Семейство называется суммируемым, если функция суммируема

Утверждение 2. Если семейство $(a_x)_{x\in X}$ суммируемо, то $\{x: a_x \neq 0\}$ – не более чем счётное.

— Доказательство. Не умаляя общности $a_x\geqslant 0$ $+\infty>\int_X a_x dv=\int_{X_0} a_x dv>\int a_x dv\geqslant \frac{1}{j}\nu\left(x_j\right)\implies \nu(x_j)<+\infty$ $X_0=\bigcup_{j=1}^\infty X_j$ — не более, чем счётное

Утверждение 3. \Box X – н.б.ч.с, Y – числовое множество, $(a_x)_{x\in X}\subseteq Y$ $\varphi:\mathbb{N}\to X$ Тогда (a_x) суммируемы $\iff \sum\limits_{k=1}^\infty a_{\varphi(k)}$ сходится абсолютно.

2 Замена переменной в интеграле по мере

2.1 "Пересадка" меры

 $\Phi: X \to Y$. \square (X, \mathcal{A}, μ) — пространство с мерой.

$$\mathcal{D} = \left\{ B \subseteq Y \middle| \Phi^{-1}(B) \in \mathcal{A} \right\}$$

$$\Phi^{-1} \left(\bigcap_{k=1}^{\infty} B_k \right) = \bigcap_{k=1}^{\infty} \Phi^{-1}(B_k) \in \mathcal{A}$$

$$\nu(B) = \mu\left(\Phi^{-1}(B)\right)$$

Пример 4. $X = [0, 2\pi)$ $\mathcal{A} = \mathcal{A}_1 \cap [0, 2\pi)$ $\Phi(t \in X) = (\cos t, \sin t)$

Теорема 8 (Общая схема замены переменных). $\sqsupset (X, \mathcal{A}, \mu) \quad (Y, \mathfrak{D}, \nu)$

 $\Phi: X \to Y$ – не портит измеримость.

 $\exists h \in S_+(X) : \forall B \in \mathfrak{D}$

$$\nu(B) = \int_{\Phi^{-1}(B)} h d\mu$$

Тогда $\forall f \in f \in S(Y, \nu)$

$$\int_{Y} f d\nu = \int_{X} f\left(\Phi(x)\right) h(x) d\mu(x)$$

Доказательство. $f \circ \Phi$ — измерима?

 $X\{f\circ\Phi< a\}=\Phi^{-1}(Y\{f< a\}).\ Y\{f< a\}\in\mathcal{L},$ т.к. f измеримо. А тогда $\Phi^{-1}(\ldots)\in\mathcal{A}$ Совпадение интегралов:

1. f – ступенчатая, $f=\sum\limits_{k=1}^K C_k\chi_{D_k} \quad \{D_k\}$ – разбиение X

$$\int_{Y} f d\nu = \sum_{k=1}^{K} C_{k} \nu \left(D_{k} \right) = \sum_{k=1}^{K} C_{k} \int_{\Phi^{-1}(D_{k})} h d\mu =
= \int_{X} \left(\sum_{k=1}^{K} C_{k} \chi_{\Phi^{-1}(D_{k})} \right)
= \int_{X} f \circ \Phi(x) h(x) d\mu(x)
f \circ \Phi(x) = C_{k} \quad x \in \Phi^{-1}(D_{k})
\sum_{k=1}^{K} C_{k} \chi_{\Phi^{-1}(D_{k})}(x) = C_{k}.$$

2. $f \in S_+(Y)$ $\exists \{g_j\}$ – ступенчатая небобратимая $g_i \uparrow f$

$$\int_{Y} f d\nu = \lim_{j \to \infty} \int_{Y} g_{j} d\nu = \lim_{j \to \infty} \int_{X} g_{j} \left(\Phi(x) \right) h(x) d\mu$$

$$= \int_{X} f \left(\Phi(x) \right) h(x) dm u(x)$$

3. Общий случай:

$$f = f_+ + f_-$$

$$\begin{split} \int_{Y} f d\nu &= \int_{Y} f_{+} - \int_{Y} f_{-} d\mu = \int_{X} f_{+} \left(\Phi(x) \right) h(x) d\mu(x) - \int_{Y} f_{-} \left(\Phi(x) \right) h(x) d\mu(x) \\ &= \int f \left(\Phi(x) \right) h(x) d\mu(x) \\ \left(f \left(\Phi \right) h \right)_{+} &= f_{+} \left(\Phi \right) h. \end{split}$$

Следствие 8.1. $\sqsupset (X,\mathcal{A},\mu) \quad (Y,\mathfrak{D},\nu)$ $h \in S_+(X); \quad \Phi: X \to Y \quad \Phi^{-1}(\mathfrak{D}) \subseteq \mathcal{A}$

и выполняется условие теоремы общей замены переменной. Тогда $\forall E \subseteq \mathcal{D} \quad f \in S\left(E,\nu\right)$:

$$\int_E f(y) d\nu(y) = \int_{\Phi^{-1}(E) f(\Phi(x)) h(x) d\mu(x)}$$

Рассмотрим продолжение нулём f с E на Y

$$\int_{E} f d\nu = \int_{Y} (y) \chi_{E}(y) d\nu(y) = \int_{X} f\left(\Phi(x)\right) \underbrace{\chi_{E}\left(\Phi(x)\right)} (\chi_{\Phi^{-1}(E)} h(x) d\mu(x) = \int_{\Phi^{-1}(E)} f\left(\Phi(x) h(x) d\mu(x)\right) d\mu(x)$$

Следствие 8.2 (частный случай 1). Если $h \equiv 1$ в условии теоремы.

 $(\forall E|in\mathcal{D} \quad \nu(E) = \int_{\Phi^{-1}(E)} d\mu = \mu\left(\Phi^{-1}\left(E\right)\right))$

мера ν при этом называется образом меры μ

$$\forall f \in S(E) \quad \int_{E} f d\nu = \int_{\Phi^{-1}(E)} f \circ \Phi(x) d\mu(x)$$

Следствие 8.3 (Частный случай 2). $X = Y \quad \Phi = id \quad \nu(E) = \int_E h(x) d\mu(x)$

<..>

Теорема 9. \Box (X, \mathcal{A}, μ) – пространство с мерой, $\Phi: X \to Y$ $h \in S_+(X)$ Следующие утверждения равносильны:

- 1. h плотность ν относительно μ
- 2. $\forall E \in \mathcal{A}$

$$\inf_{E} h\mu E \leqslant \nu(E) \leqslant \sup_{D} h\mu(E)$$

Доказатель ство. $I\iff \forall E\in\mathcal{A}\quad \nu(E)=\int_E hd\mu$ T.o. $I\implies II$

Теорема 10 (Критерий плотности). $\supset (X, A)$ – измеримое пространство, μ, ν – опр. (?) A $h \in S_+(X)$. Тогда следующие утверждения равносильны:

- 1. h плотность меры ν относительно μ ($\forall E \in \mathcal{A} \quad \nu(E) = \int_E h d\mu$)
- $2. \ \forall E \in \mathcal{A}$

$$\inf_E h \cdot \mu(E) \leqslant d(E) \leqslant \sup_E h \cdot \mu(E)$$

Если $(X, \mathcal{A}, \mu) = (\mathbb{R}^n, \mathcal{A}, \lambda_n)$, тогда $1 \iff 3$:

3

$$\forall P \in \mathcal{P}_n \quad \inf_{P} h \cdot \mu(P) \leqslant \nu(P) \leqslant \sup_{P} h \cdot \mu(P)$$

Доказательство. План: $1 \implies 2 \implies 3$

$$E = E\{h = 0\} \prod E\{h = +\infty\} \prod E\{0 < h < +\infty\}$$

$$\nu(E) = \nu(E\{h = 0\}) + \nu(E\{h = +\infty\}) + \nu(E\{0 < h < +\infty\})$$

$$\nu(E\{h = 0\}) \leqslant \sup_{E\{h = 0\}} = 0 = \int_{E\{h = 0\}} h d\mu$$

$$\nu(E\{h = +\infty\}) \leqslant h \cdot \mu(E) + \infty \cdot \mu(E) = \int_{E\{h = +\infty\} h d\mu}.$$

Теорема 11. \Box Φ – диффеоморфизм множеств $G,O\subseteq\mathbb{R}^n$ $G\xrightarrow{\Phi}O$ Тогда $\forall E\in\mathcal{A}_n$ $E\subseteq O$

 $ar{\lessdot}\widetilde{
u}$ — стандартное продолжение < ...> (нужно дополнить)

 $\lambda_n(E) = \int_{\Phi^{-1}(E)} \left| \det \Phi' \middle| d\lambda_n \right|$

$$\lambda_n(O)=\int_G |{\det\Phi'}|\,d\lambda_n$$
 Если $O\sim\widetilde{O}$ $G\sim\widetilde{G}$ $\Big(\lambda_n(O\setminus\widetilde{O})=\emptyset\ldots\Big)$, то
$$\lambda_n(\widetilde{O})=\int_{\widetilde{G}} |{\det\Phi'}|\,d\lambda_n$$

Замечание.

$$\begin{split} \nu(P) \leqslant \sup_P h d\mu(P) - \text{ от противного} \\ \Longrightarrow \; \exists \; \text{ячейки} \; P_0: \quad \nu(P) > M \cdot \mu(P) = \sup_{P_0} h \cdot \mu(P) \\ \Phi(x) = \Phi(x_0) + d_{x_0} \Phi(x - x_0) + o(x - x_0) \\ x \approx x_0 \qquad \Phi(x) \approx \Phi(x_0) + d_{x_0} \Phi(x - x_0) \end{split}$$

Если Q — малая ячейка, то

$$\lambda_n(\Phi(Q)) \approx \lambda_n d_{x_0} \Phi(Q) = \left| \det \Phi'_{x_0} \right| \lambda_n(Q)$$

Следствие 11.1. Если $\Phi:G\to O$ — диффеоморфизм, $G,O\subseteq\mathbb{R}^n$ $\widetilde{G}\sim G,\widetilde{O}\sim O$ $f\in S(O),$ то

$$\int_{\widetilde{O}} f(x)d\lambda_n(x) = \int_{\widetilde{G}} f(\Phi(u)) |\det \Phi'(u)d\lambda_n(u)|$$

Пример 5. Полярные координаты.

$$\begin{split} x &= r\cos\varphi, \ y = r\sin\varphi. \\ \Phi &: (r,\varphi) \to (x,y), \\ ([0,+\infty) \times [-\pi,\pi])) \to \mathbb{R}^n, \\ (0,+\infty] \times (-\pi,\pi))) \to \mathbb{R}^n \setminus (-\infty,0]). \\ \det \Phi' &= r; \quad E = \mathbb{R}^2 : \end{split}$$

$$\iint_{E} f(x,y)dxdy = \iint_{\Phi^{-1}} f(r\cos\varphi, r\sin\varphi)rdrd\varphi$$

Пример 6 (интеграл Эйлера-Пуассона).

$$I = \int_{0}^{+\infty} e^{-x^{2}} dx$$

$$I \cdot I = \int_{0}^{+\infty} e^{-x^{2}} dx \cdot \int_{0}^{+\infty} e^{-ys} = \iint_{\{x \geqslant 0, y \geqslant 0\}} e^{-x^{2} + y^{2}} dx dy$$

$$= \iint_{\{0 \leqslant \varphi \leqslant \frac{\pi}{2} \quad r > = 0\}} e^{-r^{2}} r dr d\varphi$$

$$= \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{+\infty} r e^{-r^{2}} dr$$

$$= \frac{\pi}{2} \cdot \frac{e^{-r^{2}}}{-2} \Big|_{0}^{+\infty} = \frac{\pi}{4}$$

$$I = \int_{0}^{+\infty} r^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$

Пример 7. Цилиницрические координаты

$$r\cos\varphi = x$$
$$r\sin\varphi = y$$
$$h = z$$

$$\Phi: (r, \varphi, h) \to (x, y, z) \quad \Phi: (0, +\infty) \times (-pi, pi) \times \mathbb{R} \to \mathbb{R}^3 \setminus \{(x, 0, z) \mid | x \leq 0\}\}$$
$$|\det \Phi'| = r$$
$$\iiint_E f(x, y, z) dx dy dz = \iiint_{\Phi_1(E)} f(r \cos \varphi, r \sin \varphi, h) \cdot r dr d\varphi dh$$

Пример 8. Сферические координаты $r = \sqrt{x^2 + y^2 + z^2}$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$r\cos\varphi\cos\psi = x$$
$$r\sin\varphi\cos\psi = y$$
$$r\sin\psi\varphi\sin\psi = y$$

 $\det \Phi' = r^2 \cos \varphi$ Можно обобщить на \mathbb{R}^n

$$r = ||x||$$

$$x_1 = r \cos \varphi_{n-1} \cos \varphi_{n-2} \dots \cos \varphi_1$$

$$\dots$$

$$x_{n-2} = r \cos \varphi_{n-1} \cos \varphi_{n-2} \sin \varphi_{n-3}$$

$$x_{n-1} = r \cos \varphi_{n-1} \sin \varphi_{n-2}$$

$$x_n = r \sin \varphi_{n-1}$$

Пример 9.

$$\iiint\limits_{\substack{x^2+y^2+z^2\leqslant\mathbb{R}^2\\x^2+y\leqslant z^2\\z\geqslant 0}}f(x,y,z)\,dx\,dy\,dz$$

Преобразовать используя:

• Цилиндрические координаты

Перепишем множество интегрирования в новых координатах: $\begin{cases} r^2+h^2\leqslant R^2\\ r^2\leqslant h^2\implies r\leqslant h\\ h\geqslant 0, r\geqslant 0 \end{cases}$

$$\begin{split} I &= \iiint\limits_{\substack{r^2 + h^2 \leqslant R^2 \\ r \leqslant h \\ h \geqslant 0, r \geqslant 0}} f\left(r\cos\varphi, r\sin\varphi, h\right) r dr d\varphi dh \\ &= \iint\limits_{\substack{\pi \leqslant \varphi \leqslant \pi \\ 0 \leqslant r \leqslant \frac{R}{\sqrt{2}}}} r \int_r^{\sqrt{R^2 - r^2}} f\left(r\cos\varphi, r\sin\varphi, h\right) dr \\ &= \int_{-\pi}^{\pi} d\varphi \int_0^{\frac{R}{\sqrt{2}}} r dr \int_r^{\sqrt{R^2 - r^2}} f\left(r\cos\varphi, r\sin\varphi, h\right) dh \end{split}$$

• Цилиндрические координаты (второй вариант)

$$\int_0^{\frac{R}{\sqrt{2}}} dh \int_{-\pi}^{\pi} d\varphi \int_0^h rf dr + \int_{\frac{R}{\sqrt{2}}} dh \int_{-\pi}^{\pi} d\varphi \int_0^{\sqrt{R^2-h^2}} rf dr$$

• Сферические координаты

$$\begin{cases} x = r \cos \varphi \sin \psi \\ y = r \sin \varphi \cos \psi \\ z = r \sin \psi \\ \text{tg}^2 \psi \geqslant 0 \\ \sin \psi \geqslant 0 \end{cases}$$

$$0 \leqslant r \leqslant R$$
$$r^2 \cos^2 \psi \leqslant r^2 \sin^2 \psi$$
$$r \sin \psi \geqslant 0$$

 $I = \iiint_E f(r\cos\varphi\cos\psi, r\sin\varphi\cos\psi, r\sin\varphi) r^2\cos\psi dr d\varphi d\psi$ $= \int_{-\pi}^{\pi} d\varphi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\psi \int_0^R f(\ldots) r^2\cos\psi dr$

Пример 10.

 $\iiint_E z dx dy dz$

E:

$$t^{2}(x^{2} + y^{2}) \leqslant z^{2}$$
$$0 \leqslant z \leqslant t \leqslant 3$$

$$\begin{split} \iiint_E z dx dy dz &= \iint_{\{0 \leqslant z \leqslant t \leqslant 3\}} dz dt \iint_{\{x^2 + y^2 \leqslant \frac{4z^2}{t^2}\}} z dx dy \\ &= \iint_{\{0 \leqslant z \leqslant t \leqslant 3\}} dz dt z \pi \cdot \frac{4z^2}{z^2} \\ &= 4\pi \iint_{\{0 \leqslant z \leqslant t \leqslant 3\}} \frac{z^3}{t^2} dz dt \\ &= 4\pi \int_0^3 \frac{1}{t^2} dt \int_0^t z^3 dz = \frac{4\pi}{4} \left(\int_0^3 t^2 dt \right) = \pi \cdot 9 \end{split}$$

3 Мера Лебега-Стилтьеса

$$\exists g(x) \uparrow$$
 на $\mathbb R$ и непрерывна слева $\left(\lim_{x \to x_0 - 0} g(x) \equiv g(x_0)\right)$

Задача 1. Если h(x) – произвольная возрастающая функция, то её можно превратить в непрерывную слева исправлением нбчс количества точек.

$$\exists \uparrow$$
и непрерывная слева $g(x)=h(x)$ всюду кроме точек разрыва $h(x)$ $g(x_0)=\lim_{x\to x_0-0}h(x)$

Определим $\mu_g([a,b]) = g(b) - g(a) \geqslant 0$. Так же верно, что μ_g обладает счетной аддитивностью на \mathcal{P}_1 (доказывается так же, как в случае с мерой Лебега) $\implies \mu_g$ – мера на \mathcal{P}_1

Стандартное продолжение μ_g , которое также обозначается μ_g называется мерой Лебега-Стилтьеса, порождённой функцией g

$$\mu_g\left(\{c\}\right) = \mu_g\left(\bigcap_{j=1}^{\infty} [c, c + \frac{1}{j}]\right)$$

$$= \lim_{j \to \infty} \mu_g\left([c, c + \frac{1}{j}]\right)$$

$$= \lim_{j \to \infty} g(c + \frac{1}{j}) - g(c) = g(c + 0) - g(c)$$

$$= g(c + 0)$$

 \Longrightarrow Если c – точка непрерывности, то $\mu_g(\{c\})=0$ $\mu_g([a,b])=\mu_g([a,b])+\mu_g(\{b\})=g(b)-g(a)+g(b+0)-g(b)=(g(b+0)-g(a-0))$ $\mu_g\left((a,b)\right)=\mu_g\left([a,b]\right)-\mu(\{a\})=g(b)-g(a)-(g(a+0)-g(a))=g(b)-g(a+0)$ $\mu_g\left((a,b]\right)=g(b+0)-g(a+0)$

Определение 1. Пусть $\mu=\sum\limits_{k=1}^{\infty}h_k\delta_{a_k}, \quad h_k\geqslant 0, \quad \delta_a(E)=\begin{cases} 1, & a\in E\\ 0, & a\not\in E \end{cases}$, тогда $\mu-$ дискретная мера.

$$E, E_j \in 2^{\mathbb{R}} \quad E = \bigvee_{j=1}^{\infty} E_j \implies \delta_{a_k}(E) = \sum_{j=1}^{\infty} \delta_{a_k}(E_j)$$
$$\mu(E) = \mu(\bigvee_{j=1}^{\infty} E_j) = \sum_k \sum_j h_k \delta_{a_k}(E_j)$$
$$= \sum_j \mu(E_j)$$

Последний переход в равенстве по теореме Тонелли.

Замечание.
$$\square$$
 $\{a_k\}_{k=1}^{\infty}\subseteq\mathbb{R}$ $\forall [a,b]$ $\sum\limits_{k:a_k\in[a,b]}h_k<+\infty$

Пример 11. Если $\{a_k\}$ — дискретно (без точек сгущения на \mathbb{R}), то условие автоматически выполняется, т.к. перечесечения a_k -ых с промежутком будет конечно, а значит и сама сумма будет конечна

$$A = \mathbb{Q} \quad h_k = \frac{1}{2^k}$$

Определение 2 (функция Хэвисайда).

$$\Theta(x) = \begin{cases} 0 & , x \le 0 \\ 1 & , x > 0 \end{cases}$$

 $\exists x_0 \in \mathbb{R} \quad \forall C \in \mathbb{R}$

$$g(x) = \sum_{k=1}^{\infty} h_k \cdot (\Theta(x - a_k) - \Theta(x_0 - a_k)) + C$$

1. g(x) возрастает

2.
$$x \in [a, b]$$
 $\sum_{k} h_k(\Theta(x - a_k) - \Theta(x_0 - a_k)) \leqslant \sum_{a_k: I_{x, x_0}} h_k$

Разность Тет ненулевая, если a_k находится между x и $x_0 - I_{x,x_0}$

Утверждение 4. $A = \{a_k\}_k$

- 1. $g \in C(\mathbb{R} \setminus A)$
- 2. Непрерывность слева на A

1. $\exists x \in \mathbb{R} \setminus A \quad \exists (a,b) \ni x$ Доказательство.

$$\forall \varepsilon > 0 \quad \sum_{k: a_k \in [a,b]} h_k < +\infty \implies \exists K: \sum_{\substack{a_k \in [a,b] \\ k > K}} \leqslant \frac{\varepsilon}{2}.$$

 $g_k(x) = h_k\left(\Theta(x-a_k) - \Theta(x_0-a_k)\right)$ — локально постоянны в точке $x\left(\exists V_\delta(x) \,:\, g_k\mid_{V_\delta(x)}\equiv g_k(x)\right)$ const для $k = 1, \ldots, k$)

Не умаляя общности $[a,b] \supseteq V_{\delta}(x)$

$$g(\widetilde{x}) - g(x) = \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(x - a_k) \right) - \sum_{k=1}^{\infty} h_k \left(\Theta(\widetilde{x} - a_k) - \Theta(x_0 - a_k) \right)$$

$$= \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)$$

$$= \underbrace{\sum_{k=1}^{K} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)}_{=0} + \underbrace{\sum_{k=K+1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(\widetilde{x} - a_k) \right)}_{=\overline{2}}$$

⇒ Непрерываность

$$\Longrightarrow$$
 Непрерываность Если $x=a_k$ $g(x)=g_{k_0}(x)+\sum_{k\neq k_0}g_k$

$$\begin{split} \mu_g\left([a,b)\right]) &= g(b) - g(a) \\ &= \sum_{k=1}^{\infty} h_k \left(\Theta(b-a_k) - \Theta(a-a_k)\right) \qquad a \leqslant a_k \leqslant b \\ &= \sum_{k: a \leqslant a_k < b} h_k = \mu([a,b)]) \end{split}$$

 μ и μ_q совпадают на совокупности всевозможных промежутков.

Определение 3. Пусть $f: \mathbb{R} \to \mathbb{R}$.

Функция f называется локально суммируемой на $\mathbb{R}\iff orall \left[a,b
ight]\qquad figg|_{\mathbb{R}_{p},b}\in \mathcal{L}(\lambda_{1}).$

Определение 4. $f: \mathbb{R} \to \mathbb{R}$.

 Φ ункция f называется абсолютно непрерывной, если существует локально суммируемая функция h(x) и точка $x_0 \in \mathbb{R}$:

$$g(x) = \int_{x_0}^{x} h(x)d\lambda$$

(интеграл Лебега. Если $x < x_0$, то $\int_{x_0}^x h \, d\lambda = - \int_{[x,x_0]} h \, d\lambda$)

Если h непрерывна в точке x, то g(x) дифференцируема в точке x и g'(x) = h(x). Доказательство - смотри теорему Барроу...

Если $h(x) \ge 0$, то $g(x) \nearrow$

Функция g(x) непрерывна на \mathbb{R} . Следует из абсолютной непрерывности интеграла.

Теорема 12 (воспоминание).

$$\mu(E) = \int_{\Phi^{-1}} h d\mu \iff \forall E \in \mathcal{A} \quad \inf_{E} h \mu(E) \leqslant \nu(E) \leqslant \sup_{E} h \mu(E)$$

Замечание.

$$g(x) = \sum_{k=1}^{\infty} h_k \left(\Theta(x - a_k) - \Theta(x_0 - a_k) \right)$$

Для этой меру нужно было фиксировать открытый интервал Δ , что

$$\forall [a,b] \subseteq \Delta \quad \sum_{k: a_k \in [a,b]} h_k < +\infty$$

$$g(a_k + 0) - g(a_k - 0) = h_k \left(\Theta(a_k - a_k + 0) - \Theta(x_0 - a_k + 0) - \Theta(a_k - a_k - 0) + \Theta(x_0 - a_k - 0) \right)$$

= h_k

Утверждение 5. Если $\nu = \sum\limits_k h_k \delta_{a_k},$ то ν совпадает с μ_g на \mathcal{A}_{μ_g} при условии (*).

Доказательство. Если хочется скорее сослаться на теорему об единственности, то можно

сделать так: Рассмотрим
$$[a,b)$$
. $\nu([a,b)) = \sum_{k: a_k \in [a,b)} h_k$.
$$\mu_g([a,b)) = g(b) - g(a) = \sum_{k \in \mathbb{N}} h_k \left(\Theta(b-a_k) - \Theta(a-a_k)\right) = \sum_{k: a_k \in [a,b)} h_k.$$

Если $\{a_k\}_k$ — конечное множество, то вопросов с суммируемостью не веознкает.

$$g(x) = \sum_{k} h_k \cdot \Theta(x - a_k) + C$$

Замечание. Локально суммируемая функция — это такая, что она будет на любом шаре суммируемой по Лебегу

Теорема 13. g(x) – абслолютно непрерывная $\iff \exists h \in \mathcal{L}_{loc}(\mathbb{R}, \lambda) \exists x_0 \in \mathbb{R}, c \in \mathbb{R}$

$$(x) = \int_{x_0}^x h(x)d\lambda + C$$

По теореме Барроу g(x):

- $g(x) \in C(\mathbb{R})$,
- g(x) дифференцируема в точках ... функции h(x).

Доказательство. • Если $x_1 \in \mathbb{R}$

$$g(x) - g(x_1) = \int_{x_1}^{x} h(x)dx$$

 $\exists \delta_0 > 0, x \in V_{\delta_0}(x_1), \quad h \in \mathcal{L}(V_{\delta_0})$ $\forall \varepsilon > 0 \exists \delta (\leqslant \delta_0) > 0 : \int_E h(x) d\lambda < \varepsilon \forall E \subseteq V_{\delta_0}(x_1) : \lambda_1(E) < \delta$ \implies Если $|x_1 - x| < \delta \quad \left| \int_{x_1}^x h(x) dx \right| \leqslant \varepsilon$

• Пусть x_1 — точка непрерывности для h(x). $h(x) = h(x_1) + \underbrace{\alpha(x-x_1)}$

$$\frac{g(x) - g(x_1)}{x - x_1} = \frac{1}{x - x_1} \int_{x_1}^x h(x_1) + \alpha(x - x_1) dx = h(x_1) + \frac{1}{x - x_1} \int_{x_1}^x \alpha(x - x_1) dx \leqslant \varepsilon(x - x_1)$$

Если "x остаточно близок к x_1 "

Замечание. В частности, если $h(x) \in C(\mathbb{R}) \implies g \in C^1(\mathbb{R})$ и $g'(x) \equiv h(x)$

Замечание.

$$\int_E f d\nu = \sum_{k \ : \ a_k \in E} h_k f(a_k) = \sum_{k \ : \ a_k \in E} f(a_k) \cdot \ \text{ скачок } g(a_k)$$

Утверждение 6. $\Box g(x) = \int_{x_0}^x h(x) d\lambda_1(x) + C \quad h(x) \geqslant 0 \quad h \in \mathcal{L}_{loc}\left(\mathbb{R},\lambda\right)$ абсолютно непрерывная возрастающая функция.

Тогда $\int_E f d\mu_g = \int_E f(x)h(x)d\lambda(x)$. В частности, \forall возрастающей $g(x) \in C^1(\mathbb{R})$.

$$\int_{E} f d\mu_{g} = \int_{E} f \cdot g'(x) d\lambda(x) \left(= \int_{E} f \cdot dg \right).$$

Доказатель ство. $\triangleleft \nu(E) = \int_E h d\lambda_1$.

$$\mu_g(\langle a,b\rangle) = \mu_g([a,b)) = g(b) - g(a) = \int_a^b h(x)d\lambda_1 = \nu([a,b)) = \nu(\langle a,b\rangle).$$

 μ_{q} и ν совпадают на открытых. Если K – компакт, $K = B \setminus (B \setminus K)$ $\nu(K) + +\nu(B \setminus K) = \nu(B)$ $\mu_q(K) = \nu(K) = \nu(B) - \nu(B \setminus K)$ $\square E - \lambda_1$ -мера O $\implies \exists \delta > 0 \exists$ открытое $G: E \subseteq G$ и : $\lambda_1(G) < \delta$ $\Longrightarrow \int |_{G_0}$ — абсолютно непрерывное $\Longrightarrow \forall \varepsilon > 0 \exists \delta > 0 : \lambda_1(\widetilde{E}) < \delta \quad \widetilde{E} \subseteq G$ $\int_{\widetilde{E}} h < \varepsilon \quad \widetilde{E} = G \implies \nu(G) < \varepsilon \implies \mu_g(G) < \varepsilon \varepsilon - \forall \implies \nu(E) = \mu_g(E) = 0$ Если E — неограничено λ_1 —меры $0 \implies \exists$ ограниченое $E_j : E = \bigcup E_j$. $\forall i \in \mathbb{N} \ \lambda_1(E_j) = 0$

 $0 \implies \nu(E_i) = \mu_q(E_i) = 0 \implies \nu(E) = \mu_q(E).$

Дальше можно применить теорему о плотности меры. Применяю общую мхему замены переменной все доказывается.

Задача 2. 1. $g(x) = \operatorname{arctg} x$. Найти:

(a)
$$\sup \left\{ \mu_g(I) : I = \langle a, b \rangle, \ \lambda_1(I) \leqslant \delta \right\}, \ \delta > 0.$$

(b) $\sup \left\{ \lambda_1(I) : I = \langle a, b \rangle, \ \mu_g(I) \leqslant \delta \right\}, \ \delta > 0.$

2.
$$g(x) = \operatorname{arctg} x + \Theta(x - 1)$$

(a) Для
$$\delta = 1$$

Решение. $\mu_g(I) = g(b) - g(a) = \int_I g'(t) dt = \int_{[a,b]} \frac{dt}{1+t^2}$

1. (a)

$$\sup\{\mu_g(I)\} = 2\int_0^{\frac{\pi}{2}} \frac{dt}{1+t^2}$$

Пример 12. Пример меры Лебега-Стилтьеса не евклидовой, не дискретной, не абсолютно непрерывной:

$$C_0 = [0,1]$$
 $C_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$
 $C_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{1}{3}\right] \cup \left[\frac{2}{3}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right]$
 $C_{k+1} \subseteq C_k \quad C_k$ — компакт
 $C = \bigcap_{k=1}^{\infty} C_k$ — компакт
 $\lambda_1(C) = \lambda_1([0,1]) - \frac{1}{3} - \frac{2}{9} - \dots - \frac{2^{k-1}}{3^k} = 0$

 $\psi(x) = \frac{1}{3}x \quad \Theta(x) = 1 - x$

$$\Phi = \{ [0,1] \cap C, \psi(C), \Theta\psi(C), \psi\psi(C), \psi\Theta(C), \Theta\psi\psi(C), \Theta\psi\Theta\psi(C), \ldots \}$$

- полукольцо

 $\mu(C)=1$ $\mu(P)=\frac{1}{2^k}$ – если P есть результат применения k штук ψ и Θ $\triangleleft \mu$ – стандартное продолжение

4 Интегралы, зависящие от параметра

Пример 13.

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx, \quad p > 0, p \in \mathbb{R}; \quad \int_a^b f(x, y) dx, \quad \int_\alpha (y)^\beta(y) f(x, y) dx.$$

Пока что мы будем рассматривать интегралы, зависящие от параметра y по фиксированному промежутку: $I(y) = \int_X f(x,y) d\mu(x)$.

Пусть у нас есть пространство с мерой $(X, \mathcal{A}, \mu), f(;\mu) \in \mathcal{L}(X, \mu). Y \subseteq \overline{Y}.$

Для чего это нужно? Бывает, что просто сформулированные задачи имеют ответ в виде интеграла с параметром. Бывает, что введение параметра упрощает вычисление интеграла.

Утверждение 7. f уовлетворяет условию Лебега локально относительно y_0, y_0 — параметр, если \exists открытое $V(y_0)$ в \overline{Y} и $\Phi_{(x)} \in \mathcal{L}(X,\mu) \ \forall y \in V(y_0)$ для почти всех $x \in X$.

Утверждение 8. Пусть у нас есть пространство с мерой $(X,\mathcal{A},\mu), \overline{Y}$ — метрическое пространство, $Y\subseteq \overline{Y},\ y_0$ — предельная точка для Y. Почти везде $f(x,y)\to g(x)$ при $y\to y_0$, и f(x,y) удовлетворяет локаольно условию Лебега относительно y_0 . Тогда $g(x)\in\mathcal{L}(X,\mu)$ и

$$\lim_{y \to y_0} \int_X f(x,y) d\mu(x) = \int_X g(x) d\mu(x)$$

Доказательство. Так как y_0 — предельная, $\exists \{y_k\} \subseteq Y \to y_0$. $f_k(x) = f(x,y_k), y_k \in V(y_0) \Longrightarrow |f_k(x)| \leqslant \Phi(x) \Longrightarrow$ по теореме Лебега о мажорируемой сходимости, $g(x) = \lim_{k \to \infty} f(x,y_k) \in \mathcal{L}(X,\mu)$ и

$$\int_X g(x)d\mu = \int_X \lim_{k \to \infty} f(x,y_k)d\mu = \lim_{k \to \infty} \int_X f(x,y_k)d\mu.$$

$$I(y) = \int_X f(x,y) d\mu(x); \quad \lim_{k \to \infty} I(y_k) \,\, \forall \,\, \text{последовательности} \,\, y_k \to y_o \implies \exists \lim_{y \to y_0} Y(y).$$

Пример 14.
$$\exists p_0 > 0 \quad \exists \forall p \in V_\delta(p)$$
 $x \in (0,1]$ $x^{p-1}e^{-x} \leqslant x^{p_0-\delta}e^{-x}$ $x > 1$ $x^{p-1}e^{-x} \leqslant x^{p_0+\delta}e^{-x}$ $\Phi(x) = \begin{cases} x^{p_0-\delta}e^{-x} & , x \in (0,1] \\ x^{p_0+\delta}e^{-x} & , x > 1 \end{cases}$ $\int_0^{+\infty} x^q e^{-x} dx - \text{сходится для любого}$

Замечание. Если в условиях предыдущего утверждения f(x,y) — непрерывна по y в точке y_0 , то наш интеграл I(y) тоже будет непрерывен в точке y_0 .

Определение 5. Пусть имеется пространство с мерой $(X, \mathcal{A}, \mu), y_0$ — предельная точка для $Y \subseteq \overline{Y}$ $f(x, y) \Rightarrow g(x)$ на X при $y \to y_0$ если $\forall \varepsilon > 0 \exists$ окрестность $V(y_0)$:

$$\forall x \in X \quad \forall y \in V(y_0) \quad |f(x,y) - g(x)| < \varepsilon \iff \sup_{x \in X} |f(x,y) - g(x)| \underset{y \to y_0}{\longrightarrow} 0.$$

Пример 15. 1. (хороший) $f(x,y) = \frac{\sin(x^2+y^2)}{1+x^2+y^2}$ $y \to +\infty$

$$|f(x,y)| \leqslant \frac{1}{1+y^n} \implies y \to \infty \sup |f(x,y)| = \frac{1}{1+y^n} \underset{y \to \infty}{\longrightarrow} 0.$$

Сходимость есть и равномерная сходимость тоже есть.

2. (плохой) $xye^{-xy} \underset{y \to 0}{\to} 0$. Сходимость к нулю есть, а

 $\sup x > 0xye^{-xy} \geqslant f(\frac{1}{y},y) = \frac{1}{e} \not\to 0 \implies$ равномерно не сходится.

Утверждение 9. Пусть $(X, A, \mu), \mu(X) < +\infty$.

$$f(x,y) \underset{y \to y_0}{\Longrightarrow} g(x), \quad f(x,y) \in \mathcal{L}(X,\mu).$$

Тогда $g(x) \in \mathcal{L}(X,\mu)$ И

$$\lim_{y \to y_0} \int_X f(x, y) d\mu(x) = \int_X g(x) d\mu(x)$$

Доказатель ство. Для $\varepsilon=1$ \exists окрестность $V(y_0): \forall x\in X,y\in V(y_0) |f(x,y)-g(x)|\leqslant 1: |g(x)|\leqslant |f(x,y)|+|g(x)-f(x,y)|\leqslant |f(x,y)|+1 \implies g\in \mathcal{L}(X,\mu)$

Утверждение 10. (X, \mathcal{A}, μ) — пространство с метрой $y \subseteq \mathbb{R}(\mathbb{C})$, y_0 — предельная точка для Y. Пусть f(x,y), f'_y — удовлетворяет условию Липшица локально, $f: X \times Y \to \mathbb{R}(\mathbb{C})$.

Тогда $I(y) = \int_X f(x,y) d\mu(x)$ дифференцируема в точке y_0 и

$$I'(y_0) = \int_{Y} f'_y(x, y) d\mu(x).$$

Доказательство.

$$\begin{split} I'(y_0) &= \lim_{y \to y_0} \frac{I(y) - I(y_0)}{y - u_0} \\ &= \lim_{y \to y_0} \frac{1}{y - y_0} \int_X \underbrace{\frac{(f(x, y) - f(x, y_0))}{f'_y(x, y_0 + \Theta(y - y_0)), \; \Theta \in (0, 1)}} d\mu(x) \\ &= \lim \int_X f'_y(x, y_0 + \underbrace{\Theta(y - y_0))}_{C(y)} d\mu(x) \\ &= \int_X \lim(\dots) d\mu(x) = \int_X f'_y(x, y_0) d\mu(x). \end{split}$$

 $y \in V_{\delta}(y_0)$ – из условия Липшица для $f_y' \implies C(y) \in V_{\delta}(y_0)$

$$\implies \underbrace{\left| \underbrace{f_y'(x, C(y))}_{f_y'(x, y_0)} \right|}_{f_y'(x, y_0)} \leqslant \Phi(x)$$

Пример 16. $\Gamma(p) \int_0^\infty x^{p-1} e^{-x} d\mu$.

$$f_p'(x,p) = (p-1)x^{p-2}e^{-x}, \ p-2 > -1 \implies p > 1.$$

При p>1

$$\Gamma'(p) = (p-1) \int_0^{+\infty} x^{p-2} e^{-x} = (p-1) \cdot \Gamma(p-1) \implies \Gamma'(p) = (p-1) \cdot \Gamma(p-1).$$

$$\Gamma(p) = \int_0^{+\infty} \frac{('x^p)}{p} = \frac{1}{p} \left(x^p e^{-x} \Big|_o^{\infty} - \int_o^{+\infty} x^p ('e^{-x}) dx \right) = \frac{1}{p} \cdot (p+1).$$

$$\Gamma(1) = \int_0^{+\infty} e^{-x} = 1$$

$$\Gamma(3) = 2$$

$$\Gamma(n) = (n-1)! \quad n \in \mathbb{N}.$$