CV HWI - Theoretical	Ouestions
A1) Image Formation	- Udita Grupta - ung 200
a) fi = 50mm	angess
12 = 4mm	
J2 = 4mm No. of pixels = 16x10	
J, = U, = V, Z × Y	
= > 50 = 0 $12 = 4 = 4$	1, = V)
$\frac{\int_2 = U_2 - V_2}{\chi} = \frac{4}{\sqrt{1 + \frac{1}{2}}}$	$\sqrt{2}$ $\sqrt{2}$
=> 50 = 36 4 Uz	
Uz = 2.88 mm	
	0 68
Since it a square sensor too, so u,=	
Ratio to smartphone size to professional	Sensor size:
<u> </u>	
36mm (50 L	
b) Size of sensor pixel element: We know that the sensor size	= 2.86mm
	T. M. S.
$(2.88)^2 = (16x10^6) \times m$	1 1 1
$m = 0.518 \times 10^{-12} / m^2$	size of pixel in smartphone

Professional Camera:
$ (36)^{2} \times 10^{-6} = 16 \times 10^{6} \times m $
where m is size of pixel in professional
Carrola,
$m = (36)^2 \times 10^{-6}$
16 x 10 6
$m = 81 \times 10^{-12} m^2$
Reajons:
neagons.
The receipes what produced as anothers order expensive
The reasons why projessionals or amateurs prefer expensive
1 JOHNEY COMPACE - POHORY SERVEY SELVEY SENSON
1. larger camera:- larger sensor size. So larger sensor can capture more light
2. Its also better quality
3. More clarity
4. Good for low light images
Advantages of more -> You can capture more information, more pixels resolution.
pixels resolution.
Longer for al length means larger arpeture diameter. Its the airpeture that gives you more light to pixels
experime that gives you more light to pixels
Disadvantages of large expensive cameras:
M. a.
- More expensive
- Big - Bulky
- Burney

c) Storage reprisement
It can be calculated by multiplying the number of pixels by the number of channels
In owr case, we have RGB => 3 channels
So the storage repuirement for both the professional camera images & smartphone images
16 x 10 ° x 3 byles
= 48 MB
A2) Here (a) => Image (a) (b) => Image (b)
There are four cases:
Case 1: 8-neighborhood fureground 2 4-neighborhood background
Image (a) I component for 8-neighborhood fureground 1 component for 4-neighborhood background
Image (b) 1 component for 8-neighborhood foreground 2 component for 4-neighborhood background
Case 2: 8-neighbishood background, 4-neigh foreground
Image (a) = 25 components -> 4neigh. Juleground 1 component -> 8 neigh. background
Image (b) = 11 components -> 4 neigh fureground 1 component -> 8 neigh background

Case 3: 8 neigh forteground. 8 neigh background
Image (a) -> 1 Component -> 8 neigh foreground 1 component -> 8 neigh background
Image (b) >> 1 component -> 8 neigh foreground 1 component -> 8 neigh background
Case 4: 4-neigh forteground, 4-neigh background
Image (a) => 25 Component => 4 Jureground Component -> 4 background
Image (b) -> 11 components -> 4 foreground 2 components -> 4 background
4- connected means:
Pixels neighbors - above, below, left & right are connected to the pixel.
4-connected pixels are neighbors to every pixel that touches one of their edges.
8-connected: 8 connected pixels we neighbors to every pixel that touches one of theire edges or wives
all those are counted as 8-connected.

A3) Histogram Epualization:
Why is the histogram of a discount disorder image not flat histogram equalization.
=> Epualization is used to enhance contrast.
While cloing histogram equalization of a discrete image, we use a discrete Sum to approximate a continuous integral of the CDF (which is cumulative sum of PDF)
In other words, the resulting number of pixels is also a discrete integer which affects final outcome
Discrete histogram is an approximation of continues PDF & no new intensity levels are viewed in equalization process
Hence a non-flet histogram is an effect of discretization.