

無機化学

目次			6.5 6.6	二酸化窒素	_
			7	リン	14
第Ⅰ部	非金属元素	3	7.1	リン	14
1	水素	3	7.2	十酸化四リン	14
1.1	性質	3	7.3	リン酸	14
1.1	同位体	3		⊭ ≠	4 5
1.3	製法	3	8	炭素 炭素	15
1.4	反応	3	8.1	一酸化炭素	
1.4	χ,ια	3	8.2	二酸化炭素	
2	貴ガス	3	8.3	一敗化灰茶	10
2.1	性質	3	9	ケイ素	17
2.2	生成	3	9.1	ケイ素	17
2.3	ヘリウム	3	9.2	二酸化ケイ素	17
2.4	ネオン	3			
2.5	アルゴン	3	単Ⅱ邨	3 典型金属	19
3	ハロゲン	4	No 11 Hb	· 八工业阀	10
3.1	単体	4	10	アルカリ金属	19
3.1	単体		10.1	単体	19
3.3	ハロゲン化銀	5 c	10.2	水酸化ナトリウム(苛性ソーダ)	20
	次亜塩素酸塩・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6	10.3	炭酸ナトリウム・炭酸水素ナトリウム	20
3.4	久田塩系酸塩・・・・・・・・・・・・・・ 塩素酸カリウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6		0.44—±	
3.5	塩糸政力リケム	6	11	2族元素	22
4	酸素	7	11.1	単体	
4.1	酸素原子	7	11.2	酸化カルシウム(生石灰)	
4.2	酸素	7	11.3	水酸化カルシウム(消石灰)	
4.3	オゾン	7	11.4	(11, 11, 1)	
4.4	酸化物	8	11.5		
4.5	水	8		硫酸カルシウム	
_	74:44	•	11.7	伽酸ハリソム	23
5	硫黄	9	12	12 族元素	24
5.1	硫黄	9	12.1	単体	24
5.2	硫化水素		12.2	酸化亜鉛 (亜鉛華)・水酸化亜鉛	25
5.3	二酸化硫黄(亜硫酸ガス)		12.3	塩化水銀 (I)・塩化水銀 (II)	25
5.4	硫酸	11			
5.5	チオ硫酸ナトリウム(ハイポ)	11	13	アルミニウム	26
5.6	重金属の硫化物	12	13.1	アルミニウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
6	窒素	12	13.2	酸化アルミニウム・水酸化アルミニウム	
6.1	窒素	12	13.3	ミョウバン・焼きミョウバン	26
6.2	アンモニア	12	14	スズ・鉛	27
6.3	一酸化二窒素(笑気ガス)..........	13	14.1	単体	
6.4	一酸化窒素	13	14.2	塩化スズ(Ⅱ)	
			I		

14.3 14.4		
14.4	如少粧役は10日初	20
第Ⅲ部	邵 遷移金属	29
15	鉄・コバルト・ニッケル	29
15.1	鉄	29
15.2	硫酸鉄 (II) 7 水和物	30
15.3	塩化鉄(Ⅲ)6 水和物	31
15.4	鉄イオンの反応	31
15.5	塩化コバルト (II)	31
15.6	硫酸ニッケル(II)	31
16	銅	32
16.1	銅	32
16.2	硫酸銅 (II) 5 水和物	32
16.3	銅(II)イオンの反応	33
16.4	銅の合金	33
17	銀	34
17.1	銀	34
17.2	銀 (I) イオンの反応	34
17.3	難溶性化合物の溶解性	
18	クロム・マンガン	36
18.1	単体	36
18.2	クロム酸カリウム・二クロム酸カリウム	36
18.3	過マンガン酸カリウム	36
18.4	マンガンの安定な酸化数	37
第 IV 部	部 APPENDIX	38
Α	気体の乾燥剤	38
В	水の硬度	38
С	金属イオンの難容性化合物	39
D	錯イオンの命名法	40
E	金属イオンの系統分離	41

第一部

非金属元素

1 水素

1.1 性質

- ① 色② 臭の③
- 最も④
- 水に溶け⑤

1.2 同位体

 1 H 99% 以上 2 H (⑥)0.015% 3 H (⑦) 微量

1.3 製法

- ナフサの電気分解 <u>工業的製法</u>
- 8 に9 を吹き付ける **工業的製法**
- 10 (11) の電気分解
- 12 が13 金属と希薄強酸
 - 例 $Fe + 2 HCl \longrightarrow FeCl_2 + H_2 \uparrow$
 - $\bigcirc \mathbb{R}$ Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow
- 水素化ナトリウムと水

1.4 反応

- 水素と酸素 (爆鳴気の燃焼)
- 加熱した酸化銅(Ⅱ)と水素

2 青ガス

(14) , (15) , (16) , (17) , Xe, Rn

2.1 性質

- 18 色19 臭
- 第 18 族元素であり、電子配置がオクテットを満たすため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が20
- 電気陰性度が21

2.2 生成

⁴⁰K の電子捕獲

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式: $Ar N_2$, O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	${ m I}_2$
分子量	小 -			大
分子間力	弱 -			
反応性	強 二			———— 弱
沸点・融点	低 -			
常温での状態	22	23	24	25)
色	26 色	27 色	28 色	29 色
特徴	30 臭	31 臭	揮発性	32 性
H ₂ との反応	33 でも	34 でも35 で	36 して	高温で平衡状態
112 6 07/2/10	爆発的に反応	爆発的に反応	37 により反応	38 して39 により一部反応
水との反応	水を酸化して酸素と	41	42	43
水と切 次心	40 反応			44)
用途	保存が困難	45 による	$C=C \not \sim$	47 反応で
20,11,	Kr や Xe と反応	46 作用	C≡C の検出	48 色

3.1.2 製法

•	フッ化水素ナトリウム KHF ₂ のフッ化水素 HF 溶液の
	電気分解 工業的製法

 $\mathrm{KHF_2} \longrightarrow \mathrm{KF} + \mathrm{HF}$

	(49)	の電気分解	塩麦	丁業的製法
•	40	ツ电刈り炸	地 米	上未时发达

•	50	に51	を加えて加熱 塩素

•	52	と53	塩素

•	54	<u> 55</u>	塩素

•	臭化マグネシウムと塩素 臭素
	$MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$

•	ヨウ化カリウムと塩素 ヨウ素
	$2 \text{ KI} + \text{Cl}_2 \longrightarrow 2 \text{ KCl} + \text{I}_2$

3.1.3 反応

•	フッ素と水素	_
_	塩素と水素]
•	祖糸と小糸	
•	臭素と水素	
	-), -tr), 1, -tr	
•	ヨウ素と水素	

•	フッ素と水

•	塩素と水
•	臭素と水

• ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物イオンを形成して溶解する反応

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$

 Cl_2,HCl,H_2O

↓56 に通す (HCl の除去)

 $\mathrm{Cl}_2,\mathrm{H}_2\mathrm{O}$

↓57 に通す (H₂O の除去)

 Cl_2

3.1.5 塩素のオキソ酸

オキソ酸 ...58

+ VII	59	60	
+ V	61	62	
+ III	63	64	
+ I	65	66	

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI					
色・臭い		67 色68	臭						
沸点	20°C	−85°C	−67°C	−35°C					
水との反応		69							
水溶液	70	71	72	73					
(強弱)	74	≪ 75 <	76 <	77					
用途	78 と反応	79 の検出	半導体加工	インジウムスズ					
川瓜	⇒ ポリエチレン瓶	各種工業	十等件加工	酸化物の加工					

3.2.2 製法

3.2.3 反応

• 気体のフッ化水素がガラスを侵食する反応

3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF		AgCl		Ag	Br	AgI		
固体の色	91	色	92	色	93	色	94	色	
水との反応	95				96				
光との反応	97			感光	6性(-	→98)		

3.3.2 製法

- 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮
- ・ ハロゲン化水素イオンを含む水溶液と99

3.4 次亜塩素酸塩

3.4.1 性質

100 剤として反応(101 ・102 作用)

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素
- 水酸化カルシウムト梅素
- 水酸化カルシウムと塩素

3.5 塩素酸カリウム

化学式: 103

3.5.1 性質

(104) の生成((105) を触媒に加熱)

4 酸素

4.1 酸素原子

同106 体:酸素 (O_2) ,107 (O_3)

地球の地殻に108 存在

- 地球の地殻における元素の存在率 -

109	110	111	112	113	114
115	> (116)	> (117)	> (118)	> (119)	> (120)
46.6%	27.7%	8.13%	5.00%	3.63%	2.83%
おっ	L	やる	て	か	な

4.2 酸素

化学式: O_2

4.2.1 性質

- (121) 色(122) 臭の(123)
- 沸点 −183°C

4.2.2 製法

- 124工業的製法
- 125 (126) Ø127
- (128) ((129)) の分解
- (30) の熱分解
- 4.2.3 反応

(131) 剤としての反応

4.3 オゾン

化学式: 132

4.3.1 性質

- (133) 臭((134) 臭)を持つ(135) 色の(136) (常温)
- 水に137
- 138 · 139 作用

オゾンにおける酸素原子の運動 -

4.3.2 製法

酸素中で146 /強い147 を当てる

4.3.3 反応

- 148 剤としての反応
- 湿らせた(149)を(150)色に変色

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性	主酸化物	両性	酸化物	酸性酸化物		
元素	(151)	元素	152	元素	(153)	元素	
水との反応	154)	(155	5)	(156)	(157)	
中和	158	と反応	159	と反応	(160)	と反応	

両性酸化物···(161) (162) ,163 (164) ,165 (166)) ,167 (168))*1

 $\bigcirc O_2 + H_2O \longrightarrow H_2CO_3$

 $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$

4.4.1 反応

• 酸化銅(II) と塩化水素

• 酸化アルミニウムと硫酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

4.5 水

4.5.1 性質

• 169 分子

• 周りの4つの分子と170 結合

• 異常に171 沸点

• 172 結晶構造 (密度:固体173 液体)

• 特異な174

4.5.2 反応

• 酸化カルシウムと水

→ #4 // · /// → 1

• 二酸化窒素と水

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	175	硫黄	176	硫黄	(177)	硫黄	
化学式	178		(179)		180		
色	181	色	182	色	183	色	
構造	184	結晶	(185)	結晶	(186)	固体	
融点	113	$^{\circ}\mathrm{C}$	119	°C	不定		
構造	\$	S S	S S S		,,,,S _ S		
CS ₂ との反応	(187)		188		(189)		

CS₂··· 無色・芳香性・揮発性 ⇒ 190 触媒

5.1.2 反応

• 高温で多くの金属(Au, Pt を除く)と反応

例Fe

空気中で191 色の炎を上げて燃焼

5.2 硫化水素

化学式: 192

5.2.1 性質

• 193 色194 臭

• 195 性 $\begin{cases} 196 & K_1 = 9.5 \times 10^{-8} \; \mathrm{mol/L} \\ 197 & K_2 = 1.3 \times 10^{-14} \; \mathrm{mol/L} \end{cases}$

198 剤としての反応

重金属イオン M²⁺ と 199 を生成

5.2.2 製法

硫化鉄(Ⅱ)と希塩酸

• 硫化鉄 (II) と希硫酸

5.2.3 反応

• 硫化水素とヨウ素

酢酸鉛(Ⅱ)水溶液と硫化水素(200) の検出)

5.3 二酸化硫黄 (亜硫酸ガス)

5.3 二酸化硫黄 (亜硫酸ガス)

化学式:201	電子式:	

5.3.1 性質

- 202 色、203 臭の204
- 水に205
- 206 性

 $K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

• 208 剤 (209 作用)

 • 210
 剤(211)
 などの強い還元剤に対して)

5.3.2 製法

•	硫黄や	流化物の(212)	工業的製法	
•	213	と希硫酸		
•	214	と215		_

5.3.3 反応

- 二酸化硫黄の水への溶解二酸化硫黄と硫化水素
- 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

5.4 硫酸

5.4.1 性質

- 216 色217 臭の218
- 水に219
- 溶解熱が220
- 221 を加えて希釈
- (222) 性で密度が223 く、224 が大きい 濃硫酸
- 225 性・226 作用濃硫酸
- (227) 希硫酸

(228)

 $K_1 > 10^8 \text{mol/L}$

の濃度が小さい) • 229 濃硫酸 (230 、231 剤として働く 熱濃硫酸 • 232

• 233 (234),235) (236) と難容性の塩を生

成 希硫酸

5.4.2 製法

5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

スクロースと濃硫酸

• 水酸化ナトリウムと希硫酸

• 銅と熱濃硫酸

• 銀と熱濃硫酸

• 塩化バリウム水溶液と希硫酸

5.5 チオ硫酸ナトリウム (ハイポ)

化学式: 241

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- 244 剤として反応

例水道水の脱塩素剤 (カルキ抜き)

(245)

$$\begin{array}{c} \vdots \ddot{\mathbf{O}} \colon \vdots \ddot{\mathbf{O}} \colon \vdots \ddot{\mathbf{O}} \colon \vdots \ddot{\mathbf{O}} \\ \vdots \ddot{\mathbf{O}} \colon \ddot{\mathbf{S}} \colon \ddot{\mathbf{S}} \colon \ddot{\mathbf{S}} \colon \ddot{\mathbf{S}} \colon \ddot{\mathbf{S}} \colon \ddot{\mathbf{O}} \\ \vdots \ddot{\mathbf{O}} \colon \vdots \ddot{\mathbf{C}} \colon \vdots \ddot{\mathbf{O}} \colon \vdots \ddot{\mathbf{O}} \ddot{\mathbf{O}} \vdots \ddot{\mathbf{O}} \ddot{\mathbf{O$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

5.6 重金属の硫化物

	酸性でも沈澱(全液性で沈澱)								中性	・塩基性	で沈	殿(酸性	上では	溶解)					
Ag ₂	$_{2}S$	Hg	S	Cu	S	Pbs	S	Sn	S	Cd	S	Nis	3	Fes	S	Zn	S	Mn	ıS
246	色	247	色	248	色	249	色	250	色	<u>251</u>	色	252	色	253	色	254	色	<u>255</u>	色

256 イオン化傾向 257 258 塩の溶解度積 (K_{sp}) ②59

6 窒素

6.1 窒素

化学式: N_2

6.1.1 性質

- 260 色261 臭の262
- 空気の 78% を占める
- 水に溶け263 (264) 分子)
- 常温で265 (食品などの266))
- 高エネルギー状態 (267 · 268) では反応

6.1.2 製法

- 269 工業的製法
- 270 Ø271

6.1.3 反応

• 窒素と酸素

• 窒素とマグネシウム

6.2 アンモニア

化学式: 272

6.2.1 性質

- 273 色274 臭の275
- 276 結合
- 水に277 (278) 置換)
- 279 性 (280)

 $K_1=1.7\times 10^{-5}~\mathrm{mol/L}$

- 281 の検出
- 高温・高圧で二酸化炭素と反応して、282 を生成

6.2.2 製法

• 283 工業的製法 284 温285 圧で、286 (287))触媒 と (289) • 288 を混ぜて加熱

6.2.3 反応

• 硫酸とアンモニア

• 塩素の検出

• アンモニアと二酸化炭素

空欄編

6.3 一酸化二窒素(笑気ガス)

化学式: 290

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 291 効果

6.3.2 製法

292 の熱分解

6.4 一酸化窒素

化学式: (293)

6.4.1 性質

- 294 色295 臭の296
- 中性で水に溶けにくい
- 空気中では297 とすぐに反応
- 血管拡張作用·神経伝達物質

6.4.2 製法

 298
 と 299

6.4.3 反応

酸素と反応

6.5 二酸化窒素

化学式: 300

6.5.1 性質

- 301 色302 臭の303
- 水と反応して304 性(305 の原因)
- 常温では306 (307 色) と308
- 140°C 以上で熱分解

6.5.2 製法

<u>309</u> と<u>310</u>

6.6 硝酸

化学式: 311

6.6.1 性質

- 312 色313 臭で314 性の315
- ・水に316
- 317 性

 $K_1 = 6.3 \times 10^1 \text{mol/L}$

- ③19 に保存(③20)
- 321 剤としての反応 希硝酸

• <u>322</u> 剤としての反応 <u>濃硝酸</u>

• イオン化傾向が小さい Cu、Hg、Ag も溶解

323 ,324 ,325 ,326 ,327 は328 かず 生じて不溶 濃硝酸

=**329**

- 330 (331) :1332 =3:1) は、Pt,Au も溶解
- NO₃ は333 ⇒ 334 で検出

6.6.2 製法

• 335

| | 1. <u>| 336</u> | 触媒で<u>| 337</u> | を<u>| 338</u> |

2. 339

3. 340 と反応

341 に342 を加えて加熱

6.6.3 反応

• アンモニアと硝酸

硝酸の光分解

• 亜鉛と希硝酸

• 銀と濃硝酸

7.2 十酸化四リン 7 リン

7 リン

7.1 リン

7.1.1 性質

三種類の同343 体がある

一座域が同じじ	14.0 m		
名称	344 リン	345 リン	黒リン
化学式	346	347	P_4
融点	44°C	590°C*2	610°C
※ ル占	35°C	260°C	
発火点	348 に保存	349	-
密度	$1.8\mathrm{g/cm^3}$	$2.16\mathrm{g/cm^3}$	$2.7\mathrm{g/cm^3}$
毒性	(350)	(351)	352
構造	P	P P P P P P P P P P	略
CS ₂ への溶解	353	354	355

7.1.2 製法

• リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 **黄リン** 工業的製法

空気を遮断して黄リンを 250°C で加熱 赤リン

空気を遮断して黄リンを 200°C、1.2×10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: 356

7.2.1 性質

• 白色で昇華性のある固体

• 357 (水との親和性が358)

乾燥剤

• 水を加えて加熱すると反応 (359)

7.2.2 製法

360

7.2.3 反応

水を加えて加熱

7	.3	- 1]	ン	而允
1				曰又

化学式:361

7.3.1 性質

• 362 性

363

 $K_1 = 7.5 \times 10^{-3} \text{ mol/L}$

7.3.2 反応

• リン酸と水酸化カルシウムの完全中和

• リン酸カルシウムとリン酸が反応して重過リン酸石灰が 生成

• リン酸カルシウムと硫酸が反応して過リン酸石灰が生成

8 炭素

8.1 炭素

8.1.1 性質

炭素の同364 体

- 365
- 366 (367)
- 無定形炭素

用途 顔料・脱臭剤 (活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• 368

用途医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	369	370
特徴	(371) 色(372) で屈折率が大きい固体	373 色で374 がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3\mathrm{g/cm^3}$
構造	375 方向の376 結晶	377 構造 (378)
硬さ	379	380
沸点	(381)	382
電気伝導性	383	384)
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式:385

C,O電子の持つ391による効果C=O間の392の差による効果
COの極性は393

8.2.1 性質

- 394 色395 臭で396 な気体
- 赤血球のヘモグロビンの397 に対して強い398
- 399 性で水に溶け400 。(401 置換)
- 402 性、高温で403 性(404) との親和性が非常に高い)

8.2.2 製法

405 に406 を吹き付ける 工業的製法

炭素の407

- 408 に409 を加えて加熱
- • 410
 に411
 を加えて加熱

8.2.3 反応

- 燃焼 $CO + O_2 \longrightarrow 2 CO_2$
- 鉄の精錬

8.3 二酸化炭素

8.3.1 性質

- 412 色413 臭で414 性(固体は415)
- 大気の 0.04% を占める
- 水に416
- 417 性

 $K_1 = 4.3 \times 10^{-7} \text{ mol/L}$

8.3.2 製法

- <u>419</u> を強熱 <u>工業的製法</u>
- 420 と421
- <u>422</u> の熱分解

8.3.3 反応

- 二酸化炭素と水酸化ナトリウム
- 423 に通じると424 しさらに通じると425

9 ケイ素

9.1 ケイ素

9.1.1 性質

- 426 色で427 がある428 結晶
- (429)
- 430 に使用(高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が431 (金属は高温で電気伝導性が432)

9.1.2 製法

9.2 二酸化ケイ素

化学式: (437)

9.2.1 性質

- 438 色(439) の(440) 結晶
- (441)
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 442 酸化物
- 443 (444) ・吸着剤)の生成に用いられる
 多孔質、適度な数の(445)

9.2.2 反応

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

シリカゲル生成過程での構造変化

1.	二酸化ケイ素	(シリカ)	SiO_2	

2. ケイ酸ナトリウム Na₂SiO₃

3. ケイ酸 $SiO_2 \cdot n H_2O$ $(0 \le n \le 1)$

\mathcal{L}

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で455 金属
- 全体的に反応性が高く、456 中に保存
- 原子一個あたりの自由電子が457 個(458 い459 結合)
- 還元剤として反応

化学式	Li	Na	K	Rb	Cs
融点	181°C	98°C	64°C	39°C	28°C
密度	0.53	0.97	0.86	1.53	1.87
構造		460 t	各子(461))		
イオン化エネルギー	大				
反応力	小 —				一 大
炎色反応	462 色	463 色	464 色	465 色	466 色
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)

10.1.2 製法

水酸化	物や塩化物の個	67)	(468)	法) 工業的製法
469	添加(470))		

10.1.3 反応

ナ	F 1	ノウ	ムと	:酸素
---------------------	-----	----	----	-----

• ナトリウムと塩素

• ナトリウムと水

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 471

10.2.1 性質

- 472 色の固体
- 473 性
- 水によくとける(水との親和性が474)
- 475 剤
- 強塩基性

(476) $K_1 = 1.0 \times 10^{-1} \text{mol/L}$

空気中の④77 と反応して、純度が不明
 酸の標準溶液(④78) を用いた中和滴定で濃度決定

10.2.2 製法

(479) の(480) (イオン交換膜法) **工業的製法**

10.2.3 反応

• 塩酸と水酸化ナトリウム

塩素と水酸化ナトリウム

■無こ外段ロティクテム

• 二酸化硫黄と水酸化ナトリウム

・ 酸化亜鉛と水酸化ナトリウム水溶液

• 二酸化炭素と水酸化ナトリウム

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	(481)	482
色	483 色	(484) 色
融点	850°C	485
液性	486 性	487 性
用途	488 や石鹸の原料	胃腸薬・ふくらし粉

10.3.2 製法

10.3.3 反応

- Na₂CO₃ 513 $K_1 = 1.8 \times 10^{-4}$
- NaHCO₃ $\left\{ \begin{array}{ll} \boxed{514} & K_1 = 5.6 \times 10^{-11} \\ \hline 515 & K_2 = 2.3 \times 10^{-8} \end{array} \right.$

11 2 族元素

516 ,517 ,518

11.1 単体

11.1.1 性質

化学式	519	520	<u>521</u>	(522)	523
融点	1282°C	649°C	839°C	769°C	729°C
密度 (g/cm³)	1.85	1.74	1.55	2.54	3.59
524 力	小 -				大
水との反応	525	526	527	528	529
M(OH) ₂ の水溶性	530 性	(531) 性)	532	性 (533)	性)
難溶性の塩	534		(535)	
炎色反応	536	(537)	538	539	540
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター

1	1	1	1.2	製法

塩化物の541 工業的製法

11.1.3 反応

• マグネシウムの燃焼

マグネシウムと二酸化炭素

- マグネシウムと二酸化炭素
- カルシウムと水

.

11.2 酸化カルシウム(生石灰)

化学式: 542

11.2.1 性質

• 543 色

• 544 との親和性が545 (546)

• 547 酸化物

• 水との反応熱が548 (549)

11.2.2 製法

(550) Ø(551)

11.2.3 反応

コークスを混ぜて強熱すると、552 (553) が生成

 554
 と反応して555
 が生成

11.3 水酸化カルシウム (消石灰)

化学式: 556

11.3.1 性質

• 557 色

• 水に558 固体

• 559

560

 $K_1 = 5.0 \times 10^{-2}$

水溶液は561

11.3.2 製法

11.3.3 反応

• 塩素と反応して、564 が生成

580°C以上で565

• 二酸化炭素との反応

• 塩化アンモニウムとの反応

11.4 炭酸カルシウム(石灰石)

化学式: 566

11.4.1 性質

- 567 色で、水に568
- 569 の形成

11.4.2 反応

- 800°C 以上で570
- 571 を多く含む水に572

671) を多く含む水に(572)

11.5 塩化マグネシウム・塩化カルシウム

化学式: 573 · 574

11.5.1 性質

[575] 性があり、水に[576] (水との親和性が[577])

578 剤 塩化カルシウム、579 剤

11.5.2 製法

- 海水から得た「580 を濃縮 塩化マグネシウム 工業的製法
- 581 (582) 塩化カルシウム 工業的製法

11.6 硫酸カルシウム

化学式: 583

11.6.1 性質

584 を約 150°C で加熱すると、585 が生成

586 を加えると、587 ・588 ・589 して

590 に戻る

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: 591

11.7.1 性質

- 592 色で、水に593 固体
- 反応性が594く、X線を遮蔽

12 12 族元素

12.1 単体

12.1.1 性質

化学式	(595)	596	(597)
融点	420°C	321°C	−39°C
密度	7.1	8.6	13.6
$M^{2+}aq + H_2S$	598 色の599 ↓	600 色の601 ↓	602 色の603 ↓
(沈澱条件)	(604)	(605)	(606)
特性	高温の水蒸気と反応	Cd ²⁺ は Ca ²⁺ と類似	607 を作りやすい
刊出	608 元素	⇒ イタイイタイ病	(609)
用途	610 (鉄にメッキ)	ニカド電池 (Ni-Cd)	体温計・蛍光灯

- 12 族の硫化物は611 や612 に利用
- HgS は 450°C で消火させると**613** 色に変化

12.1.2 製法

12.1.3 反応	
• 高温の水蒸気と反応 亜鉛	
塩酸と反応 <u>亜鉛</u>	\neg
小輪ルチトリウナル溶液ト戸に	
• 水酸化ナトリウム水溶液と反応	7 (里朝)

閃亜鉛鉱を焙焼して得た酸化亜鉛に、コークスを混ぜて加工 工業的製法

12.2 酸化亜鉛 (亜鉛華)・水酸化亜鉛

化学式: 614 ・615

12.2.1 性質

- 616 色で、水に617 固体
- 酸化亜鉛は618
- 619 酸化物/水酸化物

(620) ・(強) (621) と反応 Zn²⁺ は、(622) とも

623 とも錯イオンを形成

12.2.2 製法

- 亜鉛を燃焼 酸化亜鉛 工業的製法
- 亜鉛イオンを含む水溶液に、少量の624 を加える水酸化亜鉛

12.2.3 反応

- 酸化亜鉛と塩酸
- 酸化亜鉛と水酸化ナトリウム水溶液

• 水酸化亜鉛と塩酸

• 水酸化亜鉛と水酸化ナトリウム水溶液

A TRATEGIA CA TRATES () / / / / A TRATES

水酸化亜鉛の過剰な625 との反応

化学式:626 ・627

12.3.1 性質

• 白色で、水に溶けにくい固体で、微毒 **塩化水銀 (I)**

12.3 塩化水銀(Ⅱ)・塩化水銀(Ⅱ)

• 白色で、水に少し溶ける固体で、猛毒 **塩化水銀(II)**

12.3.2 製法

水酸化銀	(II)	と水銀の混合物を加熱

13 アルミニウム

13.1 アルミニウム

13.1.1 性質

- 密度が628 、629 金属
- 展性・延性が630 、電気・熱伝導率が631

- 電気・熱伝導性が高い金属 -

636 元素

(637) には638 となり反応しない)

表面の緻密な639 が内部を保護

(640 ,641 ,642 ,643 ,644) *4

>633 >634 >635

電気分解(**645**) 極)で人工的に厚い酸化被膜をつける製品加工を**646**) と呼ぶ

- イオン化傾向が647 、648 力が649
- 650 反応(多量の651 ・652 が発生)

13.1.2 製法

653 から得た654

(655) の溶融塩電解 **工業的製法**

- バイヤー法
 - 1. 656 を濃い657 水溶液に溶解

2. 溶解しない不純物をろ過して、ろ液を水で希釈して Al(OH)3 の種結晶を入れる

3. 成長した(658) を強熱

- 0. /9/2/ 0.1000
- ホールエール法

1. 659

Na₃AlF₆を融解し、酸化アルミニウムを溶解

2. 660 電極で電気分解

陽極

13.1.3 反応

1. アルミニウムの燃焼

2. アルミニウムと高温の水蒸気

3. テルミット反応

13.2 酸化アルミニウム・水酸化アルミニウム

化学式: 661 ・662 酸化アルミニウムの別称: 663

13.2.1 性質

- 664 色で、水に665
- 666 酸化物/水酸化物667 ・(強) 668 と反応

 Al^{3+} は669 と錯イオンを形成し、670 とは形成しない

13.2.2 製法

- バイヤー法
- アルミニウムイオンを含む水溶液に、少量の671 を 加える 水酸化アルミニウム

13.2.3 反応

• 酸化アルミニウムと塩酸

• 酸化アルミニウムと水酸化ナトリウム水溶液

• 水酸化アルミニウムと塩酸

• 水酸化アルミニウムと水酸化ナトリウム水溶液

13.3 ミョウバン・焼きミョウバン

化学式: 672 · 673

13.3.1 性質

- 674 色で、水に675 固体
- (676)

(677) $K_1 = 1.1 \times 10^{-5} \text{ mol/L}$

Al³⁺ は価数が678 陽イオン
 粘土(679 の680 コロイド)で濁った水の浄水
 処理(681)

水への溶解

13.3.2 製法

硫酸化アルミニウムと硫酸カリウムの混合水溶液を濃縮

^{*&}lt;sup>4</sup> てつこに

14 スズ・鉛

14.1 単体

14.1.1 性質

化学式	682	683
特徴	灰白色で柔らかい金属	属 青白色で柔らかい金属
融点	232°C	328°C
密度	7.28	11.4
特性	68	84 元素
用途	(鉄にメッキ) 686 電池の687 極
川 / 川 / 広	688	Bの遮蔽

• 錫石 SnO_2 にコークスを混ぜて加熱 スズ 工業的製法

【合金】

14.

 $Cu + Sn \cdots$ 689

 $\mathrm{Sn} + \mathrm{Pb} \cdots \textbf{690}$

14.1.2 製法

•	方鉛鉱 PbS を焙焼してから、コークスを混ぜて加熱 鉛 工業的製法
1.	3 反応
•	鉛と691 酸
•	鉛と <u>692</u> 酸
•	スズと 693
•	鉛蓄電池における反応
) 正極

14.2 塩化スズ(Ⅱ)

14.2.1 性質

694 剤として働く

14.2.2 製法

スズと695

14.2.3 反応

塩化鉄 (Ⅲ) 水溶液と塩化スズ (Ⅱ) 水溶液

[備考] 塩化スズ (IV) 水溶液と硫化水素

14.3 酸化鉛 (IV) 14 スズ・鉛

14.3 酸化鉛(IV)

14.3.1 性質

696 剤として働く

14.3.2 製法

酢酸鉛 (II) 水溶液にさらし粉を加える

14.3.3 反応

酸化鉛(IV)に濃塩酸を加えて加熱

14.4 鉛の難溶性化合物

14.4.1 性質

- 加熱すると溶けやすい
- 697 紙を用いた698 の検出(699 色)

第Ⅲ部

遷移金属

d 軌道・f 軌道 (内殻) の秋に電子が入っていき、最外殻電子の数は700

(701) · 702 : f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

- 単体は密度が703 く、融点が704 金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは705 色のものが多い
- 安定な706 を形成しやすい(707))
- 単体や化合物は708
 になるものが多い*5
- 酸化数が { 小さい 大きい } 酸化物は { 709 710 } 剤

15 鉄・コバルト・ニッケル

15.1 鉄

15.1.1 性質

- 常温で711 性
- イオン化傾向が水素より712い
 - 713 と反応 (714) には715 となり反応しない)
- 716 と反応して717 な718 が生成(酸化被膜)
- 湿った空気中では719 い720 を生成

酸化鉄 (Ⅲ)	Fe_2O_3	721	色	722	性
四酸化三鉄	Fe ₃ O ₄	723	色	724	性
酸化鉄(II)	FeO	725	色	726	性

軟鋼	(727)	728	729	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	730	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	_
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*5} \bigcirc VsO₅, MnO₂, Fe₃O₄, Pt

15.1.2 製法

鉄の製錬 工業的製法

15.1.3 反応

• 塩酸との反応

高温の水蒸気との反応

微量に含まれる炭素・鉄・水による(753) ((754) などが溶けていたら反応速度上昇)
 直極 (755))
 負極 (756))

で57 の生成 (で58) 色)

速やかに(759) が酸素により酸化

• 760 の脱水

 $Fe(OH)_3 \longrightarrow FeO(OH) + H_2O$ (酸化水酸化鉄(III)濃橙色) $2 Fe(OH)_3 \longrightarrow Fe_2O_3 \cdot n H_2O + (3-n)H_2O$ (761) 色) (エバンスの実験)

15.2 硫酸鉄(Ⅱ)7水和物

化学式: 762

15.2.1 性質

763 色の固体

• Fe²⁺ 半反応式

• 空気中で表面が764 (765 色)

15.2.2 製法

鉄に766 を加えて、蒸発濃縮

15.3 塩化鉄 (Ⅲ) 6 水和物

化学式: 767

15.3.1 性質

• 768 色で769 性のある固体

• 770

$$(771)$$
 $K_1 = 6.0 \times 10^{-3} \text{ mol/L}$

15.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

		_
1		

15.4 鉄イオンの反応

	NaOH K ₄ [Fe($CN)_6$	K ₃ [Fe(0	H ₂ S(酸性)		KSCN				
Fe ²	Fe^{2+} $\overline{772}$ $Fe_2[Fe(CN)_6]\downarrow$		$KFe[Fe(CN)_6]\downarrow$		773		774				
775	色	776	色	777	色	778	色	779	色	780	色
Fe ³⁺		781		KFe[Fe(C	CN) ₆]↓	Fe[Fe(C]	$N)_6]aq$	782		[Fe(NC	$[S]^{2+}$
783	色	784	色	785	色	786	色	787	色	788	色

- Fe²⁺, Fe³⁺ は、789 とも790 とも錯イオンを形成しない
- ベルリンブルーとターンブルブルーは 791

15.5 塩化コバルト(Ⅱ)

化学式: 792

15.5.1 性質

- 793 色で794 性のある固体
- 6水和物は795 色
- 塩化コバルト紙を用いた796 の検出
- CO³⁺ は **797** と錯イオンを形成

15.6 硫酸ニッケル(Ⅱ)

化学式: 798

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は799 と錯イオンを形成

16 銅

16.1 銅

16.1.1 性質

- 800 色の金属光沢
- 他の金属とさまざまな色の801
- 展性・延性が802 く、電気・熱伝導性が803 い
- イオン化傾向が水素より804 く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆(805) に溶解)が生成
 806 色の酸化銅(I) 乾・807 色の錆(808)) 湿

16.1.2 製法

銅の製錬 粗銅・809 純銅 工業的製法

$$2 Cu2S + 3 O2 \longrightarrow 2 Cu2O + 2 SO2$$

$$Cu2S + 2 Cu2O \longrightarrow 6 Cu + SO2$$

16.1.3 反応

• 銅と希硝酸

•	- - 銅と濃硝酸	

銅と熱濃硫酸

が与中へ 1000°C 土港へ加熱して (920) - 毎の(921) - 仕む

● 空気中で 1000°C 未満で加熱して、**820** 色の**821** 生成

• さらに 1000°C 以上で加熱して、**822** 色の**823** 生成

• 銅イオンから水酸化銅(II)の生成

水酸化銅(Ⅱ)とアンモニアの反応

水酸化銅(Ⅱ)の加熱

16.2 硫酸銅(Ⅱ)5水和物

16.2.1 性質

824 色の固体(結晶中の825 の色)

• 温度による物質変化

温度による初頁変化
$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ 826 $\xrightarrow{113^{\circ}\text{C}}$ 827 $\xrightarrow{150^{\circ}\text{C}}$ 828 $\xrightarrow{650^{\circ}\text{C}}$ 829 830 色 $\xrightarrow{\text{H}_2\text{O}}$ (検出)

- Cu²⁺ による832 作用(農薬)
- 還元性を持つ有機化合物の検出*6
 833 色の酸化銅(I)が生成

16.2.2 製法

銅に834 をかけてから835 。

16.3 銅(Ⅱ) イオンの反応

	少々の	塩基	過剰の	NH_3	濃塩	酸	H ₂ S (836	6)
Cu ²⁺	837)		838		839		840		
841 色	842	色	843	色	844	色	845	色	

• 炎色反応: 846 色

• 加熱すると847

• Cu^{2+} は848 と錯イオンを形成し、849 とは形成しない

16.4 銅の合金

850 (真鍮)	851 (洋白)		852	853	85	54)
855 856)	857	858	859	(主成分)
適度な強度と加工性		柔軟で錯	びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽く	くて丈夫
楽器・水道用具		食器・	装飾品	五十円玉・五百円玉	像	航空	機・車両

17 銀

17.1 銀

17.1.1 性質

- 展性・延性が860 、電気・熱伝導性が861
- イオン化傾向が水素より862 863 力のある酸(864 ・865)と反応
- 空気中で酸化しにくいが、866 とは容易に反応

17.1.2 製法

- 銅の電解精錬の867工業的製法
- 銀の化合物の熱分解・光分解 酸化銀の熱分解

ハロゲン化銀 AgX の感光

17.1.3 反応

希硝酸

• 銀と濃硝酸

• 銀と熱濃硫酸

• 銀と硫化水素

17.2 銀(I)イオンの反応

868 水溶液に含まれる

		少量の	塩基	過剰の	NH_3	HCl		H_2S (869)	性)	K ₂ Cı	$\cdot O_4$
Ag	2+	870		871)		872		873		874	
875	色	876	色	877	色	878	色	879	色	880	色

•	銀と少量の塩基
•	銀と過剰の NH ₃
•	銀と HCl
•	銀と H ₂ S
•	銀と K ₂ CrO ₄

17.3 難溶性化合物の溶解性 17 銀

17.3 難溶性化合物の溶解性

			HNO_3	NH_3	NaS_2O_3	KCN
$Ag_2S\downarrow$	881	色	882	883	884)	885
Ag ₂ O↓	886	色	887	888	889	890
AgCl↓	891	色	892	893	894)	895
AgBr↓	896	色	897	898	899	900
AgI↓	901	色	902	903	904)	905
溶解している物質	906	色	907	908	909	910

18 クロム・マンガン

化学式: 911 · 912

18.1 単体

18.1.1 性質

- 913 と反応 (914) は915 には916 となり反応しない)
- 空気中で錆び®17 (918) ⇒919 (Fe, Cr, Ni) クロム
 空気中で錆び®20 マンガン
- 921 合金 (Fe, Cr, Mn) (電熱線・発熱体)

18.1.2 反応

18.2 クロム酸カリウム・二クロム酸カリウム

化学式: 923 · 924

18.2.1 性質

• 二つは平衡状態にある

18.2.2 製法

クロム(Ⅲ) イオンに少量の水酸化ナトリウム水溶液を加える
 さらに水酸化ナトリウム水溶液を加える(過剰の水酸化ナトリウム水溶液を加える)
 過酸化水素水を加えて加熱

18.2.3 反応

クロム酸イオンと銀イオン
 (933) 色)
 クロム酸イオンと銀イオン
 クロム酸イオンと銀イオン
 (934) 色)
 (935) 色)

18.3 過マンガン酸カリウム

化学式: 936

18.3.1 性質

- 937 色の固体
- 938 剤として反応

939 酸性

中•塩基性

18.3.2 製法

1. 酸化マンガン (IV) と水酸化ナトリウムを混ぜて空気中で加熱

	$(MnO_2 : 940)$	色 $/$ K_2MnO_4 : 941	色)

2. (a) 酸性にする

ι <i>)</i>	設任にする	_		
		$(MnO_4^{2-}: 942)$	色/MnO ₄ -: 943	色)

(b) 電気分解する

(944) 極)

18.4 マンガンの安定な酸化数

残留酸素の定量 (ウィンクラー法)

1. マンガン(Ⅲ) イオンを含む水溶液に塩基を加える

2. 水酸化マンガン(Ⅱ)が水溶液中の溶存酸素と速やかに反応

3. 希硫酸を加える

(945)

剤)

第IV部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は① につめて、液体の乾燥剤は② に入れて使用。

性質	乾燥剤	化学式	対象	対象外(不適)								
酸性	3	4	盤基性の気体(⑤)									
政士	6	7	酸性•甲性	+8 (9)								
中性	10	11)	ほとんど全て	12								
中性	13	14)	はこんと主く		特	になし						
塩基性	15	16	市界,将 其份		酸性	生の気体						
温 左 性	17	18	中性・塩基性	19 ,20	,21	,22	,23	,24				

B 水の硬度

C 金属イオンの難容性化合物

	Cl	_	SO_4	2-	H ₂	I ₂ S H ₂ S		OH^-		ОН	_	NH_3		
					酸性	生	中・塩基性		NH3		過剰		過剰	
K ⁺	26		27		28		29		30		31		32	
	33	色	34)	色	35	色	36	色	37	色	38	色	39	色
Ba ²⁺	40		41		42		43		44		45		46	
	47	色	48	色	49	色	50	色	51	色	52	色	53	色
Sr ²⁺	54		55		56		57		58		59		60	
	61	色	62	色	63	色	64	色	65	色	66	色	67	色
Ca ²⁺	68		69		70		71		72		73		74	
	75	色	76	色	77	色	78	色	79	色	80	色	81)	色
Na ⁺	82		83		84		85		86		87		88	
	89	色	90	色	91)	色	92	色	93	色	94)	色	95	色
Mg^{2+}	96		97		98		99		100		101		102	
	103	色	104	色	105	色	106	色	107	色	108	色	109	色
Al ³⁺	110		111		112		113		114		115		116	
	117	色	118	色	119	色	120	色	121	色	122	色	123	色
Mn^{2+}	124		125		126		127		128		129		130	
	131	色	132	色	133	色	134	色	135	色	136	色	137	色
Zn^{2+}	138		(139)		140		141		142		143		144	
	145	色	146	色	147	色	148	色	149	色	150	色	151	色
Cr^{3+}	152		153		(154)		(155)		156		(157)		158	
	159	色	160	色	161	色	162	色	163	色	164	色	165	色
Fe ²⁺	166		167		168		169		170		171		172	
	173	色	174	色	175	色	176	色	177	色	178	色	179	色
Fe ³⁺	180		(181)		182		183		184		185		186	
	187	色	188	色	189	色	190	色	191	色	192	色	193	色
Cd^{2+}	194		195		196		197		198		199		200	
	201	色	202	色	203	色	204	色	205	色	206	色	207	色
Co ²⁺	208		209		210		211		212		213		214	
	215	色	216	色	217)	色	218	色	219	色	220	色	221	色
Ni ²⁺	222		223		224		225		226		227		228	
	229	色	230	色	231	色	232	色	233	色	234	色	235	色
Sn ²⁺	236		237		238		239		240		241		242	
	243	色	244	色	245	色	246	色	247	色	248	色	249	色
Pb^{2+}	250		251		252		253		254		255		256	
	257	色	258	色	259	色	260	色	261	色	262	色	263	色
Cu ²⁺	264		265		266		267		268		269		270	
	271	色	272	色	273	色	274	色	275	色	276	色	277)	色
Hg^{2+}	278		279		280		281		282		283		284	
	285	色	286	色	287	色	288	色	289	色	290	色	291)	色
Hg ₂ ²⁺	292		293		294		295		296		297		298	
	299	色	300	色	301	色	302	色	303	色	304	色	305	色
Ag ⁺	306		307		308		309		310		311		312	
	313	色	314	色	315	色	316	色	317	色	318	色	319	色

D 錯イオンの命名法

339

(主に遷移) 金属イオンに対して、320 を持つ321 や322 が323 結合

「配位子の数(数詞)配位子 金属(価数)酸 (陰イオンの場合) イオン」

340

	金属イ	オン	Ag⁴	F	Cu ⁺	Cu^2	+	Zn^2	2+	Fe ²⁺	Fe^{3+}	Co^{3+}	Ni^{2+}	Cr^{3+}	Al^{3+}
	配位	配位数 324 325		326											
327 系 328 形		329	形	形 330 形											
	数	1	_		2	3		4		5	6		7	8	
	数詞	331		(33	32	333		334	(3	335)	336	337	9	338	

配位子	NH_3	CN^-	$_{ m H_2O}$	$\mathrm{OH^-}$	Cl^-	$H_2N - CH_2CH_2 - NH_2$		
名称	341	342	343	344	345	346		

エチレンジアミン … 1 分子あたり 2 か所で347 結合する (2 座配位子) (348 錯体)

- [Zn(OH)₄]²⁻
- $[Zn(NH_3)_4]^{2+}$ 350
- $[Ag(S_2O_3)_2]^{3-}$ (351)
- $[Cu(H_2NCH_2CH_2NH_2)]^{2+}$ 352

E 金属イオンの系統分離

