第2章: 贝叶斯决策理论

刘成林(liucl@nlpr.ia.ac.cn) 2015年9月23日

助教: 杨学行(xhyang@nlpr.ia.ac.cn)

吴一超(yichao.wu@nlpr.ia.ac.cn)

统计模式识别方法

生成模型

(Density-based, Bayes decision)

Parametric

- √ Gaussian
- ✓ Dirichlet
- ✓ Bayesian network
- ✓ Hidden Markov model

Non-Parametric

- ✓ Histogram density
- ✓ Parzen window
- √ K-nearest neighbor

Discriminative模型 (discriminant/decision function)

- ✓ Neural network
- ✓ Logistic regression
- ✓ Decision tree
- ✓ Kernel (SVM)
- ✓ Boosting
- a.k.a. Non-parametric

Semi-Parametric

✓ Gaussian mixture

提纲

- 导论: 2类的例子
- 最小风险决策
- 判别函数和决策面
- 高斯概率密度
- 高斯密度下的判别函数
- 分类错误率

导论:问题表示

- 类别: ω_i , i = 1,...,c
- 特征矢量 $\mathbf{x} = [x_1, ..., x_d] \in \mathbb{R}^d$
- 先验概率 $P(\omega_i)$ $\sum_{i=1}^{c} P(\omega_i) = 1$
- 概率密度函数(条件概率) $p(\mathbf{x} | \omega_i)$
- 后验概率

$$P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i)P(\omega_i)}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid \omega_i)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j)P(\omega_j)}$$
$$\sum_{j=1}^{c} P(\omega_i \mid \mathbf{x}) = 1$$

2类的例子

- Salmon (ω_1) and sea bass (ω_2)
- If we have only prior probability
 - 例如,教室门口判断进来的是男生还是女生,没有任何传感器
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$, otherwise ω_2
 - Minimum error decision

$$P(error) = \begin{cases} P(\omega_2) & \text{if we decide } \omega_1 \\ P(\omega_1) & \text{if we decide } \omega_2 \end{cases}$$

- 教室门口判断性别的例子: 错误率?

2类的例子

Decision based on posterior probabilities

$$P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i)P(\omega_i)}{p(\mathbf{x})} = \frac{p(\mathbf{x} \mid \omega_i)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j)P(\omega_j)}$$

Decision based on posterior probabilities

$$P(error|x) = \begin{cases} P(\omega_1|x) & \text{if we decide } \omega_2 \\ P(\omega_2|x) & \text{if we decide } \omega_1. \end{cases}$$

Decide ω_1 if $P(\omega_1|x) > P(\omega_2|x)$; otherwise decide ω_2

$$P(error|x) = \min [P(\omega_1|x), P(\omega_2|x)].$$

Evidence (a.k.a. likelihood)

Decide ω_1 if $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$; otherwise decide ω_2

- see
$$P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i)P(\omega_i)}{p(\mathbf{x})}$$

最小风险决策

- 决策代价(loss)
 - True class ω_j , decided as α_i $\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$
 - 有时2类代价相差很大,比如医疗诊断的场合、工业检测、自 动商店判断性别
- Condition risk

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})$$

Overall (expected) risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x})p(\mathbf{x}) d\mathbf{x}$$

Minimum risk decision (Bayes decision)

$$\arg\min_{i} R(\alpha_{i} \mid x)$$

- Minimum risk decision: 2-class case
 - Condition risk

$$R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$$

$$R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$$

Decision rule

$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x) \leftrightarrow (\lambda_{21} - \lambda_{11})P(\omega_1 \mid x) > (\lambda_{12} - \lambda_{22})P(\omega_2 \mid x)$$

• Equivalently, decide ω_1 if

$$(\lambda_{21} - \lambda_{11}) \underline{p(\mathbf{x}|\omega_1)P(\omega_1)} > (\lambda_{12} - \lambda_{22})p(\mathbf{x}|\omega_2)P(\omega_2)$$
$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$$

最小错误率分类

Zero-one loss

$$\lambda(\alpha_i | \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} i, j = 1, ..., c$$

$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$

$$= \sum_{j \neq i} P(\omega_j | \mathbf{x})$$

$$= 1 - P(\omega_i | \mathbf{x})$$

Minimum error decision: Maximum a posteriori (MAP)

Decide
$$\omega_i$$
 if $P(\omega_i|\mathbf{x}) > P(\omega_j|\mathbf{x})$ for all $j \neq i$

2-class case

– decide ω_1 if

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)}$$

带拒识的决策

- (Problem 13, Chapter 2)
 - C+1 classes

$$\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0, & i = j \\ \lambda_s, & i \neq j \\ \lambda_r, & \text{reject} \end{cases}$$

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})$$

$$R_i(\mathbf{x}) = \begin{cases} \lambda_s [1 - P(\omega_i \mid \mathbf{x})], & i = 1, ..., c \\ \lambda_r, & \text{reject} \end{cases}$$

$$\arg\min_{i} R_{i}(\mathbf{x}) = \begin{cases} \arg\max_{i} P(\omega_{i} \mid \mathbf{x}), & \text{if } \max_{i} P(\omega_{i} \mid \mathbf{x}) > 1 - \lambda_{r} / \lambda_{s} \\ & \text{reject,} & \text{otherwise} \end{cases}$$

判别函数、决策面

- 判别函数(Discriminant Function)
 - 表征模式属于每一类的广义似然度 $g_i(\mathbf{x})$, i=1,...,c
 - 分类决策 $\underset{i}{\operatorname{arg max}} g_{i}(\mathbf{x})$
 - E.g., conditional risk $g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x})$
 - Posterior probability $g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x})$
 - Likelihood $g_i(\mathbf{x}) = p(\mathbf{x} \mid \omega_i) P(\omega_i)$ $g_i(\mathbf{x}) = \log p(\mathbf{x} \mid \omega_i) + \log P(\omega_i)$

• 决策面(Decision surface)

- 特征空间中二类判别函数相等的点的集合

$$g(\mathbf{x}) \equiv g_1(\mathbf{x}) - g_2(\mathbf{x}) \qquad g(\mathbf{x}) = P(\omega_1 | \mathbf{x}) - P(\omega_2 | \mathbf{x})$$
$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x} | \omega_1)}{p(\mathbf{x} | \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

正态分布下的 一个例子

Break

高斯密度函数

Gaussian density (normal distribution)

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- Mean μ
- Variance σ^2 (standard deviation σ)

$$\mu \equiv \mathcal{E}[x] = \int_{-\infty}^{\infty} x p(x) \ dx$$

$$\sigma^2 \equiv \mathcal{E}[(x-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2 p(x) \ dx$$

p(x)

$$H(p(x)) = -\int p(x) \ln p(x) dx$$

- 在给定均值和方差的所有分布中,正态分布的熵最大(Problem 20, Chapter 2)
- 根据Central Limit Theorem, 大量独立随机变量之和趋近正态分布
- 实际环境中,很多类别的特征分布趋近正态分布

• Multivariate normal density $p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$- 公式要牢记 p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

- Mean
$$\mu \equiv \mathcal{E}[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$
 $\mu_i = \mathcal{E}[x_i]$

Covariance matrix

$$\Sigma \equiv \mathcal{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t] = \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t p(\mathbf{x}) \ d\mathbf{x}$$

$$\sigma_{ij} = \mathcal{E}[(x_i - \mu_i)(x_j - \mu_j)]$$

$$\text{If } x_i \text{ and } x_j \text{ are } statistically independent, } \sigma_{ij} = 0$$

$$\sigma_{11} \quad \sigma_{12} \quad \cdots \quad \sigma_{1d}$$

$$\sigma_{21} \quad \sigma_{22} \quad \cdots \quad \sigma_{2d}$$

$$\vdots \quad \vdots \quad \vdots$$

$$\sigma_{d1} \quad \sigma_{d2} \quad \cdots \quad \sigma_{dd}$$

- 等密度点轨迹: hyperellipsoid
- Mahalanobis distance

$$r^2 = (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

Covariance matrix eigenvalues & eigenvecters

$$\Sigma = \Phi \Lambda \Phi^{t} \qquad \Phi = [\phi_{1} \phi_{2} \cdots \phi_{d}] \qquad \Lambda = diag[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{d}]$$

- Orthonormal $\Phi^t \Phi = I$ $\Phi^t = \Phi^{-1}$
- 线性变换 $y = A^t x$
 - A^tA=1: 正交变换(坐标轴旋转)
 - 变换后的分布仍为正态分布

$$p(\mathbf{y}) \sim N(\mathbf{A}^t \boldsymbol{\mu}, \mathbf{A}^t \boldsymbol{\Sigma} \mathbf{A})$$

Whitening transform

$$\mathbf{A}_{w} = \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$$

$$A_{w}^{t} \Sigma A_{w} = \mathbf{\Lambda}^{-1/2} \mathbf{\Phi}^{t} \Sigma \mathbf{\Phi} \mathbf{\Lambda}^{-1/2}$$

$$= \mathbf{\Lambda}^{-1/2} \mathbf{\Lambda} \mathbf{\Lambda}^{-1/2} = \mathbf{I}$$

高斯密度下的判别函数

• 判别函数 $g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i)$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

- Quadratic discriminant function (QDF)
- 在不同covariance假设条件下得到一些特殊形式

• Case 1: $\Sigma_i = \sigma^2 I$

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

- Euclidean distance $\|\mathbf{x} \boldsymbol{\mu}_i\|^2 = (\mathbf{x} \boldsymbol{\mu}_i)^t (\mathbf{x} \boldsymbol{\mu}_i)$
- 展开二次式 $(x-\mu_i)^t(x-\mu_i)$ $g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} [\mathbf{x}^t \mathbf{x} - 2\boldsymbol{\mu}_i^t \mathbf{x} + \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i] + \ln P(\omega_i)$
- 忽略与类别无关项, 得到线性判别函数

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

$$\mathbf{w}_i = \frac{1}{\sigma^2} \mu_i \qquad w_{i0} = \frac{-1}{2\sigma^2} \mu_i^t \mu_i + \ln P(\omega_i)$$

- 工类决策面 $g_i(\mathbf{x}) = g_i(\mathbf{x})$

$$g_i(\mathbf{x}) = g_j(\mathbf{x})$$

$$\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0 \qquad \mathbf{w} = \boldsymbol{\mu}_i - \boldsymbol{\mu}_j$$

$$\mathbf{x}_{0} = \frac{1}{2}(\mu_{i} + \mu_{j}) - \frac{\sigma^{2}}{\|\mu_{i} - \mu_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mu_{i} - \mu_{j})$$

- 1D, 2D, 3D的情况

• 当 $P(\omega_1)=P(\omega_2)$,决策面为二类均值的等分面

- 当先验概率变化,决策面发生平移

• Case 1: $\Sigma_i = \Sigma$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

$$\Rightarrow g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

- 展开二次式 $(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)$

线性判别函数 ! $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$ $\mathbf{w}_i = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i \quad w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(\omega_i)$

- 注意跟μ₁-μ₂的关系,决策面不一定与之垂直
- 当 $P(\omega_1) = P(\omega_2)$, 决策面经过 $(\mu_1 + \mu_2)/2$

• Case 3: Σ_i = arbitrary

$$\begin{split} g_i(\mathbf{x}) &= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i) \\ g_i(\mathbf{x}) &= \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0} \\ \mathbf{W}_i &= -\frac{1}{2} \boldsymbol{\Sigma}_i^{-1} \qquad \mathbf{w}_i = \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i \\ w_{i0} &= -\frac{1}{2} \boldsymbol{\mu}_i^t \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i) \end{split}$$

- 二类决策面: $g_1(\mathbf{x})=g_2(\mathbf{x})$, hyperquadratics
 - 等均值的情况下, 1D的例子

2D的例子

3D的例子

26

2D,4类的例子

一个具体例子

- 2类, 2D
$$P(\omega_1) = P(\omega_2) = 0.5$$

$$\mu_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}; \quad \Sigma_1 = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix} \qquad \Sigma_1^{-1} = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

$$\mu_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}; \quad \Sigma_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \qquad \Sigma_2^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

$$\Sigma_1^{-1} = \left(\begin{array}{cc} 2 & 0 \\ 0 & 1/2 \end{array} \right)$$

$$\Sigma_2^{-1} = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1/2 \end{array}\right)$$

- 决策面 g₁(x)=g₂(x)

$$x_2 = 3.514 - 1.125x_1 + 0.1875x_1^2$$

分类错误率

• 2类的情况

$$P(error) = P(\mathbf{x} \in \mathcal{R}_2, \omega_1) + P(\mathbf{x} \in \mathcal{R}_1, \omega_2)$$

$$= P(\mathbf{x} \in \mathcal{R}_2 | \omega_1) P(\omega_1) + P(\mathbf{x} \in \mathcal{R}_1 | \omega_2) P(\omega_2)$$

$$= \int_{\mathcal{R}_2} p(\mathbf{x} | \omega_1) P(\omega_1) d\mathbf{x} + \int_{\mathcal{R}_1} p(\mathbf{x} | \omega_2) P(\omega_2) d\mathbf{x}.$$

• 一般情况

$$P(correct) = \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_{i}, \omega_{i})$$

$$= \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_{i} | \omega_{i}) P(\omega_{i})$$

$$= \sum_{i=1}^{c} \int_{\mathcal{R}_{i}} p(\mathbf{x} | \omega_{i}) P(\omega_{i}) d\mathbf{x}$$

• 最大后验概率决策(0-1 loss)的情况

University of Chinese Academy of Sciences

$$P(correct) = \int_{\mathbf{x}} \max_{i} P(\mathbf{x} \mid \omega_{i}) P(\omega_{i}) d\mathbf{x}$$

$$= \int_{\mathbf{x}} \max_{i} P(\omega_{i} \mid \mathbf{x}) P(\mathbf{x}) d\mathbf{x}$$

$$P(error) = \int_{\mathbf{x}} \left[1 - \max_{i} P(\omega_{i} \mid \mathbf{x}) \right] P(\mathbf{x}) d\mathbf{x}$$

$$p(\omega_{i} \mid x)$$

$$p(x \mid \omega_{i})$$

$$p(x \mid \omega_{i})$$

$$p(x \mid \omega_{i})$$

30

讨论

- 贝叶斯分类器(基于贝叶斯决策的分类器)是最优的吗?
 - 最小风险、最大后验概率决策
 - 最优的条件: 概率密度、风险能准确估计
 - 具体的参数法、非参数法是贝叶斯分类器的近似,实际中难以达到最优
 - 判别模型:回避了概率密度估计,以较小复杂度估计 后验概率或判别函数
 - 什么方法能胜过贝叶斯分类器: 在不同的特征空间!

下次课内容

- 第2章
 - 离散变量的贝叶斯决策
 - 复合模式分类
- 第3章
 - 最大似然参数估计
 - 贝叶斯估计

