Primjeri pitanja za 3 MI iz EERS-a (2012/2013)

1. Kako definiramo neionizirajuce zracenje?

Neionizirajuće zračenje jesu elektromagnetska polja i elektromagnetski valovi frekvencije niže od 3.000.000 GHz ili ultrazvuk frekvencije niže od 500MHzkoji u međudjelovanju s tvarima ne stvaraju ione (Ministarstvo zdravstva).

2. Koja je granicna frekvencija za neionizirajuce zracenje?

Granična frekvencija pri kojoj dolazi do ionizacije definirana je s frekvencijom od $30*10^6$ GHz. Neionizirajući dio zahvaća RF (0-300GHz) i optički dio spektra (300-22.5* 10^6 GHz).

3. U kojem frekvencijskom podrucju radi GSM (valna duljina ~30cm)?

925 - 960/880 - 915 MHz (silazna/uzlazna)

4. Tko se brine o frekvencijskom spektru?

Institucija koja se brine o frekvencijskom spektru na međunarodnoj razini je ITU – Međunarodna telekom unija, dok se na nacionalnoj razini koordinacijom uporabe frekvencijskog spektra brine HAKOM – Hrvatska agencija za poštu i elektroničke komunikacije. ITU se brine za namjenu određenog frekvencijskog spektra, dok je HAKOM nadležan za raspodjelu i dodjelu.

5. Sto je tablica namjena za radiofrekvencijski spektar?

Budući da je elektromagnetski spektar ograničeni prirodni resurs, podijeljen je prema namjeni u frekvencijske pojaseve. Namjena svakog od pojasa određuje se tzv tablicom namjene. Unosi se određeni frekvencijski pojas u tablicu namjene radiofrekvencijskog spektra radi uporabe u jednoj ili više zemaljskih (engl. Terrestrial) ili svemirskih (engl. Space, satellite)radiokomunikacijskih službi ili radiokomunikacijskoj službi u astronomiji uz točno određene uvjete.

6. Sto je tehnicki propis?

Tehnički propis je propis u kojem se tehnički zahtjevi daju izravno ili upućivanjem na normu, tehničku specifikaciju ili upute za primjenu ili pak uključivanjem sadržaja tih dokumenata.

7. Koje su vrste tehnickog propisa?

- Norma (ili standard)
- Tehnička specifikacija

Uputa za primjenu

8. Tko donosi propise Za podrucje telekomunikacija?

Međunarodna telekomunikacijska unija - ITU

9. Sto je norma?

Dokument donesen konsenzusom i odobren od priznatoga tijela, koji za opću i višekratnu uporabu daje pravila, upute ili značajke za djelatnosti ili njihove rezultate te koji jamči najbolji stupanj uređenosti u danom kontekstu.

10. Nabrojite vrste normi.

- > osnovna norma
- > terminološka norma
- norma za ispitivanje
- norma za proizvod
- norma za proces
- > norma za uslugu
- sučelna norma
- > norma o potrebnim podacima

11. Sto su referentne velicine?

Mjerljive veličine čijim nadzorom se posredno osigurava zadovoljenje temeljnih ograničenja.

12. Navedite neke referentne velicine.

Fizikalne veličine koje se mogu koristiti kao referentne veličine su: jakost električnog polja, jakost magnetskog polja, gustoća magnetskog toka, dodirna struja i gustoća snage(ekvivalentnog ravnoga vala).

13. Kojim velicinama se odredjuju temeljna ogranicenja na zracenje?

Električno polje, magnetsko polje, gustoća snage.

- 14. Koja istrazivanja se bave interakcijom ljudskog tijela i elektromagnetskih polja?
 - o Epidemiološka
 - o Biološka
 - o Klinička
- 15. Sto je ekspozimetrija?

Ekspozimetrija je disciplina koja uključuje mjerenje veličine vanjskog elektromagnetskog polja, odnosno ona omogućuje mjerenje referentnih veličina.

16. Koji se instrumenti koriste u ekspozimetriji?

- Izotropne sonde
- usmjerene sonde
- jednosmjerne sonde /dipoli/
- širokopojasne sonde
- uskopojasne sonde

17. Nabrojite neke od izvora nesigurnosti u sirokopojasnim mjerenjima.

Mjerna oprema(kalibracija sonde, temperaturni odziv sonde, frekvencijski odziv sonde...), metodologija (raspršno polje mjeritelja, pogreška očitanja u vremenski promjenjivom polju...), izvor i okoliš (promjena u snazi RF izvora od nominalne razine, RF prostiranje i okoliš gubitci...).

18. Kojim se metodama izracunava jakost elektromagnetskog polja?

Sferni i cilindrični modeli, SAR cijelog tijela, algoritmi praćenja zrake, evaluacija cjelokupnog RF polja, evaluacija cjelokupne SAR.