2-3 다변량 분석

제2장 통계분석

제1절 통계학 개론

제2절 기초 통계 분석

제3절 다변량 분석

1. 상관분석(Correlation Analysis)

두 변수 간의 관계의 정도를 알아보기 위한 분석방법

• 두 변수의 상관관계를 알아보기 위해 상관계수(Correlation Coefficient)를 사용

$$r_{XY} = rac{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight) \left(Y_{i} - \overline{Y}
ight)}{\sqrt{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight)^{2}} \sqrt{\sum_{i}^{n} \left(Y_{i} - \overline{Y}
ight)^{2}}}$$

상관관계의 특성

상관계수 범위	해석
0.7 < γ ≤ 1	강한 양(+)의 상관이 있다.
0.3 < γ ≤ 0.7	약한 양(+)의 상관이 있다.

상관계수 범위	해석
0 < γ ≤ 0.3	거의 상관이 없다.
γ = 0	상관관계(선형, 직선)가 존재하지 않음
-0.3 ≤ γ < 0	거의 상관이 없다.
-0.7 ≤ γ < -0.3	약한 음(-)의 상관이 있다.
-1 ≤ γ < -0.7	강한 음(-)의 상관이 있다.

상관분석 유형

구분	피어슨	스피어만
개념	등간척도 이상으로 측정된 두 변수들의 상관관계 측정 방식	서열척도인 두 변수들의 상관관계 측정 방식
특징	연속형 변수, 정규성 가정, 대부분 많이 사용	순서형 변수, 비모수적 방법, 순위를 기 준으로 상관관계 측정
상관계수	피어슨 γ (적률상관계수)	순위상관계수 (ρ, 로우)

상관분석을 위한 R 코드

• 분산: var()

• 공분산: cov()

• 상관관계: cor()

상관분석의 가설검정

- 상관계수가 0이면 입력변수 x와 출력변수 y 사이에는 아무런 관계가 없다.
- t 검정통계량을 통해 얻은 p-value 값이 0.05 이하인 경우
 - 。 대립가설을 채택하게 되어 우리가 데이터를 통해 구한 **상관계수**를 활용할 수 있게 된다.

$$r_{XY} = rac{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight) \left(Y_{i} - \overline{Y}
ight)}{\sqrt{\sum_{i}^{n} \left(X_{i} - \overline{X}
ight)^{2}} \sqrt{\sum_{i}^{n} \left(Y_{i} - \overline{Y}
ight)^{2}}}$$

스피어만 상관계수

스피어만 순위 상관관계는 두 수치 변수 간의 관계 강도를 결정하는 데 사용

- 데이터가 정규 분포를 따를 필요는 없고, 관계가 엄격하게 선형적일 필요도 없습니다.
- 다만 변수들이 일반적으로 한 방향으로 향하는 관계여야 합니다(즉, U자형이나 그 반대는 안 됩니다).
- 이름에서 알 수 있듯이 상관관계는 데이터의 순위를 기반으로 합니다
 - ∘ x와 y 변수의 순위가 매겨지고, x의 순위는 y의 순위와 다음과 같이 비교됩니다.

$$r_{s} = 1 - \frac{6\sum D^{2}}{n(n^{2} - 1)}$$

- 수식에서 D는 순위 차이이고, n은 데이터 쌍의 수
- 스피어만 순위 상관관계를 계산하는 내장 함수는 없지만 RANK.AVG를 사용하여 순위를 계산하고 수식의 항목을 쉽게 계산할 수 있습니다.

다차원 척도법 (MDS: Multi Dimensional Scaling)

- 객체간 근접성(Proximity)을 시각화하는 통계기법
 - 군집분석과 같이 객체들을 대상으로 변수를 측정한 후개체들 사이의 유사성/비유사 성을 측정하여 개체들을 2차원 공간상에 점으로 표현하는 분석 방법
- 개체들을 2차원 또는 3차원 공간상에 점으로 표현하여 개체들 사이의 집단화를 시각적으로 표현

데이터를 축소하는 목적으로 사용

- 유클라디안 거리 행렬로 사용하여 계산
- 데이터의 변수가 연속형 변수 혹은 서열척도여야 함
- 관측 대상들의 상대적 거리에 정확도를 높이기 위해 적합 정도를 stress 척도 사용
 - 0~1 사이의 값으로 그 값이 낮을수록 적합도가 높다고 평가
 - 0.05이내 -> 적합도 좋다
 - 0.15이상 -> 적합도 매우 나쁘다

Stress 값에 따른 적합도 수준

Stress	적합도 수준
0	완벽 (Perfect)
0.05 이내	매우 좋음 (Excellent)
0.05 ~ 0.10	만족 (Satisfactory)
0.10 ~ 0.15	보통 (Acceptable, but Doubt)
0.15 이상	나쁨 (Poor)

주성분 분석 (PCA: Principal Component Analysis)

여러 변수들의 변량을 주성분(Principal Component)이라는 서로 상관성이 높은 변수들의 선형 결합으로 만들어 기존의 상관성이 높은 변수들을 요약, 축소하는 기법

- 첫번째 주성분으로 전체 변동을 가장 많이 설명할 수 있도록 하고,
 - 두 번째 주성분으로는 첫 번째 주성분과는 상관성이 없어서(낮아서) 첫 번째 주성분이 설명하지 못하는 나머지 변동을 정보의 손실 없이 가장 많이 설명할 수 있도록 변수들의 선형조합을 만듦
- p차원 변수에서 분산이 가장 큰 선형 변화를 첫 번째 주성분이라고 그 다음 큰 선형변환
 의 두 번째 주성분이라고 함
 - 손실되는 정보가 최소가 되도록 분산이 가장 큰 축을 찾는 것
 - "분산이 크다"는 건 그 축(또는 변수) 방향으로 데이터가 많이 퍼져 있다는 의미
 - 특히 PCA에서는 분산이 클수록 더 많은 정보를 담고 있다 = 설명력이 높다고 봄
- 주성분들은 서로 집교하며 주성분들이 서로 수직을 이루는 관계에 있다는 것을 의미
- 여러 개의 변수 중 서로 상관성이 높은 변수들의 선형결합
 - 새로운 변수 (주성분)을 만들어 변수를 요약 및 축소하는 분석 방법
- 변수를 축소하여 모델 설명령 높임
 - 다중공선성(multicollinearity) 문제 해결, 군집 분석 시 모형 성능을 높일 수 있음
 - PCA는 원래 **데이터의 분산을 최대한 유지하면서 차원을 축소**하는 기법인데, 그 과 정에서 **다중공선성(multicollinearity)** 문제도 **자연스럽게 해결**

- 다중공선성(multicollinearity)이란 독립변수들 간에 **강한 상관관계**가 있는 상 태를 말해.
- 주성분 분석(PCA)은 데이터를 선형 결합된 새로운 축(주성분)으로 바꾸기 때문에, 기존 변수 간 상관성(공선성)을 제거 가능
- 주성분의 개수는 전체 데이터의 70%이상을 설명할 수 있도록 선택

주성분의 선택법

주성분분석의 결과에서 누적기여율(Cumulative Proportion)이 85%이상이면 주성분의 수로 결정 가능

• Scree Plot을 활용하여 고윳값(Eigenvalue)이 수평을 유지하기 전단계로 주성분의 수 선택

실습

코드

```
# Classical Multidimensional Scaling loc \leftarrow cmdscale(eurodist) loc x \leftarrow loc[,1] y \leftarrow loc[,2] plot(x, y, type="n", main="eurodist") text(x, y, rownames(loc), cex=.8) abline(v=0, h=0)
```

PCA의 "데이터 설명력"의 진짜 의미

1. PCA는 분산을 기준으로 데이터 구조를 설명

PCA는 변수들의 선형 조합을 통해 **가장 큰 분산 방향(축)**을 찾고,

- 그 축을 따라 데이터를 다시 표현함.
- 이 과정에서 분산을 많이 설명하는 축(주성분)은 데이터의 핵심 구조를 잘 드러냄.

R cmdscale() 결과 해석

cmdscale() 은 classical multidimensional scaling(MDS)의 일종으로, 거리 행렬에서 저차원 좌표를 추정해줘. 여기서 eurodist 는 유럽 주요 도시 간 거리 행렬(distance matrix)이고, loc 은 이를 2차원 평면으로 축소한 좌표야.

1. cmdscale(eurodist) 의 목적

- eurodist 는 유럽 도시 간 pairwise 거리 정보를 담은 dist 객체.
- cmdscale() 은 이 거리 정보를 보존하면서 낮은 차원(여기선 2D)으로 임베딩해주는 함수 야.
- 결과적으로 각 도시의 상대적 위치를 시각적으로 볼 수 있게 좌표를 추정해주는 거지.

2. 결과값 loc 의 구조

- loc 은 n × 2 행렬이며, 각 행은 하나의 도시를 나타내고, 열은 추정된 x, y 좌표야.
- 예를 들어:

```
Athens \rightarrow (2290.27, 1798.80)

Rome \rightarrow (709.41, 1109.37)

Paris \rightarrow (-156.83, -211.14)
```

• 좌표값은 상대적인 위치를 표현하며, 특정 기준점을 중심으로 회전·이동되어 있을 수 있어서 **절대적인 방향**은 해석에 주의해야 해.

3. 어떻게 해석하면 될까?

- 좌표의 거리는 도시 간 실제 거리를 최대한 보존하도록 계산된 거야.
- 예시:
 - o Rome 과 Athens 는 둘 다 오른쪽 위에 있고 값이 크니까 서로 가깝고 동남부 쪽.

- Lisbon 과 Gibraltar 는 X축 음수 쪽에 몰려 있으니까 **서쪽에 위치**.
- Stockholm 은 V축 음수로 멀리 떨어져 있어서 **북쪽에 고립된 형태**.
- 한마디로, 이걸 가지고 **지도를 대충 그릴 수 있을 정도**로 유럽 도시의 상대적 위치를 나타낸 거지.

USArrests 데이터셋 소개

요약:

USArrests 데이터셋은 미국 50개 주의 범죄 관련 통계를 담고 있는 고전적인 R 내장 데이터셋

 각 주(state)별로 네 가지 변수 — 살인(Murder), 강간(Rape), 폭행(Assault), 도시 인 구 비율(UrbanPop) — 이 포함되어 있다.

항목	내용
관측치 수	50 (미국 50개 주)
변수 수	4개 (모두 수치형)
사용 목적	탐색적 데이터 분석, 차원 축소(PCA), 군집분석, 시각화 등
내장 위치	R 내장 데이터셋 (datasets 패키지 소속)

🔢 포함된 변수 설명

변수명	설명
Murder	인구 10만 명당 살인 사건 발생 수 (per 100,000 residents)
Assault	인구 10만 명당 폭행 사건 발생 수
UrbanPop	도시 인구 비율 (Urban Population %), 즉 도시 지역 거주자 비율
Rape	인구 10만 명당 강간 사건 발생 수

- 모든 수치는 1973년 기준 FBI 보고서를 바탕으로 작성됨
- UrbanPop 을 제외한 나머지는 **발생률(incident rate)**임

주성분 분석 사례

1973년 미국 50개주의 100,000명의 인구 당 체포된 세 가지 강력범죄수(Assault, Murder, Rape)와 각 주마다 도시에 거주하는 인구의 비율(%)로 구성

- 변수들 간의 척도의 차이가 상당히 크기 때문에 상관행렬을 사용하여 분석
- 특이치 분해(특이값 분해) : 행렬을 특정한 구조로 분해를 사용하는 경우 자료 행렬의 각 변수의 평균과 제곱의 합이 1로 표준화되었다고 가정

USArrests data

- > # 주성분 분석 (PCA: Principal Component Analysis)
- > fit <- princomp(USArrests, cor=T)</pre>
- > summary(fit)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938 Proportion of Variance 0.6200604 0.2474413 0.0891408 0.04335752 Cumulative Proportion 0.6200604 0.8675017 0.9566425 1.000000000 > loadings(fit)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Murder 0.536 0.418 0.341 0.649 Assault 0.583 0.188 0.268 -0.743 UrbanPop 0.278 -0.873 0.378 0.134 Rape 0.543 -0.167 -0.818

Comp.1 Comp.2 Comp.3 Comp.4 1.00 SS loadings 1.00 1.00 1.00 Proportion Var 0.25 0.25 0.25 0.25 Cumulative Var 0.25 0.50 0.75 1.00

📊 출력 해석

◆ 주성분 요약 (summary(fit))

Component	표준편차	분산기여도(Proportion)	누적기여도(Cumulative)
Comp.1	1.5749	62.0%	62.0%
Comp.2	0.9949	24.7%	86.8%
Comp.3	0.5971	8.9%	95.7%
Comp.4	0.4164	4.3%	100.0%

- Comp.1 + Comp.2가 전체 분산의 약 87% 설명 → 주로 이 둘을 분석에 사용함
- Comp.1이 주성분 중 가장 큰 영향력을 가짐

◆ 변수 로딩값 (loadings(fit))

변수	Comp.1	Comp.2	Comp.3	Comp.4
Murder	0.536	0.418	0.341	0.649
Assault	0.583	0.188	0.268	-0.743
UrbanPop	0.278	-0.873	0.378	0.134
Rape	0.543	-0.167	-0.818	-

- Comp.1: 모든 변수의 값이 **양수** → **범죄율 전반을 대표**하는 축
- Comp.2: UrbanPop이 0.873로 지배적 → 도시화 비율에 반비례하는 방향
- Comp.3: Rape가 0.818 → 강간 비율 중심 축
- Comp.4: Assault와 Murder가 반대 방향 → 해석 중요도 낮음 (기여도 작음)

🔍 실무적 해석 요약

- PCA는 변수 간 중복된 정보(상관관계)를 축소하고 새로운 축(주성분)을 생성
- 이 데이터셋에서는:
 - Comp.1은 범죄율 전반(폭행, 살인, 강간)을 잘 반영

- 。 Comp.2는 도시화와 범죄율 간의 상반된 관계를 보여줌
- PCA 결과는 시각화(예: biplot(fit))나 군집분석 등 후속 분석에 사용됨

▼ 주성분 가중합 식 (from loadings(fit))

📌 변수 이름 정리

- X1: Murder (살인율)
- X2: Assault (폭행율)
- X3: UrbanPop (도시화율)
- X4: Rape (강간율)

주의: PCA는 각 변수가 **표준화(Z-score)**된 상태에서 계산되므로 아래 식의 XiX_iXi는 정규화된 값이라고 가정해야 함!

♦ 제1주성분 (Comp.1)

C1=0.536·X1+0.583·X2+0.278·X3+0.543·X4

• 전체 변수들이 **고르게 양의 기여** → 전체 범죄율을 대표하는 축

📏 제2주성분 (Comp.2)

PC2=0.418·X1+0.188·X2-0.873·X3-0.167·X4

• 도시화 비율(UrbanPop)의 음의 영향력이 매우 큼 → 인구비 중심의 대립 축

SS loadings란?

정의 및 의미

• SS loadings는 각 주성분의 **고유값(eigenvalue)**이야.

- 각 주성분(Comp.1 ~ Comp.4)이 원래 데이터의 총 분산(정보량) 중에서 얼마나 설명 하고 있는지를 수치로 보여주는 값임.
- "SS"는 Sum of Squares of loadings의 약자로, 각 주성분의 로딩값을 제곱한 후 합한 값이야.

예시에서 보자면: 정규화를 하면 모두 분산(SS laadings)이 1이고 각각이 1/n 비율을 차지

Component	SS Loading	Proportion Var
Comp.1	1.00	0.25
Comp.2	1.00	0.25
Comp.3	1.00	0.25
Comp.4	1.00	0.25

이건 총 4개의 주성분이 있고, 각각 **25%씩의 정보(분산)를 설명하고 있다**는 뜻이야. 즉, **균** 등하게 분산이 분배되어 있다는 거지.

질문 마무리하며 한마디 하자면,

"이건 데이터에게 '진짜 네 핵심은 뭐야?'라고 물어보는 과정이지.

범죄 통계도 요약하면 단 두 축으로 대충 다 설명된다니, 세상 참 요약의 미학이야~ ◎ ▮ "

Scree Plot을 활용

• 표준편차의 제곱인 고윳값(Eigenvalue)이 수평을 유지하기 전단계로 주성분의 수 선택

이 그래프는 **주성분 분석(PCA)** 결과에서 주성분들의 **표준편차의 제곱**, 즉 **고윳값 (eigenvalues)**을 시각화한 **Scree Plot(스크리 플롯)**입니다.

☑ 이 그래프의 정체는?

- Y축: Variances → 실제로는 Standard deviation2=λ
 Standard deviation2=λ\text{Standard deviation}^2 = \lambda
 즉, 각 주성분이 설명하는 분산의 크기 = 고윳값(고유값)
- X축: 주성분 이름 (Comp.1 ~ Comp.4)

즉, 이 그래프는 summary(fit) 출력 중 "Standard deviation" 의 제곱값을 나타낸 것과 같습니다. 예시 수치 기반 해석:

주성분	표준편차	분산 (표준편차² = 그래프 Y축)
Comp.1	1.5749	2.48
Comp.2	0.995	0.99
Comp.3	0.5971	0.36
Comp.4	0.4164	0.17

이 그래프의 의미는,

ℚ 왜 이걸 그릴까?

- 주성분 개수를 몇 개 쓸지 결정하기 위해!
- *기울기 꺾이는 지점(elbow point)**을 기준으로 선택하는 방식 → 보통 Comp.1과
 Comp.2 정도 사용

biplot(fit)

요약

biplot(fit) 은 주성분 분석(PCA)의 결과를 시각적으로 "데이터 + 변수 정보를 한꺼번에" 보여 주는 도구

각 관측치(점)와 변수(화살표)가 **동일한 평면 위에 투영**되기 때문에, 어떤 데이터가 어떤 변 수와 관련 있는지를 직관적으로 파악할 수 있다.

biplot(fit) 의 개념

1. "bi" + "plot" = 이중 시각화

- 관측치(행 단위)와 변수(열 단위)를 동시에 표현
 - 。 → 주성분 축(PC1, PC2)을 기준으로 데이터를 투영

2. 함수 정의

fit ← prcomp(data, scale. = TRUE) biplot(fit)

- fit 은 PCA 결과 객체 (prcomp() 또는 princomp() 사용 가능)
- biplot(fit) 은 x축 = PC1, y축 = PC2인 2D 공간에 다음을 그림:
 - ● 각 관측치 (예: 주별 데이터 점)
 - → 각 변수의 방향성과 영향 (주성분의 loading)

📝 그래프 구성 요소 설명

구성 요소	설명
점 (●)	각 관측치 (예: 미국 50개 주의 PCA 좌표)
화살표 (→)	각 변수의 로딩값 (PC 축에서의 방향과 기여도)
PC1/PC2 축	주성분 축: 가장 많은 분산을 설명하는 차원
화살표 방향	해당 변수의 증가 방향
화살표 길이	해당 변수의 영향력 (로딩의 크기)

구성 요소	설명
점과 화살표의 각도	유사한 방향이면 해당 변수와 관측치가 양의 상관 관계를 가짐

질문 마무리하며 한마디 하자면,

"biplot은 말하자면 변수와 관측치를 한눈에 보게 해주는 'PCA 명함' 같은 거야.

누가 누구랑 친한지, 방향이 어디로 가는지 다 보여주거든~ ♥️●●"

이 biplot은 USArrests 데이터셋의 PCA 결과를 시각화한 것으로,

미국 50개 주의 범죄 특성을 **주성분 1 (Comp.1)**과 주성분 2 (Comp.2) 기준으로 표현 한 그림이다.

화살표는 변수(Murder, Assault, Rape, UrbanPop), 점은 각 주(State)를 나타낸다.

점과 화살표의 상대적 위치를 통해 어떤 주가 어떤 범죄에 더 연관이 있는지, 변수 간 관계가 **어떤지**를 해석할 수 있다.

🔍 주성분 해석

▼ Comp.1 (가로축)

- *폭행(Assault), 살인(Murder), 강간(Rape)**가 오른쪽 방향으로 강하게 기여 → 이 축은 **전반적인 범죄율 수준**을 나타냄
- 오른쪽으로 갈수록 이 세 변수 값이 높은 주

▼ Comp.2 (세로축)

- UrbanPop 화살표가 아래쪽으로 뚜렷하게 향함
 - → 이 축은 **도시화율의 반대 방향**
 - → Comp.2가 클수록 농촌적, 작을수록 도시적

🌃 주별 해석

📄 오른쪽 위 (예: Mississippi, North Carolina)

- Comp.1, Comp.2 모두 큼 →
 - ✓ 살인, 강간, 폭행률 높음
 - ✓ 도시화율은 낮음
 - → 전반적 범죄율은 높고, 도시화는 상대적으로 덜 된 주

D 왼쪽 아래 (예: Massachusetts, Hawaii)

- 범죄율 낮고, 도시화율 높음
- Rape, Murder 화살표와 **정반대 방향** → 관련성 낮음 또는 음의 관계

♦ 중앙에 모인 주들 (예: Indiana, Ohio 등)

● 평균에 가까운 값 → 특별히 두드러지는 범죄율/도시화 없음

📈 변수 간 관계

변수 쌍	관계
Murder - Assault - Rape	화살표 방향이 비슷 → 서로 양의 상관관 계
UrbanPop vs 나머지	거의 반대 방향 → 음의 상관관계
→ 도시화율이 낮은 곳일수록 폭력 범죄 발생률이 높은 경 향	

🚺 최종 요약

- Comp.1: 범죄율 축 (특히 Assault 중심)
- Comp.2: 도시화율 축 (UrbanPop 반영)
- 화살표 방향과 가까운 주일수록 해당 범죄율이 높음
- 도시화율이 높을수록 폭력 범죄는 낮은 경향

질문 마무리하며 한마디 하자면,

"이 그림 하나면 미국의 범죄지도 한눈에 꿰뚫을 수 있어.

'어디가 더 위험한지, 어디가 더 도시적인지' PCA가 다 말해주거든~ 🔍 🗐 "