

LPC CMSDAS'17 long exercise Z → TT production cross section

Ketino Kaadze (Kansas State U),
Abdollah Mohammadi (Kansas State U),
Zaixing Mao (Brown U),
Isobel Ojalvo (Princeton),
Dominick Olivito (UCSD)

Goals

Physics (This is a full analysis!):

• Compute the cross section production of the $Z \rightarrow \tau\tau$ in proton-proton collisions at 13 TeV centre-of-mass energy

Experience:

- learn the workflow of a CMS analysis, involving taus
- learn how to work in a team
- learn/improve how to summarize and present results
- learn to prioritize

Core Steps

- Identify the signal signature
- Identify and estimate the backgrounds
- Find ways to reduce the backgrounds
- Interpret the results

Tau Recap

Tau Leptons

Third generation lepton

* charge: +/-1

* mass: 1776.86 ± 0.12 MeV

* spin: 1/2 (fermion)

* mean lifetime: 2.9×10^{-13} s

Taus Decay Weakly

- Leptonic e/muon + 2v

- Hadronic + v

Decay Mode	Resonance	B [%]
$ au^- ightarrow \mathrm{e}^- \overline{ u}_\mathrm{e} u_ au$		17.8
$\tau^- o \mu^- \overline{\nu}_\mu \nu_\tau$		17.4
$ au^- ightarrow h^- u_ au$		11.5
$ au^- ightarrow h^- \pi^0 u_ au$	$\rho(770)$	26.0
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	10.8
$ au^- ightarrow h^- h^+ h^- u_ au$	$a_1(1260)$	9.8
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$		4.8
Other hadronic modes		1.8
All hadronic modes		64.8

Remember: At CMS Taus are never Fully Reconstructed due to the presence of Neutrinos, instead studies of Tau Leptons make use of the 'visible decay products'

Isobel Ojalvo

Tau Recap

Tau ID: Hadron+Strips

1 prong

 π^{+}

Single Hadron is assumed to have the mass of the pion

3 prong

 π^+

 π^{-}

Three charged hadrons are required to come from the same secondary vertex created using a kalman vertex fitter

 π^{+}

The τ_h mass distribution is used to control the tau energy-scale within 3%

Decay Mode	Resonance	B [%]
$ au^- ightarrow e^- \overline{ u}_e u_ au$		17.8
$ au^- ightarrow \mu^- \overline{ u}_\mu u_ au$		17.4
$ au^- o h^- u_ au$		11.5
$ au^- ightarrow h^- \pi^0 u_ au$	$\rho(770)$	26.0
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	10.8
$ au^- ightarrow h^- h^+ h^- u_ au$	$a_1(1260)$	9.8
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$		4.8
Other hadronic modes		1.8
All hadronic modes		64.8

Isobel Ojalvo

10

BROWN

Z Boson Introduction

Z dominant decay modes		
Mode	Fraction (%)	
e+e⁻	3.363 ± 0.004	
μ+μ-	3.366 ± 0.007	
τ+τ-	3.370 ± 0.008	
invisible	20.00 ± 0.06	
hadrons	69.91 ± 0.06	

 $Z \rightarrow \tau\tau$ acts as a standard candle for BSM X-> $\tau\tau$ searches

Signal Topology

In the end, we look for a muon/electron + hadronic tau (τ_h) .

Why not require both taus to decay hadronically $(\tau_h + \tau_h)$?

Main SM Backgrounds For Lepton Searches

W ⁺ DECAY MODES	Fraction (Γ_i/Γ)	
$\ell^+ \nu$	[b] (10.86± 0.09) %	
$e^+ \nu$	$(10.71 \pm \ 0.16) \ \%$	
$\mu^+ \nu$	$(10.63 \pm \ 0.15) \ \%$	
$\tau^+ \nu$	$(11.38 \pm \ 0.21) \%$	
hadrons	$(67.41 \pm 0.27) \%$	

leptons are produced through electroweak interactions

Rare DiBoson processes WW, WZ, ZZ

Muti-jet processes

QCD

Relevant Backgrounds

Backgrounds with $\ell + \tau_h$

$$t\bar{t} \to e/\mu/\tau + \tau + 2b$$
+ neutrinos $tW \to e/\mu/\tau + \tau + b$ + neutrinos rare diboson processes: WW, WZ, ZZ

reducible with b-jet veto reducible with b-jet veto low production rate

Backgrounds with fakes (jet faking ℓ , jet/e/ μ faking τ_h)

$$\begin{array}{ll} t \overline{t} \rightarrow e/\mu/\tau + |\text{jet}| + 2b + \text{neutrinos} & \text{reducible with b-jet veto} \\ Z + |\text{jets}| \rightarrow e/\mu + |\text{jets}| & \text{reducible with extra-lepton veto} \\ W + |\text{jets}| \rightarrow e/\mu + |\text{jets}| + \text{neutrinos} & \text{reducible with m_T cut and } \tau & \text{requirements} \\ t + |\text{jets}| \rightarrow e/\mu + |b| + |\text{jets}| & \text{reducible with b-jet veto} \\ \text{QCD} & \text{reducible with } \tau & \text{requirements and charge selections} \\ \end{array}$$

W + jets Background

CMS Preliminary 2.1 fb⁻¹ (13 TeV)

events with one genuine e/ μ and a jet faking τ_h

$$m_T(l, \mathcal{E}_{\mathcal{T}}^{\mathrm{miss}}) = \sqrt{(E_l + \mathcal{E}_{\mathcal{T}}^{\mathrm{miss}})^2 + (\vec{p_l} + \vec{\mathcal{E}}_{\mathcal{T}}^{\mathrm{miss}})}$$

A cut on m_T (m_T < 40 GeV) would greatly reduce W+jets contamination

QCD Background

isolated

anti-isolated

signal (A) control (B) OS SS iso e/µ iso e/µ iso auiso aucontrol (D) control (C) OS SS anti-iso e/µ anti-iso e/µ anti-iso τ anti-iso τ

QCD dijets are expected to be electric-charge-blind. It is estimated from data using the same-signed controlled region (QCD rich).

QCD:

shape: data_B - MC_B

yield: (data_B - MC_B) x SF_{SStoOS}

 $SF_{SStoOS} = (data_C - MC_C)/(data_D - MC_D)$

2015, 2.3 fb⁻¹ (13 TeV) 1000 CMS Preliminary

Corrections: PileUp re-weighting

Quantities such as and isolation, where energy depositions are summed up over some range of the detector, can suffer large inefficiencies or systematic effects due to particles from pile-up interactions.

The pile-up distributions in MC simulations may not correctly model the distributions from data. Thus, we need to apply some corrections.

2015 data

CMS pioned Wron Solenol Line Compact Wron Li

Hands-on: Tasks

https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideCMSDataAnalysisSchoolLPC2017LongExerciseTau

Preparations:

Discuss and work as a · setup CMSSW, download code etc

group:)

Event Selections:

similar to short exercise

topology cuts

how?

vetos for background rejection

start with $F_{SStoOS} = 1.06$ then try to estimate your own

- visible mass reconstructiondata-driven QCD estimation
 - compare data with background estimations!

x2 for muon+tau and electron+tau in 3 person groups

Compute cross sections:

- based on normalization
- based on maximum likelihood fit
- compare to 8 TeV results

Presentation

Wed 8am

Team Reports Fri 10:30am

BROWN

Enjoy and have fun!

