Song, Y., Mao, J., and Gunner, M. R. (2009) MCCE2: Improving Protein pKa Calculations with Extensive Side Chain Rotamer Sampling J. Comp. Chem. 30, 2231-2247. Supplementary Material S3. Calculated p K_as - FULL MCCE single X-ray structure; 33 proteins

•		Calc	Calc	ехр		
Protein	Res	pK1	pK2	рK	Comments	DSSP
Apo E2	LYS 69	12.6		10.1		Н
Apo E2	LYS 72	10.6		10		Н
Apo E2	LYS 75	11.3		10		Н
Apo E2	LYS 95	10.1		10.2		Н
Apo E2	LYS 143	10.1		9.4		Н
Apo E2	LYS 146	9.2		9.9		Н
Apo E2	LYS 157	11.5		10.9		Н
Apo E3	LYS 69	11.7		10.4		Н
Apo E3	LYS 72	10.7		10		Н
Apo E3	LYS 75	11.8		10.1		Н
Apo E3	LYS 95	10.2		10.1		Н
Apo E3	LYS 143	9.7		9.5		Н
Apo E3	LYS 146	9.7		9.2		Н
Apo E3	LYS 157	12.0		11.1		Н
Apo E4	LYS 69	11.2		10.1		Н
Apo E4	LYS 72	10.4		10		Н
Apo E4	LYS 75	10.5		10.1		Н
Apo E4	LYS 95	10.7		10.1		Н
Apo E4	LYS 143	9.8		9.9		Н
Apo E4	LYS 146	9.8		9.4		Н
Apo E4	LYS 157	11.9		10.9		H
B1 Domain of protein G	TYR 3	15.6		11	Lower Limit	E
B1 Domain of protein G	LYS 4	11.8		11	Lower Limit	E
B1 Domain of protein G	LYS 10	11.9		11	expt val approximate	S
B1 Domain of protein G	LYS 13	11.8		11	Lower Limit	E
B1 Domain of protein G	GLU 15	5.0		4.4		E
B1 Domain of protein G	GLU 19	4.1		3.7		E
B1 Domain of protein G	ASP 22	2.3		2.9		S
B1 Domain of protein G	GLU 27	4.9		4.5		Н
B1 Domain of protein G	LYS 28	10.9		10.9		Н
B1 Domain of protein G	TYR 33	11.1		11	expt val approximate	Н
B1 Domain of protein G	ASP 36	4.9		3.8		H
B1 Domain of protein G	ASP 40	4.4		4		L
B1 Domain of protein G	GLU 42	4.0		4.4	1	E
B1 Domain of protein G	TYR 45	15.8		12	Lower Limit	E
B1 Domain of protein G	ASP 46	3.8		3.6		E
B1 Domain of protein G	ASP 47	3.3		3.4		T
B1 Domain of protein G	GLU 56	3.7		4	1	L
B2 Domain of protein G	TYR 8	14.8		11	Lower Limit	E
B2 Domain of protein G	LYS 9	11.5		11	expt val approximate	E
B2 Domain of protein G	LYS 15	12.4		11	Lower Limit	S
B2 Domain of protein G	LYS 18	11.6		11	Lower Limit	E

B2 Domain of protein G	GLU 20 LYS 24 ASP 27 GLU 29 GLU 32 LYS 33 TYR 38 ASP 41 ASP 45 TYR 50 ASP 51 ASP 52	4.8 11.1 3.0 4.3 4.9 10.8 11.9 5.1 4.4 16.3 3.6 3.2		4.3 10.7 2.9 4.2 4.6 11 11 3.9 4 12 3.6 3.4 4.2	expt val approximate expt val approximate Lower Limit	E E S H H H H L E E T L
B2 Domain of protein G Bacterial phosphono-	GLU 61	4.7		4.2	pH dependence of	L
acetaldehyde hydrolase Bacterial proteinase	LYS 53	7.8		9.3	inactivation	Н
inhibitor Ssi	HIS 43	1.7		3.15	A - see below	L
Bacterial proteinase						
inhibitor Ssi	HIS 106	4.9		6		T
Barnase	ASP 8	3.6		3.3		H
Barnase	ASP 12	4.0		3.8		Н
Barnase	HIS 18	7.6		7.73		S
Barnase	ASP 22	3.9		3.3		T
Barnase	GLU 29 ASP 44	5.3 4.2		3.75 3.35		H H
Barnase Barnase	ASP 44 ASP 54	3.8		2.2		E
Barnase	GLU 60	3.9		3		T
Barnase	GLU 73	2.1	4.4	2.2		Ė
Barnase	ASP 75	2.4		3.1	change boundary	Ē
Barnase	ASP 86	5.8		4.2	change boundary	Ĺ
Barnase	ASP 93	1.2		2	Upper Limit	T
Barnase	ASP 101	2.0	1.1	2	5 P P S S S S S S S S S S S S S S S S S	S
Barnase	HIS 102	6.2		6.3		Т
Barnase	CTR	3.6		3.3		ND
BPTI	NTR	6.9		7.9		ND
BPTI	ASP 3	3.5		3.55		G
BPTI	GLU 7	3.9		3.85		S
BPTI	TYR 10	10.2		9.46		L
BPTI	LYS 15	10.7		10.4		L
BPTI	TYR 21	10.5		9.94		Е
BPTI	TYR 23	12.2		11		Е
BPTI	LYS 26	10.7		10.4		Т
BPTI	TYR 35	10.4		10.6		Е
BPTI	LYS 41	11.3		10.8		L
BPTI	LYS 46	10.5		10.4		S
BPTI	GLU 49	4.0		3.91		Н
BPTI	ASP 50	2.7		3.2		Н
BPTI	CTR	3.7		3.1		ND
Calbindin D9k	LYS 1	11.3		10.6		L

Calbindin D9k	GLU 4	4.1	3.8		Н
Calbindin D9k	GLU 5	2.8	3.4		Н
Calbindin D9k	LYS 7	11.6	11.4		Н
Calbindin D9k	GLU 11	4.9	4.7		Н
Calbindin D9k	LYS 12	11.2	11.1		Н
Calbindin D9k	LYS 16	11.9	10.1		Т
Calbindin D9k	GLU 17	3.5	3.62		S
Calbindin D9k	LYS 25	11.7	11.7		Н
Calbindin D9k	GLU 26	3.7	4.1		Н
Calbindin D9k	LYS 29	11.0	11.4		Н
Calbindin D9k	LYS 41	10.7	10.9		L
Calbindin D9k	ASP 47	3.9	3		H
Calbindin D9k	GLU 48	4.4	4.6		Н
Calbindin D9k	LYS 55	12.2	12.1		T
Calbindin D9k	GLU 64	3.7	3.8		H
Calbindin D9k	LYS 71	9.8	10.7		H
Calbindin D9k	LYS 72	10.6	11.3		H
Calbindin D9k	CTR	3.9	3.2		ND
Cardiotoxin A5	HIS 4	6.2	5.6		E
Cardiotoxin A5	GLU 17	3.8	4		T
Cardiotoxin A5	ASP 42	3.2	3.2		S
Cardiotoxin A5	ASP 59	1.8	2.3	Upper Limit	T
CD2d1	ASP 2	2.3	3.5	оррог Ептис	L
CD2d1	ASP 25	3.5	3.53		T
CD2d1	ASP 26	4.0	3.58		T
CD2d1	ASP 28	4.0	3.57		Ė
CD2d1	GLU 29	5.1	4.51		E
CD2d1	GLU 33	4.0	4.2		E
CD2d1	GLU 41	6.7	6.53		E
CD2d1	GLU 56	4.4	3.95		E
CD2d1	ASP 62	6.2	4.18		L
CD2d1	ASP 71	3.8	3.2		G
CD2d1	ASP 72	5.2	4.14		G
CD2d1	ASP 94	3.1	3.83		E
CD2d1	GLU 99	4.3	4.1		L
CD2d1	CTR	4.0	3.11		ND
Chymotrypsin Inhibitor 2	GLU 23	4.3	3.2		В
Chymotrypsin Inhibitor 2	GLU 26	2.4	3.3		G
Chymotrypsin Inhibitor 2	GLU 33	3.2	4.2		Н
Chymotrypsin Inhibitor 2	GLU 34	3.8	3.8		 H
Chymotrypsin Inhibitor 2	GLU 45	3.2	3.85		 T
Chymotrypsin Inhibitor 2	GLU 43	3.1	3.5		L
Chymotrypsin Inhibitor 2	ASP 64	4.8	3.8		T
Chymotrypsin Inhibitor 2	ASP 71	2.1	2.8		L
Chymotrypsin Inhibitor 2	ASP 74	4.4	4.95		S
chymotrypsinogen	His 40	3.7	4.6		E
chymotrypsinogen	His 57	8.8	7.3		G
Cyclophilin	HIS 54	1.4	4.2	Upper Limit	L
Cyclophilin	HIS 70	6.3	5.8	opper Little	S
Сусторини	1115 / 0	0.5	5.0		3

Cyclophilin	HIS 92	-2.8		4.2	Upper Limit	L
Cyclophilin	HIS 126	5.2		6.3		S
Fungal beta cryptogein	NTR	9.0		7.43		ND
Fungal beta cryptogein	TYR 12	10.4			expt val approximate	Н
Fungal beta cryptogein	ASP 21	2.1		2.49		S
Fungal beta cryptogein	ASP 30	5.0		2.51		Н
Fungal beta cryptogein	TYR 33	18.1		12	Lower Limit	L
Fungal beta cryptogein	TYR 47	14.0		12	Lower Limit	Н
Fungal beta cryptogein	LYS 61	10.4			Ambiguous assignment	Н
Fungal beta cryptogein	ASP 72	4.0		2.61		В
Fungal beta cryptogein	TYR 85	10.0		10.4		Н
Fungal beta cryptogein	TYR 87	17.5		12	Lower Limit	Н
Fungal beta cryptogein	LYS 94	10.7		9.4	Ambiguous assignment	Н
Fungal beta cryptogein	CTR	4.2		3.51		ND
Hen egg white lysozyme	LYS 1	10.9		10.8		L
Hen egg white lysozyme	GLU 7	3.0		2.85		Н
Hen egg white lysozyme	LYS 13	11.1		10.5		Н
Hen egg white lysozyme	HIS 15	6.0		5.36		Т
Hen egg white lysozyme	ASP 18	2.3		2.66		Т
Hen egg white lysozyme	TYR 20	11.6		10.3		В
Hen egg white lysozyme	TYR 23	10.7		9.8		В
Hen egg white lysozyme	LYS 33	9.4		10.4		Н
Hen egg white lysozyme	GLU 35	6.1		6.2		Н
Hen egg white lysozyme	ASP 48	3.5		1.6		Т
Hen egg white lysozyme	ASP 52	4.2		3.68		Е
Hen egg white lysozyme	ASP 66	1.0		0.9		L
Hen egg white lysozyme	ASP 87	2.1		2.1		S S
Hen egg white lysozyme	ASP 87	2.1		2.07		
Hen egg white lysozyme	LYS 96	11.3		10.8		Н
Hen egg white lysozyme	LYS 97	11.0		10.3		Н
Hen egg white lysozyme	ASP 101	5.2		4.08		T
Hen egg white lysozyme	LYS 116	10.2		10.2		T
Hen egg white lysozyme	ASP 119	3.9		3.2		L
Hen egg white lysozyme	CTR	3.3		2.75		ND
Human DNA polymerase						
lambda lyase domain	LYS 312	9.6	8.1	9.5		Н
Human thioredoxin (ox)	GLU 6	3.8		4.9		L
Human thioredoxin (ox)	GLU 13	4.2		4.4		Н
Human thioredoxin (ox)	ASP 16	3.9		4.2		Н
Human thioredoxin (ox)	ASP 20	3.2		3.8		T
Human thioredoxin (ox)	ASP 26		13.0	8.1	change boundary	Е
Human thioredoxin (ox)	GLU 47	4.5		4.3		Н
Human thioredoxin (ox)	GLU 56	2.4		3.2		Е
Human thioredoxin (ox)	_			.9, 5.2	2 (coupled expt values)	L
Human thioredoxin (ox)	ASP 58		7.3			E
Human thioredoxin (ox)	ASP 60	3.8	_			T
Human thioredoxin (ox)	ASP 61	5.0	3.4			T
Human thioredoxin (ox)	ASP 64	3.8		3.2		H
Human thioredoxin (ox)	GLU 68	4.3		5.1		Н

Human thioredoxin (ox)	GLU 70	4.2	4.8		Т
Human thioredoxin (ox)	GLU 88	2.8	3.6		Е
Human thioredoxin (ox)	GLU 95	3.7	4.1		Н
Human thioredoxin (ox)	GLU 98	3.4	3.9		Н
Human thioredoxin (ox)	GLU 103	4.1	4.5		Н
Human thioredoxin (red)	GLU 6	4.3	4.8		L
Human thioredoxin (red)	GLU 13	4.0	4.4		Н
Human thioredoxin (red)	ASP 16	3.7	4		Н
Human thioredoxin (red)	ASP 20	3.4	3.8		Т
Human thioredoxin (red)	ASP 26	10.7	9.9		Е
Human thioredoxin (red)	HIS 43	7.4	5.5		Н
Human thioredoxin (red)	GLU 47	3.6	4.1		Н
Human thioredoxin (red)	GLU 56	2.9	3.1		Ε
Human thioredoxin (red)	ASP 58/6	0/61 2		B (coupled expt values)	L
Human thioredoxin (red)	ASP 58	2.7	7.5		Ε
Human thioredoxin (red)	ASP 60	5.2			Τ
Human thioredoxin (red)	ASP 61	4.8			Τ
Human thioredoxin (red)	ASP 64	3.7	3.2		Н
Human thioredoxin (red)	GLU 68	3.9	4.9		Н
Human thioredoxin (red)	GLU 70	3.7	4.6		Т
Human thioredoxin (red)	GLU 88	2.9	3.7		Е
Human thioredoxin (red)	GLU 95	4.2	4.1		Н
Human thioredoxin (red)	GLU 98	4.2	3.9		Н
Human thioredoxin (red)	GLU 103	4.4	4.4		Н
Myoglobin - horse	HIS 36	6.1	7.8		L
Myoglobin - horse	HIS 48	5.9	5.62		Т
Myoglobin - horse	HIS 81	7.0	6.94		L
Myoglobin - horse	HIS 113	6.0	5.87		Н
Myoglobin - horse	HIS 116	6.6	6.79		Н
Myoglobin - horse	HIS 119	5.6	6.56		S
Myoglobin - sperm whale	HIS 12	7.4	6.5		H
Myoglobin - sperm whale	HIS 24	-0.5	5	Upper Limit	Н
Myoglobin - sperm whale	HIS 36	7.0	8		L
Myoglobin - sperm whale	HIS 48	6.5	5.6		Т
Myoglobin - sperm whale	HIS 64	1.8	5	Upper Limit	H
Myoglobin - sperm whale	HIS 81	6.9	6.9		L
Myoglobin - sperm whale	HIS 82	3.8	5	Upper Limit	L
Myoglobin - sperm whale	HIS 97	5.8	5.6	oppor Linit	S
Myoglobin - sperm whale	HIS 113	6.5	5.4		Н
Myoglobin - sperm whale	HIS 116	6.8	6.7		 Н
Myoglobin - sperm whale	HIS 119	5.6	6.2		L
Phage T4 lysozyme	HIS 31	7.9	9.1		Ē
RNase A	GLU 2	3.0	2.6		Ĺ
RNase A	GLU 9	4.6	4		H
RNase A	HIS 12	4.1	6		Н
RNase A	ASP 14	1.8	1.8		L
RNase A	ASP 38	3.2	3.5		S
RNase A	HIS 48	7.8	6.1		L
RNase A	GLU 49	7.6 4.4	4.7		S
KNOSE A	GLU 49	4.4	4./		3

RNase A	ASP 53	4.2	3.7		Н
RNase A	ASP 83	5.3	3.3		Е
RNase A	GLU 86	4.3	4		Е
RNase A	HIS 105	6.8	6.5		L
RNase A	GLU 111	4.2	3.5		Е
RNase A	HIS 119	5.5	6.5		Е
RNase A	ASP 121	2.6	3		Е
RNase A	CTR	2.8	2.3		?
RNase H1	GLU 6	4.0	4.5		Е
RNase H1	ASP 10	8.2	6.1		Е
RNase H1	GLU 32	4.2	3.6		E
RNase H1	GLU 48	1.8	4.4		Н
RNase H1	GLU 57	3.7	3.2		Н
RNase H1	GLU 61	3.3	3.9		S
RNase H1	HIS 62	6.7	7		L
RNase H1	GLU 64	4.5	4.4		E
RNase H1	ASP 70	3.6	2.6		L
RNase H1	HIS 83	5.9	5.5		Н
RNase H1	ASP 94	4.2	3.2		Т
RNase H1	ASP 102	0.9	2	Upper Limit	Н
RNase H1	ASP 108	3.8	3.2		Н
RNase H1	HIS 114	-0.1	5	Upper Limit	S
RNase H1	GLU 119	5.2	4.1		Е
RNase H1	HIS 124	7.9	7.1		S
RNase H1	HIS 127	7.3	7.9		L
RNase H1	GLU 129	3.3	3.6		Н
RNase H1	GLU 131	4.6	4.3		Н
RNase H1	ASP 134	2.7	4.3		Н
RNase H1	GLU 135	4.7	4.3		Н
RNase H1	GLU 147	4.5	4.2		L
RNase H1	ASP 148	-1.6	2	Upper Limit	L
RNase H1	GLU 154	4.5	4.4		L
RNase H1	CTR	3.4	3.4		ND
RNase SA	NTR	8.6	9.14		ND
RNase SA	ASP 1	3.2	3.44		L
RNase SA	GLU 14	5.3	5.05		Н
RNase SA	ASP 17	4.7	3.72		Н
RNase SA	ASP 25	5.1	4.87		T
RNase SA	TYR 30	10.5	11.3		S
RNase SA	ASP 33	0.6	2.39		Т
RNase SA	GLU 41	3.5	4.14		Т
RNase SA	TYR 49	10.1	10.6		Т
RNase SA	TYR 51	15.8		Lower Limit	S
RNase SA	TYR 52	19.4		Lower Limit	L
RNase SA	HIS 53	8.9	8.27		E
RNase SA	GLU 54	4.2	3.42		E
RNase SA	TYR 55	13.8		Lower Limit	E
RNase SA	GLU 74	5.0	3.47		S
RNase SA	GLU 78	4.9	3.13		L

RNase SA	ASP 79	7.4		7.37		E
RNase SA	TYR 80	18.1			Lower Limit	Е
RNase SA	TYR 81	13.2			Lower Limit	E
RNase SA	ASP 84	2.7		3.01		S
RNase SA	HIS 85	5.9		6.35		Т
RNase SA	TYR 86	14.0		11.5	Lower Limit	Т
RNase SA	ASP 93	3.8		3.09		E
RNase SA	CTR	2.1		2.43		ND
RNase T1	ASP 15	4.2		3.52		Н
RNase T1	HIS 27	8.4		7		Н
RNase T1	GLU 28	6.1		5.61		Н
RNase T1	ASP 29	5.5		4.26		Н
RNase T1	GLU 31	4.6		5.36		L
RNase T1	HIS 40	8.5		7.9		Е
RNase T1	GLU 46	4.0		3.62		_ T
RNase T1	ASP 49	5.0		4.22		L.
RNase T1	GLU 58	2.5		3.96		Ē
RNase T1	ASP 66	4.6		3.9		S
RNase T1	ASP 76	4.1			B - see below	E
RNase T1	GLU 82	2.8		3.27	B See Below	T
RNase T1	HIS 92	6.1		7.3		S
RNase T1	GLU 102	5.3		5.3		E
Snake erabutoxin b	HIS 6	0.1		2.8	Upper Limit	L
Snake erabutoxin b	TYR 25	13.5		12	Lower Limit	E
Snake erabutoxin b	HIS 26	5.6		5.8	LOWEI LITTIC	E
Staph Nuclease	HIS 8	7.6		6.52		L
Staph Nuclease Staph Nuclease	HIS 46	6.4		5.86		L
Staph Nuclease Staph Nuclease	HIS 121	6.6		5.3		T
Staph Nuclease Staph Nuclease	HIS 121	4.6		5.73		H
	NTR	6.0		3.73 8		ND
Turkey ovomucoid inhibitor					Unnar Limit	L
Turkey ovomucoid inhibitor	ASP 7 GLU 10	2.1		2.6 4.2	Upper Limit	T
Turkey ovomucoid inhibitor	TYR 11	2.5	11.5	10.2		L L
Turkey ovomucoid inhibitor						
Turkey ovomucoid inhibitor	LYS 13 GLU 19	3.7	14.1	9.9 3.2		L
Turkey ovomucoid inhibitor	TYR 20					L
Turkey ovomucoid inhibitor		10.3		11.1	Unnar Limit	T T
Turkey ovomucoid inhibitor	ASP 27	3.3		2.3	Upper Limit	
Turkey ovomucoid inhibitor	LYS 29	11.4		11.1	Lauran Linaik	L
Turkey ovomucoid inhibitor	TYR 31	14.9			Lower Limit	E
Turkey ovomucoid inhibitor	LYS 34	10.6		10.1		H
Turkey ovomucoid inhibitor	GLU 43	3.9		4.8		H
Turkey ovomucoid inhibitor	HIS 52	7.3		7.5		E .
Turkey ovomucoid inhibitor	LYS 55	11.1		11.1		L
Tyrosin phosphotase	HIS 66	6.8		8.3		T
Tyrosin phosphotase	HIS 72	7.3		9.2		L
Xylanase BA	ASP 5	4.6	o =	3.84	alexander of the second	S
Xylanase BA	HIS 11	7.4	0.7	6.5	change boundary	E
Xylanase BA	ASP 12	5.2		3.94		Ţ
Xylanase BA	ASP 15	3.2		3.35		E

Xylanase BA	GLU 17	3.5		4.31		Е
Xylanase BA	ASP 21	2.8		3.46		L
Xylanase BA	HIS 32	5.4		6.7		S
Xylanase BA	HIS 60	4.0	6.2	4		Н
Xylanase BA	ASP 90	4.0		3.88		Т
Xylanase BA	GLU 94	4.6	8.1	3.94		E
Xylanase BA	ASP 99	2.2		2.7	Upper Limit	E
Xylanase BA	ASP 118	2.5		2.7	Upper Limit	Т
Xylanase BA	ASP 123	0.4		2.7	Upper Limit	E
Xylanase BA	GLU 126	4.7		4.51		E
Xylanase BA	HIS 162	-2.5		2.7	Upper Limit	Н
Xylanase BA	GLU 167	2.3		3.58		Н
Xylanase BA	GLU 178	4.5	7.1	4.1	change boundary	E
Xylanase BA	GLU 184	5.3		6.5		E
Xylanase BA	CTR	4.2		6.52		ND
Xylanase BC	ASP 11	2.2		2.5		L
Xylanase BC	GLU 78	4.3	7.2	4.6		E
Xylanase BC	ASP 101	1.1		2	Upper Limit	Т
Xylanase BC	ASP 106	4.6		2.7		E
Xylanase BC	ASP 119	3.3		3.2		Т
Xylanase BC	ASP 121	4.7		3.6		S
Xylanase BC	HIS 149	-1.3		2.3	Upper Limit	Н
Xylanase BC	HIS 156	6.7		6.5		Т
Xylanase BC	GLU 172	6.7	4.1	6.7		Е

References to experimental values in Table S2

pK2 provided when bimodal equation provides significantly better fit to calculated titration **Comments**

Upper or lower limit indicates the residue pK could not be seen in experimental titration Change boundary:Rerun with MCCE selected exposed conformer substituted for experimental input positions used to calculate the corrected boundary Other notes refer to ambiguity of assignments.

A Exp pK = 3.2. Protonation of His occurs with denaturation of the protein. Therefore, pKa for the wildtype protein should be <3.2. High desolvation energy is consistent with the low solvent accessibility found in the NMR measurements. (Fujii et al., 1980, J Biochem (Tokyo))

B Small ppm shift is found in Spitzner et al. at ph 4 and 8, ambiguous data in Koumanov et al. Pfeiffer et al. suggest it is protonated at pH 5.5

DSSP assignment: H helix; E b-sheet; L loops; ND termini not defined; S,T etc other

Protein	exp pK _a	PDB	Method	# of Model s	Substrate s used	Substrates deleted
Ribonuclease alpha-sarcin precursor	Perez- Canadillas et al., 1998 (1; Garcia- Mayoral et al., 2003 (2)	1DE3	NMR	20		
B1 Domain of protein G	Khare et al., 1997 (<i>3</i>)	1GB1	NMR	60		
		1PGA	X-ray	1		
		1PGB	X-ray	1		
B2 Domain of protein G	Khare et al., 1997 (<i>3</i>)	2IGH	NMR	24		
		1IGD	X-ray	1		
		2IGD	X-ray	1		
Barnase	al., 1995 (4; Loewenthal et al., 1992 (5; Loewenthal et al., 1993 (6; Mossakowska et al., 1989 (7; Sali et al., 1988 (8)	1A2P	X-ray	3		Zn on the surface
		1B2X	X-ray	3		Zn on the surface
		1BNR	NMR	20		
Pancreatic trypsin inhibitor precursor (BPTI)	March et al., 1982 (9; Richarz & Wuthrich, 1978 (10)	1FW7 1BPI 1JV8	NMR X-ray NMR	1 23		PO4, on the surfac
		4PTI	X-ray	1		
Calbindin D9k	Kesvatera et al., 1996 (11)	1KQV	NMR	30		LA(III) not affectin benchmarked residues
		1KSM	NMR	1		LA(III)
		1IG5	X-ray	1		Mg
		4ICB	X-ray	1		Ca
Cardiotoxin A5	Chiang et al., 1996 (12)	1KXI	X-ray	2		

CD2d1	Chen et al., 2000 (<i>13</i>)	1HNG	X-ray	2	
Chymotrypsin Inhibitor 2	Tan et al., 1995 (<i>14</i>)	2CI2	X-ray	1	
		2SNI	X-ray	1	Ca, only chain I is used
		3CI2	NMR	20	
fungal beta cryptogein	Gooley et al., 1998 (<i>15</i>)	1BEG	NMR	18	
		1BEO	X-ray	1	
		1BXM	X-ray	1	ERG
hen egg white lysozyme	Bartik et al., 1994 (16; Kuramitsu & Hamaguchi, 1980 (17; Takahashi et al., 1992 (18)	1E8L	NMR	50	
	(==)	1LSE	X-ray	1	
		4LZT	X-ray	1	NO3
human DNA polymerase lambda lyase domain	Gao et al., 2006 (<i>19</i>)	1NZP	NMR	8	
		1XSN	X-ray	1	
Epidermal growth factor	Kohda et al., 1991 (<i>20</i>)	1EGF	NMR	16	
		1EPG	NMR	1	
		1EPH	NMR	10	
		1EPI	NMR	1	
		1EPJ	NMR	5	
Myoglobin - horse	Kao et al., 2000 (<i>21;</i> Papa et al., 1992 (<i>22</i>)	1DWR	X-ray	1 HEM	CMO,SO4
		1WLA	X-ray	1 HEM	S04
		1YMB	X-ray	HEM	S04
Myoglobin - sperm whale	Kao et al., 2000 (<i>21;</i> Bashford et al., 1993 (<i>23</i>)	1MYF	NMR	12 HEM	
		1A6K	X-ray	1 HEM	S04
		1A6M	X-ray	1 HEM	Oxy,SO4
RNase A	Rico et al., 1991 (<i>24;</i> Baker & Kintanar, 1996 (<i>25</i>)	2AAS	NMR	32	
	1000 (20)	7RSA	X-ray	1	TBU
			,	-	

PRAT X-ray 1 SQ4, pruned by mcce 1994 (26; Oda et al., 1994 (27) 160A X-ray 1 1 1 1 1 1 1 1 1						
Note 1994 (26; Oda et al., 1994 (27) 1994 (27) 1994 (27) 1994 (27) 1994 (27) 1994 (27) 1994 (27) 1994 (27) 1000 1			9RAT	X-ray	1	
RNase H1			3RN3	X-ray	1	
March Marc	RNase H1	1994 (<i>26;</i> Oda et al.,	1RCH	NMR	8	
RNase SA			1GOA	X-rav	1	
No.						
RNase T1	RNase SA	Laurents,				
Try			1LNI	X-ray	2	GOL,SO4
RNase T1						
110V X-ray 1 ADP,MG,POB: removed, protein only in nmr pka measurements	RNase T1	al., 2001 (29; Spitzner et al., 2001 (30; Inagaki et al., 1981 (31; Giletto & Pace, 1999	1IYY	NMR	24	
Sso7d Consonni et al., 2003 (33) 1JIC NMR 1		(= - /	110V	X-ray	1	removed, protein only in nmr pka
Sso7d Consonni et al., 2003 (33) 1JIC NMR 1			1BVI	X-ray	4	2GP,Ca
Sso7d Sso7						•
1SSO NMR	Sso7d	al., 2003		-	1	
1BBX NMR 2 NMR 1 Methylation (residue 1) removed, CTR disordered		` ,	1SSO	NMR	1	
Tyrosin phosphatase NMR						
Tyrosin phosphatase NMR			1BBX	NMR	2	
$1 C8C \qquad X-ray \qquad 1 \qquad \qquad \frac{\text{Methylation}}{\text{(residue 1)}} \\ \text{removed, CTR} \\ \text{disordered} \\ \\ \text{Tyrosin phosphatase} \qquad \frac{\text{exp: Zhou et}}{\text{al., } (34;} \\ \text{Tishmack et} \\ \text{al., } 1997 \\ \text{(35)} \\ \text{calc: Dillet et} \\ \text{al., } 2000 \\ \text{(36)} \\ \\ \hline \textbf{1DG9} \qquad X-ray \qquad 1 \qquad \text{EPE} \\ \\ \\ \\ \text{Methylation} \\ \text{(residue 1)} \\ \text{removed, CTR} \\ \text{disordered} \\ \\ \\ \text{Ibor MR} \qquad 15 \\ \\ \\ \text{CRIC: Dillet et} \\ \text{al., } 2000 \\ \text{(36)} \\ \\ \\ \text{IDG9} \qquad X-ray \qquad 1 \qquad \text{EPE} \\ \\ \\ \\ \\ \text{IDG9} \qquad X-ray \qquad 1 \qquad \text{EPE} \\ \\ \\ \\ \\ \\ \text{IDG9} \qquad X-ray \qquad 1 \\ \\ \\ \\ \text{IDG9} \qquad X-ray \qquad 1 \\ \\ \\ \\ \text{IDG9} \qquad X-ray \qquad 1 \\ \\ \\ \text{IDG9} \qquad X-ray \qquad 1 \\ \\ \\ \\ \text{IDG9} \qquad X-ray \qquad 1 \\ \\ \text{IDG9} \qquad X-ray \qquad 2 \\ \\ \text{IDG9} \qquad X-ray \qquad$						
Tyrosin phosphatase $\begin{tabular}{lll} al., (34; \\ Tishmack et \\ al., 1997 \\ (35) \\ calc: Dillet et \\ al., 2000 \\ (36) \end{tabular}$			1C8C		1	(residue 1) removed, CTR
1DG9 X-ray 1 EPE	Tyrosin phosphatase	al., (<i>34;</i> Tishmack et al., 1997 (<i>35</i>) calc: Dillet et al., 2000	1BVH	NMR	15	
		. ,	1DG9	X-ray	1	EPE
			1Z12	X-ray	1	VO4

		1Z13	X-ray	1	MOO
		1PNT	X-ray	1	PO4
Xylanase BA	Betz et al., 2004 (<i>37</i>)	1H4G	X-ray	2	FXP,SO4
	, ,	1H4H	X-ray	4	XYP,XYS, residue changed from Glu to Gln
		1QH6	X-ray	2	FXP
		1QH7	X-ray	2	XYP
Xylanase BC	Joshi et al., 1997 (<i>38</i>)	1BVV	X-ray	1	DFX,XYP
		1C5H	X-ray	1	
		1XNB	X-ray	1	S04
bacterial MutT	Harris et al., 2000 (<i>39</i>)	1PPX	NMR	20	80G, MO2
		1MUT	NMR	15	
bacterial phosphonoacetaldehyde hydrolase	Zhang et al., 2002 (<i>40</i>)	1FEZ	X-ray	4	Mg, WO4
		1RQL	X-ray	2	Mg, VSO
bacterial proteinase inhibitor Ssi	Fujii et al., 1980 (<i>41</i>)	2SIC	X-ray	1	Са
		3SIC	X-ray	1	Ca
		5SIC	X-ray	1	Ca
		3SSI	X-ray	1	
Apo E2	Lund-Katz et al., 2001 (<i>42</i>)	1LE2	X-ray	1	
Apo E3	Lund-Katz et al., 2000 (<i>43</i>)	1NFN	X-ray	1	
Apo E4	Lund-Katz et al., 2001 (<i>42</i>)	1GS9	X-ray	1	
human thioredoxin (reduced)	Forman-Kay et al., 1992 (<i>44</i>)	1ERT	X-ray	1	
		3TRX	NMR	1	
		4TRX	NMR	33	
human thioredoxin (oxidized)	Forman-Kay et al., 1992 (<i>44</i>)	1ERU	X-ray	1	
		1AUC	X-ray	1	
phage T4 lysozyme	Anderson et al., 1990 (45)	2LZM	X-ray	1	
phage T4 lysozyme mutant	Dao-pin et al., 1991 (<i>4</i> 6)	1L54	X-ray	1	

Sea anemone neurotoxin III	Norton et al., 1993 (<i>47</i>)	1ANS	NMR	28	
snake erabutoxin b	Inagaki et al., 1978 (<i>48</i>)	1ERA	NMR	1	
		1FRA	NMR	14	
		3EBX	X-ray	1	S04
Turkey ovomucoid inhibitor	Schaller & Robertson, 1995 (49; Swint-Kruse & Robertson, 1995 (50)	10MT	NMR	50	
	` '	10MU	NMR	50	
		1PPF	X-ray	1	BMA,FUC,GAL,GLC, MAN,NAG complex structure
		1TUR	NMR	12	
		1TUS	NMR	12	
Chymotrypsin	Markley & Ibanez, 1978 (<i>51</i>)	2TGA	X-ray		Ca
Cyclophilin	Yu & Fesik, 1994 (<i>52</i>)	2CPL	X-ray		
		10CA	NMR	20	
FKBP	Yu & Fesik, 1994 (<i>52</i>)	1FKS	NMR		
Staphylococcal Nuclease	Lee et al., 2002 (<i>53</i>)	1STY	X-ray		

Reference:

- 1. Perez-Canadillas, J. M., Campos-Olivas, R., Lacadena, J., Martinez del Pozo, A., Gavilanes, J. G., Santoro, J., Rico, M., and Bruix, M. (1998) Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function, *Biochemistry* 37, 15865-15876.
- 2. Garcia-Mayoral, M. F., Perez-Canadillas, J. M., Santoro, J., Ibarra-Molero, B., Sanchez-Ruiz, J. M., Lacadena, J., Martinez del Pozo, A., Gavilanes, J. G., Rico, M., and Bruix, M. (2003) Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues, *Biochemistry* 42, 13122-13133.
- 3. Khare, D., Alexander, P., Antosiewicz, J., Byran, P., Gilson, M., and Orban, J. (1997) pK_a measurements from nuclear magnetic resonance for the B1 and B2 immunoglobulin G-binding domains of protein G: comparison with calculated values for nuclear magnetic resonance and X-ray structures, *Biochemistry 36*, 3580-3589.

- 4. Oliveberg, M., Arcus, V. L., and Fersht, A. R. (1995) pK_a values of carboxyl groups in the native and denatured states of barnase. The pK_a values of the denatured state are on average 0.4 units lower than those of model compounds, *Biochemistry 34*, 9424-9433.
- 5. Loewenthal, R., Sancho, J., and Fersht, A. R. (1992) Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability, *J Mol Biol* 224, 759-770.
- 6. Loewenthal, R., Sancho, J., Reinikainen, T., and Ferst, A. R. (1993) Long-range surface charge-charge interactions in proteins: comparison of experimental results with calculations from a theoretical method, *J. Mol. Biol.* 232, 574-583.
- 7. Mossakowska, D. E., Nyberg, K., and Fersht, A. R. (1989) Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) and investigation of key residues in catalysis by site-directed mutagenesis, *Biochemistry 28*, 3843-3850.
- 8. Sali, D., Bycroft, M., and Fersht, A. R. (1988) Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain, *Nature 335*, 740-743.
- 9. March, K. L., Maskalick, D. G., England, R. D., Friend, S. H., and Gurd, F. R. (1982) Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor, *Biochemistry 21*, 5241-5251.
- 10. Richarz, R., and Wuthrich, K. (1978) High-field 13C nuclear magnetic resonance studies at 90.5 MHz of the basic pancreatic trypsib inhibitor, *Biochemistry* 17, 2263-2269.
- 11. Kesvatera, T., Jonsson, B., Thulin, E., and Linse, S. (1996) Measurement and modeling of sequence-specific pK_a values of lysine residues in calbindin D9k, *J.Mol. Biol.* 259, 828-839.
- 12. Chiang, C. M., Chang, S. L., Lin, H. J., and Wu, W. G. (1996) The role of acidic amino acid residues in the structural stability of snake cardiotoxins, *Biochemistry 35*, 9177-9186.
- 13. Chen, H. A., Pfuhl, M., McAlister, M. S., and Driscoll, P. C. (2000)

 Determination of pK_a values of carboxyl groups in the N-terminal domain of rat CD2: anomalous pK_a of a glutamate on the ligand-binding surface, *Biochemistry* 39, 6814-6824.
- 14. Tan, Y., Oliveberg, M., Davis, B., and Fersht, A. R. (1995) Perturbed pK_a-values in the denatured states of proteins, *J. Mol. Biol. 254*, 980-992.
- 15. Gooley, P. R., Keniry, M. A., Dimitrov, R. A., Marsh, D. E., Keizer, D. W., Gayler, K. R., and Grant, B. R. (1998) The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein, *J Biomol NMR* 12, 523-534.
- 16. Bartik, K., Redfield, C., and Dobson, C. M. (1994) Measurement of the individual pK_a values of acidic residues of hen and turkey lysozyme by two-dimensional 1H NMR, *Biophys. J* 66, 1180-1184.
- 17. Kuramitsu, S., and Hamaguchi, K. (1980) Analysis of the acid-base titration curve of hen lysozyme, *J. Biochem.* 87, 1215-1219.
- 18. Takahashi, T., Nakamura, H., and Wada, A. (1992) Electrostatic forces in two lysozymes: calculations and measurements of histidine pK_a values, *Biopolymers* 32, 897-909.

- 19. Gao, G., DeRose, E. F., Kirby, T. W., and London, R. E. (2006) NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications, *Biochemistry 45*, 1785-1794.
- 20. Kohda, D., Sawada, T., and Inagaki, F. (1991) Characterization of pH titration shifts for all the nonlabile proton resonances in a protein by two-dimensional NMR: the case of mounse epidermal growth factor, *Biochemistry* 30, 4896-4900.
- 21. Kao, Y. H., Fitch, C. A., Bhattacharya, S., Sarkisian, C. J., Lecomte, J. T., and Garcia-Moreno, E. B. (2000) Salt effects on ionization equilibria of histidines in myoglobin, *Biophys J* 79, 1637-1654.
- 22. Papa, S., Guerrieri, F., Zanotti, F., Capozza, G., Fiermonte, M., Cocco, T., Altendorf, K., and Deckers-Hebersteit, G. (1992) F0 and F1 subunits involved in the gate and coupling function of mitochondrial H+ ATP synthase, *Ann N Y Acad Sci* 671, 345-358.
- 23. Bashford, D., Case, D. A., Dalvit, C., Tennat, L., and Wright, P. E. (1993) Electrostatic calculations of the side-chain pK_a values in myoglobin and comparison with NMR data for histidines, *Biochemistry*, 8045-8056.
- 24. Rico, M., Santoro, J., Gonzalez, C., Bruix, M., and Neira, J. L. (1991) Solution structure of bovine pancreatic ribonuclease A and ribonuclease-pyrimidine nucleotide complexes as determined by ¹H NMR, in *Structure, Mechanism and Function of Ribonucleases. Proceedings of the 2nd International Meeting.* (Cuchillo, C. M., de Llorens, R., Nogues, M. V., and Pares, X., Eds.), pp 9 14, Sant Feliu de Guixols, Girona, Spain.
- 25. Baker, W. R., and Kintanar, A. (1996) Characterization of the pH titration shifts of ribonuclease a by one- and two-dimensional nuclear magnetic resonance spectroscopy, *Archives of Biochemistry and Biophysics* 327, 189-199.
- 26. Oda, Y., Yamazaki, T., Nagayama, K., Kanaya, S., Kuroda, Y., and Nakamura, H. (1994) Individual ionization constants of all the carboxyl groups in ribonuclease HI from *Escherichia coli* determined by NMR, *Biochemistry 33*, 5275-5284.
- 27. Oda, Y., Yamazaki, T., Nagayama, K., Kanaya, S., Kuroda, Y., and Nakamura, H. (1994) Individual ionization constants of all the carboxyl groups in ribonuclease HI from Escherichia coli determined by NMR, *Biochemistry 33*, 5275-5284.
- 28. Douglas V. Laurents, B. M. P. H.-D., Marta Bruix, Richard L. Thurlkill, David Schell, Stephanie Newsom, Gerald R. Grimsley, Kevin L. Shaw, Saul Trevino, Manuel Rico, James M. Briggs, Jan M. Antosiewicz, J. Martin Scholt and Nick Pace. (2003) Charge-Charge Interactions are Key Determinants of the pK Values of Ionizable Groups in Ribonuclease Sa (pI=3.5) and a Basic Variant (pI=10.2), *Journal of molecular Biology*, 1077-1092.
- 29. Koumanov, A., Spitzner, N., Ruterjans, H., and Karshikoff, A. (2001) Ionization properties of titratable groups in ribonuclease T1. II. Electrostatic analysis, *Eur Biophys J 30*, 198-206.
- 30. Spitzner, N., Lohr, F., Pfeiffer, S., Koumanov, A., Karshikoff, A., and Ruterjans, H. (2001) Ionization properties of titratable groups in ribonuclease T1. I. pKa values in the native state determined by two-dimensional heteronuclear NMR spectroscopy, *Eur Biophys J 30*, 186-197.
- 31. Inagaki, F., Kawano, Y., Shimada, I., Takahashi, K., and Miyazawa, T. (1981) Nuclear magnetic resonance study on the microenvironments of histidine residues

- of ribonuclease T1 and carboxymethylated ribonuclease T1, *J Biochem (Tokyo)* 89, 1185-1195.
- 32. Giletto, A., and Pace, C. N. (1999) Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1, *Biochemistry* 38, 13379-13384.
- 33. Consonni, R., Arosio, I., Belloni, B., Fogolari, F., Fusi, P., Shehi, E., and Zetta, L. (2003) Investigations of Sso7d catalytic residues by NMR titration shifts and electrostatic calculations, *Biochemistry* 42, 1421-1429.
- 34. Zhou, M. M., Davis, J. P., and Van Etten, R. L. (1993) Identification and pKa determination of the histidine residues of human low-molecular-weight phosphotyrosyl protein phosphatases: a convenient approach using an MLEV-17 spectral editing scheme, *Biochemistry 32*, 8479-8486.
- 35. Tishmack, P., Bashford, D., Harms, E., and Van Etten, R. L. (1997) Use of ¹H-NMR spectroscopy and computer simulations to analyze histidine charges in a protein tyrosine phosphatase: experimental and theoretical determination of electrostatic properties in a small protein, *Biochemistry* 36, 11984-11994.
- 36. Dillet, V., Van Etten, R. L., and Bashford, D. (2000) Stabilization of charges and protonation states in the active site of the protein tyrosine phosphatases: A computational study, *Journal of Physical Chemistry B* 104, 11321-11333.
- 37. Betz, M., Lohr, F., Wienk, H., and Ruterjans, H. (2004) Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase, *Biochemistry* 43, 5820-5831.
- 38. Joshi, M. D., Hedberg, A., and McIntosh, L. P. (1997) Complete measurement of the pK_a values of the carboxyl and imidazole groups in *Bacillus circulans* xylanase, *Protein Science* 6, 2667-2670.
- 39. Harris, T. K., Wu, G., Massiah, M. A., and Mildvan, A. S. (2000) Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase, *Biochemistry* 39, 1655-1674.
- 40. Zhang, G., Mazurkie, A. S., Dunaway-Mariano, D., and Allen, K. N. (2002) Kinetic evidence for a substrate-induced fit in phosphonoacetaldehyde hydrolase catalysis, *Biochemistry 41*, 13370-13377.
- 41. Fujii, S., Akasaka, K., and Hatano, H. (1980) Acid denaturation steps of Streptomyces subtilisin inhibitor. A proton magnetic resonance study of individual histidine environment, *J Biochem (Tokyo)* 88, 789-796.
- 42. Lund-Katz, S., Wehrli, S., Zaiou, M., Newhouse, Y., Weisgraber, K. H., and Phillips, M. C. (2001) Effects of polymorphism on the microenvironment of the LDL receptor-binding region of human apoE, *J Lipid Res* 42, 894-901.
- 43. Lund-Katz, S., Zaiou, M., Wehrli, S., Dhanasekaran, P., Baldwin, F., Weisgraber, K. H., and Phillips, M. C. (2000) Effects of lipid interaction on the lysine microenvironments in apolipoprotein E, *J Biol Chem* 275, 34459-34464.
- 44. Forman-Kay, J. D., Clore, G. M., and Gronenborn, A. M. (1992) Relationship between electrostatics and redox function in human thioredoxin: characterization of pH titration shifts using two-dimensional homo- and heteronuclear NMR, *Biochemistry 31*, 3442-3452.

- 45. Anderson, D. E., Becktel, W. J., and Dahlquist, F. W. (1990) pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme, *Biochemistry 29*, 2403-2408.
- 46. Dao-pin, S., Anderson, D. E., Baase, W. A., Dahlquist, F. W., and Matthews, B. W. (1991) Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme, *Biochemistry 30*, 11521-11529.
- 47. Norton, R. S., Cross, K., Braach-Maksvytis, V., and Wachter, E. (1993) 1H-n.m.r. study of the solution properties and secondary structure of neurotoxin III from the sea anemone Anemonia sulcata, *Biochem J 293 (Pt 2)*, 545-551.
- 48. Inagaki, F., Miyazawa, T., Hori, H., and Tamiya, N. (1978) Conformation of erabutoxins a and b in aqueous solution as studied by nuclear magnetic resonance and circular dichroism, *Eur J Biochem 89*, 433-442.
- 49. Schaller, W., and Robertson, A. D. (1995) pH, Ionic Strength, and Temperature Dependences of Ionization Equilibria for the Carboxyl Groups in Turkey ovomucoid Third Domain, *Biochemistry* 34, 4714-4723.
- 50. Swint-Kruse, L., and Robertson, A. D. (1995) Hydrogen Bonds and the pH dependence of Ovomucoid Third Domain Stability, *Biochemistry* 34, 4724-4732.
- Markley, J. L., and Ibanez, I. B. (1978) Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aalpha, *Biochemistry* 17, 4627-4640.
- 52. Yu, L., and Fesik, S. W. (1994) pH titration of the histidine residues of cyclophilin and FK506 binding protein in the absence and presence of immunosuppressant ligands, *Biochim Biophys Acta 1209*, 24-32.
- 53. Lee, K. K., Fitch, C. A., and Garcia-Moreno, E. B. (2002) Distance dependence and salt sensitivity of pairwise, coulombic interactions in a protein, *Protein Sci* 11, 1004-1016.