Heaven's Light is Our Guide

Rajshahi University of Engineering & Technology

Course Title

Circuit and System -II Sessional

Course No : ECE 1202

Lab Report No : 03

Date of Submission: 1-10-2024

Experiment No : 03

Experiment Nme:

Measurement of Power in a Three-Phase Balanced System using two wattmeter method.

Submitted To:	Submitted By:		
Oishi Jyoti Assistant Professor Dept. Of Electrical & Computer Engineering	Name :Mahmudul Hasan Roll :2210057 Registration :1111 Session :2022-2023 Department of ECE,RUET		

INDEX

SL	Name	Page No			
1	Eperiment No	1			
2	2 Experiment Nme				
3	Objectives	1			
4	Required Apparatus	1			
5	Theory	1			
6	Circuit	1			
7	Procedure	2			
8	Calculation	2			
9	Data Table	3			
10	Result	4			
11	Discussion	4			

Eperiment No:03

Name of The Experiment:

Measurement of Power in a Three-Phase Balanced System using two wattmeter method.

Objectives:

1. To learn how to measure power of three phase system using two wattmeter

Required Apparatus:

- 1. Voltmeter and wattmeters.
- 2. Ac Voltage Source
- 3. Ammeter
- 4. Resistors
- 5. Connecting Wires

Theory:

If two wattmeter are connected to measure the power of any three phase load, it can be shown that the wattmeter read,

$$P_1 = V_L I_L \cos(30-a)$$
 -----(1)

$$P_2=V_LI_L\cos(30+a)$$
 -----(2)

Where a is the power factor angle of the load .From equation (1) and (2) we can write that,

$$P_T = P_1 + P_2 = \sqrt{3} V_L I_C \cos(a) - ---(3)$$

Circuit Diagram:

Fig : A balanced $3 - \phi$ system with two wattmeters

Procedure:

- 1. Using the necessary components, a circuit was built by following the circuit diagram.
- 2. The ammeter and voltmeter were connected according to the diagram and wattmeter.
- 3. Voltmeter and ammeter and wattmeter readings were recorded into a data table, and an error calculation was made.

Calculation:

Reading 1:

First wattmeter reading, P1 = 22 W

Second wattmeter reading, P2 = 28 W

Measured total power = P1 + P2 = 60 W

Line voltage, VL = 72.5 V

Line current, IL = 0.53 A

Calculated total power = $\sqrt{3}$ VLILcos Θ = 66.554 W

Error = 24.87%

Reading 2:

First wattmeter reading, P1 = 28 W

Second wattmeter reading, P2 = 32 W

Measured total power = P1 + P2 = 60 W

Line voltage, VL = 79.9 V

Line current, IL = 0.609 A

Calculated total power = $\sqrt{3}$ VLILcos Θ = 84.28 W

Error = 28.8 %

Reading 3:

First wattmeter reading, P1 = 36 W

Second wattmeter reading, P2 = 40 W

Measured total power = P1 + P2 = 76 W

Line voltage, VL = 87.4V

Line current, IL = 0.666 A

Calculated total power = $\sqrt{3}$ VLILcos Θ = 100.208 W

Error = 24.69 %

Reading 4:

First wattmeter reading, P1 = 45 W

Second wattmeter reading, P2 = 48 W

Measured total power = P1 + P2 = 93 W

Line voltage, VL = 94.8V

Line current, IL = 0.726 A

Calculated total power = $\sqrt{3}$ VLILcos Θ = 119.20 W

Error = 21.98 %

 \therefore Average error = (24.87+28.8+24.69+21.98)/4 = 25.085 %

Data Table:

Sl	P ₁	P2	$Pm=P_1+P_2$	$\mathbf{V}_{\mathbf{L}}$	Ic	$P_{C}=\sqrt{3}V_{L}I_{C}$	Error(%)
1	22	28	50	72.5	0.53	66.554	24.87
2	28	32	60	79.9	0.609	84.28	28.8
3	36	40	76	87.4	0.666	100.8199	24.69
4	45	48	93	94.8	0.726	119.208	21.98

Data From Lab:

Result:

From the data table ,we can see that the result is almost same as we expected though it shows some error but that was very small.

Average error =25.085 %

Discussion:

The experiment successfully verified if we ignored the small error.we can get the total power of a system using two wattmeter easily that helps to save our metarial cost.