JRAHS Ext 1 T2 2007

QUESTION 1 (9 Marks)		Marks
(a) (i)	How many ways could the letters of the word SOCIETY be arranged if each arrangement begins with C and ends with E.	1
(ii)	If an arrangement is selected at random, find the probability that it contains the word SOY.	1
(b) The displacement function of a particle moving x metres along a straight line after t seconds is given by $x = \sqrt{2} \cos 5t - \sin 5t$. Show that its acceleration function is of the form $\ddot{x} = -n^2x$ and find the value of n .		2
rel	plane travelling at a constant height of 1500 metres at a speed of $600 km/hr$ leases a bomb. What is the horizontal distance the bomb has travelled when it ts the ground. (Take $ g=10 m/s^2 $).	3
(d) (i)	How many different ways could four cards be selected from a regular pack of 52 playing cards.	1
(ii)	How many of these selections will contain exactly two Aces.	1
QUESTION 2 (9 Marks)		
(a) A sky-diver opens his parachute when falling at 30 m/s. Thereafter, his acceleration		
is give	en by $\frac{dv}{dt} = k(6-v)$, where k is a constant.	
(i)	Show that this condition is satisfied when $v = 6 + Ae^{-kt}$, and find the value of A.	2
(ii)	One second after opening his parachute, his velocity has fallen to $10.7 m/s$. Find k to two decimal places.	2
(iii)	Find, to one decimal place, his velocity two seconds after his parachute has opened.	2
(iv)	If, with the same acceleration, the sky-diver opens his parachute when falling at 6 m/s , briefly describe his subsequent motion.	1
(b) Persons A,B,C,D,E,F and G are to be seated at a round table. How many arrangements are possible if A refuses to sit next to B or C .		

QUESTION 3 (9 Marks)

- (a) A particle moves in Simple Harmonic Motion. When it is 2 metres and 3 metres respectively from its centre of motion, its velocity is respectively 6 *m/s* and 4 *m/s*. Find the period of its motion and its amplitude.
- (b) A function N(t) is given by $N(t) = Ae^{\frac{t}{3}} + Be^{\frac{-2t}{3}}$, where A and B are constants.
 - (i) If N(0) = 30 and N'(0) = -14, find A and B.
 - (ii) Find, to 2 decimal places, the value of t for which N(t) is a minimum, and find this minimum value.
 - (iii) Briefly describe the behaviour of N(t) as t increases.

QUESTION 4 (9 Marks)

- (a) How many arrangements of the letters of the word CONTAINER are possible if:
 - (i) there are no restrictions.
 - (ii) the vowels are together. 1
- (b) In a herd of 500 cows, the number N infected with a disease at time t years is given by $N = \frac{500}{1 + Ae^{-500t}}$.
 - (i) Briefly explain why all the cows will eventually be infected.
 - (ii) Initially, only one cow was infected. After how many days will 200 cows be infected.
 - (iii) Show that $\frac{dN}{dt} = N(500 N)$.

QUESTION 5 (9 Marks)

- (a) The equation of motion of a particle moving in Simple Harmonic Motion is given by $x = a \cos(nt + \alpha)$, where x metres is its displacement from origin 0 after t minutes. It is initially 6 metres right of 0 and moving towards it. The period of its motion is 8 minutes and its maximum speed is 3π m/min. Find:
 - (i) the values of n, a and α .
 - (ii) the first time when it passes through the origin.
- (b) In the diagram below, a particle is projected from the origin 0 with a speed of U m/s at an angle of elevation α . At the same instant, another particle is projected from A, h metres above 0 with a speed of V m/s at an angle of elevation β ($\beta < \alpha$). The particles move in the same plane of motion and collide T seconds after projection.

The horizontal and vertical components of displacement t seconds after the particle is projected from 0 are given by $x_o = Ut\cos\alpha$ and $y_o = Ut\sin\alpha - \frac{1}{2}gt^2$ respectively, and the horizontal and vertical components of displacement t seconds after the particle is projected from t are given by t and t are given by t and t and t are given by t and t

Show that
$$T = \frac{h\cos\beta}{U\sin(\alpha-\beta)}$$
.

QUESTION 6 (9 Marks)

- (a) The displacement function of a particle moving x metres along a straight line after t seconds is given by $x = 3\cos^2 4t$. Show that its motion is Simple Harmonic and find its centre of motion.
- (b) The acceleration of a particle moving along a straight line is given by $\ddot{x} = 3x(x-2)$, where x metres is its displacement from the origin θ after t seconds. Initially it is at θ and its velocity is 2 m/s.
 - (i) Show that $v = 2(x^3 3x^2 + 2)$, where v is its velocity.
 - (ii) Find its velocity and acceleration at x = 1.
 - (iii) Briefly describe its motion after it moves from x = 1.

QUESTION 7 (9 Marks)

- (a) A velocity function is given by $\frac{dx}{dt} = (4-3x)^2$. Find $\frac{d^2x}{dt^2}$.
- (b) A team of FIVE is to be selected from a group of FOUR boys and FOUR girls.
 - (i) How many teams are possible if there is to be a majority of girls.
 - (ii) What is the probability of a particular girl being included in the team and a particular boy not included, still assuming a majority of girls in the team.
- (c) On a certain day, the depth of water in a harbour at high tide is 11metres.

 At low tide $6\frac{1}{4}$ hours later, the depth of water is 7 metres. If high tide is due at 2.50 AM, what is the earliest time after midday that a ship requiring a depth of at least 10 metres of water can enter the harbour.

END of PAPER