

## **ETC3555**

# Statistical Machine Learning

The learning problem

1 August 2018

## **Outline**

- 1 Verification vs learning
- **2** Feasibility of learning
- 3 Error measures
- 4 Noisy targets

Introduction Verification vs learning

# **Verification vs learning**

#### Are we done?

Not so fast! h is fixed.

For this h,  $\nu$  generalizes to  $\mu$ .

'verification' of h, not learning

No guarantee  $\nu$  will be small.

We need to **choose** from multiple h's.



(c) (R) Greator: Yaser Abu-Wostafa - LFD Lecture 2

# **Notation for learning**

### Notation for learning

Both  $\mu$  and  $\nu$  depend on which hypothesis h

u is 'in sample' denoted by  $E_{\rm in}(h)$ 

 $\mu$  is 'out of sample' denoted by  $E_{\mathrm{out}}(h)$ 

The Hoeffding inequality becomes:

$$\mathbb{P}\left[ |E_{\rm in}(h) - E_{\rm out}(h)| > \epsilon \right] \le 2e^{-2\epsilon^2 N}$$



# **Multiple bins**

### Multiple bins

Generalizing the bin model to more than one hypothesis:



© M Greator: Yaser Abu-Mostafa - LFD Lecture 2

# **Notation with multiple bins**

### Notation with multiple bins



(C) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 2

# **Coin analogy**

### Hoefdding does not apply to multiple bins!

### Coin analogy

Question: If you toss a fair coin 10 times, what is the probability that you will get 10 heads?

Answer:  $\approx 0.1\%$ 

**Question:** If you toss 1000 fair coins 10 times each, what is the probability that some coin will get 10 heads?

Answer:  $\approx 63\%$ 

© PM Creator: Yaser Abu-Mostafa - LFD Lecture 2

Introduction Verification vs learning 7/40

# **Coin analogy**

- 1  $\frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2}$  (10 times) is  $\approx \frac{1}{1000} = 0.1\%$ .
- The probability of not getting 10 heads for one coin is  $\approx (1 \frac{1}{1000})$ .
- The probability of not getting 10 heads for any of 1000 coins is  $\approx (1 \frac{1}{1000})^{1000}$ .
- $\lim_{n\to\infty}(1-\tfrac1n)^n=\tfrac1e.$
- 5  $\frac{1}{e} pprox \frac{1}{2.718} pprox 0.37$
- the probability of this not happening, i.e. at least one coin of the 1000 coins will give 10 heads, is 1 minus 0.37 = 0.63

Introduction Verification vs learning 8/40

# From coins to learning



Introduction Verification vs learning 9/40

## From coins to learning

The Hoeffding inequality applies to each bin individually. The inequality states that

$$\mathbb{P}[|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any  $\epsilon > 0$ 

where

- 1 the hypothesis *h* is fixed before the data is generated,
- f 2 the probability is with respect to random data sets  $\cal D$ .

The assumption "h is fixed before the data set is generated" is critical to the validity of the bound.

Introduction Verification vs learning 10/40

## From coins to learning

In learning, we consider an entire hypothesis set, say  $\mathcal{H} = \{h_1, h_2, \dots, h_M\}$  (with a finite number of hypotheses), instead of just one hypothesis h. Then, the learning algorithm picks the final hypothesis g based on  $\mathcal{D}$ .

The statement we would like to make is **not** 

$$\mathbb{P}[|E_{\mathsf{in}}(h_m) - E_{\mathsf{out}}(h_m)| > \epsilon]$$
 is small for any fixed  $h_m \in \mathcal{H}$ ,

where m = 1, 2, ..., M, but **rather** 

$$\mathbb{P}[|\mathcal{E}_{\mathsf{in}}(g) - \mathcal{E}_{\mathsf{out}}(g)| > \epsilon]$$
 is small for the final hypothesis  $g$ .

Introduction Verification vs learning 11/40

# A simple solution

$$|\mathsf{E}_\mathsf{in}(g) - \mathsf{E}_\mathsf{out}(g)| > \epsilon$$

$$|E_{\mathsf{in}}(h_1) - E_{\mathsf{out}}(h_1)| > \epsilon$$
 or  $|E_{\mathsf{in}}(h_2) - E_{\mathsf{out}}(h_2)| > \epsilon$  . . . .

or  $|E_{\rm in}(h_{\rm M})-E_{\rm out}(h_{\rm M})|>\epsilon$ 

Introduction Verification vs learning 12/40

# A simple solution

### A simple solution

## The final verdict

#### The final verdict

$$\begin{split} \mathbb{P}[\;|E_{\mathrm{in}}(g) - E_{\mathrm{out}}(g)| > \epsilon\;] \;\; &\leq \;\; \sum_{m=1}^{M} \mathbb{P}\left[|E_{\mathrm{in}}(h_m) - E_{\mathrm{out}}(h_m)| > \epsilon\right] \\ &\leq \;\; \sum_{m=1}^{M} 2e^{-2\epsilon^2 N} \end{split}$$

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 2

### **Generalization error**

- The out-of-sample error  $E_{\text{out}}$  measures how well our training on  $\mathcal{D}$  has generalized to unseen data points.  $E_{\text{out}}$  is based on the performance over the entire input space  $\mathcal{X}$ .
- The in-sample error  $E_{in}$  is based on the training data points.
- The generalization error is the discrepancy between  $E_{in}$  and  $E_{out}$ . Generalization error is also used as another name for  $E_{out}$  (but not in this unit).
- The Hoeffding inequality provides a way to charaterize the generalization error with a probabilistic bound.

Introduction Verification vs learning 15/40

## **Generalization bound**

The Hoeffding inequality states that

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$
 for any  $\epsilon > 0$ 

This can be rephrased as follows. Pick a tolerance level  $\delta$  , for example  $\delta=$  0.01, and assert with probability at least 1 -  $\delta$  that

$$E_{\mathsf{out}}(g) \leq E_{\mathsf{in}}(g) + \sqrt{rac{1}{2\mathsf{N}} \, \mathsf{In}\left(rac{2\mathsf{M}}{\delta}
ight)}.$$

This is called a *generalization bound* since it bounds  $E_{out}$  in terms of  $E_{in}$ 

Introduction Verification vs learning 16/40

## **Generalization bound**

$$\begin{split} \mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] &\leq 2 M e^{-2\epsilon^2 N} \\ \Longrightarrow & 1 - \mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| \leq \epsilon] \leq 2 M e^{-2\epsilon^2 N} \\ \Longrightarrow & \mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| \leq \epsilon] \geq 1 - 2 M e^{-2\epsilon^2 N} \end{split}$$

- With probability at least  $1-2Me^{-2\epsilon^2N}$ ,  $|E_{\mathsf{in}}(g)-E_{\mathsf{out}}(g)| \leq \epsilon$ , which implies  $E_{\mathsf{out}}(g) \leq E_{\mathsf{in}}(g) + \epsilon$
- If  $\delta = 2Me^{-2\epsilon^2N}$ , then  $\epsilon = \sqrt{\frac{1}{2N} \ln\left(\frac{2M}{\delta}\right)}$

Introduction Verification vs learning 17/40

### **Note**

- The error bound depends on M, the size of the hypothesis set  $\mathcal{H}$
- lacksquare If  ${\mathcal H}$  is an infinite set, the bound goes to infinity and becomes useless
- M can be replaced with something finite (the effective number of hypotheses), so that the bound is meaningful.

$$\mathbb{P}[ |E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon ] \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}$$

The Vapnik-Chervonenkis Inequality

### We will not cover the VC Inequality.

Introduction Verification vs learning 18/40

## **Outline**

- 1 Verification vs learning
- **2** Feasibility of learning
- 3 Error measures
- 4 Noisy targets

Introduction Feasibility of learning

- If we insist on a deterministic answer, i.e.  $\mathcal{D}$  tells us something <u>certain</u> about f outside of  $\mathcal{D}$ , then the answer is no.
- If we accept a probabilistic answer, i.e.  $\mathcal{D}$  tells us something <u>likely</u> about f outside of  $\mathcal{D}$ , then the answer is yes.

Introduction Feasibility of learning

#### What we know so far

Learning is feasible. It is likely that

$$E_{\rm out}(g) \approx E_{\rm in}(g)$$

Is this learning?

We need  $q \approx f$ , which means

$$E_{\rm out}(g) \approx 0$$

© M. Greator: Yaser Abu-Wostafa - LFD Lecture 4

### The 2 questions of learning

 $E_{\rm out}(g) \approx 0$  is achieved through:

$$\underbrace{E_{
m out}(g)pprox E_{
m in}(g)}_{
m Lecture~2}$$
 and  $\underbrace{E_{
m in}(g)pprox 0}_{
m Lecture~3}$ 

Learning is thus split into 2 questions:

- 1. Can we make sure that  $E_{\rm out}(g)$  is close enough to  $E_{\rm in}(g)$ ? 2. Can we make  $E_{\rm in}(g)$  small enough?



21/22

- The Hoeffding Inequality addresses guestion 1 only.
- We answer the second question after running the learning algorithm on the the training data.

Introduction Feasibility of learning 22/40

### The complexity of $\mathcal{H}$ .

Question 1: According to the Hoeffding Inequality, a larger M increases the risk that  $E_{in}(g)$  will be a poor estimate of  $E_{out}(g)$   $\Longrightarrow$  we need to control M (a measure of the complexity of  $\mathcal{H}$ ). Question 2: We stand a better chance if  $\mathcal{H}$  is more complex  $\Longrightarrow$  a more complex  $\mathcal{H}$  gives us more flexibility in finding some g that fits the data well.

### The complexity of f.

Question 1: If we fix the hypothesis set and the number of training examples, the inequality provides the same bound  $\implies$  The complexity of f does not affect how well  $E_{in}(g)$  approximates  $E_{out}(g)$ .

Question 2: The data from a complex f are harder to fit than the data from a simple f (large  $E_{in}(g)$ ). We can increase the complexity of  $\mathcal{H}$ , but then  $E_{out}(g)$  will not be as close to  $E_{in}(g)$ .

Introduction Feasibility of learning 23/40

### **Approximation-generalization tradeoff**

### Approximation-generalization tradeoff

Small  $E_{\text{out}}$ : good approximation of f out of sample.

More complex  $\mathcal{H} \Longrightarrow$  better chance of approximating f

Less complex  $\mathcal{H} \Longrightarrow$  better chance of **generalizing** out of sample

Ideal  $\mathcal{H} = \{f\}$  winning lottery ticket  $\odot$ 

(c) (F) Greator: Yaser Abu-Mostafa - LFD Lecture 8

# Quantifying the tradeoff

### Quantifying the tradeoff

VC analysis was one approach:  $E_{\mathrm{out}} \leq E_{\mathrm{in}} + \Omega$ 

Bias-variance analysis is another: decomposing  $E_{\rm out}$  into

- 1. How well  $\mathcal{H}$  can approximate f
- 2. How well we can zoom in on a good  $h \in \mathcal{H}$

Applies to real-valued targets and uses squared error

© M Creator: Yaser Abu-Wostafa - LFD Lecture 8

### Bias and variance decomposition

### Start with $E_{\rm out}$

$$E_{\mathrm{out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \Big[ \big( g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \big)^2 \Big]$$

$$\mathbb{E}_{\mathcal{D}}\left[E_{\text{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathbf{x}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]\right]$$
$$= \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]\right]$$

Now, let us focus on:

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

(c) M Greator: Yaser Abu-Mostafa - LFD Lecture 8

5/22

### Bias and variance decomposition

#### Bias and variance

$$\begin{split} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right] &= \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^2\right]}_{\text{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^2}_{\text{bias}(\mathbf{x})} \end{split}$$

$$\text{Therefore, } \mathbb{E}_{\mathcal{D}}\left[E_{\text{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right]$$

$$= \mathbb{E}_{\mathbf{x}}[\text{bias}(\mathbf{x}) + \text{var}(\mathbf{x})]$$

$$= \text{bias} + \text{var}$$

## **Outline**

- 1 Verification vs learning
- 2 Feasibility of learning
- 3 Error measures
- 4 Noisy targets

Introduction Error measures 28/40

# **Learning diagram**

The learning diagram - where we left it



(c) R Creator: Yaser Abu-Wostafa - LFD Lecture 4

6/22

Introduction Error measures 29/40

### **Error measures**

#### Error measures

What does " $h \approx f$ " mean?

Error measure: E(h, f)

Almost always pointwise definition:  $e(h(\mathbf{x}), f(\mathbf{x}))$ 

Examples:

Squared error:  $e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) - f(\mathbf{x}))^2$ 

Binary error:  $e(h(\mathbf{x}), f(\mathbf{x})) = [h(\mathbf{x}) \neq f(\mathbf{x})]$ 

(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 4

7/22

Introduction Error measures 30/40

## From pointwise to overall

### From pointwise to overall

Overall error E(h, f) = average of pointwise errors  $e(h(\mathbf{x}), f(\mathbf{x}))$ .

In-sample error:

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} e\left(h(\mathbf{x}_n), f(\mathbf{x}_n)\right)$$

Out-of-sample error:

$$E_{\mathrm{out}}(h) = \mathbb{E}_{\mathbf{x}} \big[ \mathrm{e} \left( h(\mathbf{x}), f(\mathbf{x}) \right) \big]$$

Creator: Yaser Abu-Mostafa - LFD Lecture 4

8/22

Introduction Error measures 31/40

# Learning diagram updated

The learning diagram - with pointwise error



(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 4

9/22

Introduction Error measures 32/40

### How to choose the error measure?

#### How to choose the error measure

Fingerprint verification:

Two types of error:

false accept and false reject

How do we penalize each type?





(c) (The Greator: Yaser Abu-Mostafa - LFD Lecture 4

10/22

Introduction Error measures 33/40

# The supermarket example

### The error measure - for supermarkets

Supermarket verifies fingerprint for discounts

False reject is costly; customer gets annoyed!

False accept is minor; gave away a discount and intruder left their fingerprint ③



(c) (G) Greator: Yaser Abu-Mostafa - LFD Lecture 4

11/22

Introduction Error measures 34/40

# The CIA example

### The error measure - for the CIA

CIA verifies fingerprint for security

False accept is a disaster!

False reject can be tolerated
Try again; you are an employee ⊙

$$\begin{array}{c|ccccc} & & f & \\ & & +1 & -1 \\ \hline h & +1 & 0 & 1000 \\ -1 & 1 & 0 & \end{array}$$



12/22

Introduction Error measures 35/40

# Learning diagram updated

The learning diagram - with error measure



(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 4

14/22

Introduction Error measures 36/40

## **Outline**

- 1 Verification vs learning
- 2 Feasibility of learning
- 3 Error measures
- 4 Noisy targets

Introduction Noisy targets 37/40

# **Noisy targets**

### Noisy targets

The 'target function' is not always a function

Consider the credit-card approval:

| age                | 23 years |
|--------------------|----------|
| annual salary      | \$30,000 |
| years in residence | 1 year   |
| years in job       | 1 year   |
| current debt       | \$15,000 |
|                    | ***      |

two 'identical' customers  $\longrightarrow$  two different behaviors

(c) (R) Greator: Yaser Abu-Mostafa - LFD Lecture 4

15/22

Introduction **Noisy targets** 38/40

# **Target distribution**

### Target 'distribution'

Instead of  $y = f(\mathbf{x})$ , we use target distribution:

$$P(y \mid \mathbf{x})$$

 $(\mathbf{x}, y)$  is now generated by the joint distribution:

$$P(\mathbf{x})P(y \mid \mathbf{x})$$

Noisy target = deterministic target  $f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$  plus noise  $y - f(\mathbf{x})$ 

Deterministic target is a special case of noisy target:

$$P(y \mid \mathbf{x})$$
 is zero except for  $y = f(\mathbf{x})$ 

© FE Creator: Yaser Abu-Wostafa - LFD Lecture 4

16/22

Introduction Noisy targets 39/40

# Final learning diagram

The learning diagram - including noisy target



© M Creator: Yaser Abu-Mostafa - LFD Lecture 4

**17/**22

Introduction Noisy targets 40/40