Chapitre 31

Familles sommables

Sommaire

I	Fam	illes sommables de réels positifs
	1)	Définition
	2)	Changement d'indice. Commutativité
	3)	Sommation par paquets
II	Familles sommables de complexes	
	1)	Définition
	2)	Somme d'une famille sommable
	3)	Propriétés
	4)	Applications

Problématique:

- Étant donné une famille de nombres $(a_i)_{i\in I}$, quel sens donner à $\sum_{i\in I}a_i$ permettant de retrouver les propriétés usuelles (commutativité, associativité)?
- Lorsque I est un ensemble fini la somme $\sum\limits_{i\in I}a_i$ a évidemment déjà un sens avec les propriétés bien
- Lorsque $I = \mathbb{N}$, nous avons étudié la notion de série, cette notion va être généralisée.

FAMILLES SOMMABLES DE RÉELS POSITIFS

Définition 1)

Notation:

Si I désigne un ensemble, on notera $\mathcal{P}_f(I)$ l'ensemble des parties finies de I. Lorsque I est lui-même fini, on a bien sûr $\mathcal{P}_f(I) = \mathcal{P}(I)$.

Définition 31.1

Une famille
$$(a_i)_{i\in I}$$
 de réels **positifs** est dite **sommable** lorsque l'ensemble :
$$\left\{\sum_{i\in J}a_i\middle|J\in\mathcal{P}_f(I)\right\}\text{ est un ensemble }\textbf{major\'e}\text{ dans }\mathbb{R}.$$

Si c'est le cas, la somme de la famille est : $\sum_{i \in I} a_i = \sup \left\{ \sum_{i \in J} a_i \middle| J \in \mathcal{P}_f(I) \right\}$.

Lorsque cet ensemble n'est pas majoré, on écrit $\sum_{i \in I} a_i = +\infty$ (c'est la borne sup. dans $\overline{\mathbb{R}}$ d'un ensemble non majoré).

Remarque 31.1:

- Lorsque la famille est sommable, alors sa somme est dans $\mathbb{R}+$.
- Si la somme S de la famille est nulle, alors tous les termes a_i sont nuls (car $0 \le a_i \le S$ pour tout $i \in I$).
- Si I est fini, alors la famille $(a_i)_{i\in I}$ est sommable et sa somme est la somme usuelle des nombres a_i .

Exemples:

- La famille $(2^{-n})_{n\in\mathbb{N}}$ est sommable de somme égale à 2. En effet, si $J \in \mathcal{P}_f(\mathbb{N})$ alors il existe $n \in \mathbb{N}$ tel que $J \subset [0; n]$, on a alors $\sum_{k \in J} 2^{-k} \le \sum_{k=0}^n 2^{-k} = 2 - \frac{1}{2^n} < 2$, donc la famille est sommable et de somme $S \le 2$, d'autre part $\sum_{k=n}^{n} 2^{-k} = 2 - \frac{1}{2^n} \xrightarrow[n \to +\infty]{} 2$, donc $2 = \sup \left\{ \sum_{k \in \mathbb{I}} 2^{-k} \middle/ J \in \mathcal{P}_f(\mathbb{N}) \right\}.$
- Soit E un espace préhilbertien réel, soit $(e_i)_{i\in I}$ une famille orthonormale, pour $J\in \mathcal{P}_f(I)$ on pose $F_J = \text{Vect}\left[(e_i)_{i \in J}\right]$. Soit $x \in E$, on sait que le projeté orthogonal de x sur F_J est $p_{F_J}(x) = \sum_{i \in J} (x \mid e_i) \cdot e_i$. On a sait que $||x||^2 = ||p_{F_J}(x)||^2 + ||x - p_{F_J}(x)||^2$, et $||p_{F_J}(x)||^2 = \sum_{i \in J} (x \mid e_i)^2$, on a donc $\sum_{i \in J} (x \mid e_i)^2 \le ||x||^2$, par conséquent : la famille $((x \mid e_i)^2)_{i \in I}$ est sommable et $\sum_{i \in I} (x \mid e_i)^2 \le ||x||^2$ (inégalité de Bessel).

🚰 Théorème 31.1

Soit $a(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs, alors la famille $(a_n)_{n\in\mathbb{N}}$ est sommable si et seulement si la série de terme général a_n est convergente, auquel cas, la somme de la famille est la somme de la série. Dans le cas où la série est divergente, on écrira $\sum_{n=0}^{+\infty} a_n = +\infty$.

Preuve: Si la famille est sommable, l'ensemble des sommes partielles est inclus dans $\left\{\sum_{i=1}^{n} a_i \mid J \in \mathcal{P}_f(\mathbb{N})\right\}$, cet ensemble est majoré par la somme S de la famille, la série et donc convergente (SATP) et la somme de la série est inférieure ou égal S. Soit $\varepsilon > 0$, il existe $J \subset \mathcal{P}_f(\mathbb{N})$ telle que $S - \varepsilon \leqslant \sum_{k \in \mathbb{J}} a_k$, or il existe $n \in \mathbb{N}$ tel que $J \in [0; n]$

et donc S – $\varepsilon \leqslant \sum_{k \in J} a_k \leqslant \sum_{k=0}^n a_k \leqslant \sum_{k=0}^{+\infty} a_k$, ce qui donne l'égalité des sommes. Réciproquement, si la série et convergente, alors pour J $\in \mathcal{P}_f(\mathbb{N})$ il existe $n \in \mathbb{N}$ tel que J $\subset [0; n]$ et donc $\sum_{k \in J} a_k \le \sum_{k=0}^n a_k \le \sum_{k=0}^\infty a_k \in \mathbb{R}$, ce qui entraîne que la famille est sommable. D'après ce qui précède, les deux sommes sont identiques.

🙀 Théorème 31.2 (de comparaison)

Soient $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles de réels telles que $\forall i\in I$, $0\leqslant a_i\leqslant b_i$. Si la famille $(b_i)_{i\in I}$ est sommable, alors la famille $(a_i)_{i\in I}$ est sommable et $\sum\limits_{i\in I}a_i\leqslant \sum\limits_{i\in I}b_i$.

Preuve : Soit $J \in \mathcal{P}_f(I)$, alors $\sum\limits_{i \in I} a_i \leqslant \sum\limits_{i \in I} b_i \leqslant S_b$, on notant S_b la somme de la famille $(b_i)_{i \in I}$. Il en découle que $\left\{\sum_{i\in I} a_i \mid J \in \mathcal{P}_f(I)\right\}$ est majoré par S_b , donc la famille $(a_i)_{i\in I}$ est sommable et de somme inférieure ou égale à S_b . \square

Changement d'indice. Commutativité

Théorème 31.3 (changement d'indice)

Soit $(a_i)_{i\in I}$ une famille de réels positifs, soit $\sigma\colon J\to I$ une **bijection**, alors la famille $(a_i)_{i\in I}$ est sommable si et seulement si la famille $(a_{\sigma(j)})_{j\in J}$ est sommable, auquel cas $\sum_{i\in J} a_i = \sum_{j\in J} a_{\sigma(j)}$.

Preuve : Il faut d'abord remarquer que l'image d'une partie finie de J par σ est une partie finie de I. Supposons la famille $(a_i)_{i \in I}$ sommable de somme S_a .

Pour $j \in J$, posons $b_j = a_{\sigma(j)}$. Soit A une partie finie de J, alors $\sum_{j \in A} b_j = \sum_{j \in A} a_{\sigma(j)} = \sum_{i \in \sigma(A)} a_i$ en posant $i = \sigma(j)$ (changement d'indice usuel dans une somme finie), et donc $\sum_{j \in A} b_j \leq S_a$. On en déduit que la famille $(b_j)_{j \in J}$ est

sommable et de somme $S_b \le S_a$. Soit $\varepsilon > 0$, il existe A partie finie de J telle que $S_b - \varepsilon \le \sum_{j \in A} b_j = \sum_{i \in \sigma(A)} a_i \le S_a$. Il en découle que $S_b = S_a$.

Réciproquement, si la famille $(b_j)_{j\in J}$ est sommable, alors on applique ce qui précède en considérant cette-fois ci σ^{-1} : I \rightarrow J qui est bijective, en remarquant que $b_{\sigma^{-1}(i)} = a_i$.

Théorème 31.4 (commutativité)

Soit $(a_i)_{i\in I}$ une famille **sommable** de réels positifs, soit $\sigma\colon I\to I$ une **permutation de** I, alors la famille $(a_{\sigma(i)})_{i \in J}$ est sommable et $\sum_{i \in I} a_i = \sum_{i \in I} a_{\sigma(i)}$.

Preuve : C'est une conséquence du théorème précédent avec J = I.

Conséquence:

Si une série à termes positifs, de terme général a_n est convergente, alors pour toute permutation σ de \mathbb{N} , la série de terme général $a_{\sigma(n)}$ est convergente et $\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} a_{\sigma(n)}$ (on dit que la série est commutativement convergente).

🙀 Théorème 31.5

Soient $(a_i)_{i \in I}$ et $(b_i)_{i \in I}$ deux familles sommables de réels positifs, et $\lambda \in \mathbb{R}^+$, alors les familles $(a_i + b_i)_{i \in I}$ et $(\lambda a_i)_{i \in I}$ sont sommables, avec les relations :

$$\textstyle \sum_{i \in \mathcal{I}} a_i + b_i = \sum_{i \in \mathcal{I}} a_i + \sum_{i \in \mathcal{I}} b_i \ \text{et} \sum_{i \in \mathcal{I}} \lambda a_i = \lambda \sum_{i \in \mathcal{I}} a_i.$$

Preuve : Soit J une partie finie de I, alors $\sum_{i \in J} a_i + b_i = \sum_{i \in J} a_i + \sum_{i \in J} b_i$ (sommes finies) et donc $\sum_{i \in J} a_i + b_i \leq S_a + S_b$ (sommes finies) respectives des deux familles), on en déduit que la famille $(a_i + b_i)_{i \in I}$ est sommable de somme inférieure ou égale à $S_a + S_b$.

Soit $\epsilon > 0$, il existe J_1 partie finie de I telle que $S_a - \epsilon \leqslant \sum_{i \in J_1} a_i$ et il existe J_2 partie finie de I telle que $S_b - \epsilon \leqslant \sum_{i \in J_2} b_i$, il en découle que $S_a + S_b - 2\varepsilon \leqslant \sum_{i \in J_1 \cup J_2} a_i + b_i$, on en déduit que la somme de la famille $(a_i + b_i)_{i \in I}$ est supérieure ou égale à $S_a + S_b$, d'où le résultat.

La deuxième partie de la preuve est laissée en exercice.

★Exercice 31.1 Soit $(a_i)_{i\in I}$ une famille de réels positifs, soit $J\subset I$, montrer que $\sum_{i\in I}a_i\leqslant \sum_{i\in I}a_i$.

Sommation par paquets

🙀 Théorème 31.6 (premier résultat)

Si $I = I_1 \cup I_2$ avec I_1 et I_2 disjoints, alors la famille de réels positifs $(a_i)_{i \in I}$ est sommable si et seulement si les sous-familles $(a_i)_{i \in I_1}$ et $(a_i)_{i \in I_2}$ sont sommables, auquel cas on a : $\sum_{i \in I} a_i = \sum_{i \in I_1} a_i + \sum_{i \in I_2} a_i.$

$$\sum_{i \in \mathcal{I}} a_i = \sum_{i \in \mathcal{I}_1} a_i + \sum_{i \in \mathcal{I}_2} a_i.$$

Preuve : Si $(a_i)_{i \in I}$ est sommable de somme S_a , alors toute sous-famille est sommable (exercice précédent), notons S_1 la somme de la première et S_2 la deuxième. Soit $\varepsilon > 0$, il existe K_1 une partie finie de I_1 et K_2 une partie finie de I_2 , telles que $S_1 - \varepsilon < \sum_{i \in K_1} a_i$ et $S_2 - \varepsilon \leqslant \sum_{i \in K_2} a_i$, $K = K_1 \cup K_2$ est une partie finie de I avec $K_1 \cap K_2 = \emptyset$, d'où $S_1 + S_2 - 2\varepsilon \leqslant \sum_{i \in K_1} a_i + \sum_{i \in K_2} a_i \leqslant S_a$, on en déduit que $S_1 + S_2 \leqslant S_a$.

Supposons maintenant que les deux sous-familles sont sommables de sommes respectives S_1 et S_2 , soit J

une partie finie de I, alors $J=(J\cap I_1)\cup (J\cap I_1)$, $K_1=J\cap I_1$ est une partie finie de I_1 , et $K_2=J\cap I_2$ est une partie finie de I_2 avec $K_1\cap K_2=\emptyset$, d'où $\sum\limits_{i\in J}a_i=\sum\limits_{i\in K_1}a_i+\sum\limits_{i\in K_2}a_i\leqslant S_1+S_2$, on en déduit que la famille $(a_i)_{i\in I}$ est sommable de somme S_a inférieure ou égale à S_1+S_2 , et par conséquent $S_a=S_1+S_2$.

Exemple: On sait que la série de terme général $\frac{1}{n^2}$ est une SATP convergente, on admet que $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. La famille $(\frac{1}{n^2})_{n\in\mathbb{N}^*}$ est sommable, on écrit $\mathbb{N}=I_1\cup I_2$ avec $I_1=\{2k+1/k\in\mathbb{N}\}$ et $I_2=\{2k/k\in\mathbb{N}^*\}$, ces deux ensembles sont disjoints. Les deux sous-familles $(\frac{1}{n^2})_{n\in I_1}$ et $(\frac{1}{n^2})_{n\in I_2}$ sont donc sommables de sommes S_1 et S_2 , avec $S_1 + S_2 = \frac{\pi^2}{6}$.

Or
$$\sum_{n\in I_2} \frac{1}{n^2} = \sum_{k=1}^{+\infty} \frac{1}{4k^2} = \frac{1}{4} \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{24}$$
. On en déduit que $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \sum_{n\in I_1} \frac{1}{n^2} = \frac{\pi^2}{6} - \frac{\pi^2}{24} = \frac{\pi^2}{8}$.

Remarque 31.2 – Par une récurrence immédiate, on peut généraliser le théorème précédent à une partition de I en p parties.

Théorème 31.7 (sommation par paquets)

 $SiI = \bigcup I_i$ où les ensembles I_i sont deux à deux disjoints, $Si(a_i)_{i \in I}$ est une famille de réels positifs, alors la famille est sommable si et seulement si :

- $\forall j \in J$, la sous-famille $(a_i)_{i \in I_i}$ est sommable, de somme notée S_j ,
- la famille $(S_i)_{i \in I}$ est sommable. On a alors :

$$\sum_{i \in \mathcal{I}} a_i = \sum_{j \in \mathcal{J}} S_j = \sum_{j \in \mathcal{J}} \left(\sum_{i \in \mathcal{I}_j} a_i \right).$$

Preuve: Admis.

- \bigstar Exercice 31.2 Sommabilité et somme éventuelle de la famille $(\frac{1}{(p+q+1)^3})_{(p,q)\in\mathbb{N}^2}$.
- \bigstar Exercice 31.3 Sommabilité d'une famille de réels positifs indexées par $\mathbb Z$, montrer que la famille $(a_n)_{n\in\mathbb Z}$ est sommable si et seulement si les séries $\sum a_n$ et $\sum a_{-n}$ convergent, que cela équivaut encore à a série $\sum (a_n + a_{-n})$ converge, et que cela équivaut encore à la suite $u_p = \sum\limits_{n=-p}^p a_n$ a une limite finie quand $p \to +\infty$. Auquel cas on a : $\sum\limits_{n \in \mathbb{Z}} a_n = \sum\limits_{n=0}^{+\infty} a_n + \sum\limits_{n=1}^{+\infty} a_{-n} = a_0 + \sum\limits_{n=1}^{+\infty} (a_n + a_{-n}) = \lim\limits_{p \to +\infty} \sum\limits_{n=-p}^p a_n.$

$$\sum_{n \in \mathbb{Z}} a_n = \sum_{n=0}^{\infty} a_n + \sum_{n=1}^{+\infty} a_{-n} = a_0 + \sum_{n=1}^{+\infty} (a_n + a_{-n}) = \lim_{p \to +\infty} \sum_{n=-p}^{p} a_n$$

🙀 Théorème 31.8 (Fubini)

Soit $(a_{i,j})_{(i,j)\in I\times I}$ une famille de réels positifs, alors cette famille est sommable si et seulement si :

- $\forall i \in I$, la famille $(a_{i,j})_{j \in I}$ est sommable, de somme notée S_i
- la famille $(S_i)_{i \in I}$ est sommable. On a alors :

$$\sum_{(i,j)\in I\times J} a_{i,j} = \sum_{i\in I} S_i = \sum_{i\in I} \left(\sum_{j\in J} a_{i,j}\right).$$

 $\sum_{(i,j)\in I\times J}a_{i,j}=\sum_{i\in I}S_i=\sum_{i\in I}\left(\sum_{j\in J}a_{i,j}\right).$ On a bien sûr le même résultat en échangeant les rôles de I et de J.

Preuve: C'est une sommation par paquet en prenant comme partition de $I \times J$ les ensembles $J_i = \{(i, j) / j \in J\}$ pour $i \in I$.

FAMILLES SOMMABLES DE COMPLEXES

Définition

Définition 31.2

Une famille de complexes $(a_k)_{k\in I}$ est sommable lorsque la famille de réels positifs $(|a_k|)_{k\in I}$ est sommable. L'ensemble des familles sommables indexées par I est noté $\ell^1(I)$.

🗑 À retenir

Une série de terme général complexe a_n est donc une famille sommable si et seulement si cette série est absolument convergente. Par exemple la famille $(\frac{e^{in}}{n})_{n\in\mathbb{N}^*}$ n'est pas sommable alors que la famille $(\frac{e^{in}}{n^2})_{n\in\mathbb{N}^*}$ est sommable.

Cas particulier:

Si $(a_k)_{k \in I}$ est une famille à support fini, i.e. Supp $(a) = \{k \in I \mid a_k \neq 0\}$ est un ensemble fini, alors cette famille est sommable puisque pour toute partie finie J de I, on a $\sum_{k \in J} |a_k| \le \sum_{k \in \text{Supp}(a)} |a_i|$ qui est une somme finie indépendante de J.

🙀 Théorème 31.9

L'ensemble $\ell^1(I)$ est un \mathbb{C} -e.v. (sev de \mathbb{C}^I).

Preuve : On a l'inclusion dans \mathbb{C}^I , la famille nulle est évidemment sommable. Si $(a_k)_{k\in I}$ et $(b_k)_{k\in I}$ sont sommables, alors en écrivant que $|a_k + b_k| \le |a_k| + |b_k|$, on montre que $(a_k + b_k)_{k \in \mathbb{I}}$ est sommable. Pour le dernier point on sait que si $(|a_k|)_{k\in I}$ est sommable alors $(|\lambda a_k|)_{k\in I}$ est sommable $(\lambda \in \mathbb{C})$.

Somme d'une famille sommable

Rappel:

Si $x \in \mathbb{R}$, on note $x^+ = \max(0, x) = \frac{x + |x|}{2}$ et $x^- = \max(0, -x) = \frac{|x| - x}{2}$. On a alors que x^+ et x^- sont des réels positifs qui vérifient : $x^+ + x^- = |x|$ et $x^+ - x^- = x$.

Théorème 31.10

- Une famille de **réels** $(a_k)_{k\in \mathbb{I}}$ est sommable si et seulement si les familles $(a_k^+)_{k\in \mathbb{I}}$ et $(a_k^-)_{k\in \mathbb{I}}$ sont
- Une famille de **complexes** $(a_k)_{k\in\mathbb{I}}$ est sommable si et seulement si les familles $(\operatorname{Re}(a_k))_{k\in\mathbb{I}}$ et $(\operatorname{Im}(a_k))_{k\in I}$ sont sommables.

Preuve : Pour le premier point, il suffit d'écrire que $0 \le a_k^+ \le |a_k|$ et $0 \le a_k^- \le |a_k|$, ce qui entraîne que si la famille $(a_k)_{k\in I}$ est sommable, alors les familles $(a_k^+)_{k\in I}$ et $(a_k^+)_{k\in I}$ sont sommables (par comparaison).

Réciproquement, si les familles $(a_k^+)_{k\in I}$ et $(a_k^+)_{k\in I}$ sont sommables, alors écrivant $|a_k|=a_k^++a_k^-$, on a que la famille $(a_k)_{k\in I}$ est sommable.

Si une famille de **complexes** $(a_k)_{k\in\mathbb{I}}$ est sommable, alors en écrivant $|\operatorname{Re}(a_k)| \leq |a_k|$, cela montre que la famille $(Re(a_k))_{k\in I}$ est sommable par comparaison (idem pour $(Im(a_k))_{k\in I}$.

Réciproquement, si $(\text{Re}(a_k))_{k\in I}$ et $(\text{Im}(a_k))_{k\in I}$ sont sommables, alors en écrivant que $|a_k| \le |\text{Re}(a_k)| + |\text{Im}(a_k)|$, on montre que la famille $(a_k)_{k \in I}$ est sommable.

Définition 31.3

• Si une famille de **réels** $(a_k)_{k\in I}$ est sommable, alors on pose :

$$\sum_{k \in \mathbf{I}} a_k = \sum_{k \in \mathbf{I}} a_k^+ - \sum_{k \in \mathbf{I}} a_k^-.$$

 $\sum_{k \in I} a_k = \sum_{k \in I} a_k^+ - \sum_{k \in I} a_k^-.$ • Si une famille de **complexes** $(a_k)_{k \in I}$ est sommable, alors on pose : $\sum_{k \in I} a_k = \sum_{k \in I} \operatorname{Re}(a_k) + i \sum_{k \in I} \operatorname{Im}(a_k).$

$$\sum_{k \in I} a_k = \sum_{k \in I} Re(a_k) + i \sum_{k \in I} Im(a_k)$$

On remarquera que la définition 1 est cohérente avec le cas d'une famille de réels positifs, et que la définition 2 est cohérente avec le cas d'une famille réelle. D'autre part, si une famille de réels $(a_k)_{k\in\mathbb{I}}$ est sommable, alors $\sum\limits_{k\in I}|a_k|=\sum\limits_{k\in I}a_k^++\sum\limits_{k\in I}a_k^-$ (d'après la partie I).

Propriétés

Théorème 31.11

 $Si(a_k)_{k \in I}$ est sommable de somme S, alors :

$$\forall \varepsilon > 0, \exists K \in \mathcal{P}_j(I), \forall J \in \mathcal{P}_j(I), K \subset J \implies \left| \sum_{k \in J} a_k - S \right| < \varepsilon.$$

• Cas réel : $a_k = a_k^+ - a_k^-$, on sait que les familles $(a_k^+)_{k \in I}$ et $(a_k^+)_{k \in I}$ sont sommables de sommes respectives S_1 et S_2 (et donc la famille est de somme $S = S_1 - S_2$). Soit $\varepsilon > 0$, il existe une partie finie K_1 de I telle que $S_1 - \varepsilon < \sum_{k \in K_1} a_k^+ \le S_1$, de même, il existe une partie finie K_2 de I telle que $S_2 - \varepsilon < \sum_{k \in K_2} a_k^- \le S_2$, posons $K = K_1 \cup K_2$ (partie finie de I contenant K_1 et K_2), soit J une partie finie de I contenant K, alors on a $S_1 - \varepsilon < \sum_{k \in K_1} a_k^+ \leqslant \sum_{k \in J} a_k^+ \leqslant S_1$, et $S_2 - \varepsilon < \sum_{k \in K_2} a_k^- \leqslant \sum_{k \in J} a_k^- \leqslant S_2$, ce qui entraı̂ne que $S_1 - S_2 - \varepsilon < \sum_{k \in J} a_k^+ - \sum_{k \in J} a_k^+ < S_1 - S_2 + \varepsilon$, et donc $S_1 - S_2 - \varepsilon < \sum_{k \in J} a_k^+ = \sum_$ $\sum_{k \in \mathbb{J}} a_k < S_1 - S_2 + \varepsilon, \text{ d'où } \left| \sum_{k \in \mathbb{J}} a_k - S \right| < \varepsilon.$ • Cas complexe : soit $(a_k)_{k \in \mathbb{J}}$ une famille sommable, on peut appliquer le théorème aux familles $(\text{Re}(a_k))_{k \in \mathbb{J}}$ et

 $(\operatorname{Im}(a_k))_{k\in I}$ qui sont sommables, de sommes respectives S_1 et S_2 (la famille a pour somme $S=S_1+iS_2$), pour $\varepsilon > 0$, il existe une partie $K \in \mathcal{P}_j(I)$ tel que pour toute partie finie J de I contenant K, on a $\left|\sum_{k=1}^{\infty} \operatorname{Re}(a_k) - S_1\right| < \varepsilon$ et

$$\left| \sum_{k \in J} \operatorname{Im}(a_k) - S_2 \right| < \varepsilon, \text{ ce qui entraîne} : \left| \sum_{k \in J} a_k - S \right| < \left| \sum_{k \in J} \operatorname{Re}(a_k) - S_1 \right| + \left| \sum_{k \in J} \operatorname{Im}(a_k) - S_2 \right| < 2\varepsilon.$$

🙀 Théorème 31.12 (inégalité triangulaire)

 $Si(a_k)_{k\in I}$ est sommable, alors $\left|\sum_{k\in I} a_k\right| \leq \sum_{k\in I} |a_k|$.

Preuve : Soit S la somme de la famille, soit $\varepsilon > 0$, il existe une partie finie J de I telle que $\left| S - \sum_{k \in I} a_k \right| < \varepsilon$, d'où $|S| \le |S - \sum_{k \in I} a_k| + \sum_{k \in I} |a_k| < \varepsilon + \sum_{k \in I} |a_k|$, ce qui entraîne le résultat.

🙀 Théorème 31.13 (linéarité de la somme)

 $Si\ (a_k)_{k\in I}\ et\ (b_k)_{k\in I}\ sont\ sommables,\ et\ \lambda\in \mathbb{C},\ alors\ \sum\limits_{k\in I}\lambda a_k+b_k=\lambda\sum\limits_{k\in I}a_k+\sum\limits_{k\in I}b_k.$

Preuve : Soit $S = \sum_{k \in I} \lambda a_k + b_k$, $S_1 = \sum_{k \in I} a_k$ et $S_2 = \sum_{k \in I} b_k$, soit $\varepsilon > 0$, il existe une partie finie J de I telle que $\left| \mathbf{S}_1 - \sum_{k \in \mathbf{I}} a_k \right| < \varepsilon$, $\left| \mathbf{S}_2 - \sum_{k \in \mathbf{I}} b_k \right| < \varepsilon$, et $\left| \mathbf{S} - \sum_{k \in \mathbf{I}} \lambda a_k + b_k \right| < \varepsilon$. D'où: $|S - (\lambda S_1 + S_2)| \le \left|S - \sum_{k \in I} \lambda a_k + b_k\right| + |\lambda| \times \left|S_1 - \sum_{k \in I} a_k\right| + \left|S_2 - \sum_{k \in I} b_k\right| < (2 + |\lambda|)\varepsilon, \text{ d'où le résultat.}$

Théorème 31.14 (changement d'indice, commutativité)

 $Si(a_i)_{i\in I}$ est sommable alors :

- $Si \sigma: J \to I$ est une bijection, alors la famille $(a_{\sigma(p)})_{p \in J}$ est sommable et $\sum_{k \in I} a_k = \sum_{p \in J} a_{\sigma(p)}$ (changement d'indice). On en déduit :
- $Si \sigma: I \to I$ est une bijection, alors la famille $(a_{\sigma(k)})_{k \in I}$ est sommable et $\sum_{k \in I} a_k = \sum_{k \in I} a_{\sigma(k)}$ (commutativité).

Preuve : Pour les familles complexes on se ramène aux familles réelles en passant à la forme algébrique. Pour une famille sommable de réels $(a_i)_{i\in I}$, on sait que $\sum_{i\in I} a_i = \sum_{i\in I} a_i^+ - \sum_{i\in I} a_i^-$, ce qui nous ramène aux familles de réels positifs pour lesquelles le théorème a déjà été démontré.

🌳 À retenir

Ce théorème s'applique en particulier aux séries absolument convergentes, mais il est faux pour une série semi-convergente.

Exemple: La série de terme général $a_n = \frac{(-1)^n}{n}$ est semi-convergente et sa somme est $-\ln(2)$. Soit $\sigma \colon \mathbb{N}^* \to \mathbb{N}^*$ définie par $\sigma(3k+1) = 2k+1$, $\sigma(3k+2) = 4k+2$, $\sigma(3k+3) = 4k+4$, on vérifie que c'est bien une bijection. On vérifie ensuite que :

 $u_{\sigma(3k+1)} + u_{\sigma(3k+2)} + u_{\sigma(3k+3)} = u_{2k+1} + u_{4k+2} + u_{4k+4} = \frac{1}{2} \left[\frac{-1}{2k+1} + \frac{1}{2k+2} \right]$, on peut alors en déduire que la série $\sum u_{\sigma(n)}$ converge et a pour somme $\frac{-\ln(2)}{2}$.

🙀 Théorème 31.15 (sommation par paquets)

 $Si I = \bigcup_{p \in J} I_p$ où les ensembles I_p sont deux à deux disjoints, $si (a_k)_{k \in I}$ est une famille sommable de complexes, alors:

- $\forall p \in J$, la sous-famille $(a_k)_{k \in I_p}$ est sommable, de somme notée S_p ,
 la famille $(S_p)_{p \in J}$ est sommable.

•
$$\sum_{k \in I} a_k = \sum_{p \in p} S_p = \sum_{p \in J} \left(\sum_{k \in I_p} a_k \right).$$

Preuve: Admis.

🙀 Théorème 31.16 (Fubini)

Soit $(a_{k,p})_{(k,p)\in I\times J}$ une famille sommable de complexes, alors : • $\forall k\in I$, la famille $(a_{k,p})_{p\in J}$ est sommable, de somme notée S_k • la famille $(S_k)_{k\in I}$ est sommable.

- $\sum_{(k,p)\in \mathbb{I}\times \mathbb{J}} a_{k,p} = \sum_{k\in \mathbb{I}} S_k = \sum_{k\in \mathbb{I}} \left(\sum_{p\in \mathbb{J}} a_{k,p}\right).$

ésultat en échangeant les rôles de I et de J.

Preuve: C'est une sommation par paquet en prenant comme partition de I × J les ensembles $J_k = \{(k, p) / p \in J\}$ pour $k \in I$.

Applications

🎦 Théorème 31.17 (produit de Cauchy de séries AC)

Soient $\sum a_n$ et $\sum b_n$ deux séries absolument convergentes, pour $\in \mathbb{N}$, on pose $c_n = \sum_{k=0}^{n} a_k \times b_{n-k}$. Alors la série $\sum c_n$ est absolument convergente et $\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \times \left(\sum_{n=0}^{+\infty} b_n\right)$.

Preuve : On montre que la famille $(a_p b_q)_{(p,q) \in \mathbb{N}^2}$ est sommable : en appliquant le théorème de Fubini on peut écrire $\sum_{(p,q)\in\mathbb{N}^2}|a_pb_q|=\sum_{p\in\mathbb{N}}\left(\sum_{q\in\mathbb{N}}|a_pb_q|\right)$ (propriété vérifiée pour les familles de réels positifs, c'est une égalité dans $\overline{\mathbb{R}}$). On a donc :

$$\sum_{(p,q)\in\mathbb{N}^2}|a_pb_q|=\sum_{p\in\mathbb{N}}\left(|a_p|\sum_{q\in\mathbb{N}}|b_q|\right)=\left(\sum_{p\in\mathbb{N}}|a_p|\right)\times\left(\sum_{q\in\mathbb{N}}|b_q|\right)<+\infty$$

ce qui montre que la famille $(a_pb_q)_{(p,q)\in\mathbb{N}^2}$ est effectivement sommable , on peut donc lui appliquer aussi le théorème de Fubini:

$$\sum_{(p,q)\in\mathbb{N}^2} a_p b_q = \sum_{p\in\mathbb{N}} \left(a_p \sum_{q\in\mathbb{N}} b_q \right) = \left(\sum_{p\in\mathbb{N}} a_p \right) \times \left(\sum_{q\in\mathbb{N}} b_q \right)$$

En considérant maintenant les ensembles $J_n = \{(p,q)/p + q = n\}$, qui forment une partition de \mathbb{N}^2 pour $n \in \mathbb{N}$, le théorème de sommation par paquets permet d'en déduire que les familles $(a_p b_q)_{(p,q) \in J_n}$ sont sommables, les sommes correspondantes sont les nombres c_n , que la famille $(c_n)_{n\in\mathbb{N}}$ est elle-même sommable, (donc la série $\sum c_n$ est bien absolument convergente), et que :

$$\sum_{(p,q)\in\mathbb{N}^2}a_pb_q=\sum_{n\in\mathbb{N}}\left(\sum_{(p,q)\in\mathbb{J}_n}a_pb_q\right)=\sum_{n\in\mathbb{N}}c_n=\sum_{n\in\mathbb{N}}\left(\sum_{k=0}^na_kb_{n-k}\right)$$

Et par conséquent, on a bien $\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \times \left(\sum_{n=0}^{+\infty} b_n\right)$.

${f Th\'{e}or\`{e}me}$ 31.18 (« ${f vraie}$ » définition, et propriété fondamentale, de la fonction exponentielle)

Soit $z \in \mathbb{C}$, la série $\sum \frac{z^n}{n!}$ est absolument convergente. On pose par définition $\exp(z) = \sum_{n=1}^{+\infty} \frac{z^n}{n!}$, on a alors la propriété :

$$\forall (z, z') \in \mathbb{C}^2$$
, $\exp(z + z') = \exp(z) \times \exp(z')$.

- Convergence : pour z=0 il n'y a rien à faire. Si $z\neq 0$, on pose $u_n=\frac{|z|^n}{n!}$, on a $\frac{u_{n+1}}{u_n}=\frac{|z|}{n+1}\to 0$, donc pour n supérieur à un certain entier N, on a $u_{n+1}\leqslant \frac{1}{2}u_n$, ce qui entraîne $0\leqslant u_n\leqslant u_N\left(\frac{1}{2}\right)^{n-N}$, on a à droite le terme général d'une série géométrique convergente, par comparaison des SATP, la série $\sum u_n$ est convergente, ce qui entraîne le résultat.
- Propriété : les deux séries $\sum \frac{z^n}{n!}$ et $\sum \frac{z'^n}{n!}$ sont absolument convergentes, donc (produit de Cauchy) la série $\sum c_n$ où $c_n = \sum_{k=0}^n \frac{z^k}{k!} \frac{z'^{n-k}}{(n-k)!}$, est absolument convergente, avec :

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} \frac{z^n}{n!}\right) \times \left(\sum_{n=0}^{+\infty} \frac{z'^n}{n!}\right) = \exp(z) \times \exp(z')$$

or $c_n = \sum_{k=0}^n \frac{z^k}{k!} \frac{z'^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^n {n \choose k} z^k z'^{n-k} = \frac{(z+z')^n}{n!}$, et donc $\sum_{n=0}^{+\infty} c_n = \exp(z+z')$, ce qui donne le résultat.