assignment-3-slcak

October 19, 2023

ASSIGNMENT 3

```
[]: import pandas as pd
      2. Load the dataset.
[]: # Load a CSV dataset
     data = pd.read_csv(r"C:/Users/sonudr/Downloads/penguins_size.csv")
[]: data.head()
[]:
       species
                   island
                           culmen_length_mm
                                             culmen_depth_mm flipper_length_mm \
     O Adelie Torgersen
                                       39.1
                                                        18.7
                                                                           181.0
     1 Adelie Torgersen
                                       39.5
                                                        17.4
                                                                           186.0
     2 Adelie Torgersen
                                       40.3
                                                        18.0
                                                                           195.0
     3 Adelie Torgersen
                                        NaN
                                                         {\tt NaN}
                                                                            NaN
     4 Adelie Torgersen
                                       36.7
                                                        19.3
                                                                           193.0
       body_mass_g
                        sex
    0
             3750.0
                       MALE
     1
             3800.0 FEMALE
     2
             3250.0
                    FEMALE
```

3. Perform the Below Visualizations.

NaN

NaN

3450.0 FEMALE

Univariate Analysis:

3

```
[]: import matplotlib.pyplot as plt

# Plot a histogram for a numeric variable
plt.hist(data['body_mass_g'], bins=20)
plt.xlabel('culmen_length_mm')
plt.ylabel('culmen_depth_mm')
plt.title('Histogram of Numeric Variable')
plt.show()
```


Bivariate Analysis:

```
[]: # Scatter plot for two numeric variables
plt.scatter(data['culmen_length_mm'], data['culmen_depth_mm'])
plt.xlabel('culmen_length_mm')
plt.ylabel('culmen_depth_mm')
plt.title('Scatter Plot of Two Numeric Variables')
plt.show()
```

Scatter Plot of Two Numeric Variables

Multivariate Analysis:

```
[]: # Compute the correlation matrix
import seaborn as sns
correlation_matrix = data.corr()

# Create a heatmap to visualize correlations
sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```

C:\Users\sonudr\AppData\Local\Temp\ipykernel_6608\2299829469.py:3:
FutureWarning: The default value of numeric_only in DataFrame.corr is
deprecated. In a future version, it will default to False. Select only valid
columns or specify the value of numeric_only to silence this warning.
 correlation_matrix = data.corr()


```
[]: import pandas as pd

# Assuming 'data' is your DataFrame
numeric_data = data.select_dtypes(include=['number']) # Select numeric columns

# Calculate descriptive statistics
descriptive_stats = numeric_data.describe()

# Print the results
print(descriptive_stats)
```

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000

```
59.600000
                                    21.500000
                                                       231.000000 6300.000000
    max
[]: data.head()
[]:
       species
                   island culmen_length_mm culmen_depth_mm flipper_length_mm \
     O Adelie Torgersen
                                        39.1
                                                         18.7
                                                                            181.0
     1 Adelie Torgersen
                                        39.5
                                                         17.4
                                                                            186.0
     2 Adelie Torgersen
                                        40.3
                                                         18.0
                                                                            195.0
     3 Adelie Torgersen
                                        \mathtt{NaN}
                                                          NaN
                                                                              NaN
     4 Adelie Torgersen
                                        36.7
                                                         19.3
                                                                            193.0
        body_mass_g
                        sex
             3750.0
     0
                       MALE
     1
             3800.0 FEMALE
     2
             3250.0 FEMALE
     3
                NaN
                        NaN
     4
             3450.0 FEMALE
      4. Perform descriptive statistics on the dataset.
[]: # Calculate mean for a specific column
     mean_value = data['body_mass_g'].mean()
     print("Mean:", mean_value)
     # Calculate median for a specific column
     median_value = data['body_mass_g'].median()
     print("Median:", median_value)
     # Calculate standard deviation for a specific column
     std_deviation = data['body_mass_g'].std()
     print("Standard Deviation:", std_deviation)
    Mean: 4201.754385964912
    Median: 4050.0
    Standard Deviation: 801.9545356980956
    5. Handle the Missing values.
[]: missing_values = data.isnull().sum()
     print(missing values)
                           0
    species
                           0
    island
    culmen_length_mm
                           2
    culmen_depth_mm
                           2
    flipper_length_mm
                           2
    body_mass_g
                           2
                          10
    sex
```

18.700000

213.000000 4750.000000

75%

48.500000

dtype: int64

Remove Rows with Missing Values:

```
[]: data_cleaned = data.dropna()
print(data_cleaned)
```

```
species
                island
                        culmen_length_mm
                                           culmen_depth_mm flipper_length_mm \
                                                                         181.0
0
     Adelie
             Torgersen
                                     39.1
                                                       18.7
1
     Adelie
             Torgersen
                                     39.5
                                                       17.4
                                                                         186.0
2
                                     40.3
                                                       18.0
                                                                         195.0
     Adelie
             Torgersen
4
     Adelie
             Torgersen
                                     36.7
                                                       19.3
                                                                         193.0
5
                                     39.3
                                                       20.6
                                                                         190.0
     Adelie
             Torgersen
. .
                                     47.2
338
     Gentoo
                Biscoe
                                                       13.7
                                                                         214.0
                                     46.8
340 Gentoo
                Biscoe
                                                       14.3
                                                                         215.0
341 Gentoo
                Biscoe
                                     50.4
                                                       15.7
                                                                         222.0
342 Gentoo
                                     45.2
                                                       14.8
                                                                         212.0
                Biscoe
343 Gentoo
                Biscoe
                                     49.9
                                                       16.1
                                                                         213.0
```

```
body_mass_g
                     sex
          3750.0
0
                    MALE
1
          3800.0 FEMALE
2
          3250.0 FEMALE
4
          3450.0 FEMALE
5
          3650.0
                    MALE
          4925.0 FEMALE
338
340
          4850.0 FEMALE
341
                    MALE
          5750.0
          5200.0 FEMALE
342
343
          5400.0
                    MALE
```

[334 rows x 7 columns]

Impute Missing Values - Numeric Variables:

```
[]: mean_value = data['flipper_length_mm'].mean()
data['flipper_length_mm'].fillna(mean_value, inplace=True)
```

6. Find the outliers and replace them outliers

```
[]: import pandas as pd
import numpy as np

# Create the DataFrame as previously mentioned
num_observations = 4
num_features = 4
data = np.random.rand(num_observations, num_features)
```

```
df = pd.DataFrame(data, columns=['culmen length mm', 'culmen depth mm',
 # Function to replace outliers with the median
def replace_outliers_with_median(column):
   Q1 = column.quantile(0.25)
   Q3 = column.quantile(0.75)
   IQR = Q3 - Q1
   lower_bound = Q1 - 1.5 * IQR
   upper_bound = Q3 + 1.5 * IQR
   column = column.apply(lambda x: x if lower bound <= x <= upper bound else_
 ⇔column.median())
   return column
# Replace outliers in 'culmen_length_mm' column
df['culmen_length_mm'] = replace_outliers_with_median(df['culmen_length_mm'])
# Display the DataFrame with replaced outliers
print(df)
```

```
culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g
           0.871495
                            0.919863
0
                                               0.604437
                                                            0.672170
1
           0.803383
                            0.562585
                                               0.196712
                                                            0.764539
                                                            0.679133
           0.428299
                            0.844605
                                               0.119821
           0.264061
                            0.740250
                                               0.210042
                                                            0.213816
```

7. Check the correlation of independent variables with the target

culmen_length_mm 0.107236

culmen_depth_mm -0.031346 body_mass_g 0.000361

Name: flipper_length_mm, dtype: float64

8. Check for Categorical columns and perform encoding.

```
[]: # Perform one-hot encoding
     df_encoded = pd.get_dummies(df, columns=['body_mass_g', 'flipper_length_mm'])
     # Display the encoded DataFrame
     print(df_encoded)
                           culmen_depth_mm body_mass_g_0.009974733101252742
         culmen_length_mm
                 0.619497
                                   0.788435
    0
                 0.061157
                                   0.955190
                                                                                0
    1
                                                                                0
    2
                 0.030322
                                   0.836502
    3
                 0.863425
                                   0.005652
                                                                                0
    4
                 0.786718
                                   0.576331
                                                                                0
                 0.386928
                                                                                0
    95
                                   0.799389
    96
                 0.471303
                                   0.282308
                                                                                0
    97
                 0.217129
                                   0.114600
                                                                                0
    98
                 0.254672
                                   0.009530
                                                                                0
    99
                 0.724172
                                   0.066864
                                                                                0
        body_mass_g_0.03324159140960847
                                          body_mass_g_0.04981787625357004
    0
                                         0
                                                                            1
    1
                                         0
                                                                            0
    2
                                         0
                                                                            0
    3
                                         0
                                                                            0
    4
                                                                            0
    95
                                         0
                                                                            0
    96
                                                                            0
                                         0
    97
                                         0
                                                                            0
    98
                                         0
                                                                            0
    99
                                         0
                                                                            0
        body_mass_g_0.05325829753231048
                                            body_mass_g_0.0634358119503885
    0
                                                                           0
    1
                                         0
                                                                           0
    2
                                         0
                                                                           0
    3
                                         0
                                                                           0
    4
                                                                           0
                                         0
    . .
    95
                                         0
                                                                           0
    96
                                         0
                                                                           0
```

```
98
                                       0
                                                                            0
99
                                       0
                                                                            0
    body_mass_g_0.06348806559949194 body_mass_g_0.06835124837536233
0
1
                                       0
                                                                             0
2
                                       0
                                                                             0
3
                                                                             0
4
                                                                             0
95
                                       0
                                                                             0
96
                                                                             0
97
                                       0
                                                                             0
98
                                                                             0
99
    {\tt body\_mass\_g\_0.0809441235883206}
                                        ... flipper_length_mm_0.9235590499580286 \
0
                                      0
1
                                      0
                                                                                     0
2
                                                                                     0
                                      0
3
                                                                                     0
4
95
                                                                                     0
                                      0
96
                                                                                     0
                                      0
97
                                                                                     0
98
                                                                                     0
99
                                                                                     0
    flipper_length_mm_0.9373638237566263
0
                                            0
1
                                            0
2
                                            0
3
                                            0
4
                                             0
. .
95
                                             0
96
97
                                             0
98
                                            0
99
    {\tt flipper\_length\_mm\_0.9538769914143631}
0
1
                                            0
2
                                            0
3
                                            0
4
                                            0
```

```
. .
95
                                                  0
96
                                                  0
97
                                                  0
98
                                                  0
99
     {\tt flipper\_length\_mm\_0.9621805244880077}
0
1
                                                  0
2
                                                  0
3
                                                  0
4
                                                  0
95
                                                  0
96
                                                  0
97
                                                  0
98
                                                  0
99
                                                  0
     {\tt flipper\_length\_mm\_0.9687033782107564}
0
                                                  0
1
2
                                                  0
3
                                                  0
4
                                                  0
95
                                                  0
96
                                                  0
97
98
                                                  0
99
     {\tt flipper\_length\_mm\_0.9792281438203934}
0
                                                  0
1
                                                  0
2
                                                  0
3
                                                  0
4
                                                  0
95
                                                  0
96
                                                  0
97
                                                  0
98
99
     {\tt flipper\_length\_mm\_0.9829535717675453} \quad \backslash
0
                                                  1
```

```
1
                                           0
2
                                           0
3
                                           0
4
                                           0
95
                                           0
96
                                           0
97
                                           0
98
                                           0
99
                                           0
    flipper_length_mm_0.9904843879367103
0
1
                                           0
2
                                           0
3
4
                                           0
95
                                           0
96
                                           0
97
                                           0
98
                                           0
99
    flipper_length_mm_0.9906799993503721 flipper_length_mm_0.9923362375458921
0
                                           0
                                                                                     0
1
                                           0
                                                                                     0
2
                                           0
                                                                                     0
3
                                                                                     0
                                           0
4
                                           0
                                                                                     0
95
                                           0
                                                                                     0
96
                                           0
                                                                                     0
97
                                                                                     0
                                           0
98
                                           0
                                                                                     1
99
                                           0
```

[100 rows x 202 columns]

```
[]: from sklearn.preprocessing import LabelEncoder

# Initialize the LabelEncoder
label_encoder = LabelEncoder()

# Apply label encoding to the 'Category' column
df['Category_encoded'] = label_encoder.fit_transform(df['body_mass_g'])
```

```
# Display the DataFrame with the encoded 'Category' column
print(df)
```

```
culmen_length_mm
                       culmen_depth_mm
                                         body_mass_g flipper_length_mm \
             0.619497
                                                                 0.982954
0
                               0.788435
                                             0.049818
1
             0.061157
                               0.955190
                                             0.905512
                                                                 0.650588
2
             0.030322
                               0.836502
                                             0.247442
                                                                 0.374358
3
             0.863425
                               0.005652
                                             0.475928
                                                                 0.833851
4
             0.786718
                               0.576331
                                             0.914381
                                                                 0.065310
             0.386928
                                                                 0.366489
95
                               0.799389
                                             0.595300
96
             0.471303
                                                                 0.311509
                               0.282308
                                             0.820338
97
             0.217129
                               0.114600
                                             0.779467
                                                                 0.870575
98
             0.254672
                               0.009530
                                             0.712111
                                                                 0.992336
99
             0.724172
                               0.066864
                                             0.063488
                                                                 0.279538
    Category_encoded
0
                    2
1
                   91
2
                   30
3
                   51
4
                   93
. .
95
                   61
96
                   80
97
                   75
98
                   66
99
                    5
```

[100 rows x 5 columns]

9. Split the data into dependent and independent variables.

```
Independent Variables (Features):
    culmen_length_mm body_mass_g flipper_length_mm Category_encoded
```

```
0
            0.619497
                          0.049818
                                              0.982954
                                                                        2
            0.061157
                          0.905512
                                              0.650588
                                                                       91
1
2
            0.030322
                          0.247442
                                              0.374358
                                                                       30
3
            0.863425
                          0.475928
                                              0.833851
                                                                       51
4
            0.786718
                          0.914381
                                              0.065310
                                                                       93
. .
95
            0.386928
                          0.595300
                                              0.366489
                                                                       61
96
            0.471303
                          0.820338
                                              0.311509
                                                                       80
97
            0.217129
                          0.779467
                                              0.870575
                                                                       75
            0.254672
                                                                       66
98
                          0.712111
                                              0.992336
99
            0.724172
                          0.063488
                                              0.279538
                                                                        5
```

[100 rows x 4 columns]

```
Dependent Variable (Target):
0
       0.619497
1
      0.061157
2
      0.030322
3
      0.863425
4
      0.786718
95
      0.386928
96
      0.471303
97
      0.217129
98
      0.254672
      0.724172
99
```

Name: culmen_length_mm, Length: 100, dtype: float64

10. Scaling the data

Min-Max Scaled Data:

	culmen_length_mm	body_mass_g	flipper_length_mm	Category_encoded
0	0.618533	0.040415	0.990401	0.020202
1	0.058162	0.908398	0.650366	0.919192
2	0.027215	0.240877	0.367761	0.303030
3	0.863349	0.472644	0.837857	0.515152
4	0.786363	0.917395	0.051582	0.939394
	•••	•••	•••	•••
95	0.385119	0.593731	0.359711	0.616162
96	0.469801	0.822001	0.303463	0.808081
97	0.214701	0.780543	0.875430	0.757576
98	0.252381	0.712220	1.000000	0.666667
99	0.723589	0.054282	0.270754	0.050505

[100 rows x 4 columns]

Standardized (Z-score Scaled) Data:

	culmen_length_mm	body_mass_g	flipper_length_mm	Category_encoded
0	0.439466	-1.457500	1.603638	-1.645531
1	-1.515245	1.414238	0.464832	1.437674
2	-1.623196	-0.794267	-0.481637	-0.675534
3	1.293445	-0.027462	1.092756	0.051964
4	1.024898	1.444003	-1.540550	1.506960
	•••	•••	•••	•••
95	-0.374740	0.373156	-0.508597	0.398392
96	-0.079348	1.128391	-0.696979	1.056604
97	-0.969198	0.991226	1.218589	0.883390
98	-0.837760	0.765178	1.635787	0.571605
99	0.805928	-1.411623	-0.806524	-1.541602

[100 rows x 4 columns]

11. Split the data into training and testing

12.check the training and testing data shape.

```
[]: # Display the shapes of the resulting sets
print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)
```

```
print("y_train shape:", y_train.shape)
print("y_test shape:", y_test.shape)

X_train shape: (80, 4)
X_test shape: (20, 4)
y_train shape: (80,)
y_test shape: (20,)
[]:
```