课程名称: 33 实验名称: 刚体的转动梭等脸目期: 2023 班 教学班级:

- 一,实验目的
- (1) 学习测量刚体转动惯量的方法
- (2) 用奥特方法验证平行轴定理
- 二. 宾转仪器

刚体转动惯量实验仪,通用电脑式室粉计,铝环,铝板,小钢矩,牵引法弦 码.游标卡尺和天平.

三. 实验厚理

刚体转动慢量实验仪结构如图

对于皇皇验台, 转动时件手对鞭轴的转动惯量记为1., 对作手对中心轴的转动惯量1,将其放在承钓台上, 体系的转动按量记为I, Iclo+Ix.

 $I_{\times} = I - I$.

指导教师签字:

电话:

实	验	报	生
1	7117	JIX	

形E	名称:_ 级:_	实验名和 数学班经		实验日期: 学 号:		E
		$ \sum_{i=1}^{n} \beta_{i} = 1 \cdot \beta_{i} $	(匀加速)		姓名:	
		$I = \frac{m_1 g r}{\theta - \beta'}$				

0 = wot + + \$ & t2

从同一个超始点转过两个不同角位移的1.02.所用时间为t,t, 分加速角速度 $\beta = \frac{2(\theta_1 t_2 - \theta_2 t_1)}{t_1^2 t_2 - t_2^2 t_1}$

匀减速角速度 P'= 2(8)t½-02t() t(2t½-t½2t1)

老初角速度 W。=0, 则 \$= 28-29 $m_1 = \frac{2I\theta}{gr} \cdot \frac{1}{t^2} + \frac{M\mu}{gr} = k \cdot \frac{1}{t^2} + m\mu$

当日, γ确定, Mu视为常数, 则m、和电线性关系。 通过测量 m,一 社关系曲线即可确定转动惯量

四. 实验内含及操作步骤

1.测铝环对中心轴的转动惯量 (1) 把铅环放置在承物台上, 先测 I

m,为砝码与钩的总质量, r取25mm。毫秒计设置为"0129", 按下针时" 键,然后全年统在处力矩似和摩擦力矩从的作用下从静止开始转动 取时间值:t,:(3次-1次),t:(23次-21次),用位移均为2亿

t2: (9次-1次), t2': (29次-21次).角位移内为8元

按一下"母"键:显示"1…"得到母值 再按一下"户"键:显于"2-…"得到户值,注意印为负值

指导教师签字:

联系方式:

(e) LO3430

郊心 坦 壮

课程名称:		4 1 以 台			
班 级:	实验名称:				
X争+ +	教学班级:	实验日期:	年	月	E
5 t, t2	· ti, ti' & B B'iz =	一 学 号:	姓 4	名:	

重复上生步、张、得到了组数据

测量并记录铝环的质量,内经系外径

雅 导转动惯量的不确定度公式并计算,得到 I(UI) (2) 把铅环取下,测量 I。.

测量I。的步骤同测量I。

In = = m2 (ri + r, 2)

其中m2为铝环质量, ri和r。分别为铝环的内料径 和外半经

2.测铝盘对中心轴的转动惯量

(1)测量 I

把铝盘放在承钩台上,首角位移定为8元,线线绕线轮半径 取r=25mm, n.值取15g, 20g, 25g,...50g共8个值,分别用意 粉计测出时间值t,注意:为使W。=0. 体争由静止一开始运动 靴要计时。测出m,一长关手曲线,用直线方程拟台,得斜率k, 进而求出1= Kgr/28

四次是了。

C3)计算出铅盘对中心轴的转动模量 Ix

3.整证平行轴定理

Id=L+md2. Id为物体统转轴的转动惯量,Ic为转轴通过物库 质心时的转动模量, d为物件的质心到转轴的距离 把 同质量两个为 m。的小钢柱 放在小孔 2和2', 两个小钢柱体系的反心 在转动釉上,它们绕轴转动时的转动提量记为Ic,用测铝环转动撞 量的同样方法测出 I,= I。+ Ic。然后把两个小钢柱放在1和3'上,这时, 质人、与转轴距离为d,用Id表示小钢柱对转轴的转动惯量, Iz=I。+Id 联系方式: 由 Id = Ic + 2m.d2, 有 Iz-L1 = 2m.d2, 次 出 L1, L2 mo. d 进行 程证

课程名称: 班	<u> </u>	验	报	告			
42 · · · · ·	实验名称:		实验目		年	F:	F
	8/rad. 0.64814	S - 2			rd.s-2		
	0.64675			0.065			
	0-65077			-0-063			
	0.65189			-0.06	262		
	0.65740			-0.06			
无铅环	2-47877			-0.0	1		
	2-50290		10/5	-0.12	8861		
	2-51157		1 %	一一	8829		
	2.48638		100	120 000	8864		
ms= 422g	2-48486			-0.	29,043		
	2.49057			西西西	29091		
	有能盘	25.0	30 0		40.0	45.0	50.0
	· · · · · · · · · · · · · · · · · · ·						4.4122
花 盘	20.0 2	4.0	30.0	35.0	40.0	45.0	50.0
m/g 15.0	4	1225 3	.7578	3.4365	3.2975	3.0392	2.8909
15 5.4765	4.6406 4.				指导教师		
展方式:						a his street of	由话: 813820

实验报告 课程名称: 有能玩 实验名称: 教学班级; = 0.64814+0.64675 +0.65077+0.65164+0.65189+0.65740 = 0.65110 (rad - 5-2) $LA = \begin{cases} (0.64814 - 0.65110)^{2} + (0.64675 - 0.65110)^{2} + (0.65077 - 0.65110)^{2} \\ + (0.65164 - 0.65110)^{2} + (0.65189 - 0.65110)^{2} + (0.65740 - 0.65110)^{2} \end{cases}$ 6x5= 0.00 15 (rad - 5-2) B'= 0.06500 + 0.06354 + 0.06349 + 0.06262 + 0.06389 + 0.06227 = 0.06347 (rad.5-2) $UA = \begin{cases} (0.06500 - 0.06347)^{2} + (0.06347)^{2} + (0.06347 - 0.06347)^{2} \\ + (0.06262 - 0.06347)^{2} + (0.06389 - 0.06347)^{2} + (0.06227 - 0.06347)^{2} \end{cases}$ 8x5 = 0.0004 (rad-s-2) $I = \frac{0.025 \times 9.8 \times 0.025}{0.06347 + 0.6510} = 0.008572 (kgm²) I = \frac{m_1 gr}{\beta - \beta'}$ U(m) = 0.5 9

$$U = \sqrt{\left(\frac{\partial L}{\partial \beta}\right)^{2} u_{i}^{2} \rho} + \left(\frac{\partial I}{\partial \beta'}\right)^{2} u_{i}^{2} \rho + \left(\frac{\partial I}{\partial m_{i}}\right)^{2} u_{i}^{2} m_{i}) + \left(\frac{\partial I}{\partial m_{i}}\right)^{2} u_{i}^{2} m_{i}) + \left(\frac{\partial I}{\partial r}\right)^{2} u_{i}^{2} m_{i}}$$

=
$$\sqrt{\frac{(-m_1gr\beta)^2}{(\beta-\beta')^2}} \frac{(u^2(\beta) + \frac{(m_1gr)^2}{(\beta-\beta')^2} u^2(\beta') + \frac{(gr)^2}{(\beta-\beta')^2} u^2(r)} + \frac{(gr)^2}{(\beta-\beta')^2} u^2(r)$$

= 0.00017 to (kg-m2) 0.00017 (kg-m2)

指导教师签字:____

联系方式:

北京理工大学良乡校区管理处监制 电话: 81382088

实验报告 课程名称: 实验名称: 实验日期: 教学班级: 石钻环 事= 2-47877+2-50290+2.51157+2-48486+2.49057+2.48638

= 249251 crad. 5-2)

UA= (2.47877-2.49251) + (2.50290-2.49251)2+ (2.50290-2.49251)2 +(2.48486-2.49251)2+(2.49057-2.49251)2+(2.48638-2.49251)2

6x5

= 0.005 (rad. 5-2)

P'= 0.28861 + 0.28255 + 0,28829 + 0.28864 + 0,29043 + 0,29091

= 0-28824 (rad. 5-2)

(0.28861-0.28824)4 (0.28255-0.28824)2+(0.28829-0.28824)2 + (0-28824-0.28884)2+ (0.29043-0.28824)2+ (0.29091-0.28824)2 6X5

= 0.0012 (rad-5-2)

 $I = \frac{0.025 \times 0.025 \times 9.8}{0.28824 + 2.49251} = 0.002203 \text{ (kg-m²)}$

u= (3) ite)+(3) vier)+(3) vier)+(3) vier)+(3) vier)

= $\left(\frac{-m.gr}{B-B}\right)^{2}.u^{2}_{B}+\left(\frac{m.gr}{B-B}\right)^{2}u^{2}(B')+\left(\frac{gr}{B-B}\right)^{2}u^{2}(n)+\left(\frac{gr}{B-B}\right)^{2}u^{2}(n)$

= 4.6 × 10-5 (kg-m2)

指导教师签字:

联系方式:

北京理工大学良乡校区管理处监制

电话: 81382088

课程名称: 实验名称: 实验日期: 教学班级: $I_x = I - I_0 = \frac{0.00636090}{0.00012680}$ (kg·m²)

$$-\sqrt{u^2(I)} + (1)u^2(I) + (2I)^2u^2(I)$$

$$=\sqrt{u^2(I)} + (2I)u^2(I)$$

$$I_{\frac{72}{2}} = \frac{m_{2} \times (R_{\frac{7}{4}} + R_{\frac{7}{4}})^{2}}{2}$$

$$= \frac{0.494 \times [(0.105)^{2} + (0.120)^{2}]}{2}$$

$$U1_{12} = \sqrt{\frac{\partial u_{12}}{\partial m_2}} u_{12}^2 + (\frac{\partial u_{12}}{\partial RA})^2 u_{12}^2 + (\frac{\partial 12}{\partial RA})^2 u_{12}^$$

$$\mathcal{F}U(m_2) = \frac{0.5}{1.645} = 0.304 \times 10^{-3} \text{ (kg. } m^2\text{)}$$

$$U_{2} = \sqrt{\frac{(R^{2}A + R^{2}A)^{2} U_{2}^{2} U_{2}^{2}}{2} U_{2}^{2} U_{2}^$$

指导教师签字:

实	验	排	出
		JIX	-

课程名称: 实验名称: $\frac{1}{t_1^2} = \frac{1}{(8.5828)^2} = 0.013575068 \quad 6-2$ $\frac{1}{t_2^2} = \frac{1}{(7.2664)^2} = 0.01893919 \quad 5-2$ ty = (5.3611)2 = 0.03 + 793025 5-2 t= = (6-5255)= = 0.023484018 5-1 to= (4-9587) == 0.040669078 5-2 tr2 = 1 (4.6811) = 0.04 ± 63 ± 642 5-2 $\frac{1}{t_4^2} = \frac{1}{(t_1 - t_2)^2} = 0.029184609 \text{ s}^{-2}$ $\frac{1}{t_8^2} = \frac{1}{(t_1 - t_2)^2} = 0.049998468 \text{ s}^{-2}$ $\hat{t} = \frac{1}{0.941431751} = \frac{1}{t_1} = \frac{1}{t_1^2} + \frac{1}{t_2^2} + \dots + \frac{1}{t_8^2} = 0.032034025 = 5^2$

2= 6= 0.013575068 x0.0215+0.01893919 x 0.020+...+0.049998568 x 0.050 0 -8 x 0.0 320 35025 x 0.0 35

(0.013575068) 7 ---+ (0.049998568)2- 8x (0.032035025)2

= 0.941431751 1.041431751

 $\hat{q} = 0.035 - \phi - 041431751 \times 0.032035025 = 0.0003341211$

mg-0.94 = 10.0023

In= 0-941431751×9-8×0.025 = 0.004890979

无铅度

tr2=0.084677359 5-2 ti2 = 0-0333421675-2 Te2 = 0.091966655 8-2 tr2 = 0.046434671 5-2 Ty2=0. 108263344 5-2 tz== 0.058840814 5-2 to2=0.119645829 5-2 ty2 = 0.070816209 5-2

指导教师签字:

联系方式:

= 0.076749756 5-2

6: 0.015×0-033342167+---+ 0-11965829×0.05-8×0.076749756×0.0325 (0.015) + ---+ (0.05) = 8×(0.035)=

= 0.348177 x22

10 = a = 0.004672475

 $I_0 = \frac{k_0 g_T}{20} = \frac{0.408177522 \times 9.8 \times 0.025}{2 \times 8 \times 6} = 0.001890515 (kg·m²)$

=== Ix = 1-1. = e=002600463 0.003200463 (kg·m²)

L理 = $m_3 R^2/2 = 0.0030384$ (kg·m²)

指导教师签字:

北京理工大学良乡校区管理处监制

电话: 81382088

课程名称:	实验名称:	实验口期:	华	П	El
班 级:	_ 教学班级:	学 号:	姓	名:	

思考题

$$I = Tr - M\mu = I\beta$$

$$-M\mu = I\beta'$$

$$T = mg - ma$$

$$I = \frac{m_1(g - a)r}{\beta - \beta'} \qquad \boxed{\beta^* + 1} = \frac{m_1gr}{\xi - \beta'}$$

$$21 \leq \xi \, \xi \, \xi \, \xi \, k \, \xi \, \hat{k} \, \hat{k} \, \hat{k} \, \hat{k}$$

2. 滑轮的转动横量也需要动力矩来提供,所以物体整体的转动横量含有滑轮的转动横量, 亚洲玻滑轮的转动模量越大, 动慢量, 鱼科转动横量也越大, 族差越大 测量物体的转动横量也越大, 族差越大

指导教师签字:

实验二 刚体的转动惯量

1. 铝环对中心轴转动惯量:

倡环半径: R_内 = 105.00(0.02) mm, R_内 = 120.00(0.02) mm 砝码+钩质量: m₁ = 25.0(0.5) g, 塔轮半径: r = 25.00(0.02) mm, 包含因子 K=1.645

	t ₁ /s	t ₂ /s	0 / m ₂ =	494	_ g	(0年10/日午 4 米不确宁度)
1		(2/5	β/rad·s-2			(β和β'只算 A 类不确定度)
2			0.64814	t'1/s	t'2/s	β' /rad·s ⁻²
3			0.64675			-0.06500
4			0.65077			-0.06354
5			0.65164			-0-06349
-			0.65189			-0.06262
6			0.65740			- 0.06389
平均值	$\bar{\beta} = o$.	65110 (1	rad. 5-2)	=:		-0.06227
			1015 (rad. 5-2)	β' =	0.06347	(rad.s-27
				不确定	度A类分量	UA = 0.0004 (rad.52)
$\beta(u) =$	0.6511	(0.0015)	rad.5-2	2/10/21/21/21		(0.0004) rad.s-2

系统加铝环转动惯量: I(u_I) = __0.00 857 (0.00017) kg·m²

无铝环时:

	t ₁ /s	t ₂ /s	β/rad·s ⁻²	ť ₁ /s	ť ₂ /s	β' /rad·s ⁻²	
1			2-47877			0.28861	
2			2-51157			0-28255	
3			2.48486			0.28829	
4			2.49057			0.28864	
5			2-48638			0.29043	
6			2.50290			0.29091	
平均位	平均值 β= 2.4925 (rad·5-2)			$\bar{\beta}' = 0.28824 \ (rad \cdot 5^{-2})$			
不确定度 A 类分量 UA = 0.005 (rad·5-2)			不确定度 A 类分量 UA = 0.0012 (Yad·5~2)				
$\beta(u) = 2.492(0.005) \text{ rad} \cdot 5^{-2}$			$\beta'(u) = 0.2882 (0.0012) \text{ rad.5-2}$				

系统转动惯量: $I_0(u_{I_0}) = 0.00220 (0.00005)$ kg·m²

铝环对中心轴的的转动惯量: (注意有效数字、科学计数法和单位)

实验值: $I_x = I - I_0$, $u_{I_x} = \sqrt{u_I^2 + u_0^2}$, $I_x(u_{I_x}) = 0.00637 (0.00018)$ kg·m²

 $I_{\underline{u}}(u_{I_{\underline{u}}}) = 0.00627990(0.0000017) \text{ kg. m}^2$ 理论值: $I_{\underline{q}} = m_2(R_{\underline{p}}^2 + R_{\underline{p}}^2)/2$,

2. 倡盡对中心轴转动惯量:

行程中标。R = 120.00(0.02) mm, 绕线轮半径; r = 25.00(0.02) mm

15.0 加加加	M: m;=		g		
8 + 0 - 25.0	30.0	35.0	40.0	45.0	50.0
(1/t²)/s-2 0.0136 0.013174 0.0189 0.023	\$ 2.8633	3.3611	4.9587	4.6811	4-4722
用最小二乘法拟合 m~1/t2 111/0	15 0.0292	0.0340	0 04-7	- 04-1	0 04000

直线方程: m=1.0414% + 0.0003341

斜率 k= 1-0414318

系统加铝盘转动惯量: I = kgr/(2θ) = _0.0048909 kg·m²

无铝盘时: $ω_0 = 0$, θ = 8π

m /g	15.0	20.0	25.0	30.0	35.0	40.0	45.0	
t/s	5-4765	4-6406	4.1225	3.7578	3.4365	3.2974	45.0	50.0
(1/t ²) /s ⁻²							7.03(2)	28107

用最小二乘法拟合 m~1/t2 曲线 (不作图)

直线方程: m=0.34878 = +0.00467

斜率 k = 0.348 ≥ 178

系统转动惯量: $I_0 = k_0 gr/(2\theta) = 0.00169 \text{ kg·m²}$

铝盘对中心轴的转动惯量: (注意有效数字、科学计数法和单位)

实验值: $I_x = I - I_0 = 0.0032005 \text{ kg} \cdot \text{m}^2$

理论值: $I_{\underline{m}} = m_3 R^2/2 = 0.0030384 \text{ kg·m²}$

思考题: 1, 2