

College of Engineering for Women BVRIT HYDERABAD

Department of Computer Science and Engineering

Landmark and tourist place recognition A Deep Learning based System for

Under the Guidance of:

Name: Ms. S.Vidyullata

Designation: Assistant Professor

Team No: C_5

19WH1A05F0- S.Meghana

19WH1A05G1 – G. Varsha priya 20WH5A0517- S. Malavika

AGENDA

- Introduction
- Existing system

- Problem statement
 Proposed system
 Tools and Technology
 - Societal impact
- Project timeline
- References

INTRODUCTION

- More and more information about tourist attractions is being portrayed visually rather than textually.
- represented in photographs may not know how to conduct a text search As a result, tourists who are interested in a specific attraction to learn more about the intriguing tourist places.
- In light of this issue, and in order to improve the tourism industry's competitiveness, this study proposes an innovative tourist spot identification mechanism based on deep learning-based object detection technology for real-time detection and identification of tourist spots by taking pictures on location or retrieving images from

EXISTING SYSTEM

there are several instances where text information is not available and or is not □Currently most of the searches are about tourist are done using Text. Although enough. ☐ There are several Image based system which can identify tourist spots using Images which uses algorithms like SVM which are not accurate and are not well suited.

DISADVANTAGES OF EXISTING SYSTEM

□ Support vector machine algorithm is not acceptable for large data sets.

It does not execute very well when the data set has more sound i.e. target

classes are overlapping.

□ In cases where the number of properties for each data point outstrips the number of training data specimens, the support vector machine will underperform.

PROBLEM STATEMENT

This project creates a tourist spot recognition system, which is a Deep Learning AI framework that is used to identify tourist destinations by providing photographs and Images.

PROPOSED SYSTEM

detect the Name and Details about a Tourist Spot just by using the Image provided. Currently the System will be trained to recognise some major We propose a Advance Deep Learning System which will be able to Tourist Spots with a Web App based intuitive Interface.

PROPOSED SYSTEM FLOW CHART

Data Normalization

```
images = images.astype(np.float16)
labels = labels.astype(np.int8)
images /= 255
print("Images shape after normalization = ",images.shape)

    Step 2 - Data normalization
```


Splitting Dataset for testing and training


```
Python
                                                                                                            x_train, x_test, y_train, y_test = train_test_split(images, labels, test_size = 0.2, random_state = RANDOM_SEED)
                                                                                                                                                                                                                       print("x_train shape = ",x_train.shape)
print("y_train shape = ",y_train.shape)
print("\nx_test shape = ",x_test.shape)
print("y_test shape = ",y_test.shape)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             display_random_images(x_train, y_train)

    Split dataset for training and testing

                                                                                                                                                                                                                                                                                                                                                                                                                                    x_train shape = (14400, 224, 224, 3)
y_train shape = (14400,)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            x_test shape = (3600, 224, 224, 3)
y_test shape = (3600,)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      del images
del labels
```

Epochs and Batch Size


```
Python
EPOCHS = 30
BATCH_SIZE = 32 #32
```


Initializing the Resnet-50 V2 model

Python Python resnet 50 v2 = ResNet50V2(input_shape=IMAGE_SIZE , weights='imagenet', include_top=False) resnet 50 v2 model = Model(inputs=resnet 50 v2.input, outputs=prediction) prediction = Dense(TOTAL_CATEGORIES, activation='softmax')(x) #do not train the pre-trained layers of VGG-19 for layer in resnet_50_vZ.layers: x = Dense(100, activation='relu')(x) x = BatchNormalization()(x) x = Dense(100, activation='relu')(x) x = Flatten()(resnet_50_v2.output) resnet 50 v2 model.summary() x = BatchNormalization()(x) layer.trainable = False RESNET 50 V2 x = Dropout(0.25)(x)x = Dropout(0.25)(x)

Continued...


```
resnet 50 v2 history = resnet 50 v2 model.fit(x_train, y_train, validation_data=(x_test, y_test), steps_per_epoch = x_train.shape[0]//BATCH_SIZE, ep
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Python
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Python
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Python
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Python
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       early_stop=Earlystopping(monitor='val_accuracy',mode='max', verbose=1, patience=15, restore_best_weights=True)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   resnet_50_v2_model.compile(loss='sparse_categorical_crossentropy', optimizer="adam", metrics=['acc'])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           resnet 50 v2 model = Model(inputs=resnet 50 v2.input, outputs=prediction)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            prediction = Dense(TOTAL_CATEGORIES, activation='softmax')(x)
                                                                                           x = Dense(100, activation='relu')(x)
                                                                                                                                                                                                                                      x = Dense(100, activation='relu')(x)
x = Flatten()(resnet_50_v2.output)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  # view the structure of the model.
                                                                                                                                                                                                                                                                                      x = BatchNormalization()(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              resnet 50 v2 model.summary()
                                                                                                                                              x = BatchNormalization()(x)
                                                                                                                                                                                                                                                                                                                                             x = Dropout(0.25)(x)
                                                                                                                                                                                              x = Dropout(0.25)(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  # fit the model
```


Training the Model


```
resnet 101 v2 history = resnet 101 v2 model.fit(x train, y train, validation data=(x test, y test), steps per epoch = x train.shape[0]//BATCH SIZE,
                                                                                                                                                                                                                                                                                                                                                                                                                                  ===] - 72s 127ms/step - loss: 1.3459 - acc: 0.6221 - val loss: 0.9088 - val acc: 0.7483
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ==] - 51s 114ms/step - loss: 0.2547 - acc: 0.9449 - val loss: 0.6947 - val acc: 0.7949
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ===] - 51s 114ms/step - loss; 0.0247 - acc: 0.9985 - val_loss: 0.6652 - val_acc: 0.8103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ----] - 51s 114ms/step - loss: 0.0125 - acc: 0.9992 - val_loss: 0.6368 - val_acc: 0.8200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ===] - 51s 114ms/step - loss: 0.0111 - acc: 0.9969 - val_loss: 1.1623 - val_acc: 0.7810
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ===] - 51s 114ms/step - loss: 0.0614 - acc: 0.9924 - val_loss: 0.6881 - val_acc: 0.8008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ==] - 51s 114ms/step - loss: 0.0696 - acc: 0.9809 - val loss: 1.3345 - val acc: 0.6892
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ==] - 51s 114ms/step - loss: 0.1462 - acc: 0.9528 - val loss: 0.9478 - val acc: 0.7536
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ===] - 51s 114ms/step - loss: 0.0303 - acc: 0.9924 - val_loss: 0.8465 - val_acc: 0.7824
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ==] - 51s 114ms/step - loss: 0.0112 - acc: 0.9975 - val loss: 0.8041 - val acc: 0.7969
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ==] - 51s 114ms/step - loss: 0.0114 - acc: 0.9989 - val loss: 0.8078 - val acc: 0.7821
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ---] - 51s 114ms/step - loss: 0.0581 - acc: 0.9835 - val loss: 0.8396 - val acc: 0.7796
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ===] - 51s 114ms/step - loss: 0.0163 - acc: 0.9969 - val loss: 0.8241 - val acc: 0.7921
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ===] - 51s 114ms/step - loss: 0.0159 - acc: 0.9955 - val loss: 1.2453 - val acc: 0.7709
                                                                                                                                                                                                                                                                          Output exceeds the size limit. Open the full output data in a text editor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Epoch 13/30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Epoch 3/30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Epoch 6/30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Epoch 7/30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Epoch 8/30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   450/450 [=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     450/450 F
```

Model Evaluation


```
Resnet_101_V2 Accuracy: 77.19444632530212 %
                      Resnet_101_V2 Loss: 1.2400946617126465
```


16

Model Accuracy and Loss

Evaluation Metrics

VISHNU UNIVERSAL LEARNING

d	precision	recall	f1-score	support	
0	0.53	9.65	65.8	92	
Ħ	9.62	9.61	9.62	118	
2	98.8	88.0	6.87	123	
m	6.73	6.57	9.64	126	
4	6.78	6.92	0.84	111	
5	6.92	6.75	6.83	127	
9	98.0	0.84	0.85	116	
7	66.9	66.9	66.00	110	
00	6.97	0.62	9.76	174	
6	6.65	0.64	9.64	113	
10	6.79	0.78	9.78	129	
11	89.68	0.65	99.66	711	
12	6.55	6.58	6.57	116	
13	6.82	6.88	6.85	112	
14	66.9	96.9	86.98	136	
15	6.72	6.82	6.77	131	
16	6.87	0.86	0.87	136	
17	9.74	0.88	08.80	95	
18	6.82	0.82	0.82	120	
19	6.79	0.94	68.86	93	
20	6.82	0.73	0.77	142	
21	0.56	6.81	99.66	94	
22	6.83	6.81	0.82	106	

accuracy			0.77	3696	
macro avg	0.77	9.78	0.77	3690	
weighted ave	6.79	0.77	6.77	3690	

Confusion Matrix

resnet 101 v2 model.save("/content/drive/MyDrive/resnet 101 v2 model.h5", save format="h5") Open the full output data in a text editor ø print(contusion_matrix() preu, y_test)

PROPOSED SYSTEM ARCHITECTURE

Training model

Modules

- Tensorflow
- Keras Openc CV Sklearn
- CUDA

```
Resnet_101_V2 Accuracy: 77.19444632530212 %
                        Resnet_101_V2 Loss: 1,2400946617126465
```


Proposed Model Accuracy:

Model 1: Resent 50-v2 – 71.07% Model 2: Resnet 101-v2-77.1 %

METHODOLOGY

fg=[3,4,6,3]

50 layers

ಡ Neural Network (ResNet) is an ANN of a kind that stacks residual blocks convolutional neural network (CNN) that is 50 layers deep. A Residual popular ResNet-50 model Deep residual networks like the on top of each other to form a network

DATA SET

Source: Dataset contains torist spot images

Number of Images: 30000

Number of Classes: 30

CSV File: .csv file contains information about the classes

TECHNOLOGY STACK

HARDWARE REOUIREMENTS

Processor: i5 10th Gen or better

RAM: 8GB or better

Storage: 120GB or more

SOFTWARE REOUIREMENTS

Windows 10

Python 3.6 or newer

Necessary Python Modules

SOCIETAL IMPACT

Now a days more and more information about tourist attractions is being portrayed visually rather than textually. As a result, tourists who are

interested in a specific attraction represented in photographs may not know how to conduct a text search to learn more about the intriguing tourist places. In light of this issue, and in order to improve the tourism industry's

mechanism based on deep learning-based object detection technology for competitiveness, this study proposes an innovative tourist spot identification

real-time detection and identification of tourist spots by taking pictures on

location or retrieving images from the Internet.

Feasibility Study

TECHNICAL STUDY:

- Dataset is trained using Resnet50v2 model and Resnet101v2 which need to be
- Flask frame work is used for deploying model and showing prediction

supported by system which has > i3 processor and graphics card.

OPERATIONAL STUDY:

- User friendly interface to interact with user to predict result.
- Prediction time will be reduced.

PROJECT TIMELINE

10			
Task	Introduction/ AbstractSpecificationsLiterature SurveyReferences	Finding out suitable algorithm.Data Set Selection.Literature Survey	 Literature Survey Dataset Collection Segregating dataset into respective classes Pre-processing the dataset Splitting the dataset into testing and training modules
Duration	1 week	6 weeks	4 weeks
Date	25 - 09 - 2022	19 - 11 - 2022	22 – 12 – 2022

Project Timeline Contd..

 Training the model Modifying different input parameters for improving accuracy Tried different epochs number and batch size 	Severity predictionPaper publishing
5 weeks	
16-03-2023	

REFERENCES

- Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. [1] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016. 2818-2826).
- [2] Szeliski, R., 2010. Computer vision: algorithms and applications. Springer Science & Business Media.
- [3] Umbaugh, S.E., 2010. Digital image processing and analysis: human and computer vision applications with CVIPtools. CRC press.
- [4] Alsing, O., 2018. Mobile object detection using tensorflow lite and transfer learning.
- Monument recognition using deep neural networks. In 2017 IEEE International Conference on Computational Intelligence and Computing [5] Gada, S., Mehta, V., Kanchan, K., Jain, C. and Raut, P., 2017, December. Research (ICCIC)

THANK YOU