Cheat Sheet Numerik

Anwendungen

- Nullstellen von Polynomen n-ten Grades bestimmen (Newton-Verfahren) (Dabei wird von einem beliebigen Punkt einen Tangente an das Polynom gelegt. Die Nullstelle der Tangente ist Ausgangspunkt für die nächste Tangente. Diese Folge konvergiert gegen eine Nullstellen).
- Lineare Gleichungssysteme mit *n*-Unbekannten (Gauss-Algorithmus)
- Interpolation (Funktion durch diskrete Punkte; es gibt keine eindeutige Lösungen)
- Numerische Differentiation von Funktionen (Differenten-Quotient)
- Numerische Integration (Unter-/Obersummen) für Funktionen ohne Stammfunktion
- Lösungen von nicht-linearen Gleichungssystemen
- Regression (Optimierungsproblem; Gerade durch Punkt-Wolke legen)
- Differentialgleichungen lösen
- Fouriertransformation (Bsp. mp3-Codierung, Dedektieren von Regelmässigkeiten in Beobachtungen)

Rechnerarithmetik

Maschinenzahlen

Eine gegebene Zahl $x \in \mathbb{R}$ lässt sich darstellen als: $x = m \cdot B^e$.

Basis B ist eine Zahl aus \mathbb{N}

Mantisse m ist eine Zahl in \mathbb{R} . m_1 ist die erste Ziffer von m.

Exponent e ist eine Zahl in \mathbb{Z} . e_1 ist die erste Ziffer von e.

Maschinendarstellbare Zahlen Es gilt:

$$M := \{ x \in \mathbb{R} | x = \pm 0.m_1 m_2 m_... m_n \cdot B^{e_1 e_2 e_... e_j} \}$$

Zahlen werden normiert, so dass die Ziffer vom dem Komma immer eine 0 ist. (spart ein Bit) Wert im Dezimal Die Basis ist somit 10.

Wert =
$$\sum_{i=1}^{n} m_i \cdot B^{e-i}$$

Bsp:

$$x = 0.101 \cdot 2^{3}$$

$$= 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = 0 + 4 + 0 + 1 = 5$$

Musteraufgaben

Wie viele Stellen benötigt folgende Zahl als n-stellige Gleitpunktzahl (q)?

$$x = 1230001$$

$$g(x) = 0.1230001 \cdot 10^7 \Rightarrow n = 7$$

Bestimmen Sie alle dualen positiven 3-stelligen Gleitpunktzahlen mit einstelligem binären Exponenten, sowie deren Dezimalwert

$$0.100 \cdot 2^0 = 0.5$$

$$0.100 \cdot 2^1 = 1$$

$$0.101 \cdot 2^0 = 0.625$$

$$0.101 \cdot 2^1 = 1.25$$

$$0.110 \cdot 2^0 = 0.75$$

$$0.110 \cdot 2^1 = 1.5$$

$$0.111 \cdot 2^0 = 0.875$$

$$0.111 \cdot 2^1 = 1.75$$

Hinzu kommt noch die immer vorhandene 0 $(0.000 \cdot 2^x)$

Wie viele verschiedene Maschinenzahlen gibt es auf einem Rechner, der 20-stellige Gleitpunktzahlen mit 4-stelligem binären Exponenten sowie zugehörige Vorzeichen im Dualsystem verwendet? Was ist die kleinste und die grösste Maschinenzahl?

- 1. Die erste Stelle ist per Definition eine $1\to 19$ freie Stellen, die die Werte 0 oder 1 annehmen können. $\to 2^{19}$ Möglichkeiten.
- 2. 4 Stellen für den Exponenten, die jeweils die Werte 0 und 1 annehmen können $\rightarrow 2^4$ Möglichkeiten.
- 3. 1 Vorzeichen für das Vorzeichen der Mantisse $\rightarrow 2$ Möglichkeiten.

4. 1 Vorzeichen für den Exponent \rightarrow 2 Möglichkeiten.

Verschiedene Zahlen: $2^{19} \cdot 2^4 \cdot 2 \cdot 2 = 2^{25}$ Möglichkeiten. Hinzu kommt noch die 0. Also $2^{25} + 1$ Möglichkeiten. Minimum $= -0.1000_2 \cdot \cdot \cdot \cdot 2^{1111_2}$, Maximum $= 0.111_2 \cdot \cdot \cdot \cdot 2^{1111_2}$

Umrechnung von Basen

Umgerechnete Zahlen werden normiert. Durch die Normierung gehen Stellen verloren.

Vorkommaanteil

- 1. Durch neue Basis dividieren und den Rest notieren
- 2. Mit dem Divisionsergebnis wiederholen, bis das Divisionsergebnis 0 ist.

Die Reste vom letzten zum ersten ergeben die Zahl im neuen System.

Nachkommaanteil

- Mit der neuen Basis multiplizieren und den Ganzzahlanteil notieren.
- Mit dem Nachkommaanteil des Multiplikationsergebnisses wiederholen, bis
 - a) das Ergebnis 0 ist
 - b) sich der Nachkommaanteil periodisch wiederholt
 - c) die gewünschte Genauigkeit erreicht ist

Die Ganzzahlanteile von ersten zum letzten ergeben den Nachkommaanteil.

Approximations- und Rundungsfehler Maschinengenauigkeit

 \tilde{x} sei die Näherung zum exakten Wert x.

absoluter Fehler $|\tilde{x} - x|$

relativer Fehler $\frac{|\tilde{x}-x|}{|x|}$

Allgemein: $|\operatorname{rd}(x) - x| \leq 0.5 \cdot 10^{E-n}$ für die Basis 10. E ist ein Exponent, n sind die Anzahl Stellen.

Definition: eps = $5 \cdot 10^{-n}$ heisst Maschinengenauigkeit. Für eine beliebige Basis B: eps = $\frac{B}{2} \cdot B^n$

Copyright © 2013 Constantin Lazari Revision: 1.0, Datum: 4. November 2013