Theorems: Let A be a stochastic matrix.
1. 1 is an eigenvalue of A, and so A has at least one steady-state probability vector, \checkmark , which is fixed
2. All eigenvalues of A are less than or equal to 1 in magnitude.
3. If A is regular (some power of A has all positive entries), then:
A. V is unique There is only 1 steady state vector. B. No AN = [Y V V] Scalar mythp
B. non An = [y y y] Scalar mythp
C. For any probability vector, $\underline{\times}$, $\overset{\text{lim}}{\sim} A^{n} \underline{\times} = \underline{\vee}$
D. 1 is the dominant eigenvalue.
Better At There is only one probability steady state vector.
Proof: We only prove Theorem 1.
First note that any square matrix has the
Same eigenvalues as its transpose.
V(A) = AI-A = (AI-A)
First note that any square matrix has the Same eigenvalues as its transpose. XA(A)=12I-A = (2I-A) = 2I-AT
<i>c</i>
$=$ $\times_{AT}(\lambda)$.
1 1 1 - Carl la contra ctarlouche marti
Let A= [aig] be a nxn statestic matrix, in
Then [1] A = [2 air 2 ai
Let $A = [aij]$ be a nxn stochastic mortrix. In Then $[111]A = [aix]aix = aix = $
$\int 1 \qquad \int \Lambda = \int 1 \qquad \int 1$

It turns out that the stochastic matrices are closed under matrix multiplication. To prove this, we first
need the following Lemma.
Lemma: Let A be a stochastic matrix. If Y is a probability vector then so is AY . Proof: Let $A = QY$ $i = 1, n$ be a stochastic matrix. If Y is a probability vector then so is AY .
Matrix and let $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ be a
probability vector.
Then, for each 15j5n,
Then for each $1 \le j \le N$, $\sum_{i=1}^{n} a_{ij} = \sum_{i=1}^{n} v_i = 1$.
Let wi be the i-th entry of AV.
We will show that each wi is non-negative. Wi = [9i, 9i2 "
Each aij and Vi is non-negative by definition: Hence, so is Wi.

Section 8 Intro to Vector Spaces and Linear Transformations

Section 8.1 Cartesian Products

Vector spaces are ubiquitous in mathematics. They generalise and abstract properties of the Cartesian

xy-plane. Linear transformations are functions which "preserve" the vector space structure.

Firstly, we need to define some terminology and notation.

Definition: The Cartesian product of sets A_1, A_2, \ldots, A_n

is the set

$$A_1 \times A_2 \times \ldots \times A_n =$$

$$\{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}$$

If A_1 , A_2 , A_3 have binary operations then the Cartesian product inherits these operation

coordinate-wise.

operation in operation

Example: The usual Cartesian plane, or xy-plane

$$\mathbb{R} \times \mathbb{R} = \{(x, y) | x, y \in \mathbb{R}\}$$

(devised by Descartes in the 17th contury

Also denoted $\mathbb{R}^2 ext{ or } \mathbb{R} \oplus \mathbb{R}.$

$$\mathbb{R}^2 \text{ or } \mathbb{R} \oplus \mathbb{R}.$$

$$(a,b) + (c,d)$$

$$= (a+c,b+d)$$

Example:
$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(a,b) | a,b \in \mathbb{Z}_2\}$$

$$= \underbrace{\{(o,o),(o,o),(o,o),(o,o),(o,o)\}}_{\{o,o,o\},\{o,o\},\{o,o\},\{o,o\}\}}$$

and, for example
$$(1,1)+(1,1)=(1+1,1+1)=(0,0)$$

$$(0,1)+(1,0)=(0+1,10)=(1,1)$$

Example:
$$\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(a,b) \mid a \in \mathbb{Z}_2, b \in \mathbb{Z}_3\}$$

$$= \underbrace{\{(o,0),(o,1),(o,2),(1,0),(1,1),(1,2)\}}_{\text{and, for example}}$$

$$\frac{(1,1)+(1,1)=(+++,1++)=(0,2)}{(1,1)+(0,2)=(1+0,1+1)=(1,0)}$$
$$\frac{(1,1)+(1,0)=(1+0,1+1)=(0,2)}{(1,1)+(1,0)=(1+1,1+0)=(0,1)}$$

If
$$A_1=A_2=\cdots=A_N$$
 then we call $A_1\times A_2\times\cdots\times A_n$ a Cartesian power. Most commonly,
$$A=A_2=\ldots=A_n=F$$

where F is a field, and we write
$$F^n = F \times \ldots \times F$$
 $= \{(a_1, a_2, ..., a_n) | a_1, a_2, \ldots, a_n \in F\}$,

which has coordinate-wise addition and multiplication inherited from F:

$$\frac{(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)}{(a_1, \dots, a_n) (b_1, \dots, b_n) = (a_1b_1, \dots, a_nb_n)}$$

It also has scalar multiplication (for
$$\lambda \in \mathcal{F}$$
): $\lambda(a_1,\ldots,a_n)=(\lambda a_1,\ldots,\lambda a_n)$