Module 4: Ensuring Package Reliability: Testing & Performance Evaluation

01 May 2025 06:45 PM

L1: Introduction to Package Testing & Electrical Functionality Checks

This is done after the package has been manufactured.

Must test package electrically after optical tests have been carried out.

Wafer Mapping: Must map out all the good dies from the wafer in order to avoid spending resources to packages faulty dies. Done by wafer probing & at foundry or at OSAT

Post package manufacturing, we move to package testing & board level testing after product assembly.

Diagnosis & failure analysis helps us understand why failure occurs & how can it be improved.

Package Testing:

Now IC has been packages in the clean rooms & inspection has been carried out. The ICs are then moved to the testing floor, which may not have as stringent cleanliness standards like a

Testing for the packaged systems is done on a package socket on package boards

After singulation , we carry out a variety tests:

- AOST: Assembly Open & Short test (Detects opens & shorts)
 Burn-In: Apply thermal & voltage stress to ensure early-life reliability (Testing on stress)
- application)
 3. Final Test: Cold & Hot test for functionality, parametric tests, reliability across temp ranges etc.

Assembly Open & Short Test (AOST):

Objective: Test for shorts or opens on package solder balls or leads. Done after singulation or lead trim or form.

ICs are check for open/short testing.

- Can have issues like:
- Head on Pillow Open (HoP Open)
 Head On Pillow (HoP)
- 3. Bridging
- Non Wet Open Die Cracks
- 6. Package warping

Product grouped into:

- 1. Best
- 2. Better 3. Scrap

Assembly Open and Short Test (AOST) - Functionality

Objective: Quick test for shorts or opens on package leads or balls.

- Testing immediately follows Trim and Form (lead frame packages) or Singulation (BGA packages).
- The packages are put through an open/short test to screen for massive electrical fails before leaving assembly.
- There is also a vision inspection to check for damaged or missing balls/leads and other
- Product Grade Sort (PGSRT) catches Assembly related fails, and sorts into Product Grades: Best (1), Better (2), Better (3), Scrap (4).

L2: Reliability & Performance Testing of Semiconductor Packages

Burn - In Test: Tests packages under elevated conditions in terms of voltage, temperature, power &

Helps identify chips that may fail prematurely

Parts are loaded into burn-in trays & tested under elevated temps, voltage which helps catch initial

Prominent defects caught in this stage: Metallization Failure, Electromigration. But shortens overall lifespan.

We have some finite failure rate even if a chip survives the burn-in.

Final Test:

Corner tests to verify that packaged die meets specs.

Use a temp controlled environment:

- 1. Hot Test: Elevated temps
- 2. Cold Test: Parts are subjected to low temps.

ATE: Automatic Test Equipment. Electrical Test Units & Handler (Placing DUT).

These test equipment send out automatic test patterns generation (ATPG) to a device under test (DUT).

- Check for:

 1. Parametric Tests: Measure current or voltage from units to ensure function within specified range
- Functional Test: Test functioning under expected test conditions.
 Speed Test: If device performs at desired speed.

KPIs: Yield. Test time & Coverage

They Have 2 distinct units:

- Handler
- In-Circuit Tester

Burn-in Test

Objective: Testing of package components under elevated (stressful) conditions. temperature, voltage, and power

- The goal of Burn-in is to identify "Infant Mortality" failures before it reaches the customer.
- ➤ Parts are loaded from trays onto Burn-in boards and then, into ovens (Burn-in system) during testing.
- > Burn-in accelerates the failures by applying high voltage and high
- > The test is carried out long enough to catch the initial rate of failures and then to test slightly over the point where the curve flattens out.
- > Defects like dielectric & metallization failures, electromigration can be detected during burn-in.
- Although it removes the unreliable components with a high probability of early failure, the total life span of components is shortened with a hum-in test.

ATE (Electrical Testing Unit) with Handler (Placing DUT)

Final Test

Objective: A temperature corner test to verify that the packaged product meets the specifications

- > Parts are loaded into handler with temperature controlled test fixtures (not ovens) during testing.
- Hot Test: Elevated temperatures according to product specifications. Parts are electrically tested at high temperatures to verify if the specifications are met.
- Cold Test: Parts are subjected to low temperatures according to product specifications and electrically tested.
- 6 Specifications

LM741 OPAmp (TI) Datasheet

Accounte Maximum Matings pending free-air tempendure range (unless otherwise noted) ^(1,62,08)				6.5 Electrical Characteristics, LM741(1)			
		MIN	MIN MAX		PARAMETER	TEST CONDITIONS	
voltage	LM741, LM741A		102	٧	input offset voltage	R ₀ ≤ 10 kΩ	TA = 25°C
	LM741C		+18				TARRY STASTANA
dissipation (f)			500	mili	input offset voltage adjustment range	T _A = 25°C, V _B = 420 V	
ritial input voltage			139	Y		T _a = 25°C	
sitage (7)		2000	.115	V	Input offset ounces	Tues 6 Ta 6 Tanas	
shot sireuil duration		Continuous				T ₄ = 20°C	
sing temperature	LM741, LM741A	-50	125	- "0	Input bias current	TAME 5 To 5 TAMES To 25°C, Vo = ±20 V	
	LM749C	- 0	70		Input resistance		
on temperature	LM741, LM741A		150	*	Input voltage sange	Turn 6 To 6 Turns	
	LMTVIC		100		ingra, compa range		T - 0010
ing information	PDIP package (10 seconds)		260	10	Large signal voltage gain	V ₀ = ±16 V, V ₀ = ±10 V, R ₁ ≥ 2 kO	Town 5 To 5 Teasur
	CDIP or TO-96 package (10 seconds)		300	10			R, it 10 kD
e temperature, T _{rig}		-65	168	10	Output voltage swing	V ₃ = ±15 V	R _c ≥ 2 kD

Summary: ATE & Test categories

Automatic Test Equipment (ATE)

- Test equipment's that send automatic test pattern generation (ATPG) to the device under test (DUT).
- > Major test categories:
- ✓ Parametric Tests: measures current (or voltage) from the unit to ensure the circuits are functioning within specified parameters.
- ✓ Functional Tests: evaluate functionality of the unit under operating
- ✓ Speed Tests: assesses speed of units according to data sheet specifications. Sorting is done based on speed.
- Yield, Testing Time and Test coverage are key performance indicator during testing.

In-Circuit Testing (ICT) COBOT

Video: ATE at different stages