পোলারায়ন

कारना वाग्रनिक योशि क्राणियन कर्ज्क व्यानायन विकृতित घटनाक পानातायन वल

ফাজানের নীতি

কোনো আয়নিক যৌগে পোলারায়নের পরিমাণ যে সকল বিষয়ের নির্ভর করে তা যে নীতির সাহায্যে প্রকাশ করা হয় তাকে ফাজানের নীতি বলে।

এই নীতি অনুযায়ী পোলারায়ন বেশি হবে'

- i. ক্যাটায়নের আকার ছোট হলে 。
- ii. অ্যানায়নের আকার বড় হলে
- iii. ক্যাটায়ন ও অ্যানায়ন এর চার্জ বেশি হলে
- iv. d ও f অরবিটালে ইলেকট্রন থাকলে

ফাজানের নীতির ব্যাখ্যা

১) ক্যাটায়নের আকার ছোট হলে

B এর পোলারায়ন A এর চেয়ে বেশি হবে।

$$Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$$
 (আকার)

LiCl > NaCl > KCl > RbCl > CsCl (সমযোজী বৈশিষ্ট্য /পোলারায়ন)

২) অ্যানায়নের আকার বড় হলে

A এর পোলারায়ন B এর চেয়ে বেশি হবে।

$$F^- < Cl^- < Br^- < I^-$$
 (আকার)

 $\bigcirc \bigcirc AgF \leq AgCl < AgBr < AgI$ (সমযোজী বৈশিষ্ট্য /পোলারায়ন)

ফাজানের নীতির ব্যাখ্যা

৩) ক্যাটায়ন ও অ্যানায়ন এর চার্জ বেশি হলে

Na ⁺	A ⁻	
Mg^{++}	A	
Al^{+++}	A	
$Al^{+++} > Mg^{++} > Na^+$	$A^{} > A^{} > A^{-}$	

যত বেশি Negative charge , loose electron তত বেশি

ফাজানের নীতির ব্যাখ্যা

8) d ও f অরবিটালে ইলেকট্রন থাকলে

$$Ca^{2+}$$
 ও $Fe^{2+} \rightarrow$ একই চার্জ

$$Ca^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6$$

$$Fe^{2+} \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$$

$$CaSO_4 < FeSO_4$$
 (সমযোজী বৈশিষ্ট্য)

Problems

** AgF পানিতে দ্রবণীয় কিন্তু AgI অদ্রবণীয় কেন?

 F^- ও I^- এর মধ্যে ightarrow I^- এর আকার বড় পোলারায়ন বেশি সমযোজী বৈশিষ্ট্য বেশি পানিতে দ্রাব্যতা কম

- ** AlF3 পানিতে দ্রবণীয় কিন্তু AlCl3 অদ্রবণীয় কেন?
- ** NaCl, MgCl₂ ও AlCl₃ এর মধ্যে
 - কোনটি অধিক সমযোজী? Ans: AlCl3
 - ii. কোনটির গলনাম্ক সর্বাধিক? Ans: NaCl
 - iii. কোনটি পানিতে অদ্রবণীয়? Ans: AlCl3

$$Al^{3+} > Mg^{2+} > Na^+$$
(পোলারায়ন)

সমযোজী যৌগের আয়নিক বৈশিষ্ট্য

পোলারন

I. 100% সমযোজী

2) তড়িৎ ঋণাত্বকতার পার্থক্য 0.5 এর কম হলে অপোলার সমযোজী হয়

পোলারন

৩) তড়িৎ ঋণাত্বকতার পার্থক্য 0.5 বা এর বেশি হলে পোলার হয় এবং আয়নিক বৈশিষ্ট্য দেখা যায়

$$H^{\delta+}$$
 — $Cl^{\delta-}$ Difference: 0.7

Dipole 2.1 4.0

 $H^{\delta+}$ — $F^{\delta-}$ Difference: 1.9

- ** পোলার যৌগ বা ডাইপোল কী?
- ** HCL একটি পোলার যৌগ ব্যাখ্যা কর
- ** H_2O একটি সমযোজী যৌগ হলেও বিদ্যুৎ পরিবহন করে কেন ব্যাখ্যা কর

Dipole

সংজ্ঞাঃ যে আন্তঃআণবিক আকর্ষণ বলের প্রভাবে বিশুদ্ধ সমযোজী যৌগের অণুসমূহ পরস্পরের সাথে
 আকর্ষণ ধর্ম প্রদর্শন করে তাকে ভ্যান্ডার ওয়ালস আকর্ষণ বলে।

ভ্যান্ডার ওয়ালস বলের বৈশিষ্ট্যঃ

- i. এটি দুর্বলতম আন্তঃআণবিক আকর্ষন বল।
- ii. এর দিক ধর্ম নেই
- iii. এর গড় শক্তি 1 10 kJmol-1
- iv. এটি গ্যাসীয় অণুতে অধিক দৃশ্যমান
- v. সমযোজী বন্ধনের শক্তির তুলনায় ভ্যান্ডার ওয়ালস বলের শক্তি অতি ক্ষুদ্র

সরল পরমাণু সরল পরমাণু

ভ্যান্ডার ওয়ালস বল এর উৎসঃ

ক) স্থায়ী ডাইপোল ও আবিষ্ট ডাইপোল প্রভাবঃ

দ্বিতীয় ধাপ

🔲 ভ্যান্ডার ওয়ালস বল এর উৎসঃ

খ) বিস্তরণ বা লন্ডন বলঃ 1930 সালে বিজ্ঞানী F.M.London মৌলের বিক্ষেপ ক্রিয়ার ফলে সৃষ্ট এ বলের ধারণা ব্যাখ্যা করেন। এ কারণে এটি লন্ডন বল নামেও পরিচিত।

বিস্তরণ বল দুটি বিষয়ের উপর নির্ভর করে এবং তা হলো –

- i. পারমাণবিক ব্যাসার্ধঃ মৌলের পারমাণবিক ব্যাসার্ধ বৃদ্ধি পেলে বিস্তরণ বলের তীব্রতা বৃদ্ধি পায়
- ii. ইলেকট্রন সংখ্যাঃ মৌলের ইলেকট্রন সংখ্যা বৃদ্ধি পেলে বিস্তরণ বল বৃদ্ধি পায়।

প্রশ্নঃ একই গ্রুপের মৌল হওয়া সত্ত্বেও ফ্লোরিন, ক্লোরিন গ্যাস, ব্রোমিন তরল ও আয়োডিন কঠিন কেন?

আয়োডিন অণুর আকার ও ইলেকট্রন সংখ্যা বেশি হওয়ায় ব্রোমিনের তুলনায় এর বিস্তরণ বলের মান বেশি। ফলে ব্রোমিন তরল কিন্তু আয়োডিন কঠিন। অপরদিকে ফ্লোরিন ও ক্লোরিনের আকার ও ইলেকট্রন সংখ্যা ব্রোমিনের তুলনায় কম হওয়ায় বিস্তরণ বল কম তীব্র হয়। যার ফলে ব্রোমিন তরল হলেও ফ্লোরিন ও ক্লোরিন গ্যাস।

হাইড্রোজেন বন্ধন (Hydrogen Bond)

1920 সালে লাটিমার এবং রডিবুশ(Latimer and Rodebush) সর্বপ্রথম H-বন্ধনের ধারণা উপস্থাপন করেন।

সংজ্ঞাঃ একটি তীব্র তড়িৎ-ঋণাত্মক মৌলের পরমাণুর সঙ্গে সমযোজী বন্ধনে আবদ্ধ হাইড্রোজেন পরমাণু অপর একটি একই বা ভিন্ন অণুর তীব্র তড়িৎ-ঋণাত্মক মৌলের পরমাণুর সঙ্গে তড়িৎ আকর্ষণে আবদ্ধ হয়ে আয়নীয় প্রকৃতির যে দুর্বলতর আন্তঃআণবিক আকর্ষন বলের সৃষ্টি করে, তাকে হাইড্রোজেন বন্ধন বলে। হাইড্রোজেন বন্ধন অপেক্ষা দুর্বল হওয়ায় একে ডট ডট (......) রেখা দ্বারা প্রকাশ করা হয়।

হাইড্রোজেন বন্ধন গঠনের শর্তঃ

- i. হাইড্রোজেন বন্ধন গঠনকারী অণুর মধ্যে অন্তত ১টি বন্ধন থাকা দরকার, যেখানে উচ্চ তড়িৎ ঋণাত্মক মৌলের পরমাণুর সাথে H সরাসরি সমযোজী বন্ধনে আবদ্ধ (যেমনঃ O-H, N-H, H-F ইত্যাদি)
- ii. তড়িৎ-ঋণাত্মক মৌলের পরমাণুটিকে আকারে ছোট হতে হবে।
- iii. যে পরমাণুর সঙ্গে H-বন্ধন গঠিত হবে সেই পরমাণুটির উপর অন্তত একটি নিঃসঙ্গ ইলেকট্রন জোড় থাকবে।

হাইড্ৰোজেন বন্ধন (Hydrogen Bond)

হাইড্রোজেন বন্ধনের বৈশিষ্ট্যঃ

- i. সমযোজী বন্ধনের চেয়ে হাইড্রোজেন বন্ধন(যা এক প্রকার স্থিরতড়িৎ আকর্ষণ বল) অনেক বেশি দুর্বল। হাইড্রোজেন বন্ধনের গড় শক্তি 8-42 kJmol⁻¹ যেখানে সমযোজী বন্ধনের শক্তি 250-400 kJmol⁻¹⁺।
- ii. H পরমাণুটির সঙ্গে যুক্ত পরমাণুটির তড়িৎ-ঋণাত্মকতার মান যত বেশি হয়, হাইড্রোজেন বন্ধনের শক্তিও তত বেশি হয়।
- iii. হাইড্রোজেন বন্ধন বিশিষ্ট যৌগসমূহ পানিতে দ্রবণীয়।
- iv. হাইড্রোজেন বন্ধনের কারণেই পানির পৃষ্ঠটান এবং সান্দ্রতা বৃদ্ধি পায়।
- v. হাইড্রোজেন বন্ধন দ্বারা পদার্থের অণুগুলোর পরস্পর সংযোজন ঘটে। এতে ডাইমার, ট্রাইমার ও পলিমার গঠিত হয়ে পদার্থের আণবিক ভর দ্বিগুণ, তিনগুনও হয়।
- vi. হাইড্রোজেন যখন নাইট্রোজেন, ফ্লোরিন ও অক্সিজেনের সাথে সমযোজী বন্ধন করে যৌগ গঠন করে তখন সেই সকল যৌগ হাইড্রোজেন বন্ধন প্রদর্শন করে।

হাইড্রোজেন বন্ধন (Hydrogen Bond)

হাইড্রোজেন বন্ধনের প্রকারভেদঃ

হাইড্রোজেন বন্ধন দু-প্রকার। যথাঃ <mark>আন্তঃআণ</mark>বিক হাইড্রোজেন বন্ধন ও অন্তঃআণবিক হাইড্রোজেন বন্ধন

১| আন্তঃআণবিক হাইড্রোজেন বন্ধন(Inter Molecular H-Bond):

একই বা ভিন্ন যৌগের একাধিক অণুর পরস্পরের মধ্যে যে হাইড্রোজেন বন্ধন গঠিত হয় তাকে আন্তঃআণবিক হাইড্রোজেন বন্ধন বলে।

উদাহারণঃ (i) হাইড্রোজেন ফ্লোরাইড অণুসমূহের মধ্যে হাইড্রোজেন বন্ধনঃ

হাইড্রোজেন বন্ধন (Hydrogen Bond)

10 MINUTE SCHOOL

হাইড্রোজেন বন্ধনের প্রকারভেদঃ

হাইড্রোজেন বন্ধন দু-প্রকার। যথাঃ আন্তঃআণবিক হাইড্রোজেন বন্ধন ও অন্তঃআণবিক হাইড্রোজেন বন্ধন

১| আন্তঃআণবিক হাইড্রোজেন বন্ধন(Inter Molecular H-Bond):

একই বা ভিন্ন যৌগের একাধিক অণুর পরস্পরের মধ্যে যে হাইড্রোজেন বন্ধন গঠিত হয় তাল আন্তঃআণবিক হাইড্রোজেন বন্ধন বলে।

উদাহারণঃ (ii) পানির অণুসমূহের মধ্যে হাইড্রোজেন বন্ধনঃ

২ অন্তঃআণবিক হাইড্রোজেন বন্ধন(Intra Molecular H-Bond):

একই অণুর বিভিন্ন অংশের মধ্যে গঠিত হাইড্রোজেন বন্ধনকে অন্তঃআণবিক হাইড্রোজেন বন্ধন বলে। এইরূপ হাইড্রোজেন বন্ধন হওয়াকে "চিলেশন"(Chelation) বলা হয়। কারন হাইড্রোজেন বন্ধনের ফলে বলয় গঠিত হয়। বলয়টি ৬ সদস্য বিশিষ্ট হলে এইরূপ হাইড্রোজেন বন্ধন অধিক স্থিতিশীল হয়।

উদাহারণঃ (i) অর্থো-নাইট্রো ফেনল অণুতে হাইড্রোজেন বন্ধনঃ

O-Nitrophenol

হাইড্রোজেন বন্ধন (Hydrogen Bond)

প্রশ্নঃ অক্সিজেন ও সালফার পর্যায় সারণিতে একই শ্রেণিভুক্ত মৌল হওয়া সত্ত্বেও **অক্সিজেনের হাইড্রাইড** (H₂O) সাধারণ তাপমাত্রায় তরল কিন্তু সালফারের হাইড্রাইড (H₂S) সাধারণ তাপমাত্রায় গ্যাসীয় কেন?

অক্সিজেনের তড়িৎ ঋণাত্মকতা সালফার অপেক্ষা বেশি (O = 3.5, S= 2.5), তাই H_2O তে O-H বন্ধনের তড়িৎ ঋণাত্মকতার পার্থক্য H_2S এ S-H বন্ধনের তড়িৎ ঋণাত্মকতার পার্থক্য অপেক্ষা বেশি।

বিভিন্ন পদার্থের ভৌত ধর্মের উপর H-বন্ধনের প্রভাবঃ

ক) বরফ পানি অপেক্ষা হালকাঃ বরফ ক্ষটিকে পানির অণুগুলো H-বন্ধনের মাধ্যমে পরস্পরের সাথে যুক্ত হয়ে ষড়ভূজাকার কাঠামো তৈরি করে যার অভ্যন্তরীন কাঠামো ফাঁকা। এতে আয়তন বেড়ে যায় এবং ঘনত্ব কমে যায়। এ কারণে বরফ পানিতে ভাসে।

হাইড্রোজেন বন্ধন (Hydrogen Bond)

বিভিন্ন পদার্থের ভৌত ধর্মের উপর H-বন্ধনের প্রভাবঃ

খ) পানি, অ্যামোনিয়া এবং হাইড্রোজেন ফ্রোরাইডের আস্বাভাবিক গলনাঙ্ক-স্কুটনাঙ্কঃ Gr. 15,16 ও 17 এর হাইড্রাইড গুলোর মধ্যে NH3, H2O ও HF হাইড্রোজেন বন্ধন গঠনে সক্ষম হওয়ায় এদের গলনাংক স্কুটনাঙ্ক একই গ্রুপের অনুরূপ যৌগ অপেক্ষা বেশি।

এসিডের নামকরণঃ

অক্সি এসিডের নামকরণঃ

যে সকল অজৈব এসিডের গঠনে অক্সিজেন বিদ্যমান, সেসকল এসিডকে অক্সি এসিড বলে। এদের সাধারণ সংকেত H_xO_yA অর্থাৎ Hydrogen, Oxygen এবং অন্য একটি অধাতু বা অপধাতু নিয়ে এ এসিডগুলো গঠিত।

i. "আস"(ous) এসিডঃ কোন মৌলের দ্বারা যদি দুটি অক্সি এসিড গঠিত হয়, তবে যেটিতে অক্সিজেনের অনুপাত কম থাকে, তাকে "আস" এসিড় বলে। যেমন-HNO₂ (নাইট্রাস এসিড)

H₂SO₃ (সালফিউরাস এসিড)

দি<mark>NO₂ (নাইট্রাস এসিড)

H₂SO₃ (সালফিউরাস এসিড)

HClO₂ (ক্লোরাস এসিড)

H₃PO₃ (ফসফরাস এসিড)

H₃AsO₃ (আর্সেনাস এসিড)</mark>

অজৈব যৌগের নামকরণ

(Nomenclature of Inorganic Compounds)

অক্সি এসিডের নামকরণঃ

ii. "ইক"(ic) এসিডঃ কোন মৌলের দ্বারা যদি দুটি অক্সি এসিড গঠিত হয়, তবে যেটিতে অক্সিজেনের অনুপাত সর্বোচ্চ থাকে, তাকে "ইক" এসিড বলে। যেমন-

HNO₃ (নাইট্রক এসিড)

H₂SO₄ (সালফিউরিক এসিড)

HClO₄ (পার ক্লোরিক এসিড)

H₃PO₄ (ফসফরিক এসিড)

H₃AsO₄ (আর্সেনিক এসিড)

iii. "হাইপো"(hypo) এসিডঃ কোন মৌলের অক্সি এসিডে অক্সিজেন সংখ্যার অনুপাত "আস" অপেক্ষা কম হলে অর্থাৎ কোন মৌল ২ এর অধিক অক্সি এসিড তৈরি করলে সর্বনিম্ন অনুপাত বিশিষ্ট এসিডকে হাইপো এসিড বলে । যেমন-

> $H_2N_2O_2$ (হাইপো নাইট্রাস এসিড) 1:1:1 HOCF (হাইপো ক্লোরাস এসিড)

অক্সি এসিডের নামকরণঃ

iv. "পার"(per) এসিডঃ কোন মৌলের অক্সি এসিডে স্বাভাবিক অনুপাতের চেয়ে আরো বেশি পরিমাণ অক্সিজেনযুক্ত হলে সৃষ্ট এসিডকে পার এসিড বলে। যেমন-

HClO₄ (পারক্লোরিক এসিড)
H₂S₂O₈ (পারসালফিউরিক এসিড)

v. "হাইপো ($\frac{1}{1}$ $\frac{1}{2}$ \frac

vi. "পাইরো"(pyro) এসিডঃ কোন ইক এসিডের 2 অণু থেকে 1টি পানি অপসারণ করলে প্রাপ্ত এসিড কাঠামোকে পাইরো এসিড বলে । যেমন-

$$2 \times H_2SO_4 = H_4S_2O_8 \xrightarrow{-H_2O} H_2S_2O_7$$
 (পাইরো সালফিউরিক এসিড) $2 \times H_3PO_4 = H_6P_2O_8 \xrightarrow{-H_2O} H_4P_2O_7$ (পাইরো ফসফরিক এসিড)

এসিডের নামকরণঃ

হাইড্রাসিড এর নামকরণঃ

যে সকল অজৈব এসিডের গঠনে অক্সিজেন বিহীন অন্য মৌল বা মূলক থাকে, সেসকল এসিডকে হাইড্রাসিড বলে। যেমনঃ HCl, HCN, HI, HBr, HF ইত্যাদি। হাইড্রাসিডের নামকরণে নামের শুরুতে "হাইড্রো"(Hydro) এবং শেষে "ইক" যোগ করা হয়।

অর্থাৎ এক্ষেত্রে নামটি হবেঃ হাইড্রো + মৌল/মূলকের নাম + ইক + এসিড উদাহারণঃ

HF (হাইড্রোফ্লোরিক এসিড)

HCl (হাইড্রোক্লোরিক এসিড)

HBr (হাইড্রোব্রোমিক এসিড)

HI (হাইড্রোআয়োডিক এসিড)

HCN (হাইড্রোসায়ানিক এসিড)

পরিবর্তনশীল জারণমান প্রদর্শনকারী ধাতব মৌলের যৌগের নামকরণঃ

ধাতব মৌলের ল্যাটিন নামের "M" এর পরিবর্তে নিম্ন জারণ অবস্থায় "আস", উচ্চ জারণ অবস্থায় "ইক" যুক্ত নাম এবং শেষাংশে অ্যানায়নের নাম থাকবে। উদাহারণঃ

SnCl₂ (স্ট্যানাস ক্লোরাইড)

SnCl₄ (স্ট্যানিক ক্লোরাইড)

FeCl, (ফেরাস ক্লোরাইড)

FeCl₃ (ফেরিক ক্লোরাইড)

As₂O₃ (আর্সেনাস অক্সাইড)

As₂O₃ (আর্সেনিক অক্সাইড)

10 MINUTE SCHOOL

নিরপেক্ষ লিগ্যান্ড

		চার্জ
H_2O	অ্যাকুয়া	0
NH_3	অ্যামিন	0
СО	কার্বনিল	0
NO	নাইট্রোসো	0

ঋণাত্বক লিগ্যান্ড

		চার্জ
CN -	সায়ানো	-1
OH -	হাইড্রোক্সো	-1
Cl -	ক্লোরো	-1
SO ₄ ²	সালফেটো	-2

জটিল যৌগের নামকরণ

ধনাত্বক জটিল যৌগঃ

লিগ্যান্ডের সংখ্যা+ লিগ্যান্ডের নাম+অবস্থান্তর মৌলের নাম+ অবস্থান্তর মৌলের চার্জ+ অ্যানায়ন

$$+2 0 -2$$
 $[Cu(NH_3)_4]SO_4$

টেট্রাঅ্যামিনকপার(২) সালফেট

ঋণাত্বক জটিল যৌগঃ

ক্যাটায়ন + লিগ্যান্ডের সংখ্যা+লিগ্যান্ডের নাম+অবস্থান্তর মৌলের ল্যাটিন নামের –um এর পরিবর্তে +ate + অবস্থান্তর মৌলের চার্জ

$$K_4[Fe(CN)_6]$$

পটাশিয়াম হেক্সাসায়ানোফেরেট(২)

জটিল যৌগের নামকরণ

ঋণাত্বক জটিল যৌগঃ

ক্যাটায়ন + লিগ্যান্ডের সংখ্যা+লিগ্যান্ডের নাম+অবস্থান্তর মৌলের ল্যাটিন নামের –um এর পরিবর্তে +ate + অবস্থান্তর মৌলের চার্জ

+4 +2 -6 $K_4[Fe(CN)_6]$

পটাশিয়াম হেক্সাসায়ানোফেরেট(২)

নিরপেক্ষ জটিল যৌগঃ

লিগ্যান্ডের সংখ্যা+ লিগ্যান্ডের নাম+অবস্থান্তর মৌলের নাম+ অবস্থান্তর মৌলের চার্জ

 $[Ni(CO)_4]$

টেট্রাকার্বনিলনিকেল(o)

