Análisis Funcional - Teóricos 1 y 2

1. Teórico 1: Espacios Normados y Espacios de Banach

Lema 1.1 (Todo normado es métrico). Sea X espacio vectorial con norma $\|\cdot\|$. Sea $d: X \times X \to \mathbb{R}$ por $d(x,y) = \|x-y\|$ entonces

$$(X,d)$$
 es métrico

Equivalentemente todo X espacio vectorial normado es métrico con la métrica estándar.

Teorema 1.2. Sea X espacio vectorial con norma $\|\cdot\|$. Sea $x_n \to x$, $y_n \to y$ con $\{\alpha_n\} \subseteq \mathbb{F}$ $y \alpha_n \to \alpha$ entonces:

- 1. $|||x|| ||y||| \le ||x y||$
- 2. $\lim_{n\to\infty} ||x_n|| = ||x||$
- $3. \lim_{n \to \infty} x_n + y_n = x + y$
- 4. $\lim_{n\to\infty} \alpha_n x_n = \alpha x$

Demostración. Sale todo usando 1. y 1. sale usando $||x|| \le ||x - y|| + ||y||$.

Observación 1.3. Esto nos dice que en un espacio vectorial normado, la norma, la suma y producto por escalar son continuas.

Definición 1.4 (Equivalencia de normas). Sea X espacio vectorial y $\|\cdot\|_1$, $\|\cdot\|_2$ normas en X decimos que son equivalentes si

$$\exists m, M > 0 \ / \ m\|x\|_1 \le \|x\|_2 \le M\|x\|_1$$

Observación 1.5. La equivalencia de normas es una relación de equivalencia.

Lema 1.6. Let X be a vector space with $\|\cdot\|$, $\|\cdot\|_1$ and d, d₁ associated metrics. Suppose $\exists k > 0$ such that $\|x\| \le k\|x\|_1$ $\forall x \in X$. Let $\{x_n\} \subseteq X$, then:

- 1. $x_n \to x$ in $(X, d_1) \Longrightarrow x_n \to x$ in (X, d)
- 2. $\{x_n\}$ is Cauchy in $(X, d_1) \Longrightarrow \{x_n\}$ is Cauchy in (X, d)

Demostración. Trivial using the inequality.

Corolario 1.7. Sea X espacio vectorial $\|\cdot\|$ y $\|\cdot\|_1$ normas equivalentes en X con d, d_1 métricas asociadas. Sea $\{x_n\} \subseteq X$ entonces:

1.
$$x_n \to x$$
 en $(X, d) \iff x_n \to x$ en (X, d_1)

- 2. $\{x_n\}$ es de Cauchy en $(X,d) \iff \{x_n\}$ es de Cauchy en (X,d_1)
- 3. (X,d) es completo \iff (X,d_1) es completo

Demostración. Usando el lema anterior y que equivalencia de normas.

Teorema 1.8 (Continua en compacto tiene máximo y mínimo). Sea (X,d) métrico compacto y $f: M \to \mathbb{F}$ continua entonces $\exists c > 0 / |f(x)| \quad \forall x \in M$ (f acotada). En particular si $\mathbb{F} = \mathbb{R}$ los números

$$a = \sup\{|f(x)| : x \in M\}$$

 $b = \inf\{|f(x)| : x \in M\}$

Existen y son finitos. Más aun

$$\exists x, y \in M \quad f(x) = a \quad \land \quad f(y) = b$$

Teorema 1.9. Sea X espacio vectorial normado de dim finita con norma $\|\cdot\|$. Sea $\{e_1,\ldots,e_n\}$ base para $x=\sum \alpha_j e_j$ y sea $\|x\|_1=(\sum |\alpha_j|^2)^{\frac{1}{2}}$ entonces $\|\cdot\|_1$ y $\|\cdot\|$ son equivalentes.

Demostración. 1. $M = (\sum ||e_i||^2)^{\frac{1}{2}} > 0$

2.
$$||x|| = ||\sum \alpha_j e_j|| \le \sum ||\alpha_j e_j|| = \sum ||\alpha_j|| ||e_j|| \le (\sum ||\alpha_j||^2)^{\frac{1}{2}} (\sum ||e_j||^2)^{\frac{1}{2}} = ||x||_1 M$$

3.
$$f: \mathbb{F}^n \to \mathbb{R}$$
 $f(\alpha_1, \dots, \alpha_n) = \|\sum \alpha_i e_i\| = \|x\|$

4. Ver que es continua

5.
$$S = \{(\alpha_1, ..., \alpha_n) : \sum |\alpha_i|^2 = 1\}$$
 es compacto

- 6. Existe $m = f(u_1, \dots, u_n)$ mínimo
- 7. m > 0 porque $\{e_j\}$ es base

8. Si
$$||x||_1 = 1 \iff \sum |\alpha_j|^2 = 1 \Rightarrow (\alpha_1, \dots, \alpha_n) \in S$$

9.
$$m||x||_1 = m \le f(\alpha_1, \dots, \alpha_n) = ||x||$$
 por ser m mínimo

10. Si no
$$\left\|\frac{x}{\|x\|_1}\right\|=1$$
 luego $m\leq \left\|\frac{x}{\|x\|_1}\right\|$ por el caso de arriba

Corolario 1.10. En dimensión finita todas las normas son equivalentes.

Demostración. Equivalencia de normas es relación de equivalencia entonces es transitiva. \Box

Observación1.11 (Contraejemplo II). Esto no vale en dimensión infinita $X=C^1[0,\pi]$ tenemos dos normas no equivalentes

$$\|\cdot\|_{\infty}$$
 y $\|u\| = \|u\|_{\infty} + \|u'\|_{\infty}$

Considerando la función $u_n(x) = \sin(nx)$ se puede ver fácilmente.

Lema 1.12. X espacio vectorial de dim finita $y \parallel \cdot \parallel_1 = (\sum |\alpha_j|^2)^{\frac{1}{2}}$ y d_1 la métrica asociada, entonces (X, d_1) es completo (Banach).

Demostración. 1. Ya sabemos que es métrico (dim finita N)

- 2. $\{x^n\} \subseteq X$ suc de Cauchy
- 3. $x^n \in X$, $x^n = \sum_{j=1}^{N} \alpha_j^n e_j$ $\alpha_j^n \in \mathbb{F}$
- 4. $\exists m_0 \in \mathbb{N} \text{ tq } \sum |\alpha_j^k \alpha_j^m|^2 = ||x^k x^m||_1^2 \le \epsilon^2$
- 5. Fijando $j \in \mathbb{N}$ tenemos $|\alpha_j^k \alpha_j^m| \le \epsilon^2 \quad \forall k, m \ge m_0$
- 6. $\{\alpha_j^n\}$ es de Cauchy en un completo tiene límite α_j (vale para cada j)
- 7. $\exists n_j \in \mathbb{N} \text{ tq } |\alpha_j^n \alpha_j| < \frac{\epsilon^2}{N} \quad \forall n \geq n_j$
- 8. $\tilde{n} = \max\{n_0, \dots, n_N\}$ y $x = \sum_{j=1}^N \alpha_j e_j$ $(x \in X \text{ por ser combinación lineal de elementos de la base})$
- 9. para $m \geq \tilde{n}$ sucede $||x^n x||_1^2 = \sum_j^N |\alpha_j^n \alpha_j|^2 \leq \epsilon^2$
- 10. $\{x^n\}$ converge por lo tanto X es de completo

Corolario 1.13. Todo espacio vectorial de dim finita es completo con la métrica asociada a cualquier norma.

Demostración. (X, d) completa \iff (X, d_1) completa por equivalencia de normas y d_1 completa.

Teorema 1.14. Sea (M,d) métrico y $A \subseteq M$ entonces:

- 1. $A \ completo \Rightarrow A \ cerrado$
- 2. $M \ completo \Rightarrow (A \ completo \iff A \ cerrado)$
- 3. Si A es compacto \Rightarrow A es cerrado y acotado
- 4. Cerrado y acotado en $\mathbb{F}^n \Rightarrow compacto$

Corolario 1.15. Si Y subespacio vectorial de dim finita \Rightarrow Y es cerrado.

Demostración. 1. Por ser Y espacio vectorial es normado (norma estándar) por ser espacio vectorial normado es métrico

- 2. Por dim finita es completo
- 3. Cerrado por el teorema anterior

Observación 1.16 (Contraejemplo I). El corolario anterior no es cierto si la dimensión es infinita.

Demostración. 1. $S = \left\{ \left\{ x_n \right\} \subseteq \ell^{\infty} : \exists n_0 \in \mathbb{N} / x_n = 0 \, \forall n \le n_0 \right\}$

- 2. S subespacio de dim infinita de ℓ^{∞}
- 3. $x_n = (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, \dots, 0, \dots) \in S$
- 4. Sea $x = (1, \frac{1}{2}, \dots, \frac{1}{n}, \frac{1}{n+1}, \dots) \in (\ell^{\infty} \setminus S)$
- 5. $\|x-x_n\|_{\infty}=\frac{1}{n+1}\to 0$ o lo mismo lím $_{n\to\infty}\,x_n=x$
- 6. S no es cerrado

Lema 1.17. X espacio vectorial normado, S subespacio de X entonces \overline{S} es subespacio vectorial de X.

Demostración. 1. $x, y \in \overline{S}, \alpha \in \mathbb{F}$

- 2. Por ser clausura existen $x_n \to x$, $y_n \to y$ en S
- 3. S subesp $x_n + y_n \in S$
- 4. $x_n + y_n \to x + y$ entonces $x + y \in \overline{S}$
- 5. Análogo αx_n

Definición 1.18 (Span). $E \subseteq X$ normado:

 $Sp(E) = \{Todas \ las \ combinaciones \ lineales \ finitas \ de \ elementos \ de \ E\}$

 $\overline{\mathrm{Sp}}(E) = \{ \text{Todas las intersecciones de subespacios cerrados que contienen a } E \}$

Lema 1.19. X espacio vectorial normado $\emptyset \neq E \subseteq X$ entonces:

- 1. $\overline{Sp}(E)$ es un cerrado de X que contiene a E
- $2. \ \overline{Sp}(E) = \overline{Sp(E)}$

Demostración. 1. Intersección de cerrados es cerrados y intersección de subespacios es subespacio

- 2. $\overline{\mathrm{Sp}(E)}$ es subespacio cerrado y contiene a E por definición
 - (⊆) $\overline{\mathrm{Sp}}(E)$ es subespacio que contiene a E entonces está en la intersección $\mathrm{Sp}(E)\subseteq\overline{\mathrm{Sp}}(E)$
 - (\supseteq) Como $\overline{\mathrm{Sp}}(E)$ es cerrado y contiene a $\mathrm{Sp}(E)$ luego $\overline{\mathrm{Sp}}(E) \supseteq \overline{\mathrm{Sp}(E)}$

Lema 1.20 (Riesz). Sea X normado, Y subespacio cerrado con $Y \neq X$. Sea $\alpha \in (0,1)$. Entonces $\exists x_{\alpha} \in X$ con $||x_{\alpha}|| = 1$ tal que $||x_{\alpha} - y|| > \alpha$ $\forall y \in Y$.

Demostración. 1. $d = \inf\{||x - z|| : z \in Y\} > 0$

- $2. \ 0 < \alpha < 1 \Rightarrow d < d\alpha^{-1}$
- 3. (Def ínfimo) $||x z|| < d\alpha^{-1}$

4.
$$x_{\alpha} = \frac{x-z}{\|x-z\|} \|x_{\alpha}\| = 1$$

5.
$$||x_{\alpha} - y|| = \left\| \frac{x - z}{||x - z||} - y \right\| = \frac{1}{||x - z||} ||x - (z + ||x - z||y)|| > \frac{d}{d\alpha^{-1}}$$

Teorema 1.21. Sea X espacio vectorial dimensión infinita

$$D = \{x \in X : ||x|| \le 1\} \quad K = \{x \in X : ||x|| = 1\}$$

no son compactos.

Demostración. 1. $x_1 \in K$ como dim infinita $Sp(\{x_1\}) \neq X$ (Sp cerrado por ser de dim finita)

- 2. Por lema de Riesz $\exists x_2 \in K$ tal que $||x_1 x_2|| \ge \frac{1}{2}$
- 3. Generalizando $\exists x_n \in K \text{ tal que } ||x_n x_m|| \ge \frac{1}{2} \quad \forall n \ne m$
- 4. Así armamos una sucesión que no puede tener sub convergente porque si fuese convergente sería de Cauchy

Observación 1.22. D y K son compactos $\Rightarrow X$ dim finita.

Definición 1.23 (Espacio de Banach). Un espacio de Banach es un espacio normado que es completo con la métrica asociada a la norma.

Teorema 1.24. 1. Todo normado de dim finita es Banach

- 2. Si X es métrico completo $C_{\mathbb{F}}$ es Banach
- 3. Si (X, Σ, μ) subespacio medible $\Rightarrow L^p (1 \leq p \leq \infty)$ son Banach. (En particular $\ell^p (1 \leq p \leq \infty)$ son Banach)
- 4. X Banach, Y subespacio entonces Y Banach \iff Y cerrado

Demostración. 1. Visto arriba

- 2. Se asume visto en Reales
- 3. Se asumen visto en Reales
- 4. Por teorema anterior

Teorema 1.25. Sea X de Banach $\{x_n\} \subseteq X$ si la serie $\sum ||x_n||$ converge entonces $\sum x_k$ converge.

Demostración. 1. $|\sum^{m} ||x_k|| - \sum^{n} ||x_k||| = \sum_{k=n+1}^{m} ||x_k|| \le \epsilon$ $\forall m \ge n \ge n_0$ (por ser convergente la serie las sumas parciales son de Cauchy)

- 2. Sea $S_n = \sum_{k=n+1}^n x_k$ entonces $||S_m S_n|| \le ||\sum_{k=n+1}^m x_k|| \le \sum_{k=n+1}^m ||x_k|| \le \epsilon$
- 3. Como X completo S_n converge

2. Teórico 2: Espacios con Producto Interno y Espacios de Hilbert

Proposición 2.1. X e.v.pi $x, y \in X$ entonces:

- 1. $|(x,y)| \le (x,x)(y,y)$
- 2. La función $\|\cdot\|X \to \mathbb{R}$ dada por $\|x\| = (x,x)^{\frac{1}{2}}$ es norma en X

Teorema 2.2 (Regla Paralelogramo e identidades de polarización). Sea X e.v.pi con norma inducida $\|\cdot\|$ entonces $\forall x, y \in X$ vale:

1.
$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
 (Regla Paralelogramo)

2.
$$Si \mathbb{F} = \mathbb{R}$$
 $4(x,y) = ||x+y||^2 - ||x-y||^2$

3.
$$Si \mathbb{F} = \mathbb{C}$$
 $4(x,y) = ||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2$

Proposición 2.3 (Continuidad del producto interno). Sea X e.v.pi. $\{x_n\}, \{y_n\} \subseteq X$ con $x_n \to x$, $y_n \to y$ en X entonces

$$(x_n, y_n) \to (x, y)$$

2.1. Ortogonalidad

Definición 2.4 (Espacio de Hilbert). Un espacio con producto interno completo con respecto a la métrica asociada a la norma inducida por el producto interno se dice espacio de Hilbert.

Ejemplo 2.5 (Contraejemplo I). $A = \{\{x_n\} / x_n \neq 0 \text{ solo en finitos n}\}$ es fácil ver que $(\{x_n\}, \{y_n\}) = \sum_{n=1}^{\infty} x_n \overline{y_n}$ es producto interno con norma inducida $\|\{x_n\}\| = (\sum_{n=1}^{\infty} |x_n|^2)^{\frac{1}{2}}$. Restaría ver que no es completo.

Proposición 2.6 (Subespacio cerrado es Hilbert). Sea \mathcal{H} Hilbert, $Y \subset H$ sub espacio entonces

$$Y$$
 Hilbert \iff Y es cerrado en \mathcal{H}

Lema 2.7. X e.v.pi $A \subseteq X$ subconjunto entonces:

- 1. $0 \in A^{\perp}$
- 2. Si $0 \in A \in A \Rightarrow A \cap A^{\perp} = \{0\}$ si no $A \cap A^{\perp} = \emptyset$
- $\mathcal{J}. \ \{0\}^\perp = X \quad \wedge \quad X^\perp = \{0\}$
- 4. Si A contiene una bola $B_a(r)$ para algún r > 0 y $a \in A \Rightarrow A^{\perp} = \{0\}$. (Si A abierto no vacío $\Rightarrow A^{\perp} = \{0\}$)
- 5. $B \subseteq A \Rightarrow A^{\perp} \subseteq B^{\perp}$
- 6. A^{\perp} es una sub cerrado de X
- 7. $A \subseteq (A^{\perp})^{\perp} = A^{\perp \perp}$

Proposición 2.8 $(x \in Y^{\perp} \iff ||x-y|| \ge ||x||)$. Sea Y subespacio de X e.v.pi entonces $x \in Y^{\perp} \iff ||x-y|| \ge ||x||$.