MODELIZACIÓN

APUNTES DEL CURSO 2019-2020 IMPARTIDO POR RAFAEL ORIVE ILLERA

Rafael Sánchez

Revisión del 5 de febrero de 2020 a las 11:27.

Índice general

Ι	Primer parcial	5
	Análisis dimensional 1.1. Magnitudes. Teorema Π	7
2.	Modelos matriciales discretos 2.1. Modelo discreto unidimensional	
II	Apéndices	21
3.	Índices	23

ÍNDICE GENERAL

Parte I Primer parcial

Capítulo 1

Análisis dimensional

El análisis dimensional es una herramienta que nos permite simplificar el estudio de cualquier fenómeno que involucre varias magnitudes físicas para tratarlas como variables independientes. Esto nos ayudará a simplificar los modelos matemáticos de lo que queramos estudiar.

Vamos a comenzar con un ejemplo introductorio a la asignatura, con el que se busca de alguna forma introducir conceptos que si bien no son del todo matemáticos o formales serán de utilidad en el desarrollo del curso.

Ejemplo 1 (Segunda Ley de Newton - Ley física)

La segunda ley de Newton se puede escribir como la ecuación diferencial:

$$m\ddot{x}(t) = F(x,t), \ t \in [0,T]$$

donde m representa la masa de un objeto, x(t) la posición del mismo respecto del tiempo, F(x,t) la fuerza que se ejerce sobre él y T es el tiempo final.

Para completar el problema daremos un par de condiciones iniciales:

 $x(0) = x_0$ la posición inicial

 $\dot{x}(0) = v_0$ la velocidad inicial

En el análisis dimensional analizaremos que magnitudes entran en juego en la ley. En este caso tenemos:

- \blacksquare m masa.
- \blacksquare x posición.
- lacksquare F fuerza.
- T tiempo final.
- x_0 posición inicial.
- v_0 velocidad inicial.

Por tanto nuestra función final será de la forma:

$$f(m, x, F, T, x_0, v_0) = 0$$

que es otra forma de expresar la **ley**. Además, querremos ver de qué **magnitudes** dependen estos 6 parámetros. Esto lo expresaremos con la notación:

$$\lceil p \rceil = M$$

donde p representa un parámetro y M una magnitud (también puede ser un producto de ellas). En nuestro caso tenemos:

- \blacksquare [m] = M. Masa, una magnitud elemental.
- [x] = L. Longitud, una magnitud elemental.
- $[T] = \tau$. Tiempo, una magnitud elemental.
- \bullet $[x_0] = L$. Longitud.
- $\bullet \ \ [v_0] = L \cdot \tau^{-1}. \ \ Velocidad, \ longitud \times tiempo^{-1}.$
- $[F] = [m \cdot \ddot{x}] = M \cdot L \cdot \tau^{-2}.$ Fuerza, masa \times longitud \times tiempo $^{-2}$.

1.1. Magnitudes. Teorema Π .

Vamos a suponer la existencia de L_1, \ldots, L_n magnitudes elementales con $n < \infty \in \mathbb{N}$, es decir, cada L_i es independiente de cada magnitud de $\mathcal{L} \setminus L_i$. Diremos que una colección de magnitudes conforman un sistema.

Definición 1 (Dimensión de una magnitud). Sea $a \in \mathbb{R}$ una medida de una magnitud A en un sistema L_1, \ldots, L_n . Si cambiamos a un sistema L'_1, \ldots, L'_n con $L'_i = \lambda_i L_i$ y sea a' la medida de A en el nuevo sistema, entonces si se cumple que:

$$a' = a \cdot \lambda_1^{a_1} \cdot \dots \cdot \lambda_n^{a_n}$$

para una serie de escalares a_1, \ldots, a_n , entonces diremos que la magnitud A tiene **dimensión** $L_1^{a_1} \cdots L_n^{a_n}$ y lo expresamos por:

$$[A] = L_1^{a_1} \cdots L_n^{a_n}$$

Cuando el sistema L_1, \ldots, L_n esté fijado podremos identificar la dimensión de la magnitud A con el vector de escalares (a_1, \ldots, a_n) .

Recordando el ejemplo de la segunda ley de Newton, donde teníamos tres magnitudes elementales (L, τ, M) , si consideramos que nuestro sistema L_1, \ldots, L_n es dicha 3-tupla, entonces podemos expresar las magnitudes no elementales como 3-tuplas (o vectores de \mathbb{R}^3):

- $[v_0] = L \cdot \tau^{-1} = (1, -1, 0)$
- $\bullet \ \left\lceil F \right\rceil = \left\lceil m\ddot{x} \right\rceil = M \cdot L \cdot \tau^{-1} = (1,-2,1)$

Ejemplo 2 (Dimensión de una magnitud)

Sea $L_1 = \{m\}$ y $L_2 = \{s\}$ un sistema de magnitudes (longitud en metros y tiempo en segundos respectivamente), consideramos la magnitud de la velocidad V que tiene dimensión:

$$[V] = L_1 \cdot L_2^{-1} = (1, -1)$$

entonces, si tenemos una medida $v=30^m/s$ y queremos ver su medida L' en el sistema:

$$L'_1 = 10^{-3}L_1$$
 con L'_1 longitud en km $L'_2 = \frac{1}{3600}L_2$ con L'_2 tiempo en h

entonces:

$$v' = v \cdot \lambda_1 \cdot \lambda_2^{-1} = \frac{30 \cdot 3.6 \cdot 10^3}{10^3} = 108^{km/h}$$

Proposición 1 (Expresión de una magnitud dependiente). Sean A,B dos magnitudes tales que:

$$[A] = L_1^{a_1} \cdots L_n^{a_n}$$
$$[B] = L_1^{b_1} \cdots L_n^{b_n}$$

Sea C otra magnitud dependiente de A y B, tal que si a,b son medidas de A, B y C y $\exists p,q,d$ tales que $c=d\cdot a^p+b^q$ con p,q,d independientes de las unidades L_1,\ldots,L_n , entonces:

$$[C] = L_1^{a_1 p + b_1 q} \cdots L_n^{a_n p + b_n q}$$

Demostración. Sean $L_i' = \lambda_i L_i$ un nuevo sistema, entonces:

$$a' = a \cdot \lambda_1^{a_1} \cdots \lambda_n^{a_n}, \quad b' = b \cdot \lambda_1^{b_1} \cdots \lambda_n^{b_n}$$

y por tanto c' es:

$$c' = da'^p + b'^q = d(a\lambda_1^{a_1} \cdots \lambda_n^{a_n})^p + (b\lambda_1^{b_1} \cdots \lambda_n^{b_n})$$

$$= (da^p + b^q) \cdot (\lambda_1^{a_1p + b_1q} \cdots \lambda_n^{a_np + b_nq})$$

$$= c \cdot (\lambda_1^{a_1p + b_1q} \cdots \lambda_n^{a_np + b_nq}) \Longrightarrow$$

$$[C] = L_1^{a_1p + b_1q} \cdots L_n^{a_np + b_nq}$$

 \Diamond

Definición 2 (Matriz de dimensiones). Dados q_1, \ldots, q_m magnitudes, tales que su dimensión es:

$$[q_i] = L_1^{a_{i_1}} \cdots L_n^{a_{i_n}}$$

llamamos matriz de dimensiones a la matriz $(n \times m)$:

$$\begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

que tiene n filas (una por cada magnitud elemental L_i) y m columnas (una por cada magnitud del problema q_i)

Observación. Los índices de los elementos de la matriz quedan permutados respecto de la notación habitual.

Retomando el ejemplo de la segunda ley de Newton tendríamos la matriz de dimensiones:

Definición 3 (Magnitud adimensional). Una magnitud Π se dice adimensional si $[\Pi] = 1$.

Hallar magnitudes adimensionales en los distintos problemas nos ayuda a simplificar el estudio de los mismos. Retomemos el ejemplo de la segunda ley de Newton, vamos a intentar reducir la dimensión del problema.

Ejemplo 3 (Reduciendo la dimensión del ejemplo 1)

Recordemos que teníamos 6 parámetros (x, x_0, v_0, T, F, m) . Una forma de reducir los parámetros es intentar enmascarar los valores iniciales en nuevas variables.

Recordemos que tanto x como x_0 tenían la misma dimensión. Gracias a ello podemos definir un nuevo parámetro y sin dimensión:

$$y = \frac{x}{x_0}$$

Además, como $x(0) = x_0$ tendremos que y(0) = 1 y como $\dot{x}(0) = v_0$ entonces $\dot{y}(0) = \frac{v_0}{x_0}$.

Podemos también hacer lo mismo con el tiempo, recordemos que en la fórmula original la variable t pertencía a [0,T]. Podemos definir entonces:

$$\frac{t}{T} = \tau$$

y por tanto $\tau \in [0, 1]$, con lo que hemos eliminado T. Sin embargo, cambiar t tiene consecuencias debido que es la variable respecto de la que se diferencia x (y por tanto y), tenemos que ver como afectan estos cambios a nuestras variables.

Usaremos la notación \dot{x} para referirnos a $\frac{\partial x}{\partial t}$ y x' para referirnos a $\frac{\partial x}{\partial \tau}$.

Entonces obtenemos:

$$y' = \frac{\partial y}{\partial \tau} = \frac{1}{x_0} \frac{\partial x}{\partial \tau} = \frac{T}{x_0} \frac{\partial x}{\partial t} = \frac{T}{x_0} \dot{x} \implies y'(0) = \frac{T}{x_0} \cdot v_0 = \tilde{q}$$

y de nuevo $\left[\tilde{q}\right] = 1$.

Recordemos que nuestro problema comenzaba con $m\ddot{x}=F$, vamos a usar esto para encontrar otro parámetro adimensional.

$$\begin{split} \frac{\partial x}{\partial t} &= \frac{x_0}{T} \frac{\partial y}{\partial \tau} \\ \frac{\partial^2 x}{\partial t^2} &= \frac{x_0}{T} \frac{\partial}{\partial t} \left(\frac{\partial y}{\partial \tau} \right) = \frac{x_0}{T} \frac{\partial \tau}{\partial t} \frac{\partial^2 y}{\partial \tau^2} = \frac{x_0}{T} \cdot y'' \\ \frac{mx_0}{T^2} \cdot y'' &= F \implies y'' = \frac{T^2}{mx_0} \cdot F = f \end{split}$$

y podemos comprobar que [f] = 1. Recapitulado, hemos conseguido encontrar nuevos parámetros adimensionales y, $\tilde{q} = y'$, f = y'' haciendo algunos cambios en el problema. Con esto, podemos reescribir el problema de valores iniciales con los nuevos parámetros adimensionales:

$$y'' = f = \frac{T^2}{mx_0} \cdot F$$
$$y(0) = 1$$
$$y'(0) = \tilde{q} = \frac{Tv_0}{x_0}$$

Definición 4 (Ley invariante). Sea una ley $f(q_1, \ldots, q_m) = 0$, se dice que es **invariante** frente al cambio de unidades $L'_1 = \lambda_1 L_1, \ldots L'_n = \lambda_n L_n$ si verifica que $f(q'_1, \ldots, q'_m) = 0$ para q'_1, \ldots, q'_m las medidas de q_1, \ldots, q_m en las nuevas unidades L'_1, \ldots, L'_n . Informalmente:

Una ley es invariante cuando sigue siendo cierta tras el cambio de variables del problema

Teorema 2 (Teorema Π). Sea $f(q_1, \ldots, q_m) = 0$ una ley invariante con q_1, \ldots, q_m magnitudes con matriz de dimensiones:

$$D = \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix}$$

tal que n < m y el rango de D es $r \le n$. Entonces existen m - r cantidades Π_1, \ldots, Π_{m-r} que van a ser magnitudes adimensionales tales que la ley invariante es equivalente a una relación $F(\Pi_1, \ldots, \Pi_{m-r}) = 0$.

Demostración.

(1) Vamos a demostrar que existen Π_1, \dots, Π_{m-r} magnitudes adimensionales independientes entre sí. Partimos de la matriz de dimensiones:

$$\begin{pmatrix}
q_1 & \cdots & q_m \\
L_1 & a_{11} & \cdots & a_{m1} \\
\vdots & \ddots & \vdots \\
a_{1n} & \cdots & a_{mn}
\end{pmatrix}$$

Y entonces tenemos:

$$\left[\Pi\right] = 1 \text{ con } \Pi = q_1^{\alpha_1} \cdots q_m^{\alpha_m}$$

$$\left[\Pi\right] = (L_1^{a_{1_1}} \cdots L_n^{a_{1_n}})^{\alpha_1} \cdot (L_1^{a_{2_1}} \cdots L_n^{a_{2_n}})^{\alpha_2} \cdots (L_1^{a_{m_1}} \cdots L_n^{a_{m_n}})^{\alpha_m} = L_1^{\alpha_1 a_{11} + \cdots + \alpha_m a_{m1}} \cdots L_n^{\alpha_1 a_{1n} + \cdots + \alpha_m a_{m1}}$$

De donde surge el sistema:

$$\alpha_{1}a_{11} + \alpha_{2}a_{21} + \dots + \alpha_{m}a_{m1} = 0$$

$$\alpha_{1}a_{12} + \alpha_{2}a_{22} + \dots + \alpha_{m}a_{m2} = 0$$

$$(\dots)$$

$$\alpha_{1}a_{1n} + \alpha_{2}a_{2n} + \dots + \alpha_{m}a_{mn} = 0$$

Y la demostración se reduce a resolver un sistema homogéneo de n ecuaciones con m incógnitas. Como la matriz D es de rango r, entonces existen m-r soluciones linealmente independientes.

(2) La demostración de que la ley invariante es equivalente a otra que solo comprende a las magnitudes adimensionales para el caso general resulta muy difícil de escribir. Un caso particular para m=4, n=2 y r=2 se encuentra en el siguiente ejemplo.

Ejemplo 4 (Cálculo de las magnitudes adimensionales y la ley invariante asociada)

Vamos a hacer un caso particular del sistema de la demostración. Sea m=4, n=2 y r=2, es decir:

$$\alpha_1 a_{11} + \alpha_2 a_{21} + \alpha_3 a_{31} + \alpha_4 a_{41} = 0$$

$$\alpha_1 a_{12} + \alpha_2 a_{22} + \alpha_3 a_{32} + \alpha_4 a_{42} = 0$$

Como el rango es 2, sin perdida de generalidad puedo suponer que:

$$\det \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix} = 0$$

Entonces por Rouche-Frobenius existen $C_{34}, C_{32}, C_{41}, C_{42}$ tales que:

$$\begin{aligned} \alpha_1 &= -\alpha_3 C_{31} - \alpha_4 C_{41} \ con \ \alpha_3 = 1, \ \alpha_4 = 0 \\ \alpha_2 &= -\alpha_3 C_{32} - \alpha_4 C_{42} \ con \ \alpha_3 = 0, \ \alpha_4 = 1 \end{aligned}$$

Y entonces puedo encontrar las magnitudes adimensionales:

$$\Pi_{1} = q_{1}^{-C_{31}} q_{2}^{-C_{32}} q_{3}^{1} q_{4}^{0} \implies q_{3} = \Pi_{1} q_{1}^{C_{31}} q_{2}^{C_{32}}$$

$$\Pi_{2} = q_{1}^{-C_{41}} q_{2}^{-C_{42}} q_{3}^{0} q_{4}^{1} \implies q_{4} = \Pi_{2} q_{1}^{C_{41}} q_{2}^{C_{42}}$$

Recordemos que partíamos de una ley:

$$f(q_1, q_2, q_3, q_4) = 0$$

Y además, hemos encontrado que:

$$f(q_1,q_2,q_3,q_4) = f(q_1,q_2,\Pi_1q_1^{C_{31}}q_2^{C_{32}},\Pi_2q_1^{C_{41}}q_2^{C_{42}}) = G(q_1,q_2,\Pi_1,\Pi_2)$$

Además, vamos a hacer un cambio del sistema de magnitudes de la forma:

$$L_1' = \lambda_1 L_1, \ L_2' = \lambda_2 L_2$$

para conseguir:

$$\begin{aligned} q_1' &= q_1 \lambda_1^{a_1 1} \lambda_2^{a_1 2} \\ q_2' &= q_2 \lambda_1^{a_2 1} \lambda_2^{a_2 2} \\ \Pi_1' &= \Pi_1 \\ \Pi_2' &= \Pi_2 \end{aligned}$$

Entonces tenemos una nueva ley invariante al cambio de escala:

$$0 = G(q_1, q_2, \Pi_1, \Pi_2) = G(q_1', q_2', \Pi_1, \Pi_2)$$

Finalmente, querremos hacer un cambio de variables tal que $q_1 = q_2 = 1$ en nuestra nueva ley.

$$L_n q_1 + a_{11} L_n \lambda_1 + a_{12} L_n + \lambda_2 = 0$$

$$L_n q_2 + a_{21} L_n \lambda_1 + a_{22} L_n + \lambda_2 = 0$$

En el sistema anterior hacemos el cambio: $y_i = L_n \lambda_i$ y tomando logaritmos obtenemos:

$$a_{11}y_1 + a_{12}y_2 = -\log(q_1)$$

$$a_{21}y_1 + a_{22}y_2 = -\log(q_2)$$

Y sabemos que dichos q_1, q_2 existen porque la matriz es invertible, y por tanto:

$$0 = f(q_1, q_2, q_3, q_4) = G(1, 1, \Pi_1, \Pi_2) = F(\Pi_1, \Pi_2)$$

Ejercicio (H1.4).

a) Magnitudes. Magnitudes elementales. Magnitudes adimensionales.

Nuestras magnitudes q_i serán (h, t, g, R, v). Podemos analizarlas en función de las magnitudes elementales:

- $[h] = L = \{\text{longitud}\}.$
- $[t] = T = \{ \text{tiempo} \}.$
- $[g] = LT^{-2}.$
- $[v] = LT^{-1}.$
- $\blacksquare \ \lceil R \rceil = L.$

Que tiene como matriz de dimensiones:

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & -2 & -1 & 0 \end{pmatrix}$$

Donde podemos encontrar las siguientes 3 magnitudes adimensionales (ya que el rango de la matriz es 2):

$$\frac{h}{R}$$
, $\frac{tv}{R}$, $\frac{v}{\sqrt{gR}}$

b) Relación de la altura máxima a alcanzar el proyectil con respecto a v, g, R.

Partimos de 0 = f(h, t, v, g, R) y por el teorema Π sabemos que tenemos una ley equivalente:

$$0 = F\left(\frac{h}{R}, \ \frac{tv}{R}, \ \frac{v}{\sqrt{gR}}\right)$$

Además, sabemos que la altura máxima h_{max} se va a tomar en un tiempo determinado t_{max} . Por tanto tenemos la relación:

$$0 = F\left(\frac{h_{max}}{R}, \ \frac{t_{max}v}{R}, \ \frac{v}{\sqrt{gR}}\right)$$

Por el Teorema de la función implícita (TFI):

$$\frac{h}{R} = G\left(\frac{tV}{R}, \frac{V}{\sqrt{gR}}\right)$$

Como alcanzamos la altura máxima:

$$h'(t_{max}) = 0 \implies \frac{\partial G}{\partial \Pi_2} \left(\frac{t_{max}V}{R}, \frac{V}{\sqrt{gR}} \right) = 0$$

Aplicando de nuevo el TFI:

$$\frac{t_{max}v}{R} = \varphi\left(\frac{V}{\sqrt{qR}}\right)$$

Y llegamos a la relación que nos pedían:

$$\frac{h_{max}}{R} = G\left(\varphi\left(\frac{V}{\sqrt{gR}}\right), \frac{V}{\sqrt{gR}}\right) = \varphi^{\star}\left(\frac{V}{\sqrt{gR}}\right)$$

c) Identificar las escalas privilegiadas del problema y como se simplifica en dichas escalas:

Vamos a hacer los cambios de variables:

$$\bar{t} = \frac{t}{t_C}$$

$$\bar{h}(\bar{t}) = \frac{h(t_C \cdot \bar{t})}{h_C}$$

y entonces:

$$\begin{split} \dot{\bar{h}}(\bar{t}) &= \frac{\partial \bar{h}}{\partial \bar{t}}(\bar{t}) = \frac{\partial}{\partial \bar{t}} \left(\frac{h(t_C \bar{t})}{h_C} \right) = \frac{t_C}{h_C} h'(t_C \bar{t}) \\ \ddot{\bar{h}}(\bar{t}) &= \frac{\partial}{\partial \bar{t}} \left(\frac{t_C h'(t_C \bar{t})}{h_C} \right) = \frac{t_C^2}{h_C} h''(t_C \bar{t}) \\ \bar{h}(0) &= 0 \\ \dot{\bar{h}}(0) &= \frac{t_C}{h_C} h'(0) = \frac{t_C}{h_C} v \end{split}$$

y por último:

$$h''(t) = \frac{h_C}{t_C^2}\ddot{\bar{h}}(\bar{t}) \text{ y } h(t) = h_C\bar{h}(\bar{t}) \implies \frac{h_C}{t_C^2}\ddot{\bar{h}}(\bar{t}) = -\frac{SR^2}{(h_C\bar{h}(\bar{t}) + R)^2}$$

Vamos a tratar de simplificar el problema con estas escalas de tres formas distintas:

(1)

$$\frac{h}{R}; h_C = R$$

$$\frac{t}{R/v}; t_C = \frac{R}{v}$$

De esto, hallamos:

$$\begin{split} \frac{R}{(R/V)^2} \ddot{\bar{h}} &= \frac{-SR^2}{(R\bar{h} + R)^2} \\ \frac{R^3 \ddot{\bar{h}}}{(R/V)^2 g R^2} &= -\frac{1}{(1 + \bar{h})^2} \\ \frac{v^2}{Rg} \ddot{\bar{h}} &= -\frac{1}{(1 + \bar{h})^2} \end{split}$$

Y para R >> 1 (el radio terrestre), entonces $\epsilon = \frac{v^2}{Rg} << 1$ es casi 0. Donde obtenemos:

$$0 = -\frac{1}{(1+\bar{h})^2}$$

Que no tiene mucho sentido y entonces lo que hemos hecho no nos ha servido, vamos a probar otro cambio.

(2)

$$\frac{h}{R}; h_C = R$$

$$\frac{t}{\sqrt{R/g}}; t_C = \sqrt{\frac{R}{g}}$$

De esto hallamos:

$$\begin{split} \frac{R}{R/g} \ddot{\bar{h}} &= -\frac{gR^2}{(R\bar{h} + R)^2} \\ g\ddot{\bar{h}} &= -\frac{g}{(\bar{h} + 1)^2} \\ \ddot{\bar{h}} &= -\frac{1}{(1 + \bar{h})^2} \end{split}$$

Si ahora simplificamos el problema, vemos que $\dot{\bar{h}}(0)=\frac{t_C}{h_C}v=\frac{v}{\sqrt{gR}}=\epsilon<<1$ y obtenemos el sistema:

$$\ddot{\bar{h}} = -\frac{1}{(1+\bar{h})^2}$$

$$h(0) = 0$$

$$h'(0) = \epsilon \simeq 0$$

Y este sistema también carece de sentido físico ya que indica que el proyectil se lanzaría en sentido contrario.

(3)

$$\frac{h}{v^2/g}; h_C = \frac{v^2}{g}$$

$$\frac{t}{\sqrt{v/g}}; t_C = \sqrt{\frac{v}{g}}$$

De este obtenemos:

$$\begin{split} \dot{\bar{h}}(0) &= \frac{\frac{v}{g}}{\frac{v^2}{g}} = 1\\ &\frac{\frac{v^2}{g}}{\left(\frac{v}{g}\right)^2} \ddot{\bar{h}}(t) = -\frac{gR^2}{\left(\frac{v^2}{g}\bar{h} + R\right)^2}\\ \ddot{\bar{h}}(t) &= -\frac{1}{\left(\frac{v^2}{gR}\bar{h} + 1\right)} \end{split}$$

y con este resultado hallamos el sistema:

$$\begin{split} \bar{h}(0) &= 0 \\ \dot{\bar{h}}(0) &= 1 \\ \ddot{\bar{h}} &= -\frac{1}{(t^2h + 1)^2} \end{split}$$

Cuando $t \to 0$ entonces:

$$\begin{split} \ddot{\bar{h}}(\bar{t}) &= -1 \\ \bar{h}(\bar{t}) &= \frac{\bar{t}^2}{2} + A\bar{t} + B \\ \bar{h}(0) &= 0 \implies B = 0 \implies \bar{h}(\bar{t}) = -\bar{t} + A \end{split}$$

También hallamos:

$$\begin{split} h(\bar{t}) &= -\frac{\bar{t}^2}{2} + \bar{t} \\ \frac{h(t_C \bar{t})}{h_C} &= -\frac{1}{2} \left(\frac{t}{t_C}\right)^2 + \left(\frac{t}{t_C}\right) \\ h(t) &= -\frac{h_C}{2t_C^2} t^2 + \frac{h_C t}{t_C} \\ h(t) &= -\frac{v^2/g}{2 \left(v/g\right)^2} t^2 + \frac{v^2/g}{v/g} t = -g\frac{t^2}{2} + vt \end{split}$$

Ejercicio (H1.1). Comenzamos identificando las magnitudes del problema:

$$[m] = M$$
$$[\rho] = L$$
$$[V] = L^3$$
$$[S] = L^2$$

Y las magnitudes elementales son L y M. Escribimos la matriz de dimensiones:

$$\begin{array}{cccc} M & \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -3 & 3 & 2 \end{pmatrix} = A \end{array}$$

Donde comprobamos que el rango de A es 2 y entonces por el teorema Π existen 2 magnitudes adimensionales independientes Π_1 , Π_2 .

Hallamos entonces Π_1 , Π_2 :

$$\Pi_1 = \frac{\rho V}{m}$$

$$\Pi_2 = \frac{S}{V^{2/3}} = S \cdot \left(\frac{\rho}{m}\right)^{2/3}$$

De aquí hallamos (teniendo en cuenta que $\lambda = \frac{\rho}{m}$):

$$S = \left(\frac{m}{\rho}\right)^{2/3} \cdot g\left(\frac{\rho V}{m}\right)$$
$$S = \lambda^{-2/3} \cdot g(\lambda V)$$

Ejercicio (H1.2). Una cantidad de energía térmica e está concentrada inicialmente en un punto y se difunde en una región que inicialmente tiene una temperatura 0. Determinar a tiempo t la siguiente relación de la temperatura u:

$$u = \frac{e}{c}(kt)^{-\frac{3}{2}}g\left(\frac{r}{\sqrt{kt}}\right)$$

donde r es la distancia a la fuente, c es la capacidad calorífica del medio de dimensiones $\left[c\right]=\left[eu^{-1}r^{-3}\right]$ y k la difusidad térmica de dimensiones $\left[k\right]=\left[r^2t^{-1}\right]$.

Solución

Comenzamos expresando la relación a la que queremos llegar de una forma más simple:

$$u(r,t) = \frac{e}{c}(kt)^{-\frac{3}{2}}g\left(\frac{r^2}{kt}\right)$$

Hacemos el análisis de magnitudes:

- $\blacksquare [u] = u$
- $\bullet \ [t] = t$
- lacksquare [r] = x
- $\bullet \ [e] = e$
- $\bullet \ [c] = eu^{-1}x^{-3}$
- $[k] = x^2 t^{-1}$

De donde vemos que podemos hallar dos magnitudes adimensionales:

$$\left[\Pi_{1}\right] = \left[\frac{2}{kt}\right] = \frac{x^{2}}{x^{2}t^{-1}t} = 1$$

$$\left[\Pi_{2}\right] = \left[\frac{cu}{e(kt)^{-3/2}}\right] = \frac{\left[c\right]\left[u\right]}{\left[e\right]\left[kt\right]^{-3/2}} = \frac{eu^{-1}x^{-3}u}{ex^{-3}} = 1$$

Y por tanto podemos sacar la relación:

$$\begin{split} g(\Pi_1,\Pi_2) &= 0 \\ \Pi_2 &= g(\Pi_1) \\ u &= \frac{e}{c}(k+1)^{3/2}g\left(\frac{r^2}{kt}\right) \end{split}$$

Capítulo 2

Modelos matriciales discretos

2.1. Modelo discreto unidimensional

En esta sección trataremos problemas con ecuaciones en diferencias finitas. Podemos dar un ejemplo con el interés de una tarjeta de crédito.

Ejemplo 5 (Interés en una tarjeta de crédito)

Tomamos x_0 la cantidad que debemos, e i = 2% el tipo de interés.

x(t) es la cantidad de dinero que debo cuando han pasado t días. Vamos a intentar dar una expresión para x.

$$x(0) = x_0$$

$$x(1) = (1+i) \cdot x(0) = x(0) + i \cdot x(0)$$

$$x(2) = (1+i) \cdot x(1) = (1+i)^2 \cdot x(0)$$

y por inducción hallamos:

$$x(k) = (1+i)^k \cdot x(0)$$

Por tanto obtenemos el sistema:

$$x(k+1) = ax(k)$$
$$x(0) = x_0$$

donde a=(1+i), y estamos ante un sistema de ecuaciones en diferenciadas finitas homogéneas y autónomas.

2.2. Dinámica discreta de poblaciones

Vamos a ver como podemos dar distintos modelos de poblaciones.

Ejemplo 6 (Modelo de población de elefantes hembras de Botswana)

Consideramos:

$$y(k) = \{Población de elefantes hembras de Botswana\}$$

 $y(k+1) = \{Sobreviven\} + \{Nacen\} - \{Emigrantes\} + \{Inmigrantes\}$

Y llamamos k al número de años, s a la tasa de supervivencia, n a la tasa de natalidad y suponiendo que Botswana no deja salir ni entrar a ningún elefante, tenemos que la tasa de inmigración y los puntos de emigración son nulas.

Si hallamos que s=0.8 y n=0.3 tenemos la ecuación:

$$y(k+1) = 0.8 \cdot y(k) + 0.3 \cdot y(k) = (1.1) \cdot y(k) = ay(k)$$

Entonces, por inducción $y(k) = a^k y(0)$.

En este caso, como $a>1,\ 1,1=a=1+\alpha$ y $\alpha=0,1$ diremos que la tasa de crecimiento de la población es del 10%. Además, el límite cuando $k\to\infty$ es ∞ .

Sin embargo, este modelo se puede sofisticar, veamos otro ejemplo.

Ejemplo 7 (Modelo de población de la mariposa monarca)

Consideraremos $y(k) = \{Población de mariposas monarca\}$. Vamos a expresar este valor de forma matricial:

 $y(k) = \begin{pmatrix} y_1(k) \\ y_2(k) \end{pmatrix} \implies \begin{cases} y_1(k) = \{\text{n\'umero de cris\'alidas}\} \\ y_2(k) = \{\text{n\'umero de mariposas adultas}\} \end{cases}$

En este sistema, k nos indica el período de semana en que estamos y sabemos que:

- Cada semana maduran el 30 % de las crisálidas.
- Cada semana sobreviven el 10 % de las adultas.
- Las crisálidas o se transforman en adultas o se mantienen como crisálidas.
- Por cada mariposa adulta, una oruga se transforma en crisálida.

Entonces tenemos las relaciones:

$$y_1(k+1) = 0.7 \cdot y_1(k) + y_2(k)$$

$$y_2(k+1) = 0.3 \cdot y_1(k) + 0.6 \cdot y_2(k)$$

Y lo podemos expresar como y(k + 1) = Ay(k) con la matriz:

$$A = \begin{pmatrix} 0.7 & 1\\ 0.3 & 0.6 \end{pmatrix}$$

Con esto, podríamos hacer el análisis de la población. Supongamos que tenemos una población inicial de:

$$y(0) = \begin{pmatrix} 1000 \\ 1000 \end{pmatrix}$$

Para hallar la población en el período k basta usar la expresión:

$$y(k+1) = Ay(k) \implies y(k) = A^k \cdot y(0)$$

Nos preguntamos ahora qué pasa con estas poblaciones. Recordemos que una matriz A la podemos descomponer como $A = PJP^{-1}$ (por la descomposición de Jordan). J es algo más fácil de manejar y en algunos estupendos casos es diagonal. Además, recordemos que una condición suficiente de ser matriz diagonalizable es ser simétrica.

De esta forma, podemos expresar:

$$A = PJP^{-1}$$
$$A^{2} = PJ^{2}P^{-1}$$
$$A^{n} = PJ^{n}P^{-1}$$

y nuestra pregunta se resuelve estudiando el **espectro** de A (sus autovalores).

Ejemplo 8 (Modelo de población de la mariposa monarca - Continuación)

Retomando el ejemplo de la población de mariposas, los autovalores son los ceros de:

$$0 = \rho(\lambda) = \det(A - \lambda I) = \lambda^2 - 1.3 \cdot \lambda + 0.42 \cdot 0.3$$

De donde obtenemos $\lambda_1 \simeq 1.2$ y $\lambda_2 \simeq 0.1$ y por tanto:

$$J = \begin{pmatrix} 1, 2 & 0 \\ 0 & 0, 1 \end{pmatrix} \implies J^n = \begin{pmatrix} \infty & 0 \\ 0 & 0 \end{pmatrix}$$

También vamos a hallar los autovectores, (para la condición del primer autovector hemos pedido que

tenga $||\cdot||_1 = 1$).

$$\begin{pmatrix} -0.5 & 1 \\ 0.3 & -0.6 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 0 \implies u_1 = 2u_2, \ u_1 + u_2 = 1$$
$$\begin{pmatrix} 6 & 1 \\ 0.3 & 0.5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0 \implies v_2 = -0.6 \cdot v_1, \ v_1 = -\frac{5}{3}v_2$$
$$\implies u_1 = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}, \ u_2 = \begin{pmatrix} \frac{5}{3} \\ -1 \end{pmatrix}$$

Donde tenemos que λ_1 un autovalor dominante $-0,1=\lambda_2<\lambda_1=1,2$ ya que

$$\exists \lambda_1 \ tal \ que \ \lambda_1 > |\lambda_i| \ i \neq 1$$

y también λ_1 es positivo y por tanto, es el autovector de componentes positivas. Vamos a hallar una expresión de y(k):

$$y(0) = c_1 u_1 + c_2 u_2, \ y(0) \le 0$$

$$y(k) = A^k \cdot y(0)$$

$$= A^{k-1} \cdot A \cdot y(0) = A^{k-1} \cdot (c_1 \lambda u_1 + c_2 \lambda_2 u_2)$$

$$= c_1 \lambda_1^k u_1 + c_2 \lambda_2^k u_2$$

$$= \lambda_1^k \left(c_1 u_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k u_2 \right) \rightarrow_{k > > 1} \lambda_1^k c_1 u_1 \rightarrow \infty$$

De donde podemos inferir que $\lambda_1 > 1$ hace que la población sea enorme en el infinito y $\lambda_1 < 0$ hace que se extinga la población.

Parte II

Apéndices

Capítulo 3

Índices

Lista de definiciones

1.	Definición (Dimensión de una magnitud)	8
	Definición (Matriz de dimensiones)	
3.	Definición (Magnitud adimensional)	Ć
4.	Definición (Lev invariante)	1(

Lista de teoremas

1.	Proposición (Expresión de una magnitud dependiente)	8
2.	Teorema (Teorema Π)	10

28 LISTA DE TEOREMAS

Lista de ejemplos

1.	Ejemplo (Segunda Ley de Newton - Ley física)	7
2.	Ejemplo (Dimensión de una magnitud)	8
3.	Ejemplo (Reduciendo la dimensión del ejemplo 1)	9
4.	Ejemplo (Cálculo de las magnitudes adimensionales y la ley invariante asociada)	11
5.	Ejemplo (Interés en una tarjeta de crédito)	17
6.	Ejemplo (Modelo de población de elefantes hembras de Botswana)	
7.	Ejemplo (Modelo de población de la mariposa monarca)	18
8.	Ejemplo (Modelo de población de la mariposa monarca - Continuación)	18

30 LISTA DE EJEMPLOS

Lista de ejercicios

Ejercicio (H1.4)	12
Ejercicio (H1.1)	15
Eiercicio (H1.2)	1.5