(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Mai 2004 (21.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/041975 A1

(51) Internationale Patentklassifikation⁷: B01D 19/04

C10L 1/14,

(21) Internationales Aktenzeichen:

PCT/EP2003/012275

(22) Internationales Anmeldedatum:

3. November 2003 (03.11.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität:

102 51 312.0 4. November 2002 (04.11.2002)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SCHWAB, Peter [DE/DE]; Krähhöhlenweg 23, 67098 Bad Dürkheim (DE). HÜFFER, Stephan [DE/DE]; Bauernwiesenstr. 21, 67063 Ludwigshafen (DE). HERRLICH-LOOS, Mirjam [DE/DE]; Werderstr. 1, 68165 Mannheim (DE). BRAND, Siegbert [DE/DE]; St.-Klara-Kloster-Weg 6, 67346 Speyer (DE).

(74) Anwalt: KINZEBACH, Werner; Patentanwälte, Reitstötter, Kinzebach & Partner (GbR), Sternwartstr. 4, 81679 München (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: IMPROVER CONTAINING FUEL

(54) Bezeichnung: KRAFTSTOFFE MIT VERBESSERTER ADDITIVWIRKUNG

(57) Abstract: The invention relates to an improver in the form of a mixture of at least polysiloxane antifoaming agent and at least partially or totally neutralised fat acid. The inventive fuel and additive containing said mixture are also disclosed.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Additivgemisch, enthaltend wenigstens ein Polysiloxan-Antischaummittel und wenigstens eine teilweise oder vollständig neutralisierte Fettsäure sowie eine Kraftstoffzusammensetzung und ein Additivkonzentrat, die diese Zusammensetzung enthalten.

Kraftstoffe mit verbesserter Additivwirkung
Beschreibung

Die vorliegende Erfindung betrifft ein Additivgemisch, enthaltend wenigstens ein Polysiloxan-Antischaummittel und wenigstens eine teilweise oder vollständig neutralisierte Fettsäure.

Ein wichtiger Bestandteil von Kraftstoff-Additivpaketen sind Antischaummittel, die das natürliche Schaumverhalten von Kraftstoffen, insbesondere beim Abfüllen, beispielsweise während des Tankvorgangs an der Zapfsäule, dämpfen sollen. Häufig verwendete Antischaummittel sind Polysiloxane, insbesondere Polysiloxan-Alkoxylate.

So beschreibt die US 6,093,222 Antischaum-Zusammensetzungen für Dieselkraftstoffe, die unterschiedliche Polysiloxane umfassen. Die Polysiloxane sind dabei mit langkettigen Polyethergruppen, organischen Polyolen, Kohlenwasserstoffresten und/oder Phenolresten substituiert. Aufgrund der hohen Kosten für die Herstellung des Polysiloxan-Antischaummittel stellen diese jedoch in der Menge, in der sie zur Erzielung einer Antischaum-Performance benötigt werden, einen nicht unwesentlichen Kostenfaktor dar.

Die WO 95/04117 beschreibt eine Additivzusammensetzung, die ein Antischaum-Mittel und ein Stickstoff-haltiges aschefrei verbrennendes Dispergiermittel enthält. Das Stickstoff-haltige aschefrei verbrennende Dispergiermittel soll die Langzeitlagerstabilität des Antischaum-Mittels erhöhen. Das Dispergiermittel erniedrigt jedoch nicht die zur Dämpfung der Schaumbildung eines Kraftstoffs benötigte Menge an Antischaummittel.

Aufgabe der vorliegenden Erfindung war es, ein Additivgemisch bereitzustellen, das eine verbesserte Antischaumwirkung im Vergleich zu Antischaum-Mitteln des Standes der Technik aufweist.

Die Aufgabe wurde gelöst durch ein Additivgemisch, enthaltend

- i) als Komponente A wenigstens ein Polysiloxan-Antischaummittel und
 - ii) als Komponente B wenigstens eine teilweise oder vollständig neutralisierte Fettsäure, eine langkettige Carbonsäure, einen Ester einer solchen Carbonsäure oder eine wenigstens eine dieser Verbindungen umfassende Mischung.

Geeignete Polysiloxan-Antischaummittel sind alle dem Fachmann bekannten, gängigen Antischaum-Mittel auf Polysiloxanbasis. Derartige Antischaum-Mittel sind beispielsweise im ATC Doc. 52 "Fuel Additives and the Environment" beschreiben.

Bevorzugtes Antischaum-Mittel ist ein Polysiloxan der allgemeinen Formel I

10
$$\begin{bmatrix}
R \\
R - SiO_{1/2} \\
R
\end{bmatrix}_{W}
\begin{bmatrix}
R \\
SiO_{2/2} \\
R
\end{bmatrix}_{X}
\begin{bmatrix}
R \\
SiO_{3/2}
\end{bmatrix}_{Y}
\begin{bmatrix}
SiO_{4/2} \\
SiO_{4/2}
\end{bmatrix}_{Z}$$
(I)

worin

20

5

die Reste R jeweils unabhängig voneinander für einen Rest R^1 , R^2 , R^3 , R^4 oder R^5 stehen, worin

- R¹ für einen aromatischen oder gesättigten aliphatischen Kohlen25 wasserstoffrest steht,
 - R² für ein organisches Polyol steht,
 - R3 für einen Polyetherrest steht,

30

- R4 für einen Phenolrest steht,
- R⁵ für einen Rest R² steht, wobei jedoch die Hydroxygruppen ganz oder teilweise zu Diestern, Diethern, Acetalen und/oder Ketalen umgesetzt sind,

$$w = 2 + y + 2 z,$$

y und z jeweils unabhängig für eine Zahl von 0 bis 2 stehen, wo-40 bei die Summe aus y und z einer Zahl von 0 bis 2 entspricht und

$$w + x + y + z = 20$$
 bis 60.

In R^1 steht der aromatische oder gesättigte aliphatische Kohlen-45 wasserstoffrest vorzugsweise für C_1 - C_{24} -Alkyl, insbesondere für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Decyl, Dodecyl oder Stearyl; C_3 - C_{24} Cycloalkyl, insbeson-

dere für Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclooctyl oder Cyclodecyl; C₄-C₂₄ Alkylcycloalkyl, insbesondere für Methylcyclohexyl, Dimethylcyclohexyl oder Ethylcyclohexyl; C₆-C₁₀-Aryl, insbesondere für Phenyl; oder C₇-C₁₈-Arylalkyl, insbesondere für Me-5 thylphenyl, Dimethylphenyl oder Phenylethyl. Besonders bevorzugt steht R¹ für C₁-C₂₄-Alkyl, insbesondere für Methyl.

In R² steht das organische Polyol vorzugsweise für einen gesättigten oder ungesättigten, verzweigten oder unverzweigten aliphati10 schen Kohlenwasserstoffrest mit wenigstens zwei Hydroxygruppen, der gegebenenfalls durch ein oder mehrere O-Atome unterbrochen ist. Vorzugsweise ist der Kohlenwasserstoffrest gesättigt. Der Rest R² weist vorzugsweise ein Molekulargewicht von 100 bis 700, besonders bevorzugt von 130 bis 650 und insbesondere von etwa 15 400, auf.

Die Reste R² werden in das Polysiloxangerüst bespielsweise eingeführt, indem man ein ungesättigtes Polyol mit einem Polysiloxan umsetzt, das an Silicium gebundene Wasserstoffatome enthält. Beizopiele für zur Herstellung gesättigter Reste R² geeignete Polyole sind Trimethylolpropanmonoallylether, ethoxylierter Pentaerythritolallylether, propoxylierter Pentaerythritolallylether, Triisopropanolaminallylether, ethoxyliertes Allylsorbitol und 1,3-Allyloxypropandiol. Ein Beispiel für ein zur Herstellung eines ungesättigten Restes R² geeignetes Polyol ist 2-Butin-1,4-diol.

R³ steht vorzugsweise für einen Polyetherrest, der wenigstens 50 Gew.-%, besonders bevorzugt wenigstens 75 Gew.-% und insbesondere 100 Gew.-% Ethylenoxid-Einheiten einpolymerisiert enthält. Vor-30 zugsweise besitzt R³ ein Molekulargewicht von bis zu 1.500, besonders bevorzugt von 100 bis 350.

R⁴ steht vorzugsweise für einen Phenolrest, der mit ein- oder mehrfach ungesättigten Alken- und/oder Alkin-Resten substituiert
 35 ist. Geeignete Beispiele hierfür sind Eugenol, Vinylphenol, Vinylphenol, und 4-Allylphenol.

Bei bevorzugten Polysiloxanen der Formel I beträgt der Quotient aus der Anzahl an R^1 -Gruppen und der Anzahl an R^2 -Gruppen (R^1/R^2) 40 3 bis 19.

Außerdem beträgt in bevorzugten Polysiloxanen I der Quotient aus der Summe der Anzahl an R^3 -, R^4 - und R^5 -Gruppen und der Anzahl an R^2 -Gruppen [($R^3+R^4+R^5$)/ R^2] 0 bis 2.

In einer bevorzugten Ausführungsform enthält Komponente A mehrere, voneinander verschiedene Polysiloxane I.

In einer besonders bevorzugten Ausführungsform verwendet man da-5 bei ein wie vorstehend definiertes Polysiloxan I mit einem Polysiloxan der allgemeinen Formel I.1

10
$$\begin{bmatrix} R^* \\ R^* - SiO_{1/2} \\ R^* \end{bmatrix}_{a} \begin{bmatrix} R^* \\ SiO_{2/2} \\ R^* \end{bmatrix}_{b} \begin{bmatrix} R^* \\ SiO_{3/2} \end{bmatrix}_{c} \begin{bmatrix} SiO_{4/2} \\ SiO_{4/2} \end{bmatrix}_{d}$$

15

worin

die Reste R* jeweils unabhängig voneinander für einen Rest R^1 oder 20 R^3 stehen, wobei R^1 und R^3 wie bei Polysiloxan I definiert sind;

$$a = 2 + c + 2 d;$$

c und d jeweils unabhängig für eine Zahl von 0 bis 2 stehen und 25

$$a + b + c + d = 15 bis 50,$$

und/oder

30 mit einem Polysiloxan der allgemeinen Formel I.2

35
$$\begin{bmatrix} R \\ R \\ SiO_{1/2} \\ R \end{bmatrix}_{W} \begin{bmatrix} R \\ SiO_{2/2} \\ R \end{bmatrix}_{X} \begin{bmatrix} R \\ SiO_{3/2} \\ SiO_{4/2} \end{bmatrix}_{V} \begin{bmatrix} SiO_{4/2} \\ SiO_{4/2} \end{bmatrix}_{Z}$$

40

worin

R, w, x, y und z wie bei Polysiloxan I definiert sind, wobei R²
45 für ein gesättigtes Polyol steht und

wobei der Quotient aus der Anzahl an R3-Gruppen und der Anzahl an

 R^2 -Gruppen (R^3/R^2)und der Quotient aus der Anzahl an R^4 -Gruppen und aus der Anzahl der R^2 -Gruppen (R^4/R^2) größer 0 ist.

Derartige Polysiloxan-Kombinationen sind beispielsweise aus der 5 US 6,093,222 bekannt, worauf hiermit in vollem Umfang Bezug genommen wird.

In bevorzugten Polysiloxanen I.1 beträgt der Quotient aus der Anzahl an R^1 -Gruppen und der Anzahl an R^3 -Gruppen (R^1/R^3) 3 bis 19.

In bevorzugten Polysiloxanen I.2 beträgt der Quotient (R^3/R^2) 0,25 bis 5.

Bei Komponente B handelt es sich vorzugsweise um eine mit Aminen 15 teilweise oder vollständig neutralisierte Fettsäure.

Besonders bevorzugt umfasst Komponente B wenigstens ein Fettsäuresalz der Formel II

20
$$H-(OA)_{x1}$$
 \oplus
 NH
 Z
 NH
 $AO)_{x3}-H$
 $[R-COO^{\odot}]_{m+1}$
 (II)
 $(AO)_{x4}-H$
 M

25

10

worin

- R für C₇-C₂₃-Alkyl oder ein- oder mehrfach ungesättigtes C₇-C₂₃-Alkenyl, die gegebenenfalls durch eine oder mehrere Hydroxygruppen substituiert sind, steht;
 - A für C_2 - C_8 -Alkylen steht;
- Z für C_1 - C_8 -Alkylen, C_3 - C_8 -Cycloalkylen oder C_6 - C_{12} -Arylen oder C_7 - C_{20} -Arylalkylen steht;
 - m für eine Zahl von 0 bis 5 steht; und
- x^1 , x^2 , x^3 und x^4 jeweils unabhängig für eine Zahl von 0 bis 24 stehen, wobei wenigstens ein x nicht für 0 steht,

und gegebenenfalls wenigstens eine weitere Fettsäure RCOOH, worin R wie vorstehend definiert ist.

35

Derartige Fettsäuresalze II sind beispielsweise in der WO 01/38463 beschrieben, auf die hiermit in vollem Umfang Bezug genommen wird.

5 Der im Carboxylat-Anion RCOO- bzw. in der Fettsäure RCOOH auftretende längerkettige Rest R bezeichnet beispielsweise verzweigte oder vorzugsweise lineare C7- bis C23-, vorzugsweise C11- bis C21-, vor allem C15- bis C19-Alkylgruppen, welche zusätzlich Hydroxylgruppen tragen können. Beispiele für zugrundeliegende Carbonsäuren ren sind Octansäure, 2-Ethylhexansäure, Nonansäure, Decansäure, Undecansäure, Dodecansäure (Laurinsäure), Tridecansäure, iso-Tridecansäure, Tetradecansäure (Myristinsäure), Hexadecansäure (Palmitinsäure), Octadecansäure (Stearinsäure) und Eicosansäure. Die genannten Säuren können natürlichen oder synthetischen Ursprungs sein. Es können auch Mischungen der genannten Säuren den Carboxylat-Anionen zugrundeliegen.

Der im Carboxylat-Anion RCOO- bzw. in der Fettsäure RCOOH auftretende längerkettige Rest R bezeichnet jedoch vorzugsweise ein-20 oder mehrfach ungesättigte C_7 - bis C_{23} -Reste, insbesondere einoder mehrfach ungesättigte C_{11} - bis C_{21} -, vor allem C_{15} - bis C19-Alkenylgruppen, welche zusätzlich Hydroxylgruppen tragen können. Diese ungesättigten Reste sind vorzugsweise linear. Einfach ungesättigte Fettsäuren sind zum Beispiel Palmitolein-, Olein-25 und Erucasäure. Bei mehrfach ungesättigten Alkenylgruppen enthalten diese vorzugsweise zwei oder drei Doppelbindungen. Beispiele für zugrundeliegende Carbonsäuren sind Elaidinsäure, Ricinolsäure, Linolsäure und Linolensäure. Besonders gute Ergebnisse erzielt man mit Ölsäure. Es können auch Mischungen solcher ungesät-30 tigten Carbonsäuren untereinander und auch mit den oben genannten gesättigten Carbonsäuren den Carboxylat-Anionen zugrundeliegen. Derartige Mischungen sind beispielsweise Tallöl, Tallölfettsäure und Rübölfettsäure. Die genannten ungesättigten Carbonsäuren und die genannten Mischungen sind in der Regel natürlichen Ursprungs.

Die Alkylengruppierung A in Verbindungen der Formel II leitet sich vorzugsweise von entsprechenden Alkylenoxiden wie Ethylenoxid, 1,2-Propylenoxid, 1,2-Butylenoxid und cis- oder trans-2,3-Butylenoxid ab. Sie kann jedoch auch für 1,3-Propylen, 1,4-Butylen, 1,6-Hexylen oder 1,8-Octylen stehen. A kann ebenfalls eine Mischung aus verschiedenen der genannten Gruppierungen darstellen. Besonders bevorzugt werden für A Ethylen-, 1,2-Propylen- oder 1,2-Butylen-Gruppen.

45 Die Variable Z bedeutet insbesondere C₁- bis C₄-Alkylengruppierungen wie Methylen, 1,2-Propylen, 1,2-Butylen, 1,3-Butylen oder 2,3-Butylen, C₅- bis C₆-Cycloalkylengruppierungen wie 1,3-Cyclo-

pentyliden oder 1,3- oder 1,4-Cyclohexyliden oder C_6 - bis C_8 -Arylen- oder -Arylalkylengruppierungen wie 1,3- oder 1,4-Phenylen, 2-Methyl-1,4-phenylen oder 1,3- oder 1,4-Bismethylenphenylen.

5 Die Variable Z bedeutet jedoch vorzugsweise Polymethylengruppierungen der Formel $-(CH_2)_n$ - mit n=2 bis 8, insbesondere mit n=2 bis 6, also insbesondere 1,2-Ethylen, 1,3-Propylen, 1,4-Butylen, 1,5-Pentylen und 1,6-Hexylen, daneben aber auch 1,7-Heptylen und 1,8-Octylen.

10

Steht die Variable m für 0, liegen in der Regel, abhängig von der Summe (Σ) aller Variablen x¹, x² und x³, Mischungen aus Mono-, Diund/oder Trialkanolaminen oder reine Trialkanolamine den erfindungsgemäß verwendeten Fettsäuresalzen als kationische Komponente zugrunde. Beispiele für solche Alkanolamine sind Monoethanolamin, Diethanolamin, Triethanolamin, Monoisopropanolamin, Diisopropanolamin, Triisopropanolamin sowie die zugehörigen Mischungen. In dieser Gruppe ist das Ölsäuresalz von Triethanolamin [(x¹+x²+x³) = 3; A = Ethylen] von besonderem Interesse.

20

Die Variable m steht jedoch vorzugsweise für die Zahl 1 oder 2. Für m = 1 liegen vollständig und/oder teilweise alkoxylierte Alkylendiamine wie 1,2-Ethylendiamin, 1,3-Propylendiamin oder 1,4-Butylendiamin zugrunde. Für m = 2 liegen meist vollständig

- 25 und/oder teilweise alkoxylierte Dialkylentriamine wie
 Di-(1,2-ethylen)-triamin, Di-(1,3-propylen)-triamin oder
 Di-(1,4-butylen)-triamin zugrunde. In dieser Gruppe sind die BisÖlsäuresalze von N,N,N',N'-Tetrakis-(2'-hydroxyethyl)-1,2-ethylendiamin (Σx = 4) und N,N,N',N'-Tetrakis-(2'-hydroxypro-
- 30 pyl)-1,2-ethylendiamin ($\Sigma x = 4$) sowie die Tris-Ölsäuresalze von mit 4 bis 5 mol Ethylenoxid oder 1,2-Propylenoxid umgesetztem Di-(1,2-ethylen)-triamin von besonderem Interesse.

Es ist jedoch auch möglich, höhere Homologe der genannten Alky35 lendiamine und Dialkylentriamine wie beispielsweise Triethylentetramin (m = 3), Tetraethylenpentamin (m = 4) oder Pentaethylenhexamin (m = 5) als Aminkomponente für die erfindungsgemäß verwendeten Fettsäuresalze zugrundezulegen.

- 40 In einer bevorzugten Ausführungsform ist die Anzahl x, d. h. die Summe aus x^1 , x^2 , x^3 und x^4 (Σx), der eingeführten Alkylenoxid-Einheiten (OA) pro Amin-Molekül von der Anzahl der N-H-Bindungen im zugrundeliegenden Amin abhängig und kann der Anzahl der N-H-Bindungen entsprechen ($\Sigma x = m+3$). Es können jedoch auch mehr oder
- 45 weniger OA-Einheiten eingebaut werden. Bei überstöchiometrischem Einbau ist eine Dreifachalkoxylierung pro N-H-Bindung [300% von (m+3)] im Hinblick auf die Eigenschaften der resultierenden Fett-

45

säuresalze eine bevorzugte Obergrenze. Bei unterstöchiometrischem Einbau ist eine im statistischen Mittel 50%ige Alkoxylierung [50% von (m+3)] eine entsprechende bevorzugte Untergrenze; hierbei liegen dann meist Mischungen aus Spezies mit verschieden hohen 5 Alkoxylierungsgraden vor.

In einer besonders bevorzugten Ausführungsform hat die Summe (Σ) aller Variablen x einen Wert von 75% bis 125% von (m+3).

- 10 Die Fettsäuresalze der allgemeinen Formel II lassen sich üblicherweise leicht durch Alkoxylierung der zugrundeliegenden Amine nach üblichen Methoden und nachfolgende Neutralisation mit den Fettsäuren der Formel RCOOH herstellen.
- 15 Bei Verwendung von C₂- bis C₄-Alkylenoxiden wird die Alkoxylierung zweckmäßigerweise für die Einführung der ersten Alkylenoxid-Einheit in die N-H-Bindung in Gegenwart von geringen Mengen Wasser (meist 0,5 bis 5 Gew.-%, bezogen auf die Menge an eingesetztem Amin) ohne Katalysator bei Temperaturen von 80 bis 140 °C und für die Einführung weiterer Alkylenoxid-Einheiten unter Ausschluß von Wasser in Gegenwart von basischen Katalysatoren wie Alkalimetallhydroxiden, z. B. Natrium- oder Kaliumhydroxid, bei Temperaturen von 100 bis 150°C durchgeführt.
- 25 Die Neutralisation erfolgt in der Regel durch Erhitzen des so erhaltenen alkoxylierten Amins mit der entsprechenden stöchiometrischen oder leicht unterstöchiometrischen Menge (d.h. 90 bis 100 %, insbesondere 95 bis 100 % der Theorie) an Fettsäure auf Temperaturen von 30 bis 100°C, insbesondere 40 bis 80°C, für eine Zeit-30 dauer von 15 Minuten bis 10 Stunden, insbesondere 30 Minuten bis 5 Stunden. Die Neutralisationsreaktion sollte so geführt werden, daß keine Carbonsäureester-Anteile im Produkt entstehen. In vielen Fällen können sowohl das alkoxylierte Amin als auch die Fettsäure als Flüssigkeiten eingesetzt werden, was die Umsetzung zum 35 entsprechenden Fettsäuresalz besonders einfach gestaltet. Die Reihenfolge des Zusammengebens von alkoxyliertem Amin und Fettsäure ist unkritisch, d.h. man kann sowohl das alkoxylierte Amin vorlegen und die Fettsäure zugeben als auch die Fettsäure vorlegen und das alkoxylierte Amin zugeben. 40

Es ist im Prinzip jedoch auch möglich, das alkoxylierte Amin und die Fettsäure als Einzelkomponenten den Additivkonzentraten oder den Mineralölprodukten zuzugeben und die Salzbildung dort erfolgen zu lassen.

Als brauchbare Komponenten B für die erfindungsgemäßen Additivgemische sind außerdem langkettige Carbonsäuren, Ester davon oder

Stoffgemische brauchbar, welche wenigstens eine dieser Komponenten enthalten.

Langkettige Carbonsäuren im Sinne der vorliegenden Erfindung um5 fassen gesättigte und ungesättigte Mono- oder Polycarbonsäuren
mit 4 bis 50 Kohlenstoffatomen, vorzugsweise 8 bis 24 Kohlenstoffatomen. Liegen die Carbonsäuren in dimerisierter Form vor, so
ist die Kohlenstoffanzahl entsprechend verdoppelt. Erfindungsgemäße Polycarbonsäuren umfassen vorzugsweise 2 bis 4 Carboxylgrup10 pen. Erfindungsgemäße ungesättigte Carbonsäuren umfassen eine
oder mehrere, vorzugsweise ein, zwei oder drei, insbesondere
nicht kumulierte, Doppelbindungen.

Als bevorzugte Beispiele für gesättigte oder ungesättigte lang- 15 kettige Monocarbonsäuren sind die im Zusammenhang mit obiger Definition für die Verbindung der Formel II angegebenen gesättigten oder ungesättigten C_8 - C_{24} -Monocarbonsäuren zu nennen.

Als Beispiele für geeignete Polycarbonsäuren sind gesättigte oder 20 ungesättigte Dicarbonsäuren zu nennen, wie zum Beispiel die dimerisierte Variante von Oleinsäure.

Die eingesetzten Carbonsäuren können natürlichen oder synthetischen Ursprunges sein. Sie können als Reinsubstanz oder als Substanzgemisch, welches eine oder mehrere dieser Carbonsäuren, gegebenenfalls zusammen mit weiteren Stoffen enthält, verwendet werden. Als nicht limitierende Beispiele können Tallöl-Fettsäuremischungen genannt werden. Diese umfassen typischerweise ein Gemisch aus gesättigten, einfach ungesättigten und mehrfach ungesättigten C18-Carbonsäuren und wechselnde Anteile eines verseifbaren Harzes. Geeignete Produkte sind beispielsweise beschrieben in der WO-A-98/04656, worauf hiermit ausdrücklich Bezug genommen wird.

35 Die erfindungsgemäßen brauchbaren langkettigen Carbonsäureester sind in herkömmlicher Weise durch Umsetzung obiger langkettiger Carbonsäuren mit ein- oder mehrwertigen Alkoholen erhältlich.

Die in den erfindungsgemäßen Estern enthaltenen Alkohole sind 40 vorzugsweise abgeleitet von geradkettigen oder verzweigten C₁ bis C₂₀-Alkanen und tragen 1 bis 8, wie zum Beispiel 1 bis 4 Hydroxylgruppen. Zyklische Alkohole mit 6 bis 12 Kohlenstoffatomen sind ebenfalls brauchbar.

45 Bevorzugte nichtcyclische ein- oder mehrwertige Alkohole umfassen 2 bis 12, wie zum Beispiel 2 bis 5, Kohlenstoffatome, sind geradkettig oder verzweigt und weisen 1 bis 4 Hydroxylgruppen auf. Als

nicht limitierende Beispiele sind zu nennen einwertige Alkohole, wie Methanol, Ethanol, n- und iso-Propanol und mehrwertige Alkohole wie Glykol, Glycerin, Trimethylolpropan, Pentaerytritol, Sorbitol, Mannitol, Inositol, Glukose und Fruktose. Der Hydrocarbylrest der erfindungsgemäß verwendbaren Alkohole kann gegebenenfalls ein oder mehrere Heteroatome, wie Sauerstoff, Schwefel, Stickstoff oder Phosphor, in der Kohlenstoffkette enthalten.

Bei Verwendung mehrwertiger Alkohole können diese in den erfin-10 dungsgemäßen Estern in teilweise oder vollständig veresterter Form vorliegen. Mono- und Diesterester sind dabei bevorzugt.

Als nicht limitierende Beispiele für brauchbare Ester sind Methylester obiger gesättigter oder ungesättigter Monocarbonsäuren zu
15 nennen, sowie die entsprechenden Veresterungsprodukte natürlich
vorkommender Fettsäuren oder Fettsäuremischungen zu nennen. Insbesondere können genannt werden Mono- oder Diester, wie beispielsweise Glycerinmonooleat, Glycerindioleat und Glycerinmonostearat.

20

Im erfindungsgemäßen Additivgemisch werden Komponente A und Komponente B in einem Gewichtsverhältnis von vorzugsweise 1:200 bis 1:10, besonders bevorzugt von 1:100 bis 1:10 und insbesondere von 1:50 bis 1:10 eingesetzt.

25

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen Additivgemischs zur Additivierung von Kraftstoffzusammensetzungen, insbesondere zur Verbesserung der Antischaum-Performance einer Kraftstoffzusammensetzung.

30

Geeignete Kraftstoffe sind Ottokraftstoffe und Mitteldestillate, wie Dieselkraftstoffe, Heizöl oder Kerosin, wobei Dieselkraftstoffe bevorzugt sind.

- 35 Bei den Dieselkraftstoffen handelt es sich beispielsweise um Erdölraffinate, die üblicherweise einen Siedebereich von 100 bis 400°C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 360°C oder auch darüber hinaus. Dies können aber auch sogenannte "Ultra Low Sulphur Diesel" oder "City Diesel" sein, gekennzeich-
- 40 net durch einen 95%-Punkt von beispielsweise maximal 345°C und einen Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%-Punkt von beispielsweise 285°C und einen Schwefelgehalt von maximal 0,001 Gew.-%. Neben den durch Raffination erhältlichen Dieselkraftstoffen sind solche, die durch Kohlevergasung oder
- 45 Gasverflüssigung ("gas to liquid (GTL) Kraftstoffe) erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend ge-

nannten Dieselkraftstoffe mit regenerativen Kraftstoffen, wie Biodiesel.

Besonders bevorzugt wird das erfindungsgemäße Additivgemisch zur 5 Additivierung von Dieselkraftstoffen mit niedrigem Schwefelgehalt, d. h. mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel verwendet.

10

Außerdem ist Gegenstand der vorliegenden Erfindung eine Kraftstoffzusammensetzung, enthaltend eine Hauptmenge eines Kohlenwasserstoff-Kraftstoffs und eine wirksame Menge des erfindungsgemäßen Additivgemischs und gegebenenfalls mindestens einen weiteren
15 Zusatzstoff. Bezüglich geeigneter Kraftstoffe gilt das zuvor gesagte.

Das erfindungsgemäße Additivgemisch liegt im Kraftstoff vorzugsweise in einer Menge von 1 bis 1000 Gew.-ppm, besonders bevorzugt 20 von 20 bis 300 Gew.-ppm und insbesondere von 50 bis 150 Gew.-ppm, bezogen auf die Gesamtmenge des additivierten Kraftstoffs, vor.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Additivkonzentrat, enthaltend das erfindungsgemäße Additivgemisch, 25 wenigstens ein Verdünnungsmittel sowie gegebenenfalls mindestens einen weiteren Zusatzstoff.

Geeignete Verdünnungsmittel sind beispielsweise bei der Erdölverarbeitung anfallende Fraktionen, wie Kerosin, Naphtha oder

30 Brightstock. Geeignet sind darüberhinaus aromatische und aliphatische Kohlenwasserstoffe und Alkoxyalkanole. Bei Mitteldestillaten, insbesondere bei Dieselkraftstoffen bevorzugt verwendete Verdünnungsmittel sind Naphtha, Kerosin, Dieselkraftstoffe, aromatische Kohlenwasserstoffe, wie Solvent Naphtha schwer, Solvesso[®] oder Shellsol[®] sowie Gemische dieser Lösungs- und Verdünnungsmittel.

Das erfindungsgemäße Additivgemisch liegt dabei im Konzentrat in einer Konzentration von 0,1 bis 80 Gew.-%, besonders bevorzugt 40 von 0,1 bis 60 Gew.-% und insbesondere von 15 bis 50 Gew.-%, bezogen auf das Gesamtgewicht des Konzentrats, vor.

Geeignete Zusatzstoffe, die im erfindungsgemäßen Kraftstoff bzw. Konzentrat neben den erfindungsgemäßen Additivgemischen enthalten 45 sein können, insbesondere für Dieselkraftstoffe, umfassen Detergentien, Korrosionsinhibitoren, Dehazer, Demulgatoren, andere übliche Schaumverhinderer ("Antifoam"), Antioxidantien, Metallde-

saktivatoren, multifunktionelle Stabilisatoren, Cetanzahlverbesserer, Verbrennungsverbesserer, Farbstoffe, Marker, Lösungsvermittler, Antistatika, Schmierfähigkeitsverbesserer, die Kälteeigenschaften verbessernde Additive, wie Fließverbesserer ("MDFI"),

5 Paraffindispergatoren ("WASA") und die Kombination der beiden zuletzt genannten Additive ("WAFI"). Geeignete Zusatzstoffe sind beispielsweise beschrieben in Ullmann's Encyclopedia of Industrial Chemistry (1990) Vol. A 16, S. 719 ff., worauf hiermit ausdrücklich Bezug genommen wird.

10

Zu den üblichen Schaumverhinderern gehören die eingangs genannten Polysiloxane, acylierte Polyamine und deren Gemische mit davon verschiedenen N-Acylverbindungen, wie Polyalkenylbernsteinsäureamide.

15

Die synergistisch wirksame Kombination der Komponenten A und B im erfindungsgemäßen Additivgemisch führt zu einer deutlichen Verbesserung der Antischaum-Performance von mit ihm additivierten Kraftstoffen im Vergleich zu Additiven des Standes der Technik.

20

Die nachfolgenden Beispiele sollen die Erfindung veranschaulichen, ohne sie jedoch einzuschränken.

Beispiele

- 25 Die nachfolgend beschriebenen Versuche wurden mit folgenden Kraftstoffen durchgeführt:
 - Dieselkraftstoff gemäß DIN EN 590 mit einem Schwefelgehalt von 48 ppm: Diesel I
- Dieselkraftstoff gemäß DIN EN 590 mit einem Schwefelgehalt von 15 ppm (ULSD): Diesel II
 - Dieselkraftstoff gemäß DIN EN 590 mit einem Schwefelgehalt von 4 ppm (MK1): Diesel III
 - Blend aus 5% Biodiesel in 95% Diesel I: Blend I
 - Blend aus 8% Ethanol in 91% Diesel I (1% Stabilisatorpaket):
- 35 Blend II
 - Gas to Liquid-Kraftstoff: GTL
 - Blend aus 20% GTL in 80% Diesel I: Blend III

Als Schmierfähigkeitsverbesserer wurden folgende Produkte verwen-40 det:

Lubricity I: Produkt, hergestellt gemäß Beispiel 1

Lubricity II: Tallölfettsäuremischung erhältlich unter Handels-45 bezeichnung Kerocom LA 99 von der BASF AG Lubricity III: Fettsäureestermischung mit Glycerinmonooleat als Hauptkomponente.

Als Antischaummittel wurde ein marktübliches Polysiloxan-Derivat 5 mit der Bezeichnung Antischaum eingesetzt.

Beispiel 1: Synthese eines Schmierfähigkeitsverbesserers (Lubricity I)

10 58,4 g (0,2 mol) N,N,N',N'-Tetrakis-(2'-hydroxypropyl)-1,2-ethylendiamin (erhalten aus 1,2-Ethylen-diamin und 4 mol Propylenoxid in Gegenwart von 3 Gew.-% Wasser bezogen auf die Menge des eingesetzten Amins) wurden auf 60-80 °C erwärmt und innerhalb von zwei Stunden unter Rühren mit 110,4 (0,4 mol) Ölsäure versetzt. Dabei fiel der pH-Wert nicht unter 7. Abschließend wurde noch zwei Stunden gerührt. Das erhaltene Produkt besaß einen N-Titer von 2,39 mmol/g.

Beispiel 2: Versuche zur Bestimmung der Antischaum-Performance 20

Die Bestimmung der Antischaum-Performance wurde gemäß BNPe-Test nach Norm NF M 07-075 durchgeführt.

Die additivierten Kraftstoffe bzw. Blends wurden durch Zugabe der 25 o.g. Kombinationen aus jeweils 5 mg/kg Antischaum und 120 mg/kg Schmierfähigkeitsverbesserer Lubricity I bis III erhalten. In der nachfolgenden Tabelle sind die jeweils ermittelten Werte für das Schaumvolumen und die Schaumabbauzeit in trockenen Kraftstoffen aufgeführt.

30

	Kraftstoff	Anti-	Schmierfähig-	Schaumvo-	Schaumabbau-
		schaummit-	keitsverbes-	lumen [ml]	zeit [s]
35		tel	serer		
	Diesel I	0	0	120	63
	Diesel II	0	0	115	46
	Diesel III	0	0	110	35
	Blend I	0	0	110	42
40	Blend II	0	0	100	40
	GTL	0	0	115	57
	Blend III	0	0	115	60
	Diesel I	Antischaum	0	60	14
45	Diesel II	Antischaum	0	55	15
	Diesel III	Antischaum	0	50	13
	Blend I	Antischaum	0	60	16
	Blend II	Antischaum	0	50	12
	GTL	Antischaum	0	60	14

PCT/EP2003/01227
PCT/EP2003/01227

					F
	Kraftstoff	Anti-	Schmierfähig-	Schaumvo-	Schaumabbau-
		schaummit-	keitsverbes-	lumen [ml]	zeit [s]
5		tel	serer		
	Blend III	Antischaum	0	60	14
	Diesel I	Antischaum	Lubricity I	40	5
	Diesel II	Antischaum	Lubricity I	35	6
	Diesel III	Antischaum	Lubricity I	30	4
10	Blend I	Antischaum	Lubricity I	35	6
	Blend II	Antischaum	Lubricity I	30	4
	GTL	Antischaum	Lubricity I	35	5 .
	Blend III	Antischaum	Lubricity I	35	5
	Diesel I	Antischaum	Lubricity II	55	11
15	Diesel II	Antischaum	Lubricity II	55	12
	Diesel III	Antischaum	Lubricity II	60	10
	Diesel I	Antischaum	Lubricity III	60	13
	Diesel II	Antischaum	Lubricity III	55	16
	Diesel III	Antischaum	Lubricity III	50	13

Der Schmierfähigkeitsverbesserer alleine hatte keine positiven 20 Einfluß auf die Schaumwirkung.

Die erfindungsgemäßen Kombinationen aus Antischaum und Lubricity I, II und III zeigten im Vergleich zu der Wirkung von Antischaum allein eine deutlich verbesserte Antischaum-Performance, bei 25 gleicher schmierfähigkeitsverbessernder Wirkung. Besonders hervorragende Ergebnisse erzielt man bei Verwendung von Schmierfähigkeitsverbesserern vom Typ Lubricity I.

30

35

40

Patentansprüche

- 1. Additivgemisch, enthaltend
 - i) als Komponente A wenigstens ein Polysiloxan-Antischaummittel und
- ii) als Komponente B wenigstens eine teilweise oder vollständig neutralisierte Fettsäure, eine langkettige Carbonsäure, einen Ester einer solcher Carbonsäure oder eine
 wenigstens eine dieser Verbindungen umfassende Mischung.
- 2. Additivgemisch nach Anspruch 1, wobei als Komponente A wenigstens ein Polysiloxan der allgemeinen Formel I enthalten ist,

worin

die Reste R jeweils unabhängig voneinander für einen Rest R^1 , R^2 , R^3 , R^4 oder R^5 stehen, worin

- R¹ für einen aromatischen oder gesättigten aliphatischen Kohlenwasserstoffrest steht,
- R² für ein organisches Polyol steht,
- R3 für einen Polyetherrest steht,
- R4 für einen Phenolrest steht,
- R⁵ für einen Rest R² steht, wobei jedoch die Hydroxygruppen ganz oder teilweise zu Diestern, Diethern, Acetalen und/ oder Ketalen umgesetzt sind,
- w = 2 + y + 2 z,
- y und z jeweils unabhängig für eine Zahl von 0 bis 2 stehen, wobei die Summe aus y und z einer Zahl von 0 bis 2 entspricht und
 - w + x + y + z = 20 bis 60.

30

35

5

10

15

25

35

40

3. Additivgemisch nach Anspruch 2, wobei in der Komponente A

 R^1 für $C_1-C_{24}-Alkyl$, $C_3-C_{24}-Cycloalkyl$, $C_4-C_{24}-Alkylcycloalkyl$, $C_6-C_{10}-Aryl$ oder $C_7-C_{18}-Arylalkyl$ steht,

R² für einen gesättigten oder ungesättigten, verzweigten oder unverzweigten aliphatischen Kohlenwasserstoffrest steht, der durch wenigstens zwei Hydroxygruppen substituiert ist und gegebenenfalls durch einen oder mehrere O-Atome unterbrochen ist,

R³ für einen Polyether-Rest steht, der wenigstens 50 Gew.-% Ethylenoxid-Einheiten einpolymerisiert enthält und ein Mole-kulargewicht von bis zu 1.500 aufweist,

der Quotient aus der Anzahl der R^1 -Gruppen und der Anzahl der R^2 -Gruppen (R^1/R^2) 3 bis 19 beträgt und

der Quotient aus der Summe der Anzahl der R^3 -, R^4 - und R^5 -Gruppen und der Anzahl der R^2 -Gruppen [($R^3+R^4+R^5$)/ R^2] 0 bis 2 beträgt.

- 4. Additivgemisch nach einem der vorhergehenden Ansprüche, wobei Komponente B wenigstens eine mit wenigstens einem Amin neutralisierte Fettsäure umfasst.
- 5. Additivgemisch nach Anspruch 4, wobei Komponente B wenigstens ein Fettsäuresalz der Formel II

30

H-(OA)_{x1}

$$\oplus$$

NH

Z

 \oplus

NH

(AO)_{x3}-H

[R-COO \ominus]_{m+1}

(II)

worin

- R für C_7-C_{23} -Alkyl oder ein- oder mehrfach ungesättigtes C_7-C_{23} -Alkenyl, die gegebenenfalls durch eine oder mehrere Hydroxygruppen substituiert sind, steht;
 - A für C₂-C₈-Alkylen steht;
- 45 Eur C_1 - C_8 -Alkylen, C_3 - C_8 -Cycloalkylen oder C_6 - C_{12} -Arylen oder C_7 - C_{20} -Arylalkylen steht;

5

15

- m für eine Zahl von 0 bis 5 steht; und
- x^1 , x^2 , x^3 und x^4 jeweils unabhängig für eine Zahl von 0 bis 24 stehen,

und gegebenenfalls wenigstens eine weitere Fettsäure RCOOH, worin R wie vorstehend definiert ist, umfasst.

- 6. Additivgemisch nach einem der Ansprüche 1 bis 3, wobei Komponente B wenigstens eine gesättigte oder ungesättigte Monooder Polycarbonsäure mit 4 bis 50 Kohlenstoffatomen oder wenigstens einen Ester einer solchen Carbonsäure mit einem einoder mehrwertigen Alkohol mit 1 bis 20 Kohlenstoffatomen und 1 bis 8 Hydroxylgruppen umfasst.
 - 7. Additivgemisch nach einem der vorhergehenden Ansprüche, wobei Komponente A und Komponente B in einem Gewichtsverhältnis von 1:200 bis 1:10 vorliegen.
- 20 8. Verwendung des Additivgemisches, das wie in einem der vorhergehenden Ansprüche definiert ist, zur Additivierung von Kraftstoffzusammensetzungen.
- Verwendung nach Anspruch 8, zur Verbesserung der Antischaum Performance einer Kraftstoffzusammensetzung.
- 10. Kraftstoffzusammensetzung, enthaltend eine Hauptmenge eines Kohlenwasserstoff-Kraftstoffs und eine wirksame Menge eines Additivgemischs, das wie in einem der Ansprüche 1 bis 7 definiert ist, und gegebenenfalls mindestens einen weiteren Zusatzstoff.
- Kraftstoffzusammensetzung nach Anspruch 10 oder Verwendung nach Anspruch 8 oder 9, wobei es sich bei dem Kraftstoff um Dieselkraftstoff, Heizöl oder Kerosin handelt.
- 12. Kraftstoffzusammensetzung oder Verwendung nach Anspruch 11, wobei es sich bei dem Dieselkraftstoff um einen solchen, der durch Raffination, Kohlevergasung oder Gasverflüssigung erhältlich ist, oder um ein Gemisch davon mit regenerativen Kraftstoffen handelt.
- 13. Additivkonzentrat, enthaltend ein Additivgemisch gemäß der Definition in einem der Ansprüche 1 bis 7 und wenigstens ein Verdünnungsmittel sowie gegebenenfalls mindestens einen weiteren Zusatzstoff.