

Strojové učenie II

prednáška 1 – Úvod do učenia posilňovaním

Ing. Ján Magyar, PhD.

Katedra kybernetiky a umelej inteligencie
Technická univerzita v Košiciach
2021/2022 letný semester

- hranie hier
 - častý benchmark
 - zdrojom inovácií v RL
 - šachy, Go, StarCraft, ...

Zdroj: https://www.bbc.com/news/technology-35785875

- autonómne vozidlá
 - spracovanie kamerového obrazu
 - trénovanie na reálnych dátach
 - spojitý priestor akcií

Zdroj: AWS DeepRacer

- riadenie robotov
 - veľký počet trénovacích chodov
 - pomocou simulácií
 - najmä pre priemysel

Zdroj: https://www.youtube.com/watch?v=W4joe3zzglU

- medicína
 - prispôsobenie liečby
 - automatizovaná diagnostika
 - optimalizácia procesov
 - pridelenie zdrojov

- sociálne správanie
 - spracovanie prirodzeného jazyka
 - afektívne systémy
 - personalizácia

Zdroj: Deep Reinforcement Learning for Dialogue Generation

Strojové učenie a RL

Základné charakteristiky RL

- cieľom je natrénovať agenta, ktorý reaguje na prostredie tak, aby dosiahol určený cieľ
- učenie je umožnené cez interakciu s prostredím
- agent dostáva spätnú väzbu

Interakcia s prostredím

- agent získa skúsenosti súčasne s učením
- agent riadi interakciu štýlom pokus-omyl potrebuje úspechy aj neúspechy
- akcie môžu ovplyvniť budúce možnosti agenta

Spätná väzba

- zriedkavá / po každej akcii
- oneskorená / okamžitá často určená pre postupnosť akcií
- ťažko odhadnúť (ne)správnosť akcií agenta
- pre agenta je často relevantná kumulatívna odmena

Čo je potrebné k RL?

- stavy aktuálny status prostredia
- akcie kroky, ktorými agent môže ovplyvniť prostredie
- prechody určujú aktualizáciu stavu prostredia
- politika určuje voľbu akcie
- odmena definuje cieľ interakcie
- (model) umožňuje predikovať chovanie prostredia

Stav

- typy stavu
 - stav prostredia s_t^e
 - agentov stav prostredia s_t^a
 - pozorovanie prostredia o_t
- plná pozorovateľnosť
 - $s_t^e = s_t^a = o_t$
- čiastočná pozorovateľnosť
 - $s_t^e \neq s_t^a$
 - agent aktualizuje s_t^a na základe predošlých pozorovaní
 - $s_t^a = (P[s_t = s_1], P[s_t = s_2], ..., P[s_t = s_n])$

1690 HIGH SCORE 27250

Akcie

- množina akcií, ktoré sú agentovi k dispozícii: $a \in A$
- často diskrétne akcie, ale priestor akcií môže byť aj spojitý
- v každom stave môžu byť dostupné všetky akcie, alebo môžu byť aj limitované
- množina akcií je vždy daná
- nízkoúrovňové / vysokoúrovňové
- fyzické / mentálne

Prechody

- ak agent vyberie niektorú akciu, prostredie na ňu zareaguje a aktualizuje svoj stav
- aktualizácia stavu je popísaná prechodom $T: S \times A \rightarrow S$
- deterministické / nedeterministické
- v niektorých problémoch môžu byť časovo závislé

Politika

- mapuje stav na akciu agenta $\pi: S \to A(s)$
- deterministická $a = \pi(s)$
- stochastická $\pi(a|s) = P[A_t = a|S_t = s]$

Odmena

- agent ju obdrží po zásahu do prostredia
- číselná hodnota
 - kladná odmena, nulová neutrálna, záporná trest
- deterministická / stochastická
- agent by mal maximalizovať kumulatívnu odmenu

Model

- agentova nepovinná reprezentácia prostredia
- predikuje dynamiku a odmenu
- nie je perfektný
- model môže byť poskytnutý, alebo ho agent sám zostrojí, alebo ho vôbec nepotrebuje

-1	-1	-1			10
-1		-1	-1		-1
-1			-1	-1	-1

Sekvenčné rozhodovanie

- agent by mal akcie vyberať tak, aby maximalizoval budúcu kumulatívnu odmenu
- agent v kroku t
 - získava odmenu r_t
 - obdrží pozorovanie o_t
 - updatuje svoju reprezentáciu s_t^a
 - vyberie a vykoná akciu a_t
- prostredie v kroku t
 - na základe akcie a_t zmení svoj stav na s_{t+1}^e
 - pošle informáciu o novom stave o_{t+1}
 - pošle informáciu o odmene r_{t+1}

Interakcia medzi agentom a prostredím

Rozhranie agent-prostredie

- fyzické rozhranie medzi prostredím a agentom (človekom, robotom, atď.)
- je možné, že agent iba vyberie akciu, ale je to už prostredie, ktoré ju vykoná
- poloha rozhrania je daná tým, čo agent ovláda a vie

Explorácia a exploatácia

- mal by sa agent spoliehať na existujúce vedomosti alebo skúmať nové možnosti riešenia?
- trénovanie prebieha počas získavania skúseností (pokus-omyl)
- exploatácia agent využíva známe informácie
- explorácia získavanie viac informácií o prostredí
- ideálne je kombinovať prístupy
- nechceme stratiť príliš z kumulatívnej odmeny

Taxonómia RL

RL Agent Taxonomy

