

December 4 - 5, 2017

Mountain View, CA Computer History Museum

H2O World 2017 Registration Now Open

REGISTER NOW

How to design

Deep Networks to process images on mobile devices

by SK Reddy
Chief Product Officer AI & ML
Digitalist (www.digitalist.global)
linkedin.com/in/sk-reddy/

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

AN ANALYSIS OF DEEP NEURAL NETWORK MODELS FOR PRACTICAL APPLICATIONS

Ref: https://arxiv.org/pdf/1605.07678.pdf

DeepFace (facebook 2014)

Accuracy: 97.35% on the Labeled Faces in the Wild (LFW) dataset

FaceNet (Google, 2015)

WORLD

		-	
_	•		100

Accuracy

- 99.63% for Labeled Faces in the Wild (LFW) dataset
- 95.12% for YouTube Faces DB

						_
laver	size-in	size-out	kernel	param	FL	inc
conv1	220×220×3	110×110×64	7×7×3,2	9K	11:	inc
pool1	110×110×64	55×55×64	3×3×64,2	0	***	inc
rnorm1	55×55×64	55×55×64	5115715115	0		avg
conv2a	55×55×64	55×55×64	1×1×64.1	4K	13	full
conv2	55×55×64	55×55×192	3×3×64,1	111K	335	L2
rnorm2	55×55×192	55×55×192	Onto Maria	0	200	tota
pool2	55×55×192	28×28×192	3×3×192, 2	0		. 000
conv3a	28×28×192	$28 \times 28 \times 192$	$1 \times 1 \times 192, 1$	150	291	м
conv3	28×28×192	28×28×384	$3 \times 3 \times 192, 1$	5/15(-0)(5/0)(1	521	M
pool3	28×28×384	$14 \times 14 \times 384$	$3 \times 3 \times 384, 2$			
conv4a	14×14×384	14×14×384	$1 \times 1 \times 384, 1$		291	М
сопу4	14×14×384	$14 \times 14 \times 256$	$3 \times 3 \times 384, 1$	885K	173	M
conv5a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	131	M
conv5	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K	116	M
conv6a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	131	M
conv6	$14 \times 14 \times 256$	14×14×256	$3 \times 3 \times 256, 1$	590K	116	M
pool4	$14 \times 14 \times 256$	7×7×256	$3 \times 3 \times 256, 2$	0	05-003	925
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$	8	0		
fc1	$7 \times 7 \times 256$	$1 \times 32 \times 128$	maxout p=2	103M	103	M
fc2	$1 \times 32 \times 128$	$1 \times 32 \times 128$	maxout p=2	34M	341	M
fc7128	$1 \times 32 \times 128$	$1 \times 1 \times 128$	000000000000000000000000000000000000000	524K	0.5	M
L2	$1\times1\times128$	$1 \times 1 \times 128$		0		
total				140M	1.6	В

type	size	depth	#1×1	#3×3	#3×3	reduce	#5×5	proj (p)	params	FLOPS
conv1 (7×7×3, 2)	112×112×64	1							9K	119M
max pool + norm	56×56×64	.0						m 3×3, 2		
inception (2)	$56 \times 56 \times 192$	2		64	192				115K	360M
norm + max pool	28×28×192	0		10000	71.75-077			m 3×3, 2		
inception (3a)	28×28×256	2	64	96	128	16	32	m, 32p	164K	128M
inception (3b)	28×28×320	2	64	96	128	32	64	L_2 , 64p	228K	179M
inception (3c)	$14 \times 14 \times 640$	2	0	128	256,2	32	64,2	m 3×3,2	398K	108M
inception (4a)	$14 \times 14 \times 640$	2	256	96	192	32	64	L ₂ , 128p	545K	107M
inception (4b)	14×14×640	2	224	112	224	32	64	L ₂ , 128p	595K	117M
inception (4c)	$14 \times 14 \times 640$	2	192	128	256	32	64	L2, 128p	654K	128M
inception (4d)	$14 \times 14 \times 640$	2	160	144	288	32	64	L2, 128p	722K	142M
inception (4e)	7×7×1024	2	0	160	256,2	64	128,2	m 3×3,2	717K	56M
inception (5a)	7×7×1024	2	384	192	384	48	128	L2, 128p	1.6M	78M
inception (5b)	7×7×1024	2	384	192	384	48	128	m, 128p	1.6M	78M
avg pool	$1 \times 1 \times 1024$	0								
fully conn	$1 \times 1 \times 128$	1							131K	0.1M
L2 normalization	$1 \times 1 \times 128$	0							111111111111111111111111111111111111111	
total									7.5M	1.6B

GoogleNet (Inception)

$$\sum_{i}^{N} \left[\left\| f(x_{i}^{a}) - f(x_{i}^{p})
ight\|_{2}^{2} - \left\| f(x_{i}^{a}) - f(x_{i}^{n})
ight\|_{2}^{2} + lpha
ight]_{+}$$

Triplet loss equation

Zeiler&Fergus

FaceNet: A Unified Embedding for Face Recognition and Clustering; https://arxiv.org/pdf/1503.03832.pdf; https://hackernoon.com/building-a-facial-recognition-pipeline-with-deep-learning-in-tensorflow-66e7645015b8

Apple 2017: An On-device Deep Neural Network for Face Detection

MobileNets 2017

Left: Standard convolutional layer with BN and ReLU.

Right: Depthwise Separable conv with Depthwise and Pointwise layers followed by BN and ReLU

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
Conv MobileNet	71.7%	4866	29.3	
MobileNet	70.6%	569	4.2	

Table	I. MobileNet Body Archi	tecture	2017
Type / Stride	Filter Shape	Input S	Size
Conv / s2	$3 \times 3 \times 3 \times 32$	224 ×	224×3
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	112 ×	112×32
Conv / s1	$1 \times 1 \times 32 \times 64$	112 ×	112×32
Conv dw / s2	$3 \times 3 \times 64$ dw	112 ×	112×64
Conv/s1	$1 \times 1 \times 64 \times 128$	56×5	6×64
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	56×5	6×128
Conv/s1	$1 \times 1 \times 128 \times 128$	56×5	6×128
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	56×5	6×128
Conv / s1	$1 \times 1 \times 128 \times 256$	28×2	8×128
Conv dw / s1	$3 \times 3 \times 256$ dw	28×2	8×256
Conv / s1	$1 \times 1 \times 256 \times 256$	28×2	8×256
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	28×2	8×256
Conv / s1	$1 \times 1 \times 256 \times 512$	14×1	4×256
5× Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	14×1	4×512
Conv/s1	$1 \times 1 \times 512 \times 512$	14×1	4×512
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	14×1	4×512
Conv / s1	$1\times1\times512\times1024$	7×7	× 512
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	7×7	× 1024
Conv/s1	$1\times1\times1024\times1024$	7×7	× 1024
Avg Pool / s1	Pool 7 × 7	7×7:	× 1024
FC / s1	1024×1000	1×1:	× 1024
Softmax / s1	Classifier	1×1:	× 1000

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications; https://arxiv.org/pdf/1704.04861.pdf

ShuffleNet 2017:

An Extremely Efficient Convolutional Neural Network for Mobile Devices

Ref: https://arxiv.org/pdf/1707.01083.pdf

For mobile devices for 10-150 MFLOPS

ShuffleNet Units. a) bottleneck unit with depthwise convolution (DWConv); b) ShuffleNet unit with pointwise group convolution (GConv) and channel shuffle; c) ShuffleNet unit with stride = 2

Layer	Output size	KSize St	Stride Repeat		Output channels (g groups)				
					g = 1	g = 2	g = 3	g = 4	g = 8
Image	224×224				3	3	3	3	3
Conv1 MaxPool	$\begin{array}{c} 112\times112\\ 56\times56 \end{array}$	$\begin{array}{c} 3\times 3 \\ 3\times 3 \end{array}$	2 2	1	24	24	24	24	24
Stage2 ¹	$\begin{array}{c} 28\times28 \\ 28\times28 \end{array}$		2	1 3	144 144	200 200	240 240	272 272	384 384
Stage3	$14 \times 14 \\ 14 \times 14$		2	1 7	288 288	400 400	480 480	544 544	768 768
Stage4	7 × 7 7 × 7		2 1	1 3	576 576	800 800	960 960	1088 1088	1536 1536
GlobalPool	1 × 1	7×7							
FC					1000	1000	1000	1000	1000
Complexity ²					143M	140M	137M	133M	137M

ShuffleNet vs. MobileNet [12] on ImageNet Classification

Model	Complexity (MFLOPs)	Cls err. (%)	Δ err. (%)
1.0 MobileNet-224	569	29.4	
ShuffleNet $2 \times (g = 3)$	524	29.1	0.3
0.75 MobileNet-224	325	31.6	
ShuffleNet $1.5 \times (g = 3)$	292	31.0	0.6
0.5 MobileNet-224	149	36.3	-2
ShuffleNet $1 \times (g = 3)$	140	34.1	2.2
0.25 MobileNet-224	41	49.4	-
ShuffleNet $0.5 \times (arch2, g = 8)$	40	42.7	6.7
ShuffleNet $0.5 \times$ (shallow, $g = 3$)	40	45.2	4.2

Deep Bilateral Learning for Real-Time Image Enhancement (2017)

Ref: https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf

CapsuleNet 2017: Dynamic Routing Between Capsules

Thank you

SK Reddy www.linkedin.com/in/sk-reddy/

We are hiring!!