CSC309 Programming on the Web

week II: cryptography

Amir H. Chinaei, Spring 2017

Office Hours: M 3:45-5:45 BA4222

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

some contents are from:

- Computer networking: a top-down approach, Ross

review

security requirements

- attack vectors
- * this week
 - cryptography
 - to preserve confidentiality and integrity

friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages

the language of cryptography

m plaintext message $K_A(m)$ ciphertext, encrypted with key $K_A(m) = K_B(K_A(m))$

breaking an encryption scheme

- cipher-text only attack: Trudy has ciphertext she can analyze
- two approaches:
 - brute force: search through all keys
 - statistical analysis

- known-plaintext attack:
 Trudy has plaintext
 corresponding to ciphertext
 - e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,
- chosen-plaintext attack:
 Trudy can get ciphertext for chosen plaintext

symmetric key cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: K_S

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
- Q: how do Bob and Alice agree on key value?

simple encryption scheme

substitution cipher: substituting one thing for another

monoalphabetic cipher: substitute one letter for another

```
plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq
```

e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

encryption key: mapping from set of 26 letters to set of 26 letters

a more sophisticated encryption approach

- * n substitution ciphers, $M_1, M_2, ..., M_n$
- cycling pattern:
 - e.g., n=4: M_1, M_3, M_4, M_3, M_2 ; M_1, M_3, M_4, M_3, M_2 ; ...
- for each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
 - dog: d from M₁, o from M₃, g from M₄

Encryption key: n substitution ciphers, and cyclic pattern

key need not be just n-bit pattern

symmetric key crypto: des

des: data encryption standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is des?
 - des challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - no known good analytic attack
- making des more secure:
 - **3des**: encrypt 3 times with 3 different keys

symmetric key crypto: **des**

des operation

initial permutation

16 identical "rounds" of function application, each using different 48 bits of key

final permutation

aes: advanced encryption standard

- symmetric-key NIST standard, replaced des (nov 2001)
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking I sec on des, takes I49 trillion years for aes

public key crypto

symmetric key crypto

- requires client & server know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

public key crypto

- radically different approach [Diffie-Hellman76, RSA78]
- client & server do not share secret key
- public encryption key known to all
- private decryption key known only to server

public key crypto

public key encryption algorithms

requirements:

- 1 need $K_B^+(\cdot)$ and $K_B^-(\cdot)$ such that $K_B^-(K_B^+(m)) = m$
- given public key K_B⁺, it should be impossible to compute private key K_B

RSA: Rivest, Shamir, Adelson algorithm

prerequisite: modular arithmetic

- x mod n = remainder of x when divide by n
- facts:

```
(a+b) mod n = [(a mod n) + (b mod n)] mod n
(a-b) mod n = [(a mod n) - (b mod n)] mod n
(a*b) mod n = [(a mod n) * (b mod n)] mod n
```

thus

```
a^d \mod n = (a \mod n)^d \mod n
```

* example: x=14, n=10, d=2: $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$ $x^d = 14^2 = 196 \quad x^d \mod 10 = 6$

rsa: getting ready

- message: just a bit pattern
- bit pattern can be represented by an integer number
- thus, encrypting a message is equivalent to encrypting a number

example:

- m= 10010001. This message is uniquely represented by the decimal number 145.
- * to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

rsa: creating public/private key pair

- I. choose two large prime numbers p, q (e.g., 1024 bits each)
- **2.** compute n = pq, z = (p-1)(q-1)
- 3. choose e (with e < n) that has no common factors with z (e, z are "relatively prime").
- 4. choose d such that ed-1 is exactly divisible by z (in other words: $ed \mod z = 1$).
- 5. public key is (n,e). private key is (n,d).

rsa: encryption, decryption

- 0. given (n,e) and (n,d) as computed above
- I. to encrypt message m (< n), compute $c = m^e \mod n$
- 2. to decrypt received bit pattern, c, compute $m = c^d \mod n$

magic
$$m = (m^e \mod n)^d \mod n$$
 happens!

rsa example:

Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively prime). d=29 (so ed-1 exactly divisible by z).

encrypting 8-bit messages.

decrypt:
$$\begin{array}{cccc} & & & & \\ &$$

rsa: another important property

The following property will be very useful later:

$$K_B(K_B(m)) = m = K_B(K_B(m))$$

use public key first, followed by private key

use private key first, followed by public key

result is the same!

why
$$K_B(K_B^+(m)) = m = K_B^+(K_B^-(m))$$
?

follows directly from modular arithmetic:

```
(m^e \mod n)^d \mod n = m^{ed} \mod n
= m^{de} \mod n
= (m^d \mod n)^e \mod n
```

why is rsa secure?

- * suppose you know Bob's public key (n,e). How hard is it to determine d?
- essentially need to find factors of n without knowing the two factors p and q
 - fact: factoring a big number is hard
 - e.g., 2 years to factor a 232-digit number

pk crypto in practice: digital signatures

- cryptographic technique analogous to handwritten signatures:
- sender (Bob) digitally signs document, establishing he is document owner/creator
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

digital signatures

simple digital signature for message m:

* Bob signs m by encrypting with his private key K_B , creating "signed" message, $K_B(m)$

digital signatures

- suppose Alice receives msg m, with signature: m, K_B(m)
- Alice verifies m signed by Bob by applying Bob's public key K_B^+ to $K_B^-(m)$ then checks $K_B^+(K_B^-(m)) = m$
- ❖ If $K_B^+(K_B^-(m)) = m$, whoever signed m must have used Bob's private key

Alice thus verifies that:

- ✓ Bob signed m
- ✓ no one else signed m
- ✓ Bob signed m and not m¹

non-repudiation:

✓ Alice can take m, and signature $K_B(m)$ to court and prove that Bob signed m

pk crypto in practice: pk certification

- motivation: Trudy plays pizza prank on Bob
 - Trudy creates e-mail order:
 Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob
 - Trudy signs order with her private key
 - Trudy sends order to Pizza Store
 - Trudy sends to Pizza Store her public key, but says it's Bob's public key
 - Pizza Store verifies signature; then delivers four pepperoni pizzas to Bob
 - Bob doesn't even like pepperoni

public-key certification

- certification authority (CA): binds public key to particular entity, E.
- E (person, router) registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E's public key digitally signed by CA CA says "this is E's public key"

pk crypto in practice: session keys

- exponentiation in rsa is computationally intensive
- * des is at least 100 times faster than rsa
- idea:
 - public key crypto is used to establish secure connection, then second key (e.g. symmetric session key) is exchanged for encrypting data

session key, K_S

- ❖ Bob and Alice use rsa to exchange a symmetric key K_S
- once both have K_S, they use symmetric key cryptography

concept underlying SSL/TLS

Secure Socket Layer/Transport Layer Security

pk crypto in practice:

- you get a ssl certificate for your server
 - this includes, a pair of public and private keys
- once the certificate is installed on your server
- clients' browsers can verify it, via the trusted CA's they know
- before sending you a secret key and exchanging messages with your server

http://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660.htm cryptography 11-29

final exam: cover page

CSC309H1S Duration – 3 hours

No Aids Allowed

Student Number:	
Last (Family) Name(s):	
First (Given) Name(s):	
Team Number:	

Do **not** turn this page until you have received the signal to start. In the meantime, please fill out the identification section above, and read the instructions below carefully.

This exam consists of 7 questions on 32 pages (including this one). Pages 10 to 31 consist of code snippets from projects.

Please answer questions in the space provided. You will earn 20% for any question you leave blank or write "I cannot answer this question," on. We think we have provided a lot of space for your work, but please do not feel you need to fill all available space.

You must achieve at least 40% of this exam to pass the course.

Write neatly and concisely. If we cannot read it, we cannot grade it.

GOOD LUCK!

Question	1	2	3	4	5	6	7	Total
Initial								
Mark	/16	/15	/12	/12	/10	/15	/20	/100

Page 1 of 32 11-31