Γ_1

Describe an optimal solution of the dual program.

Solution. Let c(e) be lengths of edges and

$$d(u) := \begin{cases} 0, u = s \\ \text{the length of the shortest path from } s \text{ to } u, \text{ otherwise} \end{cases}$$

Without loss of generality, we fix $z'_s = 0$. We claim that $z'_u = d(u)$ is an optimal solution.

- $\forall v \in V, z'_v = d(v) \in \mathbf{R}.$
- $\forall e = (u, v) \in E$, assume that d(v) d(u) > c(e). This suggests that the length of the shortest path from s to t with length d(u) + c(e), which is a contradiction to the definition.
- $z'_t z'_s$ is maximized by letting $z'_v = d(v)$:

Assume that $z'_t - z'_s = z'_t > d(t)$.

Let the shortest path from s to t be v_1, v_2, \dots, v_r where $v_1 = s$ and $v_r = t$. We have $d(v_{i+1}) = d(v_i) + c((v_i, v_{i+1}))$. We next prove that $\forall i \in [r], z'_{v_i} > d(v_i)$ by induction from r to 1.

- Base: $z'_{v_r} > d(v_r)$ by our previous assumption.
- Inductive step: By inductive hypothesis, we have $z'_{v_{i+1}} > d(v_{i+1})$ for $i \in [r-1]$.

Then
$$z'_{v_i} + c(e_i) \ge z'_{v_{i+1}} > d(v_{i+1}) = d(v_i) + c(e_i) \implies z'_{v_i} > d(v_i).$$

Hence, $z'_s > d(s) = 0$, which is a contradiction.

Therefore, $z_u' = d(u)$ is an optimal solution to the dual program.