Computing Semilinear Sparse Models for Approximately Eventually Periodic Signals

Fredy Vides¹

¹Scientific Computing Innovation Center
Universidad Nacional Autónoma de Honduras **UNAH-CU**

MATHMOD 2022

Motivation:

- Neural network model identification for approximately eventually periodic systems.
- ▶ Data driven discovery of cyber-physical systems (CPS)·

Example of a periodically driven CPS

Data driven discovery of periodically driven cyber-phsycal systems

Figure: Some components of a periodically driven CPS. (Sensor courtesy of UNM CARC/SMILab)

Digital Twin Approach to Automatic Modeling of a CPS

Figure: Finite automaton corresponding to a digital twin for a neural network autoregressive model.

Delay embeddings for approximately eventually periodic (AEP) signals

- ▶ A time series $\Sigma = \{x_t\}_{t \geq 1} \subset \mathbb{R}$ is approximately eventually periodic (AEP) if:
 - For each $\varepsilon > 0$, there are S, T > 0 such that:

$$|x_{t+kT}-x_t|\leq \varepsilon$$

for each t > S and each k > 0.

▶ Given L > 0 and a time series $\Sigma = \{x_t\}_{t > 1} \subset \mathbb{R}$:

$$\mathbf{x}_L(t) = \begin{bmatrix} x_{t-L+1} & x_{t-L+2} & \cdots & x_{t-1} & x_t \end{bmatrix} \in \mathbb{R}^L$$

Evolution operator identification (EOI) problem:

- Given:
 - \triangleright L, M > 0,
 - ▶ a mapping $\mathbf{T}: \mathbb{R}^L \times \mathbb{R}^{M \times R} \to \mathbb{R}^L$,
 - ▶ and a functional $\rho : \mathbb{R}^L \to \mathbb{R}$.
- ▶ Identify a matrix of parameters $\mathbf{P} \in \mathbb{R}^{M \times R}$ such that for some N > L:
 - $\mathbf{P} := \arg\min_{\mathbf{Q} \in \mathbb{R}^{M \times R}} \sum_{t=L}^{N} |x_{t+1} \rho \left(\mathbf{T}(\mathbf{x}_{L}(t), \mathbf{Q}) \right)|^{2},$
 - ▶ and $T(\cdot, P) \approx \mathscr{T}$.

with
$$\mathcal{T}(\mathbf{x}_L(t)) = \mathbf{x}_L(t+1)$$
 for each $L \le t \le N$.

Recursive neural network representation of evolution operators & block:

Colaborative scheme for automatic modeling:

(2)

Sparse matrix representation

Sparse approximation

Given $\delta > 0$ and two matrices $X \in \mathbb{R}^{n \times m}$ and $A \in \mathbb{R}^{m \times r}$. \hat{A} is an approximate sparse representation of A (with respect to X), if $\|XA - A\hat{X}\|_F \leq C\delta$ for some $C \geq 0$ that does not depend on δ , and \hat{A} has fewer nonzero elements than A.

Remark

The theorem 1 in this contribution, provides a solvability criterion for sparse representation problems, in the context of Hankel matrix based system identification and model reduction.

Semilinear sparse representation techniques

- Because of the network architecture (2) we call these models semilinear.
- For each block \mathbf{B}_{j} in the input layer of (2):

$$\mathbf{B}_j \longleftrightarrow (EOI) \ \mathbf{T}(\cdot, \mathbf{P})$$

- For some EOI one can apply Theorem 1 in this contribution to find a matrix of parameters P̂ (a sparsification of P) such that:
 - $\qquad \qquad T(\cdot,\hat{\mathbf{P}})\approx T(\cdot,\mathbf{P}),$
 - P has fewer nonzero elements than P.
- After fitting each input block B_j, the parameters of the mixing layer of (2) are fitted/sparsified.

Autoencoders for Model Simplification

Model sparsification via local autoencoder identification

Implicitly one computes devices of the form:

to obtain an approximate representation $\hat{\mathbf{x}}(t)$ of the original signal $\mathbf{x}(t)$ based on coded signal $\mathbf{y}(t)$.

- ▶ The device E is called an encoder.
- ► The device **D** is a decoder.

Topologically controlled model simplification via linear autoencoders

Model simplification (sparsification) of linear approximants of evolution operators:

Given an integer L > 0, one looks for autoencoders of the form:

$$\mathbb{R}^{L} - \stackrel{\mathsf{E}}{=} \mathbb{R}^{n} - \stackrel{\mathsf{D}}{=} \mathbb{R}^{L}$$

for some n < L.

▶ together with a matrix $\mathbb{T} \in \mathbb{R}^{n \times n}$ with spectrum $\Lambda(\mathbb{T}) \subset \mathbf{S}^1$ such that

$$\mathscr{T}(\mathbf{x}_L(t)) \approx \mathbf{T}(\mathbf{x}_L(t)), \hat{\mathbf{P}}) := \mathbf{D} \circ \mathscr{T}_{\mathbb{T}} \circ \mathbf{E}(\mathbf{x}_L(t))$$

for each $L \le t \le N$ and some N > 0.

• with $\mathscr{T}_{\mathbb{T}}(\mathbf{x}) = \mathbb{T}\mathbf{x}$.

Van Der Pol attractor signal identification:

Figure: Identified signals for: SpAR model (top left), AR model (bottom left). Coefficients of linear parts of: SpAR model (top right), AR model (bottom right)

Van Der Pol attractor signal identification:

Figure: Spectra of local matrix representations \mathbb{T} of linear parts of: SpAR model (top left), AR model (top right). Spectra of matrix powers \mathbb{T}^T of linear parts of: SpAR model (bottom left), AR model (bottom right), for T=295.

Summary for this experiment

Table: RMSE

	SpARS Model	AR Model
RMSE	0.0038019704	0.0043147522

Table: Training Data Samples Sizes

Model	Sample size
Sparse AR	899
Standard AR	1850
GRU block 1	950
GRU block 2	950
Mixing coefficients	1000

Conclusion

Semilinear sparse model representation techniques can be used for signal model identification with relatively scarce noisy data.

Future work

- Extend the structured matrix representation techniques presented in this contribution to other types of attractors.
- Consider other shallow recurrent neural network architectures.

References

- T. Loring, F. Vides (2020). Computing Floquet Hamiltonians with Symmetries. Journal of Mathematical Physics.
- 2. Vides, F. (2021). Sparse system identification by low-rank approximation. CoRR, abs/2105.07522. URL https://arxiv.org/abs/2105.07522.
- Vides, F. (2021). Computing Semilinear Sparse Models for Approximately Eventually Periodic Signals. URL https://arxiv.org/abs/2110.08966.
- 4. F. Vides. NeuralNOR GitHub web page: https://github.com/FredyVides/SPAAR

Questions?

Thanks!