Math 395

Homework 4

Due: 10/3/2024

Name:	Gianluca Crescenzo

Exercise 1. Let $T \in \text{Hom}_F(V, V)$. Prove that the intersection of any collection of T-invariant subspaces of V is T-invariant.

Proof. Let $\{W_i\}_{i\in I}$ be a collection of T-stable subspaces of V. Let $x\in T\left(\bigcap_{i\in I}W_i\right)$. Then $x\in T(W_i)$ for all $i\in I$. So $x\in W_i$ for all $i\in I$, establishing $x\in\bigcap_{i\in I}W_i$. Thus $T\left(\bigcap_{i\in I}W_i\right)\subseteq\bigcap_{i\in I}W_i$.

Exercise 2. Let $T \in \text{Hom}_F(V, V)$ and $v \in V$. Prove that if $T^j(v) \in W = \text{span}_F(v_1, ..., v_n)$ and W is T-invariant, then $T^{j+t}(v) \in W$ for all $t \ge 0$.

Proof. We prove this by induction on t. Let t = 0 be the base case, then by assumption $T^{j}(v) \in W$. Assume our hypothesis to be true up to t - 1. Then:

$$T^{t}(T^{j}(v)) = T(T^{t-1}(T^{j}(v))).$$

Our induction hypothesis gives $T^{t-1}(T^j(v)) \in W$, and since $T(W) \subseteq W$, we have:

$$T^{j+t}(v) = T(T^{t-1}(T^{j}(v))) \in W.$$