미시경제학 *Microeconomic Theory*

생산기술

서울시립대 성낙일 교수

강의 순서

- 1. 기업: 생산주체
- 2. 단기의 생산기술
- 3. 장기의 생산기술
- 4. 규모수익

1. 기업: 생산주체

기업의 생산과정: 생산기술

생산함수: 주어진 투입량을 이용해 효율적인 기업이 생산할수 있는 (기술적으로 가능한) 최대 산출량을 나타내는 함수

생산요소 (또는 투입요소)

- 노동=종업원 또는 노동자
 - 실제로는 종업원의 노동 일수 또는 노동시간
- 자본=설비 및 장비(plant and equipment)
 - 내용연수(service life)가 일정기간 이상 지속되는 비노동 생산요소
 - 실제로는 자본재의 생산 활동량(자본서비스)이 생산과정에 투입되는 것임
- 재료 및 중간재
 - 생산과정에 소모품으로 사용되는 비노동 생산요소

경제학에서 단기와 장기의 개념

단기	장기
하나 이상의 생산요소 투입량이 고정된 경우	모든 생산요소의 투입량을 조정할 수 있는 경우 ※ 적절한 생산요소의 조합을 선택할 수 있음
기업의 진입과 퇴출이 자유롭지 못한 경우	기업의 진입과 퇴출이 자유롭게 이루어지는 경우

고정투입요소와 가변투입요소

■ 고정(투입)요소와 가변(투입)요소

- 고정투입요소(fixed inputs): 투입량의 변화가 불가능한 생산요소
- 가변투입요소(variable inputs): 투입량을 자유롭게 변화시킬 수 있는 생산요소

■ 단기와 장기의 재정의

- 단기: 하나 이상의 고정투입요소가 존재하는 경우
- 장기: 모든 투입요소가 가변투입요소인 경우
- ※ 앞으로 투입요소가 노동과 자본으로만 구성되어 있다고 가정

기업의 두 가지 과제

- 제품을 얼마만큼 생산할 것인가? "생산량을 어떤 수준에서 결정할 것인가?"
- (목표로 정한 산출량을 생산하기 위해) 각 생산요소를 얼마만큼 구입할 것인가?

"각 생산요소의 구입비율을 어떻게 조정할 것인가?"

기업의 목적(또는 최적화)

- 제품을 얼마만큼 생산할 것인가?
 - → 기업은 가급적 이윤을 높이려고 노력하며, 이 과정 에서 산출량을 결정
 - <u>→ 이윤극대화 가설</u>
- 각 생산요소를 얼마만큼 구입할 것인가?
 - → 기업은 가급적 생산비용을 줄이려고 노력하며, 이 과정에서 생산요소의 구입량을 결정
 - → <u>비용극소화 가설</u>

소비자와 생산자의 최적선택 비교

	소비자이론	생산자이론		
모저	효용극대화	비용극소화		
목적		(이윤극대화)		
효용함수-효용곡면		생산함수-생산곡면		
목적함수	무차별곡선-	등량곡선-		
	한계대체율	한계기술대체율		
	한계효용	한계/평균 생산(비용)		
제약조건	예산선-상대가격	등비용곡선-상대가격		
최적조건	한계(기술)대체율=상대가격비율			
선택경로	소득변화-소득소비곡선	산출량변화-확장경로		

2. 단기의 생산기술

단기 생산함수

■ 단기에 자본의 투입량이 고정되어 있다고 가정

■ 단기의 총생산함수: Q = f(L, K)

노동의 평균생산과 한계생산

■ 노동의 평균생산(average product)

$$AP_L = \frac{\text{산출량}}{\text{노동투입량}} = \frac{Q}{L}$$

■ 노동의 한계생산(marginal product)

$$MP_L = \frac{$$
산출량의 변화 $}{$ 노동투입량의 변화 $} = \frac{\Delta Q}{\Delta L}$

- ※ 일반적으로 말하는 노동생산성은 노동의 평균생산 을 의미
- ※ 이 생산성 개념은 장기에도 사용할 수 있음

한계생산체감의 법칙

- 단기의 생산함수가 S자 모양을 갖는 이유
 - 노동투입량이 적을 때는 전문화 및 분업의 이익이 작동해 산출량이 빨리 증가
 - 노동투입량이 많아지면 비효율성이 발생해 산출량 증가속도가 하락

■ 한계생산체감의 법칙: Law of diminishing MP or diminishing (marginal) returns

한계생산체감의 법칙

Malthus의 예측

- Malthus의 예측
 - 한계생산체감의 법칙에 따라 농산물 증산에는 한계가 있으나 인구는 지속적으로 증가해, 농산물 부족 및 기근현상이 발생할 것이라고 주장
- 질문: Malthus의 예측이 틀린 이유는 무엇인가?

단기에 있어서 기술진보의 효과

❖ 농산물 수요도 증가 했지만 기술진보로 농산물 공급이 그 이상으로 증가해 1인당 농산물 소비량은 계속 증가

월간 노동투입량

평균생산곡선과 한계생산곡선

■ 평균생산곡선

• 원점에서 총생산곡선의 한 점을 잇는 선분의 기울기

■ 한계생산곡선

- 총생산곡선의 한 점에서 접선의 기울기
- 한계생산체감의 법칙(law of diminishing MP)이 작용하기 시작하는 점을 확인할 것

AP 및 MP 곡선의 도출과정

AP 및 MP 곡선의 도출과정

3. 장기의 생산기술

생산곡면

■ 노동과 자본의 투입량을 조정할 수 있음

- 장기의 총생산함수: Q = f(L, K)
- 생산곡면(production surface)
 - 총생산함수를 3차원 공간에 그린 것
 - 총생산함수의 모양은 후술할 규모의 경제에 의해 결정됨(한계생산체감의 법칙과 무관)

등량(곡)선

- 등량(곡)선(isoquant) 또는 등생산곡선 (iso-product curve)
 - 동일한 수준의 산출량을 생산할 수 있는 노동과
 자본의 조합을 그림으로 나타낸 것
 - 생산곡면-등량곡선 ↔ 효용곡면-무차별곡선
- 등량곡선의 성격은 무차별곡선과 동일
 - 재화(양의 한계효용)를 생산요소(양의 한계생산)로 대체

등량곡선

한계기술대체율

- 한계기술대체율(MRTS: marginal rate of technical substitution)
 - 자본을 줄이면서도 이전과 동일한 산출량을 생산하기 위해서 늘여야 하는 노동의 비율
 - 등량곡선의 기울기(절대치)
- 한계생산과 한계기술대체율의 관계

$$MP_L \times \Delta L = -MP_K \times \Delta K \implies$$

$$MRTS_{L,K} = -\frac{\Delta K}{\Delta L}\Big|_{(\text{Slot Algren})} = \frac{MP_L}{MP_K}$$

한계기술대체율 체감의 법칙

무차별곡선의 기본성격(복습)

- 무차별곡선은 우하향한다.
- 무차별곡선이 원점에서 더 멀리 떨어질수록 더 높은 효용수준을 나타낸다.
- 두 무차별곡선은 서로 교차할 수 없다.
- 무차별곡선은 원점에 대해 볼록하다.
 - ※한계대체율 체감의 법칙이 성립한다.

등량곡선의 기본성격

- 등량곡선은 우하향한다.
- 등량곡선은 원점에서 더 멀리 떨어질수록 더 높은 산출량을 나타낸다.
- 두 등량곡선은 서로 교차할 수 없다.
- 등량곡선은 원점에 대해 볼록하다.
 - ※ 한계기술대체율 체감의 법칙이 성립한다. 즉 등량선의 양 끝점으로 갈수록 한 요소의 투입량을 줄여 다른 요소를 대체하기가 어려워진다.

콥-더글라스 생산함수 (Cobb-Douglas Production Function)

월간 자본투입량 (machine hours)

(hours)

선형생산함수

자본 투입 량

노동과 자본의 일정 단위가 산출량 증가에 기여하는 정도가 동일(완전대체재)

■ 한계기술대체율: 상수

노동투입량

레온티에프 생산함수 (고정비율생산함수)

 Q_3

- 생산요소 투입비율 이 고정 (완전보완재)
- 한계기술대체율:0또는 무한대

4. 규모수익

※ 장기의 경우에만 규모수익을 정의할 수 있다는 점을 유념

규모수익의 정의

모든 생산요소를 h배 늘였을 때

- ✓ 산출량도 h배 증가 \rightarrow 규모수익불변(constant RTS) f(hL,hK) = hf(L,K)
- ✓ 산출량이 h배 이상 증가 → 규모수익체증 (increasing RTS) 또는 규모의 경제(economies of scale)

✓ 산출량이 h배 이하 증가 → 규모수익체감(decreasing RTS) 또는 규모의 불경제(diseconomies of scale)

규모수익의 정의: 수치 예

배수(h)	1	2	3	4	5	6
노동투입량(L)	5	10	15	20	25	30
자본투입량(K)	10	20	30	40	50	60
규모수익불변 생산기술	10	20	30	40	50	60
규모수익체증 생산기술	10	23	40	60	90	130
규모수익체감 생산기술	10	18	25	31	36	40

규모수익불변 생산기술의 등량곡선

규모수익체증 생산기술의 등량곡선

규모수익체감 생산기술의 등량곡선

규모수익, 생산곡면과 등량곡선

	생산곡면의 모양	(산출량이 일정하게 증가할 경우) 등량곡선의 모양
규모수익불변	생산곡면의 능선이 일정한 기울기	등량곡선도 똑같은 간격으로 이동
규모수익체증	볼록한 모양 (산출량 증가율이 증가)	원점에서 멀어질수록 등량곡선의 간격이 더 좁아짐
규모수익체감	오목한 모양 (산출량 증가율이 감소)	원점에서 멀어질수록 등량곡선의 간격이 더 커짐

콥-더글라스 생산함수와 규모수익

$$Q = AL^{\alpha}K^{\beta}$$
 \Rightarrow $\log Q = \log A + \alpha \log L + \beta \log K$ $f(hL, hK) = A(hL)^{\alpha}(hK)^{\beta} = h^{\alpha+\beta}AL^{\alpha}K^{\beta}$ $= h^{\alpha+\beta}f(L, K)$ \Leftrightarrow $hf(L, K)$ $\alpha + \beta = 1$ 규모수익불변(1차 동차 생산함수) $\alpha + \beta > 1$ 규모수익체증 $\alpha + \beta < 1$ 규모수익체감

기타 생산함수와 규모수익

■ 선형생산함수: 규모수익불변

$$Q = f(L, K) = \alpha L + \beta K \implies$$

$$Q = f(hL, hK) = \alpha hL + \beta hK = h(\alpha L + \beta K) = hf(L, K)$$

■ 레온티에프생산함수: 규모수익불변

$$Q = \min\{L, K\}$$
 \Rightarrow
 $L = K = 5 \rightarrow Q = 5$, $L = K = 10 \rightarrow Q = 10$
 $L = 5$, $K = 6 \rightarrow Q = 5$, $L = 10$, $K = 12 \rightarrow Q = 10$

