Predicting Movie Success

DATS6103 Project Presentation Amna Gul, Hemanth Koganti , Madhuri Yadav

Agenda

- Introduction Problem Statement
- □ Data
- Preprocessing
- ☐ EDA
- □ Modeling
- Conclusion
- □ References

☐ Introduction

Film industry is one of the top grossing industries in the world

□ Problem Statement

- Billions of dollars are invested each year, expecting high margin of profit
- Whether is it possible to use machine learning algorithms to predict if movie will be a success?
 - Criteria for success
 - Movie is able to generate amount of revenue that is "greater" than the budget of the film

Data Source

- Primary source of our data set is <u>Kaggle</u> (TMDB) till July 2017
- Columns were also added by parsing data made publicly available on IMDb's
 website
 - Recent data 2019

Data Preprocessing/Cleaning

- Raw data: 45,000 rows and 24 columns
 - Remove irrelevant columns e.g. "home page", "poster path"

/rhIRbceoE9IR4veEXuwCC2wARtG.jpg	
/vzmL6fP7aPKNKPRTFnZmiUfciyV.jpg	
/6ksm1sjKMFLbO7UY2i6G1ju9SML.jpg	
/16XOMpEaLWkrcPqSQqhTmeJuqQl.jpg	
/e64sOI48hQXyru7naBFyssKFxVd.jpg	
/zMyfPUelumio3tiDKPffaUpsQTD.jpg	

Searched for corrupt values in remaining columns e.g. "budget" containing alpha-numeric values

Data Preprocessing/Cleaning

Columns "Genre" and "Production_Companies" were in JSON format

```
oroduction_companies
[{'name': 'Pixar Animation Studios', '
[{'name': 'TriStar Pictures', 'id': 559},
[{'name': 'Warner Bros.', 'id': 6194},
[{'name': 'Twentieth Century Fox Filr
[{'name': 'Sandollar Productions', 'id'
```

- Converted columns to their proper data type e.g. "release_date" was converted date-time format instead of string. Month was extracted to create a separate column.
- Merged "average_rating" and "vote_count" from IMDb's website

Data Preprocessing/Cleaning

- Outliers: excluded all those rows for which budget or revenue value was unrealistically low
- Created our target column by dividing revenue by budget
- Removed duplicates
- End result: 2,222 rows & 17 columns

EDA

Correlation Heatmap

Modeling

- 1. Data Splitting
- 2. Stratified Sampling
- 3. Oversampling
- 4. Label Encoding
- 5. Scaling
- 6. Feature selection

Continued...

Results with four features:

Model	Accuracy
Accuracy DT Entropy	69.26%
Accuracy SVM	81.40%
Accuracy RF	80.35%
Accuracy KNN	71.81%
Accuracy NB	22.93%

Area Under the Curve = 61%

Continued...

Model	Accuracy
Accuracy DT Gini	73.91%
Accuracy SVM	81.41%
Accuracy RF	83.35%

Area Under the Curve = 68%

Continued...

Model	Accuracy
Decision Tree (Entropy)	72.56%
Support Vector Machine	69.12%
Random Forest	79.91%
Bagging(Mode)	78.41%
Adaptive Bootstrap	80.96%

Area Under the Curve = 69% K = 20.57%

Limitation

- Biased Label
- Missing Values
- Invalid Data
- Additional Features

References

https://www.the-numbers.com/market/

http://www.diva-portal.org/smash/get/diva2:1106715/FULLTEXT01.pdf

https://io9.gizmodo.com/how-much-money-does-a-movie-need-to-make-to-be-profitab-5747305

Maklin, C. (2019). AdaBoost Classifier Example In Python. [online] Medium. Available at:

https://towardsdatascience.com/machine-learning-part-17-boosting-algorithms-adaboost-in-python-d00faac6c464