Accelerating one DNN on AArch64

Jonathan Deakin, Milos Puzovic and team 5 June 2024

Introduction

Acceleration on CPU: basics

- → Scalar -> NEON/SVE SIMD
 - NEON is 128bit, ~4x throughput for f32 (per instruction), ~16x for i8
 - SVE has variable vector length, enabling vector length agnostic programming
- + Multi-threading
 - Theoretically ~number of core x speedup
 - Practically always a bit less, sometimes a lot less
- + Memory access
 - Data reuse
 - Contiguous access, or packing for specific instructions
- → Quantization: convert f32 -> i8 => ~4x speedup
- + Fast math: convert f32 -> bf16 => 2 x speedup
- + Function approximation, particularly for exp-based activations

BFloat16 Extension

- + Armv8.6-A extension, mandatory in Armv9-A
- + Four new instructions
- -- Available in SVE, Neon (AArch64 and AArch32)
- + Accepts BF16 inputs, does not generate BF16 results
- + Accumulating an FP32 intermediate result for better accuracy

ML Specific features in Arm Neoverse cores

Features enhancing ML performance on Arm Neoverse CPUs

• Matrix multiplication (INT8) Arch Matrix-multiply-andaccumulate (*MMLA*) (v8.6) Arch SVE vector length Micro Arch • BFloat16 support (v8.6) Arch

	Neoverse-N1	Neoverse-V1	Neoverse-N2	Neoverse-V2
Vector units	NEON 128-bit x 2	NEON 128-bit x 4 SVE 256-bit x 2	NEON 128-bit x 2 SVE 128-bit x 2	NEON 128-bit x 4 SVE 128-bit x 4
FP32	✓	✓	✓	✓
FP16	✓	✓	✓	✓
BF16	X	✓	✓	✓
Dot Product	✓	✓	✓	✓
Integer Matrix Multiplier (I8MM)	×	✓	✓	✓

MACs/cycle in Arm Neoverse Cores

	Neoverse-N1	Neoverse-V1	Neoverse-N2	Neoverse-V2
FP32 MACs/cycle	8	16	8	16
FP16 MACs/cycle	16	32	16	32
BF16 MACs/cycle	N/A	32 (BFDOT) 64 (BFMMLA)	16 (BFDOT) 32 (BFMMLA)	32 (BFDOT) 64 (BFMMLA)
INT8 MACs/cycle	32 (DOT)	64 (DOT) 128 (I8MM)	32 (DOT) 64 (I8MM)	64 (DOT) 128 (I8MM)

Note: FLOP/cycle (or OP/cycle for int8) = $2 \times MACs/cycle \times clock speed$

Software stack

Previous work

The Arm Compute Library

Optimized low-level kernels for Arm CPUs

Key Features:

- Over 100 machine learning functions
- Targeting Arm CPUs and GPUs
- Multiple convolution algorithms (GEMM, Winograd, FFT and Direct)
- Multiple data types: f32, f16, s8, u8, bf16
- Micro-architecture optimization for key ML primitives
- Highly configurable build options enabling lightweight binaries
- Open-source, via permissive MIT license

https://github.com/ARM-software/ComputeLibrary

oneDNN + ACL

- Accelerated primitives in oneDNN using ACL
 - Matmul + inner product
 - Convolutions (GEMM, indirect, Winograd, depthwise)
 - Eltwise
 - Reorder
 - Softmax
 - Batch/layer norm
 - Binary
- + acl post ops tfor matmul/ip/conv as a fallback for unfusable post ops
- + "Fixed format" weights allows for reorders to be only done once
 - Using TF_ONEDNN_ASSUME_FROZEN_WEIGHTS=1

xbyak aarch64

- → JIT assembler for AArch64 CPUs by C++ "Xbyak_aarch64 is a C++ library which enables run-time assemble coding with the AArch64 instruction set of Arm(R)v8-A architecture. Xbyak aarch64 is based on Xbyak developed for x86 64 CPUs by MITSUNARI Shigeo."
- → Use within oneDNN predominantly developed by Fujitsu to accelerate A64FX cores. (512bit SVE)
- → Accelerated primitives in oneDNN
 - Conv (only 512bit SVE)
 - Matmul (using brgemm)
 - Reorders
 - Softmax
 - Pooling
 - Eltwise

https://github.com/fujitsu/xbyak aarch64

Performance improvements

Performance improvements on subset of image classification models (normalized to baseline without optimisations) c7g.8xlarge, 16 threads, batch 1

Performance progression on models from MLPerf Suite (normalized to baseline without optimisation) c7g.8xlarge, 16 threads, batch 8

Ongoing work

Caching and memory allocation: "stateless"

- → The oneDNN + ACL operators currently
 - Allocate their own memory
 - Store pointers to tensors
- + They have state which is **not captured by the problem descriptor**
- + This is why we must use the resource mapper and a mutex
- + Ongoing work
 - Work is ongoing to expose a "stateless" ACL
 - Move allocations to oneDNN scratchpad
- + This should allow us
 - To make use of oneDNN caching => reduce tech debt
 - Allow concurrent use of a primitive => reduce startup cost
 - Allow sharing of temporary => reduce allocations

Dynamic quantization

- + Quantize f32 to i8 at runtime based on actual inputs
- → Suitable s8:s8:f32 matmul kernels in ACL 24.04 and oneDNN v3.5
 - >10x faster than gemm:jit
 - ~4x faster than acl F32
- + Pending PRs in iDeep and PyTorch to enable their use
- + Ongoing work to optimize for smaller problems and high thread counts

Static quantization

- + Quantize f32 to i8 with scales and shifts fixed at init time based on input distributions
- + Much harder than dynamic! User story for static quantization is still unclear in PyTorch
- → Why bother? Allows you to keep inputs i8 between layers (no dequant/requant)
 - Is this a big difference in practice? Difference is not O(n^3). Even less difference if accumulator is f32
- + To enable this in PyTorch we need u/s8:s8:u/s8 kernels in oneDNN
- -- oneDNN requires bias + post ops to be done in f32
- + We are enabling s8:s8:s8 matmul using separate s8:s8:f32 + post ops + quantize
- We are working on a s8:s8:s8 convolution using fused requantization in ACL (no posts/bias yet)
- + Still not sure if we can do s32 bias

Other work

- + JITed reorder for bf16 reorders
- + Pure bf16 matmul and convolution (for torch.autocast)
- + Aarch64 brgemm (Fujistsu)
- + Expanded support in JITed kernels (batch norm, pooling)

Future work

KlediAl

"KleidiAI is an open-source library that provides optimized performance-critical routines, also known as micro-kernels, for artificial intelligence (AI) workloads tailored for Arm® CPUs."

i.e. low level integration

- + ACL was designed as a runtime library (manages threads and memory, has a narrow API)
- + It has allowed us to quickly accelerate a lot of operations
- + ...but as we do more, the oneDNN-ACL API friction is growing
- + Stateless ACL is a step in the right direction
- + But we could go even lower

https://gitlab.arm.com/kleidi/kleidiai

²¹ https://newsroom.arm.com/blog/arm-kleidi

Scalable Matrix Extension (SME)

Thank You Danke Gracias Grazie 谢谢 ありがとう Asante Merci 감사합니다 धन्यवाद Kiitos شکرًا

ধন্যবাদ

תודה ధన్యవాదములు

