	8) 1¥32:5 (ad (d)
5-15-25 (WEEK (3)	Shun/詳計海(@shun4midx)
EXAMPLE Let (1d (1d)) he a Remail coarse of (1) he serviced to the black coarse with the second second electric fix is of (1) d	
Let (W, 11-11) be a Banach space, Lc(w) be equipped with the operator norm 111-111 = normed algebra, fix uf Lc(w)	
Consider \mathcal{E}_{u} : $\mathbb{R} \longrightarrow \mathcal{I}_{c}(W)$ $f \longmapsto \frac{\mathcal{E}_{v}}{\mathcal{E}_{v}} \frac{f_{v}(w)}{f_{v}}$	
We want to study the regularities and proporties of En Fix tell, check that Eulth is well-defined, 器。特別unit < 器 Hill	
To have the converges absolutely, so it converges.	(-C C) Ac san C>0
To check the continuity of En at some fook, we may check that the series of function converges uniterally.	PN (5, 5) I'M SAME COO
45 More specifically, we check for uniform convergence on (to-E, to+E) for a fixed €>0. Fix M>0. We already know (→ Z ^L : un converges pointure on (-M, M). It remains to show that the remains	maides fruthe converse unto
to D.	Malado Malling Contrage Challes
4 For te[-M,M], and neN, we have Rn(t): Right to uk = 11 Rn(t) 11 < Right live Can Me (lull) As ZM (11	ulll ⁿ is a convergent sicies.
RHS -> 0 as it i) the remainder of a convengent series	411 - 13 - 13 - 14 - 14 - 14 - 14 - 14 -
4 Add: tranally, this upper bound does NOT depend on tell-11, M), so the series conveyes uniformly	
: En 3 continuous on (-11,14) 41170, i.e. En is continuous on IR	
· For nello, define un(t): thun which is co Vn (; polynomial function)	
For netNo and tell, we have unlt1= nth-1 un = {u·u-1, n=1	
· Fix MOO. The series = u. Un-1= un converger uniformly live also know Zun converger positive), so En	is C' on C-M.M)
· We know Eult) viel-m, m). Therefore, Eu is c'on R, Eult) viell	
· Let kel. If En 7 Ck for k21, then so is Ei=u. En = Eu & Ckt) . By whation on k, En 7 of	dass (0
DOLLED SERVE	
POWER SERIES	
We state the theorems and properties in 1R or C, but they hold in general number wormed algebra with minimal	mod.f:calibus.
DEFINITIONS AND RADIUS OF CONVERGENCE	
In (6,1:1), balls are called disks	
For example, D(a,r) = B(a,r) = Fyell (y-a) <r3 ==""> open disk</r3>	
D(a,r) = B(a,r) = Syec (1y-a) Sr 3 => closed dak	
DEFINITION	
Let (anlyso be a sequence of complex numbers and CEC.	
" Roan(2-C)" is called a power series centered at CEC with variable ZEC.	
· If antile the and cell, then to ank-cin is called a real power series centered at cell with variable	k KEIR.
WLOG, we automatically assume c=0 (by translation).	
PROPOSITION (ABEL'S LEMMA)	
Let Zanz" be a power series. Let zoel, s.t. (anzon) nzo is bounded. Then,	
1) For Ze C with 121<1201, the series Zanzh converges absolutely	
21 For re(0, 12d), the series of functions Zanz converges normally in the dosed dik D(0, r). (In the entire	e disk, we have unit conv!!)
Prod un ul	
Let MOO, s.t. lanlizol" SM. Let ZEC with 121 <1201. Then, bh20, lanzol = lanzol = lanzol	
Hence,	
(1) Zlanzal converges because it can be upper bounded by a geometric series ZMIZola which converges. => >	ianzh conveges alosolutely
12) fix re (0,1201). For 26010, v), lanzal & M(Fin), with the upper bound independent on ze D(0,1). Hence, [t 3 normal convergence.

Let Zanzh be a power series Define R=R(Zanzh):= supfrzol (lanth) nzo 13 bounded). This is called the radius of unvergence

DEFINITION

of the power series Eanzh

-aneign Shun/#31:4 (@shun4midx) REMARK If we add phases to the sequence (an) nzo, the power series Zanzh has its radius of convergence remain unchanged PROPOSITION Let Zanz" be a power series and R be it; radius of convergence. Then, (1) For zel, with 121<R, the series Zanza converges absolutely (2) For ZeC, with 121>R, the series Zanza diverges (3) For re(0,R), the series Zanzh converges normally on the closed disk D(0,r) (1) Let ze (and 121<R. Write r= 121R. Then, 121<r<R. By definition of R, we know that (lantranzo is bounded. .: Zanza converges absolutely (3) (an be shown in the same way as (1) (L) 12/>R means that (lan/21/1/1020 i) unbounded, so an2 +>0 = Zanz Les not convege 1 REMARK 1) If R: 10, the power series is well-defined on C. Such a function is called an entire function 2) When RCGO, and ZEDD(O,R), the behavior of Ignz" can have any behavior Proposition (D'ALEMBERT'S Criterion, Ratio test) If l:= 1300 anti (=(0, too) exists, then R=+ Let zel. We want to dieck when $\mathbb{Z}a_{n}z^{n}$ converges.

We have: $\frac{|a_{n}z^{n+1}|}{|a_{n}z^{n}|} = |\frac{a_{n}z^{n}}{|a_{n}z^{n}|} | |z| \longrightarrow \mathbb{Z}|z|$ $\begin{cases} < 1, |z| < \frac{1}{2} \\ > 1, |z| < \frac{1}{2} \end{cases}$ This means, by def, R=1. 0 Proposition (CAUCHY'S CRITERION, ROOT TEST) Let 2:= 1 mans land . Then, R= . Prof Similar to above. EXAMPLES ON THE BOUNDARY OF R 1) Cansider the power series Σz^n . Obv.ously, $R(\Sigma z^n)=1$. This means for re(0,1), 52" converges normally on 510, rl. For ZEDD(0,1), 12" =1 => Ez" dueges 2) Consider the power series Z = with R(Z ==)=1 Here, I = converges. Hence, Z= converges normally on D(0,1). 3) Conside 2000, P(区型)=1 · For z=1, Zn liverges · For z=ei0, DER/(ITZ), Z=0 converges because in > 0 and (= eit0] = [cin110-1]= |sh = 0 + |sin = 0 OPERATIONS ON POWER SERIES PROPOSITION Let f(z)= Zanzn and g(z)= Zanzn be power series with radius of convergence RF and Ry respectively. Let R= R(Z(anthn)zn), than R2 min (Rf, Rg) Moreover, if Rf #Rg, then R=mhlRs, Ry). Uzel with 12 (milks, Rg), we also have to lanton) 2n= too anzh+ to bazo Port Let zell with 121 Cmin (Rf, Rg). We know (anzh) nzo and (bnzh) nzo are bounded, so ((antbn)zh) nzo 3 bounded > 1216R .. By taking (21 - mix (RF, Rg) from below, in find that min (RF, Rg) < R a

Now, consider when Rf FRg, by symmetry, suppose Rf(Rg)

Let zell, s.l. Rf(z CRg. We know (anz^n)nzo is bounded and (bnz^n)nzo is unbounded => ((antbn/z^n)nzo is unbounded

This means that |z|zR. By faking |z| -> Rf, we find Rf z R.

We have already shown that Rz Rf. .. R=Rf = Shun/#33:45 (@shun4midx) When Iz/Conh(Rf, Rg), Zarzh and Ibnzh converge: Z(antho)zh converges to Zanzh + Zbnzho (1,mit prod of Z N > 00) DEFINITION Let Zanza and Zbnzh be power series. Their Couchy product Zonzh is given by onz zio Albank