Bilkent University

Electrical and Electronics Department

EE313-02 Lab 3 Preliminary Report:

"Single-Supply Push-pull Class-B Power Amplifier"

18/11/2024

Fatih Mehmet Cetin - 22201689

Introduction:

This lab's main aim is designing a single – supply push – pull class – b power amplifier by using 2 different NPN transistors (BC238 and BD135), 2 different PNP transistors (BC308 and BD136) and 1 OPAMP (LM358). Load resistance is 33Ω and supply voltage is 24V. My Bilkent ID in modulo 7 is 6. Therefore, my design should operate with sinusoidal voltages with a gain equal to 26 dB.

Simulation & Analysis:

Here you can see my final circuit for the lab (**Figure 1**):

Figure 1: The Amplifier Circuit

Here you can see the output voltage and the currents on the emitters of BD135 and BD136 when Vin is stepped from 0 Volts to 0.4 Volts in 11 steps (**Figures 2 to 4**):

Figure 3: The Current on the Emitter of BD135

Here are the specifications that were given to us in the lab manual (**Figure 5**):

Specifications:

- 1. The amplifier should deliver at least 0.95W power to a 33Ω resistance ($16V_{pp}$ to a 33Ω power resistor) at 1KHz with the chosen gain value.
- 2. The harmonics (the highest is possibly the third harmonic) at the 0.95W output power level should be at least 40 dB lower than the fundamental signal at 1 KHz.
- 3. The power consumption at quiescent conditions should be less than 500mW.
- 4. The amplifier's efficiency (output power/total supply power) should be at least 40% at max power output (0.95W) at 1KHz.
- 5. The -3dB bandwidth of the amplifier should be at least 150Hz to 15KHz.

Figure 5: The Specification of the Circuit

Now let's dive deep in each criterion:

Criterion 1:

Here you can see the power at the output when the gain is 26dB (**Figures 6 & 7**). When Vin is 0.4 Volts, the power at the output is 978mW.

Measurement:	pout		
step	AVG(v(vout)*i(r)	13)) FROM	TO
1	1.26721e-20	0	0.005
2	0.0097743	0	0.005
3	0.0390972	0	0.005
4	0.0879686	0	0.005
5	0.156413	0	0.005
6	0.244411	0	0.005
7	0.351964	0	0.005
8	0.479073	0	0.005
9	0.625776	0	0.005
10	0.792083	0	0.005
11	0.978179	0	0.005

Figure 6: The Power on the Output

Measurement:	gain	
step	20*log10(voutpp/(2*vin))	
1	inf	
2	26.1279	
3	26.126	
4	26.1302	
5	26.1306	
6	26.13	
7	26.1237	
8	26.132	
9	26.128	
10	26.1319	
11	26.1307	

Figure 7: The Gain of the Circuit

Criterions 3 & 4:

Here you can see the power at the input, output and the efficiency of the circuit (**Figure 8**). As expected in criterion 3, the input power -when Vin is zero- is 197mW and it is well below 500mW. As expected in criterion 4, the efficiency is 49.6% and it is well above 40% when the power at the output is 950mW.

Measurement: p	oout		
step	AVG(v(vout) *i(r13))	FROM	TO
1	1.26721e-20	0	0.005
2	0.0097743	0	0.005
3	0.0390972	0	0.005
4	0.0879686	0	0.005
5	0.156413	0	0.005
6	0.244411	0	0.005
7	0.351964	0	0.005
8	0.479073	0	0.005
9	0.625776	0	0.005
10	0.792083	0	0.005
11	0.978179	0	0.005
Measurement: p	oin		
step	AVG(-v(vcc)*i(v2))	FROM	TO
1	0.19751	0	0.005
2	0.37437	0	0.005
3	0.551975	0	0.005
4	0.729542	0	0.005
5	0.907059	0	0.005
6	1.08453	0	0.005
7	1.26194	0	0.005
8	1.43932	0	0.005
9	1.6167	0	0.005
10	1.79394	0	0.005
11	1.97124	0	0.005
Measurement: e	efficiency		
step	pout/pin		
1	6.41591e-20		
2	0.0261087		
3	0.0708314		
4	0.120581		
5	0.172439		
6	0.22536		
7	0.278906		
8	0.332846		
9	0.387069		
10	0.441532		
11	0.496225		

Figure 8: The efficiency of the Circuit, Pin and Pout

Criterion 5:

Here you can see the gain of the amplifier and the output voltage when the frequency is 150Hz, 1.5kHz and 15kHz (**Figure 9**). As expected, the gain at 150Hz and 15kHz is well above the –3dB(23dB) limit.

Figure 9: The Gain and Vout when Frequency Changes

Criterion 2:

Here is the FFT analysis of Vout when Vin is 0.4 Volts (**Figures 10 & 11**). The highest harmonic is the fifth harmonic at 5kHz. The difference in dB is 58.08dB which is well above 50dB as expected.

Figure 10: The FFT Analysis of Vout

Figure 11: The Difference between the Fundamental Signal and Highest Harmonic being 58.08dB

Conclusion:

This lab's main aim was designing a single – supply push – pull class – b power amplifier by using 2 different NPN transistors (BC238 and BD135), 2 different PNP transistors (BC308 and BD136) and 1 OPAMP (LM358). Load resistance was 33Ω and supply voltage was 24V. My Bilkent ID in modulo 7 was 6. Therefore, my design should have operated with sinusoidal voltages with a gain equal to 26 dB.

The design and the simulation were complete. All the criteria were met. The lab was a total success.