Roll Number:

CS4.301: Data and Applications (Monsoon 2024) Quiz 4

Maximum Marks: 20, Time: 35 minutes

- Keep answers concise. State all assumptions.
- All questions are compulsory.

Question 1

Theoretically, outer join can be computed by executing a combination of relational algebra operators. Show how the following left outer join operation can be achieved through a sequence of relational operations.

EMPLOYEE Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno DEPARTMENT Dname Dnumber Mgr_ssn | Mgr_start_date |

SELECT E.Lname, E.Fname, D.Dname FROM (EMPLOYEE E LEFT OUTER JOIN DEPARTMENT D ON E.Dno = D.Dnumber);

(4 marks)

1 mark for each step in the answer.

If any other sequence of operations is followed, 4 if everything is correct, else 0.

1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables.

$$\text{TEMP1} \leftarrow \pi_{\text{Lname, Fname, Dname}} \text{ (EMPLOYEE} \bowtie \text{Dno=Dnumber DEPARTMENT)}$$

2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result.

TEMP2
$$\leftarrow \pi_{Lname, Fname}$$
 (EMPLOYEE) $- \pi_{Lname, Fname}$ (TEMP1)

This minus operation can be achieved by performing an anti-join on Lname, Fname between EMPLOYEE and TEMP1, as we discussed above in Section 18.5.2.

3. Pad each tuple in TEMP2 with a NULL Dname field.

4. Apply the UNION operation to TEMP1, TEMP2 to produce the LEFT OUTER JOIN result.

RESULT ← TEMP1 ∪ TEMP2

Question 2

Convert the below relation into 1NF and 2NF forms. Describe what problems 1NF and 2NF forms avoid that the original database was susceptible to.

Employee ID	Phone Number	Dept	Manager ID
E01	(9938901015, 9394565700)	Sales	E13
E02	(8096756525)	Development	E17
E03	(7896969420, 8175798520, 9786484547)	Research	E22
E04	(9119110808)	Sales	E13

(3+2 marks)

You are allowed to follow any of the representations of normal forms listed in Elmasri. Depending on which form you follow you will end up with different results:

Case 1:

1NF schema: Table1(Employee ID, Phone Number, Dept, Manager ID) <- here we create multiple rows to accommodate the multiple values of phone number while making phone number a key attribute.

2NF schema: Table1(<u>Employee ID</u>, <u>Phone Number</u>) Table2(<u>Employee ID</u>, <u>Dept</u>, Manager ID) <- since Dept and Manager ID are dependent only on Employee_ID (as is evident from the unnormalized form) they need to be moved to a new table in 2NF.

Case 2:

1NF schema: Table1(<u>Employee ID</u>, Phone Number 1, Phone Number 2, Phone Number 3, Dept, Manager ID)

2NF schema: no change

Case 3:

1NF schema: Table1(<u>Employee ID, Phone Number</u>) Table2(<u>Employee ID, Dept, Manager ID</u>) <- create new table to accommodate multivalued attribute

2NF schema: no change

- 1.5 marks for 1NF
- 1.5 marks for 2NF
- 1+1=2 marks for describing problems with 1NF and 2NF
- -0.5 if keys are not underlined properly (per table)

Question 3

Suppose a relational schema R(A, B, C, D, E, F, G, H, I) and the set of functional dependencies F: { $AB \rightarrow C$, $AD \rightarrow GH$, $BD \rightarrow EF$, $A \rightarrow I$, $H \rightarrow J$ }.

Is the relation in 3NF? If not decompose it to 3NF.

(4 marks)

Relation is R(A,B,C,D,E,F,G,H,I,J) - J was added during the quiz. Step 1 – Find Candidate Keys (1 mark) FDs: AB->C, AD->GH, BD->EF, A->I, H->J ABD is the candidate key as the closure of ABD includes all attributes in R. Step 2 – Verify 3NF for each FD (1 mark) For each X -> Y, is X a superkey? Are all attributes in Y prime attributes (part of candidate key)? For all FDs, X is not a superkey, and Y isn't prime attribute. Therefore, reln is not in 3NF. Step 3 – Decomposition (2 marks) AB->C gives R1(A,B,C) Remaining attributes are (A,B,D,E,F,G,H,I,J) AD->GH gives R2(A,D,G,H) Remaining attributes are (A,B,D,E,F,I,J) BD->EF gives R3(B,D,E,F) Remaining attributes are (A,B,D,I.J) A->I and H->J give R4(A,I) and R5(H,J)

1 mark for R6, and 1 mark for (R1...R5)

Remaining attributes are (A,B,D) – Therefore, R6(A,B,D)

Question 4

Consider the following relations and dependencies. For each part, determine the candidate keys, and decompose the relation into a collection of BCNF relations. Note that the relations must be normalized to 1NF, 2NF, 3NF, and then BCNF. If a normal form is satisfied, mention it.

```
(a) R1(A,C,B,D,E), A \rightarrow B, C \rightarrow D
(a) R2(A,B,F), AB \rightarrow F, B \rightarrow F
```

(7 marks)

Part (a)

Candidate key is {A,C,E}. – 0.5 marks for identifying key

1NF is satisfied. – 0.5 mark (explanation mandatory, else 0)

2NF is not satisfied as B is partially dependent on A and D is partially dependent on C.

Decompose into R1 1(A,B), R1 2(C,D), R1 3(A,C,E)

0.5 marks for identifying 2NF is violated and 1 mark for decomposition

3NF and BCNF are satisfied. – 1 mark (0.5 each with explanation)

Part (b)

Candidate key is {A,B} -- 0.5 marks for identifying key

1NF is satisfied. -- 0.5 mark (explanation mandatory, else 0)

B->F is a partial dependency of F on B, therefore 2NF is not satisfied.

Decompose into R2_1(B,F) and R2_2(A,B)

0.5 marks for identifying 2NF is violated and 1 mark for decomposition

3NF and BCNF are satisfied. -- 1 mark (0.5 each with explanation)

1 mark if inverted index is described through example 0.5 mark if F1 database is mentioned

Max marks cannot exceed 20.