Riemannische Geometrie

Tim Jaschik

May 13, 2025

Abstract. – Kurze Beschreibung ...

Contents

1	Untermannigfaltigkeiten im euklidischen Raum						
	1.1	Definition	3				
	1.2	Example	3				
	1.3	Proposition	3				
	1.4	Corollar	3				
	1.5	Remark	3				
2	Glatte Mannigfaltigkeiten						
	2.1	Definition	3				
	2.2	Example	3				
	2.3	Remark	4				
3	Diffe	erenzierbare Mannigfaltigkeiten	4				
4	Unte	ermannigfaltigkeiten im euklidischen Raum	4				
5	Glatte Mannigfaltigkeiten						
6	Glatte Abbildungen und Vektorfelder						
	6.1	Definition	4				
	6.2	Proposition	5				
	6.3	Remark	5				
7	Riemannische Mannigfaltigkeiten Definitionen und Beispiele						
	7.1	Definition	5				
	7.2	Example	5				
	7.3	Proposition	5				
	7.4	Remark	6				
8	Levi-Civita Zusammenhang 6						
	8.1	Definition	6				
	8.2	Example	6				

	3.3 Proposition		6
	3.4 Lemma		6
	3.5 Theorem		6
	3.6 Remark		6
9	Kovariante Ableitung längs einer Kurve		7
	Definition		7
	9.2 Proposition	 •	7
10	Paralleltransport		7
	10.1 Definition		7
	10.2 Example		7
	10.3 Proposition		7
	0.4 Remark	 •	7
11	Geodätische und Exponentialabbildung		7
12	Geodätische		7
13	Exponentialabbildung		7
14	Satz von Hopf-Rinow		7
15	Riemannische Geometrie		7

1 Untermannigfaltigkeiten im euklidischen Raum

Test, ein weiterer Test, und noch einer oben drauf

1.1 Definition

Definition RG-1-02-1 (n-dimensionale Untermannigfaltigkeit des euklidischen Raumes).

1.2 Example

```
Example RG-1-02-2 (n-Sphäre).
```

Example RG-1-02-3 (Hyperboloid).

Example RG-1-02-4 (n-Torus).

Example RG-1-02-5 (SO(n)).

1.3 Proposition

Proposition RG-1-02-6 (Charakterisierungen von Untermannigfaltigkeiten im euklidischen Raum).

- 1.4 Corollar
- 1.5 Remark

Remark RG-1-02-7 (Anmerkungen).

2 Glatte Mannigfaltigkeiten

2.1 Definition

Definition RG-1-03-2 (Äquivalente Atlanten).

Definition RG-1-03-4 (Glatte Mannigfaltigkeit).

Definition RG-1-03-5 (Orientierte Mannigfaltigkeiten).

 $\begin{tabular}{ll} \textbf{Definition RG-1-03-6} & \textbf{(} \textbf{Untermannigfaltigkeit einer Mannigfaltigkeit).} \end{tabular}$

Definition RG-1-03-14 (TEST).

2.2 Example

Example RG-1-03-7 (n-Torus als Mfk).

Example RG-1-03-8 (n-Sphäre als Mfk).

Example RG-1-03-9 (Hyperboloid als Mfk).

2.3 Remark

Remark RG-1-03-13 (Quotienten-Räume als Mfk als Motivation für verallg. Mfk-Begriff).

Remark RG-1-03-3 (Beispiel für nicht äquivalente Atlanten).

Example RG-1-03-10 (Reelle projektiver Raum als Mfk).

Example RG-1-03-11 (Komplexe projektive Raum als Mfk).

Example RG-1-03-12 (Möbiusband als Mfk).

Definition RG-1-03-1 (Atlas auf topologischen Hausdorff-Räumen).

- 3 Differenzierbare Mannigfaltigkeiten
- 4 Untermannigfaltigkeiten im euklidischen Raum
- 5 Glatte Mannigfaltigkeiten
- 6 Glatte Abbildungen und Vektorfelder

6.1 Definition

Definition RG-1-04-11 (Vektorfeld als glatter Schnitt in Tangentialbündel).

Definition RG-1-04-13 (Vektorfeld als Abbildung von glatten Funktionen auf Mfk).

Definition RG-1-04-14 (Lieklammer von Vektorfeldern (ergibt Vektorfelder)).

Definition RG-1-04-16 (Differential von glatten Abbildungen).

Definition RG-1-04-2 (Immersion / Submersion von Mfk).

Definition RG-1-04-3 (Einbettung von Mfk).

Definition RG-1-04-4 (Diffeomorphismus von Mfk).

Definition RG-1-04-5 (Tangentialvektor: Äquivalenzklassen von Kurven).

Definition RG-1-04-6 (Tangentenvektoren: Keime).

Definition RG-1-04-7 (Tangentenvektoren: Paare von Koordinatensysteme um p und Vektor).

 $\begin{tabular}{ll} \textbf{Definition RG-1-04-9} & \textbf{(Tangentialb\"{u}indel)}. \end{tabular}$

6.2 Proposition

6.3 Remark

Remark RG-1-04-12 (Darstellung von Vektorfeldern durch partielle Abbleitungen (Tangentenvektoren)).

Remark RG-1-04-15 (Lieklammer: Jacobi-Identität Schiefsymmetrisch Nicht linear über R).

Remark RG-1-04-8 (Konstruktion des Tangentialraums).

Proposition RG-1-04-10 (Tangentialbündel ist 2n-dimensional Mfk).

Definition RG-1-04-1 (Glatte Abbildung zwischen Mfk).

7 Riemannische Mannigfaltigkeiten Definitionen und Beispiele

7.1 Definition

Definition RG-1-05-18 (Riemannisches Produkt).

Definition RG-1-05-2 (Länge von Kurven auf Mfk).

Definition RG-1-05-3 (Riemannische Metrik auf Mfk).

Definition RG-1-05-6 (Abzählbare Mfk im Unendlichen).

7.2 Example

Example RG-1-05-15 (Rotationsfläche).

Example RG-1-05-16 (Hyperbolischer Raum).

Example RG-1-05-17 (Poincaremodell des hyperbolischen Raumes).

Example RG-1-05-19 (RxSn).

Example RG-1-05-20 (Flacher Torus).

Example RG-1-05-22 (Kleinsche Flasche).

Example RG-1-05-9 (R2 in Polarkoordinaten).

7.3 Proposition

Proposition RG-1-05-21 (Charakterisierung der Isometrien von flachen Tori).

Proposition RG-1-05-8 (Jede Mfk besitzt eine Riemannische Metrik).

7.4 Remark

Remark RG-1-05-13 (Kompakte Mfk lassen sich in Euklidischen Raum einbetten).

Remark RG-1-05-14 (Unterscheidung zw. Innerer und äußerer Geometrie: Eigenschaften der Mfk vs der Einbettung).

Remark RG-1-05-4 (Pseudo-Riemannische Metrik auf Mfk).

Remark RG-1-05-5 (Lokale Beschreibung von Riemannischer Metrik).

Remark RG-1-05-7 (Relevanz der Abzählbarkeit im Unendlichen 1) Existenz von Verfeinerungen (lokal endlich) für offene Überdeckungen 2) Zerlegung der Eins).

Example RG-1-05-12 (Untermannigfaltigkeit mit induzierter Metrik).

Definition RG-1-05-1 (Finsler-Metrik auf Mfk).

Definition RG-1-05-10 ((Lokale) Isometrie von RMfk).

Definition RG-1-05-11 (Isometrische Einbettung von RMfk).

8 Levi-Civita Zusammenhang

8.1 Definition

Definition RG-1-07-2 (Zusammenhang auf Mfk).

Definition RG-1-07-4 (Koszulgleichung für Zusammenhänge).

 $\textbf{Definition} \ \textbf{RG-1-07-5} \ (\textbf{Chirstoffelsymbole als Korrekturterme in lokalen Koordinaten}).$

8.2 Example

Example RG-1-07-8 (Christoffelsymbole für \mathbb{R}^n für euklidische Metrik).

Example RG-1-07-9 (Christoffelsymbole für $R^2 \setminus 0$ und lokale Darstellung der Metrik zur Polarkoordianten).

8.3 Proposition

8.4 Lemma

Lemma RG-1-07-7 (Formel für Christoffelsymbole aus Koszulgleichung).

8.5 Theorem

8.6 Remark

Remark RG-1-07-6 (Levi-Civita Zusammenhang $D_X Y_p$ hängt nur von X_p ab).

Theorem RG-1-07-3 (Fundamentaltheorem der Riemannischen Geometrie).

9 Kovariante Ableitung längs einer Kurve

9.1 Definition

9.2 Proposition

Proposition RG-1-08-2 (Kovariante Ableitungs-Operator längs Kurven induziert durch LC-Zusammenhang der RMfk (EE)).

Proposition RG-1-08-3 (Kovariante Ableitung der Riemannischen Metrik längs Kurven).

Definition RG-1-08-1 (Vektorfelder längs Kurven).

10 Paralleltransport

10.1 Definition

Definition RG-1-09-3 (Parallelverschiebung von Tangentialvektoren bzgl parallelen Vektorfeldern längs Kurven).

10.2 Example

Example RG-1-09-6 (Parallelverschiebung im euklidischen Raum).

Example RG-1-09-7 (Parallelverschiebung auf Sn).

10.3 Proposition

Proposition RG-1-09-5 (Parallelverschiebung ist Isometrie zwischen Tangentialräumen).

10.4 Remark

Remark RG-1-09-4 (Abhängigkeit der Parallelverschiebung von Kurve).

Proposition RG-1-09-2 (Eind. Existenz von parallelen Vektorfelder für Anfangswert (Punkt, Tangentialvektor)).

Definition RG-1-09-1 (Parallele Vektorfelder längs Kurven).

11 Geodätische und Exponentialabbildung

- 12 Geodätische
- 13 Exponential abbilding
- 14 Satz von Hopf-Rinow
- 15 Riemannische Geometrie