2平面机构运动分析

2-1 速度瞬心法

2-2 相对运动图解法

2-3 杆组解析法

2 平面机构运动分析

思考题:

- 如果考虑摩擦,移动副、回转副和高副中的反 力各有何特点?
- 什么是机械装置的效率?
- 什么是机械装置的自锁?

2-1 速度瞬心法

- 绝对(相对)瞬心:瞬时速度为零(相等)的点。
- 三心定理:相互作平面运动的三构件间的三个相对瞬心必共线。

2-1 速度瞬心法

构成平面运动副之两构件的相对瞬心:

4

2-1 速度瞬心法

例*: 求图示六杆机构的速度瞬心。

同一构件上两点之间运动关系:

矢量方程: $v_B = v_A + v_{BA}$

方向: $\bot BP \bot AP \bot AB$

大小: ωl_{BP} ωl_{AP} ωl_{AB}

其中P为此构件的绝对速度瞬心点。

矢量方程: $a_B^n + a_B^t = a_A^n + a_A^t + a_{BA}^n + a_{BA}^t$ 方向: $//BP \perp BP //AP \perp AP \rightarrow A \perp AB$ 大小: $v_B^2/r_B dv_B/dt v_A^2/r_A dv_A/dt \omega^2 l_{AB} \alpha l_{AB}$ 其中 $r_A=AP_A$ 、 $r_B=BP_B$ 为A、B在各自轨迹上的曲率半径。

移动副两构件上瞬时重合点间的运动关系:

矢量方程: $v_{A2} = v_{A1} + v_{21}^{r}$

方向: $\bot AP_2 \bot AP_1$ 沿导轨

大小: ωl_{P2A} ωl_{P1A} v_r

其中 P_1 与 P_2 分别为构件1与2的绝对瞬心点。

矢量方程: $a_{A2}^{n} + a_{A2}^{t} = a_{A1}^{n} + a_{A1}^{t} + a_{21}^{k} + a_{21}^{r}$ 方向: $//AP_{2}$ $\bot AP_{2}$ $//AP_{1}$ $\bot AP_{1}$ $\bot AP_{1}$ $\bot v_{21}^{r}$ 沿导轨 大小: v_{A2}^{2}/r_{A2} dv_{A2}/dt v_{A1}^{2}/r_{A1} dv_{A1}/dt $2\omega v_{r}$ dv_{r}/dt 其中 r_{A1} 、 r_{A2} 为 A_{1} 与 A_{2} 在各自轨迹上的曲率半径。

哥氏加速度的存在及其方向的判断*

取C为重合点

$$v_{C3} = v_{C4} + v_{34}$$

取构件3为研究对象

$$\mathbf{v}_{C3} = \mathbf{v}_{B3} + \mathbf{v}_{CB}$$

,

重合点的选取*

将构件4扩大至包含B点,取B点为重合点

$$v_{B4} = v_{B3} + v_{43}$$

例1: 已知构件1逆时针转。

矢量方程:
$$v_C = v_B + v_{CB}$$

方向: $\bot CD \bot BA \bot BC$
大小: $\omega_3 l_3 \omega_1 l_1 \omega_2 l_2$
 $\omega_1 L_2 U_3 U_4$
 $\omega_1 L_3 U_4$
 $\omega_2 U_4 U_5$
 $\omega_1 L_4 U_5$
 $\omega_1 L_4 U_6$
 $\omega_2 U_6$
 $\omega_1 L_4 U_6$
 $\omega_1 L_4 U_6$
 $\omega_2 U_6$
 $\omega_1 U_6$
 $\omega_1 U_6$
 $\omega_2 U_6$
 $\omega_1 U_6$
 ω_1

矢量方程:
$$a_{C}^{n} + a_{C}^{t} = a_{B}^{n} + a_{B}^{t} + a_{CB}^{n} + a_{CB}^{t}$$

方向: $C \rightarrow D \perp CD \quad B \rightarrow A \quad \perp AB \quad C \rightarrow B \quad \perp BC$
大小: $\omega_{3}^{2}l_{3} \quad \alpha_{3}l_{3} \quad \omega_{1}^{2}l_{1} \quad \alpha_{1}l_{1} \quad \omega_{2}^{2}l_{2} \quad \alpha_{2}l_{2}$
这里, 因为 $v_{C} = \omega_{3}l_{3}$, 所以 $v_{C}^{2}/l_{3} = \omega_{3}^{2}l_{3}$ 且 $dv_{C}/dt = \alpha_{3}l_{3}$

例2: 已知构件1顺时针转。

大小: $\omega_3 l_{BC}$ $\omega_1 l_{AB}$

矢量方程:
$$a_{B3}^{n} + a_{B3}^{t} = a_{B2}^{n} + a_{B2}^{t} + a_{32}^{k} + a_{32}^{r}$$

方向: $B \rightarrow C$ $\bot BC$ $B \rightarrow A$ $\bot BA$ $\bot BC$ BBC
大小: $\omega_{3}^{2}l_{BC}$ $\alpha_{3}l_{BC}$ $\omega_{1}^{2}l_{1}$ $\alpha_{1}l_{1}$ $2\omega_{2}v_{r}$ a_{r}

例3: 已知各杆长,构件1逆时针匀速转动,其角速度已知。求此时构件5的速度与加速度。

例4:已知各杆长,构件1逆时针匀速转动,其角速度已知。求此时构件5的速度。

基本思想:

- 1) 对基本杆组进行运动分析并编制相应的求解函数。
- 2)从主动件开始,依次对各杆组调用相应的求解函数,完成整个机构的运动分析。

以二级杆组RRR为例:

已知P₁、P₂的位置、速 度、加速度以及两杆长度。求 两杆的角位置、角速度、角加 速度,以及P₃的位置、速度与 加速度。

RRR组运动分析

已知参数(外接运动副 P_1 、 P_2 的运动参数,两构件几何参数) $(x_1, y_1), (\dot{x}_1, \dot{y}_1), (\ddot{x}_1, \ddot{y}_1), (x_2, y_2), (\dot{x}_2, \dot{y}_2), (\ddot{x}_2, \ddot{y}_2), r_1, r_2$ 待求参数(内接运动副 P_3 的运动参数,两构件角运动参数) $(x_3, y_3), (\dot{x}_3, \dot{y}_3), (\ddot{x}_3, \ddot{y}_3), \theta_1, \dot{\theta}_1, \dot{\theta}_1, \theta_2, \dot{\theta}_2, \ddot{\theta}_2$

1) 求 θ_1 将杆组用封闭矢量三角形表示,求出 P_1 到 P_2 的距离d

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\varphi = \arctan\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$$

RRR组运动分析

2-3

2-3 杆组解析法

$$\alpha = \arccos\left(\frac{r_1^2 + d^2 - r_2^2}{2r_1d}\right)$$

因有两种装配模式

$$\theta_1 = \varphi \pm \alpha$$

在计算机程序中,用给定装配模式系数M的方法来确定上式中的正负号。

2)求 (x_3, y_3) 和 θ_2

$$\begin{cases} x_3 = x_1 + r_1 \cos \theta_1 \\ y_3 = y_1 + r_1 \sin \theta_1 \end{cases}$$

$$\theta_2 = \arctan\left(\frac{y_3 - y_2}{x_3 - x_2}\right)$$

3) \hat{x} (\dot{x}_3 , \dot{y}_3),(\ddot{x}_3 , \ddot{y}_3), $\dot{\theta}_1$, $\ddot{\theta}_1$, $\ddot{\theta}_2$, $\ddot{\theta}_2$

求导从略。

RRR组运动分析

