Laboratory 2

Resistor Combinations, KCL, KVL, Voltage and Current Dividers

Objectives

- Verify KCL and KVL
- Learn how to use voltage/current division and verify theoretical results with simulation results.

Equipment and components

- A computer
- Matlab software

Preliminary

- 1. Refer to Chapters 2 and 3 of the textbook if necessary.
- 2. Complete the theoretical calculations before attending this lab and fill in your results in the Tables 1 6.

Procedure

- 1. Open Matlab
- 2. Create Simulink model of the circuit as shown below by following the procedures in Lab 1.
- 3. Fill in your simulation results in Table 1.

Table 1 (The source = 200 V)

	Simulation Results	Theoretical Results
i		
i_a		
i_b		
v		
v_o		

- a) What is the sum of i_a and i_b ? Sum = _____. What is i ? Explain.
- b) What is the sum of v and v_o ? Sum = _____. Explain.
- c) Are your simulation results consistent with your theoretical results?
- d) Set the voltage source to be 100 V and repeat the above steps. Fill in the table below. Comparing the results in Table 2 with those in Table 1, what do you observe?

Table 2 (The source = 100 V)

	Simulation Results	Theoretical Results
i		
i_a		
i_b		
\overline{v}		
v_o		

e) Set the voltage source to be $-200\,V$ and repeat the above steps 1, 2, and 3. Fill in the table below. Comparing the results in Table 3 with those in Table 1, what do you observe?

Table 3 (The source = -200 V)

	Simulation Results	Theoretical Results
i		
i_a		
i_b		
v		
v_o		

4. Create the Simulink model of the following circuit and find i_g and i_o . Fill in Table 4 as shown below. Are the simulation results consistent with your theoretical results?

Table 4 Current Division

	Simulation Results	Theoretical Results
i_g		
i_0		

5. Create a Simulink model of the following circuit and find v_1, v_2 and i_g . Are the simulation results consistent with your theoretical results? Fill in Table 5 as shown below.

Table 5 Voltage Division

	Simulation Results	Theoretical Results
v_1		
v_2		
$\overline{i_g}$		

6. Create the Simulink model of the following circuit and find v_1,v_2 and i_g . Are the simulation results consistent with your theoretical results? Fill in Table 6 as shown below. Compare the results in Table 5 and Table 6, what do you observe? Explain.

Table 6 Voltage Division

	Simulation Results	Theoretical Results
v_1		
v_2		
i_g		

Questions and conclusions

- Use tables and graphs to explain your results.
- Summarize your findings and explanations in response to the questions posed in this lab.