

Chapter 0

ST909 Chapter 0

Definition 6. (semimartingale)

An adapted process X is called a semimartingale if $X_t = M_t + A_t$ where M is a local martingale, and A is a finite variation process, i.e.

$$\sup_{D_{t}} \sum_{l} |A_{t_{l}} - A_{t_{l-1}}| < \infty$$

where D_t is any finite partition of [0,t]

One way to distinguish between the local martingale and the finite variation process in the semimartingale is to use quadratic variation.

Definition 7. (quadratic variation)

A stochastic process M has quadratic variation if for any $t \ge 0$, when the mesh of the partition of $||D_t|| \to 0$,

$$\lim_{||D_t|| \to 0} \sum_{T} |M_{t_l} - M_{t_{l-1}}|^2 < \infty$$

Proposition 4. For a local martingale M, its quadratic variation $\langle M \rangle$ can be defined equivalently as follows:

(1) An increasing continuous adapted process $\langle M \rangle$ such that $M_t^2 - \langle M \rangle_t, t \geq 0$, is a local martingale;

(2) From Itô's formula, $\langle M \rangle_t = M_t^2 - 2 \int_0^t M_s dM_s$.

Note that a finite variation process always has zero quadratic variation.

Proposition 5. (Criteria for local martingales being martingales) (1) Let M be a local martingale such that $E[\sup_{s\in[0,t]}|M_s|]<\infty$ for any $t\geq 0$, then M is a martingale M to the M is a martingale; M to the M is a martingale.

2 Itô's stochastic integration

Itô's stochastic integration gives a meaning for the integrals like $\int_0^n h_z dW_z$. First we define the spaces of integrands. Fix T>0 in the following.

the three three spaces of the terms, Fix I > 0 in the following. Let $\mathscr{L}^2(\mathbb{R}^d)$ be the space of \mathbb{R}^d -valued progressively measurable processes $h = (h^1, \dots, h^d)$ with $\mathbb{E}\left[\int_0^T \left|h_z\right|^2 ds\right] < \infty$ Let $\mathscr{L}(\mathbb{R}^d)$ be the space of \mathbb{R}^d -valued progressively measurable processes $h = (h^1, \dots, h^d)$ with $\int_0^T \left|h_z\right|^2 ds < \infty$, G. S.

Obviously, we have that $\mathscr{L}^2(\mathbb{R}^d) \subset \mathscr{L}(\mathbb{R}^d)$.

Theorem 1. For any $h \in \mathscr{L}(\mathbb{R}^d)$, one can define the stochastic integral $\int_0^t h_s dW_s =$ $\int_0^t \sum_{j=1}^d h_s^j dW_s^j$, $t \in [0,T]$, with the following properties:

h=(h' .. 6)

predictable > prog mlb => adopted (in Countinnais time)

Gechun Lians

(1) ∫₀ h₅dW₅ is a local martingale;
 (2) (linearity) for any λ₁,λ₂ ∈ ℝ, and h(1),h(2) ∈ ℒ(ℝ^d),

$$\int_{0}^{t} (\lambda_{1} h_{s}(1) + \lambda_{2} h_{s}(2)) dW_{s} = \lambda_{1} \int_{0}^{t} h_{s}(1) dW_{s} + \lambda_{2} \int_{0}^{t} h_{s}(2) dW_{s};$$

(3) for any stopping time τ ,

$$\int_{0}^{t \wedge \tau} h_s dW_s = \int_{0}^{t} \mathbf{1}_{\{s \leq \tau\}} h_s dW_s;$$

(4) (dominated convergence) If $h(n) \in \mathcal{L}(\mathbb{R}^d)$ is a sequence with $\lim_{n \to \infty} h_t(n) = 0$ for each (ω, t) , and such that $|h_t(n)| \le K$ for some $K \ge 0$, then

$$\lim_{n\to\infty}\sup_{s\in[0,t]}|\int_0^sh_u(n)dW_u|=0$$

in probability.

(5) (Itô's isometry) If $h \in \mathcal{L}^2(\mathbb{R}^d)$,, then $\int_0^1 h_s dW_s$ is a martingale, and moreover,

$$\mathbf{E}\left[\left(\int_0^t h_s dW_s\right)^2\right] = \mathbf{E}\left[\int_0^t |h_s|^2 ds\right].$$

(6) (quadratic variation)

$$\left\langle \int_0^t h_s dW_s \right\rangle_t = \int_0^t |h_s|^2 ds.$$

3 Itô's formula

 $\langle M',M'\rangle_t = M_t^t M_t^t - \int_0^t M_s^t dM_s^t - \int_0^t M_s^t dM_s^t = \frac{1}{2} \left(\frac{1}{2} \right)^2 - 2 \int_0^t M_s^t dM_s^t$ is an increasing a Itô's formula says that semimartingales are invariant under C^2 transformation Since we are interested in the multi-dimensional Itô's formula, we first define the quadratic covariation $(M^0, M^0)_t$ as

or, equivalently, as an increasing continuous adapted process $\langle M^i, M^j \rangle$ such that $M_t^i M_t^j - \langle M^i, M^j \rangle_t, t \in [0, T]$, is a local martingale. Note that from the polarization identity

$$xy = \frac{1}{4}(|x+y|^2 - |x-y|^2)$$

and Itô's isometry in part (5) of Theorem 1, we can obtain

Proof: = { E[ShindwShindlo] (Shin-hindlo)2] by polarisation

= = [Shastans)2ds - Shas-has)2ds] by @

$$\mathbf{E}\left[\left(\int_0^t h_s(1)dW_s\right)\left(\int_0^t h_s(2)dW_s\right)\right] = \mathbf{E}\left[\int_0^t (h_s(1))^T h_s(2)ds\right]. \qquad = \mathbf{E}\left[\int_0^t h_s(1)dW_s\right]$$

In terms of quadratic covariation, from the polarization identity

$$\langle M',M'\rangle_t = \frac{1}{4} \left(\langle M'+M'\rangle_t - \langle M'-M'\rangle_t \right) \ \, \text{by using O+O}$$

and the quadratic variation result in part (6) of Theorem 1, we can obtain

Theorem 2. (Itô's formula) Let
$$X = (X^1, ..., X^n)^T$$
 be an n -dimensional semimartingale, and let $f \in C^2(\mathbb{R}^n)$. Then $f(X_t)$, $t \ge 0$, is also an n -dimensional semimartingale, and moreover,
$$(d_{M_t^i} + d_{M_t^i})$$

$$df(X_t) = \sum_{i=1}^n \partial_{x_i} f(X_t) dX_t^i + \frac{1}{2} \sum_{i,j=1}^n \partial_{x_i x_j} f(X_t) d\langle X^i, X^j \rangle_t.$$

$$= \int h(t) \cdot h(t) dS = \int \frac{h^2}{k} h^{(k)}_{(1)} h(t) dS$$

= Shin how ds = S = how him ds

As an example, suppose that X solves the following time homogenous diffusion

$$dX_{i}^{l} = \mu^{l}(X_{i})dt + \sum_{j=1}^{d} \sigma^{ij}(X_{i})dW_{i}^{j}, \quad 1 \leq i \leq n,$$
where $dX_{i} = \mu(X_{i})dt + \sigma(X_{i})dW_{i} \leq 0$

$$dX_{i}^{l} = \mu(X_{i})dt + \sigma(X_{i})dW_{i} \leq 0$$

$$dX_{i}^{l} = \mu(X_{i})dX_{i} + \mu(X_{i})dX_{i} = 0$$

$$dX_{i}^{l} = \mu(X_{i})dX_{i} =$$

or in a matrix form

Then from Itô's formula, we have that $Af(X) = \mathscr{Q}f(X)dt \perp \overset{n}{\nabla} A.f(X) \overset{d}{\nabla} \sigma^{ij}(X)dW^{j}$ Note that $d \in \mathbb{R}^{i}, 8^{d} > 0$

 $dX_t = \mu(X_t)dt + \sigma(X_t)dW_t \stackrel{\text{def}}{=} \begin{array}{c} \vdots \\ d \stackrel{\text{def}}{=} \end{array}$ The have that Then from Itô's formula, we have that $df(X_t) = \mathcal{L}f(X_t)dt + \sum_{i=1}^n \partial_{x_i}f(X_t)\sum_{j=1}^d \sigma^{ij}(X_t)dW_t^j, \quad \text{Note that} \quad d < 3^i, 3^{2^i} > 1$ = < In 6 kg wh, In 60 kg wh> = < FidWe, FidWe where fi= (6i1... 6in) where $\mathscr L$ is called the $\underline{\text{infinitesimal generator}}$ of X, given as $\mathscr{L}f(x) = \frac{1}{2} \sum_{i=1}^{n} \partial_{x_i x_j} f(x) \sum_{i=1}^{d} \sigma^{ik}(x) \sigma^{kj}(x) + \sum_{i=1}^{n} \partial_{x_i} f(x) \mu^{i}(x).$ = Zgikgikdt $df(X_t) = \left(\frac{1}{2}Trace\{\sigma(X_t)\sigma(X_t)^T\nabla_x^2f(X_t)\} + \mu(X_t)^T\nabla_xf(X_t)\right)dt + \left(\sigma(X_t)^T\nabla_xf(X_t)\right)^TdW_t \cdot \text{Hewe},$ = [1] Drings | Doingin + Darf hi] dt

| Toing | Doingin + Darf hi] dt
| Toing | Doingin | Vof hi
| Toing | Doingin | Toing | Vof hi
| Toing | Doingin | Toing | Vof hi
| Toing | Toing | Toing | Vof hi
| Toing | Toing | Toing | Vof hi
| Toing | Toing | Toing | Toing | Vof hi
Toing	Toing	Toing	Toing	Toing	Toing
Toing	Toing	Toing	Toing	Toing	
Toing	Toing	Toing	Toing	Toing	
Toing	Toing	Toing	Toing		
Toing	Toing	Toing	Toing		
Toing	Toing	Toing	Toing		
Toing	Toing	Toing	Toing		
Toing	Toing	Toing	Toing		
Toing	Toing				
Toing	Toing				
Toing	Toing	Toing			
Toing	Toing $\langle M, M' \rangle_t = \delta_{jl}$ Sij \mathcal{J} if: \mathcal{J} if: \mathcal{J} if: \mathcal{J} if: Let $\mathbb{Z}_{x}f = \begin{pmatrix} \partial_{x_{1}}\mathbb{F} \\ \vdots \\ \partial_{x_{n}}\mathbb{F} \end{pmatrix}$ $\mathbb{Z}_{x}^{2}f = \begin{pmatrix} \partial_{x_{1}}\mathbb{F} \\ \vdots \\ \partial_{x_{n}}\mathbb{F} \\ \vdots \\ \partial_{x_{n}}\mathbb{F} \\ \vdots \end{pmatrix}$ 1 = 0xixj f (06T) ij = = = [] = = = [(5 = 3 × 5) + (66) i) (xf 60T) ti Gechun Liang for $1 \le i, j \le d$. = \frac{1}{2} Trace (\frac{1}{2} \frac{1}{66}) 4 Stochastic differential equation (SDE) **Definition 8.** Let $\mu(\cdot,x):\Omega\times[0,\infty)\to\mathbb{R}^n$ and $\sigma(\cdot,x):\Omega\times[0,\infty)\to\mathbb{R}^{n\times d}$ be both progressively measurable. Given a SDE $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t, \quad X_0 = x \in \mathbb{R}^n,$ its $\underline{\text{solution}}$ is defined as a semimartingale X such that the corresponding integral equation is satisfied $X_t = x + \int_0^t \mu(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s.$ We say X is unique if any other solution \tilde{X} is a modification of XExamples of SDEs include (1) the prices of the stocks $dS_t^i = S_t^i \left(\mu_t^i dt + \sum_{t=1}^d \sigma_t^{ij} dW_t^j \right), \quad 1 \le i \le n$ for progressively measurable processes μ^i and σ^{ij} . $dX_t^d = \mu^l(X_t)dt + \sum_{j=1}^d \sigma^{ij}(X_t)dW_t^{j}, \quad 1 \leq i \leq n,$ where t = 0 and t(2) Time homogenous diffusion: for deterministic functions $\mu^i(\cdot)$ and $\sigma^{ij}(\cdot)$. (3) Stochastic exponential: Given a local martingale M, define its stochastic Theorem 3. If both $\mu(\cdot, x)$ and $\sigma(\cdot, x)$ are Lipschitiz continuous in x and have at most linear growth in x, then the above SDE admits a unique solution. = 1 Emiledhet - 2504 2003 don't Proposition 7. (Novikov's condition) Let M be a local martingale with its stochastic exponential $\mathcal{E}(M)$. If $\mathbf{E}[e^{\frac{1}{2}\langle M\rangle_T}]<\infty,$ =) dlag(h)t=dat-1dahot then $\mathcal{E}(M)$ is a martingale up to time T. 174: Z+d R+				

5 Girsanov's theorem

Proposition 8. (Bayes Rule) Let $\mathscr{E}(M)$ be \overline{a} martingale up to T>0. Define a new probability measure \mathbf{Q} by the Radon-Nikodym density

define on
$$G$$
: $\frac{dQ}{dP}|_{\mathcal{F}_t} := E^P[\mathscr{E}(M)_T|\mathcal{F}_t] = \mathscr{E}(M)_t$.

Hen, on G , for $t \in T$, $\frac{dQ}{dP} = E[C(N)_T|F_t] = E(M)_t$.

Then for any r.v. $Y_t \in \mathcal{F}_t$, we have that

$$\begin{split} \mathbf{E}^{\mathbf{Q}}[Y_t] &= \mathbf{E}^{\mathbf{P}}[Y_t \mathscr{E}(M)_t]; \\ \mathbf{E}^{\mathbf{Q}}[Y_t | \mathscr{F}_s] &= \mathbf{E}^{\mathbf{P}}\left[\frac{Y_t \mathscr{E}(M)_t}{\mathscr{E}(M)_s} \middle| \mathscr{F}_s\right], \quad for \ \ 0 \leq s \leq t \leq T. \end{split}$$

Proof. For the first equality, it is sufficient to prove for $Y_t = \mathbf{1}_A$ where $A \in \mathscr{F}_t$. Indeed.

$$\begin{split} \mathbf{E}^{\mathbf{Q}}[\mathbf{1}_{\mathcal{A}}] &= \mathbf{Q}(\mathcal{A}) \\ &= \int_{\mathcal{A}} \mathscr{E}(M)_t d\mathbf{P} \\ &= \int_{\mathcal{O}} \mathbf{1}_{\mathcal{A}} \mathscr{E}(M)_t d\mathbf{P} = \mathbf{E}^{\mathbf{P}}[\mathbf{1}_{\mathcal{A}} \mathscr{E}(M)_t]. \end{split}$$

For the second equality, we need to show its RHS is the conditional expectation of Y_t given \mathcal{F}_z under \mathbb{Q} . Indeed, for any $A \in \mathcal{A}_z$,

$$\begin{split} \mathbf{E}^{\mathbf{Q}} \left[\mathbf{1}_{\mathcal{A}} \mathbf{E}^{\mathbf{P}} \left[\left. \frac{Y_t \mathscr{E}(M)_t}{\mathscr{E}(M)_z} \right| \mathscr{F}_z \right] \right] &= \mathbf{E}^{\mathbf{P}} \left[\mathbf{1}_{\mathcal{A}} \mathbf{E}^{\mathbf{P}} \left[\left. \frac{Y_t \mathscr{E}(M)_t}{\mathscr{E}(M)_z} \right| \mathscr{F}_z \right] \mathscr{E}(M)_z \right] \\ &= \mathbf{E}^{\mathbf{P}} \left[\mathbf{1}_{\mathcal{A}} Y_t \mathscr{E}(M)_t \right] \\ &= \mathbf{E}^{\mathbf{Q}} \left[\mathbf{1}_{\mathcal{A}} Y_t \right] \quad \Box \end{split}$$

Theorem 4. (Girsanov's theorem) Let $\mathcal{E}(M)$ be a martingale up to T>0. Define a new probability measure \mathbf{Q} by the Radon-Nikodym density

$$\left. \frac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathscr{F}_t} = \mathscr{E}(M)_t$$

Let X be a semimartingale under \mathbf{P} with the decomposition: $X_t = N_t + A_t$ where N is a P-local martingale and A is a finite variation process. Then X is also a semimartingale under \mathbf{Q} with the decomposition: $X_t = \tilde{N}_t + \tilde{A}_t$, where \tilde{N} is a \mathbf{Q} -local martingale:

$$\tilde{N}_t = N_t - \int_0^t \frac{1}{\mathscr{E}(M)_s} d\langle \mathscr{E}(M), N \rangle_s,$$

and \tilde{A} is a finite variation process:

is FV by assurption German Liang $\tilde{A}_t = A_t + \int_0^t \frac{1}{\mathscr{E}(M)_z} d\langle \mathscr{E}(M), N \rangle_z. \text{ is FV Since } \langle \mathscr{E}W, N \rangle_b \uparrow t, \text{ so FV.}$

Proof. We only need to show that \tilde{N} is a Q-local martingale. The following is the key observation to prove this.

If $\tilde{N}_t\mathscr{E}(M)_t$, $t\in[0,T]$, is a **P**-local martingale, then \tilde{N}_t , $t\in[0,T]$, is a **Q**-local

martingale. Hence, we first prove that $\tilde{N}_t\mathscr{E}(M)_t$ is a **P**-local martingale. Note that

$$\begin{split} d\tilde{N}_t &= dN_t - \frac{1}{\mathscr{E}(M)_t} d\langle \mathscr{E}(M), N \rangle_t, \\ d\mathscr{E}(M)_t &= \mathscr{E}(M)_t dM_t, \end{split}$$

Applying Itô's formula to $\tilde{N}_t \mathscr{E}(M)_t$ yields that

$$\begin{split} d\tilde{N}_{t}\mathscr{E}(M)_{t} &= \mathscr{E}(M)_{t}d\tilde{N}_{t} + \stackrel{\bullet}{N_{t}}d\mathscr{E}(M)_{t} + \stackrel{\bullet}{d(\overset{\bullet}{N}_{t}\mathscr{E}(M))_{t}} \\ &= \mathscr{E}(M)_{t}d\overset{\bullet}{N}_{t} - \stackrel{\bullet}{\mathcal{E}}(M)_{t}N)_{t} + \stackrel{\bullet}{N_{t}}d\mathscr{E}(M)_{t} + d\langle N,\mathscr{E}(M)\rangle_{t} \\ &= \mathscr{E}(M)_{t}dN_{t} + \mathring{N}_{t}d\mathscr{E}(M)_{t} \end{split}$$

which is obviously a **P**-local martingale. That is, there exits an increasing sequence of stopping times $T_n \uparrow \infty$ such that $(\tilde{N}\mathscr{E}(M))^{T_n}$ is a martingale. Next we prove that \tilde{N} is a **Q**-local martingale. Consider the above stopping time sequence T_n such that $\{s \leq T_n\}$, by Bayes rule, since $\tilde{N}_t^{T_n} \in \mathscr{F}_t$,

$$\mathbf{E}^{\mathbf{Q}}\left[\tilde{N}_{t}^{T_{n}}|\mathscr{F}_{s}\right] = \mathbf{E}^{\mathbf{P}}\left[\frac{\tilde{N}_{t}^{T_{n}}\mathscr{E}(M)_{t}}{\mathscr{E}(M)_{s}}|\mathscr{F}_{s}\right].$$

On the event $\{t > T_n\} \in \mathscr{F}_{T_n}$ (since $T_n \in \mathscr{F}_{T_n}$), the optional stopping theorem implies

$$\mathbf{E}^{\mathbf{p}}[\mathscr{E}(M)_t|\mathscr{F}_{T_n}]=\mathscr{E}(M)_{T_n}.$$

On the other hand, $\tilde{N}_t^{T_n} = \tilde{N}_{T_n} \in \mathscr{F}_{T_n}$ and the tower property yields

$$\mathbf{E}^{\mathbf{P}}\left[\tilde{N}_{t}^{T_{n}}\mathscr{E}(M)_{t}|\mathscr{F}_{s}\right] = \mathbf{E}^{\mathbf{P}}\left[\tilde{N}_{t}^{T_{n}}\mathbf{E}^{\mathbf{P}}[\mathscr{E}(M)_{t}|\mathscr{F}_{T_{n}}]|\mathscr{F}_{s}\right] = \mathbf{E}^{\mathbf{P}}\left[\tilde{N}_{T_{n}}\mathscr{E}(M)_{T_{n}}|\mathscr{F}_{s}\right].$$

$$\begin{split} \mathbf{E}^{\mathbf{Q}} \left[\tilde{N}_{t}^{T_{n}} | \mathscr{F}_{z} \right] &= \frac{1}{\mathscr{E}(M)_{z}} \mathbf{E}^{\mathbf{P}} \left[\tilde{N}_{t}^{T_{n}} \mathscr{E}(M)_{t} \mathbf{1}_{\{t \leq T_{n}\}} + \tilde{N}_{t}^{T_{n}} \mathscr{E}(M)_{t} \mathbf{1}_{\{t > T_{n}\}} | \mathscr{F}_{z} \right] \\ &= \frac{1}{\mathscr{E}(M)_{z}} \mathbf{E}^{\mathbf{P}} \left[\tilde{N}_{t} \mathscr{E}(M)_{t} \mathbf{1}_{\{t \leq T_{n}\}} + \tilde{N}_{T_{n}} \mathscr{E}(M)_{T_{n}} \mathbf{1}_{\{t > T_{n}\}} | \mathscr{F}_{z} \right] \\ &= \frac{1}{\mathscr{E}(M)_{z}} \mathbf{E}^{\mathbf{P}} \left[(\tilde{N} \mathscr{E}(M))_{t}^{T_{n}} | \mathscr{F}_{z} \right] = \frac{1}{\mathscr{E}(M)_{z}} (\tilde{N} \mathscr{E}(M))_{z}^{T_{n}} = \tilde{N}_{z} \end{split}$$

on the event $\{s \leq T_n\}$.

On the other hand, on the event $\{s > T_n\}$, since $\tilde{N}_t^{T_n} = \tilde{N}_{T_n}$, it follows that

$$\mathbf{E}^{\mathbf{Q}}\left[\tilde{N}_{t}^{T_{n}}|\mathscr{F}_{s}\right]=\tilde{N}_{T_{n}},$$

which shows that \tilde{N} is indeed a Q-local martingale. $\ \square$

Theorem 5. (Girsanov's theorem in Brownian motion case)

Let $M_t = \int_0^t h_t dW_s$ with $\mathbf{E}^{\mathbf{P}}[\exp(\frac{1}{2} \int_0^T |h_t|^2 ds)] < \infty$

so that $\mathcal{E}(M)$ is a martingale. Define a new probability measure \mathbf{Q} by the Radon-Nikodym density

$$\left. \frac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathscr{F}_t} = \mathscr{E}(M)_t.$$

$$W_t - \int_0^t \frac{1}{\mathscr{E}(M)_s} d\langle \mathscr{E}(M), W \rangle_s = W_t - \int_0^t h_s ds,$$
 C

Then
$$W_t^{\mathbf{Q}} := W_t - \int_0^t h_z ds$$
 is a d -dimensional Brownian motion under \mathbf{Q} .

Proof. From Theorem 4, the Brownian motion W , as a \mathbf{P} -local martingale, is modified as

$$W_t - \int_0^t \frac{1}{\mathcal{E}(M)_s} d\langle \mathcal{E}(M), W \rangle_s = W_t - \int_0^t h_z ds,$$
which is a \mathbf{Q} -local martingale. Since
$$\langle W^{\mathbf{Q},i}, W^{\mathbf{Q},j} \rangle_t = \langle W^i, W^j \rangle_t = \delta_{ij}t,$$
we conclude that $W^{\mathbf{Q}}$ is a Brownian motion under \mathbf{Q} by using Lévy's characterization. \square

6 Martingale representation

Theorem 6. (Martingale representation) Assume that the filtration $\{\mathscr{F}_t\}$ is generated by the d-dimensional Brownian motion $W=(W^1,\ldots,W^d)^T$. For any local martingale M, there exists a density process $h=(h^1,\ldots,d^d)$ in $\mathscr{L}(\mathbb{R}^d)$ such that

$$M_t = M_0 + \int_0^t h_s dW_s.$$

Moreover, if M is a martingale, then $h \in \mathscr{L}^2(\mathbb{R}^d)$.

10 Gechun Liang

7 Feynman-Kac formula

Proposition 9. (Markov property)
Suppose that \overline{X} solves the following SDE:

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t,$$

where $\mu(\cdot,\cdot):[0,T]\times\mathbb{R}^n\to\mathbb{R}^n$ and $\sigma(\cdot,\cdot):[0,T]\times\mathbb{R}^n\to\mathbb{R}^{n\times d}$ are both deterministic functions. Then X admits the Markov property: For any measurable function $f(\cdot)$ defined on \mathbb{R}^n ,

$$\mathbf{E}[f(X_t)|\mathscr{F}_s] = \mathbf{E}[f(X_t)|X_s] = F(s,X_s)$$

for some measurable function $F(\cdot,\cdot)$.

Proof. We first show the case $X_t = W_t$, i.e. a BM admits the Markov property. We

$$\mathbf{E}[f(W_t)|\mathscr{F}_s] = g(W_s) \tag{1}$$

with $g(x) = \mathbf{E}[f(W_t - W_s + x)].$

If (1) holds, then the tower property yields

$$\mathbf{E}[f(W_t)|W_s] = \mathbf{E}[\mathbf{E}[f(W_t)|\mathscr{F}_s]|W_s]$$
$$= \mathbf{E}[g(W_s)|W_s] = g(W_s).$$

To show (1), we aim to show that for any $A \in \mathscr{F}_s$,

$$\mathbf{E}[f(W_t)\mathbf{1}_A] = \mathbf{E}[g(W_s)\mathbf{1}_A].$$

We first approximate $f(W_t)$ pointwisely by the functions of the form

$$f(W_t - W_s + W_s) = \lim_{m \to \infty} \sum_{n=1}^m \varphi_n^1(W_s) \varphi_n^2(W_t - W_s).$$

Then, the DCT/MCT yields

$$g(x) = \mathbf{E}\left[\sum_{n} \varphi_{n}^{1}(x) \varphi_{n}^{2}(W_{t} - W_{s})\right]$$
$$= \sum_{n} \varphi_{n}^{1}(x) \mathbf{E}\left[\varphi_{n}^{2}(W_{t} - W_{s})\right],$$

and using the fact that $W_t - W_s$ is independent of \mathcal{F}_s ,

$$\begin{split} \mathbf{E}[f(W_t)\mathbf{1}_A] &= \mathbf{E}[\sum_n \mathbf{q}_n^1(W_s)\mathbf{q}_n^2(W_t - W_s)\mathbf{1}_A] \\ &= \sum_n \mathbf{E}[\mathbf{q}_n^1(W_s)\mathbf{1}_A\mathbf{E}[\mathbf{q}_n^2(W_t - W_s)|\mathscr{F}_s]] \\ &= \sum_n \mathbf{E}[\mathbf{q}_n^1(W_s)\mathbf{1}_A\mathbf{E}[\mathbf{q}_n^2(W_t - W_s)]] \\ &= \mathbf{E}\left[\left.\left(\sum_n \mathbf{q}_n^1(\mathbf{x})\mathbf{E}[\mathbf{q}_n^2(W_t - W_s)]\right)\right|_{\mathbf{x} = W_t}\mathbf{1}_A\right] = \mathbf{E}[g(W_s)\mathbf{1}_A]. \end{split}$$

11

The general case uses the fact that X_t is $\sigma(X_s, W_r - W_s, r \in [s, t])$ -measurable, so there exists a measurable function F such that

$$X_t = F(X_s, W_r - W_s, r \in [s, t]).$$

See Oksendal [2] Chapter 7.1 for a detailed proof. \Box

Theorem 7. (Feynman-Kac Formula)
Suppose that X solves the SDE as in Proposition 9, so that it admits the Markov property: For any measurable functions $f(\cdot)$ and $q(\cdot)$ on \mathbb{R}^n ,

$$\mathbf{E}[e^{-\int_t^T q(X_s)ds} f(X_T)|\mathscr{F}_t] = \mathbf{E}[e^{-\int_t^T q(X_s)ds} f(X_T)|X_t] = F(t, X_t)$$

for some measurable function $F(\cdot,\cdot)$. If $F\in C^{1,2}([0,T)\times\mathbb{R}^n)$ then F(t,x) solves the following PDE on $[0,T)\times\mathbb{R}^n$:

where $\mathcal L$ is the infinitesimal generator of X.

Proof. We first show the Markov property. The general idea is to replace the underlying Markov process X with a new Markov process which corresponds to the "killing" of the sample paths of X at the rate $q(\cdot)$. However, we give a more direct proof by introducing an auxiliary process

$$dY_t = -q(X_t)Y_tdt$$

Then, it is clear that $Y_T=Y_te^{-\int_t^Tq(X_t)ds}$. We may view (X,Y) as a pair of Markov processes, so $e^{-\int_t^Tq(X_t)ds}f(X_T)=Y_Tf(X_T)/Y_t$. By Proposition 9,

$$\mathbf{E}[\frac{Y_Tf(X_T)}{Y_t}|\mathcal{F}_t] = \frac{\mathbf{E}[Y_Tf(X_T)|(X_t,Y_t)]}{Y_t} = \mathbf{E}[e^{-\int_t^T g(X_t)dx}f(X_T)|(X_t,Y_t)].$$

However, the term $e^{-\int_t^T q(X_s)ds}f(X_T)$ does not depend on Y_t , from which we con-

clude.

To derive the PDE, the key observation is that

12

Gechun Liang

$$e^{-\int_0^t q(X_s)ds}F(t,X_t) = \mathbf{E}[e^{-\int_0^T q(X_s)ds}F(T,X_T)|\mathscr{F}_t]$$

so $e^{-\int_0^t q(X_t)ds}F(t,X_t), t\in [0,T]$, is a martingale. Applying Itô's formula to $e^{-\int_0^t q(X_t)ds}F(t,X_t)$ gives us

$$\begin{split} de^{-\int_0^t q(X_t)ds} F(t,X_t) &= e^{-\int_0^t q(X_t)ds} dF(t,X_t) - e^{-\int_0^t q(X_t)ds} q(X_t) F(t,X_t) dt \\ &= e^{-\int_0^t q(X_t)ds} (\partial_t F(t,X_t) + \mathcal{L}F(t,X_t) - q(X_t) F(t,X_t)) dt \\ &+ e^{-\int_0^t q(X_t)ds} (\sigma(X_t)^T \nabla_x F(t,X_t))^T dW_t \end{split}$$

In order to guarantee that $e^{-\int_0^t q(X_s)ds}F(t,X_t)$ is a martingale, we must have

$$\partial_t F(t,X_t) + \mathcal{L}F(t,X_t) - q(X_t)F(t,X_t) = 0,$$

which gives us the PDE for $F(\cdot, \cdot)$. \square

Remark 1. Note that from the martingale property of $e^{-\int_0^t q(X_t)ds}F(t,X_t)$, we also have

$$\int_{0}^{\infty} e^{-\int_{0}^{t} q(X_{s})ds} (\sigma(X_{t})^{T} \nabla_{x} F(t, X_{t}))^{T} dW_{t}$$
(3)

is a martingale. Hence, we can obtain a reverse statement, which also refers to the Feynman-Kac formula in the literature as it provides a formula to compute conditional expectation. Suppose $F \in C^{1,2}([0,T) \times \mathbb{R}^n)$ solves (2) and the martingale condition (3) holds then

$$F(t,X_t) = \mathbb{E}\left[e^{-\int_t^T q(X_s)ds}f(X_T)|\mathscr{F}_t\right]$$

8 Exercises

Exercise 1. (Ornstein-Uhlenbeck Process and Vasicek Model)

1. Consider the following linear SDE system:

$$dX_t = (a(t) + b(t)X_t)dt + \sigma(t)dW_t, \quad X_0 = x,$$

to verify the SDE

=> Dpply It to

where $W=(W^1,\cdots,W^d)^T$ is a d-dimensional Brownian motion. Assume that $a(t),b(t):[0,\infty)\to\mathbb{R}^d$ and $\sigma(t):[0,\infty)\to\mathbb{R}^{d\times d}$ are deterministic and bounded functions. By using integration by parts, prove that

$$X_t = \Phi(t)[x + \int_0^t \Phi^{-1}(s)a(s)ds + \int_0^t \Phi^{-1}(s)\sigma(s)dW_s],$$

where $\Phi(\cdot)$ solves the following ODE system:

$$d\Phi(t) = b(t)\Phi(t)dt, \quad \Phi(0) = 1.$$

=> lopply los to est 24.

de-b+2, =-le-b+2+d+ e-bt[(a+62+)d++6dla+]

= e-st/e dt+odW+T

=> e-42+ - x= ste-6 ds+ odws)

=> &+= ebt [x+ ste-bs ads+ ste-bs odies]

\$\frac{1}{2}\text{(s)} ads + \int \frac{1}{2}\text{(s)} adways

2. Now consider the one-dimensional case, and all the coefficients are constants a(t)=a>0, b(t)=-b<0, and $\sigma(t)=\sigma>0$. Write down the explicit formula

3. Under the conditions of (2), compute $E(X_t)$ and $Var(X_t)$ and their limits when

 $t \to \infty$ 4. Under the conditions of (2), define $Y_t = \int_0^\infty e^{bz} dW_z$, and $B_t = \sqrt{2b}Y_{\frac{|w|}{2}}$. Prove Res 11. For Bw w. that $B = (B_t)_{t \ge 0}$ is a Brownian motion, and X_t has the representation:

 $X_t = xe^{-bt} + \frac{a}{b}(1 - e^{-bt}) + \frac{\sigma e^{-bt}}{\sqrt{2b}}B_{e^{2bt}-1},$

Wot = JE W : :s also BM.

by using the fact that any zero mean continuous Gaussian process $B=(B_t)_{t\geq 0}$ with covariance $E[B_tB_z]=s\wedge t$ is a Brownian motion. (A stochastic process is Gaussian if its any finite dimensional distribution is Gaussian distributed.)

Exercise 2. (Stochastic Exponential) Let $M = (M_t)_{t \ge 0}$ be a continuous local martingale with $M_0 = 0$. Its stochastic exponential is defined as $\mathscr{E}(M)_t = e^{M_t - \frac{1}{2}\langle M \rangle_t}$.

1. By using the Itô's formula, prove that $\mathscr{E}(M)$ satisfies the following SDE:

$$d\mathscr{E}(M)_t = \mathscr{E}(M)_t dM_t, \quad \mathscr{E}(M)_0 = 1.$$

Therefore $\mathscr{E}(M)$ is a nonnegative continuous local martingale. 2. Prove that $\mathscr{E}(M)$ is a supermartingale. 3. Prove that $\mathscr{E}(M)_t^{-1}=\mathscr{E}(-M)_te^{(M)_t}.$

- 4. Let N be another a continuous local martingale with $N_0 = 0$. Prove that

$$\mathscr{E}(M)_t\mathscr{E}(N)_t = \mathscr{E}(M+N)_t e^{\langle M,N\rangle_t}.$$

References

- Karatzas, Ioannis, and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1998.
 Oksendal, Bernt. Stochastic differential equations: an introduction with applications.
- Springer, 2013.

 3. Revuz, Daniel, and Marc Yor. Continuous martingales and Brownian motion. Springer, 2013.