Arithmétique et Polynômes

Exercice 1. Trouver tous les entiers n strictement positifs pour lesquels 2^n divise $3^n - 1$.

Exercice 2. Soient a_1, \ldots, a_{n+1} des entiers deux à deux distincts dans $\{1, \ldots, 2n\}$.

- 1. Montrer qu'il existe i et j tels que a_i est premier avec a_j .
- 2. Montrer qu'il existe i et j distincts tels que a_i divise a_j .

Exercice 3. Un nombre n est dit parfait si $\sigma(n) = 2n$ (où σ désigne la somme des diviseurs positifs). Montrer que l'entier n est parfait pair si et seulement s'il est de la forme $2^{k-1}(2^k-1)$ avec 2^k-1 premier.

Exercice 4. Soient a, b et c des entiers strictement positifs, premiers entre eux dans leur ensemble, et tels que :

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$$

Prouver que a + b est un carré parfait.

Exercice 5. Trouver tous les entiers positifs x, y, z tels que : $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{5}$

Exercice 6. Soit $(P_n)_{n\in\mathbb{N}^*}$ la suite de polynômes définie par

$$P_1 = X - 2$$
 et $\forall n \in \mathbb{N}^*, P_{n+1} = P_n^2 - 2$

Calculer le coefficient de X^2 dans P_n .

Exercice 7. Soit $P \in \mathbb{R}[X]$ scindé de degré \geq 2, montrer que le polynôme P' est lui aussi scindé.

Exercice 8. Trouver tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$\forall k \in \mathbb{Z}, \int_{k}^{k+1} P(t) \, \mathrm{d}t = k+1$$

 \mathcal{E} xercice 9. On cherche les polynômes P non nuls tels que

$$P(X^2) = P(X - 1)P(X)$$

- 1. Montrer que toute racine d'un tel P est de module 1.
- 2. Déterminer les polynômes *P*.

Exercice 10. Factoriser le polynôme $(X+i)^n - (X-i)^n$ pour $n \in \mathbb{N}^*$.

Exercice 11. Pour tout entier naturel n on pose

$$L_n = \frac{n!}{(2n)!} \left((X^2 - 1)^n \right)^{(n)}$$

1. Montrer que L_n est un polynôme unitaire de degré n.

2. Montrer que $\forall Q \in \mathbb{R}_{n-1}[X]$, $\int_{-1}^{1} L_n(t)Q(t) dt = 0$

3. En déduire que L_n possède n racines simples toutes dans]-1;1[. *Indication*: On pourra raisonner sur les racines d'ordres impaires de L_n .