UENF

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Curso: Ciência de Computação e Informática Data: 26./.09./2022

Lista: Questões sobre Complexidade Período: 4°

Disciplina: Estrutura de Dados II

Professor: Fermín A. Tang **Turno:** Diurno

Complexidade

1. Determine o O(.) para cada uma das seguintes funções que representam o número de passo requeridos por um dado algoritmo:

(a)
$$T(n) = n^2 + 400n + 5$$

(e)
$$T(n) = 3(2^n) + n^8 + 1024$$

(b)
$$T(n) = 67n + 3n$$

(f)
$$T(n,k) = kn + \log k$$

(c)
$$T(n) = 2n + 5n \log n + 100$$

(g)
$$T(n,k) = 9n + k \log n + 1000$$

(d)
$$T(n) = \log n + 2n^2 + 55$$

Resposta.-

- (a) $T(n) \notin O(n^2)$
- (e) $T(n) \notin O(2^n)$
- (b) $T(n) \notin O(n)$
- (f) $T(n,k) \notin O(kn)$
- (c) $T(n) \notin O(n \log n)$
- (g) $T(n, k) \in O(k \log n)$
- (d) $T(n) \notin O(n^2)$
- 2. Considere um problema P que pode ser resolvido usando diferentes algoritmos. A complexidade de cada algoritmo pode ser representada mediante uma função f(n), onde n representa o tamanho do problema. Para cada função f(n), determine o maior tamanho n de um problema que pode ser resolvido em tempo t conforme indicado na tabela. Considere que cada algoritmo leva f(n) microssegundos para resolver um problema.

	1 Second	1 Hour	1 Month	1 Century
$\log n$	$\approx 10^{300000}$			
n				
$n \log n$				
n^2				
2 ⁿ				

Resposta.- Considerando que o algoritmo linear n leva n microsegundos. Sabemos que um microsegundo equivale a 10^{-6} segundos.

Para uma entrada n, o algoritmo linear leva n microsegundos:

Em um segundo, ele conseguiria resolver um problema de tamanho:

$$n = 10^6$$
 onde $10^6 \times 10^{-6} = 1$ segundo

Em uma hora = 3.600 segundos (3.6×10^3), ele conseguiria resolver um problema de tamanho:

$$n = 3.6 \times 10^9$$
 onde $3.6 \times 10^9 \times 10^{-6} \le 3.600$ segundos

Em um mês = $(30 \times 24 \times 3.600)$ segundos $(2,592 \times 10^6)$, ele conseguiria resolver um problema de tamanho:

$$n = 2,592 \times 10^{12}$$
 onde $2,592 \times 10^{12} \times 10^{-6} \le 2,592 \times 10^{6}$ segundos

Para uma entrada n, o algoritmo quadrático leva n^2 microsegundos:

Em um segundo, ele conseguiria resolver um problema de tamanho:

$$n = 10^3$$
 onde $(10^3)^2 \times 10^{-6} = 1$ segundo

Em uma hora = 3.600 segundos (3.6×10^3), ele conseguiria resolver um problema de tamanho:

$$n = 6 \times 10^4$$
 onde $(6 \times 10^4)^2 \times 10^{-6} \le 3.600$ segundos

Para uma entrada n, o algoritmo quadrático leva 2^n microsegundos:

Em um segundo, ele conseguiria resolver um problema de tamanho:

$$n = \log 10^6 = 19,93$$
 onde $2^n \times 10^{-6} = 1$ segundo

Para uma entrada n, o algoritmo exponencial conseguiria:

$$2^n = 10^6$$
 $n = \log 10^6$

	Tamanho do problema					
	1 segundo	1 hora	1 mês	1 século		
$\log n$						
n	10 ⁶	$3,6 \times 10^9$	$2,592 \times 10^{12}$	$3,1104 \times 10^{15}$		
$n \log n$						
n^2	10^{3}	6×10^4	$1,609 \times 10^6$	$5,577 \times 10^7$		
2 ⁿ	19,93	31,745	41,237	51,466		

- 3. O número de operações realizadas pelos algoritmos A e B é $40n^2$ e $2n^3$ respectivamente. Determine o tamanho de n_0 de maneira que A seja melhor que B para $n \ge n_0$.
- 4. Os programas A e B foram analisados concluindo-se que os tempos de execução de pior caso não são maiores do que 150nlogn e n^2 , respectivamente. Responda as seguintes questões:
 - a) Qual programa oferece o melhor desempenho no tempo de execução para valores grandes de n (n>10.000)?

- b) Qual programa oferece o melhor desempenho no tempo de execução para valores pequenos de *n* (n<100)?
- c) Qual programa executara mais rápido em média para n=1.000.
- d) Pode o programa B executar mais rápido que o programa A para todas as entradas possíveis?.
- 5. Assumindo que $f_1(n)$ é $O(g_1(n))$ e $f_2(n)$ é $O(g_2(n))$ prove:
 - a). $f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n)))$
 - b) $f_1(n) * f_2(n) \notin O(g_1(n) * g_2(n))$

Resposta.-

a) Dado que $f_1(n)$ é $O(g_1(n))$ e $f_2(n)$ é $O(g_2(n))$ sabe-se que:

$$f_1(n) \le c_1 g_1(n)$$
 para $n \ge n_1$

$$f_2(n) \le c_2 g_2(n)$$
 para $n \ge n_2$

Considerando $n \ge n_0 = \max(n_1, n_2)$ podemos somar as duas expressões acima:

$$f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n)$$
 para $n \ge n_0$

Considerando $c = \max(c_1, c_2)$ temos que:

$$f_1(n) + f_2(n) \le c(g_1(n) + g_2(n))$$
 para $n \ge n_0$

Sabe-se que: $(g_1(n) + g_2(n))/2 \le max(g_1(n), g_2(n)) \le (g_1(n) + g_2(n))$

$$f_1(n) + f_2(n) \le 2c \max(g_1(n), g_2(n))$$
 para $n \ge n_0$

Fazendo $c_0 = 2c$ temos a prova desejada:

Assim provamos que: $f_1(n) + f_2(n) \notin O(\max(g_1(n), g_2(n))$

b) Dado que $f_1(n)$ é $O(g_1(n))$ e $f_2(n)$ é $O(g_2(n))$ sabe-se que:

$$f_1(n) \le c_1 g_1(n)$$
 para $n \ge n_1$

$$f_2(n) \le c_2 g_2(n)$$
 para $n \ge n_2$

Considerando $n \ge n_0 = \max(n_1, n_2)$ podemos multiplicar as duas expressões acima:

$$f_1(n) * f_2(n) \le c_1 c_2 g_1(n) * g_2(n)$$
 para $n \ge n_0$

Fazendo $c = c_1 c_2$ temos a prova desejada:

$$f_1(n) * f_2(n) \le c g_1(n) * g_2(n)$$
 para $n \ge n_0$

Assim provamos que: $f_1(n) * f_2(n) \notin O(g_1(n) * g_2(n))$

- 6. Usando a definição de O(.) prove que:
 - a) $2^{n+a} \notin O(2^n)$
 - b) $2^n \notin O(n!)$ e n! não é $O(2^n)$
 - c) $\sum_{i=1}^{n} i^2 \in O(n^3)$ e em geral $\sum_{i=1}^{n} i^k \in O(n^{k+1})$

Resposta.-

a) Podemos expressar: $2^{n+a} = 2^n * 2^a$

Fazendo $c = 2^a$ temos que: $2^{n+a} \le c2^n$ para $n \ge 0$

Temos assim que: $2^{n+a} \notin O(2^n)$

b) Sabe-se que: $2^n = 2 \times 2 \times 2 \times ... \times 2 \le 2 \times (1 \times 2 \times 3 \times ... \times n)$

Com isso temos que: $2^n \le cn!$ para c = 2 e $n \ge 1$

Assim provamos que: $2^n \notin O(n!)$

c) Sabe-se que: $\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 \le n^2 + n^2 + \dots + n^2 = n^3$

Com isso temos que: $\sum_{i=1}^{n} i^2 \le cn^3$ para c = 1 e $n \ge 1$

Assim provamos que: $\sum_{i=1}^{n} i^2 \notin O(n^3)$

De maneira análoga, temos que:

$$\sum_{i=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} \le n^{k} + n^{k} + \dots + n^{k} = n \cdot n^{k} = n^{k+1}$$

Com isso temos que: $\sum_{i=1}^{n} i^k \le c n^{k+1}$ para c=1 e $n\ge 1$

Assim provamos que: $\sum_{i=1}^{n} i^{k}$ é $O(n^{k+1})$