DATA621_HW1 Spring'18

Jaan Bernberg February 9, 2018

Purpose

This assignment explores, analyzes, and models data from baseball team seasons from 1871-2006 inclusive (stats adjusted to match 162-game season). Each record represents the performance of a given baseball team per year.

The goal is to create a model that can predict baseball team wins based on the performance metrics captured in the training dataset moneyball-training-data.csv and then review the predictive quality by running the model with moneyball-evaluation-data.csv the testing dataset.

Data Exploration

High-level Findings

- There are $\sim\!2300$ observations with 16 variables included
- Five of the variables have a number of missing values
- Two of the variables have outliers
- Multicollinearity present in seven variables
- Untransformed (raw) data is not highly correlated with response

Findings Detail

The below investigation was completed prior to model-fitting in order to get a sense for the density and quality of the training data set and to preview what types of actions may need to be taken in the model-fitting steps.

Summary Statistics:

Table 1: Selected Stats

vars	n	mean	sd	median	min	max	range	kurtosis	IQR
1	2276	80.79	15.75	82.0	0	146	146	1.03	21.00
2	2276	1469.27	144.59	1454.0	891	2554	1663	7.28	154.25
3	2276	241.25	46.80	238.0	69	458	389	0.01	65.00
4	2276	55.25	27.94	47.0	0	223	223	1.50	38.00
5	2276	99.61	60.55	102.0	0	264	264	-0.96	105.00
6	2276	501.56	122.67	512.0	0	878	878	2.18	129.00
7	2174	735.61	248.53	750.0	0	1399	1399	-0.32	382.00
8	2145	124.76	87.79	101.0	0	697	697	5.49	90.00
9	1504	52.80	22.96	49.0	0	201	201	7.62	24.00
10	191	59.36	12.97	58.0	29	95	66	-0.11	16.50
11	2276	1779.21	1406.84	1518.0	1137	30132	28995	141.84	263.50
	1 2 3 4 5 6 7 8	1 2276 2 2276 3 2276 4 2276 5 2276 6 2276 7 2174 8 2145 9 1504 10 191	1 2276 80.79 2 2276 1469.27 3 2276 241.25 4 2276 55.25 5 2276 99.61 6 2276 501.56 7 2174 735.61 8 2145 124.76 9 1504 52.80 10 191 59.36	1 2276 80.79 15.75 2 2276 1469.27 144.59 3 2276 241.25 46.80 4 2276 55.25 27.94 5 2276 99.61 60.55 6 2276 501.56 122.67 7 2174 735.61 248.53 8 2145 124.76 87.79 9 1504 52.80 22.96 10 191 59.36 12.97	1 2276 80.79 15.75 82.0 2 2276 1469.27 144.59 1454.0 3 2276 241.25 46.80 238.0 4 2276 55.25 27.94 47.0 5 2276 99.61 60.55 102.0 6 2276 501.56 122.67 512.0 7 2174 735.61 248.53 750.0 8 2145 124.76 87.79 101.0 9 1504 52.80 22.96 49.0 10 191 59.36 12.97 58.0	1 2276 80.79 15.75 82.0 0 2 2276 1469.27 144.59 1454.0 891 3 2276 241.25 46.80 238.0 69 4 2276 55.25 27.94 47.0 0 5 2276 99.61 60.55 102.0 0 6 2276 501.56 122.67 512.0 0 7 2174 735.61 248.53 750.0 0 8 2145 124.76 87.79 101.0 0 9 1504 52.80 22.96 49.0 0 10 191 59.36 12.97 58.0 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	vars	n	mean	sd	median	min	max	range	kurtosis	IQR
TEAM_PITCHING_HR	12	2276	105.70	61.30	107.0	0	343	343	-0.60	100.00
TEAM_PITCHING_BB	13	2276	553.01	166.36	536.5	0	3645	3645	96.97	135.00
TEAM_PITCHING_SO	14	2174	817.73	553.09	813.5	0	19278	19278	671.19	353.00
TEAM_FIELDING_E	15	2276	246.48	227.77	159.0	65	1898	1833	10.97	122.25
$TEAM_FIELDING_DP$	16	1990	146.39	26.23	149.0	52	228	176	0.18	33.00

Missing Values:

Review of the NA's (see column n, Table1) revealed the following sparse variables. The value after the variable name represents the number of missing values followed % density on 2,276 records available in most (11 of 16) variables:

TEAM_BATTING_HBP: 2085: 8%
TEAM_BASERUN_CS: 772: 66%
TEAM_FIELDING_DP: 286: 87%
TEAM_PITCHING_SO: 102: 96%
TEAM_BATTING_SO: 102: 96%

Outliers:

Below, a preview of each variable in the data using box plots reveals at least 2 variables containing points with significant outliers:

- TEAM_PITCHING_H (hits allowed by pitchers)
- TEAM PITCHING SO (strikeouts by pitchers)

Note that the right-hand side plot is a duplicate of the left-hand plot but uses a log scale for the value-axis.

Multicollinearity

The below heat-map style plot highlights the correlation that exists between some of the predictor variables in the training set:

From the above plot above, selected variables and their respective correlation to other selected variables include:

- TEAM_BATTING_HR and TEAM_BATTING_SO (HRs by batters and Strikeouts by batters)
- TEAM_BATTING_SO and TEAM_PITCHING_HR (Strikeouts by batters and HR's allowed by pitchers)
- TEAM_BATTING_HR and TEAM_PITCHING_HR (HRs by batters and HRs allowed by pitch)
- TEAM_FIELDING_E and TEAM_PITCHING_H (Fielding errors and Hits allowed by pitchers)
- TEAM_FIELDING_DP and TEAM_FIELDING_E (Double-plays and fielding errors)

The presence of these values could indicate that some of these variables are doing 'double-duty' and may be removed in the fitting process with little loss of information.

Low Correlation To Response Variable

Pre-transformation TARGET_WINS vs. all other variables within the dataset in isoloation results in low correlation values and hints that transformations may be necessary in the modelling stage.

Table 2: Abs. Correlation Between Target Wins and other variables

var_name	abs_cor_val	cor_val
target_wins	1.0000	1.0000
t_bat_h	0.3888	0.3888
t_bat_2b	0.2891	0.2891
t_bat_bb	0.2326	0.2326
t_pitch_hr	0.1890	0.1890
t_field_e	0.1765	-0.1765

Plotting all the variables against TARGET_WINS further highlights these low values:

For convenience, the above plot was built by substituting 0's for NA's for all data but model fits do not. The primary takeaway is that in isolation, none of the variables appears to be a great predictor of TARGET_WINS.

Data Preperation

Several different methods were investigated. The below provides a summary of methods used to prepare each of the data-sets for 3 different model fits for the purpose of prediction.

Below, I have outlined the steps taken to prepare individual data-sets for each model.

Model 1 Data:

Motivation: Based on the most complete set of records with minimal imputation:

- For TEAM_BATTING_SO and TEAM_PITCHING_SO, NA-values replaced with the mean and median respectively to address normal and skewed distributions respectively these variables were only missing 4% of their records.
- Removed TEAM_BATTING_HBP because of its numerous missing values (92% of records missing values for this variable.)

Model 2 Data:

Motivation: a refinement of the first model data-set that excludes variables that may be doing 'double-duty':

- Replace NA with mean for: TEAM FIELD DP to cover 13% of missing values
- Replace NA with median for TEAM_PITCH_SO to cover 4% missing values

- Remove TEAM_BATTING_SO because it's highly correlated with TEAM_PITCHING_SO
- Remove TEAM_BASERUN_CS and TEAM_BATTING_HBP because 44% and 92% of records are missing respectively.

Model3 Data:

Motivation: Address all/most multicollinearity encountered and reduce the number of predictors overall to simplify the model. Variable selection between correlated predictors was based on 'hitting-variables' because those intuitively may result in more runs, and therefore, more wins.

- Remove TEAM_BASERUN_CS and TEAM_BATTING_HBP because 44% and 92% of records are missing respectively.
- \bullet Remove TEAM_BATTING_2B/3B/HR as TEAM_BATTING_H covers all hit types this is an attempt to simplify the model fit
- Remove one side of the correlated pairs focusing on batting-related variables such that:
 - TEAM_BATTING_SO kept in, removed TEAM_PITCHING_SO
 - TEAM_BATTING_H kept in, removed TEAM_PITCHING_H
 - TEAM_PITCHING_HR kept in, removed TEAM_BATTING_HR as TEAM_BATTING_H covers all hits
 - TEAM_FIELDING_E kept in, removed TEAM_FIELDING_DP

Build Models

Model Fitting

Models were fit with the respective data-sets created in the previous section. Each section will display the resulting fit's coefficients but the discussion of the coefficients will be saved for the *Model Selection* section.

Fit1:

Fit1 utilized the stepAIC function from the MASS package to perform step-wise model selection by AIC. I used this auto-selection method to investigate an off-the-shelf model's performance with no additional transformations or imputation beyond what was originally discussed.

Table 3: Model 1 coefficients

Vars	Coefs.
(Intercept)	58.4461
t_bat_h	0.0255
t_bat_2b	-0.0698
t_bat_3b	0.1616
t_bat_hr	0.0977
t_bat_bb	0.0395
t_baser_sb	0.0360
t_baser_cs	0.0518
t_pitch_h	0.0091
t_pitch_so	-0.0208
t_field_e	-0.1560
t_field_dp	-0.1131

Model 2 Fit:

An attempt at employing the powerTransform function from the car package to see if box-cox would yield any transformation but my result was $\lambda \approx 1$ so I did not transform the model.

Table 4: Model 2 coefficients

(Intercept) 29.730 t_bat_h 0.042 t_bat_2b -0.049 t_bat_3b 0.074 t_bat_hr 0.014 t bat bb 0.030	з.
t_bat_2b -0.049 t_bat_3b 0.074 t_bat_hr 0.014	7
t_bat_3b 0.074 t_bat_hr 0.014	2
t_bat_hr 0.014	0
	1
t bot bb 0.030	7
t_bat_bb 0.030	3
t_baser_sb 0.056	5
t_pitch_h 0.002	7
t_{pitch_hr} 0.055	7
t_pitch_bb -0.003	0
t_pitch_so -0.010	2
t_field_e -0.051	7
t_field_dp -0.116	8

Model 3 Fit:

The result of the box-cox transform here was a value of $\lambda \approx 1$ which again called for no transformation.

Table 5: Model 3 coefficients

Vars	Coefs.
(Intercept)	24.3922
t_bat_h	0.0343
t_bat_bb	0.0239
t_bat_so	-0.0160
t_baser_sb	0.0558
t_pitch_hr	0.0681
t_pitch_bb	-0.0034
t_field_e	-0.0346

Select Models

Criteria:

My selection criteria is based on comparing \mathbb{R}^2 and F-Statistics. If the performance is similar across these measures, I will select the model that is the easiest to describe of the two.

Model Selection:

I utilized the stargazer package to create the table below that compares Models 1, 2, and 3. Note that at the bottom of the table the models are compared by R^2 , adjusted R^2 , and the F-statistic.

# # -		Dependent variable:	
+ #	(1)	target_wins (2)	(3)
# # t_bat_h	0.026*** (0.006)	0.042*** (0.004)	0.034*** (0.003)
 # t_bat_2b	-0.070*** (0.009)	-0.049*** (0.009)	
t_bat_3b	0.162*** (0.022)	0.074*** (0.017)	
t_bat_hr	0.098*** (0.009)	0.015 (0.027)	
 # t_bat_bb	0.039*** (0.003)	0.030*** (0.006)	0.024*** (0.004)
t_bat_so			-0.016*** (0.002)
t_baser_sb	0.036*** (0.009)	0.057*** (0.004)	0.056*** (0.004)
t_baser_cs	0.052*** (0.018)		
t_pitch_h	0.009*** (0.002)	0.003*** (0.0004)	
t_pitch_hr		0.056** (0.025)	0.068*** (0.008)
t_pitch_bb		-0.003 (0.004)	-0.003 (0.003)
t_pitch_so	-0.021*** (0.002)	-0.010*** (0.002)	
t_field_e	-0.156*** (0.010)	-0.052*** (0.003)	-0.035*** (0.003)
# t_field_dp	-0.113*** (0.013)	-0.117*** (0.012)	
# Constant #		29.731*** (5.187)	24.392*** (4.803)
; ; Observations	1,486	2,145	2,043
‡ R2	0.438	0.374	0.337
# Adjusted R2	0.434	0.370	0.335
F Statistic	104.596*** (df = 11; 147	4) 106.144*** (df = 12; 2132)	147.644*** (df = 7; 2

Observations from these 3 models:

- None of the 3 models have very high R^2 values.
- Each model's F-statistic indicates that there is a relationship between predictor and the response variables included in the fits

Coefficients:

Model1: The intercept ('Constant') is too low for the mean value of TARGET_WINS but it's not likely that every baseball team will get ~58 wins a season. The signs of the coefficients are problematic for several cases e.g. TEAM_BASERUN_CS (caught stealing) is positive but that would be detrimental to the wins and TEAM_FIELDING_E (fielding errors) are negative but fielding errors would lead to more on-bases and therefore, more runs.

Model2: More-intuitive intercept value but similarly un-intuitive coefficient signs that mirror the issues pointed out in Model1.

Model3: This model contains the fewest variables but 2 of them still have problematic signs including TEAM_FIELDING_E and TEAM_PITCHING_BB which I would expect to be positively correlated with wins.

Based on my criteria, since the performance of Model 1 is superior compared to the three models, I have selected **Model 1**.

Model Evaluation:

```
##
## Call:
##
   lm(formula = target_wins ~ t_bat_h + t_bat_2b + t_bat_3b + t_bat_hr +
       t_bat_bb + t_baser_sb + t_baser_cs + t_pitch_h + t_pitch_so +
##
##
       t_field_e + t_field_dp, data = f1_bsb_raw[, -1])
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
                      -0.1643
                                         27.8502
   -30.5830
             -6.7313
                                 6.5323
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 58.446058
                           6.588864
                                       8.870 < 2e-16 ***
## t_bat_h
                           0.005837
                                       4.369 1.34e-05 ***
                0.025502
## t bat 2b
               -0.069828
                           0.009292
                                      -7.515 9.86e-14 ***
## t bat 3b
                0.161620
                           0.022159
                                       7.294 4.91e-13 ***
## t_bat_hr
                0.097746
                           0.009435
                                      10.360
                                              < 2e-16 ***
## t_bat_bb
                0.039484
                           0.003356
                                      11.765
                                             < 2e-16 ***
## t_baser_sb
                0.036034
                           0.008668
                                       4.157 3.41e-05 ***
## t_baser_cs
                0.051768
                           0.018200
                                       2.844 0.004511 **
## t_pitch_h
                0.009070
                           0.002353
                                       3.855 0.000121 ***
## t_pitch_so
               -0.020827
                           0.002312
                                     -9.006
                                              < 2e-16 ***
## t_field_e
               -0.155970
                           0.009917 -15.728
                                              < 2e-16 ***
## t_field_dp
               -0.113149
                           0.013121
                                     -8.623
                                             < 2e-16 ***
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 9.548 on 1474 degrees of freedom
     (790 observations deleted due to missingness)
## Multiple R-squared: 0.4384, Adjusted R-squared: 0.4342
## F-statistic: 104.6 on 11 and 1474 DF, p-value: < 2.2e-16
```

The summary output from Model 1, above, reveals a number of challenges:

- The Intercept value of ~ 60 could be too high given that TARGET_WINS can take values as low as 0 (team loses all games) but it could also be too low given that the mean and median is approx 80.
- The coefficients have very low p-values so the observed data is extremely unlikely to to have arisen if the the null hypothesis were true (i.e. that $H_0: \beta_i = 0$ so we can reject the null hypothesis)
- 790 observations related to the missing values in columns TEAM_BATTING_HBP
- The R^2 and multiple R^2 values are low $(R^2 < .70)$ at $\approx .43$ this indicates to me that the data isn't very close to the fitted regression and may provide poor predictions
- The negative coefficients under TEAM_BATTING_2B and other base-gaining activities is counter-intuitive as getting on-base intuitively would result in more wins.

Below, the residual and QQ plots of *Model1* appear to support a normal classification with some reservations. The residuals vs. the fitted plot appear to have a slight 'kink' when I expected an even, straight line. The normal QQ plot doesn't deviate from the diagnol except in a few outlying cases.

Model CI:

```
##
                      2.5 %
                                  97.5 %
## (Intercept) 45.521508029 71.37060756
                0.014051637
                             0.03695139
## t_bat_h
## t_bat_2b
               -0.088055314 -0.05160018
## t_bat_3b
                0.118153213
                             0.20508673
## t_bat_hr
                0.079239109
                             0.11625374
## t_bat_bb
                0.032900919
                             0.04606681
## t_baser_sb
                0.019031119
                             0.05303599
## t_baser_cs
                0.016067233
                             0.08746819
## t_pitch_h
                0.004455242
                             0.01368480
## t_pitch_so
               -0.025362847 -0.01629076
## t_field_e
               -0.175422721 -0.13651774
## t_field_dp
               -0.138887843 -0.08741043
```

Prediction:

Below, I've used the evaluation data set, predicted the wins based on its ~200 records, and plotted the TARGET_WINS vs TEAM_BATTING_H. You can see the values wins predicted based on model 1 red in color.

R Code for Assignment 1:

```
#confint(fitA)
knitr::opts chunk$set(echo = TRUE)
#library(memisc)
library(stargazer)
library(tidyverse)
#library(GGally)
# read in data.
bsb_train_raw <- read.csv("moneyball-training-data.csv")</pre>
mini_tbl<-psych::describe(bsb_train_raw[,-1], IQR=T)[,c(1:5,8:10,12,14)]</pre>
bsb_train <- data.table::setnames(bsb_train_raw,</pre>
                                     tolower(names(bsb_train_raw[1:17])))
bsb_train[is.na(bsb_train)] <- 0 # used for simple plots - not used for model fitting
                                     # see data preperation section for more details.
col_name_updater <- function(x, text_to_updt, replc_text){</pre>
  colnames(x) = gsub(text_to_updt, replc_text, colnames(x))
  return(x)
}
# shorten and clean colnames
c1 <- col_name_updater(bsb_train, "batting", "bat")</pre>
c2 <- col_name_updater(c1, "pitching", "pitch")</pre>
c3 <- col_name_updater(c2, "fielding", "field")</pre>
c4 <- col_name_updater(c3, "baserun", "baser")</pre>
bsb_data <- col_name_updater(c4, "team", "t")</pre>
rm(c1,c2,c3, c4)
c1 <- col_name_updater(bsb_train_raw, "batting", "bat")</pre>
c2 <- col_name_updater(c1, "pitching", "pitch")</pre>
c3 <- col_name_updater(c2, "fielding", "field")</pre>
c4 <- col_name_updater(c3, "baserun", "baser")</pre>
bsb_train_raw <- col_name_updater(c4, "team", "t")</pre>
```

```
rm(c1,c2,c3, c4)
knitr::kable(round(mini_tbl,2), caption = "Selected Stats")
rm(mini_tbl)
p1 <- bsb_data %>%
  gather(-index, key = "vars", value = "vals") %>%
  select_("vars", "vals") %>%
  ggplot() +
  geom_boxplot(aes(x = vars, y=vals)) +
  coord_flip() + xlab("")
p2 <- bsb_data %>%
  gather(-index, key = "vars", value = "vals") %>%
  select_("vars", "vals") %>%
  ggplot() +
  geom_boxplot(aes(x = vars, y=vals)) +
  scale_y_log10() +
  coord_flip() + ylab("log(vals)") + xlab("")
suppressMessages(gridExtra::grid.arrange(p1, p2, nrow=1))
# check correlations between prediction vars:
GGally::ggcorr(bsb_data[,c(6,8,12,13,15:17)],
               geom = "circle", nbreaks = 6,
               label=T, label size = 3)
# see if there's cor btween target wins and others...
sm_tab <- cor(bsb_data[,-1]) %>% as.data.frame() %>%
  tibble::rownames_to_column(var = "var_name") %>%
  mutate(cor_val = round(target_wins , 4),
         abs_cor_val = abs(cor_val)) %>%
  select_("var_name", "abs_cor_val", "cor_val") %>%
  arrange(desc(abs_cor_val)) %>%
  na.omit()
knitr::kable(head(sm_tab), caption = "Abs. Correlation Betwen Target Wins and other variables")
bsb_data[,-1] %>%
  gather(-target_wins, key = "vars", value = "vals") %>%
  ggplot(aes(x = vals, y = target_wins)) +
    geom_point(alpha=.1) +
    facet_wrap(~ vars, scales = "free", ncol = 3)
na_ifelse <- function(x, metric){</pre>
  #function to replace NAs
  if(metric=="mean"){
    result = ifelse(is.na(x), mean(x, na.rm=T), x)
  }else if (metric == "med"){
    result = ifelse(is.na(x), median(x, na.rm=T), x)
  }else if (metric == "min"){
    result = ifelse(is.na(x), min(x, na.rm=T), x)
    result = ifelse(is.na(x), 0, x)
  return(result)
}
f1_bsb_raw <- bsb_train_raw %>%
  mutate(t_bat_so = na_ifelse(t_bat_so, "mean"),
```

```
t_pitch_so = na_ifelse(t_pitch_so, "med")) %>%
 select(-t_bat_hbp)
# sapply(new_bsb_raw, function(x) sum(is.na(x))) # count na's per column!
# View(new bsb raw)
f2_bsb_raw <- bsb_train_raw %>%
 mutate(t_field_dp = na_ifelse(t_field_dp, "mean"),
        t_pitch_so = na_ifelse(t_pitch_so, "med")) %>%
 select(-t bat so, -t baser cs, -t bat hbp)
f3_bsb_raw <- bsb_train_raw %>%
 select(-t_baser_cs, -t_bat_hbp,
        -t_bat_2b, -t_bat_3b, -t_bat_hr,
        -t_pitch_so, -t_pitch_h, -t_field_dp)
## A function to pull the coefficients from a linear model and present them nicely.
get_coefs <- function(an_lm){</pre>
 temp = an_lm$coefficients %>% as.data.frame()
 temp$Vars = rownames(temp)
 colnames(temp)[1] = "Coefs."
 rownames(temp) = NULL
 return(temp[,2:1])
fitA <- lm(target_wins ~., f1_bsb_raw[,-1])</pre>
fitA_stepped <- MASS::stepAIC(fitA, trace=F)</pre>
knitr::kable(get_coefs(fitA_stepped),
            caption = "Model 1 coefficients",
            digits = 4
#summary(fitA_stepped)
par(mfrow=c(1,2))
plot(fitA_stepped, which=c(2,1))
par(mfrow=c(1,1))
fitB <- lm(target_wins ~., f2_bsb_raw[,-1])</pre>
\#fitB1 \leftarrow lm(target\_wins+.01 \sim., f2\_bsb\_raw[,-1])
#fitB_bc <- car::powerTransform(fitB1, family="bcPower") # 1.193639</pre>
#fitB bc$roundlam # provides maximum estimator
\#df \leftarrow cbind(lambda = fitB\_bc\$lambda, log\_likli = fitB\_bc\$llik) \%>\% as.data.frame()
#df <- df %>% ungroup() %>% arrange(desc(log_likli))
#summary(fitB)
knitr::kable(get_coefs(fitB),
            caption = "Model 2 coefficients",
            digits = 4)
par(mfrow=c(1,2))
plot(fitB, which=c(2,1))
par(mfrow=c(1,1))
fitC <- lm(target_wins ~., f3_bsb_raw[,-1])</pre>
#summary(fitC)
#fitC_bc <- lm(target_wins +1~., f3_bsb_raw[,-1])
#summary(fitC_bc)
```

```
#fitC1 <- lm(target_wins+1 ~., f3_bsb_raw[,-1])
#c1_bc <- car::powerTransform(fitC_bc, family="bcPower")</pre>
#c1_bc$roundlam # provides maximum estimator 1.275905
knitr::kable(get_coefs(fitC),
             caption = "Model 3 coefficients",
             digits = 4)
stargazer(fitA_stepped,fitB, fitC,
          type='text',
          column.sep.width = "1pt",
          single.row = T,
          omit.stat=c('ser'),
          no.space=TRUE)
summary(fitA stepped)
par(mfrow=c(1,2))
plot(fitA_stepped, which=c(2,1))
par(mfrow=c(1,1))
confint(fitA_stepped)
#READ IN EVALUATION DATA
bsb_eval_raw <- read.csv("moneyball-evaluation-data.csv")</pre>
bsb_eval_raw <- data.table::setnames(bsb_eval_raw,</pre>
                                    tolower(names(bsb_eval_raw[1:16])))
c1 <- col_name_updater(bsb_eval_raw, "batting", "bat")</pre>
c2 <- col_name_updater(c1, "pitching", "pitch")</pre>
c3 <- col_name_updater(c2, "fielding", "field")</pre>
c4 <- col_name_updater(c3, "baserun", "baser")</pre>
bsb_eval_raw <- col_name_updater(c4, "team", "t")</pre>
bsb_eval_raw <- bsb_eval_raw %>%
  mutate(t_bat_so = na_ifelse(t_bat_so, "mean"),
         t_pitch_so = na_ifelse(t_pitch_so, "med")) %>%
  select(-t_bat_hbp)
# load test data into prediction
target_wins <- predict.lm(fitA_stepped, newdata=bsb_eval_raw[,-1])</pre>
# complete the test set
eval_set <- cbind(as.data.frame(target_wins),bsb_eval_raw[,-1]) %%
  mutate(tag='eval')
tot_set <- f1_bsb_raw[,-1] %>%
  mutate(tag='test')
tot_set <- rbind(tot_set, eval_set)</pre>
x<-ggplot(tot_set, aes(x=t_bat_h, y=target_wins, color=tag)) +</pre>
  geom_point(alpha=.4)
# par(mfrow=c(1,2))
# plot(fitC)
# par(mfrow=c(1,1))
#confint(fitA)
```