Stat E-150 Section #8

Neha Dhawan

dhawan@g.harvard.edu

Office hours by request for one-one help

Getting Midterm back this week!

Regarding policy

- Grade the whole thing over
- Check solutions

Extra credit opportunity this week!

Calculating for that B

- Need an 84
- Grad students-What you need on the final:
- = (84- (possible project grade* .2) x 3 .8
- => above answer -midterm grade —hw grade
- Undergrad students:
- = (84x3) -midterm grade –hw grade

- Test models that are 'nested' within other models
- The larger fuller model against the smaller reduced model nested within the big model
- Are the extra predictors in the larger model useful?

Example

Let's investigate whether the entry fee to enter an elite club at the door depends on age, gender. They recording 50 people trying to enter a particular club in Boston.

Model: Fee= β_0 + β_1 Age + β_2 Gender + e

Fuller complete Model (with all possible combinations):

Fee= β_0 + β_1 Age + β_2 Gender + β_3 Age² + $[\beta_4$ Gender²] + β_5 Age*Gender + e

Question we ask is:

Is it worthwhile to convert our initial model into a complete second order model?

Nested Model: Fee=
$$\beta_0$$
 + β_1 Age + β_2 Gender + e
Full model: Fee= β_0 + β_1 Age + β_2 Gender + β_3 Age² + β_4 Age*Gender + e

Nested F-test!!

 Lets us look at our additional predictors in the full model together

F= (SSModelfull-SSModelnested)/#predictors tested SSEfull/(n-k-1)

k- predictors in full model

n- sample size

predictors tested- number of predictors full modelpredictors in nested model

Run each model separately and compare them:

Nested

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.458ª	.210	.176	18.1681

a. Predictors: (Constant), Age, Gender

Full

ANOVA^a

	Model		Sum of Squares	df	Mean Square	F	Sig.
ı	1	Regression	6518.580	4	1629.645	5.592	.001 b
١		Residual	13113.744	45	291.417		
		Total	19632.324	49			

a. Dependent Variable: Price

ANOVA^a

	Model		Sum of quares	df	Mean Square	F	Sig.
ſ	1 Regress	on	4118.622	2	2059.311	6.239	.004 ^b
I	Residua	1	5513.702	47	330.079		
١	Total	1	9632.324	49			

a. Dependent Variable: Price

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.376	7.707		.698	.489
	Gender	24.572	7.050	.455	3.485	.001
	Age	.235	.248	.124	.948	.348

a. Dependent Variable: Price

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.576ª	.332	.273	17.0709

a. Predictors: (Constant), age2, Gender, age_gender, Age

Coefficients^a

ſ			Unstandardize	d Coefficients	Standardized Coefficients		
L	Model		В	Std. Error	Beta	t	Sig.
ſ	1	(Constant)	12.167	16.701		.729	.470
ı		Gender	-20.778	18.097	384	-1.148	.257
١		Age	.059	.937	.031	.063	.950
١		age_gender	1.721	.629	.907	2.737	.009
L		age2	002	.012	071	150	.881

a. Dependent Variable: Price

b. Predictors: (Constant), age2, Gender, age_gender, Age

b. Predictors: (Constant), Age, Gender

 H_0 : $\beta_i = 0$ for all predictors in subset

 H_a : $\beta_i = /0$ for at least one predictor in subset

ANOVA^a

Model		Sum of Squares	df	Mean Square	
1	Regression	4118.622	2	2059.311	
	Residual	15513.702	47	330.079	
	Total	19632.324	49		

a. Dependent Variable: Price

ANOVA^a

	-	Model		Sum of Squares	df	Mean Square	F	Sig.
l		1	Regression	6518.580	4	1629.645	5.592	.001 ^b
l			Residual	13113.744	45	291.417		
_	-		Total	19632.324	49			

a. Dependent Variable: Price

b. Predictors: (Constant), age2, Gender, age_gender, Age

$$F = \frac{(6519 - 4117)/2}{13114/(50-4-1)} = 4.12$$

b. Predictors: (Constant), Age, Gender

To find p-value have to look it up manually http://www.socr.ucla.edu/applets.dir/f table.html

Numerator df= # of predictors being tested Denominator df= Residual df for full model

Numerator- 2; denominator- 45; critical value= 3.15

F = 4.12 > 3.15 thus p < 0.05

F> cv p<0.05

F< cv p>0.05

 H_0 : $\beta_i = 0$ for all predictors in subset

 H_a : $\beta_i = /0$ for at least one predictor in subset

F = 4.12 > 3.15 thus p < 0.05

So we can reject our null, and conclude that one of the tested betas, or a combination of them, is/are useful in predicting average club entry fee, after accounting for Age and Gender

So final model?

Nested

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.458ª	.210	.176	18.1681

a. Predictors: (Constant), Age, Gender

Full

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6518.580	4	1629.645	5.592	.001 ^b
	Residual	13113.744	45	291.417		
	Total	19632.324	49			

a. Dependent Variable: Price

b. Predictors: (Constant), age2, Gender, age_gender, Age

ANOVA^a

	Model	Sum of Squares	df	Mean Square	F	Sig.
Γ	1 Regression	4118.622	2	2059.311	6.239	.004 ^b
l	Residual	15513.702	47	330.079		
	Total	19632.324	49			

a. Dependent Variable: Price

b. Predictors: (Constant), Age, Gender

Model Summary

M	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1		.576ª	.332	.273	17.0709

a. Predictors: (Constant), age2, Gender, age_gender, Age

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.376	7.707		.698	.489
	Gender	24.572	7.050	.455	3.485	.001
	Age	.235	.248	.124	.948	.348

a. Dependent Variable: Price

Coefficients^a

			Unstandardized Coefficients		Standardized Coefficients		
ı	Model		В	Std. Error	Beta	t	Sig.
ſ	1	(Constant)	12.167	16.701		.729	.470
١		Gender	-20.778	18.097	384	-1.148	.257
١		Age	.059	.937	.031	.063	.950
١		age_gender	1.721	.629	.907	2.737	.009
l		age2	002	.012	071	150	.881

a. Dependent Variable: Price

Picking the full model

- Higher order terms are significant even if other terms aren't
- R2 is good, std. error is low, model is more significant
- Can also plot graphs to see if should have started with quadratic term in the first place

- Test models that are 'nested' within other models
- Lets us clump predictors together and test their significance
- Avoids Type 1 error when running multiple ttests

15

The End! Questions?

Email dhawan@g.harvard.edu for feedback and any future changes