Galois representations of abelian surfaces ICERM Project Summary

Barinder Singh Banwait, Armand Brumer, Hyun Jong Kim, Zev Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, Isabel Vogt

June 4, 2020

Goal

 $A = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a genus 2 curve.

Goal

 $A=\operatorname{Jac}(C)$, where $C/\mathbb Q$ is a genus 2 curve. $ho_{A,\ell}$ - the Galois representation $G_\mathbb Q o \operatorname{Aut}(A[\ell])=\operatorname{GSp}(4,\mathbb F_\ell)$.

 $A=\operatorname{Jac}(C)$, where $C/\mathbb Q$ is a genus 2 curve. $ho_{A,\ell}$ - the Galois representation $G_\mathbb Q o \operatorname{Aut}(A[\ell])=\operatorname{GSp}(4,\mathbb F_\ell)$.

INPUT

C where $End(A) = \mathbb{Z}$ and A is principally polarized

Goal

 $A=\operatorname{Jac}(C)$, where $C/\mathbb Q$ is a genus 2 curve. $ho_{A,\ell}$ - the Galois representation $G_\mathbb Q o \operatorname{Aut}(A[\ell])=\operatorname{GSp}(4,\mathbb F_\ell)$.

INPUT

C where $End(A) = \mathbb{Z}$ and A is principally polarized

OUTPUT

 $[\ell_1, \ldots, \ell_n]$ where ρ_{A,ℓ_i} is not surjective.

Motivation

Theorem (Serre, cf. [3])

If $End(A) = \mathbb{Z}$ and A is principally polarized, then $\rho_{A,\ell}$ is surjective for almost every prime ℓ

Motivation

Theorem (Serre, cf. [3])

If $End(A) = \mathbb{Z}$ and A is principally polarized, then $\rho_{A,\ell}$ is surjective for almost every prime ℓ

OUTPUT

The finite list of primes $\{\ell_1, \ldots, \ell_n\}$ such that ρ_{A,ℓ_i} is not surjective.

Step 1: Produce a finite list of primes ℓ such that $\rho_{A,\ell}$ might be non-surjective.

Step 1: Produce a finite list of primes ℓ such that $\rho_{A,\ell}$ might be non-surjective.

Step 2: Given a prime ℓ , determine if $\rho_{A,\ell}$ is non-surjective.

Step 1: Produce a finite list of primes ℓ such that $\rho_{A,\ell}$ might be non-surjective.

Step 1: Produce a finite list of primes ℓ such that $\rho_{A,\ell}$ might be non-surjective.

Step 1(a): Mitchell [2] classifies the maximal proper subgroups of PGSp(4, \mathbb{F}_{ℓ})

Step 1: Produce a finite list of primes ℓ such that $\rho_{A,\ell}$ might be non-surjective.

Step 1(a): Mitchell [2] classifies the maximal proper subgroups of PGSp(4, \mathbb{F}_{ℓ})

Step 1(b): Certain conditions must be fulfilled assuming that the image of $\rho_{A,\ell}$ is in these subgroups

Step 1: Produce a finite list of primes ℓ such that $\rho_{A,\ell}$ might be non-surjective.

Step 1(a): Mitchell [2] classifies the maximal proper subgroups of PGSp(4, \mathbb{F}_{ℓ})

Step 1(b): Certain conditions must be fulfilled assuming that the image of $\rho_{A,\ell}$ is in these subgroups e.g.

Step 2: Given a prime ℓ , determine if $\rho_{A,\ell}$ is non-surjective.

Step 2: Given a prime ℓ , determine if $\rho_{A,\ell}$ is non-surjective. Step 2(a): Rule out each maximal subgroup by sampling characteristic polynomials of $\rho_{\ell}(\operatorname{Frob} p)$

Progress

Determined whether or not $\rho_{A,\ell}$ is surjective for $\ell=2,3,5$ and C in the Imfdb.

Bibliography

- Dieulefait, Luis V. Explicit determination of the images of the Galois representations attached to abelian surfaces with $End(A) = \mathbb{Z}$. Experimental Mathematics, 11(4):503-512, 2002.
- Mitchell, Howard H. The subgrousp of the quaternary abelian linear group, *Transactions of the American Mathematical Society*, 15(4):379-396, 1914.
- Serre, Jean-Pierre. Oeuvres. Springer-Verlag, 4:1-55, 2000.

Special Thanks

Noam Elkies, Eric Larson, Bjorn Poonen, Andrew Sutherland

Special Thanks

Noam Elkies, Eric Larson, Bjorn Poonen, Andrew Sutherland Céline Maistret, Vladimir Dokchitser, Alex Best, Raymond van Bommel

Special Thanks

Noam Elkies, Eric Larson, Bjorn Poonen, Andrew Sutherland Céline Maistret, Vladimir Dokchitser, Alex Best, Raymond van Bommel

ICERM, the organizing committee, and the Simons Foundation