15.4 Green's Theorem.

Thm Let C be a simple closed piecewise-smooth cure, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $F = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\oint_{C} F \cdot dr = \oint_{C} f dx + g dy = \iiint_{R} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA$$
Circulation Form

Def. Curl.

The two dimensional curl of the vector field $F = \langle f, g \rangle$ is $\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}$.

If the curl is zero throughout a region, the vector field is irrotational on that region.

Ex. Let $F = \langle -y, x \rangle$, and let $C = \chi^2 + y^2 = 1$, unit circle, oriented find $g \in F \cdot dr$ using Green's thm. counterclackwise.

Thm The area of a region R enclosed by a curve C is:
$$\oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx$$

 $\frac{E_{\chi}}{x}$. Find the area of the ellipse $\chi^2 + 4y^2 = 16$ using a line integral.

.. Area of ellipse =
$$\frac{1}{2} \oint_C x dy - y dx$$

= $\frac{1}{2} \int_0^{2\pi} (4\cos t) (2\cos t) dt - (2\sin t) (-4\sin t) dt$
= $4 \int_0^{2\pi} dt = 8\pi$

Thm Green's Thm. Flux form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume F = < f, g>, where f and g have continuous first pertial derivatives in R. Then:

Serivatives

$$\oint_C F. n ds = \oint_C f dy - g dx = \iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA$$
where n is the outward unit normal vector on the curve.

Def. Divergence.

The two dimensional divergence of the vector field $F = \langle f,g \rangle$ is $\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$, If the divergence is zero throughout a region, the vector field is source free on that region.

Ex. Find the outward flux of the vector field $F = \langle xy^2, x^2y \rangle$ across the boundary of the annulus $P = \{(x_iy)\}$ $1 \le x^2 + y^2 \le 4$

$$\oint_C F \cdot n \, ds = \oint_C f \, dy - g \, dx =$$

$$= \oint_C xy^2 dy - x^2 y dx$$

$$= \iint_R (y^2 + x^2) dA$$

$$= \iint_C (r^2) r dr d\theta$$

$$= \underbrace{15\pi}_2.$$

Stream functions.

Let $F = \langle f, g \rangle$ be a vector field, a stream function for the vector field -if it exists - is a function Ψ that satisfies $\frac{\partial \Psi}{\partial y} = f$, $\frac{\partial \Psi}{\partial x} = -g$.

Notice that divergence $\frac{\partial f}{\partial x} + \frac{\partial y}{\partial y} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial v}{\partial x} \right) = 0$

So, a stream function guarantees that the vector field has zero divergence.

The level curves of a stream function are called flow curves.