Paper Reading

Sliding Selector Network with Dynamic Memory for Extractive Summarization of Long Documents

M2 Shogo Fujita

2021/6/17

Methodology

Experiment

Conclusion

Introduction

Task Extract summary from documents Contribution

- ► They propose the sliding selector network with dynamic memory for extractive summarization of long-form documents
- ► They perform qualitative and quantitative investigations on how our model works and where the performance gain comes from

Overview

Introduction

Sliding Encoder

window.

Let $seg^k = s_1^k, s_2^k, ..., s_n^k$ be the *k*-th window consisting of n sentences.

$$= \{h_{1,CLS}^{k}, ..., h_{1,SEP}^{k}, ..., h_{n,SEP}^{k}\}$$

$$H^{k} = \{h_{1,CLS}^{k}, h_{2,CLS}^{k}, h_{n,CLS}^{k}\}$$

$$\{h^{k}\} = tanh(W_{1}H^{k} + W_{2}e_{w}^{k} + W_{3}e_{s})$$

$$\text{where } e_{w}^{k} \text{ indicates the } k\text{-th window-level position}$$

$$(1)$$

$$\{h^{k}\} = tanh(W_{1}H^{k} + W_{2}e_{w}^{k} + W_{3}e_{s})$$

$$(3)$$

embedding, and e_s is the section embedding. $\{h_k\}$ is the

5/14

series of representation vectors for sentences in k-th

 $O_B = BERT(w_{1,CLS}^k, ..., w_{1,SEP}^k, ..., w_{n,SEP}^k)$

Experiment

Graph-based Memory Interaction

Methodology

Introduction

$$M_K = m_1^k, m_2^k, ..., m_L^k$$
 are memory nodes.

$$z_{i,j}^k = LeaklyRelu(W_a[h_i^k; SG(m_j^k)])$$

$$\alpha_{i,j} = \frac{\exp(z^k_{i,j})}{\sum_{j'=1}^l \exp^k_(z_{i,j'})}$$

Conclusion

(4)

Function
$$SG$$
 stands for stop-gradient operation.

 $\tilde{h_i^k} = \parallel_{t=1}^T \sum tanh(\alpha_i^t, W_c^t SG(m_j^k))$

Prediction Layer

Introduction

$$\tilde{y}_{i} = f_{o}(\tilde{h}_{i}^{k}, h_{i}^{k}, ||\tilde{h}_{i}^{k} - h_{i}^{k}||, \tilde{h}_{i}^{k} \odot h_{i}^{k})$$

$$L = -\sum \{y_{i} log(\tilde{y}_{i}) + (1 - y_{i}) log(1 - \tilde{y}_{i})\}$$
(8)

 \tilde{y}_i represents the predicted probability of i-th sentence. they rank all the sentences and select top-k as the final summary.

Methodology

Introduction

Experiment

Conclusion

(9)

Dynamic Memory Updating

$$\sigma_i^k = tanh(W_m * \tilde{m}_i^k)$$

$$\sigma_i^k = tanh$$

$$(\sigma_i^k) \odot \hat{\sigma}_i^k$$

$$u_i^k = \sigma_i^k m_i^k + (1 - \sigma_i^k) \odot \tilde{m}_i^k$$

$$u_i^* = \sigma_i^* m_i^* + (1)$$

$$r_{sum}^k = \sum_{i=1}^n \tilde{y}_i * h_i^k$$

$$m_{i}^{k+1} = \sum_{i=1}^{j} y_{i}^{k}$$
 $m_{i}^{k+1} = tanh(V_{i})$

$$m_i^{k+1} = tanh(W_4 m_i^k + W_5 r_{sum}^k)$$

(maybe
$$m_i^{k+1} = tanh(W_4u_i^k + W_5r_{sum}^k)$$
) $\sigma_i^k \in R^{dm}$ is an gate vector.

8/14

Experiment

Models	arXiv			PubMed		
	R-1	R-2	R-L	R-1	R-2	R-L
Lead	33.66	8.94	22.19	35.63	12.28	25.17
LexRank+	33.85	10.73	28.99	39.19	13.89	34.59
LSA+	29.91	7.42	25.67	33.89	9.93	29.70
Oracle*	53.88	23.05	34.90	55.05	27.48	38.66
Seq2seq-attention+	29.30	6.00	25.56	31.55	8.52	27.38
PGN+	32.06	9.04	25.16	35.86	10.22	29.69
Disourse-aware+	35.80	11.05	31.80	38.93	15.37	35.21
Cheng & Lapta (2016)*	42.24	15.97	27.88	43.89	18.53	30.17
SummaRuNNer*	42.81	16.52	28.23	43.89	18.78	30.36
Seq2seq-local&global*	43.62	17.36	29.14	44.85	19.70	31.43
Match-Sum	40.59	12.98	32.64	41.21	14.91	36.75
Topic-GraphSum	44.03	18.52	32.41	45.95	20.81	33.97
SSN-DM	45.03	19.03	32.58	46.73	21.00	34.10
SSN-DM + discourse	44.90	19.06	32.77	46.52	20.94	35.20

Experiment •0000

Iteration	Rouge-1				
Numbers	arXiv	PubMed			
t = 0	44.79	46.42			
t = 1	44.95	46.69			
t = 2	45.03	46.73			
t = 3	44.97	46.74			
t = 4	45.01	46.71			

Experiment

To select the best iteration number (hop number) t, we compare the performance of different t on the validation sets of two datasets

Results on Varying Hyperparameters

Left figure presents the Rouge-1 results on varying window length. Right figure presents the Rouge-1 results on varying slot numbers / in memory.

Effect of Dynamic Memory

Introduction

Effect of Dynamic Memory

Introduction

Models	S_{Rep}	S_{Noise}	S_{Len}			
arXiv						
w/o memory	0.105	0.118	1.247			
Full model	0.033	0.011	0.295			
PubMed						
w/o memory	0.107	0.097	1.106			
Full model	0.031	0.008	0.343			

$$S_{rep} = 1 - rac{CountUniq(ngram)}{Count(ngram)}, S_{Noise} = rac{Count(NoisySent)}{Count(ExtractSent)}, S_{Len} = rac{|sum| - |ref|}{|ref|}$$

Conclusion

Introduction

► They propose a novel extractive summarization that can summarize long-form documents without content loss

► They have validated the effectiveness of the proposed mechanism