Softwaretechnik / Software-Engineering

Lecture 16: Software Verification

2017-07-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Code Quality Assurance: Content

VL 14	Introduction and Vocabulary
÷	Test case, test suite, test execution.Positive and negative outcomes.
VL 15	• Limits of Software Testing
•	Glass-Box Testing
	Statement-, branch-, term-coverage.
VL 16	• Testing: Rest
·	 When to stop testing? Model-based testing Testing in the development process
	Program Verification
	partial and total correctness,Proof System PD.
VL 17	Other Approaches
÷	Runtime verification. Review
	 Software quality assurance wrap-up

Content

- Testing: RestModel-Based Testing
 - → When To Stop Testing?
 - → Testing in the Development Process
- Formal Program Verification
 - → Deterministic Programs
 - **⊸** Syntax
 - → Semantics
 - Termination, Divergence
 - ← Correctness of deterministic programs
 - partial correctness,
 - → total correctness.
 - Proof System PD
- The Verifier for Concurrent C

Model-Based Testing

Model-based Testing

- Does some software implement the given CFA model of the CoinValidator?
- One approach: Location Coverage.

Check whether for **each location** of the model there is a **corresponding configuration** reachable in the software (needs to be observable somehow).

- Input sequences can **automatically be generated** from the model, e.g., using Uppaal's "drive-to" feature.
 - Check "can we reach 'idle, 'have_c50', 'have_c100', 'have_c150'?" by

$$T_1 = (C50, C50, C50; \{\pi \mid \exists i < j < k < \ell \bullet \pi^i \sim \mathsf{idle}, \pi^j \sim \mathsf{h_c50}, \pi^k \sim \mathsf{h_c100}, \pi^\ell \sim \mathsf{h_c150}\})$$

- Check for 'have_e1' by $T_2 = (C50, C50, C50; ...)$.
- To check for 'drink_ready', more interaction is necessary.
- Analogously: Edge Coverage.

Check whether each edge of the model has corresponding behaviour in the software.

Existential LSCs as Test Driver & Monitor (Lettrari and Klose, 2001)

- If the LSC has designated environment instance lines, we can distinguish:
 - messages expected to originate from the environemnt (driver role),
 - messages expected adressed to the environemnt (monitor role).
- Adjust the TBA-construction algorithm to construct a test driver & monitor
 and let it (possibly with some glue logic in the middle) interact with the software.
- Test passed (i.e., test unsuccessful) if and only if TBA state q_6 is reached. Note: We may need to refine the LSC by adding an activation condition; or communication which drives the system under test into the desired start state.
- For example the Rhapsody tool directly supports this approach.

Vocabulary

Software-in-the-loop:

The final implementation is examined using a separate computer to simulate other system components.

• Hardware-in-the-loop:

The final implementation is running on (prototype) hardware which is connected by its standard input/output interface (e.g. CAN-bus) to a separate computer which simulates other system components.

Content

- Testing: Rest
- → Model-Based Testing
- → When To Stop Testing?
- → Testing in the Development Process
- Formal Program Verification
 - → Deterministic Programs
 - **⊸** Syntax
 - → Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - → partial correctness,
 - → total correctness.
 - Proof System PD
- The Verifier for Concurrent C

When To Stop Testing?

When To Stop Testing?

- There need to be defined criteria for when to stop testing;
 project planning should consider these criteria (and previous experience).
- Possible "testing completed" criteria:
 - all (previously) specified test cases
 have been executed with negative result,

(Special case: All test cases resulting from a certain strategy, like maximal statement coverage have been executed.)

- testing effort time sums up to x (hours, days, weeks),
- testing effort sums up to y (any other useful unit),
- n errors have been discovered.
- no error has been discovered during the last z hours (days, weeks) of testing,

Values for x, y, n, z are fixed based on experience, estimation, budget, etc.

Of course: not all criteria are equally reasonable or compatible with each testing approach.

Another Criterion

- Another possible "testing completed" criterion:
 - ullet The average cost per error discovery exceeds a defined threshold c.

Value for \boldsymbol{c} is again fixed based on experience, estimation, budget, etc..

Test Conduction: Activities & Artefacts

Test Gear: (may need to be developed in the project!)

test driver – A software module used to invoke a module under test and, often, provide test inputs, control and monitor execution, and report test results.

Synonym: test harness.

IEEE 610.12 (1990)

stub-

- (1) A skeletal or special-purpose implementation of a software module, used to develop or test a module that calls or is otherwise dependent on it.
- (2) A computer program statement substituting for the body of a software module that is or will be defined elsewhere.

 IEEE 610.12 (1990)
- Roles: tester and developer should be different persons!

Content

- Testing: Rest
- → Model-Based Testing
- → When To Stop Testing?
- → Testing in the Development Process
- Formal Program Verification
 - → Deterministic Programs
 - Syntax
 - → Semantics
 - Termination, Divergence
 - ← Correctness of deterministic programs
 - → partial correctness,
 - **deligible total** correctness.
 - Proof System PD
- The Verifier for Concurrent C

Formal Methods in the Software Development Process

Formal Methods in the Software Development Process

validation-

The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements.

Contrast with: verification.

IEEE 610.12 (1990)

verification-

- (1) The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase.
 - Contrast with: validation.
- (2) Formal proof of program correctness.

IEEE 610.12 (1990)

Concepts of Software Quality Assurance

Testing, Review, Verification Illustrated

Testing, Review, Verification Illustrated

Content

- Testing: Rest
- → Model-Based Testing
- → When To Stop Testing?
- → Testing in the Development Process
- Formal Program Verification
 - → Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - ← Correctness of deterministic programs
 - partial correctness,
 - → total correctness.
 - Proof System PD
- The Verifier for Concurrent C

Deterministic Programs

Syntax:

 $S := skip \mid u := t \mid S_1; S_2 \mid \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi} \mid \mathbf{while} \ B \ \mathbf{do} \ S_1 \ \mathbf{od}$

where $u \in V$ is a variable, t is a type-compatible expression, B is a Boolean expression.

Semantics: (is induced by the following transition relation) – $\sigma:V\to \mathcal{D}(V)$ (i) $\langle skip,\,\sigma\rangle\to\langle E,\,\sigma\rangle$

(i)
$$\langle skip,\,\sigma \rangle o \langle \widetilde{E},\,\sigma \rangle$$
 empty program

(ii)
$$\langle u := \underline{t}, \sigma \rangle \to \langle E, \sigma[\underline{u} := \sigma(\underline{t})] \rangle$$

(ii)
$$\langle u:=t,\sigma\rangle \to \langle E,\sigma[u:=\sigma(t)]\rangle$$

(iii) $\frac{\langle \widehat{S}_1,\sigma\rangle \to \langle S_2,\tau\rangle}{\langle S_1;S,\sigma\rangle \to \langle S_2;S,\tau\rangle}$

(iv)
$$\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \ \sigma \rangle \rightarrow \langle S_1, \ \sigma \rangle, \ \mathbf{if} \ \sigma \models B,$$

(v)
$$\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \ \sigma \rangle \rightarrow \langle S_2, \ \sigma \rangle$$
, if $\sigma \not\models B$

(v)
$$\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \ \sigma \rangle \rightarrow \langle S_2, \ \sigma \rangle, \ \mathbf{if} \ \sigma \not\models B,$$

(vi) $\langle \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \ \sigma \rangle \rightarrow \langle S; \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \ \sigma \rangle, \ \mathbf{if} \ \sigma \models B,$

(vii)
$$\langle \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \ \sigma \rangle \rightarrow \langle E, \ \sigma \rangle$$
, if $\sigma \not\models B$,

E denotes the empty program; define $E; S \equiv S; E \equiv S$.

Note: the first component of $\langle S, \sigma \rangle$ is a program (structural operational semantics (SOS)).

Example

(i)
$$\langle skip, \, \sigma \rangle \to \langle E, \, \sigma \rangle$$
 $E; S \equiv S; E \equiv S$
(ii) $\langle u := t, \, \sigma \rangle \to \langle E, \, \sigma[u := \sigma(t)] \rangle$
(iii) $\frac{\langle S_1, \, \sigma \rangle \to \langle S_2, \, \tau \rangle}{\langle S_1; S, \, \sigma \rangle \to \langle S_2; S, \, \tau \rangle}$
(iv) $\langle \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi}, \, \sigma \rangle \to \langle S_1, \, \sigma \rangle, \text{ if } \sigma \models B,$
(v) $\langle \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi}, \, \sigma \rangle \to \langle S_2, \, \sigma \rangle, \text{ if } \sigma \not\models B,$
(vi) $\langle \text{while } B \text{ do } S \text{ od}, \, \sigma \rangle \to \langle S; \text{ while } B \text{ do } S \text{ od}, \, \sigma \rangle, \text{ if } \sigma \models B,$
(vii) $\langle \text{while } B \text{ do } S \text{ od}, \, \sigma \rangle \to \langle E, \, \sigma \rangle, \text{ if } \sigma \not\models B,$

Consider program

$$S \equiv a[0] := 1; a[1] := 0;$$
 while $a[x] \neq 0$ do $x := x + 1$ od

and a state σ with $\sigma \models x = 0$.

$$\langle S, \sigma \rangle \qquad \frac{(ii),(iii)}{\langle a[1] := 0; \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma[a[0] := 1] \rangle}{\langle \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma' \rangle} \qquad \langle \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma' \rangle} \qquad \frac{(vi)}{\langle x := x + 1; \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma' \rangle}{\langle \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma'[x := 1] \rangle} \qquad \langle E, \ \sigma'[x := 1] \rangle$$

where $\sigma' = \sigma[a[0] := 1][a[1] := 0]$.

Another Example

$$\begin{array}{ll} \text{(i)} \ \langle skip, \, \sigma \rangle \rightarrow \langle E, \, \sigma \rangle \\ \text{(ii)} \ \langle u := t, \, \sigma \rangle \rightarrow \langle E, \, \sigma[u := \sigma(t)] \rangle \end{array}$$

(iii)
$$\frac{\langle S_1, \, \sigma \rangle \to \langle S_2, \, \tau \rangle}{\langle S_1; S, \, \sigma \rangle \to \langle S_2; S, \, \tau \rangle}$$

- (iv) $\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \ \sigma \rangle \to \langle S_1, \ \sigma \rangle$, if $\sigma \models B$,
- (v) $\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \ \sigma \rangle \rightarrow \langle S_2, \ \sigma \rangle$, if $\sigma \not\models B$,
- (vi) $\langle \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \ \sigma \rangle \rightarrow \langle S; \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \ \sigma \rangle$, if $\sigma \models B$,
- (vii) $\langle \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od}, \ \sigma \rangle \rightarrow \langle E, \ \sigma \rangle$, if $\sigma \not\models B$,

Consider program

$$S_1 \equiv y := x; y := (x-1) \cdot x + y$$

and a state σ with $\sigma \models x = 3$.

$$\langle S_1, \sigma \rangle \xrightarrow{(ii),(iii)} \langle y := (x-1) \cdot x + y, \{x \mapsto 3, y \mapsto 3\} \rangle$$

$$\xrightarrow{(ii)} \langle E, \{x \mapsto 3, y \mapsto 9\} \rangle$$

Consider program $S_3 \equiv y := x$; $y := (x - 1) \cdot x + y$; while 1 do skip od.

$$\langle S_3, \sigma \rangle \xrightarrow{(ii),(iii)} \langle y := (x-1) \cdot x + y; \mathbf{while 1 do } skip \mathbf{od}, \{x \mapsto 3, y \mapsto 3\} \rangle$$

$$\xrightarrow{(ii),(iii)} \langle \mathbf{while 1 do } skip \mathbf{od}, \{x \mapsto 3, y \mapsto 9\} \rangle$$

$$\xrightarrow{(vi)} \langle skip; \mathbf{while 1 do } skip \mathbf{od}, \{x \mapsto 3, y \mapsto 9\} \rangle$$

$$\xrightarrow{(vi)} \langle \mathbf{while 1 do } skip \mathbf{od}, \{x \mapsto 3, y \mapsto 9\} \rangle$$

$$\xrightarrow{(vi)} \cdots$$

Computations of Deterministic Programs

Definition. Let S be a deterministic program.

(i) A transition sequence of S (starting in σ) is a finite or infinite sequence

$$\langle S, \sigma \rangle = \langle S_0, \sigma_0 \rangle \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \dots$$

(that is, $\langle S_i, \sigma_i \rangle$ and $\langle S_{i+1}, \sigma_{i+1} \rangle$ are in transition relation for all *i*).

- (ii) A computation (path) of S (starting in σ) is a maximal transition sequence of S (starting in σ), i.e. infinite or not extendible.
- (iii) A computation of S is said to
 - a) terminate in τ if and only if it is finite and ends with $\langle E, \tau \rangle$,
 - b) diverge if and only if it is infinite.

S can diverge from σ if and only if a diverging computation starts in σ .

(iv) We use \rightarrow^* to denote the transitive, reflexive closure of \rightarrow .

Lemma. For each deterministic program S and each state σ , there is exactly one computation of S which starts in σ .

Input/Output Semantics of Deterministic Programs

Definition.

Let S be a deterministic program.

(i) The semantics of partial correctness is the function

$$\mathcal{M}[\![S]\!]: \Sigma \to 2^{\Sigma}$$
 with $\mathcal{M}[\![S]\!](\sigma) = \{\tau \mid \langle S, \, \sigma \rangle \to^* \langle E, \, \tau \rangle \}.$

(ii) The semantics of total correctness is the function

$$\mathcal{M}_{tot}[\![S]\!]: \Sigma \to 2^{\Sigma} \dot{\cup} \{\infty\}$$

 $\mathsf{with} \big(\mathcal{M}_{tot} \llbracket S \big) (\sigma) = \mathcal{M} \llbracket S \rrbracket (\sigma) \cup \{ \infty \mid S \text{ can diverge from } \sigma \}.$

 ∞ is an error state representing divergence.

Note: $\mathcal{M}_{tot}[S](\sigma)$ has exactly one element, $\mathcal{M}[S](\sigma)$ at most one.

Example: $\mathcal{M}[S_1](\sigma) = \mathcal{M}_{tot}[S_1](\sigma) = \{\tau \mid \tau(x) = \sigma(x) \land \tau(y) = \sigma(x)^2\}, \quad \sigma \in \Sigma.$

(Recall: $S_1 \equiv y := x; y := (x - 1) \cdot x + y$)

Correctness of While-Programs

Correctness of Deterministic Programs

pre-condition

post-condition

Definition.

Let S be a program over variables V, and p and q Boolean expressions over V.

(i) The correctness formula

$$\{p\} S \{q\}$$

("Hoare triple")

holds in the sense of partial correctness, denoted by $\models \{p\} \ S \ \{q\}$, if and only if

$$(\mathcal{M}[S])([p]) \subseteq [q].$$

We say S is partially correct wrt. p and q.

(ii) A correctness formula

$${p} S {q}$$

holds in the sense of total correctness, denoted by $\models_{tot} \{p\} S \{q\}$, if and only if

$$\mathcal{M}_{tot}[S]([p]) \subseteq [q].$$

We say S is **totally correct** wrt. p and q.

Example: Computing squares (of numbers $0, \ldots, 27$)

- Pre-condition: $p \equiv 0 < x < 27$,
- Post-condition: $q \equiv y = x^2$.

Program S_1 :

$$int y = x;$$

 $y = (x - 1) * x + y;$

$$\models^{?} \{p\} S_{1} \{q\} \checkmark$$

 $\models^{?}_{tot} \{p\} S_{1} \{q\} \checkmark$

Program S_3 :

$$\models^{?} \{p\} S_{3} \{q\} \times \qquad \qquad \Im = \{ \times \mapsto \downarrow \times \times 0, \\ \models^{?}_{tot} \{p\} S_{3} \{q\} \times \qquad \qquad \qquad 0 \in \emptyset \subseteq 2 \ni \emptyset \}$$

Program S_2 :

$$\models^{?} \{p\} S_{2} \{q\} \checkmark$$

 $\models^{?}_{tot} \{p\} S_{2} \{q\} \checkmark$

Program S_4 :

Example: Correctness

By the example, we have shown

$$\models \underbrace{\{x=0\}\,S\,\{x=1\}}_{\checkmark}$$

and

$$\models_{tot} \{x = 0\} S \{x = 1\}.$$

(because we only assumed $\sigma \models x = 0$ for the example, which is exactly the precondition.)

Example

$$\begin{split} \text{(i)} \ \langle skip, \, \sigma \rangle &\to \langle E, \, \sigma \rangle \\ \text{(ii)} \ \langle u := t, \, \sigma \rangle &\to \langle E, \, \sigma[u := \sigma(t)] \rangle \\ \text{(iii)} \ \frac{\langle S_1, \, \sigma \rangle &\to \langle S_2, \, \tau \rangle}{\langle S_1; S, \, \sigma \rangle &\to \langle S_2; S, \, \tau \rangle} \\ \text{(iv)} \ \text{(if } B \text{ then } S_1 \text{ else } S_2 \text{ fi, } \, \sigma \rangle &\to \langle S_1, \, \sigma \rangle, \text{if } \, \sigma \models B, \\ \text{(v)} \ \langle \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi, } \, \sigma \rangle &\to \langle S_2, \, \sigma \rangle, \text{if } \, \sigma \not\models B, \\ \text{(vi)} \ \langle \text{while } B \text{ do } S \text{ od, } \sigma \rangle &\to \langle S; \text{ while } B \text{ do } S \text{ od, } \sigma \rangle, \text{if } \, \sigma \models B, \\ \text{(vii)} \ \langle \text{while } B \text{ do } S \text{ od, } \sigma \rangle &\to \langle E, \, \sigma \rangle, \text{if } \, \sigma \not\models B, \\ \text{(vii)} \ \langle \text{while } B \text{ do } S \text{ od, } \sigma \rangle &\to \langle E, \, \sigma \rangle, \text{if } \, \sigma \not\models B, \\ \end{split}$$

Consider program

$$S \equiv a[0] := 1; a[1] := 0;$$
 while $a[x] \neq 0$ do $x := x + 1$ od

and a state σ with $\sigma \models x = 0$.

where $\sigma' = \sigma[a[0] := 1][a[1] := 0]$.

$$\langle S, \sigma \rangle \qquad \frac{\langle iii \rangle, \langle iii \rangle}{\langle iii \rangle} \qquad \langle a[1] := 0; \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma[a[0] := 1] \rangle$$

$$\qquad \frac{\langle iii \rangle, \langle iii \rangle}{\langle iii \rangle} \qquad \langle \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma' \rangle$$

$$\qquad \frac{\langle vii \rangle}{\langle iii \rangle, \langle iii \rangle} \qquad \langle \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma' \rangle$$

$$\qquad \frac{\langle iii \rangle, \langle iii \rangle}{\langle iii \rangle} \qquad \langle \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}, \ \sigma'[x := 1] \rangle$$

$$\qquad \langle E, \ \sigma'[x := 1] \rangle$$

5/18

We have also shown (= proved (!)):

$$\models \{x = 0\} \ S \ \{x = 1 \land a[x] = 0\}.$$

- The correctness formula $\{x=2\}$ S $\{true\}$ does not hold for S. (For example, if $\sigma \models a[i] \neq 0$ for all i > 2.)
- In the sense of partial correctness, $\{x=2 \land \forall i \geq 2 \bullet a[i]=1\}$ S $\{\textit{false}\}$ also holds.

Proof-System PD

$Proof ext{-}System~PD~(for~sequential,~deterministic~programs)$

Axiom 1: Skip-Statement

$$\{p\}$$
 $skip$ $\{p\}$

Axiom 2: Assignment

$${p[u := t]} u := t {p}$$

Rule 3: Sequential Composition

$$\frac{\{p\} S_1 \{r\}, \{r\} S_2 \{q\}}{\{p\} S_1; S_2 \{q\}}$$

Rule 4: Conditional Statement

$$\frac{\{p \land B\} S_1 \{q\}, \{p \land \neg B\} S_2 \{q\},}{\{p\} \text{ if } B \text{ then } S_1 \text{ else } S_2 \text{ fi } \{q\}}$$

Rule 5: While-Loop

$$\frac{\{p \wedge B\} \ S \ \{p\}}{\{p\} \ \mathbf{while} \ B \ \mathbf{do} \ S \ \mathbf{od} \ \{p \wedge \neg B\}}$$

Rule 6: Consequence

$$\frac{p \to p_1, \{p_1\} S \{q_1\}, q_1 \to q}{\{p\} S \{q\}}$$

Theorem. PD is correct ("sound") and (relative) complete for partial correctness of deterministic programs, i.e. $\vdash_{PD} \{p\} S \{q\}$ if and only if $\models \{p\} S \{q\}$.

Example Proof

$$DIV \equiv a := 0; \ b := x; \ \mathbf{while} \ b \ge y \ \mathbf{do} \ b := b - y; \ a := a + 1 \ \mathbf{od}$$

(The first (textually represented) program that has been formally verified (Hoare, 1969).

Example Proof

$$DIV \equiv a := 0; \ b := x; \ \mathbf{while} \ b \ge y \ \mathbf{do} \ b := b - y; \ a := a + 1 \ \mathbf{od}$$

(The first (textually represented) program that has been formally verified (Hoare, 1969).

We can prove $\models \{x \ge 0 \land y \ge 0\} \ DIV \ \{a \cdot y + b = x \land b < y\}$

by showing $\vdash_{PD} \{x \geq 0 \land y \geq 0\} \ DIV \ \{a \cdot y + b = x \land b < y\},$ i.e., derivability in PD:

$$=:S_0^D$$

$$=:S_1^D$$

$$DIV \equiv a := 0; b := x; \text{ while } b \ge y \text{ do } b := b - y; a := a + 1 \text{ od}$$

(The first (textually represented) program that has been formally verified (Hoare, 1969).

We can prove
$$\models \{x \geq 0 \land y \geq 0\}$$
 DIV $\{a \cdot y + b = x \land b < y\}$ by showing $\vdash_{PD} \{\underbrace{x \geq 0 \land y \geq 0}\}$ DIV $\{\underbrace{a \cdot y + b = x \land b < y}\}$, i.e., derivability in PD: $=:p^D$

(The first (textually represented) program that has been formally verified (Hoare, 1969).

We can prove
$$\models \{x \geq 0 \land y \geq 0\}$$
 DIV $\{a \cdot y + b = x \land b < y\}$ by showing $\vdash_{PD} \{\underbrace{x \geq 0 \land y \geq 0}\}$ DIV $\{\underbrace{a \cdot y + b = x \land b < y}\}$, i.e., derivability in PD: $=:p^D$

$$\frac{ (2) }{ \{P \wedge (B^D)\} \, S_1^D \, \{P\} } }$$
 (R5)
$$\frac{ (3) }{P \rightarrow P, \quad \{P\} \, \text{while} \, B^D \, \text{do} \, S_1^D \, \text{od} \, \{P \wedge \neg (B^D)\}, \quad P \wedge \neg (B^D) \rightarrow q^D }$$
 (R6)
$$\{p^D\} \, S_0^D \, \{P\}, \qquad \{P\} \, \text{while} \, B^D \, \text{do} \, S_1^D \, \text{od} \, \{q^D\} }$$
 (R3)
$$\{p^D\} \, S_0^D; \, \text{while} \, B^D \, \text{do} \, S_1^D \, \text{od} \, \{q^D\}$$

$$\text{(A1)} \ \{p\} \ skip \ \{p\} \qquad \text{(R3)} \ \frac{\{p\} \ S_1 \ \{r\}, \ \{r\} \ S_2 \ \{q\} }{\{p\} \ S_1; \ S_2 \ \{q\}} \qquad \text{(R5)} \ \frac{\{p \land B\} \ S \ \{p\} }{\{p\} \ \text{while} \ B \ \text{do} \ S \ \text{od} \ \{p \land \neg B\} } \\ \text{(A2)} \ \{p[u:=t]\} \ u:=t \ \{p\} \qquad \text{(R4)} \ \frac{\{p \land B\} \ S_1 \ \{q\}, \ \{p \land \neg B\} \ S_2 \ \{q\} }{\{p\} \ \text{if} \ B \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi} \ \{q\} } \qquad \text{(R6)} \ \frac{p \rightarrow p_1, \ \{p_1\} \ S \ \{q_1\}, \ q_1 \rightarrow q}{\{p\} \ S \ \{q\}}$$

Example Proof Cont'd

In the following, we show

(1)
$$\vdash_{PD} \{x \geq 0 \land y \geq 0\} \ a := 0; \ b := x \{P\},\$$

(2)
$$\vdash_{PD} \{P \land b \ge y\} \ b := b - y; \ a := a + 1 \{P\},$$

(3)
$$\models P \land \neg (b \ge y) \rightarrow a \cdot y + b = x \land b < y$$
.

As loop invariant, we choose (creative act!):

$$P \equiv a \cdot y + b = x \land b \ge 0$$

Proof of (1)

• **(1)** claims:

$$\vdash_{PD} \{x \geq 0 \land y \geq 0\} \ a := 0; \ b := x \{P\}$$

where $P \equiv a \cdot y + b = x \land b \geq 0$.

- $\vdash_{PD} \{0 \cdot y + x = x \land x \ge 0\} \ a := 0 \ \{a \cdot y + x = x \land x \ge 0\}$ by (A2),
- $\bullet \vdash_{PD} \{a \cdot y + x = x \land x \ge 0\} \ b := x \ \{\underbrace{a \cdot y + b = x \land b \ge 0}_{\equiv P}\} \quad \text{by (A2)}$
- thus, $\vdash_{PD} \{0 \cdot y + x = x \land x \ge 0\} \ a := 0; \ b := x \{P\}$ by (R3),
- using $x \ge 0 \land y \ge 0 \to 0 \cdot y + x = x \land x \ge 0$ and $P \to P$, we obtain

$$\vdash_{PD} \{x \geq 0 \land y \geq 0\} \ a := 0; \ b := x \{P\}$$

by (R6).

Substitution

The rule 'Assignment' uses (syntactical) substitution: $\{p[u:=t]\}\ u:=t\ \{p\}$ (In formula p, replace all (free) occurences of (program or logical) variable u by term t.)

Defined as usual, only **indexed** and **bound** variables need to be treated specially:

Expressions:

- plain variable x: $x[u:=t] \equiv \begin{cases} t & \text{, if } x=u \\ x & \text{, otherwise} \end{cases}$
- constant c: $c[u := t] \equiv c$.
- constant op, terms s_i : $op(s_1, ..., s_n)[u := t]$ $\equiv op(s_1[u := t], ..., s_n[u := t]).$
- conditional expression: $(B ? s_1 : s_2)[u := t]$ $\equiv (B[u := t] ? s_1[u := t] : s_2[u := t])$

Formulae:

- boolean expression $p \equiv s$: $p[u := t] \equiv s[u := t]$
- negation: $(\neg q)[u := t] \equiv \neg (q[u := t])$
- conjunction etc.: $(q \wedge r)[u := t]$ $\equiv q[u := t] \wedge r[u := t]$
- quantifier: $(\forall x:q)[u:=t] \equiv \forall y:q[x:=y][u:=t]$ y fresh (not in q,t,u), same type as x.
- indexed variable, u plain or $u \equiv b[t_1, \dots, t_m]$ and $a \neq b$:

$$(a[s_1,\ldots,s_n])[u:=t] \equiv a[s_1[u:=t],\ldots,s_n[u:=t]]$$

• indexed variable, $u \equiv a[t_1, \dots, t_m]$:

$$(a[s_1,\ldots,s_n])[u:=t] \equiv (\bigwedge_{i=1}^n s_i[u:=t] = t_i ? t : a[s_1[u:=t],\ldots,s_n[u:=t]])$$

Proof of (2)

• (2) claims:

$$\vdash_{PD} \{P \land b \ge y\} \ b := b - y; \ a := a + 1 \{P\}$$

where $P \equiv a \cdot y + b = x \land b \ge 0$.

- $\vdash_{PD} \{(a+1) \cdot y + (b-y) = x \land (b-y) \ge 0\} \ b := b-y \ \{(a+1) \cdot y + b = x \land b \ge 0\}$ by (A2),
- $\vdash_{PD} \{(a+1) \cdot y + b = x \land b \ge 0\} \ a := a+1 \{\underbrace{a \cdot y + b = x \land b \ge 0}_{=P} \}$ by (A2),
- $\vdash_{PD} \{(a+1) \cdot y + (b-y) = x \land (b-y) \ge 0\} \ b := b-y; \ a := a+1 \ \{P\}$ by (R3),
- using $P \wedge b \geq y \rightarrow (a+1) \cdot y + (b-y) = x \wedge (b-y) \geq 0$ and $P \rightarrow P$ we obtain,

$$\vdash_{PD} \{P \land b \ge y\} \ b := b - y; \ a := a + 1 \{P\}$$

by (R6).

Proof of (3)

(3) claims

$$\models P \land \neg (b \ge y) \rightarrow a \cdot y + b = x \land b < y.$$

where $P \equiv a \cdot y + b = x \wedge b \ge 0$.

Proof: easy.

Back to the Example Proof

We have shown:

- (1) $\vdash_{PD} \{x \geq 0 \land y \geq 0\} \ a := 0; \ b := x \{P\},$
- (2) $\vdash_{PD} \{P \land b \ge y\} \ b := b y; \ a := a + 1 \{P\},$
- (3) $\models P \land \neg (b \ge y) \rightarrow a \cdot y + b = x \land b < y$.

and

$$\frac{(2)}{\{P \land (b \ge y)\} \ b := b - y; \ a := a + 1 \ \{P\}\}} }{\{P \land (b \ge y)\} \ b := b - y; \ a := a + 1 \ \mathbf{od} \ \{P \land \neg (b \ge y)\}, \qquad P \land \neg (b \ge y) \rightarrow a \cdot y + b = x \land b < y} }$$

$$\frac{\{x \ge 0 \land y \ge 0\} \ a := 0; \ b := x \ \{P\}, \qquad \{P\} \ \mathbf{while} \ b \ge y \ \mathbf{do} \ b := b - y; \ a := a + 1 \ \mathbf{od} \ \{a \cdot y + b = x \land b < y\}} }{\{x \ge 0 \land y \ge 0\} \ a := 0; \ b := x; \ \mathbf{while} \ b \ge y \ \mathbf{do} \ b := b - y; \ a := a + 1 \ \mathbf{od} \ \{a \cdot y + b = x \land b < y\}}$$

$$\{x \ge 0 \land y \ge 0\} \ a := 0; \ b := x; \ \mathbf{while} \ b \ge y \ \mathbf{do} \ b := b - y; \ a := a + 1 \ \mathbf{od} \ \{a \cdot y + b = x \land b < y\} }$$

thus

$$\vdash_{PD} \{x \ge 0 \land y \ge 0\} \underbrace{a := 0; \ b := x; \ \mathbf{while} \ b \ge y \ \mathbf{do} \ b := b - y; \ a := a + 1 \ \mathbf{od}}_{\equiv DIV} \{a \cdot y + b = x \land b < y\}$$

and thus (since PD is sound) DIV is partially correct wrt.

- pre-condition: $x \ge 0 \land y \ge 0$,
- post-condition: $a \cdot y + b = x \wedge b < y$.

IOW: whenever DIV is called with x and y such that $x \ge 0 \land y \ge 0$, then (if DIV terminates) $a \cdot y + b = x \land b < y$ will hold.

Once Again

• $P \equiv a \cdot y + b = x \wedge b \ge 0$

$$\{x \ge 0 \land y \ge 0\}$$
$$\{0 \cdot y + x = x \land x \ge 0\}$$

• a := 0; $\{a \cdot y + x = x \land x \ge 0\}$

- b := x; $\{a \cdot y + b = x \land b \ge 0\}$ $\{P\}$
- while $b \ge y \operatorname{do}$

$${P \land b \ge y}$$

 ${(a+1) \cdot y + (b-y) = x \land (b-y) \ge 0}$

- b := b y; $\{(a+1) \cdot y + b = x \land b \ge 0\}$
- a := a + 1 $\{a \cdot y + b = x \land b \ge 0\}$ $\{P\}$
- od

$$\{P \land \neg (b \ge y)\}$$
$$\{a \cdot y + b = x \land b < y\}$$

(A1)
$$\{p\}$$
 $skip$ $\{p\}$

(A2)
$$\{p[u:=t]\}\ u:=t\ \{p\}$$

(R3)
$$\frac{\{p\} S_1 \{r\}, \{r\} S_2 \{q\}}{\{p\} S_1; S_2 \{q\}}$$

(R4)
$$\frac{\{p \land B\} S_1 \{q\}, \{p \land \neg B\} S_2 \{q\}\}}{\{p\} \text{ if } B \text{ then } S_1 \text{ else } S_2 \text{ fi } \{q\}}$$

(R5)
$$\frac{\{p \wedge B\}\ S\ \{p\}}{\{p\}\ \mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od}\ \{p \wedge \neg B\}}$$

(R6)
$$\frac{p \to p_1, \{p_1\} S \{q_1\}, q_1 \to q}{\{p\} S \{q\}}$$

Literature Recommendation

Tell Them What You've Told Them...

Testing:

- Define criteria for "testing done" (like coverage, or cost per error).
- Process: tester and developer should be different persons.

Formal Verification:

- There are more approaches to software quality assurance than just testing.
- For example, program verification.
- Proof System PD can be used
 - to prove
 - that a given program is
 - correct wrt. its specification.

This approach considers all inputs inside the specification!

Tools like VCC implement this approach.

References

References

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM, 12(10):576-580.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Kopetz, H. (2011). What I learned from Brian. In Jones, C. B. et al., editors, *Dependable and Historic Computing*, volume 6875 of *LNCS*. Springer.

Lettrari, M. and Klose, J. (2001). Scenario-based monitoring and testing of real-time UML models. In Gogolla, M. and Kobryn, C., editors, *UML*, number 2185 in Lecture Notes in Computer Science, pages 317–328. Springer-Verlag.

Lovins, A. B. and Lovins, L. H. (2001). *Brittle Power - Energy Strategy for National Security*. Rocky Mountain Institute.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.