Parallel Computing - Course Information -

Dr. Mario Garza Fabre mario.garza@cinvestav.mx

Cinvestav Unidad Tamaulipas Ciudad Victoria, Tamaulipas, México January - April, 2023

Contents

- 1 Introduction / Course Information
- Assessment
- Project Deliverables
- Project Topic
- Infrastructure

Why Parallel Computing? Why Should We Study It?

Why Parallel Computing? Why Should We Study It?

Serial Computing
Instructions are executed
sequentially one after
another by single processor.

Parallel Computing

Instructions execute simultaneously on different processors (an overall control/coordination mechanism is employed).

Why Parallel Computing? Why Should We Study It?

- Computational power is increasing, but so are our problems:
 - Complex problems are still waiting to be solved
 - We need answers/solutions in reasonable time
 - We need to process large volumes of data in an efficient manner
- Parallelism is a natural way of improving performance
- Adding more processors doesn't help much if programmers aren't aware of them (or don't know how to use them)!

What About This Course?

We will focus on **techniques and applications** of parallel computing, as well as on the ways to **write computer programs** using this paradigm.

Contents

- Introduction to Parallel Computing (Hardware and Software)
- Parallel Programs / Programming for Performance
- General Strategies of Parallel Computing
- Algorithms and Applications
- Shared-Memory Programming
 - Pthreads
 - OpenMP
- Distributed-Memory Programming
 - Message-Passing Interface (MPI)

Prerequisites

```
string sInput;
          int iLength, iN;
          double dblTemp;
          bool again = true;
20
21
22
23
24
25
                               Programming
          while (again) {
              iN = -1;
              again = false;
              getline(cin, sInput);
              stringstream(sInput) >> dblTemp;
              iLength = sInput.length();
              if (iLength < 4) {
              } else if (sInput[iLength - 3] != '.') (
                  again = true;
                while (++iN < iLength) (
                  if (isdigit(sInput[IN])) (
                     else if (iN == (iLength - 3) ) (
```

 Introduction / Course Information
 Assessment
 Project Deliverables
 Project Topic
 Infrastructure

 00000●00
 0000000
 0
 0000000
 0
 0000000

Bibliography

Main textbook:

• An Introduction to Parallel Programming. Peter Pacheco, Morgan Kaufmann (Elsevier), 2011

Additional books:

- An Introduction to Parallel Computing: Design and Analysis of Algorithms. A. Grama et al., Addisson-Wesley, 2nd Ed, 2003
- Parallel Programming in C with MPI and OpenMP. Michael J. Quinn, McGraw-Hill, 2003

Online resources:

 Lawrence Livermore National Laboratory online tutorials. https://hpc.llnl.gov/training/tutorials

Course Information: Dates / Times

4 January - 25 April, 2023

	Time	Room
Tuesday:	10:00 - 12:00	A-255
Friday:	10:00 - 12:00	A-255

Course Information: Materials and Submissions

Course materials/resources will be available at:

https://www.dropbox.com/sh/w9feorc6hypfivc/AAD9n6D02_NdhvBJqPsRLOm4a?d1=0

Submitting assignments/deliverables:

- A Dropbox folder will be shared with each student
- For each assignment/deliverable, create a sub-folder and place files inside
- Do not send things by email!!!

Assessment / Grading

Projects (5 deliverables)	80%
Presentation(s)	10%
Final exam	20%
Total	110 %

NOTE: if no "Final exam", then the value of "Projects" will be 100%.

Projects / Deliverables

- Each student will INDIVIDUALLY execute a project
- A different project will be assigned to each student
- Potential project topics will be discussed at the end of this session
- Project involves the following deliverables: (tentative dates)

Deliverable	Deadline	Value (%)
Sequential version	27 January	20%
Shared-memory version (Pthreads)	24 February	20%
Shared-memory version (OpenMP)	17 March	20%
Distributed-memory version	7 April	20%
Hybrid (shared/distributed) version	21 April	20%

Important Remarks

Deadlines

- Assignments: to be considered iff received by the deadline
- Projects: value reduced 10% every 24 hours of delay

Completeness

- Receive 100% of value if meet 100% of requirements
- Otherwise, value will be proportional

Individual Work and Teamwork

- You will work individually (unless otherwise indicated)
- When working as a team, assessment is still individual

Assessment Criteria for Presentations

Assessment of presentations will consider:

- Contents and organization
- Knowledge / understanding
- Ability / effort to transmit knowledge
- Formality (behavioral)
- Quality of materials
- Time management

Attendance Policies

- Attendance is not a criterion for grading
- Mandatory: 100% attendance required to pass
- Be on time: 15 minute tolerance
- Absences need to be formally justified (through Academic Tutor or Academic Coordinator)

Ethics and Behaviour

Ethics and Behaviour - Honesty

Honesty will be crucial in this course!!!

Cheating will cause COURSE FAILURE!

Ethics and Behaviour - Respect

- Instructor must respect students
- Students must respect instructor
- Students must respect classmates

- Avoid interruptions!
- Raise your hand!
- No phones!
- Be on time!

Exploit This Opportunity

- A graduate course is one of the last chances to strengthen and expand our formation
- Contents are ambitious, topics can't be covered with desired depth
- A graduate student must be able to work and learn independently
- Do not limit yourself to the materials seen in class
- A graduate course assumes certain knowledge / skills
- Identify your weaknesses and work hard to overcome them!

Project Deliverable 1: Sequential Version

You will submit the **source code** of your implementation (70%) and a **LaTeX report** with the following contents (30%):

- Title, author name
- 2 Abstract
- Introduction
 - Problem / Task / Topic Description
- Serial Algorithm
 - Pseudocode, explanation of functioning, complexity analysis
- 6 Results
 - Examples / verification of results
 - Plot + table: execution time vs problem size (5+ different sizes)
 - Report the fastest time observed in 10 independent executions
- 6 Conclusions
- References

Results MUST be interpreted / discussed! (not enough to include plots)

Selection of a Project Topic: Rules

- A different project will be INDIVIDUALLY executed by each student
- Some project options have been pre-assigned to each of you
 - Make your final choice by Friday, January 13, 2023
 - Communicate this by placing a text file (PROJECT.txt) in your Dropbox folder with your decision(s)
 - No changes after this (unless discussed and authorized)
- You will be the only responsible for investigating and understanding the problem/algorithm, as well as for the design and implementation of the serial/parallel programs

Abraham - Parallelization of Optimization Algorithms

- Option 1: Branch and Bound
 - https://en.wikipedia.org/wiki/Branch_and_bound
- Option 2: Population-based Metaheuristics
 - https://en.wikipedia.org/wiki/Metaheuristic
- Use the chosen algorithm to solve a problem such as:
 - Graph coloring, quadratic assignment problem, ...
 - Any NP-complete problem (https://en.wikipedia.org/wiki/List_of_NP-complete_problems)
 - A particular problem you are interested in!

Michel - Option 1: Ensemble Machine Learning Methods

Random Forests Classification Algorithm

https://en.wikipedia.org/wiki/Random_forest

https://en.wikipedia.org/wiki/Ensemble_learning

https://builtin.com/data-science/random-forest-algorithm

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Michel - Option 2: Image Thinning (Skeletonization)

https://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html https://boofcv.org/index.php?title=Example_Morphological_Thinning https://reference.wolfram.com/language/ref/Thinning.html?view=all https://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm

Michel - Op. 3: Connected-Component Labeling (Region Labeling)


```
https://en.wikipedia.org/wiki/Connected-component_labeling
https://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
http://aishack.in/tutorials/connected-component-labelling/
```

Luis - Option 1: Wavefront Expansion Algorithm

Implement for N robots, each with a specific start position and destination.

https://en.wikipedia.org/wiki/Wavefront_expansion_algorithm https://www.youtube.com/watch?v=yeL7ICc8g4A

Luis - Option 2: Floyd's Algorithm

Shortest Paths Between All Pairs of Nodes

$$k = 4:$$

$$3 \xrightarrow{2} 4 \xrightarrow{-1} 2$$

$$3 \xrightarrow{2} 4 \xrightarrow{-1} 2 \xrightarrow{4} 1$$

$$1 \xrightarrow{-2} 3 \xrightarrow{2} 4 \xrightarrow{-1} 2$$

https://www-m9.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

Infrastructure: Shared-Memory Programming

For projects based on **Pthreads** and **OpenMP**, experiments will be run in the following server:

```
polifemo.tamps.cinvestav.mx (148.247.202.45)
```

You will use username "cpar" to connect to this server using ssh:

```
ssh cpar@polifemo.tamps.cinvestav.mx
```

Upload/download files to/from the server using commands scp or rsync.

Please respect the times assigned to each of you for using this server!

Infrastructure: Distributed-Memory Programming

For projects based on MPI, experiments will be run in Cluster Neptuno:

neptuno.tamps.cinvestav.mx (148.247.202.41)

You will use username "cpar" to connect to this server using ssh:

ssh cpar@neptuno.tamps.cinvestav.mx

Upload/download files to/from the server using commands scp or rsync.

Please respect the times assigned to each of you for using this server!