Calculus On Normed Vector Spaces

MTP REPORT

September 2017

Submitted by **Joydeep Medhi Entry No. 2013MT60599**

Supervisor Dr. Amit Priyadarshi

Department of Mathematics Indian Institute of Technology Delhi, New Delhi, INDIA

1 Introduction

The aim of the project is to study the notion of derivatives on general normed vector spaces and do Calculus on them. We will study generalizations of several well-known theorems of Calculus. We will also look at some applications of these concepts.

2 Definitions

In this section, some basic definations and elementary properties are discussed.

Norm: We will suppose that all vector spaces are real. Let E be a vector space. A mapping $\|.\|: E \to \mathbb{R}$, is said to be a *norm* if, for all $x, y \in E$ and $\lambda \in \mathbb{R}$

- $\bullet \|x\| \ge 0;$
- $\bullet ||x|| = 0 \Leftrightarrow x = 0;$
- $\bullet \|\lambda x\| = |\lambda| \|x\|;$
- $\bullet ||x + y|| \le ||x|| + ||y||.$

The pair $(E, \|.\|)$ is called a normed vector space and we say that $\|x\|$ is the norm of x.

Continuity: Suppose now that we have two normed vector spaces, $(E, ||.||_E)$ and $(F, ||.||_F)$. Let A be a subset of E, f a mapping of A into F and $a \in A$. We say that f is *continuous* at a if the following condition is satisfied:

for all $\epsilon > 0$, there exists $\delta > 0$ such that, if $x \in A$ and $||x - a||_E < \delta$, then $||f(x) - f(a)||_F < \epsilon$ If f is continuous at every point $a \in A$, then we say that f is continuous on A.

Proposition 2.1. The norm on a normed vector space is a continuous function.

Proof. We have
$$||x|| = ||x - y + y|| \le ||x - y|| + ||x|| \Rightarrow ||x|| - ||y|| \le ||x - y||$$
 In the same way, $||y|| - ||x|| \le ||y - x||$. As $||y - x|| = ||x - y||$, We have

$$||x|| - ||y|| | \le ||x - y||$$

And hence the contunity.

Proposition 2.2. Let E and F be normed vector spaces, $A \subseteq E, a \in A$, f and g are mappings from E into F and $\lambda \in \mathbb{R}$.

- If f and g are continuous at a, then so is f + g.
- If f is continuous at a, then so is λf .
- If α is a real-valued function defined on E and both f and α are continuous at a, then so is αf .

Proposition 2.3. Let $(E, \|.\|_E)$ be a normed vector space

- The mapping $f: E \times E \longrightarrow E, (x,y) \mapsto x+y$ is continuous.
- The mapping $f: \mathbb{R} \times E \longrightarrow E, (\lambda, x) \mapsto \lambda x$ is continuous.

3 Differentiation

In this section we will be primarily concerned with extending the derivative defined for real-valued functions defined on an interval of \mathbb{R} . We will also consider minima and maxima of real-valued functions defined on a normed vector space.

3.1 Directional Derivatives

Let O be an open subset of a normed vector space E, f a real-valued function defined on O, $a \in O$ and u a nonzero element of E. The function $f_u: t \to f(a+tu)$ is defined on an open interval containing 0. If the derivative $\frac{df_u}{dt}(0)$ is defined, i.e., if the limit

$$\lim_{t \to 0} \frac{f(a+tu) - f(a)}{t}$$

exists, then it is called the directional derivative of f at a in the direction of u, i.e. $\partial_u f(a)$.

If $E = \mathbb{R}_n$ and e_i is its standard basis, then the directional derivative $e_i f(a)$ is called the *i* th partial derivative of f at a, or the derivative of f with respect to x_i at a.

$$\frac{\partial f}{\partial x_i} = \lim_{t \to 0} \frac{f(a_1, ..., a_i + t, ..., a_n) - f(a_1,, a_n)}{t}$$

If for every point $x \in O$, the partial derivative $\frac{\partial f}{\partial x_i}(x)$ is defined, then we obtain the function i th partial derivative defined on O. If these functions are defined and continuous for all i, then we say that the function f is of class C^1 .

Example 3.1. If f is the function defined on \mathbb{R}^2 by $f(x,y) = xe^{xy}$, then the partial derivatives with respect to x and y are defined at all points $(x,y) \in \mathbb{R}^2$ and

$$\frac{\partial f}{\partial x}(x,y) = (1+xy)e^{xy}$$
 and $\frac{\partial f}{\partial y}(x,y) = x^2e^{xy}$

As both are continuous, f is of class C^1 .

However, a function of two or more variables may have all its partial derivatives defined at a given point without being *continuous* there. Here is an example.

Example 3.2. Consider the function f defined on \mathbb{R}_2 by

$$f(x,y) = \begin{cases} \frac{x^6}{x^8 + (y - x^2)^2} & if(x,y) \neq (0,0) \\ 0 & otherwise \end{cases}$$

We have (for x and y)

$$\lim_{t\to 0} \frac{t^6}{t^8 + t^4}/t = 0$$
 and $\lim_{t\to 0} \frac{0}{t^2}/t = 0$

and so,

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0.$$

However, $\lim_{t\to 0} f(x,x^2) = \infty$, which indicates f is not continuous at 0.

Suppose now that O is an open subset of \mathbb{R}^n and f a mapping defined on O with image in \mathbb{R}^m . f has m coordinate mappings $f_1,, f_m$. If $a \in O$ and the partial derivatives $\frac{\partial f_i}{\partial x_j}$ of a, for $1 \le i \le m$ and $1 \le j \le n$, are all defined, then the $m \times n$ matrix

$$J_f(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

is called the Jacobian Matrix of f at a.

3.2 The Differential

Let E and F be normed vector spaces, O an open subset of E containing 0, and g a mapping from O into F such that g(0) = 0. If there exists a mapping ϵ , $defined on a neighbourhood of <math>0 \in E$ and with image in F, such that $\lim_{h\to 0} \epsilon(h) = 0$ and

$$g(h) = ||h||_E \, \epsilon(h),$$

then we write g(h) = o(h) and say that g is "small o of h".

The condition g(h) = o(h) is independent of the norms we choose for two spaces E and F.

Let O be an open subset of a normed vector space E and f a mapping from O into a normed vector space F. If $a \in O$ and there is a continuous linear mapping $\phi : E \to F$ such that

$$f(a+h) = f(a) + \phi(h) + o(h)$$

when h is close to 0, then we say that f is differentiable at a.

Proposition 3.1. If f is differentable at a, then

- (a) f is continuous at a;
- (b) ϕ is unique.

Remark 3.1. If E and F are normed vector spaces and $f: E \to F$ is constant, then f'(a) is the zero mapping at any point $a \in E$. If $f: E \to F$ is linear and continuous, then f'(a) = f at any point $a \in E$.

Proposition 3.2. Let f be a mapping defined on an open subset O of a normed vector space E with image in the cartesian product $F = F_1 \times ... \times F_p$. Then f is differentiable at $a \in O$ if and only if the coordinate mappings f_i , for i = 1, ..., p, are differentiable at a.

$$f'(a) = (f'_1(a),, f'_p(a))$$

Suppose that dim $E = n < \infty$ and that e_i is a basis of E. If $x = \sum_{i=1}^n x_i e_i$, then

$$f'(a)x = \sum_{i=1}^{n} x_i f'(a)e_i = \sum_{i=1}^{n} \partial_{e_i} f(a)e_i^*(x),$$

where (e_i^*) is the dual basis of (e_i) . We thus obtain the expression. If $E = \mathbb{R}^n$ and (e_i) is its standard basis, then we usually write dx_i for e_i^* . This gives us the expression

$$f'(a)x = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)dx_i.$$

Differentiability at a given point: If we wish to determine whether a real-valued function f defined on an open subset of \mathbb{R}^n is differentiable at a given point a, then first we determine whether all its partial derivatives at a exist. If this is not the case, then f is not differentiable at a. If all the partial derivatives exist, then we know that the only possibility for f'(a) is the linear function $\phi = \sum_{i=1}^n frac \partial f \partial x_i(a) dx_i$. We consider the expression,

$$\frac{f(a+h) - f(a) - \phi(h)}{\|h\|} = \epsilon(h)$$

If $\lim_{h\to 0} \epsilon(h) = 0$, then f is differentiable at a, otherwise it is not.

3.3 Differentials of Compositions

Let E, F and G be normed vector spaces, O an open subset of E, U an open subset of F and $f:O\to F$, $g:U\to G$ be such that $f(O)\subset U$. Then the mapping $g\circ f$ is defined on O.

Theorem 3.1. If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a and

$$(g \circ f)'(a) = g'(f(a)) \circ f'(a).$$

This expression is referred to as Chain Rule.

Corollary 3.1. If in the above theorem the normed vector spaces are euclidian spaces, then $J_{a\circ f}(a) = J_a(f(a)) \circ J_f(a)$.

Example 3.3. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y, z) = (xy, e^x z)$ $g(u, v) = u^2 v$. Then,

$$J_f(x, y, z) = \begin{bmatrix} y & x & 0\\ ze^{xz} & 0 & xe^{xz} \end{bmatrix}$$

and

$$J_g(u,v) = \left[2uvu^2\right]$$

Multiplying the matrices $J_g(f(x,y,z))$ and $J_f(x,y,z)$, we obtain

$$J_{g\circ f}(x,y,z) = (2xy^2 + x^2y^2z)e^{xz}2x^2ye^{xz}x^3y^3e^{xz} .$$

3.4 Differentiability of the Norm

If E is a normed vector space with norm $\|.\|$, then $\|.\|$ is itself a mapping from E into \mathbb{R} and we can study its differentiability. We will write $Df(\|.\|)(x)$ for differentiability of the norm at x (if exists).

Proposition 3.3. Norm is not differentiable at the origin.

Proof. Suppose $Df(\|.\|)$ exists. Then for small non-zero values of h, we have

$$||h|| = Df(||.||)(0)h + o(h) \Rightarrow \lim_{h \to 0} \left(1 - Df(||.||) \frac{h}{||h||}\right) = 0$$

And

$$||h|| = ||-h|| = -Df(||.||)(0)h + o(h) \Rightarrow \lim_{h \to 0} \left(1 + Df(||.||)\frac{h}{||h||}\right) = 0$$

Summing the two limits we obtain 2 = 0, which is a contradiction. Hence Df(||.||)(0) does not exist.

At points where the differential exists, we have the following interesting result:

Proposition 3.4. Let E be a normed vector space and $\|.\|$ its norm. If $\|.\|$ is differentiable at $a \neq 0$ and $\lambda > 0$, then $\|.\|$ is differentiable at λa and $Df(\|.\|)(\lambda a) = Df(\|.\|)(a)$. In addition, $|Df(\|.\|)(a)|_{E^*} = 1$

Proof. If $\|.\|$ is differentiable at $a, \lambda >=$ and $h \in E \setminus \{0\}$, then we have

$$\|\lambda a + h\| = \lambda \|a + \frac{h}{\lambda}\| = \lambda \left(\|a\| + Df(\|.\|)(\frac{h}{\lambda}) + o(\frac{h}{\lambda})\right) = \|\lambda a\| + Df(\|.\|)(a)h + o(h)$$

It follows that $Df(\|.\|)(\lambda a)$ exists and $Df(\|.\|)(\lambda a) = Df(\|.\|)(a)$.

For 2nd part, Consider the function, $f: \mathbb{R}_+^* \to \mathbb{R}, \lambda \mapsto ||\lambda a||$

For a given $\lambda \in \mathbb{R}_+^*$ and $h \in \mathbb{R}$ sufficiently small, we have

$$\|(\lambda + h)a\| = (\lambda + h) \|a\|$$

and so

$$\lim_{h \to 0} \frac{\|(\lambda + h)a - \|\lambda a\|\|}{h} = \lim_{h \to 0} \frac{h \|a\|}{h} = \|a\|$$

Therefore $\dot{f}(\lambda) = ||a||$ for all values of λ . On the other hand, $f = ||.|| \circ \phi$, where $\phi(\lambda) = \lambda a$, and so

$$(f'(\lambda))s = Df(\|.\|)(\lambda a)sa = a(Df(\|.\|)(a))a$$

This implies, $\dot{f}(\lambda) = Df(\|.\|)(a)a$ and hence $Df(\|.\|)(a)a = \|a\|$. It follows that $|Df(\|.\|)(a)|_{E^*} = 1$.

4 References

- [1] Avez, A.: Differential Calculus. J. Wiley and Sons Ltd, New York (1986)
- [2] Rodney Coleman: Calculus on Normed Vector Spaces (2012)
- [3] Dacorogna, B.: Introduction to the Calculus of Variations. Imperial College Press, London (2004)