B. SUBIECTUL III – (15 puncte)

Rezolvați următoarea problemă:

Un motor termic funcționează după un ciclu format din 2 transformări izoterme şi 2 transformări adiabatice: $1 \rightarrow 2$ şi $3 \rightarrow 4$ izoterme, respectiv $2 \rightarrow 3$ şi $4 \rightarrow 1$ adiabate. Motorul are ca substanță de lucru un gaz ideal monoatomic ($C_V = \frac{3}{2}R$). Temperatura la începutul comprimării izoterme este $T_c = 300\,\mathrm{K}$, de-a lungul unui ciclu gazul efectuează lucrul mecanic $L = 10^3\mathrm{J}$ absorbind căldura $Q_1 = 1500\,\mathrm{J}$, iar lucrul mecanic efectuat de un mol de gaz în timpul destinderii adiabatice este $L_{23} = 7,479\,\mathrm{kJ}$.

- a. Calculați căldura cedată de substanța de lucru pe parcursul unui ciclu;
- **b.** Calculați temperatura gazului la care are loc transformarea $1 \rightarrow 2$;
- c. Determinați valoarea lucrului mecanic primit de un mol de gaz în cursul comprimării adiabatice;
- **d.** Demonstrați că între volumele V_1, V_2, V_3, V_4 există relația $V_1 \cdot V_3 = V_2 \cdot V_4$.