Decision Vension of a problem. Eg: Given a graph G= (V, E), S, t are two nodes in V, and integer k. Is there exists a path from 5 to t of length < k? Deptimization version of the same Problem. Find shortest path from 5 to t for given graph 6 = (V,E) Decision version of Problem P Two Answer > Yes ? Instance Algo for > Yes [Yes Instance / NO instance of Problem P] D15 the given list sorted?

Does there exist HC? L CNP We know PCNP [NPC] -> open Problem
"10 Million \$\$" XENP + YENP is NP-hard

Reduction $1/1 \leq_P 1/2$ We can solve 1/2 in polytime using a polytime algogithm for 172. There exists polytime algorithm A that converts every instance of X of TI to A(A) of TI2 S-t At les-Instance iff A(x) E Yes-Instance NP-hard = Every problem in NP oreduces TENP & TENP hard)-) TI-NP Complete TTEP

TO ENP-Complete => NP = P But WC don't know at this moment any problem satisfying) both properties together

77 is NP-Complete 1) 11 is NP 2) 7/2 p 7/ for all TI & NP Cemmal if TI, <p TT2 and TT2 EPg then TI EP It is NP-complete and IT Lemmaz. if Tis NP-complete and TIEP Cemma 3 then No NP-complete problem First NP-Complete pr06/em 1971 Cook - Levin "SATENPC" SATE NPV Take any TIENP

70	Prove	7 6 1	VP_Cov	n plete	
		YENP (howse	2n NP-	- Complete	ProblemX
	>	X	PY		
		y 15 in			
[{	XENPC YENPC		XENP	, X ≤ ρ	Ythen
->		ke any	WE	NP	
				-, × is	NPC)
		_		Siron) by train	r sitivity)
		Hence	Y 6 M	V	

SATENPC SAT: Given a CNF Øg does it have a Satisfying truth assignment? CNF: Conjuction of clauses (1162163-Clanses: disjunction of literals G=(X;VXjVX) literal boolean variable Ni ex Li 1972 (Richard Kamp) proved 21 problems & NAC, using above result 3-5AT: SAT where each clause contains exactly 3 literals. (and each literal corresponds to different variable) \mathcal{E}_{3} : $\emptyset = (\overline{\chi}, V \chi_{2} V \chi_{3}) \Lambda (\chi_{1} V \chi_{2} V \chi_{3})$ Λ $(\overline{\chi}, V\chi_2 V\chi_4)$ (Ø = Yes Instance X, = True X2 = True X3 = False LXy - Folse

35ATENPC 35 AT ENP [35ATENP-hard] Reduce from Some Known problem ENK SAT- (x, vx, -... ve) 274 ((X, V x2 V y) \ (\frac{1}{9} V x3 V y2) \ 3-547) (72 V 24 V 23) 1 === = (ge-z V ne-, V ne) Converted to in polynomial time Satisfiable iff sa tistiable.

=> Ø is satisfiable is satisfiable. Each clause in Ø W. L. O. 6 C= (2, VX2 VN3 V N4 VX5 N N6 VN7) (2, v) = (2, v) + (3, v) + (3, v) $\Lambda(\overline{9}, v_{3}, v_{4}, v_{3}) \Lambda(\overline{9}, v_{2}, v_{3})$ 1 (gg vy v v) True 1 Set 43 = 7 42 = 7 (=) it solistiable then of is satisfiable H. L. Explaination on board

Independent SeHISENTC Docs 6 has Is of Size 7 K 7. IS ENP ISENP-Lard ?? 35AT With K Clows 6 $(\overline{\chi}_1 \vee \chi_2 \vee \chi_3) \wedge (\chi_1 \vee \overline{\chi}_2 \vee \chi_3) \wedge$

Lemma Dis satistiable iff Is of SìZC K. => take any satisfying as signment of -> Select one true literal
from each clause (triagle) Independencel- of size & The (E) let 56 independent set of size Esch D. exactly

exac set all those Giteral's to lone. All Clauses in D Satisfied.

	I	Ś	t	D	(Cl	igi	rl	_]												
I	· S	: (91`V	Cn	(כ	a h	2	K												
(n 9 ,	K)							7	>(ے کی	9	KÌ)							
											ر لـ,						a +	- /	<u></u>		
											0									l	
	K				,	,								1	0	_					