Last Lecture: Review Wed 3:30 pm - 6:00 pm Final

Chap 1-3: Inner pdt space, norm space, Hilbert + Banuch

- How to show completeness of a space
- . Riecz Lemmu: $U \subset X$ closed subspace, X normed vector space. If $U \not = X$ for any $0 \in S \in I$, $\exists X_S \in X$ s.t. $||X_S|| = I$ and $||X_S U|| \geqslant I S$, we U

Consequences: closed unit ball is not compact for so-din space.
This is Lower compact for finite dim.

- · All the norms (or topolisy y) in a finite dim normed space are equivalent.
- · Exampler of Banach / Hilbert space:

L'(1R) , L'(1R)

How to show completeness?

Chip4: Orthogonality in Hilbert space

· Parallelogram Law | | x-y | | 2 + | | x+y | | = 2 (| | x | | x + | | y | |) 2

Besseli (negothery

Py tho given Than

Neurest yt property: A closed convex subset of H, H hibbert, then $\exists x \in H$ Unique a GA s.f. $||x-a|| \leq ||x-y||$ $\forall y \in A$

- . Orthogonal complement E^{\perp} .

 Then M closed subspace, then $H = M \oplus M^{\perp}$, if H = hilbert
- * Complete arthonormal segmence: 3 equivalent definitions
 · Partiral's identity

Chap 5: Classical Former Sener

- $L^{2}(\alpha_{1}b)$ of a separable Hilbert space. $(e_{4})_{n=1}^{\infty}, \quad e_{n}=\frac{1}{\sqrt{2\pi}}e^{i\alpha_{1}x} \quad \text{if } \alpha \quad \text{complete orthogonal} \quad basis$
- · Fejers Kernel: $f_m = \sum_{n=1}^{\infty} (f, e_n) e_n$, $F_m = \frac{1}{n+1} (f_0 + ... + f_m) = K_m * f$ Then we should $F_m \longrightarrow f$ uniformly if K_m has certain properties: (converge + b + S)

Talk about Lebergue lategal functions

- H. w to approximate them when continuous functions & step functions

- MCT

Midhem _____ 30-40%

Chapb: Linear Functionals

- · For linear functionals, continuity = boundedness (how to prove?)
- . Define ||F|| = sup | F(x) | on set of liner functionals, X*.

Shows Xt ir Banach if X is normal vector space (prof?)

and WEll= Nyllx.

· Fo, normed vector space, Hahr-Burnach Theorem

Thm: let X be reall veter space. Let $q:X\to R$ be sublinux functional. Let $y \in X$ finan subspace, $f:Y\to R$ linear and $f(y) \in q(y)$. Then exists $\exists F:X\to R$ sub. F[y=f] and $F(x) \in q(x)$ $\forall x\in X$.

Example: (Banach Space Projection Theorem)

Extend f to X* by Huhn Bunach.

If X in N, (x=\frac{2}{6} f(x) X; -y)

Let $Y = \ker f - n - ker(f_n)$, Then $y \in Y$ for any $y \in X$:
Then show $N \cap Y = \{0\}$ (eyerna).

Chap 7 : Uneur Operatorr

- · Equivalence of bounded near and continuity.
- · L (E,F) Banuch if F Bunuch.
- Inverse: Inverse mapping Theorem (no proof).

 If $A \in L(X,Y)$. If X,Y Bunneth, if A injective then $A^{-1} \in L(Y,X)$.

 (why doer it held complete require)
- . If $\|A\| < 1$, I-A invertible. Implies set of invertible exercises L(E) is open.
- · Adjoints definition relies on Riecz Representation. (look at prost).

 If A self adjust/hermitian, then IIAII= SUP ((Ax, x)) | WXIICI

HW729 ((Run A = Ker A +)

Chap 8: Compact Operator

- · Definition (seyon a vr set det.)
- · Example: finite make operator
- $\underline{T_{nn}}$ If $\underline{T_{n}} \to \underline{T}$, $\underline{T_{n}}$ cpt \Rightarrow \underline{T} cpt (3-e prof-renew)

· H reproble, apt openfor are limits of finite rank openfor (consuprof).

Suppose k copt, $k_{\ell} x = \sum_{n=1}^{N} (X_{\ell}, e_{n}) (ke_{n})$ $(e_{n})_{n=1}^{\infty}$ complete with normal sequence. Amount to show (ten) small. If k copt k thermitian, then $ke_{n} = \lambda e_{n}$

But if k not Hirmitian, still show this. (see part)

. Fredholm Alternatur. It k cyt, either I-k in our fish or kf = f hat

(we assumed seperability in post but we don't need it since) we can get a finite appex. of specific than

· Hilbert schnidt openho

Main Exemple: Integral openhar on [2.(a,6).

- · Spectrul Thm: Cpt, Hermitians
- · Strm Liverille. Find Green's Function and convert do functional Analysis problem.