Final Exam Differential Topology

Bennett Rennier bennett@brennier.com

December 17, 2018

Ex 1 Let $M \subseteq \mathbb{R}^n$ be an embedded smooth submanifold

- a) Prove that there exists a $c \in \mathbb{R}$ such that the plane $x_1 = c$ instersects M transversely.
- b) Give an example that shows that the set of such c need not be open in \mathbb{R} .
- c) In the case $M = \{(x, y, z) : x^2 + y^2 z^2 = 1\} \subseteq \mathbb{R}^3$, find all $c \in \mathbb{R}$ such that the plane x = c intersects M transversely.

Proof.

- a) Consider the smooth projection map $p: \mathbb{R}^n \to \mathbb{R}$ where $p(x_1, \dots x_n) = x_1$. Then, $\pi = p|_M$ is a smooth map from M to \mathbb{R} . I claim that $x_1 = c$ is not transverse to M if and only if c is a critical value of π . This is proved as follows:
 - \implies) Let $c \in \mathbb{R}$ be such that $x_1 = c$ is not transverse to M. Since $x_1 = c$ is a n-1 dimensional manifold, it must be that there is some $x \in M$ where $\pi(x) = c$ and T_xM is exactly the plane $x_1 = c$ (otherwise the sum of the tangent spaces would have full dimension n). As $d\pi$ is the projection map of tangent spaces, this means that $d\pi_x = 0$, which is not surjective. Thus, $\pi(x) = c$ is a critical value of π .
 - \Leftarrow) Let c be a critical value of π . Then there's an $x \in M$ such that $\pi(x) = c$ and $d\pi_x : T_xM \to \mathbb{R}$ is not surjective. The only way that $d\pi_x$ can fail to be surjective is if $d\pi_x = 0$. Since $d\pi$ is the projection of tangent spaces, the tangent plane at x must be contained in the plane $x_1 = c$. This means that the plane $x_1 = c$ is not transverse to M at x, and thus the plane is not transverse to M overall.
 - By Sard's Theorem, we know the critical values of a smooth map have measure zero. This means that we can always choose a regular value c of π and that for such c, the plane $x_1 = c$ will intersect M transversely.
- b) From previous work, we know that there is a smooth bump function $b: \mathbb{R} \to [0,1]$ such that b'(0) = 0, b(x) = 1 for $|x| < \frac{1}{4}$, and b(x) = 0 for $|x| > \frac{1}{3}$. Now, as \mathbb{Q} is countable, we can enumerate all the rationals as $\{q_i: i \in \mathbb{N}\}$. We can then construct the function $f(x) = \sum_i q_i \cdot f(x+i)$. This function is well-defined because for any point in \mathbb{R} , only one bump function is non-zero. Additionally, the function is smooth as inbetween the bump functions there is an interval of length 1/3 on which all the bump functions are identically zero. Since for any $q_i \in \mathbb{Q}$, we have that $f(-i) = q_i$ and f'(-i) = 0, we see that all of \mathbb{Q} are

critical values of f. This means that the plane y = c does not intersect $\Gamma(f)$ transversally for any $c \in \mathbb{Q}$. In other words, the values of c that do intersect transversally are contained in $\mathbb{R} \setminus \mathbb{Q}$, which has no open subsets.

c) Let $f(x, y, z) = x^2 + y^2 - z^2$ so that $M = f^{-1}(1)$. We have proved previously that $T_{(x,y,z)}M = \ker(df_{(x,y,z)}) = \ker((2x, 2y, -2z))$. By the Rank-Nullity Theorem, this means that $df_{(x,y,z)}$ is a normal vector to the point $(x, y, z) \in M$.

We see that the normal vectors at the points (1,0,0) and (-1,0,0) in M are $df_{(1,0,0)} = (2,0,0)$ and $df_{(-1,0,0)} = (-2,0,0)$ respectively. This means that the tangent planes $T_{(1,0,0)}M$ and $T_{(-1,0,0)}M$ coincide with the plane x = 1 and x = -1 respectively. Thus, the planes x = 1 and x = -1 do not intersect M transversely.

However, for any point $(x, y, z) \in M$ where $x \neq \pm 1$, it must be that either $y \neq 0$ or $z \neq 0$. In other words, the normal vector $df_{(x,y,z)}$ is not contained in $\langle (1,0,0) \rangle$. This means the tangent space at (x,y,z) does not coincide with x=c for any $c \in \mathbb{R}$. Thus, the plane x=c intersects M tranversally if and only if $c \neq \pm 1$.

Ex 2 Prove or provide a counterexample: If Y is a smooth manifold and $M = f^{-1}(t)$ is the preimage of a regular value t of a smooth function $f: Y \to \mathbb{R}$, then M is orientable.

Proof. We showed in Ex 1(c) that the vector df_x is always normal to $x \in M$. Since df_x is smooth with respect to $x \in M$, is never the zero vector (as x is a critical point), and is defined uniquely for each $x \in M$, we can use it to define an orientation on M. That is, for the point $x \in M$, we can declare the sign of the ordered basis $v_1, \ldots, v_n \in T_xM$ as the sign of $\det(df_x, v_1, \ldots, v_{k-1})$. This proves that M is orientable.

Ex 3 Let X and Y be smooth, closed, compact, oriented n-dimensional manifolds and $f: X \to Y$ a smooth map. Let $Z, W \subseteq Y$ be closed, oriented submanifolds of dimensions k and ℓ respectively, with $k + \ell = n$, $Z \cap W$, and f transverse to Z, W, and $Z \cap W$.

- a) Prove that the inverse images $f^{-1}(Z)$ and $f^{-1}(W)$ are smooth submanifolds of X that intersect transversely and have dimensions k and ℓ respectively.
- b) Prove that with the induced orientations, the intersection number $I(f^{-1}(Z), f^{-1}(W))$ satisfies

$$I(f^{-1}(Z), f^{-1}(W)) = \deg(f)I(Z, W).$$

c) Use the previous part to give a proof that any smooth map $f: S^2 \to T^2$ has degree zero.

Proof.

a) Since f is transverse to Z and W, we know that $f^{-1}(Z)$ and $f^{-1}(W)$ are submanifolds of X. Furthermore, $\operatorname{codim}(f^{-1}(Z)) = \operatorname{codim}(Z)$ and $\operatorname{codim}(f^{-1}(W)) = \operatorname{codim}(W)$, which means $f^{-1}(Z)$ and $f^{-1}(W)$ have dimension k and ℓ respectively.

We will first prove that for $x \in W \cap Z$, df_x is an isomorphism. Now let $x \in W \cap Z$. Since $df_x(T_xf^{-1}(Z)) = T_{f(x)}Z$ and $df_x(T_xf^{-1}(W)) = T_{f(x)}W$ and $W \cap Z$, we obtain that

$$T_{f(x)}Y = T_{f(x)}Z + T_{f(x)}W$$

$$= df_x(T_x f^{-1}(Z)) + df_x(T_x f^{-1}(Z))$$

$$= df_x(T_x f^{-1}(Z) + T_x f^{-1}(Z)) \subseteq df_x(T_x X),$$

which means that df_x is a surjective map, and hence an isomorphism.

Now to prove that $f^{-1}(Z)$ and $f^{-1}(W)$ are transverse. Let $v \in T_x f^{-1}(Z) \cap T_x f^{-1}(W)$. This means that $df_x(v) \in T_{f(x)}Z \cap T_{f(x)}W$. But $W \cap Z$ and their dimensions add to n so it must be that

$$T_{f(x)}Z \oplus T_{f(x)}W = T_{f(x)}Y.$$

This means $df_x(v) \in T_{f(x)}Z \cap T_{f(x)}W = \{0\}$. As df_x is an isomorphism, it must be that v = 0. Thus,

$$\dim(T_x f^{-1}(Z) + T_y(F^{-1}(W))) = \dim(T_x f^{-1}(Z) \oplus T_y(F^{-1}(W)))$$

$$= \dim(T_x f^{-1}(Z)) + \dim(T_y(F^{-1}(W)))$$

$$= k + \ell$$

$$= \dim(T_{f(x)}Y)$$

which proves that $f^{-1}(Z)$ and $f^{-1}(W)$ are transverse.

b) Let x_1, \ldots, x_n be the intersection points of Z and W and let $f^{-1}(\{x_1, \ldots, x_n\}) = \{y_1, \ldots, y_m\}$ where $\varepsilon(x_i) = \pm 1$ and $\varepsilon(y_i) = \pm 1$ are the orientations. This means that

$$\deg(f)I(Z,W) = \deg(f)\sum_{i} \varepsilon(x_i) = \sum_{i} I(f,\{x\})\varepsilon(x_i)$$
$$= \sum_{i} I(f,\{x_i\}) = \sum_{i} \varepsilon(y_i) = I(f^{-1}(Z),f^{-1}(W)).$$

c) We will label the two primary circles of the torus so that $T^2 = S_a^1 \times S_b^1$. We can easily see that S_a^1 and S_b^1 intersect at a single point transversally, which means we can choose orientations on S_a^1 and S_b^1 so that $I(S_a^1, S_b^1) = 1$. Note that we can always homotope f to be simultaneously transverse to S_a^1 , S_b^1 , and $S_a^1 \cap S_b^1$ (as homotoping f to be transversal is equivalent to finding a regular value).

Furthermore, we note that $f^{-1}(S_a^1)$ and $f^{-1}(S_b^1)$ are both 1-dimensional manifolds in S^2 . Since any circle or line segment in S^2 is homotopic to any point in S^2 , we can choose $x, y \in S^2$ where $x \neq y$ so that

$$\deg(f) = \deg(f) \cdot 1 = \deg(f) I(S_a^1, S_b^1) = I(f^{-1}(S_a^1), f^{-1}(S_b^1)) = I(\{x\}, \{y\}) = 0,$$

as we wanted to prove.

Ex 4 Let C_1 and C_2 be disjoint, oriented submanifolds of \mathbb{R}^3 , each diffeomorphic to the circle S^1 . The *linking number* of C_1 and C_2 is defined as follows. Let $f: S^1 \to C_1$ and $g: S^1 \to C_2$ be orientation-preserving diffeomorphisms and define the map $L_{f,g}: T^2 \to S^2$ by

$$L_{f,g}(x,y) = \frac{f(x) - g(y)}{|f(x) - g(y)|},$$

where $(x,y) \in T^2 = S^1 \times S^1$. Then the linking number $lk(C_1,C_2)$ is the integer given by

$$lk(C_1, C_2) = \deg(L_{f,g}).$$

a) Prove that $lk(C_1, C_2)$ does not depend on the choice of orientation-preserving diffeomorphisms f, g used in its definition, but reverses the sign if the orientation of C_1 or C_2 is reversed.

- b) Prove that $lk(C_1, C_2) = lk(C_2, C_1)$.
- c) Prove that if there exists a compact oriented submanifold $W \subseteq \mathbb{R}^3 \setminus C_2$ with $\partial W = C_1$, then $lk(C_1, C_2) = 0$.
- d) Prove that if C_1 and C_1' are either smoothly homotopic in $\mathbb{R}^3 \setminus C_2$ or are cobordant in $\mathbb{R}^3 \setminus C_2$, then $lk(C_1, C_2) = lk(C_1', C_2)$.

Proof.

a) According to a previous homework problem (the last problem of homework 9), two smooths map from S^1 to S^1 are homotopic if and only if they have the same degree. Since f is a orientation-preserving diffeomorphism, it must be that $\deg(f) = 1$. This means that f is homotopic to the uniform speed parameterization $\phi: S^1 \to C_1$ (the one that preserves orientation). This homotopy extends to a homotopy from $L_{f,g}$ to $L_{\phi,g}$. Since the degree of a map is invariant under homotopy, we have that any orientation-preversing diffeomorphism gives the same linking number.

Now, if one reverses the sign of orientation of either C_1 or C_2 (but not both), then this reverses the orientation on T^2 . Thus, $L_{f,g}$ reserves orientation, meaning the linking the number $lk(C_1, C_2)$ changes sign.

b) I don't think this is true. Swapping the two circles C_1 and C_2 is tantamount to swapping f and g. But we see that $L_{f,g} = -L_{g,f} = a \circ L_{g,f}$ where $a: S^2 \to S^2$ is the antipodal map. Since S^2 is an even sphere, the antipodal map has degree -1. This means that

$$\operatorname{lk}(C_1, C_2) = \operatorname{deg}(L_{f,g}) = \operatorname{deg}(a \circ L_{g,f}) = \operatorname{deg}(a) \operatorname{deg}(L_{g,f}) = -\operatorname{deg}(L_{g,f}) = -\operatorname{lk}(C_1, C_2).$$

c) Let $i:W\to\mathbb{R}^3\setminus C_2$ be the inclusion map and let $L_{i,g}:W\times S^1\to S^2$ be the map such that

$$L_{i,g}(x,y) = \frac{i(x) - g(y)}{|i(x) - g(y)|}.$$

Since this map is a smooth map such that $L_{i,g}|_{\partial(W\times S^1)}=L_{i|_{C_1},g}=L_{f,g}$, we have by the Boundary Theorem that

$$\operatorname{lk}(C_1, C_2) = \operatorname{deg}(L_{f,g}) = 0.$$

d) Now if C_1 and C_1' are smoothly homotopic in $\mathbb{R}^3 \setminus C_2$, then they are cobordant in $\mathbb{R}^3 \setminus C_2$ via the image of the homotopy map. Now if C_1 and C_1' are cobordant in $\mathbb{R}^3 \setminus C_2$, then this means there's a compact manifold $W \subseteq \mathbb{R}^3 \setminus C_2$ such that $\partial W = C_1 - C_2$. Let $i: W \to \mathbb{R}^3 \setminus C_2$ be the inclusion map and let $L_{i,g}: W \times S^1 \to S^2$ be defined as

$$L_{i,g}(x,y) = \frac{i(x) - g(y)}{|i(x) - g(y)|}.$$

Since this map is a smooth map such that $L_{i,g} \mid_{\partial(W \times S^1)} = L_{i|_{C_1 - C_1'},g}$, we have by the Boundary Theorem that

$$0 = \deg(L_{i|_{C_1 - C_1'}, g}) = \deg(L_{i|_{C_1}, g}) + \deg(L_{i|_{-C_1'}, g}) = \operatorname{lk}(C_1, C_2) - \operatorname{lk}(C_1', C_2),$$

where the negative sign comes from (a), as $-C'_1$ has reversed orientation. This proves that $lk(C_1, C_2) = lk(C'_1, C_2)$ as we wanted.