Kodavimo teorija

Vilius Stakėnas

2010 metų ruduo

Γiesinių kodų poros	2
Tiesinis kodas	3
Dualus poerdvis	4
Dualus kodas	5
Kody bazės	6
Kodų bazės	7
Kodai su kontroliniu simboliu	8
Kodai su kontroliniu simboliu	9
Brūkšniniai kodai	0
EAN (European Article Numeration)	1
Hammingo kodas	
Kontrolinės matricos sudarymas	
Kontrolinės matricos sudarymas	4
Kontrolinė matrica	
Hammingo kodai	6
Dvejetainiai Hammingo kodai 1	7
Hammingo kodų dekodavimas	8
Simplekso kodai	
Tikimybės	
Kodo žodžių svoriai	
Kodo žodžių svoriai	
MacWilliams tapatybė	

Tiesinis kodas

Priminimas:

Apibrėžimas. Tiesinį erdvės \mathbb{F}_q^n žodžių poerdvį $\mathbb{L} \subset \mathbb{F}_q^n$ vadiname tiesiniu kodu.

Jeigu šio kodo dimensija yra k, o minimalus atstumas d, sakome, kad tai yra [n,k,d] kodas.

3 / 23

Dualus poerdvis

Apibrėžimas. Tegu $\mathbf{x} = x_1 x_2 \dots x_n, \ \mathbf{y} = y_1 y_2 \dots y_n$ yra du erdvės \mathbb{F}_q^n žodžiai. Jų vidine sandauga vadinsime \mathbb{F}_q elementą, apibrėžiamą lygybe

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \ldots + x_n y_n.$$

Teorema. Tegu L yra tiesinis poerdvis. Žodžių aibė

$$\mathbb{L}^{\perp} = \{ \mathbf{y} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{y} = 0 \text{ su visais } \mathbf{x} \in \mathbb{L} \}$$

taip pat yra tiesinis poerdvis. Poerdvių dimensijos susijusios lygybe

$$\dim\left(\mathbb{L}\right) + \dim\left(\mathbb{L}^{\perp}\right) = n.$$

4 / 23

Dualus kodas

Apibrėžimas. Tegu $\mathbb{L} \subset \mathbb{F}_q^n$ yra tiesinis kodas. Tiesinį poerdvį \mathbb{L}^\perp vadinsime kodu, dualiu kodui \mathbb{L} .

Beveik akivaizdu, kad

$$\left(\mathbb{L}^{\perp}\right)^{\perp}=\mathbb{L}.$$

Kodų bazės

Tiesinį poerdvį $\mathbb L$ galime nusakyti naudodami jo bazę arba – jam dualaus poerdvio bazę.

Teorema. Tegu $\mathbb L$ yra tiesinis poerdvis, $\dim(\mathbb L)=k,$ o $\mathbf h_1,\ldots,\mathbf h_{n-k}$ yra dualaus poerdvio $\mathbb L^\perp$ bazė. Tada

$$\mathbb{L} = \{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{h}_1 = \mathbf{x} \cdot \mathbf{h}_2 = \ldots = \mathbf{x} \cdot \mathbf{h}_{n-k} = 0 \}.$$

6 / 23

Kodų bazės

Sąlygas galime užrašyti tiesinėmis lygtimis. Jeigu dualaus poerdvio bazės žodžiai yra

$$\mathbf{h}_1 = h_{11}h_{12}\dots h_{1n}, \dots, \mathbf{h}_{n-k} = h_{n-k,1}h_{n-k,2}\dots h_{n-k,n},$$

tai poerdvis \mathbb{L} yra sudarytas iš tų žodžių \mathbf{x} , kurių komponentės $x_1x_2 \dots x_n$ tenkina tokias lygybes:

7 / 23

Kodai su kontroliniu simboliu

Sudarykime matricą iš vienos eilutės:

$$H = (h_1 \ h_2 \dots h_n), \quad h_j \in \mathbb{F}_p, \quad h_j \neq 0.$$

Ši matrica yra kontrolinė [n,n-1] kodo $\mathbb K$ matrica. Kodui priklauso tie žodžiai $\mathbf x=x_1x_2\dots x_n$, kurie tenkina lygybę

$$h_1 x_1 + h_2 x_2 + \ldots + h_n x_n = 0.$$

Kodai su kontroliniu simboliu

Kodavimas šiuo kodu – informacinių simbolių eilutės papildymas dar vienu (kontroliniu) simboliu:

$$x_1 x_2 \dots x_{n-1} \mapsto x_1 x_2 \dots x_{n-1} x_n,$$

 $x_n = -(h_1 h_n^{-1} x_1 + \dots + h_{n-1} h_n^{-1} x_{n-1}).$

Minimalus kodo \mathbb{K} atstumas yra d=2, taigi jis negali ištaisyti nei vienos klaidos. Tačiau visada gali vieną klaidą aptikti!

Kodo, dualaus kodui su kontroliniu simboliu parametrus taip pat nesunku nustatyti. Jie tokie -[n,1,n].

9/23

Brūkšniniai kodai

Juodų ir baltų juostų seka užrašomi atitinkamos abėcėlės simboliai. Pavyzdžiui, knygų žymėjimo sistema ISBN – tai kodas su abėcėle

$$\mathcal{A} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X\},\$$

čia X žymi skaičių 10. Informacija apie knygą užrašoma devyniais šios abėcėlės simboliais: pirmoji simbolių grupė žymi šalį, antroji — leidyklą, trečioji — knygą. Devynių simbolių žodis papildomas dešimtuoju — kontroliniu. Kontrolinė lygybė tokia:

$$X \cdot x_1 + 9 \cdot x_2 + 8 \cdot x_3 + 7 \cdot x_4 + 6 \cdot x_5 + \dots + 2 \cdot x_9 + 1 \cdot x_{10} \equiv 0 \pmod{11}$$
.

Pavyzdžiui, ISBN - 9986-16-180-0 yra knygos, išleistos Lietuvoje (9986 – Lietuvos kodas), "Tyto alba" leidykloje (leidyklos kodas – 16).

10 / 23

EAN (European Article Numeration)

Abėcėlė:

$$\mathcal{A} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Prekės žymimos trylikos skaitmenų kodu. Kontrolinė lygybė

$$1 \cdot x_1 + 3 \cdot x_2 + \ldots + 3 \cdot x_{12} + 1 \cdot x_{13} \equiv 0 \pmod{10}$$
.

Hammingo kodų šeima 0.1

Hammingo kodas

Dvejetainis Hammingo kodas taiso viena klaida. Jo minimalus atstumas d = 3

leškosime daugiau tokių kodų.

Fiksuosime dar vieną ieškomų kodų parametrą – dualaus kodo dimensiją.

leškosime daugiausiai abėcėlės \mathbb{F}_a žodžių turinčio tiesinio kodo, jeigu iš anksto duota jo dualaus kodo dimensija r ir minimalus atstumas d=3. Tokio kodo kontrolinė matrica H turi turėti r eilučių, o bet kurie du jos stulpeliai turi būti tiesiškai nepriklausomi. Tai reiškia, kad nei vienas stulpelis negali būti gaunamas iš kito, padauginus pastarąjį iš $\alpha \in \mathbb{F}_q$.

12 / 23

Kontrolinės matricos sudarymas

Sudarysime H, imdami tiek stulpelių, kiek tik yra įmanoma. Pasirinkime iš aibės $V_1 = \mathbb{F}_a^r$ nenulinį žodį \mathbf{s}_1 ir sudarykime iš jo elementų pirmąjį H stulpelį. Apibrėžkime aibę

$$V_2 = V_1 \setminus \{\alpha \mathbf{s}_1 : \alpha \in \mathbb{F}_q\}.$$

Antrąjį H stulpelį sudarykime iš pasirinkto aibės V_2 žodžio elementų.

13 / 23

Kontrolinės matricos sudarymas

Bendra stulpelių pasirinkimo taisyklė tokia:

jeigu m-asis matricos H stulpelis sudarytas iš žodžio $\mathbf{s}_m \in V_m$ komponenčių, sudarykime aibę

$$V_{m+1} = V_m \setminus \{\alpha \mathbf{s}_m : \alpha \in \mathbb{F}_q\}$$

ir, jeigu ši aibė nėra tuščia, pasirinkime iš jos žodį \mathbf{s}_{m+1} . Jeigu $V_{m+1} = \emptyset$, matricos H sudarymą užbaikime.

Kontrolinė matrica

Gautos matricos H eilutės yra tiesiškai nepriklausomos, t. y. matricos rangas lygus r.

Kiek stulpelių parenkama į matricą? Kadangi

$$|V_1| = q^r$$
, $|V_m| = q^r - 1 - (m-1)(q-1)$, $m \ge 2$,

tai iš viso galima parinkti $n = (q^r - 1)/(q - 1)$ stulpelių.

Taigi matrica H yra kontrolinė tiesinio [n, n-r, 3] kodo matrica.

15 / 23

Hammingo kodai

Apibrėžimas. Tegu $r\geq 1,\; n=(q^r-1)/(q-1).$ Tiesinius [n,n-r,3] kodus iš \mathbb{F}_q abėcėlės žodžių vadinsime Hammingo kodais ir žymėsime $\mathbb{H}_q(r).$

Teorema. Hammingo kodai yra tobuli.

16 / 23

Dvejetainiai Hammingo kodai

Kodai $\mathbb{H}_2(r)$ yra geriausiai žinomi Hammingo kodai, $\mathbb{H}_2(3)$ – tai klasikinis mūsų nagrinėtas Hammingo kodas.

Kodų $\mathbb{H}_2(r)$ kontrolines matricas labai paprasta sudaryti.

Surašykime pirmųjų 2^r-1 natūraliųjų skaičių skleidinių dvejetainėje sistemoje elementus į matricos stulpelius. Gautoji $r \times (2^r-1)$ matrica yra kontrolinė kodo $\mathbb{H}_2(r)$ matrica.

Pavyzdžiui, kontrolinė kodo $\mathbb{H}_2(3)$ matrica yra

$$H = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Hammingo kodų dekodavimas

 $\mathbb{H}_2(r)$ kodo kontrolinė matrica H, sudaryta aprašytuoju būdu. Jeigu siųstas kodo žodis \mathbf{c} siuntimo metu buvo i-oje pozicijoje iškraipytas, tai gautasis žodis yra $\mathbf{x} = \mathbf{c} + \mathbf{e}_i$; čia \mathbf{e}_i yra žodis, kurio visos komponentės, išskyrus i-ąją, lygios nuliui. Raskime \mathbf{x} sindromą:

$$\mathbf{x}H^T = \mathbf{e}_i H^{\mathsf{T}}.$$

Sindromas $\mathbf{e}_i H^T$ sudarytas iš tų pačių simbolių kaip ir matricos H i-asis stulpelis.

18 / 23

Simplekso kodai

Kodai, dualūs Hammingo kodams vadinami, simplekso kodais. Pažymėkime $\mathbb{S}_q(r)=\mathbb{H}_2(r)^\perp$.

Teorema. Simplekso kodų $\mathbb{S}_q(r)$ parametrai yra

$$\left[\frac{q^r-1}{q-1}, r, q^{r-1}\right].$$

Atstumas tarp bet kurių kodo $\mathbb{S}_q(r)$ žodžių lygus q^{r-1} .

Jeigu atstumas tarp bet kurių dviejų tam tikros aibės taškų yra pastovus, tai tokia aibė geometrijoje vadinama simpleksu.

Tikimybės

Tegu p yra simbolio iškraipymo tikimybė simetriniame kanale

$$P(\mathbb{S}_2(r)$$
 žodžio iškraipymai bus nepastebėti) = $(2^r-1)p^{2^{r-1}}(1-p)^{2^{r-1}-1}.$

Kodo $\mathbb{H}_2(r)$ žodžio teisingo dekodavimo tikimybė:

$$P(\mathbb{H}_2(r) \text{ žodis bus dekoduotas teisingai}) = (1-p)^{2^r-1} + (2^r-1)p(1-p)^{2^r-2}.$$

20 / 23

Kodo žodžių svoriai

Hammingo kodo $\mathbb{H}_2(r)$ žodžių svorių skirstinys:

$$A_i = |\{\mathbf{c} \in \mathbb{H}_2(r) : w(\mathbf{c}) = i\}|, \quad i = 0, 1, \dots, n.$$

Žinome, kad $A_0=1, A_1=A_2=0$. Kitus dydžius galima skaičiuoti pasinaudojant rekurentiniu sąryšiu.

Teorema. Hammingo kodo $\mathbb{H}_2(r)$ dydžiai A_i tenkina rekurenčiąją lygybę

$$iA_i = C_n^{i-1} - A_{i-1} - (n-i+2)A_{i-2} \quad (i \ge 2, n = 2^r - 1).$$

Kodo žodžių svoriai

Apibrėžimas. Tegu $\mathbb C$ yra n ilgio abėcėlės $\mathbb F_q$ žodžių kodas, $A_i = |\{\mathbf c \in \mathbb C : w(\mathbf c) = i\}|$. Funkciją

$$w_{\mathbb{C}}(x,y) = \sum_{i=0}^{n} A_i x^{n-i} y^i$$

vadinsime kodo \mathbb{C} svorių funkcija, o skaičių A_i seką – kodo svorių skirstiniu. Svorių pasiskirstymo funkciją galima ir taip užrašyti:

$$w_{\mathbb{C}}(x,y) = \sum_{\mathbf{c} \in \mathbb{C}} x^{n-w(\mathbf{c})} y^{w(\mathbf{c})}.$$

22 / 23

MacWilliams tapatybė

Teorema. Tegu \mathbb{L} yra tiesinis abėcėlės \mathbb{F}_q žodžių kodas, \mathbb{L}^\perp jo dualus kodas. Tada abiejų kodų svorių pasiskirstymo funkcijas sieja tapatybė

$$w_{\mathbb{L}^{\perp}}(x,y) = \frac{1}{|\mathbb{L}|} w_{\mathbb{L}}(x + (q-1)y, x - y).$$

Jei q=2, tai tapatybė virsta tokia:

$$w_{\mathbb{L}^{\perp}}(x,y) = \frac{1}{|\mathbb{L}|} w_{\mathbf{L}}(x+y,x-y).$$