BROUILLON - A PROPOS DE LA RÉCURRENCE

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://qithub.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Fait 0.1. La preuve par récurrence s'exprime comme suit où $\mathcal{P}(k)$ désignera n'importe quelle proposition dépendant d'un paramètre naturel $k \in \mathbb{N}$.

On suppose avoir démontré les deux faits suivants.

- Initialisation : $\mathcal{P}(0)$ est vraie.
- Hérédité: $\forall k \in \mathbb{N}$, $[\mathcal{P}(k) \implies \mathcal{P}(k+1)]$.

Sous ces hypothèses, nous pouvons affirmer que $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie.

Démonstration. Par l'absurde, en considérant le plus petit naturel n_0 tel que $\mathcal{P}(n_0)$ soit fausse, et en notant que $n_0 > 0$.

Dès lors, le schéma de preuve suivant ne reprend pas le schéma précédent.

- Initialisation : $\mathcal{P}(0)$ est vraie.
- Hérédité bis : supposons qu'il existe $k \in \mathbb{N}$ tel que $\mathcal{P}(k)$ soit vraie, puis déduisons-en que $\mathcal{P}(k+1)$ est vraie.

L'hérédité bis est de la forme : $[\exists k \in \mathbb{N} \text{ tel que } \mathcal{P}(k) \text{ vraie}] \Longrightarrow [\mathcal{P}(k+1) \text{ vraie}]$. Ceci peut se réécrire : $\exists k \in \mathbb{N}$, $[\mathcal{P}(k) \text{ vraie}] \Longrightarrow [\mathcal{P}(k+1) \text{ vraie}]$. De façon équivalente, on a : $\exists k \in \mathbb{N}$, $[\mathcal{P}(k) \Longrightarrow \mathcal{P}(k+1)]$.

La deuxième proposition est clairement fausse contrairement à la suivante utilisable au lycée.

- Initialisation : $\mathcal{P}(0)$ est vraie.
- Hérédité bis OK: supposons avoir $\mathcal{P}(k)$ vraie pour $k \in \mathbb{N}$ quelconque, montrons alors que $\mathcal{P}(k+1)$ est vraie.

Date: 11 Nov. 2023.