

Iso-Seq Deep Dive

Elizabeth Tseng & Yuan Li & Armin Töpfer, May 2018

ISO-SEQ ANALYSIS WORKFLOW

ISO-SEQ: FULL-LENGTH TRANSCRIPT SEQUENCING

CURRENT: SMRT LINK 5.1

FUTURE: SMRT LINK V6.0

- Iso-Seq1 and Iso-Seq1 With Mapping will be obsolete in the future
- Iso-Seq2 and Iso-Seq2 with Mapping will be removed in SMRT Link v6.0

Support custom library prep and FL

SELECT YOUR ISO-SEQ WORKFLOW

Workflow	Output Results	Cases		
Iso-Seq Classify Only	Full Length reads (FL) FASTQ	Short amplicon (<1 kb)Non-Eukaryotic (Bacteria, Virus)		
Iso-Seq	Full Length High Quality Isoforms FASTQ	No or poor Reference GenomeEukaryotic		
Iso-Seq w/ Mapping	Full Length High Quality, Collapsed Isoforms FASTQ, GFF	Good Reference GenomeEukaryotic		

ISO-SEQ SUPPORTS MULTIPLEXING

Use Case: Same Species, Different Tissues/Timepoints

- Supported by SMRT Link
 - Use Iso-Seq analysis application in SMRT Link
 - Provide barcoded sequences as parameter to Classify step
- May use <u>community script</u> to get per barcode count information for each transcript after Iso-Seq is run

Iso-Seq3

Ultra Fast + High Performance + Scalable

ISO-SEQ3 OVERVIEW

Iso-Seq3 workflow is the same as Iso-Seq1, 2

CCS - same

ISO-SEQ3 OVERVIEW

Iso-Seq3 workflow is the same as Iso-Seq1, 2:

- CCS same
- Classify utilizing <u>demultiplex barcoding algorithm (LIMA)</u> with special `--isoseq` mode

ISO-SEQ3 CLASSIFY: LIBRARY PREP

Whole transcriptome

Whole transcriptome, barcoded

Targeted genes

5 / 1 5 7 5 / 1 5 7 5 / 1 5 7 5 / 1 5 PACBIO°

ISO-SEQ3 CLASSIFY: ULTRA FAST

Sample	CCS READS	Iso-Seq3 Classify	Iso-Seq1 & 2 Classify
Maize, 1 cell	52,445	6 sec	40 min
Beef, 1 cell	110,067	15 sec	2 hr
Human, 10 cell	2,973,387	3 min	>8 hr+

- Iso-Seq3 Classify used less than 100 MB memory
- Test used 1 node * 16 CPU

ISO-SEQ3 CLASSIFY: MORE ACCURATE

Full Length:

5' Primer ATGGG Transcript (AAAA)n 3' Primer

TSO Artifact:

5' Primer (TTTT)n Transcript (AAAA)n 3' Primer

ISO-SEQ3 CLASSIFY: DETECT ARTIFICIAL CONCATEMER

Full Length:

TSO Artifact:

5' Primer	(TTTT)n	Transcript	(AAAA)n	3' Primer
-----------	---------	------------	---------	-----------

Artificial Concatemers:

- Due to insufficient SMRT adapters, fusion of two or multiple cDNA reads
- All Iso-Seq workflows remove concatemers

LIBRARY ARTIFACTS

Type	Cause	ISO-SEQ1 & 2 can detect	ISO-SEQ3 can detect
TSO Artifacts	Template switching artifacts	no	yes
Artificial Concatemers	Insufficient SMRT adapter	yes	yes

ISO-SEQ3 WORKFLOW

Iso-Seq3 workflow is the same as Iso-Seq1 & 2

- CCS same
- Classify utilizing <u>demultiplex barcoding algorithm (LIMA)</u> with special `-isoseq` mode
- Cluster faster, better results

ISO-SEQ3 CLUSTER: ISOFORM DEFINITION

Two Full-Length reads are considered 'similar' if they are:

- (A) <100 bp difference in 5' start
- (B) <30 bp difference in 3' end
- (C) <10 bp in internal gap (exon)

ISO-SEQ3: POLISH ISOFORMS

The Polish step generates consensus sequences which are divided into:

- High Quality (HQ): accuracy ≥99% AND ≥2 FL read support
- Low Quality (LQ): accuracy <99% +

Recommend to only look at HQ isoforms

+ In Iso-Seq3, unclustered (singleton) FL reads are not output. Both HQ/LQ are supported by 2 or more FL reads and only differentiated by predicted accuracy.

ISO-SEQ3 IMPROVEMENT

- Written in C++, faster, less memory, better results

<u>IsoSeq3</u> GitHub stand alone binary for advanced users, NO official Tech Support Report bugs to GitHub Issues
Official release in SMRT Link v6.0

PUBLIC 1 CELL SEQUEL DATA

Download Link: https://downloads.pacbcloud.com/public/dataset/RC0_1cell_2017

Index of /public/dataset/RC0_1cell_2017

<u>Name</u>	Last modified	<u>Size</u>	Description
Parent Directory		_	
README.txt	2017-08-08 13:47	2.0K	
isoseq_flnc.fasta	2017-06-17 22:53	496M	
isoseq_nfl.fasta	2017-06-17 22:53	248M	
m54086 170204 081430.adapters.fasta	2017-02-04 11:42	58	
m54086_170204_081430.scraps.bam	2017-02-04 11:41	12G	
m54086_170204_081430.scraps.bam.pbi	2017-02-04 11:41	35M	
m54086 170204 081430.sts.xml	2017-02-04 11:41	96K	
m54086_170204_081430.subreads.bam	2017-02-04 11:39	8.8G	
m54086 170204 081430.subreads.bam.pbi	2017-02-04 11:39	23M	
m54086_170204_081430.subreadset.xml	2017-02-04 11:37	10K	

Iso-Seq3 Performance

ISO-SEQ3 IS FAST

SAMPLE	SMRT CELLS	FL READS	CLASSIFY	CLUSTER	POLISH
RC0	1	182,211	19 sec	8 min	2.5 hr
RC0	3	568,541	1 min	21 min	11 hr
RC0	6	1,327,856	2 min	1 hr	3 hr per node (24 nodes)
RC0	10	2,038,060	3 min	2 hr	3 hr per node (24 nodes)
Mouse Liver	2	259,081	13 sec	4 min	4 hr

- RC0 = Universal Human Reference RNA (human) + Lexogen SIRV spike-in controls
- Not including CCS and Mapping runtime
- Computing configuration: 16 CPU / node
- Tested using command line

HUMAN TRANSCRIPTS LENGTH DISTRIBUTION

DIFFERENCE BETWEEN HUMAN AND MOUSE LIVER TRANSCRIPTS

Mouse liver transcripts slightly shorter than RC0

USE SQANTI* TO EVALUATE ISO-SEQ3 RESULTS

ISO-SEQ3 VS REF ANNOTATION: MOUSE LIVER

MOUSE LIVER (MOUSE LIVER)

<u>SQANTI</u>: compare Iso-Seq results vs Gencode M16 Reference Gene Annotation

ISO-SEQ3 VS REF ANNOTATION: HUMAN

SQANTI: compare Iso-Seq results vs Gencode v27 Reference Gene Annotation

ISO-SEQ (1, 2, 3) GENERATE CONSISTENT RESULTS

RC0 3 Cells, Known Genes Only

RC0 3 Cells, Known Isoforms Only

^{*} Only report FSM gene and isoforms

HOW MUCH SEQUENCING IS NEEDED?

■Known Genes ■Novel Genes

FSM = Full Splice Match

ISM = Incomplete Splice Matches

NIC = Novel In Catalog

NNC = Novel Not in Catalog

CLASSIFIED TRANSCRIPTS

Iso-Seq Community Tools

COGENT: RECONSTRUCT CODING REGION

- Cogent
- No or poor reference genome
- Input: Iso-Seq high-quality isoforms
- Outpu: reconstructed coding regions
- Reconstructed coding regions can be used to:
 - Collapse isoforms
 - Infer gene count
 - Evaluate genome assemblies

CUPCAKE & TAMA: LIGHT-WEIGHT ANALYSIS SCRIPTS

Cupcake has many Iso-Seq downstream analysis scripts

- -Remove redundant isoforms
- Merge Iso-Seq runs from different batches
- -Junctions analysis
- -Estimate probe enrichment on-target rate
- -Plot rarefaction curve: infer sequencing coverage and gene count

TAMA, developed by PacBio user Richard Kuo

- -Remove redundant isoforms
- Merge Iso-Seq runs from different batches
- Predict ORF, and Nonsense Mediated Decay (NMD)

SQANTI & TAPPAS: QUALITY CONTROL, EVALUATION AND VISUALIZATION

Developed by Ana Conesa Lab (U of FL)

SQANTI

- Compare with annotation
- Detect and remove artifacts
- Combine with RNA-seq data
- Output PDF report

TAPPAS visualize data at isoform level

Google Group:

GitHub Repository and Tutorials:

github.com/PacificBiosciences/IsoSeq_SA3nUP/
(http://tinyurl.com/PBisoseq)

https://github.com/PacificBiosciences/IsoSeq3

www.pacb.com