Exercício 1 Nos itens a seguir, prove que os grafos G_1 e G_2 são isomorfos.

(a)

Qualquer grafo isomorfo ao G_1 e G_2 do item (c) é chamado de grafo de Petersen. O grafo de Petersen é muito usado como um exemplo; na verdade, D. A. Holton e J. Sheehan escreveram um livro inteiro sobre ele.

~)	fazondo	o dia	grama	
			3	
	ful	e_	a(e)	. Portanto, achoes
a	1	(a,by	2139	duas funções
7	3	(مرُهُ	ر <i>ا</i> ر فرح	fa nije Iivas
C	5	ر. {لارد}	13,55	f: V, -> V2
J	7	{c,d}	15,77	ų . Ε, → Ez
و	2,	1 d, e5	42,23	۵
f	4	١٠,+5	12,45	
٩	6	t tians	٧4,63.	
J		٠,٠		

6) F	nzendo	a vresve	diagrama:	
			ک	
×	fx1	<u> </u>	\(c)	Portonto, achoes
a	Q.	くるしり	12,45	duas funções
7	4	Lads	22.15	fa hielivas
C	5	16,05	24,55	f: V, -> 1/2
d	1	1 6 25	14,19	ų : Ε, → €z
е	3	t bie 9	4 4,35	J
	•	ردروع	7 5,34	
		, -		

c) Repetindo o diagrama:

×	f(x)	e_	<u> </u>	Portonte, achoes
a	9	(a,b5	{ 9 . 8 }	duas funções
7	8	raje 5	(9,7)	f. v> V2
C	4	ta, 15	19,105	f: V, -> V2
d	5	{5,c}	(245	ų · E, → Ez
ę	7	25,25	(8,15	۵
f	lΩ	2019	44,55	
٩	(ζ c, h5	7 4, 33	
<u>9</u> 5	3	(d, e5	15,79	
ì	6	i d. i 5	₹5,₽} ₹5,₽}	
	à	10.5	77,23	
U	l -	$\langle f_1 i \rangle$	¿ 6,69	
		(), ()	119,25	
		(0,19	12,69	
		(9)	و 1 کا کا	
		14172	{3,25.	
		~ 100		

Exercício 2 Prove que o grafo a seguir é um grafo de Petersen. Ou seja, prove que esse grafo é isomorfo aos grafos do Exercício 1(c).

Cono já provanos ge G. é isonate a Grape entais se provanos ge a grape é isonate a G1, por exemplo, já provane os ge o grafa en questais é de Petersen.

forzondo e diagrama:				Achaos um
	_			por (fig) de
	fu)		(a)	isomerfisme.
1	h	<u> </u>	(h ,j 3	
Ž		{	(h , c]	
3	۵	· ' '	{ h f 3	
4	3	12,33	· '	
5	d	` '	10,95	
	c	\\ \(\frac{2}{1} \)	γ ΄, e <u>}</u>	
_	C	₹	19:13	
7	1	\ <u>3</u> , 9 \\	19, b3	
-8	0	(4,65	\ i \ a \ \	
9	Ь	(4 7 }	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
10	e	45,63	1d, c3	
		⟨ ≤, 19}	(d, e)	
		46,93	10,63	
		{} }	16,23	
		(8,93	(à,b)	
		رُه ِ رُهِ	la,eJ	
		, ,	, <u> </u>	
				•

Exercício 3 Desenhe um grafo com 10 vértices. Rotule cada vértice com um dos 10 subconjuntos de dois elementos distintos de $\{1,2,3,4,5\}$. Coloque uma aresta entre dois vértices se seus rótulos (ou seja, seus subconjuntos) não têm elementos em comum. Prove que seu grafo é o grafo de Petersen, ou seja, prove que esse grafo é isomorfo aos grafos do Exercício 1(c)

· U= (1,2,3,4,5,6,7,8,9,10) • E= {{1,29,41,59,41,69,42,39,42,79, 43,49,{3,89,44,59,49,45,69, {6,89,46,69,42,9},47,69,48,69)

Mesma coisa da grestão anterior. Fazando:

×	f(x)
1	a
٤	Q Q
3	۵
4	ل ا
५ 5	ط
b	f
7	j
8	
9	5.
10	0/
	\bigcup

Exercício 4 Nos itens a seguir, prove que os grafos G_1 e G_2 $n\tilde{a}o$ $s\tilde{a}o$ isomorfos.

- a) Não é iseres fismo pois fece una das condições recessárias (isores fise =) condição = risores fise).

 como o nímero de réstices de Gire Giz é diferente, então não ná isoros fismo.
- b) sequência los grous los vérti us de Gn: {3,3,3,3,3,2,2,2} sequência los grous los vérti us de Gn: {4,3,3,2,2,2,2}

Como a seguência dos graves des grafes é diferente ontão isso fere a condição recessária de iso nor fismo. Logo, os grafos não são iso-certos.

Condições recessárias

- . Mesne número de vértices
- . Mesmo número de orestas
- · Mesma seguência de gravs.

Exercício 5 Nos itens a seguir, determine se os grafos G_1 e G_2 são isomorfos. Justifique suas respostas.

a) são isamorfos. Venos ape anhos tên a restas e quantida de de rértices e restas e têm a mesma seguência de grows

Tere a diagrama

X	f(x)
C.	1
ø	5
C	\$ Q Q 3
d	Q
O	3
+	7
6	
X	4
•	8 4 9 lo
Ġ	lo
χ (U
X Q	12

b) Não são isonerfes. Vejamos as seguências dos geous dos georfos: (4,4,4,4,3,3), (4,4,4,3,3). Contudo, os vértices de geor 3 são vizinhos em um georfe e não são vizinhos em outro.
vejames as seguências dos geous dos
asafos: (4,4,4,4,3,3) (4,4,4,4,3,3) contudo
os vértices de açon 3 são vizinhos em
un arafe e não são vitintos en outro.
3 '

Definição. Um homomorfismo de um grafo G_1 para um grafo G_2 é uma função f do

Exercício 7 Mostre que o único homomorfismo do grafo a seguir a ele mesmo é a função identidade.

Para termos nonco nor fisnes, devenes ser capates de fater eliminaçãos en série. Contudo, o grafo não possui, vértices de arou 2 postante, o único vonconorfisme do grafo é ele mesmo.