Optimization for Training II

Second-Order Methods Training algorithm

OPTIMIZATION METHODS

Topics: Types of optimization methods.

- Practical optimization methods breakdown into two categories:
 - I. First-order methods
 - 2. Second-order methods

$$\hat{J}(\boldsymbol{\theta}) = J(\boldsymbol{a}) + \nabla_{\boldsymbol{\theta}} J(\boldsymbol{a})(\boldsymbol{\theta} - \boldsymbol{a}) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{a})^{\top} \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{a})$$

• Today we will focus on first-order methods

OPTIMIZATION METHODS

Topics: Types of optimization methods.

- Second order methods we will consider:
 - I. Newton's method
 - 2. Conjugate gradient method
 - 3. BFGS (L-BFGS)
 - 4. Hessian-Free optimization

• Considering the quadratic approximation to the loss function:

$$\hat{J}(\boldsymbol{\theta}) = J(\boldsymbol{a}) + \nabla_{\boldsymbol{\theta}} J(\boldsymbol{a})(\boldsymbol{\theta} - \boldsymbol{a}) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{a})^{\top} \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{a})$$

$$\nabla_{\boldsymbol{\theta}} \hat{J}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} J(\boldsymbol{a}) + \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{a})$$

$$\nabla_{\boldsymbol{\theta}} \hat{J}(\boldsymbol{\theta}) = 0 \Rightarrow \boldsymbol{\theta}^* = \boldsymbol{a} - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{a})$$

Newton's method update

How to think about Newton's method

Newton's method as an algorithm:

```
Algorithm 1 Newton update at time t
Require: Global learning rate \eta.
Require: Initial parameter \theta_0
  for t = 1 to T \% (T = \text{total number of updates}) do
     Compute Hessian inverse: H_t^{-1}
     Compute gradien: g_t (via batch backpropagation)
     Compute update: \Delta \boldsymbol{\theta}_t = \boldsymbol{H}_t^{-1} \boldsymbol{g}_t
     Apply update: \theta_{t+1} = \theta_t + \Delta \theta_t
  end for
```

- Problems with Newton's method:
 - Computation of $m{H}^{-1}$ is $O(n^3)$ (where n is the number of parameters)
 - Memory requirement is $O(n^2)$
- These considerations make Newton's method impractical for the vast majority of applications of deep learning
 - Our models are typically far too large.

- Can we recover some of the advantages of Newton's method without the extreme computational and memory requirements?
- · Surprisingly, yes! One way is the conjugate gradient method.
- Basic Idea: Problem with gradient descent is the direction it picks, undoing progress of previous updates.
 - Solution: adjust the direction to be conjugate to the previous updates (doesn't undo progress).

• The direction of the update is given by $\rho_t = -\nabla_{\theta} J(\theta_t) + \beta_t \rho_{t-1}$

• where
$$\beta_t = \frac{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)^\top \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)}{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})^\top \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})}$$
 (Fletcher - Reeves)

or
$$\beta_t = \frac{(\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t) - \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1}))^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_t)}{\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_{t-1})}$$
 (Polak - Ribière)

• β_t is designed to make ho_t and ho_{t-1} conjugate:

$$\boldsymbol{\rho}_t^{\top} H \boldsymbol{\rho}_{t-1} = 0$$

- Properties of Conjugate Gradient methods:
 - For a quadratic bowl, it's an O(n) computation
 - No explicit use of the Hessian.
 - Uses line search.
 - Designed for batch learning.

• Conjugate gradient algorithm:

Algorithm 1 Conjugate gradient method

Require: Initial parameters θ_0

Initialize $\rho_0 = \mathbf{0}$

while stopping criterion not met do

Compute gradient: $\mathbf{g}_t = \nabla J(\boldsymbol{\theta}_t)$ (via batch backpropagation)

Compute $\beta_t = \frac{(\boldsymbol{g}_t - \boldsymbol{g}_{t-1})^{\top} \boldsymbol{g}_t}{\boldsymbol{g}_{t-1}^{\top} \boldsymbol{g}_{t-1}}$ (Polak - Ribière)

Compute search direction: $\rho_t = -g_t + \beta_t \rho_{t-1}$

Perform line search to find: $\eta^* = \operatorname{argmin}_{\eta} J(\boldsymbol{\theta}_t + \eta \boldsymbol{\rho}_t)$

Apply update: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta^* \boldsymbol{\rho}_t$

end while

- Comparing CG to Gradient Descent (Figure from wikipedia).
- Green: Gradient Descent
- Red: Conjugate Gradient
- For N-dimensional quadratic loss, CG finds the solution in N steps.

NONLINEAR CONJUGATE GRADIENT

- In general, since the loss is not quadratic, we will not necessarily reach the minimum with N steps (in N-dimensional parameter space).
- This isn't usually a problem since often N is huge and we don't want to take that many steps anyway.
- Does CG still work? Actually yes, reasonably well.
- But it is still useful to reset the conjugate directions once in a while to shift CG to be closer to gradient descent this seems to work in practice.

BFGS - A QUASI-NEWTON METHOD

- Basic idea: Let's try to approximate the inverse Hessian through incremental low-rank updates.
- If the Hessian changes slowly (relative to our progress in parameter space), then our approximation will be good and we should be able to have close to behaviour of Newton's method.
- Most popular (successful) of these approaches is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

BFGS - A QUASI-NEWTON METHOD

• The BFGS algorithm:

Algorithm 1 BFGS method

Require: Initial parameters θ_0

Initialize inverse Hessian $M_0 = I$

while stopping criterion not met do

Compute gradient: $\mathbf{g}_t = \nabla J(\boldsymbol{\theta}_t)$ (via batch backpropagation)

Compute $\phi = g_t - g_{t-1}$, $\Delta = \theta_t - \theta_{t-1}$

Approx
$$\boldsymbol{H}^{-1}$$
: $\boldsymbol{M}_t = \boldsymbol{M}_{t-1} + \left(1 + \frac{\boldsymbol{\phi}^{\top} \boldsymbol{M}_{t-1} \boldsymbol{\phi}}{\boldsymbol{\Delta}^{\top} \boldsymbol{\phi}}\right) \frac{\boldsymbol{\phi}^{\top} \boldsymbol{\phi}}{\boldsymbol{\Delta}^{\top} \boldsymbol{\phi}} - \left(\frac{\boldsymbol{\Delta} \boldsymbol{\phi}^{\top} \boldsymbol{M}_{t-1} + \boldsymbol{M}_{t-1} \boldsymbol{\phi} \boldsymbol{\Delta}^{\top}}{\boldsymbol{\Delta}^{\top} \boldsymbol{\phi}}\right)$

Compute search direction: $\rho_t = M_t g_t$

Perform line search to find: $\eta^* = \operatorname{argmin}_{\eta} J(\boldsymbol{\theta}_t + \eta \boldsymbol{\rho}_t)$

Apply update: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta^* \boldsymbol{\rho}_t$

end while

BFGS - A QUASI-NEWTON METHOD

- Disadvantages of the BFGS method:
 - \blacktriangleright Computation still $O(n^2)$
 - Memory requirements also $O(n^2)$
- Question: Can we do better?
 - Answer: Yes! (but there may be a price)

L-BFGS - A LIMITED MEMORY VERSION

- Basic Idea: don't compute or store inverse Hessian directly. Use the history of gradients and updates as an implicit low-rank approximation.
 - Can represent an approximation to the Hessian with the latest set of updates and gradients:

$$\phi_{\tau} = g_{\tau} - g_{\tau-1}, \, \delta_{\tau} = \theta_{\tau} - \theta_{\tau-1} \text{ for } \tau \in \{t, t-1, t-2, \dots, t-k\}$$

- \blacktriangleright This maintains a rank k approximation to the Hessian.
- The algorithm is not overly complicated, but offers relatively little insight over BFGS and is excluded on these grounds.

HESSIAN FREE OPTIMIZATION

Basic Idea:

- I. Approximate the loss function with a Gauss-Newton quadratic bowl.
- 2. Use a few steps of CG to approximately minimize this approximate loss.
- 3. Jump (some part of the distance) to the minimum of this approximate loss.
- Iterate steps I-3 until converged.

SADDLE-POINT FEATURE

