

REPORT DOCUMENTATION PAGE

AFRL-SR-BL-TR-00-

is,
his
on

Public reporting burden for this collection of information is estimated to average 1 hour per response, including gathering and maintaining the data needed, and completing and reviewing the collection of information. Send collection of information, including suggestions for reducing this burden, to Washington Headquarters Services Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 0704-0188.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPOR
----------------------------------	----------------	----------

1 April 1996 - 31 March 1999

0808

5. FUNDING NUMBERS

F49620-96-1-0127

4. TITLE AND SUBTITLE

Mathematical Problems in Imaging, Statistical Mechanics and Related Topics

6. AUTHOR(S)

F. Alberto Grunbaum

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California, Berkeley
 Department of Mathematics
 Center for Pure & Applied Math
 Berkeley, CA 94720

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR
 801 N. Randolph Street, Room 732
 Arlington, VA 22203-1977

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

F49620-96-1-0127

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

During the duration of this grant I did carry out work on a few loosely related areas, including diffuse tomography, the phase problem in X-ray crystallography, some relations between the Darboux process applied to orthogonal polynomials and the electrostatic interpretation of their zeros, and a number of specific problems related to the bispectral problem. This last one is an area that I initiated about a decade ago starting from a concrete problem in medical imaging. This field has made contact with several unrelated fields in mathematics, ranging from wave propagation, cumulative rings of differential operators, etc. I expect that some of these topics will continue to be of interest to the Air Force, although some of the efforts may have to be redirected. As an example I notice that my initial work on Diffuse Tomography could become of some relevance to work being done at the Air Force Research Laboratory at Kirkland AFB, in the Advanced Optics and Imaging Division by Dr. Charles Matson.

20001227 075

14. SUBJECT TERMS

15. NUMBER OF PAGES

4

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

18. SECURITY CLASSIFICATION OF THIS PAGE

19. SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

Final report AFOSR Contract FDF 49620-96-1-0127

"Mathematical Problems in Imaging, Statistical Mechanics and Related Topics" for the period 4/1/96-6/30/99.

PI F. Alberto Grunbaum

During the duration of this grant I did carry out work on a few loosely related areas, including diffuse tomography, the phase problem in X-ray crystallography, some relations between the Darboux process applied to orthogonal polynomials and the electrostatic interpretation of their zeros, and a number of specific problems related to the bispectral problem. This last one is an area that I initiated about a decade ago starting from a concrete problem in medical imaging. This field has made contact with several unrelated fields in mathematics, ranging from wave propagation, commutative rings of differential operators, etc.

I expect that some of these topics will continue to be of interest to the Air Force, although some of the efforts may have to be redirected. As an example I notice that my initial work on Diffuse Tomography could become of some relevance to work being done at the Air Force Research Laboratory at Kirkland AFB, in the Advanced Optics and Imaging Division by Dr. Charles Matson.

My work continues to be centered at the crossroads between "inverse problems" in areas of biomedical interest including X-ray, Magnetic Resonance and Optical tomography on the one hand and a number of mathematical developments in areas like mathematical physics and signal processing. My research program is a two-pronged approach aimed at identifying important areas in "real-life" imaging that are ripe for improved mathematical treatment. In certain cases this has given rise to new mathematical developments that should eventually find useful applications. This work has proved useful in other inverse problems arising for instance in radar detection, noninvasive evaluation, and could be useful in the general problem of seeing through turbid media.

I give below a list of the most recent material that has resulted from this contract.

List of submitted publications

F.A.Grunbaum, I.Pacharoni and J.A.Tirao
Matrix valued spherical
functions associated to the complex projective plane.
Submitted for publication

F. A. Grunbaum
Discrete models of the harmonic oscillator and a discrete analog
of Gauss' hypergeometric equation
Submitted for publication

F. A. Grunbaum
Electrostatic interpretation for the zeros of certain polynomials
and the Darboux Process.
Submitted for publication

List of recent publications

F. A. Grunbaum

Variations on a theme of Heine and Stieltjes: an electrostatic interpretation
of the zeros of certain polynomials, J. of Computational and Applied Math. 99
(1998) 189-194

F.A.Grunbaum and L.Haine

Associated Polynomials, Spectral matrices
and the Bispectral problem.
Methods and applications of Analysis, vol 6 No.6 (2000), pp 209-224

F.A. Grunbaum and L. Haine

The Wilson bispectral involution: some elementary
examples, in P. Clarkson and F. Nijhoff (editors) Symmetries and Integrability
of Difference Equations (Canterbury 1996) London Math. Soc. Lecture Note Series
255, Cambridge U. Press 1999 353-369

F.A.Grunbaum, L.Haine and E.Horozov

Some functions that generalize
the Krall Laguerre polynomials.
J. Computational and Applied Mathematics 106 (1999) 271-297

F. A. Grunbaum and L. Haine

On a q-analog of the string equation
and a generalization of the classical
orthogonal polynomials, in L. Vinet and J.F. van Diejen (editors) Algebraic
Methods and q-Special functions, CRM Proc. Lecture Notes, vol 22, American
Math Soc., Providence, 1999, 171-181

Some papers by other authors that are related to my recent work

L.Haine and P.Iliev

The bispectral property of a q-deformation
of the Schur polynomials and the q-KdV hierarchy.
J. Phys A : Math. Gen. 30 (1997) 7217-7227

L. Haine and P. Iliev

Commutative rings of difference
operators of an adelic flag
manifold, to appear in IMRN (International Math Research Notes)

G. Wilson

Collisions of Calogero-Moser Particles and an Adelic Grassmannian,
with an appendix by I.G. Macdonald) Inventiones Math. (1998) vol 133 1-41.

G. Wilson

Bispectral Symmetry, the Weyl algebra, and Differential Operators
on Curves, Proc. of the Steklov Inst. of Mathematics vol 225, (1999) 141-147.

Y.Berest and G.Wilson

Classification of Rings of Differential
Operators on Affine Curves, IMRN (1999) No.2 105-109

CENTER FOR PURE AND APPLIED MATHEMATICS
UNIVERSITY OF CALIFORNIA AT BERKELEY
BERKELEY, CA 94720

FAX # (510) 642-6726

FACSIMILE TRANSMISSION

TO: Mary Baugh
LOCATION: SPO

TELEPHONE (FAX): 2-8236

FROM: Bernie Gangale

LOCATION:

COMMENTS: Here's Alberto Grunbaum's
Air Force final report for
49620-96-1-0127

TODAY'S DATE: 3/24/00 TIME: 4:20
NUMBER OF PAGES 3 INCLUDING COVER.

From JEFFREA@ONR.NAVY.MIL Mon Jan 24 07:59 PST 2000
Received: from exchangel.onr.navy.mil ([131.250.16.87])
by math.berkeley.edu (8.9.3/8.9.3) with ESMTP id HAA24776
for <grunbaum@math.berkeley.edu>; Mon, 24 Jan 2000 07:59:55 -0800 (PST)
Received: by exchangel.onr.navy.mil with Internet Mail Service (5.5.2650.10)
id <C9CAL8W>; Mon, 24 Jan 2000 10:59:21 -0500
Message-ID: <F8716F1E0ABAD2118ABF0008C7B162720E117E@seattle.onr.navy.mil>
From: "Jeffres, Alice M." <JEFFREA@ONR.NAVY.MIL>
To: grunbaum@math.berkeley.edu
Subject: F49620-96-1-0127 Final Technical Report
Date: Mon, 24 Jan 2000 10:58:56 -0500
Return-Receipt-To: "Jeffres, Alice M." <JEFFREA@ONR.NAVY.MIL>
X-Mailer: Internet Mail Service (5.5.2650.10)
Content-Type: text
Content-Length: 626
Status: RO

Dr. Grunbaum,

Subject grant has expired. ONR/Seattle has initiated closing procedures.
Please provide your final technical report so my office can complete the
closing process.

Final Technical - The technical report should be submitted to the
appropriate technical or program officer at AFOSR. Submit ONLY transmittal
letter, not the whole final technical report to ONR.

Your cooperation in the timely submission of this report will be
appreciated. If you have any questions please contact me.

Thanks,
Alice

Alice M. Jeffres
Grant Technician
ONR Seattle
(206) 526-3169
Fax (206) 526-3210
e-mail: jeffrea@onr.navy.mil