PCT

WORLD INTELLECTUAL PROPERTY ORGANIZAT International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classificati n ⁵:

A61K 7/06

A1

(11) International Publication Number: WO 95/00105

(43) International Publication Date: 5 January 1995 (05.01.95)

US

(21) International Applicati n Number: PCT/US94/06555

(22) International Filing Date: 13 June 1994 (13.06.94)

081,897 25 June 1993 (25.06.93)

(71) Applicant: EASTMAN CHEMICAL COMPANY [US/US]; 100 North Eastman Road, Kingsport, TN 37660 (US).

(72) Inventors: ADAMS, Linda, Jane; 1816 Hermitage Drive, Kingsport, TN 37664 (US). GARBER, Dennis, Michael; 769 Bayless Road, Jonesborough, TN 37659 (US).
PORTER, Sandra, Nicholson; 3836 Alderwood Drive, Kingsport, TN 37664 (US). SINGLETON, Andy, Hugh; Apartment 4, 453 Eastley Court, Kingsport, TN 37660 (US). UNDERWOOD, Vicki, Lynn; 2416 East Stone Drive #800A, Kingsport, TN 37660 (US).

(74) Agent: THALLEMER, John, D.; P.O. Box 511, Kingsport, TN 37662-5075 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SF).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HAIR SPRAY FORMULATIONS HAVING INCREASED CLARITY

(57) Abstract

(30) Priority Data:

This invention relates to hair spray formulations based on (1) a sulfonate-containing, water-dispersible or water-dissipatible, linear polyester having a glass transition temperature of 40 °C to 60 °C. In addition, the formulations contain water or a water/alcohol mixture as the liquid vehicle and optionally a propellant. The diol component of the sulfopolyester contains 10 to 30 mole percent 1,4-cyclohexanedimethanol. The sulfopolyester contains 18.5 to 22.5 mole percent sulfomonomer, and the sulfopolyester has a glass transition temperature (Tg) of 40 °C to 60 °C. The hair spray formulations may be applied in pump or aerosol form.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		_		

HAIR SPRAY FORMULATIONS HAVING INCREASED CLARITY

FIELD OF THE INVENTION

5 This invention relates to hair spray formulations based on (1) a sulfonate-containing, water-dispersible or water-dissipatible, linear polyester having a glass transition temperature of 40°C. to 60°C., In addition, the formulations contain water or a water/alcohol mixture as the liquid vehicle and optionally a 10 propellant. The diol component of the sulfopolyester contains 10 to 30 mole percent 1,4-cyclohexanedimethanol. The sulfopolyester contains 18.5 to 22.5 mole percent sulfomonomer, and the sulfopolyester has a glass transition temperature (Tg) 15 of 40°C. to 60°C. The hair spray formulations may be applied in pump or aerosol form.

BACKGROUND OF THE INVENTION

20 The use of water-dispersible linear sulfopolyesters in hair spray formulations has been disclosed in U.S. Pat. Nos. 4,300,580 and 5,158,762. U.S. Pat. No. 4,300,580, issued Nov. 17, 1981, and assigned to Eastman Kodak Company, discloses hair grooming formulations containing a sulfopolyester comprising a dicarboxylic 25 acid, a diol wherein at least 20 mole percent is a poly(ethylene glycol), and 8 to 45 mole percent of a dicarboxylic acid sulfomonomer. U.S. Pat. No. 5,158,762, issued Oct. 27, 1992, and assigned to ISP Investments Inc., discloses hair spray compositions 30 containing a blend of two polymers. One of the polymers is a sulfopolyester comprising a dicarboxylic acid, a diol wherein at least 40 mole percent is 1,4-cyclohexanedimethanol, and 16 to 25 mole percent of a sulfomonomer. U.S. Pat. No. 5,158,762 states that 35 useful sulfopolyesters are AQ 38 and AQ 55 which are

available from Eastman Chemical Company. It is interesting to note that while the patent discloses a range of sulfomonomer of 16 to 25 mole percent, AQ 38 has 11 mole percent sulfomonomer. Moreover, AQ 38 has 22 mole percent of 1,4-cyclohexanedimethanol which is below the 40 mole percent requirement set forth in U.S. Pat. No. 5,158,762. In contrast, neither AQ 38 nor AQ 55 are operable in the present invention. The other polymer in U.S. Pat. No. 5,158,762 is a water soluble polymer which includes polyvinyl pyrrolidone (PVP) and polyvinyl acetate.

Such hair grooming compositions generally perform effectively in providing most of the properties considered desirable for hair preparation, including fine spray patterns, prolonged curl retention under humid conditions, good holding power and resistance to build—up. However, these and other hair spray formulations available in the art are generally cloudy and contain precipitate that clogs the exit ports of aerosol cans or pump containers.

The present inventors have unexpectedly discovered four critical ranges that are necessary to produce clear hair spray compositions. The diol component of the sulfopolyester must contain 10 to 30 mole percent 1,4-cyclohexanedimethanol; the sulfopolyester must contain 18.5 to 22.5 mole percent sulfomonomer; the sulfopolyester must have a glass transition temperature (Tg) of 40°C. to 60°C.; and the sulfopolyester must have an inherent viscosity (I.V.) of 0.2 to 0.6 dl/g. The clear hair spray compositions of the present invention exhibit less than 30 NTU's which is a measure of turbidity. In the cosmetic field greater than 30 NTU's is characteristic of a cloudy mixture that is visible to the eye.

5

10

15

20

25

SUMMARY OF THE INVENTION

Accordingly, it is one object of the present invention to provide a clear hair spray formulation.

It is another object of the invention to provide a hair spray formulation which is not tacky, has a fast drying rate, acceptable body, consistency and exhibits improved curl retention.

Another object of the invention is to provide a hair spray formulation having excellent storage stability and which does not clog the exit port of an aerosol or pump container.

These and other objects are accomplished herein by a clear hair spray composition comprising:

- (1) a sulfopolyester having a Tg of 40°C. to 60°C. consisting essentially of repeat units from
 - (a) a dicarboxylic acid selected from the group consisting of aromatic dicarboxylic acids, saturated aliphatic dicarboxylic acids, cycloaliphatic dicarboxylic acids, and combinations thereof;
 - (b) a diol provided 10 to 30 mole percent of the diol is 1,4-cyclohexanedimethanol; and
 - (c) a difunctional sulfomonomer containing at least one sulfonate group attached to an aromatic nucleus wherein the functional groups are hydroxy, carboxy or amino, provided the difunctional sulfomonomer is present in an amount from 18.5 to 22.5 mole percent based on 100 mole percent dicarboxylic acid and 100 mole percent diol, provided that the hair spray composition contains 1 to 20 weight percent of the sulfopolyester; and
 - (2) a liquid vehicle selected from the group consisting of water and a water/alcohol mixture.

20

5

10

15

25

30

DESCRIPTION OF THE INVENTION

The hair sprays of this invention contain a sulfopolyester, component (1), in an amount of about 1 to about 20 weight percent, preferably less than 10 weight percent, based on the total weight of the hair spray formulation. The sulfopolyesters have an inherent viscosity (I.V.) of 0.2 to 0.6 dl/g as measured at 23°C. using 0.50 grams of polymer per 100 ml of a solvent consisting of 60% by weight phenol and 40% by weight tetrachloroethane. The sulfopolyester has a glass transition temperature of 40°C. to 60°C. and contains repeat units from a dicarboxylic acid, a diol and a difunctional sulfomonomer.

5

10

30

35

Dicarboxylic acids useful in the present invention include aromatic dicarboxylic acids preferably having 8 15 to 14 carbon atoms, saturated aliphatic dicarboxylic acids preferably having 4 to 12 carbon atoms, and cycloaliphatic dicarboxylic acids preferably having 8 to 12 carbon atoms. Specific examples of dicarboxylic acids are: terephthalic acid, phthalic acid, isophthalic 20 acid, naphthalene-2,6-dicarboxylic acid. cyclohexanedicarboxylic acid, cyclohexanediacetic acid, diphenyl-4,4'-dicarboxylic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and the 25 like. The sulfopolyester may be prepared from two or more of the above dicarboxylic acids.

It should be understood that use of the corresponding acid anhydrides, esters, and acid chlorides of these acids is included in the term "dicarboxylic acid".

The diol component of the polyester contains 10 to 30 mole percent of 1,4-cyclohexanedimethanol. In addition to 1,4-cyclohexanedimethanol, suitable diols include cycloaliphatic diols preferably having 6 to 20 carbon atoms or aliphatic diols preferably having 3 to

20 carbon atoms. Examples of such diols to be used with 1,4-cyclohexanedimethanol are: ethylene glycol, diethylene glycol, triethylene glycol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, 3-methylpentanediol-(2,4), 2-methylpentanediol-(1,4), 2.2.4-trimethylpentane-diol-(1,3).

2,2,4-trimethylpentane-diol-(1,3),
2-ethylhexanediol-(1,3), 2,2-diethylpropane-diol-(1,3),
hexanediol-(1,3), 1,4-di-(hydroxyethoxy)-benzene,
2,2-bis-(4-hydroxycyclohexyl)-propane,

5

30

2,4-dihydroxy-1,1,3,3-tetramethyl-cyclobutane,
2,2-bis-(3-hydroxyethoxyphenyl)-propane, and
2,2-bis-(4-hydroxypropoxyphenyl)-propane. The polyester
may be prepared from two or more of the above diols.

The difunctional sulfomonomer component of the polyester may be a dicarboxylic acid or an ester thereof 15 containing a sulfonate group (-SO3-), a diol containing a sulfonate group, or a hydroxy acid containing a sulfonate group. The cation of the sulfonate salt may be Na+, Li+, K+, NH_4+ , and 20 substituted ammonium. The term "substituted ammonium" refers to ammonium substituted with an alkyl or hydroxy alkyl radical having 1 to 4 carbon atoms. difunctional sulfomonomer contains at least one sulfonate group attached to an aromatic nucleus wherein the functional groups are hydroxy, carboxy or amino. 25

Advantageous difunctional sulfomonomer components are those wherein the sulfonate salt group is attached to an aromatic acid nucleus such as benzene, naphthalene, diphenyl, oxydiphenyl, sulfonyldiphenyl or methylenediphenyl nucleus. Preferred results are obtained through the use of sulfophthalic acid, sulfoterephthalic acid, sulfoisophthalic acid, 4-sulfonaphthalene-2,7- dicarboxylic acid, and their esters. The sulfomonomer is present in an amount from

18.5 to 22.5 mole percent, based on 100 mole percent dicarboxylic acid and 100 mole percent diol.

5

10

15

20

25

30

35

It is important to note that all four of the critical ranges must be satisfied in order to attain a clear hair spray composition. The diol component of the sulfopolyester must contain 10 to 30 mole percent 1,4-cyclohexanedimethanol; the sulfopolyester must contain 18.5 to 22.5 mole percent sulfomonomer; the sulfopolyester must have a glass transition temperature of 40°C. to 60°C.; and the sulfopolyester must have an inherent viscosity of 0.2 to 0.6 dl/g. The hair sprays of the present invention exhibit less than 30 NTU's which is a measure of the turbidity of a mixture. In the cosmetic field greater than 30 NTU's is characteristic of a cloudy mixture that is visible to the eye.

Component (2) of the hair spray is a liquid vehicle. The liquid vehicle of the formulations may be water or a water/alcohol mixture. Distilled or deionized water are the preferred sources of water since tap water generally contains ions which may precipitate the sulfopolyester, component (1). The alcohol should have two to four carbon atoms. Specific alcohols include ethanol, isopropanol, and t-butanol.

The liquid vehicle in aerosol hair sprays is preferably water. However, a water/alcohol mixture may be employed as long as the alcohol is present in an amount less than about 55 weight percent. In such aerosol hair spray formulations where an alcohol/water mixture is employed, preferably 35 to 45 weight percent of the mixture is alcohol. In pump formulations, the liquid vehicle is preferably a water/alcohol mixture wherein the alcohol is present in an amount less than about 55 weight percent to satisfy current environmental standards. The preferred alcohol is ethanol. In a pump

hair spray formulation containing only a sulfopolyester, component (1) and a liquid vehicle, component (2), the liquid vehicle will be present in an amount of about 80 to about 99 weight percent of the hair spray. However, if additional ingredients are used in the hair spray formulation, the amount of the liquid vehicle will be proportionally reduced. For example, in the case of an aerosol hair spray containing a water soluble polymer and a propellant, the liquid vehicle is preferably present in an amount of 55 to 70 weight percent, based on the total formulation.

5

10

15

65

The hair spray compositions may optionally contain a water—soluble polymer, component (3), which is prepared from monomers having one or more of the following structures:

In the above formulas, R^1 is a C_1-C_5 aliphatic group, preferably a C_1-C_3 alkyl group, or is of the structure

 R^8 and R^9 are, independently, a C_1-C_5 alkyl group. R^2 is a C_1-C_{10} aliphatic group, preferably a C_1-C_3 alkyl

group. R^3 is a C_1 - C_{16} aliphatic group, preferably a C_8 alkyl group, R^4 is H or a C_1 - C_8 aliphatic group, preferably H or a C_8 group. R^5 is a C_1 - C_8 aliphatic group, preferably C_9 alkyl group, R^6 is hydrogen or methyl, and R^7 is hydrogen or an alkyl group having 1 to 4 carbon atoms.

5

10

15

20

Accordingly, suitable water soluble polymers include polyvinyl pyrrolidone (PVP), polyvinyl caprolactam, polyvinyl acetate (VA), polyacrylates and methacrylates, and copolymers and terpolymers of such monomers, such as VP/VA, VA/crotonic acid/vinyl neodecanoate, VA/crotonic acid, or octylacrylamide/acrylates/butyl aminoethyl methacrylate, VA, mono-n-butyl maleate and isobornyl acrylate; and VP/VC/dimethylaminoethyl methacrylate.

A preferred vinyl polymer or copolymer contains at least 50 mole percent of the residues of n-vinyl lactam monomer such as N-vinylpyrrolidinone. A preferred terpolymer is derived from the polymerization of vinyl caprolactam, vinylpyrrolidone and an ammonium derivative monomer having from 6-12 carbon atoms selected from dialkyl dialkenyl ammonium halide and a dialkylamino alkyl acrylate or methacrylate.

The water-soluble polymers may be prepared according to known procedures wherein, for example, a 25 N-vinyl lactam is polymerized, optionally in the presence of one or more other vinyl monomers such as those described above. The N-vinylpyrrolidinone vinyl acetate copolymers supplied by BASF under the trademark LUVISKOL VA are typical of the water-soluble polymers 30 which may be used in the hair spray formulations of the present invention. The preferred water-soluble polymers comprise homopolymers of N-vinyl-2-pyrrolidinone and copolymers of N-vinyl-2-pyrrolidinone and up to 50 mole percent vinyl acetate having weight average molecular 35

weights in the range of about 1000 to 100,000. The water—soluble polymers are generally present in an amount of about 1 to about 7 weight percent, based on the total weight of the hair spray formulation.

5

10

15

20

25

30

35

For aerosol hair spray formulations, a propellant, component (4), is necessary. The propellant is selected from the group consisting of a $C_1 - C_4$ aliphatic hydrocarbons and dimethyl ether. The aliphatic hydrocarbons may be branched or straight chain and include methane, ethane, propane, n-butane, isobutane, or mixtures thereof. A preferred aliphatic hydrocarbon propellant is a mixture containing about 83 percent isobutane and about 17 percent propane. The propellant is present in an amount of about 3 to about 40 weight percent of the total aerosol hair spray formulation. the case where a $C_1 - C_4$ aliphatic hydrocarbon is used as the propellant, generally about 3 to about 10 weight percent, preferably 4 to 7 weight percent, is employed. In the case where dimethyl ether is used as the propellant, generally, about 30 to about 40 weight percent, preferably, 30 to 35 weight percent, is employed.

Other conventional additives such as preservatives, fragrances, antifoaming agents, hair conditioners, plasticizers, etc. may be added in such quantities as desired, up to about 5.0% by weight of the total formulation. Although the film-forming formulations described herein are particularly useful as aerosol hair sprays for the grooming of hair, it is possible that the formulations, with or without modification, may be used in other types of personal care products.

Th materials and testing procedures used for the results shown herein are as follows:

DYMEL A (CTFA Adopted Name: Dimethyl Ether) availabl from DuPont, is a dimethyl ether and is used

エ しょ/ ロロノマ/ リリンン

as a propellant.

LUVISKOL VA 73W PVP/VA (CTFA Adopted Name: PVP/VA Copolymer), available from BASF, is a water soluble vinyl copolymer of 70 mole percent of N-vinyl-2-pyrrolidinone and 30 mole percent of vinyl acetate (50% solids), and is used as a fixative.

GLYDANT (CTFA Adopted Name: DMDM Hydantoin) available from Lonza, Inc. is 1-(hydroxymethyl)-5,5-dimethyl hydantoin, and is used as a antimicrobial.

SDA-40C is ethanol that has been diluted with ethyl acetate, and is available from Eastman Chemical Company.

Glass transition temperature was determined using a differential scanning calorimeter (DSC).

Inherent viscosity (I.V.) was measured at 23°C. using 0.50 grams of polymer per 100 ml of a solvent consisting of 60% by weight phenol and 40% by weight tetrachloroethane.

Turbidity was measured in NTU's using a model DRT-100B Turbidimeter.

The invention will be further illustrated by a consideration of the following examples, which are intended to be exemplary of the invention. All parts and percentages in the examples are on a weight basis unless otherwise stated.

25

5

10

15

20

EXAMPLES I-X

(1) Preparation of water-dispersible sulfopolyesters.

A round bottom flask equipped with ground-glass head, an agitator shaft, nitrogen inlet and a side arm

30 was charged with isophthalic acid,

5-sodiosulfoisophthalic acid (SIP), diethylene glycol (DEG), and 1,4-cyclohexanedimethanol (CHDM), in the mole percents as set forth in Table I. In each Example, titanium isopropoxide (50 ppm of titanium), and sodium

35 acetate (10% of the mole% of SIP), were added. The

flask was immersed in a Belmont bath at 200°C. for one hour under a nitrogen sweep. The temperature of the bath was increased to 230°C. for one hour. The temperature of the bath was increased to 280°C. and the flask was heated for 45 minutes under reduced pressure of 0.5 to 0.1 mm of Hg. The flask was allowed to cool to room temperature and the copolyester was removed from the flask. The sulfopolyesters were extruded and pelletized. The mole percent of the components for each of the sulfopolyesters, glass transition temperatures and inherent viscosities are listed in Table I.

5

10

15

20

25

(2) Preparation of aerosol hair spray formulations using the sulfopolyesters of Examples I-VIII.

Ten grams of each of the sulfopolyesters prepared in Examples I-VIII, were dispersed in 90 grams of distilled water by heating and stirring until a temperature of 75° to 85°C. was reached. After cooling to 40°C. any water lost during heating was replaced. The mixtures were vacuum filtered through a course center glass filter. 1-(hydroxymethyl)-5,5-dimethyl hydantoin, 0.2 grams was added.

To 65 grams of each of the mixtures was added 42 milliliters of dimethyl ether. The mixtures were sprayed into a glass cuvette which was placed in the Turbidimeter. The turbidity results are listed in Table I.

(3) Preparation of pump hair spray formulations using the sulfopolyesters of Examples I—X.

Ten grams of each of the sulfopolyesters prepared
in Examples I-X, were dispersed in 90 grams of distilled
water by heating and stirring until a temperature of 75°
to 85°C. was reached. After cooling to 40°C. any water
lost during heating was replaced. The mixtures were
vacuum filtered through a course center glass filter.

1-(hydroxymethyl)-5,5-dimethyl hydantoin, 0.2 grams was

CUADDICK WIT

5

added.

To 25 grams of each of the mixtures was added 25 grams of SDA 40C. The mixtures were poured into a glass cuvette which was placed in the Turbidimeter. The mole percent of the components of the sulfopolyesters and turbidity results are listed in Table I.

Η
团
Н
Ŋ
Æ
Н

Example	Diol (Mole	o1 e %)	SIP (Mole %)	IV (d1/g)	Tg (0°)	Turbidity (NTU's) Aerosol Pump	(NTU's) Pump
н	CHDM DEG	24.2 75.8	15.6	0.29	39	41.5	30.5
11	CHDM DEG	21.5 78.5	19.4	0.33	41	16.5	12.7
III	CHDM DEG	21.9	20.2	0.33	42	18.9	. 10.8
ΛI	CHDM DEG	23.0	22.0	0.33	47	15.7	6.4
>	CHDM DEG	20.7	22.6	0.19	37	30.8	25.1
VI	CHDM DEG	21.5 78.5	11.0	0.36	38	64.6	50.4
VII	CHDM DEG	46.0 54.0	18.0	0.33	55	36.1	60.0
VIII	CHDM	20.6	20.1	0.29	43		12.8
IX	CHDM DEG	36.8 63.2	19.8	0.18	4 4		52.3
×	CHDM DEG	34.0 66.0	20.6	0.28	47		38.0
KEY	KEY TO ABBREVIATIONS:	ATIONS:	CHDM = 1,4-cyc DEG = diethyl SIP = 5-sodio	1,4—cyclohexane dimethanol diethylene glycol 5—sodiosulfoisophthalate	methanol halate		

The data in Table I indicat s that aerosol and pump hair sprays prepared using the critical ranges of the present invention (Examples II-VIII) exhibit less than 30 NTU's which is a measure of the turbidity of a mixture as compared to hair sprays wherein one or more critical limitation is not satisfied. It is important to note that in the cosmetic field greater than 30 NTU's is characteristic of a cloudy mixture that is visible to the eye.

10

15

20

35

5

EXAMPLES XI-XVTT

(1) Preparation of aerosol hair spray formulations using the sulfopolyesters prepared in Examples I-VII.

Ten grams of each of the sulfopolyesters prepared in Examples I-VII, were dispersed in 85 grams of distilled water by heating and stirring until a temperature of 75° to 85°C. was reached. After cooling to 40°C. any water lost during heating was replaced and 5 grams of a water soluble vinyl copolymer consisting of 70 mole percent of N-vinyl-2-pyrrolidinone and 30 mole percent of vinyl acetate (50% solids) was added. The mixtures were vacuum filtered through a course center glass filter. 1-(hydroxymethyl)-5,5-dimethyl hydantoin, 0.2 grams was added.

To 65 grams of each of the mixtures was added
42 milliliters of dimethyl ether. The mixtures were
sprayed into a glass cuvette which was placed in the
Turbidimeter. The mole percent of the components of the
sulfopolyesters and turbidity results are listed in
Table II.

(2) Preparation of pump hair spray formulations using the sulfopolyesters prepared in Examples I-VII.

Ten grams of ach of the sulfopolyesters prepared in Examples I-VII, were dispersed in 85 grams of distilled water by heating and stirring until a

temperature of 75° to 85°C. was reached. After cooling to 40°C. any water lost during heating was replaced and 5 grams of a water soluble vinyl copolymer consisting of 70 mole percent of N-vinyl-2-pyrrolidinone and 30 mole percent of vinyl acetate (50% solids), was added. The mixtures were vacuum filtered through a course center glass filter. 1-(hydroxymethyl)-5,5-dimethyl hydantoin, 0.2 grams was added.

To 25 grams of each of the mixtures was added

25 grams of SDA 40C. The mixtures were poured into a
glass cuvette which was placed in the Turbidimeter. The
mole percent of the components of the sulfopolyesters
and turbidity results are listed in Table II.

TABLE II

Example	Diol (Mole %)	(}	SIP (Mole %)	IV (d1/q)	Tg (°C)	PVP_VA (Wt. %)	Turbidity (NTU's) Aerosol Pump	(NTU's) Pump
XI	CHDM DEG	24.2 75.8	15.6	0.29	39	ហ	41.0	35.8
XII	CHDM	21.5 78.5	19.4	0.33	41	ស	17.7	11.2
хііі	CHDM DEG	21.9 78.1	20.2	0.33	42	ស	19.8	15.0
XIV	CHDM	23.0	22.0	0.33	47	Ŋ	15.9	8.0
λχ	CHDM DEG	20.7 79.3	22.6	0.19	37	ι ດ	27.8	12.4
XVI	CHDM DEG	21.5 78.5	11.0	0.36	3 8	S	63.0	54.8
XVII	CHDM	46.0 54.0	18.0	0.33	ន	വ	33.8	19.2

CHDM = 1,4-cyclohexane dimethanol
DEG = diethylene glycol
SIP = 5-sodiosulfoisophthalate KEY TO ABBREVIATIONS:

The data in Table II indicates that aerosol and pump hair sprays prepared with a water soluble polymer and using the critical ranges of the present invention (Examples XII—XV) exhibit less than 30 NTU's which is a measure of the turbidity of a mixture as compared to hair sprays wherein one or more critical limitation is not satisfied. It is important to note that in the cosmetic field greater than 30 NTU's is characteristic of a cloudy mixture that is visible to the eye.

10

35

5

EXAMPLE XVIII

- (1) Preparation of a water-dispersible sulfopolyester. A round bottom flask equipped with ground-glass head, an agitator shaft, nitrogen inlet and a side arm was charged with 78.2 moles of isophthalic acid, 21.8 15 moles of 5-sodiosulfoisophthalic acid, 83.5 moles of diethylene glycol, and 16.5 moles of 1,4-cyclohexanedimethanol. Titanium isopropoxide (50 ppm of titanium), and sodium acetate (10% of the mole% 20 of SIP), were added. The flask was immersed in a Belmont bath at 200°C. for one hour under a nitrogen The temperature of the bath was increased to 230°C. for one hour. The temperature of the bath was increased to 280°C. and the flask was heated for 45 minutes under reduced pressure of 0.5 to 0.1 mm of Hg. 25 The flask was allowed to cool to room temperature and the copolyester was removed from the flask. sulfopolyester was extruded and pelletized. The glass transition temperature and I.V. were determined to be 42°C. and 0.28 dl/g respectively. 30
 - (2) Preparation of an aerosol hair spray formulation.

 The sulfopolyester prepared above, 7.14 grams, was dispersed in 52.15 grams of distilled water by heating and stirring until a temp rature of 75°C. to 85°C. was reached. After cooling to 40°C. any water lost during

heating was replaced and 5.71 grams of a water soluble vinyl copolymer consisting of 70 mole percent of N-vinyl-2-pyrrolidinone and 30 mole percent of vinyl acetate (50% solids) was added. The mixture was vacuum filtered through a course center glass filter.
1-(hydroxymethyl)-5,5-dimethyl hydantoin, 0.2 grams was added.

To 65 grams of the mixtures was added 42 milliliters of dimethyl ether. The mixture was sprayed into a glass cuvette which was placed in the Turbidimeter. Turbidity was measured after aging at 45°C. for 19 months in an oven. The turbidity was 30.7 NTU's. Thus, the aerosol formulation showed good clarity and storage stability.

15

10

5

EXAMPLE XIX

(1) Preparation of a water-dispersible sulfopolyester. A round bottom flask equipped with ground-glass head, an agitator shaft, nitrogen inlet and a side arm 20 was charged with 73.1 moles of isophthalic acid, 16.9 moles of 5-sodiosulfoisophthalic acid, 81.2 moles of diethylene glycol, and 18.8 moles of 1,4-cyclohexanedimethanol. Titanium isopropoxide (50 ppm of titanium), and sodium acetate (10% of the 25 mole% of SIP), were added. The flask was immersed in a Belmont bath at 200°C. for one hour under a nitrogen The temperature of the bath was increased to 230°C. for one hour. The temperature of the bath was increased to 280°C. and the flask was heated for 45 minutes under reduced pressure of 0.5 to 0.1 mm of Hg. 30 The flask was allowed to cool to room temperature and the copolyester was removed from the flask. sulfopolyester was extruded and pelletized. The glass transition temperature and I.V. were determined to be 35 39°C. and 0.36 dl/g respectively.

(2) Preparation of an aerosol hair spray formulation.

The sulfopolyester prepared above, 7.14 grams, was dispersed in 52.15 grams of distilled water by heating and stirring until a temperature of 75°C. to 85°C. was reached. After cooling to 40°C. any water lost during heating was replaced and 5.71 grams of a water soluble vinyl copolymer consisting of 70 mole percent of N-vinyl-2-pyrrolidinone and 30 mole percent of vinyl acetate (50% solids) was added. The mixture was vacuum filtered through a course center glass filter.

1-(hydroxymethyl)-5,5-dimethyl hydantoin, 0.2 grams was added.

To 65 grams of the mixtures was added 42 milliliters of dimethyl ether. The mixture was sprayed into a glass cuvette which was placed in the Turbidimeter. Turbidity was measured after aging at 45°C. for 19 months in an oven. The turbidity was 53 NTU's. Thus, the aerosol formulation showed good clarity and storage stability.

20

25

30

35

15

5

10

EXAMPLE XX

Aerosol hair spray formulations were prepared using the sulfopolyesters of Examples IV and VI. The sulfopolyester in Example IV contained 23 mole% CHDM, 22.0 mole% SIP, Tg of 47°C., and an I.V. of 0.33. The sulfopolyester in Example VI contained 21.5 mole% CHDM, 11.0 mole% SIP, Tg of 38°C., and an I.V. of 0.36. Preparation of the aerosol hair sprays is described in Examples I—X.

Testing was done on natural brown, European virgin hair tresses in which about two grams of hair, root end, were glued to a 2" by 2" plastic tab. The tresses were cut so that the length of hair hanging below the tabs was six inch s. Prior to applying the hair spray, the tresses had been washed with a nonconditioning shampoo.

エ しょ (しじノマ(ひじょしょ

placed in ethanol bath for 15 minut s, rinsed with deionized water, wrapped around a one inch diameter curler while wet, and placed in an oven at 45°C. to dry. The tresses were removed from the oven and allowed to cool to room temperature.

The aerosol hair spray prepared from the sulfopolyester of Example IV and the aerosol hair spray prepared from the sulfopolyester of Example VI were sprayed on a tress for ten seconds. The tresses were hung in a humidity chamber at 25°C. and 80% relative humidity. The curl loss or droop was determined over a one hour period in ten minute intervals. The test results are listed in Table III.

TABLE III

Curl Retention Evaluation of Aerosol Hair Sprays

•			1	:ime (mi	nutes)	•		
	Ex.	0	10	20	30	40	50	60
20	IV	100	100	98.1	96.5	96.5	95.2	95.2
	VI	100	91.4	88.9	84.3	84.3	84.3	84.3

25 The test results in Table III indicate that aerosol hair sprays prepared using the critical ranges of the present invention (Example IV) clearly are superior in maintaining curl retention as compared to aerosol hair sprays that fall outside the critical ranges.

EXAMPLE XXI

Pump hair spray formulations were prepared using the sulfopolyesters of Examples IV and VI as described above. The pump hair sprays were sprayed onto tresses as prepared in Example XX.

Each of the pump hair sprays were applied to the tresses by pumping ten times. The tresses were hung in

15

10

5

30

a humidity chamber at 25°C. and 80% relative humidity. The curl loss or droop was determined over a one hour period in ten minute intervals. The test results are listed in Table IV.

5

TABLE IV
Curl Retention Evaluation of Pump Hair Sprays
Time (minutes)

			-	-me (m-	uucesj			
	Ex.	00	10	20	30	40	50	60
10	IV	100	96.3	96.3	93.5	93.5	93.5	93.5
	VI	100	98.1	96.2	90.4	88.5	88.5	88.5

15

20

The test results in Table IV indicate that pump hair sprays prepared using the critical ranges (Example IV) of the present invention clearly are superior in maintaining curl retention as compared to pump hair sprays that fall outside the critical ranges.

Many variations will suggest themselves to those skilled in this art in light of the above detailed description. All such obvious modifications are within the full intended scope of the appended claims.

WHAT IS CLAIMED IS

5

10 .

15

20

25

30

35

- A clear hair spray formulation comprising:
- (1) a sulfopolyester having a Tg of 40°C. to 60°C. consisting essentially of repeat units from

(a) a dicarboxylic acid selected from the group consisting of aromatic dicarboxylic acids, saturated aliphatic dicarboxylic acids, cycloaliphatic dicarboxylic acids, and combinations thereof:

しょ! しじノマ! せいしし

(b) a diol provided 10 to 30 mole percent of the diol is 1,4-cyclohexanedimethanol; and

- (c) a difunctional sulfomonomer containing at least one sulfonate group attached to an aromatic nucleus wherein the functional groups are hydroxy, carboxy or amino, provided the difunctional sulfomonomer is present in an amount from 18.5 to 22.5 mole percent based on 100 mole percent dicarboxylic acid and 100 mole percent diol, provided that the hair spray composition contains 1 to 20 weight percent of the sulfopolyester; and
- (2) a liquid vehicle selected from the group consisting of water and a water/alcohol mixture.
- 2. A clear hair spray formulation comprising:
- (1) a sulfopolyester having a Tg of 40°C. to 60°C. consisting essentially of repeat units from
 - (a) a dicarboxylic acid selected from the group consisting of aromatic dicarboxylic acids, saturated aliphatic dicarboxylic acids, cycloaliphatic dicarboxylic acids, and combinations thereof;

- (b) a diol provided 10 to 30 mole percent of the diol is 1,4-cyclohexanedimethanol; and
- (c) a difunctional sulfomonomer containing at least one sulfonate group attached to an aromatic nucleus wherein the functional groups are hydroxy, carboxy or amino, provided the difunctional sulfomonomer is present in an amount from 18.5 to 22.5 mole percent based on 100 mole percent dicarboxylic acid and 100 mole percent diol, provided that the hair spray composition contains 1 to 20 weight percent of the sulfopolyester;
- (2) a liquid vehicle selected from the group consisting of water and a water/alcohol mixture; and
- (3) a water-soluble polymer, which is prepared from monomers having one or more of the following structures:

wherein \mathbf{R}^1 is selected from the group consisting of a $\mathbf{C}_1\mathbf{-}\mathbf{C}_5$ aliphatic group and

60

5

10

5

wherein R^8 and R^9 are, independently, a C_1-C_5 alkyl group,

 ${\bf R}^2$ is a ${\bf C_1-C_{10}}$ aliphatic group,

 R^3 is a C_1-C_{16} aliphatic group,

 $\ensuremath{\text{R}^4}$ is selected from the group consisting of hydrogen and a $\ensuremath{\text{C}_1\text{--}\text{C}_8}$ aliphatic group,

15 R^5 is a C_1-C_8 aliphatic group, R^6 is hydrogen or methyl, R^7 is selected from the group consisting of hydrogen and an alkyl group having 1 to 4 carbon atoms.

- 20 3. A clear aerosol hair spray formulation comprising:
 - (1) 1 to 10 weight percent based on the weight of components (1), (2), (3), and (4) of a sulfopolyester having a Tg of 40°C. to 60°C. consisting essentially of repeat units from

(a) a dicarboxylic acid selected from the group consisting of aromatic dicarboxylic acids, saturated aliphatic dicarboxylic acids, cycloaliphatic dicarboxylic acids, and combinations thereof;

> (b) a diol provided 10 to 30 mole percent of the diol is 1,4-cyclohexanedimethanol; and

(c) a difunctional sulfomonomer containing at least one sulfonate group attached to an aromatic nucleus wherein the functional groups are hydroxy, carboxy or amino, provided the difunctional sulfomonomer is present in an amount from 18.5 to 22.5 mole percent based on 100 mole percent

30

25

dicarboxylic acid and 100 mole percent diol;

- (2) 46 to 94 weight percent based on the weight of components (1), (2), (3), and (4) of a liquid vehicle selected from the group consisting of water and a water/alcohol mixture;
- (3) 1 to 7 weight percent based on the weight of components (1), (2), (3), and (4) of a water-soluble polymer, which is prepared from monomers having one or more of the following structures:

15

$$HC=CH_2$$
 O
 $CH_2=C$
 R^2
 $CH_3-CH=CHCOOH$
 $R^5-C-O-C=CH_2$
 R^6
 $CH_2=CH-CH_2$
 R^6

wherein R^1 is selected from the group consisting of a C_1-C_5 aliphatic group and

5

10

45

60

wherein R^8 and R^9 are, independently, a C_1-C_5 alkyl group,

 R^2 is a C_1-C_{10} aliphatic group, R^3 is a C_1-C_{16} aliphatic group,

 \mathbb{R}^4 is selected from the group consisting of hydrogen and a \mathbb{C}_1 - \mathbb{C}_8 aliphatic group,

65 R^5 is a C_1-C_8 aliphatic group,

R⁶ is hydrogen or methyl,
R⁷ is selected from the group consisting of hydrogen and
an alkyl group having 1 to 4 carbon atoms; and

- (4) 3 to 40 weight percent based on the weight of components (1), (2), (3), and (4) of a propellant selected from the group consisting of a C_1 C_4 aliphatic hydrocarbon, dimethyl ether, and mixtures thereof.
- 4. The hair spray of Claim 1 wherein the dicarboxylic acid component of the sulfopolyester is selected from the group consisting of terephthalic acid, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, cyclohexanedicarboxylic acid, cyclohexanedicarboxylic acid, cyclohexanediacetic acid, and mixtures thereof.
 - 5. The hair spray of Claim 4 wherein the dicarboxylic acid is isophthalic acid.
- 20 6. The hair spray of Claim 1 wherein the diol component of the sulfopolyester is 1,4-cyclohexanedimethanol and a diol selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, and mixtures thereof.
 - 7. The hair spray of Claim 6 wherein the diol component is a mixture of diethylene glycol and 1,4-cyclohexanedimethanol.

25

30 8. The hair spray of Claim 1 wherein the difunctional sulfomonomer component of the sulfopolyester is selected from the group consisting of sulfophthalic acid, sulfoterephthalic acid, sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and esters thereof.

- 9. The hair spray of Claim 8 wherein the diffunctional sulfomonomer is 5-sodio-sulfoisophthalic acid.
- 10. The hair spray of Claim 1 wherein the

 5 sulfopolyester, component (1), has repeat units from isophthalic acid, 5-sodio-sulfoisophthalic acid, diethylene glycol and 1,4-cyclohexanedimethanol, .
- 11. The hair spray composition of Claim 2 wherein the
 water-soluble polymer, component (3), is selected from
 the group consisting of polyvinyl pyrrolidone, polyvinyl
 caprolactam, polyvinyl acetate, polyacrylates,
 methacrylates, and copolymers and terpolymers of such
 monomers.

12. The hair spray composition of Claim 2 wherein the water soluble polymer is a polyvinyl lactam polymer containing at least 50 mole percent of residues of N-vinyl lactams of the formula

20

15

30 wherein n is 3 or 4.

13. The aerosol hair spray composition of Claim 3 wherein the propellant, component (4), is a C₁ - C₄ aliphatic hydrocarbon selected from the group consisting of methane, ethane, propane, n-butane, isobutane, and combinations thereof.

14. The aerosol hair spray of Claim 13 wherein the propellant, component (4), is a mixture containing 80-86 weight percent isobutane and 20-14 weight percent propane.

5 .

A. CLASSIFICATION OF SUBJECT MATTER
IPC 5 A61K7/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 **A61K**

J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
US,A,5 320 836 (SINGLETON) 14 June 1994 see the whole document	1-14
US,A,5 266 322 (MYERS ET AL.) 30 November 1993 see the whole document	1-14
EP,A,O 551 749 (UNILEVER) 21 July 1993 see the whole document	1-14
EP,A,O 551 748 (UNILEVER) 21 July 1993 see the whole document	1-14
FR,A,2 300 547 (HOECHST) 10 September 1976 see the whole document	1-14
	US,A,5 320 836 (SINGLETON) 14 June 1994 see the whole document US,A,5 266 322 (MYERS ET AL.) 30 November 1993 see the whole document EP,A,0 551 749 (UNILEVER) 21 July 1993 see the whole document EP,A,0 551 748 (UNILEVER) 21 July 1993 see the whole document FR,A,2 300 547 (HOECHST) 10 September 1976

Further docume	ints are listed in the	continuation of box C.
----------------	------------------------	------------------------

Patent family members are listed in annex.

- Special categories of cited documents:
- 'A' document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- document referring to an oral disclosure, use, exhibition or other means
- document published prior to the international filing date but later than the priority date claimed
- T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevarice; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu ments, such combination being obvious to a person skilled in the art.

26. 10. 94

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

14 October 1994

Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Fischer, J.P.

12

Name and mailing address of the ISA

PCT/US 94/06555

Patent document cited in search report	Publication date		t famil ber(s)	Publication date
US-A-5320836	14-06-94	WO-A-	9415575	21-07-94
US-A-5266322	30-11-93	AU-B- WO-A-	4381293 9324098	30-12-93 09-12-93
EP-A-0551749	21-07-93	AU-B- AU-A- CA-A- JP-A-	652303 3030092 2085641 5255050	18-08-94 24-06-93 21-06-93 05-10-93
EP-A-0551748	21-07-93	US-A- AU-A- CA-A- JP-A-	5266308 3029892 2085640 5255051	30-11-93 24-06-93 21-06-93 05-10-93
FR-A-2300547	10-09-76	DE-A- AT-B- AU-A- BE-A- GB-A- JP-A- LU-A- NL-A- SE-A-	2506461 351681 1109276 838614 1540862 51106747 74346 7601325 7601650	26-08-76 10-08-79 18-08-77 16-08-76 14-02-79 21-09-76 31-12-76 17-08-76 16-08-76