

2013—2014 学年第二学期 《大学物理 (2-1)》期中试卷

专业班级			
姓 名			
· · · · · · · · · · · · · · · · · · ·			
开课系室 基础物理系			
开保余至			
考试日期 2014 年 4 月 13 日			

题 号 一			三				总分
	_	1	2	3	4		
得分							
阅卷人							

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面整洁;
- 3. 本试卷共三道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共9页。

一、选择题(共10小题,每小题3分,共30分)

1、(本题 3 分)

一运动质点在某瞬时位于矢径r(x,y)的端点处, 其速度大小为

(B) $\frac{\mathrm{d} r}{\mathrm{d} t}$

(C)
$$\frac{\mathrm{d}|r|}{\mathrm{d}t}$$

(C)
$$\frac{\mathrm{d} |\vec{r}|}{\mathrm{d}t}$$
 (D) $\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2}$

Γ 7

2、(本题 3 分)

- 一质点在平面上运动,已知质点位置矢量的表示式为 $r = at^2 i + bt^2 i$ (其中 a、b 为 常量),则该质点作
 - (A) 匀速直线运动.(B) 变速直线运动.(C) 抛物线运动.(D)一般曲线运动.

3、(本题 3 分)

某人骑自行车以速率 v 向正西行驶,遇到由北向南刮的风(设风速大小也为 v),试问 人感到风从哪个方向吹来?

- (A) 东北方向吹来.
- (B) 东南方向吹来.
- (C) 西北方向吹来. (D) 西南方向吹来.

Γ ٦

4、(本题 3 分)

质量为
$$m$$
的质点在外力作用下,其运动方程为 $P = A\cos\omega t$ $i + B\sin\omega t$ j

式中A、B、 ω 都是正的常量. 由此可知外力在t=0到 $t=\pi/(2\omega)$ 这段时间内所作的功为

(A)
$$\frac{1}{2}m\omega^2(A^2 + B^2)$$
 (B) $m\omega^2(A^2 + B^2)$

(B)
$$m\omega^2(A^2+B^2)$$

(C)
$$\frac{1}{2}m\omega^2(A^2 - B^2)$$
 (D) $\frac{1}{2}m\omega^2(B^2 - A^2)$

(D)
$$\frac{1}{2}m\omega^2(B^2-A^2)$$

5、(本题 3 分)

如图所示,木块m沿固定的光滑斜面下滑,当下降h高度时, 重力作功的瞬时功率是:

- (A) $mg(2gh)^{1/2}$.
- (B) $mg\cos\theta(2gh)^{1/2}$.
- (C) $mg \sin \theta (\frac{1}{2}gh)^{1/2}$. (D) $mg \sin \theta (2gh)^{1/2}$.

Γ 7

6、(本题 3 分)

一质点由原点从静止出发沿 x 轴运动,它在运动过程中受到指向原点的力作用,此力的 大小正比于它与原点的距离,比例系数为 k. 那么当质点离开原点为 x 时,它相对原点的势 能值是

(A) $-\frac{1}{2}kx^2$. (B) $\frac{1}{2}kx^2$.

(C) $-kx^2$. (D) kx^2 .

Γ 7

7、(本题 3 分)

质量分别为 m_A 和 m_B ($m_A>m_B$)、速度分别为 $\overset{\varpi}{\upsilon}_A$ 和 $\overset{\varpi}{\upsilon}_B$ ($\upsilon_A>\upsilon_B$)的两质点A和B, 受到相 同的冲量作用,则

- (A) A 的动量增量的绝对值比 B 的小.
- (B) A 的动量增量的绝对值比 B 的大.
- (C) A 、B 的动量增量相等.
- (D) A、B的速度增量相等.

7 Γ

8、(本题3分)

关于力矩有以下几种说法:

- (1) 对某个定轴而言,内力矩不会改变刚体的角动量.
- (2) 作用力和反作用力对同一轴的力矩之和必为零.
- (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一 定相等.

在上述说法中,

- (A) 只有(2) 是正确的.
- (B)(1)、(2)是正确的.
- (C)(2)、(3)是正确的.
- (D) (1) 、(2) 、(3)都是正确的.

Γ ٦

9、(本题 3 分)

一圆盘绕过盘心且与盘面垂直的光滑固定轴O以角速度 ω 按图示方 向转动. 若如图所示的情况那样,将两个大小相等方向相反但不在同一 条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度 ω

- (A) 必然增大. (B) 必然减少.
- (C) 不会改变.
- (D) 如何变化,不能确定.

10、(本题 3 分)

一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体。物体所受重 力为P,滑轮的角加速度为 β . 若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角 加速度8将

- (A) 不变.
- (B) 变小.
- (C) 变大.
- (D) 如何变化无法判断.

]

二、简单计算与问答题(共6小题,每小题5分,共30分)

1、(本题5分)

描述质点加速度的物理量, $\frac{\mathrm{d}\overline{v}}{\mathrm{d}t}$, $\frac{\mathrm{d}v}{\mathrm{d}t}$, $\frac{\mathrm{d}v_x}{\mathrm{d}t}$ 有何不同?

本大题满分30分				
本				
大				
题				
得				
分				

2、(本题 5 分)

一质点沿半径为 0.10m 的圆周运动,其角位置 $\theta = 2 + 4t^3$ 。试求:在 t=2s 时,它的法向加速度和切向加速度各是多少?

3、(本题 5 分)

一单摆,在摆动过程中,若不计空气阻力,摆球的动能、动量、机械能以及对悬点的角动量是否守恒?为什么?

4、(本题 5 分)

地球的质量 $M_e=5.98\times 10^{24}$ kg,半径 $R_e=6.37\times 10^6$ m,月球的质量 $M_m=7.35\times 10^{22}$ kg,半径 $R_m=1.74\times 10^6$ m。 地月中心的距离 $d=3.84\times 10^8$ m。 求地月系统的质心相对于地心的位置。

5、(本题 5 分)

试阐述为什么质点系中的内力不能改变质点系的总动量.

6、(本题 5 分)

刚体转动惯量的物理意义是什么? 它与什么因素有关?

三. 计算题(共4小题,共40分)

1、(本题 10 分)

质量为m的子弹以速度 v_0 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:

- (1) 子弹射入沙土后,速度随时间变化的函数式;
- (2) 子弹进入沙土的最大深度.

本人	卜题满分10分
本	
小	
题	
得	
分	

2、(本题 10 分)

如图,水平地面上一辆静止的炮车发射炮弹. 炮车质量为M,炮身仰角为 α ,炮弹质量为m,炮弹刚出口时,相对于炮身的速度为u,不计地面摩擦:

- (1) 求炮弹刚出口时, 炮车的反冲速度大小;
- (2) 若炮筒长为1, 求发炮过程中炮车移动的距离.

3、(本题 10 分)

质量为 m_A 的粒子 A 受到另一重粒子 B 的万有引力作用,B 保持在原点不动. 起初,当 A 离 B 很远($r=\infty$)时,A 具有速度 v_0^{ω} ,方向沿图中所示直线 Aa,B 与这直线的垂直距离为 D. 粒子 A 由于粒子 B 的作用而偏离原来的路线,沿着图中所示的轨道运动. 已知这轨道与 B 之间的最短距离为 d,求 B 的质量 m_B .

4、(本题 10 分)

一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和 2m的重物,如图所示。绳与滑轮间无相对滑动,滑轮轴光滑。两个定滑轮的转动惯量均为 $\frac{1}{2}mr^2$.将由两个定滑轮以及质量为m和 2m的重物组成的系统从静止释放,求两滑轮之间绳内的张力。

本人	卜题满分10分
本	
小	
题	
得	
分	

