Kinetik der radikalischen Polymerisation und Copolymerisation von N-Vinyl-N-methylacetamid

Johannes Paul Fischer*, Sigurd Rösinger

Kunststoff-Forschung und Angewandte Physik der Hoechst AG, D-6230 Frankfurt/Main 80

(Eingangsdatum: 24. Januar 1983)

SUMMARY:

In order to get information on the kinetics of free radical polymerization of N-vinyl-N-methylacetamide (VIMA) polymerizations of the purified monomer were performed in dilatometers using the temperature range from 25 to 70 °C, monomer concentrations of 10 to 100% in methanol, and initiation either by γ -irradiation or by radical initiators. Molecular weight measurements of the polymer were calibrated by light scattering determinations of $M_{\rm w}$ according to the following equation at 30 °C in methanol: $[\eta]/(\text{ml/g}) = 5.02 \cdot 10^{-3} \cdot M_{\rm w}^{0.794}$ 6. Normal kinetics of free radical polymerization were found to be valid and Arrhenius parameters were calculated for the ratio k_p^2/k_t of the propagation rate constant k_p and the termination rate constant k_t as well as for the monomer transfer constant $C_{\rm M}$ and for the efficiency of initiation f. For copolymerizations of N-vinyl-N-methylacetamide with different comonomers the mean Q-e-values were calculated as follows: $Q_{\rm VIMA} \approx 0.06$; $e_{\rm VIMA} \approx -1.8$.

Einleitung

N-Vinyl-N-methylacetamid ^{a)} (VIMA) hat sich als geeignet erwiesen, als Pfropfmonomeres die Blutverträglichkeit von Kunststoff-Oberflächen zu erhöhen ¹⁾. Für die gezielte und reproduzierbare Durchführung dieser Pfropfungsreaktionen mit Hilfe von Radikalinitiatoren oder γ -Strahlung war es nötig, die Kinetik der Polymerisation und das Copolymerisationsverhalten von VIMA zu untersuchen.

Experimenteller Teil

"Vinylmethylacetamid Hoechst" wurde für die kinetischen Versuche unter N_2 -Überlagerung in einer Vakuum-Destillation ($K_{\rm p,10mmHg} \approx 55\,^{\circ}{\rm C}$) auf eine Reinheit >99,9% gebracht. Als Lösungsmittel wurde entsalztes Wasser oder Methanol p. a. der Fa. Riedel-de-Haën verwendet.

Die für die dilatometrisch durchgeführten kinetischen Versuche erforderlichen partiellen spezifischen Volumina des Monomeren VIMA ($v_{\rm sp,VIMA}$) und des Polymeren (POVIMA) ($v_{\rm sp,POVIMA}$) wurden pyknometrisch im Temperaturbereich von 25 – 70 °C bestimmt:

$$v_{\text{sn,VIMA}}/(\text{ml/g}) = 1,0216 + 0,001013 \cdot T/^{\circ}C$$
 (1)

$$v_{\rm sp, POVIMA}/(ml/g) = 0.8281 + 0.0004065 \cdot T/^{\circ}C$$
 (2)

wobei bis zu POVIMA-Gehalten (Umsätzen) von 20% in VIMA die folgende Linearität mit dem Gewichtsbruch des POVIMA (x_{POVIMA}) als Polymerisationsumsatz gegeben war:

a) Systematischer Name: N-Methyl-N-vinylacetamid.

$$v_{\rm sp}$$
 (POVIMA in VIMA) = $x_{\rm POVIMA} \cdot v_{\rm sp, POVIMA} + (1 - x_{\rm POVIMA}) \cdot v_{\rm sp, VIMA}$ (3)

Damit ist eine dilatometrische Umsatzbestimmung aus $v_{\rm sp}$ möglich.

Der Umsatz der Polymerisation läßt sich für das verwendete hochgereinigte VIMA auch über die Brechungsindices $[n]_0^3$ wie folgt ermitteln:

$$[n]_{\rm D}^{30} = 1,47804 + 0,0003151 \cdot \% \text{ Umsatz}$$
 (4)

Zur Bestimmung der Molmassen der Polymeren wurden bei Polymerisations-Umsätzen unterhalb von 10% mit 2,2'-Azodiisobutyronitril (AIBN) Eichpräparate im Bereich von $M_{\rm w}=45\,000$ bis 1590000 hergestellt und Viskositätsmessungen, insbesondere in Methanol und Wasser, durchgeführt.

Im Konzentrationsbereich von c=0,001 bis 0,01 g/ml ergaben sich für die Huggins-Gleichung²⁾:

$$\eta_{\rm sn}/c = [\eta] + k_{\rm H}[\eta]^2 \cdot c \tag{5}$$

für Methanol $k_{\rm H}=0,289$ und für Wasser $k_{\rm H}=0,364$, so daß die in Abb. 1 dargestellten $[\eta]-M_{\rm w}$ -Beziehungen resultierten:

$$[\eta]/(\text{ml/g}) = 5.02_3 \cdot 10^{-3} \cdot M_w^{0.7946}$$
 (30°C, Methanol) (6)

$$[\eta]/(\text{ml/g}) = 7.29 \cdot 10^{-3} \cdot M_{\text{w}}^{0.7576}$$
 (30 °C, Wasser) (7)

Da in Wasser als Lösungsmittel manchmal Trübungen auftraten, wurden die $M_{\rm w}$ -Werte meist über Viskositätsmessungen in Methanol bestimmt und zum Polymerisationsgrad $P_{\rm n}$ unter der Annahme umgerechnet, daß sowohl die Eichpräparate als auch die in den kinetischen Versuchen bei geringen Monomerumsätzen gewonnenen Polymeren eine konstante Molmassenverteilungsbreite von $M_{\rm w}/M_{\rm n}=2$ besitzen. Die Unsicherheit dieser Annahme geht in die untenstehenden kinetischen Daten ein; es war jedoch bisher nicht möglich, z.B. mittels Gelpermeationschromatographie die echte Verteilungsbreite der Eichpräparate zu bestimmen. Die gefundene starke Monomerübertragung legt aber $M_{\rm w}/M_{\rm n}\approx 2$ nahe.

Abb. 1. $[\eta]-M_w$ -Auftragung für Eichpräparate von POVIMA in verschiedenen Lösungsmitteln: (\blacksquare) Methanol; (\bullet) Wasser; (\square) VIMA; (\bigcirc) THF

Die kinetischen Versuche wurden sämtlich unter N_2 isotherm im Temperaturbereich von 25 °C bis 70 °C in Dilatometern von 10 ml Inhalt mit graduierten Meßkapillaren von 1 mm Durchmesser ausgeführt, entweder in Versuchsreihen mit verschiedenen Konzentrationen an Radikalbildnern wie z. B. AIBN, tert-Butyl-2-ethylperhexanoat bzw. Benzoylperoxid oder der y-Strahlung einer ⁶⁰Co-Quelle im Dosisleistungs-Bereich von 4-1600 Gy/h ausgesetzt. Die Polymerisation wurde durch Ablesung der Dilatometerkapillaren verfolgt und nach Abschluß mittels Brechungsindex und Fällung in trockenem Diethylether bzw. Diisopropylether oder nach Verdünnung mit Wasser über eine Gefriertrocknung gravimetrisch überprüft.

Ergebnisse

Die Daten wurden auf die Gültigkeit der folgenden, allgemein bekannten Gleichungen der Kinetik der radikalischen Polymerisation überprüft (Nomenklatur und Dimensionen nach Henrici-Olivé u. Olivé³⁾) — für die Polymerisationsgeschwindigkeit:

$$v_{\rm Br} = \left(\frac{k_{\rm w}^2}{k_{\rm a}}\right)^{1/2} \cdot v_{\rm st}^{1/2} \cdot [\rm M]^1 \tag{8}$$

— für den Polymerisationsgrad P_n nach der Mayo-Gleichung⁴):

$$\frac{1}{P_{\rm n}} = C_{\rm M} + \frac{k_{\rm a}}{k_{\rm w}^2} \cdot \frac{v_{\rm Br}}{[\rm M]^2} \tag{9}$$

Für Verdünnungsreihen von reinem VIMA (bis zu 10 Gew.-%, insbesondere in Methanol) zeigte sich sowohl bei radikalischer Initiierung mit AIBN bei 25 °C und 50 °C als auch bei Initiierung durch γ -Strahlung im gleichen Temperaturbereich und bei variabler Dosisleistung, daß der Exponent für die Monomerkonzentration folgende Proportionalitäten erfüllt (s. z. B. Abb. 2):

$$v_{\rm Br} \sim [{\rm M}]^{0.9 \, {\rm bis} \, 1.1}$$
 bei $v_{\rm st} = {\rm const.}$ (10)

$$M_{\rm w} \sim [{\rm M}]^{0.9 \text{ bis } 1.1}$$
 bei $v_{\rm st} = {\rm const.}$ (11)

Abb. 2. Bestimmung der Reaktionsordnung der Molmasse $M_{\rm w}$ (\circ) und der Polymerisationsgeschwindigkeit $v_{\rm Br}$ (\bullet) gegenüber der Monomerkonzentration [M] für verschiedene Initiierungsarten und Temperaturen für VIMA in VIMA/Methanol-Mischungen

In Bezug auf die Variation der Startgeschwindigkeit $v_{\rm st}$ sind die beiden Fälle zu trennen:

a) für die Initiierung durch y-Strahlung gelten gemäß Abbn. 3 und 4 die folgenden Proportionalitäten bezüglich der Dosisleistung DL

$$v_{\rm Br} \sim DL^{0.61 \text{ bis } 0.63}$$
 (12)

$$M_{\rm w} \sim DL^{-0.09 \, \rm bis \, -0.29}$$
 (13)

Abb. 3. Abhängigkeit der VIMA-Polymerisationsgeschwindigkeit $v_{\rm Br}$ von der Dosisleistung (DL) der γ -Strahlung bei verschiedenen Temperaturen; (\blacksquare) RT (Raumtemperatur) $\approx 25\,^{\circ}{\rm C}$; (\bigcirc) 50 °C; (\bigcirc) 70 °C (r = Korrelationskoeffizient)

Abb. 4. Abhängigkeit der POVIMAMolmasse $M_{\rm w}$ von der Dosisleistung (DL) der γ -Strahlung bei verschiedenen Temperaturen: (\bigcirc) RT (Raumtemperatur) ≈ 25 °C; (\blacksquare) 50 °C; (\bullet) 70 °C (r = Korrelationskoeffizient)

b) für die Initiierung mit Radikalinitiatoren, z.B. für AIBN, gilt in Übereinstimmung mit der üblichen Kinetik³⁾

$$v_{\rm Br} \sim [{\rm AIBN}]^{0.5} \tag{14}$$

jedoch bleibt auch hier gemäß Abb. 5 die Beziehung zwischen $M_{\rm w}$ und der Initiator-konzentration von gebrochener Ordnung, weil gemäß der obenstehenden Mayo-Glei-

chung (9)⁴⁾ eine temperaturabhängige, insbesondere für höhere Temperaturen sehr wirkungsvolle Monomerübertragungskonstante $C_{\rm M}$ resultiert (Abb. 6).

Abb. 6. Mayo-Auftragung für die VIMA-Polymerisation mit γ -Strahlung bei 25 °C (\blacksquare), 50 °C (\bullet) und 70 °C (\circ)

Aus Auftragungen gemäß Abb. 6 ließen sich die in Abb. 7 dargestellten Arrhenius-Geraden für das Konstantenverhältnis $k_{\rm w}^2/k_{\rm a}$, für $C_{\rm M}$ und für die efficiency f bei 2 verschiedenen VIMA-Qualitäten gewinnen, wenn nach der allgemein bekannten radikalischen Polymerisationskinetik³⁾

$$v_{\rm st} = 2 \cdot f \cdot k_z \cdot [AIBN] \tag{15}$$

gesetzt wird. Mit diesen Gleichungen, die im Rahmen der Meßgenauigkeit für beide Initiierungsarten gelten:

$$(k_{\rm w}^2/k_{\rm a})/(1 \cdot {\rm mol}^{-1} \cdot {\rm s}^{-1}) = 3,008 \cdot 10^6 \cdot {\rm exp}\left(\frac{-6460}{T/{\rm K}}\right)$$
 (16)

$$C_{\rm M} = 4,886 \cdot 10^{-2} \cdot \exp\left(\frac{-1.874}{T/\rm K}\right)$$
 (17)

$$f(\text{für VIMA 99,9\%}) = 7,38 \cdot \exp\left(\frac{-1139}{T/K}\right)$$
 (18)

Abb. 7. Arrhenius-Auftragung für die efficiency f, das Konstantenverhältnis $k_{\rm w}^2/k_{\rm a}$ und die Monomerübertragungskonstante $C_{\rm M}$ der VIMA-Polymerisation

lassen sich durch Einsetzen in die Gln. (8), (9) und (15) alle Polymerisationsdaten für die AIBN-initiierte VIMA-Polymerisation (99,9% Reinheit) im Temperaturbereich von 25 bis 70 °C bei niedrigen Umsätzen beschreiben. Der Reinheitsgrad beeinflußt vor allem die efficiency f, weniger $C_{\rm M}$ und $k_{\rm w}^2/k_{\rm a}$. Bei Umsätzen oberhalb von 20% tritt, insbesondere bei γ -Strahlungs-Initiierung durch Verzweigungsreaktionen noch verschärft, eine Erhöhung der Polymerisationsgeschwindigkeit $v_{\rm Br}$ und der Molmasse auf (Trommsdorff-Effekt 5), dessen Beschreibung hier zu weit führen würde. Bei Peroxiden beobachtet man auch einen Anteil des induzierten Zerfalls. Bei Initiierung durch γ -Strahlung ist die Startgeschwindigkeit $v_{\rm st}$ gemäß Abb. 8 etwa der Dosisleistung DL proportional:

$$v_{st}/(\text{mol} \cdot 1^{-1} \cdot \text{s}^{-1}) \approx 10^{-10} \cdot DL/(\text{Gy} \cdot \text{h}^{-1})$$
 (19)

woraus für VIMA ein G_R -Wert ≈ 1.8 (Radikale/100 eV) resultiert (Berechnung nach Chapiro⁶⁾).

Copolymerisationen von VIMA ließen sich nach beiden Initiierungsarten mit Vinylestern, Acrylestern und, weniger günstig, mit Styrol durchführen. Hierbei ergaben sich gute Übereinstimmungen mit den Daten nach Krappitz⁷⁾ (Tab. 1); aus diesen Daten folgt für VIMA gemittelt das folgende *Q-e*-Wertepaar:

$$Q_{\text{VIMA}} \approx 0.06;$$
 $e_{\text{VIMA}} \approx -1.8$

Der e-Wert von -1,1 bis -1,2 aus der Copolymerisation mit Vinylacetat erscheint wegen der näher beieinanderliegenden r-Werte jedoch genauer zu sein.

Abb. 8. Abhängigkeit der effektiven Startgeschwindigkeit $v_{\rm st}$ bei der mit γ -Strahlung initiierten VIMA-Polymerisation von der angewendeten Dosis-Leistung (DL) bei verschiedenen Temperaturen: (\blacksquare) RT (Raumtemperatur) $\approx 25\,^{\circ}$ C; (\bullet) $50\,^{\circ}$ C; (\circ) $70\,^{\circ}$ C

Tab. 1. Copolymerisationen mit N-Vinyl-N-methylacetamid (VIMA) als M_1 zur Berechnung von e_1 , Q_1 von VIMA aus experimentellen Copolymerisationsparametern r_1 , r_2 mit verschiedenen Comonomeren M_2

M ₁	M ₂	<i>r</i> ₁	<i>r</i> ₂	e_2	Q_2	e_1	Q_1	Bearbeiter
VIMA	Vinylacetat	0,74	0,51	-0,22	0,026	-1,22	0,053)
VIMA	Methyl- methacrylat	0,008	4,98	0,40	0,74	-1,60	0,068	
VIMA	Methyl- acrylat	0,005	0,94	0,60	0,42	-3,09	0,073	
VIMA	Vinylbutyl- ether) 10,6	0,33	-1,20 -1,522	0,087 0,013	_	(0,264) 0,039	Krappitz ⁷⁾
VIMA	Vinyldo- decylether	6,02	0,027	-0,74	0,033	-2,1	(0,45)	
VIMA	Vinylocta- decylether	82,3	0,000	-0,63	0,069	_	_	J
VIMA	Acrylsäure- ester mit fluorierter Esterkette ^{a)}	0,002	0,37	_	_	_	_	diese Arbeit
VIMA	Vinylacetat	0,93	0,49	-0,22	0,026	-1,11	0,062	J
				Mittelwerte:		-1,8	0,06	

a) $H_2C=CH-CO-O-(CH_2)_2-(CF_2)_{5-11}-CF_3$.

Mit diesen Q-e-Werten können die Copolymerisations-Parameter r_1 und r_2 auch für andere Monomerenpaare nach Alfrey und Price⁸⁾ rechnerisch abgeschätzt werden.

Da VIMA als ein wasserlösliches Monomeres ein ebenfalls wasserlösliches Polymeres bildet, ist dieses Monomere zur Herstellung von wasserlöslichen bzw. hydrophil quellbaren Homo- und Copolymeren sowie zur Einführung von hydrophilen Gruppen auf den verschiedensten Anwendungsgebieten geeignet, wie z. B. bei der Oberflächenpfropfung von unpolaren Kunststoffen zur Verbesserung der Blutverträglichkeit gezeigt werden konnte¹⁾.

Unser Dank gilt Herrn Dr. *Duch* für die $M_{\rm w}$ -Bestimmungen mittels Lichtstreuung, Herrn Dr. *Neu* für die Hochreinigung des VIMA und dem *BMFT* für die Förderung des Vorhabens MSO 119.

- J. P. Fischer, P. Fuhge, K. Burg, N. Heimburger, Angew. Makromol. Chem. 105, 131 (1982)
- 2) M. L. Huggins, J. Am. Chem. Soc. 64, 2716 (1942)
- 3) G. Henrici-Olivé, S. Olivé, Fortschr. Hochpolym.-Forsch. 2, 496 (1961)
- 4) R. A. Gregg, F. R. Mayo, Discuss. Faraday Soc. 2, 328 (1947)
- 5) E. Trommsdorff, H. Köhle, P. Lagally, Makromol. Chem. 1, 169 (1947)
- 6) A. Chapiro, "Radiation Chemistry of Polymeric Systems", Interscience Publ. J. Wiley & Sons, New York, London 1962
- Werner Krappitz, Diplomarbeit im Fachbereich Physikalische Chemie der Philipps-Universität Marburg (1976); Publikation in Vorbereitung
- 8) T. Alfrey, C. C. Price, J. Polym. Sci. 2, 101 (1947)