Programme de colle n°3

Fonctions de la variable réelle à valeurs réelles

- 1) Domaine de définition, graphe d'une fonction.
- 2) Parité, périodicité, réduction du domaine d'étude.
- 3) Savoir, à partir du graphe de f, trouver ceux de $x \mapsto f(x) + a$ et $x \mapsto f(x+a)$.
- 4) Monotonie.
- 5) Majorant, maximum d'une fonction.
- 6) Bijection pour des fonctions de la variable réelle à valeurs réelles.
- 7) Fonction réciproque.
- 8) Formules de dérivation (notamment pour $f \circ g$, pour f^{-1}).
- 9) Dérivées successives.
- 10) Asymptote verticale, horizontale.
- 11) Fonction puissance $x \mapsto x^{\alpha}$ pour $\alpha \in \mathbb{R}$ et x > 0.
- 12) Résolution d'inéquations, recherche d'extrema, recherche du nombre de solutions d'une équation par l'étude de fonctions.

Trigonométrie

- 1) Fonction cosinus, sinus, tangente.
- 2) Formule de duplication, linéarisation, factorisation.
- 3) Équations et inéquations trigonométriques.

Questions de cours

- 1) Preuve de l'inégalité triangulaire : $\forall (x,y) \in \mathbb{R}^2$, $|x+y| \leq |x| + |y|$.
- 2) Soient $f:I\to J$ une fonction croissante et $g:J\to\mathbb{R}$ une fonction décroissante. Montrer que $g\circ f$ est décroissante.
- 3) Montrer que la fonction définie par $f(x) = \frac{2x+1}{3x-1}$ réalise une bijection entre deux ensembles à préciser et déterminer sa bijection réciproque.
- 4) Soit f une fonction strictement croissante sur $I \subset \mathbb{R}$. Montrer que f réalise une bijection de I dans J = f(I).
- 5) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $\begin{cases} u_0=0, \\ u_{n+1}=2u_n+1. \end{cases}$ Montrer que : $\forall n\in\mathbb{N},\ u_n=2^n-1.$
- 6) Montrer que : $\forall x \in \mathbb{R}, \ e^x \ge x + 1$. En déduire que $\lim_{x \to +\infty} \frac{x}{e^x} = 0$.
- 7) Factoriser $\cos x + \sqrt{3}\sin x$.
- 8) Réduction du domaine d'étude de $f(x) = \sin(4x)$ et $g(x) = \cos(\frac{x}{2})$. Expliquer comment obtenir le reste du graphe.
- 9) Soit $a \not\equiv \pi$ [2 π]. On pose $t = \tan(\frac{a}{2})$. Montrer que $\cos a = \frac{1-t^2}{1+t^2}$ et donner les formules analogues pour $\sin a$ et $\tan a$.

C. Darreye