STARTING MATERIALS

$$\begin{array}{c|c}
O & & & & \\
\hline
R^{1}OC & & & & \\
\hline
 & & & \\
\hline
 & & & \\
O & & & \\
\hline
 & & & \\
R^{1}OC & & & \\
\hline
 & & & \\
\hline
 & & & \\
O & & & \\
\hline
 & & & \\$$

EXAMPLE

Dihoxycarbonyl-3-pyrrolidone (100 g) was dissolved in MeOH (300 ml) and a soln, of sodium borohydride (6.02 g) in $\rm H_2O$ (40 ml) was added dropwise at $\rm 0^{\circ}C$ over 30 mins., then stirred for 15 mins. Conc. HCl (14.3 ml), satd. NaCl soin. (250 ml) and $CH_{\chi}Cl_{\chi}$ (300 ml) were added to the reaction mixt. The organic layer was fractionated, washed with satd, aq. NaCl soln. (100 ml), dried over anhydrous MgSO.. and the solvent was distilled off under reduced press. to give 1-ethoxycarbonyl-3-hydroxypyrroll-dine (100 g, 98.7% yield) as an oil.

Followed by prepn. of: 1-et hoxycarbonyl-3-mesyloxypyrrolidine; 1-ethoxycarbonyl-3-phthalimidopyrrolidine; 3-aminopyrrolldine.dihydrochloride; and finally 3-aminopyrrolidine (III). (4ppW69WSDwgNo0/0).

J61057579-A

86-116676/18 B03 KANT-29,08,84 *J6 1057-580-A

KANTOH ISHI SEIYAKU 29.08.84-JP-180212 (24.03.86) A61k-31/39 C07d-205/08 C07d-235 C07d-403/04 C07d-405/04

New 2-azetidinone derivs. - with carcinostatic and antibacterial activity

C86-049841

2-Azetidinone deriva. of formula (1) are new:

R₁ = furyl or methoxyphenyl:

R₂ = benzimidazolyl, <u>phenyl</u>, methoxyphenyl, methoxy-carbonylphenyl or ethoxycarbonylphenyl; and

R, = H, phenyl or chloro.

(I) have excellent physiological activity as carcinostatic. immuno-controlling and antibacterial agents and are useful as pharmaceuticals.

8(6-D5, 7-D1, 12-A1, 12-D2, 12-G7)

30173

PREPARATION

$$R_1 - CH = N - R_2$$
 (II) \cdot $R_3 = C = C = 0$ (III)

STARTING MATERIALS

(III) is a reactive and unstable cpd. it is pref. prepd. in situ by treating an acetyl chloride deriv. of formula (V) with an organic amine (IV) (pref. 1-3C alkylamine).

$$R_{1} - C - C - C - C \longrightarrow (III)$$

$$C1 \quad C1 \qquad (V)$$

J61057580-A.

EXAMPLE

A soin. contg. chloroscetylchloride in anhydrous benzene (10 ml) was added dropwise to a soln. contg. (II: R_1 = furyl, R_2 = phenyl) (0.01 mol.) and Et,N (1.52 g. 0.015 mol.) in anhydrous benzene (50 mi) at 5-10 °C with attrring. The reaction mixt, was allowed to rise to room temp, and stirred for 2 hrs. The Et, N. HCl was removed and the solvent distilled off under reduced press. The residue was chromatographed (silica gel: eluent, hexane-EtOAc) (5:1-50:1)) to give (I: $R_1=2$ -furyl, $R_2=$ phenyl, R, = 11). (8ppW69WSDwgNo0/0).

BEST AVAILABLE COPY

J61057580- A