DSA5101 Lecture 4 Visual Display of Quant. information

LX Zhang
Department of Mathematics
National University of Singapore

Part I: What is Information Visualization

Information visualization

- -- Visual representations of abstract data to reinforce human cognition
- -- Data can be either numerical or non-numerical

Scientific visualization

- -- Visual display of spatial data (associated with scientific processes), such as solar system, weather forecast
- (Tamara Munzner) It's information visualization if the spatial representation is chosen, whereas it's sci. visualization if the spatial representation is given.

- Why is visualization important?
 - -- Need an good way to understand a big data
 - -- The human visual system is the highest bandwidth channel to the human brain.

	I	1	п	1	III		v	1	l n
x	Y	x	Y	x	Y	x	Y	30	
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58		
8.0	6.95	8.0	8,14	8.0	6.77	8.0	5.76	,	
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	•	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84		
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	16 20	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	→	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25		
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12,50	_ ш •	IV
12.0		12.0	9.13	12.0	8.15	8.0	5,56		
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91		
5.0	5,68	5.0	4.74	5.0	5.73	8.0	6.89		

E Tufte, The book, 1983

**EECHA EDITION*

The Visual Display of Quantitative Information

EDWARD R. TUFTE

- Goals of information visualization
 - -- Effective
 - -- Clarity
 - -- Integrity

Political polarization

- Dots for each representative,
- Edges connecting pairs of representatives who vote together a given number of times

Demonstration of bipartisanship in USA parliament (Clio Andris et al. 2015)

1. Approach to visualization

- Identify the types of data attributes
- (Data encoding) Map data attributes to visual attributes
 - -- Which visual attribute is the most effective for each data type?

Data Types: nominal, ordinal and quantitative

- Nominal (labels) (N)
 - -- Names, such as index, fruits' names
 - -- eq, neq
- Ordinal (O)
 - -- Quality (ranks, grades)
 - -- eq, neq, >

- Quantitative (**Q**): interval (zero arbitrary)
 - -- Date, geographical location (latitude, longitude & elevation)
 - -- eq, neq, >, (difference)
 - -- span, range
- Quantitative: ratio (zero fixed)
 - -- Physical measurement: length, mass, temp, time (hrs).
 - -- Counts, frequency
 - -- eq, neq, >, -, / (ratio)
 - -- span, range, ratios, proportions

```
 \left\{ \begin{array}{l} \text{Qualitative} \\ \text{Ordinal} \\ \\ \text{Quantitative} \end{array} \right. \left\{ \begin{array}{l} \text{interval} \\ \text{ratio} \end{array} \right.
```

Bertin's Visual Attributes

- Position
- Size
- Value
- Texture
- Color
- Orientation
- Shape

Texture: the feel, appearance, or consistency of a surface or substance

Bertin, Semiology of Graphics, 1967, 1983

Bertins' recommendation for mapping data types to visual attributes

Value is the degree of a color's lightness and describes the luminous intensity of a color

Quiz Identify what types of data and mapping in the following visualizations

Create Citation Rep Showing 384 records PUBLICATION NAME: (journal of behavioral addictions) AND for DOCUMENT TYPES: (Article OR Review) **DOCUMENT TYPES:** (Article OR Review) ♣ Download Visualization Treemap $\overline{}$ Number of results 10 $\overline{}$ Hide 10 KIM DJ 51 13 BILLIEUX J **GRIFFITHS MD** FERNANDEZ-ARANDA F 11 HING N 8 CHOLJS JIMENEZ-MURCIA S 22 POTENZA MN 11 KING DL BRAND M

Two variables can map to points

-- Scatterplots, heat maps, Third variable must use

-- Color, size, shape, ...

Chart Suggestions—A Thought-Starter

Multidimensional data

How many variables can be depicted in an image?

"With up to three rows, a data table can be constructed directly as a single image ... However, an image has only three dimensions. And this barrier is impassible."

Bertin

			_
Α	В	С	
	A	A B	A B C

Part 2. Effective Visualization

- 70% of body's sense receptors reside in our eyes
- Metaphors to describe understanding often refer to vision ("I see," "insight," "illumination")
- "The eye and the visual cortex of the brain form a massively parallel processor that provides the highest-bandwidth channel into human cognitive centers." – Colin Ware, Information Visualization, 2004
- Important to understand how visual perception works in order to effectively design visualizations

[slide adapted from Marti Hearst]

Eyes vs. Cameras

- Cameras
 - Good optics
 - Single focus, white balance, exposure
 - "Full image capture"
- Eyes
 - Relatively poor optics
 - Constantly scanning (saccades)
 - Constantly adjusting focus
 - Constantly adapting (white balance, exposure)
 - Mental reconstruction of image (sort of)

[http://www.usd.edu/psyc301/ChangeBlindness.htm]

How to Use Perceptual Properties

 Information visualization should cause what is meaningful to stand out

Where are distinguished regions?

How many 5's?

How many 5's?

Cockpit dials

Detection of a slanted line in a sea of vertical lines is preattentive

Preattentive Processing

- A limited set of visual properties are processed preattentively
 - (without need for focusing attention).
- This is important for design of visualizations
 - What can be perceived immediately?
 - Which properties are good discriminators?
 - What can mislead viewers?

Conjunction of attributes

 Conjunction target generally cannot be detected preattentively (red circle in sea of red square and blue circle distractors)

- Estimating length is easy
- Estimating area and volume is not that easy

Stevens' Power Law

Experimental results for perceptual estimation:

Length .9 to 1.1

Area .6 to .9 (underestimation)

Volume .5 to .8 (even more underestimation)

Color is relative

Visual perception is not just camera work

Perceptual properties

Mackinlay, A Presention Tool, 1986

Effective Visual Encoding

- Mapping data to visual attributes:
- Challenge: Pick the best encoding (or mapping) from many possibilities. Consider:
- Importance Ordering: Encode the most important information in the most perceptually accurate way
- Expressiveness: Depict all the data, and only the data
- Consistency: The properties of the image (visual attributes) should match the properties of the data

Adapted from Mackinlay, APT (A Presentation Tool), 1986

3. Are your figures good?

- First, consider the purpose of the visualization and who the intended audience is.
- Then, ascertain your initial reaction.
- Then, examine the visualization in detail.
- Then, answer questions like the following.

Marti Hearst

11 Overarching Questions (M. Hearst)

- A. Is the design visually appealing/pleasing?
- B. Is it immediately understandable?
 If not, how about after a short period of exam.?
- C. Does it provide insight or understanding that was not obtainable with the original text/table?
- Does it provide insight or understanding better than some alternative visualization would?
 Or does it require excessive cognitive effort?
 What kind of visualization might have been better?
- E. Does the visualization reveal trends, patterns, gaps, and/or outliers? Can the viewer make effective comparisons?

- F. Does the visualization successfully highlight important information, while providing context for that information?
- G. Does it distort the information? If it transforms the information in some way, is this misleading or helpfully simplifying?
- H. Does it omit important information?
- I. Is it memorable?
- J. Does it use visual components properly?
- **K.** Does it use labels and legends appropriately?

Edward Tufte's Criteria for Good Visualizations

- Maximize data-ink ratio
- Minimize lie factor
- Minimize chartjunk
- Use proper scales and clear labelling

Is this an effective visual representation?

- Shade ink is redundant
- Labelling is not proper
- Bar length for countries indicating an ordering among countries.

Design criteria: Effectiveness

- Faster to interpret
- More distinctions
- Fewer errors

Data-Ink Ratio = $\frac{\text{Data ink}}{\text{Total ink used in graphic}}$

(size of effect in graphic) / (size of effect in data)

- The properties of the image (visual attributes) should match the properties of the data
- E.g. don't map onedimensional data to two-or three- dimensional representations!

[Tufte, Edward R (1983), The Visual Display of Quantitative Information, Graphics Press,

Always start bar graphs at zero.

Always properly label your axes.

Use continuous scales: linear or labelled!

Aspect Ratios and Lie Factors

66.6% CORRELATION

Chartjunk

	Under 25 (%)	25 or over (%)
1972	72	28
1973	70.8	29.2
1974	67.2	32.8
1975	66.4	33.6
1976	67	33

Can you Simplify this Plot?

Histograms: Bin Size

Summary

- The knowledge of visual perception can aid the design process
- Understanding low-level mechanisms of the visual processing systems can result in improved displays.

Stephen Few http://www.perceptualedge.com/