This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (UMPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 14/47, C12N 15/12

(11) International Publication Number:

WO 98/14475

(43) International Publication Date:

9 April 1998 (09.04.98)

(21) International Application Number:

PCT/US97/17433

A1

(22) International Filing Date:

29 September 1997 (29.09.97)

(30) Priority Data:

08/720,484

30 September 1996 (30.09.96)

(71) Applicant: GENENTECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080-4990 (US).

(72) Inventors: DE SAUVAGE, Frederic, J.; 166 Beach Park Boulevard, Foster City, CA 94404 (US). ROSENTHAL, Arnon; 1064 Glacier Avenue, Pacifica, CA 94044 (US). STONE, Donna, M.; 685 Sierra Point Road, Brisbane, CA 94005 (US).

(74) Agents: SVOBODA, Craig, G. et al.; Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: VERTEBRATE SMOOTHENED PROTEINS

(57) Abstract

Novel vertebrate homologues of Smoothened, including human and rat Smoothened, are provided. Compositions including vertebrate Smoothened chimeras, nucleic acid encoding vertebrate Smoothened, and antibodies to vertebrate Smoothened, are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΛL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Ammenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajíkistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	H.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland `	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Кутдуzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
КE	Estonia	LR	Liberia	SG	Singapore		

Vertebrate Smoothened Proteins

FIELD OF THE INVENTION

The present invention relates generally to novel Smoothened proteins which interact with Hedgehog and Patched signalling molecules involved in cell proliferation and differentiation. In particular, the invention relates to newly identified and isolated vertebrate Smoothened proteins and DNA encoding the same, including rat and human Smoothened, and to various modified forms of these proteins, to vertebrate Smoothened antibodies, and to various uses thereof.

BACKGROUND OF THE INVENTION

15

20

25

30

Development of multicellular organisms depends, at least in part, on mechanisms which specify, direct or maintain positional information to pattern cells, tissues, or organs. Various secreted signalling molecules, such as members of the transforming growth factor-beta ("TGF-beta"), Wnt, fibroblast growth factor ("FGF"), and hedgehog families, have been associated with patterning activity of different cells and structures in Drosophila as well as in vertebrates [Perrimon, Cell, 80:517-520 (1995)].

Studies of Drosophila embryos have revealed that, at cellular blastoderm and later stages of development, information is maintained across cell borders by signal transduction pathways. Such pathways are believed to be initiated by extracellular signals like Wingless ("Wg") and Hedgehog ("Hh"). The extracellular signal, Hh, has been shown to control expression of TGF-beta, Wnt and FGF signalling molecules, and initiate both short-range and long-range signalling actions. A short-range action of Hh in Drosophila, for example, is found in the ventral epidermis, where Hh is associated with causing adjacent cells to maintain wingless (wg) expression [Perrimon, Cell, 76:781-784 (1984)]. In the vertebrate central nervous system, for example. Sonic hedgehog ("SHh"; a secreted vertebrate homologue of dHh) is expressed in notocord cells and is associated with inducing floor plate formation within the adjacent neural tube in a contact-dependent manner [Roelink et al., Cell, 76:761-775 (1994)]. Perrimon, Cell, 80:517-520 (1995) provide a general review of some of the long-range actions associated with Hh.

Studies of the Hh protein in Drosophila ("dHh") have shown that hh encodes a 46 kDa native protein that is cleaved into a 39 kDa form following signal sequence cleavage and subsequently cleaved into a 19 kDa amino-terminal form and a 26 kDa carboxy-terminal form [Lee et al., Science, 266:1528-1537 (1994)]. Lee et al. report that the 19 kDa and 26 kDa forms have different biochemical properties and are differentially distributed. DiNardo et al. and others have disclosed that the dHh protein triggers a signal transduction cascade that activates wg [DiNardo et al., Nature, 332:604-609 (1988); Hidalgo and Ingham, Development, 110:291-301 (1990); Ingham and Hidalgo, Development, 117:283-291 (1993)] and at least another segment polarity gene, patched (ptc) [Hidalgo and Ingham, supra; Tabata and Kornberg, Cell, 76:89-102 (1994)]. Properties and characteristics of dHh are also described in reviews by Ingham et al., Curr. Opin. Genet. Dev., 5:492-498 (1995) and Lumsden and Graham et al., Curr. Biol., 5:1347-1350 (1995). Properties and characteristics of the vertebrate homologue of dHh, Sonic hedgehog, are described by Echelard et al., Cell, 75:1417-1430 (1993); Krauss et al., Cell, 75:1431-1444 (1993); Riddle et al., Cell, 75:1401-1416 (1993); Johnson et al., Cell, 79:1165-1173 (1994); Fan et al., Cell, 81:457-465 (1995); Roberts et al., Development, 121:3163-3174 (1995); and Hynes et al., Cell, 80:95-101 (1995).

In Perrimon, Cell, 80:517-520 (1995), it was reported that the biochemical mechanisms and receptors by which signalling molecules like Wg and Hh regulate the activities, transcription, or both, of secondary signal transducers have generally not been well understood. In Drosophila, genetic evidence indicates that Frizzled ("Fz") functions to transmit and transduce polarity signals in epidermal cells during hair and bristle development. Fz rat homologues which have structural similarity with members of the G-protein-coupled receptor superfamily have been described by Chan et al., J. Biol. Chem., 267:25202-25207 (1992). Specifically, Chan et al. describe isolating two different cDNAs from a rat cell library, the first cDNA encoding a predicted 641 residue protein, Fz-1, having 46% homology with Drosophila Fz, and a second cDNA encoding a protein. Fz-2, of 570 amino acids that is 80% homologous with Fz-1. Chan et al. state that mammalian fz may constitute a gene family important for transduction and intercellular transmission of polarity information during tissue morphogenesis or in differentiated tissues. Recently, Bhanot et al. did describe the identification of a Drosophila gene. fritzled2 (Dfz2), and predicted Dfz2 protein, which can function as a Wg receptor in cultured cells [Bhanot et al., Nature, 382:225-230 (1996)]. Bhanot et al. disclose, however, that there is no in vivo evidence that shows Dfz2 is required for Wg signalling.

10

15

20

25

Although some evidence suggests that cellular responses to dHh are dependent on the transmembrane protein, smoothened (dSmo), [Nusslein-Volhard et al., Wilhelm Roux's Arch. Dev. Biol., 193:267-282 (1984); Jurgens et al., Wilhelm Roux's Arch. Dev. Biol., 193:283-295 (1984); Alcedo et al., Cell, 86:221-232 (July 26, 1996); van den Heuvel and Ingham, Nature, 382:547-551 (August 8, 1996)], and are negatively regulated by the transmembrane protein, "Patched" [(Hooper and Scott, Cell, 59:751-765 (1989); Nakano et al., Nature, 341:508-513 (1989); Hidalgo and Ingham, supra; Ingham et al., Nature, 353:184-187 (1991)], the receptors for Hh proteins have not previously been biochemically characterized. Various gene products, including the Patched protein, the transcription factor cubitus interruptus, the serine/threonine kinase "fused", and the gene products of Costal-2, smoothened (smo) and Suppressor of fused (Su(fu)), have been implicated as putative components of the Hh signalling pathway.

Prior studies in Drosophila led to the hypothesis that ptc encoded the Hh receptor [Ingham et al., Nature, 353:184-187 (1991)]. The activity of the ptc product, which is a multiple membrane spanning cell surface protein referred to as Patched [Hooper and Scott, supra], represses the wg and ptc genes and is antagonized by the Hh signal. Patched was proposed by Ingham et al. to be a constitutively active receptor which is inactivated by binding of Hh, thereby permitting transcription of Hh-responsive genes. As reported by Bejsovec and Wieschaus, Development, 119:501-517 (1993), however, Hh has effects in ptc null Drosophila embryos and thus cannot be the only Hh receptor. Accordingly, the role of Patched in Hh signalling has not been fully understood.

Goodrich et al. have isolated a murine patched gene [Goodrich et al., Genes Dev., 10:301-312 (1996)]. Human patched homologues have also been described in recently published literature. For instance, Hahn et al., Cell, 85:841-851 (1996) describe isolation of a human homolog of Drosophila ptc. The gene displays up to 67% sequence identity at the nucleotide level and 60% similarity at the amino acid level with the Drosophila gene [Hahn et al., supra]. Johnson et al. also provide a predicted amino acid sequence of a human Patched protein [Johnson et al., Science, 272:1668-1671 (1996)]. Johnson et al. disclose that the 1447 amino acid protein has 96% and 40% identity to mouse and Drosophila Patched, respectively. The human and

mouse data from these investigators suggest that patched is a single copy gene in mammals. According to Hahn et al., Cell, 85:841-851 (1996), analyses revealed the presence of three different 5' ends for their human pic gene. Hahn et al. postulate there may be at least three different forms of the Patched protein in mammalian cells: the ancestral form represented by the murine sequence, and the two human forms. Patched is further discussed in a recent review by Marigo et al., Development, 122:1225 (1996).

Studies in Drosophila have also led to the hypothesis that Smo could be a candidate receptor for Hh [Alcedo et al., supra; van den Heuvel and Ingham, supra]. The smoothened (smo) gene was identified as a segment polarity gene and initially named smooth [Nusslein-Volhard et al., supra]. Since that name already described another locus, though, the segment polarity gene was renamed smoothened [Lindsley and Zimm, "The Genome of Drosophila melanogaster," San Diego, CA:Academic Press (1992)]. As first reported by Nusslein-Volhard et al., supra, the smo gene is required for the maintenance of segmentation in Drosophila embryos.

Alcedo et al., <u>supra</u>, have recently described the cloning of the Drosophila <u>smoothened</u> gene [see also, van den Heuvel and Ingham, <u>supra</u>]. Alcedo et al. report that hydropathy analysis predicts that the putative Smo protein is an integral memorane protein with seven membrane spanning alpha helices, a hydrophobic segment near the N-terminus, and a hydrophilic C-terminal tail. Thus, Smo may belong to the serpentine receptor family, whose members are all coupled to G proteins. Alcedo et al., <u>supra</u>, also report that <u>smo</u> is necessary for Hh signalling and that it acts downstream of *hh* and *ptc*.

As discussed in Pennisi. Science, 272:1583-1584 (1996), certain development genes are believed to play some role in cancer because they control cell growth and specialization. Recent studies suggest that patched is a tumor suppressor, or a gene whose loss or inactivation contributes to the excessive growth of cancer cells. Specifically, Hahn et al. and other investigators have found that patched is mutated in some common forms of basal cell carcinomas in humans [Hahn et al., Cell, 85:841-851 (1996); Johnson et al., supra; Gailani et al., in Letters. Nature Genetics, 13:September, 1996]. Hahn et al. report that alterations predicted to inactivate the patched gene product were found in six unrelated patients having basal cell nevus syndrome ("BCNS"), a familial complex of cancers and developmental abnormalities. Hahn et al. also report that the ptc pathway has been implicated in tumorigenesis by the cloning of the pancreatic tumor suppressor gene. DPC4. Vertebrate homologues of two other Drosophila segment polarity genes, the murine mammary Wntl [Rijsewijk et al., Cell, 50:649 (1987)] and the human glioblastoma GLI [Kinzler et al., Science, 236:70 (1987)], have also been implicated in cancer.

20

25

30

35

SUMMARY OF THE INVENTION

Applicants have identified cDNA clones that encode novel vertebrate Smoothened proteins, designated herein as "vSmo." In particular, cDNA clones encoding rat Smoothened and human Smoothened have been identified. The vSmo proteins of the invention have surprisingly been found to be co-expressed with Patched proteins and to form physical complexes with Patched. Applicants also discovered that the vSmo alone did not bind Sonic hedgehog but that vertebrate Patched homologues did bind Sonic hedgehog with relatively high affinity. It is believed that Sonic hedgehog may mediate its biological activities through a multi-subunit receptor in which vSmo is a signalling component and Patched is a ligand binding component, as well as a ligand regulated suppressor of vSmo. Accordingly, without being limited to any one theory, pathological

conditions, such as basal cell carcinoma, associated with inactivated (or mutated) Patched may be the result of constitutive activity of vSmo or vSmo signalling following from negative regulation by Patched.

In one embodiment, the invention provides isolated vertebrate Smoothened. In particular, the invention provides isolated native sequence vertebrate Smoothened, which in one embodiment, includes an amino acid sequence comprising residues 1 to 793 of Figure 1 (SEQ ID NO:2). The invention also provides isolated native sequence vertebrate Smoothened which includes an amino acid sequence comprising residues 1 to 787 of Figure 4 (SEQ ID NO:4). In other embodiments, the isolated vertebrate Smoothened comprises at least about 80% identity with native sequence vertebrate Smoothened comprising residues 1 to 787 of Figure 4 (SEQ ID NO:4).

In another embodiment, the invention provides chimeric molecules comprising vertebrate Smoothened fused to a heterologous polypeptide or amino acid sequence. An example of such a chimeric molecule comprises a vertebrate Smoothened fused to an epitope tag sequence.

10

15

25

30

In another embodiment, the invention provides an isolated nucleic acid molecule encoding vertebrate Smoothened. In one aspect, the nucleic acid molecule is RNA or DNA that encodes a vertebrate Smoothened, or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under stringent conditions. In one embodiment, the nucleic acid sequence is selected from:

- (a) the coding region of the nucleic acid sequence of Figure 1 (SEQ ID NO:1) that codes for residue 1 to residue 793 (i.e., nucleotides 450-452 through 2826-2828), inclusive:
- (b) the coding region of the nucleic acid sequence of Figure 4 (SEQ ID NO:3) that codes for residue 1 to residue 787 (i.e., nucleotides 13-15 through 2371-2373), inclusive; or
 - (c) a sequence corresponding to the sequence of (a) or (b) within the scope of degeneracy of the genetic code.

In a further embodiment, the invention provides a vector comprising the nucleic acid molecule encoding the vertebrate Smoothened. A host cell comprising the vector or the nucleic acid molecule is also provided. A method of producing vertebrate Smoothened is further provided.

In another embodiment, the invention provides an antibody which specifically binds to vertebrate Smoothened. The antibody may be an agonistic, antagonistic or neutralizing antibody.

In another embodiment, the invention provides non-human, transgenic or knock-out animals.

Another embodiment of the invention provides articles of manufacture and kits that include vertebrate Smoothened or vertebrate Smoothened antibodies.

A further embodiment of the invention provides protein complexes comprising vertebrate Smoothened protein and vertebrate Patched protein. In one embodiment the complexes further include vertebrate Hedgehog protein. The invention also provides vertebrate Patched which binds to vertebrate Smoothened. Optionally, the vertebrate Patched comprises a sequence which is a derivative of or fragment of a native sequence vertebrate Patched.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the nucleotide (SEQ ID NO:1) and deduced amino acid sequence (SEQ ID NO:2) of native sequence rat Smoothened.

Figure 2 shows the primary structure of rat Smo (rSmo) and Drosophila Smo (dsmo). The signal peptide sequences are underlined, conserved amino acids are boxed, cysteines are marked with asterisks, potential glycosylation sites are marked with dashed boxes, and the seven hydrophobic transmembrane domains are shaded.

Figure 3 shows tissue distribution of SHH, Smo and Patched in embryonic and adult rat tissues. In situ hybridization of SHH (left column); Smo (middle column) and Patched (right column, not including insets) to rat tissues. Row E15 Sag, sagittal sections through E15 rat embryos. Rows E9. E10, E12, and E15, coronal sections through E9 neural folds. E10 neural tube and somites, E12 and E15 neural tube. Insets in Row E12 show sections through forelimb bud of E12 rat embryos. Legend- ht=heart; sk=skin; bl=bladder: ts=testes; lu=lung; to=tongue; vtc=vertebral column: nf=neural fold: nc=notocord: so=somite; fp=floor plate; vh=ventral horn; vz=ventricular zone: cm=cardiac mesoderm and vm=ventral midbrain.

Figure 4 shows the nucleotide (SEQ ID NO:3) and deduced amino acid sequence (SEQ ID NO:4) for native sequence human Smoothened.

Figure 5 shows the primary structure of human Smo (hSmo) and rat Smo (rat.Smo) and homology to Drosophila Smo (dros.smo). Conserved amino acids are boxed.

Figure 6 illustrates the results of binding and co-immunoprecipitation assays which show SHH-N binds to mPatched but not to rSmo. Staining of cells expressing the Flag tagged rSmo (a and b) or Myc tagged mPatched (c, d, and e) with (a) Flag (Smo) antibody; (c) Myc (mPatched) antibody; (b and d) IgG-SHH-N: or (e) Flag tagged SHH-N. (f) Co-immunoprecipitation of epitope tagged mPatched (Patched) or epitope tagged rSmo (Smo) with IgG-SHH-N. (g) cross-linking of ¹²⁵I-SHH-N (¹²⁵I-SHH) to cells expressing mPatched or rSmo in the absence or presence of unlabeled SHH-N. (h) Co-immunoprecipitation of ¹²⁵I-SHH by an epitope tagged mPatched (Patched) or an epitope tagged rSmo (Smo). (i) competition binding of ¹²⁵I-SHH to cells expressing mPatched or mPatched plus rSmo.

Figure 7 illustrates (a) Double immunohistochemical staining of Patched (red) and Smo (green) in transfected cells. Yellow indicates co-expression of the two proteins. (b and c) Detection of Patched-Smo Complex by immunoprecipitation. (b) immunoprecipitation with antibodies to the epitope tagged Patched and analysis on a Western blot with antibodies to epitope tagged Smo. (c) immunoprecipitation with antibodies to the epitope tagged Smo and analysis on a Western blot with antibodies to epitope tagged Patched. (d and e) co-immunoprecipitation of ¹²⁵I-SHH bound to cells expressing both Smo and Patched with antibodies to either Smo (d) or Patched (e) epitope tags.

Figure 8 shows a Western blot from a SDS-gel depicting the expression level of a wildtype (WT) and mutated Patched (mutant).

Figure 9 shows a model describing the putative SHH receptor and its proposed activation by SHH. As shown in the model, Patched is a ligand binding component and vSmo is a signalling component in a multi-subunit SHH receptor.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. <u>Definitions</u>

5

10

15

20

25

30

35

The terms "vertebrate Smoothened", "vertebrate Smoothened protein" and "vSmo" when used herein encompass native sequence vertebrate Smoothened and vertebrate Smoothened variants (each of

which is defined herein). These terms encompass Smoothened from a variety of animals classified as vertebrates, including mammals. In a preferred embodiment, the vertebrate Smoothened is rat Smoothened (rSmo) or human Smoothened (hSmo). The vertebrate Smoothened may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods.

5

15

20

25

30

A "native sequence vertebrate Smoothened" comprises a protein having the same amino acid sequence as a vertebrate Smoothened derived from nature. Thus, a native sequence vertebrate Smoothened can have the amino acid sequence of naturally occurring human Smoothened, rat Smoothened, or Smoothened from any other vertebrate. Such native sequence vertebrate Smoothened can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence vertebrate Smoothened" specifically encompasses naturally-occurring truncated forms of the vertebrate Smoothened, naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the vertebrate Smoothened. In one embodiment of the invention, the native sequence vertebrate Smoothened is a mature native sequence Smoothened comprising the amino acid sequence of SEQ ID NO:4. In another embodiment of the invention, the native sequence Smoothened comprising the amino acid sequence of SEQ ID NO:4. In another embodiment of the invention, the native sequence Smoothened comprising the amino acid sequence of SEQ ID NO:4.

"Vertebrate Smoothened variant" means a vertebrate Smoothened as defined below having less than 100% sequence identity with vertebrate Smoothened having the deduced amino acid sequence shown in SEQ ID NO:4 for human Smoothened or SEQ ID NO:2 for rat Smoothened. Such vertebrate Smoothened variants include, for instance, vertebrate Smoothened proteins wherein one or more amino acid residues are added at the N- or C-terminus of, or within, the sequences of SEQ ID NO:4 or SEQ ID NO:2; wherein about one to thirty amino acid residues are deleted, or optionally substituted by one or more amino acid residues; and derivatives thereof, wherein an amino acid residue has been covalently modified so that the resulting product has a non-naturally occurring amino acid. Ordinarily, a vertebrate Smoothened variant will have at least about 80% sequence identity, more preferably at least about 90% sequence identity, and even more preferably at least about 95% sequence identity with the sequence of SEQ ID NO:4 or SEQ ID NO:2.

The term "epitope tag" when used herein refers to a tag polypeptide having enough residues to provide an epitope against which an antibody thereagainst can be made, yet is short enough such that it does not interfere with activity of the vertebrate Smoothened. The tag polypeptide preferably also is fairly unique so that the antibody thereagainst does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues).

"Isolated," when used to describe the various proteins disclosed herein, means protein that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the protein, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous substances. In preferred embodiments, the protein will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated protein includes protein in situ within recombinant cells, since at least one component of

the vSmo natural environment will not be present. Ordinarily, however, isolated protein will be prepared by at least one purification step.

An "isolated" vSmo nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the vSmo nucleic acid. An isolated vSmo nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated vSmo nucleic acid molecules therefore are distinguished from the vSmo nucleic acid molecule as it exists in natural cells. However, an isolated vSmo nucleic acid molecule includes vSmo nucleic acid molecules contained in cells that ordinarily express vSmo where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

10

15

20

25

35

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

The term "antibody" is used in the broadest sense and specifically covers single anti-vSmo monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies) and anti-vSmo antibody compositions with polyepitopic specificity.

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies. *i.e.*, the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.

The monoclonal antibodies herein include hybrid and recombinant antibodies produced by splicing a variable (including hypervariable) domain of an anti-vSmo antibody with a constant domain (e.g. "humanized" antibodies), or a light chain with a heavy chain, or a chain from one species with a chain from another species, or fusions with heterologous proteins, regardless of species of origin or immunoglobulin class or subclass designation, as well as antibody fragments (e.g., Fab, F(ab')₂, and Fv), so long as they exhibit the desired activity. See, e.g. U.S. Pat. No. 4,816,567 and Mage et al., in Monoclonal Antibody Production Techniques and Applications, pp.79-97 (Marcel Dekker, Inc.: New York, 1987).

Thus, the modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, Nature, 256:495 (1975), or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816.567. The "monoclonal antibodies" may also be isolated from phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990), for example.

"Humanized" forms of non-human (e.g. murine) antibodies are specific chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigenbinding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, the humanized antibody may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and optimize antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin.

The term "vertebrate" as used herein refers to any animal classified as a vertebrate including certain classes of fish, reptiles, birds, and mammals. The term "mammal" as used herein refers to any animal classified as a mammal, including humans, cows, rats, mice, horses, dogs and cats.

II. Modes For Carrying Out The Invention

15

20

25

30

35

The present invention is based on the discovery of vertebrate homologues of Smoothened. In particular, Applicants have identified and isolated human and rat Smoothened. The properties and characteristics of human and rat Smoothened are described in further detail in the Examples below. Based upon the properties and characteristics of human and rat Smoothened disclosed herein, it is Applicants' present belief that vertebrate Smoothened is a signalling component in a multi-subunit Hedgehog (particularly Sonic Hedgehog "SHH") receptor.

A description follows as to how vertebrate Smoothened may be prepared.

A. <u>Preparation of vSmo</u>

Techniques suitable for the production of vSmo are well known in the art and include isolating vSmo from an endogenous source of the polypeptide, peptide synthesis (using a peptide synthesizer)

and recombinant techniques (or any combination of these techniques). The description below relates primarily to production of vSmo by culturing cells transformed or transfected with a vector containing vSmo nucleic acid. It is of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare vSmo.

1. Isolation of DNA Encoding vSmo

5

20

25

30

The DNA encoding vSmo may be obtained from any cDNA library prepared from tissue believed to possess the vSmo mRNA and to express it at a detectable level. Accordingly, human Smo DNA can be conveniently obtained from a cDNA library prepared from human tissues, such as the library of human embryonic lung cDNA described in Example 3. Rat Smo DNA can be conveniently obtained from a cDNA library prepared from rat tissues, such as described in Example 1. The vSmo-encoding gene may also be obtained from a genomic library or by oligonucleotide synthesis.

Libraries can be screened with probes (such as antibodies to the vSmo or oligonucleotides or polypeptides as described in the Examples) designed to identify the gene of interest or the protein encoded by it. The probes are preferably labeled such that they can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ³²P-labeled ATP, biotinylation or enzyme labeling. Screening the cDNA or genomic library with a selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding vSmo is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

Nucleic acid having all the protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequences disclosed herein, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., <u>supra</u>, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

vSmo variants can be prepared by introducing appropriate nucleotide changes into the vSmo DNA, or by synthesis of the desired vSmo polypeptide. Those skilled in the art will appreciate that amino acid changes (compared to native sequence vSmo) may alter post-translational processes of the vSmo, such as changing the number or position of glycosylation sites.

Variations in the native sequence vSmo can be made using any of the techniques and guidelines for conservative and non-conservative mutations set forth in U.S. Pat. No. 5.364.934. These include oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis.

2. Insertion of Nucleic Acid into A Replicable Vector

The nucleic acid (e.g., cDNA or genomic DNA) encoding vSmo may be inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence, each of which is described below.

(i) Signal Sequence Component

The vSmo may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous amino acid sequence or polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the vSmo DNA that is inserted into the vector. The heterologous signal sequence selected preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell.

(ii) Origin of Replication Component

10

15

20

25

30

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses.

Most expression vectors are "shuttle" vectors, *i.e.*, they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in *E. coli* and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

DNA may also be amplified by insertion into the host genome. This is readily accomplished using *Bacillus* species as hosts, for example, by including in the vector a DNA sequence that is complementary to a sequence found in *Bacillus* genomic DNA. Transfection of *Bacillus* with this vector results in homologous recombination with the genome and insertion of vSmo DNA.

(iii) Selection Gene Component

Expression and cloning vectors typically contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.

One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin [Southern et al., J. Molec. Appl. Genet., 1:327 (1982)], mycophenolic acid (Mulligan et al., Science, 209:1422 (1980)] or hygromycin [Sugden et al., Mol. Cell. Biol., 5:410-413 (1985)]. The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid), or hygromycin, respectively.

Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the vSmo nucleic acid, such as DHFR or thymidine kinase. The mammalian cell transformants are placed under selection pressure that only the transformants are uniquely

adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes vSmo. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells.

Cells transformed with the DHFR selection gene may first be identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>77</u>:4216 (1980). The transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding vSmo.

(iv) Promoter Component

15

20

25

30

35

Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the vSmo nucleic acid sequence. Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequence, such as the vSmo nucleic acid sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to vSmo encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector.

Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., <u>Nature, 275</u>:615 (1978); Goeddel et al., <u>Nature, 281</u>:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, <u>Nucleic Acids Res., 8</u>:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>80</u>:21-25 (1983)].

Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., <u>J. Biol. Chem.</u>, <u>255</u>:2073 (1980)] or other glycolytic enzymes [Hess et al., <u>J. Adv. Enzyme Reg.</u>, <u>7</u>:149 (1968); Holland, <u>Biochemistry</u>, <u>17</u>:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase,

phosphogiucose isomerase, and glucokinase. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.

vSmo transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2.211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter.

The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication [Fiers et al., Nature, 273:113 (1978); Mulligan and Berg, Science, 209:1422-1427 (1980); Pavlakis et al., Proc. Natl. Acad. Sci. USA, 78:7398-7402 (1981)]. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment [Greenaway et al., Gene, 18:355-360 (1982)]. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Patent No. 4,419.446. A modification of this system is described in U.S. Patent No. 4,601,978 [See also Gray et al., Nature, 295:503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells; Reyes et al., Nature, 297:598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus; Canaani and Berg, Proc. Natl. Acad. Sci. USA 79:5166-5170 (1982) on expression of the human interferon β1 gene in cultured mouse and rabbit cells; and Gorman et al., Proc. Natl. Acad. Sci. USA, 79:6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells; HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter].

(v) Enhancer Element Component

15

25

35

Transcription of a DNA encoding the vSmo by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5' [Laimins et al., <u>Proc. Natl. Acad. Sci. USA, 78</u>:993 (1981]) and 3' [Lusky et al., <u>Mol. Cell Bio., 3</u>:1108 (1983]) to the transcription unit, within an intron [Banerji et al., <u>Cell, 33</u>:729 (1983)], as well as within the coding sequence itself [Osborne et al., <u>Mol. Cell Bio., 4</u>:1293 (1984)]. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, <u>Nature, 297:17-18 (1982)</u> on enhancing elements for activation of eukaryotic promoters.

(vi) Transcription Termination Component

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also typically contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain

nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding vSmo.

(vii) Construction and Analysis of Vectors

Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required.

For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures can be used to transform *E. coli* K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing et al., Nucleic Acids Res., 9:309 (1981) or by the method of Maxam et al., Methods in Enzymology, 65:499 (1980).

(viii) Transient Expression Vectors

10

15

20

25

30

Expression vectors that provide for the transient expression in mammalian cells of DNA encoding vSmo may be employed. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector [Sambrook et al., supra]. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptides encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired properties.

,;,°

(ix) Suitable Exemplary Vertebrate Cell Vectors

Other methods, vectors, and host ceils suitable for adaptation to the synthesis of vSmo in recombinant vertebrate cell culture are described in Gething et al., <u>Nature</u>, <u>293</u>:620-625 (1981); Mantei et al., <u>Nature</u>, <u>281</u>:40-46 (1979); EP 117,060; and EP 117,058.

3. Selection and Transformation of Host Cells

Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia. Preferably, the host cell should secrete minimal amounts of proteolytic enzymes.

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast may be suitable cloning or expression hosts for vSmo-encoding vectors. *Saccharomyces cerevisiae*, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein.

Suitable host cells for the expression of glycosylated vSmo are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells.

Propagation of vertebrate cells in culture (tissue culture) is also well known in the art [See, e.g., <u>Tissue Culture</u>, Academic Press, Kruse and Patterson, editors (1973)]. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651): human

embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture. Graham et al., <u>J. Gen Virol.</u>, <u>36</u>:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, <u>Proc. Natl. Acad. Sci. USA</u>, <u>77</u>:4216 (1980)); mouse sertoli cells (TM4, Mather, <u>Biol. Reprod.</u>, <u>23</u>:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., <u>Annals N.Y. Acad. Sci.</u>, <u>383</u>:44-68 (1982)); MRC 5 cells; and FS4 cells.

Host cells are transfected and preferably transformed with the above-described expression or cloning vectors for vSmo production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.

Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., <u>supra</u>, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw et al., <u>Gene</u>, <u>23</u>:315 (1983) and WO 89/05859 published 29 June 1989. In addition, plants may be transfected using ultrasound treatment as described in WO 91/00358 published 10 January 1991.

For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, <u>Virology</u>, <u>52</u>:456-457 (1978) is preferred. General aspects of mammalian cell host system transformations have been described in U.S. Pat. No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., <u>J. Bact.</u>, <u>130</u>:946 (1977) and Hsiao et al., <u>Proc. Natl. Acad. Sci. (USA)</u>, <u>76</u>:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, *e.g.*, polybrene, polyomithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., <u>Methods in Enzymology</u>, <u>185</u>:527-537 (1990) and Mansour et al., <u>Nature</u>, <u>336</u>:348-352 (1988).

4. Culturing the Host Cells

10

20

25

30

35

Prokaryotic cells used to produce vSmo may be cultured in suitable media as described generally in Sambrook et al., supra.

The mammalian host cells used to produce vSmo may be cultured in a variety of media. Examples of commercially available media include Ham's F10 (Sigma), Minimal Essential Medium ("MEM", Sigma). RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ("DMEM", Sigma). Any such media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such

as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as Gentamycin TM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

In general, principles, protocols, and practical techniques for maximizing the productivity of mammalian cell cultures can be found in <u>Mammalian Cell Biotechnology: a Practical Approach</u>, M. Butler, ed. (IRL Press, 1991).

The host cells referred to in this disclosure encompass cells in culture as well as cells that are within a host animal.

5. Detecting Gene Amplification/Expression

10

15

20

25

30

35

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas. Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, and particularly ³²P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionucleotides, fluorescers or enzymes. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes. RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, or luminescent labels.

Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence vSmo protein or against a synthetic peptide based on the DNA sequences provided herein.

6. Purification of vSmo

It is contemplated that it may be desired to purify some form of vSmo from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to vSmo. As a first step, the culture medium or lysate may be centrifuged to remove particulate cell debris. vSmo thereafter may be purified from contaminant soluble proteins and polypeptides, with the following procedures being exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse

phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; and protein A Sepharose columns to remove contaminants such as IgG. vSmo variants may be recovered in the same fashion as native sequence vSmo, taking account of any substantial changes in properties occasioned by the variation.

A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants.

7. Covalent Modifications of vSmo

5

10

15

20

30

Covalent modifications of vSmo are included within the scope of this invention. One type of covalent modification of the vSmo included within the scope of this invention comprises altering the native glycosylation pattern of the protein. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence vSmo, and/or adding one or more glycosylation sites that are not present in the native sequence vSmo.

Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxylamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

Addition of glycosylation sites to the vSmo may be accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the native sequence vSmo (for O-linked glycosylation sites). The vSmo amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the vSmo protein at preselected bases such that codons are generated that will translate into the desired amino acids. The DNA mutation(s) may be made using methods described above and in U.S. Pat. No. 5,364,934, supra.

Another means of increasing the number of carbohydrate moieties on the vSmo is by chemical or enzymatic coupling of glycosides to the polypeptide. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine, (b) free carboxyl groups, (c) free sulfhydryl groups such as those of cysteine, (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline, (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan, or (f) the amide group of glutamine. These methods are described in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the vSmo protein may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. For instance, chemical deglycosylation by exposing the polypeptide to the

compound trifluoromethanesulfonic acid. or an equivalent compound can result in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Glycosylation at potential glycosylation sites may be prevented by the use of the compound tunicamycin as described by Duskin et al., <u>J. Biol. Chem.</u>, <u>257</u>:3105 (1982). Tunicamycin blocks the formation of protein-N-glycoside linkages.

8. vSmo Chimeras

10

15

20

30

35

The present invention also provides chimeric molecules comprising vSmo fused to another, heterologous amino acid sequence or polypeptide. In one embodiment, the chimeric molecule comprises a fusion of the vSmo with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally provided at the amino- or carboxyl- terminus of the vSmo. Such epitope-tagged forms of the vSmo are desirable as the presence thereof can be detected using a labeled antibody against the tag polypeptide. Also, provision of the epitope tag enables the vSmo to be readily purified by affinity purification using the anti-tag antibody. Affinity purification techniques and diagnostic assays involving antibodies are described later herein.

Tag polypeptides and their respective antibodies are well known in the art. Examples include the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol. 8:2159-2165 (1988)]; the c-myc tag and the 8F9. 3C7, 6E10. G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides have been disclosed. Examples include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)]. Once the tag polypeptide has been selected, an antibody thereto can be generated using the techniques disclosed herein.

The general methods suitable for the construction and production of epitope-tagged vSmo are the same as those disclosed hereinabove. vSmo-tag polypeptide fusions are most conveniently constructed by fusing the cDNA sequence encoding the vSmo portion in-frame to the tag polypeptide DNA sequence and expressing the resultant DNA fusion construct in appropriate host cells. Ordinarily, when preparing the vSmo-tag polypeptide chimeras of the present invention, nucleic acid encoding the vSmo will be fused at its 3' end to nucleic acid encoding the N-terminus of the tag polypeptide, however 5' fusions are also possible.

9. Methods of Using vSmo

vSmo, as disclosed in the present specification, has utility in therapeutic and non-therapeutic applications. As a therapeutic, vSmo (or the nucleic acid encoding the same) can be employed in *in vivo* or *ex vivo* gene therapy techniques. In non-therapeutic applications, nucleic acid sequences encoding the vSmo may be used as a diagnostic for tissue-specific typing. For example, procedures like *in situ* hybridization,

Northern and Southern blotting, and PCR analysis may be used to determine whether DNA and/or RNA encoding vSmo is present in the cell type(s) being evaluated. vSmo nucleic acid will also be useful for the preparation of vSmo by the recombinant techniques described herein.

The isolated vSmo may be used in quantitative diagnostic assays as a control against which samples containing unknown quantities of vSmo may be prepared. vSmo preparations are also useful in generating antibodies, as standards in assays for vSmo (e.g., by labeling vSmo for use as a standard in a radioimmunoassay, radioreceptor assay, or enzyme-linked immunoassay), and in affinity purification techniques.

5

10

15

20

30

Nucleic acids which encode vSmo, such as the rat vSmo disclosed herein, can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, rat cDNA encoding rSmo or an appropriate sequence thereof can be used to clone genomic DNA encoding Smo in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding Smo. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for vSmo transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding vSmo introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding vSmo. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with constitutive activity of vSmo or Hedgehog, including some forms of cancer that may result therefrom, such as for example, basal cell carcinoma, basal cell nevus syndrome and pancreatic carcinoma. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition.

Alternatively, the non-human homologues of vSmo can be used to construct a vSmo "knock out" animal which has a defective or altered gene encoding vSmo as a result of homologous recombination between the endogenous gene encoding vSmo and altered genomic DNA encoding vSmo introduced into an embryonic cell of the animal. For example, rat cDNA encoding Smo can be used to clone genomic DNA encoding Smo in accordance with established techniques. A portion of the genomic DNA encoding Smo can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in *Teratocarcinomas and Embryonic Stem*

Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and can be used in the study of the mechanism by which the Hedgehog family of molecules exerts mitogenic, differentiative, and morphogenic effects.

B. Anti-vSmo Antibody Preparation

The present invention further provides anti-vSmo antibodies. Antibodies against vSmo may be prepared as follows. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.

1. Polyclonal Antibodies

10

15

20

25

30

The vSmo antibodies may comprise polyclonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the vSmo protein or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins which may be employed include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. An aggregating agent such as alum may also be employed to enhance the mammal's immune response. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation. The mammal can then be bled, and the serum assayed for antibody titer. If desired, the mammal can be boosted until the antibody titer increases or plateaus.

2. Monoclonal Antibodies

The vSmo antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, <u>supra</u>. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized (such as described above) with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized *in vitro*.

The immunizing agent will typically include the vSmo protein or a fusion protein thereof. Cells expressing vSmo at their surface may also be employed. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse

myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

5

10

15

20

30

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Rockville, Maryland. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against vSmo. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, <u>Anal. Biochem.</u>, <u>107</u>:220 (1980).

After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, supra]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Patent No. 4.816,567, Morrison et al., supra] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an

antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.

In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in WO 94/29348 published 12/22/94 and U.S. Patent No. 4,342,566. Papain digestion of antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields an F(ab')₂ fragment that has two antigen combining sites and is still capable of cross-linking antigen.

The Fab fragments produced in the antibody digestion also contain the constant domains of the light chain and the first constant domain (CH₁) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH₁ domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

3. Humanized Antibodies

10

15

20

30

The vSmo antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv. Fab. Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Reichmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

10

1.5

20

30

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important in order to reduce antigenicity. According to the "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody [Sims et al., J. Immunol., 151:2296 (1993); Chothia and Lesk, J. Mol. Biol., 196:901 (1987)]. Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies [Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)].

It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three dimensional models of the parental and humanized sequences. Three dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the consensus and import sequence so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding [see, WO 94/04679 published 3 March 1994].

Transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production can be employed. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region (J_H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge [see, e.g., Jakobovits et al., Proc. Natl.

Acad. Sci. USA, 90:2551-255 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993)]. Human antibodies can also be produced in phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cote et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cote et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)].

4. Bispecific Antibodies

10

20

30

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the vSmo, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Millstein and Cuello, Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

According to a different and more preferred approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. This provides for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yields. It is, however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance. In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy-chain/light-chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690 published 3 March 1994. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

5. <u>Heteroconjugate Antibodies</u>

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [US Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373: EP 03089]. It is contemplated that the antibodies may be prepared *in vitro* using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Pat. No. 4,676,980.

6. Uses of vSmo Antibodies

10

20

30

35

vSmo antibodies may be used in diagnostic assays for vSmo, e.g., detecting its expression in specific cells or tissues. Various diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, Monoclonal Antibodies: A Manual of Techniques, CRC Press. Inc. (1987) pp. 147-158]. The antibodies used in the diagnostic assays can be labeled with a detectable moiety. The detectable moiety should be capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as ³H. ¹⁴C, ³²P, ³⁵S, or ¹²⁵L a fluorescent or chemituminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol, Meth., 40:219 (1981); and Nygren, J. Histochem, and Cytochem., 30:407 (1982).

vSmo antibodies also are useful for the affinity detection or purification of vSmo from recombinant cell culture or natural sources. In this process, the antibodies against vSmo are immobilized on a suitable support, such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the vSmo, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the vSmo, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the vSmo from the antibody.

The vSmo antibodies may also be employed as therapeutics. For example, vSmo antibodies may be used to block or neutralize excess vSmo signalling that may result from mutant or inactivated Patched. Accordingly, the vSmo antibodies may be used in the treatment of, or amelioration of symptoms caused by, a pathological condition resulting from or associated with excess vSmo or vSmo signalling. Optionally, agonistic vSmo antibodies can be employed to induce the formation of, or enhance or stimulate tissue regeneration, such as regeneration of skin tissue, lung tissue, muscle (such as heart or skeletal muscle), neural tissue (such as serotonergic neurons, motoneurons or straital neurons), bone tissue or gut tissue. This vSmo antibody therapy will be useful in instances where the tissue has been damaged by disease, aging or trauma.

The vSmo antibodies may be used or administered to a patient in a pharmaceutically-acceptable carrier. Suitable carriers and their formulations are described in Remington's Pharmaceutical Sciences, 16th ed., 1980, Mack Publishing Co., edited by Oslo et al. If the vSmo antibodies are to be administered to a patient, the antibodies can be administered by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular), or by other methods such as infusion that ensure its delivery to the bloodstream in an effective form. Effective dosages and schedules for administering the vSmo antibodies may be determined empirically, and making such determinations is within the skill in the art. Those skilled in the art will understand that the dosage of vSmo antibodies that must be administered will vary depending on, for example, the patient which will receive the antibodies, the route of administration, and other therapeutic agents being administered to the mammal. Guidance in selecting appropriate doses for such vSmo antibodies is found in the literature on therapeutic uses of antibodies, e.g., Handbook of Monoclonal Antibodies, Ferrone et al., eds., Noges Publications, Park Ridge, N.J., (1985) ch. 22 and pp. 303-357; Smith et al., Antibodies in Human Diagnosis and Therapy, Haber et al., eds., Raven Press, New York (1977) pp. 365-389. A typical daily dosage of the vSmo antibodies used alone might range from about 1 µg/kg to up to 100 mg/kg of body weight or more per day, depending on the factors mentioned above.

C. Kits Containing vSmo or vSmo Antibodies

10

20

25

30

35

In another embodiment of the invention, there are provided articles of manufacture and kits containing vSmo or vSmo antibodies. The article of manufacture typically comprises a container with a label. Suitable containers include, for example, bottles, vials, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds the vSmo or vSmo antibodies. The label on the container may indicate directions for either *in vivo* or *in vitro* use, such as those described above.

The kit of the invention will typically comprise the container described above and one or more other containers comprising materials desirable from a commercial and user standpoint, including buffers, diluents. filters, and package inserts with instructions for use.

D. Additional Compositions of Matter

In a further embodiment of the invention, there are provided protein complexes comprising vertebrate Smoothened protein and vertebrate Patched protein. As demonstrated in the Examples, vertebrate Smoothened and vertebrate Patched can form a complex. The protein complex which includes vertebrate Smoothened and vertebrate Patched may also include vertebrate Hedgehog protein. Typically in such a complex, the vertebrate Hedgehog binds to the vertebrate Patched but does not bind to the vertebrate Smoothened. In a preferred embodiment, the complex comprising vertebrate Smoothened and vertebrate Patched is a receptor for vertebrate Hedgehog.

The invention also provides a vertebrate Patched which binds to vertebrate Smoothened. Optionally the vertebrate Patched comprises a sequence which is a derivative of or fragment of a native sequence vertebrate Patched. The vertebrate Patched will typically consist of a sequence which has less than 100% sequence identity with a native sequence vertebrate Patched. In one embodiment, the vertebrate Patched directly and specifically binds vertebrate Smoothened. Alternatively, it is contemplated that the vertebrate Patched may bind vertebrate Smoothened indirectly.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

All references cited in the present specification are hereby incorporated by reference in their

EXAMPLES

All commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Rockville, Maryland.

EXAMPLE 1

Isolation and Cloning of Rat Smoothened cDNA

entirety.

5

10

25

30

Full-length rat Smoothened cDNA was isolated by low stringency hybridization screening of 1.2 x 10⁶ plaques of an embryonic day 9-10 rat cDNA library (containing cDNAs size-selected >1500 base pairs), using the entire coding region of Drosophila Smoothened [Alcedo et. al., supra] (labeled with ³²P-dCTP) as a probe. The library was prepared by cloning cDNA inserts into the NotI site of a lambda RK18 vector [Klein et. al., Proc. Natl. Acad. Sci., 92:7108-7113 (1996)] following XmnI adapters ligation. Conditions for hybridization were: 5 x SSC, 30% formamide, 5 x Denhardt's, 50 mM sodium phosphate (pH 6.5), 5% dextran sulfate, 0.1% SDS and 50 μg/ml salmon sperm DNA, overnight at 42°C. Nitrocellulose filters were washed to a stringency of 1 x SSC at 42°C, and exposed overnight to Kodak X-AR film. Three of eight positive plaques were selected for further purification. After amplification of the plaque-purified phage, phagemid excision products were generated by growing M13 helper phage (M13K07; obtained from New England Biolabs), bacteria (BB4; obtained from Stratagene), and the purified phage together in a 100:10:1 ratio. Plasmid DNA was recovered by Qiagen purification from ampicillin-resistant colonies following infection of BB4 with the excised purified phagemid.

Sequencing of the three cDNAs showed them to be identical, with the exception that two contained only a partial coding sequence, whereas the third contained the entire open reading frame of rat Smoothened, including 449 and 1022 nucleotides, respectively of 5' and 3' untranslated sequence and a poly-A tail. This cDNA clone was sequenced completely on both strands.

The entire nucleotide sequence of rat Smoothened (rSmo) is shown in Figure 1 (SEQ ID NO:1) (reference is also made to Applicants' ATCC deposit of the rat Smoothened in pRK5.rsmo.AR140, assigned ATCC Dep. No. 98165). The cDNA contained an open reading frame with a translational initiation site assigned to the ATG codon at nucleotide positions 450-452. The open reading frame ends at the termination codon at nucleotide positions 2829-2831.

The predicted amino acid sequence of the rat Smoothened (rSmo) contains 793 amino acids (including a 32 amino acid signal peptide), as shown in Figure 1 (SEQ ID NO:2). rSmo appears to be a typical seven transmembrane (7 TM), G protein-coupled receptor, containing 4 potential N-glycosylation sites and a 203 amino acid long putative extracellular amino-terminus domain which contains 13 stereotypically spaced cysteines (see Fig. 2).

An alignment of the rSmo sequence with sequences for dSmo, wingless receptor and vertebrate Frizzled revealed that rSmo is 33% homologous to the dSmo sequence reported in Alcedo et al., supra (50% homologous in the transmembrane domains); 23% homologous to the wingless receptor sequence reported in Bhanot et al., supra; and 25% homologous to the vertebrate Frizzled sequence reported in Chan et al., supra.

EXAMPLE 2

In Situ Hybridization and Northern Blot Analysis

5

10

20

30

In situ hybridization and Northern blot analyses were conducted to examine tissue distribution of Smo, Patched and SHH in embryonic and adult rat tissues.

For *in situ* hybridization, E9-E15.5 rat embryos (Hollister Labs) were immersion-fixed overnight at 4°C in 4% paraformaldehyde, then cryoprotected overnight in 20% sucrose. Adult rat brains and spinal cords were frozen fresh. All tissues were sectioned at 16 um, and processed for *in situ* hybridization using ³³P-UTP labelled RNA probes as described in Treanor et al., Nature, 382:80-83 (1996). Sense and antisense probes were derived from the N-terminal region of rSmo using T7 polymerase. The probe used to detect SHH was antisense to bases 604-1314 of mouse SHH [Echelard et al., Cell, 75:1417-1430 (1993)]. The probe used to detect Patched was antisense to bases 502-1236 of mouse Patched [Goodrich et al., supra]. Reverse transcriptase polymerase chain reaction analysis was performed as described in Treanor et al., supra.

For Northern blot analysis, a rat multiple tissue Northern blot (Clontech) was hybridized and washed at high stringency according to the manufacturer's protocol, using a ³²P-dCTP-labelled probe encompassing the entire rSmo coding region.

The results are illustrated in Figure 3. By in situ hybridization and Northern blot analysis, expression of rSmo mRNA was detected from E9 onward in SHH responsive tissues such as the neural folds and early neural tube [Echelard et al., supra, Krauss et al., supra); Roelink et al., supra], pre-somitic mesoderm and somites (Johnson et al., supra; Fan et al., supra], and developing limb buds [Riddle et al., supra] gut (Roberts et al., supra] and eye [Krauss et al., supra]. Rat Smo transcripts were also found in tissues whose development is regulated by other members of the vertebrate HH protein family such as testes (desert HH) [Bitgood et al., Curr. Biol., 6:298-304 (1996)], cartilage (indian HH) [Vortkamp et al., Science, 273:613-622 (1996)], and muscle (the zebra fish, echinida HH) [Currie and Ingham, Nature, 382:452-455 (1996)] (See e.g., Fig. 3; other data not shown). In all of the above recited tissues, rSmo appeared to be co-expressed with rPatched.

rSmo and rPatched mRNAs were also found in and around SHH expressing cells in the embryonic lung, epiglottis, thymus, vertebral column, tongue, jaw, taste buds and teeth (Fig. 3). In the embryonic nervous system, rSmo and rPatched are initially expressed throughout the neural plate: by E12, however, their expression declines in lateral parts of the neural tube, and by P1, was restricted to cells in relatively close proximity to the ventricular zone (Fig. 3). In the adult rat tissues, rSmo expression was maintained in the brain, lung, kidney, testis, heart and spleen (data not shown).

10

15

25

30

35

40

EXAMPLE 3

Isolation and Cloning of Human Smoothened cDNA

A cDNA probe corresponding to the coding region of the rat *smoothened* gene (described in Example 1 above) was labeled by the random hexanucleotide method and used to screen 10⁶ clones of a human embryonic lung cDNA library (Clontech, Inc.) in lgt10. Duplicate filters were hybridized at 42°C in 50% formamide, 5x SSC, 10x Denhardt's, 0.05M sodium phosphate (pH 6.5), 0.1% sodium pyrophosphate, 50 mg/ml of sonicated salmon sperm DNA. Filters were rinsed in 2x SSC and then washed once in 0.5x SSC, 0.1% SDS at 42°C. Hybridizing phage were plaque-purified and the cDNA inserts were subcloned into pUC 118 (New England Biolabs). Two clones, 5 and 14, had overlapping inserts of approximately 2 and 2.8 kb respectively, covering the entire human Smoothened coding sequence (See Fig. 4). Clones 5 and 14 have been deposited by Applicants with ATCC as puc.118.hsmo.5 and puc.118.hsmo.14, respectively, and assigned ATCC Dep. Nos. 98162 and 98163, respectively. Both strands were sequenced by standard fluorescent methods on an ABI377 automated sequencer.

The entire nucleotide sequence of human Smoothened is shown in Figure 4 (SEQ ID NO:3). The cDNA contained an open reading frame with a translational initiation site assigned to the ATG codon at nucleotide positions 13-15. The open reading frame ends at the termination codon at nucleotide positions 2374-2376.

The predicted amino acid sequence of the human Smoothened (hSmo) contains 787 amino acids (including a 29 amino acid signal peptide), as shown in Figure 4 (SEQ ID NO:4). hSmo appears to be a typical seven transmembrane (7 TM), G protein-coupled receptor, containing 5 potential N-glycosylation sites and a 202 amino acid long putative extracellular amino-terminus domain which contains 13 stereotypically spaced cysteines.

An alignment of the predicted hSmo amino acid sequence and rSmo sequence (see Example 1) revealed 94% amino acid identity. An alignment of the hSmo sequence with sequences for dSmo. wingless receptor and vertebrate Frizzled revealed that hSmo is 33% homologous to the dSmo sequence reported in Alcedo et al., supra (50% homologous in the transmembrane domains); 23% homologous to the wingless receptor sequence reported in Bhanot et al., supra; and 25% homologous to the vertebrate Frizzled sequence reported in Chan et al., supra. See Figure 5 for a comparison of the primary sequences of human Smo, rat Smo and Drosophila Smo.

EXAMPLE 4

Competitive binding, Co-immunoprecipitation, and Cross-linking Assays

Competitive binding, co-immunoprecipitation and cross-linking assays were conducted to characterize physical association or binding between SHH and rSmo, and between certain biologically active forms of SHH and cells expressing rSmo, mPatched, or both rSmo and mPatched.

1. Materials and Methods

Complementary DNAs for rSmo (described in Example 1); dSmo (described in Alcodo et al., <u>supra</u>); Desert HH (described in Echelard et al., <u>supra</u>); and murine Patched (described in Goodrich et al., <u>supra</u>) were cloned into pRK5 vectors, and epitope tags [Flag epitope tag (Kodak/IBI) and Myc epitope tag (9E10 epitope: InVitrogen)] added to the extreme C-terminus by PCR-based mutagenesis.

SHH-N is the biologically active amino terminus portion of SHH [Lee et al., <u>Science</u>, <u>266</u>:1528-1537 (1994)]. SHH-N was produced as described by Hynes et al., <u>supra</u>. A radiolabeled form of SHH-N. ¹²⁵ISHH-N, was employed.

For IgG-SHH-N production, human embryonic kidney 293 cells were transiently transfected with the expression vector encoding SHH-N fused in frame after amino acid residue 198 to the Fc portion of human IgG-gamma1.

Cells were maintained in serum-free media (OptiMEM; Gibco BRL) for 48 hours. The media was then collected and concentrated 10-fold using a centricon-10 membrane. Conditioned media was used at a concentration of 2x.

Binding assays were conducted to test binding between cells expressing rSmo or dSmo and (1) epitope tagged SHH-N, (2) an IgG-SHH-N chimera. and (3) an epitope tagged Desert HH.

For visualization of SHH binding, COS-7 cells (Genentech. Inc.) transiently expressing rSmo or mPatched (murine Patched) were exposed to epitope tagged SHH-N (2 hours at 4°C), washed 4 times with PBS, then fixed and stained with a cy3-conjugated anti-human IgG (Jackson ImmunoResearch) (for IgG-SHH-N) or anti-Flag M2 antibody (Kodak/IBI) (for Flag-tagged SHH-N).

For immunohistochemistry, COS-7 cells transiently transfected with expression constructs were fixed (10 minutes in 2% paraformaldehyde/0.2% Triton-X 100) and stained using monoclonal anti-Flag M2 antibody (IBI) or anti-Myc antibody (InVitrogen), followed by cy3-conjugated anti-mouse IgG (Jackson Immunoresearch).

For cross-linking, cells were resuspended at a density of 1-2 x 10⁶/ml in ice-cold L15 media containing 0.1% BSA and 50 pM ¹²⁵l-labeled SHH (with or without a 1000-fold excess of unlabeled SHH) and incubated at 4°C for 2 hr. 10 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodimide HCl and 5 mM N-hydroxysulfosuccinimide (Pierce Chemical) were added to the samples and incubated at room temperature for 30 minutes. The cells were then washed 3 times with 1 ml of PBS. Cells were then lyscd in lysis buffer [1% Brij-96 (Sigma), 50 mM Tris, pH 8.0, 150 mM NaCl, 1 mM PMSF, 10 µM aprotinin, 10 µM leupeptin] and the protein complexes were immunoprecipitated with antibodies to the epitope tags as indicated. Immunoprecipitated proteins were resuspended in sample buffer (80 mM Tris-HCl [pH 6.8], 10% [v/v] glycerol, 1% [w/v] SDS, 0.025% Bromphenol Blue, denatured and run on 4% SDS-polyacrylamide gels, which were dried and exposed to film.

For the equilibrium binding analysis, the cells were processed as above, and incubated with 50 pM 125 I-SHH and various concentrations of cold SHH-N (Cold Ligand). The IGOR program was used to determine K_d .

2. Results

10

15

20

30

The results are shown in Figure 6. No binding of epitope tagged SHH-N, of IgG-SHH-N chimeric protein or of an epitope tagged Desert HH to cells expressing rSmo or dSmo was observed (Figures 6a-b and data not shown). This data (and the data described below) indicated that rSmo, acting alone, would not likely be a receptor for SHH or Desert HH. However, it was hypothesized that rSmo is a component in a multi-subunit SHH receptor complex and that the ligand binding function of this receptor complex would be provided by another membrane protein such as Patched.

Binding assays were also conducted to test binding between cells expressing rSmo or murine patched and (1) an epitope tagged SHH and (2) an IgG-SHH-N chimera. The data shows that epitope tagged SHH-N as well as an IgG-SHH-N chimeric protein bind specifically and reversibly to cells expressing the mouse Patched (mPatched) (mPatched is 33% identical to Drosophila Patched) (Figure. 6c-e). Furthermore, only mPatched could be immunoprecipitated by the IgG-SHH-N protein (Fig. 6f) and antibodies to an epitope tagged mPatched readily co-immunoprecipitated ¹²⁵I-SHH-N (Fig. 6h) (antibodies to epitope tagged rSmo could not immunoprecipitate ¹²⁵I-SHH-N and the IgG-SHH-N chimera did not immunoprecipitate rSmo).

As shown in Fig. 6g, the cross-linking assay of ¹²⁵I-SHH-N to ceils expressing rSmo or mPatched in the presence or absence of cold SHH-N revealed that ¹²⁵I-SHH-N is cross-linked only to mPatched expressing cells.

The competitive binding assay of 125 I-SHH-N and cells expressing mPatched or mPatched plus rSmo also showed that mPatched and SHH-N had a relatively high affinity of interaction (approximate K_d of 460 pM) (Fig. 6i). This corresponds well to the concentrations of SHH-N which are required to elicit biological responses in multiple systems [Fan et al., supra; Hynes et al. supra; Roelink et al., supra]. No binding to cells expressing rSmo alone was observed (data not shown) and there was no increase in binding affinity to mPatched in the presence of rSmo.

EXAMPLE 5

Co-immunoprecipitation Assays

To determine whether Patched and Smo form or interact in a physical complex, coimmunoprecipitation experiments were performed.

1. Materials and Methods

10

20

30

35

For the double immunohistochemistry, COS-7 cells transiently transfected with expression constructs were permeabilized using 0.2% Triton-x 100. The cells were fixed (10 minutes in 2% paraformaldehyde/0.2% Triton-X 100) and stained using monoclonal anti-Flag M2 antibody (IBI) and rabbit polyclonal anti-Myc primary antibodies (Santa Cruz Biotech), followed by cy3-conjugated anti-mouse IgG (Jackson Immunoresearch) and bodipy-conjugated anti-rabbit IgG secondary antibodies (Molecular Probes, Inc.).

Human embryonic kidney 293 cells were transiently transfected with expression vectors for epitope tagged rSmo (Flag epitope) and mPatched (Myc epitope) and the resulting proteins complexes were immunoprecipitated with antibody to one of the epitopes and then analyzed on a western blot.

For the co-immunoprecipitation assay, lysates from 293 embryonic kidney cells transiently expressing Flag-tagged rSmo, Myc-tagged mPatched or a combination of the two proteins were incubated (48 hours after transfection) in the presence or absence of the IgG-SHH-N chimera (1 µg/ml, 30 minutes at 37°C) or in the presence of ¹²⁵I-SHH-N with or without an excess of cold SHH-N (2 hours at 4°C). The incubated samples were then washed 3 times with PBS, and lysed in lysis buffer (see Example 4) as described by Davis et al., Science, 259:1736-1739 (1993). The cell lysates were centrifuged at 10,000 rpm for 10 minutes, and the soluble protein complexes were immunoprecipitated with either protein A sepharose (for the IgG-SHH-N), or anti-Flag or anti-Myc antibodies followed by protein A sepharose (for the epitope-tagged rSmo or mPatched, respectively).

The samples were heated to 100°C for 5 minutes in denaturing SDS sample buffer (125 mM Tris, pH 6.8, 2% SDS, 10% glycerol. 100 mM b-mercaptoethanol. 0.05% bromphenol blue) and subjected to SDS-PAGE. The proteins were detected either by exposure of the dried gel to film (for ¹²⁵I-SHH-N) or by blotting to nitrocellulose and probing with antibodies to Flag or Myc epitopes using the ECL detection system (Amersham).

2. Results

5

10

20

25

30

35

The results are illustrated in Figure 7. In cells expressing mPatched alone, or rSmo alone, no co-immunoprecipitated protein complexes could be detected. In contrast, in cells that expressed both mPatched and rSmo (Fig. 7a), rSmo was readily co-immunoprecipitated by antibodies to the epitope tagged mPatched (Fig. 7b) and mPatched was co-immunoprecipitated by antibodies to the epitope tagged rSmo (Fig. 7c).

The ¹²⁵I-SHH-N was readily co-immunoprecipitated by antibodies to the epitope tagged rSmo or mPatched from cells that expressed both rSmo and mPatched, but not from cells expressing rSmo alone (Figs. 7d and 7e). These results indicate that SHH-N, rSmo and mPatched are present in the same physical complex, and that a rSmo-SHH complex does not form in the absence of mPatched. Although not fully understood and not being bound by any particular theory, it is believed that Patched is a ligand binding component and vSmo is a signalling component in a multi-subunit SHH receptor (See, Fig. 9). Patched is also believed to be a negative regulator of vSmo.

EXAMPLE 6

Hahn et al., <u>supra</u>, Johnson et al., <u>supra</u>, and Gailani et al., <u>supra</u>, report that Patched mutations have been associated with BCNS and sporadic basal cell carcinoma ("BCC"). These investigators also report that most of the Patched mutations in BCNS are truncations in which no functional protein is produced. It is believed that BCNS and BCC may be caused or associated with constitutive activation of vSmo, following its release from negative regulation by Patched.

Expression levels of wild-type (native) murine Patched and a mutant Patched were examined. A Patched mutant was generated by site-directed mutagenesis of the wild-type mouse Patched cDNA (described in Example 4) and verified by sequencing. The mutant Patched contained a 3 amino acid insertion (Pro-Asn-Ile) after amino acid residue 815 (this mutant was found in a BCNS family, see, Hahn et al., supra). For analysis of protein expression, equal amounts of pRK5 expression vectors containing wild-type or mutant Patched were transfected into 293 cells, and an equal number of cells (2 x 10⁶) were lysed per sample. Proteins were immunoprecipitated from cell lysates by antibody to the Patched epitope tag (myc) and detected on a Western blot with the same antibody.

Applicants found that expression of the mutant Patched (which retains a complete open reading frame) was reduced at least 10-fold as compared to its wild-type counterpart. See Fig. 8.

.

Deposit of Material

5

10

20

25

The following materials have been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

	Material	ATCC Dep. No.	Deposit Date
5	puc.118.hsmo.5	98162	Sept. 6, 1996
	puc.118.hsmo.14	98163	Sept. 6, 1996
	pRK5.rsmo.AR140	98165	Sept. 10, 1996

This deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638).

The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Genentech, Inc.
 - (ii) TITLE OF INVENTION: Vertebrate Smoothened Proteins
- 5. (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Genentech, Inc.
 - (B) STREET: 460 Point San Bruno Blvd
 - (C) CITY: South San Francisco
- 10 (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94080
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk
- 15 (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: WinPatin (Genentech)
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
- 20 (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Svoboda, Craig G.
 - (B) REGISTRATION NUMBER: 39,044
- 25 (C) REFERENCE/DOCKET NUMBER: P1050PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415/225-1489
 - (B) TELEFAX: 415/952-9881
 - (C) TELEX: 910/371-7168
- 30 (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3854 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
- 35 (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
 - GCGGCGCGCT CGCGCGGAGG TGGCTGCTGG GCCGCGGGCT GGCGTGGGGG 50
 - CGGAGCCGGG GAGCGACTCC CGCACCCCAC GGCCGGTGCC TGCCCTCCAT 100
 - CGAGGGGCTG GGAGTTAGTT TTAATGGTGG GAGAGGGAAT GGGGCTGAAG 150
- 40 ATCGGGGCCC CAGAGGGTTC CCAGGGTTGA AGACAATTCC AATCGAGGCG 200
 - AGGGAGTCCG GGGTCCGTGC ATCCTGGCCC GGGCCTGCGC AGCTCAACAT 250

	GGGG	CCCG	GG T	TCCA	AAGT	T TG	CAAA	GTTG	GGA	GCCG	AGG	GGCC	CGGA	CG :	300
	CGCG	CGGC	GC C	TGGC	GAAA	G CT	GGCC	CCAG	ACT	TTCG	GGG	CGCA	.CCGG	TC	350
	GCCT	AAGT	'AG C	CTCC	GCGG	c cc	CCGG	GGTC	GTG	TGTG	TGG	CCAG	GGGA	.CT	400
	CCGG	GGAG	CT C	:GGGG	GCGC	C TC	AGCT	TCTG	CTG	AGTT	'GGC	GGTI	TGGC	C	449
5	ATG Met	GCT Ala	GCT Ala	GGC Gly	CGC Arg 5	CCC Pro	GTG Val	CGT Arg	GGG Gly	CCC Pro 10	GAG Glu	CTG Leu	GCG Ala	488	
10	CCC Pro	CGG Arg 15	AGG Arg	CTG Leu	CTG Leu	CAG Gln	TTG Leu 20	CTG Leu	CTG Leu	CTG Leu	GTA Val	CTG Leu 25	CTT Leu	527	
												AAC Asn		566	
15	ACC Thr 40	GGG Gly	CCT Pro	GGG Gly	CCT Pro	CGC Arg 45	AGT Ser	GCC Ala	GGC Gly	GGG Gly	AGC Ser 50	GCG Ala	AGG Arg	605	
												CTG Leu		644	:
20												TTG Leu		683	,
25												GGA Gly 90		722	2
												CAG Gln		761	L
30												CTC Leu			0
	AAT Asn	GCT Ala	CCC Pro 120	Arg	TGC Cys	TGG Trp	GCA Ala	GTG Val 125	ATC Ile	CAG Gln	CCC Pro	CTG Leu	CTG Leu 130		9
35						Pro					Asp	CGA Arg			3
40			Pro					Cys				CGA Arg 155	Gly		7
												CCT			6

160 165 TTT CTG CGT TGC ACG CCG GAC CAC TTC CCT GAA GGC TGT 995 Phe Leu Arg Cys Thr Pro Asp His Phe Pro Glu Gly Cys 175 CCA AAC GAG GTA CAA AAC ATC AAG TTC AAC AGT TCA GGC 1034 Pro Asn Glu Val Gln Asn Ile Lys Phe Asn Ser Ser Gly 190 185 CAA TGT GAA GCA CCC TTG GTG AGG ACA GAC AAC CCC AAG 1073 Gln Cys Glu Ala Pro Leu Val Arg Thr Asp Asn Pro Lys 200 205 10 AGC TGG TAC GAG GAC GTG GAG GGC TGT GGG ATC CAG TGC 1112 Ser Trp Tyr Glu Asp Val Glu Gly Cys Gly Ile Gln Cys 215 CAG AAC CCG CTG TTC ACC GAG GCT GAG CAC CAG GAC ATG 1151 Gln Asn Pro Leu Phe Thr Glu Ala Glu His Gln Asp Met 15 230 225 CAC AGT TAC ATC GCA GCC TTC GGG GCG GTC ACC GGC CTC 1190 His Ser Tyr Ile Ala Ala Phe Gly Ala Val Thr Gly Leu 240 TGT ACA CTC TTC ACC CTG GCC ACC TTT GTG GCT GAC TGG 1229 Cys Thr Leu Phe Thr Leu Ala Thr Phe Val Ala Asp Trp 250 255 CGG AAC TCC AAT CGC TAC CCT GCG GTT ATT CTC TTC TAT 1268 Arg Asn Ser Asn Arg Tyr Pro Ala Val Ile Leu Phe Tyr 25 270 265 GTC AAT GCG TGT TTC TTT GTG GGC AGC ATT GGC TGG CTG 1307 Val Asn Ala Cys Phe Phe Val Gly Ser Ile Gly Trp Leu 275 280 285 GCC CAG TTC ATG GAT GGT GCC CGC CGG GAG ATT GTT TGC 1346 Ala Gln Phe Met Asp Gly Ala Arg Arg Glu Ile Val Cys 30 290 CGA GCA GAT GGC ACC ATG AGA TTT GGG GAG CCC ACC TCC 1385 Arg Ala Asp Gly Thr Met Arg Phe Gly Glu Pro Thr Ser 300 305 AGC GAG ACC CTA TCC TGT GTC ATC ATC TTT GTC ATC GTG 1424 35 Ser Glu Thr Leu Ser Cys Val Ile Ile Phe Val Ile Val 315 320 TAC TAT GCC TTG ATG GCT GGA GTA GTG TGG TTC GTG GTC 1463 Tyr Tyr Ala Leu Met Ala Gly Val Val Trp Phe Val Val 40 330 CTC ACC TAT GCC TGG CAC ACC TCC TTC AAA GCC CTG GGC 1502 Leu Thr Tyr Ala Trp His Thr Ser Phe Lys Ala Leu Gly

345

340

		ACT Thr												1541
5		CTG Leu												1580
		ATC Ile												1619
10		GGC Gly												1658
15		GCT Ala 405												1697
		GTG Val												1736
20		TTC Phe												1775
		AAG Lys												1814
25		GGC Gly												1853
30		ACC Thr 470												1892
	GCT Ala	GAG Glu	TGG Trp	GAG Glu 485	CGT Arg	AGC Ser	TTC Phe	CGG Arg	GAC Asp 490	TAT Tyr	GTG Val	CTA Leu	TGC Cys	1931
35		Ala												1970
									Arg				CTG Leu 520	2009
40													GGC Gly	2048
													CTG Leu	2087

		535					540					545		
	CTC Leu	ATC Ile	TGG Trp	AGG Arg 550	CGC Arg	ACC Thr	TGG Trp	TGC Cys	AGG Arg 555	TTG Leu	ACT Thr	GGG Gly	CAC His	2126
5							AGA Arg							2165
10							AAG Lys							2204
	AAC Asn	CCG Pro	GGC Gly	CAG Gln	GAG Glu 590	CTC Leu	TCC Ser	TTC Phe	AGC Ser	ATG Met 595	CAC His	ACT Thr	GTC Val	2243
15	TCC Ser	CAT His 600	GAT Asp	GGA Gly	CCT Pro	GTT Val	GCC Ala 605	GGT Gly	TTG Leu	GCT Ala	TTT Phe	GAA Glu 610	CTC Leu	2282
	AAT Asn	GAA Glu	CCC Pro	TCA Ser 615	GCT Ala	GAT Asp	GTC Val	TCC Ser	TCT Ser 620	GCC Ala	TGG Trp	GCC Ala	CAG Gln	2321
20	CAC His 625	GTC Val	ACC Thr	AAG Lys	ATG Met	GTG Val 630	GCT Ala	CGA Arg	AGA Arg	GGA Gly	GCC Ala 635	ATA Ile	TTA Leu	2360
25							ACC Thr							2399
							AAC Asn							2438
30	Glu		Ser	Pro	Glu	Leu	GAG Glu 670	Lys	Arg	Leu	Gly			2477
							AAG Lys							2516
35							CAC His							2555
40							CGG Arg							2594
							GCA Ala							2633

GAG CCC TGC CGA CAG GGA GCC TGG ACT GTA GTC TCC AAC 2672 Glu Pro Cys Arg Gln Gly Ala Trp Thr Val Val Ser Asn CCC TTC TGC CCA GAG CCT AGT CCC CAT CAA GAT CCA TTT 2711 Pro Phe Cys Pro Glu Pro Ser Pro His Gln Asp Pro Phe CTC CCT GGT GCC TCA GCC CCC AGG GTC TGG GCT CAG GGC 2750 Leu Pro Gly Ala Ser Ala Pro Arg Val Trp Ala Gln Gly 760 CGC CTC CAG GGG CTG GGA TCC ATT CAT TCC CGC ACT AAC 2789 Arg Leu Gln Gly Leu Gly Ser Ile His Ser Arg Thr Asn 775 770 CTA ATG GAG GCT GAG CTC TTG GAT GCA GAC TCG GAC TTC TG 2830 Leu Met Glu Ala Glu Leu Leu Asp Ala Asp Ser Asp Phe 790 785 15 AGCTTGCAGG GCAGGTCCTA GGATGGGGAA GACAAGTGCA CGCCTTCCTA 2880 TAGCTCTTCC TGAGAGCACA CCTCTGGGGT CTCATCTGAC AGTCTATGGG 2930 CCATGTATCT GCCTACAAGA GCTGTGTACG ACTGGCTAGA AGCAGCCAGA 2980 CCATAGAAAC AAGCTGAACA CAGCCACTGA TAGACCTCAC TTCAGAAGCA 3030 AGACCTGCAG TTCAGGACCC TTGCCTCTGC CCCCCAATTA GAGTCTGGCT 3080 20 GGCAGTGTTA GTCTCCAACA GAGCTTGTAC TAGGGTAGGA ACGGCAGAGG 3130 CAGGGGTGAT GGTACCCAGA GTGGGCTGGG GTGTCCAGTG AGGTAACCAA 3180 GCCCATGTCT GGCAGATGAG GGCTGGCTGC CCTTTTCTGT GCCAATGAGT 3230 GCCCTTTTCT GGCGCTCTGA GACCAAAAGT GTTTATTGTG TCATTTGTCC 3280 TTTTTCTAGG TGGGAACAGG ACTCTCTTTT TCCTCTTCCT GGTAGTTGTA 3330 25 ATGACTACTC CCATAAGGCC TAGAACTGCT CTCAGTAGGT GGCCCTGTCC 3380 AAAACACATC TTCACATCTT AGTTCCACTA GGCCAAACTC TTATTGGTTA 3430 GCACCTTAAA ACACACACA ACACACACA ACACACACA ACACACACA 3480 ACACACACA ACCCTCTTAC TTCTGAGCTT GGTCTCAAGA GAGAGACAAC 3530 TGGTTCAGCT CCAGGCCTCT GAGAGTCATG TTTTCTTCCT CACATCCATC 3580 CAGTGGGGAT GGATCCTCTG ACTTAAGGGG CTACCTTGGG AAGCCTCTGT 3630 AGCTTCAGCC AGGCAAGAAA GCTTCTTCCA ACTTCTGTAT CTGGTGGGAA 3680 GGAGGACTCC CTACTTTTA CAATGTCTAG TCATTTTCAT AGTGCCCCAC 3730 ATTCAAGAAC CAGACAGCAG GATGCCTTAG AAGCTGGCTG GGTTCCAGGT 3780

CAGAGGCTCA GTATGAGAAG AAGAAATATG AACAGTAAAT AAAACATTTT 3830 TGTATAAAAA AAAAAAAAA AAAA 3854

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

5

- (A) LENGTH: 793 amino acids
- (B) TYPE: Amino Acid
- (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

10	Met 1	Ala	Ala	Gly	Arg 5	Pro	Val	Arg	Gly	Pro 10	Glu	Leu	Ala	Pro	Arg 15
	Arg	Leu	Leu	Gln	Leu 20	Leu	Leu	Leu	Val	Leu 25	Leu	Gly	Gly	Arg	Gly 30
	Arg	Gly	Ala	Ala	Leu 35	Ser	Gly	Asn	Val	Thr 40	Gly	Pro	Gly	Pro	Arg 45
15	Ser	Ala	Gly	Gly	Ser 50	Ala	Arg	Arg	Asn	Ala 55	Pro	Val	Thr	Ser	Pro 60
	Pro	Pro	Pro	Leu	Leu 65	Ser	His	Cys	Gly	Arg 70	Ala	Ala	His	Cys	Glu 75
20	Pro	Leu	Arg	Tyr	Asn 80	Val	Cys	Leu	Gly	Ser 85	Ala	Leu	Pro	туг	Gly 90
	Ala	Thr	Thr	Thr	Leu 95	Leu	Ala	Gly	Asp	Ser 100	qsA	Ser	Gln	Glu	Glu 105
	Ala	His	Ser	Lys	Leu 110	Val	Leu	Trp	Ser	Gly 115	Leu	Arg	Asn	Ala	Pro 120
25	Arg	Cys	Trp	Ala	Val 125	Ile	Gln	Pro	Leu	Leu 130	Cys	Ala	Val	Tyr	Met 135
	Pro	Lys	Cys	Glu	Asn 140	Asp	Arg	Val	Glu	Leu 145	Pro	Ser	Arg	Thr	Leu 150
30	Cys	Gln	Ala	Thr	Arg 155	Gly	Pro	Cys	Ala	Ile 160	Val	Glu	Arg	Glu	Arg 165
	Gly	Trp	Pro	Asp	Phe 170	Leu	Arg	Cys	Thr	Pro 175	Asp	His	Phe	Pro	Glu 180
	Gly	Cys	Pro	Asn	Glu 185	Val	Gln	Asn	Ile	Lys 190	Phe	Asn	Ser	Ser	Gly 195
35	Gln	Cys	Glu	Ala	Pro 200	Leu	Val	Arg	Thr	Asp 205	Asn	Pro	Lys	Ser	Trp 210
	Tyr	Glu	Asp	Val	Glu 215	Gly	Cys	Gly	Ile	Gln 220	Cys	Gln	Asn	Pro	Leu 225

	Phe	Thr	Glu	Ala	Glu 230	His	Gln	Asp	Met	His 235	Ser	Tyr	Ile	Ala	Ala 240
	Phe	Gly	Ala	Val	Thr 245	Gly	Leu	Cys	Thr	Leu 250	Phe	Thr	Leu	Ala	Thr 255
5	Phe	Val	Ala	Asp	Trp 260	Arg	Asn	Ser	Asn	Arg 265	Tyr	Pro	Ala	Val	Ile 270
	Leu	Phe	Tyr	Val	Asn 275	Ala	Cys	Phe	Phe	Val 280	Gly	Ser	Ile	Gly	Trp 285
10	Leu	Ala	Gln	Phe	Met 290	Asp	Gly	Ala	Arg	Arg 295	Glu	Ile	Val	Cys	Arg 300
	Ala	qaA	Gly	Thr	Met 305	Arg	Phe	Gly	Glu	Pro 310	Thr	Ser	Ser	Glu	Thr 315
	Leu	Ser	Cys	Val	Ile 320	Ile	Phe	Val	Ile	Val 325	Tyr	Tyr	Ala	Leu	Met 330
15	Ala	Gly	Val	Val	Trp 335	Phe	Val	Val	Leu	Thr 340	Tyr	Ala	Trp	His	Thr 345
	Ser	Phe	Lys	Ala	Leu 350	Gly	Thr	Thr	Tyr	Gln 355	Pro	Leu	Ser	Gly	Lys 360
20	Thr	Ser	Tyr	Phe	His 365	Leu	Leu	Thr	Trp	Ser 370	Leu	Pro	Phe	Val	Leu 375
	Thr	Val	Ala	Ile	Leu 380	Ala	Val	Ala	Gln	Val 385	Asp	Gly	Asp	Ser	Val 390
	Ser	Gly	Ile	Cys	Phe 395	Val	Gly	Tyr	Lys	Asn 400	Tyr	Arg	Tyr	Arg	Ala 405
25	Gly	Phe	Val	Leu	Ala 410	Pro	Ile	Gly	Leu	Val 415	Leu	Ile	Val	Gly	Gly 420
	Tyr	Phe	Leu	Ile	Arg 425	Gly	Val	Met	Thr	Leu 430	Phe	Ser	Ile	Lys	Ser 435
30			Pro		440					445					450
	Glu	Thr	Met	Leu	Arg 455		Gly	Ile	Phe	Gly 460		Leu	Ala	Phe	Gly 465
	Phe	Val	Leu	Ile	Thr 470		: Ser	Cys	His	Phe 475	Tyr	Asp	Phe	Phe	Asn 480
35	Gln	Ala	Glu	Trp	Glu 485		Ser	Phe	e Arg	Asp 490	Tyr	Val	Leu	. Cys	Gln 495
	Ala	Asn	Val	Thr	Ile 500		Leu	Pro	Thr	Lys 505		Pro	Ile	Pro	Asp 510
	Cys	Glu	Ile	Lys	Asn	Arg	Pro	Ser	Leu	Leu	Val	Glu	Lys	Ile	Asn

					515					520					525
	Leu	Phe	Ala	Met	Phe 530	Gly	Thr	Gly	Ile	Ala 535	Met	Ser	Thr	Trp	Val 540
5	Trp	Thr	Lys	Ala	Thr 545	Leu	Leu	Ile	Trp	Arg 550	Arg	Thr	Trp	Cys	Arg 555
	Leu	Thr	Gly	His	Ser 560	qeA	Asp	Glu	Pro	Lys 565	Arg	Ile	Lys	Lys	Ser 570
	Lys	Met	Ile	Ala	Lys 575	Ala	Phe	Ser	Lys	Arg 580	Arg	Glu	Leu	Leu	Gln 585
10	Asn	Pro	Gly	Gln	Glu 590	Leu	Ser	Phe	Ser	Met 595	His	Thr	Val	Ser	His 600
	Asp	Gly	Pro	Val	Ala 605	Gly	Leu	Ala	Phe	Glu 610	Leu	Asn	Glu	Pro	Ser 615
15	Ala	Asp	Val	Ser	Ser 620	Ala	Trp	Ala	Gln	His 625	Val	Thr	Lys	Met	Val 630
	Ala	Arg	Arg	Gly	Ala 635	Ile	Leu	Pro	Gln	Asp 640	Val	Ser	Val	Thr	Pro 645
	Val	Ala	Thr	Pro	Val 650	Pro	Pro	Glu	Glu	Gln 655	Ala	Asn	Leu	Trp	Leu 660
20	Val	Glu	Ala	Glu	Ile 665	Ser	Pro	Glu	Leu	Glu 670	Lys	Arg	Leu	Gly	Arg 675
	Lys	Lys	Lys	Arg	Arg 680	Lys	Arg	Lys	Lys	Glu 685	Val	Cys	Pro	Leu	Gly 690
25	Pro	Ala	Pro	Glu	Leu 695	His	His	Ser	Ala	Pro 700	Val	Pro	Ala	Thr	Ser 705
	Ala	Val	Pro	Arg	Leu 710	Pro	Gln	Leu	Pro	Arg 715	Gln	Lys	Cys	Leu	Val 720
	Ala	Ala	Asn	Ala	Trp 725	Gly	Thr	Gly	Glu	Pro 730	Cys	Arg	Gln	Gly	Ala 735
30	Trp	Thr	Val	Val	Ser 740	Asn	Pro	Phe	Cys	Pro 745	Glu	Pro	Ser	Pro	His 750
	Gln	Asp	Pro	Phe	Leu 755	Pro	Gly	Ala	Ser	Ala 760	Pro	Arg	Val	Trp	Ala 765
35	Gln	Gly	Arg	Leu	Gln 770	Gly	Leu	Gly	Ser	Ile 775	His	Ser	Arg	Thr	Asn 780
	Leu	Met	Glu	Ala	Glu 785	Leu	Leu	Asp	Ala	Asp 790	Ser	Asp	Phe 793		
	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	D:3:							

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2972 base pairs (B) TYPE: Nucleic Acid (C) STRANDEDNESS: Single (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: ATG GCC GCT GCC CGC CCA GCG CGG GGG 39 CGGGGGTTGG CC Met Ala Ala Arg Pro Ala Arg Gly Pro Glu Leu Pro Leu Leu Gly Leu Leu Leu Leu Leu CTG GGG GAC CCG GGC CGG GGG GCC TCG AGC GGG AAC 117 Leu Gly Asp Pro Gly Arg Gly Ala Ala Ser Ser Gly Asn . 30 25 GCG ACC GGG CCT GGG CCT CGG AGC GCG GGC GGG AGC GCG 156 Ala Thr Gly Pro Gly Pro Arg Ser Ala Gly Gly Ser Ala 40 AGG AGG AGC GCG GCG GTG ACT GGC CCT CCG CCG CCG CTG 195 Arg Arg Ser Ala Ala Val Thr Gly Pro Pro Pro Pro Leu 50 AGC CAC TGC GGC CGG GCT GCC CCC TGC GAG CCG CTG CGC 234 Ser His Cys Gly Arg Ala Ala Pro Cys Glu Pro Leu Arg 65 TAC AAC GTG TGC CTG GGC TCG GTG CTG CCC TAC GGG GCC 273 25 Tyr Asn Val Cys Leu Gly Ser Val Leu Pro Tyr Gly Ala ACC TCC ACA CTG CTG GCC GGA GAC TCG GAC TCC CAG GAG 312 Thr Ser Thr Leu Leu Ala Gly Asp Ser Asp Ser Gln Glu 95 90 30 GAA GCG CAC GGC AAG CTC GTG CTC TGG TCG GGC CTC CGG 351 Glu Ala His Gly Lys Leu Val Leu Trp Ser Gly Leu Arg 105 AAT GCC CCC CGC TGC TGG GCA GTG ATC CAG CCC CTG CTG 390 Asn Ala Pro Arg Cys Trp Ala Val Ile Gln Pro Leu Leu 120 TGT GCC GTA TAC ATG CCC AAG TGT GAG AAT GAC CGG GTG 429 Cys Ala Val Tyr Met Pro Lys Cys Glu Asn Asp Arg Val 130 GAG CTG CCC AGC CGT ACC CTC TGC CAG GCC ACC CGA GGC 468 40 Glu Leu Pro Ser Arg Thr Leu Cys Gln Ala Thr Arg Gly 145 CCC TGT GCC ATC GTG GAG AGG GAG CGG GGC TGG CCT GAC 507

Pro Cys Ala Ile Val Glu Arg Glu Arg Gly Trp Pro Asp

		155			160			165	
				GAC Asp					546
5				ATC Ile 185					585
10				GTT Val					624
	 			GAG Glu					663
15				GAG Glu					702
				TTC Phe					741
20				GCC Ala 250					780
25				CCT Pro					819
				GTG Val					858
30				GCC Ala		Arg			897
				AGG Arg					936
35				GTC Val 315					975
40	 		 	 GGT Gly					1014
				ACT Thr					1053

	ACC Thr	ACC Thr	TAC Tyr 350	CAG Gln	CCT Pro	CTC Leu	TCG Ser	GGC Gly 355	AAG Lys	ACC Thr	TCC Ser	TAC Tyr	TTC Phe 360	1092
5	CAC His	CTG Leu	CTC Leu	ACC Thr	TGG Trp 365	TCA. Ser	CTC Leu	CCC Pro	TTT Phe	GTC Val 370	CTC Leu	ACT Thr	GTG Val	1131
	GCA Ala	ATC Ile 375	CTT Leu	GCT Ala	GTG Val	GCG Ala	CAG Gln 380	GTG Val	GAT Asp	GGG Gly	GAC Asp	TCT Ser 385	GTG Val	1170
10	AGT Ser	GGC Gly	ATT Ile	TGT Cys 390	TTT Phe	GTG Val	GGC Gly	TAC Tyr	AAG Lys 395	AAC Asn	TAC Tyr	CGA Arg	TAC Tyr	1209
15	CGT Arg 400	GCG Ala	GGC Gly	TTC Phe	GTG Val	CTG Leu 405	GCC Ala	CCA Pro	ATC Ile	GGC Gly	CTG Leu 410	GTG Val	CTC Leu	1248
	ATC Ile	GTG Val	GGA Gly 415	Gly	TAC Tyr	TTC Phe	CTC Leu	ATC Ile 420	Arg	GGA Gly	GTC Val	ATG Met	ACT Thr 425	1287
20	CTG Leu	TTC Phe	TCC Ser	ATC Ile	AAG Lys 430	Ser	AAC Asn	CAC His	CCC	GGG Gly 435	Leu	CTG Leu	AGT Ser	1326
	GAG Glu	AAG Lys 440	Ala	GCC Ala	AGC Ser	AAG Lys	ATC Ile 445	Asn	GAG Glu	ACC Thr	ATG Met	CTG Leu 450	Arg	1365
25	CTG Leu	GGC Gly	: ATT	TTT Phe 455	Gly	TTC Phe	CTG Lev	GCC Ala	TT1 Phe 460	e Gly	TTT Phe	GTG Val	CTC Leu	1404
30	ATI Ile	Thi	TTC Phe	AGC Ser	TGC Cys	CAC His	Phe	TAC Tyr	GAC Asi	TTC Phe	2 TTC 2 Phe 475	e Asr	CAG Gln	1443
	GCT Alá	r GAC a Glu	TGC Trp 480	, Gl	G CGC	AGC Ser	TTC Phe	C CGC Arg 485	J AS	C TAT	GTC Val	G CT!	A TGT 1 Cys 490	1482 ;
35	CA(G GCC	C AA' a Asi	r GTO	495	: Ile	GGG Gl	G CTO y Lev	g CC	C ACC o Thi	r Ly:	G CAC	cco Pro	1521
	ATC Ile	C CC e Pr	o As	C TG' p Cy:	r GA(J ATO	E AAG E Ly: 51	s Ası	r CG n Ar	C CC	G AG	C CT r Le	ı Lei	3 1560 1
40	GT: Va	G GA	G AA u Ly	G AT s Il 52	e As	C CTO	G TT u Ph	T GCO	C AT a Me 52	t Ph	T GG e Gl	A AC y Th	r GGG	C 1599 Y
	AT Il	C GC e Al	C AT a Me	G AG t Se	C AC	C TG r Tr	G GT p Va	C TG	G AC p Th	C AA r Ly	G GC s Al	C AC a Th	G CT r Le	G 1638 u

	530					535					540			
							TGG Trp							1677
5							CGG Arg							1716
10							AAG Lys 575							1755
	AAC Asn	CCA Pro	GGC Gly	CAG Gln 585	GAG Glu	CTG Leu	TCC Ser	TTC Phe	AGC Ser 590	ATG Met	CAC His	ACT Thr	GTG Val	1794
15							GCG Ala							1833
							GTC Val							1872
20							GCT Ala							1911
25							ACC Thr 640							1950
							AAC Asn							1989
30							CAG Gln							2028
							AAG Lys							2067
35							CAC His							2106
40							CCT Pro 705							2145
							GCC Ala							2184

	TGC CGA CAG GGA GCG TGG ACC CTG GTC TCC AAC CCA TTC 2223 Cys Arg Gln Gly Ala Trp Thr Leu Val Ser Asn Pro Phe 735 730 735
5	TGC CCA GAG CCC AGT CCC CCT CAG GAT CCA TTT CTG CCC 2262 Cys Pro Glu Pro Ser Pro Pro Gln Asp Pro Phe Leu Pro 740 745 750
	AGT GCA CCG GCC CCC GTG GCA TGG GCT CAT GGC CGC CGA 2301 Ser Ala Pro Ala Pro Val Ala Trp Ala His Gly Arg Arg 755 760
10	CAG GGC CTG GGG CCT ATT CAC TCC CGC ACC AAC CTG ATG 2340 Gln Gly Leu Gly Pro Ile His Ser Arg Thr Asn Leu Met 765 770 775
15	GAC ACA GAA CTC ATG GAT GCA GAC TCG GAC TTC TGAGCCT 2380 Asp Thr Glu Leu Met Asp Ala Asp Ser Asp Phe 780 785 787
	GCAGAGCAGG ACCTGGGACA GGAAAGAGAG GAACCAATAC CTTCAAGGCT 2430
	CTTCTTCCTC ACCGAGCATG CTTCCCTAGG ATCCCGTCTT CCAGAGAACC 2480
	TGTGGGCTGA CTGCCCTCCG AAGAGAGTTC TGGATGTCTG GCTCAAAGCA 2530
	GCAGGACTGT GGGAAAGAGC CTAACATCTC CATGGGGAGG CCTCACCCCA 2580
20	GGGACAGGGC CCTGGAGCTC AGGGTCCTTG TTTCTGCCCT GCCAGCTGCA 2630
	GCCTGGTTGG CAGCATCTGC TCCATCGGGG CAGGGGGTAT GCAGAGCTTG 2680
	TGGTGGGGCA GGAACGGTGG AGGCAGAGGT GACAGTTCCC AGAGTGGGCT 2730
	TTGGTGGCCA GGGAGGCAGC CTAGCCTATG TCTGGCAGAT GAGGGCTGGC 2780
	TGCCGTTTTC TGGGCTGATG GGTGCCCTTT CCTGGCAGTC TCAGTCCAAA 2830
25	AGTGTTGACT GTGTCATTAG TCCTTTGTCT AAGTAGGGCC AGGGCACCGT 2880
	ATTCCTCTCC CAGGTGTTTG TGGGGCTGGA AGGACCTGCT CCCACAGGGG 2930
	CCATGTCCTC TCTTAATAGG TGGCACTACC CCAAACCCAC CG 2972
	(2) INFORMATION FOR SEQ ID NO:4:
	(i) SEQUENCE CHARACTERISTICS:
30	(A) LENGTH: 787 amino acids (B) TYPE: Amino Acid
	(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
35	Met Ala Ala Ala Arg Pro Ala Arg Gly Pro Glu Leu Pro Leu Leu 1 5 10 15
	Gly Leu Leu Leu Leu Leu Leu Gly Asp Pro Gly Arg Gly Ala 20 25 30

	Ala	Ser	Ser	Gly	Asn 35	Ala	Thr	Gly	Pro	Gly 40	Pro	Arg	Ser	Ala	Gly 45
	Gly	Ser	Ala	Arg	Arg 50	Ser	Ala	Ala	Val	Thr 55	Gly	Pro	Pro	Pro	Pro 60
5	Leu	Ser	His	Cys	Gly 65	Arg	Ala	Ala	Pro	Cys 70	Glu	Pro	Leu	Arg	Tyr 75
	Asn	Val	Cys	Leu	Gly 80	Ser	Val	Leu	Pro	Tyr 85	Gly	Ala	Thr	Ser	Thr 90
10	Leu	Leu	Ala	Gly	Asp 95	Ser	Asp	Ser	Gln	Glu 100	Glu	Ala	His	Gly	Lys 105
	Leu	Val	Leu	Trp	Ser 110	Gly	Leu	Arg	Asn	Ala 115	Pro	Arg	Cys	Trp	Ala 120
	Val	Ile	Gln	Pro	Leu 125	Leu	Cys	Ala	Val	Tyr 130	Met	Pro	Lys	Cys	Glu 135
15	Asn	Asp	Arg	Val	Glu 140	Leu	Pro	Ser	Arg	Thr 145	Leu	Cys	Gln	Ala	Thr 150
	Arg	Gly	Pro	Cys	Ala 155	Ile	Val	Glu	Arg	Glu 160	Arg	Gly	Trp	Pro	Asp 165
20	Phe	Leu	Arg	Cys	Thr 170	Pro	Asp	Arg	Phe	Pro 175	Glu	Gly	Cys	Thr	Asn 180
	Glu	Val	Gln	Asn	Ile 185	Lys	Phe	Asn	Ser	Ser 190	Gly	Gln	Cys	Glu	Val 195
	Pro	Leu	Val	Arg	Thr 200	Asp	Asn	Pro	Lys	Ser 205	Trp	Tyr	Glu	Asp	Val 210
25	Glu	Gly	Cys	Gly	Ile 215	Gln	Cys	Gln	Asn	Pro 220	Leu	Phe	Thr	Glu	Ala 225
	Glu	His	Gln	Asp	Met 230	His	Ser	Tyr	Ile	Ala 235	Ala	Phe	Gly	Ala	Val 240
30	Thr	Gly	Leu	Cys	Thr 245	Leu	Phe	Thr	Leu	Ala 250	Thr	Phe	Val	Ala	Asp 255
	Trp	Arg	Asn	Ser	Asn 260	Arg	Tyr	Pro	Ala	Val 265	Ile	Leu	Phe	Тут	Val 270
	Asn	Ala	Cys	Phe	Phe 275	Val	Gly	Ser	Ile	Gly 280	Trp	Leu	Ala	Gln	Phe 285
35	Met	Asp	Gly	Ala	Arg 290	Arg	Glu	Ile	Val	Cys 295	Arg	Ala	Asp	Gly	Thr 300
	Met	Arg	Leu	Gly	Glu 305	Pro	Thr	Ser	Asn	Glu 310	Thr	Leu	Ser	Cys	Val 315
	Ile	Ile	Phe	Val	Ile	Val	Tyr	Tyr	Ala	Leu	Met	Ala	Gly	Val	Val

				;	320					325					330
	Trp	Phe	Val		Leu 7	Thr '	Tyr	Ala	Trp	His 340	Thr	Ser	Phe	Lys	Ala 345
5	Leu (Gly	Thr		Tyr (350	Gln	Pro	Leu	Ser	Gly 355	Lys	Thr	Ser	Tyr	Phe 360
	His	Leu	Leu		Trp :	Ser	Leu	Pro	Phe	Val 370	Leu	Thr	Val	Ala	Ile 375
	Leu	Ala	Val		Gln 380	Val	Asp	Gly	Asp	Ser 385	Val	Ser	Gly	Ile	Cys 390
10	Phe	Val	Gly	Tyr	Lys 395	Asn	Tyr	Arg	Tyr	Arg 400	Ala	Gly	Phe	Val	Leu 405
	Ala	Pro	Ile	Gly	Leu 410	Val	Leu	Ile	Val	Gly 415	Gly	Туr	Phe	Leu	Ile 420
15	Arg	Gly	Val	Met	Thr 425	Leu	Phe	Ser	Ile	Lys 430	Ser	Asn	His	Pro	Gly 435
	Leu	Leu	Ser	Glu	Lys 440	Ala	Ala	Ser	Lys	Ile 445	Asn	Glu	Thr	Met	Leu 450
	Arg	Leu	Gly	Ile	Phe 455	Gly	Phe	Leu	Ala	Phe 460	Gly	Phe	Val	Leu	Ile 465
20	Thr	Phe	Ser	Cys	His 470	Phe	Tyr	Asp	Phe	Phe 475	Asn	Gln	Ala	Glu	Trp 480
	Glu	Arg	Ser	Phe	Arg 485	Asp	Tyr	Val	. Leu	Cys 490	Gln	Ala	Asn	Val	Thr 495
25	Ile	Gly	/ Leu	Pro	Thr 500	Lys	Gln	Pro	ıle	9 Pro	Asp	Cys	Glu	Ile	Lys 510
	Asn	Arg	g Pro	Ser	Leu 515	Leu	. Val	Glu	ı Lys	520	. Asn	Leu	Phe	Ala	Met 525
	Phe	Gly	/ Thr	Gly	Ile 530		. Met	. Sei	Th:	r Trp 535	Val	Trp	Thr	Lys	540
30	Thr	Le	ı Leu	ılle	Trp 545		Arg	Thi	r Trj	p Cys 550	arg	Leu	t Thr	: Gly	7 Gln 555
	Ser	As	p Asp	Glu	Pro 560		arç	J Ile	e Ly	s Lys 569	s Ser	Lys	s Met	: Ile	e Ala 570
35	Lys	al.	a Phe	e Ser	Lys 575		y His	s Gl	u Le	u Lei 58	ı Glr O	ı Ası	n Pro	Gly	y Gln 585
	Glı	ı Le	u Sei	r Phe	Ser 590		: His	s Th	r Va	1 Se:	r His	s Ası	o Gly	y Pr	o Val 600
	Ala	a Gl	y Le	u Ala	Phe 605		p Le	u As	n Gl	u Pr		r Ala	a As	p Va	l Ser 615

	Ser	Ala	Trp	Ala	Gln 620	His	Val	Thr	Lys	Met 625	Val	Ala	Arg	Arg	Gly 630
	Ala	Ile	Leu	Pro	Gln 635	qaA	Ile	Ser	Val	Thr 640	Pro	Val	Ala	Thr	Pro 645
5	Val	Pro	Pro	Glu	Glu 650	Gln	Ala	Asn	Leu	Trp 655	Leu	Val	Glu	Ala	Glu 660
	Ile	Ser	Pro	Glu	Leu 665	Gln	Lys	Arg	Leu	Gly 670	Arg	Lys	Lys	Lys	Arg 675
10	Arg	Lys	Arg	Lys	Lys 680	Glu	Val	Cys	Pro	Leu 685	Ala	Pro	Pro	Pro	Glu 690
	Leu	His	Pro	Pro	Ala 695	Pro	Ala	Pro	Ser	Thr 700	Ile	Pro	Arg	Leu	Pro 705
	Gln	Leu	Pro	Arg	Gln 710	Lys	Cys	Leu	Val	Ala 715	Ala	Gly	Ala	Trp	Gly 720
15	Ala	Gly	Asp	Ser	Cys 725	Arg	Gln	Gly	Ala	Trp 730	Thr	Leu	Val	Ser	Asn 735
	Pro	Phe	Cys	Pro	Glu 740	Pro	Ser	Pro	Pro	Gln 745	Asp	Pro	Phe	Leu	Pro 750
20	Ser	Ala	Pro	Ala	Pro 755	Val	Ala	Trp	Ala	His 760	Gly	Arg	Arg	Gln	Gly 765
	Leu	Gly	Pro	Ile	His 770	Ser	Arg	Thr	Asn	Leu 775	Met	Asp	Thr	Glu	Leu 780
	Met	Asp	Ala	qsA	Ser 785	Asp	Phe 787								

WHAT IS CLAIMED IS:

5

20

25

30

- Isolated vertebrate Smoothened.
- 2. Isolated vertebrate Smoothened having at least about 80% sequence identity with native sequence vertebrate Smoothened comprising amino acid residues 1 to 787 of SEQ ID NO:4.
- 3. The vertebrate Smoothened of claim 2 wherein said Smoothened has at least about 90% sequence identity.
 - 4. The vertebrate Smoothened of claim 3 wherein said Smoothened has at least about 95% sequence identity.
- 5. Isolated native sequence vertebrate Smoothened comprising the amino acid sequence of SEQ 10 ID NO:4.
 - 6. Isolated native sequence vertebrate Smoothened comprising the amino acid sequence of SEQ ID NO:2.
 - 7. A chimeric molecule comprising the vertebrate Smoothened of claim 1 fused to a heterologous amino acid sequence.
- 15 8. The chimeric molecule of claim 7 wherein said heterologous amino acid sequence is an epitope tag sequence.
 - 9. An antibody which specifically binds to the vertebrate Smoothened of claim 1.
 - 10. The antibody of claim 9 wherein said antibody is a monoclonal antibody.
 - 11. The antibody of claim 9 which is a neutralizing antibody.
 - 12. The antibody of claim 9 which is an agonist antibody.
 - 13. Isolated nucleic acid encoding vertebrate Smoothened.
 - 14. The nucleic acid of claim 13 wherein said nucleic acid encodes native sequence vertebrate Smoothened comprising the amino acid sequence of SEQ ID NO:4.
 - 15. The nucleic acid of claim 13 wherein said nucleic acid encodes native sequence vertebrate Smoothened comprising the amino acid sequence of SEQ ID NO:2.
 - A vector comprising the nucleic acid of claim 13.
 - 17. The vector of claim 16 operably linked to control sequences recognized by a host cell transformed with the vector.
 - 18. A host cell comprising the vector of claim 16.
 - 19. A process of using a nucleic acid molecule encoding vertebrate Smoothened to effect production of vertebrate Smoothened comprising culturing the host cell of claim 18.
 - 20. The process of claim 19 further comprising recovering the vertebrate Smoothened from the host cell culture.
- An article of manufacture, comprising a container and a composition contained within said container, wherein the composition includes vertebrate Smoothened or vertebrate Smoothened antibodies.
 - The article of manufacture of claim 21 further comprising instructions for using the vertebrate Smoothened or vertebrate Smoothened antibodies *in vivo* or *ex vivo*.
 - 23. A non-human, transgenic animal which contains cells that express nucleic acid encoding vertebrate Smoothened.

- 24. The animal of claim 23 which is a mouse or rat.
- 25. A non-human, knockout animal which contains cells having an altered gene encoding vertebrate Smoothened.
 - 26. The animal of claim 25 which is a mouse or rat.
- 5 27. A protein complex comprising vertebrate Smoothened protein and vertebrate Patched protein.
 - 28. The protein complex of claim 27 further comprising vertebrate Hedgehog protein.
 - 29. The protein complex of claim 28 wherein the vertebrate Hedgehog protein binds to the vertebrate Patched protein but does not bind to the vertebrate Smoothened protein.
 - 30. The protein complex of claim 27 which is a receptor for vertebrate Hedgehog protein.
- 10 31. A vertebrate Patched which binds to vertebrate Smoothened.
 - 32. The vertebrate Patched of claim 31 which has less than 100% sequence identity with a native sequence vertebrate Patched.

GCGGC	:GCGC	T CO	CGCG	GAGG	TGG	CTGC	TGG	GCCG	CGGG	CT (:GCGT	'GGGG	IG 50	
CGGAG	CCG	G G	AGCGA	CTCC	CGC	ACCC	CAC	GGCC	GGT	CC 3	rgccc	CTCCA	T 100	
CGAGG	GGC?	rg go	agti	AGT	r TTA	ATGG	TGG	GAG	\GGG2	AAT (GGGG	CTGAA	G 150	ı
ATCG	GGC(cc ci	AGAGO	GTT	C CC	\GGG1	TGA	AGAC	AAT!	rcc :	AATC	BAGGC	G 200	ļ
													T 250	
													CG 300	
													rc 350	
													CT 400	
													C 449	
ATG														
Met .	GCT Ala	GCT Ala	GGC :	Arg	Pro	Val	Arg	Gly	Pro	Glu	Leu .	Ala		
1				5					10					
CCC	CGG	AGG	CTG	CTG	CAG	TTG	CTG	CTG	CTG	GTA	CTG	CTT	527	
Pro	Arg	Arg	Leu	Leu	Gln	Leu 20	Leu	Leu	Leu	Val	Leu 25	Leu		
	15													
GGG	GGC	CGG	GGC Gly	CGG	GGG	GCG	GCC	TTG	AGC	GGG G1v	AAC Asn	GTG Val	566	
GTA	GIĀ	Arg	30 GTA	Arg	GTÄ	Ala	TTG	35	502	021				
ACC	GGG	CCT	GGG	CCT	CGC	AGT	GCC	GGC	GGG	AGC	GCG	AGG	605	
Thr	Gly	Pro	Gly	Pro	Arg	Ser	Ala	Gly	Gly	Ser 50	Ala	Arg		
40					45								-	
AGG	AAC	GCG	CCG	GTG	ACC	AGC	CCT	CCG	CCG	CCG	CTG	CTG	644	
Arg	Asn	Ala 55	Pro	Val	Thr	Ser	60	PIO	PIO	PIO	печ	65		
	63.6	maa	GGC	ccc	ccc	CCC	CAC	TIGC.	GAG	CCT	TTG	CGC	683	
Ser	His	Cys	Gly	Arg	Ala	Ala	His	Cys	Glu	Pro	Leu	Arg		
				70					75					
TAC	AAC	GTG	TGC	CTG	GGC	TCC	GCG	CTG	CCC	TAC	GGA	GCC	722	
Tyr	Asn	Val	СЛа	Leu	Gly	Ser 85	Ala	Leu	Pro	Tyr	90 91	Ala		
	80													
ACC	ACC	ACG	CTG Leu	CTG	GCT	GGG	GAC	TCG	GAC	TCG Ser	CAG Gln	GAG Glu	/ 6 T	
THE	THE	TILL	95	neu	ALG	O-1		100		-	-			
CAA	פרני	י ראר	AGC	· дас	CTC	GTG	CTC	TGG	TCC	: GGC	CTC	CGG	800	
Glu	Ala	His	Ser	Lys	Leu	. Val	Leu	Trp	Ser	Gly	r Leu	Arg	•	
105					110					115	•			

FIG._1A

AAT Asn	GCT Ala	CCC Pro 120	CGA Arg	TGC Cys	TGG Trp	GCA Ala	GTG Val 125	ATC Ile	CAG Gln	CCC Pro	CTG Leu	CTG Leu 130	839
TGT Cys	GCT Ala	GTC Val	TAC Tyr	ATG Met 135	CCC Pro	AAG Lys	TGT Cys	GAA Glu	AAT Asn 140	GAC Asp	CGA Arg	GTG Val	878
GAG Glu	TTG Leu 145	CCC Pro	AGC Ser	CGT Arg	ACC Thr	CTC Leu 150	TGC Cys	CAG Gln	GCC Ala	ACC Thr	CGA Arg 155	GGC Gly	917
CCC Pro	TGT Cys	GCC Ala	ATT Ile 160	GTG Val	GAG Glu	CGG Arg	GAA Glu	CGA Arg 165	GGG Gly	TGG Trp	CCT Pro	GAC Asp	956
TTT Phe 170	CTG Leu	CGT Arg	TGC Cys	ACG Thr	CCG Pro 175	GAC Asp	CAC His	TTC Phe	CCT Pro	GAA Glu 180	GGC Gly	TGT Cys	995
CCA Pro	AAC Asn	GAG Glu 185	GTA Val	CAA Gln	AAC Asn	ATC Ile	AAG Lys 190	TTC Phe	AAC Asn	AGT Ser	TCA Ser	GGC Gly 195	1034
CAA Gln	TGT Cys	GAA Glu	GCA Ala	CCC Pro 200	TTG Leu	GTG Val	AGG Arg	ACA Thr	GAC Asp 205	AAC Asn	CCC	AAG Lys	1073
AGC Ser	TGG Trp 210	Tyr	GAG Glu	GAC Asp	GTG Val	GAG Glu 215	Gly	TGT Cys	GLY	ATC Ile	CAG Gln 220	TGC Cys	1112
CAG Gln	AAĈ Asn	CCG Pro	CTG Leu 225	Phe	ACC Thr	GAG Glu	GCT Ala	GAG Glu 230	His	CAG Gln	GAC Asp	ATG Met	1151
CAC His 235	Ser	TAC Tyr	ATC Ile	GCA Ala	GCC Ala 240	Phe	GGG Gly	GCG Ala	GTC Val	ACC Thr 245	Gly	CTC Leu	1190
TGT Cys	ACA	CTC Leu 250	Phe	ACC	CTG Lev	GCC Ala	ACC Thr 255	Phe	GTG Val	GCT Ala	GAC Asp	TGG Trp 260	
CGG	AA(TCC Ser	AAT Asn	CGC Arg 265	Туз	CCI Pro	GCG Ala	GTT Val	ATT Ile 270	Leu	TTC Phe	TAT TYT	1268
GTC Val	AAS L Asi 27	n Ala	TGI Cys	TTC Phe	TTT Phe	GT(Val 280	L Gly	AGC Sei	C ATT	GGC Gly	TTT TTT 285	Leu	1307

FIG._1B

TAC Tyr	TAT Tyr	GCC Ala	TTG Leu	ATG Met 330	GCT Ala	GGA Gly	GTA Val	GTG Val	TGG Trp 335	TTC Phe	GTG (GTC Val	1463
CTC Leu	ACC Thr 340	TAT Tyr	GCC Ala	TGG Trp	CAC His	ACC Thr 345	TCC Ser	TTC Phe	AAA Lys	GCC Ala	CTG Leu 350	GGC Gly	1502
ACC Thr	ACT Thr	TAC Tyr	CAG Gln 355	CCT Pro	CTC Leu	TCG Ser	GGC Gly	AAG Lys 360	ACA Thr	TCC Ser	TAT Tyr	TTC Phe	1541
CAC His 365	CTG Leu	CTC Leu	ACG Thr	TGG Trp	TCA Ser 370	CTC Leu	CCC Pro	TTC Phe	GTC Val	CTC Leu 375	ACT Thr	GTG Val	1580
GCA Ala	ATC Ile	CTT Leu 380	Ala	GTG Val	GCT Ala	CAG Gln	GTA Val 385	GAT Asp	GGG	GAC Asp	TCC Ser	GTG Val 390	1619
AGT Ser	GGC Gly	ATC Ile	TGC Cys	TTT Phe 395	Val	GGC Gly	TAC Tyr	AAG Lys	AAC Asn 400	Tyr	CGG Arg	TAC Tyr	1658
CGT Arg	GCT Ala 405	Gly	TTT Phe	GTA Val	CTT Leu	GCC Ala 410	Pro	ATT	GGC Gly	CTG Leu	GTG Val 415	CTT Leu	1697
ATT Ile	GTG Val	GGA Gly	GGC Gly 420	Tyr	TTC Phe	CTC	ATC	CGA Arg 425	, Gly	GTC Val	ATG Met	ACT Thr	1736
CTG Lev 430	Phe	TCC Sei	ATC	AAG Lys	AGC Ser 435	Asn	CAC His	CCI Pro	GGG Gly	CTT Leu 440	. Leu	AGT Ser	1775
GA0 Glu	AAC Lys	G GCI S Ala	a Ala	AGC A Sei	C AAG	ATC	AAT Asi 450	ı Glı	3 ACC	ATG Met	CTG Leu	CGC Arg 455	1814
CT(Let	G GGG	C AT	r TT	r GG(e Gl; 46	y Phe	CTC	C GCC	TT:	r GG(e Gl; 46	y Phe	GTG Val	CTC Lev	1853
ATC Il	C ACC e Th	r Ph	C AG e Se	C TGG T Cy	C CAC	TTC 5 Pho 47	е Ту:	r GA	C TT p Ph	C TTO	AAC ASI 480	ı Glı	3 1892 1
GC Al	T GA a Gl	G TG u Tr	G GA p G1 48	u Ar	T AGG	TT r Ph	C CG e Ar	G GA g As 49	YT q	T GTO	G CTI	A TGO	2 1931 3

FIG._1C

CAA Gln 495	GCC Ala	AAT Asn	GTG Val	ACC Thr	ATT Ile 500	GGG Gly	CTG Leu	CCT Pro	ACC Thr	AAG Lys 505	AAG Lys	CCC Pro	1970
ATT Ile	CCT Pro	GAT Asp 510	TGT Cys	GAG Glu	ATC Ile	AAG Lys	AAT Asn 515	CGG Arg	CCC Pro	AGC Ser	CTC Leu	CTG Leu 520	2009
GTG Val	GAG Glu	AAG Lys	ATC Ile	AAT Asn 525	CTG Leu	TTT Phe	GCC Ala	ATG Met	TTT Phe 530	GGC Gly	ACT Thr	GGC Gly	2048
ATT	GCC Ala 535	ATG Met	AGC Ser	ACC Thr	TGG Trp	GTC Val 540	TGG Trp	ACC Thr	AAG Lys	GCC Ala	ACC Thr 545	CTG Leu	2087
CTC Leu	ATC Ile	TGG Trp	AGG Arg 550	CGC Arg	ACC Thr	TGG Trp	TGC Cys	AGG Arg 555	TTG Leu	ACT Thr	G G G Gly	CAC His	2126
AGT Ser 560	GAT Asp	GAT Asp	GAA Glu	CCC Pro	AAG Lys 565	AGA Arg	ATC Ile	AAG Lys	AAA Lys	AGC Ser 570	AAG Lys	ATG Met	2165
ATT Ile	GCC Ala	AAG Lys 5 7 5	GCC Ala	TTC Phe	TCT Ser	AAG Lys	CGG Arg 580	CGT	GAA Glu	CTG Leu	CTG Leu	CAG Gln 585	2204
AAC Asn	CCG Pro	GGC Gly	CAG Gln	GAG Glu 590	CTC Leu	TCC Ser	TTC Phe	AGC Ser	ATG Met 595	CAC His	ACT	GTC Val	2243
TCC Ser	CAT His 600	Asp	GGA Gly	CCT Pro	GTT Val	GCC Ala 605	GGT Gly	TTG Leu	GCT Ala	TTT Phe	GAA Glu 610	CTC	2282
AAT Asn	GAA Glu	CCC Pro	TCA Ser 615	GCT Ala	GAT Asp	GTC Val	TCC	TCT Ser 620	Ala	TGG Trp	GCC Ala	CAG Gln	2321
CAC His 625	Val	ACC Thr	AAG Lys	ATG Met	GTG Val 630	Ala	CGA Arg	AGA Arg	GGA Gly	GCC Ala 635	Ile	TTA Leu	2360
CCC Pro	CAG Gln	GAT Asp 640	Val	TCT Ser	GTC Val	ACC	CCT Pro 645	Val	GCA Ala	ACT	CCA Pro	GTG Val 650	2399
CCA Pro	CCA Pro	GAA Glu	GAA Glu	CAA Gln 655	Ala	AAC Asn	CTG Lev	TGG Trp	CTG Leu 660	Val	GAG Glu	GCA Ala	2438

FIG._1D

GAG Glu	ATC Ile 665	TCC Ser	CCA Pro	GAG Glu	TTA Leu	GAG Glu 670	AAG Lys	CGT Arg	TTA Leu	GGC Gly	CGG Arg 675	AAG Lys	2477	1
AAG Lys	AAG Lys	CGG Arg	AGG Arg 680	AAG Lys	AGG Arg	AAG Lys	AAG Lys	GAG Glu 685	GTG Val	TGC Cys	CCC Pro	TTG Leu	2516	5
GGG Gly 690	CCA Pro	GCC Ala	CCT Pro	GAA Glu	CTT Leu 695	CAC His	CAC His	TCT Ser	GCC Ala	CCT Pro 700	GTT Val	CCT Pro	255	5
GCC Ala	ACC Thr	AGT Ser 705	GCA Ala	GTT Val	CCT Pro	CGG	CTG Leu 710	CCT Pro	CAG Gln	CTG Leu	CCT Pro	CGG Arg 715	2594	<u>4</u>
CAG Gln	AAG Lys	TGC Cys	CTA Leu	GTA Val 720	GCT Ala	GCA Ala	AAT Asn	GCC Ala	TGG Trp 725	GGA Gly	ACA Thr	GGA Gly	263	3
GAG Glu	CCC Pro 730	Суз	CGA Arg	CAG Gln	GGA Gly	GCC Ala 735	TGG	ACT	GTA Val	GTC Val	TCC Ser 740	AAC Asn	267	2
CCC Pro	TTC Phe	TGC Cys	CCA Pro 745	Glu	CCT Pro	AGT Ser	CCC	CAT His 750	Gln	GAT Asp	CCA Pro	TTT	271	1
CTC Leu 755	CCT	GGT Gly	GCC Ala	TCA Ser	GCC Ala 760	Pro	AGG Arg	GTC Val	TGG	GCT Ala 765	Gln	GGC Gly	275	0
CGC Arg	CTC Leu	CAG Gln 770	Gly	CTG Leu	GGA Gly	TCC Ser	ATT Ile 775	His	TCC Ser	CGC	ACT	AAC Asn 780	•	9
					Lev		GAT Asp			Ser			1	2830
AGC	TTGC	AGG	GCAG	GTCC	TA C	GATO	GGGA	A GA	CAAG	TGCA	CGC	CTTC	CTA	2880
TAG	CTCI	TCC	TGAC	AGC	CA (CTC	rgggg	T CI	CATC	TGAC	: AGI	CTAI	:GGG	2930
CCA	TGT	ATCT	GCC	TACAI	AGA (CTG	CTAC	G AC	CTGGC	TAGA	AGC	AGCC	AGA	2980
			,											3030
														3080
														3130
CAC	GGG:	rgat	GGT	ACCC	AGA (GTGG	GCTG(GG G	rgrc	CAGT	AG(GTAA(CAA	3180

FIG._1E

FIG._1F

LSGNVTGPGPRSFGSTTPASAQQS	SARRINAPV TSPPPPLLS	LGSALPYGATTLLAGDSDSQEEAHSKLVLWSGLRNAPRCWAVIQPLLCFGSKLPYELSSLDLT.DFHTEKELNDKLNDYYALKHVPKCWAAIQPFLC	VYMPKCENDRVELPSRTLCQATRGPCAIVERERGWPDFLRCTPDH VFKPKCEKINGEDMVYLPSYEMCRITMEPCRILLYNTTFPPKFLRCNETL	PEGCPNEVQNIKFNSSGOCEAPLVRTDNPKSWYEDVEGCGIQCQNPLFT PTRCTNGARGMKFNGTGQCLSPLVPTDTSASYYPGIEGCGVRCKDPLYT	AEHQDMHSYIAAFGAWTGLCVLFTLATFVADWRNSNRYPAVILFYVNA DEHROIHKLIGWAGSICLLSNLFVVSTFFIDWKNANKYPAVIVEYINL	F V G S I G	LMAGVVWFVVLT LTAAGMVWFVFLT	TLAVAQVDGDSVSGIČFVGYKNYRYRAGFVLAPIGLULTVGGYFQIRGV TMAFSEVDGNSIVGICFVGYINHSMRAGLLLGPLCGVILLGGYFTTRGM	9 TLFSIKSNHPGLLSEKAASKINETMLRLGTFGFLAFGFVLITFSCHFYDE 8 MLFGLKHFANDIKSTSASNKIHLIIMRMGVCALLTLVATACHVTEF
ਜਜ	50	83	133	179	229	279	329	379 379 398	429
rSmo dSmo	rSmo	rSmo	r Smo d Smo	rsmo	rSmo	rSmo	r Smo	rSmo dSmo	rSmo

d J Z × OK M M > **E** > A U S A OA Ø H Ø Dr. 17 AA > 0 A W д H Ø E4 3 Ö H H H 3 3 · Z H Ø K K z Z H 4 L ĸ ĸ > ZE × Q A H ٠ 🕰 × ß K Н SLLVEKTN H H Σ H Д × Ø A S • 🕰 ρц Ö 4 1 O ø Ξ ď က က > Σ H . 03 K S K M K M V V M V O Σ > Ø ĸ 4 μ H · 🖂 × AA Ц ុំល Z Ø × · > Ω E⊢ ч A Z · 02 Н ¥ ם iEU Q ល ч O D P × X 'z' ល អ 4 Ø H · > 4 Д K (Q) ы А × Д 요 [편] 니 표 4 A N R P Ŋ 回 > Œ '国' • ¦છ 3 % Н д HΣ H O Z Ø O ы S r. 耳耳 • '02 1 > a × . ב 면 저 > Ω, S ß × Ø Z W A D K Z Z ы Н O M Ω × U S Σ OJ PE × **A** > E E H βΩ **H K** ρ, Ø 闰 × ຜ а Œ Q S <u>,</u> [4] æ **떨** H 田民 E CO 闰 н Þ H 臼 ZZ ຸ່ນ Ţ Z Q, * U U A > 1 Þ 四 回 H α 4 H ิเก Ы 'A' 듸 ល គ × 国口 ω H U H Ø D S U C أيح ч Įυ ĸ ď ម្រា ល H × म्य भ A D а Œ 14 щ S ø Ø μ > 1 Ø ø ρ, 124 D B Ē Н Ü ט Æ Z Z Z > S z ĸ Z H Д H υ H H Pt C щ **ග** ග Ø <u>U</u> ДΩ ы × 4 K × L H Z O ß × WTV SHIKV H S ĸ A O Ч × Ø X X × Æ . A X N L > A £ **E** Ü ĸ **>** > > & b Q AZ н 고 O 고 고 > U Ü I ഥ P4 P4 **P4** P4 υ₀ Д 3 Н Ů GIL SVF H O Д > Q H O > 0 ₽ > G 4 A QGLL 国 H ĸ × Ω R R R A F > **#** E [24 w,w K X 4 4 Ø æ υ H **H H** H Ø 3 3 S F > '& × Ö Q A Z 댐 Ø [1] [14 N **>** • מים! 2 ĸ 宜 岁 **∑** н Д Д Н H HH ч × U × 1日 日 H Z or z × S H H 24 П J ធ Д Ø ัซิ 24 ZA 闰 4 н Г Ħ × Д × a H 回 ø Z H R ß × H U ы ø E O Z J H ¥ 4 Ö 4 Œ G A × ĸ Z Н ับ Ö K U SH Н 4 4 0 0 × > O H J S K × ρ, S **以** 只 14 H X O Z Ξ လ လ X R H O н н HH × 3 3 • [Œ H Ü × μ A HH З Н нч ſΞĄ SFRDS M × 回 > U 田 • 1 O ∢ > D F A ц Z 3 3 H H R X H O Of IK . 4 ZO O M C) . 2 E K 03 Д ĸ Σ 4 i z 0 0 × **4 1 5** А × Ø K co co **K K** Pt K P4 Ø **K K** 回 > > ø 闰 ΣΣ ZA Н αн 臼 H A X u K 1 Ø Ü H **1** 4 OF E Ø T W S 4 > A E W Σ 3 \triangleright 四 > UH × S K HH il Fi P4 P4 н ø ס ט (E4) <u>.</u> × 回 Ü Δ, S K O OA 闰 œ O! Ø លៈ M Q a E+ 03 図り Ŋ > Ot 12 Q L 4 U ø ď io, Ø a ď Ħ α O O K K ф Н 民田 Ø z E E **K K** > Д E V A 24 3 K × Ŋ Z. × Ħ > H K × 4 Д H K Z ĸ Ēυ æ ы 479 529 543 625 639 713 763 787 837 887 937 987 498 579 593 663 689 dSmo dSmo dSmo rSmo dSmo dSmo

FIG._2B

1	CGGGGGTTGG	COMMOCCCCC	ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GCGCGGGGGC CGCGCCCCG	GCCICGWGGG
	GCCCCCAACC	Mot 1 a 2 1	aAlaArgPro	AlaArgGlyP	roGluLeuPr
1		Met			
51		03.003.003.00	カクはもではもではみ	GGGGGACCCG	
14	oLeuLeuGly	LeuLeuLeuL	euLeuLeuLe	uGIYASPPPO	GIYAIGGIYAIG
101	CGGCCTCGAG	CGGGAACGCG	ACCGGGCCTG	GGCCTCGGAG	CGCGGGCGGG
101		CCCCMMCCCCC	TRECCCCGGAC	CCGGAGCCTC	
31	AlaSerSe	rGlyAsnAla	ThrGlyProG	lyproArgse	TALEGLYGLY
151	AGCGCGAGGA	GGAGCGCGGC	GGTGACTGGC	CCTCCGCCGC	CGCTGAGCCA
131			- ペペカペポになべてに		GCGWCTCGGT
47	SerAlaArgA	rgSerAlaAl	aValThrGly	PIOPIOPIOP	TODGGGGTWTG
201	CTGCGGCCGG	GCTGCCCCCT	GCGAGCCGCT	GCGCTACAAC	GTGTGCCTGG
201				CGCGATGTTG	CWCWCGGWCG
64	CysGlyArg	AlaAlaProC	ysGluProLe	MAIGIYIASII	Valcysheac
251	CCTCGGTGCI	GCCCTACGG	GCCACCTCC!	A CACTGCTGGC	CGGAGACTCG
231			י רכבייוכבאניני	r Grigalgacts	GCCTCTGMGC
81	lySerValLe	uProTyrGly	AlaThrSer	r urlentenar	agrykspaer
301	CACTCCCAGO	aggaagegel	CGGCAAGCT	C GTGCTCTGGT	CGGGCCTCCG
301		- macmmacacar	r CCCGTTCGA	G CACGAGACUA	, GCCCGGAGGC
97	AspSerGln(G luGluAlaH:	r aglarare.	u valleurips	GIGINHEUM
351	CAATCCCCC	C CGCTGCTGG	G CAGTGATCC	A GCCCCTGCTC	TGTGCCGTAT
22T			מומא מיחית אירות או היי	THE CONTRACTOR	. MCMCGGCGGGG
114	Clincodo.	o ArgCvsTrp	A laValIleG	l nProLeuLeu	CysAlaValTyr
114					
401	ACATGCCCA	A GTGTGAGAA	T GACCGGGTG	G AGCTGCCCAC	CCGTACCCTC
401		- 0101CMCMT	* ~~~~~~~~~~~	C TCGACGGGT	- Gorningana
131	MetProL	y sCysGluAs	n AspArgVal	G Turentios	g TAIGIMING
451	TGCCAGGCC	A CCCGAGGCC	C CTGTGCCAT	C GTGGAGAGG	AGCGGGGCTG
307		_ ~~~~~~~	~ ~~~~~~~~~~~	G CACCTUTU	Telecterine
147	CysGlnAla	T hrArgGlyF	r oCysAlaII	Le ValGIUATG	G TOWIGGTAILD
501	<u> </u>	re errecected	A CTCCTGAC	CG CTTCCCTGA	A GGCTGCACGA
201		~ ~~~~~~~	אוויין מבוצו מבין יחיי	T CANCILLANCE	1 00000000
164	ProAspPt	e LeuArgCys	T hrProAsp	Ar gPheProGl	u GlyCysThrA
104					
551	ATGAGGTGG	A GAACATCA	AG TTCAACAG	TT CAGGCCAGT	G CGAAGTGCCC
ىد <i>ن</i> ب		ママ とこれのとのみとがっ	ורי אאניתיתניתיני	AA GTCCGGTCH	C GCTTCWCGGG
181	snGluVal(I nAsnIleL	ys PheAsnSe	rs ereraeruc	y sciuvaria-
C 5.4	mmccmmcc/	CA CAGACAAC	CC CAAGAGCT	GG TACGAGGAC	G TGGAGGGCTG
601		am amamamma	<u>ግር</u> ርጥጥርጥርርል	CC ATGCTCCTU	C ACCICCOMC
197	ישנים. אל לביוים.	or hraspasn	Pr oLysSerT	rp TyrGluAsı	ov alGluGlyCy
T3 /	Ten A GTWT	a		= =	

FIG._4A

651	CGGCATCCAG	TGCCAGAACC	CGCTCTTCAC	AGAGGCTGAG	CACCAGGACA
	GCCGTAGGTC	ACGGTCTTGG	GCGAGAAGTG	TCTCCGACTC	GTGGTCCTGT
214	sGlyIleGln	CysGlnAsnP	roLeuPheTh	rGluAlaGlu	HisGlnAspMet
701	TGCACAGCTA	CATCGCGGCC	TTCGGGGCCG	TCACGGGCCT	CTGCACGCTC
	ACGTGTCGAT	GTAGCGCCGG	AAGCCCCGGC	AGTGCCCGGA	GACGTGCGAG
231	HisSerTy	rIleAlaAla	PheGlyAlaV	alThrGlyLe	uCysThrLeu
751	TTCACCCTGG	CCACATTCGT	GGCTGACTGG	CGGAACTCGA	ATCGCTACCC
	AAGTGGGACC	GGTGTAAGCA	CCGACTGACC	GCCTTGAGCT	TAGCGATGGG
247	PheThrLeuA	laThrPheVa	lAlaAspTrp	ArgAsnSerA	snArgTyrPro
801	TGCTGTTATT	CTCTTCTACG	TCAATGCGTG	CTTCTTTGTG	GGCAGCATTG
	ACGACAATAA	GAGAAGATGC	AGTTACGCAC	GAAGAAACAC	CCGTCGTAAC
264	AlaValIle	LeuPheTyrV	alAsnAlaCy	sPhePheVal	GlySerIleG
			sta	rt clone 14	
851	GCTGGCTGGC	CCAGTTCATG	GATGGTGCCC	GCCGAGAGAT	CGTCTGCCGT
	CGACCGACCG	GGTCAAGTAC	CTACCACGGG	CGGCTCTCTA	GCAGACGGCA
281	lyTrpLeuAl	aGlnPheMet	AspGlyAlaA	rgArgGluIl	eValCysArg
901	GCAGATGGCA	CCATGAGGCT	TGGGGAGCCC	ACCTCCAATG	AGACTCTGTC
	CGTCTACCGT	GGTACTCCGA	ACCCCTCGGG	TGGAGGTTAC	TCTGAGACAG
297	AlaAspGlyT	hrMetArgLe	uGlyGluPro	ThrSerAsnG	luThrLeuSe
951	CTGCGTCATC	ATCTTTGTCA	TCGTGTACTA	CGCCCTGATG	GCTGGTGTGG
	GACGCAGTAG	TAGAAACAGT	AGCACATGAT	GCGGGACTAC	CGACCACACC
314	rCysValIle	IlePheValI	leValTyrTy	rAlaLeuMet	AlaGlyValVal
1001	TTTGGTTTGT	GGTCCTCACC	TATGCCTGGC	ACACTTCCTT	CAAAGCCCTG
	AAACCAAACA	CCAGGAGTGG	ATACGGACCG	TGTGAAGGAA	GTTTCGGGAC
331	TrpPheVa	lValLeuThr	TyrAlaTrpH	isThrSerPh	erAsyranen
1051	GGCACCACCT	ACCAGCCTCT	CTCGGGCAAG	ACCTCCTACT	TCCACCTGCT
	CCGTGGTGGA	TGGTCGGAGA	GAGCCCGTTC	TGGAGGATGA	AGGTGGACGA
347	GlyThrThrT	yrGlnProLe	userGlyLys	Thrsertyre	heHisLeuLeu
					COMOMOCOCO
1101	CACCTGGTCA	CTCCCCTTTG	TCCTCACTGT	GGCAATCCTT	GCTGTGGCGC
	GTGGACCAGT	GAGGGGAAAC	AGGAGTGACA	CCGTTAGGAA	CGACACCGCG
364	ThrTrpSer	LeuProPhev	alleurnrya	TATALLELEG	AlaValAlaG
					CMACAACAAC
1151	AGGTGGATGG	GGACTCTGTG	AGTGGCATTI	GITTIGIGG	CTACAAGAAC
	TCCACCTACC	CCTGAGACAC	TCACCGTAAA	L CAAAACACCC	GATGTTCTTG
381	lnValAspGl	yAspserval	. SerGIVILEC	: AstueAarer	yTyrLysAsn
1201	TACCGATACC	GIGCGGGCT	CONGCIGGC	. CCAATCGGCC	: TGGTGCTCAT : ACCACGAGTA
	ATGGCTATGG	CACGCCCGA	GCACGACCGC	- CottAGCCGG	ACCACGAGIA
397	TyrargTyrA	rgaraGrahi	1 eASTPERMIS	1 LIGITEGIAL	euValLeuIl
40-4			. maaaaaaa	1 C3MC3CMCMC	TTCTCCATCA
1251	CGTGGGAGGC	TACTTCCTCA	N TOCGAGGAG	CHIGACICIC	AAGAGGTAGT
	GCACCCTCCG	ATGAAGGAGT	TAGGCTCCTC	A GIACIGAGAC	PheSerIleLys
414	evargragra	TALLUGUER	r rewrâgtlas	* TWGCIUITGE	. LHG3GTTTGDAD

FIG._4B

	AAC
1301 AGAGCAACCA CCCCGGGCTG CTGAGTGAGA AGGCTGCCAG CAAGATCA TCTCGTTGGT GGGGCCCGAC GACTCACTCT TCCGACGGTC GTTCTAGT	rtg
TCTCGTTGGT GGGGCCCGAC GACTCACTCT TCCGACGGTG TCTCGTTGGT GGGGCCCGAC GACTCACTCT TCCGACGGTG TCTCGTTGGT GGGGCCCCGAC GACTCACTCT TCCGACGGTG TCTCGTTGGT GGGGCCCCGACGTG TCTCGTTGGT GGGGCCCCGGTG TCTCGTTGGT GGGGCCCCGGTG TCTCGTTGGT GGGGCCCCGGTG TCTCGTTGGT GGGGCCCCGGTG TCTCGTTGGTGGTGGTG TCTCGTTGGTGGTGGTGGTG	Asn
431 SerAsnHi sproglyhed heddelda i	mC®
1351 GAGACCATGC TGCGCCTGGG CATTTTTGGC TTCCTGGCCT TTGGCTT	TGI ACA
1351 GAGACCATGC TGCGCCTGGG CATTTTTGGC TICCTGGGA AACCGAA CTCTGGTACG ACGCGGACCC GTAAAAACCG AAGGACCGGA AACCGAA CTCTGGTACG ACGCGGACCC GTAAAAACCG AAGGACCGGA AACCGAA	eVal
447 GluThrMetL euArgLeuGl YlleFRedly 211000	
THE TAX CARGOTT	AGT
1401 GCTCATTACC TTCAGCTGCC ACTTCTACGA CITCTACGAC CGAGTAATGG AAGTCGACGG TGAAGATGCT GAAGAAGTTG GTCCGAC	TCA
Dhacarrugh Isruely-on F	luT
464 Leullethr Phesercysa Danie 1	יאיזיי
1451 GGGAGCGCAG CTTCCGGGAC TATGTGCTAT GTCAGGCCAA TGTGACC	TAG
CCCTCGCGTC GAAGGCCCTG ATACACGATA COLONIA DVALTA	rIle
481 rpGluArgSe rPheArgAsp Tylvallede 155-	
COCCTGCCCA CCAAGCAGCC CATCCCTGAC TGTGAGATCA AGAATC	GCCC
TALL GGGCIGCOLL TOTAL	
"" " "" " " " " " " " " " " " " " " "	IGPI
497 GlyLeuprot minyserme collect	GGCA
1551 GAGCCTTCTG GTGGAGAAGA TCAACCTGTT TGCCATGTTT GGAACT	CCGT
CTCGGAAGAC CACCTCTTCT AGTTGGACAA ACGGTACAAA CCLYThr	GlyIle
CTCGGAAGAC CACCTCTTCT AGTTGGACAA ACGGIACAAA 6 CTCGGAACAA ACGGIACAAA 6 CTCGGAACAA 6 CTCGGAACAA ACGGIACAAA 6 CTCGGAACAA 6 CTCGAACAA 6 CTCGGAACAA 6 CTCGGAACAA 6 CTCGGAACAA 6 CTCGGAACAA 6 CTCGAACAA 6 CTCGAACAAA 6 CTCGAACAAAA 6 CTCGAACAAAA 6 CTCGAACAAAA 6 CTCGAACAAAA 6 CTCGAACAAA 6 CTCGAACAAAAA 6 CTCGAACAAAAAA 6 CTCGAACAAAAAA 6 CTCGAACAAAAAAA 6 CTCGAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	:GAGG
1601 TCGCCATGAG CACCTGGGTC TGGACCAAGG CCACGGTGCGACGA GTAGAC AGCGGTACTC GTGGACCCAG ACCTGGTTCC GGTGCGACGA GTAGAC	CTCC
	PAIG
7.11 MIMICES	
1651 CGTACCTGGT GCAGGTTGAC TGGGCAGAGT GACGATGAGC CAAAGG	GCCTA
1651 CGTACCTGGT GCAGGTTGAC TGGGCAGAGT GACGATOMOG GTTTCG GCATGGACCA CGTCCAACTG ACCCGTCTCA CTGCTACTCG GTTTCCAACTG GCATGGACCA CGTCCAACTG ACCCGTCTCA CTGCTACTCG GTTTCCAACTG ACCCGTCTCAACTG GTTTCCAACTG ACCCGTCTCAACTG GTTTCCAACTG GTTTCCAACTG ACCCGTCTCAACTG GTTTCCAACTG GTTTCCAACTG ACCCGTCTCAACTG GTTTCCAACTG GTTTCCAACTG GTTTCCAACTG GTTTCCAACTG GTTTCCAACTG ACCCGTCTCAACTG GTTTCCAACTG GTTTCAACTG GTTTCCAACTG GTTTCAACTG GTTTCAACT	ArgIle
547 ArgThrTrpC ysArgLeurn rGlyGimer 135501	
1701 CAAGAAGAGC AAGATGATTG CCAAGGCCTT CTCTAAGCGG CACGA	GCTCC
1701 CAAGAAGAGC AAGATGATTG CCAAGGCCTT CICIARTCGCC GTGCT GTTCTTCTCG TTCTACTAAC GGTTCCGGAA GAGATTCGCC GTGCT	ULAUT.
GTTCTTCTCG TTCTACTAAC GGTTCCGGAA GAGAITCGG 564 LysLysSer LysMetlleA laLysAlaPh eSerLysArg HisGl	<u>u</u>
	CCCAC
1751 TGCAGAACCC AGGCCAGGAG CTGTCCTTCA GCATGCTGTG ACACA ACGTCTTGGG TCCGGTCCTC GACAGGAAGT CGTACGTGTG ACACA	.gggtg
ACGTCTTGGG TCCGGTCCTC GACAGGAAGT CGIACGTOTO ACGTCTTGGG TCCGGTCCTC GACAGGAAGT CGIACGTOTO 581 euGlnAsnPr oGlyGlnGlu LeuSerPheS erMetHisTh rVals	erHis
581 euGlnAsnPr oGlyGinGiu headollas	
1801 GACGGGCCCG TGGCGGGCTT GGCCTTTGAC CTCAATGAGC CCTCA	rCGACT
1801 GACGGGCCCG TGGCGGGCTT GGCCTTTGAC CTCAATGCCC CTGCCCGGGC ACCGCCCGAA CCGGAAACTG GAGTTACTCG GGAGC	rAla A S
597 AspGlyProV alAlaGlyLe dataFiles.p	
THE PROPERTY OF THE PROPERTY O	GGAGAG
1851 TGTCTCCTCT GCCTGGGCCC AGCATGTCAC CAAGATGCAC CGAG ACAGAGGAGA CGGACCCGGG TCGTACAGTG GTTCTACCAC CGAG ACAGAGGAGA CGGACCCGGG TCGTACAGTG TLYBMetVal AlaA	CCTCTC
ACAGAGGAGA CGGACCCGGG TCGTACAGTG GTTCTACCAC COMMON ACAGAGGAGA CGGACCCGGG TCGTACAGTG GTTCTACCAC COMMON ACAGAGGAGA CGGACCCGGG TCGTACAGTG GTTCTACCAC COMMON ACAGAGGAGA CGGACCGGG TCGTACAGTG GTTCTACCAC COMMON ACAGAGGAGA CGGACCCGGG TCGTACAGTG GTTCTACCAC COMMON ACAGAGGAGA CACACACACACACACACACACACACACA	rgArgGLY
614 pValSerSer AlaTipAlaG instance 5	
	CCAGTG
1901 GAGCCATACT GCCCCAGGAT ATTTCTGTCA CCCCTGTGGC AACT	GGTCAC
1901 GAGCCATACT GCCCCAGGAT ATTTCTGTCA CCCCTGTGGG CTCGGTATGA CGGGGTCCTA TAAAGACAGT GGGGACACCG TTGA 631 AlalleLe uproGlnAsp IleSerValT hrProValAl aThr	rroval
631 AlaIleLe uProGlnAsp IIeServall millovalle	

FIG._4C

1951	CCCCCAGAGG AACAAGCCAA CCTGTGGCTG GTTGAGGCAG AGATCTCCCC
	GGGGGTCTCC TTGTTCGGTT GGACACCGAC CAACTCCGTC TCTAGAGGGG
647	ProProGluG luGlnAlaAs nLeuTrpLeu ValGluAlaG luIleSerPro
2001	AGAGCTGCAG AAGCGCCTGG GCCGGAAGAA GAAGAGGAGG AAGAGGAAGA
	TCTCGACGTC TTCGCGGACC CGGCCTTCTT CTTCTCCTCC TTCTCCTTCT
664	GluLeuGln LysArgLeuG lyArgLysLy sLysArgArg LysArgLysL
2051	AGGAGGTGTG CCCGCTGGCG CCGCCCCCTG AGCTTCACCC CCCTGCCCCT
	TCCTCCACAC GGGCGACCGC GGCGGGGAC TCGAAGTGGG GGGACGGGGA
681	ysGluValCy sProLeuAla ProProProG luLeuHisPr oProAlaPro
2101	GCCCCCAGTA CCATTCCTCG ACTGCCTCAG CTGCCCCGGC AGAAATGCCT
2202	CGGGGGTCAT GGTAAGGAGC TGACGGAGTC GACGGGGCCG TCTTTACGGA
697	AlaProSerT hrlleProAr gLeuProGln LeuProArgG lnLysCysLe
2151	GGTGGCTGCA GGTGCCTGGG GAGCTGGGGA CTCTTGCCGA CAGGGAGCGT
	CCACCGACGT CCACGGACCC CTCGACCCCT GAGAACGGCT GTCCCTCGCA
714	uValAlaAla GlyAlaTrpG lyAlaGlyAs pSerCysArg GlnGlyAlaTrp
2201	GGACCCTGGT CTCCAACCCA TTCTGCCCAG AGCCCAGTCC CCCTCAGGAT
2201	CCTGGGACCA GAGGTTGGGT AAGACGGGTC TCGGGTCAGG GGGAGTCCTA
731	ThrLeuVa lSerAsnPro PheCysProG luProSerPr oProGlnAsp
/31	THELEGIA ISSUED PRECEDENCE INTERPRETED
2251	CCATTTCTGC CCAGTGCACC GGCCCCCGTG GCATGGGCTC ATGGCCGCCG
	GGTAAAGACG GGTCACGTGG CCGGGGGCAC CGTACCCGAG TACCGGCGGC
747	ProPheLeuP roSerAlaPr oAlaProVal AlaTrpAlaH isGlyArgArg
2301	ACAGGGCCTG GGGCCTATTC ACTCCCGCAC CAACCTGATG GACACAGAAC
2301	TGTCCCGGAC CCCGGATAAG TGAGGGCGTG GTTGGACTAC CTGTGTCTTG
764	GlnGlyLeu GlyProIleH isSerArgTh rAsnLeuMet AspThrGluL
,01	
2351	TCATGGATGC AGACTCGGAC TTCTGAGCCT GCAGAGCAGG ACCTGGGACA
	AGTACCTACG TCTGAGCCTG AAGACTCGGA CGTCTCGTCC TGGACCCTGT
781	euMetAspAl aAspSerAsp Phe
	Stop
2401	GGAAAGAGAG GAACCAATAC CTTCAAGGCT CTTCTTCCTC ACCGAGCATG
2102	CCTTTCTCTC CTTGGTTATG GAAGTTCCGA GAAGAAGGAG TGGCTCGTAC
2451	CTTCCCTAGG ATCCCGTCTT CCAGAGAACC TGTGGGCTGA CTGCCCTCCG
	GAAGGGATCC TAGGGCAGAA GGTCTCTTGG ACACCCGACT GACGGGAGGC
2501	AAGAGAGTTC TGGATGTCTG GCTCAAAGCA GCAGGACTGT GGGAAAGAGC
	TTCTCTCAAG ACCTACAGAC CGAGTTTCGT CGTCCTGACA CCCTTTCTCG
2551	CTAACATCTC CATGGGGAGG CCTCACCCCA GGGACAGGGC CCTGGAGCTC
	GATTGTAGAG GTACCCCTCC GGAGTGGGGT CCCTGTCCCG GGACCTCGAG
0.000	
2601	AGGGTCCTTG TTTCTGCCCT GCCAGCTGCA GCCTGGTTGG CAGCATCTGC
	TCCCAGGAAC AAAGACGGGA CGGTCGACGT CGGACCAACC GTCGTAGACG

FIG._4D

2651	TCCATCGGGG	CAGGGGGTAT	GCAGAGCTTG	TGGTGGGGCA	GGAACGGTGG
	AGGTAGCCCC	GTCCCCCATA	CGTCTCGAAC	ACCACCCCGT	CCTTGCCACC
2701	AGGCAGAGGT	GACAGTTCCC	AGAGTGGGCT	TTGGTGGCCA	GGGAGGCAGC
	TCCGTCTCCA	CTGTCAAGGG	TCTCACCCGA	AACCACCGGT	CCCTCCGTCG
2751	CTAGCCTATG	TCTGGCAGAT	GAGGGCTGGC	TGCCGTTTTC	TGGGCTGATG
	GATCGGATAC	AGACCGTCTA	CTCCCGACCG	ACGGCAAAAG	ACCCGACTAC
2801	GGTGCCCTTT	CCTGGCAGTC	TCAGTCCAAA	AGTGTTGACT	GTGTCATTAG
	CCACGGGAAA	GGACCGTCAG	AGTCAGGTTT	TCACAACTGA	CACAGTAATC
2851	TCCTTTGTCT AGGAAACAGA	AAGTAGGGCC	AGGGCACCGT TCCCGTGGCA	ATTCCTCTCC TAAGGAGAGG	CAGGTGTTTG GTCCACAAAC
2901	TGGGGCTGG!	AGGACCTGCT	CCCACAGGGG	CCATGTCCTC	TCTTAATAGG
	ACCCCGACC!	TCCTGGACGA	GGGTGTCCCC	GGTACAGGAC	AGAATTATCC
2951	TGGCACTAC(CCAAACCCAC GGTTTGGGTC	C CG G GC		

FIG._4E

1 MAAARPARGPE	25 DPGRGAASSGNATGPGPRSAGGSARRSAAVTGPPPP 28 GRGRGAALSGNVTGPGPRSAGGSARRNAPVTSPPPP 51 CLWVVADASASSAKFGSTTPASAQQSDVELEPINGTLNYRLYAKKGRDDK	60 P. L.S H.CGRAAPCEPLRY NVCLGSVLPYGATSTLLAGDSDSO 63 PLLS H.CGRAAHCEPLRY NVCLGSALPYGATTTLLAGDSDSO 101 PWFDGLDSRHIOCVRRARCYPTSNATNTCFGSKLPYELSSLDLT.OFHTE	100 E E A H G K I V I WS G I R N A P R C WA V I O P I I C A V Y M P K C E N D R V E I P S R T 104 E E A H S K I V I WS G I R N A P R C WA V I O P I I C A V Y M P K C E N D R V E I P S R T 150 K E I N D K I N D Y Y A I K H V P K C W A A I O P F I C A V F K P K C E K I N G E D M V Y I P S Y E	146 L COATRGPCAIVERERGWPOFLRCTPORFPEGCTNEVONIKFNSSGOCEV 150 L COATRGPCAIVERERGWPOFLRCTPOHFPEGCPNEVONIKFNSSGOCEA 200 WCRITWEPCRLLYNTTFFPKFLRCNETLFPTKCTNGARGWKFNGTGOCLS
hSmo	hSmo	hSmo	hSmo	hSmo
rat.smo	rat.smo	rat.smo	rat.smo	rat.smo
dros.smo	dros.smo	dros.smo	dros.smo	dros.smo

FIG._5A

448 MHSWRAGILLGPLCGVILIGGYFITRGMVWLFGIKHFANDIKSTSASNKI 400 NYRYRAGFVLAPIGLVLIVGGYFLIRGVMTLFSIKSNHPGLLSEKAASKI NYRYRAGFVLAPIGLVLIVGGYFLIRGVWTLFSIKSNHPGLLSEKAASKI RADGTWRFGEPTSSETLSCVIIFVIVYYALWAGVVWFVVLTYAWHTSFKA RKDGTLRHSEPTAGENLSCIVIFVLVYYFLTAGWVWFVFLTYAWH. - WRA | GTTYQPLSGKTSYFHLLTWSLPFVLTVAILAVAQVDGDSVSGICFVGYK LGTTYOPLSGKTSYFHLLTWSIPFVLTVAILAVAQVDGDSVSGICFVGYK 398 MGHVQDRIDKKGSYFHLVAWSLPLVLTITTWAFSEVDGNSIVGICFVGY 250 | FILATFVADWRNSNRYPAVILFYVNACFFVGSIGWLAOFWOGARREIVC 300 | FVVSTFFIDWKNANKYPAVIVFYINLCFLIACVGWLLOFTSGSREDIVC PLVPTOTSASYYPGIEGCGVACKOPLYTODEHROIHKILGWAGSICILSN PLVRTDNPKSWYEDVEGCGIOCONPLFTEAEHODMHSYIAAFGAVTGLCT RADGT MRILGEPTS NETLS CVIIFVIVYYAL MAGVVWFVVI, TYAWHISFK | FILATFVAD WRNSNRYPAVILFYVNACFFVGSIGWLAQFMOGARREIV P L V R T D N P K S W Y E D V E G C G I Q C Q N P L F T E A E H Q D M H S Y I A A F G A V T G L C 8 ¥6 246 8 × 8 Я 8 8 dros. sorb dros. sorb dros.sano dros. sorb rat.smo dros. sonb rat.smo rat.smo rat.smo rat.smo on St व्याद्भ onSt

19 / 24

or or or	RKKKRRK
rat.smo	
dros.smo	: - -
	1 d 2 h
omS.rl	682 · · · · · · · · · · · · · · · · · · ·
rat.smo	
dros.smo	
cmStd	2 1 H 2 1 C
rat.smo	S Z d luud - X - S d
dros.smo	
hSmo	GAWGAGDSCROGAW
rat.smo	WGI GE PC R U G M:
dros.smo	
	FIG5D

hSmo rat.smo dros.smo	731
hSmo rat.smo dros.smo	741 PSPPQDPF LPSAPAPVAWAHGRRQGLGPII 747 PSPHQDPF LPGASAPRVWAQGRLQGLGSII 889 VGIQANPFELVPSYGEDELQQAMRLLNAASRQRTEAANEDFGGTELOGLL
hSmo rat.smo dros.smo	770 - HSRTNLWDTELWDADSDF

FIG. 7A

SUBSTITUTE SHEET (RULE 26)

22 / 24

23/24

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Interna al Application No PCT/US 97/17433

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07K14/47 C12N15/12						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS S						
Minimum aoo IPC 6	cumentation searched (classification system followed by classification ${\tt C07K-C12N}$	n symbols)				
Documentati	ion searched other than minimum documentation to the extent that su	ich documents are included in the fields sea	rched			
Electronio di	ata base consulted dunng the international search (name of data bas	se and, where practical, search terms used)				
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.			
A	VAN DEN HEUVEL ET AL.: "Smoothe encodes a receptor- like serpent protein required for hedgehog si NATURE, vol. 382, 8 August 1996, pages 547-51, XP002054237 cited in the application					
P,X	D.M.STONE ET AL.: "The tumor su gene patched encodes a candidate for sonic hedgehog" NATURE, vol. 384, 14 November 1996, pages 129-134, XP002054238 see figure 1	1-32				
Fut	rther documents are listed in the continuation of box C.	Petent family members are listed	in ennex.			
**Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published after the international filing date but later than the priority date claimed *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art. *A* document member of the same patent family						
	e actual completion of the international search 2 February 1998	Date of mailing of the international search report 2 0, 02, 98				
Name an	d mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer Deffner, C-A				