Cours Traitement du Signal

Chapitre 4 : Analyse de Fourier des signaux continus deterministes

Zakia Jellali

Institut Supérieur des Etudes Technologiques de Gabès

Table des matières

.1 Décomposition en série de Fourier (DSF) des signaux périodiques

- .1.1 Principe
- .1.2 Définition de la DSF
- .1.3 Quelques propriétés
- .1.4 Théorème de Parseval
- .1.5 Application

.2 Transformée de Fourier (TF)

- .2.1 Définition de la Transformée de Fourier (TF)
- .2.2 Définition de la Transformée de Fourier (TF) inverse
- .2.3 Exemple
- .2.4 Propriétés
- .2.5 Egalité de Parseval
- .2.6 Applications
 - .2.6.1 TF de Dirac
 - .2.6.2 TF d'une exponentielle complexe
 - .2.6.3 TF des fonctions trigonométriques
 - .2.6.4 TF des fonctions périodiques

Introduction

Un signal peut être associé à deux représentations contenant la même information : représentation temporelle et représentation fréquentielle (spectrale).

Il existe deux domaines pour décrire un signal :

- **Domaine temporel** : il s'agit d'une analyse des signaux physiques en fonction du temps *t*, le signal peut être caractérisé par sa durée, sa période fondamentale, son amplitude.
- **Domaine fréquentiel** : il s'agit d'une analyse des signaux physiques en fonction de la fréquence f. Dans ce cas, le signal est caractérisé par son spectre, sa fréquence fondamentale, sa largeur de bande.

Qu'est une fréquence?

- Fréquence : présente le nombre de fois qu'un phénomène se produit de façon périodique pendant une durée dterminée.
 - La fréquence est mesurée en Hrtz (1/seconds).
- Notion de la fréquence :
 - 1. Signal sonore : sons graves (basses fréquences), sons aigus (hautes fréquences)
 - 2. Signal image:

La fréquence dans une image présente al variation de l'intensité des pixels :

- (a) Les basses fréquences : représentent les régions homogènes (changement lent de l'intensité)
- (b) Les hautes fréquences : correspondent à un changement rapide de l'intensité : représentent les contours et les changements brusques d'intensité.

Qu'est une bande passante du signal?

- Bande passante du signal : le domaine de fréquence dans lequel se trouve l'énergie utile transportée par le signal
- Exemples de la bande de fréquence :
 - 1. Téléphonique : 300 hz < f < 3.3 khz

2. Audio : 20 hz < f < 20 khz

3. Télévision : 0 hz < f < 5 Mhz

Pourquoi la représentation spectrale?

Une représentation fréquentielle est souvent plus facile à interpréter que la représentation temporelle.

.1 Décomposition en série de Fourier (DSF) des signaux périodiques

.1.1 Principe

- La décomposition en série de Fourier (DSF) consiste à exprimer un signal périodique comme une combinaison linéaire des signaux sinusoïdaux.
- Exprimer un signal x(t) périodique de période T comme une combinaison des fonctions sinusoïdales de fréquences multiples de $F = \frac{1}{T}$, dite la fréquence fondamentale.

.1.2 Définition de la DSF

La série de Fourier est l'une des méthodes les plus utilisées dans l'analyse des signaux. Elle est découverte par le mathèmaticien Français Jean-Batiste Fourier : n'importe quel signal périodique peut transformer en une somme des sinusoïdes.

1. Forme trigonométrique de la DSF:

Pour tout signal x(t) périodique de période T, x(t)x(t+T), on peut écrire :

$$x(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos\left(2\pi \frac{n}{T}t\right) + b_n \sin\left(2\pi \frac{n}{T}t\right),\tag{1}$$

Les coefficients de la série de Fourier :

$$\begin{cases} a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)dt, \text{ valeur moyenne de } x(t), \text{ composante continue} \\ a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \cos\left(2\pi \frac{n}{T}t\right) dt \\ b_0 = 0, \\ b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \sin\left(2\pi \frac{n}{T}t\right) dt \\ \bullet \frac{2\pi}{T} \text{ : pulsation fondamentale} \Rightarrow F = \frac{1}{T} \text{ : fréquence fondamentale,} \end{cases}$$

• $\frac{2\pi n}{T}$: les harmoniques d'ordre n

 $\Rightarrow f = \frac{n}{T} = nF$: fréquences harmoniques.

2. Forme complexe de la DSF:

Rappel: Formules d'Euler:

$$\cos(\theta) = \frac{\exp(j\theta) + \exp(-j\theta)}{2}$$
$$\sin(\theta) = \frac{\exp(j\theta) - \exp(-j\theta)}{2j}$$
$$\lim_{\theta \to 0} \sin(\theta) = j\frac{\exp(-j\theta) - \exp(j\theta)}{2}$$

Application à la DSF:

$$x(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos\left(2\pi \frac{n}{T}t\right) + b_n \sin\left(2\pi \frac{n}{T}t\right),$$

$$= a_0 + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n - jb_n) \exp\left(j2\pi \frac{n}{T}t\right) + (a_n + jb_n) \exp\left(-j2\pi \frac{n}{T}t\right),$$

On pose

$$\begin{cases} C_n = \frac{a_n - jb_n}{2} & \text{si } n > 0 \\ C_0 = a_0 & \\ C_n = \frac{a_n + jb_n}{2} & \text{si } n < 0 \end{cases}$$

On a alors

$$x(t) = \sum_{n = -\infty}^{+\infty} C_n \exp\left(j2\pi \frac{n}{T}t\right),\tag{2}$$

avec

$$C_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \exp\left(-j2\pi \frac{n}{T}t\right)$$
 (3)

 \Rightarrow C_n sont appelés les coefficients de Fourier de x(t).

On pose $F = \frac{1}{T}$, les deux formes de la DSF s'écrivent alors :

$$\begin{cases} x(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos(2\pi nFt) + b_n \sin(2\pi nFt), \\ x(t) = \sum_{n=-\infty}^{+\infty} C_n \exp(j2\pi nFt), \end{cases}$$

.1.3 Quelques propriétés

- Si le signal x(t) est réel alors : $C_{-n} = C_n^*$: les coefficients sont complexes conjugués.
- Si le signal x(t) est réel et pair :

$$C_{-n} = C_n = \frac{a_n}{2}, \ b_n = 0$$

— Si le signal x(t) est réel et impair :

$$C_{-n} = -C_n = j\frac{b_n}{2}, \ a_n = 0$$

— C_n est le spectre de fréquence du signal périodique x(t), C_n peut se mettre sous la forme :

$$C_n = |C_n| \exp(\phi_n)$$

1. $|C_n|$: le module de C_n , appelé **spectre d'amplitude** de x(t):

$$|C_n| = \frac{1}{2} \sqrt{a_n^2 + b_n^2}$$

2. ϕ_n : argument de C_n , appelé **spectre de phase** de x(t):

$$\phi_n = arctg\left(\frac{-b_n}{a_n}\right)$$

.1.4 Théorème de Parseval

La puissance du signal x(t) périodique de période T est :

$$P_{x} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^{2} dt,$$

avec

DSF:
$$x(t) = \sum_{n=-\infty}^{+\infty} C_n \exp\left(j2\pi \frac{n}{T}t\right),$$

Chapitre 4

donc

$$P_{x} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sum_{n=-\infty}^{+\infty} |C_{n} \exp(j2\pi \frac{n}{T}t)|^{2} dt,$$
$$= \sum_{n=-\infty}^{+\infty} |C_{n}|^{2} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 dt$$

$$P_x = \sum_{n=-\infty}^{+\infty} |C_n|^2$$

Interprétations:

- La puissance d'un signal réel est la somme des puissances des composantes sinusoïdales qui le composent.
- Conservation de la puissance en temps et en fréquence des signaux périodiques.

.1.5 Application

Soient les deux signaux x(t) et y(t) représentés par la figure suivante :

- 1. Calculer les DSF de x(t) et y(t): C_n , a_n , b_n ,
- 2. Représenter les spectres d'amplitude de x(t) et y(t),
- 3. En déduire les valeurs de sommes suivantes :

$$\sum_{n=-\infty}^{+\infty} \frac{1}{(2n+1)^2}$$

$$\sum_{n=-\infty}^{+\infty} \frac{1}{n^2}$$

.2 Transformée de Fourier (TF)

C'est une généralisation de la série de Fourier appliquée aux signaux non périodiques :

- permet une représentation fréquentielle (spectrale) de ces signaux,
- exprime la répartition fréquentielle de l'amplitude, de la phase et de l'énergie de ces signaux.

.2.1 Définition de la Transformée de Fourier (TF)

Soit x(t) un signal deterministe non périodique, la TF de x(t), notée par X(f) = TF(x(t)), est donnée par :

$$X(f) = \int_{-\infty}^{+\infty} x(t) \exp(-j2\pi f t) dt$$

- 1. X(f): indique la quantité de fréquence f qui présente dans le système x(t): donne des informations fréquentielles sur x(t).
- 2. X(f): fonction complexe (de la variable f), qui peut s'écrire sous la forme

$$X(f) = R(X(f)) + jI(X(f))$$

elle admet:

(a) un spectre d'amplitude :

$$A_f = |X(f)| = \sqrt{R(X(f))^2 + I(X(f))^2}$$

(b) un spectre de phase :

$$\phi(f) = \arg(X(f)) = \arctan\left(\frac{I(X(f))}{R(X(f))}\right)$$

.2.2 Définition de la Transformée de Fourier (TF) inverse

1. La TF inverse, si elle existe, est définie par

$$x(t) = \int_{-\infty}^{+\infty} X(f) \exp(j2\pi f t) df$$

2. Notations:

$$\begin{cases} X(f) = TF(x(t)), \\ x(t) = TF^{-1}(X(f)) \end{cases}$$

 \Rightarrow X(f) et x(t) sont deux descriptions **équivalentes** (fréquentielle ou temporelle de même signal x(t), on écrit donc

$$x(t) \leftrightarrow X(f)$$

.2.3 Exemple

- Calculer la TF du signal x(t)
- Déterminer et tracer son spectre d'amplitude

.2.4 Propriétés

on a:

$$x(t) \leftrightarrow X(f)$$
 et $y(t) \leftrightarrow Y(f)$

1. Linéarité

$$ax(t) + by(t) \leftrightarrow aX(f) + bY(f)$$

- 2. Parité
 - Si x(t) est un signal réel et pair, alors X(f) est réelle et paire :

$$X(f) = 2\int_0^{+\infty} x(t)\cos(2\pi ft)dt$$

— Si x(t) est un signal réel et impair, alors X(f) est imaginaire pure et impaire :

$$X(f) = -2j \int_0^{+\infty} x(t) \sin(2\pi f t) dt$$

3. Dilatation ou compression en temps

si $a \neq 0$ on a:

$$TF(x(at)) = \frac{1}{|a|}X\left(\frac{f}{a}\right)$$

- 4. Translation
 - (a) Translation en temps

$$TF(x(t-t_0)) = \exp(-j2\pi f t_0)X(f)$$

(b) Translation en fréquence

$$TF^{-1}(X(f - f_0)) = \exp(j2\pi f_0 t)x(t)$$

5. Dérivation

$$TF\left(\frac{dx(t)}{dt}\right) = (j2\pi f)X(f)$$

$$TF\left(\frac{d^n x(t)}{dt}\right) = (j2\pi f)^n X(f)$$

6. Dualité

$$TF(X(t)) = x(-f)$$

$$TF^{-1}(x(f)) = X(-t)$$

7. Convolution

$$TF(x(t) * y(t)) = X(f) \times Y(f)$$

$$TF(x(t) \times y(t)) = X(f) * Y(f)$$

.2.5 Egalité de Parseval

Pour un signal à énergie finie, l'énergie du signal est identique dans le domaine temporel et fréquentiel :

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

⇒ Conservation de l'énergie en temps et en fréquence.

.2.6 Applications

.2.6.1 **TF de Dirac**

— Transformée de Fourier d'une impulsion de Dirac

La transformée de Fourier de l'impulsion de Dirac est

$$TF(\delta(t)) = \int_{-\infty}^{+\infty} \delta(t) \exp(-j2\pi f t) dt,$$

or on a : $\delta(t)x(t) = x(0)\delta(t)$ et $\int_{-\infty}^{+\infty} \delta(t)dt = 1$ alors

$$TF(\delta(t)) = \exp(-j2\pi 0) \int_{-\infty}^{+\infty} \delta(t)dt,$$
$$= 1 \times 1,$$
$$= 1.$$

$$TF(\delta(t)) = 1$$

— Transformée de Fourier d'une impulsion retardée

On a

$$TF(x(t-t_0)) = \exp(-i2\pi f t_0)X(f)$$

Alors pour $x(t - t_0) = \delta(t - t_0)$ on a

$$TF(\delta(t-t_0)) = \exp(-j2\pi f t_0)TF(\delta(t)) = \exp(-j2\pi f t_0)$$

$$TF(\delta(t-t_0)) = \exp(-j2\pi f t_0)$$

— Transformée de Fourier d'un signal continu (constant)

on a $TF(\delta(t)) = \Delta(f)$ et $TF(\Delta(t)) = \delta(-f) = \delta(f)$ (propriétés de dualité) alors :

$$TF(1) = \delta(f)$$

.2.6.2 TF d'une exponentielle complexe

on a, selon la propriété de décalage fréquentiel :

$$TF^{-1}(X(f - f_0)) = \exp(j2\pi f_0 t)x(t)$$

donc

$$TF\left(\exp\left(j2\pi f_0 t\right) x(t)\right) = X(f - f_0)$$

Si x(t) = 1, alors

$$TF\left(\exp\left(j2\pi f_0 t\right)\right) = \delta(f - f_0)$$

.2.6.3 TF des fonctions trigonométriques

1. $\mathbf{x}(\mathbf{t}) = \mathbf{A}\cos(2\pi\mathbf{f}_0\mathbf{t})$

$$TF(x(t)) = \int_{-\infty}^{+\infty} x(t) \cdot \exp(-j2\pi f t) dt,$$

=
$$\int_{-\infty}^{+\infty} A \cos(2\pi f_0 t) \exp(-j2\pi f t) dt,$$

or on a

$$\cos(2\pi f_0 t) = \frac{\exp(j2\pi f_0 t) + \exp(-j2\pi f_0 t)}{2}$$

$$TF(x(t)) = \frac{A}{2} \left(\int_{-\infty}^{+\infty} \exp(j2\pi f_0 t) \exp(-j2\pi f t) dt + \int_{-\infty}^{+\infty} \exp(-j2\pi f_0 t) \exp(-j2\pi f t) dt \right),$$

$$= \frac{A}{2} \left(TF(\exp(j2\pi f_0 t)) + TF(\exp(-j2\pi f_0 t)) \right),$$

$$= \frac{A}{2} \left(\delta(f - f_0) + \delta(f + f_0) \right),$$

$$TF(\cos(2\pi f_0 t)) = \frac{\delta(f - f_0) + \delta(f + f_0)}{2}$$

Figure 1 – Transformée de Fourier du $A \cos(2\pi f_0 t)$

2. $\mathbf{x}(\mathbf{t}) = \mathbf{A} \sin(2\pi \mathbf{f_0} \mathbf{t})$

$$TF(x(t)) = \int_{-\infty}^{+\infty} x(t) \cdot \exp(-j2\pi f t) dt,$$
$$= \int_{-\infty}^{+\infty} A \sin(2\pi f_0 t) \exp(-j2\pi f t) dt,$$

or on a

$$\sin(2\pi f_0 t) = \frac{\exp(j2\pi f_0 t) - \exp(-j2\pi f_0 t)}{2j}$$

$$TF(x(t)) = \frac{A}{2j} \left(\int_{-\infty}^{+\infty} \exp(j2\pi f_0 t) \exp(-j2\pi f t) dt - \int_{-\infty}^{+\infty} \exp(-j2\pi f_0 t) \exp(-j2\pi f t) dt \right),$$

$$= \frac{A}{2j} \left(TF(\exp(j2\pi f_0 t)) - TF(\exp(-j2\pi f_0 t)) \right),$$

$$= \frac{A}{2j} \left(\delta(f - f_0) - \delta(f + f_0) \right),$$

$$TF(\sin(2\pi f_0 t)) = \frac{\delta(f - f_0) - \delta(f + f_0)}{2j}$$

.2.6.4 TF des fonctions périodiques

1. Un signal, x(t), périodique de période T possède une énergie infinie, sa puissance est finie, sa décomposition en série de Fourier (DSF) est :

$$x(t) = \sum_{n=-\infty}^{+\infty} C_n \exp\left(j2\pi \frac{n}{T}t\right)$$

FIGURE 2 – Transformée de Fourier du $A \sin(2\pi f_0 t)$

Ainsi, sa transformée de Fourier est égale à

$$TF(x(t)) = \int_{-\infty}^{+\infty} x(t) \cdot \exp(-j2\pi f t) dt,$$

$$= \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} C_n \exp\left(j2\pi \frac{n}{T} t\right) \exp(-j2\pi f t) dt,$$

$$= \sum_{n=-\infty}^{+\infty} C_n \int_{-\infty}^{+\infty} \exp\left(j2\pi \frac{n}{T} t\right) \exp(-j2\pi f t) dt,$$

$$= \sum_{n=-\infty}^{+\infty} C_n TF\left(\exp\left(j2\pi \frac{n}{T} t\right)\right),$$

$$= \sum_{n=-\infty}^{+\infty} C_n \delta\left(f - \frac{n}{T}\right).$$

 \Rightarrow La transformée de Fourier d'un signal périodique est constituée de Dirac : le spectre du signal est formé des **raies fréquentielles** sur tous les multiples de la fréquence fondamentale $F = \frac{1}{T}$.

2. TF de peigne de Dirac

Pour un peigne de Dirac on a :

$$\delta_{T}(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT),$$

$$= \sum_{n=-\infty}^{+\infty} C_{n} \exp\left(j2\pi \frac{n}{T}t\right),$$

avec

$$C_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta_T(t) \exp\left(-j2\pi \frac{n}{T}t\right) dt,$$

$$= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sum_{k=-\infty}^{+\infty} \delta(t-kT) \exp\left(-j2\pi \frac{n}{T}t\right) dt,$$

or on a pour $t \in \left[\frac{-T}{2}, \frac{-T}{2}\right]$, $\delta_T(t) = \delta(t)$ alors:

$$C_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) \exp\left(-j2\pi \frac{n}{T}t\right) dt = \frac{1}{T}$$

donc

$$\delta_T(t) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} \exp\left(j2\pi \frac{n}{T}t\right)$$

La transformée de Fourier de peigne de Dirac est donnée par

$$TF(\delta_{T}(t)) = \int_{-\infty}^{+\infty} \delta_{T}(t) \cdot \exp(-j2\pi f t) dt,$$

$$= \frac{1}{T} \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(j2\pi \frac{n}{T} t\right) \exp(-j2\pi f t) dt,$$

$$= \frac{1}{T} \sum_{n=-\infty}^{+\infty} TF\left(\exp\left(j2\pi \frac{n}{T} t\right)\right),$$

$$= \frac{1}{T} \sum_{n=-\infty}^{+\infty} \delta\left(f - \frac{n}{T}\right).$$

$$TF\left(\delta_{T}(t)\right) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} \delta\left(f - \frac{n}{T}\right)$$

 \Rightarrow La transformée de Fourier d'un peigne de Dirac, en temps, $\delta_T(t)$, est un peigne de Dirac en fréquence d'amplitude $\frac{1}{T}$.

