Clustering

The K-means clustering algorithm

Flat clustering

- Cluster objects/genes/samples into K clusters
- In the following, we will consider clustering genes based on their expression profiles
- K: number of clusters, a user defined argument
- Two example algorithms
 - K-means
 - Gaussian mixture model-based clustering

Notation for K-means clustering

- K number of clusters
- N_k Number of elements in cluster k
- x_i p-dimensional expression profile for i^{th} gene
- $X = \{x_1, \dots, x_N\}$ is the collection of N gene expression profiles to cluster
- f_k Center of the k^{th} cluster
- C(i) Cluster assignment (1 to K) of i^{th} gene

K-means clustering

- Hard-clustering algorithm
- Dissimilarity measure is the Euclidean distance
- Minimizes within-cluster scatter defined as

- This minimization is an NP-hard problem in general
- The K-means algorithm is an efficient heuristic

K-means clustering

• consider an example in which our vectors have 2 dimensions

K-means clustering

- each iteration involves two steps
 - assignment of profiles to clusters
 - re-computation of the cluster centers (means)

assignment

re-computation of cluster centers

K-means algorithm

- Input: K, number of clusters, a set $X=\{x_1,...x_N\}$ of data points, where x_i are p-dimensional vectors
- Initialize
 - Select initial cluster means f_1, \ldots, f_K
- Repeat until convergence
 - Assign each x_i to cluster C(i) such that

$$C(i) = \operatorname{argmin}_{1 \le k \le K} ||x_i - f_k||^2$$

 Re-estimate the mean of each cluster based on new members

K-means: updating the mean

• To compute the mean of the k^{th} cluster

$$f_k = \frac{1}{N_k} \sum_{i:C(i)=k} x_i$$
 Number of genes in cluster k

$$f_{kj} = \frac{1}{N_k} \sum_{i:C(i)=k} x_{ij}$$

K-means stopping criteria

Assignment of objects to clusters don't change

Fix the max number of iterations

Optimization criterion changes by a small value

K-means Clustering Example

Given the following 4 instances and 2 clusters initialized as shown. $\operatorname{dist}(x_i, x_j)^2 = \|x_i - x_j\|^2$

 $dist(x_1, f_1)^2 = 2, \quad dist(x_1, f_2)^2 = 13$ $dist(x_2, f_1)^2 = 2, \quad dist(x_2, f_2)^2 = 9$ $dist(x_3, f_1)^2 = 9, \quad dist(x_3, f_2)^2 = 2$ $dist(x_4, f_1)^2 = 61, \quad dist(x_4, f_2)^2 = 26$

$$f_1 = \left(\frac{4+4}{2}, \frac{1+3}{2}\right) = (4,2)$$

$$f_2 = \left(\frac{6+8}{2}, \frac{2+8}{2}\right) = (7,5)$$

 $dist(x_1, f_1)^2 = 1, \quad dist(x_1, f_2)^2 = 25$ $dist(x_2, f_1)^2 = 1, \quad dist(x_2, f_2)^2 = 13$ $dist(x_3, f_1)^2 = 4, \quad dist(x_3, f_2)^2 = 10$ $dist(x_4, f_1)^2 = 52, \quad dist(x_4, f_2)^2 = 10$

K-means Clustering Example (Continued)

$$f_1 = \left(\frac{4+4+6}{3}, \frac{1+3+2}{3}\right) = (4.67,2)$$

 $f_2 = \left(\frac{8}{1}, \frac{8}{1}\right) = (8,8)$

assignments remain the same, so the procedure has converged

Summary

- K-means is a simple flat clustering method
- Heuristic not guaranteed to find optimal clustering
- Iterative method alternating between
 - Assigning profiles to closest cluster centers
 - Updating location of cluster centers
- Sensitive to initial cluster centers