Exercice 1:

Calculer les limites suivantes :

a)
$$\lim_{x \to 0} (x^x)^x$$
 b) $\lim_{x \to 0} x^{(x^x)}$

b)
$$\lim_{x\to 0} x^{(x^x)}$$

c)
$$\lim_{x \to 1} \frac{\sin(\pi x)}{\ln x}$$

d)
$$\lim_{x \to 0} \left(\frac{1-2x+x^2}{1-4x+2x^2} \right)^{\frac{1}{x}}$$

d)
$$\lim_{x \to 0} \left(\frac{1 - 2x + x^2}{1 - 4x + 2x^2} \right)^{\frac{1}{x}}$$
 e) $\lim_{x \to +\infty} \left(\sqrt{9x^4 + 9x^3 e^{\frac{1}{x}}} - \sqrt{9x^4 + 9x^3} \right)$

Exercice 2:

On considère la fonction f définie par $f(x) = \frac{x \ln x}{x-1}$. On note C_f la courbe représentative de f.

- 1. (a) Déterminer l'ensemble de définition D_f de f.
 - (b) Montrer que f est dérivable sur D_f et calculer f'(x) pour tout $x \in D_f$.
 - (c) Montrer que f est prolongeable par continuité en 0. On note toujours f la fonction ainsi prolongée.
 - (d) f est-elle dérivable en 0? (après prolongement)
 - (e) Peut-on prolonger f par continuité en 1? Si oui, préciser la valeur de f(1) après prolongement.
- 2. (a) Préciser la limite de f en $+\infty$.
 - (b) Montrer que : $\forall x > 0$, $\ln x \le x 1$.
 - (c) Établir le tableau de variations de f sur \mathbb{R}_+ et tracer l'allure de C_f .

Exercice 3:

Soit $f(x) = (1 + \ln x)^{\frac{1}{x-1}}$.

- 1. Déterminer le domaine de définition \mathcal{D}_f de f.
- 2. Calcular $\lim_{x \to +\infty} f(x)$.
- 3. Calculer $\lim_{x \to \frac{1}{e}} f(x)$. f est-elle prolongeable par continuité en $\frac{1}{e}$?
- 4. Calculer $\lim_{x\to 1} f(x)$. f est-elle prolongeable par continuité en 1?