CHM129

Stoichiometry

1. Balance the following chemical equation. What type of reaction is it?

2. Find the molar masses of $AgNO_3$, Na_2CO_3 and Ag_2CO_3 ?

Ag NO₃:
$$1 \times Ag = 1 \times 107.879/mol = 107.879/mol$$

 $1 \times N = 1 \times 14.019/mol = 14.019/mol$
 $3 \times 0 = 3 \times 16.009/mol = 48.009/mol$
 $169.88.9/mol$

$$Na_2CO_3$$
: $2 \times Na = 2 \times 22-999/mol = 45-989/mol$
 $1 \times C = 1 \times 12-019/mol = 12-019/mol$
 $3 \times O = 3 \times 16-009/mol = 48.009/mol$
 $105.999/mol$

Ag₂(O₃:
$$2 \times Ag = 2 \times 107.87 g/mol = 215.74 g/mol$$

$$1 \times C = 1 \times 12.01 g/mol = 12.01 g/mol$$

$$3 \times O = 3 \times 16.00 g/mol = 48.00 g/mol$$

$$275.75 g/mol$$

3. How many moles of Ag_2CO_3 will be produced when 3.0mol $AgNO_3$ are consumed in an excess of Na_2CO_3 ?

4. How many grams of $AgNO_3$ are required to completely react with 2.65g of Na_2CO_3 ?

5. (a) How many grams of Ag_2CO_3 will be produced when 5.32g of $AgNO_3$ react with 3.47g of Na_2CO_3 ? What is the limiting reagent?

AgNO3 is the limiting reagent Ag2CO3 produced: 4-329

(b) If $3.18g \text{ Ag}_2\text{CO}_3$ were obtained by this reaction. What is the percent yield?