Announcements:

- The Lecture Recordings will be available on the following YouTube Playlists Link:

https://youtube.com/playlist?list=PLZaTmV9UMKlqYpo2cAiMaEWxqyvbiXDFd

Graph

References:

Algorithm Design - Chapter 3

BFS (Breadth First Search) & DFS (Depth First Search)

- Input to both algorithms is the graph G = (V, E) and a source/root node s.
- Output a tree rooted at s (containing all vertices connected to s).
- Both algorithms run in O(n+m) time.
- However, they output different trees.
- BFS (Breadth First Search)

- o Any node connect to the source/root appears in this tree.
- o Layer j contains nodes that are distance j from the source/root. Where distant between two nodes s and t = least number of edges required to get from s and t. [3.3]
- o BFS give the distance (shortest path) from the source node to any other nodes. single source shortest paths.
- o (There are edges in the graph that not in the tree.) Edges in G that do not appear in the BFS tree T connect nodes that are either in the same or adjacent layers. [3.4]
- o Pseudocode for BFS:

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u,v) where $u \in R$ and $v \in R$ Add v to R Endwhile

- DFS (Depth First Search)
 - o It's a recursive algorithm
 - o It has a source/root s.
 - o Pseudocode for DFS:
 - DFS(u):

Mark u as explored and add u to R.

For each edge (u,v) incident to uIf v is not explored,

then recursively invoke DFS(v)Endif

Endfor

o Gives a long & skinning trees compare to DFS trees.

o Returns connected component.

- o Does not give distances!
- o Edges in G not in DFS tree connect ancestor to a descendant.

- Read Section 3.3 Implementation of BFS and DFS.
 - o DFS use stack
 - o BFS use either stack or queue
 - o When implemented correctly, both return in O(m+n).
 - O(m+n) linear time, because just to read the input takes O(m+n) time (size of adjacency list).
 - In general, just to read in the input will take the linear time algorithm.

Application of BFS: Testing Bipartiteness. [Section 3.4]

- Question: Given a graph G, is it bipartite?
- Definition: G = (V, E) is <u>bipartite</u> if its vertex set V can be partitioned into two sets V_1 and V_2 such that no edge has endpoints in the same set.
 - o You can think of the V_1 and V_2 as red and blue, $\mathcal{E}_{\mathcal{B}}$ and you want to have edges with different color endpoints.
 - o For example, the graph on the right is bipartite. Some of you seem bipartite graph as the same color set/ vertices on one side.
- If G is bipartite, it cannot contain an odd cycle (cycle of length 3, 5, 7, ...).
 - o Proof: By contradiction if odd cycle.

is bipartite

(2)

- Algorithm:

- o Step 1: Run BFS, let's start at v_1 .
- o Step 2: Give layers alternating colors.
- o Step 3: For every edge in G not in T, check if it connects vertices on the same layer or adjacent layers.
 - If same layer, stop, return no.
 - If all such edges connect vertices in adjacent layers, return yes.
- o Correctness?
 - If adjacent \rightarrow coloring is correct.
 - If same layer \rightarrow odd cycle in the graph.

- Algorithm Using DFS:

- o Step 1: Run DFS at any vertex.
- o Step 2: Give layers alternating colors.
- o Step 3: For every edge in G not in T, check if it connects vertices with even or odd distance in the tree T.
 - If the distance is even, stop, return no.
 - If all the distances are odd, return yes.
- o Correctness?
 - If the distance is even \rightarrow odd cycle in the graph.
 - If the distance is odd \rightarrow even cycle, coloring is good.

Directed Graph

- In a directed graph, edges have directions. In a <u>directed graph</u> or <u>digraph</u>, (v_i, v_j) means there is an edge from v_i to v_i and (v_i, v_i) means there is an edge from v_i to v_i .

- A path from u to v, looks like this: vIf it exits, does not imply that a path from v to u exists.
- Connectivity is not symmetric.
- It does not affect the traversal algorithms: BFS and DFS.
 - o Change: While exploring a vertex u, we previously looked at all edges incident to u, but now only look at edges with u as a "source".
 - o It's still run in O(m+n) time.
 - o If we run BFS/DFS with this change, what kind of nodes are returned in the tree?
 - Previously (undirected) return component of the source s.
 - Directed return set of vertices that have a path from the source s, $P_{from}(s)$.
 - What if we want set of vertices that have a path to the source s_t , $P_{to}(s)$?
 - o Reverse all directions in G to get the reverse graph G^{rev} , then run BFS/DFS(s,G^{rev}).

What to expect or prepare for the next class:

- Directed Graph
- DAG
- Topological Ordering

Reading Assignment

Algorithm Design: 3.1 - 3.4