SOLUTION TO AN INTRODUCTION TO POPULATION GENETICS THEORY

Author:

James F. Crow

Motoo Kimura

Solution by Hanbin Lee

Contents

1	Models of Population Growth	2
2	Randomly Mating Populations	6

Chapter 1

Models of Population Growth

Problem 1.1. In a population with discrete generations and with fitness w, how many generations are required to double the population number?

Proof. By the definition of fitness in discrete generations, w is given by $w = \frac{N_{i+1}}{N_i}$. This gives $N_i = w^i N_0$. Since $N_i = 2N_0$ by the given condition, $i = \log 2/\log w$.

Problem 1.2. How long is required for the population to double with model 2?

Proof. By the definition of fitness in continuous generations, w is given by $w = \frac{1}{N} \frac{dN}{dt}$. This gives $\frac{1}{N} dN = w dt$ followed by $\int_{N_0}^N \frac{1}{N} dN = \int_{t_0}^t w dt$. Therefore, $\log 2 = \log \frac{N}{N_0} = w(t - t_0)$. \square

Problem 1.3. A population under model 3 has reached age stability. How long, in units of λ , will be required for the population to double? What is the effective generation length, defined as the unit that will give the same answer as problem 1?

Proof. Assume that, like the textbook, every individual lives for 5 years.

Let $n_t = (n_{0t}, n_{1t}, \dots, n_{4t})^T$, (b_0, b_1, \dots, b_4) and (p_0, \dots, p_3) denote the number of individuals in each age, reproduction rates of each age and probability of survival of each age respectively. Then the following matrix equation holds:

$$n_{t} = \begin{pmatrix} n_{0,t} \\ n_{1,t} \\ n_{2,t} \\ n_{3,t} \\ n_{4,t} \end{pmatrix} = \begin{pmatrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \\ p_{0} & 0 & 0 & 0 & 0 \\ 0 & p_{1} & 0 & 0 & 0 \\ 0 & 0 & p_{2} & 0 & 0 \\ 0 & 0 & 0 & p_{3} & 0 \end{pmatrix} \begin{pmatrix} n_{0,t-1} \\ n_{1,t-1} \\ n_{2,t-1} \\ n_{3,t-1} \\ n_{4,t-1} \end{pmatrix} = A \cdot n_{t-1}$$

Then, by induction, we obtain $n_t = A^t n_0$. To compute the power of the matrix A, we compute the characteristic polynomial and assume that it has at least one zero:

$$\det(A - \lambda I) = \lambda^5 - b_0 \lambda^4 - p_0 b_1 \lambda^3 - p_0 p_1 b_2 \lambda^2 - p_0 p_1 p_2 b_3 \lambda - p_0 p_1 p_2 p_3 b_4$$

Under suitable conditions, the polynomial above has a single positive largest(in terms of absolute value) zero λ^* and a corresponding eigenvector l^* .

For a large t, $(l^*)^t$ dominates all other power of eigenvalues, so $M^t n_0$, which is expressed as a linear combination of power of eigenvalues, can be approximated by

$$M^t n_0 \approx C M^t l = C(\lambda^*)^t l$$

where C is a constant determined by the initial condition.

 N_t , the size of the population at time t, is given as the sum of entries of n_t . Therefore, $N_t = n_0 + n_1 + \ldots + n_4 = C'(\lambda^*)^t$ by the above equation. Hence, using $N_t = 2N_0$, we get $t = \log 2/\log \lambda$.

Problem 1.4. Suppose you know the age-specific death rates (the probability that an individual of age x will die during the next time unit). What is the life expectancy, that is, the mean length of life? What is the median length of life?

Proof. Let $\{p_i\}_{i\in\mathbb{Z}_{\geq 0}}$ be the probability that an individual will survive during age i. Then the probability of survival until age t is given as the product of p_i from 0 to t-1. Thus, the expectation is given by

$$E(X) = \sum_{k=0}^{\infty} \left(k \cdot \prod_{i=0}^{k} p_i \right)$$

The median value can also be computed in a similar manner using formulas from basic probability theory. \Box

Problem 1.5. Show that equation 1.6.8a is correct for any number of strains.

Proof. Suppose that there are k strains and n_1, \ldots, n_k individuals for each strain. The Malthusian parameters of each strain is given as r_1, \ldots, r_k .

Now we use the same method in the textbook.

$$\frac{d \ln(p_1/(1-p_1))}{dt} = \frac{d \ln(n_1/(N-n_1))}{dt}
= \frac{dn_1}{dt} - \frac{d(N-n_1)}{dt}
= \frac{d \ln n_1}{n_1 dt} - \frac{d \ln(N-n_1)}{(N-n_1) dt}
= r_1 - \bar{r}_1$$

Here, \bar{r}_i denotes the mean parameter except for the *i*-th strain.

Notice also that

$$\frac{d\ln(p_1/(1-p_1))}{dt} = \frac{\ln p_1}{dt} - \frac{\ln 1 - p_1}{dt}$$
$$= \frac{dp_1}{p_1 dt} - \frac{d(1-p_1)}{(1-p_1)dt}$$
$$= \frac{dp_1}{p_1(1-p_1)dt}$$

Putting these two equations together gives

$$\frac{dp_1}{dt} = (r_1 - \bar{r}_1)p_1(1 - p_1)
= ((N - n_1)r_1 - (n_2r_2 + \dots + n_kr_k)) \cdot p_1 \cdot \left(\frac{1}{N - n_1}\right) \cdot (1 - p_1)
= (Nr_1 - (n_1r_1 + \dots + n_kr_k)) \cdot p_1 \cdot \left(\frac{1}{N - n_1}\right) \cdot \left(\frac{N - n_1}{N}\right)
= N(r_1 - \bar{r}) \cdot p_1 \cdot \left(\frac{1}{N - n_1}\right) \cdot \left(\frac{N - n_1}{N}\right)
= p_1(r - \bar{r})$$

Problem 1.6. What are the median and mean length of life under model 2, expressed in terms of the death rate, d?

Proof. Suppose that N_0 individuals were born at a given time t_0 . Then the following equation holds:

$$\frac{dN_t}{dt} = -dN_t$$

The solution to this differential equation is

$$N = N_0 e^{-dt}$$

Thus, the number of dead individuals are

$$N_0 - N = N_0 (1 - e^{-dt})$$

Therefore, the cumulative distribution function of survival time t is given as

$$F(t) = 1 - e^{-dt}$$

The resulting probability density function f(t) is

$$f(t) = de^{-dt}$$

Hence, the expectation can be computed.

$$\int_0^\infty t \cdot de^{-dt} dt = \frac{1}{d}$$

Problem 1.7. Show that the time required to change the number from N_0 to N_t in a logistically growing population exceeds that in an unregulated population with the same intrinsic rate of increase by $\log[(K - N_0)/(K - N_t)]/r$.

Proof. By equation (1.6.3) given in the book,

$$t_{l} = \frac{1}{r} \log \frac{N_{t}(K - N_{0})}{(K - N_{t})N_{0}}$$

for logistically a growing population.

For a exponentially growing populations,

$$t_e = \frac{1}{r} \log \frac{N_t}{N_0}$$

Substracting t_e from t_l , we have

$$t_l - t_e = \frac{1}{r} \log \frac{K - N_0}{K - N_t}$$

Problem 1.8. Again considering a logistic population with carrying capicity K, what is the time required to go from a fraction x to a fraction y of this capacity?

Proof. Simply put $N_t = yK$ and $N_0 = xK$ to (1.6.3) of textbook.

$$t = \frac{1}{r} \log \frac{yK(K - xK)}{(K - yK)xK}$$
$$= \frac{1}{r} \log \frac{y(1 - x)}{(1 - y)x}$$

Problem 1.9. One bactrium which reproduces by fission and follows a logistic growth pattern is introducted into each of several ponds. Show that the time required to fill a pond to half its capacity is proportional to the log of the carrying capacity.

Proof. Simply put $N_t = (1/2)K$ to (1.6.3) of textbook.

$$t = \frac{1}{r} \log \frac{(1/2) \cdot K(K-1)}{(K-(1/2)K) \cdot 1}$$
$$\approx \frac{1}{r} \log K$$

Chapter 2

Randomly Mating Populations

In all problems, unless the contrary is stated, assume random mating.

Problem 2.1. In a population there are 8 times as many heterozygotes as homozygous recessives. What is the frequency of the recessive gene?

Proof. Let p and q be the frequency of each allele. Then, $2pq = 8 \cdot q^2 \Rightarrow p = 4q$ so $q = \frac{1}{5}$.

Problem 2.2. Show that, for a very rare recessive gene, the proportion of heterozygous carriers is approximately twice the frequeny of the recessive gene.

Proof. The proportion of heterozygotes is 2pq. The frequency of recessive gene is q. Then the raito of these two values is $\frac{2pq}{q} = 2p \approx 2$.

Problem 2.3. If 16% of the population are Rh- (dd), what fraction of the Rh+ population (DD and Dd) are homozygous?

Proof. We obtain $q = \sqrt{16/100} = 0.04$. The value that we are computing is given by

$$\frac{p^2}{p^2 + 2pq} = \frac{p}{p + 2q} = \frac{0.96}{0.96 + 2 \cdot 0.04} \approx 0.92$$

Problem 2.4. From the data in problem 3, what fraction of the children from a large group of families where both parents were Rh+ would be expected to be Rh+?

Proof. The frequency of gamete with allele d is $\frac{2pq}{2pq+2pq+2p^2} = \frac{pq}{2pq+p^2} \approx 0.038$. Then the frequency of Rh+ progeny is $1-0.038^2=0.996$.

Problem 2.5. Show that if the A and B antigens of the ABO blood group system were caused by two dominant genes, independently inherited, the product of the frequency of A and B should equal the product of O and AB.

Proof. Let a_1, a_2 be the frequency of allele A, a and b_1, b_2 be the frequency of allele B, b. Then the frequencies of A and B are $(a_1^2 + 2a_1a_2) \cdot b_2^2$ and $(b_1^2 + 2b_1b_2) \cdot a_2^2$. The frequencies of O and O are equal.

Problem 2.6. What is the maximum proportion of heterozygotes with two alleles? With three alleles? With n alleles?

- *Proof.* i) Biallelic This is a simple example of the inequality of arthmetic and geometric means. Under p + q = 1, the maximum value of 2pq is 1/4 since $2\sqrt{pq} \le p + q$.
- ii) Triallelic We need to compute the maximum value of $1 (p^2 + q^2 + r^2)$ under the constraint p + q + r = 1. Let $f(p, q, r) = 1 (p^2 + q^2 + r^2)$ and g(p, q, r) = p + q + r. Then we have to attain the maximum of f(p, q, r) under g(p, q, r) = 1. We proceed with the Lagrange multiplier criterion.

$$\nabla f = \lambda \nabla g \Leftrightarrow (-2) \cdot (p, q, r) = \lambda \cdot (1, 1, 1)$$

Now we have $(p,q,r)=-\frac{\lambda}{2}(1,1,1)$. Substituting these values to p+q+r=1 yields $-\frac{3\lambda}{2}=1$ resulting $\lambda=-\frac{2}{3}$ so $p=q=r=\frac{1}{3}$. Thus, we have $\frac{2}{3}$ as the maximum value.

iii) n-allelic The proof is identical to that of case ii) so we omit the details.