

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE CÁLCULO PARA CIENCIA DE DATOS: IMT2220

Profesor: Joaquín Valenzuela

Ayudantes: Diego Rodríguez (drodrguez@uc.cl) y

Francisca Muñoz (fmur@uc.cl)

#### Ayudantía 8

#### Integrales en dominios no regulares y repaso I2

#### Problema 1

Evalúe

$$\int \int_{D} (x+2y) dA$$

donde D es la región acotada por las parábolas  $y = 2x^2$  y  $y = 1 + x^2$ .

#### Problema 2

Encuentre el valor del sólido que se encuentra bajo el paraboloide  $z = x^2 + y^2$  y arriba de la región D en el plano xy acotada por la recta y = 2x y la parábola  $y = x^2$ .

#### Problema 3

Determine el máximo y mínimo absoluto de la siguiente función

$$f(x,y) = x^2 - 2xy + 2y$$

En el rectángulo  $D = \{(x, y) | 0 \le x \le 3, 0 \le y \le 3\}.$ 

#### Problema 4

Determine los máximos y minimos locales y puntos silla de la siguiente función:

$$f(x,y) = x^4 + y^4 - 4xy + 1$$

#### Problema 5

Encuentre los polinomios de Taylor de primer y segundo grado de las siguientes funciones:

- $f(x,y) = e^{-x^2 y^2}$
- $f(x, y) = xe^y$

## Problema 1 Evalúe $\int \int_{D} (x+2y)dA$ donde D es la región acotada por las parábolas $y=2x^2$ y $y=1+x^2$ . 1 Buscamos la intersección de las parabolas $2x^2 = 1 + x^2 \implies x^2 = 1 \implies x = \pm 1$ D= { (x,y) |-1 < x < 1, 2x2 < y < 1+x2 } $\iint_{0} (2y + x) dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x + 2y) dy dx$ $= \int_{0}^{1} \left[ xy + y^{2} \right]_{y=1+x^{2}}^{y=1+x^{2}} dy$ $= \int_{-\infty}^{\infty} \left[ x(1+x^2) + (1+x^2)^2 - x(2x^2) - (2x^2)^2 \right] dy$ = $\left( \frac{1}{1} \left( -3x^4 - x^3 + 2x^2 + x + 1 \right) \right) d$ $= \left[ -3 \frac{x^5}{5} - \frac{x^4}{4} + 2 \frac{x^3}{3} + \frac{x^2}{2} + x \right]^{1}$ $=\frac{32}{45}$

# Problema 2 Encuentre el valor del sólido que se encuentra bajo el paraboloide $z = x^2 + y^2$ y arriba de la región D en el plano xy acotada por la recta y = 2x y la parábola $y = x^2$ . D={(x,y) (0 &x &2, x2 &y &2x } $V = \iint (x^2 + y^2) dA = \int_0^2 \int_{x^2}^{2x} (x^2 + y^2) dy dx$ $= \int_0^2 \left[ x^2 y + \frac{y^3}{3} \right]_{y=x^2}^{y=2x} dx$ $= \int_{0}^{2} \left[ \chi^{1}(2x) + \frac{(2x)^{3}}{3} - \chi^{2}x^{2} - \frac{(x^{2})^{3}}{3} \right] dx$ $= \int_0^2 \left( -\frac{x^6}{3} - x^4 + \frac{14x^3}{3} \right) dx$ $= \left[\frac{-x^{2}}{21} - \frac{x^{6}}{5} + \frac{7x^{4}}{6}\right]^{2}$

### Problema 3

Determine el máximo y mínimo absoluto de la siguiente función

$$f(x,y) = x^2 - 2xy + 2y$$

| En el rectángulo $D = \{(x, y)  $ | $0 \le x \le 3, 0 \le y \le 3\}.$ |                       |                       |
|-----------------------------------|-----------------------------------|-----------------------|-----------------------|
|                                   |                                   |                       |                       |
| Como es polínomial.               | es continua sobre                 | el rectangulo r       | enado                 |
| Lieuiste max y m                  | in abs.                           |                       |                       |
|                                   |                                   |                       |                       |
| fx = 2x - 2y                      | $fy = -2x + \frac{1}{2}$          | 2                     |                       |
| Pentos críticos                   |                                   |                       |                       |
| fx = 0                            | -0                                |                       |                       |
| 2x-2y=-2x+2                       |                                   |                       |                       |
| 4 × = 2 + 2 y                     |                                   |                       |                       |
| R: x=y=1                          | $\rightarrow f(1,1)=1$            | (onico)               |                       |
|                                   |                                   |                       |                       |
| Fronteras                         |                                   |                       |                       |
| · L1 (4-0)                        |                                   |                       |                       |
| f (x, o) =x2                      | 0 < x ≤ 3. →                      | mu f(0,0)=0           | max: ((3,0)=9.        |
| · La (×=3)                        |                                   |                       |                       |
| f(3,y) = 9-4y                     | 0 < 4 < 2                         | min : f(3,2)=1, m     | ax: f(3,0) = 9        |
| · Lz ( y = 2)                     |                                   |                       |                       |
| $f(x,2) = x^2 - 4x$               | +4 0 3 x 5 3 -                    | > min . f (2,2) =0 ,1 | mak: f(0,2)=4         |
| $= (x-2)^2$                       |                                   |                       |                       |
| · L4 (x=0)                        |                                   |                       |                       |
| F (0,4) = 24                      | 0 { y < 2 -> m                    | ax:f(0,2)=4, m        | $in \cdot f(0,0) = J$ |
|                                   |                                   |                       |                       |
|                                   | - (2,2)                           |                       |                       |

Min: f = 0 < (2,2)Max: f = 0 - (3,0)

#### Problema 4

Determine los máximos y minimos locales y puntos silla de la siguiente función:

$$f(x,y) = x^4 + y^4 - 4xy + 1$$

| $f(x,y) = x^4 + y^4 - 4xy + 1$                                                                                                |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                               |  |  |  |  |
| 1. Puntos criticos                                                                                                            |  |  |  |  |
| $f_x = 4x^3 - 4y$ $f_y = 4y^3 - 4x$                                                                                           |  |  |  |  |
| f <sub>x</sub> =0, f <sub>y</sub> =0                                                                                          |  |  |  |  |
| 1 × 1 + 3                                                                                                                     |  |  |  |  |
| $x^3 = y$ , $y^3 = x$                                                                                                         |  |  |  |  |
| , 3 , 3                                                                                                                       |  |  |  |  |
| $\to 0 = x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) = x(x^2 - 1)(x^2 + 1)(x^4 + 1)$                                           |  |  |  |  |
| $X = 0, \Lambda, -1 \longrightarrow (0, 0); (\Lambda, \Lambda); (-1, -1)$                                                     |  |  |  |  |
| Pts critico                                                                                                                   |  |  |  |  |
|                                                                                                                               |  |  |  |  |
| test de 2 da denivada:                                                                                                        |  |  |  |  |
| D (x, y)                                                                                                                      |  |  |  |  |
| $C_{xx} = 12x^2$ , $f_{xy} = -4$ , $f_{yy} = 12y^2$                                                                           |  |  |  |  |
| D(x,y) = fxx fyy - fxy2 = 144x2y2 - 16                                                                                        |  |  |  |  |
| (X,y) - +xx +9y (xy / 1 x y - 1 b                                                                                             |  |  |  |  |
| ·D(0,0) = -16 <0 → pto sile                                                                                                   |  |  |  |  |
| $-D(1,1) = 128 > 0 	 y 	 f_{xx}(1,1) = 12 > 0 	 \Rightarrow f(1,1) = -1 	 minls(a)$                                           |  |  |  |  |
| -D(-1,-1) = 12850 $y + x = (-1,-1) = 12 > 0$ $y + x = (-1,-1) = 12 > 0$ $y + x = (-1,-1) = 12 > 0$ $y + x = (-1,-1) = 12 > 0$ |  |  |  |  |
| y (-1,-1)-12 0 mun to at                                                                                                      |  |  |  |  |
|                                                                                                                               |  |  |  |  |
|                                                                                                                               |  |  |  |  |
|                                                                                                                               |  |  |  |  |
|                                                                                                                               |  |  |  |  |

#### Problema 5

Encuentre los polinomios de Taylor de primer y segundo grado de las siguientes funciones:

• 
$$f(x,y) = e^{-x^2 - y^2}$$
 en  $(0,0)$ 

• 
$$f(x,y) = xe^y$$

|    | • $f(x,y) = xe^y$ en $(10)$                                                               |
|----|-------------------------------------------------------------------------------------------|
|    |                                                                                           |
| 1. | $f(x,y) = e^{-x^2-y^2}$ , $f_x = -2xe^{-x^2-y^2}$ $f_y = -2ye^{-x^2-y^2}$                 |
|    | 1er glado $L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$                               |
|    | $L(x,y) = e^{\circ} + O(x-a) + o(y-b)$                                                    |
|    | L(x,y) = 1.                                                                               |
|    | 2do grado O(x,y) = f(a,b) + fx(a,b)(x-a) + fy(a,b)(y-b) + fx(a,b)(x-a)2 +                 |
|    | fxy(a,6)(x-a)(y-b)+2 fyy(a,6)(y-b)2                                                       |
|    | $f_{xx} = -2e^{-x^2 \cdot y^2} + 4x^2 e^{-x^2 - y^2} \qquad f_{xy} = -4xy e^{-x^2 - y^2}$ |
|    | $(yy = -2e^{-x^2-y^2} + 4y^2e^{-x^2-y^2})$                                                |
|    | $Q(x,y)=4-e^{\circ}(x)^{2}-e^{\circ}(y)^{2}$                                              |
|    | = 1x <sup>2</sup> -y <sup>2</sup>                                                         |
|    |                                                                                           |
| 2. | xe <sup>y</sup>                                                                           |
|    | $f_x = e^y$ $f_y = xe^y$                                                                  |
|    | $f_{xx} = 0 \qquad f_{yy} = xe^y \qquad f_{xy} = e^y$                                     |
|    |                                                                                           |
|    | L(x,y)= 1.e0 + e0(x-1) + e0(y)                                                            |
|    | $= \lambda + (x - 1) + y = x + y$                                                         |
|    |                                                                                           |

$$O(x,y) = 1e^{\circ} + e^{\circ}(x-1) + e^{\circ}(y) + e^{\circ}(x-1)(y) + \frac{1}{2}e^{\circ}(y)^{2}$$

$$= 1 + (x-1) + y + xy - y + \frac{1}{2}y^{2}$$

$$= x + yx + \frac{1}{2}y^{2}$$