8 其它常用机构

- 8-1 棘轮机构
- 8-2 槽轮机构
- 8-3 凸轮式间隙运动机构
- 8-4 不完全齿轮机构
- 8-5 非圆齿轮机构

8 其它常用机构

- 8-6 摩擦轮机构
- 8-7 螺旋机构
- 8-8 万向铰链机构

棘轮机构的组成:摆杆、棘爪、棘轮、止动爪。

棘轮 机构-类型 按轮齿分布有: 外缘、内缘、端面棘轮机构。

按工作方式有:单动式、双动式棘轮机构。

按棘轮转向是否可调:单向、双向运动棘轮机构。

按转角是否可调:固定转角、可调转角。

按工作原理分有: 轮齿棘轮、摩擦棘轮。

特点:

轮齿式棘轮工作时噪音大且转角为步进可调,但运动准确。 摩擦棘轮正好相反。应用举例。

棘轮可双向运动

应用举例:

一、槽轮机构的组成及其特点

特点:

结构简单、工作可靠。

机械效率高。

能平稳地、间歇地进行转位。

不适合高速运动场合。

槽轮机构的类型

外啮合槽轮机构

内啮合槽轮机构

球面槽轮机构

三、槽轮机构的运动系数及运动特性

1.运动系数

拨盘等速回转, 在一个运动循环内,

总的运动时间为: $t = 2\pi/\omega_1$

槽轮的运动时间为: $t_d = 2\alpha_1/\omega_1$

定义: $k=t_{\rm d}/t$ 为运动系数,即:

$$k=t_d/t=2\alpha_1/2\pi$$

为减少冲击,进入或退出啮合时,槽中心线与拨销中心连线成90°角。故有:

$$2\alpha_1 = \pi - 2\varphi_2$$

= $\pi - (2\pi/z)$
= $\pi(z - 2)/z$

将 $2\alpha_1$ 代入得: k=1/2-1/z

∴ *k*>0 ∴ 槽轮的槽数 *z* ≥ 3

可知: 当只有一个圆销时, k=1/2-1/z < 0.5

即槽轮的运动时间总是小于其静止时间。

如果想得到k > 0.5的槽轮机构,则可在拨盘上多装几个圆销,设装有n个均匀分布的圆销,则: k=n(1/2-1/z)

槽数z	3	4	5 、 6	≥ 7
圆销数n	1~6	1~4	1~3	1~2
运动系数k	1/6~1	0.25~1	0.3~1	0.36~1

四、其它类型的槽轮机构

不等臂长多销槽轮机构

偏置外槽轮机构

偏置内槽轮机构

曲线槽外槽轮机构

槽条机构

曲线槽内槽轮机构

-

8-3 凸轮式间隙运动机构

圆柱凸轮间歇运动机构

应用: 适用于高速、高精度的分度转位机械制瓶机、纸烟、包装机、拉链嵌齿、高速冲床、多色印刷机等机械。

蜗杆凸轮间歇运动机构

8-4 不完全齿轮机构

内啮合不完全齿轮机构

8-4 不完全齿轮机构

齿轮与齿条传动

圆锥不完全齿轮传动

8-4 不完全齿轮机构

8-5 非圆齿轮机构

8-6 摩擦轮机构

圆柱平摩擦传动机构

滚轮圆盘式摩擦传动机构

8-6 摩擦轮机构

圆柱槽摩擦传动机构

圆锥摩擦轮机构

8-7 螺旋机构

导程l 螺距p

两者的关系为: l=zp, z为螺纹的头数。

螺旋转过任意 ϕ 角时,螺母的位移s为:

4

8-7 螺旋机构

当A、B段螺纹旋向相同时,

螺杆1相对于机架3的位移为: $s_1=l_A \varphi/2\pi$

螺母2相对于螺杆1的位移为: $s_{21}=-l_B\varphi/2\pi$

螺母2相对于机架3的位移为:

$$s = (l_A - l_B) \varphi / 2\pi$$

当差 (l_A-l_B) 很小时,s将很小。

这种螺旋机构称为微(差)动螺旋机构,用于测微计(千分尺)、分度机构、调节机构中。

当A、B段螺纹旋向相反时,螺母2的位移为:

$$s = (l_A + l_B) \varphi / 2\pi$$

称为复式螺旋机构,用于电杆拉线机构等。

8-8万向铰链机构

用于传递两相交轴之间的动力和运动,而且在传动过程中,两轴之间的夹角还可以改变。 ω_1

一、单万向铰链机构

运动分析:两轴平均传动比为1, 但瞬时传动比是动态变化的。

在任意位置有:

$$\omega_2 = \omega_1 + \omega_{21} = \omega_1 + \omega_{23} + \omega_{31}$$

其中 ω_{31} 代表构件3相对于构件1的角速度,沿AA轴;

 ω_{23} 代表构件2相对于构件3的角速度,沿BB轴。

因此,两者之和₀₂₁必在十字叉平面内,又同时在输入与输出 轴所决定的平面内,从而在两平面的交线上。

8-8 万向铰链机构

由于十字叉平面在作空间定点运动,而输入与输出轴所决定的平面是固定不变的,所以其交线方向是变化的。

由图可得: $\omega_2'=\omega_1/\cos\alpha$

8-8万向铰链机构

由图可得: ω_2 "= $\omega_1\cos a$

可知 ω_2 的变化范围为: ω_2 " $\leq \omega_2 \leq \omega_2$

 $\wp_1 \cos a \le \omega_2 \le \omega_1/\cos \alpha$

8-8万向铰链机构

二、双万向铰链机构

安装要求:

- ①主动、从动、中间三轴共面;
- ②主动轴、从动轴的轴线与中间轴的轴线之间的夹角应相等;
- ③中间轴两端的叉面应在同一平面内。

