РГПУ им. А.И. Герцена

Тема: «Основные понятия линейного программирования» Свистунова М. П., 2ИВТ (1) 2 подгруппа

Лабораторная работа №2

Задача №1.

На звероферме могут выращиваться черно-бурые лисицы и песцы. Для обеспечения нормальных условий их выращивания используется три вида кормов. Количество кормов каждого вида, которое должны получать животные, приведено в таблице. В ней также указаны общее количество корма каждого вида, которое может быть использовано зверофермой ежедневно, и прибыль от реализации одной шкурки лисицы и песца. Определить, сколько лисиц и песцов можно вырастить при имеющихся запасах корма.

Вид корма	Количество едині ежедневно дол	Запас корма	
	Лисица	Песец	
A	2	2	180
Б	4	1	240
В	6	7	426
Прибыль от реализации одной шкурки, руб.	1600	1200	

1. Целевая функция:

$$F = 1600x_1 + 1200x_2 \rightarrow max$$

2. Переменные:

$$x_1 -$$
лисица $x_2 -$ песец

- 3. Ограничения:
 - 1) Корм А:

$$2 * x_1 + 2 * x_2 \le 180$$

2) Корм Б:

$$4 * x_1 + 1 * x_2 \le 240$$

3) Корм В:

$$6 * x_1 + 7 * x_2 \le 426$$

- 4. Построение области допустимых решений целевой функции F:
 - 1) Корм А:

$$2 * x_1 + 2 * x_2 = 180$$

2) Корм Б:

$$4 * x_1 + 1 * x_2 = 240$$

3) Корм В:

$$6 * x_1 + 7 * x_2 = 426$$

5. Графическое решение:

6. Решение:

$$\begin{cases} 4x_1 + x_2 = 240 \\ 6x_1 + 7x_2 = 426 \end{cases}$$

$$\begin{cases} x_2 = 240 - 4x_1 \\ 6x_1 + 7(240 - 4x_1) = 426 \end{cases}$$

$$\begin{cases} x_2 = 240 - 4x_1 \\ 6x_1 + 1680 - 28x_1 = 426 \end{cases}$$

$$\begin{cases} x_2 = 240 - 4x_1 \\ 6x_1 + 1680 - 28x_1 = 426 \end{cases}$$

$$\begin{cases} x_2 = 240 - 4x_1 \\ 22x_1 = 1254 \end{cases}$$
$$\begin{cases} x_1 = 57 \\ x_2 = 12 \end{cases}$$

$$F = 1600 * 57 + 1200 * 12 = 91200 + 14400 = 105600$$

7. Решение в Excel:

x1=	57	Целевая функция	(максимум)
x2=	12	1600x1+1200x2=	105600
2x1+2x2=	138		
4x1+x2=	240		
6x1+7x2=	426		

Задача №2.

При подкормке посевов необходимо внести на 0,01 га почвы не менее 8 единиц азота, не менее 24 единиц фосфора и не менее 16 единиц калия. Фермер закупает комбинированные удобрения двух видов "Азофоска" и "Комплекс". В таблице указаны содержание количества единиц химического вещества в 1 кг каждого вида удобрений и цена 1 кг удобрений. Определить графически потребность фермера в удобрениях того и другого вида на 0,01 га посевной площади при минимальных затратах на потребление.

Химические вещества	Содержание химич 1 кг удоб	Необходимое количество	
	Азофоска	Комплекс	веществ
Азот	1	2	8
Фосфор	12	3	24
Калий	4	4	16
Цена 1 кг удобрения, руб.	50	20	

1. Целевая функция:

$$F = 50x_1 + 20x_2 \rightarrow min$$

2. Переменные:

$$x_1 -$$
азофоск $x_2 -$ комплекс

3. Ограничения:

1) Азот:

$$1 * x_1 + 2 * x_2 \ge 8$$

2) Фосфор:

$$12 * x_1 + 3 * x_2 \ge 24$$

Калий:

$$4 * x_1 + 4 * x_2 \ge 16$$

4. Построение области допустимых решений целевой функции F:

1) Азот:

$$1 * x_1 + 2 * x_2 = 8$$

2) Фосфор:

$$12 * x_1 + 3 * x_2 = 24$$

3) Калий:

$$4 * x_1 + 4 * x_2 = 16$$

5. Графическое решение:

6. Решение:

$$\begin{cases} x_1 + 2x_2 = 8 \\ 12x_1 + 3x_2 = 24 \end{cases}$$

$$\begin{cases} x_1 = 8 - 2x_2 \\ 12(8 - 2x_2) + 3x_2 = 24 \end{cases}$$

$$\begin{cases} x_1 = 8 - 2x_2 \\ 96 - 24x_2 + 3x_2 = 24 \end{cases}$$

$$\begin{cases} x_1 = 8 - 2x_2 \\ 21x_2 = 72 \end{cases}$$

$$\begin{cases} x_1 = 1.14 \\ x_2 = 3.43 \end{cases}$$

$$F = 50 * 1.14 + 20 * 3.43 = 57 + 68.6 = 125.6$$

7. Решение в Excel:

x1=	1,1	Целевая функция (минимум)	
x2=	3,4	50x1+20x2=	125,714286
x1+2x2=	8		
12x1+3x2=	24		
4x1+4x2=	18		

Задача №3.

Полной даме необходимо похудеть, а за помощью она обратилась к подруге. Подруга посоветовала перейти на рациональное питание, состоящее из двух продуктов Р и Q.

Суточное питание этими продуктами должно давать менее 14 единиц жира (чтобы похудеть), но не менее 300 килокалорий. На упаковке продукта Р написано, что в одном килограмме этого продукта содержится 15 единиц жира и 150 килокалорий, а на упаковке с продуктом Q — 4 единицы жира и 200 килокалорий соответственно. При этом цена продукта Р равна 250 руб./кг, а цена продукта Q равна 210 руб./кг.

Так как дама была стеснена в средствах, то ее интересовал вопрос: в какой пропорции нужно брать эти продукты для того, чтобы выдержать условия диеты и истратить как можно меньше денег?

Вещества	Содержание продуктов в суточной порции		Необходимое количество
	P	Q	веществ
Жиры	15	4	14
Килокалории	150	200	300
Цена 1 кг продукта, руб.	250	210	

1. Целевая функция:

$$F = 250x_1 + 210x_2 \rightarrow min$$

2. Переменные:

$$x_1$$
 — продукт P x_2 — продукт Q

3. Ограничения:

1) Жиры:

$$15 * x_1 + 4 * x_2 \le 14$$

2) Килокалории:

$$150 * x_1 + 200 * x_2 \ge 300$$

4. Построение области допустимых решений целевой функции F:

1) Жиры:

$$15 * x_1 + 4 * x_2 = 14$$

2) Килокалории:

$$150 * x_1 + 200 * x_2 = 300$$

5. Графическое решение:

6. Решение:

$$\begin{cases} x_1 = 0 \\ 150x_1 + 200x_2 = 300 \end{cases}$$
$$\begin{cases} x_1 = 0 \\ 3x_1 + 4x_2 = 6 \end{cases}$$
$$\begin{cases} x_1 = 0 \\ x_2 = 1.5 \end{cases}$$

$$F = 250 * 0 + 210 * 1.5 = 0 + 315 = 315$$

7. Решение в Excel:

x1=	0	Целевая функция (минимум)	
x2=	1,5	250x1+210x2=	315
15x1+4x2=	6		
150x1+200x2=	300		