SYDE252 - lecture notes

09/01/18

Presented by: John Zelek Systems Design Engineering

note: some material (figures) borrowed from various sources

6. DFT (Discrete Fourier Transform)

09/11/18

Presented by: John Zelek Department of Engineering

inspiration

https://dsp.stackexchange.com/questions/37119/dsp-or-signal-image-data-processing-jokes

discrete vs. cts. fourier transform

Discrete Time:

Continuous Time:

Periodic:

$$x[n] = x[n + N_0]$$

$$x(t) = x(t + T_0)$$

Fourier Series:

$$x[n] = \sum_{k=0}^{N_0 - 1} \mathbf{x}_k e^{jk\Omega_0 n}$$

$$x(t) = \sum_{n = -\infty}^{\infty} \mathbf{x}_n e^{jn\omega_0 t}$$

Computing
$$\mathbf{x}_{k} = \frac{1}{N_{0}} \sum_{n=0}^{N_{0}-1} x[n] e^{-jk\Omega_{0}n} \mathbf{x}_{n} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) e^{-jn\omega_{0}t} dt.$$

$$\mathbf{x}_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jn\omega_0 t} dt.$$

Terms:

Infinity, in general

discrete vs. cts. fourier series

Discrete Time:

Continuous Time:

Periodic:

$$x[n] = x[n + N_0]$$

$$x(t) = x(t + T_0)$$

Fourier Series:

$$x[n] = \sum_{k=0}^{N_0 - 1} \mathbf{x}_k e^{jk\Omega_0 n}$$

$$x(t) = \sum_{n = -\infty}^{\infty} \mathbf{x}_n e^{jn\omega_0 t}$$

Computing Coefficient:
$$\mathbf{x}_{k} = \frac{1}{N_{0}} \sum_{n=0}^{N_{0}-1} x[n] e^{-jk\Omega_{0}n} \mathbf{x}_{n} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) e^{-jn\omega_{0}t} dt.$$

$$\mathbf{x}_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jn\omega_0 t} dt.$$

Terms:

Infinity, in general

discrete fourier series (DTFS) - example

Compute the DTFS of the periodic signal $x[n] = \{..., 24, 8, 12, 16, 24, 8, 12, 16, ...\}$.

6.DFT 6

discrete fourier series (DTFS) - example

Magnitude and phase line spectra of x[n] on next slide.

FACULTY OF ENGINEERING

discrete fourier series (DTFS) - example

(b) Magnitude line spectrum

(c) Phase line spectrum

discrete vs. Cts. Fourier transform

Discrete-Time

$$\mathbf{X}(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{\Omega_1}^{\Omega_1 + 2\pi} \mathbf{X}(e^{j\Omega}) e^{j\Omega n} d\Omega, \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\mathbf{X}}(\omega) e^{j\omega t} d\omega$$

Continuous-Time

$$\hat{\mathbf{X}}(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\mathbf{X}}(\omega) \ e^{j\omega t} \ d\omega$$

If x[n] and x(t) are causal signals, then:

$$\mathbf{X}(e^{j\Omega}) = \mathbf{X}(\mathbf{z})\big|_{\mathbf{z}=e^{j\Omega}}$$

$$\hat{\mathbf{X}}(\omega) = \mathbf{X}(\mathbf{s})\big|_{\mathbf{s}=j\omega}$$

discrete time fourier transform (DTFT)

Define x(t) from x[n] using
$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \delta(t-n)$$
.
Fourier transform of x(t): $\hat{\mathbf{X}}(\omega) = \sum_{n=-\infty}^{\infty} x[n] \mathcal{F}[\delta(t-n)] = \mathbf{X}(e^{j\Omega})$

- 1. DTFT is continuous Fourier transform of chain-of-impulses.
- 2. DTFT is a continuous- Fourier series expansion of
- 3. DTFT is periodic in with period 2π . CRUCIAL property!
- 4. Other DTFT properties follow from continuous-time Fourier transform properties (see the next slide).

UNIVERSITY OF WATERLOOF FACULTY OF ENGINEERING

Discrete-time Fourier transform (DTFT) pairs.

DTFT pairs

	x[n]		$\mathbf{X}(e^{j\Omega})$	Condition
1.	$\delta[n]$	\leftrightarrow	1	
1a.	$\delta[n-m]$			m = integer
2.	1	\leftrightarrow	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$	
3.			$\frac{e^{j\Omega}}{e^{j\Omega}-1} + \sum_{k=-\infty}^{\infty} \pi \delta(\Omega - 2\pi k)$	
3a.			$\frac{e^{j\Omega}}{e^{j\Omega} - \mathbf{a}}$	$ {\bf a} < 1$
3b.	$n\mathbf{a}^n \ u[n]$	\leftrightarrow	$\frac{\mathbf{a}e^{j\Omega}}{(e^{j\Omega}-\mathbf{a})^2}$	$ {\bf a} < 1$
4.	$e^{j\Omega_0 n}$	\leftrightarrow	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$	
5.	$\mathbf{a}^{-n}\ u[-n-1]$	\leftrightarrow	$rac{\mathbf{a}e^{j\Omega}}{1-\mathbf{a}e^{j\Omega}}$	$ {\bf a} < 1$
6.			$\pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k) \right]$	
7.	$\sin(\Omega_0 n)$	\leftrightarrow	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} [\delta(\Omega - \Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0 - 2\pi k)]$	
8.	$\mathbf{a}^n \cos(\Omega_0 n + \theta) \ u[n]$	\leftrightarrow	$\frac{e^{j2\Omega}\cos\theta - \mathbf{a}e^{j\Omega}\cos(\Omega_0 - \theta)}{e^{j2\Omega} - 2\mathbf{a}e^{j\Omega}\cos\Omega_0 + \mathbf{a}^2}$	$ {\bf a} < 1$
9.	$rect\left[\frac{n}{N}\right] = u[n+N] - u[n-1-N]$	\leftrightarrow	$\frac{\sin\left[\Omega\left(N+\frac{1}{2}\right)\right]}{\sin\left(\frac{\Omega}{2}\right)}$	
10.	$\frac{\sin[\Omega_0 n]}{\pi n}$	\leftrightarrow	$\sum_{k=-\infty}^{\infty} \left[u(\Omega + \Omega_0 - 2\pi k) - u(\Omega - \Omega_0 - 2\pi k) \right]$	

6.DFT 11

DTFT properties

Properties of the DTFT.

Property	x[n]		$\mathbf{X}(e^{j\Omega})$	
1. Linearity	$k_1 x_1[n] + k_2 x_2[n]$	\leftrightarrow	$k_1 \mathbf{X}_1(e^{j\Omega}) + k_2 \mathbf{X}_2(e^{j\Omega})$	
2. Time shift	$x[n-n_0]$	\leftrightarrow	$\mathbf{X}(e^{j\Omega}) e^{-jn_0\Omega}$	
3. Frequency shift			$\mathbf{X}(e^{j(\Omega-\Omega_0)})$	
4. Multiplication by <i>n</i> (frequency differentiation)	n x[n]	\leftrightarrow	$j\frac{d\mathbf{X}(e^{j\Omega})}{d\Omega}$	
5. Time Reversal	x[-n]	\leftrightarrow	$\mathbf{X}(e^{-j\Omega})$	
6. Time convolution			$\mathbf{X}_1(e^{j\Omega}) \; \mathbf{X}_2(e^{j\Omega})$	
7. Frequency convolution	$x_1[n] x_2[n]$	\leftrightarrow	$\frac{1}{2\pi} \; \mathbf{X}_1(e^{j\Omega}) * \mathbf{X}_2(e^{j\Omega})$	
8. Conjugation			$\mathbf{X}^*(e^{-j\Omega})$	
9. Parseval's theorem	$\sum_{n=-\infty}^{\infty} x[n] ^2$	=	$\frac{1}{2\pi} \int_{\Omega_1}^{\Omega_1 + 2\pi} \mathbf{X}(e^{j\Omega}) ^2 d\Omega$	
10. Conjugate symme	. :0			

example - computing DTFT

Compute the DTFT of

(a)
$$x_1[n] = \{3, 1, \underline{4}, 2, 5\},\$$

(b)
$$x_2[n] = \left(\frac{1}{2}\right)^n u[n],$$

(c)
$$x_3[n] = 4\sin(0.3n)$$
,

Easiest way to do (a) and (b) is to use Note that all three DTFTs are periodic with period 2π .

FACULTY OF ENGINEERING

example (discrete sinc) - computing DTFT [pulse]

$$x[n] = \begin{cases} 1 & \text{for } |n| \le N, \\ 0 & \text{for } |n| > N. \end{cases}$$

$$| U | | Ior | n | > IV.$$

$$| x[n] |$$

$$| 1.5 |$$

$$\mathbf{X}(e^{j\Omega}) = \frac{\sin\left[\Omega\left(N + \frac{1}{2}\right)\right]}{\sin\left(\frac{\Omega}{2}\right)}$$

6.DFT 14

discrete fourier transform (DFT)

DFT:

$$\mathbf{X}_{k} = \sum_{n=0}^{N_{0}-1} x[n] e^{-jk\Omega_{0}n}$$

$$x[n] = \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} \mathbf{X}_k e^{jk\Omega_0 n},$$

$$\Omega_0 = \frac{2\pi}{N_0}$$

$$\mathbf{X}_k = N_0 \mathbf{x}_k$$

DTFS:

$$\mathbf{x}_k = \frac{1}{N_0} \sum_{n=0}^{N_0 - 1} x[n] e^{-jk\Omega_0 n},$$

$$x[n] = \sum_{n=0}^{N_0 - 1} \mathbf{x}_k e^{jk\Omega_0 n}.$$

$$\Omega_0 = \frac{2\pi}{N_0}$$
 $\mathbf{X}_k = N_0 \mathbf{x}_k$ $\mathbf{X}_k = \mathbf{X}(e^{j\Omega}) \Big|_{\Omega = k\Omega_0} = \mathbf{X}(\mathbf{z})|_{\mathbf{z} = e^{jk\Omega_0}}$

DFT

15

DTFT

z-transform

6.DFT

discrete fourier series (DTFS) - example ctn. Parsevals

Average power is the same In time or frequency domain

$$\frac{1}{N_0} \sum_{n=0}^{N_0 - 1} |x[n]|^2 = \sum_{k=0}^{N_0 - 1} |\mathbf{x}_k|^2.$$

For the previous example, we have:

Time Domain:

Frequency Domain:

discrete fourier transform

- now sample the spectrum which is done by repeating copies of x(+)

of time samples in To

of freque samples in to No = to

picket fence effect: iff between samples in frequency is missing

discrete fourier transform

-consider a time-limited signal
$$x(t)$$
 with spectrum $X(\omega)$
 $\uparrow x(t)$
 $\downarrow x$

UNIVERSITY OF WATERLOOF FACULTY OF ENGINEERING

discrete fourier transform

-make a periodic signal XTo (+), the th impulse train in

discrete fourier transform

computing spectra of non periodic signals (dft & windowing)

Multiply x[n] by a rectangular window that sets x[n] to 0 outside window, take the periodic extension of the result, and find its DTFS spectrum using the DFT.

FACULTY OF ENGINEERING

6.DFT

using DFT to compute convolutions

Goal: To compute the convolution of x[n] and y[n]. Lengths: x[n]:L, y[n]:M, x[n]*y[n]: N=L+M-1.

Procedure: Zero-pad x[n] and y[n] to lengths N by appending N-L zeros to x[n] and N-M to y[n].

DFT: $x[n]*y[n] = IDFT\{DFT\{x[n]\}DFT\{y[n]\}\}$ where all DFTs and inverse DFTs (IDFTs) have lengths N.

FACULTY OF ENGINEERING

using DFT to compute convolutions - example

Example: Compute convolution $\{4,5\}^*\{1,2,3\}$ using DFTs.

Solution: The convolution has length 2+3-1=4. Zero-pad the two signals to be convolved to $\{4,5,0,0\}$ and $\{1,2,3,0\}$. DFT $\{\{4,5,0,0\}\}=\{9,4-i5,-1,4+i5\}$. DFT $\{\{1,2,3,0\}\}=\{6,-2-i2,2,-2+i2\}$.

Multiply these: $\{54, -18+j2, -2, -18-j2\}$. IDFT $\{\{54, -18+j2, -2, -18-j2\}\}=\{4, 13, 22, 15\}$.

So
$$\{4,5\}$$
* $\{1,2,3\}$ = $\{4,13,22,15\}$.

Fast Fourier Transform (FFT)

FFT: A fast algorithm for computing the

DFT: A transform for computing spectra.

Idea: Divide-and-conquer approach: Break up a large DFT into smaller ones. If N_0 is a power of 2, reduce computation from N_0^2 to $(N_0/2)\log_2 N_0$. If $N_0=512$, this reduces from 262,144 to 2304 multiplications!

Goal: Compute
$$X_k = \sum_{n=0}^{N_0-1} x[n] \ W_{N_0}^{nk}$$
 where $W_{N_0} = e^{-j2\pi/N_0}$

Fast Fourier Transform (FFT) formulae

Split x[n] into
$$x_e[n] = x[2n],$$
 values at even $x_o[n] = x[2n+1]$ and odd times:

Then use these formulae to break up N-point DFT into two N/2-point DFTs and some multiplications:

$$\mathbf{X}_{k} = \sum_{n=0}^{N_{0}/2-1} x_{e}[n] \ W_{N_{0}/2}^{nk} + W_{N_{0}}^{k} \sum_{n=0}^{N_{0}/2-1} x_{o}[n] \ W_{N_{0}/2}^{nk}$$

$$N_{0}/2\text{-point DFT} \qquad N_{0}/2\text{-point DFT}$$

$$\mathbf{X}_{k+N_{0}/2} = \sum_{n=0}^{N_{0}/2-1} x_{e}[n] \ W_{N_{0}/2}^{nk} - W_{N_{0}}^{k} \sum_{n=0}^{N_{0}/2-1} x_{o}[n] \ W_{N_{0}/2}^{nk}$$

$$N_{0}/2\text{-point DFT} \qquad N_{0}/2\text{-point DFT}$$

FACULTY OF ENGINEERING

compute 4 pt DFT using FFT

Goal: Use the FFT to break down the 4-point DFT of $\{\underline{a},b,c,d\}$ into two 2-point DFTs and multiplications by j.

```
Solution: 2-point DFT: X_0 = x[0] + x[1] and X_1 = x[0] - x[1] x[n] = \{\underline{a}, b, c, d\}. = \{\underline{a}, c\}. = \{\underline{b}, d\}. = -\mathbf{j}. \frac{2-\text{point DFT}}{2-\text{point DFT}} of \{\underline{a}, c\} is \{a+c, a-c\}. \frac{2-\text{point DFT}}{2-\text{point DFT}} of \{\underline{b}, d\} is \{b+d, b-d\}. \frac{4-\text{point DFT}}{2-\text{point DFT}} of \{\underline{a}, b, c, d\} is then computed from these as: \{(a+c)+(b+d), (a-c)-\mathbf{j}(b-d), (a+c)-(b+d), (a-c)+\mathbf{j}(b-d)\}= result of direct computation of the 4-point DFT, which is \{a+b+c+d, a-\mathbf{j}b-c+\mathbf{j}d, a-b+c-d, a+\mathbf{j}b-c-\mathbf{j}d\}.
```


Ft, DFT

- Fourier Transform: $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$. The purpose of the Foruier transform is to convert an aperiodic time signal to the frequency domain. It deals with continuous time. We also explored Fourier series which deals with periodic continuous signals.
- Discrete Fourier Transform: $X[n\omega_0] = \sum_{n=0}^{N_0-1} x[n]e^{-jn\omega_0T}$ where N_0 is the number of samples, T is the sample period and $\omega_0 = \frac{2\pi}{T}$. The purpose of the DFT is to convert finite discrete-time signal to the discrete frequency domain. We deal in discrete time, otherwise it is similar to the FT.

UNIVERSITY OF WATERLOOF FACULTY OF ENGINEERING

