

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2139 Title: Crystal growth and magnetic anisotropy in the spin-chain ruthenate Na 2 RuO 4 Authors: Balodhi, A. (/jspui/browse?type=author&value=Balodhi%2C+A.) Singh, Yogesh (/jspui/browse?type=author&value=Singh%2C+Yogesh) Magnetic anisotropy Kevwords: Antiferromagnetism Crystal growth Paramagnetic contribution 2018 Issue Date: American Physical Society Publisher: Citation: Physical Review Materials, 2(2). Abstract: We report single-crystal growth, electrical resistivity ρ , anisotropic magnetic susceptibility χ , and heat capacity Cp measurements on the one-dimensional spin-chain ruthenate Na2RuO4. We observe variable range hopping (VRH) behavior in $\rho(T)$. The magnetic susceptibility with magnetic field perpendicular (χ ¥) and parallel (χ ¥) to the spin chains is reported. The magnetic properties are anisotropic with $\chi Y > \chi Y$ in the temperature range of measurements T=2-305 K with $\chi Y / \chi Y = 1.4$ at 305 K. From an analysis of the $\chi(T)$ data we attempt to estimate the anisotropy in the g factor and Van Vleck paramagnetic contribution. An anomaly in $\chi(T)$ and a corresponding step-like anomaly in Cp at TN=37 K confirms long-range antiferromagnetic ordering. This temperature is an order of magnitude smaller than the Weiss temperature 0≈-250 K and points to suppression of long-range magnetic order due to low dimensionality. A fit of the experimental $\chi(T)$ by a one-dimensional spinchain model gave an estimate of the intrachain exchange interaction 2J≈-85 K and the magnitude of the interchain coupling |2J¥|≈3 K. URI: https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.2.024403 (https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.2.024403) http://hdl.handle.net/123456789/2139 (http://hdl.handle.net/123456789/2139) Research Articles (/jspui/handle/123456789/9) Appears in

Files in This Item:

Collections:

Show full item record (/jspui/handle/123456789/2139?mode=full)

. (/jspui/handle/123456789/2139/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.