CHE261 PROCESS ANALYSIS

APPLICANT Mollycule

INVENTORS Shreyas Gupta, Yadav Ankit Shivsurat

CHEMICAL FORMULA C₁₀H₁₁N₅O.

CHEMICAL NAME Pymetrozine

PROCESS TITLE Synthesis of Pymetrozine

a) Block Diagram

1. Equipment List & Nomenclature

- T-1: Diethyl Carbonate Storage Tank
- T-2: Hydrazine Hydrate Storage Tank
- T-3: Solvent Storage Tank
- T-4: Carbodihydrazide Storage Tank
- T-5: 3-Formylpyridine Storage Tank
- T-6: Pyridyl Storage Tank
- T-7: Monochloroacetone Storage Tank
- T-8: Pymetrozine Storage Tank
- R-1: Hydrazidation Reactor (Jacketed Agitated)
- R-2: Condensation Reactor (Jacketed Agitated)
- R-3: Cyclization Reactor (Jacketed Agitated)
- C-1: Crystallizer Unit
- H: Heat Exchanger
- W: Washer
- D: Dryer

2. Process Stream List & Nomenclature

- 1: Carbonate Feed
- 2: Hydrazine Feed
- 3: Solvent Stream
- 4: Crude Carbodihydrazide Stream
- 5: Washing Solvent
- 6: waste/byproduct stream
- 7: Wet Carbodihydrazide Stream
- 8: Evaporative Loss Stream
- 9: Dried Carbodihydrazide Stream
- 10: 3-Formylpyridine Feed
- 11: Pyridinyl Hydrazide Mixture
- 12: Purified Pyridinyl Stream
- 13: Dry Pyridinyl Stream
- 14: Monochloroacetone Stream
- 15: Crude Pymetrozine Stream
- 16: Mother Liquor (Crystallization Waste)
- 17: Purified Pymetrozine Crystals
- 18: Washed Pymetrozine Crystals
- 19: Dried Pymetrozine

b) Unit Operations and Process Conditions

1. Raw Material Handling and Feeding

- Storage Tanks (Tanks-1 to Tanks-7)
 - Used for storing reactants, solvents, and catalysts.
- Pumps
 - o Transfers raw materials from storage tanks to reactors.
- Flow Control Valves
 - Regulates feed flow into reactors.

2. Reaction Stages

• Reaction 1: Hydrazidation (Carbodihydrazide Synthesis)

$$(C_2H_5O)_2CO + 2N_2H_4 \cdot H_2O o H_2N - NH - CO - NH - NH_2 + 2C_2H_5OH$$

Jacketed & Agitated Reactor-1

Reaction Type: Nucleophilic Substitution

■ Temperature: 75-80°C

Pressure: Atmospheric

■ Residence Time: 2-4 hours

■ Reactants: Dialkyl Carbonate + Hydrazine Hydrate

■ Solvent: Ethanol/Water

Byproducts: Alcohol (methanol or ethanol)

 Reaction 2: Condensation (Pyridin-3-ylmethylenecarbodihydrazide Synthesis)

$$CH_6N_4O+C_6H_5NO
ightarrow C_7N_5H_9O+H_2O$$

o Jacketed & Agitated Reactor-2

Reaction Type: Schiff Base Condensation

■ Temperature: 50-70°C

■ Pressure: Atmospheric

■ Residence Time: 3-5 hours

■ Reactants: Carbodihydrazide + 3-Formylpyridine

■ Solvent: Ethanol/THF

Byproducts: Water

• Reaction 3: Cyclization (Pymetrozine Synthesis)

$C_7H_9N_5O + C_3H_5ClO \rightarrow C_{10}H_{11}N_5O + HCl + H_2O$

- Jacketed & Agitated Reactor-3
 - Reaction Type: Cyclization
 - Temperature: 80-100°C
 - Pressure: Atmospheric or slight vacuum
 - Residence Time: 4-6 hours
 - Reactants: Pyridin-3-ylmethylenecarbodihydrazide + Monochloroacetone + Base (K₂CO₃/Na₂CO₃)
 - Solvent: Ethanol/THF
 - Byproducts: Salt, H₂O, excess reagents

3. Post-Reaction Processing

- Cooling
 - Heat Exchangers (1, 2)
 - Type: Shell & Tube or Plate
 - Cooling Medium: Chilled water or glycol
 - Exit Temperature: ~25-30°C
 - o Crystallizer (C-1)
 - Function: Cools down the crude pymetrozine solution to induce crystallization
 - Cooling Medium: Chilled glycol or water jacket
 - Exit Temperature: Adjusted for optimal crystal formation
- Purification & Drying
 - Washers (1, 2, 3)
 - Type: Countercurrent Washing
 - Washing Medium: Water/Ethanol
 - Purpose: Removes impurities, residual reactants, and byproducts
 - Dryers (1, 2, 3)
 - Type: Vacuum Tray Dryer or Rotary Dryer
 - Temperature: 50-70°C
 - Vacuum Level: 50-100 mmHg
 - Purpose: Removes residual moisture from solid product

```
Mass balance:
1. Preparation of Carbodihydra zide (111)
Materials (Before Reaction)
  -> Ethanol = 2009 ( Potal solunt
  -> water = 200g / A = 400g
 Reactive or cagents:
    - Diethyl carbonate (11): 118.19 (1 mol)
    · 40% hydrazine hydrate: 2759 (40% pure hydrazine)
         \Rightarrow (275)(0.4) = 110g
          = water from hydrazine = 275 - 1109 = 1659.
 * Solvent to reagent ratio:
          Ratio = 400 = 339 (lies between 3-7)
                              acc. to RMD report.
               Today of boat
  Reaction.
         (EtO)2(0 + 2N2H4 --> (NHNH2)2(0 + 2EtOH
Now, moles of Netty = 110 = 3.44 mol
    We assumet hydra zine (free basis) are available to
  react.
      - According to reaction 2 mot consumed = 2x32 = 64g
      → 0.2 md x 32 = 6.4g remains unreacted
 Reaction products:
   Dinydra zine carbonate [(NHNH2)2(0):= 90 g produced. (1mol)
    Ethanol produced = 92g
  solvent of unreacted materials -
         Ethanol = 200+92 = 2929
          water = 200+165 = 3659
    Excess hydradine = 6.49 (0.2md) + ($10-64)
```

Befor Reaction:

Component	Mass (9)	Note
Ethanol (solver)	2009	Added as solvert
datty	2009	Added as soment
Diethyl commande	118.19	1 mot
40% hydroxine	275g	1:10 g hydrazine,
Potal	793.19	o court and chief

After reaction

Component	Mass (g)	Notes
Dihydrazine	909	1 mal product
ethanol	2929	200 - Johnet, 92 - prod
Water	365 g	2004 Added, 165 - hydra
Unracted hydrazin	46 g	(110 - 64)
Total	493g	

Washer + dryer: -

20g of water added to filter cake

Total mass offer water wash addition = 793.1+20

= 813.19

after drying product is obtained as 88.9 g of corbodihydra Eide (111)

compared to theoretical product mass of about 9 09

Liquid phase (mother Liquor)

After removing avied solid = . 813.1 - 88.9 = 424.29

c) <u>Material Balance</u>

Mass	balance !- (Befo	x worken	P) at at any man for a some and	3		
	Component	Mass (g)	Notes .			
	Reaction mixture	793.19	total mass from vien			
	wash water	20g	water used to wash filter care			
	Potal mass	813.19				
APK.	~ wost-up.					
	Component	May (9)	Notes			
	Solid product	88.99	98.8.1. yield (theostical ~901)			
	Liquid phase	H24.2g	contains solvents and soluble impurities			
	Potal	813.19				
Stage-2	Stage-2: Synthesis of pyridin-3-ylmethylenecambodinydrazide (1V)					
. B	refore Reaction	on Ethano	1 = 2009 (Total			
	Solvent B: Ethanol = 2009 Total water = 3009					
Rec	ictive reagen	b !-				
			111) = 45g (0.5 mol)			
	3-formylpyvidine = 53.6g (o.s.mot)					
Ratio of solvent to carbodinydrazide:						
	= 300 = 6.67 (lies between 5-10 range) 45 acc. to RND report.					
Water elimination:						
	for 0.5 mol of product, water eliminated = 0.5 x 18 = 9g					

Theoretical mass of condensation product:

1

- total mass of condensing reactions - stimulated water = 98.6-9 = 89.69

After reaction:

Solid condensation product = 89.69 (ran 100%, yield water: 100g + 9.0g = 109g

(Before Reaction)

1		
Component	Mass (g)	Notes.
Ethanol	2009	Added sofunt
Water	7003	added solvent
Carbodinydro	459.	0,5 mod (NW ~ 90gma)
3-formyl pyridla	53.6g	0.5 mal (MW= 107.19h
Potat	398.68	

After reaction:

Component	Has (9)	Notes.
Condensation product	89.69	95.6 g formed with 9 g of water elimination
Water ellmin ated Chyproduct)	99	produced during condensation
Remaining liquid (Mother Liquor)	3099	Contains ethand & water (100+94200)
Potal 1	398.69	b I bear i against as

* Washer 4 dayer part:

Long ethanol is added to disolve 3 formylpyridine Potal mass before wowher becomes = 398.6 + 100

309 of water is added to wash the filter cake

After drying \$99 of pyridin-3-yl methyl rene carbonylalinydra zide (IV)

Obtained.

Before washer & dayer

	V			
1	Component	Haus (9)	Notes'	
	Reaction Mixture	198g	Contains the formed Condensation product, solver and water (eliminated) inche	
	Washwater	30g	ared to wown filter	
	Potal	5289	The second secon	

After washer & byer :-

Component	Han (9)	Notes Es.	
Isotated, Solfd product	899	product yield of compour	
Mother	4399	Combined solveres and disolved residues.	
Potal	.5289	10 1 10 10 10 10 10 10 10 10 10 10 10 10	

* Stage -3: Preparation of pymetrozine;-

(empound (IV) is wed: 71.69 (0.4 mol)

Monochlomacetone is used: 40.79 (0.44 mol)

compound (IV) + Monochloroacetone -> pymetrozine +HCI

HCI produced (×0.4 mot, 14.69) is neutralized by \$2003.

K2003 + 2HCI -> 2 |CCI + H20 + CO2

ethand

CO2

Total

492.79

Molecular weight of pymetrozine ~ 234. org/mol for 04 mol => (0.4) (234.01) = 93-69 Overall Input: Compound (iv) = 41.69 Honochloro acetone = 40.79 $R_2(03 = 34.59$ Sohento (ethonol + water) = 350g Potal = 497.6 Ethand = 2009 + 509 Theopsise addition Solver C 350g = Total water = 100g Component Notes Mass (9) Comp. (IV) 71.69 04 md 044 md Monochloro. 40 79 0.25 mod K2 (03 34.59 2009 solvent C Sthanol Solvent C 1009 water used to dissolve monoulors. ethanol 509 Potal =492.6g Mass balance After reaction: Component Note Mass (9) After reaction (cyclized) 93.69 product ka produced. 29-8 KCI from peut ralization + Water 108.6 = 0.05 mot remaining Excess kolos 6.9 200g initial + sog dropwice 2509

0,2 md (02 released

c) <u>Material Balance</u>

	220000000000000000000000000000000000000				
Washer and dryer: C final solid product obtained = 83.99 which is 96.6% of theoretical 8689)					
30 Before	g of wa	ter used	to wash filter cake		
-	mponent	Man	potes.		
Re	action Mixt.	492.6	Remains as total mass and		
L	Jan water added	309	used to wash filter cake		
(Potal	522.6			
After	work-up!		integration to make the		
6	omponent	Mass	Notes 10-14		
	nied product	83.99	Final solid product		
М	other liquor	438.79	Contains bulk of solvents, and by products		
	Total	522.6g			
Now -	scaling	up to p	roduce 1000 kg/day pymehrozire, stage 1 should be	1	
S	care fer ct	or = 1	$1000 \times 10^3 = 11,918$		
Ethand = 200×11918 = 2383 kg					
Water = 200 x 11918 = 2383 kg					
Diethyl carbonate = 118.1×11918 = 1407.5 kg 40% Hydrazine = 275 × 11918 = 8277.4 kg					
wash water for = 20×11918 = 262 leg					

```
* Scaling for stage 2:-
                                                      (8)
            Stark fector to
           89 g of (IV) produced from 45g = 89/45 = 1.978
        Scaled stage 1 feed (9438 kg) yields (88.9 9 per 743)
       an output of
              (88.9 ) × 9438 1g ≈ 1056.9 kg of (111)
           (Scale factor) = 1056,9×103 = 23486
   Required
       -> Carbody hy drazide (111) = 45 x 23486 = 1056 9 kg
       - 3- formylpyridine = 53x 23486 = 1244 kg
       -> Ethanol = 200 x 23486 = 4697 1cg
       - wat = 100 x 23486 = 2349 kg.
       -> Ethanol (in reagut) = 100x 234 86 = 2349 Fg
Stage -3:
                71.6 (IV) -> 83.9 g (factor = 1.171)
      Stage (2) produce compound (10) = 2069 kg
           Scale factor = 2089 ×103 = 29,170
 Required! - Monochlomacetone = 1180 kg
          -> potassium combonate = 1007 kg
          - SHLENDS = 250 × 29 170 = 3293 rg
         - Solvent = 100 x 29 170 = 2917 kg
```

Reactor Capacity Calculation

• The required reactor volumes are calculated using mass balance data and an densities of all the components. The actual reactor design capacity is determined considering only 70% of the total volume can be utilized.

• Stage 1:

Input:

Component	Mass (kg/day)
Diethyl Carbonate	1,404.50
Hydrazine Hydrate (40%)	3,279.4 (1,312 kg hydrazine + 1,967.4 kg water)
Ethanol	2,383
Water	2,383
Wash Water	262
Total Mass	9,712.90

• Stage 1:

Volume Estimation:

Component	Mass (kg)	Density (kg/L)	Volume (L)
Diethyl Carbonate	1,404.50	~0.975	1,441.50
Hydrazine Hydrate (40%)	3,279.40	~1.032	3,176.40
Ethanol	2,383	~0.789	3,020.30
Water	2,383	~1.000	2,383.00
Wash Water	262	~1.000	262
Total Volume			10,283.20

Reactor Volume Calculation:

• Total Reactor Volume = (Total Estimated Volume)/0.7

= 10,283.2/0.7

= 14,690.3 L

Reactor Capacity Calculation

• The required reactor volumes are calculated using mass balance data and an densities of all the components. The actual reactor design capacity is determined considering only 70% of the total volume can be utilized.

• Stage 2:

Input:

Component	Mass (kg/day)
Carbohydrazide (III)	1,056.9
3-Formylpyridine	1,244
Ethanol	4,697
Water	2,349
Ethanol (in exaqut)	2,349
Total Mass	11,695.9

• Stage 2:

Volume Estimation:

Component	Mass (kg)	Density (kg/L)	Volume (L)
Ethanol	7,046	~0.789	8,929.7
Water	2,349	~1.000	2,349.0
Carbohydrazide & 3- Formylpyridine	2,300.9	~1.2	1,928.25
Total Volume			13,207.0

Reactor Volume Calculation:

• Total Reactor Volume = (Total Estimated Volume)/0.7 = 13,207/0.7 = 18,867.1 L

Reactor Capacity Calculation

• The required reactor volumes are calculated using mass balance data and an densities of all the components. The actual reactor design capacity is determined considering only 70% of the total volume can be utilized.

• Stage 3:

Input:

Component	Mass (kg)
Monochloroacetone	1,188
Potassium Carbonate	1,007
Ethanol (Solvent)	7,293
Water (Solvent)	2,917
Total Mass	12,405

• Stage 3:

Volume Estimation:

Component	Mass (kg)	Density (kg/L)	Volume (L)
Ethanol	7,293	~0.789	9,243.4
Water	2,917	~1.000	2,917.0
Monochloroacetone & Potassium Carbonate	2,195	~1.2	1,829.2
Total Volume			13,989.6

Reactor Volume Calculation:

• Total Reactor Volume = (Total Estimated Volume)/0.7

= 13,989/0.7

= 19,985.1 L

Reactor Volume Estimation Table for all 3 reactors:

Reactor	Total Mass in Reactor (kg/day)	Estimated Volume (L)	Design Capacity (L) (Based on 70% usage)
Reactor 1	9,711.9	10,283.2	14,690.3
Reactor 2	11,695.9	13,207 L	18,867
Reactor 3	12,405	13,989.6	19,985.1

Capital Cost Estimation

• The cost estimation is based on the Matche Equipment Cost Calculator and we are utilizing Jacketed and Agitated Reactor in each with material as Glass Lined CS and pressure set between atmospheric to 25 psi.

Capital Cost Table:

Equipment	Design Capacity (gallons)	No. of Units	Cost/unit (\$)
Reactor 1 (Jacketed, Agitated, Glass- lined CS)	3880.7	1	96,300
Reactor 2 (Jacketed, Agitated, Glass- lined CS)	4984.13	1	110,000
Reactor 3 (Jacketed, Agitated, Glass- lined CS)	5279.5	1	113,400

Total Cost: \$ 319,700 = ₹ 2,73.53,116

References:

- https://patents.google.com/patent/CN104844574A/en
- https://www.matche.com/equipcost/Reactor.html

Contribution of each member

Shreyas Gupta (230991)

- Designed the Process Flow Diagram (PFD), incorporating all unit operations such as reactors, washers, dryers, crystallizers, and heat exchangers.
- Defined key process conditions (temperature, pressure, solvent recovery, waste handling) for efficient operation.
- Sized the reactors based on process conditions, ensuring 70% of total volume utilization for reaction mixtures.
- Conducted a capital cost estimation, doing cost analysis of Glass-Lined Carbon Steel (GLCS) reactors.

Ankit Yadav(231181)

- Performed a detailed material balance for the scaled-up process plant (1000 kg/day).
- Determined input and output flow rates for all process streams and unit operations.
- Established assumptions for simplified yet accurate calculations, ensuring precise mass flow tracking.
- Optimized reactant consumption and efficiency, reducing material losses and improving yield.

Sign the pdf and upload

NAME	ROLL NO	SIGNATURE
HARSHITJAISWAL	230460	Harshit Jaisutal
SHREYAS GUPTA	230991	Egypta
YADAV ANKIT SHIVSURAT	231181	Fodar