Math 690 F2017: Topics in Data Analysis and Computation Homework 2

Xiuyuan Cheng

- 1. (Wigner's Semi-circle Law) This problem is to observe the semi-circle law numerically,
 - (1) The classical case of i.i.d. (symmetric) gaussian matrix:

Generate a random matrix W of size n-by-n, where $W_{ij} \sim \mathcal{N}(0,1)$ i.i.d. for each $i \leq j$, and $W_{ji} = W_{ij}$, and compute its eigenvalues. Plot the histogram of eigenvalues. Let n = 10, 100, 1000. How is the distribution of (real) eigenvalues of W like as n increases? How is the eigenvectors like? (Remark: consider the normalized matrix $\frac{1}{\sqrt{n}}W$, the limiting eigenvalue density converges to a semi-circle, on [-2,2], as $n \to \infty$. The eigenvectors, concatenated into a matrix Ψ , where the j-th column is the j-th eigenvector, converge to the limit where Ψ is a random n-by-n orthogonal matrix.)

(2) Universality of general Wigner matrix:

Repeat (1), replacing the distribution of W_{ij} to be Bernoulli instead of $\mathcal{N}(0,1)$, that is $W_{ij} = 1$ with probability $\frac{1}{2}$ and -1 with probability $\frac{1}{2}$. W_{ij} is i.i.d for the upper triangular part same as in (1), and W is symmetric.

(3) Rank-1 perturbation:

Let *u* be a unit-length vector in \mathbb{R}^n . For example $u = (1, 0, \dots, 0)^T$. Let R > 0 be a constant, and consider

$$M = \frac{1}{\sqrt{n}}W + Ruu^T,$$

where W is the Wigner matrix in (1). Compute the eigenvalues of M and plot the histograms for $R = 0.1, 0.2, \dots, 3$. What is the largest eigenvalue λ_1 like for different values of R? What is the correlation of the first eigenvector with u, that is $|v_1^T u|$, for different values of R? Repeat the experiment for the Bernoulli case, i.e. W as in (2). (Remark: the result is not sensitive to what unit vector u is. For the Wigner matrix W, when n is large, for any specific n-by-n rotation Q, QWQ^T is statistically "similar" to a Wigner matrix. Thus when u is not as in (1), one can change coordinate by some orthogonal matrix Q so that Qu is as the u in (1), and consider the perturbation of QWQ^T .)

- 2. (De-noising image patches by PCA) Take a natural image and generate patches of size *k*-by-*k*, *k* = 7 or 10 depending on the size and resolution of the image. Add gaussian noise to the clean image and generate patches of the noise-corrupted image. How does projecting to the first *d* principle components de-noise the patches? You can put back the patches to see how the image is de-noised (if you use overlapping patches then you can take the average on each pixels if it is covered by more than one patch).
 - (1) How does the effect of de-noising depend on the choice of d? (Hint: from theory of high-dimensional PCA we know that as k increases, the k-th leading principle components has a larger amount of "noise" than information in it. Meanwhile, suppose that there is no noise, the PCA recovery of the clean image is poorer when d is smaller. Thus the choice of d is a matter of bias-variance trade-off.)
 - (2) How does the optimal d change with the noise level, i.e. σ^2 , suppose that the pixel-wise gaussian noise is distributed as $\mathcal{N}(0, \sigma^2)$?