

Background

The disclosure of the users' community affiliations leads to privacy leak. This raises the problem of *community structure deception (CSD)*, which asks for ways to minimally modify the network so that a given community structure maximally hides itself from community detection algorithms.

Problem Formulation

- \square A social network \longrightarrow An undirected connected graph G = (V, E).
- □ The community structure \rightarrow a partition $P = \{X_1, X_2, \dots, X_L\}$ of V.
- \square obfuscating $P \longrightarrow \text{by adding a number of "dummy edges"}.$

We measure the similarity between P and P' by three metrics:

- $\succ J(P,P')$: J is jaccard index
- $\triangleright D(P, P')$: D is normalized mutual information
- $\triangleright R(P,P')$: R is the **recall**

REM: From Structural Entropy To Community Structure Deception

Yiwei Liu^{1,2}, Jiamou Liu³, Zijian Zhang^{1,3}, Liehuang Zhu¹, Angsheng Li⁴

¹Beijing Institute of Technology, Beijing, China; ²Zhejiang University, Zhejiang, China

³The University of Auckland, Auckland, New Zealand; ⁴Beihang University, Beijing, China {yiweiliu, zhangzijian, liehuangz}@bit.edu.cn, jiamou.liu@auckland.ac.nz, angsheng@buaa.edu.cn

Residual Entropy-based CSD

Definition 1. (Shannon entropy) $\mathcal{H}(G)$ captures the average number of bits needed to encode the n vertices in a lossless way:

$$\mathcal{H}(G) := -\sum_{i=1}^{|V|} \frac{d_i}{2|E|} \log_2 \frac{d_i}{2|E|},$$

where d_i is the degree of vertex i.

A: 000 B: 001 C: 10

D: 11 E: 010 F: 011

 $\mathcal{H}(G) = 5.11$

Definition 2. The structural entropy of *G* **relative to** *P* **is:**

$$\mathcal{H}_P(G) \coloneqq -\sum_{j=1}^L \frac{\nu_j}{2|E|} \mathcal{H}(G \upharpoonright X_j) - \frac{g_j}{2|E|} \log_2 \frac{\nu_j}{2|E|},$$

where the subgraph $G \upharpoonright X_j$ is induced by X_j and g_j denotes the number of edges with exactly one end point in X_i .

A: 00 B: 01 C: 1

D: 1 E: 00 F: 01

 $\mathcal{H}_P(G) = 3.40$

Definition 3. The normalized residual entropy of *P* is

$$\rho_P(G) := (\mathcal{H}(G) - \mathcal{H}_P(G)) / \mathcal{H}(G).$$

REM: Algorithm and optimization

Theorem 1. There exists a critical non-edge $\{u, v\}$ is RE-minimizing.

Theorem 2. Examining the critical edges implements in O(L|V|).

Algorithm 1: An efficient REM deceptor

A crude implementation runs in $\mathcal{O}(|V|^2)$ time. We present an $\mathcal{O}(L|V|)$ implementation by only examining the critical edges.

Experiments

Dataset: 9 real-world networks. **Adversary:** $\{btw, gre, inf, lou, spi, wal\}$. **Evaluation:** 3 metrics, $\{J, D, R\}$. **Benchmark:** $\{MOM, RAN\}$.

The preservation of the data after applying REM:

Dataset	E'	Jaccard	Clustering coefficient	Mean shortest path length	10% Pagerank	10% Betweenness
Dol	10	$1 \rightarrow 0.44$	$0.308 \to 0.298$	$3.357 \to 2.996$	$1 \to 0.833$	$1 \to 0.833$
Jaz	250	$1 \rightarrow 0.48$	$0.520 \to 0.498$	$2.23 \to 2.070$	$1 \to 0.895$	$1 \to 0.842$
Eml	100	$1 \rightarrow 0.39$	$0.166 \to 0.166$	$3.606 \to 3.577$	$1 \rightarrow 0.991$	$1 \to 0.982$
PGP	400	$1 \rightarrow 0.45$	$0.378 \to 0.377$	$7.485 \to 7.279$	$1 \to 0.979$	$1 \to 0.930$
CAI	1000	$1 \rightarrow 0.49$	$0.007 \to 0.007$	$3.875 \to 3.869$	$1 \to 0.983$	$1 \to 0.977$
Bri	1000	$1 \rightarrow 0.44$	$0.111 \to 0.111$	$4.858 \rightarrow 4.854$	$1 \rightarrow 0.993$	$1 \rightarrow 0.971$

Conclusions

- Utilize community based structural entropy to the CSD problem
- > Propose a residual minimization (REM) algorithm.
- > Reduce search space to critical edges to optimize REM.
- > validate the performance of our algorithm.