A FINITE DIMENSIONAL A_{∞} ALGEBRA EXAMPLE

MICHAEL P. ALLOCCA AND TOM LADA

Dedicated to Tornike Kadeishvili on the occasion of his 60th birthday

ABSTRACT. We construct an example of an A_{∞} algebra structure defined over a finite dimensional graded vector space.

Introduction

 A_{∞} algebras (or sha algebras) and L_{∞} (or sh Lie algebras) have been topics of current research. Construction of small examples of these algebras can play a role in gaining insight into deeper properties of these structures. These examples may prove useful in developing a deformation theory as well as a representation theory for these algebras.

In [2], an L_{∞} algebra structure on the graded vector space $V = V_0 \oplus V_1$ where V_0 is a 2 dimensional vector space, and V_1 is a 1 dimensional space, is discussed. This surprisingly rich structure on this small graded vector space was shown by Kadeishvili and Lada, [3], to be an example of an open-closed homotopy algebra (OCHA) defined by Kajiura and Stasheff [4]. In an unpublished note [1] M. Daily constructs a variety of other L_{∞} algebra structures on this same vector space.

In this article we add to this collection of structures on the vector space V by providing a detailed construction of non-trivial A_{∞} algebra data for V.

1. A_{∞} Algebras

We first recall the definition of an A_{∞} algebra (Stasheff [6]).

Definition 1.1. Let V be a graded vector space. An A_{∞} structure on V is a collection of linear maps $m_k: V^{\otimes k} \to V$ of degree 2-k that satisfy the identity

$$\sum_{\lambda=0}^{n-1} \sum_{k=1}^{n-\lambda} \alpha m_{n-k+1} (x_1 \otimes \cdots \otimes x_{\lambda} \otimes m_k (x_{\lambda+1} \otimes \cdots \otimes x_{\lambda+k}) \otimes x_{\lambda+k+1} \otimes \cdots \otimes x_n) = 0$$

where $\alpha = (-1)^{k+\lambda+k\lambda+kn+k(|x_1|+\cdots+|x_{\lambda}|)}$, for all $n \geq 1$.

This utilizes the cochain complex convention. One may alternatively utilize the chain complex convention by requiring each map m_k to have degree k-2.

We will define the desuspension of V (denoted $\downarrow V$) as the graded vector space with indices given by $(\downarrow V)_n = V_{n+1}$, and the desuspension operator, $\downarrow: V \to (\downarrow V)$ (resp. suspension operator $\uparrow: (\downarrow V) \to V$) in the natural sense. We will also employ the usual Koszul sign convention in this setting: whenever two symbols (objects or maps) of degree p and q are commuted, a factor of $(-1)^{pq}$ is introduced. Subsequently, $\uparrow^{\otimes n} \circ \downarrow^{\otimes n} = (-1)^{\frac{n(n-1)}{2}}id$ and $\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n = (-1)^{\sum_{i=1}^n (n-i)|x_i|} \downarrow^{\otimes n} (x_1 \otimes x_2 \otimes \cdots \otimes x_n)$.

Stasheff also showed that an A_{∞} structure on V is equivalent to the existence of a degree 1 coderivation $D: T^*(\downarrow V) \to T^*(\downarrow V)$ with the property $D^2 = 0$. Here, $T^*(\downarrow V)$ is the tensor coalgebra on the graded vector space $\downarrow V$. Such a coderivation is constructed by defining $m'_k: (\downarrow V^{\otimes k}) \to \downarrow V$ by $m'_k = (-1)^{\frac{k(k-1)}{2}} \downarrow \circ m_k \circ \uparrow^{\otimes k}$ and then extending each m'_k to a coderivation on $T^*(\downarrow V)$. By "abuse of notation", m'_k can be described by

$$m'_{k}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n}) = \sum_{i=0}^{n-1} (1^{\otimes i} \otimes m'_{k} \otimes 1^{\otimes n-i-1})(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$

$$= \sum_{i=0}^{n-1} (-1)^{(k-2)(|x_{1}|+\cdots+|x_{i}|-i)}(\downarrow x_{1} \otimes \cdots \otimes \downarrow x_{i} \otimes m'_{k}(\downarrow x_{i+1} \otimes \cdots \otimes \downarrow x_{i+k}) \otimes \downarrow x_{i+k+1} \otimes \cdots \otimes \downarrow x_{n})$$

$$= \sum_{i=0}^{n-1} (-1)^{(k-2)(|x_{1}|+\cdots+|x_{i}|-i)}(\downarrow x_{1} \otimes \cdots \otimes \downarrow x_{i} \otimes m'_{k}(\downarrow x_{i+1} \otimes \cdots \otimes \downarrow x_{i+k}) \otimes \downarrow x_{i+k+1} \otimes \cdots \otimes \downarrow x_{n})$$

We then define $D := \sum_{k=1}^{\infty} m'_k$.

2. A FINITE DIMENSIONAL EXAMPLE

Let V denote the graded vector space given by $V = \bigoplus V_n$ where V_0 has basis $\langle v_1, v_2 \rangle$, V_1 has basis $\langle w \rangle$, and $V_n = 0$ for $n \neq 0, 1$. Define a structure on V by the following linear maps $m_n : V^{\otimes n} \to V$:

$$m_{1}(v_{1}) = m_{1}(v_{2}) = w$$
For $n \ge 2$: $m_{n}(v_{1} \otimes w^{\otimes k} \otimes v_{1} \otimes w^{\otimes (n-2)-k}) = (-1)^{k} s_{n} v_{1}, \ 0 \le k \le n-2$

$$m_{n}(v_{1} \otimes w^{\otimes (n-2)} \otimes v_{2}) = s_{n+1} v_{1}$$

$$m_{n}(v_{1} \otimes w^{\otimes (n-1)}) = s_{n+1} w$$

where $s_n = (-1)^{\frac{(n+1)(n+2)}{2}}$, and $m_n = 0$ when evaluated on any element of $V^{\otimes n}$ that is not listed above. It is worth noting that this assumes the cochain convention regarding A_{∞} algebra structures. Hence $|v_1| = |v_2| = 0$ and |w| = 1.

Theorem 2.1. The maps defined above give the graded vector space V an A_{∞} algebra structure.

The proof of this theorem relies on two lemmas:

Lemma 2.2. Let $m'_n := (-1)^{\frac{n(n-1)}{2}} \downarrow \circ m_n \circ \uparrow^{\otimes n} : (\downarrow V)^{\otimes n} \to \downarrow V$. Under the preceding definitions for m_n and V, we obtain the following formulas for m'_n :

$$m'_{1} = \downarrow m_{1}$$

$$For \ n \geq 2: \quad m'_{n}(\downarrow v_{1} \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_{1} \otimes (\downarrow w)^{\otimes (n-2)-k}) = \downarrow v_{1}, \ 0 \leq k \leq n-2$$

$$m'_{n}(\downarrow v_{1} \otimes (\downarrow w)^{\otimes (n-2)} \otimes \downarrow v_{2}) = \downarrow v_{1}$$

$$m'_{n}(\downarrow v_{1} \otimes (\downarrow w)^{\otimes (n-1)}) = \downarrow w$$

Remark 2.3. Each m'_n is of degree 1.

Proof of Lemma 2.2. $m'_1(\downarrow x) = (-1)^0 \downarrow \circ m_1 \circ \uparrow (\downarrow x) = \downarrow m_1(x)$ for any x.

Now let $n \geq 2$. The majority of the work here is centered around computing the signs associated with the graded setting. The elements x_i and the maps \uparrow , \downarrow , and m_n all contribute to an overall sign via their degrees. Observing these signs, we find

$$m'_{n}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n}) = (-1)^{\frac{n(n-1)}{2}} \downarrow \circ m_{n} \circ \uparrow^{\otimes n} (\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$

$$= \begin{cases} (-1)^{\sum_{i=1}^{n/2} |x_{2i-1}|} \downarrow m_{n}(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}) & \text{if n is even.} \\ (-1)^{\sum_{i=1}^{(n-1)/2} |x_{2i}|} \downarrow m_{n}(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}) & \text{if n is odd.} \end{cases}$$

First consider $m'_n(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k})$, $0 \leq k \leq n-2$. This computation may be divided into 4 cases based on the parity of n and k. If n and k are both even, then:

$$m'_{n}(\downarrow v_{1} \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_{1} \otimes (\downarrow w)^{\otimes (n-2)-k}) = (-1)^{|v_{1}|+(\frac{n}{2}-1)|w|} \downarrow m_{n}(v_{1} \otimes w^{\otimes k} \otimes v_{1} \otimes w^{\otimes (n-2)-k})$$

$$= (-1)^{0+\frac{n}{2}-1}(-1)^{k}s_{n} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2}-1}(-1)^{\frac{(n+1)(n+2)}{2}} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2}-1}(-1)^{(n+1)(\frac{n}{2}+1)} \downarrow v_{1} \quad (*)$$

If $\frac{n}{2}$ is even, then $(*) = (-1)^{\text{odd}}(-1)^{\text{odd*odd}} \downarrow v_1 = \downarrow v_1$ where 'odd' denotes an odd number. If $\frac{n}{2}$ is odd, then $(*) = (-1)^{\text{even}}(-1)^{\text{odd*even}} \downarrow v_1 = \downarrow v_1$ where 'even' denotes an even number.

A similar argument holds in the remaining 3 cases. Hence

$$m'_n(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k}) = \downarrow v_1, \ 0 \leq k \leq n-2$$

Now consider $m'_n(\downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)} \otimes \downarrow v_2)$. This computation may be divided into 2 cases based on the parity of n. If n is even, then:

$$m'_{n}(\downarrow v_{1} \otimes (\downarrow w)^{\otimes (n-2)} \otimes \downarrow v_{2}) = (-1)^{|v_{1}| + (\frac{n}{2} - 1)|w|} m_{n}(\downarrow v_{1} \otimes (\downarrow w)^{\otimes (n-2)} \otimes \downarrow v_{2})$$

$$= (-1)^{\frac{n}{2} - 1} s_{n+1} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2} - 1} (-1)^{\frac{(n+2)(n+3)}{2}} \downarrow v_{1}$$

$$= (-1)^{\frac{n}{2} - 1} (-1)^{(\frac{n}{2} - 1)(n+3)} \downarrow v_{1} \quad (*)$$

If $\frac{n}{2}$ is even, then $(*) = (-1)^{\text{odd}}(-1)^{\text{odd}*\text{odd}} \downarrow v_1 = \downarrow v_1$ where 'odd' denotes an odd number. If $\frac{n}{2}$ is odd, then $(*) = (-1)^{\text{even}}(-1)^{\text{even}*\text{odd}} \downarrow v_1 = \downarrow v_1$ where 'even' denotes an even number.

A similar argument holds in the case that n is odd. Hence

$$m'_n(\downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)} \otimes \downarrow v_2) = \downarrow v_1$$

The preceding argument may also be repeated for $m'_n(\downarrow v_1 \otimes (\downarrow w)^{\otimes (n-1)})$. Hence

$$m'_n(\downarrow v_1 \otimes (\downarrow w)^{\otimes (n-1)}) = \downarrow w$$

Lemma 2.4. Let $D = \sum_{k=1}^{\infty} m'_k$ where m'_k is defined in Lemma 2.2. Let $n \geq 2$ be a positive integer. Suppose $D^2(\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_m) = 0 \ \forall \ x_i \in V, \ 1 \leq m \leq n-1$.

Then
$$D^2(\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n) = \sum_{i+j=n+1} m'_i m'_j (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n)$$

Proof. We first note that

$$D^{2}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n}) = \sum_{i+j \leq n+1} m'_{i} m'_{j}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$

since $m'_k(\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_l) = 0$ for k > l. So

$$D^{2}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n}) = \sum_{i+j \leq n} m'_{i} m'_{j}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$
$$+ \sum_{i+j=n+1} m'_{i} m'_{j}(\downarrow x_{1} \otimes \downarrow x_{2} \otimes \cdots \otimes \downarrow x_{n})$$

Hence it suffices to show that $\sum_{i+j\leq n} m_i' m_j' (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n) = 0$

Consider $\sum_{i+j\leq n} m_i' m_j' (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n)$: Since $i+j\leq n$, we can break this sum up into 4 different types of of elements in $(\downarrow V)^{\otimes k}$ based on whether the first and last terms in the tensor product contain m_i' or m_j' :

- Type 1: Elements with first term $\downarrow x_1$ and last term $\downarrow x_n$ (example: $\downarrow x_1 \otimes \downarrow x_2 \otimes m'_1(\downarrow x_3) \otimes m'_2(\downarrow x_4 \otimes \downarrow x_5) \otimes \downarrow x_6$)
- Type 2: Elements with first term $\downarrow x_1$ and last term containing m'_k for some k (example: $\downarrow x_1 \otimes \downarrow x_2 \otimes m'_3 (\downarrow x_3 \otimes m'_2 (\downarrow x_4 \otimes \downarrow x_5) \otimes \downarrow x_6)$)
- Type 3: Elements with first term containing m'_k for some k and last term $\downarrow x_n$ (example: $m'_2(\downarrow x_1 \otimes \downarrow x_2) \otimes m'_1(\downarrow x_3) \otimes \downarrow x_4 \otimes \downarrow x_5 \otimes \downarrow x_6$)
- Type 4: Elements with first term containing m'_k and last term containing m'_l for some k, l (example: $m'_2(\downarrow x_1 \otimes \downarrow x_2) \otimes \downarrow x_3 \otimes \downarrow x_4 \otimes m'_2(\downarrow x_5 \otimes \downarrow x_6)$)

Now each term of type 1 must be produced by $m'_i m'_j$ with $i + j \leq n - 1$. Hence, by factorization of tensor products, all possible terms of type 1 are given by:

$$(-1)^{2|x_1|-2} \Big(\downarrow x_1 \otimes \Big(\sum_{i+j \leq n-1} m_i' m_j' (\downarrow x_2 \otimes \downarrow x_3 \otimes \cdots \otimes \downarrow x_{n-1}) \Big) \Big) \otimes \downarrow x_n$$

$$= \Big(\downarrow x_1 \otimes \Big(D^2 (\downarrow x_2 \otimes \downarrow x_3 \otimes \cdots \otimes \downarrow x_{n-1}) \Big) \Big) \otimes \downarrow x_n$$

$$= \Big(\downarrow x_1 \otimes 0 \Big) \otimes \downarrow x_n$$

$$= 0$$

since $D^2 = 0$ when evaluated on n-2 terms. A similar argument holds for the type 2 and type 3 summands.

We now consider type 4 terms. Consider an arbitrary element of type 4:

$$m'_i(\downarrow x_1 \otimes \cdots \otimes \downarrow x_i) \otimes \downarrow x_{i+1} \otimes \cdots \otimes \downarrow x_{n-j} \otimes m'_j(\downarrow x_{n-j+1} \otimes \cdots \otimes \downarrow x_n)$$

Consider how this arbitrary element is generated: We begin with

$$m_i'm_j'(\downarrow x_1\otimes\cdots\otimes\downarrow x_n)$$

We then apply m'_{j} to the last j terms, which yields:

$$(-1)^{|x_1|+\cdots+|x_{n-j}|-(n-j)}m_i'(\downarrow x_1\otimes\cdots\otimes\downarrow x_{n-j}\otimes m_j'(\downarrow x_{n-j+1}\otimes\cdots\otimes\downarrow x_n))$$

Finally we apply m'_i to the first i terms:

$$(-1)^{|x_1|+\cdots+|x_{n-j}|-(n-j)}m_i'(\downarrow x_1\otimes\cdots\otimes\downarrow x_i)\otimes\downarrow x_{i+1}\otimes\cdots\cdots\otimes\downarrow x_{n-j}\otimes m_i'(\downarrow x_{n-j+1}\otimes\cdots\otimes\downarrow x_n) \quad (*)$$

Each of these arbitrary type 4 elements can be paired up with an element generated by $m'_i m'_i$ as follows: Begin with

$$m'_j m'_i (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$$

Then apply m'_i to the first i terms:

$$m'_j(m'_i(\downarrow x_1 \otimes \cdots \otimes \downarrow x_i) \otimes \downarrow x_{i+1} \otimes \cdots \otimes \downarrow x_n)$$

Finally, apply m'_i to the last j terms:

$$(-1)^{|x_1|+\cdots+|x_{n-j}|-(n-j)+1}m_i'(\downarrow x_1\otimes\cdots\otimes\downarrow x_i)\otimes\downarrow x_{i+1}\otimes\cdots\cdots\otimes\downarrow x_{n-j}\otimes m_j'(\downarrow x_{n-j+1}\otimes\cdots\otimes\downarrow x_n)\quad (**)$$

Since these type 4 elements were arbitrary, and (*) + (**) = 0, all type 4 terms added together equal 0. Hence, all type 1, 2, 3, and 4 terms yield 0, and so

$$\sum_{i+j\leq n} m_i' m_j' (\downarrow x_1 \otimes \downarrow x_2 \otimes \cdots \otimes \downarrow x_n) = 0$$

Proof of Theorem 2.1. It is clear that each map m_n is of degree 2-n. To prove that these maps yield an A_{∞} structure, one may verify that they satisfy the identity given in definition 1.1. However, this is a rather daunting task, due to the varying signs, s_n , accompanying the m_n maps. To utilize an alternative method of proof, we construct a degree 1 coderivation, D, as described in section 1.

In the context of Theorem 2.1, we may use the definition for m'_k given by Lemma 2.2 to construct D. It then suffices to show that $D^2 = 0$.

We aim to prove $D^2 = 0$ by induction on the number of inputs for D. It is worth first noting that $D = \sum_{k=1}^{\infty} m'_k$, however $D(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = \sum_{k=1}^{n} m'_k (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$ since $m'_k (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = 0$ for $k \geq n$.

For n = 1, we have $D^2(\downarrow x) = m'_1 m'_1(\downarrow x) = \downarrow m^2_1(x) = 0 \ \forall \ x \in V$.

Now assume $D^2(\downarrow x_1 \otimes \cdots \otimes \downarrow x_{n-1}) = 0$. We aim to show that $D^2(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = 0$:

Remark 2.5. Since m'_i and m'_j are linear, it is sufficient to show that $D^2 = 0$ on only basis elements.

By Lemma 2.4, $D^2(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = \sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$, hence it suffices to show that $\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = 0$, $\forall x_1 \cdots x_n \in V$.

It is advantageous to approach this problem from the bottom up, since $x_1 \cdots x_n \in V$ implies calculating 3^n different combinations of elements. That is, we consider only nontrivial (nonzero) elements in the sum $\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$. Now since i+j=n+1, we observe that $m_i' m_j' (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) \in (\downarrow V)^{\otimes 1}$. Since, by definition, m_i' cannot produce

the element $\downarrow v_2$, the seemingly large task of considering nontrivial $m'_i m'_j (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$ yields only two possibilities:

$$m_i'm_j'(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = c \downarrow v_1$$
 or $m_i'm_j'(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = c \downarrow w$ for some constant, c.

Therefore if $m'_i m'_j (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) \neq 0$ for some i + j = n + 1, then $\sum_{i+j=n+1} m'_i m'_j (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$ is a sum of $\downarrow v_1$'s or $\downarrow w$'s.

We first consider the manner in which $m_i'm_j'(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$ yields a $\downarrow w$:

By defintion of m'_n , $\downarrow w$ must be produced by $m'_i(\downarrow v_1 \otimes (\downarrow w)^{\otimes (i-1)})$ (*). To accomplish this, the original arrangement $\downarrow x_1 \otimes \cdots \otimes \downarrow x_n$) must satisfy $x_1 = v_1$ and must contain exactly one more 'v' $(v = v_1 \text{ or } v_2)$.

- Case 1: $v = v_1$. Let us consider $m'_i m'_j (\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k})$, $0 \leq k \leq n-2$. Now, to produce (*), m'_j must 'catch' (1) both $\downarrow v_1$'s, or (2) only the second $\downarrow v_1$.
- (1) We have $m'_j(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k}) = \downarrow v_1, \ k+2 \leq j \leq n$. This yields $m'_i(\downarrow v_1 \otimes (\downarrow w)^{\otimes (n-j)}) = \downarrow w$. Now since $k+2 \leq j \leq n$, there are n-(k+2)+1 = n-k-1 such terms in $\sum_{i+j=n+1} m'_i m'_j (\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k})$.
- $(2) \text{ We have } (-1)^{|v_1|+k|w|-(k+1)} m_i' \Big(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \Big[m_j' (\downarrow v_1 \otimes (\downarrow w)^{\otimes (j-1)}) \Big] \otimes (\downarrow w)^{\otimes (n-2)-k-(j-1)} \Big) = \downarrow w, \ 1 \leq j \leq n-k-1. \text{ Similarly, there are } (n-k-1)-1+1=n-k-1 \text{ such terms in } \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k}).$

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k}) = (n-k-1) \downarrow w - (n-k-1) \downarrow w = 0.$$

• Case 2: $v = v_2$. Let us consider $m'_i m'_j (\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_2 \otimes (\downarrow w)^{\otimes (n-2)-k})$, $0 \leq k \leq n-2$. Similarly, to produce (*), m'_j must 'catch' (1) both $\downarrow v_1$ and $\downarrow v_2$, or (2) only $\downarrow v_2$.

For (1), the only nontrivial way to do this yields:

$$m'_{n-k-1}(m'_{k+2}(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_2) \otimes (\downarrow w)^{\otimes (n-2)-k}) = \downarrow w$$

and for (2), the only nontrivial way to do this yields:

$$(-1)^{|v_1|+k|w|-(k+1)}m'_n(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes m'_1(\downarrow v_2) \otimes (\downarrow w)^{\otimes (n-2)-k}) = -\downarrow w$$

$$\Rightarrow \sum_{i+j=n+1} m'_i m'_j(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-2)-k}) = \downarrow w - \downarrow w = 0.$$

In either case, if $m_i'm_j'(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$ produces $\downarrow w$'s, then

$$\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = 0.$$

We now consider the manner in which $m_i'm_i'(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n)$ yields a $\downarrow v_1$:

By defintion of m'_n , $\downarrow v_1$ must be produced by either $m'_i(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (i-2)-k})$ or $m'_i(\downarrow v_1 \otimes (\downarrow w)^{\otimes (i-2)} \otimes \downarrow v_2)$.

• Case 1: $\downarrow v_1$ is produced by $m'_i(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (i-2)-k})$.

We examine the 4 different possibilities for which m'_i can yield this arrangement:

(i) m'_j produces the first $\downarrow v_1$. (ii) m'_j produces a $\downarrow w$ in $(\downarrow w)^{\otimes k}$. (iii) m'_j produces the second $\downarrow v_1$. (iv) m'_j produces a $\downarrow w$ in $(\downarrow w)^{\otimes (i-2)-k}$.

A key observation to make here is that (i), (ii), (iii), and (iv) imply that the original arrangement $\downarrow x_1 \otimes \cdots \otimes \downarrow x_n$ must contain <u>exactly</u> 3 v's, once again with $x_1 = v_1$. This yields 4 subcases:

- $\circ \ Subcase \ 1 \colon \text{We have} \ m_i'm_j'(\mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes k} \otimes \mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes l} \otimes \mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes n-k-l-3}) \colon$
- $\circ \ Subcase \ 2 \colon \text{We have} \ m_i'm_j'(\mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes k} \otimes \mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes l} \otimes \mathop{\downarrow} v_2 \otimes (\mathop{\downarrow} w)^{\otimes n-k-l-3}) \colon$
- \circ Subcase 3: We have $m_i'm_i'(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_2 \otimes (\downarrow w)^{\otimes l} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes n-k-l-3}$:
- \circ Subcase 4: We have $m_i'm_i'(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_2 \otimes (\downarrow w)^{\otimes l} \otimes \downarrow v_2 \otimes (\downarrow w)^{\otimes n-k-l-3})$:

Let us consider subcase 1:

(i) m'_i must take the first two $\downarrow v_1$'s. We have:

$$m_i'\Big(\Big[m_j'(\mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes k} \otimes \mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes j-k-2}) \otimes (\mathop{\downarrow} w)^{\otimes l-(j-k-2)}\Big] \otimes \mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes n-k-l-3}\Big) = \mathop{\downarrow} v_1$$

Now $k+2 \leq j \leq l+k+2$, so there are $(l+k+2)-(k+2)+1=l+1$ such terms.

(ii) m'_i must take only the second $\downarrow v_1$. We have:

$$(-1)^{|v_1|+k|w|-(k+1)}m_i'\Big(\downarrow v_1\otimes (\downarrow w)^{\otimes k}\otimes \Big[m_j'(\downarrow v_1\otimes (\downarrow w)^{\otimes (j-1)})\otimes (\downarrow w)^{\otimes l-(j-1)}\Big]\otimes \downarrow v_1\otimes (\downarrow w)^{\otimes n-k-l-3}\Big)=-\downarrow v_1$$
 Now $1\leq j\leq l+1$, so there are $(l+1)-1+1=l+1$ such terms.

(iii) m'_i must take the second and third $\downarrow v_1$'s. We have:

$$(-1)^{|v_1|+k|w|-(k+1)}m_i'\Big(\downarrow v_1\otimes (\downarrow w)^{\otimes k}\otimes \Big[m_j'(\downarrow v_1\otimes (\downarrow w)^{\otimes l}\otimes \downarrow v_1\otimes (\downarrow w)^{\otimes j-l-2})\Big]\otimes (\downarrow w)^{\otimes n-k-j+1}\Big)=-\downarrow v_1$$
 Now $l+2\leq j\leq n-k-1$, so there are $(n-k-1)-(l+2)+1=n-k-l-2$ such terms.

(iv) m'_i must take only the third $\downarrow v_1$. We have:

$$(-1)^{2|v_1|+(k+l)|w|-(k+l+2)}m_i'\Big(\downarrow v_1\otimes (\downarrow w)^{\otimes k}\otimes \downarrow v_1\otimes (\downarrow w)^{\otimes l}\otimes \Big[m_j'(\downarrow v_1\otimes (\downarrow w)^{\otimes (j-1)})\otimes (\downarrow w)^{\otimes n-k-l-j-2}\Big]\Big)=\downarrow v_1$$
 Now $1\leq j\leq n-k-l-2$, so there are $(n-k-l-2)-1+1=n-k-l-2$ such terms.

$$\Rightarrow \sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes l} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes n-k-l-3}) = (l+1) \downarrow v_1 - (l+1) \downarrow v_1 - (n-k-l-2) \downarrow v_1 + (n-k-l-2) \downarrow v_1 = 0.$$

A similar argument holds for subcases 2, 3, and 4. Hence, our result holds for case 1.

• Case 2: $\downarrow v_1$ is produced by $m'_i(\downarrow v_1 \otimes (\downarrow w)^{\otimes (i-2)} \otimes \downarrow v_2)$.

We examine the 2 different possibilities for which m'_j can yield this arrangement:

(i)
$$m'_j$$
 produces the $\downarrow v_1$.
(ii) m'_j produces a $\downarrow w$ in $(\downarrow w)^{\otimes (i-2)}$.

A similar observation to case 1 can be made here regarding the original arrangement $\downarrow x_1 \otimes \cdots \otimes \downarrow x_n$ containing exactly 3 v's, once again with $x_1 = v_1$. In this case, $x_n = v_2$. This yields 2 subcases:

- \circ Subcase 1: We have $m_i'm_j'(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-k-3)} \otimes \downarrow v_2)$
- \circ Subcase 2: We have $m_i'm_i'(\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_2 \otimes (\downarrow w)^{\otimes (n-k-3)} \otimes \downarrow v_2)$

Let us consider subcase 1:

(i) m'_i must take both $\downarrow v_1$'s. We have:

$$m_i' \Big(\Big[m_j' (\mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes k} \otimes \mathop{\downarrow} v_1 \otimes (\mathop{\downarrow} w)^{\otimes j-k-2}) \Big] \otimes (\mathop{\downarrow} w)^{\otimes n-j-1} \otimes \mathop{\downarrow} v_2 \Big) = \mathop{\downarrow} v_1$$

Now $k+2 \le j \le n-1$, so there are (n-1)-(k+2)+1=n-k-2 such terms.

(ii) m'_i must take the second $\downarrow v_1$ only. We have:

$$(-1)^{|v_1|+k|w|-(k+1)}m_i'\Big(\downarrow v_1\otimes (\downarrow w)^{\otimes k}\otimes \Big[m_j'(\downarrow v_1\otimes (\downarrow w)^{\otimes j-1})\otimes (\downarrow w)^{\otimes n-k-j-2}\Big]\otimes \downarrow v_2\Big)=-\downarrow v_1$$

Now $1 \le j \le n-k-2$, so there are (n-k-2)-(1)+1=n-k-2 such terms.

This implies that

$$\sum_{i+j=n+1} m_i' m_j' (\downarrow v_1 \otimes (\downarrow w)^{\otimes k} \otimes \downarrow v_1 \otimes (\downarrow w)^{\otimes (n-k-3)} \otimes \downarrow v_2) = (n-k-2) \downarrow v_1 - (n-k-2) \downarrow v_1 = 0.$$

A similar argument may be made for subcase 2. Hence, our result holds for case 2.

So
$$\sum_{i+j=n+1} m_i' m_j' (\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = 0, \ \forall \ x_1 \cdots x_n \in V.$$

Thus
$$D^2(\downarrow x_1 \otimes \cdots \otimes \downarrow x_n) = 0$$

By induction, $D^2 = 0$ on any number of inputs.

Hence the preceding maps m_n defined on the graded vector space V form an A_{∞} algebra structure.

3. Induced L_{∞} Algebra

The A_{∞} algebra structure on $V = V_0 \oplus V_1$ that was constructed in this note can be skew symmetrized to yield an L_{∞} algebra structure on V; see Theorem 3.1 in [5] for details. This L_{∞} algebra will thus join the collection of previously defined such structures on V. The relationship among these algebras will be a topic for future research.

References

- [1] M. Daily, Examples of L_m and L_{∞} structures, unpublished.
- [2] M. Daily and T. Lada, A finite dimensional L-infinity algebra example in gauge theory, Homology, Homotopy and Applications, vol.7(2), 87-93 (2004).
- [3] T. Kadeishvili and T. Lada, A small open-closed homotopy algebra (OCHA), Georgian Mathematical Journal, to appear.
- [4] H. Kajiura and J. Stasheff, Homotopy algebras inspired by classical open-closed string field theory, Comm. Math Phys. 263, no. 3 (2006), 553-581.
- [5] T. Lada and M. Markl, Strongly homotopy Lie algebras, Communications in Algebra 23(6), (1995), 2147-2161.
- [6] J. Stasheff, Associativity of H-Spaces II, Trans. Am. Math. Soc. 108 (1963), 293-312.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH NC 27695, USA $E\text{-}mail\ address:}$ mpallocc@math.ncsu.edu

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH NC 27695, USA *E-mail address*: lada@math.ncsu.edu