

Министерство образования и науки Российской Федерации ФГАО УВО "Севастопольский государственный университет"

ЭКСПЕРИМЕНТАЛЬНО-ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ СЛОЖНЫХ СЛУЧАЙНЫХ СОБЫТИЙ

методические указания к лабораторной работе по дисциплине «Теория вероятностей и математическая статистика»

студентами всех форм обучения для направлений: 09.03.01 – "Информатика и вычислительная техника", 09.03.02 – "Информационные системы и технологии", 09.03.04 – "Управление в технических системах"

УДК 519.2

Экспериментально-теоретическое исследование сложных случайных событий: методические указания к выполнению лабораторных и контрольных работ по дисциплине "Теория вероятностей и математическая статистика" студентами всех форм обучения для направлений: 09.03.01 – "Информатика и вычислительная техника", 09.03.02 – "Информационные системы и технологии", 09.03.04 – "Управление в технических системах" [Текст] / Разраб. П.П. Киже. – Севастополь: Изд-во СевГУ, 2018. – 44 с.

Методические указания составлены в соответствии с требованиями программы дисциплины «Теория вероятностей и математическая статистика»

Методические указания рассмотрены и утверждены на заседании кафедры Информационных систем, протокол № 13 от 26 января 2018 г.

Допущено учебно-методическим центром СевГУ в качестве методических указаний.

Рецензент Кожаев Е.А., кандидат техн. наук, доцент кафедры Информатики и вычислительной техники.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Доценко С. В. Теория информации и математическая статистика. Конспект лекций.
- 2. Вентцель Е.С. Теория вероятностей/ Е.С. Вентцель. М.:ФМ, 1958. 464 с.
- 3. Гнеденко Б.В. Курс теории вероятностей/ Б.В.Гнеденко. М.: ФМ, 1961. $406~\rm c.$
- 4. МАТLAB. Руководство пользователя. Севастополь, СГТУ, 2000.–77 с.
- 5. Потемкин В.Г. MATLAB 5 для студентов/ В.Г. Потёмкин. М.: ДИЛОГ- МИФИ, 1998.— 314 с.
- 6. Потемкин В.Г. Система МАТLAB. Справочное пособие/ В.Г. Потёмкин. М.: ДИАЛОГ-МИФИ, 1997. 350 с.
- 7. Лазарев Ю. MatLAB 5.x/ Ю. Лазарев. К.: «Ирина», bhv, 2000. 383 с.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое случайный исход и случайное событие?
- 2. Что такое вероятность случайного события?
- 3. Свойства вероятности случайного события.
- 4. Основные теоремы о вероятностях случайных событий.
- 5. Что такое безусловная и условная вероятности?
- 6. Объяснить смысл формулы полной вероятности.
- 7. Что такое равномерный закон распределения случайной непрерывной величины?
- 8. Каким образом в системе MATLAB можно получить массив равномерно распределенных случайных чисел? Каковы параметры этого распределения?
- 9. В работе задано P(1) = P

СОДЕРЖАНИЕ

1.	Цель работы	.4
2.	Теоретический раздел	4
3.	Варианты задания и предварительная подготовка	. 9
4.	Ход работы	.12
5.	Содержание отчёта	. 13
6.	Контрольные вопросы	.14
Би	иблиографический список	.15

1. ЦЕЛЬ РАБОТЫ

- 1. Освоение программного моделирования случайных событий, реализуемых комбинационными схемами.
- 2. Выполнение теоретического расчета вероятностей срабатывания комбинационных схем и нахождение оценок этих вероятностей экспериментальным путем. Сравнение теоретических и экспериментальных результатов.
- 3. Оценка применимости теорем сложения и умножения вероятностей и формулы полной вероятности для вычисления вероятностей сложных событий на примере работы комбинационных схем.

2. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

Элементарные (не разложимые на более простые части) случайные события, реализуемые в некотором эксперименте, называются ucxodamu этого эксперимента. Полная совокупность ucxodob $z_1, z_2, ..., z_m$ (пространство ucxodob) обозначается как

$$Z = \{z_1, z_2, ..., z_m\} . (2.1)$$

При осуществлении каждого эксперимента обязательно имеет место некоторый из исходов $z_i \in Z$ и не может быть такого эксперимента, результатом которого могли бы быть два или более исходов. Иными словами, исходы представляют собой *полную группу несовместных событий*.

На практике обычно наибольший интерес представляют не сами исходы, а некоторые их совокупности (комбинации), которые являются подмножествами множества Z. Любое подмножество A множества Z называется C событием C:

$$A \subset Z$$
. (2.2)

Когда говорят, что *происходит* или *осуществляется* событие A, то подразумевается, что в A содержится некоторая совокупность элементарных событий (т.е. исходов) z_i .

Для любых событий A и B, принадлежащих пространству исходов эксперимента Z, имеют место следующие определения:

- 1. Объединением (суммой) $A \cup B$ событий A и B называется событие, состоящее в осуществлении хотя бы одного из событий A и B.
- 2. Совмещением (произведением) $A \cap B$ событий A и B называется событие, состоящее в осуществлении $\kappa a \kappa A$, $ma \kappa u B$. События A и B называются несовместными, если осуществление одного из них исключает возможность осуществления другого, т.е. если $A \cap B = \emptyset$.
- 3. Дополнением \overline{A} события A называется событие, состоящее в неосуществлении события A. Событие \overline{A} называется также противоположным событию A.

5. СОДЕРЖАНИЕ ОТЧЁТА

- 1. Цель работы.
- 2. Краткое теоретическое введение.
- 3. Подробный аналитический расчёт вероятности горения лампочки по формулам сложения-умножения, как для зависимых, так и для независимых событий.
- 4. Подробный аналитический расчёт вероятности горения лампочки по формуле полной вероятности, как для зависимых, так и для независимых событий.
- 5. Программа на языке MATLAB для практического расчёта частоты загорания лампочки, как для зависимых, так и для независимых событий.
- 6. Выводы по работе в развёрнутом виде о возможности применения законов и тождеств теории множеств, алгебры логики и теории вероятностей для оценки работы комбинационных схем.

4. ХОД РАБОТЫ

- 1. Создать новый M-файл системы MATLAB. Присвоить ему имя. Дальнейшие действия выполнять в этом M-файле.
- 2. Набрать программу вычисления матрицы L (см. п.7 раздела 3). Вычислить эту матрицу без вывода на печать. Для контроля правильности вычисления вывести на печать ее первые 10 столбцов.
- 3. Набрать программу получения "1-0"- матрицы-строки A и вычислить ее без вывода на печать. Для контроля вывести на печать ее первые 10 элементов.
- 4. Выполнить π .3 для строки B.
- 5. Выполнить π .3 для строки C.
- 6. Воспользовавшись программой п.9 раздела 3, вычислить без вывода на печать "1-0"- матрицы строки A1, B1, C1 и проконтролировать их первые 10 элементов.
- 7. Применяя формулу п. 10 раздела 3 и считая, что на вход системы поступают события A, B и C, рассчитать элементы "1-0"- матрицы-строки F, состоящей из единиц, соответствующих горению лампочки, и нулей, когда она не горит. Проверить первые 10 элементов этой матрицы.
- 8. Подсчитать частоту события F, применяя формулу, полученную в п.11 раздела 3.
- 9. Сравнить найденную экспериментально частоту с теоретическим результатом, полученным в п.5 раздела 3.
- 10. Выполнить п.7 данного раздела, считая, что на вход схемы поступают события A1, B1 и C1 и обозначая выходную "1-0"-матрицу-строку как F1.
- 11. Подсчитать частоту события F1, используя формулу п.11 раздела 3.
- 12. Сравнить найденную частоту с теоретическим результатом, полученным в п.6 раздела 3.
- 13. Сопоставить результаты п.9 и п.12 настоящего раздела. Дать развернутые выводы о возможности применения законов и тождеств теории множеств, алгебры логики и теории вероятностей для оценки работы комбинационных схем.
- 14. Оформить отчет.
- 15. Защитить результаты выполнения работы.

Осуществление *хотя* бы одного из событий пространства Z является достоверным событием. Поэтому здесь множество Z играет роль универсального множества.

Поскольку не произойти хотя бы одно какое-либо событие из пространства Z не может, то *неосуществление* хотя бы одного события является *невозможным* событием, т.е. это событие представляет собой пустое множество \emptyset .

$$0 = P \cdot \{ \{ \} \} P \cdot \{ \} \} P \cdot \{ \} = 1. \tag{2.3}$$

Для вычисления вероятностей различных событий используется ряд теорем. Перечислим наиболее часто применяемые теоремы:

$$1. P \bigcirc = 0. \tag{2.4}$$

2.
$$P(\mathbf{C}) = 1$$
. (2.5)

3. Если события A и B несовместны, т.е. $A \cap B = 0$, то

$$P(\mathbf{A} \cup B) = P(\mathbf{A} + P(\mathbf{B})) \tag{2.6}$$

4. Если \overline{A} - событие, противоположное событию A, то $P \bigoplus P \bigoplus 1$. (2.7)

5. Для npouзвольных (а не только несовместных) случайных имеет место соотношение событий A и B

$$P (\mathbf{A} \cup B) = P (\mathbf{A}) + P (\mathbf{B}) - P (\mathbf{A} \cap B), \tag{2.8}$$

которое носит название *теоремы сложения вероятностей*. Формула (2.6) – ее частный случай для несовместных событий.

6. Для произвольных случайных событий A и B имеет место теорема умножения вероятностей:

$$P \blacktriangleleft \cap B = P \blacktriangleleft P \blacktriangleleft A, \tag{2.9}$$

где P(A) - безусловная вероятность события A, а P(B/A) - условная вероятность события B, вычисленная при условии, что событие A имело место. Если события A и B независимы, то

$$P \mathbf{G} / A = P \mathbf{G}, \tag{2.10}$$

и формула (2.9) принимает вид

$$P(A \cap B) = P(A)P(B). \tag{2.11}$$

7. Пусть $A \subseteq Z$ - случайное событие в пространстве Z, а система множеств $S_1, S_2, ..., S_n$ - некоторое *разбиение* этого пространства. Как известно, разбиение удовлетворяет условиям $Z = S_1 \cup S_2 \cup ... \cup S_n$, $S_i \cap S_k \neq \emptyset$ при $i \neq k$ (2.12) Входящие в него события S_i называются *гипотезами*.

Формула полной вероятности

$$P \blacktriangleleft = \sum_{i=1}^{n} P \blacktriangleleft / S_i P \blacktriangleleft_i$$
 (2.13)

позволяет вычислить вероятность $P \P$ события A, если известны безусловные вероятности $P \P$ всех гипотез S_i и условные вероятности $P \P / S_i$ осуществления события A при реализации каждой из этих гипотез.

Комбинационные схемы имеют в своем составе кнопки (которые могут быть нажаты или не нажаты), контакты, связанные с кнопками (которые могут быть разомкнуты или замкнуты), источник питания, провода и лампочку (которая может гореть или не гореть). Такими схемами можно моделировать многие электрические и электронные цепи, сети передачи информации, вычислительные алгоритмы. События здесь носят бинарный характер: кнопки, контакты и лампочки имеют всего по два возможных состояния. Поэтому алгебра множеств здесь может быть заменена алгеброй логики. Иными словами, здесь в вышеуказанных формулах для получения составного события можно заменить операцию ∪ на ∨, операцию ∩ - на ∧, операцию дополнения - на операцию отрицания.

В настоящей работе будет моделироваться работа комбинационных схем со случайным нажатием трех кнопок A, B, C. (рисунок 2.1). Блок G содержит различное число нормально разомкнутых и нормально замкнутых контактов, последовательно либо параллельно соединенных между собой проводами и переключаемых кнопками A, B и C. Лампочка F горит в зависимости от того, какова схема блока G и в каком состоянии находятся кнопки A, B, C. Если эти кнопки нажимаются случайным образом, то случайным является и загорание лампочки F. Задача состоит в том, чтобы при заданной схеме блока G и заданных вероятностях P(A), P(A) и P(A) нажатия кнопок A, A0 и A1 определить вероятность A2 горения лампочки A3.

Рисунок 2.1 – Модель комбинационной схемы

Решить эту задачу можно тремя способам:

- 1. Аналитически, используя теоремы сложения и умножения вероятностей.
- 2. Аналитически, используя формулу полной вероятности.

Таблица 3.2 - Варианты заданий карт Карно

- 2. Согласно полученным вариантам вычислить теоретические значения вероятностей нажатия кнопок P(4), P(6) и P(7), P(4) P(6) и P(7).
- 3. Вычислить следующие условные теоретические вероятности:

- 4. В соответствии с заданным вариантом схемы (таблица 3.2) найти минимальную ДНФ, связывающую горение лампочки с нажатием кнопок. Начертить эту схему.
- 5. Аналитически определить вероятность горения лампочки для событий A. B и C:
 - а) применяя теоремы сложения и умножения вероятностей;
 - б) применяя формулу полной вероятности;
- 6. Выполнить пункт 5 для событий *A1*, *B1* и *C1*.
- 7. Написать на MATLAB программу вычисления матрицы L из 4 строк и 1000 столбцов таким образом, чтобы она сохранилась в памяти компьютера, но не выводилась на печать.
- 8. Написать на MATLAB программу преобразования элементов матрицы L в "1-0"-матрицы-строки A,B,C, соответствующие заданным интервалам [am,aM), [bm,bM)и [cm,cM)таким образом, чтобы элементы матрицы L, лежащие внутри этих интервалов, преобразовывались в 1, а вне интервалов в 0.
- 9. Аналогично требованиям пункта 8 написать программу получения "1-0"-матриц-строк A1, B1, C1.
- 10. В соответствии с полученным вариантом комбинационной схемы написать в системе MATLAB формулу преобразования элементарных событий A, B и C в составное событие F. Считать событие A совпадающим с высказыванием x, событие B с высказыванием y, а событие C совпадающим с высказыванием z.
- 11. Написать на MATLAB М-функцию для расчета частоты события F. (<u>Предупреждение:</u> выбирая название для М-функции, предварительно убедитесь, что оно отсутствует среди названий стандартных функций MATLAB, в противном случае при обращении MATLAB будет вызывать не вашу функцию, а стандартную.)

3. Программно, создав генератор элементарных случайных событий, «нажимающий» кнопки A, B и C с заданными вероятностями. В соответствии со схемой блока G и алгеброй логики эти события должны быть преобразованы в сложное событие F. Иными словами, в каждом отдельном эксперименте кнопки A, B, C нажимаются случайным образом, и при этом необходимо определить состояние лампочки F. Проведя массовую серию таких испытаний, можно определить частоту события F. При большом числе испытаний она практически равна *Р* € .

Сопоставление практических и экспериментальных данных позволяет оценить степень применимости законов и тождеств алгебры множеств, алгебры логики и теории вероятностей для расчета работы комбинационных схем при случайных воздействиях.

Для программного создания случайных событий используется генератор случайных чисел с равномерным распределением вероятностей в диапазоне от 0 до 1 (рис.2.2). В системе МАТLAВ можно создать имеющую размер $m \times n$ матрицу L таких случайных чисел с помощью функции rand(m,n) [4, стр.30; 6, стр. 83-84].

Рисунок 2.2 – Плотность вероятности равномерно распределённых случайных чисел

В рассматриваемой работе будем считать, что эта матрица имеет 4 строки и 1000 столбцов.

Первая строка матрицы L будет положена в основу организации случайных «нажатий» кнопки A. Она может быть получена из матрицы L путем применения двоеточия [4, стр. 26-27; 6, стр. 88]: A = L(1,:).

В задании на лабораторную работу указаны границы am и aM полуинтервала [am,aM). Если элемент матрицы A оказывается внутри этого полуинтервала, заменим его числом 1, если же вне — числом 0. Таким образом, матрица-строка A преобразуется в матрицу-строку из случайно расположенных единиц и нулей, причем вероятность появления единиц определяется полуинтервалом [am,aM). Будем считать, что единицы соответствуют «нажатию» кнопки A.

Аналогичным образом создаем матрицы B = L(2,:) и C = L(3,:), которые преобразуем в "1-0"-матрицы B и C в соответствии с полуинтервалами [bm,bM)и [cm,cM). Они моделируют нажатия кнопок B и C.

По заданной карте Карно необходимо найти минимальную ДНФ соответствующей ей комбинационной схемы. По ней надо аналитически рассчитать и на основе разработанной программы путем численного эксперимента оценить вероятность $P \in \mathbb{R}^n$ загорания лампочки F. Сравнить результаты.

В следующей части работы необходимо создать три "1-0"-матрицы-строки A1, B1 и C1, применяя указанную выше методику и те же полуинтервалы [am,aM), [bm,bM)и [cm,cM), однако, из единственной, четвертой строки матрицы L, и применить их к той же комбинационной схеме. Сравнить результаты первой и второй части работы. Объяснить эти результаты. Дать их аналитическое подтверждение.

1. Получить у преподавателя вариант интервалов случайных величин (таблица 3.1) и вариант комбинационной схемы (таблица 3.2).

Таблица 3.1 - Варианты задания интервалов случайных чисел

N_{Ω}						
варианта	am	аМ	bm	bM	ст	сМ
I	0	0.3	0.1	0.5	0.2	0.7
II	0.3	0.8	0.6	0.9	0.7	1.0
III	0.4	0.9	0.2	0.6	0.5	0.8
IV	0.2	0.7	0	0.3	0.1	0.5
V	0.6	0.9	0.7	1.0	0.3	0.8
VI	0.1	0.4	0.3	0.7	0.5	1.0
VII	0	0.3	0.2	0.7	0.1	0.5
VIII	0.5	0.7	0.2	0.6	0.6	0.9
IX	0.7	1.0	0.3	0.8	0.5	0.9
X	0.3	0.8	0.5	0.9	0.7	1.0
XI	0	0.2	0.1	0.8	0.4	1.0
XII	0.3	0.7	0.3	0.4	0.5	0.9
XIII	0.4	1.0	0	0.2	0.1	0.8
XIV	0.1	0.8	0.4	1.0	0	0.2
XV	0.5	0.9	0.3	0.7	0.3	0.4
XVI	0.7	1.0	0.2	0.5	0.4	0.8
XVII	0.7	1.0	0.4	0.8	0.3	0.5
XVIII	0.3	0.5	0.7	1.0	0.4	0.9
XIX	0.4	0.8	0.3	0.5	0.7	1.0
XX	0.2	0.6	0.4	0.8	0.7	0.9