CS 228 Problem Set 1

Hugh Zhang

February 5, 2017

Problem 1

Problem 2

2.1.1

$$P(C) = \sum_{c} P(A*, B*, c, D*)$$

$$P(C = 1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$P(C = 1 \mid D = 0) = \frac{\frac{1}{4}}{\frac{1}{8} + \frac{1}{8} + \frac{1}{4}} = \frac{1}{2}$$

$$P(C = 1 \mid D = 1) = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{4}} = \frac{1}{2}$$

Thus, C and D are independent.

2.1.2

$$P(C = 1) = \frac{1}{2}$$

$$P(C = 1 \mid B = 0) = \frac{\frac{1}{4}}{\frac{1}{8} + \frac{1}{4}} = \frac{1}{3}$$

Thus, C and B are not independent.

2.2

There is only one possible I map for this. We can deduce this as following.

Since $C \perp \!\!\! \perp D$, we can deduce that it must be a V structure, since no other group of 3 can have independence without conditioning on anything. Thus, the arrow

goes from C to A and D to A. Continuining on this, $C \not\perp \!\!\! \perp B$, we can further deduce there is NOT a v strucutre, so the arrow goes from A to B, completing a cascade. From this, we can then conclude the final arrow goes from D to B, otherwise there would be a cycle and its not a DAG. Thus, this I-map is unique.

WHY IS THIS A PERFECT MAP WHY????

2.3

C has no parents.

$$P(C=0) = \frac{1}{8} + \frac{1}{8} + \frac{1}{4} = \frac{1}{2}$$

D has no parents.

$$P(D=0) = \frac{1}{8} + \frac{1}{8} + \frac{1}{4} = \frac{1}{2}$$

A has two parents (C and D).

$$P(A = 0 \mid C = 0, D = 0) = \frac{P(A = 0, C = 0, D = 0)}{P(C = 0, D = 0)} = \frac{\frac{1}{8}}{\frac{1}{8} + \frac{1}{8}} = \frac{1}{2}$$

$$P(A = 0 \mid C = 1, D = 0) = 0$$

$$P(A = 0 \mid C = 0, D = 1) = 0$$

$$P(A = 0 \mid C = 1, D = 1) = \frac{1/4}{1/4} = 1$$

B has two parents (A and D).

$$\begin{split} P(B=0 \mid A=0, D=0) &= \frac{P(B=0, A=0, D=0)}{P(A=0, D=0)} = \frac{1/8}{1/8} = 1 \\ P(B=0 \mid A=1, D=0) &= 0 \\ P(B=0 \mid A=0, D=1) &= 0 \\ P(B=0 \mid A=1, D=1) &= \frac{1/4}{1/4} = 1 \end{split}$$

Problem 3

3.1

Notice that the observed units form a markov blanket on any given hidden unit. Thus, we can compute $P(h_i \mid v)$ without caring about the rest of the hidden units.

$$P(h_i \mid v) = \frac{P(h_i, v)}{\sum_{h_k} P(h_k, v)} = \frac{\sum_{h_1 \dots h_{k-1}, h_{k+1} \dots h_n} P(h_k, v, h_1 \dots h_{k-1}, h_{k+1} \dots h_n)}{\sum_{h_1 \dots h_n} P(h, v)}$$

TODO CAN YOU BREAK THIS UP

3.2

$$P(h \mid v) = \frac{P(v, h)}{\sum_{i \in \{0,1\}^n} P(v, i)} = \prod_{h_i} \frac{P(v, h_i)}{\sum_{h_k \in \{0,1\}} P(v, h_k)} = \prod_{h_i} P(h_i \mid v)$$

Since the hidden units are all independent conditioned on the observed units, we can just factor the probabilities that way.

3.3

Notice that you can rewrite

3.4

This is equivalent to 3.3, because h and v are symmetrical.

3.5

I think not. You can factor such that for either sum on h or v you can compute that, but after that you can't factor the sum again.

Problem 4

Initution easy tells us that adding another edge gives us strictly more to work with, and thus will have a better likelihood estimation on the model.

We want to prove

$$\max_{\theta'} l_{G'}(\theta', D) \ge \max_{\theta} l_{G}(\theta, D)$$

Notice that since the only difference between G and G' is that G' has an extra edge, e.g. one node in G' has an extra parent. We'll focus on this node N and its parent P, thus we can ignore the first sigma $[\sum_{i=1}^{n}]$. Further, we will prove this for each example in the data set, thus it will clearly hold for the sum over all the data and we can ignore the third sigma $[\sum_{x_i}]$.

Thus, our goal can be simplified to showing

$$\sum_{u} \sum_{P} M[x, u, P] \log \theta_{x|(u,P)} \ge \sum_{u} M[x, u] \log \theta_{x|u}$$

Using the θ equation:

$$\sum_{u} \sum_{P} M[x, u, P] \log \theta_{x|(u, P)} = \sum_{u} \sum_{P} M[x, u, P] \log \frac{M[x, u, P]}{\sum_{x} M[x, u, P]}$$

Letting $k = M[x, u, P], f(k) = k \log \frac{k}{\sum_{k=1}^{k} k} = k \log k - k \log \sum_{k=1}^{k} k$, we can rewrite:

$$\sum_{u} \sum_{P} M[x, u, P] \log \frac{M[x, u, P]}{\sum_{x} M[x, u, P]} = \sum_{u} \sum_{P} f(k)$$

Notice now, that f(k) is concave since $f''(k) = \frac{1}{k} - \frac{c}{k}$, which is always positive since k >= 0 (its a frequency count). Thus, we can apply Jensen's inequality, which claims that

$$\begin{split} &\sum_{u} \sum_{P} f(k) \geq \sum_{u} f(\sum_{P} k) \\ &= \sum_{u} (\sum_{P} k) \log \frac{\sum_{P} k}{\sum_{P} \sum_{x} k} \\ &= \sum_{u} (\sum_{P} M[x, u, P]) \log \frac{\sum_{P} M[x, u, P]}{\sum_{P} \sum_{x} M[x, u, P]} \end{split}$$

Then, for the final step we realize that we are marginalizing over P, and can thus remove it, finishing the proof.

$$\sum_{u}(\sum_{P}M[x,u,P])\log\frac{\sum_{P}M[x,u,P]}{\sum_{P}\sum_{x}M[x,u,P]} = \sum_{u}(M[x,u])\log\frac{M[x,u]}{\sum_{x}M[x,u]}$$

Problem 5

5.1

Test error rate: 0.9138

5.2

Test error rate: 0.9569

5.3

$$P(Democrat \mid votes) = 0.9999986$$

 $P(educationvote = 1 \mid votes) = 0.100840336134$

5.4

Naive Bayes error rate on smaller data: $0.9052~\mathrm{TANB}$ error rate on smaller data: 0.8836

Since TANB is a more complex model and we trained on a much smaller amount of data, it is possible that TANB overfit the data and thus is not as good as a simple model.