PRIMITIVE DATENTYPEN

Primitive Datentypen

- Der Datentyp eines Attributes bestimmt, welche Informationen in einem Attribut abgelegt werden dürfen.
- Wird als Datentyp eines Attributes der Name einer Klasse angegeben, dürfen nur Objekte dieser Klasse als Werte diesem Attribut zugewiesen werden
- **Primitiven Datentypen** sind sehr einfache Datentypen, die nicht durch eine eigene Klasse beschrieben werden

Primitive Datentypen

- Primitive Datentypen speichern
 - ganze Zahlen (1, 12, 13131)
 - Fließkommazahlen (1.123, 21234.1232)
 - Wahrheitswerte (true, false)
 - einzelne Zeichen (t, w, f, d)
- Primitive Datentypen sind einfache Standard-Datentypen, die es auch in anderen Programmiersprachen gibt

GANZE ZAHLEN

Ganze Zahlen

Schlüsselwort	Größe	Wertebereich
byte	8 Bit (1 Byte)	-128 bis 127 -2^7 bis 2^7 -1
short	16 Bit (2 Byte)	-32.768 bis 32.767 -2 15 bis 2 15 -1
int	32 Bit (4 Byte)	-2.147.483.648 bis 2.147.483.647 -2 31 bis 2^{31} -1
long	64 Bit (8 Byte)	-9.223.372.036.854.775.808 bis 9.223.372.036.854.775.807 -2 ⁶³ bis 2 ⁶³ -1

Ganze Zahlen - byte

```
byte byte1 = 10;
System.out.println("byte1: " + byte1);
// byte1: 10
byte byteMin = Byte.MIN_VALUE;
System.out.println("byteMin: " + byteMin);
// byteMin: -128
byte byteMax = Byte.MAX VALUE;
System.out.println("byteMax: " + byteMax);
// byteMax: 127
```

Ganze Zahlen - short

```
short short1 = 10;
System.out.println("short1: " + short1);
// short1: 10
short shortMin = Short.MIN VALUE;
System.out.println("shortMin: " + shortMin);
// shortMin: -32768
short shortMax = Short.MAX_VALUE;
System.out.println("shortMax: " + shortMax);
// shortMax: 32767
```

Ganze Zahlen - int

```
int int1 = 30;
System.out.println("int1: " + int1);
// int1: 30
int intMin = Integer.MIN_VALUE;
System.out.println("intMin: " + intMin);
// intMin: -2147483648
int intMax = Integer.MAX_VALUE;
System.out.println("intMax: " + intMax);
// intMin: 2147483647
```

Ganze Zahlen - long

```
long long1 = 10;
System.out.println("long1: " + long1);
// long1: 10
long long2 = 100000000000; //Kompilierfehler
// The literal 10000000000 of type int is out of range
long long3 = 1000000000001;
System.out.println("long3: " + long3);
// long3: 10000000000
long long4 = 100000000000L;
System.out.println("long4: " + long4);
// long4: 10000000000
```

Ganze Zahlen - long

```
long longMin = Long.MIN_VALUE;
System.out.println("longMin: " + longMin);
// longMin: -9223372036854775808

long longMax = Long.MAX_VALUE;
System.out.println("longMax: " + longMax);
// longMax: 9223372036854775807
```

GANZE ZAHLEN

Stellenwertsysteme

Ganze Zahlen - Stellenwertsystem

- Ganzzahlige Literale: Angabe in vier Stellenwertsystemen
 - Dezimalsystem (Zehnersystem)
 Literale bestehen aus den Ziffern »O« bis »9«
 - Binärsystem (ab Java 7),
 Literale bestehen aus den Ziffern »O« und »1«
 - Oktalsystem
 Literale bestehen aus den Ziffern »O« bis »7«
 - Hexadezimalsystem
 Literale bestehen aus den Ziffern »O« bis »9« und aus den Buchstaben »a«, »b«, »c«, »d«, »e« und »f«

Ganze Zahlen - Oktalsystem

Literale bestehen aus den Ziffern »O« bis »7 Ganze Zahlen beginnen mit dem Präfix O

```
int zero = 00; // Entspricht decimal 0
System.out.println("Octal 00 = " + zero);
// Octal 00 = 0

int eins = 01; // Entspricht decimal 1
System.out.println("Octal 01 = " + eins);
// Octal 01 = 1
int sieben = 07; // Entspricht decimal 7
System.out.println("Octal 07 = " + sieben);
// Octal 07 = 7
```

Ganze Zahlen - Oktalsystem

```
int eight = 010; // Entspricht decimal 8
System.out.println("Octal 010 = " + eight);
// Octal 010 = 8
int neun = 011; // Entspricht decimal 9
System.out.println("Octal 011 = " + neun);
// Octal 011 = 9
int dreizehn = 015; // Entspricht decimal 13
System.out.println("Octal 015 = " + dreizehn);
// Octal 015 = 13
int zwanzig = 024; // Entspricht decimal 20
System.out.println("Octal 024 = " + zwanzig);
// Octal 024 = 20
```

Ganze Zahlen - Hexadezimalsystem

Hexadezimalsystem (Sedezimalsystem)

Literale bestehen aus:

Ziffern »O« bis »9«

und

Buchstaben »a«, »b«, »c«, »d«, »e« und »f«

beziehungsweise »A« bis »F«

Ein hexadezimaler Wert beginnt mit »Ox« oder »OX«

Ganze Zahlen - Hexadezimalsystem

```
int x = 0X0001;
int y = 0x7fffffff;
int z = 0xDeadCafe;

System.out.println("x = " + x + " y = " + y + " z = " + z);
// x = 1 y = 2147483647 z = -559035650
```

```
long l1 = 110599L;
long l2 = 0xFFFF1; // Note the lowercase 'l'
long l3 = 0xFFFF;
System.out.println("l1: " + l1 + " l2: " + l2+ " l3: " + l3);
// l1: 110599 l2: 65535 l3: 65535
```

FLIEßKOMMAZAHLEN

Fließkommazahlen

Schlüsselwort	Größe	Wertebereich
float	32 Bit (4 Byte)	1,40239846 * 10 ⁻⁴⁵ bis 3,40282347 * 10 ³⁸
double	64 Bit (8 Byte)	4,94065645841246544 * 10 ⁻³²⁴ bis 1,79769131486231570 * 10 ³⁰⁸

Fließkommazahlen - float

```
float float1 = 1234.45f;
System.out.println("float1: " + float1);
// float1: 1234.45
float float2 = 1234.45; //Kompilierfehler
// Type mismatch: cannot convert from double to float
System.out.println("float2: " + float2);
// float2: 1234.45
float floatMin = Float.MIN_VALUE;
System.out.println("floatMin: " + floatMin);
// floatMin: 1.4E-45
float floatMax = Float.MAX_VALUE;
System.out.println("floatMax: " + floatMax);
// floatMax: 3.4028235E38
```

Fließkommazahlen - double

```
double double1 = 1234.45;
System.out.println("double1: " + double1);
// double1: 1234.45

double double2 = 1234.45d;
System.out.println("double2: " + double2);
// double2: 1234.45

double double3 = 1234.45D;
System.out.println("double3: " + double3);
// double3: 1234.45
```

Fließkommazahlen - double

```
double doubleMin = Double.MIN_VALUE;
System.out.println("doubleMin: " + doubleMin);
// doubleMin: 4.9E-324

double doubleMax = Double.MAX_VALUE;
System.out.println("doubleMax: " + doubleMax);
// doubleMax: 1.7976931348623157E308
```

WAHRHEITSWERTE

Wahrheitswerte

Schlüsselwort	Größe	Wertebereich
boolean	kann	true oder false

Wahrheitswerte - boolean

```
boolean bool1 = true;
System.out.println("bool1: " + bool1);
// bool1: true
boolean bool2 = false;
System.out.println("bool2: " + bool2);
// bool2: false
boolean boolFalse = Boolean.FALSE;
System.out.println("boolFalse: " + boolFalse);
// boolFalse: false
boolean boolTrue = Boolean.TRUE;
System.out.println("boolTrue: " + boolTrue);
// boolTrue: true
```

EINZELNE ZEICHEN

Characters

Einzelne Zeichen

Schlüsselwort	Größe	Wertebereich
char	16 Bit (Unicode Zeichen – Kein Vorzeichen)	0 bis 65535 (Kann jeder zahl aus dem oberen Bereich zugewiesen werden)

Einzelne Zeichen - char

```
char char1 = 'A';
System.out.println("char1: " + char1);
// char1: A
char charMin = Character.MIN VALUE;
//Smallest value of type char '\u0000'
System.out.println("(int)charMin: " + (int)charMin);
// charMin:
// (int)charMin: 0
char charMax = Character.MAX_VALUE;
//Smallest value of type char '\uFFFF'
System.out.println("charMax: " + charMax);
System.out.println("(int)charMax: " + (int)charMax);
// charMax: ?
// (int)charMax: 65535
```

ZEICHENKETTEN

String

Zeichenketten - String

- Ein weiterer Datentyp ist String
 - Speicherung von Zeichenketten
- String ist kein primitiver Datentyp
 - wird durch eine eigene Java-Klasse beschrieben
- String kann wie ein primitiver Datentyp verwendet werden

Zeichenketten - String

Schlüsselwort	Beschreibung
String	Wird zum Speichern von beliebig langen Zeichenketten verwendet.
	Kein primitiver Datentyp, verhält sich aber oft so.
	Die Klasse String bietet viele Methoden für die Bearbeitung von Zeichenketten.