

Project 1: Student Performance Analysis using Python & Data Visualization

DS & ML Bootcamp by Ai DataYard

Project Objective

To analyze student performance data using Python libraries such as NumPy, Pandas, Matplotlib, and Seaborn. The goal is to extract insights, identify patterns, and visualize relationships among student demographics, parental background, and subject scores.

Concepts Covered

- Python Basics (Lists, Dictionaries, Loops, Operators)
- NumPy and Pandas for data manipulation
- Exploratory Data Analysis (EDA)
- Data Cleaning & Transformation
- Data Visualization using Seaborn & Matplotlib
- Conditional Logic (Creating new columns)

Dataset Overview

Dataset: Students Performance in Exams

https://www.kaggle.com/datasets/spscientist/students-performance-in-exams

- Sourced from Kaggle
- Contains demographic and academic details of students
- Features include gender, race/ethnicity, parental education, lunch type, test
 preparation, and scores in Math, Reading, and Writing

1. Load the dataset and display the first 10 rows.

0	ļітр	import pandas as pd							↑ ↓ † ⊜
	<pre>df = pd.read_csv('/content/StudentsPerformance.csv')</pre>								
	df.	head(10)	1						
₹		gender	race/ethnicity	parental_level_of_education	lunch	test_preparation_course	math_score	reading_score	writing_score
	0	female	group B	bachelor's degree	standard	none	72	72	74
	1	female	group C	some college	standard	completed	69	90	88
	2	female	group B	master's degree	standard	none	90	95	93
	3	male	group A	associate's degree	free/reduced	none	47	57	44
	4	male	group C	some college	standard	none	76	78	75
	5	female	group B	associate's degree	standard	none	71	83	78
	6	female	group B	some college	standard	completed	88	95	92
	7	male	group B	some college	free/reduced	none	40	43	39
	8	male	group D	high school	free/reduced	completed	64	64	67
	9	female	group B	high school	free/reduced	none	38	60	50

2. Print the column names and check the data types of each column.

```
df.info()
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000 entries, 0 to 999
    Data columns (total 8 columns):
        Column
                                     Non-Null Count Dtype
         gender
                                     1000 non-null object
     1 race/ethnicity
                                     1000 non-null
                                                    object
         parental level of education 1000 non-null
                                                    object
         lunch
                                     1000 non-null
                                                    object
         test_preparation_course
                                     1000 non-null
                                                    object
        math score
                                     1000 non-null
                                                    int64
                                     1000 non-null
         reading score
                                                    int64
         writing score
                                     1000 non-null
                                                    int64
    dtypes: int64(3), object(5)
    memory usage: 62.6+ KB
```


3. Descriptive statistics for all numerical columns

0	df.deso	cribe()		
		math_score	reading_score	writing_score
	count	1000.00000	1000.000000	1000.000000
	mean	66.08900	69.169000	68.054000
	std	15.16308	14.600192	15.195657
	min	0.00000	17.000000	10.000000
	25%	57.00000	59.000000	57.750000
	50%	66.00000	70.000000	69.000000
	75%	77.00000	79.000000	79.000000
	max	100.00000	100.000000	100.000000

4. Check if there are any missing or null values in the dataset.

5. Add a new column named average_score that calculates the average of math, reading, and writing scores for each student.

6. Create a new column called performance_level that classifies students as:

```
"High" if average score ≥ 85

"Medium" if 60 ≤ average score < 85

"Low" if average score < 60
```

```
def classify_performance(score):
    if score >= 85:
        return 'High'
    elif score >= 60:
        return 'Medium'
    else:
        return 'Low'

df['performance_level'] = df['average_score'].apply(classify_performance)
```


7. Add a column named pass_math that shows Yes if math score ≥ 50, else No.

8. Use NumPy to calculate the mean, median, and standard deviation of each subject score.

```
print(df['math score'].mean())
print(df['math_score'].median())
print(df['math score'].std())
print(df['reading score'].mean())
print(df['reading score'].median())
print(df['reading_score'].std())
print(df['writing score'].mean())
print(df['writing score'].median())
print(df['writing score'].std())
66.089
66.0
15.163080096009468
69.169
70.0
14.60019193725222
68.054
69.0
15.195657010869642
```


9. Use groupby to calculate the average scores in each subject by gender.

```
average_scores_by_gender = df.groupby('gender')[['math_score', 'reading_score', 'writing_score']].mean()

average_scores_by_gender

math_score reading_score writing_score

gender

female 63.633205 72.608108 72.467181

male 68.728216 65.473029 63.311203
```


10. Use groupby to find average scores by parental level of education.

0	avg_scores_by_parental_level	= df.groupby	/('parental_lev	el_of_education	')[['math_scor	re', 'reading_score',	'writing_score']].mean()
	avg_scores_by_parental_level						
		math_score	reading_score	writing_score			
	parental_level_of_education						
	associate's degree	67.882883	70.927928	69.896396			
	bachelor's degree	69.389831	73.000000	73.381356			
	high school	62.137755	64.704082	62.448980			
	master's degree	69.745763	75.372881	75.677966			
	some college	67.128319	69.460177	68.840708			
	some high school	63.497207	66.938547	64.888268			

11. Use value_counts() to find how many students fall into each performance level.

12. Create a list of students who scored below 40 in any subject.

Its output will be like this:

13. Plot a histogram of math scores.

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(8,5))
sns.histplot(df['math_score'], bins=10, kde=True, color='skyblue')
plt.title('Distribution of Math Scores')
plt.xlabel('Math Score')
plt.ylabel('Math Score')
plt.ylabel('Number of Students')
plt.show()
```


14. Create a boxplot comparing math scores across different gender groups

```
plt.figure(figsize=(6,5))
sns.boxplot(x='gender', y='math_score', data=df)
plt.title('Math Scores by Gender')
plt.xlabel('Gender')
plt.ylabel('Math Score')
plt.show()
```


15. Create a bar plot of average reading scores by parental education level

```
plt.figure(figsize=(10,6))
sns.barplot(x='parental_level_of_education', y='reading_score', data=df)
plt.title('Average Reading Score by Parental Education Level')
plt.xticks(rotation=45)
plt.ylabel('Average Reading Score')
plt.xlabel('Parental Level of Education')
plt.show()
```


16. Make a scatter plot showing the relationship between reading and writing scores

```
plt.figure(figsize=(7,5))
sns.scatterplot(x='reading_score', y='writing_score', data=df)
plt.title('Reading vs Writing Scores')
plt.xlabel('Reading Score')
plt.ylabel('Writing Score')
plt.show()
```


17. Plot a countplot showing how many students completed the test preparation course vs those who didn't

```
plt.figure(figsize=(6,5))
sns.countplot(x='test_preparation_course', data=df, palette='pastel')
plt.title('Test Preparation Course Completion')
plt.xlabel('Test Preparation Status')
plt.ylabel('Number of Students')
plt.show()
```


Key Insights from Student Performance Analysis

- Most students fall into the Medium performance level.
- Females scored higher in reading and writing; males did better in math.
- **Higher parental education** → better student scores.
- **Test preparation** boosts performance.
- Standard lunch students performed better.
- Strong link between **reading** and **writing** scores.
- Some students scored **below 40** need support.

