

(iii)	1.	$\left \frac{\partial}{\partial A} \right $	0°	0. 90°/	l	d d1	
429	2.	02	90°	30°6,	0	d_2	
	3.	03	90.	-90°	+lz	0	
	ч.	d4	0°	O°	0	d4	
							1 10/04/14
(b) R	TH	= 'A.	Az- Az-	Ач	6.0	4 2 - 1	48 9
0) /	4n=	Rot (£, O1)	Trans (0	,0,d,)T	rans (In O, O) Ro	24(X1X)
	, 45	(cos (e) Sin (e)) -:	(A) (B) (CO) (A) (CO) (A) (CO) (A) (CO) (CO) (CO) (CO) (CO) (CO) (CO) (CO	S(&)	sin (th) (link) -cos(a) · sin(d) cos(d)	lisin(a)
	-	(1000	0 0 0	0 0	0 d1	0	
•) A.	2=	Rat (2	(02)	Trans (0,	0,d2).	Trans(Q1010)	$Rot(x_1 \alpha_2)$
	c	(costi sinto	ə) - 구)	5in(3). co 5in(2). 5in(2) 0	s(x)	sin(Q)-Sin(Q) -cos(Q)-sin(Q) cos(Q)	L; (OS(€) L: Sim(€) dz
	= (10	0 1 0 0 0 0	0)	7	30 G	9 , 0) (4
•) A	3=	Rd (2	03).	Trans(O	01 dz).	Trans($l_3, o_1 o$)	- ROX(XIX3)
	c.	/ 605 (e 5in le 0	₹) - ₹) -	201 (B) (D) 1201 (B) (D) 2011 (D) 0		87/m/(3) · Sin(43) -(05(03) · Sin(43) (05(43)	
	Ġ.	1 0 0	1 0 0	1/3	-9	3 0 8	9 .

```
) A4 = Rot (2,04). Trans (0,0,d4). Trans (l4,0,0). Rot (x,d4)
                        = (COS (O4) -SIN(O4). COS(X4)
SIN(O4) (COS(O4). (COS(X4))
O SIN(O4)
                                                                                               sim(O4) sin(d4) ly cos(O4)
                                                                                                  -\cos(\theta u) \cdot \sin(\theta u) lu sim(\theta u) dy
                       Somit: RTH = A, tz. 43.44
                             RT_{H} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
                              RT_{H} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -d_{2} \\ 1 & 0 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & +l_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}
                             FT_{H} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & k_{1}-d_{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & d_{1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_{1} \end{pmatrix}
                             Note: You should compute the RTH with Link Variables
                              instead of the. Auslen Kung Value
For example: for type | link; the RTH should be:
```