

Ficha de Trabalho 5: Técnicas de Agrupamento de Dados (Clustering)

Objetivo: Pretende-se promover a aquisição de conhecimentos e desenvolvimento de competências relativas aos <u>fundamentos</u> de algumas técnicas utilizadas para agrupar dados (Clustering & Data Mining)

- 1) Considere dois pontos representados por $x_1=(1,1)$ e $x_2=(3,3)$. Determine a distância entre estes dois pontos utilizando as seguintes medidas: Euclidiana, Pombalina (ou *City Block*), Chebychev, Minkowski (utilizando a raiz quadrada) (T/P)
 - Sugestão: utilize a função pdist do Matlab para confirmar os valores.
- 2) Considere o seguinte conjunto de dados, representado na Tabela 1:

Tabela 1: Conjunto de Dados 1 # Amostra (x_1, x_2) (-2,-2)2 (3,3)3 (-1,1)4 (3,1)5 (-2,-1)6 (2, 3)7 (0,-2)8 (2,1)

- i) Represente os pontos num gráfico (T/P).
- ii) Considere agora que se pretende agrupar os dados apresentados na Tabela 1 em dois grupos (clusters). Assume-se os dois centroides iniciais centroides apresentados na Tabela 1. Represente os centroides no gráfico anterior utilizando um símbolo diferente das amostras. (T/P)
- iii) Complete a Tabela 2 calculando a distância Euclidiana entre os pontos da amostra e os dois centroides. (T/P)
- iv) Com base na minimização das distâncias calculadas classifique os pontos no cluster C1 ou C2. (T/P)

Tabela 2: Conjunto de Dados 1 com centroides iniciais

	Centroides Iniciais	(-2 1)	(4,1)	Clusters
# Amostra	(x_1,x_2)	dist	dist	C1 ou C2?
1	(-2,-2)			
2	(3,3)			
3	(-1,1)			
4	(3,1)			
5	(-2,-1)			
6	(2, 3)			
7	(0,-2)			

© Paulo Moura Oliveira 1/3

Licenciatura em Engenharia Informática Departamento de Engenharias - 2018/2019/2020/2021

8	(2,1)			
	Centroides	c_1	c_2	
	Novos			
	SSE			

- v) Represente um gráfico diferenciando os pontos de acordo com o cluster a que pertencem. (T/P)
- vi) Determine os novos valores para os dois centroides conforme o agrupamento feito. (T/P)
- vii) Represente a nova localização dos centroides. (T/P)
- viii) Determine a soma dos erros quadráticos (SSE) para os dois clusters. (T/P)
- ix) Repita os cálculos para a nova iteração e preencha a Tabela 3. (T/P)

Tabela 3: Conjunto de Dados 1 com centroides ao fim de uma iteração

	Centroides	c 1	c 2	
		(-1.25,-1)	(2.5,2.0)	Clusters
# Amostra	(x_1,x_2)	dist	dist	C1 ou C2?
1	(-2,-2)			
2	(3,3)			
3	(-1,1)			
4	(3,1)			
5	(-2,-1)			
6	(2, 3)			
7	(0,-2)			
8	(2,1)			
	Centroides	<i>c</i> ₁	c 2	
	Novos			
	SSE			

3) Considere o seguinte conjunto de dados com duas dimensões, representado na Tabela 4:

Tabela 4: Conjunto de Dados 2

# Amostra	(x_1, x_2)
1	(-2,-2)
2	(-1,1)
3	(-2,-1)
4	(0,-2)
5	(2,1)
6	(2, 3)
7	(3,1)
8	(3,3)
9	(3,-2)
10	(3,-1)

© Paulo Moura Oliveira 2/3

Licenciatura em Engenharia Informática Departamento de Engenharias - 2018/2019/2020/2021

11	(2,-1)	
12	(2.5,-2.5)	

- i) Represente os pontos num gráfico. (T/P)
- ii) Aplique o algoritmo k-médias (k-means) com três clusters e confirme que o resultado obtido está de acordo com a seguinte figura e Tabela 5. (T/P)

Tabela 5: Resultado do k-means para a os dados da Tabela 4

# Cluster	(c_1, c_2)	(x_1,x_2)
	(-1.25,-1.5)	(-2,-2)
1		(-1,1)
1		(-2,-1)
		(0,-2)
	(2.5,2.0)	(2,1)
2		(2,3)
2		(3,1)
		(3,3)
	(2.63,-1.63)	(3,-2)
2		(3,-1)
3		(2,-1)
		(2.5,-2.5)

iii) Calcule o valor da métrica Silhueta para a primeira amostra do primeiro cluster (-2,2) e para a primeira amostra do terceiro cluster e confirme se os valores obtidos são $S_{1,1}$ =0.8945 e $S_{3,1}$ = 0.933. (T/P)

© Paulo Moura Oliveira 3/3