Homework 10

孙锴

June 5, 2012

练习(7.3).

初始时读入 a_1 ,记 $a=a_1$, $b=a_1^2$ 。

接下来每次读入一个数 a_i ,均将 $b + a_i^2$ 赋值给b,并以 $\frac{a_i^2}{b}$ 的概率将 a_i 赋值给a。

则对于任何时刻, a都是满足条件的被选择的数。

练习(7.4).

记单词流为 w_1, w_2, \ldots, w_n 。 初始时读入 w_1 ,记 $w = w_1$ 。 接下来每次读入一个单词 w_i ,均以 $\frac{1}{i}$ 的概率将 w_i 赋值给w。 则对于任何时刻,w都是满足条件的被选择的单词。

练习(7.5). 记数据流为 c_1, c_2, \ldots, c_n 。

初始时读入 c_1 , 记 $a_j = c_1 \ (1 \le j \le s)$, $b = c_1$ 。

接下来每次读入一个数据 c_i ,将 $b + c_i$ 赋给b,然后对于每个 a_j $(1 \le j \le s)$,均以 \S 的概率将其赋值改为 c_i 。

则对于任何时刻, a_1, a_2, \ldots, a_s 都是已读入数据中抽取出的s个独立的样本。

下面用归纳法证明上述算法的正确性:

显然读完1个数据时 a_1, a_2, \ldots, a_s 是s个独立的样本。

下面假设读完i个数据时 a_1,a_2,\ldots,a_s 是s个独立的样本,读第i+1个数据后,有 $b=c_1+c_2+\ldots+c_{i+1}$,则 a_1 有 $\frac{c_{i+1}}{b}=\frac{c_{i+1}}{c_1+c_2+\ldots+c_{i+1}}$ 概率赋值为 c_{i+1} ,有 $\frac{c_j}{c_1+c_2+\ldots+c_i}(1-\frac{c_{i+1}}{c_1+c_2+\ldots+c_i})=\frac{c_j}{c_1+c_2+\ldots+c_{i+1}}$ 概率赋值为 $(c_j\ 1\leq j\leq i)$,即 a_1 是 a_1,a_2,\ldots,a_s 也是 a_1,a_2,\ldots,a_s 也是 a_1,a_2,\ldots,a_s 也,是 a_1,a_2,\ldots,a_s 也,是 a_1,a_2,\ldots,a_s 相互独立。首先由假设,在读完i个数据时 a_1,a_2,\ldots,a_s 相互独立,而在读入 a_1,a_2,\ldots,a_s 做可能的赋值时,显然任意两个赋值过程是彼此独立无关。因此 a_1,a_2,\ldots,a_s 依旧保持相互独立。

综上,由归纳法证得上述算法是正确的。