Spring 2015 COMP4621 Homework Assignment #1 Handout Date: Feb 14, 2015 (Saturday)

Due Date: March 3, 2015 (Tuesday)

	Name: ID:		
	E-Mail:Section L		
P	Please read the following instructions carefully before answering the questions:		
•	When you write your answers, please try to be precise and concise. Fill in your name, student ID, email and Section number at the top of the first page.		
•	<u>Homework Collection</u> : the hardcopy is required and the homework is collected at the Collection BOX outside <u>Room 4030 (Lift 3)</u> .		
	concertor 2 on outside action 1000 (Envo).		
1.	(30 points) Please briefly answer the following questions in 2-3 sentences only.		
	(a) Please list <i>six</i> Internet applications		
	(b) What is a protocol?		
	(c) What are the five layers in the Internet protocol stack?		
	(c) What are the five layers in the internet protocol stack.		
	(d) What is the difference between routing and forwarding?		
	(e) What is the difference between circuit-switching and packet-switching?		

	(f) What is the difference between propagation delay and transmission delay?
2.	(20 points) Suppose users share a 6 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 5 percent of the time.(a) When circuit switching is used, how many users can be supported?
	(b) For the remainder of this problem, suppose packet switching is used. Find the probability that a given user is transmitting.
	(c) Suppose there are 180 users. Find the probability that at any given time, exactly ${\bf x}$ users are transmitting simultaneously. (Hint: Use the binomial distribution.)
	(d) Can the 180 users be supported by this 6 Mbps link with packet switching, why?
3.	(20 points) Consider the queuing delay in a router buffer (preceding an outbound link). Suppose all packets are m bits in length, the link transmission rate is r bps , and that N packets simultaneously arrive as a batch at the buffer every mN/r seconds.
	(a) To prevent packet loss, what is the minimal switch buffer size?

(b) Assuming the size of switch buffer is infinite. Find the average queuing delay of a packet. (Hint: The queuing delay of the first packet is zero; for the second packet m/r; for the third packet 2m/r. The N-th packet has already been transmitted when the second batch of packets arrives.)

4. (30 points) Consider sending a large file of F bits using packet switching from Host A to Host B. There are **three** links (i.e., **two** switch) between A and B, and the links are uncongested (that is, no queuing delays). Host A divides the large file into segments of S bits each and adds 40 bits of header to each segment, forming packets of L = 40 + S bits. Each link has a transmission rate of R bps. Packets are sent along each of the two links one by one (store and forward). Find the value of S that minimizes the delay of moving the file from Host A to Host B. Disregard propagation delay. (*Hints*: Find the total time T for moving the file from Host A to Host B; take the derivative with respect to S and set to zero).

