

Tubular-like foliations of neighbourhoods of C^1 -submanifolds of \mathbb{R}^n

Jacek A. Gałęski

The Faculty of Mathematics, Informatics and Mechanics, University of Warsaw e-mail: jgaleski@mimuw.edu.pl

1. Introduction of the problem

An embedded C^2 -manifold \mathcal{N} has a neighbourhood which can be foliated by perpendicular subspaces, it is so-called *tubular* neighbourhood. Situation changes when we drop differentiability assumption and consider manifolds of class C^1 . Then the tangent space $T_x\mathcal{N}$, hence also perpendicular one, depends continuously from the point $x \in \mathcal{N}$. The following example shows that there is no chance for tubular neighbourhood of C^1 -manifold.

Example. Lines perpendicular to the graph of function $f(x) = |x|^{3/2}$ intersect each other in every neighbourhood of the graph.

It is sufficient to find a point p(t) at the intersection of the line perpendicular to graph at point (t, f(t)) and vertical axis Oy, and calculate the limit $\lim_{s\to 0} p(s)$. It tuns out that

$$\lim_{t \to 0} p(t) = \lim_{t \to 0} \frac{2t + 3|t|^2 \operatorname{sgn}(t)}{3\sqrt{|t|} \operatorname{sgn}(t)} = 0$$

Figure 1: Graph of $x \mapsto |x|^{3/2}$ with normals lines

We would like to produce foliated neighbourhood around ${\cal C}^1$ manifold which will have as many properties of tubular as possible.

2. The Idea

In order to repair the foliation around C^1 manifold \mathcal{N} , in points such as above one needs to relax positioning of leaves. More precisely, we want to cover manifold \mathcal{N} with a family $\mathfrak{B} = \bigcup_i B_i$ of open balls such that normal spaces in points contained in the set B_i are closer than ε . Then there exist a partition of unity φ_i which is subordinate to the covering \mathfrak{B} . Note that normal spaces at centres of adjacent balls are closer than 2ε . Let us, for a moment, think about partition of unity as collection of weights. To every point $x \in \mathcal{N}$ we would like to assign a linear space which is a combination of normal spaces at centers of balls B_i which contain point x, with weights $\varphi_i(x)$. And the theorem that we would like to have might be the following.

Theorem. For every ε there exist an open foliated neighbourhood of C^1 manifold such that leaves are pieces of affine subspaces of dimension equal to codimension of \mathcal{N} and for every point $x \in \mathcal{N}$ the distance between the leaf at point x and the normal space $T_x \mathcal{N}^\perp$ is less than ε .

If we denote by N_i the normal space at the center of the ball B_i , above interpolation can be written (formally for now)

$$\sum_{i \in I} \varphi_i(x) \, N_i \tag{1}$$

Now we only need a good way to measure distance and take linear combinations of linear subspaces of an arbitrary dimension.

3. Embedding of the Grassmannian

The grassmannian Gr(p.n) is the space of p-dimensional linear subspaces of \mathbb{R}^n . We embed this abstract manifold into $\mathbb{R}^{n \times n}$ by assigning to the point $q \in Gr(p,n)$ the matrix $m \in \mathbb{R}^{n \times n}$ of orthogonal projection onto subspace q and let image of this embedding be denoted by $\mathcal{P}(p,n)$. Also we introduce distance between two subspaces as a usual vector length in \mathbb{R}^{n^2} . By replacing N_i in (1) by matrix m_i of orthogonal projection onto N_i we obtain a matrix, but weighted sum of projection matrices usually do not belong to $\mathcal{P}(p,n)$. We will use standard tubular neighbourhood $U_{\mathcal{P}}(\varepsilon)$ of $\mathcal{P}(p,n)$ with projection along leaves $\pi: U_{\mathcal{P}}(\varepsilon) \longrightarrow \mathcal{P}(p,n)$. Finally obtaining the formula for the leaf at the point $x \in \mathcal{N}$

Figure 3: Projection π from the tubular neighbourhood $U_{\mathcal{P}}(\varepsilon)$ onto $\mathcal{P}(p,n)$

One need to show the following three conditions are fulfilled in order to proceed further with Implicit function Theorem (IFT) and proving the result

- 1. The sum $\sum_{i \in I} \varphi_i(x) \, m_i$ is in the domain of projection π .
- 2. Defined above $\gamma(x)$ is ε -away from $T_x \mathcal{N}^{\perp}$.
- 3. γ is C^1 mapping.

First and third conditions are easy and second needs triangle inequality and a simple geometric observation. Now we make use of the implicit function theorem.

4. Implicit function theorem part

Figure 4: A point \mathbf{u} and the corresponding point $h(\mathbf{x}(\mathbf{u})) \in \mathcal{N}$ and leaf represented by the matrix $\gamma_{\mathbf{x}(\mathbf{u})}$.

Equipped with above conditions, the theorem is a direct consequence of IFT. We shall employ it to the mapping

$$F: \mathbb{R}_{\mathbf{x}, \mathbf{y}}^{n} \times \mathbb{R}_{\mathbf{u}}^{n} \longrightarrow \mathbb{R}^{n}$$

$$F(\mathbf{x}, \mathbf{y}, \mathbf{u}) = \begin{bmatrix} h_{1}(\mathbf{x}) \\ \vdots \\ h_{n}(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \gamma_{\mathbf{X}} \end{bmatrix} \begin{bmatrix} 0 \\ y_{1} \\ \vdots \\ y_{p} \end{bmatrix} - \begin{bmatrix} u_{1} \\ \vdots \\ u_{n} \end{bmatrix}$$
(3)

where $h: \mathbb{R}^k_{\mathbf{x}} \to \mathbb{R}^n$ is a manifold parametrisation, $[\gamma_{\mathbf{x}}]$ is the $n \times n$ matrix of orthogonal projection onto n-k dimensional subspace given by the formula (2). We should think that \mathbf{x} spans a tangent space and \mathbf{y} spans a normal space, then every leaf is parametrized by the variable \mathbf{y} . Now we would like to find functions $\mathbf{x}(\mathbf{u})$ and $\mathbf{y}(\mathbf{u})$ implicitly given by the equality

$$F(\mathbf{x}, \mathbf{y}, \mathbf{u}) = h(\mathbf{x}) + \gamma_{\mathbf{x}}(\mathbf{y}) - \mathbf{u} = 0.$$

Differentiating in **x** and **y** yields

 $= h(\mathbf{x}) + \gamma_{\mathbf{x}}(\mathbf{y}) - \mathbf{u},$

$$\mathfrak{J} := \frac{\partial F}{\partial(\mathbf{x}, \mathbf{y})} = \det[D_{\mathbf{x}} F \mid D_{\mathbf{y}} F]$$

$$= \det[D_{\mathbf{x}} (\varphi(\mathbf{x}) + \gamma_{\mathbf{x}} (\mathbf{y})) \mid D_{\mathbf{y}} \gamma_{\mathbf{x}} (\mathbf{y})]$$

$$= \det[T_{\mathbf{x}} \mathcal{N} + D_{\mathbf{x}} \gamma_{\mathbf{x}} (\mathbf{y}) \mid \gamma_{\mathbf{x}}],$$
(4)

where $T_x\mathcal{N}$ means k vectors spanning the tangent space and $\gamma_{\mathbf{x}}$ is n-k vectors spanning the leaf at point \mathbf{x} (remains of the parametrisation of the leaf by coordinates \mathbf{y}). If we show that the Jacobian determinant \mathfrak{J} do not vanish at point $(0_{\mathbf{x}}, 0_{\mathbf{y}}, 0_{\mathbf{u}})$, we will end the proof. Fortunately $T_{\mathbf{x}}\mathcal{N}$ and $\gamma_{\mathbf{x}}$ span \mathbb{R}^n and $D_{\mathbf{x}}\gamma_{\mathbf{x}}(\mathbf{y})$ does not brake the independence because it is a matrix-vector multiplication and we can take \mathbf{y} small enough to prevent \mathfrak{J} from being zero. From the IFT we have existence and uniqueness. Meaning that for every \mathbf{u} (in neighbourhood close to \mathcal{N}) we can rewrite equality (3) as

$$h(\mathbf{x}(\mathbf{u})) + \gamma_{\mathbf{x}(\mathbf{u})}(\mathbf{y}(\mathbf{u})) = \mathbf{u}.$$

5. Application

In the background of our considerations there is a general problem. For two smooth closed manifolds $\mathcal{M}^{(m)}$, $\mathcal{N}^{(m+k)}$ and smooth isometric embedding $f:\mathcal{M}^{(m)}\longrightarrow\mathcal{N}^{(m+k)}$, what is the behaviour of the volume function V(r) of tubular neighbourhood of radius r around $f(\mathcal{M})$? In full generality, first Taylor expansion is known

$$V(r) = \omega^k \text{Vol}(\mathcal{N})r^k + O(r^{k+1}), \tag{5}$$

where ω^k is the volume of k-dimensional unit disc. When the ambient manifold is flat (e.g. \mathbb{R}^n) Herman Weyl proved that V(r) is a polynomial with coefficients equal to integrals of k^{th} mean curvatures and this is a little surprising result as those are intrinsic invariants. Construction of foliated neighbourhood carried out previously can be used to prove formula (5) for C^1 manifolds. Lets denote our foliated neighbourhood by $\mathcal{F}(\varepsilon,\rho)$, note that it depends on two parameters ε - distance of leaves to normals and ρ - radius of leaves, note also that $\rho=\rho(\varepsilon)$. The strategy is to enclose set $B_{\mathcal{N}}(\rho)=\{u\mid \mathrm{dist}(\mathcal{N},u)\leqslant\rho\}$ between two foliated neighbourhoods, a subset and a superset of $B_{\mathcal{N}}(\rho)$. Then calculate the following limit for both foliated nbds

$$\lim_{r \to 0} \frac{|\mathcal{F}(\varepsilon, r)|}{\omega^k r^k} \tag{6}$$

and check if that limits will be the same. Capturing nbd yields two difficulties

- 1. The limit (6) with $\mathcal{F}(\varepsilon, \rho)$ with constant ε shall not provide proper value (we hope to obtain measure volume of the manifold).
- 2. How much increase the radius ρ of a leaf in $\mathcal{F}(\varepsilon, \rho)$ to provide inclusion $B_{\mathcal{N}}(\rho) \subset \mathcal{F}(\varepsilon, \rho + \operatorname{sth})$ when $\varepsilon \to 0$

The first point can be easily seen by slightly perturbed parallelogram $ABCD_{\rho}$ with two sides parallel to span $\{(\cos(89^{\circ}), \sin(89^{\circ}))\}$ of the length ρ and other two of length 1 parallel to Ox. The limit (6) with above neighbourhood of interval [0,1], $ABCD_{\rho}$ is $\sin(89^{\circ}) \neq \text{Vol}([0,1])$. To solve second problem is what is the reduction of the distance between manifold \mathcal{N} and $\partial \mathcal{F}(\varepsilon, \rho)$.

Lemma. Define $m(\varepsilon)$ by the equality $m(\varepsilon)\rho=\text{dist}(\mathcal{N},\partial\mathcal{F}(\varepsilon,\rho))$ then

$$\liminf_{\varepsilon \to 0} m(\varepsilon) = 1$$

Figure 5: Proof by contradiction. End of the leaf by assumption is in $m\rho$ -nbd of $\mathcal N$ with m<1 hence in in $m\rho$ -nbd of the cone containing $\mathcal N$. While for ε small enough it is close to normal and those are separate sets.

Then we just need to calculate integrals and limit with $i \to \infty$ in the following chain of inequalities

$$|\mathcal{F}(\varepsilon,r)|/\omega^k r^k \leq |U_{\mathcal{N}}(r)|/\omega^k r^k \leq |\mathcal{F}(\varepsilon,(r+r/i))|/\omega^k r^k$$

where $\varepsilon=\varepsilon(i)$ and use squeeze theorem to show that limit (6) is the same also for C^1 -manifolds.