´i1.1.64



# **Obsah**

| Posloupnosti a řady funkcí více proměnných<br>1.1 Co zpracovat: | 3    |
|-----------------------------------------------------------------|------|
| Funkcionální Hilbertovy prostory                                | ,    |
|                                                                 | ,    |
| 2.1 Výchozí pojmy                                               |      |
| 2.2 Prehilbertovské prostory funkcí                             | . 10 |
| 2.3 Faktorové prostory funkcí, Hilbertovy prostory              | . 14 |

# Kapitola 1

# Posloupnosti a řady funkcí více proměnných

# 1.1 Co zpracovat:

1. je ale  $\mathscr{C}(\langle a,b\rangle)$  úplný? (není) - zmínit, okomentovat a vložit asi jako poznámku za poznámku 2.2.12, možná na vhodném místě zmínit definici úplnosti (možná už to někde je, teď si nejsem jistej)

## 1.1.1 Definice

Nechť  $\emptyset \neq M \subset \mathbf{E}^r$ . Potom každé zobrazení množiny  $\mathbf{N}$  do množiny všech funkcí definovaných na M nazýváme posloupností funkcí na M. Je-li číslu  $n \in \mathbf{N}$  tímto způsobem přiřazena funkce  $f_n(\vec{x})$ , zapisujeme funkční posloupnost

$$f_1(\vec{x}), f_2(\vec{x}), \dots$$
 nebo  $(f_n(\vec{x}))_{n=1}^{\infty}$ . (1.1)

Přirozené číslo n přitom nazýváme *indexem* a funkci  $f_n(\vec{x})$  n-tým členem posloupnosti (1.1).

#### 1.1.2 Definice

Nechť je dána posloupnost funkcí (1.1) definovaná na neprázdné množině  $M \subset \mathbf{E}^r$ . Řekneme, že posloupnost funkcí (1.1) konverguje v bodě  $\vec{c} \in M$ , jestliže konverguje číselná posloupnost  $\left(f_n(\vec{c})\right)_{n=1}^{\infty}$ , tj. existuje-li  $\gamma \in \mathbf{R}$  takové, že pro každé  $\varepsilon > 0$  existuje přirozené  $n_0$  tak, že pro všechna  $n \ge n_0$  platí nerovnost  $\left|f_n(\vec{c}) - \gamma\right| < \varepsilon$ . Řekneme, že posloupnost funkcí (1.1) konverguje (bodově) na množině  $N \subset M$ , jestliže konverguje v každém bodě množiny N.

# 1.1.3 Definice

Nechť je dána posloupnost funkcí (1.1) definovaná na neprázdné množině  $M \subset \mathbf{E}^r$ . Nechť pro každé  $\vec{c} \in N$ , kde  $N \subset M$ , posloupnost  $\left(f_n(\vec{c})\right)_{n=1}^\infty$  konverguje. Označme  $f(\vec{c})$  hodnotu limity posloupnosti  $\left(f_n(\vec{c})\right)_{n=1}^\infty$ . Tímto způsobem je na množině N definována funkce  $\vec{x} \mapsto f(\vec{x})$ , kterou nazýváme limitou posloupnosti funkcí (1.1) (nebo zkráceně limitní funkcí) a značíme

$$f(\vec{x}) = \lim_{n \to \infty} f_n(\vec{x}).$$

Oborem konvergence  $\mathcal{O}$  posloupnosti (1.1) nazýváme množinu všech bodů  $\vec{c} \in M$ , ve kterých tato posloupnost konverguje.

# 1.1.4 Definice

Nechť (1.1) je posloupnost funkcí definovaných na množině  $M \subset \mathbf{E}^r$ . Řekneme, že tato posloupnost *stejnoměrně konverguje*  $na\ M$  k funkci  $f(\vec{x})$ , jestliže pro všechna  $\varepsilon > 0$  existuje  $n_0$  tak, že pro všechna  $n \geqslant n_0$  a pro všechna  $\vec{x} \in M$  platí nerovnost  $|f_n(\vec{x}) - f(\vec{x})| < \varepsilon$ .

#### 1.1.5 Poznámka

Bodovou konvergenci značíme obyčejně symbolem  $f_n(\vec{x}) \to f(\vec{x})$ , stejnoměrnou pak  $f_n(\vec{x}) \rightrightarrows f(\vec{x})$ . Rozdíl mezi bodovou a stejnoměrnou konvergencí je dobře patrný z kvantifikátorového zápisu definic obou pojmů:

bodová konvergence

$$(\forall \varepsilon > 0) (\forall \vec{x} \in M) (\exists n_0 \in \mathbf{N}) : \qquad n \in \mathbf{N} \land n \geqslant n_0 \Rightarrow |f_n(\vec{x}) - f(\vec{x})| < \varepsilon. \tag{1.2}$$

stejnoměrná konvergence

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbf{N}) : \qquad n \in \mathbf{N} \land n \geqslant n_0 \land \vec{x} \in M \Rightarrow |f_n(\vec{x}) - f(\vec{x})| < \varepsilon.$$
 (1.3)

Stejnoměrná konvergence tedy požaduje existenci "univerzálního" $n_0$ , které plní svoji roli pro všechna  $\vec{x} \in M$ .

# 1.1.6 Věta – Bolzanova-Cauchyova podmínka

Posloupnost funkcí (1.1) je stejnoměrně konvergentní na  $M \subset \mathbf{E}^r$  právě tehdy, když splňuje tzv. *Bolzanovu-Cauchyovu podmínku* tvaru

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbf{N}) : \qquad m, n \geqslant n_0 \land \vec{x} \in M \Rightarrow |f_n(\vec{x}) - f_m(\vec{x})| < \varepsilon. \tag{1.4}$$

Důkaz:

- První implikace:
  - nechť  $\left(f_n(\vec{x})\right)_{n=1}^{\infty}$  stejnoměrně konverguje na M k jisté funkci f(x)
  - pak pro každé  $\varepsilon > 0$  existuje  $n_0 \in \mathbb{N}$  takové, že pro libovolná  $m, n \in \mathbb{N}$  taková, že  $m, n \geqslant n_0$ , a pro všechna  $\vec{x} \in M$  platí

$$|f_n(\vec{x}) - f(\vec{x})| < \frac{\varepsilon}{2} \quad \land \quad |f_m(\vec{x}) - f(\vec{x})| < \frac{\varepsilon}{2}$$

- a tedy

$$|f_n(\vec{x}) - f_m(\vec{x})| \le |f_n(\vec{x}) - f(\vec{x})| + |f_m(\vec{x}) - f(\vec{x})| < \varepsilon$$

- Druhá implikace:
  - nechť posloupnost funkcí splňuje vztah (1.4)
  - podle Bolzanovy-Cauchyovy podmínky pro číselné posloupnosti posloupnost (1.1) konverguje bodově k jisté funkci na množině M (označme ji  $f(\vec{x})$ )
  - chceme dokázat  $f_n(\vec{x}) \rightrightarrows f(\vec{x})$  na M
  - zvolme  $\varepsilon>0$  a k číslu  $\frac{\varepsilon}{2}$  vyberme podle (1.4)  $n_0$  tak, aby pro všechna  $m,n\geqslant n_0$  platilo

$$|f_n(\vec{x}) - f_m(\vec{x})| < \frac{\varepsilon}{2}$$

- pro libovolné pevně zvolené  $n \geqslant n_0$  a pro m rostoucí nade všechny meze pak odsud dostaneme nerovnost  $|f_n(\vec{x}) f(\vec{x})| \leqslant \varepsilon/2 < \varepsilon$  platnou pro každé  $\vec{x} \in M$
- tím je důkaz zkompletován

### 1.1.7 Věta – supremální kritérium

Nechť  $f(\vec{x})$  a  $f_n(\vec{x})$  pro všechna n jsou funkce definované na množině  $M \subset \mathbf{E}^r$ . Označme

$$\sigma_n := \sup_{\vec{x} \in M} \left| f_n(\vec{x}) - f(\vec{x}) \right|$$

pro každé n. Pak posloupnost funkcí  $\left(f_n(\vec{x})\right)_{n=1}^\infty$  konverguje na množině M stejnoměrně k funkci  $f(\vec{x})$  právě tehdy, když  $\lim_{n\to\infty}\sigma_n=0$ .

#### Důkaz:

- pro všechna  $\vec{x} \in M$  a všechna  $n \in \mathbb{N}$  zřejmě platí nerovnost  $|f_n(\vec{x}) f(\vec{x})| \leqslant \sigma_n$
- První implikace:
  - předpokládejme, že  $\lim_{n\to\infty} \sigma_n = 0$
  - z definice limity číselné posloupnosti  $(\sigma_n)_{n=1}^{\infty}$  plyne, že pro libovolné  $\varepsilon > 0$  existuje  $n_0$  takové, že  $|\sigma_n| = \sigma_n < \varepsilon$  pro všechna  $n \ge n_0$
  - to značí (jak vyplývá z definice suprema), že pro všechna  $n \ge n_0$  a všechna  $\vec{x} \in M$  platí také  $\left| f_n(\vec{x}) f(\vec{x}) \right| < \varepsilon$ , a tedy  $f_n(\vec{x}) \rightrightarrows f(\vec{x})$  na M

#### • Druhá implikace:

- předpokládejme, že  $f_n(\vec{x}) \rightrightarrows f(\vec{x})$  na M
- zvolme libovolné  $\varepsilon>0$ , k němuž jistě existuje  $n_0$  takové, že pro všechna  $n\geqslant n_0$  a všechna  $\vec{x}\in M$  platí nerovnost  $|f_n(\vec{x})-f(\vec{x})|<\varepsilon/2$
- odtud a z vlastností suprema plyne, že pro  $n\geqslant n_0$  platí  $\sigma_n\leqslant \varepsilon/2<\varepsilon$ , a tedy  $\lim_{n\to\infty}\sigma_n=0$

### 1.1.8 Definice

Nechť je dána posloupnost funkcí (1.1) definovaná na neprázdné množině  $M \subset \mathbf{E}^r$ . Potom nekonečný součet

$$f_1(\vec{x}) + f_2(\vec{x}) + \ldots + f_n(\vec{x}) + \ldots$$

nazýváme  $\emph{r}adou \, \emph{funkc}\emph{i}\,$  na M a značíme symbolem

$$\sum_{n=1}^{\infty} f_n(\vec{x}). \tag{1.5}$$

# 1.1.9 Definice

Nechť je dána funkční řada (1.5) definovaná na množině M. Funkci  $s_n(\vec{x}) = \sum_{k=1}^n f_k(\vec{x})$  pro  $n \in \mathbb{N}$  a  $\vec{x} \in M$  budeme nazývat n-tým částečným součtem řady (1.5) a posloupnost  $(s_n(\vec{x}))_{n-1}^{\infty}$  pak posloupností částečných součtů dané řady.

#### **1.1.10 Definice**

Nechť je dána funkční řada (1.5) definovaná na množině M. Nechť  $\left(s_n(\vec{x})\right)_{n=1}^{\infty}$  je příslušná posloupnost částečných součtů. Řekneme, že řada (1.5)  $konverguje\ v\ bodě\ \vec{c}\in M$ , jestliže konverguje číselná posloupnost  $\left(s_n(\vec{c})\right)_{n=1}^{\infty}$ . Řekneme, že řada (1.5)  $konverguje\ (bodově)$  na množině  $N\subset M$ , jestliže konverguje v každém bodě množiny N. Vlastní limitu

$$s(\vec{x}) := \lim_{n \to \infty} s_n(\vec{x})$$

posloupnosti částečných součtů pak nazýváme součtem řady (1.5) a zapisujeme

$$s(\vec{x}) = \sum_{n=1}^{\infty} f_n(\vec{x}). \tag{1.6}$$

Definiční obor  $\mathrm{Dom}(s)$ , tj. množinu všech  $\vec{c} \in M$ , pro něž posloupnost  $\left(s_n(\vec{c})\right)_{n=1}^{\infty}$  konverguje, budeme dále nazývat *oborem konvergence řady* (1.5) a značit symbolem  $\mathcal{O}$ .

#### **1.1.11 Definice**

Řekneme, že řada funkcí  $\sum_{n=1}^{\infty} f_n(\vec{x})$  konverguje na množině  $M \subset \mathbf{E}^r$  stejnoměrně ke svému součtu  $s(\vec{x})$  a označíme  $\sum_{n=1}^{\infty} f_n(\vec{x}) \stackrel{M}{\equiv} s(\vec{x})$ , jestliže posloupnost jejích částečných součtů konverguje na M stejnoměrně k funkci  $s(\vec{x})$ .

# 1.1.12 Věta – Bolzanova-Cauchyova podmínka

Řada funkcí (1.5) konverguje na množině  $M \subset \mathbf{E}^r$  stejnoměrně právě tehdy, když pro každé  $\varepsilon > 0$  existuje index  $n_0 \in \mathbf{N}$  takový, že pro jakékoli dva indexy  $m, n \in \mathbf{N}$  takové, že  $m \geqslant n \geqslant n_0$  a pro jakékoliv  $\vec{x} \in M$  je splněna nerovnost

$$|f_n(\vec{x}) + f_{n+1}(\vec{x}) + \ldots + f_m(\vec{x})| < \varepsilon.$$

Důkaz:

- tvrzení této věty bezprostředně plyne z věty 1.1.6
- označíme-li totiž  $\left(s_n(\vec{x})\right)_{n=1}^\infty$  příslušnou posloupnost částečných součtů, získáváme rovnosti

$$s_{n-1}(\vec{x}) = \sum_{k=1}^{n-1} f_k(\vec{x}), \qquad s_m(\vec{x}) = \sum_{k=1}^m f_k(\vec{x})$$

- podle věty 1.1.6 (v nepatrné obměně) konverguje posloupnost  $\left(s_n(\vec{x})\right)_{n=1}^{\infty}$  na M stejnoměrně právě tehdy, když pro každé  $\varepsilon>0$  existuje index  $n_0\in \mathbf{N}$  takový, že pro jakékoli dva indexy  $m,n\in \mathbf{N}$  takové, že  $m\geqslant n\geqslant n_0$  a pro jakékoliv  $\vec{x}\in M$  je splněna nerovnost  $\left|s_m(\vec{x})-s_{n-1}(\vec{x})\right|<\varepsilon$
- z této nerovnosti ovšem vyplývá, že

$$\left| \sum_{k=1}^{m} f_k(\vec{x}) - \sum_{k=1}^{n-1} f_k(\vec{x}) \right| = \left| f_n(\vec{x}) + f_{n+1}(\vec{x}) + \dots + f_m(\vec{x}) \right| < \varepsilon$$

# 1.1.13 Definice

Řekneme, že řada funkcí  $\sum_{n=1}^{\infty} f_n(\vec{x})$  konverguje na množině  $M \subset \mathbf{E}^r$  regulárně, jestliže řada  $\sum_{n=1}^{\infty} \left| f_n(\vec{x}) \right|$  konverguje na M stejnoměrně.

# 1.1.14 Věta – nutná podmínka stejnoměrné konvergence

Jestliže řada funkcí  $\sum_{n=1}^{\infty} f_n(\vec{x})$  konverguje na množině  $M \subset \mathbf{E}^r$  stejnoměrně, potom posloupnost funkcí  $(f_n(\vec{x}))_{n=1}^{\infty}$  konverguje na této množině stejnoměrně k nulové funkci.

#### Důkaz:

• z předpokladů věty plyne, že

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N})(\forall m, n \in \mathbf{N})(m \ge n \ge n_0)(\forall \vec{x} \in M): |f_n(\vec{x}) + f_{n+1}(\vec{x}) + \dots + f_m(\vec{x})| < \varepsilon$$

- jelikož toto tvrzení platí pro jakákoli  $m,n\in {\bf N}$  taková, že  $m\geqslant n\geqslant n_0$ , platí také při speciální volbě m=n
- pak ale

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N})(\forall n \in \mathbf{N})(n \geqslant n_0)(\forall \vec{x} \in M): |f_n(\vec{x})| = |f_n(\vec{x}) - o(\vec{x})| < \varepsilon$$

• tento výrok je ale ekvivalentní tvrzení, že posloupnost funkcí  $(f_n(\vec{x}))_{n=1}^{\infty}$  konverguje na množině M stejnoměrně k nulové funkci

# 1.1.15 Definice

Nechť jsou dány funkční řady  $\sum_{n=1}^{\infty} f_n(\vec{x})$  a  $\sum_{n=1}^{\infty} g_n(\vec{x})$  definované na množině M. Nechť existuje  $n_0 \in \mathbf{N}$  tak, že pro všechna  $n \geqslant n_0$  a všechna  $\vec{x} \in M$  platí  $\left| f_n(\vec{x}) \right| \leqslant g_n(\vec{x})$ . Pak řadu  $\sum_{n=1}^{\infty} g_n(\vec{x})$  nazýváme řadou *majorantní* k řadě  $\sum_{n=1}^{\infty} f_n(\vec{x})$ .

# 1.1.16 Věta – srovnávací kritérium

Nechť řada  $\sum_{n=1}^{\infty}g_n(\vec{x})$  je na množině  $M\subset \mathbf{E}^r$  majorantní k řadě  $\sum_{n=1}^{\infty}f_n(\vec{x})$  a nechť řada  $\sum_{n=1}^{\infty}g_n(\vec{x})$  je stejnoměrně konvergentní na M. Pak jsou řady  $\sum_{n=1}^{\infty}f_n(\vec{x})$  a  $\sum_{n=1}^{\infty}|f_n(\vec{x})|$  stejnoměrně konvergentní na M, tj. řada  $\sum_{n=1}^{\infty}f_n(\vec{x})$  konverguje na M regulárně.

# Důkaz:

- užijeme Bolzanovu-Cauchyovu podmínku 1.1.12
- z předpokladu víme, že řada  $\sum_{n=1}^{\infty} g_n(\vec{x})$  stejnoměrně konverguje na M, tedy pro jakékoli  $\varepsilon > 0$  existuje  $n_0$  takové, že pro všechna přirozená  $m \geqslant n \geqslant n_0$  a pro všechna  $\vec{x} \in M$  platí

$$0 \leqslant g_n(\vec{x}) + g_{n+1}(\vec{x}) + \ldots + g_m(\vec{x}) < \varepsilon$$

- dále víme, že existuje  $m_0$  tak, že pro všechna  $x \in M$  a všechny indexy  $n \ge m_0$  platí  $|f_n(\vec{x})| \le g_n(\vec{x})$
- pro zvolené  $\varepsilon$  a všechna  $n \geqslant \max\{n_0, m_0\}$  pak platí

$$|f_n(\vec{x}) + f_{n+1}(\vec{x}) + \dots + f_m(\vec{x})| \le |f_n(\vec{x})| + |f_{n+1}(\vec{x})| + \dots + |f_m(\vec{x})| \le g_n(\vec{x}) + g_{n+1}(\vec{x}) + \dots + g_m(\vec{x}) < \varepsilon$$

• to dokazuje obě tvrzení věty

# 1.1.17 Důsledek

Konverguje-li řada na množině M regulárně, konverguje na M také stejnoměrně.

# 1.1.18 Věta – Weierstrassovo kritérium

Nechť  $\sum_{n=1}^{\infty}a_n$  je konvergentní číselná řada,  $f_n(\vec{x})$  jsou funkce a pro všechna  $\vec{x}\in M\subset \mathbf{E}^r$  a všechna  $n\in \mathbf{N}\setminus \widehat{n_0}$  je  $|f_n(\vec{x})|\leqslant a_n$ . Pak řady  $\sum_{n=1}^{\infty}f_n(\vec{x})$  a  $\sum_{n=1}^{\infty}|f_n(\vec{x})|$  stejnoměrně konvergují na M, tj. řada  $\sum_{n=1}^{\infty}f_n(\vec{x})$  konverguje na M regulárně.

# Důkaz:

• v předchozí větě položíme  $g_n(\vec{x}) := a_n$  pro všechna  $\vec{x} \in M$  a uvědomíme si, že pojmy bodové a stejnoměrné konvergence u řady konstantních funkcí splývají

| KAPITOLA 1. POSLOUPNOSTI A ŘADY FUNKCÍ VÍCE PROMĚNNÝCH |
|--------------------------------------------------------|
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
| 8                                                      |

# Kapitola 2

# Funkcionální Hilbertovy prostory

# 2.1 Výchozí pojmy

# 2.1.1 Značení

 $\mathscr{C}^n(M)$  je třída všech funkcí, které mají na množině M spojité derivace až do řádu n, přičemž  $\mathscr{C}(M) = \mathscr{C}^0(M)$ . Nacházíli se index nula dole  $\mathscr{C}^n_0(M)$ , pak M je kompakt. Symbol  $\mathscr{C}^n_0$  značí všechny funkce třídy  $\mathscr{C}^n(\mathbf{E}^r)$ , které mají libovolný, ale kompatní nosič.  $\mathscr{L}(G)$  je třída Lebesgueovsky integrovatelných funkcí na množině G. Třída funkcí majících Lebesgueovsky lokálně integrabilních funkcí značíme  $\mathscr{L}_{loc}(G)$  a definujeme ji v následujícím textu.

# 2.1.2 Úmluva

Symbol G bude nadále reprezentovat r-dimenzionální *oblast*, tj. otevřenou a souvislou podmnožinu množiny  $\mathbf{E}^r$ . Dále symbol J bude označovat kompakt, tj. uzavřenou a omezenou podmnožinu množiny  $\mathbf{E}^r$ . Funkcí budeme rozumět zobrazení  $f(\vec{x}) : \mathbf{E}^r \mapsto \mathbf{C}$ .

# 2.1.3 Úmluva

V celém následujícím textu budeme předpokládat, že je zadána klasická a úplná Lebesgueova míra  $\lambda(X): \mathcal{M}_{\lambda} \mapsto \mathbf{R}^{\star}$  generovaná ve všech dimenzích klasickou vytvořující  $\varphi(x) = x$ . Tudíž soustava  $\mathcal{M}_{\lambda}$  všech  $\lambda$ -měřitelných podmnožin množiny  $\mathbf{E}^{r}$  je  $\sigma$ -algebrou a  $\lambda(X)$  je na ní  $\sigma$ -aditivní mírou. Systém  $\left\{\mathbf{E}^{r}, \mathcal{M}_{\lambda}, \lambda(X)\right\}$  je tedy pro nás nyní výchozím prostorem s úplnou mírou.

#### 2.1.4 Definice

Nech?  $r \in \mathbb{N}$  a  $\vec{\mu} \in \mathbb{R}^r$ . Heavisideovou [hevisajdovou] funkcí budeme rozumět funkci  $\Theta(\vec{x}) : \mathbf{E}^r \mapsto \{0,1\}$  definovanou předpisem

$$\Theta(\vec{x}) := \begin{cases} 1 & \dots & x_1 > 0 \land x_2 > 0 \land \dots \land x_r > 0 \\ 0 & \dots & x_1 \leqslant 0 \lor x_2 \leqslant 0 \lor \dots \lor x_r \leqslant 0. \end{cases}$$
 (2.1)

*Centrovanou Heavisideovou* funkcí budeme rozumět funkci  $\Theta_{\vec{\mu}}(\vec{x}): \mathbf{E}^r \mapsto \{0,1\}$  definovanou předpisem

$$\Theta_{\vec{\mu}}(\vec{x}) := \begin{cases} 1 & \dots & x_1 > \mu_1 \land x_2 > \mu_2 \land \dots \land x_r > \mu_r \\ 0 & \dots & x_1 \leqslant \mu_1 \lor x_2 \leqslant \mu_2 \lor \dots \lor x_r \leqslant \mu_r. \end{cases}$$
(2.2)

# 2.1.5 Poznámka

Funkce  $f(\vec{x})$  je, podle věty 5.3.45 a důsledku 5.3.46 v [5], na G Lebesgueovsky integrabilní právě tehdy, když je  $\lambda$ -měřitelná a její absolutní hodnota je Lebesgueovsky integrabilní.

$$f(\vec{x}) \in \mathcal{L}(G, \mu) \quad \Leftrightarrow \quad |f(x)| \in \mathcal{L}(G, \mu) \land f(x) \in \Lambda_{\mu}(G).$$

Budeme-li tedy mluvit o měřitelných funkcích, tak platí, že

$$f(x) \in \mathcal{L}(G, \mu) \quad \Leftrightarrow \quad |f(x)| \in \mathcal{L}(G, \mu)$$

### 2.1.6 Definice

Nech?je dána funkce  $f(\vec{x}): G \mapsto \mathbf{R}$ . Řekneme, že funkce  $f(\vec{x})$  je lokálně integrabilní na G a označíme symbolem  $f(\vec{x}) \in \mathcal{L}_{loc}(G, \mu(X))$  nebo zkráceně  $f(\vec{x}) \in \mathcal{L}_{loc}(G)$ , jestliže pro každý bod  $\vec{c} \in G$  existuje  $\varepsilon > 0$  tak, že  $f(\vec{x}) \in \mathcal{L}(\mathcal{U}_{\varepsilon}(\vec{c}))$ , tj.

$$\int_{\mathcal{U}_{\varepsilon}(\vec{c})} f(\vec{x}) \, \mathrm{d}\mu(\vec{x}) \in \mathbf{R}.$$

# 2.1.7 Věta

Nech?G je oblast v  $\mathbf{E}^r$ . Funkce  $f(\vec{x}):G\mapsto\mathbf{R}$  je lokálně integrabilní na G právě tehdy, když pro každou kompaktní množinu  $J\subset G$  platí, že

$$\int_I f(\vec{x}) \, \mathrm{d}\mu(\vec{x}) \in \mathbf{R}.$$

#### Důkaz:

- dokážeme nejprve, že pokud pro každou kompaktní množinu  $J \subset G$  platí, že integrál  $\int_J f(\vec{x}) \, d\mu(\vec{x})$  konverguje, pak je  $f(\vec{x})$  je lokálně integrabilní na G
- ullet zvolme tedy libovolně bod  $\vec{c} \in G$
- jelikož G je otevřená, jistě existuje  $\varepsilon > 0$  tak, že  $K = \overline{\mathcal{U}_{\varepsilon}(\vec{c})}, K \subset G, K$  je kompakt a  $\vec{c} \in \mathcal{U}_{\varepsilon}(\vec{c})$
- ullet integrál  $\int_K f(\vec{x}) \, \mathrm{d}\mu(\vec{x})$  ale existuje z předpokladu
- $\operatorname{bd}(K)$  je  $\mu$ -nulová množina, nebo?se jedná o pláš?r-rozměrné koule, a z teorie Lebesgueova integrálu tudíž platí, že  $\int_K f(\vec{x}) \, \mathrm{d}\mu(\vec{x}) = \int_{\mathcal{U}_{\sigma}(\vec{c})} f(\vec{x}) \, \mathrm{d}\mu(\vec{x})$ , a navíc jsme  $\vec{c}$  volili libovolně.
- pro důkaz obrácené implikace předpokládejme, že  $f(\vec{x})$  je lokálně integrabilní na G
- ullet zvolme K jako libovolnou kompaktní množinu, která je podmnožinou oblasti G
- podle teorie míry jistě  $K\in \mathscr{M}_\mu$ , nebo? $\mathbf{E}^r\in\mathscr{S}_r\subset \mathscr{M}_\mu$ , a  $\mathscr{M}_\mu$  je  $\sigma$ -algebra
- Borelova věta ale říká, že z každého otevřeného pokrytí kompaktní množiny lze vybrat pokrytí konečné, tj. existuje soustava oblastí  $\{G_k: k \in \widehat{n}\}$  tak, že  $\cup_{k=1}^n G_k \supset K$  a  $G_k = \mathcal{U}_{\varepsilon}(\vec{x}_k)$  pro jisté body  $\vec{x}_k \in K$
- všechny integrály  $\int_{\mathcal{U}_{\varepsilon}(\vec{x}_k)} f(\vec{x}) d\mu(\vec{x})$  ale existují z předpokladu této implikace
- dále také existují (jak víme z teorie Lebesgueova integrálu všechny integrály)  $\int_{\mathcal{U}_{\varepsilon}(\vec{x}_k)\cap\mathcal{U}_{\varepsilon}(\vec{x}_\ell)} f(\vec{x}) \, d\mu(\vec{x}) \, \text{pro } k,\ell \in \widehat{n}$
- existují rovněž integrály  $\int_{\mathcal{U}_{\sigma}(\vec{x}_k) \cap K} f(\vec{x}) d\mu(\vec{x})$ , což společně garantuje existenci integrálu  $\int_K f(\vec{x}) d\mu(\vec{x})$
- tímto je důkaz dokončen

# 2.2 Prehilbertovské prostory funkcí

V této sekci se pokusíme rozhodnout jestli z vybraných vektorových prostorů funkcí lze vytvořit prehilbertovské prostory funkcí, tj. vektorové prostory se skalárním součinem. Připomeňme si definici skalárního součinu.

# 2.2.1 Definice

Nech? $\mathcal{V}$  je libovolný vektorový prostor nad tělesem C. Zobrazení  $\langle .|. \rangle : \mathcal{V} \times \mathcal{V} \mapsto \mathbf{C}$  nazveme *skalárním součinem*, jestliže splňuje tzv. *axiomy skalárního součinu*:

- lev'a linearita: pro všechna  $f(\vec{x}), g(\vec{x}), h(\vec{x}) \in \mathcal{V}$  a každé  $\alpha \in \mathbf{C}$  platí  $\langle \alpha f + g | h \rangle = \alpha \langle f | h \rangle + \langle g | h \rangle$
- hermiticita: pro všechna  $f(\vec{x}), g(\vec{x}) \in \mathcal{V}$  platí  $\langle f|g \rangle = \langle g|f \rangle^*$
- pozitivní definitnost: pro všechna  $f(\vec{x}) \in \mathcal{V}$  platí  $\langle f|f \rangle \geqslant 0$  a navíc  $\langle f|f \rangle = 0$  právě tehdy, když  $f(\vec{x}) = o(\vec{x})$ .

Dvojici  $\{V, \langle .|. \rangle\}$  nazýváme *prehilbertovským prostorem*.

#### 2.2.2 Definice

Nechť  $\mathcal{V}$  je vektorový prostor funkcí nad tělesem  $\mathbf{C}$ . Zobrazení  $\| \cdot \| : \mathcal{V} \mapsto \mathbf{R}$  nazveme *normou*, jestliže splňuje tzv. *axiomy normy*:

- trojúhelníková nerovnost: pro všechna  $f(\vec{x}), g(\vec{x}) \in \mathcal{V}$  platí:  $||f + g|| \le ||f|| + ||g||$
- homogenita: pro všechna  $f(\vec{x}) \in \mathcal{V}$  a každé  $\lambda \in \mathbb{C}$  platí:  $\|\lambda f\| = |\lambda| \|f\|$ .

Dvojici  $\{V, \|.\|\}$  nazýváme *normovaným prostorem*.

# 2.2.3 Příklad

Ukážeme, že pro libovolnou funkci  $f(\vec{x}) \in \mathcal{V}$  z normovaného prostoru  $\mathcal{V}$  s normou  $\|\cdot\|$  platí nerovnost  $\|f\| \geqslant 0$ . Nejprve snadno prokážeme, že norma opačného vektoru je stejná jako norma vektoru původního. Položme  $\lambda = -1$ . Pak z axiomu homogenity plyne  $\|-f\| = |-1| \|f\| = \|f\|$ . Dále pak v trojúhelníkové nerovnosti položme  $g(\vec{x}) := -f(\vec{x})$ . Pak

$$0 = \|o(\vec{x})\| = \|f(\vec{x}) + (-f(\vec{x}))\| \le \|\vec{f}(\vec{x})\| + \|-f(\vec{x})\| = 2\|\vec{f}(\vec{x})\|,$$

odkud je již patrno, že  $||f|| \geqslant 0$ .

#### 2.2.4 Věta

Nechť  $\langle .|. \rangle$  je skalární součin definovaný na vektorovém prostoru  $\mathcal V$  nad tělesem  $\mathbf C$ . Pak zobrazení  $\mathbf n(f)$  definované předpisem

$$n(f) := \sqrt{\langle f|f\rangle} \tag{2.3}$$

je normou na  $\mathcal{V}$ .

Důkaz:

- ověříme axiomy normy
- axiom nulovosti:
  - je-li  $f(\vec{x}) = 0$ , pak  $n^2(0) := \langle o, o \rangle = 0$
  - je-li n(f)=0, pak tedy  $\langle f,f\rangle=0$ , ale podle axiomu pozitivní definitnosti skalárního součinu toto může nastat pouze tehdy, je-li  $f(\vec{x})=o(\vec{x})$
  - tím je ekvivalence požadovaná v axiomu nulovosti normy prokázána
- axiom trojúhelníkové nerovnosti:
  - provedeme následující sérii úprav

$$\mathbf{m}^{2}(f+g) = \langle f+g|f+g \rangle = \langle f|f \rangle + \langle f|g \rangle + \langle g|f \rangle + \langle g|g \rangle =$$

$$= 2\operatorname{Re}(\langle f|g \rangle) + \langle f|f \rangle + \langle g|g \rangle \leqslant 2|\langle f|g \rangle| + \mathbf{m}^{2}(f) + \mathbf{m}^{2}(g)$$

- užijeme-li nyní Schwarzovy-Cauchyovy-Bunjakovského nerovnosti (viz [2]), dostáváme

$$n^{2}(f+g) \le 2 n(f)n(g) + n^{2}(f) + n^{2}(g) = (n(f) + n(g))^{2}$$

- tím je dokázáno, že  $n(f+g) \leq n(f) + n(g)$
- axiom homogenity:
  - nechť tedy  $\lambda \in \mathbf{C}$  je zvoleno libovolně
  - pak snadno  $\mathbbm{n}(\lambda f) := \sqrt{\langle \lambda f | \lambda f \rangle} = \sqrt{\lambda \lambda^\star} \sqrt{\langle f | f \rangle} = \sqrt{|\lambda|^2} \, \mathbbm{n}(f) = |\lambda| \, \mathbbm{n}(f)$
- tím je prokázáno, že zobrazení n(f) je normou na V

### 2.2.5 Definice

Nechť  $\langle .|. \rangle$  je skalární součin definovaný na vektorovém prostoru  $\mathcal{V}$  nad tělesem  $\mathbf{C}$ . Pak zobrazení  $\mathbb{n}(f)$  definované vztahem (2.3) nazýváme *normou generovanou skalárním součinem*.

#### 2.2.6 Věta

Nechť je dán vektorový prostor  $\mathcal V$  nad tělesem  $\mathbf C$  a skalární součin  $\langle .|. \rangle$ . Nechť ||.|| je norma generovaná tímto skalárním součinem. Nechť je dána posloupnost funkcí  $(f_n(\vec x))_{n=1}^\infty$  z prostoru  $\mathcal V$ , pro níž existuje funkce  $f(\vec x) \in \mathcal V$  tak, že platí následující implikace:

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N}): n > n_0 \implies ||f_n(\vec{x}) - f(\vec{x})|| < \varepsilon.$$

Necht' je funkce  $g(\vec{x}) \in \mathcal{V}$  zvolena libovolně. Pak platí

$$\lim_{n \to \infty} \langle f_n | g \rangle = \langle f | g \rangle, \quad \lim_{n \to \infty} \langle g | f_n \rangle = \langle g | f \rangle.$$

# Důkaz:

- snadno nahlédneme, že pro  $g(\vec{x}) = o(\vec{x})$  platí citovaná rovnost triviálně
- uvažujme tedy nyní pouze ty funkce, které nejsou nulové, tedy ty, pro něž  $||g(\vec{x})|| \neq 0$
- chceme dokázat, že číselná posloupnost  $(\gamma_n)_{n=1}^{\infty}$ , kde  $\gamma_n := \langle f_n | g \rangle$  konverguje k číslu  $\gamma := \langle f | g \rangle$
- je tedy třeba prokázat, že pro každé  $\varepsilon>0$  existuje  $m_0\in {\bf N}$  tak, že pro všechny indexy  $m>m_0$  platí nerovnost  $|\gamma_m-\gamma|<\varepsilon$
- z předpokladu

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N}): \quad n > n_0 \implies \|f_n(\vec{x}) - f(\vec{x})\| < \frac{\varepsilon}{\|g\|},$$

z axiomů skalárního součinu a z Schwarzovy-Cauchyovy-Bunjakovského nerovnosti ale vyplývá, že

$$|\gamma_m - \gamma| = \left| \langle f_m | g \rangle - \langle f | g \rangle \right| = \left| \langle f_m - f | g \rangle \right| \leqslant ||f_m - f|| \cdot ||g|| < \frac{\varepsilon}{||g||} ||g|| = \varepsilon$$

- postačí tedy volit  $m_0 := n_0$
- tvrzení  $\lim_{n\to\infty} \langle g|f_n\rangle = \langle g|f\rangle$  lze dokázat zcela analogicky

# 2.2.7 Lemma

Nechť  $a \in \mathbf{R}$  a  $b \in (a, \infty)$ . Nechť  $\mathscr{C}(\langle a, b \rangle)$  je vektorový prostor všech funkcí  $f(x) : \mathbf{R} \mapsto \mathbf{C}$  spojitých na intervalu  $\langle a, b \rangle$  zavedený nad tělesem  $\mathbf{C}$ . Nechť je dána funkce  $w(x) \in \mathscr{C}(\langle a, b \rangle)$  kladná na  $\langle a, b \rangle$ . Pak formule

$$\left\langle f(x)|g(x)\right\rangle_w := \int_a^b f(x)g^{\star}(x)w(x)\,\mathrm{d}x \tag{2.4}$$

splňuje axiomy skalárního součinu na  $\mathscr{C}(\langle a, b \rangle)$ .

# 2.2.8 Lemma

Nechť  $a \in \mathbf{R}$  (nebo  $a = -\infty$ ) a  $b \in (a, \infty)$  (nebo  $b = +\infty$ ). Nechť  $\mathscr V$  je vektorový prostor všech omezených a spojitých funkcí na intervalu  $\langle a,b\rangle$ . Nech?w(x) je kladná funkce na (a,b), pro kterou platí  $w(x) \in \mathscr L(\langle a,b\rangle)$ . Pak (2.4) splňuje axiomy skalárního součinu na  $\mathscr V$ .

#### 2.2.9 Definice

Spojitou a kladnou funkci w(x) z předešlých lemmat nazýváme *vahou skalárního součinu* a vybrané reprezentanty nazýváme následovně:

- standardní (Legendreova) váha: pro libovolnou volbu  $a, b \in \mathbf{R}$  a  $w(x) = \Theta(a)\Theta(b-x)$ ,
- Laguerreova váha: pro volbu  $a=0, b=\infty$  a  $w(x)=\Theta(x)\mathrm{e}^{-x}$
- Hermiteova váha: pro volbu  $a = -\infty$ ,  $b = \infty$  a  $w(x) = e^{-x^2}$ ,
- *Čebyševova váha:* pro volbu a=-1, b=1 a  $w(x)=\frac{\Theta(1-|x|)}{\sqrt{1-x^2}}.$

### 2.2.10 Definice

Nechť  $p \ge 1$  je pevně zvolený parametr. Pak třídu všech měřitelných funkcí  $f(\vec{x}): G \mapsto \mathbf{C}$ , pro něž

$$\int_G \left| f(\vec{x}) \right|^p \mathrm{d}\lambda(\vec{x}) \in \mathbf{R},$$

označujeme symbolem  $\mathscr{L}_p(G)$ . Neboli

$$\mathscr{L}_p\big(G) = \left\{ f(\vec{x}) : \mathbf{E}^r \mapsto \mathbf{C} : \int_G \big| f(\vec{x}) \big|^p \, \mathrm{d}\mu(\vec{x}) \in \mathbf{R} \right\}$$

# 2.2.11 Věta

Nech?  $f(\vec{x}), g(\vec{x}) \in \mathcal{L}_2(G)$ . Potom  $f(\vec{x})g^*(\vec{x}) \in \mathcal{L}_1(G)$ .

Důkaz:

- stačí si uvědomit, že  $|f(\vec{x})g^{\star}(\vec{x})| \leq \frac{1}{2}|f(\vec{x})|^2 + \frac{1}{2}|g(\vec{x})|^2$
- jelikož oba členy součtu patří do  $\mathcal{L}(G)$ , tak ze srovnávacího kritéria plyne, že také  $|f(\vec{x})g^{\star}(\vec{x})| \in \mathcal{L}(G)$
- je vhodné si zopakovat poznámku 2.1.5 a uvědomit si, že pro měřitelné funkce platí  $f(\vec{x}) \in \mathcal{L}(G) \Leftrightarrow |f(\vec{x})| \in \mathcal{L}(G)$

#### 2.2.12 Poznámka

Vztahy  $\int_G f(x)g^*(x)w(x) dx$ , resp.  $\int_G f(\vec{x})g^*(\vec{x})w(\vec{x}) d\vec{x}$  však na některých vektorových prostorech skalární součin nedefinují. Jedním z takových prostorů je např. prostor  $\mathcal{L}_1(0,1)$ . Funkce  $f(x) = \frac{1}{\sqrt{x}}$  do prostoru  $\mathcal{L}_1(0,1)$  patří, nebo?

$$\int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = 2,$$

ale integrál

$$\int_0^1 \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \, \mathrm{d}x = \int_0^1 \frac{1}{x} \, \mathrm{d}x$$

nekonverguje. Podobně také prostory  $\mathscr{L}(G)$  nebo  $\mathscr{L}_1(G)$  pro  $G=(0,\infty)$  negenerují spolu s operací  $\int_0^\infty f(x)g^\star(x)\,\mathrm{d}x$  prehilbertovský prostor.

 $\mathcal{L}_2(G)$  také není prehilbertovský, protože není splněn axiom pozitivní definitnosti skalárního součinu, tedy neplatí, že

$$\langle f(x)|f(x)\rangle = 0 \quad \Leftrightarrow \quad f(x) = 0$$

Může totiž existovat  $f(x) \neq 0$  taková, že bude  $\int_a^b f(x) f^{\star}(x) dx = 0$ . Například tak, že má nenulovou hodnotu na množině míry nula.

# 2.2.13 Definice

Dirichletovou funkcí budeme rozumět funkci

$$\mathfrak{D}(\vec{x}) := \begin{cases} 1 & \dots & \vec{x} \in \mathbf{Q}^r \\ 0 & \dots & \vec{x} \in \mathbf{R}^r \setminus \mathbf{Q}^r. \end{cases}$$
 (2.5)

# 2.2.14 Poznámka

Zavedeme-li na prostoru  $\mathscr{L}_2(G)$  zobrazení  $\langle f|g \rangle : \mathscr{L}_2(G) \times \mathscr{L}_2(G) \mapsto \mathbf{C}$  předpisem

$$\langle f|g\rangle = \int_C f(\vec{x}) g^{\star}(\vec{x}) \,\mathrm{d}\mu(\vec{x}),$$

pak toto zobrazení není skalárním součinem, neboť není splněn axiom pozitivní definitnosti z definice skalárního součinu. Rovnost  $\langle f|f\rangle=0$  by podle něho měla být splněna tehdy a jen tehdy, pokud  $f(\vec{x})=o(\vec{x})$ , tedy pokud  $f(\vec{x})$  je ryze nulová funkce. Snadno ale nahlédneme, že pro Dirichletovu funkci platí rovnost  $\mathfrak{D}^2(\vec{x})=\mathfrak{D}(\vec{x})$ , a tudíž (podle teorie Lebesgueova integrálu)

$$\left\langle \mathfrak{D} | \mathfrak{D} \right\rangle = \int_G \mathfrak{D}(\vec{x}) \, \mathfrak{D}^\star(\vec{x}) \, \mathrm{d} \mu(\vec{x}) = \int_G \mathfrak{D}(\vec{x}) \, \mathrm{d} \mu(\vec{x}) = 0.$$

Abychom se tedy konečně dostali k nějakému prehilbertovu, a následně Hilbertovu, prostoru budeme potřebovat zobecnění a úvahy, které probereme v následující sekci.

# 2.3 Faktorové prostory funkcí, Hilbertovy prostory

Od termínu funkce nyní přejděme k faktorové funkci, resp. faktorovému prostoru funkcí. Třídu všech funkcí, jež jsou měřitelné a zároveň jsou mezi sebou vzájemně  $\mu$ -ekvivalentní, tj. liší se pouze na množině míry nula, nazveme faktorová skupina funkcí. Třídu všech funkcí, které jsou měřitelné a zároveň ekvivalentní s nulovou funkcí  $(f(\vec{x}) = 0(\vec{x}))$  označíme symbolem  $F_0$ . Do třídy  $F_0$  tedy patří i Dirichletova funkce  $\mathfrak{D}(\vec{x})$ . Libovolného zástupce z vybrané faktorové skupiny funkci nazveme faktorovou funkcí. Pro jednoduchost budeme nadále používat termín funkce, ale mějme pořád na paměti, že jde jen o jednoho vybraného zástupce celé skupiny funkcí.

#### 2.3.1 Definice

Faktorovou funkcí  $\hat{f}(\vec{x})$  nazveme množinu všech funkcí, jež jsou vzájemně  $\mu$ -ekvivalentní s vybranou měřitelnou funkcí  $f(\vec{x}) \in \Lambda(G)$ , tj.

$$\hat{f}(\vec{x}) := \{ g(\vec{x}) \in \Lambda(G) : g \sim f \}.$$

Množinu všech faktorových funkcí nazveme faktorovým prostorem nad G a označíme F(G).

#### 2.3.2 Poznámka

Tedy funkce  $f(\vec{x})$  a  $g(\vec{x})$  z předešlé definice se liší pouze na množině nulové míry. Dále si uvědomme, že integrál všech prvků faktorové funkce na dané oblasti G má stejnou hodnotu. Má tedy smysl definovat

$$\int_G \hat{f}(\vec{x}) \,\mathrm{d}\mu(\vec{x}) := \int_G f(\vec{x}) \,\mathrm{d}\mu(\vec{x}),$$

kde  $f(\vec{x})$  je libovolný zástupce faktorové funkce  $\hat{f}(\vec{x})$ .

#### 2.3.3 Definice

Nechť  $p \geqslant 1$ . Symbolem  $\mathbb{L}_p(G)$  označíme množinu všech (faktorových) funkcí  $f(\vec{x}): G \mapsto \mathbf{C}$ , pro něž  $|f(\vec{x})|^p \in \mathscr{L}(G)$ , tedy

$$\int_G |f(\vec{x})|^p \, \mathrm{d}\mu(\vec{x}) < +\infty.$$

#### 2.3.4 Věta

Zobrazení  $\langle f|g\rangle:\mathbb{L}_2(G)\times\mathbb{L}_2(G)\mapsto\mathbf{C}$  zavedené na  $\mathbb{L}_2(G)$  předpisem

$$\langle f|g\rangle = \int_{G} f(\vec{x}) g^{\star}(\vec{x}) d\mu(\vec{x})$$
 (2.6)

reprezentuje skalární součin. Prostor  $\mathbb{L}_2(G)$  je tudíž prehilbertovským prostorem.

# Důkaz:

- axiom levé linearity je splněn triviálně, podobně jako hermiticita
- pro libovolnou funkci  $f(\vec{x}) \in \mathbb{L}_2(G)$  pak platí, že

$$\left\langle f|f\right\rangle = \int_G f(\vec{x})\,f^\star(\vec{x})\,\mathrm{d}\mu(\vec{x}) = \int_G |f(\vec{x})|^2\,\mathrm{d}\mu(\vec{x})\geqslant 0$$

a navíc rovnost

$$\left\langle f|f\right\rangle = \int_G f(\vec{x})\,f^\star(\vec{x})\,\mathrm{d}\mu(\vec{x}) = \int_G |f(\vec{x})|^2\,\mathrm{d}\mu(\vec{x}) = 0$$

nastává pouze pro nulovou faktorou funkci

- tím je naplněn axiom pozitivní definitnosti
- zbývá dokázat, že pro libovolné dvě funkce  $f(\vec{x}), g(\vec{x}) \in \mathbb{L}_2(G)$  je výraz  $\langle f|g \rangle = \int_G f(\vec{x}) \, g^\star(\vec{x}) \, \mathrm{d}\mu(\vec{x})$  dobře definován

• jelikož je na G splněna nerovnost

$$2|f(\vec{x})g^{\star}(\vec{x})| \le |f(\vec{x})|^2 + |g^{\star}(\vec{x})|^2 = |f(\vec{x})|^2 + |g(\vec{x})|^2$$

a oba integrály  $\int_G \left|f(\vec{x})\right|^2 \mathrm{d}\lambda(\vec{x})$  a  $\int_G \left|g(\vec{x})\right|^2 \mathrm{d}\lambda(\vec{x})$  existují z definice prostoru  $\mathbb{L}_2(G)$  a z věty o absolutní hodnotě Lebesgueova integrálu, existuje podle srovnávacího kritéria také integrál  $\int_G f(\vec{x})g^\star(\vec{x})\,\mathrm{d}\mu(\vec{x})$ 

#### 2.3.5 Poznámka

Je-li vztah (2.6) skalárním součinem na  $\mathbb{L}_2(G)$ , pak je zobrazení

$$\left\|f(\vec{x})\right\| = \sqrt{\int_G \left|f(\vec{x})\right|^2 \mathrm{d}\lambda(\vec{x})}$$

normou na  $\mathbb{L}_2(G)$ . Zobrazení

$$\varrho(f,g) := \sqrt{\int_G \bigl|f(\vec{x}) - g(\vec{x})\bigr|^2 \, \mathrm{d}\lambda(\vec{x})}$$

je metrikou na  $\mathbb{L}_2(G)$ .

## 2.3.6 Definice

Řekneme, že posloupnost funkcí  $\left(f_n(\vec{x})\right)_{n=1}^{\infty}$  z prostoru  $\mathbb{L}_2(G)$  konverguje podle normy k funkci  $f(\vec{x}) \in \mathbb{L}_2(G)$ , pokud pro každé  $\varepsilon > 0$  existuje  $n_0 \in \mathbb{N}$  tak, že pro všechna  $n \geqslant n_0$  platí

$$||f_n(\vec{x}) - f(\vec{x})|| < \varepsilon,$$

to jest

$$\sqrt{\int_G \left|f_n(\vec{x}) - f(\vec{x})\right|^2 \mathrm{d}\mu(\vec{x})} < \varepsilon.$$

Konvergenci podle normy zapisujeme symbolem  $f_n(\vec{x}) \rightarrow f(\vec{x})$ .

# 2.3.7 Příklad

Rozhodněme podle definice, zda posloupnost funkcí  $\left(e^{-nx^2}\right)_{n=1}^{\infty}$  z prostoru  $\mathbb{L}_2(\mathbf{R})$  konverguje podle normy k nulové funkci. Nechť  $\varepsilon>0$  je zvoleno libovolně. Limitní faktorovou funkcí pro zkoumanou posloupnost je nulová funkce. Zkoumejme tedy nerovnost

$$\left\| \mathrm{e}^{-nx^2} \right\| = \sqrt{\int_G \mathrm{e}^{-2nx^2} \, \mathrm{d}\mu(\vec{x})} = \left(\frac{\pi}{2n}\right)^{1/4} < \varepsilon.$$

Za hledané  $n_0 \in \mathbb{N}$  z definice konvergence podle normy tedy stačí volit

$$n_0 := \left\lfloor \frac{\pi}{2\varepsilon^4} \right\rfloor + 1.$$

Povšimněme si ale paradoxu, že posloupnost  $\left(e^{-nx^2}\right)_{n=1}^{\infty}$  nekonverguje (uvažujeme-li konvergenci klasickou) k nulové funkci ani stejnoměrně ani bodově. Vztah mezi klasickou konvergencí a konvergencí podle normy lze shrnout v následující větě.

# 2.3.8 Věta

Nechť je dána posloupnost funkcí  $\left(f_n(\vec{x})\right)_{n=1}^\infty$  z prostoru  $\mathbb{L}_2(G)$  taková, že  $f_n(\vec{x}) \stackrel{G}{\rightrightarrows} f(\vec{x}) \in \mathbb{L}_2(G)$ . Nechť dále  $0 < \mu(G) < \infty$ . Pak  $f_n(\vec{x}) \to f(\vec{x})$ .

Důkaz:

• z předpokladů plyne, že pro všechna  $\tilde{\epsilon} > 0$  existuje  $n_0$  tak, že pro všechna  $n \geqslant n_0$  a pro všechna  $\vec{x} \in G$  platí nerovnost

$$|f_n(\vec{x}) - f(\vec{x})| < \tilde{\varepsilon} = \frac{\varepsilon}{\sqrt{4\mu(G)}}$$

• jelikož zjevně

$$\left\|f_n(\vec{x}) - f(\vec{x})\right\|^2 = \left\langle f_n - f|f_n - f\right\rangle = \int_G \left|f_n(\vec{x}) - f(\vec{x})\right|^2 \mathrm{d}\mu(\vec{x}) \leqslant \frac{\varepsilon^2}{4\mu(G)}\mu(G) = \frac{\varepsilon^2}{4},$$

zjišť ujeme, že pro indexy  $n \ge n_0$  platí nerovnost  $\|f_n(\vec{x}) - f(\vec{x})\| \le \frac{\varepsilon}{2} < \varepsilon$ 

• to dokazuje skutečnost, že posloupnost funkcí  $(f_n(\vec{x}))_{n=1}^{\infty}$  konverguje podle normy k funkci  $f(\vec{x})$ 

# 2.3.9 Věta

Nechť  $f_n(\vec{x}) \to f(\vec{x})$ . Pak existuje podposloupnost  $(f_{k_n}(\vec{x}))_{n=1}^{\infty}$  vybraná z posloupnosti  $(f_n(\vec{x}))_{n=1}^{\infty}$  taková, že platí  $f_{k_n}(\vec{x}) \to f(\vec{x})$  skoro všude v M.

Důkaz:

• viz odkázat se na zdroj, str. 42, příklad 2.2.2

#### **2.3.10 Definice**

Nechť je dán vektorový prostor  $\mathcal V$  se skalárním součinem  $\langle .|. \rangle$ . Nechť  $\|.\|$  je norma generovaná zadaným skalárním součinem a  $\varrho(x,y)$  metrika generovaná výše uvedenou normou. Nechť navíc  $\{\mathcal V,\varrho\}$  je úplným metrickým prostorem. Pak takový prostor  $\mathcal H:=\{\mathcal V,\langle .|. \rangle,\|.\|,\varrho\}$  nazýváme  $\mathit{Hilbertovým}$  prostorem.

#### 2.3.11 Poznámka

Metrický prostor  $\{M,\varrho\}$  s libovolnou metrikou  $\varrho(f,g)$  nazveme *úplným*, jestliže každá cauchyovská posloupnost je v něm konvergentní.

# 2.3.12 Věta – o spojitosti skalárního součinu

Nechť je dán Hilbertův prostor  $\mathcal{H}$  nad tělesem  $\mathbf{C}$ . Nechť je dána posloupnost funkcí  $(f_n(\vec{x}))_{n=1}^{\infty}$  z prostoru  $\mathcal{H}$ , která konverguje podle normy k funkci  $f(\vec{x}) \in \mathcal{H}$ , a funkce  $g(\vec{x}) \in \mathcal{H}$ . Pak platí

$$\lim_{n \to \infty} \langle f_n | g \rangle = \langle f | g \rangle, \quad \lim_{n \to \infty} \langle g | f_n \rangle = \langle g | f \rangle.$$

Důkaz:

• jedná se o bezprostřední důsledek věty 2.2.6

### 2.3.13 Definice

Řekneme, řada funkcí  $\sum_{n=1}^{\infty} f_n(\vec{x})$  z Hilbertova prostoru  $\mathcal{H}$  konverguje podle normy ke svému součtu  $s(\vec{x}) \in \mathcal{H}$ , pokud posloupnost  $\left(s_n(\vec{x})\right)_{n=1}^{\infty}$  jejích částečných součtů

$$s_n(\vec{x}) := \sum_{k=1}^n f_k(\vec{x})$$

konverguje podle normy k funkci  $s(\vec{x})$ , tj.  $\lim_{n\to\infty} s_n(\vec{x}) = s(\vec{x})$ . Konvergenci podle normy zapisujeme symbolem  $\sum_{n=1}^{\infty} f_n(\vec{x}) = s(\vec{x})$ . sem dát podtrženou sumu - Krbálek dodá

#### 2.3.14 Věta

Faktorový prostor  $\mathbb{L}_2(G)$  společně se skalárním součinem zavedeným vztahem (2.6) je úplný, tj. jedná se o Hilbertův prostor.

Důkaz:

Jelikož již bylo prokázáno, že  $\mathbb{L}_2(G)$  je vektorový prostor nad C, zbývá dokázat úplnost. Vyberme tedy z libovolné cauchyovské posloupnosti  $\left(f_k(\vec{x})\right)_{k=1}^{\infty}$  podposloupnost  $\left(f_{k\ell}(\vec{x})\right)_{\ell=1}^{\infty}$ , jež konverguje skoro všude na G. To je díky cauchyovskosti možné. Cílem důkazu je de facto prokázat, že  $\left(f_k(\vec{x})\right)_{k=1}^{\infty}$  je konvergentní v  $\mathbb{L}_2(G)$ . První člen podposloupnosti  $\left(f_{k\ell}(\vec{x})\right)_{\ell=1}^{\infty}$  vyberme tak, aby pro všechna  $m>k_1$  platilo

$$||f_{k_1}(\vec{x}) - f_m(\vec{x})|| < \frac{1}{2}.$$

To je opět díky cauchyovskosti možné. Druhý člen podposloupnosti vyberme tak, aby pro všechna  $m > k_2$  platilo

$$||f_{k_2}(\vec{x}) - f_m(\vec{x})|| < \frac{1}{2^2}.$$

Analogicky vyberme  $\ell$ -tý člen podposloupnosti tak, aby pro všechna  $m > k_{\ell}$  platilo

$$||f_{k_{\ell}}(\vec{x}) - f_{m}(\vec{x})|| < \frac{1}{2^{\ell}}.$$

Označíme-li nyní

$$g_k(\vec{x}) = \sum_{s=1}^k |f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|,$$

$$g(\vec{x}) = \sum_{s=1}^{\infty} |f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|,$$

bude

$$||g_k(\vec{x})|| \le \sum_{s=1}^k ||f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|| < \sum_{s=1}^k \frac{1}{2^s} < 1.$$

Je proto  $\int_M |g_n(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) < 1$  a podle Leviho věty také

$$\int_M |g(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) = \lim_{k \to \infty} \int_M |g_k(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) \leqslant 1$$

a  $g(\vec{x})$  je konečná skoro všude na M. Navíc řada  $\sum_{s=1}^k \left| f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x}) \right|$  má pro skoro všechna  $\vec{x} \in M$  konečný součet a tudíž i řada  $\sum_{s=1}^k \left( f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x}) \right)$  je konvergentní, a tedy také posloupnost

$$f_k(\vec{x}) = \sum_{s=1}^{k-1} (f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})) + f_{k_1}(\vec{x}).$$

Označme  $f(\vec{x})$  její limitu. Ta je samozřejmě měřitelná jako limita posloupnosti měřitelných funkcí.

Ve druhé části důkazu ukážeme, že posloupnost  $\left(f_{k_\ell}(\vec{x})\right)_{k=1}^\infty$  konverguje právě k této funkci  $f(\vec{x})$  v  $\mathbb{L}_2(G)$ . Předně z cauchyovskosti posloupnosti  $\left(f_{k_\ell}(\vec{x})\right)_{\ell=1}^\infty$  plyne cauchyovskost podposloupnosti  $\left(f_{k_\ell}(\vec{x})\right)_{k=1}^\infty$ , a tedy pro  $\epsilon=1$  existuje  $k_0\in \mathbf{N}$  takové, že pro  $\ell>k_0$  a  $m>k_0$  je

$$\int_{M} \left| f_{k_{\ell}}(\vec{x}) - f_{k_{m}}(\vec{x}) \right|^{2} \mathrm{d}\mu(\vec{x}) < 1.$$

Podle Fatouovy věty (viz věta 2.1.7, str. 26 v (někde - DOPLNIT) je

$$\int_M \left| f_{k_\ell}(\vec{x}) - f(\vec{x}) \right|^2 \mathrm{d}\mu(\vec{x}) < 1,$$

odkud plyne, že funkce  $f(\vec{x})$  rozepsaná jako  $\left(f(\vec{x}) - f_{k_\ell}(\vec{x})\right) + f_{k_\ell}(\vec{x})$  patří do  $\mathbb{L}_2(G)$ . Provedeme-li stejnou úvahu s libovolně malým  $\epsilon$ , získáme

$$\int_M \bigl|f_{k_\ell}(\vec{x}) - f(\vec{x})\bigr|^2 \,\mathrm{d}\mu(\vec{x}) < \epsilon^2,$$

což neznamená nic jiného, než že

$$\lim_{\ell \to \infty} f_{k_{\ell}}(\vec{x}) = f(\vec{x}).$$

V poslední části důkazu ukážeme, že k funkci  $f(\vec{x})$  konverguje celá posloupnost  $(f_k(\vec{x}))_{k=1}^{\infty}$ . To ovšem plyne ihned z nerovností

$$||f(\vec{x}) - f_k(\vec{x})|| \le ||f(\vec{x}) - f_{k_\ell}(\vec{x})|| + ||f_{k_\ell}(\vec{x}) - f_k(\vec{x})||,$$

neboť první člen napravo můžeme udělat libovolně malým (pro velká  $k_\ell$ ) díky dokázané konvergenci zmiňované podposloupnosti a druhý díky cauchyovskosti posloupnosti  $(f_k(x))_{k=1}^{\infty}$ .

# 2.3.15 Důsledek

Nechť  $w(\vec{x}) \in \mathscr{C}(G)$  je kladná funkce. Faktorový prostor

$$\mathbb{L}_{2}^{(w)}(G) = \big\{ f(\vec{x}) \in F(G) : \int_{G} |f(\vec{x})|^{2} w(\vec{x}) \, \mathrm{d}\mu(\vec{x}) < +\infty \big\},$$

společně se skalárním součinem zavedeným vztahem  $\int_G f(\vec{x})g^{\star}(\vec{x})w(\vec{x})\,\mathrm{d}\vec{x}$  je Hilbertovým prostorem.

# 2.3.16 Věta

 $f\in\mathscr{L}_2(G)\land H\in G\land \mu(H)<\infty\quad\Rightarrow\quad f\in\mathscr{L}_1(H)$  okomentovat, případně dokázat

# 2.3.17 Důsledek

$$\mu(H) < \infty \quad \Rightarrow \quad \mathscr{L}_2(H) \subset \mathscr{L}_1(H)$$

# 2.3.18 Věta

 $f(\vec{x}), g(\vec{x}) : \mathbf{E}^r \mapsto \mathbf{R}$  jsou hustoty, pak  $(f * g)(\vec{x})$  je rovněž hustotou a vždy existuje.

#### Důkaz:

- $f(\vec{x}), g(\vec{x}) \in \mathscr{L}_{\mathbf{0}}(\mathbf{E}^r) \Rightarrow (f * g)(\vec{x}) \in \mathscr{L}_1(\mathbf{E}^r)$
- nezápornost:

$$(f*g)(\vec{x}) = \int_{\mathbf{E}^r} f(\vec{s})g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} \geqslant 0 \quad \forall x \in \mathbf{E}^r,$$

neboť z definice hustot je integrál větší nebo roven 0 a existuje

$$\begin{split} \int_{\mathbf{E}^r} \left( f * g \right) (\vec{x}) \, \mathrm{d}\vec{x} &= \int_{\mathbf{E}^r} \int_{\mathbf{E}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} \, \mathrm{d}\vec{x} = \int_{\mathbf{E}^r} f(\vec{s}) \int_{\mathbf{E}^r} g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{x} \, \mathrm{d}\vec{s} = \\ &= \left| \begin{array}{c} \vec{y} = \vec{x} - \vec{s} \\ \mathrm{d}\vec{y} = \mathrm{d}\vec{x} \end{array} \right| = \int_{\mathbf{E}^r} f(\vec{s}) \int_{\mathbf{E}^r} g(\vec{y}) \, \mathrm{d}\vec{y} \, \mathrm{d}\vec{s} = 1 \int_{\mathbf{E}^r} f(\vec{s}) \, \mathrm{d}\vec{s} = 1 \end{split}$$

#### 2.3.19 Poznámka

Střední hodnota z r,f(r) je  $\langle r\rangle=\int_{\mathbf{R}}rf(r)\,\mathrm{d}r.$ 

# 2.3.20 Věta

 $\text{Necht'} \ f(x), g(x) : \mathbf{R} \mapsto \mathbf{R} \ \text{jsou hustoty.} \ \text{Necht'} \ \int_{\mathbf{R}} x f(x) \, \mathrm{d}x = \mu_1 \ \text{a} \ \int_{\mathbf{R}} x g(x) \, \mathrm{d}x = \mu_2. \ \text{Pak} \ \int_{\mathbf{R}} \left( f * g \right) (x) \, \mathrm{d}x = \mu_1 + \mu_2.$ 

# Důkaz:

• teoretické požadavky již byly dokázány v předchozí větě

 $\int_{\mathbf{R}} x (f * g)(x) \, \mathrm{d}x = \int_{\mathbf{R}} x \int_{\mathbf{R}} f(s) g(x - s) \, \mathrm{d}s \, \mathrm{d}x = \int_{\mathbf{R}} f(s) \int_{\mathbf{R}} x g(x - s) \, \mathrm{d}x \, \mathrm{d}s =$   $= \begin{vmatrix} y = x - s \\ \mathrm{d}y = \mathrm{d}x \end{vmatrix} = \int_{\mathbf{R}} f(s) \int_{\mathbf{R}} (y + s) g(y) \, \mathrm{d}y \, \mathrm{d}s = \int_{\mathbf{R}}^{2} f(s) y g(y) \, \mathrm{d}s \, \mathrm{d}y + \int_{\mathbf{R}}^{2} f(s) s g(y) \, \mathrm{d}y \, \mathrm{d}s =$   $= \begin{vmatrix} \mathrm{V} \check{e} t a \text{ o separabilit} \check{e} \end{vmatrix} = \int_{\mathbf{R}} f(s) \, \mathrm{d}s \int_{\mathbf{R}} y g(y) \, \mathrm{d}y + \int_{\mathbf{R}} s f(s) \, \mathrm{d}s \int_{\mathbf{R}} g(y) \, \mathrm{d}y = \mu_{1} + \mu_{2}$ 

# 2.3.21 Věta – o posunutí v konvoluci

$$f(\vec{x}), g(\vec{x}) \in \mathcal{L}_1(\mathbf{E}^r), \vec{\mu} \in \mathbf{E}^r$$
. Pak platí:  $(f \star g)(\vec{x} - \vec{\mu}) = f(\vec{x}) \star g(\vec{x} - \vec{\mu}) = f(\vec{x} - \vec{\mu}) \star g(\vec{x})$ 

### 2.3.22 Poznámka

Zde používaáme afinní transformaci, tudíž za každé  $\vec{x}$  dosadíme  $\vec{x} - \vec{\mu}$ . Souvislost s předchozí větou je taková, že lze posunout střední hodnotu v případě, že za f, g zvolíme hustoty.

# 2.3.23 Věta – o derivaci konvoluce

$$f(\vec{x}) \in \mathscr{L}_1(\mathbf{E}^r), g(\vec{x}) \in \mathscr{L}_1(\mathbf{E}^r) \cap \mathscr{C}_0^1. \text{ Pak platí } \frac{\partial}{\partial x_k} (f \star g) = f(\vec{x}) \star \frac{g}{x_k} (\vec{x}).$$

Důkaz:

$$\bullet \ \frac{\partial}{\partial x_k} (f \star g) = \frac{\partial}{\partial x_k} \int_{\mathbf{E}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s}$$

• použijeme větu o derivaci integrálu s parametrem

• 
$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \int_{\mathbf{E}^r} f(\vec{x}|\alpha) \, \mathrm{d}\vec{x} \to \frac{\mathrm{d}}{\mathrm{d}\alpha_k} \int_{\mathbf{E}^r} f(\vec{x}|\alpha_1, \alpha_2, \dots, \alpha_n) \, \mathrm{d}\vec{x}$$

- ověřme předpoklady věty:
  - výraz v integrálu musí konvergovat, což je splněno
  - měřitelnost je splněna, jelikož výraz je z  $\mathcal{L}_1$
  - diferencovatelnost, výraz nahradíme integrabilní majorantou:  $\left| f(\vec{s}) \frac{\partial g}{\partial x_k} (\vec{x} \vec{s}) \right| \leqslant K \left| f(\vec{s}) \right| \in \mathcal{L}(\mathbf{E}),$  a využijeme vlastnost, že funkce na kompaktu nabývá maxima

$$\bullet \ \int_{\mathbf{E}^r} f(\vec{s}) \frac{\partial g}{\partial x_k} (\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} = \left( f \star \frac{\partial g}{\partial x_k} \right) (\vec{x})$$

# 2.3.24 Poznámka

Povšimněme si, že se věta jeví na první pohled nevyvážená, je to z duvodu požadavku na diferencovatelnost pouze pro g. Zároveň si povšimněme absence dodatku "pokud levá (pravá) strana existuje". U konvoluce pozorujeme tzv. vyhlazovací efekt, kdy pokud je g(x) hladká, pak existuje konvoluce i její derivace bez ohledu na to, jak nespojitá je funkce f(x).

# 2.3.25 Příklad

Spočítejme konvoluci dvou Gaussových funkcí. Položme  $f(x)=\frac{1}{\sqrt{2\pi}\sigma_1}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$  a  $g(x)=\frac{1}{\sqrt{2\pi}\sigma_2}e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$ . Pak dopočítám později.

|       | KAPITOLA 2. FUNKCIONÁLNÍ HILBERTOVY PROSTORY |
|-------|----------------------------------------------|
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
|       |                                              |
| 20    |                                              |
|       |                                              |
|       |                                              |
| 20    |                                              |
| 20    |                                              |
| 20    |                                              |
| 20    |                                              |
| 20    |                                              |
|       |                                              |
| 20    |                                              |
| 20    |                                              |
| 20    |                                              |
| 20    |                                              |
| 20    |                                              |
| 20    |                                              |
|       |                                              |
|       |                                              |
| 20    |                                              |
| • 111 | 20                                           |

# Literatura

- [1] T. Hobza: Matematická statistika, http://tjn.fjfi.cvut.cz/~hobza/MAST/mast.pdf (2007)
- [2] M. Krbálek: Matematická analýza III (třetí přepracované vydání), Česká technika nakladatelství ČVUT, Praha 2011
- [3] M. Krbálek: Matematická analýza IV (druhé přepracované vydání), Česká technika nakladatelství ČVUT, Praha 2009
- [4] M. Krbálek: Úlohy matematické fyziky, Česká technika nakladatelství ČVUT, Praha 2012
- [5] M. Krbálek: Teorie míry a Lebesgueova integrálu, Česká technika nakladatelství ČVUT, Praha 2014 (Je to spravne?)