Problem komiwojażera z wykorzystaniem algorytmu symulowanego wyżarzania

Mateusz Chlebosz 151817, Jakub Aszyk 151841

16 Stycznia 2023

Algorytm Wyżarzania Symulowanego

1. Inicjalizacja

Figure 1: Initial

2. Opis Algorytmu

Symulowane wyżarzanie – jedna z technik projektowania algorytmów heurystycznych (metaheurystyka). Cechą charakterystyczną tej metody jest występowanie parametru sterującego zwanego temperaturą, który maleje w trakcie wykonywania algorytmu. Im wyższą wartość ma ten parametr, tym bardziej chaotyczne mogą być zmiany. Podejście to jest inspirowane zjawiskami obserwowanymi w metalurgii – im większa temperatura metalu, tym bardziej jest on plastyczny.

Jest to metoda iteracyjna: najpierw losowane jest pewne rozwiązanie, a następnie jest ono w kolejnych krokach modyfikowane. Jeśli w danym kroku uzyskamy rozwiązanie lepsze, wybieramy je zawsze. Istotną cechą symulowanego wyżarzania jest jednak to, że z pewnym prawdopodobieństwem może być również zaakceptowane rozwiązanie gorsze (ma to na celu umożliwienie wyjście z maksimum lokalnego).

Prawdopodobieństwo przyjęcia gorszego rozwiązania wyrażone jest wzorem e(f(X) - f(X'))/T (rozkład Boltzmanna), gdzie X jest poprzednim rozwiązaniem, X' nowym rozwiązaniem, a f

funkcją oceny jakości – im wyższa wartość f(X), tym lepsze rozwiązanie. Ze wzoru można zauważyć, że prawdopodobieństwo przyjęcia gorszego rozwiązania spada wraz ze spadkiem temperatury i wzrostem różnicy jakości obu rozwiązań.

Przez rozpoczęciem wykonywania algorytmu należy ustalić:

- Początkową wartość temperatury T.
- Sposób obniżania temperatury często stosowanym rozwiązaniem jest mnożenie aktualnej temperatury przez pewien współczynnik, zazwyczaj mieszczący się w przedziale [0, 8; 0, 99].
- Liczbę prób przeprowadzanych w ramach jednej epoki (z tą samą temperaturą).
- Sposób wyboru nowego rozwiązania w ramach pojedynczej próby. Nowe rozwiązanie powinno znajdować się w pobliżu aktualnego. Przy wyznaczeniu nowego rozwiązania można wziąć pod uwagę aktualną temperaturę im wyższa, tym bardziej nowe i aktualne rozwiązanie mogą się od siebie różnić.
- Warunek stopu może to być np. osiągnięcie określonej liczby epok lub odpowiednio mała zmiana rozwiązania w trakcie ostatnio wykonanych epok.

(Debudaj-Grabysz, Deorowicz, and Widuch 2012)

3. Pseudokod

Nasza implementacja w języku C++ dostępna na Githubie: Link

4. Przykład obrazujący działanie

Instancja Startowa

Instancja po kilku iteracjach

5. Finalizacja

Wykresy

1. Porównaj optymalizowaną wartość (wynik) Algorytmu z A. zachłannym.

Figure 2: Simmulated Annealing to Greedy comparison

Ilość Wierzchołków	SA	A. Zachłanny
40	7198.97	8425.74
50	7193.06	8425.74
60	11213.45	12106.38
70	13024.65	14994.13
70	13175.67	14656.53
75	34553.48	38511.89
80	36218.33	42364.59
85	36562.34	42354.04
90	77206.54	93035.40
90	7559.79	9213.95
95	32540.87	36239.94
100	31956.08	37165.13
150	30946.15	34221.08
170	40280.81	44911.27
200	49452.07	57311.45

2. Korzystając z bibliotek instancji (benchmarków) pokaż na wykresie wartość błędu względnego Algorytmu w stosunku do wartości optymalnej.

Figure 3: Simmulated Annealing to Optimum comparison

Instancja	Błąd względny	SA	Optimum
berlin52	0.03%	7544.37	7542
bier127	2.75%	121530.64	118282
kroA200	6.05%	31146.07	29368
kroC100	2.33%	21232.84	20749
lin 105	0.72%	14482.69	14379
pr136	4.16%	100793.86	96772
pr152	5.19%	77508.11	73682
$\sin 175$	10.04%	14198.74	12903
swiss42	3.80%	4766.66	4592
u724	17.14%	49095.25	41910

(Gerhard Reinelt 2007)

3. Zamieść odpowiednią do tematu część Tabelki z Rankingu instancje z Tabelki są w katalogu

Instancja	Wynik
berlin52	7544.37
bier127	121530.64
tsp250	13444.05
tsp500	92396.16
tsp1000	27571.37

Bibliografia

Debudaj-Grabysz, Agnieszka, Sebastian Deorowicz, and Jacek Widuch. 2012. Algorytmy i Struktury Danych: Wybór Zawaansowanych Metod. Wyd. 2. Gliwice: Wydawnictwo Politechniki Śląskiej.

Gerhard Reinelt. 2007. "Optimal Solutions for Symmetric TSPs." http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html.