		Created with Osdag®	
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

1 Input Parameters

Module	Tension Member Design - Welded to End Gusset	
Axial Force (kN)	98.0	
Length (mm) *	563.0	
Section Profile*	Angles	
Section Size*	Ref List of Input Section	
Plate Details -	Input and Design Preference	
Thickness (mm)	[np.int64(8), np.int64(10), np.int64(12), np.int64(14), np.int64(16), np.int64(18), np.int64(20), np.int64(22), np.int64(25), np.int64(28), np.int64(32), np.int64(36) , np.int64(40), np.int64(45), np.int64(50), np.int64(56) , np.int64(63), np.int64(75), np.int64(80), np.int64(9 0), np.int64(100), np.int64(110), np.int64(120)]	
Material	E 250 (Fe 410 W)A	
Ultimate Strength, F_u (MPa)	410	
Yield Strength, F_y (MPa)	250	
Weld Details -	Input and Design Preference	
Weld Type	Fillet	
Type of Weld Fabrication	Shop Weld	
Material Grade Overwrite, F_u (MPa)	410.0	

		Cre	ated with Osdag®
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

1.1 List of Input Section

Section Size*

 $^{\prime}20 \times 20 \times 3^{\prime}$, $^{\prime}20 \times 20 \times 4^{\prime}$, $^{\prime}25 \times 25 \times 3^{\prime}$, $^{\prime}25 \times 25 \times 4^{\prime}$, $^{\prime}25 \times 25 \times 5^{\prime}$, $^{\prime}30 \times 30 \times 3^{\prime}$, $^{\prime}30 \times 30 \times 4^{\prime}$, $^{\prime}30 \times 30 \times 5^{\prime}$, $^{\prime}35 \times 30 \times 3^{\prime}$ $3', \ '45 \times 45 \times 4', \ '45 \times 45 \times 5', \ '45 \times 45 \times 6', \ '50 \times 50 \times 3', \ '50 \times 50 \times 4', \ '50 \times 50 \times 5', \ '50 \times 50 \times 6', \ '55 \times 55 \times 4', \ '50 \times 50 \times 5', \ '50 \times 50 \times 5',$ $^{'}55 \times 55 \times 5^{'}, \ ^{'}55 \times 55 \times 6^{'}, \ ^{'}55 \times 55 \times 8^{'}, \ ^{'}60 \times 60 \times 4^{'}, \ ^{'}60 \times 60 \times 5^{'}, \ ^{'}60 \times 60 \times 6^{'}, \ ^{'}60 \times 60 \times 8^{'}, \ ^{'}65 \times 65 \times 4^{'}, \ ^{'}65 \times 65 \times 60 \times 8^{'}, \ ^{'}60 \times 8^{'}, \ ^{'}$ $65 \times 5'$, $'65 \times 65 \times 6'$, $'65 \times 65 \times 8'$, $'70 \times 70 \times 5'$, $'70 \times 70 \times 6'$, $'70 \times 70 \times 8'$, $'70 \times 70 \times 10'$, $'75 \times 75 \times 5'$ \times 6', '75 \times 75 \times 8', '75 \times 75 \times 10', '80 \times 80 \times 6', '80 \times 80 \times 8', '80 \times 80 \times 10', '80 \times 80 \times 12', '90 \times 90 \times 6', '90 \times 90 \times 8', '90 \times 90 \times 10', '90 \times 90 \times 12', '100 \times 100 \times 6', '100 \times 100 \times 8', '100 \times 100 \times 10', '100 \times 100 \times 12', '110 \times 110 \times $8', '110 \times 110 \times 10', '110 \times 110 \times 12', '110 \times 110 \times 16', '130 \times 130 \times 8', '130 \times 130 \times 10', '130 \times 130 \times 12', '130 \times 130 \times 10', '130 \times 10', '$ $16', '150 \times 150 \times 10', '150 \times 150 \times 12', '150 \times 150 \times 16', '150 \times 150 \times 20', '200 \times 200 \times 12', '200 \times 200 \times 16', '200 \times 200 \times 10', '200 \times 20', '200 \times 20',$ $200 \times 20', \ '200 \times 200 \times 25', \ '50 \times 50 \times 7', \ '50 \times 50 \times 8', \ '55 \times 55 \times 10', \ '60 \times 60 \times 10', \ '65 \times 65 \times 10', \ '70 \times 70 \times 7', \ '80 \times 80', \ '80 \times 10', \ '80 \times 10$ $^{\prime}100 \times 100 \times 7^{\prime}, \, ^{\prime}100 \times 100 \times 15^{\prime}, \, ^{\prime}120 \times 120 \times 8^{\prime}, \, ^{\prime}120 \times 120 \times 10^{\prime}, \, ^{\prime}120 \times 120 \times 12^{\prime}, \, ^{\prime}120 \times 120 \times 15^{\prime}, \, ^{\prime}130 \times 130 \times 10^{\prime}, \, ^{\prime}120 \times 120 \times 12^{\prime}, \, ^{\prime}120 \times 120 \times 15^{\prime}, \, ^{\prime}120 \times 120 \times 12^{\prime}, \, ^{\prime}120 \times 120 \times 120$ $9', '150 \times 150 \times 15', '150 \times 150 \times 18', '180 \times 180 \times 15', '180 \times 180 \times 18', '180 \times 180 \times 20', '200 \times 200 \times 24', '30 \times 200 \times 100', '100 \times 100', '100$ x 3', '30 x 20 x 4', '30 x 20 x 5', '40 x 25 x 3', '40 x 25 x 4', '40 x 25 x 5', '40 x 25 x 6', '45 x 30 x 3', '45 x 30 x 4', $^{\prime}45\times30\times5^{\prime},\ ^{\prime}45\times30\times6^{\prime},\ ^{\prime}50\times30\times3^{\prime},\ ^{\prime}50\times30\times4^{\prime},\ ^{\prime}50\times30\times5^{\prime},\ ^{\prime}50\times30\times6^{\prime},\ ^{\prime}60\times40\times5^{\prime},\ ^{\prime}60\times40\times6^{\prime},\ ^{\prime}60\times6\times6^{\prime},\ ^{\prime}60\times6^{\prime},\ ^{\prime}6$ $40 \times 8'$, $65 \times 45 \times 5'$, $65 \times 45 \times 6'$, $65 \times 45 \times 8'$, $70 \times 45 \times 5'$, $70 \times 45 \times 6'$, $70 \times 45 \times 8'$, $70 \times 80 \times 8'$ $5', '75 \times 50 \times 6', '75 \times 50 \times 8', '75 \times 50 \times 10', '80 \times 50 \times 5', '80 \times 50 \times 6', '80 \times 50 \times 8', '80 \times 50 \times 10', '90 \times 60 \times 6', '80 \times 50 \times 10', '90 \times 60 \times 6', '90 \times 10', '90 \times$ 90 x 60 x 8', 90 x 60 x 10', 90 x 60 x 12', 100 x 65 x 6', 100 x 65 x 8', 100 x 65 x 10', 100 x 75 x 6', 1100 x 75 x 8', '100 x 75 x 10', '100 x 75 x 12', '125 x 75 x 6', '125 x 75 x 8', '125 x 75 x 10', '125 x 95 x 6', '125 x 95 x 8', $^{\prime}125 \times 95 \times 10^{\prime}, \ ^{\prime}125 \times 95 \times 12^{\prime}, \ ^{\prime}150 \times 115 \times 8^{\prime}, \ ^{\prime}150 \times 115 \times 10^{\prime}, \ ^{\prime}150 \times 115 \times 12^{\prime}, \ ^{\prime}150 \times 115 \times 16^{\prime}, \ ^{\prime}200 \times 100 \times 100^{\prime}$ $10', \ '200 \times 100 \times 12', \ '200 \times 100 \times 16', \ '200 \times 150 \times 10', \ '200 \times 150 \times 12', \ '200 \times 150 \times 16', \ '200 \times 150 \times 20', \ '40 \times$ \times 3', '40 \times 20 \times 4', '40 \times 20 \times 5', '60 \times 30 \times 5', '60 \times 30 \times 6', '60 \times 40 \times 7', '65 \times 50 \times 5', '65 \times 50 \times 6', '65 \times 50 \times 7', '65 \times 50 \times 6', '65 \times 50 \times 7', '65 \times 50 \times 6', '65 \times 50 \times 7', '65 \times 50 \times 50 \times 7', '65 \times 50 \times $^{\prime}65 \times 50 \times 8^{\prime}, \ ^{\prime}70 \times 50 \times 5^{\prime}, \ ^{\prime}70 \times 50 \times 6^{\prime}, \ ^{\prime}70 \times 50 \times 7^{\prime}, \ ^{\prime}70 \times 50 \times 8^{\prime}, \ ^{\prime}75 \times 50 \times 7^{\prime}, \ ^{\prime}80 \times 40 \times 5^{\prime}, \ ^{\prime}80 \times 40 \times 6^{\prime}, \ ^{\prime}80 \times 10^{\prime}, \ ^{\prime}80 \times 10^{\prime},$ $40 \times 7'$, $'80 \times 40 \times 8'$, $'80 \times 60 \times 6'$, $'80 \times 60 \times 7'$, $'80 \times 60 \times 8'$, $'90 \times 65 \times 6'$, $'90 \times 65 \times 7'$, $'90 \times 65 \times 8'$, $'90 \times 65 \times$ $10', '100 \times 50 \times 6', '100 \times 50 \times 7', '100 \times 50 \times 8', '100 \times 50 \times 10', '100 \times 65 \times 7', '120 \times 80 \times 8', '120 \times 80 \times 10', '120 \times 80 \times 10', '120 \times 100 \times 100', '120 \times 100', '120$ $\times\ 80\ \times\ 12',\ '125\ \times\ 75\ \times\ 12',\ '135\ \times\ 65\ \times\ 8',\ '135\ \times\ 65\ \times\ 10',\ '135\ \times\ 65\ \times\ 12',\ '150\ \times\ 75\ \times\ 9',\ '150\ \times\ 75\ \times\ 15',\ '150\ \times\ 90$ \times 10', '150 \times 90 \times 12', '150 \times 90 \times 15', '200 \times 100 \times 15', '200 \times 150 \times 15', '200 \times 150 \times 18'

		Created with OSdag®	
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

2 Design Checks

Design Status Pass

2.1 Selected Member Data

Section	n Size*	('55	x 55 x 4', 'Angles')
Material		E 250 (Fe 410 W)A	
Mass, m (kg/m)		3.4	
Area, A (cm ²)		433.0	
A (mm)	55.0	$I_v(\mathrm{cm}^4)$	5.2
B (mm)	55.0	r_z (cm)	1.7
t (mm)	4.0	r_y (cm)	1.7
$R_1 \text{ (mm)}$	6.5	r_u (cm)	2.14
$R_2 \text{ (mm)}$	0.0	r_v (cm)	1.1
C_y (mm)	15.0	$Z_z \text{ (cm}^3)$	3.14
C_z (mm)	15.0	$Z_y \text{ (cm}^3)$	3.14
$I_z \text{ (cm}^4)$	12.5	$Z_{pz} (\mathrm{cm}^3)$	5.63
$I_y(\mathrm{cm}^4)$	12.5	$Z_{py} (\mathrm{cm}^3)$	5.66
$I_u \text{ (cm}^4)$	19.9	Radius of gyra-	11.0
		tion, r (cm)	

2.2 Member Check

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$ $= \frac{433.0 \times 250}{1.1 \times 10^3}$ $= 98.41$ [Ref. IS 800:2007, Cl.6.2]	

		Created with OSdag®	
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
		$\beta = 1.4 - 0.076 \times \frac{w}{t} \times \frac{f_y}{0.9 f_u} \times \frac{b_s}{L_c}$	
		$\leq \frac{0.9f_u\gamma_{m0}}{f_u\gamma_{m1}} \geq 0.7$	
		$-f_{y}\gamma_{m1}$	
		$= 1.4 - 0.076 \times \frac{55.0}{4.0} \times \frac{250}{0.9 \times 410} \times \frac{55.0}{116}$ $\leq \frac{0.9 \times 410 \times 1.1}{250 \times 1.25} \geq 0.7$	
Tension Rupture Capacity (kN)		= 1.06	
		$T_{\rm dn} = 1 \times \left(\frac{0.9 A_{nc} f_u}{\gamma_{m1}} + \frac{\beta A_{go} f_y}{\gamma_{m0}} \right)$	
		$= 1 \times \left(\frac{0.9 \times 204.0 \times 410}{1.25} + \frac{1.06 \times 220.0 \times 250}{1.1}\right)$	
		= 113.22	
		[Ref. IS 800:2007, Cl.6.3.3]	
		$T_{\rm d} = \min(T_{\rm dg}, T_{\rm dn})$	
		$= \min(98.41, 113.22)$	
Tension Capacity (kN)	98.0	= 98.41	Pass
()		[Def IC 900.2007 CL 6 1]	
		[Ref.IS 800:2007, Cl.6.1] $\frac{KL}{r} = \frac{1 \times 563.0}{11.0}$	
Slenderness ratio	$\frac{KL}{r} \le 400$	= 51.18	Pass
		[Ref. IS 800:2007, Cl.7.1.2]	
		Utilization Ratio = $\frac{\dot{F}}{T_d} = \frac{98.0}{98.41}$	
Utilization Ratio	≤ 1	1_d 98.41 = 1.0	

		Created with Osdag®	
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
	$A_{c min} = 0.3 A_c$ = 0.3 × 98.41 = 29.52		
Axial Load Considered (kN)	$A_{\rm c_{max}} = 98.41$	A = 98.0	Pass
	[Ref. IS 800:2007, Cl.10.7]		

2.3 Weld Design

Check	Required	Provided	Remarks
	$t_{w_{\min}}$ based on thinner part		
	$= \max(4, 3)$		
Min. Weld Size (mm)	s_{\min} based on thicker part = 3	3	Pass
	[Ref. IS 800:2007, Table 21, Cl.10.5.2.3]		
	Thickness of thinner part		
	$= \min(8.0, 4.0) = 4.0$		
Max. Weld Size (mm)	$s_{\max} = 16.0$	3	Pass
	[Ref. IS 800:2007, Cl.10.5.3.1]		
		$t_t = 0.7t_w$	
	$t_t \ge 3$	=0.7 imes 3	
Throat Thickness		= 3	Pass
(mm)	[Ref. IS 800:2007, Cl.10.5.3.1]		
		[Ref. IS 800:2007, Cl.10.5.3.1]	
Effective Length (mm)		$l_w = 251.0$	

		Created with OSdag®	
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	Remarks
Weld Strength (N/mm)	$R_{\rm w} = \sqrt{(A_{\rm wh})^2 + (V_{\rm wv})^2}$ $V_{\rm wv} = \frac{V}{l_w} = \frac{0.0}{251.0}$ $A_{\rm wh} = \frac{A}{l_w} = \frac{98000.0}{251.0}$ $R_{\rm w} = \sqrt{(390.44)^2 + (0.0)^2}$ $= 390.44$	$f_w = \frac{t_t f_u}{\sqrt{3} \gamma_{mw}}$ $= \frac{3 \times 410}{\sqrt{3} \times 1.25}$ $= 568.11$ [Ref. IS 800:2007, Cl.10.5.7.1.1]	Pass
Weld Strength (post long joint) (N/mm)	$\begin{aligned} &\text{if } l \geq 150t_t, \text{ then } V_{\text{rd}} = \beta_{l_w} V_{\text{db}} \\ &\text{if } l < 150t_t, \text{ then } V_{\text{rd}} = V_{\text{db}} \\ &\text{where,} \\ &l = \text{plate length or height} \\ &\beta_{l_w} = 1.2 - \frac{(0.2l)}{(150t_t)} \\ &\text{but, } 0.6 \leq \beta_{l_w} \leq 1.0 \\ &\text{[Ref. IS 800:2007, Cl.10.5.7.3]} \end{aligned}$	$l = \text{plate length or height}$ $l_l = \max(85.0, 131)$ $= 131$ $150t_t = 150 \times 3 = 450$ $\text{since, } l < 150t_t$ $then \ f_{\text{wrd}} = f_{\text{w}}$ $f_{\text{wrd}} = 568.11$ [Ref. IS 800:2007, Cl.10.5.7.3.]	
Weld Strength (N/mm)	390.44	568.11	Pass

2.4 Gusset Plate Check

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)	98.0	$T_{\rm dg} = \frac{A_g f_y}{\gamma_{m0}}$ $A_g = lt = 200.0 \times 8.0$ $= \frac{1600.0 \times 250}{1.1 \times 10^3}$ $= 100.0$ [Ref. IS 800:2007, Cl.6.2]	Pass

		Created with Osdag®	
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

Check	Required	Provided	
		$H = 1 \times Depth + Clearance$	
Min.Height (mm)		$= (1 \times 200.0) + 30$	
		= 85.0	
		L = Flange weld + Clearance	
Min.Plate Length		= 101 + 30	Pass
(mm)		= 131	
Min.Member	262	563.0	Pass
Length (mm)			
Thickness (mm)		T = 8.0	
	$R_{\rm w} = \sqrt{(A_{\rm wh})^2 + (V_{\rm wv})^2}$		
Weld Strength (N/mm)	$V_{\text{wv}} = \frac{V}{l_w} = \frac{0.0}{251.0}$ $A_{\text{wh}} = \frac{A}{l_w} = \frac{98000.0}{251.0}$	$f_w = \frac{t_t f_u}{\sqrt{3} \gamma_{mw}}$ $= \frac{3 \times 410}{\sqrt{3} \times 1.25}$ $= 568.11$	Pass
	$R_{\rm w} = \sqrt{(390.44)^2 + (0.0)^2}$ $= 390.44$	[Ref. IS 800:2007, Cl.10.5.7.1.1]	
		$T_{\text{dbl1}} = \frac{A_{\text{vg}} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
Block Shear Capacity (kN)		$T_{\text{dbl2}} = \frac{0.9A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$	
		$T_{\rm db} = \min(T_{db1}, \ T_{db2}) = 285.44$	
		[Ref. IS 800:2007, Cl.6.4]	
		$T_{\rm d} = \min(T_{\rm dg}, T_{\rm db})$	
		$= \min(100.0, 285.44)$	
Tension Capacity (kN)	A = 98.0	= 100.0	Pass
		[Ref.IS 800:2007, Cl.6.1]	

		Created with OSdag®	
Company Name	w to g gusset	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	28 /12 /2024	Client	

3 3D Views

4 Design Log

10:43:00 - Osdag - INFO - :In the case of reverse loading, slenderness value shall be less than 180 [Ref. Table 3, IS 800:2007].

10:43:00 - Osdag - INFO - Size of weld is calculated based on the edge type i.e. square edge or round edge (IS 800:2007 Clause 10.5)).

 $10{:}43{:}00$ - Osdag - INFO - : Overall welded tension member design is safe.

10:43:00 - Osdag - INFO - :======End Of design=======