Algoritmo genético

Prof. Marcelo Dib Cruz

Algoritmos Genéticos

Criados por Holland (1975) baseiam-se nos processos observados na evolução natural. Similarmente à teoria biológica dos sistemas naturais, os melhores indivíduos sobrevivem e geram descendentes com suas características hereditárias.

1859 - Charles Darwin publica o livro "A Origem das Espécies":

"As espécies evoluem pelo principio da seleção natural e sobrevivência do mais apto."

Gregor Mendel

- 1865- Gregor Mendel apresenta experimentos do cruzamento genético de ervilhas.
 - Pai da genética.
- A Teoria da Evolução começou a partir da conceituação integrada da seleção natural com a Genética.

- Segundo Darwin e sua Teoria da Evolução, os indivíduos mais capacitados para a competição por recursos são os que irão sobreviver em ambientes hostis.
- A capacidade de adaptação a um ambiente em mutação é essencial à sobrevivência das espécies e o conjunto de características de um indivíduo determina a sua capacidade de sobrevivência.
- Estas características, em geral, são determinadas pelo material genético individual e controladas por uma unidade básica chamada gene e um conjunto de genes forma um cromossomo

- São as modificações que ocorrem no material genético das espécies que constituem a essência do processo de evolução.
- A evolução se dá através da ação em conjunto da seleção natural e da recombinação de material genético, durante a reprodução.
- Na natureza, a competição faz com que os indivíduos mais aptos tenham mais chances de sobreviver, enquanto os menos favorecidos tendem a desaparecer.

- O mecanismo de seleção natural leva à sobrevivência dos genes mais aptos.
- O processo de evolução inicia-se na recombinação de material genético proveniente dos pais durante a reprodução, quando novas combinações de genes são geradas a partir das já existentes.
- A troca de material genético entre cromossomos durante a reprodução é chamada de *crossover*.

- Pedaços dos cromossomos dos pais são trocados durante o *crossover*, possibilitando o surgimento de combinações mais "corretas" de genes e, consequentemente, de indivíduos mais capacitados.
- A repetição do processo de seleção e *crossover* ao longo das gerações permite a evolução contínua do material genético da espécie, aumentando a chance de gerar indivíduos que sobrevivam em um ambiente competitivo.

Características:

- Usam técnicas de aleatorização
- São robustos e de uso geral
- Trabalham unicamente com o valor da função objetivo (restrições podem ser incorporadas).
- Utilizam regras probabilísticas

Termos Utilizados:

- Indivíduo Solução para um problema;
- População Conjunto de soluções;
- Cromossomo Codificação de uma solução;
- Aptidão/Fitness Qualidade da solução;
- Alelo/Gene Cada elemento que forma a solução,ou seja, um cromossomo é um conjunto de Genes;

- Eles operam sobre a representação codificada de soluções, equivalente ao material genético dos indivíduos na natureza.
- •O AG de Holland codifica as soluções em cadeias de bits, onde cada solução é associada a uma medida de qualidade ou *fitness*.
- A medida de *fitness* reflete a qualidade de um individuo em relação aos demais. Quanto maior a medida de *fitness* de um individuo, maiores as suas chances de se reproduzir e sobreviver à próxima geração.

- Assim como na natureza, um mecanismo de seleção força a contínua evolução da qualidade das gerações.
- Inicialmente é gerada uma população formada por um conjunto aleatório de indivíduos que podem ser vistos como possíveis soluções do problema.
- Durante o processo evolutivo, esta população é avaliada: para cada indivíduo é dada uma nota, refletindo sua habilidade de adaptação a determinado ambiente.
- Uma porcentagem dos mais adaptados é mantida, enquanto os outros são descartados.

- Os membros mantidos pela seleção podem sofrer modificações em suas características fundamentais através de mutações e cruzamentos, gerando descendentes para a próxima geração.
- A recombinação de material genético é simulada através de um mecanismo de *crossover* que troca pedaços entre as cadeias de bits dos pais.
- Outra operação, chamada de mutação, provoca alterações esporádicas e randômicas nas cadeias de bits.

O projeto de um AG deve conter os componentes:

- Uma representação na forma de cromossomos das soluções potenciais do problema.
- Uma forma de criar uma população inicial de soluções válidas.
- O projeto de uma função de avaliação que classifique os indivíduos em função de sua aptidão.
- Operadores genéticos que alterem a composição dos filhos (crossover e mutação).
- A atribuição de valores aos diversos parâmetros usados pelos AG's (tamanho da população, probabilidade da aplicação dos operadores genéticos, critério de parada, etc.).

• Durante a geração *t*, o algoritmo mantém uma população de soluções potenciais (cromossomos)

$$P(t) = \{V_1, ..., V_n\}.$$

- Cada solução v_i é avaliada para fornecer a medida de sua qualidade ou aptidão.
- Uma nova população P(t+1) é então formada, selecionandose, probabilisticamente, os cromossomos mais aptos de P(t).
- •Alguns dos membros desta nova geração sofrem transformações por meio de operações de *crossover* e mutação, de acordo com uma probabilidade pré-definida.

- As operações genéticas que serão aplicadas aos indivíduos escolhidos são:
 - Reprodução de um indivíduo através da inserção de outra cópia sua na população.
 - Recombinação de dois indivíduos existentes, usando a operação de crossover, para formar dois outros novos indivíduos.
 - Mutação aleatória de um gene, localizado em uma posição escolhida também aleatoriamente, criando um novo indivíduo.

ALGORITMO GENÉTICO SIMPLIFICADO

- Seja P uma população inicial de indivíduos
- 2. Repita
- 3. Obtenha novos indivíduos N a partir de P por
- 4. Cruzamentos:
- 5. Selecione pares de indivíduos em *P*
- Produza filhos de cada par
- Mutação:
- 8. Selecione indivíduos de P
- Produza filhos de maneira assexuada
- 10. Atualize P selecionando indivíduos de $P \cup N$
- 11. Até atingir critério de parada
- **12.** Devolva indivíduo $e \in P$ mais adaptado

Nova Geração

- Mantenha a população P com n elementos;
- Use probabilidade para escolher alguns elementos (e.g. método da roleta);
- Utilize cruzamento e mutação para gerar novos indivíduos;
- Remova da população os indivíduos menos adaptados;

Método da Roleta (Roulette Wheel)

Suponha que temos uma população de n = 4 indivíduos:

Item	Aptidão/Fitness	Chance de Escolha
1	150	30%
2	50	10%
3	200	40%
4	100	20%
Total	500	100%

A chance de escolher um indivíduo é proporcional à aptidão.

Para gerar uma nova população com m indivíduos, sorteie (rode a roleta) m vezes (pode dar repetições).

Exemplos de codificação

Vetor de bits Cada bit pode representar um elemento que forma uma solução.

Cromossomo 1: 11110000011100000111

Cromossomo 2: 01010101010101010101

Permutação Usado para problemas com ordem, como o TSP.

Cromossomo 1: 1 4 2 8 5 7 6 9 3

Cromossomo 2: 5 2 6 9 4 3 1 7 8

Função de Aptidão/Fitness

- Função que quantifica o quão bom é uma solução (indivíduo) em relação aos outros.
- Em geral, a aptidão é o valor da solução.
- Quanto mais próximo da solução ótima, mais apta é a solução.

Seleção

- Baseada no princípio da sobrevivência do mais adaptado, um indivíduo é selecionado probabilisticamente, baseando-se no seu grau de adaptação.
- O interessante é que mesmo os pouco ou nada adaptados possuem alguma chance de se reproduzirem.

Seleção

- Seleção para Cruzamento/Crossover ou Mutação
- Selecione de maneira aleatória
- Seleção baseada na aptidão/fitness.
- Um mesmo indivíduo pode estar em vários cruzamentos ou várias mutações.

Cruzamento/Crossover

Cruzamento em 1 ponto:

Pai 1:

11111 111111111

Pai 2:

00000|00000000

Produzem os filhos:

Filho 1:

11111 000000000

Filho 2:

00000 111111111

Cruzamento/Crossover

Cruzamento em *k* pontos:

Pai 1:

Pai 2:

Produzem os filhos:

Filho 1:

Filho 2:

Os *k* pontos podem ser gerados aleatoriamente. Um filho pode ser gerado de vários pais.

Mutação

- Gera variabilidade na população, principalmente com aleatoriedade
- Em geral uma mutação é obtida por pequenas mudanças no indivíduo original

Por exemplo: Sortear posições no vetor de bits e trocar seus valores

Indivíduo: 10**1**1101**0**01011**1**110

Mutação: 10**0**1101**1**01011**0**110

- O operador mutação atua ao nível de bit, usando uma probabilidade de troca de *Pm*.
- No exemplo, se Pm=10%, quando um cromossomo for escolhido o mesmo é varrido bit a bit.
- Para cada bit desta, gera-se um número aleatório entre [1,100].
- Se, por exemplo, o número for de 1 a 10, o bit é invertido, se não, ele é mantido.

- Combinados, os processos de seleção e recombinação realizam uma espécie de busca local nas proximidades dos melhores indivíduos da população.
- Sem mutação, os algoritmos genéticos fariam a busca usando somente a informação contida na população e não teriam como repor material genético perdido com a seleção e o *crossover*.

O algoritmo genético envolve passos probabilísticos em três pontos:

- Na criação da população inicial.
- Na seleção dos indivíduos que sofrerão as operações genéticas.
- Na escolha do ponto de mutação (na mutação) ou de corte (no crossover).

- Parametros Genéticos
- É importante analisar de que maneira alguns parâmetros influem no comportamento dos algoritmos genéticos.
 - Tamanho da População
 - Taxa de Cruzamento
 - Taxa de Mutação
 - Numero de Gerações
 - Probabilidades.

Exemplo

- max x^2 para $x \in \{0, 1, ..., 31\}$
- Codificação com vetor de 5 bits
 - Indivíduo = 01101 (x = 13)
- População de tamanho n = 4
- Cruzamento com 1 ponto
- Seleção por roleta
- Inicialização aleatória

Seleção de indivíduos

No. do	População	Valor	Aptidão	Probab.	No. Vezes
Indivíduo	Inicial	de x	f(x)	na roleta	selecionado
1	01101	13	169	0,14	1
2	11000	24	576	0,49	2
3	01000	8	64	0,06	0
4	10011	19	361	0,31	1 1
Soma			1170	1	4
Média			293	0,25	1
Máximo			576	0,49	2

- Somando os valores da função objetivo individual de cada cadeia, chegamos ao valor 1170, a partir do qual encontramos a participação da função objetivo individual de cada cadeia (% do total).
- Para reproduzir um indivíduo precisamos selecionar dois pais.
- O processo de seleção inicia-se com a geração de um número aleatório $n \in [0,100)$.
- A seguir, consulta-se à qual elemento esse número *n* corresponde, na tabela de probabilidades acumuladas.
- 14,63,69,100

- Dessa maneira, cadeias com maior valor de função objetivo tem maior chance de serem selecionadas para sobreviver. O processo é repetido até que *m* indivíduos sejam reproduzidas.
- Supondo que os números gerados foram: 35; 66; 91
 - O número 35 está entre 14 e 63, logo corresponde ao indivíduo cadeia 11000;
 - 66 corresponde ao indivíduo 01000;
 - 91 corresponde ao indivíduo 10011

- O operador de cruzamento é agora aplicado mediante a seleção aleatória de *q* pares de cadeias, as quais trocarão material entre si (o valor de *q* depende do valor da taxa de *crossover*, *Pc*, definida).
- O cruzamento mais elementar consiste na escolha do ponto de cruzamento, representado por um número inteiro aleatório *k* entre 1 e tamanho_da_cadeia 1.
- As cadeias podem manter a parte inicial e trocar entre si a parte posterior à posição k. Caso as cadeias selecionadas sejam 10011 e 00101 e k=3, então 100 | 11 e 001 | 01 trocarão material, gerando 10001 e 00111.

Cruzamento

No. do	Pares p/		Ponto de	Filhos	Х	Aptidão
Indivíduo	Cruzamento		Cruzamento			$f(x)=x^2$
1	01	10 1	4	01100	12	144
2	110	000	4	11001	25	625
2	11 000		2	11011	27	729
4	10	011	2	10000	16	256
Soma					1	1754
Média						439
Máximo						729

Mutação

No. do	Antes	Após	X	Aptidão
Indivíduo	Mutação	Mutação		$f(x) = x^2$
1	<u>0</u> 1101	<u>1</u> 1100	28	784
2	11000	11001	25	625
2	11000	11011	27	729
4	10 0 11	10 <u>1</u> 11	23	529
Soma				2667
Média				666,75
Máximo				784

O Problema da Mochila

- Cromossomo
 - A solução s (um vetor de uns e zeros) é naturalmente representada por um cromossomo binário.
- Operadores binários padrão
 - Crossover de 1-ponto (ou 2-pontos, etc)
 - Mutação (invertendo os bits)

Uma Instância do Problema da Mochila

Objeto (j)	1	2	3	4	5	6	7	8
Benefício (c_i)	3	3	2	4	2	3	5	2
Peso (w _i)	5	4	7	8	4	4	6	8

Capacidade da mochila: b = 25

11001110 (cromossomo válido)

peso =
$$5+4+4+4+6 = 23 \le 25$$

função objetivo = $3+3+2+3+5 = 16$

11111001 (inválido)

Reparando o Indivíduo

- Indivíduo inválido
 - 11111001
 - peso = 36 > 25
 - Função objetivo = 16
- Indivíduo "reparado"
 - 11110000
 - Peso = 24 (ok!)
 - Função objetivo = 12

visitar cada bit da esquerda para a direita e desprezar os bits que invalidam a solução.

Penalizando a Função Objetivo

Um exemplo de penalidade é:

$$f(s) = \sum_{j=1}^{n} c_j s_j - \alpha \times max \left(0, \sum_{j=1}^{n} s_j w_j - b\right)$$

Onde α é um coeficiente de penalidade igual a:

$$\alpha = \sum_{j=1}^{n} c_j = 14$$

Objetos que ultrapassam a capacidade da mochila são penalizados.

Penalizando a Função Objetivo

- Exemplo
 - 11111001
 - peso = 36 > 25
 - Função original = 16
 - Função com penalidade = 16 14 x (36-25) = -138