Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

_					
Кафедра інформатики та програмної інженерії					
	Звіт				
	з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»				
	«Дослідження рекурсивних алгоритмів»				
	Варіант 22				
Виконав студент	Мєшков_Андрій_Ігорович				
	(шифр, прізвище, ім'я, по батькові)				
Перевірив	Вєчерковська Анастасія Сергіївна (прізвище, ім'я, по батькові)				

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета – дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 22

Задача. Обчислити кількість комбінацій з n різних елементів по m. Кількість комбінацій визначається формулою

$$C_n^m = \begin{cases} 1, \text{ якщо } m = 0, n > 0 \text{ або } m = n \geq 0; \\ 0, \text{ якщо } m > n \geq 0; \\ C_{n-1}^{m-1} + C_{n-1}^m \text{ в інших випадках.} \end{cases}$$

Постанова задачі. З клавіатури вводиться два числа. Числа перевіряються на невід'ємне значення та результат реалізований рекурентно за допомогою підпрограми у вигляді функцій для обчислення кількості комбінацій.

Побудова математичної моделі: для більшої наочності складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Кількість елементів більшої групи	Цілий/Невід'ємний	n	Початкові дані
Кількість елементів меншої групи	Цілий/Невід'ємний	m	Початкові дані
Перший параметр першої функції	Цілий/Невід'ємний	n0	Проміжні дані
Другий параметр першої функції	Цілий/Невід'ємний	m0	Проміжні дані
Результат першої функції	Цілий/Невід'ємний	С	Проміжні дані
Кількість комбінацій з п різних елементів по т	Цілий/Натуральний	Cnm	Результат

Числа перевіряються на невід'ємність – кількість елементів не може бути менше за нуль.

Якщо n<0 або m<0 на екран виводиться текст: «Числа повинні бути додатніми». Якщо числа невід'ємні, то $\mathbf{Cnm} = C(\mathbf{n}, \mathbf{m})$, де $C(\mathbf{n0}, \mathbf{m0})$ — рекурсивна функція яка обчислюється за формулою, яка складається з випадків:

- 1. Якщо **m0**=0, **n0**>0 або **m0**=**n0**>=0, то **c**=1;
- 2. Якщо m0>n0>=0, то c=0;
- 3. У інших випадках c=C(n0-1,m0-1)+C(n0-1,m0);
 - \mathbf{c} результат, який ми повертаємо.

Тобто функція буде викликати саму себе до тих пір поки значення параметрів не будуть задовольняти перший випадок. Результат — це сума великої кількості одиниць. Кінцевий результат виводиться на екран.

Розв'язання. Програмні специфікації запишемо у псевдокоді та у графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію перевірки чисел на від'ємність та обчислення кількості комбінацій.

Псевдокод Програма

```
Крок 1
                                     Крок 2
Початок
                                      Початок
  введення п, т
                                        введення n, m
                                        якщо n<0 || m<0
  Перевірка чисел на
  від'ємність та
                                          виведення: «Числа повинні бути
  обчислення кількості
  комбінацій
                                          додатніми»
Кінець
                                          інакше
                                            Cnm := C(n, m)
                                        все якщо
                                      Кінець
```

Підпрограма

C(n0, m0):

```
C(n0, m0) якщо (m0==0 \&\& n0>0) \parallel (m0==n0 \&\& n0>=0) То c:=1 інакше якщо m0>n0 \&\& n0>=0 то c:=0 інакше c:=C(n0-1, m0-1) + C(n0-1, m0) повернути c
```

Блок-схема Програма:

Підпрограми:

Випробування алгоритму: перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Код програми:

```
#include <iostream>
2 #include <cmath>
3 using namespace std;
5 long long C(int n0, int m0){
       long long c;
       if(((m0==0)&&(n0>0))||((m0==n0)&&(n0>=0))) {
           c = 1;
       }
       else if((m0>n0)&&(n0>=0)){
           c = 0;
       }
       else{
           c = C(n0-1,m0-1) + C(n0-1,m0);
       return c;
19 }
20 int main ()
21 {
       int n, m;
       long long Cnm;
       cout << "n = ";
       cin >> n;
       cout << "m = ";
       cin >> m;
       if(n<0||m<0){
           cout << "n and m must be positive." << endl;</pre>
       }
       else{
           Cnm=C(n, m);
           cout << "Cnm = " << Cnm << endl;</pre>
       }
38
```

TecT№1(10, 5)

```
#include <iostream>
2 #include <cmath>
3 using namespace std;
5 long long C(int n0, int m0){
      long long c;
      if(((m0==0)&&(n0>0))||((m0==n0)&&(n0>=0))) {
           c = 1;
      }
      else if((m0>n0)&&(n0>=0)){
          c = 0;
      }
      else{
          c = C(n0-1, m0-1) + C(n0-1, m0);
      }
      return c;
                                       n = 10
                                       m = 5
                                       Cnm = 252
                                       Program ended with exit code: 0
```

Tect№2(-5, 0)

```
1 #include <iostream>
2 #include <cmath>
3 using namespace std;
 long long C(int n0, int m0){
      long long c;
      if(((m0==0)&&(n0>0))||((m0==n0)&&(n0>=0))) {
           c = 1;
      }
      else if((m0>n0)&&(n0>=0)){
          c = 0;
      }
      else{
          c = C(n0-1, m0-1) + C(n0-1, m0);
      return c;
                                       n = -5
                                       m = 0
                                       n and m must be positive.
```

Program ended with exit code: 0

```
#include <iostream>
#include <cmath>
using namespace std;
long long C(int n0, int m0){
    long long c;
    if(((m0==0)&&(n0>0))||((m0==n0)&&(n0>=0))) {
        c = 1;
    }
    else if((m0>n0)&&(n0>=0)){
        c = 0;
    }
    else{
        c = C(n0-1,m0-1) + C(n0-1,m0);
    return c;
                                    n = 23
                                    m = 233
                                    Cnm = 0
                                    Program ended with exit code: 0
```

Висновок: отже, за допомогою підпрограми(рекурсивна функція) було організовано знаходження кількості комбінацій з п різних елементів по т. Було досліджено рекурсивні алгоритми, проаналізовано подане завдання, декомпозовано та виконано. Також були розроблені псевдокод, код програми та блок-схема поставленого алгоритму.