

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

ÁREA DEPARTAMENTAL DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES

Licenciatura em Engenharia Informática e Multimédia

Processamento de Imagem e Visão

1º Semestre 2015/2016

Exame da Época de Recurso – 19 de fevereiro de 2016 – Duração: 2H30M

Justifique todas as respostas

- Porque o processo de digitalização de folhas de papel ou fotografias é, maioritariamente, realizado com sensores de linha? Justifique.
- Descreva uma função (operação com base num pixel) que altere o contraste de uma imagem e indique qual a sua finalidade.
- 3. Considerando os espaços de cor RGB e HSI, diga, justificando, aquele que melhor modela o sistema sensorial do sistema visual humano. (1)
- Se dispusesse de 10 bits para representar a informação de cor de um pixel, diga, justificando, como faria a atribuição dos bits pelas componentes de cor RGB, tendo em atenção as características do sistema visual humano.
- 5. Considere que dispõem de uma câmara com um sensor de 1/4" (2,4mm A x 3,2mm L) e uma lente com 10 mm de distância focal.
 - a. Determine o campo de visão a 10 metros (espaço da cena projetada no sensor). (1)
 - b. Diga, justificando, qual a resolução mínima da imagem para que um objeto com 55cm de largura à distância considerada, tenha uma dimensão mínima na imagem de 100 pixéis.
- 6. A seguinte matriz representa um troço de uma imagem de níveis de cinzento.

0	5 10		90	
5	10	90	170	
10	10 90		250	
90	170	250	255	

- a. Determine as saídas de um filtro de realçamento de transições verticais e horizontais de dimensão 3x3 (considere que só processa os pixéis da imagem com sobreposição total com a máscara).
- b. Com base no módulo das transições, determine uma imagem de contornos. (1)

7. Considere que a seguinte imagem de etiquetas foi gerada a partir de um algoritmo de deteção de regiões ativas e extração de componentes conexas.

				1	1	
				1	1	
	2	2				
2	2	2	2	3	3	
	2	2		3	3	

Tendo em atenção as possíveis características das regiões detetadas e dos objetos que podem representar, descreva um procedimento de classificação dessas regiões, nomeadamente, as características extraídas, as possíveis classes dos objetos existentes e um processo de classificação. (1,5)

8. Dada a imagem a cores representada pelos seguintes planos de cor

200	50
70	90

Plano R

Plano E

(1)

a. Calcule as componentes da imagem no espaço RG-normalizado.

b. Dado o seguinte classificador e o centróide $c \rightarrow (0,6;0,3)$, determine a imagem binária que indica os pixéis de face. (1)

$$I(i, j) \in \begin{cases} face & se \quad \text{Dist}(I_{ij}, centroide) < 0,01 \\ n\tilde{a}o \ face & caso \ contrário \end{cases}$$

- 9. Explique sucintamente o princípio do método esparso para deteção de movimento. (1)
- 10. Considere que as seguintes matrizes representam 3 imagens monocromáticas provenientes de uma câmara digital de videovigilância adquiridas em 3 instantes de tempo. Pretende-se realizar um algoritmo de deteção de objetos com base em subtração de imagens.

100	102	101		
120	120	130		
135	130	132		
a)				

200	105	95		
115	125	203		
140	210	195		
b)				

101	105	115			
120	130	135			
145	125	135			
c)					

a. Determine a imagem de fundo com base na filtragem de mediana temporal. (1)

- b. Proceda à deteção de objetos na imagem b):
 - i. Determine a imagem dos pixéis ativos considerando um limiar de 30 e o método de subtração de imagem de fundo. Descreva os passos seguidos.
 - ii. Diga quantos objetos estão presentes, realizando a etiquetação da imagem
 anterior e considerando um limiar mínimo de 2 para a área.
- 11. Dada a seguinte imagem de contornos:

0	0	0	0	0
0	0	1	0	0
0	0	1	1	0
0	0	1	0	0
0	0	0	0	0

- a. Construa o acumulador da transformada de Hough, para a deteção de retas, considerando que o ângulo pode assumir os valores $\{0^{\circ},45^{\circ},90^{\circ}\}$ e a distância é arredondada a valores inteiros. (1,5)
- b. Determine quais os parâmetros da melhor reta detetada. (0,5)
- 12. Considere a seguinte decomposição da matriz de projeção, onde as coordenadas métricas estão expressas em milímetros:

$$P = \begin{bmatrix} 2 & 0 & 320 \\ 0 & -2 & 240 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 100 \\ 0 & 1 & 0 & 1000 \\ 0 & 0 & 1 & 500 \end{bmatrix}$$

- c. Considere que conhece o ponto $A = \begin{bmatrix} 100 \ 500 \ 100 \end{bmatrix}^T$, expresso no referencial do mundo. Determine a sua localização na imagem (em pixéis). (1)
- d. Diga quais são e o que representam os parâmetros extrínsecos da matriz de projeção.