CS 4348/5348 Operating Systems, Homework #2

```
monitor bakery_problem {
    int num_cust = 0, num_sale = N;
    condition: sale_empty, cust_empty;
    function get_service() {
        if (num_sale <= 0) {
            sale_empty.wait;
        }
        num_sale -= 1;
        num_cust += 1;
        if (num_cust == 1) {
            cust_empty.signal;
    }
    function release_service() {
    function prepare_service() {
        if (num_cust <= 0) {
            cust_empty.wait;
        }
        num_cust -= 1;
    }
    function complete_service() {
        num_sale += 1;
        if (num_sale == 1) {
            sale_empty.signal;
    }
}
```

First, a mutex semaphore need to be used to control the access of the monitor.

Second, we will have multiple semaphores, each corresponding to one condition.

Also, a temp semaphore is needed and the number of member in temp is needed as num_temp. When signaler signals and before the signalee continues, we first move the signaler into temp by using temp.wait. And num_temp += 1.

Then after signalee finishes, we check whether temp queue is empty by num_temp. while num_temp > 0, we signal the temp and let the process in temp to finish first before allowing others outside monitor to come in. And num_temp -= 1.

If num_temp == 0, we signal mutex.

3-				
Total	P_1 P_2 P_3 P_4	MaxReq P ₁ P ₂ P ₃ P ₄ 1 1 2 2 2 2 2 1 2 1 1 2	$P_1 P_2 P_3 P_4$	Available 2 3 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{ccc} & \text{Total} \\ & R_1 & 3 \\ & R_2 & 6 \\ & R_3 & 4 \end{array} $	Allocated P ₁ P ₂ P ₃ P ₄	$\begin{array}{c} \text{MaxReq} \\ P_1 \ P_2 \ P_3 \ P_4 \end{array}$	Needed P ₁ P ₂ P ₃ P ₄ 0 0 2 1 1 1 2 0 1 0 0 1	D
After	P2 conti	nvl	Needed P1	Available
kftor	Pl contir	rue	77 74 2 1 2 0 0 1	3 3 2
kftor	P4 contin	we	P2 2 2 0	} 6 3
kftor	P3 continu	_W e		36 4

All the process can finish, Grant the request.

4

4.		Total	Allocated $P_1 P_2 P_3$	Available	Requested P_1 P_2 P_3	
	R_1	1	1 0 0	D	0 0 1	
	R_2	1	0 1 0	0	1 0 0	
	R_3^-	1	$0 \ 0 \ 0$	1	0 1 1	
	R_4	1	0 0 1	O	1 0 0	

Available Requested

Doad Lock is detected. Pr and P3 are involved

no access violation

6.

16).
$$(64-40)+(32-20)+(256-160)+(128-100)$$

= $24+12+96+28$
= 160 MB

8.

Average access time =
$$15 \times 90\%$$

+ $10\% \times 99.99\% \times (150+15)$
+ $10\% \times 0.01\% \times (1\times10^6 + 156 + 15)$
= $15 + 0.1 \times 150 + 0.000001 \times 1\times10^6$.
= 40%

4).
$$1k = 2^{lo} = 2 \cdot lobits$$

b). page offset = $8kB = 2^{lo} = 2 \cdot lobits$
Ans = $32 - lo = 9bit$.

C) . 0000 0000 01 00 0000 010 1 0000 1111 0101

