Criptografía Pública: RSA

- 1. Calcula $3^{301}\,mod\,11,$ utilizando el teorema pequeño de Fermat.
- 2. Calcula $5^{596} \mod 1234$.
- 3. Calcula el inverso de 7 en \mathbb{Z}_{27} , utilizando el teorema de Euler generalizado.
- 4. Resuelve el sistema de congruencias siguiente:

 $x \equiv 2 \mod 3$

 $x \equiv 2 \mod 5$

 $x \equiv 2 \mod 7$

5. Resuelve el sistema de congruencias siguiente:

 $x \equiv 5 \mod 3$

 $x \equiv 3 \mod 5$

 $x \equiv 10 \mod 7$

6. Resuelve el sistema de congruencias siguiente:

 $x \equiv 34 \mod 46$

 $x \equiv 31 \mod 51$

 $x \equiv 10 \mod 55$

- 7. Demuestra el teorema del resto chino.
- 8. Descifra el mensaje 10 enviado a un usuario de clave RSA n=35 y e=5.
- 9. En un sistema RSA se ha decidido que $p=11,\,q=29$ y e=3. Da el valor de d y el cifrado de 100.
- 10. En un sistema RSA se ha decidido que $p=17,\,q=11$ y e=7. Da el valor de d y el cifrado de M=88. Comprueba que descifrado con el exponente d se recupera M.

- 11. Conociendo n y $\Phi(n)$, indica cómo se pueden obtener los primos p y q, tales que n=pq. Aplica esto a n=4386607 y $\Phi=4382136$.
- 12. Demuestra que el RSA es multiplicativo, es decir, $E_e(m_1)E_e(m_2) \mod n = E_e(m_1m_2)$.
- 13. Un usuario tiene como clave pública (3599, 31). ¿Cuál es su clave privada?
- 14. Se quiere montar un RSA con parámetros p=17 y q=19. ¿Cuál de los parámetros e=33 y e=35 es correcto? ¿Cuáles son las claves públicas y privadas?
- 15. Presenta un algoritmo para la potenciación modular mediante cuadrados sucesivos. Comprueba con un ejemplo que funciona correctamente.
- 16. Presenta un algoritmo que calcule el inverso de un número en Z_m a través del algoritmo generalizado de Euler. Comprueba su efectividad y complejidad en relación al algoritmo extendido de Euclides.
- 17. Explica detalladamente en qué consiste la función de cifrado y descifrado del RSA y cuál es su base matemática.
- 18. Demuestra el teorema pequeño de Fermat.
- 19. Demuestra el teorema generalizado de Euler.
- 20. Demuestra la inyectividad en el algoritmo de encriptación de RSA.
- 21. Demuestra que si p es primo las únicas soluciones de la congruencia $x^2 \equiv 1 \mod p$ son las raíces triviales $x = \pm 1 \mod p$.
- 22. Demuestra que si p y q son números primos y si tuviéramos una solución x_0 no trivial de la congruencia $x^2 \equiv 1 \mod n$ (con n = pq), entonces se cumple obligatoriamente que
 - a) $mcd(n, x_0 + 1) = p ó q, ó$
 - b) $mcd(n, x_0 1) = p ó q$.
- 23. Escribe un pseudocódigo óptimo para el algoritmo de Miller-Rabin.
- 24. Da la evolución del algoritmo de Miller-Rabin sobre p = 561 y a = 7.

- 25. Estima cuál es la probabilidad de que mediante el algoritmo de Miller-Rabin, un número de longitud n bits responda m veces que sea primo, siendo éste en realidad compuesto.
- 26. Un usuario ha descubierto que su clave privada ha sido comprometida. En vez de generar un nuevo par de primos p,q y su módulo decide seguir con el módulo anterior y calcular un nuevo e y d. ¿Cómo se puede atacar?
- 27. Escribe un pseudocódigo óptimo para el algoritmo de las Vegas.
- 28. Supongamos que tenemos un RSA cuyo n=187 ($p=17,\ q=11$), el exponente de cifrado es e=7. Cifra y descifra el mensaje M=88.
- 29. Supongamos que tenemos un RSA cuyo n = 77, el exponente de cifrado es e = 7 y, de algún modo, se ha averiguado que el exponente de descifrado es d = 43.
 - a) Calcula razonadamente p y q (no es válido utilizar el hecho de que $7 \times 11 = 77$). Utiliza la potenciación modular a través de cuadrados sucesivos, usando $3 \mod 77 = 3$, $3^2 \mod 77 = 9$, $9^2 \mod 77 = 4$, $4^2 \mod 77 = 16$, $16^2 \mod 77 = 25$, $25^2 \mod 77 = 9$, $9^2 \mod 77 = 4$ y $4^2 \mod 77 = 16$.
 - b) Explica qué tipo de algoritmo has utilizado y presenta su pseudocódigo.
 - c) Explica razonada y explícitamente cuál es la base matemática del algoritmo que debes usar para calcular los dos factores primos.
 - d) Una vez que has averiguado p y q, razona por qué es correcto que el exponente de descifrado sea d=43.
- 30. Generación de número primos (Miller-Rabin).
 - a) Explica razonada y detalladamente la evolución del algoritmo Miller-Rabin para el número p=221, aplicándolo a dos valores distintos de la base a=5, 21. Nota: Utiliza la potenciación modular a través de cuadrados sucesivos, mostrando su evolución detallada.
 - b) ¿Qué muestran los resultados anteriores para las diferentes bases a=5 y a=21 respecto a la pregunta que el algoritmo de *Miller-Rabin* pretende resolver? Explica tu respuesta.

- 31. Supongamos que tenemos un RSA n=35 y no sabemos los dos factores de n=pq. Se conoce que el exponente de cifrado es e=5, y de alguna manera se ha averiguado que el exponente de descifrado es d=5. Calcula a través del algoritmo tipo las vegas p y q.
- 32. Supongamos que A manda un mensaje M a B_1 , B_2 y B_3 , cuyas llaves públicas (e, n) son respectivamente: (3, 46), (3, 51), (3, 55). Se han interceptado los mensajes cifrados que llegaron a B_1 , B_2 y B_3 , siendo estos respectivamente: 34, 31 y 10. ¿Cuál es el mensaje M que envío A a B_1 , B_2 y B_3 ?
- 33. Escribe un pseudocódigo para codificar previamente el mensaje que se quiere enviar a través de un RSA de módulo n. Escribe también un pseudocódigo para decodificar el mensaje recibido que se envió a través de un RSA de módulo n.