

Q1: How can you tell if a program is written in C++ / Python / Java / Racket?

Finite Automatons

Descriptions of a language

Parts of a language description:

1. Lexical

The vocabulary

1. Syntax

The structure

1. Semantic

The meaning

Lexicon

- The structure of the words (tokens) available in a language. For example: tokens used in C for conditionals are if and else.
- Other tokens commonly used in programming languages are:
 - Reserved words
 - Identifiers
 - Operators
 - Punctuation symbols (dot, comma, brackets)

Syntax

- The grammar or structure of a language.
- A description of how tokens can be combined to form valid expressions.
- All computer languages now use a formal definition to describe their grammar. The most common representation is through Context Free Grammars.

The grammar for the C++ Conditional is:

The token if

Followed by an expression enclosed in parenthesis

```
std::string animal;
if (animal == "cow")
{
    std::cout << "Mooo!" << std::endl;
}
else
{
    std::cout << "So my cow was stolen" << std::endl;
}</pre>
```

Followed by a block of code

Optionally followed by an alternative clause: the token else

Followed by a block of code

Semantic

- The meaning of expressions in a language.
- More difficult to formally describe, since the meaning can be interpreted in different ways.
- In the case of code, meaning would be represented by the effects of the program, but this can become very complex when considering all possible interactions.
- There is no standard description for semantics.

Semantic example:

- The semantic for the C conditional is (adapted from Kernighan and Ritchie [1988]):
 - The expression of the if statement is evaluated, and if it is different from 0, the next block of code is executed.
 - If there is an else statement, and the expression of the if evaluated to
 O, then the code block of the else is executed
- It is difficult to cover all possible cases related to the meaning. For example, there is no description for the case the expression is 0 and there is no else clause

How to formally define lexical and grammatical rules?

Languages are described in terms of syntax and semantics.

- Sometimes the context also affects the semantics.
- Linguist Noam Chomsky created a categorization of languages relative to their complexity.
- These languages can be represented in different ways.

Type-3: Regular Grammar - most restrictive of the set, they generate regular languages. They must have a single non-terminal on the left-hand-side and a right-hand-side consisting of a single terminal or single terminal followed by a single non-terminal.

Type-2: Context-Free Grammar - generate context-free languages, a category of immense interest to NLP practitioners. Here all rules take the form $A \rightarrow \beta$, where A is a single non-terminal symbol and β is a string of symbols.

Type-1: Context-Sensitive Grammar - the highest programmable level, they generate context-sensitive languages. They have rules of the form α A $\beta \rightarrow \alpha$ γ β with A as a non-terminal and α , β , γ as strings of terminals and non-terminals. Strings α , β may be empty, but γ must be nonempty.

Type-O: Recursively enumerable grammar - are too generic and unrestricted to describe the syntax of either programming or natural languages.

Practical applications

- Type-3: Regular Grammar Identifying valid tokens in a language (regular expressions)
- Type-2: Context-Free Grammar Identifying nested constructions, such as parentheses and brackets
- Type-1: Context-Sensitive Grammar Awareness of conditions that can alter the interpretation
- Type-O: Recursively enumerable grammar not programmable

When reading a program, Types 3 and 2 are used

1.

State machines to define language rules

Finite automatons

Finite Automatons

- Used to validate an input, as positive or negative
- Finite-state machines are used to determine if a string is accepted as part of a language
- lt is not related to the hardware, but to the process used to convert input into output
- State machines can be deterministic if for a given input the output is always the same

State Machine

- \sim \sim \sim

- A directed graph, where inputs are used to select a path taken from one state to the next one
- ▷ The inputs are taken from a valid set
- If the final state is an accept, the input is correct

Example of a state machine

- An automatic machine that receives coins (nickel, dime, quarter) and will open the door when receiving
 30 cents
- Any more coins inserted after 30 are not returned.
- States are named after the amount left to pay

Example of a state machine

Deterministic Finite Automatons (DFA)

DFA

$$\mathbf{M} = (\mathbf{Q}, \mathbf{\Sigma}, \delta, q_0, \mathbf{F})$$

Where:

Q is the finite set of states

\(\Sigma is the finite alphabet

 δ is a total function from $\mathbf{Q} \times \mathbf{\Sigma}$ to \mathbf{Q} , known as the transition function

 $q_0 \in \mathbf{Q}$ is the initial state

F is the subset of **Q** of accept states

Analogy

A DFA can be described as an abstract machine, with components such as those in a mechanical device:

- A single internal register
- A set of values for the register
- A tape
- A tape reader
- An instruction set

Deterministic

• Since δ is a total function, there is a exactly one instruction defined for each combination of symbol and state

 $\mathbf{Q} \times \mathbf{\Sigma}$ to \mathbf{Q}

Language

Given the definition of a DFA as

$$\mathbf{M} = (\mathbf{Q}, \mathbf{\Sigma}, \delta, q_0, \mathbf{F})$$

The language of M, denoted L(M) is the set of strings in Σ^* accepted by M.

A DFA is considered a language acceptor.

DFA representation

The example of the newspaper machine:

$$\Sigma = \{n, d, q\}$$

$$q_{0} = 30$$

	n	d	q
0	0	0	0
5	0	0	0
10	5	0	0
15	10	5	0
20	15	10	0
25	20	15	0
30	25	20	5

Example of a state machine

Extended transition function

Represents the transitions followed by a string w

Represented by δ^{\sim} as a function from **Q** x Σ^{*} to **Q**

The value of δ is defined recursively:

I. Basis:

length(
$$w$$
) = 0. Then $w = \lambda$ and $\delta^{\wedge}(q_{j}, \lambda) = q_{j}$
length(w) = 1. Then $w = a$ for some $a \in \Sigma$
and $\delta^{\wedge}(q_{j}, a) = \delta(q_{j}, a)$

II. Recursive step:

Let w be a string of length n>1. Then w = ua and $\delta^{\hat{}}(q_i, ua) = \delta(\delta^{\hat{}}(q_i, u), a)$

Example

What is the result of δ ^(30, nndd)

```
w = nndd
```

∂^(30, nndd)

 $\delta(\delta^{(30, nnd)}, d)$

 $\delta(\delta(\delta^{(30, nn)}, d), d)$

 $\delta(\delta(\delta(\delta^{(30, n), n), d), d)$

 $\delta(\delta(\delta(\delta(30, n), n), d), d)$

 $\delta(\delta(\delta(25, n), d), d)$

 δ (δ (20, d), d)

δ(10, d)

0

String acceptance

A string w is accepted by \mathbf{M} if $\delta^{\hat{}}(q_{o}, w) \in \mathbf{F}$

With this notation, the language of a DFA **M** is the set:

$$\mathbf{L}(\mathbf{M}) = \{ w \mid \delta^{\hat{}}(q_{\mathcal{O}}, w) \in \mathbf{F} \}$$

State diagram

It is a directed graph representing a FA:

- Vertices represent states in Q, shown as circles
 - q_o is the start state, indicated by an arrow pointing to it
 - Accept states F are represented by a double circle
- Edges represent transitions between states, and are labeled with the symbol of Σ that triggers the transition.
- The FA accepts a word if there is a path from the start state to an accept state.

Examples

Using the alphabet $\Sigma = \{a, b\}$

- Create a FA that accepts only the string *ab*
- Create a FA that accepts strings that start with ba
- Create a FA that accepts all strings that contain bb
- Create a FA that accepts all strings that start with a and end with b

Solutions

Using the alphabet $\Sigma = \{a, b\}$

Create a FA that accepts only the string ab

$$M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2\})$$

		а	b
	$q_{_{\mathrm{O}}}$	$q_{_1}$	$q_{_3}$
) =	$q_{_1}$	$q_{_3}$	$q_{_2}$
	q_2	$q_3^{}$	$q_{_3}$
	q_3	$q_{_3}$	$q_{_3}$

Solutions

Using the alphabet $\Sigma = \{a, b\}$

• Create a FA that accepts strings that start with ba

$$M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2\})$$

		а	b
	$q_{_{ m O}}$	$q_{_3}$	$q_{_1}$
δ =	$q_{_1}$	q_2	q_3
	q_2	$q_{_2}$	$q_{_2}$
	q_3	$q_{_3}$	$q_{_3}$

Solutions

Using the alphabet $\Sigma = \{a, b\}$

 Create a FA that accepts all strings that start with a and end with b

 $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2\})$

		а	b
S =	$q_{_{\mathrm{O}}}$	$q_{_1}$	$q_{_3}$
	$q_{_1}$	$q_{_1}$	$q_{_2}$
	$q_{_2}$	$q_{_1}$	$q_{_2}$
	$q_{_3}$	$q_{_3}$	$q_{_3}$

Real world application

Token recognition

- Compilers use FAs or regular expressions to identify valid tokens
- Example: identifying integer numbers
 - Regular expression:

{0,1,2,3,4,5,6,7,8,9}⁺, also represented as [0-9]⁺.

► Finite Automaton:

FA (incomplete) example: number token

https://hackernoon.com/lexical-analysis-861b8bfe4cb0

RE example: number token

RE:

\d+([.]\d+)?([eE][+-]?\d+)?

Non capturing groups:

\d+(?:[.]\d+)?(?:[eE][+-]?\d+)?

Describing a way to detect tokens in a language

Conclusion

THANKS!

Do you have any questions? Contact me at: g.echeverria@tec.mx When your mom asks you to fix the computer, but all you had to do was to close the fourty tabs she had open

References:

Nombre: Languages and machines: an introduction to the

theory of computer science

Autor: Thomas Sudkamp

Edición: 3rd

Año: 2016

Editorial: Addison-Wesley

ISBN: 9780321322210

References:

https://devopedia.org/chomsky-hierarchy

https://regex101.com/

http://madebyevan.com/fsm/

https://hackernoon.com/lexical-analysis-861b8bfe4cb0

https://dev.to/mconner89/regular-expressions-grouping-and-string-methods-3ijn

DIAGRAMS AND INFOGRAPHICS

