Proof of Lemma 5: Let $Q_n(q_0, \Delta) = \{q: \text{ for some } \sigma \in L(\Delta, S) \text{ such that } |\sigma| = n, q = \delta(q_0, \sigma)\}$. Then, we prove that $\forall n \in \mathcal{N}, Q_n(q_0, \Delta_L) \subseteq Q_n(q_0, \Delta_J)$ by mathematical induction on the length of the event string $|\sigma|$ as follows.

If $|\sigma| = n = 0$, it is clear that $Q_0(q_0, \Delta_L) = Q_0(q_0, \Delta_J) = \{q_0\}$. Thus, $Q_n(q_0, \Delta_L) \subseteq Q_n(q_0, \Delta_J)$ when n = 0. Suppose that $Q_n(q_0, \Delta_L) \subseteq Q_n(q_0, \Delta_J)$ when $|\sigma| = n > 0$. Now, we prove $Q_{n+1}(q_0, \Delta_L) \subseteq Q_{n+1}(q_0, \Delta_J)$. Suppose that $\exists q \in Q_n(q_0, \Delta_L) \cap Q_n(q_0, \Delta_J)$ and $\pi \in \xi(q)$ that $q_1 = \delta(q, \pi) \in Q_{n+1}(q_0, \Delta_L)$ but $q_1 \notin Q_{n+1}(q_0, \Delta_J)$. In other words, q_1 satisfies inequalities in RO, \mathcal{D} , and NHC₂ but violates ζ . Let $M = \mathcal{N}(\chi(q_1))$ and $M' = \mathcal{N}(\chi(q))$. We consider two cases of $\pi \in \Sigma_c \cup \Sigma_u$.

Case 1) $\pi = \alpha_{jk} \in \Sigma_c$. Since q_1 satisfies NHC₂, $M(\varphi(r_m)) + M(\varphi(r_n)) < C(r_m) + C(r_n)$, $\forall r_m, r_n \in R_F$. Since q_1 satisfies \mathcal{D} , $M(\varphi(r_m)) \leq C(r_m)$, i.e., $M(r_m) \geq 0$, $\forall r_m \in R_F$. Suppose that N_f does not contain ξ -resources. Since q satisfies ζ and q_1 violates ζ , t_{jk} (corresponding to α_{jk}) is not resource-enabled at M' in N_f (t_{jk} is process-enabled since $\alpha_{jk} \in \xi(q)$) or there is a saturated MPRT-circuit θ at M in N_f . If t_{jk} is not resource-enabled at M', then $M(r_m) < 0$, where $r_m = R(p_{jk}, N_f) \in R_F$. It is a contradiction to the assumption that q_1 satisfies \mathcal{D} . Thus, there is a saturated MPRT-circuit θ at M in N_f . That means $M(\varphi(r_m)) = C(r_m)$, $\forall r_m \in \mathcal{H}[\theta]$. Since $\mathcal{H}[\theta] \subseteq R_F$ and $|\mathcal{H}[\theta]| \geq 2$, it is a contradiction to the assumption that q_1 satisfies NHC₂. Suppose that (N_f, M_{f0}) , $(N_f(r_1), M_{fA1})$, ..., and $(N_f(r_1, ..., r_{(z-1)}), M_{fA(z-1)})$ contain ξ -resources but $(N_f(r_1, ..., r_z), M_{fAz})$ does not. Let $M_1 = Y(M')$, $M_2 = Y(M_1)$, ..., and $M_z = Y(M_{(z-1)})$ denote the markings of $N_f(r_1)$, $N_f(r_1, r_2)$, ..., and $N_f(r_1, ..., r_z)$ corresponding to M', respectively. Since q satisfies ζ and q_1 violates ζ , t_{jk} is not resource-enabled $(t_{jk}$ is process-enabled since $\alpha_{jk} \in \xi(q)$) at M_v in $N_f(r_1, ..., r_v)$, where $v \in \{1, 2, ..., z\}$ or there is a saturated MPRT-circuit θ at M_{1z} in $N_f(r_1, ..., r_z)$, where $M_z(t_{jk}) = M_z(t_{jk})$.

Let $M_{11} = Y(M)$, $M_{12} = Y(M_{11})$, ..., and $M_{1z} = Y(M_{1(z-1)})$ denote the markings of $N_f(r_1)$, $N_f(r_1, r_2)$, ..., and $N_f(r_1, ..., r_z)$ corresponding to M, respectively. If t_{jk} is not resource-enabled at M_v , then there is a resource r_w ($w \neq 1$, ..., v) in $N_f(r_1, ..., r_v)$ that $M_{1v}(r_w) < 0$. Then, there is at least one part in $p \in H(r_w, N_f(r_1, ..., r_v))$ at M_{1v} and $R(p, N_f) = r_m \in \{r_1, ..., r_v\}$ (if there is no such part, then $M_{1v}(r_w) = M(r_w) \geq 0$.). Since $r_1, ..., r_v$ are ξ -resources, $C(r_n) = 1$, $\forall r_n \in \{r_1, ..., r_v\}$. Thus, only one such part participates in this violation (if two or more such parts participate in this violation then q_1 violates NHC₂.). Since $M_{1v}(r_w) < 0$, $M(r_w) = M_{1v}(r_w) + 1 \leq 0$. Since $M(r_w) \geq 0$, $M(r_w) = 0$, i.e., $M(\varphi(r_w)) = C(r_w)$. Since there is another resource $r_m \in \{r_1, ..., r_v\}$ and $r_m \neq r_w$ that $M(\varphi(r_m)) = C(r_m) = 1$, it is a contradiction to the assumption that q_1 satisfies NHC₂.

Thus there is a saturated MPRT-circuit θ at M_{1z} in $N_f(r_1, ..., r_z)$. Then, $M_{1z}(r_m) = 0$, $\forall r_m \in \mathcal{H}[\theta]$. Suppose that there is not a part in $p \in H(r_m, N_f(r_1, ..., r_z))$ at M_{1z} , where $r_m \in \mathcal{H}[\theta]$, and $R(p, N_f) = r_t \in \{r_1, ..., r_z\}$. Then $\forall r_m \in \mathcal{H}[\theta]$, $M(r_m) = M_{1z}(r_m) = 0$, i.e., $M(\phi(r_m)) = C(r_m)$. This is a contradiction to the assumption that q_1 satisfies NHC₂. Since $r_1, ..., r_z$ are ξ -resources, $C(r_t) = 1$, $\forall r_t \in \{r_1, ..., r_z\}$. Thus, only one such part participates in this saturation (if two or more such parts participate in this saturation then q_1 violates NHC₂.). Suppose that this part is in $p \in H(r_w, N_f(r_1, ..., r_z))$ at M_{1z} , where $r_w \in \mathcal{H}[\theta]$, and $R(p, N_f) = r_s \in \{r_1, ..., r_z\}$. Then, $\forall r_m \in \mathcal{H}[\theta] \setminus \{r_w\}$, $M(r_m) = M_{1z}(r_m) = 0$, i.e., $M(\phi(r_m)) = C(r_m)$, and $M(\phi(r_s)) = C(r_s) = 1$. Since $|\mathcal{H}[\theta]| \ge 2$ and $r_s \notin \mathcal{H}[\theta]$, it is a contradiction to the assumption that q_1 satisfies NHC₂.

Case 2) $\pi \in \Sigma_u$. If $\pi = \beta_{jk}$, κ or η , M' = M. Since M' is accepted by ς , M is accepted by ς , too. It is a contradiction to the assumption that q_1 violates ς .

Thus, $Q_{n+1}(q_0, \Delta_L) \subseteq Q_{n+1}(q_0, \Delta_J)$. So, $\forall n \in \mathcal{N}$, $Q_n(q_0, \Delta_L) \subseteq Q_n(q_0, \Delta_J)$. Since $Q_R(q_0, \Delta) = \{q: \text{ for some } \sigma \in L(\Delta, \mathcal{S}), \ q = \delta(q_0, \sigma)\} = \bigcup_{n \in \mathcal{N}} Q_n(q_0, \Delta), \ Q_R(q_0, \Delta_L) \subseteq Q_R(q_0, \Delta_J)$.