Computer architecture

MIPS PROCESSOR

Nermeen Mohammed

Alaa Morsy

C Code:

#include <stdio.h>

```
2
      #include <stdlib.h>
 3
       int main()
     □ {
 5
          int Number=7;
 6
 7
          int i;
 8
          i=Number;
 9
10
          while(i>1)
11
           {
           i=i-2;
12
13
14
          if(i!=0)
15
16
           Number=Number+1;
17
18
           printf("i=%d \nNumber=%d",i,Number);
19
20
           return 0;
21
       }
22
       #include <stdio.h>
 2
       #include <stdlib.h>
 3
                                 C:\Users\ADMIN\Desktop\mips\bin\Debug\mips.exe
 4
       int main()
                                i=1
 5
                                Number=8
 6
           int Number=7;
                                                           execution time: 0.035 s
                                Process returned 0 (0x0)
 7
           int i;
                                Press any key to continue.
 8
           i=Number;
 9
10
           while(i>1)
11
12
           i=i-2;
13
14
           if(i!=0)
15
            {
           Number=Number+1;
16
17
           printf("i=%d \nNum
18
19
20
           return 0;
21
22
```

The code checks if the input number is odd or even.it adds 1 if the number is odd.

We store the input number in another variable 'i' and subtract 2 till the 'i' become 0 or 1.

If 'i 'equal 1 so the number is odd and if 'i 'is 0 so the number is even.

if the input number is odd the program will add 1 to it.

Assembly code:

```
Edit
      Execute
 mips2.asm*
1 .text
2 main:
3 #s0=number ,$t0=i ,$t1=1
4 addi $s0,$0,7 #number=7
 5 add $t0,$s0,$0 #i=number
 6 addi $t1,$0,1
7
8 while:
9 slt $t2,$t1,$t0 #if (1<i) ,$t2=1 ,else $t2=0
10 beq $t2,$0,done_while #if ($t2=1)
11 addi $t0,$t0,-2 #i=i-2
   j while
12
13
14 done_while:
15 beq $t0,$0,done #if(i=0) "even number"
16 add $s0,$s0,$t1 #number=number+1
   sw $s0,26($0) #store the output in memory
17
18
19 done:
20
```

Registers	Coproc 1	Coproc 0	
Name		Number	Value
\$zero		0	0
\$at		1	0
\$v0		2	0
\$v1		3	0
\$a0		4	0
\$a1		5	0
\$a2		6	0
\$ a 3		7	0
\$t0		8	1
\$t1		9	
\$t2		10	0
\$t3		11	0
\$t4		12	0
\$t5		13	0
\$t6		14	0
\$t7		15	0
\$ s 0		16	8
\$s1		17	0
\$s2		18	0
\$ s 3		19	0
\$ s 4		20	0
\$s5		21	0
\$s6		22	0
\$s7		23	0
\$t8		24	0
\$t9		25	0
\$ k 0		26	0
\$k1		27	
\$gp		28	268468224
\$sp		29	
\$fp		30	0
\$ra		31	0
pc			4194344
hi			0
lo			0

Registers Coproc 1	Coproc 0	
Name	Number	Value
\$8 (vaddr)	8	26
\$12 (status)	12	65299
\$13 (cause)	13	20
\$14 (epc)	14	4194340

Modelsim:

Testbench

Register file

At time 200 ns, the write enable "we3" is 1.

So, it writes 8 in register address 16 -> \$50 which means that the program run successfully Knowing that no. 7 is odd then add a one to it which make it 8 and store it to the memory.