## Partial differential equations

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6E5X0), 2023-2024

## Today's outline

Introduction •00000000

- Introduction
- Instationary diffusion equation
- Convection
- Conclusions



#### Overview

Introduction 00000000

#### Main question

How to solve parabolic PDEs like:

$$\frac{\partial c}{\partial t} = \mathcal{D}\frac{\partial^2 c}{\partial x^2} - u\frac{\partial c}{\partial x} + R$$

$$t = 0; 0 \le x \le \ell \implies c = c_0$$

with

$$t > 0; x = 0$$
  $\Rightarrow -\mathcal{D}\frac{\partial c}{\partial x} + uc = u_{\text{in}}c_{\text{in}}$ 

$$t > 0; x = \ell$$
  $\Rightarrow \frac{\partial c}{\partial x} = 0$ 

accurately and efficiently?



#### What is a PDE?

#### Partial differential equation

An equation containing a function and their derivatives to multiple independent variables.

#### Order of PDE

The highest derivative appearing in the PDE

General second order PDE:

$$A\frac{\partial^2 f}{\partial x^2} + B\frac{\partial^2 f}{\partial x \partial y} + C\frac{\partial^2 f}{\partial y^2} + D\frac{\partial f}{\partial x} + E\frac{\partial f}{\partial y} + Ff = G$$

- Linear equation: Coefficients  $A, B, \ldots, G$  do not depend on x and y.
- Non-linear equation: Coefficients A, B, ..., G are a function of x and y.



#### Classification of PDE's

Introduction 000000000

$$A\frac{\partial^2 f}{\partial x^2} + B\frac{\partial^2 f}{\partial x \partial y} + C\frac{\partial^2 f}{\partial y^2} + D\frac{\partial f}{\partial x} + E\frac{\partial f}{\partial y} + Ff = G$$

The discriminant  $\Delta$  of a quadratic polynomial is computed as (note: only the higher order coefficients are important):  $\Delta = B^2 - 4AC$ 

- $\Delta < 0 \Rightarrow$  Elliptic equation (e.g. Laplace equation for stationary diffusion in 2D)
- $\Delta = 0 \Rightarrow$  Parabolic equation (e.g. instationary heat penetration in 1D)
- $\Delta > 0 \Rightarrow$  Hyperbolic equation (e.g. wave equation)







### Importance of classification

Different PDE types require different solution techniques because of the difference in range of influence:

- Characteristics Curves in xy-domain along with signal propagation takes place
- Domain of dependence of point P points in xy-domain which influence the value of f in point P
- Range of influence of point P points in xy-domain which are influenced by the value of f in point P



## Example elliptic PDE (boundary value problems: BVP)



Grid point at which dependent variable has to be computed Grid point at which boundary condition is specified

Typical example: Poisson equation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = f(x, y)$$

Introduction 000000000

Efficiency (memory requirements, CPU time) of the numerical method is of crucial importance.

## Example parabolic PDE (initial value problem: IVP)



Grid point at which dependent variable has to be computed Grid point at which boundary condition is specified

Typical example: Poisson equation

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = \mathcal{D} \frac{\partial^2 c}{\partial x^2} + R$$

Introduction 000000000

Stability (in numerical sense) of the numerical method is of crucial importance.

# **Boundary conditions**

• Dirichlet or fixed condition: prescribed value of *f* at boundary

$$f = f_0$$
  $f_0$  is a known function

ullet Neumann condition: prescribed value of derivative of f at boundary

$$\frac{\partial f}{\partial p} = q$$
 q is a known function

• Mixed or Robin condition: relation between f and  $\frac{\partial f}{\partial n}$  at boundary

$$a\frac{\partial f}{\partial n} + bf = c$$
  $a, b$  and  $c$  are known functions



#### Numerical solution method

Finite differences (method of lines, MOL):

- Discretize spatial domain in discrete grid points
- Find suitable approximation for the spatial derivatives
- Substitute approximations in PDE, which gives a system of ODE's, one for every grid points
- Advance in time with a suitable ODE solver.

Alternative methods: collocation, Galerkin or Finite Element methods



Introduction 00000000

- Introduction
- Instationary diffusion equation
  - Discretization
  - Solving the diffusion equation
  - Non-linear source terms
- Convection
- Conclusions



$$\frac{\partial c}{\partial t} = \mathcal{D}\frac{\partial^2 c}{\partial x^2}, \quad \text{with} \quad \begin{array}{l} t = 0; 0 \le x \le \ell \Rightarrow c = c_0 \\ t > 0; x = 0 \Rightarrow c = c_L \\ t > 0; x = \ell \Rightarrow c = c_R \end{array}$$

Second derivative 
$$\frac{\partial^2 c}{\partial v^2}$$

$$c_{i-1}$$
  $c_i$   $c_{j+1}$ 

$$c_{i+1} = c_i + \frac{\partial c}{\partial x} \Big|_i \Delta x + \frac{1}{2} \frac{\partial^2 c}{\partial x^2} \Big|_i \Delta x^2 + \frac{1}{6} \frac{\partial^3 c}{\partial x^3} \Big|_i \Delta x^3 + \dots$$

$$c_{i-1} = c_i - \frac{\partial c}{\partial x} \Big|_i \Delta x + \frac{1}{2} \frac{\partial^2 c}{\partial x^2} \Big|_i \Delta x^2 - \frac{1}{6} \frac{\partial^3 c}{\partial x^3} \Big|_i \Delta x^3 + \dots$$

$$c_{i+1} + c_{i-1} = 2c_i + \frac{\partial^2 c}{\partial x^2} \bigg|_i \Delta x^2 + \mathcal{O}(\Delta x^4)$$

$$\Rightarrow \frac{\partial^2 c}{\partial x^2}\bigg|_{i} = \frac{c_{i+1} - 2c_i + c_{i-1}}{\Delta x^2} + \mathcal{O}(\Delta x^2)$$



Due to symmetric discretization: second order (central discretization).

# Instationary diffusion equation (Fick's second law)

An alternative discretization:

$$\frac{\partial^{2} c}{\partial x^{2}}\Big|_{i} = \frac{\frac{\partial c}{\partial x}\Big|_{i+\frac{1}{2}} - \frac{\partial c}{\partial x}\Big|_{i-\frac{1}{2}}}{\Delta x} + \mathcal{O}(\Delta x^{2}) \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet$$

$$= \frac{\frac{c_{i+1} - c_{i}}{\Delta x} - \frac{c_{i} - c_{i-1}}{\Delta x}}{\Delta x} = \frac{c_{i+1} - 2c_{i} + c_{i-1}}{\Delta x^{2}}$$

This is convenient for the derivation of  $\frac{\partial}{\partial x} \left( \mathcal{D} \frac{\partial c}{\partial x} \right)$ :

$$\frac{\partial}{\partial x} \left( \mathcal{D} \frac{\partial c}{\partial x} \right) = \frac{\mathcal{D}_{i+\frac{1}{2}} \frac{\partial c}{\partial x} \Big|_{i+\frac{1}{2}} - \mathcal{D}_{i-\frac{1}{2}} \frac{\partial c}{\partial x} \Big|_{i-\frac{1}{2}}}{\Delta x} = \frac{\mathcal{D}_{i+\frac{1}{2}} \frac{c_{i+1} - c_i}{\Delta x} - \mathcal{D}_{i-\frac{1}{2}} \frac{c_i - c_{i-1}}{\Delta x}}{\Delta x}$$

$$= \frac{\mathcal{D}_{i+\frac{1}{2}} c_{i+1} - \left( \mathcal{D}_{i+\frac{1}{2}} + \mathcal{D}_{i-\frac{1}{2}} \right) c_i + \mathcal{D}_{i-\frac{1}{2}} c_{i-1}}{(\Delta x)^2}$$



### Instationary diffusion equation (Fick's second law)

$$\frac{\partial^2 f}{\partial y^2}$$
  $i - 1$   $\frac{i - \frac{1}{2}}{x}$   $i$   $\frac{i + \frac{1}{2}}{x}$   $i + \frac{1}{2}$ 

$$f_{i+\frac{1}{2}} = f_i + \frac{1}{2}\Delta x \frac{\partial f}{\partial x} \Big|_i \Delta x + \frac{1}{2} \left( \frac{1}{2}\Delta x \right)^2 \frac{\partial^2 f}{\partial x^2} \Big|_i + \mathcal{O}(\Delta x^3)$$

$$f_{i-\frac{1}{2}} = f_i - \frac{1}{2}\Delta x \frac{\partial f}{\partial x} \Big|_i \Delta x + \frac{1}{2} \left( \frac{1}{2}\Delta x \right)^2 \frac{\partial^2 f}{\partial x^2} \Big|_i + \mathcal{O}(\Delta x^3)$$

$$f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}} = \Delta x \frac{\partial f}{\partial x} + \mathcal{O}(\Delta x^3)$$

$$\Rightarrow \frac{\partial f}{\partial x}\bigg|_{i} = \frac{f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}}}{\Delta x} + \mathcal{O}(\Delta x^{2})$$



### Instationary diffusion equation: spatial discretization

Substitution of spatial derivatives yields:

$$\frac{dc_i}{dt} = \mathcal{D}\frac{c_{i-1} - 2c_i + c_{i+1}}{\Delta x^2} \quad \text{for } i = 0, \dots, N$$

For example, using 6 (ridiculously low number!) grid points:





#### Instationary diffusion equation: boundary conditions

#### Two options:

1 Keep boundary conditions as additional equations:

$$c_{0} = c_{L}, \frac{dc_{1}}{dt} = \mathcal{D}\frac{c_{0} - 2c_{1} + c_{2}}{\Delta x^{2}}, \frac{dc_{2}}{dt} = \mathcal{D}\frac{c_{1} - 2c_{2} + c_{3}}{\Delta x^{2}},$$

$$\frac{dc_{3}}{dt} = \mathcal{D}\frac{c_{2} - 2c_{3} + c_{4}}{\Delta x^{2}}, \frac{dc_{4}}{dt} = \mathcal{D}\frac{c_{3} - 2c_{4} + c_{5}}{\Delta x^{2}}, c_{5} = c_{R}$$

Substitute boundary conditions to reduce number of equations:

$$\frac{dc_{1}}{dt} = \mathcal{D}\frac{c_{L} - 2c_{1} + c_{2}}{\Delta x^{2}}, \frac{dc_{2}}{dt} = \mathcal{D}\frac{c_{1} - 2c_{2} + c_{3}}{\Delta x^{2}}, \frac{dc_{3}}{dt} = \mathcal{D}\frac{c_{2} - 2c_{3} + c_{4}}{\Delta x^{2}}, \frac{dc_{4}}{dt} = \mathcal{D}\frac{c_{3} - 2c_{4} + c_{R}}{\Delta x^{2}}$$



### Instationary diffusion equation: temporal discretization

$$\frac{dc_i}{dt} = \mathcal{D}\frac{c_{i-1} - 2c_i + c_{i+1}}{\Delta x^2}$$

#### Time discretization: forward Euler (explicit)

$$\frac{c_{i}^{n+1} - c_{i}^{n}}{\Delta t} = \mathcal{D}\frac{c_{i-1}^{n} - 2c_{i}^{n} + c_{i+1}^{n}}{\Delta x^{2}}$$

$$\Rightarrow c_i^{n+1} = \operatorname{Foc}_{i-1}^n + (1 - 2\operatorname{Fo})c_i^n + \operatorname{Foc}_{i+1}^n \quad \text{with Fo} = \frac{\mathcal{D}\Delta t}{\Delta x^2}$$

Straightforward updating (explicit equation), simple to implement in a program but stability constraint Fo =  $\frac{D\Delta t}{\Lambda v^2} < \frac{1}{2}$ !

Small  $\Delta x \Rightarrow$  small  $\Delta t \Rightarrow$  patience required ©



## Instationary diffusion equation: temporal discretization

$$\frac{dc_i}{dt} = \mathcal{D}\frac{c_{i-1} - 2c_i + c_{i+1}}{\Delta x^2}$$

#### Time discretization: backward Euler (implicit)

$$\frac{c_{i}^{n+1} - c_{i}^{n}}{\Delta t} = \mathcal{D} \frac{c_{i-1}^{n+1} - 2c_{i}^{n+1} + c_{i+1}^{n+1}}{\Delta x^{2}}$$

$$\Rightarrow -\text{Foc}_{i-1}^{n+1} + (1 + 2\text{Fo})c_{i}^{n+1} - \text{Foc}_{i+1}^{n+1} = c_{i}^{n} \quad \text{with Fo} = \frac{\mathcal{D}\Delta t}{\Delta x^{2}}$$

#### Requires the solution of a system of linear equations, but no stability constraints!

Note: extension to higher order schemes (with time step adaptation) straightforward. Often second or third order optimal, because for each Euler-like step in the additional order an often large system needs to be solved (not treated in this course).



Solve the diffusion problem using explicit discretization:

$$\frac{\partial c_i}{\partial t} = \mathcal{D} \frac{\partial^2 c}{\partial x^2}$$
 with 
$$\frac{\partial \leq x \leq \delta, \ \delta = 5 \cdot 10^{-3} \text{ m}}{\delta / \Delta x} = 100 \text{ grid cells}$$
 
$$\mathcal{D} = 1 \cdot 10^{-8} \text{ m}^2 \text{ s}^{-1}$$
 
$$t_{\text{end}} = 5000 \text{ s}$$
 
$$c_{\text{L}} = 1 \text{ mol m}^{-3} c_{\text{R}} = 0 \text{ mol m}^{-3}$$

$$c_i^{n+1} = \text{Fo}c_{i-1}^n + (1-2\text{Fo})c_i^n + \text{Fo}c_{i+1}^n$$
 with  $\text{Fo} = \frac{\mathcal{D}\Delta t}{\Delta x^2}$ 

- Initialise variables
- 2 Compute time step so that Fo  $\leq \frac{1}{2} \Rightarrow \Delta t = 0.125$ s!
- 3 Compute 40000 time steps times 100 grid nodes!
- Store solution



Initialise the variables and matrices:

```
import numpy as np
  Nx = 100 \# Nx \text{ grid points}
  Nt = 40000 \# Nt time steps
  D = 1e-8 \# m/s
  c L = 1.0: c R = 0 \# mol/m3
  t end = 5000.0 # s
  x end = 5e-3 # m
10 # Time step and grid size
  dt = t end / Nt
  dx = x \text{ end } / Nx
14 # Fourier number
15 Fo = D * dt / dx / dx
# Initial matrices for solutions (Nx times Nt)
18 c = np.zeros((Nt + 1, Nx + 1)) # All concentrations are zero
19 c[:, 0] = c_L # Concentration at the left side
  c[:. Nx] = c R # Concentration at the right side
# Grid node and time step positions
  x = np.linspace(0, x_end, Nx + 1)
```

Compute the solution (nested time-and-grid loop):

- Create a time-loop
- Create a loop over internal grid points
- Update each node using  $c_i^{n+1} = Foc_{i-1}^n + (1 2Fo)c_i^n + Foc_{i+1}^n$
- Plot the solution for selected time steps

Plotting the solution at  $t = \{12.5, 62.5, 125, 625, 5000\}$  s.





A double-loop can impose serious computation times if the number of grid points increases:

```
for n in range(Nt - 1): # time loop
    for i in range(1, Nx): # Nested loop for grid nodes
        c[n+1, i] = Fo * c[n, i-1] + (1 - 2*Fo) * c[n, i] + Fo * c[n, i+1]
```

Remedy: vectorization. Construct a 3-point stencil Laplacian matrix first, then use the matrix product to evolve the simulation:

```
from scipy.sparse import diags

# Construct sparse matrix
e = np.ones(Nx-1)
md = np.concatenate(([1], (1 - 2 * Fo) * e, [1]))
dd = np.concatenate((Fo * e, [0]))
ud = np.concatenate(([0], Fo * e))
A = diags([ld, md, ud], offsets=[-1, 0, 1])

# Time evolution
for n in range(Nt - 1): # time loop
    c[n+1, :] = A.dot(c[n,:])
```



## Solving the diffusion equation implicitly

Linear system 
$$A\mathbf{x} = \mathbf{b}$$
 from  $-\text{Foc}_{i-1}^{n+1} + (1 + 2\text{Fo})c_i^{n+1} - \text{Foc}_{i+1}^{n+1} = c_i^n$ 

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ -Fo & (1+2Fo) & -Fo & 0 & \cdots & 0 \\ 0 & -Fo & (1+2Fo) & -Fo & \cdots & 0 \\ 0 & 0 & -Fo & (1+2Fo) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \cdot \begin{pmatrix} c_0^{n+1} \\ c_0^{n+1} \\ c_2^{n+1} \\ c_3^{n+1} \\ \vdots \\ c_m^{n+1} \end{pmatrix} = \begin{pmatrix} c_0^n \\ c_0^n \\ c_1^n \\ c_2^n \\ \vdots \\ c_m^{n+1} \\ c_m^n \end{pmatrix}$$

 $1 \times c_0^{n+1} = c_0^n$  (boundary condition)

$$-\mathsf{Foc}_0^{n+1} + (1+2\mathsf{Fo})c_1^{n+1} - \mathsf{Foc}_2^{n+1} = c_1^n$$

$$-\operatorname{Foc}_1^{n+1} + (1+2\operatorname{Fo})c_2^{n+1} - \operatorname{Foc}_3^{n+1} = c_2^n$$

$$-\operatorname{Foc}_{2}^{n+1} + (1+2\operatorname{Fo})c_{3}^{n+1} - \operatorname{Foc}_{4}^{n+1} = c_{3}^{n}$$

 $1 \times c_m^{n+1} = c_m^n$  (boundary condition)



## Solving the diffusion equation implicitly in Python

To solve the linear system, we need to define matrix *A*. It is clear that storing many zeros is not efficient in terms of memory. We use a *sparse matrix* format. Two alternative ways to set up the matrix:

#### Set individual elements of the matrix:

- Loop over the internal cells
- Set the coefficients in matrix A (main diagonal + elements left/right to it)
- Then set the coefficients for the boundary cells

#### Set matrix using bands:

- Consider the matrix structure (previous slide) and create vectors containing the values in each band
- Recall the sp.sparse.diags function to set entire bands to a sparse matrix



## Solving the diffusion equation implicitly in Python

The command plt.spy(A) shows a figure with the non-zero positions.





The concentration matrix is initialised and the boundary conditions are set as follows:

```
# Initial matrices for solutions (Nx times Nt)
c = np.zeros((Nt+1, Nx+1)) # All concentrations are zero
c[:, 0] = c_L # Concentration at left side
c[:, Nx] = c_R # Concentration at right side
```

The right hand side vector (**b**) can now be set during the time-loop:

```
from scipy.sparse.linalg import spsolve

for n in range(Nt-1): # time loop
   b = c[n, :] # Set right hand side
   solX = spsolve(A, b) # Solve linear system
   c[n+1, :] = solX # Store solution each time step
```



# Solving the diffusion equation implicitly in Matlab

Plotting the solution at  $t = \{12.5, 62.5, 125, 625, 5000\}$  s.





### About explicit vs. implicit solutions

- Explicit solution:
  - Easy to implement
  - Very small time steps required.
  - This problem took about 0.5 s.
- Implicit solution:
  - Harder to implement, needs sparse matrix solver
  - No stability constraint
  - This problem took about 0.05 s
- The difference will become much larger for systems with e.g. more grid nodes!



#### Extension with non-linear source terms

$$\frac{\partial c}{\partial t} = \mathcal{D}\frac{\partial^{2} c}{\partial x^{2}} + R(c) \quad \text{with} \quad \begin{aligned} t &= 0; 0 \leq x \leq \ell \Rightarrow c = c_{0} \\ t &> 0; x = 0 \Rightarrow c = c_{L} \\ t &> 0; x = \ell \Rightarrow c = c_{P} \end{aligned}$$

• Forward Euler (explicit): simply add to right-hand side

$$\frac{c_{i}^{n+1} - c_{i}^{n}}{\Delta t} = \mathcal{D}\frac{c_{i-1}^{n} - 2c_{i}^{n} + c_{i+1}^{n}}{\Delta x^{2}} + R(c_{i}^{n})$$

$$\Rightarrow c_{i}^{n+1} = \text{Foc}_{i-1}^{n} + (1 - 2\text{Fo})c_{i}^{n} + \text{Foc}_{i+1}^{n} + R_{i}^{n}\Delta t$$

Backward Euler (implicit): linearization required

$$R(c_{i}^{n+1}) = R(c_{i}^{n}) + \frac{dR}{dc} \Big|_{i}^{n} (c_{i}^{n+1} - c_{i}^{n})$$

$$\frac{c_{i}^{n+1} - c_{i}^{n}}{\Delta t} = \mathcal{D} \frac{c_{i-1}^{n+1} - 2c_{i}^{n+1} + c_{i+1}^{n+1}}{\Delta x^{2}} + R(c_{i}^{n+1})$$

$$\Rightarrow -\text{Foc}_{i-1}^{n+1} + (1 + 2\text{Fo} - \frac{dR}{dc} \Big|_{i}^{n} \Delta t) c_{i}^{n+1} - \text{Foc}_{i+1}^{n+1} = c_{i}^{n} + \left( R_{i}^{n} - \frac{dR}{dc} \Big|_{i}^{n} c_{i}^{n} \right) \Delta t$$

# Today's outline

- Introduction
- Instationary diffusion equation
  - Discretization
  - Solving the diffusion equation
  - Non-linear source terms
- Convection
  - Discretization
  - Central difference scheme
  - Upwind scheme
- Conclusions
  - Other methods
  - Summary



#### Extension with convection terms

$$\frac{\partial c}{\partial t} = \mathcal{D}\frac{\partial^2 c}{\partial x^2} - u\frac{\partial c}{\partial x} + R$$

Discretization of first derivative  $\frac{dc}{dx}$ , looks simple but is numerical headache!

Central discretization:

$$\frac{dc}{dx} = \frac{c_{i+1} - c_{i-1}}{2\Delta x}$$

⇒ simple and easy, too bad it doesn't work: yields unstable solutions if convection dominated.



#### Central difference scheme of 1st derivative

Unsteady convection:

$$\frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x}$$

Central difference for first derivative:

$$\frac{dc}{dx} = \frac{c_{i+1} - c_{i-1}}{2\Delta x}$$

Forward Euler discretization of temporal and spatial domain:

$$\frac{c_i^{n+1}-c_i^n}{\Delta t}=-u\frac{c_{i+1}-c_{i-1}}{2\Delta x}\Rightarrow c_i^{n+1}=c_i^n-u\frac{c_{i+1}^n-c_{i-1}^n}{2\Delta x}\Delta t$$





Convection

#### Extension with convection terms

Solution: upwind discretization, like CSTR's in series:



First order upwind: 
$$-u\frac{dc}{dx}\Big|_i = \begin{cases} -u\frac{c_i - c_{i-1}}{\Delta x} & \text{if } u \ge 0 \\ & \text{Stable if Co} = \frac{u\Delta t}{\Delta x} < 1 \text{ (with Co the } -u\frac{c_{i+1} - c_i}{\Delta x} & \text{if } u < 0 \end{cases}$$

Courant number). However, only 1st order accurate (large smearing of concentration fronts). Higher order upwind requires TVD schemes (trick of the trade)...

#### First order upwind scheme of 1st derivative

Unsteady convection:

$$\frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x}$$

Upwind scheme for first derivative:

$$-u\frac{dc}{dx}\Big|_{i} = \begin{cases} -u\frac{c_{i}-c_{i-1}}{\Delta x} & \text{if } u \ge 0\\ -u\frac{c_{i+1}-c_{i}}{\Delta x} & \text{if } u < 0 \end{cases}$$

Forward Euler discretization of temporal and spatial domain:

$$\frac{c_i^{n+1} - c_i^n}{\Delta t} = -u \frac{c_{i+1} - c_{i-1}}{2\Delta x}$$

$$\Rightarrow c_i^{n+1} = \begin{cases} c_i^n - u\Delta t \frac{c_i - c_{i-1}}{\Delta x} & \text{if } u \ge 0 \\ c_i^n - u\Delta t \frac{c_{i+1} - c_i}{\Delta x} & \text{if } u < 0 \end{cases}$$

### Upwind scheme: example

Unsteady convection through a pipe:

$$\frac{\partial c}{\partial t} = -u \frac{\partial c}{\partial x} \quad \text{with} \quad u = 0.1 \text{ms}^{-1} \Rightarrow c_i^{n+1} = c_i^n - u \frac{c_i - c_{i-1}}{\Delta x} \Delta t$$









# Today's outline

- Introduction
- Instationary diffusion equation
  - Discretization
    - Solving the diffusion equation
    - Non-linear source terms
- Convection
  - Discretization
  - Central difference scheme
  - Upwind scheme
- Conclusions
  - Other methods
  - Summary



### Extension to systems of PDE's

- Explicit methods: straightforward extension
- Implicit methods: yields block-tridiagonal matrix (note ordering of equations: all variables per grid cell)



### Extension to 2D or 3D systems

#### Spatial discretization in 2 directions — different methods available:

- Explicit
- Fully implicit
  - 1D gives tri-diagonal matrix2D gives penta-diagonal matrix
  - 3D gives hepta-diagonal matrix
  - Use of dedicated matrix solvers (e.g. ICCG, multigrid, ...)
- Alternating direction implicit (ADI)
  - Per direction implicit, but still overall unconditionally stable



### Further extensions for parabolic PDEs

- Higher order temporal discretization (multi-step) with time step adaptation
- Non-uniform grids with automatic grid adaptation
- Higher-order discretization methods, especially higher order TVD (flux delimited) schemes for convective fluxes (e.g. WENO schemes)
- Higher-order finite volume schemes (Riemann solvers)



#### Summary

- Several classes of PDEs were introduced
  - Elliptic, Parabolic, Hyperbolic PDEs
  - Diffusion equation: discretization of temporal and spatial domain was discussed
    - Solutions of the diffusion equation using explicit and implicit methods
    - How to add non-linear source terms
- Convection: upwind vs. central difference schemes

