A set C is countable if it is empty or there is a surjective function from \mathbb{N} to C.

If A, B are countable, so is $A \cup B$.

If A is countable and $B \subseteq A$, then B is coutable.

If A, B are countable, so is $A \times B$.

If $A \neq \emptyset$ and countable and there is a surjective function from A to B then B is countable.

Proof. There is a surjective function $g:\mathbb{N}\to A$. Then $h:\mathbb{N}\to B$ is a surjective function where h(i)=f(g(i)) for all $i\in\mathbb{N}$.

1■

(3)

Theorem 1

 \mathbb{Q}^+ is countable;

Proof. Let $f: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Q}^+$ be defined by $f(a,b) = \frac{a}{b}$.

Note that (1,2), (2,4), (3,6) all map to $\frac{1}{2}$ under f.

Since f is surjective, thus \mathbb{Q}^+ is countable.

quod erat dem

Theorem 2

 $\{0,1\}^*$ = the set of all finite inary sequences is countable.

a lexicographically order: $\lambda, 0, 1, 00, 01, 10, 11, 000, \dots$

 $g: \mathbb{N} \times \mathbb{N} \to \{0,1\}^*, g(i,j) = "j^{th}$ lexicographically smallest string of length i if $0 \le j \le 2^i$; otherwise λ "

There are 2^i binary string of length c.

g	0	1	2	3	4	
0	λ	λ	λ	λ	λ	• • •
1	0	1	λ	λ	λ	• • •
2	00	01	10	11	λ	• • •
3	000					

(

Theorem 3

The set of all finite strings of ASCII characters is countable.

Corollary 1 – Corollary of Theorem 3

The set of all syntactically correct Python programs is countable.

Theorem 4

A countable union of countable sets is countable

Proof. Suppose C is a countable collection of countable sets.

Then there is a surjective function $f: \mathbb{N} \to C$ [f(i) is a set in C] and

for each $S \in G$, there is a surjective function on $g_s : \mathbb{N} \to S$

(now we want to prove $\bigcup \{S \mid S \in C\} = \bigcup \{f(i) \mid i \in \mathbb{N}\}\)$

Consider the function $h: \mathbb{N} \times \mathbb{N} \to \bigcup \{S \mid S \in C\}$ such that $h(i,j) = g_{f(i)}(j)$ for the j^{th} element of f(i).

Let $X \in \bigcup \{S \mid S \in C\}$ be arbitrary;

Then there exists $S \in C$ such that $x \in S$, and there exists $i \in \mathbb{N}$ such that f(i) = S.

Since $x \in S$ and g_s is surjective, there exist $j \in \mathbb{N}$ such that $g_s(j) = x$. He

nce $x = g_{f(i)}(j) = h(i, j)$, so h is surjective.

Thus $\bigcup \{S \mid S \in C\} = \bigcup \{f(i) \mid i \in \mathbb{N}\}\$ is countable.

quod $\stackrel{1}{erat}$ dem

Theorem 5

The set $\{0,1\}^{\omega}$ of all infinite binary sequences is uncountable MAT 8.1.4.

Proof. Suppose $\{0,1\}^{\omega}$ is countable. Then there exists a surjective function $f: \mathbb{N} \to \{0,1\}^{\omega}$.

 $B(0) = 100011 \cdots$

 $B(1) = 011101 \cdots$

 $B(2) = 100000 \cdots$

$$B(i) = \{B(i)_j\}_{j \ge 0}$$

Let D = the sequence of bits on the diagonal. That is, $D_i = B(i)_i$ for all $i \in \mathbb{N}$.

Let C = the sequence of bits obtained form D by complementing every bit. So, $C_i = 1 - B(i)_i$

 $D = 110 \cdots$

C = 001...

 $C \in \{0,1\}^{\omega}$ and B is surjective so $\exists j \in \mathbb{N}$ such that B(j) = C. Then $B(j)_j = C_j = 1 - B(j)_j$. This is a contradiction.

erat

Another example of a diagonalization proof.

There is a compile (program) C that determines whether a given ASCII string P is a syntactically correct Python program that makes a single ASCII string as input i.e. $P \in C$.

G(P) outputs True if $P \in C$, False if $P \notin C$.

Want a python program H that takes as input two ASCII strings, P and X such that H(P,X)outputs True if $P \in C$ and P(x) halts False if $P \notin C$ or P(X) runs forever. (3)

Theorem 6 – Halting Problem

No such python program H exists.

```
Proof. Suppose there has such a python program H.
def t1(P: str, x: str):
If justreturn is the string
justreturn = "def j(s: str): return s'' \in C, then H(\text{justreturn, 'hello'}) returns True
if goforever is the string
goforever = "def g(t: str): while True: pass" \in C, then H(goforever, 'hello') returns False
Consider the syntatically correct Python function D:
```

```
\operatorname{def} D(x): if H(x,x): while True: pass else: return True
```

let $d \in C$ be the string,

```
d = def function D(x): if H(x,x): while True: pass else: return True
```

What happens when Drunson inputed from the code of D:

```
If H(d,d) = false then D(d) returns True
```

If H(d,d) = true then D(d) goes into a infinite loop

From the definition of H,

If D(d) returns then H(d,d)=True

If D(d) goe sinto an infinite loop then H(d,d) = False

This is a contradiction.

quod $\stackrel{\cdot}{erat}_{dem}$