SERIE DE TD N°:3 COMPILATION, ANALYSE SYNTAXIQUE DESCENDANTE

Exercice 1

Déterminez, en donnant des explications, les ensembles de **Premiers** et de **Suivants** de chacun des non terminaux des grammaires suivantes, S étant toujours l'axiome :

$S \rightarrow a A B b$	$S \rightarrow a \times B A \mid C$	$S \rightarrow A$	$S \rightarrow AB$
$A \rightarrow A e \mid f$	$A \rightarrow B S \mid y$	$A \rightarrow Ad \mid Ae \mid aB \mid aC$	$A \rightarrow CD \mid CB \mid b$
$B \rightarrow C D$	$B \rightarrow ASC \mid AA \mid z$	$B \rightarrow bBC \mid f$	$B \rightarrow aE \mid aB \mid \epsilon$
$C \rightarrow g \mid \epsilon$	$C \rightarrow SS \mid t$	$C \rightarrow g$	$C \rightarrow b$
$D \rightarrow h \mid \epsilon$	·		$D \rightarrow De \mid f$
			$E \rightarrow a \mid \epsilon$

Exercice 2

Soit la grammaire $G_1 = (\{a, (, -,)\}, \{A, B, C, D\}, A, P)$

Exercice 3

Montrer si les grammaires G_1 , G_2 , G_3 , G_4 et G_5 ayant pour axiomes respectifs S_1 , S_2 , S_3 , S_4 et S_5 sont des grammaires LL(1). Pour celles qui ne le sont pas, effectuer les transformations nécessaires pour qu'elles le deviennent et montrez si les nouvelles grammaires obtenues sont LL(1) ou pas.

Exercice 4

Soit la grammaire $G_2 = (\{a, b, (,), , \}, \{S, T\}, S, P)$, ayant les règles de production suivantes :

$$\begin{array}{c} S \rightarrow a \mid b \mid (T) \\ T \rightarrow T, S \mid S \end{array}$$

- 1. Montrer si la grammaire G_2 est une grammaire LL(1). Si elle ne l'est pas, effectuer les transformations nécessaires pour qu'elle le devienne. Soit G_2 la grammaire obtenue après ces éventuelles transformations.
- 2. Déterminer les premiers et les suivants de chaque non terminal de G'₂.
- 3. Etablir la table d'analyse prédictive de G'₂.
- 4. Analyser les chaînes (a,b) puis (a,(b) et (a,(a,b)) en utilisant l'analyse prédictive et déduire leurs arbres syntaxiques.

Exercice 5

Soit la grammaire suivante (des expressions booléennes) dont l'axiome est A:

 $A \rightarrow A$ ou $B \mid B$ $B \rightarrow B$ et $C \mid C$ $C \rightarrow \text{non } C \mid D$ $D \rightarrow (A) \mid \text{vrai} \mid \text{faux}$

- 1. Eliminer la récursivité à gauche et factoriser si cela est nécessaire.
- 2. Donner la table d'analyse de la nouvelle grammaire. Est-elle LL(1)?
- 3. Expliciter le comportement de l'analyseur sur la chaîne **non (vrai ou faux) et vrai**.

Exercice 6

Soit la grammaire suivante dont l'axiome est S:

 $S \rightarrow Ab \mid a \mid AA$ $A \rightarrow Sa \mid Ac \mid B$ $B \rightarrow Sd$

- 1. Eliminer la récursivité à gauche de cette grammaire.
- 2. Factoriser les règles obtenues si cela est nécessaire.
- 3. La grammaire obtenue est-elle une grammaire LL(1)?