

Time Series Challenge (Summer 2024) **Heat and water Demand forecasting**

Presented by: Jagruti Godambe

Supervisors:

Dr.-Ing. Tomás Arias-Vergara M.Sc. Adithya Ramachandran

Agenda

Pattern Recognition Lab

- **01** Motivation
- **02** Introduction
- 03 Dataset Overview
- 04 Data Preprocessing
- **05** Architecture
- 06 Model Evaluation
- 06 Conclusion

Motivation

Introduction

Time Series Challenge

Downstream Task:

Historical Heat and Water data

Forecasting model

Prediction for next 24 hours

Dataset Overview

Time Series Challenge

Heat Demand Data for urban population

Dataset Overview

Time Series Challenge

Water Demand Data for urban and rural population

Dataset Overview

Time Series Challenge

Weather Data:

• Timestamp, Temperature, Feels like, Weather Description, Latitude, Longitude..... etc.

Data Pre-Processing

Time Series Challenge

8

Architecture: Heat Demand Forecasting

Time Series Challenge

Optimizer: Adam Loss: MSE Batch size: 32 Learning rate: 0.001

Architecture: Water Demand Forecasting (Urban)

Time Series Challenge

Optimizer: RMS Loss: MSE Batch size: 32 Learning rate: 0.0006

Architecture: Water Demand Forecasting (Rural)

Time Series Challenge

Optimizer: Adam Loss: MSE Batch size: 32 Learning rate: 0.01

Time Series Challenge

Evaluation Metrics:

• Mean Absolute Error (MAE) and MAPE were used to evaluate model performance.

Data/Metrics	MAE	MAPE (%)
Heat DMA	177.739	0.0653
Water DMA 1	1.604	0.137
Water DMA 2	0.489	0.221

Data/Metrics	MAE	MAPE
Heat DMA	425.9	0.112
Water DMA 1	11.529	1.151
Water DMA 2	0.501	0.191

Deep Learning Based Forecasting Model from the lab

Deep Learning Based Forecasting Model obtained by me

Conclusion

Heat and Water Demand Forecasting

• LSTM models are highly effective for forecasting heat and water demand due to their ability to capture temporal and non-linear patterns in time series data.

• I STM outperform traditional methods but require more data, computational power, and careful tuning.

Data/Metrics	MAE	MAPE (%)
Heat DMA	177.739	0.0653
Water DMA 1	1.604	0.137
Water DMA 2	0.489	0.221

DMA	RMSE	MAPE	MAE
Heat	219.406	0.0653	177.739
Water 1	2.013	0.137	1.604
Water 2	0.641	0.221	0.489

Table: Deep Learning Based Forecasting Model from the lab

Data/Metrics	MAE	MAPE (%)	RMSE
Heat DMA	368.01	9.43	535.12
Water DMA 1	11.52	115.17	14.27
Water DMA 2	0.50	19.19	0.73

Technische Fakultät 18. Oktober 2024

Predicted vs Ground Truth | Heat DMA

Predicted vs Ground Truth | Water DMA 1

Predicted vs Ground Truth | Water DMA 2

Thank you!

Technische Fakultät