Full Waveform Inversion Adjoint Studies

MATHIAS 2018

Pierre Jacquet

pierre.jacquet@inria.fr

Barucq Hélène, Diaz Julien, Calandra Henri First year PhD Student Inria - Magique 3D - DIP

Pau, FRANCE

Outline

The acoustic model

The continuous model
The discretized problem
Assets of Bernstein polynomials

Adjoint Studies

FWI Introduction Adjoint then Discretized Discretize then Adjoint

Some Results

Consistency of the Adjoint Solution FWI Preliminary test Qualitative Cost Function Gradient Study

Outline

The acoustic model

The continuous model
The discretized problem
Assets of Bernstein polynomials

Adjoint Studies

FWI Introduction
Adjoint then Discretized
Discretize then Adjoint

Some Results

Consistency of the Adjoint Solution FWI Preliminary test Qualitative Cost Function Gradient Study

The continuous model

Continuous Problem:

$$\begin{cases} \frac{1}{\rho_0 \mathbf{v_p}^2} \frac{\partial p}{\partial t} + \frac{\partial v}{\partial x} = f_p & \text{in } \Omega \\ \rho_0 \frac{\partial v}{\partial t} + \frac{\partial p}{\partial x} = f_v & \text{in } \Omega \end{cases}$$

$$\begin{cases} p(t=0) = 0 \\ v(t=0) = 0 \\ \frac{\partial p}{\partial t} + \mathbf{v_p} \frac{\partial p}{\partial x} . \mathbf{n} = 0 \text{ on } \Gamma \end{cases}$$

Figure: 1D Domain Model

The discretized model

Discretized Problem:

$$\begin{cases} \frac{\partial \bar{\mathbf{P}}}{\partial t} = A_{pv} \bar{\mathbf{V}} + A_{pp} \bar{\mathbf{P}} + \bar{\mathbf{F}}_{p} \\ \frac{\partial \bar{\mathbf{V}}}{\partial t} = A_{vp} \bar{\mathbf{P}} \end{cases}$$

Figure: 1D Discretized Domain

- ► Discontinuous Galerkin space discretization
- ▶ Different time-schemes (RK4,AB3)
- Two polynomial basis (Lagrange and Bernstein)
- Constant velocity (v_p) per cells
- Constant density (ρ₀) per cells

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

 $P[X^5]$ Bernstein basis

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Easy Derivative expression:

$$\frac{\partial B_{\alpha}^{N}}{\partial \lambda_{n}} = NB_{\alpha-e_{p}}^{N-1}$$
 with: $\alpha = (i, j, k, l)$

 $P[X^5]$ Bernstein basis

Bernstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_1^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Easy Derivative expression:

$$\frac{\partial B_{\alpha}^{N}}{\partial \lambda_{p}} = NB_{\alpha-e_{p}}^{N-1}$$
 with: $\alpha = (i, j, k, l)$

Sparse Degree Elevation operator:

$$B_{\alpha}^{N-1} = \sum_{p=0}^{d} \frac{\alpha_p + 1}{N} B_{\alpha + e_p}^{N}$$

P[X⁵] Bernstein basis

Unique boundary condition values:

⇒ Same Flux Management

Derivative-Operator Analysis

3D Lagrange D matrix

3D Bernstein D matrix

 Chan J. and Warburton T.
 GPU-Accelerated Bernstein Bézier Discontinuous Galerkin Methods for Wave Problems SIAM Journal on Scientific Computing 2017

1D Results

Figure: Operators NZVs as a function of the order

Outline

The acoustic model

The continuous model
The discretized problem
Assets of Bernstein polynomials

Adjoint Studies

FWI Introduction
Adjoint then Discretized
Discretize then Adjoint

Some Results

Consistency of the Adjoint Solution FWI Preliminary test Qualitative Cost Function Gradient Study

FWI Introduction

FWI Introduction

Adjoint Studies

Continuous Direct Problem

Continuous Adjoint* Problem Continuous Direct Problem

(*)

Continuous Adjoint* Problem

Discretization

Discretization of the Continuous Adjoint* Problem

AtD: Adjoint then Discretized Strategy

$$J(p) = \frac{1}{2}||Rp - data||^2$$

$$\begin{cases} \frac{1}{\rho_0 \mathbf{v_p}^2} \frac{\partial p}{\partial t} + \nabla \cdot \mathbf{v} = f_p \\ \rho_0 \frac{\partial \mathbf{v}}{\partial t} + \nabla p = 0 \\ p(t = 0) = 0 \\ v(t = 0) = 0 \\ \frac{\partial p}{\partial t} + \mathbf{v_p} \nabla p \cdot \mathbf{n} = 0 \text{ on } \Gamma \end{cases}$$

$$\begin{cases} \frac{1}{\rho_0 \mathbf{v_p}^2} \frac{\partial \lambda_1}{\partial t} + \nabla \cdot \lambda_2 = \frac{\partial J}{\partial p} \\ \rho_0 \frac{\partial \lambda_2}{\partial t} + \nabla \lambda_1 = 0 \\ \lambda_1 (t = T) = 0 \\ \lambda_2 (t = T) = 0 \\ \frac{\partial \lambda_1}{\partial t} + \mathbf{v_p} \nabla \lambda_1 \cdot \mathbf{n} = 0 \text{ on } \Gamma \end{cases}$$

$$t \in [0, T]$$

$$t \in [T, 0]$$

AtD: Adjoint then Discretized Strategy

$$J(\bar{\boldsymbol{P}}) = \frac{1}{2}||R\bar{\boldsymbol{P}} - data||^2$$

$$\begin{cases} \frac{\partial \bar{\boldsymbol{P}}^n}{\partial t} = A_{\rho\nu} \bar{\boldsymbol{V}}^n + A_{\rho\rho} \bar{\boldsymbol{P}}^n + \bar{\boldsymbol{F}}_\rho^n \\ \frac{\partial \bar{\boldsymbol{V}}^n}{\partial t} = A_{\nu\rho} \bar{\boldsymbol{P}}^n \end{cases}$$

$$\begin{cases} \frac{\partial \bar{\boldsymbol{P}}^{n}}{\partial t} = A_{\rho\nu} \bar{\boldsymbol{V}}^{n} + A_{\rho\rho} \bar{\boldsymbol{P}}^{n} + \bar{\boldsymbol{F}}_{\rho}^{n} \\ \frac{\partial \bar{\boldsymbol{V}}^{n}}{\partial t} = A_{\nu\rho} \bar{\boldsymbol{P}}^{n} \end{cases} \begin{cases} \frac{\partial \bar{\boldsymbol{\Lambda}}_{1}}{\partial t}^{n} = +A_{\rho\nu} \bar{\boldsymbol{\Lambda}}_{2}^{n} + A_{\rho\rho} \bar{\boldsymbol{\Lambda}}_{1}^{n} + \bar{\boldsymbol{D}}_{\rho}^{n} \\ \frac{\partial \bar{\boldsymbol{\Lambda}}_{2}}{\partial t}^{n} = A_{\nu\rho} \bar{\boldsymbol{\Lambda}}_{1}^{n} \end{cases}$$

DtA: Discretize then Adjoint Strategy

$$\frac{\partial \bar{\boldsymbol{U}}^n}{\partial t} = A\bar{\boldsymbol{U}}^n + \bar{\boldsymbol{F}}^n \quad \text{With} : \bar{\boldsymbol{U}} = \begin{pmatrix} \bar{\boldsymbol{P}} \\ \bar{\boldsymbol{V}} \end{pmatrix} , A = \begin{pmatrix} A_{\rho\rho} & A_{\rho} \\ A_{\nu} & 0 \end{pmatrix}, \bar{\boldsymbol{F}} = \begin{pmatrix} \bar{\boldsymbol{F}}_{\rho} \\ 0 \end{pmatrix}$$

All time scheme can be summed-up such as :

$$L\bar{m{U}}=E\bar{m{F}}$$

We are looking for a Discrete Adjoint state satisfying:

$$L^*\bar{\Lambda} = -R^*(R\bar{\boldsymbol{U}} - data)$$

DtA: Discretize then Adjoint Strategy Example with RK4

RK4 time-scheme leads to:

$$ar{m{U}}^{n+1} = Bar{m{U}}^n + C_0ar{m{F}}^n + C_{rac{1}{2}}ar{m{F}}^{n+rac{1}{2}} + C_1ar{m{F}}^{n+1}$$
 $Lar{m{U}} = Ear{m{F}} = ar{m{G}}$
 $(ar{m{U}}^0)$
 $(ar{m{G}}^0)$

$$\begin{pmatrix}
I \\
-B & I \\
-B & I
\end{pmatrix}
\begin{pmatrix}
\bar{\boldsymbol{U}}^{0} \\
\bar{\boldsymbol{U}}^{1} \\
\bar{\boldsymbol{U}}^{2} \\
\vdots \\
\bar{\boldsymbol{U}}^{n}
\end{pmatrix} = \begin{pmatrix}
\bar{\boldsymbol{G}}^{0} \\
\bar{\boldsymbol{G}}^{1} \\
\bar{\boldsymbol{G}}^{2} \\
\vdots \\
\bar{\boldsymbol{G}}^{n}
\end{pmatrix}$$

So:

$$L^* = \begin{pmatrix} I & -B^* \\ & I & -B^* \\ & & \ddots & \ddots \\ & & & I & -B^* \end{pmatrix}$$

$$< L\bar{\boldsymbol{U}}, \bar{\boldsymbol{\Lambda}} > = < \bar{\boldsymbol{U}}, L^*\bar{\boldsymbol{\Lambda}} >$$

$$< L\bar{\boldsymbol{U}},\bar{\boldsymbol{\Lambda}}> = <\bar{\boldsymbol{U}},L^*\bar{\boldsymbol{\Lambda}}>$$

$$\begin{cases} L\bar{\boldsymbol{U}} = E\bar{\boldsymbol{F}} = \bar{\boldsymbol{G}} \\ \bar{\boldsymbol{U}}(t=0) = 0 \end{cases}$$

$$\begin{cases} L^* \bar{\boldsymbol{\Lambda}} = -R^* (R \bar{\boldsymbol{U}} - data) = \bar{\boldsymbol{D}} \\ \bar{\boldsymbol{\Lambda}} (t = T) = 0 \end{cases}$$

$$< L\bar{\boldsymbol{U}},\bar{\boldsymbol{\Lambda}}> = <\bar{\boldsymbol{U}},L^*\bar{\boldsymbol{\Lambda}}>$$

$$\begin{cases} L\bar{\boldsymbol{U}} = E\bar{\boldsymbol{F}} = \bar{\boldsymbol{G}} \\ \bar{\boldsymbol{U}}(t=0) = 0 \end{cases}$$

$$\begin{cases} L^* \bar{\boldsymbol{\Lambda}} = -R^* (R \bar{\boldsymbol{U}} - data) = \bar{\boldsymbol{D}} \\ \bar{\boldsymbol{\Lambda}} (t = T) = 0 \end{cases}$$

$$=$$

$$< L\bar{\boldsymbol{U}}, \bar{\boldsymbol{\Lambda}} > = < \bar{\boldsymbol{U}}, L^*\bar{\boldsymbol{\Lambda}} >$$

$$\begin{cases} L\bar{\boldsymbol{U}} = E\bar{\boldsymbol{F}} = \bar{\boldsymbol{G}} \\ \bar{\boldsymbol{U}}(t=0) = 0 \end{cases}$$

$$\begin{cases} L^* \bar{\boldsymbol{\Lambda}} = -R^* (R \bar{\boldsymbol{U}} - data) = \bar{\boldsymbol{D}} \\ \bar{\boldsymbol{\Lambda}} (t = T) = 0 \end{cases}$$

$$=$$
 $=$

Adjoint test succeeds \iff operator L^* well established

Outline

The acoustic model

The continuous model
The discretized problem
Assets of Bernstein polynomials

Adjoint Studies

FWI Introduction Adjoint then Discretized Discretize then Adjoint

Some Results

Consistency of the Adjoint Solution FWI Preliminary test Qualitative Cost Function Gradient Study

Adjoint test passed for:

- ► Lagrange Operators
- ► Bernstein Operators
- ► Runge Kutta 4 time-scheme
- Adams Bashforth 3 time-scheme
- With a canonical space inner-product (< u, v >_X= ∑_i u_iv_i)
- With a M-space inner product (< u, v >^M_X =< Mu, v >_X)

Adjoint test passed for :

- ► Lagrange Operators
- ▶ Bernstein Operators
- Runge Kutta 4 time-scheme
- Adams Bashforth 3 time-scheme
- With a canonical space inner-product $(< u, v>_X = \sum_i u_i v_i)$
- With a M-space inner product (< u, v >^M_v =< Mu, v >_x)

```
./run
--- Adjoint test ----
inner product UP/DUDP 553123.57586755091
inner product GPGU/QPQU 553123.57586756046
./riin
--- Adjoint test ----
inner product UP/DUDP -75077.332007383695
inner product GPGU/QPQU -75077.332007386358
./run
--- Adjoint test ----
inner product UP/DUDP 125669.89223600870
inner product GPGU/QPQU 125669.89223600952
./run
--- Adjoint test ----
inner product UP/DUDP -132852.64215701097
inner product GPGU/QPQU -132852.64215701059
```

Non consistency of the Adjoint solution

With the DtA strategy using the canonical

inner-product (Lagrange+RK4)

Adjoint test succeeds!

Sei Alain and Symes William
 A Note on Consistency and Adjointness for Numerical Schemes 1997

With the AtD strategy

FWI Preliminary test (for all strategies)

FWI Preliminary test (for all strategies)

Figure: Comparison between a Reference Gradient and the FWI Gradient with AtD strategy (Bernstein elements and RK4 time scheme)

Figure: Comparison between a Reference Gradient and the FWI Gradient with DtA strategy (Bernstein elements and RK4 time scheme)

Figure: Comparison between a Reference Gradient and the FWI Gradient with AtD strategy (Lagrange elements and RK4 time scheme)

Figure: Comparison between a Reference Gradient and the FWI Gradient with DtA strategy (Lagrange elements and RK4 time scheme)

Conclusion and Perspectives

Conclusion:

- Adjoint then Discretized strategy works
- Discretized then Adjoint strategy has unexpected results (Gradient formulation? Bug?)
- ► The adjoint state is not consistent by using the Discretized and Adjoint strategy (but Adjoint test succeeds)

Conclusion and Perspectives

Conclusion:

- Adjoint then Discretized strategy works
- Discretized then Adjoint strategy has unexpected results (Gradient formulation? Bug?)
- The adjoint state is not consistent by using the Discretized and Adjoint strategy (but Adjoint test succeeds)

Perspectives:

- Complementary 1D tests
- ► 2D FWI + tests
- 3D FWI + tests
- Coupling SEM/DG elements (Aurélien Citrain's thesis)