Hypothesis Tests for Two Proportions

8.3 (Tues)

Power of a Statistical Test

8.5 (Thurs)

Tuesday's topics

Review Midterm 3

2-sample Hypothesis testing review

paired t-test example)

Hypothesis test for two proportions

Paired t-test

For comparing means of two **dependent** samples.

Saliva samples from 10 people were sent to each of two laboratories (Lab 1 and Lab 2) to test for antibody levels. Is there a statistically significant difference in the mean at the 0.01 significance level?

Subject	Lab 1	Lab 2	Difference
1	296	318	-22
2	268	287	-19
10	262	285	-23
Mean	260.6	275	-14.4 $s_d = 6.77$

notes

$$t = -6.73 \sim$$

Type I Error: Review

Type I Error: Reject H₀ when H₀ is true

Hypothesis testing:

Set maximum acceptable rate of Type I error:

 α (significance level)

Choose a test with the most power to detect H_A .

$$\mathbf{p_1} - \mathbf{p_2}$$

Consider two populations, with "success" proportions p_1 and p_2 , respectively. Consider the sample proportions:

$$\hat{p}_1 = \frac{x_1}{n_1}$$
 and $\hat{p}_2 = \frac{x_2}{n_2}$. n_1 and n_2 are sample sizes

 x_1 and x_2 are the numbers of "successes" in the two samples from populations 1 and 2.

If n_1 and n_2 are large, $(\hat{p}_1 - \hat{p}_2)$ is approximately distributed

$$(\hat{p}_1 - \hat{p}_2) \sim N(p_1 - p_2, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2})$$

CI for $p_1 - p_2$ A 100(1- α)% CI for $p_1 - p_2$ is

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Hypothesis Testing for $p_1 - p_2$

$$H_0: p_1 - p_2 = 0$$
 $H_1: p_1 - p_2 \neq 0$ $H_1: p_1 - p_2 > 0$ $H_1: p_1 - p_2 < 0$

Test statistic:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}}, \quad \text{where} \quad \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

For developing countries in Africa and the Americas, let p_1 and p_2 be the respective proportions of babies with a low birth weight (below 2500 grams).

Test H_0 : $p_1 = p_2$ against H_1 : $p_1 > p_2$.

a) Define a critical region that has an $\alpha = 0.05$ significance level.

For developing countries in Africa and the Americas, let p_1 and p_2 be the respective proportions of babies with a low birth weight (below 2500 grams).

```
Test H_0: p_1 = p_2 against H_1: p_1 > p_2.
```

b) If respective random samples of sizes $n_1 = 900$ and $n_2 = 700$ yielded $y_1 = 135$ and $y_2 = 770$ habita with a law birth weight what is seen as a large of $x_1 = x_2 = x_3 = x_4$.

= 77 babies with a low birth weight, what is your conclusion at α = 0.05?

For developing countries in Africa and the Americas, let p_1 and p_2 be the respective proportions of babies with a low birth weight (below 2500 grams).

```
Test H_0: p_1 = p_2 against H_1: p_1 > p_2.
```

c) If respective random samples of sizes n_1 = 900 and n_2 = 700 yielded y_1 = 135 and y_2 = 77 babies with a low birth weight, what is the rejection region and conclusion at α = 0.01?

For developing countries in Africa and the Americas, let p_1 and p_2 be the respective proportions of babies with a low birth weight (below 2500 grams).

If respective random samples of sizes $n_1 = 900$ and $n_2 = 700$ yielded $y_1 = 135$ and $y_2 = 77$ babies with a low birth weight,

d) Perform the following test (at α = 0.1)

$$H_0: p_1 \le p_2 + 0.2$$

$$H_1: p_1 > p_2 + 0.2$$

Power

The **power** of a statistical test is related to Type II error.

Power = 1 - P[Type II Error]

Some potentially confusing notation (that I didn't invent)

- $f \beta$ is the probability of Type II error
- Sometimes the power function is written as $\beta(\theta)$.
 - Need to look at context
 - These β 's are not the same. In the second case, β is just the name of the function.
 - Pour textbook calls $\beta(\theta)$ as $K(\mu)$ when dealing with the mean.

Type I and Type II Errors

Example 8.5-2

Let X_1, X_2, \ldots, X_n be a random i.i.d. sample $\sim N(\mu, 100)$. Let's say these are final exam scores of students in a large online stats course.

Suppose a researcher wanted to see if there is a significant difference between Zoom and Twitch. Zoom is the current default method of teaching, and has mean 60)

 H_0 : $\mu = 60$

 H_1 : $\mu > 60$ (we want to test to see if Twitch is better)

Test statistic: \overline{X} (it is the MLE of μ)

Initially, we use the rule to reject H_0 if and only if $x \ge 62$. Consider a sample of size n = 25. What are the consequences of this test?

Type I and Type II Errors

Power Function

If the true mean under H_A (for Twitch) is μ , then $X \sim N(\mu, 100)$. If n = 25, $\bar{X} \sim N(\mu, 4)$.

The probability of rejecting H₀ is given by

$$K(\mu) = P[\overline{X} \ge 62 ; \mu]$$

$$= P\left[\frac{\overline{X} - \mu}{2} \ge \frac{62 - \mu}{2} ; \mu\right] = P\left[Z \ge \frac{62 - \mu}{2} ; \mu\right]$$

Table 8.5-1	Values of the power function
μ	$K(\mu)$
60	0.1587
61	0.3085
62	0.5000
63	0.6915
64	0.8413
65	0.9332
66	0.9772

Ideal power function?

What would an ideal power function look like?

Example 2

Assume that the number of grams of coffee that Albert selects every day follows an approximately normal distribution with unknown mean and standard deviation 16.

Let n = 16, $\alpha = 0.01$

Test H_0 : $\mu = 100$ vs H_A : $\mu > 100$.

When should I reject H_0 ?

Example 2 – Power at μ =108

Power =
$$P[\bar{X} \ge 109.304 \mid \mu = 108]$$

$$= P[Z \ge \frac{109.304 - 108}{16/\sqrt{16}}] = P[Z \ge 0.326]$$

= 0.3722

What if we used $\alpha = 0.05$?

Cutoff = 106.58, Power = $P[\bar{X} \ge 106.58] = 0.6404$

