Departamento de Matemática e Aplicações

,	
11	1:0000
Algebra	Linear

	exame ${f A}$ —	7 de fevereiro de 2011 ————
nome:		número:

A duração da prova é de 2 (duas) horas. Não é permitida a utilização de máquinas de calcular.

cotação: em (I), $1\sim(2+2)$, $2\sim(2+2+2+2)$; em (II), cada resposta certa vale 1 valor e cada resposta errada subtrai 0.25.

(1)

Justifique todas as suas respostas convenientemente.

1. Considere a matriz
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 3 & 1 \end{bmatrix}$$
 e o vector $b = \begin{bmatrix} -4 \\ -2 \\ -6 \end{bmatrix}$.

- (a) Encontre, usando o algoritmo de eliminação de Gauss, uma matriz U escada de linhas equivalente por linhas a $M=\left[\begin{array}{cc}A&b\end{array}\right]$.
- (b) Resolva o sistema Ax = b, usando o algoritmo de eliminação de Gauss.

2. Considere a matriz
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & 3 & 0 \end{bmatrix}$$
.

- (a) Encontre uma base do núcleo de A.
- (b) Encontre uma base de CS(A), o espaço das colunas de A. Verifique se $CS(A) = \mathbb{R}^3$.
- (c) Calcule os valores próprios de A.
- (d) Verifique se A é diagonalizável e em caso afirmativo diagonalize-a (bastando, para tal, indicar uma matriz diagonalizante e uma diagonal)

Leia atentamente as questões. Depois, na última página desta prova, assinale com um X a alínea (a, b, c ou d) correspondente à melhor resposta a cada questão. No caso de ter assinalado mais do que uma alínea de resposta para a mesma questão, essa questão será considerada como não respondida.

1. Para a matriz
$$A = \begin{bmatrix} 2 & 3 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$
,

- (a) A é diagonalizável.
- (b) $CS(A) = \mathbb{R}^3$.
- (c) Ax = 0 é possível determinado.
- (d) Nenhuma das anteriores. (V)

2. Para a matriz
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$
,

- (a) $(0,1,-1) \in N(A)$.
- (b) Ax = b é sempre possível, independentemente da escolha de $b \in \mathbb{R}^2$. (V)
- (c) nul(A) = 2.
- (d) Nenhuma das anteriores.
- 3. Dada uma matriz quadrada A, seja U uma matriz escada obtida de A após aplicação do algoritmo de eliminação de Gauss, então garantidamente
 - (a) det(A) = det(U).
 - (b) $\sigma(A) = \sigma(U)$, ou seja, são iguais os conjuntos dos valores próprios de A e de U.
 - (c) $\dim CS(A) = \dim CS(U)$. (V)
 - (d) Nenhuma das anteriores.

4. Considere as matrizes
$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$
 e $J = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

- (a) $\sigma(A)=\sigma(J),$ ou seja, AeJtêm os mesmos valores próprios.
- (b) $\left[\begin{array}{ccc} 1 & 0 & 1 \end{array}\right]^T \in N(A).$
- (c) $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ é vector próprio associado ao valor próprio 0 de A.
- (d) Todas as anteriores. (V)

5. Dada a matriz
$$A=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{array}\right]$$
 e $b\in\mathbb{R}^3,$

- (a) Ax = b é possível determinado.
- (b) $\operatorname{proj}_{CS(A)}b = b$.
- (c) As colunas de A formam uma base de \mathbb{R}^3 .
- (d) Todas as anteriores. (V)

6. Dada a matriz
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$
,

(a) As colunas de A formam uma base de \mathbb{R}^3 .

(b)
$$A^{-1} = \begin{bmatrix} 0 & 3 & -2 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

- (c) $\det(A) = 1$.
- (d) Todas as anteriores. (V)

7. Sendo $T: \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear definida por

$$T(1,0) = (0,1,1), T(0,1) = (1,0,1).$$

(a)
$$T(1,2) = (2,1,3)$$
. (V)

(b) A matriz que representa
$$T$$
 em relação à base canónica de \mathbb{R}^2 e à de \mathbb{R}^3 é $[T]=\begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$.

- (c) T(x,x)=(x,2x,x), para qualquer $x\in\mathbb{R}.$
- (d) Todas as anteriores.

8. Dadas duas matrizes $A \in B$ quadradas $n \times n$,

- (a) Se A é invertível então A^2 também é invertível. (V)
- (b) Se A e B são invertíveis então A+B também é invertível.
- (c) $AB = 0 \Rightarrow A = 0 \lor B = 0$ é sempre válida, independentemente da escolha de A e B.
- $(\mbox{\bf d})$ Apenas duas das afirmações anteriores são verdadeiras.

Respostas:

1. a) 🔘

b) (

c) (

d) ()

2. a) 🔘

b) (

c) (

 $\mathrm{d})\;\bigcirc$

3. a) 🔘

b) (

c) (

d) ()

4. a) 🔘

b) (

c) (

d) ()

5. a) 🔘

b) (

c) (

d) ()

6. a) 🔘

b) (

c) (

d) ()

7. a) 🔘

b) (

c) (

d) ()

8. a) 🔘

b) (

c) (

d) ()