1、① 设函数 f(x) 在 $(-\infty, +\infty)$ 上可导,a,b 是 f(x) = 0 的两个相异实根.求证: 2021f(x) + f'(x) = 0 在 (a,b) 上至少有一个实根. (a,b) こ (a,b)

- (3) $f(\xi) + \xi f'(\xi) = 0$. $\frac{\partial}{\partial x} = 3 + 2 = 3$.
- (4) 设 f(x) 在 [1,e] 上可导,且 f(1)=0, f(e)=1,证明方程 xf'(x)-1=0在(1,e)内至少有一实根.
- 2. 函数 $y = \sin x$ 的 3 阶麦克劳林公式为______. (两种余项形式均可)
- 3. 写出 $f(x) = \ln \sin x$ 在 $x_0 = \frac{\pi}{4}$ 处的拉格朗日型余项及佩亚诺型余项的二阶泰勒 公式.

得 $f(x) = \ln \sin x$ 在 $x_0 = \frac{\pi}{4}$ 处拉格朗日型余项的二阶泰勒公式为

$$\ln \sin x = -\frac{1}{2} \ln 2 + (x - \frac{\pi}{4}) - (x - \frac{\pi}{4})^2 + \frac{\csc^2 \xi \cdot \cot \xi}{3} (x - \frac{\pi}{4})^3, 其中 \xi 介于 x 与 \frac{\pi}{4} 之 间;$$

佩亚诺型余项的二阶泰勒公式为

$$\ln \sin x = -\frac{1}{2} \ln 2 + (x - \frac{\pi}{4}) - (x - \frac{\pi}{4})^2 + o\left((x - \frac{\pi}{4})^2\right).$$

4. 求 $f(x) = 2x^3 - 6x$ 在闭区间[-1,2]上的最大值与最小值.

$$f'(x) = 6x^2 - 6 = 0 \Rightarrow x = \pm 1$$

 $f(-1) = 4, f(1) = -4, f(2) = 4$

5. 求 $f(x) = x^2 e^{-x}$ 的单调区间及极值、其图形的凹凸区间及拐点.

解:
$$D_f = (-\infty, +\infty)$$
; $f'(x) = 2xe^{-x} - x^2e^{-x} = -xe^{-x}(x-2)$ 的零点为 0 和 2 ;
$$f''(x) = 2e^{-x} - 4xe^{-x} + x^2e^{-x} = e^{-x}(x^2 - 4x + 2) = e^{-x}(x - (2 + \sqrt{2})(x - (2 - \sqrt{2})))$$
的零点为 $2 \pm \sqrt{2}$.

列表:

х	(-∞,0)	0	$(0,2-\sqrt{2})$	$2-\sqrt{2}$	$(2-\sqrt{2},2)$	2	$(2,2+\sqrt{2})$	$2+\sqrt{2}$	$(2+\sqrt{2},+\infty)$
f'(x)	_	0	+	+	+	0		_	
f''(x)	+	+	+	0	_	_	_	0	+
f(x)	减, 凹	极值	增,凹	拐点	增,凸	极值	减,凸	拐点	减,凹

 $\therefore f(x)$ 在($-\infty$,0]、[2,+ ∞)上单调减少,在[0,2]上单调增加;

其图形在 $(-\infty,2-\sqrt{2}]$ 、 $[2+\sqrt{2},+\infty)$ 上是凹的,在 $[2-\sqrt{2},2+\sqrt{2}]$ 上是凸的,拐点为 $(2-\sqrt{2},(6-4\sqrt{2})e^{-2+\sqrt{2}})$ 和 $(2+\sqrt{2},(6+4\sqrt{2})e^{-2-\sqrt{2}})$,极小值 0,极大值 $4e^{-2}$.

- 6、讨论函数 $y=1+\frac{36x}{(x+3)^2}$ 的单调区间和极值以及凹凸性和拐点.(课本)
- 7、证明: 当x > 1时, $2\sqrt{x} > 3 \frac{1}{x}$.
- 8. 证明不等式: $\tan x > x + \frac{1}{3}x^3(0 < x < \frac{\pi}{2})$
- 9、证明不等式 $|\sin x \sin y| \le |x y|$. (有x y) 的考虑拉氏定理。
- 10. 设 x > y > 0, 证明: $x^5 y^5 < 5x^4(x y)$.
- 11. 利用凹凸性证明 $\frac{e^x + e^y}{2} > e^{\frac{x+y}{2}} (x \neq y)$