tlenum 10/5

5.7:9

5<u>8</u>: 1

5.9:12,(8),(16)

5.10: le, 2, 8

 $\varphi(x,y(x)) = C, \quad \frac{ANTA}{2}$

Bevis: La Xo være s.a. $\phi(x_c, y(x_o))$ er def., og definer

er kont., gir indisitt funksjonsteoren at det fins en funksjon $g s.a. g(X_0) = y(X_0) ov$

 $\begin{cases} (x_0, g(x_0)) = 0 = \emptyset & \phi(x_0, g(x_0)) = C. \end{cases}$

 $g'(x_{\delta}) = -\frac{\frac{\partial f}{\partial x}(x_{\delta}, y(x_{\delta}))}{\frac{\partial f}{\partial x}(x_{\delta}, y(x_{\delta}))} = -\frac{\frac{\partial f}{\partial y}(x_{\delta}, y(x_{\delta}))}{\frac{\partial f}{\partial x}(x_{\delta}, y(x_{\delta}))}$

Men siden dette holder for alle Xo i definisjonsområdet, så må funksjonere g og y være like (samme funksjon), så

 $y'(x) = g'(x) = -\frac{\partial \phi}{\partial x}(x, y(x))$

1110_10_5_16.notebook

May

$$5.8:$$

1) $A \subseteq \mathbb{R}^m$, $\overline{F}^0: A \rightarrow \mathbb{R}^k$ kept.

VIS: Fins K s.a. $|\overline{F}(\overline{X})| \leq K$ for alle $\overline{X} \in A$

Bevis: $\overline{F} = (\overline{F}_1, \overline{F}_2, ..., \overline{F}_k)$, $\overline{F}_1: A \rightarrow \mathbb{R}$.

 $\overline{F}^0: F$ kept F kept.

Siden F are leasternalized schringen at hover as $F_1: A \rightarrow \mathbb{R}$, F ence are begrenset (p^2A) . Den. let F for alle $\overline{X} \in A$

La $C:=\max\{K_1, K_2, ..., K_k\}$. Da are

 $|\overline{F}(\overline{X})| = \sqrt{F_1(\overline{X})^2 + F_2(\overline{X})^2 + ... + F_k(\overline{X})^2} \leq \sqrt{C^2 + C^2 + ... + C^2}$

Alg. $K:=CVR$ are an begrensende londant.

Så def. $K:=CVR$ are an begrensende londant.

Må ha: $V=xyz=500$; (A)

Minimar total vortungde.

a) $L(x,y)=4x+3y+\frac{1000}{xy}$

Minimar total vortungde.

Finner publichlarizehe: $C=\frac{500}{xy}=9.2z=\frac{10000}{xy}$ ($x,y\neq 0$ fording the form the form the form the form the form the form C and C and C and C are C are C and C are C and C are C are C and C are C and C are C and C are C are C ane

 $\frac{\partial L}{\partial y} = 2 - \frac{1000}{x y^2}$

2

$$\nabla L = \begin{bmatrix} 4 - \frac{1000}{x^2 y} \\ 2 - \frac{1000}{x y^2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Setter in i (I):
$$X^{2}4x^{2} = 500 \times 4x^{3} = 500 \times 4x^{3} = 500 \times 4x^{3} = 250 \times 4x^{3} = 1250 \times 4x^{3} = 1$$

$$\frac{x=5}{500} = \frac{500}{50} = \frac{500}{50} = \frac{500}{50} = \frac{10}{50}$$

Sjelde at er minimun:

$$\frac{1000}{\text{Hesse matrice}} = \left[\frac{2000}{y^{3}} \frac{1000}{x^{2}y^{2}} \right]$$
Hesse matrice
$$\frac{1000}{x^{2}y^{2}} \frac{2000}{y^{3}x}$$

Fra annendervertesten i 2 variable er (5,10) et minimum $(\text{Siden det}\,HL(5,10)>0)$ og $\frac{\partial^2 L}{\partial v^2}=\frac{9}{5}>0$.

Svav:
$$(x^*, y^*, z^*) = (5, 10, 10),$$

Je)
$$f(x,y,z) = 2x + 3y$$
 not $3x^2 + 2y^2 = 3$

The proof of the proo

Så: min
$$x^2 + y^2 + z^2$$
 $f(x, y, z)$
 $5.a. z^2 - xy = 1$
 $g(x, y, z)$

Lagrange:
$$\nabla f(x_1y_1z) = \lambda \nabla g(x_1y_1z)$$

$$\begin{cases} 2x = -\lambda y \\ 2y = -\lambda x \end{cases} \text{ og } z^2 - xy = 1$$

$$2z = 2\lambda z$$

$$27 = 217$$

 $2 \neq 0$: $\lambda = 1$, Så $2x = -4$ = $2(-24) = -4$

$$27 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 = 207$$

$$2 =$$

Bibet:
$$z^2 - 0 = 1$$

$$z = \pm 1$$
Kandidater: $(0, 0, \pm 1)$.

$$Z=0: \begin{cases} 2x = -\lambda y & (i) \\ 2y = -\lambda x & (ii) \\ -xy = 1 & (iii) \end{cases}$$

$$\lambda B: x, y \neq 0$$

$$\frac{Sa:}{y} = -\frac{1}{y} \cdot \text{Fra}(i)_{,}(ii): \quad \frac{2}{y} = -\lambda y \Rightarrow \frac{2}{y^{2}} = \lambda$$

$$2y = \lambda \frac{1}{y} \Rightarrow 2y^{2} = \lambda$$

$$2y^{2} = \lambda^{2} \Leftrightarrow \lambda^{2} = 4 \Leftrightarrow \lambda = \pm 2$$
, men siden $2y^{2} = \lambda$,
 $\lambda > 0 \Rightarrow \lambda = 2$ og $y^{2} = 1 \Rightarrow y = \pm 1$. De ex

$$x = F \cdot 1$$
. Kandidat: $(-1, 1, 0)$ og $(1, -1, 0)$.

Alle handidater:
$$(0,0,\pm 1)$$
 og $(-1,1,0)$, $(1,-1,0)$
Avritionizo: 1

⇒ Plat'ene som minimerer avot. er (0,0,±1).