

Cell & Tissue Research

Volume 280 1995

Editors

- | | | |
|------------------------------|-----------------------|----------------------------|
| A. Oksche, Giessen | (Coordinating Editor) | B. Russell, Chicago |
| H. Altner, Regensburg | | B. Scharrer, New York |
| M.J. Cavey, Calgary | | J.R. Sladek, North Chicago |
| D.E. Kelly, Washington, D.C. | | N.J. Strausfeld, Tucson |
| B. Loftis, Norwich | | L. Vollrath, Mainz |
| J.F. Morris, Oxford | | |

Cooperating Editors

- | | |
|----------------------------|----------------------------|
| A.D. Blest, Canberra | D.R. Nässel, Stockholm |
| R.A. Cloney, Seattle | R. Pabst, Hannover |
| K. Dorshkind, Riverside | J.M. Polak, London |
| A.C. Enders, Davis | E. Reale, Hannover |
| J.B. Furness, Melbourne | J.-P. Revel, Pasadena |
| H.G. Hartwig, Düsseldorf | E.M. Rodríguez, Valdivia |
| C. Heym, Heidelberg | D.W. Scheuermann, Antwerp |
| A.F. Holstein, Hamburg | H. Schmalbruch, Copenhagen |
| M. Kawata, Kyoto | F. Sundler, Lund |
| R.O. Kelley, Albuquerque | A. Tixier-Vidal, Paris |
| H.-W. Korf, Frankfurt/M. | Y. Toh, Fukuoka |
| B. Krisch, Kiel | K. Unsicker, Heidelberg |
| W. Kummer, Giessen | E.D. Wachsmuth, Basel |
| R.R. Markwald, Charlestown | R.L. Wood, Los Angeles |

Springer International

Cell and Tissue Research

This journal was founded in 1924 as the Zeitschrift für Zellen- und Gewebelehre, from Vol. 2 (1925) it was published with the subtitle: Continuation of the Schultze-Waldeyer-Hertwig Archiv für mikroskopische Anatomie. Zeitschrift für Zellforschung und mikroskopische Anatomie (Vols. 1–20) (1934) as: Zeitschrift für wissenschaftliche Biologie (Abteilung B) edited by R. Goldschmidt, W. von Möllendorff, H. Bauer, J. Seiler. Vols. 2–28 (1938) edited by R. Goldschmidt and W. von Möllendorff. Vols. 29–33 (1944) as: Zeitschrift für Zellforschung und mikroskopische Anatomie, Abteilung A, Allgemeine Zellforschung und mikroskopische Anatomie, edited by W. von Möllendorff and J. Seiler, from Vol. 34 without the subtitle, Abteilung A, Allgemeine Zellforschung und mikroskopische Anatomie. From Vol. 34 (1949) edited by W. Bargmann, J. Seiler; from Vol. 53 (1960) edited by W. Bargmann, B. Scharrer, J. Seiler; from Vol. 83 (1967) edited by W. Bargmann, D.S. Farner, A. Oksche, B. Scharrer, J. Seiler; from Vol. 125 (1972) edited by W. Bargmann, D.S. Farner, F. Knowles, A. Oksche, B. Scharrer. Beginning with Vol. 125 (1972) with the subtitle Cell and Tissue Research, beginning with Vol. 148 (1974) under the title Cell and Tissue Research and the subtitle Continuation of Zeitschrift für Zellforschung und mikroskopische Anatomie and beginning with Vol. 235 (1984) under the title Cell and Tissue Research. Beginning with Vol. 164 (1975), edited by W. Bargmann, D.S. Farner, B. Loftis, A. Oksche, B. Scharrer and L. Vollrath; As of Vol. 193 (1978), edited by D.S. Farner, B. Loftis, A. Oksche (Coordinating Editor), B. Scharrer and L. Vollrath; from Vol. 227 (1981), edited by D.S. Farner, B. Loftis, J.F. Morris, A. Oksche (Coordinating Editor), B. Scharrer and L. Vollrath; from Vol. 228 (1983), edited by D.S. Farner, D.E. Kelly, B. Loftis, J.F. Morris, A. Oksche (Coordinating Editor), B. Scharrer and L. Vollrath. Beginning with Vol. 235 (1984), title changed to Cell and Tissue Research (no subtitle). As of Vol. 251 (1988), edited by H. Altner, D.S. Farner, B. Loftis, J.F. Morris, A. Oksche (Coordinating Editor), B. Scharrer, N.J. Strausfeld and L. Vollrath. Beginning with Vol. 252/3 (1988), M.J. Cavey became one of the editors. From Vol. 254/1 (1988), edited by H. Altner, M.J. Cavey, B. Loftis, J.F. Morris, A. Oksche (Coordinating Editor), B. Scharrer, N.J. Strausfeld and L. Vollrath. Starting with Vol. 268/1 (1992), J.R. Sladek became one of the editors. As of Vol. 275/1 (1994) B. Russell became one of the editors.

Published: Vols. 1–33 (1924–1947) Julius Springer, Berlin, Vols. 34–35 (1948–1950) Springer, Wien, from Vol. 36 (1951) Springer, Berlin, Heidelberg.

Copyright

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities

at the institute where the work has been carried out; that if and when the manuscript is accepted for publication the authors agree to automatic transfer of the copyright to the publisher; and that the manuscript will not be published elsewhere in any language without the consent of the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Special regulations for photocopies in the USA: Photocopies may be made for personal or in-house use beyond the limitations stipulated under Section 107 or 108 of U.S. Copyright Law, provided a fee is paid. All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA, stating the ISSN 0302-766X, the volume, and the first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.

The Canada Institute for Scientific and Technical Information (CISTI) provides a comprehensive, world-wide document delivery service for all Springer-Verlag journals. For more information, or to place an order for a copyright-cleared Springer-Verlag document, please contact Client Assistant Document Delivery, Canada Institute for Scientific and Technical Information, Ottawa, K1A OS2, Canada (Tel: 613-9 93-92 51 FAX: 613-9 52-82 43; e-mail: cisti.docdel@nrc.ca).

This journal is included in the Springer Journals Preview Service, i.e. the tables of contents and BiblioAbstracts are available via Internet several weeks before the new issue reaches the subscribers. Tables of contents are free of charge; BiblioAbstracts are available for a small annual fee. Details can be obtained by sending an e-mail message containing the line help to svjps@vax.ntp.springer.de.

Printers: Universitätsdruckerei H. Stürtz AG, Würzburg

© Springer-Verlag Berlin · Heidelberg 1995
Springer-Verlag GmbH & Co. KG
D-14197 Berlin, Germany
Printed in Germany

Contents of Volume 281

- chi MV, Figueroa JM, González Nicolini V, Villar MJ, Tramezzani JH: NPY- and CGRP-like immunoreactive nerve fibers in the testis and mesorchium of the toad (*Bufo arenarum*) 375-378
- Yidey CVP → Quarrie LH
- kamine A → Yoshimine Y
- ekster HA, Wal J-W van de, Veenendaal T: Interaction of force transmission and sarcomere assembly at the muscle-tendon junctions of carp (*Cyprinus carpio*): ultrastructure and distribution of titin (connectin) and α -actinin 517-524
- lsmahbobi G: Adhesion of intermediate filaments and lipid droplets in adrenal cells studied by field emission scanning electron microscopy 387-390
- magai T → Kumamoto K
- asai J → Kasai K
- ishida K → Umemoto M
- maumann O, Lautenschläger B: Immunolocalization of the Na,K-ATPase in photoreceptor cells of the moth *Manduca sexta* - evidence for Na,K-ATPase on both the nonmicrovillar and the microvillar domains of the plasma membrane 119-126
- ecchetti E → Locci P
- benvenuti S → Zecchi Orlandini S
- Bernabei PA → Zecchi Orlandini S
- ickel D → Wrobel K-H
- Bigaj J → Miodoński AJ
- Blomgren K → Thyberg J
- Boyle KS → Gavazzi I
- Brandi ML → Zecchi Orlandini S
- Bright NA, Ockleford CD: Ultrastructural distribution of endogenous immunoglobulin-G in human term amniocorion 367-374
- Castellucci M → Kohnen G
- Chaponnier C → Di Rosa I
- Cheng H-W, Chiang A-S: Autophagy and acid phosphatase activity in the corpora allata of adult mated females of *Diptoptera punctata* 109-117
- Chiang A-S → Cheng H-W
- Chun M-H → Lee M-Y
- Chung J-W → Lee M-Y
- Cooke IM → Keller R
- Counis R → Pelletier J
- Cowen T → Gavazzi I
- Croll RP → Jackson AR
- Croll RP → Too CKL
- Czaja K → Majewski M
- Dahlmann A → Düring M von
- Dahrmann G → Grozdanovic Z
- Derby IA, Sernia C: In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys 197-206
- DeJoseph MR → Hawkins RA
- Di Rosa I, Panara F, Fagotti A, Simoncelli F, Chaponnier C, Gabbiani G, Pascolini R: Expression of α SM actin in terrestrial ectothermic vertebrates 501-506
- Dirksen H → Helle J
- Domoto T, Teramoto M, Tanigawa K, Tamura K, Yasui Y: Origins of nerve fibers containing nitric oxide synthase in the rat celiac-superior mesenteric ganglion 215-221
- Dryjski M → Thyberg J
- Düring M von, Fricke B, Dahlmann A: Topography and distribution of nerve fibers in the posterior longitudinal ligament of the rat: an immunocytochemical and electron-microscopical study 325-338
- Eckert M → Helle J
- Edgar D → Gavazzi I
- Erjefält I → Erjefält JS
- Erjefält JS, Erjefält I, Sundler F, Persson CGA: In vivo restitution of airway epithelium 305-316
- Erlinger R: Glycosaminoglycans in porcine lung: an ultrastructural study using Cupromeronic Blue 473-483
- Evans PD → Swales LS
- Fagotti A → Di Rosa I
- Faszewski EE, Kaltenbach JC: Histology and lectin-binding patterns in the skin of the terrestrial horned frog *Ceratophrys ornata* 169-177
- Fernández-Llébrez P → Mancera JM
- Figueroa JM → Achi MV
- Fink T → Nohr D
- Fontaine YA, Pisam M, Le Moal C, Rambourg A: Silvering and gill "mitochondria-rich" cells in the eel, *Anguilla anguilla* 465-471
- Formigli L → Zecchi Orlandini S
- Franchi A → Zecchi Orlandini S
- Fricke B → Düring M von
- Fujinaga K → Moriya M
- Fukazawa K → Umemoto M
- Furness JB → Li ZS
- Gabbiani G → Di Rosa I
- Gavazzi I, Boyle KS, Edgar D, Cowen T: Reduced laminin immunoreactivity in the blood vessel wall of ageing rats correlates with reduced innervation in vivo and following transplantation 23-32
- Gaynard V, Thiéry J-C, Thibault J, Tillett Y: Efferent projections from the retrochiasmatic area to the median eminence and to the pars nervosa of the hypophysis with special reference to the A15 dopaminergic cell group in the sheep 561-567
- González Nicolini V → Achi MV
- Gosrau R → Grozdanovic Z
- Grafstein B → Wang J
- Grau S → Keller R
- Grozdanovic Z, Nakos G, Dahrmann G, Mayer B, Gosrau R: Species-independent expression of nitric oxide synthase in the sarcolemma region of visceral and somatic striated muscle fibers 493-499
- Guglielmone R: Cerebrospinal fluid-contacting neurons in the paraventricular organ and in the spinal cord of the quail embryo: a fluorescence-histochemical study 163-168
- Han S-H → Lee M-Y
- Harrison TA, Stadt HA, Kumiski D, Kirby ML: Compensatory responses and development of the nodose ganglion following ablation of placodal precursors in the embryonic chick (*Gallus domesticus*) 379-385
- Hawkins PA → Hawkins RA
- Hawkins RA, DeJoseph MR, Hawkins PA: Regional brain glutamate transport in rats at normal and raised concentrations of circulating glutamate 207-214
- Hedin U → Thyberg J
- Helle J, Dirksen H, Eckert M, Nässel DR, Spörhase-Eichmann U, Schürmann F-W: Putative neurohemal areas in the peripheral nervous system of an insect, *Gryllus bimaculatus*, revealed by immunocytochemistry 43-61
- Hendrickx AG → Pow CST
- Hendry KAK, Lancelott MJ, Knight CH, Kempson SA, Wilde CJ: Protein synthesis in tissues cultured from the bovine hoof 93-99
- Hirai K → Takemori N
- Hirakawa Y → Wasano K
- Hori H → Kusakabe T
- Hsi B-L → Kohnen G
- Hunter DD → Walker-Caprioglio HM
- Ichikawa M → Yoshida J
- Inokuchi S, Shimamura K, Tohya H, Kido M, Tanaka M, Ueyama Y, Sawada Y: Effects of fibroblasts of different origin on long term maintenance of xenotransplanted human epidermal keratinocytes in immunodeficient mice 223-229
- Isobe R → Yoshimine Y
- Ito M → Kasai K
- Jackson AR, MacRae TH, Croll RP: Unusual distribution of tubulin isoforms in the snail *Lymnaea stagnalis* 507-515
- Kaleczyc J → Majewski M
- Kaltenbach JC → Faszewski EE
- Kasai K, Nakayama A, Ohbayashi M, Nakagawa A, Ito M, Saga S, Asai J: Immunohistochemical characteristics of chicken spleen ellipsoids using newly established monoclonal antibodies 135-141
- Katagiri C → Moriya M
- Kaufmann P → Kohnen G
- Kawakami T → Kusakabe T
- Kawata M → Kumamoto K
- Keast J → Kepper M
- Keast JR → Luckensmeyer GB
- Keller R, Grau S, Cooke IM: Quantitation of peptide hormone in single cultured secretory neurons of the crab, *Cardisoma carnifex* 525-532
- Kempson SA → Hendry KAK

- Kepper M, Keast J: Immunohistochemical properties and spinal connections of pelvic autonomic neurons that innervate the rat prostate gland 533–542
- Kidokoro M → Inokuchi S
- Kirby ML → Harrison TA
- Knight CH → Hendry KAK
- Kohnen G, Castellucci M, Hsi B-L, Yeh C-JG, Kaufmann P: The monoclonal antibody GB 42 – a useful marker for the differentiation of myofibroblasts 231–242
- Kubo T → Umemoto M
- Kujat R → Wrobel K-H
- Kumamoto K, Matsuura T, Amagai T, Kawata M: Oxytocin-producing and vasopressin-producing eosinophils in the mouse spleen: immunohistochemical, immuno-electron-microscopic and *in situ* hybridization studies 1–10
- Kumiski D → Harrison TA
- Kusakabe T, Kawakami T, Ono M, Hori H, Sawada H, Takenaka T: Distribution of galanin-immunoreactive nerve fibers in the carotid labyrinth of the bullfrog, *Rana catesbeiana*: comparison with substance P-immunoreactive fibers 63–67
- Lakomy M → Majewski M
- Lancelott MJ → Hendry KAK
- Larsen TH → Sætersdal T
- Lasagni L → Zecchi Orlandini S
- Lautenschläger B → Baumann O
- Le Moal C → Fontaine YA
- Lee M-Y, Chun M-H, Han S-H, Oh S-J, Chung J-W: Light- and electron-microscopic study of substance P-immunoreactive neurons in the guinea pig retina 261–271
- Li ZS, Young HM, Furness JB: Do vasoactive intestinal peptide (VIP)- and nitric oxide synthase-immunoreactive terminals synapse exclusively with VIP cell bodies in the submucous plexus of the guinea-pig ileum? 485–491
- Lilli C → Locci P
- Little SA → Walker-Caprioglio HM
- Locci P, Marinucci L, Lilli C, Martinese D, Becchetti E: Transforming growth factor β_1 -hyaluronic acid interaction 317–324
- Luckensmeyer GB, Keast JR: Immunohistochemical characterisation of sympathetic and parasympathetic pelvic neurons projecting to the distal colon in the male rat 551–559
- MacRae TH → Jackson AR
- Maeda K → Yoshimine Y
- Majewski M, Sienkiewicz W, Kaleczyc J, Mayer B, Czaja K, Lakomy M: The distribution and co-localization of immunoreactivity to nitric oxide synthase, vasoactive intestinal polypeptide and substance P within nerve fibres supplying bovine and porcine female genital organs 445–464
- Mancera JM, Fernández-Llebrez P: Localization of corticotropin-releasing factor immunoreactivity in the brain of the teleost *Sparus aurata* 569–572
- March PE, Reisman HM: Seasonal changes in hepatocyte ultrastructure correlated with the cyclic synthesis of secretory proteins in the winter flounder (*Pleuronectes americanus*) 153–161
- Marinucci L → Locci P
- Martinese D → Locci P
- Masi L → Zecchi Orlandini S
- Matsuura T → Kumamoto K
- Mayer B → Grozdanovic Z
- Mayer B → Majewski M
- McGuffee LJ → Walker-Caprioglio HM
- McGuire PG → Walker-Caprioglio HM
- Meßlinger K, Pawlak M, Steinbach H, Trost B, Schmidt RF: A new combination of methods for the localization, identification, and three-dimensional reconstruction of the sensory endings of articular afferents characterized by electrophysiology 283–294
- Michel S → Nohr D
- Miettinen A: The bridge-partitioning complex of germ-cell intercellular bridges in the testis of the golden hamster 359–365
- Miodoński AJ, Bigaj J, Plytycz B: Thymic vascular system of the European common frog, *Rana temporaria*: a scanning electron-microscopic study of vascular casts 543–549
- Mori Y → Yoshida J
- Moriya M, Fujinaga K, Yazawa M, Kata-giri C: Immunohistochemical localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the mouse testis: its unique accumulation in spermatid nuclei 273–281
- Moumni M → Pelletier J
- Murray M → Wang J
- Nässel DR → Helle J
- Nakagawa A → Kasai K
- Nakayama A → Kasai K
- Nakos G → Grozdanovic Z
- Nohr D, Michel S, Fink T, Weihe E: Pro-enkephalin opioid peptides are abundant in porcine and bovine splenic nerves, but absent from nerves of rat, mouse, hamster, and guinea-pig spleen 143–152
- Nürnberger F: The neuroendocrine system in hibernating mammals: present knowledge and open questions 391–412
- Ockleford CD → Bright NA
- Oh S-J → Lee M-Y
- Ohbayashi M → Kasai K
- Ono M → Kusakabe T
- Onodera R → Takemori N
- Osada T → Yoshida J
- Panara F → Di Rosa I
- Pascolini R → Di Rosa I
- Pawlak M → Meßlinger K
- Pelletier J, Counis R, Reviers M-M de, Moumni M, Tillet Y: Changes in LH β -gene and FSH β -gene expression in the ram pars tuberalis according to season and castration 127–133
- Persson CGA → Erjefält JS
- Pisam M → Fontaine YA
- Plytycz B → Miodoński AJ
- Pow CST, Hendrickx AG: Localization of integrin subunits $\alpha 6$ and $\beta 1$ during somitogenesis in the long-tailed macaque (*M. fascicularis*) 101–108
- Quarrie LH, Addey CVP, Wilde CJ: Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling 413–419
- Rambour A → Fontaine YA
- Reisman HM → March PE
- Reviers M-M de → Pelletier J
- Røli J → Sætersdal T
- Ryerse JS: Immunocytochemical, electrophoresis, and immunoblot analysis of *Heliothis virescens* gap junctions isolated in the presence and absence of protease inhibitors 179–186
- Sætersdal T, Larsen TH, Røli J: Expression of fibronectin, laminin and ribosomes in normal and nocodazole-treated neonatal heart cells in culture: a study by laser scanning confocal microscopy and immunocytochemistry 11–22
- Saga S → Kasai K
- Saito N → Takemori N
- Sakagami M → Umemoto M
- Santini V → Zecchi Orlandini S
- Sawada H → Kusakabe T
- Sawada Y → Inokuchi S
- Schimmel M → Wrobel K-H
- Schmidt RF → Meßlinger K
- Schürmann F-W → Helle J
- Senda T → Umemoto M
- Sernia C → Darby IA
- Shimamura K → Inokuchi S
- Sienkiewicz W → Majewski M
- Simoncelli F → Di Rosa I
- Spörhase-Eichmann U → Helle J
- Stadt HA → Harrison TA
- Steinbach H → Meßlinger K
- Sumi M → Yoshimine Y
- Sundler F → Erjefält JS
- Swales LS, Evans PD: Distribution of SchistoFLRFamide-like immunoreactivity in the adult ventral nervous system of the locust, *Schistocerca gregaria* 339–348
- Takemori N, Hirai K, Onodera R, Saito N: Ultrastructural study of periodic lamellar granules in human neutrophils 69–76
- Takenaka T → Kusakabe T
- Tamura K → Domoto T
- Tanaka M → Inokuchi S
- Tanigawa K → Domoto T
- Teramoto M → Domoto T
- Thibault J → Gayrard V
- Thiéry J-C → Gayrard V
- Thyberg J, Blomgren K, Hedin U, Dryjski M: Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings in the rat carotid artery after balloon injury: an electron-microscopic and stereological study 421–433
- Tillet Y → Gayrard V
- Tillet Y → Pelletier J
- Tohya H → Inokuchi S
- Too CKL, Croll RP: Detection of FMRFamide-like immunoreactivities in the

- sea scallop *Placopecten magellanicus* by immunohistochemistry and Western blot analysis 295-304
- Tramezzani JH → Achi MV
- Frost B → Meßlinger K
- Tsukuba T → Yoshimine Y
- Jeyama Y → Inokuchi S
- Umemoto M, Sakagami M, Fukazawa K, Ashida K, Kubo T, Senda T, Yoneda Y: Hair cell regeneration in the chick inner ear following acoustic trauma: ultrastructural and immunohistochemical studies 435-443
- Veenendaal T → Akster HA
- Villar MJ → Achi MV
- Wal J-W van de → Akster HA
- Walker-Caprioglio HM, Hunter DD, McGuire PG, Little SA, McGuffee LJ: Composition in situ and in vitro of vascular smooth muscle laminin in the rat 187-196
- Wang J, Murray M, Grafstein B: Cranial meninges of goldfish: age-related changes in morphology of meningeal cells and accumulation of surfactant-like multilamellar bodies 349-358
- Wasano K, Hirakawa Y: Rat intestinal galactoside-binding lectin L-36 functions as a structural protein in the superficial squamous cells of the esophageal epithelium 77-83
- Weihe E → Nohr D
- Wilde CJ → Hendry KAK
- Wilde CJ → Quarrie LH
- Wrobel K-H, Bickel D, Kujat R, Schimmel M: Evolution and ultrastructure of the bovine spermatogonia precursor cell line 249-259
- Yamamoto K → Yoshimine Y
- Yasui Y → Domoto T
- Yazawa M → Moriya M
- Yeh C-JG → Kohnen G
- Yoneda Y → Umemoto M
- Yoshida J, Osada T, Mori Y, Ichikawa M: Differential binding patterns of three antibodies (VOBM1, VOBM2, and VOM2) in the rat vomeronasal organ and accessory olfactory bulb 243-248
- Yoshimine Y, Tsukuba T, Isobe R, Sumi M, Akamine A, Maeda K, Yamamoto K: Specific immunocytochemical localization of cathepsin E at the ruffled border membrane of active osteoclasts 85-91
- Young HM → Li ZS
- Zecchi Orlandini S, Formigli L, Benvenuti S, Lasagni L, Franchi A, Masi L, Bernabei PA, Santini V, Brandi ML: Functional and structural interactions between osteoblastic and preosteoclastic cells in vitro 33-42

Indexed in Current Contents

Subject Index

- Acid phosphatase
Cheng H-W 109–117
- ACTH
Mancera JM 569–572
- Actin
Hendry KAK et al 93–99
Kohnen G et al 231–242
Rosa ID et al 501–506
- α -Actinin
Akster HA et al 517–524
- Adaptation
Fontaine YA et al 465–471
- Adductor muscle
Too CKL 295–304
- Adrenal cortex
Almahbobi G 387–390
- Aging
Gavazzi I et al 23–32
Wang J et al 349–358
- Airways; see also Respiratory tract
Erjefält JS et al 305–316
- Alveoli, lung
Erlinger R 473–483
- Amacrine cells
Lee M-Y et al 261–271
- Aminergic projections
Nürnberg F 391–412
- Amnion
Bright NA 367–374
- Angioarchitecture
Miodoński AJ et al 543–549
- Angiotensin I, II
Darby IA 197–206
- Angiotensinogen
Darby IA 197–206
- Apoptosis
Quarrie LH et al 413–419
- Arteries
Thyberg J et al 421–433
- Atrophy
Cheng H-W 109–117
- Autonomic ganglia
Domoto T et al 215–221
Li ZS et al 485–491
Luckensmeyer GB 551–559
Majewski M et al 445–464
- Autonomic innervation, – nervous system
Domoto T et al 215–221
Düring M von et al 325–338
Kepper M 533–542
Li ZS et al 485–491
Luckensmeyer GB 551–559
- Autophagy
Cheng H-W 109–117
- Autoradiography
Hawkins RA et al 207–214
Hendry KAK et al 93–99
- Basal lamina, basement membrane
Erlinger R 473–483
Gavazzi I et al 23–32
Walker-Caprioglio HM et al 187–196
- Blood vessels
Gavazzi I et al 23–32
Thyberg J et al 421–433
- Blood-brain barrier
Hawkins RA et al 207–214
- Brain (CNS), invertebrate
Jackson AR et al 507–515
- Brain (CNS), vertebrate
Guglielmone R 163–168
- Brainstem
Guglielmone R 163–168
- Calcineurin
Moriya M et al 273–281
- Calcitonin gene-related peptide (CGRP)
Achi MV et al 375–378
Nohr D et al 143–152
- Calmodulin
Moriya M et al 273–281
- Capillaries
Miodoński AJ et al 543–549
- Carotid labyrinth
Kusakabe T et al 63–67
- Cartilage
Erlinger R 473–483
- Castration
Pelletier J et al 127–133
- Catecholamine-containing neurons
Guglielmone R 163–168
- Cathepsin
Yoshimine Y et al 85–91
- Cell culture
Keller R et al 525–532
Sætersdal T et al 11–22
- Cell differentiation
Orlandini SZ et al 33–42
- Cell migration, – motility, – movements
Erjefält JS et al 305–316
- Cell proliferation
Erjefält JS et al 305–316
- Cerebrospinal fluid
Wang J et al 349–358
- Cerebrospinal fluid-contacting neurons
Guglielmone R 163–168
- Chimeras
Harrison TA et al 379–385
- Chloride cells
Fontaine YA et al 465–471
- Chorion
Bright NA 367–374
- Cilia
Jackson AR et al 507–515
- Circadian rhythm
Nürnberg F 391–412
- Colon
Luckensmeyer GB 551–559
- Compound eye
Baumann O 119–126
- Confocal laser microscopy
Gavazzi I et al 23–32
Sætersdal T et al 11–22
- Connective tissue
Erlinger R 473–483
- Corpus allatum
Cheng H-W 109–117
- Corpuscles, encapsulated
Meßlinger K et al 283–294
- Corrosion casts
Miodoński AJ et al 543–549
- Corticotropin-releasing hormone (CRH)
Mancera JM 569–572
Nürnberg F 391–412
- Crustacean hyperglycemic hormone (CHH)
Keller R et al 525–532
- Cytoskeleton
Almahbobi G 387–390
- Cytotrophoblastic cells
Bright NA 367–374
- Development, ontogenetic
Darby IA 197–206
Guglielmone R 163–168
Harrison TA et al 379–385
Kasai K et al 135–141
Pow CST 101–108
- Development, phylogenetic
Rosa ID et al 501–506
- Dicarboxylic acid
Hawkins RA et al 207–214
- DNA
Quarrie LH et al 413–419
- Dopamine
Gaynard V et al 561–567
Dopamine β -hydroxylase
Düring M von et al 325–338
Nohr D et al 143–152
- Dorsal root ganglia
Domoto T et al 215–221
Majewski M et al 445–464
- Dynorphin
Nohr D et al 143–152
- Ear, internal
Umemoto M et al 435–443
- Ellipsoids
Kasai K et al 135–141
- Endothelium
Thyberg J et al 421–433
- Enkephalins; see also Met-enkephalin
Nürnberg F 391–412
- Epidermis
Hendry KAK et al 93–99
Inokuchi S et al 223–229
- Epithelial cells
Fontaine YA et al 465–471
Inokuchi S et al 223–229
Wasano K 77–83
- Epithelial differentiation
Inokuchi S et al 223–229
- Epithelio-mesenchymal interactions
Inokuchi S et al 223–229
- Esophagus
Wasano K 77–83
- Extracellular matrix, – structures
Walker-Caprioglio HM et al 187–196
- Extracellular space
Pow CST 101–108
- Fibroblast growth factors
Umemoto M et al 435–443
- Fibroblasts
Locci P et al 317–324
- Fibronectin
Sætersdal T et al 11–22
- Field emission scanning electron microscopy
Almahbobi G 387–390
- Filaments, 10-nm, intermediate
Almahbobi G 387–390
- Fluorescent cytochemistry
Guglielmone R 163–168
- Fluorescent dyes
Kepper M 533–542
Luckensmeyer GB 551–559
- FMRF amide (molluscan cardioexcitatory peptide), RF amide
Too CKL 295–304
- FMRF-like immunoreactivity
Swales LS 339–348
- Galanin
Kusakabe T et al 63–67
- Ganglia, invertebrate
Swales LS 339–348
Too CKL 295–304
- Gap junction
Ryerse JS 179–186
- Genitalia, female
Majewski M et al 445–464
- Genitalia, male
Achi MV et al 375–378
- Germ cells
Miethling A 359–365
- Gills
Fontaine YA et al 465–471
Too CKL 295–304
- Glutamate, glutamic acid
Hawkins RA et al 207–214
- Glycoconjugates
Faszewski EE 169–177
- Glycosaminoglycans
Erlinger R 473–483
Locci P et al 317–324
- Golgi complex
Cheng H-W 109–117
- Gonadotrophic hormones (gonadotropins, GTH)
Pelletier J et al 127–133
- Gonadotropin-releasing hormone
Nürnberg F 391–412
- Gonads, invertebrate
Too CKL 295–304
- Grafts, grafting
Inokuchi S et al 223–229
- Granulocytes
Takemori N et al 69–76
- Growth
Akster HA et al 517–524
- Growth factors
Locci P et al 317–324
- Growth hormone-releasing hormone (GRH)
Nürnberg F 391–412

- Gut**
 Too CKL 295–304
Hair cells
 Umemoto M et al 435–443
Heart
 Sætersdal T et al 11–22
 Too CKL 295–304
Heart, innervation
 Harrison TA et al 379–385
Heart, morphogenesis
 Harrison TA et al 379–385
Heat-shock protein
 Kasai K et al 135–141
Hemidesmosomes
 Cheng H-W 109–117
Hibernation
 Nürnberg F 391–412
Hoof
 Hendry KAK et al 93–99
Human immunoglobulin
 Bright NA 367–374
IgG, IgM, IgA
 Grozdanovic Z et al 493–499
IgM, IgG, IgA
 Grozdanovic Z et al 493–499
Hybridization, in situ
 Kumamoto K et al 1–10
Hypothalamo-hypophysial system
 Nürnberg F 391–412
Hypothalamus
 Gayrard V et al 561–567
Immunocytochemistry
 Baumann O 119–126
 Bright NA 367–374
 Gavazzi I et al 23–32
 Helle J et al 43–61
 Jackson AR et al 507–515
 Mancera JM 569–572
 Pow CST 101–108
 Rosa ID et al 501–506
 Ryerse JS 179–186
 Swales LS 339–348
 Wasano K 77–83
 Yoshimine Y et al 85–91
Immunoglobulin
 Bright NA 367–374
Immunogold labeling
 Bright NA 367–374
Immunohistochemistry
 Domoto T et al 215–221
 Gayrard V et al 561–567
 Hendry KAK et al 93–99
 Kohnen G et al 231–242
 Kumamoto K et al 1–10
 Li ZS et al 485–491
 Moriya M et al 273–281
Innervation
 Gavazzi I et al 23–32
 Majewski M et al 445–464
 Meßlinger K et al 283–294
Integrins
 Pow CST 101–108
Intercellular bridge
 Miethling A 359–365
Intercellular junctions
 Ryerse JS 179–186
Interleukin
 Locci P et al 317–324
Intestine, large
 Luckensmeyer GB 551–559
Ion pumps
 Baumann O 119–126
- Joints**
 Meßlinger K et al 283–294
Junctional structures
 Ryerse JS 179–186
Juvenile hormone
 Cheng H-W 109–117
Keratin
 Hendry KAK et al 93–99
Keratinocytes
 Inokuchi S et al 223–229
Kidney
 Darby IA 197–206
Lactation
 Quarrie LH et al 413–419
Lamellar bodies
 Takemori N et al 69–76
 Wang J et al 349–358
Laminin
 Gavazzi I et al 23–32
 Pow CST 101–108
 Sætersdal T et al 11–22
 Walker-Caprioglio HM et al 187–196
Lectins, lectin-binding properties, – cytochemistry, – labeling
 Faszewski EE 169–177
 Wasano K 77–83
Leu-enkephalin
 Nohr D et al 143–152
Lipids
 Almahbobi G 387–390
 March PE 153–161
Liver
 March PE 153–161
Locomotion
 Jackson AR et al 507–515
Lung
 Erlinger R 473–483
Lysozyme
 Takemori N et al 69–76
Mammary gland
 Quarrie LH et al 413–419
Median eminence
 Gayrard V et al 561–567
Membrane proteins
 Sætersdal T et al 11–22
Meninges
 Wang J et al 349–358
Mesorchium
 Achi MV et al 375–378
Metamorphosis
 Faszewski EE 169–177
Met-enkephalin-like immunoreactivity
 Nohr D et al 143–152
Microtubules
 Jackson AR et al 507–515
 Sætersdal T et al 11–22
Microvasculature, microcirculation
 Miodoński AJ et al 543–549
Microvilli
 Yoshida J et al 243–248
Mitosis
 Miethling A 359–365
Monoamines
 Helle J et al 43–61
Monoclonal antibodies
 Kasai K et al 135–141
 Kohnen G et al 231–242
 Yoshida J et al 243–248
- mRNA**
 Pelletier J et al 127–133
Muscle, smooth
 Gavazzi I et al 23–32
 Kohnen G et al 231–242
 Thyberg J et al 421–433
 Walker-Caprioglio HM et al 187–196
Muscle, striated, skeletal
 Akster HA et al 517–524
 Grozdanovic Z et al 493–499
Muscle, striated, visceral
 Grozdanovic Z et al 493–499
Myeloperoxidase
 Takemori N et al 69–76
Myoepithelial cells
 Kohnen G et al 231–242
Myofibrils
 Akster HA et al 517–524
Myofibroblasts
 Kohnen G et al 231–242
Myotendinous junctions
 Akster HA et al 517–524
NADPH-diaphorase
 Grozdanovic Z et al 493–499
 Majewski M et al 445–464
Nephron
 Darby IA 197–206
Nerve endings
 Meßlinger K et al 283–294
Nerve fibers
 Meßlinger K et al 283–294
Nerves
 Too CKL 295–304
Nervous system, central
 Too CKL 295–304
Nervous system, enteric
 Domoto T et al 215–221
Nervous system, insect
 Helle J et al 43–61
 Swales LS 339–348
Nervous system, peripheral
 Too CKL 295–304
Neural crest, – cells
 Harrison TA et al 379–385
Neuroendocrine regulation
 Nürnberg F 391–412
Neurohemal areas
 Helle J et al 43–61
Neuronal connections
 Lee M-Y et al 261–271
Neuronal plasticity
 Keller R et al 525–532
Neuropeptide coexistence, – colocalization
 Swales LS 339–348
Neuropeptide
 immunocytochemistry
 Achi MV et al 375–378
 Düring M von et al 325–338
 Helle J et al 43–61
 Kepper M 533–542
 Kusakabe T et al 63–67
 Lee M-Y et al 261–271
 Mancera JM 569–572
 Nürnberg F 391–412
 Too CKL 295–304
Neuropeptide tyrosine
 Achi MV et al 375–378
Neuropeptide Y
 Kepper M 533–542
- Luckensmeyer GB** 551–559
 Nohr D et al 143–152
Neuropeptides
 Swales LS 339–348
Neuropeptides, molluscan
 Too CKL 295–304
Neurosecretion
 Keller R et al 525–532
Neurosecretory neurons
 Keller R et al 525–532
Neutrophils
 Takemori N et al 69–76
Nitric oxide
 Majewski M et al 445–464
Nitric oxide synthase
 Domoto T et al 215–221
 Grozdanovic Z et al 493–499
 Li ZS et al 485–491
 Majewski M et al 445–464
Nociceptors
 Düring M von et al 325–338
Nocodazole
 Sætersdal T et al 11–22
Nodose ganglion
 Domoto T et al 215–221
 Harrison TA et al 379–385
Nucleus
 Moriya M et al 273–281
Nucleus lateralis tuberis
 Mancera JM 569–572
Olfactory bulb
 Yoshida J et al 243–248
Olfactory system
 Yoshida J et al 243–248
Opioids
 Nohr D et al 143–152
Osteoblasts
 Orlandini SZ et al 33–42
Osteoclasts
 Orlandini SZ et al 33–42
 Yoshimine Y et al 85–91
Ovary
 Majewski M et al 445–464
Oviduct
 Majewski M et al 445–464
Oxytocin
 Kumamoto K et al 1–10
 Nürnberg F 391–412
Pancreatic polypeptide (PP)
 Swales LS 339–348
Parasympathetic innervation
 Kepper M 533–542
Peptide HI
 Nohr D et al 143–152
Peptidergic neurosecretion
 Keller R et al 525–532
 Nürnberg F 391–412
Peptidergic neurotransmission, extrahypothalamic
 Nürnberg F 391–412
PGP 9.5 (protein gene product 9.5)
 Düring M von et al 325–338
 Wrobel K-H et al 249–259
Pheromones
 Yoshida J et al 243–248
Phosphatases
 Moriya M et al 273–281
Photoreceptor cells
 Baumann O 119–126

- Pituitary gland, pars intermedia
Gayrard V et al 561–567
Mancera JM 569–572
- Pituitary gland, pars nervosa
Gayrard V et al 561–567
- Pituitary gland, pars tuberalis
Pelletier J et al 127–133
- Placenta
Bright NA 367–374
Kohnen G et al 231–242
- Placodes, ectodermal
Harrison TA et al 379–385
- Polarity
Baumann O 119–126
- Posterior longitudinal ligament
Düring M von et al 325–338
- Preoptic area
Mancera JM 569–572
- Preoptic nucleus
Mancera JM 569–572
- Proenkephalin
Nohr D et al 143–152
- Prolactin (LTH)
Gayrard V et al 561–567
- Proliferating cell nuclear antigen (PCNA)
Umemoto M et al 435–443
- Prostate gland
Kepper M 533–542
- Protein synthesis
Hendry KAK et al 93–99
- Proteinase inhibitor
Ryerse JS 179–186
- Proteinases
Yoshimine Y et al 85–91
- Proteins
Hendry KAK et al 93–99
March PE 153–161
- Reconstruction, 3D
Meßlinger K et al 283–294
- Regeneration
Umemoto M et al 435–443
- Regeneration, CNS
Keller R et al 525–532
- Reinnervation, functional
Erjefält JS et al 305–316
- Renin-angiotensin system
Darby IA 197–206
- Reproductive system, male
Kepper M 533–542
- Respiratory epithelium
Erlinger R 473–483
- Respiratory tract
Erjefält JS et al 305–316
Erlinger R 473–483
- Reticulum cells
Kasai K et al 135–141
- Retina
Lee M-Y et al 261–271
- Retrograde labeling (tracing)
Domoto T et al 215–221
Kepper M 533–542
- Ribosomes
Sætersdal T et al 11–22
- Schisto FLRF amide
Swales LS 339–348
- Seasonal changes
Pelletier J et al 127–133
- Secretion
March PE 153–161
- Sensory cells
Umemoto M et al 435–443
- Sensory nerves
Meßlinger K et al 283–294
- Sensory neurons, – ganglia
Harrison TA et al 379–385
- Sensory transduction
Meßlinger K et al 283–294
- Serotonin (5-HT)
Nürnberg F 391–412
- Sinus gland
Keller R et al 525–532
- Skin
Faszewski EE 169–177
- Somatostatin (SRIF)
Nürnberg F 391–412
- Somites
Pow CST 101–108
- Spermatics
Moriya M et al 273–281
- Spermatogenesis
Miethling A 359–365
Moriya M et al 273–281
- Spermatogonia
Miethling A 359–365
Wrobel K-H et al 249–259
- Spinal cord
Domoto T et al 215–221
Guglielmone R 163–168
- Spleen
Kasai K et al 135–141
Kumamoto K et al 1–10
Nohr D et al 143–152
- Splenic nerve
Nohr D et al 143–152
- Submucous ganglia, – plexus
Li ZS et al 485–491
- Substance P
Kusakabe T et al 63–67
Lee M-Y et al 261–271
Nohr D et al 143–152
Nürnberg F 391–412
- Surfactant
Wang J et al 349–358
- Sympathetic ganglia
Majewski M et al 445–464
- Sympathetic innervation
Düring M von et al 325–338
Kepper M 533–542
- Synapses
Li ZS et al 485–491
- Synaptophysin
Kepper M 533–542
Luckensmeyer GB 551–559
- Testis
Achi MV et al 375–378
Wrobel K-H et al 249–259
- Thymocyte proliferative response
Locci P et al 317–324
- Thymus
Miodoński AJ et al 543–549
- Thyrotropin-releasing hormone (TRH); see also TRH neurons
Nürnberg F 391–412
- Tissue culture
Almahbobi G 387–390
Hendry KAK et al 93–99
Orlandini SZ et al 33–42
- Titin
Akster HA et al 517–524
- Tracer studies
Gayrard V et al 561–567
Luckensmeyer GB 551–559
- Transforming growth factor (TGF) β_1
Locci P et al 317–324
- Transplantation
Inokuchi S et al 223–229
- Transport, intracellular
Hawkins RA et al 207–214
- Trauma, acoustic
Umemoto M et al 435–443
- α -Tubulin
Jackson AR et al 507–515
- Tyrosine hydroxylase
Gayrard V et al 561–567
Kepper M 533–542
Luckensmeyer GB 551–559
Nohr D et al 143–152
- Ultrahistochemistry, – immunohistochemistry
Kumamoto K et al 1–10
Lee M-Y et al 261–271
Ryerse JS 179–186
- Uterus
Majewski M et al 445–464
- Vagina
Majewski M et al 445–464
- Vascular system, vascularization
Walker-Caprioglio HM et al 187–196
- Vasoactive intestinal peptide (VIP)
Kepper M 533–542
Li ZS et al 485–491
Luckensmeyer GB 551–559
Nohr D et al 143–152
- Vasopressin
Kumamoto K et al 1–10
Nürnberg F 391–412
- Vasotocin
Mancera JM 569–572
- Vertebral column
Düring M et al 325–338
- Vomeronasal organ
Yoshida J et al 243–248
- Water transport
Faszewski EE 169–177
- X-organ
Keller R et al 525–532