Data Representation

COE 301

Computer Organization
Prof. Muhamed Mudawar

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Presentation Outline

- Positional Number Systems
- Binary and Hexadecimal Numbers
- Base Conversions
- Integer Storage Sizes
- Binary and Hexadecimal Addition
- Signed Integers and 2's Complement Notation
- Sign Extension
- Binary and Hexadecimal subtraction
- Carry and Overflow
- Character Storage

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)

27 Radix-10 or decimal number (positional)

11011₂ Radix-2 or binary number (also positional)

Fixed-radix positional representation with k digits

Number *N* in radix
$$r = (d_{k-1}d_{k-2} \dots d_1d_0)_r$$

Value =
$$d_{k-1} \times r^{k-1} + d_{k-2} \times r^{k-2} + ... + d_1 \times r + d_0$$

Examples:
$$(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$$

$$(2103)_4 = 2 \times 4^3 + 1 \times 4^2 + 0 \times 4 + 3 = 147$$

Binary Numbers

- Each binary digit (called bit) is either 1 or 0
- Bits have no inherent meaning, can represent
 - Unsigned and signed integers
 - Characters
 - Floating-point numbers
 - Images, sound, etc.
- Bit Numbering
 - Least significant bit (LSB) is rightmost (bit 0)
 - ♦ Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Converting Binary to Decimal

- Each bit represents a power of 2
- Every binary number is a sum of powers of 2
- Decimal Value = $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- **!** Binary $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
20	1	28	256
21	2	29	512
22	4	210	1024
23	8	211	2048
24	16	212	4096
2 ⁵	32	213	8192
2 ⁶	64	214	16384
27	128	2 ¹⁵	32768

Some common powers of 2

Convert Unsigned Decimal to Binary

- Repeatedly divide the decimal integer by 2
- Each remainder is a binary digit in the translated value

Division	Quotient	Remainder	
37 / 2	18	1 ←	least significant bit
18 / 2	9	0	
9/2	4	1	$37 = (100101)_{2}$
4/2	2	0	$ \begin{bmatrix} 0 & -(100101)_2 \end{bmatrix} $
2/2	1	0	
1/2	0	1 📥	most significant bit
		st	top when quotient is zero

Hexadecimal Integers

- ❖ 16 Hexadecimal Digits: 0 9, A F
- More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Converting Binary to Hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits
- ***** Example:

Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 0100

Solution:

E	В	B 1		Α	7	9	4	
1110	1011	0001	0110	1010	0111	1001	0100	

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16

Value =
$$(d_{n-1} \times 16^{n-1}) + (d_{n-2} \times 16^{n-2}) + ... + (d_1 \times 16) + d_0$$

***** Examples:

$$(1234)_{16} = (1 \times 16^3) + (2 \times 16^2) + (3 \times 16) + 4 =$$

Decimal Value 4660

$$(3BA4)_{16} = (3 \times 16^3) + (11 \times 16^2) + (10 \times 16) + 4 =$$

Decimal Value 15268

Converting Decimal to Hexadecimal

- Repeatedly divide the decimal integer by 16
- * Each remainder is a hex digit in the translated value

Decimal 422 = 1A6 hexadecimal

Integer Storage Sizes

Storage Type	Unsigned Range	Powers of 2
Byte	0 to 255	0 to (2 ⁸ – 1)
Half Word	0 to 65,535	0 to (2 ¹⁶ – 1)
Word	0 to 4,294,967,295	0 to (2 ³² – 1)
Double Word	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)

What is the largest 20-bit unsigned integer?

Answer: $2^{20} - 1 = 1,048,575$

Binary Addition

- Start with the least significant bit (rightmost bit)
- * Add each pair of bits
- Include the carry in the addition, if present

Hexadecimal Addition

- Start with the least significant hexadecimal digits
- Let Sum = summation of two hex digits
- If Sum is greater than or equal to 16
 - ♦ Sum = Sum 16 and Carry = 1
- ***** Example:

A + B =
$$10 + 11 = 21$$

Since $21 \ge 16$
Sum = $21 - 16 = 5$
Carry = 1

Signed Integers

- Several ways to represent a signed number
 - ♦ Sign-Magnitude
 - Biased
 - ♦ 1's complement
 - 2's complement
- Divide the range of values into 2 equal parts
 - \diamond First part corresponds to the positive numbers (≥ 0)
 - Second part correspond to the negative numbers (< 0)</p>
- Focus will be on the 2's complement representation
 - Has many advantages over other representations
 - Used widely in processors to represent signed integers

Two's Complement Representation

- Positive numbers
 - Signed value = Unsigned value
- Negative numbers
 - ♦ Signed value = Unsigned value 2^n
 - \Rightarrow n = number of bits
- Negative weight for MSB
 - Another way to obtain the signed value is to assign a negative weight to most-significant bit

	1	0	1	1	0	1	0	0
	-128	64	32	16	8	4	2	1
= -	128	+;	32	+ 1	6 +	- 4	= -	16

8-bit Binary value	Unsigne d value	Signed value
00000000	0	0
0000001	1	+1
00000010	2	+2
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
11111110	254	-2
11111111	255	-1

Forming the Two's Complement

starting value	00100100 = +36
step1: reverse the bits (1's complement)	11011011
step 2: add 1 to the value from step 1	+ 1
sum = 2's complement representation	11011100 = -36

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left

```
Binary Value
= 00100 1 00 significant 1
2's Complement
```

Sign Bit

- Highest bit indicates the sign
- $^{\bullet}$ 1 = negative
- \bullet 0 = positive

For Hexadecimal Numbers, check most significant digit If highest digit is > 7, then value is negative

Examples: 8A and C5 are negative bytes

B1C42A00 is a negative word (32-bit signed integer)

Sign Extension

- Step 1: Move the number into the lower-significant bits
- Step 2: Fill all the remaining higher bits with the sign bit
- This will ensure that both magnitude and sign are correct
- Examples
 - ♦ Sign-Extend 10110011 to 16 bits

Sign-Extend 01100010 to 16 bits

$$01100010 = +98 \longrightarrow 0000000 0 1100010 = +98$$

- Infinite 0s can be added to the left of a positive number
- Infinite 1s can be added to the left of a negative number

Two's Complement of a Hexadecimal

- To form the two's complement of a hexadecimal
 - Subtract each hexadecimal digit from 15
 - ♦ Add 1
- ***** Examples:

```
2's complement of 6A3D = 95C2 + 1 = 95C3
```

2's complement of 92F15AC0 = 6D0EA53F + 1 = 6D0EA540

2's complement of FFFFFFF = 00000000 + 1 = 00000001

No need to convert hexadecimal to binary

Binary Subtraction

- \bullet When subtracting A B, convert B to its 2's complement
- Add A to (–B)

- Final carry is ignored, because
 - ♦ Negative number is sign-extended with 1's
 - You can imagine infinite 1's to the left of a negative number
 - Adding the carry to the extended 1's produces extended zeros

Hexadecimal Subtraction

- When a borrow is required from the digit to the left, then Add 16 (decimal) to the current digit's value
- Last Carry is ignored

Ranges of Signed Integers

For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1}-1)$

Positive range: 0 to $2^{n-1} - 1$

Negative range: -2^{n-1} to -1

Storage Type	Signed Range	Powers of 2		
Byte	-128 to +127	-2^7 to $(2^7 - 1)$		
Half Word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$		
Word	-2,147,483,648 to +2,147,483,647	-2^{31} to $(2^{31}-1)$		
Double Word	-9,223,372,036,854,775,808 to	-2 ⁶³ to (2 ⁶³ – 1)		
Double Word	+9,223,372,036,854,775,807	-2		

Practice: What is the range of signed values that may be stored in 20 bits?

Carry and Overflow

- Carry is important when ...
 - ♦ Adding or subtracting unsigned integers
 - Indicates that the unsigned sum is out of range
 - ♦ Either < 0 or >maximum unsigned *n*-bit value
- Overflow is important when ...
 - Adding or subtracting signed integers
 - Indicates that the signed sum is out of range
- Overflow occurs when
 - ♦ Adding two positive numbers and the sum is negative
 - Adding two negative numbers and the sum is positive
 - Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- We can have carry without overflow and vice-versa
- Four cases are possible (Examples are 8-bit numbers)

Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation

Signed Integers: *n*-bit 2's complement representation

Character Storage

Character sets

- ♦ Standard ASCII: 7-bit character codes (0 127)
- Extended ASCII: 8-bit character codes (0 255)
- \diamond Unicode: 16-bit character codes (0 65,535)
- Unicode standard represents a universal character set
 - Defines codes for characters used in all major languages
 - Used in Windows-XP: each character is encoded as 16 bits
- UTF-8: variable-length encoding used in HTML
 - Encodes all Unicode characters
 - Uses 1 byte for ASCII, but multiple bytes for other characters

Null-terminated String

Array of characters followed by a NULL character

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
2	space	!	11	#	\$	%	&	•	()	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	<		>	?
4	@	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
5	Р	Q	R	S	Т	U	V	W	X	Υ	Z	[\]	٨	_
6	`	a	b	С	d	е	f	g	h	i	j	k	ι	m	n	О
7	р	q	r	S	t	u	V	W	X	У	Z	{		}	~	DEL

***** Examples:

- ♦ ASCII code for space character = 20 (hex) = 32 (decimal)
- ♦ ASCII code for 'L' = 4C (hex) = 76 (decimal)
- ♦ ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- The first 32 characters of ASCII table are used for control
- Control character codes = 00 to 1F (hexadecimal)
 - ♦ Not shown in previous slide
- Examples of Control Characters
 - ♦ Character 0 is the NULL character ⇒ used to terminate a string
 - ◆ Character 9 is the Horizontal Tab (HT) character
 - Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
 - ♦ Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
 - The LF and CR characters are used together
 - They advance the cursor to the beginning of next line
- One control character appears at end of ASCII table
 - ♦ Character 7F (hex) is the Delete (DEL) character