2. Азбуки и езици

$$\Sigma$$
 — азбука

Дума в азбуката Σ се нарича всяка функция $w:\{1,\ldots,n\}\to\Sigma$.

$$w(i) = w_i \in \Sigma$$

 $w = w_1 ... w_n$, n – дължина на думата;

 ε – празна дума

Операции с думи

• Конкатенация на две думи

Нека
$$u = u_1 \dots u_n$$
 и $v = v_1 \dots v_k$ са две думи.

Тогава конкатенацията на u и v се означава с $u \circ v = u_1 \dots u_n \, v_1 \dots v_k.$

$$w = u \circ v$$
 и $w_i = n_i$, $1 \le i \le n$
$$w_{i+n} = v_i$$
, $1 \le i \le k$

Свойства на конкатенацията

- 1. $\varepsilon \circ u = u \circ \varepsilon = u$;
- 2. $(u \circ v) \circ w = u \circ (v \circ w)$;
- 3. Конкатенацията не е комутативна в общия случай.

$$u^{i}, i \in \mathbb{N}$$

$$u^{0} = \varepsilon$$

$$u^{i+1} = (u^{i}) \circ u$$

-
$$w^R$$

 $w^R = \varepsilon$, ако $w = \varepsilon$
 $w^R = au^R$, ако $w = ua$, $a \in \Sigma$

Def. Език в азбуката Σ се нарича всяко множество от думи в Σ .

Операции в множеството на езиците: ∪,∩,\

• Конкатенация на езици

Нека L_1 и L_2 са езици. Тогава конкатенацията на L_1 и L_2 се означава $L_1\circ L_2$ и $L_1\circ L_2=\{w_1\circ w_2|w_1\in L_1$ и $w_2\in L_2\}.$

Вярно ли е, че $L_1 \subseteq L_1 \circ L_2$? – Ако $\varepsilon \in L_2$ е вярно.

Вярно ли е, че $L_2 \subseteq L_1 \circ L_2$? – Ако $\varepsilon \in L_1$ е вярно.

• Степенуване на езици

L - произволен език в азбуката Σ

$$L^{0} = \{\varepsilon\}$$

$$L^{i+1} = L^{i} \circ L, i = 0, 1, 2, ...$$

$$\emptyset^{0} = \{\varepsilon\}$$

• Операция * на Клини

$$\overline{L^* = \bigcup_{i=0}^{+\infty} L^i}$$
, за произволен език L $L^+ = \bigcup_{i=1}^{+\infty} L^i$

Ако имаме $\Sigma \Longrightarrow \Sigma^*$ - съвкупността на всички думи в азбуката Σ .