SEQUENCE LISTING

Yamada, Yasuhiro Nihira, Takuya Shindo, Takuya <120> METHOD FOR INDUCTION OF GENE EXPRESSION IN PLANT AND PLANT TREATED THEREBY <130> 5404/18 <140> 10/049,710 <141> 2002-02-15 <150> PCT/JP01/05096 <151> 2001-06-15 <150> JP 2000-180466 <151> 2000-06-15 <160> 11 <170> PatentIn version 3.1 <210> 1 <211> 699

<212> DNA

<110> Shinmyo, Atsuhiko

Kato, Kou

<213> Streptomyces virginiae <220> <221> CDS <222> (1)..(699) <223> <300> <301> Okamoto, S., Nakamura, K., Nihira, T. and Yamada, Y. <302> Virginiae butanolide binding protein from Streptomyces virginiae. Evidence that VbrA is not the virginiae butanolide binding protein and reidentification of the true binding protein <303> Journal of Biological Chemistry <304> 270 <305> 20 <306> 12319-12326 <307> 1995-05-19 <308> D32251 <309> 1994-07-19 <313> (1)..(699) <300> <301> Okamoto, S., Nakamura, K., Nihira, T. and Yamada, Y. <302> Virginiae butanolide binding protein from Streptomyces virginiae. Evidence that VbrA is not the virginiae butanolide binding protein and reidentification of the true binding protein <303> Journal of Biological Chemistry <304> 270 <305> 20

<306> 12319-12326

<309> 1994-07-	19			
<400> 1 atg gca gtg cga Met Ala Val Arg 1	cac gaa cgg gtg His Glu Arg Val 5	gca gtg cga cag g Ala Val Arg Gln (gaa cgg gcc gtc 48 Glu Arg Ala Val 15	8
		gca gcc gcc tcg g Ala Ala Ala Ser V 25		6
		gca gag atc ctc t Ala Glu Ile Leu S		4
		cac ttc gct tcc a His Phe Ala Ser I 60		2
gcc cgc ggc gtg Ala Arg Gly Val 65	ctg gcc gag cag Leu Ala Glu Gln 70	acc ctg cac gtg of Thr Leu His Val A	gcg gtg ccg gaa 240 Ala Val Pro Glu 80	0
tcc ggc tcc aag Ser Gly Ser Lys	gcg cag gaa ctg Ala Gln Glu Leu 85	gta gac ctc acc a Val Asp Leu Thr N 90	atg ctg gtc gcc 288 Met Leu Val Ala 95	8
		ctg cgg gcg ggc a Leu Arg Ala Gly 7 105		6
ctg gac cag ggg Leu Asp Gln Gly 115	gcg gtg gac ttc Ala Val Asp Phe 120	tcc gac gcc aac c Ser Asp Ala Asn I	ccg ttc ggc gag 384 Pro Phe Gly Glu 125	4
		ctg gcg gag gca c Leu Ala Glu Ala (140		2
gag gtg ctt ccg Glu Val Leu Pro 145	cac gtg aac ccg His Val Asn Pro 150	aaa aag acc ggc g Lys Lys Thr Gly A 155	gac ttc atc gtc 480 Asp Phe Ile Val 160	0
ggc tgc ttc acc Gly Cys Phe Thr	ggg ctc cag gcg Gly Leu Gln Ala 165	gtc tcc cgg gtc a Val Ser Arg Val 7 170	acc tcc gac cgc 528 Thr Ser Asp Arg 175	В
cag gac ctc ggc Gln Asp Leu Gly 180	His Arg Ile Ser	gtg atg tgg aac o Val Met Trp Asn F 185	cac gtg ctg ccc 576 His Val Leu Pro 190	6

.

<307> 1995-05-19

<308> D32251

	ago Ser	ato	gtg Val 195	Pro	gcg Ala	tcc Ser	ato Met	ctg Leu 200	Thr	tgg Trp	ato Ile	gaa Glu	acc Thr 205	Gly	gag Glu	g gag ı Glu	624
	cgg Arg	ato Ile 210	e GIY	aag Lys	gto Val	gcg Ala	gcg Ala 215	Ala	gcc Ala	gag Glu	gcc Ala	gcc Ala 220	Glu	gct Ala	geg Ala	gag Glu	672
	gcc Ala 225	Ser	gag Glu	gcc Ala	gcc Ala	tcc Ser 230	Asp	gag Glu	tag		•						699
	<21	0>	2														
	<21	1>	232														
	<21	2>	PRT														
	<21	3>	Stre	ptomy	yces	vir	gini	ae									
	<40	0>	2														
	Met 1	Ala	Val	Arg	His 5	Glu	Arg	Val	Ala	Val 10	Arg	Gln	Glu	Arg	Ala 15	Val	
i	Arg	Thr	Arg	Gln 20	Ala	Ile	Val	Arg	Ala 25	Ala	Ala	Ser	Val	Phe 30	Asp	Glu	
7	ſyr	Gly	Phe 35	Glu	Ala	Ala	Thr	Val 40	Ala	Glu	Ile	Leu	Ser 45	Arg	Ala	Ser	
7	/al	Thr 50	Lys	Gly	Ala	Met	Tyr 55	Phe	His	Phe	Ala	Ser 60	Lys	Glu	Glu	Leu	
	ala 55	Arg	Gly	Val	Leu	Ala 70	Glu	Gln	Thr	Leu	His 75	Val	Ala	Val	Pro	Glu 80	
S	er	Gly	Ser	Lys	Ala 85	Gln	Glu	Leu	Val	Asp 90	Leu	Thr	Met	Leu	Val 95	Ala	
H	is	Gly	Met	Leu 100	His	Asp	Pro	Ile	Leu 105	Arg	Ala	Gly		Arg 110	Leu	Ala	
L	eu	Asp	Gln 115	Gly	Ala	Val	Asp	Phe 120	Ser	Asp	Ala	Asn	Pro 125	Phe	Gly	Glu	

Trp Gly Asp Ile Cys Ala Gln Leu Leu Ala Glu Ala Gln Glu Arg Gly
130 135 140

Glu Val Leu Pro His Val Asn Pro Lys Lys Thr Gly Asp Phe Ile Val 145 150 155 160

Gly Cys Phe Thr Gly Leu Gln Ala Val Ser Arg Val Thr Ser Asp Arg 165 170 175

Gln Asp Leu Gly His Arg Ile Ser Val Met Trp Asn His Val Leu Pro 180 185 190

Ser Ile Val Pro Ala Ser Met Leu Thr Trp Ile Glu Thr Gly Glu Glu 195 200 205

Arg Ile Gly Lys Val Ala Ala Ala Glu Ala Glu Ala Glu 210 215 220

Ala Ser Glu Ala Ala Ser Asp Glu 225 230

<210> 3

<211> 26

<212> DNA

<213> Streptomyces virginiae

<300>

<301> Kinoshita, H., Tsuji, T., Ipposhi, H., Nihira, T. and Yamada, Y.

<302> Charaacterization of Binding Sequences for Butyrolactone Autoregulator Receptors in Streptomycetes

<303> Journal of Bacteriology

<304> 181

<305> 16

<306> 5075-5080

<307> 1999-08

<308> D32251

<309> 1994-07-19 <313> (1)..(26) <300> <301> Kinoshita, H., Tsuji, T., Ipposhi, H., Nihira, T. and Yamada, Y. <302> Charaacterization of Binding Sequences for Butyrolactone Autoregulator Receptors in Streptomycetes <303> Journal of Bacteriology <304> 181 <305> 16 <306> 5075-5080 <307> 1999-08 <308> D32251 <309> 1994-07-19 <400> 3 agatacatac caaccggttc ttttga 26 <210> 4 <211> 110 <212> DNA <213> Artificial sequence <220> <223> Designed sequence of the CamV 35S promoter modified to contain th e operator BARE-3 element just downstream of its TAT-box <400> 4 gatateteca etgaegtaag ggatgaegea caateeeact ateettegea agaeeettee 60

<210> 5

110

tctatataag agatacatac caaccggttc ttttgacggg ggactctaga

<211> 110 <212> DNA <213> Artificial sequence <220> <223> Designed sequence of the CaMV 35S promoter modified to contain the operator BARE-3 element just upstream of its TATA-box <400> 5 gatateteca etgaegtaag ggatgaegea caateagata cataceaace ggttettttg 60 actatataag gaagttcatt tcatttggag agaacacggg ggactctaga 110 <210> 6 <211> 110 <212> DNA <213> Artificial sequence <220> <223> Designed sequence of the CaMV 35S promoter modified to contain the operator BARE-3 elements just downstream and upstream of its TATA-box <400> 6 gatateteca etgaegtaag ggatgaegea caateagata cataceaace ggttettttg 60 actatataag agatacatac caaccggttc ttttgacggg ggactctaga 110 <210> 7 <211> 136 <212> DNA <213> Artificial sequence <220>

<223> Designed sequence of the CaMV 35S promoter modified to contain three of the operator BARE-3 elements just downstream and upstream of its TATA-box

gatateteca etgaegtaag ggatgaegea caateagata cataceaace ggttettttg 60

actata	arady agatacatac caaccggttc tittgaagat acataccaac cggttctttt	120						
gacggg	ggac tctaga	136						
<210>	8							
<211>	27							
<212>	DNA							
<213>	Artificial sequence							
<220>								
enzyme	Designed sequence of a backward primer containing the restrict: BamH I recognition sequence for PCR amplification of the barA or region to be cloned by cut with the enzyme	ion gen						
	8							
cayyac	ccat aaatggcagt gcgacac	27						
<210>	9							
<211>	27							
<212>	DNA							
<213>	Artificial sequence							
<220>								
enzyme	Designed sequence of a forward primer containing the restriction Sac I recognition sequence for PCR amplification of the barA generation to be cloned by cut with the enzyme	n ene						
	9 ceet aetegtegga ggeggee	27						
<210>	10							
<211>	67							
<212>	DNA							
<213>	Artificial sequence							

<220>

<223> Designed sequence of one of paired oligo DNAs for construction of the modified CaMV 35S promoter containing three of the operator BARE-3 elements just downstream and upstream of its TATA-box

<400> 10 cggatatete caetgaegta agggatgaeg caeaateaga taeataecaa eeggttettt 60

tgactat 67

<210> 11

<211> 89

<212> DNA

<213> Artificial sequence

<220>

<223> Designed sequence of the other of paired oligo DNAs for construction of the modified CaMV 35S promoter containing three of the operator BARE-3 elements just downstream and upstream of its TATA-box

<400> 11
gctctagagt cccccgtcaa aagaaccggt tggtatgtat cttcaaaaga accggttggt 60
atgtatctct tatatagtca aaagaaccg 89