Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Single Variable Calculus (MTH 111M) Semester 2025-2026-I Exercise Sheet 1

- 1. Supremum and infimum of subsets of \mathbb{R}^{\dagger}
- 1.1. Find the supremum and infimum, whichever exists, of the following subsets of the real line:

(a)
$$\left\{ \frac{1}{3} \pm \frac{n}{3n+1} : n \in \mathbb{N} \right\}$$
,
(b) $\left\{ \frac{m}{|m|+n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$,
(c) $\left\{ \frac{1}{2^m} + \frac{1}{3^n} + \frac{1}{5^r} : m, n, r \in \mathbb{N} \right\}$,

(d)
$$\left\{ \frac{(n+1)^2}{2^n} : n \in \mathbb{N} \right\},$$

(e) $\left\{ x \in \mathbb{R} : 3x^2 + 3 < 10x \right\},$
(f) $\left\{ x + \frac{1}{x} : x > 0 \right\}.$

$$\frac{1}{n} + \frac{1}{5^r} : m, n, r \in \mathbb{N}$$
, (f) $\{ x + \frac{1}{x} : x > 0 \}$

1.2. For any $\alpha \in \mathbb{R}$ and $\emptyset \neq A, B \subseteq \mathbb{R}$, define the following:

$$-A \stackrel{\mathrm{def}}{=} \{-a: a \in A\}, \ \frac{1}{A} \stackrel{\mathrm{def}}{=} \left\{\frac{1}{a}: a \in A\right\}, \ \mathrm{provided} \ 0 \notin A,$$

$$A + B \stackrel{\mathrm{def}}{=} \{a + b: a \in A, b \in B\}, \ A - B \stackrel{\mathrm{def}}{=} \{a - b: a \in A, b \in B\},$$

$$\alpha A \stackrel{\mathrm{def}}{=} \{\alpha a: a \in A\}, \ \mathrm{and} \ A \cdot B \stackrel{\mathrm{def}}{=} \{ab: a \in A, b \in B\}.$$

Show the following:

- (a) If A is bounded below then, -A is bounded above and $\sup(-A) = -\inf A$.
- (b) If A and B are bounded above then so is A + B and $\sup(A + B) = \sup A + \sup B$.
- (c) If A is bounded above and B is bounded below then A B is bounded above and $\sup(A B) = \sup A \inf B$.
- (d) If A and B are bounded above then so is $A \cup B$ and $\sup(A \cup B) = \max\{\sup A, \sup B\}$.
- (e) If $A, B \subseteq \mathbb{R}_+$ are bounded then $A \cdot B$ is bounded and $\sup(A \cdot B) = \sup A \cdot \sup B$.
- (f) If $A \subseteq \mathbb{R}_+$ is bounded below and $\inf A > 0$ then $\frac{1}{A}$ is bounded and $\sup \left(\frac{1}{A}\right) = \frac{1}{\inf A}$.
- (g) Find the analogues of 1.2.a-1.2.f for infumum.

2. LUB property of \mathbb{R}^{\dagger}

- 2.1. (a) Let A be a nonempty and bounded above subset of \mathbb{R} . Show that the set of all upper bounds of A is a nonempty and bounded below.
 - (b) Prove the analogue of (2.1.a) if bounded above is replaced by bounded below.
 - (c) Prove that LUB and GLB properties of $\mathbb R$ are equivalent.
- 2.2. Let $x \in \mathbb{R}$. Show that there exists a unique integer n satisfying the following:

$$n \leqslant x < n+1. \tag{2.1}$$

Hint. Consider the set $\stackrel{\text{def}}{=} \{m \in \mathbb{Z} : m \leq x\}$. Do you see that $S \neq \emptyset$? (How? Use Archimedian property.) Does S have a supremum? If $\alpha \in \mathbb{R}$ is the supremum of S, there exists $n \in S$ such that $\alpha - 1 < n \leq \alpha$. (Why?) Can you show that this n satisfies (2.1)? Show further that no other integer can satisfy (2.1).

Note: The unique integer n satisfying (2.1) is called the *greatest integer* $\leq n$ and denoted by [x].

[†]The exercises in these sections will first be discussed during the tutorial sessions. This will enhance your understanding and ensure that you are well-prepared.

- 2.3. (a) Show that, for any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, there exists $m \in \mathbb{Z}$ such that $\left|x \frac{m}{n}\right| < \frac{1}{n}$.
 - (b) From (2.3.a), deduce that for any $a, b \in \mathbb{R}$ with a < b, there exists at least a rational number r satisfying a < r < b, and hence infinitely many.

Note: The property (2.3.b) is often described by saying that the rational numbers are *dense* in the real number system.

- 2.4. Let $\mathbb{F} = \mathbb{Q}$ or \mathbb{R} and x > 0. Consider $S \stackrel{\text{def}}{=} \{t \in \mathbb{F} : t > 0 \text{ and } t^2 < x\}$. Show the following:
 - (a) $\sup S$ exists in \mathbb{R} .

Hint. Choose $n \in \mathbb{N}$ such that $n > \frac{1}{x}$. Then $\frac{1}{n} \in S$ (Why?) Pick any m > x. If mis not an upper bound, there would exist $t \in S$ such that t > m. Do you now see any problem with that?

(b) For all $t \in S$ then there exists $n \in \mathbb{N}$ such that $\left(t + \frac{1}{N}\right)^2 < x$.

Hint. Since $(t + \frac{1}{N})^2 = t^2 + \frac{2t}{N} + \frac{1}{N^2} \le t^2 + \frac{2t+1}{N}$, so making $t^2 + \frac{2t+1}{N} < x$ by choosing N suitably will be enough!

(c) Show that if t > 0 and $t^2 > x$ then there exists $N \in \mathbb{N}$ such that $\left(t - \frac{1}{N}\right)^2 > x$.

Hint. Make similar observation as in (2.4.b)

- (d) Denote sup S by α . From (2.4.b) and (2.4.c) show that $\alpha^2 = x$.
- (e) Show that α is the unique positive number whose square is x.

Note: This unique α w.r.t. the property mentioned above in (2.4.e) α is called the *square* root of 2 and denoted by \sqrt{x} or $x^{\frac{1}{2}}$. Clearly $\sqrt{x} > 0$.

- 2.5. Show the following:
 - (a) There is no $\alpha \in \mathbb{Q}$ such that $\alpha^2 = 2$.
 - (b)* \mathbb{Q} does not satisfy the *least upper bound property*, i.e., \mathbb{Q} admits a nonempty bounded above subset which does not have a least upper bound in \mathbb{Q} .

Hint. You may use Exercise 2.4.

(c) \mathbb{Q} enjoys the Archimedian property, i.e., \mathbb{N} is not bounded above in \mathbb{Q} .

Remark. Recall that in \mathbb{R} , the Archimedean property is a consequence of the least upper bound property. Now (2.5.b) and (2.5.c) show that this is not the situation for \mathbb{Q} , which enjoys the Archimedean property in its own right even though the LUB property does not hold!

2.6. From the density of rationals in \mathbb{R} , (2.4.e) and (2.5.a), deduce that for any $x, y \in \mathbb{R}$ with x < y, there exists at least an irrational number z satisfying x < z < y, and hence infinitely many.

Note: This property is often described by saying that the irrationals are *dense* in the real number system.

- 3. Additional exercises[‡]
- 3.1. Prove or disprove the following:

$$\left\{ \left(1 + \frac{1}{n}\right)^n : n \in \mathbb{N} \right\}$$
 is bounded above in \mathbb{R} .

[‡]Let's take the opportunity to discuss the additional exercises during the tutorials, as long as time permits.

Hint. Observe that, for $0 \le r \le n$, $\binom{n}{r} \frac{1}{n^r} = \frac{1}{r!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{r-1}{n}\right) \le \frac{1}{r!}$. Can you get an upper bound for $\sum_{r=0}^{n} \frac{1}{r!}$?

- 3.2. Find the supremum and infimum, whichever exists, of the following subsets of \mathbb{R} :
 - (a) $\left\{2^x + 2^{\frac{1}{x}} : x > 0\right\}$,
 - (b) $\{\sqrt{n} [\sqrt{n}] : n \in \mathbb{N}\},$

Hint. Observe that, for all $n \in \mathbb{N}$, $\lceil \sqrt{n^2 + 2n} \rceil = n$. (Why?)

(c)
$$\left\{ 2(-1)^{n+1} + (-1)^{\frac{n(n+1)}{2}} \left(2 + \frac{3}{n}\right) : n \in \mathbb{N} \right\},$$

(d)
$$\left\{ \frac{n-1}{n+1} \cos \frac{2n\pi}{3} : n \in \mathbb{N} \right\}$$
,

$$\begin{array}{ll}
(n+1 & 3 &) \\
(e) \left\{ \frac{a_1}{a_1+a_2+a_3} + \dots + \frac{a_{n-2}}{a_{n-2}+a_{n-1}+a_n} + \frac{a_{n-1}}{a_{n-1}+a_n+a_1} + \frac{a_n}{a_n+a_1+a_2} : a_1, \dots, a_n > 0 \right\}, \text{ where } n \geqslant 3 \\
\text{is an integer.}
\end{array}$$

Hint. Denote $a_1 + \cdots + a_n$ by s. It is easy to see that, for any typical element of the above subset, its i-th summand is at least $\frac{a_i}{s}$, for all $i = 1, \ldots, n$. Hence 1 is a lower bound. What about the case $a_k \stackrel{\text{def}}{=} \frac{1}{2^k}$, for all $k = 1, \ldots, n$. On the other hand, observe that $\frac{a_1}{a_1 + a_2 + a_3} \le 1 - \frac{a_2}{s} - \frac{a_3}{s}, \ldots, \frac{a_n}{a_n + a_1 + a_2} \le 1 - \frac{a_1}{s} - \frac{a_2}{s}$. This shows that n - 2 is an upper bound. Can you now make thoughtful choices of a_k 's?

- 3.3. Let $I_n \stackrel{\text{def}}{=} [a_n, b_n], \forall n \in \mathbb{N}$. Assume that, $I_{n+1} \subseteq I_n$, for any $n \in \mathbb{N}$. Show the following:
 - (a) For any $n, m \in \mathbb{N}$, $a_n \leq b_m$.
 - (b) $\sup\{a_n : n \in \mathbb{N}\}\$ and $\inf\{b_n : n \in \mathbb{N}\}\$ exist, and $\sup\{a_n : n \in \mathbb{N}\}\$ $\le \inf\{b_n : n \in \mathbb{N}\}.$
 - (c) Find $\bigcap_{n=1}^{\infty} I_n$.

Hint. Draw picture!

3.4. Fix a positive integer $D \ge 3$. Let $\alpha \in [0,1]$. Show that, for all $n \in \mathbb{N}$, there exists $a_n \in \{0,1,\ldots,D-1\}$ such that the following holds:

$$\sup \left\{ \frac{a_1}{D} + \frac{a_2}{D^2} + \dots + \frac{a_n}{D^n} : n \in \mathbb{N} \right\} = \alpha.$$

Note: We then say that $\frac{a_1}{D} + \frac{a_2}{D^2} + \cdots + \frac{a_n}{D^n} + \ldots$ is a representation of α to the base D.

Hint. Try to define a_n 's inductively so that for any $n \in \mathbb{N}$, one has

$$\frac{a_1}{D} + \frac{a_2}{D^2} + \dots + \frac{a_n}{D^n} \le \alpha < \frac{a_1}{D} + \frac{a_2}{D^2} + \dots + \frac{a_n}{D^n} + \frac{1}{D^n}.$$

For instance, observe that if (3.4.) holds for n=1 then a_1 must be [10x]. Next, when n=2 then a_2 has to be $\left[10^2(x-\frac{a_1}{10})\right]$ and so on.

3.5.* Generalize (2.4.) to the following:

For any $x \ge 0$ and $n \in \mathbb{N}$, there exists unique $y \ge 0$ such that $y^n = x$.

This unique y is called the n-th root of x, and denoted by $\sqrt[n]{n}$ or $x^{\frac{1}{n}}$. Note that $\sqrt[n]{x} \ge 0$.

Hint. Proceed like (2.4.).