

A Non-Repudiation Protocol

Group 7: Andrea Munarin, Francesco Perencin, Simone Jovon

Introduction

In this presentation:

- 1. A non-repudiation protocol
- 2. PEPA models
- 3. Derivation graphs
- 4. Markov chain and Performance analysis
- 5. PEPA Eclipse Plug-in

Protocols

General Definition

"The official procedure or system of rules governing affairs of state or diplomatic occasions."

Computing Definition

"A set of rules governing the exchange or transmission of data between devices."

"Mallory buys a cell phone for \$100, writes a paper cheque as payment, and signs the cheque with a pen. Later, she finds that she can't afford it, and claims that the cheque is a forgery. The signature guarantees that only Mallory could have signed the cheque, and so Mallory's bank must pay the cheque. This is non-repudiation; Mallory cannot repudiate the cheque."

Zhou&Gollmann Model — Terminology 1

- M: Message
- L: a unique label chosen by TTP to identify the message M
- T_s : the time that TTP received A's submission
- T_d: the time that TTP delivered and available to B

- $NRO = sS_A(f_{NRO}, TTP, B, M)$
 - o non-repudiation of origin for M
- $NRS = sS_D(f_{NRS}, A, B, T_s, L, NRO)$
 - non- repudiation of submission of M
- $NRR = sS_B(f_{NRR}, TTP, A, L, NRO)$
 - non-repudiation of receiving a message labelled L
- $NRD = sS_D(f_{NRD}, A, B, T_d, L, NRR)$
 - non-repudiation of delivery of M

Zhou&Gollmann Model — Representation

 $A \rightarrow TTP$

f_{NRO}, TTP, B, M, NRO

В

Zhou&Gollmann Model — 2.publish1&getByA1

В

 $m{B}
ightarrow m{TTP}$ f_{NRR}, L, NRR

 $\overline{\mathsf{A}}$

Zhou&Gollmann Model — 5.publish2&getByB

Zhou&Gollmann Model — 6.publish2&getByA2

В

PEPA Model

$$A_0 \stackrel{\text{def}}{=} (request, r_{t1}).A_1$$
 $A_1 \stackrel{\text{def}}{=} (publish1, r_{p1}).A_2$
 $A_2 \stackrel{\text{def}}{=} (getByA1, r_{ga1}).A_3$
 $A_3 \stackrel{\text{def}}{=} (sendB, r_b).A_4$
 $A_4 \stackrel{\text{def}}{=} (publish2, r_{p2}).A_5$
 $A_5 \stackrel{\text{def}}{=} (getByA2, r_{ga2}).A_6$
 $A_6 \stackrel{\text{def}}{=} (work, r_w).A_0$

$$B_0 \stackrel{\text{def}}{=} (sendB, r_b).B_1$$

 $B_1 \stackrel{\text{def}}{=} (sendTTP, r_{t2}).B_2$
 $B_2 \stackrel{\text{def}}{=} (publish2, r_{p2}).B_3$
 $B_3 \stackrel{\text{def}}{=} (getByB, r_{gb}).B_4$
 $B_4 \stackrel{\text{def}}{=} (work, r_w).B_0$

Initial Model — TTP

$$TTP \stackrel{\text{def}}{=} (publish1, r_{p1}).TTP + (publish2, r_{p2}).TTP + (sendB, r_b).TTP$$

$$System \stackrel{\text{def}}{=} TTP \bowtie_{\mathcal{L}} (A_0||B_0)$$

 $\mathcal{L} = \{publish1, publish2, sendB\}$

Derivation Graph A||B

Simplified Model

Simplified Model — Clients AB

$$AB_0 \stackrel{\text{def}}{=} (request, r_{t1}).AB_1$$

$$AB_1 \stackrel{\text{def}}{=} (publish1, r_{p1}).AB_2$$

$$AB_2 \stackrel{\text{def}}{=} (getByA1, r_{ga1}).AB_3$$

$$AB_3 \stackrel{\text{def}}{=} (sendB, r_b).AB_4$$

$$AB_4 \stackrel{\text{def}}{=} (sendTTP, r_{t2}).AB_5$$

$$AB_5 \stackrel{\text{def}}{=} (publish2, r_{p2}).AB_6$$

$$AB_6 \stackrel{\text{def}}{=} (getByA2, r_{ga2}).AB_7 + (getByB, r_{gb}).AB_8$$

$$AB_7 \stackrel{\text{def}}{=} (getByB, r_{gb}).AB_9$$

$$AB_8 \stackrel{\text{def}}{=} (getByA2, r_{ga2}).AB_9$$

$$AB_9 \stackrel{\text{def}}{=} (work, r_w).AB_0$$

$$TTP \stackrel{\text{def}}{=} (publish1, r_{p1}).TTP + (publish2, r_{p2}).TTP + (sendB, r_b).TTP$$

$$System \stackrel{\text{def}}{=} TTP \bowtie_{\mathcal{L}} AB_0$$

$$\mathcal{L} = \{publish1, publish2, sendB\}$$

Non-Repudation Protocol might be used by unofficial entities:

- User can sign fake contract
- TTP must verify the authenticity of contract
- If scam is recognized, the procedure has to be stopped

Improved System — Clients AB

$$AB_0 \stackrel{\text{def}}{=} (request, r_{t1}).AB_1$$

$$AB_1 \stackrel{\text{def}}{=} (verify, T).AB_2$$

$$AB_2 \stackrel{\text{def}}{=} (publish1, T).AB_3$$

$$AB_3 \stackrel{\text{def}}{=} (getByA1, r_{ga1}).AB_4$$

$$AB_4 \stackrel{\text{def}}{=} (sendB, T).AB_5$$

$$AB_5 \stackrel{\text{def}}{=} (sendTTP, r_{t2}).AB_6$$

$$AB_6 \stackrel{\text{def}}{=} (publish2, T).AB_7$$

$$AB_7 \stackrel{\text{def}}{=} (getByA2, r_{ga2}).AB_{8.1} + (getByB, r_{gb}).AB_{8.2}$$

$$AB_{8.1} \stackrel{\text{def}}{=} (getByB, r_{gb}).AB_9$$

$$AB_{8.2} \stackrel{\text{def}}{=} (getByA2, r_{ga2}).AB_9$$

$$AB_9 \stackrel{\text{def}}{=} (work, r_w).AB_0$$

$$TTP \stackrel{\text{def}}{=} (verify, r_v).TTP' + (publish2, r_{p2}).TTP + (sendB, r_b).TTP$$

 $TTP' \stackrel{\text{def}}{=} (publish1, r_{p1}).TTP$

$$System \stackrel{\text{def}}{=} TTP \bowtie_{\mathcal{L}} AB_0$$

$$\mathcal{L} = \{verify, publish1, publish2, sendB\}$$

Derivation Graphs

JOMO FOS

Clients AB

TTP

OMO POS

System

Markov Chains and Performance analysis

Underlying Markov chain

Infinitesimal generator matrix

Transpose infinitesimal generator matrix

Global balance equations

$$\begin{cases}
-\pi(X_0) \cdot r_{t1} + \pi(X_{10}) \cdot r_w = 0 \\
\pi(X_0) \cdot r_{t1} - \pi(X_1) \cdot r_v = 0 \\
\pi(X_1) \cdot r_v - \pi(X_2) \cdot r_{p1} = 0 \\
\pi(X_2) \cdot r_{p1} - \pi(X_3) \cdot r_{ga1} = 0 \\
\pi(X_3) \cdot r_{ga1} - \pi(X_4) \cdot r_b = 0 \\
\pi(X_4) \cdot r_b - \pi(X_5) \cdot r_{t2} = 0 \\
\pi(X_5) \cdot r_{t2} - \pi(X_6) \cdot r_{p2} = 0 \\
\pi(X_6) \cdot r_{p2} - \pi(X_7) \cdot (r_{ga2} + r_{gb}) = 0 \\
\pi(X_7) \cdot r_{ga2} - \pi(X_8) \cdot r_{gb} = 0 \\
\pi(X_7) \cdot r_{gb} - \pi(X_9) \cdot r_{ga2} = 0 \\
\pi(X_8) \cdot r_{gb} + \pi(X_9) \cdot r_{ga2} - \pi(X_{10}) \cdot r_w = 0 \\
\pi(X_0) + \pi(X_1) + \pi(X_2) + \pi(X_3) + \pi(X_4) + \pi(X_5) + \pi(X_6) + \pi(X_7) + \pi(X_8) + \pi(X_{10}) = 1
\end{cases}$$

$$R = r_w(r_{t1}r_v(r_{p1}r_{ga1}r_br_{t2}(r_{p2}(r_{ga2}^2 + r_{gb}r_{ga2} + r_{gb}^2) + r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2}) + r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2}) + r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t1}r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t1}r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{t2}r_{t2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{t2}r_{t2}r_{t2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{t2}r_{t2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})) + r_{t2}r_{t2}r_{t2}$$

$$\pi(X_0) = \frac{r_w r_v r_{p1} r_{ga1} r_b r_{t2} r_{p2} (r_{gb} r_{ga2}^2 + r_{gb}^2 r_{ga2})}{R}$$

$$\pi(X_1) = \frac{r_{t1}r_w r_{p1}r_{ga1}r_b r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})}{R}$$

$$\pi(X_{2}) = \frac{r_{t1}r_{w}r_{v}r_{ga1}r_{b}r_{t2}r_{p2}(r_{gb}r_{ga2}^{2} + r_{gb}^{2}r_{ga2})}{R}$$

$$\pi(X_{3}) = \frac{r_{t1}r_{w}r_{v}r_{p1}r_{b}r_{t2}r_{p2}(r_{gb}r_{ga2}^{2} + r_{gb}^{2}r_{ga2})}{R}$$

$$\pi(X_{4}) = \frac{r_{t1}r_{w}r_{v}r_{p1}r_{ga1}r_{t2}r_{p2}(r_{gb}r_{ga2}^{2} + r_{gb}^{2}r_{ga2})}{R}$$

$$\pi(X_{5}) = \frac{r_{t1}r_{w}r_{v}r_{p1}r_{ga1}r_{b}r_{p2}(r_{gb}r_{ga2}^{2} + r_{gb}^{2}r_{ga2})}{R}$$

$$\pi(X_{6}) = \frac{r_{t1}r_{w}r_{v}r_{p1}r_{ga1}r_{b}r_{t2}(r_{gb}r_{ga2}^{2} + r_{gb}^{2}r_{ga2})}{R}$$

$$\pi(X_{7}) = \frac{r_{t1}r_{w}r_{v}r_{p1}r_{ga1}r_{b}r_{t2}(r_{gb}r_{ga2}^{2} + r_{gb}^{2}r_{ga2})}{R}$$

$$\pi(X_8) = \frac{r_{t1}r_w r_v r_{p1}r_{ga1}r_b r_{t2}r_{p2}r_{ga2}^2}{R}$$

$$\pi(X_9) = \frac{r_{t1}r_w r_v r_{p1}r_{ga1}r_b r_{t2}r_{p2}r_{gb}^2}{R}$$

$$\pi(X_{10}) = \frac{r_{t1}r_v r_{p1}r_{ga1}r_b r_{t2}r_{p2}(r_{gb}r_{ga2}^2 + r_{gb}^2r_{ga2})}{R}$$

Utilisation

$$U_{AB} = \pi(X_0) + \pi(X_1) + \pi(X_2) + \pi(X_3) + \pi(X_4) + \pi(X_5) + \pi(X_6) + \pi(X_7) + \pi(X_8) + \pi(X_9) + \pi(X_{10})$$

$$U_{TTP} = \pi(X_1) + \pi(X_2) + \pi(X_4) + \pi(X_6)$$

$$T_{request} = r_{t1} \cdot \pi(X_0)$$

$$T_{verify} = r_v \cdot \pi(X_1)$$

$$T_{publish1} = r_{p1} \cdot \pi(X_2)$$

$$T_{getByA1} = r_{ga1} \cdot \pi(X_3)$$

$$T_{sendB} = r_b \cdot \pi(X_4)$$

$$T_{sendTTP} = r_{t2} \cdot \pi(X_5)$$

$$T_{publish2} = r_{p2} \cdot \pi(X_6)$$

$$T_{getByA2} = r_{ga2} \cdot \pi(X_7) + r_{ga2} \cdot \pi(X_9)$$

$$T_{getByB} = r_{gb} \cdot \pi(X_7) + r_{gb} \cdot \pi(X_8)$$

$$T_{work} = r_w \cdot \pi(X_{10})$$

PEPA Eclipse Plug-in

Pepa Model

```
🔀 model.pepa 🗶
  1 \text{ rb} = 1.0;
  2 \text{ rgal} = 1.0;
  3 \text{ rga2} = 1.0;
  4 \text{ rgb} = 1.0;
  5 \text{ rp1} = 1.0;
  6 \text{ rp2} = 1.0;
  7 \text{ rt1} = 1.0;
  8 \text{ rt2} = 1.0;
  9 \text{ rw} = 0.01;
 10 \text{ rv} = 0.05;
 11 AB0 = (request, rt1).AB1;
 12 AB1 = (verify, infty).AB2;
 13 AB2 = (publish1, infty).AB3;
 14 AB3 = (getByA1, rga1).AB4;
 15 AB4 = (sendB, infty).AB5;
 16 AB5 = (sendTTP, rt2).AB6;
 17 AB6 = (publish2, infty).AB7;
 18 AB7 = (getByA2, rga2).AB8 1 + (getByB, rgb).AB8 2;
 19 AB8 1 = (getByB, rgb).AB9;
 20 AB8 2 = (getByA2, rga2).AB9;
 21 AB9 = (work, rw).AB0;
 22 TTP = (verify, rv).TTP1 +(publish2, rp2).TTP + (sendB, rb).TTP;
 23 TTP1 = (publish1, rp1).TTP;
 24 TTP <verify, publish1, publish2, sendB> AB0
 25
```


XY Plot

Our model

Original model

Steady state probabilities

1	TTP	AB0	0.007843137254901962
2	TTP	AB1	0.15686274509803919
3	TTP1	AB2	0.007843137254901954
4	TTP	AB3	0.007843137254901955
5	TTP	AB4	0.007843137254901954
6	TTP	AB5	0.00784313725490196
7	TTP	AB6	0.007843137254901952
8	TTP	AB7	0.003921568627450977
9	TTP	AB8_1	0.003921568627450977
10	TTP	AB8_2	0.003921568627450977
11	TTP	AB9	0.7843137254901962

Utilisation

$$U_{AB}=1$$

$$U_{TTP} \sim 0.156862755 + 0.007843137$$

+0.007843137 + 0.007843137
= 0, 180392166

More clients

```
🖂 model.pepa 🗶 🖂
  1 \text{ rb} = 1.0;
  2 \text{ rgal} = 1.0;
  3 \text{ rga2} = 1.0;
  4 \text{ rgb} = 1.0;
  5 \text{ rp1} = 1.0;
  6 \text{ rp2} = 1.0;
  7 \text{ rt1} = 1.0:
  8 \text{ rt2} = 1.0;
  9 \text{ rw} = 0.01;
 10 \text{ rv} = 0.05;
 11 AB0 = (request, rt1).AB1;
 12 AB1 = (verify, rv).AB2;
 13 AB2 = (publish1, rp2).AB3;
 14 AB3 = (getByA1, rga1).AB4;
 15 AB4 = (sendB, rb).AB5;
 16 AB5 = (sendTTP, rt2).AB6;
 17 AB6 = (publish2, rp2).AB7;
 18 AB7 = (getByA2, rga2).AB8 1 + (getByB, rgb).AB8 2;
 19 AB8 1 = (getByB, rgb).AB9;
 20 AB8 2 = (getByA2, rga2).AB9;
 21 AB9 = (work, rw).AB0;
 22 TTP = (verify, rv).TTP1 +(publish2, rp2).TTP + (sendB, rb).TTP;
 23 TTP1 = (publish1, rp1).TTP;
 24 TTP[1] <verify, publish1, publish2, sendB> AB0[5]
 25
```


Total throughput

Throughput of multi-client

$$T_{work} = \frac{0.03388669057260092}{5} = 0.006777338114520184$$

Throughput of single-client

$$T_{work} = 0.007843137254901962$$