3 数列 $\{\theta_n\}$ は

$$\theta_1 = 0$$
, $\sin \theta_{n+1} = a \sin \theta_n + b \cos \theta_n$ $(n = 1, 2, \dots)$

であたえられ , $-\frac{\pi}{2} \le \theta_n \le \frac{\pi}{2}$ を満たすとする . ここで , a , b は正数で , $a^2+b^2=1$ である . このとき

$$s_n = \frac{\sin \theta_1 + \dots + \sin \theta_n}{n}$$

によって定められた数列 $\{s_n\}$ は収束することを示せ.また $b=\frac{1}{2}$ のとき, $\{s_n\}$ の極限値を求めよ.