Tuning and extending artificial neural networks used in automatic phase identification of detections at 3-component seismic stations of the International Monitoring System

Radek Hofman, Elena Tomuta, Ronan Le Bras

International Data Centre Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization

The views expressed herein are those of the author(s) and do not necessarily reflect the views of the CTBT Prep. Comm.

Problem statement

- ► Initial wave type (iwt) is determined using StaPro (Station Processing) software for all IMS arrivals detected at IDC
 - ▶ iwt∈{noise, regional S, regional P, teleseismic}
 - initial wave type is further refined to more specific wave types
- For 3-component stations the system relies on a cascade of three binary classifiers implemented as neural networks (NNs)
- Current NN weights were derived in 2002 using data from a single station (STKA) and are applied to all 3-component stations worldwide
- We now have much more station specific data reviewed by analysts
- Our goal is to investigate if the classification performance of 3-component seismic stations can be improved by re-training using more station-specific data

Experiment settings

Performance of 3-component stations varies:

- ► We did re-training of URZ (a highly contributing station with above average iwt classification error) using data up to 2017
- ▶ New weights were tested against 2017 data with results:

	Correct classification rate					
iwt class	regional S	regional S regional P teleseismic noise TOT				
old (left)	50.4%	76.82%	43.77%	49.73%	49.89%	
new (right)	74.35%	77.92%	50.07%	67.84%	67.13%	

Presentation outline

- Neural networks in StaPro
- Algorithm and its inputs
- Why re-tunig effort?
- Ingredients needed
- Dataset
- Re-training details
- Results on validation set
- Results on test set (Jan-Nov 2017)
- Conclusions and future plans

Neural networks in StaPro

- ► Neural networks (NNs) are used in StaPro for initial wave type (iwt) determination for three-component (3C) stations
- ► The purpose is to assign an initial wave type to each arrival: noise (N), regional S (regS), regional P (regP) or teleseismic (tele)
- Given iwt, StaPro further refines the wave type using a Bayesian model:

iwt	sub-categories
noise	_
regional S	Sn, Lg, Rg, Sx
regional P	Pn, Pg, Px
teleseismic	P, tx

This gets saved into IDC database and is used in further processing

Neural networks in StaPro

- ► The system comprises of a cascade of three binary classifiers
 - ► Step 1: the system tries to distinguish between noise **N** and a signal {regS, regP, tele}
 - Step 2: if signal: is it regS or {regP, tele}?
 - ► Step 3: if {regP, tele}: is it regP or tele?
- ► All three classifiers are implemented as a multilayer perceptron (neural network)
- SERENO, T. and PATNAIK, G., Initial Wave-type Identification with Neural Networks and its Contribution to Automated Processing in IMS Version 3.0, Technical Report, SAIC-93/1219, 1993
- WANG, J., Adaptive training of neural networks for automatic seismic phase identification. Monitoring the Comprehensive Nuclear-Test-Bant Treaty: Data Processing and Infrasound (2002): 1021-1041.

Cascade of three binary classifiers

Figure 19. A schematic representation of our neural network approach to solving the 4-class initial wave-type identification problem is shown.

^{*}Figure from (Sereno and Patnaik, 1993)

Multilayer perceptron topology

All three NNs in the cascade have the same topology: input layer of size 15, hidden layer of size 6, output layer of size 2, all dense with sigmoid activation (total 110 tunable weights)

^{*}Figure from (Sereno and Patnaik, 1993)

Inputs (classification features)

Initial wave type is determined using a set of features computed along with detection of arrivals:

#	Feature	Description	Source	Norm.
1	period	Dominant period of the detected phase	ARRIVAL	
2	rect	Signal rectilinearity	APMA	
3	plans	Signal planarity	APMA	
4	inang ₁	Long-axis incidence angle	APMA	/90
5	inang ₃	Short-axis incidence angle	APMA	/90
6	hmxmn	Ratio of the maximum to minimum horizontal amplitude	APMA	log ₁₀
7	hvratp	Ratio of horizontal-to-vertical power	APMA	log ₁₀
8	hvrat	Similar to hvratp, measured at the time of the maximum 3C amplitude	APMA	log ₁₀
9	$N_{after} - N_{before}$	Difference between the no. of arrivals before and after within $\pm 60s$	on the fly	/10
10	$T_{after} - T_{before}$	Mean time difference between arrivals before and after within $\pm 60s$	on the fly	/100
11	htov ₁	Horiz. to vert. power ratio in octave freq. band centered at 0.25 Hz	AMP3C	log ₁₀
12	htov ₂	Horiz. to vert. power ratio in octave freq. band centered at 0.5 Hz	AMP3C	log ₁₀
13	htov ₃	Horiz. to vert. power ratio in octave freq. band centered at 1.0 Hz	AMP3C	log ₁₀
14	htov ₄	Horiz. to vert. power ratio in octave freq. band centered at 2.0 Hz	AMP3C	log ₁₀
15	htov ₅	Horiz. to vert. power ratio in octave freq. band centered at 4.0 Hz	AMP3C	log ₁₀

A brief history

- ► According to *Sereno and Patnaik*, (1993), the iwt classification system was created in early 1990s (as en extension of a two class system P vs. S) and became part of IMS v3 (IMS stands here for *Intelligent Monitoring System*)
- Station-specific weights were trained using analyst-reviewed data for two 3C stations which had enough data
- For the rest of stations "average" weights yielded by training using data from multiple stations were produced
- ► Around 2002 the weights have been re-trained using data from STKA station, see (*J. Wang, 2002*)
- Since then, these weights are used as weights for all 3C stations in IMS (IMS stands here for *International Monitoring System*)

Why re-training effort?

- Is it correct to use weights derived using a single station data globally?
- ► Can we do better if the weights were derived for each station individually using station specific data?
- Nowadays, there is much more analyst-reviewed data than before (\sim 20 years)
- Re-training means just a change in configuration of StaPro if we keep the original topology of NNs then no code changes are needed

Ingredients needed for successful re-training

- 1. **Training data** For neural network it holds true the more, the better
- 2. **Back-propagation algorithm** The algorithm for NN training
 - Unfortunately, the original C code used for training we do not have. However, the generic nature of NNs and a domain knowledge allows us to use an arbitrary NN library for the training
- 3. A way to translate weights from re-training into StaPro configuration files
 - We need to produce and alternate weights file and replace with it the original one in StaPro
- 4. A simulated pipeline which can be run with the alternate weight file
 - This gives us an alternate iwt classification which we can evaluate against analyst-reviewed data in a test set

Ingredients needed for successful re-training

- 1. **Training data** We chose to start with URZ station
 - ▶ It is one of the most data rich stations and its current iwt classification performance is around 50%
- 2. **Back-propagation algorithm** We use Python library Keras backed by Theano
- A way to translate weights from re-training into StaPro configuration files
 - We analyzed the C code and created a script putting the new weights into a weights file template in the right order
- 4. A simulated pipeline which can be run with the alternate weight file
 - ► We are able to run StaPro using the Station Tuning framework

Dataset description

- ► Training dataset: analyst reviewed URZ arrivals 2003-2016
 - Signal phases are selected randomly from all automatic arrivals associated to LEB
 - Noise phases are selected randomly from all automatic arrivals classified as noise and not associated to LEB
 - Training data is split on training and validation data in ratio 9:1 (22982 arrivals to 2554)
 - ➤ 25536 noise phases, 8512 regS phases, 8512 regP phases and 8512 tele phases (we aimed for ratio 3:1:1:1 in order to have a balanced dataset)
- Test dateset: analyst reviewed URZ arrivals Jan-Nov 2017
- ▶ Dataset used by Wang, (2002) comprised of \sim 1500 phases for all 4 classes

Dataset insights - density

Density plot of all features in training dataset. Some densities are multimodal.

Dataset insights - correlation

Dataset insights - scatter matrix

Correlation matrix for selected features. Only selected representatives from groups of highly correlated features (e.g. HTOV1-HTOV5) are included.

Re-training details

- ► For re-training we used a Python-based stack (Jupyter Notebook, Keras, Numpy, Pandas)
- Training took several minutes on a commodity HW
- ► Trained weights were exported in the format corresponding with the original weight file ingested by StaPro
- Training parameters for all three networks:

batch size: 512

▶ number of epochs: 1000

loss: binary cross-entropy

optimizer: adam

Validation set results

Comparison of confusion matrices for old and new weights

Old weights								
		trı	true phase					
		Р	P S T					
	Ν	140	297	133				
iwt	Р	565	64	203				
.=	S	26	509	155				
	Т	72	17	373				
accuracy: 56.65 %								

	New weights						
		true phase					
		Р	S	Т			
	N	39	67	43			
iwt	Р	601	1	143			
.=	S	5	735	158			
	Т	158	84	520			
	accuracy: 72.67 %						

Test set and evaluation metrics

Test set: URZ arrivals 2017/01/01 - 2017/11/30

	pha	phase class (associated)				
	reg S	reg P	tele	N	TOTAL	
#	581	643	1997	32525	35746	

Evaluation metrics:

Correct classification rate

Ratio of the correctly classified phases to the total number of phases (the higher the better).

N-phase rate

Percentage of associated phases incorrectly identified as noise in the automatic bulletin (the lower the better).

Test set results – summary

Old weights (left): associated phases 51.56%, including noise 49.89% New weights (right): associated phases 60.01%, including noise 67.13%

Results by iwt sub-category (associated)

	Correct classification rate				
iwt class	regional S	regional P	teleseismic	TOTAL	
old weights (left)	50.4%	76.82%	43.77%	51.56%	
new weights (right)	74.35%	77.92%	50.07%	60.01%	

Results by iwt sub-category (including noise)

	Correct classification rate				
iwt class	regional S regional P teleseismic noise TOT				
old (left)	50.4%	76.82%	43.77%	49.73%	49.89%
new (right)	74.35%	77.92%	50.07%	67.84%	67.13%

Results - N-phase rate

N-phase rate

Percentage of associated phases incorrectly identified as noise in the automatic bulletin.

N phases in the automatic bulletin would not be associated to form and locate events by the automatic system ⇒ reducing the number of N phases that must be renamed and associated in the final analyst bulletin would reduce the load of analysts

	N-phase rate					
	regional S regional P teleseismic TO					
old weights	39.41%	12.60%	16.68%	19.96%		
new weights	13.94% 12.60% 11.37% 12.08%					

Conclusion and future plans

- The re-training using more data looks promising so far, classification accuracy on test data set is higher than with the old weights
- Our goals is to create a re-training software which would enable us to easily create new station-specific weight files for all 3C stations
- ► In the next phase we want to evaluate if the performance can be increased using a classifier
 - Replace the cascade of three NNs with a single classifier for all four classes
 - Do not use precomputed features but classify on the level of samples using recurrent or convolution networks