# The Vehicle Routing Problem with Floating Locations: Formulation and Branch & Price Algorithm

Claudio Gambella<sup>1</sup>, Bissan Ghaddar<sup>2</sup> and Joe Naoum-Sawaya<sup>3</sup>

DEI "Guglielmo Marconi" University of Bologna - Italy
 Smarter Cities Technology Centre, IBM Research - Ireland
 Ivey Business School - London, Ontario, Canada

Bologna, May 19th, 2016

## Outline

- Introduction The Vehicle Routing Problem with Floating Locations
- Mathematical Formulation
- Lagrangian Relaxation
- Branch-and-Price Algorithm
- Computational Results
- Conclusions

## The Vehicle Routing Problem with Floating Locations (VRPFL)

## General problem description

A set of target points in the plane is allowed to move in the Euclidean plane from its initial location. The goal of the optimization problem is to determine minimum-time vehicle routes starting from the depot and ending in the destination such that all targets are intercepted by a vehicle in a convenient location.



## **Applications**

- Ride-sharing: cars picking-up customers which share a common destination.
- Target tracking problems: e.g., defense, weather monitoring.

## VRPFL - Introduction

## Challenging aspects

- Finding the optimal target visiting sequence.
- Determining the meeting points between targets and vehicles.

## Assumptions

- Common depot for vehicles.
- Common destination for targets.

- Homogeneous fleet (capacity, speed).
- Targets have a maximum speed and can wait for the vehicle arrival.

#### Problem Variant

VRPFL with fixed line direction: the target locations can move only in a fixed (known) direction.

## VRPFL Contributions

- Solving a Mixed Integer Second Order Conic Program (MISOCP) formulation with CPLEX.
- Introducing valid inequalities to strengthen the MISOCP continuous relaxation.
- Developing a Branch-and-Price algorithm based on a Lagrangian Relaxation of the MISOCP.

## **VRPFL** Contributions

- Solving a Mixed Integer Second Order Conic Programming (MISOCP) formulation with CPLEX.
- Introducing valid inequalities to strengthen the MISOCP continuous relaxation.
- Developing a Branch-and-Price algorithm based on a Lagrangian Relaxation of the MISOCP.

## VRPFL Formulation: Parameters

- n number of targets
- K number of vehicles available
- Q vehicles capacity
- V vehicles speed
- O coordinates of the depot
- D coordinates of the destination location
- $q_j$  initial position of target j
- $v_j$  target j speed
- $d_j$  target j direction vector

## VRPFL Formulation: Decision variables (1)

#### Continuous variables

```
M_i^k coordinates of the i-th meeting point of vehicle k m_j coordinates of the meeting point of target j T_i^k time required by vehicle k for travelling from M_{i-1}^k to M_i^k time required by target j for reaching m_j \lambda_i scalar variable for determining m_i along d_i
```

## VRPFL Formulation: Decision variables (2)

## Binary variables

$$x_{ij}^{k} = \begin{cases} 1 & \text{if target } j \text{ is the } i\text{-th target visited by vehicle } k \\ 0 & \text{otherwise} \end{cases}$$

$$y_{k} = \begin{cases} 1 & \text{if vehicles } k \text{ is used} \\ 0 & \text{otherwise.} \end{cases}$$

#### min Vehicle routes travel time

s.t Vehicle travel time between consecutive meeting points

Target travel time

Compatibility of the two sets of meeting points

Time synchronization in meeting points
Assignment of targets to vehicles
Ensuring the target visiting sequence
Vehicle usage
Reaching the final destination

 $\sum_{k=1}^{K} \sum_{i=1}^{Q+1} 7^{i}$ 

s.t Vehicle travel time between consecutive meeting points

Target travel time

Compatibility of the two sets of meeting points

Time synchronization in meeting points
Assignment of targets to vehicles
Ensuring the target visiting sequence
Vehicle usage
Reaching the final destination

Vehicle usage Reaching the final destination

min 
$$\sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k$$
 s.t 
$$\frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k \qquad \qquad i = 1, \dots, Q+1, \ k = 1, \dots, K$$
 
$$\frac{1}{\text{Target travel time}}$$
 Compatibility of the two sets of meeting points 
$$\text{Time synchronization in meeting points}$$
 Assignment of targets to vehicles 
$$\text{Ensuring the target visiting sequence}$$

$$\begin{aligned} & \min & & \sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k \\ & \text{s.t} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & & i=1,\ldots,Q+1, \ k=1,\ldots,K \\ & & \frac{\|m_j - q_j\|}{v_j} \leq t_j & & j=1,\ldots,n \end{aligned}$$

Compatibility of the two sets of meeting points

Time synchronization in meeting points
Assignment of targets to vehicles
Ensuring the target visiting sequence
Vehicle usage
Reaching the final destination

$$\begin{aligned} & \min & & \sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k \\ & \text{s.t} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & & \frac{\|m_j - q_j\|}{v_j} \leq t_j & & j = 1, \dots, n \\ & & & M_i^k = m_j \ \ \text{if } \mathbf{x}_{i,j}^k = \mathbf{1} & & i = 1, \dots, Q, \ k = 1, \dots, K, j = 1, \dots, n+1 \end{aligned}$$

Time synchronization in meeting points

Assignment of targets to vehicles

Ensuring the target visiting sequence

Vehicle usage

Reaching the final destination

Time synchronization in meeting points
Assignment of targets to vehicles
Ensuring the target visiting sequence
Vehicle usage
Reaching the final destination

min 
$$\sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k$$
 s.t 
$$\frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k \qquad i = 1, \dots, Q+1, \ k=1, \dots, K$$
 
$$\frac{\|m_j - q_j\|}{v_j} \leq t_j \qquad j = 1, \dots, n$$
 
$$M_i^k \geq m_j - C_M (1-x_{ij}^k) \qquad i = 1, \dots, Q, \ k=1, \dots, K, \ j=1, \dots, n+1$$
 
$$M_i^k \leq m_j + C_M (1-x_{ij}^k) \qquad i = 1, \dots, Q, \ k=1, \dots, K, \ j=1, \dots, n+1$$
 
$$M_{Q+1}^k = y_k D + (1-y_k) O \qquad k = 1, \dots, K$$
 Time synchronization in meeting points Assignment of targets to vehicles Ensuring the target visiting sequence 
$$Vehicle \ usage$$
 Reaching the final destination

min 
$$\sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k$$
 s.t 
$$\frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k \qquad i = 1, \dots, Q+1, \ k=1, \dots, K$$
 
$$\frac{\|m_j - q_j\|}{V_j} \leq t_j \qquad j = 1, \dots, n$$
 
$$M_i^k \geq m_j - C_M (1-x_{ij}^k) \qquad i = 1, \dots, Q, \ k=1, \dots, K, \ j=1, \dots, n+1$$
 
$$M_i^k \leq m_j + C_M (1-x_{ij}^k) \qquad i = 1, \dots, Q, \ k=1, \dots, K, \ j=1, \dots, n+1$$
 
$$M_{Q+1}^k = y_k D + (1-y_k) O \qquad k=1, \dots, K$$
 
$$\sum_{i'=1}^i T_{i'}^k \geq t_j \quad \text{if } x_{i,j}^k = 1 \qquad i = 1, \dots, Q, \ k=1, \dots, K, \ j=1, \dots, n$$
 Assignment of targets to vehicles Ensuring the target visiting sequence Vehicle usage Reaching the final destination

min 
$$\sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k$$
 s.t 
$$\frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k \qquad i = 1, \ldots, Q+1, \ k=1, \ldots, K$$
 
$$\frac{\|m_j - q_j\|}{v_j} \leq t_j \qquad j = 1, \ldots, n$$
 
$$M_i^k \geq m_j - C_M(1-x_{ij}^k) \qquad i = 1, \ldots, Q, \ k=1, \ldots, K, \ j=1, \ldots, n+1$$
 
$$M_i^k \leq m_j + C_M(1-x_{ij}^k) \qquad i = 1, \ldots, Q, \ k=1, \ldots, K, \ j=1, \ldots, n+1$$
 
$$M_{Q+1}^k = y_k D + (1-y_k) O \qquad k=1, \ldots, K$$
 
$$\sum_{i'=1}^i T_{i'}^k \geq t_j - C_T(1-x_{ij}^k) \qquad i = 1, \ldots, Q, \ k=1, \ldots, K, \ j=1, \ldots, n$$
 Assignment of targets to vehicles Ensuring the target visiting sequence Vehicle usage Reaching the final destination

Vehicle usage

Reaching the final destination

$$\begin{aligned} & \min & & \sum_{k=1}^{K} \sum_{i=1}^{Q+1} T_i^k \\ & \text{s.t.} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & & \frac{\|m_j - q_j\|}{v_j} \leq t_j & j = 1, \dots, n \\ & & M_i^k \geq m_j - C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_i^k \leq m_j + C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_{Q+1}^k = y_k D + (1 - y_k) O & k = 1, \dots, K \\ & & \sum_{i'=1}^{i} T_{i'}^k \geq t_j - C_T (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n \\ & & \sum_{i'=1}^K \sum_{j'=1}^{Q} x_{i,j}^k = 1 & j = 1, \dots, n \\ & & \sum_{j'=1}^n x_{i,j'}^k \geq x_{i+1,j}^k & j = 1, \dots, n, \ i = 1, \dots, Q-1, \ k = 1, \dots, K \\ & & & \text{Vehicle usage} \\ & & \text{Reaching the final destination} \end{aligned}$$

$$\begin{aligned} & \min & & \sum_{k=1}^{K} \sum_{i=1}^{Q+1} T_i^k \\ & \text{s.t.} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & & \frac{\|m_j - q_j\|}{v_j} \leq t_j & j = 1, \dots, n \\ & & M_i^k \geq m_j - C_M (1-x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_i^k \leq m_j + C_M (1-x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_{Q+1}^k = y_k D + (1-y_k) O & k = 1, \dots, K \\ & & \sum_{i'=1}^i T_{i'}^k \geq t_j - C_T (1-x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n \\ & & \sum_{i'=1}^K \sum_{i=1}^Q x_{i,j}^k = 1 & j = 1, \dots, n \\ & & \sum_{j'=1}^n x_{i,j'}^k \geq x_{i+1,j}^k & j = 1, \dots, n, \ i = 1, \dots, Q-1, \ k = 1, \dots, K \end{aligned}$$

$$\begin{aligned} & \min & & \sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k \\ & \text{s.t.} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & & \frac{\|m_j - q_j\|}{v_j} \leq t_j & j = 1, \dots, n \\ & & M_i^k \geq m_j - C_M(1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_i^k \leq m_j + C_M(1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_{Q+1}^k = y_k D + (1 - y_k) O & k = 1, \dots, K \\ & & \sum_{i'=1}^i T_{i'}^k \geq t_j - C_T(1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n \\ & & \sum_{i'=1}^K \sum_{i=1}^Q x_{i,j}^k = 1 & j = 1, \dots, n \\ & & \sum_{j'=1}^n x_{i,j'}^k \geq x_{i+1,j}^k & j = 1, \dots, n, \ i = 1, \dots, Q-1, \ k = 1, \dots, K \\ & & y_k = \sum_{j=1}^n x_{1,j}^k & k = 1, \dots, K \\ & & \sum_{i=1}^{n+1} x_{i,j}^k = y_k & i = 2, \dots, Q, \ k = 1, \dots, K \end{aligned}$$

## VRPFL Formulation: Mathematical Model for the Fixed Line Direction case

$$\begin{aligned} & \min & & \sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k \\ & \text{s.t.} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & & \frac{\|m_j - q_j\|}{v_j} \leq t_j & j = 1, \dots, n \end{aligned}$$
 
$$\begin{aligned} & \text{Meeting points restricted on a line} \\ & M_i^k \geq m_j - C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & M_i^k \leq m_j + C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \end{aligned}$$
 
$$\begin{aligned} & M_i^k \leq m_j + C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & M_{Q+1}^k = y_k D + (1 - y_k) O & k = 1, \dots, K \end{aligned}$$
 
$$\begin{aligned} & \sum_{i'=1}^i T_{i'}^k \geq t_j - C_T (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n \end{aligned}$$
 
$$\begin{aligned} & \sum_{i'=1}^K \sum_{i=1}^Q x_{i,j}^k = 1 & j = 1, \dots, n \\ & \sum_{j'=1}^n x_{i,j'}^k \geq x_{i+1,j}^k & j = 1, \dots, n, \ i = 1, \dots, Q-1, \ k = 1, \dots, K \end{aligned}$$
 
$$\begin{aligned} & y_k = \sum_{j=1}^n x_{1,j}^k & k = 1, \dots, K \end{aligned}$$
 
$$\begin{aligned} & y_k = \sum_{j=1}^n x_{1,j}^k & k = 1, \dots, K \end{aligned}$$
 
$$\end{aligned}$$

## VRPFL Formulation: Mathematical Model for the Fixed Line Direction case

$$\begin{aligned} & \min & & \sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k \\ & \text{s.t.} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & & \frac{\|m_j - q_j\|}{v_j} \leq t_j & j = 1, \dots, n \\ & & m_j - q_j = \lambda_j \ d_j & j = 1, \dots, n \\ & & M_i^k \geq m_j - C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_i^k \leq m_j + C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & & M_{Q+1}^k = y_k D + (1 - y_k) O & k = 1, \dots, K \end{aligned}$$

$$& \sum_{i'} T_{i'}^k \geq t_j - C_T (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n \\ & \sum_{i'=1}^K \sum_{i=1}^Q x_{i,j}^k = 1 & j = 1, \dots, n \\ & \sum_{j'=1}^n x_{i,j'}^k \geq x_{i+1,j}^k & j = 1, \dots, n, \ i = 1, \dots, Q-1, \ k = 1, \dots, K \end{aligned}$$

$$& y_k = \sum_{j=1}^n x_{i,j}^k & k = 1, \dots, K \\ & \sum_{j'=1}^{n+1} x_{i,j'}^k = y_k & i = 2, \dots, Q, \ k = 1, \dots, K \end{aligned}$$

## VRPFL Formulation: Mathematical Model for the Fixed Line Direction case

$$\begin{aligned} &\min & & \sum_{k=1}^{K} \sum_{i=1}^{Q+1} T_i^k \\ &\text{s.t.} & & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & & \frac{\|d_j\|\lambda_j}{V_j} \leq t_j & j = 1, \dots, n \\ & & m_j - q_j = \lambda_j \ d_j & j = 1, \dots, n \\ & M_i^k \geq m_j - C_M(1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & M_i^k \leq m_j + C_M(1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & M_{Q+1}^k = y_k D + (1 - y_k) O & k = 1, \dots, K \end{aligned}$$

$$& \sum_{i'=1}^{i} T_{i'}^k \geq t_j - C_T(1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n \\ & \sum_{i'=1}^{K} \sum_{i=1}^{Q} x_{i,j'}^k = 1 & j = 1, \dots, n \\ & \sum_{j'=1}^{n} x_{i,j'}^k \geq x_{i+1,j}^k & j = 1, \dots, n, \ i = 1, \dots, Q-1, \ k = 1, \dots, K \\ & y_k = \sum_{j=1}^{n} x_{i,j}^k & k = 1, \dots, K \\ & \sum_{j'=1}^{n+1} x_{i,j}^k = y_k & i = 2, \dots, Q, \ k = 1, \dots, K \end{aligned}$$

#### Model features

- Mixed Integer Second Order Conic Programming (MISOCP) formulation:
  - Linear objective function
  - (Q+1)K+n second-order conic constraints in the general case; (Q+1)K second-order conic constraints in the fixed line direction case
  - Linear constraints
  - Continuous and integer variables
- Polynomial in the problem size

### **Implementation**

• C callable libraries of CPLEX 12.6.1.

## VRPFL with fixed line direction: Optimal solution visualization



Figure: Instance with n = 10, K = 3, Q = 4: solution plot and waiting times

## Lagrangian Relaxation

## Lagrangian Relaxation

$$\begin{aligned} & [\mathsf{LR}(\mu)] \ \, \min \quad \sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k + \sum_{j=1}^n \mu_j \Big( 1 - \sum_{i=1}^Q \sum_{k=1}^K x_{i,j}^k \Big) \\ & \text{s.t.} \qquad \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k \qquad \qquad i = 1, \ldots, Q+1, \ k = 1, \ldots, K \\ & \frac{\|m_j - q_j\|}{v_j} \leq t_j \qquad \qquad j = 1, \ldots, n \\ & M_i^k \geq m_j - C_M (1 - x_{ij}^k) \qquad \qquad i = 1, \ldots, Q, \ k = 1, \ldots, K, \ j = 1, \ldots, n+1 \\ & M_i^k \leq m_j + C_M (1 - x_{ij}^k) \qquad \qquad i = 1, \ldots, Q, \ k = 1, \ldots, K, \ j = 1, \ldots, n+1 \\ & M_{Q+1}^k = y_k \cdot D + (1 - y_k) \cdot O \qquad \qquad k = 1, \ldots, K \end{aligned}$$

$$& \sum_{i'=1}^j T_{i'}^k \geq t_j - C_T (1 - x_{ij}^k) \qquad \qquad i = 1, \ldots, Q, \ k = 1, \ldots, K, \ j = 1, \ldots, n \\ & \sum_{j'=1}^n x_{i,j'}^k \geq x_{i+1,j}^k \qquad \qquad j = 1, \ldots, n, \ i = 1, \ldots, Q-1, \ k = 1, \ldots, K \end{aligned}$$

$$& y_k = \sum_{j=1}^n x_{1,j}^k \qquad \qquad k = 1, \ldots, K$$

$$& \sum_{i=1}^{n+1} x_{i,j}^k = y_k \qquad \qquad i = 2, \ldots, Q, \ k = 1, \ldots, K$$

## Lagrangian Relaxation

$$\begin{aligned} & [\mathsf{LR}(\mu)] \ \min & \sum_{k=1}^K \sum_{i=1}^{Q+1} T_i^k + \sum_{j=1}^n \mu_j \Big( 1 - \sum_{i=1}^Q \sum_{k=1}^K x_{i,j}^k \Big) \\ & \text{s.t} & \frac{\|M_i^k - M_{i-1}^k\|}{V} \leq T_i^k & i = 1, \dots, Q+1, \ k = 1, \dots, K \\ & \frac{\|m_j - q_j\|}{v_j} \leq t_j & j = 1, \dots, n \\ & M_i^k \geq m_j - C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & M_i^k \leq m_j + C_M (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n+1 \\ & M_{Q+1}^k = y_k \cdot D + (1 - y_k) \cdot O & k = 1, \dots, K \end{aligned} \\ & \sum_{i'=1}^j T_{i'}^k \geq t_j - C_T (1 - x_{ij}^k) & i = 1, \dots, Q, \ k = 1, \dots, K, \ j = 1, \dots, n \\ & \sum_{i'=1}^Q x_{i,j'}^k \geq t_j - C_T (1 - x_{ij}^k) & j = 1, \dots, n, \ k = 1, \dots, K \end{aligned}$$

$$& \sum_{j'=1}^n x_{i,j'}^k \geq x_{i+1,j}^k & j = 1, \dots, n, \ i = 1, \dots, Q-1, \ k = 1, \dots, K \end{aligned}$$

$$& y_k = \sum_{j=1}^n x_{1,j}^k & k = 1, \dots, K$$

$$& \sum_{i=1}^{n+1} x_{i,j}^k = y_k & i = 2, \dots, Q, \ k = 1, \dots, K \end{aligned}$$

## Lagrangian Decomposition

• The Lagrangian Relaxation  $LR(\mu)$  decomposes into K identical subproblems  $SP(\mu)$ :

$$[SP(\mu)] \quad \min \qquad \sum_{i=1}^{Q+1} T_i - \sum_{j=1}^n \sum_{i=1}^Q x_{i,j} \mu_j$$
 s.t 
$$\frac{\|M_i - M_{i-1}\|}{V} \leq T_i \qquad i = 1, \dots, Q+1$$
 
$$\frac{\|m_j - q_j\|}{v_j} \leq t_j \qquad j = 1, \dots, n$$
 
$$M_i \geq m_j - C_M (1 - x_{ij}) \qquad i = 1, \dots, Q, \ j = 1, \dots, n+1$$
 
$$M_i \leq m_j + C_M (1 - x_{ij}) \qquad i = 1, \dots, Q, \ j = 1, \dots, n+1$$
 
$$M_{Q+1} = y \cdot D + (1 - y) \cdot O$$
 
$$\sum_{i'=1}^j T_{i'} \geq t_j - C_T (1 - x_{ij}) \qquad i = 1, \dots, Q, \ j = 1, \dots, n$$
 
$$\sum_{i'=1}^Q x_{i,j} \leq 1 \qquad j = 1, \dots, n$$
 
$$\sum_{j'=1}^n x_{i,j'} \geq x_{i+1,j} \qquad j = 1, \dots, n, \ i = 1, \dots, Q-1$$
 
$$y = \sum_{j=1}^n x_{1,j}$$
 
$$\sum_{j=1}^{n+1} x_{i,j} = y \qquad i = 2, \dots, Q$$

## Lagrangian Bound Problem

## Lagrangian Relaxation Value

The value  $v(LR(\mu))$  is then computed as:

$$v(LR(\mu)) = K \cdot v(SP(\mu)) + \sum_{j=1}^{n} \mu_j$$

#### Lagrangian Bound

The Lagrangian Bound v(LR) is the solution of the optimization problem:  $\max_{\mu \in \mathbb{R}^n} v(LR(\mu))$ .

## Determination of the Lagrangian Bound

The Lagrangian Bound v(LR) is determined with a cutting plane/column generation procedure.

Said H the set of feasible solutions of  $\mathbf{SP}(\mu)$ , the Lagrangian Bound problem can be written as:

$$\max_{\mu} \Bigl\{ \sum_{j=1}^{n} \mu_{j} + K \min_{h=1,...,H} \Bigl\{ \sum_{i=1}^{Q+1} T_{i}^{(h)} - \sum_{j=1}^{n} \sum_{i=1}^{Q} \mu_{j} \mathbf{x}_{i,j}^{(h)} \Bigr\} \Bigr\}.$$

Defining

$$\theta := \min_{h=1,...,H} \Bigl\{ \sum_{i=1}^{Q+1} T_i^{(h)} - \sum_{j=1}^n \sum_{i=1}^Q \mu_j x_{i,j}^{(h)} \Bigr\},$$

the Lagrangian Bound can be determined by solving the Lagrangian Master Problem (LMP):

Said H the set of feasible solutions of  $\mathbf{SP}(\mu)$ , the Lagrangian Bound problem can be written as:

$$\max_{\mu} \Bigl\{ \sum_{j=1}^{n} \mu_{j} + K \min_{h=1,\dots,H} \Bigl\{ \sum_{i=1}^{Q+1} T_{i}^{(h)} - \sum_{j=1}^{n} \sum_{i=1}^{Q} \mu_{j} x_{i,j}^{(h)} \Bigr\} \Bigr\}.$$

Defining

$$\theta := \min_{h=1,...,H} \Bigl\{ \sum_{i=1}^{Q+1} \mathcal{T}_i^{(h)} - \sum_{j=1}^n \sum_{i=1}^Q \mu_j x_{i,j}^{(h)} \Bigr\},$$

the Lagrangian Bound can be determined by solving the Lagrangian Master Problem (LMP):

[LMP] 
$$\max_{\mu} \sum_{j=1}^{n} \mu_{j} + K\theta$$
 
$$s.t \quad \theta \leq \sum_{i=1}^{Q+1} T_{i}^{(h)} - \sum_{i=1}^{n} \sum_{i=1}^{Q} x_{i,j}^{(h)} \mu_{j} \quad h \in H$$

Said H the set of feasible solutions of  $\mathbf{SP}(\mu)$ , the Lagrangian Bound problem can be written as:

$$\max_{\mu} \Bigl\{ \sum_{j=1}^{n} \mu_{j} + K \min_{h=1,...,H} \Bigl\{ \sum_{i=1}^{Q+1} T_{i}^{(h)} - \sum_{j=1}^{n} \sum_{i=1}^{Q} \mu_{j} \mathbf{x}_{i,j}^{(h)} \Bigr\} \Bigr\}.$$

Defining

$$heta := \min_{h=1,...,H} \Bigl\{ \sum_{i=1}^{Q+1} \mathcal{T}_i^{(h)} - \sum_{j=1}^n \sum_{i=1}^Q \mu_j \mathsf{x}_{i,j}^{(h)} \Bigr\},$$

the Lagrangian Bound can be determined by solving the Lagrangian Master Problem (LMP):

[LMP] 
$$\max_{\mu} \sum_{j=1}^{n} \mu_{j} + K\theta$$
 
$$s.t \quad \theta \leq \sum_{i=1}^{Q+1} T_{i}^{(h)} - \sum_{i=1}^{n} \sum_{i=1}^{Q} x_{i,j}^{(h)} \mu_{j} \quad h \in H$$

Said H the set of feasible solutions of  $SP(\mu)$ , the Lagrangian Bound problem can be written as:

$$\max_{\mu} \Big\{ \sum_{j=1}^{n} \mu_{j} + K \min_{h=1,...,H} \Big\{ \sum_{i=1}^{Q+1} T_{i}^{(h)} - \sum_{j=1}^{n} \sum_{i=1}^{Q} \mu_{j} x_{i,j}^{(h)} \Big\} \Big\}.$$

Defining

$$heta := \min_{h=1,\ldots,H} \Bigl\{ \sum_{i=1}^{Q+1} \mathcal{T}_i^{(h)} - \sum_{i=1}^n \sum_{i=1}^Q \mu_i \mathsf{x}_{i,j}^{(h)} \Bigr\},$$

the Lagrangian Bound can be determined by solving the Lagrangian Master Problem (LMP):

[LMP] 
$$\max_{\mu} \sum_{j=1}^{n} \mu_{j} + K\theta$$
 
$$s.t \quad \theta \leq \sum_{i=1}^{Q+1} T_{i}^{(h)} - \sum_{i=1}^{n} \sum_{i=1}^{Q} x_{i,j}^{(h)} \mu_{j} \quad h \in H$$

## Cutting plane procedure

#### Iterative scheme:

- Solve the current RLMP o Solution  $\mu$
- Solve subproblem  $SP(\mu) \to Solution \ h$  corresponds to cut h in LMP.
- Add cut h to RLMP.

#### Bounds computation:

- $\sum_{j=1}^{n} \mu_j + K \theta$  is an upper bound on the Lagrangian Bound
- $K \cdot v(SP(\mu)) + \sum_{j=1}^{n} \mu_j$  is a lower bound on the Lagrangian Bound

#### Termination criterion:

• Difference between lower and upper bound is sufficiently small.

## Branch-and-Price algorithm

#### Branch-and-Price motivation

The Lagrangian Bound solution is not necessarily feasible for the assignment constraints  $\rightarrow$  Branch & Price framework.

#### Branching constraints

 Given two targets j<sub>1</sub> and j<sub>2</sub> assigned to multiple vehicles, two child nodes (1) and (2) are created:

$$\sum_{i=1}^{Q} x_{i,j_1}^k = \sum_{i=1}^{Q} x_{i,j_2}^k \quad k = 1, \dots, K,$$
 (1)

$$\sum_{i=1}^{Q} x_{i,j_1}^k + \sum_{i=1}^{Q} x_{i,j_2}^k \le 1 \quad k = 1, \dots, K.$$
 (2)

 The branching constraints are compatible with the subproblem decomposition.

## Branch-and-Price

#### Tree exploration

- Depth-first strategy.
- Initial incumbent provided by a simple assignment heuristic.
- Each node is solved with the cutting plane procedure.
- Fathoming rules:
  - Node feasible for the assignment constraints → Valid upper bound → Possible incumbent update.
  - Node infeasible for the branching constraints.
  - Node solution is worse than the incumbent.
- Termination criterion: List of open nodes is empty.

#### **Implementation**

- Branch & Price implemented in C.
- Master problems and subproblems solved by CPLEX 12.6.1 using C callable libraries.

## Computational testing

#### Test Instances

18 randomly generated instances:

- $n = 10, \ldots, 20;$
- K = 3, 4, 5;
- $Q = \lceil \frac{n}{K} \rceil + 2$ ;
- $q_j$  are randomly generated in the Euclidean space centered at (0,0) and with width 50 and height 100.
- O = (-20, 0), D = (20, 0).
- V generated from  $\mathcal{U}[2,3]$ .
- $v_j$  generated from  $\mathcal{U}[0.1, 1]$ .
- $d_i$  represented by a random angle.

### Machine features

QEMU Virtual CPU version 0.14.1 @ 2.40 GHz.

Time limit of 2 hours.

|          | Branch-and-Price |        |        |          | CPLEX  |       |        |          |  |
|----------|------------------|--------|--------|----------|--------|-------|--------|----------|--|
| Instance | Upper            | Lower  | Gap(%) | CPU      | Upper  | Lower | Gap(%) | CPU      |  |
| Name     | Bound            | Bound  |        | Time (s) | Bound  | Bound |        | Time (s) |  |
| p_10_3_6 | 72.69            | 72.69  | 0%     | 183.84   | 72.69  | 72.69 | 0%     | 229.61   |  |
| p_10_4_5 | 62.14            | 62.14  | 0%     | 70.38    | 62.14  | 62.14 | 0%     | 449.27   |  |
| p_10_5_4 | 71.71            | 71.71  | 0%     | 161.28   | 71.71  | 71.71 | 0%     | 542.51   |  |
| p_12_3_6 | 76.91            | 76.91  | 0%     | 377.43   | 76.91  | 76.91 | 0%     | 579.70   |  |
| p_12_4_5 | 91.36            | 91.36  | 0%     | 1209.43  | 91.36  | 84.05 | *8%    | >7200    |  |
| p_12_5_5 | 80.08            | 80.08  | 0%     | 532.05   | 80.08  | 80.08 | 0%     | 4107.24  |  |
| p_14_3_7 | 84.47            | 84.47  | 0%     | 3841.94  | 84.47  | 84.47 | 0%     | 6961.36  |  |
| p_14_4_6 | 97.62            | 97.62  | 0%     | 5131.43  | 103.97 | 90.45 | 13%    | >7200    |  |
| p_14_5_5 | 80.18            | 80.18  | 0%     | 377.12   | 80.18  | 73.77 | *8%    | >7200    |  |
| p_16_3_8 | 181.58           | 78.08  | 57%    | >7200    | 85.84  | 78.97 | 8%     | >7200    |  |
| p_16_4_6 | 75.85            | 75.85  | 0%     | 6635.41  | 76.71  | 75.18 | 2%     | >7200    |  |
| p_16_5_6 | 91.68            | 91.68  | 0%     | 6084.35  | 96.7   | 64.79 | 33%    | >7200    |  |
| p_18_3_8 | 217.47           | 97.86  | 55%    | >7200    | 132.58 | 86.18 | 35%    | >7200    |  |
| p_18_4_7 | 80.68            | 75.03  | 7%     | >7200    | 87.64  | 60.47 | 31%    | >7200    |  |
| p_18_5_6 | 76.18            | 76.18  | 0%     | 1132.36  | 78.73  | 59.05 | 25%    | >7200    |  |
| p_20_3_9 | 193.88           | 50.41  | 74%    | >7200    | 104.74 | 67.03 | 36%    | >7200    |  |
| p_20_4_7 | 216.63           | 106.15 | 51%    | >7200    | 127.02 | 83.83 | 34%    | >7200    |  |
| p_20_5_6 | 128.35           | 114.23 | 11%    | >7200    | 133.24 | 97.27 | 27%    | >7200    |  |

<sup>\*</sup> indicates that the upper bound is the optimal solution however the gap is due to the lower bound

 B&P solved 12 instances to optimality, while CPLEX solved 5 instances.  B&P found a better lower bound for 4 instances, while CPLEX found a better upper bound for 4 instances.

|          | Branch-and-Price |        |        |          | CPLEX  |        |        |          |  |
|----------|------------------|--------|--------|----------|--------|--------|--------|----------|--|
| Instance | Upper            | Lower  | Gap(%) | CPU      | Upper  | Lower  | Gap(%) | CPU      |  |
| Name     | Bound            | Bound  |        | Time (s) | Bound  | Bound  |        | Time (s) |  |
| p_10_3_6 | 85.51            | 85.51  | 0%     | 31.40    | 85.51  | 85.51  | 0%     | 154.09   |  |
| p_10_4_5 | 72.06            | 72.06  | 0%     | 20.56    | 72.06  | 72.06  | 0%     | 104.20   |  |
| p_10_5_4 | 83.33            | 83.33  | 0%     | 25.95    | 83.33  | 83.33  | 0%     | 99.32    |  |
| p_12_3_6 | 94.55            | 94.55  | 0%     | 60.57    | 94.55  | 94.55  | 0%     | 111.76   |  |
| p_12_4_5 | 109.34           | 109.34 | 0%     | 137.00   | 109.34 | 109.34 | 0%     | 3510.18  |  |
| p_12_5_5 | 91.55            | 91.55  | 0%     | 79.52    | 91.55  | 91.55  | 0%     | 2669.57  |  |
| p_14_3_7 | 101.43           | 101.43 | 0%     | 361.97   | 101.44 | 101.44 | 0%     | 2676.76  |  |
| p_14_4_6 | 105.19           | 105.19 | 0%     | 1109.85  | 113.99 | 101.45 | 11%    | >7200    |  |
| p_14_5_5 | 89.31            | 89.31  | 0%     | 104.39   | 89.97  | 82.77  | 8%     | >7200    |  |
| p_16_3_8 | 100.63           | 100.63 | 0%     | 3035.48  | 100.63 | 93.59  | *7%    | >7200    |  |
| p_16_4_6 | 97.91            | 97.91  | 0%     | 1577.55  | 111.85 | 82.77  | 26%    | >7200    |  |
| p_16_5_6 | 105.37           | 105.37 | 0%     | 401.00   | 124.07 | 98.02  | 21%    | >7200    |  |
| p_18_3_8 | 167.57           | 140.76 | 16%    | >7200    | 198.62 | 101.3  | 49%    | >7200    |  |
| p_18_4_7 | 85.96            | 84.24  | 2%     | >7200    | 99.84  | 69.89  | 30%    | >7200    |  |
| p_18_5_6 | 97.93            | 97.93  | 0%     | 1333.93  | 110.27 | 77.19  | 30%    | >7200    |  |
| p_20_3_9 | 248.08           | 81.87  | 67%    | >7200    | 159.38 | 74.91  | 53%    | >7200    |  |
| p_20_4_7 | 128.94           | 128.94 | 0%     | 4750.29  | 169.41 | 94.87  | 44%    | >7200    |  |
| p_20_5_6 | 137.36           | 127.74 | 7%     | >7200    | 187.12 | 104.79 | 44%    | >7200    |  |

<sup>\*</sup> indicates that the upper bound is the optimal solution however the gap is due to the

 B&P solved 14 instances to optimality, while CPLEX solved 7 instances.  VRPFL with fixed line direction is computationally less challenging to solve than the general VRPFL.

## VRPFL with fixed direction: Branch-and-Price vs. CPLEX

## - Time and Gap



### Details of the Branch-and-Price performance for the general VRPFL

|          |          | Root Node  |            |            | Other Nodes <sup>†</sup> |                |            |  |
|----------|----------|------------|------------|------------|--------------------------|----------------|------------|--|
| Instance | Number   |            | CPU Master | CPU        | Avg.                     | Avg. CPU       | Avg. CPU   |  |
| Name     | of Nodes | Iterations | Problem    | Subproblem | Iterations               | Master Problem | Subproblem |  |
| p_10_3_6 | 17       | 29         | < 0.01     | 60.18      | 5                        | 0.02           | 7.71       |  |
| p_10_4_5 | 1        | 37         | 0.10       | 70.26      | -                        | -              | -          |  |
| p_10_5_4 | 41       | 30         | < 0.01     | 25.26      | 4                        | < 0.01         | 3.40       |  |
| p_12_3_6 | 1        | 63         | < 0.01     | 377.39     | -                        | -              | -          |  |
| p_12_4_5 | 147      | 27         | < 0.01     | 62.71      | 4                        | < 0.01         | 7.85       |  |
| p_12_5_5 | 67       | 39         | < 0.01     | 88.7       | 5                        | < 0.01         | 6.72       |  |
| p_14_3_7 | 1        | 109        | 0.02       | 3841.8     | -                        | -              | -          |  |
| p_14_4_6 | 157      | 51         | < 0.01     | 532.1      | 6                        | < 0.01         | 29.48      |  |
| p_14_5_5 | 15       | 50         | < 0.01     | 143.99     | 7                        | < 0.01         | 16.65      |  |
| p_16_3_8 | 1        | 97         | 0.11       | >7200      | -                        | -              | -          |  |
| p_16_4_6 | 83       | 66         | < 0.01     | 1182.2     | 7                        | < 0.01         | 66.49      |  |
| p_16_5_6 | 119      | 51         | 0.03       | 484.03     | 7                        | < 0.01         | 47.45      |  |
| p_18_3_8 | 1        | 67         | 0.01       | >7200      | -                        | -              | -          |  |
| p_18_4_7 | 39       | 62         | < 0.01     | 2275.28    | 7                        | < 0.01         | 134.43     |  |
| p_18_5_6 | 1        | 81         | 0.01       | 1132.23    | -                        | -              | -          |  |
| p_20_3_9 | 1        | 39         | < 0.01     | >7200      | -                        | -              | -          |  |
| p_20_4_7 | 1        | 103        | 0.02       | >7200      | -                        | -              | - 1        |  |
| p_20_5_6 | 187      | 77         | 0.01       | 2254.2     | 5                        | < 0.01         | 27.35      |  |

 $<sup>^\</sup>dagger$  indicates the average results over all the nodes except the root node in the branch-and-price tree.

- indicates that the branch-and-price stopped at the root node.
- Computational bottleneck is in solving the MISOCP subproblems.

 Child nodes are less time-consuming thanks to warm starting techniques.

#### Details of the Branch-and-Price performance for VRPFL with fixed line direction.

|          |          | Root Node  |            |            | Other Nodes <sup>†</sup> |                |            |  |
|----------|----------|------------|------------|------------|--------------------------|----------------|------------|--|
| Instance | Number   |            | CPU Master | CPU        | Avg.                     | Avg. CPU       | Avg. CPU   |  |
| Name     | of Nodes | Iterations | Problem    | Subproblem | Iterations               | Master Problem | Subproblem |  |
| p_10_3_6 | 1        | 34         | < 0.01     | 31.39      | -                        | -              | -          |  |
| p_10_4_5 | 1        | 27         | < 0.01     | 20.55      | -                        | -              | -          |  |
| p_10_5_4 | 21       | 22         | < 0.01     | 6.91       | 4                        | < 0.01         | 0.95       |  |
| p_12_3_6 | 1        | 40         | < 0.01     | 60.55      | -                        | -              | -          |  |
| p_12_4_5 | 39       | 30         | < 0.01     | 27.42      | 5                        | < 0.01         | 2.88       |  |
| p_12_5_5 | 9        | 34         | < 0.01     | 30.26      | 9                        | < 0.01         | 6.15       |  |
| p_14_3_7 | 1        | 56         | < 0.01     | 361.91     | -                        | -              | -          |  |
| p_14_4_6 | 45       | 57         | < 0.01     | 230.12     | 7                        | < 0.01         | 19.99      |  |
| p_14_5_5 | 7        | 38         | < 0.01     | 52.75      | 8                        | < 0.01         | 8.60       |  |
| p_16_3_8 | 1        | 83         | 0.01       | 3035.33    | -                        | -              | -          |  |
| p_16_4_6 | 41       | 62         | < 0.01     | 353.82     | 7                        | < 0.01         | 30.58      |  |
| p_16_5_6 | 3        | 63         | < 0.01     | 314.19     | 12                       | < 0.01         | 43.37      |  |
| p_18_3_8 | 48       | 83         | 0.01       | 2665.69    | 5                        | < 0.01         | 97.05      |  |
| p_18_4_7 | 45       | 76         | 0.01       | 1409.48    | 12                       | < 0.01         | 144.74     |  |
| p_18_5_6 | 21       | 68         | 0.03       | 536.00     | 9                        | < 0.01         | 39.89      |  |
| p_20_3_9 | 1        | 58         | 0.01       | 7199.86    | -                        | -              | -          |  |
| p_20_4_7 | 7        | 95         | 0.39       | 2549.12    | 16                       | 0.07           | 366.69     |  |
| p_20_5_6 | 349      | 73         | 0.01       | 589.63     | 6                        | < 0.01         | 19.00      |  |

† indicates the average results over all the nodes except the root node in the branch-and-price tree.

- indicates that the branch-and-price stopped at the root node.
- For 5 instances, the Lagrangian Bound at the root node is the VRPFL optimal value.

 Branch-and-Price explored a limited number of nodes to find the optimal solutions.

## Conclusions

## Summary

- We studied a dynamic variant of VRP and developed a novel mathematical formulation.
- We implemented a Branch-and-Price algorithm based on a Lagrangian Relaxation.
- Numerical testing show the effectiveness of the Branch & Price approach against CPLEX.

#### Future research directions

- Test CPLEX and Branch-and-Price on instances with different capacities.
- Investigate approaches to efficiently solve the single vehicle routing with floating targets problem may highly improve the performance of the presented Branch-and-Price approach.
- Other applications?

## Thank you! Questions?