2ista 2

2.1. Sean X y Y dos conjuntos, $f: X \to Y$ una función $\{A_{\alpha}\}_{\alpha \in I}$ y $\{B_{\beta}\}_{\beta \in J}$ dos familias de subconjuntos de X y Y, respectivamente, y $A \subset X$ y $B \subset Y$. **Demuestre** las afirmaciones siguientes:

$$f^{-1}\left[\bigcup_{\beta\in J}B_{\beta}\right] = \bigcup_{\beta\in J}f^{-1}(B_{\beta}), \quad f^{-1}\left[\bigcap_{\beta\in J}E_{\beta}\right] = \bigcap_{\beta\in J}f^{-1}(E_{\beta}), \quad f^{-1}(B^{c}) = [f^{-1}(B)]^{c};$$

$$f(f^{-1}(B)) \subset B, \quad f^{-1}(f(A)) \supset A;$$

$$f\left[\bigcup_{\alpha\in I}A_{\alpha}\right] = \bigcup_{\alpha\in I}f(A_{\alpha}), \quad f\left[\bigcap_{\alpha\in I}A_{\alpha}\right] \subset \bigcap_{\alpha\in I}f(A_{\alpha}).$$

Dem:

i)
$$f'(\mathcal{B}_{\mathcal{B}}) = \mathcal{G}_{\mathcal{B}} f'(\mathcal{B}_{\mathcal{B}})$$

$$\chi \in \mathcal{F}'(\mathcal{B}_{\mathcal{B}}) \iff \mathcal{F}_{\mathcal{B}} \in \mathcal{I} \quad (\mathcal{B}_{\mathcal{B}}) \iff \chi \in \mathcal{G}_{\mathcal{B}} f'(\mathcal{B}_{\mathcal{B}})$$
ii) $f'(\mathcal{B}_{\mathcal{B}}) = \mathcal{B}_{\mathcal{B}} f'(\mathcal{B}_{\mathcal{B}})$

$$\chi \in \mathcal{F}'(\mathcal{B}_{\mathcal{B}}) = \mathcal{B}_{\mathcal{B}} f'(\mathcal{B}_{\mathcal{B}})$$

$$\chi_{\epsilon} f'(\beta_{\epsilon} \beta_{\epsilon}) \iff f(\chi)_{\epsilon} \beta_{\epsilon} \iff f(\chi)_{\epsilon} \beta_{\epsilon} \iff \chi_{\epsilon} \beta_{\epsilon} f'(\beta_{\epsilon})$$

$$f'(\beta') = (f'(\beta))^{c}$$

$$f'(\beta') \iff f(\chi)_{\epsilon} \beta_{\epsilon} \iff f(\chi)_{\epsilon} \beta_{\epsilon} \iff f'(\beta)_{\epsilon} f'(\beta)_{\epsilon} \implies f'(\beta)_{\epsilon} f'($$

$$x \in f'(\beta^c) \iff f(x) \in \beta^c \iff f(x) \notin \beta \iff x \notin f'(\beta) \iff x \in [f'(\beta)]^c$$
 $f(f'(\beta)) \subseteq \beta$

2.2. Sean $f: X \to Y$ una función y \mathcal{A} una σ –álgebra de subconjuntos de X. **Pruebe** que la familia

$$\mathcal{B} = \{ H \subset Y | f^{-1}(H) \in \mathcal{A} \}$$

es una σ -álgebra sobre Y.

Dem:

i) \(\overline{\chi} \in \text{B} \), phes \(\overline{\chi} \overline{\chi} \) = \(\overline{\chi} \in \L. \)

Seu B∈B entonces f'(B) ∈ L. Como Les σ-álgebru: (f'(B)) = f'(B°) ∈ L. Luogo B° ∈ B

Sea & Bn In= , una fumilia de conjuntos de B. Entonces:

$$\bigcup_{n=1}^{\infty} \int_{\mathbb{R}^{n}} (\beta_{n}) = \int_{\mathbb{R}^{n}} (\bigcup_{n=1}^{\infty} \beta_{n})$$

Como 1 f'(Bn) & A. purs f'(Bn) & I. Yne IN entonces no B.

Por i) - iii) Besun o-úlgebra

9.e.d.

2.3. Sean $f: D \to \overline{\mathbb{R}}$ una función, donde $D \in \mathcal{M}$ en \mathbb{R}^n , y H un subconjunto denso de \mathbb{R} . **Muestre** que si el conjunto $\{x \in D | f(x) > \alpha\}$ es medible en D para toda $\alpha \in H$, entonces f es una función medible.

Dem:

Seu $\alpha \in \mathbb{R}$. Como Hes denso en \mathbb{R} , \forall $n \in \mathbb{N}$ \exists $d_n \in H$ $\exists u \mid que$ $\alpha_n < d$ $y \mid \alpha - \alpha_n \mid < \frac{1}{n}$. Cono: $\{x \in D \mid \exists (x) > \alpha \} = \bigcup_{n=1}^{\infty} \{x \in D \mid \exists (x) > \alpha_n \}$

y tx ED (tx) > αn) es medible, y n ∈ lN, enlonces lu unión de todos es medible. As: (x ED) tx) > α) es medible. Como el α due arbitruzio, entonces des medible.

9.e.d

2.4. Sean $f, g: D \to \overline{\mathbb{R}}$ dos funciones continuas, donde D es un conjunto abierto en \mathbb{R}^n . **Pruebe** que si f = g c.t.p. en D, entonces f(x) = g(x), $\forall x \in D$.

2.5. Proporcione ejemplos de funciones $f \cdot \mathbb{R} \to \mathbb{R}$ teles que

Dem:

Seu

$$E = \{x \in \mathcal{D} \mid f(x) \neq y(x)\}$$

Probaremos que $E = \emptyset$. Suponyamos qué $E \neq \emptyset$, entonces $\exists x_0 \in D \cap J(x_0) \neq g(x_0)$. Seu $E_0 = |J(x_0) - g(x_0)| > 0$. Como $\exists y \in G$ son Continuas $\exists S > 0 \cap S$; $x \in B(x_0, S)$, entonces $|J(x) - g(x)| - J(x_0)$

 $-g(x_{\circ})| < |f(x_{\circ}) - g(x_{\circ})| \Rightarrow 0 < |f(x) - g(x_{\circ})|, i.e. \forall x \in B(x_{\circ}, \delta), f(x) \neq g(x_{\circ}) | uego x \in E.$ As: $B(x_{\circ}, \delta) \subseteq E$. A $B(x_{\circ}, \delta)$ se le puede inscribir un cubo de rudio $\sqrt{2} \delta$, $C(x_{\circ}, \sqrt{2} \delta) \subseteq B(x_{\circ}, \delta)$. Luego $C(x_{\circ}, \sqrt{2} \delta) \subseteq E$, como m es monótonu: $0 < (\sqrt{2} \delta)^{n} = m(C(x_{\circ}, \sqrt{2} \delta)) \le m(E) = 0$

Portunto E= & Luego J(x)=g(x) YxED.

ged.

2.5. Proporcione ejemplos de funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

i. |f| es medible, pero f no es medible.

ii. $f^{-1}(\{\alpha\})$ es un conjunto medible, $\forall \alpha \in \mathbb{R}$, pero f no es medible.

Sol

De (i): Sen J: IR -> IR duvu como:

$$\forall x \in \mathbb{R}, f(x) := \begin{cases} 1 & \text{s.} & \text{x \in P} \\ -1 & \text{s.} & \text{x \notin P} \end{cases}$$

Donde Per el conjunto no medible. Vacamos que 3 no es medible, pues j'(111)=P, pero 131
- 1 es medible.

De (::): Sea +: R -> |R:

$$\forall x \in |R|, F(x) := \begin{cases} 0 & 5; & x \notin [0,1]. \\ x & 5; & x \in P. \\ -x & 5; & x \in [0,1] \setminus P. \end{cases}$$

Veamos que 5' ({al) es medible en 1R. Y delR En efecto: sea delR tenomos varios casos:

1) $\alpha \in]-\infty, -1[UP^-U([0,1])P)U]_{1,+\infty}[, entonces f^-([at])= \phi]$

2) $d \in P$, entonces $\int (|d|) = \{a\}$

3) $\alpha \in [-1,0] \setminus P^-$ entonces $f'(\{\alpha\}) = \{-\alpha\}$.

Donde $P = \{-x \mid x \in P\}$. En los 3 cosos, $\int (\{a\})$ siempre es medible. Pero:

Luego, I no es medible

2.6. Muestre que son medibles las funciones $f, g: \mathbb{R} \to \mathbb{R}$ definidas como

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q}, \\ 0 & \text{si } x \notin \mathbb{Q}, \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{q} & \text{si } x = \frac{p}{q} \in \mathbb{Q} \cap [0,1] \text{ irreducibles,} \\ 0 & \text{de otra forma.} \end{cases}$$

Dem:

Sea de PR

Si u < 0:

S: 0 < a < 1:

$$\int_{\alpha}^{\alpha} \left((\alpha_{1} + 00) \right) = \left\{ x \in \mathbb{R} \mid f(x) \geq 1 \right\} = \mathbb{Q}$$

S; 1< a:

$$\int_{\alpha}^{\alpha} \left(\left[\alpha_{1} + \infty \right] \right) = \left\{ x \in |R| \right\} \left(x \right) > 1 \right\} = \emptyset$$

Luego, tes medible

Sea ahora BEIR

S: B ≤ 0:

S: 0 < B < 1, $\exists n_o \in \mathbb{N}$ m $\frac{1}{n_o} < B$ pero $B \leq \frac{1}{n_o - 1}$ (pues $n_o \neq 1$). Enfonces:

$$g^{-1}(LB,+\infty) = \{x \in |R| | g(x) \ge \beta\} = \{x \in |R| | g(x) > \frac{1}{n}.\}$$

= $\{x \in |R| | x = \frac{P}{4}, \text{ donde } 1 \le 4 \le n_0 \text{ y pe |N| } n_0(p, q) = 1\}$
= D

Des un conjunto tinito, lue yo medible. Si B = 1:

7, Si B>1:

$$g'((\beta,\infty)) = \{x \in |R| | g(x) > 1\} = \emptyset$$

Como todos los g' ((B,00)) son medibles, gesmedible.

2.7. Sea $f: D \to \overline{\mathbb{R}}$ una función, donde $D \in \mathcal{M}$ en \mathbb{R}^n . Para cada $M \ge 0$, se define la función $f_M: D \to \overline{\mathbb{R}}$ como

$$f_M(x) = \begin{cases} M & \text{si } f(x) > M, \\ f(x) & \text{si } |f(x)| \le M, \\ -M & \text{si } f(x) < -M. \end{cases}$$

Pruebe que si f es medible, entonces f_M es medible.

Dem:

Seu M>0. Proburemos que In es medible. Seu

$$A_{x} = \{x \in D \mid f(x) > M\}, A_{x} = \{x \in D \mid |f(x)| \in M\} = \{x \in D \mid f(x) \in M\}, A_{x} = \{x \in D \mid f(x) \in M\} = \{x \in D \mid f(x) \in M\}, A_{x} = \{x \in D \mid f(x) \in M\} = \{x \in D \mid f(x) \in M\}, A_{x} = \{x \in D \mid f(x) \in M\} = \{x \in D \mid f($$

$$A_3 = \{x \in D \mid f(x) < -M\}$$
 A, y A₃ son medibles, pues fes modible y A₁ = f⁻¹ (JM, ∞),

A3 = J'([-\omega,-M[)] A2 es medible por ser intersección de medibles:

$$V' = f_{-1}([-\omega'\omega]) \cup f_{-1}([-\omega'W])$$

As: D= A, UA, UA, A, A, y A, son disjuntos a pares. Notemos que

$$\int_{\Lambda} |A_1 = M \int_{\Lambda} |A_2 = J| \Delta_{\lambda} \quad y \quad \int_{\Lambda} |A_3 = -M$$

1 y-M son medibles por ser constante y blaz es medible por ser y Az medibles. As: blazes medible Vie (1,3) Portanto da es medible.

9.Q.W.

2.8 Sea $\{r_{\nu}\}_{\nu=1}^{\infty}$ una numeración de $\mathbb{Q} \cap [0,1]$. Defina $f_{\nu} \colon \mathbb{R} \to \mathbb{R}$ como

$$f_{\nu}(x) = \begin{cases} 1 & \text{si } x = r_1, \dots, r_{\nu}, \\ 0 & \text{de otra forma,} \end{cases} \quad \forall x \in \mathbb{R} \quad y \quad \forall \nu \in \mathbb{N}.$$

Muestre que $\{f_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de funciones medibles en \mathbb{R} . ¿A cuál función f converge puntualmente la sucesión?

2.9 Sean $\{c_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de números reales y $\{P_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de rectángulos acotados disjuntos en \mathbb{R}^n . **Demuestre** que la serie de funciones

Dom:

Seu vell Probaremosque Ju es medible. En ofecto, seun

$$A_1 = \{r_1, ..., r_0\}$$
 y $A_2 = |R|A_1 = A_1^C$

A, es medible por sertinito, y Az lo es tumbién pues Az = A. Además A, UAz = IR, y se cumple:

$$f^{\prime\prime}|^{V'} = \overline{1}$$
 λ $f^{\prime\prime}|^{V'} = \overline{0}$

Por ser 1 y 0 medibles, les medible Veamos ahora que ¿ Julu=, converge puntualmente a xon co,1). En efecto, sea x & IR. S: x & QN(0,1), enfonces:

$$\int_{V} (\chi) = 0$$
, $\forall v \in \mathbb{N}$

lueyo:

$$\lim_{v\to\infty} J_v(x) = \chi_{\text{an(e,1)}}$$

Si ze Qn(0,1),] vell m x=rv. Si n , v. entonces fn(v)=1. Lueyo.

$$\lim_{\eta \to \infty} \int_{\mathbf{m}} (\chi) = \lim_{h \to \infty} J_{\nu+m}(\chi)$$

$$=\chi_{\alpha_0(0,1)}$$

9.0.d.

2.9 Sean $\{c_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de números reales y $\{P_{\nu}\}_{\nu=1}^{\infty}$ una sucesión de rectángulos acotados disjuntos en \mathbb{R}^n . **Demuestre** que la serie de funciones

$$\sum_{\nu=1}^{\infty} c_{\nu} X_{P_{\nu}}$$

converge puntualmente en \mathbb{R}^n a alguna función f que es medible en \mathbb{R}^n .

2.10. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función definida, $\forall (x, y) \in \mathbb{R}^2$, como

$$f(x,y) = \begin{cases} 1/y^2 & \text{si } 0 < x < y < 1, \\ 1/x^2 & \text{si } 0 < y < x < 1, \\ 0 & \text{de otra forma.} \end{cases}$$

Pruebe que f es medible en \mathbb{R}^2 .

1)em:

Sean:

$$A_{1} = \{(x,y) \in \mathbb{R}^{2} \mid 0 < x < y < 1\}$$

$$A_{2} = \{(x,y) \in \mathbb{R}^{2} \mid 0 < y < x < 1\}$$

$$A_{3} = (A, UA_{2})^{c}$$

A, y Az son abiertos y Az es cerrado, luego son medibles. Vemos que:

$$f(x,y)|_{A_1} = \frac{1}{y^2}|_{A_1}$$

$$f(x,y)|_{A_2} = \frac{1}{x^2}|_{A_2}$$

$$f(x,y)|_{A_3} = \frac{0}{x^3}|_{A_3}$$

son tous medibles (por ser continues). Por tunto, Jes medible

9.0.W.

2.11. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función definida como

$$f(x,y)=(x-y)e^{-(x-y)^2},\quad \forall (x,y)\in\mathbb{R}^2.$$

Pruebe que f es medible en \mathbb{R}^2 .

Dem: Jes medible por ser continua en 182.

9.e.u.

Pruebe que I es medible en $\mathbb R$.

2.12. Sea $f: D \to \mathbb{R}$ una función, donde $D \in \mathcal{M}$ en \mathbb{R}^n . Si f es medible y $f(x) \neq 0$, $\forall x \in D$, **demuestre** que 1/f es medible.

? 13 See D un conjunte abjerte en $\mathbb P$ Si $f \colon D \to \mathbb P$ as diferenciable en todo nunte D pruche

Dem:

Seu a EIR. Probaremos que 1/3 es medible.

1)
$$\alpha = 0$$

Si a = 0 ol conjunto:

$$\{x \in D \mid \frac{1}{J}(x) > 0\} = \{x \in D \mid J(x) > 0\}$$

es medible.

2) a >0.

En este caso:

$$\{\chi \in D \mid \frac{1}{J}(\chi) > \alpha\} = \{\chi \in D \mid \frac{1}{\alpha} < J(\chi)\}$$

es medible.

3) a < 0

El conjunto:

$$\left\{\chi \in D \mid \frac{1}{f}(x) > \alpha\right\} = \left\{\chi \in D \mid f(x) > 0\right\} \cup \left\{\chi \in D \mid f(\chi) < \frac{1}{\alpha}\right\}$$

es medible (por ser unión de medibles).

Por 1)-3), fes medible.

demuestre que 1/1 es medible.

2.13. Sea D un conjunto abierto en \mathbb{R} . Si $f: D \to \mathbb{R}$ es diferenciable en todo punto D, **pruebe** que la función derivada de f es medible en D.

2 14 Soon f : V → V una función v R una σ —álgobra do subconjuntos do V. Domusetro que

9.2.W.

2.14. Sean $f: X \to Y$ una función y \mathcal{B} una σ -álgebra de subconjuntos de Y. **Demuestre** que la familia

$$\sigma(f) = f^{-1}(\mathcal{B}) = \{ f^{-1}(B) | B \in \mathcal{B} \}$$

es una σ -álgebra sobre X, llamada la σ -álgebra generada por f. Observe que $\sigma(f)$ es la σ -álgebra más pequeña sobre X con respecto a la cual f es medible (¿Por qué?).

i) X ∈ r(1)

Como $\bar{\chi} \in \beta \Rightarrow \bar{\chi} = \bar{f}(\bar{\chi}) \in \sigma(f)$. As $\bar{\chi} \in \sigma(f)$.

ii) A & o()) >> A'e o()

Seu Ae $\sigma(f)$, entonces $\exists B \in B \cap A = f'(B)$. Como $B \in B \Rightarrow B' \in B \Rightarrow A' = (f'(B))' = f'(B') \in \sigma(f)$. As $f' \in \sigma(f)$.

in) Si {An | está en o(t) entonces new An & o(1)

Seu {An}_n=, unu fumilia en $\sigma(f)$. Entonces, $\forall A_n \in \sigma(f)$, $\exists B_n \in \beta \cap A_n = \hat{f}(B_n)$. Seu:

$$A = \bigcup_{n=1}^{\infty} A_n$$

$$= \bigcup_{n=1}^{\infty} \int_{a_n} f(\beta_n)$$

$$= \int_{a_n} f(\beta_n) = \int_{a_n} f(\beta_n) \in B$$

Lueyo, A & o (+).

9. e.u

2.15. Muestre que si $\{f_{\nu}\}_{\nu=1}^{\infty}$ es una sucesión de funciones medibles de \mathbb{R}^n en \mathbb{R} , entonces es medible el conjunto

 $A = \{x \in \mathbb{R}^n | \{f_{\nu}(x)\}_{\nu=1}^{\infty} \text{ converge en } \mathbb{R}\}.$

Dem:

Probaremos que

$$A = \bigcap_{n=1}^{\infty} \left\{ x_{\epsilon} | R^{n} | | \int_{m} (x) - \int_{m_{r}} (x) | \left\langle \frac{1}{x} \right\rangle \right\} = U$$

Donde J: R' -> R se define como:

$$\forall \propto \epsilon |R^n, f(x) = \begin{cases} \lim_{x \to \infty} f_{\lambda}(x) & \text{s. } x \in \Lambda. \\ 0 & \text{e.o.c.} \end{cases}$$

U.m es medible, y v.m. ell. En electo, seun v.m. ell. Como Jm y Jm., son medibles, entonces Jm-Jm., lo es. Luego, el conjunto:

 $\{x \in \mathbb{K}_J \mid | \mathcal{Y}^m(x) - \mathcal{Y}^{m+1}(x) | < \frac{\Lambda}{I} \} = \Lambda^{\Lambda,M}$

es medible. Probaremos ahora que A = U. En efecto:

1) Seu $x \in A \Longrightarrow \lim_{\kappa \to \infty} \int_{\kappa} (x) = f(x)$. Entonces $\forall v \in \mathbb{N} \exists N \in \mathbb{N} \cap m \geqslant N : mpl: ca:$ $|\int_{m} (x) - \int_{m+1} (x) | \leq \frac{1}{\nu}$

luego xell.

2) Sen XE M' enfonces A REIN: XE = 1 XEILU | Itm (x) - tm+ (x) | < \frac{1}{r}}

2 18 Sas $f\colon \mathbb{D}^n \to \overline{\mathbb{D}}$ une función y sas A un subscriunte modible de \mathbb{D}^n Si la restricción															hl _a	d۵	\mathbb{D}^n	c:	10 10	octri	ooió	n				

2.18. Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ una función y sea A un subconjunto medible de \mathbb{R}^n . Si la restricción $f|_A$ de f a A es una función continua y f(x) = 0, $\forall x \in \mathbb{R}^n \backslash A$, **pruebe** que f es medible en

2.19. Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ una función medible. Se supone que $f(x) = 0, \forall x \in \mathbb{R}^n \backslash D$, donde $D \in \mathbb{R}^n \backslash D$ \mathcal{M} en \mathbb{R}^n tiene medida finita, y f toma los valores $\pm \infty$ sobre un conjunto con medida cero. Aplicando el Teorema 2.43, **muestre** que existe una sucesión $\{\psi_{\nu}\}_{\nu=1}^{\infty}$ de funciones escalonadas que converge a f c.t.p. en \mathbb{R}^n . (Este resultado será mejorado más adelante.)

