25 Spring ECEN 607: Advanced Analog Circuit Tech Design Post-lab Report

Lab2: Two-Stage Amplifier Design with 3σ Driven Statistical Corner Extraction

Name: Yu-Hao Chen

UIN:435009528

Section:601

Professor: Jose Silva-Martinez

TA: Yoon, Sung J

Objectives:

- 1. Design and simulate a two-stage Miller-compensated amplifier.
- 2. Observe the effect of voltage and temperature variations.
- 3. Verify the design with Monte-Carlo simulation.

Design & results:

1. Simulate the design from the prelab and adjust the transistor sizes accordingly until all specifications are met. Notice that most relevant transistors are M1=M2 and M8. Check the slides discussed lecture 01/30/2024.

Vcm range the dc operation point (-0.9~-0.54)

- Output swing (under Vcm=-600m) 0.52-(-0.7)= 1.2
- Show the small range for Vd-linear because of the high gain and open loop

2. Plot and report (from simulations) the input referred noise density (what this does mean?) and find RMS voltage noise integrated in the band (10 Hz - 2 MHz).

- In analog circuit design (such as op-amps and ADCs), the input-referred noise density represents all noise sources referred back to the input, making it easier to evaluate their impact on the signal.
- Input-Referred Noise Density= Total Output Noise Density / Gain ²
- Top Curve (pV²/Hz) → Input-Referred Noise Density
 At low frequencies (~10 Hz), noise is higher, which is mainly due to 1/f
 (Flicker) noise.

At **high frequencies (~2 MHz)**, the noise density stabilizes, dominated by **thermal noise**.

- Bottom Curve (nV) → Integrated RMS Noise
 This curve represents the cumulative noise across the 10 Hz to 2 MHz band.
 - As frequency increases, total integrated noise accumulates, leading to a higher noise voltage.
- 3. In addition, provide comparison tables of hand-calculated vs. final transistor sizes, and required specs (Table 1-1) vs. simulated specs. Comment on your results.

Due to the miscalculation of PM and didn't consider about the Vcm range, I redesign the circuit into following size

	Pre	Post		Pre	Post
Ibais	20u	20u	Av	196	146
Сс	16p	3р	GBW	2.48M	2.3M
M1	10u/0.18u	2u/0.27u	PM	60.18(mis)	80
M2	10u/0.18u	2u/0.27u	Swing	1.56	1.2
M3	5u/0.18u	2u/0.27u			
M4	5u/0.18u	2u/0.27u			
M5	5u/0.18u	2u/0.27u			
M6	5u/0.18u	1u/0.27u			
M7	10u/0.18u	10u/0.27u			
M8	10u/0.18u	20u/0.27u			

4. Plot the magnitude and phase response of your amplifier. Measure the phase margin and unity gain frequency from simulations.

5. Simulate statistical simulation, Monte-Carlo, for GBW, Phase Margin and DC gain at least 200 points. Plot the histograms.

6. Close the loop to implement a unity gain buffer (b factor =1) and measure the step response for an input step of 20mV. Report the results.

7. Close the loop with two resistors of $100k\Omega$ and/or larger to implement a 6dB gain inverting amplifier. Report the 250mV step response. Any ringing? Explain your results.

$$H(s) = \underbrace{\left(\frac{R_{in} + R_F}{R_{in}}\right)}_{\text{Non-Linear}} \left(\frac{1}{1 + \frac{1}{A_V\left(\frac{R_{in}}{R_{in} + R_F}\right)}}\right) \cong \left(\frac{R_{in} + R_F}{R_{in}}\right) \left(1 - \frac{1}{A_V\left(\frac{R_{in}}{R_{in} + R_F}\right)}\right)$$

In case of large loop gain $A_V\left(\frac{R_{in}}{R_{in}+R_F}\right)\gg 1$, the system can safely be approximated by

the first factor, then we called this term as the ideal system transfer function

$$H_{ideal}(s) = \left(\frac{1}{\beta}\right) = \left(\frac{R_{in} + R_F}{R_{in}}\right) = 1 + \frac{R_F}{R_{in}} \qquad \begin{array}{c} L = A \beta & (VLSI \text{ ChS}) \\ \text{when } A \to \infty & L = \frac{1}{\beta} \end{array}$$

- PM > 60° → Smooth response, minimal overshoot or ringing.
- PM 30° ~ 60° → Some overshoot and slight ringing.
- PM < 30° → Significant overshoot, potential sustained oscillation