VARIABLES ALÉATOIRES E05

EXERCICE N°3 (Le corrigé)

Quand elle rentre de sa garde de nuit, Marlène rencontre 2 feux tricolores non synchronisés. Elle est seule sur la route et ne s'arrête que si elle rencontre un feu orange ou rouge. Les deux sont rouges pendant $30 \, s$ puis verts pendant $25 \, s$ et oranges pendant $5 \, s$.

En moyenne, combien de temps Marlène sera-t-elle à l'arrêt ?

Pour fixer les idées, on suppose que si Marlène arrive à un feu orange ou rouge alors elle y arrive au moment où le feu change de couleur.

Représentons la situation par un arbre.

V pour le feu est vert ; O pour le feu est orange et R pour le feu est rouge :

On suppose aussi que Marlène respecte le code de la route et ne redémarrage pas après le feu orange...

Notons T la variable aléatoire prenant comme valeur les temps (en s) d'arrêts possibles.

The suit is for de probabilité suivante.								
t_{i}	0	30	35	60	65	70	Total	
$p(T=t_i)$	<u>1</u> 9	$\frac{2}{9}$	<u>2</u> 9	<u>1</u> 9	<u>2</u> 9	<u>1</u> 9	1	
	$\frac{1}{3} \times \frac{1}{3}$	$2 \times \frac{1}{3} \times \frac{1}{3}$	$2\times\frac{1}{3}\times\frac{1}{3}$	$\frac{1}{3} \times \frac{1}{3}$	$2 \times \frac{1}{3} \times \frac{1}{3}$	$\frac{1}{3} \times \frac{1}{3}$		

Il s'agît alors de calculer l'espérance de cette loi.

$$E(T) = 0 \times \frac{1}{9} + 30 \times \frac{2}{9} + 35 \times \frac{2}{9} + 60 \times \frac{1}{9} + 65 \times \frac{2}{9} + 70 \times \frac{1}{9} \approx 43,33$$

On peut dire, qu'en moyenne, Marlène sera à l'arrêt pendant environ 43 s