How to Win?

Explore the impact of behaviors in the game on winning or losing

112024502 黄品瑜

112024505 林峻瑋

112024509 吳振瑋

112024517 王品善

112024521 潘易承

Motivation

Why do we want to explore victory or defeat in League of Legends?

purpose

- 1. How to predict the outcome of a game within ten minutes of data (determining the best model).
- 2. How to quickly determine the outcome of a game (determining the most important variable).

Introduction of data

This dataset contains the first 10 minutes which come from the game "League of Legends (LoL)". Stats of approximately 10k ranked games from a high ELO (DIAMOND I to MASTER). There are 19 features per team (38 in total) collected after 10min in-game.

This includes kills, deaths, gold, experience, level, etc. The column blueWins is the value we are trying to predict. A value of 1 means the blue team has won. We want to predict which features are more correlated with winning.

Table of contents for the methodology

01

EDA

02

KNN

03

Logistic Regression

04 Decision Tree O5 Random Forest 06 gboost O1
Exploratory
Data Analysis

Introduction of Variable

gameld (遊戲場次編號)

blueWins (藍方獲勝)

blue/redWardsPlaced (藍/紅方插眼數)

blue/redWardsDestoryed (藍/紅方拆眼數)

blue/redFirstBlood (藍/紅方首殺)

blue/redKills (藍/紅方擊殺數)

blue/redDeaths (藍/紅方死亡數)

blue/redAssists (藍/紅方助攻數)

blue/redEliteMonsters

(藍/紅方擊殺小龍和諭示者數)

blue/redDargons (藍/紅方擊殺小龍數)

blue/redHeralds (藍/紅方擊殺諭示者數)

blue/redTowerDestoryed (藍/紅方防禦塔破壞數)

blue/redTotalGold (藍/紅方總經濟)

blue/redAveLevel (藍/紅方平均等級)

blue/redTotalExperience (藍/紅方總經驗)

blue/redTotalMinionsKilled (藍/紅方總小兵擊殺數)

blue/redTotalJungleMinionsKilled (藍/紅方總野怪擊殺數)

blue/redGoldDiff(藍/紅方經濟差)

blue/redExperienceDiff(藍/紅方經驗差)

blue/redCSPerMin (藍/紅方每分鐘平均小兵擊殺數)

blue/redGoldPerMin (藍/紅方每分鐘平均經濟)

Exploratory Data Analysis

Exploratory Data Analysis

Variable Selection

blueKills	redKills
blueAssists	redAssists
blueDragon	redTotalGold
blueTotalGold	redTotalExperience
blueTotalExperience	redTotalMinionsKilled
blueTotalMinionsKilled	blueFirstBlood

Exploratory Data Analysis

Exploratory Data Analysis

Model Selection (LASSO)

(Intercept)	-0.002186338
xblueKills	
xblueAssists	-0.053897359
xblueDragons	0.275331303
xblueTotalGold	0.665907476
xblueTotalExperience	0.299188663
xblueTotalMinionsKilled	-0.052336086
xredKills	
xredAssists	
xredTotalGold	-0.582962011
xredTotalExperience	-0.321849353
xredTotalMinionsKilled	0.088450130
sel_train\$blueFirstBlood1	0.008555861

O2
K Nearest
Neighborhood

K Nearest Neighborhood

Accuracy: 0.7328

Sensitivity: 0.7505 Specificity: 0.7149

O3
Logistic
Regression

Logistic Regression

Accuracy: 0.746 Sensitivity: 0.7072

Specificity: 0.7851

04
Decision
Tree

Decision Tree (LASSO)

Decision Tree (LASSO)

Accuracy: 0.71

Sensitivity: 0.7797 Specificity: 0.6395

Decision Tree(All Variable)

Decision Tree(All Variable)

Accuracy: 0.7191 Sensitivity: 0.8159 Specificity: 0.6212

O5 Random Forest

Random Forest(LASSO)

mtry ntree 3 500

Accuracy : 0.7318

Sensitivity: 0.7525 Specificity: 0.7108

Random Forest(All Variable)

mtry ntree 1 300

Accuracy: 0.7404 Sensitivity: 0.7485 Specificity: 0.7322

06 gboost

gboost(LASSO)

n.trees interaction.depth shrinkage n.minobsinnode
500 4 0.01 10

Accuracy: 0.7389 Sensitivity: 0.7072

gboost(All Variable)

n.trees interaction.depth shrinkage n.minobsinnode 500 3 0.01 10

Accuracy: 0.7394 Sensitivity: 0.7012 Specificity: 0.7780

Conclusion

Conclusion

- 1. How to predict the outcome of a game within ten minutes of data (determining the best model).
- 2. How to quickly determine the outcome of a game (determining the most important variable).

	auc	sen	spe	most_important_variable
knn_sel	0.7328	0.7505	0.7149	NA
knn_all	0.5602	0.5704	0.5499	NA
logistic	0.7460	0.7072	0.7851	blueTotalGold, redTotalGold
$tree_sel$	0.7100	0.7797	0.6395	${\tt redTotalGold},{\tt blueTotalGold}$
$tree_all$	0.7191	0.8159	0.6212	blueGoldDiff, redGoldDiff
rf_sel	0.7318	0.7525	0.7108	redTotalGold, blueTotalGold
rf_all	0.7404	0.7485	0.7322	blueGoldDiff, redGoldDiff
$gboost_sel$	0.7389	0.7072	0.7709	${\it redTotalGold}, blueTotalGold$
$gboost_all$	0.7373	0.7565	0.7179	${\it redGoldDiff}, blueGoldDiff$

Reference

- https://www.kaggle.com/code/xiyuewang/lol-how-to-win/input
- https://www.rdocumentation.org/packages/caret/versions/4.47/topics/train

Thanks!

