Markovian State and Action Abstractions for MDPs via Hierarchical MCTS

Aijun Bai

March 31, 2016

UC Berkeley

State Abstraction

State Abstraction

- Ground MDP: $\langle S, A, T, R \rangle$
- Group a set of states as a unit
 - Abstract states:

$$X = \{x_1, x_2, \cdots\}$$

- A partition on S
- Abstraction function: $\phi: S \to X$
- Advantages:
 - Reduced abstract state space size
 - Reduced stochastic branching factors

Figure 1: Rooms domain

Non-Markovianess

- The transition system in abstract state space is non-Markovian
 - $\Pr(x'|x, \alpha) = \sum_{s' \in x'} \sum_{s \in x} T(s'|s, \alpha) \Pr(s|x)$
 - Occupancy probability:
 - Pr(s|x)
 - Bayesian update:

$$Pr(s'|h\alpha x) = \eta \mathbf{1}[\phi(s') = x] \sum_{s \in S} T(s'|s, \alpha) Pr(s|h)$$

- * Where, $h = x_0 \alpha_0 \cdots x_n$
- * Dependent on the history, or in other words, the policy being executed/computed!

Figure 2: A 3-state MDP

State Abstraction in the Literature

- Safe abstraction
 - Ignore only irrelevant state variables (Dietterich, 1999;
 Andre & Russell, 2002)
 - Exploit particular symmetric structure (e.g. bisimulation or homomorphism) in the transition function (Dearden & Boutilier, 1997; Givan et al., 2003; Jiang et al., 2014; Anand et al., 2015)
 - Not always possible

State Abstraction in the Literature (cont'd)

• Weighting function/aggregation probability: $w(s,x) \approx \Pr(s|x)$ (Bertsekas et al., 1995; Singh et al., 1995; Li et al., 2006; Hostetler et al., 2014)

–
$$T_{\varphi}(x'|x,\alpha) = \sum_{s' \in x'} \sum_{s \in x} T(s'|s,\alpha) w(s,x)$$

-
$$R_{\Phi}(x, \alpha) = \sum_{s \in x} R(s, \alpha) w(s, x)$$

- Abstract MDP: $\langle X, A, T_{\Phi}, R_{\Phi} \rangle$
- Abstract policy: $\pi_{\Phi}: X \to A$
- Problem: Pr(s|x) is non-stationary, which can not be well approximated by a constant weighting function

State Abstraction from a POMDP Perspective

- State abstraction introduces partial observability
 - Abstract states as observations
- Doing state abstraction φ over an MDP $M = \langle S, A, R, T \rangle$ creates a POMDP: $M|_{\varphi} = \langle S, A, X, T, R, \Omega \rangle$
 - Observation function: $\Omega(x|s) = \mathbf{1}[x = \phi(s)]$
 - Belief state b(s) gives the occupancy probability

Weighting Function from a POMDP Perspective

- Approximate belief state using a constant distribution w(s,x) for each observation x
- Find a memory-less policy $\pi_{\Phi}: X \to A$
 - Let π be the optimal policy for M
 - Let $\pi_{M|_{\Phi}}$ be the optimal policy for $M|_{\Phi}$
 - Performance: $\pi_{\Phi} \prec \pi_{M|_{\Phi}} \prec \pi$
- The weighting function approach doesn't seem to be well motivated!

Overcome Non-Markovianess via a POMDP Formulation

- \bullet Exactly solving $M|_{\Phi}$ via dynamic programming is intractable
 - Continuous belief space
- ullet The search tree in $M|_{\Phi}$ has lower branching factor than in M
 - Let $\mathfrak{I}(s_0)$ be the search tree in M starting from s_0
 - Let $\mathfrak{T}(b_0)$ be the search tree in $M|_{\varphi}$ starting from b_0 , where $b_0(s)=\mathbf{1}[s=s_0]$
 - Branching factor: $|A||X| \ll |A||S|$
- \bullet Solving $M|_{\varphi}$ via point-based method is possible
 - Find the near-optimal action for b₀ by building an expectimax tree

Solving $M|_{\phi}$ via Monte Carlo Tree Search

- $MCTS|_{\phi}$: run POMCP in $M|_{\phi}$
 - Build a search tree in the history space via sampling
 - Use particles to approximate the belief at the root node
 - * Not necessary, since the ground state at the root node can be observed
- Advantages of MCTS_φ:
 - Only a simulator for the ground MDP is needed
 - Can be applied to continuous state-space MDPs

Action Abstraction

Action Abstraction in $M|_{\phi}$

- What we have now:
 - $MCTS|_{\Phi}$: a MCTS algorithm with Markovian state abstraction for MDPs via a POMDP formulation
- Action abstraction decomposes the overall problem into a hierarchy of sub-problems
 - Abstract actions/options/subtasks/HAMs
- \bullet The transitions between abstract states forms a natural hierarchical structure in $M|_{\Phi}$
 - Abstract actions as transitions between abstract states

Value Function Decomposition

- Let $\alpha \in \mathcal{A}$ be an abstract action: $\alpha = \langle x \in X, y \in X, A, \pi \rangle$
- Let π be a hierarchical policy: $\pi = {\{\pi_0, \pi_1, \pi_2, \cdots\}}$
 - Where, $\pi_0:\mathcal{H}\to\mathcal{A}$ is the root task
- Hierarchical decomposition:

$$-\ V(\pi,h)=Q(\pi,h,\pi_0(h))$$

$$\begin{array}{l} - \ Q(\pi, h, \alpha) = \\ V(\alpha, h) + \sum_{h' \in \mathcal{H}} \gamma^{|h'| - |h|} \Pr(h'|h, \alpha) V(\pi, h') \end{array}$$

$$-\ V(\alpha,h)=Q(\alpha,h,\pi_{\alpha}(h))$$

–
$$Q(\alpha,h,\alpha) = R(h,\alpha) + \gamma \sum_{x \in X} \Pr(x|h,\alpha) V(\alpha,h\alpha x)$$

Semi-Markovianess

- Executing an abstract action takes a random number of steps
 - N = |h'| |h|
 - $h' \sim Pr(h'|h, \alpha)$ terminating distribution of α
 - Terminating distributions are unknown in advance
 - * They are dependent on local policies
 - * Local policies, as well as the high-level policy, are being computed!

Overcome Semi-Markovianess via Monte-Carlo Learning

- High-level:
 - Learn π_0 by running MCTS over abstract actions
- I ow-level:
 - Learn π_{α} by running MCTS over primitive actions
 - * π_{α} converges given infinite samples
 - * $\Pr(h'|h,\alpha)$ also converges as π_{α} converges
- Action values are backuped according to the hierarchical decomposition
- ullet The hierarchical policy π converges to a recursively optimal hierarchical policy

The Overall Algorithm

- $MCTS|_{\Phi,A}$: a MCTS algorithm with Markovian state and action abstractions for MDPs via a POMDP formulation
 - Overcome non-Markovianess resulting from doing state abstraction via a POMDP formulation
 - Overcome semi-Markovianess resulting from doing action abstraction via a Monte Carlo learning process

Theoretical Results

Aggregation Error

- The aggregation error of state abstraction φ is e, if for all $x \in X$ and $s \in x$, $\exists \mathring{a} \in A$, such that $V^*(s) Q^*(s, \mathring{a}) \leqslant e$, where V^* and Q^* are optimal value and action-value functions for the ground MDP M
 - $-\ e=0$ implies that all ground states within the same abstract state share the same optimal action
- The bounded aggregation error requires that the action value $Q^*(s, \mathring{a})$ of \mathring{a} is close to the optimal value $V^*(s)$ for all ground states $s \in x$ within abstract state x
 - Measures the quality of the state abstraction

Optimality Results with State Abstraction

Theorem

(In short) The performance of the optimal policy $\pi_{M|_{\varphi}}$ of $M|_{\varphi}$ is bounded by a constant multiple of the state aggregation error, comparing with the optimal policy π of M

Convergence Results with Action Abstraction

Theorem

 $MCTS|_{\varphi,\mathcal{A}}$ converges to a recursively optimal hierarchical policy for $M|_{\varphi}$ over the hierarchy defined by abstract actions with probability 1

Empirical Evaluation

The Rooms Domain

- The ROOMS[m, n, k] problem:
 - A robot navigates in a $m \times n$ grid map containing k rooms
 - Primitive actions: E, S, W, N
 - Probability 0.2 of moving into perpendicular positions
 - Abstract states: rooms
 - Abstract actions: transitions between rooms

Experimental Results

Figure 3: Empirical results on the rooms rooms domain.

The Continuous Rooms Domain

- The C-ROOMS[m, n, k, w] problem:
 - Each grid has a size of $w \times w$ (m^2)
 - The position of the robot: continuous (x, y)
 - Primitive actions: E, S, W, N
 - * Movement is augmented with a Gaussian error
 - st Move in stochastic directions by a distance of w in expectation
 - MCTS in such continuous domain reduces to depth-1 search

Experimental Results

Conclusion

Conclusion

- A hierarchical MCTS algorithm with Markovian state and action abstractions for MDPs
 - Overcome non-Markovianess introduced by state abstraction via a POMDP formulation
 - Overcome semi-Markovianess introduced by action abstraction via a Monte Carlo learning process
 - Find a recursively hierarchical optimal policy bounded by a multiple constant of an aggregation error

References I

References

- Anand, A., Grover, A., Mausam, M., & Singla, P. (2015). ASAP-UCT: abstraction of state-action pairs in UCT. In Proceedings of the 24th International Conference on Artificial Intelligence, (pp. 1509–1515). AAAI Press.
- Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. In AAAI/IAAI, (pp. 119–125).
- Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., & Bertsekas, D. P. (1995). Dynamic programming and optimal control, vol. 1. Athena Scientific Belmont, MA.
- Dearden, R., & Boutilier, C. (1997). Abstraction and approximate decision-theoretic planning. Artificial Intelligence, 89(1), 219–283.
- Dietterich, T. G. (1999). State abstraction in MAXQ hierarchical reinforcement learning. arXiv preprint cs/9905015.
- Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in Markov decision processes. Artificial Intelligence, 147(1), 163–223.
- Hostetler, J., Fern, A., & Dietterich, T. (2014). State aggregation in Monte Carlo tree search. In Twenty-Eighth AAAI Conference on Artificial Intelligence.
- Jiang, N., Singh, S., & Lewis, R. (2014). Improving UCT planning via approximate homomorphisms. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems, (pp. 1289–1296). International Foundation for Autonomous Agents and Multiagent Systems.
- Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state abstraction for MDPs. In ISAIM.
- Singh, S. P., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with soft state aggregation. Advances in neural information processing systems, (pp. 361–368).

The Pseudo Code

```
OnlinePlanning (h: history)
Agent (s_0 : initial ground state)
                                                                                       repeat
h \leftarrow \emptyset
                                                                                            s \sim P(h)
\mathcal{P}(h) \leftarrow \{s_0\}
                                                                                            Search (root task, s, h, 0)
repeat
                                                                                       until resource budgets reached
     \mathcal{T} \leftarrow an empty tree
                                                                                       return GetGreedyPrimitive (root task, h)
     a \leftarrow OnlinePlanning(h)
     Execute a and observe abstract state x
                                                                                       Search (a : task, s : state, h : history, d : depth)
                                                                                       if \alpha is primitive then
     P(h) \leftarrow ParticleFilter(P(h), a, x)
                                                                                            (s', x, r) \sim Simulate(s, \alpha)
until terminating conditions
                                                                                            return (r, 1, h\alpha x, s')
Rollout (\alpha: task, s: state, h: history, d: depth)
                                                                                       else
if d > H or \alpha terminates at h then
                                                                                            if d > H or \alpha terminates at h then
     return (0,0,h,s)
                                                                                                  return (0, 0, h, s)
                                                                                            else
else
     a \leftarrow \text{GetPrimitive} (\pi_{rollout}, \alpha, h)
                                                                                                  if node (\alpha, h) is not in tree T then
     (s', x, r') \leftarrow Simulate(s, a)
                                                                                                       Insert node (\alpha, h) to T
     (r'', n, h'', s'') \leftarrow \text{Rollout}(\alpha, s', hax, d + 1)
                                                                                                       return Rollout (\alpha, s, h, d)
     \dot{r} \leftarrow r' + \gamma r''
                                                                                                  else
     return (r, n + 1, h'', s'')
                                                                                                       a^* \leftarrow \operatorname{argmax}_a \left\{ \tilde{Q}(\alpha, h, a) + c \sqrt{\frac{\log N(\alpha, h)}{N(\alpha, h, a)}} \right\}
GetGreedvPrimitive (a : task, h : history)
                                                                                                       (r', n', h', s') \leftarrow \text{Search}(a^*, s, h, d)

(r'', n'', h'', s'') \leftarrow \text{Search}(\alpha, s', h', d + n')
if \alpha is primitive then
 return α
                                                                                                       N(\alpha, h) \leftarrow N(\alpha, h) + 1
else
                                                                                                       N(\alpha, h, a^*) \leftarrow N(\alpha, h, a^*) + 1
     a^* \leftarrow \operatorname{argmax}_* O(\alpha, h, a)
                                                                                                       r \leftarrow r' + \gamma^{n'}r''
     return GetGreedvPrimitive (a*, h)
                                                                                                       \tilde{r} \leftarrow r' + \gamma^{n'}r'' + \gamma^{n'+n''}\tilde{R}_{\alpha}(h'')
GetPrimitive (\pi: policy, \alpha: task, h: history)
                                                                                                       Q(\alpha, h, a^*) \leftarrow Q(\alpha, h, a^*) + \frac{r - \dot{Q}(\alpha, h, a^*)}{N(\alpha, h, a^*)}
if \(\alpha\) is primitive then
                                                                                                       \tilde{Q}(\alpha, h, a^*) \leftarrow \tilde{Q}(\alpha, h, a^*) + \frac{\tilde{r} - \tilde{Q}(\alpha, h, a^*)}{N(\alpha, h, a^*)}
 ⊥ return α
else
                                                                                                       return (r, n' + n'', h'', s'')
     return GetPrimitive (\pi, \pi_{\alpha}(h), h)
```

Figure 5: $MCTS|_{\Phi,A}$ — Monte-Carlo tree search with state and action abstractions for MDPs

Optimality Results

Theorem

For state abstraction $\langle X, \phi \rangle$ with aggregation error e, let s_0 be the current state in the ground MDP M and h_0 with $\mathcal{P}(h_0) = \{s_0\}$ be the corresponding history node in POMDP $M|_{\Phi}$. Let $Q^*(s,\cdot)$ and $Q^*(h, \cdot)$ be the optimal action values for M and $M|_{\Phi}$ respectively. Let $\alpha^* = \operatorname{argmax}_{\alpha \in A} Q^*(h_0, \alpha)$ be the optimal action found in $M|_{\Phi}$ at history h_0 , and define action-value error as $E(\alpha^*) = |\max_{\alpha \in A} Q^*(s_0, \alpha) - Q^*(s_0, \alpha^*)|$. Suppose the maximal planning horizon is H, then $E(\alpha^*)$ is bounded by $E(\alpha^*) \leq 2He$ if $\gamma = 1$, else $E(\alpha^*) \leqslant 2\gamma \frac{1-\gamma^H}{1-\gamma}e$.