CSCI5654 (Linear Programming, Fall 2013) Lectures 10-12

Today's Lecture

- 1. Introduction to norms: L_1, L_2, L_{∞} .
- 2. Casting absolute value and max operators.
- 3. Norm minimization problems.
- 4. Applications: fitting, classification, denoising etc..

Norm

Basic idea: Notion of length/distance between vector.

Definition (Norm): Let $\ell: X \mapsto \mathcal{R}^{\geq 0}$ be a mapping from a vector space to non-negative reals. The function ℓ is a norm iff

- 1. $\ell(\vec{x}) = 0$ iff 0,
- $2. \ \ell(a\vec{x}) = |a|\ell(\vec{x})$
- 3. $\ell(\vec{x} + \vec{y}) \leq \ell(\vec{x}) + \ell(\vec{y})$ (Triangle Inequality).

"Length" of \vec{x} : $\ell(\vec{x})$.

"Distance" between \vec{x}, \vec{y} is $\ell(\vec{y} - \vec{x}) (= \ell(\vec{x} - \vec{y}))$.

L₂ (Euclidean) norm

Distance between (x_1, y_1) to (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. In general, $||\vec{x}||_2 = \sqrt{\vec{x}^T \cdot \vec{x}}$.

Distance between \vec{x}, \vec{y} is given by $||\vec{x} - \vec{y}||_2$.

L_p norm

For $p \geq 1$, we define L_p norm as

$$||\vec{x}||_p = (|x_1|^p + |x_2|^p + \ldots + |x_n|^p)^{\frac{1}{p}}.$$

The L_p norm distance between two vectors is: $||\vec{x} - \vec{y}||_p$

 L_1 norm: $||\vec{x}||_1 = |x_1| + |x_2| + \ldots + |x_n|$.

Class exercise: verify that L_1 norm distance is indeed a norm.

Q: Why is $p \ge 1$ necessary?

L_{∞} norm

Obtained as the limit $\lim_{p\to\infty} ||\vec{x}||_p$.

Definition: For vector \vec{x} , $||\vec{x}||_{\infty}$ is defined as

$$||\vec{x}||_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

Ex-1: Can we verify that L_{∞} is really a norm?

Ex-2 (challenge): Prove that the limit definition coincides with the explicit form of the L_{∞} distance.

Norm: Exercise

Take vectors $\vec{x} = (0, 1, -1), \vec{y} = (2, 1, 1).$ Write down L_1, L_2, L_∞ norm distances between \vec{x}, \vec{y} .

Norm Spheres

 ϵ -**Sphere:** $\{\vec{x} \mid d(\vec{x},0) \leq \epsilon\}$ for norm d. The 1—spheres corresponding to the norms L_1, L_∞, L_2 .

Note: Norm spheres are <u>convex sets</u>.

Norm Minimization problems

General form:

minimize
$$||x||_p$$

 $Ax \leq b$

Note-1: We always minimize the norm functions (in this course).

Note-2: Maximization of norm is generally a hard (non-convex) problem.

Unconstrained Norm Minimization

Lets first study the following problem:

min.
$$||Ax - b||_{p}$$
.

- 1. For p = 2, this problem is called (unconstrained) least squares. We will solve this using calculus.
- 2. For $p=1,\infty$, this problem is called $L_1(L_\infty)$ least squares. We will reduce this problem to LP.
- 3. Applications: solving (noisy) linear systems, regularization, denoising, max. likelihood estimation, regression and so on.

Unconstrained Least Squares

Decision Variables: $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Objective function: $\min ||A\vec{x} - \vec{b}||_2$.

Constraints: No explicit constraint.

Least Squares: Example

Example: min. $||(2x + 3y - 1, y)||_2$.

Solution: We will equivalently minimize $(2x + 3y - 1)^2 + y^2$. Using fundamental theorem of calculus, we obtain the conditions:

$$\frac{\partial (2x+3y-1)^2+y^2}{\partial x} = 0$$

$$\frac{\partial (2x+3y-1)^2+y^2}{\partial y} = 0$$

In other words, we obtain:

$$4(2x + 3y - 1) = 0$$

$$6(2x + 3y - 1) + 2y = 0$$

The optima lies at is $y = 0, x = \frac{1}{2}$.

Verify minima by computing checking second order derivative (Hessian matrix).

Unconstrained Least Squares

Problem: minimize $||A\vec{x} - \vec{b}||_2$.

Solution: We will use calculus minimum finding using partial derivatives.

Recall:

$$\nabla f(x_1,\ldots,x_n)=(\partial_{x_1}f,\partial_{x_2}f,\ldots,\partial_{x_n}f).$$

Criterion for optimal point for $f(\vec{x})$ is that $\nabla f = (0, \dots, 0)$.

$$\nabla(||A\vec{x} - \vec{b}||_{2}^{2}) = \nabla((A\vec{x} - \vec{b})^{\mathrm{T}}(A\vec{x} - \vec{b}))$$

$$= \nabla(\vec{x}^{\mathrm{T}}A^{\mathrm{T}}A\vec{x} - 2\vec{x}^{\mathrm{T}}A^{\mathrm{T}}\vec{b} + \vec{b}^{\mathrm{T}}\vec{b})$$

$$= 2A^{\mathrm{T}}A\vec{x} - 2A^{\mathrm{T}}\vec{b}$$

$$= 0$$

Minima will occur at $\vec{x}^* = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\vec{b}$ (assume A is "full rank"). Similar solution for L_p norm for even number p.

L₁ norm minimization

Decision Variables: $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Objective function: min. $||A\vec{x} - \vec{b}||_1$.

Constraints: No explicit constraint.

We will reduce this to a linear program.

Example

Example: min. $||(2x + 3y - 1, y)||_1 = |2x + 3y - 1| + |y|$.

Trick: Let $t_1 \geq 0$, $t_2 \geq 0$ be s.t.

$$|2x + 3y - 1| \leq t_1 |y| \leq t_2$$

Consider the following problem:

min.
$$t_1 + t_2$$

 $|2x + 3y - 1| \le t_1$
 $|y| \le t_2$
 $t_1, t_2 \ge 0$

Goal: convince class that this problem is equivalent to original.

Note: $|y| \le t_2$ can be rewritten as $y \le t_2 \land -y \le t_2$.

Example: LP formulation

min.
$$t_1 + t_2$$

 $2x + 3y - 1 \le t_1$
 $-2x - 3y + 1 \le t_1$
 $y \le t_2$
 $-y \le t_2$
 $t_1, t_2 \ge 0$

Solution: $x = \frac{1}{2}, y = 0.$

Q: Can we repeat the same trick if $|y| \ge t_2$?

N: No. A disjunction of inequalities will be needed.

L_1 norm minimization

Problem: min. $||Ax - b||_1$.

Solution: Let A be $m \times n$ matrix. Add variables t_1, \ldots, t_m corresponding

to rows of m.

$$\begin{bmatrix} \min. & \sum_{i=1}^{m} t_i \\ |A_i \vec{x} - \vec{b}| & \leq t_i \\ t_1, \dots, t_m & \geq 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \min. & \sum_{i=1}^{m} t_i \\ |A\vec{x} - \vec{b}| & \leq \vec{t} \\ |-A\vec{x} + \vec{b}| & \leq \vec{t} \\ t_1, \dots, t_m & \geq 0 \end{bmatrix}$$

We write it in the general form:

$$\begin{array}{cccc} \text{max.} & -\vec{1}^{\text{\tiny T}}\vec{t} \\ & A\vec{x}-\vec{t} & \leq & \vec{b} \\ & -A\vec{x}-\vec{t} & \leq & -\vec{b} \\ & t_1,\ldots,t_m & \geq & 0 \end{array}$$

L_{∞} norm minimization

Decision Variables: $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Objective function: min. $||A\vec{x} - \vec{b}||_{\infty}$.

Constraints: No explicit constraint.

We will reduce this to a linear program.

Example

Example: min. $||(2x+3y-1,y)||_{\infty} = \min \max.(|2x+3y-1|,|y|).$

Trick: Let $t \ge 0$ be s.t.

$$|2x + 3y - 1| \leq t$$

$$|y| \leq t$$

Consider the following problem:

min.
$$t$$

$$|2x + 3y - 1| \leq t$$

$$|y| \leq t$$

$$t \geq 0$$

Goal: convince class that this problem is equivalent to original.

Note: $|y| \le t$ can be rewritten as $-t \le y \le t$.

Example:LP formulation

min.
$$t$$

$$2x + 3y - 1 \leq t$$

$$-2x - 3y + 1 \leq t$$

$$y \leq t$$

$$-y \leq t$$

$$t \geq 0$$

Solution: $x = \frac{1}{2}, y = 0.$

L_{∞} norm minimization

Problem: min. $||Ax - b||_{\infty}$.

Solution: Let A be $m \times n$ matrix. Add variables t_1, \ldots, t_m corresponding

to rows of m.

$$\begin{bmatrix} \min. & t & & \\ |A_i\vec{x} - \vec{b}| & \leq & t \\ t & \geq & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \min. & t & & \\ |A\vec{x} - \vec{b}| & \leq & t.\vec{1} \\ |-A\vec{x} + \vec{b}| & \leq & t.\vec{1} \\ t & \geq & 0 \end{bmatrix}$$

We write it in the general form:

max.
$$t$$

$$A\vec{x} - t.\vec{1} \leq \vec{b}$$

$$-A\vec{x} - t.\vec{1} \leq -\vec{b}$$

$$t \geq 0$$

Application-1: Estimation of Solutions

Application-1: Solution Estimation

Problem: We are trying to solve the linear equation

$$A\vec{x} = \vec{b}$$

- 1. The entries in A, \vec{b} could have random errors (noisy measurements).
- 2. There are many more equations than variables.

Example Problem: We are trying to measure a quantity *x* using noisy measurements:

$$2x = 5.1$$
 $3x = 7.6$
 $4x = 9.91$
 $5x = 12.45$
 $6x = 15.1$

Q-1: Is there a value of x that explains the measurement?

Q-2: What do we do in this case?

Example Problem: We are trying to measure a quantity *x* using noisy measurements:

$$2x = 5.1$$
 $3x = 7.6$
 $4x = 9.91$
 $5x = 12.45$
 $6x = 15.1$

Find x that nearly fits all the measurements., i,e,

$$\min ||(2x-5.1, 3x-7.6, 4x-9.91, 5x-12.45, 6x-15.1)||_{p}$$

We can choose $p = 1, 2, \infty$ and see what answer we get.

 L_2 norm: Apply least squares for

$$A = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} -5.1 \\ -7.6 \\ -9.91 \\ -12.45 \\ -15.1 \end{pmatrix}$$

Solving for $x = \operatorname{argmin} ||Ax - \vec{b}||_2$, yields $x \sim 2.505$. Residual error:

(0.09, 0.08, -.11, -0.08, -.06).

 L_1 norm: Reduce to linear program using

$$A = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} -5.1 \\ -7.6 \\ -9.91 \\ -12.45 \\ -15.1 \end{pmatrix},.$$

Solution: x = 2.49.

Residual Error:

$$(-.12, -.13, -0.05, 0.0, .16)$$
.

 L_{∞} norm: Reduce to linear program.

Solution: x = 2.501

Residual Error:

$$(-.1, -.1, .1, .05, -.1)$$

Lectures 10,11

Experiment with Larger Matrices (matlab)

- \triangleright L_1 norm: large number of entries with small residuals, spread is larger.
- \triangleright L_2 norm: residuals look like a gaussian distribution.
- $ightharpoonup L_{\infty}$ norm: residuals look more uniform, smaller spread.

Matlab code is available, run your own experiments!

Regularized Approximation

Ordinary least squares can have poor performance (ill conditioning problem).

Tikhonov Regularized Approximation:

$$||A\vec{x} - b||_2 + \lambda ||\vec{x}||_2$$
.

 $\lambda \geq 0$ is a tuning parameter.

Note-1: This is the same as the following norm minimization:

$$\left\| \left[\begin{array}{c} A \\ \lambda^{\frac{1}{2}} I \end{array} \right] \vec{X} - \left[\begin{array}{c} \vec{b} \\ 0 \end{array} \right] \right\|_{2}^{2}.$$

Note-2: In general, we can also have regularized approximation using L_1, L_∞ and other norms.

Penalty Function Approximation

Problem: Solve

minimize. $\phi(A\vec{x}-\vec{b})$.

where ϕ is a penalty function.

If $\phi = L_1, L_2, L_\infty$, this is exactly the same as norm minimization.

Note-1: In general, ϕ need not be a norm.

Note-2: ϕ is sometimes called a loss function.

Penalty Functions: Example

Deadzone Linear Penalty: Let $\vec{x} = (x_1, \dots, x_n)^T$. The deadzone linear penalty is sum of penalties on each individual component x_1, \dots, x_n :

$$\phi_{dz}(\vec{x}): \phi_{dz}(x_1) + \phi_{dz}(x_2) + \cdots + \phi_{dz}(x_n),$$

wherein

$$\phi_{dz}(x) = \begin{cases} 0 & |u| \le a \\ b(|u| - a) & |u| > a \end{cases}$$

Deadzone Linear Penalty (cont)

Deadzone vs. L_2 :

- $ightharpoonup L_2$ norm imposes large penalty when residual is high. Therefore, outliers in data can affect performance drastically.
- Deadzone penalty function is generally less sensitive to outliers.

Q: How do we solve the deadzone penalty approximation problem?

A: Apply tricks for L_1, L_∞ (upcoming assignment).

Other penalty functions

Huber Penalty: The <u>Huber</u> penalty is sum of functions on individual components x_1, \ldots, x_n :

$$\phi_H(x_1) + \phi_H(x_2) + \cdots + \phi_H(x_n),$$

wherein

$$\phi_H(x) = \begin{cases} u^2 & |u| \le a \\ a(2|u| - a) & |u| > a \end{cases}$$

Penalty Function Approximation: Summary

General observations:

- \triangleright L_2 : Natural, easy to solve (using pseudo inverse). However, sensitive to outliers.
- L₁: <u>Sparse</u>: ensures that most residuals are very small. Insensitive to outliers.
 However, spread of error is larger.
- $ightharpoonup L_{\infty}$: Non-sparse but minimizes spread. Very sensitive to outliers.
- Other loss functions: provide various tradeoffs.

Details: Cf. Boyd's book.

Application-2: Signal Denoising

Application-2: Signal Denoising

Input: Given samples of a noisy signal:

$$\vec{y}: \left(\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_{\mathcal{N}}\right)^{ \mathrm{\scriptscriptstyle T} }$$
 .

Original signal is unknown (very little data available).

Problem: Find new signal \vec{y}^* by minimizing

mininize.
$$||\vec{y}^* - \vec{y}||_p^p + \phi_s(\vec{y}^*)$$
.

 ϕ_s is a smoothing function.

Smoothing Criteria

ightharpoonup Quadratic Smoothing: L_2 norm on successive differences.

$$\phi_q(\vec{y}) = \sum_{i=2}^{N} (y_i - y_{i-1})^2.$$

ightharpoonup Total Variation Smoothing: L_1 norm on successive differences.

$$\phi_{tv}(\vec{y}) = \sum_{i=2}^{N} |y_i - y_{i-1}|.$$

▶ Maximum Variation Smoothing: L_{∞} norm on successive differences.

$$\phi_{max}(\vec{y}) = \max_{i=2}^{N} (|y_{i+1} - y_i|).$$

Quadratic Smoothing

Problem: minimize $\|\vec{y} - \vec{y}_n\|_2^2 + \phi_q(\vec{y})$.

This can be viewed as a least squares problem:

minimize
$$\left\| \begin{bmatrix} I \\ \Delta \end{bmatrix} \vec{y}^* - \begin{bmatrix} \vec{y}_n \\ 0 \end{bmatrix} \right\|_2^2$$
.

Where Δ is the matrix:

Total/Maximum Variance Smoothing

Total variance smoothing: L_1 least squares problem.

minimize
$$\left\| \begin{bmatrix} I \\ \Delta \end{bmatrix} \vec{y}^* - \begin{bmatrix} \vec{y}_n \\ 0 \end{bmatrix} \right\|_1$$
.

Max. variance smoothing: L_1 least squares problem.

minimize
$$\left\| \begin{bmatrix} I \\ \Delta \end{bmatrix} \vec{y}^* - \begin{bmatrix} \vec{y}_n \\ 0 \end{bmatrix} \right\|_{\infty}$$
.

Where Δ is the matrix:

$$\Delta = egin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \ 0 & -1 & 1 & \cdots & 0 & 0 \ 0 & 0 & 0 & \ddots & 0 & 0 \ 0 & 0 & 0 & \cdots & -1 & 1 \ \end{bmatrix}$$

Experiment

Slide# 40

Other Smoothing Functions

Consider three successive data points instead of two:

$$\phi_T: \sum_{i=2}^{m-1} |2y_i - (y_{i-1} + y_{i+1})|.$$

Modify matrix Δ as follows:

 Δ is called a Topelitz Matrix.

Application-3: Regression

Linear Regression

Inputs: Data points $\vec{x}_i : (x_{i1}, \dots, x_{in})$ and outcome y_i .

Goal: Find a function

$$f(\vec{x}) = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n + c_0$$

that best fits the data.

Linear Regression

Inputs: Data points $\vec{x}_i : (x_{i1}, \dots, x_{in})$ and outcome y_i .

Goal: Find a function

$$f(\vec{x}) = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n + c_0$$

that best fits the data.

Linear Regression

Let X be the data matrix and \vec{y} be corresponding outcome matrix.

Note: The i^{th} row X_i represents data point i y_i is the corresponding outcome for X_i

If $\vec{c}^{\mathrm{T}}\vec{x} + c_0$ is the best line fit, the error for i^{th} data point is:

$$\epsilon_i: (X_i \cdot \vec{c}) + c_0 - y_i.$$

We can write the overall error as:

$$\|[X \quad \vec{1}]\vec{c} - \vec{y}\|_p$$
.

Regression

Inputs: Data X, outcome \vec{y} .

Decision Vars: c_0, c_1, \ldots, c_n the coefficients of the straight line.

Solution:minimize $\|[X \ \vec{1}]\vec{c} - \vec{y}\|_p$.

Note: Instead of the norm, we could use any penalty function.

Ordinary Regression: min $\|[X \ \vec{1}]\vec{c} - \vec{y}\|_{p}^{p}$.

Tikhanov Regression: min $\|[X \ \vec{1}]\vec{c} - \vec{y}\|_2^2 + \lambda \cdot ||\vec{c}||_2^2$.

Experiment

Experiment: Create noisy data set with outliers.

80 regular data points with low noise.

5 outlier datapoints with large noise.

Goal: Compare effect of L_1 , L_2 , L_∞ norm regressions.

Regression with Outliers

Slide# 48

Regression with Outliers (Error Histogram)

Lectures 10,11

Linear Regression With Non-Linear Models

Input: Data X, outcome \vec{y} , functions g_1, \ldots, g_k .

Goal: Fit a model of the form

$$y_i = c_0 + c_1 g_1(\vec{x}) + c_2 g_2(\vec{x}) + \ldots + c_k g_k(\vec{x}).$$

Solution: Transform the data matrix as follows:

Apply linear regression on (X', \vec{y}) .

Experiment

Experiment: Create noisy non-linear data set with outliers.

$$\vec{y} = 0.2sin(x) + 1.5 * cos(x) + 2 * cos(1.5 * x) + .2 * x - 3 + Noise$$
.

80 regular data points with low noise.

5 outlier datapoints with large noise.

Goal: Compare effect of L_1 , L_2 , L_∞ norm regressions.

Experiment: linear regression non-linear model

Experiment: residuals

Classification

Problem: Given two classes: $\vec{x}_1^+, \dots, \vec{x}_N^+$ and $\vec{x}_1^-, \dots, \vec{x}_M^-$ of data points.

Goal: Find separating hyperplane between the classes.

Application-4: Classification

Linear Classification

Problem: Given two classes: $\vec{x}_1^+, \dots, \vec{x}_N^+$ and $\vec{x}_1^-, \dots, \vec{x}_M^-$ of data points.

Goal: Find separating hyperplane between the classes.

Q-1: Will such an hyperplane always exist?

A: Not always! Only if data is linearly separable.

- 1. Assume that such a hyperplane exists.
- 2. Deal with cases where a hyperplane does not exist.

Linear Classification (cont)

Solution: Use linear programming.

Decision Variables: $w_0, w_1, w_2, \ldots, w_n$, representing the classfier:

$$f_{w}(\vec{x}): w_{0} + w_{1}x_{1} + \cdots + w_{n}x_{n}.$$

Linear Programming:

max. ???
$$\begin{array}{ccc}
X^+ \vec{w} & \geq & 0 \\
X^- \vec{w} & < & 0
\end{array}$$

Classification Using Linear Programs

Objective: Lets try $\sum_{i} w_{i} = 1^{\mathrm{T}} \vec{w}$.

Note: We write $\langle \vec{a}, \vec{b} \rangle$ for dot product $\vec{a}^{\text{T}} \vec{b}$.

Simplified Data representation: Represent two classes +1, -1 for data.

Data:
$$(\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N) \Rightarrow (X, \vec{y}),$$

where $y_i = +1$ for class I and $y_i = -1$ for class II data.

Linear Program:

min.
$$\langle \vec{1}, \vec{w} \rangle + w_0$$

 $y_i (\langle \vec{x}_i, \vec{w} \rangle + w_0) \leq 0$

Verify that this formulation works.

Experiment: Classification

Experiment: Find a classifier for the following points.

Experiment: Classification

Experiment: Outcome.

Note: Many different classifiers are possible.

Note-2: What is the deal with points that lie on the classifier line?

Dual, Complementary Slackness

Linear Program:

min.
$$\langle \vec{1}, \vec{w} \rangle + w_0$$

 $y_i (\langle \vec{x}_i, \vec{w} \rangle + w_0) \leq 0$

Complementary Slackness: Let $\alpha_1, \ldots, \alpha_N$ be the dual variables.

$$\alpha_i y_i (\langle \vec{x}_i, \vec{w} \rangle + w_0) = 0, \ \alpha_i \geq 0.$$

Claim: There are at least n+1 points $\vec{x}_{j_1}, \ldots, \vec{x}_{j_{n+1}}$ s.t.

$$\langle \vec{x}_{j_i}, \vec{w} \rangle + w_0 = 0$$
.

Note: n+1 pts. fully determine the hyper-plane \vec{w} ; w_0 .

Classifying Points

Problem: Given a new point \vec{x} , let us find which class it belongs to. **Solution-1:** Just find out the sign of $\langle \vec{w}, \vec{x} \rangle + w_0$, we know \vec{w} ; w_0 from our LP solution.

Solution-2: More complicated. Express \vec{x} as a <u>linear combination</u> of support vectors:

$$\vec{x} = \lambda_1 \vec{x}_{j_1} + \lambda_2 \vec{x}_{j_2} + \dots + \lambda_{n+1} \vec{x}_{n+1}$$

We can write $\langle \vec{w}, \vec{x} \rangle$ as

$$\langle \vec{w}, \vec{x} \rangle + w_0 = \sum_i \lambda_i \left(\underbrace{w_0 + \langle \vec{w}, \vec{x}_{j_i} \rangle}_{0} \right) + \left(1 - \sum_i \lambda_i \right) w_0 = \left(1 - \sum_i \lambda_i \right) w_0.$$

This is impractical for linear programming formulations.

Non-Separable Data

Q: What if data is not linear separable? The linear program will be primal infeasible

In practice, linear separation may hold without noise but not with noise.

Solution: Relax the conditions on half-space w.

Non-Separable Data: Linear Programming

Classifier: (old) $w_0 + \langle \vec{w}, \vec{x} \rangle$. (new) $\langle \vec{w}, \vec{x} \rangle + 1$.

Note: Classifier $\sum_i w_i x_i + w_0$ is equivalent to $\sum_i \frac{w_i}{w_0} x_i + 1$ if $w_0 \neq 0$.

LP Formulation:

minimize $\|\vec{\xi}\|_1 + \cdots$ $\langle \vec{x}_{i}^{+}, \vec{w} \rangle + 1 \leq \xi_{i}^{+}$ $\langle \vec{x}_{j}^{-}, \vec{w} \rangle + 1 \geq -\xi_{j}^{-}$ $\xi_{i}^{+}, \xi_{i}^{-} \geq 0$

The variable ξ encodes tolerance. We minimize ξ as part of objective.

Exercise: Verify that the support vector interpretation of dual works.

Slide# 64

Non Linear Model Classification

Linear Classifier: $\langle \vec{w}, \vec{x} \rangle + 1$.

Non-linear functions: $\vec{\phi}: \mathcal{R}^n \mapsto \mathcal{R}$.

$$\langle \vec{w}, (\phi_1(\vec{x}), \phi_2(\vec{x}), \dots, \phi_m(\vec{x})) \rangle$$
.

This is exactly same idea as linear regression with non-linear functions.