# Linear Feature Engineering

By MD Armanuzzaman, Xi Tan

#### Process Overview

- Model selection
  - polynomial selection
  - Basis expansion
- 2. Dealing with overfitting
  - K-fold cross validation
  - Polynomial selection with k-fold cross validation
  - With the selected polynomial generate least square error on the whole data.
- 3. Feature selection

#### Polynomial selection

- Select a model to train our data
- For polynomial (1 to p) run k fold chunks and get the testing mean error.
- Keep track of test errors for every p.
- Compare the mean test error for every P and select the p with smallest test error.

#### Model selection

- Divided the training data into K chunks to select the desired P.
  - Run p from 1 to p and observed that least testing Error.

Therefore, the selected model for our data:

$$Y = IX^{p} + hX^{p-1} + ... + cX^{2} + bX^{1} + ax^{0}$$

## Basis expansion

 After selecting the model we implemented the basis expansion to fit this model.

# After basis expansion

$$Z = [1, x^1, x^2, x^3, ..., x^p]$$

| 1   | x^1 | x^2 |     | x^p |
|-----|-----|-----|-----|-----|
| 1   | x^1 | x^2 | ••• | x^p |
| ••• |     | ••• | ••• | ••• |
| ••• | ••• | ••• | ••• | ••• |
| 1   | x^1 | x^2 | ••• | x^p |

# K-fold cross validation





#### K-fold cross validation



If we only use k-fold cross validation to train our data, the test errors are not so good.

# Polynomial selection using K-fold cross validation







k?

## Polynomial selection using K-fold cross validation





# Polynomial selection using K-fold cross validation

Set k = 10

P = 0.10

We get the best p = 4



#### Feature selection

Try to define which feature of xi(0~8) is the most effective one to do the prediction for y.

Set new x9 as the average the the x, add the new x9 in x features. Train those new features.

#### Feature selection





#### Result

| Prediction for the test error | Training error (R-train) | Poly+k-fold test error (R-smallest) |
|-------------------------------|--------------------------|-------------------------------------|
| >38.3957                      | 38.3947                  | 56.8482                             |

#### Conclusion

Train model( p = 4 ):  $Y = a*x^4 + b*x^3 + c*x^2 + d*x^1 + 1$ 

Expansion:

$$Z = [1, x^1,...,x^p]$$

K-fold cross validation:

$$K = 10$$

Constants are very important, we tried to drop all constants, and when we run our codes, different k returns different best p.

#### Thank You