Praxisgrundlagen der Informatik

Performance: Vectorization with NumPy

Prof. Dr. Eduard Kromer

University of Applied Sciences Landshut

Vectorization

Vectorization

- vectorization or array programming refers to solutions which allow the application of operations to an entire set of values at once
- vectorization allows us to operate on aggregates of data without having to resort to explicit loops of individual scalar operations
- knowing how to do several operations at once will speed up your program

Example: Matrix Multiplication

Multiply the matrices:

$$A=egin{bmatrix}1&2&3\4&5&6\7&8&9\end{bmatrix}$$
 und $B=egin{bmatrix}1&0&1\0&1&0\1&0&1\end{bmatrix}$ What is $A\cdot B=?$

```
# two 3x3 matrices A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] \\ B = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]  A \cdot B = \begin{bmatrix} 4 & 2 & 4 \\ 10 & 5 & 10 \\ 16 & 8 & 16 \end{bmatrix}
```

Example: Matrix Multiplication with Python

```
def mat_mul(A, B):
    num_rows = len(A)
    num_cols = len(B[0])
    result =[[0 for _ in range(num_cols)] for _ in range(num_rows)]
    for i in range(num_rows):
        for j in range(num_cols):
            for k in range(len(B)):
                result[i][j] += A[i][k] * B[k][j]
    return result
mat_mul(A, B)
[[4, 2, 4], [10, 5, 10], [16, 8, 16]]
```

Example: Matrix Multiplication with NumPy

```
import numpy as np
np.dot(A, B)
```

```
array([[ 4, 2, 4],
[10, 5, 10],
[16, 8, 16]])
```

```
A = np.matrix(np.arange(10000).reshape((100,100))).tolist()
B = np.matrix(np.arange(10000).reshape((100,100))).tolist()
```

```
%%timeit
mat_mul(A, B)

57.5 ms ± 459 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)
```

```
%%timeit
np.dot(A,B)
```

```
1.42 ms \pm 1.88 \mus per loop (mean \pm std. dev. of 7 runs, 1,000 loops each)
```

Code Vectorization vs. Problem Vectorization

Code Vectorization.

- we don't need to rethink our problem since it is inherently vectorizable
- we can rewrite our existing code with NumPy (or CuPy) without needing to resort to completely different algorithms

Problem Vectorization:

- we need to rethink our problem in order to make it vectorizable
- this is a much harder problem than code vectorization because we might need completely different algorithms to solve our problem

Introduction to NumPy

Introduction to NumPy

- the first step, to be able to work with data and analyze it, is to transform it into an array of numbers
- efficient storage and manipulation of numerical arrays is of utmost importance for data science, scientific computing and artificial intelligence
- one specialized, very important library that enables those types of operations in Python is NumPy (short for Numerical Python)
- NumPy forms the core of nearly the entire ecosystem of data science tools in Python
- NumPy arrays are similar to Python's list type but much more storage efficient and with more efficient data operations

NumPy-enabled Ecosystem

Quantum Computing	Statistical Computing	Signal Processing	Image Processing	Graphs and Networks	Astronomy	Cognitive Psychology
	~	րկի		Des	*	
QuTiP	<u>Pandas</u>	SciPy	Scikit-image	NetworkX	<u>AstroPy</u>	<u>PsychoPy</u>
<u>PyQuil</u>	statsmodels	<u>PyWavelets</u>	<u>OpenCV</u>	graph-tool	<u>SunPy</u>	
Qiskit	<u>Xarray</u>	python-control	<u>Mahotas</u>	<u>igraph</u>	<u>SpacePy</u>	
PennyLane	Seaborn			<u>PyGSP</u>		
Bioinformatics	Bayesian Inference	Mathematical Analysis	Chemistry	Geoscience	Geographic Processing	Architecture & Engineering
Bioinformatics	Bayesian Inference		Chemistry	Geoscience	-	
	Bayesian Inference PyStan	Analysis	_		Processing	Engineering
Z		Analysis +			Processing	Engineering
BioPython	PyStan	Analysis +	Cantera	Pangeo	Processing Shapely	Engineering

Python lists vs. NumPy arrays

- Python lists are very flexible and allow to store different types of objects
 - $[5.5, 3, True, "Python"] \rightarrow [float, int, bool, str]$
- this flexibility comes at a cost since each element of the list carries both data and type information
- fixed-type NumPy arrays lack this flexibility, but are much more efficient in terms of storage and data manipulation

```
import numpy as np
numbers = np.array([1,2,3,4,5])
numbers.dtype
```

```
dtype('int64')
```

NumPy arrays

If types don't match in a numpy array, NumPy tries to upcast, if possible:

```
numbers = np.array([1,2,3,4,5.5])
numbers.dtype
```

dtype('float64')

Use dtype to set the data type explicitly:

```
numbers = np.array([1,2,3,4,5], dtype=np.float32)
numbers.dtype
```

```
dtype('float32')
```

• Read about array types and conversions between types in NumPy here.

Multidimensional Arrays

- NumPy arrays can be multidimensional (unlike Python lists)
- How to create arrays in NumPy:

```
np.zeros(5, dtype=int)
array([0, 0, 0, 0, 0])
```

```
[[1., 1.],
[1., 1.]])
```

Multidimensional Arrays

How to create arrays in NumPy:

```
np.arange(0,8,2)
```

```
array([0, 2, 4, 6])
```

```
np.linspace(0,10,5)
```

```
array([ 0. , 2.5, 5. , 7.5, 10. ])
```

Distributions: Uniform Distribution

For all available distributions, see the Random Generator documentation.

Uniform Distribution:

```
# integers from the "discrete uniform" distribution
np.random.default_rng().integers(0,5,dtype=np.int64, size=5)
array([4, 2, 2, 1, 1])
```

Distributions: Normal Distribution

(Standard) Normal Distribution:

Array Attributes

True

Each NumPy array has useful attributes we can access:

```
x = np.arange(6, dtype=np.int16).reshape(2,3)
x.shape
(2, 3)
x.size # the total size of the array
6
x.dtype # the data type of the array
dtype('int16')
x.itemsize # size in bytes of each element
x.nbytes # total size in bytes of the array
12
x.itemsize * x.size == x.nbytes
```

Array Indexing

- NumPy array indexing, for *one-dimensional* arrays, works very similarly to Python lists
 - counting from zero, you can access the values by specifying the desired index in squared brackets
 - numbers[0] Or numbers[5] for the NumPy array numbers
- for multidimensional arrays, you access the elements using comma-separated tuples of indices
 - numbers[0,1] or numbers[3,2] for a two-dimensional NumPy array
- you can modify values in your array this way as well
 - numbers[0,1] = 12 set the value of the NumPy array numbers at index position (0,1) to
 12

Array Indexing

Array Slicing: One-Dimensional Arrays

- you can access subarrays in your array using the *slice* notation :
- slicing in NumPy works like slicing in Python's list
 - numbers[start:stop:step]

```
x = np.arange(10)
x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

x[:3], x[7:]
(array([0, 1, 2]), array([7, 8, 9]))

x[2:8:2], x[1::2]
(array([2, 4, 6]), array([1, 3, 5, 7, 9]))
```

Array Slicing: Multidimensional Arrays

```
x = np.arange(12).reshape(3,4)
Χ
array([[0, 1, 2, 3],
      [4, 5, 6, 7],
      [ 8, 9, 10, 11]])
x[:,2] # access only one specific column
array([ 2, 6, 10])
x[:2, ::2] # slicing works the same way, but now individually for each index
array([[0, 2],
      [4, 6]]
x[::-1, ::1]
array([[ 8, 9, 10, 11],
      [4, 5, 6, 7],
      [0, 1, 2, 3]
```

Subarrays are no-copy views

- array slices return views of the original array data
 - this is different to Python lists

If you modify the subarray obtained by slicing, you will modify the original array.

Array Concatenation

- you can combine multiple existing arrays into one by using
 - np.vstack vertical stack
 - np.hstack horizontal stack
 - np.dstack stack along the third axis
 - np.concatenate general method for stacking

Array Concatenation

```
x = np.array([[1,2,3], [4,5,6]])
y = np.array([[7,8,9], [5,5,5]])
stacked_x = np.concatenate([x,y], axis=0)
stacked_x
array([[1, 2, 3],
      [4, 5, 6],
      [7, 8, 9],
      [5, 5, 5]])
stacked_y = np.concatenate([x,y], axis=1)
stacked_y
array([[1, 2, 3, 7, 8, 9],
      [4, 5, 6, 5, 5, 5]
```

Array Splitting

- array splitting works in NumPy with the following commands:
 - np.split
 - np.hsplit
 - np.vsplit

Array Splitting

```
stacked_y
array([[1, 2, 3, 7, 8, 9],
      [4, 5, 6, 5, 5, 5]
np.split(stacked_y, 2, axis=1)
[array([[1, 2, 3],
       [4, 5, 6]]),
array([[7, 8, 9],
       [5, 5, 5]]
np.split(stacked_y, [1], axis=0)
[array([[1, 2, 3, 7, 8, 9]]), array([[4, 5, 6, 5, 5, 5]])]
```

Universal Functions

NumPy documentation on universal functions:

• a universal function is a function that operates on NumPy arrays in an element-byelement fashion

```
x = np.arange(3)
print(f"x = {x}")
print(f"x+2 = {x+2}")
print(f"x-2 = {x-2}")
print(f"x*2 = {x*2}")
print(f"x/2 = {x/2}")
print(f"x/2 = {x/2}")
```

```
x = [0 \ 1 \ 2]

x+2 = [2 \ 3 \ 4]

x-2 = [-2 \ -1 \ 0]

x*2 = [0 \ 2 \ 4]

x/2 = [0 \ 0 \ 5 \ 1 \ ]

x//2 = [0 \ 0 \ 1]
```

Universal Functions: Operators

The **operators** are wrappers for specific universal functions:

Operator	ufunc	Description
+	np.add	addition
-	np.subtract	subtraction
-	np.negative	unary negation
*	np.multiply	multiplication
_/	np.divide	division
//	np.floor_divide	floor division
**	np.power	exponentiation
%	np.mod	modulus / remainder

Overview of all available mathematical functions in NumPy.

Specifying the Output for ufuncs

- for large calculations it is often very useful to be able to specify the array where the result of the calculation will be stored
- you can do this using the out argument of the ufunc

```
x = np.arange(4).reshape(2,2)
y = np.empty((2,2))
np.multiply(x, 2, out=y)
x, y
(array([[0, 1],
```

```
(array([[0, 1],
[2, 3]]),
array([[0., 2.],
[4., 6.]]))
```

This is more efficient than the operation:

```
y = x * 2
y
```

```
array([[0, 2], [4, 6]])
```

since this operation

- creates a temporary array to store the result of x*2
- copies this array into the y array

Broadcasting

- broadcasting allows operations to be performed on arrays of different sizes
- they follow a strict set of rules

Broadcasting rules:

Rule 1: if two arrays differ in the number of dimensions, the shape of the one with fewer dimensions is padded with ones on its left side

Rule 2: if the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in that dimension is stretched to match the other shape

Rule 3: if in any dimension the sizes disagree and neither is equal to 1, an error is raised

Broadcasting rules applied

```
x = np.ones((3,2))
y = np.arange(2)
print(x.shape, y.shape)
x + y
# rules 1 and 2 are used
(3, 2) (2,)
array([[1., 2.],
      [1., 2.],
       [1., 2.]])
x = np.ones((3,2))
y = np.arange(3)
x + y
# this is rule 3
ValueError: operands could not be broadcast together with shapes (3,2) (3,)
```

Comparison Operators

- in NumPy it is also possible to do element-to-element comparisons of two arrays
- the comparison operators are implemented as ufuncs

Operator	ufunc
==	np.equal
!=	np.not_equal
<	np.less
<=	np.less_equal
>	np.greater
>=	np.greater_equal

Example: Comparison Operators

```
x = np.arange(5)
print(x)
x > 3
[0 1 2 3 4]
array([False, False, False, True])
x == 3
array([False, False, False, True, False])
x <= 3
array([ True, True, True, False])
```

Boolean Masks

- boolean arrays can be very useful to implement filters and conditional counts
- the functions np.any and np.all can be used to check if any or all the values of an array satisify a certain condition

```
x
array([0, 1, 2, 3, 4])

np.any(x > 3)

True
```

np.all(x > 3)

False

Filters and Conditional Counts

```
x = np.random.randint(6, size=(3,2))
Χ
array([[3, 5],
      [4, 0],
       [5, 4]])
np.sum(x > 2)
np.sum(x> 2, axis=1)
array([2, 1, 2])
np.sum((x>2) & (x<4)), x[(x>2) & (x<4)]
(1, array([3]))
```

Fancy Indexing

• instead of using single scalars as indices we can pass arrays of indices to access and modify complicated subsets of an array's values

```
x = np.random.default_rng().integers(0,30,dtype=np.int32, size=8)
                                                                     y[[0,1], [1,2]]
X
                                                                     array([0, 2], dtype=int32)
array([19, 13, 19, 0, 14, 22, 2, 14], dtype=int32)
                                                                     y[1, [0,1]]
x[[3,5,4]]
                                                                     array([22, 0], dtype=int32)
array([ 0, 22, 14], dtype=int32)
ind = np.array([[2,3,3],[5,3,6]])
y = x[ind]
array([[19, 0, 0],
       [22, 0, 2]], dtype=int32)
```

Sorting

- if we work with NumPy arrays, we should use NumPy's sorting functions
- they are much *more efficient* than Python's sort and sorted functions that work with lists
- to return a sorted array without modifying the input, you can use

```
x = np.array([8,7,6,1,2])
np.sort(x)
array([1, 2, 6, 7, 8])
```

• if you prefer sorting in-place, then use

```
x.sort()
x
array([1, 2, 6, 7, 8])
```

• argsort returns the *indices* of the sorted elements

```
x = np.array([8,7,6,1,2])
ind = np.argsort(x)
ind
```

```
array([3, 4, 2, 1, 0])
```

 you can also sort along specific rows or columns of a multidimensional array:

```
x = np.random.randint(10, size=(5,2))
np.sort(x, axis=0)
```

Partitioning

- if we are not interested in sorting the whole array, but want to find the s smallest values in the array, we can use np.partition
- np.partition uses an array and a number s as input and outputs an array with the smallest s values to the left of the partition and the remaining values to the right

```
x = np.array([7, 1, 7, 7, 1, 5, 7, 2, 3, 2, 6, 2, 3, 0])
```

```
np.partition(x, 4)
array([0, 1, 2, 1, 2, 5, 2, 3, 3, 6, 7, 7, 7])
```

```
np.argpartition(x, 4)
```

array([13, 4, 7, 1, 9, 5, 11, 12, 8, 10, 0, 3, 2, 6])

Further Reading: Utilizing your GPU with CuPy

- read about CuPy, especially the user guide about
 - Basics of CuPy
 - Memory Management
 - Performance Best Practices
 - Difference between CuPy and NumPy
- try to port a few of the algorithms we implementend with NumPy to CuPy (on a machine with an NVIDIA GPU K019); Do you see a performance improvement?

Literature

