Tyler Chen

tyler.chen@nyu.edu https://research.chen.pw

Academic Positions

Assistant Professor / Courant Instructor

- Mathematics at Courant, Computer Science and Engineering at Tandon
- Sponsor: Christopher Musco

Education

Ph.D. in Applied Mathematics

- Thesis: Lanczos-based methods for matrix functions
- Advisors: Anne Greenbaum, Thomas Trogdon

M.Sc. in Applied Mathematics

B.S. Summa Cum Laude in Mathematics and Physics; Minor in Studio Art

Research Interests

I'm particularly interested in incorporating probabilistic techniques into classical algorithms to develop methods which are fast and reliable, both in theory and in practice. Right now, I work mainly in the field of numerical linear algebra on Krylov subspace methods such as the conjugate gradient and Lanczos methods. I hope that my work will help to bridge the gaps between numerical analysis, theoretical computer science, and applied computational sciences such as quantum physics.

In submission

- [7] Tyler Chen, Anne Greenbaum, and Natalie Wellen. Optimal Polynomial Approximation to Rational Matrix Functions Using the Arnoldi Algorithm. 2023. arXiv: 2306.17308 [math.NA].
- [6] Tyler Chen, Anne Greenbaum, and Thomas Trogdon. GMRES, pseudospectra, and Crouzeix's conjecture for shifted and scaled Ginibre matrices. 2023. arXiv: 2303.02042 [math.NA].
- [5] Tyler Chen and Thomas Trogdon. Stability of the Lanczos algorithm on matrices with regular spectral distributions. 2023. arXiv: 2302.14842 [math.NA].
- [4] Noah Amsel, Tyler Chen, Anne Greenbaum, Cameron Musco, and Chris Musco. Near-Optimality Guarantees for Approximating Rational Matrix Functions by the Lanczos Method. 2023. arXiv: 2303. 03358 [math.NA].
- [3] Qichen Xu and Tyler Chen. A posteriori error bounds for the block-Lanczos method for matrix function approximation. 2022. arXiv: 2211.15643 [math.NA].

- [2] Raghu Bollapragada, Tyler Chen, and Rachel Ward. On the fast convergence of minibatch heavy ball momentum. 2022. arXiv: 2206.07553 [cs.LG].
- [1] Tyler Chen, Thomas Trogdon, and Shashanka Ubaru. Randomized matrix-free quadrature for spectrum and spectral sum approximation. 2022. arXiv: 2204.01941 [math.NA].

Publications

- [9] Tyler Chen. "A spectrum adaptive kernel polynomial method". In: *The Journal of Chemical Physics* 159.11 (2023), p. 114101. ISSN: 0021-9606. arXiv: 2308.15683 [physics.comp-ph]. URL: https://doi.org/10.1063/5.0166678.
- [8] Tyler Chen and Eric Hallman. "Krylov-Aware Stochastic Trace Estimation". In: SIAM Journal on Matrix Analysis and Applications 44.3 (Aug. 2023), pp. 1218-1244. arXiv: 2205.01736 [math.NA]. URL: https://doi.org/10.1137/22m1494257.
- [7] Tyler Chen, Anne Greenbaum, Cameron Musco, and Christopher Musco. "Low-Memory Krylov Subspace Methods for Optimal Rational Matrix Function Approximation". In: SIAM Journal on Matrix Analysis and Applications 44.2 (May 2023), pp. 670–692. arXiv: 2202.11251 [math.NA]. URL: https://doi.org/10.1137/22m1479853.
- [6] Tyler Chen and Yu-Chen Cheng. "Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems". In: *The Journal of Chemical Physics* 157.6 (Aug. 2022), p. 064106. arXiv: 2204.08147 [quant-ph]. URL: https://doi.org/10.1063/5.0099761.
- [5] Tyler Chen, Anne Greenbaum, Cameron Musco, and Christopher Musco. "Error Bounds for Lanczos-Based Matrix Function Approximation". In: SIAM Journal on Matrix Analysis and Applications 43.2 (May 2022), pp. 787-811. arXiv: 2106.09806 [math.NA]. URL: https://doi.org/ 10.1137/21m1427784.
- [4] Tyler Chen, Thomas Trogdon, and Shashanka Ubaru. "Analysis of stochastic Lanczos quadrature for spectrum approximation". In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. Proceedings of Machine Learning Research. PMLR, 18-24 Jul 2021, pp. 1728-1739. arXiv: 2105.06595 [cs.DS]. URL: http://proceedings.mlr.press/v139/chen21s.html.
 - selected for long presentation (top 3%)
- [3] Anne Greenbaum, Hexuan Liu, and Tyler Chen. "On the Convergence Rate of Variants of the Conjugate Gradient Algorithm in Finite Precision Arithmetic". In: SIAM Journal on Scientific Computing (July 2021), S496–S515. arXiv: 1905.05874 [cs.NA]. URL: https://doi.org/10.1137/20m1346249.
- [2] Tyler Chen. "Non-asymptotic moment bounds for random variables rounded to non-uniformly spaced sets". In: Stat (June 2021), e395. arXiv: 2007.11041 [math.ST]. URL: https://onlinelibrary.wiley.com/doi/10.1002/sta4.395.
- [1] Tyler Chen and Erin C. Carson. "Predict-and-recompute conjugate gradient variants". In: SIAM Journal on Scientific Computing 42.5 (Jan. 2020), A3084-A3108. arXiv: 1905.01549 [cs.NA]. URL: https://doi.org/10.1137/19m1276856.

abridged version was Student Paper Competition winner at 16th Copper Mountain Conference on Iterative Methods

Student Mentoring

3 · · · · · · · · · · · · · · · · · · ·
Research
Robert Chen (NYU)
Kevin Li (NYU)
Skai Nzeuton (Stuyvesant High School)
Yilu Pan (NYU Shanghai)
Yixin Wang (NYU)
Qichen Xu (UW)
Independent studies/directed readings
Ismael Jiminez (NYU)
Yue Geng (NYU)
Linda Zhao (NYU)
Aeron Langford (UW) autumn 2019
Teaching
Instructor, Numerical Analysis (NYU MATH-UA 252)
Instructor, Numerical Analysis (NYU MATH-UA 252) spring 2023
Instructor, Mathematical Statistics (NYU MATH-UA 234)
Instructor, Applied Linear Algebra and Numerical Analysis (UW AMATH 352) spring 2021
$In structor, Interdisciplinary \ Writing/Natural \ Science \ (\verb"UWENGL" 199") winter \ 2021$
$Instructor, Interdisciplinary \ Writing/Natural \ Science \left(\text{UW ENGL 199} \right) \text{autumn 2020}$
TA, Probability and Statistics for Computational Finance (UW CFRM 410) winter 2019
TA, Calculus with Analytic Geometry I (UW MATH 124) autumn 2018
TA, Calculus with Analytic Geometry II (UW MATH 12) winter 2018
TA, Calculus with Analytic Geometry II (UW MATH 125) autumn 2017
TA, Electronics (Tufts PHY 41)
TA, Electronics (Tufts PHY 41)
Grader, Discrete Mathematics (Tufts MATH 61) spring 2016
$Grader, Calculus III (\text{Tufts MATH 42}). \\ \hspace*{1.5cm} \text{fall 2015}$
Grader, Differential Equations (Tufts MATH 51)
Grader, Calculus III (Tufts MATH 42)
Awards & Honors
Boeing Research Award (UW Department of Applied Mathematics)

Student Paper Competition Winner (Copper Mountain Conference on Iterative Methods)	2020
Graduate Research Fellowship (NSF)	2019
Top Scholars Fellowship (UW)	2017
The Audrey Butvay Gruss Science Award (Tufts)	2017
Phi Beta Kappa (Tufts)	2017
Sigma Pi Sigma Physics Honors Society (Tufts)	2016
The Howard Sample Prize Scholarship in Physics (Tufts)	2015

Talks and Posters

- [15] Krylov subspace methods for matrix function trace approximation. Presentation at NYU Shanghai. Shanghai, China, Aug. 2023. [pdf]
- [14] Krylov-aware low-rank approximation. Presentation at International Congress on Industrial and Applied Mathematics. Tokyo, Japan, Aug. 2023. [pdf]
- [13] Randomized trace estimation. Presentation at Sampling Theory and Appliecations Conference. New Haven, CT, July 2023. [pdf]
- [12] Randomized matrix-free quadrature. Presentation at Foundations of Computational Mathematics. Paris, France, June 2023. [pdf]
- [11] Stochastic trace estimation and quantum typicality: a case study in interdisciplinary research. Presentation at Perspectives on Matrix Computations: Theoretical Computer Science Meets Numerical Analysis. Banff, AB, Mar. 2023. [pdf]
- [10] Randomized matrix-free quarature. Presentation at Courant Numerical Analysis and Scientific Computing Seminar. New York, NYU, Sept. 2022. [pdf]
- [9] GMRES, pseudospectra, and Crouzeix's conjecture for shifted and scaled Ginbre matrices. Presentation at Conference on Random Matrix Theory and Numerical Linear Algebra. Seattle, WA, June 2022. [pdf]
- [8] Simple Algorithms for Spectral Sum and Spectrum Approximation. Poster at Workshop on Algorithms for Large Data (Online). Virtual, Aug. 2021. [pdf]
- [7] Analysis of stochastic Lanczos quadrature for spectrum approximation. Oral at International Conference on Machine Learning. Virtual, July 2021. [video]
- [6] Concentration in the Lanczos Algorithm. Presentation at SIAM Linear Algebra 21. Virtual, May 2021. [pdf]
- [5] Analysis of stochastic Lanczos quadrature for spectrum approximation. Presentation at at Baidu Research. Seattle, WA, Mar. 2021. [pdf]
- [4] Analyzing the Effects of Local Roundoff Error on Predict-and-Recompute Conjugate Gradient Variants. Poster at Householder Symposium (Cancelled). Selva di Fasano, Italy, June 2020.
- [3] Predict-and-recompute conjugate gradient variants. Presentation at Copper Mountain Student Paper Award Session (Cancelled). Copper Mountain, CO, Mar. 2020.
- [2] Predict-and-recompute conjugate gradient variants. Presentation at SIAM Parallel Processing. Seattle, WA, Feb. 2020. [pdf]

[1] Symmetric Preconditioner Refinement Using Low Rank Approximations. Presentation at Baidu Research. Seattle, WA, Feb. 2019.

Service and Outreach

Minisymposium Organizer
Graduate Student Representative
Minisymposium Organizer
Diversity Committee Departmental Climate Orientation
Numerical Analysis Research Club
SIAM UW Mental Health Conversation and Resources
Software

Research code (https://github.com/tchen-research)

Repositories with code to generate figures and experiments from my papers.

PETSc (https://www.mcs.anl.gov/petsc/)

 $Contribute \, {\tt PIPEPRCG}. \, This \, method \, can \, be \, used \, by \, with \, the \, flag \, {\tt -ksp_type} \ \, {\tt pipeprcg}.$

mpmath (https://github.com/mpmath)

Update matrix multiplication driver to significantly improve performance for sparse matrices.