Examath Groups	Mathematics Exam Section :L.S.	Prepared by: Randa Chehade Edited by: Hassan Ahmad
Number of questions: 3	Sample 03 – year 2022 Duration: 90 min	Name: Nº:

- This exam includes three problems inscribed on two pages.
- The use of a non-programmable calculator is allowed.

I- (5 points)

Consider the function f defined over]0; $+\infty[$ by $f(x) = a(\ln x)^2 + b \ln x$ (a and b are real numbers). Designate by (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$. Given that:

- (C) passes through the point E (e; -1);
- (C) admits at point E a tangent parallel to the x-axis.

We define over]0; $+\infty[$ the function g defined by $g(x) = e^{f(x)}$.

Designate by (G) its representative curve in the same orthonormal system.

Tell, with justification, whether each of the following statements is true or false:

- 1) The values of a and b are respectively 1 and -2.
- 2) The curve (C) cuts the x –axis in two distinct points.
- 3) The solution set of the inequality f(x) > -1 is e; $+\infty$.
- 4) The slope of the tangent to the curve (G) at point of abscissa 1 is -2.

II- (6 points)

Consider 2 urns U and V are such that:

- U contains 3 balls each carrying the number 0 and two balls each carrying the number 1.
- V contains 2 balls each carrying the number 0 and three balls each carrying the number 1.

Part A:

One ball is randomly selected from U and one ball is randomly selected from V.

- 1) Show that the probability of selecting two balls carrying the number 0 is 0.24.
- 2) Calculate the probability of selecting two balls carrying the same number.
- 3) Calculate the probability of selecting two balls carrying different numbers.

<u>Part B:</u>

In this part one ball is randomly selected from U:

- if the selected ball from urn U carries number 0, then two balls are randomly and simultaneously selected from urn V.
- if the selected ball from urn U carries number 1, then three balls are randomly and simultaneously selected from urn V.

Consider the following events:

E: "The selected ball from urn U carries number 0".

F: "The selected balls from urn V carry the same number".

- 1) Determine the probability P(E).
- 2) Show that P(F/E) = 0.4, and deduce $P(E \cap F)$.
- 3) Calculate $P(\overline{E} \cap F)$, and deduce P(F).
- 4) Knowing that the selected balls from urn V carry the same number, what is the probability that the selected ball from urn U carries number 1?

Part C:

The ten balls from the two urns U and V are placed in one urn W.

Three balls are selected one after the other without replacement from the urn W.

Calculate the probability of the event H:

"The product of numbers on the three selected balls is equal to 0".

III- (9 points)

Part A:

Let g be the function defined over \mathbb{R} by $g(x) = 1 + (1 - x)e^x$.

- 1) a) Calculate $\lim_{x \to +\infty} g(x)$ and $\lim_{x \to -\infty} g(x)$.
 - **b**) Calculate g'(x), and set up the table of variations of g.
- a) Show that the equation g(x) = 0 admits a unique solution α and verify that 1.27 < α < 1.28.
 b) Discuss, according to the values of x in R, the sign of g(x).

Part B:

Let f be the function defined over \mathbb{R} by: $f(x) = (2-x)e^x + x - 2$.

Designate by (C) its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$...

- 1) Determine $\lim_{x \to +\infty} f(x)$ and calculate f(2.5) to the nearest 10^{-2} .
- 2) a) Determine $\lim_{x \to -\infty} f(x)$, and prove that the straight line (d) of equation: y = x 2 is an oblique asymptote to (C).
 - **b**) Study the relative position of (C) and (d).
- 3) Verify that f'(x) = g(x), then set up the table of variations of f.
- 4) Show that $f(\alpha) = \frac{(\alpha 2)^2}{\alpha 1}$.
- 5) Draw (d) and (C) (take $\alpha \approx 1.275$).

Q.I.	Answers	5 points
1.	$f(e) = -1$; $a(\ln e)^2 + b \ln e = -1$; $a + b = -1$.	1 1/4
	$f'(x) = \frac{2a \ln x}{x} + \frac{b}{x} \; ; \; f'(e) = 0 \; ; \; \frac{2a \ln e}{e} + \frac{b}{e} = 0 \; ; \; 2a + b = 0.$	
	Then $a = 1$; $b = -2$, hence $f(x) = (\ln x)^2 - 2 \ln x$ (True).	
2.	$f(x) = 0$; $(\ln x)^2 - 2 \ln x = 0$; $\ln x (\ln x - 2) = 0$; $\ln x = 0$ or $\ln x = 2$;	1
	$x = 1 \text{ or } x = e^2.$	
	Then (C) cuts the x –axis in 2 distinct points of respective abscissas 1 and $e^2(\mathbf{True})$.	
3.	$f(x) > -1$; $(\ln x)^2 - 2 \ln x + 1 > 0$; $(\ln x - 1)^2 > 0$ which is true for all values	1 1/4
	of x such that $(\ln x - 1) \neq 0$ and $x > 0$; that is $x \neq e$ and $x > 0$.	
	Then the solution set is $]0; e[\cup]e; +\infty[$ (False).	
4.	$g'(x) = f'(x)e^{f(x)} .$	1 1/2
	The slope of tangent at point of abscissa 1 is $g'(1) = f'(1)e^{f(1)}$.	
	$f'(1) = \frac{2(\ln 1 - 1)}{1} = -2; \ f(1) = (\ln 1)^2 - 2\ln 1 = 0.$	
	Then $g'(1) = -2e^0 = -2$ (True).	

Q.II.	Answers	6 points
A.1.	P (selecting 2 balls carrying the number 0) = $\frac{3}{5} \times \frac{2}{5} = \frac{6}{25} = 0.24$.	1/2
A.2.	P (selecting 2 balls carrying the same number) = $\frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{3}{5} = \frac{12}{25} = 0.48$	
A.3.	P (selecting 2 balls carrying different numbers)	1/2
	= 1– P(selecting 2 balls carrying the same number) = $1 - 0.48 = 0.52$.	
B.1.	$P(E) = \frac{3}{5} = 0.6 .$	1/2
B.2.	$P(F/E) = \frac{C_2^2 + C_3^2}{C_5^2} = 0.4.$ $P(E/E) = P(E/E) \times P(E) = 0.4 \times 0.6 = 0.24$	1
B.3.	$P(E \cap F) = P(F/E) \times P(E) = 0.4 \times 0.6 = 0.24 .$ $P(\overline{E} \cap F) = P(F/\overline{E}) \times P(\overline{E}) = \frac{C_3^3}{C_5^3} \times 0.4 = 0.1 \times 0.4 = 0.04 .$ $P(F) = P(E \cap F) + P(\overline{E} \cap F) = 0.24 + 0.04 = 0.28.$	1
B.4.	$P(\overline{E}/F) = \frac{P(\overline{E} \cap F)}{P(F)} = \frac{0.04}{0.28} = \frac{1}{7} .$	1
C.	P(H) = P(at least one ball carries number $0) = 1 - P($ no ball carries number $0)$	1
	$=1-\frac{A_5^3}{A_{10}^3}=\frac{11}{12}.$	

Q.III.	Answers	9 points	
A.1.a.	$\lim_{x\to+\infty}g(x)=\lim_{x\to+\infty}[1+(1-x)e^x]=-\infty.,$	3/4	
	$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} [1 + (1 - x)e^x] = \lim_{x \to -\infty} [1 + e^x - xe^x] = 1 + 0 - 0 = 1.$		
A.1.b.	$g'(x) = -e^x + (1-x)e^x = -xe^x$ same sign as $-x$ since $e^x > 0$ for every $x \in \mathbb{R}$		
	$x - \infty$ 0 $+ \infty$		
	g'(x) + 0 -		
	g(x) 2		
	1∞		
A.2.a.	Over $]-\infty;0]:g$ is continuous and strictly increasing from positive (1) to	1	
	positive (2), then $g(x) > 0$ over $]-\infty; 0]$.		
	Over $]0; +\infty[: g \text{ is continuous, strictly decreasing and changes its sign from }]$		
	positive (2) to negative ($-\infty$), then the equation $g(x) = 0$ admits one solution α		
	over $]0; +\infty[$.		
	Then the equation $g(x) = 0$ admits a unique solution α .		
	In addition, $g(1.27) \approx 0.003 > 0$ and $g(1.28) \approx -0.007 < 0$, therefore:		
	$1.27 < \alpha < 1.28$.		
A.2.b.	g(x) > 0 if x < 0.	3/4	
	Over]0; $+\infty$ [: g is continuous, strictly decreasing from 2 to $-\infty$ and $g(\alpha) = 0$, so:		
	$g(x) > 0$ if $0 < x < \alpha$ and $g(x) < 0$ if $x > \alpha$. Therefore:		
	• $g(x) < 0 \text{ if } x > \alpha$.		
	$\bullet \ g(x) = 0 \ if \ x = \alpha \ .$		
	• $g(x) > 0$ if $x < \alpha$.		
B.1.	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [(2-x)e^x + x - 2] = \lim_{x \to +\infty} (x-2)[-e^x + 1] = -\infty.$	3/4	
	$f(2.5) = (2 - 2.5)e^{2.5} + 2.5 - 2 = -0.5e^{2.5} + 0.5 \approx -5.59.$		
B.2.a.	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [(2 - x)e^x + x - 2] = \lim_{x \to -\infty} (x - 2)[-e^x + 1] = -\infty(0 + 1) =$	3/4	
	$-\infty$.		
	$\lim_{x \to -\infty} [f(x) - y_d] = \lim_{x \to -\infty} (2 - x)e^x = \lim_{x \to -\infty} (2e^x - xe^x) = 0;$		
	then the line (d) of equation: $y = x - 2$ is an oblique asymptote to (C) at $-\infty$.		
B.2.b.	$f(x) - y_d = (2 - x)e^x$; has the same sign as $(2 - x)$ since $e^x > 0$ for every $x \in \mathbb{R}$	1	
	• $f(x) - y_d > 0$ if $x < 2$; (C) is above (d) if $x \in]-\infty$; 2[.		
	• $f(x) - y_d < 0 \text{ if } x > 2$; (C) is below (d) if $x \in]2; +\infty[$.		
	• $f(x) - y_d = 0$ if $x = 2$; (C) cuts (d) at point of coordinates (2; 0).		

B.3.	$f'(x) = -e^x + (2-x)e^x + 1 = e^x - xe^x + 1 = (1-x)e^x + 1 = g(x).$	1/2
	$f'(x)$ and $g(x)$ have the same sign over \mathbb{R} .	
		3/4
	$x - \infty$ $\alpha + \infty$	
	f'(x) + 0 -	
	$f(x)$ $f(\alpha)$	
	$-\infty$	
B.4.	$g(\alpha) = 0 \; ; e^{\alpha} = \frac{1}{\alpha - 1};$	1/2
	$f(\alpha) = (2 - \alpha)e^{\alpha} + \alpha - 2 = (2 - \alpha)\frac{1}{\alpha - 1} + \alpha - 2 = \frac{2 - \alpha + (\alpha - 2)(\alpha - 1)}{\alpha - 1};$	
	$f(\alpha) = \frac{\alpha^2 - 4\alpha + 4}{\alpha - 1} = \frac{(\alpha - 2)^2}{\alpha - 1}.$	
B.5.	-5 -4 -3 -2 -1 0 1 3 4 (d) -5 -4 -3 -2 -1 0 1 3 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1 1/2