INTRODUCTION TO ANOVA

Statistical Inference

What is ANOVA?

- ANOVA is short for ANalysis Of VAriance
- Used with 3 or more groups to test for MEAN DIFFS.
- □ E.g., wine study with 4 groups:
 - Reference (the reference soil, the common)
 - Env 1 (the first alternative)
 - Env 2 (the second alternative)
 - Env 4 (the third alternative)
- Level is value, kind or amount of IV
- Treatment Group is people who get specific treatment or level of IV
- Treatment Effect is size of difference in means

Rationale for ANOVA (1)

- □ We have at least 3 means to test, e.g., H_0 : $\mu_1 = \mu_2 = \mu_3$.
- Could take them 2 at a time, but really want to test all 3 (or more) at once.
- Instead of using a mean difference, we can use the variance of the group means about the grand mean over all groups.
- Logic is just the same as for the t-test. Compare the observed variance among means (observed difference in means in the t-test) to what we would expect to get by chance.

Rationale for ANOVA (2)

- \Box HO: μ 1 = μ 2 = ... = μ 5 vs. HA: not all are equal.
 - \blacksquare H01: μ1 = μ2
 - H02: μ 2 = μ 3
 - H03: μ 3 = μ 4
 - \blacksquare H04: μ 4 = μ 5
 - \blacksquare H05: μ 1 = μ 3
 - H06: μ 2 = μ 4
 - H07: μ 3 = μ 5
 - \blacksquare H08: μ 1 = μ 4
 - \blacksquare H09: μ 2 = μ 5
 - \blacksquare H010: μ 1 = μ 5

- Reject any null
 hypotheses implies
 reject the initial null
 hypothesis.
 - High computational effort.
 - Increases the type I error (reject an null hypothesis being true).

Rationale for ANOVA (3)

- Suppose we drew 3
 samples from the same population.
- Note that the means from the 3 groups are not exactly the same, but they are close, so the variance among means will be small.

Three samples for the same population

Rationale for ANOVA (4)

- Suppose we sample people from 3 different populations.
- Note that the sample means are far away from one another, so the variance among means will be large.

Three samples for the same population?

Rationale for ANOVA (5)

Suppose we complete a study and find the following results (either graph). How would we know or decide whether there is a real effect or not?

Three samples for the same population

Three samples for different populations

To decide, we can compare our observed variance in means to what we would expect to get on the basis of chance given no true difference in means.

Definitions

- lacksquare The Grand Mean, $ar{ar{X}} = ar{X}_G$, taken over all observations.
- □ The mean of a specific level \overline{X}_{A_1} (level 1 in this case).
- \square The observation of the ith element X_i .

Example: Is important the floor for the wine?

□ The dataset

R wine	e						_ 🗆	>
	Label	Soil Odor.I	ntensity.before.shaking Aroma.qualit	y.before.shaking Fruity.	before.shaking Flower.h	pefore.shaking Spice	.before.s	shal
EL	Saumur	Env1	3.074	3.000	2.714	2.280		1.
HA	Saumur	Env1	2.964	2.821	2.375	2.280		1
ON Bo	ourgueuil	Env1	2.857	2.929	2.560	1.960		2
/AU	Chinon	Env2	2.808	2.593	2.417	1.913		2
MAC	Saumur H	Reference	3.607	3.429	3.154	2.154		2
BOU Bo	ourgueuil E	Reference	2.857	3.111	2.577	2.040		2
OI Bo	ourgueuil E	Reference	3.214	3.222	2.962	2.115		2
EL	Saumur	Env1	3.120	2.852	2.500	2.200		2
OM1	Chinon	Env1	2.857	2.815	2.808	1.923		2
rur	Saumur	Env2	2.893	3.000	2.571	1.846		1
EL	Saumur	Env2	3.250	3.286	2.714	1.926		1
ER1	Saumur	Env2	3.393	3.179	2.769	2.038		1
MAC	Saumur I	Reference	3.179	3.286	2.778	2.231		1
POY	Saumur I	Reference	3.071	3.107	2.731	2.120		1
ING Bo	urgueuil	Env1	3.107	3.143	2.846	2.185		1
BEN Bo	ourgueuil E	Reference	2.929	3.179	2.852	2.000		2
BEA	Chinon I	Reference	3.036	3.179	3.037	2.231		1
ROC	Chinon	Env2	3.071	2.926	2.741	2.000		1
ING Bo	ourgueuil	Env1	2.643	2.786	2.536	1.889		1
1	Saumur	Env4	3.696	3.192	2.833	1.826		2
2	Saumur	Env4	3.708	2.926	2.520	2.040		2
—	1							П

Example: Is important the floor for the wine?

Boxplot of Intensity values by Soil groups

- We obtain information from different wines.
- There are different features (factors) that can determine the wine quality.
- We want to analyze the intensity feature.
- The factor is the floor, with 4 different possible values (levels).

Example: Is important the floor for the wine?

T1

- The overall mean of the entire sample was 3.166
- This is called the "grand" mean, and is often denoted by $\bar{\bar{X}}$.
- If HO were true then we'd expect the group means to be close to the grand mean.

Example: Is important the floor for the wine?

- lacktriangle The ANOVA test is based on the combined distances from $ar{ar{X}}$.
- If the combined distances are large, that indicates we should reject HO.

The ANOVA statistic

SSB, MSE

The Anova Statistic

- □ To combine the differences from the grand mean we
 - Square the differences
 - Multiply by the numbers of observations in the groups
 - Sum over the groups
- "SSB" = Sum of Squares Between groups

$$\mathbf{SSB} = N_{\mathrm{Re}\,ference} \left(\overline{X}_{\mathrm{Re}\,fenrenc} - \overline{\overline{X}} \right)^{2} + N_{Env1} \left(\overline{X}_{Env1} - \overline{\overline{X}} \right)^{2} + N_{Env2} \left(\overline{X}_{Env2} - \overline{\overline{X}} \right)^{2} + N_{Env4} \left(\overline{X}_{Env4} - \overline{\overline{X}} \right)^{2}$$

- lacksquare Where the $ar{X}_*$ are the group means.
- Note: This looks a bit like a variance.

How big is to reject?

 \square For the wine data, SSB = 1.108

Is that big enough to reject HO?

As with the t test, we compare the statistic to the variability of the individual observations.

 In ANOVA the variability is estimated by the Mean Square Error, or MSE

Intensity values depending on floor

The Mean Square Error is a measure of the variability after the group effects have been taken into account.

$$MSE = \frac{1}{N - K} \sum_{i} \sum_{j} \left(x_{ij} - \overline{X}_{j} \right)^{2}$$

where xij is the ith observation in the jth group.

Valores de intensidad por tipo de suelo

Valores de intensidad por tipo de suelo

Valores de intensidad por tipo de suelo

We can break the total variance in a study into meaningful pieces that correspond to treatment effects and error. That's why we call this Analysis of Variance.

Notes on MSE

- If there are only two groups, the MSE is equal to the pooled estimate of variance used in the equalvariance t test.
- ANOVA assumes that all the group variances are equal.
- Other options should be considered if group variances differ by a factor of 2 or more.

ANOVA F Test

The ANOVA F test is based on the F statistic

$$F = \frac{SSB/(K-1)}{MSE}$$

- where K is the number of groups.
- N is the total number of observations
- Under H₀ the F statistic has an "F" distribution, with K-1 and N-K degrees of freedom (N is the total number of observations)

Wine Data: F test p-value

□ To get a p-value we compare our F statistic to an F(3, 17) distribution.

Wine Data: F test p-value

□ To get a p-value we compare our F statistic to an F(3, 17) distribution.

In our example

$$F = \frac{1.108/3}{0.0981} = 3.766$$

Wine Data: F test p-value

F Distribution: Numerator df = 3, Denominator df = 17

- To get a p-value we compare our F statistic to an F(3, 17) distribution.
- □ In our example

$$F = \frac{1.108/3}{0.0981} = 3.766$$
$$P(F(3,17) > 3.766) = 0.0306$$

- The p-value is 0.0306
- □ We reject H₀

Tabla de ANOVA

□ Results are often displayed using an ANOVA Table

R ANOVA table

- Rcmdr> AnovaModel.2 <- aov(Intensity ~ Soil, data=wine)
- Rcmdr> summary(AnovaModel.2)

Example using R

Continuing with the example with the Wine data, build a model that relates two independent variables such as Soil (soil where wine is grown) and label (the label of the wine). We want to analyze two dependent variables, such as intensity and aroma.

Assumptions of ANOVA

- The observations within each sample must be independent.
 - Durbin Watson test
 - dwtest(OurModel, alternative = "two.sided")
- The populations from which the samples are selected must be normal.
 - Shapiro test
 - shapiro.test(Pop1), do for all the populations.
- The populations from which the samples are selected must have equal variances (homogeneity of variance)
 - Breusch Pagan test
 - Imtest::bptest(OurModel)

Homoscedasticity test

- Our decision rule is as follows using the 5% level of significance:
 - HO (Null Hypothesis): Homoscedasticity
 - HA (Alternative Hypothesis): Heteroscedasticity

Homocedasticity

Imtest::bptest(AnovaModel.3)

$$BP = 2.7267$$
, $df = 3$, p -value = 0.4357

 The recommended method for correcting heteroscedasticity is redefining the variables (ex. Log).

We accept H0

Multiple comparisons

Post-hoc testing

Multiple Comparisons

- Post-hoc testing usually involves multiple comparisons.
- For example, if the data contain 4 groups, then 6
 different pairwise comparisons can be made

Multiple Comparisons

- □ Each time a hypothesis test is performed at significance level α , there is probability α of rejecting in error.
- Performing multiple tests increases the chances of rejecting in error.

The problem of the multiple comparisons

- If one test is performed at the 5% level, there is only a 5% chance of incorrectly rejecting the null hypothesis if the null hypothesis is true.
- □ For 100 tests where all null hypotheses are true, the expected number of incorrect rejections is 5.

The Binomial Probability Distribution

- For a binomial experiment with:
 - n trials and
 - \blacksquare probability **p** of success on a given trial, q = 1 p.
 - \blacksquare the probability of **k** successes in n trials is

$$P(x=k) = C_k^n p^k q^{n-k} = \frac{n!}{k!(n-k)!} p^k q^{n-k} \text{ for } k = 0,1,2,...n.$$

Recall
$$C_k^n = \frac{n!}{k!(n-k)!}$$

with
$$n! = n(n-1)(n-2)...(2)1$$
 and $0! \equiv 1$.

Multiple Comparisons

If the tests are independent, the probability of at least one incorrect rejection is 99.4%. These errors are called false positives or Type I errors.

- P(at least one rejection) = 1-P(no rejections)
- \square 1-P(x=0) = 1-0.0059 = .994

$$P(x=0) = \frac{100!}{0!(100-0)!} 0.05^{0} 0.95^{100-0}$$

Boxplot of Intensity values by Soil groups

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Intra groups	3	1.108	0.3694	3.766	0.0306 *
Between groups	1 <i>7</i>	1.668	0.0981		

- Analyzing the wine intensity regarding the soil.
- The ANOVA shows good evidence (p = 0.0306) that the means are not all the same.
- Which means are different?
- Can directly compare the subgroups using "post hoc" tests.

- If the t-test is significant, you have a difference in population means.
- If the F-test is significant, you have a difference in population means. But you don't know where.
- □ With 3 means, could be A=B>C or A>B=C.

- ANOVA just says that the means differ, but not which ones. We have to do additional tests to determine.
- When are post hoc tests done? As the name implies after an ANOVA
 - But only after a rejection of the null hypothesis.
 - Only if there are 3 more treatments; k > 2. If only 2 treatments we can just do a t-test.

- Post hoc tests are going to let us go back through our data and compare individual treatments 2 at a time:
 - Bonferroni correction
 - Duncan's new multiple range test
 - Friedman test
 - Newman–Keuls method
 - Scheffé's method
 - Tukey's range test
 - Dunnett's test

Bonferroni Correction

- The Bonferroni correction is a simple way to adjust for the multiple comparisons. We calculate a new α value.
 - \blacksquare Perform each test at significance level α .
 - \square Divide the α by the number of tests performed.
 - $\alpha' = \alpha/m$

 Is a conservative approach. Useful when the number of groups is small.

Example Bonferroni: wine

```
data(wine, package="FactoMineR")
with(wine,
{
    pairwise.t.test(Intensity,Soil,p.adj="bonf")
})
```

Pairwise comparisons using t tests with pooled SD

data: Intensity and Soil

Conservative with large number of tests. 2

Env1 0.044 - -

Env2 0.100 1.000 -

Env4 1.000 1.000 1.000

P value adjustment method: bonferroni

Least Significant Difference test

- The computation is very similar to the equalvariance t test.
- □ Compute an equal-variance t test, but replace the pooled variance (s^2) with the MSE.

Least Significant Difference test

□ Remember, equal variance test

$$\frac{\overline{y}_A - \overline{y}_B}{s\sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} > t_{1-\alpha,n}$$

□ Remember, MSE

$$MSE = \frac{1}{N - K} \sum_{j} \sum_{i} (x_{ij} - \overline{X}_{j})^{2}$$

$$|\overline{y}_{i\cdot} - \overline{y}_{j\cdot}| \ge t_{\alpha/2} \sqrt{s_{\mathrm{W}}^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Example LSD: wine

```
data(wine, package="FactoMineR")
with(wine,
{
  pairwise.t.test(Intensity,Soil,p.adj="none")
})
```

Boxplot of Intensity values by Soil groups

Pairwise comparisons using t tests with pooled SD

data: Intensity and Soil

Reference Env1 Env2

Env1 0.0074 - -

Env2 0.0166 0.9052 -

Env4 0.2565 0.4048 0.4728

P value adjustment method: none

Tukey

$$||\overline{X}_i - \overline{X}_j|| \ge q(\propto, k, df) \sqrt{\frac{MSE}{n}}$$

Equal number of samples

$$||\bar{X}_i - \bar{X}_j|| \ge q(\propto, k, df) \sqrt{\frac{MSE}{n}} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)$$

 $\square k = \#groups, df = N - k$

Studentized range distribution

$$q = rac{(\overline{y}_{ ext{max}} - \overline{y}_{ ext{min}})}{S\sqrt{2/n}}$$

Example Tukey: wine

})

```
data(wine, package="FactoMineR")

with(wine,

{

Fit: aov(formula = Intensity ~ Soil)

TukeyHSD(aov_model)

TukeyHSD(aov_model)
```

When confidence intervals are needed or sample sizes are not equal.

	diff	lwr	upr	p.adj
Env1-Reference	-0,5094286	-0,9853299	-0,03353	0,033641
Env2-Reference	-0,4872571	-1,0085809	0,034067	0,071501
Env4-Reference	-0,2948571	-1,0087091	0,418995	0,650531
Env2-Env1	0,02217143	-0,4991523	0,543495	0,999342
Env4-Env1	0,21457143	-0,4992805	0,928423	0,827774

To know more

Part III: Stochastic Processes Chapter 11.2:
 Regression of Probability and Statistics for Computer Scientists (2014 Ed.)