show that v=0 . Considering $A-\mu$ and $B-\mu$ for some $\mu>s(A)$ instead of A and B we may assume that s(A)<0 . Then there exists a strictly positive set $M'\subseteq E'$ such that

(4.5)
$$\phi \in D(A')$$
 and $A'\phi \leq 0$ for all $\phi \in M'$

(see the proof of Proposition 3.5).

Let $\phi \in M'$ and p be the seminorm given by $p(f) = \langle |f|, \phi \rangle$. We show that B is p-dissipative (see end of A-II, Sec. 2).

2. Let $\lambda > \lambda_0 := \max\{s(A), 0\}$. We show that for $f \in D(B)$,

$$(4.6) g = (\lambda - B) f implies |f| \le R(\lambda, A) |g|.$$

Let $\psi \in E_+'$. We have to show that $\langle |f|, \psi \rangle \leq \langle R(\lambda, A) |g|, \psi \rangle$. Let $\phi = R(\lambda, A) '\psi \in D(A')_+$. Then by (4.4) $\langle |f|, \psi \rangle = \langle |f|, (\lambda - A')_{\phi} \rangle = Re \langle (sign \ \overline{f}) (\lambda f), \phi \rangle - \langle |f|, A'_{\phi} \rangle$

It follows from (4.6) that for $\lambda > \lambda_0$ and $f \in D(\overline{B})$

(4.7)
$$g = (\lambda - \overline{B}) f$$
 implies $|f| \le R(\lambda, A) |g|$.

In particular, $(\lambda - \bar{B})$ is injective for $\lambda > \lambda_0$. Moreover,

(4.8)
$$|R(\lambda, \overline{B})g| \le R(\lambda, A)|g|$$
 for all $g \in E$ whenever $\lambda_O < \lambda \in \rho(\overline{B})$.

Assume now that $\mu > \lambda_0$ such that $(\mu - B)D(B)$ is dense in E . Then $(\mu - \overline{B})D(\overline{B}) = E$. (Indeed, let $h \in E$. There exists $f_n \in D(B)$ such that $g_n := (\mu - B)f_n \to h$ $(n \to \infty)$. By (4.6) it follows that $|f_n - f_m| \leq R(\lambda,A) |g_n - g_m|$. Thus (f_n) is a Cauchy sequence. Let $f = \lim_{n \to \infty} f_n$. Then $f \in D(\overline{B})$ and $(\mu - \overline{B})f = h$.) Thus $\mu \in \rho(\overline{B})$. It follows from the hypothesis that there esists $\lambda_1 \in \rho(\overline{B})$ such that $\lambda_0 < \lambda_1 \text{ . Since } R(\lambda,A) \leq R(\lambda_1,A) \text{ (by B-II,Lemma 1.9), it follows from (4.8) that } ||R(\lambda,\overline{B})|| \leq ||R(\lambda,A)|| \leq ||R(\lambda_1,A)|| := c \text{ ; hence dist}(\lambda,\sigma(\overline{B})) = r(R(\lambda,\overline{B}))^{-1} \geq ||R(\lambda,\overline{B})||^{-1} \geq 1/c \text{ for all }$ $\lambda \in \rho(\overline{B}) \cap [\lambda_1,\infty]$. This implies that $[\lambda_1,\infty) \subseteq \rho(\overline{B})$. Moreover, it follows from (4.8) that

$$(4.9) |R(\lambda, \overline{B})^n f| \le R(\lambda, A)^n |f| (f \in E, n \in N, \lambda_1 < \lambda).$$