$$\times \div \equiv \neq \neq \geq \geq \leq \not \leq \forall \mid \exists \in \not \in \exists \pi \theta \alpha \beta \Rightarrow \Rightarrow$$

1 lines

 $|\;|\;|\;\setminus\;|$

$$A \backslash B = \{ a \in A \mid a \notin B \}$$
$$|x|^2 = x^2, |x| \ge 0$$

2 1cm

1cm(x,y) = the smallest positive integer z so that x | z and y | z

3 dyadic

the dyadic rationals are
$$\left\{\frac{a}{2^{b}} \mid a, bintegral\right\}^{1}$$

4 verbatim

If you type in <text> leading spaces $\$ you get leading spaces.

With verbatim you can get blank lines: like ^that^ one.

 $^{^{1}\}overline{\text{Hello World}}$

5 mathfonts

$$\mathfrak{hi} \eqsim \beth \left<\right>$$

The permutation group $\mathfrak{G}_{\mathfrak{n}}$ is defined as $\{\pi \in \mathbb{Z}^n \mid 1 \leq \pi \leq n, \text{ all } \pi_i \text{ distinct } \}$ and has cardinality n!, while the power set $\mathcal{P}(n)$ is defined as the family of all subsets of S, and has cardinality $2^{|S|}$.

Name	Abbrv.	Capital	Population
Northwest Territories Nunavut Yukon	NT NU YT	Yellowknife Iqualuit Whitehorse	41 462 31 906 33897
π 3.14159 4 π 1.61803 (e 2.71828 2	$(1+\sqrt{5})/2$	2	
$egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}$	$\begin{vmatrix} c \\ d \end{vmatrix} = det \begin{bmatrix} a \\ d \\ g \end{vmatrix}$	$\left[egin{array}{ccc} b & c \ c & e & f \ h & i \end{array} ight]$	

Woah! A house

Figure 1: A medieval style of house

A appendix