Using Cosmic Voids to Illuminate Galaxy Properties

Christina Kreisch
Department of Astrophysical Sciences

Abstract

- Aim: predict median halo mass from only void properties
- There is a complex, non-linear relationship between void properties and the median halo mass
- Random Forest regression outperforms all linear models, with a mean squared error $\mathcal{O}(10^{-6})$
- Relationship between the median halo mass and void features is more complex than 2nd order polynomial or power law

Motivation & Previous Work

- Directly measuring galaxy features can be difficult
 - Seek alternative method
- As large underdone regions that house few halos, voids provide a different environment for halos
 - Impact galaxy evolution
- Void properties are sensitive to their tracers (Kreisch et al. 2018, Pollina et al. 2016)
 - Should be relationship between halo properties and void properties
- Active work on relationship, such as halo properties as a function of distance to center of void (Habouzit et al. in prep.)

Data & Methods

- Data from IllustrisTNG simulation (Springel et al. 2018)
 - Redshift z=0
 - Boxlength 300 Mpc
 - N-body simulation + hydrodynamics
 - Includes only halo properties
- Obtain void catalog by running VIDE (Sutter et al. 2015) on halo catalog
 - Finds voids from the halo distribution
 - Outputs void features: radius, ellipticity, etc.
- Regression with:
 - Linear Regression
 - Bayesian Ridge Regression, features selected from Elastic Net
 - Random Forest Regression
- Standardize all parameters before regression

Probing Halo Properties

```
PCA 0: EVR = 0.2940
                                        PCA 1: EVR = 0.1701
                                                                                                                       PCA 3: EVR = 0.0684
                                                                               PCA 2: EVR = 0.0702
                  Component
                               Weight
                                                          Component
                                                                      Weight
                                                                                                 Component
                                                                                                              Weight
                                                                                                                                                     Weight
              GroupWindMass 0.361959 4
                                                         GroupMass 0.448101 2
                                                                                                                                              Vpec 0.701499
                                                                                               GroupBHMdot -0.570992 11
       GroupStarMetallicity 0.342809
                                                       GroupBHMass 0.444417
                                                                                                  GroupSFR -0.458801
                                                                                                                              GroupGasMetallicity
                                                                                                                                                   0.544937
                   GroupSFR 0.334031 1
                                                   GroupStellarMass 0.439940
                                                                                                                                               VZ -0.340744
                                                                                                     hasBH 0.320360
                    hasWind 0.317440
                                                             hasSF -0.320800
                                                                                             GroupWindMass -0.308943
                                                                                                                                               VX 0.145931
           GroupStellarMass 0.299451
                                                             hasBH -0.314541
                                                                                                                                      GroupBHMdot -0.131348
                                                                                                     hasSF 0.284231
                      hasSF 0.299415
                                                           hasWind -0.285350
                                                                                                                                         GroupSFR -0.115315
                                                                                                 GroupMass 0.225279
                GroupBHMass 0.293638
                                               GroupStarMetallicity -0.258725
                                                                                                                                    GroupWindMass -0.113043
                                                                                               GroupBHMass 0.210482
                  GroupMass
                            0.286832 12
                                           GroupStellarMassFraction -0.200031
                                                                                                                          GroupStellarMassFraction
                                                                                                                                                  0.109012
                                                                                          GroupStellarMass 0.198500
                      hasBH 0.285080 2
                                                       GroupBHMdot 0.076224
                                                                                                                                               VY 0.074093
                                                                                                      Vpec -0.145379
                GroupBHMdot 0.231045
                                                                                                                                      GroupBHMass
                                                                                                                                                  0.053906
                                                          GroupSFR 0.071476
                                                                                       GroupGasMetallicity -0.133183
   GroupStellarMassFraction 0.227405 3
                                                GroupGasMetallicity -0.069487
                                                                                                                                        GroupMass
                                                                                                                                                   0.053527
                                                                                                   hasWind 0.071248
                                                                                                                                 GroupStellarMass 0.051693
        GroupGasMetallicity 0.070208
                                                     GroupWindMass -0.046647
                                                                                                        VZ 0.053215
11
                                                                                                                             GroupStarMetallicity 0.051074
                       Vpec -0.003480
                                                              Vpec 0.001916
                                                                                      GroupStarMetallicity 0.042378
                                                                                                                                          hasWind -0.040855
                         VY -0.000197 10
                                                                VZ -0.000248
                                                                                  GroupStellarMassFraction 0.028162
                         VX 0.000161
                                                                VX -0.000026
                                                                                                                                             hasSF -0.010210
                                                                                                        VX -0.027290
                                                                                                                                             hasBH 0.003740
                                                                VY 0.000021
                         VZ 0.000130
                                                                                                        VY -0.005933
```

- 4 components produced PCs with the most physical sense
- 1st PC: stars and star formation activity in galaxy
- 2nd PC: mass of galaxies (frequently considered the most important galaxy feature)
- 3rd PC: black hole activity
- 4th PC: galaxy motion + metallicity
- Striking: 1st + 2nd PCs agree with Connolly et al. 1995 that used galaxy spectra
- Start with the most fundamental galaxy feature: galaxy (halo) mass

- Galaxies inside voids tend to be less massive than galaxies outside voids → seems promising void features have impact on mass
- Many galaxies within a single void → aim to predict population parameters
- Goal: predict median galaxy mass of galaxy population within void

Predicting Median Halo Mass

— Linear Void Features —

Feature	LR	BR + EN	RF
voidDensityContrast	-0.288656		0.402250
voidEllipticity	-0.167343	-0.109672 ± 0.001221	0.342885
voidRadius	-0.005088	0.027225 ± 0.001610	0.244195
voidCentralDen	-0.002654	-0.016113 ± 0.001333	0.007460
voidNumChildren	0.044095	0.010645 ± 0.001566	0.003210

Void Features:

- Table 3: Feature weights for linear features
- Density Contrast: contrast between inner and outer densities
- Ellipticity
- Radius: average size of void
- Number of Children: number of sub voids
- Central Density: density within 1/4 radius of center
- See Table 1: Cannot predict individual mass as well
 - Makes sense: large scatter in halo mass for halo pop. in void
 - Justifies prediction of median halo mass
- See Table 1: Random Forest is astonishingly accurate

Why is the Random Forest so Accurate?

Figure 10: RF linear

Figure 11: BR + EN linear qq

- Random Forest predicted mass distribution almost perfect agreement with true distribution
- Bayesian Regression has heavier tails than true distribution

Mass Trends with Void Features

- Low Density Contrast
- High Density Contrast

Low Density Contrast

- Low Density Contrast:
 - Higher mass than for High Density Contrast
 - Mass decreases and has less scatter as ellipticity increases
 - Rounder: larger mass

- High Density Contrast:
 - Complex relationship
 - Small + round: low mass
 - Radius + ellipticity 1: mass increases then levels off

Linear Regression: fits low density contrast population (Table 2)— why radius not top feature

Predicting Median Halo Mass -2nd Order Polynomial Features—

- Non-linearities are clearly present in data (see visualizations)
- 2nd order: start simple, preference to lower order in astrophysics
- MSE improves for all models (see Table 1)
 - Confirmation of non-linearities in data
- Random Forest still most accurate
- Ellipticity x Radius term most important for Random Forest
 - Speaks to relationship in high density contrast voids
- Top features for Bayesian Regression only include ellipticity, radius, and density contrast (density contrast not present before)
 - Convergence of important features
- Takeaways:
- 1. Data are strongly non-linear and require strongly non-linear models
- 2. Most important features for predicting mass are indeed perhaps those selected by the Random Forest

Feature	LR	BR + EN	RF
voidEllipticity voidRadius	-0.116405	-0.235247 ± 0.004730	0.215216
voidDensityContrast	-1.317766	-0.875281 ± 0.005303	0.138871
voidEllipticity voidDensityContrast	0.121850	0.606563 ± 0.005240	0.133671
voidDensityContrast ²	0.637442		0.121085
voidRadius voidDensityContrast	0.350251		0.111713
voidEllipticity ²	-0.014487		0.079694
voidEllipticity	-0.162293	-0.170988 ± 0.003660	0.078789
voidRadius	-0.131148	$\textbf{0.332322} \pm \textbf{0.008559}$	0.058743
voidRadius ²	0.109956	-0.259320 ± 0.009312	0.050404
voidDensityContrast voidCentralDen	0.260904		0.003452
voidRadius voidCentralDen	-0.692097		0.002401
voidEllipticity voidNumChildren	0.104119		0.002399
voidCentralDen ²	-0.111892		0.001275
voidRadius voidNumChildren	-0.048491	0.224913 ± 0.017066	0.000968
voidDensityContrast voidNumChildren	-0.157952		0.000530
voidEllipticity voidCentralDen	0.140832		0.000401
voidNumChildren	0.110550	0.010304 ± 0.009558	0.000216
voidNumChildren ²	-0.012982	-0.143589 ± 0.007340	0.000130
voidCentralDen	0.385748		0.000032
voidNumChildren voidCentralDen	0.046160		0.000009

Table 4: Feature weights for 2nd order polynomial.

Predicting Median Halo Mass

-Power Law Features -

- Classic functional form in astrophysics
- Use only ellipticity, radius, density contrast (convergence)
- Regression problem now:

$$\tilde{M}_{\rm h} = \delta^{\alpha} e^{\beta} r_{\rm eff}^{\gamma}$$

 $M_{
m h}$ is the median halo mass. δ is the void density contrast. e is the void ellipticity, $r_{
m eff}$ is the void radius

which can be rewritten as

$$\log_{10}\tilde{M}_{\rm h} = \alpha\log_{10}\delta + \beta\log_{10}e + \gamma\log_{10}r_{\rm eff}$$

Feature	LR	BR	RF
voidDensityContrast, α	-0.430270	-0.430262 ± 0.001195	0.430152
voidEllipticity, β	0.207581	-0.177645 ± 0.001175	0.331069
voidRadius, γ	-0.177650	0.207577 ± 0.001129	0.238779

Table 5: Feature weights for power law fit

- MSE improves for both linear models
 - Data extremely non-linear
 - Perhaps combination of power laws and polynomials is best
- MSE degrades for Random Forest
 - Limited to only 3 features- lack of freedom to fit non-linearities
- Takeaways:
- 1. The Random Forest is our only model capable of capturing the complex non-linearities in the data
- 2. Relationship between mass and void features is far more complicated than simple power law

What do Voids Add?

- Run same analysis but include halo population features
 - E.g.: median, standard deviation, skew, and kurtosis of star formation rate, black hole accretion, gas metallicity, etc.
- MSE for linear models is better with halo features (Table 1)
- MSE for Random Forest degrades with halo features
- Takeaways:
- 1. Mass scales more linearly with halo features
- 2. Halo features unnecessary for non-linear models

Metric: Mean Squared Error

Features	LR	EN	BR + EN	RF
Linear	0.9072	1.02758	0.98629	5.316×10^{-6}
Linear, individual mass	0.9999	1.0		0.9996
Linear halo + void features	0.3076	0.9802	0.4727	2.084×10^{-5}
Deg 2 Poly	0.8446	1.01779	0.88572	$ 4.456 \times 10^{-6} $
Power Law	0.82076	1.63769	0.82076 (no EN)	5.066×10^{-6}

Table 1: MSE

Features	Low Density Contrast	High Density Contrast
Linear	0.0062	1.1518
Deg 2 Poly	0.93384	0.84726
Power Law	0.95695	0.82075

Table 2: LR MSE split on density contrast

Discussion & Conclusions

- Random Forest provides the best predictive power among our models
- There is a complex non-linear relationship between the mass and void properties
- Using polynomial and power law features improves the predictive power of linear models
- Halo features are unnecessary if using non-linear models