SYMMETRIC GROUPS CONTINUED..

Cosets

Author

Tom Jeong

October 2, 2024

${\bf Contents}$

1 symmetric group

3

1 symmetric group

Lemma 1.1 (2.9.8).

suppose $\tau = (i, i_2, ..., i_k)$ is a k-cycle and $\sigma \in S_n$ then, $\sigma \tau \sigma^{-1} = (\sigma(i), \sigma(i_2), ..., \sigma(i_k))$. where $\sigma(i_j) \to \sigma(i_{j+1})$

ex.

$$(134) = (12)(234)(12)$$

Proof. let $j = \{\sigma(i_1), \sigma(i_2), \dots, \sigma(i_k)\}$, both the LHS and RHS of the lemma formula take on the same values for $j \in J$ and $j \notin J$ to itself. Hence LSH are RHS are equal.

Another way to see that every permutation is a product of simple transpositions: (idea of bubble sort) ex:

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{bmatrix}$$

use bubble sort: each time a neighboring pair is out of order, swap the two, and iterate the process.

$$\begin{aligned}
52143 &\rightarrow^{(12)} 25143 \\
\sigma &= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{bmatrix} (12) = \sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 4 & 3 \end{bmatrix} \\
25143 &\rightarrow^{(23)} 21543 \rightarrow^{(34)} 21354 \rightarrow^{(45)} 21345 \dots \\
\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{bmatrix} (12)(23)(12)(34)(45)(34) = e
\end{aligned}$$

so equivelently
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 4 & 3 \end{bmatrix} = (12)(23)(12)(34)(45)(34)$$

Q: what is the smallest number of simple transpositions needed to express $\sigma \in S_n$?

Definition 1.1 (2.9.10).

let $\sigma \in S_n$ A pair of indices (i, j) where $1 \leq i < j \leq n$ is called <u>inversion of σ </u> if $\sigma(i) > \sigma(j)$.

Let $I_{\sigma} = \{(i,j) | 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j) \}$ denote the set of inversions of σ and $n_{\sigma} = |I_{\sigma}|$ denote the number of inversions of σ .

ex:
$$\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 2 & 1 \end{bmatrix}$$
 then we have $I_{\sigma} = \{(12), (13), (23)\}$

Proposition 1.2 (2.9.12).

- 1. the permutation $\sigma \in S_n$ is the identity iff $n_{\sigma} = 0$
- 2. if $\sigma \neq id$ then $\exists i \in \{1, 2, ..., n-1\}$ such that $\sigma(i) > \sigma(i+1)$

Proof. 1. \rightarrow : true since identity has no inversions \leftarrow if $\sigma \neq id$ then \exists smallest $i \in M_n$ such that $\sigma(i) > j$ then $(i, \sigma^{-1}(i))$ is an inversion of σ , hence $n_{\sigma} \neq 0$

2. if $\sigma(1) < \sigma(2) < \cdots < \sigma(n)$ then $n_{\sigma} = 0$ so $\sigma = id$

Lemma 1.3 (2.9.13).

Let $s_i \in S_n$ be the imple transposition (i, i + 1) then $n_{\sigma s_i} = \begin{cases} n_{\sigma} + 1 & \text{if } \sigma(i) < \sigma(i+1) \\ n_{\sigma} - 1 & \text{if } \sigma(i) > \sigma(i+1) \end{cases}$

Proof. suppose $\sigma(i) < \sigma(i+1)$ then (i, i+1) is not an inversion of σ but is an inversion of σs_i so $n_{\sigma s_i} = n_{\sigma} + 1$

 $\operatorname{caim} L$

$$\phi: I_{\sigma} \to I_{\sigma s_i} \setminus \{(i, i+1)\}$$
$$(k, l) \to (s_i(k), s_i(l))$$

is a bijection and so

$$n_{\sigma s_i} = n_{\sigma} + 1$$

Proof. proof of claim: If $(kl) \in I_{\sigma}$ then $s_i(k) > s_i(l)$ since theo nly way for $s_i(k) < s_i(l)$ is if k = i and l = i + 1 but $(kl) \neq (i, i + 1)$ Hence $(s_i(k), s_i(l)) \in I_{\sigma s_i} \setminus \{(i, i + 1)\}$. Similarly if $(s_i(k), s_i(l)) \in I_{\sigma s_i} \setminus \{(i, i + 1)\}$ then $s_i(k) > s_i(l)$ so $(kl) \in I_{\sigma}$

Proposition 1.4 (2.9.14).

let $\sigma \in S_n$ THen

- 1. σ is a product of n_{σ} simple transpositions
- 2. n_{σ} is the minimal number of simple transpositions needed to write σ as a product of simple transpositions.

Proof. 1. Induction on n_{σ}

Base Case: if $n_{\sigma} = 0$, then by proposition 2.9.12 $\sigma = id$ so σ is the empty product of zero simple transpositions.

Inductive step: if $n_{\sigma}! = 0$ then by prop 2.9.12 there exists $i \in \{1, 2, ..., n-1\}$ such that $\sigma(i) > \sigma(i+1)$ then by lemma 2.9.13 $n_{\sigma s_i} = n_{\sigma} - 1$ so by induction $\sigma = s_i \sigma s_i$ is a product of $n_{\sigma} - 1$ simple transpositions.

By the induction hypothesis σs_i can be written as a product of $n_{\sigma s_i} = n_{\sigma} - 1$ simple transpositions, then $\sigma s_i s_i = \sigma$ is a product of n_{σ} simple transpositions.

2. let $l(\sigma)$ = the min number of simple transpositions needed to express σ . By part1, $l(\sigma) \leq n_{\sigma}$. Suppose $l(\sigma) = k < n_{\sigma}$ then $\sigma = s_{i_1} s_{i_2} \dots s_{i_k}$ is a product

inductive step: assume $l(\sigma) > 0$. then we can find a simple transposition s_i such that $l(\sigma s_i) = l(\sigma) - 1$. Therefore, $l(\sigma s_i) = n_{\sigma s_i}$ by induction hypothesis and $l(\sigma) \ge n_{\sigma}$ by lemme 2.9. 13

$$l(\sigma) - 1 = l(\sigma s_i) = n\sigma s_i = n_{\sigma} \pm 1$$

Definition 1.2 (2.9.15).

the signs of $\sigma \in S_n$ is $sgn(\sigma) = (-1)^{n_{\sigma}}$

Proposition 1.5 (2.9.16).

the sign of a permutation

$$sgn: S_n \to \{\pm 1\}$$

is a group homomorphism where composition on $\{\pm 1\}$ is multiplication s

Proof. by lemme 2.9.13, $n_{\sigma s_i} = n_{\sigma} \pm 1$ so $sgn(\sigma s_i) = (-1)^{n_{\sigma} \pm 1} = (-1)^{n_{\sigma}} (-1)^{\pm 1} = sgn(\sigma)sgn(s_i)$ since any $\tau \in S_n$ can be written as a product of simple transpositions it follows that $sgn(\tau) = sgn(\sigma_1)sgn(\sigma_2)\dots sgn(\sigma_k)$

Definition 1.3. the alternating group is

$$A_n = ker(sgn) = \{ \sigma \in S_n | sgn(\sigma) = 1 \}$$

<u>Note:</u> A_n is a normal subgroup of S_n by the isomorphism theorem, $S_n/A_n \cong \{\pm 1\}$