Kötelező Program

Ütemezés

Okt. hét	Dátum	Számonkérés
6.	okt. 17	Kötelező programok ismertetése. Projekt labor I.
9.	nov. 7	Projekt labor II.
14.	dec. 12	Kötelező programok bemutatása.

Nehézségi fokozatok és érdemjegyek

A kötelező programok három *nehézségi fokozatban* teljesíthetők. A *nehézségi fok* meghatározza a **legjobb** érdemjegyet, amely a teljesítéséért kapható!

Nehézségi fok	Legjobb megszerezhető érdemjegy
Basic	3
Advanced	4
Epic	5

Tip

A feladatok úgy vannak megadva, hogy érdemes a **Basic** szinttel kezdeni, és onnan fokozatosan építkezni az **Epic** szintig.

A kötelező programok a következő szempontok szerint kerülnek értékelésre:

- Bizonyítottan saját munka
- Értékelhető eredményeket produkáljon
- Verziókövetés használata, feltöltés GitHub/GitLab/egyéb repoba
- Launch fájlok
- Megoldás teljessége
- Megfelelő ROS kommunikáció alkalmazása
- Program célszerű ROS struktúrája
- Implementáció minősége
- Kód dokumentálása

Tip

ChatGPT és egyéb MI eszközök használata megengedett.

Évközi jegy

A félév elfogadásának feltétele, hogy mind a két ZH, mind a kötelező program értékelése legalább elégséges. A két ZH közül az egyik az utolsó óra alkalmával pótolható.

Félév végi jegy

 $(Jegy = (ZH1 + ZH2 + 2 \times K\"{o}tProg) / 4)$

Kötelező program témák

1. Mobil robot

A. Playground Robot

Gazebo install

• Setting up a robot simulation (Gazebo)

B. TurtleBot4

• TurtleBot4 Simulator Tutorial

C. PlatypOUs (ROS 1)

• PlatypOUs GitHub

D. Bármilyen mobil robot

1.1. Mobil robot akadály elkerülés

- **Basic:** Szimulátor élesztése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: ROS rendszer implementálása akadály felismerésére és az akadályt kikerülő trajektória tervezésére és megvalósítására szimulált környezetben bármely szenzor felhasználásával.

• Epic: Nyűgözz le!

1.2. Mobil robot pályakövetés

- **Basic:** Szimulátor élesztése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: ROS rendszer implementálása pályakövetésre szimulált környezetben bármely szenzor felhasználásával(pl. fal mellett haladás adott távolságra LIDAR segítségével).

• Epic: Nyűgözz le!

1.3. Mobil robot objektum követés/visual servoing

- **Basic:** Szimulátor élesztése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: ROS rendszer implementálása objektum megkeresésére/ felismerésére és követésére/megközelítésére szimulált környezetben bármely szenzor felhasználásával (pl. visual servoing).

• Epic: Nyűgözz le!

1.4. Mobil robot action library

- **Basic:** Szimulátor élesztése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: Egyszerű műveleteket tartalmazó, ROS action alapú könyvtár és ezeket végrehajtó rendszer implementálása (pl. push object, move to object, turn around).

• Epic: Nyűgözz le!

2. Quadcopter

- Gazebo install
- Setting up a robot simulation (Gazebo)

ign gazebo -v 4 -r quadcopter.sdf

- **Basic:** Szimulátor élesztése. ROS node/node-ok implementálása szenzorok adatainak beolvasására és a a robot mozgatására.
- Advanced: ROS rendszer implementálása magasság/sebesség szabályozására.
- Epic: Nyűgözz le!

3. Szabadon választott Gazebo szimuláció

- Gazebo install
- Setting up a robot simulation (Gazebo)
- Gazebo World Examples

Megegyezés alapján.

4. Gazebo szimuláció összeállítása

- Gazebo install
- Setting up a robot simulation (Gazebo)
- Gazebo World Examples

Megegyezés alapján.

5. TurtleSim

- Turtlesim Tutorial
- Koch Görbe

Ĭ

5.1 Turtlesim Fraktál/Szöveg

• Basic: Arányos szabályozó implementálása.

• Advanced: Fraktál/szöveg rajzolása.

• Epic: Nyűgözz le!

6. DVRK

- Download and compile dVRK 2
- Marker examples

6.1 DVRK Interaktív Marker

Megfogható, mozgatható marker implementálása a DVRK szimulátorához.

7. YouBot (Windows)

Ĭ

• YouBot controller GitHub

7.1. YouBot ROS integráció

- Basic: YouBot repo build-elése, megismerése
- Advanced: Szimulált robot mozgatása csuklótérben ROS környezetben
- Epic: Tesztelés valós roboton és/vagy nyűgözz le!

X. Saját téma

Megegyezés alapján.

Hasznos linkek

- Gazebo install
- Setting up a robot simulation (Gazebo)
- Gazebo World Examples
- YouBot controller GitHub
- Download and compile dVRK 2
- Marker examples
- Turtlesim Tutorial
- Koch Görbe