1 Ideas

1.1 Line search

Line search in ?? is not working very well.

line Search = 7 x f (9, 6) grad disand, $\gamma \in \gamma - \eta \, Q_{\gamma} \, \widetilde{D}_{KL} \, (\gamma)$ func. grad, 7 f(n) 7x KL (9+ x (5-9+) 11P) = 17 2 P - 9 = L 7 f(m), s> 19+ Y (5-9+)) - (9+ Y (5-9+) JQ - (Df(a), N) = Vy | # 9+ 1-9 9+ 1 Tr q (s-q*) $= (3-q^{t}) | q | q_{t} + (3-q^{t})$ = ((S - qt) \$ (1 + 1 - q 9 +) = (s, 19 2+) - < 9t, 19 2+) > = 1Es [199+-19] - 1Egt [199+-199] = IE, [] + [] - E + [] = + []

```
def line_search_dkl(weights, locs, diags, mu_s, cov_s, x, k):
1
       """Perform line search for the best step size gamma.
2
3
      Uses gradient ascent to find gamma that minimizes
      KL(q_t + qamma (s - q_t) || p)
5
6
      Args:
          weights: weights of mixture components of q_t
           locs: means of mixture components of q_t
9
          diags: deviations of mixture components of q_t
10
          mu_s: mean for LMO Solution s
11
          cov_s: cov matrix for LMO solution s
12
          x: target distribution p
13
          k: iteration number of Frank-Wolfe
14
      Returns:
15
          Computed gamma
16
17
      def softmax(v):
18
          return np.log(1 + np.exp(v))
19
      # no. of samples to approximate \nabla_{\gamma}
20
      N_samples = 10
21
      # Create current iter q_t
22
      weights = [weights]
23
      qt_comps = [
          Normal(
               loc=tf.convert_to_tensor(locs[i]),
26
               scale=tf.convert_to_tensor(diags[i])) for i in range(len(locs))
27
      ]
28
      qt = Mixture(
29
          cat=Categorical(probs=tf.convert_to_tensor(weights)),
30
           components=qt_comps,
31
          sample_shape=N)
32
      qt = InfiniteMixtureScipy(stats.multivariate_normal)
33
      qt.weights = weights[0]
34
      qt.params = list(
35
          zip([[1] for 1 in locs], [[softmax(np.dot(d, d))] for d in diags]))
36
      # samples from q_t
      sample_q = qt.sample_n(N_samples)
      # create and sample from s
39
      s = stats.multivariate_normal([mu_s],
40
                                       np.dot(np.array([cov_s]), np.array([cov_s])))
      sample_s = s.rvs(N_samples)
42
      # q_{t+1} is mixture of q_t and s with weights (1-\gamma) and \gamma
      # Set its corresponding parameters and weights
44
      new_locs = copy.copy(locs)
45
      new_diags = copy.copy(diags)
46
      new_locs.append([mu_s])
47
      new_diags.append([cov_s])
48
      # initialize \gamma
49
      gamma = 2. / (k + 2.)
      # no. steps of gradient ascent
51
      n_steps = 10
52
      prog_bar = ed.util.Progbar(n_steps)
53
      for it in range(n_steps):
54
      print("line_search iter %d, %.5f" % (it, gamma))
55
      new_weights = copy.copy(weights)
56
      new_weights[0] = [(1. - gamma) * w for w in new_weights[0]]
      new_weights[0].append(gamma)
58
      # create q_{t+1}^{\gamma}
59
      q_next = InfiniteMixtureScipy(stats.multivariate_normal)
60
      q_next.weights = new_weights[0]
61
      q_next.params = list(
62
      zip([[1] for 1 in new_locs], [[np.dot(d, d)] for d in new_diags]))
      # Computes \mathbb{E}[...] \propto \sum_{v} \log p - \log q_{t+1}^{\gamma}
      def px_qx_ratio_log_prob(v):
65
      Lambda = 1.
66
```

```
ret = x.log_prob([v]).eval()[0] - q_next.log_prob(v)
67
      ret /= Lambda
68
      return ret
69
      # Samples w.r.t s
      rez_s = [
      px_qx_ratio_log_prob(sample_s[ss]) for ss in range(len(sample_s))
72
73
      # Samples w.r.t q_{t+1}
74
      rez_q = [
75
      px_qx_ratio_log_prob(sample_q[ss]) for ss in range(len(sample_q))
76
      # Gradient ascent step, step size decreasing as \frac{1}{i+1}
      gamma = gamma + 0.1 * (sum(rez_s) - sum(rez_q)) / (N_samples *
79
      (it + 1.))
      # Projecting it back to [0, 1], too small range?
      # FIXME(sauravshekhar) if projected to 0, all iterations will be same?
      if gamma >= 1 or gamma <= 0:
83
      gamma = max(min(gamma, 1.), 0.)
84
      break
85
      return gamma
86
```

changes for measuring variance of $\mathbb{E}_s\left[\cdot\right]$ and $\mathbb{E}_{q_{t+1}^{\gamma}}\left[\cdot\right]$.

```
1
        grad_gamma = []
2
        for it in range(n_steps):
        # Samples w.r.t s
        rez_s = np.asarray([
6
            px_qx_ratio_log_prob(sample_s[ss]) for ss in range(len(sample_s))
        ])
        # Samples w.r.t q_{t+1}
        rez_q = np.asarray([
10
            px_qx_ratio_log_prob(sample_q[ss]) for ss in range(len(sample_q))
        ])
        grad_gamma.append({'E_s': rez_s, 'E_q': rez_q, 'gamma': gamma})
13
14
        # Write grad_gamma to outdir/line_search_samples_<n_samples>.npy.<fw_iter>
15
```

Metrics on original version.

Figure 1: gamma with iterations for different n_samples

1.2 Adaptive Frank-Wolfe from smoothness estimators

Algorithm 1 of [Pedregosa et al., 2018] Code changes.

Figure 2: E_s with different n_samples

Figure 3: E_q with different n_samples ?? begins with iter 1 as iter 0 has very high variance

1.3 Measuring smoothness

in progress

Computing optimal γ directly from eqn 1 of [Pedregosa et al., 2018]

$$\begin{split} f(\mathbf{x}_{t+1}) &\leq f(\mathbf{x}_t) + \gamma \langle \nabla f(\mathbf{x}_t), \mathbf{s}_t - \mathbf{x}_t \rangle + \frac{\gamma^2}{2} L_t ||\mathbf{s}_t - \mathbf{x}_t||^2 \\ \Rightarrow L_t &\geq \frac{f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) + \gamma \langle \nabla f(\mathbf{x}_t), \mathbf{s}_t - \mathbf{x}_t \rangle}{\frac{\gamma^2}{2} ||\mathbf{s}_t - \mathbf{x}_t||^2} \\ &\qquad \qquad \frac{f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) + \gamma \langle \nabla f(\mathbf{x}_t), \mathbf{s}_t - \mathbf{x}_t \rangle}{\frac{\gamma^2}{2} \operatorname{KL} \left(\mathbf{s}_t || q_t\right)} \end{split}$$

Code changes.

```
def kl(mu_q, std_q, mu_p, std_p):

def func_dot_product():
```

1.4 Other optimization algorithm

todo

As shown in link ??, Frank-Wolfe converges slower than Projected Gradient Descent in Practice. See [Locatello et al., 2017] to see why we use FW and if it can be replaced. (will have to derive new convergence proofs and boosting won't be as integrated into the optimization algorithm as before).

Algorithm 1: Adaptive Frank-Wolfe for Boosting BBVI

```
Input: q_0 \in \mathcal{D}, initial Lipschitz estimate L_{-1}, line search parameters \tau > 1, \eta \in (0, 1]

1 for t = 1...T do

2 \begin{vmatrix} s_t \leftarrow LMO_{\mathcal{A}}(\nabla f(q^t)) \\ g_t \leftarrow \langle \nabla f(q_t), q_t \rangle - \langle \nabla f(q_t), s_t \rangle // \text{ Gap } \geq 0 \end{vmatrix}

4 Find smallest integer i s.t

5 f(q_t + \gamma_t(s_t - q_t)) \leq Q_t(\gamma_t) Where

6 Q_t(\gamma) := f(q_t) - \gamma g_t + \frac{\gamma^2 L_t}{2} d(s_t, q_t) // \text{ Quadratic upper bound } ??

7 L_t \leftarrow \tau^i \eta L_{t-1} \text{ and } \gamma_t \leftarrow \min \left( \frac{g_t}{L_t d(s_t, q_t)}, 1 \right)

8 end

9 return q_T
```

1.5 Entropy Regularization and Noise addition using Optimal Transport

In LMO, [Locatello et al., 2018] uses Entropy Regularization in place of norm constrained optimization. It can be replaced with something simpler See [Tolstikhin et al., 2017] [Dong Liu, 2018] [Bernton et al., 2017] [Jordan et al., 1998] here And [Peyré et al., 2017] part 4.

1.6 Port code to Tensorflow Probability

see ??. Issue is if tfp.edward2 will have support for Variational Inference and ELBO etc.

References

- [Bernton et al., 2017] Bernton, E., Jacob, P. E., Gerber, M., and Robert, C. P. (2017). Inference in generative models using the wasserstein distance. arXiv preprint arXiv:1701.05146.
- [Dong Liu, 2018] Dong Liu, Minh Thnh Vu, S. C. L. K. R. (2018). Entropy-regularized optimal transport generative models. arXiv preprint arXiv:1811.06763.
- [Jordan et al., 1998] Jordan, R., Kinderlehrer, D., and Otto, F. (1998). The variational formulation of the fokker–planck equation. SIAM journal on mathematical analysis, 29(1):1–17.
- [Locatello et al., 2018] Locatello, F., Dresdner, G., Khanna, R., Valera, I., and Rätsch, G. (2018). Boosting black box variational inference. arXiv preprint arXiv:1806.02185.
- [Locatello et al., 2017] Locatello, F., Khanna, R., Ghosh, J., and Rätsch, G. (2017). Boosting variational inference: an optimization perspective. arXiv preprint arXiv:1708.01733.
- [Pedregosa et al., 2018] Pedregosa, F., Askari, A., Negiar, G., and Jaggi, M. (2018). Step-size adaptivity in projection-free optimization. arXiv preprint arXiv:1806.05123.
- [Peyré et al., 2017] Peyré, G., Cuturi, M., et al. (2017). Computational optimal transport. Technical report, École Normale Supérieure.
- [Tolstikhin et al., 2017] Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017). Wasserstein autoencoders. arXiv preprint arXiv:1711.01558.