Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

Mathematik II

Name:		Vorname:		
Klasse:	Platz	zziffer:	Punkte:	

Aufgabe A 1

Nachtermin

A 1 Die nebenstehende Skizze zeigt die Figur, die zum Einbau einer Küchenspüle aus einer Arbeitsplatte ausgesägt werden muss. Die Figur wird begrenzt durch die Kreisbögen \widehat{BC} und \widehat{DA} sowie die parallelen Strecken [AB] und [DC].

Die Kreise $k_1(M_1; r = \overline{M_1A})$ und $k_2(M_2; r = \overline{M_2B})$ berühren sich im Punkt $E \in [M_1M_2]$.

Es gilt: $\overline{M_1A} = \overline{M_2B} = 25 \text{ cm}$; $\overline{AB} = \overline{CD} = 20 \text{ cm}$.

Berechnen Sie den Flächeninhalt der ausgesägten Figur.

[Teilergebnis: $\angle AM_1F = 53,13^\circ$]

- A 2.0 Gegeben sind die Parabel p mit der Gleichung $y = \frac{1}{2}(x-3)^2 3$ und die Gerade g mit der Gleichung $y = \frac{2}{3}x + 0.5$ mit $\mathbb{G} = \mathbb{R} \times \mathbb{R}$.
- A 2.1 Zeichnen Sie die Parabel p und die Gerade g für $x \in [0; 8]$ in das Koordinatensystem.

2 P

A 2.2 Punkte $A_n \left(x \left| \frac{1}{2} (x-3)^2 - 3 \right| \right)$ auf der Parabel p und Punkte $C_n \left(x \left| \frac{2}{3} x + 0, 5 \right| \right)$ auf der Geraden g haben jeweils dieselbe Abszisse x und sind mit Punkten B für

der Geraden g haben jeweils dieselbe Abszisse x und sind mit Punkten B_n für $x \in \,]\,0,28;\,7,05\,[$ Eckpunkte von Dreiecken $A_nB_nC_n$.

Es gilt:
$$\overrightarrow{A}_{n}\overrightarrow{B}_{n} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
.

Zeichnen Sie das Dreieck $A_1B_1C_1$ für x = 1,5 in das Koordinatensystem zu 2.1 ein.

A 2.3 Zeigen Sie durch Rechnung, dass sich die Länge der Seiten $[A_nC_n]$ in Abhängigkeit von der Abszisse x der Punkte A_n wie folgt darstellen lässt:

n-

2 P

A 2.4 Unter den Dreiecken $A_nB_nC_n$ hat das Dreieck $A_0B_0C_0$ den maximalen Flächeninhalt. Berechnen Sie den Flächeninhalt des Dreiecks $A_0B_0C_0$ und geben Sie den zugehörigen Wert für x an.

A 3.0 Die Firma Hannsolar stellt Solarlampen her. Die nebenstehende Skizze zeigt den Axialschnitt ABCDE einer Solarlampe mit AN als Symmetrieachse.

Es gilt:

 $\overline{AM} = 14.5 \text{ cm}$; $\overline{DF} = 9.5 \text{ cm}$; $\overline{EF} = 3.8 \text{ cm}$; $\checkmark \text{CFD} = 104^\circ$; [EB] || [DC].

Runden Sie im Folgenden auf eine Stelle nach dem Komma.

A 3.1 Berechnen Sie die Längen der Strecken [CD] und [EM].

[Ergebnis: $\overline{CD} = 15,0 \text{ cm}$; $\overline{EM} = 3,0 \text{ cm}$]

A 3.2 Bestimmen Sie rechnerisch den Oberflächeninhalt der Solarlampe.

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

an den Realschulen in Bayern

Mathematik II

Aufgabe B 1

Nachtermin

B 1.0 Die nebenstehende Skizze zeigt ein Schrägbild der Pyramide ABCDS, deren Grundfläche das Drachenviereck ABCD mit der Symmetrieachse AC ist. Die Spitze S der Pyramide ABCDS liegt senkrecht über dem Diagonalenschnittpunkt M des Drachenvierecks ABCD.

Es gilt: $\overline{AC} = 14 \text{ cm}$; $\overline{BD} = 9 \text{ cm}$; $\overline{AM} = 4 \text{ cm}$; $\overline{MS} = 8 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 1.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Strecke [AC] auf der Schrägbildachse und der Punkt A links vom Punkt C liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Berechnen Sie sodann die Länge der Strecke [CS] und das Maß des Winkels SCA. [Ergebnisse: $\overline{CS} = 12.81 \,\text{cm}$; $\angle SCA = 38.66^{\circ}$]

4 P

B 1.2 Punkte $F_n \in [MC]$ sind die Mittelpunkte der Strecken $[E_nG_n]$ mit $[E_nG_n] \parallel [BD]$. Es gilt: $E_n \in [BC]$, $G_n \in [DC]$ und $\overline{MF_n} = x$ cm mit 0 < x < 10; $x \in IR$. Zeichnen Sie für x = 4 die Strecke $[E_1G_1]$ in das Schrägbild zu 1.1 ein und berechnen Sie sodann die Länge der Strecken $[E_nG_n]$ in Abhängigkeit von x.

[Ergebnis: $\overline{E_n G_n}(x) = (-0.9x + 9) \text{ cm}$]

2 P

B 1.3 Die Strecken $[E_nG_n]$ legen zusammen mit dem Punkt A Dreiecke AE_nG_n fest. Sie sind Grundflächen von neuen Pyramiden AE_nG_nS .

Zeichnen Sie die Pyramide AE_1G_1S in das Schrägbild zu 1.1 ein und zeigen Sie sodann rechnerisch, dass für das Volumen der Pyramiden AE_nG_nS in Abhängigkeit von x gilt: $V(x) = \left(-1, 2x^2 + 7, 2x + 48\right)$ cm³.

3 P

B 1.4 Die Pyramide AE_2G_2S besitzt unter den Pyramiden AE_nG_nS das maximale Volumen. Berechnen Sie den zugehörigen Wert für x und das Volumen der Pyramide AE_2G_2S .

2 P

B 1.5 Das Volumen der Pyramide AE₃G₃S ist um 75 % kleiner als das Volumen der Pyramide ABCDS. Ermitteln Sie durch Rechnung den zugehörigen Wert für x.

3 P

B 1.6 Das Dreieck SF₄C ist gleichschenklig mit der Basis [CS]. Berechnen Sie, für welchen Wert von x man dieses Dreieck erhält.

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2013

an den Realschulen in Bayern

Mathematik II

Aufgabe B 2

Nachtermin

B 2.0 Die nebenstehende Skizze zeigt den Plan eines viereckigen Grundstücks ABCD. Das Rechteck EFGH stellt die Grundfläche einer Doppelhaushälfte dar, wobei [FG] ⊂ [BC] und E ∈ [BD].

Es gilt:

$$\overline{AB} = 20,00 \text{ m}$$
; $\overline{AD} = 23,00 \text{ m}$; $\overline{DC} = 17,00 \text{ m}$;
 $\angle BAD = 78^\circ$; $\angle DCB = 90^\circ$; $\overline{EF} = 7,00 \text{ m}$;
 $\overline{FG} = 10,00 \text{ m}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Viereck ABCD mit dem Rechteck EFGH im Maßstab 1:200.

4 P

B 2.2 Von der Hausecke E zur Grundstücksecke B verläuft ein Entwässerungsrohr. Berechnen Sie die Länge der Strecke [BE].

[Ergebnisse:
$$BD = 27,16 \text{ m}$$
; $BE = 11,18 \text{ m}$]

3 P

B 2.3 Bestimmen Sie rechnerisch den Abstand der Hauswand [HG] von der Grundstückgrenze [DC].

[Teilergebnis:
$$\overline{BC} = 21,18 \text{ m}$$
]

2 P

B 2.4 An der Ecke A des Grundstücks soll ein Gartenteich angelegt werden. Im Plan zeigt die Figur AKL, die von den Strecken [LA], [AK] sowie dem Kreisbogen KL mit dem Mittelpunkt M begrenzt wird, die Lage des Gartenteichs.

Dabei gilt: $L \in [AD]$; $K \in [AB]$; $M \in [AB]$; $\overline{AM} = 3,00 \, \text{m}$; $\overline{MK} = \overline{ML} = 5,00 \, \text{m}$. Zeichnen Sie den Punkt M und den Kreisbogen \overline{KL} in die Zeichnung zu 2.1 ein. Berechnen Sie sodann den Flächeninhalt der Figur AKL.

[Ergebnisse:
$$\angle LMA = 66,06^{\circ}$$
; $A_{AKL} = 31,71 \text{ m}^2$]

5 P

B 2.5 Bestimmen Sie rechnerisch den prozentualen Anteil der Restfläche des Grundstücks (ohne Haus und Gartenteich) an der Gesamtfläche des Grundstücks ABCD.
Runden Sie auf ganze Prozent.