Datascience fundamentals

Fernando Lovera

Mario Verstraeten

Lecture 7 & 8:

Classification 2: kNN

&

Clustering 1: Kmeans

k-Nearest-Neighbours

- While KNN can be used for regression tasks, its performance can be quite poor and less efficient than other algorithms, so we've decided not to exhibit its use for regression.
- However if you do want to use it for regression it is very easy to swap in the KNNRegressor model with scikit-learn.

- K nearest neighbors is one of the simplest machine learning algorithms.
- It simply assigns a label to new data based on the distance between the old data and new data.

HEIGHT

• Imagine a height and weight data set

WEIGHT

• We historically know the sex of the chicks:

- How would we assign sex to a new point?
 - We intuitively "know" this is likely female.

WEIGHT

HEIGHT

- What about a less obvious point?
 - How many points to we consider?

WEIGHT

• Let's imagine a situation like this:

• Let's imagine a situation like this:

- Tie considerations and options:
 - Always choose an odd K.
 - In case of tie, simply reduce K by 1 until tie is broken.
 - Randomly break tie.
 - Choose nearest class point.

- K=4 leads to a tie!
 - Choose closest K

• K=5 causes a switch from previous K values.

- How to choose best K value?
- We want a K value that minimizes error:
 - Error = 1 Accuracy
- Two methods:
 - Elbow method.
 - Cross validate a grid search of multiple K values and choose K that results in lowest error or highest accuracy.

• Elbow method:

- Cross validation only takes into account the K value with the lowest error rate across multiple folds.
- This could result in a more complex model (higher value of K).
- Consider the context of the problem to decide if larger K values are an issue.
- KNN Algorithm
 - Choose K value.
 - Sort feature vectors (N dimensional space) by distance metric.
 - Choose class based on K nearest feature vectors.

- KNN Considerations:
 - Distance Metric
 - Many ways to measure distance:
 - Minkowski
 - Euclidean
 - Manhattan
 - Chebyshev

sklearn.metrics.pairwise.distance_metrics

sklearn.metrics.pairwise.distance_metrics()

[source]

Valid metrics for pairwise_distances.

This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

metric	Function
'cityblock'	metrics.pairwise.manhattan_distances
'cosine'	metrics.pairwise.cosine_distances
'euclidean'	metrics.pairwise.euclidean_distances
'haversine'	metrics.pairwise.haversine_distances
'11'	metrics.pairwise.manhattan_distances
'l2'	metrics.pairwise.euclidean_distances
'manhattan'	metrics.pairwise.manhattan_distances
'nan_euclidean'	metrics.pairwise.nan_euclidean_distances

sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None) [source]

Kmeans

• Important Note:

- Do not confuse K-Means with KNN!
- The "K" is completely different in both algorithms, they solve completely different problems and are not related in any way!

- Clustering uses **unlabeled data** and looks for similarities between groups (clusters) in order to attempt to segment the data into separate clusters.
- Keep in mind that we don't actually know the true correct label for this data!
- Imagine an example data set:
 - Notice again we only have features!
 - How could we cluster this data together?

X1	X2
2	4
6	3
1	2

- Could simply plot and discover patterns:
 - Note how distance is the intuitive metric, which we can use to assign clusters

- Notice how we don't actually know for sure if this is a correct way of grouping together these data points, there was no correct label to begin with!
- And what about situations that are not so obvious or multi-dimensional?
- F.e. 2 or 3 clusters could both be reasonable in the following example:

Clustering doesn't "label" these for you!

- Main Clustering Ideas:
 - Use features to decide which points are most similar to other points.
 - Realize that there is no final correct y label to compare cluster results to.
 - We can think of clustering as an unsupervised learning process that "discovers" potential labels.

- Unsupervised Learning Paradigm Shift:
 - How do we assign a new data point to a cluster?
 - Different approaches depending on the unsupervised learning algorithm used.
 - Use features to assign most appropriate cluster.

- Unsupervised Learning Paradigm Shift:
 - If we've discovered these new cluster labels, could we use that as a y for supervised training?
 - Yes! We can use unsupervised learning to discover possible labels, then apply supervised learning on new data points.
 - BUT: Clustering doesn't tell you what these new cluster labels represent, no real way of knowing if these clusters are truly significant.

- So how does K-Means clustering actually work?
 - The main concept is actually very simple!
 - Let's walk through an example of clustering unlabeled data.
- First a set of properties each point must satisfy:
 - Each point must belong to a cluster.
 - Each point can only belong to one cluster (no single point can belong to multiple clusters).

• Step 0: Start with unlabeled data (only features).

26

- Step 1: Choose the number of clusters to create (this is the K value).
 - We'll choose K=3. Note in most situations you won't visualize the data!

- Step 2: Randomly select K distinct data points. Our K=3:
 - We'll treat these new K points as our "cluster" points.

Χl

- Step 3: Assign each remaining point to the nearest "cluster" point.
 - Note how this is using a distance metric to judge the nearest point.

• Step 4: Calculate the center of the cluster points (mean value of each point

vector).

X2

Χl

• Step 5: Now assign each point to the nearest cluster center.

31

- We repeat steps 4 and 5 until there are no more cluster reassignments.
- Step 4b: Recalculate new cluster centers:

- Step 5b: Assign points to nearest cluster center.
- If there are no more reassignments, we're done! The clusters have been found.

- How do we choose a reasonable value for K number of clusters?
- Is there any way we can evaluate how good our current K value is at determining clusters?

- Here we have 3 clusters, how can we measure "goodness of fit"?
 - We could measure the sum of the distances from points to cluster centers.

35

- Imagine a simple example starting with K=2.
 - We measure the sum of the squared distances from points to the cluster center:
 - Then we fit an entirely new KMeans model with K+1:

- Imagine a simple example starting with K=2.
 - We measure the sum of the squared distances from points to the cluster center:
 - Then we fit an entirely new KMeans model with K+1:

- Then measure again the sum of the squared distance (SSD) to center.
- In theory this SSD would go to zero once K is equal to the number of points.
 - You would have a cluster for each point! SSD would be perfect at 0!

XΊ

- We keep track of this SSD value for a range of different K values.
- We then look for a K value where **rate of reduction in SSD** begins to decline.
- This signifies that adding an extra cluster is **not** obtaining enough clarity of cluster separation to justify increasing K.
 - This is known as the "elbow" method since we will track where decrease in SSD begins to flatten out compared to increasing K values.
 - Let's walk through what this chart would look like...

• Start with K=2:

Increase K and measure SSD:

You will see a continuous decline.

Eventually you will see "elbow" points:

- These points are strong indicators that increasing K further is no longer justified as it is not revealing more "signal".
- You can also measure out this SSD in a barplot. Let's explore this in the notebooks