Operating System and Security

Kartik Gopalan

From: http://www.syslog.com/~jwilson/pics-i-like/kurios119.jpg

What is Security

• C.I.A

Goal	Threat
Data confidentiality	Exposure of data
Data integrity	Tampering with data
System availability	Denial of service

- Preventing unauthorized users from executing undesirable actions, such as
 - Stealing your data (C)
 - Giving you fake data/Tampering your data (I)
 - Preventing you from doing your work (A)

Securing what?

- Securing the OS from users
 - OS-level mechanisms
- Securing one user from another
 - Access control, isolation
- Securing users from OS!
 - Yes, sometimes the OS is not trusted by the user.
 - E.g. in a cloud users may not trust the cloud platform's OS.

Security mechanisms in OS and hardware

- CPU Execution privileges ("Who can access?")
 - Part of CPU state
 - x86 privilege rings (0,1,2,3) in EFLAGS
 - VTx provides root and non-root modes
- Memory protection ("What can be accessed?")
 - Protection bits in segment descriptors
 - Protection bits in page-table registers
 - Virtual Memory (naming)
- File system privileges ("What can be accessed?")
 - User accounts
 - Access permissions

User Authentication

- Verifying that you are who you claim you are.
- File permissions and user's rights are set according to user's identity, which is established by authentication.
- Basic Principles. Authentication must identify:
 - Something the user knows
 - Something the user has
 - Something the user is
- This is done before user can use the system

Storing passwords

- Originally stored in plaintext in a "secure" file.
 - Secure only as long as root account is not compromised
 - Also, users may not want sysadmins to know their passwords, which usually contain private data.
- Now these are hashed using one-way functions
 - Given password input x
 - easy to evaluate y = f(x)
 - But given y
 - computationally infeasible (or at least non-trivial) to compute $x = f^{-1}(y)$

Something the user has: Authentication Using a Physical Object

 magnetic stripe cards, chip cards: stored value cards, smart cards

Something the user is: The user's body

- Biometrics:
 - voice
 - face
 - fingerprint
 - iris scan
 - typing style
- These have both false-positives and false-negatives
- Susceptible to spoofing attacks

Login Spoofing and Trusted Path

"I'm sure I entered the right password. What happened?"

Phony login Screen

Countermeasures:

- Cautious user can intentionally enter a fake password the first (few) time(s).
- Use "Trusted Path"
 - A sequence of user actions that is guaranteed to give control to the OS.
 - E.g. pressing Ctrl-Alt-Del could guarantee that legitimate login (or logout) screen will show up.

Buffer Overflow

- (a) Situation when main program is running
- (b) After function A called
- (c) Buffer overflow shown in gray

Memory reuse — Dumpster Diving

- Request memory, disk space, tapes
- Don't write. Just read and interpret existing data.
- May find passwords, ssh keys, emails, personal information, browsing history, etc.
- Countermeasure:
 - Scrub memory/storage before allocating to user.
 - Encrypt data. Throw away the key once done.
 - Disadvantage: Takes more time.

Logging

- Logs: A time-wise record of system activity.
 - Events always appended. "Never" erased.
- Logs must be analyzed often to detect suspect activity
- What to log?
 - Too much logging
 - takes up storage
 - slows down normal operations.
 - Slows down analysis.
 - Too little logging and you miss critical events.
- Privacy risk
 - Can break laws.
 - Or violate user's perception of privacy. (sometimes more important)

Sandboxes

- A restricted execution environment for untrusted programs.
 - Run dowloaded apps in a system VM/process VM/container.
 - Isolate trojans/viruses, worms
- Effectiveness of isolation only as effective as the implementation of the Sandbox
 - "Gates" must be accompanied by effective "fencing".
- VM Escapes and Jail-breaks are possible.
 - Usually due to implementation bugs in the hypervisor or runtime

Access control

- Discretionary access control (DAC)
 - "John can access X. Alice can do Y."
 - Commodity systems
- Mandatory access control (MAC)
 - Military/spy systems
 - More later
- Role-based access control (RBAC)
 - "CEO can do X. Software Engineer can do Y. Secretary can do Z".
 - Enterprise systems
- Administrative Role-based Access Control
 - "Dean can allow department chair to do X. Dept chair can allow secretary to do Y"

Reference Monitor and Trusted Computing Base

- A reference monitor, enforces access control/capabilities.
 - also called "security kernel"
- Its "trusted" because it MUST work correctly to ensure rest of the system is secure.
 - "Trusted" doesn't automatically mean "secure".
 - A "Trusted" system means that user has no choice but to assume that the system is secure.
- Reference monitor is usually small, so it can be verified easily.
- Verification can be either manual or automated. Hard to verify either way.

Multi-level Security

- Also called Mandatory Access Control (MAC)
 - As opposed to Discretionary Access Control (DAC) in commodity systems.
- Data objects are classified at different levels
 - Top secret, secret, confidential, unclassified etc
 - Sometimes additional compartments: Crypto, Subs, NoForn
- People (and computers) have clearances
- Informally: To see a data object, you must have clearance for that level and for that compartment.

MLS: No Read UP, No Write DOWN

No Read UP: Lower classification level should not read data from higher-level.

No Write DOWN: Higher level should not write data to lower level.

MLS Pump

- In practice, to get things done, upper-level must at least acknowledge the receipt of data from lower level.
 - But acks create a backdoor for covert channels (surreptitious communication)

- An MLS Pump
 - Allows acks from higher to lower levels,
 - but at such a low data rate that covert channels become impractical.