

中国地质大学(武汉)自动化学院 运控实验报告

 课程:
 <u>运控实验报告</u>

 学号:
 20201000128

 班级:
 231202

 姓名:
 刘瑾瑾

 指导老师:
 吴涛

他励直流电动机机械特性和调速实验

一、实验目的

- 1、掌握用实验方法测取直流电动机的机械特性。
- 2、掌握直流电动机的调速方法。

二、实验接线图

1、他励直流电动机机械特性测试接线图

三、 实验设备

序号	型号	名称	数量
1	DT03	导轨、测速发电机及转速表	1台
2	DJ23	校正直流测功机	1台
3	DJ15	直流并励电动机	1台
4	YK31-1	智能直流电压、电流表	2 件
5	YK42	三相可调电阻器	1件
6	YK44	可调电阻器、电容器	1 件
7	YK51	可调直流电源	1件

四、实验步骤

1、固有机械特性测试

保持 U=UN 不变,电枢回路不串任何电阻,改变发电机负载电阻大小,从而改变电枢回路电流,测取 n、Ia 画出 n=f(I)。

序号	1.	2.	3.	4.	5.	6.	7.	8.	9.
I _a (mA)	277	284	294	354	403	441	513	562	684
	1466.	1466.	1466.	1461.	1457.	1454.	1450.	1446.	1435.
n (r/min)	6	3	1	2	8	9	1	5	7

表 1 固有机械特性测试数据

图 1 固有机械特性测试图

2、降电压调速机械特性曲线测试

调节电枢端电压 U=U1 < UN 保持不变,电枢回路不串任何电阻,改变发电机负载电阻大小,从而改变电枢回路电流,测取 U=U1 下 n \sim U=180.4V

序号	10.	11.	12.	13.	14.	15.	16.	17.	18.
I _a (mA)	247	301	345	388	412	434	462	503	543
n (r/min)	1287.	1284.	1280.	1277.	1274.	1273.	1272.	1267.	1264.
	5	1	4	2	8	5	1	6	5

表 2 U=180.4V 机械特性测试数据

图 2 U=180.4V 机械特性曲线

U = 160.0V

序 号	19.	20.	21.	22.	23.	24.	25.	26.	27.
I _a (mA)	235	248	269	289	313	338	362	401	461
n (r/min)	1143.	1142.	1141.	1139.	1138.	1136.	1135.	1130.	1125.
	1	7	3	6	3	5	1	9	4

表 3 U=160.0V 机械特性测试数据

图 3 U=160.0V 机械特性曲线

U=__140.0V

序号	28.	29.	30.	31.	32.	33.	34.	35.	36.
I _a (mA)	221	247	271	298	329	367	391	421	466
n (r/min)	1001. 6	999.9	998.3	996.5	993.1	990.0	987.5	985.2	981.2

表 4 U=140.0V 机械特性测试数据

图 4 U=140.0V 机械特性曲线

3、电枢回路串电阻械特性曲线测试

保持 $U=U_N$ 不变,电枢回路串一个 0-90 欧姆电阻(保持电阻不变),改变发电机负载电阻大小,从而改变电枢回路电流,测取 R=R1 下 n、Ia 关系画出 n=f (I)。

$R=R1(R1=90 \Omega)$

序号	37.	38.	39.	40.	41.	42.	43.	44.	45.
I _a (mA)	247	277	301	333	362	390	426	462	491
n (r/min)	1276.	1254.	1238.	1215.	1194.	1174.	1148.	1122.	1101.
	6	8	4	2	2	7	0	4	5

表 5 R=90 Ω 机械特性测试数据

图 5 R=90Ω机械特性曲线

 $R=R2 (R2=45 \Omega)$

序 号	46.	47.	48.	49.	50.	51.	52.	53.	54.
I _a (mA)	255	283	312	340	373	402	432	466	491
n (r/min)	1370.	1361.	1350.	1340.	1329.	1318.	1308.	1296.	1287.
	4	9	3	7	3	9	2	6	6

表 6 R=45Ω机械特性测试数据

图 6 R=45Ω机械特性曲线

五、总结与分析

本实验主要使用了两种调速方法:降电压调速和电枢回路串电阻调速。

降电压调速:降低电枢电压,电动机机械特性平行下移。负载不变时,交点也下降,速度也随之改变。调速后,转速稳定性不变、无级、平滑、损耗小。但是只能降速,须有专门设备,成本比较大。

电枢回路串电阻调速:调节电阻增大时,电动机机械特性的斜率增大,与负载的

交点也会改变,从而达到调速目的。设备简单、操作也比较简单。但是只能降速,低转速时变化率较大,损耗大。

(1) 降电压调速:

由图 1、2、3 和 4 比较可知,在误差允许范围内,斜率几乎不变,随着电压的降低,机械特性曲线的截距减小,即理想空载转速减小。

由机械特性公式 $n = \frac{U_N}{C_e \Phi_N} - \frac{R_a + R}{C_e C_T \Phi_N^2} T$ 知,降低电压,斜率不变,截距减小

(理想空载转速减小),与实验结果相符。

(2) 电枢回路串电阻调速:

由图 5 和 6 比较可知,在误差允许范围内,截距几乎不变,即理想空载转速不变,随着串入电阻的增大,机械特性曲线的斜率增大。

由机械特性公式 $n = \frac{U_N}{C_e \Phi_N} - \frac{R_a + R}{C_e C_T \Phi_N^2} T$ 知,增加电枢回路串入的电阻,斜率

增大,截距不变(理想空载转速减小),与实验结果相符。

六、感悟

通过本次实验的实际操作,我进一步了解了直流电动机的组成和启动过程的 注意事项,对直流电动机的两种调速方式(降电压调速和电枢回路串电阻调速) 有了更深刻的理解,加深了我对理论知识的认识。