Maximizing National Welfare Under Price Controls: A Tariff Optimization Model MAT 4800: Introduction to Nonlinear Optimization

Results

Devin Khun, Luc Frost-Neto, James Leckie

California State Polytechnic University, Pomona

May 13, 2025

Agenda

- Background
- 2 Methodology
- Results
- 4 Conclusion

Background: What Are Tariffs?

Background

- Tariffs are taxes placed on imported goods.
- Intended to protect domestic industries and generate government revenue.
- Common in international trade disputes and policy debates.
- At a glance, tariffs help the importing country and hurt the exporting one.

But too high a tariff leads to economic inefficiency and deadweight loss.

Framing the Problem

Background

- Tariffs shift national welfare by affecting:
 - Consumer surplus
 - Producer surplus
 - Government revenue
- Over-tariffing can backfire leading to losses in total welfare.
- This creates an optimization question:

Can we find a tariff rate that maximizes the importing country's gains while minimizing deadweight loss?

Welfare Effects of a Tariff

Background

Figure: Welfare Effects of a Tariff [1]

Importing Country: Welfare Breakdown

- **Consumer Surplus:** -(A+B+C+D)
- Producer Surplus: +A
- **Government Revenue:** +C+G

Net National Welfare: G - (B + D)

This will be the objective function in our optimization.

Exporting Country: Welfare Loss

Background

00000

- Unlike importers, exporters don't collect tariff revenue.
- Their national welfare is just:
 - Consumer Surplus
 - Producer Surplus
- Represented by loss: -(f + g + h) in the diagram.

To fully assess welfare effects, we subtract this loss from the importer's gains.

Methodology Overview

- We model the welfare change for an importing country under a tariff.
- The welfare function is derived from the area between supply and demand curves.
- We incorporate economic constraints and basic price relationships.

Background

$$W(t, p_i) = (p_f - p_e)(D(p_i) - S(p_i))$$
 (G)

$$-\frac{1}{2}(p_i - p_f)(S(p_i) - S(p_f))$$
 (B)

Results

$$-\frac{1}{2}(p_i - p_f)(D(p_f) - D(p_i))$$
 (D)

Key Variables:

- t: Tariff Rate
- p_i : Price Floor in Importing Country
- p_e : Exporting Country Price
- p_f : Free Trade Price
- S(P) : Supply Function
- D(P): Demand Function

Tariff Rate Relationship

$$t = \frac{p_i}{p_e} - 1$$
 where $t \ge 0$, $p_i \ge p_f$

- This expresses t as a function of price distortion.
- Used to substitute into the welfare function.

Welfare Function with Tariff Substitution

$$W(t, p_i) = (p_f - \frac{p_i}{t+1})(D(p_i) - S(p_i))$$

$$-\frac{1}{2}(p_f - \frac{p_i}{t+1})(S(p_i) - S(\frac{p_i}{t+1}))$$

$$-\frac{1}{2}(p_f - \frac{p_i}{t+1})(D(\frac{p_i}{t+1}) - D(p_i))$$
(2)

Background

Supply and Demand Functions

We define linear demand and supply functions to simplify:

$$D(p) = b_d - m_d \cdot p$$

$$S(p) = b_s + m_s \cdot p$$

where:

Background

- \mathbf{m}_d , m_s : Slopes of demand and supply
- \bullet b_d , b_s : Y-intercepts

Real-World Data: Steel Imports

Background

We apply the optimization model to U.S. steel import data.

- Free trade price of steel: \$833 per metric ton
- Data from: UN Comtrade, FocusEconomics, steel.org

Period	Reporter	Partner	Commodity Code	Trade Value (US\$)	Net Weight (kg)	Free Trade Price
2024	USA	World	7208 (steel)	\$2,431,079,947	2,753,484,814	\$883 per metric ton

Figure: U.S. Steel Import Data (HS Code 7208) from UN Comtrade [4]

Model Setup and Assumptions

Background

We estimated linear demand and supply functions from market data:

$$D(p) = 8 - 0.001716 \cdot p$$

$$S(p) = 1 + 0.000189 \cdot p$$

Tariff bounds and trade price assumptions:

- Free trade price: $p_f = 883$
- Tariff rate bounds: $t_{floor} = 0$, $t_{ceiling} = 0.5$

Optimization performed using MATLAB's fmincon solver.

Optimal Tariff Policy (Results)

Objective: Maximize national welfare for the importing country **Optimal solution found:**

- Optimal tariff rate: **50%**
- Optimal price floor: \$883
- Resulting welfare gain: \$1482 million USD

Conclusion: Under current market conditions, a higher tariff maximizes welfare – but only when supply and demand remain feasible.

Objective Function Extension

We can add a new condition to the objective function that takes into account the exporting country's welfare:

$$-\frac{1}{2}(p_f - p_e)(D(p_f) - S(p_f) + D(p_e) - S(p_e))$$

Results

This makes the new objective function:

$$W_{2}(t, p_{i}) = (p_{f} - \frac{p_{i}}{t+1})(D(p_{i}) - S(p_{i}))$$

$$- \frac{1}{2}(p_{f} - \frac{p_{i}}{t+1})(S^{-1}(p_{i}) - S^{-1}(\frac{p_{i}}{t+1}))$$

$$- \frac{1}{2}(p_{f} - \frac{p_{i}}{t+1})(D(\frac{p_{i}}{t+1}) - (p_{i}))$$

$$- \frac{1}{2}(p_{f} - p_{e})(D(p_{f}) - S(p_{f}) + D(p_{e}) - S(p_{e}))$$
(3)

Optimal Results for Objective Function Extension

Objective: Maximize national welfare for both countries

Optimal solution found:

Optimal tariff rate: 0%

Optimal price floor: \$883

Resulting welfare gain: \$0 million USD

Results

We can add a curvature parameter to the demand function:

$$D(p) = b_d - m_d \cdot p^{a_d}$$

Modifying the demand function will make customers more sensitive to increases in prices, meaning the demand will now decrease much quicker when a_d increases.

Demand Function Extension

Welfare vs ad

Demand Function Extension

Tariff rate vs ad

Extension: Market Responsiveness Scenarios

Supply-Constrained Market

Background

- Supply is less responsive (very inelastic).
- Imports remain high, boosting government tariff revenue.
- Optimal Price: \$826Welfare: \$2452.43 Million

Elastic Demand Market

- Demand is highly sensitive to price changes.
- Even a small price increase causes a large drop in imports.
- Optimal Price: \$847Welfare: \$1654.47 Million

Insight: Welfare gains vary widely based on market behavior. Inelastic supply supports higher welfare under tariffs, while elastic demand reduces the importer's advantage.

Conclusion

- We developed an optimization model to determine the tariff rate that maximizes an importing country's national welfare.
- A secondary model considers trade relationships by comparing gains for the importer against losses for the exporter.
- Results show two extremes as optimal outcomes: no tariff or the maximum allowable tariff.
- This model assumes perfect market conditions a useful simplification, but one that overlooks economic realities.
- Future directions include:
 - Modeling with imperfect or dynamic markets
 - Using GDP change as a more holistic objective function
 - Evaluating whether real-world tariffs are economically justified

References

Background

"7.5: Import Tariffs - Large Country Welfare Effects." Social Sci LibreTexts, 19 Jan. 2020.

https://socialsci.libretexts.org/Bookshelves/Economics/ International_Trade_-_Theory_and_Policy/07. Accessed 6 May 2025

"Industry Data." American Iron and Steel Institute. https://www.steel.org/industry-data/. Accessed 6 May 2025.

Questions

Questions?