Respuesta en frecuencia

- Se puede representar completamente el comportamiento en frecuencia que tiene un circuito (o sistema cualquiera) de función de transferencia conocida mediante dos diagramas:
- a) Uno que represente la amplitud o ganancia en función de la frecuencia (f) o de la pulsación (ω)
- b) Otro que represente el ángulo de fase en función de la frecuencia (f) o de la pulsación (ω)

Nota: es indiferente utilizar la pulsación o la frecuencia en abscisas: puesto que $\omega = 2 \cdot \pi \cdot f$, la representación es semejante

El decibelio (dB)

- Unidad de medida de ganancias respecto de un punto de referencia en el circuito
- Definición de ganancia de potencia en decibelios (dB) :

$$|A_P|(dB) = 10 \cdot \log_{10} \frac{P_A}{P_B}$$

B = Punto referencia del circuito

A = Punto donde se mide la ganancia respecto de B

Si la potencia se entrega sobre cargas iguales:
$$|A_P|(dB) = 10 \cdot \log_{10} \frac{P_A}{P_B} = 10 \cdot \log_{10} \frac{\frac{V_A^2}{R_{LOAD}}}{\frac{V_B^2}{R_{LOAD}}} = 10 \cdot \log_{10} \left(\frac{V_A}{V_B}\right)^2 = 20 \cdot \log_{10} \left(\frac{V_A}{V_B}\right)$$

Definición de ganancia de tensión en dB:

$$|A_u|(dB) = 20 \cdot log_{10} \left(\frac{V_A}{V_B}\right)$$

Definición de ganancia de corriente en dB: $|A_i|(dB) = 20 \cdot \log_{10}$

$$|A_i|(dB) = 20 \cdot log_{10} \left(\frac{I_A}{I_B}\right)$$

1

Diagrama de Bode

- Representación de módulo y fase de una función de transferencia o ganancia, en función de la frecuencia (f) o la pulsación (ω)
 - ◆ La frecuencia (o pulsación) se representa en escala logaritmica
 - ◆ El diagrama de módulos se representa en decibelios (escala logarítmica)
 - ◆ El diagrama de fases se representa linealmente
 - ◆ Ejemplo:

Diagrama de Bode

- Ventajas de la representación logarítmica:
 - ◆ Se convierte el producto de amplitudes en suma:

$$\log(A \cdot B) = \log A + \log B$$

- ◆ Existe un método de trazado del logaritmo de la amplitud, basado en una aproximación mediante rectas (asintótica).
- ◆ Permite ver fácilmente la respuesta del sistema a baja y alta frecuencia en el mismo diagrama.
- DEFINICIÓN DE DÉCADAS Y OCTAVAS:
 - ullet Década: banda de frecuencias (o pulsaciones) comprendidas entre f_0 y $10 \cdot f_0$.
 - \bullet Octava: banda de frecuencias (o pulsaciones) comprendidas entre f_0 y $2 \cdot f_0$.
 - ◆ Sobre el diagrama, la distancia entre frecuencias (o pulsaciones) que guardan igual relación es constante

Diagrama de Bode

- DEFINICIÓN DE DÉCADAS Y OCTAVAS:
 - ◆ Década: banda de frecuencias entre f₀ y 10·f₀.
 - ◆ Octava: banda de frecuencias entre f₀ y 2·f₀.

Trazado del Bode asintótico

• En general, una función de transferencia será de la forma:

$$G(s) = \frac{N(s)}{D(s)} \text{(Laplace)} \qquad G(j\omega) = \frac{N(j\omega)}{D(j\omega)} \text{(Regimen senoidal)}$$

- N(jω) y D(jω) se pueden factorizar siempre en factores de grado 2 como máximo
- Factores posibles:
 - K
 - \bullet ($j\omega$)[±]
 - $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$

Ganancia constante, y real

Factores derivativos e integrales

Factores de primer orden

Factores de segundo orden

- Factores de ganancia K
- **AMPLITUD**

• Si
$$|K| > 1 \Rightarrow |K|_{[dB]} = 20 \log |K| > 0$$

♦ Si
$$|K| < 1 \Rightarrow |K|_{[dB]} = 20 \log |K| < 0$$

Representación en función • NOTA: al multiplicar la de la frecuencia: Recta horizontal, de valor K_[dB]

ganancia por 10, el valor en dB aumenta en 20 dB

Ganancia K	Ganancia K [dB]
0,01=10-2	20·log(10 ⁻²)= -40
0,1=10-1	20·log(10 ⁻¹)= -20
1=100	20·log(10°)= 0
10=10 ¹	20·log(10 ¹)= 20
100=10 ²	20·log(10 ²)= 40

- Factores de ganancia K
- **FASE**
 - ♦ Si $K > 0 \Rightarrow \varphi = 0^{\circ}$
 - $K<0 \Longrightarrow \phi=180^o=\pi$ ♦ Si

- Factores derivativos e integrales: (jω)^{±1}
 - Caso 1: Factor en el numerador: $G_1(j\omega) = j\omega$
- AMPLITUD $\left|G_1\right|_{[dB]} = 20 \cdot \log \left|G_1\right| = 20 \cdot \log \left|j\omega\right| = 20 \log \omega$
 - ♦ Para $ω = 1 = 10^0 \Rightarrow |G_1|_{[dB]} = 20 \cdot log 10^0 = 0$
 - Si se aumenta la frecuencia una década, pasando de ω = ω₁ a ω =10· ω₁

$$20 \cdot \log(10 \cdot \omega_1) = 20 \cdot \log 10 + 20 \cdot \log \omega_1 = (20 \cdot \log \omega_1 + 20)_{[dB]}$$

Representación en función de la frecuencia:

Recta

- lacktriangle Pasa por $\omega = 1, \left|G_1\right|_{[dB]} = 0$
- ◆ Pendiente: 20 dB decada

Trazado del Bode asintótico

- Factores derivativos e integrales: (jω)^{±1}
 - Caso 1: Factor en el numerador: $G_1(j\omega) = j\omega$
- FASE $\varphi = G_1 = j\omega = 90^\circ = \frac{\pi}{2}$
- Representación en función de la frecuencia:

Recta φ=90°

- Factores derivativos e integrales: (jω)^{±1}
 - Caso 2: Factor en el denominador: $G_2(j\omega) = (j\omega)^{-1} = \frac{1}{j\omega} = \frac{-j}{\omega}$
- $\left. \frac{\mathsf{AMPLITUD}}{\left| \mathsf{G}_2 \right|_{\left[\mathsf{dB} \right]}} = 20 \cdot log \left| \frac{1}{j\omega} \right| = 20 log 1 20 log \omega = -20 log \omega$

 - ◆ Para $ω = 1 = 10^0$ ⇒ $|G_2|_{[dB]}^{[J^{0}]} = -20 \cdot log 10^0 = 0$ ◆ Si se aumenta la frecuencia una década: $ω = ω_1 → ω = 10 \cdot ω_1$ $-20 \cdot log(10 \cdot \omega_1) = -20 \cdot log10 - 20 \cdot log\omega_1 = (-20 \cdot log\omega_1 - 20)_{[dB]}$
- Representación en función de la frecuencia:

- Pasa por $\omega = 1, |G_2|_{[dB]} = 0$
- ◆ Pendiente: 20 dB decada

Trazado del Bode asintótico

- Factores derivativos e integrales: (jω)^{±1}
 - Caso 2: Factor en el denominador: $G_2(j\omega) = (j\omega)^{-1} = \frac{1}{i\omega} = \frac{-j}{\omega}$
 - $\varphi = G_2 = \frac{1}{i\omega} = 0^{\circ} 90^{\circ} = -90^{\circ} = -\frac{\pi}{2}$
- Representación en función de la frecuencia:

Recta φ=-90°

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 3: Factor en el numerador: $G_3(j\omega) = 1 + j\frac{\omega}{\omega}$
- $\begin{aligned} |G_3|_{[dB]} &= 20 \cdot \log |G_3| = 20 \cdot \log \left| 1 + j \frac{\omega}{\omega_n} \right| = 20 \log \sqrt{1 + \left(\frac{\omega}{\omega_n}\right)} \\ &\frac{G_3}{1} &= \operatorname{arctg} \frac{\omega}{1} \end{aligned}$ **AMPLITUD**
- - $\frac{\omega}{\omega_{n}} << 1 \Rightarrow \left|G_{3}\right|_{[dB]} = 20 \cdot \log \sqrt{1 + \left(\frac{\omega}{\omega_{n}}\right)^{2}} \cong 20 \cdot \log 10^{0} = 0$ $\frac{\omega}{G_{3}} = \operatorname{arctg} \frac{\omega}{1} \cong \operatorname{arctg} 0 = 0^{\circ}$ $\operatorname{Im}(G) \qquad \varphi \cong 0$ $\operatorname{Re}(G)$

Trazado del Bode asintótico

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_0})^{\pm 1}$
 - Caso 3: Factor en el numerador: $G_3(j\omega) = 1 + j\frac{\omega}{\omega_0}$

$$\frac{\omega}{\omega_{n}} >> 1 \Rightarrow \left| G_{3} \right|_{[dB]} = 20 \log \sqrt{1 + \left(\frac{\omega}{\omega_{n}} \right)^{2}} \cong 20 \log \frac{\omega}{\omega_{n}}$$

$$\underline{\left\lfloor G_{3}\right.}\!=\!\,arctg\frac{\omega_{n}}{1}\cong arctg\left(\infty\right)\!=90^{o}$$

$$20 \cdot log \left(10 \cdot \frac{\omega_1}{\omega_n}\right) = 20 \cdot log 10 + 20 \cdot log \frac{\omega_1}{\omega_n} = \left(20 \cdot log \frac{\omega_1}{\omega_n} + 20\right)_{\text{[dB]}}$$

La ganancia aumenta en 20 dB por década

φ≅90°

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 3: Factor en el numerador: $G_3(j\omega) = 1 + j\frac{\omega}{\omega_a}$
 - ◆ Transición entre ambos casos: si $\frac{\omega}{\omega_n} = 1 \Leftrightarrow \omega = \omega_n$
 - $\frac{\omega}{\omega_{n}} = 1 \Rightarrow \left| G_{3} \right|_{[dB]} = 20 \log \sqrt{1 + \left(\frac{\omega}{\omega_{n}}\right)^{2}} = 20 \log \sqrt{2} = 3[dB]$ $\frac{\omega}{G_{3}} = \arctan \frac{\omega}{1} = \arctan (1) = 45^{\circ}$ $\frac{1}{1} = \arctan (1) = 45^{\circ}$

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 3: Factor en el numerador: $G_3(j\omega) = 1 + j\frac{\omega}{\omega_0}$

DIACRAMA	DE BODE	(Conclusión)
DIAGRAMA	DE DODE	(Conclusión)

	MÓDULOS	FASES
$\frac{\omega}{\omega_n} << 1$	G₃(jω) ≅ 0[dB] Recta horizontal	$G_3(j\omega) = 0^{\circ}$
$\frac{\omega}{\omega_n} >> 1$	G₃(jω) crece a 20[dB/dec] Recta de pendiente 20 dB/dec	$G_3(j\omega) = 90^{\circ}$
$\frac{\omega}{\omega_n} = 1$	$ G_3(j\omega) = 3[dB]$	$G_3(j\omega) = 45^{\circ}$

Trazado del Bode asintótico ■ Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\Omega})^{\pm 1}$ • Caso 3: Factor en el numerador: $G_3(j\omega) = 1 + j\frac{\omega}{\omega_n}$ DIAGRAMA DE BODE DIAGRAMA DE BODE $\left| \begin{array}{c} \text{(Aproximación asintótica)} \\ \left| \begin{array}{c} \text{G}(j\omega) \end{array} \right|_{[dB]} \end{array} \right|$ (Curva real) $|G(j\omega)|_{[dB]}$ 20 decada dΒ 20 3[dB] 20 $\omega = \frac{1}{\omega_n}/10$ $\omega = \omega_n \omega = 10\omega_n$ | <u>G(jω)</u> 45° $G(j\omega)$ decada \ 90° 90° $\omega = \omega_n / 10$ $\omega = \omega_n \omega = 10\omega_n$ $\omega = \omega_n / 10$ $\omega = \omega_n \omega = 10\omega_n$

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 4: Factor en el denominador: $G_4(j\omega) = \frac{1}{1+j\frac{\omega}{1$
- **AMPLITUD**

$$\begin{aligned} |G_4|_{[dB]} &= 20 \cdot \log |G_4| = -20 \cdot \log |1 + j\frac{\omega}{\omega_n}| = -20 \log \sqrt{1 + \left(\frac{\omega}{\omega_n}\right)^2} \end{aligned}$$

FASE $G_{4} = 0 - arctg \frac{\omega_{n}}{1}$

$$\begin{array}{l} \bullet \text{ Si} \\ \frac{\omega}{\omega_{n}} << 1 \Rightarrow \left|G_{4}\right|_{[dB]} = -20 \cdot log \sqrt{1 + \left(\frac{\omega}{\omega_{n}}\right)^{2}} \cong -20 \cdot log 10^{0} = 0 \\ \frac{\omega}{|G_{4}|} = -arctg \frac{\frac{\omega}{\omega_{n}}}{1} \cong -arctg 0 = 0^{\circ} \end{array}$$

$$\underline{G_4} = -\text{arctg} \frac{\overline{\omega_n}}{1} \cong -\text{arctg } 0 = 0$$

Trazado del Bode asintótico

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 4: Factor en el denominador: $G_4(j\omega) = \frac{1}{1+j\frac{\omega}{\omega}}$

$$\frac{\omega}{\omega_{n}} >> 1 \Rightarrow |G_{4}|_{[dB]} = -20 \log \sqrt{1 + \left(\frac{\omega}{\omega_{n}}\right)^{2}} \cong -20 \log \frac{\omega}{\omega_{n}}$$

$$|G_{4}| = -\operatorname{arctg} \frac{\omega}{1} \cong -\operatorname{arctg} (\infty) = -90^{\circ}$$

$$|G_{4}| = -\operatorname{arctg} \frac{\omega}{1} \cong -\operatorname{arctg} (\infty) = -90^{\circ}$$

Si se aumenta la frecuencia una década:

$$\omega=\omega_1\to\omega=10\cdot\omega_1$$

$$-20 \cdot log \!\! \left(10 \cdot \frac{\omega_1}{\omega_n}\right) = -20 \cdot log 10 - 20 \cdot log \frac{\omega_1}{\omega_n} = \!\! \left(-20 \cdot log \frac{\omega_1}{\omega_n} - 20\right)_{\!\! [dB]}$$

La ganancia decrece en 20 dB por década

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 4: Factor en el denominador: $G_4(j\omega) = \frac{1}{1+j\frac{\omega}{\omega_n}}$
 - ◆ Transición entre ambos casos: si $\frac{\omega}{\omega_n} = 1 \Leftrightarrow \omega = \omega_n$
 - Si $\frac{\omega}{\omega_{n}} = 1 \Rightarrow |G_{4}|_{[dB]} = -20 \log \sqrt{1 + \left(\frac{\omega}{\omega_{n}}\right)^{2}} = -20 \log \sqrt{2} = -3[dB]$ $|G_{4}| = -\arctan \frac{\omega}{1} = -\arctan (1) = -45^{\circ}$ $|M(G)| = -45^{\circ}$ $|G_{4}| = -\arctan \frac{\omega}{1} = -\arctan (1) = -45^{\circ}$

$$G_{4} = -\arctan \frac{\omega}{\omega_{n}} = -\arctan (1) = -45^{\circ}$$

Trazado del Bode asintótico

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 4: Factor en el denominador: $G_4(j\omega) = \frac{1}{1+j\frac{\omega}{\omega}}$

DIAGRAMA DE BODE (Conclusión)

	MÓDULOS	FASES
$\frac{\omega}{\omega_n} \ll 1$	G₄(jω) ≅ 0[dB] Recta horizontal	$G_4(j\omega) = 0^{\circ}$
$\frac{\omega}{\omega_n} >> 1$	G ₄ (jω) decrece a 20[dB/dec] Recta de pendiente -20 dB/dec	$G_4(j\omega) = -90^{\circ}$
$\frac{\omega}{\omega_n} = 1$	$\left G_4(j\omega)\right = -3[dB]$	$G_4(j\omega) = -45^{\circ}$

Trazado del Bode asintótico Factores de primer orden: $(1+j\omega T)^{\pm 1}=(1+j\frac{\omega}{\omega_n})^{\pm 1}$ Caso 4: Factor en el denominador: $G_4(j\omega)=\frac{1}{1+j\frac{\omega}{\omega_n}}$ DIAGRAMA DE BODE (Aproximación asintótica) $G(j\omega)$ G(j

- Factores de segundo orden: $\left[1 + 2\zeta \cdot j \frac{\omega}{\omega_n} + \left(j \frac{\omega}{\omega_n} \right)^2 \right]^{\pm 1}$
 - Si $\zeta > 1$ se descompone en dos factores reales de grado 1
 - lacktriangle Si $0 < \zeta < 1$ no existen raíces reales (caso a analizar)
- Caso 5: Factor en el denominador $G_5(j\omega) = \left(1 + 2\zeta \cdot j\frac{\omega}{\omega_n} + \left(j\frac{\omega}{\omega_n}\right)^2\right)^{-1} = \left(1 \frac{\omega^2}{\omega_n^2} + 2\zeta \cdot j\frac{\omega}{\omega_n}\right)^{-1}$

$$|\mathbf{G}_{5}| = \frac{1}{\left|1 - \frac{\omega^{2}}{\omega_{n}^{2}} + 2\zeta \cdot \mathbf{j} \frac{\omega}{\omega_{n}}\right|} = \frac{1}{\sqrt{\left(1 - \frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2} + \left(2\zeta \cdot \frac{\omega}{\omega_{n}}\right)^{2}}}$$

$$|\mathbf{G}_{5}|_{[dB]} = 20 \cdot \log|\mathbf{G}_{5}| = -20 \cdot \log\sqrt{\left(1 - \frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2} + \left(2\zeta \frac{\omega}{\omega_{n}}\right)^{2}}$$

- Factores de segundo orden: $\left[1 + 2\zeta \cdot j \frac{\omega}{\omega_n} + \left(j \frac{\omega}{\omega_n}\right)^2\right]^{\frac{1}{2}}$
- **FASE** $G_{5} = \frac{1}{1 - \frac{\omega^{2}}{\omega_{n}^{2}} + 2\zeta \cdot j \frac{\omega}{\omega_{n}}} = 0 - \frac{1 - \frac{\omega^{2}}{\omega_{n}^{2}} + 2\zeta \cdot j \frac{\omega}{\omega_{n}}}{1 - \frac{\omega^{2}}{\omega_{n}^{2}} + 2\zeta \cdot j \frac{\omega}{\omega_{n}}}$

$$G_{5} = -\arctan \left[\frac{2\zeta \frac{\omega}{\omega_{n}}}{1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}} \right]$$

• Si
$$\frac{\omega}{\omega_n} << 1 \Rightarrow$$

$$\left|G_{5}\right|_{\left[dB\right]}=-20\cdot log\sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+\left(2\zeta\frac{\omega}{\omega_{n}}\right)^{2}}\\ \cong -20\cdot log\sqrt{\left(1\right)^{2}}=-20\log 1=0$$

$$\underline{G_5} = -\arctan \left[\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}} \right] \cong -\arctan \frac{0}{1} = 0^{\circ}$$

Factor en el denominador
$$G_5(j\omega) = \left(1 - \frac{\omega^2}{\omega_0^2} + 2\zeta \cdot j \frac{\omega}{\omega_0}\right)^{-1}$$

• Si
$$\frac{\omega}{\omega} >> 1 \Rightarrow$$

$$= -20 \cdot \log \sqrt{\left(\frac{\omega^2}{\omega_n^2}\right)^2} = -20 \cdot \log \left(\frac{\omega}{\omega_n}\right)^2 = -40 \log \frac{\omega}{\omega_n}$$
 Decrece a 40 dB/década

$$\boxed{\frac{G_5}{G_5} = -\arctan \left[\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega^2}}\right] = -\arctan \left[\frac{2\zeta \cdot \omega_n}{-\omega}\right] = -180^{\circ}} = -180^{\circ}$$

Trazado del Bode asintótico

Factor en el denominador
$$G_5(j\omega) = \left(1 - \frac{\omega^2}{\omega_n^2} + 2\zeta \cdot j \frac{\omega}{\omega_n}\right)^{-1}$$

- ♦ Transición entre ambos casos: si $\frac{\omega}{\omega_n} = 1 \Leftrightarrow \omega = \omega_n$ ♦ Si $\frac{\omega}{\omega_n} = 1 \Rightarrow \left|G_5\right|_{[dB]} = -20 \cdot log(2\zeta)$ $0 < \zeta < 1$

Depende de los valores de ζ

$$\underline{G_5} = \left(2\zeta \frac{\omega}{\omega_n} j\right)^{-1} \Rightarrow G_5 = -\arctan\left[2\zeta \frac{\omega}{\omega_n} j\right] = -90^{\circ}$$

- Factores de primer orden: $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$
 - Caso 4: Factor en el denominador: $G_5(j\omega) = \frac{1}{1+j\frac{\omega}{\omega}}$

DIAGRAMA DE BODE (Conclusión)		
	MÓDULOS	FASES
$\frac{\omega}{\omega_n} \ll 1$	G₅(jω) ≅ 0[dB] Recta horizontal	$G_5(j\omega) = 0^{\circ}$
$\frac{\omega}{\omega_n} >> 1$	$ G_5(j\omega) $ decrece a 40[dB/dec] Recta de pendiente -40 dB/dec	$G_5(j\omega) = -180^{\circ}$
$\frac{\omega}{\omega_n} \cong 1$	$ G_5(j\omega) = Depende de \zeta$	$G_5(j\omega) = -90^{\circ}$
$\frac{\omega}{\omega_n} \cong 1$	$ G_5(j\omega) $ = Depende de ζ	$G_5(j\omega) = -90^{\circ}$

- Factores de segundo orden: $\left[1 + 2\zeta \cdot j \frac{\omega}{\omega_n} + \left(j \frac{\omega}{\omega_n} \right)^2 \right]^{-1}$

Factor en el denominador
$$G_5(j\omega) = \left(1 - \frac{\omega^2}{\omega_0^2} + 2\zeta \cdot j \frac{\omega}{\omega_0}\right)^{-1}$$

Una función de transferencia cualquiera será de la forma:

$$G(j\omega) = \frac{N(j\omega)}{D(j\omega)} = \frac{N_1(j\omega) \cdot N_2(j\omega) \cdot ... \cdot N_n(j\omega)}{D_1(j\omega) \cdot D_2(j\omega) \cdot ... \cdot D_m(j\omega)}$$

- Factores: K, $(j\omega)^{\pm 1}$, $(1+j\omega T)^{\pm 1} = (1+j\frac{\omega}{\omega_n})^{\pm 1}$, $\left[1+2\zeta\cdot j\frac{\omega}{\omega_n}+\left(j\frac{\omega}{\omega_n}\right)^2\right]^{\pm 1}$
- En dB, el producto pasa a ser una suma:

$$\left|G(j\omega)\right|_{[dB]} = 20 log \frac{N(j\omega)}{D(j\omega)} =$$

- $=20 log \big[N_{\scriptscriptstyle 1}(j\omega)\big] + ... + 20 log \big[N_{\scriptscriptstyle n}(j\omega)\big] 20 log \big[D_{\scriptscriptstyle 1}(j\omega)\big] 20 log \big[D_{\scriptscriptstyle m}(j\omega)\big]$
- ¿Cómo afecta cada factor agregado a G(jω)?

$$\left|G_{_{N}}(j\omega)\right| = \left|Factor\right| \cdot \left|G(j\omega)\right| \Rightarrow \left|G_{_{N}}(j\omega)\right|_{[dB]} = 20 \, log \left|Factor\right| + \left|G(j\omega)\right|_{[dB]}$$

Trazado del Bode asintótico Diagrama de MÓDULOS $\left| \mathsf{G}(\mathsf{j}\omega) \right|_{[\mathsf{dB}]}$ $\left| \mathsf{G}(\mathsf{j}\omega) \right|_{[\mathsf{dB}]}$ $\left|G_{\text{NUEVA}}(j\omega)\right|_{[\text{dB}]}$ $\left|G(j\omega)\right|_{[dB]}$ 20 0 - **2**0 20 dB decada $|j\omega|_{[dB]}$ 40 **→**ω $\omega = 1$ $\omega = 1$

Trazado del Bode asintótico Diagrama de FASES Factores K, jω y (jω)-1 Suman una fase constante en todas las frecuencias ◆ Factor K>0 Suma 0° ◆ Factor K<0</p> Suma/Resta 180° Suma 90° Factor jω Factor (jω)-1 Suma -90° (o resta 90°) G(jω) $G_{NUEVO}(j\omega)$ 180 -180 90 90 -90 -90 -180 🕹

- Diagrama de FASES
- Factores de segundo orden:
- Factor en el numerador:

$$G_{6}(j\omega) = \left[1 + 2\zeta \cdot j\frac{\omega}{\omega_{n}} + \left(j\frac{\omega}{\omega_{n}}\right)^{2}\right]$$

Suma una fase de 180° entre $\omega = \omega_n/10$ y $\omega = 10 \cdot \omega_n$

- Método de trazado
- Paso 1: Ordenar las frecuencias de transición f_n (o ω_n)
- Paso 2: Empezar a dibujar los diagramas empezando por las frecuencias menores
 - Diagrama de módulos
 - a) Se parte de la pendiente dada por los factores K y $(j\omega)^{\pm 1}$
 - b) Cada frecuencia de transición cambia la pendiente en $\boldsymbol{\omega}_{n}$
 - c) El cálculo del módulo a cualquier ω fija la posición
 - Diagrama de fases
 - a) Se parte de la fase dada por los factores K y $(j\omega)^{\pm 1}$
 - b) Cada frecuencia de transición cambia la fase entre $\omega_n/10$ y $10\cdot\omega_n$