# Modules

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 13, 2021

## Overview

#### Modules

**Exact Sequences** 

#### Recall

Suppose  $\varphi: B \to C$  is a surjective homomorphism. Then we have a subobject A of B such that  $B/A \cong C$ .

Now we consider the reverse situation: given A and C, is there B such that A is a sumobject and  $B/A \cong C$ ? If such B exists, we say B is an extension of C by A.

#### Definition

Suppose a ring has a 1 and  $X, Y, Z, \cdots$  are R-modules.

- (1) The pair of homomorphisms  $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z$  is said to be exact (at Y) if  $\operatorname{Im} \alpha = \operatorname{Ker} \beta$ .
- (2) A sequence  $\cdots \to X_{n-1} \to X_n \to X_{n+1} \to \cdots$  of homomorphisms is said to be an exact sequence if it is exact at every  $X_n$  between a pair of homomorphisms.

## Proposition

Let A, B and C be R-modules over some ring R. Then

- (1) The sequence  $0 \to A \xrightarrow{\psi} B$  is exact (at A) if and only if  $\psi$  is injective.
- (2) The sequence  $B \xrightarrow{\varphi} C \to 0$  is exact (at C) if and only if  $\varphi$  is surjective.

## Corollary

The sequence  $0 \to A \xrightarrow{\psi} B \xrightarrow{\varphi} C \to 0$  is exact if and only if  $\psi$  is injective,  $\varphi$  is surjective, and  $\operatorname{Im} \psi = \operatorname{Ker} \varphi$ .

#### Definition

The exact sequence  $0 \to A \xrightarrow{\psi} B \xrightarrow{\varphi} C \to 0$  is called a *short exact sequence*.

#### Remark

Suppose  $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z$  is exact at Y. Consider the sequence

$$0 \to \operatorname{Im} \alpha \xrightarrow{\iota} Y \xrightarrow{\pi} Y/\operatorname{Ker} \beta \to 0$$

where  $\iota:\operatorname{Im} \alpha \to Y$  is an inclusion and  $\pi:Y\to Y/\operatorname{Ker}\beta$  is a natural projection. Then this sequence is a short exact sequence. So any exact sequence can be written as a succession of short exact sequences.

- (1)  $0 \to A \xrightarrow{\iota} A \oplus C \xrightarrow{\pi} C \to 0$
- (2)  $0 \to \mathbb{Z} \xrightarrow{\iota} \mathbb{Z} \oplus (\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\varphi} \mathbb{Z}/n\mathbb{Z} \to 0$ ,  $0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z} \to 0$
- (3) If  $\varphi: B \to C$  is any homomorphism we may form an exact sequence:

$$0 \to \operatorname{Ker} \varphi \xrightarrow{\iota} B \xrightarrow{\varphi} \operatorname{Im} \varphi \to 0.$$

(4) Suppose M is an R-module and S is a set of generators for M. Let F(S) be the free R-module on S. Then the inclusion  $S \to M$  induces a homomorphism  $F(S) \to M$ . Let K be the kernel of this homomorphism. Then

$$0 \to K \xrightarrow{\iota} F(S) \xrightarrow{\varphi} M \to 0$$

is a short exact sequence.

#### Definition

Let  $0 \to A \to B \to C \to 0$  and  $0 \to A' \to B' \to C' \to 0$  be two short exact sequences of modules.

(1) A homomorphism of short exact sequences is a triple  $\alpha, \beta, \gamma$  of module homomorphisms such that the following diagram commutes:

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

The homomorphism is an isomorphism of short exact sequences if  $\alpha, \beta, \gamma$  are all isomorphisms, in which case the extensions B and B' are said to be isomorphic extensions.

(2) The two exact sequences are called *equivalent* if A=A', C=C', and there is an isomorphism between them as in (1) that is the identity maps on A and C. (i.e.,  $\alpha$  and  $\gamma$  are the identity). In this case, the corresponding extensions B and B' are said to be *equivalent* extensions.

(1) m = kn.

$$0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow \mathbb{Z}/k\mathbb{Z} \xrightarrow{\iota} \mathbb{Z}/m\mathbb{Z} \xrightarrow{\pi'} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

(2) Map each module to itself by  $x \mapsto -x$ .

$$0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

$$\downarrow^{-1} \qquad \downarrow^{-1} \qquad \downarrow^{-1}$$

$$0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

This is an isomorphism of short exact sequences but is not equivalence of sequences.

#### (3) Consider the maps

#### where

- $\psi(a) = (a, 0), \ \varphi(a, b) = b;$
- $\psi'(b) = (0, b), \ \varphi'(a, b) = a.$

If  $\beta(a,b)=(b,a)$ , this diagram commutes, hence giving an equivalence of the two exact sequences that is not identity isomorphism.

## Proposition (The Short Five Lemma)

Let  $\alpha, \beta, \gamma$  be a homomorphism of short exact sequences

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\varphi} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{\psi'} B' \xrightarrow{\varphi'} C' \longrightarrow 0$$

- (1) If  $\alpha$  and  $\gamma$  are injective, then so is  $\beta$ .
- (2) If  $\alpha$  and  $\gamma$  are surjective, then so is  $\beta$ .
- (3) Hence, if  $\alpha$  and  $\gamma$  are isomorphisms, then so is  $\beta$ .

# Proof (1)



# Proof (2)



#### Definition

Let R be a ring and let  $0 \to A \xrightarrow{\psi} B \xrightarrow{\varphi} C \to 0$  be a short exact sequence of R-modules. The sequence is said to be *split* if there is an R-module complement to  $\psi(A)$  in B. In this case, up to isomorphism,  $B = A \oplus C$  (more precisely,  $B = \psi(A) \oplus C'$  for some submodule C, and C' is mapped isomorphically onto C by  $\varphi \colon \varphi(C') \cong C$ ).

## **Proposition**

The short exact sequence  $0 \to A \xrightarrow{\psi} B \xrightarrow{\varphi} C \to 0$  of R-modules is split if and only if there is an R-module homomorphism  $\mu: C \to B$  such that  $\varphi \circ \mu$  is identity map on C.

#### Definition

- ▶ With notation as in above Proposition, any set map  $\mu: C \to B$  such that  $\varphi \circ \mu = \mathrm{id}$  is called a *section* of  $\varphi$ .
- If  $\mu$  is a homomorphism as in Proposition, then  $\mu$  is called a *splitting homomorphism* for the sequence.

## Proposition

Let  $0 \to A \xrightarrow{\psi} B \xrightarrow{\varphi} C \to 0$  be a short exact sequence of modules. Then  $B = \psi(A) \oplus C'$  for some submodule C' of B with  $\varphi(C') \cong C$  if and only if there is a homomorphism  $\lambda: B \to A$  such that  $\lambda \circ \psi$  is the identity map on A.

#### Observe

For given exact sequence  $A \xrightarrow{f} B \xrightarrow{g} C$ , there is a short exact sequence  $0 \to \operatorname{Im} f \to B \to B/\operatorname{Ker} g \to 0$ . The last term is  $B/\operatorname{Ker} g = B/\operatorname{Im} f$ . So

$$0 \to \operatorname{Im} f \to B \to B/\operatorname{Im} f \to 0$$

#### Definition

Let  $f:A\to B$  be a R-module homomorphism. Then the *cokernel* of f is the quotient module  $B/\operatorname{Im} f$ , denoted by  $\operatorname{Coker} f$ .

Consider a homomorphism of short exact sequences:

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\varphi} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{\psi'} B' \xrightarrow{\varphi'} C' \longrightarrow 0$$

From  $B \to B'$ ,  $0 \to \operatorname{Ker}\beta \to B \to B' \to \operatorname{Coker}\beta \to 0$  is a exact sequence.



## Lemma (The Snake Lemma)

#### Suppose

$$\begin{array}{cccc}
A & \xrightarrow{\psi} & B & \xrightarrow{\varphi} & C & \longrightarrow & 0 \\
\downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} \\
0 & \longrightarrow & A' & \xrightarrow{\psi'} & B' & \xrightarrow{\varphi'} & C'
\end{array}$$

is a commutative diagram of R-modules with exact rows. Then there is a homomorphism  $\delta: \operatorname{Ker} \gamma \to \operatorname{Coker} \alpha$ , called a connecting map such that

$$\operatorname{Ker}\alpha \to \operatorname{Ker}\beta \to \operatorname{Ker}\gamma \xrightarrow{\delta} \operatorname{Coker}\alpha \to \operatorname{Coker}\beta \to \operatorname{Coker}\gamma$$

is an exact sequence. If  $\psi$  is injective and  $\varphi'$  is surjective, then

$$0 \to \operatorname{Ker}\alpha \to \operatorname{Ker}\beta \to \operatorname{Ker}\gamma \xrightarrow{\delta} \operatorname{Coker}\alpha \to \operatorname{Coker}\beta \to \operatorname{Coker}\gamma \to 0$$

is exact.



## Proof

Existence of  $\delta$ .



## Proof

#### Exactness

- $ightharpoonup \operatorname{Ker}\beta \to \operatorname{Ker}\gamma \to \operatorname{Coker}\alpha.$
- $\blacktriangleright \operatorname{Ker} \gamma \to \operatorname{Coker} \alpha \to \operatorname{Coker} \beta$

## **Application**

Recall the short five lemma. If  $\alpha$  and  $\gamma$  are injective, we have



This implies  $Ker\beta = 0$ .

## **Application**

If  $\alpha$  and  $\gamma$  are surjective, we have

$$0 \longrightarrow A \xrightarrow{\psi} B \xrightarrow{\varphi} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{\psi'} B' \xrightarrow{\varphi'} C' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{Coker}{\beta} \longrightarrow 0 \longrightarrow 0$$

This implies  $B'/\operatorname{Im}\beta=0$ , or  $\operatorname{Im}\beta=B'$ .

## Lemma (The Five Lemma)

Consider a commutative diagram of R-modules and homomorphisms such that each row is exact:

$$A_{1} \xrightarrow{\psi_{1}} A_{2} \xrightarrow{\psi_{2}} A_{3} \xrightarrow{\psi_{3}} A_{4} \xrightarrow{\psi_{4}} A_{5}$$

$$\downarrow \alpha_{1} \qquad \downarrow \alpha_{2} \qquad \downarrow \alpha_{3} \qquad \downarrow \alpha_{4} \qquad \downarrow \alpha_{5}$$

$$B_{1} \xrightarrow{\varphi_{1}} B_{2} \xrightarrow{\varphi_{2}} B_{3} \xrightarrow{\varphi_{3}} B_{4} \xrightarrow{\varphi_{4}} B_{5}$$

- (1) If  $\alpha_1$  is surjective and  $\alpha_2$  and  $\alpha_4$  are injective, then  $\alpha_3$  is injective.
- (2) If  $\alpha_5$  is injective and  $\alpha_2$  and  $\alpha_4$  are surjective, then  $\alpha_3$  is surjective.

(1) If  $\alpha_1$  is surjective,

$$0 \longrightarrow \operatorname{Coker} \psi_{1} \xrightarrow{\widetilde{\psi}_{2}} A_{3} \xrightarrow{\psi_{3}} \operatorname{Im} \psi_{3} \longrightarrow 0$$

$$\downarrow^{\widetilde{\alpha}_{2}} \qquad \downarrow^{\alpha_{3}} \qquad \downarrow^{\widetilde{\alpha}_{4}}$$

$$0 \longrightarrow \operatorname{Coker} \varphi_{1} \xrightarrow{\widetilde{\varphi}_{2}} B_{3} \xrightarrow{\varphi_{3}} \operatorname{Im} \varphi_{3} \longrightarrow 0$$

If  $\alpha_2$  and  $\alpha_4$  are injective, so are  $\tilde{\alpha}_2$  and  $\tilde{\alpha}_4$ .

(2) If  $\alpha_5$  is injective,

$$0 \longrightarrow \operatorname{Ker} \psi_{3} \xrightarrow{\iota_{3}} A_{3} \xrightarrow{\psi_{3}} \operatorname{Im} \psi_{3} \longrightarrow 0$$

$$\downarrow \tilde{\alpha}_{2} \qquad \qquad \downarrow \tilde{\alpha}_{3} \qquad \qquad \downarrow \tilde{\alpha}_{4}$$

$$0 \longrightarrow \operatorname{Ker} \varphi_{3} \xrightarrow{\jmath_{3}} B_{3} \xrightarrow{\varphi_{3}} \operatorname{Im} \varphi_{3} \longrightarrow 0$$

If  $\alpha_2$  and  $\alpha_4$  are surjective, so are  $\tilde{\alpha}_2$  and  $\tilde{\alpha}_4$ .

### Exercise, $3 \times 3$ lemma

Consider the following commutative diagram in R-modules having exact columns.



- (1) If the bottom two rows are exact, prove that the top row is exact.
- (2) If the top two rows are exact, prove that the bottom row is exact.

## Proof, (1)



## Proof, (2)



# The End