统计预习学案

TechX

June 13

1 引言

统计学, 在数据科学, 机器学习, 社会科学和商科领域中都有广泛的应用。我们为参加本次 TechX 的同学准备了这份预习学案 (共分为七部分), 希望能为大家学习统计学基础提供指引。除学案外, 我们也收集了外部资源链接供大家加深理解。

2 概率 Probability

概率论是数学的一个关注概率的分支,是对随机现象的分析。wikipedia

2.1 定义

- 实验 Experiment: 可重复进行的程序, 且有明确的结果(如化学实验)
- 随机试验 Random Experiment: 有多种可能发生的结果的实验
- 样本空间 (S) Sample Space: 随机试验中, 所有可能的结果的集合
- 事件 Event: 样本空间中的元素 注意: 样本空间和事件具有集合的所有性质。
- 概率 Probability: P(A), A: 事件
 - 1. $P(A) \ge 0$
 - 2. P(S) = 1
 - 3. $P(A) = \frac{N(A)}{N(S)}$, N(X) is the number of outcomes in $X \subseteq S$

4. $P(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i)$, if A_i are countable and mutually exclusive mutually exclusive: $A_i \cup A_j = \emptyset$, $\forall i \neq j$ ehaustive: for $A_1, A_2, \cdots, A_k, \ \cup_{i=1}^k A_i = S$

2.2 概率的性质

- $P(A) = 1 P(A'), P(\emptyset) = 0, takeA' = S$
- $if A \subseteq B, P(A) \le P(B)$
- $P(A) \le 1$, $P(S) = 1 = P(A \cup A') = P(A) + P(A') \ge P(A)$
- $\forall two \ events \ A \ and \ B, \ P(A \cup B) = P(A) + P(B) P(A \cap B)$

2.3 条件概率 Conditional Probability

当事件 B 发生时, 事件 A 的条件概率为:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

有如下性质:

- $P(A|B) \ge 0$
- P(B|B) = 1
- $P(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B)$

乘法规则: $P(A \cap B) = P(A)(B|A) = P(B)P(A|B)$ $P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$ 独立事件 Independent Events: 如果事件 A 和 B 独立, $P(A \cap B) = P(A)P(B)$

3 贝叶斯统计 Simple Bayesian Statistics

- 1. 先验分布 prior distribution $p(\theta)$: 关于 θ 的概率分布,是在抽样前就有的关于 θ 的先验信息的概率表述
- 2. 后验分布 posterior distribution $p(\theta|X)$: 基于样本 X, 对于参数 θ 的新认知

4 抽样 SAMPLING 3

3. 贝叶斯定理

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)}$$

4 抽样 Sampling

4.1 单纯随机抽样 (simple random sampling)

将调查总体全部观察单位编号,再用抽签法或随机数字表随机抽取部分观察单位组成样本。

4.2 系统抽样 (systematic sampling)

又称机械抽样、等距抽样,即先将总体的观察单位按某一顺序号分成 n 个部分,再从第一部分随机抽取第 k 号观察单位,依次用相等间距,从每一部分各抽取一个观察单位组成样本。 **步骤:**

- 1. 编号: 先将总体的 N 个个体编号
- 2. 分段: 确定分段间隔 k, 对编号进行分段, 当 N/n(n 是样本容量) 是整数时, 取 k=N/n
- 3. 确定第一个个体编号: 在第一段用简单随机抽样确定第一个个体编号 l (l≤k)
- 4. 成样:按照一定的规则抽取样本,通常是将 l 加上间隔 k 得到第二个个体编号 (l+k), 再加上 k 得到第三个个体编号 (l+2k), 依次进行下去,直到获取整个样本

4.3 整群抽样 (cluster sampling)

总体分群, 再随机抽取几个群组成样本, 群内全部调查。

4.4 分层抽样 (stratified sampling)

先按对观察指标影响较大的某种特征 (如性别), 将总体分为若干个类别, 再从每一层内随机抽取一定数量的观察单位, 合起来组成样本。有按比例分配和最优分配两种方案。

5 常见概率模型

5.1 随机变量 Random Variable

a function $X: S \to \overline{S} \subseteq R$ that assign $X(s) = x \ \forall s \in S$ is called Random Variable(RV).

5 常见概率模型 4

离散型 Discrete RV

概率质量函数 probability mass function: pmf $f(x): \overline{S} \to (0,1]$

$$P(X \in A) = \sum_{X \in A} f(X)$$
 $\sum_{X \in S} f(X) = 1$

累计分布函数 cumulative distribution function: cdf $P(X \le x) = F(x) = \sum_{X < x} f(x)$

连续型 Continuous RV

概率密度函数 probability density function: pdf $f(x): \overline{S} \to (0, \infty)$

$$\begin{split} P(X \in A) &= \int_{X \in A} f(x) \quad \int_{X \in S} f(x) = 1 \\ \mathbf{cdf} \colon P(X \leq x) &= \int_{X < x} f(x) \end{split}$$

矩 Moment $E(x^n)$

期望 mean:

$$\mu = E(x) = \begin{cases} \sum x f(x) & DiscreteRV \\ \int x f(x) dx & ContinuousRV \end{cases}$$

方差 variance

$$\sigma^2 = E[(x - \mu)^2] = E(x^2) - [E(x)]^2$$

标准差 standard deviation: σ

5.2 均匀分布 Uniform Distribution

均匀分布在概率论和统计学中也叫矩形分布,它是对称概率分布,均匀分布中每一随机事件发生的概率都是相等的。

离散型:

pmf:
$$f(x) = \frac{1}{N}$$
 N 是随机事件数量

连续型:

pdf: $f(x) = \frac{1}{b-a}$, a < b, a 和 b 分别是数轴上的最小值和最大值,记为 **U(a,b)**

5 常见概率模型 5

cdf:
$$F(x) = \frac{x-a}{b-a}$$

$$E(X)$$
: $\frac{a+b}{2}$

$$Var(X): \frac{(a-b)^2}{12}$$

5.3 二项分布 Binomial Distribution

二项分布是 n 个独立的重复试验中成功的次数的离散型概率分布,一次试验的成功概率为 p。记为 $X \sim B(n,p)$

这样的单次试验又称为伯努利试验 (Bernoulli)。当 n=1 时,该二项分布为伯努利分布 (Bernoulli Distribution)

pmf:
$$f(x) = P\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k}, \ \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 $E(X) = np \quad Var(X) = np(1-p)$

5.4 正态分布 Normal Distribution

正态分布 (Normal distribution), 也称高斯分布 (Gaussian distribution), 记为 $N(\mu, \sigma^2)$ 。

其中, μ 为期望, σ^2 为方差, 期望决定了分布的位置, 而标准差决定分布的幅度。当 $\mu=0,\sigma=1$ 时, 该正态分布是标准正态分布, 其随机变量记作 Z。

pdf:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

5 常见概率模型 6

为了便于描述和应用(计算),经常将一般正态分布转化成标准正态分布:

$$z_{\alpha}$$
: $Z \sim N(0,1)$, $z_{\alpha}: P(Z \geq z_{\alpha}) = \alpha$
$$\frac{X - \mu}{\sigma} = Z \sim N(0,1) \quad f(z) = \frac{1}{\sqrt{2\pi}} exp(-\frac{z^2}{2})$$

图像

5.5 卡方分布 Chi-ssquare Distribution

若 n 个相互独立的随机变量 $\xi_1, \xi_2, ..., \xi_n$,均服从标准正态分布(也称独立同分布于标准正态分布),则这 n 个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution),记为 χ^2 。

 $Q=\sum \xi_i^2,\ Q\sim \chi^2(v), v=n-k,$ 其中,k 是限制条件的个数,卡方分布是由正态分布构造而成的一个新的分布,v 是自由度。当自由度很大时, χ^2 分布近似为正态分布。

pdf:

$$f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}}x^{\frac{r}{2}-1}e^{-\frac{x}{2}} \quad \Gamma(t) = \int y^{t-1}e^{-y}dy = (t-1)! \quad E(X) = r \quad Var(X) = 2r$$

5.6 t-分布 Student's t-distribution

在实际情况中, 方差往往是未知的, 常用 $S^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2$ 作为 σ 的估计

假设 $X\sim N(0,1),\ Y\sim \chi^2(n),$ 那么 $Z=\frac{X}{\sqrt{Y/n}}\sim t(n)$ 自由度为 n (自由度越大,t 分布愈趋近正态分布曲线,当 $t=\infty$,t 分布曲线为标准正态分布曲线) pdf:

$$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}$$

6 假设检验 Hypothesis Test

Identical and Independent Distribution(i.i.d): n 个随机变量服从同一分布且相互独立

6.1 概念

random sample $x_1, x_2, \dots, x_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$

- 1. 无效(零)假设 H_0 : null hypothesis, 我们需要反对的假设, 一般为"="形式, 样本与总体或样本之间的差异是由抽样引起的
- 2. 备择假设 H_1 : alternative hypothesis, 我们需要接受的假设,一般为" \neq ","<",">" 形式,样本与总体或样本之间存在差异
- 3. 显著性程度 α : confidence level
- 4. T: test statistics 用于判断假设是否正确的统计量
- 5. 两类错误:

 $P(reject \ H_0|H_0)$: 当假设 H_0 正确时,T 反对 H_0 $P(accept \ H_0|H_1)$: 当假设 H_1 正确时,T 接受 H_0

- 6. 临界区域 C: critical region 当 T 落在临界区域内, 反对零假设
- 7. p-value: 检验假设零假设成立的可能性,是统计量与实际观测数据之间关系的概率,若 p 值比显著性程度更小,则反对零假设

统计量: $\theta(X_1X_2,\cdots,X_n)$

8. 判断方式: $p \ value \le \alpha, t : realized \ T(calculated \ by \ samlpe) \in critical \ region \rightarrow reject \ H_0$

6.2 均值检验

方差已知

 $H_0: \mu = \mu_0, \quad confidence \ level: \alpha$

$$X_1, X_2, \cdots, X_n \stackrel{i.i.i}{\sim} N(\mu, \sigma^2), \sigma \ is \ known$$

构建:

$$T = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

- 1. $H_1: \mu > \mu_0$
 - p value: $P(reject H_0|H_0) = P(T > t|\mu = \mu_0) \le \alpha$
 - critical region: $\overline{x} \ge \mu_0 + z_\alpha \sigma / \sqrt{n}$
- 2. $H_1: \mu < \mu_0$
 - p value: $P(reject H_0|H_0) = P(T < t|\mu = \mu_0) \le \alpha$
 - critical region: $\overline{x} \le \mu_0 z_\alpha \sigma / \sqrt{n}$
- 3. $H_1: \mu \neq \mu_0$
 - critical region: $|\overline{x} \mu_0| \ge z_{\alpha/2} \sigma / \sqrt{n}$

方差未知 T 检验

 $H_0: \mu = \mu_0, \quad confidence \ level: \alpha$

$$X_1, X_2, \cdots, X_n \overset{i.i.i}{\sim} N(\mu, \sigma^2), \sigma \text{ is unknown}$$

构建:

$$T = \frac{\overline{x} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$

 $t_{\alpha}(n-1)$ 与 z_{α} 类似,都不必计算,可在图表中查询(附在教案最后)

1. $H_1: \mu > \mu_0$

- p value: $P(reject H_0|H_0) = P(T > t|\mu = \mu_0) \le \alpha$
- critical region: $\overline{x} \ge \mu_0 + t_\alpha (n-1)S/\sqrt{n}$
- 2. $H_1: \mu < \mu_0$
 - p value: $P(reject H_0|H_0) = P(T > t|\mu = \mu_0) \le \alpha$
 - critical region: $\overline{x} \le \mu_0 t_\alpha (n-1)S/\sqrt{n}$
- 3. $H_1: \mu \neq \mu_0$
 - critical region: $|\overline{x} \mu_0| \ge t_{\alpha/2} S / \sqrt{n}$

6.3 方差检验 F 检验

假设
$$X_1, X_2, \dots, X_n \sim N(\mu_x, \sigma_x^2), Y_1, Y_2, \dots, Y_m \sim N(\mu_y, \sigma_y^2)$$
, 它们是独立的

 H_0 : $\sigma_x = \sigma_y$

构建:

$$\frac{\frac{(n-1)S_x^2}{\sigma_x^2} \sim \chi^2(n-1)}{\frac{(m-1)S_y^2}{\sigma_x^2} \sim \chi^2(m-1)} \quad F = \frac{\frac{(n-1)S_x^2}{\sigma_x^2} \cdot (n-1)}{\frac{(m-1)S_y^2}{\sigma_x^2} \cdot (m-1)} = \frac{S_x^2}{S_y^2} \sim F(n-1, m-1) (under \ H_0 : \sigma_x = \sigma_y)$$

 $H_1:\sigma_x
eq \sigma_y$:

• critical region:
$$f = \frac{S_x^2}{S_x^2} \ge F_{\alpha/2}(n-1, m-1)$$
 or $f \le F_{1-\alpha/2}(n-1, m-1)$

$$F \sim F(n-1, m-1)$$
 $\frac{1}{F} \sim F(m-1, n-1), F_{1-\alpha/2}(n-1, m-1) = \frac{1}{F_{\alpha/2}(m-1, n-1)}$

 $*F_{\alpha}(n-1,m-1)$ 也不用计算,可在图表中查询(附在教案最后)

7 线性回归 Linear Regression

只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示

$$Y = \alpha X + \beta + \varepsilon$$

残差 Residual

$$r = y - \hat{y}(y \ predeicted)$$

目标:

$$min \sum r^2 = \sum (y - \alpha - \beta x)^2$$
 least square regression line

求解:(偏微分)

$$\alpha = \overline{y} = \sum y_i/n \quad \beta = \frac{\sum (y_i - \overline{y})x_i}{\sum x_i^2}$$

8 逻辑回归 Logistic Regression

用于分类的回归分析模型

形式:

$$y = S(f(x))$$
 $f(x) = \theta^T x$

Sigmoid 函数:

$$S(x) = \frac{1}{1 + e^{-x}}$$

图像:

Sigmoid Fuction

9 结语 11

性质

- 当 x 大于 0 时, sigmoid 函数很快逼近 1
- 当 x 小于 0 时, sigmoid 函数很快逼近 0
- 当 x 等于 0 时, sigmoid 函数等于 0.5
- sigmoid 函数值可当作概率帮助分类问题

9 结语

如果你看到了这里,恭喜你已经对概率统计有了初步的了解与学习,祝愿你在 TechX 度过一段美好的时间!

如有疑问,可咨询:

VX:AnnTang0601 VX:18124636826

 Table Vb
 The Standard Normal Right-Tail Probabilities

$$P(Z > z_{\alpha}) = \alpha$$

$$P(Z > z) = 1 - \Phi(z) = \Phi(-z)$$

z_{α}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7 1.8	0.0446 0.0359	0.0436 0.0351	0.0427 0.0344	0.0418 0.0336	0.0409 0.0329	0.0401 0.0322	0.0392 0.0314	0.0384 0.0307	0.0375 0.0301	0.0367 0.0294
1.0	0.0339	0.0331	0.0344	0.0330	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
2.0	0.0228	0.0222 0.0174	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1 2.2	0.0179 0.0139	0.0174	$0.0170 \\ 0.0132$	0.0166 0.0129	0.0162 0.0125	0.0158 0.0122	0.0154 0.0119	0.0150 0.0116	0.0146 0.0113	0.0143 0.0110
2.2	0.0139	0.0130	0.0132	0.0129	0.0123	0.0122	0.0119	0.0110	0.0113	0.0110
2.4	0.0107	0.0080	0.0078	0.0075	0.0073	0.0074	0.0069	0.0068	0.0067	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0002	0.0000	0.0039	0.0037	0.0033	0.0034	0.0032	0.0031	0.0049	0.0048
2.7	0.0047	0.0043	0.0033	0.0032	0.0041	0.0030	0.0039	0.0038	0.0037	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002

Table VI The *t* Distribution 0.4 + 0.3 + 0.4 + 0.3 + 0.3 + 0.3 + 0.2 + 0.3 + 0.2 + 0.3 + 0.2 + 0.3 + 0.2 + 0.3

	$P(T \le t)$								
	0.60	0.75	0.90	0.95	0.975	0.99	0.995		
r	$t_{0.40}(r)$	$t_{0.25}(r)$	$t_{0.10}(r)$	$t_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$		
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657		
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925		
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841		
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604		
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032		
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707		
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499		
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355		
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250		
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169		
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106		
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055		
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012		
14	0.258	0.692	1.345	1.761	2.145	2.624	2.997		
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947		
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921		
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898		
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878		
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861		
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845		
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831		
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819		
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807		
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797		
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787		
26 27 28 29 30	0.256 0.256 0.256 0.256 0.256	0.684 0.684 0.683 0.683	1.315 1.314 1.313 1.311 1.310	1.706 1.703 1.701 1.699 1.697	2.056 2.052 2.048 2.045 2.042	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750		
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576		

This table is taken from Table III of Fisher and Yates: Statistical Tables for Biological, Agricultrual, and Medical Research, published by Longman Group Ltd., London (previously published by Oliver and Boyd, Edinburgh).

Table VII continued

$$P(F \le f) = \int_0^f \frac{\Gamma[(r_1 + r_2)/2](r_1/r_2)^{r_1/2} w^{r_1/2 - 1}}{\Gamma(r_1/2)\Gamma(r_2/2)(1 + r_1 w/r_2)^{(r_1 + r_2)/2}} dw$$

	VO T (1/2)T (1/2)(T + 1/17)(Z)											
		Den.	Numerator Degrees of Freedom, r_1									
α	$P(F \le f)$	d.f. r ₂	1	2	3	4	5	6	7	8	9	10
0.05	0.95	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9
0.025	0.975		647.79	799.50	864.16	899.58	921.85	937.11	948.22	956.66	963.28	968.63
0.01	0.99		4052	4999.5	5403	5625	5764	5859	5928	5981	6022	6056
0.05	0.95	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
0.025	0.975		38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40
0.01	0.99		98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
0.05	0.95	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
0.025	0.975		17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42
0.01	0.99		34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
0.05	0.95	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
0.025	0.975		12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84
0.01	0.99		21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
0.05	0.95	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
0.025	0.975		10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62
0.01	0.99		16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05
0.05	0.95	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
0.025	0.975		8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46
0.01	0.99		13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
0.05	0.95	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
0.025	0.975		8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76
0.01	0.99		12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62
0.05	0.95	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35
0.025	0.975		7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30
0.01	0.99		11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81
0.05	0.95	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
0.025	0.975		7.21	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03	3.96
0.01	0.99		10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26
0.05	0.95	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
0.025	0.975		6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72
0.01	0.99		10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85

Table VII continued

$$P(F \le f) = \int_0^f \frac{\Gamma[(r_1 + r_2)/2](r_1/r_2)^{r_1/2} w^{r_1/2 - 1}}{\Gamma(r_1/2)\Gamma(r_2/2)(1 + r_1 w/r_2)^{(r_1 + r_2)/2}} dw$$

		Den. d.f.	Numerator Degrees of Freedom, r_1									
α	$P(F \le f)$	r_2	1	2	3	4	5	6	7	8	9	10
0.05	0.95	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
0.025	0.975		6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37
0.01	0.99		9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
0.05	0.95	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
0.025	0.975		6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06
0.01	0.99		8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80
0.05	0.95	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
0.025	0.975		5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77
0.01	0.99		8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37
0.05	0.95	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25
0.025	0.975		5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64
0.01	0.99		7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17
0.05	0.95	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
0.025	0.975		5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51
0.01	0.99		7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98
0.05	0.95	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
0.025	0.975		5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39
0.01	0.99		7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80
0.05	0.95	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
0.025	0.975		5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33	2.27
0.01	0.99		7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63
0.05	0.95	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91
0.025	0.975		5.15	3.80	3.23	2.89	2.67	2.52	2.39	2.30	2.22	2.16
0.01	0.99		6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47
0.05	0.95	∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83
0.025	0.975		5.02	3.69	3.12	2.79	2.57	2.41	2.29	2.19	2.11	2.05
0.01	0.99		6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32