Aprendizado de Máquina – IMD1101

Aula 21 – Aprendizado Não Supervisionado 01

Contextualizando

Modelos Descritivos

- □ Sumarização de Texto: produção automática de sumários a partir de um ou mais textos.
 - Extrativa: compõe o resumo a partir de recortes dos textos.
 - Gerativa: constrói uma síntese dos textos.

Modelos Descritivos

- Associação: permite identificar relações entre dados a partir da ocorrência desses.
- Aplicações:
 - Análise da cesta de mercado dos clientes.
 - Organização dos produtos em uma loja.

https://diegonogare.net/2020/05/explicando-o-algoritmo-de-regra-de-associacao/

Modelos Descritivos

- Clustering ou agrupamento é uma técnica de aprendizado não-supervisionado, ou seja, quando não há uma classe associada a cada exemplo.
- As instâncias de uma base de dados são colocadas em **cluster**s (**grupos**), que normalmente descrevem algum mecanismo existente no processo que as gerou.
- Dessa forma, algumas instâncias são mais **similares** entre si do que as restantes.

Agrupamento

- O principal objetivo do agrupamento é "selecionar" objetos (instâncias) de modo que cada objeto seja muito semelhante aos outros no agrupamento (grupo ou cluster) em relação a algum critério de seleção prédeterminado.
- Os grupos resultantes de objetos deve exibir *elevada* homogeneidade interna (dentro dos grupos) e elevada heterogeneidade externa (entre grupos).

Agrupamento

- ☐ Dado um conjunto de objetos, colocar os objetos em grupos baseados na similaridade entre eles.
- Utilizado para encontrar padrões inesperados nos dados.
- ☐ Inerentemente é um problema não **definido claramente**.

☐ Como separar os animais abaixo? Qual o critério?

Descrição do Problema

- ☐ Dado um conjunto de objetos (instâncias) descritos por múltiplos valores (atributos):
 - 1. Atribuir grupos (clusters) aos objetos particionando-os objetivamente em grupos homogêneos de maneira a:
 - Maximizar a similaridade de objetos dentro de um mesmo cluster.
 - Minimizar a similaridade de objetos entre clusters distintos.
 - 2. Atribuir uma descrição para cada cluster formado.

Tipos de Clustering

- ☐ Agrupamentos podem ser divididos em:
 - Hard Clustering;
 - * Soft Clustering.

https://subscription.packtpub.com/book/big data and business intelligence/9781783554997/2/ch02lvl1sec19/types-of-clustering

- ☐ Tipos:
 - Centroid-based Clustering;
 - Distribution-based Clustering;
 - Hierarchical Clustering.

Centroid-based Clustering:

Centroid-based Clustering:

- k-Means
- centróides;
- Medida de distância

☐ Distribution-based Clustering:

☐ Distribution-based Clustering:

☐ Hierarchical Clustering:

☐ Hierarchical Clustering:

☐ Hierarchical Clustering:

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Medidas de Distância

- ☐ A distância é o método mais natural para dados numéricos.
- ☐ Valores pequenos indicam maior similaridade.
- Métricas de Distância:
 - * Euclideana
 - Manhattan
 - **&** Etc.
- Não generaliza muito bem para dados não numéricos.
 - Qual a distância entre "masculino" e "feminino"?

Representação dos Objetos

Deve também incluir um método para calcular a similaridade (ou a distância) entre os objetos.

Representação dos Objetos

$$X_{1} = \begin{bmatrix} (\mathbf{x}_{1,1}, & \mathbf{x}_{1,2}, & \mathbf{x}_{1,3}, & \dots, & \mathbf{x}_{1,m}) \\ \mathbf{X}_{2} = & (\mathbf{x}_{2,1}, & \mathbf{x}_{2,2}, & \mathbf{x}_{2,3}, & \dots, & \mathbf{x}_{2,m}) \\ \vdots & & & & & & \\ \mathbf{X}_{i} = & (\mathbf{x}_{i,1}, & \mathbf{x}_{i,2}, & \mathbf{x}_{i,3}, & \dots, & \mathbf{x}_{i,m}) \\ \vdots & & & & & & \\ \mathbf{X}_{n} = & (\mathbf{x}_{n,1}, & \mathbf{x}_{n,2}, & \mathbf{x}_{n,3}, & \dots, & \mathbf{x}_{n,m}) \end{bmatrix}$$

Métricas de Distância

Euclidean distance: é a mais comum entre as distâncias. Ela calcula a raiz quadrada das diferenças entre as coordenadas de um par de objetos:

$$Dist_E = \sqrt{\sum_{r=1}^{m} (x_{i,r} - x_{j,r})^2}$$

Manhattan distance: também conhecida por city block distance. Ela calcula as diferenças absolutas entre as coordenadas de um par de objectos:

$$Dist_{M} = \sum_{r=1}^{m} \left| x_{i,r} - x_{j,r} \right|$$

Métricas de Distância

Chebyshev distance: também chamada de distância de valor máximo. Ela calcula a magnitude absoluta das diferenças entre as coordenadas de um par de objetos:

$$Dist_C = \max_{r=1}^m \left| x_{i,r} - x_{j,r} \right|$$

☐ Minkowski distance: é uma distância métrica generalizada. Por exemplo, para p=2, ela se torna a Distância Euclidiana:

$$Dist_{Mk} = \left(\sum_{r=1}^{m} \left| x_{i,r} - x_{i,r} \right|^{1/p} \right)^{p}$$

Métricas de Distância

O método mais simples para atributos categóricos é o seguinte:

$$overlap(x_{i,r}, x_{j,r}) = \begin{cases} 1 & se \ x_{i,r} \neq x_{j,r} \\ 0 & se \ x_{i,r} = x_{j,r} \end{cases}$$

onde:

$$dist_{Cat} = \sum_{r=1}^{m} overlap(x_{i,r}, x_{j,r})$$

Dada a pequena base de dados abaixo, calcule as distâncias entre as instâncias, usando a distância euclidiana.

Nº	Idade	Gênero	Estado Civil	Filhos	Escolaridade	CC	Renda	Cartão_Cr.	Imóvel_P
1	45	Masc	Divorciado	2	Superior	Sim	R\$ 5.000,00	Sim	Sim
2	37	Femi	Solteiro	0	Médio	Não	R\$ 3.500,00	Sim	Não
3	79	Masc	Viúvo	4	Fundamental	Sim	R\$ 10.000,00	Sim	Não
4	21	Femi	Casado	2	Superior	Não	R\$ 1.500,00	Não	Sim
5	65	Femi	Casado	1	Superior	Sim	R\$ 2.900,00	Sim	Sim
6	53	Masc	Casado	3	Médio	Não	R\$ 3.100,00	Sim	Não
7	27	Femi	Solteiro	1	Superior	Sim	R\$ 4.200,00	Sim	Não
8	33	Femi	Casado	3	Pós-graduação	Não	R\$ 7.500,00	Sim	Sim
9	41	Masc	Divorciado	0	Superior	Sim	R\$ 5.600,00	Não	Não
10	19	Masc	Solteiro	0	Médio	Não	R\$ 800,00	Não	Não

 $\underline{https://www.dropbox.com/sh/fhkqy2wybxjl0n5/AAABevgbnnM4HSdPgeUU6tgPa?dl=0}$

☐ Base normalizada e binarizada:

Nº	Idade	Gen_M	Est_D	Est_S	Est_V	Est_C	Filhos	Esc_S	Esc_M	Esc_F	Esc_P	CC_S	Renda	Cartão_Cr_S	Imóvel_P_S
1	0,4333	1	1	0	0	0	0,5000	1	0	0	0	1	0,4565	1	1
2	0,3000	0	0	1	0	0	0,0000	0	1	0	0	0	0,2935	1	0
3	1,0000	1	0	0	1	0	1,0000	0	0	1	0	1	1,0000	1	0
4	0,0333	0	0	0	0	1	0,5000	1	0	0	0	0	0,0761	0	1
5	0,7667	0	0	0	0	1	0,2500	1	0	0	0	1	0,2283	1	1
6	0,5667	1	0	0	0	1	0,7500	0	1	0	0	0	0,2500	1	0
7	0,1333	0	0	1	0	0	0,2500	1	0	0	0	1	0,3696	1	0
8	0,2333	0	0	0	0	1	0,7500	0	0	0	1	0	0,7283	1	1
9	0,3667	1	1	0	0	0	0,0000	1	0	0	0	1	0,5217	0	0
10	0,0000	1	0	1	0	0	0,0000	0	1	0	0	0	0,0000	0	0

☐ Resultado:

[1-2] 0,0178 1,0000 1,0000 0,2500 1,0000 1,0000	0 0,0266 0,0000 1,0000 5,2944 2,3009
[1-3] 0,3211 0,0000 1,0000 0,2500 1,0000 0,0000	0 0,2954 0,0000 1,0000 3,8665 1,9663
[1-4] 0,1600 1,0000 1,0000 0,0000 0,0000 1,0000	0 0,1447 1,0000 0,0000 4,3047 2,0748
[1-5] 0,1111 1,0000 1,0000 0,0625 0,0000 0,0000	0 0,0521 0,0000 0,0000 2,2257 1,4919
[1-6] 0,0178 0,0000 1,0000 0,0625 1,0000 1,0000	0 0,0427 0,0000 1,0000 4,1229 2,0305
[1-7] 0,0900 1,0000 1,0000 0,0625 0,0000 0,0000	0 0,0076 0,0000 1,0000 3,1601 1,7777
[1-8] 0,0400 1,0000 1,0000 0,0625 1,0000 1,0000	0 0,0738 0,0000 0,0000 4,1763 2,0436
[1-9] 0,0044 0,0000 0,0000 0,2500 0,0000 0,0000	0 0,0043 1,0000 1,0000 2,2587 1,5029
[1-10] 0,1878 0,0000 1,0000 0,2500 1,0000 1,0000	0 0,2084 1,0000 1,0000 5,6462 2,3762
[2-3] 0,4900 1,0000 1,0000 1,0000 1,0000 1,0000	0 0,4992 0,0000 0,0000 5,9892 2,4473
[2-4] 0,0711 0,0000 1,0000 0,2500 1,0000 0,0000	0 0,0473 1,0000 1,0000 4,3684 2,0901
[2-5] 0,2178 0,0000 1,0000 0,0625 1,0000 1,0000	0 0,0043 0,0000 1,0000 4,2845 2,0699
[2-6] 0,0711 1,0000 1,0000 0,5625 0,0000 0,0000	0 0,0019 0,0000 0,0000 2,6355 1,6234
[2-7] 0,0278 0,0000 0,0000 0,0625 1,0000 1,0000	0 0,0058 0,0000 0,0000 2,0961 1,4478
[2-8] 0,0044 0,0000 1,0000 0,5625 1,0000 0,0000	0 0,1890 0,0000 1,0000 3,7560 1,9380
[2-9] 0,0044 1,0000 1,0000 0,0000 1,0000 1,0000	0 0,0521 1,0000 0,0000 5,0565 2,2487
[2-10] 0,0900 1,0000 0,0000 0,0000 0,0000 0,0000	0 0,0861 1,0000 0,0000 2,1761 1,4752
[3-4] 0,9344 1,0000 1,0000 0,2500 1,0000 1,0000	0 0,8536 1,0000 1,0000 8,0381 2,8351
[3-5] 0,0544 1,0000 1,0000 0,5625 1,0000 0,0000	0 0,5956 0,0000 1,0000 5,2125 2,2831
[3-6] 0,1878 0,0000 1,0000 0,0625 1,0000 1,0000	0 0,5625 0,0000 0,0000 3,8128 1,9526
[3-7] 0,7511 1,0000 1,0000 0,5625 1,0000 0,0000	
	0 0,3974 0,0000 0,0000 4,7111 2,1705
[3-8] 0,5878 1,0000 1,0000 0,0625 1,0000 1,0000	0 0,3974 0,0000 0,0000 4,7111 2,1705 0 0,0738 0,0000 1,0000 5,7241 2,3925
	0 0,0738 0,0000 1,0000 5,7241 2,3925 0 0,2287 1,0000 0,0000 4,6298 2,1517
[3-9] 0,4011 0,0000 1,0000 1,0000 1,0000 0,0000	0 0,0738 0,0000 1,0000 5,7241 2,3925 0 0,2287 1,0000 0,0000 4,6298 2,1517 0 1,0000 1,0000 0,0000 7,0000 2,6458
[3-9] 0,4011 0,0000 1,0000 1,0000 1,0000 0,0000 [3-10] 1,0000 0,0000 1,0000 1,0000 1,0000 1,0000	0 0,0738 0,0000 1,0000 5,7241 2,3925 0 0,2287 1,0000 0,0000 4,6298 2,1517 0 1,0000 1,0000 0,0000 7,0000 2,6458 0 0,0232 1,0000 0,0000 2,6234 1,6197
[3-9] 0,4011 0,0000 1,0000 1,0000 0,0000 [3-10] 1,0000 0,0000 1,0000 1,0000 1,0000 1,0000 [4-5] 0,5378 0,0000 0,0000 0,0625 0,0000 1,0000	0 0,0738 0,0000 1,0000 5,7241 2,3925 0 0,2287 1,0000 0,0000 4,6298 2,1517 0 1,0000 1,0000 0,0000 7,0000 2,6458 0 0,0232 1,0000 0,0000 2,6234 1,6197 0 0,0302 1,0000 1,0000 4,3772 2,0922
[3-9] 0,4011 0,0000 1,0000 1,0000 0,0000 [3-10] 1,0000 0,0000 1,0000 1,0000 1,0000 1,0000 [4-5] 0,5378 0,0000 0,0000 0,0625 0,0000 1,0000 [4-6] 0,2844 1,0000 0,0000 0,0625 1,0000 0,0000	0 0,0738 0,0000 1,0000 5,7241 2,3925 0 0,2287 1,0000 0,0000 4,6298 2,1517 0 1,0000 1,0000 0,0000 7,0000 2,6458 0 0,0232 1,0000 0,0000 2,6234 1,6197 0 0,0302 1,0000 1,0000 4,3772 2,0922 0 0,0861 1,0000 1,0000 4,1586 2,0393
[3-9] 0,4011 0,0000 1,0000 1,0000 0,0000 [3-10] 1,0000 0,0000 1,0000 1,0000 1,0000 1,0000 [4-5] 0,5378 0,0000 0,0000 0,0625 0,0000 1,0000 [4-6] 0,2844 1,0000 0,0000 0,0625 1,0000 0,0000 [4-7] 0,0100 0,0000 1,0000 0,0625 0,0000 1,0000	0 0,0738 0,0000 1,0000 5,7241 2,3925 0 0,2287 1,0000 0,0000 4,6298 2,1517 0 1,0000 1,0000 0,0000 7,0000 2,6458 0 0,0232 1,0000 0,0000 2,6234 1,6197 0 0,0302 1,0000 1,0000 4,3772 2,0922 0 0,0861 1,0000 1,0000 4,1586 2,0393 0 0,4253 1,0000 0,0000 2,5278 1,5899

☐ Juntando (merging) objetos:

Nº	Idade	Idade_N	Gênero	Estado Civil	Filhos	Filhos_N	Escolaridade	CC	Renda	Renda_N	Cartão_Cr.	Imóvel_P
1	45	0,4333	Masc	Divorciado	2	0,5000	Superior	Sim	5.000,00	0,4565	Sim	Sim
2	37	0,3000	Femi	Solteiro	0	0,0000	Médio	Não	3.500,00	0,2935	Sim	Não
3	79	1,0000	Masc	Viúvo	4	1,0000	Fundamental	Sim	10.000,00	1,0000	Sim	Não
4	21	0,0333	Femi	Casado	2	0,5000	Superior	Não	1.500,00	0,0761	Não	Sim
5	65	0,7667	Femi	Casado	1	0,2500	Superior	Sim	2.900,00	0,2283	Sim	Sim
6	53	0,5667	Masc	Casado	3	0,7500	Médio	Não	3.100,00	0,2500	Sim	Não
7	27	0,1333	Femi	Solteiro	1	0,2500	Superior	Sim	4.200,00	0,3696	Sim	Não
8	33	0,2333	Femi	Casado	3	0,7500	Pós-graduação	Não	7.500,00	0,7283	Sim	Sim
9	41	0,3667	Masc	Divorciado	0	0,0000	Superior	Sim	5.600,00	0,5217	Não	Não
10	19	0,0000	Masc	Solteiro	0	0,0000	Médio	Não	800,00	0,0000	Não	Não

Como escolher o número de grupos?

- ☐ Há uma variedade de métodos utilizados para escolher (identificar) o número ideal de grupos:
 - O "Elbow" Method (DB)
 - Silhouette Method
 - Outros métodos de Clustering Validation.

Qual o número de grupos?

- Devemos observar:
 - * Sabemos que quando nos afastamos de grupos unitários, a homogeneidade diminui.
 - Uma instância por grupo não define estrutura.
 - * Devemos verificar cada solução para a sua descrição de estrutura **versus** a homogeneidade dos grupos.
 - * Combinar dois ou mais métodos de validação.

k-Means

☐ Centroid-based Clustering:

História

- k-Means também chamado de k-Médias.
- É um algoritmo de Agrupamento (*Clustering*) que objetiva **particionar** *n* objetos em *k* grupos, onde cada objeto pertence ao grupo mais próximo da média.
- □ Foi empregado primeiramente por James MacQueen em 1967.

k-Means

- ☐ Difere do agrupamento hierárquico de várias maneiras. Em particular:
 - Não há hierarquias, os dados são particionados.
 - Ou seja, a solução de seis grupos não é apenas a combinação de dois grupos a partir de uma solução com sete grupos, como no hierárquico.
- O resultado é apenas a **pertinência** final de cada **padrão** relacionado aos grupos.
- O número de grupos permitido (k) tem que ser definido a priori.

k-Means: Algoritmo

- ☐ Passo 1: os primeiros & centros dos grupos são escolhidos aleatoriamente.
- ☐ Passo2: cada objeto é atribuído ao grupo associado com o centro mais próximo.
- Passo3: compute um novo centro para cada grupo (média dos valores de todos os objetos centróide).
- Passo4: repita passo2 (com os novos centros) e passo3 até que não haja mudança nos centros.

k-Means: exemplo (1/7)

 \square Passo 1: os primeiros k centros dos grupos são escolhidos aleatoriamente.

		X1	X2	Х3	X4	X5
	Cliente_1	7,000	10,000	9,000	7,000	10,000
¥	Cliente_2	9,000	9,000	8,000	9,000	9,000
	Cliente_3	5,000	5,000	6,000	7,000	7,000
ľ	Cliente_4	6,000	6,000	3,000	3,000	4,000
	Cliente_5	1,000	2,000	2,000	1,000	2,000
	Cliente_6	4,000	3,000	2,000	3,000	3,000
	Cliente_7	2,000	4,000	5,000	2,000	5,000

K-Means com Correlação de Pearson e k= 2.

k-Means: exemplo (2/7)

Passo2: cada objeto é atribuído ao grupo associado com o centro mais próximo.

_								
		Cliente_1	Cliente_2	Cliente_3	Cliente_4	Cliente_5	Cliente_6	Cliente_7
	Cliente_1	1,000						
→	Cliente_2	-0,147	1,000	0,000	0,516	-0,408	0,791	-0,516
	Cliente_3	0,000	0,000	1,000				
	Cliente_4	0,087	0,516	-0,824	1,000			
>	Cliente_5	0,963	-0,408	0,000	-0,060	1,000	-0,645	0,963
	Cliente_6	-0,466	0,791	-0,354	0,699	-0,645	1,000	
	Cliente_7	0,891	-0,516	0,165	-0,239	0,963	-0,699	1,000

k-Means: Exemplo (3/7)

☐ Passo3: compute um novo centro para cada grupo (média dos valores de todos os objetos - centróide).

	X1	X2	Х3	X4	X5
Cliente_2	9,000	9,000	8,000	9,000	9,000
Cliente_3	5,000	5,000	6,000	7,000	7,000
Cliente_4	6,000	6,000	3,000	3,000	4,000
Cliente_6	4,000	3,000	2,000	3,000	3,000
Centro_1	6,000	5,750	4,750	5,500	5,750

	X1	X2	Х3	X4	X5
Cliente_1	7,000	10,000	9,000	7,000	10,000
Cliente_5	1,000	2,000	2,000	1,000	2,000
Cliente_7	2,000	4,000	5,000	2,000	5,000
Centro_2	3,333	5,333	5,333	3,333	5,667

k-Means: Exemplo (4/7)

☐ Passo2: cada objeto é atribuído ao grupo associado com o centro mais próximo.

	Cliente_1	Cliente_2	Cliente_3	Cliente_4	Cliente_5	Cliente_6	Cliente_7	Centro_1	Centro_2
Cliente_1	1	-0,1474	0	0,087	0,9631	-0,4663	0,8913	-0,1371	0,9723
Cliente_2	-0,1474	1	0	0,516	-0,4082	0,7906	-0,516	0,93	-0,3498
Cliente_3	0	0	1	-0,8242	0	-0,3536	0,1648	-0,2599	0,068
Cliente_4	0,087	0,516	-0,8242	1	-0,0602	0,6994	-0,2391	0,737	-0,0698
Cliente_5	0,9631	-0,4082	0	-0,0602	1	-0,6455	0,9631	-0,3797	0,9926
Cliente_6	-0,4663	0,7906	-0,3536	0,6994	-0,6455	1	-0,6994	0,919	-0,6011
Cliente_7	0,8913	-0,516	0,1648	-0,2391	0,9631	-0,6994	1	-0,4799	0,9723
Centro_1	-0,1371	0,93	-0.2599	0.737	-0.3797	0,919	-0,4799	1	-0,322
Centro_2	0,9723	-0,3498	0,068	-0,0698	0,9926	-0,6011	0,9723	-0,322	1

k-Means: Exemplo (5/7)

Passo3: compute um novo centro para cada grupo (média dos valores de todos os objetos - centróide).

	X1	X2	X3	X4	X5
Cliente_2	9.000	9000	8000	9000	9000
Cliente_4	6.000	6000	3000	3000	4000
Cliente_6	4.000	3000	2000	3000	3000
Centro_1	6.333	6.000	4.333	5.000	5.333

	X1	X2	Х3	X4	X5
Cliente_1	7.000	10000	9000	7000	10000
Cliente_3	5.000	5000	6000	7000	7000
Cliente_5	1.000	2000	2000	1000	2000
Cliente_7	2.000	4000	5000	2000	5000
Centro_2	3.750	5.250	5.500	4.250	6.000

k-Means: Exemplo (6/7)

Passo2: cada objeto é atribuído ao grupo associado com o centro mais próximo.

	Cliente_1	Cliente_2	Cliente_3	Cliente_4	Cliente_5	Cliente_6	Cliente_7	Centro_1	Centro_2
Cliente_1	1	-0,1474	0	0,087	0,9631	-0,4663	0,8913	-0,1106	0,9175
Cliente_2	-0,1474	1	0	0,516	-0,4082	0,7906	-0,516	0,75	-0,3323
Cliente_3	0	0	1	-0,8242	0	-0,3536	-0,6281	0,3377	
Cliente_4	0,087	0,516	-0,8242	1	-0,0602	0,6994	-0,2391	0,9389	-0,2939
Cliente_5	0,9631	-0,4082	0	-0,0602	1	-0,6455	0,9631	-0,3062	0,9372
Cliente_6	-0,4663	0,7906	-0,3536	0,6994	-0,6455	1	-0,6994	0,8883	-0,6686
Cliente_7	0,8913	-0,516	0,1648	-0,2391	0,9631	-0,6994	1	-0,4564	0,962
Centro_1	-0,1106	0,75	-0.6281	0,9389	-0.3062	0,8883	-0.4564	1	-0,4473
Centro_2	0,9175	-0,3323	0,3377	-0,2939	0,9372	-0,6686	0,962	-0,4473	1

k-Means: Exemplo (7/7)

☐ Fim, pois não houve mudança nos centros.

	X1	X2	Х3	X4	X5
Cliente_2	9,000	9,000	8,000	9,000	9,000
Cliente_4	6,000	6,000	3,000	3,000	4,000
Cliente_6	4,000	3,000	2,000	3,000	3,000
Centro_1	6,333	6,000	4,333	5,000	5,333

	X1	X2	Х3	X4	X5
Cliente_1	7,000	10,000	9,000	7,000	10,000
Cliente_3	5,000	5,000	6,000	7,000	7,000
Cliente_5	1,000	2,000	2,000	1,000	2,000
Cliente_7	2,000	4,000	5,000	2,000	5,000
Centro_2	3,750	5,250	5,500	4,250	6,000

- Características:
 - Partição.
 - * O número de grupos deve ser definido a priori.
 - Não-determinístico: inicializações aleatórias dos centros.
 - Grupos (clusters) esféricos.
- Dificuldades:
 - Inicialização dos centros.

Dúvidas ...

- Abrir dataset **PessoaNormBinary**.csv;
- Utilizar o algoritmo Simple KMeans
 - \bullet numClusters = 3;
 - **❖** seed= 10;
 - distanceFunction = EuclideanDistance.
- ☐ Salvar arquivo resultante:
 - PessoaNormBinary_kM-s10-3k.arff

Utilizando k-Means (scikit-learn):

evaluation

Install User 2.3.2. K-means

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion known as the *inertia* or within-cluster sum-of-squares (see below). This algorithm requires the number of clusters to be specified. It scales well to large number of samples and has been used across a large range of application areas in many different fields.

The k-means algorithm divides a set of N samples X into K disjoint clusters C, each described by the mean μ_j of the samples in the cluster. The means are commonly called the cluster "centroids"; note that they are not, in general, points from X, although they live in the same space.

The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion:

$$\sum_{i=0}^n \min_{\mu_j \in C} (||x_i - \mu_j||^2)$$

Inertia can be recognized as a measure of how internally coherent clusters are. It suffers from various drawbacks:

- Inertia makes the assumption that clusters are convex and isotropic, which is not always the case. It responds poorly to elongated clusters, or manifolds with irregular shapes.
- Inertia is not a normalized metric: we just know that lower values are better and zero is optimal. But in very high-dimensional spaces, Euclidean distances tend to become inflated (this is an instance of the so-called "curse of dimensionality"). Running a dimensionality reduction algorithm such as Principal component analysis (PCA) prior to k-means clustering can alleviate this problem and speed up the computations.

Utilizando k-Means (scikit-learn):

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import io
from google.colab import files
uploaded = files.upload()
dados = pd.read csv(io.BytesIO(uploaded['PessoaNormBinary.csv']))
# ## kMeans
km = KMeans(n clusters=3)
km.fit(dados)
centroids = km.cluster centers
plt.scatter(dados.iloc[:,0], dados.iloc[:,1])
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=300)
plt.show()
```

☐ Utilizando k-Means (scikit-learn):

Utilizando k-Means (scikit-learn):

```
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
import io
from google.colab import files
uploaded = files.upload()
dados = pd.read csv(io.BytesIO(uploaded['PessoaNormBinary.csv']))
dados.info()
# ## kMeans
km = KMeans(n clusters=3, init='k-means++', max iter=300, n init=10,
random state=0)
km.fit(dados)
km.fit predict(dados)
```

☐ Utilizando **k-Means** (**scikit-learn**):

```
# juntando os labels com o restante do dataset
dados["Cluster"] = km.labels_
dados["Cluster"] = 'cluster' + dados["Cluster"].astype(str)

# Visualização dos novos atributos
dados.head()

# Salvando Pessoa.csv transformado
df = pd.DataFrame(dados)
df.to_csv('Pessoa_Clustered_kM_k3.csv')

# Download do arquivo transformado
files.download('Pessoa_Clustered_kM_k3.csv')
```

☐ Utilizando **k-Means** (**scikit-learn**):

N	0	P	Q
RendaBruta	CartaoCredito_N	ImovelProprio_N	Cluster
0.456522000000000004	0	0	cluster1
0.293478	0	1	cluster2
1.0	0	1	cluster1
0.076087	1	0	cluster0
0.228261000000000002	0	0	cluster0
0.25	0	1	cluster2
0.369565000000000003	0	1	cluster1
0.7282609999999999	0	0	cluster0
0.5217390000000001	1	1	cluster1
0.0	1	1	cluster2

Obrigado!!!

