Міністерство освіти і науки України Дніпровський національний університет імені Олеся Гончара Факультет прикладної математики Кафедра комп'ютерних технологій

ЛАБОРАТОРНА РОБОТА №2

Виконавець: студент групи ПК-21м-1

Панасенко Єгор Сергійович

Постановка задачі

Тема: «Налаштування моделі нечіткого виводу»

Мета роботи: Визначення функцій приналежності на основі навчальної вибірки.

Порядок виконання роботи:

- 1. Провести процедуру фазифікації для змінних з бази правил (л.р. № 1).
- 2. Обрати апроксимацію функцій приналежності.
- 3. Провести генерацію навчальної вибірки на основі бази правил і шкал лінгвістичних змінних.
- 4. Сформулювати функціонал середньоквадратичного відхилення значень, обчислених за допомогою моделі (л.р. № 1), та значень, отриманих з навчальної вибірки.
- 5. Провести мінімізацію функціоналу одним з градієнтних методів (на вибір).

Хід роботи

Розглянемо модель роботи холодильника у залежності від температури навколишнього середовища, та терміну придатності продукта.

Нехай x1 — температура навколишнього середовища у градусах Цельсія, x2 - термін придатності продукта у днях, x3 — потужність роботи холодильника в діапазоні [0, 10].

Значення нечітких змінних:

• ϕ_1 – низька (H) або короткий (K)

•
$$\phi_2$$
 – середня (C)

- ϕ_3 висока (В) або довгий (Д) Правила:
- Якщо $x_1 = H$ та $x_2 = K$, то $x_3 = C$
- Якщо $x_1 = H$ та $x_2 = C$, то $x_3 = H$
- Якщо $x_1 = H$ та $x_2 = Д$, то $x_3 = H$
- Якщо $x_1 = C$ та $x_2 = K$, то $x_3 = B$
- Якщо $x_1 = C$ та $x_2 = C$, то $x_3 = C$
- Якщо $x_1 = C$ та $x_2 = Д$, то $x_3 = H$
- Якщо $x_1 = B$ та $x_2 = K$, то $x_3 = B$
- Якщо $x_1 = B$ та $x_2 = C$, то $x_3 = B$
- Якщо x₁ =В та x₂=Д, то x₃=С
 Нечітка модель:

$$\qquad \qquad \boldsymbol{\mu}_{\mathrm{H}}(\boldsymbol{x}_{\mathrm{3}}) = \max \left| \begin{array}{l} \min(\boldsymbol{\mu}_{\mathrm{H}}(\boldsymbol{x}_{\mathrm{1}}), \boldsymbol{\mu}_{\mathrm{C}}(\boldsymbol{x}_{\mathrm{2}})) \\ \min(\boldsymbol{\mu}_{\mathrm{H}}(\boldsymbol{x}_{\mathrm{1}}), \boldsymbol{\mu}_{\mathrm{H}}(\boldsymbol{x}_{\mathrm{2}})) \\ \min(\boldsymbol{\mu}_{\mathrm{C}}(\boldsymbol{x}_{\mathrm{1}}), \boldsymbol{\mu}_{\mathrm{H}}(\boldsymbol{x}_{\mathrm{2}})) \end{array} \right|$$

$$\qquad \qquad \qquad \qquad \qquad \qquad \qquad \left| \begin{array}{l} \min \! \left(\mu_{\mathrm{H}} \! \left(x_{1} \! \right), \mu_{\mathrm{K}} \! \left(x_{2} \right) \right) \\ \min \! \left(\mu_{\mathrm{C}} \! \left(x_{1} \! \right), \mu_{\mathrm{C}} \! \left(x_{2} \right) \right) \\ \min \! \left(\mu_{\mathrm{B}} \! \left(x_{1} \! \right), \mu_{\mathrm{H}} \! \left(x_{2} \right) \right) \end{array} \right|$$

Шкала для змінної виводу

	низька	середня	висока				
<u>x</u> ₃	χ_3^1	χ_3^2	$\overline{X_3}$				
$x_3 = \{x_3, x_3^1, x_3^2, \overline{x_3}\}$							

Дефазифікація

$$x_{3} = \frac{x_{3} \mu_{H}(x_{3}) + x_{3}^{2} \mu_{C}(x_{3}) + \overline{x_{3}} \mu_{B}(x_{3})}{\mu_{H}(x_{3}) + \mu_{C}(x_{3}) + \mu_{B}(x_{3})}$$

Навчальна вибірка $(y_p^*, x_{ip}^*, p=1, N, i=1, J)$:

		,
X_{1p}^*	χ_{2p}^*	y_p^*
15	0	4
15	5	0
15	10	0
15	20	0
15	40	0
20	0	4
20	5	0
20	10	0
20	20	0
20	40	0
25	0	9
25	5	6
25	10	4
25	20	2
25	40	0
32	0	9
32	5	9
32	10	6
32	20	4
32	40	2
40	0	9
40	5	9
40	10	9 9 6
40	20	6
40	40	4

Таблиця значень перед налаштуванням:

<i>X</i> [*] _{1 <i>p</i>}	χ_{1p}^*	$\mu_{Hp}^0\left(x_{1p}^* ight)$	$\mu_{Cp}^0(x_{1p}^*)$	$\mu^0_{Bp}(x_{1p}^*)$	$\mu_{\mathit{Kp}}^{0}(x_{2p}^{*})$	$\mu_{Cp}^0(x_{2p}^*)$	$\mu^0_{\mathcal{A}_{\mathcal{P}}}ig(x_{1p}^*ig)$	$\widetilde{{\mathcal Y}_p}$
15	0	1	0.14	0.01	1	0.14	0.04	4.11
15	5	1	0.14	0.01	0.04	0.39	0.05	1.58
15	10	1	0.14	0.01	0.01	1	0.08	0.56
15	20	1	0.14	0.01	0	0.14	0.26	1.49
15	40	1	0.14	0.01	0	0.02	0.26	0.44
20	0	0.14	0.39	0.01	1	0.14	0.04	6.1
20	5	0.14	0.39	0.01	0.04	0.39	0.05	3.37
20	10	0.14	0.39	0.01	0.01	1	0.08	3.07
20	20	0.14	0.39	0.01	0	0.14	0.26	1.55
20	40	0.14	0.39	0.01	0	0.02	0.26	0.54
25	0	0.04	1	0.02	1	0.14	0.04	8.12
25	5	0.04	1	0.02	0.04	0.39	0.05	3.95
25	10	0.04	1	0.02	0.01	1	0.08	3.78
25	20	0.04	1	0.02	0	0.14	0.26	1.69
25	40	0.04	1	0.02	0	0.02	0.26	0.76
32	0	0.01	0.25	0.06	1	0.14	0.04	6.55
32	5	0.01	0.25	0.06	0.04	0.39	0.05	4.21
32	10	0.01	0.25	0.06	0.01	1	0.08	3.91
32	20	0.01	0.25	0.06	0	0.14	0.26	2.44
32	40	0.01	0.25	0.06	0	0.02	0.26	1.22
40	0	0.01	0.07	1	1	0.14	0.04	8.39
40	5	0.01	0.07	1	0.04	0.39	0.05	7.39
40	10	0.01	0.07	1	0.01	1	0.08	8.12
40	20	0.01	0.07	1	0	0.14	0.26	4.9
40	40	0.01	0.07	1	0	0.02	0.26	3.49

Функції належності термів перед налаштуванням:

Таблиця значень після налаштування:

*	*	0 (*)	. 0 (*)	. 0 (*)	0 (*)	0 (*)	. 0 (*)	~
<i>X</i> [*] _{1 <i>p</i>}	χ_{1p}^*	$\mu_{Hp}^{0}\left(x_{1p}^{*}\right)$	$\mu_{Cp}^0(x_{1p}^*)$	$\mu^0_{Bp}(x_{1p}^*)$	$\mu_{\mathit{Kp}}^{0}(x_{2p}^{*})$	$\mu_{Cp}^0(x_{2p}^*)$	$\mu^0_{\mathcal{A}_p}(x_{1p}^*)$	$\widetilde{\mathcal{Y}_p}$
15	0	0.26	0.03	0.01	0.37	0.11	0.04	3.39
15	5	0.26	0.03	0.01	0.18	0.32	0.06	1.63
15	10	0.26	0.03	0.01	0.03	1	0.1	0.41
15	20	0.26	0.03	0.01	0.01	0.11	0.34	-0.19
15	40	0.26	0.03	0.01	0	0.01	0.22	-0.27
20	0	0.45	0.08	0.02	0.37	0.11	0.04	4.3
20	5	0.45	0.08	0.02	0.18	0.32	0.06	2.22
20	10	0.45	0.08	0.02	0.03	1	0.1	0.2
20	20	0.45	0.08	0.02	0.01	0.11	0.34	0.41
20	40	0.45	0.08	0.02	0	0.01	0.22	-0.09
25	0	0.06	0.44	0.05	0.37	0.11	0.04	8.8
25	5	0.06	0.44	0.05	0.18	0.32	0.06	6.06
25	10	0.06	0.44	0.05	0.03	1	0.1	4.05
25	20	0.06	0.44	0.05	0.01	0.11	0.34	1.28
25	40	0.06	0.44	0.05	0	0.01	0.22	0.32
32	0	0.02	0.19	0.32	0.37	0.11	0.04	8.84
32	5	0.02	0.19	0.32	0.18	0.32	0.06	7.86
32	10	0.02	0.19	0.32	0.03	1	0.1	7.34
32	20	0.02	0.19	0.32	0.01	0.11	0.34	3.99
32	40	0.02	0.19	0.32	0	0.01	0.22	2.07
40	0	0.01	0.03	0.23	0.37	0.11	0.04	9.44
40	5	0.01	0.03	0.23	0.18	0.32	0.06	9.14
40	10	0.01	0.03	0.23	0.03	1	0.1	8.68
40	20	0.01	0.03	0.23	0.01	0.11	0.34	6.14
40	40	0.01	0.03	0.23	0	0.01	0.22	4.11

Функції належності термів після налаштування:


```
Код алгоритму:
```

```
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import minimize
# Inspiration:
https://pythonhosted.org/scikit-fuzzy/auto_examples/plot_tipping_problem.html
def mf(x, b, c):
    return 1/(1+((x-b)/c)**2)
data = (
    (15, 0, 4),
    (15, 5, 2),
    (15, 10, 0),
    (15, 20, 0),
    (15, 40, 0),
    (20, 0, 4),
    (20, 5, 2),
    (20, 10, 0),
    (20, 20, 0),
    (20, 40, 0),
    (25, 0, 9),
    (25, 5, 6),
(25, 10, 4),
    (25, 20, 2),
    (25, 40, 0),
    (32, 0, 9),
    (32, 5, 9),
(32, 10, 6),
    (32, 20, 4),
    (32, 40, 2),
    (40, 0, 9),
(40, 5, 9),
(40, 10, 9),
    (40, 20, 6),
    (40, 40, 4),
)
x_{temp} = np.linspace(15, 40, 200)
x_{expr} = np.linspace(0, 30, 200)
x_powr = np.linspace(0, 10, 200)
consts = np.array([15, 2, 25, 4, 40, 2, 0, 1, 10, 4, 30, 6, 0, 1, 4, 1, 9, 1],
dtype="float32")
temp_lo_f = lambda x, c: mf(x, c[0], c[1])
temp_md_f = lambda x, c: mf(x, c[2], c[3])
temp_hi_f = lambda x, c: mf(x, c[4], c[5])
expr\_sh\_f = lambda x, c: mf(x, c[6], c[7])
```

```
expr_md_f = lambda x, c: mf(x, c[8], c[9])
expr_ln_f = lambda x, c: mf(x, c[10], c[11])
powr_lo_f = lambda x, c: mf(x, c[12], c[13])
powr_md_f = lambda x, c: mf(x, c[14], c[15])
powr_hi_f = lambda x, c: mf(x, c[16], c[17])
def mu_lo(x, c):
    return max([
        min(temp\_lo\_f(x[0], c), expr\_md\_f(x[1], c)),
        min(temp_lo_f(x[0], c), expr_ln_f(x[1], c)),
        min(temp_md_f(x[0], c), expr_ln_f(x[1], c)),
    ])
def mu_md(x, c):
    return max([
        min(temp_lo_f(x[0], c), expr_sh_f(x[1], c)),
        min(temp_md_f(x[0], c), expr_md_f(x[1], c)),
        min(temp_hi_f(x[0], c), expr_ln_f(x[1], c)),
    ])
def mu_hi(x, c):
    return max([
        min(temp_md_f(x[0], c), expr_sh_f(x[1], c)),
        min(temp_hi_f(x[0], c), expr_sh_f(x[1], c)),
        min(temp_hi_f(x[0], c), expr_md_f(x[1], c)),
    ])
def defuzz(x, c):
    \# \sim print(mu_lo(x), mu_md(x), mu_hi(x))
    return (c[12]*mu_lo(x, c)+c[14]*mu_md(x, c)+c[16]*mu_hi(x, c))/(mu_lo(x, c)
+mu_md(x, c)+mu_hi(x, c)
def solve(x, c):
    print("%2.f and %2.f -> \%0.3f" % (x[0], x[1], defuzz(x, c)))
def J(c):
    return sum((defuzz([i[0], i[1]], c)-i[2])**2 for i in data)
res = minimize(J, consts, options={'disp': True})
fin_consts = res.x
print(fin_consts)
def show_result(c):
   print()
    for x1, x2, y in data:
        to = temp_lo_f(x1,c)
        tm = temp_md_f(x1,c)
        th = temp_hi_f(x1,c)
        eo = expr_sh_f(x2,c)
        em = expr_md_f(x2,c)
        eh = expr_ln_f(x2,c)
        s = defuzz((x1, x2), c)
        print("%2i,%2i,%2.2f,%2.2f,%2.2f,%2.2f,%2.2f,%2.2f,%2.2f" % (x1, x2, to,
tm, th, eo, em, eh, s))
    fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(8, 9))
    temp_lo = temp_lo_f(x_temp, c)
```

```
temp_md = temp_md_f(x_temp, c)
      temp_hi = temp_hi_f(x_temp, c)
      expr_sh = expr_sh_f(x_expr, c)
      expr_md = expr_md_f(x_expr, c)
      expr_ln = expr_ln_f(x_expr, c)
      powr_lo = powr_lo_f(x_powr, c)
      powr_md = powr_md_f(x_powr, c)
      powr_hi = powr_hi_f(x_powr, c)
     ax0.plot(x_temp, temp_lo, 'b', linewidth=1.5, label='Low')
ax0.plot(x_temp, temp_md, 'g', linewidth=1.5, label='Medium')
ax0.plot(x_temp, temp_hi, 'r', linewidth=1.5, label='High')
      ax0.set_title('Temperature')
      ax0.legend()
     ax1.plot(x_expr, expr_sh, 'b', linewidth=1.5, label='Short')
ax1.plot(x_expr, expr_md, 'g', linewidth=1.5, label='Agerage')
ax1.plot(x_expr, expr_ln, 'r', linewidth=1.5, label='Long')
      ax1.set_title('Expiration days')
      ax1.legend()
     ax2.plot(x_powr, powr_lo, 'b', linewidth=1.5, label='Low')
ax2.plot(x_powr, powr_md, 'g', linewidth=1.5, label='Medium')
ax2.plot(x_powr, powr_hi, 'r', linewidth=1.5, label='High')
      ax2.set_title('Power')
      ax2.legend()
      plt.tight_layout()
show_result(consts)
show_result(fin_consts)
plt.show()
```