The Bayesian Lasso Trevor Park & George Casella

Dusty Turner

4/17/23

$$P(H|X) = P(H) \times \left(1 + P(C) \times \left(\frac{P(X|H)}{P(X)} - 1\right)\right)$$

X: OBSERVATION

D(1). PRINE PROBABILITY THAT II IS TRUE

P(H): PRIOR PROBABILITY THAT H IS TRUE P(X): PRIOR PROBABILITY OF OBSERVING X

P(c): PROBABILITY THAT YOU'RE USING BAYESIAN STATISTICS CORRECTLY

H: HYPOTHESIS

The Bayesian Lasso¹

- 1. Formulation
- ► Classical Regression
- Classical Lasso
- Bayesian Lasso
- 2. Selecting λ
- Classical Regression
- Classical Lasso
- 3. Comparison
- 4. Extensions
- 5. Synthetic Example

¹Park and Casella (2008)

Clasical Regression

$$y = \mu 1_n + X\beta + \epsilon$$

- ightharpoonup y is an $n \times 1$ vector of responses
- $ightharpoonup \mu$ is the overall mean
- \blacktriangleright X is the $n \times p$ matrix of **standardized** regressors
- $\beta = (\beta_1, \dots, \beta_p)^T$
- $ightharpoonup \epsilon$ is an $n \, imes \, 1$ vector of $\stackrel{iid}{\sim} \, N(0,\sigma^2)$

Satisfies
$$\min_{\beta} (\tilde{y} - X\beta)^T (\tilde{y} - X\beta)$$

Clasical Lasso

Formulation

$$\begin{split} \min_{\beta} (\tilde{y} - X\beta)^T (\tilde{y} - X\beta) + \lambda \Sigma_{j=1}^p |\beta_j| \\ \lambda &> 0 \end{split}$$

Clasical Lasso

$$\min_{\beta} (\tilde{\boldsymbol{y}} - \boldsymbol{X} \boldsymbol{\beta})^T (\tilde{\boldsymbol{y}} - \boldsymbol{X} \boldsymbol{\beta}) + \lambda \boldsymbol{\Sigma}_{j=1}^p |\beta_j|$$

Notes

- 1. Often called "penalized regression"
- 2. L1 penalty
- 3. "Shrinkage" β values are shrunk towards 0
- 4. Tune λ through cross validation

Motivation

- 1. Model selection often as a precursor to other models
- 2. Reduce overfitting
- 3. Easily extendable to generalized linear models

Clasical Lasso

$$\min_{\boldsymbol{\beta}} (\tilde{\boldsymbol{y}} - \boldsymbol{X} \boldsymbol{\beta})^T (\tilde{\boldsymbol{y}} - \boldsymbol{X} \boldsymbol{\beta}) + \lambda \boldsymbol{\Sigma}_{j=1}^p |\beta_j|$$

Drawbacks

- 1. Biases β
- 2. Unreliable standard errors (issues with statistical tests)
- 3. Correlated features
- 4. Tuning issues / time

Bayesian Lasso²

Hierarchical Specification 1 (1 of 2)

$$\begin{split} y|\mu,X,\beta,\sigma^2 &\sim N_n(\mu 1_n + X\beta,\sigma^2 I_n) \\ \beta|\sigma^2,\tau_1^2,\dots,\tau_p^2 &\sim N_p(0_p,\sigma^2 D_t) \\ \\ D_t &= diag(\tau_1^2,\dots,\tau_p^2) \\ \\ \sigma^2,\tau_1^2,\dots,\tau_p^2 &\sim \pi(\sigma^2)d\sigma^2 \prod_{j=1}^P \frac{\lambda^2}{2} e^{-\lambda^2 \frac{\tau^2}{2}} d\tau_j^2 \\ \\ \sigma^2,\tau_1^2,\dots,\tau_p^2 &> 0 \end{split}$$

²Andrews and Mallows (1974)

Bayesian Lasso

Hierarchical Specification 1 (2 of 2)

The authors integrate out τ_1^2,\dots,τ_p^2 which yields the conditional prior for β as a Laplace (double-exponential) distribution:

$$\pi(\beta|\sigma^2) = \prod_{j=1}^{P} \frac{\lambda}{2\sqrt{\sigma^2}} e^{\frac{-\lambda|\beta_j|}{\sqrt{\sigma^2}}}$$
$$\pi(\sigma^2) = IG(\alpha, \beta)$$
$$p(\mu) = U(a, b)$$

Bayesian Lasso³

Hierarchical Specification 2 (1 of 2)

$$y|\mu, X, \beta, \sigma^2 \sim N_n(\mu 1_n + X\beta, \sigma^2 I_n)$$

Authors integrate out μ

$$p(\beta) = N(A^{-1}X^T\tilde{y}, \sigma^2A^{-1})$$

where

$$A = X^T X + D_{\tau}^{-1}$$

³Bae and Mallick (2004)

Bayesian Lasso

Hierarchical Specification 2 (2 of 2)

$$\begin{split} p(\sigma^2) &= IG(\frac{n-1}{2} + \frac{p}{2}, (\tilde{y} - X\beta)^T \frac{(\tilde{y} - X\beta)}{2} + \beta^T D_{\tau}^{-1} \frac{\beta}{2}) \\ p(\tau_1^2, \dots, \tau_p^2) &= \sqrt{\frac{\lambda'}{2\pi}} x^{-\frac{3}{2}} exp\{-\frac{\lambda'(x - \mu')^2}{2(\mu')^2 x}\} \end{split}$$

where

$$\mu' = \sqrt{\frac{\lambda^2 \sigma^2}{\beta_j^2}}$$

$$\lambda' = \lambda^2$$

Choosing the Lasso Parameter: Classical Lasso

Cross Validation

- 1. Cross validate over a grid of λ where $\lambda \geq 0$.
- 2. For each λ value find the error metric of interest.
- 3. Select the λ value that minimizes the metric of interest.

Technique 1: Empirical Bayes

Technique 1: Empirical Bayes

Technique 1: Empirical Bayes⁴

- 1. Solve for a marginal maximum likelihood for λ using estimates of the hyperparameters.
- 2. λ is updated for each iteration using the estimates from the sample of the previous iteration

$$\lambda^{(k)} = \sqrt{\frac{2p}{\Sigma_{j=1}^p E_{\lambda(k-1)}[\tau_j^2 | \widetilde{y}]}}$$

3. Recommended initial value of:

$$\lambda^{(0)} = \frac{p\sqrt{\sigma_{LS}^2}}{\sum_{i=1}^p |\beta_i^{\hat{L}S}|}$$

4. β_i^{LS} and σ_{LS}^2 are estimated from least squares.

⁴Casella (2001)

Technique 2: Hyperpriors

Authors recommend the diffuse Gamma hyperprior of λ^2 in the following form

$$\pi(\lambda^2) = \frac{\delta^r}{\Gamma(r)} (\lambda^2)^{r-1} e^{-\delta \lambda^2}$$

$$\lambda^2 > 0, r > 0, \delta > 0$$

- Select r and δ such that there is high probability near the maximum likelihood estimate to avoid mixing problems.
- ightharpoonup r=0 and $\delta=0$ are tempting but lead to an improper posterior.
- This formulation allows easy integration into a Gibbs sampler.

Comparison

Consider the following data:⁵ 6

obs	age	sex	bmi	bp	s1	s2	s3	s4	s5
-0.01	0.80	1.06	1.30	0.46	-0.93	-0.73	-0.91	-0.05	0.42
-1.00	-0.04	-0.94	-1.08	-0.55	-0.18	-0.40	1.56	-0.83	-1.43
-0.14	1.79	1.06	0.93	-0.12	-0.96	-0.72	-0.68	-0.05	0.06
0.70	-1.87	-0.94	-0.24	-0.77	0.26	0.52	-0.76	0.72	0.48
-0.22	0.11	-0.94	-0.76	0.46	0.08	0.33	0.17	-0.05	-0.67
-0.72	-1.95	-0.94	-0.85	-0.41	-1.45	-1.67	0.87	-1.60	-0.86

- ▶ Measurements of 440 diabetic patients
- ▶ 10 baseline variables (centered and scaled)
- Response variable is a measure of disease progression one year after baseline

 $^{^{5}\{}care\}$ Efron et al. (2004)

⁶Zuber and Strimmer. (2021)

Trace Plot of Coefficients by Lasso

- a) Lasso
- b) Bayesian Lasso
- c) Ridge Regression

Vertical lines for the Lasso and Bayesian Lasso indicating the estimates chosen by n-fold cross-validation and marginal maximum likelihood.

Comparison

- The Bayesian Lasso estimates appear to be a compromise between the Lasso and ridge regression estimates
- The Bayesian Lasso appears to pull the more weakly related parameters to 0 faster than ridge regression

Comparison

- \blacktriangleright Least squares estimates (\times) ,
- Lasso estimates based on n-fold cross-validation (\triangle) ,
- Lasso estimates chosen to match the L1 norm of the Bayes estimates ()
- Posterior median Bayesian Lasso estimates (\otimes) and corresponding 95% credible intervals (equal-tailed) with λ selected according to marginal maximum likelihood

Extentions

"Bridge" Regression⁷

$$\begin{split} \min_{\beta} (\tilde{y} - X\beta)^T (\tilde{y} - X\beta) + \lambda \Sigma_{j=1}^p |\beta_j|^2 \\ \pi(\beta|\sigma^2) &\propto \prod_{j=1}^P e^{-\lambda (\frac{|\beta_j|}{\sqrt{\sigma^2}})^2} \end{split}$$

Huberized Lasso⁸

$$\min_{\beta} \sum_{i=1}^{n} L(\tilde{y_i} - x_i^T \beta) + \lambda \sum_{j=1}^{p} |\beta_j|$$

⁸Rosset and Zhu (2007)

⁷Knight and Fu (2000)

To compare the results, we will generate synthetic data in the form:

y <- rbinom(num, 1, prob)

model	b0	b_1	b_2	b_3
Logistic Regression Lasso Bayes Lasso Truth	-0.26	0.87	$1.73 \\ 2.27$	$ \begin{array}{r} -0.21 \\ -0.11 \\ -0.22 \\ 0.00 \end{array} $

Bibliography Andrews, D. F., and C. L. Mallows. 1974. "Scale Mixtures of Normal Distributions." Journal of the Royal Statistical Society. Series B (Methodological) 36 (1): 99–102.

http://www.jstor.org/stable/2984774.
Bae, Kyounghwa, and Bani K. Mallick. 2004. "Gene selection using a two-level

hierarchical Bayesian model." *Bioinformatics* 20 (18): 3423–30. https://doi.org/10.1093/bioinformatics/bth419.

Casella, George. 2001. "Empirical Bayes Gibbs sampling." *Biostatistics* 2 (4): 485–500. https://doi.org/10.1093/biostatistics/2.4.485.

Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. 2004. "Least angle regression." *The Annals of Statistics* 32 (2): 407–99. https://doi.org/10.1214/009053604000000067.
Knight, Keith, and Wenjiang Fu. 2000. "Asymptotics for Lasso-Type Estimators." *The*

Annals of Statistics 28 (5): 1356–78. http://www.jstor.org/stable/2674097. Park, Trevor, and George Casella. 2008. "The Bayesian Lasso." Journal of the

American Statistical Association 103 (482): 681–86. https://doi.org/10.1198/016214508000000337.

Rosset, Saharon, and Ji Zhu. 2007. "Piecewise linear regularized solution paths." The