République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université des Sciences et de la Technologie Houari Boumédiène

Faculté d'Electronique et d'Informatique Département Informatique

Master Systèmes Informatiques intelligents

Module : Conception et Complexité des Algorithmes

Rapport de projet 2 de TP

Réalisé par :

AIT AMARA Mohamed, 181831072170 BOUROUINA Rania, 181831052716 CHIBANE Ilies, 181831072041 HAMMAL Ayoub, 181831048403

Année universitaire : 2021 / 2022

Table des matières

0.1	Modélisation de la solution	2
0.2	Algorithme de résolution	2

0.1 Modélisation de la solution

Dans ce problème, chaque anneau porte un numéro séquentiel unique $a_i \in [1, n]$ qui représente sa taille tel que n est le nombre maximal d'anneaux (e.g. l'anneau avec le nombre 1 est plus petit que l'anneau avec le nombre 3).

De plus, on modélise chaque tour par un tableau T_j d'une taille égale au nombre maximum d'anneaux n. Si un niveau i de la tour j contient un anneau $a_{i'}$, $T[j,i] = a_{i'}$, sinon T[j,i] = 0. Le niveau le plus bas de la tour (la base de la tour) est placé à la dernière case du tableau; $\forall j \ T[j,n]$ est le niveau le plus bas de la tour (voir Figure 1).

FIGURE 1 – Exemple d'une tour avec tous les anneaux

Par concéquent, le board de jeu peut être représenté par une matrice colonne par colonne ou chaque colonne est en réalité une tour du jeu.

board =
$$\begin{pmatrix} T[1,1] & T[2,1] & \dots \\ \dots & & & \\ T[1,n] & T[2,n] & \dots \end{pmatrix}$$

0.2 Algorithme de résolution

Algorithme 1 : Analyse lexicale	
Données: T: ma	
Résultat :	
Variables:	
début	
fin	