# CS3225v: Combinatorial Methods in Computation Biology Searching biological database

Wing-Kin Sung, Ken 宋永健 ksung@comp.nus.edu.sg

#### Biological databases

- Biological data increases rapidly.
- Searching methods also need to scale-up to the large datasets



#### Problem definition

- Consider a database D of genomic sequences (or protein sequences)
- Given a query string Q,
  - we look for a string S in D which is the closest match to the query string Q
  - There are two meanings for closest match:
    - S and Q has a semi-global alignment (forgive the spaces on the two ends of Q)
    - S and Q have a local alignment

# Measurement of the goodness of a search algorithm

#### Sensitivity

- Ability to detect "true positive".
- Sensitivity can be measured as the probability of finding the match given the query and the database sequence has only x% similarity.

#### Specificity

- Ability to reject "false positive"
- Specificity is related to the efficiency of the algorithm.
- A good search algorithm should be both sensitive and specific

# Different approaches

- Exhaustive approach
  - Smith-Waterman Algorithm
- Heuristic methods
  - BLAST and BLAT
  - PatternHunter
- Filter and refine approaches
  - LSH

- Note: many approaches are local alignment!
- There are other searching algorithms. We don't have enough time to cover them.

#### Smith-Waterman Algorithm

- Input:
  - the database D (total length: n) and
  - the query Q (length: m)
- Output: all closest matches (based on local alignment)

#### **Algorithm**

- For every sequences S in the database,
  - Use Smith-Waterman algorithm to compute the best local alignment between S and Q
- Return all alignments with the best score
- Time: O(nm)
- This is a brute force algorithm. So, it is the most sensitive algorithm.

#### What is BLAST?

- BLAST = Basic Local Alignment Search Tool
- Input:
  - A database D of sequences
  - A sequence s
- Aim of BLAST:
  - Compare s against all sequences in D faster based on heuristics.
- Disadvantage of BLAST:
  - To be fast, it scarifies the accuracy. Thus, less sensitive









### History of BLAST

- 1990: Birth of BLAST1
  - It is very fast and dedicate to the search of local similarities without gaps
  - Altschul et al, Basic local alignment search tool. J. Mol. Biol., 215(3):403-410, 1990.
  - The most highly cited paper in 1990 and the third most highly cited paper in 1983-2002.
- 1996-1997: Birth of BLAST2
  - BLAST2 allows insertion of gaps
  - BLAST2 have two versions. Developed by two groups of authors independently
    - 1997: NCBI-BLAST2 (National Center for Biotechnology Information)
    - 1996: WU-BLAST2 (Washington University)

#### BLAST1

- A heuristic method which searches for local similarity without gap
- It can be divided into four steps:
  - Step 1: Query preprocessing
  - Step 2: Scan the database for hits
  - Step 3: Extension of hits

# Step 1: Query preprocessing

• For every position p of the query, insert the w-tuple (w=11 default) at position p into the hash table.

Q=TCATCATG

| w-tuple | positions |
|---------|-----------|
| ATCA    | 3         |
| CATC    | 2         |
| CATG    | 5         |
| TCAT    | 1, 4      |

#### Step 2: Generation of hits

- Scan every sequence in the database DB.
  - For each position q in the sequence, if there is an exact match between the w-tuple at position q and a w-tuple in the query, a hit is made.
- A hit is characterized by the positions in both query and DB sequences.

>seq1 CCGCTCATGATGATCA

#### The list of hits:

- (5 of DB, 1 of query)
- (5 of DB, 4 of query)
- (13 of DB, 3 of query)

| W-tuple | positions |
|---------|-----------|
| ATCA    | 3         |
| CATC    | 2         |
| CATG    | 5         |
| TCAT    | 1, 4      |

# Step 3: Extension of hits (I)

- For every hit, extend it in both directions, without gap.
- The extension is stopped as soon as the score decreases by more than X(parameter of the program) from the highest value reached so far.



# Step 3: Extension of hits (II)

- If the extended segment pair has score better than or equal to S(parameter of the program), it is called an HSP (High scoring segment pair). Then, they will be reported.
- For every sequence in the database, the best scoring HSP is called the MSP (Maximal segment pair).

#### NCBI-Blast2

Allows local alignment with gaps.

- The first 2 steps are the same as BLAST1.
- Two major differences:
  - Two-hits requirement (implemented for protein)
  - Gapped extension

#### Step 3: Two-hits requirement

- To extend a hit, we require that there is another hit on the same diagonal within a distance smaller than A
- By default, A=40
- Note: Two-hits requirement is implemented for protein sequences (not DNA).



# Step 4: Gapped extension (I)

- For hits satisfying the two-hits requirement, extend them similar to Step 3 of BLAST1
- Among the generated HSP, we perform gapped extension for those with score > some threshold

# Step 4: Gapped extension (II)

- Gapped extension is a modified Smith-Waterman algorithm
  - Explore the dynamic programming starting from the middle of the hit
  - When the alignment score drops off by more than  $X_g$ , stop



#### BLAST1 vs. NCBI-BLAST2

- BLAST1 spends 90% of its time on extension
- For NCBI-BLAST2, due to the two-hits requirement, the number of extensions is reduced.
  - NCBI-BLAST2 is about 3 times faster than BLAST1.

# BLAST program options

| Program | Query   | Database | Alignment type                                                                                                                                                                                                                 |  |  |
|---------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| blastn  | DNA     | DNA      | Search DNA query sequence in DNA database                                                                                                                                                                                      |  |  |
| blastp  | Protein | Protein  | Search protein query sequence in protein database                                                                                                                                                                              |  |  |
| blastx  | DNA     | Protein  | Convert DNA query sequence into protein sequences in all 6 reading frames. Search these translated proteins in protein database                                                                                                |  |  |
| tblastn | Protein | DNA      | Search protein query sequence again protein sequences generated from the 6 reading frames of the DNA sequences in the DNA database                                                                                             |  |  |
| tblastx | DNA     | DNA      | Convert DNA query sequence into protein sequences in all 6 reading frames. Search these translated protein query sequence again protein sequences generated from the 6 reading frames of the DNA sequences in the DNA database |  |  |

# Statistics for local alignment

- A local alignment without gaps consists simply of a pair of equal length segments.
- BLAST finds the local alignments whose score cannot be improved by extension. Such local alignments are called high-scoring segment pairs or HSPs.
- To determine the significant of the local alignments, BLAST gives E-value and bit score. Below, we give a brief discussion on them.
- Assumption: We required the expected score for aligning a random pair of residues/bases to be negative.
  - Otherwise, the longer the alignment, the higher is the score independent of whether the segments aligned are related or not.

#### Raw Score for BLAST

• Raw score = 8\*2 - 3 - (5+2\*3) = 2.

$$g(q)=5+2q$$

|   | A  | С  | G  | Т  |
|---|----|----|----|----|
| A | 2  | -3 | -3 | -3 |
| С | -3 | 2  | -3 | -3 |
| G | -3 | -3 | 2  | -3 |
| Т | -3 | -3 | -2 | 2  |

**BLAST Matrix** 

#### E-value

- E-value is the expected number of alignments having raw score > S totally at random.
- Let m and n be the lengths of the query sequence and the database sequence.
- Intuition:
  - Double the length of either sequence will double the expected number of HSPs. (i.e.  $E \propto nm$ )
  - Double the score S will exponentially reduce the expected number of HSPs. (i.e.  $E \propto e^{-\lambda S}$ )



# E-value (II)

- Mathematically, when both m and n are sufficiently long,
  - the expected number E of HSPs with score at least S follows the extreme distribution (Gumbel distribution). We have
    - $E=Kmne^{-\lambda S}$  for some parameters K and  $\lambda$  which depends on the scoring matrix  $\delta$  and the expected frequencies of the residues/bases.
- Hence, when E-value is small, the HSP is significant.



# E-value (III)

- For more information on estimating K and  $\lambda$ , please read
  - http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-3.html
  - http://oreilly.com/catalog/blast/chapter/ch04.pdf

#### Bit score

- The raw score S of an alignment depends on the scoring system.
- Without knowing the scoring system, the raw score is meaningless.
- The bit score is defined to normalize the raw score, which is defined as follows.

$$S' = \frac{\lambda S - \ln K}{\ln 2}$$

- Note that  $E = Kmne^{-\lambda S}$ . By definition of S',  $E = mn2^{-S'}$ .
- Hence, when S' is big, the HSP is significant.

#### P-value

- The number of random HSPs with score ≥ S follows a Poisson distribution.
- Pr(exactly x HSPs with score  $\geq$  S) =  $\frac{e^{-E}E^x}{x!}$ 
  - where  $E = Kmne^{-\lambda S}$  is the E-score
- Hence, p-value = Pr(at least 1 HSPs with score  $\geq$  S) =  $1 e^{-E}$ .
- Note:
  - when E increases, p-value is approaching 1.
  - When E=3, p-value is  $1-e^{-3} = 0.95$ .
  - When E=10, p-value is  $1-e^{-10} = 0.99995$
  - when E<0.01, 1-e<sup>-E</sup>≈E.
- Hence, in BLAST, p-value is not shown since we expect p-value and E-value are approximately the same when E<0.01 while p-value is almost 1 when E>10.

### Local alignment with gaps

- There is no solid theoretical foundation for local alignment with gaps.
- Moreover, experimental results suggested that the theory for ungapped local alignment can be applied to the gapped local alignment as well.

# Completeness of BLAST (I)

- BLAST is the most popular solution for finding local alignments. It is well-known that BLAST is heuristics and it will miss solution.
- We would like to check how many good alignments are missed by BLAST.
- We extracted 2000 mRNA sequences from each of the 4 different species. We aligned them on human genome. Then, we checked how many significant alignments are missed by BLAST.

# Completeness of BLAST (II)

|                       | Chimpanzee | Mouse     | Chicken   | Zebrafish | All 4 species |
|-----------------------|------------|-----------|-----------|-----------|---------------|
| E-value (≤)           | Missing %  | Missing % | Missing % | Missing % | Missing %     |
| $1.0 \times 10^{-16}$ | 0.00       | 0.03      | 0.05      | 0.06      | 0.01          |
| $1.0 \times 10^{-15}$ | 0.00       | 0.03      | 0.05      | 0.06      | 0.02          |
| $1.0 \times 10^{-14}$ | 0.00       | 0.04      | 0.06      | 0.06      | 0.02          |
| $1.0 \times 10^{-13}$ | 0.00       | 0.03      | 0.07      | 0.14      | 0.02          |
| $1.0 \times 10^{-12}$ | 0.01       | 0.04      | 0.10      | 0.17      | 0.03          |
| $1.0 \times 10^{-11}$ | 0.02       | 0.05      | 0.11      | 0.28      | 0.05          |
| $1.0 \times 10^{-10}$ | 0.02       | 0.07      | 0.13      | 0.39      | 0.06          |
| $1.0 \times 10^{-9}$  | 0.03       | 0.09      | 0.16      | 0.60      | 0.08          |
| $1.0 \times 10^{-8}$  | 0.05       | 0.11      | 0.25      | 0.77      | 0.12          |
| $1.0 \times 10^{-7}$  | 0.10       | 0.19      | 0.31      | 0.81      | 0.18          |
| $1.0 \times 10^{-6}$  | 0.17       | 0.31      | 0.45      | 1.08      | 0.28          |
| $1.0 \times 10^{-5}$  | 0.32       | 0.47      | 0.70      | 1.45      | 0.45          |
| $1.0 \times 10^{-4}$  | 0.57       | 0.88      | 0.99      | 1.81      | 0.75          |
| $1.0 \times 10^{-3}$  | 0.99       | 1.36      | 1.25      | 2.25      | 1.17          |
| $1.0 \times 10^{-2}$  | 1.69       | 2.11      | 1.68      | 2.61      | 1.84          |
| $1.0 \times 10^{-1}$  | 2.70       | 2.97      | 2.33      | 2.86      | 2.76          |

- 2000 queries for each species.
  - BLAST only missed 0.06% of those 8000 queries (with E-value smaller than 1.0x10<sup>-10</sup>).
  - In conclusion, BLAST is accurate enough in most cases, yet the few alignments missed could be critical for biological research.

#### Variation of BLAST

- MegaBLAST
- BLAT
- PatternHunter
- PSI-BLAST

#### MegaBLAST

- Only for DNA
- For DNA, in BLAST, w = 11 by default.
- To improve efficiency, MegaBLAST uses longer w-tuples (by default, w=28).
- The cost is the reduction in sensitivity.

#### **BLAT**

- Only for DNA.
- By default, BLAT uses w=11 and two-hit.

- BLAT is very fast.
  - The main trick is to index the database and put the index in the main memory
  - Note that BLAT is less sensitive than BLAST, but more sensitive than MegaBLAST.

### Main trick of BLAT

- BLAST cannot build index of human genome since it it big.
- BLAT's index stores the positions of non-overlapping w-tuples in memory.

### Database = ACTTGTACTTGTA

### Index of all w-mers

| w-mer | positions |
|-------|-----------|
| ACTT  | 1, 7, 13  |
| CTTG  | 2, 8, 14  |
| GTAC  | 5, 11     |
| TACT  | 6, 12     |
| TGTA  | 4, 10     |
| TTGT  | 3, 9, 15  |
| TGTA  | 16        |
| •     |           |

### Index of w-mers at positions iw+1

| w-mer | positions |
|-------|-----------|
| ACTT  | 1, 13     |
| GTAC  | 5         |
| TTGT  | 9         |

### About the inventor: Jim Kent



- Education: University of California, Santa Cruz
- Awards: Overton Prize, Benjamin Franklin Award

### PatternHunter

- PatternHunter can only apply to DNA
- PatternHunter is similar to BLAST. Moreover, it uses gapped w-tuple.
  - For w=11, they use 111010010100110111
  - Example,

```
111010010100110111
ACTCCGATATGCGGTAAC
| | | | - | - - | - | | - | | |
ACTTCACTGTGAGGCAAC
```

 They found that gapped w-tuple can increase the sensitivity while increase the efficiency.

## Advantage of gapped w-tuple (I)

- Increase sensitivity
  - Gapped w-tuples are more independent.
  - Examples:
    - Two adjacent ungapped 11-tuples share 10 symbols

```
• 1111111111 1/4 chances to have 2nd hit 11111111111 next to the 1st hit
```

Two adjacent gapped 11-tuples share 5 symbols

• If the w-tuples are more independent, the probability of having at least one hit in a homologous region is higher.

# Advantage of gapped w-tuple (II)

- Reduce the number of hits.
  - For the same query length (says, 64),
    - It covers by 54 ungapped 11-tuples
    - It covers by 47 gapped 11-tuples
  - So, the number of hits is smaller.
- Thus, the efficiency is increased!

### PatternHunter I

Ma et al., *Bioinformatics* 18:440-445, 2002

Proposition. The expected number of hits of a weight-W length-M model within a length-L region of similarity p is  $(L-M+1)*p^W$ 

Proof.

For any fixed position, the prob of a hit is  $p^{W}$ .

There are L - M + 1 candidate positions.

The proposition follows.

# **Implication**

- For L = 1017
  - BLAST seed expects  $(1017 11 + 1) * p^{11} = 1007 * p^{11}$  hits
  - But  $\sim 1/4$  of these overlap each other. So likely to have only  $\sim 750$  \*  $p^{11}$  distinct hits
  - Our example spaced seed expects (1017 18 + 1) \*  $p^{11} = 1000 * p^{11}$  hits
  - But only  $1/4^6$  of these overlap each other. So likely to have  $\sim 1000 * p^{11}$  distinct hits



# Sensitivity of PatternHunter I



### More for PatternHunter

- To further improve the efficiency,
  - PatternHunter uses a variety of advanced data structures including priority queues, a variation of red-black tree, queues, hash tables.
  - PatternHunter also uses a new method of sequence alignment.
- To further improve the accuracy,
  - PatternHunter II suggested to use multiple gapped seeds.
  - They show that the accuracy can approach smith-waterman algorithm while the speed 3000 times faster than smith-waterman.
- PatternHunter II is both faster and sensitive than BLAST, MegaBLAST.

## About the Inventor: Ming Li

- Ming Li
  - Canada Research Chair Professor of Bioinformatics, University Professor, Univ of Waterloo
  - Fellow, Royal Society of Canada. Fellow, ACM.
     Fellow, IEEE.



## PSI-BLAST (Position Specific Iterated BLAST)

- PSI-BLAST is an implementation of BLAST for finding protein families. It allows us to detect distant homology.
- Input: a protein sequence
  - Using BLAST, we get a set of sequences that align with the query protein with E-score below a threshold, 0.01 (by default).
  - Align the selected sequences
  - Generate a PSSM profile from the multiple alignment
  - Iterate until no significant alignment found,
    - Using a modified BLAST, search the database with the PSSM profile.
    - Align the selected sequences
    - Generate a PSSM from the multiple alignment
- This version automatically combines statistically significant alignments produced by BLAST into a position-specific score matrix.
- It is much more sensitive to weak but biologically relevant sequence similarities



Find a set of sequences similar to the query

• Using BLAST 2.0, we get a set of sequences that align with the query protein with E-score below a threshold, 0.01 (by default).

# Multiple sequence alignment of the selected sequences

- Using the query sequence as the template, we aligned the selected sequences.
- All gap characters inserted into the query sequence are ignored.
- Note:
  - the length of the alignment is the same as the query sequence.
  - Some columns of the multiple sequence alignment may include nothing except the query.



### Generate a PSSM profile from the alignment

- Given the multiple alignment of length n,
  - We generate the position-specific score matrix (PSSM) profile, which is a 20xn matrix.
  - For each column and each residue a in the profile, we generate a log-odds score  $log(O_{ia}/P_a)$ .
    - where O<sub>ia</sub> is the observed frequency of residue a at position i and P<sub>a</sub> is the expected frequency respectively of the residue a.
- Since number of sequences may be small, data-dependent pseudo frequency is added to O<sub>ia</sub>.

## Find a set of sequences similar to the PSSM profile

- We apply a modified BLAST to the PSSM profile.
  - Basically, when we compare a position of the PSSM and a residue in the database, we use the corresponding log-odds score in that position.

Repeat until we satisfy.

# Locality-Sensitive Hashing (LSH)

#### **LSH-ALL-PAIRS**

- Input: biosequence database D
- Aim: find pairs of w-mers that differ by at most d substitutions (ungapped local alignment) in a collection of biosequences D.

## Locality-sensitive hash function

- Consider an w-mers s,
  - choose k indices i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>k</sub> uniformly from the set {1, 2, ..., w}
  - Define  $\pi(s) = (s[i_1], s[i_2], ..., s[i_k])$ . This function is called the locality-sensitive hash function



# Property of locality-sensitive hash function (I)

- Consider two w-mers s<sub>1</sub> and s<sub>2</sub>,
  - the more similar are they, the higher probability that  $\pi(s_1) = \pi(s_2)$ .
- More precisely, if the hamming distance of  $s_1$  and  $s_2 = d$ ,

• 
$$Pr[\pi(s_1) = \pi(s_2)]$$
 =  $\prod_{j=1,...,k} Pr[s_1[i_j] = s_2[i_j]]$   
=  $(1 - d/w)^k$ 



# Property of locality-sensitive hash function (II)

- Hence, s<sub>1</sub> and s<sub>2</sub> are similar if
  - $\pi(s_1) = \pi(s_2)$
- However, we may have false positive and false negative
  - False positive:  $s_1$  and  $s_2$  are dissimilar but  $\pi(s_1) = \pi(s_2)$ .
    - False positive can be distinguished from true positive by computing hamming distance between s<sub>1</sub> and s<sub>2</sub>
  - False negative:  $s_1$  and  $s_2$  are similar but  $\pi(s_1) \neq \pi(s_2)$ .
    - We cannot detect false negative.
    - We can only reduce the number of false negative by repeating the test using different  $\pi$ () functions

### LSH-ALL-PAIRS

### Algorithm:

- 1. Generate m random locality-sensitive hash functions  $\pi_1()$ ,  $\pi_2()$ , ...,  $\pi_m()$ .
- 2. For every w-mer s in the database, compute  $\pi_i(s)$  for  $1 \le j \le m$ .
- 3. For every pair of w-mers s and t such that  $\pi_i(s) = \pi_i(t)$  for some j,
  - If hamming distance(s, t) < d, report (s, t)-pair.</li>

### Conclusion

- This lecture presents some database searching methods.
- In fact, there are many other methods. For examples:
  - CAFÉ, FLASH, RAMdb, FD, suffix tree, suffix array, compressed suffix array

### More information

- The list of database used by blast
  - ftp://ftp.ncbi.nlm.nih.gov/blast/db/