ECE4321 Computer Networks

Chapter 7
HDLC

Data Link Control Protocols

- Advance Data Communication Control Procedures (ADCCP): ANSI X3.66 adopted by the US National Bureau of Standards (FIPS PUB 71-1)
- Link access procedure balanced (LAP-B): adopted by CCITT, a part of x.25
- Synchronous data link control (SDLC): IBM
- High level data link control (HDLC): most widely used

High Level Data Link Control

- HDLC
- ISO 33009, ISO 4335
- Most widely used DLC protocol

HDLC Station Types

- Primary station
 - Controls operation of link
 - Issues commands (frames)
 - Maintains separate logical link to each secondary station
- Secondary station
 - Under control of primary station
 - Issues responses (frames)
- Combined station
 - May issue commands and responses
 - Combines the features of primary and secondary stations

HDLC Link Configurations

- Unbalanced
 - —One primary and one or more secondary stations
 - —Supports full duplex and half duplex
- Balanced
 - —Two combined stations
 - —Supports full duplex and half duplex

HDLC Transfer Modes (1)

- Normal Response Mode (NRM)
 - Unbalanced configuration
 - —Primary can only initiate transmission
 - Secondary may only transmit data in response to command (poll) from primary
 - —Used on multi-drop lines
 - —Host computer as primary
 - —Terminals as secondary

HDLC Transfer Modes (2)

- Asynchronous Balanced Mode (ABM)
 - Balanced configuration
 - Either station may initiate transmission without receiving permission
 - —Most widely used
 - —No polling overhead

HDLC Transfer Modes (3)

- Asynchronous Response Mode (ARM)
 - Unbalanced configuration
 - Secondary may initiate transmission without permission form primary
 - Primary is responsible for connect, disconnect, error recovery, and initialization
 - —rarely used

Frame Structure

- Synchronous transmission
- All transmissions in frames
- Single frame format for all data and control exchanges

Frame Structure

(a) Frame format

Flag Fields

- Delimit frame at both ends
- 01111110
- Receiver hunts for flag sequence to synchronize
- Bit stuffing used to avoid confusion with data containing 01111110
 - —The transmitter inserts 0 bit after every sequence of five 1s with the exception of flag fields
 - —If receiver detects five 1s it checks next bit
 - If 0, it is deleted
 - If 1 and seventh bit is 0 (i.e., 10), accept as flag
 - If sixth and seventh bits 1 (i.e., 11), sender is indicating abort

Original Pattern:

111111111111011111101111110

Bit Stuffing

After bit-stuffing

 Example with possible errors

11111011111011011111010111111010

(a) Example

(b) An inverted bit splits a frame in two

(c) An inverted bit merges two frames

Address Field

- Identifies secondary station that sent or will receive frame
- Usually 8 bits long
- May be extended to multiples of 7 bits
 - LSB of each octet indicates that it is the last octet (1) or not (0)
- All ones (11111111) is broadcast

Control Field

- Different for different frame type
 - —I-frame (information frame)
 - data to be transmitted to user (next layer up)
 - Flow and error control piggybacked on information frames
 - —S-frame (Supervisory frame)
 - Used for flow and error control
 - —U-frame (Unnumbered frame)
 - supplementary link control
- First one or two bits of control filed identify frame type

Control Field Diagram

N(S) = Send sequence number N(R) = Receive sequence number S = Supervisory function bits M = Unnumbered function bits P/F = Poll/final bit

(c) 8-bit control field format

(d) 16-bit control field format

Poll/Final Bit

- Use depends on context
- Command frame
 - —P bit : used for poll from primary
 - —1 to solicit (poll) response from peer
- Response frame
 - —F bit : used for response from secondary
 - —1 indicates response to soliciting command

I-frame

 Contains the sequence number of transmitted frames and a piggybacked ACK

1 2 3 4 5 6 7 8 0 N(S) P/F N(R)

- •I,0,0
- •I,1,0
- •I,2,0,P

S-frame

Used for flow and error control

- •RR --- receive ready
- •RNR --- receive not ready
- •REJ --- reject on frame N(R)
- •SREJ --- selective reject on N(R)

U-frame

Mode setting, recovery, connect/diconnect

Unnumberred frames

- Set normal response mode (SNRM)
- Set asynchronous response mode (SARM)
- Set asynchronous balanced mode (SABM)
- Disconnect (DISC)
- Unnumberred acknowledgement (UA)
- Disconnect mode (DM)
- Request disconnect (RD)
- Unnumberred poll (UP)
- Reset (RSET)
- Exchange identification (XID)
- Test (TEST)
- Frame reject (FRMR)

Information Field

- Only in information and some unnumbered frames
- Must contain integral number of octets
- Variable length

Frame Check Sequence Field

- FCS
- Error detection
- 16 bit CRC
- Optional 32 bit CRC

HDLC Operation

- Exchange of information, supervisory and unnumbered frames
- Three phases
 - —Initialization
 - —Data transfer
 - —Disconnect

Examples of Operation (1)

Examples of Operation (2)

