

Equilibri químic

- Reaccions reversibles i estat d'equilibri
- La constant d'equilibri (Kc i Kp)
- Equilibris heterogenis
- Principi de Le Chatelier
- Energia lliure i constant d'equilibri
- Plantejament i resolució de problemes

Reaccions reversibles

Són aquelles que poden tenir lloc en els dos sentits simultàniament:

$$A + B \rightleftharpoons C + D$$

Arriba un moment en que les reaccions en sentit directe i invers es produeixen a la mateixa velocitat, això vol dir que s'ha assolit l'estat d'equilibri.

$$2 SO_3(g) \rightleftharpoons O_2(g) + 2 SO_2(g)$$

Reaccions reversibles

http://www.youtube.com/watch?v=LMIbJ-B92Ho&feature=player_embedded

Exemples de reaccions d'equilibri

Contaminació atmosfèrica

El NO₂ provocat per les emissions dels automòbils és un **gas tòxic i irritant** que pot causar problemes respiratoris. També és un dels gasos responsables de la **pluja àcida**.

 $2 \text{ NO (g)} + O_2(g) \rightleftharpoons 2 \text{ NO}_2(g)$

El NO és incolor i el NO2 de color marró

Consulta de dades de contaminació atmosfèrica a Catalunya

http://www.gencat.net:8000/oicqa/owa/b01.consulta?estacio=00&contaminant=99&dades=1

Exemples de reaccions d'equilibri

Obtenció industrial de l'amoníac

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

Exemples de reaccions d'equilibri

Producció d'etè

L'etè (etilè) és la matèria primera per a l'obtenció de plàstics com el polietilè (PE) i el policlorur de vinil (PVC)

$$CH_3 - CH_3(g) \rightleftharpoons CH_2 = CH_2(g) + H_2(g)$$

PEBD PEAD

Exemples de reaccions d'equilibri

Descomposició del carbonat de calci

Té lloc a temperatures elevades (T>600 °C)

$$CaCO_3$$
 (s) \rightleftharpoons CaO (s) + CO_2 (g)

Exemples de reaccions d'equilibri

Reacció d'esterificació

La reacció inversa és l'hidròlisi de l'éster

CH₃- COOH + CH₃- CH₂OH

CH₃-COO-CH₂-CH₃ + H₂O

Àcid etanoic àcid carboxílic

Etanol alcohol

Etanoat d'etil èster

aigua

7 Característiques de l'estat d'equilibri

Si passa prou temps, les reaccions reversibles arriben a un estat d'equilibri en què:

- Tenim una barreja de productes i reactius en el recipient i les concentracions de totes les substàncies es mantenen constants amb el temps.
- Les velocitats de les reaccions directa (R -> P) i inversa (R <- P) són iguals.
- S'arriba al mateix estat d'equilibri independentment de les concentracions inicials.
- Es pot arribar a un estat d'equilibri des de qualsevol extrem, és a dir partint dels reactius o partint dels productes.
- És una situació dinàmica, ja que la reacció continua produint-se en ambdós sentits.
- Si en la reacció intervenen gasos, perquè es pugui assolir l'estat d'equilibri cal que els gasos no puguin marxar (recipient tancat).
- L'estat d'equilibri depèn de la temperatura.

Característiques de l'estat d'equilibri

Activitat: Utilització de simuladors en l'estudi de les característiques de les reaccions d'equilibri

http://crecim.uab.cat/revista_ciencies/index.php/all-numeros/16-numero-28

1. Tenim una barreja de productes i reactius en el recipient i les concentracions de totes les substàncies es mantenen constants amb el temps.

Característiques de l'estat d'equilibri

1. Tenim una barreja de productes i reactius en el recipient i les concentracions de totes les substàncies es mantenen constants amb el temps.

http://www.chem.arizona.edu/chemt/Flash/Hl.html

Característiques de l'estat d'equilibri

 Les velocitats de les reaccions directa (R -> P) i inversa (R <- P) són iguals.

 S'arriba al mateix estat d'equilibri (la mateixa K) independentment de les concentracions inicials.

$$2 NO_{2(g)} \rightleftarrows N_2O_{4(g)}$$

3. S'arriba al mateix estat d'equilibri (la mateixa K) independentment de les concentracions inicials.

http://www.chem.arizona.edu/tpp/java/equilno/

4. Es pot arribar a un estat d'equilibri des de qualsevol extrem, és a dir partint dels reactius o partint dels productes.

http://www.chem.arizona.edu/chemt/Flash/PCI5.html

Característiques de l'estat d'equilibri

5. És una situació dinàmica, ja que la reacció no s'atura sinó que continua produint-se en ambdós sentits.

Exemple (equilibri dinàmic):

Si el flux d'aigua que entra i el que surt són iguals, el nivell d'aigua en el recipient es manté estable.

5. És una situació dinàmica, ja que la reacció no s'atura sinó que continua produint-se en ambdós sentits.

http://www.chem.arizona.edu/chemt/Flash/PCI5.html

Característiques de l'estat d'equilibri

6. Si en la reacció intervenen gasos, perquè es pugui assolir l'estat d'equilibri cal que els gasos no puguin marxar (recipient tancat).

http://phet.colorado.edu/en/simulation/reactions-and-rates

7. L'estat d'equilibri (i la K) depèn de la temperatura.

$$T = 300 \text{ K}$$

$$T = 400 \text{ K}$$

Característiques de l'estat d'equilibri

7. L'estat d'equilibri (i la K) depèn de la temperatura.

Constant d'equilibri (K_c)

Per a una reacció **a A + b B ⇄ c C + d D**, l'**expressió de la constant d'equilibri Kc** és:

$$K_{c} = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

En aquesta expressió (llei d'acció de masses) apareixen les concentracions (mol/L) de les espècies en l'estat equilibri, elevades als seus coeficients estequiomètrics.

La constant d'equilibri (Kc i Kp)

Constant d'equilibri (K_c)

$$N_2O_4$$
 (g) \rightleftharpoons 2 NO_2 (g) \rightleftharpoons colorless brown
$$K = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$$

http://www.kentchemistry.com/links/Kinetics/Equilibrium/equilibrium.swf

Constant d'equilibri (K_p)

Equilibri homogeni entre gasos:

$$aA(g) + bB(g) \rightleftharpoons cC(g) + dD(g)$$

$$(P_C)^c_{eq} \cdot (P_D)^d_{eq}$$
 $K_P = \frac{(P_A)^a_{eq} \cdot (P_B)^b_{eq}}{(P_A)^a_{eq} \cdot (P_B)^b_{eq}}$

P_A, P_B, P_C, P_D
són les **pressions parcials** dels gasos
presents en la mescla **en equilibri.**

Es recomana utilizar el bar com a unitat de pressió però s'accepta també l'atmosfera (1 atm = 1,013 bar)

La constant d'equilibri (Kc i Kp)

Les pressions parcials es poden calcular a partir de:

La Ilei dels gasos ideals:

$$p_A \cdot V = n_A \cdot R \cdot T$$

-La Ilei de Raoult:

$$p_A = X_A \cdot p_t$$

```
\mathbf{p_A} = pressió parcial d'un gas de la mescla ( bar o atm ) 

\mathbf{V} = volum total ( \mathbf{L} ) 

\mathbf{n_A} = nombre de mols d'A ( \mathbf{mol} ) 

\mathbf{R} = constant dels gasos = \mathbf{0.0831} bar · L· K-1 · mol-1 

0.082 atm · L· K-1 · mol-1 

\mathbf{T} = temperatura ( \mathbf{K} ) 

\mathbf{X_A} = fracció molar d'A = \mathbf{n_A} / (\mathbf{n_A} + \mathbf{n_B} + ... ) 

\mathbf{p_t} = pressió total de la mescla = \mathbf{p_A} + \mathbf{p_B} + ... ( bar o atm )
```

La constant d'equilibri (Kc i Kp)

Relació entre Kc i Kp

$$Kp = Kc \cdot (R \cdot T)^{\Delta n}$$

 $\Delta \mathbf{n} = \mathbf{n}^{o}$ mols gas productes – \mathbf{n}^{o} mols gas reactius

 $\mathbf{R} = 0.0831$ bar ·L· K⁻¹ · mol⁻¹ = 0.082 atm · L· K⁻¹ · mol⁻¹

Característiques de la constant d'equilibri (Kc i Kp)

- 1. És característica de cada reacció
- Correspon als valors (de concentracions o pressions) en l'estat d'equilibri.
- El valor de la constant d'equilibri varia amb la temperatura
- 4. Les constants d'equilibri Kc i Kp s'expressen sense unitats

La constant d'equilibri (Kc i Kp)

Significat del valor de K

El valor de K ens informa si l'equilibri està molt o poc desplaçat en un sentit o l'altre (si en l'estat d'equilibri predominen els reactius o els productes)

Relació entre K i l'equació química

Si igualem la reacció multiplicant tots els coeficients estequiomètrics per un nombre **n**, la nova constant d'equilibri serà

$$H_2 + I_2 \rightleftharpoons 2 HI K$$
 $2 H_2 + 2 I_2 \rightleftharpoons 4 HI K' = (K)^2$

$$K' = K^n$$

Relació entre K i l'equació química

Si escrivim la reacció de manera **inversa**, la nova constant d'equilibri serà

$$H_2 + I_2 \rightleftharpoons 2 HI K$$

$$2 \text{ HI} \rightleftarrows \text{ H}_2 + \text{ I}_2 \qquad \text{K}'$$

$$K' = K^{-1}$$

Quocient de reacció (Q_c)

Per a una reacció **a A + b B ⇒ c C + d D**, el quocient de reacció Qc val:

$$\mathbf{Q} = \frac{[\mathbf{C}]^c[\mathbf{D}]^d}{[\mathbf{A}]^a[\mathbf{B}]^b}$$

Q_c **es diferencia de K**_c en el fet que les **concentracions** poden ser les corresponents a **qualsevol instant** de la reacció, no cal que siguin les de l'estat d'equilibri.

La constant d'equilibri (Kc i Kp)

Significat de Q_c

Qc < Kc

El sistema no està en equilibri. El numerador de l'expressió és més petit que el que correspondria a l'equilibri. Per arribar-hi, el sistema ha

d'evolucionar reaccionant cap a la dreta (→) amb més intensitat que cap a l'esquerra, en el sentit de formació de productes.

Qc = Kc El sistema està en equilibri

Qc > Kc

El sistema no està en equilibri. El numerador de l'expressió és més gran que el que correspondria a l'equilibri. Per arribar-hi, el sistema ha

d'evolucionar reaccionant cap a l'esquerra (←) amb més intensitat que cap a la dreta, en el sentit de formació de reactius.

La constant d'equilibri (Kc i Kp)

Significat de Q_c

 $H_{2(g)} + I_{2(g)} \rightleftharpoons 2 HI_{(g)}$

time

Equilibri homogeni i equilibri heterogeni

- Homogeni: totes les espècies presents són a la mateixa fase.
- Heterogeni: les espècies químiques es troben en fases diferents

Equilibris heterogenis

Equilibris heterogenis

Són equilibris en els quals hi ha implicades **substàncies en diferents estats físics** (sòlides, líquides, gasos)

Precipitat (Pbl₂)

Equilibri iònic heterogeni

Equilibris heterogenis

Equilibris heterogenis

http://www.chem.arizona.edu/chemt/Flash/CH4.html

Equilibris heterogenis

Equilibris heterogenis

http://www.deciencias.net/proyectos/0cientificos/Tiger/paginas/CaO-CaCO3.html

Expressió de K en els equilibris heterogenis

En l'expressió de K no hi apareixen les concentracions dels sòlids ni dels líquids purs, perquè, a una temperatura determinada, aquestes concentracions són constants.

Exemples:

$$CaCO_3$$
 (s) \rightleftarrows CaO (s) $+$ CO_2 (g)
 $Kc = [CO_2]_{eq}$
 $Kp = p(CO_2)_{eq}$

AgCl (s)
$$\rightleftharpoons$$
 Ag⁺ (aq) + Cl⁻ (aq)
Kc = [Ag +]_{eq} · [Cl⁻]_{eq}

Equilibrium Constants of Some Common Reactions

Reaction	Equilibrium constant,	
$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(1)$	1.4×10^{83} at 298 K	
$CaCO_3(s) \iff CaO(s) + CO_2(g)$	1.9×10^{-23} at 298 K	
	1.0 at about 1200 K	
$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$	1.6×10^{-21} at 298 K	
	10.0 at about 1100 K	

@Exercici:

Escriure l'expressió de Kc dels equilibris heterogenis anteriors.

Henri-Louis Le Chatelier

(1850 – 1936)

Si un sistema en equilibri rep una pertorbació que modifica qualsevol dels factors que determinen l'equilibri (T, P, V, concentracions), la reacció evolucionarà en el sentit que compensi la modificació, retornant a l'estat d'equilibri.

Principi de Le Chatelier

Le Chatelier's principle

http://youtu.be/dIDgPFEucFM

Aquest principi ens permetrà **predir de manera qualitativa** com evolucionarà un sistema en equilibri davant els següents canvis:

- Concentració de reactius o productes
- Pressió (o el volum)
- Temperatura
- Addició d'un gas inert
- Presència d'un catalitzador

Principi de Le Chatelier

Change in Concentration

Change in Pressure

Change in Temperature

http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/lechv17.swf

Principi de Le Chatelier

http://labovirtual.blogspot.com.es/search/label/ Principio%20de%20Le%20Ch%C3%A2telier

En general podem afirmar que:

- Si a un sistema en equilibri s'hi afegeix un reactiu o producte, la reacció tendeix a consumir la substància afegida.
- Si s'elimina un reactiu o un producte , la reacció que es produeix tendeix a reposar-lo.

Equilibri cromat – dicromat

2
$$\operatorname{Cr} O_4^{2-}(\operatorname{aq}) + 2 \operatorname{H}^+(\operatorname{aq}) \rightleftarrows \operatorname{Cr}_2 O_7^{2-}(\operatorname{aq}) + \operatorname{H}_2 O(1)$$
ió cromat
(groc)

ió dicromat
(taronja)

http://www.youtube.com/watch?v=Yvo5Jvc_dbl

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

http://chem.arizona.edu/chemt/Flash/NH3.html

Canvis en la pressió i en el volum

- Si es modifica la pressió d'un sistema en equilibri en el qual participen gasos, s'alteren les pressions parcials i per tant, també s'alteren les concentracions.
- Si augmentem la pressió, el sistema reacciona en el sentit de disminuir el nombre de mols de substàncies en estat gasós (així el sistema ocupa menys volum).
- Si s'hi redueix la pressió (o s'augmenta el volum), passa el contrari.
- Si en la reacció hi ha el mateix nombre de mols de gasos en els reactius i en els productes (∆n = 0) una variació de la pressió no afecta a l'equilibri.

Canvis en la pressió i en el volum Augment de la P (disminució del V)

Efecte de l'augment de la pressió sobre l'equilibri

 $2 NO_2(g) \rightleftarrows N_2O_4(g)$ incolor

marró

Canvis en la pressió i en el volum Augment de la P (disminució del V)

Canvis en la pressió i en el volum

En les reaccions químiques en que només participen sòlids i líquids els canvis de pressió pràcticament no afecten l'estat d'equilibri, ja que els sòlids i els líquids són gairebé incompressibles.

 $H_2O(s) \rightleftharpoons H_2O(I)$

REACCIÓ EXOTÈRMICA

$$2 \text{ NO}_2(g) \Longrightarrow \text{N}_2\text{O}_4(g)$$
$$\Delta H = -58 \text{ kJ}$$

$$T = 273 \text{ K}$$
 $K_p = 57$
 $T = 298 \text{ K}$ $K_p = 6,9$

REACCIÓ ENDOTÈRMICA

$$N_2(g) + O_2(g) \Longrightarrow 2 \text{ NO } (g)$$

 $\Delta H = 181,0 \text{ kJ}$

$$T = 298 \text{ K}$$
 $K_p = 5.3 \cdot 10^{-31}$
 $T = 1.800 \text{ K}$ $K_p = 1.3 \cdot 10^{-4}$

La variació de la temperatura modifica el valor de la constant d'equilibri (K).

REACCIÓ ENDOTÈRMICA

$$N_2(g) + O_2(g) \Longrightarrow 2 \text{ NO } (g)$$

 $\Delta H = 181,0 \text{ kJ}$

$$T = 298 \text{ K}$$
 $K_p = 5.3 \cdot 10^{-31}$
 $T = 1.800 \text{ K}$ $K_p = 1.3 \cdot 10^{-4}$

Reaccions endotèrmiques $(\Delta H > 0)$

- Si augmenta la temperatura, augmenta el valor de K (en el nou equilibri hi ha més quantitat de productes)
- Si disminueix la temperatura, el valor de K disminueix.

REACCIÓ EXOTÈRMICA

$$2 \text{ NO}_2(g) \Longrightarrow \text{N}_2\text{O}_4(g)$$
$$\Delta H = -58 \text{ kJ}$$

$$T = 273 \text{ K}$$
 $K_p = 57$
 $T = 298 \text{ K}$ $K_p = 6,9$

Reaccions exotèrmiques $(\Delta H < 0)$

- Si augmenta la temperatura, disminueix el valor de K (en el nou equilibri hi ha més quantitat de reactius).
- Si disminueix la temperatura, augmenta el valor de K.

 $2 \text{ NO}_{2 (g)} \rightleftarrows \text{ N}_2\text{O}_{4 (g)} \Delta \text{H} = -58 \text{ kJ}$ marró incolor

Addició d'un gas inert

Els gasos inerts són **poc reactius** i no es combinen amb les substàncies en equilibri. Exemples: N₂, gasos nobles (He, Ne, Ar)

a) Addició d'un gas inert a P i T constants

Com P es manté constant, augmentarà el volum del reactor i això farà disminuir les concentracions de les substàncies gasoses. La reacció es desplaçarà per compensar aquesta disminució de les concentracions.

b) Addició d'un gas inert a V i T constants

Augmenta la pressió total, però a la vegada disminueixen les fraccions molars dels gasos. **No canvien les pressions parcials** (llei de Raoult), i per tant **no es modifica l'estat d'equilibri**.

$$p_A = X_A \cdot p_t = n_A \cdot p_t$$

$$n_A + n_B + \dots + n_{inert}$$

Presència d'un catalitzador

No augmenta el rendiment de la reacció (**no desplaça l'equilibri**), solament redueix el temps necessari perquè s'estableixi l'estat d'equilibri.

Aplicacions industrials

Moltes reaccions químiques utilitzades en la indústria són d'equilibri.

Per treure el **màxim rendiment** del procés s'han de controlar les variables (T, P, concentracions) que poden desplaçar l'equilibri en el sentit desitjat.

Procés Haber (síntesi industrial de l'amoníac)

Procés Haber (síntesi industrial de l'amoníac)

T= 450-500 °C

P= 200 atm

Rendiment 15 %

Procés Haber (síntesi industrial de l'amoníac)

Per què augmenta la producció de **NH₃** si es treballa a P elevades?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Principi de Le Chatelier:

Si augmenta la pressió, l'equilibri es desplaça en el sentit en el que hi ha menys mols de gas (el sistema ocupa menys volum) fins assolir un nou estat d'equilibri.

Limitacions del principi de Le Chatelier

En determinats casos (per exemple, els equilibris heterogenis) l'enunciat del principi de Le Chatelier pot resultar ambigu i conduir a conclusions errònies.

Per evitar això es recomana:

- Realitzar un correcte control de les variables que intervenen en el procés (tenir present si és a T, V o P constants)
- Plantejar la constant d'equilibri i procurar realitzar els raonaments a partir de la seva expressió.

Relació entre AGº i K

Si el sistema està en equilibri ($\Delta G = 0$) es compleix que:

$$\Delta G^{\circ} = -RTInK$$

Per tant:

$$K = e^{-\Delta G^{\circ}/(RT)}$$

 ΔG^{o} = variació de l'energia de Gibbs estàndard ($\mathbf{J \cdot mol^{-1}}$)

 $R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

T = temperatura (K)

K = constant d'equilibri (Kp en reaccions entre gasos i Kc en reaccions en dissolució líquida).

Relació entre AGº i K

 $\Delta G^{\circ} < 0$; K > 1

Reacció espontània, l'equilibri està desplaçat en el sentit de formació de productes.

 $\Delta G^{\circ} = 0$; $K \cong 1$

Estat d'equilibri

 $\Delta G^{\circ} > 0$; K < 1

La reacció espontània és la inversa, l'equilibri està desplaçat cap a la formació de **reactius**.

Relació entre AGº i K

http://www.chem.arizona.edu/chemt/Flash/gibbs.html

Com es resol un problema d'equilibri químic?

- Llegeix l'enunciat amb atenció.
- Escriu i iguala l'equació química corresponent.
- Si el sistema no està en equilibri determina la direcció del canvi (→ o ←) comparant Qc amb Kc.
- "X" serà la quantitat de substància (mols, concentració, pressió parcial) que ha d'aparèixer/desaparèixer per arribar a la situació d'equilibri.

Com es resol un problema d'equilibri químic?

5. Elabora una taula com la següent (Per a càlculs amb Kc)

3	a A	bB	сС	dD
Concentracions inicials, [] ₀				
Concentracions en l'equilibri, [] eq				

Com es resol un problema d'equilibri químic?

- 6. Fes els càlculs necessaris per emplenar totes les caselles de la taula. Has de tenir en compte els coeficients estequiomètrics i el signe del canvi. Per a les espècies que es consumeixen el signe és negatiu (-) i per a les espècies que es formen el signe és positiu (+).
- Planteja i resol l'equació corresponent.
- 8. Per relacionar Kc i Kp utilitza l'expressió

$$Kp = Kc \cdot (R \cdot T)^{\Delta n}$$

9. Comprova la coherència del resultat.

Grau de dissociació d'una substància (α_A)

En una reacció d'equilibri els reactius no es dissocien completament, només reacciona una part dels mols inicials:

El valor de α_A sempre estarà comprès entre 0 i 1.

El **tant per cent de dissociació** s'obté multiplicant per 100 el grau de dissociació.

Grau de dissociació d'una substància (α_{A})

Exemple:

En un matràs d'1 L introduïm 1 mol de iodur d'hidrogen, l'escalfem fins a 700 °C i el deixem reaccionar fins a assolir l'equilibri:

2 HI (g)
$$\rightleftarrows$$
 H₂ (g) + **I₂** (g); Kc (700 °C) = 0,0179

Determina el grau de dissociació del iodur d'hidrogen a aquesta temperatura.

Concentracions (mol/L)	2 HI (g)	H ₂ (g) +	I ₂ (g)
Inicials		0	0
En l'equilibri	1 - 2x	x	x

$$\alpha_{HI} = \frac{2x}{2x}$$
 quantitat dissociada = $\frac{2x}{1}$

Grau de dissociació d'una substància (α_A)

Concentracions (mol/L)	2 HI (g)	H ₂ (g) +	I ₂ (g)
Inicials	1	0	0
En l'equilibri	1 - 2x	x	x

Per determinar X cal utilitzar l'expressió i el valor de Kc:

$$Kc = X \cdot X = X^2 = 0,0179$$

 $(1-2x)^2 1-4x+4x^2$

Resolem l'equació de segon grau:

$$0,9284 x^2 + 0,0716 x - 0,0179 = 0$$

$$x_1 = 0,1055 M$$

$$x_2 = -0,1827 \text{ M}$$
 (no té sentit químic)

$$\alpha_{HI} = \frac{\text{quantitat dissociada}}{\text{quantitat inicial}} = \frac{2x}{2} = 2 \cdot 0,1055 = 0,21 (21\%)$$

José Ángel Hernández Santadaría jherna24@xtec.cat

"Equilibri químic" de José Ángel Hernández Santadaría està subjecta a una llicència de Reconeixement-NoComercial 3.0 No adaptada de Creative Commons