Задачи по курсу случайных графов. Часть 1

Константинов Даниил Николаевич, 5 курс $\Phi\Pi$ МИ dkonstantinov0@gmail.com

1. 1) Докажите, что любое выпуклое свойство есть пересечение возрастающего и убывающего свойств.

Доказательство. Пусть $A \in Q_{\text{возр}}, B \in Q_{\text{убыв}}$ и $A \subset C \subset B$. Из этого следует, что: а) $C \in Q_{\text{возр}} \Rightarrow B \in Q_{\text{возр}}$; б) $C \in Q_{\text{убыв}} \Rightarrow A \in Q_{\text{убыв}}$ (из определений убвающего и возрастающего свойств).

Обозначим
$$Q=Q_{\text{возр}}\cap Q_{\text{убыв}}.$$
 Значит, $A,B\in Q$ и $A\subset C\subset B\Rightarrow C\in Q$

2) Докажите, что для любого нетривиального выпуклого свойства Q существуют пороговые вероятности $\hat{p}_1 = \hat{p}_1(n) \leqslant \hat{p}_2 = \hat{p}_2(n)$, удовлетворяющие соотношениям:

$$\lim_{n \to \infty} (\mathbf{P} (\Gamma(n, p) \models Q)) = \begin{cases} 0, \text{ если } p = o(\hat{p}_1); \\ 1, \text{ если } p = o(\hat{p}_2) \text{ и } p = \omega(\hat{p}_1); \\ 0, \text{ если } p = \omega(\hat{p}_2). \end{cases}$$

Доказательство. По доказанному выше свойству существует такое разложение: $Q = Q_1 \cap Q_2$, где $Q_1 = Q_{\text{возр}}, Q_2 = Q_{\text{убыв}}$. Без ограничения общности будем считать, что \hat{p}_1 — пороговая вероятность Q_1 , а \hat{p}_2 — пороговая вероятность Q_2 (в силу того, что любое монотонное свойство имеет пор.вероятность).Значит,

$$\lim_{n\to\infty} \left(P\left(\Gamma(n,p) \models Q_1 \right) \right) = \begin{cases} 0, \text{ если } p = o(\hat{p}_1); \\ 1, \text{ если } p = \omega(\hat{p}_1). \end{cases}$$

$$\lim_{n\to\infty} \left(\mathbf{P} \left(\Gamma(n,p) \models Q_2 \right) \right) = \begin{cases} 1, & \text{если } p = o(\hat{p}_2); \\ 0, & \text{если } p = \omega(\hat{p}_2). \end{cases}$$

 $P(\Gamma(n,p)\models Q) = P(\Gamma(n,p)\models Q_1\cap Q_2) = P(\Gamma(n,p)\models Q_1 \text{ и } \Gamma(n,p)\models Q_2) = P(\Gamma(n,p)\models Q_1)\cdot P(\Gamma(n,p)\models Q_2)$ (в силу независимости свойств) Если $p=o(\hat{p}_1)$, то $p=o(\hat{p}_2)$:

$$\lim_{n\to\infty} \left(\mathbf{P}\left(\Gamma(n,p) \models Q \right) \right) = \lim_{n\to\infty} \left(\mathbf{P}\left(\Gamma(n,p) \models Q_1 \right) \right) \cdot \lim_{n\to\infty} \left(\mathbf{P}\left(\Gamma(n,p) \models Q_2 \right) \right) = 0 \cdot 1 = 0$$

Если $p = \omega(\hat{p}_1)$, то возможно два случая:

a) $p = o(\hat{p}_2)$:

$$\lim_{n \to \infty} \left(P\left(\Gamma(n, p) \models Q \right) \right) = 1 \cdot 1 = 1$$

б) $p = \omega(\hat{p}_2)$:

$$\lim_{n \to \infty} \left(P\left(\Gamma(n, p) \models Q \right) \right) = 0 \cdot 1 = 0$$

2. 1) Докажите, что для любого свойства Q выполнено

$$P(\Gamma(n, p) \models Q || \Gamma(n, p)| = m) = P(\Gamma(n, m) \models Q).$$

Доказательство.

$$P(\Gamma(n,p) \models Q | |\Gamma(n,p)| = m) = \frac{P(\Gamma(n,p) \models Q \cap |\Gamma(n,p)| = m)}{P(|\Gamma(n,p)| = m)} = \sum_{q \in Q, |q| = m} \frac{p^m (1-p)^{N-m}}{C_N^m p^m (1-p)^{N-m}} = \sum_{q \in Q, |q| = m} \frac{1}{C_N^m} = P(\Gamma(n,m) \models Q).$$

2) Пусть Q — выпуклое свойство подмножеств Γ и $m_1 \leqslant m \leqslant m_2 \leqslant N, \ 0 \leqslant p_1 \leqslant p \leqslant p_2 \leqslant 1$. Докажите, что

$$P(\Gamma(m) \models Q) \geqslant P(\Gamma(m_1) \models Q) + P(\Gamma(m_2) \models Q) - 1,$$

$$P(\Gamma(p) \models Q) \geqslant P(\Gamma(p_1) \models Q) + P(\Gamma(p_2) \models Q) - 1.$$

Доказательство. Из упражнения 1.1 $Q = Q_{\text{возр}} \cap Q_{\text{убыв}}$. Следовательно, используя лемму 1.1:

$$\begin{split} \mathrm{P}(\Gamma(m) \models Q) \geqslant \mathrm{P}(\Gamma(m) \models Q_{\text{возр}}) + \mathrm{P}(\Gamma(m) \models Q_{\text{убыв}}) - \mathrm{P}(\Gamma(m) \models Q_{\text{возр}} \cup Q_{\text{убыв}}) \geqslant \\ \geqslant \mathrm{P}(\Gamma(m_1) \models Q_{\text{возр}}) + \mathrm{P}(\Gamma(m_2) \models Q_{\text{убыв}}) - 1 \geqslant \\ \geqslant \mathrm{P}(\Gamma(m_1) \models Q) + \mathrm{P}(\Gamma(m_2) \models Q) - 1. \end{split}$$

Аналогично для $\Gamma(p)$.

3. Докажите лемму 1.3 из лекции.

Лемма 1. Пусть Q— монотонное свойство подмножетсв $\Gamma(n), a \in (0,1)$ — фиксированная константа, а $m=m(n)\in \overline{[0,N]}$ — некоторая последовательность. Если для любой функции $p=p(n)\in (0,1)$ с условием $p=\frac{m}{N}+\mathrm{O}\left(\sqrt{\frac{m(N-m)}{N^3}}\right)$ выполнено

$$\mathrm{P}(\Gamma(n,p)\models Q)\to a \ \text{при } n\to\infty,$$

ТО

$$P(\Gamma(n,m) \models Q) \to a$$
 при $n \to \infty$.

Доказательство. Пусть Q— возрастающее свойство, и C>0— большая константа, $p_0=\frac{m}{N}, q_0=1-p_0.$

$$p_{+} = \min(p_{0} + C\sqrt{\frac{p_{0}q_{0}}{N}}, 1)$$

$$p_{-} = \max(p_{0} - C\sqrt{\frac{p_{0}q_{0}}{N}}, 0)$$

$$\frac{p_{0}q_{0}}{N} = \frac{m(N - m)}{N^{3}}$$

Используя лемму 1.1 и упражнение 2.1:

$$P(\Gamma(n, p_{-}) \models Q) = \sum_{k=0}^{N} P(\Gamma(n, p_{-}) \models Q || \Gamma(n, p_{-})| = k) \cdot P(|\Gamma(n, p_{-})| = k) =$$

$$= \sum_{k=0}^{N} P(\Gamma(n, k) \models Q) \cdot P(|\Gamma(n, p_{-})| = k) \leqslant$$

$$\leqslant P(\Gamma(n, m) \models Q) \cdot P(|\Gamma(n, p_{-})| \leqslant m) + 1 \cdot P(|\Gamma(n, p_{-})| > m) \leqslant$$

$$\leqslant P(\Gamma(n, m) \models Q) + P(|\Gamma(n, p_{-})| \geqslant m)$$

Аналогично,

$$P(\Gamma(n, p_{+}) \models Q) = \sum_{k=0}^{N} P(\Gamma(n, p_{+}) \models Q || \Gamma(n, p_{+})| = k) \cdot P(|\Gamma(n, p_{+})| = k) =$$

$$= \sum_{k=0}^{N} P(\Gamma(n, k) \models Q) \cdot P(|\Gamma(n, p_{+})| = k) \geqslant$$

$$\geqslant \sum_{k=m}^{N} P(\Gamma(n, k) \models Q) \cdot P(|\Gamma(n, p_{+})| = k) \geqslant$$

$$\geqslant P(\Gamma(n, m) \models Q) \cdot P(|\Gamma(n, p_{+})| \geqslant m) \geqslant P(\Gamma(n, m) \models Q) - P(|\Gamma(n, p_{+})| < m)$$

Пусть m=0, тогда по условию $p=0 \Rightarrow \Gamma(n,p=0) = \Gamma(n,m=0)$. Пусть m=N, тогда по условию $p=1 \Rightarrow \Gamma(n,p=1) = \Gamma(n,m=N)$. Тогда будем считать, что $1 \leqslant m \leqslant N-1 \Rightarrow Np_0q_0 = \frac{m(N-m)}{N} \geqslant \frac{1}{2}$. $|\Gamma(n,p_-)| \sim Bin(N,p_-)$, из чего следует:

$$Np_{-}(1-p_{-}) = (Np_{0} - C\sqrt{Np_{0}q_{0}})(1-p_{0} + C\sqrt{p_{0}q_{0}/N}) \leqslant Np_{0}(q_{0} + C\sqrt{p_{0}q_{0}/N}) \leqslant Np_{0}q_{0} + C\sqrt{Np_{0}q_{0}}$$

По неравенству Чебышева имеем:

$$\mathrm{P}(|\Gamma(n,p_{-})|\geqslant m)\leqslant \frac{Np_{-}(1-p_{-})}{(m-Np_{-})^{2}}=\frac{Np_{-}(1-p_{-})}{(Np_{0}-Np_{0}+C\sqrt{Np_{0}q_{0}})^{2}}\leqslant \frac{Np_{0}q_{0}+C\sqrt{Np_{0}q_{0}}}{C^{2}Np_{0}q_{0}}\leqslant \frac{1}{C^{2}}+\frac{\sqrt{2}}{C}.$$

Аналогично,

$$P(|\Gamma(n, p_+)| < m) \le \frac{1}{C^2} + \frac{\sqrt{2}}{C}.$$

Получаем:

$$P(\Gamma(n, p_{-}) \models Q) \leqslant P(\Gamma(n, m) \models Q) + \frac{1}{C^{2}} + \frac{\sqrt{2}}{C},$$

$$P(\Gamma(n, p_{+}) \models Q) \geqslant P(\Gamma(n, m) \models Q) - (\frac{1}{C^{2}} + \frac{\sqrt{2}}{C}).$$

По предположению:

$$\lim_{n \to \infty} P(\Gamma(n, p_+)) = \lim_{n \to \infty} P(\Gamma(n, p_-)) = a,$$

$$a - (\frac{1}{C^2} + \frac{\sqrt{2}}{C}) \leqslant \lim_{n \to \infty} P(\Gamma(n, m) \models Q) \leqslant a + (\frac{1}{C^2} + \frac{\sqrt{2}}{C}).$$

В силу произвольности C , лемма доказана. Аналогично для случая, когда Q — убывающее свойство. \square

4. Докажите усиление леммы 1.4 из лекции.

Лемма 2. Пусть Q— выпуклое свойство подмножетсв $\Gamma(n)$ и задана функция $m = m(n) \in [0, N]$. Тогда если

$$P(\Gamma(n, \frac{m}{N}) \models Q) \to 1$$
 при $n \to \infty$,

TO

$$P(\Gamma(n,m) \models Q) \to 1$$
 при $n \to \infty$,

Доказательство. (показано на занятии) Пусть Q — возрастающее свойство.

$$\mathrm{P}(\Gamma(n,\frac{m}{N}) \models Q) \leqslant \mathrm{P}(\Gamma(n,m) \models Q) \cdot \mathrm{P}(|\Gamma(n,m)| \leqslant m) + \mathrm{P}(|\Gamma(n,m)| > m)$$

Случайная величина $X_n = |\Gamma(n, \frac{m}{N})| \sim Bin(N, \frac{m}{N})$ Для доказательства необходимо рассмотреть следующие случаи:

(a) $m\to 0$. Из условия, $X_n\to 0$ (по вероятности). Т.е. $\mathrm{P}(X_n=0)=1\Rightarrow \mathrm{P}(|\Gamma(n,m)|>m)=0$ и $\mathrm{P}(|\Gamma(n,m)|\leqslant m)=1$. Берем пределы:

$$1 = \lim_{n \to \infty} P(\Gamma(n, \frac{m}{N}) \models Q) \leqslant \underline{\lim}_{n \to \infty} P(\Gamma(n, m) \models Q) \cdot 1 + 0.$$

$$\Rightarrow \lim_{n \to \infty} P(\Gamma(n, m) \models Q) = 1.$$

(b)
$$m \to c > 0$$
.
$$X_n \to Pois(c) \Rightarrow$$

$$P(X_n \leqslant c) = \sum_{k=0}^c \frac{c^k}{k!} e^{-c} = t < 1,$$

$$P(X_n > c) = \sum_{k=c+1}^N \frac{c^k}{k!} e^{-c} \to 1 - t \text{ при } n \to \infty.$$

Переходим к пределам:

$$1 \leqslant \lim_{n \to \infty} P(\Gamma(n, c)) \cdot t + 1 - t.$$

Следовательно,

$$\lim_{n \to \infty} P(\Gamma(n, m)) = \lim_{n \to \infty} P(\Gamma(n, c)) = 1$$

(c)
$$N - m \rightarrow c > 0$$
.
 $N - X_n \sim Pois(c) \Rightarrow$

$$P(N - X_n \le N - m) = \sum_{k=N-m}^{N} \frac{c^k}{k!} e^{-c} = P(X_n \le m) = t < 1$$

$$P(X_n > m) = 1 - t.$$

Далее аналогично предыдущему пункту.

(d) $m \to \infty$ и $N-m \to \infty$ (рассмотрен на занятии)

Для Q — убывающего, аналогично.

$$P(\Gamma(n, \frac{m}{N}) \models Q) \leqslant P(\Gamma(n, m) \models Q) \cdot P(|\Gamma(n, m)| \geqslant m) + P(|\Gamma(n, m)| < m)$$

Следовательно, для выпуклого свойства как пересения убыв. и возвр. доказано.

5. Пусть Q — свойство подмножеств $\Gamma(n), \ |\Gamma(n)| = N.$ Докажите, что тогда для p = m/N выполняется неравенство

$$P(\Gamma(n,m) \models Q) \leq 10\sqrt{m} \cdot P(\Gamma(n,p) \models Q)$$

.

Доказательство.

$$P(\Gamma(n,p) \models Q) = \sum_{k=0}^{N} P(\Gamma(n,p) \models Q | |\Gamma(n,p)| = k) P(|\Gamma(n,p)| = k) =$$

$$= \sum_{k=0}^{N} P(\Gamma(n,k) \models Q) P(|\Gamma(n,p)| = k) \geqslant P(\Gamma(n,m) \models Q) P(|\Gamma(n,p)| = k).$$

Случайная величина $|\Gamma(n,p)|$ имеет биномиальное распределение Bin(N,p).

$$P(|\Gamma(n,p)| = k) = C_N^m p^m (1-p)^{N-m} = \frac{N!}{m!(N-m)!} p^m (1-p)^{N-m} =$$

$$= (1+o(1)) \frac{N^N \sqrt{2\pi N}}{m^m \sqrt{2\pi m} (N-m)^{N-m} \sqrt{2\pi (N-m)}} p^m (1-p)^{N-m} =$$

$$= (1+o(1)) \frac{N^N p^m (1-p)^{N-m}}{m^m (N-m)^{N-m}} \sqrt{\frac{N}{2\pi m (N-m)}} =$$

$$= (1+o(1)) \sqrt{\frac{N}{2\pi m (N-m)}} = (1+o(1)) \sqrt{\frac{1}{2\pi m}} \sqrt{\frac{1}{1-p}} \geqslant$$

$$\geqslant \frac{1}{10\sqrt{m}}$$

T.e., $P(\Gamma(n, m) \models Q) \leq 10\sqrt{m} \cdot P(\Gamma(n, p) \models Q)$.

6. 1) В случайном процессе $\tilde{\Gamma} = (\tilde{\Gamma}(m), m = 0, ..., N)$ для возрастающего свойства Q определим $m_Q^* = \min\{m: \tilde{\Gamma}(m) \models Q\}$. Докажите, что функция \hat{m} является пороговой функцией для Q тогда и только тогда, когда $m_Q^* = \Theta_p(\hat{m})$, т.е. для любой положительной функции $g(n) \to \infty$ выполнено

$$P\left(\frac{1}{g(n)}\hat{m} \leqslant m_Q^* \leqslant g(n)\hat{m}\right) \to 1.$$

 \mathcal{A} оказательство. По условию m_Q^* :

$$P(\tilde{\Gamma}(m_Q^*) \models Q) = 1, P(\tilde{\Gamma}(m_Q^* - 1) \models Q) = 0$$

 \rightarrow

Пусть \hat{m} — пороговая функция для Q и $\exists g(n) \to \infty$: либо а) $m_Q^* \leqslant \frac{\hat{m}}{g(n)}$, либо б) $m_Q^* \geqslant g(n)\hat{m}$.

- а) $\frac{m_Q^*}{\hat{m}} \leqslant \frac{1}{g(n)} \to 0$, т.е. $m_Q^* = \mathrm{o}(\hat{m}) \Rightarrow \mathrm{P}(\tilde{\Gamma}(m_Q^*) \models Q) = 0$. Получили противоречие.
- б) $\frac{m_Q^*}{\hat{m}}\geqslant g(n)\to\infty$, т.е. $m_Q^*=w(\hat{m})\Rightarrow \mathrm{P}(\tilde{\Gamma}(m_Q^*-1)\models Q)=1.$ Противоречие.

 \leftarrow

Пусть $m_Q^* = \Theta_p(\hat{m})$. Нужно доказать, что \hat{m} — пороговая функция для Q (она существует по следствию 1.3).

Пусть $m = o(\hat{m})$. Тогда $\exists g(n) : m < \frac{\hat{m}}{g(n)}$ при $n > n_0$.

$$P(\tilde{\Gamma}(m) \models Q) = P(m_Q^* \leqslant m) \to 0, n \to \infty.$$

Пусть теперь $m = w(\hat{m})$. Тогда $\exists g(n) : m \geqslant g(n)\hat{m}$ при $n > n_0$.

$$P(\tilde{\Gamma}(m) \models Q) = P(m_Q^* \leqslant m) \to 1, n \to \infty.$$

2) Докажите, что если в равномерной модели случайных подмножеств для монотонного свойства Q выполнено $m(1/2;n) \to +\infty$, то точная пороговая функция для Q существует тогда и только тогда, когда

$$\frac{m_Q^*}{m(1/2;n)} \xrightarrow{P} 1.$$

Доказательство. Пусть Q — возрастающее свойство.

 \Rightarrow

Пусть \hat{m} — точная пороговая функция, и либо а) $m_Q^* < m(1/2;n)$, либо б) $m_Q^* > m(1/2;n)$.

$$\mathrm{P}(\Gamma(m(1/2;n)-1)\models Q)<\frac{1}{2}\leqslant \mathrm{P}(\Gamma(m(1/2;n))\models Q)$$

- а) $1 \leftarrow P(\Gamma(m_Q^*) \models Q) \leqslant P(\Gamma(m(1/2;n)-1) \models Q) < \frac{1}{2}$. Противоречие
- б) Так как $m(1/2;n)\to\infty$, то и $m_Q^*\to\infty$. Понятно, что точная пороговая функция связана с $m_Q^*\Rightarrow\hat{m}\to\infty$

 \leftarrow

По условию, $(1-\vartheta)m(1/2;n)\leqslant m_Q^*\leqslant (1+\vartheta)m(1/2;n).$

Пусть m(1/2;n) — точная пороговая функция, тогда если $m \leq m(1/2;n) - 1$, то:

$$P(\Gamma(m) \models Q) \leqslant P(\Gamma(m(1/2; n) - 1) \models Q) \leqslant P(\Gamma(m_Q^* - 1) \models Q) \to 0$$

Если же $m \ge m(1/2; n)$, то

$$\mathrm{P}(\Gamma(m) \models Q) \geqslant \mathrm{P}(\Gamma(m(1/2;n) \models Q)) \geqslant \mathrm{P}(\Gamma(m_Q^*) \models Q) \to 1.$$

7. Докажите, что в биномиальной модели случайных подмножеств для монотонного свойства Q существует точная пороговая функция тогда и только тогда, когда для любого $\varepsilon \in (0,1)$ выполнено

$$\frac{p(\varepsilon;n)}{p(1/2;n)} \to 1.$$

Доказательство. .

 \Rightarrow

 \Leftarrow

По условию, $(1 - \vartheta)p(1/2; n) \leqslant p(\varepsilon; n) \leqslant (1 + \vartheta)p(1/2; n), \vartheta \to 0$.

Пусть p(1/2;n) — точная пороговая вероятность. Тогда если $p \leqslant (1-\varepsilon)p(1/2;n)$, то

$$\mathrm{P}(\Gamma(p) \models Q) \leqslant \mathrm{P}(\Gamma(p(\varepsilon;n))) \to 0$$
 при $\varepsilon \to 0$

Если $p \ge (1 + \varepsilon)p(1/2; n)$, то

$$P(\Gamma(p) \models Q) \geqslant P(\Gamma(p(\varepsilon; n))) \to 1$$
 при $\varepsilon \to 1$