Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

Vladimir Braverman², Elena Grigorescu³, Harry Lang², David P. Woodruff¹, Samson Zhou³

Carnegie Mellon University¹, Johns Hopkins University², Purdue University³

MODEL

Streaming Model: Elements of an underlying data set arrive sequentially

• What if we should not consider "old" elements? Sliding Window Model: Most recent *n* updates form the underlying data set.

Expired elements

Active elements

Caveat: We only consider insertion-only updates in the sliding window.

Open: What about more general forms of updates?

Problem 1 (Distinct Elements): Given a parameter $0 < \epsilon < 1$ and a set S of elements in [m], give a $(1 + \epsilon)$ -approximation to the number of items i whose frequency f_i satisfies $f_i > 0$.

Applications: Network monitoring, data mining, query optimization

Problem 2 (Heavy Hitters): Given a parameter $0 < \epsilon < 1$ and a set S of elements in [m], output all items i whose frequency f_i satisfies $f_i > \epsilon(F_p)^{1/p}$ and no item i whose frequency f_i satisfies $f_i < (\epsilon - \phi)(F_p)^{1/p}$, where $F_p = \sum_{\{i=1\}}^m f_i^p$ and $\phi = c\epsilon$ for some constant c < 1. Applications: Network monitoring, denial-of-service prevention, moment estimation, L_p sampling

RESULTS (Distinct Elements)

Theorem 1: Given $\epsilon > 0$, there exists an algorithm that, with probability at least $\frac{2}{3}$, provides a $(1 + \epsilon)$ -approximation to the number of distinct elements in the sliding window model, with space complexity (in bits) $O\left(\frac{1}{\epsilon^2}\log n\log\frac{1}{\epsilon}\log\log n + \frac{1}{\epsilon}\log^2 n\right)$.

Theorem 2: Let $0 < \epsilon < \frac{1}{\sqrt{n}}$. Any one-pass streaming algorithm that gives a $(1 + \epsilon)$ -approximation to the number of distinct elements in the sliding window model with probability at least $\frac{2}{3}$ requires space complexity $\Omega\left(\frac{1}{\epsilon^2}\log n\log\frac{1}{\epsilon}\log\log n + \frac{1}{\epsilon}\log^2 n\right).$

Upper Bound	Lower Bound		
$O\left(\frac{1}{\epsilon^3}\log^2 n + \frac{1}{\epsilon}\log^3 n\right)$ [KNW10, BO07]	$\Omega\left(\frac{1}{\epsilon^2} + \log n\right)$ [AMS99]		
$O\left(\frac{1}{\epsilon^2}\log n\left(\log\log n\log\frac{1}{\epsilon}\right) + \frac{1}{\epsilon}\log^2 n\right)$	$\Omega\left(\frac{1}{\epsilon^2}\log n + \frac{1}{\epsilon}\log^2 n\right)$		

RESULTS (Heavy Hitters)

Theorem 3: Given $\epsilon > 0$ and $0 , there exists an algorithm that, with probability at least <math>\frac{2}{3}$, outputs all indices $i \in [m]$ for which $f_i \ge \epsilon (F_p)^{1/p}$, and no indices $i \in [m]$ for which $f_i \le \frac{\epsilon}{12} (F_p)^{1/p}$. The algorithm uses $O\left(\frac{1}{\epsilon^p}\log^2 n\left(\log^2\log n + \log\frac{1}{\epsilon}\right)\right)$ bits of space.

Theorem 4: Let p > 0 and $\epsilon > 0$. Any one pass streaming algorithm that finds the L_p -heavy hitters in the sliding window model with probability at least $\frac{2}{3}$ uses space $\Omega\left(\frac{1}{\epsilon^p}\log^2 n\right)$.

Upper Bound	Lower Bound
$O\left(\frac{1}{\epsilon^4}\log^3 n\right)$ [BGO14]	$\Omega\left(\frac{1}{\epsilon^2}\log n\right)$ [JST11]
$O\left(\frac{1}{\epsilon^2}\log^2 n\left(\log\log n + \log\frac{1}{\epsilon}\right)\right)$	$\Omega\left(\frac{1}{\epsilon^2}\log^2 n\right)$

HISTOGRAMS

Definition: A function f is (α, β) -smooth if

- 1. (Monotonicity) $f(A) \ge f(B)$ for B subset of A.
- 2. (Polynomially Bounded) $f(A) \le n^c$ for all A.
- 3. (Smoothness) There exists $\alpha \in (0,1)$ and $\beta \in (0,\alpha]$ so that if B is a subset of A and $(1-\beta)f(A) \leq f(B)$, then $(1-\alpha)f(A \cup C) \leq f(B \cup C)$ for any adjacent C.

Fact: L_p norm is $\left(\epsilon, \frac{\epsilon^p}{p}\right)$ -smooth and L_0 is (ϵ, ϵ) -smooth

Framework by [BO07] for converting insertion-only streaming algorithms to sliding window algorithms for smooth functions.

Intuition:

- 1. Maintain algorithms for substreams where the output jumps by a factor of $(1 + \epsilon)$.
- 2. Delete "old" algorithms, so that there is never more than one algorithm containing expired points.
- 3. Delete algorithms whose substreams are "too close" to each other. It the outputs of the algorithms are close, we don't need one of them!

Only need a logarithmic number of algorithms!

Caveat: We need correctness over all algorithms and all elements in the sliding window.

UPPER BOUND (Distinct Elements)

Given a hash function $h: [m] \to \{0,1\}^{\log m}$, let $S_k = \{s \in S \mid \text{lsb}(h(s)) \ge k\}$. Note that $2^k |S_k|$ is an unbiased estimator for S.

Balls into bins: Fill up a log n by $\frac{100}{\epsilon^2}$ table T. Given a hash function h_2 : $[m] \to \frac{100}{\epsilon^2}$, set T(i,j) = 0 if $h_2(s) \neq j$ for all $s \in S_i$. Subsampling with probability $\frac{1}{2^i}$. Look at a row for which $E[S_k] = \Theta\left(\frac{1}{\epsilon^2}\right)$ for number of distinct elements.

Idea: Instead of keeping a table for each instance, keep ONE table which encodes all of the tables!

Each cell stores ID of the first

nonzero instance: $O\left(\frac{1}{\epsilon^2}\log n\right)$

cells, each $O\left(\log\log n + \log\frac{1}{\epsilon}\right)$

Each column in the table is monotonic, can further compress!
Encode each column using

1	1	1	1	2	2
3	1	3	1	2	3
4	2	3	1	3	4
4	3	3	1		
4		4	1		
			1		
			4		

 $O\left(\log n \log \frac{1}{\epsilon}\right)$ bits.

Caveat: Need $O(\log \log n)$ instances for union bound.

UPPER BOUND (Heavy Hitters)

Estimator [BCINWW17]: Provides a $(1 + \epsilon)$ approximation to L_2 -norm using space complexity (in bits) $O\left(\frac{1}{\epsilon^2}\log n\left(\log\log n + \log\frac{1}{\epsilon}\right)\right).$

BPTree [BCINWW17]: Returns a set of $\frac{\epsilon}{2}$ heavy hitters containing every ϵ heavy hitter using space complexity $O\left(\frac{1}{\epsilon^2}\log\frac{1}{\epsilon}\log n\right)$.

Already works in framework by [BO07] but space dependency is $\frac{1}{\epsilon^4}$. Instead use the following ideas:

- 1. Maintain a 2-approximation to the L_2 -norm using Estimator.
- 2. BPTree returns a set of $\frac{\epsilon}{2}$ heavy hitters.

Problem: Reported heavy hitters may be before sliding window begins!

SmoothCounter: Provides a $(1 + \epsilon)$ -approximation to the frequency of a particular element in the sliding window using $O\left(\frac{1}{\epsilon}\log^2 n\right)$ bits of space.

3. Keep a 2-approximation to the frequency of the reported heavy hitters in the sliding window using SmoothCounter.

Caveat: Need additional tricks to show that a union bound over $O(\log n)$ instances suffices.

LOWER BOUND (Distinct Elements)

Lower bound of $\Omega\left(\frac{1}{\epsilon}\log^2 n\right)$ from IndexGreater:

Alice has $S = x_1 x_2 \dots x_m$, each x_i has n bits. Bob is given $i \in [m]$ and $j \in [2^n]$ and must determine if $x_i > j$.

Elements $\{0, 1, \dots, (1+2\epsilon)^i - 1\}$ inserted into piece x_i of block i.

Alice: $x_1 \dots x_m$, where $m = \frac{1}{6\epsilon} \log n$.

Each x_k is $\frac{1}{2} \log n$ bits.

Lower bound of $\Omega\left(\frac{1}{\epsilon^2}\log n\right)$ from GapHamming:

Alice has x and Bob has y, each binary of length n, and must determine $\text{HAM}(x,y) \ge \frac{n}{2} + \sqrt{n}$ or $\text{HAM}(x,y) \le \frac{n}{2} - \sqrt{n}$.

Construction: $\Omega(\log n)$ instances of GapHamming, each requires space $\Omega\left(\frac{1}{\epsilon^2}\right)$ for $\epsilon \leq \frac{1}{\sqrt{n}}$.

Alice maintains a counter p for overall position and inserts p if the corresponding bit of x_i is a one. Alice passes the state of the algorithm to Bob, who does the same thing for y_i .

LOWER BOUND (Heavy Hitters)

AugmentedIndex: Alice is given $S \in [k]^n$ and Bob is given $i \in [n]$ as well as S[1, i-1]. Bob must output S[i].

Construction: Let $a = \frac{1}{2^p \epsilon^p} \log \sqrt{n}$ and $b = \log n$ and $S = [2^a]^b$. Each S[i] is a bits, which can be written as $w_1 w_2 \dots w_t$, where $t = \frac{1}{2^p \epsilon^p}$ and each w_j has $\log \sqrt{n}$ bits.

Alice makes each w_j a heavy hitter by having geometrically decreasing frequency for each S[i] and passes the state of the algorithm to Bob, who expires everything in the stream before S[i] and computing the heavy hitters.

REFERENCES

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. J. Comput. Syst. Sci., 1999.

[BCINWW17] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and David P. Woodruff. Bptree: An L2 heavy hitters algorithm using constant memory. PODS 2017.

[BGO13] Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch L2 -heavy-hitters on sliding windows. COCOON 2013.

[BO07] Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. FOCS 2007.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct elements problem. PODS 2010.

[JST11] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for Lp samplers, finding duplicates in streams, and related problems. PODS 2011.