ИМПЛЕМЕНТАЦИЈА НА ИНСТАГРАМ ФИЛТРИ

Семинарска работа Предмет: Дигитално процесирање на слика

Содржина:

- 1. ИНТЕРФЕЈС
 Како се користи демо апликацијата
- 2. SHARPEN ФИЛТЕР Конволуција на слики и имплементација
- 3. GINGHAM ФИЛТЕР
 HSV простор на бои, премин од
 BGR во HSV и имплементација
- 4 SEPIA ФИЛТЕР
 Конволуција на слики, BGR
 RGB и имплементација

- 5. INVERT ФИЛТЕРBitwise not операција и имплементација
- 6. ДЕТЕКЦИЈА НА ОБЈЕКТИ Како се врши детекцијата и некои алгоритми за детекција
- 7. HALLOWEEN ФИЛТЕР Имплементација

8. SMILE ФИЛТЕР Имплементација

ИНТЕРФЕЈС НА ДЕМО АПЛИКАЦИЈАТА

Известување пред користење

Избор на филтри

SHARPEN ФИЛТЕР

• filter2D() од OpenCv библиотека

-1		-1
-1	9	-1
-1	-1	-1

GINGHAM ФИЛТЕР

CONTRAST

Контрастот се постигнува со множење на секој пиксел од сликата со 1,1.

BRIGHTNESS

Потребно е светлината да се намали, затоа на секој пиксел од добиената слика со зголемен контраст се намалува за 20.

SEPIA ФИЛТЕР

Компоненти на пикселот

0.272	0.534	0.131
0.349	0.686	0.168
0.393	0.769	0.189

Вредности за обработка на пикселот

INVERT ФИЛТЕР

ДЕТЕКЦИЈА НА ОБЈЕКТИ

филтри со видео

OBJECT DETECTION

HAAR CASCADE

Техниката за откривање лица на Виола и Џонс.

HAAR КАРАКТЕРИСТИКИ

Пресметување разлика на збирот на светлите и на темните пиксели.

РЕЗУЛТАТ

Поблиску до 1 значи детектиран раб.

КОНЦЕПТ НА ИНТЕГРАЛНА СЛИКА

За подобри перформанси при извршување се користи концепт на интегрална слика.

Вредноста на пикселот е еднаква на збирот на сите пиксели претходно.

ИМПЛЕМЕНТАЦИЈА НА ДЕТЕКЦИЈА BO PYTHON

- Се вклулува моделот од
 GitHub со Classifier =
 CascadeClassifier
 ('haarcascade_frontalface_d
 efault.xml');
- faces =
 classifier.detectMultiScale
 (image);
- for box in faces: print(face).

Резултат на печатењето е:

- [174 75 107 107];
- [360 102 101 101].

X = 174

Y=75

width=107 height=107

HALLOWEEN ФИЛТЕР

Резултат од **HALLOWEEN** филтерот

ИМПЛЕМЕНТАЦИЈА

HALLOWEEN MACKA

Маската која се користи како филтер.

Примена на bitwise not операцијата над претходно добиенот резултат.

THRESHOLD

Со функцијата cv2.threshold() сите пиксели со вредност поголема од 10 добиваат нова вредност – 255.

Примена на bitwise and операцијата над резултат од threshold и делот од сликата со детектираното лице.

BITWISE AND

Повторно се користи истата операција, но овој пат на оригиналната маска и сликата добиена со bitwise not операцијата.

ADD

Оваа функција го овозможува крајниот резултат, односно ги собира двете слики добиени со bitwise and операцијата.

РЕЗУЛТАТ

Пикселите на претходно добиената слика се заменуваат со пикселите на влезната слика.

HOW GOOD IS YOUT SMILE - ФИЛТЕР

ДЕТЕКЦИЈА

Прво се детектира лицето и се исцртува правоаголник над главата со cv2.rectangle() функцијата и потоа се врши детекција на насмевка и слично се исцртува правоаголник околу насмевката.

01 имплементација на филтерот 02

ОЦЕНУВАЊЕ

Оценувањето се врши со помош на избор на случаен број и се пишува текст во правоаголникот над глават со cv2.putText().

Ви благодарам за вниманието!

Студент: Елена Кецкароска 201036 Ментор: проф. д-р Ивица Димитровски Скопје, јуни 2022