线性代数 里 元 练 习 五 (矩 阵 对 角 化)				
_	一、单项选择题			
	已知三阶矩阵 A 的特征值为 0 , ± 1 ,(A) 矩阵 A 是不可逆的	则下列结论中不正硕 (B) 矩阵 A 的主对		
) 1 和 -1 所对应的特征向量是正交的 (D) $Ax=0$ 的基础解系由一个向量组成			
2.	2. 设 $_n$ 阶方阵 $_A$ 的两个特征值 $_{-}^\lambda$ 与 $_{-}^\lambda$ 则所对应的特征向量分别为 $_{-}^\alpha$ 2,并且 $_{-}^\lambda$ 1 $=-\lambda_2 eq 0$,则()			
	(A) $\alpha_1 + \alpha_2 \neq A$ 的特征向量	(B) $\alpha_1 - \alpha_2 $ 是 A 的	特征向量	
3.	$(A) \ \ \textcircled{1} \Rightarrow \textcircled{2} \Rightarrow \textcircled{3}$	与 B 等价;② A 与 B	n特征向量 B 相似; ③ A,B 的行向量组等价; 有()
4.	设 A 是 3×3 阵, $\lambda_1 = 1, \lambda_2 = -3, \lambda_3 = -3$	$=5$ 是 A 的特征值, π	対应于 $\lambda_3=5$ 的特征向量为 ξ_3 ,则 $oldsymbol{A}^*$ 对应	ヹ于特征向量 <i>&</i>
的	1特征值是()			
	(A) 5 (B) -3 (C)	1	(D)15	
5.	 5. 下列命题中正确的是() (A) n阶矩阵 A、B等价的必要条件是 A、B的列向量组等价. (B) n阶矩阵 A、B等价的充分条件是 Ax=0 与 Bx=0 同解. (C) n阶矩阵 A、B相似的充要条件是 A,B 具有相同的特征值. (D) n阶矩阵 A、B相似的充要条件是特征多项式相同. 			
6.	设矩阵 $\mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, 若矩阵 \mathbf{A}^{\dagger}	月似于 B .则秩(A-2E)与秩(<i>A-E</i>)之和等于(

- $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$, there is a finite $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ (C) 4 (D) 5 (A) 2 7. 已知三阶矩阵 A 的特征值为1,-2,-1;则矩阵 $B = (2A^*)^{-1}$ 的特征值为(
 - (A) -1,-2,1 (B) $-\frac{1}{4},-\frac{1}{2},\frac{1}{4}$ (C) $\frac{1}{4},\frac{1}{2},-\frac{1}{4}$ (D) $-\frac{1}{2},-1,\frac{1}{2}$
- 8. A 为n阶方阵,则()不成立.
- (A) 若 A 可逆,则矩阵属于特征值 λ 的特征向量也是矩阵 A^{-1} 的属于特征值 $\frac{1}{\lambda}$ 的特征向量
- (B) A 的全部特征向量为方程 $(A \lambda E)x = 0$ 的全部解
- (C) 若 A 存在特征值 λ 的 n 个线性无关的特征向量,则 $A = \lambda E$
- (D) A 与 A^T 有相同的特征值
- 9. 若n阶方阵A与B等价,则(
- (A) 存在可逆阵 P, 使 $P^{-1}AP = B$ (B) r(A) = r(B)
- (C) A , B 有相同的特征值 (D) \boldsymbol{A} , \boldsymbol{B} 有相同的特征向量 二、填空题
- 1. 已知 A,B 为三阶相似矩阵, $\lambda_1 = 1, \lambda_2 = 2$ 为 A 的两个特征值,行列式|B| = 2 ,则行列式 $\begin{vmatrix} (A+E)^{-1} & O \\ O & (2B)^* \end{vmatrix} = ____$
- 2. 设三阶实对称矩阵 A 有三个不同的特征值 $\lambda_1,\lambda_2,\lambda_3$, λ_1,λ_2 所对应的特征向量分别为

$$\alpha_1 = (1, a, 1)^T, \alpha_2 = (a, a + 1, 1)^T$$
,则 λ_3 所对应的特征向量 $\alpha_3 =$

4. 已知三阶方阵
$$A$$
 相似于 B , A 的伴随矩阵 A^* 有特征值 2, -3 , -6 ,则 $B - E$ 的值为_____

5. 设
$$A = \begin{pmatrix} 5 & 2 & -3 \\ 4 & x & -4 \\ 6 & 4 & -4 \end{pmatrix}$$
相似于对角阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$,则 $x =$ ______

6. 设
$$A$$
 为三阶矩阵,已知 $Ax=0$ 有非零解,且 A 满足行列式 $|A+E|=|2A+E|=0$,则行列式 $|E+3A|=$

7. 设
$$A$$
为三阶方阵,且 $|A+2E|=|A+3E|=|A-4E|=0$, A^* 为 A 的伴随矩阵,则 $|A^*+5E|=$ _______

8. 设四阶方阵
$$A$$
 满足 $|A+3E|=0$, $AA^T=3E$, $|A|<0$,则方阵 A 的伴随矩阵 A^* 的一个特征值为______

9. 矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$
的一个非零特征值为_____

10. 若 3 阶矩阵
$$A$$
 与 B 相似, A 的特征值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, 则 $\begin{vmatrix} B^{-1} - E & E \\ O & A \end{vmatrix} =$ ______

三、计算题

1. 设矩阵
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & a \end{pmatrix}$$
 可逆,向量 $\alpha = \begin{pmatrix} 1 \\ b \\ 1 \end{pmatrix}$ 是矩阵 A^* 的一个特征向量, λ 是 α 对应的特征值,其中 A^*

是矩阵 A 的伴随矩阵. 试求 a,b 和 λ 的值.

- 2. 已知 A, B 为 4 阶矩阵,若满足 AB+2B=0,r(B)=2,且行列式 |E+A|=|2E-A|=0, (1) 求A的特征值; (2) 证明A可对角化; (3) 计算行列式|A+3E|.
- 3. 已知 $A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$,试求(1) A 特征值和对应的特征向量; (2) 求可逆阵P,使 $P^{-1}AP = \Lambda$,其中 Λ 为

对角阵; (3) 求 $A^{10}\xi$, 其中 $\xi = (2 -1)^T \mathcal{D} A^n$.

4. 设矩阵
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = P^{-1}A^*P$, 求 $B + 2E$ 的特征值与特征向量,其中 A^* 为 A 的

伴随矩阵,E为3阶单位矩阵.

5. 已知矩阵
$$A = \begin{pmatrix} 2 & 2 & a \\ 2 & a & 2 \\ a & 2 & 2 \end{pmatrix}$$
有重特征值(常数 $a < 0$),

(1) 求
$$a$$
 的值; (2) 求可逆矩阵 P , 使 $P^{-1}AP$ 为对角矩阵.

6. 设
$$A = E + \alpha \beta^T$$
, 其中 $\alpha = (a_1, a_2, \dots, a_n)^T$, $\beta = (b_1, b_2, \dots, b_n)^T$, $\alpha^T \beta = 3$, 求(1) A 的特征值和特征向量; (2) $|A^* + 2E|$ 的值.

7. 设矩阵 $A = \begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{pmatrix}, |A| = -1, A^* 有一个特征值为 <math>\lambda_0$, 对应的特征向量 $\alpha = (-1, -1, 1)^T$, 求 a, b, c和 λ_0 的值.

8. 设 6,3,3 为实对称矩阵 $m{A}$ 的特征值,属于 3 的特征向量为 $m{\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}}$, $m{\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}}$, (1) 求属于 6 的特征向量; (2)

求矩阵A.

四、证明题

- 1. 设 *A*,*B* 为 *n* 阶矩阵,秩 r(*A*)+r(*B*)<n.
 - (1) 证明 $\lambda = 0$ 为A,B相同的特征值;
 - (2) Ax=0 与 Bx=0 的基础解系组成的向量组线性相关;
 - (3) A,B 具有公共的特征向量.
- 2. 已知 2 维非零向量 x 不是 2 阶方阵 A 的特征向量.
- (1) 证明: x, Ax 线性无关.
- (2) 若存在线性无关的非零向量 α_1 , α_2 使得 $A^2\alpha_i + A\alpha_i 6\alpha_i = 0$ (i = 1, 2),求A 的特征值,并讨论A 可否相似对角化.
- 3. 设 $\lambda_1 = 3, \lambda_2 = 6, \lambda_3 = 9$ 是三阶实对称矩阵 A 的三个特征值,其对应的特征向量依次为

$$\alpha_1 = \frac{1}{3} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \alpha_2 = \frac{1}{3} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}, \alpha_3 = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

证明: (1) $A = 3\alpha_1\alpha_1^T + 6\alpha_2\alpha_2^T + 9\alpha_3\alpha_3^T$,

- (2) 把 $\beta = (1,2,3)^T$ 用 $\alpha_1, \alpha_2, \alpha_3$ 线性表出,并求 $A^n \beta$.
- 4. 设 n 阶方阵 $A \neq 0$,但对某个正整数 k,有 $A^k = 0$.证明:
 - (1) |A+E|=1; (2)A 不可能与对角矩阵相似.
- 5. A 为三阶矩阵,有三个不同的特征值 $\lambda_1,\lambda_2,\lambda_3$,对应特征向量分别为 $\alpha_1,\alpha_2,\alpha_3$,令 $\beta=\alpha_1+\alpha_2+\alpha_3$;证明: $\beta,A\beta,A^2\beta$ 线性无关.
- 6. 设A为n阶方阵,且A与 $A+(-1)^{i}iE$ ($i=1,2,\cdots,n-1$)均不可逆,试讨论A是否相似于对角阵? 并说明理由.
- 7. 设 α , β 为三维单位列向量,且 $\alpha^T\beta=0$,若设 $A=\alpha\alpha^T+\beta\beta^T$,则必有非零列向量x使得Ax=0,并

且
$$A$$
与 $\begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$ 相似.

8. 已知 α , $A\alpha$, $A^2\alpha$ 线性无关,且满足 $2\alpha - A\alpha - 2A^2\alpha + A^3\alpha = 0$,试证三阶方阵A可对角化.

答案与提示:

一、选择题

1. C 2. C 3. D 4. B 5. B 6. C 7. B 8. B 9. B

二、填空题

1.
$$\frac{64}{3}$$
 2. $\alpha_{3=k}(1,2,1)^{T} (k \neq 0)$ 3. 1 4. 12 5. 5

6. 1 7. 231 8. 3 9. 10 10. $\frac{1}{4}$

三、计算题

1. 提示: 题设已知特征向量,应想到利用定义: $A^*\alpha = \lambda\alpha$,又与伴随矩阵 A^* 相关的问题,应利用 $AA^* = |A|E$ 进行化简. $\alpha = 2$. 当b = 1时, $\lambda = 1$:当b = -2时, $\lambda = 4$.

2. (1) 特征值为
$$\lambda_1 = -1$$
, $\lambda_2 = 2$, $\lambda_3 = -2$. (2) 可对角化. (3) 10

3. (1)
$$\lambda_1 = 2, \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{t}$$
, $\mathbf{t} \neq 0$, $\mathbb{R} \alpha_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. $\lambda_2 = 3$, $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \mathbf{t}$, $\mathbf{t} \neq 0$, $\mathbb{R} \alpha_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

(2)
$$\mathbf{P} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
, $\mathbf{P}^{-1}A\mathbf{P} = \Lambda \stackrel{\text{def}}{=} \mathbf{1}$

(3)
$$\xi = 5\alpha_1 - 3\alpha_2$$
, $A^{10}\xi = \begin{bmatrix} 5 \cdot 2^{10} - 3^{11} \\ 5 \cdot 2^{10} - 2 \cdot 3^{11} \end{bmatrix}$; $A^n = P\Lambda^n P^{-1} = \begin{bmatrix} 2^{n+1} - 3^n & 3^n - 2^n \\ 2^{n+1} - 2 \cdot 3^n & 2 \cdot 3^n - 2^n \end{bmatrix}$

4. 提示: 可先求出 A^{*} , P^{-1} , 进而确定 $B = P^{-1}A^*P$ 及 B+2E,再按通常方法确定其特征值和特征向量;或先求出 A 的特征值与特征向量,再相应地确定 A*的特征值与特征向量,最终根据 B+2E 与 A*+2E 相似求出其特征值与特征向量。B+2E 的特征值为 $\lambda_1 = \lambda_2 = 9$, $\lambda_3 = 3$.

当
$$\lambda_1 = \lambda_2 = 9$$
 时,特征向量为 $k_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$,其中 k_1, k_2 是不全为零的任意常数.

当
$$\lambda_3 = 3$$
 时,特征向量为 $k_3 P^{-1} \eta_3 = k_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$,其中 k_3 是不为零的任意常数.

5. (1)
$$a = -1$$
. A 的特征值为 3, 3, -3.(2) $P = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$, 有 $P^{-1}AP = \begin{pmatrix} 3 & & \\ & 3 & \\ & & -3 \end{pmatrix}$.

6. (1) $\alpha \beta^T$ 的特征值为 n-1 个 0,1 个 $\alpha^T \beta$ =3.

A 的特征值为 $1,1,\cdots,1,4$,分别对应的线性无关的特征向量为

$$\begin{bmatrix} -\boldsymbol{b}_2 \\ \boldsymbol{b}_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} -\boldsymbol{b}_3 \\ 0 \\ \boldsymbol{b}_1 \\ \vdots \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} -\boldsymbol{b}_n \\ 0 \\ 0 \\ \vdots \\ \boldsymbol{b}_1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{a}_1 \\ \boldsymbol{a}_2 \\ \boldsymbol{a}_3 \\ \vdots \\ \boldsymbol{a}_n \end{bmatrix}$$

(2)
$$|A^* + 2E| = 3 \cdot 6^{n-1}$$
.

7. $\boldsymbol{a} = 2, \boldsymbol{b} = -3, \boldsymbol{c} = 2, \lambda_0 = 1$. 提示: \boldsymbol{A}^* 的特征值有 1 个为 λ_0 ,则 \boldsymbol{A} 有 1 个特征值为 $-\frac{1}{\lambda_0}$,由 $\boldsymbol{A}\boldsymbol{\alpha} = -\frac{1}{\lambda_0}\boldsymbol{\alpha}$ 求得.

8. (1)
$$\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \mathbf{t}, \mathbf{t} \neq 0$$
. (2) $\mathbf{P} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$

$$P^{-1}AP = \Lambda$$
. $A = P\Lambda P^{-1} = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4 \end{bmatrix}$

四、证明题

3. if (1)
$$\Rightarrow P = [\alpha_{1}, \alpha_{2}, \alpha_{3}] \Rightarrow P^{-1} = P^{T}, \quad P^{-1}AP = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$$

$$\Rightarrow A = P \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} P^{T}$$

$$\Rightarrow A = P \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} P^{T} + P \begin{bmatrix} 0 \\ 6 \\ 0 \end{bmatrix} P^{T} + P \begin{bmatrix} 0 \\ 0 \\ 9 \end{bmatrix} P^{T}$$

$$\Rightarrow A = 3\alpha_{1}\alpha_{1}^{T} + 6\alpha_{2}\alpha_{2}^{T} + 9\alpha_{3}\alpha_{3}^{T}$$

$$(2) \Rightarrow \beta = x_{1}\alpha_{1} + x_{2}\alpha_{2} + x_{3}\alpha_{3} \Rightarrow x_{1} = 1, x_{2} = 3, x_{3} = 2,$$

(2)
$$\Rightarrow \beta = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 \Rightarrow x_1 = 1, x_2 = 3, x_3 = 2$$

于是有
$$\beta = \alpha_1 + 3\alpha_2 + 2\alpha_3$$
,从而
$$A^n \beta = A^n \alpha_1 + 3A^n \alpha_2 + 2A^n \alpha_3 = \lambda_1^n \alpha_1 + 3\lambda_2^n \alpha_2 + 2\lambda_3^n \alpha_3$$
$$= 3^n \alpha_1 + 3 \cdot 6^n \alpha_2 + 2 \cdot 9^n \alpha_3.$$

- 4. (1) A 的特征值只能为 0.故行列式 |A + E| = 1.
 - (2) A 不能与对角阵相似.
- 5. 提示: 用定义证明, 其中 $A\alpha_i = \lambda_i\alpha_i(i=1,2,3)$.
- 6. 提示: A 有n 个互不相等的特征值.

7. 提示:由
$$\alpha$$
, β 为正交的非零向量,故 α , β 必线性无关.而 $r\begin{bmatrix} \alpha^T \\ \beta^T \end{bmatrix} = 2 < 3$,故 $\begin{bmatrix} \alpha^T \\ \beta^T \end{bmatrix} x = 0$ 有非零解 x ,则

$$Ax = (\alpha \alpha^T + \beta \beta^T)x = \alpha \alpha^T x + \beta \beta^T x = 0$$
. 由于 $A\alpha = \alpha$, $A\beta = \beta$, $Ax = 0$, 故令 $P = [\alpha, \beta, x]$ 可逆, 使

$$\mathbf{P}^{-1}\mathbf{AP} = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix}$$
成立.

8. 提示:
$$A[\alpha, A\alpha, A^2\alpha] = [\alpha, A\alpha, A^2\alpha] \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
, 而矩阵 $B = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ 的三个特征值为 1, -1, 2 互不相

同,必可对角化,即 $P^{-1}BP = \Lambda$. 令 $Q = \left[\alpha, A\alpha, A^2\alpha\right]$ 可逆,

$$Q^{-1}AQ = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} = P \begin{bmatrix} 1 & & & \\ & -1 & & \\ & & 2 \end{bmatrix} P^{-1}, \quad (QP)^{-1}A(QP) = \begin{bmatrix} 1 & & & \\ & -1 & & \\ & & 2 \end{bmatrix}.$$