Mathematical Equations With Key Variables and Error Terms

1A. Overall Integrated Model Equation

We want an overarching way to evaluate how **Time (T)**, **Distance (D)**, **Money (M)**, and **Climate (C)** jointly affect a measure of net benefit (or cost-effectiveness) comparing Telemedicine (eSanjeevani) to In-Person consultations. One way to represent that overall relationship is to model a latent "net benefit" for each patient is as follows:

$$\alpha_0 = \alpha_1 \mathbf{T}_1 + \alpha_2 \mathbf{D}_1 + \alpha_3 \mathbf{M}_1 + \alpha_4 \mathbf{C}_1 + \epsilon$$

Where:

- α_0 = net benefit for patient/consultation i
- T_1 = time variable(s) (e.g., total travel + consultation time)
- D_1 = distance traveled
- M_1 = monetary costs or savings
- C₁= climate/emissions variable
- ϵ = error term

1B. Sub-Model Equations

(i) Time Model

$$T_1 = \beta_0 + \beta_1 A$$
(Consultation type) + $\beta_2 B$ (Travel Time) + $\beta_3 C$ (Wait Time) + $\beta_4 D$ (Facility Type) + ϵ_1

Where:

- T_1 = Total time taken by the patient
- $\beta_0 ... \beta_4$ = Coefficients to be estimated
- ϵ_1 = Error Term
- A(Consultation Type= Coded 0 or 1 (for teleconsultation or in-person consultation)
- D (Facility Type)= Coded for different facility types (AAMs, PHC, CHC, DH)

(ii) Distance Model

$$\mathbf{D}_1 = \delta_0 + \delta_1 E \text{ (Distance Travelled)} + \delta_3 F \text{ (Mode of Transport)} + \beta_1 A \text{(Consultation type)} + \epsilon_2$$

Where:

- D₁= Total Distance Travelled by the patient
- F(Mode of Transport)= Coded for different type of transport taken by patient (Public transport- bus, auto, two-wheeler, cycle, car)
- $\delta_0...\delta_3$ = Coefficients to be Calculated
- ϵ_2 = Error Term

(iii) Money (Cost) Model

$$M_1 = \gamma_0 + \gamma_1 G$$
 (Wage Rate/Loss) + $\gamma_2 H$ (Medication Cost) + $\gamma_3 I$ (Accomodation Cost) + $\gamma_4 J$ (Internet Cost) + $\gamma_5 K$ (Travel Cost) + $\delta_3 F$ (Mode of Transport) + $\beta_1 A$ (Consultation type) + ϵ_3

Where:

- M₁= Total Cost borne by the patient
- K (Travel Cost) = Per km cost according to mode of transport
- G (Wage Rate/Loss)= wage loss per day
- $\gamma_0 \dots \gamma_5$ = Coefficients that need to be calculated
- ϵ_3 = Error Term

(iv) Climate (Emissions) Model

$$C_1 = \theta_0 + \delta_1 E$$
 (Distance Travelled) + $\delta_3 F$ (Mode of Transport) + $\theta_1 L$ (Facility Type Energy) + $\beta_4 D$ (Facility Type) + ϵ_4

Where:

- C_1 = Total Carbon Emissions
- $\theta_0 \dots \theta_1$ = Coefficients that need to be calculated
- ϵ_4 = Error Term

Carbon Emission Calculation,

Emissions_{Total}= Emissions_{transport}+ Emissions_{facility}

Carbon emissions = Activity (distance traveled, energy consumed) \times *Emission Factor* (CO₂ per km or CO₂ per kWh).

1C. Cost-Benefit Analysis (CBA) Formulation

A simplified economic equation for *net present value (NPV)* might be:

NPV = Sum over t=1 to T of [(MonetizedBenefits t - MonetizedCosts t) / $(1 + r)^t$]

Where:

- t = time period (month, year, etc.)
- MonetizedBenefits t = financial value of time/distance/emissions savings
- MonetizedCosts t = cost of telemedicine setup, training, etc.
- r = chosen discount rate (e.g., 5%)

Key Assumptions

Linearity: The relationship between net benefit and each predictor is approximately linear in this simple specification.

Exogeneity: We assume (T,D,M,C)(T, D, M, C)(T,D,M,C) are not systematically influenced by omitted confounders.

Measurement Validity: Time, distance, cost, and climate data are properly measured and accurate.

Key Assumptions for Sub-Models

Linear or log-linear specifications may be used.

Errors ϵ_1 , ϵ_2 , ϵ_3 , ϵ_4 , ϵ ideally have constant variance and no serial correlation.

Emission factors for transport modes and facility electricity usage are assumed stable and taken from IPCC (2006) <u>EFDB - Basic Search</u>