Shortcut on Tree

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 1024 megabytes

You are given a directed tree with n vertices, where each vertex is numbered from 1 to n. The tree is rooted at vertex 1, and it is guaranteed that all vertices are reachable from the root. For each $2 \le i \le n$, the tree has a directed edge from vertex p_i to vertex i.

Little Cyan Fish wants to add up to n additional directed edges to this graph to make the following condition satisfied:

• For any pair of different integers (u, v) such that $1 \le u \le n$ and $1 \le v \le n$, it is possible to go from vertex u to vertex v using at most 4 edges.

Help Little Cyan Fish to find a possible way to add the edges.

Input

There are multiple test cases in a single test file. The first line of the input contains an integer T ($T \ge 1$) indicating the number of test cases. For each test case:

The first line of the input contains a single integer $n \ (n \ge 2)$.

The next line of the input contains n-1 integers p_2, p_3, \ldots, p_n $(1 \le p_i < i)$, indicating the parent of each vertex $2 \le i \le n$.

It is guaranteed that the sum of n over all test cases does not exceed 4000.

Output

For each test case, if it is impossible to add at most n edges to satisfy Little Cyan Fish's requirement, output a single line containing a single word "No".

Otherwise, the first line of the output contains a single word "Yes".

The next line of the output contains the number of added edges m ($0 \le m \le n$). The next m lines each describe one added edge as two integers u_i and v_i ($1 \le u_i, v_i \le n$) — the start and end of the i-th added edge.

Example

standard input	standard output
2	Yes
3	1
1 2	3 1
5	Yes
1 1 2 2	5
	1 4
	4 1
	3 3
	3 1
	5 2

Note

In the first test case, you can satisfy the condition in the problem by adding an edge from vertex 3 to vertex 1.