

MoBot User's Guide

Version 1.3

How to Contact Barobo

Mail Barobo, Inc.

813 Harbor Blvd, Suite 335

West Sacramento, CA 95691-2201

Phone + 1916596-3050

Web http://www.barobo.com

Email info@barobo.com

Copyright ©2012 by Barobo, Inc. All rights reserved. Revision 1.2.0, January 2012

Permission is granted for users to make one copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited.

Barobo, Inc. is the holder of the copyright to the MoBot software and MoBot User's Guide described in this document, including without limitation such aspects of the system as its code, structure, sequence, organization, programming language, header files, function and command files, object modules, static and dynamic loaded libraries of object modules, compilation of command and library names, interface with other languages and object modules of static and dynamic libraries. Use of the system unless pursuant to the terms of a license granted by Barobo or as otherwise authorized by law is an infringement of the copyright.

Barobo, Inc. makes no representations, expressed or implied, with respect to this documentation, or the software it describes, including without limitations, any implied warranty merchantability or fitness for a particular purpose, all of which are expressly disclaimed. Users should be aware that included in the terms and conditions under which Barobo is willing to license the MoBot software as a provision that Barobo , and their distribution licensees, distributors and dealers shall in no event be liable for any indirect, incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of the MoBot software and that liability for direct damages shall be limited to the amount of purchase price paid for MoBot and MoBot software.

In addition to the foregoing, users should recognize that all complex software systems and their documentation contain errors and omissions. Barobo shall not be responsible under any circumstances for providing information on or corrections to errors and omissions discovered at any time in this documentation or the software it describes, even if Barobo has been advised of the errors or omissions.

Barobo, MoBot, iMobot, and RobotController are either registered trademarks or trademarks of Barobo, Inc. in the United States and/or other countries. Ch, ChIDE, and SoftIntegration are trademarks of SoftIntegration, Inc. Microsoft, MS-DOS, Windows, Windows 2000, Windows XP, Windows Vista, and Windows 7 are trademarks of Microsoft Corporation. Linux is a trademark of Linus Torvalds. Mac OS X and Darwin are trademarks of Apple Computers, Inc. All other trademarks belong to their respective holders.

Contents

1	The CMobot MoBot Remote Control Library	9
2	Configuring MoBots for Remote Control 2.1 Adding Bluetooth Addresses of Robots in RobotController	9 10 15
3	3.1 The MoBot Diagram and "Move To Zero" Button 3.2 Individual Joint Control 3.3 Rolling Control 3.4 Joint Speeds 3.5 Joint Positions 3.5.1 Joint Limits	15 16 16 16 16 16 16
4	Getting Started with Programming the MoBot 4.1 start.ch, A Basic Ch Mobot Program. 4.1.1 start.ch Source Code. 4.1.2 Demo Code for start.ch Explained. 4.2 returnval.ch, A Basic Ch Mobot Program Which Checks Return Values. 4.2.1 Source Code. 4.2.2 returnval.ch Explained. 4.3 getJointAngle.ch, A Basic Ch Mobot Program Which Retrieves a Joint Angle. 4.3.1 Source Code. 4.3.2 getJointAngle.ch Explained.	17 17 17 17 18 18 19 20 20 20
5	Controlling the Speed of Mobot Joints 5.1 setspeed.ch Source Code	
6	Preprogrammed Motions 6.1 inchworm.ch: A Demo using the motionInchwormLeft() Preprogrammed Motion 6.1.1 inchworm.ch Source Code 6.1.2 inchworm.ch Explained 6.2 stand.ch: A Demo Using the motionStand() Preprogrammed Motion 6.2.1 stand.ch Source Code 6.2.2 stand.ch Explained 6.3 tumble.ch: A Demo Using the motionTumble() Preprogrammed Motion 6.3.1 tumble.ch Source Code 6.3.2 tumble.ch Explained 6.4 motion.ch: A Demo Using Multiple Preprogrammed Motions 6.4.1 motion.ch Source Code 6.4.2 motion.ch Explained	23 23 24 24 24 25 25 25 26 26
7	Detailed Examples of Preprogrammed Motions and Writing Customized Motions 7.1 Inchworm Gait Demo	27 27 27 28 29 29

	7.2.2	stand2.ch Explained	30	
8		and Non-Blocking Functions	30	
	8.1 List	of Blocking Movement Functions	31	
	8.2 List	of Non-Blocking Movement Functions	31	
	8.3 Bloo	king and Non-Blocking Demo Programs	32	
	8.3.1	nonblock.ch Source Code	32	
	8.3.2		32	
	8.3.3		33	
	8.3.4		33	
	8.3.5		33	
	8.3.6		33	
		programmed Motion Demos with Non-Blocking Functions	34	
	8.4.1		34	
	8.4.2		34	
	8.4.3		35	
	8.4.4		36	
	0.4.4	tumblez.cn Source Code Explanation	50	
9	Controll	ing Multiple Modules	37	
		Modules.ch Source Code	37	
		o Explanation	37	
		trolling Multiple Connected Modules	39	
	9.3.1	· · ·	39	
	9.3.2		39	
	0.0.2	222 Vol. Source Code Emparation VIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVIVI	30	
10	nding Multiple Robots to Perform Identical Tasks	40		
	10.1 Den	o program group.ch	42	
	10.1	.1 Source Code	42	
	10.1	2 Demo Explanation	43	
11	Applicat	ion Examples	43	
		mple 1	43	
		1 Problem Statement	43	
		2 dataAcquisition.ch Source Code	43	
	11.1	22 dataAcquisition.cm Source Code	45	
\mathbf{A}	Data Ty	-	44	
		tJointId_t	44	
	A.2 rob	ptJointState_t	44	
В	CMobot	API	44	
co	nnect()		47	
co	$\mathbf{n}\mathbf{n}\mathbf{e}\mathbf{c}\mathbf{t}\mathbf{W}$ it	$\mathrm{hAddress}()$	47	
dis	sconnect()	48	
			48	
ge	$\operatorname{getJointAngle}()$			
\mathbf{ge}	$\operatorname{getJointMaxSpeed}()$			
ge	${f tJointSp}$	eed()	49	

$\operatorname{getJointSpeedRatio}()$	49
$\operatorname{getJointSpeedRatios}()$	50
$\operatorname{getJointSpeeds}()$	51
$\operatorname{getJointState}()$	51
isConnected()	52
isMoving()	52
$\operatorname{motionArch}()$	53
$\operatorname{motionArchNB}()$	53
$\operatorname{motionInchwormLeft}()$	53
$egin{array}{ll} egin{array}{ll} egi$	53
$egin{aligned} ext{motionInchwormRight}() \end{aligned}$	54
${f motion Inchworm Right NB()}$	54
$\operatorname{motionRollBackward}()$	54
${f motion Roll Backward NB}()$	54
$\operatorname{motionRollForward}()$	55
$\operatorname{motionRollForwardNB}()$	55
$\operatorname{motionSkinny}()$	56
$\operatorname{motionSkinnyNB}()$	56
$\operatorname{motionStand}()$	56
$\operatorname{motionStandNB}()$	56
$\operatorname{motionTumble}()$	57
$\operatorname{motionTumbleNB}()$	57
$\operatorname{motionTurnLeft}()$	58
$\operatorname{motionTurnLeftNB}()$	58
$\operatorname{motionTurnRight}()$	58
$egin{aligned} ext{motionTurnRightNB}() \end{aligned}$	58
$\operatorname{motionUnstand}()$	59
motionUnstandNB()	59

motionWait()	60
move()	60
moveNB()	60
moveContinuousNB()	61
${f move Continuous Time}()$	61
moveTo()	62
$\operatorname{moveToNB}()$	62
$\operatorname{moveJoint}()$	63
$\operatorname{moveJointNB}()$	63
moveJointTo()	64
$\operatorname{moveJointToNB}()$	64
$\operatorname{moveJointWait}()$	65
$\operatorname{moveWait}()$	65
$\operatorname{moveToZero}()$	66
$\operatorname{moveToZeroNB}()$	66
$\operatorname{setJointSpeed}()$	66
$\operatorname{setJointSpeedRatio}()$	67
$\operatorname{setJointSpeedRatios}()$	67
$\operatorname{setJointSpeeds}()$	68
$\operatorname{setTwoWheelRobotSpeed}()$	68
$\mathrm{stop}()$	69
C CMobotGroup API	69
$\operatorname{addRobot}()$	72
$\operatorname{motionArch}()$	72
$\operatorname{motionArchNB}()$	72
$egin{aligned} ext{motionInchwormLeft}() \end{aligned}$	73
$egin{aligned} ext{motionInchwormLeftNB}() \end{aligned}$	73
motionInchwormRight()	73

$egin{aligned} ext{motionInchwormRightNB}() \end{aligned}$	73
${\bf motion Roll Backward}()$	74
motion Roll Backward NB()	74
${f motion}{f Roll}{f Forward}()$	74
${\bf motion Roll Forward NB}()$	74
motionSkinny()	75
motionSkinnyNB()	75
motionStand()	76
motionStandNB()	76
motionTumble()	76
${f motion Tumble NB}()$	76
$\operatorname{motionTurnLeft}()$	77
motionTurnLeftNB()	77
motionTurnRight()	78
${\bf motionTurnRightNB()}$	78
motionUnstand()	78
${f motion Unstand NB}()$	78
$\operatorname{motionWait}()$	79
move()	79
moveNB()	79
${\bf moveContinuousNB()}$	80
${\bf moveContinuousTime}()$	81
moveTo()	82
moveToNB()	82
moveJoint()	82
moveJointNB()	82
$\operatorname{moveJointTo}()$	83
moveJointToNB()	83

$\operatorname{moveJointWait}()$	84
$\operatorname{moveWait}()$	85
$\operatorname{moveToZero}()$	85
$\operatorname{moveToZeroNB}()$	85
$\operatorname{setJointSpeed}()$	86
$\operatorname{setJointSpeedRatio}()$	86
$\operatorname{setJointSpeedRatios}()$	87
$\operatorname{setJointSpeeds}()$	88
$\operatorname{setTwoWheelRobotSpeed}()$	88
etop()	89

1 The CMobot MoBot Remote Control Library

The CMobot library is a collection of functions geared towards controlling the motors and reading sensor values of a MoBot module via the Bluetooth wireless protocol. The functions are designed to be intuitive and easy to use. Various functions are provided to control or obtain the speed, direction, and position of the motors. The API includes C++ classes called CMobot and CMobotGroup to facilitate control of single and multiple MoBots.

Figure 1: A schematic diagram of a MoBot module.

Figure 1 shows a schematic diagram displaying the locations and positive directions of the four joints of a MoBot module. The joints 1 and 4 shown in the figure are fully rotational and have no joint limits. Joints 2 and 3, however, can only move in the range -90 to +90 degrees.

This documentation introduces the basic computer setup required for controlling the MoBot, as well as several demo programs and a complete reference for all API function provided with the CMobot and CMobotGroup library.

2 Configuring MoBots for Remote Control

MoBot modules should be configured the first time they are used with a new computer. The process informs the computer which MoBots it is allowed to connect to. The is also necessary for certain functions in the CMobot API, such as connect(), to determine which robots to connect to.

The configuration is performed through the Barobo RobotController program. The remainder of the section contains step-by-step instructions and screenshots showing how to configure your MoBots.

To start the provided Barobo Robot Control Program click on the icon labeled "RobotController" on your desktop, as shown in 2. The control dialog as shown in Figure 3 should pop up.

Figure 2: The icon for the Barobo RobotController.

Figure 3: The graphical user interface of the RobotController.

2.1 Adding Bluetooth Addresses of Robots in RobotController.

Click on the menu item "Configure \rightarrow Configure Robot Bluetooth", as shown in Figure 4.

Figure 4: Configuring robot bluetooth connection.

This should bring up a second dialog, titled "Configure Robot Bluetooth", as shown in Figure 5.

Figure 5: The dialog window for bluetooth connection.

This dialog allows us to add robot bluetooth addresses to the list of currently known robot bluetooth addresses. To add an address, first type in the address in the text box on the top of the dialog, as shown in Figure 6. You can find the bluetooth address of each robot inside the battery compartment of the robot on the same side as the power switch.

Figure 6: Adding the robot bluetooth address in the dialog window.

Next, click the "Add" button. The newly added address should appear in the list of known addresses, as shown in Figure 7. In our case, we have added the address of one of our robots, which is "00:06:66:43:0E:02".

Figure 7: Displaying the added bluetooth address.

We use the same process to add our remaining two robots to the list, with addresses "00:06:66:43:0D:F2" and "00:06:66:47:23:9C". The dialog now appears as shown in Figure 8.

Figure 8: Displaying bluetooth addresses for three robots.

The dialog also allows users to reorder the addresses listed. The order the addresses are listed in affects the order in which the robots are connected to using the <code>connect()</code> member function. The remote control dialog connects to the primary address located at the top of the list by default. To reorder the list of addresses, simply select the address to move and click on the "Move Up" or "Move Down" button to either move the address higher in the list or lower. For instance, the result of clicking on the address "00:06:66:43:0D:F2" and clicking the "Move Up" button is shown in Figure 9.

Figure 9: Modifying the order of bluetooth addresses with the "Configure Robot Bluetooth" dialog.

2.2 Connecting and Disconnecting to Robots from the RobotController

Once bluetooth addresses are added to the RobotController, you may connect to the first address by clicking on the "Connect \rightarrow Connect to Robot" menu item. The connected robot may be disconnected by clicking on the "Connect \rightarrow Disconnect from Robot" menu item. Any connected robots are automatically disconnected upon exiting the program. Note that in order to run a Ch program that controls a robot, the robot should not currently be connected to any other application, including the RobotController, other Ch programs, and other programs on other computers.

3 The Robot Remote Control Program

Figure 10: The graphical display of the RobotController while connected to a robot.

Once a robot is connected to the RobotController, the joint angles and speeds of the robot are displayed as shown in Figure 10. The RobotController can then be used to display information about the MoBot's joint positions, and also control the speeds and positions of the MoBot's joints. The interface is divided up into six sections; three on the top half of the interface, and three on the bottom half.

3.1 The MoBot Diagram and "Move To Zero" Button

The first section of the GUI located on the top left of the interface displays a schematic diagram of the MoBot, displaying motor positions. Underneath the diagram, there is a large button with the text "Move

To Zero". When clicked, this button will command the connected MoBot to rotate all of its joints to a flat "Zero" position.

3.2 Individual Joint Control

The second section, located at the top-middle section of the interface, is the "Individual Joint Control" section. These buttons command the MoBot to move individual joints. When the up or down arrows are clicked, the MoBot begins to move the corresponding joint in either the positive, or negative direction. The joint will continue to move until the stop button, located between the up and down arrows, is clicked.

If the joint encounters any obstacle that prevents it from moving, the joint will automatically disengage power to the joint. This may happen, example, if a body joint attempts to rotate beyond its limits, or if it collides with the other corresponding body joint.

3.3 Rolling Control

This section contains buttons for controlling the MoBot as a two wheeled mobile robot. The up and down buttons cause the MoBot to roll forward or backward. The left and right buttons cause the MoBot to rotate towards the left, or towards the right. The stop button in the middle causes the MoBot to stop where it is.

3.4 Joint Speeds

The "Joint Speeds" section, located at the bottom left of the interface, displays and controls the current joint speeds of the MoBot. The joint speeds are in units of degrees per second. To set a specific desired joint speed for a particular joint, the joint speed may be typed directly into the edit boxes below the sliders, and the "Set" button should be clicked.

3.5 Joint Positions

This section, located in the bottom-middle of the interface, is used to display and control the positions of each of the four joints of a MoBot. The joint positions are displayed in the numerical text located above each vertical slider. The displayed joint positions are in units of degrees.

The method of controlling the joints is by using the vertical sliders. Each vertical slider's position represents a joint's angle. The sliders for the two end joints vary from -180 degrees to 180 degrees, representing one complete rotation. The angles for the two body joints vary from -90 to 90 degrees. When the position of the slider is moved, the MoBot will move its joints to match the sliders.

Underneath the sliders, there are four text entry boxes. The text boxes accept specific angles for each joint which the user may type in. When the "Move" button is clicked, each joint will move to their respective desired positions. If any text entry is left blank, the corresponding joint will not move.

3.5.1 Joint Limits

Joints 1 and 4 are fully rotational and have no joint limits. Joints 2 and 3, however, are limited to a range of -90 to +90 degrees.

3.6 Motions

This section, located on the bottom right of the interface, contains a set of preprogrammed motions for the MoBot. To execute a preprogrammed motion, simply click on the name of the motion you wish to execute, and then click the button labeled "Play".

4 Getting Started with Programming the MoBot

Before the Ch program is executed, the Bluetooth addresses of the robots need to be added using the RobotController as described in Section 2. If a robot is already connected to the RobotController, disconnect from the robot before running the Ch program, or close the RobotController application.

The first demo presents a minimal program which connects to a MoBot and moves some joints.

4.1 start.ch, A Basic Ch Mobot Program

4.1.1 start.ch Source Code

```
/* Filename: start.ch
 * Move the robot endplates. */
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();

/* Rotate each of the faceplates by 360 degrees */
robot.move(360, 0, 0, 360);
```

4.1.2 Demo Code for start.ch Explained

The beginning of every MoBot control program will include header files. Each header file imports functions used for a number of tasks, such as printing data onto the screen or controlling the MoBot. The mobot.h header file must be included in order to use the CMobot class and related robotic control functions.

```
#include <mobot.h> // Required for MoBot control functions
```

Next, we must initialize the C++ class used to control the MoBot.

```
CMobot robot;
```

This line initializes a new variable named **robot** which represents the remote MoBot module which we wish to control. This special variable is actually an instance of the CMobot class, which contains its own set of functions called "methods" or "member functions".

The next line,

```
robot.connect();
```

will connect our new variable, **robot**, to a MoBot that has been previously configured with the computer in the process described in Section 2.

Note that there are two common methods to connect to a remote MoBot. The most common method, demonstrated in the previous line of code, is used to connect to a MoBot that is already paired to the computer. It is also possible to connect to MoBots which are not paired with the computer. This method is necessary for connecting to multiple MoBots simultaneously, as only a single MoBot may be paired with the computer at a time. The second method uses the function <code>connectWithAddress()</code>, and its default usage is as such:

```
string_t address = "11:22:33:44:55:66";
int defaultChannel = 1;
robot.connectWithAddress(address, defaultChannel);
```

The string "11:22:33:44:55:66" represents the Bluetooth address of the MoBot, which must be known in advance. The channel number 1 represents the Bluetooth channel to connect to. Channel 1 is the default channel MoBots listen on for incoming connections, but may be set to other values depending on the type of robot. Detailed documentation for each of the MoBot functions, such as connect() and connectAddress(), are presented in Appendix B.

The next line,

```
robot.moveToZero();
```

uses the moveToZero() member function. The moveToZero function causes the MoBot to move all of its motors to the zero position.

The next line of code command joints 1 and 4 to rotate 360 degrees.

```
robot.move(360, 0, 0, 360);
```

Note that the member function move() expects input angles in degrees, so the angles in radians must be first be converted to degrees using the rad2deg() function. The rad2deg() function takes an angle in radians as its argument and returns the angle in degrees. The function is implemented in Ch with the code

```
#include <math.h> /* For M_PI */
double rad2deg(double radians)
{
    double degrees;
    radians = radians * 180.0 / M_PI;
    return degrees;
}
```

If desired, values in radians may also be converted to degrees using the counterpart function, deg2rad(). Joints 1 and 4 are the faceplates of the MoBot which are sometimes used to act as "wheels".

4.2 returnval.ch, A Basic Ch Mobot Program Which Checks Return Values

4.2.1 Source Code

```
/* Filename: returnval.ch
  * Rotate the faceplates by 90 degrees */
#include <mobot.h>
CMobot robot;
double angle1, angle4;

/* Connect to the paired MoBot */
if(robot.connect())
{
    printf("Failed to connect to the robot.\n");
    exit(-1);
}
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();

/* Rotate each of the faceplates by 360 degrees */
```

```
angle1 = 360;
angle4 = 360;
robot.move(angle1, 0, 0, angle4);
/* Move the motors back to where they were */
angle1 = -360;
angle4 = -360;
robot.move(angle1, 0, 0, angle4);
4.2.2 returnval.ch Explained
The first portion of the code, the lines
#include <mobot.h>
CMobot robot;
set up our program for controlling robots as seen in previous demos. The next line,
double angle1, angle4;
declares two variables that will be used to hold angle values later in the program.
   The next lines, which connect to the robot, appear as such:
if(robot.connect())
    printf("Failed to connect to the robot.\n");
    exit(0);
}
```

This section connects to the remote robot as in previous examples, but also does some error checking. The majority of the CMobot member functions return an integer value indicating whether or not the function succeeded. The CMobot member functions return 0 if they succeed, and -1 if any type of error has occurred. Errors may occur for any number of reasons, including lost connections, mechanical failure, and electrical interference. The demos up to this point have ignored the return values of the CMobot member functions.

Next following lines,

```
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();

/* Rotate each of the faceplates by 360 degrees */
angle1 = 360;
angle4 = 360;
robot.move(angle1, 0, 0, angle4);
/* Move the motors back to where they were */
angle1 = -360;
angle4 = -360;
robot.move(angle1, 0, 0, angle4);
```

move the robot into its zero position, rotates its end plates by one full rotation, and then rotates the end plates back to their original position. Unlike the previous demo, this demo uses variables to store the joint angle values. The variables are assigned values, and then used as the function arguments for the move() function.

4.3 getJointAngle.ch, A Basic Ch Mobot Program Which Retrieves a Joint Angle

4.3.1 Source Code

```
/* Filename: getJointAngle.ch
* Find the current joint angle of a joint. */
#include <mobot.h>
CMobot robot;
/* Connect to a robot */
robot.connect();
/* Get the joint angle of the first joint */
double angle;
robot.getJointAngle(ROBOT_JOINT1, angle);
/* Print out the joint angle */
printf("The current joint angle for joint 1 is %lf degrees.\n", angle);
4.3.2 getJointAngle.ch Explained
The first portion of the program,
#include <mobot.h>
CMobot robot:
/* Connect to a robot */
robot.connect();
initialize the robot variable and connect to the remote robot, as shown in the previous demo. Next, the line
double angle;
initializes a new variable called angle, which will be used to store the current angle of one of the robotic
joints. The next line,
robot.getJointAngle(ROBOT_JOINT1, angle);
retrieves the current angle of joint 1, which is one of the faceplates of the robot. Finally, the last line of the
program,
printf("The current joint angle for joint 1 is %lf degrees.\n", angle);
prints the value of the variable onto the screen.
```

5 Controlling the Speed of Mobot Joints

5.1 setspeed.ch Source Code

```
/* Filename: setspeed.ch
  Move the two wheeled robot with different speed. */
#include <mobot.h>
#include <math.h>
```

```
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
double speed, radius;
robot.getJointMaxSpeed(ROBOT_JOINT1, speed);
printf("The maximum speed is %lf degrees/s\n", speed);
robot.setJointSpeed(ROBOT_JOINT1, 90);
robot.setJointSpeed(ROBOT_JOINT4, 90);
//robot.setJointSpeedRatio(ROBOT_JOINT1, 0.5);
//robot.setJointSpeedRatio(ROBOT_JOINT4, 0.5);
//robot.setJointSpeeds(90, 0, 0, 90);
printf("Roll forward 360 degrees.\n");
robot.motionRollForward(360);
speed = (3.5/2) * M_PI / 2;
                                 // 2.75 inch/s
radius = 3.5/2; // radius is 1.75
robot.setTwoWheelRobotSpeed(speed, radius);
printf("Move 360 degrees.\n");
robot.move(360, 0, 0, 360);
/* move at 2.75inch/sec with the radius 3.5 inches for 3 seconds */
printf("Move continuously for 3 seconds.\n");
robot.moveContinuousTime(ROBOT_FORWARD, ROBOT_HOLD, ROBOT_HOLD, ROBOT_FORWARD, 3000);
      setspeed.ch Source Code Explanation
The first several lines,
#include <mobot.h>
#include <math.h>
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
initialize the program, connect to the robot, and move the robot into its zero position, similar to the previous
demos. The next three lines,
double speed, radius;
```

```
robot.getJointMaxSpeed(ROBOT_JOINT1, speed);
printf("The maximum speed is %lf degrees/s\n", speed);
```

initializes the variables speed and radius, retrieves the maximum joint speed for the first joint using the member function, getJointMaxSpeed and stores it in the variables named speed. The value of the maximum speed is then printed onto the screen using the printf() function.

The next two lines,

```
robot.setJointSpeed(ROBOT_JOINT1, 90);
robot.setJointSpeed(ROBOT_JOINT4, 90);
set the joint speed settings for the two faceplate joints to 90 degrees per second.
    The next lines,
//robot.setJointSpeedRatio(ROBOT_JOINT1, 0.5);
//robot.setJointSpeedRatio(ROBOT_JOINT4, 0.5);
```

are two alternate ways of setting the joint speeds of the faceplate joints. The member function setJointSpeedRatio() sets the joint speeds as a ratio of the maximum speed. The function setJointSpeeds() is used to set all four joint speeds simultaneously. Note though, that there is a slight difference between using the setJointSpeeds() function as shown in this example compared to the other methods. The other methods do not alter the joint speeds for joints 2 and 3, while the setJointSpeeds() function used as shown in the example explicitly sets the joint speeds of joints 2 and 3 to zero.

The next two lines,

```
printf("Roll forward 360 degrees.\n");
robot.motionRollForward(360);
```

//robot.setJointSpeeds(90, 0, 0, 90);

print a message to the screen and rolls the robot forward by rotating the faceplates 360 degrees. The next lines,

use the setTwoWheelRobotSpeed() function to set the faceplate joint speeds. The setTwoWheelRobotSpeed() function takes a desired speed and the radius of the wheels as arguments and calculates the necessary rotational speed of the faceplate wheels to achieve the desired speed. Note that the units for the speed must match the units for the radius. For instance, if the radius is provided in inches, the desired speed must be provided in inches per second. If the radius is provided in centimeters, the speed must be provided in centimeters per second, and so on.

The following two lines,

```
printf("Move 360 degrees.\n");
robot.move(360, 0, 0, 360);

rotate the faceplates forward at the necessary rate to achieve a forward speed of 2.75 inches per second.
    Finally, the last two lines,
```

```
printf("Move continuously for 3 seconds.\n");
robot.moveContinuousTime(ROBOT_FORWARD, ROBOT_HOLD, ROBOT_HOLD, ROBOT_FORWARD, 3000);
```

roll the robot forward for three seconds.

6 Preprogrammed Motions

The robot API contains functions for executing preprogrammed motions. The preprogrammed motions are motions which are commonly used for robot locomotion. Following is a list of available functions and a brief description about their effect on the robot.

- motionArch(): This function causes the robot to arch up for better clearance.
- motionInchwormLeft(): This function causes the robot to perform the inchworm gait once, moving the robot towards its left.
- motionInchwormRight(): This function causes the robot to perform the inchworm gait once, moving the robot towards its right.
- motionRollBackward(): This function causes the robot to rotate its faceplates, using them as wheels to roll backward.
- motionRollForward(): This function causes the robot to rotate its faceplates, using them as wheels to roll forward.
- motionSkinny(): This function makes the robot assume a skinnier rolling profile.
- motionStand(): This function causes the robot to stand up onto a faceplate, assuming the camera platform position.
- motionTumble(): This function causes the robot to perform the tumbling motion, flipping end over end
- motionTurnLeft(): This function uses the robot's faceplates as wheels, turning them in opposite directions in order to rotate the robot towards its left.
- motionTurnRight(): This function uses the robot's faceplates as wheels, turning them in opposite directions in order to rotate the robot towards its right.
- motionUnstand(): This function causes the robot to drop down from a standing position.

Note that all of the functions listed above are "blocking" functions, meaning they will not return until the motion has completed. These functions also have non-blocking equivalents which are discussed in Section 8.

6.1 inchworm.ch: A Demo using the motionInchwormLeft() Preprogrammed Motion

6.1.1 inchworm.ch Source Code

```
/* File: inchworm.ch
 * Perform the "inchworm" motion four times */
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

/* Set robot motors to speed of 0.50 */
robot.setJointSpeedRatio(ROBOT_JOINT2, 0.50);
robot.setJointSpeedRatio(ROBOT_JOINT3, 0.50);
```

```
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
/* Do the inchworm motion four times */
robot.motionInchwormLeft(4);
```

6.1.2 inchworm.ch Explained

First, the header file mobot.h is included. This header file is required before usage of the CMobot class and its associated member functions can be used. Next, we create a variable to reperesent our robot and connect to the robot with the following lines.

```
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

Next, we set the motor speeds to 50% speed with the following lines.
robot.setJointSpeedRatio(ROBOT_JOINT2, 0.50);
robot.setJointSpeedRatio(ROBOT_JOINT3, 0.50);
```

ROBOT_JOINT2 and ROBOT_JOINT3 are enumerated values defined in the header file mobot.h. Detailed information for all enumerated values defined in mobot.h can be found in Appendix A.

We then move the robot to its zero position in preparation for the inchworm gait.

```
robot.moveToZero();
```

Finally, we perform the inchworm gait four times. The argument for the function motionInchwormLeft() reperesents the number of times the gait should be performed.

```
robot.motionInchwormLeft(4);
```

6.2 stand.ch: A Demo Using the motionStand() Preprogrammed Motion

This demo is a simple demonstration of the motionStand() member function.

6.2.1 stand.ch Source Code

```
/* Filename: stand.ch
 * Make a MoBot stand up on a faceplate */
#include <mobot.h>
CMobot robot;

/* Connect to the MoBot */
robot.connect();
/* Run the built-in motionStand function */
robot.motionStand();
sleep(3); // Stand still for three seconds
/* Spin the robot around two revolutions while spinning the top faceplate*/
robot.move(2*360, 0, 0, 2*360);
/* Lay the robot back down */
robot.motionUnstand();
```

6.2.2 stand.ch Explained

After the initialization and connection as seen in the previous demo, it executes the following line of code:

```
robot.motionStand();
```

This line of code causes the MoBot to perform a sequence of motions causing it to stand up on a faceplate. After the robot has stood up, the next line of code,

```
sleep(3); // Stand still for three seconds
```

pauses the program for three seconds, causing the robot to remain still for three seconds. After the pause is over, the line

```
robot.move(2*360, 0, 0, 2*360);
```

turns both faceplates of the robot two full rotations, making the robot spin in place while standing. Finally, the line

```
robot.motionUnstand();
```

CMobot robot;

robot.connect()

robot.moveToZero();

/* Connect to the paired MoBot */

causes the robot to drop back down into a flat position.

6.3 tumble.ch: A Demo Using the motionTumble() Preprogrammed Motion

6.3.1 tumble.ch Source Code

```
/* Filename: tumble.ch
  * Tumbling robot */
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect()
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();

/* Tumble five times */
robot.motionTumble(5);

6.3.2 tumble.ch Explained
The first portion of the program,
/* Filename: tumble.ch
  * Tumbling robot */
#include <mobot.h>
```

/* Set the robot to "home" position, where all joint angles are 0 degrees. */

initialize the proper variables, connect to the remote robot, and make it move to a flat zero position, similar to previous demos.

Next, we make the robot perform the tumbling motion with the following line:

```
robot.motionTumble(5);
```

The argument, "5", indicates that the tumbling motion should be performed five times.

6.4 motion.ch: A Demo Using Multiple Preprogrammed Motions

6.4.1 motion.ch Source Code

```
/* Filename: motion.ch
* Move the two wheeled robot. */
#include <mobot.h>
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
/* test all pre-programmed motions */
robot.motionArch(90);
robot.motionInchwormLeft(4);
robot.motionInchwormRight(4);
robot.motionRollBackward(360);
robot.motionRollForward(360);
robot.motionTurnLeft(360);
robot.motionTurnRight(360);
robot.motionStand();
robot.move(360, 0, 0, 360);
robot.motionUnstand();
robot.motionTumble(5);
```

6.4.2 motion.ch Explained

The first portion of the program initializes and connects to the remote robot similar to the previous demos. The next portion of code executes a number of different pregrammed motions to demonstrate the motion capabilities of the robot. First, the "Arch" motion is demonstrated by the following line of code:

```
robot.motionArch(15);
```

The parameter given to the function, "15" in this case, is the angle in degrees that the body joints should form in relation to each other.

The next couple lines of code,

```
robot.motionInchwormLeft(4);
robot.motionInchwormRight(4);
```

make the robot inchworm to the left four times, and then inchworm to the right four times.

Next, the lines

```
robot.motionRollBackward(360);
robot.motionRollForward(360);
robot.motionTurnLeft(360);
robot.motionTurnRight(360);
```

make the robot roll backward, forward, and then turn left, and turn right sequentially. For each of these functions, the parameter is the angle in degrees to turn the faceplates. For instance, the line rolls the robot backward using its faceplates as wheels by rotating the faceplates 360 degrees.

Next, the robot stands up by executing the line

```
robot.motionStand();
```

While the robot is standing, the line

```
robot.move(360, 0, 0, 360);
```

rotates both faceplates one complete rotation. This causes the robot to spin around in a circle, since it is currently standing on one of its faceplates.

Next, we lay the robot back down into a prone position with the following line of code:

```
robot.motionUnstand();
```

Finally, we perform the tumbling motion.

```
robot.motionTumble(5);
```

The tumbling motion is a movement in which the robot stands up and then flips, end over end. The argument provided to the function, "5" in this case, is the number of times to perform the motion.

7 Detailed Examples of Preprogrammed Motions and Writing Customized Motions

To help the user become acquainted with the MoBot control programs, sample programs will be presented in this section to illustrate the basics and minimum requirements of a MoBot control program. The sample programs are located at CHHOME/package/chmobot/demos, where CHHOME is the Ch home directory, such as C:\Ch for Windows. For Windows, it is located at C:\Ch\package\chmobot\demos by default.

7.1 Inchworm Gait Demo

The next demo will illustrate how a simple gait known as the "Inchworm" gait can be implemented.

7.1.1 inchworm2.ch Source Code

```
/* File: inchworm2.ch
  * Perform the "inchworm" motion four times */
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

/* Set robot motors to speed of 0.50 */
robot.setJointSpeedRatio(ROBOT_JOINT2, 0.50);
robot.setJointSpeedRatio(ROBOT_JOINT3, 0.50);
```

```
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();

/* Do the inchworm motion four times */
int i, num = 4;
double angle2 = -45;
double angle3 = 45;
for(i = 0; i < num; i++) {
   robot.moveJointTo(ROBOT_JOINT2, angle2);
   robot.moveJointTo(ROBOT_JOINT3, angle3);
   robot.moveJointTo(ROBOT_JOINT2, 0);
   robot.moveJointTo(ROBOT_JOINT3, 0);
}</pre>
```

7.1.2 Demo Code for inchworm2.ch Explained

The first portion of the code is identical to the previous demo, and performs the same function of declaring a MoBot variable and connecting to a paired MoBot.

```
#include <mobot.h>
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
```

The next lines of code set the joint speeds for the two body joints, joints two and three, to 50% speed. They are set to fifty percent speed in order to slow the motion down in order to minimize slippage.

```
/* Set robot motors to speed of 0.50 */
robot.setJointSpeedRatio(ROBOT_JOINT2, 0.50);
robot.setJointSpeedRatio(ROBOT_JOINT3, 0.50);
```

Next, we move the robot into a flat "zero" position.

```
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
```

Finally, we perform the actual inchworm motion. The inchworm motion is a gait defined by a sequence of motions performed by the body joints. The motions are as such:

- 1. The first body joint, referred to as joint A, rotates towards the ground. This drags the MoBot towards the direction of joint A.
- 2. The other body joint, joint B, rotates towards the ground. Since the center of gravity is currently positioned over joint A, this causes the trailing body joint to slide toward joint A.
- 3. Joint A moves back to a flat position.
- 4. Joint B moves back to a flat position.
- 5. Repeat, if desired.

The direction of travel depends on the selection of the initial body joint. In the following code example, joint 2 is chosen as the initial body joint to move. In this case, the MoBot will traverse towards joint 2. The entire motion is encapsulated in a "for" loop which executes the entire motion four times.

```
/* Do the inchworm gait four times */
int i, num = 4;
double angle2 = -45;
double angle3 = 45;
for(i = 0; i < num; i++) {
    robot.moveJointTo(ROBOT_JOINT2, angle2);
    robot.moveJointTo(ROBOT_JOINT3, angle3);
    robot.moveJointTo(ROBOT_JOINT2, 0);
    robot.moveJointTo(ROBOT_JOINT3, 0);
}</pre>
```

The values of the variables angle2 and angle3 may also be modified to produce different variations of the inchworm gait to accommodate different terrain textures and ground surfaces.

7.2 Standing Demo

```
7.2.1 stand2.ch Source Code
```

```
/* Filename: stand2.ch
* Make a MoBot stand up on a faceplate */
#include <mobot.h>
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
/* Set robot motors to speed of 90 degrees per second */
robot.setJointSpeed(ROBOT_JOINT2, 90);
robot.setJointSpeed(ROBOT_JOINT3, 90);
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
/* Move the robot into a fetal position */
robot.moveJointTo(ROBOT_JOINT2, -85);
robot.moveJointTo(ROBOT_JOINT3, 70);
/* Wait a second for the robot to settle down */
sleep(1);
/* Rotate the bottom faceplate by 45 degrees */
robot.moveJointTo(ROBOT_JOINT1, 45);
/* Lift the body up */
robot.moveJointTo(ROBOT_JOINT2, 20);
/* Pan the robot around for 3 seconds at 45 degrees per second*/
robot.setJointSpeed(ROBOT_JOINT1, 45);
robot.moveContinuousTime(ROBOT_FORWARD, ROBOT_HOLD, ROBOT_HOLD, ROBOT_HOLD, 3000);
```

7.2.2 stand2.ch Explained

The first portion of the program performs the necessary setup and connecting, similar to the previous demos. Similar to the previous inchworm demo, the motor speeds are set to a speed of 90 degrees per second, and the function moveToZero() is called to put the robot into a flat position. Next, the following lines are executed:

```
robot.moveJointTo(ROBOT_JOINT2, -85);
robot.moveJointTo(ROBOT_JOINT3, 70);
```

These movement commands cause the MoBot to curl up into a fetal position with both of its endplates facing toward the ground. The next line,

```
sleep(1);
```

causes the program to pause for one second before continuing. This allows the robot to settle down, in case it was still in motion from the last movement.

Next, the MoBot rotates one of the endplates by 45 degrees.

```
robot.moveJointTo(ROBOT_JOINT1, 45);
```

This endplate will eventually become the "foot" of the standing MoBot. Next, the MoBot lifts itself into a standing position, balancing on its endplate.

```
robot.moveJointTo(ROBOT_JOINT2, 20);
```

Note that the previous joint angle for Joint 2, a body joint, was -85 degrees. This motion causes joint 2 to rotate all the way to a 20 degree position, which lift up the body of the MoBot such that the MoBot is balancing on faceplate joint 1.

Finally, we rotate joint 1, the foot joint, for three seconds which causes the entire MoBot to rotate in place. The speed is first set to 45 degrees per second to make the rotation a slow rotation. Next, the moveContinuousTime member function is used to continuously rotate a joint for a desired amount of time.

```
robot.setJointSpeed(ROBOT_JOINT1, 45);
robot.moveContinuousTime(ROBOT_FORWARD, ROBOT_HOLD, ROBOT_HOLD, ROBOT_HOLD, 3000);
```

The macros ROBOT_FORWARD and ROBOT_BACKWARD indicate the directions for each motor to turn. The macro ROBOT_NEUTRAL indicates that the motor should not turn, but should remain flexible and backdrivable. The macro ROBOT_HOLD indicates that the joint will not turn, and that the joint will be forcefully held in place at its current position. More information regarding these macros may be found in Section A.2.

8 Blocking and Non-Blocking Functions

All of the MoBot movement functions may be designated as either "blocking" functions or "non-blocking" functions. A blocking function is a function which does not return while operations are being performed. All standard C functions, such as printf(), are blocking functions. The moveWait() function is a blocking function. When called, the function will hang, or "block", until all the joints have stopped moving. After all joints have stopped moving, the moveWait() function will return, and the rest of the program will execute.

Furthermore, some functions have both a blocking version and a non-blocking version. For these functions, the suffix NB denotes that the function is non-blocking. For instance, the function motionStand() is blocking, meaning the function will not return until the motion is completed, whereas the function motionStandNB() is non-blocking, meaning the function returns immediately and the robot performs the "standing" motion asynchronously.

The function moveNB() is an example of a non-blocking function. When the moveNB() function is called, the function immediately returns as the joints begin moving. Any lines of code following the call to moveNB() will be executed even if the current motion is still in progress.

Demos for the non-blocking functions are located in the next section of this document.

8.1 List of Blocking Movement Functions

- move()
- moveContinuousTime()
- moveJoint()
- moveJointTo()
- moveTo()
- moveToZero()
- moveJointWait()
- moveWait()
- motionArch()
- motionInchwormLeft()
- motionInchwormRight()
- motionRollBackward()
- motionRollForward()
- motionSkinny()
- motionStand()
- motionTumble()
- motionTurnLeft()
- motionTurnRight()
- motionUnstand()

8.2 List of Non-Blocking Movement Functions

- moveNB()
- moveContinuousNB()
- moveJointNB()
- moveJointToNB()
- moveToNB()
- moveToZeroNB()
- motionArchNB()
- motionInchwormLeftNB()
- motionInchwormRightNB()
- motionRollBackwardNB()

- motionRollForwardNB()
- motionSkinnyNB()
- motionStandNB()
- motionTumbleNB()
- motionTurnLeftNB()
- motionTurnRightNB()
- motionUnstandNB()

8.3 Blocking and Non-Blocking Demo Programs

8.3.1 nonblock.ch Source Code

```
/* File: nonblock.ch
    use the non-blocking functoin move() . */
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

robot.moveToZero();

/* Rotate each of the faceplates by 720 degrees */
//robot.move(720, 0, 0, 720); // Blocking version
robot.moveNB(720, 0, 0, 720); // Non-Blocking version
while(robot.isMoving()) {
    printf("robot is moving ...\n");
}
printf("move finished!\n");
```

8.3.2 nonblock.ch Source Code Explanation

This demo gives an example of how non blocking functions operate. After the initial setup and initialization similar to the previous demos, the following line is executed:

```
robot.moveNB(720, 0, 0, 720); // Non-Blocking version
```

The function moveNB() is a non-blocking function, which means that the program will continue executing even before the movement has completed. The next lines of code appear as such:

```
while(robot.isMoving()) {
    printf("robot is moving ...\n");
}
```

The previous lines of code basically loops as long as the robot.isMoving() function is returning true. In other words, in plain english, as long as the robot is moving, the program will print the message "robot is moving...". As soon as the robot completes its motion, the loop will break and the message "move finished!" is printed.

8.3.3 nonblock2.ch Source Code

```
/* File: nonblock2.ch
    use the non-blocking functoin move() . */
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

robot.moveToZero();

/* Rotate each of the faceplates by 360 degrees */
//robot.moveJoint(ROBOT_JOINT1, 360); // Blocking version
robot.moveJointNB(ROBOT_JOINT1, 360); // Non-Blocking version
robot.moveJoint(ROBOT_JOINT4, 360);
```

8.3.4 nonblock2.ch Source Code Explanation

The first block of the source code initialized and sets up the remote robot similar to previous demos. The last two lines in the program appear like so:

```
robot.moveJointNB(ROBOT_JOINT1, 360); // Non-Blocking version
robot.moveJoint(ROBOT_JOINT4, 360);
```

The first line turns joint 1 360 degrees. However, since it is a non-blocking function, the program immediately continues to the next line. The second line turns joint 4 360 degrees. Because computer programs execute so fast compared to the physical motion of the robots, this program effectively begins rotating joints 1 and 4 simultaneously. Since the function moveJoint() is a blocking function, the program will not execute beyond that point until joint 4 has finished moving.

8.3.5 nonblock3.ch Source Code

```
/* File: nonblock3.ch
   Roll and arch simultaneously. */
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

robot.moveToZero();

printf("Rolling 360 degrees.\n");
robot.motionRollForward(360);
printf("Rolling 360 degrees while arching.\n");
robot.motionArchNB(15);
robot.motionArchNB(15);
robot.motionRollForwardNB(360);
robot.motionWait();
```

8.3.6 nonblock3.ch Source Code Explanation

The first section of code initializes the necessary variables to control remote robots as seen in previous demos. Next, we print a message on the screen and roll the robot forward with the following two lines of code.

```
printf("Rolling 360 degrees.\n");
robot.motionRollForward(360);

Next, we make two calls to non-blocking functions.
robot.motionArchNB(15);
robot.motionRollForwardNB(360);
```

The first call is to the function motionArchNB(), which arches the robot up by moving joints 2 and 3. Since it is a non-blocking function, the program immediately continues on even before the arching motion as finished. The next call rolls the robot forward by rotating joints 1 and 4. In effect, these two lines cause the robot to roll forward and arch simultaneously. It is important to note that this compound motion works because the Arch motion only moves joints 2 and 3 while the rolling motions only move joints 1 and 4, so there are no conflicting motor commands.

In order to wait for all motions to finish, the last line of the program is

```
robot.motionWait();
```

The motionWait() function will wait until all robot motions are finished. If a program contains non-blocking functions, it is typically necessary to call a waiting function such as moveWait() or motionWait() before the program terminates. If a waiting function is not called, the program may terminate before the motion has been completed, which may halt the robot in the middle of one of its motions.

8.4 Preprogrammed Motion Demos with Non-Blocking Functions

8.4.1 unstand2.ch Source Code

/* Filename: unstand.ch

```
* Drop the robot down from a standing position. */
#include <mobot.h>
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
robot.moveJointToNB(ROBOT_JOINT2, -85);
robot.moveJointToNB(ROBOT_JOINT3, 45);
robot.moveWait();
robot.moveToZero();
8.4.2 unstand2.ch Source Code Explanation
The first block of code,
/* Filename: unstand.ch
 * Drop the robot down from a standing position. */
#include <mobot.h>
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
```

initialize the program and connect to the remote robot. Next, a series of non-blocking movements are performed:

```
robot.moveJointToNB(ROBOT_JOINT2, -85);
robot.moveJointToNB(ROBOT_JOINT3, 45);
```

Because both of these function calls are non-blocking, this function will effectively move joints two and three simultaneously. Since these are both non-blocking functions, a call to moveWait() is necessary to wait for the robot to complete its motions, as done in the next line:

```
robot.moveWait();
```

Finally, we move the robot into a flat zero position with the following line:

```
robot.moveToZero();
```

```
8.4.3 tumble2.ch Source Code
```

```
/* Filename: tumble2.ch
* Tumbling robot */
#include <mobot.h>
CMobot robot;
/* Connect to the paired MoBot */
robot.connect();
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
/* Begin tumbling for n times */
int n = 2;
int i;
for(i = 0; i < n; i++) {
   /* First lift and tumble */
   robot.moveJointTo(ROBOT_JOINT2, -85);
   robot.moveJointTo(ROBOT_JOINT3, 80);
   robot.moveJointTo(ROBOT_JOINT2, 0);
   robot.moveJointTo(ROBOT_JOINT3, 0);
   robot.moveJointTo(ROBOT_JOINT2, 80);
   robot.moveJointTo(ROBOT_JOINT2, 45);
   /* Second lift and tumble */
   robot.moveJointTo(ROBOT_JOINT3, -85);
   robot.moveJointTo(ROBOT_JOINT2, 80);
   robot.moveJointTo(ROBOT_JOINT3, 0);
   robot.moveJointTo(ROBOT_JOINT2, 0);
   robot.moveJointTo(ROBOT_JOINT3, 80);
   robot.moveJointTo(ROBOT_JOINT3, 45);
}
/* Unstand the robot */
robot.moveJointToNB(ROBOT_JOINT2, 0);
robot.moveJointToNB(ROBOT_JOINT3, 0);
robot.moveWait();
robot.moveToZero();
```

8.4.4 tumble2.ch Source Code Explanation

The first lines of the program,

```
#include <mobot.h>
CMobot robot;

/* Connect to the paired MoBot */
robot.connect();

/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot.moveToZero();
```

initialize the proper variables and connections as seen in previous demos.

Next, we begin the tumbling motion. We consider each tumbling motion to be the robot flipping over twice. The reason the robot flips twice per tumble is so that when the tumbling motion is done, the robot ends right side up. A for loop is used to to tumble "n" times, as shown in the following code:

```
int n = 2;
int i;
for(i = 0; i < n; i++) {</pre>
```

These lines create two new variables, "n" and "i", which hold the number of times to tumble, and act as the loop counter variable, respectively.

Inside the loop, two tumbling motions are performed. The first tumbling motion appears as such:

```
/* First lift and tumble */
robot.moveJointTo(ROBOT_JOINT2, -85);
robot.moveJointTo(ROBOT_JOINT3, 80);
robot.moveJointTo(ROBOT_JOINT2, 0);
robot.moveJointTo(ROBOT_JOINT3, 0);
robot.moveJointTo(ROBOT_JOINT2, 80);
robot.moveJointTo(ROBOT_JOINT2, 45);
```

This movement is similar to the motionStand() motion, except that the robot flips all the way over after standing up. After this motion is done, the robot is balancing on joint 4. Next, we flip again so that the robot is balancing on joint 1.

```
/* Second lift and tumble */
robot.moveJointTo(ROBOT_JOINT3, -85);
robot.moveJointTo(ROBOT_JOINT2, 80);
robot.moveJointTo(ROBOT_JOINT3, 0);
robot.moveJointTo(ROBOT_JOINT2, 0);
robot.moveJointTo(ROBOT_JOINT3, 80);
robot.moveJointTo(ROBOT_JOINT3, 45);
```

The entire motion, consisting of two flips, are performed "n" times. After the loop is completed, the robot is made to fall back down into a prone positions with the following lines of code:

```
/* Unstand the robot */
robot.moveJointToNB(ROBOT_JOINT2, 0);
robot.moveJointToNB(ROBOT_JOINT3, 0);
robot.moveWait();
robot.moveToZero();
```

}

9 Controlling Multiple Modules

The MoBot control software is designed to be able to control multiple modules simultaneously. There are some important differences in the program which enable the control of multiple modules. A small demo program which controls two modules simultaneously will first be presented, followed by a detailed explanation of the program elements.

9.1 twoModules.ch Source Code

```
/* Filename: twoModules.ch
 * Control two modules and make them stand and inchworm simultaneously. */
#include <mobot.h>
CMobot robot1;
CMobot robot2;
/* Connect robot variables to the robot modules. The */
robot1.connect();
robot2.connect();
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot1.moveToZeroNB();
robot2.moveToZeroNB();
robot1.moveWait();
robot2.moveWait();
/* Instruct the first robot to stand and the second robot to inchworm left four
 * times simultaneously. As soon as the first robot stands up, rotate its joints
* 1 and 4 360 degrees. */
robot1.motionStandNB();
robot2.motionInchwormLeftNB(4);
robot1.motionWait();
robot1.moveNB(360, 0, 0, 360);
robot1.moveWait();
robot2.motionWait();
/* Instruct the first robot unstand and the second robot inchworm right four
 * times simultaneously. */
robot1.motionUnstandNB();
robot2.motionInchwormRightNB(4);
robot1.motionWait();
robot2.motionWait();
```

9.2 Demo Explanation

The first two lines of interest appear as such:

```
CMobot robot1;
CMobot robot2;
```

These two lines declare two separate variables which will represent the two separate MoBot modules. Next, we need to connect each variable to a physically separate MoBot. This is done with the following lines.

```
robot1.connect();
robot2.connect();
```

These two lines connect the robots to the first two addresses of the known robot addresses. The list of the computer's known robot addresses may be configured in the process detailed in Section 2 on page 9. For each separate control program, the first call to the connect() member function will connect to the first robot listed in the configuration file. Each successive call to the connect() function will connect to successive robots listed in the configuration file. The order in which they are connected may be modified using the "Configure Robot Bluetooth" dialog, as discussed in Section 2.

```
robot1.moveToZeroNB();
robot2.moveToZeroNB();
```

These two lines command the two robots to move to their zero positions. Note that these functions are non-blocking. This means that the moveToZeroNB() function will return immediately, and will not wait for the first robot to finish completing the motion before commanding the second robot to begin. In a normal program, this effectively causes both robots to move to their zero positions simultaneously.

```
robot1.moveWait();
robot2.moveWait();
```

Since the moveToZeroNB() functions are non-blocking, we would like the program to wait until the motions are complete before continuing. By calling moveWait() on both of the robots, we can be assured that the robots have finished moving before the program continues.

```
robot1.motionStandNB();
robot2.motionInchwormLeftNB(4);
```

Similar to the calls to moveToZeroNB(), this block of code instructs the first MoBot to stand and the second MoBot to perform the inchworm motion four times. Note that we call the non-blocking versions of the functions, motionStandNB() and motionInchwormLeftNB(). Since these functions are non-blocking, both robots will effectively perform the motions simultaneously.

When the first robot finishes standing, we want it to spin around on its faceplate while the second robot is still inchworming. We can accomplish this by first waiting for the standing motion to finish, and then moving the faceplate joints of the first robot, as in the following lines of code.

```
robot1.motionWait();
robot1.moveNB(360, 0, 0, 360);
```

Before we continue with the program, we wish to ensure that motion has stopped on both robots. Since the the last command sent to robot1 was a moveNB() command, we use the moveWait() function to wait for that movement to finish. Similarly, the last command sent to robot2 was a motion command, and so we use motionWait() to wait for the motion to finish. The two lines of code are seen in the program as follows:

```
robot1.moveWait();
robot2.motionWait();
Finally, the following lines,
robot1.motionUnstandNB();
robot2.motionInchwormRightNB(4);
robot1.motionWait();
robot2.motionWait();
```

make the first robot come back down from its standing position and the second robot inchworm to the right four times simultaneously. Note that the function motionWait() is used to wait for motions, which are compound movements, to finish. This is similar to how the function moveWait() is used to wait for individual movements to finish.

9.3 Controlling Multiple Connected Modules

9.3.1 lift.ch, Lifting Demo

```
/* Filename: lift.ch
  Control two modules and make them stand simultaneously.
  Joint 4 of the 1st robot should be connected to
  Joint 1 of the 2nd robot as
 |-----|
         | 3 | 4 X 1| 2 | 3 | 4
 |-----|
#include <mobot.h>
CMobot robot1;
CMobot robot2;
/* Connect robot variables to the robot modules. */
robot1.connect();
robot2.connect();
/* Set the robot to "home" position, where all joint angles are 0 degrees. */
robot1.moveToZeroNB();
robot2.moveToZeroNB();
robot1.moveWait();
robot2.moveWait();
/* First lift */
robot1.moveNB(0, -90, 0, 0);
robot2.moveNB(0, 0, 90, 0);
robot1.moveWait();
robot2.moveWait();
/* Second lift */
robot1.moveToNB(0, 0, 90, 0);
robot2.moveToNB(0, -90, 0, 0);
robot1.moveWait();
robot2.moveWait();
/* Move to zero position */
robot1.moveToZeroNB();
robot2.moveToZeroNB();
robot1.moveWait();
robot2.moveWait();
```

9.3.2 lift.ch Source Code Explanation

This demo is designed to lift two connected modules up into a two-legged standing configuration. The robots are connected such that the fourth joint of robot one is connected to the first joint of robot two. The two connect robots act as one long robot.

The first portion of the program initialize two variables called robot1 and robot2, which will be used to control the two connected modules. Once the robots are initialized, they are both moved into a flat zero position.

The next lines,

```
/* First lift */
robot1.moveNB(0, -90, 0, 0);
robot2.moveNB(0, 0, 90, 0);
robot1.moveWait();
robot2.moveWait();
```

rotate the joints on either end of the compound robot to perform the first portion of the lift. The motion is performed as two non-blocking calls to moveNB() and then waiting for both movements to finish.

The next lines rotate the inner joints of the compound robot to lift the robot one step higher.

```
/* Second lift */
robot1.moveToNB(0, 0, 90, 0);
robot2.moveToNB(0, -90, 0, 0);
robot1.moveWait();
robot2.moveWait();
```

Again, these lines perform two calls to the non-blocking function moveNB() and then wait for the movements to finish.

Finally, we move both robots back to their zero positions, which drops the compound robot back onto the ground.

```
robot1.moveToZeroNB();
robot2.moveToZeroNB();
robot1.moveWait();
robot2.moveWait();
```

10 Commanding Multiple Robots to Perform Identical Tasks

The class called CMobotGroup can be used to control multiple modules simultaneously. The CMobotGroup represents a group of robots. Any command that is given to the group of modules is duplicated to each member of the group.

The majority of the movement functions available in the CMobot class are also available in the CMobotGroup class. The detailed information for each member function are presented in Appendix C. Following is a complete listing of the available member functions in the CMobotGroup class.

Function	Description
CMobotGroup()	The CMobotGroup constructor function. This function is called automat-
	ically and should not be called explicitly.
~CMobotGroup()	The CMobotGroup destructor function. This function is called automati-
	cally and should not be called explicitly.
addRobot()	Add a robot to be a member of the robot group.
move()	Move all four joints of the robots by specified angles.
moveNB()	Identical to move() but non-blocking.
<pre>moveContinuousNB()</pre>	Move joints continuously. Joints will move untill stopped.
<pre>moveContinuousTime()</pre>	Move joints continuously for a certain amount of time.
<pre>moveJointContinuousNB()</pre>	Move a single joint on all robots continuously.
<pre>moveJointContinuousTime()</pre>	Move a single joint on all robots continuously for a specific amount of time.
moveTo()	Move all four joints of the robots to specified absolute angles.
moveToNB()	Identical to moveTo() but non-blocking.
<pre>moveJoint()</pre>	Move a motor from its current position by an angle.
<pre>moveJointNB()</pre>	Identical to moveJoint() but non-blocking.
<pre>moveJointTo()</pre>	Set the desired motor position for a joint.
<pre>moveJointToNB()</pre>	Identical to moveJointTo() but non-blocking.
<pre>moveJointWait()</pre>	Wait until the specified motor has stopped moving.
<pre>moveWait()</pre>	Wait until all motors have stopped moving.
moveToZero()	Instructs all motors to go to their zero positions.
moveToZeroNB()	Identical to moveToZero() but non-blocking.
setJointSpeed()	Set a motor's speed setting in radians per second.
setJointSpeeds()	Set all motor speeds in radians per second.
setJointSpeedRatio()	Set a joints speed setting to a fraction of its maximum speed, a value
	between 0 and 1.
setJointSpeedRatios()	Set all joint speed settings to a fraction of its maximum speed, expressed
	as a value from 0 to 1.
setTwoWheelRobotSpeed()	Move the robot at a constant forward velocity.
stop()	Stop all currently executing motions of the robot.

Compound Motions	These are convenience functions of commonly used compound motions.
motionArch()	Move the robot into an arched configuration.
motionArchNB()	Identical to motionArch() but non-blocking.
<pre>motionInchwormLeft()</pre>	Inchworm motion towards the left.
<pre>motionInchwormLeftNB()</pre>	Identical to motionInchwormLeft() but non-blocking.
<pre>motionInchwormRight()</pre>	Inchworm motion towards the right.
<pre>motionInchwormRightNB()</pre>	Identical to motionInchwormRight() but non-blocking.
<pre>motionRollBackward()</pre>	Roll on the faceplates toward the backward direction.
${\tt motionRollBackwardNB()}$	Identical to motionRollBackward() but non-blocking.
<pre>motionRollForward()</pre>	Roll on the faceplates forwards.
<pre>motionRollForwardNB()</pre>	Identical to motionRollForward() but non-blocking.
<pre>motionSkinny()</pre>	Move the robot into a skinny configuration.
<pre>motionSkinnyNB()</pre>	Identical to motionSkinnyNB() but non-blocking.
motionStand()	Stand the robot up on its end.
<pre>motionStandNB()</pre>	Identical to motionStandNB() but non-blocking.
<pre>motionTumble()</pre>	Tumble the robot end over end.
<pre>motionTumbleNB()</pre>	Identical to motionTumbleNB() but non-blocking.
<pre>motionTurnLeft()</pre>	Rotate the robot counterclockwise.
<pre>motionTurnLeftNB()</pre>	Identical to motionTurnLeft() but non-blocking.
<pre>motionTurnRight()</pre>	Rotate the robot clockwise.
<pre>motionTurnRightNB()</pre>	Identical to motionTurnRight() but non-blocking.
<pre>motionUnstand()</pre>	Move a robot currently standing on its end down into a prone position.
<pre>motionUnstandNB()</pre>	Identical to motionUnstand() but non-blocking.
motionWait()	Wait for preprogrammed robotic motions to complete.

10.1 Demo program group.ch

10.1.1 Source Code

```
/* Filename: group.ch
* Control multiple MoBot modules simultaneously using the CMobotGroup class */
#include <mobot.h>
CMobot robot1;
CMobot robot2;
CMobotGroup group;
/* Connect to the robots listed in the configuration file. */
robot1.connect();
robot2.connect();
/* Add the two modules to be members of our group */
group.addRobot(robot1);
group.addRobot(robot2);
/* Now, any commands given to "group" will cause both robot1 and robot2 to
* execute the command. */
group.motionInchwormLeft(4); /* Both robots inchworm left 4 times */
group.motionStand(); /* Both robots stand */
group.move(360, 0, 0, 360); /* Joints 1 and 4 rotate 360 degrees */
sleep(3); /* Robots stand still for 3 seconds */
group.motionUnstand(); /* Robots get back down from standing */
```

10.1.2 Demo Explanation

The first lines of interest appear as such:

```
CMobot robot1;
CMobot robot2;
CMobotGroup group;
```

These lines declare two robot variables, and one variable which will represent a group of robots. Next, we connect the robot variables to their physical counterparts.

```
robot1.connect();
robot2.connect();
```

Once they are connected, we wish to add both of these robots to our robot group, which we have named group.

```
group.addRobot(robot1);
group.addRobot(robot2);
```

Finally, we wish for all of the robots in our robot group, namely robot1 and robot2, to peform an inchworm motion four times, followed by a standing motion. This is done with the following lines:

```
group.motionInchwormLeft(4); /* Cause both robots to inchworm left 4 times */ group.motionStand(); /* Cause both robots to stand */
```

After the robots stand up, the line

```
group.move(360, 0, 0, 360); /* Joints 1 and 4 rotate 360 degrees */
```

makes the robots perform a 360 degree rotation on their faceplates while standing.

The next line,

```
sleep(3); /* Make the robots stand still for 3 seconds */
```

makes the robots stand still for three seconds. After standing still for three seconds, the line

```
group.motionUnstand(); /* Make the robots get back down from standing */
```

makes both robots move back down from a standing position into a prone position.

11 Application Examples

11.1 Example 1

11.1.1 Problem Statement

Rotate a faceplate joint 720 degrees at 45 degrees second. Plot the relationship between joint angle versus time for the duration of the joint's movement at a rate of 10 data points per second.

11.1.2 dataAcquisition.ch Source Code

A Data Types

The data types defined in the header file mobot.h are described in this appendix. These data types are used by the MoBot library to represent certain values, such as joint id's and motor directions.

Data Type	Description
${ t robotJointId_t}$	An enumerated value that indicates a MoBot joint.
${\tt robotJointState_t}$	The current state of a MoBot joint.

A.1 robotJointId_t

This datatype is an enumerated type used to identify a joint on the MoBot. Valid values for this type are:

```
typedef enum mobot_joints_e {
  ROBOT_JOINT1 = 1,
  ROBOT_JOINT2 = 2,
  ROBOT_JOINT3 = 3,
  ROBOT_JOINT4 = 4
} robotJointId_t;
```

Value	Description
ROBOT_JOINT1	Joint number 1 on the MoBot, which is a faceplate joint.
ROBOT_JOINT2	Joint number 2 on the MoBot, which is a body joint.
ROBOT_JOINT3	Joint number 3 on the MoBot, which is a body joint.
ROBOT_JOINT4	Joint number 4 on the MoBot, which is a faceplate joint.

A.2 robotJointState_t

This datatype is an enumerated type used to designate the current movement state of a joint. The values may be retrieved from the robot with the getJointState() function and may be set with the moveContinuous() family of functions. Valid values are:

```
typedef enum mobot_joint_state_e {
  ROBOT_NEUTRAL = 0,
  ROBOT_FORWARD = 1,
  ROBOT_BACKWARD = 2,
  ROBOT_HOLD = 3
} robotJointState_t;
```

Value	Description
ROBOT_NEUTRAL	This value indicates that the joint is not moving and is not actuated. The
	joint is freely backdrivable.
ROBOT_FORWARD	This value indicates that the joint is currently moving forward.
ROBOT_BACKWARD	This value indicates that the joint is currently moving backward.
ROBOT_HOLD	This value indicates that the joint is currently not moving and is holding
	its current position. The joint is not currently backdrivable.

B CMobot API

The header file **mobot.h** defines all the data types, macros and function prototypes for the robot API library. The header file declares a class called CMobot which contains member functions which may be used to control the robot.

D	Table 1: CMobot Member Functions.
Function	Description
CMobot()	The CMobot constructor function. This function is called automatically and should not be called explicitly.
~CMobot()	The CMobot destructor function. This function is called automatically and should not be called explicitly.
connect()	Connect to a remote robot module. This function connects to the first robot listed in the Barobo configuration file. To edit the configuration file, use the robot control graphical user interface, and select the menu item "Robot \rightarrow Configure Robot Bluetooth".
<pre>connectWithAddress()</pre>	Connect to a robot module by specifying its Bluetooth address.
disconnect()	Disconnect from a robot module.
<pre>getJointAngle()</pre>	Get a joint's angle.
<pre>getJointMaxSpeed()</pre>	Get a joint's maximum speed in radians per second.
getJointSpeed()	Get a motor's current speed setting in radians per second.
<pre>getJointSpeeds()</pre>	Get all motor's current speed settings in radians per second.
<pre>getJointSpeedRatio()</pre>	Get a motor's speed as a ratio of the motor's maximum speed.
<pre>getJointSpeedRatios()</pre>	Get all motor speeds as ratios of the motor's maximum speed.
<pre>getJointState()</pre>	Get a motor's current status.
isConnected()	This function is used to check the connection to a robot.
isMoving()	This function is used to check if any joints are currently in motion.
move()	Move all four joints of the robot by specified angles.
moveNB()	Identical to move() but non-blocking.
moveContinuousNB()	Move joints continuously. Joints will move untill stopped.
<pre>moveContinuousTime()</pre>	Move joints continuously for a certain amount of time.
moveTo()	Move all four joints of the robot to specified absolute angles.
moveToNB()	Identical to moveTo() but non-blocking.
moveJoint()	Move a joint.
moveJointNB()	Move a joint.
moveJointTo()	Set the desired motor position for a joint.
moveJointToNB()	Identical to moveJointTo() but non-blocking.
<pre>moveJointWait()</pre>	Wait until the specified motor has stopped moving.
moveWait()	Wait until all motors have stopped moving.
moveToZero()	Instruct all motors to go to their zero positions.
moveToZeroNB()	Identical to moveToZero() but non-blocking.
setJointSpeed()	Set a motor's speed setting in radians per second.
setJointSpeeds()	Set all motor speeds in radians per second.
setJointSpeedRatio()	Set a joints speed setting to a fraction of its maximum speed, a value between 0 and 1.
setJointSpeedRatios()	Set all joint speed settings to a fraction of its maximum speed, expressed
23332Hapbaoanaa1ap()	as a value from 0 to 1.
stop()	Stop all currently executing motions of the robot.

Compound Motions	These are convenience functions of commonly used compound motions.
motionArch()	Arch the robot for better ground clearance.
motionArchNB()	Identical to motionArch but non-blocking.
<pre>motionInchwormLeft()</pre>	Inchworm motion towards the left.
<pre>motionInchwormLeftNB()</pre>	Identical to motionInchwormLeft but non-blocking.
motionInchwormRight()	Inchworm motion towards the right.
motionInchwormRightNB()Identical to motionInchwormRight but non-blocking.
J	G
<pre>motionRollBackward()</pre>	Roll on the faceplates toward the backward direction.
<pre>motionRollBackwardNB()</pre>	Identical to motionRollBackward() but non-blocking.
${\tt motionRollForward()}$.	Roll on the faceplates forwards.
<pre>motionRollForwardNB()</pre>	Identical to motionRollForward() but non-blocking.
motionSkinny()	Move the robot into a skinny profile.
${ t motionSkinnyNB()}$	Identical to motionSkinny() but non-blocking.
motionStand()	Stand the robot up on its end.
motionStandNB()	Identical to motionStand() but non-blocking.
<pre>motionTumble()</pre>	Perform the tumbling motion.
<pre>motionTumbleNB()</pre>	Identical to motionTumble() but non-blocking.
<pre>motionTurnLeft()</pre>	Rotate the robot counterclockwise.
<pre>motionTurnLeftNB()</pre>	Identical to motionTurnLeft() but non-blocking.
<pre>motionTurnRight()</pre>	Rotate the robot clockwise.
<pre>motionTurnRightNB() .</pre>	Identical to motionTurnRight() but non-blocking.
motionWait()	Wait for a motion to finish.

CMobot::connect()

Synopsis

#include <mobot.h>
int CMobot::connect();

Purpose

Connect to a remote robot via Bluetooth.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

This function is used to connect to a robot. The function looks inside of a Barobo configuration file and connects to the first robot listed in the file. The configuration file may be created and/or modified using the Robot Controller Interface, and selecting the "Robot \rightarrow Configure Robot Bluetooth" menu item.

Example

Please see the example in Section 4.1.2 on page 17.

See Also

connectWithAddress(), disconnect()

CMobot::connectWithAddress()

Synopsis

#include <mobot.h>

int CMobot::connectWithAddress(char address[], int channel);

Purpose

Connect to a remote robot via Bluetooth by specifying the specific Bluetooth address of the device.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

address The Bluetooth address of the robot.

channel The Bluetooth channel that the listening program is listening on. The default channel is channel 1.

Description

This function is used to connect to a robot.

Example

See Also

connect(), disconnect()

CMobot::disconnect()

Synopsis

#include <mobot.h>

int CMobot::disconnect();

Purpose

Disconnect from a remote robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

This function is used to disconnect from a robot. A call to this function is not necessary before the termination of a program. It is only necessary if another connection will be established within the same program at a later time.

Example

See Also

connect(), connectWithAddress()

CMobot::getJointAngle()

Synopsis

#include <mobot.h>

int CMobot::getJointAngle(robotJointId_t id, double &angle);

Purpose

Retrieve a robot joint's current angle.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number. This is an enumerated type discussed in Section A.1 on page 44.

A variable to store the current angle of the robot motor. The contents of this variable will be overwritten with a value that represents the motor's angle in degrees.

Description

This function gets the current motor angle of a robot's motor. The angle returned is in units of degrees and is accurate to roughly ± 0.17 degrees.

Example

See Also

CMobot::getJointMaxSpeed()

Synopsis

#include <mobot.h>

int CMobot::getJointMaxSpeed(robotJointId_t id, double &speed);

Get the maximum speed of a joint on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number. This is an enumerated type discussed in Section A.1 on page 44.

A variable of type double. The value of this variable will be overwritten with the maximum speed speed setting of the joint, which is in units of degrees per second.

Description

This function is used to find the maximum speed setting of a joint. This is the maximum speed at which the joint will accept speed setting from the function setJointSpeed(). The values are in units of degrees per second.

Example

See Also

getJointSpeed(), getJointMaxSpeedRatio(), setJointSpeed(), setJointSpeedRatio()

CMobot::getJointSpeed()

Synopsis

#include <mobot.h>

int CMobot::getJointSpeed(robotJointId_t id, double &speed);

Get the speed of a joint on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters
id The joint number to pose. This is an enumerated type discussed in Section A.1 on page 44. A variable of type double. The value of this variable will be overwritten with the current speed setting of the joint, which is in units of degrees per second.

This function is used to find the current speed setting of a joint. This is the speed at which the joint will move when given motion commands. The values are in units of degrees per second.

Example

See Also

getJointMaxSpeed(), getJointSpeedRatio(), setJointSpeed(), setJointSpeedRatio()

CMobot::getJointSpeedRatio()

Synopsis

```
#include <mobot.h>
```

int CMobot::getJointSpeedRatio(robotJointId_t id, double &ratio);

Purpose

Get the speed ratio settings of a joint on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

Retrieve the speed ratio setting of this joint. This is an enumerated type discussed in Section A.1 on page 44.

ratio A variable of type double. The value of this variable will be overwritten with the current speed ratio setting of the joint.

Description

This function is used to find the speed ratio setting of a joint. The speed ratio setting of a joint is the percentage of the maximum joint speed, and the value ranges from 0 to 1. In other words, if the ratio is set to 0.5, the joint will turn at 50% of its maximum angular velocity while moving continuously or moving to a new goal position.

Example

See Also

setJointSpeeds(), getJointSpeedRatio(), getJointSpeed()

CMobot::getJointSpeedRatios()

Synopsis

#include <mobot.h>

int CMobot::getJointSpeedRatios(double &ratio1, double &ratio2, double &ratio3, double &ratio4);

Purpose

Get the speed ratio settings of all joints on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

ratio1 A variable to store the speed ratio of joint 1.

ratio2 A variable to store the speed ratio of joint 2.

ratio3 A variable to store the speed ratio of joint 3.

ratio4 A variable to store the speed ratio of joint 4.

Description

This function is used to retrieve all four joint speed ratio settings of a robot simultaneously. The speed ratios are as a value from 0 to 1.

Example

See Also

setJointSpeeds(), getJointSpeedRatios(), getJointSpeed()

CMobot::getJointSpeeds()

Synopsis

#include <mobot.h>

int CMobot::getJointSpeeds(double &speed1, double &speed2, double &speed3, double &speed4);

Get the speed settings of all joints on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

```
Parameters speed 1 The joint speed setting for joint 1.
  speed2 The joint speed setting for joint 2.
  speed3 The joint speed setting for joint 3.
  speed4
           The joint speed setting for joint 4.
```

Description

This function is used to retrieve all four joint speed settings of a robot simultaneously. The speeds are in degrees per second.

Example

See Also

setJointSpeeds(), getJointSpeedRatios(), getJointSpeed()

CMobot::getJointState()

Synopsis

#include <mobot.h>

int CMobot::getJointState(robotJointId_t id, robotJointState_t &state);

Purpose

Determine whether a motor is moving or not.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters
id The joint number. This is an enumerated type discussed in Section A.1 on page 44.

An integer variable which will be overwritten with the current state of the motor. This is an state enumerated type discussed in Section A.2 on page 44.

Description

This function is used to determine the current state of a motor. Valid states are listed below.

Value	Description
20202 12222	
${ t ROBOT_NEUTRAL}$	This value indicates that the joint is not moving and is not actuated. The
	joint is freely backdrivable.
ROBOT_FORWARD	This value indicates that the joint is currently moving forward.
ROBOT_BACKWARD	This value indicates that the joint is currently moving backward.
ROBOT_HOLD	This value indicates that the joint is currently not moving and is holding
	its current position. The joint is not currently backdrivable.

Example

See Also

isMoving()

CMobot::isConnected()

Synopsis

#include <mobot.h>
int CMobot::isConnected();

int chopes..ibecimected

${f Purpose}$

Check to see if currently connected to a remote robot via Bluetooth.

Return Value

The function returns zero if it is not currently connected to a robot or if an error has occured, or 1 if the robot is connected.

Parameters

None.

Description

This function is used to check if the software is currently connected to a robot.

Example

See Also

connect(), disconnect()

CMobot::isMoving()

Synopsis

#include <mobot.h>
int CMobot::isMoving();

Purpose

Check to see if a robot is currently moving any of its joints.

Return Value

This function returns 0 if none of the joints are being driven or if an error has occured, or 1 if any joint is being driven. A value of 1 is equivalent to either a joint state of ROBOT_FORWARD or ROBOT_BACKWARD from getJointState()

Parameters

None.

Description

This function is used to determine if a robot is currently moving any of its joints.

Example

See Also

getJointState()

CMobot::motionArch()
CMobot::motionArchNB()

Synopsis

```
#include <mobot.h>
int CMobot::motionArch(double angle);
int CMobot::motionArchNB(double angle);
```

Purpose

Arch the robot for more ground clearance.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle in degrees to arch. This number can range from 0 degrees, which is no arch, to 180 degrees, which is a fully curled up position.

Description

CMobot::motionArch()

This function causes the robot to Arch up for better ground clearance while rolling.

CMobot::motionArchNB()

This function causes the robot to Arch up for better ground clearance while rolling.

The non-blocking function, motionArchNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobot::motionInchwormLeft()
CMobot::motionInchwormLeftNB()

Synopsis

```
#include <mobot.h>
int CMobot::motionInchwormLeft(int num);
int CMobot::motionInchwormLeftNB(int num);
```

Purpose

Perform the inch-worm gait to the left.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

num The number of times to perform the inchworm gait.

Description

CMobot::motionInchwormLeft()

This function causes the robot to perform a single cycle of the inchworm gait to the left.

CMobot::motionInchwormLeftNB()

This function causes the robot to perform a single cycle of the inchworm gait to the left.

This is the non-blocking version of the function CMobot::motionInchwormLeft(), meaning that the function will return immediately while the motion is performed asynchronously.

See Also

motionInchwormRight()

CMobot::motionInchwormRight()
CMobot::motionInchwormRightNB()

Synopsis

```
#include <mobot.h>
int CMobot::motionInchwormRight(int num);
int CMobot::motionInchwormRightNB(int num);
```

Purpose

Perform the inch-worm gait to the right.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

num The number of times to perform the inchworm gait.

Description

CMobot::motionInchwormRight()

This function causes the robot to perform a single cycle of the inchworm gait to the right.

CMobot::motionInchwormRightNB()

This function causes the robot to perform a single cycle of the inchworm gait to the right.

This function has both a blocking and non-blocking version. The blocking version, motionInchwormRight(), will block until the robot motion has completed. The non-blocking version, motionInchwormRightNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionInchwormLeft()

CMobot::motionRollBackward()
CMobot::motionRollBackwardNB()

Synopsis

```
#include <mobot.h>
```

```
int CMobot::motionRollBackward(double angle);
int CMobot::motionRollBackwardNB(double angle);
```

Purpose

Use the faceplates as wheels to roll backward.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle to turn the wheels, specified in degrees.

Description

CMobot::motionRollBackward()

This function causes each of the faceplates to rotate to roll the robot backward. The amount to roll the wheels is specified by the argument, angle.

CMobot::motionRollBackwardNB()

This function causes each of the faceplates to rotate to roll the robot backward. The amount to roll the wheels is specified by the argument, angle.

This function has both a blocking and non-blocking version. The blocking version, motionRollBackward(), will block until the robot motion has completed. The non-blocking version, motionRollBackwardNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionRollForward()

CMobot::motionRollForward()
CMobot::motionRollForwardNB()

Synopsis

#include <mobot.h>

int CMobot::motionRollForward(double angle);
int CMobot::motionRollForwardNB(double angle);

Purpose

Use the faceplates as wheels to roll forward.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle to turn the wheels, specified in degrees.

Description

CMobot::motionRollForward()

This function causes each of the faceplates to rotate to roll the robot forward. The amount to roll the wheels is specified by the argument, angle.

CMobot::motionRollForwardNB()

This function causes each of the faceplates to rotate to roll the robot forward. The amount to roll the wheels is specified by the argument, angle.

This function has both a blocking and non-blocking version. The blocking version, motionRollForward(), will block until the robot motion has completed. The non-blocking version, motionRollForwardNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionRollBackward()

CMobot::motionSkinny()
CMobot::motionSkinnyNB()

Synopsis

#include <mobot.h>
int CMobot::motionSkinny(double angle);
int CMobot::motionSkinnyNB(double angle);

Purpose

Move the robot into a skinny profile.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle in degrees to move the joints. A value of zero means a completely flat profile, while a value of 90 degrees means a fully skinny profile.

Description

CMobot::motionSkinny()

This function makes the robot assume a skinny rolling profile.

CMobot::motionSkinnyNB()

This function makes the robot assume a skinny rolling profile.

This function has both a blocking and non-blocking version. The blocking version, motionSkinny(), will block until the robot motion has completed. The non-blocking version, motionSkinnyNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobot::motionStand()
CMobot::motionStandNB()

Synopsis

#include <mobot.h>
int CMobot::motionStand();
int CMobot::motionStandNB();

Purpose

Stand the robot up on a faceplate.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

CMobot::motionStand()

This function causes the robot to motionStand up into the camera platform.

CMobot::motionStandNB()

This function causes the robot to motionStand up into the camera platform.

This function has both a blocking and non-blocking version. The blocking version, motionStand(), will block until the robot motion has completed. The non-blocking version, motionStandNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobot::motionTumble()
CMobot::motionTumbleNB()

Synopsis

#include <mobot.h>

int CMobot::motionTumble(int num);
int CMobot::motionTumbleNB(int num);

${f Purpose}$

Make the robot tumble end over end.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

num The number of times to tumble.

Description

CMobot::motionTumble()

This causes the robot to tumble end over end. The argument, num, indicates the number of times to tumble.

CMobot::motionTumbleNB()

This causes the robot to tumble end over end. The argument, num, indicates the number of times to tumble.

This function has both a blocking and non-blocking version. The blocking version, motionTumble(), will block until the robot motion has completed. The non-blocking version, motionTumbleNB(), will return immediately, and the motion will be performed asynchronously.

CMobot::motionTurnLeft()
CMobot::motionTurnLeftNB()

Synopsis

```
#include <mobot.h>
int CMobot::motionTurnLeft(double angle);
int CMobot::motionTurnLeftNB(double angle);
```

Purpose

Rotate the robot using the faceplates as wheels.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle in degrees to turn the wheels. The wheels will turn in opposite directions by the amount specifid by this argument in order to turn the robot to the left.

Description

CMobot::motionTurnLeft()

This function causes the robot to rotate the faceplates in opposite directions to cause the robot to rotate counter-clockwise.

CMobot::motionTurnLeftNB()

This function causes the robot to rotate the faceplates in opposite directions to cause the robot to rotate counter-clockwise.

This function has both a blocking and non-blocking version. The blocking version, motionTurnLeft(), will block until the robot motion has completed. The non-blocking version, motionTurnLeftNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionTurnRight()

CMobot::motionTurnRight()
CMobot::motionTurnRightNB()

Synopsis

```
#include <mobot.h>
int CMobot::motionTurnRight(double angle);
int CMobot::motionTurnRightNB(double angle);
```

Purpose

Rotate the robot using the faceplates as wheels.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle in degrees to turn the wheels. The wheels will turn in opposite directions by the amount specifid by this argument in order to turn the robot to the right.

Description

CMobot::motionTurnRight()

This function causes the robot to rotate the faceplates in opposite directions to cause the robot to rotate clockwise.

CMobot::motionTurnRightNB()

This function causes the robot to rotate the faceplates in opposite directions to cause the robot to rotate clockwise.

This function has both a blocking and non-blocking version. The blocking version, motionTurnRight(), will block until the robot motion has completed. The non-blocking version, motionTurnRightNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionTurnRight()

CMobot::motionUnstand()
CMobot::motionUnstandNB()

Synopsis

#include <mobot.h>

int CMobot::motionUnstand();
int CMobot::motionUnstandNB();

Purpose

Move a robot currently standing on a faceplate back down into a prone position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

CMobot::motionUnstand()

This function causes the robot to move down from the camera platform.

CMobot::motionUnstandNB()

This function causes the robot to move down from the camera platform.

This function has both a blocking and non-blocking version. The blocking version, motionUnstand(), will block until the robot motion has completed. The non-blocking version, motionUnstandNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobot::motionWait()

Synopsis

#include <mobot.h>

int CMobot::motionWait();

Purpose

Wait for a motion to complete execution.

Return Value

The function returns 0 on success and non-zero otherwise.

Description

This function is used to wait for a motion function to fully complete its cycle. The CMobot motion functions are those member functions which begin with "motion" as part of their name, such as motionInchwormLeft().

Example

See Also

CMobot::move()
CMobot::moveNB()

Synopsis

#include <mobot.h>

int CMobot::move(double angle1, double angle2, double angle3, double angle4);
int CMobot::moveNB(double angle1, double angle2, double angle3, double angle4);

Purpose

Move all of the joints of a robot by specified angles.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle1	The amount to move joint 1, expressed in degrees, relative to the current position.
angle2	The amount to move joint 2, expressed in degrees, relative to the current position.
angle3	The amount to move joint 3, expressed in degrees, relative to the current position.
angle4	The amount to move joint 4, expressed in degrees, relative to the current position.

Description

CMobot::move()

This function moves all of the joints of a robot by the specified number of degrees from their current positions.

CMobot::moveNB()

This function moves all of the joints of a robot by the specified number of degrees from their current positions.

The function moveNB() is the non-blocking version of the move() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more information on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the demo at Section 4.1.2 on page 17.

See Also

CMobot::moveContinuousNB()

Synopsis

```
#include <mobot.h>
int CMobot::moveContinuousNB(
  robotJointState_t dir1,
  robotJointState_t dir2,
  robotJointState_t dir3,
  robotJointState_t dir4);
```

Purpose

Move the joints of a robot continuously in the specified directions.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

Each parameter specifies the direction the joint should move. The types are enumerated in mobot.h and have the following values:

Value	Description
D 0 D 0 T 11 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1	
${ t ROBOT_NEUTRAL}$	This value indicates that the joint is not moving and is not actuated. The
	joint is freely backdrivable.
ROBOT_FORWARD	This value indicates that the joint is currently moving forward.
ROBOT_BACKWARD	This value indicates that the joint is currently moving backward.
ROBOT_HOLD	This value indicates that the joint is currently not moving and is holding
	its current position. The joint is not currently backdrivable.

More documentation about these types may be found at Section A.2 on page 44.

Description

This function causes joints of a robot to begin moving at the previously set speed. The joints will continue moving until the joint hits a joint limit, or the joint is stopped by setting the speed to zero. This function is a non-blocking function.

Example

See Also

CMobot::moveContinuousTime()

Synopsis

```
#include <mobot.h>
```

```
robotJointState_t dir3,
robotJointState_t dir4,
int msecs);
```

Purpose

Move the joints of a robot continuously in the specified directions for some amount of time.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

Each direction parameter specifies the direction the joint should move. The types are enumerated in mobot.h and have the following values:

Description
This value indicates that the joint is not moving and is not actuated. The
joint is freely backdrivable.
This value indicates that the joint is currently moving forward.
This value indicates that the joint is currently moving backward.
This value indicates that the joint is currently not moving and is holding
its current position. The joint is not currently backdrivable.

The msecs parameter is the time to perform the movement, in milliseconds.

Description

This function causes joints of a robot to begin moving. The joints will continue moving until the joint hits a joint limit, or the time specified in the msecs parameter is reached. This function will block until the motion is completed.

Example

See Also

CMobot::moveTo()
CMobot::moveToNB()

Synopsis

#include <mobot.h>

```
int CMobot::moveTo(double angle1, double angle2, double angle3, double angle4);
int CMobot::moveToNB(double angle1, double angle2, double angle3, double angle4);
```

Purpose

Move all of the joints of a robot to the specified positions.

Return Value

The function returns 0 on success and non-zero otherwise.

angle1	The absolute position to move joint 1, expressed in degrees.
angle2	The absolute position to move joint 2, expressed in degrees.
angle3	The absolute position to move joint 3, expressed in degrees.
angle4	The absolute position to move joint 4, expressed in degrees.

Description

CMobot::moveTo()

This function moves all of the joints of a robot to the specified absolute positions.

CMobot::moveToNB()

This function moves all of the joints of a robot to the specified absolute positions.

The function moveToNB() is the non-blocking version of the moveTo() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the demo at Section 4.1.2 on page 17.

See Also

CMobot::moveJoint()
CMobot::moveJointNB()

Synopsis

#include <mobot.h>

int CMobot::moveJoint(robotJointId_t id, double angle);
int CMobot::moveJointNB(robotJointId_t id, double angle);

Purpose

Move a joint on the robot by a specified angle with respect to the current position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number to move.

angle The angle in degrees to move the motor relative to its current position.

Description

CMobot::moveJoint()

This function commands the motor to move by an angle relative to the joint's current position at the joints current speed setting. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJoint() function.

CMobot::moveJointNB()

This function commands the motor to move by an angle relative to the joint's current position at the joints current speed setting. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJointNB() function.

The function moveJointNB() is the non-blocking version of the moveJoint() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the example in Section 4.1.2 on page 17.

See Also

connectWithAddress()

CMobot::moveJointTo()
CMobot::moveJointToNB()

Synopsis

#include <mobot.h>

int CMobot::moveJointTo(robotJointId_t id, double angle);
int CMobot::moveJointToNB(robotJointId_t id, double angle);

Purpose

Move a joint on the robot to an absolute position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number to wait for.

angle The absolute angle in degrees to move the motor to.

Description

CMobot::moveJointTo()

This function commands the motor to move to a position specified in radians at the current motor's speed. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJointTo() function.

CMobot::moveJointToNB()

This function commands the motor to move to a position specified in radians at the current motor's speed. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJointToNB() function.

The function moveJointToNB() is the non-blocking version of the moveJointTo() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the example in Section 4.1.2 on page 17.

See Also

connectWithAddress()

CMobot::moveJointWait()

Synopsis

#include <mobot.h>

int CMobot::moveJointWait(robotJointId_t id);

Purpose

Wait for a joint to stop moving.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number to wait for.

Description

This function is used to wait for a joint motion to finish. Functions such as moveNB() and moveJointNB() do not wait for a joint to finish moving before continuing to allow multiple joints to move at the same time. The moveJointWait() function is used to wait for a robotic joint motion to complete.

Please note that if this function is called after a motor has been commanded to turn indefinitely, this function may never return and your program may hang.

Example

Please see the example in Section 4.1.2 on page 17.

See Also

moveWait()

CMobot::moveWait()

Synopsis

#include <mobot.h>
int CMobot::moveWait();

Purpose

Wait for all joints to stop moving.

Return Value

The function returns 0 on success and non-zero otherwise.

Description

This function is used to wait for all joint motions to finish. Functions such as move() and moveTo() do not wait for a joint to finish moving before continuing to allow multiple joints to move at the same time. The moveWait() function is used to wait for robotic motions to complete.

Please note that if this function is called after a motor has been commanded to turn indefinitely, this function may never return and your program may hang.

Example

See the sample program in Section 4.1.2 on page 17.

See Also

moveWait(), moveJointWait()

CMobot::moveToZero()
CMobot::moveToZeroNB()

Synopsis

```
#include <mobot.h>
int CMobot::moveToZero();
int CMobot::moveToZeroNB();
```

Purpose

Move all of the joints of a robot to their zero position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

CMobot::moveToZero()

This function moves all of the joints of a robot to their zero position.

CMobot::moveToZeroNB()

This function moves all of the joints of a robot to their zero position.

The function moveToZeroNB() is the non-blocking version of the moveToZero() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the demo at Section 4.1.2 on page 17.

See Also

CMobot::setJointSpeed()

Synopsis

```
#include <mobot.h>
int CMobot::setJointSpeed(robotJointId_t id, double speed);
```

Purpose

Set the speed of a joint on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

id The joint number to pose.

speed An variable of type double for the requested average angular speed in degrees per second.

Description

This function is used to set the angular speed of a joint of a robot. The maximum possible angular speed for a particular joint may be obtained by using the function getJointMaxSpeed().

Example

See Also

CMobot::setJointSpeedRatio()

Synopsis

#include <mobot.h>

int CMobot::setJointSpeedRatio(robotJointId_t id, double ratio);

Purpose

Set the speed ratio settings of a joint on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

Set the speed ratio setting of this joint. This is an enumerated type discussed in Section A.1 on page 44.

ratio A variable of type double with a value from 0 to 1.

Description

This function is used to set the speed ratio setting of a joint. The speed ratio setting of a joint is the percentage of the maximum joint speed, and the value ranges from 0 to 1. In other words, if the ratio is set to 0.5, the joint will turn at 50% of its maximum angular velocity while moving continuously or moving to a new goal position.

Example

See Also

setJointSpeeds(), setJointSpeedRatio(), getJointSpeed()

CMobot::setJointSpeedRatios()

Synopsis

#include <mobot.h>

int CMobot::setJointSpeedRatios(double ratio1, double ratio2, double ratio3, double ratio4);

Purpose

Set the speed ratio settings of all joints on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

```
ratio1 The speed ratio setting for the first joint.ratio2 The speed ratio setting for the second joint.
```

ratio3 The speed ratio setting for the third joint.

ratio4 The speed ratio setting for the fourth joint.

Description

This function is used to simultaneously set the angular speed ratio settings of all four joints of a robot. The speed ratio is a percentage of the maximum speed of a joint, expressed in a value from 0 to 1.

Example

See Also

getJointSpeeds(), setJointSpeed(), getJointSpeed()

CMobot::setJointSpeeds()

Synopsis

#include <mobot.h>

int CMobot::setJointSpeeds(double speed1, double speed2, double speed3, double speed4);

${f Purpose}$

Set the speed settings of all joints on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

 ${\tt speed1}$ $\,$ The speed for the first joint, in degrees per second.

 ${\tt speed2}$. The speed for the second joint, in degrees per second.

speed3 The speed for the third joint, in degrees per second.

speed4 The speed for the fourth joint, in degrees per second.

Description

This function is used to simultaneously set the angular speed settings of all four joints of a robot.

Example

See Also

getJointSpeeds(), setJointSpeed(), getJointSpeed()

CMobot::setTwoWheelRobotSpeed()

Synopsis

#include <mobot.h>

int CMobot::setTwoWheelRobotSpeed(double speed, double radius);

Purpose

Roll the robot at a certain speed in a straight line.

Return Value

The function returns 0 on success and non-zero otherwise.

speed The speed at which to roll the robot. The units used will be the units specified in the unit parameter.

radius The radius of the wheels attached to the robot. The units of the parameter should match the units provided in the unit parameter.

```
speed radius

cm/s cm
m/s m
inch/s inch
foot/s foot
```

Description

This function is used to make a two wheeled robot roll at a certain speed. The desired speed and radius of the wheels is provided and the function will rotate the wheels at the appropriate rate in order to achieve the desired speed.

Example

See Also

CMobot::stop()

Synopsis

```
#include <mobot.h>
int CMobot::stop();
```

Purpose

Stop all current motions on the robot.

Return Value

The function returns 0 on success and non-zero otherwise.

Description

This function stops all currently occurring movements on the robot. Internally, this function simply sets all motor speeds to zero. If it is only required to stop a single motor, use the setJointSpeed() function to set the motor's speed to zero.

Example

See Also

setJointSpeed(), setJointSpeeds()

C CMobotGroup API

The CMobotGroup class is used to control multiple modules simultaneously. The member functions of the CMobotGroup class closely mimic those of the CMobot group. The main difference is that the member functions of the CMobot class affect a single robot, whereas the member functions of the CMobotGroup class move and affect a group of many robots.

 ${\bf Table~3:~CMobotGroup~Member~Functions.}$

Function	Description
CMobotGroup()	The CMobotGroup constructor function. This function is called automat-
-	ically and should not be called explicitly.
~CMobotGroup()	The CMobotGroup destructor function. This function is called automati-
	cally and should not be called explicitly.
addRobot()	Add a robot to be a member of the robot group.
move()	Move all four joints of the robots by specified angles.
moveNB()	Identical to move() but non-blocking.
<pre>moveContinuousNB()</pre>	Move joints continuously. Joints will move untill stopped.
<pre>moveContinuousTime()</pre>	Move joints continuously for a certain amount of time.
<pre>moveJointContinuousNB()</pre>	Move a single joint on all robots continuously.
<pre>moveJointContinuousTime()</pre>	Move a single joint on all robots continuously for a specific amount of time.
moveTo()	Move all four joints of the robots to specified absolute angles.
moveToNB()	Identical to moveTo() but non-blocking.
<pre>moveJoint()</pre>	Move a motor from its current position by an angle.
<pre>moveJointNB()</pre>	Identical to moveJoint() but non-blocking.
<pre>moveJointTo()</pre>	Set the desired motor position for a joint.
moveJointToNB()	Identical to moveJointTo() but non-blocking.
<pre>moveJointWait()</pre>	Wait until the specified motor has stopped moving.
<pre>moveWait()</pre>	Wait until all motors have stopped moving.
moveToZero()	Instructs all motors to go to their zero positions.
moveToZeroNB()	Identical to moveToZero() but non-blocking.
setJointSpeed()	Set a motor's speed setting in radians per second.
setJointSpeeds()	Set all motor speeds in radians per second.
setJointSpeedRatio()	Set a joints speed setting to a fraction of its maximum speed, a value
	between 0 and 1.
setJointSpeedRatios()	Set all joint speed settings to a fraction of its maximum speed, expressed
	as a value from 0 to 1.
setTwoWheelRobotSpeed()	Move the robot at a constant forward velocity.
stop()	Stop all currently executing motions of the robot.

 ${\bf Table\ 4:\ CMobotGroup\ Member\ Functions\ for\ Compound\ Motions.}$

Compound Motions	These are convenience functions of commonly used compound motions.
<pre>motionArch()</pre>	Move the robot into an arched configuration.
<pre>motionArchNB()</pre>	Identical to motionArch() but non-blocking.
<pre>motionInchwormLeft()</pre>	Inchworm motion towards the left.
<pre>motionInchwormLeftNB()</pre>	Identical to motionInchwormLeft() but non-blocking.
<pre>motionInchwormRight()</pre>	Inchworm motion towards the right.
<pre>motionInchwormRightNB()</pre>	Identical to motionInchwormRight() but non-blocking.
<pre>motionRollBackward()</pre>	Roll on the faceplates toward the backward direction.
<pre>motionRollBackwardNB()</pre>	Identical to motionRollBackward() but non-blocking.
<pre>motionRollForward()</pre>	Roll on the faceplates forwards.
<pre>motionRollForwardNB()</pre>	Identical to motionRollForward() but non-blocking.
<pre>motionSkinny()</pre>	Move the robot into a skinny configuration.
motionSkinnyNB()	Identical to motionSkinnyNB() but non-blocking.
motionStand()	Stand the robot up on its end.
<pre>motionStandNB()</pre>	Identical to motionStandNB() but non-blocking.
<pre>motionTumble()</pre>	Tumble the robot end over end.
<pre>motionTumbleNB()</pre>	Identical to motionTumbleNB() but non-blocking.
<pre>motionTurnLeft()</pre>	Rotate the robot counterclockwise.
<pre>motionTurnLeftNB()</pre>	Identical to motionTurnLeft() but non-blocking.
<pre>motionTurnRight()</pre>	Rotate the robot clockwise.
<pre>motionTurnRightNB()</pre>	Identical to motionTurnRight() but non-blocking.
motionUnstand()	Move a robot currently standing on its end down into a prone position.
<pre>motionUnstandNB()</pre>	Identical to motionUnstand() but non-blocking.
<pre>motionWait()</pre>	Wait for preprogrammed robotic motions to complete.

CMobotGroup::addRobot()

Synopsis

```
#include <mobot.h>
int CMobotGroup::addRobot(CMobot &robot);
```

Purpose

Add a robot to a robot group.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

A robot handle attached to the robot to add to the group.

Description

This function is used to add a robot to a robot group.

Example

See Also

CMobotGroup::motionArch()
CMobotGroup::motionArchNB()

Synopsis

#include <mobot.h>

int CMobotGroup::motionArch(double angle);
int CMobotGroup::motionArchNB(double angle);

Purpose

Arch the robots in the group for more ground clearance.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle which to arch. This number can range from 0 degrees, which is no arch, to 180 degrees, which is a fully curled up position.

Description

CMobot::motionArch()

This function causes the robots to Arch up for better ground clearance while rolling.

CMobot::motionArch()

This function causes the robots to Arch up for better ground clearance while rolling.

This function has both a blocking and non-blocking version. The blocking version, motionArch(), will block until the robot motion has completed. The non-blocking version, motionArchNB(), will return immediately, and the motion will be performed asynchronously.

CMobotGroup::motionInchwormLeft()
CMobotGroup::motionInchwormLeftNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::motionInchwormLeft(int num);
int CMobotGroup::motionInchwormLeftNB(int num);
```

Purpose

Make all robots in the group perform the inch-worm gait to the left.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

num The number of times to perform the inchworm gait.

Description

CMobot::motionInchwormLeft()

This function causes the robots to perform a single cycle of the inchworm gait to the left.

CMobot::motionInchwormLeftNB()

This function causes the robots to perform a single cycle of the inchworm gait to the left.

The function motionInchwormLeft() is blocking, and the function will hang until the motion has finished. The alternative function, motionInchwormLeftNB() will return immediately, and the motion will execute asynchronously.

See Also

motionInchwormRight()

CMobotGroup::motionInchwormRight()
CMobotGroup::motionInchwormRightNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::motionInchwormRight(int num);
int CMobotGroup::motionInchwormRightNB(int num);
```

Purpose

Make all the robots in the group perform the inch-worm gait to the right.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

num The number of times to perform the inchworm gait.

Description

CMobot::motionInchwormRight()

This function causes the robots to perform a single cycle of the inchworm gait to the right.

CMobot::motionInchwormRightNB()

This function causes the robots to perform a single cycle of the inchworm gait to the right.

This function has both a blocking and non-blocking version. The blocking version, motionInchwormRight(), will block until the robot motion has completed. The non-blocking version, motionInchwormRightNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionInchwormLeft()

CMobotGroup::motionRollBackward()
CMobotGroup::motionRollBackwardNB()

Synopsis

#include <mobot.h>

int CMobotGroup::motionRollBackward(double angle);
int CMobotGroup::motionRollBackwardNB(double angle);

Purpose

Use the faceplates as wheels to roll all the robots in a group backward.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle to turn the wheels, specified in degrees.

Description

CMobot::motionRollBackward()

This function causes each of the faceplates to rotate 90 degrees to roll the robots backward.

CMobot::motionRollBackwardNB()

This function causes each of the faceplates to rotate 90 degrees to roll the robots backward.

This function has both a blocking and non-blocking version. The blocking version, motionRollBackward(), will block until the robot motion has completed. The non-blocking version, motionRollBackwardNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionRollForward()

CMobotGroup::motionRollForward()
CMobotGroup::motionRollForwardNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::motionRollForward(double angle);
int CMobotGroup::motionRollForwardNB(double angle);
```

${f Purpose}$

Use the faceplates as wheels to roll robots forward.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle to turn the wheels, specified in degrees.

Description

CMobot::motionRollForward()

This function causes each of the faceplates to rotate 90 degrees to roll the robots forward.

CMobot::motionRollForwardNB()

This function causes each of the faceplates to rotate 90 degrees to roll the robots forward.

This function has both a blocking and non-blocking version. The blocking version, motionRollForward(), will block until the robot motion has completed. The non-blocking version, motionRollForwardNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionRollBackward()

CMobotGroup::motionSkinny()
CMobotGroup::motionSkinnyNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::motionSkinny(double angle);
int CMobotGroup::motionSkinnyNB(double angle);
```

Purpose

Move the robots in the group into a skinny profile.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle in degrees to move the joints. A value of zero means a completely flat profile, while a value of 90 degrees means a fully skinny profile.

Description

CMobot::motionSkinny()

This function makes the robots assume a skinny rolling profile.

CMobot::motionSkinnyNB()

This function makes the robots assume a skinny rolling profile.

This function has both a blocking and non-blocking version. The blocking version, motionSkinny(), will block until the robot motion has completed. The non-blocking version, motionSkinnyNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobotGroup::motionStand()
CMobotGroup::motionStandNB()

Synopsis

#include <mobot.h>
int CMobotGroup::motionStand();
int CMobotGroup::motionStandNB();

Purpose

Stand robots up on a faceplate.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

CMobot::motionStand()

This function causes the robots to stand up into the camera platform.

CMobot::motionStandNB()

This function causes the robots to stand up into the camera platform.

This function has both a blocking and non-blocking version. The blocking version, motionStand(), will block until the robot motion has completed. The non-blocking version, motionStandNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobotGroup::motionTumble()
CMobotGroup::motionTumbleNB()

Synopsis

#include <mobot.h>
int CMobotGroup::motionTumble(int num);
int CMobotGroup::motionTumbleNB(int num);

Purpose

Make the robots in the group tumble end over end.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

num The number of times to tumble.

Description

CMobot::motionTumble()

This causes the robot to tumble end over end. The argument, num, indicates the number of times to tumble.

CMobot::motionTumbleNB()

This causes the robot to tumble end over end. The argument, num, indicates the number of times to tumble.

This function has both a blocking and non-blocking version. The blocking version, motionTumble(), will block until the robot motion has completed. The non-blocking version, motionTumbleNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobotGroup::motionTurnLeft()
CMobotGroup::motionTurnLeftNB()

Synopsis

#include <mobot.h>

int CMobotGroup::motionTurnLeft(double angle);
int CMobotGroup::motionTurnLeftNB(double angle);

Purpose

Rotate the robots using the faceplates as wheels.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle in degrees to turn the wheels. The wheels will turn in opposite directions by the amount specifid by this argument in order to turn the robot to the left.

Description

This function causes the robots to rotate the faceplates in opposite directions to cause the robot to rotate counter-clockwise.

This function has both a blocking and non-blocking version. The blocking version, motionTurnLeft(), will block until the robot motion has completed. The non-blocking version, motionTurnLeftNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionTurnRight()

CMobotGroup::motionTurnRight() CMobotGroup::motionTurnRightNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::motionTurnRight(double angle);
int CMobotGroup::motionTurnRightNB(double angle);
```

Purpose

Rotate the robots using the faceplates as wheels.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle The angle in degrees to turn the wheels. The wheels will turn in opposite directions by the amount specifid by this argument in order to turn the robot to the right.

Description

This function causes the robots to rotate the faceplates in opposite directions to cause the robot to rotate clockwise.

This function has both a blocking and non-blocking version. The blocking version, motionTurnRight(), will block until the robot motion has completed. The non-blocking version, motionTurnRightNB(), will return immediately, and the motion will be performed asynchronously.

See Also

motionTurnLeft()

CMobotGroup::motionUnstand()
CMobotGroup::motionUnstandNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::motionUnstand();
int CMobotGroup::motionUnstandNB();
```

Purpose

Move robots currently standing on a faceplate back down into a prone position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

CMobot::motionUnstand()

This function causes the robot to move down from the camera platform.

CMobot::motionUnstandNB()

This function causes the robot to move down from the camera platform.

This function has both a blocking and non-blocking version. The blocking version, motionUnstand(), will block until the robot motion has completed. The non-blocking version, motionUnstandNB(), will return immediately, and the motion will be performed asynchronously.

See Also

CMobotGroup::motionWait()

Synopsis

#include <mobot.h>

int CMobotGroup::motionWait();

Purpose

Wait for a preprogrammed robotic motion to finish.

Return Value

The function returns 0 on success and non-zero otherwise.

Description

This function is used to wait for a preprogrammed motion to finish. Functions such as motionInchwormLeftNB() and motionRollForwardNB() do not wait for the motion to finish moving before continuing. The motionWait() function is used to wait for preprogrammed motions to complete. See Section 6 for a list of all preprogrammed robotic motions.

Example

See the sample program in Section 4.1.2 on page 17.

See Also

motionWait(), moveJointWait()

CMobotGroup::move()
CMobotGroup::moveNB()

Synopsis

#include <mobot.h>

int CMobotGroup::move(double angle1, double angle2, double angle3, double angle4);
int CMobotGroup::moveNB(double angle1, double angle2, double angle3, double angle4);

Purpose

Move all of the joints of robots in a group by specified angles.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle1	The amount to move joint 1, expressed in degrees relative to the
	current position.
angle2	The amount to move joint 2, expressed in degrees relative to the
	current position.
angle3	The amount to move joint 3, expressed in degrees relative to the
	current position.
angle4	The amount to move joint 4, expressed in degrees relative to the
J	current position.

Description

CMobot::move()

This function moves all of the joints of a robot by the specified number of degrees from their current positions.

CMobot::moveNB()

This function moves all of the joints of a robot by the specified number of degrees from their current positions.

The function moveNB() is the non-blocking version of the move() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more information on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

See Also

CMobotGroup::moveContinuousNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::moveContinuousNB(
  robotJointState_t dir1,
  robotJointState_t dir2,
  robotJointState_t dir3,
  robotJointState_t dir4);
```

Purpose

Move the joints of grouped robots continuously in the specified directions.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

Each integer parameter specifies the direction the joint should move. The types are enumerated in mobot.h and have the following values:

Value	Description
ROBOT_NEUTRAL	This value indicates that the joint is not moving and is not actuated. The
	joint is freely backdrivable.
ROBOT_FORWARD	This value indicates that the joint is currently moving forward.
ROBOT_BACKWARD	This value indicates that the joint is currently moving backward.
ROBOT_HOLD	This value indicates that the joint is currently not moving and is holding
	its current position. The joint is not currently backdrivable.

More documentation about these types may be found at Section A.2 on page 44.

Description

This function causes joints of robots to begin moving at the previously set speed. The joints will continue moving until the joint hits a joint limit, or the joint is stopped by setting the speed to zero. This function is a non-blocking function.

Example

See Also

CMobotGroup::moveContinuousTime()

Synopsis

#include <mobot.h>

Purpose

Move the joints of robots continuously in the specified directions.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

Each of the direction parameters, dir1, dir2, dir3, and dir4, specifies the direction the joint should move. The types are enumerated in mobot.h and have the following values:

Value	Description
ROBOT_NEUTRAL	This value indicates that the joint is not moving and is not actuated. The
	joint is freely backdrivable.
ROBOT_FORWARD	This value indicates that the joint is currently moving forward.
ROBOT_BACKWARD	This value indicates that the joint is currently moving backward.
ROBOT_HOLD	This value indicates that the joint is currently not moving and is holding
	its current position. The joint is not currently backdrivable.

The msecs parameter is the time to perform the movement, in milliseconds.

Description

This function causes joints of robots to begin moving. The joints will continue moving until the joint hits a

joint limit, or the time specified in the msecs parameter is reached. This function will block until the motion is completed.

Example

See Also

CMobotGroup::moveTo()
CMobotGroup::moveToNB()

Synopsis

#include <mobot.h>

int CMobotGroup::moveTo(double angle1, double angle2, double angle3, double angle4);
int CMobotGroup::moveToNB(double angle1, double angle2, double angle3, double angle4);

Purpose

Move all of the joints of robots in the group to the specified positions.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

angle1	The absolute position to move joint 1, expressed in degrees.
angle2	The absolute position to move joint 2, expressed in degrees.
angle3	The absolute position to move joint 3, expressed in degrees.
angle4	The absolute position to move joint 4, expressed in degrees.

Description

CMobot::moveTo()

This function moves all of the joints of robots in the group to the specified absolute positions.

CMobot::moveToNB()

This function moves all of the joints of robots in the group to the specified absolute positions.

The function moveTo() is a blocking function, which means that the function will not return until the commanded motion is completed. The function moveToNB() is the non-blocking version of the moveTo() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the demo at Section 4.1.2 on page 17.

See Also

CMobotGroup::moveJoint()
CMobotGroup::moveJointNB()

Synopsis

```
#include <mobot.h>
int CMobotGroup::moveJoint(robotJointId_t id, double angle);
int CMobotGroup::moveJointNB(robotJointId_t id, double angle);
```

Purpose

Move a joint on the robots in the group by a specified angle with respect to the current position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number to wait for.

angle The angle in degrees to move the motor, relative to the current position.

Description

CMobot::moveJoint()

This function commands the motor to move by an angle relative to the joint's current position at the joints current speed setting. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJoint() function.

CMobot::moveJointNB()

This function commands the motor to move by an angle relative to the joint's current position at the joints current speed setting. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJointNB() function.

The function moveJoint() is a blocking function, which means that the function will not return until the commanded motion is completed. The function moveJointNB() is the non-blocking version of the moveJoint() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the example in Section 4.1.2 on page 17.

See Also

connectWithAddress()

CMobotGroup::moveJointTo()
CMobotGroup::moveJointToNB()

Synopsis

```
#include <mobot.h>
```

```
int CMobotGroup::moveJointTo(robotJointId_t id, double angle);
int CMobotGroup::moveJointToNB(robotJointId_t id, double angle);
```

Purpose

Move a joint on robots to an absolute position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number to wait for.angle The absolute angle in degrees to move the motor to.

Description

CMobot::moveJointTo()

This function commands the motor on robots in a group to move to a position specified in degrees at the current motor's speed. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJointTo() function.

CMobot::moveJointToNB()

This function commands the motor on robots in a group to move to a position specified in degrees at the current motor's speed. The current motor speed may be set with the setJointSpeed() member function. Please note that if the motor speed is set to zero, the motor will not move after calling the moveJointToNB() function.

The function moveJointTo() is a blocking function, which means that the function will not return until the commanded motion is completed. The function moveJointToNB() is the non-blocking version of the moveJointTo() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the example in Section 4.1.2 on page 17.

See Also

CMobotGroup::moveJointWait()

Synopsis

#include <mobot.h>

int CMobotGroup::moveJointWait(robotJointId_t id);

Purpose

Wait for a joint to stop moving on all robots in a group.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number to wait for.

Description

This function is used to wait for a joint motion to finish. Functions such as moveJointToNB() and moveJointNB() do not wait for a joint to finish moving before continuing to allow multiple joints to move at the same time. The moveWait() or moveJointWait() functions are used to wait for robotic joint motions to complete.

Please note that if this function is called after a motor has been commanded to turn indefinitely, this function may never return and your program may hang.

Example

Please see the example in Section 4.1.2 on page 17.

See Also

moveWait()

CMobotGroup::moveWait()

Synopsis

#include <mobot.h>

int CMobotGroup::moveWait();

Purpose

Wait for all joints of all robots in the group to stop moving.

Return Value

The function returns 0 on success and non-zero otherwise.

Description

This function is used to wait for all joint motions to finish. Functions such as moveJointToNB() and moveJointNB() do not wait for a joint to finish moving before continuing to allow multiple joints to move at the same time. The moveWait() or moveJointWait() functions are used to wait for robotic motions to complete.

Please note that if this function is called after a motor has been commanded to turn indefinitely, this function may never return and your program may hang.

Example

See the sample program in Section 4.1.2 on page 17.

See Also

moveWait(), moveJointWait()

CMobotGroup::moveToZero() CMobotGroup::moveToZeroNB()

Synopsis

#include <mobot.h>

int CMobotGroup::moveToZero();
int CMobotGroup::moveToZeroNB();

Purpose

Move all of the joints of robots in the group to their zero position.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

None.

Description

CMobot::moveToZero()

This function moves all of the joints of robots in the group to their zero position. Please note that this function is non-blocking and will return immediately. Use this function in conjunction with the moveWait() function to block until the movement completes.

CMobot::moveToZeroNB()

This function moves all of the joints of robots in the group to their zero position. Please note that this function is non-blocking and will return immediately. Use this function in conjunction with the moveWait() function to block until the movement completes.

The function moveToZero() is a blocking function, which means that the function will not return until the commanded motion is completed. The function moveToZeroNB() is the non-blocking version of the moveToZero() function, which means that the function will return immediately and the physical robot motion will occur asynchronously. For more details on blocking and non-blocking functions, please refer to Section 8 on page 30.

Example

Please see the demo at Section 4.1.2 on page 17.

See Also

CMobotGroup::setJointSpeed()

Synopsis

```
\vspace{-8pt}
#include <mobot.h>
int CMobotGroup::setJointSpeed(robotJointId_t id, double speed);
```

Purpose

Set the speed of a joint on all robots in the group.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

id The joint number to pose.

speed An variable of type double for the requested average angular speed in degrees per second.

Description

This function is used to set the angular speed of a joint of all robots in the group.

Example

See Also

CMobotGroup::setJointSpeedRatio()

Synopsis

```
#include <mobot.h>
```

int CMobotGroup::setJointSpeedRatio(robotJointId_t id, double ratio);

Purpose

Set the speed ratio settings of a joint on all robots in the group.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

Set the speed ratio setting of this joint. This is an enumerated type discussed in Section A.1 on page 44.

ratio A variable of type double with a value from 0 to 1.

Description

This function is used to set the speed ratio setting of a joint for all robots in the group. The speed ratio setting of a joint is the percentage of the maximum joint speed, and the value ranges from 0 to 1. In other words, if the ratio is set to 0.5, the joint will turn at 50% of its maximum angular velocity while moving continuously or moving to a new goal position.

Example

See Also

setJointSpeeds(), setJointSpeedRatio()

CMobotGroup::setJointSpeedRatios()

Synopsis

#include <mobot.h>

int CMobotGroup::setJointSpeedRatios(double ratio1, double ratio2, double ratio3, double ratio4);

Purpose

Set the speed ratio settings of all joints on the robots in the group.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

ratio1 The speed ratio setting for the first joint.

ratio2 The speed ratio setting for the second joint.

ratio3 The speed ratio setting for the third joint.

ratio4 The speed ratio setting for the fourth joint.

Description

This function is used to simultaneously set the angular speed ratio settings of all four joints of a robot for all robots in the group. The speed ratio is a percentage of the maximum speed of a joint, expressed in a value from 0 to 1.

Example

See Also

getJointSpeeds(), setJointSpeed(), getJointSpeed()

CMobotGroup::setJointSpeeds()

Synopsis

```
#include <mobot.h>
```

int CMobotGroup::setJointSpeeds(double speed1, double speed2, double speed3, double speed4);

Purpose

Set the speed settings of all joints on all robot in the group.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

```
speed1 The speed setting for the first joint, in units of degrees per second.
```

speed2 The speed setting for the second joint, in units of degrees per second.

speed3 The speed setting for the third joint, in units of degrees per second.

speed4 The speed setting for the fourth joint, in units of degrees per second.

Description

This function is used to simultaneously set the angular speed settings of all four joints of all robots in the group. The joint speeds are expressed in degrees per second.

Example

See Also

setJointSpeed()

CMobotGroup::setTwoWheelRobotSpeed()

Synopsis

#include <mobot.h>

int CMobotGroup::setTwoWheelRobotSpeed(double speed, double radius);

Purpose

Roll the robots in the group at a certain speed in a straight line.

Return Value

The function returns 0 on success and non-zero otherwise.

Parameters

speed The speed at which to roll the robot. The units used will be the units specified in the unit parameter.

radius The radius of the wheels attached to the robot. The units of the parameter should match the units provided in the unit parameter.

cm/s cm m/s m

inch/s inch foot/s foot

Description

This function is used to make a two wheeled robot roll at a certain speed. The desired speed and radius of

the wheels is provided and the function will rotate the wheels at the appropriate rate in order to achieve the desired speed.

Example

See Also

CMobotGroup::stop()

Synopsis

#include <mobot.h>
int CMobotGroup::stop();

Purpose

Stop all current motions on all robot in the group.

Return Value

The function returns 0 on success and non-zero otherwise.

Description

This function stops all currently occurring movements on the robot. Internally, this function simply sets all motor speeds to zero. If it is only required to stop a single motor, use the setJointSpeed() function to set the motor's speed to zero.

Example

See Also

setJointSpeed(), setJointSpeeds()

\mathbf{Index}

CMobot::connect(), 47	CMobot::setJointSpeed(), 66
CMobot::connectWithAddress(), 47	CMobot::setJointSpeedRatio(), 67
CMobot::disconnect(), 48	CMobot::setJointSpeedRatios(), 67
CMobot::getJointAngle(), 48	CMobot::setJointSpeeds(), 68
CMobot::getJointMaxSpeed(), 49	CMobot::setTwoWheelRobotSpeed(), 68
CMobot::getJointSpeed(), 49	CMobot::stop(), 69
2 (),	
CMobot::getJointSpeedRatio(), 49	CMobotGroup::addRobot(), 72 CMobotGroup::motionArch(), 72
CMobatuget LintSpeedRatios(), 50	CMobotGroup::motionArchNB(), 72
CMobot::getJointSpeeds(), 51 CMobot::getJointState(), 51	CMobotGroup::motionInchwormLeft(), 72
CMobot::isConnected(), 52	CMobotGroup::motionInchwormLeftNB(), 73
CMobot::isMoving(), 52	CMobotGroup::motionInchwormRight(), 73
CMobot::motionArch(), 53	
CMobot::motionArch(), 53 CMobot::motionArchNB(), 53	CMobotGroup::motionInchwormRightNB(), 73 CMobotGroup::motionRollBackward(), 74
CMobot::motionInchwormLeft(), 53	CMobotGroup::motionRollBackwardNB(), 74
CMobot::motionInchwormRight(), 53	CMobotGroup::motionRollForward(), 74
CMobot::motionInchwormRightNB(), 54	CMobotGroup::motionRollForwardNB(), 74 CMobotGroup::motionRollForwardNB(), 74
CMobot::motionRollBackward(), 54	CMobotGroup::motionRollrolward(VB(), 74 CMobotGroup::motionSkinny(), 75
CMobot::motionRollBackwardNB(), 54	CMobotGroup::motionSkinnyNB(), 75
CMobot::motionRollForward(), 55	CMobotGroup::motionStand(), 76
CMobot::motionRollForwardNB(), 55	CMobotGroup::motionStandNB(), 76
CMobot::motionKonry(), 56	CMobotGroup::motionTumble(), 76
CMobot::motionSkinnyNB(), 56	CMobotGroup::motionTumble(), 76 CMobotGroup::motionTumbleNB(), 76
CMobot::motionSkinnyNB(), 56 CMobot::motionStand(), 56	CMobotGroup::motionTurnLeft(), 77
CMobot::motionStand(), 56 CMobot::motionStandNB(), 56	CMobotGroup::motionTurnLeft(), 77 CMobotGroup::motionTurnLeftNB(), 77
CMobot::motionStandivB(), 50 CMobot::motionTumble(), 57	CMobotGroup::motionTurnRight(), 78
CMobot::motionTumble(), 57 CMobot::motionTumbleNB(), 57	CMobotGroup::motionTurnRightNB(), 78
CMobot::motionTurnLeft(), 58	CMobotGroup::motionUnstand(), 78
CMobot::motionTurnLeftNB(), 58	CMobotGroup::motionUnstandNB(), 78
CMobot::motionTurnRight(), 58	CMobotGroup::motionVait(), 79
CMobot::motionTurnRightNB(), 58	CMobotGroup::move(), 79
CMobot::motionUnstand(), 59	CMobotGroup::move(), 79 CMobotGroup::moveContinuousNB(), 80
CMobot::motionUnstandNB(), 59	CMobotGroup::moveContinuousTime(), 81
CMobot::motionVait(), 60	CMobotGroup::moveContinuous1inie(), 81 CMobotGroup::moveJoint(), 82
CMobot::move(), 60	CMobotGroup::moveJoint(), 82 CMobotGroup::moveJointNB(), 82
CMobot::moveContinuousNB(), 61	CMobotGroup::moveJointTo(), 82
CMobot::moveContinuousTime(), 61	CMobotGroup::moveJointToNB(), 83
CMobot::moveContinuous1ime(), 01 CMobot::moveJoint(), 63	CMobotGroup::moveJointVait(), 84
CMobot::moveJoint(), 63	CMobotGroup::moveNB(), 79
CMobot::moveJointTo(), 64	CMobotGroup::moveTo(), 82
CMobot::moveJointTo(), 64 CMobot::moveJointToNB(), 64	CMobotGroup::moveTo(), 82 CMobotGroup::moveToNB(), 82
CMobot::moveJointVoit(), 65	CMobotGroup::moveToVB(), 82 CMobotGroup::moveToZero(), 85
CMobot::moveOnit Wait(), 65 CMobot::moveNB(), 60	CMobotGroup::moveToZeroNB(), 85
CMobot::moveTo(), 60 CMobot::moveTo(), 62	CMobotGroup::moveWait(), 85
CMobot::moveToNB(), 62	CMobotGroup::setJointSpeed(), 86
CMobot::moveToNB(), 62 CMobot::moveToZero(), 66	CMobotGroup::setJointSpeedRatio(), 86
CMobot::moveToZeroNB(), 66	CMobotGroup::setJointSpeedRatios(), 80 CMobotGroup::setJointSpeedRatios(), 87
CMobot::moveToZeroNb(), 66 CMobot::moveWait(), 65	CMobotGroup::setJointSpeedratios(), 87 CMobotGroup::setJointSpeeds(), 88
Omoboumnove want(j , 00	OmobotGroup::setJointSpeeds(), 88

 $\begin{tabular}{ll} ${\rm CMobotGroup::setTwoWheelRobotSpeed(),~88}\\ ${\rm CMobotGroup::stop(),~89}\\ ${\rm copyright,~2}\\ \end{tabular}$

ROBOT_JOINT1, 44 ROBOT_JOINT2, 44 ROBOT_JOINT3, 44 ROBOT_JOINT4, 44 robot_joints_t, 44