Unsupervised Learning

Quiz, 5 questions

1	
point	

1.

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

Given historical weather records, predict if tomorrow's weather will be
sunny or rainy.

From the user usage patterns on a website, figure out what different
groups of users exist.

Given a set of news articles from many different news websites, find out
what are the main topics covered.

Given many emails, you want to determine if they are Spam or Non-
Spam emails.

1 point

2.

Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-2\\1\end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?

$$\bigcirc \quad c^{(i)} = 1$$

$$c^{(i)}$$
 is not assigned

$$\bigcirc \quad c^{(i)} = 3$$

$$c^{(i)} = 2$$

Unsupervised Learning

					_			
\cap	11	iz	5	aı	1651	tic	٦n	15

1 point

3.

K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?

- The cluster assignment step, where the parameters $c^{(i)}$ are updated.
- Test on the cross-validation set.

1 point

4.

Suppose you have an unlabeled dataset $\{x^{(1)}, \dots, x^{(m)}\}$. You run K-means with 50 different random

initializations, and obtain 50 different clusterings of the

data. What is the recommended way for choosing which one of

these 50 clusterings to use?

- For each of the clusterings, compute $\frac{1}{m} \sum_{i=1}^m \|x^{(i)} \mu_{c^{(i)}}\|^2$, and pick the one that minimizes this.
- The answer is ambiguous, and there is no good way of choosing.
- The only way to do so is if we also have labels $y^{(i)}$ for our data.
- Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.

1 point

5. Unsupervised Learning ing statements are true? Select all that apply. Quiz, 5 questions				
		K-Means will always give the same results regardless of the initialization of the centroids.		
		Once an example has been assigned to a particular centroid, it will never be reassigned to another different centroid		
		On every iteration of K-means, the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ (the distortion function) should either stay the same or decrease; in particular, it should not increase.		
		A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.		
		I, George Wolberg , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code		
		Submit Quiz		

