8. Aplicación Una compañía de concreto almacena las tres mezclas básicas, que se presentan a continuación. Las cantidades se miden en gramos y cada "unidad" de mezcla pesa 60 gramos. Puede formular mezclas especiales revolviendo combinaciones de las tres mezclas básicas; entonces las mezclas especiales posibles pertenecen al espacio generado por los tres vectores que representan las tres mezclas básicas.

	A	В	С
Cemento	20	18	12
Agua	10	10	10
Arena	20	25	15
Grava	10	5	15
Tobas	0	2	8

- a) ¿Se puede hacer una mezcla que consiste en 1000 g de cemento, 200 g de agua, 1000 g de arena, 500 g de grava y 300 g de tobas? ¿Por qué sí o por qué no? De ser posible, ¿cuántas unidades de cada una de las mezclas A, B y C se necesitan para formular la mezcla especial?
- b) Suponga que desea preparar 5 000 g de concreto con una razón de agua a cemento de 2 a 3 con 1 250 g de cemento. Si debe incluir 1 500 g de arena y 1 000 g de grava en las especificaciones, encuentre la cantidad de tobas para hacer 5 000 g de concreto. ¿Se puede formular ésta como una mezcla especial? De ser así, ¿cuántas unidades de cada mezcla se necesitan para formular la mezcla especial?

Nota. Este problema fue tomado de "Teaching Elementary Linear Algebra with MATLAB to Engineering Students" de Deborah P. Levinson, en *Proceedings of the Fifth International Conference on Technology in Collegiate Mathematics*, 1992.

9. Si nos fijamos únicamente en los coeficientes, es posible representar polinomios como vectores.

Sea
$$p(x) = 5x^3 + 4x^2 + 3x + 1$$
. $p(x)$ se puede representar como el vector $\mathbf{v} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 5 \end{pmatrix}$.

En esta representación, la primera componente es el término constante, la segunda componente es el coeficiente del término x, la tercera el coeficiente de x^2 y la cuarta el de x^3 .

- a) (Lápiz y papel) Explique por qué $\mathbf{u} = \begin{pmatrix} -5 \\ 3 \\ 0 \\ 1 \end{pmatrix}$ representa el polinomio $q(x) = x^3 + 3x 5$.
- b) Encuentre el polinomio r(x) = 2p(x) 3q(x). Encuentre el vector $\mathbf{w} = 2\mathbf{v} 3\mathbf{u}$ y explique por qué \mathbf{w} representa a r(x).

Para los incisos c) a e), primero represente cada polinomio por un vector como se describió. Después conteste las preguntas sobre el espacio generado como si se tratara de un conjunto de vectores.

c) En P_2 , ¿está p(x) = 2x - 1 en el espacio generado por $\{-5x^2 - 2, -6x^2 - 9x + 8, -x^2 - 7x + 9\}$? Si así es, escriba p(x) como una combinación de los polinomios en el conjunto. ¿Genera el conjunto de polinomios a todo P_2 ? ¿Por qué?