Thursday, July 22

- . Midterm solutions posted
- . Regrade requests open until class on Monday.
 - Two types:
 - Type 1: "What is wrong with my solution?"
 - Type 2: "I think I deserve more partial credit."

 Limit 1 per student (obesnit count if you get points back).

 Unlikely to work "No changes were made."

Theorem: If is continuous on a closed interval [a,b], then f is uniformly continuous on [a,b]. (cont. and unif. cont are equivalent notions on closed, bounded intervals) Proof: (Contradiction) Suppose f is continuous on [a,b], compact? but not uniformly continuous on [a,b]. Then there exists E>O, such that for any 8>0, there exist x,y \in [a,b] such that 1x-y1<8 but |f(x)-f(y)|≥ E. For each neIN, there exist $x_n, y_n \in [a,b]: |x_n-y_n| < \frac{1}{n}, |f(x_n)-f(y_n)| \ge \epsilon$ (Xn) has a convergent subsequence Xnk -> ale [a,b]. $|y_{nk}-\alpha| \leq |y_{nk}-x_{nk}| + |x_{nk}-\alpha| \Rightarrow y_{nk} \rightarrow \alpha$. $\lim_{k\to\infty} f(x_{nk}) - f(y_{nk}) = 0$ Contradiction. f(以)=立文.

> Consider f(x) = [x on [o, i]

Recall: intermediate value theorem:

f cont on [a,b] \Rightarrow for any y (strictly) between f(a) and f(b), there exists $x \in (a,b)$: f(x) = y.

Corollary (fixed point theorem)

If $f:[0,1] \rightarrow [0,1]$ is continuous,

then f has a fixed point,

i.e. there exists x ∈ [0,1] such that f(x)=x. a x

Proof: Define g(x) = f(x) - x. g is continuous.

Case 1: f(0)=0 or f(i)=1. Done.

Case 2: $f(0) \neq 0$, $f(1) \neq 1$. g(0) > 0 and g(1) < 0.

0 is between g(0) and g(1). By IVT, there

exists $x \in (0,1)$ such that $g(x) = 0 \Rightarrow f(x) = x$.

Lemma: If f is uniformly continuous on SER and (Sn) is a cauchy sequence in S, then (f(sn)) is Cauchy. (unif. court. functions preserve Cauchy property of sequences) Proof: Let E>O. There exists 870 such that $x,y \in S$, $|x-y| < \delta \Rightarrow |f(x)-f(y)| < \epsilon$. (*) Since (s_n) is Cauchy, there exists NEIN such that $m, n \ge N$ implies $|s_m-s_n| \le \delta \Rightarrow |f(s_m)-f(s_n)| \le \epsilon$ Def: Given a function f, we say that \tilde{f} is an extension of f if $dom(f) = dom(\tilde{f})$ and $\tilde{f}(x) = f(x)$ for all $x \in dom(f)$. Ex. f(x) = x sin(x) on (0,1]Consider $f(x) = \begin{cases} \chi \sin(x) & \chi \in (0,1] \\ \chi = 0 \end{cases}$ lim x sin(x) = 0 f is a continuous extension f is uniformly continuous.

 $E_{\frac{3}{5}}$ Look at $f(x) = \frac{1}{x}$ on $(0, \infty)$

Let $\varepsilon = \frac{1}{2}$.

Let x=1. $\delta=\frac{1}{3}$ works.

But for x= = ? 8= = doesn't work!

No 8 works for every x value!

Notion of uniform continuity.

regular continuity: for every x = dom(f), for every E>D

there exists 8>0 (depends on x) such that

 $y \in dom(f), |y-x|<\delta \Rightarrow |f(y)-f(x)|<\varepsilon.$

uniform continuity: for every $\varepsilon>0$, there exists $\delta>0$ such that $x,y\in dom(f),|y-x|<\delta \Rightarrow |f(y)-f(x)|<\varepsilon$.

Remark: uniform continuity implies regular continuity.

Claim: $f(x) = \frac{1}{x}$ is NOT uniformly continuous on $(0, \infty)$.

Proof: Let $\varepsilon = 1$ Let $\delta > 0$ Set $x = \delta$ $f(x) = \frac{1}{\delta}$.

We can find $y \in (0, 2\delta)$ very close to 0 so that f(y) will be very large. To be precise, consider $0 < y = \frac{\delta}{1+\delta} < x$. Then $|y-x| < \delta$, but |f(y) - f(x)| = 1 (not $< \varepsilon$).

Claim: $f(x) = \frac{1}{x}$ is uniformly continuous on $[a,\infty)$ for any a>0. Let $\epsilon>0$. Set $\delta=\epsilon \cdot a^2$. $|x-y|<\delta \implies |f(x)-f(y)|=|\frac{1}{x}-\frac{1}{y}|=|\frac{y-x}{xy}|\leq \frac{|y-x|}{a^2}<\epsilon$

Exercise: a) Show that $f(x) = x^2$ is NOT uniformly continuous on IR.
b) Show that $f(x) = x^2$ is uniformly continuous on any closed interval [a,b].

Preimages of functions.

$$f'(S) = \{x \in A : f(x) \in S\}$$

$$f^{-1}(\{1,\infty\}) = (-\infty,-1] \cup [1,\infty)$$

$$f^{-1}(\{0\}) = \{0\}$$

$$f^{-1}(\{-\infty,0\}) = \emptyset$$

Math 104 Worksheet 12 UC Berkeley, Summer 2021

Thursday, July 22

Let X and Y be two sets, and let $f: X \to Y$, let $E \subseteq X$, and let $A, B \subseteq Y$.

Exercise 1. Prove the following assertions.

(a)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Proof. $x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B \iff f(x) \in A \text{ and } f(x) \in B \iff x \in f^{-1}(A) \text{ and } x \in f^{-1}(B) \iff x \in f^{-1}(A) \cap f^{-1}(B).$

(b)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
.

$$f^{-1}(B)$$
. Subset of codomain $f^{-1}(A) = \begin{cases} x \in X : f(x) \in A \end{cases}$

(c)
$$f^{-1}(A^c) = (f^{-1}(A))^c$$
.

preimage of A

Subset of domain

$$f(E) = \{ f(x) : x \in E \}$$

(d)
$$f^{-1}(A) \subseteq f^{-1}(B)$$
 if $A \subseteq B$.

(e) E ⊆ f⁻¹(f(E))

(f) Find a counterexample to show that the statement $E = f^{-1}(f(E))$ is not always true.

Theorem (continuous extension theorem) A real-valued function f on (a,b) is uniformly continuous on (a,b) if and only if it can be extended to a continuous function on [a,b]. f cont on [a,b] => f unif cont on [a,b] => f unif cont on (a,b) Proof: (=) \Rightarrow 1 Suppose f is uniformly continuous on (a,b).

We want to define values for f(a) and f(b). Let $(S_n) \subseteq (a,b)$, $S_n \to a = (S_n)$ is Cauchy $\Rightarrow (f(S_n))$ is Cauchy. \Rightarrow (f(s_n)) converges, f(s_n) \rightarrow d. Set $\tilde{f}(\alpha) = \alpha$. Need to prove that \tilde{f} is continuous at α . It suffices to show that for any (tn) = (a,b) such that t_>a, we have f(tn) -> a. Consider

 $(u_n) = (s_1, t_1, s_2, t_2, s_3, t_3, ...) \rightarrow \alpha.$ $(u_n) \text{ is Cauchy} \Rightarrow (f(u_n)) \text{ converges} \Rightarrow f(u_n) \rightarrow \alpha \Rightarrow f(t_n) \rightarrow \alpha.$ Do the same for $\tilde{f}(b)$. $(f(s_n)) \text{ is a subseq. of } (f(u_n))$ which conv. to α .