ETESP

QUÍMICA GERAL

TABELA PERIÓDICA

ORGANIZAÇÃO, CLASSIFICAÇÃO

PROPRIEDADES

METAIS DE TRANSIÇÃO EXTERNA E INTERNA

de

| ELEMENTOS NATURAIS E SINTÉTICOS

| ELEMENTOS NATURAIS

São os elementos químicos encontrados na natureza.

| ELEMENTOS SINTÉTICOS

São os elementos químicos cujos átomos são produzidos artificialmente, é a chamada sintese em laboratório.

A Tabela Periódica conta com 92 elementos naturais, sendo o de maior número atômico o urânio (Z = 92), os outros são sintéticos e se classificam em duas categorias:

Cisurânicos: elementos sintéticos que possuem número atômico inferior a 92 e não são encontrados na natureza, ou são encontrados em quantidades tão pequenas que precisam ser sintetizados.

Transurânicos: elementos com número atômico superior a 92.

QUÍMICA GERALI PROFESSOR JOTA | ESCOLA FÉCIRCA ESTABUAL DE SÃO PAULO

QUÍMICA GERALI PROFESSORJOTA I ESCOLA TÉCRICA ESTADUAL DE SÃO PAULO

| ELEMENTOS TRANSURÂNICOS

Elementos com número atômico superior a 92.

partículas de núcleos atômicos estáveis, de elementos que não são naturalmente radioativos. Assim, eles sofrem transmutação e se

transformam em outros elementos.

WICA GENALL PROFESSORIJOTA | ESCOLA FECNICA ESTADUAL DE SAO PAULO

Edwin M. McMillan e Philip H. Abelson em 1940 bombardearam o núcleo do urânio-238 com um feixe de nêutrons; e o resultado foi a obtenção do primeiro elemento transurânico, o netúnio (Np), com número atômico 93:

$$_{92}^{238}U + _{0}{}^{1}n \rightarrow _{93}{}^{239}Np + _{-1}{}^{0}\beta$$

| ELEMENTOS TRANSURÂNICOS

Nesse caso, os nêutrons não possuem carga, portanto seu bombardeamento ocorre com maior facilidade, não sofrendo repulsão por parte do núcleo, que é carregado positivamente. No entanto, como as pesquisas para obtenção de elementos transurânicos foram se aprofundando, outras partículas (como as partículas alfa, os dêuterons e os prótons) passaram a ser usados como projéteis nesses bombardeamentos. Mas como elas possuem carga positiva, é necessário o uso de um acelerador de partícula, que aumenta as suas velocidades a fim de romper as forças de repulsão com o núcleo.

Assim, com o auxílio dos aceleradores de partículas, possibilitou-se a produção de vários elementos artificiais com números atômicos mais elevados. No mesmo ano de 1940 foi produzido outro elemento transurânico, o plutônio (Pu), com número atômico 94,

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

QUÍMICA GERALI, PROFESSOR JOTA I, ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

Lil

QUÍMICA GERALI PROFESSOR JOTA I ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

leitura complementar

Materiais diamagnéticos

Quando um material diamagnético é colocado na presença de um campo magnético externo, estabelece-se em seu interior outro campo magnético em sentido oposto ao qual ele foi submetido e que desaparece quando o campo externo é removido. É o mesmo que dizer que esse tipo de material é repelido pelo campo magnético.

Todos os materiais podem ser considerados diamagnéticos, porém essa característica é insignificante quando o material é ferromagnético ou paramagnético. Macroscopicamente, esses materiais são caracterizados por não serem atraídos pelos ímãs. Alguns exemplos são a água, madeira, plástico e alguns metais, como o mercúrio, o ouro e a prata.

Materiais Paramagnéticos

Os materiais paramagnéticos são aqueles que têm seus momentos angulares alinhados ao serem colocados nas proximidades de um campo magnético. Esse alinhamento ocorre paralelamente ao campo magnético externo e faz com que o material se comporte da mesma forma que o ímã normal. Sendo assim, eles são atraídos pelos ímãs e passam a ter as mesmas características que eles. Entretanto, quando o campo externo é retirado, o material perde suas propriedades magnéticas e volta "a comportar-se normalmente". xemplos: alumínio, sódio, magnésio e cálcio.

Materiais Ferromagnéticos

São classificados como **ferromagnéticos** os materiais que possuem **memória magnética**, isto é, quando são submetidos a um campo magnético extemo, eles têm seus momentos angulares alinhados e passam a comportar-se da mesma forma que o ímã. Além disso, essas características permanecem mesmo após o ímã ser removido. Alguns exemplos são o ferro, níquel, cobalto e algumas ligas.

Tabela Periódica

leitura complementar

Então podemos dizer que tais propriedades são determinadas por diferentes fatores, como por exemplo, sua composição química ou a maneira como seus átomos se organizam, entre outras. O tipo de átomo é um dos fatores determinantes para a magnetização do material. Sabemos que os elétrons contribuem para a magnetização dos átomos com seu spin e seu movimento ao redor do núcleo fazendo com que cada átomo se comporte como um pequeno ímã.

Quando se trata de materiais diamagnéticos, os spins não contribuem para o campo magnético, pois seus elétrons sempre aparecem em pares com spins opostos. O único efeito magnético se dá em razão do movimento dos elétrons em torno do núcleo, que é análogo ao campo gerado por uma espira percorrida por corrente.

Quando colocados na presença de um campo magnético externo, os materiais diamagnéticos se magnetizam de forma a criar um campo magnético contrário ao campo magnético externo. Dessa forma, os diamagnéticos são repelidos por um ímã e apresentam um campo magnético no seu interior bem menor do que o campo magnético externo que foi aplicado.

Esse efeito foi descoberto por **Faraday** que o chamou de diamagnetismo. Sendo assim, alguns materiais diamagnéticos apresentam a propriedade de supercondutividade, quando resfriados a temperaturas muito baixas. Nesses materiais, a resistência elétrica é nula, o que faz com que uma corrente elétrica possa circular sem perda de energia.

IUPAC (União Internacional de Química Pura e Aplicada)

1								LTA	BELA P	raión	ICV						18
1 H hidrogénio 1,008	2							1 171				13	14	15	16	17	2 He hélio 4,0026
J Li litio 6,94	Be berilio 9,0122				i ii	-nome	quimico					5 B boro 10,81	C carbono 12,011	7 N nitrogênio 14,007	8 O exigênio 15,999	9 F flüor 18,998	Ne neónic 20,180
Na sódio 22,990	Mg magnésio 24,305	3	4	5	6	peso	atômico ;===	9	10	11	12	Al aluminio 26,982	Si silicio 28,085	15 P 15/sforo -3/,974	16 S enxofre 32,06	CI clore 35,45	Ar argóni 39,95
19 K potássio 39,098	20 Ca cálcio 40,078(4)	Sc escandio 44,956	22 Ti titinio 47,867	V Vanádio 50,942	Cr crómio 51,996	Mn manganés 54,938	26 Fe ferro 55,845(2)	27 Co cobalto 58,933	Ni niquel 58,693	29 Cu cobre 63,546(3)	30 Zn zinco 65,38(2)	31 Ga gálio 69,723	32 Ge germánio 72,630(8)	33 As srsénio 74,922	34 Se selénio 78,971(8)	35 Br bromo 79,904	36 Kr criptón 83,798(
Rb rubidio 85,468	38 Sr estrôncio 87,62	39 Y 87 88,906	40 Zr zircônio 91,224(2)	Nb nióbio 92,906	Mo molibdênio 95,95	TC tecnécio	44 Ru ruténio 101,07(2)	45 Rh ródio 102,91	Pd paládio 106,42	Ag prata 107,87	Cd cádmio 112,41	49 In indio 114,82	Sn estanho 118,71	Sb antimónio 121,76	52 Te telúrio 127,60(3)	53 iodo 126,90	54 Xe xenôn 131,2
55 Cs césio 132,91	56 Ba bário 137,33	57 a 71	72 Hf háfnio 178,486(6)	73 Ta tántalo 180,95	74 W tungstěnio 183,84	75 Re rénio 186,21	76 Os ósmio 190,23(3)	77 Ir iridio 192,22	78 Pt platina 195,08	79 Au ouro 196,97	Hg mercurio 200,59	81 TI tálio 204,38	82 Pb chumbo 207,2	Bi bismuto 208,98	Po polônio	At astato	Rn radón
87 Fr frâncio	Ra rádio	89 a 103	104 Rf rutherfórdio	Db dúbnio	Sg seaborgio	Bh bóhrío	108 HS hássio	Mt meitnério	DS darmstädtio	Rg roentgénio	Cn copernicio	Nh nhônio	FI fieróvio	MC moscóvio	116 Lv livermório	TS tennesso	Og oganess
	at se		57 La lantinio 138,91	58 Ce olrio 140,12	59 Pr praseodimio 140,91	60 Nd neodimio 144,24	61 Pm promécio	62 Sm samário 150,36(2)	63 Eu európio 151,96	64 Gd gadolinio 157,25(3)	65 Tb térbio 158,93	66 Dy disprosio 162,50	67 Ho hôlmio 164,93	68 Er érbio 167,26	69 Tm 1050 168,93	70 Yb itérbio 173,05	71 Lu lutécie 174,97
			AC actinio	90 Th tório 232,04	Pa protactinio 231,04	92 U uranio 238,03	93 Np neptunio	94 Pu plutónio	95 Am americio	96 Cm cúrio	97 Bk berquélio	98 Cf califórnio	99 Es einstênio	Fm férmio	101 Md mendelévio	No nobélio	Lr taurênc

www.tabelaperiodica.org

Licença de uso Creative Commons BY-NC-SA 4.0 - Use somente para fins educacionais

Caso encontre algum erro favor avisar pelo mail luisbrudna@gmail.com Versão (UPAC/58Q (pt-br) com 5 algarismos significativos, baseada em DOI-10.1515/pac-2915-0305 - atualizada em 96 de março de 2020

QUÍMICA GERALI PROFESSOR JOTA | ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO