TRIGONOMETRY Chapter 20

FUNCIONES
TRIGONOMÉTRICAS I

LA TRIGONOMETRÍA DEL CORAZÓN

El electrocardiograma (ECG) es la representación gráfica de la actividad eléctrica del corazón en función del tiempo, para ello se colocan en diversas partes del cuerpo los electrodos para obtener la información.

El aparato que genera el ECG, usa a las funciones trigonométricas seno y coseno modificando las amplitudes y los periodos.

Se recomienda a personas mayores de 40 años realizarse un examen ECG anualmente.

¿tu profesor ya tiene su ECG?

FUNCION SENO:

$$F = \{(x;y)/y = \text{senx} ; x \in R\}$$

Tabulando algunos valores para x e y :

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
y = senx	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

Tabulando mas valores y uniendo con una curva dichos puntos, tenemos:

Dominio: Dom $F \in R$; $x \in R$

Rango: Ran $F \in [-1;1] \Rightarrow -1 \le \text{sen } x \le 1$

Periodo: $T = 2\pi$

Es una función impar : sen(-x) = -senx

OBSERVACION:

Sea la función : y = A.senBx

Ejemplos:

$$\begin{cases} |A| = 3 \\ T = \pi \end{cases}$$

•
$$y = -2senx$$

RESOLUCIÓN

Se sabe que: $-1 \le senx \le 1$

Ahora le damos la forma de la función f:

$$-1 \leq senx \leq 1 \dots \times 2$$

$$-2 \le 2 \ senx \le 2 \ -3$$

$$-5 \le 2 \operatorname{sen} x - 3 \le -1$$

$$f(x)$$

$$\therefore Ranf = [-5; -1]$$

RESOLUCIÓN

Por identidad de ángulo doble

$$g(x)=2(2senxcosx)-1$$

$$g(x)=2sen2x-1$$

Ahora le damos la forma de la función

$$-1 \leq sen2x \leq 1 \dots \times 2$$

$$-2 \le 2sen2x \le 2 \dots -1$$

$$-3 \le 2senx - 1 \le 1$$

$$\therefore Rang = [-3; 1]$$

$$= \qquad \qquad \left(- \right)$$

RESOLUCIÓN

 \triangleright Para f(x).

$$T_1 = \frac{2\pi}{|B|} \longrightarrow T_1 = \frac{2\pi}{4} = \frac{\pi}{2}$$

Para g(x). $T_2 = \frac{2\pi}{|B|} \to T_2 = \frac{2\pi}{\frac{1}{2}} = 4\pi$

$$\therefore$$
 + = $\frac{\pi}{}$

HELICO | PRACTICE

Del gráfico, calcule $a \cdot b$.

Recuerda:

$$\left(\frac{5\pi}{6}\right) = \text{sen}150^{\circ} = \frac{1}{2}$$

$$\operatorname{sen}\left(\frac{7\pi}{4}\right) = \operatorname{sen}315^{\circ} = -\frac{\sqrt{2}}{2}$$

RESOLUCIÓN

$$P(\frac{5\pi}{6};a) \in f$$

$$a = 4\operatorname{sen}(\frac{5\pi}{6})$$
 $b = 4\operatorname{sen}(\frac{7\pi}{4})$

$$a = 4(\frac{1}{2}) = 2$$

$$P(\frac{5\pi}{6};a) \in f \qquad Q(\frac{7\pi}{4};b) \in f$$

$$b = 4 \operatorname{sen}(\frac{7\pi}{4})$$

$$a = 4(\frac{1}{2}) = 2$$
 $b = 4(-\frac{\sqrt{2}}{2}) = -2\sqrt{2}$ $\therefore a.b = -4\sqrt{2}$

Piden:

a.b =
$$(2)$$
. $(-2\sqrt{2})$

$$\therefore \text{ a.b=} -4\sqrt{2}$$

f(x) = y = 4 sen x

RESOLUCIÓN

Sea: f(x) = y = 2sen2x

$$P\left(\frac{\pi}{6};m\right) \in f$$

$$\Rightarrow$$
 m = 2sen $\left(2\frac{\pi}{6}\right)$

$$\Rightarrow$$
 m = 2sen $\left(\frac{\pi}{3}\right)$

$$m = 2\left(\frac{\sqrt{3}}{2}\right)$$

$$m = \sqrt{3}$$

$$Q\left(\frac{7\pi}{8}; n\right) \in f$$

$$\Rightarrow$$
 n = 2sen $\left(2\frac{7\pi}{8}\right)$

$$\Rightarrow$$
 n = 2sen $\left(\frac{7\pi}{4}\right)$

$$n = 2\left(-\frac{\sqrt{2}}{2}\right)$$

Piden:

$$m.n = \sqrt{3}(-\sqrt{2})$$

$$\therefore m.n = -\sqrt{6}$$

Del gráfico, calcule A + B.

RESOLUCIÓN

Calculamos A de la gráfica:

$$A=2$$

Sea la función: f(x) = y = AsenBx

Periodo de la función: $T = \frac{2\pi}{B}$

$$3\pi = \frac{2\pi}{B} \implies B = \frac{2}{3}$$

Piden:
$$A + B = 2 + \frac{2}{3}$$

$$\therefore A + B = \frac{8}{3}$$

Del gráfico, determine el área de la región sombreada.

RESOLUCIÓN

Sea la función: f(x) = y = 3senx

Amplitud: A = 3

Calculando el área:

$$S = \frac{\text{base.altura}}{2}$$
 \Rightarrow $S = \frac{\left(\frac{3\pi}{2}\right).(3)}{2}$

$$S = \frac{9\pi}{4} u^2$$

Una boya en el océano oscila de arriba hacia abajo mientras las olas pasan, tal como se muestra en la figura. Si la boya se mueve un total de 80 cm desde el punto más alto cada 10 s, halle la ecuación de la boya que está en movimiento.

RESOLUCIÓN

$$A = 40cm$$

Reemplazando: y = AsenBx

$$\therefore y = 40sen\left(\frac{\pi}{5}x\right)$$