

Inteligência Artificial

Época Normal – 22 Junho de 2006

Com Consulta / Duração: 2h30m

1. Algoritmos para a Evolução (4.5 Val)

Pretende-se construir um horário para os *Ne* exames de um ano de um determinado curso, usando algoritmos genéticos. Existe um número limitado, *Nd* de dias que podem ser usados para calendarizar os exames. Os exames são sempre às 9 horas da manhã de cada dia embora possam existir vários exames, em salas distintas, à mesma hora. É conhecida a inscrição dos diversos alunos nos diferentes exames e cada disciplina tem unicamente um exame. O calendário de exames a construir deve minimizar (com peso 2) o número de sobreposições para os alunos (i.e. exames que os alunos não poderão realizar por estarem sobrepostos no calendário) e minimizar os exames em dias consecutivos para os alunos (com peso 1).

```
\begin{array}{l} \mbox{dias(Nd).} \\ \mbox{exames(Ne).} \\ \mbox{exame(disc1,[1,2,3,4,5]). $ Os alunos 1,2,3,4,5 estão inscritos no exame da disc1 exame(disc2,[1,4,8,10]). $ Os alunos 1,4,8,10 estão inscritos no exame da disc2 \\ \mbox{exame(disc2,[1,4,8,10]). } \end{array}
```

- a) Apresente o pseudo-código que permite calcular a medida de avaliação (adaptação) a utilizar.
- **b)** Defina e represente uma população inicial (geração 0) adequada à resolução deste problema e indique qual o indivíduo mais adaptado na geração 0 que definiu?
- c) Suponha que utiliza um tipo de estratégia de selecção elitista á sua escolha e um método de cruzamento à sua escolha. Apresente o pseudo-código do algoritmo que lhe permite aplicar o método.

2. Linguagem Natural (4.0 Val)

Pretende-se implementar um sistema para fornecer informação simples sobre monumentos e determinadas localidades. Este sistema deve responder a de frases do tipo das seguintes:

Quantos museus há no porto? Resposta: 2 E em lisboa? Resposta: 3 E igrejas renascentistas? Resposta: 2

Quais cinemas existe em évora? Resposta: erro de sintaxe Quais igrejas existem em cinema? Resposta: erro de semântica

- a) Especifique a base de conhecimento em Prolog.
- b) Escreva um programa em Prolog que efectue a análise sintática e semântica (usando DCGs) de frases do tipo das enumeradas. Considere que a entrada do programa é já a lista de palavras que constituem a frase a analisar.

3. Aprendizagem (3.5 Val)

Pretende-se estudar a assiduidade de espectadores a uma sessão de teatro num final de tarde de sábado. Suponha a seguinte tabela de exemplos, em que os atributos analisados são a idade do possível espectador, as condições meteorológicas, e a duração da sessão de teatro.

idade	tempo	duração	vai_teatro
criança	chuva	curto	sim
criança	chuva	curto	sim
criança	nublado	médio	sim
criança	nublado	longo	não
criança	nublado	curto	sim
criança	sol	longo	não
adulto	chuva	médio	sim
adulto	sol	médio	não
adulto	sol	curto	não
adulto	sol	longo	não

 a) Aplique o algoritmo ID3, indicando todos os valores calculados que lhe permitam encontrar a respectiva árvore de decisão. Escreva as regras encontradas.

Inteligência Artificial

Época Normal - 22 Junho 2006

Com Consulta / Duração: 2h30m

b) Considere que o atributo "duração da sessão" é descrito de forma quantitativa (em minutos) e não qualitativa. O algoritmo ID3 já não é aplicável. Que outro algoritmo de produção de regras poderia usar? Explique por passos como usaria esse algoritmo, apontando as principais diferenças relativamente ao ID3.

Nota: $log_2 2 = 1$; $log_2 3 = 1,5849$; $log_2 4 = 2$;

4. Inteligência Artificial. (8 Val).

Responda às seguintes questões em 5/10 linhas:

- 1) Comente: "Os melhores programas de Xadrez actuais conseguem vencer os humanos pois utilizam técnicas cognitivas que imitam com grande precisão as capacidades dos grandes mestres humanos de Xadrez"
- 2) Explique como poderia fazer um agente simplesmente reactivo capaz de nunca perder no jogo do Galo. Apresente uma descrição PAGE(ou PEAS) deste agente e exemplifique como construiria o módulo de decisão desse agente.
- 3) Apresente um diagrama e o pseudo-código para um agente simples reflexo para controlar o nível de água de uma piscina. Suponha que dispõe da percepção ALT correspondente à altura de água da piscina. Dispõe das acções: AS – abrir saída de água, FS – fechar saída da água, AE – Abrir entrada de água, FE – fechar entrada de água. Pretende-se que o nível de água esteja entre 2 e 2.5 metros.
- 4) Comente a seguinte afirmação: "Não e boa ideia usar a pesquisa em profundidade iterativa (aprofundamento progressivo) pois estamos sempre a repetir a mesma pesquisa o que gasta muito mais tempo e ainda por cima só permite encontrar soluções piores. É melhor usar uma pesquisa óptima."
- 5) Formule o problema das Torres de Hanoi como um problema de pesquisa (representação do estado, estado inicial, teste objectivo, operadores e respectivas pré-condições e efeitos, e função de custo). Nesta versão do problema você tem 3 torres (A, B e C) e 4 discos (D1 a D4). Inicialmente os discos encontram-se na torre C e o objectivo é transferi-los para a torre A. Em cada jogada, o jogador pode deslocar um disco de uma torre para outra torre, desde que não coloque esse disco sobre um disco menor.

- 6) Supondo a seguinte árvore de pesquisa em que cada arco apresenta o custo do operador correspondente e cada nó apresenta o custo estimado para a solução, diga qual o nó expandido em seguida utilizando cada um dos seguintes métodos: a) Pesquisa Largura; b) Pesquisa em Profundidade Limitada (limite 2); c) Pesquisa de Custo Uniforme; d) Pesquisa Gulosa; e) Pesquisa A*
- Supondo que MAX é o primeiro a jogar, aplique o Algoritmo Minimax com cortes Alfa-Beta a uma árvore com três níveis, um factor de ramificação 3 e com os seguintes valores da função avaliação para a linha final:

50 20 24 [16 12 6 2 20 1 6 30 12 14 9 13 869 2 40 9 24 2 20 9 45 20]

Indique graficamente todos os cortes que efectuar na aplicação do algoritmo.

Suponha que deseja utilizar redes neuronais para dadas 200 fotografias (de 5 indivíduos, i.e. 40 fotografias de cada um) efectuar o reconhecimento a partir de seis características. Propunha uma arquitectura de rede e uma metodologia de treino/teste adequada.

> Eugénio Oliveira Ana Paula Rocha Luís Paulo Reis