CSCU9B3

Database Principles and Applications

ER Modelling

The Entity-Relationship (ER) Model

- Ritchie: Chapter 3, Connolly & Begg: Chapter 5
- The Entity-Relationship (ER) Model is a high-level *conceptual* data model.
 - It was originally developed in the 1970s to facilitate database design.
- *Recap*: Conceptual data models serve two main purposes:
 - To support a user's perception of data.
 - To conceal the technical aspects of database design.
 - They are also independent of the particular DBMS used to implement the database.
- The basic concepts of the ER model include:
 - Entities
 - Attributes
 - Relationships
- These concepts are represented **pictorially** in an ER diagram.

Entities and Relationships - I

• An example of a basic ER diagram is shown below:

- The entities *Student* and *School* are shown as rectangles.
- The relationship *attends* is shown as a labelled connection between the entities.
- We can read this diagram in two ways:
 - One Student "attends" one School (1:1 relationship from point of view of Student).
 - One School "is attended by" one Student (1:1 relationship from point of view of School).

Entities and Relationships - II

- ER diagrams express relationships between *entity types*.
 - Each entity box in an ER diagram refers to a set of entities, for example a set of students.
 - Each member in the set is potentially involved in the specified relationships.
- Here is a more complex ER diagram:

Cardinality of Relationships

- In the previous example, some of the connecting lines terminate in a splayed *crowsfoot* arrangement.
 - This is used to denote the *cardinality* of a relationship.
- The cardinality specifies, for one member of the first entity set, the possible number of members it can be related to in a second entity set.
- There are three possibilities:

```
    1:1 One to one
    e.g. head manages school
    1:M One to many
    e.g. school employs teacher
    M:M Many to many
    e.g. teacher teaches child
```

• The *crowsfoot* device is used to indicate the *many* end of a relationship.

Interpreting ER Diagrams - I

- We can interpret this ER diagram as follows:
 - One head manages only one school (1:1 from point of view of head) and each school has only one head (1:1 from point of view of school)
 - One *school* employs many *teachers*, (1:M from point of view of school)
 but one *teacher* is employed by only one *school* (1:1 from point of view of teacher)
 - One *teacher* teaches many *children* (1:M from point of view of teacher) and each *child* is taught by many *teachers*. (1:M from point of view of child) hence this relationship is M:M overall (both ways/points of views)

Interpreting ER Diagrams - II

• We always interpret each relationship in an ER diagram from the point of view of one instance of the entity.

Even in the case of the M:M relationship "teacher teaches child", we interpret this as:

- one teacher teaches many children (1:M from the point of view of one teacher)
- one child is taught by many teachers (1:M from the point of view of one child)
- Thus, we always express entity names in the <u>singular</u> to help us remember the above rule.
 - e.g. *teacher* rather than *teachers*.
- For a given relationship we should always be able to make two interpretations.
 - We can interpret the relationship in one direction ("teaches"), and we can interpret it in the reverse direction ("is taught by").

Optionality and Participation - I

• Consider the 1:M relationship from our earlier example:

- We interpret this as:
 - One school employs one or more teachers. (1:M relationship from point of view of one school)
 - One teacher is employed by only one school. (1:1 relationship from point of view of one teacher)
- However, it may be that some teachers are not employed by any school.
 - We say that the *employed by* relationship is *optional* from the point of view of the teacher.
 - That is, a particular teacher, may or may not by employed by a school.

Optionality and Participation - II

- To express the idea of *optionality* in an ER diagram, we need to draw or relationship connectors slightly differently.
- For example:

- In this diagram, the DASHED portion of the (half) line (connecting to the Teacher entity in the ER diagram above) signifies that a teacher may optionally be employed by a school
- However, from the point of view of a particular school, it is vital that the school employs at least one teacher.
 - Thus, schools <u>must</u> always employ teachers.
 - This is indicated by the SOLID HALF of the connector attached to School above

Visualising Relationships

- Relationships represent a mapping from one entity set to another.
 - For example a 1:M relationship map an entity in one set to one or more entities in another set.
- We can visualise a relationship using a mapping diagram:

Displaying Attributes in ER Models-I

- The ER diagrams that we have seen up until now have simply showed structure.
- We now expand slightly by thinking about the properties or *attributes* of each entity.
- For example, in the school example possible attributes are:

Name, Address, Type of School, Name and Number of Teacher.

We can show this information in an ER diagram as follows:

Displaying Attributes in ER Models-II

- In practical ER diagrams, displaying attributes in the manner shown on the previous slide tends to clutter the diagram.
- An alternative notation for displaying attributes is shown below:

- In practice, we often have to create ER diagrams from a description, either verbal or written, of what is required.
 - The textbook contains numerous examples of these.

Many-to-Many Relationships - I

- On first analysis of a given system, some relationships may appear to be M:M.
- Sometimes it is possible to convert a M:M relationship into two 1:M relationships.

Many-to-Many Relationships - II

- The previous example effectively turns the original M:M relationship into an entity.
 - As it happens, this *Contract* entity is something that is reasonably natural to represent.
 - It may well have its own attributes that we feel are important.
- It is a good idea to examine all M:M relationships to see if they can be converted as shown.
 - Often this reveals a hidden entity that has been overlooked.
 - It simplifies the process of translating an ER model of a system into a set of relations for use with a relational database – see next

Weak Entities

- A weak entity is one which cannot exist without the existence of some other entity.
- For example, in a video hire shop, we may have the following ER diagram:

- This represents the fact that a given movie must be recorded on one or more DVDs, and a given DVD must contain a particular film.
 - So we cannot have DVDs for which there is no corresponding movie.
 - If we delete a movie from our database, we would also like to delete all of the information about the DVDs containing that movie.
 - Thus, *DVD* is a weak entity since it depends on a corresponding movie.

Unary Relationships

- We said earlier that a relationship expresses a mapping between an entity from one set and one or more entities from another set.
- We sometimes need to show a relationship between entities from the same set. Some typical examples are:

- Left: A person is optionally married to one other person.
- Right: An employee manages zero or more other employees. Each employee is managed by one other employee.

Multiple Relationships Between Entities

- So far we have had only one relationship between any two entities.
- However, there is nothing to stop us having more than one if it makes sense to do so.
 - For example, if two entities can be related to each for different reasons simultaneously.
- Here is a typical example:

• Here we consider that owning a property is a separate concept from living in it. Thus, we represent this using separate relationships.

Converting an ER model to Relations

- How can we translate an ER model into a set of relations?
- We start by defining a number of relations to represent each of the entities present in our ER model.
- Columns are then added to each relation to represent the attributes of the corresponding entity.
- Relationships are represented using *foreign keys*, or possibly a separate relation.
- Identify primary and foreign keys (if any) in each relation.
 - This last step normally happens in parallel with the rest of the steps.
- We will work through some examples to see how the conversion process works.

Converting Entities Into Relations

Branch (Bno, Street, Area, City, Postcode, Tel No)

Representing Relationships - I

- Relationships are represented differently depending on their cardinality (1:1, 1:M, or M:M).
- Consider a 1:M relationship such as:

- To represent this relationship we start off with the two relations:
 - Dept(Dno, Name, NumRooms)
 - Staff(Sno, Name)
- These relations simply represent the two entities and some sample attributes.
- To create the relationship we must link each staff member to his/her corresponding department by embedding a *foreign key*.

Representing Relationships - II

- Thus we extend the *Staff* relation (which is the Many side) to include an extra field, the foreign key *DeptNo*.
- This produces the following result:

			1		STAFF	
	DEPARTMENT			Sno	Name	DeptNo
DeptNo	Name	NumRooms	—	SG86	David Hulse	31
31	Computing Science	18		SP52	Paul Kingston	49
49	Management	15	—	SJ12	Michael Smith	55
55	Basket-Weaving	3		SQ63	Alan Dearle	31

- By embedding *DeptNo* as a foreign key in the *Staff* relation, we create a 1:M relationship from departments to staff members.
- This is illustrated in the diagram since each staff member can be associated with only one department, but each department may have many associated staff members.
- Always be careful about which relation the foreign key is added to (it is always the relation on the Many side of the relationship!).

Representing Many-to-Many Relationships

• To handle a many-to-many relationship, such as the *Viewing* relationship between *Properties* and *Renters*, we introduce a separate relation to represent the M:M relationship:

PROPERTY								
Pno	Street	Area	City	Rent				
PA14	16 Holhead	Dee	Aberdeen	650				
PL94	6 Argyll St	Kilburn	London	400				
PG21	18 Dale Rd	Hyndland	Glasgow	600				

RENTER						
Rno	Name	Address				
CR76	John Kay	56 High St				
CR74	Mike Ritchie	18 Tain St				
CR62	Mary Tregear	5 Tarbot Rd				

Summary: Rules for Relationships - I

- Consider two relations X and Y with primary keys keyx and keyy.
- To create a 1:M relationship from X to Y:

we embed *keyx* (the primary key of the *one* side) as a foreign key in *Y* (the *many* side):

$$X(\underline{keyx}, ...)$$
 $Y(\underline{keyy}, ..., \underline{keyx})$

• To create a M:M relationship between *X* and *Y*:

we create a third relation, say Z, containing the primary keys from both sides of the relationship:

$$X(\underline{keyx}, ...)$$
 $Z(\underline{keyx}, \underline{keyy})$ $Y(\underline{keyy}, ...)$

Note that this means creating a whole new relation

Summary: Rules for Relationships - II

• To create a 1:1 relationship from X to Y:

Where *X* and *Y* are two relations with primary keys *keyx* and *keyy*. There are two ways to create a 1:1 relationship from X to Y.

• Option 1: Use separate tables (Recommended Option for you to follow!)

A foreign key is used to link the tables. For example, we may insert keyx into Table Y, or insert keyy into Table X

that is, use: $X(\underline{keyx}, ..., keyy)$ OR $Y(\underline{keyy}, ..., keyx)$

- Option 2: Use a single table for both entities
 - we can do this if the relationship is mandatory for at least one of X and Y
 - what is the primary key of the combined table (see Ritchie page 59)

End of Lecture

Would you like to ask anything?

Don't forget to read the notes again, and Ritchie

Chapter 3.

There will be a tutorial on ER modelling.