Aircraft Risk Analysis — Phase 1 Project

Problem Statement

- **❖Context:** Company expanding into aviation (commercial + private) and needs to evaluate aircraft risk before purchasing.
- **❖ Problem:** No internal knowledge of which aircraft types are lowest risk.
- **❖Objective:** Identify **Make** + **Model** aircraft with the lowest historical safety risk and translate findings into actionable purchase guidance.

Top 10 Safest Aircraft Models (YR 2000 onwards)

❖ The analysis covers aircraft safety data from the year 2000 onwards.

❖ It evaluates safety performance by aircraft make and model, focusing on survival and fatality rates across recorded incidents.

❖Only models with at least 10 incidents were considered to ensure reliability of results.

Top 10 Safest Aircraft Models (YR 2000 onwards) COUNT..

Make	Model	Survival Rate	Fatality Rate	Total Incidents
Cessna	180J	100.00%	0.00%	10
Boeing	747	100.00%	0.00%	11
DIAMOND AIRCRAFT IND INC	DA 20 C1	100.00%	0.00%	11
BOEING	737-800	99.87%	0.00%	20
Canadair	CL-600-2B19	99.70%	0.00%	14
BOEING	787	99.67%	0.00%	25
Boeing	737	99.65%	0.00%	43
BOEING	777	99.53%	0.00%	83
BOEING	757	99.52%	0.00%	31
BOEING	737-7H4	99.28%	0.00%	13

Fatalities by Number of Engines

- ❖ Single-engine aircraft account for ~74% of fatalities
- ❖ Twin-engine aircraft account for ~21%
- ❖ Twin-engine aircraft account for ~21%

Models with poor outcomes in clear weather (VMC)

Historical data show certain models notably the Piper PA-25 and several light/rotorcraft types have disproportionately high fatality shares in clear weather; treat these as red flags and require exposure-normalized validation and operational vetting before purchase.

Relevance of the "Amateur. Built" Analysis

- ❖ Professionally manufactured aircraft have double the survival rate and less than half the fatality rate of amateur-built planes.
- ❖ This is one of the most striking safety disparities in aviation data.
- ❖ This contrast reinforces how engineering standards, maintenance quality, and pilot training dramatically affect survival outcomes.
- ❖ The data clearly shows that certified aircraft are about twice as safe as amateur-built ones proving that professional manufacturing, oversight, and maintenance are critical to aviation safety

RECOMMEDATIONS

- ❖ Prefer certified, professionally manufactured models use the Top-10 safest models in the deck as our primary procurement pool; treat amateur-built aircraft as disqualifying unless exceptional mitigation exists.
- ❖ Apply simple acceptance thresholds require Survival Rate \geq 0.85, Fatality Rate \leq 0.07, and \geq 10 recorded incidents to ensure statistical reliability.
- **Enforce hard operational controls on any purchase** full maintenance/logbook audit, AD compliance, IFR-capable avionics if needed, and mandatory company type-checks + recurrent training for pilots.

RECOMMEDATIONS CONT..

- ❖ Prefer certified, professionally manufactured models use the Top-10 safest models in the deck as our primary procurement pool; treat amateur-built aircraft as disqualifying unless exceptional mitigation exists.
- ❖ Apply simple acceptance thresholds require Survival Rate \geq 0.85, Fatality Rate \leq 0.07, and \geq 10 recorded incidents to ensure statistical reliability.
- **Enforce hard operational controls on any purchase** full maintenance/logbook audit, AD compliance, IFR-capable avionics if needed, and mandatory company type-checks + recurrent training for pilots.