

**Docentes encargados:** 

Hippa R., Eguia L., Campero C., Díaz M.,

# ITR SUR OESTE- FRAY BENTOS INGENIERÍA MECÁTRONICA PROYECTOS INTEGRADORES

| TÍTULO:  | PROYECTO | NTEGRADOR DE COMPETEN | NCIAS I, II, III: |
|----------|----------|-----------------------|-------------------|
| Autor 1: |          | Autor 2:              | Autor 3:          |
| Firma:   |          | Firma:                | Firma:            |

Fecha de Entrega:

### 1. Introducción

## 1.1. Planteamiento del problema

La enseñanza de robótica manipuladora en contextos educativos (escuelas, UTU, liceo y cursos introductorios universitarios) suele verse limitada por el alto costo, riesgos de seguridad y poca "apertura" de los equipos comerciales. Esto reduce la práctica real de manipulación, dificulta integrar contenidos de mecánica, electrónica y control, y hace inviable llevar equipos a giras didácticas.

#### 1.2. Soluciones consideradas

A partir del planteamiento del problema, se evaluaron tres alternativas tecnológicas para el accionamiento del brazo. A continuación se presentan de forma breve sus características, ventajas y limitaciones principales.

- Servomotores (MG996R): Proporciona control directo por PWM, integración sencilla con microcontroladores y velocidad adecuada para demostraciones didácticas. En comparación con MG90 (insuficientes en par), los MG996R cubren el requerimiento de carga (hasta 100 g a 40 cm) con una repetibilidad aceptable. Ventajas: simplicidad, menor complejidad electrónica, buena disponibilidad y costo moderado. Consideraciones: picos de corriente, holguras propias del servo y límite de torque cerca del alcance máximo.
- Actuadores lineales tornillo—tuerca (motor DC con reductora). Ofrecen alta fuerza y buen costo, pero el mecanismo es más lento y con menor precisión sin realimentación. Requiere instrumentación adicional (encoders o potenciómetros, finales de carrera) y control más complejo para conocer el ángulo articular. Además, el juego mecánico (backlash) y la fricción pueden degradar la repetibilidad.
- Actuadores lineales con asistencia hidráulica (jeringas). Mejoran la relación fuerza—peso y permiten componentes económicos, pero añaden otra capa de complejidad: menor velocidad, histéresis, posibles fugas, purgado/cebado del circuito y mantenimiento. El diseño y control (válvulas, amortiguación) incrementan el esfuerzo de ingeniería frente a los beneficios en este contexto didáctico.

| Criterio        | Peso | Servo | Actuador | Hidráulico |
|-----------------|------|-------|----------|------------|
| Peso            | 0.10 | 4     | 3        | 3          |
| Velocidad       | 0.20 | 4     | 2        | 1          |
| Simplicidad     | 0.30 | 5     | 2        | 1          |
| Precio          | 0.20 | 4     | 4        | 4          |
| Fuerza          | 0.15 | 3     | 4        | 5          |
| Libertad        | 0.05 | 5     | 3        | 3          |
| Total ponderado |      | 4.20  | 2.85     | 2.50       |

Cuadro 1: Matriz de selección de actuadores (1 = peor, 5 = mejor). Totales calculados con los pesos indicados.

#### Decisión técnica

Se adopta la solución con **servomotores MG996R** por ofrecer el mejor equilibrio entre *simplicidad*, *velocidad* y *libertad de movimiento*, manteniendo el *costo* dentro del objetivo y una *fuerza* suficiente para las tareas de *pick & place* previstas. Las otras alternativas se documentan como trabajo futuro para escenarios donde la fuerza disponible sea prioritaria sobre la velocidad o la sencillez de control.

## 1.3. Solución propuesta

Un brazo robótico didáctico a escala de 4 GDL con efector intercambiable: electroimán (para piezas ferromagnéticas) y garra (para piezas no magnéticas). Estructura paramétrica cortada en MDF (3.2–10 mm), tornillería estándar y electrónica de fácil reposición. Control con ESP32/ATmega328P, modos manual/automático, GUI en Python (Tkinter/PyQt), y documentación abierta para replicación.

## 1.4. Objetivo General

Diseñar, construir y validar un brazo robótico didáctico de 4 GDL, seguro, portable y de bajo costo, con efectores electroimán/garra intercambiables, capaz de ejecutar tareas básicas de pick & place en un volumen de trabajo de hasta  $50 \times 50 \times 50$  cm.

## 1.5. Objetivos específicos

- 1. **Repetibilidad:**  $\leq 3-5 \,\mathrm{mm}$  en el volumen útil (validado con 10 repeticiones por punto).
- 2. Carga y alcance: manipular  $\leq 100\,\mathrm{g}$  a un alcance de  $40\,\mathrm{cm}$  con tasa de éxito  $\geq 90\,\%$  (10 intentos).
- 3. Tiempo de ciclo:  $pick \rightarrow place \rightarrow retorno \leq 3$  s a 10–15 cm entre posiciones.
- 4. Efector intercambiable: cambio imán/garra en  $\leq 60$  s sin herramientas especiales.
- 5. **Seguridad:** paro de emergencia, cableado protegido, tensión segura en zona de usuario; checklist previo a operación.
- 6. **Software:** GUI con lectura de posición, control ON/OFF del imán, modos manual/automático y cinemática inversa planar.
- 7. **Documentación:** manual de armado, guía docente y 5 prácticas con rúbrica (pre/post test con mejora  $\geq 20\%$ ).

- 2. Marco Teórico
- 3. Fundamentos técnico-conceptuales
- 3.1. Materiales
- 4. Resultados
- 5. Conclusiones
- 6. Apendice