Análise de Algoritmos

Parte destes slides são adaptações de slides dos Profs.

Paulo Feofiloff, José Coelho de Pina e Cristina G. Fernandes

7 de agosto de 2025

Introdução

CLRS 1.1, 1.2, 2.1 e 2.2 AU 3.3, 3.4 e 3.6

Ordenação

A[1..n] é crescente se $A[1] \leq \cdots \leq A[n]$.

Problema: Rearranjar um dado vetor A[1..n] de modo que ele fique crescente.

Entra:

Ordenação

A[1..n] é crescente se $A[1] \leq \cdots \leq A[n]$.

Problema: Rearranjar um dado vetor A[1...n] de modo que ele fique crescente.

Entra:

Sai:


```
chave = 38
                                                         n
              25
          20
                   35
                        40
                                 55
                                      38
                                          99
                                               10
                                                    65
                                                         50
                            44
              25
                   35
                        40
                            44
                                      55
                                          99
                                               10
                                                    65
                                                         50
         20
                                                         n
              25
                   35
                                      55
                                          99
                                                         50
         20
                        40
                                               10
                                                    65
```

```
chave = 38
                                                           n
          20
               25
                   35
                        40
                                       38
                                            99
                                                 10
                                                      65
                                                           50
                             44
                                                           n
              25
                   35
                        40
                                       55
                                            99
                                                 10
                                                      65
                                                           50
          20
                             44
                                                           n
                                            99
                                                          50
          20
               25
                   35
                        40
                                       55
                                                 10
                                                      65
                                                           n
                   35
                                       55
                                            99
                                                      65
                                                           50
          20
               25
                             40
                                                 10
```

```
chave = 38
                                                            n
          20
               25
                    35
                                        38
                                             99
                                                       65
                                                            50
                         40
                              44
                                                  10
                                                            n
                                        55
                                             99
                                                       65
                                                            50
          20
               25
                    35
                         40
                              44
                                                  10
                                                            n
          20
               25
                    35
                         40
                                        55
                                             99
                                                  10
                                                       65
                                                            50
                                                            n
                    35
                                             99
                                                       65
                                                            50
          20
               25
                              40
                                        55
                                                  10
                                             99
                                                       65
               25
                    35
                         38
                                        55
                                                  10
                                                            50
                              40
```


Algoritmo rearranja A[1...n] em ordem crescente.

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > chave faça

6 i \leftarrow i - 1
```

Algoritmo rearranja A[1...n] em ordem crescente

```
ORDENA-POR-INSERÇÃO (A, n)
0 \quad j \leftarrow 2
1 enquanto j \leq n faça
2 chave \leftarrow A[j]
i \leftarrow i - 1
4 enquanto i \ge 1 e A[i] > chave faça
           A[i+1] \leftarrow A[i]  \triangleright desloca
          i \leftarrow i - 1
7 A[i+1] \leftarrow chave > insere
8 i \leftarrow i + 1
```

Quantas atribuições (\leftarrow) algoritmo faz?

Quantas atribuições (\leftarrow) algoritmo faz?

Número mínimo, médio ou máximo? Melhor caso, caso médio, pior caso?

LINHAS 3–6 (A, j, chave)

```
i \leftarrow j-1 \qquad \triangleright \quad 2 \leq j \leq n
```

4 enquanto $i \ge 1$ e A[i] > chave faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	?
4	?
5	?
6	?

total ?

LINHAS 3–6 (A, j, chave)

```
3 \qquad i \leftarrow j-1 \qquad \triangleright \quad 2 \leq j \leq n
```

4 enquanto $i \ge 1$ e A[i] > chave faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	= 1
4	= 0
5	?
6	?

total ?

Quantas atribuições (\leftarrow) algoritmo faz?

LINHAS 3–6 (A, j, chave)

6

```
i \leftarrow j - 1 \qquad \triangleright \quad 2 \leq j \leq n
4 enquanto i \ge 1 e A[i] > chave faça
           A[i+1] \leftarrow A[i]
5
  i \leftarrow i - 1
```

```
linha atribuições (número máximo)
 5 \leq j-1
```

total

LINHAS 3–6 (A, j, chave)

- $i \leftarrow j-1 \qquad \triangleright \ 2 \leq j \leq n$
- 4 enquanto $i \ge 1$ e A[i] > chave faça
- $5 A[i+1] \leftarrow A[i]$
- 6 $i \leftarrow i 1$

linha	atribuições (número máximo)
3	= 1
4	= 0
5	$\leq j-1$
6	$\leq j-1$

total
$$\leq 2j-1 \leq 2n-1$$

ORDENA-POR-INSERÇÃO (A, n)

```
1 para j \leftarrow 2 até n faça \triangleright j \leftarrow j+1 escondido
```

- 2 $chave \leftarrow A[j]$
- 3 LINHAS 3–6 (A, j, chave)

7
$$A[i+1] \leftarrow chave$$

linha	atribuições (número máximo)
1	?
2	?
3–6	?
7	?

total ?

ORDENA-POR-INSERÇÃO (A, n)

- 1 para $j \leftarrow 2$ até n faça $\triangleright j \leftarrow j+1$ escondido
- 2 $chave \leftarrow A[j]$
- 3 LINHAS 3–6 (A, j, chave)
- 7 $A[i+1] \leftarrow chave$

linha atribuições (número máximo)
$$1 = n-1+1$$

$$2 = n-1$$

$$3-6 \le (n-1)(2n-1)$$

$$7 = n-1$$

total
$$< 2n^2 - 1$$

Análise mais fina

linha	atribuições (número máximo)
1	= n-1+1
2	= n-1
3-6	$\leq 3+5+\cdots+(2n-1)=(n+1)(n-1)=n^2-1$
7	= n-1

total
$$\leq n^2 + 3n - 3$$

$$n^2 + 3n - 3$$
 versus n^2

n	$n^2 + 3n - 3$	n^2
1	1	1
2	7	4
3	15	9
10	127	100
100	10297	10000
1000	1002997	1000000
10000	100029997	100000000
100000	10000299997	10000000000

 n^2 domina os outros termos

Exercício 1.B

Se a execução de cada linha de código consome 1 unidade de tempo, qual o consumo total?

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] \triangleright desloca

6 i \leftarrow i - 1
```

linha	tod	todas as execuções da linha		
1	=	n		
2	=	n-1		
3	=	n-1		
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$		
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$		
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$		
7	=	n-1		
total	<	$(3/2)n^2 + (7/2)n - 4$		

Exercício 1.C

```
Se a execução da linha i consome t_i unidades de tempo, para i=1,\ldots,7, qual o consumo total?
```

```
ORDENA-POR-INSERÇÃO (A, n)
1 para i \leftarrow 2 até n faça
2 chave \leftarrow A[j]
i \leftarrow i - 1
       enquanto i \ge 1 e A[i] > chave faça
           A[i+1] \leftarrow A[i]  \triangleright desloca
5
          i \leftarrow i - 1
6
  A[i+1] \leftarrow chave > insere
```

Solução para $t_i=1$

linha	toc	las as execuções da linha
1	=	n
2	=	n-1
3	=	n-1
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$
7	=	n-1
total	<	$(3/2)n^2 + (7/2)n - 4$

total \leq ?

linha	too	las as execuções da linha	
1	=	n	$\times t_1$
2	=	n-1	$\times t_2$
3	=	n-1	$\times t_3$
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$\times t_4$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$
7	=	n-1	$\times t_7$

linha	tod	todas as execuções da linha		
1	=	n	$\times t_1$	
2	=	n-1	$\times t_2$	
3	=	n-1	$\times t_3$	
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$\times t_4$	
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$	
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$	
7	=	n-1	$\times t_7$	
total	<u> </u>	$((t_4 + t_5 + t_6)/2) \times n^2$ $(t_1 + t_2 + t_3 + t_4/2 - t_5/2 - t_6/2 + t_7)$	$(n) \times n$	
		$(t_1 + t_2 + t_3 + t_4 + t_7)$,	

linha	toc	las as execuções da linha	
1	=	n	$\times t_1$
2	=	n-1	$\times t_2$
3	=	n-1	$\times t_3$
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$2 \times t_4$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$
7	=	n-1	$\times t_7$
			_
total	\leq	$c_2 \times n^2 + c_1 \times n + c_0$	

 c_2, c_1, c_0 são constantes que dependem da máquina.

 n^2 é para sempre! Está nas entranhas do algoritmo!

Notação O

Intuitivamente...

```
O(f(n)) \approx \text{funções que não crescem mais}
\text{rápido que } f(n)
\approx \text{funções assintoticamente menores ou iguais a}
\text{um múltiplo de } f(n)
```

$$n^2$$
 $(3/2)n^2$ 9999 n^2 $n^2/1000$ etc.

crescem todas com a mesma velocidade

Notação O

Intuitivamente...

```
O(f(n)) \approx funções que não crescem mais rápido que <math>f(n) \approx funções assintoticamente menores ou iguais a um múltiplo de <math>f(n)
```

$$n^2$$
 $(3/2)n^2$ 9999 n^2 $n^2/1000$ etc.

crescem todas com a mesma velocidade

- ► $33n^2$ é $O(n^2)$
- $ightharpoonup 9n + 2 \'e O(n^2)$
- $ightharpoonup 0,00001 n^3 200 n^2$ não é $O(n^2)$

Definição

Sejam T(n) e f(n) funções dos inteiros nos reais. Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \leq c f(n)$$

para todo $n \ge n_0$.

Mais informal

 $T(n) \in O(f(n))$ se existe c > 0 tal que

$$T(n) \leq c f(n)$$

para todo *n* suficientemente GRANDE.

 $T(n) \in O(f(n))$ lê-se " $T(n) \in O$ de f(n)"

 $T(n) \in O(f(n))$ lê-se " $T(n) \in O$ de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para todo inteiro $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para todo inteiro $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para todo $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

 $T(n) \in O(f(n))$ lê-se " $T(n) \in O$ de f(n)"

Exemplo 1

 $10n^2 \, \in \, \mathrm{O}(n^3)$.

Prova: Para todo inteiro $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para todo $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in \mathcal{O}(n)$.

T(n) é O(f(n)) lê-se "T(n) é O de f(n)"

Exemplo 1

 $10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$.

Prova: Para todo inteiro $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para todo $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in \mathcal{O}(n)$.

Prova: Seja $n \ge 2$. Como $\frac{1}{t \ln 2} \le 1$ para todo $t \in [2, n]$, temos

$$\lg n = 1 + \lg n - \lg 2 = 1 + \int_{2}^{n} \frac{1}{t \ln 2} dt \le 1 + \int_{2}^{n} 1 dt = n - 2 + 1 \le 1 n$$

pelo Teorema Fundamental do Cálculo.

Mais exemplos

Exemplo 3

 $20n^3 + 10n \lg n + 5 \in O(n^3)$.

Mais exemplos

Exemplo 3

$$20n^3 + 10n \lg n + 5 \in O(n^3)$$
.

Prova: Para todo $n \ge 2$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3$$
.

Mais exemplos

Exemplo 3

$$20n^3 + 10n \lg n + 5 \in O(n^3)$$
.

Prova: Para todo $n \ge 2$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3$$
.

Outra prova: Para todo $n \ge 10$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + nn \lg n + n \le 20n^3 + n^3 + n^3 = 22n^3$$
.

Uso da notação O

$$O(f(n)) = \{T(n) : \text{existem } c \in n_0 \text{ tq } T(n) \leq cf(n), n \geq n_0\}$$

" $T(n) \in O(f(n))$ " deve ser entendido como " $T(n) \in O(f(n))$ ".

"T(n) = O(f(n))" deve ser entendido como " $T(n) \in O(f(n))$ ".

" $T(n) \in g(n) + O(f(n))$ " significa que existe $h(n) \in O(f(n))$ tal que

$$T(n) \leq g(n) + h(n)$$

para todo *n*.

"
$$T(n) \leq O(f(n))$$
" é feio.

" $T(n) \ge O(f(n))$ " não faz sentido!

Nomes de classes O

classe	nome
O(1)	constante
$O(\lg n)$	logarítmica
O(n)	linear
$O(n \lg n)$	<i>n</i> log <i>n</i>
$O(n^2)$	quadrática
$O(n^3)$	cúbica
$\mathrm{O}(n^k)$ com $k \geq 1$	polinomial
$O(2^{n})$	exponencial
$O(a^n)$ com $a>1$	exponencial

De volta à ordenação por inserção

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j] i \leftarrow j - 1

3 enquanto i \geq 1 e A[i] > chave faça

4 A[i+1] \leftarrow A[i] \triangleright desloca

5 i \leftarrow i - 1

6 A[i+1] \leftarrow chave \triangleright insere
```

linha	consumo de todas as execuções da linha
1	?
2	?
3	?
4	?
5	?
6	?
total	?

De volta à ordenação por inserção

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j] i \leftarrow j - 1

3 enquanto i \geq 1 e A[i] > chave faça

4 A[i+1] \leftarrow A[i] \triangleright desloca

5 i \leftarrow i - 1

6 A[i+1] \leftarrow chave \triangleright insere
```

linha	consumo de todas as execuções da linha
1	O(n)
2	O(n)
3	$O(n^2)$
4	$O(n^2)$
5	$O(n^2)$
6	O(n)
total	$3 \cdot O(n^2) + 3 \cdot O(n) = O(n^2)$

Conclusão

O algoritmo ORDENA-POR-INSERÇÃO consome $O(n^2)$ unidades de tempo.

Também escreve-se

O algoritmo ORDENA-POR-INSERÇÃO consome tempo $O(n^2)$.