CS 611: Theory of Computation

Hongmin Li

Department of Computer Science California State University, East Bay

Finite Languages

Definition

A language is finite if it has finitely many strings.

Finite Languages

Definition

A language is finite if it has finitely many strings.

Example

 $\{0,1,00,10\}$ is a finite language

Finite Languages

Definition

A language is finite if it has finitely many strings.

Example

 $\{0,1,00,10\}$ is a finite language, however, $(00 \cup 11)^*$ is not.

Finiteness and Regularity

Proposition

If L is finite then L is regular.

Finiteness and Regularity

Proposition

If L is finite then L is regular.

Proof.

Let $L = \{w_1, w_2, \dots w_n\}$. Then $R = w_1 \cup w_2 \cup \dots \cup w_n$ is a regular expression defining L.

Proposition

The language

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proposition

The language

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof

No DFA has enough states to keep track of the number of 0s and 1s it might see.

Proposition

The language

 $L_{\rm eq} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof?

No DFA has enough states to keep track of the number of 0s and 1s it might see.

Above is a weak argument because $E = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 01 and 10 substrings}\}$ is regular!

Proposition

The language

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proposition

The language

 $L_{\mathrm{eq}} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Suppose (for contradiction) $L_{\rm eq}$ is recognized by DFA $M=(Q,\{0,1\},\delta,q_0,F)$, where |Q|=n.

Proposition

The language

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Suppose (for contradiction) $L_{\rm eq}$ is recognized by DFA

$$M = (Q, \{0, 1\}, \delta, q_0, F)$$
, where $|Q| = n$.

• There must be $j < k \le n$ such that $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$ (= q say).

Proposition

The language

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Suppose (for contradiction) $L_{\rm eq}$ is recognized by DFA

 $M = (Q, \{0, 1\}, \delta, q_0, F)$, where |Q| = n.

- There must be $j < k \le n$ such that $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)$ (= q say).
- Let $x = 0^j$, $y = 0^{k-j}$, and $z = 0^{n-k}1^n$; so $xyz = 0^n1^n$

Proof (contd).

$$y = 0^{k-j}$$

$$y = 0^{k-j}$$

ullet We have $\hat{\delta}(q_0,0^j)=\hat{\delta}(q_0,0^k)=q$

$$y = 0^{k-j}$$

$$q_0 \qquad x = 0^j$$

- ullet We have $\hat{\delta}(q_0,0^j)=\hat{\delta}(q_0,0^k)=q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

- ullet We have $\hat{\delta}(q_0,0^j)=\hat{\delta}(q_0,0^k)=q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\hat{\delta}(q_0, 0^n 1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n)$$

- We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\hat{\delta}(q_0, 0^n 1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) \qquad \text{(since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v))$$

- We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\hat{\delta}(q_0, 0^n 1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) \qquad \text{(since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v))$$
$$= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n)$$

- We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\hat{\delta}(q_0, 0^n 1^n) = \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) \qquad \text{(since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\
= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) \qquad \qquad (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k))$$

- We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) & \text{(since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) & (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \\ &= \hat{\delta}(q_0, 0^{n-k+j} 1^n) \end{split}$$

- ullet We have $\hat{\delta}(q_0,0^j)=\hat{\delta}(q_0,0^k)=q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) & \text{(since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) & (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \\ &= \hat{\delta}(q_0, 0^{n-k+j} 1^n) & \text{(since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \end{split}$$

Proof (contd).

- We have $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0,0^n1^n) &= \hat{\delta}(\hat{\delta}(q_0,0^k),0^{n-k}1^n) & \text{(since } \hat{\delta}(q,uv) = \hat{\delta}(\hat{\delta}(q,u),v)) \\ &= \hat{\delta}(\hat{\delta}(q_0,0^j),0^{n-k}1^n) & (\hat{\delta}(q_0,0^j) = \hat{\delta}(q_0,0^k)) \\ &= \hat{\delta}(q_0,0^{n-k+j}1^n) & \text{(since } \hat{\delta}(q,uv) = \hat{\delta}(\hat{\delta}(q,u),v)) \end{split}$$

• So M accepts $0^{n-k+j}1^n$ as well.

Proof (contd).

- We have $\hat{\delta}(q_0,0^j)=\hat{\delta}(q_0,0^k)=q$
- Since $0^n 1^n \in L_{eq}$, $\hat{\delta}(q_0, 0^n 1^n) \in F$.

$$\begin{split} \hat{\delta}(q_0, 0^n 1^n) &= \hat{\delta}(\hat{\delta}(q_0, 0^k), 0^{n-k} 1^n) &\qquad (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \\ &= \hat{\delta}(\hat{\delta}(q_0, 0^j), 0^{n-k} 1^n) &\qquad (\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k)) \\ &= \hat{\delta}(q_0, 0^{n-k+j} 1^n) &\qquad (\text{since } \hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)) \end{split}$$

• So M accepts $0^{n-k+j}1^n$ as well. But, $0^{n-k+j}1^n \notin L_{eq}!$

Pumping Lemma: Overview

Pumping Lemma

The lemma generalizes this argument. Gives the template of an argument that can be used to easily prove that many languages are non-regular.

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

```
\exists p, \forall w \in L \text{ with } |w| \ge p, \exists x, y, z \in \Sigma^* \text{ such that } w = xyz, |y| > 0 \text{ and } |xy| \le p, \forall i > 0. xy^iz \in L.
```

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

1
$$|y| > 0$$

∃*p*,

 $\forall w \in L \text{ with } |w| \geq p$,

 $\exists x, y, z \in \Sigma^*$ such that w = xyz, |y| > 0 and $|xy| \le p$,

 $\forall i \geq 0$. $xy^i z \in L$.

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

- |y| > 0
- $|xy| \leq p$

∃*p*,

 $\forall w \in L \text{ with } |w| \geq p$,

 $\exists x, y, z \in \Sigma^* \text{ such that } w = xyz, |y| > 0 \text{ and } |xy| \le p,$

 $\forall i \geq 0$. $xy^i z \in L$.

The Statement

Lemma

If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \ge p$, $\exists x, y, z \in \Sigma^*$ such that w = xyz and

- |y| > 0
- $|xy| \leq p$
- **③** $\forall i$ ≥ 0. xy^iz ∈ L

∃*p*,

 $\forall w \in L \text{ with } |w| \geq p$,

 $\exists x,y,z\in \Sigma^* \text{ such that } w=xyz,\ |y|>0 \text{ and } |xy|\leq p,$

 $\forall i \geq 0$. $xy^i z \in L$.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that L(M) = L and let p = |Q|. Let $w = w_1 w_2 \cdots w_n \in L$ be such that $n \ge p$.

Proof.

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA such that L(M)=L and let p=|Q|. Let $w=w_1w_2\cdots w_n\in L$ be such that $n\geq p$. For $1\leq i\leq n$, let $s_i=\hat{\delta}(q_0,w_1\cdots w_i)$; define $s_0=q_0$.

Proof.

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA such that L(M)=L and let p=|Q|. Let $w=w_1w_2\cdots w_n\in L$ be such that $n\geq p$. For $1\leq i\leq n$, let $s_i=\hat{\delta}(q_0,w_1\cdots w_i)$; define $s_0=q_0$.

• Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are p+1 states, there must be j, k, $0 \le j < k \le p$ such that $s_j = s_k$ (= q say).

Proof.

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA such that L(M)=L and let p=|Q|. Let $w=w_1w_2\cdots w_n\in L$ be such that $n\geq p$. For $1\leq i\leq n$, let $s_i=\hat{\delta}(q_0,w_1\cdots w_i)$; define $s_0=q_0$.

- Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are p+1 states, there must be j, k, $0 \le j < k \le p$ such that $s_j = s_k$ (= q say).
- Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$

Proof.

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA such that L(M)=L and let p=|Q|. Let $w=w_1w_2\cdots w_n\in L$ be such that $n\geq p$. For $1\leq i\leq n$, let $s_i=\hat{\delta}(q_0,w_1\cdots w_i)$; define $s_0=q_0$.

- Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are p+1 states, there must be j, k, $0 \le j < k \le p$ such that $s_j = s_k$ (= q say).
- Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$
- Observe that since $j < k \le p$, we have $|xy| \le p$ and |y| > 0.

Proof ...

Technical Claim

Claim

For all
$$i \geq 1$$
, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Technical Claim

Claim

For all
$$i \geq 1$$
, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Technical Claim

Claim

For all $i \geq 1$, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Proof.

Technical Claim

Claim

For all $i \geq 1$, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Proof.

We will prove it by induction on i.

• Base Case: By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.

Technical Claim

Claim

For all $i \geq 1$, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Proof.

- Base Case: By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.
- Induction Step: We have

Technical Claim

Claim

For all $i \geq 1$, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Proof.

- Base Case: By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.
- Induction Step: We have

$$\hat{\delta}(q_0, xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, xy^{\ell}), y)$$

Technical Claim

Claim

For all $i \geq 1$, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Proof.

- Base Case: By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_j = \hat{\delta}(q_0, x)$.
- Induction Step: We have

$$\hat{\delta}(q_0, xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, xy^{\ell}), y)
= \hat{\delta}(\hat{\delta}(q_0, x), y)$$

Technical Claim

Claim

For all $i \geq 1$, $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$.

Proof.

- Base Case: By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}(q_0, xy) = s_k = s_i = \hat{\delta}(q_0, x)$.
- Induction Step: We have

$$\hat{\delta}(q_0, xy^{\ell+1}) = \hat{\delta}(\hat{\delta}(q_0, xy^{\ell}), y)
= \hat{\delta}(\hat{\delta}(q_0, x), y)
= \hat{\delta}(q_0, xy) = \hat{\delta}(q_0, x)$$

Proof (contd).

• We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \geq 1$

- We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \ge 1$
- Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$

- We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \ge 1$
- Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$
- Observe, $\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, xy), z) = \hat{\delta}(q_0, w)$. So $xz \in L$

- We have $\hat{\delta}(q_0, xy^i) = \hat{\delta}(q_0, x)$ for all $i \geq 1$
- Since $w \in L$, we have $\hat{\delta}(q_0, w) = \hat{\delta}(q_0, xyz) \in F$
- Observe, $\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, xy), z) = \hat{\delta}(q_0, w)$. So $xz \in L$
- Similarly, $\hat{\delta}(q_0, xy^i z) = \hat{\delta}(q_0, xyz) \in F$ and so $xy^i z \in L$

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$,

$$\exists x, y, z \in \Sigma^*$$
 such that $w = xyz$ and

- **1** |y| > 0
- $|xy| \le p$

Finite Languages and Pumping Lemma

Question

Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$,

- $\exists x, y, z \in \Sigma^*$ such that w = xyz and
 - **1** |y| > 0
 - $|xy| \leq p$

Answer

Yes, they do. Let p be larger than the longest string in the language. Then the condition " $\forall w \in L$ with $|w| \geq p$, ..." is vaccuously satisfied as there are no strings in the language longer than p!

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Pumping Condition

$$\exists p. \quad \forall w \in L. \text{ with } |w| \ge p \qquad \exists x, y, z \in \Sigma^*. w = xyz$$

$$(1) \quad |y| > 0$$

$$(2) \quad |xy| \le p$$

$$(3) \quad \forall i \ge 0. xy^i z \in L$$

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

$$\forall p. \qquad \bigvee w \in L. \text{ with } |w| \ge p \qquad \exists x, y, z \in \Sigma^*. w = xyz$$

$$(1) \quad |y| > 0$$

$$(2) \quad |xy| \le p$$

$$(3) \quad \forall i \ge 0. xy^i z \in L$$

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

$$\forall p. \quad \exists w \in L. \text{ with } |w| \ge p$$

$$(1) \quad |y| > 0$$

$$(2) \quad |xy| \le p$$

$$(3) \quad \forall i \ge 0. \ xy^i z \in L$$

$$\Xi x, y, z \in \Sigma^*$$
. $w = xyz$

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

$$\begin{array}{ll} \forall p. & \exists w \in L. \text{ with } |w| \geq p & \forall x, y, z \in \Sigma^*. \ w = xyz \\ (1) & |y| > 0 \\ (2) & |xy| \leq p \\ (3) & \forall i \geq 0. \ xy^iz \in L \end{array} } \text{not all of them hold}$$

L regular implies that L satisfies the condition in the pumping lemma. If L regular \Rightarrow pumping Lemma. Then, Not pumping Lemma $\Rightarrow L$ not regular.

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Negation of the Pumping Condition

$$\begin{array}{ll} \forall p. & \exists w \in L. \text{ with } |w| \geq p & \forall x, y, z \in \Sigma^*. \ w = xyz \\ (1) & |y| > 0 \\ (2) & |xy| \leq p \\ (3) & \forall i \geq 0. \ xy^iz \in L \end{array} \right\} \text{not all of them hold}$$

Equivalent to showing that if (1), (2) then (3) does not. In other words, we can find i such that $xy^iz \notin L$

Pumping Lemma, in contrapositive

If L does not satisfy the pumping condition, then L not regular.

Pumping Lemma, in contrapositive

 $\forall p \geq 0$,

 $\exists w \in L \text{ with } |w| \geq p$,

 $\forall x, y, z \in \Sigma^*$ such that w = xyz, |y| > 0 and $|xy| \le p$,

 $\exists i \geq 0. \ xy^i z \notin L.$

Proving something like \forall bal \exists bla \forall bla \exists bla means winning a game.

Example: Two players: You, Adversary. Rules: First Adversary says a number. Then You say a number. You win if your number is bigger.

Think of using the Pumping Lemma as a game between you and an opponent.

Think of using the Pumping Lemma as a game between you and an opponent.

L Task: To show that L is not regular

Think of using the Pumping Lemma as a game between you and an opponent.

L Task: To show that L is not regular

 $\forall p$. Opponent picks p

Think of using the Pumping Lemma as a game between you and an opponent.

L Task: To show that L is not regular

 $\forall p$. Opponent picks p

 $\exists w$. Pick w that is of length at least p

Think of using the Pumping Lemma as a game between you and an opponent.

L Task: To show that L is not regular

 $\forall p$. Opponent picks p

 $\exists w$. Pick w that is of length at least p

 $\forall x, y, z$ Opponent divides w into x, y, and z such that

|y| > 0, and $|xy| \le p$

Think of using the Pumping Lemma as a game between you and an opponent.

L Task: To show that L is not regular

 $\forall p$. Opponent picks p

 $\exists w$. Pick w that is of length at least p

 $\forall x, y, z$ Opponent divides w into x, y, and z such that

|y| > 0, and $|xy| \le p$

 $\exists k$. You pick k and win if $xy^kz \notin L$

Think of using the Pumping Lemma as a game between you and an opponent.

```
L Task: To show that L is not regular
```

$$\forall p$$
. Opponent picks p

$$\exists w$$
. Pick w that is of length at least p

$$\forall x, y, z$$
 Opponent divides w into x, y, and z such that

$$|y| > 0$$
, and $|xy| \le p$

$$\exists k$$
. You pick k and win if $xy^kz \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Think of using the Pumping Lemma as a game between you and an opponent.

```
L Task: To show that L is not regular
```

$$\forall p$$
. Opponent picks p

$$\exists w$$
. Pick w that is of length at least p

$$\forall x, y, z$$
 Opponent divides w into x, y, and z such that

$$|y| > 0$$
, and $|xy| \le p$

$$\exists k$$
. You pick k and win if $xy^kz \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Contrapositive: If you can beat the opponent, L not regular.

Think of using the Pumping Lemma as a game between you and an opponent.

```
L Task: To show that L is not regular
```

$$\forall p$$
. Opponent picks p

$$\exists w$$
. Pick w that is of length at least p

$$\forall x, y, z$$
 Opponent divides w into x, y, and z such that

$$|y| > 0$$
, and $|xy| \le p$

$$\exists k$$
. You pick k and win if $xy^kz \notin L$

Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do).

Contrapositive: If you can beat the opponent, L not regular. Your strategy should work for any p and any subdivision that the opponent may come up with.

Example I

Proposition

 $L_{0n1n} = \{0^n1^n \mid n \ge 0\}$ is not regular.

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let p be the pumping length for L_{0n1n} .

• Consider $w = 0^p 1^p$

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{0n1n}$, for all i.

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{0n1n}$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{0n1n}$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Proposition

 $L_{0n1n} = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

Suppose L_{0n1n} is regular. Let p be the pumping length for L_{0n1n} .

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{0n1n}$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p, $xy^0z \notin L_{0n1n}$. Contradiction!

Proposition

 $L_{\rm eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proposition

 $L_{\mathrm{eq}} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Proposition

 $L_{\mathrm{eq}} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Suppose L_{eq} is regular. Let p be the pumping length for L_{eq} .

• Consider $w = 0^p 1^p$

Proposition

 $L_{\mathrm{eq}} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{eq}$, for all i.

Proposition

 $L_{\rm eq} = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular.

Proof.

Suppose L_{eq} is regular. Let p be the pumping length for L_{eq} .

- Consider $w = 0^p 1^p$
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_{eq}$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 1^p = 0^{r+t} 1^p$$

Since r + t < p, $xy^0z \notin L_{eq}$. Contradiction!

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p .

Pumping Lemma

Suppose $L_{\rm eq}$ is regular. Let p be pumping length for $L_{\rm eq}$. Consider $w=0^p1^p$.

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p . There exist j, k and state q such that

Pumping Lemma

Suppose $L_{\rm eq}$ is regular. Let p be pumping length for $L_{\rm eq}$. Consider $w=0^p1^p$. There exist x,y,z such that

Non Pumping Lemma

Suppose $L_{\rm eq}$ is recognized by DFA M with p states. Consider the input 0^p1^p . There exist j,k and state q such that

• j < k and $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$

Pumping Lemma

Suppose $L_{\rm eq}$ is regular. Let p be pumping length for $L_{\rm eq}$. Consider $w=0^p1^p$. There exist x,y,z such that

• w = xyz, $|xy| \le p$, |y| > 0: so for some $r, s, t, x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$, with s > 0.

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p . There exist j,k and state q such that

- j < k and $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^p 1^p \in L_{eq}$, $0^k 0^{(p-k)} 1^p$ is accepted by M and so is $0^j 0^{(p-k)} 1^p$.

Pumping Lemma

Suppose $L_{\rm eq}$ is regular. Let p be pumping length for $L_{\rm eq}$. Consider $w=0^p1^p$. There exist x,y,z such that

- w = xyz, $|xy| \le p$, |y| > 0: so for some $r, s, t, x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$, with s > 0.
- $xy^iz \in L_{eq}$ for all i: so $xy^0z \in L_{eq}$.

Non Pumping Lemma

Suppose L_{eq} is recognized by DFA M with p states. Consider the input 0^p1^p . There exist j,k and state q such that

- j < k and $\hat{\delta}(q_0, 0^j) = \hat{\delta}(q_0, 0^k) = q$
- Since $0^p 1^p \in L_{eq}$, $0^k 0^{(p-k)} 1^p$ is accepted by M and so is $0^j 0^{(p-k)} 1^p$.
- But $0^{j}0^{(p-k)}1^{p} \notin L_{eq}$.

Pumping Lemma

Suppose $L_{\rm eq}$ is regular. Let p be pumping length for $L_{\rm eq}$. Consider $w=0^p1^p$. There exist x,y,z such that

- w = xyz, $|xy| \le p$, |y| > 0: so for some $r, s, t, x = 0^r$, $y = 0^s$ and $z = 0^t 1^p$, with s > 0.
- $xy^iz \in L_{eq}$ for all i: so $xy^0z \in L_{eq}$.
- But $xy^0z = 0^{p-s}1^p \not\in L_{eq}$

Proposition

 $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular}$

Proposition

 $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular }$

Proof.

Proposition

 $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular }$

Proof.

Suppose L_p is regular. Let p be the pumping length for L_p .

• Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.

Proposition

 $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular }$

Proof.

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.

Proposition

 $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular }$

Proof.

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.
- Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0.

Proposition

 $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular }$

Proof.

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.
- Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0. $xy^{r+t}z = 0^r(0^s)^{(r+t)}0^t = 0^{r+s(r+t)+t}$.

Proposition

 $L_p = \{0^i \mid i \text{ prime}\} \text{ is not regular }$

Proof.

- Consider $w = 0^m$, where $m \ge p + 2$ and m is prime.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.
- Thus, $x = 0^r$, $y = 0^s$ and $z = 0^t$. Further, as |y| > 0, we have s > 0. $xy^{r+t}z = 0^r(0^s)^{(r+t)}0^t = 0^{r+s(r+t)+t}$. Now r + s(r+t) + t = (r+t)(s+1). Further $m = r+s+t \ge p+2$ and s > 0 mean that $t \ge 2$ and $s+1 \ge 2$. Thus, $xy^{r+t}z \not\in L_p$. Contradiction!

Question

Is
$$L_{xx} = \{xx \mid x \in \{0,1\}^*\}$$
 regular?

Question

Is
$$L_{xx} = \{xx \mid x \in \{0,1\}^*\}$$
 regular?

Question

Is
$$L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$$
 regular?

Suppose L_{xx} is regular, and let p be the pumping length of L_{xx} .

• Consider $w = 0^p 0^p \in L$.

Question

Is
$$L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$$
 regular?

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma?

Question

Is
$$L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$$
 regular?

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.

Question

Is
$$L_{xx} = \{xx \mid x \in \{0,1\}^*\}$$
 regular?

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.
- Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?

Question

Is
$$L_{xx} = \{xx \mid x \in \{0,1\}^*\}$$
 regular?

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.
- Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.

Question

Is
$$L_{xx} = \{xx \mid x \in \{0, 1\}^*\}$$
 regular?

- Consider $w = 0^p 0^p \in L$.
- Can we find substrings x, y, z satisfying the conditions in the pumping lemma? Yes! Consider $x = \epsilon, y = 00, z = 0^{2p-2}$.
- Does this mean L_{xx} satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad w. To prove that the pumping lemma is violated, we only need to exhibit some w that cannot be pumped.
- Another bad choice $(01)^p(01)^p$.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx} .

• Consider $w = 0^p 10^p 1$.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

- Consider $w = 0^p 10^p 1$.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

- Consider $w = 0^p 10^p 1$.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

- Consider $w = 0^p 10^p 1$.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 10^p 1 = 0^{r+t} 10^p 1$$

Reloaded

Proposition

 $L_{xx} = \{xx \mid x \in \{0,1\}^*\}$ is not regular.

Proof.

Suppose L_{xx} is regular. Let p be the pumping length for L_{xx} .

- Consider $w = 0^p 10^p 1$.
- Since |w| > p, there are x, y, z such that w = xyz, $|xy| \le p$, |y| > 0, and $xy^iz \in L_p$, for all i.
- Since $|xy| \le p$, $x = 0^r$, $y = 0^s$ and $z = 0^t 10^p 1$. Further, as |y| > 0, we have s > 0.

$$xy^0z = 0^r \epsilon 0^t 10^p 1 = 0^{r+t} 10^p 1$$

Since r + t < p, $xy^0z \notin L_{xx}$. Contradiction!

Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g., L_{0n1n} not regular.
- "compare far apart pieces" of the input: e.g. L_{xx} not regular.
- do "computations that require it to look at global properties" of the input. e.g. L_{prime} not regular.

Lessons on Expressivity

Limits of Finite Memory

Finite automata cannot

- "keep track of counts": e.g., L_{0n1n} not regular.
- "compare far apart pieces" of the input: e.g. L_{xx} not regular.
- do "computations that require it to look at global properties" of the input. e.g. L_{prime} not regular.

...and pumping lemma provides one way to find out some of these limitations.