Optimization

Unconstrained Optimization

- Given f(x). Find its (local) maximum/minimum points.
- Following one of the necessary conditions, we can differentiate the given function wrt input variables and set them to be zero.
- Use the result to find the corresponding values of f(x)

2

Examples

- $f(x) = x^2$
- $f(x) = x^2 + 1$
- $f(x) = x^2 + x$
- $f(x1, x2) = x_1^2 + x_2^2$

Constrained Optimization

- Find minimum value of f(x1,x2) = x1 + x2Subject to the condition that $x_1^2 + x_2^2 = 4$
- Latter is a constraint and hence represents a boundary (in 2-d space)

3

5

6

Method for Constrained Optimization

- Minimize $f(x_1,...,x_k)$ subject $g(x_1,...,x_k) = 0$
- Create $L(x_1,...,x_k,\lambda) = f(x_1,...,x_k) \lambda g(x_1,...,x_k)$
- Differentiate wrt x₁,...,x_k as well as λ and set each to zero.
- Last differentiation just yields the constraint.

Constrained Optimization 1 constraint

- Minimize $f(x_1,...,x_k)$ subject to $g(x_1,...,x_k) = 0$
- Then new objective function is

$$- \ L(x_1, ..., x_k, \lambda) = f(x_1, ..., x_k) - \lambda \ g(x_1, ..., x_k)$$

- $-dL()/dx_1=0$, ..., $dL()/dx_n=0$
- $-dL()/d\lambda=0$
- k+1 variables and k+1 equations.

7

Constrained Optimization

- Minimize $f(x_1,...,x_k)$ subject to $g_1(x_1,...,x_k) = 0, ... g_m(x_1,...,x_k) = 0$
- Then new objective function is

$$-L(x_1,...,x_k,\lambda) = f(x_1,...,x_k) - \Sigma \lambda_i g_i(x_1,...,x_k)$$

- $-dL()/dx_1=0$, ..., $dL()/dx_n=0$
- $-dL()/d\lambda_1=0$,..., $dL()/d\lambda_m=0$

Example

- Min $x_1 + x_2$ subject to $x_1^2 + x_2^2 = 4$
- $f(x_1,x_2) = x_1 + x_2$
- $g(x_1,x_2) = x_1^2 + x_2^2 4$
- $L(x_1,x_2,\lambda) = x_1 + x_2 \lambda(x_1^2 + x_2^2 4)$

9

10

Example 1

•
$$L(x_1,x_2,\lambda) = x_1 + x_2 - \lambda(x_1^2 + x_2^2 - 4)$$

- $dL()/dx_1 = 0 \rightarrow 1 2 \lambda x_1 = 0$ (I)
- $dL()/dx_2 = 0 \rightarrow 1 2 \lambda x_2 = 0$ (II)
- $dI()/d\lambda = 0 \Rightarrow x_1^2 + x_2^2 4 = 0$ (III)
- From (1) and (II), $x_1 = 1/2\lambda = x_2$
- Using (IV) $1/(4\lambda^2) + 1/(4\lambda^2) 4 = 0$

Example 1 Continued

- $x_1 = 1/2\lambda = x_2$
- $1/(4\lambda^2) + 1/(4\lambda^2) 4 = 0$
- $\lambda^2 = 1/8$
- $\lambda = \pm 1/(2\sqrt{2})$
- So minimum values when $x_1 = x_2 = -\sqrt{2}$.

11

Constrained Optimization (Inequalties)

- Minimize $f(x_1,...x_k)$ subject to $g_i(x_1,...x_k) = 0 \quad 1 \le i \le m$ $h_i(x_1,...x_k) \le 0 \quad 1 \le j \le n$
- $L(x_1,...x_k, \lambda_1,...\lambda_m, \mu_1,...\mu_n) = f(x_1,...x_k) + \Sigma_i \lambda_i g_i(x_1,...x_k) + \Sigma_j \mu_j h_j(x_1,...x_k)$

Notice "+"

KKT Conditions

- Setup new objective function:
- $L(x_1,...x_k, \lambda_1,...\lambda_m, \mu_1,...\mu_n) = f(x_1,...x_k) + \Sigma_i \lambda_i g_i(x_1,...x_k) + \Sigma_j \mu_j h_j(x_1,...x_k)$
 - 1. $dL()/dx_1=0$, ..., $dL()/dx_n=0$
 - 2. $dL()/d\lambda_1=0$,..., $dL()/d\lambda_m=0$
 - 1. $\mu_j \ge 0$ 1 \le j \le n (no longer unbounded)
 - 2. $\mu_j h_j(x_1,...x_k) = 0.1 \le j \le n^{***}$
 - 3. $h_j(x_1,...x_k) \le 0 \ 1 \le j \le n$

13

More on KKT

- $1. \quad \mu_j \! \geq \! 0 \quad 1 \! \leq \! j \! \leq \! n$
- 2. $\mu_j h_j(x_1,...x_k) = 0.1 \le j \le n^{***}$
- 3. $h_j(x_1,...x_k) \le 0 \ 1 \le j \le n$
- 1. μ 's are no longer unbounded
- 2. From 2, we can say (i) $\mu_j > 0$ and $h_j(x_1,...x_k) = 0$ or (ii) $\mu_i = 0$
- 3. Notice we don't differentiate wrt μ , we still need to impose $h_i(x_1,...x_k) \le 0$ 1 $\le j \le n$

An Example(from Tan, Steinbach and Kumar)

- Minimize f(x,y) = (x+1)² + (y-3)² subject to x+y≤2 and y≥x.
- write second constraint as x-y ≤ 0 (not y-x≥0)
- L()= $(x+1)^2 + (y-3)^2 + \mu_1(x+y-2) + \mu_2(x-y)$

15

16

Working Out the Example

- $dL/dx = 0 \rightarrow 2(x-1) + \mu_1 + \mu_2 = 0 --- (1)$
- $dL/dy = 0 \rightarrow 2(y-3) + \mu_1 \mu_2 = 0$ --- (2)
- $\mu_1(x+y-2) = 0$ ----(3)
- $\mu_2(x-y) = 0$ ---(4)
- $\mu_1 \ge 0$, $\mu_2 \ge 0$, $x+y \le 2$, $y \ge x$. ----(5)
- 4 cases to consider from μ₁ ≥ 0, μ₂ ≥ 0 part of
 (5)

Case 1

- $\mu_1 = 0$ and $\mu_2 = 0$
- (1) and (2) become 2(x-1)=0 and 2(y-3)=0
- That is, x=1 and y=3.
- So x+y =4.

18

• Not a feasible solution since $x + y \le 2$

17

Case 2

- Now $\mu_1=0$ and $\mu_2>0$.
- (4), (1) and (2) become
- x-y=0, $2(x-1)+\mu_2=0$ and $2(y-3)-\mu_2=0$
- So x=y. Therefore 2x-2+ μ_2 =0 and 2x -6 μ_2 =0
- This givex x=2. Then y=2. And μ_2 =-2
- · Again not feasible.

Case 3

- Now $\mu_1>0$ and $\mu_2=0$.
- Then (3), (1) and (2) become
- x+y-2=0, 2(x-1)+ μ_1 =0 and 2(y-3) μ_1 =0
- Solutions are x=0, y=2 and $\mu_1\text{=}2$
- This is feasible!!!

Case 4

- Now $\mu_1 > 0$ and $\mu_2 > 0$.
- Then (3), (4), (1) and (2) become
- x+y-2=0, x+y 0, 2(x-1)+ μ_1 =0 and 2(y-3) μ_1 =0
- Which gives rise to x=1, y=1, μ_1 =2 and μ_2 =-2
- Again, not feasible.