BAYESIAN NETWORK CLASSIFICATION

EVOLUTIONARY NETWORK ANALYSIS: A SURVEY

MASTER THESIS JURRIAAN PARIE

MARCH 16, 2018

Supervised by: dr. Frank Philipson

MATHEMATICAL INSTITUTE, UTRECHT UNIVERSITY

TNO, Cyber security and Robustness, The Hague

ABSTRACT

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Contents

Introduction			2
1	Pro	blem Statement	3
	1.1	Notation and definitions	3
2		oretical Approach	4
	2.1	Uniform grid	4
	2.2	Discrete in time; continuous in space	4
3	Reconstruction of the problem in R		5
	3.1	Given data	5
	3.2	Analysis	5
	3.3	Results	5
		3.3.1 Conclusion	5
4	Extra questions and generalisations		6
		4.0.1 Question	6
	4.1	Generalisation of the model with more than one incident	6
Co	onclu	sion and Discussion	7
	Reco	ommendations	7
A	knov	wledgements	8

Management Summary

Introduction

Problem Statement

1.1 NOTATION AND DEFINITIONS

Theoretical Approach

- 2.1 UNIFORM GRID
- 2.2 DISCRETE IN TIME; CONTINUOUS IN SPACE

Reconstruction of the problem in R

- 3.1 GIVEN DATA
- 3.2 ANALYSIS
- 3.3 RESULTS
- 3.3.1 Conclusion

Extra questions and generalisations

4.0.1 Question

4.1 GENERALISATION OF THE MODEL WITH MORE THAN ONE INCIDENT

Conclusion and Discussion

RECOMMENDATIONS

Acknowledgements