Report No: RXA1606-0101SAR

CALIBRATION No. L0570

Date: 01.09.2014

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f=2450 MHz; $\sigma=1.988$ S/m; $\epsilon_r=51.25$; $\rho=1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.120 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg

Certificate No: Z14-97075 Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97075 Page 8 of 8

ANNEX H: DAE4 Calibration Certificate

Add: No.51 Xueyuan Rozd, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

No. L0570

Client :

TA(Shanghai)

Certificate No: Z15-97194

Report No: RXA1606-0101SAR

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 871

Calibration Procedure(s)

FD-Z11-2-002-01

Calibration Procedure for the Data Acquisition Electronics

Calibration date:

November 17, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID# Cal Date(Calibrated by, Certificate No.)

Scheduled Calibration

Process Calibrator 753

1971018

06-July-15 (CTTL, No:J15X04257)

July-16

Calibrated by:

Name

Function

Signature

Yu Zongying

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: November 18, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97194

Page 1 of 3

In Collaboration with

Report No: RXA1606-0101SAR

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

CALIBRATION LABORATORY

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

TTL s p e a g

CALIBRATION LABORATORY

Report No: RXA1606-0101SAR

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$ Low Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.728 ± 0.15% (k=2)	404.712 ± 0.15% (k=2)	405.156 ± 0.15% (k=2)
Low Range	3.98308 ± 0.7% (k=2)	3.93782 ± 0.7% (k=2)	3.97048 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.5° ± 1 °
	00.0 = 1

ANNEX I: The EUT Appearances and Test Configuration

Front Side

Back Side a: EUT

Report No: RXA1606-0101SAR

b: Battery

Adapter 1

TA Technology (Shanghai) Co., Ltd.

Adapter 2

d: Charger Pedestal Holder Picture 9: Constituents of EUT

Picture 10: Left Hand Touch Cheek Position

Picture11: Left Hand Tilt 15 Degree Position

Picture 12: Right Hand Touch Cheek Position

Picture13: Right Hand Tilt 15 Degree Position

Picture 14: Back Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 15: Front Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 16: Left Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 17: Right Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 18: Top Side, the distance from handset to the bottom of the Phantom is 10mm

Picture 19: Bottom Side, the distance from handset to the bottom of the Phantom is 10mm