1 Instructions

- Complete all the three problems in Section 2 and <u>only two problems of your choice</u> from the problems listed in Section 3.
- You may discuss the problems with peers. You must, however, write up your own solutions.
- Show work and be rigorous within reason.
- List all the references you might use.
- The exam is due by 10:30 a.m. on Monday October 26, 2020.
- If you need hints, clarifications, etc..., do not hesitate to come and talk to me.
- Good Luck!

2 Complete all the three problems in this section

Problem 1: (4 points) (The different parts of this problem are independent).

(1.1) Let m_* be the Lebesgue outer measure on \mathbb{R} . Assume that $A, B \subset \mathbb{R}$ are such that there exists $\epsilon > 0$ with

$$\inf\{|a-b|\ a\in A, b\in B\} \ge \epsilon.$$

Prove that $m_*(A \cup B) = m_*(A) + m_*(B)$.

- (1.2) For $A, B \subset \mathbb{R}$, let $A\Delta B = (A \setminus B) \cup (B \setminus A)$. Assume that A is a Lebesgue measurable set and $B \subset \mathbb{R}$ such that $m_*(A\Delta B) = 0$. Show that B is Lebesgue measurable and that m(A) = m(B).
- (1.3) Let $E \subset \mathbb{R}$ be Lebesgue measurable with $0 < m(E) < \infty$. Given a sequence of measurable sets $\{A_n\}_{n=1}^{\infty}$ with $A_n \subset E$ and $\lim_{n\to\infty} m(A_n) = m(E)$, prove that there exists a subsequence $\{A_{n_k}\}_{k=1}^{\infty}$ such that $m(\bigcap_{k=1}^{\infty} A_{n_k}) > 0$.
- (1.4) Suppose that $E \subset \mathbb{R}$ such that $m_*(E) > 0$. Prove that there exists $S \subset E$ such that S is not Lebesgue measurable.

Problem 2 (4 points) Assume $E \subset \mathbb{R}^d$ be a Lebesgue measurable set such that $m(E) < \infty$.

- (2.1) Suppose that $f: E \to \mathbb{R}$ is Lebesgue measurable. Prove that for each $\epsilon > 0$ there exists a closed set $F \subset E$ such that $m(E \setminus F) < \epsilon$ and f is bounded on F.
- (2.2) Let $\{f_n\}$ be a sequence of Lebesgue measurable functions defined on E Suppose that for each $x \in E$ we have $M_x = \sup_{n \ge 1} |f_n(x)| < \infty$. Prove that for each $\epsilon > 0$, there exist a closed set $F \subset E$ and a finite constant M such that $m(E \setminus F) < \epsilon$ and $|f_n(x)| \le M$ for all $x \in F$ and $n \ge 1$.

Problem 3 (4 points) (The different parts of this problem are independent).

- (3.1) Let $f: \mathbb{R}^d \to [0, \infty]$ be a Lebesgue measurable function. Prove that $f = \sum_{n=0}^{\infty} a_n 1_{A_n}$ where $a_n \geq 0$ and A_n is Lebesgue measurable.
- (3.2) Let m denote the Lebesgue measure restricted to the interval [0,1], and let $\{f_n\}_{n=1}^{\infty}$, $\{g_n\}_{n=1}^{\infty}$ be two sequences of Lebesgue measurable functions defined from [0,1] into \mathbb{R} . Assume that $\sum_{n=1}^{\infty} m(\{x \in [0,1] : f_n(x) \neq g_n(x)\}) < \infty$. Prove that there exists a Lebesgue measurable set $A \subset [0,1]$, with m(A) = 0, and such that for all $x \in [0,1] \setminus A$, there exists an integer k such that $f_n(x) = g_n(x)$ for all n > k.
- (3.3) Let m denote the Lebesgue measure restricted to the interval [0,1], and let f_n be a sequence of nonnegative Lebesgue measurable functions on [0,1]. Show that f_n converges to zero in measure if and only if

$$\lim_{n\to\infty} \int_0^1 \frac{f_n}{1+f_n} \, dm = 0.$$

3 Complete two problems of your choice from this group

Problem 4 (4 **points**) Let \mathcal{B} denote the Borel σ -algebra on \mathbb{R} . Let $\mu : \mathcal{B} \to [0, \infty]$ be a measure such that for each $x \in \mathbb{R}$ and each $A \in \mathcal{B}$, $A + x \in \mathcal{B}$ and $\mu(x + A) = \mu(A)$. Set $\alpha = \mu((0,1])$.

- (4.1) Prove that $\mu((0,x]) = \alpha m((0,x]) = \alpha x$ for each $x \in \mathbb{R}$, and that $\mu((a,b]) = \alpha m((a,b]) = \alpha (b-a)$ for all $-\infty \le a < b \le \infty$, where m is the Lebesgue measure.
- (4.2) Prove that μ is a σ -finite measure, that is $\mathbb{R} = \bigcup_{n=1}^{\infty} X_n$, $X_n \in \mathcal{B}$ are disjoint and $\mu(X_n) < \infty$ for all $n \geq 1$. Finally, conclude that $\mu(A) = \alpha m(A)$ for each $A \in \mathcal{B}$.

Problem 5 (4 **points**) Let m be the Lebesgue measure on [0,1]. For any two measurable subsets E, F of [0,1], define a relation \mathcal{R} by

$$E \mathcal{R} F \iff m(E\Delta F) = 0.$$

- (5-1) Show that \mathcal{R} is an equivalence relation, i.e., that \mathcal{R} is reflexive, symmetric and transitive.
- (5-2) For $E, F \in \mathcal{L}$ define $\rho(E, F) = m(E\Delta F)$. Show that for all $E, F, G \in \mathcal{L}$, $\rho(E, G) \leq \rho(E, F) + \rho(F, G)$ and conclude that ρ is a metric on the space \mathcal{L}/\mathcal{R} of equivalence classes.

Problem 6 (4 points) Let $\phi: [0, 2\pi) \to \mathbb{C}$ be defined by $\phi(\theta) = e^{i\theta}$. Let $S^1 = \phi([0, 2\pi))$ be the range of ϕ (note S^1 is just the unit circle in the complex plane.) Denote by $\mathcal{B}([0, 2\pi))$ the Borel σ -algebra on $[0, 2\pi)$, and define

$$\widetilde{\mathcal{B}}(S^1) = \{ B \subset S^1 : \phi^{-1}(B) \in \mathcal{B}([0, 2\pi)). \}$$

- (6-1) Show that $\widetilde{\mathcal{B}}(S^1)$ is a σ -algebra of subsets of S^1 .
- (6-2) Define the non-negative function m_1 on $\widetilde{\mathcal{B}}(S^1)$ by $m_1(B) = \frac{1}{2\pi}m(\phi^{-1}(B))$ where m is the Lebesgue measure on $[0, 2\pi)$. Show that m_1 is a measure on $\widetilde{\mathcal{B}}(S^1)$.
- (6-3) For $x = e^{i\theta} \in S^1$, let ψ_x be a function defined on S^1 by $\psi_x(y) = x \cdot y$, where $x \cdot y$ is the usual product of complex numbers. Note that ψ_x is a continuous bijection map whose inverse is also continuous. Show that for all $B \in \widetilde{\mathcal{B}}(S^1)$, $\psi_x^{-1}(B) = \phi(\phi^{-1}(B) + \theta)$, and conclude that ψ_x is measurable (with respect to $\widetilde{\mathcal{B}}(S^1)$).
- (6-4) Show that $m_1(\psi_x^{-1}(B)) = m_1(B)$ for all $B \in \widetilde{\mathcal{B}}(S^1)$.