- **47.** Let R_1 and R_2 be arbitrary rings, and consider the set $R_1 \times R_2$ of all ordered pairs (r_1, r_2) where $r_i \in R_i$. We define addition and multiplication on these "vectors" by adding and multiplying the "components": $(r_1, r_2) + (s_1, s_2) = (r_1 + s_1, r_2 + s_2)$ and $(r_1, r_2)(s_1, s_2) = (r_1s_1, r_2s_2)$. Prove:
- (a) We obtain a ring. It is called the direct sum $R_1 \oplus R_2$ of R_1 and R_2 .
- (b) The "projections" $R_1^* = \{(r_1, 0) \mid r_1 \in R_1\}$ and $R_2^* = \{(0, r_2) \mid r_2 \in R_2\}$ satisfy (b1) $R_i^* \cong R_i$;
 - (b2) $R_i^* \triangleleft R_1 \oplus R_2$;
 - (b3) every $c \in R_1 \oplus R_2$ has a unique decomposition $c = c_1 + c_2$ with $c_i \in R_i^*$;
 - (b4) $R_1 \oplus R_2/R_1^* \cong R_2$ and $R_1 \oplus R_2/R_2^* \cong R_1$.
- (c) Conditions (b2) and (b3) characterize the direct sum: If I and J are ideals in a ring R such that every $r \in R$ can be uniquely written as r = i + j with $i \in I, j \in J$, then $R \cong I \oplus J$.
- **48.** Let $R = R_1 \oplus R_2$ where $R_i \neq \{0\}$.
- (a) Find zero-divisors in R. This shows that R is never a field.
- (b) When is R commutative?
- (c) When does R have an identity?
- (d) Which elements in R have an inverse (if R has an identity)?
- **49.** Which rings have a (non-trivial) direct decomposition:
- (a) \mathbf{C} ; (b) \mathbf{Z} ; (c) \mathbf{Z}_9 ; (d) \mathbf{Z}_6 ; (e) $\mathbf{R}^{2\times 2}$; (f) the diagonal matrices in $\mathbf{R}^{2\times 2}$.

Number theory in rings

We assume that R is an integral domain (ID), i.e. a zero-divisor free, commutative ring with identity 1.

- **50.** An element dividing every element of R is called a *unit*. Multiplying an element c by a unit, we get an *associate* of c.
- (a) The units are exactly the invertible elements of R, i.e. the divisors of 1.
- (b) The product and quotient of two units are units again.
- (c) What are the units in the following rings: (c1) \mathbf{Z} ; (c2) $\mathbf{R}[x]$; (c3) $\mathbf{Z}[x]$; (c4) D = rationals with odd denominators.
- (d) There are infinitely many units in the ring $T = \{a + b\sqrt{2} \mid a, b \in \mathbf{Z}\}.$
- (e) a and b are associates $\iff a \mid b$ and $b \mid a \iff (a) = (b)$.

- **51.** $r \in R$ is *irreducible* if it is not a unit and $r = ab \Rightarrow a$ or b is a unit. $p \in R$ is a *prime* if it is neither 0, nor a unit, and $p \mid cd \Rightarrow p \mid a$ or $p \mid b$. Prove:
- (a) Every prime is irreducible.
- (b) The converse is false e.g. in $H = \{a + b\sqrt{10} \mid a, b \in \mathbf{Z}\}$; deduce this from $3 \cdot (-3) = (1 + \sqrt{10})(1 \sqrt{10})$. To prove that 3 is irreducible, introduce the norm of $\alpha = a + b\sqrt{10}$ as $N(\alpha) = (a + b\sqrt{10})(a b\sqrt{10}) = a^2 10b^2$ and verify (b1) $N(\alpha\beta) = N(\alpha)N(\beta)$; and
 - (b2) α is a unit iff $N(\alpha) = \pm 1$.
- (c) In D there is just one irreducible element apart from associates. Why does Euclid's proof about infinitely many primes in \mathbf{Z} fail here?
- *52. R is a Unique Factorization Domain (UFD) if every non-zero and non-unit element can be written as the product of irreducible elements and this decomposition is unique apart from associates and the order of the factors (e.g. in \mathbb{Z} , we have $12 = 2 \cdot 2 \cdot 3 = (-3) \cdot 2 \cdot (-2)$, etc.). Recall that \mathbb{Z} ; F[x] where F is any field; and $\mathbb{Z}[x]$ are UFDs. Prove:
 - (a) D is a UFD, but H is not.
 - (b) R is a UFD iff (i) every irreducible is prime and (ii) there is no infinite strictly increasing chain of principal ideals.
 - (c) If R is a UFD, then $(a) \cap (b)$ is a principal ideal for any $a, b \in R$. Find its generator.
- *53. R is a principal ideal domain (PID) if every ideal is a principal ideal. Prove:
 - (a) In a PID, $d = \gcd\{a, b\} \iff (d) = (a, b)$. What can we say in a general R?
 - (b) Any PID is a UFD.
 - (c) The converse of (b) is false, $\mathbf{Z}[x]$ is a counterexample.
- **54.** A ring with a division algorithm is called a Euclidean domain (ED). This means that there is a function $f: R \setminus \{0\} \to \mathbf{N}$ with the following property: To any $b \neq 0, a \in R$ there exist $c, d \in R$ satisfying a = bc + d and f(d) < f(b) or d = 0. Prove:
- (a) \mathbf{Z} , F[x], T, and D are EDs.
- (b) Every ED is a PID, hence also a UFD.

Remark: The converse of (b) is false, e.g. $V = \{a + b(1 + i\sqrt{19})/2 \mid a, b \in \mathbf{Z}\}$ is a PID, but not a ED.

- (c) $\mathbf{Z}[x]$ is not a ED.
- (d) In a ED, if f(c) is the minimal value of f, then c is a unit.

freud@caesar.elte.hu

freud.web.elte.hu/bsm/index.html