#### CS 188: Artificial Intelligence Fall 2010

Lecture 11: Reinforcement Learning 9/30/2010

Dan Klein - UC Berkeley

Many slides over the course adapted from either Stuart Russell or Andrew Moore

# Reinforcement Learning

- Reinforcement learning:
  - Still assume an MDP:
    - A set of states s ∈ S
    - · A set of actions (per state) A
    - A model T(s,a,s')
  - A reward function R(s,a,s')
  - Still looking for a policy  $\pi(s)$



[DEMO]

- New twist: don't know T or R
  - . I.e. don't know which states are good or what the actions do
  - · Must actually try actions and states out to learn

### **Passive Learning**

- Simplified task
  - You don't know the transitions T(s.a.s')
  - You don't know the rewards R(s,a,s')
  - You are given a policy  $\pi(s)$
  - · Goal: learn the state values
  - ... what policy evaluation did
- In this case:
  - Learner "along for the ride"
  - No choice about what actions to take
  - Just execute the policy and learn from experience
  - We'll get to the active case soon
  - . This is NOT offline planning! You actually take actions in the world and see what happens...



#### Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
  - New V is expected one-step-look-ahead using current V
  - Unfortunately, need T and R



 $V_0^{\pi}(s) = 0$ 

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

### Model-Based Learning

- - · Learn the model empirically through experience
  - Solve for values as if the learned model were correct
- Simple empirical model learning
  - · Count outcomes for each s.a
  - Normalize to give estimate of T(s,a,s')
  - Discover R(s,a,s') when we experience (s,a,s')



Solving the MDP with the learned model

Iterative policy evaluation, for example

 $V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$ 



# Model-Free Learning

Want to compute an expectation weighted by P(x):

$$E[f(x)] = \sum_{x} P(x)f(x)$$

Model-based: estimate P(x) from samples, compute expectation

$$x_i \sim P(x)$$
  
 $\hat{P}(x) = \text{count}(x)/k$   $E[f(x)] \approx \sum_x \hat{P}(x)f(x)$ 

Model-free: estimate expectation directly from samples

$$x_i \sim P(x)$$
  $E[f(x)] \approx \frac{1}{k} \sum_i f(x_i)$ 

Why does this work? Because samples appear with the right frequencies!

#### Sample-Based Policy Evaluation?

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Who needs T and R? Approximate the expectation with samples (drawn from T!)

 $sample_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k)$ 



$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

Almost! But we only actually make progress when we move to i+1.

# Temporal-Difference Learning

- Big idea: learn from every experience!
  - Update V(s) each time we experience (s,a,s',r)
  - Likely s' will contribute updates more often
- Temporal difference learning
  - Policy still fixed!
  - Move values toward value of whatever successor occurs: running average!

Sample of V(s):  $sample = R(s,\pi(s),s') + \gamma V^{\pi}(s')$ 

Update to V(s):  $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$ 

Same update:  $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$ 

# **Exponential Moving Average**

- Exponential moving average
  - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1-\alpha) \cdot x_{n-1} + (1-\alpha)^2 \cdot x_{n-2} + \dots}{1 + (1-\alpha) + (1-\alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Decreasing learning rate can give converging averages

[DEMO – Grid V's] **Example: TD Policy Evaluation**  $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$ (1,1) up -1 (1,1) up -1 (1,2) up -1 (1,2) up -1 (1,2) up -1 (1,3) right -1 (1,3) right -1 (2,3) right -1 (2,3) right -1 (3,3) right -1 (3,3) right -1 (3.2) up -1 (4,2) exit -100 (3,2) up -1 (3,3) right -1 (4,3) exit +100 (done) Take  $\gamma = 1$ ,  $\alpha = 0.5$ 

#### Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:



$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^*(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

**Active Learning** 

- Full reinforcement learning
  - You don't know the transitions T(s,a,s')
  - You don't know the rewards R(s,a,s')
  - You can choose any actions you like
  - Goal: learn the optimal policy
  - ... what value iteration did!
- In this case:
  - · Learner makes choices!
  - Fundamental tradeoff: exploration vs. exploitation
  - This is NOT offline planning! You actually take actions in the world and find out what happens...

[DEMO - Grid Q's]

t

-11

### **Detour: Q-Value Iteration**

- Value iteration: find successive approx optimal values
  - Start with V<sub>0</sub>\*(s) = 0, which we know is right (why?)
  - Given V<sub>i</sub>\*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!

  - Start with Q<sub>0</sub>\*(s,a) = 0, which we know is rignt (why?)
     Given Q<sub>1</sub>\*, calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]$$

Q-Learning

#### Q-Learning: sample-based Q-value iteration

- Learn Q\*(s,a) values
  - Receive a sample (s,a,s',r)
  - Consider your old estimate: Q(s, a)
  - Consider your new sample estimate:

$$\begin{split} Q^*(s, a) &= \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right] \\ sample &= R(s, a, s') + \gamma \max_{a'} Q(s', a') \end{split}$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$$

[DEMO - Grid Q's]

# Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
  - If you explore enough
  - If you make the learning rate small enough
  - ... but not decrease it too quickly!
  - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
  - learn optimal policy without following it (some caveats)





Exploration / Exploitation

- Several schemes for forcing exploration
  - Simplest: random actions (ε greedy)
    - Every time step, flip a coin
    - With probability ε, act randomly
    - With probability 1-ε, act according to current policy
  - Problems with random actions?
    - You do explore the space, but keep thrashing around once learning is done
    - One solution: lower ε over time
    - Another solution: exploration functions

[DEMO – Auto Grid Q's]

# **Exploration Functions**

- When to explore
  - Random actions: explore a fixed amount
  - Better idea: explore areas whose badness is not (yet) established
- Exploration function
  - Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u,n)=u+k/n (exact form not important)

$$\begin{aligned} &Q_{i+1}(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \\ &Q_{i+1}(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q_i(s',a'), N(s',a')) \end{aligned}$$



4