Usporiadaná dvojica(u, v) prvkov u, v z množiny V je taká dvojica, pri ktorej je určené, ktorý z prvkov u, v je na prvom a ktorý na druhom mieste. **Usporiadaná** n-tica prvkov je taká n-tica prvkov (a_1, a_2, \ldots, a_n) , pri ktorej je určené poradie prvkov.

Definícia

Grafom nazveme usporiadanú dvojicu G = (V, H), kde V je neprázdna konečná množina a H je množina neusporiadaných dvojíc typu $\{u, v\}$ takých, že $u \in V$, $v \in V$ a $u \neq v$, t. j.

$$H \subseteq \{\{u,v\} \mid u \neq v, \ u,v \in V\} \subset V \circ V. \tag{1}$$

Prvky množiny V nazývame **vrcholmi** a prvky množiny H **hranami** grafu G.

Digrafom nazveme usporiadanú dvojicu $\overrightarrow{G} = (V, H)$, kde V je neprázdna konečná množina a H je množina usporiadaných dvojíc typu (u, v) takých, že $u \in V$, $v \in V$ a $u \neq v$, t. j.

$$H \subseteq \{(u,v) \mid u \neq v, \ u,v \in V\} \subset V \times V. \tag{2}$$

Prvky množiny V nazývame vrcholmi a prvky množiny H orientovanými hranami \overrightarrow{G} .

- Je veľká nejednotnosť v grafovej terminológii
- neorienotvaná hrana hrana, edge, rebro
- orientovaná hrana šíp, arc, oblúk

Digraf – množina V s antireflexnou reláciou Graf – množina V s antireflexnou symetrickou reláciou

Diagram grafu. Graf často reprezentujeme graficky a príslušný obrázok voláme diagram grafu. **Diagram grafu** G = (V, H) v nejakom priestore $\mathcal P$ je množina B bodov a množina S súvislých čiar v priestore $\mathcal P$ takých, že

- Každému vrcholu v ∈ V zodpovedá práve jeden bod b_v ∈ B
 a každému bodu b ∈ B zodpovedá práve jeden vrchol v ∈ V
 (t. j. b = b_v), pričom pre u, v ∈ V, u ≠ v je b_u ≠ b_v.
- Každej hrane $h \in H$ zodpovedá práve jedna čiara $s_h \in S$ a každej čiare $s \in S$ zodpovedá práve jedna hrana $h \in H$ (t. j. $s = s_h$), pričom pre $h, k \in H$, $h \neq k$ je $s_h \neq s_k$.
- Ak $h = \{u, v\} \in H$, potom čiara s_h má koncové body b_u , b_v . Okrem koncových bodov žiadna čiara neobsahuje žiaden bod typu $b_w \in B$.
- Naviac sa často žiada, aby bol diagram nakreslený tak, že žiadna čiara samu seba nepretína a dve čiary majú najviac jeden priesečník.

Rovinný diagram grafu, rovinný graf

Definícia

Diagram grafu, resp. digrafu v rovine nazveme **rovinný**, ak sa jeho hrany nepretínajú nikde inde okrem vrcholov. Graf G = (V, H), resp. digraf $\overrightarrow{G} = (V, H)$ nazveme **rovinný**, ak k nemu existuje rovinný diagram.

V niektorej slovenskej literatúre sa namiesto termínu rovinný graf používa termín **planárny graf**.

Obr.: Dva diagramy toho istého grafu G = (V, H),

kde
$$V = \{1, 2, 3, 4\}, H = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$$

Všeobecnejšie grafové štruktúry

Hovoríme, že graf G'=(V',H') je **podgrafom grafu** G=(V,H), ak platí $V'\subseteq V$ a $H'\subseteq H$. V tomto prípade budeme písať $G'\subseteq G$. Digraf $\overrightarrow{G'}=(V',H')$ je **podgrafom digrafu** $\overrightarrow{G}=(V,H)$, ak $V'\subseteq V$ a $H'\subseteq H$.

Definícia

Hovoríme, že graf G' = (V', H') je **faktorovým podgrafom** grafu G = (V, H), ak platí V' = V a $H' \subseteq H$. Analogicky definujeme **faktorový podgraf digrafu** \overrightarrow{G} .

Graf G = (V, H) nazveme **úplným**, ak množina H obsahuje všetky možné dvojice typu $\{u, v\}$, kde $u, v \in V$ a $u \neq v$. Úplný graf o n vrcholoch budeme značiť K_n .

Podobne digraf $\overrightarrow{G} = (V, H)$ nazveme **úplným**, ak množina H obsahuje všetky možné dvojice typu (u, v), kde $u, v \in V$ a $u \neq v$.

Poznámka

Niektorá literatúra používa namiesto termínu **úplný graf** termín **kompletný graf**.

Obr.: Diagramy úplných grafov K_1 až K_6 .

Maximálny resp. minimálny podgraf grafu s vlastnosťou ${\mathcal V}$

Definícia

Maximálny podgraf G' grafu G s nejakou vlastnosťou $\mathcal V$ je taký podgraf grafu G, ktorý má vlastnosť $\mathcal V$, a pritom neexistuje podgraf G'' grafu G s vlastnosťou $\mathcal V$ taký, že $G'\subseteq G''$ a $G'\neq G''$.

Minimálny podgraf G' **grafu** G **s vlastnosťou** V *je taký podgraf grafu* G, *ktorý má vlastnosť* V, *a pritom neexistuje podgraf* G'' *grafu* G *s vlastnosťou* V *taký*, *že* $G'' \subseteq G'$ *a* $G'' \neq G'$.

Definícia

Nech G = (V, H) je graf (digraf), $V' \subseteq V$. Hovoríme, že G' je **podgraf grafu (digrafu)** G indukovaný množinou vrcholov V', ak G' je maximálny podgraf grafu G s množinou vrcholov V'. Nech $H' \subseteq H$. Hovoríme, že G' je **podgraf grafu (digrafu)** G indukovaný množinou hrán H', ak G' je minimálny podgraf grafu G s množinou hrán H'.

Priľahlosť – susednosť vrcholov resp. hrán

Definícia

Nech G = (V, H) je graf, resp. digraf, $v \in V$, $h \in H$.

Vrchol v je **incidentný s hranou** h, ak je v jedným z vrcholov hrany h.

Hrany $h, k \in H$, $h \neq k$ sú **priľahlé** alebo **susedné**, ak majú spoločný jeden vrchol.

Vrcholy u, v sú **priľahlé** alebo **susedné**, ak $\{u, v\} \in H$, t. j. ak $\{u, v\}$ je hranou, resp. ak $(u, v) \in H$ alebo $(v, u) \in H$.

Symbolom H(v) budeme označovať množinu všetkých hrán grafu G incidentných s vrcholom v, symbolom V(v) budeme označovať množinu všetkých vrcholov priľahlých k vrcholu v.

Nech $\overrightarrow{G} = (V, H)$ je digraf, $u \in V$, $v \in V$, $h \in H$. Hovoríme, že orientovaná hrana h vychádza z vrchola u, alebo že vrchol u je začiatočný vrchol orientovanej hrany h, ak h = (u, x) pre niektoré $x \in V$. Hovoríme, že orientovaná hrana h vchádza do vrchola v, alebo že vrchol v je koncový vrchol orientovanej hrany h, ak h = (y, v) pre niektoré $y \in V$. Orientovaná hrana h je incidentná h vchádza do vrchola h alebo vychádza h vrchola h.

- $H^+(v)$ množina všetkých orientovaných hrán digrafu \overrightarrow{G} vychádzajúcich z vrchola v
- $H^-(v)$ množina všetkých orientovaných hrán digrafu \overrightarrow{G} vchádzajúcich do vrchola v
- $V^+(v)$ množina koncových vrcholov všetkých hrán z $H^+(v)$,
- $V^-(v)$ množina začiatočných vrcholov všetkých hrán z $H^-(v)$.

$$H(v) = H^{+}(v) \cup H^{-}(v)$$
 $V(v) = V^{+}(v) \cup V^{-}(v)$

Okolie, výstupná hviezda, vstupná hviezda

Definícia

Nech G = (V, H) je graf alebo digraf, $v \in V$.

Okolím vrchola v nazveme graf, resp. digraf

 $O(v) = (V(v) \cup \{v\}, H(v)), t. j.$ ktorého vrcholová množina pozostáva z vrchola v a všetkých s ním susedných vrcholov a ktorého hranová množina je množinou všetkých hrán incidentných s vrcholom v.

Nech $\overrightarrow{G} = (V, H)$ je digraf, $v \in V$.

Výstupnou hviezdou vrchola v nazveme digraf

Fstar $(v) = (V^+(v) \cup \{v\}, H^+(v))$, ktorého vrcholová množina pozostáva z vrchola v a koncových vrcholov všetkých hrán vychádzajúcich z vrchola v a hranová množina je množinou všetkých hrán vychádzajúcich z vrchola v.

Vstupnou hviezdou vrchola v nazveme digraf

Bstar $(v) = (V^-(v) \cup \{v\}, H^-(v))$, ktorého vrcholová množina pozostáva z vrchola v a začiatočných vrcholov všetkých hrán vchádzajúcich do vrchola v a ktorého hranová množina je množinou všetkých hrán vchádzajúcich do vrchola v.

Obr.: Okolie a výstupná hviezda vrchola v sú vyznačené hrubo čiarami.

Stupeň deg(v) **vrchola** v v grafe G = (V, H) je počet hrán incidentných s vrcholom v.

Výstupný stupeň odeg(v) **vrchola** v v digrafe $\overrightarrow{G} = (V, H)$ je počet hrán digrafu \overrightarrow{G} z vrchola v vychádzajúcich.

Vstupný stupeň ideg(v) **vrchola** v v digrafe \overrightarrow{G} je počet hrán digrafu \overrightarrow{G} do vrchola v vchádzajúcich.

Veta

(Euler.) Súčet stupňov všetkých vrcholov v grafe G = (V, H) sa rovná dvojnásobku počtu hrán grafu G, t. j.

$$\sum_{v \in V} \deg(v) = 2.|H|.$$

Pravidelný graf, komplementárne grafy

Definícia

Pravidelný graf stupňa k je taký graf G = (V, H), v ktorom má každý vrchol $v \in V$ stupeň k.

Definícia

Grafy G = (V, H), $\overline{G} = (\overline{V}, \overline{H})$ nazveme **komplementárne**, ak $V = \overline{V}$ a pre každú dvojicu vrcholov u, $v \in V$ takých, že $u \neq v$, platí: $\{u, v\} \in H$ práve vtedy, keď $\{u, v\} \notin \overline{H}$. Analogicky definujeme dvojicu komplementárnych digrafov.

Obr.: Dvojice komplementárnych grafov a digrafov.

Graf G=(V,H) nazveme **bipartitný**, ak jeho množinu vrcholov V možno rozdeliť na dve disjunktné neprázdne podmnožiny (partie alebo časti) V_1 , V_2 tak, že žiadne dva vrcholy z tej istej časti nie sú susedné. **Úplný bipartitný graf** K_{mn} je taký bipartitný graf s časťami V_1 , V_2 , v ktorom $|V_1|=m$, $|V_2|=n$ a v ktorom je každý vrchol množiny V_1 susedný s každým vrcholom množiny V_2 .

Analogicky možno definovať k-partitný graf.

Obr.: Diagramy bipartitných grafov.

Vrcholy častí V_1 , V_2 sú znázornené odlišne. Prostredný diagram prislúcha grafu $K_{2,2}$, tretí diagram zľava je diagram grafu $K_{4,2}$.

Hranovo ohodnotené grafy

Definícia

Graf, resp. digraf G = (V, H) nazveme hranovo ohodnoteným, ak každej hrane, resp. orientovanej hrane $h \in H$ je priradené reálne číslo c(h) nazývané cena hrany h alebo tiež ohodnotenie hrany h.

Za hranovo ohodnotený graf budeme teda pokladať usporiadanú trojicu G=(V,H,c), kde V je množina vrcholov, H množina hrán a $c:H\to\mathbb{R}$ je reálna funkcia definovaná na množine H.

Podobne možno definovať vrcholovo ohodnotený graf (digraf) ako usporiadanú trojicu G=(V,H,d), kde V je množina vrcholov, H množina hrán a $d:V\to\mathbb{R}$ je reálna funkcia definovaná na množine V. Číslo d(v) nazveme ohodnotenie vrchola v alebo tiež cena vrchola v.

Izomorfizmus grafov a digrafov

Definícia

Graf G=(V,H) je **izomorfný s grafom** G'=(V',H'), ak existuje také vzájomne jednoznačné zobrazenie $f:V\leftrightarrow V'$, že pre každú dvojicu vrcholov $u,v\in V$ platí:

$$\{u,v\} \in H$$
 práve vtedy, keď $\{f(u),f(v)\} \in H'$. (6)

Zobrazenie f sa volá izomorfizmus grafov G a G'.

Digraf $\overrightarrow{G} = (V, H)$ je **izomorfný s digrafom** $\overrightarrow{G}' = (V', H')$, ak existuje také vzájomne jednoznačné zobrazenie $f : V \leftrightarrow V'$, že pre každú dvojicu vrcholov $u, v \in V$ platí:

$$(u,v) \in H$$
 práve vtedy, keď $(f(u),f(v)) \in H'$. (7)

Zobrazenie f sa volá izomorfizmus digrafov \overrightarrow{G} a \overrightarrow{G}' .

Invarianty izomorfizmu

Ak sú grafy G, G' izomorfné, musia mať všetky grafové charakteristiky rovnaké – napr. počet vrcholov, počet hrán, valenčné postupnosti, počet komponentov, počet cyklov s k hranami, počet ciest s k hranami, počet úplných podgrafov typu K_p atď. Takéto charakteristiky nazývame **invarianty izomorfizmu**. Invarianty izomorfizmu možno využiť na dôkaz toho, že grafy G, G' nie sú izomorfné – ak sa ukáže, že G má niektorú vlastnosť inú ako G', takéto grafy nemôžu byť izomorfné.

Na dôkaz izomorfnosti dvoch grafov, resp. digrafov treba zostrojiť konkrétne zobrazenie f s vlastnosťami (6), resp. (7). Zatiaľ na to nepoznáme iný spôsob ako vyskúšať všetky vzájomne jednoznačné zobrazenia množiny V na množinu V', ktorých je n! (kde n = |V|).

Problém grafového izomorfizmu je navrhnúť prakticky realizovateľný všeobecný algoritmus, ktorý by pre ľubovoľné dva grafy rozhodol, či sú izomorfné alebo nie, alebo dokázať, že žiaden taký algoritmus neexistuje.

Reprezentácia grafov a digrafov

1. Reprezentácia diagramom grafu

Obr.: Diagramy grafu, hranovo ohodnoteného grafu,

digrafu a hranovo ohodnoteného digrafu.

Nech $V_1 = \{1, 2, 3, 4, 5\}$, $H_1 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 5\}, \{3, 4\}\}$. Množinami V_1 a H_1 je jednoznačne určený graf $G_1 = (V_1, H_1)$.

Podobne nech $V_2 = \{1, 2, 3, 4, 5\}$ a $H_2 = \{(1, 2), (1, 3), (2, 1), (3, 2), (3, 4), (3, 5)\}$, potom množinami V_2 , H_2 je jednoznačne určený digraf $\overrightarrow{G_2} = (V_2, H_2)$.

V počítači môžeme množinu vrcholov V reprezentovať ako jednorozmerné pole V s n = |V| prvkami, kde V[i] je i-tý vrchol.

Množinu hrán môžeme uložiť do dvojrozmerného poľa H typu $(m \times 2)$, kde m = |H| je počet hrán, H[j,1] je začiatočný a H[j,2] koncový vrchol j-tej hrany, čím je daná aj orientácia tejto hrany v prípade digrafu.

Ak ide naviac o hranovo ohodnotený graf alebo digraf, ohodnotenia hrán môžeme ukladať do zvláštneho jednorozmerného poľa $C[\]$ dĺžky m=|H| (kde C[j] je ohodnotenie j-tej hrany), alebo hrany ukladať do dvojrozmerného poľa H typu $m\times 3$, kde $H[j,1],\ H[j,2],$ sú začiatočný a koncový vrchol j-tej hrany a H[j,3] je ohodnotenie j-tej hrany.

j	1	2	3	4	5
H[j,1]	1	1	2	2	3
H[j, 2]	2	3	3	5	4
C[i] = H[i, 3]	5	4	9	7	1

i	1	2	3	4	5
V[i]	1	2	3	4	5

j	1	2	3	4	5	6
H[j,1]	1	1	2	3	3	3
H[j,1] H[j,2]	2	3	1	2	4	5
C[j] = H[j,3]	3	7	5	1	9	2

Tabuľka:

Reprezentácia grafu G_1 a digrafu $\overrightarrow{G_2}$.

'Matica pril'ahlosti $\mathbf{M}=(m_{ij})$ je štvorcová matica typu $n\times n$, kde n=|V| je počet vrcholov grafu, resp. digrafu G, ktorej prvky sú definované nasledovne:

$$m_{ij} = \begin{cases} 1 & \text{ak } \{i, j\} \in H \\ 0 & \text{inak} \end{cases}$$

$$m_{ij} = \begin{cases} 1 & \text{ak } (i,j) \in H \\ 0 & \text{inak} \end{cases}$$
 (8)

3		1	2	3	4	5
	1	-	1	1	-	-
2 / \ 4	2	1	-	-	-	-
() / \	3	-	1	-	1	1
	4	-	-	-	-	-
$\overrightarrow{G}_2 = (V_2, H_2)$	5	-	-	-	-	-
-2 (• 2) • • 2)						

Matica pril'ahlosti grafu G_1 .

Matica pril'ahlosti digrafu \overrightarrow{G}_2 .

4. Reprezentácia maticou ohodnotení hrán

Matica **M** ohodnotení hrán grafu, resp. digrafu je štvorcová matica typu $n \times n$, kde n = |V| je počet vrcholov grafu, resp. digrafu a prvky ktorej sú definované nasledovne:

$$m_{ij} = egin{cases} c(\{i,j\}) & \text{ak } \{i,j\} \in H \\ \infty & \text{inak} \end{cases} \qquad m_{ij} = egin{cases} c((i,j)) & \text{ak } (i,j) \in H \\ \infty & \text{inak} \end{cases}$$

$$m_{ij} = \begin{cases} c((i,j)) & \text{ak } (i,j) \in H \\ \infty & \text{inak} \end{cases}$$
(9)

5. Reprezentácia zoznamom vrcholov okolia každého vrchola

Graf možno reprezentovať tak, že ku každému vrcholu v zadáme množinu V(v) — t. j. zoznam jeho najbližších susedov. Podobne digraf možno reprezentovať tak, že ku každému vrcholu v zadáme množinu $V^+(v)$ – t. j. množinu koncov hrán vychádzajúcich z vrchola v. Pre graf G_1 a digraf \overrightarrow{G}_2 z obrázkov sú tieto zoznamy v nasledujúcich tabuľkách:

V(1)	2	3	-
V(2)	1	3	5
V(3)	1	2	4
V(4)	3	-	-
V(5)	2	-	-

$V^{+}(1)$	2	3	-
$V^{+}(2)$	1	-	-
$V^{+}(3)$	2	4	5
$V^{+}(4)$	-	-	-
$V^{+}(5)$	ı	-	-

Vrcholy okolí pre graf G_1' .

Vrcholy výstupných hviezd pre digraf G_2'

Veľmi efektívne možno zoznamy najbližších susedov implementovať tak, že do poľa $V[\]$ najprv zapíšeme najbližších susedov vrchola 1, potom najbližších susedov vrchola 2 atď., až nakoniec najbližších susedov posledného vrchola.

Obr.: Reprezentácia zoznamov susedov pomocou smerníkov.

6. Reprezentácia incidenčnou maticou vrcholov a hrán

Incidenčná matica vrcholov a hrán je matica **B** typu $n \times m$, kde n je počet vrcholov a m počet hrán reprezentovaného grafu alebo digrafu. Každý prvok b_{ij} matice **B** hovorí o spôsobe incidencie vrchola i s hranou j nasledovne:

$$b_{ij} = egin{cases} 1 & ext{ak vrchol } i ext{ je incidentný s hranou } j ext{ v grafe } G \ 0 & ext{inak} \end{cases}$$

$$b_{ij} = \begin{cases} 1 & \text{ak vrchol } i \text{ je začiatočným vrcholom hrany } j \text{ v digrafe } \overrightarrow{G} \\ -1 & \text{ak vrchol } i \text{ je koncovým vrcholom hrany } j \text{ v digrafe } \overrightarrow{G} \\ 0 & \text{inak} \end{cases}$$

Tento spôsob je vhodný aj pre multigrafy, multidigrafy a multimigrafy. Pre pseudomigrafy sa dá dodefinovať b_{ij} aj pre slučky vzťahom $b_{ij}=2$, ak j je neorientovaná slučka začínajúca a končiaca vo vrchole i a vzťahom $b_{ij}=-2$, ak j je orientovaná slučka začínajúca a končiaca vo vrchole i.

V	{1, 2}	{1, 3}	{2,3}	{2,5}	{3,4}
1	1	1			
2	1		1	1	
3		1	1		1
4					1
5				1	

Tabuľka: Incidenčná matica grafu $G_1 = (V_1, H_1)$

$$(\textit{V}_1 = \{1,2,3,4,5\}, \; \textit{H}_1 = \{\{1,2\},\{1,3\},\{2,3\},\{2,5\},\{3,4\}\}).$$