1 Úkol

- 1. Změřte absorpční spektrum roztoků kalmagitu s koncentracemi $c_0, c_{0/2}, c_{0/4}$ při pH = 10 v celém oboru viditelného světla. Zpracujte graficky. Pro tři vybrané vlnové délky zkontrolujte platnost Beerova zákona. Zpracujte graficky.
- 2. Měření z bodu 1. pro koncentraci $c_{0/2}$ doplňte proměřením dvou roztoků kalmagitu téže koncentrace, které navíc obsahují $5 \cdot 10^{-5}$ mol/l a $25 \cdot 10^{-5}$ mol/l síranu hořečnatého MgSO4. Získaná tři spektra zpracujte graficky, určete isobestické body.
- 3. Proveďte odhad chyby transmitance a určete chybu nepřímého měření absorpčního koeficientu.

2 Teorie

2.1 Transmitance

Transmitance je definována vztahem

$$\theta = \Phi_t / \Phi_0, \tag{1}$$

kde Φ_t resp. Φ_0 je prošlý resp. na látku dopadající světelný tok. Pokud vypustíme ztráry na odrazech získáme θ_i , což značí vnitřní transmitanci. Její doplněk do jedničky se nazývá absorptance.

2.2 Lambertův zákon

Lambertův uákon říká, že vnitřní transmitance v látce se chová dle rovnice

$$\theta_i = 10^{\kappa l} = e^{\kappa_n l},\tag{2}$$

kde κ a κ_n jsou absorbční koeficienty.

2.3 Absorbance

Absorbance je definována vztahem

$$A = \kappa l \tag{3}$$

2.4 Lambert-Beerův zákon

Lambert-Beerův zákon říká, že

$$\theta_i = 10^{\varepsilon cl},\tag{4}$$

	c_0	$c_0/2$	$c_0/4$	$c_0/2 \cdot c_{MgSO4}$	$c_0/2 \cdot 5c_{MgSO4}$
kalagnit	5	2.5	1.25	2.5	2.5
MgSO4	0	0	0	1	5
pufr	1	1	1	1	1
H2O	4	6.5	7.75	5.5	1.5

Tabulka 1: Solžení měřených rozoků

kde ε je molární absorbční koeficint a c molární koncentrace roztoku. Pro více neovlivňujících se látek platí navíc vztah pro absorbanci

$$A = l \sum \varepsilon_i c_i. \tag{5}$$

3 Měření

Nejprve jsem si připravil roztoky, které se budou měřit. Jejich složení je shrnuto v tabulce 1. Roztoky jsem přelil do připravených kyvet, jejiž tloušťka byla $l=(1.000\pm0.001)$ cm.

Následně jsem seřídíl spektrofotometr a v závislosti na vlnové délce použitého světla jsem proměřil vnitřní transmitanci. Výsledky jsou v tabulce 2. Výsledné závislosti jsou vidět na obrázcích 1 a 2. Z grafu 2 jsem následně určil isobestické body

$$\lambda_0 = 410 \text{nm} \tag{6}$$

$$\lambda_1 = 561 \text{nm} \tag{7}$$

Pro vlnové délky 440, 540 a 640 nm jsem z hodnoty θ_{c_0} vypočetl ε pro danou vlnovou délku.

$$lc_0 \varepsilon 440 = 0.25181$$
 (8)

$$lc_0 \varepsilon 540 = 0.79588 \tag{9}$$

$$lc_0\varepsilon 640 = 1.04576\tag{10}$$

(11)

Dále dosadil do Lambert-Beerova zákonu abych dopočítal teoretické hodnoty s určil rozdíl odhodnot naměřených.

$$100\Delta\theta_{c_0/2}(440) = -2\tag{12}$$

$$100\Delta\theta_{c_0/4}(440) = -2\tag{13}$$

$$100\Delta\theta_{c_0/2}(540) = -5\tag{14}$$

$$100\Delta\theta_{c_0/4}(540) = -7\tag{15}$$

$$100\Delta\theta_{c_0/2}(640) = -8\tag{16}$$

$$100\Delta\theta_{c_0/4}(640) = -16\tag{17}$$

(18)

λ/nm	$100\theta_{c_0}$	$100\theta_{c_0/2}$	$100\theta c_0/4$	$100\theta c_0/2 \cdot c_{MgSO4}$	$100\theta c_0/2 \cdot 5c_{MgSO4}$
400	47	72	87	72	75
420	54	76	88	73	73
440	56	77	89	69	68
460	55	75	88	61	60
480	50	72	86	51	49
500	40	66	82	37	35
520	26	55	76	29	26
540	16	45	70	27	26
560	11	41	68	39	40
580	8	36	66	58	62
600	6	34	66	72	81
620	6	34	68	79	90
640	9	38	71	82	94
660	20	52	78	85	96
680	46	72	88	91	98
700	72	87	95	96	99

Tabulka 2: Neměření hodnoty vnitřní transmitance v závislosti na vlnpvé délce

Obrázek 1: Graf závislosti transmitance na vlnové délce

Obrázek 2: Graf závislosti transmitance na vlnové délce

Měřící přístroj měj třidu přesnosti jedna, což odpovídá chybě jedné setiny u vnitřní transmitance. Vlnová délka byla určena s přesností v řádu procent. Vliv odrazů a vody byl díky metodě měření zanedbatelný. Chyba u šířky kyvety byla o dva řády nižší, a proto ji můžeme zanedbat. Chyba absorbčního koeficientu je dle [3]

$$\sigma_A = -\frac{\sigma_\theta}{\theta \ln 10} \tag{19}$$

4 Diskuze

Naměřené hodnoty v rámci chyby splňují teoretické předpoklady. Odchylka od teoretických hodnot sice s vlnovou délkou rostla, ale to bylo nejspíše způsobeno velkou relativní chybou vnitřní transmitance při měření malých hodnot. Při výpočtu ε z hodnot prp nižší koncentrace by byla chyba výrazně nižší.

Co se týče příměsi, tak na grafu 2 jsou dobře vidět dva isobestické body. U prvního se projevila větší chyba způsobená měřením v oblasti nižšího výkonu rtuťové výbojky.

5 Závěr

Změřil jsem absorbční spektrum kalagmitu o různé koncentraci. Výsledky jsou v tabulce 2 a na obrázku 1. Pro hodnoty 440, 540 a 640 nm jsem ověřil platnost Lambert-Beerova zákona.

Měření jsem doplnil roztokem s příměsí MgSO4. Výsledky jsou v tabulce 2 a na obrázku 2. Určil jsem isobestické body

$$\lambda_0 = 410 \text{nm} \tag{20}$$

$$\lambda_1 = 561 \text{nm} \tag{21}$$

Provedl jsem odhad chyby transmitance a vypočetl chybu absorbčního koeficientu

$$\sigma_A = -\frac{\sigma_\theta}{\theta \ln 10} \tag{22}$$

Reference

- [1] Studijní text na praktikum III http://physics.mff.cuni.cz/vyuka/zfp/txt_317.htm (20. 4. 2012)
- [2] Studijní text na praktikum III http://physics.mff.cuni.cz/vyuka/zfp/mereni_317.htm (20. 4. 2012)
- [3] J. Englich: Zpracování výsldků fyzikálních měření LS 1999/2000
- [4] prof. RNDr. Petr Malý , DrSc.: Optika Univerzita Karlova v Praze, Nakladatelství Karolinum 2008, první vydání