(Primal)
$$\begin{cases} \min_{w \in \mathbb{N}^2} \frac{1}{2} \|w\|_2^2 + C_1 \sum_{i=1}^n \beta_i + C_2 \sum_{i=1}^n \beta_i^2 \\ \text{s.t.} \quad y_i (x_i + b) \ge 1 - \beta_i, \forall i \\ \beta_i \ge 0, \forall i \end{cases}$$
 (Assume $C_1, C_2 > 0$)

The Lagrangian:

$$\int_{-\infty}^{\infty} (\omega, \xi, b, \alpha) = \frac{1}{2} \|\omega\|_{2}^{2} + C_{1} \sum_{i=1}^{n} \xi_{i}^{2} + C_{2} \sum_{i=1}^{n} \lambda_{i} \left[1 - \xi_{i} - y_{i}(x_{i}^{2} \omega + b) \right]$$

$$= \left[\frac{1}{2} \|\omega - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \|_{2}^{2} \right] - \frac{1}{2} \sum_{i=1}^{n} \alpha_{i} \alpha_{i} y_{i} y_{j} x_{i}^{2} x_{j} + \sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \alpha_{i} y_{i} y_{j} \right]$$

$$+ \left[C_{2} \sum_{i=1}^{n} \left(\xi_{i} + \frac{C_{1} - \alpha_{i}}{2C_{2}} \right)^{2} - \sum_{i=1}^{n} \frac{\left(C_{i} - \alpha_{i} \right)^{2}}{4C_{2}} \right]$$

$$A_{3}$$

$$\min_{\omega} A_{1} \Rightarrow \omega = \sum_{i=1}^{n} d_{i} y_{i} x_{i} \quad A_{1} = 0$$

$$\min_{b} A_2 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0 \qquad \mathring{A}_2 = 0$$

$$A_{3} \Rightarrow \begin{cases} S_{i} = -\frac{C_{i} - \lambda_{i}}{2C_{2}} & \alpha_{i} > C_{1} \\ A_{3} = -\sum_{i=1}^{n} \frac{(C_{i} - \lambda_{i})^{2}}{8C_{2}} \left[1 + \text{sign}(\alpha_{i} - C_{1})\right] \end{cases}$$

(Dual)
$$\sum_{i=1}^{max} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \times_{i} x_{j} - \sum_{i=1}^{n} \frac{(C_{i} - \alpha_{i})^{2}}{8C_{2}} [1 + \text{sign}(\alpha_{i} - C_{1})]$$

$$\text{s.t.} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$0 \leq \alpha_{i} , \forall i$$

(a). if
$$F: 2^{\times} \rightarrow \mathbb{R}_{+}$$
 is submodular,

that means
$$F(S)+F(T) \ge F(SUT)+F(S\cap T)$$

 $\forall S,T \subseteq X$

(b).

The statement 0 <> 0 isn't true!

Counter example: If ACB, AUS & S, but F(AUS) < F(S)

• If
$$F_s$$
 is subadditive, $F_s(A) + F_s(B) \ge F_s(AVB) = F_s(B)$
 $\Rightarrow F(AVS) - F(S) \ge 0$ conflict!

With the addition condition F is monotone OR Fs is non-negative one can finish the proof.

 $F_{s}(TUSe_{s}) - F_{s}(T) = F(SUTUSe_{s}) - F(SUT)$ $\Rightarrow F(SUMUSe_{s}) - F(SUM)$ $= F_{s}(MUSe_{s}) - F_{s}(M)$ So, F_{s} is submodular, with the addition condition F_{s} is subadditive

@ >O Let S S T S X, e & X IT, T=SUT'

F(TU[e]) - F(T) = F(SUT'U[e]) - F(SUT') $= F_s(T'V[e]) - F_s(T')$ $= F_s(T') + F_s(Fe)) - F_g(T')$ $= F_s([e]) = F(SU[e]) - F(S)$

So, $F(TU\{e\}) - F(T) \le F(SU\{e\}) - F(S)$ $\Rightarrow F$ is submodular

Q.F.D.

^{3.} $f(S) = \# of e e l g e = (u,v) \in E \ u \in S, v \in V/S.$ Def: $E(X,Y) = \{(x,y) \in E \mid x \in X, y \in Y\}$ then f(S) = |E(S, V/S)|, $|\cdot|$ means the number of elements \Leftrightarrow we have $E(X \cup \{a\}, Y) = E(X,Y) \cup E(\{a\},Y)$ $E(X,Y) = E(X,Y/\{b\}) \cup E(X,\{b\})$

if ax X, |E(XU[a), Y)| = |E(X,Y)|+ |E([a), Y)| if $b \in Y$, $|E(x,Y)| = |E(x,Y/(b))| + |E(x,\{b\})|$ What's more, if $A \cap X = \emptyset$, $|E(X \cup A, Y)| = |E(X, Y)| + |E(A, Y)|$ if BCY |E(x,Y)| = |E(x,Y/B)| + |E(X,B)| Let ACBEV, XEV/B, B=AUS, B=BU(x), Â=AV(x) $f(\hat{B}) - f(B) = |E(\hat{B}, V/\hat{B})| - |E(B, V/B)|$ $= |E(\hat{A}, V/\hat{B})| + |E(S, V/\hat{B})| - |E(A, V/B)| - |E(S, V/B)|$ = | E(Â, V/Â) | - | E(Â, S) | - | E(A, V/A) | + | E(A,S) | + |E(S, V/B)|-|E(S, V/B)| = $f(\hat{A}) - f(A) - 2|E(fx), S)|$ $\leq f(\hat{A}) - f(A)$ >> f(BUIX)) - f(B) ≤ f(AUIX3) - f(A) f is submodular

4. p(s',r| s,a) high high search high low rx search Ysearch high hìgh Ywait wait 1. hìgh wait

	search	high	-3	<u></u> β
low	search	low	Yseanh	β
low	wait	low	Ywait	I
low	wait	hìgh	-	o
low	recharge	high	0	1
loω	vechavge	low	_	0

5. The Bellman equation for
$$q_{*}$$

$$q_{*}(s_{i}a) = \sum_{s':r'} p(s'_{i}r|s_{i}a) \left[\gamma + \gamma \max_{a} q_{*}(s_{i}a) \right].$$

For cycling robot, state =
$$\{h, l\}$$
, action = $\{s, w, re\}$.

$$\begin{cases}
q_{x}(l, s) = \beta(Y_{search} + Y_{max}, q_{x}(l, a')) + (I-\beta)(-3 + Y_{max}, q_{x}(h, a')) \\
q_{x}(l, w) = (Y_{wait} + Y_{max}, q_{x}(l, a')) \\
q_{x}(l, ve) = Y_{max}, q_{x}(h, a') \\
q_{x}(h, s) = \chi(Y_{search} + Y_{max}, q_{x}(h, a')) + (I-\chi)(Y_{search} + Y_{max}, q_{y}(l, a')) \\
q_{x}(h, w) = \chi_{wait} + \chi_{max}, q_{x}(h, a') \\
q_{x}(h, w) = \chi_{wait} + \chi_{max}, q_{x}(h, a')$$