Solution to APMO 2011 Problems

Anzo Teh

1. Let a, b, c be positive integers. Prove that it is impossible to have all of the three numbers $a^2 + b + c, b^2 + c + a, c^2 + a + b$ to be perfect squares.

Solution. W.l.o.g. let $a \ge b \ge c$, then $a^2 < a^2 + b + c \le a^2 + a + a = a^2 + 2a < a^2 + 2a + 1 = (a+1)^2$. This means that $a < \sqrt{a^2 + b + c} < a + 1$ so $\sqrt{a^2 + b + c}$ cannot be an integer.

2. Five points A_1, A_2, A_3, A_4, A_5 lie on a plane in such a way that no three among them lie on a same straight line. Determine the maximum possible value that the minimum value for the angles $\angle A_i A_j A_k$ can take where i, j, k are distinct integers between 1 and 5.

Answer. 36° .

Solution. Denote $\theta = \min\{\angle A_i A_j A_k : 1 \le i, j, k \le 5\}$ Consider, now, the convex hull formed by the 5 points on the plane. Let A_1 be part of the convex hull (WLOG). Also let $A_1 A_2, A_1 A_3, A_1 A_4, A_1 A_5$ to be in that order counterclockwise; these four lines define the outermost angle $\angle A_2 A_1 A_5$ divided into 3 subangles by the lines $A_1 A_3$ and $A_1 A_4$. It follows that each of the interior angles of the convex hull is divided into 3 subangles. If k is the number of vertices of this convex hull then the total interior angles of this convex hull has sum $(k-2)180^\circ$ and since each of the k interior angles are divided into 3 subangles, there are 3k subangles in total and so $\theta \le \frac{k-2}{3k}180^\circ = 60^\circ \frac{k-2}{k}$. Since $k \le 5$ (we only have 5 points here), we have $\frac{k-2}{k} \le \frac{3}{5}$. Therefore $\theta \le 60^\circ \times \frac{3}{5} = 36^\circ$.

This θ is achievable by having the 5 points to form a regular pentagon. Since the pentagon is cyclic, the angle $A_iA_jA_k$ is the angle subtended by A_iA_k . The 5 points divide the circle into 5 equal arcs, each subtending an angle of 36°. It then follows that $A_iA_jA_k$ must be a multiple of 36°.

- 3. Let ABC be an acute triangle with $\angle BAC = 30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line AC at B_1 and B_2 , respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line AB at C_1 and C_2 , respectively. Suppose that the circles with diameters B_1B_2 and C_1C_2 meet inside the triangle ABC at point P. Prove that $\angle BPC = 90^{\circ}$.
- 4. Let n be a fixed positive odd integer. Take m+2 distinct points $P_0, P_1, \ldots, P_{m+1}$ (where m is a non-negative integer) on the coordinate plane in such a way that the following three conditions are satisfied:
 - 1) $P_0 = (0,1), P_{m+1} = (n+1,n)$, and for each integer $i, 1 \le i \le m$, both x- and y-coordinates of P_i are integers lying in between 1 and n (1 and n inclusive).
 - 2) For each integer $i, 0 \le i \le m$, $P_i P_{i+1}$ is parallel to the x-axis if i is even, and is parallel to the y-axis if i is odd.
 - 3) For each pair i, j with $0 \le i < j \le m$, line segments $P_i P_{i+1}$ and $P_j P_{j+1}$ share at most 1 point.

Determine the maximum possible value that m can take.

5. Determine all functions $f: \mathbb{R} \to \mathbb{R}$, where \mathbb{R} is the set of all real numbers, satisfying the following two conditions:

- 1) There exists a real number M such that for every real number x, f(x) < M is satisfied.
- 2) For every pair of real numbers x and y,

$$f(xf(y)) + yf(x) = xf(y) + f(xy)$$

is satisfied.

Answer. There are two such functions, the zero function $f \equiv 0$ and the function given by

$$f(x) = \begin{cases} 0 & x \ge 0\\ 2x & x < 0 \end{cases}$$

Solution. We'll use the following identity: If $h(x) \leq 2M$ for all x and $g(x) \to \infty$ as $x \to A$, then $h(x) - g(x) \to -\infty$ as $x \to A$. We're interested in the behavior when A is $+\infty$ or $-\infty$.

Now suppose that