机器人学——学习笔记8(DH表达法总结)

1. Review: Denavit-Hartenberg表达法(Crag Version)

• α_{i-1} : 以 \hat{X}_{i-1} 方向看, \hat{Z}_{i-1} 和 \hat{Z}_i 之间的夹角

• a_{i-1} : 沿着 \hat{X}_{i-1} 方向, \hat{Z}_{i-1} 和 \hat{Z}_i 之间的距离 $(a_i > 0)$

• $extstyle{ heta}_i$: 以 \hat{Z}_i 方向看, \hat{X}_{i-1} 和 \hat{X}_i 之间的夹角

• d_i : 沿着 \hat{Z}_i 方向, \hat{X}_{i-1} 和 \hat{X}_i 之间的距离

口 α_{i-1} : 以 \hat{X}_{i-1} 方向看, \hat{Z}_{i-1} 和 \hat{Z}_{i} 間的夾角

 a_{i-1} : 沿著 \hat{X}_{i-1} 方向, \hat{Z}_{i-1} 和 \hat{Z}_i 間的距離 $\{a_i>0\}$

 θ_i : 以 \hat{Z}_i 方向看, \hat{X}_{i-1} 和 \hat{X}_i 間的夾角

 d_i : 沿著 \hat{Z}_i 方向, \hat{X}_{i-1} 和 \hat{X}_i 間的距離

1.几何关系

在这个操作顺序下面:

$$egin{aligned} egin{aligned} egi$$

这个表达法不是那么直观,因为只有 θ_i,d_i 是在第 i 个link下面,而 α_{i-1},a_{i-1} 都是在第 i - 1 个 Link下面。

2. Denavit-Hartenberg表达法(Standard)

• θ_i : 以 \hat{Z}_{i-1} 方向看, \hat{X}_{i-1} 和 \hat{X}_i 之间的夹角

• d_i : 沿着 \hat{Z}_{i-1} 方向, \hat{X}_{i-1} 和 \hat{X}_i 之间的距离

• a_i : 沿着 \hat{X}_i 方向, \hat{Z}_{i-1} 和 \hat{Z}_i 之间的距离 $(a_i>0)$

• $lpha_i$: 以 \hat{X}_i 方向看, \hat{Z}_{i-1} 和 \hat{Z}_i 之间的夹角

- θ_i : 以 \hat{Z}_{i-1} 方向看, \hat{X}_{i-1} 和 \hat{X}_i 間的夾角
- d_i : 沿著 \hat{Z}_{i-1} 方向, \hat{X}_{i-1} 和 \hat{X}_i 間的距離
- a_i : 沿著 \hat{X}_i 方向, \hat{Z}_{i-1} 和 \hat{Z}_i 間的距離 $(a_i > 0)$
- α_i : 以 \hat{X}_i 方向看, \hat{Z}_{i-1} 和 \hat{Z}_i 間的夾角

每个Link所对应的Joint是放在这个Link的后方

与Crag Version的几个区别:

- Standard Ver更习惯用Joint而不是Axis;
- 每个Link所对应的Joint是放在这个Link的后方;
- X_i 的定义不同,Std Ver下, X_i 的方向是 $Joint_{i-1} o Joint_i$ 的方向;
- 符号定义不同, $Joint_i$ 下, X_i 与 X_{i+1} 之间的夹角是 θ_{i+1} ;

采用Std Ver的好处,在进行Trans时,其Trans Matrix求法如下:

$$\begin{split} & \overset{i-1}{i}T = \overset{i-1}{R}T_Q^RT_P^QT_i^PT \\ & = T_{\hat{Z}_{i-1}}(\theta_i)T_{\hat{Z}_R}(d_i)T_{\hat{X}_Q}(a_i)T_{\hat{X}_P}(\alpha_i) \\ & = \begin{bmatrix} c\theta_i & -s\theta_ic\alpha_i & s\theta_is\alpha_i & a_ic\theta_i \\ s\theta_i & c\theta_ic\alpha_i & -c\theta_is\alpha_i & a_is\thetai \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

- step1: 绕 Z_{i-1} 轴旋转 θ_i 使 X_{i-1}, X_i 平行;
- step2: 沿 Z_R 移动 d_i 使 Z_R , Z_i 平行;
- step3: AX_Q 移动 a_i , 使移动后{P}frame与{i}frame重合;
- step4: 绕 X_P 轴旋转 α_i 使 Z_i , Z_P 重合, 完成变换;

Example-1 Craig DH&Std DH方式表达差异(A RRR Manipulator)

- Joint axes
- □ Common perpendiculars $^{3}P = \{L_{3}, 0, 0\}$
- \hat{z}_i
- $\square \hat{X}_i$
- \square \hat{Y}_i
- \Box Frames $\{0\}$ and $\{n\}$

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0	θ_1
2	0	L_1	0	θ_2
3	0	L_2	0	θ_3

Craig DH 情况下的Transformation Matrix分别是: (θ 用 t 代替) ,**可以发现,Crag DH的一个优点就是关于Translation的描述会更加干净(与下面Std Ver对比)**。

$$egin{array}{lll} egin{array}{lll} \cos t_1 & -\sin t_1 & 0 & 0 \ \sin t_1 & \cos t_1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array} \end{array}$$

$$egin{array}{lll} rac{1}{2}T & egin{pmatrix} \cos t_2 & -\sin t_2 & 0 & L_1 \ \sin t_2 & \cos t_2 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \end{array}$$

$$egin{pmatrix} \cos t_3 & -\sin t_3 & 0 & L_2 \ \sin t_3 & \cos t_3 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

该例题下的3个Trans Matrix

现在把Trans Matrix乘开,进行进一步地分析

Craig

最终Craig的形式,做一个L3的平移,才会跑到Std Ver 末端的原点

```
 \begin{array}{c} {}^{0}T \\ {}^{0}T \\ {}^{(1)}T \\ {}
```

殊途同归!!!

可以发现,因为是取Link3相对于地的Trans Matrix,所以其旋转坐标部分一模一样;

CLASSICAL EXAMPLE: PUMA 560

6轴手臂,可以达到任意一点(6 DOF)

1. Craig 法: 先找Axis→Z→X(Z_1, Z_2 相交,X选择和两者都垂直的方向) →Y→<u>补上</u> frame{0}与frame{n}→确定几何关系→目视法确定Craig DH Table:

i	$lpha_{i-1}$	a_{i-1}	d_{i}	$ heta_i$
1	0°	0	0	θ_1
2	-90°	0	0	θ_2
3	0°	a_2	d_3	θ_3
4	-90°	a_3	d_4	θ_4
5	90°	0	0	θ_5
6	-90°	0	0	θ_6

Craig DH Table

• Transformation Matrices

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c_{\theta_{1}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{3}_{4}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}_{2}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{4}_{5}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c_{\theta_{3}} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}_{6}T = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

变换矩阵

$${}_{6}^{4}T = {}_{5}^{4}T{}_{6}^{5}T = \begin{bmatrix} c_{5}c_{6} & -c_{5}s_{6} & -s_{5} & 0 \\ s_{6} & c_{6} & 0 & 0 \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{3}T = {}_{4}^{3}T_{6}^{4}T = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & -c_{4}s_{5} & a_{3} \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & d_{4} \\ -s_{4}c_{5}c_{6} - c_{4}s_{6} & s_{4}c_{5}s_{6} - c_{4}c_{6} & s_{4}s_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{1}T = {}_{2}^{1}T{}_{3}^{2}T = \begin{bmatrix} c_{23} & -s_{23} & 0 & a_{2}c_{2} \\ 0 & 0 & 1 & d_{3} \\ -s_{23} & -c_{23} & 0 & -a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{1}T = {}_{3}^{1}T{}_{6}^{3}T = \begin{bmatrix} {}^{1}r_{11} & {}^{1}r_{12} & {}^{1}r_{13} & {}^{1}p_{x} \\ {}^{1}r_{21} & {}^{1}r_{22} & {}^{1}r_{23} & {}^{1}p_{y} \\ {}^{1}r_{31} & {}^{1}r_{32} & {}^{1}r_{33} & {}^{1}p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}r_{11} = c_{23}[c_{4}c_{5}c_{6} - s_{4}s_{6}] \cdot s_{23}s_{5}s_{6} \\ {}^{1}r_{21} = -s_{4}c_{5}c_{6} - c_{4}s_{6} \\ {}^{1}r_{31} = -s_{23}[c_{4}c_{5}c_{6} - s_{4}s_{6}] \cdot c_{23}s_{5}c_{6} \\ {}^{1}r_{12} = -c_{23}[c_{4}c_{5}s_{6} + s_{4}c_{6}] + s_{23}s_{5}s_{6} \\ {}^{1}r_{22} = s_{4}c_{5}s_{6} - c_{4}c_{6} \\ {}^{1}r_{32} = s_{23}[c_{4}c_{5}s_{6} + s_{4}c_{6}] + c_{23}s_{5}s_{6} \\ {}^{1}r_{13} = -c_{23}c_{4}s_{5} - s_{23}c_{5} \\ {}^{1}r_{23} = s_{4}s_{5} \\ {}^{1}r_{23} = s_{4}s_{5} \\ {}^{1}r_{23} = s_{23}c_{4}s_{5} - c_{23}c_{5} \\ {}^{1}p_{x} = a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23} \\ {}^{1}p_{y} = d_{3} \\ {}^{1}p_{y} = d_{3} \\ {}^{1}p_{z} = -a_{3}s_{23} - a_{2}s_{2} - d_{4}c_{23}$$

$${}^{0}T = {}^{0}_{1}T {}^{1}_{6}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = c_{1}[c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{5}) - s_{23}s_{5}c_{5}] + s_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6})$$

$$r_{21} = s_{1}[c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{23}s_{5}c_{6}] - c_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6})$$

$$r_{31} = -s_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - c_{23}s_{5}c_{6}$$

$$r_{12} = c_{1}[c_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + s_{23}s_{5}s_{6}] + s_{1}(c_{4}c_{6} - s_{4}c_{5}s_{6})$$

$$r_{22} = s_{1}[s_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + s_{23}s_{5}s_{6}] - c_{1}(c_{4}c_{6} - s_{4}c_{5}s_{6})$$

$$r_{32} = -s_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + c_{23}s_{5}s_{6}$$

$$r_{13} = -c_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) - s_{1}s_{4}s_{5}$$

$$r_{23} = -s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + c_{1}s_{4}s_{5}$$

$$r_{23} = -s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + c_{1}s_{4}s_{5}$$

$$r_{23} = -s_{1}(c_{22}c_{4}s_{3}c_{23} - d_{4}s_{23}] - d_{3}s_{1}$$

$$p_{y} = s_{1}[a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23}] + d_{3}c_{1}$$

$$p_{y} = s_{1}[a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23}] + d_{3}c_{1}$$

$$p_{z} = -a_{3}s_{23} - a_{2}s_{2} - d_{4}c_{23}$$

Final Result