# Planar Languages and Learnability

Alexander Clark, Christophe Costa Florêncio, Chris Watkins, Mariette Serayet

> Department of Computer Science, Royal Holloway, University of London

Département Informatique, Université de St Etienne





## Planar langauges: motivation

Efficient unsupervised learning of mildly context-sensitive grammars

# Planar languages: simple example

- Parikh map: maps a string to a vector of counts
- Parikhs theorem
  - image of a CF language is semilinear

$$\Sigma = \{a, b\}$$

$$p(abba) = |22|$$

$$p(aab) = (21)$$

## **CF** language

$$L = \{w: |w|_a = |w|_b\}$$

$$\{ab, ba, bbaa, aaabbb, ababab...\}$$

#### L lies on a line



# We can learn languages from positive data

- Project data into feature space
- Find lowest dimensional hyperplane that contains all the data
- Given unknown string w
  - measure perpendicular distance to plane
  - if this is zero (or very small), w in L
  - if it is big, w is not in L

#### **Outline**

- What, why, wherefore of kernels
- String kernels
- Planar languages
- Theoretical results: expressive power, learnability, injectivity
- Experimental results
- Future research
- Conclusion

#### **Kernel functions 1**

- Map from data points to points in feature space
- Function must be positive semi-definite
- Can be used with any linear pattern learning algorithm

#### **Kernel functions 2**

- Computational problem: feature space generally high/infinite dimension
- Solution: compute just inner product, feature vector remains implicit:

$$K(u,v) = \langle \phi(u), \phi(v) \rangle$$

# String kernels

- Map strings to points in feature space
- All-k-subsequences, k-subsequences: based on counts of subsequences of length (up to) k
- k = 1: Parikh kernel
- Gap-weighted: based on counts of subsequences of length (up to) k, weighted by  $\lambda^n$ , n = size of gap
- p-Spectrum: based on counts of contiguous subsequences of length p

## Planar languages

- Informally: κ-planar language is set of strings corresponding to hyperplane in κ's feature space
- intuitively learnable from positive data
- Formally:

$$L = \{ w \in \Sigma^* : \exists \alpha_1 \dots \alpha_n \in R,$$
  
$$\exists u_1 \dots u_n \in \Sigma^* : \sum_{i=1}^n \alpha_i \phi(u_i) = \phi(w) \}$$

### **Expressive power**

- Depends on kernel
- Generally, planar languages do not conform to Chomsky hierarchy
- All-k-subsequences contains non-mildly context sensitive languages
- k-testable languages are planar for p-Spectrum kernel

## Closure properties

- Generally, planar languages do not fit into Chomsky hierarchy
- Not closed under:
  - concatenation, union, homomorphism...
- Closed under:
  - reversal
  - intersection

## Injectivity

- *k*-subsequences not injective: for *k* = 2, "abba" and "baab" map to same point
- But: length of such strings grows exponentially in k?
- Gap-weighted is injective when decay factor transcendental number

## Learnability

- Paradigm: identification in the limit
- Characteristic set has polynomial size
- Polynomial computation time
- Polynomial number of mind changes
- Learner exists that is consistent, monotone increasing and incremental

## **Proof of learnability**

- Based on properties of learning algorithm SPAN:
  - loop over input data
  - if current datapoint does not correspond to point in hyperplane spanned by base, add to base

## Finite elasticity

- In case that feature space defined by  $\kappa$  has finite dimension, class of  $\kappa$ -planar languages has finite elasticity
- True for GapWeighted(+) kernels
- Finite unions of such classes also have finite elasticity

function handle,
% kernel hyperparameter.
% Written by Adex Park but beavily based on
% John Shawe-Taylor and Nello Cristianini's code
% Jan 11 2006.

```
n = size(train,1);
    for i = 1:n
        for j = i:n
v = kernel(train{i}, train{j}, param);
        K(j,i) = v;
        K(i,j) = v;
        end
        end
        end
```

% K is the Gram matrix  $D = \sup(K)/n$ :

#### **Experimental results**

- Planar language learner, implemented in Matlab
  - computes eigendecomposition of translated *Gram* matrix
- Synthetic datasets:
  - palindromes
  - MIX language
  - AnBmCnDm
  - Crossing serial dependencies

**–** ...

#### PCFG vs HMM vs GapWeighted



#### **Future directions**

- Reducing noise sensitivity
- Kernels customized for natural language
- Preimage problem
- Work with real corpora: very high dimensionality (large alphabets), high sample complexity
- Solution: projections/distribution kernels?

#### Conclusion

- Planar languages constitute a new approach to GI
- Inherently efficiently learnable
- Right expressive power
- Potential for use in NLP