October, 20th

(1)
$$\operatorname{Exp} \rightarrow \operatorname{Exp} + \operatorname{Exp}$$

- $(2) \qquad \to \quad \mathsf{Exp} * \mathsf{Exp}$
- $(3) \qquad \rightarrow \qquad (\mathsf{Exp})$
- $(4) \rightarrow Id$
- $(5) \qquad \to \qquad \mathsf{Cst}$

 $Exp \rightarrow Exp + Prod$

 $(2) \qquad \rightarrow \quad \mathsf{Prod}$

(1)

- (3) Prod \rightarrow Prod * Atom
- $(4) \qquad \rightarrow \quad \mathsf{Atom}$
- (5) Atom \rightarrow Cst
- $(6) \rightarrow Id$

Id + Ta +Ta Prod K Atom Prod Atom Atom

Prod =s... = D, rus contains no +

- $\begin{array}{cccc}
 (1) & \mathsf{Exp} & \to & \mathsf{Exp} + \mathsf{Prod} \\
 (2) & \to & \mathsf{Prod} \\
 (3) & \mathsf{Prod} & \to & \mathsf{Prod} * \mathsf{Atom} \\
 (4) & \to & \mathsf{Atom}
 \end{array}$
- (5) Atom \rightarrow Cst
- $(6) \rightarrow lc$

But.--we still love left-recurion!!

Removing left-recurion

It well olweys le top-down jousers. proble motic for

3 - Sa - E

Finnt (Aa)=4@} Fint (SS)= (a) Follow (A) = fas (1) S -s Aa ; mired (2) A -s S 5 (3) A -s E

S (1) A (2)(3)

V-> V x1 -> V d2 -> (31 -> P2 V-> PaV → B2 V V-5 0/1 V/ $V = b V \alpha_1 = b V \alpha_{\alpha_1}$ $= b V \alpha_2 \alpha_1 \alpha_1$ $= b \beta_2 \alpha_2 \alpha_1 \alpha_1$

V=0> B2 V'
=>> B2 V'
=>> B2 X2 X2 V'
=>> B2 X2 X2 X2 V'
=>> B2 X2 X2 X2 X2 V'

Boch to the grammon.

- (1) $\operatorname{Exp} \rightarrow \operatorname{Exp} + \operatorname{Exp}$
- $(2) \qquad \rightarrow \quad \mathsf{Exp} \mathsf{Exp}$
- $(3) \qquad \rightarrow \quad \mathsf{Exp} * \mathsf{Exp}$
- $(4) \qquad \rightarrow \quad \mathsf{Exp}/\mathsf{Exp}$
- $(5) \qquad \rightarrow \quad (\mathsf{Exp})$
- $(6) \qquad \rightarrow \quad -\mathsf{Exp}$
- $(7) \rightarrow Id$
- $(8) \rightarrow Cst$

s high princty

- priority
- (1) $\operatorname{Exp} \rightarrow \operatorname{Exp} + \operatorname{Prod}$
- $(2) \qquad \rightarrow \quad \mathsf{Exp} \mathsf{Prod}$
- $(3) \rightarrow \mathsf{Prod}$
- (4) $\mathsf{Prod} \to \mathsf{Prod} * \mathsf{Atom}$
- $(5) \qquad \rightarrow \quad \mathsf{Prod/Atom}$
- $(6) \rightarrow Atom$
- $(7) \quad \mathsf{Atom} \quad \to \quad -\mathsf{Atom}$
- $(8) \rightarrow Cst$
- $(9) \rightarrow Id$
- $(10) \qquad \rightarrow \quad (\mathsf{Exp})$

Removing left recurin

- (1) $\operatorname{Exp} \rightarrow \operatorname{Exp} + \operatorname{Prod}$ (2) $\rightarrow \operatorname{Exp} - \operatorname{Prod}$
- $(3) \qquad \rightarrow \quad \mathsf{Prod}$
- $(4) \quad \mathsf{Prod} \quad \to \quad \mathsf{Prod} * \mathsf{Atom}$
- $(5) \qquad \qquad \rightarrow \quad \mathsf{Prod/Atom}$
- $(6) \qquad \rightarrow \quad \mathsf{Atom}$
- (7) Atom \rightarrow -Atom
- $(8) \qquad \rightarrow \quad \mathsf{Cst}$
- $(9) \qquad \rightarrow \quad \mathsf{Id}$
- $(10) \qquad \rightarrow \quad (\mathsf{Exp})$

Finally often nomering left manuaign

(1)	Exp	\rightarrow	Prod Exp'
(2)	Exp'	\rightarrow	+ Prod Exp'
(3)		\rightarrow	-ProdExp'
(4)		\rightarrow	${\cal E}$
(5)	Prod	\rightarrow	AtomProd'
(6)	Prod'	\rightarrow	*Atom Prod'
(7)		\rightarrow	/Atom Prod'
(8)		\rightarrow	\mathcal{E}
(9)	Atom	\rightarrow	-Atom
(10)		\rightarrow	Cst
(11)		\rightarrow	ld
(12)		\rightarrow	(Exp)

Let's try toe Sould the posses

				<i>></i>	\$	=	4	hd	. 0	1/2	لو	•
(1)	S	\rightarrow	Exp\$			=	大	2n	~×n	Š		
(2)	Exp	\rightarrow	Prod Exp [']						mo	nhe	Λ.	
(3)	Exp'	\rightarrow	$+ \operatorname{Prod} \operatorname{Exp}'$				la.		01	.	ر م د م	H
(4)		\rightarrow	-ProdExp'		†		*	/	<u>Cot</u>	Id	<u></u>	#
(5)		\rightarrow	ε	S		1			1	1	1	
(6)	Prod	\rightarrow	AtomProd'	ELP		2			2	2	2	
(7)	Prod'	\rightarrow	*Atom Prod'	5.1	9	/ 1					Ε	55
(8)		\rightarrow	/AtomProd [/]	Em	3	9						, ,
(9)		\rightarrow	${m \epsilon}$	Paul		6			6	6	6	
(10)	Atom	\rightarrow	-Atom	Prod	Q	a	1	2				
(11)		\longrightarrow	Cst		2	7	+	8				33
(12)		\rightarrow	ld	Aton		10			11	LL /	13	
(13)		\rightarrow	(Exp)									

(1)
$$S \rightarrow \text{Exp}\$$$

(2) $\text{Exp} \rightarrow \text{Prod Exp}'$
(3) $\text{Exp}' \rightarrow +\text{Prod Exp}'$
(4) $\rightarrow -\text{Prod Exp}'$
(5) $\rightarrow \varepsilon$
(6) $\text{Prod} \rightarrow \text{Atom Prod}'$
(7) $\text{Prod}' \rightarrow *\text{Atom Prod}'$
(8) $\rightarrow /\text{Atom Prod}'$
(9) $\rightarrow \varepsilon$
(10) $\text{Atom} \rightarrow -\text{Atom}$
(11) $\rightarrow \text{Cst}$
(12) $\rightarrow \text{Id}$
(13) $\rightarrow (\text{Exp})$

(1)	S	\rightarrow	Exp\$
(2)	Exp	\rightarrow	ProdExp'
(3)	Exp'	\rightarrow	$+ \operatorname{Prod} \operatorname{Exp}'$
(4)		\rightarrow	-ProdExp'
(5)		\rightarrow	${\cal E}$
(6)	Prod	\rightarrow	AtomProd'
(7)	Prod'	\rightarrow	*Atom Prod'
(8)		\rightarrow	/Atom Prod'
(9)		\rightarrow	${\cal E}$
(10)	Atom	\rightarrow	-Atom
(11)		\rightarrow	Cst
(12)		\rightarrow	ld
(13)		\rightarrow	(Exp)

\overline{M}	\$	+	_	*	/	Cst	ld	()	
S			1			1	1	1		
Exp			2			2	2	2		12
Exp'	5	3	4						5	rodule
Prod			6			6	6	6		
Prod'	9	9	9	7	8				9	
Atom			10			11	12	13		
\$	Α -	-	ac	cept						
+		Μ								
_			М							
*				М						\ Tatch
/					Μ					lotch
Cst						М				
ld							М			
(Μ		
)									М	

M	\$	+	_	*	/	Cst	ld	()
S			1			1	1	1	
Exp			2			2	2	2	
Exp'	5	3	4						5
Prod			6			6	6	6	
Prod'	9	9	9	7	8				9
Atom			10			11	12	13	

(1)	S	\rightarrow	Exp\$
(2)	Exp	\rightarrow	ProdExp'
(3)	Exp'	\rightarrow	$+ \operatorname{Prod} \operatorname{Exp}'$
(4)		\rightarrow	-ProdExp'
(5)		\rightarrow	ε
(6)	Prod	\rightarrow	AtomProd'
(7)	Prod'	\rightarrow	*Atom Prod'
(8)		\rightarrow	/AtomProd [/]
(9)		\rightarrow	ε
(10)	Atom	\rightarrow	-Atom
(11)		\rightarrow	Cst
(12)		\rightarrow	ld
(13)		\rightarrow	(Exp)

Id+Id*Id\$ Id+Id*Id\$ Id+Id*Id\$

PG Exp'

Pri

Prod Exp

<u>M</u> >

Prod, Exp

Id+Id * Id\$

Id+Id* Id\$

+Id * Id\$

L L (h) promners left sconning: we son from left to right Coleft pening: us generale à leftmit deuvetion.

A grammon in UCh) effet con be parned determinist colly by a top-down parser reing be symbol of look-akad. Simple abrevationes

Della Leanners

Leanners

Leanners

2) For all h 7/0: a gramma l'est Res left recurion is mot LLCh)

	No wont to	lerocteine L gnor	octeire LL(h) grammous			
" Confiere	· de perser	de situat: will halo	look-ahod			
tyrume:		WAJ dui Vetin, c				
	do:	A-Daz	eT*			

S=o*wAr = was = = o* wx1 del's esseme the Es quoth derivation in the growner, cube the right chica is A-xe (Xa # Ki) S=o* wAy => war y => war the look obed dould allow me to

take the right decrion!!

Con O: look-abd = First h (21) g much

Con O = First h (22) 4 **Definition 5.10** (LL(k) CFGs). A CFG $\langle P, T, V, S \rangle$ is LL(k) iff for all pairs of derivations:

$$S \Rightarrow^* wA\gamma \Rightarrow w\alpha_1\gamma \Rightarrow^* wx_1$$
$$S \Rightarrow^* wA\gamma \Rightarrow w\alpha_2\gamma \Rightarrow^* wx_2$$

with $w, x_1, x_2 \in T^*$, $A \in V$ and $\gamma \in (V \cup T)^*$, and $First^k(x_1) = First^k(x_2)$, we have: $\alpha_1 = \alpha_2$.

Problem: renoutie definition

Talka about the infinitely many of derivations.

We would like a syntoctic
definition
that talks about the rule of the
growner!

Definition 5.12 (Strong LL(k) CFG). A CFG $G = \langle V, T, P, S \rangle$ is strong LL(k) iff, for all pairs of rules $A \rightarrow \alpha_1$ and $A \rightarrow \alpha_2$ in P (with $\alpha_1 \neq \alpha_2$):

$$\operatorname{First}^{k}\left(\alpha_{1}\operatorname{Follow}^{k}(A)\right)\cap\operatorname{First}^{k}\left(\alpha_{2}\operatorname{Follow}^{k}(A)\right)=\emptyset$$

Mucrem: screm: Strong LL(h) = LL(h) There are gromman lat eyon con for with he closeders of look-sleads but on not strong LI(b). But Strong LL(1)= 21(1).