Matrius i Vectors Tardor 2020

En els coeficients de les matrius, l'índex superior indica la fila i l'inferior la columna. Matriu $m \times n$ significa $amb\ m\ files\ i\ n\ columnes.$

6.1 Si

$$A(\alpha) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix},$$

 $\alpha \in \mathbb{R}$, calculeu A(0), $A(\alpha)A(\beta)$ i $A(\beta)A(\alpha)$; feu servir els resultats per calcular $A(\alpha)^n$, $A(\alpha)^{-1}$ i $A(\alpha)^{-n}$ (= $(A(\alpha)^{-1})^n$), n > 1.

6.2 Si

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right),$$

trobeu uma matriu 2×2 , B, $B \neq 0$, de manera que AB = 0. Trobeu matrius 2×2 , C i C', $C \neq C'$, de manera que AC = AC'.

6.3 Demostreu que si dues matrius $n \times n$, A i B, commuten, llavors

$$A^k B = BA^k, \quad k > 1,$$

i si A és regular,

$$A^{-1}B = BA^{-1},$$

 $A^{-k}B = BA^{-k}, k > 1.$

6.4 Si A i B son matrius $n \times n$, desenvolupeu

$$(A+B)^2$$
, $(A+B)^3$, $(A+B)(A-B)$.

Reescriviu els resultats en cas que A i B commutin.

- **6.5** Demostreu que si A és una matriu $m \times n$ i $\operatorname{rg}(A) < n$, llavors existeix una matriu $n \times 1$, B, $B \neq 0$, de manera que AB = 0. Deduïu d'aquest fet que en cas de ser m = n, A no és invertible.
- 6.6 Per quina matriu i per quin costat s'ha de multiplicar una matriu per obtenir
 - la seva *i*-èsima fila,
 - la seva j-èsima columna,
 - la suma de les seves columnes?
- **6.7** Descriviu l'efecte de multiplicar una matriu $m \times n$, per la dreta, per la matriu $n \times n$: $A = (a_i^i)$ amb

$$a^i_j = \left\{ \begin{array}{ll} 1, & \text{si } j+i=n+1; \\ 0, & \text{en cas contrari.} \end{array} \right.$$

Matrius i Vectors Tardor 2020

6.8 Si

$$A_4 = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right),$$

calculeu les potències A_4^n per a $n \geq 0$. Feu el mateix amb la matriu $m \times m$, $A_m = (a_i^i)$ definida per

$$a_j^i = \begin{cases} 1, & \text{si } i = j+1; \\ 0, & \text{en cas contrari.} \end{cases}$$

6.9 Siguin A, B, C les matrius

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \quad , \quad B = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 1 & 2 \\ 2 & -1 & -1 \end{pmatrix} \quad , \quad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}.$$

Calculeu BA i resoleu l'equació matricial AX = C, on X és una matriu 3×3 . Calculeu AB i resoleu l'equació matricial XA = C, on X és una matriu 3×3 .

6.10 En cas d'existir, trobeu la matriu inversa de les matrius següents:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 17 & -15 & -2 \\ 7 & -7 & -1 \\ 5 & -6 & -1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 7 & 5 & -2 \\ 0 & 4 & 2 & 0 \\ 2 & -2 & 4 & 1 \\ 3 & -1 & 7 & 3 \end{pmatrix}.$$

6.11 Si $A = (a_i^i)$ amb

$$a_j^i = \begin{cases} 1, & \text{si } i \neq j, \\ 0, & \text{en cas contrari,} \end{cases}$$

 $i, j = 1, \dots, n, n > 1$, demostreu que

$$A^2 = (n-1)\operatorname{Id} + (n-2)A.$$

Aïlleu Id de l'equació anterior, demostreu que A té inversa i calculeu-la.

6.12 Es diu traça d'una matriu quadrada $A = (a_j^i)_{1 \le i,j \le n}$ la suma dels elements de la seva diagonal, tr $A = \sum_{i=1}^n a_i^i$. Demostreu les propietats següents.

- 1) $\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B, \forall A, B \in \mathcal{M}_{n \times n}(\mathbb{R});$
- 2) $\operatorname{tr}(bA) = b \operatorname{tr} A, \forall A \in \mathcal{M}_{n \times n}(\mathbb{R}), \forall b \in \mathbb{R};$
- 3) $\operatorname{tr}(AB) = \operatorname{tr}(BA), \forall A, B \in \mathcal{M}_{n \times n}(\mathbb{R});$
- 4) Proveu que no existeixen matrius $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ tals que $AB BA = \mathrm{Id}$.
- **6.13** Sigui $A \in \mathcal{M}_{n \times n}(\mathbb{R})$.
- 1) Demostreu que la matriu $A + A^T$ és simètrica i que la matriu $A A^T$ és antisimètrica.
- 2) Demostreu que A es pot escriure en forma única com la suma d'una matriu simètrica i una antisimètrica.