Chapter 2

Instructions:
Language of the Computer

Representation of a Program

- High-level language
 - Level of abstraction closer to the problem domain
 - Provides productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

```
void swap (int v[], int k){
                   int temp;
                                 source file
                   temp = v[k]:
                   v[k] = v[k+1];
                   v(k+1) = temp:
               compiler
                   $2, $5, 2
   swap:
              add $2, $4, $2
                  $15, 0($2)
                  $16, 4($2)
                   $16, 0($2)
                   $15, 4($2)
                   $31
              assembler
                             executable file
0000 0000 0000 0101 0001 0000 1000
          0100 1111 0000 0000
     1100 0101 0000 0000 0000
```

0101 0000 0000 0000

0000

1110 0000 0000 0000 0000 1000

Logic Diagram of a Processor

Opening the Box – iPhone Xs

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Inside the Processor

A12 processor

Instruction Set Architecture (ISA)

- 컴퓨터 (프로세서) 에서 사용되는 명령어들의 집합 및 그 정의
- Different computers (processors) have different ISAs
 - But with many aspects in common
- Many modern computers have simple instruction sets
- 그 중에서 MIPS ISA 를 배울 것임.

The MIPS Instruction Set

- Used as the example throughout the book
- Stanford MIPS commercialized by MIPS Technologies (<u>www.mips.com</u>)
- Large share of embedded core market
 - Applications in consumer electronics, network/storage equipment, cameras, printers, ...
- Typical of many modern ISAs
 - See MIPS Reference Data tear-out card, and Appendix A.10

MIPS Reference Data

Á	(Z	
6	3	N	
	44		

CORE INSTRUCTI	ON SE	т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT		(1)	(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]		0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	1	R[rt] = R[rs] + SignExtImm	(2)	
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	chex
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{ m hex}$
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{\rm hex}$
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$	(-,-,-	fhex
Load Word	lw	I	R[rt] = M[R[rs]+SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$	(-)	0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	Ι	R[rt] = R[rs] ZeroExtImm	(3)	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(-)	0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)?	: 0(2)	a _{hex}
Set Less Than Imm.	sltiu		R[rt] = (R[rs] < SignExtImm) $? 1: 0$	(2,6)	b _{hex}
Unsigned Set Less Than Unsig.	a7.60	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	4	0 / 2b _{hex}
		R		(0)	0 / 00 _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 02 _{hex}
Shift Right Logical Store Byte	srl	I	R[rd] = R[rt] >>> shamt M[R[rs]+SignExtImm](7:0) =	(4)	28 _{hex}
			R[rt](7:0)	(2)	
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	$0/22_{hex}$
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$
	(2) Sig	nExtI	se overflow exception mm = { 16{immediate[15]}, immediate } mm = { 16{1b'0}, immediate }	ediate	}

ARITHMETIC CORE INSTRUCTION SET ②					
	FOR		/ FMT /FT		
NAME ARTEMONIC	FOR		/ FUNCT		
NAME, MNEMONIC Branch On FP True be:		0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	(Hex) 11/8/1/		
		if(FPcond)PC=PC+4+BranchAddr (4)			
Branch On FP False be:		if(!FPcond)PC=PC+4+BranchAddr(4)			
Divide di	-	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0///1a		
Divide Unsigned div		Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)			
FP Add Single add	.s FR	F[fd]=F[fs]+F[ft]	11/10//0		
FP Add add	.d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0		
Double Single	. En	{F[ft],F[ft+1]}	11/10/ /-		
FP Compare Single c.x.	s* FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y		
FP Compare Double	d* FR	$FPcond = ({F[fs],F[fs+1]}) op $ ${F[ft],F[ft+1]})?1:0$	11/11//y		
	(on is	=, <, or <=) (y is 32, 3c, or 3e)			
		F[fd] = F[fs] / F[ft]	11/10//3		
FP Divide		{F[fd],F[fd+1]} = {F[fs],F[fs+1]} /			
Double	.d FR	{F[ft],F[ft+1]}	11/11//3		
FP Multiply Single mul	.s FR	F[fd] = F[fs] * F[ft]	11/10//2		
FP Multiply		${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$			
Double	.a FK	{F[ft],F[ft+1]}	11/11//2		
FP Subtract Single sub	.s FR	F[fd]=F[fs] - F[ft]	11/10//1		
FP Subtract	.d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1		
Double	.a PK	{F[ft],F[ft+1]}	11/11//1		
Load FP Single 1wo	1 I	F[rt]=M[R[rs]+SignExtImm] (2)	31//		
Load FP	1 I	F[rt]=M[R[rs]+SignExtImm]; (2)	35//		
Double		F[rt+1]=M[R[rs]+SignExtImm+4]			
Move From Hi mfl	ni R	R[rd] = Hi	0 ///10		
Move From Lo mf:		R[rd] = Lo	0 ///12		
Move From Control mfo		R[rd] = CR[rs]	10 /0//0		
Multiply mu	t R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18		
Multiply Unsigned mul		$\{Hi,Lo\} = R[rs] * R[rt]$ (6)			
Shift Right Arith. sr	-	R[rd] = R[rt] >> shamt	0///3		
Store FP Single swo	1 I	M[R[rs]+SignExtImm] = F[rt] (2)	39//		
Store FP	1 I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d///		
Double		M[R[rs]+SignExtImm+4] = F[rt+1]			
FLOATING-POINT INS	STRUC	TION FORMATS			

FR	opco	de	fmt		ft		f:	s	fd		funct
	31	26.2	15	21	20	16	15	- 11	10	6.5	0
FI	I opcode		fmt		ft				immedi	ate	
	31	26.2	15	21	20	16	15				0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	if(R[rs] >= R[rt]) PC = Label
Load Immediate	11	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
Szero	0	The Constant Value 0	N.A.
Sat	1	Assembler Temporary	No
		VII. C. F. C. D. Iv.	

Types of Instructions

- Arithmetic / Logic instructions 연산 명령어
 - = ALU operations
- Data transfer instructions 메모리 접근 명령어
 - = Load/Store instructions
- Branch instructions 분기 명령어
 - = Control transfer instructions

1. MIPS Arithmetic Instructions

1) MIPS Arithmetic Instructions

덧셈, 뺄셈, 곱셈, 나눗셈 등의 산술 논리 연산 명령어들

MIPS Arithmetic

C code:

$$f = g + h;$$

Compiled MIPS code:

add
$$f$$
, g , h # $f = g + h$

Operands of MIPS Arithmetic Instructions

- 3 operands : 1 destination, 2 sources
- Arithmetic instructions use only register operands

Registers

- 레지스터: 프로세서 내부에 있는, 작고 빠른 임시의 메모리
- MIPS has a 32 × 32-bit register file (\$0 ~ \$31)
 - Use for frequently accessed data
 - Numbered 0 to 31
 - 32-bit data called a "word"
- Design Principle : Smaller is faster
 - c.f. main memory: millions of locations

FIGURE 1.5 The organization of a computer, showing the five classic components. The processor gets instructions and data from memory. Input writes data to memory, and output reads data from memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

MIPS Arithmetic Instructions: revisited

operand 에 임의의 변수이름(메모리 주소의 별명)을 쓸 수 없음

MIPS Arithmetic

C code:

$$f = g + h;$$

Compiled MIPS code:

add \$3, \$4, \$5

MIPS Arithmetic

C code:

$$f = (g + h) - (i + j);$$

Compiled MIPS code:

(가정: f in \$2, g in \$3, h in \$4, i in \$5, j in \$6)

```
add $7, $3, $4 \# $7 = g + h add $8, $5, $6 \# $8 = i + j sub $2, $7, $8 \# f = $7 - $8
```

1-1. MIPS Immediate Arithmetic/Logic Instructions

MIPS Immediate Arithmetic Instructions

C code:

$$f = g + 10;$$

Compiled MIPS code:

(가정: f in \$2, g in \$3)

addi \$2, \$3, 10 # 3rd operand 만 상수

The Constant Zero

- MIPS register 0 (\$zero or \$0) 의 값은 항상 0 이다.
 - 바뀌지 않는다.
- Useful for common operations
 - E.g., move between registers add \$5, \$4, \$zero

Exercise

- .text
- .globl main

main:

- addi \$8, \$0, 10 # Q1 : 이 명령어를 실행한 후 8번 레지스터의 값은 얼마인가? (십진수과 16진수로 쓰시오.)
- addi \$9, \$0, 16 # Q2 : 이 명령어를 실행한 후 9번 레지스터의 값은 얼마인가? (십진수과 16진수로 쓰시오.)
- add \$10, \$8, \$9 # Q3 : 이 명령어를 실행한 후 10번 레지스터의 값은 얼마인가? (십진수과 16진수로 쓰시오.)
- 십진수 10을 32bit 16진수로 쓰면 0x0000 000A 이진수로는 0000 0000 0000 0000 0000 0000 1010

Hexadecimal Numbers (16진수)

- Base 16
 - Compact representation of bit strings
 - 4 bits per hex digit

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	d	1101
2	0010	6	0110	а	1010	е	1110
3	0011	7	0111	b	1011	f	1111

- Example: 0xeca8 6420
 - 1110 1100 1010 1000 0110 0100 0010 0000

MIPS assembly language

Category	Instruction	ion Example Meaning		Comments
	add	add \$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Three register operands
Arithmetic	subtract	sub \$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	Three register operands
	add immediate	addi \$s1,\$s2,20	\$s1 = \$s2 + 20	Used to add constants

MIPS Register Aliases

Name	Register number	Usage	Preserved on call?
\$zero	0	The constant value 0	n.a.
\$v0-\$v1	2–3	Values for results and expression evaluation	no
\$a0-\$a3	4–7	Arguments	no
\$t0-\$t7	8–15	Temporaries	no
\$s0 - \$s7	16–23	Saved	yes
\$t8-\$t9	24–25	More temporaries	no
\$gp	28	Global pointer	yes
\$sp	29	Stack pointer	yes
\$fp	30	Frame pointer	yes
\$ra	31	Return address	yes

APPENDI

Fear of serious injury cannot alone justify suppression of free speech and assembly.

Louis Brandeis

Whitney v. California, 1927

Assemblers, Linkers, and the SPIM Simulator

James R. Larus Microsoft Research Microsoft Pseudoinstructions follow roughly the same conventions, but omit instruction encoding information. For example:

Multiply (without overflow)

```
mul rdest, rsrc1, src2 pseudoinstruction
```

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a register or an immediate value. In general, the assembler and SPIM translate a more general form of an instruction (e.g., add \$v1, \$a0, 0x55) to a specialized form (e.g., addi \$v1, \$a0, 0x55).

Arithmetic and Logical Instructions

Absolute value

Put the absolute value of register nsnc in register ndest.

Addition (with overflow)

Addition (without overflow)

Put the sum of registers rs and rt into register rd.

Addition immediate (with overflow)

MIPS Reference Data

A	Ü	Ž
	4	V

	NC	ici	ence Data		
CORE INSTRUCTI	ON SE	т			OPCODE
NUMBER OF THE PROPERTY OF THE	NIC	FOR-			/ FUNCT
NAME, MNEMO Add		MAT R		(1)	(Hex) 0/20 _{hex}
	add	I	R[rd] = R[rs] + R[rt] $R[rd] = R[rs] + Sign Furthers$		
Add Immediate	addi	_	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned			R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]	(2)	0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	chex
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{ m hex}$
Load Linked	11	I	R[rt] = M[R[rs]+SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs]+SignExtImm]	(2)	23_{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0(2)	a _{bex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]		0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate }					

(3) ZeroExtImm = { 16{1b'0}, immediate }

N SET ②		
		FMT/FT
		/ FUNCT
OPERATION		(Hex)
cond)PC=PC+4+BranchAddr (4	7	11/8/1/
cond)PC=PC+4+BranchAddr(4	4)	11/8/0/
[rs]/R[rt]; Hi=R[rs]%R[rt]		0///1a
[rs]/R[rt]; Hi=R[rs]%R[rt] (6	6)	0///1b
= F[fs] + F[ft]		11/10//0
F[fd+1] = F[fs],F[fs+1] + F[ft],F[ft+1]		11/11//0
nd = (F[fs] op F[ft])?1:0		11/10//y
nd = $(\{F[fs],F[fs+1]\})$ op $\{F[ft],F[ft+1]\}$? 1:0		11/11//y
or \leq) (y is 32, 3c, or 3e)		
= F[fs] / F[ft]		11/10//3
F[fd+1] = F[fs],F[fs+1] / F[ft],F[ft+1]		11/11//3
= F[fs] * F[ft]		11/10//2
$F[fd+1] = {F[fs], F[fs+1]} * {F[ft], F[ft+1]}$		11/11//2
=F[fs] - F[ft]		11/10//1
F[fd+1] = F[fs],F[fs+1] - F[ft],F[ft+1]		11/11//1
M[R[rs]+SignExtImm] (2	2)	31///
•M[R[rs]+SignExtImm]; (2 1]=M[R[rs]+SignExtImm+4]	2)	35//
= Hi		0 ///10
= Lo		0 ///12
= CR[rs]		10 /0//0
$\{0\} = \mathbb{R}[rs] * \mathbb{R}[rt]$		0///18
	6)	0///19
= R[rt] >> shamt		0///3
[rs]+SignExtImm] = F[rt] (2)	2)	39//
	2)	3d//
]		[rs]+SignExtImm] = F[rt]; (2) $[rs]+SignExtImm+4] = F[rt+1]$

FR	opcode		fmt		ft		fs		fd		funct	
	31	26	25	21	20	16	15	11	10	6.5	0	
FΙ	opcode		fm	ıt	ft		immediate					

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	11	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
Szero	0	The Constant Value 0	N.A.
Sat	1	Assembler Temporary	No
		Values for Function Results	