PC2 - Solucionario

Ejercicio 1. Un consumidor posee una relación de preferencias \succeq definida sobre el conjunto $S = \{(x_1, x_2) : x_1 > 0, x_2 \ge 0\}$, como sigue

$$(x_1, x_2) \succeq (y_1, y_2) \iff \ln x_1 + x_2 \ge \ln y_1 + y_2$$

- 1.1) Encuentre una función de utilidad que represente a \succeq .
- 1.2) Trace tres curvas de indiferencia asociadas a \succeq .
- 1.3) Para la función de utilidad que propuso en la pregunta 1.1), calcule las utilidades marginales y, con base en ellas, explique por que se puede afirmar que la relación \succeq es monótona.
- 1.4) ¿Es la función $f(x_1, x_2) = x_1 e^{x_2}$ una función de utilidad que represente a \succeq ? Explique su respuesta.

Solución.

- 1.1) De la definición es inmediato que $u(x_1, x_2) = \ln x_1 + x_2$ representa \succeq .
- 1.2) Un conjunto de indiferencia para una canasta dada $(\overline{x}_1, \overline{x}_2)$ viene dado por

$$C_{\sim}(\overline{x}_1, \overline{x}_2) = \{(x_1, x_2) \in S : \ln x_1 + x_2 = \ln \overline{x}_1 + \overline{x}_2\}$$

Podemos despejar para obtener que coincide con la curva $\{x_2 = \ln \overline{x}_1 + \overline{x}_2 - \ln x_1\}$. Para los puntos (1,1), (1,2) y (1,3) esto es

- 1.3) Las utilidades marginales son $\partial u/\partial x_1 = 1/x_1 > 0$ para $x_1 > 0$ y $\partial u/\partial x_2 = 1 > 0$, ambas positivas. Por ende, efectivamente la relación de preferencia es monótona.
- 1.4) Como la función exponencial es estrictamente creciente, y sabemos que componer una función de utilidad por una función estrictamente creciente no altera la relación de preferencia. Entonces la función

$$v(x_1, x_2) = \exp(u(x_1, x_2)) = \exp(\ln x_1 + x_2) = x_1 \exp(x_2)$$

 $representa \succeq$.

Ejercicio 2. Un consumidor posee una relación de preferencia \succeq , definida sobre el conjunto $S = \{(x_1, x_2) \in \mathbb{R}^2_+ : 2x_1 + 3x_2 \leq 6\}$ como sigue:

$$(x_1, x_2) \succeq (y_1, y_2) \iff x_1 x_2 \ge y_1 y_2.$$

- 1. ¿Existe $\mathbf{x}^* \in S$, tal que $\mathbf{x}^* \succeq \mathbf{x}$, $\forall \mathbf{x} \in S$?
- 2. Si existe tal \mathbf{x}^* de la pregunta (2.1) encuéntrelo.

Solución.

- 1.1) Como el conjunto S es compacto, y encontrar un elemento maximal respecto a la preferencia es lo mismo, por definición, que maximizar una función de utilidad que la representa, por ej. $u(x_1, x_2) = x_1x_2$, debido al Teorema de Weierstrass, podemos asegurar una solución al problema. Esto es, existe dicho x^* .
- 1.2) Resolvemos máx x_1x_2 sujeto a $(x_1, x_2) \in S$. Se sigue, identificando S con la restricción presupuestaria B(p, I) = B((2, 3), 6) que

$$x_1^* = \frac{6}{4}, \ x_2^* = \frac{6}{6} = 1.$$

Ejercicio 3. Una empresa produce un bien usando dos insumos x e y, con función de producción

$$Q(x,y) = x^{\alpha} + y^{\alpha}, \quad 0 < \alpha < 1.$$

Cada unidad de producción se vende al precio p>0 y los precios de los insumos son w>0 y r>0, respectivamente.

- 1. Explique si las productividades marginales son crecientes o decrecientes. (2 puntos)
- 2. ¿Cuál es la función de beneficio de la empresa? Explique si es cóncava. (2 puntos)
- 3. Resuelva el problema del productor, esto es: encuentre las demandas óptimas x^* e y^* . (2 puntos)
- 4. Pruebe que cuando $\alpha \to 1^-$, x^* e y^* son muy elásticas en magnitud respecto de sus precios correspondientes. (2 puntos)

Solución.

1. La productividad marginal respecto a x es

$$\frac{\partial Q}{\partial x} = \alpha x^{\alpha - 1},$$

que es decreciente porque $0 < \alpha < 1 \implies \alpha - 1 < 0$. $Q_{xx} = \frac{\partial^2 Q}{\partial x^2} = \alpha(\alpha - 1)x^{\alpha - 2} < 0$. Lo mismo vale para y. Por lo tanto, las productividades marginales son decrecientes.

2. El beneficio es

$$\pi(x,y) = p(x^{\alpha} + y^{\alpha}) - wx - ry.$$

Como x^{α} y y^{α} son funciones cóncavas (al ser $\alpha \in (0,1)$), y la combinación lineal con coeficientes positivos preserva la concavidad, $\pi(x,y)$ es cóncava.

3. El problema es

$$\max_{x,y\geq 0} p(x^{\alpha} + y^{\alpha}) - wx - ry.$$

Las condiciones de primer orden son

$$p\alpha x^{\alpha-1} - w = 0 \quad \Rightarrow \quad x^* = \left(\frac{p\alpha}{w}\right)^{\frac{1}{1-\alpha}},$$

 $p\alpha y^{\alpha-1} - r = 0 \quad \Rightarrow \quad y^* = \left(\frac{p\alpha}{r}\right)^{\frac{1}{1-\alpha}}.$

Note que, dado que $\lim_{x\to 0^+} \pi_x$, $\lim_{y\to 0^+} \pi_y = +\infty$, la solución es interior: $x^*, y^* > 0$.

4. Consideremos, por ejemplo, $x^*(w)$. Su elasticidad precio es

$$\varepsilon_{x^*,w} = \frac{\partial x^*}{\partial w} \cdot \frac{w}{x^*} = \frac{-1}{1-\alpha}.$$

Análogamente, $\varepsilon_{y^*,r} = \frac{-1}{1-\alpha}$. Cuando $\alpha \to 1^-$, el denominador tiende a 0 por la izquierda, por lo que la elasticidad tiende a $-\infty$ en magnitud. Es decir, las demandas por insumos se vuelven extremadamente elásticas a sus precios (esto pues la tecnología se vuelve lineal: $Q(x,y) \to x + y$).

Ejercicio 4. Considere las funciones $f(x) = x^3$ y $g(x) = e^{-x^2}$.

- 1. Pruebe que f no es convexa ni cóncava, pero sí es cuasiconvexa y cuasiconcava. (2 puntos)
- 2. Pruebe que g no es convexa, ni cóncava, ni cuasiconvexa; pero sí es cuasiconcava. (2 puntos) Solución.
 - 1. Para $f(x) = x^3$, se tiene f''(x) = 6x, que cambia de signo en x = 0, por lo que no es convexa ni cóncava en todo \mathbb{R} . Sin embargo, f es estrictamente monótona creciente, lo cual implica que tanto f como -f son funciones cuasiconvexas. Por lo tanto, f es simultáneamente cuasiconvexa y cuasicóncava.
 - 2. Para $g(x) = e^{-x^2}$, su segunda derivada es

$$g''(x) = (4x^2 - 2)e^{-x^2},$$

que cambia de signo según $|x| < 1/\sqrt{2}$ o $|x| > 1/\sqrt{2}$. Por ello, g no es convexa ni cóncava en todo \mathbb{R} . Además, los supernivel $\mathcal{U}(\alpha) = \{x : g(x) \ge \alpha\}$ son intervalos simétricos (convexos), lo que implica que g es cuasicóncava. Sin embargo, los subnivel $\mathcal{L}(\alpha) = \{x : g(x) \le \alpha\}$ no son convexos (pues son uniones de dos intervalos disjuntos), por lo que g no es cuasiconvexa.

Sea $g(x) = e^{-x^2}$ y fije $\alpha \in \mathbb{R}$. Denote

$$\mathcal{U}(\alpha) = \{x \in \mathbb{R} : g(x) \ge \alpha\}, \qquad \mathcal{L}(\alpha) = \{x \in \mathbb{R} : g(x) \le \alpha\}.$$

1) Conjuntos de supernivel $\mathcal{U}(\alpha)$ y su convexidad.

$$e^{-x^2} \ge \alpha \iff \begin{cases} (\mathrm{i}) \ \alpha > 1 : & \mathcal{U}(\alpha) = \varnothing \\ (\mathrm{ii}) \ \alpha = 1 : & \mathcal{U}(1) = \{0\} \\ (\mathrm{iii}) \ 0 < \alpha < 1 : & -x^2 \ge \ln \alpha \iff x^2 \le -\ln \alpha \\ \Rightarrow \mathcal{U}(\alpha) = [-a, a], \quad a := \sqrt{-\ln \alpha} \\ (\mathrm{iv}) \ \alpha \le 0 : & \mathcal{U}(\alpha) = \mathbb{R} \quad (\mathrm{pues} \ e^{-x^2} > 0 \ \forall x) \end{cases}$$

En todos los casos, $\mathcal{U}(\alpha)$ es convexo: \emptyset , $\{0\}$, [-a,a] y \mathbb{R} son conjuntos convexos en \mathbb{R} . Como todo supernivel es convexo, g es cuasiconcava.

2) Conjuntos de subnivel $\mathcal{L}(\alpha)$ y su (no) convexidad.

$$e^{-x^2} \leq \alpha \iff \begin{cases} (\mathrm{i}) \ \alpha < 0 : & \mathcal{L}(\alpha) = \varnothing \\ (\mathrm{ii}) \ \alpha = 0 : & \mathcal{L}(0) = \varnothing \ \ (\mathrm{pues} \ g > 0) \\ (\mathrm{iii}) \ 0 < \alpha < 1 : & -x^2 \leq \ln \alpha \iff x^2 \geq -\ln \alpha \\ & \Rightarrow \mathcal{L}(\alpha) = (-\infty, -a] \ \cup \ [a, \infty), \ \ a := \sqrt{-\ln \alpha} \\ (\mathrm{iv}) \ \alpha \geq 1 : & \mathcal{L}(\alpha) = \mathbb{R} \ \ \ (\mathrm{pues} \ e^{-x^2} \leq 1 \leq \alpha) \end{cases}$$

Para $0 < \alpha < 1$, $\mathcal{L}(\alpha) = (-\infty, -a] \cup [a, \infty)$ no es convexo. Prueba breve: tome $x_1 = -a \in \mathcal{L}(\alpha)$ y $x_2 = a \in \mathcal{L}(\alpha)$. Su punto medio es $\frac{x_1 + x_2}{2} = 0$, pero $g(0) = 1 > \alpha$, luego $0 \notin \mathcal{L}(\alpha)$. Por lo tanto, $\mathcal{L}(\alpha)$ no es convexo para $0 < \alpha < 1$. Como existe α con subnivel no convexo, g no es cuasiconvexa.