What is claimed is:

1. A compound of Formula (I):

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

 R^1 is H,

5

10

 C_1-C_6 alkyl optionally substituted with 0-2 R^{2a} ; C_2-C_6 alkenyl optionally substituted with 0-2 R^{2a} ; or

15 C_2-C_6 alkynyl optionally substituted with 0-2 R^{2a} ;

 \mathbf{R}^{2a} , at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 ,

acetyl, SCH_3 , $S(=O)CH_3$, $S(=O)_2CH_3$, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, C_1-C_4 haloalkyl-S-;

phenyl substituted with 0-3 R^{2b};

C₃-C₆ cycloalkyl substituted with 0-3 R^{2b}; and
5 to 7 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen,
and sulphur, wherein said 5 to 7 membered
heterocycle is substituted with 0-3 R^{2b};

30 R^{2b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, C₁-C₄ alkyl,

 $\text{C}_1\text{-C}_4$ alkoxy, $\text{C}_1\text{-C}_4$ haloalkyl, $\text{C}_1\text{-C}_4$ haloalkoxy, and $\text{C}_1\text{-C}_4 \text{ haloalkyl-S-;}$

- 5 R^3 is H, NH_2 , $NR^{25}R^{26}$, C_1-C_6 alkyl substituted with 0-3 R^4 ; C_2-C_6 alkenyl substituted with 0-3 R^4 ; or C_2-C_6 alkynyl substituted with 0-3 R^4 ;
- 10 R^{3a} is H, C_1 - C_6 alkyl, or C_2 - C_6 alkenyl;
- alternatively, R³ and R^{3a} are combined to form a 3-6 membered carbocyclic group selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, cyclopentenyl, cyclohexyl, and cyclohexenyl; wherein said 3-6 membered carbocyclic group is substituted with 0-2 R⁴;
- additionally, two R^4 substituents on adjacent atoms 20 may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-4 R^{23} ;
- additionally, two R⁴ substituents on adjacent atoms

 may be combined to form a 5 to 6 membered

 heteroaryl fused radical, wherein said 5 to 6

 membered heteroaryl fused radical comprises 1 or

 2 heteroatoms selected from N, O, and S; wherein

 said 5 to 6 membered heteroaryl fused radical is

 substituted with 0-3 R²³;
 - additionally, two R^4 substituents on the same or adjacent carbon atoms may be combined to form a C_3-C_6 carbocyclic group substituted with 0-3 R^{23} ;

 $\rm R^4$, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, CF₃, acetyl, SCH₃, $\rm S(=O)\,CH_3,\,\,S(=O)_2CH_3,\,\,NR^{15}R^{16},\,\,C_1-C_4\,\,alkyl,\,\,C_2-C_4$ $\rm alkenyl,\,\,C_2-C_4\,\,alkynyl,\,\,C_1-C_4\,\,alkoxy,\,\,C_1-C_4$ $\rm haloalkyl,$

 C_1-C_4 haloalkoxy, and C_1-C_4 haloalkyl-S-,

 C_3 - C_6 carbocycle, aryl, and a

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur;

and sulphu

 R^5 is H;

5

20

 C_1-C_6 alkyl substituted with 0-2 R^{5b} ;

 C_2-C_6 alkenyl substituted with 0-2 R^{5b} ;

15 C_2 - C_6 alkynyl substituted with 0-2 R^{5b} ;

 C_3-C_6 carbocycle substituted with 0-3 R^{5c} ;

phenyl substituted with $0-3~R^{5c}$; or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered

heterocycle is substituted with 0-3 R^{5c};

 R^{5a} is H, C_1-C_4 alkyl, or C_2-C_4 alkenyl;

- 25 alternatively, R⁵ and R^{5a} may be combined to form a 3-6 membered carbocyclic moiety selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, cyclopentyl, and cyclohexenyl;
- 30 R^{5b}, at each occurrence, is independently selected from:

H, C_1 - C_6 alkyl, CF_3 , OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$;

 C_3-C_6 carbocycle substituted with 0-3 R^{5c} ;

35 phenyl substituted with $0-3 R^{5c}$; or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c};

5

 R^{5c} , at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_4 alkyl,

10 C_1-C_3 alkoxy, C_1-C_3 haloalkyl, C_1-C_3 haloalkoxy, and C_1-C_3 haloalkyl-S-;

 R^6 is H or C_1-C_6 alkyl;

15

20

Ring B is a 7 membered lactam,

wherein the lactam is saturated, partially saturated or unsaturated;

wherein each additional lactam carbon is substituted with $0-2\ R^{11}$; and,

- optionally, the lactam contains an additional heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)₂-, -N=, -NH-, and -N(\mathbb{R}^{10})-;
- 25 additionally, two R^{11} substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-4 R^{13} ;
- additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R¹³;

5

additionally, two R^{11} substituents on the same or adjacent carbon atoms may be combined to form a C_3 - C_6 carbocyclic radical substituted with 0-3 R^{13} :

R¹⁰ is H, C(=0)R¹⁷, C(=0)OR¹⁷, C(=0)NR¹⁸R¹⁹,

S(=0)₂NR¹⁸R¹⁹, S(=0)₂R¹⁷;

C₁-C₆ alkyl optionally substituted with 0-3 R^{10a};

C₆-C₁₀ aryl substituted with 0-4 R^{10b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or

5 to 10 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen,
and sulphur, wherein said 5 to 10 membered

heterocycle is substituted with 0-3 R^{10b};

R^{10a}, at each occurrence, is independently selected from

H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =0, CN, NO₂,

NR¹⁵R¹⁶, CF₃,

phenyl substituted with 0-3 R^{10b};

C₃-C₇ cycloalkyl substituted with 0-3 R^{10b}; and

5 to 7 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen,

and sulphur, wherein said 5 to 7 membered

heterocycle is substituted with 0-3 R^{10b};

 R^{10b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

 R^{11} , at each occurrence, is independently selected from

5

10

15

20

H, C_1-C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{18}R^{19}$, $C(=O)R^{17}$, $C(=O)OR^{17}$, $C(=O)NR^{18}R^{19}$, $S(=O)_2NR^{18}R^{19}$, CF_3 ;

 C_1-C_6 alkyl optionally substituted with 0-3 R^{11a} ;

 C_6-C_{10} aryl substituted with 0-3 R^{11b} ;

C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};

 \mathbf{R}^{11a} , at each occurrence, is independently selected from

H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, CF_3 ;

phenyl substituted with 0-3 R^{11b};

 ${\rm C_3-C_7}$ cycloalkyl substituted with 0-3 ${\rm R^{11b}};$ and 5 to 7 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 7 membered

heterocycle is substituted with 0-3 R^{11b};

 ${\bf R^{11b}},$ at each occurrence, is independently selected from

25 H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, C_1-C_4 haloalkoxy, and C_1-C_4 haloalkyl-S-;

W is a bond, $-CH_2-$, $-CH_2CH_2-$;

X is a bond, -phenyl-, -pyridyl-, -cyclohexyl-, or
-piperidinyl-;

35

30

Y is a bond, -C(=0)-, -O-, -S-, -S(=0)-, -S(=0)₂-,
-NH-,
-N(CH₃)-, or -N(CH₂CH₃)-;

5 Z is H;

 C_1-C_8 alkyl substituted with 0-3 R^{12a} ;

 C_2 - C_6 alkenyl substituted with 0-3 R^{12a} ;

 C_2 - C_6 alkynyl substituted with 0-3 R^{12a} ;

 C_6-C_{10} aryl substituted with 0-4 R^{12b} ;

10 C_3-C_{10} carbocycle substituted with 0-4 R^{12b} ; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

15

 ${\bf R}^{12a},$ at each occurrence, is independently selected from

H, OH, C1, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$,

 $-C(=0)NR^{15}R^{16}$, CF₃, acetyl, SCH₃, S(=0)CH₃,

 $S(=0)_2CH_3$,

 C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl,

 C_1-C_4 haloalkoxy, C_1-C_4 haloalkyl-S-,

 C_6-C_{10} aryl substituted with 0-4 R^{12b} ;

 $\text{C}_3\text{-C}_{10}$ carbocycle substituted with 0-4 $\text{R}^{12b};$ or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

30 R^{12b} , at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=O)CH_3$, $S(=O)_2CH_3$, C_3-C_6 cycloalkyl,

35 C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl,

 C_1-C_4 haloalkoxy, C_1-C_4 haloalkyl-S, and aryl substituted with 0-3 R^{12c} ;

R^{12c}, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, methoxy, ethoxy, amino, hydroxy, Cl, F, Br, I, CF₃, SCH₃, S(O)CH₃, SO₂CH₃, -N(CH₃)₂, N(CH₃)H, CN, NO₂, OCF₃, C(=O)CH₃, CO₂H, CO₂CH₃, and C₁-C₃ haloalkyl;

10

 R^{13} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;

15

- R^{14} is H, phenyl, benzyl, C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl, or C_3 - C_6 cycloalkyl;
- R^{15} , at each occurrence, is independently selected from H, and C_1 - C_6 alkyl;
 - R^{16} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, benzyl, phenethyl, (C_1 - C_6 alkyl)-C(=0)-, and (C_1 - C_6 alkyl)-S(=0)₂-;
 - R^{17} is H, C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl, aryl substituted by 0-4 R^{17a} , or -CH₂-aryl substituted by 0-4 R^{17a} ;

30

25

 R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;

 R^{18} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl,

5

 ${\sf R}^{19},$ at each occurrence, is independently selected from

H, OH, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)₂-;

 $(C_1-C_6 \text{ alkyl})-C(=0)-$, and $(C_1-C_6 \text{ alkyl})-S(=0)_2-$;

10

- additionally, R^{18} and R^{19} , when substituents on the same atom, may be combined to form a 5 to 7 membered nitrogen containing heterocyclic ring;
- 15 R^{23} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;
- 20 R^{25} , at each occurrence, is independently selected from H, and C_1 - C_6 alkyl; and
 - ${\bf R}^{26}$, at each occurrence, is independently selected from
- 25 H, C_1 - C_6 alkyl, C_3 - C_4 alkenyl, C_3 - C_4 alkynyl, $(C_1$ - C_6 alkyl)-C(=0)-, $(C_1$ - C_6 alkyl)-S(=0)₂-, $aryl(C_1$ - C_4 alkyl)-, C_3 - C_6 cycloalkyl, and C_3 - C_6 cycloalkyl(C_1 - C_4 alkyl)-.
- 30 2. A compound, according to Claim 1, of Formula (Ib):

or a pharmaceutically acceptable salt or prodrug thereof,

wherein:

5

 R^1 is H,

 $\text{C}_1\text{-C}_6$ alkyl optionally substituted with 0-1 $\text{R}^{2a};$ $\text{C}_2\text{-C}_6$ alkenyl optionally substituted with 0-1 $\text{R}^{2a};$ or

- 10 C_2-C_6 alkynyl optionally substituted with 0-1 R^{2a} ;
 - R^{2a} , at each occurrence, is independently selected from

H, OH, Cl, F, Br, CN, NO₂, CF₃, acetyl, SCH₃,

15 $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, methoxy, ethoxy,

-OCF3, -SCF3;

phenyl substituted with 0-3 R2b;

 C_3-C_6 cycloalkyl substituted with 0-3 R^{2b} ; and

- 5 to 7 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 7 membered heterocycle is substituted with 0-3 R^{2b};
- 25 R^{2b}, at each occurrence, is independently selected from
 H, OH, Cl, F, Br, CN, NO₂, CF₃, acetyl, SCH₃,
 S(=0)CH₃, S(=0)₂CH₃, methyl, ethyl, methoxy,
 ethoxy, -OCF₃, and -SCF₃;

30

- R^3 is H, NH₂, C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, (aryl) C_1 - C_4 alkyl-, or (C_3 - C_6 cycloalkyl) C_1 - C_4 alkyl-;
- 35 R^5 is H;

 C_1-C_4 alkyl substituted with 0-1 R^{5b} ; C_2-C_4 alkenyl substituted with 0-1 R^{5b} ; or C_2-C_4 alkynyl substituted with 0-1 R^{5b} ;

5 R^{5b} , at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
 propoxy, butoxy, CF₃, Cl, F, Br, I, =0;
C₃-C₆ carbocycle substituted with 0-3 R^{5c};

10 phenyl substituted with 0-3 R^{5c}; or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and

20 tetrazolyl;

15

 ${\rm R}^{\rm 5c},$ at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, methoxy, ethoxy, and $-OCF_3$;

Ring B is selected from:

and

R¹⁰ is H, C(=0)R¹⁷, C(=0)OR¹⁷, C(=0)NR¹⁸R¹⁹,

S(=0)₂NR¹⁸R¹⁹, S(=0)₂R¹⁷;

C₁-C₄ alkyl optionally substituted with 0-1 R^{10a};

phenyl substituted with 0-3 R^{10b};

C₃-C₇ carbocycle substituted with 0-3 R^{10b}; and

5 to 7 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 7 membered

heterocycle is substituted with 0-3 R^{10b};

R^{10a}, at each occurrence, is independently selected from

H, C₁-C₄ alkyl, OR¹⁴, Cl, F, Br, I, =0, CN, NO₂,

NR¹⁵R¹⁶, CF₃,

phenyl substituted with 0-3 R^{10b};

C₃-C₇ cycloalkyl substituted with 0-3 R^{10b}; and

5 to 7 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen,

and sulphur, wherein said 5 to 7 membered heterocycle is substituted with 0-3 R^{10b};

- R^{10b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy;
- 10 R¹¹, at each occurrence, is independently selected from H, =0, NR¹⁸R¹⁹, CF₃;
 C₁-C₄ alkyl optionally substituted with 0-1 R^{11a}; phenyl substituted with 0-3 R^{11b};
 C₃-C₇ carbocycle substituted with 0-3 R^{11b}; and
 5 to 7 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 7 membered heterocycle is substituted with 0-3 R^{11b};
- 20 R^{11a}, at each occurrence, is independently selected from

 H, C₁-C₄ alkyl, OR¹⁴, F, Cl, =0, NR¹⁵R¹⁶, CF₃, phenyl substituted with 0-3 R^{11b};

 C₃-C₇ cycloalkyl substituted with 0-3 R^{11b}; and

 5 to 7 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 7 membered heterocycle is substituted with 0-3 R^{11b};
- 30 R^{11b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy;

```
W is a bond;
     X is a bond;
     Y is a bond;
 5
    Z is H;
           C_1-C_6 alkyl substituted with 0-1R^{12a};
           C_2-C_6 alkenyl substituted with 0-1 R^{12a}; or
           C_2-C_6 alkynyl substituted with 0-1 R^{12a};
     R<sup>12a</sup>, at each occurrence, is independently selected
10
           from
           H, OH, Cl, F, Br, CN, NO2, CF3, methoxy, ethoxy,
           -OCF3;
           phenyl substituted with 0-4 R12b;
           C_3-C_6 carbocycle substituted with 0-4 R^{12b}; or
15
           5 to 6 membered heterocycle containing 1 to 4
              heteroatoms selected from nitrogen, oxygen,
              and sulphur, wherein said 5 to 6 membered
              heterocycle is substituted with 0-3 R<sup>12b</sup>;
20
     R^{12b}, at each occurrence, is independently selected
           from
           H, OH, Cl, F, Br, CN, NO<sub>2</sub>, CF<sub>3</sub>, acetyl, SCH<sub>3</sub>,
           S(=0)CH_3, S(=0)_2CH_3, C_1-C_4 alkyl, C_1-C_3 alkoxy,
25
           C_2-C_4 alkenyl,
           -OCF<sub>3</sub>, and -SCF<sub>3</sub>;
     R<sup>13</sup>, at each occurrence, is independently selected
30
           H, OH, methyl, ethyl, propyl, methoxy, ethoxy,
           C1, F, Br, CN, NO<sub>2</sub>, NR^{15}R^{16}, and CF_3;
     R^{14} is H, phenyl, benzyl, methyl, ethyl, propyl, or
```

butyl;

- R^{15} , at each occurrence, is independently selected from H, and C_1-C_4 alkyl;
- 5 R^{16} , at each occurrence, is independently selected from H, C_1 - C_4 alkyl, benzyl, phenethyl, $(C_1$ - C_4 alkyl)-C(=0)-, and $(C_1$ - C_4 alkyl)- $S(=0)_2$ -;
- R^{17} is H, C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl, 10 aryl substituted by 0-4 R^{17a} , or - CH_2 -aryl substituted by 0-4 R^{17a} ;
- R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;
 - R¹⁸, at each occurrence, is independently selected from
- 20 H, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl, $(C_1-C_6 \text{ alkyl})-C(=0)-, \text{ and } (C_1-C_6 \text{ alkyl})-S(=0)_2-;$
 - ${\bf R}^{19},$ at each occurrence, is independently selected from
- 25 H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, phenethyl; and
- additionally, R¹⁸ and R¹⁹, when substituents on the same atom, may be combined to form a 5 to 7

 membered nitrogen containing heterocyclic ring.
 - 3. A compound, according to Claim 2, of Formula (Ib):

$$N - N$$
 $N - N$
 $N -$

or a pharmaceutically acceptable salt or prodrug 5 thereof,

wherein:

 R^1 is C_1-C_6 alkyl, C_2-C_6 alkenyl, or C_2-C_6 alkynyl;

10

15

 R^3 is H, NH_2 , C_1 - C_5 alkyl, or C_2 - C_5 alkenyl;

 R^5 is H;

 C_1-C_4 alkyl substituted with 0-1 R^{5b} ; C_2-C_4 alkenyl substituted with 0-1 R^{5b} ; or C_2-C_4 alkynyl substituted with 0-1 R^{5b} ;

R^{5b}, at each occurrence, is independently selected from:

20 H, methyl, ethyl, propyl, methoxy, ethoxy, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, and phenyl;

25 Ring B is selected from:

$$R^{13}$$
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}

5 R^{10} is H;

 C_1-C_4 alkyl optionally substituted with 0-1 R^{10a} ; phenyl substituted with 0-3 R^{10b} ;

 C_3-C_7 carbocycle substituted with 0-3 R^{10b} ; and

5 to 7 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 7 membered heterocycle is substituted with 0-3 R^{10b}; wherein said 5 to 7 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrrolidinyl, piperazinyl, piperidinyl, homopiperidinyl, pyrazolyl, imidazolyl, imidazolidinyl, oxazolyl,

isoxazolyl, morpholinyl, and tetrazolyl;

20

10

15

 ${\bf R}^{10a},$ at each occurrence, is independently selected from

H, methyl, ethyl, methoxy, phenoxy, F, Cl, $\label{eq:reconstruction} {\rm NR}^{15}{\rm R}^{16}, \ {\rm CF}_3;$

phenyl substituted with 0-3 R^{10b};
C₃-C₇ cycloalkyl substituted with 0-3 R^{10b}; and
to 7 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen,
and sulphur, wherein said 5 to 7 membered

5

heterocycle is substituted with 0-3 R^{10b}; wherein said 5 to 7 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrrolidinyl, piperazinyl, piperidinyl, homopiperidinyl, pyrazolyl, imidazolyl, imidazolidinyl, oxazolyl, isoxazolyl, morpholinyl, and tetrazolyl;

- 10 R^{10b} , at each occurrence, is independently selected from H, OH, Cl, F, CF₃, methyl, ethyl, methoxy, and OCF₃;
- R¹¹, at each occurrence, is independently selected from 15 H, NR¹⁸R¹⁹, CF₃; C_1-C_4 alkyl optionally substituted with 0-1 R^{11a} ; phenyl substituted with 0-3 R^{11b}; C_3-C_7 carbocycle substituted with 0-3 R^{11b} ; and 20 5 to 7 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 7 membered heterocycle is substituted with 0-3 R^{11b}; wherein said 5 to 7 membered heterocycle is selected from pyridinyl, pyrimidinyl, 25 triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrrolidinyl, piperazinyl, piperidinyl, homopiperidinyl, pyrazolyl, imidazolyl, imidazolidinyl, oxazolyl, 30 isoxazolyl, morpholinyl, and tetrazolyl;
- R^{11a}, at each occurrence, is independently selected from

 H, methyl, ethyl, methoxy, phenoxy, F, Cl, CF₃;

 phenyl substituted with 0-3 R^{11b};

 C₃-C₇ cycloalkyl substituted with 0-3 R^{11b}; and

5 to 7 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen,
and sulphur, wherein said 5 to 7 membered
heterocycle is substituted with 0-3 R^{11b};
wherein said 5 to 7 membered heterocycle is
selected from pyridinyl, pyrimidinyl,
triazinyl, furanyl, thienyl, thiazolyl,
pyrrolyl, pyrrolidinyl, piperazinyl,
piperidinyl, homopiperidinyl, pyrazolyl,
imidazolyl, imidazolidinyl, oxazolyl,
isoxazolyl, morpholinyl, and tetrazolyl;

R^{11b}, at each occurrence, is independently selected from

15 H, OH, Cl, F, CF₃, methyl, ethyl, methoxy, and - OCF_3 ;

W is a bond;

X is a bond;

20 Y is a bond;

Z is H;

25

 C_1 - C_6 alkyl substituted with 0-1 R^{12a} ; C_2 - C_6 alkenyl substituted with 0-1 R^{12a} ; or C_2 - C_6 alkynyl substituted with 0-1 R^{12a} ;

 ${\bf R}^{12a},$ at each occurrence, is independently selected from

H, OH, Cl, F, CF3,

phenyl substituted with 0-2 R^{12b};
C₃-C₆ carbocycle substituted with 0-2 R^{12b}; and
to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen,
and sulphur, wherein said 5 to 6 membered
heterocycle is substituted with 0-2 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, CN, NO₂, CF₃, acetyl, SCH₃,

S(=0)CH₃, S(=0)₂CH₃, methyl, ethyl, methoxy,

ethoxy, allyl,

-OCF₃, and -SCF₃;

 \mathbb{R}^{13} , at each occurrence, is independently selected from

10 H, OH, methyl, ethyl, methoxy, ethoxy, Cl, F, Br, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

15

R¹⁶, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, benzyl, and phenethyl;

20

- R^{18} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
- 25 R^{19} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl.
 - 4. A compound, according to Claim 3, of Formula (Ib):

30

or a pharmaceutically acceptable salt or prodrug thereof,

wherein:

5

 R^1 is C_1-C_5 alkyl, C_2-C_5 alkenyl, or C_2-C_5 alkynyl;

R³ is H, methyl, ethyl, propyl, butyl, pentyl, ethenyl, propenyl, or butenyl;

10

 R^5 is H, C_1 - C_5 alkyl; C_2 - C_5 alkenyl; C_2 - C_5 alkynyl; or $(C_3-C_6 \text{ cycloalkyl})C_1-C_4 \text{ alkyl-};$

Ring B is selected from:

15

$$R^{13}$$
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}

20

 R^{10} is H,

 C_1-C_4 alkyl optionally substituted with 0-1 R^{10a} ; phenyl substituted with 0-1 R^{10b} ; or

C₃-C₇ carbocycle substituted with 0-1 R^{10b},
wherein said C₃-C₇ carbocycle is selected from
cyclopropyl, cyclobutyl, cyclopentyl,
cyclopentenyl, cyclohexyl, cyclohexenyl, and
cycloheptyl;

 ${\bf R}^{10a},$ at each occurrence, is independently selected from

H, methyl, methoxy, F, Cl, CF3,

phenyl substituted with 0-1 R^{10b}; and
C₃-C₇ cycloalkyl substituted with 0-1 R^{10b},
wherein said C₃-C₇ carbocycle is selected from
cyclopropyl, cyclobutyl, cyclopentyl,
cyclopentenyl, cyclohexyl, cyclohexenyl, and
cycloheptyl;

 ${\bf R}^{10{
m b}},$ at each occurrence, is independently selected from

H, OH, Cl, F, CF₃, methyl, and methoxy;

20

5

 ${\bf R}^{11}$, at each occurrence, is independently selected from H, ${\bf NR}^{18}{\bf R}^{19}$, ${\bf CF}_3$;

 C_1-C_4 alkyl optionally substituted with 0-1 R^{11a} ; phenyl substituted with 0-1 R^{11b} ; and

25 C₃-C₇ carbocycle substituted with 0-1 R^{11b}, wherein said C₃-C₇ carbocycle is selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, and cycloheptyl;

30

 ${\bf R^{11a}}$, at each occurrence, is independently selected from

H, methyl, methoxy, F, Cl, CF_3 , phenyl substituted with 0-1 R^{11b} ; and

C₃-C₇ cycloalkyl substituted with 0-1 R^{11b},
wherein said C₃-C₇ carbocycle is selected from
cyclopropyl, cyclobutyl, cyclopentyl,
cyclopentenyl, cyclohexyl, cyclohexenyl, and
cycloheptyl;

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, CF₃, methyl, and methoxy;

W is a bond;
X is a bond;
Y is a bond;

5

15 Z is H; $C_{1}-C_{4} \text{ alkyl substituted with } 0\text{-}1 \text{ R}^{12a};$ $C_{2}-C_{4} \text{ alkenyl substituted with } 0\text{-}1 \text{ R}^{12a}; \text{ or }$ $C_{2}-C_{4} \text{ alkynyl substituted with } 0\text{-}1 \text{ R}^{12a};$

- 20 R^{12a}, at each occurrence, is independently selected from phenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrrolidinyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, imidazolidinyl, oxazolyl, isoxazolyl, and tetrazolyl;
- 30 R^{13} , at each occurrence, is independently selected from H, OH, methyl, ethyl, methoxy, ethoxy, Cl, F, Br, CN, $NR^{15}R^{16}$, and CF_3 ;
- 35 R^{15} is H, methyl, or ethyl;

R¹⁶ is H, methyl, or ethyl;

R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

R¹⁹, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl.

10 5. A compound of Formula (Ib) according to Claim 4 wherein:

15

5

 $\label{eq:R1} \begin{array}{llll} {\tt R^1 is -CH_3, -CH_2CH_3, -CH_2CH_2CH_3, -CH(CH_3)_2,} \\ & -{\tt CH_2CH_2CH_2CH_3,} \\ & -{\tt CH(CH_3)CH_2CH_3, -CH_2CH(CH_3)_2, or -CH_2C(CH_3)_3;} \end{array}$

20 R^3 is H, $-CH_3$, $-CH_2CH_3$, $-CH_2CH_2CH_3$, $-CH(CH_3)_2$,

-CH2CH2CH2CH3,

 $-CH(CH_3)CH_2CH_3$, $-CH_2CH(CH_3)_2$, $-CH_2C(CH_3)_3$,

 $-\mathtt{CH_2CH=CH_2}, \ \mathtt{cis-CH_2CH=CH} \, (\mathtt{CH_3}) \, , \ \mathtt{trans-CH_2CH=CH} \, (\mathtt{CH_3}) \, ,$

or

25 $-CH_2CH_2CH=CH_2$;

 R^5 is $-CH_3$, $-CH_2CH_3$, $-CH_2CH_2CH_3$, $-CH(CH_3)_2$,

-CH2CH2CH2CH3,

-CH(CH₃)CH₂CH₃, -CH₂CH(CH₃)₂, -CH₂C(CH₃)₃,

 $-CH_2CH_2CH_2CH_3$, $-CH(CH_3)CH_2CH_2CH_3$,

-CH₂CH(CH₃)CH₂CH₃,

-CH₂CH₂CH (CH₃)₂, -CH (CH₂CH₃)₂,

cyclopropyl-CH2-, or cyclobutyl-CH2-;

5

Ring B is selected from:

$$R^{13}$$
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}

10 W is a bond;
X is a bond;
Y is a bond;

Z is methyl, ethyl, i-propyl, n-propyl, n-butyl,
i-butyl, s-butyl, t-butyl, allyl, cyclopropyl-,
cyclobutyl-, cyclopentyl-, cyclopropyl-CH₂-,
cyclobutyl-CH₂-, or cyclopentyl-CH₂-;

R¹⁰, at each occurrence, is independently selected from
H, methyl, ethyl, i-propyl, n-propyl, n-butyl,
i-butyl, s-butyl, t-butyl, phenyl, benzyl,
phenethyl,
4-F-phenyl, (4-F-phenyl)CH₂-, (4-F-phenyl)CH₂CH₂-,
3-F-phenyl, (3-F-phenyl)CH₂-, (3-F-phenyl)CH₂CH₂-,
2-F-phenyl, (2-F-phenyl)CH₂-, (2-F-phenyl)CH₂CH₂-,

```
4-Cl-phenyl, (4-Cl-phenyl)CH<sub>2</sub>-, <math>(4-Cl-phenyl)CH<sub>2</sub>-
         phenyl)CH2CH2-,
         3-Cl-phenyl, (3-Cl-phenyl)CH<sub>2</sub>-, <math>(3-Cl-phenyl)CH<sub>2</sub>-
         phenyl) CH2CH2-,
 5
         4-CH_3-phenyl, (4-CH_3-phenyl)CH_2-, (4-CH_3-phenyl)CH_2-
         phenyl)CH2CH2-,
         3-CH_3-pheny1, (3-CH_3-pheny1)CH_2-, (3-CH_3-pheny1)CH_2-
         phenyl)CH2CH2-,
         4-CF_3-pheny1, (4-CF_3-pheny1)CH_2-, (4-CF_3-pheny1)CH_2-
10
         phenyl) CH2CH2-,
         cyclopropyl, (cyclopropyl)CH2-,
         (cyclopropyl)CH2CH2-,
         cyclobutyl, (cyclobutyl)CH2-, (cyclobutyl)CH2CH2-,
         cyclopentyl, (cyclopentyl) CH2-,
15
         (cyclopentyl) CH<sub>2</sub>CH<sub>2</sub>-,
         cyclohexyl, (cyclohexyl)CH2-, (cyclohexyl)CH2CH2-,
      R<sup>11</sup>, at each occurrence, is independently selected from
         H, methyl, ethyl, i-propyl, n-propyl, n-butyl,
20
         i-butyl, s-butyl, t-butyl, phenyl, benzyl,
         phenethyl,
         4-F-pheny1, (4-F-pheny1)CH_2-, (4-F-pheny1)CH_2CH_2-,
         3-F-phenyl, (3-F-phenyl)CH_2-, (3-F-phenyl)CH_2CH_2-,
         2-F-phenyl, (2-F-phenyl)CH<sub>2</sub>-, <math>(2-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
25
         4-Cl-phenyl, (4-Cl-phenyl)CH<sub>2</sub>-, <math>(4-Cl-phenyl)CH<sub>2</sub>
         phenyl)CH_2CH_2-,
         3-C1-pheny1, (3-C1-pheny1)CH<sub>2</sub>-, <math>(3-C1-pheny1)CH<sub>2</sub>-
         phenyl)CH2CH2-,
         4-CH_3-pheny1, (4-CH_3-pheny1)CH_2-, (4-CH_3-pheny1)CH_2-
30
         phenyl)CH2CH2-,
         3-CH_3-phenyl, (3-CH_3-phenyl)CH_2-, (3-CH_3-phenyl)CH_2-
         phenyl)CH2CH2-,
         4-CF_3-phenyl, (4-CF_3-phenyl)CH_2-, (4-CF_3-
         phenyl)CH_2CH_2-,
```

cyclopropyl, (cyclopropyl)CH2-,

(cyclopropyl)CH2CH2-,

cyclobutyl, (cyclobutyl) CH_2- , (cyclobutyl) CH_2CH_2- , cyclopentyl, (cyclopentyl) CH_2- ,

- 5 (cyclopentyl)CH₂CH₂-,
 - cyclohexyl, (cyclohexyl) CH_2- , (cyclohexyl) CH_2CH_2- , pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, piperidinyl, or homopiperidinyl; and
- 10 R^{13} , at each occurrence, is independently selected from

H, F, C1, OH, $-CH_3$, $-CH_2CH_3$, $-OCH_3$, or $-CF_3$.

6. A compound according to one of Claims 1-5 of 15 Formula (Ic):

or a pharmaceutically acceptable salt or prodrug thereof.

20

7. A compound according to one of Claims 1-5 of Formula (Id):

25

or a pharmaceutically acceptable salt or prodrug thereof.

8. A compound according to one of Claims 1-5 of Formula (Ie):

- 5 or a pharmaceutically acceptable salt or prodrug thereof.
 - 9. A compound according to one of Claims 1-5 of Formula (If):

10

or a pharmaceutically acceptable salt or prodrug thereof.

15

10. A compound according to one of Claims 1-5 of Formula (Ig):

- or a pharmaceutically acceptable salt or prodrug thereof.
 - 11. A compound according to one of Claims 1-5 of Formula (Ih):

or a pharmaceutically acceptable salt or prodrug thereof.

5

10

12. A compound according to Claim 1 selected from:

4-Methyl-2-(1-propyl-1H-tetrazol-5-ylmethyl)-pentanoic acid [1-methyl-2-oxo-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]-amide;

4-Methyl-2-[1-(1-propyl-1H-tetrazol-5-yl)-ethyl]pentanoic acid (5-methyl-6-oxo-6,7-dihydro-5Hdibenzo[b,d]azepin-7-yl)-amide;

15

4-Methyl-2-[1-(1-propyl-1H-tetrazol-5-yl)-ethyl]pentanoic acid [1-methyl-2-oxo-5-(4-trifluoromethylphenyl)-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]amide;

20

4-Methyl-2-(1-propyl-1H-tetrazol-5-ylmethyl)-pentanoic acid (1,5-bis-cyclopropylmethyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b][1,5]diazepin-3-yl)-amide;

4-Methyl-2-(1-propyl-1H-tetrazol-5-ylmethyl)-pentanoic acid (1-cyclopropylmethyl-2-oxo-2,3,4,5-tetrahydro-1H-benzo[b][1,5]diazepin-3-yl)-amide;

4-Methyl-2-(1-propyl-1H-tetrazol-5-ylmethyl)-pentanoic 30 acid (1-cyclopropylmethyl-5-methyl-2-oxo-2,3,4,5tetrahydro-1H-benzo[b][1,5]diazepin-3-yl)-amide; 4-Methyl-2-[1-(1-propyl-1H-tetrazol-5-yl)-ethyl]pentanoic acid (1,5-bis-cyclopropylmethyl-2-oxo2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-3-yl)amide;

5

2-[Amino-(1-propyl-1H-tetrazol-5-yl)-methyl]-4-methyl-pentanoic acid [1-methyl-2-oxo-5-(4-trifluoromethyl-phenyl)-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]-amide;

10

25

30

35

- 2-Isobuty1-3-(1-methyl-1*H*-tetrazol-5-yl)-hex-5-enoic acid (5-cyclopropylmethyl-1-methyl-2-oxo-2,3,4,5-tetrahydro-1*H*-benzo[*b*][1,4]diazepin-3-yl)-amide;
- 2-Isobutyl-4-methyl-3-(1-methyl-1H-tetrazol-5-yl)pentanoic acid (5-cyclopropylmethyl-1-methyl-2-oxo2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-3-yl)amide;
- or a pharmaceutically acceptable salt or prodrug thereof.
 - 13. A pharmaceutical composition comprising a compound according to Claim 1 and a pharmaceutically acceptable carrier.
 - 14. A method for the treatment of neurological disorders associated with β -amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1.
 - 15. A method for the treatment of Alzheimer's Disease comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1.

16. A method for the treatment of Alzheimer's Disease associated with β -amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1.