

Orit Kliper-Gross, Yaron Gurovich, Tal Hassner, Lior Wolf

Weizmann Institute of Science

http://www.openu.ac.il/home/hassner/projects/MIP/

What is an Unconstrained Video?

Controlled Sets →

"In The Wild" Sets →

Challenges

Large variability

Camera Motion

Action Ambiguity

Others

Motion Interchange Patterns (MIP) - Highlights

- A new video descriptor:
 - Dense Characterization of motion changes
 - Captures shape of moving edges
 - Built-in stabilization mechanism
 - ➤ State-of-the-art performance in the most recent and challenging benchmarks (ASLAN, HMDB51, UCF50, ...)

Action Recognition Common Pipeline

STIP: On Space-Time Interest Points Laptev IJCV'05

Local Descriptors: HOG, HOF and HNF Learning realistic human actions from movies Laptev et.al. CVPR'08

Action Recognition Common Pipeline

Bag of Words (BOW)

Following:

Learning realistic human actions from movies

Laptev et.al. CVPR'08

Action Recognition Common Pipeline

New Video Descriptor Motion Interchange Patterns (MIP)

Local Binary Patterns (LBP) -based representations

• What:

- Low-level, dense, local representation

• How:

- Per-pixel encoding
- Uses binary/trinary digits o 1 / -1 o 1
- -The descriptor: frequencies of binary/trinary strings

Very Successful:

- Image textures [Ojala et al. '96, Ojala et al. '02, Heikkila et al. '06]
- Face recognition [Ahonen et al' o6, Zhang et al. '07, Wolf et al.'08]
- Facial expression [Zhao and Pietikainen '07]
- Action recognition [Yang et al. '07, kellokumpu et al. '08, Yeffet & Wolf '09]

64-digits trinary code

different α = different channels = diagonals

Each α defines a channel \rightarrow 8 channels

An example - one channel basic coding

- Vote for next frame
- Vote for prev frame
- Static edges

MIP captures: Motion, Motion Changes, and Shape

Suppression Mechanism

Suppress background structure and noise

Original Coding = 1

Switched Locations Coding = -1

Switched Patch Suppression

- 2 ways to look at this:
- No motion.
- Contradicted motion voting.

i.e.

Original coding voted down ←
Switched patches voted up →

Suppress the code

MIP Suppression Mechanism

An Example

Without Suppression

Original

With Suppression

Effect of Camera Motion Motivating Example

Original Movie

MIP Coding

MIP Stabilization Mechanism

3. Use MIP silent pixels for global affine

2. Code MIP.

MIP Stabilization Mechanism An Example

Without Stabilization

Original

With Stabilization

Motion Interchange Patterns (MIP) Vectorization

Vectorization: 512-dimensions code words

Motion Interchange Patterns – pipeline

MIP on Most Challenging AR Datasets

Performances

SotA on the most challenging Action Recognition DBs

Examples

Results on ASLAN Same classified as Same (TP) ©

Jumping Jacks

Pull Ups - 1 hand

Moon Walk

Results on ASLAN Same classified as Not-Same (FN) 😵

Kissing

Squat

Talking on phone

Results on ASLAN

Not-Same classified as Not-Same (TN) ©

Results on ASLAN

Not-Same classified as Same (FP) 😊

Results on HMDB51

Brush hair success:

False positive, miss of 'chew':

Results on HMDB51

<u>Cartwheel success:</u>

False positive, miss of 'flic flac':

Results on UCF50

Basketball success:

False positive, miss of 'Volleyball Spiking':

Results on UCF50

HighJump success:

False positive, miss of 'Pole-vault':

Results on UCF50

Nunchucks success:

False positive, miss of 'Pizza Tossing':

Summary

A New Video Descriptor:

- Efficient Low-level, dense, local representation
- Complete characterization of motion & motion changes
- Captures shape of moving edges
- Built-in suppression & stabilization mechanisms

Thank You!

http://www.openu.ac.il/home/hassner/projects/MIP/