Q:	diff between	def A & def	⁹ B	<u>read.</u> Convergen	ue
def A: Th	is N might a	lopend on $c \in X$ def B ?	dof B:	This N works	for ∀x∈X
	less N than	def B?			
Q: Proi	f of ex of	uniform conve	rgence	? (33:00)	
		c & N a	ore independent	? (33:00)	

Sequences of functions

$$X \subseteq \mathcal{R}$$
 ,

$$f_{1}: X \to \mathbb{R} \qquad f_{2}: X \to \mathbb{R} \qquad --- \qquad f_{n}: X \to$$

$$\underbrace{Ex 1}: X = [0,1] \qquad f_n(x) = x^n$$

$$x \qquad x^2 \qquad x^3 \qquad \dots$$

$$Ex 2: X = R$$

$$g_{n}: X \rightarrow \mathbb{R} \quad \begin{cases} g_{n}(x) = \cos x & \text{if } x \text{ is odd} \\ g_{n}(x) = \sin x & \text{if } x \text{ is even} \end{cases}$$

$$g_{1} \quad g_{2} \quad g_{3} \quad \dots \quad g_{2n} \quad g_{2n+1}$$

$$\cos x \quad \sin x \quad \cos x \quad \sin x \quad \cos x$$

Pointwise Convergence

Def A:

$$f_n: X \to \mathbb{R}$$
 converges pointwise
to $f: X \to \mathbb{R}$ if, for any $c \in X$,
 $\lim_{n \to \infty} f_n(c) = f(c)$
 $\int_{0}^{\infty} \left| F_{or} \text{ any } \varepsilon > 0 \right|$, there is

an
$$N \in \mathbb{N}$$
 s.t. if $n \ge \mathbb{N}$
 $|f_n(c) - f(c)| < \varepsilon$

This N might depend on $c \in X$

Uniform Convergence

Def B:

$$f_{n}: X \to \mathbb{R} \quad \text{converges} \quad \text{pointwise} \qquad \qquad f_{n}: X \to \mathbb{R} \quad \text{converges} \quad \text{taniformly}$$

$$\text{to } f: X \to \mathbb{R} \quad \text{if , for any } c \in X \quad \text{to } f: X \to \mathbb{R} \quad \text{if , for any } \epsilon > 0 \quad ,$$

$$\lim_{n \to \infty} f_{n}(c) = f(c) \qquad \qquad \text{there } is \qquad \qquad \text{there } is \quad \text{an } N \in \mathbb{N} \quad \text{s.t.}$$

$$\left| f_{n}(x) - f(x) \right| < \epsilon \quad \text{for}$$

$$\text{an } N \in \mathbb{N} \quad \text{s.t.} \quad \text{if } n \geq \mathbb{N} \qquad \forall n \geq N \quad \text{and} \quad \forall x \in X$$

$$\left| f_{n}(c) - f(c) \right| < \epsilon \qquad \qquad \text{This } N \quad \text{works for } \forall x \in X$$

Ex1:
$$X = R$$
, $g_n : X \to R$, $g_n(x) = \frac{x}{n}$

For any $c \in R$, $g_n(c) = \frac{c}{n} \to 0$

If $g: R \to R$ is defined by $g(x) = 0$ for $\forall x \in R$

$$g_n \to g \quad pointwise$$

$$Zx2: X = [0,1] \quad f_n: X \to R \quad f_n(x) = x^n$$

Let $f: [0,1] \to R$, $f(x) = \begin{cases} 0 & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$

Claim: $f_n \to f$ to intuitive

$$Recall: X \to R \quad 0 \le c \le 1$$

Claim:
$$f_n \to f$$
 pointwise $\frac{Recall}{Recall}$: $2f \quad 0 \le c < 1$,

Proof: $0 \le c < 1$, $c^n = f_n(c) \to f(c)$ then $c^n \to 0$

$$c = 1$$
, $f_n(c) = c^n = 1$ & $f(c) = 1$

$$f_n(c) \to f(c)$$

Ex:
$$f_n: \mathbb{R} \to \mathbb{R}$$
, $f_n(x) = \frac{1}{n(1+x^2)}$ implies Pointwise Convergence

For $c \in \mathbb{R}$, $f_n(c) = \frac{1}{n(1+c^2)} = \frac{1}{n} \cdot \frac{1}{(1+c^2)} \longrightarrow 0$ $f_n \to 0$ pointwise

Claim: $f_n \to 0$ uniformly

Proof:
$$Fix \in > 0$$
 $n \leq n(1+x^2) \iff n(1+x^2) \leq \frac{1}{n}$

$$|f_n(x) - 0| = |\frac{1}{n(1+x^2)}| \leq \frac{1}{n} < \varepsilon$$

$$|f_n(x) - 0| < \varepsilon \quad \text{if} \quad n \geq N$$

$$|f_n(x) - 0| < \varepsilon \quad \text{if} \quad n \geq N$$
Then, $f_n \to 0$ uniformly

 $\frac{P_{icture}}{}: \quad f: [-1,1] \longrightarrow \mathbb{R}$

Suppose $f_n \rightarrow f$ uniformly

Fix $\varepsilon > 0$, there is an $N \in \mathbb{N}$ so that $|f_n(x) - f(x)| < \varepsilon$ for $\forall x \in X$ and $n \ge N$

 $Ex: gn: \mathbb{R} \to \mathbb{R}$ $gn(x) = \frac{x}{n}$

 $g_n \rightarrow 0$ pointwise

Take any $n \in IN$ $g_n(x) = \frac{x}{n}$

gn -> 0 uniformly

Thm: Suppose $f_n: X \to \mathbb{R}$ converges uniformly to $f: X \to \mathbb{R}$ If each f_n is continuous at $c \in X$, then f is also continuous at $c \in X$.

Proof:

Fix E>0, |f(x)-f(c)|

Step 1: Since $f_n \longrightarrow f$ uniformly,

there is an $N \in \mathbb{N}$ s.t. $|f_N(x) - f(x)| < \frac{e}{3}$ for $\forall x \in X$

Step 2: By continuity of fn, there is a 8 > 0 s.t.

 $|x-c|<\delta \Rightarrow |f_N(\alpha)-f_N(c)|<\frac{\varepsilon}{3}$

Step 3: Take |x-c| < 8

 $|f(\alpha) - f(c)| = |(f(x) - f_N(\alpha)) + (f_N(\alpha) - f_N(c)) + (f_N(c) - f(c))|$ $\leq |f(x) - f_N(\alpha)| + |f_N(\alpha) - f_N(c)| + |f_N(c) - f(c)|$

< \xi_3 + \xi_3 + \xi_3 = \xi