Encodings

The Physical Layer, Encoding Schemes: -Physical Transmission of Bits-

Encoding

- Coding is the process of embedding clocks into a given data stream and producing a signal that can be transmitted over a selected media.
- Transmitter for encoding.
- Receiver for decoding.
- We must encode data to send them from one place to other.

Encoding Techniques

- Encoding schemes deal with how to transport bits over the physical media...
- We must deal and manage many issues to well represent and interpret the bits:
 - Timing of bits (start and end, duration, Signal levels)
 - Clocking (Synchronizing transmitter and receive, External clock, Sync mechanism based on signal)
 - Error detection, Signal interference and Noise immunity
 - Cost and complexity

Encoding Techniques

- Encoding techniques depend on the type of data to transmit and the medium being used:
 - Digital data on digital signal (our focus in this brief description...)
 - Analog data on digital signal
 - Digital data on analog signal
 - Analog data on analog signal

Digital Data, Digital Signal

- Digital signal:
 - Discrete, discontinuous voltage pulses
 - Each pulse is a signal element
 - Binary data encoded into signal elements

Digital Data, Digital Signal

- In this section, we see how we can represent digital data by using digital signals.
- The conversion involves three techniques: line coding, block coding, and scrambling.
- Line coding is always needed; block coding and scrambling may or may not be needed.

Line Coding

- Converting a string of 1's and 0's

 (digital data) into a sequence of signals that denote the 1's and 0's.
- For example a high voltage level (+V) could represent a "1" and a low voltage level (0 or -V) could represent a "0".

Continue...

A Simple Encoding Scheme

- 0 is Vo (some voltage)
- ◆1 is V1
- Example : let us encode 10011101

Line coding schemes

Alternative 1: NRZ-Manchester Encoding

Alternative 2: Differential Encoding

- Data represented by changes trends rather than levels of voltage
- More reliable detection of transition rather than level
- In complex transmission layouts it is easy to lose sense of polarity

Differential Manchester Encoding

A transition in the middle of the bit is required anyway... Example: let us encode 10011101

IEEE 802.11

- Frequency Hopping(FHSS)
- Direct Sequence(DSSS)

Wireless LAN

Problem :