Beyond axis-aligned splits: A new BART prior for structured categorical predictors

Sameer K. Deshpande

University of Wisconsin–Madison

ISBA 2022

28 June 2022

Problem 1: Pitch framing in baseball

- Umpires' ball/strike decisions not deterministic
- Some players can influence umpires' decisions
- Some catchers can increase P(strike) & "turn balls into strikes"
- P(strike) depends on complex interactions b/w pitch location, players, and umpires
- Let's use BART to flexibly fit $\mathbb{P}(\text{strike})!$

 $\mathbb{P}(\text{strike}) = \Phi(f(\text{location}, \text{batter}, \text{pitcher}, \text{catcher}, \text{umpire}))$

where f is approximated by sum-of-trees

Problem 2: Network-indexed regression

- Observe t_i pairs at vertex i: $(\mathbf{x}_{i1}, y_{i1}), \cdots (\mathbf{x}_{it_i}, y_{it_i})$
- $\mathbb{E}[y|x]$ may vary across network

Problem 2: Network-indexed regression

- Observe t_i pairs at vertex i: $(\mathbf{x}_{i1}, y_{i1}), \cdots (\mathbf{x}_{it_i}, y_{it_i})$
- $\mathbb{E}[y|x]$ may vary across network
- Idea: vertex label as covariate
- $y_{it} \sim \mathcal{N}(f(\mathbf{x}_{it}, i), \sigma^2)$
- Network smoothness: for all x, $f(x, i) \approx f(x, j)$ whenever $i \sim j$
- Can BART learn f(x, i)?

Common feature: categorical variables

- Pitch framing problem:
 - ▶ Represent batter, catcher, pitcher, and umpire as categorical predictors
 - ► Each year: 900+ batters, 100+ catchers, 800+ pitchers, 100+ umpires
- Network-indexed regression: vertex label as categorical predictor
- Default practice: introduce many 0/1 dummy variables
 - ▶ One dummy variable per level of each categorical predictor
 - ▶ Pitch framing: requires a massive (380000 × 2000) design matrix
 - Network-indexed regression: dummy variables lose adjacency structure

Common feature: categorical variables

- Pitch framing problem:
 - ▶ Represent batter, catcher, pitcher, and umpire as categorical predictors
 - ► Each year: 900+ batters, 100+ catchers, 800+ pitchers, 100+ umpires
- Network-indexed regression: vertex label as categorical predictor
- Default practice: introduce many 0/1 dummy variables
 - One dummy variable per level of each categorical predictor
 - ▶ Pitch framing: requires a massive (380000 × 2000) design matrix
 - ▶ Network-indexed regression: dummy variables lose adjacency structure
- This talk: new regression tree prior that
 - ► Obviates the need for binary dummy variables
 - ▶ Permits splitting on network-structured categorical predictors
 - ▶ More flexibly "borrow strength" across categorical levels
 - ► Is available in the **flexBART** package (on GitHub)

BART's default regression tree prior

- 1. Generate tree topology by simulating a branching process
 - ▶ Node has 0 children (terminal) or 2 children (non-terminal)
 - ▶ $\mathbb{P}(\text{node at depth } d \text{ is non-terminal}) = 0.95(1+d)^{-2}$

BART's default regression tree prior

- 1. Generate tree topology by simulating a branching process
 - ▶ Node has 0 children (terminal) or 2 children (non-terminal)
 - ▶ $\mathbb{P}(\text{node at depth } d \text{ is non-terminal}) = 0.95(1+d)^{-2}$
- 2. Draw decision rule $\{X_{\nu} < c\}$ at each non-terminal node η
 - (2a) Pick a random variable index v
 - (2b) Uniformly draw $c \in \mathcal{A}$, interval of values of X_{ν} available at η
 - \blacktriangleright A determined by decision rules at ancestors of η in tree

BART's default regression tree prior

- 1. Generate tree topology by simulating a branching process
 - ▶ Node has 0 children (terminal) or 2 children (non-terminal)
 - ▶ $\mathbb{P}(\text{node at depth } d \text{ is non-terminal}) = 0.95(1+d)^{-2}$
- 2. Draw decision rule $\{X_{\nu} < c\}$ at each non-terminal node η
 - (2a) Pick a random variable index v
 - (2b) Uniformly draw $c \in \mathcal{A}$, interval of values of X_{ν} available at η
 - lacktriangleright eta determined by decision rules at ancestors of η in tree
- 3. Draw jumps $\mu_{\ell} \sim \mathcal{N}(0, \tau^2/M)$

Regression trees & partitions of continuous space

- Decision tree partitions \mathbb{R}^p into axis-parallel rectangles
- Decision tree prior induces prior over these partitions
- © Every such partition representable w/ a binary decision tree
- © Positive (if potentially tiny) prior probability on **every** such partition

Binary dummies & partitions of categorical levels

- Consider a single categorical predictor w/ L levels: $X \in \{\lambda_1, \dots, \lambda_L\}$
- Introduce L binary dummy variables: $X_{\ell} = \mathbb{1}(X = \lambda_{\ell})$.

Binary dummies & partitions of categorical levels

- Consider a single categorical predictor w/ L levels: $X \in \{\lambda_1, \dots, \lambda_L\}$
- Introduce L binary dummy variables: $X_{\ell} = \mathbb{1}(X = \lambda_{\ell})$.
- Decision trees w/ dummies can form $2^L L$ partitions like

$$\underbrace{\{\lambda_1\} \cup \cdots \{\lambda_k\}}_{k \text{ singletons}} \cup \underbrace{\{\lambda_{k+1}, \dots, \lambda_L\}}_{\{\lambda_k, \dots, \lambda_L\}}$$

- # partitions (Bell number): $B_L \gg (L/2)^{L/2} \gg 2^L L$
- Frior heavily restricts how trees "borrow strength" across levels

A new regression tree prior

- Use the same branching process for tree topology & prior for jumps
- New prior for decision rule $\{X_v \in \mathcal{C}\}$ at each non-terminal node η
- Important: do not convert categorical X_{ν} 's into binary dummies
 - (2a) Pick a random variable index v
 - (2b) Draw random subset $\mathcal{C} \subset \mathcal{A}$, set of values of X_{ν} available at η

A new regression tree prior

- Use the same branching process for tree topology & prior for jumps
- New prior for decision rule $\{X_v \in \mathcal{C}\}$ at each non-terminal node η
- Important: do not convert categorical X_{ν} 's into binary dummies
 - (2a) Pick a random variable index v
 - (2b) Draw random subset $\mathcal{C} \subset \mathcal{A}$, set of values of X_{ν} available at η
- If X_{ν} continuous: set of available values ${\mathcal A}$ is an interval
 - ▶ Draw $c \in A$ & set $C = (-\infty, c) \cap A$
 - ▶ I.e. continuous decision rules drawn exactly as before

A new regression tree prior

- Use the same branching process for tree topology & prior for jumps
- New prior for decision rule $\{X_v \in \mathcal{C}\}$ at each non-terminal node η
- Important: do not convert categorical X_{ν} 's into binary dummies
 - (2a) Pick a random variable index v
 - (2b) Draw random subset $\mathcal{C} \subset \mathcal{A}$, set of values of X_{ν} available at η
- If X_{ν} continuous: set of available values \mathcal{A} is an interval
 - ▶ Draw $c \in \mathcal{A}$ & set $\mathcal{C} = (-\infty, c) \cap \mathcal{A}$
 - ▶ I.e. continuous decision rules drawn exactly as before
- If X_{ν} categorical: set of available values $\mathcal A$ is a discrete set
 - ▶ If X_{ν} unstructured: $\mathbb{P}(a \in \mathcal{C}) = 1/2$ independently for each $a \in \mathcal{A}$
 - ▶ If X_v network structured: randomly partition ${\mathcal A}$ but respect adjacency

Example

- Continuous $X_1 \in [0,1]$
- Categorical $X_2 \in \{\lambda_1, \dots, \lambda_6\}$
- To draw decision rule $\{X_v \in \mathcal{C}\}$
 - (i) Draw splitting variable index v
 - (ii) Compute A, set of available values of X_{ν}
 - (iii) Divide \mathcal{A} into two parts

Graph of available vertices

- ullet Look at the subgraph induced by elements of available levels ${\mathcal A}$
- Idea: partition graph into two connected subsets

Graph of available vertices

Random spanning tree

- ullet Look at the subgraph induced by elements of available levels ${\cal A}$
- Idea: partition graph into two connected subsets
 (1) Uniformly draw a random spanning tree w/ Wilson's algorithm

Graph of available vertices

2 8 1 5 4 7 3 6

Random spanning tree

Delete a random edge

- ullet Look at the subgraph induced by elements of available levels ${\mathcal A}$
- Idea: partition graph into two connected subsets
 - (1) Uniformly draw a random spanning tree w/ Wilson's algorithm
 - (2) Delete a uniform edge from spanning tree (e.g. (2,8))
 - (3) Set \mathcal{C} to be set of vertices in one component of cut graph

Graph of available vertices

Random spanning tree

Delete a random edge

- ullet Look at the *subgraph* induced by elements of available levels ${\mathcal A}$
- Idea: partition graph into two connected subsets
 - (1) Uniformly draw a random spanning tree w/ Wilson's algorithm
 - (2) Delete a uniform edge from spanning tree (e.g. (2,8))
 - (3) Set C to be set of vertices in one component of cut graph
- © Recursively applying process can produce **all** network partitions into connected components

Results: pitch framing

- 10-fold cross-validation w/ all data from 2019 ($n \approx 380,000$)
- Compared probit implementations in flexBART and BART
- Compared to BART, flexBART
 - Produced more accurate out-of-sample predictions
 - ▶ Was considerably faster (1.5 vs 18 hours for 2000 iterations)
 - ► Had a smaller memory footprint (3 vs 17 GB)
- BART repeatedly evaluates regression trees at every observed input
 - ▶ Results in several redundant computations per iteration
 - ► flexBART saves & updates map of observation to tree leaves
- BART introduced ∼ 2000 dummy variables
 - ▶ 5 GB to store the $n \times 2000$ matrix
 - ▶ 2.5 GB to save matrix of posterior samples

Semi-synthetic network-index regression

- For i = 1, ..., n and t = 1, ... 100
 - lacktriangledown $oldsymbol{x}_{it} \sim \mathcal{U}([0,1]^{10})$
 - $\rightarrow y_{it} \sim \mathcal{N}(f(\mathbf{x}_{it}, i), 1)$
- Hold out (x_{it}, y_{it})'s from 10% of vertices during training

Semi-synthetic network-index regression

- For i = 1, ..., n and t = 1, ... 100
 - $ightharpoonup oldsymbol{x}_{it} \sim \mathcal{U}([0,1]^{10})$
 - $\rightarrow y_{it} \sim \mathcal{N}(f(\mathbf{x}_{it}, i), 1)$
- Hold out (x_{it}, y_{it})'s from 10% of vertices during training

Semi-synthetic network-index regression

- For i = 1, ..., n and t = 1, ... 100
 - $\mathbf{x}_{it} \sim \mathcal{U}([0,1]^{10})$
 - $\rightarrow y_{it} \sim \mathcal{N}(f(\mathbf{x}_{it}, i), 1)$
- Hold out (x_{it}, y_{it})'s from 10% of vertices during training
- Out-of-sample RMSE ratio (BART/flexBART)
 - Training vertices: 2.9
 - ► Heldout vertices: 3.5
- General Still faster!
 38 vs 93 min.

Takeaways & next steps

- New decision rule prior obviates the need to use 0/1 dummy variable
- Network splitting prior induces a new kernel over graphs
- Experimenting w/ alternative network splitting procedures
- Other BART extensions can use the new decision rule prior

Thanks, y'all!

Email: sameer.deshpande@wisc.edu

Package: https://github.com/skdeshpande91/flexBART

Website: https://skdeshpande91.github.io