Lecture 2

DJM

2 October 2018

Statistics vs. ML

• Lots of overlap, both try to "extract information from data"

Venn diagram

Probability

- 1. X_n converges in probability to X, $X_n \xrightarrow{P} X$, if for every $\epsilon > 0$, $\mathbb{P}(|X_n X| < \epsilon) \to 1$. 2. X_n converges in distribution to X, $X_n \leadsto X$, if $F_n(t) \to F(t)$ at all continuity points t.
- 3. (Weak law) If X_1, X_2, \ldots are iid random variables with common mean m, then $\overline{X}_n \xrightarrow{P} m$.
- 4. (CLT) If X_1, X_2, \ldots are iid random variables with common mean m and variance $s^2 < \infty$, then $\sqrt{n}(\overline{X}_n - m)/s \rightsquigarrow N(0,1).$

Big-Oh and Little-Oh

Deterministic:

- 1. $a_n = o(1)$ means $a_n \to 0$ as $n \to \infty$
- 2. $a_n = o(b_n)$ means $\frac{a_n}{b_n} = o(1)$.

Examples:

- If $a_n = \frac{1}{n}$, then $a_n = o(1)$ If $b_n = \frac{1}{\sqrt{n}}$, then $a_n = o(b_n)$
- 3. $a_n = O(1)$ means a_n is eventually bounded for all n large enough, $|a_n| < c$ for some c > 0. Note that $a_n = o(1)$ implies $a_n = O(1)$
- 4. $a_n = O(b_n)$ means $\frac{a_n}{b_n} = O(1)$. Likewise, $a_n = o(b_n)$ implies $a_n = O(b_n)$. Examples:
 - If $a_n = \frac{n}{2}$, then $a_n = O(n)$

Stochastic analogues:

- 1. $Y_n = o_p(1)$ if for all $\epsilon > 0$, then $P(|Y_n| > \epsilon) \to 0$
- 2. We say $Y_n = o_p(a_n)$ if $\frac{Y_n}{a_n} = o_p(1)$ 3. $Y_n = O_p(1)$ if for all $\epsilon > 0$, there exists a c > 0 such that $P(|Y_n| > c) < \epsilon$ 4. We say $Y_n = O_p(a_n)$ if $\frac{Y_n}{a_n} = O_p(1)$

- $\overline{X}_n \mu = o_p(1)$ and $S_n \sigma^2 = o_p(1)$. By the Law of Large Numbers.
- $\sqrt{n}(\overline{X}_n \mu) = O_p(1)$ and $\overline{X}_n \mu = O_p(\frac{1}{\sqrt{n}})$. By the Central Limit Theorem.

Statistical models

A statistical model \mathcal{P} is a collection of probability distributions or densities. A parametric model has the form

$$\mathcal{P} = \{ p(x; \theta) : \theta \in \Theta \}$$

where $\Theta \subset \mathbb{R}^d$ in the parametric case.

Examples of nonparametric statistical models:

- $\mathcal{P} = \{ \text{ all continuous CDF's } \}$
- $\mathcal{P} = \{f : \int (f''(x))^2 dx < \infty\}$

Evaluating estimators

An estimator is a function of data that does not depend on θ .

Suppose $X \sim N(\mu, 1)$.

 $-\mu$ is not an estimator.

-Things that are estimators: X, any functions of X, 3, \sqrt{X} , etc.

- 1. Bias and Variance
- 2. Mean Squared Error
- 3. Minimaxity and Decision Theory
- 4. Large Sample Evaluations

MSE

Mean Squared Error (MSE). Suppose θ , $\widehat{\theta}$, define

$$\mathbb{E}\left[\left(\theta - \widehat{\theta}\right)^{2}\right] = \int \cdots \int \left[\left(\widehat{\theta}(x_{1}, \dots, x_{n}) - \theta\right) f(x_{1}; \theta)^{2} \cdots f(x_{n}; \theta)\right] dx_{1} \cdots dx_{n}.$$

Bias and Variance The bias is

$$B = \mathbb{E}\Big[\widehat{\theta}\Big] - \theta,$$

and variance is

$$V=\mathbb{V}\,\mathbb{I}\left[\widehat{\theta}\right].$$

Bias-Variance Decomposition

$$MSE = B^2 + V$$

$$\begin{split} MSE &= \mathbb{E}\Big[(\widehat{\theta} - \theta)^2\Big] \\ &= \mathbb{E}\Big[\Big(\widehat{\theta} - \mathbb{E}\Big[\widehat{\theta}\Big] + \mathbb{E}\Big[\widehat{\theta}\Big] - \theta\Big)^2\Big] \\ &= \mathbb{E}\Big[\widehat{\theta} - \mathbb{E}\Big[\widehat{\theta}\Big]\Big] + \Big(\mathbb{E}\Big[\widehat{\theta}\Big] - \theta\Big)^2 + \underbrace{2\mathbb{E}\Big[\widehat{\theta} - \mathbb{E}\Big[\widehat{\theta}\Big]\Big]}_{=0} \Big(\mathbb{E}\Big[\widehat{\theta}\Big] - \theta\Big) \\ &= V + B^2 \end{split}$$

An estimator is unbiased if B = 0. Then MSE = Variance.

Let $x_1, \ldots, x_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$.

$$\begin{split} \mathbb{E}[\overline{x}] &= \mu, & \mathbb{E}\left[s^2\right] &= \sigma^2 \\ \mathbb{E}\left[(\overline{x} - \mu)^2\right] &= \frac{\sigma^2}{n} &= O\left(\frac{1}{n}\right) & \mathbb{E}\left[(s^2 - \sigma^2)^2\right] &= \frac{2\sigma^4}{n - 1} &= O\left(\frac{1}{n}\right). \end{split}$$

Minimaxity

Let \mathcal{P} be a set of distributions. Let θ be a parameter and let $L(\theta, \theta')$ be a loss function. The **minimax risk** is

$$R_n(\mathcal{P}) = \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[L(\theta, \widehat{\theta})]$$

If $\sup_{P\in\mathcal{P}} \mathbb{E}_P[L(\theta,\widehat{\theta})] = R_n$ then $\widehat{\theta}$ is a minimax estimator.