Sistemas Operacionais

Estrutura de Armazenamento de Massa: Confiabilidade e Desempenho

Objetivos da Aula

- Descrever a estrutura dos dispositivos de armazenamento
- Explicar as características de desempenho relacionadas aos dispositivos de armazenamento
- Discutir os serviços do sistema operacional relacionados ao armazenamento

Conexão do Disco

- Os computadores acessam a memória secundária
 - Armazenamento conectado ao host
 - Armazenamento conectado à rede

Conectado ao Host

- A conexão se dá por portas de I/O locais
- Computadores pessoais domésticos geralmente usam uma arquitetura de bus de I/O IDE ou ATA
 - Integrated Drive Electronics (IDE)
 - Advanced Technology Attachment (ATA), também há a versão serial, Serial ATA (SATA)
- Servidores usam arquiteturas de I/O mais sofisticadas
 - Small Computer-System Interface (SCSI, a pronúncia é "scãzi") e
 Fiber Channel (FC)

Armazenamento Conectado à Rede

 Um dispositivo de armazenamento conectado à rede (NAS – Network-attached Storage) é um sistema de armazenamento que é acessado normalmente por uma rede de dados

Rede de Área de Armazenamento

A rede de armazenamento (SAN, Storage Area Network) é uma rede privada que usa protocolos de armazenamento em vez de protocolos de rede

Confiabilidade, Desempenho e RAID

- Ter uma grande quantidade de discos em um sistema oferece diversas oportunidades
 - Melhoria da confiabilidade por meio de redundância
 - Espelhamento, ou seja duplicar as informações em cada disco
 - Se um disco falhar, as informações estão copiadas em outro
 - Melhoria no desempenho por meio de paralelismo
 - Distribuição de dados em diversos discos, podendo ler e gravar dados em diversos discos ao mesmo tempo
 - Aumenta a vazão e reduz o tempo de resposta

Níveis de RAID

- Uma modalidade de organização de discos para se obter desempenho e confiabilidade é chamada de arrays de discos independentes redundantes
 - Redundant Arrays of Independent Disks (RAID)
- Há diversos níveis de organização RAID
 - RAID 0 Distribuição sem redundância
 - RAID 1 Discos espelhados
 - RAID 2 Códigos de correção de erros
 - RAID 3 Paridade por bits intercalados
 - RAID 4 Paridade por blocos intercalados
 - RAID 5 Paridade distribuída com blocos intercalados

- Este nível também é conhecido como Striping ou "Fracionamento"
- Os dados são divididos em pequenos blocos e distribuídos entre os discos
 - Tal distribuição proporciona grande velocidade na gravação e leitura de dados
 - Não há tolerância a falhas, pois não existe redundância de dados

- Também conhecido como Mirroring ou "Espelhamento"
 - O conteúdo de um disco é inteiramente copiado para outro disco
 - O segundo disco será cópia fiel do primeiro disco
- Se o disco principal falhar, o segundo entra em ação automaticamente

- Usa um mecanismo de paridade para manter a integridade dos dados
 - A paridade é um valor calculado que é usado para reconstruir dados depois de uma falha
 - Há diversas formas de se implementar a paridade
- Há um bit de paridade para cada byte de dados e um conjunto de discos é dedicado ao armazenamento dos bits de paridade

- Há um bit de paridade para os dados em cada setor e um conjunto de discos é dedicado ao armazenamento dos códigos de paridade
- É tão bom quanto o RAID nível 2, com a vantagem de precisar de menos discos para armazenar os códigos de paridade

- Os dados são divididos em blocos, assim como no RAID 0
- Faz-se a paridade por blocos e um dos discos é dedicado à tarefa de armazenar os códigos de paridade
- Tem-se paralelismo e consistência, é possível ler vários arquivos ao mesmo tempo

- Os códigos de paridade são distribuídos ao longo dos discos
 - Para cada bloco, um dos discos armazena a paridade e outros armazenam os dados
- A diferença sobre o RAID 4 é que, em vez de dedicar um disco ao armazenamento dos códigos, eles são espalhados entre os discos que também armazenam dados

Atividade de Fixação

1) Apresente diferenças entre um sistema de discos conectado a um host e um sistema de discos conectado em rede.

2) Discuta oportunidades que se tem quando o sistema possui grande quantidade de discos. Como a organização RAID se insere nesse contexto?

Referências

SILBERSCHATZ, Abraham; GALVIN, Peter B.; GAGNE, Greg. Fundamentos de sistemas operacionais: princípios básicos. Rio de Janeiro, RJ: LTC, 2013. xvi, 432 p. ISBN 9788521622055

TANENBAUM, Andrew S. Sistemas operacionais modernos. 3. ed. São Paulo: Pearson Prentice Hall, 2009. xvi, 653 p. ISBN 9788576052371

PONCIANO, L; Andrade, Nazareno; Brasileiro, Francisco; Brasileiro, Francisco. BitTorrent traffic from a caching perspective. Journal of the Brazilian Computer Society (Impresso), v. 19, p. 475-491, 2013.

Sistemas Operacionais

Prof. Dr. Lesandro Ponciano

https://orcid.org/0000-0002-5724-0094