INF01 118

Técnicas Digitais para Computação

Introdução

Aula 1

- computadores digitais
 - representação binária
 - construídos a partir de portas lógicas
- portas lógicas
 - implementam operadores da álgebra booleana
 - construídas com componentes eletrônicos
 - circuitos integrados formados por transistores, resistores, capacitores
- circuitos analógicos x digitais
 - analógicos
 - transistores como amplificadores de corrente
 - tensões contínuas
 - digitais
 - transistores como chaves

- sistemas digitais
 - processam informações representadas por sinais discretos (digitais)
- sinais digitais
 - sinais que têm um conjunto finito de valores
 - números inteiros entre 0 e 15
 - conjunto de instruções de um computador (ADD, JMP, etc.)
 - números binários 0 e 1
 - abstrações que não têm necessariamente contrapartida física mensurável
- blocos básicos de sistemas digitais simples
 - portas lógicas
 - circuitos combinacionais
 - circuitos seqüenciais
- circuitos combinacionais
 - sistema não tem memória
 - saídas são funções dos valores atuais das entradas

A, B, C, D, E são sinais digitais A, B, C: [-256 .. 255]

D: [ADD, SUB, A, B]

E: [overflow, no overflow]

- circuitos seqüenciais
 - sistema depende de memória para calcular valores de saída
 - memória = valores anteriores das entradas
- sistemas digitais complexos
 - bloco operacional
 - registradores, unidades aritméticas
 - bloco de controle

S, Z são sinais digitais

S: [0..9]

Z: [lock, unlock]

Z = *unlock* se S apresenta seqüência correta

- circuitos lógicos são a base não apenas para computadores digitais, mas também para todos os outros sistemas eletrônicos digitais
 - controle e automação
 - telecomunicações
 - eletrônica de consumo

- evolução dos componentes eletrônicos
 - 1ª geração: válvulas
 - 2ª geração: transistores
 - 3ª geração: circuitos integrados SSI, MSI
 - 4ª geração: circuitos integrados LSI, VLSI
- fatores de evolução
 - densidade de integração, área ocupada
 - consumo de potência
 - freqüência de operação
 - custo de fabricação
- num sistema real convivem componentes SSI, MSI, LSI e VLSI
 - placa de CPU com memória
 - microprocessador e memória VLSI
 - "glue logic" SSI e MSI
- tipos de componentes quanto à forma de projeto
 - "standard" (de prateleira, "off-the-shelf")
 - "full custom" circuito integrado projetado especialmente para o sistema
 - "semi-custom"
- lógica programável (FPGAs)
 - compromisso entre custo, tempo de projeto e desempenho

Apresentação da disciplina

- conteúdos programáticos
 - introdução à eletrônica digital
 - circuitos lógicos combinacionais
 - circuitos lógicos seqüenciais
- disciplina dentro do contexto do curso
 - como fundamento comum a todos os alunos
 - conhecimento dos aspectos básicos do hardware
 - compreensão dos fatores limitantes de custo e desempenho
 - como base para especialização em sistemas digitais
 - voltados para a construção de sistemas em diferentes áreas de aplicação
 - computadores, telecomunicações, automação
- currículo
 - disciplinas de "hardware" obrigatórias comuns
 - Introdução à Arquitetura, Arquitetura I, Arquitetura II, Organização
 - disciplinas para ênfase de Engenharia de Computação
 - Sistemas Digitais, Concepção de Circuitos Integrados I e II,
 Microprocessadores I e II, Circuitos Elétricos I, Eletrônica Fundamental I