ECEN 325 Lab 12: MOSFET Amplifier Design

Objectives

The purpose of this experiment is to design a multi-stage MOSFET amplifier based on a list of specifications.

Introduction

Figure 1 shows a two-stage amplifier composed of a common-source gain stage and a source follower, where the small-signal gain can be calculated as

$$A_{v} = A_{v1}A_{v2}$$
 $A_{v1} = -g_{m1}R_{D} = -\frac{2V_{RD}}{V_{ov1}}$ $A_{v2} = \frac{R_{L}}{\frac{1}{g_{m2}} + R_{L}}$ (1)

Linearity of this amplifier depends on the condition $\hat{V}_d \ll 4V_{RD}$, where $\hat{V}_d = \hat{V}_o/A_{v2}$ is the peak AC signal at the output of the common-source amplifier (or at the input of the source follower). To avoid voltage clipping at the output of the common-source stage, V_{RD} should be chosen such that

$$V_{DD} + V_{SS} - \hat{V}_d - V_{RS} - V_{ov1} \ge V_{RD} \ge \hat{V}_d$$
 (2)

To avoid voltage clipping at the output of the source follower, V_{RD} has an additional requirement

$$V_{RD} \ge V_{RX} + V_{ov3} + \hat{V}_o + V_{tn} + V_{ov2} \tag{3}$$

Furthermore, the value of I_X must be chosen larger than the maximum value of I_L as

$$I_X \ge \frac{\hat{V}_o}{R_L} \tag{4}$$

To maximize the available gain and linearity for a given output swing requirement of \hat{V}_o , V_{RD} should be chosen as large as possible. V_{RS} and V_{RX} can be chosen around the value of V_t to reduce DC biasing sensitivity to V_t variations, however if the voltage swing is limited, any value over 0.5V may be sufficient.

Figure 1: Two-stage MOSFET amplifier and current source implementation

Assuming that one gain stage followed by a buffer is sufficient for the design requirements, the circuit in Fig. 1 can be used as a starting point. Typical specifications include, but not limited to:

- 0-to-peak output swing: \hat{V}_o
- **Gain:** $A_{v} = A_{v1}A_{v2}$
- Input resistance: Ri
- Load resistance: R_L
- Linearity: $\hat{v}_{sg1} \ll 2V_{ov1}$

[©] Department of Electrical and Computer Engineering, Texas A&M University

Using the circuit in Fig. 1, the design procedure can be given as follows:

- Use 2N7000G for the NMOS, and CD4007P for the PMOS device.
- \Rightarrow Choose $I_X \ge \frac{\hat{V}_o}{R_I}$.
- \Rightarrow Since $I_{D2} = I_{D3} = I_X$, calculate V_{ov2} , V_{ov3} , g_{m2} , A_{v2} , and \hat{V}_d .
- ⇔ Choose $V_{RX} \ge 0.5V$ and $V_{RS} \ge 0.5V$, then choose the maximum possible value of V_{RD} based on (2) and (3). Note that you can substitute $V_{ov1} = \frac{2V_{RD}}{|A_{v1}|} = \frac{2V_{RD}}{|A_{v}|} A_{v2}$ in (2).
- ightharpoonup Calculate $V_{ov1} = \frac{2V_{RD}}{|A_{v1}|}$, then I_{D1} .
- \Rightarrow Calculate $R_D = \frac{V_{RD}}{I_{D1}}$, $R_S = \frac{V_{RS}}{I_{D1}}$, and $R_X = \frac{V_{RX}}{I_{D3}}$.
- ightharpoonup Find R_{G1} and R_{G2} such that $V_{RG2} = V_{RS} + |V_{tp}| + V_{ov1}$ and $R_{id} = R_{G1} || R_{G2}$, where R_{id} is the desired input resistance.
- \Rightarrow Find R_{G3} and R_{G4} such that $V_{RG4} = V_{RX} + V_{tn} + V_{ov3}$.

Calculations

Design a MOSFET amplifier based on the specifications provided in the table below. Both the input and the output should be AC coupled as in Fig. 1.

Dual Supply Voltage	±5 <i>V</i>
Load Resistance, R _L	100Ω
0-to-Peak Output Swing, \hat{V}_o	≥ 2 <i>V</i>
Voltage Gain, $ A_v $	50
Input Resistance, R _i	$\geq 10k\Omega$
THD for 5kHz 2V (0-to-peak) Sine Wave Output Voltage, V_o	≤ 8%

Simulations

For all simulations, provide screenshots showing the schematics and the plots with the simulated values properly labeled.

- **1.** Draw the schematics of the amplifier you designed, and obtain the **DC solution** for all node voltages and branch currents using **DC operating point** or **interactive simulation**. Adjust your component values if the results are significantly different from your calculations.
- **2.** Obtain A_v and R_i using **AC** simulation. If necessary, adjust the resistor values to satisfy the specifications.
- **3.** Apply a 5kHz 40mV sine-wave input and obtain the **time-domain waveforms** at the input and the output using **transient simulation**. If your output voltage is clipped or significantly distorted, adjust your design values until you have unclipped 2V (0-to-peak) output signal, while keeping A_v and R_i requirements satisfied.
- **4.** With the 5kHz 40mV sine-wave input, obtain the **total harmonic distortion (THD)** on the output waveform using **Fourier simulation**.

Measurements

For all measurements, provide screenshots showing the plots with the measured values properly labeled.

- 1. Build your amplifier using the simulated component values, and measure DC voltages at all nodes using the voltmeter or scope.
- **2.** Measure A_v and R_i using the **network analyzer**. If necessary, adjust the resistor values to satisfy the specifications.
- **3.** Apply a 5kHz 40mV sine-wave input and obtain the **time-domain waveforms** at the input and the output using the **scope**. If your output voltage is clipped or significantly distorted, adjust your design values until you have unclipped 2V (0-to-peak) output signal, while keeping A_v and R_i requirements satisfied.
- **4.** Apply a 5kHz 40mV sine-wave input and obtain the **total harmonic distortion (THD)** on the output waveform using the **spectrum analyzer**.

Report

- 1. Include calculations, schematics, simulation plots, and measurement plots.
- **2.** Prepare a table showing calculated, simulated and measured results.
- **3.** Compare the results and comment on the differences.

Demonstration

- 1. Build the two-stage amplifier you designed on your breadboard and bring it to your lab session.
- 2. Your name and UIN must be written on the side of your breadboard.
- 3. Submit your report to your TA at the beginning of your lab session.
- **4.** Measure A_v and R_i of the amplifier using the network analyzer.
- **5.** Apply a 5kHz 40mV sine wave input and show the time-domain output voltage using the scope.
- 6. With the 5kHz 40mV sine wave input, measure the THD at the output using the spectrum analyzer.