# [544] Spark MLlib I

Tyler Caraza-Harter

### Outline

ML Review

Training/Predicting APIs

Demos

### Machine Learning, Major Ideas

Categories of Machine Learning:

- Reinforcement learning: agent makes series of actions to maximize reword
- Unsupervised learning: looking for generate patterns
- Supervised learning: train models to predict unknowns

**Models** are functions that return predictions:

#### Example:

|    | <b>x1</b> | <b>x2</b> | У |
|----|-----------|-----------|---|
| 0  | 2         | 8         | 5 |
| 1  | 9         | 2         | 6 |
| 2  | 4         | 1         | 0 |
| 3  | 7         | 9         | 7 |
| 4  | 2         | 2         | 3 |
| 5  | 3         | 4         | 3 |
| 6  | 3         | 5         | 9 |
| 7  | 7         | 1         | 4 |
| 8  | 6         | 6         | 3 |
| 9  | 4         | 3         | ? |
| 10 | 1         | 2         | ? |
| 11 | 2         | 9         | ? |

- feature columns: x1 and x2
- label column: y

how can the cases where we DO know y help us predict the cases where we do not?



random split









models that do good on train data but bad on validation/test data have "overfitted"



### Outline

ML Review

### Training/Predicting APIs

- sklearn
- PyTorch
- Spark MLlib

Demos

# **Training**

#### scikit-learn

```
model = ????
model.fit(X, y)
# model parameters can relate X to y
```

### pytorch

```
model = ????
# TODO: optimizer, loss function
# training loop
for epoch in range(????):
    for X, y in ????:
# model parameters can relate X to y
```

#### • models are mutable

• fitting sets/improves parameters

### Spark MLlib

```
unfit_model = ????
fit_model = unfit_model.fit(df)
# fit_model params can relate x to y
```

- models are immutable
- fitting returns new model object

# Predicting

#### scikit-learn

```
y = model.predict(X)
```

### pytorch

```
y = model(X)
```

### Spark MLlib

```
df2 = fit_model.transform(df)
```

### Data

#### scikit-learn

y = model.predict(X)

### pytorch

y = model(X)



### Spark MLlib

df2 = fit\_model.transform(df)



### Features Column



# Terminology

Spark and scikit-learn use many of the same terms, with very different meaning.

#### Transformer (scikit-learn)

- has .tranform method
- takes a DataFrame, returns a differerent DataFrame
- used as preprocessing step for a model

#### Transformer (Spark)

- has .tranform method
- takes a DataFrame, returns original with I or more additional columns
- a fitted model is a transformer that adds a prediction column

#### Estimator (scikit-learn)

- has .fit and .predict methods
- fit modifies the object
- makes predictions after learning params

#### Estimator (scikit-learn)

- has .fit method that returns new object
- an unfitted model is an estimator; calling .fit returns a fitted model (a transformer)

# Pipeline

Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/transform/etc. are called as appropriate on each stage.



# Pipeline (Spark Example)

Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/transform/etc. are called as appropriate on each stage.



# Pipeline (Spark Example)

Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/transform/etc. are called as appropriate on each stage.



# Pipeline (Spark Example)

Both scikit-learn and Spark: a pipeline is a series of stages (transformers/estimators). fit/transform/etc. are called as appropriate on each stage.



m.transform(????)

# TopHat

### Outline

ML Review

Training/Predicting APIs

Demos

### Spark mllib packages

- pyspark.mllib -- based on RDDs
- pyspark.ml -- based on DataFrames