Armazenamento e Indexação

Banco de Dados: Teoria e Prática

André Santanchè Instituto de Computação - UNICAMP Outubro 2012

Recomendações de Leitura

- (Silberschatz, 2006, cap. 11)
- (Ramakrishnan, 2003, cap. 8)
- (Elmasri, 2011, cap. 11 e 12)

Estrutura do Disco

By Surachit [http://en.wikipedia.org/w/index.php?title=File:Hard_drive-en.svg]

Estrutura do Disco Trilha

- Círculos magnéticos sobre a superfície
- Local onde são armazenados os dados

Estrutura do Disco Setor

- Unidades de divisão da trilha
- Menor unidade de leitura/gravação

Setor
Divisão por Ângulo Fixo

Setor Divisão por Densidade Constante

Organização de Arquivos

- Heap
 - sem ordenação
 - gravação em qualquer posição
- Sequencial
 - gravação em ordem sequencial
- Hash
 - uso de função de hash

(Silberschatz, 2006)

Hashing

Hashing Extensivel

Hashing Dinâmico

buckets

Índice de Hash

Índice Mapa de Bits

Perfect Hashing

(Demaine, 2003)

Arquivos e Indexação

- Entrada de índice (data entry) → registros armazenados em um índice
 - entrada de índice: k*
 - chave: k
- Alternativas para k*
 - (1)registro completo de chave k
 - $(2)(k, rid) \rightarrow rid = id do registro de chave k$
 - (3)(k, rid-list)→ rid-list = lista de registros de chave k

(Ramakrishnan, 2003)

Índice Único

Índice cujas chaves não tem duplicatas

Índices de Agrupamento (Clustering)

- chave de busca (índice) => ordem dos registros (arquivo)
- modelo (1): k* é o registro de dados

Índices Primários e Secundários

- Índice primário
 - indice de agrupamento com chave primária
 - indice único
- Índice secundário
 - indice de não agrupamento
 - indice não necessariamente único

Índices Densos e Esparsos

Denso

um registro associado a cada entrada do índice

Esparso

 mais de um registro associado a cada entrada do índice

Índices Multiníveis

Árvores B

Árvores B

- Árvores *n*-árias: mais de um registro por nodo.
- Em uma árvore B de ordem m:
 - página raiz: 1 e 2m registros.
 - demais páginas: no mínimo m registros e m+1 descendentes e no máximo 2m registros e 2m+1 descendentes.
 - páginas folhas: aparecem todas no mesmo nível.
- Registros em ordem crescente da esquerda para a direita.
- Extensão natural da árvore binária de pesquisa.
- Árvore B de ordem m=2 com três níveis:

(Almeida, 2010)

Exemplo de árvore B de ordem 5

Neste caso, cada nó tem no mínimo dois e no máximo cinco registros de informação.

B-Tree Example

50

B-Tree Example (cont)

51

Números mínimos e máximos de registros

Árvore B de ordem 255:

	mínimo		máximo	
nível	nós	registros	nós	registros
1	1	1	1	1×255
2	2	2×127	256^{1}	$256^{1} \times 255$
3	2×128^{1}	$2 \times 128^1 \times 127$	256^{2}	$256^2 \times 255$
4	2×128^2	$2 \times 128^2 \times 127$	256^{3}	$256^{3} \times 255$
5	2×128^3	$2 \times 128^3 \times 127$	256^{4}	$256^4 \times 255$
Total	4.227.331	536.870.911	4.311.810.305	1.099.511.627.775

Variantes de árvores B

- Árvores B*: o número de registros ocupados de um nó é no mínimo $\frac{2}{3}$ da sua capacidade.
- ► Árvores B⁺:
 - nós internos com chaves apenas para orientar o percurso
 - pares (chave, valor) apenas nas folhas
 - regra de descida:
 - subárvore esquerda: menor
 - subárvore direita: maior ou igual
 - apontadores em lugar de valores tornando mais eficiente a movimentação dos registros durante inserções e remoções
 - ligações facilitando percurso em ordem de chaves

Variantes de árvores B (cont.)

Exemplo de árvore B⁺ de ordem 3:

Setas tracejadas indicam apontadores para os valores da informação. A lista ligada das folhas permite percurso simples e eficiente em ordem de chaves.

Referências

- Almeida, Charles Ornelas, Guerra, Israel; Ziviani, Nivio
 (2010) Projeto de Algoritmos (transparências aula).
- Demaine, Erik. 6.897: Advanced Data Structures Lecture
 2 (notas de aula). Fevereiro, 2003.
- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.

Referências

- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.
- Sedgewick, Robert; Wayne, Kevin (2008) Princeton University: Algorithms. Maio, 2008.
- Silberschatz, Abraham; Korth, Henry F.; Sudarshan, S.
 (2006) Sistema de Banco de Dados. Elsevier, Tradução da 5a edição.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative
 Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link:

http://creativecommons.org/licenses/by-nc-sa/3.0/

 Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/
 Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/

Recomendações de Leitura

- (Silberschatz, 2006, cap. 11)
- (Ramakrishnan, 2003, cap. 8)
- (Elmasri, 2011, cap. 11 e 12)

Local onde são armazenados os dados

Organização de Arquivos

- Heap
 - sem ordenação
 - gravação em qualquer posição
- Sequencial
 - gravação em ordem sequencial
- Hash
 - uso de função de hash

(Silberschatz, 2006)

Índice Mapa de Bits

Arquivos e Indexação

- Entrada de índice (data entry) → registros armazenados em um índice
 - entrada de índice: k*
 - chave: k
- Alternativas para k*
 - (1)registro completo de chave k
 - $(2)(k, rid) \rightarrow rid = id do registro de chave k$
 - $(3)(k, rid-list) \rightarrow rid-list = lista de registros de chave k$

(Ramakrishnan, 2003)

Índice Único

• Índice cujas chaves não tem duplicatas

Índices de Agrupamento (Clustering)

- chave de busca (índice) => ordem dos registros (arquivo)
- modelo (1): k* é o registro de dados

(Elmasri, 2011, pg. 425) diferencia:

- índice primário → campos do arquivo são ordenados conforme a chave primária e há um índice (primário) para ele
- índice agrupamento → campos do arquivo são ordenados conforme um campo não chave (sem valor distinto para cada campo) e há um índice (de agrupamento) para ele
- índice secundário → meio secundário de acesso (ao primário); e.g., chave candidata

(Silberschatz, 2006, pg. 322):

- índice primário e de agrupamento são a mesma coisa; a chave de ordenação é preferencialmente a primário, embora isso não seja obrigatório
- índice secundário → índice de não agrupamento

(Ramakrishnan, 2003, pg. 277):

- clustered (agrupamento) index → campos do arquivo são ordenados conforme (ou próximas a) entradas do índice
- índice primário → índice que contém chave primária
- índice secundário → outros índices

Índices Primários e Secundários

- Índice primário
 - índice de agrupamento com chave primária
 - índice único
- Índice secundário
 - índice de não agrupamento
 - índice não necessariamente único

Índices Densos e Esparsos

- Denso
 - um registro associado a cada entrada do índice
- Esparso
 - mais de um registro associado a cada entrada do índice

Árvores B

- Árvores *n*-árias: mais de um registro por nodo.
- Em uma árvore B de ordem m:
 - página raiz: 1 e 2m registros.
 - demais páginas: no mínimo m registros e m+1 descendentes e no máximo 2m registros e 2m+1 descendentes.
 - páginas folhas: aparecem todas no mesmo nível.
- Registros em ordem crescente da esquerda para a direita.
- Extensão natural da árvore binária de pesquisa.
- Árvore B de ordem m=2 com três níveis:

(Almeida, 2010)

Exemplo de árvore B de ordem 5

Neste caso, cada nó tem no mínimo dois e no máximo cinco registros de informação.

©2010 T. Kowaltowski Estruturas de Dados e Técnicas de Programação

Números mínimos e máximos de registros

Árvore B de ordem 255:

	mínimo		máximo	
nível	nós	registros	nós	registros
1	1	1	1	1 × 255
2	2	2×127	256 ¹	$256^{1} \times 255$
3	2×128^{1}	$2 \times 128^1 \times 127$	256^{2}	$256^2 \times 255$
4	2×128^2	$2 \times 128^2 \times 127$	256 ³	$256^{3} \times 255$
5	2×128^3	$2 \times 128^3 \times 127$	256^{4}	$256^4 \times 255$
Total	4.227.331	536.870.911	4.311.810.305	1.099.511.627.775

©2010 T. Kowaltowski Estruturas de Dados e Técnicas de Programação Árvores do tipo B 189

Variantes de árvores B

- Árvores B*: o número de registros ocupados de um nó é no mínimo $\frac{2}{3}$ da sua capacidade.
- ► Árvores B⁺:
 - ▶ nós internos com chaves apenas para orientar o percurso
 - pares (chave, valor) apenas nas folhas
 - regra de descida:
 - subárvore esquerda: menor
 - subárvore direita: maior ou igual
 - ▶ apontadores em lugar de valores tornando mais eficiente a movimentação dos registros durante inserções e remoções
 - ▶ ligações facilitando percurso em ordem de chaves

©2010 T. Kowaltowski Estruturas de Dados e Técnicas de Programação Árvores do tipo B

Variantes de árvores B (cont.)

Exemplo de árvore B⁺ de ordem 3:

Setas tracejadas indicam apontadores para os valores da informação. A lista ligada das folhas permite percurso simples e eficiente em ordem de chaves.

©2010 T. Kowaltowski Estruturas de Dados e Técnicas de Programação

Referências

- Almeida, Charles Ornelas, Guerra, Israel; Ziviani, Nivio
 (2010) Projeto de Algoritmos (transparências aula).
- Demaine, Erik. 6.897: Advanced Data Structures Lecture
 2 (notas de aula). Fevereiro, 2003.
- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.

Referências

- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.
- Sedgewick, Robert; Wayne, Kevin (2008) Princeton University: Algorithms. Maio, 2008.
- Silberschatz, Abraham; Korth, Henry F.; Sudarshan, S.
 (2006) Sistema de Banco de Dados. Elsevier, Tradução da 5a edição.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link:

http://creativecommons.org/licenses/by-nc-sa/3.0/

 Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/
 Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/