微积分学试卷及解答

(2016-2018 期中期末)

华中科技大学微积分学课程组 编

往年微积分学试卷及解答

华中科技大学出版社 中国。武汉

第一学期试卷

2016-1 期中试题

一、基本计算题(每小题 6 分,共 60 分)

2. 计算极限 $l = \lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{1/x} (a, b, c > 0 是常数).$

3. 计算极限 $l = \lim_{x \to 0} \frac{\sin(3x) + x^2 \sin(1/x)}{(\cos x + 1) \ln(1+x)}$.

4. 已知 $\lim_{x \to +\infty} \frac{ax^3 + 2x + 1}{x - 1} = b$,求常数 a, b 的值.

5. 计算极限 $l = \lim_{x \to 0} \frac{1 + x + 2^{1/x}}{1 + 2^{1/x}}$.

6. 指出函数 $f(x) = \frac{x^2 - 3x + 2}{x(x-1) | x-2|}$ 的间断点,并判断间断点的类型.

7. 设函数 $y = \sqrt{\frac{e^x}{x+1}} \sqrt{e^x+1} (x > -1)$,求微分 dy $|_{x=0}$.

8. 设函数 v = f(u) 有反函数 $u = \varphi(v)$,满足 f(0) = 0,且 $\varphi(v)$ 是可导的,在 v = 0 的某个 邻域中有 $\varphi'(v) = \frac{1}{2 + \sin v}$,求复合函数 $y = f(2x + x^2)$ 在 x = 0 的导数.

9. $\forall y = \ln(2x^2 - 3x + 1), \forall y^{(10)}(0).$

10. 设函数 y = y(x) 由方程 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ 确定,求在 $t = \frac{\pi}{4}$ 时的 $\frac{dy}{dx}$ 及 $\frac{d^2 y}{dx^2}$.

二、综合题(每小题 6 分,共 30 分)

11. 设函数 f(x) 在点 a 处连续, $F(x) = (e^x - e^a) f(x)$,求 F'(a).

12. 已知 $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$, $\vec{x} f'(x)$, 并讨论 f'(x) 的连续性.

13. 设函数 f(x) 在 x = 1 处二阶可导,且 $f(1+x) - 3f(1-x) \sim 3x^2(x \to 0)$. 求 f(1), f'(1), f''(1).

14. 求无穷小量 $u(x) = \arcsin x - \arctan x(x \rightarrow 0)$ 的主部与阶数.

15. 如图所示,一根长为 5 m 的竹竿斜靠着墙,地面与墙面垂直,竹竿在地面的投影也与墙面垂直. 设墙面和地面是光滑的,使得竹竿顶端 A 沿着墙壁竖直往下滑动,同时,底端 B 沿着其投影线向外滑动. 如果在底端 B 距离墙根为 3 m 时,点 B 的速度为 4 m/s,问此时顶端 A 下滑的速度为多少?

2016-1(期中)-15图

三、分析证明题(每小题 5 分,共 10 分)

- **16.** 由函数在一点可导可否推出它在该点的某个邻域内连续?认为可以请证明,认为不行请举反例.
- 17. 设 f(x) 在区间[0,1] 上连续,在区间(0,1) 上可导,且 f(0) = 0, f(1) = 1. 设正实数 λ_1 , λ_2 , λ_3 ,满足 $\lambda_1 + \lambda_2 + \lambda_3 = 1$. 证明:存在三个不相等的实数 ξ_1 , ξ_2 , $\xi_3 \in (0,1)$, 使得

$$\frac{\lambda_1}{f'(\xi_1)} + \frac{\lambda_2}{f'(\xi_2)} + \frac{\lambda_3}{f'(\xi_3)} = 1.$$

2016-1 期中试题解答

一、基本计算题

- 1. 当 n > 22 时, $0 < x_{n+1} < \frac{x_n}{2} < \dots < \frac{1}{2^{n-22}} x_{22}$,由于 $\lim_{n \to \infty} \frac{1}{2^{n-22}} x_{22} = 0$,所以由夹挤原理知 $\lim_{n \to \infty} x_n = 0$.
- **2.** $l = e^{\lim_{x \to 0} \frac{1}{x} \left[\frac{a^x + b^x + c^x}{3} 1 \right]} = e^{\lim_{x \to 0} \frac{1}{3} \left[\frac{(a^x 1) + (b^x 1) + (c^x 1)}{x} \right]} = e^{\frac{1}{3} (\ln a + \ln b + \ln c)} = \sqrt[3]{abc}.$
- 3. $l = \lim_{x \to 0} \frac{\sin(3x) + x^2 \sin \frac{1}{x}}{2x} = \lim_{x \to 0} \frac{\sin(3x)}{2x} + \lim_{x \to 0} \frac{x}{2} \sin \frac{1}{x} = \frac{3}{2}.$
- **4.** $\text{ in } 0 = \lim_{x \to +\infty} \frac{ax^3 + (2-b)x + 1 + b}{x-1}$, if a = 0, 2-b = 0, $\text{ in } \emptyset$, in a = 0, b = 2.
- 5. $\boxtimes \lim_{x \to 0^{+}} 2^{\frac{1}{x}} = +\infty$, $\iiint \lim_{x \to 0^{+}} \frac{1+x+2^{\frac{1}{x}}}{1+2^{\frac{1}{x}}} = 1$; $\bigvee \boxtimes \lim_{x \to 0^{-}} 2^{\frac{1}{x}} = 0$, $\iiint \lim_{x \to 0^{-}} \frac{1+x+2^{\frac{1}{x}}}{1+2^{\frac{1}{x}}} = 1$, $\bigvee \coprod \lim_{x \to 0^{+}} 2^{\frac{1}{x}} = 1$, $\bigcup \coprod$
- 6. 间断点为 x = 0,1,2.

因 $\lim_{x\to 0} f(x) = \infty$,所以 x = 0 为无穷间断点(或第二类间断点);

又
$$\lim_{x\to 1} f(x) = \lim_{x\to 1} \frac{x-2}{x \mid x-2 \mid} = -1$$
,所以 $x = 1$ 为可去间断点;

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{(x-1)(x-2)}{x(x-1)(x-2)} = \frac{1}{2}, \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{(x-1)(x-2)}{x(x-1)(2-x)} = -\frac{1}{2},$$

$$\text{所以 } x = 2 \text{ 为跳跃间断点}.$$

7.
$$\exists y' = \sqrt{\frac{e^x}{x+1}} \sqrt{e^x+1} \left[\frac{1}{2} (x - \ln(x+1) + \frac{1}{4} \ln(e^x+1)) \right]'$$

$$= \sqrt{\frac{e^x}{x+1}} \sqrt{e^x+1} \left(1 - \frac{1}{x+1} + \frac{1}{4} \frac{e^x}{e^x+1} \right).$$

$$dy \mid_{x=0} = \sqrt[4]{\frac{2}{9}} dx.$$

8.
$$y'(0) = f'(2x + x^2)(2 + 2x) \mid_{x=0} = 2f'(0) = \frac{2}{\varphi'(0)} = \frac{2}{1/2} = 4$$
.

9. 因
$$y = \ln(x-1) + \ln(2x-1)$$
,所以 $y^{(10)}(x) = \frac{(-1)^9 9!}{(x-1)^{10}} + \frac{2^{10}(-1)^9 9!}{(2x-1)^{10}}$. 于是 $y^{(10)}(0) = -9!(2^{10}+1)$.

10.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\sin^2t\cos t}{-3\cos^2t\sin t} = -\tan t, \text{ fill } \frac{\mathrm{d}y}{\mathrm{d}x} \Big|_{t=\frac{\pi}{4}} = -1.$$

$$\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}} = \frac{(-\tan t)'}{-3\cos^{2} t \sin t} = \frac{1}{3\cos^{4} t \sin t}, \text{ for } \bigcup \frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}} \bigg|_{t=\frac{x}{2}} = \frac{4\sqrt{2}}{3}.$$

二、综合题

11.
$$F'(a) = \lim_{x \to a} \frac{(e^x - e^a)f(x)}{x - a} = \lim_{x \to a} \frac{e^a(e^{x - a} - 1)f(x)}{x - a} = \lim_{x \to a} \frac{e^a(x - a)f(x)}{x - a} = e^a f(x).$$

当
$$x \neq 0$$
 时, $f'(x) = \frac{\cos x}{x} - \frac{\sin x}{x^2}$ 为初等函数, 所以连续; 而

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(\frac{\cos x}{x} - \frac{\sin x}{x^2} \right) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^2} = 0 = f'(0),$$

所以 f'(x) 在 x = 0 处连续,从而 f'(x) 处处连续.

13. 由题设知
$$\lim_{x \to 0} \left[f(1+x) - 3f(1-x) \right] = -2f(1) = 0$$
,所以 $f(1) = 0$; $\lim_{x \to 0} \frac{f(1+x) - 3f(1-x)}{x} = 4f'(1) = 0$,所以 $f'(1) = 0$;
$$\lim_{x \to 0} \frac{f(1+x) - 3f(1-x)}{x^2} = \lim_{x \to 0} \frac{f'(1+x) + 3f'(1-x)}{2x}$$
$$= \lim_{x \to 0} \left[\frac{f'(1+x) - f'(1)}{2x} \right] + 3 \left[\frac{f'(1-x) - f(1)}{2x} \right] = -f''(1) = 3$$
, 所以 $f''(1) = -3$.

14. 要成立

$$1 = \lim_{x \to 0} \frac{\arcsin x - \arctan x}{cx^r} = \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - \frac{1}{1 + x^2}}{crx^{r-1}}$$

$$= \lim_{x \to 0} \frac{1}{(1 + x^2)\sqrt{1 - x^2}} \frac{1 + x^2 - \sqrt{1 - x^2}}{crx^{r-1}} = \lim_{x \to 0} \frac{x^2 + \frac{1}{2}x^2}{crx^{r-1}} = \lim_{x \to 0} \frac{\frac{3}{2}x^2}{crx^{r-1}},$$
必须有 $r = 3, c = \frac{1}{2}$,因此,所求主部是 $\frac{1}{2}x^3$,阶数为 3.

15. 设 x(t) 为 t 时刻竹竿底端据墙根的水平距离,竹竿顶端距墙根的垂直距离为 y(t),则 $x^2(t)+y^2(t)=25$,两边求导,得 $x\frac{\mathrm{d}x}{\mathrm{d}t}+y\frac{\mathrm{d}y}{\mathrm{d}t}=0$,由题设取 x=3 m,y=4 m 时, $\frac{\mathrm{d}x}{\mathrm{d}t}=4$ m/s,故此时 $\frac{\mathrm{d}y}{\mathrm{d}t}=-3$ m/s,即竹竿顶端下滑速度为 3 m/s.

三、分析证明题

16. 不能. 比如

$$f(x) = \begin{cases} x^2, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}, 其中 \mathbb{Q}$$
为有理数集. 由于 $0 \leqslant \left| \frac{f(x) - 0}{x - 0} \right| \leqslant |x|$, 所以由夹逼定理知, $f'(0) = \lim_{x \to 0} \frac{f(x) - 0}{x} = 0$, 即在原点可导. 而对非零点 x_0 , 若 $x_0 \in \mathbb{Q}$, 取点列

 $\{x_n, x_n \in \mathbb{R} \setminus \mathbb{Q}\}$ 使 $x_n \to x_0$,那么 $f(x_n) = 0$, $\lim_{n \to \infty} f(x_n) = 0 \neq f(x_0) = x_0^2$,即在点 $x_0 \in \mathbb{Q}$ 处不连续. 类似可证当 $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ 时,函数也不连续.即函数除 x = 0 外处处不连续.因此,由函数在一点可导不能推出它在该点的某个邻域内连续.

17. 根据介值定理,对于 $0 < \lambda_1 < 1$,存在实数 $0 < c_1 < 1$,使得 $f(c_1) = \lambda_1$;对于 $\lambda_1 < \lambda_1 + \lambda_2 < 1$,存在实数 $c_2 \in (c_1, 1)$,使得 $f(c_2) = \lambda_1 + \lambda_2$.

在区间 $[0,c_1]$, $[c_1,c_2]$, $[c_2,1]$ 上,对函数 f(x) 分别使用 Lagrange 中值定理,则至少存在 $\xi_1 \in (0,c_1)$, $\xi_2 \in (c_1,c_2)$, $\xi_3 \in (c_2,1)$,成立:

2016-1(期中)-17图

$$\frac{f(c_1) - f(0)}{c_1 - 0} = \frac{\lambda_1}{c_1} = f'(\xi_1),$$

$$\frac{f(c_2) - f(c_1)}{c_2 - c_1} = \frac{\lambda_2}{c_2 - c_1} = f'(\xi_2),$$

$$\frac{f(1)-f(c_2)}{1-c_2}=\frac{1-(\lambda_1+\lambda_2)}{1-c_2}=\frac{\lambda_3}{1-c_2}=f'(\xi_3),$$

于是 $\frac{\lambda_1}{f'(\xi_1)} + \frac{\lambda_2}{f'(\xi_2)} + \frac{\lambda_3}{f'(\xi_3)} = c_1 + c_2 - c_1 + 1 - c_2 = 1$,即结论成立.

2017-1 期中试题

- 一、基本计算题(每小题 6 分, 共 60 分)
- 1. 设数列 $\{x_n\}$ 满足 $: x_1 = 1, x_{n+1} = \sin x_n (n > 1)$,求极限 $\lim x_n$.
- 2. 求数列极限 $\limsup_{n\to\infty}(\pi\sqrt{n^2+n})$.
- 3. 计算极限 $l = \lim_{x \to 0} \frac{x \cos x \sin x}{(\cos x 1) \ln(1 + x)}$.
- 4. 已知 $\lim_{x\to 1} \frac{ax^3 + 2x + 1}{x 1} = b$,求常数 a, b 的值.
- 5. 求极限 $l = \lim_{x \to 1} \left[\frac{2}{1 e^{\frac{x}{1-x}}} \frac{|\sin(x-1)|}{x-1} \right].$
- 6. 指出函数 $f(x) = \frac{|x|}{\tan x}$ 的间断点,并确定间断点的类型.
- 7. 设函数 $y = (2+x)^{\sin x} + \frac{1}{x+1}(x > -2)$,求微分 $dy \mid_{x=0}$.
- 8. 设函数 v = f(u) 有反函数 $u = \varphi(v)$,满足 $f(0) = \frac{\pi}{2}$,且 $\varphi(v)$ 是可导的,在 $v = \frac{\pi}{2}$ 的某个邻域中有 $\varphi'(v) = \frac{1}{2 + \sin v}$,求复合函数 $y = f^2(x)$ 在 x = 0 的导数.
- 9. 设 $y = (x-1)\ln x$,求 $y^{(10)}(1)$.
- 10. 设函数 y = y(x) 由方程 $\begin{cases} x = t\cos t \\ y = t\sin t \end{cases}$ 确定,求在 t = 0 时的导数 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.
- 二、综合题(每小题 6 分,共 30 分)
- 11. 设函数 f(x) 在原点附近有界, $F(x) = f(x) \cdot \sin(x^2)$,计算导数 F'(0).

12. 求函数
$$f(x) = \begin{cases} 1 - \frac{\cos x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 的导函数 $f'(x)$,并讨论 $f'(x)$ 的连续性.

- 13. 设函数 f(x) 在 x = 0 的邻域中有界,满足 $\lim_{x \to 0} \frac{\sqrt[n]{1 + f(x)\sin x} 1}{e^{3x} 1} = 2$,其中 n 为正整数. 求 $\lim_{x \to 0} f(x)$.
- 14. 求无穷小量 $u(x) = x \arctan x(x \rightarrow 0)$ 的主部与阶数.
- **15.** 一个长方体的铁皮盒子,其对角线的长度随着长宽高的变化而连续变化. 当长宽高分别是 3 m, 4 m, 5 m 时,如果此时对角线长度增加的速率为 $5\sqrt{2} \text{ m/s}$,长宽增加的速率分别为 8 m/s 和 9 m/s,问此时高是在增加还是在减少?增加或减少的速率为多少?

三、分析证明题(每小题 5 分,共 10 分)

- **16.** 证明函数 $f(x) = \begin{cases} x^2, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ (这里的 \mathbb{Q} 表示有理数)在 x = 0 可导,但函数本身除零点外处处不连续.
- 17. 设 f(x) 在[0,3]上连续,在(0,3) 内一阶可导,且 f(0) = 0, f(1) = 3, f(3) = 1,证明至 少存在一点 $\xi \in (0,3)$, 使得 $f'(\xi) = 0$.

2017-1 期中试题解答

一、基本计算题

- 1. $0 < x_2 = \sin x_1 < \frac{\pi}{2}$,设 $0 < x_k < \frac{\pi}{2}$,则 $0 < x_{k+1} = \sin x_k < x_k < \frac{\pi}{2}$,所以数列单调递 減有下界,故 $\lim_{n \to \infty} x_n$ 存在.设 $\lim_{n \to \infty} x_n = l$,对于 $x_{n+1} = \sin x_n$ 两边关于 $n \to +\infty$ 取极限,则有 $l = \sin l$,解得 l = 0.
- 2. 利用 $\cos(n\pi + \theta) = (-1)^n \cos\theta$,有

$$\cos(\pi \sqrt{n^2 + n}) = (-1)^n \cos(\pi \sqrt{n^2 + n} - n\pi) = (-1)^n \cos\left(\frac{n\pi}{\sqrt{n^2 + n} + n}\right),$$

所以原式 = $\lim_{n\to\infty} (-1)^n \cos\left(\frac{\pi}{1+\sqrt{1+n^{-1}}}\right) = 0$.

3. 因为 $(\cos x - 1)\ln(1+x) \sim -\frac{x^3}{2}, x \to 0$,所以

$$l = 2 \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} = 2 \lim_{x \to 0} \frac{\cos x - \cos x + x \sin x}{3x^2} = \frac{2}{3} \lim_{x \to 0} \frac{\sin x}{x} = \frac{2}{3}.$$

4. 由于分母趋于零,所以分子也趋于零.由 $0 = \lim_{x \to a} (ax^3 + 2x + 1) = a + 3$,得a = -3,从而

$$b = \lim_{x \to 1} \frac{-3x^3 + 2x + 1}{x - 1} = \lim_{x \to 1} (-9x^2 + 2) = -7.$$

5. 注意到 $x \to 1^-$ 时, $e^{\frac{x}{1-x}} \to +\infty$, $\frac{|\sin(x-1)|}{x-1} \to -1$; 而 $x \to 1^+$ 时, $e^{\frac{x}{1-x}} \to 0$, $\frac{|\sin(x-1)|}{x-1} \to 1$, 所以

$$\lim_{x \to 1^{-}} \left[\frac{2}{1 - e^{\frac{x}{1-x}}} - \frac{\mid \sin(x-1) \mid}{x-1} \right] = 0 - (-1) = 1,$$

$$\lim_{x \to 1^{+}} \left[\frac{2}{1 - e^{\frac{x}{1-x}}} - \frac{|\sin(x-1)|}{x-1} \right] = 2 - 1 = 1,$$

从而 l=1.

6. 间断点为 $x = k\pi, k\pi + \frac{\pi}{2}(k = 0, \pm 1, \pm 2, \cdots)$.

因 $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to 0^-} f(x) = -1$, 所以 x = 0 为跳跃间断点; 又 $\lim_{x\to 0^+} f(x) = \infty (k = \pm 1, \pm 2, \cdots)$, 所以 $x = k\pi (k = \pm 1, \pm 2, \cdots)$ 为无穷间断点;

 $\lim_{x \to k \to 2} f(x) = 0$,所以 $x = k\pi + \pi/2(k = \pm 1, \pm 2, \cdots)$ 为可去间断点.

7. $ill u = (2+x)^{\sin x}, v = \frac{1}{x+1}, \text{ of } dy = du + dv, \text{ in } dy = du + dv$

$$du = (2+x)^{\sin x} \{ \sin x \ln(2+x) \}' dx = (2+x)^{\sin x} \left[\cos x \ln(2+x) + \frac{\sin x}{2+x} \right] dx,$$

$$\mathrm{d}v = -\frac{1}{(x+1)^2} \mathrm{d}x,$$

将上面两式相加,并代值得 $dy \mid_{x=0} = (\ln 2 - 1) dx$.

8.
$$y'(0) = 2f(x)f'(x)|_{x=0} = 2f(0)f'(0) = \frac{2f(0)}{\varphi'(\pi/2)} = 3\pi$$
.

9.
$$y' = \ln x + 1 - \frac{1}{x}$$
,所以 $y^{(10)} = (\ln x)^{(9)} - \left(\frac{1}{x}\right)^{(9)}$,即 $y^{(10)} = \frac{(-1)^8 8!}{x^9} - \frac{(-1)^9 9!}{x^{10}}$, 所以 $y^{(10)}(1) = 8! + 9! = 10 \cdot 8!$.

10.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin t + t \cos t}{\cos t - t \sin t}, \text{ if } \bigcup_{t=0}^{\infty} dy \mid_{t=0} = 0;$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\left(\frac{\sin t + t\cos t}{\cos t - t\sin t}\right)'}{\cos t - t\sin t} = \frac{2 + t^2}{\left(\cos t - t\sin t\right)^3}, 所以 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \mid_{t=0} = 2.$$

二、综合题

11.
$$F'(0) = \lim_{x \to a} \frac{f(x)\sin(x^2) - 0}{x} = \lim_{x \to 0} \frac{x^2 f(x)}{x} = \lim_{x \to 0} x f(x) = 0.$$

12. 因为
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{\frac{1 - \cos x}{x} - 0}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

所以
$$f'(x) = \begin{cases} \frac{x\sin x - 1 + \cos x}{x^2}, & x \neq 0\\ 1/2, & x = 0 \end{cases}$$

在区间 $(-\infty,0)$ \cup $(0,+\infty)$ 上,f'(x) 为初等函数,所以连续;又

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{x \sin x - 1 + \cos x}{x^2} = \frac{1}{2} = f'(0),$$

所以 f'(x) 在 x = 0 处连续. 综上所述, f'(x) 处处连续.

13. 由于 f(x) 在 x = 0 的邻域中有界,所以 $\lim_{x \to 0} f(x) \sin x = 0$,那么 $x \to 0$, $\sqrt[n]{1 + f(x) \sin x} - 1$

$$\sim \frac{f(x)\sin x}{n}, e^{3x} - 1 \sim 3x, \text{ for } \lim_{x \to 0} \frac{\sqrt[n]{1 + f(x)\sin x} - 1}{e^{3x} - 1} = \lim_{x \to 0} \frac{f(x)\sin x}{3nx} = \lim_{x \to 0} \frac{f(x)}{3n} = 0$$

$$2$$
,从而 $\lim_{x\to 0} f(x) = 6n$.

14. 要成立
$$1 = \lim_{x \to 0} \frac{x - \arctan x}{cx^r} = \lim_{x \to 0} \frac{1 - \frac{1}{1 + x^2}}{crx^{r-1}} = \lim_{x \to 0} \frac{1}{1 + x^2} \frac{x^2}{crx^{r-1}},$$
 必须有 $r = 3, c = \frac{1}{3}$,因此,所求主部是 $\frac{1}{3}x^3$,阶数为 3.

15. 设 t 时刻长方体的长宽高及对角线分别为 x(t), y(t), z(t), s(t), 则

$$s^{2}(t) = x^{2}(t) + y^{2}(t) + z^{2}(t)$$

两边关于变量 t 求导,得 s(t)s'(t) = x(t)x'(t) + y(t)y'(t) + z(t)z'(t),

由题设取 $x = 3 \text{ m}, y = 4 \text{ m}, z = 5 \text{ m}, s = 5\sqrt{2} \text{ m}, x'(t) = 8 \text{ m/s}, y'(t) = 9 \text{ m/s}, s'(t) = 5\sqrt{2} \text{ m/s}代入上式,求得 <math>z'(t) = -2 \text{ m/s}$,说明此时长方体的高在减少,减少的速率为 2 m/s.

三、分析证明题

16.
$$\lim_{x\to 0} \frac{f(x)-0}{x-0} = \lim_{x\to 0} \frac{x^2 D(x)}{x} = 0$$
,即在原点可导,且 $f'(0) = 0$.

考虑非零点 a,若 $a \in \mathbb{Q}$,取点列 $\{x_n, x_n \in \mathbb{R} \setminus \mathbb{Q}\}$ 使 $x_n \to a$,那么

$$f(x_n) = 0$$
, $\lim_{n \to \infty} f(x_n) = 0 \neq f(a) = a^2$,

即在点 $a \in \mathbb{Q}$ 处不连续. 类似可证当 $a \in \mathbb{R} \setminus \mathbb{Q}$,函数也不连续. 所以函数除零点外处处不连续.

17. 由于函数 f(x) 在[0,1] 上连续,且 f(0) = 0, f(1) = 3,由介值定理,有至少存在一点 $\eta \in (0,1)$,使得 $f(\eta) = 1$.因 f(x) 在[η ,3] 上连续,在(η ,3) 可导, $f(\eta) = f(3) = 1$,由 Rolle 定理,至少存在一点 $\xi \in (\eta,3) \subset (0,3)$,使得 $f'(\xi) = 0$.

2018-1 期中试题

一、基本计算题(每小题 6 分,共 60 分)

- 1. 求极限 $l = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n + k^{\alpha}}, 其中 \alpha \in (0,1).$
- 2. 求极限 $l = \lim_{x \to 0} \frac{\ln(e^{2\tan x} + \sin x^2)}{x}$.
- 3. 求极限 $l = \lim_{x \to 0^+} (e^x 1)^{\frac{1}{\ln x}}$.
- 4. 已知 $\lim_{x\to 1} \frac{ax+bx+b}{\sqrt{3x+1}-\sqrt{x+3}} = 2$,求常数 a,b 的值.
- 5. 设可微函数 y = y(x) 由方程 $y + ye^{x} = 2\cos y \sin x 4x$ 确定,求 y'(0).
- 6. 求曲线 $r = 2\sin 3\theta$ 在 $\theta = \frac{\pi}{3}$ 处的切线方程.
- 7. 设函数 $f(x) = x \sqrt{1-x^2} + \arcsin x$,求微分 dy $|_{x=0}$.
- 8. 设函数 $y = x + x^3$ 的反函数为 x = g(y),求 g''(2).
- 9. 设 $y = x^2 \cos 2x$, 求 $y^{(5)} \left(\frac{\pi}{2}\right)$.
- 10. 设函数 y = y(x) 由方程 $\begin{cases} x = t\cos t \sin t \\ y = \cos t \end{cases}$ 确定,求 $\frac{dy}{dx}$ 和 $\frac{d^2y}{dx^2}$.

- 二、综合题(每小题 6 分,共 30 分)
- 11. 讨论函数 $f(x) = \frac{\sin(\pi x)}{x^2 1}$ 的连续性,并对函数的间断点判别类型.
- 12. 求无穷小量 $u(x) = \left(\frac{1 + 2\cos x}{3}\right)^{x^2} 1(x \to 0)$ 的主部与阶数.
- 13. 求函数 $f(x) = \begin{cases} \ln(1+x), & x \ge 0 \\ x, & x < 0 \end{cases}$ 的导函数 f'(x),并讨论 f'(x) 的连续性.
- 14. 已知 $a > 1, n \ge 1$,证明不等式 $\frac{\sqrt[n]{a} \frac{n+1}{\sqrt{a}}}{\ln a} < \frac{\sqrt[n]{a}}{n^2}$.
- 15. 一架飞机在 H 米高空以 a 米 / 秒的速度水平匀速飞行. 设在 t = 0 时刻有一探照灯位于飞机正下方的地下跟踪飞机. 问 t 秒以后探照灯应以怎样的角速度转动才能照到飞机? 三、分析证明题(每小题 5 分,共 10 分)
- **16**. 设数列 $\{x_n\}$ 由递推公式 $x_1 = 1, x_{n+1} = x_n + \frac{2}{x_n^2}$ 给出.证明数列 $\{x_n\}$ 无界.
- 17. 设 f(x) 在区间[a,b] 有定义并且对于任何 $x,y \in [a,b](x \neq y)$ 成立 $|f(x) f(y)| \leq M(x-y)^2,$

其中 M 为常数. 证明 f(x) 在[a,b] 上恒为常数.

2018-1 期中试题解答

一、基本计算题

- 1. 因 $\frac{n}{n+n^a} < \sum_{k=1}^n \frac{1}{n+k^a} < 1$,而 $\lim_{n\to\infty} \frac{n}{n+n^a} = \lim_{n\to\infty} \frac{1}{1+n^{a-1}} = 1$,所以 l=1.
- 2. $l = \lim_{x \to 0} \frac{e^{2\tan x} + \sin x^2 1}{r} = \lim_{x \to 0} \frac{2\tan x}{r} = 2.$
- 3. 先求 $\lim_{x \to 0^+} \frac{\ln(e^x 1)}{\ln x} \stackrel{\text{in}}{=} \lim_{x \to 0^+} \frac{xe^x}{e^x 1} = 1$,

所以
$$l = \lim_{x \to 0^+} e^{\frac{\ln(e^x - 1)}{\ln x}} = \exp\left(\lim_{x \to 0^+} \frac{\ln(e^x - 1)}{\ln x}\right) = e.$$

4. 由于分母趋于零,所以分子也趋于零. 从而有 $0 = \lim_{x \to 1} (ax + bx + b) = a + 2b$,得 a = -2b.

代人原式并进行分母有理化得到 $\lim_{x\to 1} \frac{-b(x-1)(\sqrt{3x+1}+\sqrt{x+3})}{2(x-1)} = 2.$ 解得b=-1, a=2.

5. 显然当 x = 0 时 y = 0. 方程两边对 x 求导,得

$$y' + y'e^x + ye^x = -2y'\sin y\sin x + 2\cos y\cos x - 4,$$

代入 x = 0, y = 0,解得 y'(0) = -1.

6. 曲线的参数方程为 $x = 2\sin 3\theta \cos \theta$, $y = 2\sin 3\theta \sin \theta$. 于是得到

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\cos 3\theta \sin \theta + \sin 3\theta \cos \theta}{3\cos 3\theta \cos \theta - \sin 3\theta \sin \theta}$$

代入 $\theta = \frac{\pi}{3}$ 得到 $\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{3}$. 又知切点坐标为(0,0),因此切线方程为 $y = \sqrt{3}x$.

- 7. 求导并化简得 $f'(x) = 2\sqrt{1-x^2}$,代值,得 $dy|_{x=0} = 2dx$.
- 8. 显然函数 $y = x + x^3$ 严格单调可导且 $y' = 1 + 3x^2 \neq 0$, 于是得到 x = g(y) 也是严格单

调可导,且 $g'(y) = \frac{1}{1+3r^2}$. 注意到 g'(y) 仍然可导,对 y 求导得

$$g''(y) = -\frac{6x}{(1+3x^2)^2} \cdot \frac{dx}{dy} = -\frac{6x}{(1+3x^2)^3}$$

代人 x = 1, y = 2 得到 $g''(2) = \frac{-3}{32}$.

9. 根据 Leibniz 法则得到

$$y^{(5)} = x^2(\cos 2x)^{(5)} + 10x(\cos 2x)^{(4)} + 20(\cos 2x)^{(3)},$$
于是得到 $y^{(5)} = -32x^2\sin 2x + 160x\cos 2x + 160\sin 2x,$
所以 $y^{(5)}\left(\frac{\pi}{2}\right) = -80\pi.$

10.
$$\frac{dy}{dx} = \frac{-\sin t}{-t\sin t} = \frac{1}{t}, \frac{d^2y}{dx^2} = \frac{(t^{-1})'}{-t\sin t} = \frac{1}{t^3\sin t}$$

二、综合题

11. 当 $x \in (-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$ 时,函数 f(x) 连续.注意到

$$\lim_{x \to 1} \frac{\sin(\pi x)}{x^2 - 1} = \lim_{x \to 1} \frac{\pi \cos(\pi x)}{2x} = -\frac{\pi}{2}, \lim_{x \to -1} \frac{\sin(\pi x)}{x^2 - 1} = \lim_{x \to -1} \frac{\pi \cos(\pi x)}{2x} = \frac{\pi}{2},$$

所以 x = -1,1 均为可去间断点.

12.
$$u(x) = \exp\left(x^2 \ln\left(\frac{1+2\cos x}{3}\right)\right) - 1 \sim x^2 \ln\left(\frac{1+2\cos x}{3}\right) \sim \frac{2x^2}{3} (\cos x - 1) \sim -\frac{1}{3}x^4$$
. 故所求主部为 $-\frac{1}{3}x^4$,阶数为 4.

13. 在
$$x = 0$$
 点处 $f'_{+}(0) = \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$, $f'_{-}(0) = 1$. 所以 $f'(x) = \begin{cases} \frac{1}{1+x}, & x \geqslant 0, \\ 1, & x < 0. \end{cases}$
区间 $(-\infty,0) \cup (0,+\infty) \perp f'(x)$ 显然连续;又 $f'(0^{+}) = f'(0^{-}) = f'(0) = 1$, 所以 $f'(x)$ 在 $x = 0$ 处连续. 综上所述, $f'(x)$ 处处连续.

14. 令 $f(x) = a^x$. 在区间 $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ 上应用 Lagrange 中值定理得

$$\sqrt[n]{a} - \sqrt[n+1]{a} = \frac{a^{\varepsilon} \ln a}{n(n+1)} < \frac{\sqrt[n]{a}}{n^2} \ln a.$$

15. 根据几何关系得 $\tan\theta = s/H$. 两边对 t 求导得 $\sec^2\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{H} \frac{\mathrm{d}s}{\mathrm{d}t}$. 代人 $\mathrm{d}s/\mathrm{d}t = a$ 以及 $\cos\theta = \frac{H}{\sqrt{H^2 + a^2t^2}} \operatorname{4H} \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{aH}{H^2 + a^2t^2}.$

三、分析证明题

- **16.** 用反证法. 显然有 $x_n \ge 1$ 并且严格单调增加. 若 $\{x_n\}$ 有界,则根据单调有界收敛准则知数列极限存在. 设 $\lim_{n\to\infty} x_n = L$. 根据极限的保序性知 $L \ge 1$. 根据递推关系两边取极限得到 $L = L + \frac{2}{L^2}$,但此方程无解推出矛盾. 因此数列 $\{x_n\}$ 无界.
- 17. 根据已知条件,对于任何 $x,y \in [a,b](x \neq y)$ 成立

$$0\leqslant\frac{\mid f(y)-f(x)\mid}{\mid y-x\mid}\leqslant M\mid y-x\mid.$$

令 $y \to x$,据夹挤原理得到 $\lim_{y \to x} \left| \frac{f(y) - f(x)}{y - x} \right| = 0$,从而有 $\lim_{y \to x} \left| \frac{f(y) - f(x)}{y - x} \right| = 0$. 即对任何 $x \in [a,b]$ 都有 f'(x) = 0. 因此 f(x) 在[a,b] 上恒为常数

2016-1 期末试题

- 一、单项选择题(每小题3分,共18分)
- 1. 设数列 $\{x_n\}$ 与 $\{y_n\}$ 满足 $\lim x_n y_n = 0$,则下列命题正确的是().

A. 若 $\{x_n\}$ 发散,则 $\{y_n\}$ 必发散

B. 若 $\{x_n\}$ 收敛,则 $\{y_n\}$ 必收敛

 $C. 若\{x_n\}$ 有界,则 $\{y_n\}$ 必为无穷小 $D. 若\{\frac{1}{x}\}$ 有界,则 $\{y_n\}$ 必为无穷小

2. 设函数 f(x) 在区间 $(-\infty, +\infty)$ 上有定义,且 $\lim f(x) = a \neq 0, g(x) =$

- A. 连续点 B. 跳跃间断点 C. 无穷间断点 D. 可去间断点 3. 当 $x \to 1$ 时,无穷小量 $\ln x^2$ 的主部为().

- B. $x^2 1$
- C. 2(1-x) D. 2(x-1)
- 4. 若函数 f(x) 在原点连续, $F(x) = f(x) | \sin x |$,则 f(0) = 0 是 F'(0) 存在的(
 - A. 充要条件

B. 充分但非必要条件

C. 必要但非充分条件

- D. 既非充分也非必要条件
- 5. 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续,其导函数图形如图 所示,则 f(x) 的极值点的个数为().

B. 2 个

C.3个

D. 4 个

6. 若函数 $f(x) = 2^{\frac{1}{x}} + \arctan \frac{x \mid x \mid}{(x-1)(x-2)}$,下面哪一

2016-1(期末)-5图

条直线不是此函数的渐近线(

A.
$$x = 0$$

B.
$$y = 1 - \frac{\pi}{4}$$
 C. $x = 2$ D. $y = 1 + \frac{\pi}{4}$

C.
$$x = 2$$

D.
$$y = 1 + \frac{\pi}{4}$$

二、填空题(每小题 4 分,共 16 分)

8.
$$\int_{0}^{1} x (1-x)^{99} dx = \underline{\hspace{1cm}}.$$

- 9. 设点(1,4) 为曲线 $y = ax^3 + bx^2$ 的拐点,则 $a = _____, b = _____$
- 10. 定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{x^3}{1+\sin^4 x} + \sin^4 x \cos x \right) dx =$ _____.

三、基本计算题(每小题 7 分, 共 42 分)

- 11. 设函数 y = f(x) 是由方程 $e^{2x+y} \cos(xy) = e 1$ 所确定的隐函数,求导数 $\frac{dy}{dx}|_{x=0}$.
- 12. 设函数 y = y(x) 由方程 $\begin{cases} x = 2t t^2 \\ y = 3t t^3 \end{cases}$ 确定,求导数 $\frac{d^2 y}{dx}$ 和 $\frac{d^2 y}{dx^2}$.
- 13. 求定积分 $I = \int_0^\pi \sin^5 x \sqrt{1 \sin^2 x} dx$.
- 14. 求极限 $l = \lim_{n \to +\infty} \left[\left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \cdots \left(1 + \frac{n}{n} \right) \right]^{\frac{1}{n}}$.
- 15. 求微分方程 $y' e^{-y} = 1$ 满足 y(1) = -1 的特解.
- 16. 求反常积分 $I = \int_{1}^{+\infty} \frac{\ln(\sqrt{x} + 1)}{x^2} dx$.

四、应用题(每小题7分,共14分)

- 17. 设曲线段 $y = ax^2$ (a > 0,0 $\leqslant x \leqslant 1$) 与 x 轴及直线 x = 1 围成一个曲边三角形 A,图形 A 绕x 轴旋转一周得到的旋转体的体积记为 V_1 ,图形 A 绕直线 x = 1 旋转一周所得旋转体的体积记为 V_2 ,求 a 取何值时体积差 $V_2 V_1$ 最大?
- **18.** 应用微分学知识讨论方程 $x \ln x + a = 0$ 的根问题:(1)a 取何值时,该方程有一个实根? (2)a 取何值时,该方程有两个实根?

五、综合题(每小题 5 分,共 10 分)

- **19.** 设函数 f(x) 在[a,b](a>0) 上有二阶连续导数,最小值为-1,f(a) = f(b) = 1,证明存在 $\xi \in (a,b)$,使得 $f''(\xi) = \frac{16}{(b-a)^2}$.
- **20.** 设 f(x) 是 区 间 [a,b] 上 单 调 递 减 的 连 续 函 数, 则 有 $\int_a^b (x-a)^3 f(x) dx$ $\leq \frac{(b-a)^3}{4} \int_a^b f(x) dx$.

2016-1 期末试题解答

一、单项选择题

1. D 2. A 3. D 4. A 5. D 6. C

二、填空题

7.
$$\frac{1}{3}$$
 8. $\frac{1}{10100}$ 9. $a = -2, b = 6$ 10. $\frac{2}{5}$

三、基本计算题

11. 方程 $e^{2x+y} - \cos(xy) = e - 1$ 对 x 求导,得

$$e^{2x+y}(2+y') + \sin(xy)(y+xy') = 0.$$

将 x=0 代入原方程得到 y=1,所以 $\frac{\mathrm{d}y}{\mathrm{d}x}\mid_{x=0}=-2$.

12.
$$\frac{dy}{dx} = \frac{3-3t^2}{2-2t} = \frac{3}{2}(1+t), \frac{d^2y}{dx^2} = \frac{3/2}{2(1-t)} = \frac{3}{4(1-t)}.$$

13.
$$I = \int_{0}^{\pi/2} \sin^5 x \cdot \cos x d\theta - \int_{\pi/2}^{\pi} \sin^5 x \cdot \cos x d\theta = \frac{\sin^6 x}{6} \Big|_{0}^{\pi/2} - \frac{\sin^6 x}{6} \Big|_{\pi/2}^{\pi} = \frac{1}{3}.$$

14.
$$l = \exp\left\{\lim_{n \to +\infty} \frac{1}{n} \left[\ln\left(1 + \frac{1}{n}\right) + \ln\left(1 + \frac{2}{n}\right) + \dots + \ln\left(1 + \frac{n}{n}\right) \right] \right\}$$

= $\exp\left\{ \int_{0}^{1} \ln(1 + x) dx \right\} = e^{2\ln 2 - 1} = \frac{4}{e}.$

15. 原方程可转化为 $(e^y)' - e^y = e^x$,由通解公式得

$$e^{y} = e^{\int dx} \left(\int e^{x} e^{\int -dx} dx + C \right) = e^{x} (x + C).$$

16. $\Leftrightarrow t = \sqrt{x}, \text{ M} I = 2 \int_{1}^{+\infty} \frac{\ln(t+1)}{t^3} dt,$

利用分部积分得 $I = -\int_{1}^{+\infty} \ln(t+1) d\left(\frac{1}{t^2}\right) = \left[-\frac{\ln(t+1)}{t^2} - \frac{1}{t} + \ln\frac{t+1}{t}\right]_{1}^{+\infty} = 1.$

四、应用题

- 17. $V_1 = \int_0^1 \pi y^2 dx = \pi a^2 \int_0^1 x^4 dx = \frac{\pi a^2}{5}$, $V_2 = \int_0^a \pi (1-x)^2 dy = 2\pi a \int_0^1 (1-x)^2 x dx = \frac{\pi a}{6}$, 所以 $f(a) = \frac{\pi}{30} (5a 6a^2)$, a > 0. 令 $f'(a) = \frac{\pi}{30} (5 12a) = 0$, 得到 $a = \frac{5}{12}$. 且 $0 < a < \frac{5}{12}$ 时, f'(a) > 0; $a > \frac{5}{12}$ 时, f'(a) < 0. 所以当 $a = \frac{5}{12}$ 时, 体积差 $V_2 V_1 = f(a)$ 达到最大值.
- 18. 设 $f(x) = x \ln x + a$, $0 < x < +\infty$; 令 $f'(x) = \ln x + 1 = 0$, 得 $x = \frac{1}{e}$. 当 $x > \frac{1}{e}$ 时,函数 f(x) 单调递增; $0 < x < \frac{1}{e}$,函数 f(x) 单调递减. 所以函数 f(x) 在 $x = \frac{1}{e}$ 处取得最小值,且 $f\left(\frac{1}{e}\right) = a \frac{1}{e}$. 又 $f(0^+) = \lim_{x \to 0^+} f(x) = a$, $f(+\infty) = \lim_{x \to +\infty} f(x) = +\infty$,所以,由零点定理并结合单调性可得:
 - (1) 当 $a \leq 0$ 时,方程 $x \ln x + a = 0$ 在($\frac{1}{e}$, $+\infty$) 内有一根;
 - (2) 当 $a = \frac{1}{e}$ 时, f(x) 的最小值为 0, 方程 $x \ln x + a = 0$ 仅有一根 $f(\frac{1}{e}) = 0$;
 - (3) 当 $0 < a < \frac{1}{e}$ 时,方程 $x \ln x = a$ 在 $(0, \frac{1}{e})$ 与 $(\frac{1}{e}, +\infty)$ 内各有一根,即方程有两个实根.

五、综合题

19. 由 f(x) 在某个 x = c(a < c < b) 处取得极小值知 f(c) = -1, f'(c) = 0, 利用泰勒公式有

$$f(a) = f(c) + \frac{1}{2}f''(\xi_1)(a-c)^2, a < \xi_1 < c, \mathbb{P} f''(\xi_1) = \frac{4}{(a-c)^2};$$

$$f(b) = f(c) + \frac{1}{2}f''(\xi_2)(b-c)^2, c < \xi_2 < b, \mathbb{P} f''(\xi_2) = \frac{4}{(b-c)^2};$$
若 $c = \frac{b+a}{2}$,则取 $\xi = \xi_1$ 或 $\xi = \xi_2$, $f''(\xi) = \frac{16}{(b-a)^2};$
若 $c \neq \frac{b+a}{2}$,则 $f''(\xi_1)$ 和 $f''(\xi_2)$ 一个大于 $\frac{16}{(b-a)^2}$,一个小于 $\frac{16}{(b-a)^2}$, 故由介值定理

知,存在 $\xi \in [\xi_1,\xi_2] \subset (a,b)$ 或 $(\xi \in [\xi_2,\xi_1] \subset (a,b))$, $f''(\xi) = \frac{16}{(b-a)^2}$.

	$4 J_a J_a$	3						
	$F'(t) = \frac{3}{4}(t-a)^2 \int_a^t f(x) dx + \frac{(t-a)^3}{4} f(t) - (t-a)^3 f(t)$							
	$= \frac{3}{4}(t-a)^2 \left[\int_{-a}^{b} f(x) dx - (t-a)f(t) \right] = \frac{3}{4}(t-a)^2 (t-a)(f(\xi) - f(t)) \geqslant 0,$							
	于是由连续性有 $F(b) \geqslant F(a) = 0$.							
	2017-1	期末试题						
sourcem	、单项选择题(每小题 3 分,共 18 分)							
1.	下列函数在其定义域内有界的是().							
	A. $\frac{\sin x}{x}$ B. $\tan x$	C. $\frac{\ln x}{x}$	D. xe^{-x}					
2.	设 $x \rightarrow 0$ 时,变量 $\sqrt{1-x^2} - \sqrt{1+x^2}$ 与	x ^a 是同阶无穷小量,	则常数 a = ().					
	A. $\frac{1}{2}$ B. 1	C. 2	D. 4					
3.	关于函数 $y = x \ln x, x \in (0, +\infty), 以下$	描述不正确的是().					
	A. 在区间(0,e ⁻¹) 单调递减	B. 在 $x = e^{-1}$ 处取	最小值					
	C. $(e^{-1}, -e^{-1})$ 是曲线 $y = x \ln x$ 的拐点	D. 曲线 $y = x \ln x$	无渐近线					
4.	关于曲线 $f(x) = \frac{\sin x}{(1-x)\ln x}$ 的渐近线,	合当的说法是()	• Personal P					
	A. 没有水平渐近线,但有斜渐近线	B. 没有渐近线						
	C. 有水平渐近线,没有垂直渐近线	D. 有水平渐近线, t	也有垂直渐近线					
5.	设 f(x) 是定义在实轴上的连续函数,	2 是任给的非零实验	数,则以下命题中正确的					
	是().							
	A. 若 $f(x)$ 是以 T 为周期的周期函数,则 $F(x) = \int_0^x f(t) dt$ 是以 T 为周期的周期函数							
	B. 若 $f(x)$ 是以 T 为周期的周期函数,则	$F(x) = \int_{x}^{x+a} f(t) dt$	是以 T 为周期的周期函数					
	C. 若 $f(x)$ 为奇函数,则 $F(x) = \int_0^x f(t) dt$	t 是奇函数						
	D. 若 $f(x)$ 为奇函数,则 $F(x) = \int_0^x f^2(t)$	dt 是偶函数						
6.	设函数 $f(x)$ 满足 $\lim_{h\to 0} \frac{f(h^2)}{h^2} = 1$,则 $f(x)$	在 $x=0$ 处().						
	A. 连续,且 $f'_{+}(0)$ 存在	B. 连续,且 f'(0) 和	字在					
	0. 医体 加了可具	D 不 空冻结						

C. 连续,但不可导

二、填空题(每小题 4 分,共 16 分)

7. 设函数
$$f(x) = \int_0^x \cos(x-t) dt$$
,则 $f'(x) =$ ______.

- 8. 用 a,b,c,\cdots 等表示待定常数,则二阶微分方程 $y''+y'=x+e^x$ 的一个待定特解形式可设为
- 9. 设函数 $y = (\ln(e+x))^{\frac{1}{1+x}}, \text{则 dy }|_{x=0}$ _____.
- 10. 定积分 $\int_{-\pi}^{\pi} \left(\frac{\sin x \cos x}{1 + e^{x^2}} + \cos^4 x \right) dx = \underline{\hspace{1cm}}$

三、基本计算题(每小题 7 分,共 42 分)

- 11. 设数列 $x_n = \frac{1}{n^2+1} + \frac{2}{n^2+2^2} + \dots + \frac{n}{n^2+n^2}$,求极限 $\lim_{n\to+\infty} x_n$.
- **12.** 设函数 y = y(x) 由方程 $\begin{cases} x = 2t \ln(1+t) \\ e^{2y+t} yt = 1 \end{cases}$ 确定,求 t = 0 时对应点 (x_0, y_0) 处的切线方程.
- 13. 设 f(x) 的一个原函数为 $\frac{\arcsin x}{x}$,求不定积分 $I = \int (1+x^2) f(x) dx$.
- 14. 求积分 $I = \int_{3}^{+\infty} \frac{\arctan\sqrt{x}}{(1+x)\sqrt{x}} dx$.
- 15. 求微分方程 $(1 + x\sin y)$ dy $-\cos y$ dx = 0 的通解.
- 16. 设 $\varphi(u)$ 是具有连续一阶导数的函数, $f(x) = x\varphi(x^2)$, 求 f''(0).

四、应用题(每小题7分,共14分)

- 17. 设曲线 y = f(x)(f(x) > 0, f(0) = 1) 与 x 轴、y 轴及直线 x = t(t > 0) 围成一个曲边梯形 A,其面积记为 S(t),A 绕 y 轴旋转一周得到的旋转体的体积记为 V(t),若成立 $V(t) = \pi t S(t) + \frac{\pi}{6} t^4$,求函数 $f(x)(x \ge 0)$ 的表达式.
- **18.** 应用微分学知识讨论方程 $\sqrt{x} = ax + b(x \ge 0, a > 0)$ 的根问题:(1)a,b满足什么关系时,该方程仅有一个实根?(2)a,b 满足什么关系时,该方程有两个实根?(3)a,b 满足什么关系时,该方程无实根?

五、综合题(每小题 5 分,共 10 分)

- **19**. 设函数 f(x) 在区间[a,b] 上连续,在(a,b] 上可导.
 - (1) 若 $\lim_{x \to a} f'(x) = A$,证明 f(x) 在 x = a 处的右导数 $f'_{+}(a)$ 存在,且 $f'_{+}(a) = A$.
 - (2) 反过来,当 $f'_{+}(a)$ 存在时,极限 $\lim_{x\to a^{+}} f'(x)$ 是否一定存在?若存在,请证明;若可能不存在,请举反例.
- 20. 设 f(x) 在区间[0,1] 上二阶可导,且 f(0) = f(1) = 0, $|f''(x)| \le M(M$ 为一个正常数),证明 $|\int_0^1 f(x) dx| \le \frac{M}{12}$.

2017-1 期末试题解答

一、单项选择题

- 1. A 2. C 3. C 4. D 5. B 6. D
- 二、填空题
- 7. $\cos x$ 8. $y^* = x(ax+b) + ce^x$ 9. $e^{-1}dx$ 10. $3\pi/4$

三、基本计算题

11.
$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} \frac{1}{n} \left[\frac{1/n}{1 + (1/n)^2} + \frac{2/n}{1 + (2/n)^2} + \dots + \frac{n/n}{1 + (n/n)^2} \right]$$
$$= \int_0^1 \frac{x}{1 + x^2} dx = \frac{1}{2} \ln(1 + x^2) \Big|_0^1 = \frac{\ln 2}{2}.$$

12. 当 t = 0 时,有 x = 0, y = 0.

因
$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 - \frac{1}{1+t}, \frac{\mathrm{d}x}{\mathrm{d}t}\Big|_{t=0} = 1;$$
又 $\mathrm{e}^{2y+t}\Big[2\frac{\mathrm{d}y}{\mathrm{d}t} + 1\Big] - y - t\frac{\mathrm{d}y}{\mathrm{d}t} = 0, \frac{\mathrm{d}y}{\mathrm{d}t}\Big|_{t=0} = -\frac{1}{2}.$ 所以 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=0} = -\frac{1}{2}.$ 从而所求切线方程为 $x + 2y = 0.$

13. 由原函数的定义,有

$$\begin{split} I &= \int (1+x^2) \,\mathrm{d} \, \frac{\arcsin x}{x} = (1+x^2) \, \cdot \, \frac{\arcsin x}{x} - \int \frac{\arcsin x}{x} \, \cdot \, 2x \,\mathrm{d}x \\ &= (x+x^{-1}) \arcsin x - 2 \int \arcsin x \,\mathrm{d}x. \\ &= (x+x^{-1}) \arcsin x - 2x \arcsin x - 2 \, \sqrt{1-x^2} + C. \end{split}$$

14.
$$\Leftrightarrow t = \sqrt{x}$$
, M $I = \int_{\sqrt{3}}^{+\infty} \frac{\arctan t}{(1+t^2)t} \cdot 2t dt = 2 \int_{\sqrt{3}}^{+\infty} \frac{\arctan t}{1+t^2} dt = \arctan^2 t \Big|_{\sqrt{3}}^{+\infty} = \frac{5\pi^2}{36}$.

15. 原方程化为 $\frac{dx}{dy}$ - tany $\cdot x = \sec y$,所以

$$x = e^{\int \tan y dy} \left[C + \int \sec y e^{-\int \tan y dy} dy \right] = \frac{1}{|\cos y|} \left[C + \int \sec y |\cos y| dy \right] = (C + y) \sec y.$$

16. $f'(x) = \varphi(x^2) + 2x^2 \varphi'(x^2), f'(0) = \varphi(0).$

利用导数定义,有

$$f''(0) = \lim_{x \to 0} \frac{\varphi(x^2) + 2x^2 \varphi'(x^2) - \varphi(0)}{x} = \lim_{x \to 0} \left[\frac{\varphi(x^2) - \varphi(0)}{x} + 2x\varphi'(x^2) \right]$$
$$= \lim_{x \to 0} \left[\frac{\varphi(x^2) - \varphi(0)}{x^2} x + 2x\varphi'(x^2) \right] = 0.$$

四、应用题

17. $V(t) = 2\pi \int_{0}^{t} x f(x) dx$, $S(t) = \int_{0}^{t} f(x) dx$. 由条件知

$$2\pi \int_{0}^{t} x f(x) dx = \pi t \int_{0}^{t} f(x) dx + \frac{\pi}{6} t^{4}.$$

两边关于变量 t 两次求导,则有 f'(t) = 2t,所以 $f(t) = t^2 + C$. 将条件 f(0) = 1 代入上式,得 C = 1,从而 $f(x) = x^2 + 1$ ($x \ge 0$).

18.
$$\Leftrightarrow f(x) = \sqrt{x} - ax - b, 0 \leqslant x < +\infty, \text{ if } f'(x) = \frac{1}{2\sqrt{x}} - a(0 < x < +\infty).$$

令 f'(x) = 0,得到 $x = \frac{1}{4a^2}$,且当 $0 < x < \frac{1}{4a^2}$ 时,函数 f(x) 单调递增;当 $x > \frac{1}{4a^2}$ 时,

函数 f(x) 单调递减,所以函数 f(x) 在 $x = \frac{1}{4a^2}$ 处取得最大值,且 $f(\frac{1}{4a^2}) = \frac{1}{4a} - b$.

若 4ab = 1, f(x) 的最大值为零;若 4ab > 1, f(x) 的最大值小于零;若 4ab < 1, f(x) 的最大值大于零.

所以,由零点定理并结合单调性可得,

(1) 当
$$4ab = 1$$
 时,方程 $\sqrt{x} = ax + b(x > 0, a > 0)$ 只有一个实根 $f(\frac{1}{4a^2}) = 0$.

(2) 当
$$4ab < 1$$
 时,若 $-b > 0$,则 $4ab < 0$ 时,方程 $\sqrt{x} = ax + b(x > 0, a > 0)$ 仅在 $(0, \frac{1}{4a^2})$

内有一个实根;若
$$-b \le 0$$
,则 $0 < 4ab < 1$ 时,方程 $\sqrt{x} = ax + b(x > 0, a > 0)$ 在 $(0, \frac{1}{4a^2})$

与 $(\frac{1}{4^2}, +\infty)$ 内各有一个实根,即方程有两个实根;

(3) 当 4ab > 1 时,方程 $\sqrt{x} = ax + b(x > 0, a > 0)$ 无实根.

五、综合题

19. (1)
$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)^{0/0}}{x - a} = \lim_{x \to a^{+}} f'(\xi) = A.$$

(2) 可能不存在. 比如

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}, f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

显然 $\lim_{x\to 0^+} f'(x)$ 不存在.

20.
$$\forall x \in (0,1)$$
,由泰勒公式得 $f(0) = f(x) + f'(x)(-x) + \frac{f''(\xi)}{2}x^2$,

两边在区间[0,1]上积分,有 0 =
$$\int_0^1 f(x) dx - \int_0^1 f'(x) x dx + \frac{1}{2} \int_0^1 f''(\xi) x^2 dx$$

用分部积分得到
$$\int_0^1 f'(x)x dx = x f(x) \Big|_0^1 - \int_0^1 f(x) dx = -\int_0^1 f(x) dx$$
,故有

$$\int_0^1 f(x) dx = -\frac{1}{4} \int_0^1 f''(\xi) x^2 dx,$$

所以

$$\left| \int_{0}^{1} f(x) \, \mathrm{d}x \right| \leqslant \frac{1}{4} \int_{0}^{1} |f''(\xi)| \, x^{2} \, \mathrm{d}x \leqslant \frac{M}{4} \int_{0}^{1} x^{2} \, \mathrm{d}x = \frac{M}{12}.$$

2018-1 期末试题

一、单项选择题(每小题 3 分,共 18 分)

- 1. 以下关于数列的命题,正确的是(
 - A. 一个有界数列与一个无界数列的和是无界数列
 - B. 两个无界数列的和是无界数列
 - C. 一个有界数列与一个无界数列的乘积是无界数列
 - D. 两个无界数列的乘积是无界数列
- 2. 设函数 f(x) 在 x = a 处可导,则函数 $\sqrt[3]{f(x)}$ 在 x = a 处(
 - A. 可导

B. 不连续

C. 连续但不一定可导

- D. 不可导
- 3. 设函数 f(x) 在区间(a,b) 内连续,则 f(x) 在区间(a,b) 内().

	A. 有界 B. 可导	C. 存在最大值	D. 原函数存在	
4,	函数 $f(x) = x^4 - 2x^3$ 有().			
	A. 一个极小值和一个极大值	B. 一个极小值		
	C. 两个极小值	D. 两个极大值		
5.	设函数 $f(x)$ 在区间 (a,b) 内满足 $f'(x)$ <	<0,f''(x)>0. 则在	区间(a,b)内()。	
	A. $f(x)$ 单调减少,曲线 $y = f(x)$ 下凸	B. f(x) 单调减少,	曲线 $y = f(x)$ 上凸	
	C. f(x) 单调增加,曲线 $y = f(x)$ 下凸	D. f(x) 单调增加,	曲线 $y = f(x)$ 上凸	
6.	设 $M = \int_0^{\pi/4} \sqrt{\sin x} dx, N = \int_0^{\pi/4} \sqrt{\sec x} dx$	$,K=\int_0^{\pi/4}\sqrt{\mathrm{tan}x}\mathrm{d}x,$	则 M, N, K 的大小关系为	
	().			
	$A. M < N < K \qquad B. M < K < N$	C. N < M < K	D. K < N < M	
	二、填空题(每小题 4 分,共 16 分)			
7. 设 $u = x + a \ln(1 - x) + bx \sin(3x)$ 是 x 的 3 阶无穷小,则 $a =$				
$b = \underline{\hspace{1cm}}$.				
8.	曲线 $y = x^3 - 6x^2 + 5x + 3$ 的拐点坐标之	Ы .		
$\int_{-\cos x}^{1-\cos x} \tan t dt$				
9.	$\lim_{x\to 0} \frac{\int_0^{1-\cos x} \tan t dt}{\sin x^4}$			
10 . 曲线 $x = 2\cos^3 t$, $y = 2\sin^3 t$, $0 \le t \le 2\pi$ 的长度为				
=	三、基本计算题(每小题 7 分,共 42 分)			
11	11. 求曲线 $y = \sqrt{4x^2 + 2x + 5}(x > 0)$ 的渐近线.			
12	12. 写出 $f(x) = \ln(1+x)$ 带 Lagrange 余项的 n 阶麦克劳林公式.			
13	3. 求不定积分 $I = \int \frac{\sqrt{x-3}}{2x} dx$.			
14	1. 求定积分 $I=\int_0^{1/2}x \arcsin x \mathrm{d}x$.			
	C L co			

- 15. 求反常积分 $I = \int_{0}^{+\infty} e^{-2x} \sin x dx$.
- 16. 求微分方程 $y' + \frac{y}{x} = y^2 \ln x$ 的通解.
- 四、应用题(每小题7分,共14分)
- 17. 设函数 $f(x) = \begin{cases} (1+x)^{1/x}, & x \in (-1,0) \cup (0,+\infty) \\ e, & x = 0 \end{cases}$,求 f'(x) 并讨论 f'(x) 的连续 性.
- 18. 求平面图形 $0 \le y \le \cos x$, $0 \le x \le \frac{\pi}{2}$ 绕 y 轴旋转所得立体的体积.
- 五、综合题(每小题 5 分,共 10 分)
- 19. 设函数 f(x) 在区间[a,b] 上有二阶可导,且 f(a) = f(b), $|f''(x)| \leq M$.证明: $| f'(a) + f'(b) | \leq M(b-a).$
- **20**. 设 f(x) 在区间[a,b] 上二阶可导,并且 $f''(x) \leq 0$. 证明

$$\int_{a}^{b} f(x) dx \geqslant \frac{(b-a)(f(a)+f(b))}{2}.$$

2018-1 期末试题解答

一、单项选择题

1. A 2. C 3. D 4. B 5. A 6. B

二、填空题

7.
$$a = 1, b = 1/6$$
 8. $(2, -3)$ 9. $\frac{1}{8}$ 10. 12

三、基本计算题

11.
$$k = \lim_{x \to +\infty} \frac{\sqrt{4x^2 + 2x + 5}}{x} = \lim_{x \to +\infty} \sqrt{4 + 2x^{-1} + 5x^{-2}} = 2,$$

$$b = \lim_{x \to +\infty} (\sqrt{4x^2 + 2x + 5} - 2x) = \lim_{x \to +\infty} \frac{2x + 5}{\sqrt{4x^2 + 2x + 5} + 2x}$$

$$= \lim_{x \to +\infty} \frac{2 + 5x^{-1}}{\sqrt{4 + 2x^{-1} + 5x^{-2}} + 2} = \frac{1}{2},$$

于是得斜渐近线 $y = 2x + \frac{1}{2}$,曲线没有其他渐近线.

12.
$$f'(x) = \frac{1}{1+x}, f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}, f^{(n+1)}(x) = \frac{(-1)^n n!}{(1+x)^{n+1}}$$

$$f(0) = 0, f'(0) = 1, f^{(n)}(0) = (-1)^{n-1}(n-1)!$$

$$\text{Fill } \ln(1+x) = x - \frac{x^2}{2} + \dots + \frac{(-1)^{n-1}}{n} x^n + \frac{(-1)^n x^{n+1}}{(n+1)(1+\theta x)^{n+1}}, 0 < \theta < 1, x > -1.$$

13. 作代换 $\sqrt{x-3} = t, x = t^2 + 3, t > 0, dx = 2tdt$,得到

$$I = \int \frac{t^2}{t^2 + 3} dt = t - 3 \int \frac{1}{t^2 + 3} dt = \sqrt{x - 3} - \sqrt{3} \arctan \frac{\sqrt{x - 3}}{\sqrt{3}} + C.$$

14.
$$I = \frac{1}{2}x^2 \arcsin x \Big|_{0}^{1/2} - \frac{1}{2} \int_{0}^{1/2} \frac{x^2}{\sqrt{1 - x^2}} dx = \frac{\pi}{48} - \frac{1}{2} \int_{0}^{\pi/6} \sin^2 t dt$$

$$= \frac{1}{4} \int_{0}^{\pi/6} \cos 2t dt - \frac{\pi}{48} = \frac{\sqrt{3}}{16} - \frac{\pi}{48}.$$

15.
$$J = \int e^{-2x} \sin x dx = \int e^{-2x} d(-\cos x) = -e^{-2x} \cos x - \int (-\cos x)(-2e^{-2x}) dx$$

$$= -e^{-2x} \cos x - 2 \int e^{-2x} d\sin x = -e^{-2x} \cos x - 2(e^{-2x} \sin x - \int \sin x (-2e^{-2x}) dx)$$

$$\text{MUJ} = -e^{-2x} \frac{2 \sin x + \cos x}{5} + C,$$

$$\text{WI} = \left[-e^{-2x} \frac{2 \sin x + \cos x}{5} \right]_{0}^{+\infty} = \frac{1}{5}.$$

16. 所给方程是伯努利方程. 令 u=1/y,将原方程化为 $\frac{\mathrm{d}u}{\mathrm{d}x}-\frac{u}{x}=-\ln x$. 根据通解公式得到

$$u = x \left(\int -\frac{\ln x}{x} dx + C \right) = x \left(C - \frac{\ln^2 x}{2} \right).$$
$$xy \left(C - \frac{\ln^2 x}{2} \right) = 1.$$

所以原方程通解为

四、应用题

17. 当 $x \in (-1,0) \cup (0,+\infty)$ 耐,

$$f'(x) = (1+x)^{1/x} \frac{x - (1+x)\ln(1+x)}{x^2(1+x)}.$$

$$\overline{m} \ f'(0) = \lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x} = e \lim_{x \to 0} \frac{e^{\frac{\ln(1+x)}{x} - 1} - 1}{x} = e \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = -\frac{e}{2}.$$

又因
$$\lim_{x\to 0} f'(x) = e \lim_{x\to 0} \frac{x - (1+x)\ln(1+x)}{x^2} = e \lim_{x\to 0} \frac{-\ln(1+x)}{2x} = -\frac{e}{2} = f'(0).$$

所以 f'(x) 在 x = 0 连续. 在其他地方 f'(x) 显然连续. 综上 f'(x) 在 $(-1, +\infty)$ 处处连续.

18.
$$V = 2\pi \int_{0}^{\pi/2} x \cos x dx = 2\pi [x \sin x + \cos x]_{0}^{\pi/2} = \pi^{2} - 2\pi.$$

五、综合题

19. 由罗尔定理知存在 $c \in (a,b)$ 使得 f'(c) = 0,再用拉格朗日中值定理可得

$$| f'(a) - f'(c) | = | f''(\xi)(a - c) | \leq M(c - a), \text{ prodef} | f'(a) | \leq M(c - a),$$

$$| f'(b) - f'(c) | = | f''(\eta)(b - c) | \leq M(b - c), \text{ prodef} | f'(b) | \leq M(b - c),$$

进而得

$$|f'(a) + f'(b)| \le |f'(a)| + |f'(b)| \le M(b-a).$$

对 F(t) 求导得到

$$F'(t) = \frac{f(t) - f(a) - (t - a)f'(t)}{2} = \frac{(t - a)(f'(\xi) - f'(t))}{2} \geqslant 0,$$

从而 F(t) 单调递增, $F(b) \geqslant F(a) = 0$, 即不等式成立.

第二学期试券

2016-2 期中试题

一、基本计算题(每小题 6 分,共 60 分)

- 1. 已知微分方程 y'' + a(x)y' + b(x)y = f(x), $f(x) \neq 0$ 有三个解 $y_1 = x$, $y_2 = e^x$, $y_3 = e^{3x}$, 求此微分方程满足初始条件 y(0) = 2, y'(0) = 3 的特解.
- 2. 设 y = y(x) 在区间 $|x| < \frac{\pi}{2}$ 满足微分方程 $y'' (y')^2 = 1$, $y|_{x=0} = 0$, $y'|_{x=0} = 0$, 求特解.
- 3. 求过点 M(2,-2,3) 与直线 $L_1: \frac{x+1}{1} = \frac{y-2}{2} = \frac{z-4}{0}$ 垂直相交的直线 L 方程.
- 4. 设 $\begin{cases} x+y-z=1\\ x^2+y^2+z^2=3 \end{cases}$,求其在点(1,1,1)处的切线方程和法平面方程.
- 5. 设 $z = f(xe^y)$,其中 f 有一阶导数,f'(0) = 2,求 $\frac{\partial^2 z}{\partial x \partial y}(0,1)$.
- 6. 设函数 f(u,v,w) 二阶偏导连续,z = f(x,x+y,xy),求混合偏导函数 $\frac{\partial^2 z}{\partial x \partial y}$.
- 7. 计算 $I = \int_0^1 dy \int_y^{y^{1/3}} e^{x^2} dx$.
- 8. 计算二重积分 $I = \iint_D (x^3 \sin y + (x+y)^2) dx dy$,其中 $D: x^2 + y^2 \le 2y$.
- 9. 计算三重积分 $I=\iint_V xy^2z^3 dxdydz$,其中 V 位于第一卦限,由曲面 z=0, z=xy, y=x, y=1 围成.
- 10. 计算三重积分 $I = \iint_{\mathbb{V}} (x+z) \, \mathrm{d}v$,其中 $V: \sqrt{x^2 + y^2} \leqslant z \leqslant \sqrt{2 x^2 y^2}$.

二、综合计算题(每小题 8 分,共 40 分)

- 11. 设方程组 $\begin{cases} F(x+y,y-z)=0\\ z=f(xy) \end{cases},$ 其中 F,f 具有连续的一阶偏导,且 $F_1-yf'F_2\neq 0$,求 $\frac{\mathrm{d}z}{\mathrm{d}y}.$
- 12. 在椭球面 $x^2 + 2y^2 + 2z^2 = 1$ 上求一点,使函数 $f(x,y,z) = x^2 + y^2 z$ 在该点处沿方向 $n = \{1, -2, 3\}$ 的方向导数最大.
- 13. 设函数 f(x) 满足 $f'(x) + 3f(x) + 2x \int_0^1 f(xt) dt = e^{-x}$,且 f(0) = 1,求 f(x).
- 14. 计算 $I = \iint_D |x + y 1| \, dx dy$,其中 D 是圆域: $D: x^2 + y^2 \leq 1$.
- **15**. 设 $f(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$, 讨论 f(x,y) 在原点(0,0) 处的(1) 连续性,(2) 偏导数存在性,(3) 可 微性,(4) 沿方向 $n = \{\cos\alpha, \sin\alpha\}$ 的方向导数的存在性,对存在情形计算出结果.

2016-2 期中试题解答

一、基本计算题

1. 因 $e^x - x$, $e^{3x} - x$ 是 y'' + a(x)y' + b(x)y = 0 的解,且不成比例,所以,原微分方程的通解为

$$y = C_1(e^x - x) + C_2(e^{3x} - x) + x.$$

将 y(0) = 2, y'(0) = 3 代入上式,得到 $C_1 = C_2 = 1$,所以所求特解为 $y = e^x + e^{3x} - x$.

- 2. 令 p(x) = y',则原方程化为 $p' = p^2 + 1$, $p \mid_{x=0} = 0$,分离变量,得 $\frac{\mathrm{d}p}{1+p^2} = \mathrm{d}x$;积分,得 $\operatorname{arctan}p = x + C$,由初始条件 C = 0,有 $p = y'(x) = \tan x$,再积分,并代入 $y \mid_{x=0} = 0$,得 $y(x) = -\ln(\cos x)$, $|x| < \frac{\pi}{2}$.
- 3. 过 M(2,-2,3) 与直线 $L_1: \frac{x+1}{1} = \frac{y-2}{2} = \frac{z-4}{0}$ 垂直的平面方程为(x-2)+2(y+2) = 0,将 L_1 的参数式方程 x=-1+t, y=2+2t, z=4 代人平面方程,得 t=-1,从而得交点 P(-2,0,4);所求的直线就是过点 M 和点 P 的直线,其方程为 $\frac{x+2}{4} = \frac{y}{-2} = \frac{z-4}{-1}$.
- 4. $\Leftrightarrow F(x,y,z) = x + y z 1$, $G(x,y,z) = x^2 + y^2 + z^2 3$, \emptyset $\nabla F = \{1,1,-1\}, \nabla G = 2\{x,y,z\} \mid_{(1,1,1)} = 2\{1,1,1\},$

切线的方向矢量为
$$s = \{1,1,-1\} \times \{1,1,1\} = \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} = 2\{1,-1,0\},$$

所以所求的切线方程为 $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-1}{0}$,法平面方程为x-y=0.

- 5. $\frac{\partial z}{\partial x} = e^y f'(xe^y), \frac{\partial z}{\partial x}(0, y) = e^y f'(0) = 2e^y,$ 由于 $\frac{d}{dy}(\frac{\partial z}{\partial x}(0, y)) = 2e^y,$ 所以由偏导定义知 $\frac{\partial^2 z}{\partial x \partial y}(0, 1) = 2e.$
- 6. $z_x = f_1 + f_2 + yf_3$, $z_{xy} = f_{12} + xf_{13} + f_{22} + xf_{23} + f_3 + yf_{32} + xyf_{33}$ $= f_{12} + xf_{13} + f_{22} + (x + y)f_{23} + f_3 + xyf_{33}$.
- 7. 交換积分次序得 $I = \int_0^1 e^{x^2} dx \int_{x^3}^x dy = \int_0^1 e^{x^2} (x x^3) dx = \frac{1}{2} \int_0^1 e^t (1 t) dt = \frac{e 2}{2}$.
- 8. 利用对称性以及极坐标,得

$$I = \iint_D (x^2 + y^2) dx dy = \int_0^{\pi} d\theta \int_0^{2\sin\theta} r^2 \cdot r dr$$
$$= 4 \int_0^{\pi} \sin^4\theta d\theta = 8 \int_0^{\pi/2} \sin^4\theta d\theta = \frac{3\pi}{2}.$$

9.
$$I = \iint_D dx dy \int_0^{xy} xy^2 z^3 dz (D$$
 是由直线 $x = 0, x = 1, y = x, y = 1$ 围成的区域)
$$= \frac{1}{4} \iint_D x^5 y^6 dx dy = \frac{1}{4} \int_0^1 dx \int_x^1 x^5 y^6 dy$$

$$= \frac{1}{28} \int_0^1 (x^5 - x^{12}) dx = \frac{1}{28} \left(\frac{1}{6} - \frac{1}{13} \right) = \frac{1}{4 \cdot 6 \cdot 13}.$$

10. 区域 V 如图所示. 利用奇偶性及柱面坐标,有

$$I = \iiint_{V} z \, \mathrm{d}v = \int_{0}^{2\pi} \mathrm{d}\theta \int_{0}^{1} r \, \mathrm{d}r \int_{r}^{\sqrt{2-r^2}} z \, \mathrm{d}z$$
$$= \pi \int_{0}^{1} (2-2r^2) r \, \mathrm{d}r = \frac{\pi}{2}.$$

二、综合计算题

11. 视 x,z 为因变量,方程组两边对 y 求导,有

$$\begin{split} & \left\{ F_1 \left(\frac{\mathrm{d}x}{\mathrm{d}y} + 1 \right) + F_2 \left(1 - \frac{\mathrm{d}z}{\mathrm{d}y} \right) = 0 \\ & \left\{ \frac{\mathrm{d}z}{\mathrm{d}y} = \left(x + y \, \frac{\mathrm{d}x}{\mathrm{d}y} \right) f' \right. \\ & \left. \mp \underbrace{\frac{\mathrm{d}z}{\mathrm{d}y}} = \frac{f' \left[(x - y) F_1 - y F_2 \right]}{F_1 - y f' F_2} (F_1 - y f' F_2 \neq 0). \end{split}$$

2016-2(期中)-10图

12. 设所求点为
$$M(x,y,z)$$
, $\nabla f(M) = \{2x,2y,-1\}$, $n^{\circ} = \frac{1}{\sqrt{14}}\{1,-2,3\}$, $f(x,y,z)$ 在点

M(x,y,z) 处的方向导数为 $\frac{\partial f(M)}{\partial n}=\frac{1}{\sqrt{14}}(2x-4y-3)$. 构造拉格朗日函数

$$L(x,y,z,\lambda) = (2x-4y-3) + \lambda(x^2+2y^2+2z^2-1),$$

$$\begin{cases} L_{x} = 2 + 2\lambda x = 0, \\ L_{y} = -4 + 4\lambda y = 0, \\ L_{z} = 4\lambda z = 0, \\ L_{\lambda} = x^{2} + 2y^{2} + 2z^{2} - 1 = 0 \end{cases} \Rightarrow x = -y, z = 0,$$

代人最后一个方程,得 $x=\pm\frac{\sqrt{3}}{3},y=\mp\frac{\sqrt{3}}{3},z=0$,即受检点为 $M_1(\frac{\sqrt{3}}{3},-\frac{\sqrt{3}}{3},0)$,

$$M_2(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},0).$$

因
$$\frac{\partial f(M_1)}{\partial n} = \frac{2\sqrt{3}-3}{\sqrt{14}}, \frac{\partial f(M_2)}{\partial n} = \frac{-2\sqrt{3}-3}{\sqrt{14}},$$
所以 $M_1(\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, 0)$ 为所求.

13. $\diamondsuit u = tx$,则 $x \int_0^1 f(xt) dt = \int_0^1 f(u)(du)$,从而

$$f'(x) + 3f(x) + 2\int_0^x f(u) du = e^{-x}$$
.

求导得

$$f''(x) + 3f'(x) + 2f(x) = -e^{-x}$$
. (*)

由特征方程 $r^2 + 3r + 2 = 0$ 解得相异实根 r = -2, r = -1, 所以,对应齐次方程的通解为 $Y = C_1 e^{-2x} + C_2 e^{-x}$,且可设 $y^* = Ax e^{-x}$,代入方程(*),得 A = -1,所以

$$y = f(x) = C_1 e^{-2x} + C_2 e^{-x} - x e^{-x}$$
.

将
$$f'(0) = -2$$
, $f(0) = 1$ 代入, 得 $C_1 = 0$, $C_2 = 1$, 故 $y = f(x) = (1-x)e^{-x}$.

14. 用 x + y = 1 将区域 D 分成 $D_1 = D \cap \{(x,y) \mid x + y \ge 1\}$ 和 $D_2 = D \setminus D_1$ 两部分,如 图所示. 记 f = x + y - 1.

$$\begin{split} I &= \iint_{D_1} f \mathrm{d}\sigma - \iint_{D_2} f \mathrm{d}\sigma \\ &= \iint_{D_1} f \mathrm{d}\sigma - \left[\iint_{D} f \, \mathrm{d}\sigma - \iint_{D_1} f \mathrm{d}\sigma \right] = 2 \iint_{D_1} f \, \mathrm{d}\sigma - \iint_{D} f \, \mathrm{d}\sigma. \\ &\boxplus \iint_{D} f \, \mathrm{d}\sigma = \iint_{x^2 + y^2 \leqslant 1} (x + y - 1) \, \mathrm{d}\sigma \\ &= - \iint_{x^2 + y^2 \leqslant 1} \mathrm{d}\sigma = -\pi, \\ &\iint_{D_1} f \, \mathrm{d}\sigma = \int_0^1 \mathrm{d}x \int_{1-x}^{\sqrt{1-x^2}} (x + y - 1) \, \mathrm{d}y \end{split}$$

2016-2(期中)-14图

$$\begin{split} \iint_{B_1} f d\sigma &= \int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} (x+y-1) dy \\ &= \int_0^1 [1-x-\sqrt{1-x^2}+x \, \sqrt{1-x^2}] dx = \frac{5}{6} - \frac{\pi}{4}, \\ \text{Fill } I &= 2 \iint_B f d\sigma - \iint_B f d\sigma = \frac{5}{3} + \frac{\pi}{2}. \end{split}$$

- 15. (1) 由于 $f(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$ 为初等函数,且在全平面有定义,所以 f(x,y) 在(0,0) 处连续.
 - (2) 因为 f(x,0) = 0, 所以 $f_x(0,0) = 0$; 同理 $f_y(0,0) = 0$.
 - (3) 因为 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \frac{|xy^2|^{1/3}}{\sqrt{x^2+y^2}}$ 极限不存在,所以 f(x,y) 在原点不可微.
 - (4) 利用方向导数的定义,得

$$\frac{\partial f(0,0)}{\partial n} = \lim_{\rho \to 0^+} \frac{f(\rho \cos \alpha, \rho \sin \alpha)}{\rho} = \lim_{\rho \to 0^+} \cos^{1/3} \alpha \sin^{2/3} \alpha = \cos^{1/3} \alpha \sin^{2/3} \alpha.$$

2017-2 期中试题

一、基本计算题(每小题 6 分,共 60 分)

- 1. 设直线 l 过点 $M_0(1,2,0)$,且平行于平面 $\pi: x-2y+z-4=0$,又与直线 $l_1: \frac{x-2}{1} = \frac{y-1}{2}$ $= \frac{z-2}{1}$ 相交,求此直线的方程.
- 2. 求曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ z = x^2 + y^2 \end{cases}$ 在点(1,1,2) 处的切矢量、法平面方程.
- 3. 求空间曲线 $\begin{cases} x^2 + y^2 + z^2 = a^2 \\ x^2 + y^2 = ax \end{cases}$ (a > 0) 分别在 xOy 面和 zOx 面的投影曲线方程.
- 4. 已知 $z(x,y) = \int_0^1 e^{t^2} |x+y^2-t| dt$,其中 $0 < x+y^2 < 1$,求 z_{xy} .
- 5. 设二元函数 z = f(x,y) 满足方程 F(x+z,xy) = 0,且 f(x,y),F(s,t) 均具有连续的一阶偏导数,且 $f_2F_1 + yf_2F_2 xf_1F_2 \neq 0$,求 $\frac{\mathrm{d}x}{\mathrm{d}z}$.

- 7. 求 $I = \iint_D (2x + 3y 1)^2 dx dy$,其中 $D: |x| + |y| \le 1$.
- 8. 设 f(x,y) 连续, $f(x,y) = xy + \iint_D f(x,y) \, dx \, dy$,D 是由 y = 0, $y = x^2$ 和 x = 1 所围区域,求 f(x,y).
- 9. 求 $I = \iint_{\Omega} (x^2 + y^2) dv$,其中 Ω 是由平面曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周所得的旋转曲面与平面 z = 8 所围成的区域.
- **10**. 求 $I = \iint_{\Omega} z^2 dv$,其中 $\Omega: 0 \le z \le \sqrt{a^2 x^2 y^2}$, a > 0.
- 二、综合计算题(每小题8分,共40分)
- 11. 设函数 $u = f(x \sin y)$,其中 f(t) 具有连续的二阶导数,矢量 $n = \{3,4\}$,且 f'(0) = 5,求 $\frac{\partial u}{\partial n}$, $\frac{\partial^2 u}{\partial n \partial x}$ (0,0).
- 12. 在平面曲线 $x^2 + 2y^2 2x = 88$ 上求一点,使函数 $f(x,y) = 3x^2 + y^2$ 在该点处沿方向 $n = \{3,4\}$ 的方向导数最大.
- 13. 求由抛物线 $y^2 = ax$ 与圆 $x^2 + y^2 = 2ax(a > 0)$ 所围的包含一段 x 轴的区域 D 的面积 S.
- 14. 求 $I = \iint_D |x^2 + y^2 1| dx dy$,其中 D 是矩形区域: $|x| \le 2$, $|y| \le 2$.
- **15**. 设二元函数 f(x,y) 在原点(0,0) 处存在二阶偏导数 $f_{xx}(0,0)$ 和 $f_{yy}(0,0)$. 判断下列的 结论是否正确,如果正确,请给出理由,如果不正确,给出反例.
 - (1) $f_x(x,0)$ 在原点(0,0) 处关于 x 连续.
 - (2) 二元函数 f(x,y) 在原点(0,0) 处连续.

2017-2 期中试题解答

一、基本计算题

1. 设 l 与 l_1 的交点为 Q,则其坐标应为(2+t,1+2t,2+t),从而直线 l 的方向矢量为 $s = M_0 Q$ = $\{t+1,2t-1,t+2\}$. 因直线 l 平行于平面 π ,有 $n \perp s$,即 $n \cdot s = 0$,

亦即(t+1)+(-2)(2t-1)+(t+2)=0,解得 $t=\frac{5}{2}$. 故直线 l 的方程为

$$\frac{x-1}{7/2} = \frac{y-2}{4} = \frac{z-0}{9/2}.$$

- 2. 令 $F(x,y,z) = x^2 + y^2 + z^2 6 = 0$, $G(x,y,z) = x^2 + y^2 z = 0$, 则 $\nabla F(1,1,2) = 2\{1,1,2\}$, $\nabla G(1,1,2) = \{2,2,-1\}$, 所以切矢量为 $\tau = \{1,1,2\} \times \{2,2,-1\} = -5\{1,-1,0\}$, 所求的法平面方程为 x-y=0
- 3. 在 xOy 面的投影曲线为 $\begin{cases} x^2 + y^2 = ax \\ z = 0 \end{cases}$; 在 zOx 面的投影曲线为 $\begin{cases} z^2 = a^2 - ax \\ y = 0 \end{cases}$ $(-a \leqslant z \leqslant a)$.

4.
$$z = \int_0^{x+y^2} e^{t^2} (x+y^2-t) dt + \int_{x+y^2}^1 e^{t^2} (t-x-y^2) dt$$

$$= (x+y^2) \int_0^{x+y^2} e^{t^2} dt - \int_0^{x+y^2} t e^{t^2} dt + \int_{x+y^2}^1 t e^{t^2} dt - (x+y^2) \int_{x+y^2}^1 e^{t^2} dt$$

$$\text{Fig. 2.} \quad z_x = \int_0^{x+y^2} e^{t^2} dt - \int_{x+y^2}^1 e^{t^2} dt, z_{xy} = 4y e^{(x+y^2)^2}.$$

5. 由题设知,方程组 $\begin{cases} z = f(x,y) \\ F(x+z,xy) = 0 \end{cases}$ 确定隐函数 x = x(z) 和 y = y(z),方程组两边对 z 求导,得

$$\begin{cases} 1 = f_1 \frac{\mathrm{d}x}{\mathrm{d}z} + f_2 \frac{\mathrm{d}y}{\mathrm{d}z}, \\ F_1 \cdot \left(1 + \frac{\mathrm{d}x}{\mathrm{d}z}\right) + F_2 \cdot \left(y \frac{\mathrm{d}x}{\mathrm{d}z} + x \frac{\mathrm{d}y}{\mathrm{d}z}\right) = 0. \end{cases}$$

$$\mathbf{R} \frac{\mathrm{d}x}{\mathrm{d}z} = -\frac{xF_2 + f_2F_1}{f_2F_1 + yf_2F_2 - xf_1F_2}.$$

6. 交换积分次序得

$$I = \int_0^1 dx \int_0^x x^2 \cos(xy) dy = \int_0^1 x \sin x^2 dx = \frac{1}{2} (1 - \cos 1).$$

7. 利用奇偶对称性及轮换对称性(见图),得

$$I = \iint_{D} (4x^{2} + 9y^{2} + 1) dxdy = 13 \iint_{D} x^{2} dxdy + \iint_{D} dxdy.$$

记 D_1 为区域D在第一象限的区域,则

$$I = 52 \iint_{D_1} x^2 dx dy + 2 = 52 \int_0^1 dx \int_0^{1-x} x^2 dy + 2 = \frac{19}{3}.$$

8. 如图所示,设 $A = \iint_D f(x,y) dxdy$,则f(x,y) = xy + A,从而

$$A = \iint_{D} xy \, dx \, dy + \iint_{D} A \, dx \, dy = \int_{0}^{1} dx \int_{0}^{x^{2}} xy \, dy + A \int_{0}^{1} dx \int_{0}^{x^{2}} dy = \frac{1}{12} + \frac{1}{3} A,$$

解得 $A = \frac{1}{8}$,故 $f(x,y) = xy + \frac{1}{8}$.

2017-2(期中)-7图

2017-2(期中)-8图

2017-2(期中)-9图

9. 旋转曲面方程为 $z = \frac{1}{2}(x^2 + y^2)$. 记 Ω 在xOy 面投影的区域(见图) 为 $D: x^2 + y^2 \le 16$,

所以

$$I = \iiint_{\Omega} (x^2 + y^2) dv = \int_{0}^{2\pi} d\theta \int_{0}^{4} r dr \int_{\frac{1}{2}r^2}^{8} r^2 dz = 2\pi \int_{0}^{4} r^3 \left(8 - \frac{r^2}{2}\right) dr = \frac{1024}{3}\pi.$$

10.
$$I = \int_0^a z^2 dz \iint_{x^2+y^2 \leqslant a^2-z^2} dx dy = \pi \int_0^a z^2 (a^2-z^2) dz = \frac{2\pi}{15} a^5.$$

二、综合计算题

11. 由于
$$\frac{\partial u}{\partial x} = f'(x\sin y)\sin y, \frac{\partial u}{\partial y} = f'(x\sin y)x\cos y,$$
所以
$$\frac{\partial u}{\partial n} = \frac{f'(x\sin y)}{5}(3\sin y + 4x\cos y).$$

利用偏导数的定义,得 $\frac{\partial^2 u}{\partial n \partial x}(0,0) = \lim_{x \to 0} \frac{4f'(0)x}{5x} = \frac{4f'(0)}{5} = 4.$

12. 设所求点为 M(x,y), 由 $\nabla f(x,y) = \{6x,2y\}$, $n^{\circ} = \frac{1}{5}\{3,4\}$, 得 f(x,y) 在点 M(x,y) 沿着方向 $n = \{3,4\}$ 的方向导数为 $\frac{\partial f}{\partial n}(x,y) = \frac{2}{5}(9x+4y)$. 构造拉格朗日函数

$$L(x,y,\lambda) = 9x + 4y + \lambda(x^2 + 2y^2 - 2x - 45).$$

$$L_x = 9 + 2\lambda x - 2\lambda = 0$$
,
会 $L_y = 4 + 4\lambda y = 0$, 由前 2 个方程可得 $2(x-1) = 9y$,代入最后一个方
 $L_\lambda = x^2 + 2y^2 - 2x - 88 = 0$.

程,得 y=2,x=10 和 y=2,x=-8,即受检点为 $M_1(10,2)$, $M_2(-8,-2)$. 将其代人 $\frac{\partial f}{\partial \mathbf{n}}(x,y)$,比较可得 $M_1(10,2)$ 为所求.

13. 区域 D 如图所示,联立 $\begin{cases} y^2 = ax \\ y^2 = 2ax - x^2 \end{cases}$, 得交点(0,0), (a,a), (a,-a). 所求面积为半圆面积(阴影部分) 与灰色部分面积之和,即

$$S = \frac{1}{2}\pi a^2 + 2\int_0^a dy \int_{y^2/a}^a dx = \frac{1}{2}\pi a^2 + 2\int_0^a \left(a - \frac{y^2}{a}\right) dy$$
$$= \frac{1}{2}\pi a^2 + 2a^2 - \frac{2}{3}a^2 = \frac{1}{2}\pi a^2 + \frac{4}{3}a^2.$$

2017-2(期中)-13图

2017-2(期中)-14图

14. 如图所示,记区域 $D_1: x^2 + y^2 \leq 1$, $D_2 = D \setminus D_1$. 记函数 $f(x,y) = x^2 + y^2 - 1$, 则 $I = -\iint_{D_1} f(x,y) dx dy + \iint_{D_2} f(x,y) dx dy = \iint_{D} f(x,y) dx dy - 2 \iint_{D_1} f(x,y) dx dy.$

而
$$\iint_D f(x,y) dxdy = \iint_D (x^2 + y^2 - 1) dxdy = 8 \int_0^2 x^2 dx \int_0^2 dy - 16 = \frac{80}{3},$$

$$\iint_{D_1} f(x,y) dxdy = \iint_{D_1} (x^2 + y^2 - 1) dxdy = 2\pi \int_0^1 r^3 dr - \pi = -\frac{\pi}{2},$$
所以 $I = \frac{80}{3} + \pi.$

15. (1) 正确. 因为根据偏导数定义知 $f_{xx}(0,0) = \frac{\mathrm{d}f_{x}(x,0)}{\mathrm{d}x} \bigg|_{x=0}$,而由一元函数的可导必连续的结论知 f(x,0) = 0 在原点(0,0) 处连续.

(2) 不正确. 如 $f(x,y) = \begin{cases} 0, xy = 0 \\ 1, xy \neq 0 \end{cases}$ 在原点(0,0) 处不连续. 但是因为 f(x,0) = 0,所以 $f_x(x,0) = 0$,进而有 $f_{xx}(0,0) = 0$. 类似可得 $f_{yy}(0,0) = 0$.

2018-2 期中试题

一、基本计算题(每小题 6 分,共 60 分)

- 1. 求微分方程 $yy'' + (y')^2 = 0$ 满足初始条件 $y(0) = 1, y'(0) = \frac{1}{2}$ 的特解.
- 2. 设 $y = e^{x}(C_1 \sin 2x + C_2 \cos 2x)$ 为某二阶常系数齐次微分方程的通解,求此微分方程.
- 3. 已知点 A(3,-3,1) 与点 B(3,-2,2). 若 $\overrightarrow{AM}=3\overrightarrow{AB}$,求矢量 \overrightarrow{OM} 的方向余弦.
- 4. 判断直线 $L_1: \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-4}{3}$ 与直线 $L_2: \frac{x-1}{1} = \frac{y+3}{2} = \frac{z-6}{5}$ 是否共面.
- 5. 讨论二重极限 $\lim_{(x,y)\to(0,0)}\frac{xy^2}{x+y}$. 若极限存在求其值,若不存在说明理由.
- 6. 已知平面曲线由方程 $x^2 + y^3 + \ln(x + y) 3 = 0$ 确定,求点 x = 2, y = -1 处的法线方程.
- 7. 设 $\varphi(u,v)$ 有连续偏导数,方程 $\varphi(cx-az,cy-bz)=0$ 确定隐函数 z=z(x,y). 证明 $az_x+bz_y=c$.
- 8. 计算 $I = \int_0^2 dy \int_0^2 \max\{xy, 1\} dx$.
- 9. 计算 $I = \iint_D \cos(x^2 + y^2) dx dy$,其中 $D = \{(x,y) \mid x^2 + y^2 \leq 4, \mid x \mid \geqslant \mid y \mid \}$ (由 $x^2 + y^2$ = 4 和 $y^2 = x^2$ 围成的包含 x 轴的区域).
- 10. 计算 $I = \iint_{\mathbb{R}} \sqrt{x^2 + y^2} dx dy dz$,其中区域 V 由曲面 z = 0, $z = 4 x^2 y^2$ 围成.

二、综合计算题(每小题 8 分,共 40 分)

- 11. 求解微分方程 $y'' 3y' + 2y = e^{2x} + e^{3x}$.
- **12.** 求函数 $u = 2x + y^2z$ 在点(1, -1, -1) 沿椭球面 $x^2 + 2y^2 + 3z^2 = 6$ 的外法线方向的方向导数.
- 13. 求函数 u = x + 3z 在曲线 $\begin{cases} x + 2y 3z = 2 \\ x^2 + y^2 = 2 \end{cases}$ 上的最大值与最小值.

- 14. 求积分 $I = \iint_V x^2 dx dy dz$,其中区域 $V: x^2 + y^2 + z^2 \leq 2z$.
- **15**. 设函数 $f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ (1) 证明 f(x,y) 在(0,0) 可微;(2) 求 $z_{xy}(0,0)$.

2018-2 期中试题解答

一、基本计算题

1. 设 y' = p(y),原方程化为 $yp \frac{dp}{dy} + p^2 = 0$. 根据初始条件舍去 p = 0. 解一阶方程得到 $p = \frac{C_1}{y}$,代入初始条件得到 $C_1 = \frac{1}{2}$. 于是有 $\frac{dy}{dx} = \frac{1}{2y}$,解得 $x = y^2 + C_2$. 再利用初始条件得 $y = \sqrt{1+x}$.

另解 由 $yy'' + (y')^2 = 0$ 得 $(yy')^2 = 0$,所以 $yy' = C_1$,由 y(0) = 1, $y'(0) = \frac{1}{2}$ 得 C_1 = $\frac{1}{2}$;分离变量 $ydy = \frac{1}{2}dx$ 或 2ydy = dx,因此 $y^2 = x + C$,由 y(0) = 1 得 C = 1,所以 $y = \sqrt{1+x}$.

- 2. 直接观察到特征根 $r_{1,2} = 1 \pm 2i$,所以特征方程为 $r^2 2r + 5 = 0$. 于是,所求微分方程为 y'' 2y' + 5y = 0.
- 3. 易得 $\overrightarrow{AM} = \{0,3,3\}, \overrightarrow{OM} = \{3,0,4\}.$ 单位化以后得到 $\cos \alpha = \frac{3}{5}, \cos \beta = 0, \cos \gamma = \frac{4}{5}.$
- 4. 由已知得到点 $P_1(-1,2,4)$, $P_2(1,-3,6)$, 以及 $s_1 = \{2,-1,3\}$, $s_2 = \{1,2,5\}$. 从而得到

$$\overline{P_1P_2} \cdot (s_1 \times s_2) = \begin{vmatrix} 2 & -5 & 2 \\ 2 & -1 & 3 \\ 1 & 2 & 5 \end{vmatrix} = 23 \neq 0.$$

因此两条直线为异面直线.

- 5. 极限不存在. 取路径 y = 0, 极限为 0. 取路径 $x = -y + y^3$, 极限为 $\lim_{y \to 0} \frac{-y^3 + y^5}{y^3} = -1$. 因此二重极限不存在.
- 6. $\% f(x,y) = x^2 + y^3 + \ln(x+y) 3,$

$$\nabla f = \left\{2x + \frac{1}{x+y}, 3y^2 + \frac{1}{x+y}\right\}.$$

法线方向矢量为 $n = \nabla f(2, -1) = \{5, 4\}$. 所求的法线方程为 $\frac{x-2}{5} = \frac{y+1}{4}$,即 4x - 5y - 13 = 0.

- 7. 根据隐函数求导得到 $z_x = \frac{c\varphi_u}{a\varphi_u + b\varphi_v}$, $z_y = \frac{c\varphi_v}{a\varphi_u + b\varphi_v}$ 代人即得 $az_x + bz_y = c$.
- 8. 由题设知积分区域为正方形区域 $0 \le x \le 2, 0 \le y \le 2$. 用 xy = 1 将区域分成 D_1 与 D_2 (见图),则

$$I = \iint_{D_1} xy \, d\sigma + \iint_{D_2} d\sigma = \int_{1/2}^2 x \, dx \int_{1/x}^2 y \, dy + 1 + \int_{1/2}^2 dx \int_0^{1/x} dy = \frac{19}{4} + \ln 2.$$

9. 区域包含两个部分(见图). 根据对称性,采用极坐标得到 $I=4\int_0^{\pi/4}\mathrm{d}\theta\int_0^2r\cos r^2\mathrm{d}r$,积分得

$$I = 4 \cdot \frac{\pi}{4} \cdot \frac{1}{2} \sin^2 r^2 \Big|_0^2 = \frac{\pi \sin 4}{2}.$$

10. 区域如图所示,用柱面坐标

$$I = \iint_{D} dx dy \int_{0}^{4-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} dz = \int_{0}^{2\pi} d\theta \int_{0}^{2} r^{2} (4-r^{2}) dr = \frac{128\pi}{15}.$$

2018-2(期中)-8图

2018-2(期中)-9图

2018-2(期中)-10图

二、综合计算题

11. 方程的特征方程为 $r^2 - 3r + 2 = 0$,解得特征根 $r_1 = 1$, $r_2 = 2$,所以对应齐次方程的通解为

$$Y = C_1 e^x + C_2 e^{2x}$$
.

分别求解非齐次项 e^{2x} , e^{3x} 所对应的特解. 设 e^{3x} 对应的特解为 $y_1 = Ae^{3x}$, 解得 A = 1/2. 设 e^{2x} 对应的特解为 $y_2 = Bxe^{2x}$, 解得 B = 1. 所求微分方程通解为

$$y = Y + y_1 + y_2 = C_1 e^x + C_2 e^{2x} + \frac{1}{2} e^{3x} + x e^{2x}.$$

12. 在点(1,-1,-1) 处椭球面的外法线方向为 $\mathbf{n} = \{2x,4y,6z\} \mid_{(1,-1,-1)} = \{2,-4,-6\}.$ 单位化得到 $\mathbf{n}^{\circ} = \frac{\{1,-2,-3\}}{\sqrt{14}}$. 在点(1,-1,-1) 处 $\mathbb{V}u(1,-1,-1) = \{2,2,1\}$. 故所求方向导数为 $\frac{\partial u}{\partial n} = \mathbb{V}u \cdot \mathbf{n}^{\circ} = -\frac{5}{\sqrt{14}}$.

13. 构造 Lagrange 函数

$$L(x, y, z, \lambda, \mu) = x + 3z + \lambda(x + 2y - 3z - 2) + \mu(x^2 + y^2 - 2).$$

$$L_x = 1 + \lambda + 2\mu x = 0,$$

$$L_y = 2\lambda + 2\mu y = 0,$$

解得两个驻点 $\lambda_1 = 1, \mu_1 = 1, x_1 = -1, y_1 = -1, z_1 = -\frac{5}{3}$ 以及 $\lambda_2 = 1, \mu_2 = -1, x_2 = 1, y_2 = 1, z_2 = \frac{1}{3}$. 比较得到最大值为 2,最小值为 -6.

14.
$$I = \iiint_{V} x^{2} dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{\pi/2} d\varphi \int_{0}^{2\cos\varphi} \rho^{4} \sin^{3}\varphi \cos^{2}\theta d\rho$$
$$= \frac{32}{5} \int_{0}^{2\pi} \cos^{2}\theta d\theta \int_{0}^{\pi/2} \sin^{3}\varphi \cos^{5}\varphi d\varphi = \frac{32\pi}{5} \cdot \frac{1}{24} = \frac{4\pi}{15}.$$

15. (1) 根据偏导数定义求得 $z_x(0,0) = 0, z_y(0,0) = 0$.

因
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{(x^2+y^2)\sqrt{x^2+y^2}} = \lim_{\rho\to 0} \rho\cos\theta\sin^3\theta = 0$$
. 因此 $f(x,y)$ 在(0,0) 可微.

(2) 当
$$(x,y) \neq (0,0)$$
 时, $z_x = \frac{y^5 - x^2 y^3}{(x^2 + y^2)^2}$. 所以
$$z_{xy}(0,0) = \lim_{y \to 0} \frac{z_x(0,y) - z_x(0,0)}{y} = 1.$$

2016-2 期末试题

- 一、单项选择题(每小题3分,共18分)
- 1. 考虑二元函数 f(x,y) 在点 (x_0,y_0) 处的下面四条性质:
 - (1) 连续;

(2) 两个偏导存在;

(3) 可微;

(4) 沿方向{1,0} 的方向导数存在

若用" $P \Rightarrow Q$ "表示可由性质 P 推出性质 Q,则成立().

A.
$$(2) \Rightarrow (3) \Rightarrow (1)$$
 B. $(3) \Rightarrow (2) \Rightarrow (1)$

$$C.(3) \Rightarrow (4) \Rightarrow (1)$$

D.
$$(3) \Rightarrow (2) \Rightarrow (4)$$

2. 将逐次积分 $I = \int_0^1 dy \int_{-y}^y f(x,y) dx$ 化为先对 y 后对 x 的逐次积分,正确结果是().

A.
$$I = \int_{-1}^{0} dx \int_{x}^{1} f(x, y) dy + \int_{0}^{1} dx \int_{-x}^{1} f(x, y) dy$$

$$B. I = \int_{-y}^{y} dx \int_{0}^{1} f(x, y) dy$$

C.
$$I = \int_{-1}^{0} dx \int_{-x}^{1} f(x, y) dy + \int_{0}^{1} dx \int_{x}^{1} f(x, y) dy$$

D.
$$I = \int_0^1 \mathrm{d}x \int_{-x}^x f(x, y) \, \mathrm{d}y$$

3. 设 L 表示圆 $x^2 + y^2 = R^2(R > 0)$,取顺时针方向,则积分 $\int_L -x^2 y dx + xy^2 dy = ($).

A.
$$\pi R^4$$

B.
$$-\frac{\pi R^4}{2}$$

C.
$$-\pi R^4$$

D.
$$\frac{\pi R^4}{2}$$

4. 设 $a_n > 0 (n = 1, 2, \dots)$,下列说法中正确的是().

A. 若级数
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 条件收敛,则级数 $\sum_{n=1}^{\infty} a_{2n}$ 发散

B. 若级数
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 绝对收敛,则级数 $\sum_{n=1}^{\infty} a_{2n}$ 发散

C. 若级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛,则级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 条件收敛

D. 若级数
$$\sum_{n=1}^{\infty} a_n$$
 发散,则当 n 充分大时, $a_n \geqslant \frac{1}{n}$

5. 二阶常系数线性微分方程 $y'' - 3y' - 4y = x + e^{-x}$ 的特解的待定形式为(

A.
$$y^* = ax + b + ce^{-x}$$

B.
$$y^* = x(ax + b) + (cx + d)e^{-x}$$

C.
$$y^* = ax + b + cx e^{-x}$$

D.
$$y^* = x(ax + b) + cx e^{-x}$$

6. 设 $\sum_{n=0}^{\infty} b_n \sin nx$ 是将函数 $f(x) = x + 1(0 \le x \le \pi)$ 做奇延拓后展开成的傅立叶级数,其和

函数为
$$S(x)(-\infty < x < +\infty)$$
,则 $S\left(-\frac{5\pi}{2}\right) = ($).

A.
$$-\frac{\pi}{2} + 1$$
 B. $\frac{\pi}{2} + 1$

B.
$$\frac{\pi}{2} + 1$$

C.
$$-\frac{\pi}{2} - 1$$
 D. $\frac{\pi}{2} - 1$

D.
$$\frac{\pi}{2} - 1$$

- 二、填空题(每小题 4 分,共 16 分)
- 7. 设函数 $z = xe^{y}$,则 $dz\Big|_{z=0} = _____.$
- 8. 设 $D: x^2 + y^2 \leq 1, y \geq 0,$ 则 $[(x+1)^2 + y^2] dx dy = ____.$
- 9. 设 L 是圆周 $x^2 + y^2 = 1$,则 $\int_{C} (x^2 + xy) ds =$ _____.
- 10. 设曲面 $S = \{(x, y, z) : z = 1, |x| \leqslant 1, |y| \leqslant 1\}, 则 \int (x + y + z) ds =$ ______
- 三、基本计算题(每小题 7 分, 共 42 分)
- 11. 求经过直线 $L: \begin{cases} 2x + 3y z 8 = 0 \\ v 3z + 4 = 0 \end{cases}$,且与平面 $\pi: x + y + z 4 = 0$ 平行的平面方程 π_1 .
- 12. 设 $z = f(e^{2x}, xy)$,其中 f 具有二阶连续导数,且 $f'_{2}(1,0) = 2$,求 $\frac{\partial^{2} z}{\partial x \partial y}\Big|_{z=0}$.
- 13. 设变量 x,y,t 满足方程 x = F(t,y) 和 f(x+y+t) = 3y,其中 f 具有一阶连续导数,F具有一阶连续偏导数,记 $F_1 = \frac{\partial F(t,y)}{\partial t}$, $F_2 = \frac{\partial F(t,y)}{\partial v}$,且 $1 + F_1 \neq 0$, $f' \neq 0$,求 $\frac{\mathrm{d}x}{\mathrm{d}v}$.
- 14. 设 L 是依逆时针方向的下半圆周 $x^2 + y^2 = x(y \le 0)$,求曲线积分

$$I = \int_{L} (1 - y - e^{x} \sin y) dx + (1 - e^{x} \cos y) dy.$$

15. 设 S 为曲面 $z = -\sqrt{1 - x^2 - y^2}$ 的上侧,求曲面积分

$$I = \iint_{S} xyz \,dydz + x^{2}y dzdx + \left(\frac{1}{3}z^{3} + 1\right)dxdy.$$

- 16. 将 $f(x) = \arctan \frac{1+x}{1-x}$ 展成 x 的幂级数.
- 四、应用题(每小题7分,共14分)
- 17. 求函数 $f(x,y,z) = xy + z^2$ 在平面 x = y 与球面 $x^2 + y^2 + z^2 = 4$ 相交的圆周上的最 大值和最小值.
- 18. 设函数 $\varphi(x)$ 具有连续的一阶导数,且满足 $\varphi(0) = 0, \varphi'(x) + \int_0^x \varphi(t) dt = e^x, 求 \varphi(x)$.
- 五、分析证明题(每小题 5 分,共 10 分)
- 19. 讨论级数 $\sum_{n=0}^{\infty} \left[1 \sin\left(\frac{(-1)^n}{n^p}\right) \cos\left(\frac{(-1)^n}{n^p}\right) \right] (p > 0)$ 的敛散性,收敛时指明是条件收 敛还是绝对收敛.

20. 设 f(x) 在区间[a,b](a>0) 上连续,且 f(x)>0,证明

$$\int_a^b x f(x) dx \int_a^b \frac{x}{f(x)} dx \geqslant \frac{(b+a)^2 (b-a)^2}{4}.$$

2016-2 期末试题解答

一、单项选择题

1. D 2. C 3. B 4. A 5. C 6. C

二、填空题

7. edx 8.
$$\frac{3}{4}\pi$$
 9. π 10. 4

三、基本计算题

- 11. 设所求平面为 $\pi_1: x + y + z + D = 0$, 取直线 L 上的一个点 P(10, -4, 0), 将点 P 代入 平面 π_1 ,则 D = -6,所以 $\pi_1: x + y + z - 6 = 0$.
- 12. $z_r = 2e^{2x} f_1'(e^{2x}, xy) + y f_2'(e^{2x}, xy)$. $\Rightarrow G(x, y) = 2e^{2x} f_1'(e^{2x}, xy) + y f_2'(e^{2x}, xy)$, 则 $G(0,y) = 2f'_1(1,0) + yf'_2(1,0)$,从而

$$G'_{y}(0,3) = \frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=3}} = f_2(1,0) = 2$$
,所以 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=3}} = f_2(1,0) = 2$.

13. 依题意,方程组 $\begin{cases} x = F(t,y) \\ f(x+y+t) = 3y \end{cases}$ 确定了 $t = t(y), x = x(y), \forall y \in \mathbb{R}$. $\begin{cases} x'(y) = F_1 t'(y) + F_2 \\ (x'(y) + t'(y) + 1)f' = 3 \end{cases}$,解得 $\frac{dx}{dy} = \frac{f'F_2 + (3 - f')F_1}{(1 + F_1)f'}.$

$$\begin{cases} x'(y) = F_1 t'(y) + F_2 \\ (x'(y) + t'(y) + 1) f' = 3 \end{cases}, \text{ if } \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{f' F_2 + (3 - f') F_1}{(1 + F_1) f'}.$$

14. 补 $L_1: y = O(x \text{ 从 } 1 \to 0)$,则 $L + L_1$ 封闭,且取正向,所以

$$I = \oint_{L+L_1} (1 - y - e^x \sin y) dx + (1 - e^x \cos y) dy$$
$$- \int_{L_1} (1 - y - e^x \sin y) dx + (1 - e^x \cos y) dy$$
$$= \iint_{D} dx dy - \int_{L_1} dx = \frac{\pi}{8} - \int_{1}^{0} dx = \frac{\pi}{8} + 1.$$

15. 补 $S_1: z = 0, x^2 + y^2 \leq 1$,下侧,则 $S + S_1$ 封闭,指向内侧,所以

$$\begin{split} I &= \iint\limits_{S+S_1} xyz \,\mathrm{d}y\mathrm{d}z + x^2 \,y\mathrm{d}z\mathrm{d}x + \left(\frac{1}{3}z^3 + 1\right)\mathrm{d}x\mathrm{d}y \\ &- \iint\limits_{S_1} xyz \,\mathrm{d}y\mathrm{d}z + x^2 \,y\mathrm{d}z\mathrm{d}x + \left(\frac{1}{3}z^3 + 1\right)\mathrm{d}x\mathrm{d}y \\ &= - \iint\limits_{V} (yz + x^2 + z^2) \,\mathrm{d}v - \iint\limits_{S} \mathrm{d}x\mathrm{d}y \,, \end{split}$$

其中 $\iint_{\mathbb{R}} \mathrm{d}x \mathrm{d}y = -\pi$. 由对称性 $\iint_{\mathbb{R}} (yz + x^2 + z^2) \mathrm{d}v = \iint_{\mathbb{R}} (x^2 + z^2) \mathrm{d}v$,且

$$\iiint z^2 dv = \int_0^1 z^2 \pi (1 - z^2) dz = \frac{2}{15} \pi,$$

所以
$$I = -\frac{4\pi}{15} + \pi = \frac{11}{15}\pi$$
.

16. 因
$$f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, |x| < 1,$$
所以,当 $|x| < 1$ 时,
$$f(x) = \int_0^x f'(x) \, \mathrm{d}x + f(0) = \int_0^x f'(x) \, \mathrm{d}x + \frac{\pi}{4},$$
$$\int_0^x f'(x) \, \mathrm{d}x = \int_0^x \sum_{n=0}^{\infty} (-1)^n x^{2n} \, \mathrm{d}x = \sum_{n=0}^{\infty} \int_0^x (-1)^n x^{2n} \, \mathrm{d}x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1},$$
$$\mathbf{Z}(x) = \mathbf{Z}(x) = \mathbf{Z}(x)$$

四、应用题

- 17. 将平面 x = y 和球面 $x^2 + y^2 + z^2 = 4$ 代人函数 $f(x,y,z) = xy + z^2$,得 $f = 4 x^2$ ($-\sqrt{2}$ $\leqslant x \leqslant \sqrt{2}$). 令 f'(x) = -2x = 0,得唯一驻点 x = 0. 比较 f(0) = 4, $f(\pm\sqrt{2}) = 2$ 知,最大值为 $f(0,0,\pm 2) = 4$,最小值为 $f(\pm\sqrt{2},\pm\sqrt{2},0) = 2$.
- 18. 对方程两边求导,将x=0代人方程有

$$\begin{cases} \varphi''(x) + \varphi(x) = e^x \\ \varphi(0) = 0, \varphi'(0) = 1 \end{cases}$$

特征方程 $r^2+1=0$,有共轭复根 $r_{1,2}=\pm i$,故对应的齐次方程的通解为

$$\varphi = C_1 \cos x + C_2 \sin x, \text{ ffm } \varphi^* = \frac{1}{2} e^x.$$

因 $\lambda=1$ 不是特征根,故设 $\varphi^*=Ae^x$,代入方程得 $A=\frac{1}{2}$. 从而方程的通解为

$$\varphi = C_1 \cos x + C_2 \sin x + \frac{1}{2} e^x.$$

将初始条件代入,得 $C_1 = -\frac{1}{2}, C_2 = \frac{1}{2}$. 所以,所求定解为

$$\varphi = \frac{1}{2}(-\cos x + \sin x + e^x).$$

五、分析证明题

19. 将级数看作是正项级数 $\sum_{n=1}^{\infty} \left[1 - \cos \frac{(-1)^n}{n^p} \right]$ 与级数 $\sum_{n=1}^{\infty} \sin \frac{(-1)^n}{n^p}$ 的差.

因
$$1-\cos\frac{(-1)^n}{n^p} \sim \frac{1}{2n^{2p}}(n \to \infty)$$
,所以 $\sum_{n=1}^{\infty} \left[1-\cos\frac{(-1)^n}{n^p}\right]$ 当 $p > \frac{1}{2}$ 时收敛,当 $0 时发散;$

而
$$\sum_{n=1}^{\infty} \sin \frac{(-1)^n}{n^p} = \sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$$
 为交错级数,由莱布尼兹判别法,当 $p > 0$ 时 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$ 收敛,且 $\left| (-1)^n \sin \frac{1}{n^p} \right| = \sin \frac{1}{n^p} \sim \frac{1}{n^p}$,因此级数 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$ 当 $p > 0$

1 时绝对收敛,当 0 < p ≤ 1 时条件收敛.

故原级数当 p > 1 时绝对收敛,当 $\frac{1}{2} 时条件收敛,当 <math>0 时发散.$

由 Cauchy-Schwartz 不等式,得

$$\int_a^b x f(x) dx \int_a^b \frac{x}{f(x)} dx \geqslant \left[\int_a^b \sqrt{x f(x)} \cdot \sqrt{\frac{x}{f(x)}} dx \right]^2 = \left(\int_a^b x dx \right)^2 = \frac{(b^2 - a^2)^2}{4}.$$

2017-2 期末试题

一、单项选择题(每小题3分,共18分)

- 1. 函数 $f(x,y) = |x| \cos y$ 在原点(0,0) 处().

 - A. $f'_{x}(0,0)$ 存在, $f'_{y}(0,0)$ 存在 B. $f'_{x}(0,0)$ 不存在, $f'_{y}(0,0)$ 不存在

 - $C. f'_{x}(0,0)$ 存在, $f'_{y}(0,0)$ 不存在 $D. f'_{x}(0,0)$ 不存在, $f'_{y}(0,0)$ 存在
- 2. 设 Ω : $\sqrt{x^2+y^2} \leqslant z \leqslant 1$,将 $I = \iiint f(\sqrt{x^2+y^2+z^2}) dv$ 化为球面坐标系下的逐次积分, 下列结果正确的是(

A.
$$I = 2\pi \int_{0}^{\frac{\pi}{4}} \sin\varphi d\varphi \int_{0}^{1} f(\rho) \rho^{2} d\rho$$

B.
$$I = 2\pi \int_{0}^{\frac{\pi}{4}} \sin\varphi d\varphi \int_{0}^{1/\cos\varphi} f(\rho) d\rho$$

C.
$$I = 2\pi \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^{1/\cos\varphi} f(\rho) \rho^2 d\rho$$
 D. $I = 2\pi \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^1 f(\rho) d\rho$

D.
$$I = 2\pi \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^1 f(\rho) d\rho$$

3. 设 $\Omega:0\leqslant z\leqslant\sqrt{1-x^2-y^2}$, Ω_1 为 Ω 在第一卦限的部分区域,则下面式子正确的 是(

$$A. \iint_{\Omega_1} x dv = \iint_{\Omega_1} z dv$$

$$B. \iiint_{a_1} xy \, \mathrm{d}v = \iiint_{a_1} x^2 \, \mathrm{d}v$$

$$C. \iint_{\Omega} z \, \mathrm{d}v = 0$$

$$D. \iiint_{a} xy \, dv = 4 \iiint_{a_{1}} xy \, dv$$

- 4. 关于数项级数的敛散性,下面说法正确的是(
 - A. 若正项级数 $\sum a_n$ 收敛,则 $\lim_{n \to \infty} \sqrt[n]{a_n} = l < 1$
 - B. 若 $\sum a_n$ 收敛,则 $\sum a_n^2$ 收敛
 - C. 若 $\sum (-1)^n a_n$ 收敛,则 $\sum (a_{2n-1} a_{2n})$ 收敛
 - D. 若 $\lim_{n \to \infty} \frac{a_{n+1}}{a} = l < 1$,则 $\sum a_n$ 收敛

- 5. 若级数 $\sum_{n=0}^{\infty} a_n$ 条件收敛,对于幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$,以下结论正确的是(A. 在 x = 1 处条件收敛 B. 在 x = 3 处发散 D. 在 x = 0 外条件收敛 C. 在 x=2 处绝对收敛 6. 在 xOy 面上, 若积分 $\int_{L} (2xe^{x^2}y^3 + ax\cos y) dx + (be^{x^2}y^2 - x^2\sin y) dy$ 与路径无关, 则(A. a = 2, b = -3 B. a = -2, b = 3 C. a = -2, b = -3 D. a = 2, b = 3二、填空题(每小题 4 分,共 16 分) 7. 函数 $u = \ln(xy^2z^3)$ 在(1,1,1) 点的全微分 $du|_{(1,1,1)} =$ 8. 设区域 $D: |x| + |y| \le 1,$ 则 $\int (1-x)^2 dx dy = ____.$ 9. 设 $f(x) = x + 1, -\pi \le x \le \pi$,将 f(x) 展成以 2π 为周期的傅立叶级数 $f(x) \sim \frac{a_0}{2}$ + $\sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx). \, \mathbb{M} \, a_{2018} = \underline{\hspace{1cm}}.$ 10. 设矢量函数 $\mathbf{F} = \{x, y, z\}, \mathbf{G} = \{y, z, x\}, \mathbf{M} \operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G}$ 三、基本计算题(每小题7分,共42分) 11. 求曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x^2 + y^2 - 5z = 0 \end{cases}$ 在点 P(1,2,1) 处的切线方程. 12. 设 $u = f(x + y^2, xy)$,其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 u}{\partial x \partial y}$. 13. 设 $x = r^2 \cos\theta, y = r \sin\theta (r \neq 0)$ 确定的隐函数为 $r = r(x,y), \theta = \theta(x,y), \bar{x} \frac{\partial r}{\partial x}, \frac{\partial \theta}{\partial x}$ 14. 求 $I = \oint_{L} (x + y^2) ds$,其中 L 是圆弧 $y = \sqrt{1 - x^2} (0 \leqslant x \leqslant 1)$ 与 x 轴和 y 轴所围平面 图形的整个边界, 15. 求 $I = \iint xy^2 \, dy \, dz + yz^2 \, dz \, dx + zx^2 \, dx \, dy$,其中 $S \, bz = \sqrt{x^2 + y^2} \, (0 \leqslant z \leqslant 1)$ 取上侧. **16**. 求幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n+1}$ 的和函数,并求数项级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n (2n+1)}$ 的和. 四、应用题(每小题7分,共14分) 17. 已知函数 $u = \ln(xy^2z^3)$ 在椭球面 $x^2 + 2y^2 + 3z^2 = 6R^2(R > 0)$ 的第一卦限部分上存在 最大值. 求出该最大值点,并由此证明:对任意正实数 a,b,c,成立 $ab^2c^3 \leqslant \left(\frac{a+2b+3c}{6}\right)^6$. 18. 设 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 、柱面 $x^2 + y^2 = 2x$ 以及 xOy 面围成的空间区域. 求: (1) Ω 的体积 $V_{*}(2)$ Ω 表面上锥面块的面积 S. 五、分析证明题(每小题 5 分,共 10 分) **19**. 计算曲线积分 $I = \oint_L \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{4x^2 + y^2}$,其中 L 是以(1,0) 为圆心,以 $R(R > 0, R \neq 1)$ 为半径 的圆周,取逆时针方向.
- **20**. 设 f(x) 是区间[0,1]上的连续函数,证明 $\int_{0}^{1} e^{f(x)} dx \int_{0}^{1} e^{-f(x)} dx \ge 1$.

2017-2 期末试题解答

- 一、单项选择题
- 1. D 2. C 3. A 4. C 5. B 6. D
- 二、埴容颢
- 7. dx + 2dy + 3dz 8. 7/3 9. 0 10. x + y + z
- 三、基本计算题
- 11. 由于 P 为切点, 所求切线的方向矢量为

$$\tau = \{2x,2y,2z\} \times \{2x,2y,-5\} \mid_P = -14\{2,-1,0\}.$$
故切线方程为 $\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z-1}{0}.$

- 12. 由于 $\frac{\partial u}{\partial x} = f_1 + y f_2$, $\frac{\partial^2 u}{\partial x \partial y} = 2y f_{11} + x f_{12} + f_2 + 2y^2 f_{21} + x y f_{22}$, f 具有二阶连续导数,所以 $\frac{\partial^2 u}{\partial x \partial y} = 2y f_{11} + (x + 2y^2) f_{12} + f_2 + x y f_{22}$.
- 13. 在方程组 $\begin{cases} x = r^2 \cos \theta \\ y = r \sin \theta \end{cases}$ 两边对 x 求偏导,得 $\begin{cases} 1 = 2rr_x \cos \theta + r^2 (-\sin \theta) \theta_x \\ 0 = r_x \sin \theta + r \cos \theta \cdot \theta_x \end{cases}$ 解上述方程组得到 $\frac{\partial r}{\partial x} = \frac{\cos \theta}{r(1 + \cos^2 \theta)}, \frac{\partial \theta}{\partial x} = \frac{-\sin \theta}{r^2 (1 + \cos^2 \theta)}.$
- 14. 记 A(1,0),B(0,1).则

所以 $I = \frac{\pi}{4} + \frac{11}{6}$.

15. 补 $\Sigma: z=1, x^2+y^2\leqslant 1$,下侧,则 $S+\Sigma$ 封闭,且取内侧. 记 $V:\sqrt{x^2+y^2}\leqslant z\leqslant 1$,利用高斯公式,有

故 $I = -\frac{\pi}{20}$.

16. 收敛半径为 1,收敛域为[-1,1]. 设和函数为 S(x),则

$$xS(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = \sum_{n=0}^{\infty} (-1)^n \int_0^x t^{2n} dt$$
$$= \sum_{n=0}^{\infty} \int_0^x (-t^2)^n dt = \int_0^x \sum_{n=0}^{\infty} (-t^2)^n dt = \int_0^x \frac{1}{1+t^2} dt = \arctan x,$$
$$-36 -$$

注意 x = 0 时,S(0) = 1.

并利用和函数的连续性,则
$$S(x) = \begin{cases} \frac{\arctan x}{x}, & 0 < |x| \le 1\\ 1, & x = 0 \end{cases}$$
.

从而
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n (2n+1)} = S(\frac{1}{2}) = 2\arctan \frac{1}{2}.$$

四、应用题

17. 作拉格朗日函数 $F(x,y,z,\lambda) = xy^2z^3 + \lambda(x^2 + 2y^2 + 3z^2 - 6R^2)$. 令 $\nabla F = 0$,则有 $F_r = v^2 z^3 + 2\lambda x = 0$

$$F_{y} = 2xyz^{3} + 4\lambda y = 0,$$

$$F_z = 3xy^2z^2 + 6\lambda z = 0,$$

$$F_{\lambda} = x^2 + 2y^2 + 3z^2 - 6R^2 = 0.$$

在第一卦限,解得唯一驻点(R,R,R).由于函数有最大值,且驻点唯一,故最大值点为 (R,R,R).

因此对于任意的 $x,y,z > 0, x^2 + 2y^2 + 3z^2 = 6R^2$ 的点(x,y,z) 都成立

$$\ln(xy^2z^3) \leqslant \ln R^6$$
, $\mathbb{P} xy^2z^3 \leqslant R^6 = \left(\frac{x^2 + 2y^2 + 3z^2}{6}\right)^3$.

特别地,取 $x = \sqrt{a}$, $y = \sqrt{b}$, $z = \sqrt{c}$,则有 $ab^2c^3 \leqslant \left(\frac{a + 2b + 3c}{6}\right)^6$.

18. (1)
$$V = \iint_{\substack{x^2+y^2 \le 2x}} \sqrt{x^2 + y^2} \, \mathrm{d}x \, \mathrm{d}y = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{d}\theta \int_{0}^{2\cos\theta} r^2 \, \mathrm{d}r = \frac{32}{9}.$$

(2) 锥面块的方程为 $z = \sqrt{x^2 + y^2}$,在 xOy 面投影的区域为 $D: x^2 + y^2 \leq 2x$,面积微元 为 $dS = \sqrt{2} dx dy$,则 $S = \iint_{\mathbb{R}} \sqrt{2} dx dy = \sqrt{2}\pi$.

五、分析证明题

19. 令
$$P = \frac{-y}{4x^2 + y^2}$$
, $Q = \frac{x}{4x^2 + y^2}$, 则当 $x^2 + y^2 = 0$ 时, P , Q 无定义; 当 $x^2 + y^2 \neq 0$ 时,
$$P_y = \frac{-4x^2 + y^2}{(4x^2 + y^2)^2} = Q_x.$$

(1) 当
$$0 < R < 1$$
时,区域 $D: (x-1)^2 + y^2 \le R^2$ 不包含原点,用Green公式,有 $I = \iint_D 0 d\sigma = 0$.

(2) 当R > 1 时,作 $l:4x^2 + y^2 = \epsilon^2 (\epsilon > 0$ 足够小,使得 L 包围 l 在其内,取逆时针方向), $L 与 l^-(l^-$ 表示与 l 反向的曲线) 围成复连通区域 $D^*:(x-1)^2+y^2 \leq R^2, 4x^2+y^2 \geq \varepsilon^2$.

用 Green 公式,有
$$\oint_{L+l^-} \frac{x \mathrm{d} y - y \mathrm{d} x}{4x^2 + y^2} = \iint_{D^*} 0 \, \mathrm{d} \sigma = 0$$
,故
$$I = \oint_{L+l^-} -\oint_{l^-} = \oint_{l} = \frac{1}{\varepsilon^2} \oint_{l} x \, \mathrm{d} y - y \, \mathrm{d} x = \frac{1}{\varepsilon^2} 2\sigma = \pi,$$

其中 $\sigma = \pi \cdot \frac{\varepsilon}{2} \cdot \varepsilon$ 是椭圆 $4x^2 + y^2 \leqslant \varepsilon^2$ 的面积.

20. 证法 1 记区域 $D = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}.$

$$I = \int_0^1 e^{f(x)} dx \int_0^1 e^{-f(x)} dx = \iint_D e^{f(x) - f(y)} dx dy.$$

由二重积分的轮换对称性,有

$$I = \frac{1}{2} \iint_{\mathcal{D}} \left[e^{f(x) - f(y)} + e^{f(y) - f(x)} \right] dx dy \geqslant \iint_{\mathcal{D}} 1 dx dy = 1.$$

记区域 $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\}.$

$$I = \int_0^1 e^{f(x)} dx \int_0^1 e^{-f(x)} dx = \iint_D e^{f(x) - f(y)} dx dy.$$

对任意 x,有 $e^x \geqslant 1 + x$. 所以 $I = \iint e^{f(x) - f(y)} dx dy \geqslant \iint (1 + f(x) - f(y)) dx dy$,

由轮换对称性知 $\iint (f(x) - f(y)) dx dy = 0$,故 $I \geqslant \iint 1 dx dy = 1$.

由 Cauchy-Schwartz 不等式得

$$I = \int_0^1 e^{f(x)} dx \int_0^1 e^{-f(x)} dx \geqslant \left(\iint_D e^{\frac{f(x)}{2}} \cdot e^{-\frac{f(x)}{2}} dx dy \right)^2 = 1.$$

2018-2 期末试题

一、单项选择题(每小题3分,共18分)

1. 设 $y_1(x)$, $y_2(x)$, $y_3(x)$ 都是微分方程 $y'' + a(x)y' + b(x)y = x^2$ 的解,则以下函数中也是 该微分方程的解的是(

A.
$$y_1 + y_2 + y_3$$

B.
$$\frac{3}{2}y_1 - y_2 + \frac{1}{2}y_3$$

C.
$$y_1 - y_2$$

D.
$$2y_3$$

2. 以下函数在原点可微的是().

A.
$$z = x^2 + y^2$$

A.
$$z = x^2 + y^2$$
 B. $z = \sqrt{x^2 + y^2}$ C. $z = |x - y|$ D. $z = \sqrt{|xy|}$

$$D = \sqrt{\Gamma_{max}}$$

3. 设 F(x,y) = 0 是一条平面光滑曲线,则以下说法中正确的是(

A. $\{F_x, F_v\}$ 是该曲线的切矢量

B. $\{F_y, F_x\}$ 是该曲线的法矢量

 $C.\{-F_x,F_x\}$ 是该曲线的切矢量

D. $\{-F_x, F_y\}$ 是该曲线的法矢量

4. 设平面区域 D 由 $x^2 + y^2 \leq 1$ 表示,区域 D_1 是 D 在第一象限的部分,则

$$\iint_{D} (xy + \cos x \sin y) d\sigma = ().$$

A. 0

B.
$$4\iint xy d\sigma$$

C.
$$4\iint_{D_1} \cos x \sin y d\sigma$$

D.
$$4\iint_{D_s} (xy + \cos x \sin y) d\sigma$$

5. 设区域 Ω 由 $z=x^2+y^2$ 与 z=1 围成 $,I=\iint f(z)\mathrm{d}v,$ 则以下表达式错误的是().

A.
$$I = \pi \int_{0}^{1} z f(z) dz$$

B.
$$I = 2\pi \int_0^1 r dr \int_{r^2}^1 f(z) dz$$

C.
$$I = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{x^2+y^2}^{1} f(z) dz$$
 D. $I = 2\pi \int_{0}^{1} f(z) dz \int_{0}^{z} r dr$

D.
$$I = 2\pi \int_0^1 f(z) dz \int_0^z r dr$$

6. 已知级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛,则以下说法中正确的是().

A.
$$\sum_{n=1}^{\infty} |a_n|$$
 收敛

B.
$$\sum_{n=1}^{\infty} a_n a_{n+1}$$
 收敛

$$C. \sum_{n=1}^{\infty} a_n$$
 收敛

D.
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 收敛

二、填空题(每小题 4 分, 共 16 分)

7. 微分方程 y'' + 2y' + y = x + 2 的通解为______.

9. 设 $f(x,y,z) = x + y^3 + z^5$,则 div **grad** f =______.

10. $\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 3^n} =$ ______.

三、基本计算题(每小题 7 分, 共 42 分)

11. 求点 A(1,2,3) 到直线 $L: \frac{x-6}{-1} = \frac{y-1}{1} = \frac{z-6}{-2}$ 的距离.

12. 设方程组 $\begin{cases} x^2 - 2x + y^2 + \ln z + z^3 = 1 \\ x + y + z = 1 \end{cases}$ 在包含点(0,0,1)的一个邻域上确定隐函数 y = 1

$$y(x), z = z(x), \Re \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0}, \frac{\mathrm{d}z}{\mathrm{d}x}\Big|_{x=0}.$$

13. 求函数 $f(x,y) = 4x + 2xy - x^2 - 3y^2$ 的极值.

14. $I = \iint_{\Omega} (x+y+z) dx dy dz$,其中 Ω 是三坐标面与平面 x+y+z=1 所围成的四面体.

15. 求曲线积分 $I = \int_L (2xy - y^2 \cos x) dx + (x^2 - 2y \sin x) dy$, 其中曲线 L 沿抛物线 $y = \pi x - x^2 + 1$ 从 A(0,1) 到 $B(\pi,1)$.

16. 判断级数 $\sum_{n=1}^{\infty} \frac{2+(-3)^n}{(2n-1)!!}$ 的敛散性,若收敛指出是绝对收敛还是条件收敛,说明你的理由.

四、应用题(每小题7分,共14分)

17. 求曲面 $z = x^2 + y^2, 0 \le z \le 2$ 的面积.

18. 计算曲面积分 $I = \iint_S 3xz \, dy \, dz + yz \, dz \, dx - z^2 \, dx \, dy$, 其中 S 是曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{2 - x^2 - y^2}$ 所围立体的表面外侧.

五、综合题(每小题5分,共10分)

19. 设 L 是圆周曲线 $(x-1)^2 + (y-1)^2 = 1$ (取正向), f(x) 为正值连续函数. 证明:

$$\oint_{L} x f(y) \, \mathrm{d}y - \frac{y}{f(x)} \, \mathrm{d}x \geqslant 2\pi.$$

2018-2 期末试题解答

- 一、单项选择题
- 1. B 2. A 3. C 4. A 5. D 6. B
- 二、填空题
- 7. $y = C_1 e^{-x} + C_2 x e^{-x} + x$ 8. $2xf_1' + yf_2'$ 9. $6y + 20z^3$ 10. $\ln 3$
- 三、基本计算题
- 11. 取直线 L 上的点 B(6,1,6),则 $\overrightarrow{AB} = \{5,-1,3\}$,直线的方向矢量为 $s = \{-1,1,-2\}$. 所求距离为 $d = \frac{|\overrightarrow{AB} \times s|}{|s|} = \frac{|\{-1,7,4\}|}{\sqrt{6}} = \sqrt{11}$.
- 12. 方程组对 x 求导,得到

$$\begin{cases} 2x - 2 + 2yy' + \frac{1}{z}z' + 3z^2z' = 0\\ 1 + y' + z' = 0 \end{cases}$$
,代人点(0,0,1) 得到
$$\begin{cases} 4z'(0) = 2\\ 1 + y'(0) + z'(0) = 0 \end{cases}$$
解得 $y'(0) = \frac{-3}{2}, z'(0) = \frac{1}{2}.$

- 13. 令 $\begin{cases} f_x = 4 + 2y 2x = 0 \\ f_y = 2x 6y = 0 \end{cases}$,解得唯一驻点 x = 3,y = 1. 继续求二阶导数得到 $f_x = -2$, $f_{yy} = -6$, $f_{xy} = 2$,所以 $\Delta = AC B^2 = 8 > 0$. 函数在(3,1) 取得极大值 f(3,1) = 6.
- 14. 由轮换性得

$$I = 3 \iint_{\Omega} z \, dv = 3 \int_{0}^{1} z \sigma(z) \, dz \, (\sigma(z)) \, dz = 常数截 \Omega 所得三角形的面积)$$
$$= 3 \int_{0}^{1} z \cdot \frac{(1-z)^{2}}{2} \, dz = \frac{1}{8}.$$

15. 因 $Q_x = P_y = 2x - 2y\cos x$,所以 $(2xy - y^2\cos x)dx + (x^2 - 2y\sin x)dy$ 是某个二元函数的全微分,直接凑微分,得

$$I = [x^2 y - y^2 \sin x]_{(0,1)}^{(\pi,1)} = \pi^2.$$

16. $\sum_{n=1}^{\infty} \frac{2}{(2n-1)!!}$ 为正项级数,因 $\lim_{n\to\infty} \frac{2}{(2n+1)!!} \cdot \frac{(2n-1)!!}{2} = 0 < 1$,由比值判别法可得 $\sum_{n=1}^{\infty} \frac{2}{(2n-1)!!}$ 收敛.

同理 $\sum_{n=1}^{\infty} \frac{3}{(2n-1)!!}$ 收敛,故 $\sum_{n=1}^{\infty} \frac{(-3)^n}{(2n-1)!!}$ 绝对收敛.

所以原级数为绝对收敛.

四、应用题

17. 如图所示. $ds = \sqrt{1 + 4x^2 + 4y^2} dx dy$,故 $S = \iint_S ds = \iint_D \sqrt{1 + 4x^2 + 4y^2} dx dy (D: x^2 + y^2 \leqslant 2)$ $= 2\pi \int_0^{\sqrt{2}} \sqrt{1 + 4r^2} r dr = 2\pi \cdot \frac{1}{12} (1 + 4r^2)^{3/2} \left| \sqrt[5]{2} \right| = \frac{13\pi}{3}.$

18. 如图所示. 由 Gauss 公式得

2018-2(期末)-17图

2018-2(期末)-18图

$$I = \iint\limits_{\Omega} 2z \mathrm{d}v = 2 \!\int_{0}^{2\pi} \!\mathrm{d}\theta \!\int_{0}^{\pi/4} \!\cos\!\varphi \!\sin\!\varphi \mathrm{d}\varphi \!\int_{0}^{\sqrt{2}} \!
ho^3 \,\mathrm{d}\rho = \pi.$$

五、综合题

19. 由 Green 公式,得

$$\oint_{L} x f(y) dy - \frac{y}{f(x)} dx = \iint_{D} \left[f(y) + \frac{1}{f(x)} \right] dx dy,$$
 因为 $D: (x-1)^2 + (y-1)^2 \leqslant 1$ 具有轮换性,所以

$$\iint_{\mathcal{D}} f(y) \, \mathrm{d}x \mathrm{d}y = \iint_{\mathcal{D}} f(x) \, \mathrm{d}x \mathrm{d}y,$$

$$\text{ if } \iint_{\mathcal{L}} x f(y) \, \mathrm{d}y - \frac{y}{f(x)} \, \mathrm{d}x = \iint_{\mathcal{D}} \left[f(x) + \frac{1}{f(x)} \right] \mathrm{d}x \mathrm{d}y \geqslant \iint_{\mathcal{D}} 2 \mathrm{d}x \mathrm{d}y = 2\pi.$$

20. 将函数 $f(x) = \frac{x}{2}, -\pi < x < \pi$ 展开为正弦级数.则

$$a_n = 0, n = 0, 1, 2, \cdots.$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} \frac{x}{2} \sin nx \, dx = \frac{(-1)^{n-1}}{n}, n = 1, 2, 3, \cdots.$$

根据收敛定理有
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin nx}{n} = \frac{x}{2}, -\pi < x < \pi.$$