1.	What is the name of the method used to tokenize a list of sentences?
	fit_to_text(sentences)
	tokenize(sentences)
	fit_on_texts(sentences)
	tokenize_on_text(sentences)
2.	If a sentence has 120 tokens in it, and a Conv1D with 128 filters with a Kernal size of 5 is passed over it, what's the output shape?
	(None, 120, 124)
	(None, 120, 128)
	(None, 116, 128)
	(None, 116, 124)
3.	What is the purpose of the embedding dimension?
	It is the number of letters in the word, denoting the size of the encoding
	It is the number of dimensions required to encode every word in the corpus
	It is the number of words to encode in the embedding
	It is the number of dimensions for the vector representing the word encoding

	Binary Gradient descent
	Adam
	Binary crossentropy
	Categorical crossentropy
ō.	If you have a number of sequences of different lengths, how do you ensure that they are understood when fed into a neural network?
	O Process them on the input layer of the Neural Network using the pad_sequences property
	Use the pad_sequences object from the tensorflow.keras.preprocessing.sequence namespace
	O Specify the input layer of the Neural Network to expect different sizes with dynamic_length
	Make sure that they are all the same length using the pad_sequences method of the tokenizer
ō.	When predicting words to generate poetry, the more words predicted the more likely it will end up gibberish. Why?
	It doesn't, the likelihood of gibberish doesn't change
	Because the probability that each word matches an existing phrase goes down the more words you create
	Because you are more likely to hit words not in the training set
	Because the probability of prediction compounds, and thus increases overall

IMDB Reviews are either positive or negative. What type of loss function should be used in this scenario?

	What is a major drawback of word-based training for text generation instead of character-based generation?
	Word based generation is more accurate because there is a larger body of words to draw from
	Character based generation is more accurate because there are less characters to predict
	There is no major drawback, it's always better to do word-based training
	Because there are far more words in a typical corpus than characters, it is much more memory intensive
3.	How does an LSTM help understand meaning when words that qualify each other aren't necessarily beside each other in a sentence?
	They shuffle the words randomly
	They load all words into a cell state
	Values from earlier words can be carried to later ones via a cell state
	O They don't