MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

SECRÉTARIAT GÉNÉRAL

DIRECTION GÉNÉRALE DE L'ENSEIGNEMENT SUPÉRIEUR

BACCALAURÉAT DE L'ENSEIGNEMENT GÉNÉRAL

MESUPRES

DIRECTION DE L'ENSEIGNEMENT SUPÉRIEUR Service du Baccalauréat

SESSION 2022

80038080 : MATHÉMATIQUES Épreuve de : Littéraire : 02 heures 15 minutes Durée Option : A : A1 = 1 ; A2 = 3Coefficient Code matière : 009 <u>_</u>∑>\$\phi \phi \operate \ope

-5200

NB: Les deux exercices et le problème sont obligatoires.

Machine à calculer scientifique non programmable autorisée.

EXERCICE 1 (05 points)

On considère la suite numérique $(U_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} U_0 = -1 \\ U_{n+1} = \frac{3}{4}U_n + 1 \end{cases}, \text{ pour tout } n \in \mathbb{N}$$

 $(0.25 \times 2 \text{ pts})$ 1. Calculer U_1 et U_2

2. Soit la suite numérique $(V_n)_{n\in\mathbb{N}}$ définie par : pour tout $n\in\mathbb{N}:V_n=U_n-4$

a) Montrer que $(V_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera sa raison et (1,5 pt)son premier terme.

 $(0.5 \text{ pt} \times 2)$ b) Exprimer V_n puis U_n en fonction de n

3. On donne $W_n = \ln \left[2 \left(\frac{3}{4} \right)^n \right]$, $n \in \mathbb{N}$ (ln désigne le logarithme népérien)

a) Montrer que $(W_n)_{n\in\mathbb{N}}$ est une suite arithmétique dont on précisera sa raison et son (1,5 pt)premier terme

b) Calculer lim W_n (0,5pt)

EXERCICE 2 (05 points)

Les résultats seront donnés sous forme de fraction irréductible.

Une trousse contient 9 stylos indiscernables au toucher dont 5 bleus et 4 rouges

1. On tire au hasard et simultanément 4 stylos de la trousse. On suppose que tous les

événements élémentaires sont équiprobables

Calculer la probabilité de chacun des événements suivants :

(1 pt)A: « Obtenir 2 stylos bleus et 2 stylos rouges »

(1 pt)B: « Obtenir au plus un stylo rouge »

2. On tire au hasard et successivement avec remise 3 stylos de la trousse. On suppose que tous les tirages sont équiprobables.

(1 pt)a) Quel est le nombre de tirages possibles?

b) Calculer la probabilité de chacun des événements suivants :

(1 pt)C: « Obtenir dans l'ordre un stylo bleu et 2 stylos rouges »

(1 pt)D: « Obtenir au moins 2 stylos bleus »

PROBLEME (10 points)

Soit f la fonction définie par : $f(x) = 1 - \frac{\ln x}{x}$

les droites d'équations respectives x = 1 et x = e

On note $(0, \vec{l}, \vec{j})$ d'unité 1 cm.

	A1	A2
1. Déterminer l'ensemble de définition de f	(0,5 pt)	(0,25 pt)
2. a) Calculer $\lim_{x \to 0^+} f(x)$	(0,5 pt)	(0,5 pt)
b) Interpréter le résultat	(0,25 pt)	(0,25 pt)
3. a) On admet que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$. En déduire $\lim_{x \to +\infty} f(x)$	(0,5 pt)	(0,5 pt)
b) Interpréter le résultat	(0,25 pt)	(0,25 pt)
4. Montrer que pour tout $x \in]0, +\infty[: f'(x) = \frac{\ln x - 1}{x^2}$	(1,5 pt)	(1,25 pt)
où f' désigne la fonction dérivée de f	3	
5. a) Résoudre sur l'intervalle $]0, +\infty[$ l'équation : $\ln x - 1 = 0$	(1 pt)	(0,5 pt)
b) Dresser le tableau de variation de f	(2 pts)	(1,5 pt)
6. Ecrire une équation de la tangente (T) à (\mathscr{C}) au point d'abscisse $x_0 = 1$	(1 pt)	(1 pt)
7. Tracer (%); (T) ainsi que ses asymptotes dans le même repère	(1,5+0,5+0,5 pts)	(1+0,5+
Pour A2 seulement		0,5 pts)
8. Soit G la fonction définie sur]0, $+\infty$ [par $G(x) = x - \frac{1}{2}(\ln x)^2$		
a) Montrer que G est une primitive de f sur $]0, +\infty[$		(1 pt)
b) Calculer, en cm²,l'aire du domaine plan limité par la courbe (8).l'axe des abscisses et		

(1 pt)