Examen de rattrapage

8 juin 2016

[durée : 3 heures]

!\text{ Documents autorisés : Une feuille A4 recto-verso écrite à la main.}

Exercice 1 (Sous-espaces affines)

a) Démontrer la proposition du cours :

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ une application linéaire. Pour tout $\vec{v} \in \text{Im } \vec{\phi} \subset \vec{\mathcal{F}}$, l'image réciproque $\vec{\phi}^{-1}(\vec{v})$ est un sousespace affine de $\vec{\mathcal{E}}$ de direction Ker $\vec{\phi}$.

- b) Soit $\mathcal{C}(\mathbb{R})$ l'espace vectoriel des fonctions continues sur \mathbb{R} . Montrer que $\mathcal{H} = \{ f \in \mathcal{C}(\mathbb{R}) :$ $f(x-1)=f(x)+2, \ \forall x\in\mathbb{R}$ est un sous-espace affine de $\mathcal{C}(\mathbb{R})$. Déterminer un point de \mathcal{H} et sa direction.
- c) Est-ce que le sous-ensemble de \mathbb{R}^2 d'équation $\{(x-1)^2+(x-y)^2=0\}$ est un sous-espace vectoriel et/ou un sous-espace affine? Justifier votre réponse.

Exercice 2 (Géométrie dans \mathbb{R}^3)

On se place dans l'espace affine euclidien \mathbb{R}^3 .

a) On considère les deux matrices

$$\frac{1}{3} \begin{pmatrix} -1 & 2 & -2 \\ 2 & -1 & -2 \\ -2 & -2 & -1 \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} -1 & 2 & -2 \\ 2 & -1 & -2 \\ -2 & -2 & -1 \end{pmatrix}.$$

Laquelle de ces deux matrices est la matrice d'une isométrie de \mathbb{R}^3 ?

Pour la suite de l'exercice on note M cette matrice de $O(\mathbb{R}^3)$, ainsi que l'application linéaire qu'elle définit.

- b) Décrire M en détail (nature, points fixes, paramètres).
- c) Soit $T_{\vec{v}}$ la translation de vecteur $\vec{v} = (1,0,1)$. Quelle est la nature de l'application composée $T_{\vec{v}}M$?

d) Soit S la symétrie orthogonale par rapport au plan d'équation $\{x + y - z = 1\}$. Quelle est la nature de l'application composée MS?

Exercice 3 (Construction d'une ellipse)

Soient deux droites \mathcal{D}_1 et \mathcal{D}_2 orthogonales qui se coupent en un point O. Soient deux nombres positifs a, b > 0. Pour toute paire de points (P, Q) telle que $P \in \mathcal{D}_1$, $Q \in \mathcal{D}_2$ et d(P, Q) = a + b on considère le point $M = \frac{a}{a+b}P + \frac{b}{a+b}Q$. Montrer que le lieu des points M est une ellipse.

Exercice 4 (Géométrie dans le plan complexe)

On se place dans le plan euclidien identifié avec \mathbb{C} . Soit $z \in \mathbb{C}$ avec $\mathrm{Im}(z) > 0$. Soient A, B et D trois points d'affixes respectives 0, 1 et z. Soit un quatrième point C tel que A, B, C, D forment un parallélogramme. On construit à l'extérieur du parallélogramme ABCD quatre carrés de bases les côtés et de centres M, N, P et Q (comme sur l'image ci-contre).

- a) Déterminer l'affixe de C.
- b) Déterminer les affixes des points M, N, P et Q.
- c) Montrer que MNPQ est un carré.