1 Filtros Ativos Em Sistemas Elétricos

30 Págs

1.1 Definição de Potência Ativa, Reativa e Fator de Potência

Como forma de entender melhor a qualidade de energia e a operação de filtros ativos é necessário ter os conceitos de potência ativa, reativa e fator de potência .

1.1.1 Potências em Sistemas Senoidais

Considerando um circuito monofásico, senoidal linear e operando em regime permanente, as equações da tensão e corrente são expressas por 1.1 e 1.2, respectivamente.

$$v(t) = \sqrt{2} V \cos(\omega t) \tag{1.1}$$

$$i(t) = \sqrt{2} I \cos(\omega t - \phi) \tag{1.2}$$

A potência instantânea em um circuito monofásico é definida segundo a equação 1.3.

$$p(t) = v(t)i(t)$$

$$= 2 V \cos(\omega t) I \cos(\omega t - \phi)$$

$$= V I [\cos(\phi) + \cos(2\omega t - \phi)]$$

$$= V I \cos(\phi) [1 + \cos(2\omega t)] + V I \sin(\phi) \sin(2\omega t)$$
(1.3)

A equação 1.3 pode ser dividido em dois termos variantes no tempo: o primeiro é dado por

$$VI\cos(\phi)[1+\cos(2\omega t)]\tag{1.4}$$

e o segundo por.

$$VI\sin(\phi)\sin(2\omega t) \tag{1.5}$$

Por definição, a potência ativa é definida pelo valor médio da equação 1.4, e a potência reativa é definida pelo valor de pico da equação 1.5.

verificar
sobre
valores
de pico
e valores
eficazes

1.1.2 Definição de Potências em Sistemas Não-Senoidais

1.1.3 Potência Instantânea Utilizando a Teoria P-Q

1.1.3.1 considerando coordenadas abc

Tendo o sistema com as tensões e correntes definidas por:

$$\mathbf{v} = \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} \tag{1.6}$$

$$\mathbf{i} = \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} \tag{1.7}$$

A potência ativa instantânea do sistema é definida por

$$p \triangleq \mathbf{v} \cdot \mathbf{i} \tag{1.8}$$

e a potência reativa instantânea do sistema é definido por

$$q \triangleq \mathbf{v} \times \mathbf{i} \tag{1.9}$$

A potência **q** é dada por um vetor na forma:

$$\mathbf{q} = \begin{bmatrix} q_a \\ q_b \\ q_c \end{bmatrix} = \begin{bmatrix} v_b i_c - v_c i_b \\ v_c i_a - v_a i_c \\ v_a i_b - v_b i_a \end{bmatrix}$$
(1.10)

Ainda é defnido a corente ativa instantanea por:

$$\mathbf{i_p} = \begin{bmatrix} i_{ap} \\ i_{bp} \\ i_{cp} \end{bmatrix} \triangleq \frac{p}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$
 (1.11)

Ainda é defnido a corente reativa instantanea por:

$$\mathbf{i}_{\mathbf{q}} = \begin{bmatrix} i_{aq} \\ i_{bq} \\ i_{cq} \end{bmatrix} \triangleq \frac{\mathbf{q} \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$$
 (1.12)

$$\mathbf{i_p} = \begin{bmatrix} i_{ap} \\ i_{bp} \\ i_{cp} \end{bmatrix} = \begin{bmatrix} v_a \left(\frac{v_a i_a + v_b i_b + v_c i_c}{v_a^2 + v_b^2 + v_c^2} \right) \\ v_b \left(\frac{v_a i_a + v_b i_b + v_c i_c}{v_a^2 + v_b^2 + v_c^2} \right) \\ v_c \left(\frac{v_a i_a + v_b i_b + v_c i_c}{v_a^2 + v_b^2 + v_c^2} \right) \end{bmatrix}$$

$$(1.13)$$

$$\mathbf{i_{q}} = \begin{bmatrix} i_{aq} \\ i_{bq} \\ i_{cq} \end{bmatrix} = \begin{bmatrix} \frac{v_{c}(v_{c}i_{a} - v_{a}i_{c}) - v_{b}(v_{a}i_{b} - v_{b}i_{a})}{v_{a}^{2} + v_{b}^{2} + v_{c}^{2}} \\ \frac{v_{a}(v_{a}i_{b} - v_{b}i_{a}) - v_{c}(v_{b}i_{c} - v_{c}i_{b})}{v_{a}^{2} + v_{b}^{2} + v_{c}^{2}} \\ \frac{v_{b}(v_{b}i_{c} - v_{c}i_{b}) - v_{a}(v_{c}i_{a} - v_{a}i_{v})}{v_{a}^{2} + v_{b}^{2} + v_{c}^{2}} \end{bmatrix}$$

$$(1.14)$$

Fazendo a soma de i_p com i_q obtém-se a seguinte relação:

$$\mathbf{i_p} + \mathbf{i_q} = \begin{bmatrix} \frac{v_a(v_ai_a + v_bi_b + v_ci_c)}{v_a^2 + v_b^2 + v_c^2} + \frac{v_c(v_ci_a - v_ai_c) - v_b(v_ai_b - v_bi_a)}{v_a^2 + v_b^2 + v_c^2} \\ \frac{v_b(v_ai_a + v_bi_b + v_ci_c)}{v_a^2 + v_b^2 + v_c^2} + \frac{v_a(v_ai_b - v_bi_a) - v_c(v_bi_c - v_ci_b)}{v_a^2 + v_b^2 + v_c^2} \\ \frac{v_c(v_ai_a + v_bi_b + v_ci_c)}{v_a^2 + v_b^2 + v_c^2} + \frac{v_b(v_bi_c - v_ci_b) - v_a(v_ci_a - v_ai_v)}{v_a^2 + v_b^2 + v_c^2} \end{bmatrix} = \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \mathbf{i} \quad (1.15)$$

ou seja, prova-se que pela definição de corrente ip e iq que a composição estas é dada pela corrente suprida pelo fonte à carga do sistema. Ainda pela definição de ip e iq, utilizando a definição em (EQUACAO p) porém utilizando $p = \mathbf{v} \cdot \mathbf{i_q}$ temos:

$$\mathbf{v} \cdot \mathbf{i}_{\mathbf{q}} = \mathbf{v} \cdot \left(\frac{\mathbf{q} \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \mathbf{v} \cdot \left(\frac{(\mathbf{v} \times \mathbf{i}) \times \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \mathbf{v} \cdot \left(\frac{-(\mathbf{i} \cdot \mathbf{v})\mathbf{v} + (\mathbf{v} \cdot \mathbf{v})\mathbf{i}}{\mathbf{v} \cdot \mathbf{v}}\right)$$

$$= \frac{-(\mathbf{i} \cdot \mathbf{v})(\mathbf{v} \cdot \mathbf{v}) + (\mathbf{v} \cdot \mathbf{v})(\mathbf{i} \cdot \mathbf{v})}{\mathbf{v} \cdot \mathbf{v}}$$

$$= 0$$
(1.16)

ou seja, prova-se que pela definição de corrente ip e iq que a composição estas é dada pela corrente suprida pelo fonte à carga do sistema. Ainda pela definição de ip e iq, utilizando a definição em (EQUACAO p) porém utilizando $p = \mathbf{v} \cdot \mathbf{i_q}$ temos:

$$\mathbf{v} \times \mathbf{i_p} = \mathbf{v} \times \left(\frac{p}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}\right)$$

$$= \mathbf{0}$$
(1.17)

isto tambem implica que as correntes $\mathbf{i_q}$ são ortogonais à \mathbf{v} , ou seja $\mathbf{i_q} \cdot \mathbf{v} \equiv 0$ e que as correntes $\mathbf{i_p}$ são paralelas à \mathbf{v} , ou então $\mathbf{i_p} \times \mathbf{v} \equiv 0$. Isto trás uma implicação importante que é a ortogonalidade entre as correntes $\mathbf{i_p}$ e $\mathbf{i_q}$ no sistema, ou seja:

$$\mathbf{i_p} \cdot \mathbf{i_q} \equiv 0 \tag{1.18}$$

Com isso, também é mostrado que a parcela da corrente $\mathbf{i_p}$ corresponde apenas a transferência de potência ativa instantânea no sistema. Por outro lado tem-se que a corrente $\mathbf{i_q}$ corresponde apenas a parcela da potência reativa instantânea do sistema

A teoria p-q é baseada na transformação das tensões e correntes das coordenadas abc para $\alpha\beta0$

[?]

1.1.3.2 considerando coordenadas $\alpha\beta0$

1.1.3.3 Transformada de Clarke

$$\begin{bmatrix} v_0 \\ v_{\alpha} \\ v_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix}$$
(1.19)

1.2 Filtros Ativos

1.2.1 Filtros Ativo Empregando a Teoria P-Q