Описание методики проведения ускоренных испытаний

Описана методика #3 по РД В 319.01.11-98

Требуемый объем выборки для проведения испытаний:

Для HBO \geq 20, а для BO \geq 2;

Здесь и далее рассмотрим методику для невосстанавливаемых объектов.

Порядок проведения

Исходную выборку делят на две равные части: m=n/2 для проведения предварительных испытаний.

Предварительные испытания первой выборки проводятся до г условных отказов, либо длятся заранее заданное время испытаний (усечение по времени). Здесь и далее рассмотрим ограничение по времени. Продолжительность испытаний tu устанавливают из условия tu≥0,2Tcp.

Испытания второй выборки длятся, пока не завершатся испытания первой выборки.

В процессе испытаний замеряются параметры ОИ. Здесь и далее будем рассматривать ОИ с одним наблюдаемым параметром X. Отказом изделия считаем выход наблюдаемого параметра за пределы допуска Xmin ... Xmax.

Перед началом испытаний необходимо определить условия форсированого режима Е*. Здесь и далее рассмотрим случай, когда форсированный режим создается только за счет превышения рабочей температуры ОИ. При таком режиме работы можно коэффициентным методом рассчитать интенсивность отказов. Отношение интенсивности отказов в ФР к интенсивности отказов в НР является предварительным коэффициентом ускорения.

$$K_{\rm np} = \frac{\Lambda_{\rm \Phi P}}{\Lambda_{\rm HP}}$$

Предварительные испытания первой выборки начинаются в нормальном режиме Е. ОИ, достигший первого уровня условного отказа, переключается в режим Е*. Первый уровень условного отказа задается перед испытаниями. Рекомендуется вычислять по формуле:

$$a = 0.2(Xmax - Xcp) + Xcp$$
;

Из РД В 319.01.11-98:

3.1.1.7. Интервал $\Delta \tau$ между измерениями параметров ОИ первой выборки в режиме $\varepsilon 2$ =E* в 2-3 раза меньше интервала Δt между измерениями параметров ОИ первой выборки в режиме $\varepsilon 1$ =E. (Зачем? В форсированном режиме быстрее меняются параметры, но это зависит от коэффициента ускорения. Почему тогда 2 - 3,—а не в Кпр. И в одну таблицу свести данные не выйдет, т.к. у всех ОИ разное число измерений параметров.+ ничего не сказано про выбор интервала замеров)

Данные о значениях выходного параметра, а так же о наступлении условного отказа первого уровня (момент переключения из E в E^*) заносятся в таблицу.

Обработку результатов предварительных испытаний проводят для определения функциональной зависимости между значениями параметров ОИ в нормальном и форсированном режимах, т.е. для определения действительного коэффициента ускорения.

Далее описание методики соответствует «РД В 319.01.11-98» 31 - 32 страницы, где то в описании есть ошибка (опечатка?) которую не удалось обнаружить

На основании испытаний первой выборки составляют таблицу прогнозируемых значений для испытаний в НР. При этом фиксируют значение K – коэффициента ускорения.

$$x_{ ext{прог}\,ij} = x_{ij}, \;\; ext{если} \; t_j \leq \; t_{ ext{отказа}}$$
 $x_{ ext{прог}\,ij} = x_{i\;t_{ ext{отказа}}} + rac{x_{ij} - x_{i\;t_{ ext{отказа}}}}{K}, \;\; ext{если} \; t_j > \; t_{ ext{отказа}}$ $i=1...m, j=1...l$

Для і-го изделия в ј-ый момент времени.

Для наблюдаемого параметра ОИ первой выборки образуют m векторов Y, состоящих из прогнозируемых значений параметра во всем моменты времени.

Для каждого момента времени t, образуют вариационный ряд

$$\mathrm{Z1j}\,<\,\mathrm{Z2j}\,<\,...\,<\,\mathrm{Z2mj}$$

состоящий из расположенных в порядке возрастания значений параметра ОИ обеих выборок (предполагаю, что речь идет о второй выборке предварительных испытаний и о выборке прогнозируемых значений, иначе прогнозируемые значения нигде не используются).

Для каждого момента времени tj вычисляют величины d j, где d j - количество ОИ первой выборки, чьи измеряемые параметры меньше или равны Zmj (середина вариационного ряда).

Для каждой пары моментов (ti, tj), $i\neq j$ вычисляют аij - количество ОИ обеих выборок, чьи параметры в эти моменты меньше Zmi, Zmj соответственно. (Предполагаю, что индексы нужно поменять местами, иначе аij всегда будет равно m-1).

Вычисляют вектор:

$$T = (T_1, ... T_l)$$
, где $T_i = \frac{d_i}{2m}$

Вычисляют матрицу V:

$$V_{ii} = \frac{1}{4}$$
; $V_{ij} = \frac{a_{ij}}{2m} - \frac{1}{4}$; $1 \le i, j \le l$;

Вычисляют значение статистики:

$$T(K) = 2m(T - T_0)V^{-1}(T - T_0)$$

Где T0 – вектор строка из чисел ½ длины l.

Перебором необходимо найти такое значение K при котором значение статистики S минимально.

Очевидно, график должен иметь минимум при K равному предварительному коэффициенту ускорения, при моделировании, но этого не происходит.

Далее по методике проводятся форсированные испытания, определяются показатели надежности.

Проверка методики

Для проверки методики написал matlab скрипт StatCalculation.m, который рассчитывает статистику по заданным формулам. Необходимо в коде программы ввести значения двух выборок и запустить программу.

Выводы и замечания

- 1. Для использования данной методики необходимо восстановить алгоритм определения схожести двух выборок.
- 2. Текущий алгоритм зависит от порядка сравнения двух выборок (какую считать первой, а какую второй)

- 3. Формула для расчета статистики схожа с нахождением расстояния Махаланобиса.
- 4. Простые действия (например: смена знаков сравнения, взять модуль статистики) не привели к результатам. Значение статистики ведет себя не предсказуемо
- 5. Использованием других методик нахождения расстояния между двумя выборками так же не дало результата + далее по методике используется значение данной статистики (сравнение с квантилем распределения хиквадрат)
- 6. Алгоритм никак не учитывает дисперсию, а только сравнивает, сколько элементов больше среднего значения в ряду.