Temat C28: Systemy liczbowe

1. Obliczanie wartości liczby w zapisie pozycyjnym

http://eduinf.waw.pl/inf/alg/006_bin/0002.php

Zbiór podstawowych cech dowolnego systemu pozycyjnego o podstawie p

System pozycyjny charakteryzuje liczba zwana podstawą systemu pozycyjnego.

Do zapisu liczby służą cyfry.

Cyfr jest zawsze tyle, ile wynosi podstawa systemu: 0,1,2,...,(p-1)

Cyfry ustawiamy na kolejnych pozycjach.

Pozycje numerujemy od 0 poczynając od strony prawej zapisu.

Każda pozycja posiada swoją wagę.

Waga jest równa podstawie systemu podniesionej do potęgi o wartości numeru pozycji.

Cyfry określają ile razy waga danej pozycji uczestniczy w wartości liczby

Wartość liczby obliczamy sumując iloczyny cyfr przez wagi ich pozycji

Dla podstawy większej niż 10 potrzeba więcej cyfr niż 10 – stosuje się oznaczenia literowe!

Przykład:

wagi	1000 10 ³	100 10 ²	10 10 ¹	1 10 ⁰
cyfry	7	5	8	2
pozycje	3	2	1	0

Wagi 4 pozycji w różnych systemach liczbowych								
Podstawa p	Wartości wag pozycji							
	pozycja 4	pozycja 3	pozycja 2	pozycja 1	pozycja 0			
2	$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$			
3	$3^4 = 81$	$3^3 = 27$	$3^2 = 9$	$3^1 = 3$	$3^0 = 1$			
4	$4^4 = 256$	$4^3 = 64$	$4^2 = 16$	$4^1 = 4$	$4^0 = 1$			
5	$5^4 = 625$	$5^3 = 125$	$5^2 = 25$	$5^1 = 5$	$5^0 = 1$			
6	$6^4 = 1296$	$6^3 = 216$	$6^2 = 36$	$6^1 = 6$	$6^0 = 1$			
7	$7^4 = 2401$	$7^3 = 343$	$7^2 = 49$	$7^1 = 7$	$7^0 = 1$			
8	$8^4 = 4096$	$8^3 = 512$	$8^2 = 64$	$8^1 = 8$	$8^0 = 1$			
9	$9^4 = 6561$	$9^3 = 729$	$9^2 = 81$	$9^1 = 9$	$9^0 = 1$			
10	$10^4 = 10000$	$10^3 = 1000$	$10^2 = 100$	$10^1 = 10$	$10^0 = 1$			

Wartość dziesiętna liczby zapisanej w systemie pozycyjnym o podstawie p za pomocą ciągu cyfr

$$C_{n\text{--}1}C_{n\text{--}2}...C_2C_1C_0$$
 wynosi $C_{n\text{--}1}\,p^{n\text{--}1}+C_{n\text{--}2}\,p^{n\text{--}2}+...+C_2\,p^2+C_1\,p^1+C_0\,p^0$ gdzie:

C - cyfra danego systemu o podstawie p

 C_i - cyfra na i-tej pozycji, i = 0,1,2,...,n-1

n - ilość cyfr w zapisie liczby

p - podstawa systemu pozycyjnego

Algorytm obliczania wartości liczby pozycyjnej

Specyfikacja problemu

Dane wejściowe

- podstawa systemu pozycyjnego zapisu liczby, $p \in \mathbb{N}, p \in \{2,3,...,10\}$

- tekst zawierający ciąg znaków ASCII przedstawiających cyfry.

Dane wyjściowe

Liczba L będąca wartością liczby o podstawie p i zapisanej w postaci ciągu znaków s. L \in N + $\{0\}$

Zmienne pomocnicze i funkcje

w - wagi kolejnych pozycji, $w \in N$

c - przechowuje wartość cyfry, $c \in \mathbb{N} + \{0\}$ i - numery pozycji znaków w $s, i \in \mathbb{N}$

kod(*znak*) - funkcja zwraca kod ASCII znaku

długość(tekst) - zwraca liczbę znaków zawartych w tekście

Lista kroków

K01: Czytaj p i s

K02: $w \leftarrow 1$; $L \leftarrow 0$

K03: **Dla** i = długość(s), długość(s) - 1,...,1 **wykonuj** K04...K06.

K04: $c \leftarrow \text{kod}(s[i]) - \text{kod}('0')$

K05: $L \leftarrow L + w \times c$

K06: $w \leftarrow w \times p$

K07: **Pisz** L

K08: Zakończ

2. Zadania

- (8.1) Napisz program realizujący obliczanie wartości dziesiętnej liczby s podanej przez użytkownika o podstawie p podanej przez użytkownika, dla p od 2 do 16.
 W programie utwórz i wykorzystaj funkcję int wartosc(string s, int p) zwracającą wartość dziesiętną liczby s o podstawie p
- (8.2)