Aula: Introdução à Ciência de Dados: Pipeline e Modelos

IMD1151 - Ciência de Dados

Prof. Heitor Florencio heitorm@imd.ufrn.br

Prof. Daniel Sabino daniel@imd.ufrn.br

Aula: Introdução à Ciência de Dados: Pipeline e Modelos

IMD1151 - Ciência de Dados

Prof. Heitor Florencio

heitorm@imd.ufrn.br

- Modelos de Processos de Ciência de Dados
- CRISP-DM
- KDD
- Comparação CRISP-DM e KDD
- Outros modelos e adaptações

Modelos de Processos de Ciência de Dados

REVISÃO: Definições de Ciência de Dados

- "Combina as áreas de computação, estatística/matemática e conhecimento de negócios para descobrir conhecimento implícito nos dados, evidenciando padrões e associações" (DEKHTYAR, 2023)
- "Ciência de dados é um campo acadêmico interdisciplinar que utiliza estatística, computação, processos e sistemas para extrair conhecimento e insights de dados potencialmente ruidosos, estruturados ou não estruturados" (Wikipedia)
- A ciência de dados é a ciência que estuda as **técnicas e processos** para gerar conhecimentos (insights) a partir do conjunto de dados.
- "A ciência de dados envolve todo o ciclo de vida do dado, da produção ao descarte" (AMARAL, 2016)

Modelos de Processos de Ciência de Dados

- Os Processos de Ciência de Dados definem as ETAPAS para a descoberta de conhecimento a partir do conjunto de dados.
- Os modelos de processos foram criados e vinculados ao termo mineração de dados. No entanto, mineração de dados é uma etapa do processo.
 - Mineração de dados: é o processo de extração de conhecimento em grandes quantidades de dados (HAN; KAMBER, 2006).

O termo "Pipeline" de Ciência de Dados é usual.

Pipeline de Dados

Um pipeline de dados — os dados de entrada são transformados em uma série de fases em dados de saída.

Histórico da Ciência de Dados e os Modelos de Processos

Modelos de Processos (pipeline) de Ciência de Dados

- CRISP-DM
- KDD
- SEMMA
- Adaptações

CRISP-DM

(Cross Industry Standard Process for Data Mining)

CRISP-DM

- Projeto concebido em 1996 (1999) por meio de um consórcio entre empresas (DaimlerChrysler, SPSS e NCR).
- CRISP-DM: Processo Padrão Inter-Indústrias para Mineração de Dados.
- Descreve o processo de análise de dados ou mineração de dados em 6 fases principais:
 - 1. Entendimento do negócio;
 - Compreensão dos dados;
 - 3. Preparação dos dados;
 - 4. Modelagem;
 - 5. Avaliação;
 - 6. Implantação.

O que fazer?

- Identificar o problema;
- Entender a necessidade dos dados;
- Levantar os potenciais valores da análise.

- Faça perguntas sobre o negócio!
- Entenda a perspectiva e a realidade do cliente!
- Qual(is) o(s) objetivo(s) da análise?
- Qual(is) problema(s) queremos solucionar?

- ★ O sucesso está na formulação do problema.
- **★** Empatia é essencial.
- ★ Não há receita de bolo.
- ★ Não há uma única forma de investigar o problema do cliente.

"Me diga o que você precisa ..."

• "Me explica o problema ..."

- Faça entrevistas
- Faça pesquisas
- Faça brainstorm com o cliente
- Faça brainstorm com a sua equipe

Premissas:

- Elabore uma lista de premissas, que podem ser modificadas durante o processo de entendimento do negócio.
- Informe as premissas para o cliente desde o início.

Exemplo que não deve ocorrer: "Eu não sabia que você estava usando a base do sistema X. Essa base está cheia de problemas."

Riscos envolvidos:

- Faça uma análise de riscos do projeto.
- Exemplos de riscos
 - Risco de trabalhar com dados de forma incorreta;
 - Risco de entregar uma solução complexa para a área de negócio;
 - Risco de n\u00e3o conformidade com a LGPD.
 - Risco da infraestrutura não suporte a solução.
- VARELA (2022) apresenta um estudo sobre análise de riscos em projetos de ciência de dados.

Grupos de Riscos

Grupo: Escopo Funcional e de Projeto

- Projetos iniciados com perguntas erradas ou foco inadequado;
- Falta de documentação técnica.

Grupo: Gestão de Projeto

 Falta de alinhamento entre equipe e cliente e comunicação ineficaz das necessidades e limitações do projeto.

Grupo: Gestão Operacional

- Concentração no desempenho do modelo e não na usabilidade.
- Falta de conhecimento das práticas de segmentação dos dados.

<u>Grupo:</u> Tecnológicos e de Qualidade:

- Escolha inadequada de tecnologias, incompatibilidade de sistemas e problemas de migração.
- Riscos: falta de capacidade de processamento de dados.

Grupo: Recursos e Infraestrutura

 Riscos organizacionais como falta de apoio estrutural dos sistemas de informação.

<u>Grupo:</u> Legais e de Segurança

- Questões relacionadas à privacidade e confidencialidade dos dados.
- √ Conformidade com a LGPD

Critérios de sucesso:

- Defina os critérios de sucesso a partir dos objetivos e premissas.
- Ele funciona como um tipo de "critério de parada". Ou seja, quando chegarmos a esse objetivo podemos estar satisfeitos com o projeto e encerrá-lo.

• Exemplos:

- Redução esperada de X % nos custos de manutenção das máquinas.
- Identificação e sugestão de correção de X% dos dados na base.
- Mitigar os X riscos levantados pela área de regulação da empresa.

CRISP-DM - Entendimento dos dados

O que fazer?

- Identificar estrutura dos dados;
- Avaliar qualidade e disponibilidade dos dados;
- Entender a relação dos dados com os objetivos do projeto.

- Aplicar técnicas de análise exploratória dos dados (análise descritiva);
- Aplicar técnicas para verificar a qualidade dos dados;
- Explorar os dados com o intuito de analisar a relação com os objetivos do projeto.

CRISP-DM - Preparação dos dados

O que fazer?

- Escolher a granularidade temporal ou espacial dos dados;
- Corrigir inconsistências nos dados;
- Definir as técnicas de pré-processamento e formatação dos dados.

- Aplicar técnicas de seleção de features dos dados;
- Aplicar técnicas de pré-processamento dos dados;
- Aplicar técnicas de formatação dos dados.

CRISP-DM - Modelagem

O que fazer?

- Revisão de técnicas para atender aos objetivos do projeto;
- Design (desenho) do modelo;
- Estabelecer métricas para construção e avaliação do modelo.

- Aplicar técnicas para criação do modelo;
- Construir e testar o modelo.

CRISP-DM - Avaliação e Implantação

Avaliação:

- Interpretação dos resultados;
- Impacto dos resultados com base nos critérios de sucesso do projeto;
- Revisão do modelo.

Implantação:

- Elaboração da documentação para implantação e manutenção da solução;
- Implantação e validação;
- Monitoramento e manutenção da solução.

KDD

(Knowledge Discovery in Databases)

KDD (Knowledge Discovery in Databases)

- KDD (Descoberta de Conhecimento em Bases de Dados) proposto por Fayyad et al (1996) (na Microsoft).
- KDD é descrito como metodologia, já que envolve uma série de passos para a descoberta de conhecimento útil a partir de grandes volumes de dados.

Etapas no KDD:

- Entendimento do negócio.
- Seleção dos dados;
- Pré-processamento dos dados;
- Transformação dos dados;
- Mineração dos dados:
 - Seleção da função de mineração;
 - Seleção do algoritmo de mineração;
- Interpretação/Avaliação

KDD (Knowledge Discovery in Databases)

Figure 1. An overview of the KDD process.² (For simplicity, the illustration omits arrows indicating the multitude of potential loops and iterations.)

KDD (Knowledge Discovery in Databases)

Comparação entre KDD e CRISP-DM

 MOHD SELAMAT (2018) compara alguns modelos de processos KDD, CRISP-DM e SEMMA:

SEMMA (Sample, Explore, Modify, Model and Assess)

- Amostrar, Explorar, Modificar, Modelar e Avaliar
- ano: 1997

FIGURE 3 Sample, Explore, Modify, Model, Assess methodology. The figure represents the overall SEMMA methodology process. Source: Mariscal et al. (2010)

Comparação entre KDD e CRISP-DM

MODEL	KDD	CRISP-DM	SEMMA
Developed by	Fayyad et al.	CRISP-DM Consortium	SAS Institute
Year of model introduced	1996	1996 (officially released in 2000)	1997
Functions	 Uncover new and unique insights Generate predictions 		
Total steps	9	6	5
Phase	1. Application domain understanding	1. Business understanding	
	2. Creating a target data set	2. Data understanding	1. Sample
	3. Data cleaning and		2. Explore
	4. Data transformation	3. Data preparation	3. Modify
	5. Data-mining method selection	4. Modeling	4. Model
	6. Data-mining algorithm selection		
	7. Data-mining application		
	8. Discovered patterns interpretation	5. Evaluation	5. Assessment
	9. Using discovered knowledge	6. Deployment	-
	42		

Comparação entre KDD e CRISP-DM

TABLE 4 Model comparison—KDD, CRISP-DM, and SEMMA				
MODEL	KDD	CRISP-DM	SEMMA	
Requires background knowledge in DM	Yes	Yes	Yes	
Software tool support	Yes	Yes	Yes	
	Mineset	SPSS Clementine	SAS	
Documentation	No	Yes	Yes	
Open-source tool support	Yes	Yes	No	
Total case studies in the transportation sector count	2	6	2	
Total case studies in the SME context count	3	6	1	
Overall case studies count	5	12	3	
Application areas	Aviation, rail, tourism, financial, manufacturing	Logistic, cargo, aviation, rail, public transport, software, financial, marketing and sales, trading	Software, public transport, street taxis	
Kdnuggets poll results for 2007 (200 votes total) Kdnuggets (2014)	7.3%	42%	13%	
Kdnuggets poll results for 2014 (200 votes total) Kdnuggets (2014)	7.5%	43%	8.5%	

Outros pipelines e adaptações

Encontre a pergunta adequada

Obtenha os dados

Prepare os dados

Explore os dados

Escolha ou construa o modelo

Avalie e comunique os resultados

- Qual decisão será tomada?
- Que benefício isso traz para o cliente?

- Esses dados s\u00e3o suficientes?
- Existem problemas de privacidade?
- Está no formato que preciso?

- Existem anomalias?
- Os modelos existentes s\u00e3o suficientes?
- Quais são os melhores modelos para esse problema?
- Os resultados estão realmente corretos?
- Os resultados permitem a tomada de decisão?
- Como interpretar os dados?

Processo de Ciência de Dados como um Ciclo por Alexander

Dekhtyar

Etapas de Ciência de Dados por GROLEMUND and WICKHAM (2023)

Fonte: GROLEMUND and WICKHAM (2023).

Etapas de Ciência de Dados por GROLEMUND and WICKHAM (2023)

- import (importar): coletar os dados das estruturas de armazenamento dos dados.
- *tidy* (limpar): organizar os dados de uma forma consistente que corresponda à semântica do conjunto de dados, i.e., organizar as variáveis em colunas e as observações em linhas.
- transform (transformar): selecionar dados de interesse, criar novas variáveis e calcular dados de estatísticos do conjunto de dados.
- visualize (visualizar): utilizar técnicas de visualização para levantar novas questões sobre os dados e sugerir respostas aos problemas especificados no início do projeto.
- model (modelar): implementar modelos, ferramentas matemáticas e computacionais,
 para fazer suposições com base nos dados.
- communicate (comunicar).

Modelos de Processos (pipeline) de Ciência de Dados

Dúvidas?

- CRISP-DM
- KDD
- SEMMA
- Adaptações

Extração de Dados e Manipulação de Dados

python

Visualização de Dados

Modelagem

Comunicação

Fonte:

Cuide dos dados, Entenda o negócio, Conheça as técnicas, Aplique as ferramentas/modelos e Comunique-se bem!

O que vimos hoje?

<u>Aula:</u> Introdução à Ciência de Dados: Pipeline e Modelos

IMD1151 - Ciência de Dados

Prof. Heitor Florencio

- Modelos de Processos de Ciência de Dados
- CRISP-DM
- KDD
- Comparação CRISP-DM e KDD
- Outros modelos e adaptações

Dúvidas?

Prof. Heitor Florencio Sala 103 - nPITI/IMD heitorm@imd.ufrn.br Prof. Daniel Sabino Sala A226 - CIVT/IMD daniel@imd.ufrn.br

Referências

- AMARAL, Fernando. Introdução à ciência de dados: mineração de dados e big data. Alta Books Editora, 2016.
- GROLEMUND, Garrett; WICKHAM, Hadley. **R for data science**. O'Reilly Media, Inc., 2nd edition, 2023. Disponível em: https://r4ds.hadley.nz/. Acesso em 11 de março de 2024.
- JIAWEI, Han; MICHELINE, Kamber. **Data mining: concepts and techniques.** Morgan kaufmann, 2006.
- FEYYAD, U. M. **Data mining and knowledge discovery:** Making sense out of data. IEEE expert, v. 11, n. 5, p. 20-25, 1996.
- VARELA, Cristina; DOMINGUES, Luísa. Risks of Data Science Projects-A Delphi Study. Procedia Computer Science, v. 196, p. 982-989, 2022.
- SOUZA, Vinícius. Entenda o CRISP-DM, suas etapas e como de fato gerar valor com essa metodologia.
 PREDITIVA.AI. Disponível em:
 https://www.preditiva.ai/blog/entenda-o-crisp-dm-suas-etapas-e-como-de-fato-gerar-valor-com-essa-metodologia.
 Acesso em: 19 mar. 2024.

Referências

- CRISP-DM. In: WIKIPEDIA, a enciclopédia livre. Disponível em:
 <u>https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining</u>. Acesso em: 19 mar. 2024.
- SILVEIRA, Juliano Gomes. Pré-processamento de Dados. 2022. Notas de aula.
- FREITAS, Rômulo. Fundamentos de Estatística para Ciência de Dados. 2022. Notas de aula.
- MOHD SELAMAT, Siti Aishah et al. Big data analytics—A review of data-mining models for small and medium enterprises in the transportation sector. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, v. 8, n. 3, p. e1238, 2018.
- DEKHTYAR, Alexander. Introduction to Data Science. 2023. Notas de aula. Disponível em: https://users.csc.calpoly.edu/~dekhtyar/. Acesso em: 11 mar. 2024.
- VAZQUEZ, Favio. The Roots of Data Science. Towards Data Science, 2020. Disponível em: https://towardsdatascience.com/the-roots-of-data-science-77c71115229. Acesso em: 19 mar. 2024.