Algoritmos e Estruturas de Dados II

Exercícios para P2

1) Observe o Grafo abaixo.

- a) Quantos vértices e arestas esse grafo apresenta?
- b) É um grafo direcionado ou não direcionado?
- c) Represente esse grafo através de uma matriz de adjacência.
- 2) Um grafo consiste num conjunto de nós (ou vértices) e num conjunto de arcos (ou arestas). É correto afirmar que o grau de um nó é:
 - a) o número de arcos incidentes nesse nó.
 - b) um número associado ao arco, também chamado de peso.
 - c) a distância entre este nó e um outro nó qualquer do grafo.
 - d) a posição deste nó em relação ao nó raiz do grafo
 - e) o número de pares ordenados que formam o arco.

ESCOLA PUCRS POLITÉCNICA

Algoritmos e Estruturas de Dados II

Exercícios para P2

3) Observe o Grafo abaixo:

a. Utilizando o algoritmo visto em aula faça uma busca em PROFUNDIDADE a partir do vértice 0, preenchendo a tabela v, visitados[], antecessor[].

abolu	v, violtadoo[], ant	.0000001[].
٧	visitados[]	antecessor[]
0		
1		
2		
3		
4		
4 5		
6		
7		

b. Utilizando o algoritmo visto em aula faça uma busca em LARGURA a partir do vértice 0, preenchendo a tabela v, visitados[], antecessor[], distancia[].

V	visitados[]	antecessor[]	distancia[]
0			
1			
2			
3			
4			
5			
6			
7			

Algoritmos e Estruturas de Dados II

Exercícios para P2

4) Mostre o resultado da ordenação topológica do grafo abaixo:
 (Dica: Realizar um caminhamento em pré-ordem com busca em profundidade e retornar o caminho invertido.)

5) Dado o grafo abaixo apresente a árvore geradora mínima utilizando o algoritmo de KRUSKAL, iniciando pelo vértice a. (slides aula 24)

6) Utilizando o algoritmo de Dijkstra e tendo como ponto de partida o vértice 0 apresente o menor caminho para todos os vértices. Utilize a tabela auxiliar visto em aula para execução passo a passo. (slides aula 26)

Algoritmos e Estruturas de Dados II

Exercícios para P2

7) Dada a classe BuscaEmProfundidade abaixo, implemente os métodos construtor e dfs.

8) Complete a implementação do método realizarBusca da classe BuscaEmLargura abaixo:

```
import java.util.LinkedList;
import java.util.Queue;

public class BuscaEmLargura {
    private boolean[] marked;
    private int[] edgeTo;
    private int[] distTo;

    public BuscaEmLargura(Graph G, int s) {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        distTo = new int[G.V()];
        for(int i=0;i<G.V();i++) distTo[i] = Integer.MAX_VALUE;

        realizarBusca(G, s);
    }
    private void realizarBusca(Graph G, int s) {
        Queue<Integer> q = new LinkedList<>();
        //complementar
    }
}
```