Seminar 11 Programare dinamică.

Ștefan Ciobâcă, Dorel Lucanu Universitatea "Alexandru Ioan Cuza", Iași

Săptămâna 9 Mai - 13 Mai 2016

- 1. Algoritmi pseudopolinomiali pentru probleme knapsack-like:
 - (a) Găsiți un algoritm pseudopolinomial pentru problema discretă a rucsacului (care folosește metoda programării dinamice). Care sunt subproblemele rezolvate de algoritm?
 - (b) Găsiți un algoritm pseudo-polinomial pentru următoarea problemă: dându-se o mulțime de numere întregi, să se determine dacă poate fi partiționată în două submulțimi de sumă egală.

2. Algoritmi de tip edit-distance:

- (a) Găsiți un algoritm pentru problema distanței de editare când singurele operații permise sunt inserarea și stergerea.
- (b) Găsiți un algoritm polinomial pentru problema celui mai lung subșir crescător. Care sunt subproblemele rezolvate de algoritm? Arătați cum este aplicat principiul de optim în relatia de recurență.
- (c) Dându-se două șiruri de numere, găsiți cel mai lung subșir crescător care apare în ambele șiruri.
- (d) Găsiți un algoritm polinomial pentru problema subsecvenței de sumă maximă (dânduse un vector A[0..n-1], să se găsească doi indecși i,j astfel încât suma elementelor A[i..j] să fie maximă).

3. Algoritmi în $O(n^3)$:

- (a) O matrice $A_{(n,m)}$ poate fi înmulțită cu o matrice $B_{(m,k)}$ făcând $n \times m \times k$ înmulțiri; obținem o matrice $C_{(n,k)}$. Înmulțirea matricilor este asociativă. Dacă avem trei matrici $A_{(10000,10000)}, B_{(10000,10)}, C_{(10,100)}$, facem mai multe înmulțiri dacă calculăm $A \times (B \times C)$ (câte?) decât dacă calculăm $(A \times B) \times C$ (câte înmultiri?).
 - Dându-se dimensiunile $(n_0, m_0), (n_1, m_1), \ldots, (n_{l-1}, m_{l-1})$ unei secvențe de matrici $A_0, A_1, \ldots, A_{l-1}$ (atenție: se dau doar dimensiunile, nu și matricile), să se determine numărul minim de înmulțiri de scalari necesare pentru calculul produsului matricilor.
 - Hint. Subproblemele sunt: $x[i..j] = \text{numărul minim de înmulțiri necesare pentru a calcula } A_i \times A_{i+1} \times ... \times A_j$.
- (b) Fie a_0, \ldots, a_{n-1} o secvență de chei ordonate crescător care sunt folosite pentru a construi un arbore binar de căutare. Dându-se:
 - p_i ($0 \le i \le n-1$), probabilitatea de căuta elementul a_i ;
 - q_i $(0 \le i \le n)$, probabilitatea de a căuta un element mai mic decât a_i (dacă există a_i) și mai mare decât a_{i-1} (dacă există a_{i-1}),

să se calculeze arborele binar care asigură timpul mediu de căutare minim.

Hint. Subproblemele sunt: x[i..j] = arborele binar de căutare optim pentru numerele $a_i, a_{i+1}, \ldots, a_j$. Atenție: datele de intrare nu sunt a_0, \ldots, a_{n-1} , ci p_i $(0 \le i \le n-1)$ și q_i $(0 \le j \le n)$.