Устранение экспоненциальной сложности оценки стоимости бермудского опциона

Анастасия Миллер

СПбГУ, $6^{\text{ый}}$ семестр, 322 гр. 26 мая 2014 г.

1 Вступление

В книге Glasserman, Monte Carlo Methods in Financial Engineering был предложен метод оценки американских опционов с конечным множеством дат погашения. Две оценки – смещённая вверх и смещённая вниз – получаются с помощью смоделированного дерева, которое вевтится при каждой возможности раннего погашения опциона. Оценки являются состоятельными (т.е. сходятся по вероятности к истинной цене опциона) и асимптотически несмещёнными.

Один из основных недостатков алгоритма — его экспоненциальная сложность. Здесь же предлагается несколько подходов, которые заменят экспоненциальную сложность полиномиальной с одновременным увеличением «случайности» алгоритма.

2 Общая идея алгоритма

Начиная с некоторого момента t_k , когда общее число состояний достигнет некоторого n, мы перестанем генерировать дочерние вершины ко всем состояниям. В следующий момент времени, t_{k+1} , мы будем иметь всё так же n состояний, а не bn. Этого можно достичь, если генерировать дочерние состояния не ко всем вершинам, а только к некоторым. К каким?

2.1 Анализ распределения состояний с помощью гистограммы

В том случае, когда состояние актива S является числом в \mathbb{R}^1 , в качестве параметра X, распределение которого нас интересует, можно использовать само S, иначе можно использовать h(S).

Деля интервал $\left[\min_{i\in 1:n} X_i; \max_{i\in 1:n} X_i + \frac{1}{n}\right]$ на k равных частей $\left[a_{k-1}, a_k\right], a_0 = \min_{i\in 1:n} X_i, a_k = \max_{i\in 1:n} X_i,$ мы можем определить частоты $f_k = \#\left\{X_i \middle| X_i \in \left[a_{k-1}, a_k\right]\right\}$ попадания событий в различные части отрезка. Из состояний, сгруппированных на отрезке, мы также можем создать некоторый «средний арифметический» вектор, кооринаты которого будут являться средним арифметическим координат всех состояний, оказавшихся на данном отрезке.

Список литературы

Glasserman, Paul. Monte Carlo Methods in Financial Engineering. Английский. Springer, 2004.