Alma Mater Studiorum University of Bologna

Artificial Intelligence - Computer vision Intrusion detection project

Alessandro Dicosola [Matr. 935563]

Introduction Problem

Build an intrusion detection system using a static background as a reference

Introduction

What is a pipeline?

A sequence of transformations and operations


```
pipeline.add operation("Input",
    lambda frame: frame)
pipeline.add operation("Gradient",
    lambda frame: get grad(frame))
pipeline.add operation("Heatmap",
    lambda frame: cv2.
    applyColorMap(frame, cv2.
    COLORMAP JET))
```

```
pipeline.add_operation("Input", lambda frame: frame)
pipeline.add operation("Gradient", lambda frame: get_grad(frame))
pipeline.add_operation("Mask", lambda frame: frame < 30)
def showonlymask(mask):
    import numpy as np input = pipeline.input.copy()
    out = np.empty_like(input)
    out[mask] = input[mask]
    return out

pipeline.add_operation("Applyumaskuonlytheuinputuimage", showonlymask)
```

Preprocessing

Gaussian blur

Preprocessing

Median filter

Detector Background subtractor

- Use a static background
- Use the interpolation of the first 100 frames
- Use an adaptive background that computes the weighted sum of the current frame and the previous one

Pipeline - static, first

Pipeline - adaptive

Parameters

kind	distance	threshold	$alpha^1$
static	max_distance	30	-
first	max_distance	34	-
adaptive	l1	5	0.70

 $^{^1}$ alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).

Detector - first

Difference between threshold 30 and 34

Detector - adaptive

alpha parameter

Filtering and handling false positive

index	area	perimeter	ratio	circularity	rectangularity	mean	std	label
0	1243.0	146.76	0.80	0.93	1545.35	0.13	0.203	other
1	855.0	113.45	1.06	1.06	803.18	0.013	0.020	other false positive
2	15028.5	587.80	0.47	0.93	31897.22	0.09	0.177	person
Filtering				Labelling			False positive	
<pre>rectangularity > 5000: else perimeter > 100 and area > 300</pre>			ı > 300	area > 3000 or r	ratio < 0.	3	std < 0.1	

Conclusion Output of the frame 481

