MANUAL DE USUARIO DEL SISTEMA WEB PARA EL CÁLCULO DEL AGUA DE RIEGO

Facundo Paez. Andrés Vidaurre.

Universidad Nacional de la Patagonia San Juan Bosco Desarrollo de Software

Contenido

1	. Visión del proyecto	2
	1.1 Problemática a resolver	2
	1.2 Alcance	2
	1.3 Características funcionales del sistema	3
2	. Funcionamiento del sistema	4
	2.1 Acceso al sistema	4
	2.2 Acceso al sistema como administrador	4
	2.3 Registro de usuario	5
	2.4 Restablecimiento de la contraseña	5
	2.5 Mecanismo de navegación del usuario	6
	2.6 Mecanismo de navegación del administrador	7
3	. Necesidad de agua de riego de un cultivo	8
	3.1 Estados de un registro de plantación	8
	3.2 Posibles valores de la necesidad de agua de riego de un registro de plantación	10
	3.3 Cálculo de la necesidad de agua de riego de un cultivo	11
	3.3.1 Atributos de un balance hídrico de suelo	12
	3.3.2 Algoritmo del cálculo de la necesidad de agua de riego de un cultivo	17
	3.3.3 Ejemplo de cálculo de la necesidad de agua de riego de un cultivo	20
	3.4 Ubicación geográfica de una parcela	23
	3.5 Creación de un registro de plantación	24

1. Visión del proyecto

1.1 Problemática a resolver

En el campo, la utilización del agua de riego es económicamente costosa y de muy poco acceso, con lo cual ante la necesidad de realizar el riego de los cultivos en las parcelas se necesita optimizar al máximo este recurso.

1.2 Alcance

El proyecto a desarrollar consistirá en un sistema que le permitirá saber al usuario la cantidad de agua de riego de un cultivo en milímetros por día, la cual será determinada en función de factores climáticos y terrestres. Los factores climáticos serán obtenidos de los informes climáticos publicados por un servicio meteorológico, mientras que los terrestres serán provistos por el usuario. Los primeros son la temperatura máxima, la temperatura mínima, la precipitación y la radiación solar, entre otros, mientras que los segundos son el cultivo, la ubicación geográfica y el riego de un cultivo. El usuario por su parte deberá registrar en el sistema la cantidad de agua de riego en milímetros por día que utilizó para satisfacer la cantidad de agua riego de un cultivo.

La cantidad de agua para riego de un cultivo se determina a partir de la lámina de agua. La lámina se define como el espesor de la capa de agua con que queda cubierta una superficie luego de una lluvia o riego. En la agricultura la lámina se refiere al espesor de agua en una hectárea y está dada en milímetros. Por ejemplo, una lámina de 1 mm se da de la relación entre 10.000 litros de agua de lluvia o de riego que caen en 1 ha (10.000 m²). Por otro lado, la necesidad de agua de un cultivo se estima a partir de la evapotranspiración potencial (ETo) y un coeficiente dado, específico para cada cultivo y etapa de crecimiento (Kc). La evapotranspiración potencial se estima a partir de parámetros climatológicos con la ecuación de Hargreaves mientras que los valores de Kc están dados por tablas. Toda la información para realizar las ecuaciones, así como los coeficientes específicos para cada uno de los cultivos y sus diferentes etapas de crecimiento está desarrollada y puesta a disposición en los manuales de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (manual N°56), abreviada como FAO (*Food and Agriculture Organization*, en inglés). Finalmente, la lámina de riego para cada cultivo se calcula a partir de la evapotranspiración del cultivo (ETc) que surge del producto entre la ETo y el Kc antes descritos.

El sistema proveerá al usuario la creación, la modificación y la eliminación (lógica) de parcelas, la creación, la modificación y la eliminación de registros de plantación, la creación, modificación y eliminación de registros de riego, y la creación, modificación y eliminación de registros climáticos, la generación y eliminación de informes estadísticos de parcelas, y la visualización de los cultivos registrados. En la creación y modificación de una parcela se brindará un mapa para que el usuario seleccione la ubicación geográfica de una parcela. La ubicación geográfica de una parcela es necesaria para obtener los parámetros meteorológicos a los cuales se encuentra sometida, los cuales son necesarios para calcular la cantidad de agua de riego de un cultivo sembrado en una parcela.

Un informe estadístico de una parcela será generado mediante el uso de registros de plantación y registros de riego comprendidos en un período definido por dos fechas elegidas por el usuario. Los datos que contendrá un informe estadístico de una parcela son: el cultivo más plantado, el cultivo menos plantado, el cultivo plantado con el mayor ciclo de vida, el cultivo plantado con el menor ciclo

de vida, la cantidad de días en los que una parcela no tuvo ningún cultivo plantado y la cantidad total de agua de lluvia en milímetros por período que cayó sobre una parcela.

El sistema tendrá inicio de sesión y registro de usuario, y podrá ser utilizado como administrador. El administrador podrá crear, modificar y eliminar (lógicamente) cultivos, regiones, tipos de cultivo y suelos.

1.3 Características funcionales del sistema

- Cálculo de la cantidad o necesidad de agua de riego [mm/día] de un cultivo en la fecha actual (es decir, hoy).
- Creación, modificación y eliminación (lógica) de parcelas.
- Creación, modificación y eliminación de registros de plantación.
- Creación, modificación y eliminación de registros de riego.
- Creación, modificación y eliminación de registros climáticos.
- Creación, modificación y eliminación (lógica) de cultivos.
- Creación, modificación y eliminación (lógica) de regiones.
- Creación, modificación y eliminación (lógica) de tipos de cultivo.
- Creación, modificación y eliminación (lógica) de suelos.
- Generación y eliminación de informes estadísticos de parcelas.
- Registro (sign up en inglés) e ingreso (log in en inglés) de usuario.
- Ingreso (log in en inglés) como administrador.

2. Funcionamiento del sistema

2.1 Acceso al sistema

Al ingresar al sistema, mediante el URL http://localhost:8080/swcar/#!/, se despliega una página web que tiene un campo para el nombre de usuario y un campo para la contraseña. La figura 2.1 muestra dichos campos. El usuario debe ingresar su nombre de usuario y contraseña, y presionar el botón Iniciar sesión. El sistema valida si el usuario está registrado o no.

Figura 2.1 Página web de inicio de sesión

2.2 Acceso al sistema como administrador

El sistema puede ser utilizado en modo administrador. Para acceder al sistema como administrador se debe ingresar al siguiente URL: http://localhost:8080/swcar/#!/admin. Cuando se accede a este URL se despliega una página web que tiene un campo para el nombre de usuario y un campo para la contraseña. Cuando el usuario ingresa su nombre de usuario y su contraseña, y presiona el botón Iniciar sesión, el sistema verifica si el usuario tiene permiso de administrador. Si el usuario tiene permiso de administrador, el sistema permite el acceso. De lo contrario, deniega el acceso.

Un administrador del sistema tiene las siguientes responsabilidades:

- Crear tipos de cultivos, los cuales sirven como clasificación de cultivos.
- Crear cultivos para que los usuarios puedan utilizarlos para saber la necesidad de agua de riego de los cultivos que tienen plantados en sus parcelas.

2.3 Registro de usuario

El sistema tiene un formulario para el registro (sign up en inglés) de usuario. La figura 2.2 muestra dicho formulario. Para que un usuario pueda registrarse debe presionar el botón Registrarse de la barra superior de la página web del URL http://localhost:8080/swcar/#!/. Al realizar esta acción se despliega la página web que se muestra a continuación.

Figura 2.2 Formulario de registro de usuario

2.4 Restablecimiento de la contraseña

Si el usuario olvida la contraseña de su cuenta, la aplicación brinda la funcionalidad de restablecimiento o recuperación de la contraseña. Para que el usuario restablezca la contraseña de su cuenta debe pulsar el botón Recuperar contraseña en la página web de inicio de sesión.

Cuando se presiona el botón Recuperar contraseña se despliega una página web que tiene un campo para una dirección de correo electrónico, la cual debe ser la que utilizó el usuario para registrarse. La figura 2.3 muestra dicha página web. Cuando se completa este campo y se presiona el botón Aceptar, el sistema verifica que la dirección de correo electrónico ingresada esté bien formada y que pertenezca a un usuario registrado. Si la dirección de correo electrónico está bien formada y pertenece a un usuario registrado, el sistema envía a la misma un correo electrónico que tiene un enlace para el restablecimiento de la contraseña.

Figura 2.3 Campo utilizado para el restablecimiento de la contraseña

Un enlace de restablecimiento de contraseña tiene un tiempo de validez de 60 minutos. Por lo tanto, el usuario tiene 60 minutos para restablecer la contraseña de su cuenta desde que el sistema envía un correo electrónico de restablecimiento de contraseña.

2.5 Mecanismo de navegación del usuario

El mecanismo de navegación del sistema para el usuario es una barra de navegación mediante la cual el usuario puede acceder a las parcelas, los registros de plantación, los registros de riego, los registros climáticos, los balances hídricos de suelo, los informes estadísticos, los cultivos y los suelos.

Figura 2.4 Mecanismo de navegación del usuario

<u>Parcelas</u>: Muestra una lista que contiene todas las parcelas del usuario junto con los siguientes datos de cada parcela: ID, nombre, hectáreas y activa.

<u>Registros de plantación</u>: Muestra una lista que contiene todos los registros de plantación de todas las parcelas de usuario junto con los siguientes datos: ID, cultivo, fecha de siembra, fecha de cosecha, parcela, necesidad de agua de riego y estado del cultivo.

<u>Registros de riego</u>: Muestra una lista que contiene todos los registros de riego de todas las parcelas del usuario junto con los siguientes datos: ID, fecha, necesidad de agua de riego, riego realizado, parcela, cultivo y generado por el sistema.

<u>Registros climáticos</u>: Muestra una lista que contiene todos los registros climáticos de todas las parcelas del usuario junto con los siguientes datos: ID, fecha, temperatura mínima, temperatura máxima, precipitación, velocidad del viento y parcela.

<u>Balances hídricos</u>: Muestra una lista que contiene todos los balances hídricos de suelo para una parcela y un cultivo junto con los siguientes datos: fecha, nombre de parcela, nombre de cultivo, precipitación (artificial y/o natural), pérdida de humedad o agua del suelo (determinada por la ETc), déficit de agua por día y acumulado del déficit de agua por día.

<u>Rendimientos</u>: Muestra una lista que contiene todos los rendimientos (cantidades cosechadas de cultivos) de todas las parcelas del usuario junto con los siguientes datos: ID, fecha, parcela, cultivo y cantidad cosechada.

<u>Informes estadísticos</u>: Muestra una lista que contiene todos los informes estadísticos de todas las parcelas del usuario junto con los siguientes datos: ID, parcela, fecha desde, fecha hasta, cultivo más plantado, cultivo menos plantado y cantidad de días en los que una parcela no tuvo ningún cultivo plantado.

<u>Cultivos</u>: Muestra una lista que contiene todos los cultivos registrados en la aplicación junto con los siguientes datos de cada cultivo: ID, nombre, etapa inicial (días), etapa de desarrollo (días), etapa media (días), etapa final (días) y activo.

<u>Suelos</u>: Muestra una lista que contiene todos los suelos registrados en la aplicación junto con los siguientes datos de cada cultivo: ID, nombre, peso específico aparente (medido en gramos por centímetro cubico), capacidad de campo (medida en gramos de agua cada 100 gramos de suelo), punto de marchitez permanente (medido en gramos de agua cada 100 gramos de suelo) y activo.

2.6 Mecanismo de navegación del administrador

El mecanismo de navegación del sistema para el administrador es una barra de navegación mediante la cual el administrador puede acceder a los cultivos, los suelos, las regiones y los tipos de cultivos.

Figura 2.5 Mecanismo de navegación del administrador

<u>Cultivos</u>: Muestra una lista que contiene todos los cultivos registrados en la aplicación junto con los siguientes datos de cada cultivo: ID, nombre, etapa inicial (días), etapa de desarrollo (días), etapa media (días), etapa final (días), ciclo de vida (días), mes de inicio de siembra, mes de fin de siembra, región y activo.

<u>Suelos</u>: Al igual que para el mecanismo de navegación del usuario, muestra una lista que contiene todos los suelos registrados en la aplicación junto con sus respectivos datos. La diferencia está en que el administrador puede leer y modificar un suelo mientras que el usuario solo puede leerlo.

<u>Regiones</u>: Muestra una lista que contiene todas las regiones registradas en la aplicación junto con los siguientes datos de cada región: ID, nombre y activo.

<u>Tipos de cultivos</u>: Muestra una lista que contiene todos los tipos de cultivos registrados en la aplicación junto con los siguientes datos de cada tipo de cultivo: ID, nombre y activo.

3. Necesidad de agua de riego de un cultivo

El sistema calcula para la fecha actual (es decir, hoy) la necesidad de agua de riego [mm/día] de un cultivo en desarrollo. Realiza este cálculo para un registro de plantación que tiene un estado de desarrollo (en desarrollo, desarrollo óptimo, desarrollo en riesgo de marchitez y desarrollo en marchitez). En las siguientes subsecciones se explican detalles del sistema relacionados al cálculo de la necesidad de agua de riego de un cultivo en la fecha actual.

3.1 Estados de un registro de plantación

Los estados de un registro de plantación son los siguientes:

- Finalizado.
- En desarrollo.
- En espera.
- Desarrollo óptimo.
- Desarrollo en riesgo de marchitez.
- Desarrollo en marchitez.
- Muerto.

Un registro de plantación representa la existencia de la siembra de un cultivo en una parcela. Por lo tanto, los estados de un registro de plantación son los estados de un cultivo. El estado "Finalizado" representa que un cultivo fue sembrado y cosechado. Un estado de desarrollo representa que un cultivo está sembrado y en proceso de desarrollo o maduración. El estado "En espera" representa la planificación de la futura siembra de un cultivo. El estado "Muerto" representa la muerte de un cultivo.

Un registro de plantación utiliza los estados "Desarrollo óptimo", "Desarrollo en riesgo de marchitez", "Desarrollo en marchitez" y "Muerto" cuando la bandera suelo de las opciones de la parcela, a la que pertenece, está activa. Para activar o desactivar esta bandera se debe acceder al formulario de opciones de una parcela: Parcelas > Opciones > Utilizar suelo para calcular la necesidad de agua de riego de un cultivo en la fecha actual [mm/día]. Si la bandera suelo de las opciones de una parcela no está activa, un registro de plantación utiliza el estado "En desarrollo". En la subsección 3.3 Cálculo de la necesidad de agua de riego de un cultivo se explica el motivo de esta bandera. Los estados "Finalizado" y "En espera" son utilizados por un registro de plantación independientemente de si la bandera suelo de las opciones de la parcela, a la que pertenece, está activa o no.

La evolución del estado de un registro de plantación depende de su fecha de siembra y su fecha de cosecha, pero también depende del nivel de humedad del suelo si se utiliza la bandera suelo de las opciones de una parcela. El estado de un registro de plantación, y, por ende, el estado de un cultivo, es:

- "Finalizado" cuando su fecha de cosecha es estrictamente menor (es decir, anterior) a la fecha actual (es decir, hoy).
- "En desarrollo" cuando su fecha de siembra es menor o igual a la fecha actual y su fecha de cosecha es mayor o igual a la fecha actual. En otras palabras, cuando la fecha actual está dentro del período definido por la fecha de siembra y la fecha de cosecha.
- "En espera" cuando su fecha de siembra es estrictamente mayor (es decir, posterior) a la fecha actual.

- "Desarrollo óptimo" cuando el nivel de humedad del suelo, en el que está sembrado un cultivo, es menor o igual a la capacidad de campo del suelo y estrictamente mayor al umbral de riego.
- "Desarrollo en riesgo de marchitez" cuando el nivel de humedad del suelo, en el que está sembrado un cultivo, es menor o igual al umbral de riego y estrictamente mayor al punto de marchitez permanente del suelo.
- "Desarrollo en marchitez" cuando el nivel de humedad del suelo, en el que está sembrado un cultivo, es menor o igual al punto de marchitez permanente del suelo y mayor o igual al negativo del doble de la capacidad de almacenamiento de agua del suelo.
- "Muerto" cuando el nivel de humedad del suelo, en el que está sembrado un cultivo, es estrictamente menor al negativo del doble de la capacidad de almacenamiento de agua del suelo. Que el nivel de humedad del suelo sea estrictamente menor al negativo del doble de la capacidad de almacenamiento de agua del suelo significa que la pérdida de humedad o agua del suelo, que tiene un cultivo sembrado, es estrictamente mayor al doble de la capacidad de almacenamiento de agua del suelo. Ningún cultivo tiene la capacidad de sobrevivir con una pérdida de humedad estrictamente mayor al doble de la capacidad de almacenamiento de agua del suelo. Por este motivo, cuando ocurre dicha pérdida de humedad o agua del suelo se dice que un cultivo está muerto. Esta es la convención implementada en el sistema para determinar la muerte de un cultivo.

Los conceptos capacidad de campo, umbral de riego y capacidad de almacenamiento de agua del suelo son explicados en la subsección 3.3 Cálculo de la necesidad de agua de riego de un cultivo.

3.2 Posibles valores de la necesidad de agua de riego de un registro de plantación

Un registro de plantación tiene un atributo denominado *necesidad de agua de riego de un cultivo*, el cual representa la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día]. Este atributo puede tener uno de los siguientes valores:

- n/a (no disponible). Representa que la necesidad de agua de riego de un cultivo en la fecha actual no está disponible y no se puede calcular.
- - (guion). Representa que la necesidad de agua de riego de un cultivo en la fecha actual no está disponible, pero se puede calcular.
- Número mayor o igual a cero [mm/día]. Representa la necesidad de agua de riego de un cultivo en la fecha actual [mm/día].

El valor n/a es asignado por el sistema al atributo "necesidad de agua de riego de un cultivo" de un registro de plantación:

- en la creación y modificación de un registro de plantación que tiene o adquiere el estado "Finalizado",
- en la creación y modificación de un registro de plantación que tiene o adquiere el estado "En espera",
- en la asignación del estado "Finalizado" a un registro de plantación que tiene un estado de desarrollo (en desarrollo, desarrollo óptimo, desarrollo en riesgo de marchitez, desarrollo en marchitez),
- en la asignación del estado "Muerto" a un registro de plantación perteneciente a una parcela que en sus opciones tiene la bandera suelo activa, y
- cuando por algún motivo no es posible obtener los datos meteorológicos del servicio meteorológico utilizado por la aplicación. Por ejemplo, si el servicio meteorológico utilizado por la aplicación brinda 1000 peticiones gratuitas por día y en la fecha actual la aplicación supero esa cantidad, no es posible calcular la necesidad de agua de riego de un cultivo en la fecha actual.

Por la subsección 3.1 Estados de un registro de plantación se sabe que un registro de plantación representa la existencia de la siembra de un cultivo en una parcela y que los estados de un registro de plantación son los estados de un cultivo. El motivo por el cual se realiza este recordatorio es para realizar las siguientes justificaciones de los incisos anteriores. Un registro registro de plantación finalizado representa que un cultivo fue sembrado y cosechado, con lo cual no es posible calcular la necesidad de agua de riego del mismo en la fecha actual (es decir, hoy). Un registro de plantación en espera representa la planificación de la futura siembra de un cultivo, con lo cual no es posible calcular la necesidad de agua de riego del mismo en la fecha actual. Un registro de plantación muerto representa la muerte de un cultivo, con lo cual no es posible calcular la necesidad de agua de riego del mismo en la fecha actual.

El valor - (guion) es asignado por el sistema al atributo "necesidad de agua de riego de un cultivo" de un registro de plantación:

- en la creación y modificación de un registro de plantación que tiene el estado "En desarrollo",
- en la creación y modificación de un registro de plantación que tiene el estado "En desarrollo óptimo",
- en la asignación del estado "En desarrollo" a un registro de plantación perteneciente a una parcela que en sus opciones no tiene la bandera suelo activa, y
- en la asignación del estado "Desarrollo óptimo" a un registro de plantación perteneciente a una parcela que en sus opciones tiene la bandera suelo activa.

El sistema asigna un número mayor o igual al atributo "necesidad de agua de riego de un cultivo" de un registro de plantación que tiene un estado de desarrollo (en desarrollo, desarrollo óptimo, desarrollo en riesgo de marchitez, desarrollo en marchitez).

Figura 3.1 Ejemplo de los posibles valores que puede tener el atributo "necesidad de agua de riego de un cultivo" de un registro de plantación

3.3 Cálculo de la necesidad de agua de riego de un cultivo

El sistema tiene dos métodos para calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día]. Ambos métodos calculan la necesidad de agua de riego de un cultivo en la fecha actual en función del acumulado del déficit de agua por día [mm/día] del día inmediatamente anterior a la fecha actual y de la cantidad total de agua de riego de la fecha actual. La diferencia entre ambos está en que uno de ellos calcula la necesidad de agua de riego de un cultivo en la fecha actual sin utilizar datos de suelo (peso específico aparente, capacidad de campo, punto de marchitez permanente), mientras que el otro lo hace utilizando datos de suelo.

La ventaja del método del cálculo de la necesidad de agua de riego de un cultivo en la fecha actual sin datos de suelo es que no es necesario que el usuario conozca el suelo de la parcela en la que sembrará un cultivo. Por lo tanto, este método es ideal para el usuario que no conoce el suelo que tiene la parcela en la que sembrará un cultivo. La desventaja de este método es que el usuario está obligado a regar un cultivo todos los días, con lo cual este método se trata de un riego a reposición diaria. Esto se debe a que al no utilizar datos de suelo no es posible determinar en qué punto se encuentra el nivel de humedad del suelo con respecto a la capacidad de campo del suelo, al umbral de riego, al punto de marchitez permanente del suelo y al doble de la capacidad de almacenamiento de agua del suelo.

La ventaja del método del cálculo de la necesidad de agua de riego de un cultivo en la fecha actual con datos de suelo es que no es necesario regar un cultivo todos los días, con lo cual el usuario no está obligado a realizar un riego diario. Esto se debe a que al utilizar datos de suelo se puede determinar en qué punto se encuentra el nivel de humedad del suelo con respecto a la capacidad de campo del suelo, al umbral de riego, al punto de marchitez permanente del suelo y al doble de la capacidad de almacenamiento de agua del suelo. Sabiendo esto se puede saber hasta qué punto se puede dejar secar el suelo, en el que está sembrado un cultivo, y cuánto hay que regar para hacer que el nivel de

humedad del suelo sea llevado a capacidad de campo. No es posible saber esto en el método del cálculo de la necesidad de agua de riego de un cultivo en la fecha actual sin datos de suelo. La desventaja de este método es que el usuario debe conocer el suelo que tiene la parcela en la que sembrará un cultivo.

Al contar con estos dos métodos del cálculo de la necesidad de agua de riego de un cultivo en la fecha actual, el sistema le brinda flexibilidad al usuario, ya que si este conoce o no conoce el suelo de la parcela en el que sembrará un cultivo, podrá calcular la necesidad de agua de riego del mismo en la fecha actual.

El sistema permite calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día] únicamente para un cultivo perteneciente a un registro de plantación que tiene un estado de desarrollo (en desarrollo, desarrollo óptimo, desarrollo en riesgo de marchitez, desarrollo en marchitez). Un registro de plantación que tiene un estado de desarrollo representa la existencia de la siembra de un cultivo en desarrollo. Por lo tanto, el sistema permite calcular dicha necesidad únicamente para un cultivo en proceso de desarrollo.

3.3.1 Atributos de un balance hídrico de suelo

El algoritmo utilizado por la aplicación para calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) utiliza balances hídricos. Un balance hídrico de suelo tiene los siguientes atributos: agua provista [mm/día], pérdida de humedad o agua de suelo [mm/día], déficit de agua por día [mm/día] y acumulado del déficit de agua por día [mm/día]. Todos ellos son necesarios para calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día]. Por este motivo es necesario explicar cada uno de ellos.

El déficit de agua por día [mm/día] representa la diferencia entre la cantidad de agua que ingresa en el suelo y la cantidad de agua que pierde el suelo. El sistema calcula el déficit de agua por día como la diferencia entre la cantidad de agua provista en un día [mm/día] y la cantidad de pérdida de humedad o agua de suelo en un día [mm/día]. A esta última también se la denomina agua evapotranspirada en un día [mm/día]. La cantidad de agua provista en un día está determinada por la precipitación artificial y/o natural de un día. La cantidad de pérdida de humedad o agua de suelo en un día está determinada por la ETc de un día [mm/día]. El déficit de agua por día puede ser negativo, cero o positivo.

- Un déficit de agua por día negativo representa que en el día la cantidad de agua evapotranspirada no fue cubierta (satisfecha), con lo cual en el día el nivel de humedad del suelo, que tiene un cultivo sembrado, no está en capacidad de campo. Por lo tanto, en el día el suelo no está en capacidad de campo. Esto es que el suelo no está lleno de agua o en su máxima capacidad de almacenamiento de agua.
- Un déficit de agua por día igual a cero representa que en el día la cantidad de agua evapotranspirada fue totalmente cubierta (satisfecha), con lo cual en el día el nivel de humedad del suelo, que tiene un cultivo sembrado, está en capacidad de campo. Por lo tanto, en el día el suelo está en capacidad de campo.
- Un déficit de agua por día positivo representa que en el día la cantidad de agua evapotranspirada fue totalmente cubierta (satisfecha) y que hay una cantidad extra de agua, la cual se puede escurrir o puede almacenarse en el suelo. La cantidad extra de agua se escurre si en el día el nivel de humedad

del suelo está en capacidad de campo, esto es si el suelo está en capacidad de campo. En cambio, se almacena en el suelo si el acumulado del déficit de agua por día es negativo, ya que si este es negativo significa que en días previos al día del déficit de agua hubo una cantidad de agua evapotranspirada que no fue satisfecha (cubierta), con lo cual en el día del déficit de agua hay lugar en el suelo para almacenar más agua.

El tercer inciso da lugar para realizar la siguiente explicación: el suelo agrícola se comporta como un depósito de agua. Si un depósito está lleno de agua y se le agrega más agua, el agua extra se rebalsa del depósito. En cambio, si un depósito no está lleno de agua y se le agrega más agua, el agua se almacena en el depósito. Lo mismo ocurre con el suelo agrícola. Si el suelo está lleno de agua y se le agrega más agua, el agua extra se escurre. En cambio, si el suelo no está lleno de agua y se la agrega más agua, el agua se almacena en el suelo.

El sistema calcula el déficit de agua por día para cada uno de los días pertenecientes al período definido por la fecha inmediatamente siguiente a la fecha de siembra y la fecha inmediatamente anterior a la fecha actual (es decir, hoy). El motivo por el cual el sistema no calcula el déficit de agua por día de la fecha de siembra de un cultivo es que en esta fecha la cantidad de agua evapotranspirada es cero, ya que es el inicio del ciclo de vida de un cultivo.

El acumulado del déficit de agua por día [mm/día] puede ser negativo o cero y representa la cantidad total de agua evapotranspirada de un conjunto de días. El sistema calcula este valor en función del déficit de agua por día de cada uno de los días pertenecientes al período definido por la fecha inmediatamente siguiente a la fecha de siembra de un cultivo y la fecha inmediatamente anterior a la fecha actual (es decir, hoy). Esto da como resultado el acumulado del déficit de agua por día del día inmediatamente anterior a la fecha actual y representa la cantidad total de agua evapotranspirada de un conjunto de días previos a la fecha actual. El sistema utiliza el acumulado del déficit de agua por día de la fecha inmediatamente anterior a la fecha actual y la cantidad total de agua de riego de la fecha actual para calcular la necesidad de agua de riego de un cultivo en la fecha actual [mm/día].

El motivo por el cual el sistema no calcula el acumulado del déficit de agua por día de la fecha de siembra de un cultivo es que en esta fecha la cantidad de agua evapotranspirada es cero, ya que es el inicio del ciclo de vida de un cultivo. Al no haber una cantidad de agua evapotranspirada en la fecha de siembra de un cultivo no hay una cantidad de agua evapotranspirada que acumular en dicha fecha.

Para calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día] se debe tener en cuenta todo lo que ocurrió con un cultivo en días previos a la fecha actual. Por este motivo el sistema calcula los balances hídricos de suelo desde la fecha de siembra de un cultivo hasta la fecha inmediatamente anterior a la fecha actual con la diferencia de que no calcula el déficit de agua por día ni el acumulado del déficit de agua por día de la fecha de siembra de un cultivo.

Hay una forma para calcular el acumulado del déficit de agua por día, la cual está implementada en el sistema y es la siguiente:

- Si el déficit de agua por día es menor a cero se lo acumula, lo cual da como resultado un número negativo.
- Si el déficit de agua por día es mayor a cero y el acumulado del déficit de agua por día es menor a cero, se realiza la suma de ambos. Luego se comprueba si el resultado de esta suma es estrictamente mayor a cero. Si lo es se asigna el valor cero al acumulado del déficit de agua por día.

El motivo por el cual se asigna el valor cero al acumulado del déficit de agua por día cuando la suma entre este y el déficit de agua por día es estrictamente mayor a cero tiene la siguiente explicación. Si el resultado de la suma entre estos dos valores es estrictamente mayor a cero, significa que la cantidad total de agua evapotranspirada de los días previos al día del déficit de agua por día calculado, fue totalmente cubierta (satisfecha) mediante precipitación (artificial y/o natural). Por lo tanto, en el día del déficit de agua por día calculado no hay una cantidad de agua evapotranspirada que cubrir (satisfacer) mediante precipitación (artificial y/o natural), con lo cual el acumulado del déficit de agua por día de dicho día es cero. Esto significa que, en el día correspondiente al déficit de agua por día calculado, el nivel de humedad del suelo está en capacidad de campo, esto es que el suelo está en capacidad de campo. Si el resultado de la suma entre el acumulado del déficit de agua por día y el déficit de agua por día es igual a cero, también se cumple la condición de capacidad de campo.

Previamente se mencionó que el sistema calcula la necesidad de agua de riego de un cultivo en la fecha actual partiendo desde la condición de que el suelo, en el que se realizará la siembra de un cultivo, está en capacidad de campo en la fecha de siembra de un cultivo, y que a partir de esta condición el sistema informa en la fecha actual y en milímetros por día, en función de la cantidad de agua evapotranspirada también medida en milímetros por día, la cantidad de agua que se debe reponer mediante el riego para llevar al suelo, en el que está sembrado un cultivo, a capacidad de campo. Si la suma entre el acumulado del déficit de agua por día y el déficit de agua por día es mayor o igual a cero, se cumple la condición de capacidad de campo. Por lo tanto, si ocurre esto el sistema informa que la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) es cero [mm/día].

Un acumulado del déficit agua por día negativo indica que en un conjunto de días hubo una cantidad de agua evapotranspirada que no fue cubierta (satisfecha) mediante precipitación (artificial y/o natural), con lo cual en el día inmediatamente siguiente al último día de dicho conjunto de días el nivel de humedad del suelo, que tiene un cultivo sembrado, no está en capacidad de campo, esto es que en un día el suelo no está en capacidad de campo. Por lo tanto, en un día hay lugar en el suelo para almacenar más agua.

Día	Agua provista [mm/día]	Agua evapotranspirada [mm/día]	Déficit de agua [mm/día]	Déficit de agua acumulado [mm/día]
1	0	0	0	0
2	5	5	0	0
3	2	2	0	0
4	2	4	-2	-2
5	0	2	-2	-4
6	1	2	-1	-5
7	-	-	-	-

Ejemplo 3.1 Hay lugar en el suelo para almacenar más agua

En el día 1 el suelo está a capacidad de campo. Esto es que está lleno de agua o con la carga máxima de agua que puede retener, pero no anegado. En el día 6 el acumulado del déficit de agua es 5 mm/día. Esto significa que del día 1 al día 6 hubo una cantidad total de 5 mm/día de agua evapotranspirada que no fue cubierta (satisfecha) mediante precipitación (artificial y/o natural). Por lo tanto, cuando llega el día 7 el suelo no está en capacidad de campo, es decir, no tiene la carga máxima de agua que puede retener, con lo cual tiene lugar para almacenar agua, específicamente tiene 5 milímetros de profundidad libres de agua, lo cuales se deben cubrir (satisfacer) mediante precipitación para llevarlo a la condición de capacidad de campo.

Suponiendo que en el día 7 el agua provista es 6 mm/día y el agua evapotranspirada es 1 mm/día, el déficit de agua del día 7 es 5 mm/día. Por lo tanto, el agua evapotranspirada del día 7 está totalmente cubierta (satisfecha) porque la cantidad de agua provista es mayor o igual a la cantidad de agua evapotranspirada. Además, los 5 milímetros sobrantes de agua se almacenan en el suelo porque este tiene 5 milímetros de profundidad libres de agua, debido a que el acumulado del déficit de agua del día inmediatamente anterior al día 7 es 5 mm/día. Por lo tanto, en el día 7 el suelo está en la condición de capacidad de campo, y, por ende, no hay una cantidad de agua evapotranspirada de un conjunto de días previos a otro día, que cubrir (satisfacer) mediante precipitación, con lo cual el acumulado del déficit de agua en el día 7 es cero.

Un acumulado del déficit de agua por día igual a cero indica que en un conjunto de días hubo una cantidad de agua evapotranspirada que fue cubierta (satisfecha) mediante precipitación (artificial y/o natural), con lo cual en el día inmediatamente siguiente al último día de dicho conjunto el nivel de humedad del suelo, que tiene un cultivo sembrado, está en capacidad de campo, esto es que en un día el suelo está en capacidad de campo. Por lo tanto, en un día no hay lugar en el suelo para almacenar más agua.

Día	Agua provista [mm/día]	Agua evapotranspirada [mm/día]	Déficit de agua [mm/día]	Déficit de agua acumulado [mm/día]
1	0	0	0	0
2	3	5	-2	-2
3	2	3	-1	-3
4	3	1	2	-1
5	2	2	0	-1
6	3	2	1	0
7	-	-	-	-

Ejemplo 3.2 No hay lugar en el suelo para almacenar más agua

En el día 1 el suelo está a capacidad de campo. Esto es que está lleno de agua o con la carga máxima de agua que puede retener, pero no anegado. En el día 6 el acumulado del déficit de agua es 0 mm/día. Esto significa que la cantidad total de agua evapotranspirada del día 1 al día 6 fue cubierta (satisfecha) mediante precipitación (artificial y/o natural). Por lo tanto, cuando llega el día 7 el suelo está en capacidad de campo, es decir, tiene la carga máxima de agua que puede retener, con lo cual no tiene lugar para almacenar agua.

Suponiendo que en el día 7 el agua provista es 4 mm/día y el agua evapotranspirada es 1 mm/día, el déficit de agua del día 7 es 3 mm/día. Por lo tanto, el agua evapotranspirada del día 7 está totalmente cubierta (satisfecha) porque la cantidad de agua provista es mayor o igual a la cantidad de agua evapotranspirada. Además, los 3 milímetros sobrantes de agua no se almacenan en el suelo, se escurren. Esto ocurre porque en el día 7 el suelo está en capacidad de campo, debido a que la cantidad de agua evapotranspirada de este día está cubierta y a que no hay que cubrir una cantidad de agua evapotranspirada de un conjunto de días previos a este día.

La cantidad de agua evapotranspirada de un día está determinada por la ETc (evapotranspiración del cultivo bajo condiciones estándar) [mm/día], la cual se calcula en función de la ETo y un coeficiente de cultivo (Kc).

La ETo (evapotranspiración del cultivo de referencia) [mm/día] representa la pérdida de agua de una superficie cultivada estándar. Se calcula en función de la temperatura máxima, la temperatura mínima y la radiación solar. El cultivo de referencia es el pasto bien regado. Para calcular la ETo de un día, el sistema obtiene la temperatura máxima y la temperatura mínima del servicio meteorológico Visual Crossing Weather. La radiación solar la obtiene de la base de datos porque este dato está tabulado para diferentes latitudes para el día 15vo de cada mes del año.

La ETc (evapotranspiración del cultivo bajo condiciones estándar) [mm/día] representa el requerimiento hídrico de un cultivo. La ETc se calcula multiplicando la ETo por un Kc (coeficiente de cultivo). El Kc [adimensional] representa las diferencias en evaporación y transpiración del cultivo de referencia con respecto a un cultivo en particular. Un cultivo tiene cuatro etapas en su ciclo de vida: etapa inicial, etapa de desarrollo, etapa media y etapa final. A cada una de estas etapas le corresponde un Kc.

3.3.2 Algoritmo del cálculo de la necesidad de agua de riego de un cultivo

Para calcular la necesidad de agua de riego de un cultivo (en proceso de desarrollo) en la fecha actual (es decir, hoy) [mm/día], el sistema utiliza los siguientes elementos:

- 1. La condición de que el suelo, en el que se realizará la siembra de un cultivo, está en capacidad de campo en la fecha de siembra de un cultivo.
- 2. El acumulado del déficit de agua por día [mm/día] del día inmediatamente anterior a la fecha actual y la cantidad total de agua de riego de la fecha actual [mm/día]. Dicho valor acumulado es calculado desde la fecha inmediatamente siguiente a la fecha de siembra de un cultivo hasta la fecha inmediatamente anterior a la fecha actual.

El sistema calcula la necesidad de agua de riego de un cultivo en la fecha actual partiendo desde la condición de que el suelo, en el que se realizará la siembra de un cultivo, está en capacidad de campo en la fecha de siembra de un cultivo. A partir de esta condición el sistema informa en la fecha actual y en milímetros por día, en función de la cantidad de agua evapotranspirada también medida en milímetros por día, la cantidad de agua que se debe reponer mediante el riego para llevar al suelo, en el que está sembrado un cultivo, a capacidad de campo. Dicha cantidad de agua a reponer es la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día]. Esta condición se utiliza tanto en el método que calcula dicha necesidad sin datos de suelo como en el método que la calcula con datos de suelo. ¿Qué es capacidad de campo? Capacidad de campo es el contenido de agua o humedad que es capaz de retener el suelo luego de saturación o de haber sido mojado abundantemente y después dejado drenar libremente. Otras definiciones de capacidad de campo dicen lo siguiente:

- La capacidad de campo es el contenido de agua de un suelo después del drenaje gravitacional durante aproximadamente un día.
- La capacidad de campo es la capacidad máxima que tiene un suelo de retener agua.

¿Cómo llega un suelo a la condición de capacidad de campo? A un suelo se lo satura de agua y se debe esperar un día para que drene libremente. El agua gravitacional (es decir, el agua que por gravedad se mueve hacia abajo, esto es que se drena) pasa por los poros grandes y las piedras del suelo, y toda el agua que queda retenida en los mesoporos y en los microporos, que es el agua útil para un cultivo, es el agua que queda en el suelo. Cuando ocurre esta situación, un suelo está en capacidad de campo, lo cual significa que está lleno de agua o con la carga máxima de agua que puede retener, pero no anegado. La figura 3.2 ilustra la condición de saturación, capacidad de campo y sequedad del suelo.

Por lo tanto, para cumplir con la condición utilizada por el sistema para calcular la necesidad de agua de riego de un cultivo en la fecha actual, se debe saturar de agua el suelo un día antes de la fecha de siembra de un cultivo, ya que de esta manera el suelo drenará durante un día y al día siguiente (día de la siembra) estará en capacidad de campo. El motivo por el cual el sistema utiliza la condición de suelo a capacidad de campo como condición de inicio en la fecha de siembra de un cultivo para calcular la necesidad de agua de riego de un cultivo en la fecha actual es que en la práctica agronómica el suelo se satura de agua antes de la fecha de siembra de un cultivo.

Figura 3.2 Suelo en saturación, capacidad de campo y seco. Las partículas de tierra del suelo están representadas por los dibujos en color marrón. El agua del suelo está representada con el color azul. Los poros del suelo están representados por los espacios entre las partículas de tierra.

El algoritmo utilizado por el sistema para calcular la necesidad de agua de riego de un cultivo en la fecha actual puede ser ejecutado **únicamente** para un registro de plantación que tiene un estado desarrollo (en desarrollo, desarrollo óptimo, desarrollo en riesgo de marchitez, desarrollo en marchitez) y es ejecutado cada vez que se desea calcular la necesidad de agua de riego de un cultivo en la fecha actual. Los pasos de este algoritmo son los siguientes:

- 1. Obtención y persistencia de los registros climáticos (contienen datos meteorológicos de una fecha y de una ubicación geográfica), pertenecientes a la parcela de un registro de plantación que tiene un estado de desarrollo, desde la fecha inmediatamente siguiente a la fecha de siembra de un cultivo hasta la fecha inmediatamente anterior a la fecha actual (es decir, hoy). Si en la base de datos subyacente existen los registros climáticos del período, definido por las fechas mencionadas, pertenecientes a una parcela de un registro de plantación que tiene un estado de desarrollo, se los actualiza si y solo si se modifica la ubicación geográfica de una parcela. Los registros climáticos son obtenidos del servicio meteorológico Visual Crossing Weather.
- 2. Cálculo y actualización de la ETo (evapotranspiración del cultivo de referencia) [mm/día] y la ETc (evapotranspiración del cultivo bajo condiciones estándar) [mm/día] de cada uno de los registros climáticos desde la fecha inmediatamente siguiente a la fecha de siembra de un cultivo hasta la fecha inmediatamente anterior a la fecha actual.

- 3. Persistencia del balance hídrico de suelo de la fecha de siembra de un cultivo. El agua provista [mm/día], agua evapotranspirada [mm/día], déficit de agua por día [mm/día] y acumulado del déficit de agua por día [mm/día] de este balance hídrico de suelo son iguales a 0 porque en la fecha de siembra de un cultivo se parte, y se debe partir, desde la condición de suelo en capacidad de campo. Esto es que el suelo, en el que se siembra un cultivo, está lleno de agua, pero no anegado. La persistencia de este balance hídrico es el motivo por el cual en el paso 1 no se obtiene el registro climático de la fecha de siembra de un cultivo.
- 4. Cálculo y persistencia del balance hídrico de suelo de cada una de las fechas comprendidas en el período definido por la fecha inmediatamente siguiente a la fecha de siembra de un cultivo y la fecha inmediatamente anterior a la fecha actual (es decir, hoy). En este paso se calculan para cada balance hídrico de suelo el agua provista [mm/día], el agua evapotranspirada [mm/día], el déficit de agua por día [mm/día] y el acumulado del déficit de agua por día [mm/día].
- 5. Suma entre el acumulado del déficit de agua por día [mm/día] del día inmediatamente anterior a la fecha actual y la cantidad total de agua de riego de la fecha actual [mm/día]. Luego, se evalúa si el resultado de esta suma es mayor o igual a cero. Si lo es, la necesidad de agua de riego de un cultivo en la fecha actual es cero. Si no lo es, la necesidad de agua de riego de un cultivo en la fecha actual es el valor absoluto de la diferencia entre la cantidad total de agua de riego de la fecha actual y el acumulado del déficit de agua por día del día inmediatamente anterior a la fecha actual. En el primer caso de la evaluación, la necesidad de agua de riego de un cultivo en la fecha actual es cero [mm/día] porque al ser la suma entre ambos valores mayor o igual a cero significa que el suelo, en el que está sembrado un cultivo, está en capacidad de campo, con lo cual se cumple la condición de que el suelo esté en capacidad de campo. En el segundo caso de la evaluación, la necesidad de agua de riego de un cultivo en la fecha actual es el valor absoluto de la diferencia entre ambos valores [mm/día] porque al ser la suma entre ambos valores estrictamente menor a cero significa que el suelo, en el que está sembrado un cultivo, no está en capacidad de campo, con lo cual no se cumple la condición de que el suelo esté en capacidad de campo.

3.3.3 Ejemplo de cálculo de la necesidad de agua de riego de un cultivo

El sistema calcula de manera automática la necesidad de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día]. También le brinda al usuario un botón para ello, el cual tiene la etiqueta "Calcular" y está sobre un registro de plantación que tiene un estado de desarrollo (en desarrollo, desarrollo óptimo, desarrollo en riesgo de marchitez, desarrollo en marchitez) en la página web del listado de registros de plantación. A continuación, se muestra un ejemplo del método de cálculo de la necesidad de agua de riego de un cultivo en la fecha actual con datos de suelo.

Figura 3.3 Registro de plantación utilizado con el método de cálculo de la necesidad de agua de riego en la fecha actual con datos de suelo

Li	Listado de balances hídricos de suelo						
Parcela		Cultivo	dd/mm/aaaa	<u> </u>			
ID	Fecha	Parcela	Cultivo	Precip. (artificial y/o natural) [mm/día]	H2O evaporada (ETc/ETo) [mm/día]	Déficit H2O [mm/día]	Déficit acum. H2O [mm/día]
1	13/02/2024	TX 1	Alfalfa	0	0	0	0
2	14/02/2024	TX 1	Alfalfa	0	2.743732717718689	-2.743732717718689	-2.743732717718689
3	15/02/2024	TX 1	Alfalfa	0	2.3474748009029685	-2.3474748009029685	-5.091207518621657
4	16/02/2024	TX 1	Alfalfa	0	2.7746404058930025	-2.7746404058930025	-7.86584792451466
5	17/02/2024	TX 1	Alfalfa	0	2.0752052118033433	-2.0752052118033433	-9.941053136318004
6	18/02/2024	TX 1	Alfalfa	0	2.4850095137548665	-2.4850095137548665	-12.42606265007287
7	19/02/2024	TX 1	Alfalfa	0	1.9887559359831852	-1.9887559359831852	-14.414818586056056
8	20/02/2024	TX 1	Alfalfa	1.2	1.91174429428945	-0.7117442942894501	-15.126562880345507

Figura 3.4 Listado de balances hídricos de suelo del ejemplo de la figura 3.3

En este ejemplo, la cantidad total del agua de riego de la fecha 21-02-2024 (fecha actual al momento de escribir este documento) es 0 [mm/día] y el acumulado del déficit del día inmediatamente anterior a la fecha 21-02-2024 es -15.126562880345507 [mm/día]. Por lo tanto, la necesidad de agua de riego para la alfalfa en la fecha 21-02-2024 es el valor absoluto de la diferencia entre 0 y - 15.126562880345507, lo cual da como resultado que dicha necesidad sea 15.126562880345507 [mm/día].

El acumulado del día inmediatamente anterior a la fecha 21-02-2024 es estrictamente menor a cero. Esto significa que desde el día 14-02-2024 al día 20-02-2024 hubo una cantidad de agua perdida por evapotranspiración (transpiración por parte de la alfalfa y evaporación del suelo de la parcela TX 1) que no fue cubierta (satisfecha) y que debe ser cubierta mediante el riego en la fecha 21-02-2024 (fecha actual al momento de escribir este documento). Esta cantidad de agua a cubrir (satisfacer) es, en la

fecha 21-02-2024, la necesidad hídrica de la alfalfa, plantada en la parcela TX 1, y es la cantidad de agua que se debe suministrar al suelo de dicha parcela para llevarlo a la condición de capacidad de campo en la misma fecha.

En la subsección 3.3.1 Atributos de un balance hídrico de suelo se explica la manera en la que se calculan los atributos de un balance hídrico. El sistema utiliza balances hídricos de suelo para calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día].

Si se utilizan datos de suelo para calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día], un registro de plantación utiliza los estados "Desarrollo óptimo", "Desarrollo en riesgo de marchitez", "Desarrollo en marchitez" y "Muerto", y tiene definido los valores *Capacidad de almacenamiento de agua del suelo [mm]* y *Umbral de riego [mm]*. En cambio, si no se utilizan datos de suelo para realizar dicho cálculo, un registro de plantación utiliza el estado "En desarrollo". Para utilizar o no datos de suelo en el cálculo de la necesidad de agua de riego de un cultivo en la fecha actual se debe activar o desactivar, respectivamente, la bandera *Utilizar suelo para calcular la necesidad de agua de riego de un cultivo en la fecha actual (es decir, hoy) [mm/día]* de las opciones de una parcela.

La capacidad de almacenamiento de agua que tiene un suelo está dada por la fórmula de la lámina total de agua disponible (dt) [mm]. Esta fórmula está en función del suelo y de la profundidad radicular de un cultivo, y representa la cantidad de agua que puede retener un suelo en el volumen determinado por los valores de un suelo (capacidad de campo, punto de marchitez permanente, peso específico aparente) y la profundidad de las raíces de un cultivo.

$$\left(\frac{Wc - Wm}{100}\right) * pea * D$$

donde

Wc capacidad de campo [gr/gr]
Wm punto de marchitez permanente [gr/gr]
pea peso específico aparente [gr/cm³]
D profundidad radicular [m]

Formula de la lámina total de agua disponible (dt) [mm]

La unidad de medida [gr/gr] representa la cantidad de gramos de agua que hay cada 100 gramos de tierra seca. Por ejemplo, un suelo arenoso tiene una capacidad de campo de 9 [gr/gr], lo cual indica que en capacidad de campo un suelo arenoso tiene 9 gramos de agua cada 100 gramos de tierra seca. Esto indica que un suelo arenoso tiene poca retención de agua. Lo que indica la textura del suelo es capacidad de retención de agua que tiene un suelo. La textura de un suelo se determina mediante el triángulo textural.

El umbral de riego está dado por la fórmula de lámina de riego óptima (drop) [mm]. Esta fórmula está en función del suelo, de la profundidad radicular y de la fracción de agotamiento de la humedad en el suelo para un cultivo, y representa la cantidad máxima de agua que puede perder un suelo en capacidad de campo, que tiene un cultivo sembrado, a partir de la cual no conviene que pierda más agua, sino que se lo debe llenar para llevarlo a la condición de capacidad de campo, es decir, para hacer que el suelo esté lleno de agua o en su capacidad máxima de retención de agua, pero no anegado.

$$\left(\frac{Wc - Wm}{100}\right) * pea * D * p$$

donde

Wc capacidad de campo [gr/gr]
Wm punto de marchitez permanente [gr/gr]
pea peso específico aparente [gr/cm³]
D profundidad radicular [m]
p fracción de agotamiento de la humedad en el suelo para un cultivo (adimensional)

Formula de la lámina de riego óptima (drop) [mm]

3.4 Ubicación geográfica de una parcela

Una parcela tiene una ubicación geográfica, con lo cual la ubicación geográfica de un cultivo está determinada por la parcela sobre la que se siembra. La ubicación geográfica de una parcela es necesaria para obtener los datos meteorológicos que el sistema requiere para calcular los balances hídricos de suelo desde la fecha inmediatamente siguiente a la fecha de siembra de un cultivo hasta la fecha inmediatamente anterior a la fecha actual (es decir, hoy), los cuales son necesarios para calcular la necesidad de agua de riego de un cultivo en la fecha actual. El sistema brinda un formulario para el registro de una parcela, el cual tiene un mapa para seleccionar la ubicación geográfica de una parcela. Para registrar una parcela el usuario debe iniciar sesión, pulsar el botón Parcelas en la barra de navegación superior y pulsar el botón Nueva parcela. Esta acción despliega el formulario para el registro de una parcela, el cual se observa en la siguiente figura.

Figura 3.3 Formulario de registro de parcela

3.5 Creación de un registro de plantación

Un registro de plantación tiene una fecha de siembra, una fecha de cosecha, una parcela y un cultivo. Por este motivo un registro de plantación representa la existencia de la siembra de un cultivo en una parcela. Para crear un registro de plantación el usuario debe iniciar sesión, pulsar el botón Regs. plantación en la barra de navegación superior y pulsar el botón Nuevo registro de plantación. Esta acción despliega un formulario para la creación de un registro de plantación, el cual se observa en la siguiente figura.

Figura 3.4 Formulario de creación de registro de plantación

Una parcela puede tener más de un registro de plantación con el estado "Finalizado" y más de un registro de plantación con el estado "En espera", pero sólo puede tener un único registro de plantación con un estado de desarrollo (en desarrollo, desarrollo óptimo, desarrollo en riesgo de marchitez, desarrollo en marchitez) al mismo tiempo.