Movie Review Sentiment Analysis Report

1. Approach Used

a) Data Preprocessing:

- Loaded the IMDB dataset.
- Removed special characters and stopwords.
- Tokenized and stemmed the text using NLTK.
- Converted text into numerical representation using TF-IDF vectorization.

b) Exploratory Data Analysis (EDA):

- Visualized word frequencies using WordCloud.
- Performed sentiment distribution analysis.
- Encoded sentiment labels using one-hot encoding.

c) Model Training & Evaluation:

- Split data into training and testing sets.
- Trained models including Naïve Bayes, Logistic Regression, and SVM
- Evaluated models using accuracy, precision, recall, and F1-score.

2. Challenges Faced

- Data Imbalance: Some sentiment classes had more samples than others, affecting model performance.
- **Text Noise:** Presence of special characters, HTML tags, and slang words required extensive preprocessing.
- Computational Cost: Training complex models like SVM for best parameters using GridSearch took more time and computation.

3. Model Performance & Improvements

- **Naïve Bayes:** Performed well on simple text features but struggled with complex patterns.
- Logistic Regression: Achieved balanced accuracy and worked well with TF-IDF features.
- **SVM**: Showed strong performance but was computationally expensive.
- Improvements Made:
 - Hyperparameter tuning improved model efficiency.
 - o Experimented with different feature extraction techniques.
 - Used GridSearchCV to optimize parameters for better results.

Conclusion

The sentiment analysis model successfully classifies movie reviews with high accuracy. Future improvements could include deep learning techniques such as LSTMs or Transformer-based models like BERT for better contextual understanding.