Experiment No. 3
Apply Decision Tree Algorithm on Adult Census Income
Dataset and analyze the performance of the model
Date of Performance:
Date of Submission:

Department of Computer Engineering

Aim: Apply Decision Tree Algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: To perform various feature engineering tasks, apply Decision Tree Algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score. Improve the performance by performing different data engineering and feature engineering tasks.

Theory:

Decision Tree is the most powerful and popular tool for classification and prediction. A Decision tree is a flowchart-like tree structure, where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K.

CSL/01: Machine Learning Lab

Department of Computer Engineering

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th,

7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-

spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty,

Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving,

Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-

US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines,

Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic,

CSL701: Machine Learning Lab

Department of Computer Engineering

Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Code:

Conclusion:

 Discuss about the how categorical attributes have been dealt with during data preprocessing.

The given dataset contained categorical attributes such as workclass, education, marital status, relationship, race, sex, native country and income these categorical attributes haven been dealt using data preprocessing techniques such as label encoding. Label encoding is a technique used in machine learning and data analysis to convert categorical variables into numerical format.

2. Discuss the hyper-parameter tunning done based on the decision tree obtained. Hyperparameter tuning, also known as hyperparameter optimization, is the process of finding the best set of hyperparameters for a machine learning model. Hyperparameters are settings or configurations that are not learned from the data but are set prior to training a model.

3. Comment on the accuracy, confusion matrix, precision, recall and F1 score obtained. Accuracy: Model accuracy is about 81%. This means the model correctly predicted the class label.

Precision: Precision measures the accuracy of the positive predictions and the precision score obtained by our model is 59%

Recall: The recall rate is about 62%. This means that the model can only correctly identify about 62% of all real cases.

F1 Score: The F1 score of 60.8% is between precision and recall, providing a balanced view of model performance.

CSL701: Machine Learning Lab

Department of Computer Engineering

CSL701: Machine Learning Lab

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn.tree import DecisionTreeClassifier
df= pd.read_csv('adult.csv')

df= pd.read_csv('adult.csv')
```

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	Fe
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Fe
2	66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Fe
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Fe
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Fe

df.shape

(32561, 15)

df.describe()

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.p
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	3256
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	4(
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	4(
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	4(
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	4!
mav 	<u>an nnnnn</u>	1 /18/17052+06	16 000000	<u>aaaaa nnnnnn</u>	4356 <u>000000</u>	Q(

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education.num	32561 non-null	int64
5	marital.status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object

```
8 race 32561 non-null object
9 sex 32561 non-null object
10 capital.gain 32561 non-null int64
11 capital.loss 32561 non-null int64
12 hours.per.week 32561 non-null int64
13 native.country 32561 non-null object
14 income 32561 non-null object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
```

df['income'].value_counts()

<=50K 24720 >50K 7841

Name: income, dtype: int64

df['sex'].value_counts()

Male 21790 Female 10771

Name: sex, dtype: int64

df['native.country'].value_counts()

United-States	29170
Mexico	643
?	583
Philippines	198
Germany	137
Canada	121
Puerto-Rico	114
El-Salvador	106
India	100
Cuba	95
England	90
Jamaica	81
South	80
China	75
Italy	73
Dominican-Republic	70
Vietnam	67
Guatemala	64
Japan	62
Poland	60
Columbia	59
Taiwan	51
Haiti	44
Iran	43
Portugal	37
Nicaragua	34
Peru	31
Greece	29
France	29
Ecuador	28
Ireland	24
Hong	20
Cambodia	19
Trinadad&Tobago	19
Laos	18
Thailand	18
Yugoslavia	16
Outlying-US(Guam-USVI-etc)	14
Hungary	13
Honduras	13
Scotland	12
Holand-Netherlands	1
Name: native.country, dtype:	int64

```
df['workclass'].value_counts()
                     22696
    Private
    Self-emp-not-inc 2541
    Local-gov
                       2093
                       1836
    State-gov
                       1298
    Self-emp-inc
                      1116
    Federal-gov
                       960
    Never-worked 7
    Name: workclass, dtype: int64
df['occupation'].value_counts()
    Prof-specialty
                       4140
    Craft-repair
Exec-managerial 4066
3770
                       4099
    Sales
                       3650
    Other-service
                   3295
    Machine-op-inspct 2002
                      1843
    Transport-moving
                      1597
    Handlers-cleaners 1370
    Farming-fishing
                      994
                      928
    Tech-support
    Protective-serv
                      649
    Priv-house-serv
                      149
    Armed-Forces
                        9
    Name: occupation, dtype: int64
df.replace('?', np.NaN,inplace = True)
df.head()
```

tal.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week	native.cc
Widowed	NaN	Not-in-family	White	Female	0	4356	40	United-
Widowed	Exec- managerial	Not-in-family	White	Female	0	4356	18	United-
Widowed	NaN	Unmarried	Black	Female	0	4356	40	United-
Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900	40	United-
Separated	Prof- specialty	Own-child	White	Female	0	3900	40	United-

```
#fills missing values (NaNs) with the most recent non-missing value
df.fillna(method = 'ffill', inplace = True)
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['workclass'] = le.fit_transform(df['workclass'])
df['education'] = le.fit_transform(df['education'])
df['marital.status'] = le.fit_transform(df['marital.status'])
df['occupation'] = le.fit_transform(df['occupation'])
df['relationship'] = le.fit_transform(df['relationship'])
df['race'] = le.fit_transform(df['race'])
df['sex'] = le.fit_transform(df['sex'])
df['native.country'] = le.fit_transform(df['native.country'])
```

df['income'] = le.fit_transform(df['income'])

df.head()

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex
0	90	8	77053	11	9	6	14	1	4	0
1	82	3	132870	11	9	6	3	1	4	0
2	66	3	186061	15	10	6	3	4	2	0
3	54	3	140359	5	4	0	6	4	4	0
4	41	3	264663	15	10	5	9	3	4	0

df.describe()

onship	race	sex	capital.gain	capital.loss	hours.per.week	native
000000	32561.000000	32561.000000	32561.000000	32561.000000	32561.000000	3256
446362	3.665858	0.669205	1077.648844	87.303830	40.437456	3
606771	0.848806	0.470506	7385.292085	402.960219	12.347429	
000000	0.000000	0.000000	0.000000	0.000000	1.000000	
000000	4.000000	0.000000	0.000000	0.000000	40.000000	3
000000	4.000000	1.000000	0.000000	0.000000	40.000000	3
000000	4.000000	1.000000	0.000000	0.000000	45.000000	3
000000	4.000000	1.000000	99999.000000	4356.000000	99.000000	4
4						•

```
#Splitting the data set into features and outcome
X = df.drop(['income'], axis=1)
Y = df['income']
```

df.isnull().sum()

age 0 workclass 0 fnlwgt education education.num 0 marital.status 0 occupation 0 0 relationship 0 race 0 sex capital.gain 0 capital.loss hours.per.week 0 native.country 0 0 income dtype: int64

df.duplicated().sum()

24

df=df.dropna()

#Splitting the data into test data and training data

```
from sklearn.model_selection import train_test_split
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 42)
```

X_train.head()

	age	workclass	fnlwgt	education	education.num	marital.status	occupation
5514	26	3	256263	11	9	4	2
19777	24	3	170277	11	9	4	7
10781	36	3	75826	9	13	0	0
32240	22	6	24395	15	10	2	0
9876	31	1	356689	9	13	2	9
4							>

Y_train = Y_train.replace((np.inf, -np.inf, np.nan), 0).reset_index(drop=True)

```
Y_train.head()
```

```
0 0
1 0
```

2 0 3

Name: income, dtype: int64

```
Y_test = Y_test.replace((np.inf, -np.inf, np.nan), 0).reset_index(drop=True)
```

```
from sklearn.tree import DecisionTreeClassifier
dec_tree = DecisionTreeClassifier(random_state=42)
dec_tree.fit(X_train, Y_train)
Y_pred_dec_tree = dec_tree.predict(X_test)
```

```
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
```

```
print('Decision Tree Classifier:')
print('Accuracy score:',accuracy_score(Y_test, Y_pred_dec_tree) * 100)
print('Precision :',precision_score(Y_test,Y_pred_dec_tree) *100)
print('Recall: ',recall_score(Y_test,Y_pred_dec_tree) * 100)
print('F1 score: ',f1_score(Y_test,Y_pred_dec_tree) *100)
```

Decision Tree Classifier: Accuracy score: 81.1761093198219 Precision: 59.749216300940446 Recall: 62.0039037085231 F1 score: 60.85568326947638 ✓ 0s completed at 12:24 AM