

Deep Feedforward Neural Networks

Biological and artificial neurons

Feedforward models

- Multilayer Perceptron (MLP)
- Anatomy of A Layer
- Activation Functions
- Architecture

Width and Depth | Branching and Joining | Skipping | Sampling | "Ignoring"

- Architecture Search

Deep Feedforward Neural Networks | MLP

Logistic regression

x: Input

y: Output

w: Parameters/weights

$$y = \sigma \left[\sum_{i=1}^{i=3} x_i \mathbf{w}_i + b \right] = \sigma [\mathbf{w}^{\mathrm{T}} \mathbf{x} + b]$$

Activation function:
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Input layer - i

 $Hidden\ layer\ -j$

Activation function: $\sigma \rightarrow g$

Input
$$\to$$
 H1: $i \to j$

$$z_j^1 = g_j^1 \left[\sum_{i=1}^{i=3} x_i w_{ij}^0 + b_j^1 \right] = g_j^1 \left[(\mathbf{w}_j^0)^T \mathbf{x} + b_j^1 \right]$$

H1
$$\rightarrow$$
 Output: $j \rightarrow k$

$$f(\mathbf{x}, \mathbf{W}) = y_k = g_k \left[\left(\mathbf{w}_k^1 \right)^T \mathbf{z}^1 + b_k \right]$$
where $\mathbf{z}^1 = [z_1^1, z_2^1, z_3^1, z_4^1]^T, k = 1$

Deep Feedforward Neural Networks | Anatomy of A Layer

A unit: $h = g(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$

h: Hidden layer & output feature (vectors)

x: Input feature vector

w: Weights – network parameters

b: Bias

 $g(\cdot)$: Activation function

A layer is a collection of units from the same input

Deep Feedforward Neural Networks | Activation Functions

Nonlinearity?

Nonlinearity

$$y = \mathbf{w}_{j}^{\mathrm{T}} (\mathbf{w}_{i}^{\mathrm{T}} \mathbf{x} + \mathbf{b}_{i}) + \mathbf{b}_{j}$$

$$= \mathbf{w}_{j}^{\mathrm{T}} \mathbf{w}_{i}^{\mathrm{T}} \mathbf{x} + (\mathbf{w}_{j}^{\mathrm{T}} \mathbf{b}_{i} + \mathbf{b}_{j})$$

$$= \widetilde{\mathbf{w}}^{\mathrm{T}} \mathbf{x} + \widetilde{\mathbf{b}}$$

Nonlinearity

Range [**0**, **1**]

The squashing effect

A "unit" usually has one activation value

$$g(z) = \frac{1}{1 + e^{-z}}$$

The sigmoid function

For hidden units

Logistic sigmoid

Hyperbolic tangent

Rectified linear unit (ReLU)

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$g(z) = \tanh(z) = 2\sigma(2z) - 1$$

$$g(z) = \max\{0, z\}$$

For hidden units

Rectified linear unit (ReLU) $g(z) = max\{0, z\}$

For hidden units

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

For output units

Bernoulli output (logistic sigmoid): $y = g(z) = \frac{1}{1 + e^{-z}}$

Multinoulli output (softmax):
$$y_c = g(z_c) = \frac{\exp(z_c)}{\sum_{j=1}^{C} \exp(z_j)}$$

$$\rightarrow \begin{cases} \sum_{j=1}^{C} y_c = 1\\ 0 \le y_c \le 1 \end{cases}$$

Gaussian output

Other activation functions

Permutation-invariant, e.g. max, mean, min...

Known specific range and distribution

e.g. displacement/velocity (optical flow, registration), function parameters (camera position, pose)

Deep Feedforward Neural Networks | Architecture

Width and depth

How many layers?

Universal approximation theorem

A sufficiently-wide network approximates any "practically useful" functions

The wider the better?

The deeper the better?

Width and depth

Why deep?

Hierarchical representation learning, Empirical results

Width and depth

Why deep?

Hierarchical representation learning, Empirical results, Efficiency

Size

Number of parameters vs storage size?

Memory consumption?

Trade-off between accuracy and size

- "MobileNet" & "EfficientNet"*

Branching and joining

- Multi-stream

- Multi-task*

- "Inception"

Figure 1: Two-stream architecture for video classification.

- Different types of input, output/loss, and/or processing
- The same activation or not, i.e. a sparse unit or a layer

Branching and joining

- Implementing branching with two sets of (non-)shared weights:

$$h_1 = g(\mathbf{w}_1^{\mathrm{T}}\mathbf{x} + b_1)$$
 and $h_2 = g(\mathbf{w}_2^{\mathrm{T}}\mathbf{x} + b_2)$

- Implementing joining:

Dot product: $\mathbf{h}_1 \cdot \mathbf{h}_2 = |\mathbf{h}_1| |\mathbf{h}_2| \cos \theta$

Concatenation vs. summation

$$(\mathbf{h}_1, \mathbf{h}_2) \rightarrow [\mathbf{h}_1^T, \mathbf{h}_2^T]^T$$

$$(h_1, h_2) \to h_1 + h_2$$

Skipping

- Shortcuts, skip layers, residual connections

- "U-Net"*

Skipping

- Shortcuts, skip layers, residual connections

- "U-Net"*

- "ResNet"*

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

Sampling

- Down-sampling for encoding?
- "AlexNet" & "VGG"
- Up-sampling for decoding?
- "U-Net" & "Autoencoder"
- Sampling for convolution*

Sampling

- Implement vector down-sampling: averaging, matrix multiplication
- Implement vector up-sampling: matrix multiplication, interpolation?

$$h_n = g(\mathbf{w}_n^{\mathrm{T}}\mathbf{x} + b_n)$$

$$\begin{bmatrix} h_1 \\ \vdots \\ h_N \end{bmatrix} = g \begin{pmatrix} \begin{bmatrix} \mathbf{w}_1^T \mathbf{x} + b_1 \\ \vdots \\ \mathbf{w}_N^T \mathbf{x} + b_N \end{bmatrix} \end{pmatrix} = g([\mathbf{w}_1 \quad \dots \quad \mathbf{w}_N]^T \mathbf{x} + [b_1 \quad \dots \quad b_N]^T)$$

$$\mathbf{h}^{(N \times 1)} = \mathbf{W}^{(N \times M)} \mathbf{x}^{(M \times 1)} + \mathbf{b}^{(N \times 1)}$$

- Implement feature map sampling*

"Ignoring"

$$f({x_1, x_2, x_3, ... x_n}) \approx g({h(x_1), h(x_2), h(x_3), ... h(x_n)})$$

"Ignoring"

- Permutation-invariant

$$f({x_1, x_2, x_3, ... x_n}) \approx g({h(x_1), h(x_2), h(x_3), ... h(x_n)})$$

- "PointNet"

max, min, mean...

- Translation-invariant* (pooling, convolution)

Deep Feedforward Neural Networks | Architecture Search

Hyperparameters

- Predefined
- Might not be optimisable or should not be optimised?
- e.g. degree of polynomial, NN architecture choice (width, depth, branches...)

Hyperparameter tuning in AutoML

Hyperparameter search

Training-validation-test 3-way split

Grid search vs. random search

As an optimisation,

e.g. evolution algorithms

- "EfficientNet"*

Meta-learning | reinforcement learning

Meta-learning | differentiable architecture search

- "DARTS"

- Multilayer Perceptron (MLP)
- Anatomy of A Layer
- Activation Functions
- Architecture

Width and Depth | Branching and Joining | Skipping | Sampling | "Ignoring"

- Architecture Search

Deep Feedforward Neural Networks

Using a fully-connected network for the "image classification" tutorial