Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Test 15

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1 - \frac{2}{3} + \frac{3}{4} - \frac{4}{5}\right) : \frac{17}{60} = \left(\frac{60}{60} - \frac{40}{60} + \frac{45}{60} - \frac{48}{60}\right) : \frac{17}{60} =$	3p
	$=\frac{17}{60}:\frac{17}{60}=1$	2p
2.	f(1) = 0	3p
	$f(0) \cdot f(1) \cdot f(2) \cdot f(3) \cdot f(4) \cdot f(5) = 0$	2 p
3.	$4x - 3 = 25 \Rightarrow 4x = 28$	3 p
	x = 7, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2 p
	Numerele x din mulțimea A care verifică inegalitatea $x^2 - 2x \le 0 \Leftrightarrow x(x-2) \le 0$ sunt 1 și	2p
	2, deci sunt 2 cazuri favorabile	•
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{2}{1} = \frac{1}{1}$	1 _m
	$\frac{p-\sqrt{nr. \text{ cazuri posibile}}}{nr. \text{ cazuri posibile}} = \frac{10}{10} = \frac{5}{5}$	1p
5.	AO = 6	2 p
	$BO = 6 \Rightarrow \triangle AOB$ este isoscel	3p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{6 \cdot 8}{2} =$	2n
	$AABC - \frac{1}{2} = \frac{1}{2}$	3 p
	= 24	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$B(1) = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \Rightarrow \det(B(1)) = \begin{vmatrix} -1 & 1 \\ 0 & -1 \end{vmatrix} = (-1) \cdot (-1) - 0 \cdot 1 =$	3p
	=1-0=1	2 p
b)	$A \cdot A - 2A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
c)	$A \cdot B(x) = \begin{pmatrix} 2x - 3 & x - 2 \\ x - 2 & x - 1 \end{pmatrix}$, pentru orice număr real x	3 p
	$\begin{pmatrix} 2x-3 & x-2 \\ x-2 & x-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ de unde obținem } x = 2, \text{ care convine}$	2 p
2.a)	$(-1)*2020 = (-1)\cdot 2020 + (-1) + 2020 - 2 =$	3 p
	= -2020 - 1 + 2020 - 2 = -3	2p

b)	$x \cdot (2x) + x + 2x - 2 = 3 \Leftrightarrow 2x^2 + 3x - 5 = 0$	3p
	$x = -\frac{5}{2} \text{ sau } x = 1$	2p
c)	m*n = mn + m + n - 2 = m(n+1) + (n+1) - 3 = (m+1)(n+1) - 3, pentru orice numere naturale	2p
	$m ext{ si } n$ $(m+1)(n+1)-3=-1 \Leftrightarrow (m+1)(n+1)=2 ext{ si, cum } m ext{ si } n ext{ sunt numerele naturale, obţinem}$ $(0,1) ext{ si } (1,0)$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 4x - 5 + \frac{1}{x} =$	2p
	$= \frac{4x^2 - 5x + 1}{x} = \frac{(x - 1)(4x - 1)}{x}, \ x \in (0, +\infty)$	3p
b)	$\lim_{x \to +\infty} \frac{\ln x}{f(x)} = \lim_{x \to +\infty} \frac{\ln x}{2x^2 - 5x + \ln x} = \lim_{x \to +\infty} \frac{(\ln x)'}{(2x^2 - 5x + \ln x)'} =$	3p
	$= \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{4x^2 - 5x + 1}{x}} = \lim_{x \to +\infty} \frac{1}{4x^2 - 5x + 1} = 0$	2p
c)	f(1) = -3, f'(1) = 0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -3$	3 p
2.a)	$\int_{-1}^{1} \left(f(x) - x^2 - x - 1 \right) dx = \int_{-1}^{1} \left(x^3 + x^2 + x + 1 - x^2 - x - 1 \right) dx = \int_{-1}^{1} x^3 dx = \frac{x^4}{4} \begin{vmatrix} 1 \\ -1 \end{vmatrix} =$	3p
	$=\frac{1}{1}-\frac{1}{1}=0$	2n
	4 4	2 p
b)	$F'(x) = \left(\frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} + x\right)' = \frac{4x^3}{4} + \frac{3x^2}{3} + \frac{2x}{2} + 1 =$	3p
b)	$F'(x) = \left(\frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} + x\right)' = \frac{4x^3}{4} + \frac{3x^2}{3} + \frac{2x}{2} + 1 =$ $= x^3 + x^2 + x + 1 = f(x), \ x \in \mathbb{R}, \text{ deci funcția } F \text{ este o primitivă a funcției } f$	_
		3p
	$= x^3 + x^2 + x + 1 = f(x), x \in \mathbb{R}$, deci funcția F este o primitivă a funcției f	3p 2p