PEER REVIEW FORM

Overall assessment.

	weak	satisfactory	strong
Contents		X	
• covering			
• relevance			
Presentation	X		
• guiding the reader			
• flow of ideas			
• type-setting and spelling			
Evidence		X	
• credibility			
• correctness			
Overall effectiveness		X	

In general, it is a satisfactory work, considering it is done by a single person.

Specific comments on contents.

- The content covers all aspects to be discussed in a concise way.
- The theoritical part (Problem 1 & 2) is self-contained with detailed derivation.
- The code part (Problem 3,4 & 5) only focuses on the result, but does not give any illstration on how to get it or why.

Specific comments on presentation.

- The report is organized by simply giving answers to problems, however, doesn't show the flow of ideas between problems.
- As has been commented, the code part (Problem 3,4 & 5) is lack of detailed illstration, therefore, is far from understandable without access to the code.
- The code should be more organized and needs more comments.

Specific comments on evidence.

- The result is okay in general, both the theoritical part and the code part.
- To be improved, in the maximum likelihood estimation of ς , the step size 0.2 is too large, and should be narrowed to 0.05 or even lower. If there is problem about computing time, it can be first limited to a certain interval and obtained in a progressive way.