5.142 element_matrix

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint element_matrix(MAX_I, MAX_J, INDEX_I, INDEX_J, MATRIX, VALUE)

Synonyms elem_matrix, matrix.

Arguments MAX_I : int

MAX_J : int INDEX_I : dvar INDEX_J : dvar

MATRIX : collection(i-int, j-int, v-int)

VALUE : dvar

Restrictions

$$\begin{split} \text{MAX_I} &\geq 1 \\ \text{MAX_J} &\geq 1 \\ \text{INDEX_I} &\geq 1 \\ \text{INDEX_J} &\leq \text{MAX_I} \\ \text{INDEX_J} &\leq \text{MAX_J} \\ \text{required}(\text{MATRIX}, [\mathbf{i}, \mathbf{j}, \mathbf{v}]) \\ \text{increasing_seq}(\text{MATRIX}, [\mathbf{i}, \mathbf{j}]) \\ \text{MATRIX}.\mathbf{i} &\geq 1 \\ \text{MATRIX}.\mathbf{i} &\leq \text{MAX_I} \\ \text{MATRIX}.\mathbf{j} &\leq 1 \\ \text{MATRIX}.\mathbf{j} &\leq \text{MAX_J} \\ |\text{MATRIX}| &= \text{MAX_J} \\ |\text{MATRIX}| &= \text{MAX_J} \\ \end{split}$$

Purpose

The MATRIX collection corresponds to the two-dimensional matrix MATRIX[1..MAX_I, 1..MAX_J]. VALUE is equal to the entry MATRIX[INDEX_I, INDEX_J] of the previous matrix.

i-1 j-1 v-4, i-1 j-2 v-1, j - 3i-2j-3 $\mathtt{i}-2$ 4, 3, 1, 3,i-3j - 1i-3j-2 v-2,i-3j-3i-4j - 1j-2 v-0, i-4 $\mathtt{i}-4 \quad \mathtt{j}-3 \quad \mathtt{v}-6$

Example

20031101 1159

The element_matrix constraint holds since its last argument VALUE = 7 is equal to the v attribute of the k^{th} item of the MATRIX collection such that MATRIX $[k].i = \mathtt{INDEX_I} = 1$ and MATRIX $[k].j = \mathtt{INDEX_J} = 3$.

Typical

```
\begin{split} &\text{MAX\_I} > 1 \\ &\text{MAX\_J} > 1 \\ &| \text{MATRIX} | > 3 \\ &\text{maxval}(\text{MATRIX.i}) > 1 \\ &\text{maxval}(\text{MATRIX.j}) > 1 \\ &\text{range}(\text{MATRIX.v}) > 1 \end{split}
```

Symmetry

All occurrences of two distinct values in MATRIX.v or VALUE can be swapped; all occurrences of a value in MATRIX.v or VALUE can be renamed to any unused value.

Reformulation

The element_matrix(MAX_I, MAX_J, INDEX_I, INDEX_J, MATRIX, VALUE) constraint can be expressed in term of MAX_I element(INDEX_J, LINE $_i$, VAR $_i$) ($i \in [1, MAX_I]$), where LINE $_i$ corresponds to the i-th line of the matrix MATRIX and of one element(INDEX_I, $\langle VAR_1, VAR_2, \ldots, VAR_{MAX_I} \rangle$, VALUE) constraint.

If we consider the **Example** slot we get the following element constraints:

- element $(3, \langle 4, 1, 7 \rangle, 7)$,
- element $(3, \langle 1, 0, 8 \rangle, 8)$,
- element $(3, \langle 3, 2, 1 \rangle, 1)$,
- element $(3, \langle 0, 0, 6 \rangle, 6)$,
- element $(1, \langle 7, 8, 1, 6 \rangle, 7)$.

Systems

nth in Choco, element in Gecode.

See also

common keyword: elem, element (array constraint).

Keywords

characteristic of a constraint: automaton, automaton without counters, reified automaton constraint, derived collection.

constraint arguments: ternary constraint.

 $\textbf{constraint network structure:} \ centered \ cyclic (3) \ constraint \ network (1).$

constraint type: data constraint.

filtering: arc-consistency.

modelling: array constraint, matrix.

Graph model

Similar to the element constraint except that the arc constraint is updated according to the fact that we have a two-dimensional matrix.

Parts (A) and (B) of Figure 5.328 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the unique arc of the final graph is stressed in bold.

Figure 5.328: Initial and final graph of the element_matrix constraint

Signature

Because of the first condition of the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite $\mathbf{NARC}=1$ to $\mathbf{NARC}\geq 1$ and simplify $\overline{\mathbf{NARC}}$ to $\overline{\mathbf{NARC}}$.

20031101 1161

Automaton

Figure 5.329 depicts the automaton associated with the element_matrix constraint. Let \mathbf{I}_k , \mathbf{J}_k and \mathbf{V}_k respectively be the i, the j and the v k^{th} attributes of the MATRIX collection. To each sextuple (INDEX_I, INDEX_J, VALUE, \mathbf{I}_k , \mathbf{J}_k , \mathbf{V}_k) corresponds a 0-1 signature variable S_k as well as the following signature constraint: ((INDEX_I = \mathbf{I}_k) \wedge (INDEX_J = \mathbf{J}_k) \wedge (VALUE = \mathbf{V}_k)) $\Leftrightarrow S_k$.

Figure 5.329: Automaton of the element_matrix constraint

Figure 5.330: Hypergraph of the reformulation corresponding to the automaton of the element_matrix constraint where n and m respectively stands for MAX_I and MAX_J