- e) Elija su propio vector inicial para x, en donde las componentes de x sumen 30 000. Repita las instrucciones y haga una comparación con los resultados anteriores.
- f) Calcule P^n y 30 000 P^n para los valores de n dados antes. ¿Qué observa sobre las columnas de P^n ? ¿Cuál es la relación de las columnas de 30 000 P^n y los resultados anteriores de este problema?
- g) Tomemos el caso de una agencia de renta de automóviles que tiene tres oficinas. Un auto rentado en una oficina puede ser devuelto en cualquiera de ellas. Suponga que

$$P = \begin{pmatrix} 0.8 & 0.1 & 0.1 \\ 0.05 & 0.75 & 0.1 \\ 0.15 & 0.15 & 0.8 \end{pmatrix}$$

es una matriz de transición tal que P_{ij} = porcentaje de autos rentados en la oficina j y devueltos en la oficina i después de un periodo. Suponga que se tiene un total de 1 000 automóviles. De acuerdo con sus observaciones en los incisos anteriores de este problema, encuentre la distribución a largo plazo de los autos, es decir, el número de autos que habrá a la larga en cada oficina. ¿Cómo puede usar esta información una oficina de renta de automóviles?

15. Matriz de población

Una población de peces está dividida en cinco grupos de edades distintas en donde el grupo 1 representa a los pequeños y el grupo 5 a los de mayor edad. La matriz siguiente representa las tasas de nacimiento y supervivencia:

$$S = \begin{pmatrix} 0 & 0 & 2 & 2 & 0 \\ 0.4 & 0.2 & 0 & 0 & 0 \\ 0 & 0.5 & 0.2 & 0 & 0 \\ 0 & 0 & 0.5 & 0.2 & 0 \\ 0 & 0 & 0 & 0.4 & 0.1 \end{pmatrix}$$

Problema proyecto

 s_{1j} = número de peces que nacen por cada pez en el grupo j en un año s_{ij} = número de peces en el grupo j que sobrevive y pasa al grupo i, donde i > 1

Por ejemplo, $s_{13} = 2$ dice que cada pez del grupo 3 tiene 2 crías en un año y $s_{21} = 0.4$ dice que 40% de los peces en el grupo 1 sobrevive al grupo 2 un año después.

- a) (Lápiz y papel) Interprete los otros elementos de S.
- **b)** (*Lápiz y papel*) Sea x la matriz de 5×1 tal que $x_k =$ número de peces en el grupo k. Explique por qué S^2 x representa el número de peces en cada grupo dos años más tarde.
- c) Sea

$$\mathbf{x} = \begin{pmatrix} 5000 \\ 10000 \\ 20000 \\ 20000 \\ 5000 \end{pmatrix}$$

Encuentre floor (S^n*x) para n = 10, 20, 30, 40 y 50 (el comando floor redondea al menor entero más cercano (doc floor)). ¿Qué sucede con la población de peces a través del tiempo? ¿Está creciendo o está pereciendo? Explique.

d) Los cambios en las tasas de nacimiento y supervivencia pueden afectar el crecimiento de la población. Cambie s_{13} de 2 a 1 y repita los comandos del inciso c). Describa lo que ocurre con