Кластеризация

Clustering

http://mmds.org

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman

Данные большой размерности

• По облаку точек данных требуется понять его структуру

Задача кластеризации

- Дан набор точек, с понятием расстояния между точками, сгруппировать точки в некоторое число кластеров, таким образом, чтобы
 - Члены кластера были близки/похожи друг на друга
 - Члены разных кластеров были не похожи
- Как правило:
 - Точки находятся в пространстве большой размерности

- Схожесть определяется с помощью меры расстояний
 - * евклидова, косинусная, Жаккара, редакционное расстояние, ...

Почему кластеризация — сложная задача?

• Кластеризация в двух измерениях выглядит про-

 Кластеризация малых объемов данных выглядит просто

• В большинстве случаев это так и есть

• Многие приложения привлекают не 2, а 10 или 10000 измерений

• Пространства высокой размерности выглядят подругому: Почти все пары точек расположины примерно на одном расстоянии

Задача кластеризации: галактики

- Каталог 2 миллиардов «небесных объектов» представляет объекты по их излучению в 7 измерениях (частотных диапазонах)
- Задача: Кластеризовать по схожим объектам, например, галактики, находящиеся рядом звезды, и т.д.
- Sloan Digital Sky Survey

Задача кластеризации: музыкальные компактдиски

- Интуитивно: музыка делится на категории, и покупатели предпочитают несколько категорий
 - Но что такое категории в действительности?
- Представим компакт-диск по множеству покупателей, которые его купили
- Похожие компакт-диски имеют похожий набор покупателей

Задача кластеризации: музыкальные компактдиски

Пространство всех компакт-дисков:

- Представим себе пространство с одним измерением для каждого покупателя
 - Значения в измерении могут быть только 0 или 1
 - Компакт-диск это точка в этом пространстве (x_1,x_2,\ldots,x_k) , где $x_i=1$ ттогда i-й покупатель купил этот компакт-диск

• Для Amazon размерность составляет десятки миллионов

• Задача: найти кластеры схожих компакт-дисков

Задача кластеризации: документы

- Представим документ как вектор (x_1, x_2, \dots, x_k) , в котором $x_i = 1$ ттогда i-е слово (по некоторому порядку) встречается в документе
 - В действительности не имеет значения, что k бесконечно; т.е. мы не ограничиваем набор слов
- Документы со схожими наборами слов могут быть об одной и той же теме

Меры схожести: косинусная, Жаккара и евклидова

- Как и в случае компакт-дисков, у нас имеется выбор, когда мы представляем документы в виде наборов слов или шинглов:
 - Наборы как векторы: Мера схожести косинусное расстояние
 - Наборы как множества: Мера схожести расстояние Жаккара
 - Наборы как точки: Мера схожести евклидово расстояние

Обзор: методы кластеризации

- Иерархические:
 - Агломерационный (снизу вверх)
 - * Изначально каждая точка кластер
 - * Многократно объединяем два «ближайших» кластера в один
 - Разделяющий (сверху вниз)
 - * Начать с одного кластера из рекурсивно его разбивать
- Присвоение точек

- Хранить набор кластеров
- Точки принадлежат «ближайшему» кластеру

Иерархическая кластеризация

- Ключевая операция: Многократное объединение двух ближайших кластеров
- Три важных вопроса:
 - Как представить кластер, состоящий из более одной точки?
 - Как определить «близость» кластеров?
 - Когда прекращать объединение кластеров?

Иерархическая кластеризация

- Ключевая операция: Многократное объединение двух ближайших кластеров
- (1) Как представить кластер из множества точек?
 - Ключевая проблема: При объединении кластеров, как нам представить «расположение» кажого кластера, чтобы определить, какая пара кластеров наиболее близка?
- Евклидов случай: у каждого кластера есть центроида = среднее его точек

- (2) Как определить «близость» кластеров?
 - Измерять расстояние между кластерами по расстоянию между центроидами

А что в неевклидовом случае?

А что в неевклидовом случае?

- Единственные «расположения», о которых мы можем говорить, это сами точки
 - т.е., нет никакого «среднего» между двумя точками

Подход 1:

Как представить кластер множества точек?
 Кластроида = точка, «ближайшая» к другим точкам

Как определить «близость» кластеров? Относится к кластроиде так, как если бы это была центроида, при вычислении расстояний между кластерами

«Ближайшая» точка?

- Как представить кластер множества точек?
 Кластроида = точка, «ближайшая» к другим точкам
- Возможные значения слова «ближайшая»:
 - Наименьшее максимальное расстояние до других точек
 - Наименьшее среднее расстояние до других точек
 - Наименьшая сумма квадратов расстояний до других точек

* Для метрики расстояния d кластроида c кластера C — это $\min_c \sum_{x \in C} d(x,c)^2$

Определение «близости» кластеров

- (2) Как определить «близость» кластеров?
 - Подход 2:
 Межкластерное расстояние = минимум расстояний между любыми двумя точками, по одной из каждого класса
 - Подход 3:
 Введем понятие «связности» (cohersion) кластеров, например, максимальное расстояние от кластроиды
 - * Объединять кластеры, объединение которых получается наиболее связным

Связность (Cohersion)

- Подход 3.1: Использовать диаметр объединяемого кластера максимальное расстояние между точками кластера
- Подход 3.2: Использовать среднее расстояние между точками кластера
- Подход 3.3: Использовать подход, основанный на плотности
 - Взять диаметр среднего расстояния, например, и разделить на число точек в кластере

Реализация

- Наивная реализация иерархической кластеризации:
 - На каждом шаге вычислить попарные расстояния между всеми парами кластеров, затем выполнить объединение
 - $-O(N^3)$
- Тщательная реализация с ипользованием приоритетную очередь (priority queue) позволяет уменьшить время до $O(N^2 \log N)$

Все равно слишком затратно для по-настоящему больших наборов данных, не помещающихся в памяти

Метод k-средних

(k-means clustering)

Алгоритм(ы) k-средних

- Предполагает евклидово пространство/расстояния
- ullet Начать с выбора k, числа кластеров
- Инициализировать кластеры путем выбора одной точки на кластер
 - Например: Выбрать случайно одну точку, затем k-1 других точек, каждую как можно дальше от предыдущих точек

Наполнение кластеров

- 1) Для каждой точки, поместить ее в тот кластер, центроида которого ближе всего
- 2) После того, как все точки распределены, обновить расположения центроид k кластеров
- 3) Перераспределить все точки к их ближайшим центроидам
 - Иногда перемещает точки между кластерами
- Повторять 2) и 3) до сходимости

 Сходимость: точки не «бегают» между кластерами и центроиды стабилизируются

Выбор правильного k

Как выбрать k?

- ullet Пробовать различные k, наблюдая за изменением среднего расстояния до центроиды при увеличении k
- ullet Среднее быстро убывает до подходящего k, затем изменяется мало

Алгоритм BFR

Обобщение k-средних на большие данные

Алгоритм BFR

- BFR [Bradley-Fayyad-Reina] это вариант метода k-средних, предназначенный для обработки очень больших (хранящихся на диске) наборов данных
- Предполагает, что кластеры нормально распределены вокруг центроиды в евклидовом пространстве
 - Стандартные отклонения могут быть разными в разных координатах

* Кластеры — эллипсы, ориентированный по осям

• Эффективный способ подытожить кластеры (требуемая память — О(кластеров), а не О(данных))

Алгоритм BFR

- Points are read from disk one main-memory-full at a time
- Большинство точек из предыдущих загрузок памяти подытоживаются простыми статистиками
- Для начала, из первоначальной загрузыки выберем начальные k центроиды некоторым sensible образом:
 - Возьмем k случайных точек

- Возьмем малую случайную выборку и кластер оптимальным образом
- Возьмем выборку; выберем случайную точку, а затем еще k-1 точек, каждую настолько далеко от выбранных точек, насколько возможно

Три класса точек

Три набора точек, за которыми мы следим

- Discard set (DS):
 - Точки, достаточно близкие к центроиде, чтобы быть подытоженными
- Compression set (CS):
 - Группы точек, которые достаточно близки друг к другу, но не близки ни к какой существующей центроиде

 Эти точки подытоживаются, но не относятся ни к какому кластеру.

- Retained set (RS):
 - Изолированные точки, ожидающие того, чтобы быть отнесенными к compression set

Подытоживание набора точек Для каждого кластера DS подытоживается по:

- ullet Количество точек N
- Вектор SUM, i-я компонента которого это сумма координат точек в i-м измерении
- Вектор SUMQ: i-я компонента = сумма квадратов координат в i-м измерении

Подытоживание точек: комментарии

- ullet 2d+1 значений представляют кластер любого размера
 - -d =количество измерений
- ullet Среднее в каждом измерении (центроида) может быть вычислена как SUM_i/N
 - $-SUM_i=i$ -я компонента вектора SUM
- Дисперсия множества DS кластера в размерности i это: $(SUMSQ_i/N) (SUM_i/N)^2$

А стандартное отклонение – это квадратный корень из этого значения

• Следующий шаг: Собственно кластеризация

«Загрузка в память» точек

Обработка «загрузки в память» точек (1):

- 1) Найти те точки, которые «достаточно близки» к центроиде кластера и добавить эти точки в этот кластер и DS
 - Эти точки настолько близки к центроиде, что их можно подытожить и затем отбросить
- 2) Использовать любой алгоритм кластеризации, выполняющийся в оперативной памяти, для того, чтобы разбить на кластеры оставшиеся точки и старый RS

– Кластеры идут в CS; точки-выбросы идут в RS

«Загрузка в память» точек

Обработка «загрузки в память» точек (2):

- 3) Множество DS: «Подкрутить» статистики кластеров, чтобы учесть новые точки
 - Добавить N'ы, SUM'ы, SUMSQ'ы
- 4) Рассмотреть возможность объдинения сжатых множеств в CS
- 5) Если это последний проход, объединить все сжатые множества в CS и все точки RS в их ближайший кластер

Немного подробностей...

- Q1) Как понять, что точка «достаточно близка» к кластеру настолько, что мы должны ее добавить в кластер?
- Q2) Как понять, что два сжатых множества (CS) могут быть объединены в одно?

Насколько близко «достаточно близко»?

- Q1) Нам нужен метод принятия решения о том, чтобы добавить новую точку в кластер (и выбросить ее)
- BFR предлагает два метода:
 - Расстояние Махаланобиса меньше, чем порог
 - Большое правдоподобие того, что точка принадлежит к ближайшей, в настоящее время, центроиде

Расстояние Махаланобиса

- Нормированное Евклидово расстояние от центроиды
- ullet Для точки (x_1,\ldots,x_d) и центроиды (c_1,\ldots,c_d)
 - 1. Нормировать в каждом измерении: $y_i = (x_i c_i)/\sigma_i$
 - 2. Взять сумму квадратов y_i
 - 3. Взять квадратный корень

$$d(x,c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i}\right)^2}$$

 σ_i = стандартное отклонение точек в кластере по i-й размерности

Расстояние Махаланобиса

- Если кластеры нормально распределены в d измерениях, то после преобразований одно стандартное отклонение $=\sqrt{d}$
 - т.е., у 68% точек кластера расстояние Маха-ланобиса $<\sqrt{d}$
- Принять точек в кластер, если ее расстояние Махаланобиса < некоторого порога, например, 2 стандартных отклонения

Следует ли объединять 2 CS-кластера?

- Q2) Следует ли объединять 2 CS-подкластера?
 - Вычислить дисперсию объединенного подкластера
 - -N, SUM, SUMSQ позволяют выполнить это вычисление быстро
 - Объединить, если объединенная дисперсия ниже некоторого порога
 - Множество альтернатив: По-разному обращаться с измерениями, учитывать плотность

Алгоритм CURE

Обобщение метода k-средних на кластеры произвольной формы

Алгоритм CURE

- \bullet Проблемы с BFR/k-means:
 - Предположение, что кластеры нормально распределены в каждом измерении
 - И оси фиксированы эллипсы под углом НЕ допускаются
- CURE (Clustering Using REpresentatives):
 - Предполагает евклидово расстояние
 - Позволяет кластерам принимать любую форму

 Использует набор точек-представителей для представления кластеров

Начало CURE

Алгоритм в два прохода. Проход 1:

- 0) Выбрать случайную выборку точек, умещаю- щуюся в оперативной памяти
- 1) Начальные кластеры:
 - Разбить эти точки на кластеры иерархически
 - группируем ближайшие точки/кластеры
- 2) Выбрать точки-представители

- Для каждого кластера, произвести выборку точек, настолько разбросанных, насколько возможно
- Из выборки выбрать представителей посредством их перемещения (например) на 20% ближе к центроиде кластера

Окончание CURE

Проход 2:

- ullet Теперь перепросмотреть весь набор данных и перебрать каждую точку p в наборе данных
- Поместить ее в «ближайший кластер»
 - Нормальное определение «ближайшего»: Найти ближайшее представление к p и приписать его к кластеру представителя

Резюме

- Кластеризация:
- Алгоритмы:
 - Агломерационная иерархическая кластеризация:
 - * Центроида и кластроида
 - k-means:
 - st Инициализация, выбор k
 - BFR

- CURE