Relatorio 1 - Análise Descritiva Diamonds

Matheus Elero

17 outubro 2021

Contents

1	1 Dados	2
2	2 Análise Descritiva	4
	2.1 Variáveis	. 4
	2.2 Análise de Correlação	. 6
3	3 Conclusão	8

1 Dados

6

0.24

Os dados apresentados por esse relatório exploram o preço de diamantes e suas características. Para isso, foi extrarído uma base chamada *Diamonds* da Biblioteca GGPLOT 2. O *Head* dos dados está apresentado pela Tabela 1 em format *Wide*, o conjunto total possui 11 colunas e 53940 linhas.

clarity depth table ind carat cut color price у \mathbf{z} 0.23Ideal Е SI2 61.555 326 3.95 3.98 2.43 2 0.21 Е SI1 Premium 59.8 61 326 3.893.842.31 3 0.23 Good Ε VS1 65 327 4.07 2.31 56.9 4.05 $\overline{\mathrm{VS2}}$ 4 0.29 Premium 62.458 334 4.204.232.63 SI2 2.75 5 0.31 Good J 58 335 4.344.3563.3

62.8

57

336

3.94

3.96

2.48

VVS2

J

Very Good

Table 1: Head dos dados extraídos.

Os parâmetros/colunas dos dados possuem um misto de classificação e tipos de variáveis. Dentre o conjunto, apenas 3 são classificadas como Qualitativas Nominais, e representam características subjetivas como cor, corte e claridade. As demais são variáveis Quantitativas Contínuas, e indicam medidas do diamente, como comprimento, peso e preço. A Tabela 2 apresenta um resumo das colunas dispostas na base de dados.

Table 2: Descrição, Classificação e Tipo de Variável para cada coluna.

Coluna	Classificacao	Variavel	Descricao
Price/Preço	Quantitativa	Contínua	Preço do diamante em Dólar
Carat	Quantitativa	Contínua	Peso do diamante
Cut/Corte	Qualitativa	Nominal	Qualidade do Corte
Color/Cor	Qualitativa	Nominal	Cor D(Melhor) para J(Pior)
Clarity/Clareza	Qualitativa	Nominal	Medição de quão claro é o diamante (I1 (pior), IF (melhor))
X	Quantitativa	Contínua	Comprimento
У	Quantitativa	Contínua	Largura
Z	Quantitativa	Contínua	Profundidade
Depth	Quantitativa	Contínua	Porcentagem de profundidade total
Table	Quantitativa	Contínua	largura do topo do diamante em relação ao ponto mais largo (43-95)

A Figura 1 ilustra bem o que representam os dados Quantitativos Contínuos dimensionais do diamante. O preço dispensa explicações, e Carat é a principal medida de qualidade, e indica o peso da pedra. As fórmulas de Table e Depth também podem ser observadas na imagem.

Figure 1: Dimensões do Diamante.

Para esse relatório não foi utilizado a tabela de dados em formato Long, no entanto é importante apresentalo, pois esse formato pode ser interessante para algumas manipulações. A Tabela 3 apresenta os dados nesse formato, note que as colunas x, y e z foram disseminadas em outras linhas, ou seja, a quantidade de linhas foi triplicada.

Table 3: Head dos dados extraídos.

ind	carat	cut	color	clarity	depth	table	price	direcao	coord
1	0.23	Ideal	Е	SI2	61.5	55	326	X	3.95
1	0.23	Ideal	E	SI2	61.5	55	326	У	3.98
1	0.23	Ideal	E	SI2	61.5	55	326	Z	2.43
2	0.21	Premium	E	SI1	59.8	61	326	X	3.89
2	0.21	Premium	E	SI1	59.8	61	326	У	3.84
2	0.21	Premium	E	SI1	59.8	61	326	Z	2.31

2 Análise Descritiva

2.1 Variáveis

Aqui será apresentada uma análise geral a respeito de todos os parâmetos da base de dados. A começar pela variável principal, o Preço, que por uma visão mais simplista possui média igual 3932.7997219 Dólares, e desvio padrão igual a 3989.4397381. Um histograma da Figura 2 mostra a alta variabilidade dos dados, o que indica uma dificuldade grande para prever preços de diamantes, pois estes não seguem um padrão óbvio e assertivo.

Figure 2: Histograma Preço.

Para os valores dimensões x, y, z, depth, table e carat, os cálculos são apresentados pela tabela 4.

Table 4: Média, Variância e Desvio para as grandezas quantitativas e contínuas que representam as dimensões do Diamante.

Coluna	Media	Variancia	Desvio
X	5.7311572	1.2583472	1.1217607
У	5.7345260	1.3044716	1.1421347
Z	3.5387338	0.4980109	0.7056988
Depth	61.7494049	2.0524038	1.4326213
Table	57.4571839	4.9929481	4.9929481
Carat	0.7979397	0.2246867	0.4740112

Uma visuzalização melhor pode ser vista nos histogramas da Figura 3, onde é possível observar que as dimensões $x,\ y$ e z possuem uma variabilidade maior, mas em questão de Depth e Table, os dados estão mais concentrados em torno da média. Esses resultados mostram que existe diversidade nos diamantes catalogados, com várias dimensões de $x,\ y$ e z. O parâmetro Carat também possui alta variabilidade, que é consequente aos valores dimensionais, pois essa característica é relacionada ao tamanho e peso da pedra.

Figure 3: Histogramas das caraterísticas contínuas dos dados.

Para as colunas com variáveis Qualitativas e Nominais, foi utilizado um gráfico de pizza para apresentar os resultados (Figura 4). Como é possível observar, em relação aos *Cortes* 40% são considerados ideais, e 26% premium. Para *Clareza*, apenas 1% tem o pior valor de "I1" e 3% do melhor "1F", e a maioria dos diamantes estão classificados como SI1 VS2, que representam clarezas intermediárias. Já para as *Cores*, existe certo equilíbrio, porém apenas 5% dos dados são relativos a pior cor(J) e 13% como a melhor (D).

Figure 4: Gráficos de Pizza com as variáveis qualitativas nominais.

2.2 Análise de Correlação

A Matriz de Correlação disponibilizada pela Tabela 5 apresenta o Coeficiente de Correlação calculado para todos os parâmetros par a par. Assim é possível identificar quais deles possuem alta relação linear, como por exemplo preço com carat, x, y e z. As variáveis que tem maiores valores são entre x, y e z, o que faz sentido, pois tratam-se das dimensões do diamente, e naturalmente uma pode dependeder da outra. Para tornar a análise mais objetiva, serão consideradas apenas correlações absolutas maiores que 0.8.

Table 5: Matriz de Correlação.

	ind	carat	cut	color	clarity	depth	table	price	x	У	Z
ind	1.00	-0.38	0.10	-0.10	0.21	-0.03	-0.10	-0.31	-0.41	-0.40	-0.40
carat	-0.38	1.00	-0.13	0.29	-0.35	0.03	0.18	0.92	0.98	0.95	0.95
cut	0.10	-0.13	1.00	-0.02	0.19	-0.22	-0.43	-0.05	-0.13	-0.12	-0.15
color	-0.10	0.29	-0.02	1.00	0.03	0.05	0.03	0.17	0.27	0.26	0.27
clarity	0.21	-0.35	0.19	0.03	1.00	-0.07	-0.16	-0.15	-0.37	-0.36	-0.37
depth	-0.03	0.03	-0.22	0.05	-0.07	1.00	-0.30	-0.01	-0.03	-0.03	0.09
table	-0.10	0.18	-0.43	0.03	-0.16	-0.30	1.00	0.13	0.20	0.18	0.15
price	-0.31	0.92	-0.05	0.17	-0.15	-0.01	0.13	1.00	0.88	0.87	0.86
X	-0.41	0.98	-0.13	0.27	-0.37	-0.03	0.20	0.88	1.00	0.97	0.97
У	-0.40	0.95	-0.12	0.26	-0.36	-0.03	0.18	0.87	0.97	1.00	0.95
Z	-0.40	0.95	-0.15	0.27	-0.37	0.09	0.15	0.86	0.97	0.95	1.00

Tabela 4: Matriz de Correlação

As correlações analisadas a seguir são listadas abaixo:

• $Price \times Carat: 0.92$

• $Price \times X$: 0.88

• Price x Y: 0.87

• Price x Z: 0.86

• $Carat \times X$: 0.98

• $Carat \times Y$: 0.95

• $Carat \times Z$: 0.95

• Y x X: 0.97

Y x Z: 0.95X x Z: 0.97

Os gráficos de dispersão apresentados pela Figura 5 mostram claramente a relação relativa entre as variáveis, em algumas delas o comportamento é quase linear, como x em relação a y, x em relação a z, e outros. Como visto na análise anterior, o preço possui alta dispersão e desvio, sendo possível visualizar de outra forma na Figura 5, pois os pontos estão mais dispersos, devido a alta diversidade de valores.

Figure 5: Gráficos de Dispersão para Correlação com Outiliers.

Com uma inspeção visual dos gráficos de dispersão é possível identificar Outliers, ou valores fora do comum, que podem ser excessões, erros de coleta ou ruídos. Para tornar a análise de correlação mais efetiva, foi realizada a remoção desse pontos, que resultou em uma melhor visualização (Figura 6). Portanto, as relaçãos de dimensões $(x, y \in z)$ possuem comportamento quase que linear, já Preço e Carat tem um padrão semelhante ao exponencial (Correlação Não-Linear).

Figure 6: Gráficos de Dispersão para Correlação sem Outliers.

Execeto nas relações entre Preço e Carat, e Carat com X, todas as outras apresentaram resultados correlações melhoradas após a remoção de Outliers. Como os dados estão arrendodados para 2 casas decimais, os

casos de x, y e z apresentaram correlação próxima de 1, um resultado bastante expressivo, porém extremamente lógico, pois tratam-se de dimensões do diamente, e podem ter relações naturalmente dependentes. Carat também possui uma boa correlação com essa grandezas, o que é também é condizente, pois Carat é a principal característica utilizada para classificar o peso e dimensão de um diamante. A Tabela 6 apresenta um comparativo entre os dados de correlação.

Table 6: Comparação de Correlações Com e Sem Outliers.

Relacao	Com	Sem
Carat e Price	0.92	0.92
X e Price	0.88	0.89
Y e Price	0.87	0.89
Z e Price	0.86	0.88
Carat e X	0.98	0.98
Carat e Y	0.95	0.98
Carat e Z	0.95	0.98
Y e X	0.97	1.00
ZeY	0.95	0.99
ZeX	0.97	0.99

3 Conclusão

A base de dados apresentada nesse relatório possui registros de 53940 Diamantes, com atributos de preço, dimensões, *Carat*, *Cores*, *Cortes* e *Clareza*. É comum que para esse caso o objetivo principal de estudo dos dados é construir um modelo de regressão para precificar um diamante de forma mais assertiva, pois como é possível observar pela Figura 2, os valores das pedras possuem alta variabilidade, o que faz com que esses valores assumam resultados dispersos e pouco previsíveis.

Portanto, a análise de correlação é fundamental para atribuir o preço e definir padrões. Os resultados das Figuras 5 e 6 mostram a clara relação de dependência Não-Linear entre Preço e Carat, que pode ser utilizado para construção de uma função de regressão adequada. Para esse caso também pode ser utilizada a regressão linear, porém o produto final pode ser pouco preciso. Preço também possui uma alta correlação com $X,\,Y$ e Z, assim como Carat, e a construção de um modelo com a união entre esses fatores pode contribuir com maior qualidade dos resultados.