Оглавление

1.1. Интерфейсный компонент	3
1.2. Модельно-содержательный компонент	4
2. Алгебраический подход к построению модели	5
2.1. Базовые модели	6
2.2. Типовые преобразования и типовые комбинации	7
2.3. Механизм аппроксимирования	8
3. Математическая формализация модели	9
3.1. Модель рабочей смены	10

1. Модель без совмещения должностей

1. Модель без совмещения должностей

1.1. Интерфейсный компонент

Рабочий день квантуем по 1 часу.

Каждому часу ставим в соответствие число кассовых операций за этот час. Получаем вектор v_0 из \mathbb{R}^n .

Кассиру сопоставляем вектор $v_{k,m}$ из \mathbb{R}^n , все компоненты которого нулевые, кроме $m \in \{5,7,8\}$ компонентов с номерами k,k+1,k+m-1, значение каждого из этих компонентов равно нормативному числу кассовых операций, выполняемых кассиром за час.

Задача состоит в аппроксимации v_0 с помощью выпуклых целочисленных комбинаций векторов $v_{k,m}$.

1.2. Модельно-содержательный компонент

Имеем норму, порожденную скалярным произведением в \mathbb{R}^n и задачу нахождения минимального расстояния от v_0 до выпуклой целочисленной комбинации векторов v_k .

Идея: сначала находим расстояние до линейной оболочки, потом корректируем до получения выпуклой целочисленной комбинации векторов v_k .

2. Алгебраический подход к построению модели

2.1. Базовые модели

Рассматриваем все возможные комбинации с положительными коэффициентами с абсолютными значениями компонент вектора из \mathbb{R}^n , не превосходящими максимально возможного числа кассовых операций за час.

2.2. Типовые преобразования и типовые комбинации

2.3. Механизм аппроксимирования

Берем эталонный вектор $v_0 \in \mathbb{R}^n$.

Сначала рассматриваем все комбинации, у которых минимально превышены максимальные значения компонент вектора из \mathbb{R}^n . Из них выбираем те, для которых минимально превышены предмаксимальные значения компонент вектора из \mathbb{R}^n и т.д.

3. Математическая формализация модели

Предполагается, что магазин открыт от u часов до v часов.

Норматив 2 сек на 1 шт товара, плюс 25 сек на речевой модуль и приём оплаты. Будем считать, что кассир меняет деятельность (выкладка-касса) не более 1 раза в смену, и продолжительность работы на кассе не меньше c часов (можно считать, что $c \geqslant 4$).

3.1. Модель рабочей смены

Предполагается, что магазин открыт от u часов до v часов.

Норматив 2 сек на 1 шт товара, плюс 25 сек на речевой модуль и приём оплаты. Будем считать, что кассир меняет деятельность (выкладка-касса) не более 1 раза в смену, и продолжительность работы на кассе не меньше c часов (можно считать, что $c \geqslant 4$).

Рассматриваются функции $p_{[a;b]}(x) = \begin{cases} t \text{ при } x \in [a;b], \\ 0 \text{ при } x \notin [a;b]. \end{cases}$

Её интерпретация: практически-максимально возможное число кассовых операций, проводимых кассиром за час. Под «практически-максимальным» понимается число кассовых операций с учетом процесса оплаты отбитого чека.

Надо аппроксимировать сверху функцию f:

$$f(x)\leqslant \sum_{u\leqslant a < b\leqslant \min\{12;\;v\}} lpha_{[a;b]} p_{[a;b]}(x),$$
 причем $c\leqslant b-a\leqslant 12.$

3.2. Модель рабочего месяца

Предполагается, что магазин открыт от u часов до v часов.

Норматив 2 сек на 1 шт товара, плюс 25 сек на речевой модуль и приём оплаты. Будем считать, что кассир меняет деятельность (выкладка-касса) не более 1 раза в смену, и продолжительность работы на кассе не меньше c часов (видимо, можно считать, что $c \geqslant 4$).

Перенумеруем все смены в месяце.

Пусть a_k^m и b_k^m — время начала и, соответственно, конца работы кассира m за кассой в смену k. Тогда для каждой смены k имеем $\alpha_{[a;b]} = \left| \left\{ m \, \middle| \, (a_k^m; b_k^m) = (a;b) \right\} \right|$.

Выработка кассира m за месяц:

$$? \leqslant \sum^{m} (b_k^m - a_k^m) \leqslant 175.$$