Gaussian Processes

Probabilistic Machine Learning

Abhishek Shenoy

Total words = 998

[Excluding tables, figures, code, equations, abstract and references]

Abstract

This report focuses on using Gaussian Processes (GPs) for regression where GPs with various covariance functions are evaluated based on their ability to fit the datasets.

1 Part A

The prior distribution is defined by a Gaussian process with zero mean and the squared-exponential function:

$$P(f) \sim \mathcal{GP}(m = 0, k_{SE})$$

$$k_{SE}(x, x') = \sigma_f^2 e^{-\frac{(x - x')^2}{2l^2}}$$
(1)

Listing 1. GP @CovSEiso

НурА	1	σ_f	σ_n	p(y x)
Initial Values	0.3769	1	1	4.4636e-41
Optimised Values	0.1282	0.8970	0.1178	6.7972e-6

Table 1. Hyperparameters and marginal likelihood for $\mathcal{M}A$

For the predictive distribution (Fig 1), the range of the 95% confidence interval increases as the test point x^* moves away from the nearest training datapoint x_{nt} and decreases as it moves closer to the datapoint but is always greater than 0.

$$p(\mathbf{y}^{\star}|\mathbf{x}^{\star}, \mathbf{x}, \mathbf{y}) \sim \mathcal{N}(m(\mathbf{x}^{\star}), V(\mathbf{x}^{\star}))$$

$$m(\mathbf{x}^{\star}) = \mathbf{k}(\mathbf{x}^{\star}, \mathbf{x})^{\top} [\mathbf{K}(\mathbf{x}, \mathbf{x}) + \sigma_n^2 \mathbf{I}]^{-1} \mathbf{y}$$

$$\underbrace{V(\mathbf{x}^{\star})}_{\sigma_{\mathbf{y}^{\star}}^2} = \underbrace{k(\mathbf{x}^{\star}, \mathbf{x}^{\star})}_{\sigma_f^2} + \sigma_n^2 - \underbrace{\mathbf{k}(\mathbf{x}^{\star}, \mathbf{x})^{\top} [\mathbf{K}(\mathbf{x}, \mathbf{x}) + \sigma_n^2 \mathbf{I}]^{-1} \mathbf{k}(\mathbf{x}^{\star}, \mathbf{x})}_{r}$$
(2)

The predictive variance $V(x^\star)$ consists of 2 significant terms σ_f^2 which is the prior variance and r which is a strictly-positive term that reduces the overall variance by how much the

Figure 1. $\mathcal{M}A$ predictive distribution with @CovSEiso (HypA)

data x has explained. σ_n^2 is the constant noise added from the Gaussian likelihood (independent of x^*) and hence $V(x^*) > 0$.

The maximum range of the confidence interval given by $\pm 2\sigma_{y^\star} = \pm 2\sqrt{\sigma_f^2 + \sigma_n^2}$ is satisfied in Fig 1 by our calculated range of ± 1.809 from the predictive mean.

The length-scale of l=0.1282 is reasonable as the comparatively small value implies a greater fluctuation in the predictive distribution which is seen in Fig 1 by the wave-like variations.

2 Part B

Using an alternate hyperparameter initialisation (HypB), we underfit the dataset as the optimised marginal likelihood in Table 2 is lower than that of Table 1. The large length-scale l=8.0414 is also clearly shown in Fig 2 as the distribution encompasses all datapoints with little variation since the points are all considered as noise.

Listing 2. Hyperparameters B

1	% initial values for the log hyperparameters
2	<pre>hyp = struct('mean', [], 'cov', [0 0], 'lik', 0);</pre>

НурВ	1	σ_f	σ_n	p(y x)
Initial Values	1	1	1	3.0107e-40
Optimised Values	8.0414	0.6959	0.6631	1.0700e-34

Table 2. Hyperparameters and marginal likelihood for MB

Figure 2. $\mathcal{M}B$ predictive distribution with @CovSEiso (HypB)

Listing 3. Hyperparameter variation for best fit

Figure 3. Hyperparameter variation to show local minima with $\sigma_f=1$

We generate a contour plot of the negative log marginal likelihood (Fig 3) for different values of σ_n and l and observe two minima of which the global minimum corresponds to $\mathcal{M}A$ (Fig 1) with small l and σ_n . The local minima corresponding to $\mathcal{M}B$ (Fig 2) with large l and σ_n occurs when σ_n is just enough to explain the training data. If σ_n is too big, the likelihood function will be flat resulting in lower marginal likelihood. Therefore $\mathcal{M}A$ has the best fitting since the marginal likelihood is much higher for HypA (Tab 1) than for HypB (Tab 2).

Note that we assume $\sigma_f=1$ to generate the contours in Figure 3 because as $\sigma_f\to\infty$ or as $\sigma_f\to0$, we notice that the best minimum (as in Fig 3) disappears meaning there exists a single optimum for σ_f that is independent of σ_n and the length-scale l.

3 Part C

$$k_{\text{PER}}(x, x') = \sigma_f^2 e^{-\frac{2}{l^2} \sin^2 \frac{\pi}{p} (x - x')}$$
 (3)

Listing 4. GP @CovPeriodic

```
1 % initial values for the log hyperparameters
2 meanfunc = [];
3 covfunc = @covPeriodic; % Periodic covariance func
4 likfunc = @likGauss;
5
6 hyp = struct('mean', [], 'cov', [0 0 0], 'lik', 0);
7
8 hyp2 = minimize(hyp, @gp, -200, @infGaussLik, ...
meanfunc, covfunc, likfunc, x, y);
9
10 [mu s2] = gp(hyp2, @infGaussLik, meanfunc, covfunc, ...
likfunc, x, y, xs);
```

НурС	1	σ_f	σ_n	p	$p(\boldsymbol{y} \boldsymbol{x})$
Initial Values	1	1	1	1	2.8391e-35
Optimised Values	1.0707	1.2414	0.1093	0.9989	2.0452e+15

Table 3. Hyperparameters and marginal likelihood for $\mathcal{M}C$

Figure 4. $\mathcal{M}C$ predictive distribution with @CovPeriodic (HypC)

By comparing the predictive distributions using k_{SE} (Fig 1) with k_{PER} (Fig 4), we see that periodicity is maintained even with sparse training points for Figure 4. The error-bars in Figure 1 widen drastically outside the training data domain while the error-bars in Figure 4 are maintained very close to the predictive mean

The optimised marginal likelihood for $\mathcal{M}C$ in Table 3 is many magnitudes higher than for $\mathcal{M}A$ in Table 1. Therefore $\mathcal{M}C$ provides a better fit than $\mathcal{M}A$ and since $\mathcal{M}C$ uses a periodic covariance function, it implies the dataset must have some periodicity with added noise. Furthermore the predictive distribution given by $\mathcal{M}A$ (Fig 1) presents a similar periodicity to that of $\mathcal{M}C$ ($p\approx 1$ in Table 3) for which the prior GP of $\mathcal{M}A$ did not use a periodic covariance function suggesting that the dataset is periodic.

We verify the dataset is periodic by computing the residuals of the actual output y with the predicted output \hat{y} from the GP and create a hypothesis test for which the null hypothesis assumes added Gaussian noise with unknown mean and variance.

$$H_0: y - \hat{y} = \mathcal{N}(\mu_r, \sigma_r^2) \tag{4}$$

Listing 5. Residual hypothesis test

Figure 5. Histogram of residuals

By performing the Jarque-Bera test, we can check if the residuals are drawn from a Gaussian distribution. The p-value obtained from the test is 0.2150 and hence H_0 cannot be rejected. By plotting the histogram of residuals (Fig 5), we see a Gaussian-like distribution making it reasonable to assume the data was generated by adding Gaussian noise to a periodic function.

4 Part D

$$\begin{aligned} k_{\text{prod}}(x, x') &= k_{\text{PER}}(x, x') \cdot k_{\text{SE}}(x, x') \\ &= \sigma_{f_1}^2 \, e^{-\frac{2}{l_1^2} \sin^2 \frac{\pi}{p} (x - x')} \cdot \sigma_{f_2}^2 \, e^{-\frac{(x - x')^2}{2l_2^2}} \\ &= A(x, x') \cdot e^{-\frac{2}{l_1^2} \sin^2 \frac{\pi}{p} (x - x')} \end{aligned} \tag{5}$$

We can generate sample functions from a GP defined by the covariance function k_{prod} in Equation (5) by drawing samples from a standard multivariate Gaussian distribution and linearly transforming it to the desired distribution [1].

Listing 6. Generate data from GP

```
1  x = linspace(-5,5,200)';
2
3  covfunc = {@covProd, {@covPeriodic, @covSEiso}};
4  hyp.cov = [-0.5 0 0 2 0];
5
6  K = feval(covfunc{:}, hyp.cov, x);
7  y = chol(K + 1e-6*eye(200))' * gpml_randn(seed, 200, 1);
```

The Cholesky decomposition can only be applied to a positive-definite matrix. Since the covariance matrix K is

Figure 6. Periodic Cov function

Figure 7. Squared-Exp Cov function

Figure 8. Product of Periodic and SE Cov function

semi-positive-definite ($\lambda \geq 0$), adding the small positive diagonal matrix 1e-6I guarantees that the matrix is full rank and positive-definite ($\lambda > 0$).

By examining the plots (using multiple seeds for gpml_randn) in Fig 6, Fig 7 and Fig 8 for the different covariances, the periodic covariance $k_{\rm PER}$ directly provides the period of $k_{\rm prod}$ whereas $k_{\rm SE}$ only affects the amplitude. This can be interpreted as an amplitude function multiplied by a periodic function as in Equation 5 giving a covariance which has varying vertical and constant horizontal displacement between cycles. The product of two covariance functions can be interpreted as a logical AND operation [2] explaining the combined effects of both covariance functions.

5 Part E

We compare two GP models $\mathcal{M}1$ using the k_{SEard} covariance defined in Equation (6) and $\mathcal{M}2$ using the k_{SumSEard} covariance defined in Equation (7) [3, 4] trained on the dataset in Figure 9.

$$k_{\text{SEard}}(x, x') = \sigma_f^2 \exp\left(-\sum_{d=1}^{D=2} \frac{(x_d - x'_d)^2}{2\lambda_d^2}\right)$$
 (6)

$$k_{\mbox{SumSEard}}(\boldsymbol{x}, \boldsymbol{x}') = \sigma_f^2 \exp\Big(- \sum_{d=1}^{D=2} \frac{(x_d - x_d')^2}{2\lambda_d^2} \Big) + \sigma_f'^2 \exp\Big(- \sum_{d=1}^{D=2} \frac{(x_d - x_d')^2}{2\lambda_d'^2} \Big)$$
 (7)

Listing 7. Training dataset visualisation

1 mesh(reshape(x(:,1),11,11),reshape(x(:,2),11,11),reshape(y,11,11))

Figure 9. Training dataset 'cw1e.mat' visualisation

Listing 8. GP models comparison

I	Model	λ_1	λ_2	σ_f	λ_1'	λ_2'	σ_f'	σ_n	$p(\boldsymbol{y} \boldsymbol{X})$
ı	$\mathcal{M}1$	1.511	1.286	1.107	-	-	-	0.1026	2.221e+8
ı	M2	1.446	2640	1.108	1730	0.986	0.711	0.0978	6.902e+28

Table 4. Hyperparameters and marginal likelihood

The negative log marginal likelihood $\mathcal{L}(\theta)$ is the summation of 2 terms (data-fit term d_f and complexity penalty c_p) and a constant:

$$d_f = -\frac{1}{2} \mathbf{y}^{\top} [\mathbf{K} + \sigma_n^2 \mathbf{I}]^{-1} \mathbf{y}$$

$$c_p = \frac{1}{2} \log |\mathbf{K} + \sigma_n^2 \mathbf{I}|$$

$$\mathcal{L}(\theta) = -d_f + c_p + const.$$
(8)

Table 4 indicates that $\mathcal{M}2$ is a better model as it achieves a larger marginal likelihood. Both models have identical data-fit terms (identical for any stationary covariance), which means that $\mathcal{M}2$ achieves a higher marginal likelihood (lower $\mathcal{L}(\theta)$) by having a lower complexity.

The addition of two kernels can be interpreted as a logical OR operation [2] allowing $\mathcal{M}2$ to achieve a simpler fit by determining a suitable distribution from a combination of two independent kernels.

Figure 10. $\mathcal{M}1$ predictive distribution

Figure 11. $\mathcal{M}2$ predictive distribution

Both models fit very well in the training region as shown by the datapoints on the predictive mean surfaces in Figure 10 and 11 however for $\mathcal{M}1$ the surface remains flat while in $\mathcal{M}2$ there are variations that extend outside the training dataset. The variation in the $\pm 2\sigma$ confidence intervals in $\mathcal{M}2$ outside the training region helps to improve the likelihood since these provide reasonable uncertainty estimates unlike $\mathcal{M}1$. There is greater flexibility when summing two covariances rather than using a single function since the two covariance functions can independently fit along separate axes. Overall this suggests that $\mathcal{M}2$ provides a better fitting that $\mathcal{M}1$.

References

- [1] C. E. Rasmussen and C. K. I. Williams, *Gaussian processes for machine learning*, 2006.
- [2] D. Duvenaud. (2013) Kernel Cookbook. [Online]. Available: https://www.cs.toronto.edu/~duvenaud/cookbook/
- [3] —. (2013) Kernel Design. [Online]. Available: https://raw.githubusercontent.com/duvenaud/phd-thesis/master/kernels.pdf
- [4] C. E. Rasmussen and C. K. I. Williams. (2018) GPML Documentation. [Online]. Available: http://www.gaussianprocess.org/gpml/code/matlab/doc/