Trig Final (SLTN v635)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 130 meters. The angle measure is 5.1 radians. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 25.49 meters.

Question 2

Consider angles $\frac{-8\pi}{3}$ and $\frac{15\pi}{4}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\sin\left(\frac{-8\pi}{3}\right)$ and $\cos\left(\frac{15\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(-8\pi/3)$

$$\sin(-8\pi/3) = \frac{-\sqrt{3}}{2}$$

Find $cos(15\pi/4)$

$$\cos(15\pi/4) = \frac{\sqrt{2}}{2}$$

Question 3

If $\tan(\theta) = \frac{-60}{11}$, and θ is in quadrant IV, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$11^{2} + 60^{2} = C^{2}$$

$$C = \sqrt{11^{2} + 60^{2}}$$

$$C = 61$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\cos(\theta) = \frac{11}{61}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 3.4 meters, a frequency of 5.39 Hz, and a midline at y = 7.26 meters. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 3.4\sin(2\pi 5.39t) + 7.26$$

or

$$y = 3.4\sin(10.78\pi t) + 7.26$$

or

$$y = 3.4\sin(33.87t) + 7.26$$