From Poisson Equation to Einstein Equation

1. Poisson Equation

2. Einstein Equation

Solving Poisson's Equation in Spherical Symmetry

• Poisson equation for the Newtonian potential $U(\mathbf{x})$:

$$\nabla^2 U(\mathbf{x}) = 4\pi G \, \rho(\mathbf{x}).$$

• Integral form:

$$U(\mathbf{x}) = -G \int \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3x'.$$

• For a spherically symmetric mass distribution of radius R:

$$U(r) = \begin{cases} -\frac{1}{r} \int_0^R r'^2 \, \rho(r') \, dr', & r > R, \\ -\frac{1}{r} \int_0^r r'^2 \, \rho(r') \, dr' \, - \int_r^R r' \, \rho(r') \, dr', & r < R. \end{cases}$$

Gravitational Potential: Multipole Terms

• Expand the Green's function for $|\mathbf{x}| \equiv r \gg |\mathbf{x}'|$:

$$\frac{1}{|\mathbf{x} - \mathbf{x}'|} = \frac{1}{r} + \sum_{k} \frac{x^k x'^k}{r^3} + \frac{1}{2} \sum_{k\ell} (3x^k x^\ell - r^2 \delta_{k\ell}) \frac{x'^k x'^\ell}{r^5} + \cdots$$

• Substitute into the integral formula $U(\mathbf{x})$:

$$U(\mathbf{x}) = -\frac{GM}{r} - \frac{G}{r^3} \sum_{k} x^k D^k - \frac{G}{2r^5} \sum_{k\ell} Q^{k\ell} x^k x^\ell + \cdots$$

- $M = \int \rho(\mathbf{x}') d^3x'$ total mass.
- $D^k = \int x'^k \rho(\mathbf{x}') d^3x'$ mass dipole moment.
- $Q^{k\ell} = \int (3x'^k x'^\ell r'^2 \delta_{k\ell}) \rho(\mathbf{x}') d^3x'$ quadrupole moment (trace-free).

Mass Quadrupole Tensor $Q^{k\ell}$

Definition

$$Q^{k\ell} = \int (3x'^k x'^\ell - r'^2 \delta_{k\ell}) \rho(\mathbf{x}') d^3 x'.$$

- Measures how much the mass distribution deviates from spherical symmetry: sometimes called the mass quadrupole moment.
- If the origin is chosen at the centre of mass the dipole moment D^k vanishes, so $Q^{k\ell}$ gives the leading non-spherical contribution to the potential $\frac{1}{x^3}$ and gravitational field $\frac{1}{n^4}$.
- Describes 'how much it doesn't look like a sphere'.

Mass Quadrupole Tensor $Q^{k\ell}$

Trace-free by construction:

$$Q^k_{\ k} = 0$$

Make the tensor record only the asymmetric components. Removing the trace avoids counting the spherical part twice.

• Symmetric:

$$Q^{k\ell} = Q^{\ell k}$$

A symmetric, trace-free 3×3 tensor has five independent components.

 "Higher-order multipoles look similar"—each successive moment captures finer asymmetries of the mass distribution.

Using J_2 to Quantify Flattening

Define the dimensionless quadrupole coefficient

$$J_2 = -\frac{Q^{33}}{2MR_0^2},$$

where Q^{33} is the zz-component of the mass-quadrupole tensor, M the total mass, and R_0 a reference (mean-equatorial) radius.

- J_2 measures the oblateness of a nearly spherical body:
 - $J_2 = 0$ for a perfect sphere.
 - $J_2 > 0$ indicates an equatorial bulge (flattened at the poles) such as a rotating planet.

Using J_2 to Quantify Flattening

Example:

For a uniformly dense spheroid (equatorial bulge due to spinning): A non-zero quadrupole $Q^{k\ell}$ leads to:

$$J_2 \neq 0$$

, quantifying its departure from spherical symmetry.

- The source of the gravitational field is the stress–energy tensor $T^{\mu\nu}$.
- The gravitational field itself can be described by a second-rank tensor $E^{\mu\nu}$.
- In General Relativity the Newtonian potential is replaced by the space–time metric $g_{\mu\nu}$; the tensor $E^{\mu\nu}$ is constructed from first and second derivatives of $g_{\mu\nu}$.
- Conservation laws: $\mathsf{T}^{\mu\nu}_{\;\;;\mu}=0, \qquad E^{\mu\nu}_{\;\;;\mu}=0,$ which ensure local energy–momentum conservation and consistency of the field equations.

Form of $E^{\mu\nu}$ from Second Derivatives of $g_{\mu\nu}$

- The tensor $E^{\mu\nu}$ must be linear in the second derivatives of the metric $g_{\mu\nu}$.
- The most general such combination is

$$E^{\mu\nu} = R^{\mu\nu} + a \, g^{\mu\nu} R + b \, g^{\mu\nu},$$

where $R^{\mu\nu}$ is the Ricci tensor and $R=g_{\alpha\beta}R^{\alpha\beta}$ the Ricci scalar.

Einstein Field Equation and the Newtonian Limit

• Imposing the conservation law

$$E^{\mu\nu}_{;\mu} = 0$$

Requiring

$$(R^{\mu\nu} + a g^{\mu\nu}R + b g^{\mu\nu})_{;\mu} = 0$$

fixes $a=-\frac{1}{2}$ and leaves b as a constant Λ .

• Full Einstein equation (with cosmological term):

$$R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R + \Lambda g^{\mu\nu} = \kappa T^{\mu\nu}, \qquad \kappa = \frac{8\pi G}{c^4}.$$

The Newtonian Limit

• Newtonian (weak-field, slow-motion) limit reproduces Poisson's equation for the gravitational potential Φ :

$$\nabla^2 \Phi = 4\pi G \,\rho.$$

• Thus the Einstein tensor reduces to the Newtonian potential in the appropriate limit, ensuring consistency with classical gravity.

Recovering Poisson's Equation from Linearised GR

• Newtonian potential obeys

$$\nabla^2 \Phi = 4\pi G \,\rho.$$

• Weak-field approximation:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad |h_{\mu\nu}| \ll 1.$$

• Time-time component relates to the Newtonian potential:

$$g_{00} = -(1 + 2\Phi/c^2) \implies h_{00} = -\frac{2\Phi}{c^2}.$$

Recovering Poisson's Equation from Linearised GR

• Define the trace-reversed perturbation

$$\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h, \qquad h = \eta^{\alpha\beta} h_{\alpha\beta}.$$

• Linearized Einstein tensor in Lorentz gauge:

$$G_{\mu\nu} = -\frac{1}{2} \, \eta^{\alpha\beta} \partial_{\alpha} \partial_{\beta} \, \bar{h}_{\mu\nu}.$$

• Setting $\mu = \nu = 0$ reproduces Poisson's equation in the static, non-relativistic limit, confirming consistency with Newtonian gravity.

Field Source and Local Conservation

• Slow-motion (Newtonian) limit of the stress—energy tensor:

$$T^{00} \simeq \rho c^2, \qquad T^{0i} \simeq 0, \qquad T^{ij} \simeq 0.$$

The rest-mass energy dominates; momentum flow and pressure are negligible.

- This $T^{\mu\nu}$ serves as the source term in the field equations.
- Local energy–momentum conservation must hold: $\nabla_{\mu}T^{\mu\nu}=0$.
- In linearised gravity the metric is written $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu},$ and retains covariance under the infinitesimal gauge transformation

$$h_{\mu\nu} \longrightarrow h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}.$$

Unique Role of the Einstein Tensor $G_{\mu\nu}$

• Among all second-derivative combinations of the metric, *only* the Einstein tensor $G_{\mu\nu}$ satisfies the differential identity

$$\nabla_{\mu}G^{\mu\nu}=0,$$

• Linearised around flat space, the Einstein tensor reduces to

$$G_{\mu\nu} = -\frac{1}{2} \, \eta^{\alpha\beta} \partial_{\alpha} \partial_{\beta} \, \bar{h}_{\mu\nu},$$

where $\bar{h}_{\mu\nu}=h_{\mu\nu}-\frac{1}{2}\eta_{\mu\nu}h$ is the trace-reversed perturbation.

• Working in the Lorenz gauge

$$\partial^{\mu}\bar{h}_{\mu\nu}=0$$

GR-EM Analogy in Lorenz Gauge

- In electromagnetism the four–potential $A^{\mu}=(\phi/c,{\bf A})$ satisfies the Lorenz condition $\partial_{\mu}A^{\mu}=0.$
- In linearised gravity (Lorenz gauge) we have the equation

$$G_{\mu\nu} = \kappa T_{\mu\nu}, \qquad \kappa = \frac{8\pi G}{c^4},$$

with $G_{\mu\nu}$ playing the role of the field operator, and $T_{\mu\nu}$ acting as the mass-energy source.

GR-EM Analogy in Lorenz Gauge

- In the static, weak-field limit $G_{\mu\nu}\approx \kappa T_{\mu\nu}$ reproduces Poisson's equation $\nabla^2\Phi=4\pi G\,\rho.$
- Write the perturbed metric $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$; for Newtonian potentials,

$$h_{00} = -\frac{2\Phi}{c^2}, \qquad h_{ij} = -\frac{2\Phi}{c^2}\delta_{ij},$$

while cross terms h_{0i} vanish for slowly moving sources.

• Thus the metric perturbation $h_{\mu\nu}$ plays a role analogous to the electromagnetic potential A^{μ} , with Φ acting as the gravitational "scalar potential".

Recovering Poisson's Equation

Linearised Lorenz-gauge field equation

$$\nabla^2 \bar{h}_{00} = -2\kappa \,\rho \,c^2.$$

• For the Newtonian potential $h_{00} = -2\Phi/c^2$ we have

$$h = -h_{00} + h_{ii} = -\frac{2\Phi}{c^2} + 3\left(-\frac{2\Phi}{c^2}\right) = -\frac{8\Phi}{c^2},$$

$$\bar{h}_{00} = h_{00} - \frac{1}{2}h = -\frac{4\Phi}{c^2}.$$

Recovering Poisson's Equation

Substitute in static limit:

$$\nabla^2 \left(-\frac{4\Phi}{c^2} \right) = -2\kappa \, \rho \, c^2 \quad \Longrightarrow \quad \nabla^2 \Phi = \frac{\kappa c^4}{8} \, \rho.$$

• Matching with Poisson's equation $\nabla^2 \Phi = 4\pi G \rho$ fixes

$$\kappa = \frac{8\pi G}{c^4} \, .$$

• Therefore the full Einstein field equation is

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu},$$

consistent with Newtonian gravity in the weak-field limit.

Thank You!!!!!!!!!!!

Thank you so much for reading this slide:)))))

