Geometry and Computations

Lattice plane nomenclature:

Miller Indices

Lattice plane nomenclature:

Miller Indices

Lattice plane nomenclature: Miller Indices

Lattice plane nomenclature: Miller Indices

Set of planes

Set of planes

Symmetry related or Family of planes

Symmetry related or Family of

Family of planes

Symmetry related or

Symmetry related or

Family of planes

Symmetry related or

Family of planes

The intercept equation of a plane

The intercept equation of a plane

If a plane intersects the basis vectors at intercepts s_i then equation of plane is:

$$\frac{x}{s_1} + \frac{y}{s_2} + \frac{z}{s_3} = 1$$

Translation of plane along its' perpendicular:

- changes the value of the R.H.S.
- does not change its' normal

For plane through origin:

Translation of plane along its' perpendicular:

- changes the value of the R.H.S.
- does not change its' normal

For plane through origin:

$$\frac{x}{s_1} + \frac{y}{s_2} + \frac{z}{s_3} = 0$$

Translation of plane along its' perpendicular:

- changes the value of the R.H.S.
- does not change its' normal

For plane through origin:

$$\frac{x}{s_1} + \frac{y}{s_2} + \frac{z}{s_3} = 0$$

$$hx + ky + lz = 0$$

Reciprocal Space

KECIDIOCSI 209CE

$$egin{bmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \end{bmatrix} ullet egin{bmatrix} \mathbf{a_1^*} & \mathbf{a_2^*} & \mathbf{a_3^*} \\ \mathbf{a_3} \end{bmatrix}$$

Form of the new basis vectors

$$\begin{pmatrix} \mathbf{a_1} \cdot \mathbf{a_1^*} & \mathbf{a_1} \cdot \mathbf{a_2^*} & \mathbf{a_1} \cdot \mathbf{a_3^*} \\ \mathbf{a_2} \cdot \mathbf{a_1^*} & \mathbf{a_2} \cdot \mathbf{a_2^*} & \mathbf{a_2} \cdot \mathbf{a_3^*} \\ \mathbf{a_3} \cdot \mathbf{a_1^*} & \mathbf{a_3} \cdot \mathbf{a_2^*} & \mathbf{a_3} \cdot \mathbf{a_3^*} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Form of the new basis vectors

$$\begin{pmatrix}
\mathbf{a_1} \cdot \mathbf{a_1^*} & \mathbf{a_1} \cdot \mathbf{a_2^*} & \mathbf{a_1} \cdot \mathbf{a_3^*} \\
\mathbf{a_2} \cdot \mathbf{a_1^*} & \mathbf{a_2} \cdot \mathbf{a_2^*} & \mathbf{a_2} \cdot \mathbf{a_3^*} \\
\mathbf{a_3} \cdot \mathbf{a_1^*} & \mathbf{a_3} \cdot \mathbf{a_2^*} & \mathbf{a_3} \cdot \mathbf{a_3^*}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Form of the new basis vectors

Off-diagonal terms

$$\begin{pmatrix}
\mathbf{a_1} \cdot \mathbf{a_1^*} & \mathbf{a_1} \cdot \mathbf{a_2^*} & \mathbf{a_1} \cdot \mathbf{a_3^*} \\
\mathbf{a_2} \cdot \mathbf{a_1^*} & \mathbf{a_2} \cdot \mathbf{a_2^*} & \mathbf{a_2} \cdot \mathbf{a_3^*} \\
\mathbf{a_3} \cdot \mathbf{a_1^*} & \mathbf{a_3} \cdot \mathbf{a_2^*} & \mathbf{a_3} \cdot \mathbf{a_3^*}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\Rightarrow \mathbf{a_1^*} \perp \mathbf{a_2} \text{ and } \mathbf{a_3}$$

$$\Rightarrow \mathbf{a_1^*} = K(\mathbf{a_2} \times \mathbf{a_3})$$

Off-diagonal terms

$$\begin{pmatrix} \mathbf{a_1} \cdot \mathbf{a_1^*} & \mathbf{a_1} \cdot \mathbf{a_2^*} & \mathbf{a_1} \cdot \mathbf{a_3^*} \\ \mathbf{a_2} \cdot \mathbf{a_1^*} & \mathbf{a_2} \cdot \mathbf{a_2^*} & \mathbf{a_2} \cdot \mathbf{a_3^*} \\ \mathbf{a_3} \cdot \mathbf{a_1^*} & \mathbf{a_3} \cdot \mathbf{a_2^*} & \mathbf{a_3} \cdot \mathbf{a_3^*} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathbf{a_1^*} \perp \mathbf{a_2} \text{ and } \mathbf{a_3}$$

$$\Rightarrow \mathbf{a_1^*} = K(\mathbf{a_2} \times \mathbf{a_3})$$

Also,
$$\mathbf{a_2^*} = L\left(\mathbf{a_3} \times \mathbf{a_1}\right)$$

$$\mathbf{a_3^*} = M\left(\mathbf{a_1} \times \mathbf{a_2}\right)$$

Off-diagonal terms

$$\begin{pmatrix} \mathbf{a_1} \cdot \mathbf{a_1^*} & \mathbf{a_1} \cdot \mathbf{a_2^*} & \mathbf{a_1} \cdot \mathbf{a_3^*} \\ \mathbf{a_2} \cdot \mathbf{a_1^*} & \mathbf{a_2} \cdot \mathbf{a_2^*} & \mathbf{a_2} \cdot \mathbf{a_3^*} \\ \mathbf{a_3} \cdot \mathbf{a_1^*} & \mathbf{a_3} \cdot \mathbf{a_2^*} & \mathbf{a_3} \cdot \mathbf{a_3^*} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Diagonal terms

$$\begin{pmatrix} \mathbf{a_1} \cdot \mathbf{a_1^*} & \mathbf{a_1} \cdot \mathbf{a_2^*} & \mathbf{a_1} \cdot \mathbf{a_3^*} \\ \mathbf{a_2} \cdot \mathbf{a_1^*} & \mathbf{a_2} \cdot \mathbf{a_2^*} & \mathbf{a_2} \cdot \mathbf{a_3^*} \\ \mathbf{a_3} \cdot \mathbf{a_1^*} & \mathbf{a_3} \cdot \mathbf{a_2^*} & \mathbf{a_3} \cdot \mathbf{a_3^*} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Diagonal terms

$$\mathbf{a_1} \cdot \mathbf{a_1^*} = K\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3}) = 1$$

$$\mathbf{a_2} \cdot \mathbf{a_2^*} = L\mathbf{a_2} \cdot (\mathbf{a_3} \times \mathbf{a_1}) = 1$$

$$\mathbf{a_3} \cdot \mathbf{a_3^*} = M\mathbf{a_3} \cdot (\mathbf{a_1} \times \mathbf{a_2}) = 1$$

$$\mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = K\mathbf{a_{1}} \cdot (\mathbf{a_{2}} \times \mathbf{a_{3}}) = 1$$

$$\mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = K\mathbf{a_{1}} \cdot (\mathbf{a_{2}} \times \mathbf{a_{3}}) = 1$$

$$\mathbf{a_{2}} \cdot \mathbf{a_{1}^{*}} = L\mathbf{a_{2}} \cdot (\mathbf{a_{3}} \times \mathbf{a_{1}}) = 1$$

$$\mathbf{a_{3}} \cdot \mathbf{a_{1}^{*}} = \mathbf{a_{1}} \cdot \mathbf{a_{2}^{*}} = \mathbf{a_{1}} \cdot \mathbf{a_{3}^{*}} = \mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = \mathbf{a_{2}} \cdot \mathbf{a_{1}^{*}} = \mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = \mathbf{a_{1}^{*}} = \mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = \mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = \mathbf{a_{1}^{*}} = \mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = \mathbf{a_{1}^{*}} =$$

Diagonal terms

$$\mathbf{a_1} \cdot \mathbf{a_1^*} = K\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3}) = 1$$

$$\mathbf{a_2} \cdot \mathbf{a_2^*} = L\mathbf{a_2} \cdot (\mathbf{a_3} \times \mathbf{a_1}) = 1$$

$$\mathbf{a_3} \cdot \mathbf{a_3^*} = M\mathbf{a_3} \cdot (\mathbf{a_1} \times \mathbf{a_2}) = 1$$

$$\mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} = K\mathbf{a_{1}} \cdot (\mathbf{a_{2}} \times \mathbf{a_{3}}) = 1$$

$$\begin{pmatrix} \mathbf{a_{1}} \cdot \mathbf{a_{1}^{*}} & \mathbf{a_{1}} \cdot \mathbf{a_{2}^{*}} & \mathbf{a_{1}} \cdot \mathbf{a_{3}^{*}} \\ \mathbf{a_{2}} \cdot \mathbf{a_{1}^{*}} & \mathbf{a_{2}} \cdot \mathbf{a_{2}^{*}} & \mathbf{a_{2}} \cdot \mathbf{a_{3}^{*}} \\ \mathbf{a_{3}} \cdot \mathbf{a_{1}^{*}} & \mathbf{a_{3}} \cdot \mathbf{a_{2}^{*}} & \mathbf{a_{3}} \cdot \mathbf{a_{3}^{*}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{a_{2}} \cdot \mathbf{a_{2}^{*}} = L\mathbf{a_{2}} \cdot (\mathbf{a_{3}} \times \mathbf{a_{1}}) = 1$$

$$\mathbf{a_3} \cdot \mathbf{a_3^*} = M\mathbf{a_3} \cdot (\mathbf{a_1} \times \mathbf{a_2}) = 1 \qquad \therefore K = L = M = \frac{1}{\mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})} = \frac{1}{V}$$

Reciprocal basis vectors

$$\mathbf{a_1^*} = \frac{1}{V} \left(\mathbf{a_2} \times \mathbf{a_3} \right)$$

$$\mathbf{a_2^*} = \frac{1}{V} \left(\mathbf{a_3} \times \mathbf{a_1} \right)$$

$$\mathbf{a_3^*} = \frac{1}{V} \left(\mathbf{a_1} \times \mathbf{a_2} \right)$$

The reciprocal space metric tensor

$$g_{ij}^* = egin{pmatrix} \mathbf{a}_1^* \cdot \mathbf{a}_1^* & \mathbf{a}_1^* \cdot \mathbf{a}_2^* & \mathbf{a}_1^* \cdot \mathbf{a}_3^* \ \mathbf{a}_2^* \cdot \mathbf{a}_1^* & \mathbf{a}_2^* \cdot \mathbf{a}_2^* & \mathbf{a}_2^* \cdot \mathbf{a}_3^* \ \mathbf{a}_3^* \cdot \mathbf{a}_1^* & \mathbf{a}_3^* \cdot \mathbf{a}_2^* & \mathbf{a}_3^* \cdot \mathbf{a}_3^* \end{pmatrix}$$

Real - reciprocal space and vice-versa

Real - reciprocal space and vice-versa

Reciprocal space basis vectors:

Real space :
$$\{\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}\}$$

Reciprocal space:
$$\overrightarrow{a_m}^* = g_{mi}^{-1} \overrightarrow{a_i}$$

Real - reciprocal space and vice-versa

Reciprocal space basis vectors:

Real space :
$$\{\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}\}$$

Reciprocal space:
$$\overrightarrow{a_m} = g_{mi}^{-1} \overrightarrow{a_i}$$

Components of a vector:

$$\vec{p} = \{ p_1 \, p_2 \, p_3 \}$$

$$p_m^* = p_i g_{im}$$

$$\vec{p} = \{p_1^* \, p_2^* \, p_3^*\}$$

Real - reciprocal components of a vector: space and vice-versa

Reciprocal space basis vectors:

Real space :
$$\{\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}\}$$

Reciprocal space:
$$\overrightarrow{a_m}^* = g_{mi}^{-1} \overrightarrow{a_i}$$

$$\vec{p} = \{p_1 \, p_2 \, p_3\}$$

$$p_m^* = p_i \, g_{im}$$

$$\vec{p} = \{p_1^* \, p_2^* \, p_3^*\}$$

Metric Tensor:

$$g_{mk}^* = g_{im}^{-1}$$

Determining reciprocal space

1

Given: Real space lattice parameters

2

Compute real space metric tensor

3

Invert it to get reciprocal space metric tensor

4

Post-multiply with the real space column vector

Reciprocal Lattice

Lattice vector in reciprocal space: $\mathbf{g} = g_i^* \mathbf{a_i^*}$

If
$$g_i^* \in \mathbb{Z}$$

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Question: Which real space vectors, $\mathbf{X_j} = x_{jk}\mathbf{a_k}, x_{jk} \in \mathbb{R}$ are perpendicular to **g?**

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Question: Which real space vectors, $\mathbf{X_j} = x_{jk}\mathbf{a_k}, x_{jk} \in \mathbb{R}$ are perpendicular to **g?**

$$\{\mathbf{X_j}\} \mid \mathbf{X_j} \bullet \mathbf{g} = 0$$

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Question: Which real space vectors, $\mathbf{X_j} = x_{jk}\mathbf{a_k}, x_{jk} \in \mathbb{R}$ are perpendicular to **g?**

$$\{\mathbf{X_j}\} \mid \mathbf{X_j} \cdot \mathbf{g} = 0 \implies x_{ji} \cdot g_i^* = 0$$

 $\implies x_{11} \cdot g_1^* + x_{12} \cdot g_2^* + x_{13} \cdot g_3^* = 0$

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Question: Which real space vectors, $\mathbf{X_j} = x_{jk}\mathbf{a_k}, x_{jk} \in \mathbb{R}$ are perpendicular to **g?**

$$\{\mathbf{X_j}\} \mid \mathbf{X_j} \cdot \mathbf{g} = 0 \implies x_{ji} \cdot g_i^* = 0$$

$$\implies x_{11} \cdot g_1^* + x_{12} \cdot g_2^* + x_{13} \cdot g_3^* = 0$$

Compare with xh + yk + zl = 0

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Question: Which real space vectors, $\mathbf{X_j} = x_{jk}\mathbf{a_k}, x_{jk} \in \mathbb{R}$ are perpendicular to **g?**

$$\{\mathbf{X_j}\} \mid \mathbf{X_j} \cdot \mathbf{g} = 0 \implies x_{ji} \cdot g_i^* = 0$$

$$\implies x_{11} \cdot g_1^* + x_{12} \cdot g_2^* + x_{13} \cdot g_3^* = 0$$

Compare with xh + yk + zl = 0

Identifying,
$$x \equiv x_{11}, y \equiv x_{12}, z \equiv x_{13}$$

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Question: Which real space vectors, $\mathbf{X_j} = x_{jk}\mathbf{a_k}, x_{jk} \in \mathbb{R}$ are perpendicular to **g?**

$$\{\mathbf{X_j}\} \mid \mathbf{X_j} \cdot \mathbf{g} = 0 \implies x_{ji} \cdot g_i^* = 0$$

$$\implies x_{11} \cdot g_1^* + x_{12} \cdot g_2^* + x_{13} \cdot g_3^* = 0$$

Compare with xh + yk + zl = 0

Identifying,
$$x \equiv x_{11}, y \equiv x_{12}, z \equiv x_{13}$$

$$\implies g_1^* \equiv h, g_2^* \equiv k, g_3^* \equiv l$$

Consider a particular reciprocal space lattice vector: $\mathbf{g} = g_i^* \mathbf{a_i^*}, g_i^* \in \mathbb{Z}$

Question: Which real space vectors, $\mathbf{X_j} = x_{jk}\mathbf{a_k}, x_{jk} \in \mathbb{R}$ are perpendicular to **g?**

$$\{\mathbf{X_j}\} \mid \mathbf{X_j} \cdot \mathbf{g} = 0 \implies x_{ji} \cdot g_i^* = 0$$

$$\implies x_{11} \cdot g_1^* + x_{12} \cdot g_2^* + x_{13} \cdot g_3^* = 0$$

Compare with xh + yk + zl = 0

Identifying, $x \equiv x_{11}, y \equiv x_{12}, z \equiv x_{13}$

$$\implies g_1^* \equiv h, g_2^* \equiv k, g_3^* \equiv l : \mathbf{g} \equiv \mathbf{g}_{hkl} = h\mathbf{a}_1^* + k\mathbf{a}_2^* + l\mathbf{a}_3^*$$

Consider a reciprocal space lattice vector: $\vec{g}_{hkl} = h \overrightarrow{a_1^*} + k \overrightarrow{a_2^*} + l \overrightarrow{a_3^*}$

Consider a reciprocal space lattice vector: $\vec{g}_{hkl} = h \overrightarrow{a_1^*} + k \overrightarrow{a_2^*} + l \overrightarrow{a_3^*}$

The "length" of this reciprocal space lattice vector:
$$|\vec{g}_{hkl}|^2 = (h \ k \ l) g_{ij}^{-1} \begin{pmatrix} h \\ k \\ l \end{pmatrix}$$

Consider a reciprocal space lattice vector: $\vec{g}_{hkl} = h \overrightarrow{a_1^*} + k \overrightarrow{a_2^*} + l \overrightarrow{a_3^*}$

The "length" of this reciprocal space lattice vector:
$$|\vec{g}_{hkl}|^2 = (h \ k \ l) g_{ij}^{-1} \begin{pmatrix} h \\ k \\ l \end{pmatrix}$$

Invert to obtain a true length:
$$d_{hkl} = \frac{1}{|\vec{g}_{hkl}|}$$

Consider a reciprocal space lattice vector: $\vec{g}_{hkl} = h \overrightarrow{a_1^*} + k \overrightarrow{a_2^*} + l \overrightarrow{a_2^*}$

The "length" of this reciprocal space lattice vector: $|\vec{g}_{hkl}|^2 = (h \ k \ l) g_{ij}^{-1} \begin{pmatrix} h \\ k \end{pmatrix}$

Invert to obtain a true length: $d_{hkl} = \frac{1}{|\vec{g}_{hkl}|}$

Inter-planar spacing of the (hkl) plane Length of the vector from origin to a point on the plane along the plane normal

Reciprocal basis vectors - Geometry

Consider a lattice with the following lattice parameters:

$$\{1, 1, 1, 90, 45, 90\}$$

Determine the reciprocal basis vectors

Reciprocal space components of: $\mathbf{p} = \frac{\mathbf{a_1}}{4} + \frac{\mathbf{a_3}}{2}$

$$\mathbf{a_1} = \mathbf{a_1^*} + \frac{\mathbf{a_3^*}}{\sqrt{2}}$$

$$\mathbf{a_1^*}$$

$$\mathbf{a_3} = \frac{\mathbf{a_1}}{\sqrt{2}} + \mathbf{a_3}^*$$

$$\mathbf{a_1} = \mathbf{a_1^*} + \frac{\mathbf{a_3^*}}{\sqrt{2}}$$

$$\mathbf{a_3} = \frac{\mathbf{a_1}}{\sqrt{2}} + \mathbf{a_3}^*$$

$$\mathbf{a_1} = \mathbf{a_1^*} + \frac{\mathbf{a_3^*}}{\sqrt{2}}$$

$$\mathbf{a_3} = \frac{\mathbf{a_1}}{\sqrt{2}} + \mathbf{a_3}^*$$

$$\mathbf{a_1} = \mathbf{a_1^*} + \frac{\mathbf{a_3^*}}{\sqrt{2}}$$

$$\mathbf{a_3} = \frac{\mathbf{a_1}}{\sqrt{2}} + \mathbf{a_3}^*$$

$$\mathbf{a_1} = \mathbf{a_1^*} + \frac{\mathbf{a_3^*}}{\sqrt{2}}$$
 $\mathbf{a_3} = \frac{\mathbf{a_1^*}}{\sqrt{2}} + \mathbf{a_3^*}$

$$\therefore \mathbf{p} = \frac{1}{4}(1+\sqrt{2})\mathbf{a_1^*} + \frac{1}{8}(4+\sqrt{2})\mathbf{a_3^*}$$

$$= 0.604 \,\mathbf{a_1^*} + 0.677 \,\mathbf{a_3^*}$$

Real to reciprocal and vice versa

A vector exists irrespective of its' reference frame

$$\therefore \mathbf{p} = p_i \mathbf{a_i} = p_j^* \mathbf{a_j^*}$$

Dot product both sides by real basis vectors, $\mathbf{a_m}$

$$p_i \mathbf{a_i} \cdot \mathbf{a_m} = p_j^* \mathbf{a_j^*} \cdot \mathbf{a_m}$$

$$\Rightarrow p_i g_{im} = p_i^* \delta_{jm} = p_m^*$$

$$g_{im} = \begin{pmatrix} 1 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1 \end{pmatrix}$$

$$g_{im} = \begin{pmatrix} 1 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1 \end{pmatrix}$$

$$\mathbf{p} = \frac{\mathbf{a_1}}{4} + \frac{\mathbf{a_3}}{2}$$

$$\downarrow \downarrow$$

$$\left[\frac{1}{4} \cdot 0 \cdot \frac{1}{2}\right]$$

$$g_{im} = \begin{pmatrix} 1 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1 \end{pmatrix}$$

$$\mathbf{p} = \frac{\mathbf{a_1}}{4} + \frac{\mathbf{a_3}}{2}$$

$$\downarrow \downarrow$$

$$\left[\frac{1}{4} \cdot 0 \cdot \frac{1}{2}\right]$$

$$\therefore p_m^* = p_i g_{im} = \begin{pmatrix} \frac{1}{4} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1 \end{pmatrix}$$

$$g_{im} = \begin{pmatrix} 1 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1 \end{pmatrix}$$

$$\mathbf{p} = \frac{\mathbf{a_1}}{4} + \frac{\mathbf{a_3}}{2}$$

$$\downarrow \downarrow$$

$$\left[\frac{1}{4} \cdot 0 \cdot \frac{1}{2}\right]$$

$$\therefore p_m^* = p_i g_{im} = \begin{pmatrix} \frac{1}{4} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1 \end{pmatrix}$$
$$= \begin{bmatrix} \frac{1}{4} & (1 + \sqrt{2}) & 0 & \frac{1}{8} & (4 + \sqrt{2}) \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Choose primitive cell

Compute real space metric tensor

Invert it to get reciprocal space metric tensor

1

Choose primitive cell

$$b_1 = \frac{a}{2} \left[\hat{i} + \hat{j} + \hat{k} \right]$$

$$b_2 = \frac{a}{2} \left[-\hat{i} + \hat{j} - \hat{k} \right]$$

$$b_3 = \frac{a}{2} \left[\hat{i} - \hat{j} - \hat{k} \right]$$

2

Compute real space metric tensor

3

Invert it to get reciprocal space metric tensor

4

1

Choose primitive cell

$$b_1 = \frac{a}{2} \left[\hat{i} + \hat{j} + \hat{k} \right]$$

$$b_2 = \frac{a}{2} \left[-\hat{i} + \hat{j} - \hat{k} \right]$$

$$b_3 = \frac{a}{2} \left[\hat{i} - \hat{j} - \hat{k} \right]$$

2

Compute real space metric tensor

$$g_{ij} = \frac{a^2}{4} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$$

3

Invert it to get reciprocal space metric tensor

Choose primitive cell

$$b_1 = \frac{a}{2} \left[\hat{i} + \hat{j} + \hat{k} \right]$$

$$b_2 = \frac{a}{2} \left[-\hat{i} + \hat{j} - \hat{k} \right]$$

$$b_3 = \frac{a}{2} \left[\hat{i} - \hat{j} - \hat{k} \right]$$

Compute real space metric tensor

$$g_{ij} = \frac{a^2}{4} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \qquad g_{ij}^* = \frac{1}{a^2} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Invert it to get reciprocal space metric tensor

$$g_{ij}^* = \frac{1}{a^2} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Choose primitive cell

$$b_1 = \frac{a}{2} \left[\hat{i} + \hat{j} + \hat{k} \right]$$

$$b_2 = \frac{a}{2} \left[-\hat{i} + \hat{j} - \hat{k} \right]$$

$$b_3 = \frac{a}{2} \left[\hat{i} - \hat{j} - \hat{k} \right]$$

Compute real space metric tensor

$$g_{ij} = \frac{a^2}{4} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \qquad g_{ij}^* = \frac{1}{a^2} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Invert it to get reciprocal space metric tensor

$$g_{ij}^* = \frac{1}{a^2} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$b_1^* = \frac{1}{a} \left[\hat{i} + \hat{j} \right]$$

$$1 \quad [\hat{i} \quad \hat{j}]$$

$$b_2^* = \frac{1}{a} \left[\hat{j} - \hat{k} \right]$$

$$b_3^* = \frac{1}{a} \left[\hat{i} - \hat{k} \right]$$