

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Problem Image Mailbox.**

(19) (YU) JUGOSLAVIJA

(12) OBJAVLJENA PRIJAVA PATENTA B2

(51) Int. Cl.⁴ C 10J 3/78
B 08B 9/04

SAVEZNI ZAVOD ZA PATENTE
BEOGRAD

(21) Broj prijave:	P 1756/88	(71) Prijavilac:
(22) Datum podnošenja prijave:	16.09.1988.	
(41) Datum od koga se prijava	17.03.1990.	MAŠINSKI FAKULTET SARAJEVO
mogla razgledati:	PG 1/1990 str.413	OOUR Institut za procesnu
(43) Datum objavljivanja prijave:	30.06.1990.	tehniku, energetiku i
	PG 3/1990 str.809	tehniku sredine
(45) Datum objavljivanja patenta:		Omladinsko šetalište b.b.
(50) Međunarodno pravo prvenstva:		71000 SARAJEVO
(61) Dopunski patent uz osnovni		(72) Pronalazač:
patent broj:		SMAJEVIĆ, Izet; mr.dipl.ing.
(62) Izdvojen patent iz prvoštine		HANJALIĆ, Kemal; dr.dipl.ing.
		(74) Zastupnik:

(54) Naziv: UREDJAJ ZA DETONACIONO-
-IMPULSNO ČIŠĆENJE UNUTRAŠNJIH
POVRŠINA REAKTORA ZA VISOKOPRITISNU
GASIFIKACIJU UGLJA

51) Int. Cl.⁴ C 10J 3/78
B 08B 9/04

(57) Apstrakt:

YU P 1756/88 B2

A/A ZA 1756/88/6 od 02.10.1997.

Mr Izet Smajević, dipl.ing.
Dr Kemal Hanjalić, dipl.ing.
Mašinski fakultet Sarajevo,
OOUR Institut za procesnu tehniku,
energetiku i tehniku sredine
71000 SARAJEVO

Uredjaj za detonaciono-impulsno čišćenje unutrašnjih površina
reaktora za visokopritisnu gasifikaciju uglja

Oblast tehnike u koju spada pronađazak:

Pronalazak spada u oblast procesne industrije i energetike, posebno u oblast proizvodnje gorivog gasa na bazi visokopritisne kontinuirane gasifikacije uglja, odnosno u oblast primjene udarnih talasa na pogonsko čišćenje unutrašnjih površina reaktora za gasifikaciju.

Prema Medjunarodnoj klasifikaciji patenata pronađazku odgovara simbol.....

Tehnički problem:

Tehnički problem koji se rješava ovim pronađazkom je definisan na sljedeći način: Kako u procesu gasifikacije uglja, posebno u procesu visokopritisne kontinuirane gasifikacije sprašenog uglja, spriječiti rast depozita na unutrašnjoj površini reaktora za gasifikaciju. Kako postići da se depozit uspostavljen na površinama reaktora povremeno odnosi udarnim talasima kontrolisane jačine koji će se generisati detonacionim sagorijevanjem pogodnih reagenasa u posebnoj, detonacionoj, cijevi sa početnim nadpritiskom u reagensima, a smještenoj izvan reaktora. Kako omogućiti pouzdanu kontrolu i izbor jačine generisanih udarnih talasa uz istovremeno poštivanje uvjeta da uredjaj zasnovan na ovom postupku čišćenja bude efikasan, siguran u pogonu i jeftin. Kako obezbijediti sigurnu primjenu detonacionih talasa za otklanjanje naslaga u uslovima eksplozivne i zapaljive atmosfere u reaktoru.

Definisani tehnički problem je riješen ovim pronađazkom uredjaja za detonaciono-impulsno čišćenje unutrašnjih površina reaktora za visokopritisnu gasifikaciju uglja.

Stanje tehnike:

Savremeni, visokoefektivni, postupci gasifikacije uglja podrazumijevaju visokotemperaturnu kontinuiranu gasifikaciju sprašenog uglja u reaktorima sa značajnim nadpritiskom. Ovakvi postupci su danas u fazi laboratorijskog ili poluindustrijskog uhoodavanja (npr. VEW-coal conversion process, Dortmund-Gummersbach; Postrojenje za gasifikaciju uglja - Energoinvest, Sarajevo). Zidovi reaktora namijenjenih ovakvoj gasifikaciji moraju biti pouzdano hladjeni i zato se na unutrašnjoj strani obično pokrivaju registrima ekonomajzerskih ili isparivačkih cijevi sa organizovanom cirkulacijom rashladnog medija. Čestice uglja koje u procesu gasifikacije dodju u kontakt sa zidovima reaktora se hlađe i, u određenom broju slučajeva, zadržavaju na zidovima gradeći tako na cijevnim registrima depozit koji značajno povećava toplotni otpor. Odnošenje ovih naslaga, za vrijeme trajanja gasifikacije, u dosadašnjoj praksi nije pouzdano rješeno. Pokušaji sa pneumatskim vibratorima VEW-Dortmund) nisu došli zadovoljavajuće rezultate, a primjena u tu svrhu udarnih talasa generisanih do sada poznatim postupcima, na primjer vazdušnim topovima ili poznatim varijantama detonaciono-impulsnog postupka, nije moguća zbog visokog pritiska u gasnoj sredini reaktora, ali i zbog toga što je gasna sredina reaktora, ustvari, plin takodje sklon detonacionom sagorijevanju. Nai-mene, jačina udarnih talasa koji se generišu vazdušnim topovima nije dovoljna za emitovanje u visokopritisnu gasnu sredinu reaktora (pritisak više desetina barâ), a do sada poznate varijante detonaciono-impulsnih postupaka čišćenja (Kazanski univerzitet - SSSR; VUZES, Brno - ČSSR, Mašinski fakultet, Sarajevo - Jugoslavija) podrazumijevaju generisanje udarnih talasa u impulsno-detonacionim komorama sa početnim pritiskom reagensa malo iznad atmosferskog i istovremeno sa neposredno vezanim otvorenim krajem komore za objekat čišćenja - bez zapornih organa. Kako u gasnoj sredini reaktora vlada visok pritisak ovakav se postupak ne može primjeniti na čišćenje reaktora. Problem je, takodje, obezbjediti takav detonaciono-impulsni postupak čišćenja koji garantuje da u eksplozivnu sredinu reaktora neće prodrijeti takva količina oksidanta koja bi mogla dovesti do eksplozije u reaktoru.

Opis rješenja tehničkog problema:

Pronalazak naslovljen kao: "Uredjaj za detonaciono-impulsno čišćenje unutrašnjih površina", reaktora za visokopritisnu gasifikaciju uglja", je pokazan na crtežima i to:

slika 1 - prikazuje osnovno rješenje pronalaska u kojemu je početni pritisak reagenasa u detonacionoj cijevi manji od pritiska u reaktoru i u kojemu se udarni talasi generišu na bazi spaljivanja goriva uskladištenog u vanjskom izvoru

slika 2 - prikazuje varijantu I pronalaska koncipiranu tako da je početni pritisak reagenasa u detonacionoj cijevi ravan pritisku u reaktoru i da se kao gorivo za generisanje udarnih talasa, koristi plin iz reaktora.

U oba rješenja ovog pronalaska, koja su data na slikama 1 i 2, eliminisani su nedostaci navedeni u stanju tehnike i obezbjedjeno je pouzdano odnošenje naslaga iz reaktora za gasifikaciju uglja, jer se, prema slici 1, vanjska strana cijevi (26) reaktora (25) čisti udarnim talasima koji se generišu u detonacionoj cijevi (16) prinudnim paljenjem smješte na dovoljnom početnom nadpritisku, koja se prethodno formira u mješaču (13) na taj način da se u stalan tok stlačenog vazduha (linija 9), otvaranjem magnetnog ventila (8), povremeno, na odgovarajućem pritisku, upušta pogodan gorivi gas odgovarajuće uskladišten u posudi (1). Zatvrijeme punjanja reagensima detonaciona cijev (16) je od gasne sredine reaktora (25) odvojena impulsnom klapnom sa pneumatskim ili hidrauličnim motorom (22), koja se, kratko nakon prinudnog paljenja smješte izvorom paljenja (17), naglo otvara propuštajući već oformljen udarni talas odredjene jačine u gasnu sredinu reaktora, nakon čega se klapna (22), takodje naglo, zatvara. Nakon ovoga se otvara magnetni ventil (20), čime se omogućava kontinuiranoj strujni vazduha, koji se odredjeno vrijeme, kroz liniju smješte (14), uvodi u detonacionu cijev (16), bez mješanja sa plinom u mješaču (13) (magnetni ventil (8) zatvoren), da iz detonacione cijevi (16), kroz aerodinamički ventil (19) sa oduškom (21), odstrani proizvode zaostale nakon detonacije. Ovim se detonaciona cijev, ustvari, priprema za novo punjenje smješom i novu detonaciju. Upravljačkom armaturom postavljenom na liniju plina (3) i liniju vazduha (9), a uz pomoć protokomjera (7) i (12) se, u mješaču ejektorskog tipa (13) formira skoro stehiometrijska, ali gorivom bogata, smješa, čime je u produktima nakon detonacije spriječena pojava kiseonika, pa inertni ispuh koji se, po otvaranju impulsne klapne (22), iza udarnog ta-

lasa, djelimično emituje u reaktor ne može stupiti u dopunsku reakciju sa gasom u reaktoru. Izborom odgovarajućeg početnog pritiska reagenasa u detonacionoj cijevi (16) - koji je, međutim, još uvijek manji od pritiska gasne sredine u reaktoru (25), je obezbjedjeno generisanje udarnih talasa čija je jačina takva da je osigurano emitovanje talasa u unutrašnjost reaktora.

Varijanta I pronalaska, pokazana na slici 2, obezbjedjuje generisanje udarnih talasa detonacionim sagorijevanjem smješe komprimiranog vazduha (linija 9) i gasa iz reaktora za gasifikaciju (25), nakon pravduog paljenja smješe izvorom paljenja (17) u detonacionoj cijevi (16), u čijem otvorenom kraju sa proširenjem (32), vezanom za reaktor (25), ne postoji nikakvi zaporni organi, pa je početni pritisak reagenasa u cijevi (16) ravan pritisku gasne sredine u reaktoru. Prema slici 2 se smješa reagenasa formira direktno u detonacionoj cijevi tako da se u ohladjen reaktorski gas, koji se već nalazi u cijevi (16), kroz povratnu klapnu (15) i perforiranu cijev (28), otvaranjem magnetnog ventila (27), upušta odredjena količina vazduha kojeg tlači kompresor (2). Nakon formiranja se smješa, koja je, takodje gorivom bogata, ali bliska stehiometrijskoj, pravduo pali i sagorijeva prije nego što joj pokretna granična ravan naiđe na užarenu žicu (31) koja ima zadatku da spriječi, makar i eventualan, dotok eksplozivne smješe iz detonacione cijevi (16) u reaktor (26) gdje vladaju visoke temperature i gdje bi se ta smješa spontano upalila. Zbog visokog početnog pritiska reagenasa se, u detonacionoj cijevi (16), generišu veoma jaki udarni talasi, i zadatku proširenja (32) na otvorenom kraju detonacione cijevi je da omogući ekspanziju, pa tako i dovoljno slabljenje, ovako generisanih udarnih talasa prije njihovog emitovanja u gasni prostor reaktora. Za novu detonaciju detonaciona cijev se, uslijed razlike pritiska, puni reaktorskim plinom kroz otvoreni kraj (32), a dio produkata od prethodne detonacije, koji je zaostao uz zatvoreni kraj detonacione cijevi (16), se ispušta, otvaranjem magnetnog ventila (30), kroz odušak (29) na čijem je kraju, radi spaljivanja one količine reaktorskog gasa koja eventualno izmješana sa produktima prodire kroz odušak, takodje postavljena užarena žica (34). Po zatvaranju magnetnog ventila (30) detonaciona cijev (16) se ponovo dopunjava vazduhom i proces se ponavlja. Sistem za hladjenje detonacione cijevi (33) je vezan za sistem hladjenja reaktora (26), a istovremeno podhlađuje generatorski plin u detonacionoj cijevi ispod temperature, samozapaljenja. U obe varijante pronalaska procesom se, posredstvom kablova za komandni napon (a) do (k), automatski upravlja sa komandnog ormara (24).

Uredjaj za detonaciono-impulsno čišćenje unutrašnjih površina reaktora za visoko-pritisnu gasifikaciju uglja - osnovno rješenje pronalaska (slika 1) se, sastoji iz nekoliko, na odgovarajući način, međusobno vezanih cjelina. Linija gorivog plina se sastoji od odgovarajućeg broja boca sa uskladištenim plinom (1), te od cijevi za transport plina (3) u čijem sklopu su postavljeni interventni - računi zaporni ventil (4), redukcioni ventil za ručno podešavanje pritiska u drugom dijelu plinske trase (5), sigurnosni ventil sa oprugom (6), protokomjer - prigušnica (7) i magnetni ventil (8). Linija stlačenog vazduha se sastoji od kompresora (2) i transportne cijevi za vazduh (9) u čijem sklopu se nalazi ručni interventni ventil (10), ručni ventil za redukciju pritiska (11) i protokomjer-prigušnica (12). Smješa vazduha i plina odgovarajućeg (eksplozivnog) sastava formira se u mješaču ejektorskog tipa (13) postizanjem odgovarajućih, unaprijed zadatih, protoka plina i vazduha. Ovi se protoci očitavaju na protokomjerima (7) i (12), a po potrebi koriguju na redukcionim ventilima (5) i (11). Smješa se formira tako da se u stalnu struju vazduha, otvaranjem magnetnog ventila (8), povremeno upušta plin. Ovako oformljena smješa se linijom gotove smješe (14), preko povratne klapne (15) uvodi u detonacionu cijev (16) i to uz njen zatvoren kraj, gdje je smješten i električni izvor za prinudno paljenje smješe (17). Količina smješe koja se upušta u detonacionu cijev prije paljenje zavisi od vremena u kojemu se magnetni ventil (8), na liniji plina, drži u otvorenom položaju, te se na taj način, kao i podešavanjem redukcionih ventilâ (5) i (11), čime se reguliše pritisak regenasa u cijevi (16), ustvari, reguliše jačina generisanih udarnih talasa. Detonaciona cijev (16) je cijev odgovarajućeg prečnika sa jednim zatvorenim krajem, a čiji je drugi kraj, preko impulsne klapne sa pneumatskim ili hidrauličnim motorom (bez čvrste veze sa konstrukcijom reaktora) uveden u unutrašnjost reaktora za gasifikaciju (25). Sistem za hladjenje otvorenog kraja detonacione cijevi (23) ujedno hlađi i impulsnu klapnu (22), a povezan je sa rashladnim sistemom reaktora (26). Turbulizator (npr.: perforirana bicića) (18) je postavljen u unutrašnjost detonacione cijevi na udaljenosti, računato u odnosu na zatvoren kraj te cijevi, ravnoj petorostrukom prečniku protočnog presjeka detonacione cijevi, a zadatak mu je da, u preddetonacionom sagorijevanju, turbulizira tok reagenasa i nailazeći plamen i na taj način doprinese što bržem uspostavljanju uslova za detonaciono sagorijevanje preostalog dijela reagenasa. Neposredno po paljenju smješe izvorom (17), zatvara se magnetni ventil na liniji plina (8), uslijed razlike pritisaka zatvara se povratna klapna na liniji smješe (15), a otvara se impulsna klapna (22) i udarni talas se emituje u unutrašnjost reaktora. Nakon ovoga se zatvara impulsna klapna (22), razlika pritisaka će otvoriti povratnu klap-

nu (15) kroz koju će u detonacionu cijev ulaziti, ovaj put, samo vazduh koji će preko aerodinamičkog ventila (19) i oduška (21) sa, u tu svrhu, otvorenim magnetnim ventilom (20) isprati detonacionu cijev od zaostalih produkata sagorjevanja. Još neko vrijeme, po zatvaranju magnetnog ventila (20) u detonacionu cijev će se, radi postizanja zadatog nadpritiska u reagensima prije paljenja, upuštati samo vazduh, a zatim će se, otvaranjem magnetnog ventila (8), detonaciona cijev uz zatvoren kraj dopuniti odredjenom količinom eksplozivne smješte i proces će se ponoviti. Magnetnim ventilima (8) i (20), impulsnom klapnom (22) i izvorom za prinudno paljenje smješte (17) automatski se, posredstvom kablova za komandni napon (b), (e), (f) i (d), upravlja sa komandnog bloka (24) u sklopu kojeg su, posredstvom kablova (a) i (c), smještene u blokade za automatsko isključivanje sistema iz pogona u slučaju uspostavljanja medjusobno neprimjerena protoka plina i vazduha.

Uredjaj za detonaciono-impulsno čišćenje unutrašnjih površina reaktora za visoko-kopritisnu gasifikaciju uglja – varijanta I pronalaska (slika 2), se sastoji iz linije stlačnog vazduha (9), u čijem se sklopu nalaze kompresor (2), interventni – ručni zaporni ventil (10), redukcioni ventil za ručnu regulaciju pritiska (11), magnetni ventil (27), protokomjer – prigušnica (12), povratna klapna (15) i perforirana cijev (28), koja je svičim perforiranim dijelom smještena u detonacionoj cijevi (16) sa turbulizatorom (18) i izvorom za prinudno paljenje smješte (17) smještenim uz zatvoren kraj detonacione cijevi. Eksplozivna smješta reagenasa – reaktorskog gasa i vazduha, formira se tako da se u, sistemom za hladjenje (33), ohladjen reaktorski gas koji, kroz otvoren kraj bez zapornik organa, popunjava detonacionu cijev (16) na pritisku ravnem radnom pritisku gasne sredine u reaktoru, otvaranjem magnetnog ventila (27), upušta odredjena količina vazduha tako da se ta količina vazduha, posredstvom perforirane cijevi (28) ravnomjerno rasporedjuje u određenoj zapremini detonacione cijevi smještenoj uz njen zatvoren kraj. Po dostizanju eksplozivne koncentracije smješte, što se kontroliše intenzitetom (protokomjer 12) i vremenom trajanja protoka vazduha (vrijeme u kojem je magnetni ventil 27 držan u otvorenom položaju), zatvara se magnetni ventil (27), a smješta se pali izvorom paljenja (17). Jak udarni talas koji se ovako razvija dovoljno slabi u primjerenom proširenju (32), te se udarni talas primjerene jačine emituje u gasni prostor reaktora (25), nakon čega detonacionu cijev kroz njen otvoren kraj, popunjava nova količina reaktorskog gasa. Nakon ovoga se produkti sagorjevanja, eventualno zaostali uz zatvoren kraj detonacione cijevi, ispuštaju u atmosferu, otvaranjem magnetnog ventila (30), kroz odušak (29) na čijem je kraju, radi spaljiva-

nja eventualno propuštenih količina reaktorskog gasa, postavljena užarena žica (34). Po zatvaranju magnetnog ventila (30) u detonacionu cijev se, upuštanjem nové količine vazduha, ponovo formira odgovarajuća količina eksplozivne smješe koja se pali i proces se nastavlja. Zadatak užarene žice (31), smještene pred otvorenim krajem detonacione cijevi, je da spriječi makar i eventualan prodor eksplozivne smješe u unutrašnjost reaktora gdje bi se ta smješa, zbog visoke temperature spontano upašila. Procesom se, preko komandnog bloka (24) i kablova za komandni napon (a), (d), (h), (i), (j) i (k), upravlja automatski.

Patentni zahtjev:

1. Uredaj za detonaciono-impulsno čišćenje unutrašnjih površina reaktora za visokopritisnu gasifikaciju uglja, naznačen time, što je cijev gotove smješe reagenasa (14) sa povratnom klapnom (15) uvedena u detonacionu cijev (16) prije turbulizatora (18), što je detonaciona cijev (16) od reaktorskog gasnog prostora (25) odvojena impulsnom klapnom sa pnaumatskim ili hidrauličnim motorom (22) što je na detonacionoj cijevi (16), prije impulsne klapne (22) postavljen aerodinamički ventil (19) sa oduškom (20) i magnetnim ventilom (20) i što je na otvoreni kraj detonacione cijevi (16) i impulsne klapne (22) postavljen sistem za hladjenje (23) koji je vezan za sistem hladjenja zidova reaktora (26).
2. Uredaj za detonaciono-impulsno čišćenje unutrašnjih površina reaktora za visokopritisnu gasifikaciju uglja, prema zahtjevu 1, naznačen time, što je cijev gotove smješe reagenasa (14) vezana za mješač ejektorskog tipa (13), za koji su na drugoj strani vezani plinovod (3) sa bocama stlačenog plina (1) i zrakovod (9) sa kompresora (2), što su u liniji plina (3) i liniji zraka (9) postavljeni ručni zaporni ventili (4) i (10), zatim ručni redukcionci ventili (5) i (11) i protokomjeri (7) i (12), što se u liniji plina (3) još nalaze sigurnosni ventili (6) i magnetni ventili (8), što su magnetni ventili (8) i (20), te impulsna klapna (22) i izvor paljenja (17) kablovima komandnog napona (b), (e), (f) i (d) vezani za komandni ormari (24) i što je komandni ormari (24) signalnim kablovima (a) i (c) povezan sa protokomjerima (7) i (12).
3. Uredaj za detonaciono-impulsno čišćenje unutrašnjih površina reaktora za visokopritisnu gasifikaciju uglja, prema varijanti I, naznačen time, što je zrakovod (9), preko povratne klapne (15) i perforirane cijevi (28) direktno uveden u detonacionu cijev (16) sa turbulizatorom (18) i izvorom prinudnog paljenja (17), što je detonaciona cijev (16) svojim otvorenim krajem, preko proširenja (32), direktno-bez zapornih organa, uvedena u gasni prostor reaktora (25), što je vanjski zid, po cijeloj dužini detonacione cijevi (16), pokriven rashladnim sistemom (33), koji je vezan za rashladni sistem reaktora (26), što je u otvoreni kraj detonacione cijevi (16) postavljena užarena žica (31) i što je uz zatvoreni kraj detonacione cijevi (16) postavljen odušak (29) sa magnetnim ventilom (30) i užarenom žicom (31).

4. Uredjaj za detnaciono - impulsno čišćenje unutrašnjih površina reaktora za visokopritisnu gasifikaciju uglja, prema zahtjevu 3, naznačen time, što je u sklopu zrakovoda (9), iza visokotlačnog kompresora (2) postavljen magnetni ventil (27), što su magnetni ventili (27) i (30), kao i izvor pričuvnog paljenja (17), kablovima komandnog napona (d), (h) i (i) povezani sa komandnim ormaram (24) i što je komandni ormara (24) posredstvom višežičnih kablovaca (j) i (k) povezan sa užarenim žicama (31) i (34), a posredstvom signalnog kabla (a) sa protokomjerom (12).

A handwritten signature in black ink, appearing to be a name, is placed to the right of the stamp.

Kratak sadržaj suštine pronalaska:

Pronalazak se odnosi na uredjaj za detonaciono - impulsno čišćenje unutrašnjih površina reaktora za visokopritisnu gasifikaciju uglja pri čemu je, pored osnovnog, dato i jedno varijantno rješenje uredjaja.

Osnovno rješenje pronalaska podrazumijeva odnošenje depozita sa unutrašnjih površina reaktora (26) udarnim talasima koji se, u detonacionoj cijevi (16) smještenoj izvan reaktora, generišu detonacionim sagorijevanjem, na određen način prethodno pripremljene, smješte reagensa - vazduha i odgovarajućeg plinovitog goriva. Reagensi se, preko mješača (13), uvođe u detonacionu cijev (16) i tlače na odgovarajući početni pritisak - manji od pritiska u gasnoj sredini reaktora. Detonaciona cijev je od gasne sredine reaktora odvojena automatski upravljanom impulsnom klapnom sa pneumatskim ili hidrauličnim motorom (22) koja se, po paljenju smješte u detonacionoj cijevi naglo otvara propuštajući udarni talas u reaktor . a zatim se naglo zatvara.

Varijantno rješenje uredjaja je zasnovano na generisanju udarnih talasa prinudnim paljenjem smješte generatorskog plina i stlačenog vazduha na početnom pritisku ravnom pritisku u gasnoj sredini reaktora (26). U otvorenom kraju detonacione cijevi (16) nema zapornih organa, ali je proširenjem (32) obezbjedjeno dovoljno slabljenje talasa prije njihovog emitovanja u reaktor.

Navod o najboljem načinu za privrednu upotrebu pronałaska:

Uredjaj za detonaciono-impulsno čišćenje unutrašnjih površina reaktora za visoko-pritisnu gasifikaciju uglja daje najbolje rezultate u odnošenju sipkih naslaga i za to ga, u pogonu reaktora, treba upotrebljavati preventivno, dakle dovoljno često (npr. 3 do 6 puta u toku 24 časa). Duži prekid u čišćenju može dovesti do očvršćavanja naslaga na zidovima reaktora, pa tako i njihovog težeg odnošenja. Jedno čišćenje ovim uredjajem podrazumijeva generisanje serije od $10 \div 15$ udarnih talasa. Na reaktor se, po potrebi, može postaviti i više detonacionih cijevi sa centralnom pripremom eksplozivne smješte.

Detonacione cijevi trebaju imati prečnik $150 \div 200$ mm i dužinu $10 \div 15$ m, a jedan kraj im treba zatvoriti. Drugim, otvorenim, krajem detonaciona cijev se, na odgovarajućem mjestu - obično u području nižih temperatura, uvodi u gasni prostor reaktora. Potrebno je omogućiti dilataciju otvorenog kraja detonacione cijevi u odnosu na zid reaktora. Pri pritisku gasne sredine reaktora od 25 bara i uvodjenju vanjskog goriva za generisanje talasa preporučuje se početni pritisak reagensa u detonacionoj cijevi $4 \div 5$ bara. Za generisanje jednog udarnog talasa potrebno je $0,4 \div 0,7$ Nm³, u određenom omjeru, izmješanih reagenasa.

A handwritten signature in black ink is written over a circular stamp. The stamp contains the text 'ZAVOD ZA NUCLEARNU ENERGETIKU' and 'ZNE'.

SLIKA 1

Smajević

SLika 2

Šmojević