TAI PL1 algèbre linéaire

EX1

Dans \mathbb{R}^4 on considère l'ensemble des vecteurs (x, y, z, t) qui vérifient x+y+z+t=0.

- 1. montrer que c'est un espace vectoriel.
- 2. donner une base de cet espace vectoriel.

EX2

Soient les matrices:
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $A = \begin{pmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -3 \end{pmatrix}$

- 1. écrire la matrice A comme combinaison linéaire des matrices I et J.
- 2. écrire la matrice J comme combinaison linéaire des matrices A et I.
- 3. exprimer J^2 en fonction de J. $S^2 = 3^{N+1} J$
- 4. en déduire que la matrice A vérifie l'égalité $A^2 + 5A + 4I = 0$.
- 5. montrer que la matrice A est inversible et exprimer son inverse en fonction des matrices I et J.

EX3

On note $\mathcal{B} = \{ \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4 \}$ la base standard de \mathbb{R}^4 et f l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^4 associée à la matrice

$$K = \begin{pmatrix} 1 & 1 & -1 & -3 \\ 1 & 1 & 1 & -2 \\ 0 & -1 & 0 & 1 \\ 1 & 1 & 0 & -2 \end{pmatrix}$$
 relativement à la base \mathcal{B} . On considère les vecteurs suivants : $\mathbf{v}_1 = \mathcal{E}_1, \mathbf{v}_2 = \mathbf{f}(\mathcal{E}_1), \mathbf{v}_3 = \mathcal{E}_1$

$$\mathcal{E}_3$$
 , $v_4 = f(\mathcal{E}_3)$.

- 1. montrer que la famille $C = \{v_1, v_2, v_3, v_4\}$ est une base de \mathbb{R}^4 .
- 2. exprimer $f(v_1)$, $f(v_2)$, $f(v_3)$, $f(v_4)$ en fonction de v_1 , v_2 , v_3 , v_4 et en déduire la matrice K' associée à f relativement à la base C.
- 3. déterminer la matrice de passage P de la base \mathcal{B} à la base \mathcal{C} .
- 4. donner l'expression de K' en fonction de K, P et P^{-1} .

EX4

Soit $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 à coefficients réels, on considère le sous-ensemble E des matrices $M(a,b) = \begin{pmatrix} b & a & b \\ a & b & b \\ b & b & a \end{pmatrix}$ on peut écrire $E = \{M(a,b), (a,b) \in \mathbb{R}^2 \}$.

- 1. montrer que E est un sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. donner une base de E et sa dimension.

EX5

Soit $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 à coefficients réels, on considère les matrices suivantes de

$$\mathcal{M}_3(\mathbb{R})$$
: $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

- 1. calculer A^2 et A^3 , puis vérifier que $A^3 = A^2 + 2A$.
- 2. montrer que la famille (A^2, A) est libre dans $\mathcal{M}_3(\mathbb{R})$.

EX6

On note f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 dont la matrice relativement à la base standard de \mathbb{R}^3 est:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

- 1. déterminer une base de Im f et donner la dimension de Im f.
- 2. f est-elle bijective?

EX7

Soit E l'espace vectoriel des matrices carrées d'ordre 2 à coefficients réels on rappelle que la famille (U_1, U_2, U_3, U_4) définie par $U_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $U_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $U_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $U_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ forme une base de E qui est de dimension 4. Soit $V_{A,B}$ l'ensemble des matrices M de E vérifiant AM = MB.

- 1. soit A et B deux matrices de E et $\phi_{A,B}$ l'application qui a toute matrice M de E associe la matrice AM MB . Montrer que $\phi_{A,B}$ est une application linéaire de E dans E et en déduire que $V_{A,B}$ est un sous-espace vectoriel de E.
- 2. dans le cas particulier ou $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$, construire la matrice carrée d'ordre 4 qui représente $\phi_{A,B}$ dans la base (U_1,U_2,U_3,U_4) .
- 3. dans cette question r et s désignent deux réels distincts et différents de 1 et on pose: $D = \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix}$ et $\Delta = \begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix}$. Soit $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ une matrice quelconque de E, donner les conditions nécessaires et suffisantes sur x,y,z,t pour que M appartienne à $V_{D,\Delta}$.
- 4. en déduire une base de $V_{D,\Delta}$.