Número de homicidios en México

¿cómo medirlos?

Tasa de homicidios a nivel mundial

Fuentes de datos

SESNSP SSPC

"Otros datos"

SECRETARÍA DE SEGURIDAD Y PROTECCIÓN CIUDADANA

Problemas

SESNSP

ÚLTIMA ACTUALIZACIÓN: HOY

INEGI

ÚLTIMA ACTUALIZACIÓN: DICIEMBRE 2018

Diferentes unidades, misma tendencia

Metodología

- 1- Regresión Lineal
- 2- Obtener una sola serie
- 3- Trabajar con dicha serie

Regresión Lineal

Análisis de Residuos

Serie con la que trabajaremos

Análisis descriptivo

Periódo	Característica	Medida descriptiva
Ene. 2012 - Feb. 2014	Número de homicidios decreciente Mínimo local	Promedio tasas de variación:0.0083 Máximo: 2451 Mínimo: 1578
Feb. 2014 - Marzo 2016	Número de homicidios constante Variación constante alrededor del nivel	Promedio : 1698.3 Desviación estándar: 116.4
Marzo 2016 - Oct. 2019	Número de homicidios creciente Máximo local	Promedio de tasas de variación:0.0184 Mínimo:1723 Máximo: 3701

Análisis por mes

Análisis de series de tiempo

Aplicando Método Guerrero

$$\lambda = 0.2$$

Aplicando una diferencia regular a la serie transformada

Aplicando una diferencia regular y una estacional

Modelo 1: ARIMA(1,1,0)(2,0,0)

$$(1 - (-0.4131)B)(1 - (0.2780)B^{12} - (0.3356)(B^{12})^2)\nabla T(Z_t) = a_t$$

Num. Obs	Model ID	Estimated Parameter	95% Confidence Interval	Correlation between estimated parameters >0.5 or <-0.5	Mean of Residuals (t- ratio)	SD of Residuals	Q', d.f. (p- value)	rk(a) not 0	Large Residuals
94	ARIMA(1,1,0)(2,0,0) [12] RECOMENDADO	ar1=-0.387 sar1=0.212 sar2=0.351	(-0.544,-0.23) (0.047,0.376) (0.186,0.517)	r(sar2,sar1)=-0.54261	0.01828 (1.592)	0.094714	24.54,21 (0.268)	r18=-0.26	a85=3.01

Modelo 1.1: ARIMA(1,1,0)(2,0,0)

Sólo con el parámetro autorregresivo estacional de segundo orden

$$(1 - (-0.3917)B)(1 - (0.4666)(B^{12})^2)\nabla T(Z_t) = a_t$$

Num. Obs	Model ID	Estimated Parameter	95% Confidence Interval	Correlation between estimated parameters >0.5 or <-0.5	Mean of Residuals (t- ratio)	SD of Residuals	Q', d.f. (p- value)	rk(a) not 0	Large Residuals
94	ARIMA(1,1,0) (2,0,0)[12] SOLOSAR2	ar1=-0.392 sar2=0.467	(-0.548,-0.235) (0.324,0.609)	-	0.020826 (1.779)	0.096529	16.97,22 (0.765)	-	20)

Modelo 2: ARIMA(0,1,0)(2,0,0)

$$(1 - (0.4673)(B^{12})^2)\nabla T(Z_t) = a_t$$

Num. Obs	Model ID	Estimated Parameter	95% Confidence Interval	Correlation between estimated parameters >0.5 or <-0.5	Mean of Residuals (t- ratio)	SD of Residuals	Q', d.f. (p- value)	rk(a) not 0	Large Residuals
94	ARIMA(0,1,0) (2,0,0)[12] SOLOSAR2	sar2=0.467	(0.335,0.599)	5	0.015482 (1.214)	0.105971	38.5,23 (0.023)	r1=-0.42	

Modelo 3: ARIMA(0,1,1)(1,1,0)

$$(1 - (-0.5279)B^{12})\nabla\nabla_{12}T(Z_t) = (1 - (-0.4192)B)a_t$$

Num. Obs	Model ID	Estimated Parameter	95% Confidence Interval	Correlation between estimated parameters >0.5 or <-0.5	Mean of Residuals (t- ratio)	SD of Residuals	Q', d.f. (p- value)	rk(a) not 0	Large Residuals
94	ARIMA(0,1,1) (1,1,0)[12]	ma1=-0.419 sar1=-0.528	(-0.588,-0.25) (-0.708,-0.348)		0.017732 (1.385)	0.106373	23.71,22 (0.363)	e e	a85=3.11

Capacidad del Pronóstico (Modelo 1.1 vs 3)

In Sample In Sample

Туре	ME	MPE(%)	MSE	MSPE(%)
Dynamic	300.93223	8.46812	101,411.43673	80.41051
Static	15.16268	0.41214	33,049.15409	26.61972

Туре	ME	MPE(%)	MSE	MSPE(%)
Dynamic	198.14284	5.62268	92,235.17797	74.82914
Static	-13.53633	-0.39432	71,534.13543	57.51886

Capacidad del Pronóstico (Modelo 1.1 vs 3)

Out of Sample

Туре	ME	MPE(%)	MSE	MSPE(%)
Dynamic	274.42094	7.73114	89,520.26889	71.34550
Static	13.64390	0.37168	35,497.52196	28.62075

Out of Sample

Туре	ME	MPE(%)	MSE	MSPE(%)
Dynamic	215.81989	6.11474	98,766.14424	79.95560
Static	-10.43005	-0.30425	76,230.71004	61.38150

Conclusiones: Modelo 1.1

