

ALICHERRY 6-3
Serial No. 10/722,651
Ryan, Mason & Lewis, LLP; W. E. Lewis, LLP (516) 759-2722

1/7

ALICHERRY 6-3
Serial No. 10/722,651
Ryan, Mason & Lewis, LLP; W. E. Lewis, LLP (516) 759-2722

2/7

FIG. 2

GENERAL CASE			SPECIAL CASE	
PROBLEM	APPROX LOWER BOUND	APPROX UPPER BOUND	PROBLEM	COMPLEXITY
$(L, D, *)$	$\Omega(\sqrt{s})$	$0 (\sqrt{s})$	$(L, *, E), s = 2$	POLYNOMIAL
(L, U, NE)	$1 + 1/s^2$	2	$ C_2 = \infty$	
(L, U, E)	NP-HARD	2	$(L, *, NE), s = 2$	POLYNOMIAL
$(C, *, NE)$	IN-APPROXIMABLE		$(L, U, E), s = 2$	4/3-APPROX
(C, D, E)	IN-APPROXIMABLE		$(L, D, *), s = 3$	NP-HARD
(C, U, E)	NP-HARD	$2(1 + \epsilon)$		

(A)

(B)

FIG. 3

ALICHERRY 6-3
Serial No. 10/722,651
Ryan, Mason & Lewis, LLP; W. E. Lewis, LLP (516) 759-2722

3/7

FIG. 4A

Methodology A

$m(0) = 0$

for $p = 1$ to line system load/2

{

$l(p) = 0; m(p) = m(p-1) + 2;$

for $i = 1$ to $n - 1$

{

$l_i(p) \leftarrow$ load on link e_i

if($l_i(p) = 0$)

{

Divide the line system into two line systems;
one from node 0 to node $(i-1)$; the other from
node i to node $(n-1)$ and call methodology A
on these line systems separately.

}

if($l_i(p) > l(p)$)

{

$l(p) = l_i(p)$

}

}

create a multigraph $G = (V, E)$, where $V = \{0, \dots, n - 1\}$

for all demand (i, j) in D

{

create an edge $(i - 1, j)$ in G

}

for $i = 1$ to $n - 1$

{

if $l_i(p) < l(p)$

add an edge $(i - 1, i)$ in G

}

set the capacity of each edge in G to 1

find a 2-unit flow from node 0 to node $(n - 1)$ in G

Let p_1 and p_2 be the path for the flow

For all the demands corresponding to links in p_1 .

{

Assign the color $c_{m(p)}$ to demand

remove the demand from D

}

For all the demands corresponding to links in p_2

{

Assign the color $c_{m(p)+1}$ to demand

remove the demand from D

}

{

ALICHERRY 6-3
Serial No. 10/722,651
Ryan, Mason & Lewis, LLP; W. E. Lewis, LLP (516) 759-2722

4/7

FIG. 4B

Routing Phase:

if $(L(R_s) \geq n(1 + \epsilon)/\epsilon)$

Output R_s

else {

Compute $D_1 = \{d \in D \mid d \text{ in any routing goes through at least } n/3 \text{ links}\}$

Compute $D_2 = D - D_1$

Compute $R_1 = \text{the set of all possible routings for demands in } D_1$

Compute $R_2 = \text{the set of all possible routings for demands in } D_2$
in which at most $3S$ demands are not routed on shortest paths

Compute $R = R_1 \times R_2$

Compute $r \in R$ such that $L(r) = \min_{r' \in R} L(r')$

Output r

}

Coloring Phase:

$U = D$

$M = \text{the set of available colors}$

$l = \min_{e_i \in L} l_i(U)$ (the min. load of demands in U)

while ($l > 0$) {

 Compute $O = H(U)$ (see below)

 Compute $m = \{i, j \mid i, j \text{ are the smallest two colors in } M\}$

 Color demands in O with colors in m

$U = U - O$

$M = M - m$

$l = \min_{e_i \in L} l_i(U)$

}

 if ($U \neq \emptyset$) {

 Color U using methodology A

“Compute $O = H(U)$ ”:

Compute $d_0 = \text{a demand in } U \text{ that goes through the largest number of links in } L$

$O = \{d_0\}$

L' = set of links covered by demands in O

$i = 1$

while ($L' \neq L$) {

 Compute $D_i = \{d \mid d \in U - O \text{ & } d \text{ overlaps with } d_{i-1}\}$

 Compute $d_i = \{d \mid d \in D_i \text{ & } d \text{ goes through the largest number of links in } L - L'\}$

$i = i+1$

output O

}

ALICHERRY 6-3
Serial No. 10/722,651
Ryan, Mason & Lewis, LLP; W. E. Lewis, LLP (516) 759-2722

5/7

FIG. 4C

Methodology B:

$$e_0 = (-1, 0)$$

$$e_{n+1} = (n, n + 1)$$

$$L = L \cup \{e_0, e_{n+1}\}$$

$$D = D \cup \{(0, 0), (n + 1, n + 1)\}$$

for all $(0 \leq i \leq j \leq n + 1)$ {

$$P(i, j) = \emptyset$$

$$R(i, j) = \emptyset$$

$$\text{best} = 0$$

for all $(i \leq i' \leq j' \leq j)$ {

$$E_1 = \{e_i, e_{i+1}, \dots, e_{i'}\} \cup \{e_{j'+1}, e_{j'+2}, \dots, e_j\}$$

$$E_2 = e_{i'+1}, e_{i'+2}, \dots, e_{j'}$$

Compute coloring C using methodology b1 where E_1 (E_2) links are colored with 1 (2) steps

if($C \neq \emptyset$) {

 if($i' - i + j - j' + 1 \geq \text{best}$) {

$$R(i, j) = C$$

$$\text{best} = i' - i + j - j' + 1$$

}

}

}

$$\text{Compute } L_1 = \{e_i \mid e_i \in L, l_i \leq |C_1|\}$$

for all $(e_i, e_j \in L_1)$ {

$$\text{Compute } D_{i,j} = \{d \mid d \in D, d \text{ goes through either link } e_i, e_j\}$$

 Compute $P_{i,j} = \text{coloring obtained by coloring the interval graph } D_{i,j} \text{ with colors in } C_1$

}

for all $(e_i, e_j \in L_1, i < j)$ {

$$\text{best} = 0$$

 for all $(m, i < m < j)$ {

 Compute the coloring $K = P(i, m) + P(m, j)$

 If($K = \emptyset$) continue

 Compute $n = \text{number of links that are in one step in } K$

 if($\text{best} < n$) {

$$\text{best} = n$$

$$C = K$$

}

}

 Compute $n = \text{number of links that are in one step in } R(i, j)$

 if($\text{best} < n$) {

$$\text{best} = n$$

$$C = R(i, j)$$

}

$$P(i, j) = C$$

}

Output $P(0, n + 1)$

ALICHERRY 6-3
Serial No. 10/722,651
Ryan, Mason & Lewis, LLP; W. E. Lewis, LLP (516) 759-2722

6/7

FIG. 4D

Methodology b1:

Compute C = interval graph coloring of demands D_1 using colors in C_1
if($C == \emptyset$) **Output** C .

Compute C' = interval graph coloring of the demands in $D - D_1$ using first available colors

Output $C' \cup C$

FIG. 4E

Methodology c1:

$V = \{0, 1, \dots, n-1\}$

$E = \emptyset$

for all demands $((i, j) \in D - D_1)$ {

$E = E \cup \{(i - 1, j)\}$

Directed link $(i - 1, j)$ has unit capacity

}

for all links $(e_i \in L)$ {

$E = E \cup \{(i - 1, i)\}$

Directed link $(i - 1, i)$ has capacity $|C_1| + |C_2| - l_i$

}

Graph $G = (V, E)$

Compute maxFlow = Max. Flow f in G from node 0 to node $n - 1$

if(maxFlow < $|C_2|$) **Output** \emptyset

Compute $F_1 = \{d | f$ puts zero flow on the edge $(i - 1, j)$ where demand $d = (i, j)\}$

Compute $F_1 = F_1 \cup D_1$

Compute K_1 = coloring that colors demands in F_1 with colors in C_1 only using interval graph coloring

Compute K_2 = coloring that colors demands in $D - F_1$ with colors in C_2 only using interval graph coloring

Output $K = K_1 \cup K_2$

7/7

FIG. 4F

METHODOLOGY D:

FIG. 4G

METHODOLOGY E:

FIG. 5

