MULTIMEDIA	6	UNIVERSITY
		TM

STUDENT ID NO										
	·									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

ERT3036 - ADVANCED ROBOTICS

(RE) (OPEN BOOK EXAMINATION)

> 2 MARCH 2018 3:00 p.m. – 5:00 p.m. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of 5 pages including cover page with 4 Questions only.
- 2. Attempt ALL questions. The distribution of the marks for each question is given.
- 3. Please write all your answers clearly in the answer booklet provided.

A differentially driven wheeled mobile robot is used as service robot for home and commercial users in Retail, Hospitality, Education, Healthcare, and Security areas.

- (a) The wheel radius of Robot is 6 cm. The two wheels are separated by 40 cm. For each complete revolution of the wheel, the quadrature encoder gives 360 pulses. q_1 and q_2 are the incremental encoder reading for wheel 1 (left wheel) and wheel 2 (right wheel) respectively. The coordinates of wheel 1 (left wheel) is resting at (0, 0) at t = 0 with an orientation of $\phi = 0$ radian.
 - (i) Calculate the pulses measured by q_1 and q_2 respectively when the robot is making a 30 degrees turn in the clockwise direction with an instantaneous radius of curvature, $R_i = 8$ m.

[4 marks]

(ii) Calculate the coordinates of point P which is the mid-point between the two wheels along the differential drive axis.

[6 marks]

(iii) The mobile robot will continue to rotate in the clockwise direction with an instantaneous radius of curvature, $R_i = 10$ m. Find the ratio of the wheel velocities, v_2/v_1 , where v_1 and v_2 are the linear wheel velocities respectively.

[3 marks]

(b) The Robot is located at point P with coordinates (5m, -3m) in the x-y coordinate frame with an orientation of 0 degrees with respect to the y-axis. Point P is the mid-point of the robot along its differential drive axis.

The goal position is located at point G with coordinates (0m, 0m). The width of the mobile robot, w is 0.4 m and the length, L is 0.6 m. A circular obstacle with a radius of 0.5m is located at point T (3 m, -2 m).

You will use Artificial Potential Field method to perform obstacle avoidance.

(i) Find the orientation of vector PG (with respect to the y-axis and clockwise being defined as positive).

[3 marks]

(ii) Design a potential vector U which is repulsive to the mobile robot. State all your assumptions.

[9 marks]

Continued ...

2/5

MTS

- (a) A 5-link biped robot in frontal plane is shown in Figure Q2(a). Each link is modeled as a point mass at the centre of mass of the link.
 - (i) When the biped robot is standing using one leg, the zero moment point (ZMP) is located at position y_{ZMP} in the y-z plane. Express y_{ZMP} as a function of point mass $(M_I \text{ to } M_5)$ and distance of point mass from the z-axis $(y_I \text{ to } y_5 \text{ and } y_I = y_2)$.

[5 marks]

(ii) Discuss whether y_3 should be at the left of the ZMP or to its right when M_1 and M_2 are vertical along the z-axis.

[4 marks]

(iii) If M_3 also represents total upper body mass, modify the equation found in part (i) to include the acceleration in the y-axis for M_3 , \ddot{y} , when the biped robot is walking (ie switching legs). Z_c is the height of M_3 from the ground. [4 marks]

Figure Q2. A model of 5-link robot in (a) frontal plane and (b) sagittal plane

(b) The five-link biped robot is represented in the sagittal plane as in Figure Q2(b). Describe the mathematical steps to be taken in deriving its dynamic equation.

[12 marks]

Continued ...

3/5

A quadrotor is resting on a flat ground. It will take off and hovers at a height, z_h and then moves in x direction for a distant x_f , before landing on the ground again as shown in Figure Q3.

(a) Describe a strategy to control the 4 rotors from take-off to hovering.

[9 marks]

(b) Describe how to rotate to a pitch angle of 30° without dropping from its hovering height, z_h .

[7 marks]

(c) For each motor on the quadrotor, the lifting force in is $F_i = 6 \times 10^{-8} \omega_i^2$ N where i is from 1 to 4; and ω_i is the angular rotation of motor-i in rounds per minute (rpm). When the quadrotor is flying in x-direction at a constant height with M = 0.5kg, $\phi = 30^{\circ}$, $F_1 = 1.1F_3$ and $F_2 = F_3 = F_4$, find ω_3 and \ddot{x} .

[9 marks]

Figure Q3. A Quadrotor Model with its Lifting Forces

Continued ...

4/5

(a) Figure Q4.(a) shows 3 advanced robotic systems. Give a brief description for each of the mentioned robotic system.

(i) BionicKangaroo[4 marks](ii) TOMM[4 marks](iii) PR2[4 marks]

Figure Q4.(a). Advanced robotic systems in 2016

(b) A robotic micro mouse is exploring a 4×4 square maze as shown in Figure Q4.(b). J is the destination square. At each square, the robot can only move at 4 directions (or less) but not diagonally. The only reward is R = 100 when the robot makes a transition from K to J and when it stays at J.

(i) Construct a graph for this mission.

[6 marks]

(ii) If α (learning rate) = 0.6 and γ (discount rate) = 0.4, find the Q values of J after **Episode 1** and **Episode 2** respectively.

Episode 1: L to K to J and stays at J

Episode 2: P to O to K to J and stays at J

[7 marks]

Figure Q4.(b). A 4×4 Maze with Solid Line Indicating Walls

End of Page