Lecture 5

Descriptive Statistics III

Text: Chapter 3

STAT 8010 Statistical Methods I August 30, 2019 Descriptive Statistics III

Review of Last Class

Numerical Summaries of Quantitative Variables

Whitney Huang Clemson University Review of Last Class

Last Lecture

- Descriptive Statistics
 III

 CLEMSEN

 UNIVERSITY
- Review of Last Class

- Graphical Summaries of Quantitative Variables
 - Dot plot
 - Stem-and-Leaf Plot
 - Histogram
 - Boxplot
- Numerical Summaries of Quantitative Variables
 - Mean ⇒ A measure of central tendency

Shapes of Distributions

Descriptive Statistics

Review of Last Class

Measures of Center

Review of Last Class

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with sample data it is a statistic
- When a measure of center is calculated with popular (e.g., census data) it is a parameter
- Measures: Mean, Median, Mode

• The **population mean**, denoted by μ_X , is the sum of all the population values $(\{X_i, \cdots, X_N\})$ divided by the total number (N) of population values. That is,

$$\mu_X = \frac{\sum_{i=1}^N X_i}{N}$$

• The **sample mean**, denoted by \bar{X} is the sum of all the sample values $(\{X_1, \dots, X_n\})$ divided by the total number of sample values (n). That is

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Median

Review of Last Class

Numerical Summaries of Quantitative Variables

The median is the value separating the higher half from the lower half of a data sample

How to compute the median: Order the n observations in a data set from smallest to largest, then

$$\mbox{Median} = \left\{ \begin{array}{ll} \mbox{the single middle value,} & \mbox{n odd} \\ \mbox{the average of the middle two values,} & \mbox{n even} \end{array} \right.$$

Numerical Summaries of Quantitative Variables

The mode is the value of the observation that appears most frequently

How to compute the mode(s): Order the observations in a data set from smallest to largest, then find the number that is repeated more often than any other

 Plot this "data set" and describe the shape of the distribution

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value
 - 0 $n = 9 \Rightarrow$ the median is the 5th number, which is 14

Descriptive Statistics

Review of Last Class

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Descriptive Statistics

Review of Last Class

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Review of Last Class

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - ② We have 3 13 and 2 14 \Rightarrow 13 is the mode

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

Descriptive Statistics

Review of Last Class

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Descriptive Statistics

Review of Last Class

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Descriptive Statistics

Review of Last Class

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

20

Numerical Summaries of Quantitative Variables

 Measures: Range, Variance(Standard Deviation), Interquartile range (IQR) The range of a dataset is the difference between the largest and smallest values

Range = Largest Value - Smallest Value

 Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

 Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is Range a robust statistic?

- The sample standard deviation (variance), denoted by s (s^2), can be used to estimate the population standard deviation (varaince), denoted by σ (σ^2).
- s is calculated in the following way:
 - Calculate the sample mean \bar{x}
 - ② Calculate the deviation (from the sample mean) for each observation (i.e., $x_i \bar{x}$, $i = 1, \dots, n$)
 - Square each deviation and add them (i.e., $\sum_{i=1}^{n} (x_i \bar{x})^2$)
 - ① Divide by n-1 and take the square root (i.e., $s = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$)

• Compute *s* of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is standard deviation a robust statistic?

- IQR = $Q_3 Q_1$, where Q_1 is the Lower Quartile (the median of the lower half of the data) and Q_3 is the Upper Quartile (the median of the upper half of the data)
- Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

 Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is IQR a robust statistic?