Introducing Monte Carlo Methods with R

Christian P. Robert Université Paris Dauphine xian@ceremade.dauphine.fr George Casella
University of Florida
casella@ufl.edu

Based on

- Introducing Monte Carlo Methods with R, 2009, Springer-Verlag
- Data and R programs for the course available at http://www.stat.ufl.edu/casella/IntroMonte/

Chapter 1: Basic R Programming

"You're missing the big picture," he told her. "A good album should be more than the sum of its parts."

Ian Rankin
Exit Music

This Chapter

- ► We introduce the programming language R
- ▶ Input and output, data structures, and basic programming commands
- ► The material is both crucial and unavoidably sketchy

Basic R Programming Introduction

- ► This is a quick introduction to R
- ▶ There are entire books devoted to R
 - ▶ R Reference Card
 - ▷ available at http://cran.r-project.org/doc/contrib/Short-refcard.pdf
- ► Take Heart!
 - ▶ The syntax of R is simple and logical
 - ▶ The best, and in a sense the only, way to learn R is through trial-and-error
- ► Embedded help commands help() and help.search()
 - ▷ help.start() opens a Web browser linked to the local manual pages

Basic R Programming Why R?

- ► There exist other languages, most (all?) of them faster than R, like Matlab, and even free, like C or Python.
- ► The language combines a sufficiently high power (for an interpreted language) with a very clear syntax both for statistical computation and graphics.
- ▶ R is a flexible language that is *object-oriented* and thus allows the manipulation of complex data structures in a condensed and efficient manner.
- ► Its graphical abilities are also remarkable
 - ▶ Possible interfacing with LaTeXusing the package Sweave.

Basic R Programming Why R ?

- ▶ R offers the additional advantages of being a free and open-source system
 - \triangleright There is even an R newsletter, R-News
 - ▶ Numerous (free) Web-based tutorials and user's manuals
- ▶ It runs on all platforms: Mac, Windows, Linux and Unix
- ► R provides a powerful *interface*
 - Can integrate programs written in other languages
 - ⊳ Such as C, C++, Fortran, Perl, Python, and Java.
- ▶ It is increasingly common to see people who develop new methodology simultaneously producing an R package
- ► Can interface with WinBugs

Basic R Programming Getting started

- ► Type 'demo()' for some demos; demo(image) and demo(graphics)
- ▶ 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
- ightharpoonup Type 'q()' to quit R.
- ► Additional packages can be loaded via the library command, as in
 - > library(combinat) # combinatorics utilities
 - > library(datasets) # The R Datasets Package
 - ▶ There exist hundreds of packages available on the Web.
 - > install.package("mcsm")
- ► A library call is required each time R is launched

Basic R Programming R objects

- ▶ R distinguishes between several types of *objects*
 - > scalar, vector, matrix, time series, data frames, functions, or graphics.
 - ⊳ An R object is mostly characterized by a *mode*
 - > The different modes are
 - null (empty object),
 - logical (TRUE or FALSE),
 - numeric (such as 3, 0.14159, or 2+sqrt(3)),
 - complex, (such as 3-2i or complex(1,4,-2)), and
 - character (such as "Blue", "binomial", "male", or "y=a+bx"),
- ▶ The R function **str** applied to any R object will show its structure.

Basic R Programming Interpreted

- ▶ R operates on those types as a regular function would operate on a scalar
- ightharpoonup R is interpreted \Rightarrow Slow
- ► Avoid loops in favor of matrix mainpulations

Basic R Programming – The vector class

> a=c(5,5.6,1,4,-5)	build the object a containing a numeric vector of dimension 5 with elements 5, 5.6, 1, 4, -5
> a[1]	display the first element of a
> b=a[2:4]	build the numeric vector b of dimension 3
> d=a[c(1,3,5)]	with elements 5.6, 1, 4 build the numeric vector d of dimension 3
> 2*a	with elements 5, 1, -5 multiply each element of a by 2
> b%%3	and display the result provides each element of b modulo 3

Basic R Programming More vector class

> e=3/d build the numeric vector e of dimension 3

and elements 3/5, 3, -3/5

> log(d*e) multiply the vectors d and e term by term

and transform each term into its natural logarithm

> sum(d) calculate the sum of d

> length(d) display the length of d

Basic R Programming Even more **vector** class

> t(d) > t(d)*e	transpose d, the result is a row vector elementwise product between two vectors
> t(d)%*%e	with identical lengths matrix product between two vectors
> g=c(sqrt(2),log(10))	with identical lengths build the numeric vector g of dimension 2
> e[d==5]	and elements $\sqrt{2}$, $\log(10)$ build the subvector of e that contains the
> a[-3]	components e[i] such that d[i]=5 create the subvector of a that contains
> is.vector(d)	all components of a but the third. display the logical expression TRUE if
	a vector and FALSE else

Basic R Programming Comments on the **vector** class

- ► The ability to apply scalar functions to vectors: Major Advantage of R.
 - \triangleright > lgamma(c(3,5,7))
 - \triangleright returns the vector with components (log $\Gamma(3)$, log $\Gamma(5)$, log $\Gamma(7)$).
- ► Functions that are specially designed for vectors include

sample, permn, order, sort, and rank

- ▶ All manipulate the order in which the components of the vector occur.
- ▶ permn is part of the combinat library
- ▶ The components of a vector can also be identified by names.
 - > For a vector x, names(x) is a vector of characters of the same length as x

Basic R Programming The matrix, array, and factor classes

- ▶ The matrix class provides the R representation of matrices.
- ► A typical entry is
 - > x=matrix(vec,nrow=n,ncol=p)
 - \triangleright Creates an $n \times p$ matrix whose elements are of the dimension np vector **vec**
- ► Some manipulations on matrices
 - ▶ The standard matrix product is denoted by **%*****%**,
 - ⊳ while * represents the term-by-term product.
 - ▶ diag gives the vector of the diagonal elements of a matrix
 - > crossprod replaces the product t(x)%*%y on either vectors or matrices > crossprod(x,y) more efficient
 - > apply is easy to use for functions operating on matrices by row or column

Basic R Programming Some matrix commands

```
> x1=matrix(1:20,nrow=5)
                                         build the numeric matrix x1 of dimension
                                         5 \times 4 with first row 1, 6, 11, 16
                                         build the numeric matrix x2 of dimension
> x2=matrix(1:20,nrow=5,byrow=T)
                                         5 \times 4 with first row 1, 2, 3, 4
> a=x1%*%t(x2)
                                         matrix product
> c = x1 * x2
                                         term-by-term product between x1 and x2
> dim(x1)
                                         display the dimensions of x1
                                         select the second column of b
> b[,2]
> b[c(3,4),]
                                         select the third and fourth rows of b
> b[-2,]
                                         delete the second row of b
> rbind(x1,x2)
                                         vertical merging of x1 and x2rbind(*)rbind
> cbind(x1,x2)
                                         horizontal merging of x1 and x2rbind(*)rbind
                                         calculate the sum of each row of x1
> apply(x1,1,sum)
                                         turn the vector 1:10 into a 10 \times 1 matrix
> as.matrix(1:10)
```

▶ Lots of other commands that we will see throughout the course

Basic R Programming The list and data.frame classes The Last One

- ► A list is a collection of arbitrary objects known as its *components*
 - > li=list(num=1:5,y="color",a=T) create a list with three arguments
- ► The last class we briefly mention is the data frame
 - ▶ A list whose elements are possibly made of differing modes and attributes
 - ⊳ But have the same length

```
> v1=sample(1:12,30,rep=T) simulate 30 independent uniform {1,2,...,12}
> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 independent uniform {a,b,...,j}
> v3=runif(30) simulate 30 independent uniform [0,1]
> v4=rnorm(30) simulate 30 independent uniform [0,1]
> v4=rnorm(30) simulate 30 independent uniform [0,1]
```

► R code

Probability distributions in ${\tt R}$

ightharpoonup R , or the web, has about all probability distributions

► Prefixes: p, d,q, r

Distribution	Core	Parameters	Default Values
Beta	beta	shape1, shape2	
Binomial	binom	size, prob	
Cauchy	cauchy	location, scale	0, 1
Chi-square	chisq	df	
Exponential	exp	1/mean	1
F	f	df1, df2	
Gamma	gamma	shape,1/scale	NA, 1
Geometric	geom	prob	
Hypergeometric	hyper	m, n, k	
Log-normal	lnorm	mean, sd	0, 1
Logistic	logis	location, scale	0, 1
Normal	norm	mean, sd	0, 1
Poisson	pois	lambda	
Student	t	df	
Uniform	unif	min, max	0, 1
Weibull	weibull	shape	

Basic and not-so-basic statistics t-test

► Testing equality of two means

```
> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)
```

One Sample t-test

```
data: x
t = -0.8168, df = 24, p-value = 0.4220
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
  -0.4915103   0.2127705
sample estimates:
  mean of x
-0.1393699
```

Basic and not-so-basic statistics Correlation

► Correlation

```
> attach(faithful) #resident dataset
```

> cor.test(faithful[,1],faithful[,2])

Pearson's product-moment correlation

```
data: faithful[, 1] and faithful[, 2]
t = 34.089, df = 270, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.8756964 0.9210652
sample estimates:
    cor
0.9008112</pre>
```

► R code

Basic and not-so-basic statistics Splines

- \blacktriangleright Nonparametric regression with **loess** function or using natural splines
- ► Relationship between nitrogen level in soil and abundance of a bacteria AOB

- ► Natural spline fit (dark)

 > With ns=2 (linear model)
- ► Loess fit (brown) with span=1.25
- ► R code

Basic and not-so-basic statistics Generalized Linear Models

► Fitting a binomial (logistic) glm to the probability of suffering from diabetes for a woman within the Pima Indian population

```
> glm(formula = type ~ bmi + age, family = "binomial", data = Pima.tr)
```

Deviance Residuals:

```
10 Median
                           3Q
   Min
                                   Max
-1.7935 -0.8368 -0.5033 1.0211
                                2.2531
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.49870 1.17459 -5.533 3.15e-08 ***
         bmi
         age
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
  Null deviance: 256.41 on 199 degrees of freedom
Residual deviance: 215.93 on 197 degrees of freedom
AIC: 221.93
```

Number of Fisher Scoring iterations: 4

Basic and not-so-basic statistics Generalized Linear Models – Comments

- ► Concluding with the significance both of the body mass index bmi and the age
- ▶ Other generalized linear models can be defined by using a different family value
 - > glm(y ~x, family=quasi(var="mu^2", link="log"))
 - ▶ Quasi-Likelihood also
- ► Many many other procedures
 - ▶ Time series, anova,...
- ▶ One last one

Basic and not-so-basic statistics Bootstrap

- ▶ The bootstrap procedure uses the empirical distribution as a substitute for the true distribution to construct variance estimates and confidence intervals.
 - \triangleright A sample X_1, \ldots, X_n is resampled with replacement
 - \triangleright The empirical distribution has a finite but large support made of n^n points
- \blacktriangleright For example, with data y, we can create a bootstrap sample y^* using the code
 - > ystar=sample(y,replace=T)
 - ▶ For each resample, we can calculate a mean, variance, etc

Basic and not-so-basic statistics Simple illustration of bootstrap

- ► A histogram of 2500 bootstrap means
- ► Along with the normal approximation
- ► Bootstrap shows some skewness
- ► R code

Basic and not-so-basic statistics Bootstrapping Regression

- ► The bootstrap is not a panacea
 - ▶ Not always clear which quantity should be bootstrapped
 - ▶ In regression, bootstrapping the residuals is preferred
- ► Linear regression

$$Y_{ij} = \alpha + \beta x_i + \varepsilon_{ij},$$

 α and β are the unknown intercept and slope, ε_{ij} are the iid normal errors

▶ The residuals from the least squares fit are given by

$$\hat{\varepsilon}_{ij} = y_{ij} - \hat{\alpha} - \hat{\beta}x_i,$$

- ▶ We bootstrap the residuals
- \triangleright Produce a new sample $(\hat{\varepsilon}_{ij}^*)_{ij}$ by resampling from the $\hat{\varepsilon}_{ij}$'s
- \triangleright The bootstrap samples are then $y_{ij}^* = y_{ij} + \hat{\varepsilon}_{ij}^*$

Basic and not-so-basic statistics Bootstrapping Regression – 2

Basic R Programming Some Other Stuff

- ► Graphical facilities
 - ⊳ Can do a lot; see plot and par
- ► Writing new R functions
 - \triangleright h=function(x)(sin(x)^2+cos(x)^3)^(3/2)
 - ▶ We will do this a lot
- ► Input and output in R
 - ▷ write.table, read.table, scan
- ▶ Don't forget the mcsm package

Chapter 2: Random Variable Generation

"It has long been an axiom of mine that the little things are infinitely the most important."

Arthur Conan Doyle

A Case of Identity

This Chapter

- ► We present practical techniques that can produce random variables
- ► From both standard and nonstandard distributions
- ► First: Transformation methods
- ► Next: Indirect Methods Accept—Reject

Introduction

- ► Monte Carlo methods rely on
 - ▶ The possibility of producing a supposedly endless flow of random variables
 - > For well-known or new distributions.
- ► Such a simulation is, in turn,
 - \triangleright Based on the production of uniform random variables on the interval (0,1).
- ▶ We are not concerned with the details of producing uniform random variables
- ▶ We assume the existence of such a sequence

Introduction Using the R Generators

R has a large number of functions that will generate the standard random variables

- > rgamma(3,2.5,4.5) produces three independent generations from a $\mathcal{G}(5/2,9/2)$ distribution
- ► It is therefore,
 - ➤ Counter-productive
 - ▶ Inefficient
 - ▶ And even dangerous,
- ➤ To generate from those standard distributions
- ► If it is built into R , use it
- ▶ But....we will practice on these.
- ▶ The principles are essential to deal with distributions that are not built into R.

Uniform Simulation

- ▶ The uniform generator in R is the function runif
- ▶ The only required entry is the number of values to be generated.
- ► The other optional parameters are min and max, with R code
- > runif(100, min=2, max=5)

will produce 100 random variables $\mathcal{U}(2,5)$.

Uniform Simulation Checking the Generator

- ▶ A quick check on the properties of this uniform generator is to
- \triangleright Look at a histogram of the X_i 's,
- \triangleright Plot the pairs (X_i, X_{i+1})
- ▶ Look at the estimate autocorrelation function
- ► Look at the R code

```
> Nsim=10^4 #:
> x=runif(Nsim)
```

> x1=x[-Nsim]

> x2=x[-1]

> par(mfrow=c(1,3))

> hist(x)

> plot(x1,x2)

> acf(x)

#number of random numbers

#vectors to plot

#adjacent pairs

Uniform Simulation Plots from the Generator

▶ Histogram (*left*), pairwise plot (*center*), and estimated autocorrelation function (*right*) of a sequence of 10^4 uniform random numbers generated by runif.

Uniform Simulation Some Comments

- ▶ Remember: runif does not involve randomness per se.
- ▶ It is a deterministic sequence based on a random starting point.
- ► The R function set.seed can produce the same sequence.

```
> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)
```

- > runif(5)
- [1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
- > set.seed(2)
- > runif(5)
- [1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481
- ► Setting the seed determines all the subsequent values

The Inverse Transform

- ► The Probability Integral Transform
 - ▶ Allows us to transform a uniform into any random variable
- \blacktriangleright For example, if X has density f and cdf F, then we have the relation

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t,$$

and we set U = F(X) and solve for X

- ► Example 2.1
- \triangleright If $X \sim \mathcal{E}xp(1)$, then $F(x) = 1 e^{-x}$
- \triangleright Solving for x in $u = 1 e^{-x}$ gives $x = -\log(1 u)$

Generating Exponentials

```
> Nsim=10^4  #number of random variables
> U=runif(Nsim)
> X=-log(U)  #transforms of uniforms
> Y=rexp(Nsim)  #exponentials from R
> par(mfrow=c(1,2))  #plots
> hist(X,freq=F,main="Exp from Uniform")
> hist(Y,freq=F,main="Exp from R")
```


- ► Histograms of exponential random variables
 - \triangleright Inverse transform (right)
 - ▷ R command rexp (left)
 - $\triangleright \mathcal{E}xp(1)$ density on top

Generating Other Random Variables From Uniforms

- ▶ This method is useful for other probability distributions
 - > Ones obtained as a transformation of uniform random variables

- ► Logistic pdf: $f(x) = \frac{1}{\beta} \frac{e^{-(x-\mu)/\beta}}{[1+e^{-(x-\mu)/\beta}]^2}$, cdf: $F(x) = \frac{1}{1+e^{-(x-\mu)/\beta}}$.
- ► Cauchy pdf: $f(x) = \frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x-\mu}{\sigma}\right)^2}$, cdf: $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan((x-\mu)/\sigma)$.

General Transformation Methods

- \blacktriangleright When a density f is linked in a relatively simple way
 - ▶ To another distribution easy to simulate
 - \triangleright This relationship can be use to construct an algorithm to simulate from f
- ▶ If the X_i 's are iid $\mathcal{E}xp(1)$ random variables,
 - > Three standard distributions can be derived as

$$Y = 2 \sum_{j=1}^{\nu} X_{j} \sim \chi_{2\nu}^{2}, \quad \nu \in \mathbb{N}^{*},$$

$$Y = \beta \sum_{j=1}^{a} X_{j} \sim \mathcal{G}(a, \beta), \quad a \in \mathbb{N}^{*},$$

$$Y = \frac{\sum_{j=1}^{a} X_{j}}{\sum_{j=1}^{a+b} X_{j}} \sim \mathcal{B}e(a, b), \quad a, b \in \mathbb{N}^{*},$$

where $\mathbb{N}^* = \{1, 2, \ldots\}.$

General Transformation Methods χ_6^2 Random Variables

▶ For example, to generate χ_6^2 random variables, we could use the R code

```
> U=runif(3*10^4)
> U=matrix(data=U,nrow=3) #matrix for sums
> X=-log(U) #uniform to exponential
> X=2* apply(X,2,sum) #sum up to get chi squares
```

- ▶ Not nearly as efficient as calling rchisq, as can be checked by the R code
- > system.time(test1());system.time(test2())
 user system elapsed
 0.104 0.000 0.107
 user system elapsed
 0.004 0.000 0.004
- ▶ test1 corresponds to the R code above
- ▶ test2 corresponds to X=rchisq(10^4,df=6)

General Transformation Methods Comments

- ▶ These transformations are quite simple and will be used in our illustrations.
- ► However, there are limits to their usefulness,
- ▶ No odd degrees of freedom
- ▶ No normals
- ▶ For any specific distribution, efficient algorithms have been developed.
- ▶ Thus, if R has a distribution built in, it is almost always worth using

General Transformation Methods A Normal Generator

- ▶ Box–Muller algorithm two normals from two uniforms
- ▶ If U_1 and U_2 are iid $\mathcal{U}_{[0,1]}$
- ▶ The variables X_1 and X_2

$$X_1 = \sqrt{-2\log(U_1)} \cos(2\pi U_2), \qquad X_2 = \sqrt{-2\log(U_1)} \sin(2\pi U_2),$$

- \blacktriangleright Are iid $\mathcal{N}(0,1)$ by virtue of a change of variable argument.
- ▶ The Box–Muller algorithm is exact, not a crude CLT-based approximation
- \blacktriangleright Note that this is *not* the generator implemented in R
 - ▶ It uses the probability inverse transform
 - ▶ With a very accurate representation of the normal cdf

General Transformation Methods Multivariate Normals

- ► Can simulate a multivariate normal variable using univariate normals
 - \triangleright Cholesky decomposition of $\Sigma = AA'$

$$\triangleright Y \sim \mathcal{N}_p(0, I) \Rightarrow AY \sim \mathcal{N}_p(0, \Sigma)$$

- ► There is an R package that replicates those steps, called rmnorm
- ▶ In the mnormt library
- > Can also calculate the probability of hypercubes with the function sadmvn
- > sadmvn(low=c(1,2,3),upp=c(10,11,12),mean=rep(0,3),var=B)
- [1] 9.012408e-05
- attr(,"error")
- [1] 1.729111e-08
- ▶ B is a positive-definite matrix
- ➤ This is quite useful since the analytic derivation of this probability is almost always impossible.

Discrete Distributions

- ➤ To generate discrete random variables we have an "all-purpose" algorithm.
- ▶ Based on the inverse transform principle
- ▶ To generate $X \sim P_{\theta}$, where P_{θ} is supported by the integers,
 - ▶ We can calculate—the probabilities
 - ▶ Once for all, assuming we can store them

$$p_0 = P_{\theta}(X \le 0), \quad p_1 = P_{\theta}(X \le 1), \quad p_2 = P_{\theta}(X \le 2), \quad \dots,$$

 \triangleright And then generate $U \sim \mathcal{U}_{[0,1]}$ and take

$$X = k \text{ if } p_{k-1} < U < p_k.$$

Discrete Distributions Binomial

 \blacktriangleright Example To generate $X \sim \mathcal{B}in(10, .3)$

▶ The probability values are obtained by pbinom(k,10,.3)

$$p_0 = 0.028, \quad p_1 = 0.149, \quad p_2 = 0.382, \dots, p_{10} = 1,$$

 \triangleright And to generate $X \sim \mathcal{P}(7)$, take

$$p_0 = 0.0009, \quad p_1 = 0.0073, \quad p_2 = 0.0296, \dots,$$

- \triangleright Stopping the sequence when it reaches 1 with a given number of decimals. \triangleright For instance, $p_{20} = 0.999985$.
- ► Check the R code

Discrete Distributions Comments

- ► Specific algorithms are usually more efficient
- ▶ Improvement can come from a judicious choice of the probabilities first computed.
- ▶ For example, if we want to generate from a Poisson with $\lambda = 100$
 - ▶ The algorithm above is woefully inefficient
 - \triangleright We expect most of our observations to be in the interval $\lambda \pm 3\sqrt{\lambda}$
 - \triangleright For $\lambda = 100$ this interval is (70, 130)
 - ▶ Thus, starting at 0 is quite wasteful
- ► A first remedy is to "ignore" what is outside of a highly likely interval
 - ▷ In the current example P(X < 70) + P(X > 130) = 0.00268.

Discrete Distributions Poisson R Code

- ▶ R code that can be used to generate Poisson random variables for large values of lambda.
- ▶ The sequence t contains the integer values in the range around the mean.

```
> Nsim=10^4; lambda=100
> spread=3*sqrt(lambda)
> t=round(seq(max(0,lambda-spread),lambda+spread,1))
> prob=ppois(t, lambda)
> X=rep(0,Nsim)
> for (i in 1:Nsim){
+ u=runif(1)
+ X[i]=t[1]+sum(prob<u)-1 }</pre>
```

ightharpoonup The last line of the program checks to see what interval the uniform random variable fell in and assigns the correct Poisson value to X.

Discrete Distributions Comments

- ► Another remedy is to start the cumulative probabilities at the mode of the discrete distribution
- ▶ Then explore neighboring values until the cumulative probability is almost 1.

- ► Specific algorithms exist for almost any distribution and are often quite fast.
- ► So, if R has it, use it.
- ▶ But R does not handle every distribution that we will need,

Mixture Representations

- \blacktriangleright It is sometimes the case that a probability distribution can be naturally represented as a *mixture distribution*
- ► That is, we can write it in the form

$$f(x) = \int_{\mathcal{Y}} g(x|y)p(y) dy$$
 or $f(x) = \sum_{i \in \mathcal{Y}} p_i f_i(x)$,

▶ The mixing distribution can be continuous or discrete.

- \blacktriangleright To generate a random variable X using such a representation,
 - \triangleright we can first generate a variable Y from the mixing distribution
 - \triangleright Then generate X from the selected conditional distribution

Mixture Representations Generating the Mixture

► Continuous

$$f(x) = \int_{\mathcal{Y}} g(x|y)p(y) dy \Rightarrow y \sim p(y) \text{ and } X \sim f(x|y), \text{ then } X \sim f(x)$$

▶ Discrete

$$f(x) = \sum_{i \in \mathcal{Y}} p_i f_i(x) \Rightarrow i \sim p_i \text{ and } X \sim f_i(x), \text{ then } X \sim f(x)$$

► Discrete Normal Mixture R code

$$\triangleright p_1 * N(\mu_1, \sigma_1) + p_2 * N(\mu_2, \sigma_2) + p_3 * N(\mu_3, \sigma_3)$$

Mixture Representations Continuous Mixtures

 \triangleright Student's t density with ν degrees of freedom

$$X|y \sim \mathcal{N}(0, \nu/y)$$
 and $Y \sim \chi_{\nu}^2$.

- \triangleright Generate from a χ^2_{ν} then from the corresponding normal distribution
- ▷ Obviously, using rt is slightly more efficient

▶ If X is negative binomial $X \sim \mathcal{N}eg(n, p)$

$$\triangleright X|y \sim \mathcal{P}(y)$$
 and $Y \sim \mathcal{G}(n,\beta)$,

▷ R code generates from this mixture

Accept–Reject Methods Introduction

- ▶ There are many distributions where transform methods fail
- ► For these cases, we must turn to *indirect* methods
 - ▶ We generate a candidate random variable
 - ▶ Only accept it subject to passing a test
- ► This class of methods is extremely powerful.
 - ▶ It will allow us to simulate from virtually any distribution.
- ► Accept-Reject Methods
 - \triangleright Only require the functional form of the density f of interest
 - $\triangleright f = \text{target}, g = \text{candidate}$
- \blacktriangleright Where it is simpler to simulate random variables from g

Accept-Reject Methods Accept-Reject Algorithm

- \blacktriangleright The only constraints we impose on this candidate density g
 - $\triangleright f$ and g have compatible supports (i.e., g(x) > 0 when f(x) > 0).
 - \triangleright There is a constant M with $f(x)/g(x) \leq M$ for all x.
- $ightharpoonup X \sim f$ can be simulated as follows.
 - \triangleright Generate $Y \sim g$ and, independently, generate $U \sim \mathcal{U}_{[0,1]}$.
 - \triangleright If $U \leq \frac{1}{M} \frac{f(Y)}{g(Y)}$, set X = Y.
 - \triangleright If the inequality is not satisfied, we then discard Y and U and start again.
- ▶ Note that $M = \sup_x \frac{f(x)}{g(x)}$
- ▶ $P(\text{Accept}) = \frac{1}{M}$, Expected Waiting Time = M

Accept-Reject Algorithm R Implementation

Succinctly, the Accept–Reject Algorithm is

Accept-Reject Method

```
1. Generate Y\sim g, U\sim \mathcal{U}_{[0,1]};
2. Accept X=Y if U\leq f(Y)/Mg(Y);
3. Return to 1 otherwise.
```

ightharpoonup R implementation: If randg generates from g

```
> u=runif(1)*M
> y=randg(1)
> while (u>f(y)/g(y))
{
    u=runif(1)*M
    y=randg(1)
    }
```

ightharpoonup Produces a single generation y from f

Accept—Reject Algorithm Normals from Double Exponentials

- $ightharpoonup \operatorname{Candidate} Y \sim \frac{1}{2} \exp(-|y|)$
- ► Target $X \sim \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$

$$\frac{\frac{1}{\sqrt{2\pi}}\exp(-y^2/2)}{\frac{1}{2}\exp(-|y|)} \le \frac{2}{\sqrt{2\pi}}\exp(1/2)$$

 \triangleright Maximum at y = 1

- ightharpoonup Accept Y if $U \le \exp(-.5Y^2 + |Y| .5)$
- ► Look at R code

Accept-Reject Algorithm Theory

- ► Why does this method work?
- ► A straightforward probability calculation shows

$$P(Y \le x | \text{Accept}) = P\left(Y \le x | U \le \frac{f(Y)}{Mg(Y)}\right) = P(X \le x)$$

 \triangleright Simulating from g, the output of this algorithm is exactly distributed from f.

4

- ► The Accept—Reject method is applicable in any dimension
- \blacktriangleright As long as g is a density over the same space as f.
- \blacktriangleright Only need to know f/g up to a constant
- ightharpoonup Only need an upper bound on M

Accept-Reject Algorithm Betas from Uniforms

- Generate $X \sim \text{beta}(a, b)$.
- ullet No direct method if a and b are not integers.
- Use a uniform candidate
- For a = 2.7 and b = 6.3

► Acceptance Rate =37%

Accept–Reject Algorithm Betas from Betas

- Generate $X \sim \text{beta}(a, b)$.
- ullet No direct method if a and b are not integers.
- Use a beta candidate
- For a = 2.7 and b = 6.3, $Y \sim \text{beta}(2, 6)$

► Acceptance Rate =60%

Accept-Reject Algorithm Betas from Betas-Details

- ▶ Beta density $\propto x^a(1-x)^b$
- ightharpoonup Can generate if a and b integers
- ▶ If not, use candidate with a_1 and b_1 integers

$$\frac{y^{a}(1-y)^{b}}{y^{a_{1}}(1-y)^{b_{1}}} \text{ maximized at } y = \frac{a-a_{1}}{a-a_{1}+b-b_{1}}$$

 \triangleright Need $a_1 < a$ and $b_1 < b$

- ► Efficiency ↑ as the candidate gets closer to the target
- ► Look at R code

Accept-Reject Algorithm Comments

Some key properties of the Accept-Reject algorithm::

- 1. Only the ratio f/M is needed
 - ▷ So the algorithm does not depend on the normalizing constant.
- 2. The bound $f \leq Mg$ need not be tight
 - \triangleright Accept-Reject is valid, but less efficient, if M is replaced with a larger constant.
- 3. The probability of acceptance is 1/M
 - \triangleright So M should be as small as possible for a given computational effort.

Chapter 3: Monte Carlo Integration

"Every time I think I know what's going on, suddenly there's another layer of complications. I just want this damn thing solved."

John Scalzi
The Last Colony

This Chapter

- ► This chapter introduces the major concepts of Monte Carlo methods
- ► The validity of Monte Carlo approximations relies on the Law of Large Numbers
- ▶ The versatility of the representation of an integral as an expectation

Monte Carlo Integration Introduction

▶ We will be concerned with evaluating integrals of the form

$$\int_{\mathcal{X}} h(x) f(x) dx,$$

- $\triangleright f$ is a density
- \triangleright We can produce an almost infinite number of random variables from f
- ► We apply probabilistic results

 - ▷ Central Limit Theorem
- ► The Alternative Deterministic Numerical Integration
 - \triangleright R functions area and integrate
 - ▷ OK in low (one) dimensions
 - ▶ Usually needs some knowledge of the function

Classical Monte Carlo Integration The Monte Carlo Method

► The generic problem: Evaluate

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) f(x) dx,$$

 $\triangleright X$ takes its values in \mathcal{X}

- ► The Monte Carlo Method
 - \triangleright Generate a sample (X_1, \ldots, X_n) from the density f
 - > Approximate the integral with

$$\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j) ,$$

Classical Monte Carlo Integration Validating the Monte Carlo Method

► The Convergence

$$\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j) \to \int_{\mathcal{X}} h(x) f(x) dx = \mathbb{E}_f[h(X)]$$

▶ Is valid by the Strong Law of Large Numbers

▶ When $h^2(X)$ has a finite expectation under f,

$$\frac{\overline{h}_n - \mathbb{E}_f[h(X)]}{\sqrt{v_n}} \to \mathcal{N}(0, 1)$$

> Follows from the Central Limit Theorem

$$\triangleright v_n = \frac{1}{n^2} \sum_{j=1}^n [h(x_j) - \overline{h}_n]^2.$$

Classical Monte Carlo Integration A First Example

▶ Look at the function

- $h(x) = [\cos(50x) + \sin(20x)]^2$
- ► Monitoring Convergence
- ► R code

Classical Monte Carlo Integration A Caution

► The confidence band produced in this figure is not a 95% confidence band in the classical sense

▶ They are Confidence Intervals were you to stop at a chosen number of iterations

Classical Monte Carlo Integration Comments

4

- ► The evaluation of the Monte Carlo error is a bonus
- lacktriangle It assumes that v_n is a proper estimate of the variance of \overline{h}_n
- ightharpoonup If v_n does not converge, converges too slowly, a CLT may not apply

Classical Monte Carlo Integration Another Example

► Normal Probability

$$\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{x_i \le t} \to \Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$

- \triangleright The exact variance $\Phi(t)[1-\Phi(t)]/n$
- \triangleright Conservative: Var $\approx 1/4n$
- > For a precision of four decimals
 - \triangleright Want $2 \times \sqrt{1/4n} \le 10^{-4}$ simulations
 - ightharpoonup Take $n = (10^4)^2 = 10^8$
- ► This method breaks down for tail probabilities

Importance Sampling Introduction

▶ Importance sampling is based on an alternative formulation of the SLLN

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left[\frac{h(X)f(X)}{g(X)} \right] ;$$

 $\triangleright f$ is the target density

 $\triangleright g$ is the candidate density

▶ Sound Familiar?

Importance Sampling Introduction

▶ Importance sampling is based on an alternative formulation of the SLLN

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) \frac{f(x)}{g(x)} g(x) dx = \mathbb{E}_g \left[\frac{h(X)f(X)}{g(X)} \right] ;$$

 $\triangleright f$ is the target density

 $\triangleright g$ is the candidate density

⊳ Sound Familiar? – Just like Accept–Reject

► So

$$\frac{1}{n} \sum_{j=1}^{n} \frac{f(X_j)}{g(X_j)} h(X_j) \to \mathbb{E}_f[h(X)]$$

► As long as

$$\triangleright \operatorname{Var}(h(X)f(X)/g(X)) < \infty$$

$$\triangleright \operatorname{supp}(g) \supset \operatorname{supp}(h \times f)$$

Importance Sampling Revisiting Normal Tail Probabilities

- ▶ $Z \sim \mathcal{N}(0,1)$ and we are interested in the probability P(Z > 4.5)
- ▶ > pnorm(-4.5,log=T)
 [1] -12.59242
- ► Simulating $Z^{(i)} \sim \mathcal{N}(0,1)$ only produces a hit once in about 3 million iterations!

 > Very rare event for the normal
 - ▶ Not-so-rare for a distribution sitting out there!
- ▶ Take $g = \mathcal{E}xp(1)$ truncated at 4.5:

$$g(y) = \frac{e^{-y}}{\int_{4.5}^{\infty} e^{-x} dx} = e^{-(y-4.5)},$$

► The IS estimator is

$$\frac{1}{n} \sum_{i=1}^{n} \frac{f(Y^{(i)})}{g(Y^{(i)})} = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{-Y_i^2/2 + Y_i - 4.5}}{\sqrt{2\pi}}$$
 R code

Importance Sampling Normal Tail Variables

- \blacktriangleright The Importance sampler does not give us a sample \Rightarrow Can use Accept–Reject
- ▶ Sample $Z \sim \mathcal{N}(0,1)$, $Z > a \Rightarrow$ Use Exponential Candidate

$$\frac{\frac{1}{\sqrt{2\pi}}\exp(-.5x^2)}{\exp(-(x-a))} = \frac{1}{\sqrt{2\pi}}\exp(-.5x^2 + x + a) \le \frac{1}{\sqrt{2\pi}}\exp(-.5a^{*2} + a^* + a)$$

 \triangleright Where $a^* = max\{a, 1\}$

- ightharpoonup Normals > 20
- ► The Twilight Zone
- ► R code

Importance Sampling Comments

4 Importance sampling has little restriction on the choice of the candidate

- ightharpoonup g can be chosen from distributions that are easy to simulate
 - > Or efficient in the approximation of the integral.
- \blacktriangleright Moreover, the same sample (generated from g) can be used repeatedly
 - \triangleright Not only for different functions h but also for different densities f.

Importance Sampling Easy Model - Difficult Distribution

Example: Beta posterior importance approximation

 \blacktriangleright Have an observation x from a beta $\mathcal{B}(\alpha,\beta)$ distribution,

$$x \sim \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \mathbb{I}_{[0, 1]}(x)$$

▶ There exists a family of conjugate priors on (α, β) of the form

$$\pi(\alpha,\beta) \propto \left\{ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda} x_0^{\alpha} y_0^{\beta},$$

where λ, x_0, y_0 are hyperparameters,

► The posterior is then equal to

$$\pi(\alpha, \beta | x) \propto \left\{ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda+1} [xx_0]^{\alpha} [(1-x)y_0]^{\beta}.$$

Importance Sampling Easy Model - Difficult Distribution -2

► The posterior distribution is intractable

$$\pi(\alpha, \beta | x) \propto \left\{ \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \right\}^{\lambda+1} [xx_0]^{\alpha} [(1-x)y_0]^{\beta}.$$

- ▶ Difficult to deal with the gamma functions
- \triangleright Simulating directly from $\pi(\alpha, \beta|x)$ is impossible.

► What candidate to use?

- ► Contour Plot
- ► Suggest a candidate?
- ► R code

Importance Sampling Easy Model - Difficult Distribution - 3

- ightharpoonup Try a Bivariate Student's T (or Normal)
- ► Trial and error

 \triangleright Student's $\mathcal{T}(3,\mu,\Sigma)$ distribution with $\mu=(50,45)$ and

$$\Sigma = \begin{pmatrix} 220 & 190 \\ 190 & 180 \end{pmatrix}$$

▶ Produce a reasonable fit

⊳ R code

▶ Note that we are using the fact that

$$X \sim f(x) \Rightarrow \Sigma^{1/2}X + \mu \sim f\left((x - \mu)'\Sigma^{-1}(x - \mu)\right)$$

Importance Sampling Easy Model - Difficult Distribution - Posterior Means

 \blacktriangleright The posterior mean of α is

$$\int \int \alpha \pi(\alpha, \beta | x) d\alpha d\beta = \int \int \left[\alpha \frac{\pi(\alpha, \beta | x)}{g(\alpha, \beta)} \right] g(\alpha, \beta) d\alpha d\beta \approx \frac{1}{M} \sum_{i=1}^{M} \alpha_i \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}$$

where

 \blacktriangleright Note that $\pi(\alpha, \beta|x)$ is not normalized, so we have to calculate

$$\frac{\int \int \alpha \pi(\alpha, \beta | x) d\alpha d\beta}{\int \int \pi(\alpha, \beta | x) d\alpha d\beta} \approx \frac{\sum_{i=1}^{M} \alpha_i \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}}{\sum_{i=1}^{M} \frac{\pi(\alpha_i, \beta_i | x)}{g(\alpha_i, \beta_i)}}$$

- ▶ The same samples can be used for every posterior expectation
- ► R code

Importance Sampling Probit Analysis

Example: Probit posterior importance sampling approximation

 \triangleright y are binary variables, and we have covariates $x \in \mathbb{R}^p$ such that

$$\Pr(y=1|x) = 1 - \Pr(y=0|x) = \Phi(x^{\mathrm{T}}\beta), \quad \beta \in \mathbb{R}^p.$$

- ▶ We return to the dataset Pima.tr, x=BMI
- ightharpoonup A GLM estimation of the model is (using centered x)

```
>glm(formula = y ~ x, family = binomial(link = "probit"))
```

Coefficients:

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

So BMI has a significant impact on the possible presence of diabetes.

Importance Sampling Bayesian Probit Analysis

- ▶ From a Bayesian perspective, we use a vague prior $\triangleright \beta = (\beta_1, \beta_2)$, each having a $\mathcal{N}(0, 100)$ distribution
- \blacktriangleright With Φ the normal cdf, the posterior is proportional to

$$\prod_{i=1}^{n} \left[\Phi(\beta_1 + (x_i - \bar{x})\beta_2)^{y_i} \left[\Phi(-\beta_1 - (x_i - \bar{x})\beta_2)^{1-y_i} \times e^{-\frac{\beta_1^2 + \beta_2^2}{2 \times 100}} \right] \right]$$

- ► Level curves of posterior
- ► MLE in the center
- ► R code

Importance Sampling Probit Analysis Importance Weights

- ▶ Normal candidate centered at the MLE no finite variance guarantee
- ▶ The importance weights are rather uneven, if not degenerate

- ► Right side = reweighted candidate sample (R code)
- Somewhat of a failure

Chapter 5: Monte Carlo Optimization

"He invented a game that allowed players to predict the outcome?"

Susanna Gregory

To Kill or Cure

This Chapter

- ► Two uses of computer-generated random variables to solve optimization problems.
- ► The first use is to produce stochastic search techniques
 - ▷ To reach the maximum (or minimum) of a function
 - ▷ Avoid being trapped in local maxima (or minima)
 - > Are sufficiently attracted by the global maximum (or minimum).
- ▶ The second use of simulation is to approximate the function to be optimized.

Monte Carlo Optimization Introduction

- ▶ Optimization problems can mostly be seen as one of two kinds:
 - \triangleright Find the extrema of a function $h(\theta)$ over a domain Θ
 - \triangleright Find the solution(s) to an implicit equation $g(\theta) = 0$ over a domain Θ .
- ➤ The problems are exchangeable
 - \triangleright The second one is a minimization problem for a function like $h(\theta) = g^2(\theta)$
 - \triangleright while the first one is equivalent to solving $\partial h(\theta)/\partial \theta=0$
- ▶ We only focus on the maximization problem

Monte Carlo Optimization Deterministic or Stochastic

- ► Similar to integration, optimization can be deterministic or stochastic
- ▶ Deterministic: performance dependent on properties of the function▷ such as convexity, boundedness, and smoothness
- ► Stochastic (simulation)
 - \triangleright Properties of h play a lesser role in simulation-based approaches.
- \blacktriangleright Therefore, if h is complex or Θ is irregular, chose the stochastic approach.

Monte Carlo Optimization Numerical Optimization

► R has several embedded functions to solve optimization problems

> The simplest one is optimize (one dimensional)

Example: Maximizing a Cauchy likelihood $\mathcal{C}(\theta, 1)$

▶ When maximizing the likelihood of a Cauchy $C(\theta, 1)$ sample,

$$\ell(\theta|x_1,\ldots,x_n) = \prod_{i=1}^n \frac{1}{1+(x_i-\theta)^2},$$

- ▶ The sequence of maxima (MLEs) $\rightarrow \theta^* = 0$ when $n \rightarrow \infty$.
- ▶ But the journey is not a smooth one...

Monte Carlo Optimization Cauchy Likelihood

- ▶ MLEs (*left*) at each sample size, n = 1,500, and plot of final likelihood (*right*). ▷ Why are the MLEs so wiggly?
 - ▶ The likelihood is not as well-behaved as it seems

Monte Carlo Optimization Cauchy Likelihood-2

► The likelihood
$$\ell(\theta|x_1,\ldots,x_n) = \prod_{i=1}^n \frac{1}{1+(x_i-\theta)^2}$$

- ightharpoonup Is like a polynomial of degree 2n
- ightharpoonup The derivative has 2n zeros
- ▶ Hard to see if n = 500
- ▶ Here is n = 5
- ► R code

Monte Carlo Optimization Newton-Raphson

- ► Similarly, nlm is a generic R function using the Newton-Raphson method
- ▶ Based on the recurrence relation

$$\theta_{i+1} = \theta_i - \left[\frac{\partial^2 h}{\partial \theta \partial \theta^{\mathrm{T}}} (\theta_i) \right]^{-1} \frac{\partial h}{\partial \theta} (\theta_i)$$

- \triangleright Where the matrix of the second derivatives is called the *Hessian*
 - \triangleright This method is perfect when h is quadratic
 - \triangleright But may also deteriorate when h is highly nonlinear
 - \triangleright It also obviously depends on the starting point θ_0 when h has several minima.

Monte Carlo Optimization Newton-Raphson; Mixture Model Likelihood

▶ Bimodal Mixture Model Likelihood $\frac{1}{4}\mathcal{N}(\mu_1, 1) + \frac{3}{4}\mathcal{N}(\mu_2, 1)$

- ► Sequences go to the closest mode
- ightharpoonup Starting point (-1, -1) has a steep gradient
 - \triangleright Bypasses the main mode (-0.68, 1.98)
 - ▶ Goes to other mode (lower likelihood)

Stochastic search A Basic Solution

- ightharpoonup A natural if rudimentary way of using simulation to find $\max_{\theta} h(\theta)$
 - \triangleright Simulate points over Θ according to an arbitrary distribution f positive on Θ
 - \triangleright Until a high value of $h(\theta)$ is observed

- ► Recall $h(x) = [\cos(50x) + \sin(20x)]^2$
- ► Max=3.8325
- ► Histogram of 1000 runs

Stochastic search Stochastic Gradient Methods

- ▶ Generating direct simulations from the target can be difficult.
- ▶ Different stochastic approach to maximization

▶ Explore the surface in a local manner.

▶ A Markov Chain

 \triangleright Can use $\theta_{j+1} = \theta_j + \epsilon_j$

 \triangleright The random component ϵ_j can be arbitrary

► Can also use features of the function: Newton-Raphson Variation

$$\theta_{j+1} = \theta_j + \alpha_j \nabla h(\theta_j) , \qquad \alpha_j > 0 ,$$

 \triangleright Where $\nabla h(\theta_j)$ is the gradient

 $\triangleright \alpha_j$ the step size

Stochastic search Stochastic Gradient Methods-2

- ► In difficult problems
 - \triangleright The gradient sequence will most likely get stuck in a local extremum of h.
- ► Stochastic Variation

$$\nabla h(\theta_j) \approx \frac{h(\theta_j + \beta_j \zeta_j) - h(\theta_j + \beta_j \zeta_j)}{2\beta_j} \zeta_j = \frac{\Delta h(\theta_j, \beta_j \zeta_j)}{2\beta_j} \zeta_j,$$

- $\triangleright (\beta_i)$ is a second decreasing sequence
- $\triangleright \zeta_j$ is uniform on the unit sphere $||\zeta|| = 1$.
- ► We then use

$$\theta_{j+1} = \theta_j + \frac{\alpha_j}{2\beta_j} \Delta h(\theta_j, \beta_j \zeta_j) \zeta_j$$

Stochastic Search A Difficult Minimization

- ► Many Local Minima
- ightharpoonup Global Min at (0,0)
- ► Code in the text

Stochastic Search
A Difficult Minimization – 2

Scenario	1	2	3	4
$lpha_j \ eta_j$			$\begin{vmatrix} 1/(j+1) \\ 1/(j+1)^{.5} \end{vmatrix}$	

- $ightharpoonup \alpha \downarrow 0$ slowly, $\sum_j \alpha_j = \infty$
- ▶ $\beta \downarrow 0$ more slowly, $\sum_{j} (\alpha_j/\beta_j)^2 < \infty$
- ► Scenarios 1-2: Not enough energy
- ► Scenarios 3-4: Good

Simulated Annealing Introduction

- ➤ This name is borrowed from Metallurgy:
- \blacktriangleright A metal manufactured by a slow decrease of temperature (annealing)
 - ▶ Is stronger than a metal manufactured by a fast decrease of temperature.
- ► The fundamental idea of simulated annealing methods
 - ▶ A change of scale, or temperature
 - \triangleright Allows for faster moves on the surface of the function h to maximize.
 - ▶ Rescaling partially avoids the trapping attraction of local maxima.
- \blacktriangleright As T decreases toward 0, the values simulated from this distribution become concentrated in a narrower and narrower neighborhood of the local maxima of h

Simulated Annealing Metropolis Algorithm/Simulated Annealing

- Simulation method proposed by Metropolis et al. (1953)
- Starting from θ_0 , ζ is generated from

 $\zeta \sim \text{Uniform in a neighborhood of } \theta_0.$

• The new value of θ is generated as

$$\theta_1 = \begin{cases} \zeta & \text{with probability } \rho = \exp(\Delta h/T) \wedge 1\\ \theta_0 & \text{with probability } 1 - \rho, \end{cases}$$

- $\circ \Delta h = h(\zeta) h(\theta_0)$
- \circ If $h(\zeta) \geq h(\theta_0)$, ζ is accepted
- \circ If $h(\zeta) < h(\theta_0)$, ζ may still be accepted
- This allows escape from local maxima

Simulated Annealing Metropolis Algorithm - Comments

- \bullet Simulated annealing typically modifies the temperature T at each iteration
- It has the form
- 1. Simulate ζ from an instrumental distribution with density $g(|\zeta-\theta_i|)$;
- 2. Accept $\theta_{i+1} = \zeta$ with probability

$$\rho_i = \exp\{\Delta h_i/T_i\} \wedge 1;$$

take $\theta_{i+1} = \theta_i$ otherwise.

- 3. Update T_i to T_{i+1} .
- All positive moves accepted
- As $T \downarrow 0$
 - Harder to accept downward moves
 No big downward moves
- Not a Markov Chain difficult to analyze

Simulated Annealing Simple Example

- ▶ Trajectory: $T_i = \frac{1}{(1+i)^2}$
- ► Log trajectory also works
- ► Can Guarantee Finding Global Max
- ► R code

Simulated Annealing Normal Mixture

- ▶ Previous normal mixture
- ► Most sequences find max
- ► They visit both modes

Stochastic Approximation Introduction

- ▶ We now consider methods that work with the objective function h▷ Rather than being concerned with fast exploration of the domain Θ .
- ▶ Unfortunately, the use of those methods results in an additional level of error \triangleright Due to this approximation of h.
- ▶ But, the objective function in many statistical problems can be expressed as $\triangleright h(x) = \mathbb{E}[H(x,Z)]$
 - ▶ This is the setting of so-called missing-data models

Stochastic Approximation Optimizing Monte Carlo Approximations

▶ If $h(x) = \mathbb{E}[H(x,Z)]$, a Monte Carlo approximation is

$$\hat{h}(x) = \frac{1}{m} \sum_{i=1}^{m} H(x, z_i),$$

- $\triangleright Z_i$'s are generated from the conditional distribution f(z|x).
- \blacktriangleright This approximation yields a convergent estimator of h(x) for every value of x
 - ▷ This is a pointwise convergent estimator
 - ▶ Its use in optimization setups is not recommended
 - \triangleright Changing sample of Z_i 's \Rightarrow unstable sequence of evaluations
 - \triangleright And a rather noisy approximation to $\arg \max h(x)$

Stochastic Approximation Bayesian Probit

Example: Bayesian analysis of a simple probit model

 $ightharpoonup Y \in \{0,1\}$ has a distribution depending on a covariate X:

$$P_{\theta}(Y = 1|X = x) = 1 - P_{\theta}(Y = 0|X = x) = \Phi(\theta_0 + \theta_1 x),$$

 \triangleright Illustrate with Pima.tr dataset, Y = diabetes indicator, X = BMI

► Typically infer from the marginal posterior

$$\arg\max_{\theta_0} \int \prod_{i=1} \Phi(\theta_0 + \theta_1 x_n)^{y_i} \Phi(-\theta_0 - \theta_1 x_n)^{1-y_i} d\theta_1 = \arg\max_{\theta_0} h(\theta_0)$$

 \triangleright For a flat prior on θ and a sample (x_1, \ldots, x_n) .

Stochastic Approximation Bayesian Probit – Importance Sampling

- \blacktriangleright No analytic expression for h
- ▶ The conditional distribution of θ_1 given θ_0 is also nonstandard
 - \triangleright Use importance sampling with a t distribution with 5 df
 - \triangleright Take $\mu = 0.1$ and $\sigma = 0.03$ (MLEs)
- ► Importance Sampling Approximation

$$\widehat{h}_0(\theta_0) = \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{M} \Phi(\theta_0 + \theta_1^m x_n)^{y_i} \Phi(-\theta_0 - \theta_1^m x_n)^{1-y_i} \mathfrak{t}_5(\theta_1^m; \mu, \sigma)^{-1},$$

Stochastic Approximation Importance Sampling Evaluation

- ▶ Plotting this approximation of h with t samples simulated for each value of θ_0
 - \triangleright The maximization of the represented \widehat{h} function is not to be trusted as an approximation to the maximization of h.
- ▶ But, if we use the same t sample for all values of θ_0
 - > We obtain a much smoother function
- \blacktriangleright We use importance sampling based on a *single* sample of Z_i 's
 - \triangleright Simulated from an importance function g(z) for all values of x
 - \triangleright Estimate h with

$$\hat{h}_m(x) = \frac{1}{m} \sum_{i=1}^m \frac{f(z_i|x)}{g(z_i)} H(x, z_i).$$

Stochastic Approximation Importance Sampling Likelihood Representation

- ► Top: 100 runs, different samples
- ▶ Middle: 100 runs, same sample
- ▶ Bottom: averages over 100 runs

- \blacktriangleright The averages over 100 runs are the same but we will not do 100 runs
- ▶ R code: Run pimax(25) from mcsm

Stochastic Approximation Comments

- ► This approach is not absolutely fool-proof
 - \triangleright The precision of $\hat{h}_m(x)$ has no reason to be independent of x
 - \triangleright The number m of simulations has to reflect the most varying case.
- ► As in every importance sampling experiment
 - \triangleright The choice of the candidate g is influential
 - \triangleright In obtaining a good (or a disastrous) approximation of h(x).
- ▶ Checking for the finite variance of the ratio $f(z_i|x)H(x,z_i)/g(z_i)$
 - \triangleright Is a minimal requirement in the choice of g

Missing-Data Models and Demarginalization Introduction

- ▶ Missing data models are special cases of the representation $h(x) = \mathbb{E}[H(x,Z)]$
- ▶ These are models where the density of the observations can be expressed as

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$$
.

- ► This representation occurs in many statistical settings
 - ▶ Censoring models and mixtures
 - ▶ Latent variable models (tobit, probit, arch, stochastic volatility, etc.)
 - ▶ Genetics: Missing SNP calls

Missing-Data Models and Demarginalization Mixture Model

Example: Normal mixture model as a missing-data model

- ightharpoonup Start with a sample (x_1,\ldots,x_n)
- ▶ Introduce a vector $(z_1, \ldots, z_n) \in \{1, 2\}^n$ such that

$$P_{\theta}(Z_i = 1) = 1 - P_{\theta}(Z_i = 2) = 1/4, \quad X_i | Z_i = z \sim \mathcal{N}(\mu_z, 1),$$

▶ The (observed) likelihood is then obtained as $\mathbb{E}[H(\mathbf{x}, \mathbf{Z})]$ for

$$H(\mathbf{x}, \mathbf{z}) \propto \prod_{i; z_i=1}^{1} \frac{1}{4} \exp \left\{ -(x_i - \mu_1)^2 / 2 \right\} \prod_{i; z_i=2}^{1} \frac{3}{4} \exp \left\{ -(x_i - \mu_2)^2 / 2 \right\} ,$$

▶ We recover the mixture model

$$\frac{1}{4}\mathcal{N}(\mu_1,1) + \frac{3}{4}\mathcal{N}(\mu_2,1)$$

 \triangleright As the marginal distribution of X_i .

Missing-Data Models and Demarginalization Censored-Data Likelihood

Example: Censored-data likelihood

- ► Censored data may come from experiments
 - > Where some potential observations are replaced with a lower bound
 - ▶ Because they take too long to observe.
- ▶ Suppose that we observe $Y_1, ..., Y_m$, iid, from $f(y \theta)$
 - \triangleright And the (n-m) remaining (Y_{m+1},\ldots,Y_n) are censored at the threshold a.
- ► The corresponding likelihood function is

$$L(\theta|\mathbf{y}) = [1 - F(a - \theta)]^{n-m} \prod_{i=1}^{m} f(y_i - \theta),$$

 $\triangleright F$ is the cdf associated with f

Missing-Data Models and Demarginalization Recovering the Observed Data Likelihood

▶ If we had observed the last n-m values

$$\triangleright \text{Say } \mathbf{z} = (z_{m+1}, \dots, z_n), \text{ with } z_i \ge a \ (i = m+1, \dots, n),$$

▶ We could have constructed the (complete data) likelihood

$$L^c(\theta|\mathbf{y},\mathbf{z}) = \prod_{i=1}^m f(y_i - \theta) \prod_{i=m+1}^n f(z_i - \theta).$$

► Note that

$$L(\theta|\mathbf{y}) = \mathbb{E}[L^c(\theta|\mathbf{y}, \mathbf{Z})] = \int_{\mathcal{Z}} L^c(\theta|\mathbf{y}, \mathbf{z}) k(\mathbf{z}|\mathbf{y}, \theta) \, d\mathbf{z},$$

- \triangleright Where $k(\mathbf{z}|\mathbf{y},\theta)$ is the density of the missing data
- ▶ Conditional on the observed data
- \triangleright The product of the $f(z_i \theta)/[1 F(a \theta)]$'s
- $\triangleright f(z-\theta)$ restricted to $(a,+\infty)$.

Missing-Data Models and Demarginalization Comments

▶ When we have the relationship

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$$
.

- > **Z** merely serves to simplify calculations
- > it does not necessarily have a specific meaning
- ▶ We have the complete-data likelihood $L^c(\theta|\mathbf{x}, \mathbf{z})) = f(\mathbf{x}, \mathbf{z}|\theta)$
 - ▶ The likelihood we would obtain
 - \triangleright Were we to observe (\mathbf{x}, \mathbf{z}) , the complete data
- ► REMEMBER:

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$$
.

The EM Algorithm Introduction

- ► The EM algorithm is a deterministic optimization technique
 - ▶ Dempster, Laird and Rubin 1977
- ► Takes advantage of the missing data representation
 - ▶ Builds a sequence of easier maximization problems
 - ▶ Whose limit is the answer to the original problem
- ▶ We assume that we observe $X_1, \ldots, X_n \sim g(\mathbf{x}|\theta)$ that satisfies

$$g(\mathbf{x}|\theta) = \int_{\mathcal{Z}} f(\mathbf{x}, \mathbf{z}|\theta) \, d\mathbf{z},$$

 \triangleright And we want to compute $\hat{\theta} = \arg \max L(\theta | \mathbf{x}) = \arg \max g(\mathbf{x} | \theta)$.

The EM Algorithm First Details

- ► With the relationship $g(\mathbf{x}|\theta) = \int_{\mathcal{Z}} f(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z}$, $\triangleright (\mathbf{X}, \mathbf{Z}) \sim f(\mathbf{x}, \mathbf{z}|\theta)$
- ► The conditional distribution of the missing data **Z**
 - \triangleright Given the observed data **x** is

$$k(\mathbf{z}|\theta, \mathbf{x}) = f(\mathbf{x}, \mathbf{z}|\theta) / g(\mathbf{x}|\theta)$$
.

► Taking the logarithm of this expression leads to the following relationship

$$\underbrace{\log L(\theta|\mathbf{x})}_{\text{Obs. Data}} = \underbrace{\mathbb{E}_{\theta_0}[\log L^c(\theta|\mathbf{x}, \mathbf{Z})]}_{\text{Complete Data}} - \underbrace{\mathbb{E}_{\theta_0}[\log k(\mathbf{Z}|\theta, \mathbf{x})]}_{\text{Missing Data}},$$

- ▶ Where the expectation is with respect to $k(\mathbf{z}|\theta_0, \mathbf{x})$.
- ▶ In maximizing $\log L(\theta|\mathbf{x})$, we can ignore the last term

The EM Algorithm Iterations

► Denoting

$$Q(\theta|\theta_0, \mathbf{x}) = \mathbb{E}_{\theta_0}[\log L^c(\theta|\mathbf{x}, \mathbf{Z})],$$

- ► EM algorithm indeed proceeds by maximizing $Q(\theta|\theta_0, \mathbf{x})$ at each iteration ▷ If $\hat{\theta}_{(1)} = \operatorname{argmax} Q(\theta|\theta_0, \mathbf{x}), \, \hat{\theta}_{(0)} \to \hat{\theta}_{(1)}$
- ▶ Sequence of estimators $\{\hat{\theta}_{(j)}\}$, where

$$\hat{\theta}_{(j)} = \operatorname{argmax} Q(\theta | \hat{\theta}_{(j-1)})$$

- ➤ This iterative scheme
 - ▶ Contains both an expectation step
 - ▶ And a maximization step
 - ▶ Giving the algorithm its name.

The EM Algorithm The Algorithm

Pick a starting value $\hat{\theta}_{(0)}$ and set m=0.

Repeat

1. Compute (the E-step)

$$Q(\theta|\hat{\theta}_{(m)}, \mathbf{x}) = \mathbb{E}_{\hat{\theta}_{(m)}}[\log L^{c}(\theta|\mathbf{x}, \mathbf{Z})],$$

where the expectation is with respect to $k(\mathbf{z}|\hat{ heta}_{(m)},\mathbf{x})$.

2. Maximize $Q(\theta|\hat{\theta}_{(m)},\mathbf{x})$ in θ and take ($the \ M\text{-}step$)

$$\hat{\theta}_{(m+1)} = \arg\max_{\theta} Q(\theta|\hat{\theta}_{(m)}, \mathbf{x})$$

and set m = m + 1

until a fixed point is reached; i.e., $\hat{ heta}_{(m+1)} = \hat{ heta}_{(m)}.$ fixed point

The EM Algorithm Properties

▶ Jensen's inequality ⇒ The likelihood increases at each step of the EM algorithm

$$L(\hat{\theta}_{(j+1)}|\mathbf{x}) \ge L(\hat{\theta}_{(j)}|\mathbf{x}),$$

- \triangleright Equality holding if and only if $Q(\hat{\theta}_{(j+1)}|\hat{\theta}_{(j)},\mathbf{x}) = Q(\hat{\theta}_{(j)}|\hat{\theta}_{(j)},\mathbf{x}).$
- ► Every limit point of an EM sequence $\{\hat{\theta}_{(j)}\}$ is a stationary point of $L(\theta|\mathbf{x})$
 - ▶ Not necessarily the maximum likelihood estimator
 - ▶ In practice, we run EM several times with different starting points.
- ▶ Implementing the EM algorithm thus means being able to
 - (a) Compute the function $Q(\theta'|\theta, \mathbf{x})$
 - (b) Maximize this function.

The EM Algorithm Censored Data Example

► The complete-data likelihood is

$$L^{c}(\theta|\mathbf{y},\mathbf{z}) \propto \prod_{i=1}^{m} \exp\{-(y_{i}-\theta)^{2}/2\} \prod_{i=m+1}^{n} \exp\{-(z_{i}-\theta)^{2}/2\},$$

► With expected complete-data log-likelihood

$$Q(\theta|\theta_0, \mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{m} (y_i - \theta)^2 - \frac{1}{2} \sum_{i=m+1}^{n} \mathbb{E}_{\theta_0}[(Z_i - \theta)^2],$$

 \triangleright the Z_i are distributed from a normal $\mathcal{N}(\theta, 1)$ distribution truncated at a.

▶ M-step (differentiating $Q(\theta|\theta_0, \mathbf{y})$ in θ and setting it equal to 0 gives

$$\hat{\theta} = \frac{m\bar{y} + (n-m)\mathbb{E}_{\theta'}[Z_1]}{n}.$$

$$\triangleright$$
 With $\mathbb{E}_{\theta}[Z_1] = \theta + \frac{\varphi(a-\theta)}{1-\Phi(a-\theta)}$,

The EM Algorithm Censored Data MLEs

► EM sequence

$$\hat{\theta}^{(j+1)} = \frac{m}{n}\bar{y} + \frac{n-m}{n}\left[\hat{\theta}^{(j)} + \frac{\varphi(a-\hat{\theta}^{(j)})}{1-\Phi(a-\hat{\theta}^{(j)})}\right]$$

- ► Climbing the Likelihood
- ► R code

The EM Algorithm Normal Mixture

► Normal Mixture Bimodal Likelihood

$$Q(\theta'|\theta, \mathbf{x}) = -\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}_{\theta} \left[Z_i (x_i - \mu_1)^2 + (1 - Z_i)(x_i - \mu_2)^2 | \mathbf{x} \right].$$

Solving the M-step then provides the closed-form expressions

$$\mu'_1 = \mathbb{E}_{\theta} \left[\sum_{i=1}^n Z_i x_i | \mathbf{x} \right] / \mathbb{E}_{\theta} \left[\sum_{i=1}^n Z_i | \mathbf{x} \right]$$

and

$$\mu_2' = \mathbb{E}_{\theta} \left[\sum_{i=1}^n (1 - Z_i) x_i | \mathbf{x} \right] / \mathbb{E}_{\theta} \left[\sum_{i=1}^n (1 - Z_i) | \mathbf{x} \right].$$

Since

$$\mathbb{E}_{\theta}\left[Z_i|\mathbf{x}\right] = \frac{\varphi(x_i - \mu_1)}{\varphi(x_i - \mu_1) + 3\varphi(x_i - \mu_2)},$$

The EM Algorithm Normal Mixture MLEs

- ► EM five times with various starting points
- ightharpoonup Two out of five sequences \rightarrow higher mode
- ightharpoonup Others ightharpoonup lower mode

Monte Carlo EM Introduction

- ▶ If computation $Q(\theta|\theta_0, \mathbf{x})$ is difficult, can use Monte Carlo
- ► For $\mathbf{Z}_1, \ldots, \mathbf{Z}_T \sim k(\mathbf{z}|\mathbf{x}, \hat{\theta}_{(m)})$, maximize

$$\hat{Q}(\theta|\theta_0, \mathbf{x}) = \frac{1}{T} \sum_{i=1}^{T} \log L^c(\theta|\mathbf{x}, \mathbf{z}_i)$$

▶ Better: Use importance sampling

⊳ Since

$$\arg \max_{\theta} L(\theta | \mathbf{x}) = \arg \max_{\theta} \log \frac{g(\mathbf{x} | \theta)}{g(\mathbf{x} | \theta_{(0)})} = \arg \max_{\theta} \log \mathbb{E}_{\theta_{(0)}} \left[\frac{f(\mathbf{x}, \mathbf{z} | \theta)}{f(\mathbf{x}, \mathbf{z} | \theta_{(0)})} \middle| \mathbf{x} \right],$$

▶ Use the approximation to the log-likelihood

$$\log L(\theta|\mathbf{x}) \approx \frac{1}{T} \sum_{i=1}^{T} \frac{L^{c}(\theta|\mathbf{x}, \mathbf{z}_{i})}{L^{c}(\theta_{(0)}|\mathbf{x}, \mathbf{z}_{i})},$$

Monte Carlo EM Genetics Data

Example: Genetic linkage.

- ► A classic example of the EM algorithm
- \triangleright Observations (x_1, x_2, x_3, x_4) are gathered from the multinomial distribution

$$\mathcal{M}\left(n; \frac{1}{2} + \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4}\right).$$

- \triangleright Estimation is easier if the x_1 cell is split into two cells
 - ▶ We create the augmented model

$$(z_1, z_2, x_2, x_3, x_4) \sim \mathcal{M}\left(n; \frac{1}{2}, \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4}\right)$$

with $x_1 = z_1 + z_2$.

- \triangleright Complete-data likelihood: $\theta^{z_2+x_4}(1-\theta)^{x_2+x_3}$
- \triangleright Observed-data likelihood: $(2+\theta)^{x_1}\theta^{x_4}(1-\theta)^{x_2+x_3}$

Monte Carlo EM Genetics Linkage Calculations

► The expected complete log-likelihood function is

$$\mathbb{E}_{\theta_0}[(Z_2 + x_4)\log\theta + (x_2 + x_3)\log(1 - \theta)] = \left(\frac{\theta_0}{2 + \theta_0}x_1 + x_4\right)\log\theta + (x_2 + x_3)\log(1 - \theta),$$

 \triangleright which can easily be maximized in θ , leading to the EM step

$$\hat{\theta}_1 = \left\{ \frac{\theta_0 x_1}{2 + \theta_0} \right\} / \left\{ \frac{\theta_0 x_1}{2 + \theta_0} + x_2 + x_3 + x_4 \right\}.$$

► Monte Carlo EM: Replace the expectation with

$$\triangleright \overline{z}_m = \frac{1}{m} \sum_{i=1}^m z_i, z_i \sim \mathcal{B}(x_1, \theta_0/(2 + \theta_0))$$

► The MCEM step would then be

$$\widehat{\widehat{\theta}_1} = \frac{\overline{z}_m}{\overline{z}_m + x_2 + x_3 + x_4},$$

which converges to $\hat{\theta}_1$ as m grows to infinity.

Monte Carlo EM Genetics Linkage MLEs

- ▶ Note variation in MCEM sequence
- ► Can control with ↑ simulations
- ► R code

Monte Carlo EM Random effect logit model

Example: Random effect logit model

► Random effect logit model,

 $\triangleright y_{ij}$ is distributed conditionally on one covariate x_{ij} as a logit model

$$P(y_{ij} = 1 | x_{ij}, u_i, \beta) = \frac{\exp\{\beta x_{ij} + u_i\}}{1 + \exp\{\beta x_{ij} + u_i\}},$$

 $\triangleright u_i \sim \mathcal{N}(0, \sigma^2)$ is an unobserved random effect.

 $\triangleright (U_1, \ldots, U_n)$ therefore corresponds to the missing data **Z**

Monte Carlo EM Random effect logit model likelihood

▶ For the complete data likelihood with $\theta = (\beta, \sigma)$,

$$Q(\theta'|\theta, \mathbf{x}, \mathbf{y}) = \sum_{i,j} y_{ij} \mathbb{E}[\beta' x_{ij} + U_i | \beta, \sigma, \mathbf{x}, \mathbf{y}]$$
$$- \sum_{i,j} \mathbb{E}[\log 1 + \exp{\{\beta' x_{ij} + U_i\}} | \beta, \sigma, \mathbf{x}, \mathbf{y}]$$
$$- \sum_{i} \mathbb{E}[U_i^2 | \beta, \sigma, \mathbf{x}, \mathbf{y}] / 2\sigma'^2 - n \log \sigma',$$

 \triangleright it is impossible to compute the expectations in U_i .

- ▶ Were those available, the M-step would be difficult but feasible
- \blacktriangleright MCEM: Simulate the U_i 's conditional on $\beta, \sigma, \mathbf{x}, \mathbf{y}$ from

$$\pi(u_i|\beta, \sigma, \mathbf{x}, \mathbf{y}) \propto \frac{\exp\left\{\sum_j y_{ij}u_i - u_i^2/2\sigma^2\right\}}{\prod_j \left[1 + \exp\left\{\beta x_{ij} + u_i\right\}\right]}$$

Monte Carlo EM Random effect logit MLEs

- ▶ Top: Sequence of β 's from the MCEM algorithm
- ► Bottom: Sequence of completed likelihoods

- ► MCEM sequence
 - ▶ Increases the number of Monte Carlo steps at each iteration
- ► MCEM algorithm
 - ▶ Does not have EM monotonicity property

Chapter 6: Metropolis–Hastings Algorithms

"How absurdly simple!", I cried.

"Quite so!", said he, a little nettled. "Every problem becomes very childish when once it is explained to you."

Arthur Conan Doyle

The Adventure of the Dancing Men

This Chapter

- ▶ The first of a of two on simulation methods based on *Markov chains*
- ► The Metropolis—Hastings algorithm is one of the most general MCMC algorithms▷ And one of the simplest.
- ► There is a quick refresher on Markov chains, just the basics.
- ▶ We focus on the most common versions of the Metropolis–Hastings algorithm.
- ▶ We also look at calibration of the algorithm via its acceptance rate

Metropolis-Hastings Algorithms Introduction

- ▶ We now make a fundamental shift in the choice of our simulation strategy.
 - \triangleright Up to now we have typically generated iid variables
 - ▶ The Metropolis–Hastings algorithm generates *correlated* variables
 - ▶ From a Markov chain
- ▶ The use of Markov chains broadens our scope of applications
 - \triangleright The requirements on the target f are quite minimal
 - ▶ Efficient decompositions of high-dimensional problems
 - ▶ Into a sequence of smaller problems.
- ► This has been part of a Paradigm Shift in Statistics

Metropolis-Hastings Algorithms A Peek at Markov Chain Theory

- ► A minimalist refresher on Markov chains
- ▶ Basically to define terms
- ► See Robert and Casella (2004, Chapter 6) for more of the story

▶ A Markov chain $\{X^{(t)}\}$ is a sequence of dependent random variables $X^{(0)}, X^{(1)}, X^{(2)}, \dots, X^{(t)}, \dots$

where the probability distribution of $X^{(t)}$ depends only on $X^{(t-1)}$.

The conditional distribution of $X^{(t)}|X^{(t-1)}$ is a transition kernel K, $X^{(t+1)}|X^{(0)},X^{(1)},X^{(2)},\ldots,X^{(t)}\sim K(X^{(t)},X^{(t+1)})$.

Markov Chains Basics

ightharpoonup For example, a simple $random\ walk$ Markov chain satisfies

$$X^{(t+1)} = X^{(t)} + \epsilon_t, \qquad \epsilon_t \sim \mathcal{N}(0, 1),$$

- \triangleright The Markov kernel $K(X^{(t)}, X^{(t+1)})$ corresponds to a $\mathcal{N}(X^{(t)}, 1)$ density.
- ► Markov chain Monte Carlo (MCMC) Markov chains typically have a very strong stability property.
- ► They have a a stationary probability distribution
 - \triangleright A probability distribution f such that if $X^{(t)} \sim f$, then $X^{(t+1)} \sim f$, so we have the equation

$$\int_{\mathcal{X}} K(x, y) f(x) dx = f(y).$$

Markov Chains Properties

- ▶ MCMC Markov chains are also *irreducible*, or else they are useless
 - \triangleright The kernel K allows for free moves all over the state-space
 - \triangleright For any $X^{(0)}$, the sequence $\{X^{(t)}\}$ has a positive probability of eventually reaching any region of the state-space
- ▶ MCMC Markov chains are also *recurrent*, or else they are useless
 - ▶ They will return to any arbitrary nonnegligible set an infinite number of times

Markov Chains AR(1) Process

- ightharpoonup AR(1) models provide a simple illustration of continuous Markov chains
- ► Here

$$X_n = \theta X_{n-1} + \varepsilon_n , \qquad \theta \in \Re,$$
 with $\varepsilon_n \sim N(0, \sigma^2)$

- ▶ If the ε_n 's are independent $\triangleright X_n$ is independent from X_{n-2}, X_{n-3}, \ldots conditionally on X_{n-1} .
- ► The stationary distribution $\phi(x|\mu,\tau^2)$ is

$$\mathcal{N}\left(0, \frac{\sigma^2}{1-\theta^2}\right),\,$$

 \triangleright which requires $|\theta| < 1$.

Markov Chains Statistical Language

We associate the probabilistic language of Markov chains

⇒ With the statistical language of data analysis.

Statistics		Markov Chain
marginal distribution	\Leftrightarrow	invariant distribution
proper marginals	\Leftrightarrow	positive recurrent

- If the marginals are not proper, or if they do not exist
 - ▶ Then the chain is not positive recurrent.
 - ▶ It is either null recurrent or transient, and both are bad.

► AR(1) Recurrent and Transient -Note the Scale

► R code

Markov Chains Ergodicity

- ▶ In recurrent chains, the stationary distribution is also a *limiting distribution*
- ightharpoonup If f is the limiting distribution

$$X^{(t)} \to X \sim f$$
, for any initial value $X^{(0)}$

- ▶ This property is also called *ergodicity*
- \triangleright For integrable functions h, the standard average

$$\frac{1}{T} \sum_{t=1}^{T} h(X^{(t)}) \longrightarrow \mathbb{E}_f[h(X)],$$

- ▶ The Law of Large Numbers
- \triangleright Sometimes called the *Ergodic Theorem*

Markov Chains In Bayesian Analysis

- ▶ There is one case where convergence never occurs
- ▶ When, in a Bayesian analysis, the posterior distribution is not proper
- \blacktriangleright The use of improper priors f(x) is quite common in complex models,
 - ▷ Sometimes the posterior is proper, and MCMC works (recurrent)
 - > Sometimes the posterior is improper, and MCMC fails (transient)
- ► These transient Markov chains may present all the outer signs of stability
 - ▶ More later

Basic Metropolis–Hastings algorithms Introduction

- ➤ The working principle of Markov chain Monte Carlo methods is straightforward
- ightharpoonup Given a target density f
 - \triangleright We build a Markov kernel K with stationary distribution f
 - \triangleright Then generate a Markov chain $(X^{(t)}) \to X \sim f$
 - ▶ Integrals can be approximated by to the Ergodic Theorem
- ▶ The Metropolis–Hastings algorithm is an example of those methods.
 - \triangleright Given the target density f, we simulate from a candidate q(y|x)
 - \triangleright Only need that the ratio f(y)/q(y|x) is known up to a constant

Basic Metropolis—Hastings algorithms A First Metropolis—Hastings Algorithm

Metropolis-Hastings Given $x^{(t)}$,

- 1. Generate $Y_t \sim q(y|x^{(t)})$.
- 2. Take

$$X^{(t+1)} = \begin{cases} Y_t & \text{with probability} \quad \rho(x^{(t)}, Y_t), \\ x^{(t)} & \text{with probability} \quad 1 - \rho(x^{(t)}, Y_t), \end{cases}$$

where

$$\rho(x,y) = \min \left\{ \frac{f(y)}{f(x)} \frac{q(x|y)}{q(y|x)}, 1 \right\}.$$

- \triangleright q is called the instrumental or proposal or candidate distribution
- $\triangleright \rho(x,y)$ is the Metropolis–Hastings acceptance probability
- ► Looks like Simulated Annealing but constant temperature

 ► Metropolis—Hastings explores rather than maximizes

Basic Metropolis—Hastings algorithms Generating Beta Random Variables

- ▶ Target density f is the $\mathcal{B}e(2.7, 6.3)$
- ightharpoonup Candidate q is uniform
- ► Notice the repeats
- ► Repeats must be kept!

Basic Metropolis–Hastings algorithms Comparing Beta densities

- ► Comparison with independent sampling
- ► Histograms indistinguishable
 - ▶ Moments match
 - ▶ K-S test accepts
- ► R code

Basic Metropolis–Hastings algorithms A Caution

- ▶ The MCMC and exact sampling outcomes look identical, but
 - ▶ Markov chain Monte Carlo sample has correlation, the iid sample does not
 - ▶ This means that the quality of the sample is necessarily degraded
 - > We need more simulations to achieve the same precision
- ► This is formalized by the *effective sample size* for Markov chains later

Basic Metropolis—Hastings algorithms Some Comments

▶ In the symmetric case q(x|y) = q(y|x),

$$\rho(x_t, y_t) = \min \left\{ \frac{f(y_t)}{f(x_t)}, 1 \right\}.$$

- \triangleright The acceptance probability is independent of q
- \blacktriangleright Metropolis-Hastings always accept values of y_t such that

$$f(y_t)/q(y_t|x^{(t)}) > f(x^{(t)})/q(x^{(t)}|y_t)$$

- \triangleright Values y_t that decrease the ratio may also be accepted
- ► Metropolis—Hastings only depends on the ratios

$$f(y_t)/f(x^{(t)})$$
 and $q(x^{(t)}|y_t)/q(y_t|x^{(t)})$.

▶ Independent of normalizing constants

Basic Metropolis–Hastings algorithms The Independent Metropolis–Hastings algorithm

▶ The Metropolis–Hastings algorithm allows q(y|x)

 \triangleright We can use q(y|x) = g(y), a special case

Independent Metropolis-Hastings

Given $x^{(t)}$

- 1. Generate $Y_t \sim g(y)$.
- 2. Take

$$X^{(t+1)} = \begin{cases} Y_t & \text{with probability} & \min\left\{\frac{f(Y_t) \ g(x^{(t)})}{f(x^{(t)}) \ g(Y_t)} \ , 1\right\} \\ x^{(t)} & \text{otherwise.} \end{cases}$$

Basic Metropolis–Hastings algorithms Properties of the Independent Metropolis–Hastings algorithm

- ► Straightforward generalization of the Accept—Reject method
- ► Candidates are independent, but still a Markov chain
 - ▶ The Accept–Reject sample is iid, but the Metropolis–Hastings sample is not
 - \triangleright The Accept-Reject acceptance step requires calculating M
 - ▶ Metropolis–Hastings is Accept–Reject "for the lazy person"

Basic Metropolis–Hastings algorithms Application of the Independent Metropolis–Hastings algorithm

- ▶ We now look at a somewhat more realistic statistical example
 - > Get preliminary parameter estimates from a model
 - ▶ Use an independent proposal with those parameter estimates.
- ▶ For example, to simulate from a posterior distribution $\pi(\theta|x) \propto \pi(\theta) f(x|\theta)$
 - \triangleright Take a normal or a t distribution centered at the MLE $\hat{\theta}$
 - ▷ Covariance matrix equal to the inverse of Fisher's information matrix.

Independent Metropolis-Hastings algorithm Braking Data

▶ The cars dataset relates braking distance (y) to speed (x) in a sample of cars.

► Model

$$y_{ij} = a + bx_i + cx_i^2 + \varepsilon_{ij}$$

► The likelihood function is

$$\left(\frac{1}{\sigma^2}\right)^{N/2} \exp\left\{\frac{-1}{2\sigma^2} \sum_{ij} (y_{ij} - a - bx_i - cx_i^2)^2\right\},$$
where $N = \sum_i n_i$

Independent Metropolis-Hastings algorithm Braking Data Least Squares Fit

► Candidate from Least Squares

R command: $x2=x^2$; summary($lm(y^x+x2)$)

Coefficients:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.63328	14.80693	0.178	0.860
X	0.88770	2.03282	0.437	0.664
x2	0.10068	0.06592	1.527	0.133

Residual standard error: 15.17 on 47 degrees of freedom

Independent Metropolis-Hastings algorithm Braking Data Metropolis Algorithm

► Candidate: normal centered at the MLEs,

$$a \sim \mathcal{N}(2.63, (14.8)^2),$$

 $b \sim \mathcal{N}(.887, (2.03)^2),$
 $c \sim \mathcal{N}(.100, (0.065)^2),$

► Inverted gamma

$$\sigma^{-2} \sim \mathcal{G}(n/2, (n-3)(15.17)^2)$$

▶ See the variability of the curves associated with the simulation.

Independent Metropolis-Hastings algorithm Braking Data Coefficients

▶ Note that these are marginal distributions

- ▶ Distributions of estimates
- ► Credible intervals
- ► See the skewness

Independent Metropolis–Hastings algorithm Braking Data Assessment

- \triangleright 50,000 iterations
- ► See the repeats
- ▶ Intercept may not have converged

► R code

Random Walk Metropolis—Hastings Introduction

- ▶ Implementation of independent Metropolis–Hastings can sometimes be difficult
 - ➤ Construction of the proposal may be complicated
 - ▶ They ignore local information
- ► An alternative is to gather information stepwise
 - > Exploring the neighborhood of the current value of the chain
- ► Can take into account the value previously simulated to generate the next value
 - ⊳ Gives a more local exploration of the neighborhood of the current value

Random Walk Metropolis-Hastings Some Details

ightharpoonup The implementation of this idea is to simulate Y_t according to

$$Y_t = X^{(t)} + \varepsilon_t,$$

- $\triangleright \varepsilon_t$ is a random perturbation
- \triangleright with distribution g, independent of $X^{(t)}$
- ▶ Uniform, normal, etc...
- ▶ The proposal density q(y|x) is now of the form g(y-x)
 - \triangleright Typically, g is symmetric around zero, satisfying g(-t) = g(t)
 - \triangleright The Markov chain associated with q is a $random\ walk$

Random Walk Metropolis–Hastings The Algorithm

Given $x^{(t)}$,

- 1. Generate $Y_t \sim g(y x^{(t)})$.
- 2. Take

$$X^{(t+1)} = \begin{cases} Y_t & \text{with probability } \min\left\{1, \frac{f(Y_t)}{f(x^{(t)})}\right\}, \\ x^{(t)} & \text{otherwise.} \end{cases}$$

- ightharpoonup The g chain is a random walk
 - \triangleright Due to the Metropolis-Hastings acceptance step, the $\{X^{(t)}\}$ chain is not
- ▶ The acceptance probability does not depend on g▷ But different gs result in different ranges and different acceptance rates
- ► Calibrating the scale of the random walk is for good exploration

Random Walk Metropolis-Hastings Normal Mixtures

- ► Explore likelihood with random walk
- ▶ Similar to Simulated Annealing▶ But constant temperature (scale)
- ightharpoonup Multimodal \Rightarrow Scale is important
 - \triangleright Too small \Rightarrow get stuck
 - \triangleright Too big \Rightarrow miss modes

Random Walk Metropolis—Hastings Normal Mixtures - Different Scales

- ightharpoonup Left ightharpoonup Right: Scale=1, Scale=2, Scale=3
 - ▷ Scale=1: Too small, gets stuck
 - ⊳ Scale=2: Just right, finds both modes
 - ⊳ Scale=3: Too big, misses mode

► R code

Random Walk Metropolis—Hastings Model Selection or Model Choice

- ► Random walk Metropolis—Hastings algorithms also apply to discrete targets.
- ► As an illustration, we consider a regression
 - > The swiss dataset in R
 - $\triangleright y = \text{logarithm of the fertility in 47 districts of Switzerland} \approx 1888$
 - \triangleright The covariate matrix X involves five explanatory variables

```
> names(swiss)
[1] "Fertility" "Agriculture" "Examination" "Education"
[5] "Catholic" "Infant.Mortality"
```

- ightharpoonup Compare the $2^5=32$ models corresponding to all possible subsets of covariates.
 - ▶ If we include squares and twoway interactions
 - $\triangleright 2^{20} = 1048576$ models, same R code

Random Walk Metropolis—Hastings Model Selection using Marginals

 \triangleright Given an ordinary linear regression with n observations,

$$\mathbf{y}|\beta, \sigma^2, X \sim \mathcal{N}_n(X\beta, \sigma^2 I_n), X \text{ is an } (n, p) \text{ matrix}$$

▶ The likelihood is

$$\ell\left(\beta, \sigma^2 | \mathbf{y}, X\right) = \left(2\pi\sigma^2\right)^{-n/2} \exp\left[-\frac{1}{2\sigma^2}(\mathbf{y} - X\beta)^{\mathrm{T}}(\mathbf{y} - X\beta)\right]$$

▶ Using Zellner's g-prior, with the constant g = n

$$\beta | \sigma^2, X \sim \mathcal{N}_{k+1}(\tilde{\beta}, n\sigma^2(X^TX)^{-1})$$
 and $\pi(\sigma^2 | X) \propto \sigma^{-2}$

 \triangleright The marginal distribution of **y** is a multivariate t distribution,

$$m(\mathbf{y}|X) \propto \left[\mathbf{y}'\left(I - \frac{n}{n+1}X(X'X)^{-1}X'\right)\mathbf{y} - \frac{1}{n+1}\tilde{\beta}'X'X\tilde{\beta}\right]^{-n/2}.$$

► Find the model with maximum marginal probability

Random Walk Metropolis-Hastings Random Walk on Model Space

- ▶ To go from $\gamma^{(t)} \rightarrow \gamma^{(t+1)}$
 - \triangleright First get a candidate γ^*

$$\gamma^{(t)} = \begin{pmatrix} 1\\0\\1\\1\\0 \end{pmatrix} \rightarrow \gamma^* = \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}$$

- \triangleright Choose a component of $\gamma^{(t)}$ at random, and flip $1 \to 0$ or $0 \to 1$
- \triangleright Accept the proposed model γ^* with probability

$$\min \left\{ \frac{m(\mathbf{y}|X, \gamma^{\star})}{m(\mathbf{y}|X, \gamma^{(t)})}, 1 \right\}$$

- ► The candidate is symmetric
- ▶ Note: This is not the Metropolis–Hastings algorithm in the book it is simpler

Random Walk Metropolis—Hastings Results from the Random Walk on Model Space

- ► Last iterations of the MH search
- ► The chain goes down often

► Top Five Models

Marg.			γ		
7.95	1	0	1	1	1
7.19	0	0	1	1	1
6.27	1	1	1	1	1
5.44	1	0	1	1	0
5.45	1	0	1	1	0

► Best model excludes the variable Examination

$$\triangleright \gamma = (1, 0, 1, 1, 1)$$

► Inclusion rates:

Agri	Exam	Educ	Cath	Inf.Mort
0.661	0.194	1.000	0.904	0.949

Metropolis-Hastings Algorithms Acceptance Rates

- \blacktriangleright Infinite number of choices for the candidate q in a Metropolis–Hastings algorithm
- ▶ Is there and "optimal" choice?
 - \triangleright The choice of q = f, the target distribution? Not practical.
- ► A criterion for comparison is the acceptance rate
 - > It can be easily computed with the empirical frequency of acceptance
- ▶ In contrast to the Accept—Reject algorithm
 - ▶ Maximizing the acceptance rate will is not necessarily best
 - > Especially for random walks
- ► Also look at autocovariance

Acceptance Rates Normals from Double Exponentials

- ► In the Accept–Reject algorithm
 - \triangleright To generate a $\mathcal{N}(0,1)$ from a double-exponential $\mathcal{L}(\alpha)$
 - \triangleright The choice $\alpha = 1$ optimizes the acceptance rate
- ▶ In an independent Metropolis–Hastings algorithm
 - \triangleright We can use the double-exponential as an independent candidate q
- ► Compare the behavior of Metropolis–Hastings algorithm
 - \triangleright When using the $\mathcal{L}(1)$ candidate or the $\mathcal{L}(3)$ candidate

Acceptance Rates Normals from Double Exponentials Comparison

- ► $\mathcal{L}(1)$ (black)

 > Acceptance Rate = 0.83
- ► $\mathcal{L}(3)$ (blue)

 > Acceptance Rate = 0.47
- $\triangleright \mathcal{L}(3)$ has terrible acf (right)
- $\triangleright \mathcal{L}(3)$ has not converged

Acceptance Rates
Normals from Double Exponentials Histograms

- $ightharpoonup \mathcal{L}(1)$ has converged (gray)
- $\triangleright \mathcal{L}(3)$ not yet there (blue)
- ► R code

Acceptance Rates Random Walk Metropolis—Hastings

- ► Independent Metropolis–Hastings algorithms
 - ▶ Can be optimized or compared through their acceptance rate
 - > This reduces the number of replicas in the chain
 - > And reduces the correlation level in the chain
- ▶ Not true for other types of Metropolis–Hastings algorithms
 - ▶ In a random walk, higher acceptance is not always better.
- ▶ The historical example of Hastings generates a $\mathcal{N}(0,1)$ from

$$\triangleright Y_t = X_{t-1} + \varepsilon_t$$

$$\triangleright \rho(x^{(t)}, y_t) = \min\{\exp\{(x^{(t)2} - y_t^2)/2\}, 1\}, \quad \varepsilon_t \sim \mathcal{U}[-\delta, \delta]$$

 $\triangleright \delta$ controls the acceptance rate

Acceptance Rates Random Walk Metropolis–Hastings Example

Acceptance Rates Random Walk Metropolis–Hastings – All of the Details

► Acceptance Rates

 $\delta = 0.1 : 0.9832$

 $\triangleright \delta = 1: 0.7952$

 $\triangleright \delta = 10 : 0.1512$

► Medium rate does better

⊳ lowest better than the highest

Random Walk Acceptance Rates Comments

► Random walk Metropolis–Hastings needs careful calibration of acceptance rates

- ► High acceptance rate
 - ▶ May not have satisfactory behavior
 - \triangleright The chain may be moving too slowly on the surface of f
- ➤ This is not always the case.
 - $\triangleright f$ nearly flat \Rightarrow high acceptance OK

 \triangleright But, unless f is completely flat, parts of the domain may be missed

Random Walk Acceptance Rates More Comments

- ▶ In contrast, if the average acceptance rate is low
 - \triangleright Successive values of $f(y_t)$ are often are small compared to $f(x^{(t)})$
- ightharpoonup Low acceptance \Rightarrow
 - \triangleright The chain may not see all of f
 - \triangleright May miss an important but isolated mode of f
- ➤ Nonetheless, low acceptance is less of an issue
- ► Golden acceptance rate:
 - > 1/2 for the models of dimension 1 or 2
 - $\triangleright 1/4$ in higher dimensions

Chapter 7: Gibbs Samplers

"Come, Watson, come!" he cried. "The game is afoot."

Arthur Conan Doyle

The Adventure of the Abbey Grange

This Chapter

- ▶ We cover both the two-stage and the multistage Gibbs samplers
- ► The two-stage sampler has superior convergence properties
- ► The multistage Gibbs sampler is the workhorse of the MCMC world
- ► We deal with missing data and models with latent variables
- ► And, of course, hierarchical models

Gibbs Samplers Introduction

- ► Gibbs samplers gather most of their calibration from the target density
- ► They break complex problems (high dimensional) into a series of easier problems

 > May be impossible to build random walk Metropolis—Hastings algorithm
- ▶ The sequence of simple problems may take a long time to converge
- ▶ But Gibbs sampling is an interesting and useful algorithm.
- ► Gibbs sampling is from the landmark paper by Geman and Geman (1984)
 - ▶ The Gibbs sampler is a special case of Metropolis–Hastings
- ▶ Gelfand and Smith (1990) sparked new interest
 - ▶ In Bayesian methods and statistical computing
 - > They solved problems that were previously unsolvable

The Two-Stage Gibbs Sampler Introduction

- ► Creates a Markov chain from a joint distribution
- ▶ If two random variables X and Y have joint density f(x,y)
- ▶ With corresponding conditional densities $f_{Y|X}$ and $f_{X|Y}$
- ▶ Generates a Markov chain (X_t, Y_t) according to the following steps

Two-stage Gibbs sampler

Take
$$X_0 = x_0$$

For $t = 1, 2, \ldots$, generate

1.
$$Y_t \sim f_{Y|X}(\cdot|x_{t-1});$$

2.
$$X_t \sim f_{X|Y}(\cdot|y_t)$$
.

The Two-Stage Gibbs Sampler Convergence

- ► The algorithm straightforward if simulating from both conditionals is feasible
- \blacktriangleright The stationary distribution is f(x,y)
- ► Convergence of the Markov chain insured
 - ▶ Unless the supports of the conditionals are not connected

Example: Normal bivariate Gibbs

► Start with simple illustration, the bivariate normal model:

$$(X,Y) \sim \mathcal{N}_2 \left(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right),$$

ightharpoonup The the Gibbs sampler is Given x_t , generate

$$Y_{t+1} \mid x_t \sim \mathcal{N}(\rho x_t, 1 - \rho^2),$$

 $X_{t+1} \mid y_{t+1} \sim \mathcal{N}(\rho y_{t+1}, 1 - \rho^2).$

The Two-Stage Gibbs Sampler Bivariate Normal Path

- ▶ Iterations $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$
- ▶ Parallel to the axes
- ► Correlation affects mixing
- ► R code

The Two-Stage Gibbs Sampler Bivariate Normal Convergence

- ► The subchain $(X_t)_t$ satisfies $X_{t+1}|X_t = x_t \sim \mathcal{N}(\rho^2 x_t, 1 \rho^4)$,
- ▶ A recursion shows that

$$X_t|X_0 = x_0 \sim \mathcal{N}(\rho^{2t}x_0, 1 - \rho^{4t}) \to \mathcal{N}(0, 1),$$

 \blacktriangleright We have converged to the *joint* distribution and both marginal distributions.

- ► Histogram of Marginal
- ▶ 2000 Iterations

The Two-Stage Gibbs Sampler A First Hierarchical Model

- ► Gibbs sampling became popular
 - ▶ Since it was the perfect computational complement to hierarchical models
- ► A hierarchical model specifies a joint distribution
 - ▶ As successive layers of conditional distributions

Example: Generating beta-binomial random variables

► Consider the hierarchy

$$X|\theta \sim \mathcal{B}in(n,\theta)$$

 $\theta \sim \mathcal{B}e(a,b),$

▶ Which leads to the joint distribution

$$f(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}.$$

The Two-Stage Gibbs Sampler Beta-Binomial Conditionals

► The joint distribution

$$f(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}.$$

► Has full conditionals

$$\triangleright X | \theta \sim \mathcal{B}in(n, \theta)$$

$$\triangleright \theta | X \sim \mathcal{B}e(X + a, n - X + b)$$

► This can be seen from

$$f(x,\theta) = \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1}.$$

The Two-Stage Gibbs Sampler Beta-Binomial Marginals

 \blacktriangleright The marginal distribution of X is the Beta-Binomial

$$m(x) = \int_0^1 \binom{n}{x} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{x+a-1} (1-\theta)^{n-x+b-1} d\theta$$

- ▶ Output from the Gibbs sampler
- ightharpoonup X and θ marginals

The Two-Stage Gibbs Sampler A First Normal Hierarchy

► A study on metabolism in 15-year-old females yielded the following data

- > x=c(91,504,557,609,693,727,764,803,857,929,970,1043,
- + 1089,1195,1384,1713)
- ▶ Their energy intake, measured in megajoules, over a 24 hour period.
- ▶ We model

$$\log(X) \sim \mathcal{N}(\theta, \sigma^2), \quad i = 1, \dots, n$$

▶ And complete the hierarchy with

$$heta \sim \mathcal{N}(heta_0, au^2), \ \sigma^2 \sim \mathcal{IG}(a, b),$$

where $\mathcal{IG}(a,b)$ is the inverted gamma distribution.

The Two-Stage Gibbs Sampler θ Conditional

 \triangleright The posterior distribution \propto joint distribution is

$$f(\theta, \sigma^2 | \mathbf{x}) \propto \left[\frac{1}{(\sigma^2)^{n/2}} e^{-\sum_i (x_i - \theta)^2 / (2\sigma^2)} \right] \times \left[\frac{1}{\tau} e^{-(\theta - \theta_0)^2 / (2\tau^2)} \right] \times \left[\frac{1}{(\sigma^2)^{a+1}} e^{1/b\sigma^2} \right]$$
(Here $x = \log(x)$)

▶ And now we can get the full conditionals

 $\triangleright \theta$ conditional

$$f(\theta, \sigma^2 | \mathbf{x}) \propto \left[\frac{1}{(\sigma^2)^{n/2}} e^{-\sum_i (x_i - \boldsymbol{\theta})^2 / (2\sigma^2)} \right] \times \left[\frac{1}{\tau} e^{-(\boldsymbol{\theta} - \theta_0)^2 / (2\tau^2)} \right] \times \left[\frac{1}{(\sigma^2)^{a+1}} e^{1/b\sigma^2} \right]$$

$$\theta | \mathbf{x}, \sigma^2 \sim \mathcal{N} \left(\frac{\sigma^2}{\sigma^2 + n\tau^2} \, \theta_0 + \frac{n\tau^2}{\sigma^2 + n\tau^2} \, \bar{x}, \, \frac{\sigma^2 \tau^2}{\sigma^2 + n\tau^2} \right)$$

The Two-Stage Gibbs Sampler σ^2 Conditional

► Again from the joint distribution

$$f(\theta, \sigma^2 | \mathbf{x}) \propto \left[\frac{1}{(\sigma^2)^{n/2}} e^{-\sum_i (x_i - \theta)^2 / (2\sigma^2)} \right] \times \left[\frac{1}{\tau} e^{-(\theta - \theta_0)^2 / (2\tau^2)} \right] \times \left[\frac{1}{(\sigma^2)^{a+1}} e^{1/b\sigma^2} \right]$$

 \Rightarrow

$$\sigma^2 | \mathbf{x}, \theta \sim \mathcal{IG}\left(\frac{n}{2} + a, \frac{1}{2}\sum_i (x_i - \theta)^2 + b\right),$$

▶ We now have a Gibbs sampler using

$$\theta | \sigma^2 \sim {\tt rnorm} \ {\rm and} \ (1/\sigma^2) | \theta \sim {\tt rgamma}$$

► R code

The Multistage Gibbs Sampler Introduction

- ► There is a natural extension from the two-stage to the multistage Gibbs sampler
- ightharpoonup For p>1, write $\mathcal{X}=\mathbf{X}=(X_1,\ldots,X_p)$

> suppose that we can simulate from the full conditional densities

$$X_i|x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_p \sim f_i(x_i|x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_p)$$

▶ The multistage Gibbs sampler has the following transition from $X^{(t)}$ to $X^{(t+1)}$:

```
The Multi-stage Gibbs Sampler  
At iteration t = 1, 2, \ldots, process of the content of the conten
```

The Multistage Gibbs Sampler A Multivariate Normal Example

Example: Normal multivariate Gibbs

- ▶ We previously saw a simple bivariate normal example
- ► Consider the multivariate normal density

$$(X_1, X_2, \dots, X_p) \sim \mathcal{N}_p (0, (1 - \rho)I + \rho J),$$

 $\triangleright I$ is the $p \times p$ identity matrix

 $\triangleright J$ is a $p \times p$ matrix of ones

 $\triangleright \operatorname{corr}(X_i, X_j) = \rho \text{ for every } i \text{ and } j$

► The full conditionals are

$$X_i|x_{(-i)} \sim \mathcal{N}\left(\frac{(p-1)\rho}{1+(p-2)\rho}\bar{x}_{(-i)}, \frac{1+(p-2)\rho-(p-1)\rho^2}{1+(p-2)\rho}\right),$$

The Multistage Gibbs Sampler Use of the Multivariate Normal Gibbs sampler

- ► The Gibbs sampler that generates from these univariate normals
 - Can then be easily derived
 - ▶ But it is not needed for this problem
- ► It is, however, a short step to consider
 - \triangleright The setup where the components are restricted to a subset of \mathbb{R}^p .
 - ▶ If this subset is a hypercube,

$$\mathfrak{H} = \prod_{i=1} (a_i, b_i), \quad i = 1, \dots, p$$

the corresponding conditionals are the normals above restricted to (a_i, b_i)

► These are easily simulated

The Multistage Gibbs Sampler A Hierarchical Model for the Energy Data

- ▶ The oneway model can be a hierarchical model.
- ▶ Let X_{ij} be the energy intake, i = 1, 2 (girl or boy), j = 1, n.

$$\log(X_{ij}) = \theta_i + \varepsilon_{ij}, \quad , N(0, \sigma^2)$$

- ▶ We can complete this model with a hierarchical specification.
- ▶ There are different ways to parameterize this model. Here is one:

$$\log(X_{ij}) \sim \mathcal{N}(\theta_i, \sigma^2), \quad i = 1, \dots, k, \quad j = 1, \dots, n_i,$$

$$\theta_i \sim \mathcal{N}(\mu, \tau^2), \quad i = 1, \dots, k,$$

$$\mu \sim \mathcal{N}(\mu_0, \sigma_\mu^2),$$

$$\sigma^2 \sim \mathcal{IG}(a_1, b_1), \quad \tau^2 \sim \mathcal{IG}(a_2, b_2), \quad \sigma_\mu^2 \sim \mathcal{IG}(a_3, b_3).$$

The Multistage Gibbs Sampler Full Conditionals for a Oneway Model

▶ Now, if we proceed as before we can derive the set of full conditionals

$$\theta_{i} \sim \mathcal{N}\left(\frac{\sigma^{2}}{\sigma^{2} + n_{i}\tau^{2}}\mu + \frac{n_{i}\tau^{2}}{\sigma^{2} + n_{i}\tau^{2}}\bar{X}_{i}, \frac{\sigma^{2}\tau^{2}}{\sigma^{2} + n_{i}\tau^{2}}\right), \quad i = 1, \dots, k,$$

$$\mu \sim \mathcal{N}\left(\frac{\tau^{2}}{\tau^{2} + k\sigma_{\mu}^{2}}\mu_{0} + \frac{k\sigma_{\mu}^{2}}{\tau^{2} + k\sigma_{\mu}^{2}}\bar{\theta}, \frac{\sigma_{\mu}^{2}\tau^{2}}{\tau^{2} + k\sigma_{\mu}^{2}}\right),$$

$$\sigma^{2} \sim \mathcal{IG}\left(n/2 + a_{1}, (1/2)\sum_{ij}(X_{ij} - \theta_{i})^{2} + b_{1}\right),$$

$$\tau^{2} \sim \mathcal{IG}\left(k/2 + a_{2}, (1/2)\sum_{i}(\theta_{i} - \mu)^{2} + b_{2}\right),$$

$$\sigma_{\mu}^{2} \sim \mathcal{IG}\left(1/2 + a_{3}, (1/2)(\mu - \mu_{0})^{2} + b_{3}\right),$$

where $n = \sum_{i} n_i$ and $\bar{\theta} = \sum_{i} n_i \theta_i / n$.

The Multistage Gibbs Sampler Output From the Energy Data Analysis

► The top row:

- \triangleright Mean μ and θ_1 and θ_2 ,
- ▶ For the girl's and boy's energy

► Bottom row:

▷ Standard deviations.

- ▶ A variation is to give μ a flat prior, which is equivalent to setting $\sigma_{\mu}^2 = \infty$
- ► R code

Missing Data and Latent Variables Introduction

► Missing Data Models start with the relation

$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$$

 $\triangleright g(x|\theta)$ is typically the sample density or likelihood

 $\triangleright f$ is arbitrary and can be chosen for convenience

- \blacktriangleright We implement a Gibbs sampler on f
- ▶ Set $y = (x, z) = (y_1, \dots, y_p)$ and run the Gibbs sampler

$$Y_1|y_2, \dots, y_p \sim f(y_1|y_2, \dots, y_p),$$

 $Y_2|y_1, y_3, \dots, y_p \sim f(y_2|y_1, y_3, \dots, y_p),$
 \vdots
 $Y_p|y_1, \dots, y_{p-1} \sim f(y_p|y_1, \dots, y_{p-1}).$

Missing Data and Latent Variables Completion Gibbs Sampler

► For
$$g(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$$

► And
$$y = (x, z) = (y_1, \dots, y_p)$$
 with
$$Y_1 | y_2, \dots, y_p \sim f(y_1 | y_2, \dots, y_p),$$

$$Y_2 | y_1, y_3, \dots, y_p \sim f(y_2 | y_1, y_3, \dots, y_p),$$

$$\vdots$$

$$Y_p | y_1, \dots, y_{p-1} \sim f(y_p | y_1, \dots, y_{p-1}).$$

$$\triangleright Y^{(t)} = (X^{(t)}, Z^{(t)}) \to Y \sim f(x, z)$$

$$\triangleright X^{(t)} \to Y \sim f(x)$$

$$\triangleright Z^{(t)} \to Y \sim f(z)$$

- $ightharpoonup X^{(t)}$ and $Z^{(t)}$ are not Markov chains
 - ▶ But the subchains converge to the correct distributions

Missing Data and Latent Variables Censored Data Models

Example: Censored Data Gibbs

► Recall the censored data likelihood function

$$g(x|\theta) = L(\theta|x) \propto \prod_{i=1}^{m} e^{-(x_i - \theta)^2/2},$$

► And the complete-data likelihood

$$f(x, z|\theta) = L(\theta|x, z) \propto \prod_{i=1}^{m} e^{-(x_i - \theta)^2/2} \prod_{i=m+1}^{n} e^{-(z_i - \theta)^2/2}$$

 \triangleright With $\theta \sim \pi(\theta)$ we have the Gibbs sampler

$$\pi(\theta|x,z)$$
 and $f(z|x,\theta)$

 \triangleright With stationary distribution $\pi(\theta, z|x)$, the posterior of θ and z.

Missing Data and Latent Variables Censored Normal

- ightharpoonup Each Z_i must be greater than the truncation point a
- ightharpoonup Many ways to generate Z (AR, rtrun from the package bayesm, PIT)
- ► R code

Missing Data and Latent Variables Genetic Linkage

- ▶ We previously saw the classic genetic linkage data
- ► Such models abound
- ▶ Here is another, more complex, model

Observed genotype frequencies on blood type data

Genotype	Probability	Observed	Probability	Frequency	
AA	p_A^2	А	$p_A^2 + 2p_A p_O$	$n_A = 186$	► Dominant allele → missing data
AO	$2p_Ap_O$,
BB	p_B^2	В	$p_B^2 + 2p_B p_O$	$n_B = 38$	ightharpoonup Cannot observe AO or BO
ВО	$2p_Bp_O$				
AB	$2p_Ap_B$	AB	$2p_Ap_B$	$n_{AB} = 13$	
00	p_O^2	О	p_O^2	$n_O = 284$	

► Observe
$$X \sim \mathcal{M}_4 \left(n; p_A^2 + 2p_A p_O, \ p_B^2 + 2p_B p_O, \ p_A p_B, \ p_O^2 \right)$$

▷ $p_A + p_B + p_O = 1$

Missing Data and Latent Variables Latent Variable Multinomial

► The observed data likelihood is

$$L(p_A, p_B, p_O|X) \propto (p_A^2 + 2p_A p_O)^{n_A} (p_B^2 + 2p_B p_O)^{n_B} (p_A p_B)^{n_{AB}} (p_O^2)^{n_O}$$

 \blacktriangleright With missing data (latent variables) Z_A and Z_B , the complete-data likelihood is

$$L(p_A, p_B, p_O|X, Z_A, Z_B) \propto (p_A^2)^{Z_A} (2p_A p_O)^{n_A - Z_A} (p_B^2)^{Z_B} (2p_B p_O)^{n_B - Z_B} (p_A p_B)^{n_{AB}} (p_O^2)^{n_O}.$$

► Giving the missing data density

$$\left(\frac{p_A^2}{p_A^2 + 2p_A p_O}\right)^{Z_A} \left(\frac{2p_A p_O}{p_A^2 + 2p_A p_O}\right)^{n_A - Z_A} \left(\frac{p_B^2}{p_B^2 + 2p_B p_O}\right)^{Z_B} \left(\frac{2p_B p_O}{p_B^2 + 2p_B p_O}\right)^{n_B - Z_B}$$

► And the Gibbs sampler

 $p_A, p_B, p_O|X, Z_A, Z_B \sim \text{Dirichlet}, \quad Z_A, Z_B|p_A, p_B, p_O \sim \text{Independent Binomial}$

Missing Data and Latent Variables Analysis of Blood Types

- ► Estimated genotype frequencies
- ► Fisher had first developed these models
 - ▶ But he could not do the estimation: No EM, No Gibbs in 1930

Multi-Stage Gibbs Samplers Hierarchical Structures

- ▶ We have seen the multistage Gibbs sampler applied to a number of examples▶ Many arising from missing-data structures.
- ▶ But the Gibbs sampler can sample from any hierarchical model
- ► A hierarchical model is defined by a sequence of conditional distributions

 ► For instance, in the two-level generic hierarchy

$$X_i \sim f_i(x|\theta), \quad i = 1, \dots, n, \quad \theta = (\theta_1, \dots, \theta_p),$$

 $\theta_j \sim \pi_j(\theta|\gamma), \quad j = 1, \dots, p, \quad \gamma = (\gamma_1, \dots, \gamma_s),$
 $\gamma_k \sim g(\gamma), \quad k = 1, \dots, s.$

► The joint distribution from this hierarchy is

$$\prod_{i=1}^{n} f_i(x_i|\theta) \prod_{j=1}^{p} \pi_j(\theta_j|\gamma) \prod_{k=1}^{s} g(\gamma_k).$$

Multi-Stage Gibbs Samplers Simulating from the Hierarchy

 \triangleright With observations x_i the full posterior conditionals are

$$\theta_j \propto \pi_j(\theta_j|\gamma) \prod_{i=1}^n f_i(x_i|\theta), \quad j = 1, \dots, p,$$

$$\gamma_k \propto g(\gamma_k) \prod_{i=1}^p \pi_j(\theta_j|\gamma), \quad k = 1, \dots, s.$$

- ▶ In standard hierarchies, these densities are straightforward to simulate from
- ⊳ In complex hierarchies, we might need to use a Metropolis–Hastings step
- ▶ Main message: full conditionals are easy to write down given the hierarchy

4 Note:

- ▶ When a full conditional in a Gibbs sampler cannot be simulated directly
 - ▷ One Metropolis—Hastings step is enough

Multi-Stage Gibbs Samplers The Pump Failure Data

Example: Nuclear Pump Failures

- ▶ A benchmark hierarchical example in the Gibbs sampling literature
- ▶ Describes multiple failures of pumps in a nuclear plant
- ► Data:

Pump	1	2	3	4	5	6	7	8	9	10
Failures	5	1	5	14	3	19	1	1	4	22
Time	94.32	15.72	62.88	125.76	5.24	31.44	1.05	1.05	2.10	10.48

- \blacktriangleright Model: Failure of i^{th} pump follows a Poisson process
- ▶ For time t_i , the number of failures $X_i \sim \mathcal{P}(\lambda_i t_i)$

Multi-Stage Gibbs Samplers The Pump Failure Hierarchy

▶ The standard priors are gammas, leading to the hierarchical model

$$X_i \sim \mathcal{P}(\lambda_i t_i), \quad i = 1, \dots 10,$$

 $\lambda_i \sim \mathcal{G}(\alpha, \beta), \quad i = 1, \dots 10,$
 $\beta \sim \mathcal{G}(\gamma, \delta).$

► With joint distribution

$$\prod_{i=1}^{10} \left\{ (\lambda_i t_i)^{x_i} e^{-\lambda_i t_i} \lambda_i^{\alpha - 1} e^{-\beta \lambda_i} \right\} \beta^{10\alpha} \beta^{\gamma - 1} e^{-\delta \beta}$$

► And full conditionals

$$\lambda_i | \beta, t_i, x_i \sim \mathcal{G}(x_i + \alpha, t_i + \beta), \quad i = 1, \dots 10,$$

$$\beta | \lambda_1, \dots, \lambda_{10} \sim \mathcal{G} \left(\gamma + 10\alpha, \delta + \sum_{i=1}^{10} \lambda_i \right).$$

Multi-Stage Gibbs Samplers The Pump Failure Gibbs Sampler

- ► The Gibbs sampler is easy
- ► Some selected output here
- ► Nice autocorrelations
- ► R code

- ► Goal of the pump failure data is to identify which pumps are more reliable.
 - \triangleright Get 95% posterior credible intervals for each λ_i to assess this

Other Considerations Reparameterization

- ▶ Many factors contribute to the convergence properties of a Gibbs sampler
- ► Convergence performance may be greatly affected by the parameterization
- ► High covariance may result in slow exploration.

Simple Example

ightharpoonup Autocorrelation for $\rho = .3, .6, .9$

Reparameterization Oneway Models

- ▶ Poor parameterization can affect both Gibbs sampling and Metropolis–Hastings
- ▶ No general consensus on a solution
 - \triangleright Overall advice \Rightarrow make the components as independent as possible
- ► Example: Oneway model for the energy data
 - ► Then

$$Y_{ij} \sim \mathcal{N}(\theta_i, \sigma^2),$$

 $\theta_i \sim \mathcal{N}(\mu, \tau^2),$
 $\mu \sim \mathcal{N}(\mu_0, \sigma_\mu^2),$

► Now

$$Y_{ij} \sim \mathcal{N}(\mu + \theta_i, \sigma^2),$$

 $\theta_i \sim \mathcal{N}(0, \tau^2),$
 $\mu \sim \mathcal{N}(\mu_0, \sigma_\mu^2).$

 $\triangleright \mu$ at first level

 $\triangleright \mu$ at second level

Reparameterization Oneway Models for the Energy Data

- ightharpoonup Top = Then
- ightharpoonup Bottom = Now
- ► Very similar
- ► Then slightly better?

Reparameterization Covariances of the Oneway Models

▶ But look at the covariance matrix of the subchain $(\mu^{(t)}, \theta_1^{(t)}, \theta_2^{(t)})$

Then:
$$Y_{ij} \sim \mathcal{N}(\theta_i, \sigma^2)$$

Now:
$$Y_{ij} \sim \mathcal{N}(\mu + \theta_i, \sigma^2)$$

$$\begin{pmatrix}
1.056 & -0.175 & -0.166 \\
-0.175 & 1.029 & 0.018 \\
-0.166 & 0.018 & 1.026
\end{pmatrix}$$

$$\begin{pmatrix}
1.604 & 0.681 & 0.698 \\
0.681 & 1.289 & 0.278 \\
0.698 & 0.278 & 1.304
\end{pmatrix},$$

- ► So the new model is not as good as the old
- ➤ The covariances are all bigger

 > It will not mix as fast
- ► A pity: I like the new model better

Rao-Blackwellization Introduction

- ▶ We have already seen Rao–Blackwellization in Chapter 4
 - > Produced improved variance over standard empirical average
- ► For $(X,Y) \sim f(x,y)$, parametric Rao–Blackwellization is based on $\triangleright \mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[\delta(Y)]$ $\triangleright \text{var}[\delta(Y)] \leq \text{var}(X)$

Example: Poisson Count Data

- ► For 360 consecutive time units
- ▶ Record the number of passages of individuals per unit time past some sensor.

Number of passages	0	1	2	3	4 or more
Number of observations	139	128	55	25	13

Rao-Blackwellization Poisson Count Data

- ▶ The data involves a grouping of the observations with four passages or more.
- ▶ This can be addressed as a missing-data model
 - \triangleright Assume that the ungrouped observations are $X_i \sim \mathcal{P}(\lambda)$
 - ▶ The likelihood of the model is

$$\ell(\lambda|x_1,\ldots,x_5) \propto e^{-347\lambda} \lambda^{128+55\times 2+25\times 3} \left(1 - e^{-\lambda} \sum_{i=0}^{3} \lambda^i/i!\right)^{13}$$

for
$$x_1 = 139, \dots, x_5 = 13$$
.

- ▶ For $\pi(\lambda) = 1/\lambda$ and missing data $\mathbf{z} = (z_1, \dots, z_{13})$
 - ▶ We have a completion Gibbs sampler from the full conditionals

$$Z_i^{(t)} \sim \mathcal{P}(\lambda^{(t-1)}) \, \mathbb{I}_{y \ge 4}, \quad i = 1, \dots, 13,$$

$$\lambda^{(t)} \sim \mathcal{G}\left(313 + \sum_{i=1}^{13} Z_i^{(t)}, 360\right).$$

Rao-Blackwellization Comparing Estimators

- ► The empirical average is $\frac{1}{T} \sum_{t=1}^{T} \lambda^{(t)}$
- ▶ The Rao-Blackwellized estimate of λ is then given by

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}\lambda^{(t)}\big|, z_1^{(t)}, \dots, z_{13}^{(t)}\right] = \frac{1}{360T}\sum_{t=1}^{T}\left(313 + \sum_{i=1}^{13}z_i^{(t)}\right),\,$$

▶ Note the massive variance reduction.

Generating Truncated Poisson Variables Using While

- ▶ The truncated Poisson variable can be generated using the while statement
 - > for (i in 1:13){while(y[i]<4) y[i]=rpois(1,lam[j-1])} or directly with
 - > prob=dpois(c(4:top),lam[j-1])
 - > for (i in 1:13) z[i]=4+sum(prob < runif(1)*sum(prob))
- ► Lets look at a comparison
- ► R code

Gibbs Sampling with Improper Priors Introduction

- ▶ There is a particular danger resulting from careless use of the Gibbs sampler.
- ► The Gibbs sampler is based on conditional distributions
- ▶ It is particularly insidious is that
 - (1) These conditional distributions may be well-defined
 - (2) They may be simulated from
 - (3) But may not correspond to any joint distribution!
- ▶ This problem is not a defect of the Gibbs sampler
- ▶ It reflects use of the Gibbs sampler when assumptions are violated.
- ► Corresponds to using Bayesian models with improper priors

Gibbs Sampling with Improper Priors A Very Simple Example

- ➤ The Gibbs sampler can be constructed directly from conditional distributions

 ▷ Leads to carelessness about checking the propriety of the posterior
- ▶ The pair of conditional densities $X|y \sim \mathcal{E}xp(y)$, $Y|x \sim \mathcal{E}xp(x)$, ▷ Well-defined conditionals with no joint probability distribution.

► Histogram and cumulative average

- ► The pictures are absolute rubbish!
- ▶ Not a recurrent Markov chain
- ightharpoonup Stationary measure = $\exp(-xy)$
- ► No finite integral

Gibbs Sampling with Improper Priors A Very Scary Example

- ightharpoonup Oneway model $Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$,
 - $\triangleright \alpha_i \sim \mathcal{N}(0, \sigma^2)$ and $\varepsilon_{ij} \sim \mathcal{N}(0, \tau^2)$
 - \triangleright The Jeffreys (improper) prior for μ , σ , and τ is $\pi(\beta, \sigma^2, \tau^2) = \frac{1}{\sigma^2 \tau^2}$.
- ► Conditional distributions

$$\alpha_{i}|y,\mu,\sigma^{2},\tau^{2} \sim \mathcal{N}\left(\frac{J(\bar{y}_{i}-\mu)}{J+\tau^{2}\sigma^{-2}},(J\tau^{-2}+\sigma^{-2})^{-1}\right),$$

$$\mu|\alpha,y,\sigma^{2},\tau^{2} \sim \mathcal{N}(\bar{y}-\bar{\alpha},\tau^{2}/IJ),$$

$$\sigma^{2}|\alpha,\mu,y,\tau^{2} \sim \mathcal{IG}(I/2,(1/2)\sum_{i}\alpha_{i}^{2}),$$

$$\tau^{2}|\alpha,\mu,y,\sigma^{2} \sim \mathcal{IG}(IJ/2,(1/2)\sum_{i,j}(y_{ij}-\alpha_{i}-\mu)^{2}),$$

$$\star^{2}|\alpha,\mu,y,\sigma^{2} \sim \mathcal{IG}(IJ/2,(1/2)\sum_{i,j}(y_{ij}-\alpha_{i}-\mu)^{2}),$$

$$\star^{2}|\alpha,\mu,y,\sigma^{2} \sim \mathcal{IG}(IJ/2,(1/2)\sum_{i,j}(y_{ij}-\alpha_{i}-\mu)^{2}),$$

- ▶ But there is no proper joint distribution
- ▶ Often this is impossible to detect by monitoring the output

Gibbs Sampling with Improper Priors A Final Warning

4

- ► Graphical monitoring cannot exhibit deviant behavior of the Gibbs sampler.
- ► There are many examples, some published, of null recurrent Gibbs samplers

 ▷ Undetected by the user
- ▶ The Gibbs sampler is valid only if the joint distribution has a finite integral.

- ▶ With improper priors in a Gibbs sampler
 - ▶ The posterior must always be checked for propriety.
- ▶ Improper priors on variances cause more trouble than those on means

Chapter 8: Monitoring Convergence of MCMC Algorithms

"Why does he insist that we must have a diagnosis? Some things are not meant to be known by man."

Susanna Gregory

An Unholy Alliance

This Chapter

- ▶ We look at different diagnostics to check the convergence of an MCMC algorithm
- ► To answer to question: "When do we stop our MCMC algorithm?"
- ▶ We distinguish between two separate notions of convergence:

 - Convergence of ergodic averages
- ▶ We also discuss some convergence diagnostics contained in the coda package

Monitoring Convergence Introduction

- ► The MCMC algorithms that we have seen
 - ▶ Are convergent because the chains they produce are ergodic.
- ► Although this is a necessary theoretical validation of the MCMC algorithms

 > It is insufficient from the implementation viewpoint
- ► Theoretical guarantees do not tell us
 - > When to stop these algorithms and produce our estimates with confidence.
- ► In practice, this is nearly impossible
- ► Several runs of your program are usually required until
 - ▶ You are satisfied with the outcome
 - ▶ You run out of time and/or patience

Monitoring Convergence Monitoring What and Why

▶ There are three types of convergence for which assessment may be necessary.

- ► Convergence to the stationary distribution
- ► Convergence of Averages
- ► Approximating iid Sampling

Monitoring Convergence Convergence to the Stationary Distribution

- ► First requirement for convergence of an MCMC algorithm
 - $\triangleright (x^{(t)}) \sim f$, the stationary distribution
 - ▶ This sounds like a minimal requirement
- \blacktriangleright Assessing that $x^{(t)} \sim f$ is difficult with only a single realization
- ▶ A slightly less ambitious goal: Assess the independence from the starting point $x^{(0)}$ based on several realizations of the chain using the same transition kernel.
- ▶ When running an MCMC algorithm, the important issues are
 - \triangleright The speed of exploration of the support of f
 - \triangleright The degree of correlation between the $x^{(t)}$'s

Monitoring Convergence Tools for AssessingConvergence to the Stationary Distribution

- ► A major tool for assessing convergence: Compare performance of several chains
- ▶ This means that the slower chain in the group governs the convergence diagnostic
- ▶ Multiprocessor machines is an incentive for running replicate parallel chains
 - > Can check for the convergence by using several chains at once
 - ▶ May not be much more costly than using a single chain
- ► Looking at a single path of the Markov chain produced by an MCMC algorithm makes it difficult to assess convergence
- ▶ MCMC algorithms suffer from the major defect that
 - ▶ "you've only seen where you've been"
- \blacktriangleright The support of f that has not yet been visited is almost impossible to detect.

Monitoring Convergence Convergence of Averages

► A more important convergence issue is convergence of the empirical average

$$\frac{1}{T} \sum_{t=1}^{T} h(x^{(t)}) \to BE_f[h(X)]$$

- ► Two features that distinguish stationary MCMC outcomes from iid ones
 - \triangleright The probabilistic dependence in the sample
 - ▶ The mixing behavior of the transition,
 - \triangleright That is, how fast the chain explores the support of f
- ► "Stuck in a mode" might appear to be stationarity
 - ➤ The missing mass problem again
- ► Also: The CLT might not be available

Monitoring Convergence Approximating iid sampling

- ▶ Ideally, the approximation to f provided by MCMC algorithms should ▶ Extend to the (approximate) production of iid samples from f.
- ► A practical solution to this issue is to use *subsampling* (or *batch sampling*)

 ▷ Reduces correlation between the successive points of the Markov chain.
- ► Subsampling illustrates this general feature but it loses in efficiency
- ► Compare two estimators
 - $\triangleright \delta_1$: Uses all of the Markov chain
 - $\triangleright \delta_2$: Uses subsamples
- ▶ It can be shown that

$$var(\delta_1) \le var(\delta_2)$$

Monitoring Convergence The coda package

- ▶ Plummer et al. have written an R package called coda
- ► Contains many of the tools we will be discussing in this chapter
- ▶ Download and install with library(coda)
- ► Transform an MCMC output made of a vector or a matrix into an MCMC object that can be processed by coda, as in
 - > summary(mcmc(X))

or

> plot(mcmc(X))

Monitoring Convergence to Stationarity Graphical Diagnoses

- ► A first approach to convergence control
 - ▶ Draw pictures of the output of simulated chains
- ► Componentwise as well as jointly
 - ▶ In order to detect deviant or nonstationary behaviors
- ▶ coda provides this crude analysis via the plot command
- ► When applied to an mcmc object
 - > Produces a trace of the chain across iterations
 - ▶ And a non-parametric estimate of its density, parameter by parameter

Monitoring Convergence to Stationarity Graphical Diagnoses for a Logistic Random Effect Model

Example: Random effect logit model

 \triangleright Observations y_{ij} are modeled conditionally on one covariate x_{ij} as

$$P(y_{ij} = 1 | x_{ij}, u_i, \beta) = \frac{\exp\{\beta x_{ij} + u_i\}}{1 + \exp\{\beta x_{ij} + u_i\}}, i = 1, \dots, n, j = 1, \dots, m$$

- $\triangleright u_i \sim \mathcal{N}(0, \sigma^2)$ is an unobserved random effect
- ▶ This is missing data
- ▶ We fit this with a Random Walk Metropolis–Hastings algorithm.

Monitoring Convergence to Stationarity Fitting a Logistic Random Effect Model

► The complete data likelihood is

$$\prod_{ij} \left(\frac{\exp\{\beta x_{ij} + u_i\}}{1 + \exp\{\beta x_{ij} + u_i\}} \right)^{y_{ij}} \left(\frac{1}{1 + \exp\{\beta x_{ij} + u_i\}} \right)^{1 - y_{ij}}$$

- ➤ This is the target in our Metropolis—Hastings algorithm
 - \triangleright Simulate random effects $u_i^{(t)} \sim N(u_i^{(t-1)}, \sigma^2)$
 - \triangleright Simulate the logit coefficient $\beta^{(t)} \sim N(\beta^{(t-1)}, \tau^2)$
 - \triangleright Specify σ^2 and τ^2
- $ightharpoonup \sigma^2$ and τ^2 affect mixing

Monitoring Convergence to Stationarity ACF and Coda

25

► Trace and acf:

► Coda

► R code

▶ Also can apply to parallel chains

Tests of Stationarity Nonparametric Tests: Kolmogorov-Smirnov

- ▶ Other than a graphical check, we can try to test for independence
- ► Standard non-parametric tests of fit, such as Kolmogorov—Smirnov

 → Apply to a single chain to compare the distributions of the two halves
- ➤ There needs to be a correction for the Markov correlation

 > The correction can be achieved by introducing a batch size
- ➤ We use

$$K = \frac{1}{M} \sup_{\eta} \left| \sum_{g=1}^{M} \mathbb{I}_{(0,\eta)}(x_1^{(gG)}) - \sum_{g=1}^{M} \mathbb{I}_{(0,\eta)}(x_2^{(gG)}) \right|$$

 \triangleright With G = batch size, M = sample size

Tests of Stationarity Kolmogorov-Smirnov for the Pump Failure Data

Example: Poisson Hierarchical Model

- ► Consider again the nuclear pump failures
- ▶ We monitor the subchain $(\beta^{(t)})$ produced by the algorithm
 - > We monitor one chain split into two halves
 - ▶ We also monitor two parallel chains
- ► Use R command ks.test
- ▶ We will see (next slide) that the results are not clear

Monitoring Convergence Kolmogorov-Smirnov p-values for the Pump Failure Data

- ▶ Upper=split chain; Lower = Parallel chains; L \rightarrow R: Batch size 10, 100, 200.
- ► Seems too variable to be of little use
- ► This is a good chain! (fast mixing, low autocorrelation)

Monitoring Convergence Tests Based on Spectral Analysis

- ➤ There are convergence assessments spectral or Fourier analysis
- ▶ One is due to Geweke
 - \triangleright Constructs the equivalent of a t test
 - > Assess equality of means of the first and last parts of the Markov chain.
- ▶ The test statistic is

$$\sqrt{T}(\delta_A - \delta_B) / \sqrt{\frac{\sigma_A^2}{\tau_A} + \frac{\sigma_B^2}{\tau_B}},$$

- $\triangleright \delta_A$ and δ_B are the means from the first and last parts
- $\triangleright \sigma_A^2$ and σ_B^2 are the spectral variance estimates
- ► Implement with geweke.diag and geweke.plot

Monitoring Convergence Geweke Diagnostics for Pump Failure Data

\blacktriangleright For λ_1

- $\triangleright t$ -statistic = 1.273
- ▶ Plot discards successive beginning segments
- \triangleright Last z-score only uses last half of chain

► Heidelberger and Welch have a similar test: heidel.diag

Monitoring Convergence of Averages Plotting the Estimator

- ▶ The initial and most natural diagnostic is to plot the evolution of the estimator
- ▶ If the curve of the cumulated averages has not stabilized after T iterations ▶ The length of the Markov chain must be increased.
- ▶ The principle can be applied to multiple chains as well.
 - Can use cumsum, plot(mcmc(coda)), and cumuplot(coda)

- ightharpoonup For λ_1 from Pump failures
- ► cumuplot of second half

Monitoring Convergence of Averages Trace Plots and Density Estimates

▶ plot(mcmc(lambda)) produces two graphs

▶ Note: To get second half of chain temp=lambda[2500:5000], plot(mcmc(temp))

Monitoring Convergence of Averages Multiple Estimates

- ► Can use several convergent estimators of $\mathbb{E}_f[h(\theta)]$ based on the same chain ► Monitor until all estimators coincide
- ► Recall Poisson Count Data
 - ▶ Two Estimators of Lambda: Empirical Average and RB
 - \triangleright Convergence Diagnostic \rightarrow Both estimators converge 50,000 Iterations

Monitoring Convergence of Averages Computing Multiple Estimates

- ► Start with a Gibbs sampler $\theta | \eta$ and $\eta | \theta$
- ightharpoonup Typical estimates of $h(\theta)$
 - \triangleright The empirical average $S_T = \frac{1}{T} \sum_{t=1}^T h(\theta^{(t)})$
 - \triangleright The Rao-Blackwellized version $S_T^C = \frac{1}{T} \sum_{t=1}^T \mathbb{E}[h(\theta)|\eta^{(t)}]$,
 - \triangleright Importance sampling: $S_T^P = \sum_{t=1}^T w_t h(\theta^{(t)}),$

$$\triangleright w_t \propto f(\theta^{(t)})/g_t(\theta^{(t)})$$

 $\triangleright f = \text{target}, g = \text{candidate}$

Monitoring Convergence of Multiple Estimates Cauchy Posterior Simulation

► The hierarchical model

$$X_i \sim \text{Cauchy}(\theta), \quad i = 1, \dots, 3$$

 $\theta \sim N(0, \sigma^2)$

► Has posterior distribution

$$\pi(\theta|x_1, x_2, x_3) \propto e^{-\theta^2/2\sigma^2} \prod_{i=1}^{3} \frac{1}{(1 + (\theta - x_i)^2)}$$

▶ We can use a Completion Gibbs sampler

$$\eta_i | \theta, x_i \sim \mathcal{E}xp\left(\frac{1 + (\theta - x_i)^2}{2}\right),$$

$$\theta | x_1, x_2, x_3, \eta_1, \eta_2, \eta_3 \sim \mathcal{N}\left(\frac{\eta_1 x_1 + \eta_2 x_2 + \eta_3 x_3}{\eta_1 + \eta_2 + \eta_3 + \sigma^{-2}}, \frac{1}{\eta_1 + \eta_2 + \eta_3 + \sigma^{-2}}\right),$$

Monitoring Convergence of Multiple Estimates Completion Gibbs Sampler

▶ The Gibbs sampler is based on the latent variables η_i , where

$$\int e^{-\frac{1}{2}\eta_i(1+(x_i-\theta)^2)}d\eta_i = \frac{2}{1+(x_i-\theta)^2}$$

► With

$$\eta_i \sim \text{Exponential}\left(\frac{1}{2}(1+(x_i-\theta)^2)\right)$$

- \blacktriangleright Monitor with three estimates of θ
 - ▶ Empirical Average
 - ▶ Rao-Blackwellized
 - ▶ Importance sample

Monitoring Convergence of Multiple Estimates Calculating the Estimates

► Empirical Average

$$\frac{1}{M} \sum_{j=1}^{M} \hat{\theta}^{(j)}$$

► Rao-Blackwellized

$$\theta | \eta_1, \eta_2, \eta_3 \sim N \left(\frac{\sum_i \eta_i x_i}{\frac{1}{\sigma^2} + \sum_i \eta_i}, \left[\frac{1}{\sigma^2} + \sum_i \eta_i \right]^{-1} \right)$$

► Importance sampling with Cauchy candidate

Monitoring Convergence of Multiple Estimates Monitoring the Estimates

- ▶ When applicable, superior diagnostic to single chain
- ► Intrinsically conservative
 - > Speed of convergence determined by slowest estimate

Monitoring Convergence of Averages Between and Within Variances

- ► The Gelman-Rubin diagnostic uses multiple chains
- ▶ Based on a between-within variance comparison (anova-like)▶ Implemented in coda as gelman.diag(coda) and gelman.plot(coda).
- ► For m chains $\{\theta_1^{(t)}\}, \dots \{\theta_m^{(t)}\}$

$$\triangleright$$
 The between-chain variance is $B_T = \frac{1}{M-1} \sum_{m=1}^{M} (\overline{\theta}_m - \overline{\theta})^2$,

- \triangleright The within-chain variance is $W_T = \frac{1}{M-1} \sum_{m=1}^{M} \frac{1}{T-1} \sum_{t=1}^{T} (\theta_m^{(t)} \overline{\theta}_m)^2$
- ► If the chains have converged, these variances are the same (anova null hypothesis)

Monitoring Convergence of Averages Gelman-Rubin Statistic

- \triangleright B_T and W_T are combined into an F-like statistic
- ➤ The shrink factor, defined by

$$R_T^2 = \frac{\hat{\sigma}_T^2 + \frac{B_T}{M}}{W_T} \frac{\nu_T + 1}{\nu_T + 3},$$

$$\triangleright \hat{\sigma}_T^2 = \frac{T-1}{T} W_T + B_T.$$

 $\triangleright F$ -distribution approximation

- ► Enjoyed wide use because of simplicity and intuitive connections with anova
- $ightharpoonup R_T$ does converge to 1 under stationarity,
- ▶ However, its distributional approximation relies on normality
- ▶ These approximations are at best difficult to satisfy and at worst not valid.

Monitoring Convergence of Averages Gelman Plot for Pump Failures

- ightharpoonup Three chains for λ_1
- ► nsim=1000
- ► Suggests convergence
- ▶ gelman.diag gives

Point est. 97.5 % quantile 1.00 1.01

► R code

We Did All This!!!

1. Intro

5. Optimization

6. Metropolis

3. MCI

7. Gibbs

4. Acceleration

8. Convergence

Thank You for Your Attention

George Casella

casella@ufl.edu

