INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.12 - Electrónica III

Trabajo Práctico $N^{\circ}1$

Grupo 4

Bertachini, Germán	58750
Dieguez, Manuel	56273
Galdeman, Agustín	59827
LAGUINGUE, Juan Martín	57430

PROFESORES
DEWALD, Kevin
WUNDES, Pablo

Presentado el 5 de Septiembre de 2019

Índice

1.	Alg	ebra b	ooleana y compuertas lógicas	2
	1.1.	Prime	ra Expresión: suma de productos	2
		1.1.1.	Simplificación mediante álgebra booleana	
		1.1.2.	Simplificacioón mediante mapas de Karnaugh	Ç
		1.1.3.	Implementación mediante compuertas AND, OR y NOT	
		1.1.4.	Implementación mediante compuertas NAND	
	1.2.	Segun	da expresión: producto de sumas	
		1.2.1.	Simplificación mediante álgebra booleana	
		1.2.2.	Simplificacioón mediante mapas de Karnaugh	
		1.2.3.	Implementación mediante compuertas AND, OR y NOT	
		1.2.4.	Implementación mediante compuertas NAND	
2.	Ejeı	rcicio 4	4 - Conversor a codigo de Gray	3

1. Algebra booleana y compuertas lógicas

En el álgebra booleana se conoce como término canónico de una función lógica a todo producto o suma en la cual aparecen todas las variables en su forma directa o inversa. Cualquier función lógica puede expresarse de forma canónica utilizando los conceptos de min y maxtérminos. El primero, se refiere a todas las filas para las cuales la función lógica es igual a uno en la tabla de verdad correspondiente, mientras que el segundo se corresponde con todos los valores para los cuales la función es igual a cero.

En el siguiente ejercicio se simplificarán dos funciones lógicas aplicando ambos conceptos. Luego se utilizarán mapas de Karnaugh para llegar a la misma expresión. A continuación se dibujará el circuito lógico resultante utilizando compuertas AND, OR y NOT, y por último, se usarán compuertas NAND exclusivamente.

1.1. Primera Expresión: suma de productos

1.1.1. Simplificación mediante álgebra booleana

La expresión de la cual se parte está dada por la siguiente fórmula:

$$f(e,d,c,b,a) = \sum m(0,2,4,7,8,10,12,16,18,20,23,24,25,26,27,28)$$
 (1)

La ecuación 1 nos indica cuales entradas en la tabla de verdad son iguales a uno. A partir de ella podemos plantear la siguiente ecuación, la cual se trabajará para llegar a su respectiva expresión canónica.

$$\bar{e} \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + \bar{e} \cdot \bar{d} \cdot \bar{c} \cdot b \cdot \bar{a} + \bar{e} \cdot \bar{d} \cdot c \cdot \bar{b} \cdot \bar{a} + \bar{e} \cdot \bar{d} \cdot c \cdot b \cdot a + \bar{e} \cdot d \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + \bar{e} \cdot d \cdot \bar{c} \cdot b \cdot \bar{a} + \bar{e} \cdot d \cdot c \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot c \cdot b \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot$$

La expresión anterior puede parecer complicada en un principio, pero esta ordenada según cada mintermino correspondiente. Para comenzar el proceso de simplificación, gracias a la ley de idempotencia se puede sumar términos ya presentes en la ecuación anterior. So procederá a duplicar los mintérminos 2, 18 y 26 y a ordenar la fórmula para faciliatr la simplificación.

$$\bar{e} \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + \bar{e} \cdot \bar{d} \cdot \bar{c} \cdot b \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot b \cdot \bar{a}$$

$$(3)$$

$$\bar{e} \cdot d \cdot \bar{c} \cdot b \cdot \bar{a} + e \cdot d \cdot \bar{c} \cdot b \cdot \bar{a} + \bar{e} \cdot \bar{d} \cdot \bar{c} \cdot b \cdot \bar{a} + e \cdot \bar{d} \cdot \bar{c} \cdot b \cdot \bar{a}$$

$$\tag{4}$$

$$\bar{e} \cdot \bar{d} \cdot c \cdot \bar{b} \cdot \bar{a} + \bar{e} \cdot d \cdot c \cdot \bar{b} \cdot \bar{a} + e \cdot \bar{d} \cdot c \cdot \bar{b} \cdot \bar{a} + e \cdot d \cdot c \cdot \bar{b} \cdot \bar{a}$$

$$(5)$$

$$e \cdot d \cdot \bar{c} \cdot \bar{b} \cdot \bar{a} + e \cdot d \cdot \bar{c} \cdot \bar{b} \cdot a + e \cdot d \cdot \bar{c} \cdot b \cdot \bar{a} + e \cdot d \cdot \bar{c} \cdot b \cdot a \tag{6}$$

$$e \cdot \bar{d} \cdot c \cdot b \cdot a + \bar{e} \cdot \bar{d} \cdot c \cdot b \cdot a \tag{7}$$

Las sumas de productos anteriores pueden trabajarse si se factorizan por los términos apropiados:

$$\bar{d} \cdot \bar{c} \cdot \bar{a} \cdot (\bar{e} \cdot \bar{b} + \bar{e} \cdot b + e \cdot \bar{b} + e \cdot b) \tag{8}$$

$$\bar{c} \cdot b \cdot \bar{a} \cdot (\bar{e} \cdot b + e \cdot d + \bar{e} \cdot \bar{d} + e \cdot \bar{d}) \tag{9}$$

$$c \cdot \bar{b} \cdot \bar{a} \cdot (\bar{e} \cdot \bar{d} + \bar{e} \cdot d + e \cdot \bar{d} + e \cdot d) \tag{10}$$

$$e \cdot d \cdot c \cdot (\bar{b} \cdot \bar{a} + \bar{b} \cdot a + b \cdot \bar{a} + b \cdot a) \tag{11}$$

$$\bar{d} \cdot c \cdot b \cdot a \cdot (\bar{e} + e) \tag{12}$$

Luego aplicando la propiedad de combinación en todos los productos:

$$\bar{d} \cdot \bar{c} \cdot \bar{a} \cdot (\bar{e} \cdot \bar{b} + \bar{e} \cdot b + e \cdot \bar{b} + e \cdot b) \tag{13}$$

$$\bar{c} \cdot b \cdot \bar{a} \cdot (\bar{e} \cdot b + e \cdot d + \bar{e} \cdot \bar{d} + e \cdot \bar{d}) \tag{14}$$

$$c \cdot \bar{b} \cdot \bar{a} \cdot (\bar{e} \cdot \bar{d} + \bar{e} \cdot d + e \cdot \bar{d} + e \cdot d) \tag{15}$$

$$e \cdot d \cdot c \cdot (\bar{b} \cdot \bar{a} + \bar{b} \cdot a + b \cdot \bar{a} + b \cdot a) \tag{16}$$

$$\bar{d} \cdot c \cdot b \cdot a \cdot (\bar{e} + e) \tag{17}$$

En ??, ??, ?? y ?? se puede aplicar la propiedad de combinación, mientras que en ?? se utiliza la ley del complemento:

$$\bar{d} \cdot \bar{c} \cdot \bar{a} \cdot (\bar{e} + e) \tag{18}$$

$$\bar{c} \cdot b \cdot \bar{a} \cdot (d + \bar{d}) \tag{19}$$

$$c \cdot \bar{b} \cdot \bar{a} \cdot (\bar{e} + e) \tag{20}$$

$$e \cdot d \cdot c \cdot (\bar{b} + b) \tag{21}$$

$$\bar{d} \cdot c \cdot b \cdot a \tag{22}$$

Sumando ??, ??, ??, ?? y ??:

$$\bar{d} \cdot \bar{c} \cdot \bar{a} \cdot (\bar{e} + e) + \bar{c} \cdot b \cdot \bar{a} \cdot (d + \bar{d}) + c \cdot \bar{b} \cdot \bar{a} \cdot (\bar{e} + e) + e \cdot d \cdot c \cdot (\bar{b} + b) + \bar{d} \cdot c \cdot b \cdot a \tag{23}$$

Finalmente se aplica nuevamente la ley del complemento en los cuatro primeros productos y se llega a la expresión final:

$$\boxed{\bar{d} \cdot \bar{c} \cdot \bar{a} + \bar{c} \cdot b \cdot \bar{a} + c \cdot \bar{b} \cdot \bar{a} + e \cdot d \cdot c \cdot + \bar{d} \cdot c \cdot b \cdot a}$$
(24)

1.1.2. Simplificacioón mediante mapas de Karnaugh

1.1.3. Implementación mediante compuertas AND, OR y NOT

La expresión obtenida en ?? puede ser implementada mediante compuertas lógicas facilmente:

1.1.4. Implementación mediante compuertas NAND

1.2. Segunda expresión: producto de sumas

1.2.1. Simplificación mediante álgebra booleana

Para la segunda parte del ejercicio, se comienza a partir del siguiente producto de sumas:

$$f(d, c, b, a) = \prod M_0, M_2, M_4, M_7, M_8, M_10, M_12)$$
(25)

A a partir de ?? se define la siguiente expresion:

$$(d+c+b+a)\cdot(d+c+\bar{b}+a)\cdot(d+\bar{c}+b+a)\cdot(d+\bar{c}+\bar{b}+\bar{a})\cdot(\bar{d}+c+b+a)\cdot(\bar{d}+c+\bar{b}+a)\cdot(\bar{d}+\bar{c}+b+a) \tag{26}$$

En este caso se usa nuevamente la propiedad de idempotencia, en este caso para un producto, para duplicar el mintermino número 8 y 0 y así facilitar el trabajo algebraico. Luego se separan los productos en tres grupos para su posterior factorización:

$$(d+c+b+a) \cdot (d+c+\bar{b}+a) \cdot (\bar{d}+c+b+a) \cdot (\bar{d}+c+\bar{b}+a)$$
 (27)

$$(d+c+b+a) \cdot (d+\bar{c}+b+a) \cdot (\bar{d}+c+b+a) \cdot (\bar{d}+\bar{c}+b+a)$$
 (28)

$$(d + \bar{c} + \bar{b} + \bar{a}) \tag{29}$$

Tanto en ?? como en ?? es posible usar la propiedad de combianción para el producto entre los primeros dos y los últimos dos términos para simplificar las expresiones. ?? esta expresado en forma canóncia.

$$(d+c+a)\cdot(\bar{d}+c+a) \tag{30}$$

$$(d+b+a)\cdot(\bar{d}+b+a) \tag{31}$$

Luego se utiliza la propiedad de combianción para el producto nuevamente, en ambas ecuaciones:

$$(c+a) (32)$$

$$(b+a) (33)$$

Por último se unen ??, ?? y ?? para llegar a una expresión final:

$$(34)$$

- 1.2.2. Simplificacioón mediante mapas de Karnaugh
- 1.2.3. Implementación mediante compuertas AND, OR y NOT
- 1.2.4. Implementación mediante compuertas NAND

2. Ejercicio 4 - Conversor a codigo de Gray

Para esté ejercicio, realizamos el desarrollo de un circuito lógico capaz de convertir un número binario de 4 bits a su equivalente de código de Gray, esto resulta en la siguiente tabla de verdad:

Entrada				Salida			
X_1	X_2	X_3	X_4	Y_1	Y_2	Y_3	Y_4
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

De la tabla de verdad obtenemos las siguientes ecuaciones en función de los mintérminos:

$$Y_4 = m_1 + m_2 + m_5 + m_6 + m_9 + m_{10} + m_{13} + m_{14}$$

$$Y_3 = m_2 + m_3 + m_4 + m_5 + m_{10} + m_{11} + m_{12} + m_{13}$$

$$Y_2 = m_4 + m_5 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11}$$

$$Y_1 = m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15}$$

Que al reemplazar cada mintérmino por su correspondiente expresión obtenemos:

$$Y_4 = \overline{X_1} \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + \overline{X_1} \cdot X_2 \cdot \overline{X_3} \cdot X_4 + \overline{X_1} \cdot X_2 \cdot X_3 \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + \overline{X_1} \cdot \overline{X_2} \cdot \overline$$

$$Y_1 = X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot X_4 + X_1 \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot X_3 \cdot X_4 + X_1 \cdot X_2 \cdot \overline{X_3} \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot \overline{X_3} \cdot \overline{X_4} + X_1 \cdot \overline{X_4} \cdot \overline{X_4} + \overline{X_4} \cdot \overline{X_$$

Tenemos unas funciones muy larga y como las tenemos expresadas en mintérminos podemos simplificarlas por medio del mapa de Karnaugh. Ésto nos da a lugar a los siguientes mapas de Karnaugh y funciones de salida simplificadas:

X_3X_4	$X_1 X_2 \\ 00$	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	1

X_3X_4	$X_1X_2 \\ 00$	01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	1

$$Y_4 = X_3 \cdot \overline{X_4} + \overline{X_3} \cdot X_4$$
 Mapa de Karnaugh y formula de Y_4

 $Y_3 = X_2 \cdot \overline{X_3} + \overline{X_2} \cdot X_3$ Mapa de Karnaugh y formula de Y_3

X_3X_4	$X_1 X_2 \\ 00$	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

$$Y_2 = X_1 \cdot \overline{X_2} + \overline{X_1} \cdot X_2$$
 Mapa de Karnaugh y formula de Y_2

 $Y_1 = X_1$ Mapa de Karnaugh y formula de Y_1

De los valores obtenidos podemos realizar el siguiente circuito conformado por compuertas OR, AND y NOT:

Figura 1: Implementación del conversor a código de Gray