BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021-2022

ĐÈ THI CHÍNH THỨC

Môn: TIN HỌC

Thời gian: **180** phút (không kể thời gian giao đề)

Ngày thi: 04/3/2022

Đề thi gồm 04 trang, 03 bài

TỔNG QUAN ĐỀ THI

	Tên bài	File chương trình	File dữ liệu vào	File kết quả
Bài 1	Chọn cặp	PAIR.*	PAIR.INP	PAIR.OUT
Bài 2	Đặc trưng đồ thị	GRAPH.*	GRAPH.INP	GRAPH.OUT
Bài 3	Kết nối internet	INTERNET.*	INTERNET.INP	INTERNET.OUT

Dấu * được thay thế bởi PAS hoặc CPP của ngôn ngữ lập trình sử dụng tương ứng là Pascal hoặc C++. Hãy lập trình giải các bài toán sau:

Bài 1. Chọn cặp (7 điểm)

Hưởng ứng phong trào thi đua học tập của trường, cô giáo chủ nhiệm lớp của Nam muốn chọn các cặp đôi bạn giúp đỡ nhau cùng tiến. Lớp của Nam có n học sinh, được đánh số từ 1 đến n, học sinh thứ i có chỉ số học lực a_i . Để có được sự cân bằng giữa các cặp bạn cùng tiến, cô giáo muốn chọn các cặp bạn có tổng chỉ số học lực đôi một giữa các cặp chênh nhau không quá một giá trị nhỏ d sao cho mỗi bạn xuất hiện trong không quá một cặp. Cô giáo mong muốn chọn được nhiều cặp như vậy nhất.

Yêu cầu: Cho biết số học sinh của lớp và chỉ số học lực của từng học sinh, hãy tính số cặp bạn cùng tiến nhiều nhất mà có tổng chỉ số học lực đôi một giữa các cặp chênh nhau không quá d.

Dữ liệu: Vào từ file văn bản PAIR. INP:

- Dòng đầu tiên chứa hai số nguyên không âm $n, d \ (n \ge 2)$;
- Dòng thứ hai chứa n số nguyên dương, số thứ i là chỉ số học lực a_i của học sinh thứ i $(1 \le i \le n; a_i \le 10^9)$.

Các số trên cùng một dòng cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản PAIR. OUT một số nguyên duy nhất là số cặp nhiều nhất tìm được.

Ràng buộc:

- Có 20% số test ứng với 20% số điểm của bài thỏa mãn: $n \leq 10$; d = 0;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn: $n \le 200$; d = 0;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn: $n \le 2000$; d = 0;
- 30% số test khác ứng với 30% số điểm của bài thỏa mãn: $n \le 200$; d = 1;
- 10% số test còn lại ứng với 10% số điểm của bài thỏa mãn: $n \le 2000$; d = 1.

PAIR.INP	PAIR.OUT	Giải thích
7 1 9 1 2 4 5 6 8	3	Một phương án chọn được nhiều nhất cặp các bạn học sinh với tổng học lực đôi một chênh nhau không quá 1 là:
		1+8=9; $2+6=8$; $4+5=9$.
		Một phương án khác cũng chọn được 3 cặp là:
		1+9=10; 2+8=10; 4+6=10.

Bài 2. Đặc trưng đồ thị (7 điểm)

Khi nghiên cứu về lý thuyết đồ thị, Nam đã tìm ra một đặc trưng cho đồ thị vô hướng. Cụ thể, với đồ thị vô hướng G gồm n đỉnh, xét lần lượt từng đỉnh từ 1 đến n, với đỉnh i, Nam tính được số a_i bằng số lượng đỉnh j, thoả mãn $1 \le j < i$, mà j có cạnh nối với i. Dãy số nguyên a_1, a_2, \ldots, a_n được gọi là dãy đặc trưng của đồ thị. Dễ nhận thấy rằng một đồ thị chỉ có duy nhất một dãy đặc trưng, tuy nhiên, có thể có nhiều đồ thị khác nhau nhưng có cùng một dãy đặc trưng.

Bằng đi một thời gian, một hôm, Nam tìm lại được một file văn bản ghi một dãy số là một dãy đặc trưng của một đồ thị vô hướng. Tuy nhiên, dãy bị khuyết mất một số số và biết rằng bậc mỗi đỉnh của đồ thị này đều nhỏ hơn hoặc bằng b. Nam muốn tính số lượng cách điền các số vào các vị trí bị khuyết để nhận được dãy f là dãy đặc trưng biết rằng:

- 1) Tồn tại ít nhất một đồ thị có dãy đặc trưng là f;
- 2) Tất cả các đồ thị có dãy đặc trưng là f đều có bậc của mỗi đỉnh trong đồ thị nhỏ hơn hoặc bằng b.

Yêu cầu: Cho số nguyên b và dãy đặc trưng bị khuyết, gọi S là số lượng cách điền các số vào các vị trí bị khuyết để nhận được dãy f là dãy đặc trưng thỏa mãn, hãy tính S % ($10^9 + 7$), trong đó % là phép toán chia lấy dư. Hai cách điền gọi là khác nhau nếu như tồn tại một vị trí khuyết mà giá trị điền vào trong cách này khác với giá trị điền vào trong cách kia.

Dữ liệu: Vào từ file văn bản GRAPH. INP:

- Dòng đầu tiên chứa hai số nguyên dương $n, b \ (b \le n)$;
- Dòng thứ hai chứa n số nguyên, số thứ i có giá trị a_i ($1 \le i \le n$; $0 \le a_i \le i-1$ hoặc $a_i = -1$) mô tả dãy đặc trung. Giá trị $a_i = -1$ có nghĩa là vị trí thứ i bị khuyết.

Các số trên cùng một dòng cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản **GRAPH.OUT** một số nguyên duy nhất là giá trị $S \% (10^9 + 7)$.

Ràng buộc:

- Có 25% số test ứng với 25% số điểm của bài thỏa mãn: $n \le 6$;
- 30% số test khác ứng với 30% số điểm của bài thỏa mãn: n ≤ 200 và chỉ có duy nhất một ô bị khuyết;
- 25% số test khác ứng với 25% số điểm của bài thỏa mãn: $n \le 200$;
- 20% số test còn lại ứng với 20% số điểm của bài thỏa mãn: $n \le 2000$.

GRAPH.INP	GRAPH.OUT	Giải thích
4 1 -1 -1 1 -1	1	Có duy nhất một dãy đặc trung thỏa mãn là (0, 0, 1, 0) và có tất cả 2 đồ thị cùng có dãy đặc trung này như trong hình sau:
:		3
		Đồ thị 1 Đồ thị 2

Bài 3. Kết nối internet (6 điểm)

Thành phố nơi Nam sinh sống đã xây dựng hệ thống Wi-Fi công cộng để phục vụ khách du lịch và người dân trong thành phố. Hệ thống bao gồm n trạm phát sóng được đánh số từ 1 đến n, trạm thứ i được đặt ở vị trí tương ứng với toạ độ (x_i, y_i) trên bản đồ mặt phẳng toạ độ của thành phố. Các trạm phát sóng này đều có mức độ phủ sóng là s. Hai trạm phát sóng i và j có thể truyền thông tin cho nhau bằng sóng nếu $|x_i - x_j| + |y_i - y_j| \le s$, hoặc trạm phát sóng i có thể truyền thông tin qua một số trạm phát sóng trung gian để tới được trạm phát sóng j. Một nhóm các trạm phát sóng gọi là liên thông nếu như hai trạm bất kỳ trong nhóm có thể truyền thông tin cho nhau. Mỗi nhóm liên thông chỉ cần một đường truyền cung cấp internet để tất cả các trạm phát sóng này đều có thể phát được mạng internet cho người dân sử dụng.

Tuy nhiên, sau một thời gian sử dụng, chi phí duy trì hoạt động của hệ thống này là rất lớn, trong đó chi phí sử dụng mạng internet hàng tháng là chiếm nhiều nhất. Chi phí sử dụng mạng internet tỉ lệ thuận với số đường truyền cung cấp internet. Do đó, chính quyền thành phố muốn giảm thiểu số lượng đường truyền cung cấp internet mà vẫn bảo đảm tất cả các trạm đều có mạng internet bằng cách thiết kế các đường dây cáp kết nối trực tiếp một số trạm phát sóng với nhau. Với hai trạm phát sóng u và v chưa truyền được thông tin cho nhau, khi kết nối trực tiếp chúng bằng đường dây cáp, hai trạm phát sóng này có thể truyền tin cho nhau, vì vậy, nếu một trong hai trạm có mạng internet thì trạm còn lại cũng có mạng internet và toàn bộ nhóm liên thông chứa trạm này đều phát được mạng internet, do đó, có thể giảm đi một đường truyền cung cấp internet. Chi phí để kết nối hai trạm phát sóng u và v bằng đường dây cáp là $|x_u - x_v| + |y_u - y_v|$. Chính quyền thành phố muốn xây dựng phương án giảm đi k đường truyền cung cấp internet mà vẫn bảo đảm trạm phát sóng nào cũng có mạng internet bằng cách sử dụng thêm k đường dây cáp kết nối trực tiếp sao cho tổng chi phí kết nối bằng dây cáp là nhỏ nhất.

Yêu cầu: Cho biết số lượng và vị trí của n trạm phát sóng, mức độ phủ sóng s của các trạm phát sóng và số lượng k đường truyền cung cấp internet cần giảm đi, hãy tính chi phí nhỏ nhất để kết nối các trạm phát sóng bằng dây cáp sao cho trạm phát sóng nào cũng có mạng internet.

Dữ liệu: Vào từ file văn bản INTERNET. INP:

- Dòng đầu tiên chứa ba số nguyên dương $n, s, k \ (n \le 10^5; s \le 10^9; k \le 20);$
- Dòng thứ i trong số n dòng tiếp theo chứa hai số nguyên không âm x_i, y_i mô tả vị trí của của trạm phát sóng thứ i ($1 \le i \le n$; $x_i, y_i \le 10^9$). Dữ liệu bảo đảm không có hai trạm phát sóng nào có tọa độ trùng nhau và số lượng đường truyền cung cấp internet cần sử dụng cho hệ thống ban đầu lớn hơn k.

Các số trên cùng một dòng cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản **INTERNET.OUT** một số nguyên duy nhất là chi phí nhỏ nhất để kết nối các trạm phát sóng thoả mãn yêu cầu.

Ràng buộc:

- Có 20% số test ứng với 20% số điểm của bài thỏa mãn: $n \le 1000$;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn toạ độ tất cả các trạm phát sóng đều nằm trên một đường thẳng;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn giá trị toạ độ mỗi trạm phát sóng không vượt quá 1000;
- 40% số test còn lại ứng với 40% số điểm của bài không có ràng buộc gì thêm.

Ví dụ:

INTERNET. INP	INTERNET.OUT	Giải thích
5 4 1	5	Ban đầu có 3 nhóm liên thông là {Trạm 1},
1 1		{Trạm 2, Trạm 3, Trạm 4} và {Trạm 5}. Phương án cho chi phí nhỏ nhất để giảm bót 1 đường
3 4		truyền cung cấp internet là nối cáp giữa Trạm
8 5		3 và Trạm 5 cho chi phí bằng 8-7 + 5-1 =5.
5 5		
7 1		Trạm 4 (5,5) Trạm 3 (8,5)
		Tram 1 (1,1)

------ HÉT -----

- Thí sinh KHÔNG được sử dụng tài liệu;
- Giám thị KHÔNG được giải thích gì thêm.

BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021-2022

HƯỚNG DẪN CHẨM THI

Môn: TIN HỌC

Đề thi chính thức

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 04/3/2022

Hướng dẫn chấm thi gồm 03 trang

I. Hướng dẫn chung

1. Bài thi của thí sinh được chấm trên máy tính bằng phần mềm chấm thi Themis (*bản quyền của Cục Quản lý chất lượng*) sử dụng bộ test do Hội đồng chấm thi phê duyệt, đúng với đáp án, biểu điểm của Bộ Giáo dục và Đào tạo.

2. Tổ trưởng Tổ chấm thi phân công giám khảo thực hiện quy trình chấm thi trên máy tính,

bảo đảm các yêu cầu của Quy chế thi.

3. Điểm bài thi được xuất từ phần mềm chấm thi; không quy tròn điểm thành phần của từng câu, điểm của bài thi.

II. Đáp án và biểu điểm

Bài 1. Chọn cặp (7 điểm)

Phân bổ điểm

- Có 20% số test ứng với 20% số điểm của bài thỏa mãn: $n \le 10$; d = 0;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn: $n \le 200$; d = 0;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn: $n \le 2000$; d = 0;
- 30% số test khác ứng với 30% số điểm của bài thỏa mãn: $n \le 200$; d = 1;
- 10% số test còn lại ứng với 10% số điểm của bài thỏa mãn: $n \leq 2000$; d=1.

Thuật toán

Nhận xét: Xét dãy a đã được sắp xếp tăng dần. Với mỗi giá trị S là tổng hai phần tử của dãy a, ta xác định nhiều nhất các cặp có tổng hai số bằng S hoặc bằng S+1. Giả sử số lượng nhiều nhất đạt được là k, ta sẽ có cách chọn các cặp là $(i_1,j_1),(i_2,j_2),...,(i_k,j_k)$ thoả mãn: $i_1 < i_2 < \cdots < i_k < j_k < \cdots < j_2 < j_1$.

Từ nhân xét trên ta có thuật toán tham lam như sau:

Bước 1: Sắp xếp dãy a tăng dần. Độ phức tạp bước này là $O(n \log n)$.

Bước 2: Xây dựng danh sách L lưu trữ các bộ $(a_i + a_j, i, j)$ được sắp xếp theo thứ tự ưu tiên:

- 1) tổng $(a_i + a_j)$ từ nhỏ đến lớn;
- 2) chỉ số i từ nhỏ đến lớn;
- 3) chỉ số j từ lớn đến nhỏ.

Do đó với mỗi S, các phần tử $(a_i + a_j = S, i, j)$ trong danh sánh L là liên tiếp nhau. Độ phức tạp bước này là $O(n^2 \log n)$.

Bước 3: Sử dụng kĩ thuật tịnh tiến hai con trỏ (two pointers) để chọn ra được nhiều nhất các cặp thoả mãn đề bài. Độ phức tạp bước này là $O(n^2)$.

Độ phức tạp thuật toán là: $O(n^2 \log n)$.

Bài 2. Đặc trưng đồ thị (7 điểm)

Phân bổ điểm

- Có 25% số test ứng với 25% số điểm của bài thỏa mãn: $n \le 6$;
- 30% số test khác ứng với 30% số điểm của bài thỏa mãn: n ≤ 200 và chỉ có duy nhất một ô bị khuyết;
- 25% số test khác ứng với 25% số điểm của bài thỏa mãn: $n \le 200$;
- 20% số test còn lại ứng với 20% số điểm của bài thỏa mãn: $n \le 2000$.

Thuật toán

Với $f = f_1, f_2, ..., f_n$ là một dãy nhận được bằng cách điền vào các vị trí bị khuyết của dãy a, gọi s_i là số lượng phần tử khác 0 trong dãy $f_{i+1}, f_{i+2}, ..., f_n$.

Nhận xét: Dãy fthỏa mãn khi và chỉ khi $f_i \leq \min(i-1,b-s_i)$, $\forall i = \overline{1,n}.$

Từ nhận xét trên ta có cách xây dựng công thức quy hoạch động như sau: Gọi dp(i,k) là số lượng dãy $f_{i+1}, f_{i+2}, \dots, f_n$ nhận được bằng cách điền vào các vị trí bị khuyết của dãy a, sao cho $s_i = k$ và $f_i \leq \min(j-1,b-s_j)$, $\forall j = \overline{i+1,n}$. Khi đó:

$$\begin{split} dp(n,0) &= 1; \\ dp(i,k) &= \sum_{t=0}^{\min(i,b-k)} dp(i+1,k-[t\neq 0]), \, \text{n\'eu} \, a_{i+1} = -1; \\ dp(i,k) &= dp(i+1,k-[a_{i+1}\neq 0]), \, \text{n\'eu} \, a_{i+1} \neq -1 \, \text{v\`a} \, a_{i+1} \leq b-k; \\ dp(i,k) &= 0 \, \text{c\'ac trường hợp còn lại.} \\ (\text{trong đó} \, [x\neq 0] \, \text{bằng } 0 \, \text{n\'eu} \, x = 0 \, \text{v\`a} \, [x\neq 0] \, \text{bằng } 1 \, \text{n\'eu} \, x \neq 0). \end{split}$$

Độ phức tạp thuật toán: $O(n^2)$.

Bài 3. Kết nối Internet (6 điểm)

Phân bổ điểm

- Có 20% số test ứng với 20% số điểm của bài thỏa mãn: $n \le 1000$;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn toạ độ tất cả các trạm phát sóng đều nằm trên một đường thẳng;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn giá trị toạ độ mỗi trạm phát sóng không vượt quá 1000;
- 40% số test còn lại ứng với 40% số điểm của bài không có ràng buộc gì thêm.

Thuật toán

1. Xoay trục toạ độ Oxy thành trục toạ độ Ox^*y^* với $x^* = x + y$, $y^* = x - y$. Khi đó khoảng cách giữa hai điểm i và j trên trục toạ độ Oxy là $|x_i - x_j| + |y_i - y_j|$ tương

- ứng với khoảng cách trên hệ trục toạ độ Ox^*y^* là $\max(|x_i^* x_j^*|, |y_i^* y_j^*|)$. Độ phức tạp bước này là O(n).
- 2. Sử dụng thuật toán chia để trị trên hệ trục toạ độ Ox^*y^* tương tự bài toán cơ bản "Cặp điểm gần nhất" (Closest Pair) để tìm các thành phần liên thông với s cho ban đầu. Độ phức tạp bước này là $O(n \log n)$.
- 3. Thực hiện k lần tìm khoảng cách nhỏ nhất để kết nối hai thành phần liên thông vào với nhau. Để tìm được khoảng cách nhỏ nhất cần giải quyết bài toán tìm hai điểm gần nhất ở hai thành phần liên thông khác nhau bằng cách tiếp tục sử dụng thuật toán chia để trị tương tự bài toán "Cặp điểm gần nhất". Độ phức tạp bước này là $O(kn \log n)$.

Độ phức tạp thuật toán là: $O(kn \log n)$.	
	HÉT

BỘ GIÁO DỰC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỚI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021-2022

ĐÈ THI CHÍNH THỰC

Môn: TIN HQC

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 05/3/2022

Đề thi gồm 04 trang, 03 bài

TỔNG QUAN ĐỂ THI

	Tên bài	File chương trình	File dữ liệu vào	File kết quả
Bài 4	Đoạn số	SSEQ.*	SSEQ.INP	SSEQ.OUT
Bài 5	Phần mềm vẽ	PAINT.*	PAINT.INP	PAINT.OUT
Bài 6	Xây dựng ma trận	MATRIX.*	MATRIX.INP	MATRIX.OUT

Dấu * được thay thế bởi PAS hoặc CPP của ngôn ngữ lập trình sử dụng tương ứng là Pascal hoặc C++. Hãy lập trình giải các bài toán sau:

Bài 4. Đoạn số (7 điểm)

Là sinh viên ngành Công nghệ thông tin, Nam thường xuyên rèn luyện tư duy và kĩ năng lập trình bằng các bài toán lập trình thi đấu. Một bài toán thú vị mà Nam đang suy nghĩ để giải như sau:

Cho n đoạn số nguyên trên trục số, đoạn thứ k $(1 \le k \le n)$ có đầu mút bên trái là L_k , đầu mút bên phải là R_k và có trọng số là w_k . Với a, b là hai số nguyên, trọng số của cặp số (a, b) được tính bằng tổng trọng số của tất cả các đoạn t mà $a \le L_t \le R_t \le b$ với $1 \le t \le n$. Cần tìm cặp số nguyên (a, b) có trọng số là lớn nhất.

Yêu cầu: Cho n đoạn số, gọi S là trọng số của cặp số nguyên (a, b) có trọng số là lớn nhất, hãy giúp Nam xác định giá trị S.

Dữ liệu: Vào từ file văn bản SSEQ. INP:

- Dòng đầu chứa số nguyên dương n;
- Dòng thứ k $(1 \le k \le n)$ trong n dòng tiếp theo chứa ba số nguyên L_k , R_k , w_k mô tả đoạn thứ k $(1 \le L_k \le R_k \le 10^6; |w_k| \le 10^6)$.

Các số trên cùng một dòng cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản SSEQ. OUT một số nguyên S là trọng số lớn nhất xác định được.

Ràng buộc:

- Có 30% số test ứng với 30% số điểm thỏa mãn: $n \le 200$;
- 30% số test khác ứng với 30% số điểm thỏa mãn: $n \le 2000$;
- 20% số test khác ứng với 20% số điểm thỏa mãn: $R_1 L_1 = R_2 L_2 = \cdots = R_n L_n$ và $n \le 10^5$;
- 20% số test còn lại ứng với 20% số điểm thỏa mãn: $n \le 10^5$.

SSEQ. INP	SSEQ.OUT	Giải thích
4 1 2 -5 3 5 6 3 4 -1 4 6 3	8	Trọng số lớn nhất là 8 bằng cách chọn cặp số (3,6). Trọng số của cặp số (3,6) bằng tổng trọng số của ba đoạn [3,5], [3,4], [4,6].

Bài 5. Phần mềm vẽ (7 điểm)

Nam đã xây dựng được một phần mềm vẽ hình với giao diện chính là một bảng vẽ kích thước $W \times H$. Bảng vẽ được đặt trên hệ trục chiếm một vùng là một hình chữ nhật có toạ độ trái dưới là (0,0) và toạ độ phải trên là (W,H). Nam đã vẽ n đa giác lồi trên bảng vẽ để thử nghiệm phần mềm, đa giác nào cũng có đúng m đinh.

Đa giác thứ i $(1 \le i \le n)$ được mô tả bằng dãy tọa độ của m đỉnh liệt kê theo chiều kim đồng hồ tương ứng là $(x_{i,1},y_{i,1}),(x_{i,2},y_{i,2}),...,(x_{i,m},y_{i,m})$. Hai cạnh bất kì của hai đa giác không có điểm chung và cũng không chạm vào biên của bảng vẽ. Có Q phương án thử nghiệm, phương án thứ t $(1 \le t \le Q)$ sẽ thực hiện bấm tô màu vào điểm (x_t,y_t) không nằm trên bất kì cạnh nào của các đa giác cũng như biên của bảng vẽ, khi đó toàn bộ vùng chứa điểm (x_t,y_t) được giới hạn bởi các cạnh của các đa giác và biên của bảng vẽ sẽ được tô, phần mềm sẽ trả về diện tích vùng được tô.

Yêu cầu: Cho n đa giác lồi cùng có m đỉnh và Q phương án tô màu, với mỗi phương án hãy xác định diện tích vùng được tô để kiểm tra phần mềm.

Dữ liệu: Vào từ file văn bản PAINT. INP:

- Dòng đầu chứa năm số nguyên $W, H, n, m, Q (W, H \le 10^8; 3 \le m \le 5);$
- Dòng thứ i $(1 \le i \le n)$ trong n dòng tiếp theo chứa 2m số nguyên dương $x_{i,1}, y_{i,1}, x_{i,2}, y_{i,2}, \dots, x_{i,m}, y_{i,m}$ lần lượt là tọa độ m đỉnh được liệt kê theo chiều kim đồng hồ của đa giác thứ i $(0 < x_{i,1}, x_{i,2}, \dots, x_{i,m} < W; 0 < y_{i,1}, y_{i,2}, \dots, y_{i,m} < H)$;
- Dòng thứ t $(1 \le t \le Q)$ trong Q dòng tiếp theo chứa hai số nguyên dương x_t, y_t mô tả phương án thứ t $(0 < x_t < W; 0 < y_t < H)$.

Các số trên cùng một dòng cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản **PAINT.OUT** gồm Q dòng, mỗi dòng chứa một số thực (lấy đúng một chữ số sau dấu chấm thập phân) là diện tích vùng được tô tương ứng phương án trong dữ liệu vào.

Ràng buốc:

- Có 30% số test ứng với 30% số điểm của bài thỏa mãn: $n, Q \le 20$ và các đa giác là các hình chữ nhật có cạnh song song với một trong hai trục tọa độ;
- 35% số test khác ứng với 35% số điểm của bài thỏa mãn: $n, Q \le 2000$;
- 25% số test khác ứng với 25% số điểm của bài thỏa mãn: $n, Q \le 10^5$ và các đa giác là các hình chữ nhật có cạnh song song với một trong hai trục tọa độ;
- 10% số test còn lại ứng với 10% số điểm của bài thỏa mãn: $n, Q \leq 10^5$.

PAINT.INP	PAINT.OUT	Minh họa
9 8 4 3 3	3.0	8
8 1 1 1 1 7	18.5	7
5 7 8 7 8 5	48.0	
2 3 2 5 3 4		6
2 2 4 3 5 2		5
7 6		4
6 2		3
8 3		
		2
		1 1
·		
		0 1 2 3 4 5 6 7 8 9

Bài 6. Xây dựng ma trận (6 điểm)

Để xây dựng thêm chức năng biến đổi ảnh cho phần mềm vẽ, Nam cần xây dựng ma trận A có tính chất sau:

- Ma trận có m hàng và n cột, các hàng được đánh số từ 1 đến m từ trên xuống dưới, các cột được đánh số từ 1 đến n từ trái sang phải. Phần tử nằm ở hàng i (1 ≤ i ≤ m) và cột j (1 ≤ j ≤ n) kí hiệu là A_{i,j}, giá trị mỗi phần tử của ma trận đều là các số nguyên dương;
- Hai phần tử cùng hàng nhưng có chỉ số cột là nguyên tố cùng nhau thì giá trị phải khác nhau. Cụ thể: với 1 ≤ j₁, j₂ ≤ n và ước số chung lớn nhất của (j₁, j₂) bằng 1 thì A_{i,j1} khác A_{i,j2} với mọi i (1 ≤ i ≤ m);
- Hai phần tử cùng cột nhưng có chỉ số hàng là nguyên tố cùng nhau thì giá trị phải khác nhau. Cụ thể: với 1 ≤ i₁, i₂ ≤ m và ước số chung lớn nhất của (i₁, i₂) bằng 1 thì A_{i1,j} khác A_{i2,j} với mọi j (1 ≤ j ≤ n);
- Thứ tự từ điển của ma trận là nhỏ nhất có thể.

Ma trận A được gọi là có thứ tự từ điển nhỏ hơn ma trận B (hai ma trận cùng có m hàng và n cột) nếu lần lượt so sánh từng phần tử theo từng hàng từ trên xuống dưới, trên mỗi hàng theo thứ tự từ trái sang phải để tìm phần tử khác nhau đầu tiên thì tại vị trí đó giá trị phần tử của ma trận A nhỏ hơn giá trị phần tử của ma trận B.

Yêu cầu: Cho m và n, gọi S là tổng các phần tử của ma trận, hãy tính S % ($10^9 + 7$), trong đó % là phép toán chia lấy dư.

Dữ liệu: Vào từ file văn bản **MATRIX. INP** gồm một dòng duy nhất chứa hai số nguyên dương m, n cách nhau bởi dấu cách.

Kết quả: Ghi ra file văn bản **MATRIX.OUT** một số nguyên duy nhất là $S \% (10^9 + 7)$.

Ràng buộc:

• Có 20% số test ứng với 20% số điểm của bài thỏa mãn: $m \times n \le 10^4$;

- 30% số test khác ứng với 30% số điểm của bài thỏa mãn: m = 1; $n \le 10^9$;
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn: $m, n \le 10^6$;
- 30% số test còn lại ứng với 30% số điểm của bài thỏa mãn: $m, n \le 10^9$.

MATRIX.INP	MATRIX.OUT	Giải thích
1 3	6	Ma trận thỏa mãn cần tìm là:
		1 2 3
3 3	21	Ma trận thỏa mãn cần tìm là:
		1 2 3
		2 1 4
· .		3 4 1

------ HÉT ------

- Thí sinh KHÔNG được sử dụng tài liệu;
- Giám thị KHÔNG được giải thích gì thêm.

BỘ GIÁO DỤC VÀ ĐÀO TẠO

KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA TRUNG HỌC PHỔ THÔNG NĂM HỌC 2021-2022

HƯỚNG DẪN CHẨM THI

Môn: TIN HỌC

Đề thi chính thức

Thời gian: 180 phút (không kể thời gian giao đề)

Ngày thi: 05/3/2022

Hướng dẫn chấm gồm 03 trang

I. Hướng dẫn chung

1. Bài thi của thí sinh được chấm trên máy tính bằng phần mềm chấm thi Themis (*bản quyền của Cục Quản lý chất lượng*) sử dụng bộ test do Hội đồng chấm thi phê duyệt, đúng với đáp án, biểu điểm của Bộ Giáo dục và Đào tạo.

2. Tổ trưởng Tổ chấm thi phân công giám khảo thực hiện quy trình chấm thi trên máy tính,

bảo đảm các yêu cầu của Quy chế thi.

3. Điểm bài thi được xuất từ phần mềm chấm thi; không quy tròn điểm thành phần của từng câu, điểm của bài thi.

II. Đáp án và biểu điểm

Bài 4. Đoạn số (7 điểm)

Phân bổ điểm

- Có 30% số test ứng với 30% số điểm thỏa mãn: $n \le 200$;
- 30% số test khác ứng với 30% số điểm thỏa mãn: $n \le 2000$;
- 20% số test khác ứng với 20% số điểm thỏa mãn: $R_1 L_1 = R_2 L_2 = \cdots = R_n L_n$ và $n \le 10^5$;
- 20% số test còn lại ứng với 20% số điểm thỏa mãn: $n \le 10^5$.

Thuật toán

Nhận xét: Nếu $w_k \le 0$ với mọi $1 \le k \le n$ thì kết quả là 0. Ngược lại thì a là đầu mút bên trái của một đoạn nào đó và b là đầu mút bên phải của một đoạn nào đó.

Duyệt toàn bộ các cặp a, b thỏa mãn tính chất trên. Dùng kĩ thuật đường quét (sweep line):

- Xét b tăng dần, duy trì S (bằng cấu trúc dữ liệu cây phân đoạn Segment Tree) là tập các đoạn có đầu mút bên phải không quá b;
- Khi b tăng lên, tập S được bổ sung thêm các đoạn mới;
- Với mỗi b, tìm a sao cho tổng trọng số các đoạn trong S mà có đầu mút bên trái lớn hơn hoặc bằng a là lớn nhất.

Độ phức tạp: $O(n \log n)$

Bài 5. Phần mềm vẽ (7 điểm)

Phân bổ điểm

- Có 30% số test ứng với 30% số điểm của bài thỏa mãn: $n, Q \le 20$ và các đa giác là các hình chữ nhật có cạnh song song với một trong hai trục tọa độ;
- 35% số test khác ứng với 35% số điểm của bài thỏa mãn: $n, Q \le 2000$;
- 25% số test khác ứng với 25% số điểm của bài thỏa mãn: $n, Q \le 10^5$ và các đa giác là các hình chữ nhật có cạnh song song với một trong hai trục tọa độ;
- 10% số test còn lại ứng với 10% số điểm của bài thỏa mãn: $n, Q \le 10^5$.

Thuật toán

Nhận xét: Quan sát hình bên dưới thấy rằng, khi bấm vào các điểm p,q và các cạnh cắt đường thẳng y, với điểm p nằm trong hai cạnh của đa giác c_1 thì có thể khẳng định điểm p nằm trong đa giác c_1 , còn điểm q nằm giữa hai cạnh của đa giác c_1 và c_2 vì c_1 nằm trong c_2 nên q sẽ nằm trong đa giác c_2 . Việc kiểm tra một hình nằm trong đa giác vào cũng chính là bài toán kiểm tra một điểm nằm trong đa giác nào, do các đa giác không cắt nhau nên chỉ cần xét một điểm của một đa giác c và tìm đa giác c chứa điểm đó để biết đa giác c chứa đa giác c. Như vậy, có thể sử dụng kĩ thuật đường quét (sweep line) để tìm đa giác chứa một điểm. Với mỗi độ cao p0 mà đường quét quá duy trì một tập p1 là các cạnh cắt qua độ cao p2. Lưu các cạnh trong p3 tương ứng là hai điểm của cạnh đó, với hai cạnh sẽ xác định được cạnh nào nằm bên trái cạnh nào nằm bên phải bằng tích có hướng, do đó các cạnh trong p3 sẽ được lưu theo tứ tự từ trái sang phải. Sử dụng kĩ thuật tìm kiếm nhị phân để xác định điểm p1 nằm giữa hai cạnh nào.

Từ nhận xét trên ta có thuật toán sau:

- Với mỗi hình *i*, cần xác định hình *j* có diện tích nhỏ nhất chứa *i*, khi đó, diện tích sẽ tô của hình *j* sẽ giảm đi một lượng bằng diện tích của hình *i*.
- Với mỗi điểm p được bấm, xác định hình nhỏ nhất chứa điểm p để trả lời.

Độ phức tạp: $O((n+Q)\log n)$.

Bài 6. Xây dựng ma trận (6 điểm)

Phân bổ điểm

- Có 20% số test ứng với 20% số điểm của bài thỏa mãn: $m \times n \le 10^4$;
- 30% số test khác ứng với 30% số điểm của bài thỏa mãn: $m=1; n \leq 10^9;$
- 20% số test khác ứng với 20% số điểm của bài thỏa mãn: $m, n \le 10^6$;
- 30% số test còn lại ứng với 30% số điểm của bài thỏa mãn: $m, n \le 10^9$.

Thuật toán

Gọi p_i là số nguyên tố lớn thứ i. Gọi G(x) là số nguyên dương nhỏ nhất sao cho x chia hết cho $p_{G(x)}$. Quy ước $p_0 = 1$ và G(1) = 0.

Nhận xét: $A_{i,j}-1=(A_{i,1}-1)$ XOR $(A_{1,j}-1)=G(i)$ XOR G(j) với mọi $i,j\geq 1$.

Đếm c_i là số lượng số $x \le n$ mà G(x) = i như sau:

• Với $p_i \leq \sqrt{n}$:

Gọi w(x, i) là số lượng số nhỏ hơn hoặc bằng x mà tất cả các ước nguyên tố của nó đều lớn hơn p_i . Khi đó:

$$w(x,i) = w(x,i-1) - w\left(\left\lfloor \frac{x}{p_i} \right\rfloor, i-1\right) \text{ và } c_i = w\left(\left\lfloor \frac{n}{p_i} \right\rfloor, i-1\right).$$

Việc tính toán chỉ cần thực hiện với $x \in \{\left\lfloor \frac{n}{i} \right\rfloor, 1 \leq i \leq n\}$ và $p_i \leq \sqrt{n}$, có độ phức tạp cỡ $O(\frac{n}{\log(n)})$ và bộ nhớ $O(\sqrt{n})$.

• Với $p_i > \sqrt{n}$:

Sau khi loại bỏ hết các số x mà $G(x) \leq \sqrt{n}$ thì các số còn lại đều là số nguyên tố. Do đó, $c_i = 1$ với mọi $\sqrt{n} < p_i \leq n$. Số lượng các số nguyên tố này là $n - \sum_{i=1}^{p_i \leq \sqrt{n}} c_i$.

Tương tự, tính được d_i là số lượng các số $x \le m$ mà G(x) = i.

Bài toán đưa về tính tổng tất cả các cặp c_i XOR d_i và có thể tính toán trên từng bit.

Độ phức tạp: $O(\frac{n}{\log(n)})$.

------HÉT -----