Ejercicio 3: Práctica estimación puntual

- 3) Sea $X_1, X_2, ..., X_n$, una muestra aleatoria de tamaño n. $E(X_i) = \mu$ y $V(X_i) = \sigma^2 > 0$ para todo i=1, ..., n
- a) Demuestre que \bar{X}^2 es un estimador sesgado de μ^2 .
- b) Determine la magnitud del sesgo de este estimador.
- c) ¿Qué sucede con el sesgo a medida que aumenta el tamaño n de la muestra?

Solución:

Se dice que el estimador puntual $\hat{\Theta}$ es un *estimador insesgado* del parámetro θ si $E(\hat{\Theta}) = \theta$ cualquiera sea el valor verdadero de θ

En este caso, el estimador es \bar{X}^2 y el parámetro es μ^2 .

Deberemos demostrar que: E $(\bar{X}^2) \neq \mu^2$

Para ello, veremos cómo reescribir E (\bar{X}^2) (*)

Recordamos que la esperanza de un término al cuadrado aparece en la varianza, es decir

$$V(X)=E(X^{2})-E(X)^{2}$$

$$V(\bar{X})=E(\bar{X}^2)-E(\bar{X})^2$$

De (*) E (\bar{X}^2) = V (\bar{X}) + E (\bar{X})²= σ^2/n + $\mu^2 \neq \mu^2$ lo que queríamos demostrar.

Respuesta: E $(\bar{X}^2) = \sigma^2/n + \mu^2 \neq \mu^2$, por lo tanto, \bar{X}^2 es un estimador sesgado para μ^2

b)

La diferencia $E(\hat{\Theta}) - \theta$ se conoce como sesgo de estimador $\hat{\Theta}$. Anotamos $b(\hat{\Theta}) = E(\hat{\Theta}) - \theta$

b
$$(\bar{X}^2)$$
 = E (\bar{X}^2) - $\mu^2 = \sigma^2/n + \mu^2 - \mu^2 = \sigma^2/n > 0$, ya que $\sigma^2 > 0$ y n > 0

La magnitud del sesgo es σ^2/n

c) $\lim_{n\to\infty} \frac{\sigma^2}{n} = 0$, o sea que a medida que n aumenta, el sesgo tiende a 0.

Es decir, que \bar{X}^2 es un estimador asintóticamente insesgado.