# EXAMEN

### SOLUCIONES

## 25 de octubre de 2018

#### Càlcul Integral, Curs 2017-18, FME

#### Problema 1. [3.75 punts]

(a) Para cada  $a \ge 0$ , estudieu la convèrgencia de la sèrie

$$\sum_{n=1}^{\infty} \frac{a^n}{(n+1)!} \prod_{k=0}^{n} (3k+1).$$

(b)

- (i) Sigui c>0. Proveu que la integral impròpia  $\int_1^{+\infty}t^c\cos(t)dt$  no és convergent. (Compareu els valors de la integral en els intervals  $[d_k,d_{k+1}]$  amb  $d_k=\frac{\pi}{2}+k\pi$ .)
- (ii) Discutiu, segons els valors del paràmetres reals  $a>0,\ b>0,$  la convèrgencia de la integral impròpia

$$\int_0^{+\infty} \frac{\cos(x^a)}{x^b} \, dx$$

Solución: (a) Si para cada  $n \in \mathbb{N}^*$  definimos  $a_n = \frac{a^n}{(n+1)!} \prod_{k=0}^n (3k+1)$ , entonces  $a_n \ge 0$  y además,

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a^{n+1}(n+1)!}{a^n(n+2)!} \frac{\prod_{k=0}^{n+1} (3k+1)}{\prod_{k=0}^n (3k+1)} = a \lim_{n \to \infty} \frac{3n+4}{(n+2)} = 3a$$

y por tanto, aplicando el Criterio del cociente, la serie converge si  $0 \le a < \frac{1}{3}$  y diverge si  $a > \frac{1}{3}$ . Cuando  $a = \frac{1}{3}$ , entonces

$$a_n = \frac{\prod\limits_{k=0}^{n} (3k+1)}{3^n(n+1)!} = \frac{\prod\limits_{k=1}^{n} (3k+1)}{3^n(n+1)!} \ge \frac{\prod\limits_{k=1}^{n} (3k)}{3^n(n+1)!} = \frac{3^n n!}{3^n(n+1)!} = \frac{1}{n+1}$$

de manera que la serie está minorada por la armónica y es por tanto divergente. En resumen,

la serie 
$$\sum_{n=1}^{\infty} \frac{a^n}{(n+1)!} \prod_{k=0}^n (3k+1)$$
 converge sii  $0 \leq a < \frac{1}{3}$ 

Nota: Para dilucidar el caso  $a = \frac{1}{3}$ , también podemos utilizar el Criterio de Raabe:

$$\lim_{n \to \infty} n \left[ 1 - \frac{a_{n+1}}{a_n} \right] = \lim_{n \to \infty} n \left[ 1 - \frac{3n+4}{3(n+2)} \right] = \lim_{n \to \infty} \frac{2n}{3(n+2)} = \frac{2}{3} < 1$$

de manera que si  $a = \frac{1}{3}$  la serie es divergente.

(b) (i) Si  $d_k = \frac{\pi}{2} (2k+1)$ ,  $k \in \mathbb{N}$ , entonces sabemos que si  $x \geq 1$ ,  $\cos(x) = 0$  si y sólo si  $x = d_k$ , lo que en particular implica que  $\cos(x)$  tiene signo constante en  $(d_k, d_{k+1})$ . Más concretamente,  $\cos(x) < 0$  si  $x \in (d_k, d_{k+1})$  cuando k es par, mientras que  $\cos(x) > 0$  si  $x \in (d_k, d_{k+1})$  cuando k es impar: Como

$$d_k = \frac{\pi}{2} + k\pi < x < \frac{\pi}{2} + (k+1)\pi = d_{k+1} \iff \frac{\pi}{2} < x - k\pi < \frac{3\pi}{2}$$

de manera que  $0 > \cos(x - k\pi) = \cos(x)\cos(k\pi) = (-1)^k\cos(x)$ . Por tanto,

si 
$$k$$
 es impar, entonces  $d_k^c\cos(x) \leq t^c\cos(x) \leq d_{k+1}^c\cos(x)$ , para cada  $x \in (d_k, d_{k+1})$ 

lo que en particular implica que

$$\left| \int_{d_k}^{d_{k+1}} t^c \cos(t) dt \right| = \int_{d_k}^{d_{k+1}} t^c \cos(t) dt \ge d_k^c \int_{d_k}^{d_{k+1}} \cos(t) dt = d_k^c \left[ \sec(x) \right]_{d_k}^{d_{k+1}}$$

$$= d_k^c \left[ \sec(d_{k+1}) - \sec(d_k) \right] = d_k^c \left[ (-1)^{k+1} - (-1)^k \right] = 2d_k^c \ge 2$$

Por tanto, <u>no</u> se satisface la Condición de Cauchy, de manera que

la integral impropia 
$$\int_1^{+\infty} t^c \mathrm{cos}(t) dt$$
 no converge

Nota: Recordar que la Condición de Cauchy establece que  $si\ f\colon [a,b)\longrightarrow \mathbb{R}$  es localmente integrable en [a,b), la integral impropia  $\int_a^b f(t)dt$  es convergente  $si\ y\ s\'olo\ si\ para\ cada\ \varepsilon>0$  existe  $c\in (a,b)$  tal que  $si\ c_1,c_2\in (c,b)$ , entonces  $\Big|\int_{c_1}^{c_2} f(t)dt\Big|\le \varepsilon$ 

- (ii) La integral es de segunda especie en (0,1) y de primera especie en  $(1,+\infty)$ . Analizaremos la convergencia de la integral  $\int_0^1 \frac{\cos(x^a)}{x^b} \, dx$  y la de la integral  $\int_1^{+\infty} \frac{\cos(x^a)}{x^b} \, dx$ . La integral  $\int_0^{+\infty} \frac{\cos(x^a)}{x^b} \, dx$  es convergente cuando ambas integrales sean convergentes y no convergente en otro caso.
- (a) Para analizar la convergencia de  $\int_0^1 \frac{\cos(x^a)}{x^b} dx$ , si definimos  $f,g \colon (0,1] \longrightarrow \mathbb{R}$  como  $f(x) = \frac{\cos(x^a)}{x^b}$  y  $g(x) = \frac{1}{x^b}$ , resulta que

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \cos(x^a) = \cos(0) = 1,$$

lo que significa que  $\int_0^1 f(x)dx$  e  $\int_0^1 g(x)dx$  tienen el mismo carácter. Como  $\int_0^1 \frac{1}{x^b}dx$  es convergente si y sólo si 0 < b < 1, resulta que

$$\int_0^1 \frac{\cos(x^a)}{x^b} \, dx \text{ es convergente si y sólo si } 0 < b < 1. \text{ Además, como } 0 < \cos(x^a) \leq 1$$
 cuando  $0 < x < 1$ , resulta que  $\frac{\cos(x^a)}{x^b} \leq \frac{1}{x^b}$  y por tanto, 
$$\int_0^1 \frac{\cos(x^a)}{x^b} \, dx \leq \frac{1}{1-b}$$

(b) Para analizar la convergencia de  $\int_1^{+\infty} \frac{\cos(x^a)}{x^b} dx$ , si  $\ell > 1$ , entonces haciendo el cambio de variable  $t = x^a$  en el intervalo  $[0, \ell]$  e integrando por partes obtenemos que

$$\int_{1}^{\ell} \frac{\cos(x^{a})}{x^{b}} dx = \begin{bmatrix} t = x^{a} \Rightarrow x = t^{\frac{1}{a}} \\ dt = ax^{a-1} dx \Rightarrow dx = \frac{dt}{at^{\frac{a-1}{a}}} \end{bmatrix} = \frac{1}{a} \int_{1}^{\ell^{a}} \frac{\cos(t)}{t^{\frac{a+b-1}{a}}} dt$$

de manera que existe  $\lim_{\ell \to +\infty} \int_1^\ell \frac{\cos(x^a)}{x^b} dx$  si y sólo si existe  $\lim_{\ell \to +\infty} \int_1^{\ell^a} \frac{\cos(t)}{t^{\frac{a+b-1}{a}}} dt$ ; es decir, definiendo  $\alpha = \frac{a+b-1}{a}$ 

$$\int_1^{+\infty} \frac{\cos(x^a)}{x^b} \, dx \text{ converge si y sólo } \int_1^{+\infty} \frac{\cos(t)}{t^\alpha} \, dt \text{ converge }$$

Analizaremos la convergencia de  $\int_1^{+\infty} \frac{\cos(t)}{t^{\alpha}} dt$  en función del valor de  $\alpha$ .

Si  $\alpha < 0$ , definiendo  $c = -\alpha$ , resulta que c > 0 y  $\int_1^{+\infty} \frac{\cos(t)}{t^{\alpha}} dt = \int_1^{+\infty} t^c \cos(t) dt$ , que por el apartado (i) sabemos que no es convergente.

Si  $\alpha=0$ , entonces  $\int_1^{+\infty} \frac{\cos(t)}{t^{\alpha}} \, dt = \int_1^{+\infty} \cos(t) \, dt$ . Como, para cada r>1 tenemos que  $\int_1^r \cos(t) \, dt = \left[ \, \sin(t) \, \right]_1^r = \sin(r) - \sin(1) \, \, \text{y} \, \, \text{no exite el} \, \lim_{r \to +\infty} \sin(r), \, \text{resulta que la integral no converge.}$ 

$$\int_{1}^{r} f(t)dt = \left[\operatorname{sen}(t)\right]_{1}^{r} = \operatorname{sen}(r) - \operatorname{sen}(1) \Longrightarrow \left|\int_{1}^{r} f(t)dt\right| \le 2$$

Aplicando el Criterio de Dirichlet, obtenemos finalmente que la integral es convergente. En definitiva,

$$\int_0^{+\infty} \frac{\cos(x^a)}{x^b} \, dx \text{ converge si y sólo } 0 < b < 1 \text{ y } a > 1-b$$

Nota 1: Que la integral impropia  $\int_1^{+\infty} \frac{\cos(t)}{t^{\alpha}} dt$  es convergente cuando  $\alpha > 0$  había sido resuelto en las clases de problemas.

Nota 2: La convergencia de la integral  $\int_1^{+\infty} \frac{\cos(x^a)}{x^b} dx$  cuando a+b-1>0, también puede obtenerse directamente aplicando el Criterio de Dirichlet a las funciones  $f,g\colon [1,+\infty)\longrightarrow \mathbb{R}$ 

definidas como  $f(x)=ax^{a-1}\cos(x^a)$  y  $g(x)=\frac{a}{x^{\frac{a+b-1}{a}}}$ : Resulta que  $g\in\mathcal{C}^1\big([1,+\infty)\big)$ , es decreciente,  $\lim_{x\to +\infty}g(x)=0$  y además, para cada r>1 se tiene que

$$\int_{1}^{r} f(x)dx = \int_{1}^{r} ax^{a-1}\cos(x^{a})dx = \left[\operatorname{sen}(x^{a})\right]_{1}^{r} = \operatorname{sen}(r^{a}) - \operatorname{sen}(1) \Longrightarrow \left|\int_{1}^{b} f(x)dx\right| \le 2$$

Sin embargo, la convergencia absoluta en  $[1, +\infty)$  es incompatible con la convergencia en [0, 1], pues en el primer caso se requiere que b > 1, mientras que en el segundo que b < 1.

#### Problema 2. [3.75 punts]

(a) Donat a>1, considereu la regió plana

$$E = \left\{ (x, y) \in \mathbb{R}^2 : 1 \le x \le a, \sqrt[5]{x} \le y \le \sqrt{x} \right\}$$
$$\cup \left\{ (x, y) \in \mathbb{R}^2 : a \le x \le a^{\frac{5}{2}}, \sqrt[5]{x} \le y \le \sqrt{a} \right\}$$

Calculeu la integral  $\int_E e^{xy^{-2}} dx dy$ .

(b) Siguin 0 < a < b, i considereu la regió

$$R = \left\{ (x, y, z) \in \mathbb{R}^3 : z \ge 0, \ x^2 + y^2 \le z^2, \ a^2 \le x^2 + y^2 + z^2 \le b^2 \right\}.$$

Calculeu  $\int_R z \log (x^2 + y^2 + z^2) dx dy dz$ .

Solución: (a) Como la función  $f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$  definida como  $f(x,y) = e^{\frac{x}{y^2}}$  es continua, resulta que

$$\int_{E} e^{xy^{-2}} dx dy = \int_{1}^{a} dx \int_{\sqrt[5]{x}}^{\sqrt{x}} e^{\frac{x}{y^{2}}} dy + \int_{a}^{a^{\frac{3}{2}}} \int_{\sqrt[5]{x}}^{\sqrt{a}} e^{\frac{x}{y^{2}}} dy.$$

Como una primitiva de  $e^{xy^{-2}}$  respecto de y, no es expresable en términos de funciones elementales, no podemos hacer el cálculo tal y como está propuesto. Sin embargo, el conjunto elemental E también puede expresarse como

$$E = \left\{ (x,y) \in \mathbb{R}^2 : 1 \le y \le \sqrt{a}, \ y^2 \le x \le y^5 \right\}$$

ver la Figura 1,



Figura 1: Región de integración E (aquí a=2)

de manera que

$$\int_{E} e^{xy^{-2}} dx dy = \int_{1}^{\sqrt{a}} dy \int_{y^{2}}^{y^{5}} e^{\frac{x}{y^{2}}} dx = \int_{1}^{\sqrt{a}} \left[ y^{2} e^{\frac{x}{y^{2}}} \right]_{y^{2}}^{y^{5}} dy$$
$$= \int_{1}^{\sqrt{a}} \left[ y^{2} e^{y^{3}} - y^{2} e \right] dy = \frac{1}{3} \left[ e^{y^{3}} - e y^{3} \right]_{1}^{\sqrt{a}} = \frac{1}{3} \left[ e^{a\sqrt{a}} - e a \sqrt{a} \right]$$

(b) Si consideramos  $T: (0, +\infty) \times (0, \pi) \times (0, 2\pi) \longrightarrow \mathbb{R}$  el cambio a coordenadas esféricas dado por  $T(r, \varphi, \theta) = (r\cos(\theta) \sin(\varphi), r\sin(\theta) \sin(\varphi), r\cos(\varphi))$ , entonces, el jacobiano es det  $\mathsf{J}_T = r^2 \sin(\varphi) > 0$ . Por otra parte,

$$T^{-1}(R) = \Big\{ (r, \varphi, \theta) : \cos(\varphi) \ge 0, \ 0 \le \theta \le 2\pi, \ \sin^2(\varphi) \le \cos^2(\varphi), \ a \le r \le b \Big\}.$$

Como  $\operatorname{sen}(\varphi) \geq 0$ , ya que  $0 < \varphi < \pi$ , cuando  $\cos(\varphi) \geq 0$ , la desigualdad  $\operatorname{sen}^2(\varphi) \leq \cos^2(\varphi)$  es equivalente a que  $\operatorname{sen}(\varphi) \leq \cos(\varphi)$ .

Además,  $\cos(\varphi) \ge 0$  si y sólo si  $\varphi \in \left(0, \frac{\pi}{2}\right]$  y en este intervalo,  $\sin(\varphi) \le \cos(\varphi)$  si y sólo si  $0 < \varphi < \frac{\pi}{4}$ . En definitiva,

$$T^{-1}(R) = \left\{ (r,\varphi,\theta) : a \leq r \leq b, \ 0 \leq \theta \leq 2\pi, \ 0 \leq \varphi \leq \tfrac{\pi}{4} \right\} = [a,b] \times \left[0,\tfrac{\pi}{4}\right] \times [0,2\pi],$$

de manera que aplicando el teorema de cambio de variables,

$$\begin{split} \int_R z \log \left(x^2 + y^2 + z^2\right) dx dy dz &= \int_{T^{-1}(R)} r^3 \operatorname{sen}(\varphi) \cos(\varphi) \log(r^2) \, dr d\varphi d\theta \\ &= \left(\int_a^b r^3 \log(r) \, dr\right) \left(\int_0^{\frac{\pi}{4}} 2 \operatorname{sen}(\varphi) \cos(\varphi) d\varphi\right) \left(\int_0^{2\pi} d\theta\right) \\ &= 2\pi \left[\operatorname{sen}^2(\varphi)\right]_0^{\frac{\pi}{4}} \int_a^b r^3 \log(r) \, dr = \pi \int_a^b r^3 \log(r) \, dr \end{split}$$

Finalmente, como para cada c > 0,  $\frac{x^{c+1}}{(c+1)^2} \Big[ (c+1) \log(x) - 1 \Big]$  es una primitiva de  $x^c \log(x)$ , obtenemos que

$$\int_{R} z \log \left(1 + \sqrt{x^2 + y^2 + z^2}\right) dx dy dz = \frac{\pi}{16} \left[ 4b^4 \log(b) - 4a^4 \log(a) + a^4 - b^4 \right]$$

#### Problema 3. [2.5 punts]

- (i) Sigui  $f\colon [a,b] \longrightarrow \mathbb{R}$  una funció,  $\Gamma = \big\{ \big(x,f(x)\big) : x \in [a,b] \big\} \subset \mathbb{R}^2$  el seu graf. Proveu que si f ès integrable Riemann aleshores  $\Gamma$  té mesura nul·la. (Utilitzeu una partició de [a,b] apropiada.)
- (ii) Proveu que el recíproc és fals.
- (iii) Sigui  $h \colon [a, +\infty) \longrightarrow \mathbb{R}$  una funció localment integrable Riemann. Proveu que el seu graf també té mesura nul·la.

Solución: (i) La condición de integrabilidad de Riemann establece que f es integrable Riemann si y sólo si para cada  $\varepsilon > 0$  existe una partición del intervalo [a, b],

$$\mathcal{P}_{\varepsilon} = \{ a = x_0 < x_1 < \dots < x_{n-1} < x_n = b \}$$

tal que  $U(\mathcal{P}, f) - L(\mathcal{P}, f) \le \varepsilon$ , donde

$$U(\mathcal{P}_{\varepsilon}, f) = \sum_{j=1}^{n} M_{j}(x_{j} - x_{j-1}), \quad M_{j} = \sup_{x \in [x_{j-1}, x_{j}]} \{f(x)\},$$
$$L(\mathcal{P}_{\varepsilon}, f) = \sum_{j=1}^{n} m_{j}(x_{j} - x_{j-1}), \quad m_{j} = \inf_{x \in [x_{j-1}, x_{j}]} \{f(x)\},$$

Dado  $\varepsilon > 0$  y fijada una partición  $P_{\varepsilon}$  satisfaciendo  $U(\mathcal{P}_{\varepsilon}, f) - L(\mathcal{P}_{\varepsilon}, f) \leq \varepsilon$ , consideremos  $R_1, \ldots, R_n \subset \mathbb{R}^2$  los rectángulos definidos como

$$R_j = [x_j, x_{j-1}] \times [m_j, M_j], \quad j = 1, \dots, n$$

Claramente,  $\operatorname{vol}(R_j) = (M_j - m_j)(x_j - x_{j-1})$  y  $m_j \leq f(x) \leq M_j$  para cada  $x \in [x_j, x_{j-1}]$ ,  $j = 1, \ldots, n$ , lo que implica que

$$\Gamma \subset \bigcup_{j=1}^n R_j \text{ y además } \sum_{j=1}^n \operatorname{vol}(R_j) = U(\mathcal{P}_\varepsilon, f) - L(\mathcal{P}_\varepsilon, f) \leq \varepsilon$$

de manera que  $\Gamma$  tiene contenido nulo y por tanto medida nula.

(ii) Consideremos  $f = \chi_{\mathbb{Q} \cap [a,b]}$  la función de Dirichlet; es decir, la definida como f(x) = 1 si  $x \in \mathbb{Q} \cap [a,b]$  y f(x) = 0 si  $x \in \mathbb{I} \cap [a,b]$ . Como f es discontinua en cada punto de [a,b], f no es integrable Riemann en [a,b]. Sin embargo, la gráfica de f,  $\Gamma$  satisface que

$$\Gamma \subset ([a,b] \times \{0\}) \cup ([a,b] \times \{1\})$$

y como tanto  $[a,b] \times \{0\}$  como  $[a,b] \times \{1\}$  tienen contenido nulo, resulta que  $\Gamma$  tiene contenido nulo y por tanto medida nula.

(iii) Sabemos que  $h: [a, +\infty) \longrightarrow \mathbb{R}$  es localmente integrable si y sólo si es integrable Riemann en cada subintervalo cerrado [a, b], donde  $b \in \mathbb{R}$  y a < b. Si  $n \in \mathbb{N}$  es tal que a < n y consideramos el intervalo [a, n] y  $\Gamma_n = \{(x, h(x)) : x \in [a, n]\} \subset \mathbb{R}^2$ , entonces

$$\Gamma = \left\{ \left( x, h(x) \right) : x \in [a, +\infty) \right\} = \bigcup_{n>a}^{\infty} \Gamma_n$$

Por el apartado (i)  $\Gamma_n$  tiene medida nula y la unión numerable de conjuntos de medida nula, también es de medida nula, resulta finalmente que

 $\Gamma$ , la gráfica de h, tiene medida nula