(Determinisztikus) Turing-gépek

- A **Turing-gép** egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol
 - Q az állapotok véges, nemüres halmaza,
 - $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
 - Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma$.
 - δ : (Q \ { q_i , q_n }) × Γ → Q × Γ × {L, S, R} az átmenet függvény.
- A Turing-gép működésének fázisait a gép konfigurációival írjuk le. A Turing-gép konfigurációja egy uqv szó, ahol q ∈ Q és u, v ∈ Γ*, v ≠ ε.

A konfiguráció a gép azon állapotát tükrözi amikor a szalag tartalma uv (uv előtt és után a szalagon már csak \sqcup van), a gép a q állapotban van, és a gép író-olvasó feje a v szó első betűjén áll.

- A gép **kezdőkonfigurációja** egy olyan q_0u szó, ahol u csak Σ -beli betűket tartalmaz ($q_0 \sqcup$ ha $u = \varepsilon$). Egy M TG lehetséges konfigurációinak halmazát jelölje C_M .
- Egy Turing-gép $\vdash \subseteq C_M \times C_M$ (egylépéses) **konfigurációátmenet** relációját az alábbiak szerint definiáljuk. Legyen *ugav* egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.
 - Ha $\delta(q, a) = (r, b, R)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
 - ha $\delta(q, a)$ = (r, b, S), akkor uqav ⊢ urbv,
 - ha $\delta(q,a)=(r,b,L)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c=u, ha $u \neq \varepsilon$, különben u'=u és $c=\sqcup$.
- A $\vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet relációját a következőképpen definiáljuk: $C \vdash^* C' \Leftrightarrow$
 - ha C = C' vagy
 - ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \le i \le n 1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.
- Ha $q \in \{q_i, q_n\}$, akkor azt mondjuk, hogy az uqv konfiguráció egy **megállási konfiguráció**. $q = q_i$ esetében **elfogadó**, míg $q = q_n$ esetében **elutasító konfigurációról** beszélünk.
- Az M által **felismert nyelv** (amit L(M)-mel jelölünk) azoknak az $u \in \Sigma^*$ szavaknak a halmaza, melyekre igaz, hogy $q_0u \sqcup \vdash^* xq_iy$ valamely $x,y \in \Gamma^*, y \neq \varepsilon$ szavakra.
- Az egyszalagos TG-ek **átmenetdiagramja**:

• Egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, ha L = L(M) valamely MTuring-gépre. Továbbá, egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, ha létezik olyan M

Turing-gép, mely minden bemeneten megállási konfigurációba jut és felismeri az *L*-et. A Turing-felismerhető nyelveket szokás **rekurzívan felsorolhatónak**, az eldönthető nyelveket pedig **rekurzív-nak** is nevezni. A rekurzívan felsorolható nyelvek osztályát *RE* -vel, a rekurzív nyelvek osztályát pedig *R*-rel jelöljük.

- Tekintsünk egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ Turing-gépet és annak egy $u \in \Sigma^*$ bemenő szavát. Azt mondjuk, hogy M **futási ideje** (időigénye) az u szón n ($n \ge 0$), ha M a q_0u kezdőkonfigurációból n lépésben (konfigurációátmenettel) jut el megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje az u-n végtelen.
- Legyen $f: \mathbb{N} \to \mathbb{N}$ egy függvény. Azt mondjuk, hogy M egy f(n) időkorlátos gép (f(n)) az időigénye), ha minden $u \in \Sigma^*$ input szóra, M futási ideje az u szón legfeljebb f(|u|).

- A k-szalagos Turing-gép egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol
 - Q az állapotok véges, nemüres halmaza,
 - $q_0,q_i,q_n\in Q,\ q_0$ a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
 - $-\ \Sigma\ \acute{e}s\ \Gamma\ \acute{a}b\acute{e}c\acute{e}je\ \acute{u}gy,\ hogy\ \Sigma\subseteq\Gamma\ \acute{e}s\ \sqcup\in\Gamma\backslash\Sigma,$
 - $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ az átmenet függvény.
- A k szalagos Turing-gép **konfigurációja** : $(q, u_1, v_1, \dots, u_k, v_k)$ (2k + 1)-es, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*, v_i \neq \varepsilon$ $(1 \le i \le k)$. Az u szóhoz tartozó **kezdőkonfiguráció:** $u_i = \varepsilon$ $(1 \le i \le k)$, $v_1 = u$, és $v_i = \sqcup$ $(2 \le i \le k)$. Időigény: mint az egyszalagosnál (konfigurációátmenetek száma alapján).
- k-szalagos Turing gép által felismert nyelv:

$$L(M) = \{ u \in \Sigma^* \mid (q_0, \varepsilon, u \sqcup, \varepsilon, \sqcup, \ldots, \varepsilon, \sqcup) \vdash^* (q_i, x_1, y_1, \ldots x_k, y_k),$$
 valamely $x_1, y_1, \ldots, x_k, y_k \in \Gamma^*, y_1, \ldots, y_k \neq \varepsilon \text{ -ra} \}$

• A k-szalagos TG-ek **átmenetdiagramja** egy csúcs- és élcímkézett irányított gráf, melyre

Feladatok

1. Feladat: Készítsünk TG-et, mely a 7-tel osztható hosszúságú szavak nyelvét ismeri fel! **Megoldás:**

$$\Sigma = \{a, b\}.$$

 $q_0abb \vdash aq_1bb \vdash abq_2b \vdash abbq_3 \sqcup \vdash abbq_n \sqcup$

Legyen f(n) = n + 1. Ekkor a gép f(n) időkorlátos.

2. Feladat: Készítsünk egy M TG-et, amelyre $L(M) = \{u \in \{0, 1\}^* \mid |u|_0 \equiv 2 \pmod{3}\}$, ahol $|u|_t$ az u-ban szereplő t betűk száma.

Megoldás:

Ez a TG nem csak felismeri, hanem el is dönti L(M)-et.

3. Feladat: Készítsünk egy olyan M' TG-et, amely felismeri ugyan a 2. feladatban megadott nyelvet, de nem dönti el.

Megoldás:

 $L(M') = \{ u \in \{0, 1\}^* \mid |u|_0 \equiv 2 \pmod{3} \}.$

 q_n -ben ér véget a működés azon szavakra, amelyekre $|u|_0 \equiv 0 \pmod{3}$.

M'nem áll meg azon szavakra, amelyekre $|u|_0 \equiv 1 \pmod{3}.$

4. Feladat: Készítsünk TG-et, mely azon szavakat ismeri fel, melyeknek 3. és 6. betűje azonos! ($\Sigma = \{a, b\}$) **Megoldás:**

 $q_0abbabaa \vdash aq_1bbabaa \vdash abq_2babaa \vdash abbq_6abaa \vdash abbaq_7baa \vdash abbabq_8aa \vdash abbabq_naa$. Legyen f(n) = 6. Ekkor a gép f(n) időkorlátos.

6. Feladat: Készítsünk egy M Turing gépet, melyre $L(M) = \{0^n 1^n | n \in \mathbb{N}\}!$ **Megoldás:**

Ez egy $O(n^2)$ időkorlátos TG, van végtelen szó (például épp az L-beliek), melyre kell $\Omega(n^2)$ lépés.