CS/IS C363 Data Structures & Algorithms

Review: Top Down Design

Data Types Algorithm Design

Strategy: Top-Down Design

Technique: Divide-and-Conquer

Examples: Sorting, Matching Parentheses

Data representation

- Choice of representation is important.
- Representation should be chosen based on the desired set of operations :
 - Are the operations feasible with a given representation?
 - Can they be easily implemented?
 - Can they be efficiently implemented?
- E.g. Natural numbers:
 - Representation: English, Roman numerals, Arabic numerals

Types

- Types classify values:
 - E.g. Taxonomies in Biology
 - Useful for abstract understanding and reasoning
 - E.g. Given Platypus is a mammal
 - Valid reasoning: a platypus does not lay eggs
- Data types classify data values:
 - int, char, bool ...
 - Useful for reasoning as well as for implementing such reasoning
 - e.g. int x; int y; x + y
 - x + y is an *int* value can be inferred.

 - Compiler can identify/prevent (by type checking) such assignments

Data Types

- A (data) type is a set of values
 - grouped on the basis of a common set of operations and hence, typically,
 - implemented using a common representation
 - ☐ E.g.
 - int =def { -2k-1,...,-1, 0, 1,...2k-1-1 }
 - operations: $\{+,-,/,*,\%\}$
 - representation: k bit 2's complement

Structured Data Types

- Programming languages allow programmers to create structured data types:
 - e.g. struct in C: sets of tuples (i.e. cartesian products)
 - The common set of operations (e.g. get or set a field) and the common representation (e.g. contiguous locations) are decided by the language designer and/or compiler implementor.

Course Motivation

- Solving Problems
 - Requires writing Programs ("Concrete solutions")
 - Solve one specific problem i.e. for a class of inputs
 - That can run on one specific language/platform
- Writing Programs
 - Requires designing Algorithms ("abstract solutions")
 - May solve a class of problems
 - Solution not dependent on specific language/platform

Algorithm Design

- High level Specification
 - i.e. independent of specific machines/machine architectures and/or specific language constructs
- Generic Machine Model
- Random Access Machine Model operations,

Typical Instruction Set

Instructions for

- · arithmetic/logic
- · load / store, and
- · control (jmp/br)

Instructions operate on single memory words (or registers of same size)

Q: Why is this relevant? Hint: How many operations for

 $10^20 + 10^15$?

Algorithm Design

- Top-Down Design (Top Down Decomposition)
 - Divide the problem into sub problems.
 - 2. Find solutions for sub problems
 - Combine the sub solutions.
- How do we find solutions for sub problems?
 - Apply top-down design recursively
 - Q: When do we stop dividing?
 - A: When we reach "atomic" problems.
 - Atomic problems have known solutions

Top Down Design - Example I

- Problem (FindWord):
 - Find the number of occurrences of a word in a body of text.
- Data Model:
 - A word is a sequence of alphabetic characters.
 - The given body of text is a string any sequence of characters.
 - We are required to count the occurrences –
 - we will count only if the string occurs as a word
 - i.e. separated by whitespaces or punctuation marks on both sides.

Top Down Design - Example I

- Sub-problems:
 - 1. Getting the next word from a long text.
 - 2. Comparing a word with another.
- Combination :
 - Repeat the two steps in sequence
- Termination:
 - Stop when there is no more text
- Solution:

repeat

get the next word nw;

if nw equals the given word w increment count

until (no more text)

Top Down Design

- Does any decomposition work?
 - Divide (the problem) only if you know how to combine (the solutions)
 - Combination should be "fairly" easy / obvious.
 - Do not divide into "too many" sub problems.
 - Q: Why?
 - E.g. Find an element E in a list [L0, L1, ... Ln-1]
 - Consider this decomposition:
 - n sub-problems each requiring comparison of E with a single list element, say Lj.
 - Q: What is the right decomposition for this example?

Divide-And-Conquer

- Special case of Top-Down-Design
 - Structure of sub problem(s) is same as the (original) problem
 - i.e. once a decomposition and combination have been worked out, the process can be repeated i.e. "recursed"
 - Size of the problem should reduce progressively (as we recur)
 - i.e. size of the input (to the problem/sub-problem)

Divide-And-Conquer: Example i

```
Sort, in-place, a list of N elements.
 Assume list is stored as an array (i.e. logically contiguous memory
   locations): A[0], A[1], ... A[n-1]
Design
 Sub-problem: Sort a list of N-1 numbers (A[0], A[1],...A[n-2])
  Combination: Insert A[n-1] in order (i.e. in the right position)
  Termination: Stop when size is \leq 0.
 □ Why?
Algorithm
 // Precondition: A is an array indexed from 0 to n-1
 // Postcondition: A is ordered in place
 insertSort(A, n) {
 // sort A in-place
 }
```

Divide-And-Conquer: Example i

```
Algorithm
```

```
| // Precondition: A is an array of size n
| // Postcondition: A is ordered in place
insertSort(A, n) {
| if (n>1) { insertSort(A,n-1);
| insertInOrder(A[n-1], A, n-1); }
```

- Note: Of course, insertInOrder has to be designed. End of Note
- Exercise: Apply Divide-and-Conquer to design insertInOrder.

Divide-And-Conquer: Example ii

- Sort a list of N elements.
 - Assume list is stored as an array (i.e. logically contiguous memory locations): (A[0], A[1], ... A[n-1])
- Design
 - Sub-problems: Sort sub-lists of (approx.) n/2 numbers
 - (A[0], A[1] ... A[mid]) and (A[mid+1], A[mid+2], ..., A[n-1])

 - Combination: Merge two sorted lists to get a single sorted list.
 - □ Termination: When list size is <= 1</p>

Divide-And-Conquer: Example ii

```
Algorithm
  // Precondition: A is an array indexed from st to en
  // Postcondition: A is ordered in place
   mergeSort(A, st, en) {
        if (en-st < 1) return;
        mid=floor((st+en)/2);
       mergeSort(A, st, mid);
       mergeSort(A, mid+1,en);
       merge(A, st, mid, A, mid+1, en, A, st, en);
```

- Note: merge has to be designed. End of Note
- Exercise: Apply Divide-and-Conquer to design merge.

Divide-and-Conquer - Example III

- Count the number of strings of matched parentheses of length N. (Assume N=2K for some K)
 - Data Model (for strings of matched parentheses):
 - An empty string has matching parentheses (trivially)
 - If a string S has matching parentheses then (S) has matching parentheses
 - If non-empty strings S1 and S2 each have matching parentheses then the concatenation S1 S2 has matching parentheses
 - This is an inductive data model:
 - Strings with 0 pairs;
 - Strings with K+1 pairs given strings with K pairs;
 - Strings with K1+K2 pairs given strings with K1 pairs and strings with K2 pairs

Divide-and-Conquer – Example III

- Data Model (for strings of matched parentheses):
- An empty string has matching parentheses
- If a string S has matching parentheses then (S) has matching parentheses
- If non-empty strings S1 and S2 each have matching parentheses then the concatenation S1 S2 has matching parentheses.
- Data Model Rewritten (combining 2 & 3):
- An empty string has matching parentheses
- If strings S1 and S2 each have matched parentheses
 - then the concatenation (S1) S2 has matching parentheses
 - [Exercise: Argue that these two models are equivalent
 - Argue that this (either one) model is complete.]

Divide-and-Conquer - Example III

- Counting strings of matched parentheses (k pairs):
 - Count matched pairs of the form
 - □ (matched pairs 1) matched pairs 2
- Sub-problems:
 - The sub strings of matched pairs could be of any length:
 - But if matched_pairs_1 has j-1 pairs, then matched_pairs_2 must have k-j pairs.
 - so there will be a pair of sub-problems for each j from 1 to k
 - count strings of matched parentheses (j-1 pairs)
 - count strings of matched parentheses (k-j pairs)
- Combination
 - Sum from j = 1 to k
 - Product of the two counts (see sub-problems above)

Divide-and-Conquer - Example III

```
Input: K (number of pairs)
Algorithm:
□ // Precondition: K >= 0
countMatchedPars(K)
if K==0 return 1;
else {
   count = 0;
   for j = 1 to K {
   count += countMatchedPars(j-1) * countMatchedPars(K-j)
   return count;
```