

timing device that generates a train of pulses

One period is called pulse!

Clock shortened as clk

Why we need clock?

Artistic Swimming Olympic Qualifier - Italy is GOLD 👸

Clock shortened as clk

Synchronize *all* the memory units *when* to work

Clock Positive Level (default)

Clock Negative Level

Heinrich Rudolf Hertz

A Metric for Speed

How many pulse in 1 sec?

How many pulse in 1 sec?

How long is one pulse? 1/freq. (Hz)

Intel® Xeon® Platinum 8380HL Processor (38.5M Cache, 2.90 GHz) & 2 /0 /2 /2

• 38.5 MB Cache

28 Cores

1,000,000,000 (one billion) Hz (hertz)

• 56 Threads

1,000,000,000 (one billion) pulse per sec!)

4.30 GHz Max Turbo Frequency

Microprocessor clock speed

Microprocessor clock speed measures the number of pulses per second generated by an oscillator that sets the tempo for the processor. It is measured in hertz (pulses per second).

Source: Ray Kurzweil (2005, updated to 2016). The Singularity Is Near: When Humans Transcend Biology.

(2.6 GHZ

Warranty - Manufact

CAS latency - 19 (i)

The number of transfers per clock cycle times the clock frequency, expressed as MegaTransfers per second.

CPU: X Hz 2.6 GH?
Memory: Y Hz 2.6 GH?
Mainboard (BUS): Z Hz

Final Speed?

 $\overline{Min}(x, x, z)$

CPU: X Hz Memory: Y Hz Mainboard (BUS): Z Hz

At market:

$$X > Y = Z$$

X=2.9GHz Y=Z= 2.6GHz

CPU: X Hz
Memory: Y Hz
Mainboard (BUS): Z Hz

Final Speed:

CPU internal: XCPU external $\leftarrow \rightarrow$ Memory Y=Z=2.6GHz

Overclock?

Flip-Flop

Active High (low) is controlling the change to only a specific time period, but is it possible to reduce it to a moment?

Level vs. Edge

Both Edge

From one edge to the next edge, locked!

Both vs. Single Edge

Single Edge Positive vs. Negative

FIGURE 5.8
Clock response in latch and flip-flop

Flip-Flop A single edge enabled latch

Single Edge Positive

Single Edge Negative

Latch -> Flip-Flop

Latch → Flip-Flop How to Design it?

Opening the first \rightarrow Closing the second Closing the first \rightarrow Opening the second

One "quick" moment that the first latch is becoming stable and closing the door! Instead, the second latch is going to accept change.

One "quick" moment that the first latch is becoming stable and closing the door! Instead, the second latch is going to accept change.

Let's force the second latch accept change from the first latch only!

$$\begin{array}{c} X=0 \rightarrow Q=0 \\ X=1 \rightarrow Q=1 \end{array}$$

$$X=0 \rightarrow Q=0$$

 $X=1 \rightarrow Q=1$

We have our ideal memory unit: Flip-Flop

We have our ideal memory unit: Flip-Flop Let's build sequential (logic) circuits!

Analysis vs. Design

Analysis: Given a sequential circuit, show the behavior vs.

Design: Given a behavior, build the sequential circuit

Analysis by an example

0) Is it sequential circuit?

At least one FF
Yes

At least one feedback
Yes

Otherwise
No

1) What are the FFs?

1.1. We pick a name for each FF

1.2. We note the type of FF

2) What are the state combinations (possibilities)?

Each FF can have {0,1} states In total, 2#FFs

#FFs =
$$3 \rightarrow 2^3 = 8$$
 combinations

Analysis 3) Form a 'State' Table

3.1. For each FF, one column for current state (Right)
3.2. For each FF, one column for next state

3) Fill the 'State' table

For each FF, we determine the next state based on

- l) current state
- II) the current value of inputs to the FF

	Q(T)			Q(T+1)	
С	В	А	С	В	A
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0			?
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	А	С	В	Α
0	0	0			$Q_{A}(T)=0$ $J_{A}=Q'_{B}(T)=1$ $K_{A}=Q_{B}(T)=0$
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	lack			

	Q(T)			Q(T+1)	
С	В	Α	С	В	А
0	0	0			$Q_{A}(T)=0$ $J_{A}=Q'_{B}(T)=1$ $K_{A}=Q_{B}(T)=0$ Set Action: 1
0	0	1			
0	1	0			
0	1	1			
1	0	0			

	Q(T)			Q(T+1)	
С	В	Α	С	В	A
0	0	0			1
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Q(T)				Q(T+1)	
C /	В	Α	С	В	А
0	0	0		?	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0		$Q_{B}(T) = 0$ $T_{B} = Q'_{C}(T) = 1$	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0		$Q_{B}(T)=0$ $T_{B}=Q'_{C}(T)=1$ Comp. $(Q_{B}(T))=1$	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			

Q(T)				Q(T+1)	
С	В	А	С	В	А
0	0	0	?	1	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	А
0	0		$Q_{C}(T)=0$ $R_{C}=Q_{A}(T)\neq0$ $S_{C}=Q_{B}(T)\neq0$	1	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	\circ			

	Q(T)			Q(T+1)	
С	В	Α	С	В	А
0	0	0	$Q_{C}(T)=0$ $R_{C}=Q_{A}(T)=0$ $S_{C}=Q_{B}(T)=0$ Store $Q_{C}(T)=0$	1	1
0	0	1			
0	1	0			
0	1	1			
1	0	0			

Analysis
$$Q_{A}(T) = A, Q_{A}(T) = A'$$

For simplicity, the current status of a FF can be assume to be as a binary variable

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0	0	1	1
0	0	1			$A=1$ $J_A = B' = 1$ $K_A = B = 0$ Set Action: 1
0	1	0			
0	1	1			
1	0	0			

	Q(T)			Q(T+1)	
С	В	Α	С	B	Α
0	0	0	0	1	1
0	0	1		$B=0$ $T_{B}=C'=1$ Comp. Action: 1	1
0	1	0			
0	1	1			
1	0	0			
1	0	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	А
0	0	0	0	1	1
0	0	1	$C=0$ $R_C=A=1$ $S_C=B=0$ Reset Action: 0	1	1
0	1	0			
0	1	1			
1	0	0			

Q(T)				Q(T+1)	
С	В	Α	С	В	Α
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Q(T)				Q(T+1)	
С	В	А	С	В	А
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	Α	С	В	Α
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1		0	0
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Q(T)				Q(T+1)	
С	В	А	С	В	А
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	X	0	0
1	0	0	1	0	1
1	0	1			
1	1	0			
1	1	1			

Q(T)				Q(T+1)	
С	В	Α	С	В	Α
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	X	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0			
1	1	1			

	Q(T)			Q(T+1)	
С	В	А	С	В	А
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	X	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1			

Q(T)				Q(T+1)	
C	В	A	C	В	Α
0	0	0	0	1	1
0	0	1)	0	1	1
0	1	0	1	0	0
0	1	1	X	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	X	1	0

4) State Transition Diagram

4.1. for each state combination (each row), a node

4.2. from one state (node) to another state, a directed edge

5) (Optional) Path on State Transitions

All the paths end up with indeterminate state

The circuit needs to be improved!

Analysis (Recap)

- 0. Is the circuit sequential or combinational? Any FF or feedback → Sequential
- 1. What are the flip-flops? RS, D, T, JK, or mixed (e.g., 2 JK, 1 RS, ...)
- 2. What are the state combinations? 2#FF
- 3. Form "State" table:
 - a) Columns: for each FF, two columns:
 - one for current state,
 - o one for next state
 - b) Rows: for each state combination
 - o In total: 2#FF
- 4. Fill the state table for next state columns based on:
 - a) the current state
 - b) the inputs to the FFs
- 5. Form State Transition Diagram
- 6. (Optional) Analyze paths and states in state transition diagram

Design by an example