Problem description: Solve the following initial-value problem

$$f'(x) = y(x, f) \quad , x \in [0, 2]$$
 (1)

with f(0) = 1 and y(x, f) = x + f.

Requirements:

- i). For the ordinary differential equation problem (1), applying the
 - 1). Fourth-order Adams-Bashforth technique as g_1 ,
 - 2). Adams-Bashforth Three-Step Explicit Method as g_2 ,
 - 3). Adams-Moulton Four-Step Implicit Method as g_3 ,
 - 4). Adams Fourth-Order Predictor-Corrector Method as g_4 ,

with different step-sizes $h_1 = \frac{1}{5}, h_2 = \frac{1}{10}, h_3 = \frac{1}{20}, h_4 = \frac{1}{40}, h_5 = \frac{1}{80}$. Note that you should calculate the initial values before you start to apply linear multistep methods.

- ii). Plot your approximation results with different step-size and the real function in one figure for different method. Concretely, you should plot five approximation results with given step-size and the real function in each figure. i.e., $g_1(h_1)$, $g_1(h_2)$, $g_1(h_3)$, $g_1(h_4)$, $g_1(h_5)$ and f(x) should be in one figure. The $g(h_i)$ means the approximation function with node points from step-size $h_j, j=1,2,3,4,5$.
- iii). Calculate the residuals of $f(\cdot)$ and $g_i(\cdot)$, i=1,2,3,4 with different step-size, i.e., error = |f(x)-g(x)|, $g(\cdot)=1$ $g_i(\cdot), i = 1, 2, 3, 4$ where x is the node points obtained according to step-size $h_j, j = 1, 2, 3, 4, 5$. Then plot approximation error with different step-size for the four methods.
- iv). Define

$$P_h = \log_2 \frac{|\text{error}_{j-1}|_{\infty}}{|\text{error}_{j}|_{\infty}}, \ j = 2, 3, 4, 5,$$

where $\operatorname{error}_j = |f(x_{h_j}) - g(x_{h_j})|$, and $|\cdot|_{\infty}$ denote the ∞ -norm, i.e., $|x|_{\infty} = \max_i |x_i|, x \in \mathbb{R}^n$. Then apply the definition to calculate the P_h for different method, and complete the following table. For convenience, keeping five decimals for your results when you calculate P_h .

$\int_{-\infty}^{\infty} j$	$P_h(g_1)$	$P_h(g_2)$	$P_h(g_3)$	$P_h(g_3)$	$P_h(g_4)$	$P_h(g_4)$
2	3.49377	2.66105	4.52256	5.15274	1.65414	-0.11878
3	3.76631	2.84277	4.78202	4.24942	3.29962	3.18844
4	3.88679	2.92368	4.89509	4.71222	3.6946	3.66511
5	3.94419	2.9623	4.94762	4.8673	3.8556	3.84446

Table 1

Solution: Initialization with RK6 for $g_{1,2,3,4}$.

ii) The approximation for the problem (1) with different method as follows:

Figure 1: Approximation (1) With Different Method.

While we can calculate the "real" solution for problem (1) as

$$f(x) = 2e^x - x - 1,$$

the Figure 1 shows that all the method in the requirements have the good approximation for the ODE (1).

iii) The local truncation error for different method as follows:

Figure 2: Local Truncation With Different Method For Solving Problem (1).

The Figure 2 shows that with the step-size becoming smaller all the method in the requirements make the smaller actual error.

As for the theoretical error estimation, Adams-Moulton Four-Step Implicit Method has the local truncation error with the highest order, i.e., is $O(h^5)$, so we need Initialize g_3 with RK5 for, or other methods with higher order. The Adams-Bashforth Three-Step Explicit Method has has the local truncation error with the lowest order, i.e., is $O(h^3)$.

While the Adams Fourth-Order Predictor-Corrector Method need to predict and correct, it may cause the order for Adams Fourth-Order Predictor-Corrector Method is not approx to 4 if we make a "bad" approximation in the prediction step. To improve the accuracy, we can do more times correct-step.

Here is a typical mistake is we use RK4 for g_3 , then you will get the P_h in Table 1, and the actual error as follows.

It is wright to use RK4 for g_4 , then yow will get the P_h in Table 1 and the actual error as

iv) For one method, the number in Table 1 should "limit" to the order for the theoretical error.

Appendix:

Here are two figures to show the asymptotic stability of the "order"

(a) g3 with RK4, non-convergence

(b) g3 with RK6, convergence to the order $\,$

Figure 3: The local asymptotic stability