NLP 202: Structured Perceptron

Jeffrey Flanigan

Winter 2023

University of California Santa Cruz jmflanig@ucsc.edu

- We have seen the simplest method for dependency parsing: transition-based dependency parsing
- Next simplest method: graph-based dependency parsing with the structured perceptron

I first need to introduce a new learning algorithm: the **Perceptron algorithm**

The Perceptron

REPORT NO. 85-460-1

THE PERCEPTRON

A PERCEIVING AND RECOGNIZING AUTOMATON

(PROJECT PARA)

January, 1957

Prepared by: Frank Rosenblatt

Frank Rosenblatt, Project Engineer

Psychological Review Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN!

F. ROSENBLATT

Cornell Aeronautical Laboratory

The Perceptron algorithm

- Rosenblatt 1958
 - (Though there were some hints of a similar idea earlier, eg: Agmon 1954)
- The goal is to find a separating hyperplane
 - For separable data, guaranteed to find one
- An online algorithm
 - Processes one example at a time
- Several variants exist
 - We will see these briefly at towards the end

Learning setup: Binary classification

- Training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in R^n, y_i \in \{-1, 1\}$
- Make predictions: 1 if $\mathbf{w}^T \mathbf{x}_i \geq 0$, -1 otherwise Another way to write this: $\operatorname{sign}(\mathbf{w}^T \mathbf{x})$
- \bullet Want to learn the weights ${\bf w}$ Note: by include a constant feature of 1, the bias term can be "folded-in" to ${\bf w}$

Perceptron Algorithm

- Decision rule: $sign(\mathbf{w}^T\mathbf{x}_i)$
- Learning rule: If incorrect:
 - if positive, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}_i$ if negative, $\mathbf{w} \leftarrow \mathbf{w} \mathbf{x}_i$ Another way to write this: $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$, $y_i \in \{-1, 1\}$
- Guaranteed to eventually correctly classify the data if the data are linearly separable

Perceptron Algorithm

- Decision rule: $sign(\mathbf{w}^T\mathbf{x}_i)$
- Learning rule: If incorrect:
 - if positive, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}_i$ if negative, $\mathbf{w} \leftarrow \mathbf{w} \mathbf{x}_i$ Another way to write this: $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$, $y_i \in \{-1, 1\}$
- Guaranteed to eventually correctly classify the data if the data are linearly separable
- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \dots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \neq \text{sign}(\mathbf{w}^T \mathbf{x})$ (shorthand: $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$), then: Update $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$
- 3. Return w

Perceptron Algorithm

- Decision rule: $sign(\mathbf{w}^T\mathbf{x}_i)$
- Learning rule: If incorrect:
 - if positive, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}_i$ if negative, $\mathbf{w} \leftarrow \mathbf{w} \mathbf{x}_i$ Another way to write this: $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$, $y_i \in \{-1, 1\}$
- Guaranteed to eventually correctly classify the data if the data are linearly separable
- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \dots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \neq \operatorname{sign}(\mathbf{w}^T \mathbf{x})$ (shorthand: $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$), then: Update $\mathbf{w} \leftarrow \mathbf{w} + r y_i \mathbf{x}_i$ Can also have a stepsize (learning rate) r. If constant, can set to 1
- 3. Return w

Intuition behind the update

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r\mathbf{x}_i$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - r\mathbf{x}_i$

Suppose we have made a mistake on a positive example That is, y = +1 and $\mathbf{w}_t^{\mathrm{T}} \mathbf{x} \leq 0$

Call the new weight vector $\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{x}$ (say r = 1)

The new dot product is $\mathbf{w}_{t+1}^T\mathbf{x} = (\mathbf{w}_t + \mathbf{x})^T\mathbf{x} = \mathbf{w}_t^T\mathbf{x} + \mathbf{x}^T\mathbf{x} \geq \mathbf{w}_t^T\mathbf{x}$

For a positive example, the Perceptron update will increase the score assigned to the same input

Similar reasoning for negative examples

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r\mathbf{x}_i$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - r\mathbf{x}_i$

Geometry of the perceptron update

Mistake on positive: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + r\mathbf{x}_i$ Mistake on negative: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - r\mathbf{x}_i$

Geometry of the perceptron update

Variants of the Perceptron: voting and averaging $\,$

1. The "standard" algorithm

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in \Re^n, y_i \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \cdots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$, then:
 - update $\mathbf{w} \leftarrow \mathbf{w} + ry_i \mathbf{x}_i$
- Return w

Prediction on a new example with features \mathbf{x} : $\operatorname{sgn}(\mathbf{w}^T\mathbf{x})$

1. The "standard" algorithm

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in \Re^n, y_i \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \cdots T$: T is a hyper-parameter to the algorithm
 - Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$, then:
 update $\mathbf{w} \leftarrow \mathbf{w} + r y_i \mathbf{x}_i$ Another way of writing that there is an error
- Return w

Prediction on a new example with features \mathbf{x} : $\operatorname{sgn}(\mathbf{w}^T\mathbf{x})$

2. Voting and Averaging

· So far: We return the final weight vector

Voted perceptron

- Remember every weight vector in your sequence of updates.
- At final prediction time, each weight vector gets to vote on the label. The number of votes it gets is the number of iterations it survived before being updated
- Comes with strong theoretical guarantees about generalization, impractical because of storage issues

2. Voting and Averaging

So far: We return the final weight vector

Voted perceptron

- Remember every weight vector in your sequence of updates.
- At final prediction time, each weight vector gets to vote on the label. The number of votes it gets is the number of iterations it survived before being updated
- Comes with strong theoretical guarantees about generalization, impractical because of storage issues

Averaged perceptron

- Instead of using all weight vectors, use the average weight vector (i.e longer surviving weight vectors get more say)
- More practical alternative and widely used

Averaged Perceptron

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in \Re^n$, $y_i \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$ and $\mathbf{a} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \cdots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^T \mathbf{x}_i \le 0$, then: - update $\mathbf{w} \leftarrow \mathbf{w} + r y_i \mathbf{x}_i$ • $\mathbf{a} \leftarrow \mathbf{a} + \mathbf{w}$
- 3. Return a

Prediction on a new example with features \mathbf{x} : $\operatorname{sgn}(\mathbf{a}^T\mathbf{x})$

Averaged Perceptron

Given a training set
$$D = \{(\mathbf{x}_i, y_i)\}$$
 where $\mathbf{x}_i \in \Re^n$, $y_i \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$ and $\mathbf{a} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \cdots T$:
 - Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^T \mathbf{x}_i \le 0$, then:
 - update $\mathbf{w} \leftarrow \mathbf{w} + ry_i \mathbf{x}_i$
 - $a \leftarrow a + w$
- Return a

This is the simplest version of the averaged perceptron

There are some easy programming tricks to make sure that **a** is also updated only when there is an error

Prediction on a new example with features \mathbf{x} : $\operatorname{sgn}(\mathbf{a}^T\mathbf{x})$

Averaged Perceptron

Given a training set
$$D = \{(\mathbf{x}_i, y_i)\}$$
 where $\mathbf{x}_i \in \Re^n, y_i \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$ and $\mathbf{a} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \cdots T$:
 - Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^T \mathbf{x}_i \le 0$, then:

- update
$$\mathbf{w} \leftarrow \mathbf{w} + ry_i \mathbf{x}_i$$

•
$$a \leftarrow a + w$$

3. Return a

This is the simplest version of the averaged perceptron

There are some easy programming tricks to make sure that **a** is also updated only when there is an error

If you want to use the Perceptron algorithm, use averaging

Prediction on a new example with features \mathbf{x} : $\operatorname{sgn}(\mathbf{a}^T\mathbf{x})$

Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) > \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Standard Perceptron Algorithm (Binary Case)

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in R^n, y_i \in \{-1, 1\}$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \dots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \mathbf{w}^T \mathbf{x}_i \leq 0$, then: Update $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$
- 3. Return w

Prediction on a new example with features x: $sign(\mathbf{w}^T\mathbf{x})$

What about multiclass?

Multiclass Perceptron

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in \mathcal{X}$, $y_i \in L$ and linear scoring function $\mathbf{w}^T \mathbf{f}(\mathbf{x}_i, y)$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \dots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If $y_i \neq \hat{y} = \operatorname{argmax}_y \mathbf{w}^T \mathbf{f}(\mathbf{x}_i, y)$, then: Update $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}_i, y_i) - \mathbf{f}(\mathbf{x}_i, \hat{y})$
- 3. Return w

Prediction on a new example \mathbf{x} : $\hat{y} = \operatorname{argmax}_{y} \mathbf{w}^{T} \mathbf{f}(\mathbf{x}_{i}, y)$

Multiclass Perceptron

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in \mathcal{X}$, $y_i \in L$ and linear scoring function $\mathbf{w}^T \mathbf{f}(\mathbf{x}_i, y)$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \dots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - If y_i ≠ ŷ = argmax_y w^T f(x_i, y), then (this check is not necessary, because if same, then update cancels):
 Update w ← w + f(x_i, y_i) f(x_i, ŷ)
- 3. Return w

Prediction on a new example \mathbf{x} : $\hat{y} = \operatorname{argmax}_{y} \mathbf{w}^{T} \mathbf{f}(\mathbf{x}_{i}, y)$

Multiclass Perceptron

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in \mathcal{X}$, $y_i \in L$ and linear scoring function $\mathbf{w}^T \mathbf{f}(\mathbf{x}_i, y)$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \dots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - $\hat{y} = \operatorname{argmax}_{y} \mathbf{w}^{T} \mathbf{f}(\mathbf{x}_{i}, y)$
 - $\bullet \ \ \mathsf{Update} \ \mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}_i, y_i) \mathbf{f}(\mathbf{x}_i, \hat{y})$
- 3. Return w

Prediction on a new example \mathbf{x} : $\hat{y} = \operatorname{argmax}_{y} \mathbf{w}^{T} \mathbf{f}(\mathbf{x}_{i}, y)$

Can we use the perceptron for **structured outputs**?

For example, sequence labeling and dependency parsing?

Structured Perceptron (with linear scoring function)

Given a training set $D = \{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in \mathcal{X}$, $y_i \in \mathcal{Y}(\mathbf{x}_i)$ (output space depends on input) and linear scoring function $\mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y})$

- 1. Initialize $\mathbf{w} = \mathbf{0} \in \mathbb{R}^n$
- 2. For epoch in $1 \dots T$:
 - 1. Shuffle the data
 - 2. For each training example $(\mathbf{x}_i, y_i) \in D$:
 - Make prediction $\hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{v}} \mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y})$
 - Update $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}_i, \mathbf{y}_i) \mathbf{f}(\mathbf{x}_i, \hat{\mathbf{y}})$
- 3. Return w

Prediction on a new example \mathbf{x} : $\hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{v}} \mathbf{w}^T \mathbf{f}(\mathbf{x}_i, \mathbf{y})$

Another view of the Perceptron

It turns out, the Perceptron algorithm is exactly stochastic (sub)-gradient descent on a loss function!

The Perceptron minimizes:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \left(\max_{y' \in \mathcal{Y}} \mathbf{w} \cdot f(\mathbf{x}_i, y') \right) - \mathbf{w} \cdot f(\mathbf{x}_i, y_i)$$

Minimizing the Perceptron Loss: The Perceptron Algorithm

Perceptron solves the following minization problem:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \left(\max_{y' \in \mathcal{Y}} \mathbf{w} \cdot f(\mathbf{x}_i, y') \right) - \mathbf{w} \cdot f(\mathbf{x}_i, y_i)$$

Stochastic subgradient descent (SSGD) with stepsize α on the above is the **Perceptron** algorithm!

- For $i \in \{1, ..., N\}$:
 - Shuffle the training data, and for each example i do the following update:
 - $\hat{y}_i \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w} \cdot f(\mathbf{x}_i, y)$
 - $\mathbf{w} \leftarrow \mathbf{w} \alpha \left(f(\mathbf{x}_i, \hat{y}) f(\mathbf{x}_i, y_i) \right)$

Minimizing Perceptron Loss

$$\left(\max_{y' \in \mathcal{Y}} \mathbf{w} \cdot f(\boldsymbol{x}, y')\right) - \mathbf{w} \cdot f(\boldsymbol{x}, y)$$

Minimizing Perceptron Loss

$$\left(\max_{y' \in \mathcal{Y}} \mathbf{w} \cdot f(\boldsymbol{x}, y')\right) - \mathbf{w} \cdot f(\boldsymbol{x}, y)$$

When two labels are *tied*, the function is not differentiable. Solution: (stochastic) subgradient descent!

Subgradient

c is a subgradient of f(x) at x_0 if $\forall x$:

$$f(x) - f(x_0) \ge c(x - x_0)$$

(Only defined for convex functions.)

Gradient of Perceptron Loss

For the *i*th data point the subgradient is:

$$g_i^j = \frac{\partial}{\partial \mathbf{w}_j} \left[\left(\max_{y' \in \mathcal{Y}} \mathbf{w} \cdot f(x_i, y') \right) - \mathbf{w} \cdot f(x_i, y_i) \right]$$
$$= f^j(x_i, \hat{y}) - f^j(x_i, y_i)$$

where

$$\hat{y} = \underset{y' \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{w} \cdot f(x_i, y')$$

Minimizing the Perceptron Loss: The Perceptron Algorithm

Perceptron solves the following minization problem:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \left(\max_{y' \in \mathcal{Y}} \mathbf{w} \cdot f(\mathbf{x}_i, y') \right) - \mathbf{w} \cdot f(\mathbf{x}_i, y_i)$$

Stochastic subgradient descent (SSGD) with stepsize α on the above is the **Perceptron** algorithm!

- For $i \in \{1, ..., N\}$:
 - Shuffle the training data, and for each example i do the following update:
 - $\hat{y}_i \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w} \cdot f(\mathbf{x}_i, y)$
 - $\mathbf{w} \leftarrow \mathbf{w} \alpha \left(f(\mathbf{x}_i, \hat{y}) f(\mathbf{x}_i, y_i) \right)$

Proof the the Perceptron mistake bound (not covered in class).

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

20

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) > \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$Ak \le ||\boldsymbol{\theta}^{(k+1)}|| \le B\sqrt{k}$$

Proof of Perceptron Mistake Bound:

Part 1: for some A, $Ak \leq ||\theta^{(k+1)}||$

$$\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$$

by Perceptron algorithm update

$$= \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)} (\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$$

$$\geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$$

by assumption

$$\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* \ge k\gamma$$

by induction on k since $\theta^{(1)} = \mathbf{0}$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \geq k\gamma$$

since
$$||\mathbf{w}|| \times ||\mathbf{u}|| \geq \mathbf{w} \cdot \mathbf{u}$$
 and $||\theta^*|| = 1$

Cauchy-Schwartz inequality

Proof of Perceptron Mistake Bound:

Part 2: for some B, $||\theta^{(k+1)}|| \le B\sqrt{k}$

$$\begin{split} || \pmb{\theta}^{(k+1)} ||^2 &= || \pmb{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)} ||^2 \\ & \text{by Perceptron algorithm update} \\ &= || \pmb{\theta}^{(k)} ||^2 + (y^{(i)})^2 || \mathbf{x}^{(i)} ||^2 + 2 y^{(i)} (\pmb{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \\ &\leq || \pmb{\theta}^{(k)} ||^2 + (y^{(i)})^2 || \mathbf{x}^{(i)} ||^2 \\ & \text{since kth mistake} \Rightarrow y^{(i)} (\pmb{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0 \\ &= || \pmb{\theta}^{(k)} ||^2 + R^2 \\ & \text{since } (y^{(i)})^2 || \mathbf{x}^{(i)} ||^2 = || \mathbf{x}^{(i)} ||^2 = R^2 \text{ by assumption and } (y^{(i)})^2 = 1 \\ &\Rightarrow || \pmb{\theta}^{(k+1)} ||^2 \leq k R^2 \\ & \text{by induction on k since } (\pmb{\theta}^{(1)})^2 = 0 \\ &\Rightarrow || \pmb{\theta}^{(k+1)} || \leq \sqrt{k} R \end{split}$$

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$k\gamma \le ||\boldsymbol{\theta}^{(k+1)}|| \le \sqrt{k}R$$
$$\Rightarrow k \le (R/\gamma)^2$$

The total number of mistakes must be less than this

Log Loss and Perceptron Loss for (x, y)

$$\begin{split} \log \text{ loss: } & \left(\log \sum_{y' \in \mathcal{Y}} \exp \mathbf{w} \cdot f(\boldsymbol{x}, y')\right) - \mathbf{w} \cdot f(\boldsymbol{x}, y) \end{split}$$
 Perceptron loss:
$$\left(\max_{y' \in \mathcal{Y}} \mathbf{w} \cdot f(\boldsymbol{x}, y')\right) - \mathbf{w} \cdot f(\boldsymbol{x}, y)$$

In purple is the hinge loss, in blue is the log loss; in red is the "zero-one" loss (error).