

Employee Attrition Prediction

By Group - M4

- Akanksha Manohar
- Meenakshi R Nair
- Neha Tiwari
- Niketha Venkatesh
- Shriya Karthikeyan

Business problem?

especially unexpectedly.

? Why is this a problem?

- Leads to higher recruitment and training costs.
- Loss of experienced talent can affect productivity, morale, and customer service.
- Warning Sign of Bigger Issues
 - **Business Goal:** Predict which employees are likely to leave so HR can proactively retain talent.

Why is This Dataset Interesting for us?

- ➤ Rich Dataset
- > Real-world context
- > challenges such as:

Employee Retention

Talent Development

Performance Prediction

Organizational Planning

It simulates the type of data companies collect, making it highly relevant for practical business insights.

Data Overview

HR dataset \rightarrow Uncover key drivers of employee behavior and organizational outcomes.

- Dataset Structure: 1470 observations (rows), 35 features (variables)
- The primary data mining problem is to **predict employee attrition**, i.e., determine whether an employee is likely to leave the company based on historical data.
- Target Variable : Attrition Yes or No (Binary Classification)
- \rightarrow Key drivers \rightarrow 12 features
- Demographics Age, Gender, Marital status
- > Compensation and Benefits: Monthly Income, Stock Option Level
- Work Life Factors: Work-Life Balance, Total Working Years, Over Time
- > Satisfaction and Engagement: Job Satisfaction, Environment Satisfaction, Job Involvement.
- > Commute and Location: Distance From Home

Sample Data

ge	Attrition	Business Travel	Daily Rate	Department	Distance_From_ Home	Education	Education Field	Employee Count		Environment Satisfaction	Gender	HourlyRate	JobInvolvement	JobLevel	JobRole	JobSatisfaction	MaritalStatus	MonthlyIncome
41	Yes	avel Rare		Sales	1	2	ife Science	1	1	2	Female	94	3	2	Sales Executive	4	Single	5993
49	No	/el_Freque		rch & Develo	8	1	ife Science		2	3	Male	61	2	2	Research Scientist	2	Married	5130
37	Yes	avel Rare		rch & Develo	2	2	Other	1	4	4	Male	92	2	1	aboratory Technicia	3	Single	2090
33	No	el Fregue	1392	rch & Develo	3	4	ife Science	1	5	4	Female	56	3	1	Research Scientist	3	Married	2909
27	No	avel_Rare	591	rch & Develo	2	1	Medical	1	7	1	Male	40	3	1	aboratory Technicia	2	Married	3468
32	No	/el_Freque	1005	rch & Develo	2	2	ife Science	1	8	4	Male	79	3	1	aboratory Technicia	4	Single	3068
59	No	avel_Rare	1324	rch & Develo	3	3	Medical	1	10	3	Female	81	4	1	aboratory Technicia	1	Married	2670
30	No	avel_Rare	1358	rch & Develo	24	1	ife Science	1	11	4	Male	67	3	1	aboratory Technicia	3	Divorced	2693
38	No	/el_Freque	216	rch & Develo	23	3	ife Science	1	12	4	Male	44	2	3	lanufacturing Directo	3	Single	9526
36	No	avel_Rare	1299	rch & Develo	27	3	Medical	1	13	3	Male	94	3	2	althcare Representa	3	Married	5237
35	No	avel_Rare	809	rch & Develo	16	3	Medical	1	14	1	Male	84	4	1	aboratory Technicia	2	Married	2426
29	No	avel_Rare	153	rch & Develo	15	2	ife Science	1	15	4	Female	49	2	2	aboratory Technicia	3	Single	4193
31	No	avel_Rare	670	rch & Develo	26	1	ife Science	1	16	1	Male	31	3	1	Research Scientist	3	Divorced	2911
34	No	avel_Rare	1346	rch & Develo	19	2	Medical	1	18	2	Male	93	3	1	aboratory Technicia	4	Divorced	2661
28	Yes	avel_Rare	103	rch & Develo	24	3	ife Science	1	19	3	Male	50	2	1	aboratory Technicia	3	Single	2028
29	No	avel_Rare	1389	rch & Develo	21	4	ife Science	1	20	2	Female	51	4	3	lanufacturing Directo	1	Divorced	9980
32	No	avel_Rare	334	rch & Develo	5	2	ife Science	1	21	1	Male	80	4	1	Research Scientist	2	Divorced	3298
22	No	Non-Trave	1123	rch & Develo	16	2	Medical	1	22	4	Male	96	4	1	aboratory Technicia	4	Divorced	2935
53	No	avel_Rare	1219	Sales	2	4	ife Science	1	23	1	Female	78	2	4	Manager	4	Married	15427
38	No	avel_Rare	371	rch & Develo	2	3	ife Science	1	24	4	Male	45	3	1	Research Scientist	4	Single	3944

Is it supervised or unsupervised?

This is a **supervised classification** problem because:

- We have a labeled data with defined target variable(Attrition: Yes or No).
- Using data mining ,we aim to train the model to learn patterns from historical data and **predict** new cases.

Data Preprocessing

- ➤ Handling Missing Values: using Simple Imputer
 - Numerical columns → Mean
 - Categorical columns → Mode
- > Detecting Outliers: 3 features
 - Years_Since_Last_Promotion
 - Training_Times_LastYear
 - Performance_Rating
- ➤ Encoding Categorical Variables: using Label encoder
 - -Attrition (Yes = 1, No = 0)
- > Feature Scaling: using Minmax scaler
- MinMax Scaling \rightarrow Min-Max Scaling is applied to the **numerical features** to normalize them, ensuring that all features are on a similar scale.
- ➤ Balancing dataset : using SMOTE Analysis:
 - 1237 employees did not leave the organization while \rightarrow 84% of cases
 - 237 did leave the organization → 16% of cases
 - **Result** Dataset is imbalanced
 - Solution

 used SMOTE to balance class distribution.

Naïve Bayes

- Top features: Performance rating, stock option level, job involvement, environment satisfaction, work life balance
- Accuracy = 0.7341, AUC=0.8555

Decision Tree

- Tree depths we tried = 3, 5, 10
- Top features Stock Option Level, Job Satisfaction, Monthly Income, Relationship satisfaction and Job role
- Found the optimal tree depth to be at 10 with AUC = 0.81 and Recall = 0.86

Decision Tree - Top 15 Feature Importance

Logistic Regression:

Forward Feature Selection: Accuracy=0.7976, AUC=0.8683, Recall= 0.8016

Backward Feature Selection: Accuracy=0.8057, AUC=0.8822, Recall = 0.8016

Found Backward feature selection model to be the best one

Insights from the top features:

- Higher stock options make employees 2.5 times less likely to leave
- Employees who are more involved in their jobs are 2.2 times less likely to leave
- Higher job levels (more senior positions) reduce departure risk by about 2 times
- Working overtime increases the chance of leaving by 0.8 times
- Living farther from work increases departure risk by 1.2 times
- More years since last promotion significantly increases departure likelihood by 1.7 times

SVM(Support Vector Machine):

- Tried different C values: 0.1, 1, 10
- Accuracy with different C values: C=0.1: Accuracy=0.8410, C = 1: Accuracy = 0.8902, C = 10: Accuracy = 0.9191
- Optimal C = 10 gave AUC = 96.66, Accuracy = 91.91

Effect of C on SVM Accuracy 0.92 0.91 0.90 0.89 Test Accuracy 0.87 0.86 0.85 0.84 10^{-1} 10⁰ 10¹ C (log scale)

Neural Network:

• MLP CLASSIFIER

• LAYER SIZES: (30,), (50,), (30, 30)

• ALPHA: 0.0001, 0.01

• BEST: 'alpha': 0.0001, 'layer

sizes': (50,)

• 'Accuracy': 0.86

• 'Precision': 0.84

• 'Recall': 0.88

• 'AUC': 0.94

Model Evaluation

Which? Why?
What? How?

Measure of Importance

Recall

Top Features

So far..

Model	HyperParameters
SVM	C=10
Neural Network	hidden_layer_sizes': (100, 50), 'activation': 'relu'
Logistic Regression	Backward Elimination (17 features)
Decision Tree	max_depth=10
Naive Bayes	No Hyperparameters Tuned

Comparison of AUC and Recall Across Models 0.93 0.91 0.88 Recall 0.87 0.86 0.81 0.80 0.79 0.8 0.75 0.6 Score 0.4 0.2 0.0 Models

Performance Metrics:

• Accuracy: 88.9%

• AUC Score: 0.96

• Recall: 88.3% (Strong at identifying at-risk employees)

Optimal Parameters:

- 200 Estimators
- Max Depth = 20
- Min Samples Split = 2

Gradient Boosting & XGBoost

Contrasting the two

Aspect	Gradient Boost	XGBoost			
Accuracy	90%	90%			
Recall	92%	90%			
Precision	88%	90%			
AUC	97%	97.02%			
Simplicity	Simpler Hyperparameters (3 tuned)	More Tuned Hyperparameters (6 tuned)			
Regularization	None	L1 (alpha) and L2 (lambda) regularization			
Feature Focus	Income & Satisfaction	Position, Career Progression			

[•]Gradient Boost offers slightly better recall with a simpler setup.

[•]**XGBoost** provides stronger regularization, slightly better AUC, and more balanced generalization across features.

4/28/2025

KNN

- KNN achieved 82.6% accuracy and 0.90 AUC score, making it one of our top performers
- Optimal model uses 4 nearest neighbors to make predictions
- Exceptional at identifying at-risk employees with 92.3% recall rate
- Feature importance analysis revealed JobSatisfaction and Gender as the key predictors
- Works well with our dataset without requiring complex parameter tuning
- Provides excellent balance between computational efficiency and predictive power

Ensemble Method #1 (SVM, DT, NN)

• 'Accuracy': 0.88

• 'Precision': 0.87

• 'Recall': 0.89

• 'AUC': 0.95

Ensemble Method #2 (Bagging with Decision Trees)

• 'Accuracy': 0.86

'Precision': 0.86

• 'Recall': 0.87

• 'AUC': 0.93

Comparison of 2 Ensemble models

- Ensemble #1 has 2% higher accuracy, meaning it correctly predicts attrition slightly better overall
- Ensemble #1 captures more true positives (employees leaving) — important for the business because missing leavers is costly.
- Ensemble #1 again shows stronger separation between employees who leave vs. those who stay.

KMeans Clustering Visualization (PCA Projection)

K Means

- **KMeans applied** with **k=2** clusters (because attrition is a binary phenomenon here).
- Silhouette Score: 0.1023
 low score, suggesting
 moderate or weak separation
 between clusters.

Agglomerative (Hierarchical) Clustering

- Agglomerative Clustering applied with **n clusters=2**.
- **Silhouette Score**: **0.0726** even lower than KMeans, meaning the cluster separation is weaker.
- Visualization: PCA scatter plot + **Dendrogram** built using Ward's method.
- **Dendrogram**: Shows cluster merging patterns; large vertical gaps suggest natural cluster separation points.

_

Chosen Hyperparameters for each model

	Model	Best Hyperparameters
0	Random Forest	n_estimators=200, max_depth=20
1	Extreme Gradient Boost	n_estimators=200, max_depth=5, learning_rate=0.1
2	Gradient Boost	n_estimators=200, max_depth=5, learning_rate=0.1
3	Ensemble #1 (SVM+DT+NN)	Soft voting (SVM, DT, NN)
4	Neural Network	hidden_layers=(100,), activation=relu, solver=adam
5	Ensemble #2 (Bagged DT)	Bagging (base model: Decision Tree)
6	LogReg Backward	penalty=I2, C=1.0
7	KNN	n_neighbors=4
8	SVM	C=10, kernel=rbf
9	LogReg Forward	penalty=I2, C=1.0
10	Naive Bayes	Default parameters (GaussianNB)
11	Decision Tree	max_depth=10, min_samples_split=10

Classification Models Comparison

Clustering Models Interpretation:

Aspect	KMeans	Agglomerative Clustering
Silhouette Score	0.1023	0.0726
Cluster Separation (PCA)	Better but still overlaps	Weaker, less clear
Interpretability	Good	Good
Best k identified?	Tentatively, k=2 or 3	Same

K-Means performed slightly better than Agglomerative Clustering on this dataset.

Models and Their AUC, Recall and Accuracy

Model	Accuracy	Recall	AUC
Gradient Boost	0.900	0.919	0.970
Extreme Gradient Boost	0.900	0.902	0.970
SVM	0.896	0.903	0.959
Random Forest	0.889	0.883	0.961
Ensemble #1 (SVM+DT+NN)	0.883	0.895	0.954
Ensemble #2 (Bagged DT)	0.862	0.866	0.934
Neural Network	0.858	0.883	0.941
Logistic Regression (Backward)	0.806	0.802	0.882
KNN	0.826	0.923	0.898
Decision Tree	0.802	0.862	0.815
Naïve Bayes	0.678	0.802	0.788

Top features and top model in predicting attrition

Top Performing Model:

Gradient Boost

Accuracy: 90.0%

• Recall: 91.9%

• AUC: 0.970

Conclusion:

Attrition Risk Strategy

- Our predictive model identified job satisfaction, compensation, and manager relationships as the most critical drivers of attrition risk.
- Targeted action on these factors can significantly strengthen employee retention, reduce turnover costs, and enhance organizational performance.

