

Численное интегрирование

lacktriangle Определенный интеграл от некоторой функции f(x):

$$I = \int_{a}^{b} f(x) \cdot dx$$

• Численное интегрирование (**квадратурная** формула):

$$I = \int_{a}^{b} f(x) \cdot dx \approx \sum_{j=1}^{N} c_{j} \cdot f(x_{j})$$

- где c_j числовые коэффициенты, выбор которых зависит от выбранного метода численного интегрирования
- $x_j \in [a,b], j = 1,...,N$ узлы интегрирования

Погрешность численного интегрирования

- Численное интегрирование применяется:
 - подынтегральная функция задана не аналитически, а таблицей значений
 - аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции

• Погрешность численного интегрирования:

$$\Psi_n = \int_a^b f(x) \cdot dx - \sum_{j=1}^N c_j \cdot f(x_j)$$

- уменьшение шага разбиения
- повышения степени используемых интерполяционных многочленов

Метод прямоугольников

- lacktriangle Интегрируемый отрезок [a;b] делится на N равных отрезков длиной $h = rac{b-a}{N}$
- Интеграл вычисляется как сумма вписанных в каждый частичный отрезок прямоугольников
 - \blacksquare чем меньше длина отрезков h, тем точнее вычисленное значение интеграла
 - метод средних прямоугольников наиболее точный

Метод трапеций

$$\int_{a}^{b} f(x)dx \approx \sum_{j=1}^{N} \frac{f(x_{j}) + f(x_{j-1})}{2}h$$

- lacktriangle Интегрируемый отрезок [a;b] делится на Nравных отрезков длиной h
- * Каждый отрезок функции[x_{j-1}, x_j] представляется в виде трапеции:

$$f(x) = \frac{1}{h} [(x - x_{j-1})f(x_j) - (x - x_j)f(x_{j-1})]$$

• Интеграл вычисляется как сумма трапеций

Метод Симпсона

- lacktriangle Интегрируемый отрезок [a;b] делится на N равных отрезков длиной h
- Каждый отрезок функции аппроксимируется параболой
 - парабола проходит через три точки: узлы интегрирования x_{j-1} , x_j и середину отрезка $x_{j-0.5}$

$$f(x) = \frac{2}{h^2} \left[\left(x - x_{j-0.5} \right) \left(x - x_j \right) f(x_{j-1}) - 2 \cdot \left(x - x_{j-1} \right) \left(x - x_j \right) f(x_{j-0.5}) + \left(x - x_{j-1} \right) \left(x - x_{j-0.5} \right) f(x_j) \right]$$

 \blacksquare Площадь параболы на отрезке $[x_{j-1}, x_j]$

$$\int_{x_{j-1}}^{x_j} f(x)dx \approx \frac{h}{6} (f_{j-1} + 4f_{j-0.5} + f_j)$$

◆ Тогда интеграл функции на отрезке [a;b]:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{6} \left[f_1 + f_N + 2 \cdot \sum_{j=1}^{N-1} f_j + 4 \cdot \sum_{j=1.5}^{N-0.5} f_j \right]$$

Метод Симпсона

№ Избавимся от дробных индексов, разобьем отрезок [a;b] на N·2 равных отрезков длиной h:

$$x_j = a + h \cdot j$$

$$j=1,2,\dots 2N$$

$$h = \frac{b - a}{2N}$$

Тогда формула Симпсона примет вид

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [f_0 + f_{2N} + 2(f_2 + f_4 + \dots + f_{2N-2}) + 4(f_1 + f_3 + f_5 + \dots + f_{2N-1})] =$$

$$= \frac{h}{3} \left[f_0 + f_{2N} + 2 \cdot \sum_{j=2,2}^{2N-2} f_j + 4 \cdot \sum_{j=1,2}^{2N-1} f_j \right]$$

 отрезок интегрирования всегда разбивается на четное число интервалов

Семейство методов Ньютона-Котеса

Интегрируемая функция интерполируется на отрезке
 [x_{j-1}, x_j] по равноотстоящим узлам многочленом Лагранжа

$$\int_{x_{j-1}}^{x_j} f(x)dx \approx \sum_{i=1}^n c_i f(x_i)$$

■ ГДЕ c_i ВЕСОВЫЕ КОЭФФИЦИЕНТЫ

метод прямоугольников — многочлен Лагранжа 0й степени
метод трапеций — многочлен Лагранжа 1й степени
метод Симпсона — многочлен Лагранжа 2й степени

В общем виде формула Ньютона-Котеса:

$$\int_{a}^{b} f(x)dx \approx \frac{n \cdot h}{C_n} \sum_{j=1}^{N} \sum_{i=0}^{n} c_{in} f(x_i)$$

Где N - количество частичных отрезков,
 n - порядок метода

$$h = \frac{x_j - x_{j-1}}{n}$$
 $C_n = \sum_{i=0}^n c_{in}$ $x_i = x_j + i \cdot h$

Весовые коэффициенты метода Ньютона-Котеса

$$C_n = \sum_{i=0}^n c_{in}$$

n	$C_{\rm n}$	$c_{0\mathrm{n}}$	$c_{1\mathrm{n}}$	$c_{2\mathrm{n}}$	c_{3n}	$c_{4 m n}$	$c_{5 m n}$
0	1	1					
1	2	1	1				
2	6	1	4	1			
3	8	1	3	3	1		
4	90	7	32	12	32	7	
5	288	19	75	50	50	75	19

Метод Гаусса

 Узлы интегрирования x_i на отрезке [x_{j-1}, x_j] располагаются не равномерно, а выбираются таким образом, чтобы при наименьшем возможном числе узлов точно интегрировать многочлены наивысшей возможной степени

$$\int_{x_{j-1}}^{x_j} f(x)dx \approx \sum_{i=0}^n c_i f(x_i)$$

- узлы x_i являются корнями полинома Лежандра степени n
- веса вычисляются интегрированием полиномов Лежандра

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2N} \sum_{j=1}^{N} \sum_{i=0}^{n} c_{in} f(x_i)$$

■ N - количество частичных отрезков, n - порядок метода

Весовые коэффициенты метода Гаусса

- Приведенные в таблице данные соответствуют отрезку [-1;1]
- Для интегрирования на отрезке $[x_{i-1}, x_i]$ необходимо пересчитать значения узлов для заданного отрезка:

$$x_i = x_{j-1} + \frac{(x_{i[-1;1]} + 1)(x_{j-1} - x_j)}{2}$$

	<i>i x</i> _{<i>i</i> [-1;1]}		c_i	
1	1	0	2	
2	1	-0.5773503	1	
	2	0.5773503	1	
3	1	-0.7745967	0.555556	
	2	0	0.8888889	
	3	0.7745967	0.555556	
4	1	-0.8611363	0.3478548	
	2	-0.3399810	0.6521451	
	3	0.3399810	0.6521451	
	4	0.8611363	0.3478548	
5	1	-0.9061798	0.4786287	
	2	-0.5384693	0.2369269	
	3	0	0.5688888	
	4	0.5384693	0.2369269	
	5	0.9061798	0.4786287	
6	1	-0.9324700	0.1713245	
	2	-0.6612094	0.3607616	
	3	-0.2386142	0.4679140	
	4	0.2386142	0.4679140	
	5	0.6612094	0.3607616	
	6	0.9324700	0.1713245	