Definition (Functor). Given categories C and D, a *functor* $F: C \to D$ from C to D is defined by the following data, satisfying the following conditions.

Data:

- i) For every object $X \in \mathrm{Ob}_{\mathbf{C}}$, an object $F(X) \in \mathrm{Ob}_{\mathbf{D}}$;
- ii) For every morphism $f: X \to Y$ in \mathbb{C} , a morphism $F(f): F(X) \to F(Y)$ in \mathbb{D} .

Conditions:

- i) For every object $X \in \mathrm{Ob}_{\mathbb{C}}$, one has $F(\mathrm{Id}_X) = \mathrm{Id}_{F(X)}$;
- ii) For every three objects $X, Y, Z \in \mathrm{Ob}_{\mathbf{C}}$ and two morphisms $f \in \mathrm{Hom}_{\mathbf{C}}(X; Y), g \in \mathrm{Hom}_{\mathbf{C}}(Y; Z)$, the equation

$$F(f \circ g) = F(f) \circ F(g)$$

holds in **D**.

This situation is graphically reported in ??.