GEL19962: Analyse des signaux 1998 Mini-test 2

Mercredi le 25 novembre 1998; Durée: 14h40 à 15h20 Aucune documentation permise; aucune calculatrice permise.

Problème 1 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (Il est aussi possible qu'aucun énoncé ne soit vrai...)

a)
$$R=2$$

$$C=1 \qquad y(t) = \frac{1}{2}e^{-t/2}U(t)$$

$$VRAI \quad \text{ou} \quad FAUX$$

b)
$$V_{in}(t) \xrightarrow{L=2} R=1 \\ V_{out}(t) \Longrightarrow H(j\omega) = \frac{1}{1+4j\omega-2\omega^2}$$

$$V_{RAI} \quad \text{ou} \quad FAUX$$

sin(t)
$$\frac{1}{3+j\omega}$$
 $y(t)$ \Rightarrow $y(t) = \frac{1}{10} \sin(t - \tan^{-1}\frac{1}{3})$

VRAI ou FAUX

Nom: Matricule: .

GEL19962: Analyse des signaux 1998 Mini-test 3

Problème 2 (1 point sur 5)

Lequel **ou** lesquels des énoncés suivants sont vrais? (Il est aussi possible qu'aucun énoncé ne soit vrai...)

Supposons que $f(t) \Leftrightarrow F(\omega)$ et $g(t) \Leftrightarrow G(\omega)$

a)
$$f(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$
 a un spectre périodique

VRAI ou FAUX

b)
$$f(t) \cdot g(t) \Leftrightarrow F(\omega) \cdot G(\omega)$$

VRAI ou FAUX

c)
$$f(t)*\delta(t-t_0) = f(t-t_0)$$

VRAI ou FAUX

d)
$$F(\omega) = 0 \quad \forall |\omega| > \omega_0 \quad \text{et} \quad f(t) = 0 \quad \forall |t| > \frac{2\pi}{\omega_0}$$

VRAI ou FAUX

Nom: Matricule: .

GEL19962: Analyse des signaux 1998 Mini-test 3

Problème 3 (2 points sur 5)

Quelles sont les expressions analytiques de la convolution dans les trois régions de définition? (Vous pouvez laisser la réponse sous la forme d'une intégrale.)

Nom: Matricule: .

GEL19962: Analyse des signaux 1998 Mini-test 3

Problème 4 (1 points sur 5)

Quelle est la fréquence d'échantillonnage la plus petite pour laquelle on peut avoir une reconstruction exacte de

$$x(t) = Sa(t)$$

(C'est à dire, quelle est la fréquence de Nyquist ou la fréquence critique?)

Nom:	Matricule:	

1998 Mini-test 3

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega-b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
$\operatorname{Rect}(t/ au)^1$	$ au$ S $a(\omega au/2)$
$Tri(t)^2$	$Sa^2(\omega/2)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$
$\operatorname{Sgn}(t)$	$\frac{2}{j\omega}$
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

Rect(t) = $\begin{cases} 0 & t < -\tau/2 \\ 1 & -\tau/2 < t < \tau/2 \\ 0 & t > -\tau/2 \end{cases}$

$${}^{2}\operatorname{Tri}(t) = \begin{cases} 1 - |t| & -1 < t < 1 \\ 0 & \text{ailleurs} \end{cases}$$