GPT 简介

Wuhan University

March 14, 2025

设输入为 $X \in \{0,1\}^{T \times d}$,其中d为词元维度,T为序列长度,定义以下模块:

▶ 嵌入层:

$$\operatorname{Enc}(X) = XE_1 \quad (E_1 \in \mathbb{R}^{d \times D}) \tag{1}$$

▶ 位置编码增强层:

$$\operatorname{Enc}^{+}(X) = XE_{1} + PE_{2} \quad \begin{pmatrix} P \in \{0, 1\}^{T \times T} \\ P_{i,j} = \delta_{ij} \\ E_{2} \in \mathbb{R}^{T \times D} \end{pmatrix}$$
 (2)

其中P为单位矩阵, δ_{ij} 为 Kronecker delta 函数

▶ 规范化层 (中间层输入 $X \in \mathbb{R}^{T \times D}$):

$$Norm(X) := \frac{X - \mathbb{E}[X]}{\sqrt{Var(X) + \epsilon}}$$
(3)

其中 $\mathbb{E}[X]$, $Var(X) \in \mathbb{R}^{T \times D}$ 为逐位置计算的均值与方差 **维度映射关系**:

- ► Enc: $\{0,1\}^{T\times d} \to \mathbb{R}^{T\times D}$
- Norm: $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$

设 H 为注意力头数,第 h 个头的参数矩阵为 $W_{K,h} \in \mathbb{R}^{D \times D_K}$ 、 $W_{Q,h} \in \mathbb{R}^{D \times D_K}$ 、 $W_{V,h} \in \mathbb{R}^{D \times D_V}$,输出 投影矩阵 $W_O \in \mathbb{R}^{HD_V \times D}$,定义**多头注意力机制**如下:

▶ 单头注意力计算:

$$S_h = \text{Softmax}\left(\frac{XW_{Q,h}(XW_{K,h})^{\top}}{\sqrt{D_K}}\right)XW_{V,h} \tag{4}$$

▶ 掩码单头注意力:

$$S_h = \text{Softmax}\left(\frac{XW_{Q,h}(XW_{K,h})^{\top} + M}{\sqrt{D_K}}\right) XW_{V,h}$$
 (5)

其中掩码矩阵 $M \in \{-\infty, 0\}^{T \times T}$ 满足:

$$M_{ij} = \begin{cases} -\infty & \text{若} i < j \\ 0 & \text{其他情况} \end{cases}$$

维度说明: $S_b: \mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D_V}$

(6)

▶ 多头拼接与残差连接:

$$ATT(X) := X + [S_1 \| \cdots \| S_h \| \cdots \| S_H] W_O$$

全局说明:

- ▶ Softmax 为逐行 (row-wise) 归一化操作
- ▶ 最终映射 ATT: $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$ 保持维度不变性
- ▶ || 表示沿特征维度拼接操作

MLP 层定义为:

$$MLP(X) := X + f_3 \circ \sigma \circ \sigma \circ f_2(X) \circ \sigma \circ f_1(X)$$
(7)

其中线性变换 $f_i(X) := XW_i + b_i$ $(1 \le i \le 3)$ 满足:

- ▶ 偏置项 $b_i \in \mathbb{R}^{D_i}$
- ▶ 权重矩阵维度:

$$W_1 \in \mathbb{R}^{D \times D_1}$$

$$W_2 \in \mathbb{R}^{D_1 \times D_2}$$

$$W_3 \in \mathbb{R}^{D_2 \times D}$$

维度说明: $MLP : \mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$ 。

定义逐元素 GeLU 激活函数:

$$GeLU(x) := x\Phi(x) = x \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$\approx 0.5x \left(1 + \tanh\left(\sqrt{\frac{2}{\pi}} \left(x + 0.044715x^3\right)\right) \right)$$
(8)

残差块定义为多层操作的复合:

$$Block(X) := MLP \circ Norm \circ ATT \circ Norm(X)$$
(9)

嵌入表示通过多层块堆叠生成:

$$X^{e} := \text{Norm} \circ \text{Block}_{M} \circ \cdots \circ \text{Block}_{1} \circ \text{Enc}(X)$$
(10)

GPT 架构的输出定义为:

$$GPT(X) := \underset{\text{index}}{\arg \max} \left(X^l = X^e W_{\text{head}} \right) \tag{11}$$

其中输出投影矩阵 $W_{\text{head}} \in \mathbb{R}^{D \times d}$

维度说明:

- ightharpoonup ATT : $\{0,1\}^{T\times d} \to \mathbb{R}^{T\times d}$
- ▶ 所有残差操作保持维度不变性

7/8

Table: 典型 GPT 的参数设置

Parameter	GPT-2(125M)	GPT-3/3.5(175B)	GPT-4(1800B)
d (vocab_size)	50304	*	*
T (block_size)	1024	2048	8000(p.t.)->32000(f.t.)
D (n_embd)	768	12288	*
D_V (n_embd)	768/12=64	12288/96 =128	*
D_K (n_embd)	768/12=64	12288/96 =128	*
H (n_head)	12	96	*
L (MLP layer)	2	2	*
W_1 (first layer)	$\mathbb{R}^{4D imes D}$	$\mathbb{R}^{4D imes D}$	*
W_2 (second layer)	$\mathbb{R}^{D imes 4D}$	$\mathbb{R}^{D imes 4D}$	*
M (n_layer)	12	96	120
N(data_number)	40G	570G	*

可以从以下两个角度理解损失函数形式:

▶ 交叉熵损失 (分类任务):

$$L_{\text{CE}} = -\sum_{i=1}^{T} \sum_{j=1}^{d} P_{ij} \log \text{Softmax}(X^l)_{ij}$$
(12)

其中 $P_{ij} \in [0,1]$ 表示第i个位置第j个词元的真实概率分布。

▶ 负对数似然损失 (概率分布匹配):

$$L_{\text{NLL}} = -\sum_{i=1}^{T} \log \text{Softmax}(X^{l})_{i,j_{\text{true}}}$$
(13)

其中 jtrue 表示第 i 个位置单词的索引号。