Counting

Ordered Sampling with replacement	n^k
Ordered Sampling without replacement	${}^{n}P_{k} = \frac{n!}{(n-k)!}$
Unordered Sampling without replacement	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
Unordered Sampling with replacement	$\binom{n+k-1}{k} = \binom{n+k-1}{n-1}$
The Binomial Theorem	$(x+y)^n = \sum \binom{n}{k} x^k y^{n-k}$
The Multinomial Theorem	$(x_1 + x_2 + \dots + x_r)^n = \sum_{(n_1, n_2, \dots n_r): \frac{n!}{n_1! n_2! \dots n_r!}} \frac{n!}{n_1! n_2! \dots n_r!} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}$
	$(n_1, n_2, \dots n_r)$: $n_1 + \dots + n_r = n$

There are $\binom{n+k-1}{k-1}$ distinct nonnegative integer-valued vectors $\langle x_1, ..., x_r \rangle$ satisfying $x_1 + ... + x_k = n$

Probability

Probability Rules

$\left(\bigcup_{i=1}^{n} E_i\right)^c = \bigcap_{i=1}^{n} E_i \left(\bigcap_{i=1}^{n} E_i\right)$	$\bigcap_{i=1}^{n} E_{i} = \bigcup_{i=1}^{n} E_{i} P(E^{c}) = 1 - P(E) P(E \cup F) = P(E) + P(F) - P(EF) P(E F) = \frac{P(EF)}{P(F)}$		
$P(E) = P(EF) + P(EF^c)$	$P(E) = P(EF) + P(EF^c) = P(F)P(E F) + P(F^c)P(E F^c) = P(F)P(E F) + (1 - P(F))P(E F^c)$		
Law of Total Probability			
Bayes' Theorem Suppose that F_1, F_2, F_n are mutually exclusive events such that $\bigcup_{i=1}^n F_i = S$ (Sample Space			
	then $P(F_j E) = \frac{P(EF_j)}{P(E)} = \frac{P(E F_j)P(F_j)}{\sum_{i=1}^n P(E F_i)P(F_i)}$		
Independent Events	Two events are independent if $P(EF) = P(E)P(F)$		

Discrete Random Variable

Probability Mass Function (PMF)		$p_X(a) = P\{X = a$;}	
Cumulative Distribution Function (CDF) of X		$F_X(a) = P\left\{X \le a\right\} = \sum_a$	$\sum_{x \leq a} p_X(a)$)
Expected Value		$E[X] = \sum_{x} x p_X(x)$		
For any function of g		$E[g(X)] = \sum_{x} g(x)p_{X}$	X(x)	
$Var(X) = E[X^{2}] - (E[X])^{2}$		$SD(X) = \sqrt{Var(X)}$		
		$Var(aX+b) = a^2Va$	r(X)	
Name		PMF	Mean	
Bernoulli(n)	$P\{X-1\}-n$	$P\{X=0\}=1-n$	n	

Name	PMF	Mean	variance
Bernoulli(p)	$P\{X=1\} = p, P\{X=0\} = 1 - p$	p	p(1 - p)
Binomial(n, p)	$P\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k}, k = 0,, n$	np	np(1-p)
Geometric(p)	$P{X = n} = p(1-p)^{n-1}, n = 0, 1, 2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$P\{X = n\} = e^{\lambda} \frac{\lambda^n}{n!}, n = 0, 1, \dots$	λ	λ
$oxed{NegativeBinomial(r,p)}$	$P\{X=r\} = \binom{n-1}{r-1} p^r (1-p)^{n-r}, n=r, r+1, \dots$	$\frac{r}{p}$	$r \frac{(1-p)}{p^2}$
hypergeometric	$P\{X=i\} = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}}, i = 0, 1, 2,, min(n, m)$	$\frac{nm}{N}$	$\frac{N-n}{N-1}np(1-p)wherep = m/N$

Continuous Random Variables

Probability Mass Function (PMF)	$f_X(a) = \frac{1}{\epsilon} P\{a - \frac{\epsilon}{2} <= X \le a + \frac{\epsilon}{2}\}$
Cumulative Distribution Function (CDF) of X	$F_X(a) = P\{X \le a\} = \int_{-\infty}^a p_X(a) dx$
$P\{X \in B\} = \int Bf_X(x)dx$	$f_X(x) = \frac{d}{dx} F_X(x)$
Expected Value	$E[X] = \int_{-\infty}^{\infty} x f_X(x)$
For any function of g	$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x)$
$Var(X) = E[X^2] - (E[X])^2$	$SD(X) = \sqrt{Var(X)}$
	$Var(aX+b) = a^2 Var(X)$

Name	PMF CDF		Mean	Variance
	$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{othewrise} \end{cases}$	$(1 x \ge a)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{othewrise} \end{cases}$	$F(x) = 1 - e^{-\lambda x} \text{ if } a \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Normal(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$	$\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$ *Use normal table	μ	σ^2

For any normal random variable X with parameters (μ, σ^2) , $Z = \frac{X - \mu}{\sigma}$ is the standardized normal random variable. DeMoivere-Laplace Limit Theorem: If S_n denotes the number of successes that occur when n independent trials, each resulting in a success with probability p, are performed then, for any a; b, $P\{a \le \frac{S_n - np}{\sqrt{np(1-p)}} \le b\} - > \phi(b) - \phi(a)$ Memoryless RV: We say that a nonnegative random variable X is memoryless if $P\{X > s + t | X > t\} = P\{X > s\}$

Distribution of a Function of a RV: $f_Y(y) = f_X[g^{-1}(y)] \left| \frac{d}{dy} g^{-1}(y) \right|$ if y = g(x) for some x

Jointly Distributed Random Variables

Note: Replace summation with integration for continuous

-				
	Joint CDF	$f_{XY}(a,b) = P\{X = a, Y = b\}$	Joint CDF	$F_{XY}(a,b) = P\{X \le a, Y \le b\}$
ſ	Marginal PMF of X	$p_X(a) = \sum_b p_{XY}(a,b)$	Marginal PMF of Y	$p_Y(b) = \sum_a p_{XY}(a, b)$
ſ	Marginal CDF of X	$F_{XY}(a) = F_{XY}(a, \infty)$	Marginal CDF of Y	$F_XY(b) = F_{XY}(\infty, b)$
Ī	Conditional PMF	$p_{X Y}(x y) = P\{X = x Y = x$	$= y$ = $\frac{P\{X=x,Y=y\}}{P\{Y=y\}} = \frac{p}{p}$	$\frac{p_{XY}(x,y)}{p_Y(y)}$
	Conditional CDF	$F_{X Y}(x y) = P\{X \le x $	$Y \le y$ = $\sum_{a \le x} p_{X Y}(a)$	a y)
ſ	Given Function $g(X, Y)$	$\sum_{y} \sum_{x} g(x)$	$(x,y)p_{XY}(x,y)$	

Conditional Jointly Distributed RV

$F_{X A}(x) = \frac{F_X(x) - F_X(a)}{F_X(b) - F_X(a)}$ if $a \le x < b$	$f_{X A}(x) = \frac{f_X(x)}{P(A)}$	$f_{X Y}(x,y) = \frac{f_{XY}(x,y)}{f_Y(y)}$
$E[X A] = \int_{-\infty}^{\infty} x f_{X A}(x) dx$	$E[g(X) A] = \int_{-\infty}^{\infty} g(x) f_{X A}(x) dx$	

Independent Random Variables: Two random variables X and Y are said to be independent if for every a and b we have $\overline{f_{XY}(a,b) = f_X(a)f_Y(b)}.$

Jacobian Transformation (Joint Probability Distribution functions of RV)

$$\boxed{f_{Y_1,Y_2}(y_1,y_2) = \frac{f_{X_1,X_2}(x_1,x_2)}{|J(x_1,x_2)|} \quad J(x_1,x_2) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{vmatrix}} = \frac{\partial g_1}{\partial x_1} \frac{\partial g_2}{\partial x_2} - \frac{\partial g_1}{\partial x_2} \frac{\partial g_2}{\partial x_1} \neq 0 \quad y_1 = g_1(x_1,x_2) \text{ and } y_2 = g_2(x_1,x_2)$$

Properties of Expectation

Joint PMF $E[g(X,Y)]$	$] = \sum_{y} \sum_{x} g(x, y) p(x, y) .$	Joint PDF $E[g(X,Y)] =$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) p(x,y) dx dy y$
$E[aX + b] = aE[X] + b \mid E[g(X)h(Y)] = E[g(X)]E[h(Y)]$ if X and Y are independent			
	[XY] - E[X]E[Y]		Y) = Cov(Y, X)
Cov(X,X)	= Cov(X, X)	Cov(aX, b)	$f(Y) = abCov(X, Y)$ $f(ar(X_i) + \sum_{i=1}^{n} \sum_{j \neq i} Cov(X_i, X_j)$
$Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j)$	$= \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$	$\int Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} V$	$Tar(X_i) + \sum_{i=1}^{n} \sum_{j \neq i} Cov(X_i, X_j)$
	$ar(X_i)$ if $X1,, Xn$ are pair		
$\underline{\text{Correlation:}} \ \rho(X,Y) = -$	$\frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$ where $-1 \le$	$\rho(X,Y) \le 1$	
Conditional Expectation	$E[X Y=y] = \sum_{x} x p_{X Y}$	$F(x,y) \mid E[g(X) Y=y] = 0$	$\sum_{x} g(x) p_{X Y}(x,y)$
Conditioning Property	$E[X] = E[E[X Y]] \mid \text{Expe}$	ectation of X $\mid \sum_{y} E[X Y]$	$=y]P\{Y=y\}$
Conditional V		$\overline{X Y)} = E[X^2 Y] - (E[X Y])$	
Unconditional Variance of X given Y $E[Var(X Y)] = E[X^2] - E[(E[X Y])^2]$			
Var(E[X Y]) = E[(E[X Y])]	$Var(E[X Y]) = E[(E[X Y])^2] - (E[X])^2 Var(X) = E[Var(X Y)] + Var(E[X Y])$		
General Form Predictor		$Y - E[Y X])^2$ best ca	
Linear Predictor	$E[(Y - (a+bX))^2] \ge E[$	$(Y - E[Y X])^2$ $b = \rho \frac{\sigma_Y}{\sigma_X}$	and $a = E[Y] - bE[X]$
MGF of PDF	$M(t) = E[e^{tX}]$	$=\sum_{x}e^{tx}p(x)$	
MGF of PMF	$M(t) = E[e^{tX}] =$	$=\int_{-\infty}^{\infty} e^{tx} f(x) dx$	
More than 2 RV MGF	$M(t_1,, t_n) = I$	$\mathbb{E}[e^{t_1x_1+\ldots+t_nX_n}]$	Nth Moment: $M^n(0) = E[X^n] \ n \ge 0$
Individual MGF	$M_{X_i}(t) = M(0,$		$\frac{1}{2} \frac{\text{Non Monient.}}{n} M (0) = E[X] n \ge 0$
Joint MGF	$M_{XY}(t,t') = E[e^{tX+T'Y}] =$		
MGF of IRV	$M_{X+Y}(t) = 1$	$M_X(t)M_Y(t)$	

Moment Generating Functions for Some RV

Binomial	$M(t) = (pe^t + 1 - p)^n$
Poisson	$M(t) = exp\{\lambda(e^t - 1)\}$
Exponential	$M(t) = \frac{\lambda}{\lambda - t}$ for $t < \lambda$
Standard Normal	$M(t) = e^{t^2/2}$
Normal	$M(t) = exp\{\frac{\sigma^2 t^2}{2} + \mu t\}$

Limit Theorems

Markov's Inequality:

If X is a random variable that takes only nonnegative values, then for any value a > 0, $P\{X \ge a|\} \le \frac{E[X]}{a}$ Chebyshev's Inequality:

If X is a random variable with finite mean μ and variance σ^2 , then for any value k > 0, $P\{|X - \mu| \ge k\} \le \frac{\sigma^2}{k^2}$ The Weak Law of Large Numbers

Let X_1, X_2, \dots be a sequence of iid Random variables, each having finite mean. Then, for any $\epsilon > 0$, $P\{|\bar{X} - \mu| \ge \epsilon\} \to 0$ where $\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$ as $n \to \infty$

The Central Limit Theorem

Let $X_1, X_2, ...$ be a sequence of iid random variables, each having mean and variance. Then, the distribution of $Z = \frac{X_1 + ... + X_n - n\mu}{\sigma \sqrt{n}}$ tends to the standard normal as $n \to \infty$. That is, for $-\infty < a < \infty$, $P\{Z \le a\} = \phi(a) \to N(0, 1)$ as $n \to \infty$

Random Processes

Definitions

Random Processes: a collection of random variables usually indexed by time

Sample Function: the time function x(t,s) associated with the outcome of s of an experiment

Ensemble: the set of all possible time function that can result from an experiment

Random Sequence: A random sequence X_n is an ordered sequence of random variables $X_0, X_1, ...$

Processes

Bernoulli Process: X(t) is a sequence of Bernoulli trials; trials are independent of each other

$$P\{X_n = 1\} = p = 1 - P\{X_n = 0\}$$

Counting Process Given a stochiastic process N(t)

$$N(0) = 0 \mid N(t) \in \{0, 1, 2, ...\}$$
 for all $t \in [0, \infty) \mid \text{ for } 0 < s < t, N(t) - N(s)$ shows the no. of events in $(s, t]$.

Poisson Process Given $\lambda > 0$, A counting process $N(t), t \in [0, \infty)$ is called a Poisson Process with rate λ if the following conditions hold:

$$\rightarrow N(0) = 0$$

 $\rightarrow N(t)$ has independent and stationary increments

 \rightarrow The number of arrivals in any interval of length $\tau > 0$ has $poisson(\lambda \tau)$ distribution

PMF and Joint PMF

- 1	WII and John I WII	
	PMF of $M = N(t_1) - N(t_0)$	$p_M(m) = \begin{cases} \frac{ \lambda (t_1 - t_0) ^m}{m!} e^{-\lambda(t_1 - t_0)} & m = 0, 1\\ 0 & \text{otherwise} \end{cases}$
ĺ	Joint PMF of $N(t_1),, N(t_k)$,	
	$t_1 < t_2 < \dots < t_k$	$p_{N(t_1),,N(t_k)}(n_1,,n_k) = \begin{cases} \frac{\alpha_1^{n_1}e^{-\alpha_1}}{n_1!} \frac{\alpha_1^{n_2-n_1}e^{-\alpha_2}}{(n_2-n_1)!} \dots \frac{\alpha_k^{n_k-n_{k-1}}e^{-\alpha_k}}{(n_k-n_{k-1})!} & m = 0, 1, \alpha_i = \lambda(t_i - t_{i-1}). \\ 0 & \text{otherwise} \end{cases}$

Theorem: For a Poisson process of rate λ , the inter-arrival times $X_1, X_2, ...$ are an iid random sequence with the exponential PDF

Memoryless Property of the Poisson Process: $P\{X_n - x' > x | X_n > x'\} = P\{X_n > x\} = e^{-\lambda x}$

Theorem: A counting process with independent exponential inter-arrivals $X_1, X_2, ...$ with mean $E[X_i] = 1/\lambda$ is a Poisson process of rate λ

Brownian Motion Process: A continuous time, continuous value process. Has the property that X(0) = 0 and for $\tau > 0$, $X(t+\tau) - X(t)$ is a Gaussian random variable with mean 0 and variance $\alpha \tau$ that is independent of X(t') for all $t' \le t$

Brownian Motion	$X(t+\delta) = X(t) + [X(t+\delta) - X(t)]$
PDF of Y_{δ}	$P_{Y_{\delta}}(y) = \frac{1}{\sqrt{2\pi\alpha\delta}} e^{-y^2/2\alpha\delta}$
Joint PDF	$f_{X(t_1),,X(t_k)}(x_1,,x_k) = \prod_{i=1}^k \frac{1}{\sqrt{2\pi\alpha(t_n - t_{n_1})}} e^{-(x_n - x_{n_1})^2/2\alpha(t_n - t_{n_1})}$

	v i			
	Random Process	Random Sequence		
Expected Value of a process	$\mu_X(t) = E[X(t)]$			
Autocovariance	$C_X(t,\tau) = Cov(X(t),X(t+\tau))$	$C_X[m,k] = Cov[X_m, X_{m_k}]$		
Autocorrelation	$R_X(t,\tau) = E[X(t)X(t+\tau)]$	$R_X[m,k] = E[X_m, X_{m_k}]$		

Theorem: $C_X(t,\tau) = R_X(t,\tau) - \mu_X(t)\mu_X(t+\tau)$

Stationary Process: A random process X(t0) is stationary if and only if for all sets of time constants $t, ..., t_m$ and any time

difference τ , $f_{X(t_1),...,X(t_k)}(x_1,...,x_k) = f_{X(t_1+\tau),...,X(t_k+\tau)}(x_1,...,x_k)$ Stationary Sequence: $f_{X_{n_1},...,X_{n_m}}(x_1,...,x_m) = f_{X_{n_1+k},...,X_{n_m+k}}(x_1,...,x_m)$ Stationary Properties

	Random Process	Random Sequence
Expected Value	$\mu_X(t) = \mu_X$	$E[X_m] = \mu_X$
Autocovariance	$C_X(t,\tau) = R_X(\tau) - \mu_X^2 = C_X(\tau)$	$C_X[m,k] = R_X(\tau) - \mu_X^2$
Autocorrelation	$R_X(t,\tau) = R_X(0,\tau) = R_X(\tau)$	$R_X[m,k] = R_X[0,k] = R_X[k]$

		Random Process	Random Sequence
Wides Sense Stationary Properties	Expected Value	$E[X(t)] = \mu_X$	$E[X_n] = \mu_X$
	Autocorrelation	$R_X(t,\tau) = R_X(0,\tau) = R_X(\tau)$	$R_X[n,k] = R_X[0,k] = R_X[k]$

 $R_X(0) \ge 0$ Processes Sequences $R_X(0) \ge 0$ $R_X(\tau) = R_X(-\tau)$ $R_X(k) = R_X(-k)$ If $(X(t)/X_n$ is WSSP/WSRS $|R_X(\tau)| \le R_X(0)$ $|R_X(k)| \leq R_X(0)$

Average Power: The average power of a WSSP X(t) is $R_X(0) = E[X^2(t)]$

Random Signal Processing

LTI Filter Output Process: X(t) is the input to a LTI filter and Y(t) is the output. Y(t) is the convolution of the sample function X(t) with the impulse response h(t)

Theorem: If the input to LTI filter with impulse response is WSSP X(t), then WSSP Output Y(t) has the following

Mean Value $\mu_Y = \mu_X H(0)$ Autocorrelation Function $R_Y(\tau) = \int_{-\infty}^{\infty} h(u) \int_{-\infty}^{\infty} h(v) R_X(\tau + u - v) dv du$ Power Spectral Density: For a WSSP X(t), $R_X(\tau)$ and the power spectral density $S_X(t)$ are Fourier transform pairs

 $S_X(f) = \mathcal{F}\{R_X(\tau)\} \mid R_X(\tau) = \mathcal{F}^{-1}\{S_X(f)\} \mid S_X(f) \ge 0 \text{ for all } f$

Properties of $S_X(f)$ $E[X^2(t)] = \int_{-\infty} \infty S_X(f) df \mid S_X(f) = S_X(-f) \mid S_Y(f) = S_X(f) |H(f)|^2$ where H is the input response Independent Processes: X(t) Y(t) are independent for any time sample of $t_1, ..., t_n$, and $t'_1, ..., t'_m$,

 $f_{X(t_1),...,X(t_n),Y(t_1'),...,Y(t_m')}(x_1,...,x_n,y_1,...,y_m) = f_{X(t_1),...,X(t_n)}(x_1,...,x_n,) f_{Y(t_1'),...,Y(t_m')}(y_1,...,y_m)$

Cross Correlation Function: $R_{XY}(t,\tau) = E[(X(t)Y(t+\tau))]$

Jointly WSSP: $R_{XY}(t, t + \tau) = R_{XY}(\tau)$ and $R_{XY}(\tau) = R_{XY}(-\tau)$

Cross Spectral Density: $S_{XY}(f) = \mathcal{F}\{R_{XY}(\tau)\}$

Input-Output Cross Correlation: When a WSSP X(t) is the input to a LTI filter h(t), the input-output cross correlation is $R_{XY}(t,t+\tau) = R_{XY}(\tau) = \int_{-\infty}^{\infty} h(u)R_X(\tau-u)du$. Both X(t) and Y(t) are jointly wide sense stationary.

Output Autocorrelation: When a wide stationary process X(t) is the input to a LTI filter h(t), the autocorrelation of the output Y(t) is $R_Y(\tau) = \int_{-\infty}^{\infty} h(-w)R_{XY}(\tau - w)dw$.

Cross Spectral Properties: Let X(t) be a WSS input to a LTI filter H(f). The input X(t) and output Y(t) satisfy

 $S_{XY}(f) = H(f)S_X(f) \mid S_Y(f) = H(f)S_{XY}(f)$

Gaussian Process: X(t) is a Gaussian random process if the joint PDF of $X(t_1),...,X(t_k)$ has the multivariate Gaussian density $f_{X(t_1),...X(t_k)} = \frac{1}{(2\pi)^{k/2}|C|^{1/2}} \exp\{-\frac{1}{2}(X - \mu x)^{\tau}C^{-1}(X - \mu x)\}$

Theorem: If X(t) is WSS Gaussian process, then X(t) is a stationary Gaussian processs. Theorem: X(t) is a Gaussian RV if $Y = \int_0^T g(t)X(t)dt$ is a Gaussian random variable for every g(t) such that $E[Y^2] < \infty$.

Properties of Gaussian Process: Passing a stationary Gaussian process X(t) through a linear filter h(t) yields as the output Gaussian random process Y(t) with the following properties,

Mean $\mu_Y = \mu_X H(0)$ Autocorrelation $R_Y(\tau) = \int_{-\infty}^{\infty} h(u) \int_{-\infty}^{\infty} h(v) R_X(\tau + u - v) dv du$

White Gaussian Noise Processes

Noise is an unpredictable waveform that we model as stationary Gaussian random process W(t). Noise has no DC component. $E[W(t_t 1)] = \mu_W = 0 \text{ and } R_W(\tau) = 0.$

Power Spectral Density of W(t) $S_W(f)$ is constant. The constant is 0 unless $R_W(\tau) = \frac{N_0}{2}\delta(\tau)$. N_0 is the power per unit bandwidth of W(t).

Average Noise Power: $E[W^2(t)] = R_W(0) = \infty$

Noise process output: $Y(t) = \int_0^t h(t-\tau)W(\tau)d\tau = \text{Constant}$