

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 794 250 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 10.09.1997 Bulletin 1997/37

(21) Application number: 97103098.6

(22) Date of filing: 26.02.1997

(51) Int. Cl.⁶: **C12N 15/53**, C12N 15/82, C12N 9/02, C12N 5/10, C12Q 1/68
// A01H5/00

(84) Designated Contracting States: BE ES FR GB IT NL

(30) Priority: 04.03.1996 CH 550/96

(71) Applicants:

SOREMARTEC S.A.
 6700 Arlon-Schoppach (BE)
 Designated Contracting States:
 BE ES FR GB NL

Ferrero S.p.A.
 I-12051 Alba (Cuneo) (IT)
 Designated Contracting States:
 IT

(72) Inventors:

Dani, Maria
 81020 Sala di Caserta (IT)

 Catello, Sergio 80129 Napoli (IT)

(74) Representative: Rambelli, Paolo et al c/o JACOBACCI & PERANI S.p.A. Corso Regio Parco, 27 10152 Torino (IT)

(54) Isolation and sequencing of the hazel FAd2-N gene

(57) The invention relates to the isolation from hazel ($Corylus\ avellana\ L$.) of the FAD2-N gene coding for the $\Delta 12$ desaturase enzyme of the microsomal fraction and, in particular, provides the nucleotide sequence and the deduced amino-acid sequence of the gene and provides for its use as a probe for the isolation of other plant desaturases. It also relates to the use of this gene for altering the desaturase levels and consequently the fatty-acid composition of the plant.

Description

40

55

The pr sent inv ntion relates to the isolation from hazel (Corylus avellana L.) of the FAD2-N gene which codes for the Δ 12 desaturase enzyme of the microsomal fraction.

More particularly, the invention relates to the nucleotide sequence, to the derived amino-acid sequence of the gene, and to its use as a probe for the isolation of other plant desaturases. It also relates to the use of this gene for altering the desaturase levels, and consequently the fatty-acid composition of the plant.

Alteration of the fatty-acid composition may have various applications in the industrial field. One of the greatest problems with hazelnuts is that they become rancid by oxidation. This is due to the auto-oxidation of unsaturated lipids with the consequent formation of volatile substances with a rancid odour which cannot easily be eliminated by the usual preservation systems. Amongst the possible strategies for reducing the tendency to become rancid, the best seems to be that of reducing the degree of unsaturation of the fatty acids present in the kernel oil, since susceptibility to auto-oxidation is positively correlated with this parameter. In fact, the rate of peroxide formation is correlated with the number of C=C double bonds in the fatty acids. The rate of auto-oxidation of the fatty acids in comparison with the oleate (18:1) is about 30 times greater in the linoleate (18:2) and 80 times greater in the linolenate (18:3). Moreover, the volatile substances resulting from the degradation of the linoleate and of the linolenate have a lower threshold of perception than those derived from the oleate. A reduction in linoleic acid should reduce the availability of substrates for lipoxygenase, reduce the loss of vitamin E during preservation, and reduce the production of volatile substances such as hexanals.

In the angiosperms, most of the synthesis of polyunsaturated lipids takes place by means of a single enzyme, that is, $\Delta 12$ (or $\infty 6$) desaturase (18:1 desaturase), of the endoplasmic reticulum, although there is an 18:1 chloroplast desaturase in the leaves of some plants. Moreover, this enzyme is responsible for more than 90% of the synthesis of polyunsaturated fatty acids in non-photosynthetic tissues such as, for example, in the kernels. The conversion of oleic acid (18:1) to linoleic acid (18:2) thus takes place by means of $\Delta 12$ desaturase, and from linoleic acid to linolenic acid (18:3) by means of $\Delta 15$ (or $\infty 3$) desaturase.

It has been shown with mutants of *Arabidopsis* that the FAD2 locus contains a gene which codes for the oleate desaturase enzyme of the endoplasmic reticulum (Okuley et al, 1994, The Plant Cell 6, 147-158). The FAD2 gene was in fact able to complement mutants of *Acabidopsis* which were deficient in desaturase activity of the endoplasmic reticulum. The gene coding for the same enzyme in soya has also recently been isolated and sequenced (Heppard et al, 1995, Plant Physiol., in press).

A reduction in the Δ 12 desaturase levels should therefore lead to a reduction in the linoleic acid content and, as a secondary effect, probably also to a reduction in linolenic acid. In hazelnuts the percentage of linoleic acid varies from 5 to 15%; the percentage of linolenic acid is from 0.1 to 0.2%. A reduction in these fatty acids should therefore be useful in the preservation of hazelnuts. There is therefore clearly a need to isolate the gene which codes for the Δ 12 desaturase of the endoplasmic reticulum. The sequence of the gene could thus be used for gene inactivation in hazelnut kernels. This inactivation could be carried out either by the antisense technique (Smith et al. (1988) Nature 334, 724-726) or by the "transwitch" technique (Flavell (1994) Proc. Natl. Acad. Sci. USA 91, 3490-3496). In the antisense technique, the hazel would have to be transformed by the entire FAD2-N gene or by portions thereof, inserted in the opposite direction to the regulating sequences. In the "transwitch" technique, the hazel would have to be transformed by an identical copy of the FAD2-N gene.

The subjects of the present invention are defined by the following claims.

Embodiments of the present invention will now be described with reference to the following drawings, in which:

Figure 1 shows the restriction map of the N2 genome clone,

45 Figure 2 shows the nucleotide sequence of the hazel FAD2-N gene; the amino-acid sequence of the coding portion is also shown;

Figure 3 shows the nucleotide sequence of the "I" clone of cDNA,

50 Figure 4 shows a comparison between the nucleotide sequences of the "I" and "N2" clones,

Figure 5 shows a comparison between the amino-acids of the "N2" gene and Δ 12 desaturases of *Arabidopsis* and of soya,

Figure 6 shows the homology between hazel Δ 12 desaturase and various desaturases of other plants both plastid and of the endoplasmic reticulum,

Figure 7 shows the expression of the N2 gene in various varieties of hazel both in the leaves and in the kernels.

Isolation and cloning of the FAD2 gene of Arabidopsis thaliana for use as a probe

In order to isolate the gene which codes for hazel Δ 12 desaturase enzyme, it was necessary to use the FAD2 gene of *Arabidopsis* as a probe.

In order to isolate the Arabidopsis gene, two oligonucleotides were used as "primers" for the amplification of the sequences included between the start and the end of the gene. The oligonucleotides used were NOCC1 (CTGAATTC-CAGGTGGAAGAATGCC) which contains the Eco RI restriction site and the sequences corresponding to the portion between bases 100 and 116 of the gene (Okuley J. et al, 1994, The Plant Cell 6, 147-158) and NOCC4 (AGGAATTC-GACAATTTCTTCACCATCATGC) which contains the restriction site of the Eco RI enzyme and the sequences complementary to the portion between base 1245 and base 1266. The amplification reaction was as follows: 12.8 μ l H₂O, 2.5 μ l 10 x PCR buffer (Perkin Elmer), 2.5μl Arabidopsis genome DNA(10 ng/l), 1μl dNTP, each 2.5mM, 2μl 25mM MgCl₂, 1μl NOCC1 oligonucleotide (50ng/μl), 1μl NOCC4 oligonucleotide (50ng/μl) 0.2μl Taq I DNA polymerase (Perkin Elmer) (5U/μl). The mixture thus prepared was subjected to 1 denaturing cycle for 1 minute at 94°C and to 40 cycles composed as follows: 30 seconds at 94°C, 1 minute at 52°C, 2 minutes at 72°C. The amplification products were separated on 1% agarose gel in TAE buffer (0.04M Tris-acetate, 0.002M EDTA) and stained with ethidium bromide at a concentration of 0.5µg/ml. The portion of gel containing the fragment of the expected length was withdrawn. In order to extract the DNA, 10µl of Qiaex resin (Qiaex extraction kit, firm Qiagen) were added for each 200mg of gel. The supplier's method was then followed. The DNA was then supplemented with a tenth of a volume of 10XH buffer (Boehringer) and 20 units of Eco RI enzyme (Boehringer). After incubation overnight at 37°C, the DNA was precipitated with 0.1 volumes of 5M NH₄OAc and one volume of isopropanol. After 10 minutes at ambient temperature, the DNA was centrifuged for 20 minutes at 14000 rpm and the precipitate was washed with 70% ethanol. The DNA was resuspended in $15\mu l$ of H_2O . The concentration was determined on gel by comparison with a known standard.

The amplified fragment was inserted in the pUC18 vector. A ligation mixture was prepared as follows: 1μ l pUC18 plasmid DNA cut with Eco RI (20ng), 1.5μ l fragment amplified with NOCC1 and 4 (25ng), 1μ l 10X ligase buffer (Boehringer), 1μ l T4 DNA ligase ($1U/\mu$ l) (Boehringer), 4.5μ l H₂O. The reaction mixture was incubated at 14° C for 12 hours.

In order to prepare competent cells, the method based on the compound hexamino-cobalt chloride was used (Maniatis, Molecular cloning, 1989, Cold Spring Harbor Laboratory Press, 1.76-1.81). 10µl of the ligation mixture were added to each aliquot of competent cells, defrosted on ice. After the cells had been incubated on ice for 30 minutes they were subjected to thermal shock at 42°C for 90 seconds and were then replaced in ice for 60 seconds. After the addition of 0.5 ml of SOC broth (2% Bactotryptone, 0.5% yeast extract, 10mM NaCl, 2.5mM KCl, 10mM MgCl₂, 20mM glucose, pH7), the cells were incubated at 37°C with stirring for 90'. 100, 200 and 300 µl aliquots were spread on plates containing solid LB broth (10gr/l NaCl, 10gr/l Bactotryptone, 5gr/l yeast extract, pH7.5, 15gr/l agar) with the addition of 50µg/ml of ampicillin and in the presence of IPTG and X-Gal. The plates were then incubated at 37°C overnight.

Some of the bacterial colonies obtained were first analyzed for their plasmid content by a quick method (Maniatis, Molecular cloning, 1989, Cold Spring Harbor Laboratory Press, 1.32). The colonies containing a plasmid of the expected length were grown and their plasmid DNA extracted (Maniatis, Molecular cloning, 1989, Cold Spring Harbor Laboratory Press, 1.33). Those containing a fragment of the expected length (1160 bp) were identified by digestion of the plasmid DNA with Eco RI. The E1 colony was selected.

One end of the insert of the E1 colony was sequenced. The plasmid DNA of the E1 clone was denatured and partially sequenced by Sanger's method using the enzyme Sequenase and ³⁵S-dATP (Amersham). The sequencing products were separated on 8% acrylamide, 8M urea, 1XTBE gel. After electrophoresis, the gel was dried and exposed overnight in contact with an autoradiographic plate (β max, Amersham). The sequence was compared with that published and was identical, identifying the *Arabidopsis* FAD2 gene in the cloned fragment.

Extraction of nucleic acids from hazel

Hazelnuts of the Nocchione, Montebello and San Giovanni varieties were harvested when almost fully ripe. The kernel was skinned before being used or frozen in liquid nitrogen. The leaves were harvested at a young stage and frozen in liquid nitrogen. 3 ml of extraction buffer were used for each gram of vegetable material with the use of the method described by Verwoerd et al. (Nucl. Ac. Res., 1989, 2362). Upon completion of the extraction, two selective precipitations were carried out by the addition of NaCl 2M, and 2 volumes of 95% ethanol to eliminate polysaccharides. The final pellet was resuspended in H_2O . Further centrifuging was then carried out to eliminate any non-resuspended material.

On the other hand, DNA was extracted from young leaves of the Nocchione and Montebello varieties. The vegetable tissue was pulverized in liquid nitrogen and the DNA extracted by the CTAB (REF) method. To eliminate the polysaccharides, NaCl 2M and 2 volumes of 95% ethanol were added. The samples were incubated for 15' at -80°C and centrifuged for 15' at 4°C and 14000 rmp (Eppendorf). This selective precipitation was repeated twice and the final pellet was resuspended in $\rm H_2O$. Further centrifuging was then carried out to eliminate any non-resuspended material.

Checking of the probe on hazel DNA and RNA

About 20 μ g of DNA of the Montebello and Nocchione varieties was cut with Eco RI restriction enzyme in a volume of 300 μ l in the presence of 400 units of enzyme and H buffer (Promega), with incubation for one night at 37°C. After digestion had been checked by gel electrophoresis of one twentieth of the reaction mixture, the samples were precipitated with ethanol and resuspended in 30 μ l of H₂O. The DNA was then subjected to electrophoresis on 0.7% agarose gel and transferred by capillarity onto nylon membrane (Southern blot) for one night in the presence of 20 x SSC (3M NaCl, 0.3M Na citrate). The membrane was dried in air for 30' and then fixed by UV treatment (120,000 μ J/cm²).

The Arabidopsis $\Delta 12$ desaturase gene was used as a probe. For this purpose, the plasmid DNA of the E1 clone (5µg) was cut with 20 units of Eco RI in the presence of H buffer (Boehringer) in a volume of 30µl for 12 hours at 37°C. The insert of the clone was separated from the vector by electrophoresis on 1% agarose gel and extracted from the gel with the use of Qiaex resin in accordance with the suppliers' instructions (Qiagen). The DNA was denatured for 10' at 100°C, cooled rapidly in dry ice, and marked by the random priming method with the use of 6000 Ci/mmol (α^{32})P dATP and the reagents of Boehringer's marking kit.

The nylon membrane containing the hazel DNA was prehybridized for 1.5 hours at 55°C in standard buffer (5 x SSC, 0.1% (w/v) N-laurylsarcosine, 0.02% SDS, 1% blocking reagent solution) (10% blocking reagent solution: 10gr Boehringer blocking reagent in 150mM NaCl, 100mM maleic acid, pH7.5). The membrane was then hybridized with the *Arabidopsis* probe for one night at 55°C. The non-hybridized probe was washed twice for 15' in 2 x SSC, 0.1% SDS and twice for 15' each in 0.3 x SSC, 0.1% SDS, always at a temperature of 55°C. The probe remained coupled to the homologous sequences on the membrane was detected by autoradiography.

The RNA extracted from the young leaves of the Montebello and Nocchione varieties and from the kernels of the San Giovanni variety was separated on denaturing gel in the presence of formamide and transferred to nylon membrane by Northern blotting (Maniatis, Molecular cloning, 1989, Cold Spring Harbor Laboratory Press, 7.43-7.45). 40µg/sample of total RNA extracted from San Giovanni kernels, Nocchione leaves and Montebello leaves were used. 60 pg of probe were used as a positive control. The RNA was loaded onto a 1% agarose gel in the presence of formal-dehyde. The samples were then subjected to electrophoresis for 3 hours at 80 volts in the presence of 1xMOPS. The gel was rinsed in H₂O and then stained with ethidium bromide 0.5 µg/ml to display the RNA. The RNA was then transferred onto a nylon membrane (Boehringer) by "capillary blotting" in the presence of 20 x SSC throughout the night at 4°C. After transfer, the membrane was dried on 3 MM paper and then fixed by crosslinking using UV light (Stratagene UV Stratalinker 120000 µJ/cm²). The RNA was hybridised with the *Arabidopsis* Δ12 desaturase probe as described for the DNA. Detection was carried out by autoradiography. The heterologous *Arabidopsis* probe was able to display a band with a molecular weight of about 1500 bp in the hazel RNA and 3 bands of about 18, 8 and 2.8 kb in the hazel DNA cut with Eco RI.

Construction of a gene library of cDNA

The gene library of cDNA was constructed from RNA from kernels harvested when almost fully ripe and taken from plants of the San Giovanni variety. For this purpose, the Poly(A)+mRNA was isolated from the total RNA with the use of the Poly(A) Tract mRNA Isolation System II, in accordance with the method provided by the firm Promega. The samples were eluted in H_2O and precipitated with 0.1 volumes of 3M NaOAc and 3 volumes of 95% ethanol. After one night at -80°C, the RNA was centrifuged for 15' at 14000 rpm (Eppendorf), the pellet was rinsed in 75% ethanol and resuspended in 10μ l of H_2O . The concentration was read with a spectrophotometer and the yield was $3.2\mu g$ of Poly(A)+mRNA per mg of total RNA.

The messenger RNA polyadenilate derived from kernels of the San Giovanni variety was used as a template for the synthesis of complementary DNA (cDNA) with the use of Boehringer's "cDNA synthesis kit" in accordance with the method recommended by the suppliers. An extraction was then carried out with one volume of phenol chloroform: isoamyl alcohol (25:24:1). The cDNA was then purified in a Pharmacia column (cDNA spun columns) after the addition of NaCl 100 mM. The buffer used was the following: 10mM Tris-HCl pH 7.5, 1mM EDTA, 150mM NaCl. Eco RI "adaptors" (Pharmacia) were added to the ends of the cDNA. The reaction mixture contained: 5µl of cDNA (half of the cDNA obtained from 6μg of Poly(A)+RNA), 10μl of ligase buffer 10 x (Promega), 10μl of Eco Rl adaptors (0.01u/μl), 6 units of T4 DNA ligase (Promega), in a final volume of 100µl. After incubation for 12 hours at 12°C, the ligase enzyme was inactivated for 10' at 65°C. Phosphorylation of the adaptors then followed by the addition, to the 100µl mixture, of 10µl of 100mM ATP and 10 units of T4 polynucleotide kinase. After incubation at 37°C for 30', the enzyme was inactivated by incubation for 10' at 65°C. Purification was then carried out with one volume of phenol:chloroform:isoamyl alcohol (25:24:1). The cDNA was then purified from fragments of less than 400 bp as follows. After the addition of NaCl to a final concentration of 0.1M NaCl, the cDNA was separated by chromatography in a column with Sepharose CL-4B resin (Size prep 400 spun column, Pharmacia) according to the method suggested by the suppliers. The fragments of cDNA shorter than 400 bases were thus excluded. The cDNA was precipitated with one thirtieth of a volume of 3M NaOAc and 2 volumes of 95% ethanol, centrifuged and resuspended in $10\mu l$ of H_2O .

The cDNA was inserted in the λ phage vector Zap II cut with Eco RI and dephosphorylated (Stratagene) in the following manner: 2μ I of cDNA (200 ng), 1μ I of λ Zap II cut with Eco RI (1μ g/ μ I) (Stratagene), 0.5μ I of T4 DNA Ligase ($4U/\mu$ I) (Promega), 0.5μ I of 10×100 kigation buffer (Promega), 1μ I of 10×100 kigation buffer (Promega), 10×100 kigat

Construction of a partial genome gene library

The DNA of the Nocchione variety was digested with Eco RI restriction enzyme and separated on agarose gel. The fragments with lengths of up to 10000 bp (base pairs) were isolated from the gel with the use of Qiaex resin according to the Qiagen's method. For cloning in the λ vector Zap II, 400ng of DNA fragments were incubated with 1 μ g of desphosphorylated λ Zap II (Stratagene) in the presence of ligase buffer and 1.5 units of T4 DNA ligase (Promega) for 12 hours at 14°C.

Strategene's Gigapack Gold "in vitro packaging" kit was used in accordance with the suppliers' instructions to make up the gene library. The gene library of phages thus produced was amplified as described for the cDNA gene library. The complexity of the gene library was 1,500,000 clones. This gene library was also amplified.

Screening of the cDNA gene library

15

35

45

55

About 250,000 phages of the cDNA gene library were plated on LB broth in the presence of XL1 Blue MRF' cells, divided into 12 plates each containing 20,000 pfu. After growth, the phages were transferred onto nylon membranes and their denatured DNA was fixed on the membranes as described by Boehringer for screening with non-radioactive probes. The membranes were then hybridized with the *Arabidopsis* Δ12 desaturase gene. The probe was prepared by the isolation of the insert containing the entire coding region of the gene from the plasmid. The insert was then marked with digoxigenin-dUTP with the use of Boehringer's "DNA labelling kit". Prehybridization was carried out in standard buffer (Boehringer) and hybridization was carried out in the same buffer with the addition of the *Arabidopsis* probe at a concentration of 10ng/ml and at a temperature of 55°C.

After washing twice in 2xSSC, 0.1% SDS for 5 minutes at ambient temperature and washing twice in 0.3xSSC, 0.1%SDS at 55°C, detection was carried out with the use of an anti-digoxigenin antibody conjugated with alkaline phosphatase (Boehringer) and a chemiluminescent substrate (AMPPD, Boehringer).

11 positive phage plaques were identified. These were isolated, the phages resuspended in SM and titled. From 50 to 200 phages were plated for each positive plaque. The plaques were transferred onto nylon membranes and subjected to a second hybridization with the Arabidopsis $\Delta 12$ desaturase probe, as already described above. The following clones which could hybridize with the Acabidopsis $\Delta 12$ desaturase gene were obtained from the second screening: I, F, 4.

Screening of the genome gene library

The gene library of Nocchione DNA was subjected to screening in the same way as the cDNA gene library. 1,600,000 phages were plated, divided into 40 plates. After growth, they were transferred to nylon membranes as described for the cDNA gene library. The membranes were then hybridized with the Arabidopsis $\Delta 12$ desaturase gene as described for the cDNA gene library. Autoradiography of the membranes showed 9 positive plaques. These plaques were isolated, titled and subjected to a second screening. 6 plaques were re-confirmed as positive. 4 of these gave a very strong signal.

Analysis of the clones isolated

The following positive phage clones were converted into plasmids by *in vivo* excision in accordance with the method suggested by Stratagene (Gigapack Gold in vitro packaging): I, F, 4 (cDNA gene library), N2, N11, N17, N18, N21, N25 (genome gene library).

The plasmid DNA of the clones of the cDNA gene library was isolated and the length of the insert analyzed by digestion with Eco RI. The plasmid DNA of the genome clones was isolated, the length of the insert analyzed by cutting

with restriction enzyme, and the clones rechecked by hybridization with the *Arabidopsis* probe. Figure 1 shows the map of the N2 genome clone.

Sequencina

5

20

25

30

35

45

50

55

The N2 clone was selected from the genome clones. For sequencing, the insert was fragmented with Sau3A restriction enzyme and the fragments obtained were subcloned in pUC18 vector cut with BamHI (Maniatis, Molecular cloning, 1989, Cold Spring Harbor Laboratory Press, 1.68-1.69). The clones obtained were analyzed both for the length of the insert and by hybridization with the *Arabidopsis* probe. Since the N2 insert was 2.8 kb and hence longer than the Δ12 desaturase gene, the hybridization excluded the clones containing sequences outside the gene. The insert of the I, F, 4 and N2 clones was isolated and sequenced with the use of the Sequenase kit and (35S)dATP. All of the clones (cDNA and genome) were first sequenced at the ends with the use of primers which could couple with the vector in both orientations. In order to complete the internal regions and to assemble the fragments of the N2 genome clone, internal oligonucleotides were then designed and synthesized and were used for the sequencing. The following table shows the sequences of the internal oligonucleotides:

OLIGONUCLEOTIDE	SEQUENCE
N2-3SS	CAG ACC AGC ATC CGA GAC
N2-3SD	GGA TTG GCT TAG GGG GGC
N2-29R'S	GCC AAC CAT GTC ATC AAC CC
NOCCS	ATG GTA GAG AAG AGA TGG TG
COL	CTG GTG GGT TGT TGA AG
N2-S1N	GGA GAG GTC ATA AAC AAC

The I and F clones were sequenced entirely. As far as the N2 clone is concerned, only the regions corresponding to the gene were sequenced. Figures 2 and 3 show their sequence. The I and F cDNA clones were identical. A comparison between I and the N2 genome clone showed the same sequence (Fig. 4), indicating that N2 contains the gene which codes for the cDNA of the I clone.

Comparison between the gene isolated and other desaturases

The nucleotide and amino-acid sequence of the N2 clone was compared with other desaturases (Figure 6). The greatest homology was with the two $\Delta 12$ desaturases of the endoplasmic reticulum and with a hydroxylase of ricin which uses the same substrate as $\Delta 12$ desaturase. Homology with the plastid $\Delta 12$ desaturases and with both the plastid and endoplasmic reticulum $\Delta 15$ desaturases was, however, much lower. Figure 5 shows the comparison between the amino-acid sequence of hazel $\Delta 12$ and those of *Arabidopsis* and soya.

Checking of the expression of the hazel ∆12 desaturase gene

RNA was extracted from kernels of the San Giovanni, Montebello and Nocchione varieties and from leaves of the Montebello and Nocchione varieties. After separation on agarose gel, the RNA was transferred onto a nylon membrane and hybridized with the insert of the I clone marked with digoxigenin. The result is shown in Figure 7, in which a band is visible in the kernel RNA but not in that of the leaves.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: SOREMARTEC S.A. (B) STREET: Dreve de l'Arc-en-Ciel 102 (C) CITY: Arlon-Schoppach (E) COUNTRY: Belgium (F) POSTAL CODE (ZIP): 6700
15	(ii) TITLE OF INVENTION: Isolation and sequencing of the hazel FAD2-N gene
70	(iii) NUMBER OF SEQUENCES: 4
20	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
25	<pre>(vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: CH 0550/96 (B) FILING DATE: 04-MAR-1996</pre>
30	(2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS:
35	(A) LENGTH: 1662 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
	(iii) HYPOTHETICAL: NO
40	(iv) ANTI-SENSE: NO
45	(vi) ORIGINAL SOURCE:(A) ORGANISM: Corylus avellana cv. Nocchione(F) TISSUE TYPE: leaves
70	(Vii) IMMEDIATE SOURCE: (B) CLONE: N2
50	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:2221370 (D) OTHER INFORMATION:/product= "delta-12 desaturase"</pre>

7

		(xi)	SEQ	UENC	E DE	SCRI	PTIC	ON: S	EQ I	D NO): 1:	:				
5	CCTC	ATAA 60	AA AA	AGTA.	AGCT	C ATI	TAC	CTCA .	AGTA	GGGT	TT C	CTTA!	rgac	TAA A	GAGT	ccc
		TCCT	rt te	CTAT	GAGG	T GCT	LATAI	ATTG	CAAA	TGTC	CA A	ATCA!	PAGG	G ATA	TGGA	TCC
10		ACTA!	TT A	TATA	TATG	T AGT	rgtg:	тттт	TTTT	ТТТС	CC T	CAAA'	ATTT	C TCI	CACA	CCT
	AAGT	TGAT'	_	CTCC	CAGCI	AT TO	GGAC	ATAGO	CT(CTGT	AGAC		TG G			
15													1	•		-
,•	AGC	CGA 2	ATG	ССТ	GCT	ACC	AAC	AAG	CCT	AAA	GAG	CAA	AAA	ACA	ссс	ATC
	Ser	Arg 1	Met	Pro	Ala	Thr	Asn	Lys	Pro	Lys	Glu	Gln	Lys	Thr	Pro	Ile
20	5					10					15					20
	CAG	CGA (GCA	CCA	CAC	ACA	AAA	ccc	CCA	TTC	ACT	CTT	AGC	CAA	CTC	AAG
25	Gln	Arg	Ala	Pro	His	Thr	Lys	Pro	Pro	Phe	Thr	Leu	Ser	Gln	Leu	Lys
25					25					30					35	S
	AAA	GCC (GTC	CCA	ccc	TAA	TGT	TTC	CAA	CGC	TCT	CTC	CTA	CGC	TCG	TTC
30	Lys	Ala	Val	Pro	Pro	Asn	Сув	Phe	Gln	Arg	Ser	Leu	Leu	Arg	Ser	Phe
				40					45					5 ()	
35	TCA	TAT 425		GTT	TAT	GAC	CTC	TCC	TTA	GCC	TTC	CTC	TTC	TAC	TAT	ATT
	Ser	Tyr		Val	Tyr	Asp	Leu	Ser	Leu	Ala	Phe	Leu	Phe	Tyr	Tyr	Ile
			55					60					65	5		
40																
	GCT	ACC 473		TAC	TTC	CAT	CTC	CTC	CCT	CAC	ccc	CTT	TCC	TAC	TTG	GCA
	Ala	Thr	Ser	Tyr	Phe	His	Leu	Leu	Pro	His	Pro	Leu	Ser	Tyr	Leu	Ala
45		70					75					8	0			
	TGG	TCA 521		TAT	TGG	GCT	CTC	CAA	GGC	TGC	ATT	CTC	ACC	GGC	GTT	TGG
50	Trp	Ser	Ile	Tyr	Trp	Ala	Leu	Gln	Gly	Cys	Ile	Leu	Thr	Gly	Val	Trp
	85					90					95					100

	GTC	ATC G	CA	CAT	GAG	TGC	GGT	CAC	CAT	GCC	TTT	AGT	GAC	TAC	CAA	TGG
	Val	Ile A	la	His	Glu	Cys	Gly	His	His	Ala	Phe	Ser	Asp	Tyr	Gln	Trp
5					105					110					115	
	GTT	GAT G	AC	ATG	GTT	GGC	CTA	ACC	СТТ	CAC	тст	GCT	СТТ	TTA	GTT	CCA
10	Val	617 Asp A	qs	Met	Val	Gly	Leu	Thr	Leu	His	Ser	Ala	Leu	Leu	Val	Pro
				120					125					130		
15	TAC	TTT 1	CA	TGG	AAG	ATT	AGC	CAC	TGT	CGC	CAC	CAC	TCT	AAC	ACC	GGC
	Tyr	Phe S	er	Trp	Lys	Ile	Ser	His	Cys	Arg	His	His	Ser	Asn	Thr	Gly
		1	35					140					145			
20	TCC	CTT G	AC	CGA	GAT	GAG	GTG	ттт	GTC	ccc	AAG	CCG	AAA	TCC	AAA	ATG
	Ser	Leu A	Asp	Arg	Asp	Glu	Val	Phe	Val	Pro	Lys	Pro	Lys	Ser	Lys	Met
25		150					155					160				
	CCA	TGG 1	TT	TCT	AAG	TAC	TTC	AAC	AAC	CCA	CCA	GGT	AGG	GTC	CTC	ACT
	Pro	Trp F	Phe	Ser	Lys	Tyr	Phe	Asn	Asn	Pro	Pro	Gly	Arg	Val	Leu	Thr
30	165					170					175					180
	CTT	TTG #	ATC	ACA	CTC	ACT	CTA	GGC	TGG	CCC	TTG	TAC	TTA	GCC	TTG	AAT
35	Leu	Leu 1	Ile	Thr	Leu	Thr	Leu	Gly	Trp	Pro	Leu	Tyr	Leu	Ala	Leu	Asn
					185					190					195	5
40	GTT	TCT (GGC	CGA	ccc	TAT	GAT	CGT	TTT	GCT	TGC	CAC	TAT	GAT	CCC	TAT
	Val	Ser (Gly	Arg	Pro	Tyr	Asp	Arg	Phe	Ala	Cys	His	Tyr	Asp	Pro	Tyr
				200					205	,				210)	
45	GGC	CCC 2	TTA	TAT	TCC	AAT	CGC	GAA	AGG	TGT	CAA	ATA	TTT	GTC	TCG	GAT
	Gly	Pro	Ile	Tyr	Ser	Asn	Arg	Glu	Arg	Сув	Gln	Ile	Phe	Val	Ser	Asp
50		;	215					220	•				225	5		
	GCT	GGT (953		TTT	GCT	ACA	ACT	TAT	GTG	CTT	TAC	TAC	GCA	GCA	ATG	TCA

	Ala	Gly	Val	Phe	Ala	Thr	Thr	Tyr	Val	Leu	Tyr	Tyr	Ala	Ala	Met	Ser
		230					235					240				
5	***	GGG	CMC	CCA	שככ	COT	CTA	መመሮ	አ ጥጥ	መእጥ	CCT	እጥሮ	CCA	መመር	CTC	አሞአ
		1001														
	-	Gly	Leu	Ala	чтр		vaı	Pne	11e	туг	_	Met	Pro	Leu	Leu	
10	245					250					255					260
	GTG	AAT	GGC	TTC	СТТ	GTA	TTA	ATC	ACC	TAC	TTG	CAG	CAC	ACT	CAC	ССТ
15	Val	1049 Asn		Phe	Leu	Val	Leu	Ile	Thr	Tyr	Leu	Gln	His	Thr	His	Pro
15			•		265					270					275	
20	GCA	TTG 1097		CAC	TAT	GAC	TCA	TCA	GAA	TGG	GAT	TGG	CTT	AGG	GGG	GCA
20	Ala	Leu		His	Tyr	Asp	Ser	Ser	Glu	Trp	Asp	Trp	Leu	Arg	Gly	Ala
				280					285					290)	
25																
		GCG 1145	5													
	Leu	Ala	Thr	Ala	Asp	Arg	Asp	Tyr	Gly	Met	Leu	Asn	Lys	Val	Phe	His
30			295					300					305	5		
	ААТ	ATC	АТА	GAC	ACC	CAT	GTG	GCT	CAC	CAT	CTC	TTC	TCT	ACC	ATG	ССТ
		1193 Ile	3													
35		310				0	315					320			-10-	
		310					313					320	•			
	CAT	TAC 124		GCA	ATG	GAA	GCC	ACC	AAA	GCA	ATC	AAG	TCA	ATA	TTG	GGC
40	His		-	Ala	Met	Glu	Ala	Thr	Lys	Ala	Ile	Lys	Ser	Ile	Leu	Gly
	325					330					335					340
4 5	AAA	TAC 128		CAG	TTT	GAT	GGC	ACT	CCA	GTT	TAC	AAG	GCA	GTG	TGG	AGG
	Lys	Tyr	Tyr	Gln	Phe	Asp	Gly	Thr	Pro	Val	Tyr	Lys	Ala	Val	Trp	Arg
					345	•				350)				35	5
50	GAG	GCT	AAA	GAG	ጥርቦ	. Ըսոս	ካልጥ	Gran.	GAG	ጥርራ	GAC	GAG	GGG	GCC	CCT	AAC
		133	7													
	GIU	N10	ъÃр	GIU	- cys	י דיבו	TAT	val	GIU	361	voh	GIU	. сту	VIQ	FIG	Asn

	360	365	370
5	AAA GGT GTT TTC TGG TAT CAG AG	C AAG CTG TGA TATTGGCTG	G ATAGAGCCAA
	Lys Gly Val Phe Trp Tyr Gln	Ser Lys Leu *	
	375	380	
10	AGAAAATGTG ATTAGTAAGG TAGTGTCT	ITT GGTCAGTTTG GTGTGTTAA	G GAACAAATAA
15	TAATAATTAG CGACTATGAA TAGTTAT 1510	IGT TAAACAAAAT TCACCCTTA	T GTTTAGCAGG
	AACTTTTCTG GCTACACTTT TTTTCGTA 1570	ATG AAAAGCGCAT ATTTTTAA	T TGTTATATTG
20	TTTTGACATT ACTCAAGCTT CAAAATTI 1630	AAT ATCACAGAAA ATATCCAAT	G TCGAAGGTTT
	CATTGTAGGT TGAAAACTTT ATATTGA 1662	AGGT GG	
25	(2) INFORMATION FOR SEQ ID NO	0: 2:	
	(i) SEQUENCE CHARACTER (A) LENGTH: 383 am	ino acids	
30	(B) TYPE: amino ac: (D) TOPOLOGY: line		
	(ii) MOLECULE TYPE: proto (xi) SEQUENCE DESCRIPTION		
35	Met Gly Ala Arg Ser Arg Met P 1	Pro Ala Thr Asn Lys Pro 10	Lys Glu Gln 15
40	Lys Thr Pro Ile Gln Arg Ala P 20	Pro His Thr Lys Pro Pro 25	Phe Thr Leu 30
	Ser Gln Leu Lys Lys Ala Val F 35	Pro Pro Asn Cys Phe Gln	_
45	Leu Arg Ser Phe Ser Tyr Val V	Val Tyr Asp Leu Ser Leu 60	Ala Phe Leu
<i>50</i>	Phe Tyr Tyr Ile Ala Thr Ser 7	Tyr Phe His Leu Leu Pro 75	His Pro Leu 80
	Ser Tyr Leu Ala Trp Ser Ile 1		_
55			

	Thr	Gly	Val	Trp 100	Val	Ile	Ala	His	Glu 105		Gly	His	His	Ala 11		Ser
5	Asp	Tyr	Gln 115	Trp	Val	qaA	Asp	Met 120		Gly	Leu	Thr	Leu 12	His 5	Ser	Ala
10	Leu	Leu 130	Val	Pro	Tyr	Phe	Ser 135		Lys	Ile	Ser	His 140		Arg	His	His
	Ser 145	Asn	Thr	Gly	Ser	Leu 150	Asp	Arg	Asp	Glu	Val 155	Phe	Val	Pro	Lys	Pro 160
15	Lys	Ser	Lys	Met	Pro 165	Trp	Phe	Ser	Lys	Tyr 170		Asn	Asn	Pro	Pro 17	
20	Arg	Val	Leu	Thr 180	Leu	Leu	Ile	Thr	Leu 185		Leu	Gly	Trp	Pro 19		Туг
	Leu	Ala	Leu 195	Asn	Val	Ser	Gly	Arg 200		Tyr	Asp	Arg	Phe 20	Ala 5	Сув	His
25	Туr	Asp 210	Pro	туг	Gly	Pro	Ile 215	-	Ser	Asn	Arg	Glu 22	_	Cys	Gln	Ile
30	Phe 225	Val	Ser	Asp	Ala	Gly 230	Val	Phe	Ala	Thr	Thr 235	Tyr	Val	Leu	Tyr	Tyr 240
	Ala	Ala	Met	Ser	Lys 245	Gly	Leu	Ala	Trp	Leu 25	_	Phe	Ile	Tyr	Gly 25	_
35	Pro	Leu	Leu	Ile 260	Val	Asn	Gly	Phe	Leu 265		Leu	Ile	Thr	Tyr 27		Gln
40	His	Thr	His 275	Pro	Ala	Leu	Pro	His 28		Asp	Ser	Ser	Glu 28	Trp 5	Asp	Trp
	Leu	Arg 290		Ala	Leu	Ala	Thr 299		Asp	Arg	Asp	Tyr 30		Met	Leu	Asn
45	Lys 305	Val	Phe	His	Asn	Ile 310		Asp	Thr	His	Val 315		His	His	Leu	Phe 320
50	Ser	Thr	Met	Pro	His 325		His	Ala	Met	Glu 33		Thr	Lys	Ala		Lys 35
	Ser	Ile	Leu	Gly	Lys	Tyr	Tyr	Gln	Phe	Asp	Gly	Thr	Pro	Val	туr	Lys

	340	345	350
5	Ala Val Trp Arg Glu A 355	la Lys Glu Cys Leu 1 360	Tyr Val Glu Ser Asp Glu 365
10	Gly Ala Pro Asn Lys G	375	Gln Ser Lys Leu * 380
	(2) INFORMATION FOR S	RO ID NO: 3:	
15	(B) TYPE: n	1133 base pairs ucleic acid DNESS: single	
	(ii) MOLECULE TYP	E: cDNA to mRNA	
20	(iii) HYPOTHETICAI	: NO	
	(iv) ANTI-SENSE:	NO	
	(v) FRAGMENT TYPE	E: C-terminal	
25		M: Corylus avellana	a L. cv. San Giovanni storage deposition stage
<i>30</i>	(vii) IMMEDIATE SO (B) CLONE:		
			1
35		e- ruuz	
	(ix) FEATURE: (A) NAME/KI (B) LOCATIO (D) OTHER	ON:11019 INFORMATION:/partia	1
40	/pro	don_start= 3 oduct= "delta-12 de ne= "Fad2"	saturase"
45	(xi) SEQUENCE DE	SCRIPTION: SEQ ID N	0: 3:
	TC CAA CGC TCT CTC C	TA CGC TCG TTC TCA	TAT GTT GTT TAT GAC CTC
	Gln Arg Ser Leu L	eu Arg Ser Phe Ser	Tyr Val Val Tyr Asp Leu
50	385	390	395
	TCC TTA GCC TTC CTC	TTC TAC TAT ATT GCT	ACC TCT TAC TTC CAT CTC

		95	5													
	Ser	Leu	Ala	Phe	Leu	Phe	Tyr	Tyr	Ile	Ala	Thr	Ser	Tyr	Phe	His	Leu
5		400					405					410				
	CTC	ርር ሞ	CAC	ccc	Сфф	ጥርር	ТАС	ттG	GCA	TGG	тса	АТС	ТАТ	TGG	GCT	СТС
		143	3	Pro												
10		PIO	пте	PIO	Deu		TÄT	Пеп	AIG	11 P	425	110	-1-			430
	415					420					723					150
	CAA			ATT	CTC	ACC	GGC	GTT	TGG	GTC	ATC	GCA	CAT	GAG	TGC	GGT
15	Gln	Gly	Cys	Ile	Leu	Thr	Gly	Val	Trp	Val	Ile	Ala	His	Glu	Cys	Gly
					435					440					445	5
												~~~	3.00	amm	000	CMA
20		239	9													CTA
	His	His	Ala	Phe	Ser	Asp	Tyr	Gln	Trp	Val	Asp	Asp	Met			Leu
				450					455	)				460	)	
25	ACC	CTT	CAC	тст	GCT	CTT	TTA	GTT	CCA	TAC	TTT	TCA	TGG	AAG	ATT	AGC
		28	7													Ser
			465					470		_			47			
30																
	CAC	TGT 33		CAC	CAC	TCT	AAC	ACC	GGC	TCC	CTT	GAC	CGA	GAT	GAG	GTG
	His	Cys	Arg	His	His	Ser	Asn	Thr	Gly	Ser	Leu	Asp	Arg	Asp	Glu	Val
35		480	)				485	<b>i</b>				49	0			
	mmm	· cmc		. אאר	CCC	מממ ב	ሞርር	מממ'	ልጥር	CCA	TGG	ттт	тст	' AAG	TAC	TTC
		38	33													Phe
40			. PIC	грур	FIC	500		Dy 3	nec		505			-1-	-1-	510
	495	,				500					303					•
	AAC			CCA	GG:	C AGG	GTC	CTC	AC1	CTI	TTG	ATC	AC!	A CTC	ACT	CTA
45	Asn	43 ASI	31 n Pro	Pro	Gl	Arc	y Val	Lev	ı Thi	Lev	Leu	ı Ile	e Thi	r Lev	Thr	Leu
					51	5				52	0				52	.5
50																
Ju		4	79													GAT
	Gly	y Tr	p Pro	o Le	ту:	r Leı	ı Ala	a Lei	ı Ası	n Val	l Sei	Gly	y Ar	g Pro	ту	Asp
55																

			530					535			•		540	)	
5	CGT	TTT GCT	TGC	CAC	TAT	GAT	ссс	TAT	GGC	ccc	ATT	TAT	TCC	AAT	CGC
	Arg	Phe Ala	Cys	His	Tyr	Asp	Pro	Tyr	Gly	Pro	Ile	Tyr	Ser	Asn	Arg
		545					550					555	,		
10	<b>63.3</b>	100 mam	<i>~</i> ~ ~ ~		mmm	omo.	maa	<b></b>	aam						
		AGG TGT 575													
	Glu	Arg Cys	Gln	Ile	Phe	Val	Ser	Asp	Ala	Gly	Val	Phe	Ala	Thr	Thr
15		560				565					570	1			
	TAT	GTG CTT 623	TAC	TAC	GCA	GCA	ATG	TCA	AAA	GGG	CTG	GCA	TGG	СТТ	GTA
	Tyr	Val Leu	Tyr	Tyr	Ala	Ala	Met	Ser	Lys	Gly	Leu	Ala	Trp	Leu	Val
20	575				580					585					590
	TTC	ATT TAT	GGT	ATG	CCA	TTG	CTC	ATA	GTG	AAT	GGC	TTC	CTT	GTA	TTA
25	Phe	Ile Tyr	Gly	Met	Pro	Leu	Leu	Ile	Val	Asn	Gly	Phe	Leu	Val	Leu
				595					600					605	5
30	ATC	ACC TAC	TTG	CAG	CAC	ACT	CAC	CCT	GCA	TTG	CCG	CAC	TAT	GAC	TCA
	Ile	Thr Tyr	Leu	Gln	His	Thr	His	Pro	Ala	Leu	Pro	His	Tyr	Asp	Ser
			610					615					620	)	
35	TCA	GAA TGG 767	GAT	TGG	СТТ	AGG	GGG	GCA	TTG	GCG	ACG	GCG	GAT	AGA	GAT
	Ser	Glu Trp	Asp	Trp	Leu	Arg	Gly	Ala	Leu	Ala	Thr	Ala	Asp	Arg	Asp
40		625					630					635	5		
	TAC	GGA ATG	CTG	AAT	AAG	GTT	TTC	CAC	AAT	ATC	ATA	GAC	ACC	CAT	GTG
	Tyr	815 Gly Met	Leu	Asn	Lys	Val	Phe	His	Asn	Ile	Ile	Asp	Thr	His	Val
<b>4</b> 5		640				645	,				650	)			
	GCT	CAC CAT	CTC	TTC	TCT	ACC	ATG	CCT	CAT	TAC	CAT	GCA	ATG	GAA	GCC
50	Ala	His His	Leu	Phe	Ser	Thr	Met	Pro	His	Tyr	His	Ala	Met	Glu	Ala
	655				660					665					670

	ACC	AAA 911		ATC	AAG	TCA	ATA	TTG	GGC	AAA	TAC	TAC	CAG	TTT	GAT	GGC
5	Thr	Lys	-	Ile	Lys	Ser	Ile	Leu	Gly	Lys	Tyr	Tyr	Gln	Phe	Asp	Gly
5					675					680	ı				685	5
	ACT	CCA 959		TAC	AAG	GCA	GTG	TGG	AGG	GAG	GCT	AAA	GAG	TGC	CTT	TAT
10	Thr	Pro		Tyr	Lys	Ala	Val	Trp	Arg	Glu	Ala	Lys	Glu	Суѕ	Leu	Tyr
				690					695					700	)	
15	GTT	GAG 1007		GAC	GAG	GGG	GCC	CCT	AAC	AAA	GGT	GTT	TTC	TGG	TAT	CAG
	Val	Glu	Ser	Asp	Glu	Gly	Ala	Pro	Asn	Lys	Gly	Val	Phe	Trp	Tyr	Gln
			705					710					715	5		
20	AGC	AAG	CTG	TGA	тат	TGGC	TGG	ATAG	AGCC	AA A	GAAA	ATGI	rg An	TAG	CAAGO	3
		109 Lys	59	*												-
ar.		720														
25		TGTC: 119	TTT G	GTCA	GTTI	G GT	GTGT	TAAG	GAA	CAAAT	T AA1	AATA	ATTA	G CG	ACTA	rgaa
	TAG	TTAT:		AAA												
30																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	4:							
35			Ċ	A) L B) T	ENCE ENGT YPE: OPOL	H: 3 ami	39 a no a	mino cid								
40			) MO ) SE							ID N	0: 4	:				
	Gln 1	Arg	Ser	Leu	Leu 5		Ser	Phe	Ser	Tyr 1		Val	Tyr	Asp	Leu 1	
<b>4</b> 5	Leu	Ala	Phe	Leu 20		Туr	Tyr	Ile	Ala 25		Ser	Tyr	Phe	His 3		Leu
<i>50</i>	Pro	His	Pro 35		Ser	Tyr	Leu	Ala 40		Ser	Ile	Tyr	Trp 4		Leu	Gln
	Gly	Cys	Ile	Leu	Thr	Gly	Val	Trp	Val	Ile	Ala	His	Glu	Cys	Gly	His
55																

		50					55					6	0			
5	His 65	Ala	Phe	Ser	Asp	Tyr 70	Gln	Trp	Val	Asp	Asp 75	Met	Val	Gly	Leu	Thr 80
	Leu	His	Ser	Ala	Leu 85	Leu	Val	Pro	Tyr	Phe 90		Trp	L <b>y</b> s	Ile	Ser 9	His 5
10	Cys	Arg	His	His 100	Ser	Asn	Thr	Gly	Ser 105	Leu	Asp	Arg	Asp	Glu 11	Val 0	Phe
15	Val	Pro	Lys 115	Pro	Lys	Ser	Lys	Met 120		Trp	Phe	Ser	Lys 12	Tyr 5	Phe	Asn
20	Asn	Pro 130	Pro	Gly	Arg	Val	Leu 135		Leu	Leu	Ile	Thr 14	Leu 0	Thr	Leu	Gly
20	Trp 145	Pro	Leu	Tyr	Leu	Ala 150	Leu	Asn	Val	Ser	Gly 155	Arg	Pro	Tyr	Asp	Arg 160
25	Phe	Ala	Сув	His	Tyr 165	Asp	Pro	Tyr	Gly	Pro 17	Ile O	Tyr	Ser	Asn	Arg 1	Glu 75
	Arg	Сув	Gln	Ile 180		Val	Ser	Asp	Ala 18		Val	Phe	Ala	Thr 19	Thr 90	туr
30	Val	Leu	Tyr 195	Туг	Ala	Ala	Met	Ser 20	Lys 0	Gly	Leu	Ala	Trp 20	Leu )5	Val	Phe
35	Ile	Tyr 210	Gly	Met	Pro	Leu	Leu 21	Ile 5	Val	Asn	Gly	Phe 22	Leu 20	Val	Leu	Ile
	Thr 225		Leu	Gln	His	Thr 230		Pro	Ala	Leu	Pro 235	His	Tyr	Asp	Ser	Ser 240
40	Glu	Trp	Asp	Trp	Leu 245		g Gly	Ala	Lev	Ala 25	Thr	Ala	Asp	Arç	Asr 2	Tyr 55
<b>4</b> 5	Gly	Met	. Leu	Asr 26		val	. Phe	e His	3 Asr 26	11e 55	e Ile	a Asp	Thr	Hie 2	va] 70	Ala
	His	s Hia	275		e Ser	Thi	r Met	t Pro	o His	з Туі	r His	a Ala	a Met 2	: Glu 85	ı Ala	a Thi
50	Ly	8 Ala 29	a Il∈ O	. Lyı	s Sei	r Ile		u Gly 95	y Ly:	з Ту	г Туі	Gli 3	n Phe	e As	p Gl	y Thi

Pro Val Tyr Lys Ala Val Trp Arg Glu Ala Lys Glu Cys Leu Tyr Val 305 310 315 320

Glu Ser Asp Glu Gly Ala Pro Asn Lys Gly Val Phe Trp Tyr Gln Ser 325 330 335

Lys Leu *

10

25

40

#### 15 Claims

- 1. A fragment of DNA from hazel (Corylus avellana L.) comprising the nucleotide sequence shown in Figure 2.
- 2. A DNA fragment comprising the nucleotide sequence shown in Figure 2 from base 222 to base 1367, which codes for the hazel Δ12 desaturase enzyme of the endoplasmic reticulum or for a homologous sequence which can code for the same amino-acid sequence.
  - A nucleotide sequence coding for a protein or peptide having an amino-acid homology greater than or equal to 80% and preferably greater than 90% with the hazel Δ12 desaturase enzyme of the endoplasmic reticulum of Claim 2 and having the function of the said enzyme.
  - 4. A recombinant DNA sequence comprising a DNA sequence according to Claims 1, 2 and 3, or a portion of such a sequence, together with sequences regulating expression.
- 30 5. A recombinant DNA molecule comprising a cloning vector in which a DNA sequence according to any one of Claims 1, 2, 3 and 4 is inserted.
  - 6. A DNA molecule according to Claim 5, in which the cloning vector is a plasmid or a phage.
- 5 7. A DNA molecule according to Claim 4 or Claim 5 having the restriction map shown in Figure 1.
  - 8. A host organism including a recombinant DNA molecule according to any one of Claims 3 to 6.
  - 9. A host organism according to Claim 8, selected from a vegetable cell, an animal cell, and a micro-organism.
  - 10. A genetically modified organism capable of expressing the FAD2-N gene, having the amino-acid sequence shown in Figure 2 from bp 222 to bp 1367, portions of this gene, or this gene conjugated with other molecules and containing sequences which can inactivate endogenous genes.
- 45 11. A hazel ∆12 desaturase enzyme of the endoplasmic reticulum having the amino-acid sequence shown in Figure 2 in substantially pure form.
  - 12. A fusion polypeptide comprising the amino-acid sequence of the enzyme of Claim 11, in which the amino-acids additively connected thereto do not interfere with the desaturase activity or can easily be eliminated.
  - 13. The use of the FAD2-N gene coding for the hazel Δ12 desaturase enzyme of the endoplasmic reticulum or of portions thereof for the isolation of enzymes having the function of hazel desaturase or of the desaturase of another species.
- 55 14. The use of the nucleotide sequences of the FAD2-N gene shown in Figure 2 for the construction of expression systems which can alter the fatty-acid content in hazel.



Fig. 1 - Restriction map of the genomic clone "N2". CDS: coding region; bp: base pair.

Fig. 2 - Nucleotide sequence of the gene FAD2-N corresponding	
to an internal fragment of the genomic clone "N2". Aminoacid residues of the coding region are also reported.	
CCTCATAAAAAAGTAAGCTCATTTACCTCAAGTAGGGTTTCCTTATGACAAATGAGTCCC	
GGAGTATTTTTCATTCGAGTAAATGGAGTTCATCCCAAAGGAATACTGTTTACTCAGGG	
GCAATCCTTTTCTATGAGGTGCTATAATTGCAAATGTCCAAATCATAGGGATATGGATCC	
CGTTAGGAAAAGATACTCCACGATATTAACGTTTACAGGTTTAGTATCCCTATACCTAGG	
AAATACTATTAATATTATGTAGTGTGTTTTTTTTTTTCCCTCAAATTTACTCTCACACCT	
TTTATGATAATTATAATACATCACAAAAAAAAAAAAAGGGAGTTTAAATGAGAGTGTGGA	
AAGTTGATTTTCTCCAGCATTGGACATAGCCTCTGTAGACAATGGGAGCTAGAAGCCGAA TTCAACTAAAAGAGGTCGTAACCTGTATCGGAGACATCTGTTACCCTCGATCTTCGGCTT	240
Met Gly Ala Arg Ser Arg	
TGCCTGCTACCAACAAGCCTAAAGAGCAAAAAACACCCATCCAGCGAGCACCACACAA ACGGACGATGGTTGTTCGGATTTCTCGTTTTTTGTGGGTAGGTCGCTCGTGGTGTGTGT	300
Met Pro Ald Ton Ash Lys Pro Lys Glu Glo Lys Ton Pro Ille Glo Arg Ald Pro His Ton	
AACECECATTEACTETTAGECAACTEAAGAAAGEEGTECCACECAATTGTTTECAAEGET TTGGGGGTAAGTGAGAATEGGTTGAGTTETTTEGGCAGGGTGGGTTAACAAAGGTTGEGA	360
Lys Pro Pro Phe Thr Leu Ser Gin Leu Lys Lys Ala Vai Pro Pro Asn Cys Phe Gin Arg	
CTCTCCTACGCTCGTTCTCATATGTTGTTTATGACCTCTCCTTAGCCTTCCTCTTCTACT GAGAGGATGCGAGCAAGAGTATACAACAAATACTGGAGGAATCGGAAGGAGAAGATGA	420
Ser Leu Leu Arg Ser Phe Ser Tyr Val Val Tyr Asp Leu Ser Leu Ala Fne Leu Fne Tyr	
ATATTGCTACCTCTTACTTCCATCTCCTCCCTCACCCCCTTTCCTACTTGGCATGGTCAA TATAACGATGGAGAATGAAGGTAGAGGAGGAGGGGGGAAAGGATGÄACCGTACCAGTT	480
Tyr lie Ala Thr Ser Tyr Phe His Leu Leu Pro His Pro Leu Ser Tyr Leu Ala Trp Ser	
TCTATTGGGCTCTCCAAGGCTGCATTCTCACCGGCGTTTGGGTCATCGCACATGAGTGCG AGATAACCCGAGAGGTTCCGACGTAAGAGTGGCCGCAAACCCAGTAGCGTGTACTCACGC	540

CTGCTCTTTTAGTTCCATACTTTTCATGGAAGATTAGCCACTGTCGCCACCACTCTAACA 660 GACGAGAAAATCAAGGTATGAAAAGTACCTTCTAATCGGTGACAGCGGTGGTGAGATTGT Ser Ald Leu Leu Voi Pro Tyr Phe Ser Trp Lys IIe Ser His Cys Arg His His Ser Asn

GICACCATGCCTTTAGTGACTACCAATGGGTTGACGATGGTTGGCCTAACCCTTCACT 600 CAGTGGTACGGAAATCACTGATGGTTACCCAACTACTGTACCAACCGGATTGGGAAGTGA
Gly His His Alo Phe Ser Asp Tyr Gln Trp Vol Asp Asp Met Vol Gly Leu Thr Leu His

the Tyr Trp Ald Leu Gin Gly Cys Ite Leu Thr Gly Vol Trp Vol Ite Ald His Glu Cys

•	
CCGGCTCCCTTGACCGAGATGAGGTGTTTGTCCCCAAGCCGAAATCCAAAATGCCATGGT GGCCGAGGGAACTGGCTCTACTCCACAAACAGGGGTTCGGCTTTAGGTTTTACGGTACCA	720
Thr Gly Ser Leu Asp Arg Asp Glu Val Phe Val Pro Lys Pro Lys Ser Lys Met Pro Trp	
TTTCTAAGTACTTCAACAACCCACCAGGTAGGGTCCTCACTCTTTTGATCACACTCACT	780
Phe Ser Lys Tyr Phe Asn Asn Pro Pro Gly Arg Val Leu Thr Leu Leu lie Thr Leu Thr	
TAGGCTGGCCCTTGTACTTAGCCTTGAATGTTTCTGGCCGACCCTATGATCGTTTTGCTTATCCGACCGGGAACATGAATCGGAACTTACAAAGACCGGCTGGGATACTAGCAAAACGAA	840
Leu Gly Trp Pro Leu Tyr Leu Ala Leu Asn Val Ser Gly Arg Pro Tyr Asp Arg Phe Aia	
GCCACTATGATCCCTATGGCCCCATTTATTCCAATCGCGAAAGGTGTCAAATATTTGTCTCGGTGATACTAGGGGTAAATAAGGTTAGCGCTTTCCACAGTTTATAAACAGA	900
Cys His Tyr Asp Pro Tyr Gly Pro Ile Tyr Ser Asn Arg Glu Arg Cys Gin Ile Phe Vai	
CGGATGCTGGTGTCTTTGCTACAACTTATGTGCTTTACTACGCAGCAATGTCAAAAGGGC GCCTACGACCACAGAAACGATGTTGAATACACGAAATGATGCGTCGT.TACAGTTTTCCCG	960
Ser Asp Ala Gly Val Phe Ala Thr Thr Tyr Val Leu Tyr Tyr Ala Ala Met Ser Lys Gly	
TGGCATGGCTTGTATTCATTTATGGTATGCCATTGCTCATAGTGAATGGCTTCCTTGTAT ACCGTACCGAACATAAGTAAATACCATACGGTAACGAGTATCACTTACCGAAGGAACATA	1020
Leu Ala Trp Leu Val Fine ile Tyr Giy Met Pro Leu Leu Ile Val Asn Gly Fine Leu Vai	
TAATCACCTACTTGCAGCACACTCACCCTGCATTGCCGCACTATGACTCATCAGAATGGG ATTAĞTGGATGAACGTCGTGTGAGTGGGACGTAACGGCGTGATACTGAGTAGTCTTACCC	1080
Leu lie Thr Tyr Leu Gin His Thr His Pro Ald Leu Pro His Tyr Asp Ser Ser Giu Trp	
ATTGGCTTAGGGGGGCATTGGCGACGGCGGATAGAGATTACGGAATGCTGAATAAGGTTT TAACCGAATCCCCCGTAACCGCTGCCGCCTATCTCTAATGCCTTACGACTTATTCCAAA	1140 L
Asp Trp Leu Arg Gly Ala Leu Ala Thr Ala Asp Arg Asp Tyr Gly Met Leu Ash Lys Val	
TCCACAATATCATAGACACCCATGTGGCTCACCATCTCTTCTCTACCATGCCTCATTACCAGGTGTTATAGTATAGTATCTGTGGGTACACCGAGTGGTAGAGAAGAGATGGTACGGAGTAATGC	: 1200 :
Phe His Ash (le lie Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr	
ATGCAATGGAAGCCACCAAAGCAATCAAGTCAATATTGGGCAAATACTACCAGTTTGATC	1260 :
His Ala Met Glu Ala Thr Lys Ala IIe Lys Ser IIe Leu Gly Lys Tyr Tyr Gln Phe Asp	
GCACTCCAGTTTACAAGGCAGTGTGGAGGGAGGCTAAAGAGTGCCTTTATGTTGAGTCGC CGTGAGGTCAAATGTTCCGTCACACCTCCCTCCGATTTCTCACGGAAATACAACTCAGCC	3 1320 C
Gly Thr Pro Val Tyr Lys Ala Val Trp Arg Glu Ala Lys Glu Cys Leu Tyr Val Glu Ser	

ACGAGGGGCCCCTAACAAAGGTGTTTTCTGGTATCAGAGCAAGCTGTGATATTGGCTGG TGCTCCCCGGGGATTGTTTCCACAAAAGACCATAGTCTCGTTCGACACTATAACCGACC	1380
Asp Giu Gly Ala Pro Asn Lys Gly Val Phe Trp Tyr Gln Ser Lys Leu	
ATAGAGCCAAAGAAAATGTGATTAGTAAGGTAGTGTCTTTGGTCAGTTTGGTGTGTTAAG TATCTCGGTTTCTTTTACACTAATCATTCCATCACAGAAACCAGTCAAACCACAATTC	1440
GAACAAATAATAATTAGCGACTATGAATAGTTATTGTTAAACAAAATTCACCCTTAT CTTGTTTATTATTAATCGCTGATACTTATCAATAACAATTTGTTTTAAGTGGGAATA	i 5CC
GTTTAGCAGGAACTTTTCTGGCTACACTTTTTTTCGTATGAAAAGCGCATATTTTTTAAT CAAATCGTCCTTGAAAAGACCGATGTGAAAAAAAGCATACTTTTCGCGTATAAAAAATTA	· 58C
TGTTATATTGTTTTGACATTACTCAAGCTTCAAAATTAATATCACAGAAAATATCCAATG ACAATATAACAAAACTGTAATGAGTTCGAAGTTTTAATTATAGTGTCTTTTATAGGTTAC	1620

TCGAAGGTTTCATTGTAGGTTGAAAACTTTATATTGAGGTGG 1682 AGCTTCCAAAGTAACATCCAACTTTTGAAATATAACTCCACC

	1	0 	20 	30 . L	40	50 . l_	
	tecaaegete		gctcgttctc			_	0
			tatattgcta				
			ggcatggtca				50
	gcattctca	ceggegitt	gggtcatcgc	acatgagtga	ggtcaccatg	cc 2	00
			gttgatgaca				
٠			ettiteatgg				
	actataca	ceggetece	ttgaccgaga	tgaggtgitt	gtocoodage	cg 3	50
	acctcccac	atgccatgg	ttttctaagt	acttcaacca	cccaccaggt	cg 4	00
	ggtcctccc						50
	ccttgaatg						00
	ccctatage	ccatttat	τές σα τές σος	adaggitgitas	aatatttgta	tc 5	50
	ggatgctgg:						
	cacaagggc						
			ttactcacct				
			atcagaatgg				
			acggaatgat				
			caccatatat				
			agcaatcaag				
			tttacaagga				
			gacgagagag				000
	gtatcagage	caagetgtg	etattege tg	gatagagaaa	aagadaatgt	ga 10	050
	_		tegteegttt				100
	actactrage	cgac tatgo	ateștiatiș	ttess 1133			•

Fig. 3 - Nucleotide sequence of cCNA clone "1".

Fig 4 - Nucleotide sequence alignment of clones "I" (I.SEQ) and "N2" (N2.SEQ).

1 1	- c	_ c	- T	- c	- A	- T	- ·																	I.SEQ N2.SEQ
1 ·																								I.SEQ NZ.SEQ
1 81																								I.SZQ N2.SZQ
1 121	_ A																							I.SEQ NZ.SEQ
I 161	- T	- c	- A	- A																				i . Seg N2 . Seq
: 201																								i.seq Nz.seq
1 241																								I. 52Q 938. SK
1 281																								I.SEQ NZ.SEQ
1 321	- c	- A	- ۸																					I.SEQ NZ.SEQ
10 361	_	-	-	_	-	-																		I.SEQ NZ.SEQ
5G 401																								I.SEQ NZ.SEQ
90 441																								I.SEQ MZ.SEQ
130 431																								I.SEQ NZ.SEQ
170 \$21	-																							I.SEQ N2.SEQ
210 561																								I . SEQ N2 . SEQ
250 601																								I.SEQ N2.SEQ
641 530																								I.SEQ N2.SEQ
330 681																								I.SEQ N2.SEQ
370 721																								I.SEQ N2.SEQ
410 761																								I . SEQ N2 . SEQ
450 801																								I.SEQ N2.SEQ

490 841																																										1.SEQ N2.SEQ
530 881																																										i.seq n2.seq
570 921																																										I.SEQ N2.SEQ
		-	-	-																																						I.SEQ NZ.SEQ
																																										I.SEQ N2.SEQ
																																										I.SEQ NZ.SEQ
																																										I.SEQ NZ.SEQ
																																										I.SEQ N2.SEQ
	L	c	A	T	G	T	G	G	С	T	С	A	c	С	A	T	c	T	C	Ţ	Ţ	c	Ţ	C.	Ţ	A	С	c	A	T	Ģ	C	c	τ	C	λ	τ	T	A	С	C	I.SEQ N2.SEQ
1201	Ŀ	A	Ŧ	G	c	A	A	Ţ	G	G	A	λ	G	С	C	λ	c	C	λ	A	A	G	C	Α	λ	•	C	A	A	G	T	С	A	A	T	λ	T	Ţ	G	G	G	i.seq Nz.seq
124	:	c	λ	. 3		T	A	c	=	Α	С	c	λ	G	T	•	T	3	A	Ţ	G	G	С	À	c	?	С	С	A	G	T	T	T	A	С	À	A	G	G	С	À	PES.IN
1281	L	G	T	G	1	G	G	A	G	G	G	A	Ğ	G	С	T	A	A	A	G	λ	G	T	G	C	c	T	τ	T	A	T	G	T	T	G	A	G	T	C	G	G	I.SEQ NZ.SEQ
1321	1	A	. c	: 0	; P		; G	G	G	G	c	С	c	c	T	A	A	c	A	λ	A	G	G	Ţ	G	T	T	τ	T	c	T	G	G	Ŧ	λ	T	c	А	G	A	G	I.SEQ NZ.SEQ
1361	L	c	А		. (		: 1	' G	τ	G	A	T	A	τ	τ	G	G	C	τ	G	G	A	T	A	G	Ā	G	c	C	A	Ā	A	G	λ	A	Ā	A	T	G	T	G	I.SEQ
140	L	A	. 1	1	: 1	. (	3 7	: P	A	G	G	T	A	Ģ	T	G	Ţ	C	T	τ	T	G	G	Ţ	c	A	G	T	T	T	G	G	T	G	T	G	T	T	A	A	G	I.SEQ NZ.SEQ
144	1	G	; ;	i i	٠,	- 1																																				I.SEQ NZ.SEQ
	1	7					2 1		L P		T	-	c		. c	c	c	τ	Ţ	A	τ	G	Ţ	T	7	A	G	c	A	G	G	Ą	A.	c	τ	7	Ţ	T	c	Ţ	G	I.SEQ N2.SEQ
	1	•	; (	= 1	r .	A. (	: <i>1</i>	<b>A</b> (	: 1	: 1	: 1	1	τ	T	τ	c	G	τ	A	T	G	. А	A	A	٨	G	c	G	c	A	T	A	T	τ	T	Ţ	τ	τ	A	A	τ	I.SEQ NZ.SEQ
	1	1		3	r	<b>r</b> .	Α ΄	r 1	١ 1	. 1		1	T	T	T	G	λ	c	A	т	τ	A	c	τ	c	A	A	G	c	T	τ	c	A	A	A	A	τ	τ	A	A	τ	I.SEQ N2.SEQ
	1	1	. 1	•	<b>c</b> .	A (	<b>c</b> :	A C	3 ;	A 3			τ	A	τ		c	A	. A	τ	G	τ	c	G	A	A	G	G	T	τ	T	c	A	τ	T	G	T	A	G	G	τ	I.SEQ N2.SEQ
113 164			. (	5	A.	Α.	A I	A (	2 7	<b>r</b> 1	. 1		\ T	: A	. 1	τ	G	A	G	G	τ	G	G																			I.SEQ N2.SEQ

```
1 MG AIR SIR M PI - AITIN K P KE Q K TIPI QIRIAIPE TIK P P FITIL S Q L K K AIV NZ.PRO
1 MGAGGRT DIV PIPANRKSE, VIDPLKRVPFEKPQFSLSQIKKAI L43921.PRO
1 MGAGGRMPVPTSSKKSEIT DITTKRVPCEKPPFSVGDLKKAI L26296.PRO
40 PPNCFQRSLLRSFSYVVYDLSLAFLTYYIATSYFHLLPHP N2.PRO
41 PRHCFORSVLRSFSYVVYDLITIAFCLLYYVATHYFHLL PGP L43921.PRO
41 PPHCFKRSIPRSFSYLISOIIIASCFYYVATNYFSLLPQP L26296.PRO
80 LSYLAWSIYWALQGCILTGVWVIAHECGHHAFSDYQWVDO N2.PRO
81 LSFRGMALYWAVQGCILTGVWVIAHECGHHAFSDYQLLDD L43921.PRO
81 LSYLAWPLYWACQGCVLTGIWVIAHECGHHAFSDYQWLDD L26296.PRO
120 M V G L T L H S A L L V P Y F S W K: I S H C: R H H S N T G S L: O: R D E V F V P K. N2. PRO
121 IVGLILHSALLVPYFSWKYSHRRHHSNTGSLERDEVFVPK L43921.PRO
121 TVGLIFHSFLLVPYFSWKYSHRRHHSNTGSLERDEVFVPK L26296.PRO
160. PKSKMPWFSKYFNNPPGRVLTLLITLTLGWPLYLALNVSG N2. PRO
161 QKSCIKWYSKYLNNPPGRVLTLAVTLTLGWPLYLALNVSG L43921.PRC
161 QKSAIKWYGKYLNNPLGRIMMLTVQFVLGWPLYLAFNVSG L26296.PRO
200 RPYDRFACHYDPYGPIYSNRERCQIFVSDAGVFATTYVLY N2.PRC
201 R P Y D R F A C H Y D P Y G P I Y S D R E R L Q I Y I S D A G V L A V V Y G L F L43921. PRO
201 R P Y D G F A C HIF F P N A P I Y N D R E R L Q I Y L S D A G I L A-V C F G L Y L26296. FRO
240 YAAMSKGLAWLVFIYGMPLLIVNGFLVLITYLQHTHPALP N2.PRO
241 R L A M A K G L A W V V C V Y G V P L L V V N G F L V L I T T L Q H T H P A L P L43921. PRO
241 RYAAAQGMASMICLYGVPLLIVNAFLVLITYLQHTH2SL2 L26296.PRC
280 HYDS SEWDWLRGALATADRDYGMLNKVFHNIIDTHVAHEL N2.PRO
Z81 HYTSSEWDWLRGALATVDRDYGILNKVFHNITOTHVAHHL 143921.FRC
281 HYDS SEWDWLRGALATVORDYGILNKYFHNITOTHVAHHL L26296.PRO
320 FSTMPHYHAMEATKAIKSILGKYYOFOGTPVYKAVWREAK N2.PRO
321 FSTMPHYHAMEATKAIKPILGEYYRFDETPF<u>VKAMW</u>REAR L43921.PRO
321 FSTMPHYNAMEATKAIKPILGOYYQFDGTPWYVAMYREAK L26295.FRO
360 ECLYVES OEGAPNKGVFWYQSKL
                                                       L43921.PRO
361 ECIYVEPDQSTESKGVFWYNNKL
                                                       L26296.PRO
361 ECIYVEPOREGOKKGVYWYNNKL
```

Fig. 5 - Aminoacid sequence alignment of Δ12 desaturase from hazelnut (N2.PRO), Arabidopsis (L26296.PRO) and soybean (L43921.PRO). Homologous residues are boxed.



Fig. 5 - Homology between bazel \$\triangle 12\$ desaturase and other desaturases

143921: Al2 desaturase of the endoplasmic reticulum of soya U22378: Al2 hydroxylase of ricin L25296: Al2 desaturase of the endoplasmic reticulum of

Arabidopsis thatiana
L22931: Als plastid desaturase of Arabidopsis thatiana
U09503: Als plastid desaturase of Arabidopsis thatiana
X78311: Als plastid desaturase of spinach
ATHFAD3: Als desaturase of the endoplasmic reticulum of
Arabidopsis thatiana
X53364: As plastid desaturase of vane

X53364: A9 plastid desaturase of rape

Note: nd: not determined since the amino-acid sequence is not known.



Fig. 7 - Northern blot of RNA of Montabello leaves (line 1), Nocchione leaves (line 2), Montabello kernels (line 3), Nocchione kernels (line 4), and San Giovanni kernels (line 5). The RNA was hybridized with the I clone of cDNA.



# **EUROPEAN SEARCH REPORT**

Application Number EP 97 10 3098

Category	Citation of document with i	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF TH APPLICATION (Int.Cl.6)
X	WO 94 11516 A (DU F EDWARD (US); OKULEY May 1994 examples 1,6,7	PONT ;LIGHTNER JONATHA JOHN JOSEPH (US)) 26	N 10,13	C12N15/53 C12N15/82 C12N9/02 C12N5/10
A,D	THE PLANT CELL, vol. 6, January 199 pages 147-158, XP00 OKULEY, J., ET AL . GENE ENCODES THE EN FOR POLYSATURATED L * page 155, column	: "ARABIDOPSIS FAD2 ZYME THAT IS ESSENTIA IPID SYNTHESIS"	1-14 L	C12Q1/68 //A01H5/00
A	WO 95 22598 A (DU P JOSEPH (US); ULRICH August 1995 * page 10, line 1 *	JAMES FRANCIS (US))	ļ	
		<b>;</b>		
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	The present search report has b	een drawn up for all claims  Date of campletina of the search  3 July 1997	Hol	torf, S
X : part Y : part doct	CATEGORY OF CITED DOCUMENT icularly relevant if taken alone icularly relevant if combined with and unent of the same category inological background	E : enriier patent after the filin other D : document cit	ciple underlying the document, but public g date of in the application of for other reasons	ished on, or