

Construction of coarse approximations for a Schrödinger problem with highly oscillating potential

Claude Le Bris, Frédéric Legoll, Simon Ruget

Forum des Jeunes Mathématicien-nes November 2023

Outline

- An inverse multiscale problem
 - Reminder about inverse problems
 - Homogenization theory
 - Our objectives
- Recovering an effective potential
- 3 Recovering an H^1 -approximation

Inverse Problem : A new paradigm

Let Ω be a bounded open of \mathbb{R}^d .

Direct problem : For a given operator $\mathcal L$ and RHS f, find u that satisfies

$$\begin{cases}
\mathcal{L}\mathbf{u} = \left(\sum_{i,j} a_{ij}(\cdot)\partial_{i,j} + \sum_{i} b_{i}(\cdot)\partial_{i} + c(\cdot)\right)\mathbf{u} = f & \text{in } \Omega, \\
\mathbf{u} = 0 & \text{on } \partial\Omega.
\end{cases} \tag{1}$$

Inverse Problem : A new paradigm

Let Ω be a bounded open of \mathbb{R}^d .

Direct problem : For a given operator \mathcal{L} and RHS f, find u that satisfies (1).

Inverse problem : Assume the map $f \to u$ solution to (1) is known. "Find" \mathcal{L} such that (1) is satisfied.

$$\begin{cases}
\mathcal{L}u = \left(\sum_{i,j} a_{ij}(\cdot)\partial_{i,j} + \sum_{i} b_{i}(\cdot)\partial_{i} + c(\cdot)\right)u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases} \tag{1}$$

Inverse Problem : A new paradigm

Inverse problems

- have been widely studied (Calderón problem, 1980)
- may involve more complexity (e.g. partial measurements available, finite number of available measurements, ...).
- are (very) HARD to solve ! (existence/uniqueness/stability issues...)

Multiscale Context

Our study focuses on multiscale systems (e.g. composite materials, lungs). Such systems naturally leads to ill-posed inverse problems (see [Lions05]).

Consider the problem oscillating at the small length scall arepsilon

$$\mathcal{L}_{\varepsilon}u_{\varepsilon}=(-\Delta+\varepsilon^{-1}V(\varepsilon^{-1}\cdot))u_{\varepsilon}=f \text{ in } \Omega, \qquad u_{\varepsilon}=0 \text{ on } \partial\Omega,$$

with potential **periodic** V such that $\langle V \rangle = 0$, and RHS $f \in L^2(\Omega)$.

Simon Ruget (ENPC & Inria)

¹ A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, 1978

Consider the problem oscillating at the small length scall arepsilon

$$\mathcal{L}_{\varepsilon}u_{\varepsilon}=(-\Delta+\varepsilon^{-1}V(\varepsilon^{-1}\cdot))u_{\varepsilon}=f \text{ in } \Omega, \qquad u_{\varepsilon}=0 \text{ on } \partial\Omega,$$

with potential **periodic** V such that $\langle V \rangle = 0$, and RHS $f \in L^2(\Omega)$. Homogenization theory¹ assesses the existence of a limit equation when $\varepsilon \to 0$.

$$\mathcal{L}_{\star}u_{\star}=(-\Delta+V_{\star})u_{\star}=f \text{ in } \Omega, \qquad u_{\star}=0 \text{ on } \partial\Omega.$$

which means $u_{\varepsilon} \to u_{\star}$ strongly in $L^2(\Omega)$ and weakly in $H^1(\Omega)$ when $\varepsilon \to 0$.

Simon Ruget (ENPC & Inria)

¹A. Bensoussan, J.-L. Lions, G. Papanicolaou, *Asymptotic analysis for periodic structures*, 1978

Consider the problem oscillating at the small length scall arepsilon

$$\mathcal{L}_{\varepsilon}u_{\varepsilon}=(-\Delta+\varepsilon^{-1}V(\varepsilon^{-1}\cdot))u_{\varepsilon}=f \text{ in } \Omega, \qquad u_{\varepsilon}=0 \text{ on } \partial\Omega,$$

with potential **periodic** V such that $\langle V \rangle = 0$, and RHS $f \in L^2(\Omega)$. Homogenization theory¹ assesses the existence of a limit equation when $\varepsilon \to 0$.

$$\mathcal{L}_{\star}u_{\star}=(-\Delta+V_{\star})u_{\star}=f \text{ in } \Omega, \qquad u_{\star}=0 \text{ on } \partial\Omega.$$

which means $u_{\varepsilon} \to u_{\star}$ strongly in $L^2(\Omega)$ and weakly in $H^1(\Omega)$ when $\varepsilon \to 0$.

¹ A. Bensoussan, J.-L. Lions, G. Papanicolaou, *Asymptotic analysis for periodic structures*, 1978

Issue: in the limit $\varepsilon \to 0$, the quantity u_{ε} is very close to u_{\star} , whereas the operator we seek to reconstruct, $\mathcal{L}_{\varepsilon}$, is very different from \mathcal{L}_{\star} , its homogenized version.

Figure: Two similar solutions associated to two very distinct potentials

An Inverse Multiscale Problem

How to tackle such problems?

General approach:

- Direct Inversion (see [Uhlmann13]),
- Perturbation (see [Ammari08]),

Approach based on homogenization (see [Nolen12]):

- Features Determination (see [Engquist14]),
- **Regularization at order** 0, identifying effective quantity (see [Ammari16, Caiazzo20]),
- Regularization at order 1, beyond effective quantity: H¹ reconstruction (see [Garnier23, LeBris18]).
- Inverse Homogenization (see [Cherkaev01])

Our Approach

Consider the Schrödinger problem (2) involving a periodic potential V:

$$\mathcal{L}_{\varepsilon}u_{\varepsilon}=\left(-\Delta+\varepsilon^{-1}V\left(\varepsilon^{-1}\cdot\right)\right)u_{\varepsilon}=f\text{ in }\Omega,\qquad u_{\varepsilon}=0\text{ on }\partial\Omega.\tag{2}$$

From the knowledge of solutions u_{ε} for various rhs f, our aim is:

1 to propose a numerical methodology to build an effective operator $\overline{\mathcal{L}}$ approaching $\mathcal{L}_{\varepsilon}$ with satisfying L^2 error on the solutions,

Our Approach

Consider the Schrödinger problem (2) involving a periodic potential V:

$$\mathcal{L}_{\varepsilon}u_{\varepsilon} = \left(-\Delta + \varepsilon^{-1}V\left(\varepsilon^{-1}\cdot\right)\right)u_{\varepsilon} = f \text{ in } \Omega, \qquad u_{\varepsilon} = 0 \text{ on } \partial\Omega. \tag{2}$$

From the knowledge of solutions u_{ε} for various rhs f, our aim is:

- **1** to propose a numerical methodology to build an effective operator $\overline{\mathcal{L}}$ approaching $\mathcal{L}_{\varepsilon}$ with satisfying L^2 error on the solutions,
- ② improve the approximation induced by $\overline{\mathcal{L}}$ to obtain satisfying H^1 error on the solutions.

Our Approach

Consider the Schrödinger problem (2) involving a periodic potential V:

$$\mathcal{L}_{\varepsilon}u_{\varepsilon} = \left(-\Delta + \varepsilon^{-1}V\left(\varepsilon^{-1}\cdot\right)\right)u_{\varepsilon} = f \text{ in } \Omega, \qquad u_{\varepsilon} = 0 \text{ on } \partial\Omega. \tag{2}$$

From the knowledge of solutions u_{ε} for various rhs f, our aim is:

- **1** to propose a numerical methodology to build an effective operator $\overline{\mathcal{L}}$ approaching $\mathcal{L}_{\varepsilon}$ with satisfying L^2 error on the solutions,
- ② improve the approximation induced by $\overline{\mathcal{L}}$ to obtain satisfying H^1 error on the solutions.

Our strategy

- is inspired by homogenization theory,
- does not rely on classical hypothesis for homogenization (such as periodicity) which may be too restrictive in practical situations,
- can be adapted to a wide range of other elliptic equations (see [LeBris18]),
- is valid outside the regime of homogenization (i.e. $\varepsilon \to 0$).

Let $\overline{V} \in \mathbb{R}$ be a *constant* potential, and $\overline{u} = u(\overline{V}, f)$ be the solution to (3) with RHS $f \in L^2(\Omega)$.

$$\overline{\mathcal{L}}\overline{u} = (-\Delta + \overline{V})\,\overline{u} = f \text{ in } \Omega, \qquad \overline{u} = 0 \text{ on } \partial\Omega. \tag{3}$$

Let $\overline{V} \in \mathbb{R}$ be a *constant* potential, and $\overline{u} = u(\overline{V}, f)$ be the solution to (3) with RHS $f \in L^2(\Omega)$.

$$\overline{\mathcal{L}}\overline{u} = \left(-\Delta + \overline{V}\right)\overline{u} = f \text{ in } \Omega, \qquad \overline{u} = 0 \text{ on } \partial\Omega. \tag{3}$$

The quality of the approximation of $\mathcal{L}_{\varepsilon}$ by $\overline{\mathcal{L}}$ can be quantified through the functional

$$\sup_{\|f\|_{L^2(\Omega)}=1} \left\| u_{\varepsilon}(f) - u(\overline{V}, f) \right\|_{L^2(\Omega)}^2$$

Let $\overline{V} \in \mathbb{R}$ be a *constant* potential, and $\overline{u} = u(\overline{V}, f)$ be the solution to (3) with RHS $f \in L^2(\Omega)$.

$$\overline{\mathcal{L}}\overline{u} = \left(-\Delta + \overline{V}\right)\overline{u} = f \text{ in } \Omega, \qquad \overline{u} = 0 \text{ on } \partial\Omega. \tag{3}$$

The quality of the approximation of $\mathcal{L}_{\varepsilon}$ by $\overline{\mathcal{L}}$ can be quantified through the functional

$$\sup_{\|f\|_{L^2(\Omega)}=1} \left\| u_{\varepsilon}(f) - u(\overline{V}, f) \right\|_{L^2(\Omega)}^2$$

Hence we can minimize the worst case scenario with the optimization problem

$$\inf_{\overline{V} \in \mathbb{R}} \sup_{\|f\|_{L^2(\Omega)} = 1} \|u_{\varepsilon}(f) - u(\overline{V}, f)\|_{L^2(\Omega)}^2$$

The choice of an $L^2(\Omega)$ norm is reminescent of the fact that $\|u_{\varepsilon} - u_{\star}\|_{L^2(\Omega)}$ tends to 0 with ε .

Practical considerations: To recover a **quadratic** optimization problem in \overline{V} , we consider the slightly different problem (4)

$$I_{\varepsilon} = \inf_{\overline{V} \in \mathbb{R}} \sup_{\|f\|_{L^{2}(\Omega)} = 1} \|(-\Delta)^{-1} (-\Delta + \overline{V}) (u_{\varepsilon}(f) - \overline{u}(f))\|_{L^{2}(\Omega)}^{2}.$$
 (4)

Practical considerations : To recover a **quadratic** optimization problem in \overline{V} , we consider the slightly different problem (4)

$$I_{\varepsilon} = \inf_{\overline{V} \in \mathbb{R}} \sup_{\|f\|_{L^{2}(\Omega)} = 1} \|(-\Delta)^{-1} \left(-\Delta + \overline{V}\right) \left(u_{\varepsilon}(f) - \overline{u}(f)\right)\|_{L^{2}(\Omega)}^{2}. \tag{4}$$

Theoretical considerations:

Proposition (Asymptotic consistency, periodic case)

Consider the problem (4). In the periodic setting, we have

$$\lim_{\varepsilon \to 0} I_{\varepsilon} = 0. \tag{5}$$

Furthermore, for $\varepsilon>0$ fixed (sufficiently small), there exists a unique minimizer $\overline{V}^0_\varepsilon\in\mathbb{R}$. The following convergence holds :

$$\lim_{\varepsilon \to 0} \overline{V}_{\varepsilon}^{0} = V_{\star}. \tag{6}$$

A consistency result

Let
$$\Phi_{\varepsilon}(\overline{V}) = \sup_{\|f\|_{L^{2}(\Omega)}=1} \left\| (-\Delta)^{-1} \left(-\Delta + \overline{V} \right) \left(u_{\varepsilon}(f) - \overline{u}(f) \right) \right\|_{L^{2}(\Omega)}^{2}$$
.

Lemma

In the periodic setting, we have

$$\lim_{\varepsilon\to 0}\Phi_\varepsilon(V_\star)=0.$$

Lemma

For ε sufficiently small, the functional Φ_{ε} is continuous and convex.

Figure: Convexity of Φ_{ε} .

We use an alternating direction algorithm in 2D $(\Omega = [0,1]^2)$ using the potential

$$V(x,y) = \pi^2 \sqrt{8} \left(\sin(2\pi x) + \sin(2\pi y) \right).$$

We approximate the supremum by a maximization over the first eigenmodes of $(-\Delta)$ -operator. In practice, a *single* mode is sufficient in order to find the *single* coefficient \overline{V} .

Figure: Potential V and Oscillating Potential $V_{\varepsilon} = \varepsilon^{-1} V(\varepsilon^{-1})$.

Figure: Error between the homogenized potential V_\star and the effective potential $\overline{V}^0_\varepsilon$ as a function of ε .

Figure: Error
$$\sup_{f \in \operatorname{Span}_{1 \leq p \leq 10}(f_p)} \left(\frac{\|u_\varepsilon(f) - u(\overline{V}_\varepsilon^0, f)\|_{L^2(\Omega)}}{\|u_\varepsilon(f)\|_{L^2(\Omega)}} \right) \text{ as a function of } \varepsilon. \ (\overline{V}_\varepsilon^0 \text{ computed with } P = 3)$$

In the periodic setting, homogenization theory assesses that u_{ε} converges to u_{\star} strongly in $L^2(\Omega)$, but only **weakly in** $H^1(\Omega)$. We wish to recover within our strategy a satisfying $H^1(\Omega)$ approximation. The strategy consisting in considering the problem (7) is a dead-end.

$$I_{\varepsilon}^{\underline{H}^{1}} = \inf_{\overline{V} \in \mathbb{R}} \sup_{\|f\|_{L^{2}(\Omega)} = 1} \|u_{\varepsilon}(f) - u(\overline{V}, f)\|_{\underline{H}^{1}(\Omega)}. \tag{7}$$

How can we go further ?

An essential tool in homogenization is the corrector. For our Schrödinger equation (2), it is the periodic solution to (8), denoted w.

$$\Delta w = V \tag{8}$$

An essential tool in homogenization is the corrector. For our Schrödinger equation (2), it is the periodic solution to (8), denoted w.

$$\Delta w = V \tag{8}$$

Homogenization theory assesses that $u_{\varepsilon,1}=u_{\star}(1+\varepsilon w(\varepsilon^{-1}\cdot))$ is a good H^1 approximation of solution u_{ε} . Hence, we have :

$$\nabla u_{\varepsilon}(x) = \nabla u_{\star}(x) + u_{\star}(x)(\nabla w)\left(\frac{x}{\varepsilon}\right) + o_{L^{2}}(\varepsilon)$$

An essential tool in homogenization is the corrector. For our Schrödinger equation (2), it is the periodic solution to (8), denoted w.

$$\Delta w = V \tag{8}$$

Homogenization theory assesses that $u_{\varepsilon,1}=u_{\star}(1+\varepsilon w(\varepsilon^{-1}\cdot))$ is a good H^1 approximation of solution u_{ε} . Hence, we have :

$$\nabla u_{\varepsilon}(x) = \nabla u_{\star}(x) + u_{\star}(x)(\nabla w)\left(\frac{x}{\varepsilon}\right) + o_{L^{2}}(\varepsilon)$$

Inspired by this statement, we define $\overline{C}_{\varepsilon}^0$, an approximation of $(\nabla w)(\varepsilon^{-1}\cdot)$, as the minimizer of (9).

$$I_{\varepsilon}^{corr} = \inf_{\mathbf{C} \in \mathbb{P}^0} \sup_{\|f\|_{L^2} = 1} \|\nabla u_{\varepsilon}(f) - \nabla u(\overline{V}_{\varepsilon}, f) - u(\overline{V}_{\varepsilon}, f) \mathbf{C}\|_{L^2(\Omega)}^2.$$
(9)

where $u(\overline{V}_{\varepsilon}, f)$ is to be understood as an approximation of $u_{\star}(f)$ (which holds since $\overline{V}_{\varepsilon} \approx V_{\star}$).

Figure: H^1 maximal error $\sup_{f \in \operatorname{Span}_{1 \leq p \leq 10}(f_p)} \left(\frac{\|\nabla u_\varepsilon(f) - \nabla u(\overline{V}_\varepsilon^0, f) - u(\overline{V}_\varepsilon^0, f)\overline{C}_\varepsilon^0\|_{L^2(\Omega/\partial\Omega)}}{\|\nabla u_\varepsilon(f)\|_{L^2(\Omega/\partial\Omega)}} \right)$ as a function of ε . $(\overline{V}_\varepsilon^0$ and $\overline{C}_\varepsilon^0$ computed with P = 3)

Future Work

In progress:

- Robustness analysis: what happens if the data is blurred/perturbed/deteriorated/...?
- Exploring other type of data : starting from the knowledge of macroscopic data (e.g. energy $\int_{\Omega} |\nabla u_{\varepsilon}|^2 + V_{\varepsilon} u_{\varepsilon}^2$) instead of microscopic ones.

Thank you!

References

- H. Ammari, An introduction to mathematics of emerging biomedical imaging, Springer, Vol. 62., 2008.
- H. Ammari, J. Garnier, L. Giovangigli, W. Jing, J. Seo, *Spectroscopic imaging of a dilute cell suspension*, Journal de Mathématiques Pures et Appliquées 105, 2016.
- A. Caiazzo, R. Maier, and D. Peterseim *Reconstruction of quasi-local numerical effective models from low-resolution measurements*, Journal of Scientific Computing, 2020.
- **E.** Cherkaev, *Inverse homogenization for evaluation of effective properties of a mixture*, Inverse Problems, 2001.
- B. Engquist, and C. Frederick, *Numerical methods for multiscale inverse problems*, ArXiv preprint, 2014.
- J.Garnier, L. Giovangigli, Q. Goepfert, and P. Millien, *Scattered wavefield in the stochastic* ArXiv preprint, 2023.

References

- C. Le Bris, F. Legoll, and K. Li, *Coarse approximation of an elliptic problem with highly oscillating coefficients*, Comptes Rendus Mathématique, 2013.
- C. Le Bris, F. Legoll, and S. Lemaire, *On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators*, ESAIM: Control, Optimisation and Calculus of Variations, 2018.
- J.-L. Lions, Some aspects of modelling problems in distributed parameter systems, Springer, 2005.
- J. Nolen, G.A. Pavliotis, and A.M. Stuart, *Multiscale modelling and inverse problems*, Numerical analysis of multiscale problems, Springer, 2012.
 - G. Bal, and G. Uhlmann, Reconstruction of Coefficients in Scalar Second Order Elliptic Equations from Knowledge of Their Solutions, Communications on Pure and Applied Mathematics, 2013.

Supremum or Maximum?

For small ε , homogenization assesses $u_{\varepsilon}(f) \to u_{\star}(f)$ in $L^2(\Omega)$. Hence for all $f \in L^2(\Omega)$, we have

$$\begin{split} \left\| (-\Delta)^{-1} \left(-\Delta + \overline{V} \right) \left(u_{\varepsilon}(f) - \overline{u}(f) \right) \right\|_{L^{2}(\Omega)}^{2} \to \underbrace{\left\| \left(-\Delta \right)^{-1} \left(-\Delta + \overline{V} \right) \left(u_{\star}(f) - \overline{u}(f) \right) \right\|_{L^{2}(\Omega)}^{2}}_{= \int_{\Omega} \mathcal{H}_{\star}^{\overline{V}}(f) f}. \end{split}$$

The study of $\mathcal{H}_{\star}^{\overline{V}}$ shows that it has the same eigenvalues (in the same order) as $-\Delta$.

Hence the supremum is well approximated by a maximization on the first eigenmodes :

$$\sup_{f \in L^2(\Omega)} \frac{\int_{\Omega} \mathcal{H}_{\star}^{\overline{V}}(f) \ f}{\|f\|_{L^2(\Omega)}^2} \approx \max_{f \in \mathit{Span}(\phi_p)_{p=1}^P} \frac{\int_{\Omega} \mathcal{H}_{\star}^{\overline{V}}(f) \ f}{\|f\|_{L^2(\Omega)}^2}$$