H. Weyl の invariant theory と Repsentation theory of continuous groups(III) 麻生泰弘 (2010. 12. 28) e-mail: yasu@gakushikai.jp

この考察は (I) (第 19 回数学史シンポジューム、2008) 及び (II) (第 20 回数学史シンポジューム、2009) に 続く論考である。

第1講では、1) "Randbemerkungen zu Hauptproblemen der Mathematik", Math.Zeitschrift 20, 1924, 131 - 150 により、

Capelli identity の Weyl による再 formulation 及び それを用いた SL(n), O(n), Sp(2n) の fundamental invariants の決定

2) "Zur Theorie der Darstellung der einfachen kontinuierlichen Gruppen", Sitzungs.Preussiche. Akad. Berlin, 1924, 338 - 345 を検討した。

第2講では、1) A.Hurwitz(1897)、" \ddot{U} ber der Erzeugung der Invarianten durch Integration"、Nachrichten Gessel. Göttingen、71-90

2) I.Schur(1924), " Nuee Anwendungen der Integralrechnung auf Probleme der Invariantentheorie I,II,III", Sitsungs Berlin

を検討した。

A.Hurwitz は、"Hurwitz integral" 及び "unitrary restriction(unitary trick)" を導入し、 $SL(n,\mathbb{C})$ の invariants を 検討した。

I.Schur は Hurwitz integral を用いて、 $SO(n,\mathbb{R})$ の primitiv character の 直交関係、

 $O(n,\mathbb{R})$ の character formula, dimensinformula を与え、完全可約性 を示した。

今回は、H.Weyl の

- 1) "Über die Symmetrie der Tensoren und die Tragweite die symbolishen Methode in die Invarianten theorie", Rendiconti der Circolo Mathematico die Palermo 48(1924), 29-36[GAII,461-467]
- 2) "Das gruppentheoretisch Fundament der Tensorrechnung", Nachrichten Göttingen, (1924), 218-224[GAII,461 467]

及び、再度

3) " Zur Theorie der Darstelung der einfachen kontinuierlichen Gruppe", Sitsungs.Preussischen Berlin(1924), 338 - 345[GAII,451 - 460] について述べる。

[I] " \ddot{U} ber die Symmetrie der Tensoren..."

k を chacteristic 0, algebraically closed field, V^n を n-dim. k-vector space, S_{ν} を order ν の対称群とする。

 $\operatorname{rank} \nu$ の $\operatorname{tensor} f = f(i_1, i_2, \dots, i_{\nu})$ が 任意の $\sigma \in S_{\nu}$ に対して

$$f(i_{\sigma(1)},i_{\sigma(2)},\ldots,i_{\sigma(\nu)})=f(i_1,i_2,\ldots,i_{\nu})$$

をみたすとき、f を symmetric tensor(of rank ν) と呼ぶ。

tensors f_1, f_2, \ldots の form $I = I(f_1, f_2, \ldots)$ が任意の $\sigma \in \mathcal{S}_{\nu}$ に対して

$$(\sigma I)(f_1, f_2, \ldots) = I(\sigma f_1, \sigma f_2, \ldots)$$

をみたすとき、I を symmetric form と呼ぶ。 symmetric form I の invariants("tensorinvariant")

に関する "symbolic method" は、 "vector invariant" の問題に帰着することが示される。

"symbolic method" については、(W5)H.Weyl,The Classical Groups, p.20を、また vector invariants の詳細については、同書 chap.2 を参照。

[II] " Das gruppentheoretische Fundamett ..."

(A) $G = SL(n,\mathbb{C})$, Γ を G の rank ν の tensor による order N の tensor 表現 とする。

 Γ が G の 既約表現であるとは、 Γ が simple G-module で Γ の components がすべて同一の symmetry-type であるときを云う。

既約な symmetry-type の表現が infinitesimal group(Lie algebra) を用いておこなわれる。

infinitesimal group の elements は行列表示ができる。

 $(G = SL(n, \mathbb{C})$ のとき $\mathcal{G} = sl_n$ の元は trace 0 の n 次 正方行列)

É.Cartan は、"すべての既約表現は、infinitesimal group の表現と対応する"ことを示した。

(Bull.Soc. math. de France 41(1913), pp.53)

inequivalent な symmetry-type の既約表現の決定が Young — Frobenius diagram を用いて行われる。(GAII, pp.462)

positive integer ν の分割 $\nu = (\nu_1, \nu_2, \dots, \nu_k)$:

$$\nu = \nu_1 + \nu_2 + \ldots + \nu_k; \ \nu_1 \ge \nu_2 \ge \cdots \ge \nu_k \ge 0$$

が与えられたとき、次のような k 行 - table , 各行の長さは $\nu_i(i=1,2,\ldots,k)$ 列。

p を各行ごとの permutation からなる 対称群 S_{ν} の元、 p が生成する S_{ν} の部分群 を P, q を各列ごとの permutation からなる 対称群 S_{ν} の元, q が生成する S_{ν} の部分群 を Q とする。

 $c = \sum_{P,Q} sgn(q)q \cdot p$ を Young symmetrizer と呼ぶ。

Young symmetrizer c はつぎの等式をみたす:

$$c \cdot c = \mu c, \ \mu \in \mathbb{N}$$

Young symmetrizer c は Young table によって一意的に定まる。

 $e:=c/\mu$ は primitive idempotent であり、primitive idempotent e と irreducible symmetry character とは 1 対 1 対応する。 $e\neq e'$ のとき inequivalent。 さて、 \mathcal{S}_{ν} の conjugate elements の class への配分:

$$\nu = 1 \cdot p_1 + 2 \cdot p_2 + \dots + k \cdot p_k$$

, $p_j(j=1,2,\ldots)$ は length j の cycle の個数。 $\nu_1=p_1+p_2+\cdots+p_k,\ \ \nu_2=p_2+p_3+\cdots,\ \ldots$ とおくとき、 $\nu_1\geq \nu_2\geq \cdots>0,\ \ \nu=\nu_1+\nu_2+\cdots+\nu_k.$

irreducible symmetry character &

(*)
$$\nu = 1 \cdot p_1 + 2 \cdot p_2 + \cdots + n \cdot p_n$$

の解 (p_1, p_2, \cdots, p_n) が一意に対応する。

Proposion: 既約な symmetry characters は S_{ν} の conjugate classes への分割に関する (*) の個数だけあり、異なる解に対応する G の表現は、inequivalent である。 G の equivalent な表現は、equivalent な symmetry character と対応する。

以上、 The Classical groups, pp.119 をも参照。

(B) I.Schur は 1901 年の Dissertation で $SL(n,\mathbb{C})$ の すべての多項式表現を与えた ("algebraic metod")。

G の Lie algebra を $\mathcal G$ と記す。 $G_u := G \cap U(n), \ Lie(G_u) := \mathcal G_u.$

("unitary restriction", or "unitary tric"). G_u t compact group r5.

 \mathcal{G} の N -dim. 表現 を γ とするとき、S.Lie により γ_u の作用に G_u の表現 Γ_u が対応する。

 $G = SL_n$ のとき, G_u は simply connected($\pi_1(G_u) = \{e\}$).

 $\gamma_u(resp. \gamma)$ は完全可約であり、 G_u も完全可約である。

 $G = SO_n$ のとき、 G_u の不分岐二重被覆群 G_u^* の表現が得られる。

 $G = Sp(2\nu)$ ("Komlexgruppe)" のとき、 $\pi_1(G_u) = \{e\}$.

[III] "Zur Theorie der Darstellung ..."

この論文は、1924年11月28日 Zürich で書かれている (GAII, p.460)。 同様な title の論文 (W4) (GAII, 543 - 647) がある。後者でこの論文が詳述 されている。後者を適当に参照する。

1924年、I.Schur は "Neue anwendungen..." で $O(n;\mathbb{R})$ を扱った。 H.Weyl は、これを古典群へ拡張することを試みた。

 $\acute{E}.Cartan$ は、1913年、 "Lie algebra ${\cal G}$ の既約表現 V は highest weights ω により一意的に決定され、V の weights π は

$$\pi = \omega - \sum m_i \alpha_i, \ \ (\alpha_i : simple \ roots, \ m_i \in \mathbb{N})$$

の形となる"ことを 示した (Bull.Soc.Math.France 41(1913), pp.53)。

Cartan の与えた G の表現の、explicit な表現と次元を得るため、また完全可約性を示すためには、integral method が必要である。

また、Cartan は、 $G=SO(n;\mathbb{R})$ のとき、 不分岐二重被覆群 G^* の表現を与えている。

integral method を用いるため、 $G_u = G \cap U(n)$ を扱う ("unitary trick")。

(A) U を unitary 変換群とする。 $D:=diag(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n), \quad \varepsilon=e^{\sqrt{-1}\phi}$. 任意の unitary 行列 A は、unitay 変換 U により $A=UDU^{-1}$ の形で表される。

 $\phi_i(i=1,2,\ldots,n)$ を A の回転角(" die Drehwinkel")と呼ぶ。

UからU+dUへのベクトルは

$$U^{-1} \cdot dU + \sqrt{-1}d\phi = \delta U$$

$$U^{-1} \cdot (A^{-1}dA) \cdot U = (D^{-1} \cdot \delta U \cdot D) - \delta U) + \sqrt{-1}d\phi$$

の形で与えられる。対応する行列は、elements

$$\delta u_{\alpha\beta}(\frac{\varepsilon_{\beta}}{\varepsilon_{\alpha}}-1) \ (\alpha\neq\beta), \ \sqrt{-1}d\phi \ (\alpha=\beta)$$

をもつ。よって、 |dA| を A の volume element, |dU| を U の volume element とするとき等式

$$\begin{split} |dA| &= |dU| \prod_{i \neq k} (\frac{\varepsilon_k}{\varepsilon_i} - 1) \prod_i d\phi_i \\ &= |dU| \prod_{i \leq k} (\varepsilon_k) - \varepsilon_i i)|^2 \prod_i d\phi_i \end{split}$$

が得られる。 (cf. GAII, p.566)

以下、 $c(\phi) = e(\phi) + e(-\phi), \ s(\phi) = e(\phi) - e(-\phi)$ とおく。 $G = (SL_n)_u, \ (Sp_{2\nu})_u, \ (SO_n)_u$

volume elements を $d\Omega$ とおくどき、 $(SL_n)_u$:のとき

$$d\Omega = H^2 d\phi_1 d\phi_2 \cdots d\phi_n.$$

$$H = \prod_{i < k} (\varepsilon_k - \varepsilon_i)$$

 $(Sp_{2\nu})_u$ のとき

$$d\Omega = H^2 d\phi_1 d\phi_2 \cdots d\phi_{
u}.$$

$$H = \prod_{i < k} (c(\phi_k) - c(\phi_i)) \cdot \prod_k s((\phi_k))$$

 $(SO_n)_u$ のとき

$$n = 2\nu : d\Omega = H^2 d\phi_1 d\phi_2 \cdots d\phi_{\nu}.$$

$$H = \prod_{i < k} (c(\phi_k) - c(\phi_i))$$

$$n = 2\nu + 1: d\Omega = H^2 d\phi_1 d\phi_2 \cdots d\phi_{\nu}.$$

$$H = \prod_{i < k} (c(\phi_k) - c(\phi_i)) \cdot \prod_k s((\phi_k/2)$$

(B) primitive character χ k orthogonality relations

$$rac{1}{\Omega}\int\chi(\phi)\chi(-\phi)d\phi=1$$
 $\int\chi(\phi)\chi^{'}(-\phi)d\phi=0~~(\chi,\chi^{'}:inequivalent)$

を充たし、 $\phi = (\phi_1, \phi_2, \dots, \phi_n)$ に関して symmetric。

他方, $H=\prod_{i< k}(\varepsilon_k-\varepsilon_i)$ は skewsymmetric. よって、 $H\cdot\chi$ は skewsymmetric。 skewsymmetric $\xi,\ \xi=H\cdot\chi$ を次のように定める。

$$\xi = \xi(l_1, l_2, \dots, l_n), \ l_j \in \mathbb{Z}$$

$$l_1 = 0 < l_2 < \dots < l_n$$
 $\xi := det(e(l_1\phi), e(l_2\phi), \dots e(l_n\phi))$

このとき、 $H = \xi(0,1,\cdots,n-1)$ となる。 いま、 χ^* を

$$\chi^* := \frac{\xi(l_1, l_2, \cdots, l_n)}{H}$$

とおく。 xi^{ast} は orthoganality relations を充たし、 さらに

$$rac{1}{\Omega}\int \chi^*(\phi)\chi^*(-\phi)|H|^2d\phi_1d\phi_2\cdots d\phi_n=rac{1}{\Omega}\cdot n!(2\pi)^{n-1}$$

が充たされる。 $\chi^* = \chi_0$ さて、 χ^* の Fourier 級数展開における highest term は

$$e(m_1\phi_1 + m_2\phi_2 + \dots + m_n\phi_n) = \varepsilon_1^{m_1} \cdots \varepsilon_n^{m_n}$$

$$m_k = l_k - 1$$

$$m_1 = 0 <= m_2 \cdots <= m_n$$

 $m=(m_1,m_2,\cdots,m_n)$ を χ^* の "die Höhe" と呼ぶ。 次に、 χ_m^* を

$$\chi_m^* := \frac{\xi(0, l_2 - 2, \dots l_n - n)}{\xi(0, 1, \dots, n - 1)}$$

 χ_m^* は、 $(SL_n)_{[u}$ の既約表現の highest weight character である。

$$dimN_m = \frac{\prod_{i < k} (l_k - l_i)}{\prod_{i < k} (k - i)}$$

(cf.GAII, pp.567 - 571)

 $G = Sp_{2\nu}(resp.(Sp_{2\nu})_{\nu})$ のとき、

$$\chi = rac{det(s(l_1\phi),\cdots,s(l_
u\phi))}{det(s(\phi)),s(2
u),\cdots,s(
u\phi))}$$

 $m_k = l_k - k(k = 1, 2, \cdots, \nu).$

$$dim.N = \frac{P(l_1, \cdots, l_{\nu})}{P(1, 2, \cdots, \nu)}$$

 $G = SO_{2\nu+1}$ のとき、

$$\xi(l_1, l_2, \cdots, l_{nu}) = det(s(l_1\phi), s(l_2\phi), \cdots, s(l_{\nu}\phi))$$

$$\chi = \frac{\xi(l_1, l_2, \cdots, l_{\nu})}{\xi(1/2, 3/2, \cdots, (2\nu) - 1)/2)}$$

$$0 < l_1 < l_2 < \cdots < l_{\nu}; \quad m_k = l_k - k + 1/2$$

 χ は、既約二価表現の character である。

$$dim.N = \frac{P(l_1, l_2, \cdots, l_{\nu})}{P(1/2, 3/2, \cdots, (2\nu - 1)/2)}$$

(C) G: semi-simple group,; $\mathcal{G}=Lie(G),$; $rank(\mathcal{G})=h,$; $order(\mathcal{G})=R$ とする。

更に、 \mathcal{H} を Cartan subalgebra, $\alpha_1, \alpha_2, \dots, \alpha_k$ を simple roots とする。 この時、任意の roots $\omega \in R - h = \Omega$ は

$$\omega = n_1 \alpha_1 + n_2 \alpha_2 + \dots + n_k \alpha_k, \quad n_k \in \mathbb{Z}$$

と表される。 $n_k \in \mathbb{N}$ のとき、 ω を positiv roots と呼ぶ。

次に、roots space の involutive transformation $S_{\omega}(symmetry\ re\ \omega\in\Omega=R-h)$ を

$$S_{\omega}(\alpha_i) := \alpha_i - 2(\alpha_i, \omega)/(\omega, \omega) \cdot \omega$$

で定義する。 (cf. É.Cartan(1913))

$$a_i = -2(\alpha_i, \omega)/(\omega, \omega) \in \mathbb{Z},$$

 $\Delta_{\omega}(\alpha_i) := S_{\omega}(\alpha_i) - \alpha_i = a_i \cdot \omega$
 $S_{\omega}(\omega) = -\omega$

 S_{ω} は 有限群 W を生成する。 今日、 群 W は、 $\underline{\mathrm{Weyl}\,\mathtt{H}}$ と呼ばれる。

roots space Ω \mathcal{O} volume element $d\Omega$ \mathcal{U} ,

$$d\Omega = \prod_{\omega \in \Omega} (e^{\omega} - 1) \cdot d\alpha_1 d\alpha_2 \cdots d\alpha_h$$

Proposition: S_{α_i} if $potiveroots \neq \alpha_i \cap permutation$.

$$\rho := \frac{1}{2} \sum_{\omega > 0} \omega$$
$$D := \prod_{\omega > 0} (e^{\omega/2} - e^{-\omega/2})$$

この時、

$$D = \sum_{w \in W} sgn(w)e^{w\rho}, \quad d\Omega = D^2 \cdot \alpha_1\alpha_2 \cdots \alpha_h$$

となる。

さて、任意の primitivcharactery は

$$e(\Phi), \quad \Phi = l_1\alpha_1 + l_2\alpha_2 + \dots + l_h\alpha_h$$

線形結合 である。 $l_k \in \mathbb{N}$ のとき、 Φ は、 "weight" $(\acute{E}.Cartan)$ で . ある。

 $l_k, (m=1,2,\cdots,h) \in \mathbb{Q}$ を次のようにえらぶ;

1) $\Delta_{\omega}(\Phi) = \sum_{1 <=k <=h} l_k \Delta_{\omega}(\alpha_k)$ 2) $\Delta_{\omega}(\Phi) = \omega \cdot sum_{1 \leq k \leq h} l_k a_k$ において $\sum_{1 <=k <=h} l_k a_k \in \mathbb{Z}$

3) χ 1 W - invariant.

この時、 $\xi = \xi(l_1, l_2, \cdots, l_h) = \sum_{w \in W} sgn(w)e(w\Phi)$ を

$$D \cdot \chi = \xi$$

を充たすよう定める。

 ϕ が orthogonaliity relations を充たすとき、

$$\chi = \frac{\sum_{w \in W} sgn(w)e(w\Phi)}{D}$$

$$\chi = \frac{\sum_{w \in W} sgn(w)e(w(\Phi_m + \rho))}{D}$$

 $\rho = r_1 \alpha_1 + r_2 \alpha_2 + \dots + r_h \alpha_h$ とおいて、

 $m_k = l_k - r_k \ (k = 1, \dots, h), \quad \Phi = m_1 \alpha_1 + \dots + m_h \alpha_h + \rho$

 $(m=(m_1,m_2,\cdots,m_h)$ は、 既約表現 π_m の、 highest weight である。

既約表現 π_m の chracter formula と dimension formula は次のよう になる。

$$\Phi_m = m_1 \alpha_1 + \dots + m_h \alpha_h$$

$$character(\chi_m) = \sum_{w \in W} \frac{sgn(w)e(w\Phi_m)}{D}$$

$$dim.(\pi_m) = \prod_{\alpha>0} \frac{(m+\rho,\alpha)}{(\rho,\alpha)}$$

((注 1)) [[完全可約性]] について

 $GL(\mathcal{G}) \cap S$ smallest algebraic subgroup $Ad(\mathcal{G}) \cap \mathcal{H}$ $Lie(Ad(\mathcal{G})) = ad(\mathcal{G})$ みたすとき、Ad(G) を G の "adoint group" とよぶ。

unitary restriction の下に、 $Ad(\mathcal{G})$ - invariant & Hermite form \mathcal{E} 5 by て、完全可約性が示される。

(cf. I.Schur, "Neue Anwendungen I", 1924)

((注2)) [[完備性 comletenes について]] (GAII, pp.640 - 642) (cf. Peter -Weyl, 1927)

(w4) Chap4, Paragrah 4, Über der Konstruction aller irreduziblen Darstellungen で以下のことが証明されている。

Theorem6 任意の integral - valued linear form Ψ は、highest weight Ψ をもつ既約表現をあたえる。

 $\underline{Theorem\ 6a}$ primitiv character \mathcal{G} , $\mathcal{G}_u\ class-functions\ \mathcal{O}$ complete orthogonal system ౌం.

[[文献]]

- (W1) H.Weyl(1924), "Über die Symmettrie der Tensoren und die Tragweite der symbolishen Metode in der Invariantentheorie", Rendicondi der Circolo Math. Palermo 48, 29 36(GAII, 468 -475)
- (W2) H.Weyl)(1924), "Das gruppentheoretische Fundament der Tensorrechinung", Nachrichten Göttingen", 218 224(GAII, 461 467)
- (W3) H.Weyl(1924), "Zur Theorie der Darstellungen der einfachen kontinuierlichen Gruppen. (Aus einem Schreiben an Herrn I. Schur)", Sitzungsbereichte Preussischen Akad. Berlin, 338 -345(GAII, 453 -460)
- (W4) H.Weyl(1925 1926), "Theorie der Darstellung kontinuierlichen halpeinfachen Gruppen durch lineare Transformationen, I, II, III und Nachtrag", Mathematische Zeitschrift 23, 271 -306, ibid 24, 328 -395, 789 -791 (GAII, 543 647)
- (PW) F.Peter and H.Weyl(1927), "Die Vollständigkeit der primitiven Darstellungen einer geschlossenen konnuierlichen Gruppe," Mathematische Annalen 97, 737 -755(GAIII, 58 -75)
- (Sc) I.Schur(1924)," Neue Anwndungen der Intgralrechnung auf Probleme der Invariantentheorie", Sitsungsberichte Preussisischen AKad. Berlin, 189 208, 297 -321, 346 -355
- (Ca) \acute{E} . Cartan(1913), "Les Groupes projectifs qui ne lassaent invariante aucune multiplicite plane," Bull. SMF, tome 41, 53 96
 - (W) H. Weyl, The Classical Group, Princeton University Press, 1946
- (JPS) Jean Piere Serre, Algèbre de Lie semi simples complexes, Benjamin, 1966
- (TH) Thomas Hawkins, Emergence of The Theory of Lie Groups, Springer, 2000
- (AB) Armand Borel, Essays in the History of Lie Groups and Algebraic Groups, History of Mathematics, vol.21, AMS, 2001
- (CP) Claude Procesi, Lie Groups, An Appoach through Invariants and Repsentations, Springer, 2005
- (TY) P.Trauvel, R.W.T.Yu, Lie Algebras and Algebraic Groups, Springer, 2005