

TL;DR

Deep learning isn't magic.

But it is very good at finding patterns.

The brain and deep learning

The brain and deep learning

Enough of Biology

Neural Network

Neural - /ˈnjʊər(ə)l/

relating to a nerve or the nervous system. "patterns of neural activity"

Network - /'netwe:k/

Noun

a group or system of interconnected people or things.

Structure of Neural Network

Structure of neural network

What's up with all these layers??

A four pixel camera

Categorize images

vertical

diagonal

Categorize images solid vertical diagonal horizontal

Categorize images

solid

vertical

diagonal

Categorize images

solid

vertical

diagonal

Simple rules can't do it

solid

diagonal

Simple rules can't do it

solid

Neurons, activations, weights, etc.

Input neurons

Pixel brightness

Input vector

Receptive fields

A neuron

Sum all the inputs

Weights

Weights

Weights

Squash the result

Tanh squashing function

Tanh squashing function

No matter what you start with, the answer stays between -1 and 1.

Squash the result

Weighted sum-and-squash neuron

Make lots of neurons, identical except for weights

To keep our picture clear, weights will either be 1.0 (white) -1.0 (black) or 0.0 (missing)

Receptive fields get more complex

Repeat for additional layers

Receptive fields get still more complex

Forward propagation

truth 0.

solid

0.

vertical

0.

diagonal

horizontal

diagonal

vertical

solid

horizontal -.75

error .5	truth 0.	answer .5	solid
.75	0.	.75	vertical
.25	0.	25	diagonal
1.75	1.	75	horizonta

error .5

truth 0. answer .5 solid

0.

.75

vertical

.25

.75

0.

1.

-.25

diagonal

horizontal

3.25

total

1.75

-.75

Loss Function

- ft. M&M (eminem?)

From data to model: How many M&Ms in a bag?

How many M&Ms in a bag?

How many M&Ms in a bag?

How many M&Ms in a bag?

Number of M&Ms in a bag

How wrong is any answer?

Number of M&Ms in a bag

How wrong is an answer?

Number of M&Ms in a bag

What is the cost of being off by d?

$$d = n_{actual} - n_{guess}$$

What is the cost of being off by d?

cost	devi	ation 2	4	8	· · actu
sqrt(d) d d ² 10 ^{d -1}	1 1 1	1.41 2 4 10 10	2 4 16 000 1	2.83 8 64 0,000,00	00

What is the cost of being off by d?

d = n_{actual} - n_{guess}

cost	deviation						
	1	2	4	8			
sqrt(d)	1	1.41	2	2.83			
d	1	2	4	8			
d^2	1	4	16	64			
10 ^{d -1}	1	10 10	000 1	0,000,000			

For guess n_{est,}

 $\mathcal{L}_{(n_{est})}$

For guess n_{est,}

$$\mathcal{L}(n_{est}) = d_1^2 + d_2^2 + d_3^2 + ... + d_m^2$$

For guess n_{est,}

$$\mathcal{L}(n_{est}) = d_1^2 + d_2^2 + d_3^2 + ... + d_m^2$$

$$\mathcal{L}(n_{est}) = (n_1 - n_{est})^2 + (n_2 - n_{est})^2 + (n_3 - n_{est})^2 + ... + (n_m - n_{est})^2$$

For guess n_{est,}

$$\mathcal{L}(n_{est}) = d_1^2 + d_2^2 + d_3^2 + ... + d_m^2$$

$$\mathcal{L}(n_{est}) = (n_1 - n_{est})^2 + (n_2 - n_{est})^2 + (n_3 - n_{est})^2 + ... + (n_m - n_{est})^2$$

$$\mathcal{L}(n_{est}) = \sum_{i} (n_{i} - n_{est})^{2}$$

How does M&Ms relate to

neural networks

that we were talking about?

Are we in the right workshop?

"The estimation of how wrong a prediction is tells us how to get closer to a more correct prediction"

- some math guy

Errors

error .5

truth 0. answer .5 solid

0.

.75

vertical

.25

.75

0.

1.

-.25

diagonal

horizontal

3.25

total

1.75

-.75

Optimization

Pick the lowest point (Exhaustive search)

Let the marble roll downhill (Gradient descent)

Backpropagation

Structure of Neural Network

Vectorization

Sigmoid $a_0^{(1)} = \overset{\downarrow}{\sigma} \left(w_{0,0} \ a_0^{(0)} + w_{0,1} \ a_1^{(0)} + \dots + w_{0,n} \ a_n^{(0)} + b_0 \right)$

Fancy representation

$$\mathbf{a}^{(1)} = \sigma(\mathbf{W}\mathbf{a}^{(0)} + \mathbf{b})$$

ReLU

$$R(z) = \left\{ \begin{array}{ll} z & z > 0 \\ 0 & z <= 0 \end{array} \right\}$$

$$R'(z) = \left\{ \begin{array}{ll} 1 & z > 0 \\ 0 & z < 0 \end{array} \right\}$$

Sigmoid

Function

Derivative

$$S(z) = \frac{1}{1 + e^{-z}}$$

Tanh

Softmax

MAE

MSE

Binary Cross-Entropy

$$-(y\log(p)+(1-y)\log(1-p))$$

Multi-Class Cross-Entropy (Categorical)

$$-\sum_{c=1}^M y_{o,c} \log(p_{o,c})$$

- ft. Lil Math

Learn all the weights: Gradient descent

Learn all the weights: Gradient descent

Learn all the weights: Gradient descent

Numerically calculating the gradient is expensive

Calculate the gradient (slope) directly

Slope

Slope

Slope

slope = change in error change in weight

Slope

slope

change in error

change in weight

You have to know your error function. For example:

You have to know your error function. For example:

You have to know your error function. For example:

Backpropagation - The not so hard math

$$y = x * w_1$$

$$\frac{\partial y}{\partial w_1} = x$$

$$y = x * w_1$$

$$\frac{\partial y}{\partial w_1} = x$$

$$e = y * w_2$$

$$\frac{\partial e}{\partial y} = w_2$$

$$y = x * w_1$$

$$\frac{\partial y}{\partial w_1} = x$$

$$e = y * w_2$$

$$\frac{\partial e}{\partial y} = w_2$$

$$e = x * w_1 * w_2$$

$$\frac{\partial e}{\partial w_1} = x * w_2$$

$$y = x * w_1$$

$$\frac{\partial y}{\partial w_1} = x$$

$$e = y * w_2$$

$$\frac{\partial e}{\partial y} = w_2$$

$$\frac{\partial e}{\partial w_1} = x * w_2$$

$$\frac{\partial e}{\partial w_1} = x * w_2$$

$$\frac{\partial e}{\partial w_1} = \frac{\partial y}{\partial w_1} * \frac{\partial e}{\partial y}$$

$$y = x * w_1$$

$$\frac{\partial y}{\partial w_1} = x$$

$$e = y * w_2$$

$$\frac{\partial e}{\partial y} = w_2$$

$$\frac{\partial e}{\partial w_1} = x * w_2$$

$$\frac{\partial e}{\partial w_1} = x * w_2$$

$$\frac{\partial e}{\partial w_1} = \frac{\partial y}{\partial w_1} * \frac{\partial e}{\partial y}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{*}{\partial a} \frac{\partial b}{\partial a} \frac{*}{\partial b} \frac{\partial d}{\partial c} \frac{*}{\partial c} \frac{\partial d}{\partial x} \frac{\partial d}{\partial x} \frac{*}{\partial c} \frac{\partial d}{\partial x} \frac{*}{\partial c} \frac{\partial d}{\partial x} \frac{\partial$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{*}{\partial a} \frac{\partial b}{\partial b} \frac{*}{\partial c} \frac{\partial d}{\partial c} \frac{*}{\partial x} \frac{\partial y}{\partial y} \frac{*}{\partial z} \frac{\partial z}{\partial z} \frac{*}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial \text{err}}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{*}{\partial a} \frac{\partial b}{\partial a} * \frac{\partial c}{\partial b} * \frac{\partial d}{\partial c} * \dots * \frac{\partial y}{\partial x} * \frac{\partial z}{\partial y} * \frac{\partial err}{\partial z}$$

$$\frac{\partial \text{err}}{\partial \text{weight}} = \frac{\partial a}{\partial \text{weight}} \frac{*}{\partial a} \frac{\partial b}{\partial b} \frac{*}{\partial c} \frac{\partial d}{\partial c} \frac{*}{\partial x} \frac{\partial d}{\partial y} \frac{*}{\partial z} \frac{\partial z}{\partial z} \frac{*}{\partial z} \frac{\partial err}{\partial z}$$

$$\frac{\partial \text{err}}{\partial a} = \frac{\partial z}{\partial a} * \frac{\partial \text{err}}{\partial z}$$

$$z = a+b+c+d+...$$

Backpropagation challenge: sigmoid

Backpropagation challenge: sigmoid

$$\frac{\partial \text{err}}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial \text{err}}{\partial b}$$

Backpropagation challenge: sigmoid 1 + e^{-a}

 $\sigma(a)$

$$\begin{array}{ccc}
 & & & & \\
 & a & & & \\
 & & & b
\end{array}$$

$$\frac{\partial}{\partial err} = \frac{\partial}{\partial b} * \frac{\partial}{\partial err}$$

 $\overline{\partial a}$ $\overline{\partial b}$

∂a

Backpropagation challenge: sigmoid

$$\frac{\partial \text{err}}{\partial a} = \frac{\partial b}{\partial a} * \frac{\partial \text{err}}{\partial b}$$

Because math is beautiful / dumb luck:

$$\frac{\partial b}{\partial a} = \sigma(a) * (1 - \sigma(a))$$

Backpropagation challenge: ReLU

Backpropagation challenge: ReLU

∂a

 $\overline{\partial a}$ $\overline{\partial b}$

$$b = a, a > 0$$

= 0, otherwise

Backpropagation challenge: ReLU

b = a, a > 0
= 0, otherwise
$$\frac{\partial b}{\partial a} = 1, a > 0$$
$$0, otherwise$$

