CS3811 - High Performance Computing and Big Data Lab

Lab 8

Name: M K Lokesh Kumar

Registration No.: 2201113026

Class: Cyber Security(Semester 5)

Experiment 1

Objective

To use Taylor's series to approximate the value of Sin functions for different inputs, implemented to be run on both CPU and GPU using CUDA.

Code

Written in C.

• CPU Implementation

```
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
long long factorialCalc(int n) {
    if (n == 0) {
        return 1;
    long long res = 1;
    for (int i = 1; i \le n; i++) {
        res *= i;
    }
    return res;
}
float sinApprox(float x, int p) {
    float res = 0.0;
    for (int i = 0; i < p; i++) {
        int exp = 2 * i + 1;
        float term = powf(-1, i) * powf(x, exp) / factorialCalc(exp);
        res += term;
```

```
return res;
}
void findSin(float* inp, float* res, int N, int p) {
    for (int i = 0; i < N; i++) {
        res[i] = sinApprox(inp[i], p);
    }
}
void testTiming(int N, int p) {
    float *x, *res;
    x = (float *)malloc(N * sizeof(float));
    res = (float *)malloc(N * sizeof(float));
    for (int i = 0; i < N; i++) {
        x[i] = (float)i / N;
    }
    clock_t start = clock();
    findSin(x, res, N, p);
    clock_t end = clock();
    double cpu_time = ((double)(end - start)) / CLOCKS_PER_SEC;
    printf("%d\t%d\t%f\n", N, p, cpu_time);
    free(x);
    free(res);
}
int main() {
    int min_p = 3, max_p = 100;
    int min_N = 1 << 2;
    int \max_{N} = 1 << 15;
    printf("N\tp\tTime\n");
    for (int p = min_p; p \le max_p; p += 10) {
        for (int N = min_N; N \le max_N; N *= 2) {
            testTiming(N, p);
        }
    }
    return ⊙;
}
```

• GPU Implementation

```
#include <stdio.h>
#include <math.h>
#include <cuda_runtime.h>
```

```
__device__ long long factCalc_gpu(int n) {
    if (n == 0) return 1;
    long long fact = 1;
    for (int i = 1; i <= n; i++) {
        fact *= i;
    }
    return fact;
}
<u>__device__</u> float sinApprox_gpu(float x, int p) {
    float res = 0.0;
    for (int i = 0; i < p; i++) {
        int exp = 2 * i + 1;
        float term = powf(-1, i) * powf(x, exp) / factCalc_gpu(exp);
        res += term;
    }
    return res;
}
__global__ void gpu_findSin(float* arr, float* res, int N, int p) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) {
        res[i] = sinApprox_gpu(arr[i], p);
    }
}
void testTiming(int N, int p) {
    float *arr, *result, *d_arr, *d_result;
    size_t size = N * sizeof(float);
    arr = (float *)malloc(size);
    result = (float *)malloc(size);
    for (int i = 0; i < N; i++) {
        arr[i] = (float)i / N;
    }
    cudaMalloc((void **)&d_arr, size);
    cudaMalloc((void **)&d_result, size);
    cudaMemcpy(d_arr, arr, size, cudaMemcpyHostToDevice);
    int threadsPerBlock = 256;
    int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    cudaEventRecord(start);
    gpu_findSin<<<blooksPerGrid, threadsPerBlock>>>(d_arr, d_result, N, p);
    cudaEventRecord(stop);
```

```
cudaEventSynchronize(stop);
    cudaMemcpy(result, d_result, size, cudaMemcpyDeviceToHost);
    float time = 0;
    cudaEventElapsedTime(&time, start, stop);
    time /= 1000;
    printf("%d\t%d\t%f\n", N, p, time);
    cudaFree(d_arr);
    cudaFree(d_result);
    free(arr);
    free(result);
}
int main() {
    int min_p = 3, max_p = 100;
    int min_N = 1 << 2;
    int \max_{N} = 1 << 15;
    printf("N\tp\tTime\n");
    for (int p = min_p; p \le max_p; p += 10) {
        for (int N = min_N; N \le max_N; N *= 2) {
            testTiming(N, p);
        }
    }
    return 0;
}
```

Output

• CPU Implementation

N	n	Time
4	р 3	0.000019
8		0.000013
16	3 3	0.000004
32	3	0.000005
64		0.000011
128	3 3	0.000011
	2	0.000020
256	3	
512	3	0.000077 0.000153
1024	3	0.000153
2048	3	0.000507
4096	3	
8192	3	0.001236
16384	3	0.002563
32768	3	0.005779
4	13	0.000008
8	13	0.000011
16	13	0.000020
32	13	0.000040
64	13	0.000093
128	13	0.000157
256	13	0.000320
512	13	0.000639
1024	13	0.001259
2048	13	0.001671
4096	13	0.002732
8192	13	0.005286
16384	13	0.009945
32768	13	0.020284
4	23	0.000007
8	23	0.000014
16	23	0.000027
32	23	0.000053
64	23	0.000114
128	23	0.000209
256	23	0.000429
512	23	0.000842
1024	23	0.001690
2048	23	0.003358
4096	23	0.006754
8192	23	0.013455
16384	23	0.031302
32768	23	0.059614
4	33	0.000014
8	33	0.000026
16	33	0.000054
32	33	0.000101
64	33	0.000246
128	33	0.000405
256	33	0.000830
512	33	0.001714
1024	33	0.003816
2048	33	0.007652
4096	33	0.014413

	33	0.030969
16384		0.052328
32768	33	0.124311
	43	0.000021
	43	0.000041
	43	0.000082
32	43	0.000163
64	43	0.000324
	43	0.000650
256	43	0.001292
	43	0.002645
1024	43	0.005239
2048	43	0.010386
	43	0.020950
	43	0.048430
16384		0.083745
32768		0.178270
	53	0.000039
8	53	0.000078
	53	0.000154
	53	0.000320
64	53	0.000526
	53	0.001265
	53	0.001203
	53	0.002394
	53	
		0.011106
	53	0.020751
	53	0.037574
	53	0.061935
	53	0.125284
32768		0.278472
4	63	0.000040
8	63	0.000084
16	63	0.000163
32	63	0.000423
64	63	0.000743
128	63	0.001413
256	63	0.002669
512	63	0.005314
1024	63	0.010875
2048	63	0.021446
4096	63	0.041859
8192	63	0.093168
16384	63	0.197453
32768	63	0.350801
4	73	0.000053
8	73	0.000108
16	73	0.00010
32	73	0.000210
64	73	0.000424
128	73	0.001704
256	73 73	0.003539
		0.006986
512	73 72	
1024	73	0.014166

2048	73	0.028289
4096	73	0.055141
8192	73	0.130708
16384	73	0.229080
32768	73	0.469579
4 8	83	0.000069
8	83	0.000139
16	83	0.000276
32	83	0.000579
64	83	0.001108
128	83	0.002205
256	83	0.004424
512	83	0.008769
1024	83	0.017956
2048	83	0.049358
4096	83	0.092150
8192	83	0.139402
16384	83	0.302841
32768	83	0.601944
4	93	0.000085
8	93	0.000174
16	93	0.000342
32	93	0.000689
64	93	0.001403
128	93	0.002746
256	93	0.005511
512	93	0.011425
1024	93	0.029769
2048	93	0.050363
4096	93	0.087259
8192	93	0.198122
16384	93	0.361463
32768	93	0.762004

• GPU Implementation

32768	63	0.000779
4 73	0.0	00236
8 73	0.0	00241
16 73	0.0	00244
32 73	0.0	00247
64 73	0.0	00248
128 73	0.0	00242
256 73	3 0.0	00305
512 73	3 0.0	00311
1024	73	0.000315
		0.000301
4096	73	0.000305
8192	73	0.000302
16384	73	0.000527
32768	73	0.001010
4 83	0.0	00284
8 83	0.0	00290
16 83	3 0.0	00293
32 83	0.0	00296
64 83	0.0	00295
128 83	0.0	00287
256 83	0.0	00379
512 83	3 0.0	00379
1024	83	0.000387
2048	83	0.000377
4096	83	0.000372
8192	83	0.000370
16384	83	0.000671
		0.001294
4 93	0.0	00336
8 93	0.0	00342
16 93	0.0	00347
32 93	3 0.0	00349
64 93	3 0.0	00347
128 93	0.0	00338
256 93	3 0.0	00471
512 93	0.0	00465
1024	93	0.000463
2048	93	0.000462
4096	93	0.000466
8192	93	0.000458
16384	93	0.000827
32768	93	0.001600

			0099
			0097 0.000097
			0.000099
			0.000095
			0.000098
			0.000136
			0.000136
			0.000240
			0121
			0121
			0129
			0130
			0136
			0138
			0130
			0.000134
			0.000134
			0.000140
1620	2.0	43	0.000139 0.000207
			0.000392
			0152
			0156
			0161
			0164
			0164 0161
			0185 0184
1024			0.000188
2048			0.000188
4096			0.000183
8192			0.000187
			0.000300
3276			0.000572
		0.00	
			0196
	63		0200
		0.00	
	63		0205
			0197
		0.00	
			0244
			0.000242
2048			0.000244
4096			0.000234
8192			0.000246
1638	34	63	0.000408

M		Time
N 4	р 3	Time 0.000234
8	3	0.000234
16		0.000013
32	3	0.000013
52 64		0.000012
128		0.000012
256		0.000012
	3	
1024		3 0.000012
2048		3 0.000013 3 0.000012
8192		3 0.000013
		3 0.000010 3 0.000017
3276		
4	13	
8	13	
16		0.000031
	13	
	13	
128		0.000034
	13	
512		
1024		13 0.000037
	3	
4096		13 0.000036
8192		13 0.000033
	34	
3276		13 0.000060
4		0.000055
8	23	0.000057
16	23	0.000060
	23	
64	23	0.000063
	23	
		0.000068
	23	
1024		23 0.000063
2048		23 0.000063
4096		23 0.000068
8192		23 0.000067
1638		23 0.000077
	58	
4		0.000089
8	33	0.000094
16		0.000096
32	33	0.000097
64		
128	33	0.000097