

Datenbanken 1

Kapitel 2: Datenbankentwurf –

Vorlesung Datenbanken 1

Phasen des Datenbankentwurfs

Anforderungsanalyse

Datenbankentwurf

Inhalt des Kapitels

- Grundkonstrukte des Entity-Relationship-Modell (ER-Modell)
- Erweiterungen des ER-Modells
- Vorgehensweise beim Entwurf

Lernziele

- Kennenlernen der wichtigsten Konstrukte des ER-Modells
- Selbständiges Entwerfen von Datenbankmodellen mit dem ER-Modell

Entities und Entity-Typen

- Entity: Objekt der realen (bzw. der zu modellierenden) Welt.
- Entity-Set: Menge aller Entities mit gleichen oder ähnlichen Eigenschaften.
- Entity-Typ: Repräsentant der Objekte gleichen Typs.

Notation: Entity-Typ

Attribute – 1(2)

• Attribut: repräsentiert eine Eigenschaft eines Entity-Typs, d.h. eine Eigenschaft, welche alle Entities dieses Entity-Typs besitzen.

Notation: $E(A_1, A_2, ..., A_m)$ Attribut

• Wertebereich/Domäne: mögliche bzw. zulässige Werte für ein Attribut

Beispiel:

Preis: zwischen 5 und 100 Euro

Notation: $E(A_1:D_1, A_2:D_2, ..., A_m:D_m)$

Attribute -2(2)

- Wie wird modelliert, wenn beispielsweise
 - ein Kunde mehrere E-Mail-Adressen hat und
 - Der Name zusammengesetzt ist (Vorname, Nachname)
- ⇒ Erhöhung der Modellierungsgenauigkeit durch
 - Mehrwertige Attribute (Notation: Doppeloval)
 - zusammengesetzte Attribute (Notation: hierarchisch angeordnete Attribute)

Kunde (KNr, {E-Mail}, Name (Nachname, {Vorname}))

Schlüssel

- Entities müssen "unterscheidbar", d.h. eindeutig identifizierbar sein
- Informationen über Entities sind in ihren Attributen hinterlegt
- ⇒ Identifikation eines Entities durch Attribut oder Kombination von Attributen
- Ein Schlüssel eines Entity-Typs E ist eine Menge K von (einwertigen)
 Attributen, für die folgendes gilt:
 - Zu jedem Zeitpunkt unterscheiden sich zwei verschiedene Entities aus E bzgl.
 K, und es gibt keine echte Teilmenge von K, die diese Eigenschaft besitzt.
 - Beispiele: Schlüssel für Buch? … Produkt? … Studenten?
- Mehrere Schlüsselkandidaten möglich ⇒ Primärschlüssel auswählen

Student (MatrNr, Vorname, Name, Geburtsdatum, Adresse)

Beziehungstypen – 1(4)

- Wichtige Informationen der realen Welt werden durch Beziehungen zwischen Entities ausgedrückt (insbesondere Prozesse!)
- Beziehungstyp (Relationship-Typ) beschreibt Beziehungen zwischen verschiedenen Entity-Typen

Historie der Notationen

- Schema-Diagramme in den 60er Jahren (Charles Bachmann)¹⁾
 - gerichtete Pfeile für Beziehungstypen

- ER-Modell erstmals 1976 von Peter Chen²⁾ beschrieben.
 - Rauten als Repräsentanten für verschiedene Beziehungstypen

¹⁾ Bachmann, C.W. Data Structure Diagrams. Databases 1, 2 (1969), pp. 4-10

²⁾ Chen, P.P. The Entity-Relationship Model-Toward a Unified View of Data. ACM Trans. Databse Systems 1,1 (March 1976) pp. 9-36

Beziehungstypen – 2(4)

Notation:

Raute mit Name des Beziehungstyps (Verb oder Substantiv)

$$R (E_1, E_2, ..., E_n)$$

Beispiel:

Beziehungstyp kann auch Attribute haben ⇒ *Beziehungsattribute*

Beziehungstypen – 3(4)

Es können auch mehrstellige Beziehungstypen modelliert werden:

Beziehungstypen 4(4)

 Beispiel: Optische Linsen in Fotoapparaten, in der Chip-Fertigung (Beleuchtung) etc. → Eine Linse kann selbst wieder aus anderen Linsen bestehen.

Allgemeiner: Ein Produkt kann selbst wieder aus anderen Produkten bestehen

 Wie wird diese Beziehung zwischen Entities gleichen Typs ausgedrückt?

⇒ Rekursiver Beziehungstyp

Stichwort "Stückliste"

Hörsaalübung

Erstellen Sie ein ER-Modell für die folgende "FH-Miniwelt"

- Jeder Professor hält mehrere Vorlesungen. Mehrere Studenten besuchen jeweils (verschiedene) Vorlesungen.
- Ein Student wird von einem Professor jeweils über eine Vorlesung geprüft und erhält eine Note für diese Prüfung.
- Der Besuch von Vorlesungen setzt i.a. Kenntnisse anderer Vorlesungen voraus.
- Überlegen Sie sich, welche Attribute sie für die jeweiligen Entitäten mit abspeichern würden. Welche Attribute würden Sie als Schlüssel wählen? Wie sind die Beziehungen zwischen den Entity-Typen?

Kardinalitäten

- Motivation: bisher kann nur ausgedrückt werden, dass zwischen bestimmten Entity-Typen eine Beziehung besteht und Eigenschaften dieser Beziehung können durch Beziehungsattribute ausgedrückt werden.
- Was fehlt?
 - Jede Vorlesung wird von genau einem Professor gehalten ...
 - Ein Student kann mehrere Vorlesungen hören ...
 - Eine Vorlesung findet nur statt, wenn mindestens 6 Teilnehmer angemeldet sind ...
- ⇒ Kardinalitäten! = Wichtige Integritätsbedingungen

Achtung! Es gibt verschiedene graphische Notationen für Kardinalitäten im ER-Modell – die wichtigsten (aber nicht alle) werden im folgenden vorgestellt. Das dahinter stehende Grundprinzip (1:1, 1:N und N:M Beziehungen) ist jedoch unabhängig von der graphischen Notation das gleiche!

N:M Beziehungen

- keine Restriktionen, d.h. jedem Entity e_1 vom Entity-Typ E_1 können beliebig viele Entities E_2 zugeordnet sein und jedem Entity e_2 können beliebig viele Entities E_1 zugeordnet sein.
- Beispiele: Kunde bestellt Produkt; Flächen begrenzen Kanten

1:N Beziehungen

- jedem Entity e₁ vom Entity-Typ E₁ können beliebig viele Entities E₂
 zugeordnet sein, aber zu jedem Entity e₂ gibt es maximal ein e₁ aus E₁
- Beispiele: Hersteller liefert Produkt, Produkt hat Lackierung (n:1)

 Lesweise: "ein Hersteller liefert N Produkte" bzw. "ein Produkt wird von höchstens 1 Hersteller geliefert"

1:1 Beziehungen

• jedem Entity e_1 vom Entity-Typ E_1 ist maximal ein Entity e_2 aus E_2 zugeordnet und umgekehrt

Beispiele: Prospekt beschreibt Produkt; Kennzeichen gehört zu

Fahrzeug

Verfeinerung der Kardinalitätsrestriktionen

- Limitation des 1:1, 1:N bzw. N:M Modells:
 - 1 bedeutet "höchstens" eins der Unterschied zu "genau eins" ist nicht ausdrückbar
 - Präzisere Angaben der Kardinalitätsrestriktionen:

```
statt 1: (0, 1) oder (1, 1) statt N: (0, n) oder (1, n)
```

- ⇒ "Krähenfuss-Notation" oder "Martin-Notation" (James Martin)
 - Graphische Darstellung

 Diese Notation beeinflusste auch die heutige UML-Notation stark und ist in Modellierungstools sehr populär.

Weitere Verfeinerung der Kardinalitätsrestriktionen

- Spezifischere Restriktionen (ein Auto hat genau 4 Räder; ein Fahrzeug hat mindestens 2, höchstens 4 Räder) nicht ausdrückbar
- ⇒ (min, max)-Notation
 - schränkt die möglichen Teilnahmen von Instanzen der beteiligten Entity-Typen an der Beziehung ein, indem ein minimaler und ein maximaler Wert vorgegeben wird

- e₁ nimmt an mindestens min₁ und höchstens max₁ Beziehungen vom Typ R teil
- e₂ nimmt an mindestens min₂ und höchstens max₂ Beziehungen vom Typ R teil
- Achtung: Die Angabe der (min, max)-Kardinalitäten erfolgt genau gespiegelt zur UML-Notation!

Beispiel für (min, max)-Notation

Verschiedene Kardinalitätsnotationen – 1(2)

Jedes Element von E1 steht zu genau einem von E2 in Beziehung.

Jedes Element von E1 steht zu höchstens einem von E2 in Beziehung.

Verschiedene Kardinalitätsnotationen – 2(2)

Jedes Element von E1 steht zu mindestens einem von E2 in Beziehung.

Jedes Element von E1 steht zu beliebig vielen von E2 in Beziehung.

Modellierungstool PowerDesigner

Bemerkung zu n-stelligen Beziehungen – 1(3)

 n-stellige Beziehungen lassen sich in Modellierungswerkzeugen oft nicht darstellen (u.a. da – außer bei Verwendung der (min, max) "Teilnahme"-Kardinalitätsnotation – nicht eindeutig ist, auf welches Entity sich die Kardinalitätsangabe bezieht)

Bemerkung zu n-stelligen Beziehungen – 2(3)

- Was passiert bei Auflösung in drei zweistellige Beziehungen?
- Wird die Information korrekt wiedergegeben?

P-	V	

Heuer	DB1
Heuer	DB2
Saake	DB1
Saake	DB2

P-B

Heuer	ABC
Heuer	DEF
Saake	DEF

V-B

DB1	ABC	
DB2	DEF	
DB1	DEF	

Bemerkung zu n-stelligen Beziehungen – 3(3)

- Direkte Umsetzung n-stelliger Beziehungstypen in zweistellige kann zu unerwünschten Effekten führen, d.h. die Ausdrucksfähigkeit ist in diesem Fall geringer als bei n-stelligen Beziehungen
- Alternative: n-stelligen Beziehungstypen in (künstlichen) Entity-Typen umwandeln und n zweistellige Beziehungen definieren.

Entity-Relationship-Modell

- Bisher eingeführt
 - Entity-Typen
 - Attribute
 - Beziehungstypen
 - Kardinalitäten von Beziehungstypen
- Jetzt: Einführung weiterer Konstrukte, um bestimmte Gegebenheiten der zu modellierenden "Miniwelt" adäquat auszudrücken.

Existenzabhängige Entities – 1(2)

- Annahme bisher: Entities existieren autonom und sind über ihren Schlüssel eindeutig identifizierbar
- Aber: in der Realität existieren oft Entities, welche
 - in ihrer Existenz von einem anderen, übergeordneten Entitiy abhängig sind und
 - oft nur in Kombination mit dem Schlüssel des übergeordneten Entities eindeutig identifizierbar sind
- ⇒ Existenzabhängige Entities (auch *schwache Entities* oder *weak entities* genannt)

Existenzabhängige Entities – 2(2)

Modellierung im PowerDesigner

Anmerkung zur Abbildung von Beziehungsattributen im PowerDesigner

Generalisierung / Spezialisierung – 1(3)

- Anordnung der Typen in eine Typhierarchie
 - Generalisierung: Übergang zu einem allgemeineren (Super-)Typ
 - Bsp.: Spediteur ⇒ Geschäftspartner
 - Spezialisierung: Übergang zu einem oder mehreren speziellen (Sub-)Typen
 - Bsp.: Geschäftspartner ← Spediteur
 Geschäftspartner ← Händler
- Spezialisierungs-/Generalisierungsbeziehung wird auch IST-Beziehung genannt (engl. is-a relationship)

Generalisierung / Spezialisierung – 2(3)

Eigenschaften

- Jeder Händler-Instanz ist genau eine Geschäftspartner-Instanz zugeordnet.
- Händler-Instanzen werden durch die funktionale IST-Beziehung identifiziert.
- Attribute des Entity-Typs Geschäftspartner treffen auch auf Händler zu = "vererbte" Attribute.
- nicht nur die Attributdeklarationen vererben sich, sondern auch jeweils die aktuellen Werte für eine Instanz.

Generalisierung / Spezialisierung – 3(3)

Modellierung im PowerDesigner

Datenbankentwurf

- Entity-Relationship-Modell
 - Entity-Typen und Attribute
 - Beziehungstypen
 - Kardinalitäten von Beziehungstypen
 - Existenzabhängige Entities
 - Generalisierung / Spezialisierung
- Was fehlt?
 - Vorgehensweise beim Konzeptionellen Entwurf

Vorgehensweise beim Entwurf

Variante 1

Entwurf der Teilsysteme

 Anschließend: Zusammenfügen der Teilsysteme

Variante 2

 Ausgehend von einem Objekt bzw. einem Teilsystem: Entwurf des Gesamtsystems

. . .

Vorgehensweise bei der ER-Modellierung

R1: liefert (Händler, Spediteur, Rohstoff; Bestelldatum, Lieferdatum, Preis, Menge)

- 1. Definition der Entity-Typen (inkl. Attribute und Schlüssel) und Analyse, welche Enity-Typen miteinander in Beziehung stehen
- 2. Analyse, wie die Beziehungstypen bezeichnet werden und welche Attribute sie besitzen
- 3. Analyse, welche Kardinalitäten die Beziehungstypen haben

Phasen des Datenbankentwurfs

Anforderungsanalyse

Vorlesung Datenbanken 1

