FUNDAMENTOS ELEMENTARES DA MATEMÁTICA MANUSCRITOS

(AULA 20: 15/09/22)

	Podernos destocar duos erracteristicos desse	, -
	conjuntos: A + Ø, B + Ø e C = Ø e	
	4,7,2	
	nos respectivamente es menores elementes	
	de A, B e C	
	Def (Elemento Minimo): Sya SEIN,	
	5 + \$ Dizernos que m E/N	ζ,
)	é um Menor Elements de S guando	
n	$M \leq N, \forall x \in S.$	(
3.	Teorema (P.B.D): SyascN, S+0.	
· A	Entat 5 parsui um	
	Menos Elements, que representamos por	
	min S,	
	e el i <u>mico.</u>	

Prova da Emilineia: Vorno Consideror o Conjunts. M=3meN: m=x, AxES} Sabernos que 0 = n, 4 n ES 0 EM & M + Ø. Sendo 5+P, podemos consider DES. Agora, sempre temos Entas, D+1 & M (repertureuse D+1 < s).

	Aminu: stell e stifM.
	Dai, DeMe M+N.
	Vejannis a lógrea:
	$H_1 \wedge H_2 \Longrightarrow T$ $(V) (F) (F)$
1	• M; O ∈ M • M; K ∈ M => K+J ∈ M
	O Anioma (PS) de Peono diz:
	• OEM => M=IN. • KEM => K+IEM) Entas, dire existe m EM mas que m+I&M.

Note que m EM significa m < n, Ynes. Agora precisamos pour que m ES. Pora isso, vernos usos o mut da contra heat. Vonus invogener que Então, MAZX, YXES. (M+1 \ N \ Y N \ S) e uno significa que m+1 = M que e una controdiçat pairs ja sabenus que M+: &M. Portonto, m & 5 mois pode

	aanteer, e arim dere rer MES.
	Como (m < x, YZES,
Š. ₄	entois mé o menor element de S, l grontinus a exutincia.
20nha-	grantimus a exutincia.
	Prova da Unicidade: Poros provos
1	a unicidade unaginemos que
	tenhonnes mjes e myes emmis ;
	Memores elements de S. Entos:
	$m_1 \leq n, \forall n \in S$
	$e m_z \leq \chi / \forall x \in S$
	Assimi:
w	$N_1 \leq N_2 \leq N_2 \leq N_3$
+	Entos: My=mz. Isto prava a unicidade.

Principio de Inducas Fruits Corn o P.B.O. podemos agora Terrena (PIF-1ª forma): Considere P(m) una rentença abenta un IN. Se valem as duos condições; (1) P(1) verdade: (11) P(K) verdade => P(K+1) verdade, entar P(m) i verdade pra todo MEIN Prova: Uro o P.B.D. (vupon o misterial)

	En: Prove, prix $m \in \mathbb{N}$, que: $1+2+3+\cdots+(M-s)+m=\frac{m(M+1)}{2}$
2	Prova: Varros aplier o P.I.F.: Considi ?
۸۱۸۵	$P(m): 1+2+3++(m-1)+m=\frac{m(m+1)}{2},$
	Tennos: (1) $P(1): 1 = 1(1+1)$ (variable)
	(11) Vannos arrumin que P(K) é Vindade, ou reja,
l)	$1 + 2 + 3 + \cdots + (K-1) + K = \frac{K \cdot (K+1)}{2}$ e vadade. Assim:
	$\frac{1+2+3+\cdots+k+(k+1)}{2} = \frac{k(k+1)+k+1}{2} + k+1$ = $\frac{k(k+1)+2(k+1)}{2}$
1	2

Entos: 1 1+2+3+ + K+(K+1)=(K+1)(K+2) Portonte, P(K+3) é vendade, ou sya, P(k) vend. $\Rightarrow P(k+s)$ vend. Logo, aplicando o P.I.F, terros $1 + 2 + 3 + \cdots + (m-1) + m = m(m+1)$ pora todo m E IV.