

Réseaux de Neurones et Traitement d'Images en Temps Réel

Brahim Yahiaoui byahiaoui@nexyad.net

Présentation du cours

- Introduction et prise en main de OpenCV
- Les réseaux de neurones dans l'image
- Traitements des signaux en temps réel

Les réseaux de neurones dans l'image

Introduction aux réseaux de neurones

Les réseaux de neurones

- Méthode inspirée du fonctionnement des neurones biologiques
- Utilisés pour élaborer des algorithmes capables d'apprendre
- Domaines d'application :
 - Reconnaissance optique de caractères (OCR)
 - Biologie : Classifications d'espèces animales
 - Economie : Classification d'entreprises et prédiction d'échec
 - Réseaux sociaux : Analyse sémantique de phrases sur internet pour la publicité ciblée ou la sécurité
 - Vision robotique : Détection d'obstacles et étiquetage

Modèle du neurone formel

 Modélisation par McCulloch et Pitts (1943) d'un neurone

Modèle du neurone formel

 Modélisation mathématique par McCulloch et Pitts (1943) d'un neurone par un perceptron dit simple

$$y = g(h(X, W)) = g\left(\sum_{i=1}^{n} w_i x_i\right)$$

Fonction d'activation (seuil)

Posons x' = h(X, W)

$$y = g_s(x') = g_s\left(\sum_{i=1}^n w_i x_i\right)$$

où g_s est la fonction de Heaviside, et s le seuil.

10

Fonction d'activation (seuil)

$$g_s(x') = g_0 \left(\sum_{i=1}^n w_i x_i + s \right)$$
En posant $w_0 = s$ et $x_0 = 1$

$$g_s(x') = g_0 \left(\sum_{i=0}^n w_i x_i \right)$$

$$1 \longrightarrow w_0$$

$$x_1 \longrightarrow w_1$$

$$\vdots$$

$$x_2 \longrightarrow w_2$$

$$\vdots$$

$$\vdots$$

Fonction d'activation

Les fonctions suivantes peuvent être utilisées comme fonction d'activation resp. par ordre de recommandation :

- La fonction de Heaviside
- 2. La tangente hyperbolique
- 3. La fonction sigmoïde
- 4. La fonction rectifieur ReLU max(0, x)

Représentation d'un neurone en théorie des graphes

- Nous utiliserons à partir de ce slide la nouvelle représentation du neurone
- La représentation :

Devient :

Perceptron multi-couches

- Perceptron simple
 - Régression linéaire
 - Moindres carrés
- Perceptrons mullticouches
 - Résolution de problèmes non linéaires
 - Généralisable en réseaux de neurones à multi-couches

Modèle de réseaux de neurones à multi-couches

 Exemple relativement généralisé des graphes de réseaux de neurones à multi-couches

$$\begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{pmatrix} = g \begin{pmatrix} \sum_{j=1}^2 w_{1 \leftarrow j} x_j^{(k)} \\ \sum_{j=1}^2 w_{2 \leftarrow j} x_j^{(k)} \end{pmatrix}$$

$$x_1^{(k)} \xrightarrow{w_{1\leftarrow 1}} \xrightarrow{w_{1\leftarrow 1}} x_1^{(k+1)}$$

$$x_2^{(k)} \xrightarrow{w_{2\leftarrow 2}} x_2^{(k+1)}$$

$$\begin{pmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{pmatrix} = g \begin{pmatrix} \sum_{j=1}^2 w_{1 \leftarrow j} x_j^{(k)} \\ \sum_{j=1}^2 w_{2 \leftarrow j} x_j^{(k)} \end{pmatrix}$$
$$= g \begin{pmatrix} w_{1 \leftarrow 1} & w_{1 \leftarrow 2} \\ w_{2 \leftarrow 1} & w_{2 \leftarrow 2} \end{pmatrix} \begin{pmatrix} x_1^{(k)} \\ x_2^{(k)} \end{pmatrix}$$

Apprentissage et reconnaissance

- Phase d'apprentissage supervisé
 - Pré-requis : base de données indexés par types dite base d'apprentissage
 - Propagation de de la donnée d'entrée
 - Comparé la donnée de sortie avec le résultat attendu
 - Rétro-propagation de l'erreur pour la correction de poids synaptiques
- Phase de validation (validation de la reconnaissance)
 - Pré-requis : une base de données différente de la base d'apprentissage dite base de tests
 - Evaluer l'efficience = nombre d'erreurs / nombre de tests
 - Si le pourcentage est bas. refaire l'apprentissage.

Exemple avec une couche

Prenons l'exemple suivant

On modélise de réseau de neurones suivant

Exemple avec une couche

Prenons l'exemple suivant

On obtient les sigmoïdes suivantes

Un peu d'histoire

1940 1943	: La machine de Turing : Le neurone formel (McCulloch & Pitts)
1948	: Les réseaux d'automates (Von Neuman)
1949	: Première règle d'apprentissage (Hebb)
1958-62	: Le perceptron (Rosenblatt)
1960	: L'adaline (Widrow & Hoff)
1969	: <i>Perceptrons</i> (Minsky & Papert)
	les limites du Perceptron
	besoin d'architectures + complexes,
	Comment effectuer l'apprentissage ? On ne sait pas !
1974	: Rétropropagation (Werbos)
	→ pas de succès !?!?
1986	: Rétropropagation (Rumelhart & McClelland)
1990 :	« Société de l'Information »
	nouvelles applications
	 recherche/filtrage d'information dans le Web
	 extraction d'information / veille technologique
	- multimedia (indexation,)
	- data mining

Un peu d'histoire

• Ensuite, le Deep-Learning est arrivé

2012 Teams	%error	2013 Teams	%error	2014 Teams	%error
Supervision (Toronto)	15.3	Clarifai (NYU spinoff)	11.7	GoogLeNet	6.6
ISI (Tokyo)	26.1	NUS (singapore)	12.9	VGG (Oxford)	7.3
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5	MSRA	8.0
XRCE/INRIA	27.0	A. Howard	13.5	A. Howard	8.1
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	DeeperVision	9.5
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2	NUS-BST	9.7
		Adobe	15.2	TTIC-ECP	10.2
		VGG (Oxford)	15.2	XYZ	11.2
		VGG (Oxford)	23.0	UvA	12.1

Concours ImageNet 2012-2014

Rétro-propagation (exemple de fonction coût)

 Fonction coût qu'on souhaite minimiser pour un perceptron à m couches :

$$J^{(m)} = \frac{1}{2} \sum_{i=0}^{n^{(m)}} (x_i^{(m)} - y_i)^2$$

Rétro-propagation (exemple de fonction coût)

 Fonction coût qu'on souhaite minimiser pour un perceptron à m couches :

$$J^{(m)} = \frac{1}{2} \sum_{i=0}^{n^{(m)}} (x_i^{(m)} - y_i)^2$$

Résolution par une méthode de descente :

$$w_{ij} \leftarrow w_{ij} - \eta \frac{\partial J}{\partial w_{ij}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial a_i^{(m)}} \frac{\partial a_i^{(m)}}{\partial w_{ij}^{(m)}} \qquad \text{avec} \quad a_i^{(m)} = \sum_{k=0}^{m(m-1)} w_{ik}^{(m)} x_k^{(m-1)}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\begin{split} \frac{\partial J}{\partial w_{ij}^{(m)}} &= \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial a_i^{(m)}} \frac{\partial a_i^{(m)}}{\partial w_{ij}^{(m)}} \quad \text{avec} \quad a_i^{(m)} &= \sum_{k=0}^{n^{(m-1)}} w_{ik}^{(m)} x_k^{(m-1)} \\ \frac{\partial J}{\partial x_i^{(m)}} &= \frac{\partial J^{(m)}}{\partial x_i^{(m)}} \\ \downarrow & & & \\ (x_i^{(m)} - y_i) & & & \\ J^{(m)} &= \frac{1}{2} \sum_{i=0}^{n^{(m)}} (x_i^{(m)} - y_i)^2 \end{split}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial a_i^{(m)}} \frac{\partial a_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\frac{\partial J}{\partial x_i^{(m)}} = \frac{\partial J^{(m)}}{\partial x_i^{(m)}}$$

$$(x_i^{(m)} - y_i)$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial a_i^{(m)}} \frac{\partial a_i^{(m)}}{\partial w_{ij}^{(m)}} \quad \text{avec} \quad a_i^{(m)} = \sum_{k=0}^{n^{(m-1)}} w_{ik}^{(m)} x_k^{(m-1)}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial a_i^{(m)}} \frac{\partial a_i^{(m)}}{\partial w_{ij}^{(m)}} \quad \text{avec} \quad a_i^{(m)} = \sum_{k=0}^{n^{(m-1)}} w_{ik}^{(m)} x_k^{(m-1)}$$

$$\frac{\partial J}{\partial x_i^{(m)}} = \frac{\partial J^{(m)}}{\partial x_i^{(m)}} \quad x_i^{(m)} = g(a_i^{(m)})$$

$$(x_i^{(m)} - y_i)$$

$$g'(a_i^{(m)})$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m)}} = \frac{\partial J}{\partial x_i^{(m)}} \frac{\partial x_i^{(m)}}{\partial w_{ij}^{(m)}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m-1)}} = \frac{\partial J}{\partial x_i^{(m-1)}} \frac{\partial x_i^{(m-1)}}{\partial a_i^{(m-1)}} \frac{\partial a_i^{(m-1)}}{\partial w_{ij}^{(m-1)}}$$

$$\frac{\partial J}{\partial w_{ij}^{(m-1)}} = \frac{\partial J}{\partial x_i^{(m-1)}} \frac{\partial x_i^{(m-1)}}{\partial a_i^{(m-1)}} \frac{\partial a_i^{(m-1)}}{\partial w_{ij}^{(m-1)}}$$

$$x_i^{(m-1)} = g(a_i^{(m-1)}) \qquad a_i^{(m-1)} = \sum_{k=0}^{n^{(m-2)}} w_{ik}^{(m-1)} x_k^{(m-2)}$$

$$g'(a_i^{(m-1)}) \qquad x_j^{(m-2)}$$

$$\frac{\partial J}{\partial w_{ij}^{(m-1)}} = \frac{\partial J}{\partial x_i^{(m-1)}} \frac{\partial x_i^{(m-1)}}{\partial a_i^{(m-1)}} \frac{\partial a_i^{(m-1)}}{\partial w_{ij}^{(m-1)}} \frac{\partial a_i^{(m-1)}}{\partial w_{ij}^{(m-1)}} \frac{\partial a_i^{(m-1)}}{\partial w_{ij}^{(m-1)}} \frac{\partial a_i^{(m-1)}}{\partial x_i^{(m-1)}} = \sum_{k=0}^{n^{(m-2)}} w_{ik}^{(m-2)} x_k^{(m-2)} \frac{\partial a_i^{(m-1)}}{\partial x_i^{(m-1)}} \frac{\partial a_i^{(m-1)}}{$$

$$\frac{\partial J}{\partial w_{ij}^{(m-1)}} = \frac{\partial J}{\partial x_{i}^{(m-1)}} \frac{\partial x_{i}^{(m-1)}}{\partial a_{i}^{(m-1)}} \frac{\partial a_{i}^{(m-1)}}{\partial w_{ij}^{(m-1)}} \frac{\partial a_{i}^{(m-1)}}{\partial w_{ij}^{(m-1)}}$$

$$\frac{\partial J}{\partial x_{i}^{(m-1)}} = \sum_{i=0}^{n^{(m)}} \frac{\partial J}{\partial a_{i}^{(m)}} \frac{\partial a_{i}^{(m)}}{\partial x_{i}^{(m-1)}} x_{i}^{(m-1)} = g(a_{i}^{(m-1)})$$

$$y'(a_{i}^{(m-1)}) \qquad x_{j}^{(m-2)}$$

$$\frac{\partial J}{\partial x_{i}^{(m-1)}} = \sum_{i=0}^{n^{(m)}} \frac{\partial J}{\partial a_{i}^{(m)}} w_{ij}^{(m)}$$

$$\frac{\partial J}{\partial w_{ij}^{(m-1)}} = \left(\sum_{i=0}^{n^{(m)}} \frac{\partial J}{\partial a_i^{(m)}} w_{ij}^{(m)}\right) g'(a_i^{(m-1)}) x_j^{(m-2)}$$

$$\frac{\partial J}{\partial x_i^{(m-1)}} = \sum_{i=0}^{n^{(m)}} \frac{\partial J}{\partial a_i^{(m)}} w_{ij}^{(m)}$$

 $\frac{\partial J}{\partial w_{ij}^{(m-1)}} = \left(\sum_{i=0}^{n^{(m)}} \frac{\partial J}{\partial a_i^{(m)}} w_{ij}^{(m)}\right) g'(a_i^{(m-1)}) x_j^{(m-2)}$

Les réseaux de neurones dans le traitement d'images -Apprentissage profond-

Apprentissage profond

Reconnaissance d'images en temps réel

- La réduction du temps de calcul dépend de :
 - La taille du réseau de neurones influe en fonction
 - Choix du modèle
 - Puissance de calcul
 - Des calculs dans l'image
 - L'intégrale image (notion provenant l'infographie) permet de calculer rapidement les caractéristiques

$$IImage(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} Image(k,l)$$

Reconnaissance d'images en temps réel

- Utile pour calculer rapidement des moyennes
- En apprentissage profond, le calcul de moyenne est souvent utilisé

Illustration du gain de calcul avec l'intégrale image A gauche 5 opérations, à droite 3 Source de l'image en.wikipedia.org Summed-area table

Utilisation de l'intégrale image dans la méthode de Viola et Jones

- L'intégrale image a été introduit par la méthode de Viola et Jones en 2001 pour la détection de visages. Dans cette méthode,
- La méthode utilise des caractéristiques dites pseudo-haar

Caractéristiques de détection de bord

Caractéristiques de détection de lignes

Caractéristiques
Viola et Jones pour
la détection de
visages

Utilisation des Réseaux de Neurones Convolutifs (CNN)

 Krizhevsky et al. (2012) vainqueur de "the ImageNet object recognition challenge" avec l'algorithme AlexNet du group de recherche SuperVision

Utilisation des Réseaux de Neurones Convolutifs (CNN)

 Krizhevsky et al. (2012) vainqueur de "the ImageNet object recognition challenge" avec l'algorithme AlexNet du group de recherche SuperVision

Image de : Trujillo J., Alexandra. (2018). Summarization of video from Feature Extraction Method using Image Processing and Artificial Intelligence.

TP2 détection par pseudo caractéristiques haar

Références

- Jean-Claude Heudin, "Comprendre le Deep Learning: Une introduction aux réseaux de neurones", des éditions "ScienceseBook", 2016.
- Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015.
- L. Laporte, R. Flamary, S. Canu, S. Déjean and J. Mothe: Non-convex Regularizations for Feature Selection in Ranking with Sparse SVM, IEEE Transactions on Neural Networks and Learning Systems, 25(6):1118 1130, 2014.
- Paul Viola et Michael Jones, « Robust Real-time Object Detection », IJCV, 2001