

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE Saloh, Una (HP) – 177 209

Website: www.iiitu.ac.in

AY 2021-22

School of Computing

CURRICULUM: IIITUGCSE20

Cycle Test – II 28-03-2022

Degree	B. Tech.	Branch	CSE	
Semester	I			
Subject Code & Name	MAC111: Engineering Mathematics			
Time: 60 Minutes	Answer All	Questions	Maximum: 20 Marks	

Sl. No.	Question	Marks
1.a	Find c of Lagrange's mean value theorem for the function $f(x) = e^x$ in $[0,1]$.	(1)
1.b	If $x = u + v + w$, $y = uv + vw + uw$, $z = uvw$ and F is a function of x, y, z, show that $u \frac{\partial F}{\partial u} + v \frac{\partial F}{\partial v} + w \frac{\partial F}{\partial w} = x \frac{\partial F}{\partial x} + 2y \frac{\partial F}{\partial y} + 3z \frac{\partial F}{\partial z}.$	(2)
1.c	If $z(x+y) = x^2 + y^2$, show that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right).$	(2)
2.a	Using ε , δ definition, show that $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = 4, \ x \neq 1.$	(1)
2.b	Find the area between the parabola $x^2 = 4ay$ and the curve $y(x^2 + 4a^2) = 8a^3$.	(2)

2.c	If $f(x) = \frac{(5^x - 2^x)x}{\cos 5x - \cos 3x}$, $x \ne 0$ is continuous at x=0, then find f (0).	(2)
3.a	Define Linear span of a set.	(1)
3.b	V is the set of all polynomials over real numbers of degree at most one and F=R. $f(t) = a_0 + a_1 t, \ g(t) = b_0 + b_1 t \text{ in V; define}$ $f(t) + g(t) = (a_0 + b_0) + (a_0 b_1 + a_1 b_0) t \text{ and}$ $kf(t) = ka_0 + (ka_1)t, \ k \in F \text{ . Show that V (F) is not a}$ vector space.	(2)
3.c	Show that the solutions of the differential equation $(D^2 - 5D + 6)y = 0$ is a subspace of the vector space of all real valued continuous functions over R.	(2)
4.a	Define postulates of the Abelian group with respect to addition.	(1)
4.b	Let $F[x]$ be the vector space of all polynomials over the field F. Show that the infinite set $S = \{1, x, x^2, \dots \}$ is linearly independent.	(2)
4.c	Let W_1 and W_2 be two subspaces of a vector space V such that $W_1+W_2=V$ and $W_1\cap W_2=\left\{\overline{0}\right\}$. Prove that for each vector α in V there are unique vectors $\alpha_1\in W_1,\ \alpha_2\in W_2$ such that $\alpha=\alpha_1+\alpha_2$.	(2)