AUTO-ENCODING
VARIATIONAL BAYES –
KINGMA, WELLING 2014

Problem Statement

Input: X

Problem Statement

Input: X

Latent
Model P(X) <----- Variables
z

Problem Statement

Input: X

Latent
Model P(Z | X) ←--- Variables
z

Why is this hard?

P(x|z) P(z) parametric family

Typically intractable integral

Assume from some

Why is this hard?

$$P(z|x) = \frac{P(x|z)P(z)}{P(x)}$$

$$q_{\phi}(z|x) \sim P(z|x)$$

Variational parameters

More background

Goal: Minimize KL(approx, true)

Generative model

Variational Lower Bound

Bring in the Autoencoder!

Backpropagation through sampling

•

•

•

 $Z^n \sim q(z \mid x)$

Monte Carlo Gradient

$$rac{1}{L} \sum_{l=1}^{L} f(\mathbf{z})
abla_{q_{oldsymbol{\phi}}(\mathbf{z}^{(l)})} \log q_{oldsymbol{\phi}}(\mathbf{z}^{(l)})$$

Backpropagation through sampling

$$Z^1 \sim q(z \mid x)$$

•

•

•

 $Z^n \sim q(z \mid x)$

Monte Carlo Gradient

$$rac{1}{L} \sum_{l=1}^{L} f(\mathbf{z})
abla_{q_{oldsymbol{\phi}}(\mathbf{z}^{(l)})} \log q_{oldsymbol{\phi}}(\mathbf{z}^{(l)})$$

High Variance estimate!

Reparametrization Trick + SGVB

Original form

Reparameterised form

: Deterministic node

: Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014]

[Rezende et al 2014]

Variational Auto-encoders

Optimize with stochastic gradient ascent using SGVB estimator + gradients

Results

Results

(b) Learned MNIST manifold

Results

Pros

Fascinating idea

- Connection between auto-encoders and variational inference
- Good results in generating real-world datasets (faces and MNIST)

Practical

- Proposes real solution to problem of intractable integrals while computing posterior
- Classic Bayesian model

Overfitting

Regularizing nature of lower bound

Latent Variable Space

