ST205 - Homework 11

Hoang Duong

November 24, 2014

Problem 1. Let (X_n) be a submartingale such that $\sup_n X_n < \infty$ a.s. and $\mathbb{E} \sup_n (X_n - X_{n-1})^+ < \infty$. Show that X_n converges a.s.

Proof. Let $N = \inf \{n \mid X_n > M\}$ for M fixed. By OST, we have $X_{n \wedge N}$ is also a submartingale. We have:

$$X_{n \wedge N}^{+} \leq M + \sup_{n} (X_n - X_{n-1})^{+}$$

$$\Rightarrow \mathbb{E}X_{n \wedge N}^{+} \leq M + \mathbb{E}\sup_{n} (X_n - X_{n-1})^{+} < \infty$$

By Martingale Convergence Theorem, we have: $X_{n \wedge N}$ converges almost surely. Let $M \to \infty$ and and since $\sup_n X_n < \infty$, $X_{n \wedge N} \to X_n$, thus we have $(X_n)_n$ converges a.s.

Lemma 1. For $p_i \in [0,1], \forall i \in \mathbb{N}$, prove that:

$$\prod_{m=1}^{\infty} (1 - p_m) = 0 \Leftrightarrow \sum_{m=1}^{\infty} p_m = \infty$$

Proof. \Leftarrow . Given $\sum_{i=1}^{\infty} p_m = \infty$. Otherwise, we have:

$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots, \forall x \in [0,1)$$

$$\Rightarrow \log(1-x) \le -x$$

$$\Rightarrow \sum_{m=1}^{\infty} \log(1-p_m) \le \sum_{m=1}^{\infty} -p_m \to -\infty$$

$$\Rightarrow \prod_{m=1}^{\infty} (1-p_m) = 0$$

 \Rightarrow . Given $\prod_{m=1}^{\infty} (1 - p_m) = 0$. (We don't need this direction for Problem 2.)

Problem 2. For a sequence (A_n) of events, show that:

$$\sum_{n=2}^{\infty} \mathbb{P}\left[A_n \mid \bigcap_{m=1}^{n-1} A_m^c\right] = \infty \Rightarrow \mathbb{P}\left[\bigcup_{m=1}^{\infty} A_m\right] = 1$$

Proof. We have: $\mathbb{P}\left[\bigcup_{m=1}^{\infty}\right] = 1 \Leftrightarrow \mathbb{P}\left[\bigcap_{m=1}^{\infty} A_m^c\right] = 0$. Now set: $p_1 = \mathbb{P}\left[A_1\right], p_n = \left[A_n \mid \bigcap_{m=1}^{n-1} A_n^c\right]$. Then we have: $\mathbb{P}\left[\bigcap_{m=1}^{\infty} A_m^c\right] = \prod_{m=1}^{\infty} (1 - p_m)$. Since we have $\sum_{m=1}^{\infty} p_m = \infty$, thus by Lemma 1, $\prod_{m=1}^{\infty} (1 - p_m) = 0$.

Problem 3. Let (X_n) be a martingale and write $\Delta_n = X_n - X_{n-1}$. Suppose that $b_m \uparrow \infty$ and $\sum_{m=1}^{\infty} b_m^{-2} \mathbb{E} \Delta_m^2 < \infty^{(*)}$. Prove that $X_n/b_n \to 0$ a.s.

Proof. Since X_n is a martingale, we have $Y_n = \sum_{m=1}^n \Delta_m/b_m$ is also a martingale as $\mathbb{E}[X_{n+1} - X_n \mid \mathcal{F}_n] = 0, \forall n \in \mathbb{N}$. Combining this fact with (*), and applying Question 3 of Homework 10, we have:

$$\mathbb{E}Y_n^2 = \mathbb{E}Y_0^2 + \sum_{m=1}^n \frac{\mathbb{E}\Delta_m^2}{b_m^2}$$

Also because of (*), we have $\sup_n \mathbb{E} Y_n^2 < \infty$. Applying the Martingale Convergence Theorem, we have: $Y_n \to Y_\infty$ a.s. and in L^2 .

Thus by Kronecker's lemma:

$$\frac{X_n}{b_n} = \frac{\sum_{m=1}^n \Delta_m}{b_n} \to^{a.s.} 0$$

Problem 4. Let (X_n) be a martingale with $\sup_n \mathbb{E}|Y_n| < \infty$. Show that there is a representation $X_n = Y_n - Z_n$ where (Y_n) and (Z_n) are non-negative martingale such that $\sup_n \mathbb{E}Y_n < \infty$ and $\sup_n \mathbb{E}Z_n < \infty$.

Proof. Assuming uniform integrability. X_n is a martingale and $\sup_n \mathbb{E}|X_n| < \infty$, by the Martingale Convergence Theorem, we have: $X_n \to^{a.s.} X_\infty$. Define:

$$Y_n = \mathbb{E} \left[X_{\infty}^+ \mid \mathcal{F}_n \right]$$
$$Z_n = \mathbb{E} \left[X_{\infty}^- \mid \mathcal{F}_n \right]$$

then we have Y_n, Z_n are non-negative martingale (by uniform integrability), and $X_n = Y_n - Z_n$.

Problem 5. Let (X_n) be adapted to (\mathcal{F}_n) with $0 \le X_n \le 1$. Let $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Suppose $X_0 = x_0$ and:

$$\mathbb{P}\left[X_{n+1} = \alpha + \beta X_n \mid \mathcal{F}_n\right] = X_n$$

$$\mathbb{P}\left[X_{n+1} = \beta X_n \mid \mathcal{F}_n\right] = X_n$$

Show that $X_n \to X_\infty$ a.s., where $\mathbb{P}[X_\infty = 1] = x_0$ and $\mathbb{P}[X_\infty = 0] = 1 - x_0$.

Proof. We already have X_n is \mathcal{F}_n -adapted, and finite expectation. We now check:

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = X_n(\alpha + \beta X_n) + (1 - X_n)\beta X_n = X_n$$

Thus X_n is a martingale. Also $X_n \in [0,1]$, thus $\sup_n \mathbb{E} X_n^+ < \infty$. Thus by the Martingale Convergence Theorem, we have $X_n \to X_\infty$ a.s.

Given $X_n = x, X_{n+1} = \alpha + \beta x$ or βx for $\alpha, \beta > 0$. Consider $x = \alpha + \beta x$ or $x = \beta x$, which are true iff x = 1 or x = 0. So $X_{\infty} \in \{0, 1\}$.

And since
$$\mathbb{E}X_{\infty} = \mathbb{E}X_0 = x_0 \Rightarrow \mathbb{P}[X_{\infty} = 1] = x_0$$
, and $\mathbb{E}[X_{\infty} = 0] = 1 - x_0$

Problem 6. Suppose $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$ and $Y_n \to Y_{\infty}$ in L^1 . Show that $\mathbb{E}[Y_n \mid \mathcal{F}_n] \to \mathbb{E}[Y_{\infty} \mid \mathcal{F}_{\infty}]$ in L^1 .

Proof. By triangle inequality we have:

$$\mathbb{E}\left|\mathbb{E}\left[Y_n \mid \mathcal{F}_n\right] - \mathbb{E}\left[Y_\infty \mid \mathcal{F}_\infty\right]\right| \tag{1}$$

$$\leq \mathbb{E} \left| \mathbb{E} \left[Y_n \mid \mathcal{F}_n \right] - \mathbb{E} \left[Y_\infty \mid \mathcal{F}_n \right] \right| + \tag{2}$$

$$+\mathbb{E}\left|\mathbb{E}\left[Y_{\infty}\mid\mathcal{F}_{n}\right]-\mathbb{E}\left[Y_{\infty}\mid\mathcal{F}_{\infty}\right]\right|\tag{3}$$

By Jensen inequality (or just the fact that taking absolute value makes real number bigger), we have:

$$(2) \le \mathbb{E} \left[\mathbb{E} \left| Y_n - Y_\infty \right| \mid \mathcal{F}_n \right] = \mathbb{E} \left[Y_n - Y_\infty \right] \to 0$$

By theorem 5.5.7, (3) \rightarrow 0. Thus $\mathbb{E} |\mathbb{E} [Y_n \mid \mathcal{F}_n] - \mathbb{E} [Y_\infty \mid \mathcal{F}_\infty]| \rightarrow 0$.

Problem 7. Let S_n be the total assets of an insurance company at the end of year n. Suppose that in year n the company receives premium of c and pays claims totaling ξ_n , where ξ_n are independent with $\mathcal{N}\left(\mu, \sigma^2\right)$ distribution, where $0 < \mu < c$. The company is ruined if its assets fall to 0 or below. Show:

$$\mathbb{P}\left[\text{ruin}\right] \le \exp\left\{-2\left(c - \mu\right) S_0/\sigma^2\right\}$$

Proof. (a) We have $S_n = S_0 + \sum_{i=1}^n (c - \xi_i)$. Let:

$$Y_{n} = \exp\left\{\frac{2(\mu - c)}{\sigma^{2}} (S_{n} - S_{0})\right\}$$

$$\Rightarrow \mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] = Y_{n} \mathbb{E}\left[\exp\left\{\frac{2(\mu - c)}{\sigma^{2}} (c - \xi_{n+1})\right\} \mid \mathcal{F}_{n}\right]$$

$$= Y_{n} \mathbb{E}\left[\exp\left\{\frac{2(\mu - c)}{\sigma^{2}} (c - \xi_{n+1})\right\}\right]$$

For $X_n \sim \mathcal{N}(a, b^2)$, we have:

$$\mathbb{E}\left[\exp\left\{\lambda X_n\right\}\right] = \exp\left\{\lambda a + \lambda^2 b^2 / 2\right\}$$

Thus for $X_n = c - \xi_{n+1} \sim \mathcal{N}\left(c - \mu, \sigma^2\right)$, we have:

$$\mathbb{E}\left[\exp\left\{\frac{2(\mu-c)}{\sigma^2}X_n\right\}\right] = \exp\left\{\frac{2(\mu-c)}{\sigma^2}\left(c-\mu\right) + \frac{4(\mu-c)^2}{\sigma^4}\frac{\sigma^2}{2}\right\} = 1$$

$$\Rightarrow \mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_n\right] = Y_n$$

It is obvious that Y_n is adapted to \mathcal{F}_n , and have finite expectation (since expectation of Gaussian is finite), thus Y_n is a martingale.

(b) Let $T=\inf\{n,S_n\leq 0\}$. Applying the Optional Sampling Theorem, we have $Y_{n\wedge T}$ is a martingale. Now we have $\mathbb{E}Y_{n\wedge T}=\mathbb{E}Y_0<\infty$, and since $Y_{n\wedge T}>0$, thus $\sup_n\mathbb{E}Y_n^+<\infty$. Thus $Y_{n\wedge T}$ converges to a limit Y_∞ by Martingale Convergence Theorem, and $\mathbb{E}Y_\infty=\mathbb{E}Y_0=1$.

Now we have $Y_{n \wedge T} = Y_T \mathbb{I}_{\{T < n\}} + Y_n \mathbb{I}_{\{T \ge n\}}$. Thus:

$$\mathbb{E}Y_{n \wedge T} = \mathbb{E}\left[Y_T \mathbb{I}_{\{T < n\}} + Y_n \mathbb{I}_{\{T \ge n\}}\right] \tag{4}$$

$$\geq \mathbb{E}\left[\exp\left\{-\frac{2(\mu-c)}{\sigma^2}S_0\right\}\mathbb{I}_{\{T< n\}}\right] + \mathbb{E}\left[Y_n\mathbb{I}_{\{T\geq n\}}\right]$$
(5)

$$\geq \exp\left\{-\frac{2(\mu - c)}{\sigma^2}S_0\right\} \mathbb{P}\left[T < n\right] \tag{6}$$

For (5) is true because $S_T \leq 0 \Leftrightarrow (\mu - c) S_T \geq 0 \Leftrightarrow (\mu - c) (S_T - S_0) \geq (\mu - c) (0 - S_0)$. In (6) taking $n \to \infty$, we have:

$$\mathbb{P}\left[\text{ruin}\right] \le \exp\left\{-\frac{2\left(c-\mu\right)}{\sigma^2}S_0\right\}$$