

Handwritten Alphabet Recognition

19.04.2023

Likhith Raj DV

cse200001039@iiti.ac.in

Abhishek Jaisawal

cse200001001@iiti.ac.in

Overview

Libraries

Data Preprocessing

•

Model1

•

Model2

•

Model3

•

Image Prediction

Libraries

numpy and pandas

Pandas is used for data preprocessing and data manipulation. Numpy is used for preprocessing a given test image for prediction.

seaborn and matplotlib

Both are used to draw plots and represent statistical data.

imblearn

Used to handle under sampling as in the dataset the number of samples in some classes outweighs the other, thus improving efficiency and performance.

tensorflow and keras

Used for building machine learning models. Keras is also used for building neural network based models.

Importing libraries

```
[ ] from google.colab import drive drive.mount('/content/drive')
```

Mounted at /content/drive

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# for handling imbalancing
from imblearn.under_sampling import NearMiss
from keras.utils import np_utils

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report , confusion_matrix

import keras
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, Dropout, BatchNormalization
import warnings
warnings.filterwarnings('ignore')
```

Data Preprocessing

Viewing the dataset

Dataset has 372450 samples of 28 x 28 images.

Handling imbalanced data

Replacing the integers with respective alphabets.

Here, the NearMiss algorithm is used to handle undersampling.

Normalization

Normalizing the values of images between 0 and 1 by dividing with 255. This has improved the performance of the model. Sometimes normalization leads to improved convergence rate of the machine learning algorithm during the training process.

Visualizing data

Splitting into Test and Train data.

Here, we are spitting the given dataset into train and test data by splitting it in the ratio of 80% : 20%.

Model1

Architecture and Summary

```
Model 1
                                                                                                        ↑ ↓ ⊖ 🔲 💠 🗓 📋 :
   #Build an ordinary "Deep Learning" model with CNN and maxpooling by using Keras.
       model.add(Conv2D(32, (5, 5), input_shape=(28, 28, 1), activation='relu'))
       model.add(MaxPooling2D(pool_size=(2, 2)))
       model.add(Flatten())
       model.add(Dense(128, activation='relu'))
       model.add(Dense(num_classes, activation='softmax'))
       #Choose an optimizer and compile the model.
       model.compile(optimizer = Adam(learning_rate = 0.01), loss = 'categorical_crossentropy', metrics = ['accuracy'])
      #And print the summary of the model.
print(model.summary())
   Model: "sequential"
       Layer (type)
                                    Output Shape
                                                               Param #
       conv2d (Conv2D)
                                    (None, 24, 24, 32)
                                                               832
        max_pooling2d (MaxPooling2D (None, 12, 12, 32)
        flatten (Flatten)
                                    (None, 4608)
       dense (Dense)
                                    (None, 128)
                                                               589952
       dense_1 (Dense)
                                   (None, 26)
       Total params: 594,138
Trainable params: 594,138
       Non-trainable params: 0
```

This is the first model we have implemented. It has five layers and a total of 594138 trainable parameters.

Training Model1

```
[ ] history = model.fit(X_train,y_train,epochs=15, batch_size=128, validation_data=(X_test,y_test))
    Epoch 1/15
    182/182 [==
                            =========] - 13s 6ms/step - loss: 0.4713 - accuracy: 0.8688 - val loss: 0.1716 - val accurac
    Epoch 2/15
    182/182 [==
                                             - 1s 4ms/step - loss: 0.1152 - accuracy: 0.9664 - val_loss: 0.1535 - val_accuracy
    Epoch 3/15
                                                1s 4ms/step - loss: 0.0731 - accuracy: 0.9778 - val loss: 0.1231 - val accuracy
    182/182 [==
    Epoch 4/15
    182/182 [==
                                                1s 4ms/step - loss: 0.0495 - accuracy: 0.9847 - val loss: 0.1096 - val accuracy
    Epoch 5/15
                                               1s 4ms/step - loss: 0.0400 - accuracy: 0.9879 - val_loss: 0.1285 - val_accuracy
    182/182 [==
    Epoch 6/15
                                               1s 4ms/step - loss: 0.0403 - accuracy: 0.9883 - val loss: 0.1109 - val accuracy
    182/182 [==
    Epoch 7/15
    182/182 [==
                                               1s 4ms/step - loss: 0.0491 - accuracy: 0.9849 - val_loss: 0.1449 - val_accuracy
    Epoch 8/15
    182/182 [===
                                                1s 4ms/step - loss: 0.0464 - accuracy: 0.9867 - val_loss: 0.1511 - val_accuracy
    Epoch 9/15
    182/182 [==
                                               1s 4ms/step - loss: 0.0340 - accuracy: 0.9910 - val loss: 0.1843 - val accuracy
    Epoch 10/15
    182/182 [===
                                                1s 5ms/step - loss: 0.0405 - accuracy: 0.9880 - val_loss: 0.1539 - val_accuracy
    Epoch 11/15
                                               1s 6ms/step - loss: 0.0297 - accuracy: 0.9911 - val_loss: 0.1859 - val_accuracy
    182/182 [===
    Epoch 12/15
    182/182 [===
                                               1s 6ms/step - loss: 0.0362 - accuracy: 0.9903 - val loss: 0.1874 - val accuracy
    Epoch 13/15
    182/182 [===
                                                1s 5ms/step - loss: 0.0314 - accuracy: 0.9916 - val_loss: 0.1606 - val_accuracy
    Epoch 14/15
    182/182 [===
                                             - 1s 4ms/step - loss: 0.0285 - accuracy: 0.9927 - val_loss: 0.2444 - val_accuracy
    Epoch 15/15
    182/182 [===
                                         ===] - 1s 4ms/step - loss: 0.0388 - accuracy: 0.9907 - val_loss: 0.2313 - val_accuracy
```

Accuracy = 99%

Loss = 0.0388

Plots for loss vs epoch

```
plt.figure(1)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.plot(history.history['val_dation'])
plt.title('loss')
plt.title('loss')
plt.figure(2)
plt.plot(history.history['val_accuracy'])
plt.plot(history.history['val_accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Accuracy')
plt.xlabe('epoch')
plt.show()

Deltabe('epoch')
plt.show()

Doss

Training

Validation
```

Plots for accuracy vs epoch

Model2

Architecture and Summary

Model 2

```
↑ ↓ © 目 $ 🖟 🛢 :
model2 = Sequential()
    model2.add(Conv2D(64, (5, 5), input_shape=(28, 28, 1), activation='relu', padding="same"))
    model2.add(Conv2D(32, (5, 5), input_shape=(28, 28, 1), activation='relu',padding="same"))
model2.add(MaxPooling2D(pool_size=(2, 2)))
    \label{local_model2} $$ \bmod 2.add(Conv2D(128, (3, 3), activation='relu', padding="same")) $$ \bmod 2.add(Conv2D(128, (3, 3), activation='relu', padding="same")) $$ \bmod 2.add(MaxPooling2D(pool_size=(2, 2))) $$
     model2.add(Dropout(0.2))
    model2.add(Flatten())
    model2.add(Dense(128, activation='relu'))
    model2.add(Dense(num_classes, activation='softmax'))
    model2.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
print(model2.summary())
Model: "sequential_9"
     Layer (type)
                                     Output Shape
                                                                     Param #
     conv2d_33 (Conv2D)
                                    (None, 28, 28, 64)
     conv2d_34 (Conv2D)
                                   (None, 28, 28, 32)
                                                                     51232
     max_pooling2d_17 (MaxPoolin (None, 14, 14, 32) g2D)
     conv2d_35 (Conv2D)
                                    (None, 14, 14, 128)
     conv2d_36 (Conv2D)
                                    (None, 14, 14, 128)
     max_pooling2d_18 (MaxPoolin (None, 7, 7, 128)
g2D)
                                    (None, 7, 7, 128)
     dropout_8 (Dropout)
                                    (None, 6272)
     dense 18 (Dense)
                                    (None, 128)
                                                                    802944
     dense_19 (Dense)
                                    (None, 26)
    Total params: 1,043,770
Trainable params: 1,043,770
Non-trainable params: 0
```

This is the first model we have implemented. It has five layers and a total of 1,043,770 trainable parameters.

Training Model2

Accuracy = 95%

Loss = 0.95

Plots for loss vs epoch and accuracy vs epoch

Image Prediction

```
# incompage / inco
```

A pygame based app to take image input and then test the input.

