河海大学 2021-2022 学年第一学期

《概率论与数理统计 A》期末试卷 (A卷)

(供 2020 级理工类各专业使用, 2021 年 12 月)

专业班级	姓名	学号	成绩
一、填空题(每小题 4 分, 本题满分 32 分)			
1. 设事件 A 与 B 相互独立,且 $P(A) = P(B) = 0.4$,则 $P(A \cup B) =$ 。			
2. 设随机变量X~N(0,1),又设Y = 2X -	- 1,则Y~	。
3. 设随机变量(X,Y)的联合分布律为			
	$ \begin{array}{c cc} X & 1 \\ \hline 1 & \frac{1}{6} \\ 2 & \frac{1}{3} \end{array} $	$ \begin{array}{ccc} 2 & 3 \\ \hline \frac{1}{9} & \frac{1}{18} \\ \alpha & \beta \end{array} $	
若 X 与 Y 独立,则 α =	, β=	0	
4. 将编号为 1,2,3 的球随机地放入编号为 1,2,3 的盒子,每个盒子只放入一个球,若球的编号与盒子编号一致,则称一个配对,记 X 为总配对数,则			
$EX = $ \circ			
5. 设连续型随机变量 X 的密度函数为 $f(x) = \begin{cases} a + bx^2 , & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}$,且			
$EX = \frac{3}{5}$, $\square a = $, b = 。		
6. 设总体 X 服从二项分布 $X\sim B(m,p)$, X_1 , X_2 ,…, X_n 为总体 X 的一个样本,则			
$E\bar{X} = $	$D\bar{X} = \underline{\qquad}$		
7. 设 X_1 , X_2 , X_3 , X_4 , X_5 是总体 $N(0,\sigma^2)(\sigma>0)$ 的一个样本,若统计量			
$T=crac{X_1+X_2+X_3}{ X_4-X_5 }$ 服从 t —分布,则常数 $c=$,并指出其自由度为。			
8. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, μ 未知, $X_1, X_2,, X_n$ 为总体 X 的一个样本,则假设检验问题:			
	$H_0: \ \sigma^2 = \sigma_0^2,$	H_1 : $\sigma^2 \neq \sigma_0^2$	
的检验统计量为		拒绝域为	0

二、(本题满分 10 分)飞机轰炸某目标,设它能飞到距目标 500 米、200 米、100 米附近的概率分别为 0.5, 0.4, 0.1。又设距目标 500 米、200 米、100 米附近投弹命中率分别为 0.2, 0.5, 0.8。(1)求目标被命中的概率;(2)若目标被命中,求飞机是在 200 米处投弹的概率。

三、(本题满分10分)设随机变量X的密度函数为

$$f(x) = \begin{cases} \frac{1}{3}, & -1 < x < 2\\ 0, & \text{#} : \end{cases}$$

(1) 求 Y = 2X + 1的密度函数; (2) 求 $Z = X^2$ 的分布函数。

四、(本题满分 10 分)设随机变量X与Y独立同分布于 $N(\mu, \sigma^2)$,令

$$U = aX - bY$$
 , $V = aX + bY$

其中 μ , σ ,a,b为常数, $\sigma > 0$ 。

- (1) 求 EU, DU;
- (2) 求U,V的相关系数 ρ_{UV} 。

五、(本题满分 12 分)设X,Y独立同分布于参数为 $\lambda(\lambda > 0)$ 的指数分布,其密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x} , & x > 0 \\ 0, & x \le 0 \end{cases}$$

- (1) 求Z = X + Y的密度函数;
- (2) 求 $Z = \min(X, Y)$ 的密度函数。

六、(本题满分 14 分)设总体X服从参数为 $\lambda(\lambda>0)$ 的泊松分布 $X\sim P(\lambda)$, X_1 , X_2 ,…, X_n 为总体X的一个样本,

- (1) 求λ的矩估计量;
- (2) 求λ的极大似然估计量;
- (3) 证明: $B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ 不是 λ 的无偏估计量。

七、(本题满分 12 分)设某种油漆的干燥时间X服从正态分布 $N(\mu, \sigma^2)$,现测得 9 个样本,其干燥时间分别为:

其样本均值为 $\bar{x} = 6.289$,样本标准差为 s = 0.552。

- (1) 求均值 μ 的置信度为 95%的置信区间。
- (2) 对假设检验问题:

$$H_0$$
: $\mu = 6.0$, H_1 : $\mu \neq 6.0$,

是否接受 H_0 ? (取显著性水平 $\alpha = 0.05$).

$$(t_{0.025}(8) = 2.306, t_{0.025}(9) = 2.262)$$