A→ Reverse the giver integer array.

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 7 & 3 & 1 \\ 3 & 7 & 9 & 4 \end{bmatrix}$$

Swap
$$(x, y)$$
 $i = 0$ $j = N-1$ $x = 7$

while $(i < j)$ $(i < j)$ $(j + j$

TC = O(N) SC = O(1)

a→ Reverse a <u>subarray</u> from index L to R. continuous part of array

$$i = L$$
 $j = R$ $i = 1$ $i =$

 $TC = O(N) \qquad SC = O(1)$

B → liver ar integer array & multiple queries, for each query fird sum of elements Perform a task from L to R. multiple times. 0 1 2 3 4 5 6 A = [-3 6 2 4 5 2 8] # B[N][2] → Bli][0] ? ith query
Bruteforce →

Bruteforce → for $i \rightarrow 0$ to (0-1) & $L = B[i][0] \qquad R = B[i][1]$ for j → L to R of $TC = O(Q \times N)$ Seum += A ji] SC = O(1)Q, N <= 105 print (sum) Cricket (Karsh) Over - 1 2 3 4 5 6 7 8 9 10

Score - 0 2 8 14 29 31 49 65 79 88 97 after every over

Runs scored in 7 th over = 65 - 49 = 16Runs scored from 6^{th} to 10^{th} over = 97 - 31 = 66Runs scored in 10^{th} over = 97 - 88 = 9Runs scored from 3 th over = 49 - 8 = 41

```
Rus scored from 4th to 9th over = 88-14 = 74
```

```
Prefix sum
 P[i] = A[o] + A[i] + A[2] + \dots + A[i]
                            A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ A = \begin{bmatrix} 10 & 32 & 6 & 12 & 20 & 1 \end{bmatrix}
P[o] = A[o]
P[i] = P[i-1] + A[i] P = [10 42 48 60 80 81]
  P[o] = A[o]
  for i \rightarrow 1 to (N-1) (
 P[i] = P[i-1] + A[i] \qquad TC = O(N)
                    A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ A = \begin{bmatrix} 10 & 32 & 6 & 12 & 20 & 1 \end{bmatrix}
                         P = [10 \ 42 \ 48 \ 60 \ 80 \ 81]
 1 5 → 81 - 10 = 71
L R \rightarrow P[R] - P[L-1]
 0 \quad 2 \quad \rightarrow \quad P[2] = 48
    for i \rightarrow 0 to (a-1) of
    L = B[i][o] \qquad R = B[i][i]
    if (1 > 0) print (P[R] - P[1-1])
     else print (PIR] TC = O(A)
     Total TC = O(N + Q)
            SC = O(N) \rightarrow P[]
```

O(1) (update AII to prefix sum)

$$A[0] = A[0]$$
for $i \to 1$ to $(N-1)$ (
$$A[i] = A[i-1] + A[i]$$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 32 & 6 & 12 & 20 & 7 \end{bmatrix}$$

$$42 & 48 & 60 & 80 & 81$$

d → liver ar integer array, find the court of equilibrium index i.e ar index 'i' s.t

Sum of elements on left of i =

sum of elements on right of i.

$$A = \begin{bmatrix} -3 & 2 & 4 & -1 \end{bmatrix} \quad \text{is left Right} \\ 0 & 0 & 5 & x \\ Ant = 1 & 1 & -3 & 3 & x \\ 2 & -1 & -1 & \checkmark \\ 3 & 3 & 0 & x \end{bmatrix}$$

A = [-7 1 5 2 -4 3 0]

	<u>i</u>	Left	Right
	3	-1	-1 /
Ans = 2	6	0	0 /

Bruteforce $\rightarrow Vi$, check if its eq. irdex. $TC = O(N^2)$

Perefix Sum
$$\rightarrow$$
 Pli-1] Sum ((i+1) — (N-1))
$$P[N-1] - P[i]$$

$$TC = O(N + N) = O(N)$$

 $SC = O(N) / O(I)$

 $A \rightarrow How$ many subarray of length K are present is array.

$$A = \{ 1 \ 2 \ 3 \ 4 \ 5 \}$$
 $K = 2$ $Ans = 4$ $K = 5$ $K = 5$ $K = 1$

First subarray
$$\rightarrow$$
 start = 0 (L R] \rightarrow R-L+1
end = K-1
Last subarray \rightarrow start = N-K [x (N-1)] \rightarrow (N-1)-x+1=K
end = N-1 \Rightarrow N-K=z

Substrays
$$\to [0 N-K] \to N-K-0+1 = N-K+1$$

of ler $K [K-1] \to N-1-(K-1)+1 = N-K+1$

a → Print start & and index of every substray.

for
$$s \rightarrow 0$$
 to $(N-K)$ {

 $e = S+K-1$
 $prirt(s, e)$

}

for $e \rightarrow (K-1)$ to $(N-1)$ {

 $s = e-K+1$
 $prirt(s, e)$

}

Q → Given an integer array, find max subarray sum of len K subarray.

$$A = \begin{bmatrix} -3 & 4 & -2 & 5 & 3 & -2 & 8 \end{bmatrix} \quad K = 5$$

$$7 \quad 8 \quad 12 \qquad And = 12$$

Bruteforce → V subarray of len K, trovel & calculate sum.

$$TC = O((N-K+1) * K)$$

$$K = I \rightarrow (N-I+I) * I = N$$

$$K = N \rightarrow (N-N+I) * N = N$$

$$K = \frac{N}{2} \rightarrow (N-\frac{N}{2}+1) * \frac{N}{2} \approx \frac{N^2}{4} \rightarrow O(N^2)$$

<u>Sol</u> → V subservay of len K, colculate sum.

are = INT_MIN

for
$$e \rightarrow (K-1)$$
 to $(N-1)$ of

 $S = e - K + I$
 II Prefix sum

if $(S > 0)$ sum = $P[e] - P[e-1]$

else sum = $P[e]$

are = $max(are, sum)$
 $TC = O(N)$ $SC = O(N)$

Without updating $A[7 \rightarrow O(1)]$?

$$A = \begin{bmatrix} 2 & 5 & 3 \end{bmatrix} \qquad 2 \qquad \rightarrow 2$$

$$2 & 5 & \rightarrow 7$$

$$2 & 5 & 3 \rightarrow 10$$

$$5 & \rightarrow 5$$

$$5 & 3 \rightarrow 8$$

$$3 & \rightarrow 3$$

$$35 \text{ (Ans.)}$$

for $s \rightarrow 0$ to (N-1) & || s - e||

for
$$i \rightarrow s$$
 to e^{i}

Sum $+= A[i]$
 $i \rightarrow P[e] - P[s-1]$
 $i \rightarrow P[e] - P[s-1]$

Larry Forward

are = 0

for
$$s \rightarrow 0$$
 to $(N-1)$ d

Sum = 0

for $e \rightarrow s$ to $(N-1)$ f || $s = e$

Sum $+= A[e]$

are $+= sum$

}

return are $A = \begin{bmatrix} 2 & 5 & 3 \end{bmatrix}$

$$TC = O(N^{2})$$
 $Sum = 0$
 $SC = O(1)$
 $Sum = 0 + 2 + 7 + 10$
 $Sum = 0 + 2 + 7 + 10$
 $Sum = 0 + 2 + 7 + 10$

Sontribution Technique → 1) One element is used multiple

Times is arswer calculation

2) Ans = ≥ (contribution of A[i])

Vi

$$A = \begin{bmatrix} 2 & 5 & 3 \end{bmatrix}$$

$$2 \rightarrow 2$$

$$2 & 5 \rightarrow 7$$

$$Ans = 2 (contribution of A[i])$$

$$2 & 5 & 3 \rightarrow 10$$

$$5 & \rightarrow 5$$

$$A[i] * (#Suborrayle A[i])$$

$$5 & 3 \rightarrow 8$$

$$is a part of)$$

$$3 & \rightarrow 3$$

$$35 (Ans)$$

$$A = \begin{bmatrix} 3 & -2 & 4 & 5 \\ -2 & 4 & -1 & 2 & 6 \end{bmatrix}$$

start
$$\rightarrow [0 \ 1] \rightarrow 2$$

end $\rightarrow [1 \ 5] \rightarrow 5$ $2*5 = 10$

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 3 & -2 & 4 & -1 & 2 & 6 \end{bmatrix}$$

start
$$\rightarrow [0 \ 2] \rightarrow 3$$

end $\rightarrow [2 \ 5] \rightarrow 4$

subarrays where A[i] is present =

start
$$\rightarrow [0 \ i] \rightarrow i+1$$
end $\rightarrow [i \ (N-1)] \rightarrow N-1-i+1=N-i$

Ans =
$$\leq$$
 A[i] \times (i+1) \times (N-i)

$$TC = O(N)$$
 $SC = O(I)$

for
$$(i = N/2 ; i <= N ; i ++) \rightarrow N/2$$

for $(j = 2 ; j <= N ; j = j * 2) \rightarrow log(N)$

$$2 \rightarrow 4 \rightarrow ... 2^{K} = N$$

$$K = log(N)$$

$$TC = O(N log(N))$$