A particle starts from a point O and moves in a straight line.	The velocity $v \text{m s}^{-1}$	of the particle at
time t s after leaving O is given by		

$$v = k(3t^2 - 2t^3),$$

where k is a constant.

Verify that the particle returns to O when $t = 2$.	

1	Find k and hence find the total distance travelled in the first two seconds of motion.		
1	ring k and hence find the total distance travelled in the first two seconds of motion.		
•			
•			
•			
•			
•			
•			
•			
•			

.....