CHARILAOS MYLONAS

■ mylonas.charilaos@gmail.com, ¶ Mylonas Charilaos

Work Experience

Sept 2016-Sept 2021

ETH Zurich

PhD Researcher

- · Research on applications of scalable probabilistic machine learning for structural condition monitoring of wind turbines and wind farms (Python, TensorFlow)
- Implemented a message-passing Graph Network library (https://github.com/mylonasc/tf-gnns/)
- · Performed large-scale Monte-Carlo simulations (Bash, cluster computing)
- \cdot Engaged in industrial collaboration (raw data curation, deep learning for remaining useful life prediction)

DEC 2015-SEPT 2016

ETH Zurich

Research Assistant

- · Implemented and tested automated hyper-parameter tuning and training strategies for a CP-tensor decomposed regression module (Matlab)
- · Implemented and tested uncertainty quantification algorithms
- · Developed a full-stack proof-of-concept web interface to sensitivity analysis and regression module (PHP, JavaScript, Matlab)

DEC 2014-Aug 2015

ETH Zurich

(MSc Thesis, C++)

JUL 2014-DEC 2014

Credit Suisse

Full-Stack Software Developer (internship)

- \cdot Implemented and validated a high level interface for an option pricer, achieved more than 10-fold improvement by replacing pre-existing interface (C++, R)
- · Implemented a REST server to retrieve data from a time series database and an interactive web GUI for time series visualization (Python, JavaScript, MySQL)
- · Implemented a web-based script editor for an internal domain specific language for sharing time series processing pipelines and visualizations
- \cdot Developed unit tests & benchmarks, including automated inter-commit benchmarking scripts (Python)

Education

SEPT 2016 - SEPT 2021

ETH Zürich

PhD in Machine Learning for Structural Health Monitoring under

Uncertainty

Advisor: Prof. Eleni Chatzi

Sept 2012 - Sept 2015

ETH Zürich

MSc in Computational Science and Engineering Specialization: Computational Electromagnetics Thesis: Shape Optimization with Boundary Elements

Advisor: Prof. Ralf Hiptmair

Sept 2005 - May 2012

Aristotle University of Thessaloniki

MSc Civil Engineering

Thesis: Computational Homogenization for Composites With the Finite Elements

Implementation in COMSOL and FreeFem++

Technical Strengths

Programming Languages	Python, Matlab, R	•••••
	C++, Java	●●●●○○,
	JavaScript, SQL	•••000

Other software

development skills

Bash, Linux, Git, Classical ML Algorithms, Scientific Computing, Software
Design, Full-Stack Web Development, High Performance Computing (par-

allel/distributed), OpenCV, microcontroller programming

Deep learning Probabilistic Generative Models (GANs/VAEs/Normalizing flows), Graph

Neural Networks. Personal projects on CV and NLP.

Other information

Teaching assistant roles

 \cdot High Performance Computing for CSE (C++, OpenMP) (2020) (Prof. O. Schenk)

 \cdot Method of Finite Elements (Matlab) (2017 – 2019) (Prof. E. Chatzi)

 \cdot Linear Algebra Lab (2008) (Prof. C. Charalambous)

Other academic engagement

- · Student project supervision 6 MSc theses and semester projects and consulted on several others
- \cdot Reviewer assignments for Mechanical Systems and Signal Processing and Journal of Sound and Vibration

Distinctions and Certificates

- · Best paper award in 39th IMAC conference (Feb. 2021) for the paper "On an application of graph neural networks in population based SHM"
- · Human Subject Reseach Certificate (Data or Specimens Only) CITI-Program Training (April 2020)
- · SIAM Gene Golub Scholarship for PhD summer school on "High-Performance Data Analytics" Aussois, France 2019

Selected Publications

May 2021	Mylonas, C., Abdallah, I., Chatzi, E. Relational VAE: A Continuous Latent Variable Model for
	Graph Structured Data (https://arxiv.org/abs/2106.16049) under review, NeurIPS 2021

February 2021 Mylonas, C., Abdallah, I., Chatzi, E. Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using SCADA data. Wind Energy. 2021; 1- 18. https://doi.org/10.1002/we.2621

December 2020 Mylonas, C., Tsialiamanis, G., Worden, K. and Chatzi, E. Bayesian graph neural networks for strain-based crack localization. arXiv:2012.06791 to appear in 39th IMAC conference proc.

Tsialiamanis G., Mylonas C., Chatzi E., Wagg, D.J., Dervilis N., Worden, K. On an application of graph neural networks in population based SHM arXiv:2103.03655 (to appear in 39th IMAC conference proceedings)

November 2020 Mylonas C. & Chatzi E. Remaining Useful Life Estimation Under Uncertainty with Causal GraphNets. arXiv preprint arXiv:2011.11740, 2020

Lai, Z., Mylonas, C., Nagarajaiah, S. and Chatzi, E., 2021. Structural identification with physics-informed neural ordinary differential equations. Journal of Sound and Vibration, 508, p.116196.

January 2019 Mylonas, C., Abdallah, I., & Chatzi, E. N. (2020). Deep Unsupervised Learning For Condition Monitoring and Prediction of High Dimensional Data with Application on Windfarm SCADA Data. In Model Validation and Uncertainty Quantification, Volume 3 (pp. 189-196). Springer, Cham.

May 2017 Konakli K., Mylonas C., Marelli S., Sudret B. UQlab User Manual - Canonical low-rank approximations Report UQLab-V1.0-108, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2017.

Personal Interests