```
In [110]:
            import pandas as pd
            import warnings
            warnings.filterwarnings("ignore")
In [111]: data=pd.read csv("/home/placement/Downloads/Titanic Dataset.csv")
In [112]: data.describe()
Out[112]:
                    PassengerId
                                  Survived
                                               Pclass
                                                            Age
                                                                      SibSp
                                                                                 Parch
                                                                                             Fare
                     891.000000
                                891.000000
                                           891.000000
                                                      714.000000
                                                                 891.000000
                                                                             891.000000
                                                                                        891.000000
             count
                     446.000000
                                             2.308642
                                                       29.699118
                                                                   0.523008
                                                                                         32.204208
                                  0.383838
                                                                              0.381594
             mean
                     257.353842
                                  0.486592
                                             0.836071
                                                       14.526497
                                                                   1.102743
                                                                               0.806057
                                                                                         49.693429
               std
               min
                       1.000000
                                  0.000000
                                             1.000000
                                                        0.420000
                                                                   0.000000
                                                                              0.000000
                                                                                          0.000000
               25%
                     223.500000
                                  0.000000
                                             2.000000
                                                       20.125000
                                                                   0.000000
                                                                              0.000000
                                                                                          7.910400
              50%
                     446.000000
                                             3.000000
                                                       28.000000
                                                                   0.000000
                                                                                         14.454200
                                  0.000000
                                                                              0.000000
               75%
                     668.500000
                                  1.000000
                                             3.000000
                                                       38.000000
                                                                   1.000000
                                                                              0.000000
                                                                                         31.000000
                     891.000000
                                  1.000000
                                             3.000000
                                                                   8.000000
                                                                               6.000000 512.329200
              max
                                                       80.000000
In [113]: data.isna().sum()
Out[113]: PassengerId
                                 0
            Survived
                                 0
            Pclass
                                 0
            Name
                                 0
                                 0
            Sex
                               177
            Age
            SibSp
                                 0
            Parch
                                 0
            Ticket
                                 0
            Fare
                                 0
            Cabin
                               687
            Embarked
                                 2
            dtype: int64
```

In [114]: data.head(10)

Out[114]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

```
In [115]: data['Pclass'].unique()
```

Out[115]: array([3, 1, 2])

In [116]: data['Survived'].unique()

Out[116]: array([0, 1])

In [117]: data['SibSp'].unique()

Out[117]: array([1, 0, 3, 4, 2, 5, 8])

```
In [118]: data['Age'].unique()
Out[118]: array([22. , 38. , 26.
                                   , 35. ,
                                              nan, 54.
                                                        , 2.
                                                               . 27. . 14. .
                                   , 39. , 55. , 31.
                     . 58.
                            . 20.
                                                        , 34.
                                                                . 15.
                                          , 42. , 21.
                                                               , 3.
                            . 40.
                                   , 66.
                                                        , 18.
                                                                         7.
                                   , 28.5 , 5.
                             . 65.
                                                 , 11.
                                                         , 45.
                                                                . 17.
                                                 , 23.
                                          , 33.
                                                        , 24.
                     , 25.
                            , 0.83, 30.
                                                               , 46.
                 71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                               , 9.
                                                       , 56.
                 51. , 55.5 , 40.5 , 44. , 1. , 61.
                 45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
                 60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
                 70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [119]: | data['Parch'].unique()
Out[119]: array([0, 1, 2, 5, 3, 4, 6])
In [120]: data['Cabin'].unique()
Out[120]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                                'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',
                 'F G73', 'E31',
                 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
                 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
                 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',
                 'B39', 'B22'.
                               'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
                               'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
                 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63'
                 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
                 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                 'C148'], dtype=object)
```

```
In [121]: data['Embarked'].unique()
Out[121]: array(['S', 'C', 'Q', nan], dtype=object)
In [122]: data['Ticket'].unique()
Out[122]: array(['A/5 21171', 'PC 17599', 'STON/02. 3101282', '113803', '373450',
                  '330877', '17463', '349909', '347742', '237736', 'PP 9549',
                 '113783', 'A/5. 2151', '347082', '350406', '248706', '382652',
                 '244373', '345763', '2649', '239865', '248698', '330923', '113788',
                 '347077', '2631', '19950', '330959', '349216', 'PC 17601',
                  'PC 17569', '335677', 'C.A. 24579', 'PC 17604', '113789', '2677',
                 'A./5. 2152', '345764', '2651', '7546', '11668', '349253',
                 'SC/Paris 2123', '330958', 'S.C./A.4. 23567', '370371', '14311',
                 '2662', '349237', '3101295', 'A/4. 39886', 'PC 17572', '2926',
                 '113509', '19947', 'C.A. 31026', '2697', 'C.A. 34651', 'CA 2144',
                  '2669', '113572', '36973', '347088', 'PC 17605', '2661',
                 'C.A. 29395', 'S.P. 3464', '3101281', '315151', 'C.A. 33111',
                 'S.O.C. 14879', '2680', '1601', '348123', '349208', '374746',
                 '248738', '364516', '345767', '345779', '330932', '113059',
                 'SO/C 14885', '3101278', 'W./C. 6608', 'SOTON/OO 392086', '343275',
                 '343276', '347466', 'W.E.P. 5734', 'C.A. 2315', '364500', '374910',
                 'PC 17754', 'PC 17759', '231919', '244367', '349245', '349215',
                 '35281', '7540', '3101276', '349207', '343120', '312991', '349249',
                 '371110', '110465', '2665', '324669', '4136', '2627',
                                      12702601
In [123]: | data['Sex'].unique()
Out[123]: array(['male', 'female'], dtype=object)
```

```
In [124]: data['Fare'].unique()
                                                                8.05
Out[124]: array([ 7.25
                              71.2833,
                                          7.925 ,
                                                    53.1
                                                                          8.4583.
                                         11.1333,
                                                    30.0708,
                                                              16.7
                   51.8625.
                              21.075 ,
                                                                         26.55
                   31.275 ,
                               7.8542,
                                         16.
                                                    29.125 ,
                                                              13.
                                                                         18.
                                          8.0292,
                                                    35.5
                                                               31.3875, 263.
                              26.
                    7.225 ,
                    7.8792,
                               7.8958,
                                         27.7208, 146.5208,
                                                                7.75
                   82.1708,
                              52.
                                          7.2292,
                                                   11.2417,
                                                                9.475 ,
                                                                         21.
                              15.5
                                         21.6792,
                                                    17.8
                                                              39.6875,
                   41.5792.
                                                    46.9
                                                              80.
                                                                         83.475
                   76.7292,
                              61.9792,
                                         27.75
                   27.9
                              15.2458,
                                          8.1583,
                                                     8.6625,
                                                               73.5
                                                                         14.4542,
                   56.4958,
                               7.65
                                         29.
                                                    12.475 ,
                                                                9.
                                                                          9.5
                                         15.85
                    7.7875,
                              47.1
                                                    34.375 ,
                                                              61.175 .
                                                                         20.575 ,
                                         23.
                   34.6542,
                              63.3583,
                                                    77.2875,
                                                                8.6542,
                                                                          7.775 ,
                                         14.4583, 247.5208,
                   24.15
                               9.825 ,
                                                                7.1417,
                                                                         22.3583,
                                         14.5
                    6.975 ,
                               7.05
                                                    15.0458,
                                                               26.2833,
                                                                           9.2167,
                                         11.5
                   79.2
                               6.75
                                                    36.75
                                                                7.7958,
                                                                         12.525 ,
                   66.6
                               7.3125,
                                         61.3792,
                                                     7.7333,
                                                              69.55
                                                                         16.1
                   15.75
                              20.525 ,
                                         55.
                                                    25.925 ,
                                                              33.5
                                                                         30.6958,
                                                              39.
                   25.4667,
                              28.7125,
                                          0.
                                                    15.05
                                                                         22.025 ,
                                          6.4958,
                                                              18.7875,
                   50.
                               8.4042,
                                                    10.4625,
                                                                         31.
                              27.
                                                    90.
                                                                9.35
                                                                         13.5
                  113.275 ,
                                         76.2917,
                    7.55
                              26.25
                                         12.275 ,
                                                     7.125 ,
                                                              52.5542,
                                                                         20.2125,
                   86.5
                             512.3292,
                                         79.65
                                                , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                              77.9583,
                                         20.25
                                                    78.85
                                                              91.0792,
                                                                         12.875 ,
                           , 151.55
                                         30.5
                                                    23.25
                                                              12.35
                     8.85
                                                                      , 110.8833,
                  108.9
                              24.
                                         56.9292,
                                                    83.1583, 262.375
                                                                         14.
                  164.8667, 134.5
                                          6.2375,
                                                              28.5
                                                    57.9792,
                                                                      , 133.65
                                         35.
                                                    75.25
                                                              69.3
                   15.9
                                                                         55.4417,
                               9.225 ,
                  211.5
                               4.0125, 227.525 ,
                                                    15.7417,
                                                                7.7292,
                                                                         12.
                              12.65
                                         18.75
                                                              32.5
                                                                          7.875 ,
                  120.
                                                     6.8583,
                   14.4
                              55.9
                                          8.1125,
                                                    81.8583,
                                                               19.2583,
                                                                         19.9667,
                   89.1042,
                              38.5
                                          7.725 ,
                                                    13.7917,
                                                                9.8375,
                                                                          7.0458,
                                                                         15.1
                              12.2875,
                                          9.5875,
                    7.5208,
                                                    49.5042,
                                                              78.2667,
                              22.525 ,
                    7.6292,
                                         26.2875,
                                                    59.4
                                                                7.4958,
                                                                         34.0208,
                   93.5
                           , 221.7792, 106.425 ,
                                                    49.5
                                                              71.
                                                                         13.8625,
                    7.8292.
                              39.6
                                                    51.4792.
                                                              26.3875,
                                                                         30.
                                         17.4
                   40.125 ,
                               8.7125,
                                         15.
                                                    33.
                                                              42.4
                                                                         15.55
                              32.3208,
                                          7.0542,
                                                     8.4333,
                                                              25.5875,
                                                                          9.8417,
                   65.
                    8.1375.
                              10.1708, 211.3375,
                                                    57.
                                                              13.4167.
                                                                          7.7417.
                     9.4833,
                               7.7375,
                                          8.3625, 23.45
                                                              25.9292,
                                                                          8.6833,
```

6.45

8.5167,

7.8875, 37.0042,

```
6.4375,
                               39.4
                                      , 14.1083, 13.8583,
                                                                50.4958,
                     9.8458, 10.5167])
In [125]: data1=data.drop(['PassengerId','Cabin','Name','Ticket','SibSp','Parch'],axis=1)
           data1
                                                         S
              O
                                     22.0
                                           7.2500
                                 male
                                                        С
                                      38.0 71.2833
                      1
                             1 female
                                     26.0
              2
                      1
                                          7.9250
                                                         S
                             3 female
                      1
                             1 female
                                      35.0 53.1000
                                                         S
                      0
                                     35.0
                                                         S
                                 male
                                           8.0500
            886
                      0
                                     27.0 13.0000
                                                         S
                                male
                                     19.0 30.0000
                                                         S
            887
                      1
                             1 female
            888
                      0
                             3 female
                                     NaN 23.4500
                                                         S
            889
                      1
                                      26.0 30.0000
                                                        С
            890
                      0
                             3
                                     32.0
                                                        Q
                                 male
                                          7.7500
           891 rows × 6 columns
In [126]: list(data1)
Out[126]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']
In [127]: data1.isna().sum()
Out[127]: Survived
                           0
           Pclass
                           0
           Sex
                           0
           Age
                        177
           Fare
                           0
           Embarked
                           2
           dtype: int64
```

```
In [128]: data1.shape
Out[128]: (891, 6)
In [129]: data1['Sex']=data1['Sex'].map({'male':1, 'female':0})
data1
```

Out[129]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [130]: data1['Pclass'].unique
Out[130]: <bound method Series.unique of 0</pre>
                                                  3
          2
                  3
          886
                 2
          887
                  1
          888
                  3
          889
                  1
          890
          Name: Pclass, Length: 891, dtype: int64>
In [131]: data2=data1.fillna(data1.median())
          data2
```

Out[131]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
		•••				
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

In [132]: import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(data2.Age)

Out[132]: <Axes: >


```
In [133]: #plt.hist(data1['Age'])
plt.hist(data1['Age'])
```



```
In [135]: data2.isna().sum()
Out[135]: Survived
                      0
          Pclass
                      0
          Sex
                      0
          Age
                      0
          Fare
          Embarked
          dtype: int64
In [136]: data2.fillna(35,inplace=True)
In [137]: data2.isna().sum()
Out[137]: Survived
                      0
          Pclass
                      0
          Sex
                      0
          Age
                      0
          Fare
          Embarked
          dtype: int64
In [138]: data2.describe()
```

Out[138]:

	Survived	Pclass	Sex	Age	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	0.647587	29.361582	32.204208
std	0.486592	0.836071	0.477990	13.019697	49.693429
min	0.000000	1.000000	0.000000	0.420000	0.000000
25%	0.000000	2.000000	0.000000	22.000000	7.910400
50%	0.000000	3.000000	1.000000	28.000000	14.454200
75%	1.000000	3.000000	1.000000	35.000000	31.000000
max	1.000000	3.000000	1.000000	80.000000	512.329200

```
In [139]: data2['Age'].unique()
Out[139]: array([22. , 38. , 26. , 35. , 28.
                                             , 54.
                                                    , 2. , 27. , 14. ,
                          , 20.
                   , 58.
                                , 39.
                                       , 55.
                                             , 31.
                                                    , 34.
               19. , 40. , 66. , 42. , 21.
                                             , 18.
                                                    , 3.
                                                          , 7.
               29. , 65. , 28.5 , 5.
                                      , 11.
                                             , 45.
                                                           , 32.
                                                    , 17.
               25. , 0.83, 30. , 33. , 23. , 24.
                                                    , 46.
               37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                    , 9.
                                                          , 36.5
               55.5 , 40.5 , 44. , 1. , 61. , 56.
                                                   , 50. , 36.
               20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43.
               10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80.
               24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [140]: data3=data2.groupby(['Age']).count()
         data3
```

Out[140]:

Age					
0.42	1	1	1	1	1
0.67	1	1	1	1	1
0.75	2	2	2	2	2
0.83	2	2	2	2	2
0.92	1	1	1	1	1
70.00	2	2	2	2	2
70.50	1	1	1	1	1
71.00	2	2	2	2	2
74.00	1	1	1	1	1
80.00	1	1	1	1	1

Survived Pclass Sex Fare Embarked

88 rows × 5 columns

In [141]: data2['Pclass']=data2['Pclass'].map({1:'F',2:'S',3:'Third'})
 data2

Out[141]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Third	1	35.0	8.0500	S
		•••				
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	Third	0	28.0	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	Third	1	32.0	7.7500	Q

891 rows × 6 columns

In [142]: data4=pd.get_dummies(data2)
 data4

Out[142]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
886	0	1	27.0	13.0000	0	1	0	0	0	0	1
887	1	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	0	28.0	23.4500	0	0	1	0	0	0	1
889	1	1	26.0	30.0000	1	0	0	0	1	0	0
890	0	1	32.0	7.7500	0	0	1	0	0	1	0

891 rows × 11 columns

In [143]: cor_mat=data4.corr()
cor_mat

Out[143]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked
Survived	1.000000	-0.543351	-0.064910	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.1556
Sex	-0.543351	1.000000	0.081163	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.1257
Age	-0.064910	0.081163	1.000000	0.096688	0.323896	0.015831	-0.291955	0.075229	0.030248	-0.031415	-0.0146
Fare	0.257307	-0.182333	0.096688	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.1666
Pclass_F	0.285904	-0.098013	0.323896	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.1703
Pclass_S	0.093349	-0.064746	0.015831	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.1920
Pclass_Third	-0.322308	0.137143	-0.291955	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.0095
Embarked_35	0.060095	-0.064296	0.075229	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.0765
Embarked_C	0.168240	-0.082853	0.030248	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.7783
Embarked_Q	0.003650	-0.074115	-0.031415	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.4966
Embarked_S	-0.155660	0.125722	-0.014665	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.0000

```
In [144]: 1 import seaborn as sns
2 sns.heatmap(cor_mat,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')
```

Out[144]: <Axes: >


```
In [145]: data4.groupby('Survived').count()
Out[145]:
                   Sex Age Fare Pclass_F Pclass_S Pclass_Third Embarked_35 Embarked_C Embarked_Q Embarked_S
            Survived
                 0 549
                        549
                             549
                                     549
                                              549
                                                         549
                                                                    549
                                                                               549
                                                                                          549
                                                                                                     549
                 1 342
                                             342
                                                        342
                                                                    342
                                                                                          342
                        342
                             342
                                     342
                                                                               342
                                                                                                     342
In [146]: y=data4['Survived']
           x=data4.drop('Survived',axis=1)
In [147]: y
Out[147]: 0
                  0
           2
           886
           887
           888
           889
           890
           Name: Survived, Length: 891, dtype: int64
In [148]: from sklearn.model selection import train test split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [149]: x_test.head(5)

Out[149]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
709	1	28.0	15.2458	0	0	1	0	1	0	0
439	1	31.0	10.5000	0	1	0	0	0	0	1
840	1	20.0	7.9250	0	0	1	0	0	0	1
720	0	6.0	33.0000	0	1	0	0	0	0	1
39	0	14.0	11.2417	0	0	1	0	1	0	0

In [150]: x_train.head(5)

Out[150]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
6	1	54.0	51.8625	1	0	0	0	0	0	1
718	1	28.0	15.5000	0	0	1	0	0	1	0
685	1	25.0	41.5792	0	1	0	0	1	0	0
73	1	26.0	14.4542	0	0	1	0	1	0	0
882	0	22.0	10.5167	0	0	1	0	0	0	1

In [151]: y_test.head(5)

Out[151]: 709

709 1 439 0

840 0

720

39

Name: Survived, dtype: int64

```
In [152]: y train.head(5)
Out[152]: 6
                 0
          718
          685
                 0
          73
                 0
                 0
          882
          Name: Survived, dtype: int64
In [154]: #Logistic Regression
          from sklearn.linear model import LogisticRegression
          classifier=LogisticRegression()
          classifier.fit(x train,y train)#command for training/fitting the model
Out[154]:
           ▼ LogisticRegression
          LogisticRegression()
In [155]: y pred=classifier.predict(x test)
In [156]: y pred
Out[156]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0])
```

154-Tp, 83-Tn, 21-Fp, 37-Fn