Somador / Subtrator de 5 Bits

Enzo Rocha Leite Diniz Ribas Luana Ferreira Coimbra Moreno Jones Costa Paola Nobre Gatti

Sistemas Lógicos Digitais Prof. Ricardo Martins Ramos

Escola Superior Dom Helder Câmara

CCM1º Semestre - 2024

Resumo

Este trabalho apresenta a implementação de um circuito digital capaz de realizar operações de soma e subtração de números binários utilizando o software Logisim. O circuito foi projetado utilizando portas lógicas e sistemas de interação com o usuário para entrada e saída de dados. Testes foram realizados para validar o correto funcionamento do circuito e os resultados foram analisados para verificar sua eficácia.

Sumário

Resumo	1
Sumário	1
Introdução	3
Metodologia	3
Ferramentas Utilizadas	3
Design do Circuito	3
Estrutura	3
Sistema de 5 bits:	3
Passo a Passo da Implementação	4
Somador Completo (Full Adder):	4
Subtrator:	4
Controle de Operação:	4
Sistema de Exibição com Displays de 7 Segmentos:	4
LED para Indicar Overflow:	4
Diagramas	5
Meio-Somador	5
Somador Completo	5
Circuito Subtrator/Somador com controle de Operação:	6
Sistema de Exibição com Displays de 7 Segmentos:	7
Sistema Indicador de Overflow:	9
Implementação	10
Passo a Passo da Implementação no Logisim:	11
Tabela Verdade	11
Tabela de verdade para o somador/subtrator de 1 bit:	11
Testes e Resultados	12

Procedimentos de Teste	12
Resultados Obtidos	12
Análise dos Resultados	12
Conclusão	
Resumo dos Principais Pontos	13
Quando Usar Este Circuito	
Referências	13
Apêndice	
Créditos:	13

Introdução

Os sistemas lógicos são essenciais para o desenvolvimento de circuitos digitais que executam operações aritméticas básicas. Este trabalho tem como objetivo explorar a implementação de um circuito subtrator/somador utilizando o software Logisim. A importância deste estudo reside na compreensão dos princípios básicos dos circuitos aritméticos digitais.

Metodologia

Ferramentas Utilizadas

Para a implementação do circuito subtrator/somador, utilizamos o software Logisim, uma ferramenta de simulação de circuitos digitais que permite a construção e simulação de circuitos lógicos de forma intuitiva e eficaz.

Design do Circuito

Estrutura

O circuito projetado consiste em uma associação de um meio-somador e somadores completos (full adders), de 5 bits sendo 1 bit de sinal, de forma a permitir tanto operações de soma quanto de subtração. O controle do tipo de operação é realizado através de uma entrada de controle que define se o circuito deve realizar uma soma ou uma subtração.

Sistema de 5 bits:

O sistema de 5 bits, com 1 bit de sinal consegue armazenar valores numéricos do intervalo -16 ao 15.

A tabela a seguir demonstra a conversão desse intervalo decimal para valores binários:

1	Decimal	i	Binário	I	Decimal	Ī	Binário	ı	Decimal	į	Binário	ı	Decimal	ı	Binário
1		1-		ŀ		ŀ		1		ŀ		-		-	
1	-16	L	10000	I	-12	I	10100	I		ľ	11000		-4		11100
1	-15	I	10001	I	-11	ľ	10101	Ī	-7	Ī	11001		-3		11101
1	-14	Ī	10010	I	-10	Ī	10110	Ī		Ī	11010		-2		11110
Ī	-13	Ī	10011	ı	-9	ĺ	10111	Ī	-5	Ī	11011		-1		11111
1		Ī	00000	Ī		Ĺ	00100	Ī		Ī	01000		12		01100
1	1	Ī	00001	Ī		ĺ	00101	Ī		Ī	01001		13	ľ	01101
1		Ī	00010	Ī		Ī	00110	Ī	10	Ī	01010		14		01110
Ī		Ī	00011	I		I	00111	I	11	I	01011		15		01111

Passo a Passo da Implementação

Somador Completo (Full Adder): Implementamos um somador completo utilizando portas XOR, e AND.

Subtrator: Adaptamos o somador completo para realizar subtração utilizando o complemento a dois.

Controle de Operação: Adicionamos uma entrada de controle que, quando ativa, inverte os bits do subtraendo para realizar a subtração.

Sistema de Exibição com Displays de 7 Segmentos: Implementamos um sistema de Decodificadores associado a um circuito de 3 Displays de 7 Segmentos para exibição do resultado, 2 Displays para as casas decimais e 1 para o sinal.

LED para Indicar Overflow: Adicionamos um LED adicional para indicar overflow. O overflow ocorre quando há uma mudança no bit de transporte entre o bit mais significativo de entrada e o bit mais significativo de saída, indicando que o resultado excedeu a capacidade do circuito. O LED de overflow é conectado para acender quando ocorre uma das seguintes condições:

Overflow na Adição

Condições para Overflow na Adição

- Dois números positivos resultam em um número negativo.
- Dois números negativos resultam em um número positivo.

Overflow na Subtração

Como a subtração é feita adicionando o complemento de dois do subtraendo, a lógica de detecção de overflow na subtração segue os mesmos princípios da adição.

Condições para Overflow na Subtração

- Um número positivo subtraído de um número negativo resulta em um número fora do intervalo.
- Um número negativo subtraído de um número positivo resulta em um número fora do intervalo.

O LED de overflow fornecerá uma indicação visual imediata quando qualquer uma dessas condições de overflow ocorrer durante uma operação de soma ou subtração.

Diagramas

Meio-Somador.

Figura 1: Diagrama esquemático do meio-somador.

Somador Completo.

Figura 2: Diagrama esquemático do somador completo.

Circuito Subtrator/Somador com controle de Operação:

Figura 3: Circuito subtrator/somador com controle de operação.

Sistema de Exibição com Displays de 7 Segmentos:

Figura 4: Fluxograma esquemático do circuito de Decodificação

Sistema Indicador de Overflow:

Figura 6 e 7: Funcionamento do Sistema de Indicação de Overflow

Implementação

O circuito subtrator/somador foi implementado no Logisim conforme descrito na metodologia.

A Figura a seguir representa o diagrama esquemático do circuito completo:

Passo a Passo da Implementação no Logisim:

Criar o Somador Completo:

Utilizar portas XOR, e AND para construir um somador completo.

Adaptar para Subtração:

Inverter os bits do subtraendo e adicionar 1 (complemento de dois) para realizar a subtração.

Adicionar Controle de Operação:

Introduzir uma entrada de controle que seleciona entre soma e subtração.

Testar Circuito:

Conectar entradas e saídas adequadas e verificar o funcionamento utilizando diferentes combinações de bits.

Tabela Verdade

Tabela de verdade para o somador/subtrator de 1 bit:

A	В	Operação	S (Soma/Subtração)	Carry Out
0	0	Soma	0	0
0	1	Soma	1	0
1	0	Soma	1	0
1	1	Soma	0	1
0	0	Subtração	0	0
0	1	Subtração	1	1
1	0	Subtração	1	0
1	1	Subtração	0	0

Testes e Resultados

Procedimentos de Teste

Realizamos testes exaustivos no circuito utilizando diferentes combinações de entradas para verificar a correção das operações de soma e subtração. Utilizamos o modo de simulação do Logisim para observar os resultados em tempo real.

Resultados Obtidos

Os resultados dos testes mostraram que o circuito funciona corretamente tanto para operações de soma quanto de subtração. A Tabela 2 apresenta os resultados dos testes realizados.

Tabela 2: Resultados dos testes do circuito subtrator/somador.

Operação	A4	А3	A2	A1	A0	В4	В3	B2	В1	ВО	Operação	Resultado Esperado	Resultado Obtido
1 + 1	0	0	0	0	1	0	0	0	0	1	0	2	2
3 - 1	0	0	0	1	1	0	0	0	0	1	1	2	2
-15 + 1	1	0	0	0	1	0	0	0	0	1	0	-14	-14
7 + (-2)	0	0	1	1	1	1	1	1	1	0	0	5	5
8 + 8	0	1	0	0	0	0	1	0	0	0	0	OF	OF
15+1	0	1	1	1	1	0	0	0	0	1	0	OF	OF
9 - 3	0	1	0	0	1	0	0	0	1	1	1	6	6
15 - 14	0	1	1	1	1	0	1	1	1	0	1	1	1
(-5) - (-3)	1	1	0	1	1	1	1	1	0	1	1	-2	-2
(-5) + (-3)	1	1	0	1	1	1	1	1	0	1	0	-8	-8

Análise dos Resultados

Os testes confirmaram que o circuito realiza corretamente as operações de soma e subtração, com resultados alinhados às expectativas teóricas. Não foram identificados casos de overflow devido à escolha adequada dos bits de controle e do uso correto do complemento de dois.

Conclusão

Resumo dos Principais Pontos

Este trabalho apresentou a implementação de um subtrator/somador utilizando o software Logisim. A implementação foi baseada em conceitos de portas lógicas, e os testes realizados confirmaram a eficácia do circuito.

Quando Usar Este Circuito

Este circuito é útil em diversas aplicações digitais onde operações aritméticas básicas são necessárias, como em processadores simples e sistemas embarcados.

Referências

- Documentação do Logisim: http://www.cburch.com/logisim/
- Material Didático oferecido pelo professor Ricardo Martins Ramos durante o Curso
- MIDORIKAWA, Edson. Uma Metodologia de Projeto de Circuitos Digitais (2017)
- https://chatgpt.com

Apêndice

- https://www.youtube.com/@NivaldoJrSP
- https://eaulas.usp.br/portal/video?idItem=7736

Créditos:

Este trabalho foi elaborado pelos alunos do primeiro período do curso de Ciência da Computação da Faculdade Dom Helder Câmara. O Grupo é composto por Enzo R. L. D. Ribas, Luana Ferreira Coimbra, Moreno Jones Costa, e Paola Nobre Gatti em 2024.