MATH 250: TOPOLOGY I PROBLEM SET #4

FALL 2025

Due Friday, October 31. Please attempt all of the problems. <u>Six</u> of them will be graded. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words.

Problem 1 (Munkres 157, #1(a), (c)). (1) Show that no two of the spaces

are homeomorphic. *Hint:* What happens if you remove certain points from each of these spaces?

(2) Show that **R** is not homeomorphic to \mathbf{R}^n for any n > 1.

Problem 2 (Munkres 158, #3). Let $f: X \to X$ be continuous. Show that:

(1) If X = [0,1], then f has a fixed point: that is, a point $x \in X$ such that

$$f(x) = x$$
.

Hint: Intermediate Value Theorem.

(2) If X = [0, 1), then the analogue of (1) fails.

Problem 3 (Munkres 162, #4). Show that if X is locally path connected, then every connected open subset of X is path connected. *Hint:* Munkres Theorem 25.4 or 25.5.

Problem 4 (Munkres 171, #5). Let X be Hausdorff, and let A, B be disjoint compact subspaces of X. Show that there exist disjoint open $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$. Hint: Munkres Lemma 26.4.

Problem 5 (Munkres 171, #7). Show that if Y is compact, then for any space X, the projection

$$\operatorname{pr}_X: X \times Y \to X$$
 defined by $\operatorname{pr}_X(x,y) = x$

is a *closed map*, meaning it takes closed sets to closed sets.

Problem 6. Read the definition of the T_1 axiom in Munkres §17, and the definitions of regular and normal spaces in Munkres §31. (The Hausdorff axiom is sometimes called the T_2 axiom.)

- (1) Put the four conditions above in order from most to least restrictive.
- (2) Show that **R** is not Hausdorff in the finite complement topology.
- (3) Show directly, without using tools from Munkres §32 onwards, that **R** is normal in the analytic topology.

Problem 7 (Munkres 330, #2). For any spaces X, Y, let [X, Y] be the set of homotopy classes of maps of X into Y. For clarity, let I = [0, 1]. Show that:

- (1) If X is nonempty, then [X, I] is a singleton.
- (2) If Y is nonempty and path-connected, then [I, Y] is a singleton.

Problem 8 (Munkres 330, #3). Keep the notation of Problem 7. We say that a nonempty space X is *contractible* if and only if its identity map is nulhomotopic: *i.e.*, homotopic to some constant-valued map. Show that:

- (1) I and \mathbf{R} are contractible.
- (2) Any contractible (nonempty) space is path-connected.
- (3) If X, Y are nonempty and Y is contractible, then [X, Y] is a singleton.
- (4) If X, Y are nonempty, X is contractible, and Y is path-connected, then [X, Y] is a singleton.

Problem 9. Let I be a poset, and let \leq denote its partial order (\preceq). We define an *inverse system* indexed by I to consist of:

- (A) A collection of sets $\{X_i\}_{i\in I}$.
- (B) A collection of maps $\{\phi_{i,j}: X_j \to X_i\}_{i \leq j}$, such that for all $i, j, k \in I$ with $i \leq j \leq k$, we have $\phi_{i,k} = \phi_{i,j} \circ \phi_{j,k}$.

Below, for convenience, we set $\mathbf{N} = \{1, 2, 3, \ldots\}$. Show that the following data give inverse systems.

(1) $I = \mathbf{N}$ and \leq is \leq . We fix a positive integer p > 0 and set

$$X_i = \mathbf{Z}/p^i \mathbf{Z},$$

$$\phi_{i,j}(a \bmod p^j) = a \bmod p^i.$$

(2) I is the set of intervals (a, b) for $a, b \in \mathbf{R}$, and \leq is \subseteq . We set

$$X_S = \{\text{continuous functions from } S \text{ to } \mathbf{R}\},$$

$$\phi_{S,T}(f) = f|_S,$$

where $|_{S}$ means we restrict the domain from T to S.

Problem 10. Let $(\{X_i\}_{i\in I}, \{\phi_{i,j}\}_{i\leq j})$ be an inverse system. We define its *inverse* $limit \lim_{i \to \infty} X_i$ to be the set

$$\varprojlim_{i} X_{i} = \left\{ (x_{i})_{i} \in \prod_{i \in I} X_{i} \middle| \phi_{i,j}(x_{j}) = x_{i} \text{ for all } i, j \in I \text{ with } i \leq j \right\}.$$

Show that:

- (1) For the inverse system in Problem 9(1), the inverse limit is infinite, even though X_i is finite for all i.
- (2) For the inverse system in Problem 9(2), the map

{continuous functions from
$$\mathbf{R}$$
 to \mathbf{R} } $\rightarrow \varprojlim_S X_S$ defined by $f \mapsto (f|_S)_S$

is a bijection.

(3) The analogue of (2), where we replace the word "continuous" with the word "bounded" everywhere, is false.

Problem 11. Let $(\{X_i\}_{i\in I}, \{\phi_{i,j}\}_{i\preceq j})$ be an inverse system. Suppose that each set X_i is endowed with a topology, such that each map $\phi_{i,j}$ is continuous. View $\varprojlim_i X_i$ as a subspace of $\prod_i X_i$ in the product topology. Show that:

- (1) If X_i is Hausdorff for all i, then $\lim_i X_i$ is Hausdorff.
- (2) If X_i is Hausdorff for all i, then $\varprojlim_i X_i$ is closed in $\prod_i X_i$. Hint: Observe that the composition

$$\prod_{i} X_{i} \xrightarrow{\operatorname{pr}_{j} \times \operatorname{pr}_{i}} X_{j} \times X_{i} \xrightarrow{\phi_{i,j} \times \operatorname{id}} X_{i} \times X_{i}$$

is continuous for all $i, j \in I$ with $i \leq j$. Use Problem Set 3, #7(3).

(3) If X_i is compact for all i, then $\varprojlim_i X_i$ is compact. *Hint:* Combine part (2) above with Tychonoff's theorem.

Problem 12. In the inverse system in Problem 9(1), take p to be a prime number. Here, the inverse limit is called the set of p-adic integers and denoted \mathbf{Z}_p . In what follows, we endow $\mathbf{Z}/p^i\mathbf{Z}$ with the discrete topology for all i.

- (1) Show that the maps $\phi_{i,j}$ are all continuous, and that \mathbf{Z}_p is compact and Hausdorff.
- (2) For all $j \in \mathbf{N}$ and $a \in \mathbf{Z}$, we define $a + p^j \mathbf{Z}_p$ to be the preimage of the residue $a \mod p^j$ under the composition

$$\mathbf{Z}_p \to \prod_i \mathbf{Z}/p^i \mathbf{Z} \xrightarrow{\mathrm{pr}_j} \mathbf{Z}/p^j \mathbf{Z}.$$

Show that $a + p^j \mathbf{Z}_p$ is always clopen.

Extra credit: Using (2), show that \mathbf{Z}_p is totally disconnected but not discrete.