Классификация по Флинну

	Одиночный поток команд(Single Instruction)	Множество потоков команд(Multiple Instruction)
Одиночный	SISD - это классический последовательный	MISD - разные потоки инструкций выполняются
поток	компьютер фон Неймана. Программа при-	с одними и теми же данными. В результате на
данных(Single	нимает один поток данных и выполняет	выходе системы получается один поток данных.
Data)	один поток инструкций по обработке этих	К таким системам относят различные системы
	данных. Т.е. инструкции выполняются по-	дублирования и защиты от сбоев, когда, напри-
	следовательно.	мер, несколько процессоров дублируют вычис-
		ления друг друга для надёжности. Иногда к этой
		категории относят <i>конвейерные архитектуры</i> .
Множество	SIMD - один поток инструкций выполняет	MIMD - разные потоки инструкций оперируют
потоков	вычисления одновременно с разными дан-	различными данными. Это системы наиболее
данных(Multiple	ными. Например, сложение одновременно	общего вида, поэтому их проще всего использо-
Data)	восьми пар чисел. Такие компьютеры назы-	вать для решения различных параллельных за-
	ваются векторными, так как подобные опе-	дач.
	рации выполняются аналогично операциям	
	с векторами (когда, например, сложение	
	двух векторов означает одновременное	
	сложение всех их компонентов). Зачастую	
	векторные инструкции присутствуют в до-	
	полнение к обычным «скалярным» инст-	
	рукциям, и называются SIMD-расширением	
	(или векторным расширением). Примеры	
	популярных SIMD-расширений: MMX,	
	3DNow!, SSE и др.	

Классификация MIMD:

- Мультипроцессоры (машины с совместно используемой памятью)
 - <u>UMA (Uniform Memory Access)</u> архитектура с однородным доступом к памяти каждый процессор имеет одно и тоже время доступа к памяти, это делает производительность предсказуемой.
 - <u>NUMA (Non Uniform Memory Access)</u> архитектура с неоднородным доступом к памяти есть такой модуль памяти, доступ к которому осуществляется быстрее, чем к другим. В «быстрый» модуль памяти помещаются наиболее часто используемые данные, что повышает эффективность программ.
 - o <u>COMA (Cache Only Memory Access)</u> архитектура с доступом только к кэш-памяти.
- Мультикомпьютеры (у машин своя память, используется передача сообщений)
 - MPP (Massively Parallel Processor) процессоры с массовым параллелизмом, дорогостоящие компьютеры, которые состоят из большого количества процессоров, связанных высокоскоростной коммуникационной сетью.
 - о NOW (Network of Workstations), COW (Cluster of Workstations) сети рабочих станций и кластеры рабочих станций, которые связываются при помощи уже имеющихся соединений.