UNIVERSIDAD NACIONAL DE SAN AGUSTÍN DE AREQUIPA

VICERRECTORADO ACADÉMICO

FACULTAD DE INGENIERIA DE PRODUCCION Y SERVICIOS DEPARTAMENTO ACADÉMICO DE INGENIERIA DE SISTEMAS E INFORMATICA

SÍLABO 2019 - B ASIGNATURA: ESTRUCTURAS DISCRETAS II

1. INFORMACIÓN ACADÉMICA

Periodo académico:	2019 - B	
Escuela Profesional:	CIENCIA DE LA COMPUTACIÓN	
Código de la asignatura:	1004137	
Nombre de la asignatura:	ESTRUCTURAS DISCRETAS II	
Semestre:	II (segundo)	
Duración:	17 semanas	
	Teóricas:	2.0
	Prácticas:	2.0
Número de horas (Semestral)	Seminarios:	0.0
	Laboratorio:	4.0
	Teórico-prácticas:	0.0
Número de créditos:	5	
Prerrequisitos:	ESTRUCTURAS DISCRETAS I	

2. INFORMACIÓN ADMINISTRATIVA

Docente	Grado Académico	Dpto. Académico	Total horas	Horario
Suni Lopez, Franci	Magister	DAISI	8	Lunes 10:40-12:20 Teoría / Grupo A Lunes 15:50-17:30 Teoría / Grupo B Jueves 10:40-12:20 Práctica / Grupo A
				Jueves 15:50-17:30 Práctica / Grupo B
Ramos Lovón, Wilber	Magister	DAISI	8	Viernes 10:40-12:20 Laboratorio / Grupo A Viernes 12:20-14:00 Laboratorio / Grupo A Viernes 14:00-15:40 Laboratorio / Grupo B Viernes 15:50-17:30 Laboratorio / Grupo B
Laura Ochoa, Leticia Marisol	Magister	DAISI	4	Miércoles 17:40-19:20 Laboratorio / Grupo C Jueves 17:40-19:20 Laboratorio / Grupo C

3. FUNDAMENTACIÓN (JUSTIFICACIÓN)

Para entender las diversas técnicas computacionales, se requiere de un estudio y especialización en el campo de la matemática discreta. En la cual, se describen conceptos asociados con la lógica de las computadoras, recurrencia, probabilidad discreta y teoría de grafos. Estas estructuras serán necesarios para comprender los fundamentos matemáticos en ciencia de la computación, los cuales serán implementadas y usadas en laboratorio en un lenguaje de programación (*Haskell*).

4. COMPETENCIAS DE LA ASIGNATURA

- a) Utilizar principios básicos de combinatoria, relaciones de recurrencia y funciones generatrices para resolver problemas de conteo.
- b) Aplicar las relaciones de recurrencia para el análisis de algoritmos.
- c) Definir, analizar y utilizar grafos para la solución de problemas computacionales.
- d) Utilizar el lenguaje funcional Haskell para implementar los algoritmos.

5. CONTENIDOS

PRIMERA UNIDAD: Métodos avanzados de conteo

Tema 01: Principios básicos del conteo

Tema 02: Permutaciones y combinaciones

Tema 03: Algoritmos para generar permutaciones y combinaciones

Tema 04: Relaciones de recurrencia

Tema 05: Solución de relaciones de recurrencia

Tema 06: Aplicaciones al análisis de algoritmos

Tema 07: Funciones generatrices

Tema 08: Solución de relaciones de recurrencia mediante funciones generatrices

SEGUNDA UNIDAD: Probabilidad discreta

Tema 09: Teoría de probabilidad discreta

Tema 10: Permutaciones y combinaciones generalizadas

Tema 11: El principio del palomar

Tema 12: Variable aleatoria

Tema 13: Procesos estocásticos

Tema 14: Cadenas de Markov

TERCERA UNIDAD: Teoría de grafos

Tema 15: Definiciones básicas

Tema 16: Ejemplo de modelado de Grafos

Tema 17: Representación numérica de grafos

Tema 18: Relaciones de adyacencia

Tema 19: Vecindades de conexiones

Tema 20: Trayectorias de un grafo

Tema 21: Grafos Conexos - Componentes Conexas

Tema 22: Caminos eulerianos y hamiltonianos

Tema 23: Caminos de longitud mínima

Tema 24: Grafos Planos

Tema 25: Árboles

Tema 26: Árboles de Expansión Mínima.

Tema 27: Árboles Binarios

Tema 28: Arboles de Decisiones y Tiempo Mínimo para ordenar.

Tema 29: Isomorfismo de Árboles

Tema 30: Árboles de Juegos

CUARTA UNIDAD: Programación funcional con Haskell

Tema 31: Introducción a Haskell

Tema 32: Constructores de Tipos

Tema 33: Operadores

Tema 34: Comparación de Patrones

Tema 35: Expresiones Lambda

Tema 36: Funciones de orden superior y polimorfismo

Tema 37: Definición de tipos de datos

Tema 38: Propiedades de funciones

Tema 39: Sobre carga y polimorfismo restringido

Tema 40: El sistema de clases de Haskell

Tema 41: Programación con listas

Tema 42: Entrada y Salida

Tema 43: Programación con árboles y grafos

Tema 44: Programación modular y tipos abstractos de datos

Tema 45: Programación con Mónadas

6. ESTRATEGIAS DE ENSEÑANZA

6.1. Métodos

- a) Horizontalidad educativa.
- b) Material audiovisual
- c) Interoperabilidad grupal.
- d) Motivación de la curiosidad.
- e) Fomento de la creatividad.
- f) Uso adecuado de las tecnologías.
- g) Aprendizaje guiado.

6.2. Medios

Pizarra acrílica, plumones, cañón multimedia, videos, libros, base de datos de artículos científicos, overleaf, Hugs98.

6.3. Formas de organización

i. Clases teóricas: Fundamentación de la teoría

ii. Conferencias: Investigación formativa

iii. Prácticas: Lista de ejercicios

iv.Laboratorio: Programación funcional

v. Asesoría grupal y personal

6.4. Programación de actividades que integren investigación formativa y responsabilidad social

- i. Investigación Formativa: Implementación de un algoritmo de grafos para resolver un problema del mundo real.
- ii.Responsabilidad Social: Realizar un video donde expliquen un algoritmo de grafos que resuelve un problema del mundo real. El video servirá para que otros alumnos u otras personas conozcan más sobre las aplicaciones de grafos.

6.5. Seguimiento del aprendizaje

El proceso de seguimiento o monitoreo favorece notablemente al mejoramiento del desempeño del docente y a la calidad del aprendizaje. Entre otros aspectos se tiene en cuenta:

- i. Expresa ideas y conceptos mediante representaciones lingüísticas, matemáticas o gráficas.
- ii. Identifica las ideas clave en un texto o discurso oral e infiere conclusiones a partir de ellas.
- iii. Maneja las tecnologías de la información y la comunicación para obtener información y expresar ideas.
- iv. Desarrolla innovaciones y propone soluciones a problemas

7. CRONOGRAMA ACADÉMICO

SEMANA	TEMA	DOCENTE	%	ACUM.
1	Capítulo I: tema 1, 2; Capítulo IV: tema 31,32	F. Suni / W. Ramos / L. Laura	6	6.00
2	Capítulo I: tema 3,4; Capítulo IV: tema 33	F. Suni / W. Ramos / L. Laura	7	13.00
3	Capítulo I: tema 5,6; Capítulo IV: tema 33	F. Suni / W. Ramos / L. Laura	7	20.00
4	Capítulo I: tema 7,8; Capítulo IV: tema 34	F. Suni / W. Ramos / L. Laura	8	28.00
5	Primer Examen; Primer consolidado de laboratorio	F. Suni / W. Ramos / L. Laura	2	30.00
6	Capítulo II: 9; Capítulo IV: 35	F. Suni / W. Ramos / L. Laura	6	36.00
7	Capítulo II: tema 10, 11; Capítulo IV: 36	F. Suni / W. Ramos / L. Laura	7	43.00
8	Capítulo II: tema 12, 13; Capítulo IV: 37	F. Suni / W. Ramos / L. Laura	7	50.00
9	Capítulo II: tema 14; Capítulo IV: 38	F. Suni / W. Ramos / L. Laura	8	58.00
10	Segundo Examen; Segundo consolidado de laboratorio	F. Suni / W. Ramos / L. Laura	2	60.00
11	Capítulo III: 15, 16, 17; Capítulo IV: tema 39,40	F. Suni / W. Ramos / L. Laura	6	66.00
12	Capítulo III: 18, 19, 20, 21, 22; Capítulo IV: tema 41	F. Suni / W. Ramos / L. Laura	7	73.00
13	Capítulo III: 23, 24, 25, 26; Capítulo IV: tema 42,43	F. Suni / W. Ramos / L. Laura	7	80.00
14	Capítulo III: 27,28; Capítulo IV: tema 44	F. Suni / W. Ramos / L. Laura	6	86.00
15	Capítulo III: 29,30; Capítulo IV: tema 45	F. Suni / W. Ramos / L. Laura	5	91.00
16	Tercer Examen; Tercer consolidado de laboratorio	F. Suni / W. Ramos / L. Laura	2	93.00
17	Exposiciones de investigación formativa	F. Suni / W. Ramos / L. Laura	7	100.00

8. ESTRATEGIAS DE EVALUACIÓN

8.1. Características de la evaluación

- a) La acción evaluadora debe estar contextualizada y debe ser continua
- b) La acción evaluadora debe plantear posibles soluciones de tal manera que los alumnos deban interrelacionar conocimientos distintos.
- c) Se interesa en reconocer si los alumnos son capaces de transferir conocimientos.
- d) La acción evaluadora debe motivar la cooperación: participan todos los que intervienen en el proceso de aprendizaje.

8.2. Concepción de la evaluación

El proceso de evaluación basado en competencias se caracteriza por los siguientes rasgos:

- a) El proceso es continuo.
- b) El proceso es sistemático.
- c) El proceso está basado en evidencias

8.3. Cronograma de evaluación

EVALUACIÓN	FECHA DE EVALUACIÓN	EXAMEN TEORÍA	EVAL. CONTINUA	TOTAL (%)
Primera Evaluación Parcial	30-09-2019	12%	18%	30%
Segunda Evaluación Parcial	04-11-2019	12%	18%	30%
Tercera Evaluación Parcial	09-12-2019	16%	24%	40%
	•		TOTAL	100%

8.4. Instrumentos de evaluación

- a) Discusión guiada o estructurada
- b) Portafolio de evidencias
- c) Referencias bibliográficas

9. REQUISITOS DE APROBACIÓN

- a) Tener notas en todas las evaluaciones programadas
- b) Para aprobar se precisa tener una Nota Final: NF mayor que 10.5

10. BIBLIOGRAFÍA

10.1. Bibliografía básica obligatoria

- [1] Blas C. Ruiz, Francisco Gutiérrez, Pablo Guerrero, José E. Gallardo, Razonando con Haskell, THOMSON España 2004
- [2] Francisco Montes Suay, Procesos Estocásticos para Ingenieros: Teoría y Aplicaciones, Universiodad de Valencia , España 2007
- [3] Richard Johnsonbaugh, Matemáticas Discretas Sexta Edición, PEARSON México 2005.

10.2. Bibliografía de consulta

- [4] Wilber Ramos Lovón, Matemáticas Discretas, UNSA- 2014.
- [5] Kolman, Busgy, Ross, Estructuras de Matemáticas Discretas para la computación, Prentice Hall México 1997.
- [6] R. Grimaldi, Matemática Discreta y Combinatoria AddisonWesley Ibeoroamericana USA 1997
- [7] Richard Bird, Introducción a la Programación Funcional con Haskell, Prentice Hall, Madrid 2000

	Arequipa, 19 de agosto del 20	019
Suni Lopez, Franci	Ramos Lovón, Wilber	Laura Ochoa, Leticia Marisol