19. Сходимость по вероятности, ее свойства.

Последовательность случайных величин $X_1,X_2,...$ сходится к X по вероятности, $X_n \stackrel{P}{\longrightarrow} X$, если $orall \epsilon > 0: P(|X_n - X| > \epsilon) o 0$ при $n o \infty$.

Последовательность случайных величин $X_1,X_2,...$ **сходится слабо** к случайной величине X, $X_n\Rightarrow X$, если для каждой точки непрерывности функции распределения $F_X(t)$ имеет место сходимость $F_{X_n}(t)\to F_X(t)$ при $n\to\infty$.

Свойства:

1.
$$X_n \xrightarrow{P} X, Y_n \xrightarrow{P} Y \Rightarrow X_n + Y_n \xrightarrow{P} X + Y$$
.

$$\begin{aligned} \mathbf{P}(|X_n + Y_n - X - Y| \ge \varepsilon) &= \mathbf{P}(|(X_n - X) + (Y_n - Y)| \ge \varepsilon) \le \\ &\le \mathbf{P}(|X_n - X| + |Y_n - Y| \ge \varepsilon) \le \\ &\le \mathbf{P}(\{|X_n - X| \ge \varepsilon/2\} \cup \{|Y_n - Y| \ge \varepsilon/2\}) \le \\ &\le \mathbf{P}(|X_n - X| \ge \varepsilon/2) + \mathbf{P}(|Y_n - Y| \ge \varepsilon/2) \to 0. \end{aligned}$$

2. Если $X_n \Rightarrow X$, g(t) — непрерывная, то $g(X_n) \Rightarrow g(X)$.

2. Пусть при
$$n \to \infty$$
 $X_n^{(1)} \stackrel{P}{\to} a_1, X_n^{(2)} \stackrel{P}{\to} a_2, \dots, X_n^{(k)} \stackrel{P}{\to} a_k$, функция $g \colon \mathbb{R}^k \to \mathbb{R}$ непрерывна в точке $a = (a_1, \dots, a_k)$. Тогда

$$g(X_n^{(1)}, X_n^{(2)}, \dots, X_n^{(k)}) \xrightarrow{P} g(a_1, \dots, a_k).$$

при $n \to \infty$.

3. Если
$$X_n \stackrel{P}{\longrightarrow} X$$
, то $X_n \Rightarrow X$.

4. Если
$$X_n \Rightarrow C$$
, то $X_n \stackrel{P}{\longrightarrow} C$.

Докажем, что слабая сходимость к постояннной влечёт сходимость по вероятности. Пусть $\xi_n \Rightarrow c$, т.е.

$$F_{\xi_n}(x) \to F_c(x) = \begin{cases} 0, & x \leqslant c; \\ 1, & x > c \end{cases}$$

при любом x, являющемся точкой непрерывности предельной функции $F_c(x)$, т. е. при всех $x \neq c$.

Возьмём произвольное $\varepsilon>0$ и докажем, что $\mathsf{P}(|\xi_n-c|<\varepsilon)\to 1$:

$$P(-\varepsilon < \xi_n - c < \varepsilon) = P(c - \varepsilon < \xi_n < c + \varepsilon) \geqslant P(c - \varepsilon/2 \leqslant \xi_n < c + \varepsilon) =$$

$$= F_{\xi_n}(c + \varepsilon) - F_{\xi_n}(c - \varepsilon/2) \rightarrow F_c(c + \varepsilon) - F_c(c - \varepsilon/2) = 1 - 0 = 1,$$

поскольку в точках $c+\varepsilon$ и $c-\varepsilon/2$ функция F_c непрерывна, и, следовательно, имеет место сходимость последовательностей $F_{\xi_n}(c+\varepsilon)$ к $F_c(c+\varepsilon)=1$ и $F_{\xi_n}(c-\varepsilon/2)$ к $F_c(c-\varepsilon/2)=0$.

Осталось заметить, что $\mathsf{P}(|\xi_n-c|<\varepsilon)$ не бывает больше 1, так что по свойству предела зажатой последовательности $\mathsf{P}(|\xi_n-c|<\varepsilon)\to 1$.

- 5. **Теорема Слуцкого.** Если $X_n \stackrel{P}{\longrightarrow} C$, $Y_n \Rightarrow Y$, то
 - 1. $X_n + Y_n \Rightarrow C + Y_i$
 - 2. $X_n Y_n \Rightarrow CY$.