- Definition of P, NP, coNP:
 - $\bullet \ \mathbf{P} := \cup_{k \geq 1} \mathrm{TIME}[n^k].$
 - **NP** := $\bigcup_{k\geq 1}$ NTIME[n^k].
 - $\circ \quad \mathbf{coNP} := \{L | \Sigma^* L \in \mathrm{NP}\}.$
- Definition of NP-hard, NP-complete:
 - NP-hard: $\{L | \forall L' \in NP, L' \leq_p L\}$.
 - NP-complete: $\{L|L \in NP \text{ and } L \in NP\text{-hard}\}.$
- **Theorem**: Every f(n) time k-tape TM M has an equivalent $O(f^2(n))$ time single-tape TM S.
 - Each of the k active portions on S has length at most f(n) because M uses f(n) tape cells in f(n) steps.
 - To simulate each of M's steps, S performs two scans and possibly up to k rightward shifts. Each uses O(f(n)) time, so the total time for S to simulate one of M's steps is O(f(n)).
 - Afterward, S simulates each of the f(n) steps of M, using O(f(n)) steps.
 - Thus, the entire simulation uses $O(f^2(n))$ steps.
- **Theorem**: Every f(n) time single-tape NTM N has an equivalent $2^{O(f(n))}$ time single-tape DTM D.
 - Every branch of N's nondeterministic computation tree has a length of at most f(n).
 - Every node in the tree can have at most b children, where b is the maximum number of legal choices given by N's transition function.
 - Thus, the total number of leaves in the tree is at most $b^{f(n)}$.
 - Thus, the running time of *D* is $O(f(n)b^{f(n)}) = 2^{O(f(n))}$.
- Cook-Levin Theorem: SAT is NP-complete.
 - Suppose that a given NP problem can be solved by the NTM M. For each input word w, we specify a Boolean expression B which is satisfiable if and only if M accepts w.
 - Consider the space-time diagram, we define the following Boolean variables:
 - $T_{i,j,k}$: True if tape cell *i* contains symbol *j* at step *k* of the computation.
 - $H_{i,k}$: True if the M's read/write head is at tape cell i at step k of the computation.
 - $Q_{q,k}$: True if M is in state q at step k of the computation.
 - Define the Boolean expression B that describes the accepting run of M on w. Then, B is satisfiable if and only if M accepts w.
- **Theorem**: 3-SAT is NP-complete. (Intuition: SAT $\leq_p 3$ -SAT)
 - Construct a binary parser tree for input formula Φ and introduce a variable y_i for the output of each internal node.
 - \circ Rewrite Φ as the conjunction of the root variable and clauses describing the operation of each node.
 - Convert each clause Φ'_i to CNF by constructing a truth table and applying DeMorgan's Law.
- **Theorem**: 3-colorable is NP-complete. (Intuition: 3-SAT \leq_p 3-colorable)
 - Create triangle with node True, False, Base.

- For each variable x_i , create two nodes v_i and v'_i connected in a triangle with common Base.
- For each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base.
- **Theorem**: Clique is NP-complete. (Intuition: 3-SAT \leq_p Clique)
- **Theorem**: Independent Set is NP-complete. (Intuition: Clique \leq_p Independent Set)
- **Theorem**: Vertex Cover is NP-complete. (Intuition: Clique \leq_p Vertex Cover)
- **Theorem**: Dominating Set is NP-complete. (Intuition: Vertex Cover \leq_p Dominating Set)
 - \circ Given a graph G, we replace each edge of G by a triangle to create G'.
 - Subdivide each edge (u, v) by the addition of a vertex, and add an edge directly from u to v.
 - G has a vertex cover of size k iff the same set of vertices forms a dominating set in G'.