План

- нормализация
- Линейные и обобщенные линейные модели, ANOVA
- Дифф. экспрессия (edgeR)
- поправка на множественное тестирование
- Кластеризация (hclust, k-means, PAM, SOM)
- Функциональный анализ (goseq)
- Дифф. сплайсинг (DEXseq, SAJR)
- Визуализация

Биологическая вариабельность

распределение доноров по уровню экспрессии гена (~число ридов)

наблюдаемое распределение образцов по уровню экспрессии гена

пуассоновское (ожидаемое) распределение числа ридов

Негативно-биномиальное распределение

- распределение количества удач в бернулевских испытаниях с вероятностью успеха *р* до получения *r* неудач

$$f(k; r, p) \equiv \Pr(X = k) = {k + r - 1 \choose k} p^k (1 - p)^r \text{ for } k = 0, 1, 2, \dots$$

Стандартная параметризация p, r $mean = \frac{pr}{1-p}$ $var = \frac{pr}{(1-p)^2}$

Альтернативная параметризация m, r mean = m $var = m + \frac{m^2}{r}$ $p = \frac{m}{m+r}$

edgeR: оценка дисперсионного параметра

```
counts — таблица: гены — образцы
gender — предиктор. Например пол донора
edger = DGEList(counts)
edger = calcNormFactors(edger,method='RLE')
design = model.matrix( ~ gender)
edger = estimateGLMCommonDisp(edger,design)
edger = estimateGLMTrendedDisp(edger,design)
edger = estimateGLMTagwiseDisp(edger,design)
strict.disp =
pmax(edger$tagwise.dispersion,edger$trended.disp
ersion,edger$common.dispersion)
plotBCV(edger)
```


edgeR: многофакторный анализ

```
formula = ~ a + s + a:s
design = model.matrix(formula)
glm = glmFit(edger,design,dispersion=strict.disp)

Указываем функции glmLRT номер тестируемого фактора:
pv.age = glmLRT(glm,2)$table$PValue
pv.sex = glmLRT(glm,3)$table$PValue
pv.agesex= glmLRT(glm,4)$table$PValue
```

Поправка на множественное тестирование

 поправка Бонферони: контролируем вероятность хоть одного ложного:

$$pv.corr_i = pv_i * N$$

• поправка Бенджамини-Хочберга: контролируем долю ложных

$$pv.corr_i = \frac{pv_i * N}{i}$$

R: p.adjust

Помни о мёртвом лососе

Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction

Craig M. Bennett¹, Abigail A. Baird², Michael B. Miller¹, and George L. Wolford³

¹ Psychology Department, University of California Santa Barbara, Santa Barbara, CA; ² Department of Psychology, Vassar College, Poughkeepsie, NY;

³ Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH

Функциональная аннотация

- <u>Augustus</u> http://bioinf.uni-greifswald.de/augustus/ предсказывает гены (CDS) только по геному. Может использовать RNA-seq
- <u>transdecoder</u> https://transdecoder.github.io/ находит CDS в транскриптах
- <u>interproscan</u> https://code.google.com/p/interproscan/ приписывает аминокислотным последовательностям (или нуклеотидным находя в них ORF) семейства interpro (и, через них GO, и описание) а так же некоторые другие свойства: PANTHER (классификация по функциям путям, etc), gene3D (структурная классификация), Pfam и т. д.
- <u>blast2go</u> www.blast2go.com коммерческая (есть свободная версия) для функционального анализа аминокислотных последовательностей.

Gene ontology

Три классификации (онтологии) генов по:

- биологическому процессу (Biological Process)
- молекулярной функции (Molecular Function)
- клеточная локализация (Cellular Compartment)

Каждая онтология направленный, ациклический граф

Связи между категориями:

is a (подтип, митохондрия это органелла)

GO-enrichment

	Относятся к данной GO- категории	Не относятся к данной GO- категории		тест Фишера, поправка на множественное
значимые гены	30	781		
незначимые гены	42	4542	-	тестирования (для каждой категории)

http://gostat.wehi.edu.au/

Пакеты в R:

- topGO
- GOstat
- goseq

topGO

```
library(topGO)
options(stringsAsFactors = FALSE)
go = read.csv('~/skoltech/projects/evo.devo/input/GO/Homo sapiens.GRCh37.74.GO.csv.gz')
go[1:2,]
# Ensembl.Gene.ID GO.Term.Accession
# 1 ENSG00000261657
                         GO:0006810
# 2 ENSG00000261657 GO:0016021
go = split(go$GO.Term.Accession,go$Ensembl.Gene.ID)
u = setNamesnames(go)
s = setNames(factor(as.integer(u %in% sample(u,1000))),u)
str(s)
# use topGO annotation
tgo1 <- new("topGOdata", ontology = "BP",
                    allGenes = s.
                    nodeSize = 10,
                    annotationFun = annFUN.org,mapping='org.Hs.eq.db',ID='Ensembl')
r1<- runTest(tgo1, algorithm = "classic", statistic = "fisher")</pre>
hist(score(r1))
table(p.adjust(score(r1), m='BH')<0.5)
GenTable(tgo1, r1, topNodes=10)
showSigOfNodes(tgo1, score(r1), firstSigNodes = 5, useInfo ='all')
# use external annotation
tgo2 <- new("topGOdata", ontology = "BP",
            allGenes = s,
            nodeSize = 10,
            annotationFun = annFUN.gene2GO,gene2GO=go)
r2<- runTest(tgo2, algorithm = "classic", statistic = "fisher")</pre>
showSigOfNodes(tgo2, score(r2), firstSigNodes = 5, useInfo ='all')
```

	fisher	ks	t	globaltest	sum
classic	✓	1	1	✓	1
elim	1	1	1	1	1
weight	1	_	_	_	_
weight01	1	1	1	\checkmark	\checkmark
lea	1	1	1	\checkmark	1
parentchild	1	_	_	_	_

- classic каждая категория тестируется независимо
- elim категории тестируются снизу, если категория значима, входящие в нее гены выкидываются из анализа родителей
- weight если родительская и дочерняя категория значимы, то берется более значимая
- weight01 что-то среднее между elim и weight
- parentchild тест для данной категори выполняется внутри множется генов относящихся к родительской категории
- Fisher обычный тест Фишера
- Ks тест Колмогорова-Смирнова на scores (p-value)
- T T-test на scores

•

Выбор фонового набора генов, эффект покрытия

Проблема:

- Многие гены экспрессирующиеся в мозгу связаны с нервной системой.
 Любые гены меняющие экспрессию в мозгу в ответ на стресс будут обогащены категориями связанными с нервной системой: надо выбирать правильный фоновый набор генов!
- Гены с большим числом ридов (длинные и/или высоко экспрессирующиеся) имеют больше шансов получить низкое p-value. Это можно контролировать при помощи пакета goseq.

Альтернативный сплайсинг

РНК-сек и альтернативный сплайсинг

Идеальный ген в вакууме: непрерывный, один ген — один транскрипт

Транскрипт или экзон?

- Транскрипт является биологическим объектом с некоторой (может быть известной) функцией. Именно транскрипт кодирует белок.
- Однако данные РНК-сек в общем случае не позволяют установить транскрипт:

Cuffdiff: транскрипт-центричный подход

Подготавливаем аннотацию: cuffcompare -o cuff -CG -r input.gtf output

```
Проводим сравнение:
cuffdiff
--min-reps-for-js-test 1
output.combined.gtf
sam1.rep1.bam,sam1.rep2.bam,...
sam2.rep1.bam,sam2.rep2.bam,...
```

Получаем на выходе:

- FPKM и числа ридов для
 - генов
 - изоформ
 - CDS
- результаты дифф экспрессии для:
 - генов
 - изоформ
 - CDS
 - TSS
- Изменение относительных представленностей
 - АС-изоформ (для одного TSS)
 - Альтернативных TSS
 - CDS одного гена

DEXseq

GLM, НБ распределение

$$\mu_{s,g,b} \sim \beta \frac{G}{g} + \beta \frac{S}{b} + \beta \frac{DE}{s,g} + \beta \frac{AS}{s,b}$$

- **G**: средняя экспрессия гена
- S: среднее включения сегмента
- **DE**: изменение экспрессии гена в данном образце
- **AS:** изменение включения сегмента в данном образце

DEXseq: как пользоваться

```
Готовим аннотацию python dexseq_prepare_annotation.py input.gtf output.gff Считаем риды в каждом сегменте samtools view in.bam | python dexseq_count.py -p no -s no output.gff - out.txt Загружаем риды в R, и проводим статистический анализ
```

estimateSizeFactors estimateDispersions fitDispersionFunction testForDEU DEUresultTable

SAJR

http://storage.bioinf.fbb.msu.ru/~mazin/index.html

$$\Psi = \frac{\frac{i}{(ls+lr-1)}}{\frac{i}{(ls+lr-1)} + \frac{e}{(lr-1)}}$$

```
(i,e) ~ биномиальное распределение
GLM, quasibinomial
Готовим аннотацию
java -jar sajr.jar
   gff2sajr
   -ann foreign=input.gtf
   -ann out=output.gtf
Считаем риды
java -jar sajr.jar
   count reads
   -batch in=1.bam,2.bam,...
   -batch out: 0,1,2,3
   -paired=0
   -ann in=output.gtf
   -effective read length=100
```

Работа в R

- loadSAData
- fitSAGLM
- calcSAPvalue

Результаты этих методов имеют мало общего

MISO: sashimi plot

http://genes.mit.edu/burgelab/miso/

hr17:45816186:45816265:-@chr17:45815912:45815950:-@chr17:45814875:45814965:-

GenomeBrowser: просто сделай Bed[Graph]

IGV

http://www.broadinstitute.org/igv/home

SAJR: SJV

http://storage.bioinf.fbb.msu.ru/~mazin/downloads.html

java -jar sjv.jar show

Домашнее задание

- Используя данные из предыдущего ДЗ при помощи edgeR найти гены с межтканевыми и/или возрастными изменениями экспресии (корректированное p-value < 0.05, межтканевые отличия должны быть не менее чем в два раза), возрастные изменения можно считать линейными по возрасту. Используйте модель ~ tissue + age
- Скалстеризуйте гены значимые хотя бы по одному фактору при помощи иерархической кластеризации (расстояние 1 коэффициент корреляции Спирмана) в 6 кластеров.
- Отшкалируйте экспрессию каждого гена к среднему ноль и дисперсии один (z-score). Нарисуйте для каждого кластера зависимость среднего z-score от возраста для обоих тканей

Материалы к лекции (R - код)

- Код в R иллюстрирующий PCA, MDS, heatmap, lm/glm и anova http://rpubs.com/iaaka/14464
- Код в R иллюстрирующий edgeR, DEXseq и limma, GO-анализ, диаграммы Beннa http://rpubs.com/iaaka/14560
- http://rpubs.com/iaaka/260288 кластеризация
- http://rpubs.com/iaaka/14859 дифф.
 сплайсинг с DEXseq