Low-Power Single-Ended Operational Amplifier Design Using Sky130 PDK

Analog IC Student Design Contest '25

Nilakna Warushavithana Pravindu Goonetilleke

Dept. of Electronic and Telecommunication Engineering University of Moratuwa, Sri Lanka

October 26, 2025

Design Specifications

Parameter	Specification
Technology	SKY130 130 nm CMOS
Supply Voltage	1.7 - 1.9 V
Input CM Range	$V_{DD}/2\pm0.2~{ m V}$
Output Load	25 pF (Capacitive)
Temperature Range	20 - 50 °C
Input Signal Amplitude	\leq 0.4 Vpp
DC Gain	\geq 60 dB
GBW	$\geq 1 \; MHz$
Phase Margin	$>60^{\circ}$
Quiescent Current	$< 100 \mu A$
Input Offset	< 3 mV
Slew Rate	$>$ 1 V $/$ μ s
Disable Current	< 2 nA Supply, < 1 nA Output
Bias Current	5 μA
Layout Area	$\leq 140 \mu m \times 80 \mu m$

Circuit Architecture

- Two-stage opamp topology:
 - Stage 1: NMOS differential pair with PMOS active load
 - Stage 2: PMOS common-source amplifier
- Miller compensation for stability
- Enable/Disable functionality reduces current to nA range

Schematic

Schematic Highlights

- Input differential pair for high gain
- PMOS active load for first stage
- Common-source output stage drives 25 pF load
- Miller compensation: $C_1 = 5.292$ pF, $R_1 = 15.6$ k Ω
- Bias circuit provides stable currents

Schematic Level Simulation Results (Operating Point)

- Total quiescent current: $I_Q=113\,\mu\text{A}$ (enabled), 138 pA (disabled)
- Input common-mode voltage: $V_{CM} = 0.9 \text{ V}$
- ullet Input Offset voltage: $V_{IN,OFFSET} pprox 0 \text{ mV}$
- DC Operating point: $V_{OUT,DC} \approx 0 \text{ mV}$

Figure: DC operating point graph at TT corner.

Schematic Level Simulation Results (Frequency)

Parameter	Achieved	Spec
DC Gain	72.38 dB	≥ 60 dB
GBW	12.234 MHz	$\geq 1~MHz$
Phase Margin	98°	> 60
Slew Rate	8.66 $/$ -2.27 V $/\mu$ s	$> 1/-1~ extsf{V}/\mu extsf{s}$

Schematic Level Simulation Results (Transient Response)

- Output swing: 0 1.7 V
- Sinusoidal response verified for low-level inputs (10 μ V)

Schematic Level Simulation Results

Slew Rate

Table: Slew-Rate Analysis Results (TT corner)

Parameter	Result	Spec
Positive Slew Rate (min)	8.66 $V/\mu s$	$1 V/\mu s$
Negative Slew Rate (min)	-2.27 V/μs	-1 $V/\mu s$

Disable Mode

With EN = 0, the circuit enters low-power mode:

• Supply current: $I_{DD,disable} = 138 \text{ pA}$

Process Corners - Monte Carlo Analysis

Figure: Monte-Carlo simulation of gain at TT corner

Process Corners - Monte Carlo Analysis

Figure: Monte-Carlo simulation of phase at TT corner

Process Corners - Monte Carlo Analysis

Figure: Monte-Carlo simulation of positive and negative slew rate at TT corner

Layout Design

Figure: Schematic

Figure: Floor plan of the layout

Layout Design

Layout Design

- Common centroid and symmetry for differential pair and current mirrors
- Guard rings and dummy devices for parasitic minimization
- Total layout area: $88 \times 76 \ \mu m^2$

Post-Layout Verification

- Parasitic extraction (RC) using SKY130 tools
- Post-layout simulations:
 - DC, AC, transient verified
 - Specs mostly met; quiescent current slightly above target

Table: Post-Layout Simulations based on PEX, xschem

Parameter	Achieved	Target
Quiescent Current	$109.8 \mu A$	$< 100 \mu A$
Slew Rate	$1.2V/\mu$ s	$ >1$ $V/\mu s$
Input Offset	0.0265 mV	< 3 mV
Disable Current	194.5 pA	< 2 nA

CACE Simulation

Parameter	Tool	Result	Min Limit	Min Value	Typ Target	Typ Value	Max Limit	Max Value	Status
Area	magic_area	area					11200 μm²	6689.038 µm²	Pass
Width	magic_area	width					140 µm	88.275 μm	Pass
Height	magic_area	height					80 µm	75.775 μm	Pass
Magic DRC	magic_drc	drc_errors							Pass
Netgen LVS	netgen_lvs	lvs_errors					0	0	Pass
KLayout DRC feol	klayout_drc	drc_errors							Pass 🔽
KLayout DRC beol	klayout_drc	drc_errors					0	0	Pass
KLayout DRC full	klayout_drc	drc_errors							Pass
Antenna Checks	magic_antenna_check	antenna_violations					0	0	Pass

Performance Summary

Parameter	Achieved	Target	Status
DC Gain	71.373 dB	≥ 60 dB	Pass
GBW	10.004 MHz	$\geq 1~MHz$	Pass
Phase Margin	82.275°	> 60	Pass
Quiescent Current	$109 \mu A$	$< 100 \mu A$	Fail
Slew Rate	$1.2V/\mu$ s	$> 1 \ V/\mu s$	Pass
Input Offset	0.0265 mV	< 3 mV	Pass
Disable Current	194.5 pA	< 2 nA	Pass
Width	88.275μ m	$140 \mu m$	Pass
Height	75.775μ m	80 μ m	Pass
Area	6689.038 μ m^2	$< 11200 \mu m^2$	Pass

Design Trade-offs

- Trade-off between quiescent current and negative slew rate
- Achieved slightly higher quiescent current to meet slew rate target
- Future improvement: optimize negative slew rate without increasing power

Conclusion

- Designed and implemented a low-power, two-stage opamp in SKY130 PDK
- Specs met for DC gain, GBW, phase margin, slew rate, area, and disable current
- Post-layout verification confirms robustness across corners and parasitic effects
- Demonstrates open-source analog IC design flow from schematic to layout

Acknowledgment

- Thanks to Analog IC Student Design Contest '25 and Tiny Tapeout initiative
- Support from Dept. of Electronic and Telecommunication Engineering, University of Moratuwa