Algebra

[Relation] Sei \sim eine Relation auf M und für alle $x, y, z \in M$ gilt

(reflexiv)
$$x \sim$$

(symmetrisch)
$$x \sim y \Rightarrow y \sim x$$

(transitiv)
$$x \sim y \wedge y \sim z \Rightarrow x \sim z$$
 Äquivalenzrelation

 $\operatorname{Ist}(M,\cdot)$ ein Gruppoid dann gibt

(kongruenz)
$$x \sim x' \land y \sim y' \Rightarrow x \cdot x' \sim y \cdot y'$$
 Kongruenzrelation

[Eulersche φ **Funktion]** Für $n \in \mathbb{N}$ ist $\varphi(n)$ die Anzahl der mit n teilerfremden Zahlen, die kleiner als n sind.

$$\varphi(n) = |\mathbb{Z}_n^{\times}|$$
 $p, q \text{ prim } \land p \neq q \Rightarrow \varphi(p) = p-1 \quad \varphi(p^k) = p^{k-1}(p-1) \quad \varphi(pq) = \varphi(p)\varphi(q)$

[Euler - Fermat] Für teilerfremde
$$a, n \in \mathbb{N}$$
 gilt: $a^{\varphi(n)} \equiv_n 1$...daraus folgt: $p \text{ prim} \Rightarrow a^p \equiv_n a$

[Lagrange]
$$H$$
 Untergruppe von $G \Rightarrow |G| = |H| \cdot (G : H)$ $|H|$ teilt $|G|$ $(G : H)$ teilt $|G|$

[Sylow] Sei G eine endliche Gruppe und p eine Primzahl dann gilt:

(1)
$$(\forall n \in \mathbb{N}) p^n$$
 teilt $G \Rightarrow (\exists U \text{ Untergruppe von } G) |U| = p^n$

(2) Ist
$$a$$
 die Anzahl der Untergruppen U_i mit Ordnung p^n so gilt: $a \equiv_n 1$

[Normal] Ist
$$N$$
 Untergruppe von G dann N normal \Leftrightarrow $(\forall g \in G) gNg^{-1} \subseteq N$

[Homomorphiesatz] Sei G eine Gruppe dann gilt für jeden Homomorphismus φ : $G \to \operatorname{im}(\varphi)$

$$\overline{\varphi}: G/\ker \varphi \to \operatorname{im} \varphi: \overline{x} \mapsto \varphi(x)$$
 ist ein Isomorphismus

$$|G| = |\ker \varphi| \cdot |\operatorname{im} \varphi| \qquad \land \qquad |\operatorname{im} \varphi| = (G : \ker \varphi)$$

 $\textbf{[Permutationsgruppen]} \ \mathsf{Sei} \ X \ \mathsf{eine} \ \mathsf{endliche} \ \mathsf{Menge} \ \mathsf{und} \ G \ \mathsf{eine} \ \mathsf{Gruppe} \ \mathsf{dann} \ \mathsf{ist} \ \mathcal{S}_{_{X}} \ \mathsf{die} \ \mathsf{Gruppe} \ \mathsf{aller} \ \mathsf{Perm}. \ \mathsf{auf} \ X$

$$G$$
 operiert auf $X \Leftrightarrow (\exists \varphi : G \to \mathcal{S}_X : g \mapsto \sigma_g) \varphi$ homomorphismus $\Leftrightarrow (\forall g, h \in G) \sigma_g \circ \sigma_h = \sigma_{gh}$

[Standgruppe, Bahn, Bahngleichung] Sei G eine Gruppe die auf X operiert, dann ist für ein festes $x \in X$

$$G_x := \{g \in G : \sigma_\sigma(x) = x\}$$
 Standgruppe von x . Die $g \in G$ deren Perm. x nicht verändern.

$$B_x := \{ \sigma_g(x) : g \in G \}$$
 Bahn von x . Alle Elemente, die man durch Perm. aus x machen kann.

$$|G| = |G_x| \cdot |B_x|$$
 $|G_x|$ teilt $|G|$ $|B_x|$ teilt $|G|$

[Burnside Lemma] G operiere auf X . Für jedes $g \in G$ seien $\mathrm{Fix}(g) \coloneqq \left\{ x \in X : \sigma_g(x) = x \right\}$ Fixpunkte von $\sigma_g(x) = x$

$$\frac{1}{|G|}\sum_{g\in G} \left| \operatorname{Fix}(g) \right| = k$$
 wobei k die Anzahl der verschiedenen Bahnen ist.

[Integritätsbereich] R nullteilerfreier kommutativer Ring $\Leftrightarrow R$ Integritätsbereich

[Teilbarkeit] Sei R ein Integritätsbereich dann gilt $\forall a, b, c, d \in R$: (i) $a \mid a$

(ii)
$$a \mid b \land b \mid a \Leftrightarrow \exists x \in R^{\times} : a = xb$$
 (iii) $a \mid b \land b \mid c \Rightarrow a \mid c$

(iv)
$$a \mid b \land c \mid d \Rightarrow ac \mid bd$$
 (v) $a \mid b \land a \mid c \Rightarrow a \mid b \pm c$

[ideal]
$$I \subseteq R$$
 Ideal $\Leftrightarrow 0 \in I \land a, b \in I \Rightarrow a + b \in I \land a \in I, x \in R \Rightarrow ax \in I, xa \in I$

[Irreduzibel]
$$p \neq 0$$
 irreduzibel $\Leftrightarrow \forall a, b \in R : p = a \cdot b \Rightarrow a \in R^{\times} \lor b \in R^{\times}$

[Hauptideal]
$$I \subset R$$
 Hauptideal \Leftrightarrow I Ideal $\land \exists x \in R : I = xR$

es gilt:
$$a,b$$
 teilerfremd $\land a \mid b \cdot c \Rightarrow a \mid c$
 $\forall p \text{ irreduzibel} : p \mid a \cdot b \Rightarrow p \mid a \lor p \mid b$

[ggT]
$$ggT(a,b) = d \iff d \mid a \land d \mid b \land \forall c \in R : c \mid a \land c \mid b \Rightarrow c \mid d$$