

PHYSICS

Chapter 23

PRIMERA CONDICIÓN DEL EQUILIBRIO MECÁNICO

EQUILIBRIO MECÁNICO

ESTÁTICA

 Rama de la mecánica que estudia el equilibrio mecánico de los cuerpos a partir de las fuerzas que sobre estos actúan.

¿Cuándo decimos que un cuerpo está en equilibrio mecánico?

Cuando dicho cuerpo no experimenta ningún cambio de su estado mecánico, o sea de su "Velocidad".

EQUILIBRIO DE TRASLACIÓN

Primera condición de equilibrio mecánico

Un cuerpo esta en equilibrio si la suma vectorial de todas las fuerzas que sobre este actúan (fuerza resultante) es nula.

$$\vec{F}_R = \vec{0}$$

En forma práctica:

$$\sum F(\to) = \sum F(\leftarrow)$$

$$\sum F(\uparrow) = \sum F(\downarrow)$$

Una caja es sometida a las fuerzas que se muestran quedando en reposo en el piso liso. Determine el módulo de la fuerza F que se muestra.

RESOLUCIÓN

De la primera condición de equilibrio;

$$\sum F(\to) = \sum F(\leftarrow)$$

$$35 N = 25 N + F$$

$$35 N - 25 N = F$$

Sobre un bloque de madera, que está sobre un piso liso, actúan las fuerzas que se muestran. Determine el módulo de la fuerza F que se muestra, si el bloque está en equilibrio.

RESOLUCIÓN

De la primera condición de equilibrio;

$$\sum F(\to) = \sum F(\leftarrow)$$

$$70 N + 30 N = F + 40 N$$

 $100 N - 40N = F$

Se muestra el DCL de un bloque de masa 8 kg que está en equilibrio. Determine el módulo de la fuerza \vec{F} ($g = 10 \text{ m/s}^2$)

RESOLUCIÓN

De la primera condición de equilibrio:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$F + 50N = F_g$$

 $F + 50N = mg$
 $F + 50N = (8kg)(10m/s^2)$
 $F + 50N = 80N$

Se muestra el DCL de un ladrillo que se encuentra en reposo. Determine el módulo de la fuerza horizontal F que se muestra.

RESOLUCIÓN

De la primera condición:

$$\sum F(\to) = \sum F(\leftarrow)$$

$$40 N + F_1 = F \dots (1)$$

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$F_1 = 30 N$$

Reemplazando en (1)

$$40 N + 30 N = F$$

Se muestra el DCL de un saco de arena de 50 kg, que está en reposo, sostenido por los extremos de una cuerda. Determine el módulo de la tensión T. $(g = 10 \text{ m/s}^2)$

RESOLUCIÓN

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T + T = F_g$$

$$2T = mg$$

$$2T = 500 N$$

$$T=250 N$$

En un salón de clase del colegio "Saco Oliveros" se desea implementar un proyector, para lo cual se cuelga una placa metálica sostenida por una cuerda y un sistema de poleas ideales, que servirá de pantalla para el proyector, tal como se muestra. Si el sistema está en equilibrio mecánico, determine el módulo de la fuerza de tensión en la cuerda.(g = 10 m/s2) (m= 60 kg)

RESOLUCIÓN

Enrique realiza un experimento para comprobar el equilibrio mecánico de los cuerpos que le enseñaron en la clase de física. Para tal efecto hace uso de una polea ideal y una cuerda a la que atan a sus extremos un pesa de 28 kg y una balanza compuesta por un platillo de 1 kg y 9 ladrillos, tal como se muestra. Determine la masa de cada ladrillo si el sistema está en equilibrio.(Considere ladrillos idénticos)

RESOLUCIÓN

Fgtotal

En la pesa:

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T = F_g$$

$$T = 280 N$$

En el platill

$$\sum F(\uparrow) = \sum F(\downarrow)$$

$$T = F_{gTOTAL}$$

$$280 N = F_{gTOTAL}$$

$$280 N = mp.g + N.m_Lg$$

$$280 \text{ N} = 10 N + 9.\text{m}_{\text{L}}.10\text{m/s}^2$$

$$270N = 90. m_L$$

$$m_L = 3kg$$

FgPLATO.