Efficient AI with Rust Lab Rapid Time Series Datasets Library RWTH Aachen University Group 1

Marius Kaufmann¹ Amir Ali Aali² Kilian Fin Braun¹

¹Masters of Computer Science ²Masters of Data Science

22nd Jul, 2025

Goal

Preprocessing of time series datasets

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

Scope

Two types of datasets

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

- Two types of datasets
 - ► ForecastingDataSet

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

- Two types of datasets
 - ► ForecastingDataSet
 - ► ClassificationDataSet

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

- Two types of datasets
 - ► ForecastingDataSet
 - ► ClassificationDataSet
- Functionality
 - ▶ impute()

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

- Two types of datasets
 - ForecastingDataSet
 - ► ClassificationDataSet
- Functionality
 - ▶ impute()
 - downsample()

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

- Two types of datasets
 - ► ForecastingDataSet
 - ► ClassificationDataSet
- Functionality
 - impute()
 - downsample()
 - ▶ split()

Goal

- Preprocessing of time series datasets
- Python package implemented in Rust
- Passing data by reference
 - Using numpy crate

- Two types of datasets
 - ► ForecastingDataSet
 - ► ClassificationDataSet
- Functionality
 - ▶ impute()
 - downsample()
 - split()
 - normalize()/ standardize()

Input 3D numpy array:

Input 3D numpy array:

► First dimension: Instances

Input 3D numpy array:

► First dimension: Instances

Second dimension: Timesteps

Input 3D numpy array:

► First dimension: Instances

Second dimension: Timesteps

► Third dimension: Features

Input 3D numpy array:

► First dimension: Instances

Second dimension: Timesteps

► **Third dimension**: Features

Row	Features
1	
2	
3	
4	
n-1	
n	
	· ·

Input 3D numpy array:

► First dimension: Instances

Second dimension: Timesteps

► Third dimension: Features

Input 3D numpy array:

► First dimension: Instances

Second dimension: Timesteps

► **Third dimension:** Features

In practice

- Forecasting datasets:
 - One instance

Input 3D numpy array:

► First dimension: Instances

Second dimension: Timesteps

► Third dimension: Features

In practice

- Forecasting datasets:
 - One instance
- Classification datasets:
 - Multiple instances

Goal: Split a time series dataset into three parts: training, validation, and test.

Goal: Split a time series dataset into three parts: training, validation, and test.

Different splitting strategies:

Random split (Classification Data)

Goal: Split a time series dataset into three parts: training, validation, and test.

Different splitting strategies:

- Random split (Classification Data)
- In-Order split (Classification Data)

Goal: Split a time series dataset into three parts: training, validation, and test.

Different splitting strategies:

- Random split (Classification Data)
- In-Order split (Classification Data)
- Temporal split (Forecasting Data)

Goal: Split a time series dataset into three parts: training, validation, and test.

Different splitting strategies:

- Random split (Classification Data)
- In-Order split (Classification Data)
- Temporal split (Forecasting Data)

Neccessary parameter when splitting:

Training set ratio

Goal: Split a time series dataset into three parts: training, validation, and test.

Different splitting strategies:

- Random split (Classification Data)
- In-Order split (Classification Data)
- Temporal split (Forecasting Data)

Neccessary parameter when splitting:

- Training set ratio
- Validation set ratio

Goal: Split a time series dataset into three parts: training, validation, and test.

Different splitting strategies:

- Random split (Classification Data)
- In-Order split (Classification Data)
- Temporal split (Forecasting Data)

Neccessary parameter when splitting:

- Training set ratio
- Validation set ratio
- Test set ratio

How it works:

1. Validate the proportions of train, validation, and test sets.

- 1. Validate the proportions of train, validation, and test sets.
- 2. Shuffle the instances of the dataset randomly.

- 1. Validate the proportions of train, validation, and test sets.
- 2. Shuffle the instances of the dataset randomly.
- 3. Compute the split offsets based on the proportions.

- 1. Validate the proportions of train, validation, and test sets.
- 2. Shuffle the instances of the dataset randomly.
- 3. Compute the split offsets based on the proportions.
- 4. Split the instances into three sets.

- 1. Validate the proportions of train, validation, and test sets.
- 2. Shuffle the instances of the dataset randomly.
- 3. Compute the split offsets based on the proportions.
- 4. Split the instances into three sets.
- 5. Return the three sets as separate datasets.

Random split example

Splitting IV (In-Order Split - Classification Data)

Works very similar to the random split, but it **doesn't shuffle** the dataset anymore.

In-Order split example

Splitting V (Temporal Split - Forecasting Data)

Similar to the in-order split, but this time we are dealing with forecasting data, which in most cases is only one instance and we split over **timesteps** and not instances anymore.

Temporal split example

Performance considerations

Copying

Copying data is expensive

Copying

- Copying data is expensive
- Avoid unnecessary copies

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

When to copy?

▶ For ForecastingDataSet:

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

- ► For ForecastingDataSet:
 - Windowed format in final step

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

- ▶ For ForecastingDataSet:
 - Windowed format in final step
 - Copying unavoidable

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

- ▶ For ForecastingDataSet:
 - Windowed format in final step
 - Copying unavoidable
- ► For ClassificationDataSet:

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

- ▶ For ForecastingDataSet:
 - Windowed format in final step
 - Copying unavoidable
- ► For ClassificationDataSet:
 - Random splitting strategy offered

Copying

- Copying data is expensive
- Avoid unnecessary copies
- Copy only when absolutely necessary
 - Only once

- ▶ For ForecastingDataSet:
 - Windowed format in final step
 - Copying unavoidable
- ► For ClassificationDataSet:
 - Random splitting strategy offered
 - Copying unavoidable

Forecasting Dataset Data-Flow Classification Dataset Data-Flow

Original Data (NumPy Array) Original Data (NumPy Array)

Data Storage

Processing Step

Data Copying

Forecasting Dataset Data-Flow Classification Dataset Data-Flow

Data Storage
Processing Step
Data Copying

Pipeline Design

${\tt ForecastingDataSet}$

```
# Create instance
fore = ForecastingDataSet(
  data, 0.7, 0.2, 0.1
# call the pipeline methods
fore.impute(
  ImputeStrategy.Median
fore.downsample(2)
fore.split()
fore.normalize()
fore.standardize()
# collect the results
fore_res = fore.collect(3, 1, 1)
```

Pipeline Design

ForecastingDataSet

```
# Create instance
fore = ForecastingDataSet(
  data, 0.7, 0.2, 0.1
# call the pipeline methods
fore.impute(
  ImputeStrategy.Median
fore.downsample(2)
fore.split()
fore.normalize()
fore.standardize()
# collect the results
fore res = fore.collect(3, 1, 1) clas res = clas.collect()
```

ClassificationDataSet

```
# create instance
clas = ClassificationDataSet(
  data, labels, 0.7, 0.2, 0.1
# call the pipeline methods
clas.impute(
  ImputeStrategy.Median
clas.downsample(2)
clas.split(
  SplittingStrategy.Random
clas.normalize()
clas.standardize()
# collect the results
```

Goal: Reduce the number of data points in a time series dataset.

Goal: Reduce the number of data points in a time series dataset.

Benefits:

Reduces memory usage

Goal: Reduce the number of data points in a time series dataset.

Benefits:

- Reduces memory usage
- Speeds up processing time

Goal: Reduce the number of data points in a time series dataset.

Benefits:

- Reduces memory usage
- Speeds up processing time

Neccessary parameter when downsampling:

Downsampling factor: How many data points to skip

Goal: Reduce the number of data points in a time series dataset.

Benefits:

- Reduces memory usage
- Speeds up processing time

Neccessary parameter when downsampling:

Downsampling factor: How many data points to skip

Example:

Downsampling factor of 2: Every second data point is kept

Downsampling example with a factor of 2

How it works:

► The downsampling function takes a time series dataset and a downsampling factor as input.

How it works:

- ► The downsampling function takes a time series dataset and a downsampling factor as input.
- ▶ It iterates over the dataset and keeps every n-th data point, where n is the downsampling factor.

How it works:

- ► The downsampling function takes a time series dataset and a downsampling factor as input.
- ▶ It iterates over the dataset and keeps every n-th data point, where n is the downsampling factor.

Bottleneck of passing the data by reference:

Not possible. A copy is needed.

How it works:

- The downsampling function takes a time series dataset and a downsampling factor as input.
- ▶ It iterates over the dataset and keeps every n-th data point, where n is the downsampling factor.

Bottleneck of passing the data by reference:

- Not possible. A copy is needed.
- Creating view only possible on contiguous data.

How it works:

- The downsampling function takes a time series dataset and a downsampling factor as input.
- ▶ It iterates over the dataset and keeps every n-th data point, where n is the downsampling factor.

Bottleneck of passing the data by reference:

- Not possible. A copy is needed.
- Creating view only possible on contiguous data.
- Downsampling does not yield a contiguous data structure.

Goal: Transform each feature in a time series dataset to have a **mean** of $\bf 0$ and a **standard deviation** of $\bf 1$.

Goal: Transform each feature in a time series dataset to have a **mean** of $\bf 0$ and a **standard deviation** of $\bf 1$.

How it works

► Compute the mean and standard deviation for each feature column in the **training** dataset.

Goal: Transform each feature in a time series dataset to have a **mean** of $\mathbf{0}$ and a **standard deviation** of $\mathbf{1}$.

How it works

- Compute the mean and standard deviation for each feature column in the training dataset.
- Through a for-loop iterate over each feature and apply the standardization formula:

$$x' = \frac{x - \mathsf{mean}}{\mathsf{std}} \tag{1}$$

Goal: Transform each feature in a time series dataset to have a **mean** of $\mathbf{0}$ and a **standard deviation** of $\mathbf{1}$.

How it works

- Compute the mean and standard deviation for each feature column in the **training** dataset.
- Through a for-loop iterate over each feature and apply the standardization formula:

$$x' = \frac{x - \mathsf{mean}}{\mathsf{std}} \tag{1}$$

▶ Apply the same mean and standard deviation to the **validation** and **test** sets.

Min-Max Normalization

Goal: Transform each feature in a time series dataset to a range between $\bf 0$ and $\bf 1$.

Min-Max Normalization

Goal: Transform each feature in a time series dataset to a range between $\bf 0$ and $\bf 1$.

How it works

Compute the minimum and maximum for each feature in the training dataset.

Min-Max Normalization

Goal: Transform each feature in a time series dataset to a range between $\bf 0$ and $\bf 1$.

How it works

- Compute the minimum and maximum for each feature in the training dataset.
- ► Through a for-loop iterate over each feature and apply the min-max normalization formula:

$$x' = \frac{x - \min}{\max - \min} \tag{2}$$

Min-Max Normalization

Goal: Transform each feature in a time series dataset to a range between $\bf 0$ and $\bf 1$.

How it works

- Compute the minimum and maximum for each feature in the training dataset.
- Through a for-loop iterate over each feature and apply the min-max normalization formula:

$$x' = \frac{x - \min}{\max - \min} \tag{2}$$

Apply the same min and max to the validation and test sets.

Goal: Impute missing data.

Goal: Impute missing data.

How:

Median

Goal: Impute missing data.

How:

- Median
- Mean

Goal: Impute missing data.

How:

- Median
- Mean
- ► Forward-Fill

Goal: Impute missing data.

How:

- Median
- Mean
- Forward-Fill
- ▶ Backward-Fill

Goal: Ensure the correctness of the implemented methods.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

Rust code is tightly integrated with PyO3.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

- Rust code is tightly integrated with PyO3.
- ▶ PyO3 is not compatible with the standard Rust testing framework.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

- Rust code is tightly integrated with PyO3.
- ▶ PyO3 is not compatible with the standard Rust testing framework.
- PyO3 is a Rust crate that allows Rust code to be called from Python.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

- Rust code is tightly integrated with PyO3.
- ▶ PyO3 is not compatible with the standard Rust testing framework.
- PyO3 is a Rust crate that allows Rust code to be called from Python.
- PyO3 provides a way to write Python bindings for Rust code.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

- Rust code is tightly integrated with PyO3.
- ▶ PyO3 is not compatible with the standard Rust testing framework.
- PyO3 is a Rust crate that allows Rust code to be called from Python.
- ▶ PyO3 provides a way to write Python bindings for Rust code.

Solution:

Use the PyO3 testing framework.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

- Rust code is tightly integrated with PyO3.
- ▶ PyO3 is not compatible with the standard Rust testing framework.
- PyO3 is a Rust crate that allows Rust code to be called from Python.
- ▶ PyO3 provides a way to write Python bindings for Rust code.

Solution:

- Use the PyO3 testing framework.
- Mimic the Python API in Rust.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

- Rust code is tightly integrated with PyO3.
- ▶ PyO3 is not compatible with the standard Rust testing framework.
- PyO3 is a Rust crate that allows Rust code to be called from Python.
- ▶ PyO3 provides a way to write Python bindings for Rust code.

Solution:

- Use the PyO3 testing framework.
- Mimic the Python API in Rust.
- Write unit tests in Rust that can be called from Python.

Goal: Ensure the correctness of the implemented methods.

Bottleneck:

- Rust code is tightly integrated with PyO3.
- ▶ PyO3 is not compatible with the standard Rust testing framework.
- PyO3 is a Rust crate that allows Rust code to be called from Python.
- ▶ PyO3 provides a way to write Python bindings for Rust code.

Solution:

- Use the PyO3 testing framework.
- Mimic the Python API in Rust.
- Write unit tests in Rust that can be called from Python.
- Use the PyO3 testing framework to run the tests.

Example: Testing the impute() method.

How it works:

Create a simpe numpy array with missing values.

Example: Testing the impute() method.

How it works:

- Create a simpe numpy array with missing values.
- Call the impute() method with a specific strategy.

Example: Testing the impute() method.

How it works:

- Create a simpe numpy array with missing values.
- Call the impute() method with a specific strategy.
- Check if the missing values are filled correctly.

Example: Testing the impute() method.

How it works:

- Create a simpe numpy array with missing values.
- Call the impute() method with a specific strategy.
- Check if the missing values are filled correctly.

Coverage:

▶ The unit tests cover most of the implemented methods.

Example: Testing the impute() method.

How it works:

- Create a simpe numpy array with missing values.
- Call the impute() method with a specific strategy.
- Check if the missing values are filled correctly.

Coverage:

- ▶ The unit tests cover most of the implemented methods.
- Since tests are not native Rust tests, we couldn't use the standard Rust coverage tools.

Example: Testing the impute() method.

How it works:

- Create a simpe numpy array with missing values.
- Call the impute() method with a specific strategy.
- Check if the missing values are filled correctly.

Coverage:

- ▶ The unit tests cover most of the implemented methods.
- Since tests are not native Rust tests, we couldn't use the standard Rust coverage tools.
- ▶ We used the PyO3 testing framework to run the tests and check the coverage.

Example: Testing the impute() method.

How it works:

- Create a simpe numpy array with missing values.
- Call the impute() method with a specific strategy.
- Check if the missing values are filled correctly.

Coverage:

- ▶ The unit tests cover most of the implemented methods.
- Since tests are not native Rust tests, we couldn't use the standard Rust coverage tools.
- ▶ We used the PyO3 testing framework to run the tests and check the coverage.
- ► The coverage is not as detailed as with the standard Rust testing framework, but it is sufficient for our needs.

How we calculated the coverage:

▶ We used the PyO3 testing framework to run the tests.

How we calculated the coverage:

- ▶ We used the PyO3 testing framework to run the tests.
- Counted the number of all methods.

How we calculated the coverage:

- ▶ We used the PyO3 testing framework to run the tests.
- Counted the number of all methods.
- Counted the number of methods that were called during the tests.

How we calculated the coverage:

- ▶ We used the PyO3 testing framework to run the tests.
- Counted the number of all methods.
- Counted the number of methods that were called during the tests.
- Calculated the coverage as a percentage.

How we calculated the coverage:

- ▶ We used the PyO3 testing framework to run the tests.
- Counted the number of all methods.
- Counted the number of methods that were called during the tests.
- Calculated the coverage as a percentage.

Results:

▶ Number of all methods: 47

How we calculated the coverage:

- ▶ We used the PyO3 testing framework to run the tests.
- Counted the number of all methods.
- Counted the number of methods that were called during the tests.
- Calculated the coverage as a percentage.

Results:

- Number of all methods: 47
- Number of methods called during tests: 40

How we calculated the coverage:

- ▶ We used the PyO3 testing framework to run the tests.
- Counted the number of all methods.
- Counted the number of methods that were called during the tests.
- Calculated the coverage as a percentage.

Results:

- Number of all methods: 47
- Number of methods called during tests: 40
- Coverage: 85.1%

Goal:

► Compare vs. PyTorch TimeSeriesDataSet

Goal:

- Compare vs. PyTorch TimeSeriesDataSet
- Additionally: Numpy and Python

Goal:

- Compare vs. PyTorch TimeSeriesDataSet
- Additionally: Numpy and Python
- ▶ Numpy: Use of API

Goal:

Compare vs. PyTorch TimeSeriesDataSet

Additionally: Numpy and Python

▶ Numpy: Use of API

▶ Python: Baseline

Goal:

Compare vs. PyTorch TimeSeriesDataSet

Additionally: Numpy and Python

Numpy: Use of API

▶ Python: Baseline

How:

► Implmenent similar Module

Benchmarking

Goal:

Compare vs. PyTorch TimeSeriesDataSet

Additionally: Numpy and Python

Numpy: Use of API

Python: Baseline

How:

- Implmenent similar Module
- Vary parameters

Benchmarking

Goal:

- Compare vs. PyTorch TimeSeriesDataSet
- Additionally: Numpy and Python
- Numpy: Use of API
- Python: Baseline

How:

- Implmenent similar Module
- Vary parameters
- Test on real data

Benchmarking

Goal:

- Compare vs. PyTorch TimeSeriesDataSet
- Additionally: Numpy and Python
- Numpy: Use of API
- Python: Baseline

How:

- Implmenent similar Module
- Vary parameters
- Test on real data
- Measure timings and memory use

Timing:

Measure timing for each method

Timing:

- Measure timing for each method
- Works for Rust, Python and Numpy

Timing:

- Measure timing for each method
- Works for Rust, Python and Numpy
- ▶ But Torch: Not so much

Timing:

- Measure timing for each method
- Works for Rust, Python and Numpy
- But Torch: Not so much
- Also: Torch input & output formatting

Timing:

- Measure timing for each method
- Works for Rust, Python and Numpy
- But Torch: Not so much
- Also: Torch input & output formatting

Peak Memory:

Track memory use via Python

Timing:

- Measure timing for each method
- Works for Rust, Python and Numpy
- But Torch: Not so much
- Also: Torch input & output formatting

Peak Memory:

- Track memory use via Python
- Record peak use

Timing:

- Measure timing for each method
- Works for Rust, Python and Numpy
- But Torch: Not so much
- Also: Torch input & output formatting

Peak Memory:

- Track memory use via Python
- Record peak use
- ▶ **But:** Measurements show the same value (312 MB)

Timing:

- Measure timing for each method
- Works for Rust, Python and Numpy
- But Torch: Not so much
- Also: Torch input & output formatting

Peak Memory:

- Track memory use via Python
- Record peak use
- ▶ **But:** Measurements show the same value (312 MB)
- Setup or measurement error.

▶ **Goal:** Measure total setup over different paremeters

- ▶ **Goal:** Measure total setup over different paremeters
- ► **Here:** Fixed stride, normalization, downsampling, imputing and splitting

- ► **Goal:** Measure total setup over different paremeters
- ► **Here:** Fixed stride, normalization, downsampling, imputing and splitting

Setup durations on GunPoint

- ▶ **Goal:** Measure total setup over different paremeters
- ► **Here:** Fixed stride, normalization, downsampling, imputing and splitting

Explanation:

Numpy uses vectorized operations in C

- ▶ **Goal:** Measure total setup over different paremeters
- ► **Here:** Fixed stride, normalization, downsampling, imputing and splitting

Explanation:

- Numpy uses vectorized operations in C
- ▶ Torch overhead from Pandas

► **Goal:** Measure total setup over different paremeters

Setup durations on GunPoint

▶ **Goal:** Measure total setup over different paremeters

Explanation:

More processing benefits Rust and Numpy

▶ Goal: Measure total data retrieval

▶ Goal: Measure total data retrieval

Motivation: Pytorch uses lazy compute

- ▶ Goal: Measure total data retrieval
- ▶ Motivation: Pytorch uses lazy compute

Iteration durations on GunPoint

- ▶ **Goal:** Measure total data retrieval
- Motivation: Pytorch uses lazy compute

Explanation:

▶ PyTorch slowest due to deferred preprocessing during retrieval

▶ Goal: Measure imputing in isolation

▶ **Goal:** Measure imputing in isolation

Imputing durations on GunPoint

▶ **Goal:** Measure imputing in isolation

Explanation:

Rust benefits from compiler

▶ **Goal:** Measure imputing in isolation

Explanation:

- Rust benefits from compiler
- NumPy benefits from partial vectorization

Normalization durations

▶ Goal: Measure normalization in isolation

Normalization durations

▶ Goal: Measure normalization in isolation

Normalization durations on GunPoint

Normalization durations

▶ Goal: Measure normalization in isolation

Explanation:

- ► Again:
- Rust benefits from compiler
- NumPy benefits from partial

Standardization durations

▶ Goal: Measure standardization in isolation

Standardization durations

▶ **Goal:** Measure standardization in isolation

Standardization durations on GunPoint

Standardization durations

▶ Goal: Measure standardization in isolation

Explanation:

- Again:
- Rust benefits from compiler
- NumPy benefits from partial

Downsampling durations

▶ Goal: Measure downsampling in isolation

Downsampling durations

▶ Goal: Measure downsampling in isolation

Downsampling durations on GunPoint

Downsampling durations

▶ Goal: Measure downsampling in isolation

Explanation:

Rust slowest due to costly data copying

Data collection durations

▶ **Goal:** Measure data collection in isolation

Data collection durations

▶ Goal: Measure data collection in isolation

Data collection durations on GunPoint

Data collection durations

▶ Goal: Measure data collection in isolation

Explanation:

Rust slowest due to Python data transfer