

Politechnika Wrocławska

Struktury danych i złożoność obliczeniowa Wykład 1.

Prof. dr hab. inż. Jan Magott

Formy zajęć:

- Wykład 1 godz.,
- Ćwiczenia 2 godz.,
- Projekt 1 godz. .

Strona kursu:

http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Struktury danych wchodzące w zakres kursu:

- Tablice,
- Listy,
- Kolejki,
- Stosy,
- Kopce,
- Grafy,
- Drzewa binarne,
- Tablice haszujące.

Pięć następujących slajdów pochodzi z Polskich Ram Kwalifikacyjnych kursu

Struktury danych i złożoność obliczeniowa

Forma zajęć - wykład ikacyjne przedmiotu Lit

Wy1	Polskie Ramy Kwalifikacyjne przedmiotu. Literatura. Podstawowe zasady analizy algorytmów: poprawność i skończoność (asercje i niezmienniki pętli). Struktury danych: stosy, kolejki, listy, kopce (sortowanie przez kopcowanie) w implementacji tablicowej.	2
Wy2	Złożoność obliczeniowa (klasy złożoności czasowej i pamięciowej), koszt zamortyzowany.	2
Wy3	Podstawowe techniki budowy algorytmów: metoda "dziel i zwyciężaj", metoda zachłanna, transformacyjna konstrukcja algorytmu.	2
Wy4	Kodowanie dziesiętne, dwójkowe i jedynkowe danych wejściowych problemu. "Rozsądna" reguła kodowania.	1
Wy5	Algorytmy grafowe: reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy ścieżkowe.	
Wy6	Problemy "łatwe" i "trudne". Problemy optymalizacyjne i decyzyjne.	
Wy7	Model obliczeń RAM. Deterministyczne jednotaśmowe i k- taśmowe maszyny Turinga. Przykładowe programy dla tych maszyn.	1
	Niedeterministyczna maszyna Turinga. Twierdzenie o relacji	

Wy4	wejściowych problemu. "Rozsądna" reguła kodowania.	1
Wy5	Problemy "łatwe" i "trudne". Problemy optymalizacyjne i decyzyjne. Algorytmy grafowe: reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy ścieżkowe.	2
Wy6	Problemy "łatwe" i "trudne". Problemy optymalizacyjne i decyzyjne.	1
Wy7	Model obliczeń RAM. Deterministyczne jednotaśmowe i ktaśmowe maszyny Turinga. Przykładowe programy dla tych maszyn.	1
Wy8	Niedeterministyczna maszyna Turinga. Twierdzenie o relacji między Niedeterministyczną a Deterministyczną Maszyną Turinga. Klasy P i NP problemów decyzyjnych. Transformacja wielomianowa. Problem NP-zupełny. Dowodzenie NP- zupełności problemów decyzyjnych.	1
Wy9	Dowody NP-zupełności wybranych problemów.	1
Wy10	Kolokwium	2

Suma godzin

	Liczba godzin	
Ćw1	Zajęcia wprowadzające. Omówienie programu, podanie wymagań.	1
Ćw2	Podstawowe zasady analizy algorytmów	2
Ćw3	Podstawowe struktury danych: kolejki, listy, stosy, kopce	3
Ćw4	Struktury drzewiaste: BST, AVL, B-R, B-drzewo	5
Ćw5	Algorytmy sortowania np. Insertion-, Quick-, Merge-, Heap-, Radix-	3
Ćw6	Tablice haszujące	2
Ćw7	Algorytmy wyszukiwania wzorców	1
Ćw8	Algorytmy grafowe: reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy ścieżkowe	6
Ćw9	Wybrane problemy złożoności obliczeniowej: model maszyny Turinga (DTM, NDTM), redukcja wielomianowa	5
Ćw10	Kolokwium	2
	Suma godzin	30

	Liczba godzin	
Pr1	Sprawy organizacyjne, omówienie zadań projektowych, wymagań oraz warunków zaliczenia.	2
Pr2	Badanie efektywności operacji na danych w podstawo- wych strukturach danych.	5
Pr3	Badanie efektywności wybranych algorytmów grafowych np. w zależności od rozmiaru, struktury czy sposobu reprezentacji grafu.	8
	Suma godzin	15

Oceny (F - formująca (w trakcie semestru), P - podsumowująca (na koniec semestru)		Sposób oceny osiągnięcia efektu kształcenia		
F1		Odpowiedzi ustne, Wyniki kolokwiów cząstkowych.		
F2		Wyniki realizacji zadań projektowych		
F3		Kolokwium pisemne		
$P = 0.5 \cdot F1 + 0.25 \cdot F2 + 0.25 \cdot F3$ jeśli (3 \leq F1 and 3 \leq F2 and 3 \leq F3)				

Literatura

- [1] T. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, "Wprowadzenie do algorytmów", WNT 2007.
- [2] J. Błażewicz, "Problemy optymalizacji kombinatorycznej", PWN, Warszawa 1996.
- [3] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., New York, 1979.

Plan 1. wykładu:

- 1. Podstawowe zasady analizy algorytmów: poprawność, skończoność,
- 2. Podstawowe struktury danych: stosy, kolejki, kopce zbudowane z użyciem tablic,

Algorytm to procedura do rozwiązywania problemu.

Algorytm może być wyrażony w:

- Języku naturalnym,
- Języku formalnym,
- Języku zawierającym konstrukcje języka naturalnego i formalnego,
- Schematem blokowym,
- Diagramem aktywności (czynności) języka UML,
- Pseudokodzie,
- Języku programowania.

Algorytm rozwiązywania danego problemu obliczeniowego jest **poprawny**, jeśli dla każdej instancji (egzemplarza) tego problemu zatrzymuje się i daje dobry wynik.


```
Asercja 0
```

Instrukcja 1

Asercja 1

Instrukcja 2

Asercja 2

. . .

Asercja n-1

Instrukcja n

Asercja n

Asercja - warunek charakteryzujący stan zmiennych programu w pewnym punkcie wykonania

```
(\forall i \in \overline{\{0, n-1\}})(Asercja\ i \xrightarrow{Instr\ i+1} Asercja\ i + 1)
```


Poprawność algorytmów

Niezmiennik (ang. invariant) pętli jest warunkiem, który:

Inicjowanie: Jest prawdziwy przed pierwszą iteracją pętli,

Niezmienniczość: Jeśli jest prawdziwy przed pewną iteracją pętli, to jest prawdziwy po niej,

Kończenie: Po zakończeniu pętli, z niezmiennika można udowodnić poprawność algorytmu pętli.

Własność stopu: dla poprawnych danych wejściowych algorytm zatrzymuje się w skończonym czasie.


```
Niezmiennik sumowania n liczb zawartych w tablicy A SUM(A, n, S) S \leftarrow 0 for i \leftarrow 1 to n do S \leftarrow S + A[i]
```

Niezmiennik $S = \sum_{j=1}^{i-1} A[j]$ (przed i – tym wykonaniem),

Inicjowanie: $S = \sum_{j=1}^{1-1} A[j] = \sum_{j=1}^{0} A[j] = 0$,

Niezmienniczość: $\sum_{j=1}^{i-1} A[j]$ przed i – tym wykonaniem \Rightarrow

 $\sum_{j=1}^{i} A[j]$ przed (i+1) – tym wykonaniem,

Kończenie: $S = \sum_{j=1}^{n} A[j]$ po zakończeniu pętli.

Algorytm sortowania bąbelkowego niemalejąco w kodzie C

```
void bubblesort(int table[], int size)
           int i, j, temp;
           for (i = 0; i<size; i++)
                      for (j=0; j<size-1-i; j++)
                                 if (table[j] > table[j+1])
                                 {
                                            temp = table[j+1];
                                            table[j+1] = table[j];
                                            table[j] = temp;
                                 }
```

naturalnie jest zrobi z uyciem 2 niezmienników

W języku C: i++ jest wykonywane po wykonaniu treści pętli.

Niezmiennik pętli wewnętrznej: Przed wykonaniem pętli wewnętrznej dla zmiennej i w pętli zewnętrznej i j w wewnętrznej, gdzie j < size - 1 - i, liczba na pozycji j jest nie mniejsza niż poprzedzające ją.

Inicjowanie:Przed wykonaniem pętli wewnętrznej dla zmiennej i w pętli zewnętrznej i zmiennej j=0 w wewnętrznej, gdzie j < size-1-i, liczba na pozycji j jest nie mniejsza niż poprzedzające ją

Niezmienniczość:

Przed wykonaniem pętli wewnętrznej dla zmiennej i w pętli zewnętrznej i zmiennej j w wewnętrznej, gdzie j < size - 1 - i, liczba na pozycji j jest nie mniejsza niż poprzedzające ją \Rightarrow

Po wykonaniu pętli wewnętrznej dla zmiennej i w pętli zewnętrznej i zmiennej j w wewnętrznej, gdzie j < size - 1 - i, liczba na pozycji j+1 jest nie mniejsza niż poprzedzające ją.

1 12 3 9 8 2 ... 11 9 15 17 23 29

Niezmiennik pętli zewnętrznej:

Przed wykonaniem pętli zewnętrznej dla i, liczby od pozycji size-i są posortowane.

Po wykonaniu pętli zewnętrznej dla i, liczby od pozycji size - i - 1 są posortowane.

Podstawowe struktury danych

Struktury danych:

- stosy,
- kolejki,
- kopce

zbudowane z użyciem tablic.

[Źródło CLRS, Wprowadzenie do algorytmów]

Stos z co najwyżej n elementami implementowany jako tablica S[1..n].

top[S] – numer elementu na szczycie stosu,

S[1.. top[S]] - elementy na stosie,

top[S]=0 - stos jest pusty


```
STACK-FULL(S)
    if top[S]=n jeeli góra ma pozycje caoci to jest peny
        then return True
        else return False
PUSH(S,x)
    if STACK-FULL(S)
        then error "STACK-FULL(S)"
        else top[S] \leftarrow top[S]+1
              S[top[S]] \leftarrow x
```


Kolejka cykliczna (bufor cykliczny) z co najwyżej n-1 elementami implementowana jako tablica Q[1..n].


```
Q[1..n],
QUEUE-FULL(Q)
   if head[Q] = (tail[Q] + 1) \mod n
       then return True
                                                      O(1)
       else return False
ENQUEUE (Q, x)
   if QUEUE-FULL(Q)
       then error "QUEUE-FULL(Q)"
       else Q[tail[Q]] \leftarrow x
                                                       O(1)
               if tail[Q] = n
                   then tail[Q] \leftarrow 1
                   else tail[Q] \leftarrow tail[Q] + 1
```



```
Q[1..n], Początek: head[Q] = tail[Q] = 1
QUEUE-EMPTY(Q)
   if head[Q] = tail[Q]
                                                            O(1)
       then return True
       else return False
DEQUEUE (Q)
   if QUEUE-EMPTY(Q)
       then error "QUEUE-EMPTY(Q)"
                                                            O(1)
       else x \leftarrow Q[head[Q]]
             if head[Q] = n
                 then head[Q] \leftarrow 1 else head[Q] \leftarrow head[Q] + 1
             return
                      \boldsymbol{\chi}
```


Kopiec binarny jest prawie pełnym drzewem binarnym.

Pełne drzewo binarne

Kopiec binarny jest prawie pełnym drzewem binarnym.

Prawie pełne drzewo binarne

[8]

Kopiec binarny jest to prawie pełne drzewo binarne.

Rodzaje kopców:

typu max (wartość rodzica jest nie mniejsza niż dziecka),

typu min (wartość rodzica jest nie większa niż dziecka).

Własność Kopiec o $2 \le n$ wierzchołkach. Elementy o indeksach $\lfloor n/2 \rfloor + 1$ do n są liśćmi, a o mniejszych indeksach nie są nimi.

Przykład $\lfloor n/2 \rfloor = \lfloor 10/2 \rfloor = 5$ $\lfloor n/2 \rfloor + 1 = \lfloor 10/2 \rfloor + 1 = 6$

Własność Kopiec o $2 \le n$ wierzchołkach. Elementy o indeksach $\lfloor n/2 \rfloor + 1$ do n są liśćmi, a o mniejszych indeksach nie są nimi.

Dowód indukcyjny

n = 2,
 element o indeksie
 [2/2]+1=2 jest liściem,
 o indeksie [2/2]=1 nim nie jest.

Dowód indukcyjny

Założenie indukcyjne: Elementy o indeksach $\lfloor n/2 \rfloor + 1 \mod n$ są liśćmi, a o mniejszych indeksach nie są nimi.

Teza indukcyjna: Elementy o indeksach $\lfloor (n+1)/2 \rfloor +1 \quad \text{do } n+1 \quad \text{są}$ liśćmi, a o mniejszych indeksach nie są nimi. 2.1 *n* parzyste

Dowód indukcyjny

Założenie indukcyjne: Elementy o indeksach $\lfloor n/2 \rfloor + 1 \mod n$ są liśćmi, a o mniejszych indeksach nie są nimi.

Teza indukcyjna: Elementy o indeksach $\lfloor (n+1)/2 \rfloor +1 \quad \text{do } n+1 \quad \text{są}$ liśćmi, a o mniejszych indeksach nie są nimi. 2.2 *n* nieparzyste


```
Przywracanie własności kopca
```

```
Max-Heapify(A, i)
      l \leftarrow \text{LEFT}(i)
     r \leftarrow \text{RIGHT}(i)
     if l \leq heap\text{-}size[A] i A[l] > A[i]
         then largest \leftarrow l
         else largest \leftarrow i
     if r \leq heap\text{-}size[A] i A[r] > A[largest]
         then largest \leftarrow r
     if largest \neq i
         then zamień A[i] \leftrightarrow A[largest]
             Max-Heapify(A, largest)
10
Założenie: Drzewa binarne
o korzeniach w LEFT(i), RIGHT(i)
```

są kopcami typu max.

[1]


```
Przywracanie własności kopca
```

```
Max-Heapify(A, i)
      l \leftarrow \text{LEFT}(i)
     r \leftarrow \text{RIGHT}(i)
      if l \leq heap\text{-}size[A] \text{ i } A[l] > A[i]
          then largest \leftarrow l
          else largest \leftarrow i
      if r \leq heap\text{-}size[A] i A[r] > A[largest]
          then largest \leftarrow r
      if largest \neq i
          then zamień A[i] \leftrightarrow A[largest]
              Max-Heapify(A, largest)
                   O(\ln n)
```


Budowanie kopca typu max

Punktem wyjścia tablica A[1..n] gdzie n = length[A]

To nie jest kopiec typu max


```
BUILD-MAX-HEAP(A)

1  heap-size[A] \leftarrow length[A]

2  for i \leftarrow \lfloor length[A]/2 \rfloor downto 1

3  do MAX-HEAPIFY(A, i) \leftarrow O(\ln n)

O(n \ln n)

O(n) \leftarrow \qquad \qquad [\acute{Z}r\'{o}d\'{l}o: CLRS, Wprowadzenie do
```

algorytmów]

```
BUILD-MAX-HEAP(A)
```

- 1 heap- $size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 **do** Max-Heapify(A, i)

Niezmiennik pętli:

Przed wykonaniem pętli **for** dla i, każdy węzeł i+1, i+2, ..., length[A] jest korzeniem kopca typu max.

Sortowanie przez kopcowanie

```
HEAPSORT(A)
    BUILD-MAX-HEAP(A)
    for i \leftarrow length[A] downto 2
      do zamień A[1] \leftrightarrow A[i]
          heap-size[A] \leftarrow heap-size[A] - 1
          Max-Heapify(A, 1)
```

Niezmiennik petli:

Na początku pętli **for** dla *i*: fragment tablicy A[1..i] jest kopcem typu max zawierającym i najmniejszych elementów z A[1..n] (n = length[A]), a fragment A[i+1..n] zawiera n-i posortowanych największych elementów z A[1..n].

Sortowanie przez kopcowanie

```
HEAPSORT(A)

1 BUILD-MAX-HEAP(A) \leftarrow Nie gorzej niż O(n \ln n)

2 for i \leftarrow length[A] downto 2

3 do zamień A[1] \leftrightarrow A[i]

4 heap\text{-}size[A] \leftarrow heap\text{-}size[A] - 1

5 MAX-HEAPIFY(A, 1) \leftarrow O(\ln n)
```

 $O(n \ln n)$