Using a graphics calculator

Check that the calculator is in Radian mode.

a Enter the functions $y = 1/\cos(x)$ and y = -2 into the $\mathbf{Y} = \text{window}$. Press $\boxed{\text{WINDOW}}$ and enter $\mathbf{Xmin} = 0$, $\mathbf{Xmax} = 2\pi$, $\mathbf{Xscl} = \frac{\pi}{2}$ (to split the period of 2π into four equal intervals), $\mathbf{Ymin} = -5$ and $\mathbf{Ymax} = 5$. Press $\boxed{\text{GRAPH}}$ to display the graphs. Use **5:intersect** from the **CALCULATE** menu to find the points of intersection. Return to the home screen and press $\boxed{X, T, \theta, n} \Rightarrow \boxed{2\text{ND}} \land \boxed{\text{MATH}}$ and choose **1:Frac** from the **MATH** menu to express each solution of x as an exact fraction of π . For example, 2/3 on the screen represents the solution $x = \frac{2\pi}{3}$.

Enter the functions $y = 1/\tan(x)$ and y = -1 into the Y = window. Press $\boxed{\text{WINDOW}}$ and enter $X\min = 0$, $X\max = 2\pi$, $X\text{scl} = \frac{\pi}{2}$ (to split the period of π into four equal intervals), $Y\min = -5$ and $Y\max = 5$. Press $\boxed{\text{GRAPH}}$ to display the graphs. Use **5:intersect** from the **CALCULATE** menu to find the points of intersection. Return to the home screen and press $\boxed{X, T, \theta, n} \Rightarrow \boxed{2\text{ND}} \boxed{\wedge}$ $\boxed{\text{MATH}}$ and choose **1:Frac** from the **MATH** menu to express each solution of x as an exact fraction of π . For example, 3/4 on the screen represents the solution $x = \frac{3\pi}{4}$.

The Pythagorean identity

Consider a point, $P(\theta)$, on the unit circle.

By Pythagoras' theorem:

$$OP^{2} = OM^{2} + MP^{2}$$
$$1 = (\cos \theta)^{2} + (\sin \theta)^{2}$$

Now $(\cos \theta)^2$ and $(\sin \theta)^2$ may be written as $\cos^2 \theta$ and $\sin^2 \theta$. Since this is true for all values of θ it is called an identity. In particular this is called the **Pythagorean identity**.

$$\cos^2\theta + \sin^2\theta = 1$$

Other forms of the identity can be derived.

Dividing both sides by $\cos^2 \theta$ gives:

$$\frac{\cos^2 \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$$
$$1 + \tan^2 \theta = \sec^2 \theta$$

Dividing both sides by $\sin^2 \theta$ gives:

$$\frac{\cos^2 \theta}{\sin^2 \theta} + \frac{\sin^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$$
$$\cot^2 \theta + 1 = \csc^2 \theta$$

Example 7

a If
$$\csc x = \frac{7}{4}$$
, find $\cos x$. **b** If $\sec x = -\frac{3}{2}$, find $\sin x$ where $\frac{\pi}{2} \le x \le \pi$.

Solution

a Since
$$\csc x = \frac{7}{4}$$
, $\sin x = \frac{4}{7}$
Now $\cos^2 x + \sin^2 x = 1$
so $\cos^2 x + \frac{16}{49} = 1$
 \therefore $\cos^2 x = \frac{33}{49}$
 \therefore $\cos x = \pm \frac{\sqrt{33}}{7}$
b Since $\sec x = -\frac{3}{2}$, $\cos x = -\frac{2}{3}$
 $\cos^2 x + \sin^2 x = 1$
 \therefore $\frac{4}{9} + \sin^2 x = 1$
 \therefore $\sin x = \pm \frac{\sqrt{5}}{3}$
For $P(x)$ in the 2nd quadrant, $\sin x$ is positive

positive

$$\therefore \qquad \sin x = \frac{\sqrt{5}}{3}$$

Example 8

If $\sin \theta = \frac{3}{5}$ and $\frac{\pi}{2} < \theta < \pi$, find the value of $\cos \theta$ and $\tan \theta$.

Solution

Since
$$\cos^2 \theta + \sin^2 \theta = 1$$

then $\cos^2 \theta + \frac{3^2}{5^2} = 1$
 \therefore $\cos^2 \theta = 1 - \frac{9}{25}$
 $= \frac{16}{25}$
 \therefore $\cos \theta = -\frac{4}{5} \operatorname{since} \frac{\pi}{2} < \theta < \pi$
 \therefore $\tan \theta = -\frac{3}{4} \operatorname{as} \tan \theta = \frac{\sin \theta}{\cos \theta}$