Лабораторная работа No1. Часть I Методы одномерного поиска экстремума

Торопин Константин

May 2020

1 Постановка задачи

Для реализации одномерного поиска экстремума функции были написаны 3 алгоритма:

- 1. Метод дихотомии (деления отрезка пополам)
- 2. Метод золотого сечения
- 3. Метод Фибоначчи

Функция для анализа была взята - $x^2+2x-4, x \in [-10,20]$ Заметим что минимум этой функции = 5 при значении x=-1 Для тестирования алгоритмов параметр ϵ был выбран равным 10^{-5}

Так же реализованы алгоритм поиска минимума функции на прямои и алгоритм минимизации функции переменных в направлении заданного вектора.

Весь код находится по ссылке - https://github.com/ImpyAngel/metOpt/blob/master/lab1.py

2 Выводы

Исходя из полученных данных можно увидеть что метод дихотомии справляется с задачей медленнее чем методы золотого сечения и Фибоначчи.

Однако метод Фибоначчи на первых этапах итераций сходится куда медленнее чем другие методы.

Что касается анализа скорости работы алгоритмов для достижения нужной точности, то здесь все методы показывают близкий к линейному

росту в зависимости от логарифма нужной точности. Что и выводится исходя из теории. Наиболее быстрый по сходимости оказывается метод золотого сечения. График метода фибоначчи показывает наиболее линейный рост.

3 Графики

Рис. 1: В первом случае был рассмотрен анализ поведения левой и нижней границы в которых лежит значение минимума функции

Рис. 2: Графики значения функции на этих границах

Рис. 3: Графики отношения размера границ с итерациями

Рис. 4: Далее рассмотрен процесс изменения количества итераций нужных для достижения конкретной точности - ϵ Значения ϵ изменялось в интервале $[10^{-10},1]$ с логарифмичном шагом.