Stochastic Finance (FIN 519) Homework Solutions

Instructor: Jaehyuk Choi

2017-18 Module 3 (Spring 2018)

HW 1-1 Using martingale property, re-drive that

$$E(\tau) = AB$$
 for $\tau = \min\{n : S_n = A \text{ or } S_n = -B\}.$

Answer You can find the answer in the textbook section 2.3.

HW 1-2. SCFA Exercise 2.4

Answer From the hint, let us define

$$A_{n+1} = A_n + E[(M_{n+1} - M_n)^2 | \mathcal{F}_n]$$

and prove the three required properties:

(i) N_n is a martingale.

$$E[N_{n+1} | \mathcal{F}_n] = E[M_{n+1}^2 - A_{n+1} | \mathcal{F}_n]$$

$$= E[2M_{n+1}M_n - M_n^2 - A_n | \mathcal{F}_n]$$

$$= 2E[M_{n+1} | \mathcal{F}_n] M_n - M_n^2 - A_n$$

$$= M_n^2 - A_n = N_n.$$

- (ii) $A_{n+1} \ge A_n$ is trivial.
- (iii) A_n is non-anticipating because it is defined via the expectation under \mathcal{F}_n .

HW 2-1 SCFA Exercise 3.1 (b) Assume that $0 \le s \le t \le 1$. Compute the self-covariance of Brownian bridge, $Cov(U_s, U_t)$ where $U_t = B_t - tB_1$.

Answer

$$Cov(U_s, U_t) = E((B_s - sB_1)(B_t - tB_1)) = E(B_sB_t - sB_1B_t - tB_sB_1 + stB_1^2)$$

= $min(s, t) - s min(1, t) - t min(s, t) + st = s(1 - t)$

HW 2-2 Calculate $Var(aB_t + bB_s)$ for constants a and b.

Answer

$$Var(aB_t + bB_s) = E[a^2 B_t^2 + 2abB_t B_s + b^2 B_s^2]$$
$$= a^2 t + 2ab \min(s, t) + b^2 s$$

HW 2-3 Derive the price of down-and-out call option with knock-out strike K_D and option strike K. (Obviously, $K_D < F$ and $K_D < K$) See the derivation for up-and-out call option and down-and-out digital option from the previous HW and exams.

Answer Assume $B_T^M = \max_{0 \le t \le T} B_t$ and $B_T^m = \min_{0 \le t \le T} B_t$. From textbook and class, we know

$$P(\sigma B_T^M < v, \ \sigma B_T < u) = P(B_T^M < v/\sigma, \ B_T < u/\sigma) = N\left(\frac{u}{\sigma\sqrt{T}}\right) - N\left(\frac{u-2v}{\sigma\sqrt{T}}\right),$$

where $N(\cdot)$ is the normal distribution CDF. Using the reflection, $B_t \to -B_t$, we get

$$(-B)_T^m = \min_{0 \le t \le T} (-B_t) = -\max_{0 \le t \le T} B_t = -B_T^M$$

and

$$P(\sigma B_T^m > v, \ \sigma B_T > u) = N\left(\frac{-u}{\sigma\sqrt{T}}\right) - N\left(\frac{2v - u}{\sigma\sqrt{T}}\right).$$

As the stock price is given as $S_T = F + \sigma B_T$,

$$P(S_T^m > v, S_T > u) = N\left(\frac{F - u}{\sigma\sqrt{T}}\right) - N\left(\frac{2v - u - F}{\sigma\sqrt{T}}\right).$$

The probability density function on u with the joint condition, $\sigma B_T^m > v$ is obtained from the partial derivative w.r.t. u (with negative sign),

$$f(u) = \frac{1}{\sigma\sqrt{T}} \left(n \left(\frac{F-u}{\sigma\sqrt{T}} \right) - n \left(\frac{2v-u-F}{\sigma\sqrt{T}} \right) \right) \quad \text{for} \quad -\infty < v \le u.$$

Let $z = (u - F)/\sigma\sqrt{T}$, $d = (F - K)/\sigma\sqrt{T}$ and $d^* = (F - K_D)/\sigma\sqrt{T}$. Then, the down-and-out call option price is given as

$$C(K, K_D) = \int_{u=K}^{\infty} (u - K) f(u) du = \int_{z=-d}^{\infty} (F - K + \sigma \sqrt{T} z) (n(z) - n(z + 2d^*)) dz$$

= $(F - K) N(d) + \sigma \sqrt{T} n(d) - (F - K - 2d^* \sigma \sqrt{T}) N(d - 2d^*) - \sigma \sqrt{T} n(d - 2d^*).$

The first two terms are exactly the regular call option price, $C(K) = (F - K)N(d) + \sigma\sqrt{T}n(d)$. Therefore, the down-and-out option is cheaper than the regular option by $(F - K - 2d^*\sigma\sqrt{T})N(d - 2d^*) + \sigma\sqrt{T}n(d - 2d^*)$.

We can verify two cases:

- 1. If $K_D \to -\infty$ $(d^* \to \infty)$, $C(K, K_D) = C(K)$ because the probably of being knocked out is zero. It is indeed the case because $N(d-2d^*) = n(d-2d^*) = 0$.
- 2. If $K_D \to F$ from below $(d^* \to 0)$ on the other hand, the knock-out probability approaches to 100%, so the price should be zero. This is also the case from the formula.
- **HW 3-1 SCFA Exercise 8.2** The notation $h \in C^1(\mathbb{R}^+)$ means that the function h(s) is differentiable for s > 0.

Answer From the SDE of $h(t)B_t$,

$$d(h(t)B_t) = h(t)dB_t + h'(t)B_tdt$$

we get

$$\int_{0}^{t} h(s)dB_{s} = h(t)B_{t} - \int_{0}^{t} h'(s)B_{s} ds.$$

Using that $B_T = \int_0^T dB_t$, we also get another useful result:

$$\int_{0}^{T} h'(s)B_{s} ds = h(T)B_{T} - \int_{0}^{T} h(t)dB_{t} = \int_{0}^{T} (h(T) - h(t))dB_{t}$$

HW 3-2 For a standard BM B_t , let

$$N_t = B_t^3 - 3t B_t.$$

(i) Prove that N_t is a martingale. (Hint: use Proposition 8.1) (ii) By applying Itô's lemma, express N_t as a stochastic integration. (iii) Calculate the variance of N_t .

Answer We set $N_t = f(t, B_t)$ where $f(t, x) = x^3 - 3tx$. Applying Itô's lemma,

$$dN_t = 3(B_t^2 - t)dB_t + 3B_t(dB_t)^2 - 3B_tdt = 3(B_t^2 - t)dB_t$$

As there is no drift term, N_t is a martingale and is represented as a stochastic integral:

$$N_t = \int_0^t 3(B_s^2 - s)dB_s.$$

The variance is calculated as

$$Var(N_t) = \int_0^t E[3^2(B_s^2 - s)^2]ds = 9 \int_0^t (E(B_s^4) - 2sE(B_s^2) + s^2)ds$$
$$= 9 \int_0^t (3s^2 - 2s^2 + s^2)ds = 6t^2$$

HW 3-3 SCFA Exercise 8.4 The sub-problem (b) is understood better after **HW 3-2** is solved.

Answer (a) If $f(t,x) = \phi(t)\psi(x)$, the condition $f_t = -\frac{1}{2}f_{xx}$ yields to

$$2\frac{\phi_t(t)}{\phi(t)} = -\frac{\psi_{xx}(x)}{\psi(x)} = \lambda,$$

where λ is a constant. If $\lambda > 0$ ($\lambda = \alpha^2$ for some α), we get the GBM solution,

$$\phi(t) = \phi(0)e^{-\alpha^2t/2}$$
 and $\psi(x) = Ae^{\alpha x} + Be^{-\alpha x}$ for constants A, B

$$M_t = (Ae^{\alpha B_t} + Be^{-\alpha B_t})e^{-\alpha^2 t/2}$$

If $\lambda < 0$ ($\lambda = -\alpha^2$ for some α), we get

$$M_t = (A\cos(\alpha B_t) + B\sin(-\alpha B_t))e^{\alpha^2 t/2}$$

If $\lambda = 0$, we get $\phi(t) = \phi(0)$ and $\psi(x) = Ax + B$, therefore we have

$$M_t = AB_t + B.$$

(b)

$$M_t = 1 + (\alpha B_t - \alpha^2 t/2) + \frac{1}{2} (\alpha B_t - \alpha^2 t/2)^2 + \frac{1}{6} (\alpha B_t - \alpha^2 t/2)^3 + \frac{1}{24} (\alpha B_t - \alpha^2 t/2)^4 + \cdots$$

$$= 1 + (B_t)\alpha + \frac{1}{2} (B_t^2 - t)\alpha^2 + \frac{1}{6} (B_t^3 - 3tB_t)\alpha^3 + \frac{1}{24} (B_t^4 - 6tB_t^2 + 3t^2)\alpha^4 + \cdots$$

We get the first five martingales as below:

$$H_0(t, B_t) = 1$$

$$H_1(t, B_t) = B_t$$

$$H_2(t, B_t) = \frac{1}{2}(B_t^2 - t)$$

$$H_3(t, B_t) = \frac{1}{6}(B_t^3 - 3tB_t)$$

$$H_4(t, B_t) = \frac{1}{24}(B_t^4 - 6tB_t^2 + 3t^2).$$

HW 3-4 SCFA Exercise 9.6 We first derive the mean and the variance of lognormal distribution, $Y \sim \exp(\mu + \sigma Z)$, where Z is a standard normal distribution (see the same result at (WIKIPEDIA)):

$$E(Y) = e^{\mu + \sigma^2/2}$$

and

$$Var(Y) = e^{2\mu} E((e^{\sigma Z} - e^{\sigma^2/2})^2) = e^{2\mu} E(e^{2\sigma Z} - 2e^{\sigma Z + \sigma^2/2} + e^{\sigma^2})$$
$$= e^{2\mu} (e^{2\sigma^2} - 2e^{\sigma^2} + e^{\sigma^2}) = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1).$$

Back to the problem, for t = kh and s = (k-1)h,

$$R_k(h) + 1 = \frac{X_t}{X_s} = \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)h + \sigma(B_t - B_s)\right) = \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)h + \sigma\sqrt{h}Z\right)$$

where Z is standard normal distribution. Since $R_k(h) + 1$ is a lognormal distribution with $\mu := (\mu - \sigma^2/2)h$ and $\sigma := \sigma\sqrt{h}$, we obtain the mean and the variance of $R_k(h) + 1$ as

$$E(R_k(h) + 1) = \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)h + \frac{\sigma^2}{2}h\right) = e^{\mu h}$$
$$\operatorname{Var}(R_k(h) + 1) = e^{2\mu h}(e^{\sigma^2 h} - 1).$$

Therefore,

$$E(R_k(h)) = e^{\mu h} - 1$$
 and $Var(R_k(h)) = e^{2\mu h} (e^{\sigma^2 h} - 1)$

and it follows that

$$Var(R_k(h)) = (1 + E(R_k(h))^2 (e^{\sigma^2 h} - 1))$$
$$\sigma^2 = \frac{1}{h} \log \left(1 + \frac{Var(R_k(h))}{(1 + E(R_k(h))^2)} \right).$$

From sample data, we can estimate the mean and the variance as

$$E(R_k(h)) = \frac{1}{n} \sum_{k=1}^{n} R_k(h), \quad \text{Var}(R_k(h)) = \frac{1}{n-1} \sum_{k=1}^{n} (R_k(h) - E(R_k(h))).$$

Below are the s and σ values for various values of $E(R_k(h))$ and $Stdev(R_k(h))$:

(All numbers are in the unit of %. h = 1/12.)

$Stdev(R_k(h)) \rightarrow$		5	10	15	20	25
$E(R_k(h))$	s	17.3	34.6	52.0	69.3	86.6
-2		17.7	35.3	52.7	70.0	87.0
0		17.3	34.6	51.7	68.6	85.3
2	σ	17.0	33.9	50.7	67.3	83.7
4		16.6	33.2	49.7	66.0	82.1
6		16.3	32.6	48.8	64.8	80.6

The values of s and σ are not significantly different unless the average return $E(R_k(h))$ is high.

HW 3-5 (Martingale representation theory) For a standard BM B_t ($0 \le t \le T$), find the martingale representation of $X_t = E(B_T^3 | \mathcal{F}_t)$. (In class, we did the same for $X_t = E(B_T^2 | \mathcal{F}_t)$)

Answer Using the short notation $E_t(\cdot) = E(\cdot | \mathcal{F}_t)$,

$$X_t = E_t((B_t + B_T - B_t)^3) = B_t^3 + 3B_t^2 E_t(B_T - B_t) + 3B_t E_t((B_T - B_t)^2) + E_t((B_T - B_t)^3)$$

= $B_t^3 + 0 + 3(T - t)B_t + 0 = B_t^3 + 3(T - t)B_t$.

In particular, $X_0 = 0$. From the SDE,

$$dX_t = 3B_t^2 dB_t + 3B_t (dB_t)^2 + 3(T-t)dB_t - 3B_t dt = 3(B_t^2 + T - t)dB_t,$$

the martingale representation is

$$X_T = \int_0^T 3(B_t^2 + T - t) \, dB_t$$