COMP 2804 Assignment 1

September 27, 2020

Question 1.

Name: Braeden Hall

Student Number: 101143403

Question 2.

i) Since k is equal to 1 in this case there is only one element of L that can be used to label the edges of the K_n graph. Therefore, every edge will have the same label. Since $n \geq 3$ there will be at least 3 cyclic edges with the same label, i.e. a boring triangle.

- ii) Let u be a random vertex of the K_n graph.
- (1) Suppose that none of the k labels is used to label the edges connected to u more than (n-1)/k times.

There are n-1 edges connected to u by definition of a complete graph. By (1) we have less than $k \times (n-1)/k = (n-1)$ edges connected to u. This is a contradiction so the amount of edges connected to u with the same label must equal at least $\lceil (n-1)/k \rceil$, call this label l.

Consider the complete subgraph G of K_n which contains the vertices connected to u with an edge labeled l.

Case 1:

If any edge vw in the subgraph G is labeled with l, then, since u is connected to both v and w with an edge labeled l, we have found our boring triangle.

Case 2:

Otherwise G is a complete graph with k-1 labels $(L \setminus l)$ and at least $\lceil (n-1)/k \rceil$ vertices.

Note:
$$\lceil (n-1)/k \rceil \ge \lceil ((3(k!))-1)/k \rceil = \lceil (3(k-1)!)-1/k \rceil = 3(k-1)!$$

 $\lceil (n-1)/k \rceil \ge 3(k-1)!$

Since $\lceil (n-1)/k \rceil \ge 3(k-1)!$, therefore by the induction hypothesis G has a boring triangle. G is a subgraph of K_n so that same boring triangle is part of K_n .

Question 3.

Let $k \geq 2$ and $n \geq 2$ be integers.

Let A be a set of all n length sequences of a_1, a_2, \ldots, a_n where each element $a_i \in \{1, 2, \ldots, k\}$ and no two consecutive elements a_i, a_{i+1} are the same.

In order to create a sequence in A we must first choose a value for a_i , there are k choices for this. Then for $i=2,3,\ldots,n$ we must choose a value for $a_i\in S\setminus a_{i-1}$, there are k-1 choices for this for all n-1 values of i. Therefore by the product rule

$$|A| = k \times (k-1)^{n-1}$$

Question 4.

i) Zoltan's meal deals with distinct cheeses and beers:

Steps to generate a Zoltan's meal deal:

- 1. Choose dough $N_1 = 2$
- 2. Choose meat $N_2 = 4$
- 3. Choose sauce $N_3 = 5$
- 4. Choose any subset of 20 different toppings. We have seen in class the the number of subsets of a set of size n is 2^n . $N_4 = 2^{20}$
- 5. Choose 3 distinct cheeses from a set of 7 $N_5 = \binom{7}{3}$
- 6. Choose 4 distinct beers from a set of 9 $N_6 = \binom{9}{4}$

Therefore, by the product rule the number of ways to generate a Zoltan's meal deal with distinct cheeses and beers is

$$2\times4\times5\times2^{20}\times\binom{7}{3}\times\binom{9}{4}$$

ii) Zoltan's meal deals with not necessarily distinct cheeses and beers:

Steps to generate a Zoltan's meal deal:

- 1. Choose dough $N_1 = 2$
- 2. Choose meat $N_2 = 4$
- 3. Choose sauce $N_3 = 5$
- 4. Choose any subset of 20 different toppings. We have seen in class the the number of subsets of a set of size n is 2^n . $N_4 = 2^{20}$
- 5. For $i \in \{1, 2, ..., 7\}$, let x_i represent the amount of cheese i to put on the pizza, $x_i \ge 0$. So

$$x_1 + x_2 + \dots + x_7 = 3 \tag{1}$$

Theorem 3.9.1 in the textbook states that the number of solutions to an equation of the form $x_1 + x_2 + \cdots + x_k = n$, where $x_1 \ge 0, x_2 \ge 0, \ldots, x_k \ge 0$ is

$$\binom{n+k-1}{k-1}$$

where k is the number of terms in the equation and n is the sum. So the number of solutions to (1) is

$$\binom{3+7-1}{7-1} = \binom{9}{6}$$

$$N_5 = \binom{9}{6}$$

6. For $i \in \{1, 2, \dots, 9\}$, let x_i represent the amount of beer i you want with your order, $x_i \ge 0$. So

$$x_1 + x_2 + \dots + x_9 = 4 \tag{2}$$

So, similarly to the last step, the number of solutions to (2) is

$$\binom{4+9-1}{9-1} = \binom{12}{8}$$

$$N_6 = \binom{12}{8}$$

Therefore, by the product rule the number of ways to generate a Zoltan's meal deal with not necessarily distinct cheeses and beers is

$$2\times4\times5\times2^{20}\times\binom{9}{6}\times\binom{12}{8}$$

Question 5.

Let A be the set of students who do not where pants while watching lectures.

Let B be the set of students who drink beer while watching lectures.

|A|=150 and |B|=110. The total number of students in the class is 230, so $|A \cup B| \le 230$. The principle of inclusion/exclusion states that $|A \cup B| = |A| + |B| - |A \cap B|$, using algebra this can be re-arranged to $|A \cap B| = |A| + |B| - |A \cup B|$.

$$|A \cap B| \ge 150 + 110 - 230 = 30$$

Therefore, the best possible lower bound for students who drink beer while not wearing pants during lectures is 30.

Question 6.

i) Let A be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 40, x_2 \ge 0, x_3 \ge 0$ Let $x_1 = 40 + y_1, y_1 \ge 0$

$$x_1 + x_2 + x_3 = 99$$

$$40 + y_1 + x_2 + x_3 = 99$$

$$y_1 + x_2 + x_3 = 59$$

Theorem 3.9.1 in the textbook states that the number of solutions to an equation of the form $x_1 + x_2 + \cdots + x_k = n$, where $x_1 \ge 0, x_2 \ge 0, \ldots, x_k \ge 0$ is

$$\binom{n+k-1}{k-1}$$

where k is the number of terms in the equation and n is the sum. Therefore

$$|A| = {59+3-1 \choose 3-1} = {61 \choose 2} \tag{3}$$

ii) Let A be the set of all solutions to $x_1+x_2+x_3=99,$ where $x_1\geq 0, x_2\geq 50, x_3\geq 0$ Let $x_2=50+y_2, y_2\geq 0$

$$x_1 + x_2 + x_3 = 99$$
$$x_1 + 50 + y_2 + x_3 = 99$$
$$x_1 + y_2 + x_3 = 49$$

By the same theorem used in the part i

$$|A| = \binom{49+3-1}{3-1} = \binom{51}{2} \tag{4}$$

iii) Let A be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 0, x_2 \ge 0, x_3 \ge 55$ Let $x_3 = 55 + y_3, y_3 \ge 0$

$$x_1 + x_2 + x_3 = 99$$
$$x_1 + x_2 + 55 + y_3 = 99$$
$$x_1 + y_2 + x_3 = 44$$

By the same theorem used in the part i

$$|A| = \binom{44+3-1}{3-1} = \binom{46}{2} \tag{5}$$

iv) Let A be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 40, x_2 \ge 50, x_3 \ge 0$ Let $x_1 = 40 + y_1$ and $x_2 = 50 + y_2, y_1 \ge 0$ and $y_2 \ge 0$

$$x_1 + x_2 + x_3 = 99$$

$$40 + y_1 + 50 + y_2 + x_3 = 99$$

$$y_1 + y_2 + x_3 = 9$$

By the same theorem used in the part i

$$|A| = \binom{9+3-1}{3-1} = \binom{11}{2} \tag{6}$$

v) Let *U* be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ Let *S* be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $0 \le x_1 \le 39, 0 \le x_2 \le 49, 0 \le x_3 \le 54$ So $U \setminus S$ is the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 40, x_2 \ge 50, x_3 \ge 55$

Let A_1 be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 40, x_2 \ge 0, x_3 \ge 0$ Let A_2 be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 0, x_2 \ge 50, x_3 \ge 0$ Let A_3 be the set of all solutions to $x_1 + x_2 + x_3 = 99$, where $x_1 \ge 0, x_2 \ge 0, x_3 \ge 55$

$$|U \setminus S| = |A_1 \cup A_2 \cup A_3|$$

By (3) $|A_1| = {61 \choose 2}$, by (4) $|A_2| = {51 \choose 2}$, by (5) $|A_3| = {46 \choose 2}$. By the theorem used in part i

$$|U| = {99+3-1 \choose 3-1} = {101 \choose 2}$$

By (6) $|A_1 \cap A_2| = {11 \choose 2}$. By the theorem used in part i

$$|A_1 \cap A_3| = {4+3-1 \choose 3-1} = {6 \choose 2}$$

For $A_2 \cap A_3$

$$x_1 + 50 + y_2 + 55 + y_3 = 99$$
$$x_1 + y_2 + y_3 = -6$$

Since n is negative in the equation there are no solutions, so $|A_2 \cap A_3| = 0$. $|A_1 \cap A_2 \cap A_3| = 0$ as well by the same logic.

By the principle of inclusion/exclusion

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_2| + |A_1 \cap A_2 \cap A_3|$$
$$|A_1 \cup A_2 \cup A_3| = {61 \choose 2} + {51 \choose 2} + {46 \choose 2} - {11 \choose 2} - {6 \choose 2} - 0 + 0$$

By the complement rule

$$|S| = |U| - |U \setminus S|$$

$$|S| = {101 \choose 2} - {61 \choose 2} + {51 \choose 2} + {46 \choose 2} - {11 \choose 2} - {6 \choose 2}$$

$$|S| = 980$$

Therefore, the number pf solutions to $x_1 + x_2 + x_3 = 99$, where $0 \le x_1 \le 39, 0 \le x_2 \le 49, 0 \le x_3 \le 54$ is 980.

Question 7.

i) The function f is defined as a bijection $f: S \to S$. So for each element $y \in S$ there is exactly one element $x \in S$ such that f(x) = y. So if the function f is continuously applied to the value received the previous time it was applied, say m-1 times, you will eventually arrive at the one value of S that the function will map to x. Therefore, the m^{th} time you apply the function, or $f^m(x)$, it will produce the value x.

ii) S is a set with n elements and every cycle of some element $x \in S$ contains some number of elements of S. Because the function used to generate cycles is a bijection (and therefore, one-to-one), each element of S can only appear in one cycle in a cycle decomposition. That means that if there is a cycle of k elements where k > n/2, then there will be less than n/2 elements remaining to make up the remaining cycles. Therefore, it is impossible to have more than one cycle of length k in the same cycle decomposition.

iii) Let k be an integer with k > n/2 and let A be the set of permutations of S whose cycle decomposition contains a cycle of length k.

Steps to generate an element of A:

- 1. Choose the k elements of S that will be in the k length cycle $N_1 = \binom{n}{k}$
- 2. Write down the smallest of the k elements as the first number in the cycle $N_2 = 1$
- 3. Choose an order for the remaining k-1 elements and write them down in the cycle $N_3=(k-1)!$
- 4. Permute the remaining n-k elements in some way and write them down in the cycle decomposition. $N_4 = (n-k)!$

Therefore, by the product rule

$$|A| = \binom{n}{k} \times (k-1)! \times (n-k)!$$

iv) Let A be the same set described in the previous part.

$$|A| = \binom{n}{k} \times (k-1)! \times (n-k)!$$

$$|A| = \frac{n!}{(n-k)!k!} \times (k-1)! \times (n-k)!$$

$$|A| = \frac{n!(k-1)!}{k!}$$

$$|A| = \frac{n!(k-1)!}{k(k-1)!}$$

$$|A| = \frac{n!}{k}$$

Question 8.

i) Let A be the set of permutations of S that have at least one cool index.

Let U be the set of all permutations of S.

So $U \setminus A$ is the set of all permutations of S that have 0 cool indices.

By the definition of a permutation |U| = n!. The only permutation of S that has 0 cool indices is the permutation where $a_1 = 1, a_2 = 2, \ldots, a_n = n$. So $|U \setminus A| = 1$. Therefore, by the complement rule

$$|A| = n! - 1$$

- ii) Assume index 1 is cool, so $a_1 \neq 1$ in the permutation. Since every element of S must appear exactly once in the permutation there must be some index i, where $1 < i \le n$, for which $a_i = 1$. This will make index i a cool index. Index i will always come after index 1 because, by the problem definition, index 1 is the first index. Therefore, index 1 can never be super cool.
- iii) Let B_k be the set of permutations of S where index k+1 is super cool, where $1 \le k \le n-1$.

Steps to generate an element of B_k :

- 1. Choose a value for a_{k+1} from the set $\{1, 2, ..., k\}$ $N_1 = k$
- 2. Write down a permutation of the elements of the set $\{1, 2, \dots, k+1\} \setminus a_{k+1}$ $N_2 = k!$
- 3. Write down the value you chose for a_{k+1} $N_3 = 1$
- 4. For i in range $(k+2, k+3, \ldots, n)$, write down $a_i = i$ $N_4 = 1$

Therefore, by the product rule

$$|B_k| = k \times k!$$

iv) Let C be the set of all permutations of S that contain at least 1 cool index. As shown in part i, |C| = n! - 1.

Another way to count the size of C is to sum up the sizes all the subsets of C, where each subset contains all the permutations of S where index k + 1 is super cool. And to do this for every valid value of k i.e. each $k \in \{1, 2, ..., n - 1\}$, call this subset C_k . We have seen in part ii that $|C_k| = k \times k!$. $C_1, C_2, ..., C_{n-1}$ are all pairwise disjoint sets, so, by the sum rule

$$|C| = |C_1| + |C_2| + \dots + |C_{n-1}|$$

 $|C| = \sum_{k=1}^{n-1} k \times k!$

Since |C| is shown to be equal to n! - 1 and $\sum_{k=1}^{n-1} k \times k!$, therefore

$$\sum_{k=1}^{n-1} k \times k! = n! - 1$$

Question 9.

- i) Since the minimum value in X must be equal to k that means k must be an element of S, so $0 \le k \le 3n$. In order for |X| = 2n + 1 there must be at least 2n elements in S that are greater than k, i.e. $k \le n$. Therefore, by these 2 conditions, $0 \le k \le n$.
- ii) Let N_k be a set as defined in the question where k is an integer such that $0 \le k \le n$. Steps to generate an element of N_k :
 - 1. Add the value of k to the set $X N_1 = 1$
 - 2. Choose 2n values from the set $\{k+1, k+2, \ldots, 3n\}$ and add them to the set X $N_2 = \binom{3n-k}{2n}$

Therefore, by the product rule

$$|N_k| = \binom{3n-k}{2n}$$

iii) Let N be the set of all subsets of S that contain 2n + 1 elements.

One way to count the size of N is to use the sum rule to sum up the sizes of each N_k . By doing this we get

$$|N| = \sum_{k=0}^{n} \binom{3n-k}{2n}$$

Values of k > n can be excluded because as explained in part i: $N_k = 0$ when k > n.

Another way to count the size of N is to use a binomial coefficient. We want to choose 2n+1 elements from a set of size 3n+1, the number of ways to do this is $\binom{3n+1}{2n+1}$. This can be simplified using theorem 3.7.1 from the textbook, which states that

$$\binom{n}{k} = \binom{n}{n-k}$$

for any integers n and k with $0 \le k \le n$. So

$$|N| = {3n+1 \choose 2n+1} = {3n+1 \choose (3n+1) - (2n+1)} = {3n+1 \choose n}$$

$$|N| = {3n+1 \choose n}$$

Since |N| is shown to be equal to $\sum_{k=0}^{n} {3n-k \choose 2n}$ and ${3n+1 \choose n}$, therefore

$$\sum_{k=0}^{n} \binom{3n-k}{2n} = \binom{3n+1}{n}$$