

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2018 - 2019

C2: MODÉLISATION DES SYSTÈMES ASSERVIS

TD 3 - Notions de grandeurs physiques(C2-1)

18 Septembre 2018

Compétences

- Analyser : apprécier la pertinence et la validité des résultats.
- Modéliser : Proposer un modèle de connaissance et de comportement :
 - o déterminer les fonctions de transfert des SLCI à partir d'équations physiques (modèle de connaissance);
 - o caractériser les signaux canoniques d'entrée.

1 Freinage d'une voiture

Une voiture ayant pour masse 1500kg descend une pente de 10% à $90km \cdot h^{-1}$ puis freine en urgence. L'effort de freinage (F), supposé constant, est égal à 300daN.

Q 1 : Déterminer la durée de freinage δt .

Q 2 : Déterminer la distance de freinage δx .

Q 3 : Tracer l'allure de la position du véhicule au cours du temps (x(t)).

2 Barrage de Vouglans

Le barrage hydroélectrique de Vouglans, sur la rivière d'ain, possède la troisième plus grande retenue artificielle d'eau de France de par sa capacité (605 Mm^3 avec un volume de tranche utile de $425Mm^3$). 4 conduites forcées de diamètre 4,5 m permettent la production d'électricité. Le débit nominal dans chacune des 4 turbines est de $75m^3/s$. La puissance maximale délivrée est alors de 264MW. Le débit moyen des eaux naturelles est estimé à $38m^3/s$.

Q 4 : Combien de jours sur une année le barrage peut-il fonctionner à pleine puissance en continu?

- Q 5: Quelle est la vitesse de l'eau dans les conduites?
- Q 6: Quelle est la pression de l'eau à la surface du barrage de Vouglans?
- Q 7 : Quelle est la pression de l'eau au fond du barrage de Vouglans (profondeur de 101m) quand la réserve est pleine?

3 Perceuse

- Le couple de démarrage à vide d'une perceuse est égal à $0,1N\cdot m$
- la vitesse de rotation atteinte est de $3000tr \cdot min^{-1}$;
- le moment d'inertie des parties tournantes ramenées au mandrin est de $2 \times 10^{-4} \, m^2 \cdot kg$.
- Q 8 : Déterminer l'accélération angulaire du mouvement en supposant celle-ci constante.
- $Q\ 9$: Combien de temps faut-il pour atteindre cette vitesse nominale?
- **Q 10 :** Combien de tours faut-il au foret pour atteindre la vitesse de $3000tr \cdot min^{-1}$?

