

E220-400T30S 产品手册

433/470MHz 30dBm 全新一代 LoRa 无线模块

成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Coultdo

目录

第一章 产品概述	3
1.1 产品简介	
1.2 特点功能	D
1.3 应用场景	
第二章 规格参数	
2.1 极限参数	
2.2 工作参数	
第三章 机械尺寸与引脚定义	<u> </u>
第四章 推荐连线图	
第五章 工作模式	
5.1 模式切换	
5.2 一般模式(模式0)	
5.3 WOR 发送模式 (模式 1)	
5.4 WOR 接收模式 (模式 2)	
5.5 休眠模式 (模式 3)	
第六章 功能详解	
6. 1 定点发射	
6.2 广播发射	
6. 3 广播地址	
6.4 监听地址	
6.5 模块复位	
6.6 AUX 详解	
	12
第七章 寄存器读写控制	
7.1 指令格式	
7.2 寄存器描述	14
7.3 出厂默认参数	
第八章 上位机配置说明	
第九章 硬件设计	
第十章 常见问题	18
	18
10.3 误码率太高	
第十一章 焊接作业指导	
11.1 回流焊温度	
11.2 回流焊曲线图	
第十二章 相关型号	
第十三章 天线指南	
13.1 天线推荐	
第十四章 批量包装方式	

修订历史	21
关于我们	20

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。 文档"按现状"提供,不 负任何担保责任,包括对适销性、适用于特定用途或非侵 权性的任何担保,和任何提案、规格或样品 在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的 责任。本文档在此未以禁止反 言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许 可。

文中所得测试数据均为亿佰特实验室测试所得,实际结果可能略有差异。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

最终解释权归成都亿佰特电子科技有限公司所有。

注意

由于产品版本升级或其他原因,本手册内容有可能变更。亿佰特电子科技有限公司保留在没有任何通 知或者提示的情况下对本手册的内容进行修改的权利。本手册仅作为使用指导,成都亿佰特电子科技有限 公司尽全力在本手册中提供准确的信息,但是成都亿佰特电子科技有限公司并不确保手册内容完全没有错 误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。

第一章 产品概述

1.1 产品简介

E220-400T30S 是全新一代的 LoRa 无线串口模块 (UART), 基于 Semtech 原厂 的 LLCC68 芯片方案设计。具有多种传输方式,工作在(410.125~493.125MHz)频 段(默认 433.125MHz), LoRa 扩频技术, TTL 电平输出, 兼容 3.3V 与 5V 的 IO 口 电压。

E220-400T30S 采用全新一代的 LoRa 方案,与传统 SX1278 方案相比,传输距 离更远,速度更快,功耗更低;支持空中唤醒、载波监听、通信密钥等功能,支 持分包长度设定,可提供定制开发服务。综合与LLCC68方案比较,该方案具有高 性价比优势。该产品可覆盖 410~493MHz 超宽使用频率范围。

1.2 特点功能

- 采用 LLCC68 芯片方案, 具有功耗低、速度快、距离远的显著优势;
- 理想条件下,通信距离可达 10km;
- 最大发射功率 30dBm, 软件多级可调;
- 支持用户自行设定通信密钥,且无法被读取,极大提高了用户数据的保密性;
- 支持 RSSI 信号强度指示功能,用于评估信号质量、改善通信网络、测距;
- 支持空中唤醒,即超低功耗功能,适用于电池供电的应用方案;
- 支持定点传输、广播传输、信道监听;
- 支持全球 ISM 433MHz 频段, 支持 470MHz 抄表频段;
- 参数掉电保存,重新上电后模块会按照设置好的参数进行工作;
- 高效看门狗设计,一旦发生异常,模块将在自动重启,且能继续按照先前的参数设置继续工作;
- 支持 2.4k~62.5kbps 的数据传输速率;
- 支持 2.3~5.5V 供电,大于 5V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选(IPEX/邮票孔),便于用户二次开发,利于集成。

1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统:
- 楼宇自动化解决方案;
- 无线工业级遥控器:
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

主要参数	性能		备注
	最小值	最大值	省 在
电源电压(V)	2. 3	5. 5	超过 5.5V 可能永久烧毁模块
阻塞功率(dBm)	(6-11-1	10	近距离使用烧毁概率较小
工作温度(℃)	-40	+85	工业级

2.2 工作参数

	少		性能		dr Ala
	主要参数	最小值	典型值	最大值	-
	工作电压 (V)	3. 3	§ 5.0	5.5 ®	≥5.0V 可保证输出功率
	通信电平 (V)	(7.6)	3. 3	(ferri	使用 5V 电平可能有烧毁风险
	工作温度(℃)	-40	1	85	工业级设计
	工作频段 (MHz)	410. 125	-	493. 125	支持 ISM 频段
~L	发射电流 (mA)	-	610	-	瞬时功耗@30dBm
功	接收电流(mA)		17		<u> </u>
耗	休眠电流 (uA)	(49)	3	(0)	软件关断
	最大发射功率(dBm)	29. 5	30.0	30. 5	- 25
					-124dbm, BW_L=125kHz, SF = 7, LORA™;
			(8)	8	-129dbm, BW_L=125kHz, SF = 9, LORA [™] ;
	拉北司总帝(ID)		100		-121dbm, BW_L=250kHz, SF = 7, LORA™;
	接收灵敏度(dBm)		-129		-129dbm, BW_L=250kHz, SF = 10, LORA™;
		134		3	-117dbm, BW_L=500kHz, SF = 7, LORA™;
					-127dbm, BW_L=500kHz, SF = 11, LORA™;
	空中速率(bps)	2. 4k	© 2.4k	62. 5k®	用户编程控制
	参考距离		10km		晴朗空旷,天线增益 5dBi,天线高度 2.5 米,空中速率 2.4kbps
	发射长度	613	200 Byte	13	可通过指令设置分包 32/64/128/200 字节发送
	缓存容量		400 Byte		
	调制方式		LoRa/FSK		新一代 LoRa 调制技术
	通信接口	UART 串口			TTL 电平
封装方式 接口方式		贴片式			
			邮票孔		间距 2.54mm
	外形尺寸		25*40.5 mr	n	-
	射频接口		IPEX/邮票孔	L	等效阻抗约 50 Ω

第三章 机械尺寸与引脚定义

引脚序号	引脚名称	引脚方向	引脚用途
1	MO	输入(极弱上拉)	和 M1 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
2	M1	输入(极弱上拉)	和 MO 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
3	RXD	输入	TTL 串口输入,连接到外部 TXD 输出引脚;
4	TXD	输出	TTL 串口输出,连接到外部 RXD 输入引脚;
5	AUX	输出	用于指示模块工作状态;用户唤醒外部 MCU,上电自检初始化期间输出低电平;(可以悬空)
6	VCC	输入	模块电源正参考, 电压范围: 3.3~5.5V DC
7	GND	输入	模块地线
8	NC	输入	(悬空,用户无需连接)
9	GND	输入	固定地
10	NC	输入	(悬空,用户无需连接)
11	NC	输入	(用户无需连接,悬空)
12	NC	输入/输出	NC 引脚, 此引脚需悬空(以备后续扩展使用)
13	NC	输入/输出	NC 引脚, 此引脚需悬空(以备后续扩展使用)

	((()))	
E	BY	T	E

14	1	NC	输入/输出	NC 引脚, 此引脚需悬空(以备后续扩展使用)
15	5	GND		固定地
16	5	GND		固定地
17	7	GND	W	固定地
18	3	ANT	输出	天线接口(高频信号输出,50欧姆特性阻抗)

第四章 推荐连线图

序号	模块与单片机简要连接说明(上图以 STM8L 单片机为例)
1	无线串口模块为 TTL 电平,请与 TTL 电平的 MCU 连接。
2	某些 5V 单片机,可能需要在模块的 TXD 和 AUX 脚加 4~10K 上拉电阻。

第五章 工作模式

模块有四种工作模式,由引脚 M1、M0 设置;详细情况如下表所示:

模式 (0-3)	M1	МО	模式介绍	备注
0 传输模式	0	0	串口打开,无线打开,透明传输	_
1 WOR 发送 模式	0	1	WOR 发送数据, WOR 接收数据	支持空中唤醒
2 WOR 接收 模式	1	0	WOR 发送关闭,WOR 接收数据	_
3 休眠模式	1	1	可配置参数	_

5.1 模式切换

序号	备注
1	 ■ 用户可以将 M1、M0 进行高低电平组合,确定模块工作模式。可使用 MCU 的 2 个 GPIO 来控制模式切换; ● 当改变 M1、M0 后:若模块空闲,1ms 后,即可按照新的模式开始工作; ● 若模块有串口数据尚未通过无线发射完毕,则发射完毕后,才能进入新的工作模式; ● 若模块收到无线数据后并通过串口向外发出数据,则需要发完后才能进入新的工作模式; ● 所以模式切换只能在 AUX 输出 1 的时候有效,否则会延迟切换。
2	● 例如:用户连续输入大量数据,并同时进行模式切换,此时的切换模式操作是无效的;模块会将所有用户数据处理完毕后,才进行新的模式检测;● 所以一般建议为:检测 AUX 引脚输出状态,等待输出高电平后 2ms 再进行切换。
3	 ● 当模块从其他模式被切换到休眠模式时,如果有数据尚未处理完毕; ● 模块会将这些数据(包括收和发)处理完毕后,才能进入休眠模式。这个特征可以用于快速休眠,从而节省功耗;例如:发射模块工作在模式0,用户发起串口数据"12345",然后不必等待AUX引脚空闲(高电平),可以直接切换到休眠模式,并将用户主MCU立即休眠,模块会自动将用户数据全部通过无线发出后,1ms内自动进入休眠; ● 从而节省MCU的工作时间,降低功耗。
4	 ● 同理,任何模式切换,都可以利用这个特征,模块处理完当前模式事件后,在1ms内,会自动进入新的模式;从而省去了用户查询AUX的工作,且能达到快速切换的目的; ● 例如从发射模式切换到接收模式;用户MCU也可以在模式切换前提前进入休眠,使用外部中断功能来获取AUX变化,从而进行模式切换。
5	● 此操作方式是非常灵活而高效的,完全按照用户 MCU 的操作方便性而设计,并可以尽可能降低整个系统的工作 负荷,提高系统效率,降低功耗。

5.2 一般模式 (模式 0)

类型	当 MO = 0, M1 = 0 时,模块工作在模式 0
发射	用户可以通过串口输入数据,模块会启动无线发射。
接收	模块无线接收功能打开,收到无线数据后会通过串口 TXD 引脚输出。

5.3 WOR 发送模式 (模式 1)

类型	当 MO = 1, M1 = 0 时, 模块工作在模式 1	
----	-------------------------------	--

发射	无线发送数据打开。			
接收	无线接收数据打开			

5.4 WOR 接收模式 (模式 2)

类型	当 MO = 0, M1 = 1 时,模块工作在模式 2						
发射	无线发送数据关闭。						
接收	无线接收数据打开。						

5.5 休眠模式 (模式 3)

类型	当 MO = 1, M1 = 1 时,模块工作在模式 3
发射	无法发射无线数据。
接收	无法接收无线数据。
配置	用户可以访问寄存器,从而配置模块工作状态。
注意	当从休眠模式进入到其他模式,模块会重新配置参数,配置过程中,AUX 保持低电平; 完毕后输出高电平,所以建议用户检测 T_BUSY 上升沿。

第六章 功能详解

6.1 定点发射

6.3 广播地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为发射时(相同模式,透明传输方式), 0x04 信道下所有的接收模块都可以收到数据,达到广播的目的。

6.4 监听地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为接收时,可以接收到 0x04 信道下所有的数据,达到监听的目的。

6.5 模块复位

● 模块上电后,AUX 将立即输出低电平,并进行硬件自检,以及按照用户参数进行工作方式设置; 在此过程中,AUX 保持低电平,完毕后 AUX 输出高电平,并按照 M1、M0 组合而成的工作模式开始正常工作; 所以,用户需要等待 AUX 上升沿,作为模块正常工作的起点。

6.6 AUX 详解

- AUX 用于无线收发缓冲指示和自检指示。
- 它指示模块是否有数据尚未通过无线发射出去,或已经收到无线数据是否尚未通过串口全部发出,或模块正在初始化自 检过程中。

6.6.1 串口数据输出指示

● 用于唤醒休眠中的外部 MCU;

模块串口外发数据时, AUX引脚时序图

6.6.2 无线发射指示

缓冲区空:内部 400 字节缓冲区的数据,都被写入到无线芯片(自动分包);

当 AUX=1 时用户连续发起小于 400 字节的数据,不会溢出;

当 AUX=0 时缓冲区不为空:内部 400 字节缓冲区的数据,尚未全部写入到无线芯片并开启发射,此时模块有可能在等待 用户数据结束超时,或正在进行无线分包发射。

【注意】: AUX=1 时并不代表模块全部串口数据均通过无线发射完毕,也可能最后一包数据正在发射中。

分包发射:最后一包数据已 写入RF芯片并自动发射,用户 可以继续输入 256 字节。(实 质是缓冲区为空)

模块接收串口数据时,AUX引脚时序图

6.6.3 模块正在配置过程中

仅在复位和退出休眠模式的时候;

自检期间,AUX引脚时序图

6.6.4 注意事项

序号	AUX 注意事项
1	上述功能 1 和功能 2,输出低电平优先,即:满足任何一个输出低电平条件,AUX 就输出低电平; 当所有低电平条件均不满足时,AUX 输出高电平。
2	当 AUX 输出低电平时,表示模块繁忙,此时不会进行工作模式检测; 当模块 AUX 输出高电平后 1ms 内,将完成模式切换工作。
3	用户切换到新的工作模式后,至少需要在 AUX 上升沿 2ms 后,模块才会真正进入该模式;如果 AUX 一直处于高电平,那么模式切换将立即生效。
4	用户从模式 3 (休眠模式) 进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出低电平。
5	因 LoRa 调制方式的特点,信息传输时延相较于 FSK 要长很多,如在 2.4kbps 空速下,100 字节传输时延在 1.5 秒 左右,建议客户不要在低空速下进行大数据量传输,以免因数据堆积造成数据丢失引发通信异常。

第七章 寄存器读写控制

7.1 指令格式

序号	指令格式	详细说明						
		指令: C0+起始地址+长度+参数 响应: C1+起始地址+长度+参数						
		·利益。017/20和超温,以及1多效						
		例 1: 配置信道为 0x09						
		指令 起始地址 长度 参数						
1	设置寄存器	发送: C0 05 01 09 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
		区回: C1 05 01 09						
		例 2: 同时配置模块地址 (0x1234)、网络地址(0x00)、串口(9600 8N1)、空速(2.4K)						
		发送: CO 00 04 12 34 00 61						
		返回: C1 00 04 12 34 00 61						
		指令: C1+起始地址+长度 响应: C1+起始地址+长度+参数						
		啊应: CI+起好吧址+ 下及+参数						
		例 1: 读取信道						
		指令 起始地址 长度 参数						
2	读取寄存器	发送: C1 05 01						
		返回: C1 05 01 09						
		例 2: 同时读取模块地址、网络地址、串口、空速						
		发送: C1 00 04						
		返回: C1 00 04 12 34 00 61						
		指令: C2 +起始地址+长度+参数						
		响应: C1 +起始地址+长度+参数						
		例 1: 配置信道为 0x09						
		指令 起始地址 长度 参数						
3	设置临时寄存器	发送: C2 05 01 09						
		返回: C1 05 01 09						
		 例 2: 同时配置模块地址 (0x1234)、网络地址(0x00)、串口(9600 8N1)、空速(2.4K)						
		发送: C2 00 04 12 34 00 61						
		返回: C1 00 04 12 34 00 61						
		指令: CF CF + 常规指令						
		响应: CF CF + 常规响应						
		例 1: 无线配置信道为 0x09						
		无线指令头 指令 起始地址 长度 参数						
5	无线配置	发送: CF CF C0 05 01 09						
		返回: CF CF C1 05 01 09						
		 例 2: 无线同时配置模块地址 (0x1234)、网络地址(0x00)、串口(9600 8N1)、空速(2.4K						
		为 2: 无线内的配直模块地址 (0x1234)、网络地址 (0x00)、中口 (9000 6N1)、 主逐 (2.4N 发送: CF CF CO 00 04 12 34 00 61						
		返回: CF CF C1 00 04 12 34 00 61						
		格式错误响应						
6	格式错误	恰入相 庆刊						

7.2 寄存器描述

序号	读写	名称				描述	备注		
00Н	读/写	ADDH	ADDH	(默认)	0)	E CONTE CO	模块地址高字节和低字节; 注意: 当模块地址等于 FFFF 时,可作为广播和		
01H	读/写	ADDL	ADDL	(默认)	0)		监听地址,即:此时模块将不进行地址过滤		
			7	6	5	UART 串口速率(bps)			
		8	0	0	0	串口波特率为 1200	│ │ 相互通信的两个模块,串口波特率可以不同,		
	,	(3)	0	0	1	串口波特率为 2400	校验方式也可以不同;		
			0	1	0	串口波特率为 4800	- - 当连续发射较大数据包时,用户需要考虑波特		
		3	0	1	1	串口波特率为9600 (默认)	」		
			1	0	0	串口波特率为 19200			
		(8)	1	0	i	串口波特率为 38400	一般建议通信双方波特率相同。		
	(1	(10	0	串口波特率为 57600			
			1	1	1	串口波特率为 115200			
		10	4	3	串口	校验位	EB		
		(R)	0	0	8N1	(默认)			
02Н	读/写	REGO	0	1 -	801		一 一通信双方串口模式可以不同;		
		9	1	0	8E1	E (C) TE (C			
			1	1	8N1	(等同 00)			
			2	1	0	无线空中速率 (bps)			
		8	0	0	0	空中速率 2.4k (默认)	® ®		
		(6)	0	0	1.	空中速率 2.4k (默认)			
			0	1	0	空中速率 2.4k (默认)	一 」 通信双方空中速率必须相同;		
		13	0	1	1	空中速率 4.8k	」		
			1	0	0	空中速率 9.6k	空中速率越高,延迟越小,传输距离越短。		
		8	1	0 .	1	空中速率 19.2k			
	(1	((i.°	0	空中速率 38. 4k			
			1	1	1	空中速率 62.5k			
		3	7	6	分包	· 设定	用户发送数据小于分包长度,接收端串口输出		
		8	0	0			呈现为不间断连续输出;		
			0	1	128 =		一 		
		9	1	0	64 字	节	□ 用户及达数据入于分包长度,接收编中口会分 □ 包输出。		
		34	1	1	32 字		13		
			5	RSSI		!声使能	启用后,可在传输模式或 WOR 发送模式发送指		
0011)上/宣	DEC1	0		(默认)	(%)	令 CO C1 C2 C3 指令 读取寄存器;		
03Н	读/写	REG1		11(0			□ 寄存器 0x00 : 当前环境噪声 RSSI; 寄存器 0X01 : 上一次接收数据时的 RSSI		
							(当前信道噪声为: dBm =-RSSI/2);		
	E	8	1	启用			指令格式: C0 C1 C2 C3+起始地址+读取长度; 返回: C1 + 地址+读取长度+读取有效值;如: 发送 C0 C1 C2 C3 00 01 返回 C1 00 01 RSSI (地址只能从 00 开始)		
			4	3	2	保留			
	- 1	I					1		

			1	0	发射	力率			
			0	0	30dl	Bm (默认)	」 功率和电流是非线性关系,最大功率时,电源 数据显言。		
			0	1	27dl	Bm	- 效率最高;		
		(D)	1	0	24dl	Bm 🔍	- 电流不会随功率降低而同比例降低。		
	,	(3)	1	, 1	21dl	Bm			
04H	读/写	REG2		控制(C 分别代		84 个信道	实际频率= 410.125 + CH *1M		
	E		7	启用	RSSI =	字节	E		
		8	0	禁用	(默认) ®	一启用后,模块收到无线数据,通过串口 TXD 输出后,将跟随一个 RSSI 强度字节。		
	,	(6)	1	启用			- 山川,村政随 NOSI 压反于 17。		
			6	传输	方式		定点传输时,模块会将串口数据的钱三个字节		
		3	0	透明	 装输(默认)	识别为: 地址高+地址低+信道, 并将其作为无		
			1	定点	专输		线发射目标。		
		- N	5	预留					
	(0	(((%)	111				
			1		1 4				
	E		4	预留			EL		
		8	0				® - ®		
		(6.	1	3	3)	.			
			3	预留			- 仅针对模式 l 有效;		
05Н	读/写	写 REG3	0	工作和	生 WOR	(默认) 监听模式,监听周期见下文(WOR 以节省大量功耗。	1. wor 的接收模式下,模块可以修改唤醒后的		
			1	模块。	支射方 皮发打 的唤醒	开,且在发射数据时,加入一定 码。			
		@	2	1	0	WOR 周期			
		3)	0	0	0	500ms	仅针对模式1有效;		
	((9)	0	0	1	1000ms	- 周期 T= (1+WOR)*500ms,最大 4000ms,最久		
			0	1	0	1500ms	周朔 1- (1+wok) *500ms, 取入 4000ms, 取入 为 500ms;		
			0	1	1	2000ms			
		8	1	0	0	2500ms	WOR 监听间隔周期时间越长,平均功耗越低, 但 数据延迟越大;		
	,	(0)	1	0	1	3000ms	MILECION,		
			1	1	0	3500ms	收发双方必须一致(非常重要)		
		13	1	1	1	4000ms	68		
06Н	写	CRYPT_H	密钥剂	高字节	(默认	0)	只写,读取返回 0; 用于加密,避免被同类模块截获空中无线数据 模块内部将使用这两个字节作为计算因子对空		
07Н	写(CRYPT_L	密钥值	低字节	(默认	0)	中无线信号进行变换加密处理。		
08H	读	Version	版本	号信息 1	个字	 节	版本号信息1个字节		

7.3 出厂默认参数

型号	出厂默认参数值: C0 00 00 62 00 17								
模块型号	频率	地址	信道	空中速率	波特率	串口格式	发射功率		
E220-400T30S	433.125MHz	0x0000	0x17	2.4kbps	9600	8N1	30dbm		

第八章 上位机配置说明

下图为 E220-400T30S 配置上位机显示界面,用户可通过 MO、M1 切换为命令模式,在上位机进行参数快速配置和读取。

在配置上位机中,模块地址、频率信道、网络 ID、密钥均为十进制显示模式;其中各参数取值范围:

网络地址: 0~65535

频率信道: 0~83

网络 ID: 0~255

密钥: 0~65535

第九章 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况介许可以做适当的隔离与屏蔽:
- 通信线若使用 5V 电平,必须串联 1k-5.1k 电阻 (不推荐,仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议, 例如: USB3.0:
- 天线安装结构对模块性能有较大影响,务必保证天线外露且最好垂直向上;
- 当模块安装于机壳内部时,可使用优质的天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

第十章 常见问题

传输距离不理想 10.1

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

模块易损坏 10.2

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动:
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

10.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码, 务必保证电源的可靠性;
- 延长线、馈线品质差或太长, 也会造成误码率偏高。

第十一章 焊接作业指导

11.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150°C	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3°C/second max	3℃/second max
Liquidous Temperature (TL)	⊗ 液相温度 ⊗	183℃	® 217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235℃	230−250℃
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6°C/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

11.2 回流焊曲线图

第十二章 相关型号

产品型号	芯片方案	载波频率 发射功率 Hz dBm		测试距离 km	封装形式	通信接口	
E220-400T22S	LLCC68	433/470M	22	5	贴片	TTL	

第十三章 天线指南

13.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响, 块且性能较为优秀且价格合理的天线。

产品型号	类型	频段	接口	增益	高度	馈线	功能特点
)加金与	大 坐	Hz	1女口	dBi	mm	cm	为肥何从
TX433-JZ-5	胶棒天线	433M	SMA-J	2.0	52	-	超短直式,全向天线
TX433-JZG-6	胶棒天线	433M	SMA-J	2.5	62	_	超短直式,全向天线
TX433-JW-5	胶棒天线	433M	SMA-J	2. 0	50	® –	弯折胶棒,全向天线
TX433-JWG-7	胶棒天线	433M	SMA-J	2.5	75	-	弯折胶棒,全向天线
TX433-JK-11	胶棒天线	433M	SMA-J	2.5	110	-	可弯折胶棒,全向天线
<u>TX433-JK-20</u>	胶棒天线	433M	SMA-J	3.0	210	-	可弯折胶棒,全向天线
TX433-XPL-100	吸盘天线	433M	SMA-J	3. 5	185	100	小型吸盘天线, 性价比
TX433-XP-200	吸盘天线	433M	SMA-J	4. 0	190	200	中性吸盘天线, 低损耗
TX433-XPH-300	吸盘天线	433M	SMA-J	6. 0	965	300	大型吸盘天线, 高增益
<u>TX490-JZ-5</u>	胶棒天线	470/490M	SMA-J	2.0	50	_	超短直式,全向天线
TX490-XPL-100	吸盘天线	470/490M	SMA-J	3. 5	120	100	小型吸盘天线, 性价比

第十四章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2020-07-08	初始版本	ken
1.1	2020-12-10	错误修正	Linson

关于我们

销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: <u>support@cdebyte.com</u> 官方网站: www.ebyte.com

公司地址: 四川省成都市高新西区西区大道 199 号 B5 栋

