Laboration 4, Logic Gates

Robert Åberg

October 17, 2015

Contents

1	Decoder	2
	1.1	2
	1.2	2
2	Multiplexer	2
	2.1	2
	2.2	9
3	\mathbf{A} dder	4
	3.1	4
	3.2	4
4	Latches	ļ
	4.1	Ę
	4.2	ŀ
5	D Flip-Flops and Registers	ϵ
	5.1 D flip-flop	6
	5.1.1	6
	5.1.2	6
	5.2	-
6	Design of a Synchronous Sequential Circuit.	7
•	6.1	7
	6.1.1	,
	6.1.2	5

1 Decoder

1.1

Figure 1: Decoder

1.2

Genom att testa de olika inputs på A1 respektive A0 verifierar jag utdata. Om A0 och A1 har 0 som indata bör därför Y0 vara den enda som har ett som utdata.

2 Multiplexer

2.1

- MUX utdata är blå för att den "bär" på en bit det är just nu inget som bestämmer vad det ska vara.
- Utdata signalen "Equal" är röd eftersom det är något fel. Det kan antingen vara, som i det här fallet, att den inte får någon indata eller den får olika signaler från flera grindar.
- Select signalen är svart i det här fallet eftersom den har ett flerbitsvärde. Antingen är någon eller alla bits opsecificerade.

Figure 2: 4:1 multiplexer

Efersom vi kan undersöka om de båda konstruktionerna av multiplexarna kan ge samma värde så kan vi helt enkelt undersöka om både ger samma utdata.

3 Adder

3.1

3.2

4 Latches

4.1

• Eftersom det är ett minne beror det helt på vad Q och Q' hade från början. R indata kan beskrivas som "reset" och S som "set".

4.2

• När både CLK och D är 0 händer ingenting (förutsatt att de inte hade något värde från början). När sedan CLK sätts till 1 blir den ena AND

grinden 1 och den andra 0, beroende på värdet av D. Q och Q' ändras inte om CLK ändras. CLK bestämmer bara när Q och Q' ska ändras.

- När CLK är 1 och D sätts till 1 ändras Q till 1 och Q' till 0.
- Fördelen med en D latch är att vi kan bestämma när vi vill ändra värdet på Q och Q'. Detta blir ett problem i SR latchen eftersom S och R både står för när vi ändrar och vad vi ändrar.
- Problemet med D latchen är att Q och Q' bara ändras när vi bestämmer det. Dvs, det kan bli konflikter med tajmingen och input samt output inte blir samma.

5 D Flip-Flops and Registers

5.1 D flip-flop

5.1.1

5.1.2

Värdet av Q ändras på klockans "rising-edge". Dvs, när D ändras påverkas bara Q när CLK sätts till 1. Annars bibehåller den bara state.

5.2

- 6 Design of a Synchronous Sequential Circuit.
- 6.1
- 6.1.1

6.1.2

Alla "Synchronous Sequential Circuit" måste innehålla ett register samt att de ska vara kopplade till samma klocka. Dessutom måste varje cykel passera ett register. I denna lab skulle bara 5.1 och 5.2 vara en "Synchronous Sequential Circuit" eftersom de just måste innehålla ett register. En D latch i sig är ett register så uppfyller den därmed kravet.