Generalized Additive Models: Allowing for some wiggle room in your models

Sara Stoudt

March 17, 2021

About Me

- currently teaching in the Statistical and Data Sciences Program at Smith College
- PhD in Statistics at Berkeley
 - ecology: evaluating fitness for purpose of a variety of data collection protocols for species distribution and abundance models
 - ecology: evaluating model fit in terms of community metrics for joint species distribution models
 - statistics communication: co-authored a book *Communicating with Data: The Art of Writing for Data Science* with Deborah Nolan

GAMs in my work

Setting the Scene

- "Using change in a seat belt law to study racially-biased policing in South Carolina" by Corinne A Riddell, Jay S Kaufman, Jacqueline M Torres, and Sam Harper
- https://github.com/ corinne-riddell/ SCarolinaTrafficStops

Linear Model - 1m

$$Y = X\beta + \epsilon$$

daily number of stops $\sim \beta_{\textit{driverRace}} +$

$$\beta$$
isPostPolicy + β driverRace,isPostPolicy+

$$\beta_{\textit{dayOfWeek}} + \beta * \mathsf{month}$$

Choices:

which covariates X to use

Generalized Linear Model - glm

$$E[Y] \sim g^{-1}(X\beta)$$

 $g(E[Y]) \sim X\beta$

g(daily number of stops) $\sim \beta_{driverRace} + \beta_{g}$

 $\beta_{davOfWeek} + \beta * month$

Choices:

- which covariates X to use
- response distribution (quasipoisson) and link function g

Generalized Additive Models: Intuition

$$g(E[Y]) = X\beta + f_1(x_{1i}) + f_2(x_{2i})$$
 $g(\text{daily number of stops}) \sim \beta_{\textit{driverRace}} + \beta_{\textit{isPostPolicy}} + \beta_{\textit{driverRace,isPostPolicy}} + f_1(\text{dayOfWeek}) + f_2(\text{month})$

Choices:

- which covariates X to use
- response distribution and link function g
- type of basis that defines f_i
- dimension of basis
- smoothing parameter

March 17, 2021

7/12

^{*}Simon N. Wood. *Generalized Additive Models: An Introduction with R.* Chapman and Hall/CRC, 2006.

GAM: Parameter Intuition

GAM: Parameter Intuition

Generalized Additive Model - mgcv::gam

$$g(ext{daily number of stops}) \sim eta_{driverRace} + \infty \ eta_{isPostPolicy} + eta_{driverRace,isPostPolicy} + f_1(ext{dayOfWeek}) + f_2(ext{month})$$

Choices:

- which covariates X to use
- response distribution (quasipoisson) and link function g
- type of basis that defines f_i
- dimension of basis
- smoothing parameter (default: GCV)

Setting the Scene

- "Using change in a seat belt law to study racially-biased policing in South Carolina" by Corinne A Riddell, Jay S Kaufman, Jacqueline M Torres, and Sam Harper
- https: //github.com/corinne-riddell/SCarolinaTrafficStops

GAM: Parameter Intuition

$$f(x) = \sum_{i=1}^{q} a_i(x)\alpha_k$$

$$f(x,z) = \sum_{i} \beta_i(z)a_i(x) = \sum_{i} \sum_{j} \beta_{ij}b_j(z)a_i(x)$$

Visualize Tensor Product Smooth

