Volume of the parallelepiped from adjacent edges

If we need to find the volume of a parallelepiped and we're given three adjacent edges of it, all we have to do is find the scalar triple product of the three vectors that define the edges:

$$\left| \overrightarrow{PS} \cdot \left(\overrightarrow{PQ} \times \overrightarrow{PR} \right) \right|$$

where \overrightarrow{PS} , \overrightarrow{PQ} and \overrightarrow{PR} are the three adjacent edges.

First we'll find the vectors \overrightarrow{PQ} , \overrightarrow{PR} and \overrightarrow{PS} , then we'll find the cross product $\overrightarrow{PQ} \times \overrightarrow{PR}$ using the 3×3 matrix

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ PQ_1 & PQ_2 & PQ_3 \\ PR_1 & PR_2 & PR_3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} PQ_2 & PQ_3 \\ PR_2 & PR_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} PQ_1 & PQ_3 \\ PR_1 & PR_3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} PQ_1 & PQ_2 \\ PR_1 & PR_2 \end{vmatrix}$$

=
$$(PQ_2PR_3 - PQ_3PR_2)\mathbf{i} - (PQ_1PR_3 - PQ_3PR_1)\mathbf{j} + (PQ_1PR_2 - PQ_2PR_1)\mathbf{k}$$

We'll convert the result of the cross product into standard vector form, and then take the dot product of $\overrightarrow{PS}\langle PS_1, PS_2, PS_3\rangle$ and the vector result of $\overrightarrow{PQ}\times\overrightarrow{PR}$. The final answer is the value of the scalar triple product, which is the volume of the parallelepiped.

Example

Find the volume of the parallelepiped given by the adjacent edges \overrightarrow{PQ} , \overrightarrow{PR} and \overrightarrow{PS} .

$$P(5,1,-2)$$

$$Q(0, -1,3)$$

$$R(3,2,-4)$$

$$S(1, -2, 0)$$

We need to start by using the four points to find the vectors \overrightarrow{PQ} , \overrightarrow{PR} and \overrightarrow{PS} , since these are the three adjacent edges of the parallelepiped.

$$\overrightarrow{PQ} = \langle 0 - 5, -1 - 1, 3 - (-2) \rangle$$

$$\overrightarrow{PQ} = \langle -5, -2, 5 \rangle$$

and

$$\overrightarrow{PR} = \langle 3 - 5, 2 - 1, -4 - (-2) \rangle$$

$$\overrightarrow{PR} = \langle -2, 1, -2 \rangle$$

and

$$\overrightarrow{PS} = \langle 1 - 5, -2 - 1, 0 - (-2) \rangle$$

$$\overrightarrow{PS} = \langle -4, -3, 2 \rangle$$

Now we need to take the cross product of \overrightarrow{PQ} and \overrightarrow{PR} .

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -5 & -2 & 5 \\ -2 & 1 & -2 \end{vmatrix}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i} \begin{vmatrix} -2 & 5 \\ 1 & -2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -5 & 5 \\ -2 & -2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -5 & -2 \\ -2 & 1 \end{vmatrix}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = [(-2)(-2) - (5)(1)] \mathbf{i} - [(-5)(-2) - (5)(-2)] \mathbf{j} + [(-5)(1) - (-2)(-2)] \mathbf{k}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = (4-5)\mathbf{i} - (10+10)\mathbf{j} + (-5-4)\mathbf{k}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = -\mathbf{i} - 20\mathbf{j} - 9\mathbf{k}$$

$$\overrightarrow{PO} \times \overrightarrow{PR} = \langle -1, -20, -9 \rangle$$

Taking the dot product of $\overrightarrow{PS} = \langle -4, -3, 2 \rangle$ and $\overrightarrow{PQ} \times \overrightarrow{PR} = \langle -1, -20, -9 \rangle$, we get

$$\left| \overrightarrow{PS} \cdot \left(\overrightarrow{PQ} \times \overrightarrow{PR} \right) \right| = (-4)(-1) + (-3)(-20) + (2)(-9)$$

$$\left| \overrightarrow{PS} \cdot \left(\overrightarrow{PQ} \times \overrightarrow{PR} \right) \right| = 4 + 60 - 18$$

$$\left| \overrightarrow{PS} \cdot \left(\overrightarrow{PQ} \times \overrightarrow{PR} \right) \right| = 46$$

The volume of the parallelepiped is 46.

