On the differential structure of polynomial functors

Fredrik Nordvall Forsberg University of Strathelyde

2nd Workshop on polynomial functors, 14 March 2022

Joint work in progress with Neil Ghani and Conor McBride

One-hole contexts

Types for representing being in the middle of some operation.

a	b	<	d	e
F	9	h	0	k
1	m	N	0	P
q	•	5	Ł	u
> (W	X	У	7

Text editors, proof state, file systems, window managers, ...

More generally: Zippers [Huet 1997].

Examples of one-hole contexts

What is an FX data structure with an hole in it?

Hole
$$X = 1$$

Hole $A = 0$
Hole $(FX+GX) = (Hole FX) + (Hole GX)$
— Hole $(X^n) = n \times X^{n-1}$
Hole $(FX*GX) = Hole FX \times GX + Hole GX \times FX$
Hole $(F(GX)) = (Hole FX)_{GX} \times (Hole GX)_{X}$

$$\frac{\partial}{\partial x} x = 1$$

$$\frac{\partial}{\partial x} a = 0$$

$$\frac{\partial}{\partial x} (f+g) = \frac{\partial}{\partial x} f + \frac{\partial}{\partial x} g$$

$$\frac{\partial}{\partial x} x^{n} = n x^{n-1}$$

$$\frac{\partial}{\partial x} (f \cdot g) = \frac{\partial}{\partial x} f \cdot g + \frac{\partial}{\partial x} g \cdot f$$

$$\frac{\partial}{\partial x} (f \cdot g) = \frac{\partial}{\partial x} f \cdot g + \frac{\partial}{\partial x} g \cdot g$$

$$\frac{\partial}{\partial x} (f \cdot g) = \frac{\partial}{\partial x} f \cdot g + \frac{\partial}{\partial x} g \cdot g$$

Plugging a hole

Given a one-hole context and a thing, we shall be able to reconstruct a whole structure again.

plug_F:
$$(Hole F)(X) \times X \longrightarrow F(X)$$

plug_X * $x = X$
plug_A $y \times = impossible! y \in O$
plug_{F₁+F₂} $(in, y) \times = in; (plugF; y x)$
plug_{Fx6} $(in, (y, t) \times = (plugF; y x, t))$
plug_{Fx6} $(in, (y, t) \times = (t, plugF; y x))$
plug_{Fx6} $(y, t) \times = (t, plugF; y x)$
plug_{Fx6} $(y, t) \times = (t, plugF; y x)$

Note: syntactically linear.

Hole X = 1 Hole A = 0 Hole (F+6)=Hole F+ Hole 6 Hole (F×G)=(Hole F)×G+(Hole G)×F Hole (Fo6)X=(Hole F)(GX)×(Hole G)X

What about more realistic data types?

What are the one-hole contexts of fixed points of functors?

For now, let's stay simpleminded and approach the problem differently.

Theorem: Polynomial functors are closed under ld, KA, +, x, o, y.

The derivative of a polynomial functor

$$\partial [s,P] = [\sum_{s \in S} P(s), (s,h) \mapsto P(s) \setminus h$$

$$\forall \text{where } X \setminus y := \{x \in X \mid \neg (x = y)\}$$

$$\Rightarrow \partial [i] = [i]^2$$

$$\text{Example: } [(\partial List)]X = \sum_{n \in N, h \in Finn} ((Finn + Finm) \to X) \cong (List X)^2$$

$$\cong \sum_{n \in N, m \in N} ((Finn + Finm) \to X) \cong (List X)^2$$

$$\text{Ve need } P(s) \text{ to have } decidable equality for } decidable equality for } decidable equality for } p \in \{(s,h), f: P(s) \setminus h \to X\} \times = \{s, p \mapsto \{x \in S\} \text{ perfective substitution } f \in S\}$$

Polynomial functors with positions with decidable equality

Definition: A set X has decidable equality if there is $\frac{x=y+1}{x=y} = 0$ $\frac{x=y+1}{x=y} = 0$

Lemma: Sets with decidable equality are closed under 0,1, x,+, \(\Sigma\), =, \(\pi\).

Let us restrict ourselves to poly functors with decidable equality on positions.

Theorem: Poly. func. with dec. eq. on positions are closed under ld, Ka, +, x, o, H.

That's nice, but what does it all mean?

With a little work, we can verify $\partial([S,P]+[S,P]) = \partial(S,P]+\partial(S,P]$ and Leibniz's other laws.

1s this a coincidence?

Abbott, Altenkirch, Ghani and McBride [2005] showed that dF has a universal property.

For this to work, we need to restrict to the subcategory of Cartesian morphisms between polynomial functors.

Cartesian morphisms of polynomial functors

Recall that natural transformations $[S,P] \rightarrow [S',P']$ are given by $f: S \rightarrow S'$ g: $\forall s. P'(f(s)) \rightarrow P(s)$

Definition: A morphism $(f,g):(s,P) \rightarrow (s',P')$ is (artesian if g_s is iso for every ses, i.e. $g: \forall s. P'(f(s)) \cong P(s)$.

Fam (C)

Every ses, i.e. g: Vs. P(F(s)) = P(s).

[Terminology comes from families fibration]

[Set objects (X, P) where X set objects (X, P) where P(s) = P(s).

The universal property of OF

Consider the Cartesian product FxG in Poly. In the subcategory Polycart, it is (confusingly) only monoidal F&G.

Theorem: Let F be a polynomial functor with positions with dec. eq. We have the following natural iso:

The counit $\xi: \partial F \otimes Id \rightarrow F$ is familiar — our old friend $\xi = p \log : (\partial F)(X) \times X \longrightarrow F(X)$!

That's nice, but what does it all mean (again)?

This result shows a connection between a for Poly and "linear" approximation, but it still lives in the world of polynomial functors only.

Can We relate d for Poly somehow with "ordinary" differentiation?

We construct a category where polynomial functors are the morphisms, and show that it satisfies the axioms of a Cartesian Differential (ategory [Blute, Cockett, and Seely 2009].

n-ary polynomial functors

CDCs talk about partial derivatives, so let us recall multisorted poly. functors:

Definition: An n-ary polynomial functor Vis given by a set S and P:5 -> Finn - British

idx: Fam A - DecEqset
sort P: idx P - A

Example: Projections
$$M_i = [1, P=\lambda_{-}(1, \lambda_{-}, i)]$$

Cartesian Differential Categories

A (D(consists of:

- · Left additive structure
- · Cartesian structure
- · Differential structure

(+ axioms relating the notions, of course)

Typical examples: Smooth functions Rn - Rm, polynomials (ordinary kind!)

Polynomial functors as a Cartesian Differential Category

Define a category as follows:

Objects: nell

Morphisms: n -> m is m-luple of may pol. funs

Identities: Imples of projections

Composition: compenentuire o of poly funs Lawvere theory of polynomial functors?

Cartesian structure:

 $n \times m = n + m$

Related: Cockett's[2012] (D(where morphisms X-)Y are indexed poly. fons.

left additive structure

Each homset should be a commutative monoid (cf. componentwise adding maps Rn -> Rm)

We define

$$(F_{11}, F_{m}) + (G_{11}, G_{m}) = (F_{1} + G_{1}, F_{m} + G_{m})$$

$$O = (K_{01}, K_{0})$$

Need to check $\underline{n} + \underline{m} + \underline{k} = n + \underline{m} + \underline{k}$

(Right additivity not true in general)

Also need to check that Cartesian structure is (right) additive. V

Differential operator

$$\frac{\sum f}{\sum x \times \sum D(f)} Y \qquad \frac{\partial f(x)}{\partial x} (a) \cdot b$$

"original point"

"evaluation vector"

Onth

Given n-ary polynomial functor (S,P) , define $2m$ -ary $\partial (S,P) = (S,P')$ where

$$S' = \sum_{s \in S} idx (P(s))$$

$$P'(s,h) = (idx (P(s)), \lambda P. (p=h, sort (P(s)) P)$$

Axioms

```
D[f+g] = D[f] + D[g], D[0] = 0
 √ [(D.1]
                DEFI additive in first argument
(J) [(D.2]
                D[id]=\Pi_0, D[\Pi_0]:\Pi_1:\Pi_0, D[\Pi_1]:\Pi_1:\Pi_1
 √ [(D.3]
                D[<f,97] = < D[f], D[9])
 V [(D.4]
                D[f;g] = \langle D[f], \langle \pi, f \rangle; D[g]
(/) [(D.5]
                                                    2 linear if D[g]= 17.19
                D[f] linear in first variable
                                                                 put 0 in unwanted
(J) [(D.6]
                Order of partial derivatives does not matter
(V) [(D.7]
```

Summary

Rules for one-hole contexts corresponds to rules for differentiation.

and satisfies a universal property in a subcalegory of Cartesian morphisms.

Ongoing work to construct a Cartesian Differential Category of polynomial functors.

Thanks.

