Introduction to topology in electronic structure of crystalline solids

Tomáš Rauch

IFTO, FSU Jena

Schedule

- ▶ 24.03. Introduction into topological insulators
- ▶ 14.04. Topological insulators in two and three dimensions
- ▶ 21.04. Calculation of topological invariants of realistic materials
- ▶ TBA Further concepts related to topological insulators
- ► TBA Topological metals and higher-order topological insulators
- ► TBA Applications
- ► TBA Unanswered topics?

Literature

- ▶ D. Vanderbilt, Berry phases in electronic structure theory
- ▶ B. A. Bernevig, Topological insulators and topological superconductors
- J. K. Asboth, L. Oroszlany, A. Pályi, A short course on topological insulators

Berryology¹

▶ Berry phase for a closed loop $C = \partial S$

$$\gamma_n = \int_C \mathbf{A}_n(\mathbf{R}) \cdot d\mathbf{R}$$
$$= \iint \mathbf{\Omega}_n(\mathbf{R}) \cdot d\mathbf{S}$$

Berry connection

$$\mathbf{A}_{n}(\mathbf{R}) = i \langle n(\mathbf{R}) | \nabla_{\mathbf{R}} | n(\mathbf{R}) \rangle$$

Berry curvature

$$\Omega_{n}(\mathbf{R}) = \nabla_{R} \times \mathbf{A}_{n}(\mathbf{R})
= i \left\langle \nabla_{R} n(\mathbf{R}) \left| \times \right| \nabla_{R} n(\mathbf{R}) \right\rangle
= i \sum_{m \neq n} \frac{\left\langle n(\mathbf{R}) \left| \nabla_{R} H(\mathbf{R}) \right| m(\mathbf{R}) \right\rangle \times \left\langle m(\mathbf{R}) \left| \nabla_{R} H(\mathbf{R}) \right| n(\mathbf{R}) \right\rangle}{\left(E_{m}(\mathbf{R}) - E_{n}(\mathbf{R})^{2} \right)}$$

¹M. Berry, Proc. R. Soc. Lond. A **392**, 45 (1984)

1D example: SSH model²

tight-binding Hamiltonian:

$$H(k) = \begin{pmatrix} 0 & v + we^{-ik} \\ v + we^{ik} & 0 \end{pmatrix} = d_x(k)\sigma_x + d_y(k)\sigma_y$$

with:

$$d_x(k) = v + w \cos(k)$$

$$d_y(k) = w \sin(k)$$

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

²Armitage and Wu, SciPost Phys. **6**, 046 (2019)

1D example: SSH model³

³Short course on topological insulators, arXiv:1509.02295

1D example: SSH model

Berry phase of the SSH model:

$$\frac{2\pi P}{-e} = \gamma = \int_{-\pi}^{\pi} dk \ A(k) = \frac{\pi}{2} \left[1 + \operatorname{sgn} \left(\frac{v - w}{v + w} \right) \right]$$

- \triangleright v > w: P = 0 and $Q_{\text{surf}} = 0$... trivial
- ightharpoonup v < w: P = e/2 and $Q_{\rm surf} = e/2$... non-trivial

towards 2D topological insulators

▶ assume
$$P = P(\lambda(t))$$

$$\Delta P = P(\lambda_f) - P(\lambda_i) \mod e$$

towards 2D topological insulators

ightharpoonup assume $P = P(\lambda(t))$

$$\Delta P = P(\lambda_f) - P(\lambda_i) \mod e$$

• periodic evolution: $\lambda(0) = \lambda(2\pi)$

$$\Delta P = egin{cases} 0 & ext{trivial} \ \textit{Ne} & ext{non-trivial} \end{cases}$$

$$V(x,\lambda) = -(1+0.3\sin(\lambda))\cos(2\pi x)$$

$$\begin{cases} \vdots \\ 0 \\ -1 \end{cases}$$

$$\lambda = \frac{1}{3}2\pi$$

$$V(x,\lambda) = -(1+0.3\sin(\lambda))\cos(2\pi x)$$

$$\widehat{\mathbb{R}}$$

$$0$$

$$-1$$

$$0$$

$$1$$

$$0$$

$$1$$

$$2$$

$$\lambda = 2\pi$$

$$V(x,\lambda) = -\cos(2\pi x - \lambda)$$

$$\begin{bmatrix} \widehat{x} \\ -1 \end{bmatrix}$$

$$\lambda = 2\pi$$

Charge transported between neighboring unit cells during one cycle:

$$Q = 0$$

$$Q = e$$

2D insulator in electric field E_x , concentrate on change of P_y

- ightharpoonup adiabatic parameters (k_x, k_y)
- semiclassical EOM:

$$\frac{dk_x}{dt} = -\frac{e}{\hbar}E_x$$

2D insulator in electric field E_x , concentrate on change of P_y

- ightharpoonup adiabatic parameters (k_x, k_y)
- semiclassical EOM:

$$\frac{dk_x}{dt} = -\frac{e}{\hbar}E_x$$

▶ one Bloch period $\Delta k_x = \frac{2\pi}{a}$ after

$$\Delta t = -\frac{h}{eaE_x}$$

2D insulator in electric field E_x , concentrate on change of P_y

- ightharpoonup adiabatic parameters (k_x, k_y)
- semiclassical EOM:

$$\frac{dk_x}{dt} = -\frac{e}{\hbar}E_x$$

• one Bloch period $\Delta k_{\scriptscriptstyle X} = \frac{2\pi}{a}$ after

$$\Delta t = -\frac{h}{eaE_x}$$

ightharpoonup current density pumped along y during one period Δt :

$$j_y = \frac{l_y}{a} = \frac{1}{a} \frac{\Delta P_y}{\Delta t} = \frac{1}{a} \frac{Ne}{\left(-\frac{h}{eaE_x}\right)} = -N \frac{e^2}{h} E_x$$

2D insulator in electric field E_x , concentrate on change of P_y

- ightharpoonup adiabatic parameters (k_x, k_y)
- semiclassical EOM:

$$\frac{dk_x}{dt} = -\frac{e}{\hbar}E_x$$

▶ one Bloch period $\Delta k_{x} = \frac{2\pi}{a}$ after

$$\Delta t = -\frac{h}{eaE_x}$$

ightharpoonup current density pumped along y during one period Δt :

$$j_y = rac{l_y}{a} = rac{1}{a}rac{\Delta P_y}{\Delta t} = rac{1}{a}rac{Ne}{\left(-rac{h}{eaE_x}
ight)} = -Nrac{e^2}{h}E_x$$

► Hall conductivity:

$$\sigma_{yx} = -N \frac{e^2}{h}$$
 ... quantized

Edge band structure of a 2D insulator, broken T

Edge band structure of a 2D insulator, broken T

ightharpoonup states at E_F contribute to edge current I_x

Edge band structure of a 2D insulator, broken T

- \triangleright states at E_F contribute to edge current I_x
- ▶ How does I_x vary with change of E_F ? $E_F : E_1 \rightarrow E_2$

Edge band structure of a 2D insulator, broken T

- \triangleright states at E_F contribute to edge current I_x
- ▶ How does I_x vary with change of E_F ? E_F : $E_1 \rightarrow E_2$
- one state (b) with $v_g = \frac{1}{\hbar} \frac{dE}{dk}$:

$$\Delta I_x = \int_{k_1}^{k_2} \frac{dk}{2\pi} (-e) v_g = -\frac{e}{2\pi\hbar} \int_{k_1}^{k_2} \frac{dE}{dk} = -\frac{e}{h} (E_2 - E_1)$$

Edge band structure of a 2D insulator, broken T

b change of I_x with applied potential ϕ (rigid bands shift):

$$\frac{\partial I_x}{\partial \phi} = e \frac{\partial I_x}{\partial E_F} = -\frac{e^2}{h} \dots$$
 conductance G

Edge band structure of a 2D insulator, broken T

• change of I_x with applied potential ϕ (rigid bands shift):

$$\frac{\partial I_x}{\partial \phi} = e \frac{\partial I_x}{\partial E_F} = -\frac{e^2}{h} \dots$$
 conductance G

multiple edge states:

$$G = (n_{\text{right}} - n_{\text{left}}) \frac{e^2}{h} = N \frac{e^2}{h}$$

2D insulators

▶ bulk: *N* - change in polarization (Chern number)

$$\sigma_{xy} = N \frac{e^2}{h}$$

▶ edge: *N* - number of edge states

$$G = N \frac{e^2}{h}$$

2D insulators

▶ bulk: *N* - change in polarization (Chern number)

$$\sigma_{xy} = N \frac{e^2}{h}$$

edge: N - number of edge states

$$G = N \frac{e^2}{h}$$

bulk-boundary correspondence

- topological invariant:
 - change in polarization: $\Delta P_{\nu}(\Delta k_{x}:0\rightarrow2\pi/a)=-eN$
 - Chern number: $N = \frac{1}{2\pi} \sum_{n}^{\text{occ}} \int_{\text{BZ}} d^2k \ \Omega_z^n$
 - ► TR preserved: *N* = 0
 - ► TR+I preserved: $\Omega_z^n = 0$
 - anomalous Hall conductivity: $\sigma_{xy} = N \frac{e^2}{h}$

- topological invariant:
 - change in polarization: $\Delta P_{\nu}(\Delta k_{x}:0\rightarrow2\pi/a)=-eN$
 - Chern number: $N = \frac{1}{2\pi} \sum_{n}^{\text{occ}} \int_{\text{BZ}} d^2k \ \Omega_z^n$
 - ► TR preserved: *N* = 0
 - ► TR+I preserved: $\Omega_z^n = 0$
 - ▶ anomalous Hall conductivity: $\sigma_{xy} = N \frac{e^2}{h}$
- N edge states bridging the band gap:
 - $ightharpoonup N = n_{
 m right} n_{
 m left}$ states crossed by E_F
 - ightharpoonup conductance $G = N \frac{e^2}{h}$

- topological invariant:
 - change in polarization: $\Delta P_y(\Delta k_x:0 \to 2\pi/a) = -eN$
 - Chern number: $N = \frac{1}{2\pi} \sum_{n}^{\text{occ}} \int_{\text{BZ}} d^2k \ \Omega_z^n$
 - ► TR preserved: *N* = 0
 - ► TR+I preserved: $\Omega_z^n = 0$
 - anomalous Hall conductivity: $\sigma_{xy} = N \frac{e^2}{h}$
- N edge states bridging the band gap:
 - $ightharpoonup N = n_{
 m right} n_{
 m left}$ states crossed by E_F
 - ightharpoonup conductance $G = N \frac{e^2}{h}$
- discrete / quantized / robust topological phase transition when:
 - symmetry condition is lifted
 - band gap closes and reopens (breaking the adiabatic condition)

- topological invariant:
 - ▶ change in polarization: $\Delta P_{\nu}(\Delta k_{x}: 0 \rightarrow 2\pi/a) = -eN$
 - Chern number: $N = \frac{1}{2\pi} \sum_{n}^{\text{occ}} \int_{\text{BZ}} d^2k \ \Omega_z^n$
 - ▶ TR preserved: N = 0
 - ► TR+I preserved: $\Omega_z^n = 0$
 - ightharpoonup anomalous Hall conductivity: $\sigma_{xy} = N \frac{e^2}{h}$
- N edge states bridging the band gap:
 - $N = n_{\text{right}} n_{\text{left}}$ states crossed by E_F
 - ightharpoonup conductance $G = N \frac{e^2}{h}$
- ▶ discrete / quantized / robust topological phase transition when:
 - symmetry condition is lifted
 - band gap closes and reopens (breaking the adiabatic condition)
- ▶ Do systems with $N \neq 0$ actually exist?

- ▶ 1980: quantum Hall effect, PRL **45** 494 (1980)
 - experimental realization with external magnetic field

- ▶ 1980: quantum Hall effect, PRL **45** 494 (1980)
 - experimental realization with external magnetic field
- ▶ 1988: Haldane model, PRL **61** 2015 (1988)
 - \triangleright model for a system with $N \neq 0$ without external magnetic field

- ▶ 1980: quantum Hall effect, PRL **45** 494 (1980)
 - experimental realization with external magnetic field
- ▶ 1988: Haldane model, PRL **61** 2015 (1988)
 - ightharpoonup model for a system with $N \neq 0$ without external magnetic field
- ▶ 2013: quantum anomalous Hall effect, Science **340** 167 (2013)
 - experimental realization without external magnetic field (Cr_{0.15}(Bi_{0.1}Sb_{0.9})_{1.84}Te₃)

role of TR operator θ with $\theta^2 = -1$:

- eff. Hamiltonian: $\theta^{-1}H(\mathbf{k})\theta = H(-\mathbf{k})$
- **b** band structure: $E_n^I(\mathbf{k}) = E_n^{II}(-\mathbf{k})$
- wave functions: $|u_n^I(-\mathbf{k})\rangle = \theta |u_n^{II}(\mathbf{k})\rangle, |u_n^{II}(-\mathbf{k})\rangle = -\theta |u_n^I(\mathbf{k})\rangle$
- ▶ 1D polarization: $P_y^I(\mathbf{k}) = P_y^{II}(-\mathbf{k})$

role of TR operator θ with $\theta^2 = -1$:

- eff. Hamiltonian: $\theta^{-1}H(\mathbf{k})\theta = H(-\mathbf{k})$
- ▶ band structure: $E_n^I(\mathbf{k}) = E_n^{II}(-\mathbf{k})$
- wave functions: $|u_n^I(-\mathbf{k})\rangle = \theta |u_n^{II}(\mathbf{k})\rangle, |u_n^{II}(-\mathbf{k})\rangle = -\theta |u_n^I(\mathbf{k})\rangle$
- ▶ 1D polarization: $P_{\nu}^{I}(\mathbf{k}) = P_{\nu}^{II}(-\mathbf{k})$

at time-reversal invariant momenta (TRIMs):

- ightharpoonup TRIMs: $\mathbf{k} = -\mathbf{k} + \mathbf{G}$
- ▶ $P_y^I(k_i) = P_y^{II}(k_i)$ at $k_i = \{0, \pm \pi/a\}$

number N_c of crossings with a reference line $P_y=c$: $\nu=N_c\mod 2$

flow of polarization \leftrightarrow edge-state dispersion

- topological invariant:
 - connectivity of $P_{\nu}(\Delta k_x : 0 \to 2\pi/a)$: $\nu = N_c \mod 2$
 - $\nu = 0$: trivial, $\nu = 1$: nontrivial ("topological")
 - can be calculated also by other means

⁴Hasan, Kane, Rev. Mod. Phys. **82**, 3045 (2010)

- topological invariant:
 - connectivity of $P_{\nu}(\Delta k_x : 0 \to 2\pi/a)$: $\nu = N_c \mod 2$
 - $\nu = 0$: trivial, $\nu = 1$: nontrivial ("topological")
 - can be calculated also by other means
- \triangleright ν pairs of edge states bridging the band gap:
 - ightharpoonup right-going channel: velocity v, charge e, spin s
 - left-going channel: velocity -v, charge e, spin -s
 - edge charge current: I = ev + e(-v) = 0
 - edge spin current: $I^s = sv + (-s)(-v) = 2sv$

⁴Hasan, Kane, Rev. Mod. Phys. **82**, 3045 (2010)

- topological invariant:
 - connectivity of $P_{\nu}(\Delta k_x: 0 \to 2\pi/a)$: $\nu = N_c \mod 2$
 - $\nu = 0$: trivial, $\nu = 1$: nontrivial ("topological")
 - can be calculated also by other means
- \triangleright ν pairs of edge states bridging the band gap:
 - ightharpoonup right-going channel: velocity v, charge e, spin s
 - left-going channel: velocity -v, charge e, spin -s
 - edge charge current: I = ev + e(-v) = 0
 - edge spin current: $I^s = sv + (-s)(-v) = 2sv$
 - degeneracies at TRIMs protected by TR
 - ▶ no backscattering → "dissipationless"

⁴Hasan, Kane, Rev. Mod. Phys. **82**, 3045 (2010)

- topological invariant:
 - connectivity of $P_{\nu}(\Delta k_x: 0 \to 2\pi/a)$: $\nu = N_c \mod 2$
 - $\nu = 0$: trivial, $\nu = 1$: nontrivial ("topological")
 - can be calculated also by other means
- \triangleright ν pairs of edge states bridging the band gap:
 - right-going channel: velocity v, charge e, spin s
 - left-going channel: velocity -v, charge e, spin -s
 - edge charge current: I = ev + e(-v) = 0
 - edge spin current: $I^s = sv + (-s)(-v) = 2sv$
 - degeneracies at TRIMs protected by TR
 - ▶ no backscattering → "dissipationless"
- ▶ Do systems with $\nu = 1$ actually exist?

⁴Hasan, Kane, Rev. Mod. Phys. **82**, 3045 (2010)

▶ 2005: theoretical predictions: Kane, Mele, PRL 95, 146802 (2005)

- ▶ 2005: theoretical predictions: Kane, Mele, PRL 95, 146802 (2005)
- ▶ 2007: HgCdTe quantum wells: König etal., Science 318, 766 (2007)
 - ▶ first experimental realization

- ▶ 2005: theoretical predictions: Kane, Mele, PRL **95**, 146802 (2005)
- ▶ 2007: HgCdTe quantum wells: König etal., Science **318**, 766 (2007)
 - first experimental realization
- ▶ 2018: WTe₂: Wu *et al.*, Science **359**, 76 (2018)
 - more recent experiments

3D insulators with TR symmetry

▶ 3D primitive reciprocal cell: six TR-invariant planes:

$$\{ \boldsymbol{k} : \boldsymbol{k} = a_1 \boldsymbol{G}_1 + a_2 \boldsymbol{G}_2 + c \boldsymbol{G}_3 \mid a_1, a_2 \in (0, 1), c \in \{0, \frac{1}{2}\} \} + \text{cycl.}$$

3D insulators with TR symmetry

▶ 3D primitive reciprocal cell: six TR-invariant planes:

$$\left\{ m{k} : m{k} = a_1 m{G}_1 + a_2 m{G}_2 + c m{G}_3 \mid a_1, a_2 \in (0, 1), c \in \left\{0, \frac{1}{2}\right\} \right\} + \text{cycl.}$$

lacktriangle torus geometry: six topological \mathbb{Z}_2 invariants protected by TR

3D insulators with TR symmetry

▶ 3D primitive reciprocal cell: six TR-invariant planes:

$$\{ \boldsymbol{k} : \boldsymbol{k} = a_1 \boldsymbol{G}_1 + a_2 \boldsymbol{G}_2 + c \boldsymbol{G}_3 \mid a_1, a_2 \in (0, 1), c \in \{0, \frac{1}{2}\} \} + \text{cycl.}$$

- lacktriangle torus geometry: six topological \mathbb{Z}_2 invariants protected by TR
- only four independent invariants: $(\nu_0; \nu_1\nu_2\nu_3)$
 - ► (0;000) trivial insulator
 - (0; $\nu_1\nu_2\nu_3$) weak topological insulator . . . stacked 2D TIs
 - \blacktriangleright (1; $\nu_1\nu_2\nu_3$) strong topological insulators ... true 3D origin