

计算机原理

COMPUTER PRINCIPLE

第四章 第一节 (3) Load、Store、条件分支指令的数据通路

Load指令的执行过程

□以Load指令LW R1, R2, #4为例

Load指令LW R1,R2,#4	
功能	R1←Mem[R2+4]
过程	① 取指令,Inst←[PC],PC←PC+4
	② 指令译码,A←[R2],立即数符号扩展为32位
	③ 计算访存地址A+4
	④ 读地址为A+4的存储单元,LMD←[A+4]
	⑤ 结果写回 , [R1]←LMD

一计算机原理--

Load指令的数据通路

□Load指令的数据通路

合并ADD指令和Load指令的数据通路

□合并后的数据通路

合并ADD指令和Load指令的数据通路

□合并后的数据通路

MIPS的"固定字段译码技术"

— 计算机原理 —

Store指令的执行过程

□以Store指令SW R1, R2, #4为例

Store指令SW R1,R2,#4

功能 Mem[R2+4]←R1

过程

- ① 取指令 , Inst←[PC] , PC←PC+4
 - ② 指令译码, A←[R2], B←[R1], 立即数符号扩展为32位
 - ③ 计算访存地址A+4
- ④ 将B写入地址为A+4的存储单元, Mem[A+4]←B

Store指令的数据通路

□Store指令的数据通路

一计算机原理一

合并ADD指令和Load指令的数据通路

□合并后的数据通路

条件分支指令的数据通路

□条件分支指令的数据通路

— 计算机原理 —