Национальный исследовательский университет информационных технологий, механики и оптики Кафедра вычислительной техники Сети ЭВМ и телекоммуникации

Учебно-исследовательская работа №1 «Передача кодированных данных по каналу связи»

Студентка: Куклина М., РЗЗО1 Преподаватель: Шинкарук Д.Н.

Цели работы

Исследование влияния свойств канала связи на качество передачи сигналов при различных методах физического и логического кодирования, используемых в цифровых сетях передачи данных.

Исходные данные

- 1. Фамилия студента: КУКЛИНА М.Д.;
- 2. Представление в НЕХ первых 4-х байт: CA D3 CA CB;
- 3. Представление в ВІN первых 4-х байт: 11001010 11010011 11001010 11001011

Таблица результатов

Шестнадцатеричный код сообщения			Метод кодирования					
\CBCAD3CA			NRZ	RZ	AMI	M-II	$4\mathrm{B}/5\mathrm{B}$	Scramb
Полоса	Гармоники	min	8	8	10	40	8	10
пропускания		max	24	24	30	56	40	31
идеального	Частоты, МГц	min	1.3	1.3	1.6	6.3	1	1.6
канала связи		max	3.8	3.8	4.7	8.8	5	4.8
Минимальная полоса идеального канал		о канала	2.4	2.4	3.1	2.5	4	3.2
Уровень шума		max	0.1	0.1	0.04	0.14	0.06	0.07
Уровень рассинхронизации		max	0.36	0.84	0.05	0.3	0.35	0.19
Уровень гранич. напряж.		max	0.22	0.14	0.63	1	0.08	0.08
% ошибок при тах уровнях и мин		ин. полосе	6.79	7.97	0.75	0.04	1.25	1.37
Уровень шума		avg	0.085					
Уровень рассинхронизации		avg	0.3483					
Уровень гранич. напряж.		avg	0.3583					
Полоса	Гармоники	min	7	6	2	27	2	4
пропускания		max	48	57	50	58	56	53
реального	Частоты, МГц	min	1.1	0.9	0.3	4.2	0.3	0.6
канала связи		max	7.5	8.9	7.8	9.1	7.0	8.3
Требуемая полоса реального канала			6.4	8	7.5	4.9	6.7	7.7

Вывод

При выполнении лабораторной работы проводилось исследование влияния свойств канала связи на качество передачи сигналов при различных методах кодирования. Для идеального канала лучшим методом физического кодирования был выбран М-II в силу его высокой устойчивости к шумам и небольшой, в сравнении с остальными

кодами, полосой канала. Из методов логического кодирования (в работе производился расчёт логических методов над методом физического кодирования NRZ) лучшим можно назвать метод скремблирования в силу более низкой итоговой полосы канала и низким уровнем рассинхронизации. Для реального канала лушим методом кодирования выбран метод M-II в силу самой минимальной из представленных полосы канала. Логическое кодирование в данном случае не считается целесообразным из-за высоких показателей требуемой полосы канала, однако при необходимости выбора был бы выбран метод 4B/5B.