

Tabletop RPGs

Gameplay A group of based on people play Game Master as heroes narration

Ordinal regression

RPG game design

Benchmark for Ordinal

Regression in pen & paper

Type of regression in which the goal is to predict a variable which is discrete and ordered.

Dependent variable: LEVEL

> (integer between -1 and 21)

Jolanta Śliwa

Blue Dragon

AC 42; **HP** 370

Fort +32; Ref +30, Will +33 **Perception:** +31; darkvision, scent

Str +7, **Dex** +4, **Con** +6, **Int** +7, **Wis** +5, **Cha** +7

Melee - jaws +35 [+30/+25]

Damage 3d10+15 piercing + 2d12 electricity **Spells** DC 43; hallucinatory terrain (lvl 4)...

New monster design

- 1. Choose your monster's characteristics
 - 2. But how to know the level?

Answer: Playtest, guessing or AI/ML

Monster

Players fight together with monsters

Takes place

in

a fantasy

world

- Encounters are important part of the game
- Level represents how hard it is to defeat the creature

Split

Chronological split and

expanding window

- The fight should be challenging, but the victory has to be possible
- Monsters have a set of statistics, e.g. strength

Metrics

Regression:

RMSE, MAE, RMSE^M, MAE^M (macroaveraged)

Classification:

Accuracy, Accuracy@1

OR:

Somer's D

Models

- Human inspired baseline
- Classical regression models (e.g. RF, LightGBM) with rounding
- Dedicated models based on RF, logistic regression and NN

Rounding

- Classic rounding (0.5)
- Single threshold tuning
- Threshold per level tuning:
 - TPE
 - Shortest path problem

Chronological split Model Results Comparison: MAE MAE MAE^{M}

- Best results for all tree-based models
- All models outperform human-inspired baseline
- Ordinal models do not have better performance than regression + rounding
- Surprisingly bad results for NN-based methods
- As expected, results for macroaveraged metrics are worse (more realistic)

Accuracy (chronological)

Results

Model	Accuracy	Accuracy@1
Baseline	46%	86%
LR	67%	97%
SVM	73%	98%
RF	77%	98%
LightGBM	77%	98%
ORD	70%	97%
ORF	81%	97%
LogisticIT	70%	97%
SAOC	81%	97%
GPOR	72%	97%
CORAL	68%	97%
CORN	65%	97%
Spaccutter	51%	93%
NNRank	50%	95%
CONDOR	64%	95%
OR-CNN	67%	97%

All models work great with most errors around 1 level

Expanding window

- Opposite to what was expected results for macroaveraged metrics are better (lower)
- Why? -> see below

Rounding comparison

Model	Round 0.5	Global R_1		Graph R ₁	Global R_2	TPE R ₂	Graph R ₂
Baseline	0.861	0.861	0.853	0.823	0.861	0.864	0.823
LR	0.425	0.425	0.433	0.427	0.425	0.428	0.424
SVM	0.354	0.361	0.365	0.350	0.361	0.356	0.363
RF	0.277	0.295	0.298	0.274	0.295	0.289	0.276
LightGRM	0.282	0.402	0.366	0.483	0.320	0.295	0.324

- Tested on 2 sets: $R_1 = \{0.05, 0.1, ..., 0.95\}$ and $R_2 = \{0.25, 0.3, ..., 0.75\}$
- The best rounding strategy depends on the model

Playtests

Windows results expanding window (RF)

Nr	MAE	MAE^{M}	RMSE	$RMSE^{M}$	Accuracy	Accuracy@1
1	0.56	0.55	1.11	1.04	59%	91%
2	0.49	0.22	0.77	0.50	57%	94%
3	0.25	0.28	0.50	0.53	75%	100%
4	0.32	0.35	0.60	0.63	69%	98%
5	0.15	0.10	0.38	0.31	85%	100%
6	0.28	0.34	0.68	0.81	77%	97%
7	0.39	0.33	0.66	0.66	63%	99%
8	0.16	0.19	0.42	0.46	85%	99%
9	0.16	0.15	0.40	0.39	84%	100%
10	0.25	0.24	0.54	0.53	76%	98%
11	0.21	0.22	0.50	0.53	81%	98%
12	0.29	0.29	0.64	0.62	75%	97%
13	0.13	0.10	0.38	0.34	88%	99%

- Generally more data == better
- Fluctuations due to data distribution shifts