Improving Steganographic Security with Source Biasing

Eli Dworetzky, Edgar Kaziakhmedov, Jessica Fridrich

IH&MMSEC 2024

What is source biasing?

Alice prefers using covers that are more difficult to steganalyze

- textured images
- noisy images (taken at high ISO)
- images in which embedding does not trigger a detector

Alice is **source biasing** if she selects cover images based on this preference

Is it safe?

It depends on

- what the Warden knows about the cover source (Kerckhoffs' principle)
- Warden is commonly given the knowledge of the source

Potentially dangerous for Alice

- if the Warden detects a change in cover source
- can be independent of the message length

Prior art

- Select a subset of a given size from existing datasets on which steganalysis is the least reliable
- Zhang and Wang (IEEE Access 2019) consider impact on source and force cover features to be "typical" in terms of MMD
- Giboulot et al. (TIFS 2023) consider multiple cover sources (of different difficulty) when Warden makes decision based on a single image

Our take

- Algorithm for sampling the cover source should be considered a part of the embedding algorithm
- To detect source change, Warden must pool evidence
 - Cast within batch steganography and pooled steganalysis
- Warden is given the knowledge of the cover source, stego method, and payload
- Theoretical analysis within a simplified model
 - biasing morphs Warden's ROC
 - asymptotic biasing for constant detectability (extension of the square root law)
- Experimental verification of the phenomena seen in the model

Detector-centric approach

We model the effect of embedding and the source itself through soft outputs of a steganography detector \boldsymbol{d}

- permits formulating steganalysis and source biasing jointly through a single hypothesis test
- models are estimable in practice
- we observe a close match between model and experiments on real datasets

Modeling soft output of a detector

Given a bag of n cover images (X_1, \ldots, X_n)

Cover:
$$d(X_i) \sim \mathcal{N}(0,1)$$

Stego:
$$d(X_i(\alpha)) \sim \mathcal{N}(b_i\alpha, 1), \quad 0 \leq \alpha \leq 1$$

- $X_i(\alpha)$... ith cover image embedded with payload α_i
- $b_i \ge 0 \dots$ slope of the detector's response on ith cover image

Source model

Alice's cover source has two types of images: easy and hard.

Hard to steganalyze (complex content / strong noise)

- $b_i = \varepsilon > 0$ (small)
- selected with probability $p \in (0,1)$

Easy to steganalyze (smooth content / weak noise)

- $b_i = 1$
- selected with probability 1-p

Unbiased source \Longrightarrow coin flip with weights p and 1-p

Source biasing

Source biasing amounts to biasing the coin flip:

• Alice selects images with $b_i = \varepsilon$ with probability $q \ge p$

$$b_i \sim \mathcal{B}(q)$$

 $\mathcal{B} = \mathsf{Bernoulli}$ distribution on $\{\varepsilon, 1\}$

K= number of images with slope ε in the bag

- No biasing $\Longrightarrow K \sim \operatorname{Binom}(n,p)$
- Biasing $\implies K \sim \operatorname{Binom}(n,q)$

Warden's hypothesis test

Given a bag of images $\mathbf{Y} = (Y_1, \dots, Y_n)$, $y_i = d(Y_i)$

$$\mathcal{H}_0: \quad b_i \sim \mathcal{B}(p), \quad y_i \sim \mathcal{N}(0,1) \qquad \text{for all } i$$

$$\mathcal{H}_1: \quad b_i \sim \mathcal{B}(q), \quad y_i \sim \mathcal{N}(b_i \alpha_i(K), 1) \quad \text{for all } i$$
(1)

K is the number of "hard" images, α_i payload potentially residing in Y_i

Optimal pooler is the LRT

$$L(\mathbf{b}, \mathbf{y}) = \sum_{i=1}^{n} y_i b_i \alpha_i(K) - \frac{1}{2} \sum_{i=1}^{n} b_i^2 \alpha_i^2(K) + \underbrace{K \log \frac{q}{p} + (n - K) \log \frac{1 - q}{1 - p}}_{}$$

LRT of mean-shifted Gaussian Stego detection

LRT of binomial r.v. Source bias detection

Warden's pooler's ROC

Given a decision threshold x

$$P_{\text{FA}}(x) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} Q\left(\frac{x - E_{0}(k)}{\sqrt{V(k)}}\right)$$

$$P_{D}(x) = \sum_{k=0}^{n} \binom{n}{k} q^{k} (1-q)^{n-k} Q\left(\frac{x - E_{1}(k)}{\sqrt{V(k)}}\right)$$

 E_0,E_1,V depend on p,q,α , payload spreading strategy, b_1,\ldots,b_n Q(x) Gaussian tail probability function

Bivalued payload spreading

A bag of n covers with slopes

$$(\underbrace{\varepsilon,\ldots,\varepsilon}_{k},\underbrace{1,\ldots,1}_{n-k})$$

Embed α_{ε} in all ε images and α_1 in images with slope 1

$$(\underbrace{\varepsilon,\ldots,\varepsilon}_{\alpha_{\varepsilon}},\underbrace{1,\ldots,1}_{\alpha_{1}})$$

where $(\alpha_{\varepsilon}, \alpha_1)$ satisfy the payload constraint (r(n)) is the rate

$$r(n)n = k\alpha_{\varepsilon} + (n-k)\alpha_{1}$$

Greedy sender embeds in ε images only (if message fits) or embeds them fully and puts the rest in images with b=1

Effect of biasing on ROC

Cover source: p=0.4, $\varepsilon=0.01$

Bag size n=4

Payload: $\alpha = 1$ (Greedy sender)

Bias Gain

Alice gains in security due to biasing for small $P_{\rm FA}$:

$$\gamma_{\text{bias}}(P_{\text{FA}}) = P_{\text{D}}(P_{\text{FA}}, p) - \min_{p \le q} P_{\text{D}}(P_{\text{FA}}, q)$$

Cover source: p = 0.4, $\varepsilon = 0.01$

Payload: $\alpha = 1$

Bias gain vs. $P_{\rm FA}$

Cover source: p = 0.4, $\varepsilon = 0.01$

Payload: $\alpha = 1$

Improving Steganographic Security, with Source Biasing

Asymptotic Biasing Theorem

Alice adjusts her rate r(n) and bias q(n) as $n \to \infty$

For any bivalued sender

- \bullet If both r(n) and q(n)-p decay faster than $\frac{1}{\sqrt{n}}$
 - Warden is randomly guessing eventually
- \bullet If at least one of r(n) or q(n)-p decay slower than $\frac{1}{\sqrt{n}}$
 - Alice is caught eventually
- If r(n) and q(n)-p decay at critical rate $\frac{1}{\sqrt{n}}$
 - Fixed statistical detectability

Asymptotic Biasing Theorem

Alice adjusts her rate r(n) and bias q(n) so that as $n \to \infty$

$$\underbrace{r^2(n)n \to c_r}_{\text{SRL condition}} \qquad \underbrace{(q(n)-p)\sqrt{n} \to c_p}_{\text{new biasing condition}}$$

For any bivalued sender

- When $c_r = 0$ and $c_p = 0$, asymptotic perfect security
- When $c_r = \infty$ or $c_p = \infty$, asymptotic perfect detectability

Special case for **greedy** and **uniform** senders when $c_r < \infty$ and $c_p < \infty$,

Warden's limiting ROC is Gaussian with deflection

$$d_{\text{greedy}}^2 = \frac{c_r \varepsilon^2}{p} + \frac{c_p^2}{p(1-p)} \qquad \quad d_{\text{uniform}}^2 = (p \varepsilon^2 + 1 - p) c_r + \frac{c_p^2}{p(1-p)}$$

Experiments on real dataset

ALASKA II (75k grayscale images) divided into four subsets:

- For training Alice's detector (SRNet) used for spreading payload
- For training Warden's detector (SRNet)
- § For forming bags to train Warden's pooler (Random forest, 2n+2 dim. feature extracted from bag (X_1,\ldots,X_n))
- For forming bags for evaluation

We now have a continuum of slopes

Estimating slopes

Given detector (SRNet) d and cover image X:

 \bullet Slope b of X with capacity C bpp was estimated from fully embedded stegos X(C)

$$b = \frac{\overline{d(X(C))} - d(X)}{C}$$

- This estimator is reasonable for Greedy sender
- Average taken over 100 simulated embeddings with random stego keys

Greedy sender

Given bag
$$(X_1, \ldots, X_n)$$

- ullet Alice estimates the slopes (b_1,\ldots,b_n) with her detector
- ullet Orders b_i from the smallest to the largest
- Embeds fully one by one till payload is embedded

Continuous biasing

Let F denote CDF of slopes b, and $U \sim \text{Unif}[0,1]$

• Unbiased sampling of images via inverse transform sampling:

$$F^{-1}(U)$$

Biased sampling of images via a modification:

$$F^{-1}(G_q^{-1}(U))$$

- G_q is the CDF of $\mathrm{Beta}(1/q,1)$ where $q \geq 1$ is the biasing parameter (q=1 no bias)
- ullet Intuitively, we are sampling quantiles of F non-uniformly with a Beta r.v.

ROCs of Warden's pooler

 $\begin{array}{l} \text{Bivalued model} \\ \alpha = 1, \ p = 0.4 \leq q \leq 1 \end{array}$

Both: bag size n=4

Alaska II (continuous slopes) $\alpha = 0.5, \ q \geq 1$

Bias gain: $P_{\rm D}$ at $P_{\rm FA}=0.02$ vs. q

- $\bullet \ \ \mathsf{Bag\ sizes}\ n=2,4,8,16$
- $\bullet \ \, \mathsf{Payload} \,\, \alpha = 0.7$

Asymptotic biasing theorem verification

Asymptotic trends of the ROC of Warden's pooler on binarized ALASKA II for uniform sender

Conclusions

- Biasing morphs Warden's pooler's ROC in a complex way
 - ullet for small P_{FA} ,steganographer gains (smaller P_{D})
 - ullet for large P_{FA} , steganographer loses
- 2 Bias gain = decrease in $P_{\rm D}$ for small fixed $P_{\rm FA}$
- Asymptotic biasing theorem (extension of the SRL)
 - critical scaling for payload and bias for constant asymptotic statistical detectability