8-1 Programming Revision: Strengthening The Code

Section 1: Load Libraries

Install necessary packages if not already installed

```
packages <- c("readr", "dplyr", "ggplot2", "corrplot", "psych", "caret", "pROC")
installed <- packages %in% rownames(installed.packages())
if (any(!installed)) install.packages(packages[!installed])</pre>
```

Load required libraries

library(readr)

library(dplyr)

library(ggplot2)

library(corrplot)

library(psych)

library(caret)

library(pROC)

Section 2: Load and Inspect Data

```
setwd("C:/DAT-690/DAT-690 Credit Project one") credit data <- read.csv("CreditRisk Data.csv")
```

View initial structure and summary

head(credit_data)
str(credit_data)

summary(credit_data)

Section 3: Data Cleaning

Check and remove duplicates

sum(duplicated(credit_data)) # Should be 0
credit_data <- credit_data[!duplicated(credit_data),]</pre>

Check for missing values

colSums(is.na(credit_data))

Impute

credit_data\$AMOUNT[is.na(credit_data\$AMOUNT)] <- median(credit_data\$AMOUNT, na.rm = TRUE)

Section 4: Data Exploration

Summary stats for selected features

summary(credit_data\$AMOUNT)
summary(credit_data\$AGE)

Use psych package for detailed stats

numeric_data <- credit_data %>%
 select(DURATION, AMOUNT, INSTALL_RATE, AGE, NUM_CREDITS,
NUM_DEPENDENTS)

describe(numeric data)

Correlation matrix and heatmap

cor_matrix <- cor(numeric_data, use = "complete.obs")
corrplot(cor_matrix, method = "color", type = "upper", tl.col = "black", tl.cex = 0.8, number.cex = 0.7)

Section 5: Feature Engineering

Convert relevant categorical columns to factors

credit_data\$SAV_ACCT <- as.factor(credit_data\$SAV_ACCT)
credit_data\$CHK_ACCT <- as.factor(credit_data\$CHK_ACCT)
credit_data\$FOREIGN <- as.factor(credit_data\$FOREIGN)</pre>

```
# Scale numeric columns
```

```
credit_data$AGE <- scale(credit_data$AGE)
credit_data$AMOUNT <- scale(credit_data$AMOUNT)</pre>
```

Section 6: Data Splitting

Note: Model will be trained on 70% of the data and tested on 30% to support validation and avoid overfitting. This helps estimate model generalizability and serves as a baseline for future performance comparison.

```
set.seed(123)
trainIndex <- createDataPartition(credit_data$DEFAULT, p = 0.7, list = FALSE)
train_data <- credit_data[trainIndex, ]
test_data <- credit_data[-trainIndex, ]
```

Section 7: Logistic Regression Modeling

Assumption check: Logistic regression assumes a linear relationship between the log-odds of the outcome and predictor variables. Variables like AGE and AMOUNT are standardized, and categorical variables are encoded as factors.

This model is designed to answer the business question: Can we predict loan default using applicant features? The output (predicted default) aligns with this goal.

Future-proofing: To accommodate future retraining, this section can be reused with updated data sources. Parameters and predictors can be easily modified.

Section 8: Prediction and Evaluation

Generate predicted probabilities

pred_probs <- predict(model_logit, newdata = test_data, type = "response") pred_classes <- ifelse(pred_probs > 0.5, 1, 0)

Confusion Matrix

conf_matrix <- table(Predicted = pred_classes, Actual = test_data\$DEFAULT)
print(conf_matrix)</pre>

ROC Curve and AUC

roc_curve <- roc(test_data\$DEFAULT, pred_probs)
plot(roc_curve, main = "ROC Curve for Logistic Regression", col = "blue")
auc(roc_curve)</pre>

Detailed metrics

confusionMatrix(as.factor(pred classes), as.factor(test data\$DEFAULT))

- # The ROC and confusion matrix evaluate model performance. Current baseline: AUC of 0.8168, balanced accuracy of ~0.689. Future predictions can be compared to this benchmark.
- # Application to new data: The model will later be applied to creditRisk_Verify.csv and validated to assess generalization to unseen applicants.
- # Maintenance Plan: The model will undergo regular validation and retraining as new applicant data becomes available. Future versions may use threshold tuning or resampling (e.g., SMOTE) to improve performance on imbalanced classes.
- # Communication Plan: Model results and metrics (AUC, confusion matrix, etc.) will be shared through stakeholder-facing dashboards and reporting tools. Plots and summaries will accompany each update.
- # Section 9: Final Evaluation Using Verification Dataset

Apply the trained model to the external verification dataset. This step simulates applying the model to unseen, real-world applicant data. It helps assess generalization and robustness outside the training/testing pipeline.

pred_probs <- predict(model_logit, newdata = creditRisk_verify, type = "response") pred_classes <- ifelse(pred_probs > 0.5, 1, 0)

Check distribution of actual defaults in the verification dataset table(creditRisk verify\$DEFAULT)

Create confusion matrix and performance metrics on the verification data confusionMatrix(as.factor(pred_classes), as.factor(creditRisk_verify\$DEFAULT))

