LENDING CLUB CASE STUDY

AGENDA

PROBLEM SUMMARY DATA ONBOARDING & INITIAL EDA **DATA PREPROCESSING AND CLEANING**

INSIGHTS

BIVARIATE ANALYSIS:
LOAN STATUS VS
DIFFERENT CATEGORICAL
VARIABLE

BIVARIATE ANALYSIS:
LOAN STATUS VS
DIFFERENT NUMERICAL
VARIABLE

UNIVARIATE ANALYSIS:
NUMERICAL &
CATEGORICAL
VARIABLE

Problem statement:

A Consumer Finance company which specializes in lending various types of loans to urban customer. We need to analyse and build insight which can be considered by the loan approving team to decide on approval mechanism. Historical loan dataset is available to study the patterns and generate interesting actionable insight

Constraints:

- 1. If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
- 2. If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company

Insight type:

- 1. Types of customer / lead demographic to consider for loan approval
- 2. Leading indicator for loan default / customer behaviour to improve collection management system
- 3. Whitespaces for product development
- 4. Types of loan products that are doing well and can be doubled down for market expansion

STEPS: DATA ONBOARDING AND INITIAL EDA

Import all necessary libraries for analysis, mathematical operations and data visualization

Upload the loan dataset from local system after downloading

Initial EDA of the uploaded dataset

STEPS: DATA PREPROCESSING AND CLEANING

Identify and remove columns that has only null values

Remove insignificant columns

Remove columns that have constant values

Remove columns that has high percentage of null columns, consider higher than 25%

Remove rows for all the other columns sequentially that has lower percentage of null values, and we don't have a definite logic for imputation

UNIVARIATE ANALYSIS NUMERICAL & CATEGORICAL VARIABLE

Numerical values

```
Skewness: loan amnt 1.050861
Kurtosis: loan amnt 0.743797
Skewness: funded amnt 1.050861
Kurtosis: funded_amnt 0.743797
Skewness: funded amnt inv 1.050861
Kurtosis: funded amnt inv 0.743797
Skewness: int rate 1.050861
Kurtosis: int rate 0.743797
Skewness: installment 1.050861
Kurtosis: installment 0.743797
Skewness: total acc 1.050861
Kurtosis: total acc 0.743797
Skewness: total pymnt 1.050861
Kurtosis: total pymnt 0.743797
Skewness: total pymnt inv 1.050861
Kurtosis: total pymnt inv 0.743797
Skewness: total_rec_prncp 1.050861
Kurtosis: total rec prncp 0.743797
Skewness: total_rec_int 1.050861
Kurtosis: total rec int 0.743797
Skewness: last pymnt amnt 1.050861
Kurtosis: last_pymnt_amnt 0.743797
Skewness: annual inc 1.050861
Kurtosis: annual inc 0.743797
Skewness: dti 1.050861
Kurtosis: dti 0.743797
Skewness: deling 2yrs 1.050861
Kurtosis: deling 2yrs 0.743797
Skewness: inq_last_6mths 1.050861
Kurtosis: inq last 6mths 0.743797
Skewness: open acc 1.050861
Kurtosis: open acc 0.743797
Skewness: pub rec 1.050861
Kurtosis: pub rec 0.743797
Skewness: revol bal 1.050861
Kurtosis: revol bal 0.743797
Skewness: revol util 1.050861
Kurtosis: revol util 0.743797
```

Inference:

- 1. All the numerical variables considered has Skewness value of around 1 which is an indicator of low right skewed distribution
- 2. Kurtosis score for all the numerical variable is lesser than 1 which means they are "Platykurtic", means they have thinner tails with fewer extreme values (outliers)

Categorical values

BIVARIATE ANALYSIS NUMERICAL VARIABLE

Relationship analysis – numerical variables

Correlation Matrix of important numerical variables

loan_amnt -	1	0.98	0.95	0.93	0.26	0.89	0.87	0.27	0.31	0.17	0.32	0.064	0.85	0.73	0.45		1.00
funded_amnt -	0.98	1	0.97	0.96	0.25	0.9	0.88	0.27	0.31	0.17	0.31	0.069	0.87	0.74	0.45		
funded_amnt_inv -	0.95	0.97	1	0.92	0.24	0.89	0.91	0.26	0.3	0.16	0.3	0.072	0.86	0.73	0.44		0.75
installment -	0.93	0.96	0.92	1	0.23	0.86	0.83	0.27	0.28	0.17	0.32	0.094	0.85	0.63	0.4		0.50
total_acc -	0.26	0.25	0.24	0.23	1	0.22	0.22	0.24	-0.043	0.68	0.31	-0.069	0.23	0.15	0.16		0.50
total_pymnt -	0.89	0.9	0.89	0.86	0.22	1	0.98	0.26	0.31	0.16	0.3	0.078	0.97	0.83	0.47	-	0.25
total_pymnt_inv -	0.87	0.88	0.91	0.83	0.22	0.98	1	0.25	0.3	0.15	0.28	0.08	0.95	0.82	0.46		
annual_inc -	0.27	0.27	0.26	0.27	0.24	0.26	0.25	1	0.052	0.16	0.28	0.017	0.26	0.19	0.14	-	0.00
int_rate -	0.31	0.31	0.3	0.28	-0.043	0.31	0.3	0.052	1	0.014	0.1	0.47	0.19		0.16		
open_acc -	0.17	0.17	0.16	0.17	0.68	0.16	0.15	0.16	0.014	1	0.29	-0.088	0.16	0.12	0.076	-	-0.25
revol_bal -	0.32	0.31	0.3	0.32	0.31	0.3	0.28	0.28	0.1	0.29	1	0.31	0.28	0.24	0.12		
revol_util -	0.064	0.069	0.072	0.094	-0.069	0.078	0.08	0.017	0.47	-0.088	0.31	1	0.023	0.19	-0.02	-	-0.50
total_rec_prncp -	0.85	0.87	0.86	0.85	0.23	0.97	0.95	0.26	0.19	0.16	0.28	0.023	1	0.68	0.54		
total_rec_int -	0.73	0.74	0.73	0.63	0.15	0.83	0.82	0.19	0.53	0.12	0.24	0.19	0.68	1	0.19		-0.75
last_pymnt_amnt -	0.45	0.45	0.44	0.4	0.16	0.47	0.46	0.14	0.16	0.076	0.12	-0.02	0.54	0.19	1		-1.00
	loan_amnt -	funded_amnt -	funded_amnt_inv -	installment -	total_acc -	total_pymnt -	total_pymnt_inv -	annual_inc -	int_rate -	open_acc -	revol_bal -	revol_util -	total_rec_prncp -	total_rec_int -	last_pymnt_amnt -		-1.00

Inference:

- 1. loan_amnt has very strong + correlation with funded_amnt , funded_amnt_inv which is an Indication that the CFC is operationally well run to meet its commitments.
- 2. loan_amnt has very strong + correlation with installment which is obvious since higher loan_amnt will lead to higher installment controlled for term
- 3. loan_amnt has strong + correlation with total_pymnt , total_pymnt_inv which is a strong indicator that the CFC is operationally efficient and prioritizes investors
- 4. loan_amnt has weak correlation with annual_inc which needs to be considered while giving loan
- 5. Loan_amnt has very strong + correlation with total_rec_prncp, total_rec_int, last_pymnt_amnt which is a great indicator that the CFC is great at collection management reducing structural risk
- 6. Total_pymnt , total_pymnt_inv , total_rec_prncp , total_rec_int has strong + correlation as they are leading and lagging indicator of efficient collection system
- 7. Int_rate has strong + correlation with revol_util which may be an indicator that the CFC is catering to a segment which is loan starved from other sources or their interest rate is still substantially higher
- 8. total_acc has strong + correlation with open_acc which is an indicator that most of the credit files are open , which is an indicator of strong loan book
- 9. Int_rate has strong + correlation with total_rec_int which is an obvious conclusion since higher interest rate leads to higher interest recovery considering its not a bad loan

Bivariate analysis: Loan status with numerical variables

BIVARIATE ANALYSIS CATEGORICAL VARIABLE

Bivariate analysis: Loan status with Categorical variables

Final Insight

Inference:

- 1. Borrowers on average who take smaller amount loan generally have higher probability of "Fully Paid"
- 2. Borrowers on average who has higher annual income generally shows higher probability of "Fully Paid"

Action:

Give higher weightage to annual income of a borrower while providing loan and consider smaller size loan amount products

Inference:

- 1. Borrowers on average who take loans for smaller duration generally have higher probability of "Fully Paid"
- 2. Borrowers on average who take Grade A , B , C , D has higher probability of "Fully Paid"

Action:

Try to give more small term loans of Grade: A, B, C, D and drop grade (E, F, G) loans or charge higher interest rate to reduce structural risk

Inference:

- 1. Borrowers on average who inquired least in last 6 month have higher probability of "Fully Paid", the reverse can act as a good leading indicator for collection team to work on
- 2. Borrowers on average who has lower utilization of approved loan amount generally shows higher probability of "Fully Paid"

Action:

- 1. Digitize the complete customer support / helpdesk functionality to ensure we have a centralized view of all historical enquiries of a customer / lead .
- 2. Continuously monitor the current utilization rate of different customers and based on threshold value flag it as high risk for collection team to work on

	loan_status	errip_lerrigith	count
-	Charged Off	1 year	430
-	Charged Off	10 - years	1293
	Charged Off	2 years	549
3	Charged Off	3 years	542
-	Charged Off	4 years	44.1
-	Charged Off	5 years	443
-65	Charged Off	© years	298
-	Charged Off	7 years	257
-8	Charged Off	Syears	196
-59-	Charged Off	9 years	153
10	Charged Off	or 1 years	601
-	Current	1 year	7.1
12	Current	10 - years	391
10.00	Current	2 years	97
1 4	Current	3 years	
70.55	Current	4 years	9.4
11.45	Current	5 years	88
17	Current	6 years	61
10.40	Current	7 Seers	62
19	Current	2 years	44
20	Current	9 years	22
21	Current	~ 1 year	75
	Fully Paid	T present	2632
23	Fully Paid	10- years	7000
24	Fully Paid	2 years	2047
25	Fully Paid	3 years	3398
26	Fully Paid	4 years	2842
27	Fully Paid	5 years	2704
28	Fully Paid	6 years	1834
29	Fully Paid	7 years	1420
3.0	Fully Paid	8 years	1209
200.70	Fully Paid	O years	1053
3.2	Fully Paid	- 1 year	3721

	loan_status	home_ownership	count
0	Charged Off	MORTGAGE	2183
1	Charged Off	OTHER	18
2	Charged Off	OWN	382
3	Charged Off	RENT	2620
4	Current	MORTGAGE	617
5	Current	OWN	71
6	Current	RENT	410
7	Fully Paid	MORTGAGE	14138
8	Fully Paid	OTHER	78
9	Fully Paid	OWN	2318
10	Fully Paid	RENT	15000

Inference:

- 1. Most of our loans are taken for debt consolidation , wedding and other categories
- 2. Most of our customers experience is extreme either closer to 1 year or over 10 years
- 3. Most of our customers have home mortgage or at Rent

Action:

1. A loan product can be created for high ticket productive asset which will structurally have low risk

OVERALL INSIGHT SUMMARY

Giving small amount of loan to high income individual is very low risk

Giving short term loan of Grade A, B, C is very low on risk

Closely monitor loan utilization rate and last 6 month enquiries of a customer / lead , they are a good leading indicator of high risk loans

Product development opportunity exist to build a high ticket loan product for high experience customer, who doesn't own home

THANK YOU

APPENDIX