UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Računalništvo in matematika - 2. stopnja

Mojster Jaka

Vzorec zaključnega dela

MAGISTRSKO DELO

MENTOR: doc. dr. Peter Klepec

AVTORSKE PRAVICE. Rezultati magistrskega dela so intelektualna lastnina avtorja in Fakultete za računalništvo in informatiko Univerze v Ljubljani. Za objavljanje ali izkoriščanje rezultatov magistrskega dela je potrebno pisno soglasje avtorja, Fakultete za računalništvo in informatiko ter mentorja¹.

©2016 Mojster Jaka

¹V dogovorju z mentorjem lahko kandidat magistrsko delo s pripadajočo izvorno kodo izda tudi pod drugo licenco, ki ponuja določen del pravic vsem: npr. Creative Commons, GNU GPL. V tem primeru na to mesto vstavite opis licence, na primer tekst [1].

Zahvala

 $Na\ tem\ mestu\ zapišite,\ komu\ se\ zahvaljujete\ za\ izdelavo\ magistrske\ naloge.\ V\ zahvali\ se\ poleg\ mentorja\ spodobi\ omeniti\ vse,\ ki\ so\ s\ svojo\ pomočjo\ prispevali\ k\ nastanku\ vašega\ izdelka.$

Mojster Jaka, 2016

Vsem rožicam tega sveta.

"The only reason for time is so that everything doesn't happen at once."

— Albert Einstein

Kazalo

Pr	rogram dela	
Po	ovzetek	
Al	bstract	
1	Uvod	1
2	Sklicevanje na besedilne konstrukte	3
3	Plovke: slike in tabele	5
	3.1 Formati slik	5
4	Razno	9
	4.1 Notacije	9
	4.2 Lepe tabele in psevdokoda	9
5	Kaj pa literatura?	11
6	Sklepne ugotovitve	13
\mathbf{A}	Title of the appendix 1	15

Seznam uporabljenih kratic

kratica	angleško	slovensko
CA	classification accuracy	klasifikacijska točnost
DBMS	database management system	sistem za upravljanje podatkovnih baz
SVM	support vector machine	metoda podpornih vektorjev

Program dela

Tukaj vnesite progran	n dela, potrjen s	s strani Fakulte z	a Matematiko i	n Fiziko
ter mentorja.				

Podpis mentorja:

Podpis somentorja:

Povzetek

Naslov: Vzorec zaključnega dela

V vzorcu je predstavljen postopek priprave magistrskega dela z uporabo okolja LATEX. Vaš povzetek mora sicer vsebovati približno 100 besed, ta tukaj je odločno prekratek. Dober povzetek vključuje: (1) kratek opis obravnavanega problema, (2) kratek opis vašega pristopa za reševanje tega problema in (3) (najbolj uspešen) rezultat ali prispevek magistrske naloge.

Ključne besede

računalnik, računalnik, računalnik

Abstract

Title: Thesis template

This sample document presents an approach to typesetting your BSc thesis using LaTeX. A proper abstract should contain around 100 words which makes this one way too short. A good abstract contains: (1) a short description of the tackled problem, (2) a short description of your approach to solving the problem, and (3) (the most successful) result or contribution in your thesis.

Keywords

 $computer,\ computer,\ computer$

Uvod

Datoteka magistrska_naloga.tex na kratko opisuje, kako se pisanja magistrskega dela lotimo z uporabo programskega pateka LATEX. V tem dokumentu bomo predstavili nekaj njegovih prednosti in hib. Kar se slednjih tiče, mi pride na misel ena sama. Ko se srečamo z njim, nam izgleda kot kislo jabolko, nismo prepričani, da bi želeli vanj ugrizniti. Lahko pa z njim pripravimo odličen zavitek ali pa pridemo na okus.

V Poglavju 1 bomo na hitro spoznali besedilne konstrukte kot so izreki, enačbe in dokazi. Naučili se bomo, kako se na njih sklicujemo. V Poglavju 2 se bomo srečali s sklicevanjem na besedilne konstrukte. Poglavje 3 bo predstavilo vključevanje plovk: slik in tabel. V Poglavju 5 se bomo srečali s sklicevanjem na literaturo. Sledil bo samo še zaključek.

Bodite pozorni, da se v glavni mapi nahajata še datoteki declaration.tex in izjava.tex. Ti datoteki se ločeno prevedeta, ju podpišete in oddate v referat ločeno od magistrske naloge.

Sklicevanje na besedilne konstrukte

Matematična ali popolna indukcija je eno prvih orodij, ki jih spoznamo za dokazovanje trditev pri matematičnih predmetih.

Izrek 2.1 Za vsako naravno število n velja

$$n < 2^n. (2.1)$$

Dokaz. Dokazovanje z indukcijo zahteva, da neenakost (2.1) najprej preverimo za najmanjše naravno število — 0. Res, ker je $0 < 1 = 2^0$, je neenačba (2.1) za n = 0 izpolnjena.

Sledi indukcijski korak. S predpostavko, da je neenakost (2.1) veljavna pri nekem naravnem številu n, je potrebno pokazati, da je ista neenakost v veljavi tudi pri njegovem nasledniku — naravnem številu n+1. Izračun zapišemo s tremi vrsticami, ki jih končamo s piko, saj do del tega stavka:

$$n+1 < 2^n + 1, (2.2)$$

$$\leq 2^n + 2^n, \tag{2.3}$$
$$= 2^{n+1}.$$

Neenakost (2.2) je posledica indukcijske predpostavke, neenakost (2.3) pa enostavno dejstvo, da je za vsako naravno število n izraz 2^n vsaj tako velik kot 1. S tem je dokaz Izreka 2.1 zaključen.

4 POGLAVJE 2. SKLICEVANJE NA BESEDILNE KONSTRUKTE

Opazimo, da je \LaTeX številko izreka podredil številki poglavja.

Plovke: slike in tabele

Slike in daljše tabele praviloma vključujemo v dokument kot plovke. Pozicija plovke v končnem izdelku ni pogojena s tekom besedila, temveč z izgledom strani. LATEX bo skušal plovko postaviti samostojno, praviloma na vrh strani, na kateri se na takšno plovko prvič sklicujemo. Pri tem pa bo na vsako stran končnega izdelka želel postaviti tudi sorazmerno velik del besedila. V skrajnem primeru, če imamo res preveč plovk, se bo odločil za stran popolnoma zapolnjeno s plovkami.

3.1 Formati slik

Bitne slike, vektorske slike, kakršnekoli slike, z IŁTEXom lahko vključimo vse. Slika 3.1 je v .pdf formatu. Pa res lahko vključimo slike katerihkoli formatov? Žal ne. Programski paket IŁTEX lahko uporabljamo v več dialektih. Ukaz latex ne mara vključenih slik v formatu Portable Document Format .pdf, ukaz pdflatex pa ne prebavi slik v Encapsulated Postscript Formatu .eps. Strnjeno v Tabeli 3.1.

Nasvet? Odločite se za uporabo ukaza pdflatex. Vaš izdelek bo brez vmesnih stopenj na voljo v .pdf formatu in ga lahko odnesete v vsako tiskarno. Če morate na vsak način vključiti sliko, ki jo imate v .eps formatu, jo vnaprej pretvorite v alternativni format, denimo .pdf.

 ${\bf Slika~3.1:~}$ Herschelov graf, vektorska grafika.

Tabela 3.1

ukaz/format	.pdf	.eps	ostali formati
pdflatex	da	ne	da
latex	ne	da	da

Slika 3.2: Kateri dialekt uporabljati?

Včasih se da v okolju za uporabo programskega paketa ĽTEX nastaviti na kakšen način bomo prebavljali vhodne dokumente. Spustni meni na Sliki 3.2 odkriva uporabo ĽTEXa v njegovi pdf inkarnaciji — pdflatex. Vključena Slika 3.2 je seveda bitna.

Razno

4.1 Notacije

Za notacijo spremenljivk ter skalarjev uporabimo običajno notacijo, t.j., spremenljivka x in skalar a. Pri notaciji matrik ter vektorjev pa se poslužujemo krepega fonta. Torej, matrika \boldsymbol{A} ter vektor \boldsymbol{v} ,

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1q} \ a_{21} & a_{22} & \dots & a_{2q} \ dots & & & & \ a_{p1} & a_{p2} & \dots & a_{pq} \end{bmatrix}, \quad m{v} = egin{bmatrix} x_1 \ x_2 \ dots \ x_q \end{bmatrix}.$$

4.2 Lepe tabele in psevdokoda

Psevdokoda 1 prikazuje primer delovanja genetskega algoritma, medtem ko Tabela 4.1 prikazuje primer lepe tabele brez vertikalnih črt.

Tabela 4.1: Primer enostavne tabele.

Ime	Vrednost	Opis
a	0.03	skalar
x	-1	spremenljivka

Algorithm 1 Psevdokoda genetskega algoritma

```
1: t \leftarrow 0
```

- 2: $InitPopulation[P(t)] \leftarrow$ inicializiraj populacijo
- 3: $EvalPopulation[P(t)] \leftarrow \text{evaluiraj populacijo}$
- 4: repeat
- 5: $P'(t) \leftarrow Variation[P(t)] \leftarrow$ generiraj novo populacijo
- 6: $EvalPopulation[P'(t)] \leftarrow$ evaluiraj novo populacijo
- 7: $P(t+1) \leftarrow ApplyGeneticOperators[P'(t) \in Q]$
- 8: $t \leftarrow t + 1$
- 9: **until** prekinitev
- 10: **if** rezultat dovolj dober **then**
- 11: shrani rezultat
- 12: **end if**

Kaj pa literatura?

Kot smo omenili že v uvodu, je pravi način za citiranje literature uporaba BIBTEXa [2]. Programski paket LATEXje prvotno predstavljen v priročniku [3] in je v resnici nadgradnja sistema TEX avtorja Donalda Knutha, znanega po denimo, če izpustim njegovo umetnost programiranja, Knuth-Bendixovem algoritmu [4].

Vsem raziskovalcem s področja računalništva pa svetujem v branje mnenje L. Fortnowa [5].

Sklepne ugotovitve

Izbira LATEX ali ne LATEX je seveda prepuščena vam samim. Res je, da so prvi koraki v LATEXu težavni. Ta dokument naj vam služi kot začetna opora pri hoji.

Dodatek A

Title of the appendix 1

Example of the appendix.

Literatura

- [1] licence-cc.pdf.

 URL https://ucilnica.fri.uni-lj.si/course/view.php?id=274
- [2] Using bibtex.

 URL http://www.bibtex.org/Using/
- [3] L. Lamport, Latex: A document preparation system, in: Addison-Wesley, 1986.
- [4] P. B. D. E. Knuth, Simple word problems in universal algebras, in: Computational Problems in Abstract Algebra (ur. J. Leech), 1970, pp. 263–297.
- [5] L. Fortnow, Viewpoint: Time for computer science to grow up, in: Communications of the ACM no. 52, Vol. 8, 2009, pp. 33–35.