

How to score in cricket?

1 Run

Both batsman run from respective ends of pitch once

2 Runs

Both batsman run from respective ends of pitch twice

4 Runs

Ball hits the boundary line

6 Runs

Ball hits over the boundary line without bouncing

What am i trying to solve?

BUSINESS PROBLEM

Coaches and Captain of batting team needs to strategize the game plan based on current score statistics to increase winning chances.

Therefore, predicting score would help them optimise the performance of their team.

Predict the IPL score for the batting team

DATA SCIENCE PROBLEM

The journey I took

Data used to inform my decisions

Macro Data (Overview) Micro Data (Granular) **Data Collection** IPL matches dataset 2008-2020 IPL ball-by-ball dataset IPL [Kaggle Dataset 2008-2020] **Data Source** (https://www.kaggle.com/patrickb1912/ipl-complete-dataset-20082020)

Uncovering trends and patterns

How winning the toss impact the gameplay

70% of the team who wins the toss Wins the game

Those who win the toss would generally field

60% of those who field Wins the game

Details on the winning teams based on toss decision

How the venues impact the gameplay

How the efficiency rate of batter impacts the gameplay

This data would be useful in selecting the right players during the game

Selected the 8 Most Consistent Teams

Feature Engineered columns

Data Modeling

TRAIN DATA					
Model Name	Train Score	Mean Absolute Error	Mean Squared Error	Root Mean Squared Error	
Linear Regression	0.52503	14.93999	409.602129	20.23863	
Ridge	0.52503	14.940166	409.603182	20.238656	
Lasso	0.497843	15.527418	433.341759	20.816862	
Decision Tree	0.496933	15.501726	422.262332	20.549023	
Random Forest	0.661075	11.419714	242.500067	15.572414	
Ada Boost	0.402423	17.61751	514.087121	22.673489	
Gradient Boost	0.832477	1.603841	7.332912	2.707935	
TEST DATA					
Model Name	Test Score	Mean Absolute Error	Mean Squared Error	Root Mean Squared Error	
Linear Regression	0.529161	14.806188	402.628817	20.065613	
Ridge	0.52917	14.806251	402.621463	20.06543	
Lasso	0.5033	15.370086	424.743787	20.609313	
Decision Tree	0.505106	15.507938	423.199466	20.571812	
Random Forest	0.683246	12.099161	270.866555	16.458024	
Ada Boost	0.410373	17.496106	504.208386	22.454585	
Gradient Boost	0.861848	6.731762	118.137958	10.869129	

Increase chances of winning

Strategize onboard during game

Leverage on data-driven decision making

IPL Score Prediction

Venue:	M Chinnaswamy Stadium	
Batting Team:	Delhi Capitals	v
Bowling Team:	Mumbai Indians	~
Overs:	10	:
Runs:	60	
Wickets:	3	
Runs in last 5 overs:	30	
Wickets in last 5 overs:	2	:
	Estimate	Score

App QR Code

Percentage of Toss Decision

Toss Decision By Year

Toss Win By Teams

Teams

Total Matches vs Wins

Team

Is Toss Winner also the Match winner?

Yes

Total Runs Scored in each Season

Average runs per match across Seasons

Runs per Over by Teams across Seasons

Score Distribution for Team in their 1st Innings

Score Distribution for Team in their 2nd Innings

Bowling performance

Batting performance

