· · · · · · · · · · · · · · · · · · ·								
	ap, hocnip.	(NLK)	S(ncx).	S(napam)	(DCK)	E(nck)	L (napan.)	V (0x),(0y)
1	g = 9 4-500	$y = \frac{1}{2}$ $y = \frac{1}{1+2^2}$	$f = Cos \varphi$ $f = 2Cos \varphi$	x=2Cost y=3Sint	$y=e^{2}$ xe[lnt8;lnt24]	0=96,36	$ \begin{aligned} (x &= (t^2 - 2) \text{ sint} + \\ &+ 2t \text{ Cost} + \\ y &= (2 - t^2) \text{ Cost} + \\ &+ 2t \text{ sint} t \in [0; \frac{\pi}{2}] \end{aligned} $	11-221
	9 fin24=2		$ \begin{array}{c} g = fin4 \\ g = 2 \end{array} $	$x \ge 1$ $ x = Cost$ $ y = 2 sint$	$y = hn(x^2-1)$ $x \in [2;3]$	$\rho = \varphi^2$	$\begin{cases} x = 2/t - Sint) \\ y = 2/1 - Cost \end{cases}$	$y = 2^{2} + 2$ $y = 1 - x$
3	9 sin (4+ 3) = 2	$\int_{2}^{2} y^{2} = 2^{3}$ $2 = 2$	$ \begin{array}{c} y \leq x \\ f = \cos 3\varphi \\ g = 3\cos 3\varphi \end{array} $	$y \ge 1$ $ x = 8\cos^3 t$ $ y = 8\sin^3 t$ $x \ge 1$	$y = \sqrt{1 - x^2} + 4 \arcsin x$ $x \in [0; \frac{7}{9}]$		1 apra $ \begin{aligned} x &= 3(\cos t + t \sin t) \\ y &= 3(\sin t - t \cos t) \\ t &\in [0; \frac{\pi}{2}] \end{aligned} $	$ \begin{array}{c} z = 0 \\ x = 1 \end{array} $ $ \begin{array}{c} y = \frac{3}{x} \\ y = \frac{2}{3} \\ z = 1 \end{array} $
4	9= Sin 24	xy=6 $x+y=7$		$\begin{cases} x = 2/t - Sint \\ y = 2(1 - Cost) \\ y \ge 3 \end{cases}$		p=e24 4e[0;#]	$ \begin{cases} x = 5\cos^3 t \\ y = 5\sin^3 t \end{cases} $	y=x2 y=12
5	$\beta = \frac{1}{1 - 2 \sinh \varphi}$	$y = \frac{x^2}{4}$ $y = \frac{8}{x^2 + 4}$	$ \beta = \cos 4 $ $ \beta = \sqrt{3} \sin 4 $	$ \begin{cases} x = 4Cost \\ y = 4Sint \end{cases} $ $ x \ge 2 $	$y = \operatorname{arcsin} \sqrt{2} + 4$ $+ \sqrt{2 - x^{2}}$ $x \in [+; 1]$	3	$\begin{cases} x = \frac{t^3}{3} - t \\ y = t^2 + 2 \\ t \in [0;3] \end{cases}$	$y = (2-2)^{2}$ $y = 2$ $y = 0$
6	$p = Cos^3 \varphi$	4=0		1 ty = 9	y= lnx - x2	0 = 4/1+Cas	$\begin{cases} x = e^{t} Cost \\ y = e^{t} Sint \\ t \in [0; I] \end{cases}$	4=62
7	$\rho = \frac{5}{3-4\cos \varphi}$	$y = e^{x}$ $x + y = 1$ $x = 2$	$ \beta = \cos 2\theta \\ \beta = 2\cos 2\theta $	$ x = \cos^3 t$ $y = \sin^3 t$ $y = 1$		0 10	10 pc. + . cc	t 4=2+1

6ар.	hocmp.	S (DCK)	S (nex.)	S (napar) L (ACK)	& (nex)	(napan.)	Vox,09
8	g=2+Cos4	$y=e^{-x}$ $y=x+1$ $x=-1$	g= Sin 29 g= 45in 24	$ \begin{aligned} & x = 2 \cos t \\ & y = \sin t \\ & x \le 1 \end{aligned} $	$y = \sqrt{x - x^2}$ -arcles \sqrt{x}	$ \beta = 34^{2} $ $ \varphi \in \left[0; \frac{1}{3}\right] $	$y = 2Sint - Sin2t$ $t \in [0; \frac{\pi}{4}]$	$\begin{array}{c} x+y=3 \\ y=1 \end{array}$
9	S= 1 2 tin 4+ Cos4	$\begin{vmatrix} y=2\\ y=2 \end{vmatrix}$ $ y=2 $	p=5 p=5 Co134	$ 2 = 8 \cos t$ $ y = 3 \sin^3 t$ $2 \ge 3\sqrt{3}$	$y = \ln(2x-2)$ $x \in [2; 4]$	9=2/1-1014) 4E [0; 1/2]	$y = e^{t}(cost - sint)$ $t \in [0; Ti]$	$y = 2 - 2$ $y \ge 0$ $y \le 1$
10	9=Cos44	$y = \sin x$ $y = 2\sin x$ $x = \frac{\pi}{2}$	43 13	$ x = 5 Cost$ $y = 4 Sint$ $y \ge 2$	16/21	16[013]		
11	9= 1 Cos 4- Sin 4	y=Sin X y=Cosx cogepru. H.K.	9 = a (1+Co14) by	x=5/t-bint) x=5(1-lost) y=5	$y = \frac{x}{6} + \frac{1}{2x}$ $x \in [2;3]$	102121	$y = 2 \sin^3 t$ 6 I rest.	y = x + 1 $x + y = 3$ $x = 0$
12	$g = \frac{1}{2 + \sin \theta}$	$y = \frac{1}{x} \int_{0}^{\infty} x dx$ $y = x$ $y = \frac{x}{g}$	Р= 2.4. 2 пранитенн У при натим но I rest. 2	$x = 4\cos^3 t$ $y = 4\sin^3 t$ $x^2 + y^2 \ge 4$	26[-3:0]	16[414]	$x = 5 \sin t + 2 \cos t$ $t = 2 \sin t - 5 \cos t$ $t \in [0; \pi]$	4=2
13	$\int_{0}^{2} \cos 2\theta = 4$	y = x y = -(x-3)(x-5) y = 0 y = 1	$0 = 4 \sin \varphi 12$ $4 \ge 2 $	$1 = 2US t$ $1 = S \sin^3 t$ 2 $1 = 2\sqrt{2}$	y = e +4 :∈[-ln124;-ln13]	$ \beta = 4 \cos \theta \left\{ \frac{1}{2}, \frac{\pi}{2} \right\} $	te[-#;] }	
14	f=2+Sin24	$y = x^{2}$ $y = 2 - x^{3}$ $x = -1$ $x = -1$	£6 Ly	=5 Sint -	$\sqrt{x-x^2}$	bruve where \(\frac{1}{y} \) \(\frac{1}{y} = \frac{1}{x} \)	+2tCost y	$=1-x^{2}$ = $x+1$ $=x-1$ = $x-1$

一个一大大大大

oap	o. noenep.	S (DOK)	Since	Simone	1 6 (ocr)	1 L(nex)	L (mapan.)	Vox,04
15	9=Sin 44	$y = \frac{2}{x}$ $y = 2x$ $y = \frac{2}{x}$ It is	9=4/1+Cos4) PCos4=3 (enpara)	$ \begin{cases} x = 2Cost \\ y = 3Sint \\ 52 = 2Cosst \end{cases} $	$y = \ln \left(2\cos x \right)$ $x \in \left[\frac{\pi}{\epsilon}, \frac{\pi}{4} \right]$	$\beta = 24^{2}$ $9 \in [0; \frac{\pi}{4}]$	$ x = e^{\gamma \cos t + \sin t},$ $y = e^{t}(\cos t - \sin t),$ $t \in [0; \frac{\pi}{3}]$	$y = 2 - 2x^2$ $x \ge 0$
16	$f = \frac{2}{1 + 2 \sin \varphi}$	$y = x $ $y = 2 - x^2$	g= a√2Cos24 g=a	$1x = 3Cost$ $1y = 4Sint$ $4 \ge 2\sqrt{3}$	$y = \frac{\ln 3x}{2} - \frac{x^2}{4}$ $x \in \left[\frac{1}{2}, 1\right]$	9=3(1-Cos4) 4=[0;#]	$\begin{cases} 2 = 4\cos^2 t \\ y = 4\sin^3 t \end{cases}$ EIrest.	y = x + 2 $y = 3$ $x = 0$
17	g= 4Cos24	$y = 2 + x^3$ $y = x $ $x = 1$	g=45in34 g≥2	2=4/t-Sint) 1=4/1-Cust) 4=6	$y = \ln(3x^2 - 3)$ $2 \in [2;5]$	$ \beta = 3e^{\varphi} $ $ \varphi \in [0; \frac{\pi}{4}] $	$2 = 2(\cot + t \cot t)$ $4 = 2(\sin t - t \cot t)$ $t \in [0; I]$	y = x $y = x$ $y = x$
18	9=2+C0124	$y = 2 x $ $y = x^2$	f=a(1+sin4) [= 0=a buynyeu otlux	x = 4Cost $1 = 3 Sint$	$y = e^{2x}$ $x \in [4 \ln \frac{3}{4}; 4 \ln 2]$	9=43h 3 1	$y = 5 \sin^2 t$ $t \in [0; \frac{\pi}{2}]$	x+y=4 $y=3$
19	$g = \frac{1}{2\cos \theta - 2\sin \theta}$	$y = -x^3$ $y = -x^2$ $y = -x^2$	$= 16\cos 2\theta$ $= 2\cos \theta$	=25h3t -	arccos x + 4. $c \in [-\frac{8}{9}; \frac{7}{9}]$	4 = [0; #]	$t \in [0; \frac{\pi}{6}]$	$y = x + 2$ $y = 2$ $y = 3$ $y = \sqrt{2}$
20	J=3Sin4	y=1-x $y=1-x$ $y=1-x$ $y=1-x$	$= 2\left(1 + \cos 4\right) \left[2\right]$ $\geq -\frac{2}{2} + 2 \qquad 2$	$= S(ost) y$ $= 10 \sin^3 t x$ $= 2\sqrt{2}$	$\mathcal{E}\left[\frac{\mathcal{J}}{4};\frac{\mathcal{J}}{3}\right]$	$0 = 3\cos\frac{3}{3}\frac{\varphi}{3}$ $4 \in [0; \frac{\pi}{3}]$	$4 = t^2 + 5$ $t \in [0; 2]$	x = 1
21	$\int = \sin^2 \frac{\varphi}{2}$	$y = x^{3}$ $y = 2x^{3}$ $y = 2x^{3}$ $y = 1$	a Cos φ $y = \alpha$ Cos φ $y = \alpha$ Cos φ $y = \alpha$	8/t-Sint) y 8/1-Cost) =	$= \operatorname{anclos} \sqrt{x} - \int_{-\infty}^{\infty} \sqrt{x} dx - \int_{-\infty}^{\infty} \sqrt{x} dx = \int_{-\infty}^{\infty} \sqrt{x} dx - \int_{-\infty}^{\infty$	= 6 Sin 4 X = unue unue y = = 2 \ \ \ 3	$= t-2 \sinh t + 2$ $+2t \cos t + 2$ $= (2-t^2) \cot t + y$	c+y=1 $c+y=2$ $c=0$ $c=0$