01_ErrorControlCoding

October 6, 2016

0.0.1 What is error control coding?

Communication system

- The second main task of coding: error control
- Protect information against channel errors

0.0.2 Mutual information and error control

- Mutual information I(X,Y) = the information transmitted on the channel
- Even though there is information transmitted on the channel, when the channel is noisy the information is **not enough**

Example: consider the following BSC channel (p = 0.01, $p(x_1) = 0.5$, $p(x_2) = 0.5$):

Binary symmetric channel (BSC)

- The receiver would like to know the source messages
 - In absence of communication, the uncertainty is H(X) = 1 bit/msg
 - With communication, the uncertainty is $H(X|Y) \approx 0.081$ bit/msg
 - $-I(X,Y) = H(X) H(X|Y) = \approx 0.919 \text{ bit/msg}$
- Even though we have large I(X,Y), about 1% of all bits are erroneuos
 - Imagine downloading a file, but having 1% wrong bits

0.0.3 Why is error control needed?

- In most communications it is required that all bits are received correctly
 - Not 1% errors, not 0.1%, not 0.0001%. **None!**
- But that is not possible unless the channel is ideal.
- So what do to? Error control coding

0.0.4 Modelling the errors on the channel

- We consider only binary channels (symbols = $\{0, 1\}$)
- An error = a bit is changed from 0 to 1 or viceversa
- Changing the value of a bit = modulo-2 sum with 1
- Value of a bit remains the same = modulo-2 sum with 0

Channel error model

- Channel model we use (simple):
 - The transmitted sequence is summed modulo-2 with an **error sequence**
 - Where the error sequence is 1, there is a bit error
 - Where the error sequence is 0, there is no error

$$\mathbf{r} = \mathbf{c} \oplus \mathbf{e}$$

0.0.5 Error detection and error correction

Binary error correction:

- For binary channels, know the location of error => fix error by inverting bit
- Locating error = correcting error

Two possibilities in practice:

- Error detection: find out if there is any error in the received sequence
 - don't know exactly where, so cannot correct the bits, but can discard whole sequence
 - perhaps ask the sender to retransmit (examples: TCP/IP, internet communication etc)
 - easier to do
- Error correction: find out exactly which bits have errors, if any
 - can correct all errored bits by inverting them
 - useful when can't retransmit (data is stored: on HDD, AudioCD etc.)
 - harder to do than mere detection

0.0.6 What is error control coding?

The process of error control:

1. Want to send a sequence of k bits = **information word**

$$\mathbf{i} = i_1 i_2 ... i_k$$

2. For each possible information word, the coder assigns a **codeword** of length n > k:

$$\mathbf{c} = c_1 c_2 ... c_n$$

- 3. The codeword is sent on the channel instead of the original information word
- 4. The receiver receives a sequence $\mathbf{r} = \mathbf{c} + \mathbf{e}$, with possible errors:

$$\mathbf{r} = r_1 r_2 ... r_n$$

5. The decoding algorithm detects/corrects the errors in r

0.0.7 Definitions

- An **error correcting code** is an association between the set of all possible information words to a set of codewords
 - Each possible information word i has a certain codeword c
- The association can be done:
 - randomly: codewords are selected and associated randomly to the information words

- based on a certain rule: the codeword is computed with some algorithm from the information word
- A code is a **block code** if it operates with words of *fixed size*
 - Size of information word i = k, size of codeword c = n, n > k
 - Otherwise it is a non-block code
- A code is linear if any linear combination of codewords is also a codeword
- The **coding rate** of a code is:

$$R = \frac{k}{n}$$

0.0.8 Definitions

- A code *C* is an *t*-error-detecting code if it is able to *detect t* errors
- A code *C* is an *t*-error-correcting code if it is able to *correct t* errors

0.0.9 Hamming distance

• The **Hamming distance** of two binary sequences a, b of length n = the total number of bit differences between them

$$d_H(a,b) = \sum_{i=1}^{N} a_i \bigoplus b_i$$

- We need at least $d_H(a,b)$ bit changes to convert one sequence into another
- It satisfies the 3 properties of a metric function:
 - 1. $d(a,b) \ge 0 \forall a,b$, with $d(a,b) = 0 \Leftrightarrow a = b$
 - 2. $d(a, b) = d(b, a), \forall a, b$
 - 3. $d(a,c) \le d(a,b) + d(b,c), \forall a,b,c$
- The minimum Hamming distance of a code, d_{Hmin} = the minimum Hamming distance between any two codewords $\mathbf{c_1}$ and $\mathbf{c_2}$
- Example at blackboard

0.0.10 Linear block codes

- A code is a **block code** if it operates with words of *fixed size*
 - Size of information word $\mathbf{i} = k$, size of codeword $\mathbf{c} = n$, n > k
 - Otherwise it is a *non-block code*
- A code is **linear** if any linear combination of codewords is also a codeword
- A code is called systematic if the codeword contains all the information bits explicitly, unaltered

- coding merely adds supplementary bits besides the information bits
- codeword has two parts: the information bits and the parity bits
- example: parity bit added after the information bits
- Otherwise the code is called **non-systematic**
 - the information bits are not explicitly visible in the codeword
- Example: at blackboard

0.0.11 Generator matrix

All codewords for a linear block code can be generated via a matrix multiplication:

Codeword construction with generator matrix

- [G] = generator matrix of size $k \times n$
- All operations are done in modulo-2 arithmetic:
 - $0 \oplus 0 = 0$, $0 \oplus 1 = 1$, $1 \oplus 0 = 1$, $1 \oplus 1 = 0$
 - multiplications as usual
- Row-wise interpretation:
 - \mathbf{c} = a linear combination of rows in [G]
 - The rows of [G] = a *basis* for the linear code

0.0.12 Parity check matrix

- How to check if a binary word is a codeword or not
- Every $k \times n$ generator matrix [G] has complementary matrix [H] such that

$$0 = [H] \cdot [G]^T$$

• For every codeword **c** generated with [*G*]:

$$0 = [H] \cdot \mathbf{c}^T$$

• because:

$$\mathbf{i} \cdot [G] = \mathbf{c}$$
$$[G]^T \cdot \mathbf{i}^T = \mathbf{c}^T$$
$$[H] \cdot \mathbf{c}^T = [H] \cdot [G]^T \cdot \mathbf{i}^T = 0$$

0.0.13 Parity check matrix

- [H] is the **parity-check matrix**, size = $(n k) \times n$
- [G] and [H] are related, one can be deduced from the other
- The resulting vector $z = [H] \cdot [c]^T$ is the **syndrome**
- All codewords generated with [G] will produce 0 when multiplied with [H]
- All binary sequences that are not codewords will produce $\neq 0$ when multiplied with [H]
- Column-wise interpretation of multiplication:

Codeword checking with parity-check matrix

0.0.14 [G] and [H] for systematic codes

- For systematic codes, [G] and [H] have special forms
- Generator matrix
 - first part = some matrix Q
 - second part = identity matrix

$$[G]_{k \times n} = [Q_{k \times (n-k)} \ I_{k \times k}]$$

• Parity-check matrix

- first part = identity matrix
- second part = same Q, transposed

$$[H]_{(n-k)\times n} = [I_{(n-k)\times(n-k)} \ Q_{(n-k)\times k}^T]$$

- Can easily compute one from the other
- Example at blackboard

0.0.15 Syndrome-based error detection

Syndrome-based error detection for linear block codes:

1. generate codewords with generator matrix:

$$\mathbf{i} \cdot [G] = \mathbf{c}$$

- 2. send codeword c on the channel
- 3. random error word e is applied on the channel
- 4. receive word $\mathbf{r} = \mathbf{c} \oplus \mathbf{e}$
- 5. compute **syndrome** of **r**:

$$\mathbf{z} = [H] \cdot \mathbf{r}^T$$

- 6. Decide:
 - If $z = 0 \Rightarrow r$ has no errors
 - If $\mathbf{z} \neq 0 \Rightarrow \mathbf{r}$ has errors

0.0.16 Syndrome-based error correction

Syndrome-based error *correction* for linear block codes:

- $\mathbf{z} \neq 0 \Rightarrow \mathbf{r}$ has errors, we need to locate them
- The syndrome is the effect only of the error word:

$$\mathbf{z} = [H] \cdot \mathbf{r}^T = [H] \cdot (\mathbf{c}^T \oplus \mathbf{e}^T) = [H] \cdot \mathbf{e}^T$$

- 7. Create a **syndrome lookup table**:
 - for every possible error word e, compute the syndrome $\mathbf{z} = [H] \cdot \mathbf{e}^T$
 - start with error words with 1 error (most likely), then with 2 errors (less likely), and so on
- 8. Locate the syndrome **z** in the table, read the corresponding error word ê
- 9. Find the correct word:
 - adding the error word again will invert the errored bits back to the originals

$$\mathbf{\hat{c}} = \mathbf{r} \oplus \mathbf{\hat{e}}$$

0.0.17 Summing up

Summing up until now:

• Linear block codes use a generator matrix *G* for encoding, and a parity-check matrix *H* for checking the received word.

0.0.18 Hamming codes

- A particular class of linear error-correcting codes
- Definition: a **Hamming code** is a linear block code where the columns of [H] are the binary representation of all numbers from 1 to $2^r 1$, $\forall r \geq 2$
- Example (blackboard): (7,4) Hamming code
- Systematic: arrange the bits in the codeword, such that the control bits correspond to the columns having a single 1
 - no big difference from the usual systematic case, just a rearrangement of bits
 - makes implementation easier
- Example codeword for Hamming(7,4):

 $c_1c_2i_3c_4i_5i_6i_7$

0.0.19 Properties of Hamming codes

- From definition of [*H*] it follows:
 - 1. Codeword has length $n = 2^r 1$
 - 2. *r* bits are parity bits (also known as *control bits*)
 - 3. $k = 2^r r 1$ bits are information bits
- Notation: (n,k) Hamming code
 - n = codeword length = $2^r 1$,
 - $k = number of information bits = 2^r r 1$
 - Example: (7,4) Hamming code, (15,11) Hamming code, (127, 120) Hamming code

0.0.20 Properties of Hamming codes

- Can detect two errors
 - All columns are different => can detect 2 errors
 - Sum of two columns equal to a third => cannot correct 3

OR

- Can correct one error
 - All columns are different => can correct 1 error
 - Sum of two columns equal to a third => cannot correct 2
 - Non-systematic: syndrome = error position

BUT * Not simultaneously! * same non-zero syndrome can be obtained with 1 or 2 errors, can't distinguish

0.0.21 Coding rate of Hamming codes

Coding rate of a Hamming code:

$$R = \frac{k}{n} = \frac{2^r - r - 1}{2^r - 1}$$

The Hamming codes can correct 1 OR detect 2 errors in a codeword of size n * (7,4) Hamming code: n = 7 * (15,11) Hamming code: n = 15 * (31,26) Hamming code: n = 31

Longer Hamming codes are progressively weaker: * weaker error correction capability * better efficiency (higher coding rate) * more appropriate for smaller error probabilities

```
In [2]: %matplotlib inline
import numpy as np, matplotlib.pyplot as plt
r = np.array([3., 4., 5., 6., 7., 8., 9., 10.])
k = 2**r - r - 1
n = 2**r-1
R = k/n
plt.plot(r, R)
plt.xticks(r, [str(int(i)) for i in n])
plt.title('Coding rate of Hamming codes of various lengths')
plt.xlabel('Size of codeword $n$')
plt.ylabel('Coding rate $R$')
```


0.0.22 Encoding & decoding example for Hamming(7,4)

See whiteboard.

In this example, encoding is done without the generator matrix G, directly with the matrix H, by finding the values of the parity bits c_1 , c_2 , c_4 such that

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = [H] \begin{bmatrix} c_1 \\ c_2 \\ i_3 \\ c_4 \\ i_5 \\ i_6 \\ i_7 \end{bmatrix}$$

For a single error, the syndrome is the binary representation of the location of the error.

0.0.23 Circuits for encoding and decoding Hamming(7,4)

At whiteboard, using **shift registers**.

0.0.24 SECDED Hamming codes

Hamming codes can correct 1 error OR can detect 2 errors, but we cannot differentiate the two cases:

Example: * the syndrome $\mathbf{z} = [H] \cdot \mathbf{r}^T = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ can be caused by: * a single error in location 3 (bit i_3) * two errors in location 1 and 2 (bits c_1 , bits c_2)

- if we know it is a single error, we can go ahead and correct it, then use the corrected data
- if we know there are two errors, we should NOT attempt to correct them, because we cannot locate the errors correctly

Unfortunately, it is **not possible to differentiate** between the two cases. **Solution?** Add additional parity bit \rightarrow SECDED Hamming codes

0.0.25 SECDED Hamming codes

- Add an additional parity bit to differentiate the two cases
 - c_0 = sum of all n bits of the codeword
- For (7,4) Hamming codes:

 $\mathbf{c_0} c_1 c_2 i_3 c_4 i_5 i_6 i_7$

• The pairty check matrix is extended by 1 row and 1 column

$$\tilde{H} = \begin{bmatrix} 1 & 1 \\ 0 & \mathbf{H} \end{bmatrix}$$

10

- Known as SECDED Hamming codes
 - Single Error Correction Double Error Detection

0.0.26 Encoding and decoding of SECDED Hamming codes

Encoding

• compute codeword using \tilde{H}

Decoding

ullet Compute syndrome of the received word using $ilde{H}$

$$\tilde{\mathbf{z}} = \begin{bmatrix} z_0 \\ \mathbf{z} \end{bmatrix} = [\tilde{H}] \cdot \mathbf{r}^T$$

- z_0 is an additional bit in the syndrome corresponding to c_0
- z_0 tells us whether the received c_0 matches the paroty of the received word
 - $z_0 = 0$: the additional parity bit matches the parity of the received word
 - $z_0 = 1$: the additional parity bit does not match the parity of the received word

Decide which of the following cases happened

- If no error happened: $z_1 = z_2 = z_3 = 0, z_0 = \forall$
- If 1 error happened: syndrome is non-zero, $z_0 = 1$ (does not match)
- If 2 errors happened: syndrome is non-zero, $z_0 = 0$ (does match, because the two errors cancel each other out)
- If 3 errors happened: same as 1, can't differentiate
- Now can simultaneously differentiate between:
 - 1 error: → perform correction
 - 2 errors: \rightarrow detect, but do not perform correction
- Also, if correction is never attempted, can detect up to 3 errors
 - minimum Hamming distance = 4 (no proof given)
 - don't know if 1 error, 2 errors or 3 errors, so can't try correction

0.0.27 Circuits for encoding and decoding SECDED Hamming codes

At whiteboard. Slight modification of the previous schematic to accommodate the extra parity bit.

0.0.28 Summary until now

- Systematic codes: information bits + parity bits
- Generator matrix: use to generate codeword

$$\mathbf{i} \cdot [G] = \mathbf{c}$$

Parity-check matrix: use to check if a codeword

$$0 = [H] \cdot \mathbf{c}^T$$

• Syndrome:

$$\mathbf{z} = [H] \cdot \mathbf{r}^T$$

- Syndrome-based error detection: syndrome non-zero
- Syndrome-based error correction: lookup table
- Hamming codes: [H] contains all numbers $1...2^r 1$
- SECDED Hamming codes: add an extra parity bit

0.1 Cyclic codes

Definition:

Cyclic codes are a particular class of linear block codes for which *every cyclic shift of a codeword is also a codeword*

- Cyclic shift: cyclic rotation of a sequence of bits (any direction)
- Are a particular class of linear block codes, so all the theory up to now still applies
 - they have a generator matrix, parity check matrix etc.
- But they can be implemented more efficient than general linear block codes (e.g. Hamming)
- Used everywhere under the common name CRC (Cyclic Redundancy Check)
 - Network communications (Ethernet), data storage in Flash memory

0.1.1 Binary polynomials

Every binary sequence a corresponds to a polynomial $\mathbf{a}(\mathbf{x})$ with binary coefficients

$$a_0a_1...a_{n-1} \rightarrow \mathbf{a}(\mathbf{x}) = a_0 \oplus a_1x \oplus ... \oplus a_{n-1}x^{n-1}$$

Example:

$$10010111 \rightarrow 1 \oplus x^3 \oplus x^5 \oplus x^6 \oplus x^7$$

From now on, by "codeword" we also mean the corresponding polynomial.

Can perform all mathematical operations with these polynomials: * addition, multiplication, division etc. (examples)

There are efficient circuits for performing multiplications and divisions.

0.1.2 Generator polynomial

Theorem:

All the codewords of a cyclic code are multiples of a certain polynomial g(x), known as **generator polynomial**.

Properties of generator polynomial g(x):

- The generator polynomial has first and last coefficient equal to 1.
- The generator polynomial is a factor of $X^n \oplus 1$
- The *degree* of g(x) is n k, where:
 - The codeword = polynomial of degree n 1 (n coefficients)

- The information polynomial = polynomial of degree k-1 (k coefficients)

$$(k-1) + (n-k) = n-1$$

• The degree of g(x) is the number of parity bits of the code.

0.1.3 Finding a generator polynomial

Theorem:

If g(x) is a polynomial of degree (n-k) and is a factor of $X^n \oplus 1$, then g(x) generates a (n,k)cyclic code.

Example:

$$1 \oplus x^7 = (1 \oplus x)(1 \oplus x + \oplus x^3)(1 \oplus x^2 \oplus x^3)$$

Each factor generates a code:

- $1 \oplus x$ generates a (7,6) cyclic code

0.1.4 Computing the codewords

Start from information polynomial with *k* bits

$$i(x) = i_0 \oplus i_1 x \oplus \dots \oplus i_{k-1} x^{k-1}$$

Non-systematic codeword generation:

• Codeword = $i(x) \cdot g(x)$

$$c(x) = i(x) \cdot g(x)$$

Systematic codeword generation:

$$c(x) = b(x) \oplus x^{n-k}i(x)$$

where b(x) is the remainder of dividing $x^{n-k}i(x)$ to g(x):

$$x^{n-k}i(x) = a(x)g(x) \oplus b(x)$$

• (Proof: at blackboard)

0.1.5 Proving the cyclic property

We prove that any cyclic shift of a codeword is also a codeword.

Proof: at whiteboard

• Original codeword

$$c_0c_1c_2...c_{n-1} \rightarrow \mathbf{c}(\mathbf{x}) = c_0 \oplus c_1x \oplus ... \oplus c_{n-1}x^{n-1}$$

• Cyclic shift to the right by 1 position

$$c_{n-1}c_0c_1...c_{n-2} \to \mathbf{c}'(\mathbf{x}) = c_{n-1} \oplus c_0x \oplus ... \oplus c_{n-2}x^{n-1}$$

• Note that

$$\mathbf{c}'(\mathbf{x}) = x \cdot \mathbf{c}(\mathbf{x}) \oplus c_{n-1} x^n \oplus c_{n-1}$$
$$= x \cdot \mathbf{c}(\mathbf{x}) \oplus c_{n-1} (x^n \oplus 1)$$

Since $\mathbf{c}(\mathbf{x})$ is a multiple of g(x), so is $x \cdot \mathbf{c}(\mathbf{x})$. Also $(x^n \oplus 1)$ is always a multiple of g(x). It follows that their sum $\mathbf{c}'(\mathbf{x})$ is a also a multiple of g(x), which means it is a codeword.

0.1.6 Cyclic code encoder circuits

- Coding = based on polynomial multiplications and divisions
- Efficient circuits for multiplication / division exist
- Similar circuit exists for systematic codeword generation (draw on blackboard)

0.1.7 Circuits for multiplication of binary polynomials

Circuits for polynomial multiplication

0.1.8 Circuits for division binary polynomials

0.1.9 Error detection with cyclic codes

- Like usual for linear codes: check if received word is codeword or not
- Every codeword is multiple of g(x)
- Check if received word is actually dividing with g(x)
 - Use a circuit for division of polynomials
- If remainder is 0 => it is a codeword, no error
- If remainder is non-0 => error detected!
- Cyclic codes have very good error detection capabilities

Circuits for polynomial division

0.1.10 Error correction capability

Theorem:

Any (n,k) cyclic codes is capable of detecting any error **burst** of length n - k or less.

- A large fraction of longer bursts can also be detected (but not all)
- For non-burst errors (random): more difficult to analyze

0.1.11 Error correction with cyclic codes

- Like usual for linear codes: lookup table based on remainder
- Remainder of division = the effect of the error polynomial
- Create lookup table: for every error word, compute remainder
- Search the table for the remainder of the received word => find error word

0.1.12 Summary of cyclic codes

- Generated using a generator polynomial g(x)
- Non-systematic:

$$c(x) = i(x) \cdot g(x)$$

• Systematic:

$$c(x) = b(x) \oplus X^{n-k}i(x)$$

- b(x) is the remainder of dividing $X^{n-k}i(x)$ to g(x)
- Syndrome = remainder of division r(x) to g(x)
- Error detection: remainder (syndrome) non-zero
- Error correction: lookup table