FIGURE 1

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGCCG $\tt CTAAGCGAGGCCTCCTCCCGCAGATCCGAACGGCCTGGGCGGGTCACCCCGGCTGGGA$ CAAGAAGCCGCCGCCTGCCTGCCCGGGCCCGGGGAGGGGGCTGGGGCCTGGGGCCGGAGGCGG TGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCCGGAG CCGCCGCGCCGTCAGAGCAGGAGCGCTGCGTCCAGGATCTAGGGCCACGACCATCCCAACCC GGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCCCAGCCTCCCGCACCCCCATCGCCGG ${\tt AGCTGCGCCGAGAGCCCCAGGGAGGTGCC} \underline{{\tt ATG}} {\tt CGGAGCGGGTGTGTGGTGCCACGTATGG}$ ATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGCCCCCTCGCCTTCTCGGACGCGGGCC CCACGTGCACTACGGCTGGGGCGACCCCATCCGCCTGCGGCACCTGTACACCTCCGGCCCCC ACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGGCGTCGTGGACTGCGCGCGGGGC CAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGG ${\tt CGTGCACAGCGTGCGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGT}$ ACTCGGAGGAAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGA TCCGAGAAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAA CAGAGGCTTTCTTCCACTCTCATTTCCTGCCCATGCTGCCCATGGTCCCAGAGGAGCCTG AGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATG ${\tt GACCCATTTGGGCTTGTCACCGGACTGGAGGCCGTGAGGAGTCCCAGCTTTGAGAAG} {\color{red}{\bf TAA}CT} {\color{blue}{\bf CT}} {\color{blue}{\bf C$ TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTTAGCTTTAGGAAGAAACATCTAGAA GTTGTACATATTCAGAGTTTTCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGAT CATAACATTGTAAGCCTGTAGCTTGCCCAGCTGCTGCCTGGGCCCCCATTCTGCTCCCTCGA GGTTGCTGGACAAGCTGCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAAC TCACTTCCTTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTC CCCAGGAGCAGCCAGAAGACAGGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTA AAACAGCAGGTAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGG GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC $\tt CTGAGGCCAGTTCTGTCATGGATGCTGTCCTGAGAATAACTTGCTGTCCCGGTGTCACCTGC$ TTCCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT CCCAGGCCCCCACCTTATGTCAACCTGCACTTCTTGTTCAAAAATCAGGAAAAGAAAAGAT TTGAAGACCCCAAGTCTTGTCAATAACTTGCTGTGTGGAAGCAGCGGGGGAAGACCTAGAAC TTTTGTATATTAAAATGGAGTTTGTTTGT

· FIGURE 2

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRI RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE EIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

signal peptide:

amino acids 1-22

N-myristoylation sites:

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site:

amino acids 48-59

HBGF/FGF domain:

amino acids 80-131

FIGURE 3A

FIGURE 3B

Leptin (mg/ml)

1-7

1-7

RGF19 wild type

FIGURE 4B

FIGURE 4A

Water Intake ml/day

WT FGF19

1.5-

0.5

Urine output (ml/day)

FIGURE 4D

WT

FGF19

FIGURE 5

3-

food intake (g/d)

7

infusion day

FIGURE 9

FIGURE 10

Fig. 11

Fig. 13

Fig. 14.

Tg Wt

Light

#

Figure 16

*P < 0.05 vs Wt controls

Figure 17

Time from the first injection (days)

*P < 0.05 vs Vehicle controls with the same cycle on the same day

Figure 18

Figure 19

Figure 20

		S	rhFGF19	
	Vehicle	5.0 µg	2.0 µg	0.5 µg
NPY	1.0 +/- 0.08	0.81 +/- 0.23	0.63 +/-0.20	0.40 +/- 0.08
AgRP	1.0 +/- 0.33	0.26 +/- 0.10	0.57 +/- 0.26	0.29 +/- 0.16
POMC	1.0 +/- 0.27	1.49 +/- 0.42	3.48 +/- 1.5	38.77 +/- 3.32
MC4-R	1.0 +/- 0.16	0.47 +/- 0.09	0.70 +/- 0.10	0.48 +/- 0.08