BTS-VI(R)-04-22-0286 Reg. No.	0.	
-------------------------------	----	--

B. Tech. Degree VI Semester Regular Examination April 2022

CS 19-202-0602 COMPILER CONSTRUCTION

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

(P.T.O)

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Summarize the functionality of each phase involved in compilation process.
- CO2: Develop scanner and parser using lex and yacc tools.
- CO3: Design top down parsers including recursive descent parser and non-recursive predictive parser for CFGs.
- CO4: Design bottom up parsers including shift reduce, operator precedence and LR parsers (SLR, CLR and LALR).
- CO5: Explain Syntax directed translation using S-attributed definition and L-attributed definition.
- CO6: Familiarize specification for a type checker and run time environment.
- CO7: Comprehend different representations of intermediate code.
- CO8: Describe various code optimization techniques to improve the performance of a program and lear code generation techniques.

Bloom's Taxonomy Levels (BL): L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze,

L5 - Evaluate, L6 - Create

PO - Programme Outcome

PART A
(Answer ALL questions)

i.		$(8 \times 3 = 24)$	Marks	$B\Gamma$	CO	PO
	(a)	The scanner fits in between the input interface and the parser. Comment the statement with three valid points.	3	L3	1	1
	(b)	Develop the regular expression for an identifier which starts with an alphabet and may contain alphabets and/or digits. Also develop a Lex program to count the number of identifiers.	3	L4	2	4
	(c)	Distinguish between recursive descent parser and non-recursive predictive parser.	3	L2	3	1
	(d)	With a suitable example briefly explain handle and handle pruning?	3	L1	4	1
	(e)	What do you understand by syntax direct definition?	3	L1	5	1
	(f)	Mention three phases of storage management process.	3	L1	6	1 2
	(g)	Translate the following expression to quadruple and triples	3	L4	7	2
	(0)	a=b*-c+b*-c				
	(h)	Describe any three issues in the design of a code generator.	3	L1	8	1
		PART B				
		$(4\times12=48)$				
II.		Summarize the functionality of each phase involved in compilation process.	12	L1	1	1
		OR				
Ш.		Explain input buffering techniques with neat diagrams.	12	L1	1	1
IV.		Consider the following grammar: $S \rightarrow AA$	12	L3	4	3
		$A \rightarrow aA$				
		$A \rightarrow b$				
		And construct the LALR parsing table.				
		OR				

BTS-VI(R)-04-22-0286

V.		Construct the operator precedence table for the following grammar: $E \rightarrow E + T / T$	12	L3	4	3
		$T \rightarrow T * F / F$				
		$F \rightarrow id$		•		
VI.		Explain the specification of a simple type checker. OR	12	L1	6	1
VII.	(a)	Differentiate the storage allocation strategies - static, stack and heap allocation.	6	L2	6	1
	(b)	With a neat sketch briefly describe the typical subdivision of run time memory.	6	L1	6	1
VIII.		Explain with suitable example the following optimization: (i) Common sub expression elimination (ii) Copy propagation (iii) Dead-code elimination (iv) Constant folding.	12	L1	8	1
		OR				
IX.		Describe three techniques that are used for loop optimization.	12	L1	8	1

Blooms's Taxonomy Levels L1 = 58.82%, L2 = 11.76%, L3 = 17.65%, L4 = 11.76%