Thermodynamics and Statistical Mechanics

3.9.2024

Contents

1	Mol	ecular D	Ovna	mics												3	
	0.1	Ideal G	as		 				 		 					3	

0.1 Ideal Gas

- Point particles that don't fill up space
- Non interacting particles
- Newtonian physics, $m \frac{\mathrm{d}v}{\mathrm{d}t} = F$
- The particles have a Kinetic Energy $T = \frac{1}{2}mv^2$

We have a Box with length ℓ and a particle interacting with the surface A with its v_x velocity.

The time between colissions with the surface is $\Delta t = \frac{2\ell}{v_x}$. We calculate the Pressure with

$$P = \frac{F}{A} = \frac{m\Delta v}{A\Delta t} = \frac{m2v_x^2}{A2\ell} = \frac{mv_x^2}{V} \tag{1}$$

And then

$$PV = mv_x^2 = kT (2)$$

from this we gather

• Equipartition principle: every squared degree of freedom has $\frac{1}{2}kT$ Energy.

And the total Energy for the particle is

$$E = \sum_{i} \frac{1}{2}m \langle v_i^2 \rangle = \frac{3}{2}m \langle v^2 \rangle = \frac{3}{2}kT$$
 (3)

1 Molecular Dynamics

Lennard Jones Potential

$$U(r) = 4\epsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right) \tag{4}$$

For example

- Argon
 - $-\sigma = 0.34 \text{ nm}$
 - $-/k_B = 120 \text{K}$
 - -m = 40u
- Methane
 - $-\sigma = 0.38$
 - $-\epsilon/k_B = 148$ K
 - m = 16u