MATHÉMATIQUES AP : Montrer une égalité

Enoncé:

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 2x^2 + 6x + 9$.

Montrer que pour tout nombre réel x, on a : $f(x) = (x+3)^2 + x^2$

Expliquer pourquoi les deux réponses suivantes sont incorrectes.

Réponse 1 : si on prend x = 1,

- Lorsqu'on remplace dans la première expression, on obtient : $f(1) = 2 \times 1^2 + 6 \times 1 + 9 = 2 + 6 + 9 = 17$
- Lorsqu'on remplace dans la deuxième expression, on obtient $f(1) = (1+3)^2 + 1^2 = 4^2 + 1^2 = 16 + 1 = 17$ On a donc bien $f(x) = (x+3)^2 + x^2$.

Réponse 2:

$$f(x) = (x+3)^2 + x^2$$
$$= x^2 + 6x + 9 + x^2$$
$$= 2x^2 + 6x + 9$$

On a donc bien le résultat demandé.

Démontrer l'égalité de l'énoncé.

Pour montrer une égalité du type A=B, plusieurs méthodes peuvent être employées (tout dépend de l'égalité ...). En voici les quatre principales :

Méthode 1	Méthode 2	Méthode 3	Méthode 4
$A = \dots$	$B = \dots$	$A - B = \dots$	$A = \dots$
=	=	=	=
=B	=A	=0	= C
			$B = \dots$
			=
			=C

Dans chacun des quatre cas, la conclusion est la même : "on en déduit A=B".

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •
• • • • • • • • • • • • • • • • • • • •		

Exercices

Exercice 1:

Démontrer les égalités suivantes :

1.
$$1+3+3^2+3^3=\frac{3^4-1}{2}$$
.

2.
$$2x^2 - 8x + 15 = 2(x-2)^2 + 7$$
.

3.
$$(n+1)^2 - (n+1) = n^2 + n$$
.

4.
$$(x+5)(x-3) = (x+1)^2 - 16$$
.

	 •	
•••••	 •	 •
•••••	 •	 •••••
	 •	

Exercice 2:

Démontrer les égalités suivantes :

1.
$$\frac{5-\sqrt{2}}{23} = \frac{1}{5+\sqrt{2}}$$
.

2.
$$a^2 + ab + b^2 = \left(a + \frac{b}{2}\right)^2 + \frac{3b^2}{4}$$
.

Exercice 3: Soit f la fonction définie sur \mathbb{R} par : $f(x) = (1 - 2x)^2 - 9$. 1. Montrer que $f(x) = 4x^2 - 4x - 8$. 2. Montrer que $f(x) = (4 - 2x)(-2 - 2x)$.
Exercice 4 : Soit f la fonction définie sur \mathbb{R} par : $f(x) = 2x^2 - 4x - 30$.
1. Montrer que $f(x) = (2x+6)(x-5)$. 2. Montrer que $f(x) = (2x+2)(x-3) - 24$.
Exercice 5: Soit f la fonction définie sur \mathbb{R} par : $f(x) = (x-6)(2x+2)$ 1. Montrer que $f(x) = 2x^2 - 10x - 12$. 2. Montrer que $f(x) = 2\left(x - \frac{5}{2}\right)^2 - \frac{49}{2}$.

Exercice 6:

Soit $g(x) = x^2 - 4x - 5$ forme 1

- **1. a.** Montrer que $g(x) = (x-2)^2 9$ **forme 2**
 - **b.** Montrer que g(x) = (x 5)(x + 1) **forme 3**
- **2.** On vient donc de trouver trois écritures différentes de g(x).

En utilisant la "bonne" écriture de g(x) (parmi les trois précédentes), répondre aux questions suivantes :

- **a.** (i) Calculer g(0).
 - (ii) Calculer g(5).
 - (iii) Calculer g(2).
- **b.** (i) Déterminer les antécédents de 0 par g.
 - (ii) Résoudre g(x) = 7.
 - (iii) Résoudre g(x) = -5.
 - (iv) Résoudre g(x) = -4x.
 - (v) Résoudre $g(x) = x^2$.