Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

 (Currently Amended) A compound of formula (I), or a pharmaceutically acceptable salt or prodrug thereof

$$R_1$$
 R_2 R_2

wherein X and X' are independently selected from taken together form $-C(R_s)_2$, O, S, $N(R_s)$, or taken together form $-C(R_s)-C(R_s)$, $-C(R_s)=N$, $N(R_s)$ or N=N:

Y and Y' are independently selected from $C(R_5)_2$, O, S, $N(R_5)$, or taken together form $C(R_5)$ – $C(R_5)$, $C(R_5)$ – $N(R_5)$, $N(R_5)$ or $N(R_5)$ or $N(R_5)$ or $N(R_5)$ and taken together with the carbon atom bearing the phenyl group forms a double bond;

Y' is $-N(R_5)$ -;

wherein when Z is O, S or $N(R_5)$, X' and Y' are $C(R_5)_2$;

when X is O, S or $N(R_s)$, X' is $C(R_s)_2$;

when Y is O, S or $N(R_s)$, Y' is $C(R_s)_2$; or

X or Y together with the carbon atom bearing the phenyl group form a double bond wherein which ever of X or Y forms part of the double bond is selected from $-C(R_s)$ and -N:

 R_1 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, and $(A)_nR_1$, or when X or Y together with the carbon atom bearing the phenyl group form a double bond, R_1 is absent;

R₂ and R₄ are independently selected from hydrogen, C₁₋₃alkyl and (A)_mR₁₂;

R₃ is selected from C₁₋₃alkyl, (A)_mR₁₂, (A)_maryl and (A)_mheterocyclyl;

 R_3 is selected from hydrogen, $C_{1.20}$ alkyl, $C_{2.20}$ alkenyl, $C_{2.20}$ alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, $(A)_nS(O)R_6$, $(A)_nO(O)R_6$, $(A)_$

 R_6 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, OH, OC₁₋₁₀alkyl, OC₂₋₁₀alkenyl, OC₂₋₁₀alkynyl, O(A)_qR₁₁, SH, SC₁₋₁₀alkyl, SC₂₋₁₀alkenyl, SC₂₋₁₀alkynyl, S(A)_qR₁₁, N(R₁₃)₂, [NH-CH(R₁₄)C(O)]_s-OH, [NH-CH(R₁₄)C(O)]_s-OC₁₋₃alkyl, [sugar]_s and (A)_qR₁₁;

 R_7 is selected from hydrogen, $C_{1\cdot 20}$ alkyl, $C_{2\cdot 20}$ alkenyl, $C_{2\cdot 20}$ alkynyl, $(A)_qR_{11}$, C(O)H, $C(O)C_{1\cdot 10}$ alkyl, $C(O)C_{2\cdot 10}$ alkenyl, $C(O)C_{2\cdot 10}$ alkynyl, C(O)-aryl, $C(O)(A)_qR_{11}$, $C(O)_2H$, $C(O)_2C_{1\cdot 10}$ alkyl, $C(O)_2C_{2\cdot 10}$ alkenyl, $C(O)_2C_{2\cdot 10}$ alkynyl, $C(O)_2$ -aryl, $C(O)_2(A)_qR_{11}$, C(S)H, $C(S)C_{1\cdot 10}$ alkyl, $C(S)C_{2\cdot 10}$ alkenyl, $C(S)C_{2\cdot 10}$ alkynyl, C(S)-aryl, $C(S)(A)_0R_{11}$, C(S)OH,

$$\begin{split} &C(S)OC_{1-10}alkyl,\,C(S)OC_{2-10}alkenyl,\,C(S)OC_{2-10}alkynyl,\,C(S)O-aryl,\,C(S)O(A)_qR_{11},\\ &S(O)_iH,\,S(O)_iC_{1-10}alkyl,\,S(O)_iC_{2-10}alkenyl,\,S(O)_iC_{2-10}alkynyl,\,S(O)_{i-aryl},\,S(O)_{i-aryl},\,S(O)_i(A)_qR_{11},\\ &[C(O)CH(R_{14})NH]_s-H,\,[C(O)CH(R_{14})NH]_s-C_{1-10}alkyl,\,[C(O)CH(R_{14})NH]_s-C_{2-10}alkenyl,\\ &[C(O)CH(R_{14})NH]_s-C_{2-10}alkynyl,\,[C(O)CH(R_{14})NH]_s-aryl,\,[C(O)CH(R_{14})NH]_s-(A)_qR_{11}\\ &and\,[sugar]_s; \end{split}$$

each R₈ is independently selected from R₇ and NHC(=NR₁₅)NH₂;

R₉ is selected from hydrogen and C₁₋₆alkyl;

 R_{10} is selected from $C_{1.6}$ alkyl, NH_2 , $NH(C_{1.3}$ alkyl), $N(C_{1.3}$ alkyl)₂, OH, $OC_{1.3}$ alkyl, SH and $SC_{1.3}$ alkyl;

$$\begin{split} &R_{11} \text{ is selected from OH, } OC_{1-6}alkyl, OC_{1-3}alkyl-O-C_{1-3}alkyl, O-aryl, O-heterocyclyl,} \\ &O[C(O)CH(R_{14})NH]_3H, [sugar]_3, SH, SC_{1-6}alkyl, SC_{1-3}alkyl-O-C_{1-3}alkyl, S-aryl,} \\ &S-heterocyclyl, S[C(O)CH(R_{14})NH]_3H, halo, N(R_{15})_2, C(O)R_{16}, CN, C(R_{17})_3, aryl and heterocyclyl; \end{split}$$

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₃, OC(R₁₇)₃ and CN;

each R_{13} is independently selected from hydrogen, $C_{1.6}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl and $(A)_{q}R_{11}$;

R₁₄ is the characterising group of an amino acid;

each R_{13} is independently selected from hydrogen, $C_{1.6}$ alkyl, $C_{1.3}$ alkoxy $C_{1.3}$ alkyl, aryl and heterocyclyl;

 R_{16} is selected from C_{1-3} alkyl, OH, C_{1-3} alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy:

each R₁₇ is independently selected from hydrogen and halogen;

A is optionally substituted methylene wherein when $n \ge 1$, any two adjacent A groups are optionally interrupted by -O-, -S- or $-N(R_{15})$ -;

where n is 0 or an integer selected from 1 to 20:

m is 0 or an integer selected from 1 to 3;

p is an integer selected from 1 to 20;

g is an integer selected from 1 to 10

s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

2. (Currently Amended) A compound according to claim 1 of formula (II), wherein

Y is -CH-; and

X is -CH-; or a pharmaceutically acceptable salt or prodrug thereof

$$R_1$$
 (II)

wherein X and Y are independently selected from O. S. N(Rs) and C(Rs)2-;

Z is - C(R_s)₂- or is a covalent bond between adjacent methylene groups;

 R_{\downarrow} -is-selected from hydrogen, $C_{\downarrow 20}$ alkyl, $C_{\downarrow 20}$ alkenyl, $C_{\downarrow 20}$ alkynyl, $(\Lambda)_n$ C(O) R_{67} $(\Lambda)_n$ C(S) R_{67} $(\Lambda)_n$ S(O) R_{67} $(\Lambda)_n$ S(O) $_2$ R $_{67}$ $(\Lambda)_n$ OR $_{27}$ $(\Lambda)_n$ SR $_{27}$ $(\Lambda)_n$ N(R_8), $(\Lambda)_n$ C(=NR $_0$)R $_{\downarrow 0}$ and $(\Lambda)_n$ R $_{\downarrow 1}$; R₂ and R₄ are independently selected from hydrogen, C₁₋₁alkyl and (A)_mR₁₋₂;

Ra is selected from Chalkyl, (A), Rua, (A), aryl and (A), heterocyclyl;

 R_2 is selected from hydrogen, $C_{4-2\alpha}$ alkyl, $C_{2-2\alpha}$ alkenyl, $C_{2-2\alpha}$ alkynyl, $(A)_nC(O)R_6$; $(A)_nC(S)R_6$; $(A)_nS(O)R_6$; $(A)_nS(O)_2R_6$; $(A)_nOR_7$; $(A)_nSR_7$; $(A)_pN(R_6)$; $(A)_nC(=NR_0)R_{10}$ and $(A)_nR_1$:

 R_0 is selected from hydrogen, C_{+20} alkyl, C_{2-20} alkynyl, OH, OC_{++0} alkyl, OC_{2-10} alkynyl, OH, OC_{++0} alkynyl, $O(A)_q$ R₁₊₇SH, SC_{++0} alkynyl, SC_{2-10} alkenyl, SC_{2-10} alkynyl, $S(A)_q$ R₁₊₇N(R₁₊₃)₂₊[NH CH(R₁₊₄)C(O)]_s OH, [NH CH(R₁₊₄)C(O)]_s OC₁₋₃alkyl, [sugar]_s and $(A)_q$ R₁₊₇

R2-is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkynyl, C_{1-20} alkynyl, C_{1-10} alkyl, C_{1-10} alkenyl, C_{1-10} alkynyl, C_{1-10} alkyl, C_{1-10} alkyl, C_{1-10} alkenyl, C_{1-10} alkynyl, C_{1-10} alkyl, C_{1-10} alkyl, C

each Rs is independently selected from R2 and NHC(=NR15)NH2:

Ro is selected from hydrogen and CL alkyl;

 $R_{H^{\prime}}$ is selected from $C_{I\rightarrow 0}$ likyl, NH_2 , $NH(C_{I\rightarrow 0}$ likyl), $N(C_{I\rightarrow 0}$ likyl)₂, OH, $OC_{I\rightarrow 0}$ likyl, SH and $SC_{I\rightarrow 0}$ likyl:

 $R_{i+} \text{ is selected from OH, } OC_{i+a} \text{alkyl, } OC_{i+3} \text{alkyl, } O \text{ aryl, } O \text{ heteroeyelyl, } O[C(O)CH(R_{i+i})NH]_iH_i[\text{sugar}]_s, SH, SC_{i+a} \text{alkyl, } SC_{i+3} \text{alkyl, } OC_{i+3} \text{alkyl, } S \text{ aryl, } S \text{ heteroeyelyl, } S[C(O)CH(R_{i+i})NH]_sH, \text{ halo, } N(R_{i+5})_2, C(O)R_{i+6}, CN, C(R_{i+7})_3, \text{ aryl- and heteroeyelyl: }$

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₂, OC(R₁₇)₃ and CN;

each R₁₃-is independently-selected from hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl and (A)₆R₁₁;

R₁₄ is the characterising group of an amino acid;

each R_{43} is independently selected from hydrogen, C_{1-6} alkyl, C_{1-3} alkoxy C_{1-3} alkyl, aryl and heterocyclyl;

R₁₆ is selected from C₁₋₃alkyl, OH, C₁₋₃alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

each R₁₇ is independently selected from hydrogen and halogen;

A is optionally substituted methylene wherein when $n \ge 1$, any two adjacent A groups are optionally interrupted by O, S or $N(R_{15})$;

where n is 0 or an integer selected from 1 to 20;

m is 0 or an integer selected from 1 to 3;

p is an integer selected from 1 to 20;

q is an integer selected from 1 to 10

s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

(Currently Amended) A compound according to claim 1 or 2 wherein R₅ is C₁₋₂₀alkyl

Y is O . S or NRs-:

Z forms a covalent bond between adjacent methylene groups:

 $R_{1}\text{-is-selected from }C_{1,20}\text{alkyl, }C_{1,20}\text{alkenyl, }O_{1}\text{-}O_{1,6}\text{alkyl, }O_{1}\text{-}O_{1}\text{-}heteroeyelyl, }O_{1}\text{-}CO_{1}\text{-}Sugar, }O_{1}\text{-}O_{1}\text{-}CO_{1}\text{-}CO_{1}\text{-}CO_{1}\text{-}}O_{1}\text{-}H_{1}, \\(A)_{n}\text{-}OC_{1,20}\text{alkenyl, }(A)_{n}\text{-}OC(O)C_{1,20}\text{alkyl, }(A)_{n}\text{-}OC(O)C_{1,20}\text{alkenyl, }(A)_{n}\text{-}OC(O)\text{-}aryl, }(A)_{n}\text{-}O(C(O)C_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}N(C_{1,20}\text{-}alkyl)_{27}, \\(A)_{n}\text{-}N(C_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}N(C_{1,20}\text{-}alkenyl)_{27}, \\(A)_{n}\text{-}N(C_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}N(C_{1,20}\text{-}alkenyl)_{27}, \\(A)_{n}\text{-}N(C(O)C_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}N(C_{1,20}\text{-}alkenyl)_{27}, \\(A)_{n}\text{-}N(C(O)C_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}SO_{2}\text{-}L_{20}\text{-}alkyl, }(A)_{n}\text{-}SO_{3}\text{-}C_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkenyl, }(A)_{n}\text{-}CO_{1,20}\text{-}alkyl, }(A)_{n}\text{-}A_{1,20}\text{-}alkyl, }(A)_{n}\text{-}A_{1,20}\text{-}alkyl, }(A)_{n}\text{-}A_{1,20}\text{-}alkyl, }(A)_{n}\text{-}A_{1,20}\text{-}alkyl, }(A)_{n}\text{-}A$

R2 is hydrogen, C1 alkyl, OH, SH, NH2, NO2, CF2, halo or CN;

R₃-is-hydrogen, C₄-C₃alkyl, (CH₂)_mNH₂, (CH₂)_mOH, (CH₂)_m·CF₃, (CH₂)_m·SH or a 5 or 6 membered heterocyclic group, wherein m is 0 or an integer from 1 to 3;

R4-is hydrogen, C1-3alkyl, OH, SH, NH2, NO2, CF3, halo or CN;

A is unsubstituted methylene or mono substituted methylene.

4. (Currently Amended) A compound according to any one of claims 1 to 3 elaim 2 wherein

Y is O. S. or N(Rs):

Z forms a covalent bond between adjacent methylene groups;

$$\begin{split} &R_{\downarrow}\text{ is }C_{\downarrow}\cdot C_{20}\text{alkyl}, C_{2}\cdot C_{20}\text{alkenyl}, C_{2}\cdot C_{20}\text{alkynyl}, (A)_{n}C(O)R_{67}\cdot (A)_{n}C(S)R_{67}\cdot (A)_{n}S(O)R_{67}\cdot (A)_{n}S(O)R_{67}\cdot$$

R2 is hydrogen, methyl, OH, OCH3, SH, NH2, NO2, CF3, halo or CN;

 R_3 is C_{1-3} alkyl or $OC(R_{17})_2$, $(CH_2)_mNH_2$, $(CH_2)_mOH$, $(CH_2)_mSH$ or heterocyclyl where m is defined above:

R4 is hydrogen, methyl, OH, OCH1, SH, NH2, NO2, CF1, CF1, halo or CN.

 (Currently Amended) A compound according to elaim 2 claim 1 wherein the compound is 4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1H-pyrazole

X is O or NH:

Y is O or N(R₁₈) where R₁₈ is selected from hydrogen, $C_{+,20}$ alkyl, $C_{+,20}$ alkenyl, $C_{+,20}$ alkenyl, $C_{+,20}$ alkynyl and (CH₂) $_{h}$ R₁₊ where R₁₊ and n are defined above;

Z forms a covalent bond between adjacent methylene groups;

R2 is hydrogen, halomethyl, OH, OCH3, SH, NH2, NO2 or CN;

R₃ is hydrogen, C₁₋₃alkyl, (CH₂)_mNH₂, (CH₂)_mOH or (CH₂)_mCF₃ or heterocyclyl where m is defined above:

R4 is hydrogen, methyl, OH, OCH3, SH, NH2, NO2 or CN.

 (Currently Amended) A compound according to claim 1 wherein the compound is 1-(3-Methylbutyl)-4-(4-methylphenyl)-1H-pyrazole of formula (III)

wherein

X is O or NH;

Y is O or N(R₁₈) where R₁₈ is defined above;

R₃ is hydrogen, NH₂, OH;

R4 is hydrogen, methyl, OCH3, or OH.

- 7-39. (Cancelled)
- (Previously Presented) A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier, diluent or excipient.
- (Original) A pharmaceutical composition according to claim 40 further comprising a glucocorticoid.
- 42-46. (Cancelled)