EXERCSIES 5.3 The Divergence and Integral Tests

Written assignment

Nathan Warner

Computer Science Northern Illinois University November 2, 2023

Contents

3. Use the Divergene Test to determine the whether the series converges or diverges.

$$\sum_{n=1}^{\infty} \left(1 + \frac{9}{n}\right)^n.$$

Given the fact that Euler's number has a definition of the form:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

With a generalization of

$$e^a = \lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n.$$

Using the divergence test for the series $\sum_{n=1}^{\infty} \left(1+\frac{9}{n}\right)^n$, we get the $\lim_{n\to\infty} \left(1+\frac{9}{n}\right)^n$. Which will trivially yield e^9 . However, this can be shown...

$$\lim_{n \to \infty} \left(1 + \frac{9}{n} \right)^n$$

$$= \lim_{n \to \infty} e^{\ln \left(1 + \frac{9}{n} \right)^n}$$

$$= \lim_{n \to \infty} e^{n \ln \left(1 + \frac{9}{n} \right)}.$$

Focusing on $n \ln \left(1 + \frac{9}{n}\right) \dots$

$$\begin{split} &\lim_{n \to \infty} n \ln \left(1 + \frac{9}{n} \right) \quad \text{(Indeterminate } \infty \cdot 0 \text{)} \\ &= \lim_{n \to \infty} \frac{\ln \left(1 + \frac{9}{n} \right)}{n^{-1}} \quad \left(\frac{0}{0} \right) \\ &\stackrel{H}{=} \lim_{n \to \infty} \frac{\frac{1}{1 + \frac{9}{n}} \cdot \left(- \frac{9}{n^2} \right)}{-\frac{1}{n^2}} \\ &= \lim_{n \to \infty} \frac{-\frac{9}{n^2 + 2n}}{-\frac{1}{n^2}} \\ &= \lim_{n \to \infty} \frac{9n^2}{n^2 + 2n} \\ &\lim_{n \to \infty} \frac{9n}{n + 2} \quad \text{(Still indeterminate...} \quad \frac{\infty}{\infty} \text{)} \\ &\stackrel{H}{=} \lim_{n \to \infty} \frac{9}{1} \\ &= 9. \end{split}$$

Thus,

$$\lim_{n \to \infty} \left(1 + \frac{9}{n} \right)^n$$

$$= \lim_{n \to \infty} e^{n \ln \left(1 + \frac{9}{n} \right)}$$

$$= e^9.$$