Si l'espace prévue pour une réponse ne suffit pas, veuillez continuer au verso ou annexer une feuille supplémentaire.

Nom & prénom: .						
-----------------	--	--	--	--	--	--

Classe: Atelier: Calcul scientifique & résolution numérique

Enseignant: A. Mhamdi

Ne rien écrire dans ce tableau.

Question	1	2	3	Total
Barème	11	5	4	20
Note				

- 1. Soit la série de nombre {17 8 12 15 6 11 9 18 16 10 13 19}
 - (a) (1 point) Entrez ces valeurs dans le vecteur x;
 - (b) (2 points) Calculez la longueur *n* de ce vecteur;
 - (c) (2 points) Calculez la somme S de ces éléments;
 - (d) (2 points) Calculez la moyenne $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$;
 - (e) (2 points) Calculez l'écart-type : $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i x_i)}$
 - (f) (2 points) Calculez $d_X = \{x_{i+1} x_i\}$, $\forall i \in \{1, 2, \dots, n-1\}$.

```
>> x = [17 8 12 15 6 11 9 18 16 10 13 19]
>> n = len(x)
>> S = sum(x)
>> movenne = mean(x)
>> ecart_type = std(x)
>> dx = x(2:end)-x(1:end-1)
```

2. (5 points) Résolvez le système linéaire, d'inconnues x, y et z suivant :

$$\begin{cases} 6x + y - 5z = 10 \\ 2x + 2y + 3z = 11 \\ 4x - 9y + 7z = 12 \end{cases}$$

Command Window -

```
_{1} >> A = [6 1 -5; 2 2 3; 4 -9 7]
 >> b = [10; 11; 12]
3 >>
 >> det(A)
 >> inv(A)*b % A`backslash' b
```

3. (4 points) **Intégration numérique :** Résolvez numériquement $\forall t \in [0, 5]$, l'équation différentielle suivante :

$$\frac{dX}{dt} = \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix} X, \text{ avec } X_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Bonus : La trajectoire qui décrit le déplacement d'un écureuil est donnée par une équation paramétrique en coordonnées polaires :

$$r(t) = 20 + 30 (1 - e^{-0.1t})$$

 $\theta(t) = \pi (1 - e^{-0.2t})$

- (a) (2 points (bonus)) Comme indiqué sur la figure ci-dessus, tracez la courbe y=rsin(θ) en fonction de x=rcos(θ) pour : $0 \le t \le 20$ sec.
- (b) (2 points (bonus)) Sur une nouvelle figure, tracez, en fonction de t, la vitesse $v=r\frac{d\theta}{dt}$

```
Command Window

>> t = 0:0.1:20;
>> r = 20+30*(1-exp(-0.1*t));
>> th = pi*(1-exp(-0.2*t));
>> x = r.*cos(th); y = r.*sin(th); plot(x, y)
>> figure; plot(t, r.*0.2*pi*exp(-0.2*t))
```