

Licence de Mathématiques et Informatique 2020-2021

Analyse 3

TD3

1 Exercices d'application

Exercice 1. Trouver un équivalent simple aux suites (u_n) suivantes et donner leur limite :

1.
$$u_n = (n+3\ln n)e^{-(n+1)}$$

2.
$$u_n = \frac{\ln(n^2 + 1)}{n + 1}$$

3.
$$u_n = \frac{\sqrt{n^2 + n + 1}}{\sqrt[3]{n^2 - n + 1}}$$

4.
$$u_n = \sin \frac{1}{\sqrt{n+1}}$$

5.
$$u_n = \ln\left(\sin(\frac{1}{n})\right)$$

6.
$$u_n = 1 - \cos \frac{1}{n}$$

Exercice 2. Soit $\alpha > 0$. On considère la suite (u_n) définie par $u_n = (n^{\alpha} + 1)^{1/\alpha} - n$ pour $n \in \mathbb{N}^*$.

1. Montrer que :
$$u_n = \frac{n^{1-\alpha}}{\alpha} + o(n^{1-\alpha})$$
.

2. Déterminer la nature de la suite (u_n) selon les valeurs du paramètre α .

Exercice 3. Déterminer la limite des suites (u_n) suivantes :

1.
$$u_n = n\sqrt{\ln\left(1 + \frac{1}{n^2 + 1}\right)}$$

2.
$$u_n = \left(1 + \sin \frac{1}{n}\right)^n$$

3.
$$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}.$$

Exercice 4. On s'intéresse dans cet exercice à la suite récurrente donnée par $u_0 > 0$, et pour $n \ge 0$, $u_{n+1} = \frac{1}{2} \arctan(u_n)$.

On rappelle que pour tout $u \ge 0$, $\arctan(u) \le u$ et le développement limité suivant, valable pour $u \to 0$: $\arctan(u) = u - \frac{u^3}{3} + \frac{u^5}{5} + o(u^5)$.

- 1. Donner le signe de (u_n) et étudier sa monotonie.
- **2.** Montrer que (u_n) est convergente, de limite 0.
- **3.** On pose $v_n = 2^n u_n$ pour $n \ge 0$. Donner un équivalent pour $n \to \infty$ de $\ln\left(\frac{v_{n+1}}{v_n}\right)$, exprimé uniquement en fonction de u_n .
- **4.** Montrer que $|u_n| \leq \frac{u_0}{2^n}$ pour $n \geq 0$ et en déduire que la série de terme général $\ln\left(\frac{v_{n+1}}{v_n}\right)$ converge.
- **5.** En déduire que la suite (v_n) est convergente, de limite ℓ strictement positive.
- **6.** En déduire un équivalent (exprimé en fonction de ℓ) de u_n pour $n \to \infty$.

Exercice 5. Soient $(u_n)_n$ et $(v_n)_n$ deux suites strictement positives. On suppose que $u_n \underset{n \to +\infty}{\sim} v_n$ et que $\lim_{n \to +\infty} v_n = l \in \mathbb{R}^+ \cup \{+\infty\}$

- **1.** Montrer que si $l \neq 1$ alors $\ln u_n \underset{n \to +\infty}{\sim} \ln v_n$.
- **2.** Que se passe t-il si l = 1?

Exercice 6. Le but de cet exercice est de montrer que :

$$\sum_{k=1}^{n} k! \underset{n \to +\infty}{\sim} n!$$

1. Montrer que :

$$\sum_{k=1}^{n} \frac{k!}{n!} = 1 + \sum_{k=1}^{n-1} \frac{k!}{n!}$$

- **2.** Nous allons ainsi montrer que $\lim_{n\to+\infty} \sum_{k=1}^{n-1} \frac{k!}{n!} = 0$.
 - **2.1.** Montrer que :

$$\sum_{k=1}^{n-1} \frac{k!}{n!} = \frac{1}{n} + \sum_{k=1}^{n-2} \frac{k!}{n!}$$

2.2. Montrer que :

$$\sum_{k=1}^{n-2} \frac{k!}{n!} \le \sum_{k=1}^{n-1} \frac{1}{n(n-2)}$$

2.3. En déduire que :

$$0 \leqslant \sum_{k=1}^{n-1} \frac{k!}{n!} \leqslant \frac{1}{n} + \frac{n-2}{n(n-1)}$$

2.4. Conclure

Exercice 7. Soient $(u_n)_n$ et $(v_n)_n$ deux suites. Montrer que si $u_n = \mathop{o}_{n \to +\infty}(v_n)$ et si $v_n = \mathop{o}_{n \to +\infty}(u_n)$ alors $u_n = 0$ à partir d'un certain rang.

Exercice 8.

- **1.** Soit (u_n) une suite croissante. On suppose que (u_n) admet une sous-suite majorée. Que pouvez-vous dire de (u_n) ?
- **2.** Soit (u_n) une suite croissante. On suppose que (u_n) admet une sous-suite convergente. Que pouvez-vous dire de (u_n) ?
- **3.** Soit (u_n) une suite réelle non majorée. Montrer qu'il existe une suite extraite de (u_n) tendant vers $+\infty$.

Exercice 9. Donner un exemple de suite (u_n) divergente, telle que $\forall k \in \mathbb{N}^* \setminus \{1\}$ la suite (u_{kn}) converge.

Exercice 10. On souhaite montrer que la suite (u_n) donnée par $u_n = \sin(n)$ est divergente. Posons $v_n = \cos(n)$.

- **1.** Exprimer u_{n+1} puis v_{n+1} en fonction de u_n et v_n .
- **2.** Supposons que (u_n) convergente vers s. En déduire que (v_n) converge vers c.
- 3. Conclure.

Exercice 11.

- 1. Montrer que toute suite extraite d'une suite de Cauchy est aussi une suite de Cauchy.
- **2.** Montrer que si (u_n) est une suite de Cauchy, on peut trouver une sous-suite $(u_{n_k})_{k\geq 1}$ de (u_n) telle que

$$\forall p \ge 1, \ \forall q \ge p, \ |u_{n_p} - u_{n_q}| \le \frac{1}{2^p}$$

3

Exercice 12.

- **1.** Montrer que pour tout $n \ge 1$, l'équation $x \ln x = n$ admet une unique solution $u_n \in [1, +\infty[$.
- **2.** Montrer que $\lim_{n\to+\infty} u_n = +\infty$
- **3.** Montrer que :

$$u_n = n + \ln n + \frac{\ln n}{n} + \underset{n \to +\infty}{o} \left(\frac{\ln n}{n}\right)$$

Exercice 13. Dans tout cet exercice, on considère une fonction $f : \mathbb{R} \to \mathbb{R}$ qui vérifie la relation suivante :

$$\exists \alpha \in \left[0, \frac{1}{2}\right[, \ \forall x, y \in \mathbb{R}, \ |f(x) - f(y)| \le \alpha |f(x) - x| + \alpha |f(y) - y|.$$

Le but de cet exercice est de montrer que f admet un unique point fixe, c'est-à-dire un unique réel l vérifiant f(l) = l.

- 1. Montrer que si ce point fixe existe, il est unique.
- **2.** Dans toute la suite de l'exercice, on considère la suite récurrente définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = f(u_n)$.
 - **2.1.** Montrer que pour tout $n \geq 1$,

où $k = \frac{\alpha}{1-\alpha}$.

$$|u_{n+1} - u_n| \le k |u_n - u_{n-1}|,$$

- **2.2.** En déduire que $|u_{n+1}-u_n| \le k^n |u_1-u_0|$ puis que, pour tout $q \ge p \ge 1$, $|u_q-u_p| \le \frac{k^p-k^q}{1-k} |u_1-u_0|$.
- **2.3.** En déduire que (u_n) est convergente. On note l sa limite.
- **2.4.** Montrer que pour tout $n \geq 0$

$$|f(l) - u_{n+1}| \le \alpha |f(l) - l| + \alpha |u_{n+1} - u_n|.$$

2.5. En déduire que f(l) = l.

2 Exercices de synthèse

Exercice 14. Soit u_n l'unique racine positive de l'équation $x^n + x - 1 = 0$.

Étudier la suite (u_n) .

Exercice 15. Soit la suite réelle $(u_n)_{n\geq 0}$ définie par $u_0>0$ et par la relation de récurrence : $u_{n+1}=u_ne^{-u_n},\ n\geq 0..$

- **1.** Déterminer le signe de u_n pour tout $n \ge 0$.
- **2.** Etudier la monotonie de la suite (u_n) .
- **3.** Montrer que la suite (u_n) converge vers 0 pour $n \to \infty$.
- **4.** Soit $\beta \in \mathbb{R}$ fixé. Donner un équivalent de la suite $v_n = u_{n+1}^{\beta} u_n^{\beta}$ pour $n \to \infty$.
- **5.** Déterminer β de telle sorte que $(v_n)_{n\geq 0}$ admette une limite finie non nulle pour $n\to\infty$.
- **6.** En déduire un équivalent de la suite (u_n) . On rappelle pour cette question la propriété de Cesaro : si une suite (v_n) converge vers $l \in \mathbb{R}$, alors sa moyenne de Cesaro $\frac{v_0+v_1+\ldots+v_{n-1}}{n}$ aussi.

Exercice 16. Soit $x \in]0, +\infty[$, un réel strictement positif. Soit $(r_n)_{n\geq 1}$ une suite de rationnels positifs qui converge vers x. On écrit $r_n = \frac{p_n}{q_n}$ avec $p_n \in \mathbb{N}, q_n \in \mathbb{N}^*$.

- **1.** Montrer que si l'une des suites parmi $(p_n)_{n\geq 1}$ et $(q_n)_{n\geq 1}$ est bornée, alors l'autre l'est aussi.
- **2.** On suppose dans cette sous-partie que l'une des suites $(p_n)_{n\geq 1}$ ou $(q_n)_{n\geq 1}$ est bornée.
 - **2.1.** Montrer que dans ce cas, la suite $((p_n, q_n))_{n\geq 1}$ prend ses valeurs dans un ensemble fini.
 - **2.2.** En déduire qu'il existe une sous-suite de $((p_n, q_n))_{n>1}$ qui est constante.
 - **2.3.** Conclure que $x \in \mathbb{Q}$.
- **3.** Un résultat auxiliaire : soit (a_n) une suite réelle. On souhaite montrer dans cette question le résultat suivant : si pour toute sous-suite $(a_{\varphi(n)})$, on peut extraire une sous-sous-suite $(a_{\varphi(\psi(n))})_{n\geq 1}$ qui tend vers 0, alors la suite (a_n) tend vers 0. On raisonne par l'absurde : la suite (a_n) ne tend pas vers 0.
 - **3.1.** Montrer alors qu'il existe $\varepsilon > 0$ et une extraction φ tels que pour tout $n \ge 1$, $\left| a_{\varphi(n)} \right| > \varepsilon$.
 - **3.2.** Conclure à une contradiction.
- **4.** On suppose dans cette sous-partie que $x \in \mathbb{R} \setminus \mathbb{Q}$.
 - **4.1.** Que pouvez-vous déduire des questions précédentes à propos des suites (p_n) et (q_n) ?
 - **4.2.** Montrer que si une suite est non majorée, alors il existe une sous-suite qui tend vers $+\infty$.
 - **4.3.** Déduire des questions précédentes, que dans ce cas, on a $p_n \xrightarrow[n \to \infty]{} +\infty$ et $q_n \xrightarrow[n \to \infty]{} +\infty$. Indication : on pourra s'intéresser à la suite $a_n = \frac{1}{p_n}$.