Course Reminders

Due Sunday (11:59 PM)

- D4
- Q5
- Project Proposal
- Mid-course survey (optional for EC, link also on Canvas assignment)
- Weekly Project Survey (optional, link also on Canvas assignment and homepage)

Notes:

A3 now available

Inferential Analysis

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science <u>sellis@ucsd.edu</u>

During the second quarter of 2020, almost 2.13 billion comments on YouTube videos were removed due to violation of the platform's community guidelines. - J Clement on

We want to learn something about this...

Sampling

....but we can only *actually* collect data from this

1million comments from 2020

Sample

Air pollution control

?? Lifespan

What is the relationship between air pollution control and lifespan?

Published in final edited form as:

Epidemiology. 2013 January; 24(1): 23-31. doi:10.1097/EDE.0b013e3182770237.

The Effect of Air Pollution Control on Life Expectancy in the United States: An Analysis of 545 US counties for the period 2000 to 2007

Andrew W. Correia.

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 2, 4th Floor, Boston, MA 02115

C. Arden Pope III,

Department of Economics, Brigham Young University, 142 Faculty Office Building, Provo, UT 84602

Douglas W. Dockery,

Departments of Environmental Health and Epidemiology, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 1, 1301B, Boston, MA 02115

Yun Wang.

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 2, 4th Floor, Boston, MA 02115

Majid Ezzati, and

MRC-HPA Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, St Mary's Campus, London W2 1PG

Francesca Dominici

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 2, 4th Floor, Boston, MA 02115, fdominic@hsph.harvard.edu, P: (617) 432-1056; F: (617)-739-1781

A decrease of $10 \mu g/m3$ in the concentration of $\mathrm{PM}_{2\,5}$ was associated with an increase in mean life expectancy of 0.35 years SD= 0.16 years, p = 0.033). This association was stronger in more urban and densely populated counties.

Establishing & Stating Your Null and Alternative Hypotheses Helps Guide Your Analysis

Null Hypothesis:

 H_0 : Air pollution has no effect on lifespan

<u>Alternative Hypothesis</u>:

H_a: Air pollution has an effect on lifespan

Population

Population

In our air pollution question, the <u>population</u> would be every individual in the US

Population

We don't know how much air pollution each individual is exposed to.

Sample

Based on the relationship we see in our sample, we can <u>infer</u> the answer to our question in our population

Population

Inference!

What would you need to consider when sampling air pollution in the US?

A B C
I have some I've I don't ideas thought, understand but I don't the know question

Best guess

So we measure pollution levels in a <u>representative sample</u> of US counties

Population

Sample

All counties with with available matching PM2.5 data for 2000 and 2007 from the EPA's Air Quality System. Includes both metropolitan and non-metro counties

United States Environmental Protection Agency (.gov)
https://www.epa.gov > outdoor-air-quality-data > who-de...

Who decides where monitors get placed? | US EPA

Approaches to Inference

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chi-square test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT MET

i.e. Wilcoxon rank-sum test, Wilcoxon sign-rank test, sign test

Effect size (β_1) can be estimated using the slope of the line

Effect size (β_1) can be estimated using the slope of the line

The *closer* the points are to the regression line, the *less uncertain* we are in our estimate

Assumptions of linear regression

- 1. Linear relationship
- 2. No multicollinearity
- 3. No auto-correlation
- 4. Homoscedasticity

Linear regression assumes no multicollinearity. Multicollinearity occurs when the independent variables (in multiple linear regression) are too highly correlated with each other.

Time Series Plot of Apple Stock Prices

Autocorrelation occurs when the observations are *not* independent of one another (i.e. stock prices)

Does Poverty Percentage affect Teen Birth Rate?

Poverty Percentage

Teen Birth Rate

Null Hypothesis:

 H_0 : Poverty Rate does not affect Teen Birth Rate (β_1 =0)

<u>Alternative Hypothesis</u>:

 H_a : Poverty Rate affects Teen Birth Rate ($\beta_1 \neq 0$)

What is the relationship between Poverty Percentage & Teen Birth Rate?

What's your hypothesis?

	Location [‡]	PovPct [‡]	Brth15to17	Brth18to19	ViolCrime	TeenBrth
1	Alabama	20.1	31.5	88.7	11.2	54.5
2	Alaska	7.1	18.9	73.7	9.1	39.5
3	Arizona	16.1	35.0	102.5	10.4	61.2
4	Arkansas	14.9	31.6	101.7	10.4	59.9
5	California	16.7	22.6	69.1	11.2	41.1
6	Colorado	8.8	26.2	79.1	5.8	47.0
7	Connecticut	9.7	14.1	45.1	4.6	25.8
8	Delaware	10.3	24.7	77.8	3.5	46.3
9	District_of_Columbia	22.0	44.8	101.5	65.0	69.1
10	Florida	16.2	23.2	78.4	7.3	44.5
11	Georgia	12.1	31.4	92.8	9.5	55.7
12	Hawaii	10.3	17.7	66.4	4.7	38.2
13	Idaho	14.5	18.4	69.1	4.1	39.1
14	Illinois	12.4	23.4	70.5	10.3	42.2
15	Indiana	9.6	22.6	78.5	8.0	44.6
16	Iowa	12.2	16.4	55.4	1.8	32.5
17	Kansas	10.8	21.4	74.2	6.2	43.0

EDA: distributions

If there were a stronger effect of Poverty on Birth rate, what would β_1 be?

A B < 2.03 > 2.03

p-value: the probability of getting the observed results (or results more extreme) by chance alone

number of heads

12

0.0 -

Takes into account the effect size (β_1) and the SE

p-value: the probability of getting the observed results (or results more extreme) by chance alone

Confounding

Shoe Size !! Literacy

Shoe Size Literacy

Variable1

Variable2

Confounder

Confounding

Your analysis sees an increase in crime rate whenever popsicle sales increase. What could confound this analysis?

We'll discuss additional approaches of how to account for confounding in your analysis in the next lecture.

Spine Surgery Results

Sample: 400 patients with index vertebral fractures

Vertebroplasty	Conservative care	Relative risk (95% confidence interval)
30/200 (15%)	15/200 (7.5%)	2.0 (1.1–3.6)
	1	Eeklooks like vertebroplasty
		was way worse for patients!
subsequen	t fractures	

But wait...at time of initial fracture...

	Vertebroplasty N = 200	Conservative care N = 200
Age, y, mean ± SD	78.2 ± 4.1	79.0 ± 5.2
Weight, kg, mean ± SD	54.4 ± 2.3	53.9 ± 2.1
Smoking status, No. (%)	110 (55)	16 (8)

Age and weight are similar between groups. **Smoking Status** differs vastly.

So...let's stratify those results real quick

Smoke			No smoke			
Conservative	RR (95% confidence	Vertebroplasty	Conservative	RR (95% confidence		
	interval)			interval)		
3/16 (19%)	1.1 (0.4, 3.3)	7/90 (8%)	12/184(7%)	1.2 (0.5, 2.9)		
		S 12 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Conservative RR (95% confidence Vertebroplasty interval)	Conservative RR (95% confidence vertebroplasty Conservative interval)		

Risk of re-fracture is now similar within group

Confounding

What are possible confounders for our analysis of the effect of poverty on teen birth rate?

A B
I have some Not sure ideas