

First Semester 2018-2019 Instruction Division Course Handout (Part II)

Date: 02/08/2018

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE F213

Course Title : Chemical Engineering Thermodynamics

Instructor-in-Charge : Banasri RoyInstructors (Tutorial) : Ajay Kumar Pani Banasri Roy

Danash Koy

Venkata Vijayan S

1. Course Description

Applications of the combined first and second laws; relations between state properties; chemical equilibria in reacting and non-reacting systems; statistical concepts, and brief exposure to irreversible thermodynamics; extensive problem assignments throughout. [Review of work, heat, reversible and irreversible processes, First Law applications to closed and open systems, Second Law, Entropy, and applications related to power and refrigeration, Heat effects, Availability and Exergy analyses, Equations of state and generalized correlations for PVT behaviour, Maxwell relations and fluid properties estimation; Residual and excess properties, Partial molar quantities; Gibbs-Duhem Equation, Fugacity and Activity Coefficient models, Vapour-Liquid equilibria]

2. Scope & Objective

- Develop ability to analyze heat, energy, and work requirement/transfer for physical and chemical processes
- Determination of equilibrium constants, free energy, and other essential conditions for physical and chemical changes.
- Analyze essential conditions (temperature, pressure, composition, etc.) for the physical and chemical changes.
- Apply thermodynamic principles in estimation/calculation of power input/output, efficiency, etc., of industrial processes used for converting heat in to other form of power (electrical, mechanical, etc.).
- Application of thermodynamic principals for understanding the criterion (ΔG, equilibria constant) of chemical reaction at equilibria, degree of conversion, composition and effect of P, inert gas addition, excess reactants, products on conversion.

3. Recommended Text Book (TB)

T1: Smith, J M, H C Van Ness and M M Abbott, (Adapted by: B I Bhatt), Introduction to Chemical Engineering Thermodynamics (7th ed.), Tata McGraw Hill, special Indian Edition 2010.

Reference Books (RB)

RB1: Rao, Y V C, Chemical Engineering Thermodynamics, Universities Press, 1997.

RB2: Narayanan K V, *A Textbook of Chemical Engineering Thermodynamics*, Prentice Hall of India, 2nd ed., 2013.

RB3: Sandler, Stanley I., *Chemical, Biochemical and Engineering Thermodynamics*, 4th Edition, Wiley (India Pvt. Ltd.: Wiley Student Edition), 2006.

RB4: Cengel, Y A and M A Boles, *Thermodynamics: An Engineering Approach (SI Units)*, 8th Edition, Tata McGraw Hill Education (India) Pvt. Ltd., (5th Reprint, 2016!)

4. Course Plan

The following course plan is tentative. Changes according to the class need may occur

Module:	Topics to be Covered in	Reference	Learning Outcome
Lecture No.	Lecture (L) & Tutorial (T)	Ch./Sec. #	
	Sessions		
M1 :1	L1: Scope and Objectives of	T1: 1.1- 1.9	Understand
Introduction	course, Course structure, work,		1. Scope and objectives, and
	heat, energy, temperature.		structure of course
			2. Basics: work, heat, energy, temperature.
M2: 2 - 3	L2: First law, Energy balance	T1: 2.1-2.9	1. Identify different forms of
First Law of	for closed system, State and		energies,
Thermodyn	state functions, Equilibrium,		2. Understand applications of
amics &	Phase rule, Reversible process,		1 st law
Basic	Const-V and Const-P processes.		3. Use state functions for
Concepts	L3: Enthalpy, Heat capacity,	T1: 2.10-2.12	energy calculations of
	Mass and energy balance for		practical thermodynamic
	open systems.		problems
	T1: Exercise problems on 1 st	T1: Ch1 &	
	law & basics of	Ch2	
	thermodynamics.	Problems	
M3: 4-7	L4: PVT behavior of pure	T1: 3.1-3.2	Calculate/analyze work &
Volumetric	substances, Virial equations.		energy requirement/transfer
Properties	L5: Ideal gas, Applications of	T1: 3.3-3.4	for pure fluids in simple
of Pure	Virial equations.		industrial processes
Fluids	L6: Applications of Virial	T1: 3.4-3.5	
	equations, Cubic equations of		

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus Instruction Division

	state.		
	L7: Generalized correlations	T1: 3.6-3.7	
	for gases and liquids.		
	T2: Exercise problems on	T1: Ch3	
	Volumetric Properties of Pure	Problems	
	Fluids.		
M4: $8 - 9$	L8: Sensible heat effects,	T1: 4.1-4.6	1. Calculate/analyze the
Heat Effects	Latent heat of pure substances		requirement/transfer of heat
	Standard heats of reaction,		energies and related
	formation and combustion,		parameters of fluids
	Temperature dependence of		applicable in simple
	ΔΗ.		chemical processes
	L9: Heat effects of industrial	T1: 4.7	2. Utilize heat effects of
	reactions.	T1 C1 2	reactions for defining operation conditions of
	T3: Exercise problems on	T1: Ch3	industrial processes
3.55 10 10	Heat Effects.	Problems	-
	L10: Statements of second law,	T1: 5.1-5.6	1. Understand applications
Second	Heat engines, Thermodynamic		of 2 nd law, importance of
Law,	temperature scale, Entropy,		idea of entropy
Entropy and Third Law	Entropy change for an ideal gas, Mathematical statement of the		2. Calculate entropy change and different works (ideal,
Illiu Law	second law.		actual, and lost) and related
	L11: Entropy balance for open	T1: 5.7-5.8	properties for the simple
	Systems, calculation of ideal	11. 5.7-5.0	industrial processes.
	work.		musicum processes.
	L12: Lost work, Third law of	T1: 5.9-5.11	
	thermodynamics, Entropy from		
	the microscopic view point.		
	T4-T5: Exercise problems on	T1: Ch3-4	
	Second Law, Entropy and Third	Problems	
	Law.		
M6: 13 – 17	L13: Property relations for	T1: 6.1	1. Estimate/calculate heat and
Thermodyn	homogeneous phases.		work quantities for the
amic	L14: Residual properties and	T1: 6.2-6.3	simple and homogeneous
Properties	Residual properties calculation		fluids in industrial
of Fluids	by equations of state.	TD4 6.0	processes.
	L15: Residual properties	T1: 6.3	2. Estimate/calculate actual
	calculation by equations of		thermodynamic properties
	state.	T1.6466	(pressure, volume, free energy, enthalpy, etc.,) for
	L16: Two-phase systems, Thermodynamic diagrams and	T1: 6.4-6.6	the simple and
	tables.		homogeneous fluids in
	L17: Generalized property	T1: 6.7	industrial processes.
	Livi Generalized property	11. U./	madulai processes.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus Instruction Division

	a amalatiana fan		
	correlations for gases.	T1 01 7 6	_
	T6-T7: Exercise problems on	T1: Ch5-6	
	Thermodynamic Properties of	Problems	
	Fluids.		
M7: 18 - 20	L18: Duct flow of compressible	T1: 7.1	1. Estimate/calculate heat,
Application	fluid.		work, enthalpy, entropy,
s of	L19: Duct flow of compressible	T1: 7.1	free energy etc., for the
Thermodyn	fluid.		flowing fluids in simple
amics to	L20: Turbines, Compression	T1: 7.1-7.2	industrial process structure
Flow	processes.		and equipment.
Processes	T8-T9: Exercise problems on	T1: Ch7	
	Applications of	Problems	This chapter will help
	Thermodynamics to Flow	1100101115	students to understand fluid
	Processes		flow and related processes
	Toccsses		addressed in Fluid
			Mechanics (CHE F212)
			course.
M8 & M9:	Steam power plant, Internal-	Chapters 8	Apply thermodynamic
20+	Combustion engines, Jet	& 9	principles in
Production	engines; Rocket engines	Assignments	estimation/calculation of
of Power	engines, Rocket engines	Assignments	
from Heat	Cornet refrigerator Vaneur		power, efficiency, etc., of
from Heat	Carnot refrigerator, Vapour-		industrial processes used for
D C: 1.	Compression cycle, Choice of		1. Converting heat in to
Refrigeratio	refrigerant, Absorption		other form of power
n &	refrigeration, Heat pump,		(electrical, mechanical, etc.).
Liquefactio	Liquefaction processes		2. Refrigeration &
n			liquefaction
M10: 21 –	L21: Nature of equilibrium,	T1: 10.1-	Apply thermodynamic
24	Phase rule; Duhem's theorem.	10.2	principles in
Introduction	L22: VLE: Qualitative	T1: 10.3-	estimation/calculation of
to	behaviour, Simple models for	10.4	temperature, pressure, phase
Vapour/Liq	VLE.		compositions, of simple
uid	L23: VLE by Modified	T1: 10.3-	VLE equilibrium systems.
Equilibrium	Raoult's law.	10.5	
	L24: VLE from K-value	T1: 10.6	This chapter will help
	correlations.		students to understand mass
	T10-T11: Exercise problems	T1: Ch10	transfer related (distillation,
	on Vapour/Liquid Equilibrium.	Problems	adsorption, extraction,
	1 1 1 1 1 1	-	drying, etc.,) simple
			industrial processes
			addressed in Separation
			-
			· · · · · · · · · · · · · · · · · · ·
			Processes I (CHE F244) and Separation Processes II

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus Instruction Division

			(CHE F313) courses.
			(CHE F313) COUISES.
M11: 25 -	L25: Fundamental property	T1: 11.1-	Apply thermodynamic
28	relation, Chemical potential and	11.3	principles in
Basic	Phase equilibrium, Partial		estimation/calculation of
Concepts of	properties.		enthalpy, entropy, free
Solution	L26-27: Ideal gas mixture	T1: 11.4-	energy, temperature,
Thermodyn	model, Fugacity coefficients of	11.6	pressure, volume,
amics:	pure species, Fugacity		compositions, etc., of simple
Theory	coefficients of Species in		gas mixture and liquid
,	solution.		solutions.
	L28: Ideal gas mixture model,	T1: 11.4-	
	Fugacity coefficients of pure	11.6	
	species, Fugacity coefficients of		
	Species in solution.		
	T12-T13: Exercise problems	T1: Ch11	
	on Basic Concepts of Solution	Problems	
	Thermodynamics: Theory		
M12: 29 –	L29 : Liquid-phase properties	T1: 12.1	Apply thermodynamics of
33	from VLE data.		simple VLE equilibrium
Solution	L30: Liquid-phase properties	T1: 12.1-	systems in
Thermodyn	from VLE data, Activity	12.2	estimation/calculation of
amics:	coefficients from VLE data,		changing free energy,
Application	Models for Excess Gibbs		enthalpy, entropy, volume,
S	energy.		etc., due to mixing
	L31 : Property changes of	T1: 12.3	
	mixing.		
	L32 : Property changes of	T1: 12.3-	
	mixing, Heat effects of mixing	12.4	
	processes.		
	L33: Heat effects of mixing	T1: 12.4	
	processes.		
	T14-T15: Exercise problems	T1: Ch12	
	on Solution Thermodynamics:	Problems	
	Applications.		
M13: 34 –	L34 : The reaction coordinate,	T1: 13.1-	 Apply thermodynamic
40	Application of equilibrium	13.2	principles in
Chemical	criteria to chemical reactions.	m	estimation/calculation of
Reaction	L35: The standard Gibbs-	T1: 13.3-	reaction rate, equilibrium
Equilibria	Energy changes and equilibrium	13.4	conversion
	constant (K), effect of T on K.	FD4 10 7	• Effect of temperature,
	L36: Evaluation of K, Relation	T1: 13.5-	pressure, and phase
	of K to composition.	13.6	

L37-38: Equilibrium	T1: 13.7-	compositions on reaction
conversion for single reactions,	13.9	rate, equilibrium conversion
Phase rule & Duham theorem,		
multireaction equilibrium.		
L39-40 : Fuel cell	T1: 13.10	
T16-T17: Exercise problems	T1: Ch13	
on Solution Thermodynamics:	Problems	
Applications.		

5. Evaluation Scheme

EC	Evaluation Component (EC)	Duration	Weightage	Date/Time	Remarks
No.			(Marks/%)		
1	Mid Semester Test	1.5 hrs	75/25	13/10	OB/CB
				2:00 - 3:30	
				PM	
2	Tutorial Tests (5 out of 7)	-	60/20	-	CB/OB
3	Assignments		30/10	-	OB
4	Class Participation (5 out of 7)	-	30/10		CB/OB
5	Comprehensive Exam	3 hrs	105/35	12/12 FN	CB/OB

CB = Close Book OB = Open Book

Chamber consultation hour will be announced in the class.

- The **notices**, if any, concerning the course will be displayed on the NALANDA only.
- **Make-up** will be granted for **genuine cases only**. Certificate from authenticated doctor, say from the Medical Center, must accompany make-up application (*only prescription or vouchers for medicines will not be sufficient*). Prior permission of IC is compulsory.
- No make-up will be granted for the tutorial, assignments, and class participation tests.

Instructor-in-charge | CHE F213

