Criptografia RSA

Gabriel Alves de Lima

Universidade Federal do Paraná

13 de agosto de 2020

■ Ron Rivest, Adi Shamir e Leonard Adleman;

- Ron Rivest, Adi Shamir e Leonard Adleman;
- Rivest e Shamir, cientistas da computação; e Adleman, matemático.

- Ron Rivest, Adi Shamir e Leonard Adleman;
- Rivest e Shamir, cientistas da computação; e Adleman, matemático.
- Algoritmo amplamente usado;

- Ron Rivest, Adi Shamir e Leonard Adleman;
- Rivest e Shamir, cientistas da computação; e Adleman, matemático.
- Algoritmo amplamente usado;
- Chave pública;

- Ron Rivest, Adi Shamir e Leonard Adleman:
- Rivest e Shamir, cientistas da computação; e Adleman, matemático.
- Algoritmo amplamente usado;
- Chave pública;
- Produto de primos, exemplo p = 457 e q = 523

$$p \cdot q = 457 \cdot 523 = 239011.$$

Chave Pública vs Chave Privada: Cifra de César

Chave Pública vs Chave Privada: Cifra de César

■ "tangerina" ↔ "vcpigtkpc";

Chave Pública vs Chave Privada: Cifra de César

- "tangerina" ↔ "vcpigtkpc";
- Só usa chave privada.

RSA: Funcionamento

- Pré-Codificação
- Codificação
- Decodificação

RSA: Pré-Codificação

Α	В	С	D	E	F	G	Н	ı	J	K
10	11	12	13	14	15	16	17	18	19	20
L	М	N	0	Р	Q	R	S	Т	U	V
21	22	23	24	25	26	27	28	29	30	31
W	Χ	Υ	Z	-	-	-	-	-	-	-
32	33	34	35							

Usamos 99 para espaços.

■ Vamos converter:

Eu amo matemática.

■ Vamos converter:

Eu amo matemática.

	14	30	99	10	22	24	99	22	10	29	14
	Ε	U	_	Α	М	0	-	М	Α	Т	E
•	22	10	29	18	12	10	-	-	-	-	-
	М	Α	Т	ı	C	Α					

■ Vamos converter:

Eu amo matemática.

	14	30	99	10	22	24	99	22	10	29	14
	Ε	U	-	Α	М	0	-	М	Α	T	E
-	22	10	29	18	12	10	-	-	-	-	-
	М	Α	Т	ı	C	Α					

1430991022249922102914221029181210

RSA

■ Escolhemos $n = p \cdot q$, onde $p \neq q$ são primos;

RSA

- Escolhemos $n = p \cdot q$, onde $p \neq q$ são primos;
- Quebramos a mensagem em blocos (cada um menor do que n)

■
$$p = 11$$
 e $q = 13 \Rightarrow n = p \cdot q = 11 \cdot 13 = 143$

$$p = 11 \text{ e } q = 13 \Rightarrow n = p \cdot q = 11 \cdot 13 = 143$$

1430991022249922102914221029181210

$$p = 11 \text{ e } q = 13 \Rightarrow n = p \cdot q = 11 \cdot 13 = 143$$

- **1**430991022249922102914221029181210
- 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10

■ Lembre-se,

1.
$$\phi(n) = \#\{x \in \mathbb{N}, x \le n \mid \mathrm{mdc}(n, x) = 1\};$$

2.
$$\phi(m \cdot n) = \phi(m)\phi(n)$$
 se $mdc(m, n) = 1$;

3.
$$\phi(p) = p - 1$$
, se p é primo.

■ Lembre-se,

1.
$$\phi(n) = \#\{x \in \mathbb{N}, x \le n \mid \mathrm{mdc}(n, x) = 1\};$$

2.
$$\phi(m \cdot n) = \phi(m)\phi(n)$$
 se $mdc(m, n) = 1$;

- 3. $\phi(p) = p 1$, se *p* é primo.
- Usamos n e precisamos de um e, onde

$$\mathrm{mdc}(\phi(n),e)=1$$

■ Lembre-se,

1.
$$\phi(n) = \#\{x \in \mathbb{N}, x \le n \mid \mathrm{mdc}(n, x) = 1\};$$

2.
$$\phi(m \cdot n) = \phi(m)\phi(n)$$
 se $mdc(m, n) = 1$;

3.
$$\phi(p) = p - 1$$
, se *p* é primo.

■ Usamos n e precisamos de um e, onde

$$mdc(\phi(n), e) = 1$$

■ Assim, $\phi(n) = \phi(p)\phi(q) = (p-1)(q-1)$.

- Lembre-se,
 - 1. $\phi(n) = \#\{x \in \mathbb{N}, x \le n \mid \mathrm{mdc}(n, x) = 1\};$
 - 2. $\phi(m \cdot n) = \phi(m)\phi(n)$ se mdc(m, n) = 1;
 - 3. $\phi(p) = p 1$, se *p* é primo.
- Usamos n e precisamos de um e, onde

$$mdc(\phi(n), e) = 1$$

- Assim, $\phi(n) = \phi(p)\phi(q) = (p-1)(q-1)$.
- (n, e) \longrightarrow chave de codificação do sistema RSA.

■ Denote por b um bloco e C(b) a codificação;

- Denote por b um bloco e C(b) a codificação;
- $C(b) \doteq \text{resto da divisão de } b^e \text{ por } n \text{ ou a forma reduzida de } b^e \text{ módulo } n.$

■ Temos

$$\phi(n) = \phi(143) = \phi(11 \cdot 13) = \phi(11) \cdot \phi(13) = 10 \cdot 12 = 120$$

■ Temos

$$\phi(n) = \phi(143) = \phi(11 \cdot 13) = \phi(11) \cdot \phi(13) = 10 \cdot 12 = 120$$

■ Temos que escolher e tal que mdc(e, 120) = 1

■ Temos

$$\phi(n) = \phi(143) = \phi(11 \cdot 13) = \phi(11) \cdot \phi(13) = 10 \cdot 12 = 120$$

- Temos que escolher e tal que mdc(e, 120) = 1
- \blacksquare 120 = 10 · 12 = 2 · 5 · 2 · 6 = 2^3 · 3 · 5

■ Temos

$$\phi(n) = \phi(143) = \phi(11 \cdot 13) = \phi(11) \cdot \phi(13) = 10 \cdot 12 = 120$$

- Temos que escolher e tal que mdc(e, 120) = 1
- \blacksquare 120 = 10 · 12 = 2 · 5 · 2 · 6 = 2^3 · 3 · 5
- Vamos tomar e = 7.

■ Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143; 12⁷

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \; (\bmod \; 143)$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

■ Vamos codificar 102, ou seja, 102⁷ módulo 143; 102⁷

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \; (\bmod \; 143)$$

$$102^7 \equiv (-41)^7$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv (-1)(11 \cdot 143 + 108)^3 \cdot 41$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \; (\bmod \; 143)$$

$$\begin{array}{l} 102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv \\ (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \end{array}$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \; (\bmod \; 143)$$

$$\begin{array}{l} 102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv \\ (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \end{array}$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv 35^3 \cdot 41$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv 35^3 \cdot 41 \equiv 35^2 \cdot 1435$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$\begin{array}{l} 102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv \\ (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv \\ 35^3 \cdot 41 \equiv 35^2 \cdot 1435 \equiv 35^2(143 \cdot 10 + 5) \end{array}$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$\begin{array}{l} 102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv \\ (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv \\ 35^3 \cdot 41 \equiv 35^2 \cdot 1435 \equiv 35^2(143 \cdot 10 + 5) \equiv 35^2 \cdot 5 \end{array}$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv 35^3 \cdot 41 \equiv 35^2 \cdot 1435 \equiv 35^2(143 \cdot 10 + 5) \equiv 35^2 \cdot 5 \equiv 35 \cdot 175$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv 35^3 \cdot 41 \equiv 35^2 \cdot 1435 \equiv 35^2(143 \cdot 10 + 5) \equiv 35^2 \cdot 5 \equiv 35 \cdot 175 \equiv 35 \cdot 32$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \; (\bmod \; 143)$$

$$102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv 35^3 \cdot 41 \equiv 35^2 \cdot 1435 \equiv 35^2(143 \cdot 10 + 5) \equiv 35^2 \cdot 5 \equiv 35 \cdot 175 \equiv 35 \cdot 32 \equiv 1120$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$\begin{array}{l} 102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv \\ (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv \\ 35^3 \cdot 41 \equiv 35^2 \cdot 1435 \equiv 35^2(143 \cdot 10 + 5) \equiv 35^2 \cdot 5 \equiv \\ 35 \cdot 175 \equiv 35 \cdot 32 \equiv 1120 \equiv (143 \cdot 7 + 119) \end{array}$$

- Blocos anteriores: 14 30 99 102 2 24 99 22 102 91 42 2 10 29 18 12 10
- Codificando 12, ou seja, 12⁷ módulo 143;

$$12^7 \equiv 12^6 \cdot 12 \equiv (12^2)^3 \cdot 12 \equiv (144)^3 \cdot 12 \equiv 1^3 \cdot 12 \equiv 12 \pmod{143}$$

$$\begin{array}{l} 102^7 \equiv (-41)^7 \equiv -41^7 \equiv (-1)(41^2)^3 \cdot 41 \equiv (-1)1681^3 \cdot 41 \equiv \\ (-1)(11 \cdot 143 + 108)^3 \cdot 41 \equiv (-1)108^3 \cdot 41 \equiv (-1)(-35)^3 \cdot 41 \equiv \\ 35^3 \cdot 41 \equiv 35^2 \cdot 1435 \equiv 35^2(143 \cdot 10 + 5) \equiv 35^2 \cdot 5 \equiv \\ 35 \cdot 175 \equiv 35 \cdot 32 \equiv 1120 \equiv (143 \cdot 7 + 119) \equiv 119 \pmod{143} \end{array}$$

■ Fazendo o mesmo com os outros blocos

PC	14	30	99	102	2	24	99	22	102
С	53	134	33	119	128	106	33	22	119
PC	91	42	2	10	29	18	12	10	-
C	130	81	128	10	94	138	12	10	

- PC: Pré-codificado e C: codificado.
- 53 134 33 119 128 106 33 22 119 130 81 128 10 94 138 12 10

■ Decodificamos bloco por bloco.

- Decodificamos bloco por bloco.
- Usamos n e um número d, tal que d é o inverso de e mod $\phi(n)$.

- Decodificamos bloco por bloco.
- Usamos n e um número d, tal que d é o inverso de e mod $\phi(n)$.
- $d \cdot e \equiv 1 \bmod \phi(n)$

- Decodificamos bloco por bloco.
- Usamos n e um número d, tal que d é o inverso de e mod $\phi(n)$.
- $d \cdot e \equiv 1 \bmod \phi(n)$
- \blacksquare (n,d) \longrightarrow chave de decodificação.

- Decodificamos bloco por bloco.
- Usamos n e um número d, tal que d é o inverso de e mod $\phi(n)$.
- $d \cdot e \equiv 1 \bmod \phi(n)$
- \blacksquare (n,d) \longrightarrow chave de decodificação.
- Seja a um bloco codificado e D(a) sua decodificação, então
 - $D(a) \doteq \text{resto da divisão de } a^d \text{ por } n$

- Decodificamos bloco por bloco.
- Usamos n e um número d, tal que d é o inverso de e mod $\phi(n)$.
- $d \cdot e \equiv 1 \bmod \phi(n)$
- \blacksquare (n,d) \longrightarrow chave de decodificação.
- Seja a um bloco codificado e D(a) sua decodificação, então

$$D(a) \doteq \text{resto da divisão de } a^d \text{ por } n$$

■ D(a) é a forma reduzida de a^d módulo n.

$$n = 143, e = 7 e \phi(143) = 120$$

- $n = 143, e = 7 e \phi(143) = 120$
- Pelo Algoritmo Euclidiano estendido:

$$120 = 7 \cdot 17 + 1$$
$$1 = 120 + (-17) \cdot 7$$

- $n = 143, e = 7 e \phi(143) = 120$
- Pelo Algoritmo Euclidiano estendido:

$$120 = 7 \cdot 17 + 1$$
$$1 = 120 + (-17) \cdot 7$$

$$d = (-17) + 120 = 103.$$

- $n = 143, e = 7 e \phi(143) = 120$
- Pelo Algoritmo Euclidiano estendido:

$$120 = 7 \cdot 17 + 1$$
$$1 = 120 + (-17) \cdot 7$$

- d = (-17) + 120 = 103.
- Pois:

$$de \equiv 1 \pmod{\phi(n)}$$
 $de - 1 = k\phi(n), k \in \mathbb{Z}$
 $1 = de + (-k)\phi(n)$

■
$$119^d \pmod{n} \equiv 119^{103} \pmod{143} \equiv 102 \pmod{143}$$

Exemplo

■ $119^d \pmod{n} \equiv 119^{103} \pmod{143} \equiv 102 \pmod{143}$

•	PC	14	30	99	102	2	24	99	22	102
	C	53	134	33	119	128	106	33	22	119
	PC	91	42	2	10	29	18	12	10	-
	C	130	81	128	10	94	138	12	10	

Resumo

- 1 Conversão de letras em números;
- **2** Escolha de $n = p \cdot q$, $p \neq q$ primos;
- 3 Mensagem em blocos menores que n;
- **4** Escolha de *e* tal que, $mdc(\phi(n), e) = 1$;
- **5** $(n, e) \longrightarrow$ chave de codificação;
- 6 C(b) é a forma reduzida de b^e mod n;
- **T** Escolha de d tal que, d é inverso de e mod $\phi(n)$;
- $(n, d) \longrightarrow \text{chave de decodificação}$
- 9 D(a) é a forma reduzida de a^d mod n.

■ Queremos D(C(b)) = b

lacksquare Queremos $D\left(\mathit{C}(b)
ight)=b$, ou seja, $(b^e)^d=b^{ed}=b$

- Queremos D(C(b)) = b, ou seja, $(b^e)^d = b^{ed} = b$
- $\bullet b^{ed} \equiv b \pmod{n}$

- Queremos D(C(b)) = b, ou seja, $(b^e)^d = b^{ed} = b$
- $\bullet b^{ed} \equiv b \pmod{n}$
- Observamos que $ed \equiv 1 \pmod{\phi(n)}$ implica em:

$$\begin{aligned} ed &= 1 + k\phi(n), \ k \in \mathbb{Z} \\ ed &= 1 + k(p-1)(q-1) \\ \Longrightarrow \ b^{ed} &\equiv b \cdot b^{ed-1} \equiv b \cdot (b^{p-1})^{k(q-1)} \ (\text{mod } p) \end{aligned}$$

- Queremos D(C(b)) = b, ou seja, $(b^e)^d = b^{ed} = b$
- $b^{ed} \equiv b \pmod{n}$
- Observamos que $ed \equiv 1 \pmod{\phi(n)}$ implica em:

$$\begin{aligned} ed &= 1 + k\phi(n), \ k \in \mathbb{Z} \\ ed &= 1 + k(p-1)(q-1) \\ \Longrightarrow \ b^{ed} \equiv b \cdot b^{ed-1} \equiv b \cdot (b^{p-1})^{k(q-1)} \ (\text{mod } p) \end{aligned}$$

■ Se p não divide b temos $b^{p-1} \equiv 1 \pmod{p}$ por Fermat

- Queremos D(C(b)) = b, ou seja, $(b^e)^d = b^{ed} = b$
- $b^{ed} \equiv b \pmod{n}$
- Observamos que $ed \equiv 1 \pmod{\phi(n)}$ implica em:

$$\begin{aligned} ed &= 1 + k\phi(n), \ k \in \mathbb{Z} \\ ed &= 1 + k(p-1)(q-1) \\ \Longrightarrow \ b^{ed} \equiv b \cdot b^{ed-1} \equiv b \cdot (b^{p-1})^{k(q-1)} \ (\text{mod } p) \end{aligned}$$

- Se p não divide b temos $b^{p-1} \equiv 1 \pmod{p}$ por Fermat
- Se p divide b temos $b \equiv 0 \pmod{p}$, então $b^{ed} \equiv b \pmod{p}$

■ Analogamente, $b^{ed} \equiv b \pmod{q}$;

- Analogamente, $b^{ed} \equiv b \pmod{q}$;
- $b^{ed} b$ é divisível por $p \in q$;

- Analogamente, $b^{ed} \equiv b \pmod{q}$;
- $b^{ed} b$ é divisível por $p \in q$;
- Como mdc(p,q) = 1, segue que $b^{ed} b$ é divisível por $pq \Rightarrow b^{eq} b \equiv 0 \pmod{n}$ e por fim

$$b^{ed} \equiv b \pmod{n}$$
.

■ Para descriptografar é necessário saber (n, d);

- Para descriptografar é necessário saber (n, d);
- $de \equiv 1 \pmod{\phi(n)}$;

- Para descriptografar é necessário saber (n, d);
- $de \equiv 1 \pmod{\phi(n)}$;
- Primos grandes;

- Para descriptografar é necessário saber (n, d);
- $de \equiv 1 \pmod{\phi(n)}$;
- Primos grandes;
- *d* pequeno;

- Para descriptografar é necessário saber (n, d);
- $de \equiv 1 \pmod{\phi(n)}$;
- Primos grandes;
- \blacksquare d pequeno;
- $\blacksquare p, q$ grandes, mas |p q| não;

- Para descriptografar é necessário saber (n, d);
- $de \equiv 1 \pmod{\phi(n)}$;
- Primos grandes;
- *d* pequeno;
- $\blacksquare p, q$ grandes, mas |p q| não;
- Teste de Miller.

 $\blacksquare \ \mathsf{Empresa} \leftrightarrow \mathsf{Banco};$

- $\blacksquare \ \mathsf{Empresa} \leftrightarrow \mathsf{Banco};$
- Quem recebe pode confirmar o remetente;

- Empresa \leftrightarrow Banco;
- Quem recebe pode confirmar o remetente;
- Usa-se e_e , d_e para a empresa e e_b , d_b para o banco;

- Empresa \leftrightarrow Banco;
- Quem recebe pode confirmar o remetente;
- Usa-se e_e , d_e para a empresa e e_b , d_b para o banco;
- Mensagem *m* da empresa;

- Empresa \leftrightarrow Banco;
- Quem recebe pode confirmar o remetente;
- Usa-se e_e , d_e para a empresa e e_b , d_b para o banco;
- Mensagem *m* da empresa;
- $C(m) = m^{e_b}$

- Empresa \leftrightarrow Banco;
- Quem recebe pode confirmar o remetente;
- Usa-se e_e , d_e para a empresa e e_b , d_b para o banco;
- Mensagem *m* da empresa;
- $C(m) = m^{e_b}$
- Empresa: $m^{d_e} \longrightarrow s = (m^{d_e})^{e_b}$

- Empresa \leftrightarrow Banco;
- Quem recebe pode confirmar o remetente;
- Usa-se e_e , d_e para a empresa e e_b , d_b para o banco;
- Mensagem *m* da empresa;
- $C(m) = m^{e_b}$
- Empresa: $m^{d_e} \longrightarrow s = (m^{d_e})^{e_b}$
- Banco: $(s^{d_b})^{e_e}$

- Empresa ↔ Banco;
- Quem recebe pode confirmar o remetente;
- Usa-se e_e , d_e para a empresa e e_b , d_b para o banco;
- Mensagem *m* da empresa;
- $C(m) = m^{e_b}$
- Empresa: $m^{d_e} \longrightarrow s = (m^{d_e})^{e_b}$
- Banco: $(s^{d_b})^{e_e}$

$$\left(\left[\left(m^{d_e}\right)^{e_b}\right]^{d_b}\right)^{e_e}=m^{(e_e\cdot d_e)(e_b\cdot d_b)}=m$$

Exercícios

- Tomando p=11 e q=3, siga os passos descritos no capítulo para codificar o seu nome. Lembre-se de usar a tabela para conversão de letras em números e ignore acentos. Além disso escolha um valor para e conveniente. Após a codificação, decodifique a mensagem e confira o resultado.
- 2 A mensagem 6355 5075 foi codificada pelo método RSA usando a senha n=7597 e e=4947. Além disso, sabe-se que $\phi(n)=7420$. Decodifique a mensagem.

Ajudinha exercício 1

- 1 Conversão de letras em números;
- 2 Escolha de $n = p \cdot q$, $p \neq q$ primos;
- 3 Mensagem em blocos menores que *n*;
- 4 Escolha de e tal que, $mdc(\phi(n), e) = 1;$
- **5** $(n, e) \longrightarrow \text{chave de codificação};$
- 6 C(b) é a forma reduzida de b^e mod n;
- Escolha de d tal que, d é inverso de $e \mod \phi(n)$;
- 8 (n,d) \longrightarrow chave de decodificação
- 9 D(a) é a forma reduzida de a^d mod n.

$$p = 11, q = 3.$$

A=10	B=11	C=12	D = 13
E=14	F=15	G=16	H=17
l=18	J=19	K=20	L=21
M=22	N=23	O=24	P=25
Q=26	R=27	S=28	T=29
U=30	V=31	W=32	X=33
Y=34	Z=35	-	-

Solução do exercício 1

```
VAMOS CODIFICAR: ZECA
  4 35141210
Blocos: 3 5 14 12 10
  · \( \phi(n) = \( \phi(33) = \phi(11) \cdot \phi(3) = 10.2 = 20
            9 \phi(n) = 20 = 2^2.5
  · e=3
 CODIFICAÇÃO:
53 = 25.5 = (-8).5 = -40 = 26
143 = 142.14 = 196.14 = (33.5+31).14
    = 31.14 = (-2)14 = -28 = 5
```

Solução do exercício 1

```
123 = 1728 = 52.33 +12 = 12
103 = 1000 = 30.33 +10 = 10
       Encontrar d:
 Dividimos d(n) por e
          20 = 6 - 3 + 2
           20 = 6.3 + (3-1)
            20 = 7.(3) - 1
              1 = 7 \cdot 3 + (-1) \cdot 20
4 + 4
4 + 9 = 9 = 9 = 9
        D d=7
  5^{7} = (5^{2})^{3} \cdot 5 = (-8)^{3} \cdot 5
= (-8)^{2} \cdot (-40) = 64 \cdot (-40)
         = (-2). (-7) = 14
```

Referências

- [1] COUTINHO, S. C. **Números Inteiros e Criptografia RSA**. Rio de Janeiro, IMPA, 2014.
- [2] COMPARITECH. What is RSA encryption and how does it work?.
- [3] MARINHO, T. Criptografia Assimétrica RSA, 2017.

Muito Obrigado!