

# Assignment - 3

Nueral Networks

Prateek Mishra (2020EE10527) Shubh Goel (2020EE10672) Bharat Kumar (2020EE10587)

 ${\rm ELL~409}$  Date of Submission - 13th November, 2022

# Contents

| 1 | Network Architecture                         | 3  |
|---|----------------------------------------------|----|
| 2 | Optimum Initial Learning Rate                | 3  |
| 3 | Optimum Learning Rate Schedule               | 5  |
| 4 | Effect of Dropout in Network Architecture    | 6  |
| 5 | Effect of L1 and L2 Regularization           | 6  |
|   | 5.1 L1 Regularization                        | 7  |
|   | 5.2 L2 Regularization                        | 8  |
| 6 | Optimum Topology of the Network Architecture | 10 |
| 7 | tanh Activation Function                     | 11 |
| 8 | Optimum Momentum Parameter                   | 11 |
| 9 | Most Optimal Neural Network                  | 13 |

#### 1 Network Architecture

- The network architecture opted for training neural network was: '3 Hidden Layers' with '32 neurons' each and a 'output layer' with 'single neuron'.
- The Activation Function used for hidden layers was 'ReLu' and 'Sigmoid' for output layer.
- Initial Learning Rate Chosen = 1
- The weight matrix is initialised using the default initializer: 'glorot\_uniform'
- Stopping Criterion: 'val\_acc' with *patience* = 25, i.e., the training stops if validation accuracy doesn't improve for 25 consecutive epochs.
- momentum = 0.5
- Learning Rate Update Schedule = Exponential Decay with  $decay \ rate = 0.01$ .

#### 2 Optimum Initial Learning Rate

| Initial Learning Rate | Validation Accuracy |
|-----------------------|---------------------|
| 1                     | 47.49               |
| 0.1                   | 87.21               |
| 0.01                  | 88.58               |
| 0.001                 | 80.37               |
| 0.0001                | 52.51               |

• For learning rate update schedule: exponential decay with  $decay \ rate = 0.01$ , the **optimum value** of initial learning rate = 0.01.



Figure 1: Plot of Model Accuracy on training and validation set with each epoch



Figure 2: Plot of Model Loss on training and validation set with each epoch

#### 3 Optimum Learning Rate Schedule

We will use these two following learning rate update schedule for our analysis:

- Exponential Decay :  $lr_new = lr * exp {- decay_rate}$
- Time based decay :  $lr_new = lr / (1 + decay_rate * epoch)$

| Learning Rate Schedule | Decay Rate | Validation Accuracy |
|------------------------|------------|---------------------|
| Exponential            | 0.01       | 88.58               |
| Exponential            | 0.005      | 88.58               |
| Exponential            | 0.1        | 84.93               |
| Time based             | 0.01       | 80.37               |
| Time based             | 0.001      | 87.21               |
| Time based             | 0.0005     | 88.13               |

• The **optimum** learning rate update scheduler : Exponential Decay with decay\_rate = 0.005.



Figure 3: Plot of Model Accuracy on training and validation set with each epoch



Figure 4: Plot of Model Loss on training and validation set with each epoch

### 4 Effect of Dropout in Network Architecture

- Dropout Layer was added after the 2nd layer.
- It did not improve the accuracy.

| Dropout Rate | Validation Accuracy |
|--------------|---------------------|
| 0.5          | 88.13               |
| 0.4          | 86.76               |

#### 5 Effect of L1 and L2 Regularization

• Regularization is used to prevent over-fitting and thus improve model accuracy on unseen data.

#### 5.1 L1 Regularization

| Lambda $(\lambda)$ | Validation Accuracy |
|--------------------|---------------------|
| 0.0001             | 89.04               |
| 0.001              | 89.50               |
| 0.01               | 89.50               |
| 0.1                | 47.49               |
| 1                  | 47.49               |

• We do not observe any improvement in accuracy using L1 regularization.



Figure 5: Plot of Model Accuracy on training and validation set with each epoch



Figure 6: Plot of Model Loss on training and validation set with each epoch

#### 5.2 L2 Regularization

| Lambda $(\lambda)$ | Validation Accuracy |
|--------------------|---------------------|
| 0.0001             | 89.04               |
| 0.001              | 90.87               |
| 0.01               | 90.87               |
| 0.1                | 51.14               |
| 1                  | 51.14               |

• We observe that the model's performance on validation and training set increases on using L2 regularization with  $\lambda=0.01$ .



Figure 7: Plot of Model Accuracy with each epoch for  $\lambda = 0.01$ 



Figure 8: Plot of Model Loss with each epoch for  $\lambda = 0.01$ 

# 6 Optimum Topology of the Network Architecture

| Network Topology | Validation Accuracy |
|------------------|---------------------|
| 32               | 88.58               |
| 32,32            | 90.41               |
| 32,32,32         | 90.41               |
| 32,32,32,32      | 91.31               |
| 16,32,32,16      | 91.78               |

 $\bullet$  We see that we get the best accuracy of 91.78 % using 4 Hidden Layers with 16, 32, 32, 16 neurons.



Figure 9: Plot of Model Accuracy with each epoch for topology = 16,32,32,16



Figure 10: Plot of Model Loss with each epoch for topology = 16,32,32,16

#### 7 tanh Activation Function

- Using tanh activation function instead of ReLu, we obtained an accuracy of 87.21 % on validation set.
- Hence, accuracy doesn't improve. We'll use 'ReLu' Activation Function only for our optimal model.

# 8 Optimum Momentum Parameter

| Momentum Parameter | Validation Accuracy |
|--------------------|---------------------|
| 0.5                | 91.78               |
| 0.6                | 91.32               |
| 0.7                | 90.87               |
| 0.8                | 90.87               |
| 0.9                | 90.87               |

• We observe that we get highest accuracy of 91.78 % on using momentum = 0.5.



Figure 11: Plot of Model Accuracy with each epoch for momentum = 0.5



Figure 12: Plot of Model Loss with each epoch for momentum = 0.5

#### 9 Most Optimal Neural Network

- Parameters for our most optimal model :
  - Network Topology: 4 Hidden Layers with 16, 32, 32, 16 neurons each and output layer with 1 neuron.
  - Activation function = ReLu for hidden layers and 'Sigmoid' activation function for output layer.
  - Initial learning rate = 0.01
  - Learning rate update schedule: Exponential decay with  $decay\_rate = 0.005$
  - L2 regularization is used with  $\lambda = 0.01$
  - Momentum parameter = 0.5
- Highest Test Accuracy achieved = 91.32 %



Figure 13: Confusion Matrix for our most optimal neural network architecture