

Course	Methods_Test 2_ Year12
Student name:	Teacher name:
Date: 30 March	
Task type:	Response
Time allowed for th	is task:45 mins
Number of question	ns:9
Materials required:	Calculator with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	46 marks
Task weighting:	10%
Formula sheet prov	ided: Yes

Note: All part questions worth more than 2 marks require working to obtain full marks.

$$(3.2.1-3.2.3)$$

(3 & 3 = 6 marks)

Determine y in terms of x for the following.

a)
$$\frac{dy}{dx} = 5x^3 - \frac{2}{x^2}$$
 given that $y = 10$ when $x = 2$.

Solution

$$\frac{dy}{dx} = 5x^3 - \frac{2}{x^2} = 5x^3 - 2x^{-2}$$

$$y = \frac{5x^4}{4} + 2x^{-1} + c$$

$$10 = \frac{5(16)}{4} + 1 + c$$

$$c = -11$$

$$10 = \frac{5(16)}{4} + 1 + c$$

$$c = -11$$

$$y = \frac{5x^4}{4} + 2x^{-1} - 11$$

Specific behaviours

- ✓ uses negative indices
- ✓ anti-differentiates
- ✓ solves for constant

$$\frac{dy}{dx} = \frac{50x^2}{(5 - x^3)^5}$$
 given that $y = 100$ when $x = 2$.

Solution

$$\frac{dy}{dx} = \frac{50x^2}{(5-x^3)^5}$$

$$y = A(5-x^3)^{-4} + c$$

$$y' = -4A(5-x^3)^{-5}(-3x^2)$$

$$50 = 12A$$

$$A = \frac{25}{6}$$

$$100 = \frac{25}{6}(-3)^{-4} + c$$

$$c = \frac{48575}{486} \approx 99.948...$$

$$y = \frac{25}{6}(5-x^3)^{-4} + \frac{48575}{486}$$

Specific behaviours

- ✓ recognises that numerator is proportional to derivative of brackets
- ✓ solves for multiplier constant
- ✓ solves for added constant, accept approx

Q2 (3.2.21-3.2.22) (4 marks)

A particle travels along a straight line such that its acceleration at time t seconds is equal to $(5t-1)m/s^2$. When $^t=1$ the displacement is 22 metres and when $^t=3$

The displacement is -10 metres. Determine the displacement when t=6.

Solution
$$a = (5t - 1)$$

$$v = \frac{5t^2}{2} - t + c$$

$$x = \frac{5t^3}{6} - \frac{t^2}{2} + ct + k$$

- ✓ determines velocity function
- ✓ determines displacement function with two constants
- ✓ solves for both constants
- ✓ determines displacement at t=6

(2. 2, 1 & 2 = 7 marks)

Consider the function f(x) which is graphed for $2 \le x \le 6$.

a) By using rectangles of width one unit, as shown above, determine a lower estimate for the area under f(x) for $2 \le x \le 6$.

Solution

 $8 \times 1 + 10 \times 1 + 14 \times 1 + 20 \times 1 = 52$ accept (50 to 54)

Specific behaviours

- \checkmark uses y intercepts from the left of each rectangle
- ✓ determines sum of areas

b) By using rectangles of width one unit, as shown above, determine an upper estimate for the area under f(x) for $2 \le x \le 6$.

Solution

 $10 \times 1 + 14 \times 1 + 20 \times 1 + 28 \times 1 = 72$ accept (70 to 75)

- ✓ uses y intercepts from the right of each rectangle
- ✓ determines sum of areas

c) Determine a better approximation for the area under f(x) for $2 \le x \le 6$.

Solution		
$\frac{52+72}{}=62$		
2 -02		
	Specific behaviours	
✓ determines average		

d) Describe two different methods to improve the approximation for the area under f(x) for $2 \le x \le 6$

Solution

Use rectangles of smaller widths

Use calculus with an accurate rule for function

Model parabolas for the top of each rectangle and then integrate

(Note: Trapezium method is the same as averaging upper & lower rectangles therefore do NOT accept)

- ✓ at least one appropriate method
- ✓ at least two appropriate methods

Q4
$$(3.2.18-3.2.17)$$
 $(3 \& 2 = 5 \text{ marks})$

An oil tank is drained of oil such that if V^{kL} of oil in the tank t seconds after draining commences is

$$\frac{dV}{dt} = 230 - \frac{120}{(t+3)^4}$$

described by

The initially full tank is emptied in 2 mins.

a) How much oil was in the full tank? (nearest kL)

b) How much oil was drained from the tank in the fifth second, nearest kL.

Consider a function f(x) which is only defined for $-5 \le x \le 7$ with f(-5)=0=f(0)=f(7)

$$f(-4)=8$$

$$f(-1)=11$$

$$\int_{5}^{0} f(x) dx = 22$$

$$\int_{c}^{7} f(x)dx = -43$$

It is known that $f(x) \ge 0$ for $-5 \le x \le 0$ and $f(x) \le 0$ for $0 < x \le 7$. Determine.

a)
$$\int_4^1 f'(x) dx$$

Solution
$$\int_{4}^{1} f'(x) dx = [f(x)]_{-4}^{-1} = f(-1) - f(-4)$$
=11 - 8 = 3

Specific behaviours

- ✓ uses fundamental theorem
- ✓ evaluates integral

b)
$$\int_{0}^{7} f(x) dx$$

$$\int_{5}^{7} f(x)dx = \int_{5}^{9} f(x)dx + \int_{5}^{7} f(x)dx$$

$$-43 = 22 + \int_{5}^{7} f(x)dx$$

$$\int_{6}^{7} f(x)dx = -65$$

Specific behaviours

- ✓ uses linearity principle
- ✓ solves for required integral
- c) The area between y = f(x) and the x axes for $-5 \le x \le 7$.

Solution

✓ determines area

Q6 (3.2.20) (4 marks)

Determine to two decimal places the area between the curves $y = x^3 + x + 1$ and y = 4x. (Hint- Sketch the curves first on your classpad)

Area = 5.01 sq units

Specific behaviours

- ✓ determines points of intersection
- ✓ uses integral with difference between functions OR sets up integral from
- ✓ uses integrals with absolute values
- ✓ determines area no need to round to 2 dp

Q7 (3.2.16)
Consider
$$y = \int_{0}^{t} t^{3} + 3(1 + 4e^{2t})^{5} dt$$

Determine.
 dy

dx

a)

(2 & 2 = 4 marks)

$$\frac{d}{dx} \int_{0}^{x} t^{3} + 3(1 + 4e^{2t})^{5} dt = x^{3} + 3(1 + 4e^{2x})^{5}$$

- ✓ uses fundamental theorem
- \checkmark determines derivative in terms of x

b)
$$\frac{d^2y}{dx^2}$$

Solution
$$3x^2 + 15(1 + 4e^{2x})^4 8e^{2x}$$
Specific behaviours

✓ uses chain rule correctly
✓ determines derivative

Q8 (3.1.4) (4 marks)

The instantaneous rate of decline in the number of kangaroos on a particular park is 30% of the population per year. If there were 12 050 kangaroos on the park 3 years ago, how many will be on the park in four years from now

(a) Determine $\frac{d}{dx} \left(x(x+1)^{\frac{1}{3}} \right)$

Solution

$$\frac{d}{dx}\left(x(x+1)^{\frac{1}{3}}\right) = x\frac{1}{3}(x+1)^{-\frac{2}{3}} + (x+1)^{\frac{1}{3}}$$

Specific behaviours

- ✓ uses product rule correctly
- ✓ determines derivative

$$\int \frac{x}{3(x+1)^{\frac{2}{3}}} dx$$

(b) Using your result from part (a) and without using your classpad determine

Solution

$$\int \frac{d}{dx} \left(x(x+1)^{\frac{1}{3}} \right) dx = \int x \frac{1}{3} (x+1)^{\frac{2}{3}} dx + \int (x+1)^{\frac{1}{3}} dx$$
$$\int \frac{x}{3(x+1)^{\frac{2}{3}}} dx = x(x+1)^{\frac{1}{3}} - \frac{3}{4} (x+1)^{\frac{4}{3}} + c$$

- ✓ Uses linearity of antidifferentiation
- ✓ uses Fundamental Theorem of Calculus
- ✓ integrates (x+1)1/3 term correctly
- ✓ Determines integral with a constant

Mathematics Department

Perth Modern