ELO 313 - Certamen 1

Procesamiento Digital de Señales con Aplicaciónes Primer Semestre 2012

Profesor: Matías Zañartu, Ph.D. Fecha: 24 de Mayo de 2012

Nombre: PAUTA DE CONTRECCION

ESPERE INSTRUCCIONES ANTES DE COMENZAR

Problema 1. (30 puntos)

Usando una combinación de downsamplers, upsamplers, y filtros digitales, diseñe un sistema digital que permita incrementar la frecuencia de muestreo en un factor de 1,25. La entrada de este sistema será x[n] y la salida y[n]. Note que la amplitud de la señal digital debe ser preservada en esta conversión.

- a. Dibuje un diagrama en bloque de su sistema. Asegúrese de especificar las frecuencias de corte de su(s) filtro(s) y los factores de escalamiento correspondientes.
- b. Suponga que la entrada x[n] al sistema tiene una DTFT con una magnitud $|X(\omega)|$ como se muestra abajo. Grafique la magnitud de la DTFT de la señal en cada punto de su sistema (es decir después de cada operador o filtro), incluída la salida $|Y(\omega)|$, en el rango de $0 < \omega < 2\pi$, mostrando la mayor cantidad posible de detalles.

c. Suponga que las señales x[n] y y[n] pasan ahora por un filtro cuya respuesta a impulso está dada por

$$h[n] = (-1)^n \left\{ \frac{\sin(\frac{\pi}{5}n)}{\pi n} \right\},\,$$

encuentre la magnitud de la DTFT de la salida de ambas señales después de este filtro y grafiquelas en el rango de $0 < \omega < 2\pi$, mostrando la mayor cantidad posible de detalles.

Problema 2. (20 puntos)

Considere un sistema LTI en tiempo discreto dado por la siguiente ecuación de diferencia:

$$y[n] = y[n-2] + x[n] - x[n-4]$$

- a. Encuentre la función de transferencia H(z) del sistema y dibuje el diagrama de polos y ceros.
- b. ¿Es posible escribir este sistema como un sistema no-recursivo? De ser posible, obtenga una ecuación de diferencia no-recursiva y su respuesta a impulso.
- c. Obtenga la DTFT de la función de transferencia y grafique su magnitud $|H(\omega)|$, en el rango de $-\pi < \omega < \pi$, mostrando la mayor cantidad posible de detalles. En particular, muestre los puntos donde la magnitud es cero. ¿Qué tipo de filtrado genera este sistema?

Problema 3. (15 puntos)

Diseñe un filtro que amplifique en 10x una señal sinusoidal de 100 Hz que fue muestreada a 8000 Hz mediante un sistema de dos polos conjugados. Obtenga la función de transferencia H(z), la DTFT $H(\omega)$ y escriba la ecuación de diferencia del filtro. ¿En qué afecta la elección del radio donde se ubican los polos en este caso?

Problema 4. (35 puntos)

Considere un sistema LTI en tiempo discreto cuya respuesta a impulso es

$$h[n] = (j)^n u[n]$$

- a. ¿Es el sistema BIBO estable? Justifique matemáticamente su respuesta. De no serlo, encuentre además un ejemplo de una señal acotada que produzca una salida no acotada
- b. Encuentre la función de transferencia H(z) del sistema y dibuje el diagrama de polos y ceros
- c. Encuentre la ecuación de diferencia del sistema LTI descrito por la respuesta a impulso h[n]
- d. Calcule la DTFT de h[n] y grafique su magnitud $|H(\omega)|$, en el rango de $-\pi < \omega < \pi$, mostrando la mayor cantidad posible de detalles
- e. Considere una señal de entrada al sistema dada por una suma de tonos puros de modo que:

$$x[n] = 1 + (-j)^n + (-1)^n$$

Obtenga una expresión analítica para la salida del sistema y[n] y para su su DTFT, $Y(\omega)$.

OBS: Note que $(j)^n$, $(-j)^n$, $(1)^n$, $y(-1)^n$ son tonos puros.

6T S

c)

2. a)

$$y(n) = y(n-2) + x(n) - x(n-4)$$

$$y(2) = y(2) z^{2} + x(1) - x(2) z^{-4}$$

$$y(2) = y(2) z^{2} + x(1) - x(2) z^{-4}$$

$$y(3) = y(2) z^{2} + x(1) - x(2) z^{-4}$$

$$y(3) = y(2) z^{2} + x(1) - x(2) z^{-4}$$

$$y(3) = y(2) z^{2} + x(3) - x(3) z^{-4}$$

$$\Rightarrow H(7) = \frac{2^{4}-1}{(2^{2}-1)2^{2}}$$

y veros

b) Si, es posible. Los polos se concelar, de modo pue:

$$H(z) = \frac{1 - z^{-2}}{1 - z^{-2}} = \frac{(1 - z^{-2})(1 + z^{-2})}{(1 - z^{-2})}$$

$$= 1 + z^{-2}$$

$$y(x) = x(x) + x(x)^{2}$$

$$y(x) = x(x) + x(x-2)$$

$$y(x) = x(x) + x(x-2)$$

$$H(\omega) = 1 + e$$

$$dado pue tenemos cores simetricon en $\frac{T}{z} y - \frac{T}{z}$$$

$$H(2) = \frac{(2-re^{i\phi})(2-re^{i\phi})}{(2-re^{i\phi})(2-re^{i\phi})}$$

$$= \frac{(2-re^{i\phi})(2-re^{i\phi})}{(2-re^{i\phi})(2-re^{i\phi})}$$

Ganancia deseada

$$= \frac{6z^2}{z^2 - (zr(\omega \phi)z + r^2)} = \frac{6}{1 - (zr(\omega \phi)z^{-1} + r^2\bar{z}^2)}$$

donole
$$\phi = \frac{F}{F_3} \cdot 2\pi = \frac{100}{8000} \cdot 2\pi = \frac{\pi}{40}$$

DIFT
$$H(\omega) = \frac{G}{1 - (zr (\omega s \phi)e^{j\omega} + r^2 e^{j2\omega})} = \frac{Ge^{j\omega_2} re^{j\phi}}{(e^{j\omega_2} re^{j\phi})(e^{j\omega_2} re^{j\phi})}$$

Se pide pie:
$$|H(w=\phi)| = 10$$
 entences

$$|H(\omega=\phi)| = 10 = \frac{|G|^{2} |G|^{2}}{|G|^{2} |G|^{2} |G|^{2} |G|^{2} |G|^{2}} = \frac{|G|^{2} |G|^{2} |G|^{2}}{|G|^{2} |G|^{2} |G|$$

$$=) \qquad G = 10 \cdot (1-r) \sqrt{1-2r \cos 2\phi + r^2}$$

supomer r=0.5 (el valor do ratecha el ancha da banda)

Supomer
$$1 - 0.3$$

$$y(n) = (\cos \frac{\pi}{40})y(n-1) - \frac{1}{4}y(n-2) + (5\sqrt{1-\cos \frac{\pi}{40}} + \frac{1}{4}) \times (n)$$

$$H(\omega) = \frac{(5\sqrt{1-\cos \frac{\pi}{40}} + \frac{1}{4}e^{-j2\omega})}{1 - \cos \frac{\pi}{40}e^{-j\omega} + \frac{1}{4}e^{-j2\omega}}$$

a) Si Frese estable
$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$
 pero

$$\sum_{n=0}^{\infty} |h(n)| = \sum_{n=0}^{\infty} |j^n| = \sum_{n=0}^{\infty} |e^{j\underline{T}n}| = \infty \quad \text{No } \in S \in \mathbb{R} \text{TAB}(\widehat{E}).$$

$$h(5) = \sum_{n=-\infty}^{\infty} h(n) \frac{1}{2^n} =$$

$$= \sum_{N=0}^{\infty} j^{N} z^{-N} = \frac{1}{1 - j z^{-1}} = \frac{z}{z - j} \quad \text{on } z = j$$

(a) court) una señal xose es a cotada pero si salida no lo sera, ya pue se auplitica

infinitamente

c)
$$s H(z) = \frac{z}{z-j} = \frac{1}{1-jz^{-1}}$$

$$H(\omega) = \frac{e^{j\omega}}{e^{j\omega} - j} = \frac{1}{1 - e^{j\frac{\omega}{2}} \cdot e^{j\omega}}$$

$$H(\omega = b) = \frac{1}{1-i}$$

e)
$$\chi(n) = e + e + e$$

$$\Rightarrow \quad \times(\omega) = 2\pi \delta(\omega) + 2\pi \delta(\omega + \frac{\pi}{2}) + 2\pi \delta(\omega - \pi)$$

ente. (IT, T)

$$=) \quad \psi(\omega) = 2\pi H(\omega = 0) \quad \delta(\omega) + 2\pi H(\omega = \frac{\pi}{2}) \quad \delta(\omega + \frac{\pi}{2}) + 2\pi H(\omega = \pi) \quad \delta(\omega - \pi)$$

$$= \frac{1}{1 - e^{-i\frac{\pi}{2}}} = \frac{1}{1 + i}$$

$$Y(\omega) = \frac{2\pi}{1-j} S(\omega) + \frac{2\pi}{2} S(\omega + \frac{\pi}{2}) + \frac{2\pi}{1+j} S(\omega - \pi)$$

$$y(n) = \frac{1}{1+i} + \frac{1}{2}(-1)^n + \frac{1}{1+i}(-1)^n$$

OBS) La proeba tenía un typo y se consideración cometas has respostas en que y cn $J = \infty$ (seval de enhada en J^n en vez de $(-J)^n$)