CMIP6 Model Documentation

Institute: IPSL

Model: IPSL-CM6A-LR

Topic: Ocean

Doc. Generated: 2018-12-16

Doc. Seeded From: N/A

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	12
4	Advection	15
5	Lateral Physics	17
6	Vertical Physics	22
7	Uplow Boundaries	27
8	Boundary Forcing	29

1 Key Properties

Ocean key properties

1.1.1 Top level propertie	1.1.	$1 \ 1$	Гор	level	pro	pertie
---------------------------	------	---------	-----	-------	-----	--------

Ocean key properties

1.1.1.1 Name *

 $Name\ of\ ocean\ model\ code$

 $\operatorname{NEMO}:$ Nucleus for European Modelling of the Ocean version 3.2 (OPZ)

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ ocean\ model\ code$

Enter COMMA SEPERATED list:

1.1.1.3 Overview *

Overview of ocean model.

1.	1	.1.4	Mo	del	Family	*
----	---	------	----	-----	--------	---

Type of ocean model.

OGCM
Slab ocean
Mixed layer ocean
Other - please specify:

1.1.1.5 Basic Approximations *

Basic approximations made in the ocean.

\bowtie	Primitive equations
	Non-hydrostatic
\boxtimes	Boussinesq
	Other - please specify:

1.1.1.6 Prognostic Variables *

 $List\ of\ prognostic\ variables\ in\ the\ ocean\ component.$

\boxtimes	Potential temperature
	Conservative temperature

\boxtimes	Salinity
\boxtimes	U-velocity
\boxtimes	V-velocity
	W-velocity
\boxtimes	SSH - Sea Surface Height
	Other - please specify:
$1.2.1~\mathrm{S}$	Seawater Properties
	properties of seawater in ocean
1.2.1.1 1	Eos Type *
	OS for sea water
Select	t SINGLE option:
	Linear
	Wright, 1997
	Mc Dougall et al.
	Jackett et al. 2006
	TEOS 2010
	Other - please specify:
1.2.1.2	Eos Functional Temp *
	ure used in EOS for sea water
Select	t SINGLE option:
	Potential temperature
	Conservative temperature
1.2.1.3 I	Eos Functional Salt *
Salinity u	sed in EOS for sea water
Select	t SINGLE option:
	Practical salinity Sp
	Absolute salinity Sa

1.2.1.4	Eos Functional Depth *						
Depth or	pressure used in EOS for sea water?						
Selec	Select SINGLE option:						
	Pressure (dbars)						
	Depth (meters)						
1.2.1.5	Ocean Freezing Point *						
Equation	used to compute the freezing point (in $\deg C$) of seawater, as a function of salinity and pressure						
	TEOS 2010						
	Other - please specify:						
1.2.1.6	Ocean Specific Heat *						
Specific h	eat in ocean (cpocean) in $J/(kg K)$						
Enter	r FLOAT value:						
1.2.1.7	Ocean Reference Density *						
Boussines	sq reference density (rhozero) in kg / m3						
Enter	Enter FLOAT value:						
1.3.1 I	Bathymetry						
Properti	es of bathymetry in ocean						
1.3.1.1	Reference Dates *						
Reference	date of bathymetry						
\boxtimes	Present day						
	21000 years BP						
	6000 years BP						
	LGM - Last Glacial Maximum						
	Pliocene						
	Other - please specify:						

1.4.1 Nonoceanic Waters

Non oceanic waters treatement in ocean

1.4.1.1 Isolated Seas

Enter TEXT:

Describe if/how isolated seas is performed

1.4.1.2 River Mouth

Describe if/how river mouth mixing or estuaries specific treatment is performed

1.5.1 Software Properties

 $Software\ properties\ of\ ocean\ code$

1.5.1.1 Repository

 $Location\ of\ code\ for\ this\ component.$

Enter TEXT:

1.5.1.2 Code Version

Code version identifier.

Enter TEXT:

1.5.1.3 Code Languages

 $Code\ language(s).$

Enter COMMA SEPERATED list:

1.6.1 Resolution

Resolution in the ocean grid

1	6	1	1	Name	*
т.	w.	. т		rame	

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

1.6.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

Enter TEXT:

1.6.1.3 Range Horizontal Resolution *

 $Range\ of\ horizontal\ resolution\ with\ spatial\ details,\ eg.\ 50 (Equator) - 100 km\ or\ 0.1-0.5\ degrees\ etc.$

Enter TEXT:

1.6.1.4 Number Of Horizontal Gridpoints *

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

Enter INTEGER value:

1.6.1.5 Number Of Vertical Levels *

Number of vertical levels resolved on computational grid.

Enter INTEGER value:

1.6.1.6 Is Adaptive Grid *

Default is False. Set true if grid resolution changes during execution.

Select either TRUE or FALSE:

☐ True ☐	False
----------	-------

1.6.1.7 Thickness Level 1 *

 $Thickness\ of\ first\ surface\ ocean\ level\ (in\ meters)$

Enter FLOAT value:

1.7.1 Tuning Applied

Tuning methodology for ocean component

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPERATED list:

1.7.1.3 Regional Metrics Used

List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component

Enter COMMA SEPERATED list:

1.7.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPERATED list:

1.8.1 Conservation

Conservation in the ocean component

1.8.1.1 Description *

Brief description of conservation methodology

Enter TEXT:

1.8.1.2 Scheme *

Properties conserved in the ocean by the numerical schemes

1	v				
Select MULTIPLE options:					
	Energy				
	Enstrophy				
	Salt				
	Volume of ocean				
	Momentum				
	Other - please specify:				

1.8.1.3 Consistency Properties

Any additional consistency properties (energy conversion, pressure gradient discretisation, ...)?

Enter COMMA SEPERATED list:

1.8.1.4 Corrected Conserved Prognostic Variables

Set of variables which are conserved by more than the numerical scheme alone.

Enter COMMA SEPERATED list:

1	8	1.5	Was	Flux	Correction	Used

$Does\ conservation$	involve flux correction ?
Select either	TRUE or FALSE:
True	False

2 Grid

 $Ocean\ grid$

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

Name of grid in ocean model.

Enter TEXT:

2.1.1.2 Overview

Overview of grid in ocean model.

Enter TEXT:

2.1.2 Vertical

 $Properties\ of\ vertical\ discretisation\ in\ ocean$

2.1.2.1 Coordinates *

 $Type\ of\ vertical\ coordinates\ in\ ocean$

Selec	Select SINGLE option:			
	Z-coordinate			
	Z*-coordinate			
	S-coordinate			
	Isopycnic - sigma 0 - Density referenced to the surface			
	Isopycnic - sigma 2 - Density referenced to 2000 m $$			
	Isopycnic - sigma 4 - Density referenced to 4000 m $$			
	Isopycnic - other - Other density-based coordinate			
	Hybrid / $Z+S$			
	Hybrid / Z+isopycnic			
	Hybrid / other			
	Pressure referenced (P)			
	P*			
	Z**			
	Other - please specify:			

2.1.2.2	Partial Steps *
Using par	tial steps with Z or Z^* vertical coordinate in ocean ?
Selec	t either TRUE or FALSE:
	True False
919I	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizonta	l grid type
Selec	t SINGLE option:
	Lat-lon
	Rotated north pole
	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizonta	l grid staggering type
Selec	t SINGLE option:
	Arakawa B-grid
	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
Horizonta	l discretisation scheme in ocean
Selec	t SINGLE option:
	Finite difference
	Finite volumes
	Finite elements
	Unstructured grid
	Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

Commonly used name for the timestepping framework in ocean model.

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Enter TEXT:

3.1.1.3 Diurnal Cycle *

 $Diurnal\ cycle\ type$

Select SINGLE option:				
	None - No diurnal cycle in ocean			
	Via coupling - Diurnal cycle via coupling frequency			
	Specific treatment - Specific treament			
	Other - please specify:			

3.2.1 Tracers

Properties of tracers time stepping in ocean

3.2.1.1 Scheme *

 ${\it Tracers\ time\ stepping\ scheme}$

\bowtie	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ \ \mbox{Leap-frog scheme with Asselin filter}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
	Predictor-corrector - Predictor-corrector scheme
	Runge-Kutta 2 - Runge-Kutta 2 scheme
	AM3-LF - AM3-LF such as used in ROMS
	Forward-backward - Forward-backward scheme
	Forward operator - Forward operator scheme
	Other - please specify:

3.2.1.2 Time Step *

Tracers time step (in seconds)

Enter INTEGER value:

3.3.1 Baroclinic Dynamics

 $Baroclinic\ dynamics\ in\ ocean$

3.3.1.1 Type *	
Baroclinic dynamic	s type
Select SINGL	E option:
Precond	itioned conjugate gradient
Sub cylin	ng - Sub cycling relative to tracers
Other - 1	please specify:
3.3.1.2 Scheme	· *
Baroclinic dynamic	s scheme
Select SINGL	E option:
Leap-fro	g + Asselin filter - Leap-frog scheme with Asselin filter
Leap-fro	g + Periodic Euler - Leap-frog scheme with Periodic Euler
Predicto	r-corrector - Predictor-corrector scheme
Runge-K	Kutta 2 - Runge-Kutta 2 scheme
AM3-LF	- AM3-LF such as used in ROMS
Forward	-backward - Forward-backward scheme
Forward	operator - Forward operator scheme
Other - j	please specify:
3.3.1.3 Time S	tep
Baroclinic time step	o (in seconds)
Enter INTEG	ER value:

3.4.1 Barotropic

Barotropic time stepping in ocean

3.4.1.1 Splitting *			
Time splitting method			
Select S	SINGLE option:		
	None		
\square s	plit explicit		
I1	mplicit		
	Other - please specify:		
3.4.1.2 Time Step Barotropic time step (in seconds)			
Enter INTEGER value:			
3.5.1 Vertical Physics			
Vertical ph	hysics time stepping in ocean		
3.5.1.1 M	lethod *		
Details of ve	ertical time stepping in ocean		
Enter 7	TEXT:		

4 Advection

Ocean advection

4.1.1 Top level properties

 $Ocean\ advection$

4.1.1.1 Name

Commonly used name for the advection in ocean model.

Enter TEXT:

4.1.1.2 Overview

 $Overview\ of\ ocean\ advection\ in\ ocean\ model.$

Enter TEXT:

4.2.1 Momentum

Properties of lateral momentum advection scheme in ocean

4.2.1.1 Type *

 $Type\ of\ lateral\ momentum\ advection\ scheme\ in\ ocean$

Flux form

Vector form

4.2.1.2 Scheme Name *

 $Name\ of\ ocean\ momentum\ advection\ scheme$

Energy and Enstrophy conserving second order centered

4.2.1.3 ALE

Using ALE for vertical advection ? (if vertical coordinates are sigma)

Select either TRUE or FALSE:

☐ True ☐ False

4.3.1 Lateral Tracers

Properties of lateral tracer advection scheme in ocean

4.3.1.1 Order *

 $Order\ of\ lateral\ tracer\ advection\ scheme\ in\ ocean$

Enter INTEGER value:

4.3.1.2	Flux Li	miter *	
Monoton	ic flux limit	ter for late	teral tracer advection scheme in ocean?
\boxtimes	True		False
4.3.1.3	Effective	e Orde r	· *
Effective	order of lir	nited later	ral tracer advection scheme in ocean
Ente	er FLOAT	value:	
4.3.1.4	Name *		
Description = Contract The Co	ive text for	lateral tra	$acer\ advection\ scheme\ in\ ocean\ (e.g.\ MUSCL,\ PPM-H5,\ PRATHER,)$
Tota	l Variance	Dissipa	ation (TVD)
4.3.1.5	Passive	Tracers	3
Passive t	racers adve	cted	
Selec	ct MULTI	PLE opt	cions:
	Ideal age		
	CFC 11		
	CFC 12		
	SF6		
	Other - p	lease spec	cify:
4.3.1.6	Passive	Tracers	s Advection
Is advect	ion of passi	ive tracers	s different than active ? if so, describe.
Ente	er TEXT:		
4.4.1	Vertica	l Trace	ers
Propert	ies of vert	ical trac	ver advection scheme in ocean
4.4.1.1	Name *		
Descripti	ive text for	vertical tr	racer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)
TVI)		
4.4.1.2	Flux Lin	miter *	
Monoton	ic flux limit	ter for ver	rtical tracer advection scheme in ocean?
Selec	ct either T	RUE or	FALSE:
	True		False

Lateral Physics **5**

Ocean lateral physics

5.	1.	1 To	p le	vel p	roperties

Ocean lateral physics

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

5.1.1.2 Overview

Overview of ocean lateral physics in ocean model.

Enter TEXT:

5.1.1.3 Scheme *

Type of transient eddy representation in ocean

Selec	et SINGLE option:
	None - No transient eddies in ocean
	Eddy active - Full resolution of eddies
	Eddy admitting - Some eddy activity permitted by resolution

5.1.2 Operator

Properties of lateral physics operator for momentum in ocean

5.1.2.1 Direction *

Dir

rection	of lateral physics momentum scheme in the ocean
\boxtimes	Horizontal
	Isopycnal
	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:

5.1.2.2	Order *
Order of	lateral physics momentum scheme in the ocean
\boxtimes	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretise	ation of lateral physics momentum scheme in the ocean
\boxtimes	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
Properts 5.1.3.1 Lateral p. □ □ □ □ □ □ □ If constant	Eddy Viscosity Coeff ies of eddy viscosity coeff in lateral physics momentum scheme in the ocean Type * hysics momentum eddy viscosity coeff type in the ocean Constant Space varying Time + space varying (Smagorinsky) Other - please specify: Constant Coefficient nt, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s) r INTEGER value:
If space-v	Variable Coefficient varying, describe variations of eddy viscosity coeff in lateral physics momentum scheme sude, Longitude Coeff Background *
Describe	background eddy viscosity coeff in lateral physics momentum scheme (give values in m2/s)

poleward of $20\mathrm{N/S}$ decreasing to $2000~\mathrm{N/m2/s}$ at equator

5.1.3.5	Coeff Backscatter *
Is there be	ackscatter in eddy viscosity coeff in lateral physics momentum scheme?
Selec	t either TRUE or FALSE:
	True
5.2.1 T	Tracers
Propertie	es of lateral physics for tracers in ocean
5.2.1.1	Mesoscale Closure *
Is there a	mesoscale closure in the lateral physics tracers scheme?
	True
5.2.1.2	Submesoscale Mixing *
${\it Is there a}$	$submesoscale\ mixing\ parameterisation\ (i.e\ Fox-Kemper)\ in\ the\ lateral\ physics\ tracers\ scheme\ ?$
Selec	t either TRUE or FALSE:
	True
5.2.2	Operator
Propertie	es of lateral physics operator for tracers in ocean
5.2.2.1	Direction *
	of lateral physics tracers scheme in the ocean
	Horizontal
	Isopycnal
\boxtimes	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:
5.2.2.2	Order *
	ateral physics tracers scheme in the ocean
\boxtimes	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:

5.2.2.3	Discretisation
Discretise	ction of lateral physics tracers scheme in the ocean
\boxtimes	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
5.2.3 I	Eddy Diffusity Coeff
Properti	es of eddy diffusity coeff in lateral physics tracers scheme in the ocean
5.2.3.1	Type *
Lateral ph	nysics tracers eddy diffusity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.2.3.2	Constant Coefficient
If constar	at, value of eddy diffusity coeff in lateral physics tracers scheme (in $m2/s$)
2000	
5.2.3.3	Variable Coefficient
If space-v	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme
Ente	r TEXT:
5.2.3.4	Coeff Background *
Describe	background eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)
2000	
5.2.3.5	Coeff Backscatter *
Is there b	ackscatter in eddy diffusity coeff in lateral physics tracers scheme?
Selec	t either TRUE or FALSE:
	True

5.2.4 Eddy Induced Velocity

Properties of eddy induced velocity (EIV) in lateral physics tracers scheme in the ocean

5.2.4.1 Type *			
Type of E	IV in lateral physics tracers in the ocean		
\boxtimes	GM - Gent and McWilliams		
	Other - please specify:		

5.2.4.2 Constant Val

If EIV scheme for tracers is constant, specify coefficient value (M2/s) $\,$

Enter INTEGER value:

5.2.4.3 Flux Type *

Type of EIV flux (advective or skew)

Advective flux

5.2.4.4 Added Diffusivity *

 $Type\ of\ EIV\ added\ diffusivity\ (constant,\ flow\ dependent\ or\ none)$

Enter TEXT:

6 Vertical Physics

Ocean Vertical Physics

6.	1.	.1	Top	level	pro	perties

Ocean Vertical Physics

6.1.1.1 Name

Commonly used name for the vertical physics in ocean model.

 ${f Enter\ TEXT}:$

6.1.1.2 Overview

 $Overview\ of\ ocean\ vertical\ physics\ in\ ocean\ model.$

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

Is there Langmuir cells mixing in upper ocean ?

Select either	TRUE or	FALSE:
☐ True		False

6.1.3 Tracers

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

Type	of	boundary	layer	mixing	for	tracers	in	ocean

	Constant value
\boxtimes	Turbulent closure - TKE
	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate

Other - please specify:

6.1.3.2 Closure Order
If turbulent BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)
Enter FLOAT value:
6.1.3.3 Constant
If constant BL mixing of tracers, specific coefficient (m2/s)
Enter INTEGER value:
6.1.3.4 Background *
Background BL mixing of tracers coefficient, (schema and value in $m2/s$ - $may\ by\ none$)
1.e-5 m2/s
6.1.4 Momentum
Properties of boundary layer (BL) mixing on momentum in the ocean

6.1.4.1 Type *

Type of bo	undary layer mixing for momentum in ocean
	Constant value
\boxtimes	Turbulent closure - TKE
	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:

6.1.4.2 Closure Order

If turbulent BL mixing of momentum, specific order of closure $(0,\ 1,\ 2.5,\ 3)$

Enter FLOAT value:

6.1.4.3 Constant
If constant BL mixing of momentum, specific coefficient $(m2/s)$
Enter INTEGER value:
6.1.4.4 Background *
Background BL mixing of momentum coefficient, (schema and value in $m2/s$ - may by none)
1.e-4 m2/s
6.1.5 Details
Properties of interior mixing in the ocean
6.1.5.1 Convection Type *
Type of vertical convection in ocean
Non-penetrative convective adjustment
Enhanced vertical diffusion
☐ Included in turbulence closure
Other - please specify:
6.1.5.2 Tide Induced Mixing *
Describe how tide induced mixing is modelled (barotropic, baroclinic, none)
Baroclinic tides
6.1.5.3 Double Diffusion *
Is there double diffusion
Select either TRUE or FALSE:
☐ True ☐ False
6.1.5.4 Shear Mixing *
Is interior shear mixing explicitly parameterised?
Select either TRUE or FALSE:
☐ True ☐ False

6.1.6 Tracers

Properties of interior mixing on tracers in the ocean

6.1.6.1	Type *
Type of in	nterior mixing for tracers in ocean
Selec	t SINGLE option:
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6.1.6.2	Constant
If constan	t interior mixing of tracers, specific coefficient $(m2/s)$
Enter	r INTEGER value:
6.1.6.3	Profile *
Is the bac	kground interior mixing using a vertical profile for tracers (i.e is NOT constant)?
Selec	t either TRUE or FALSE:
	True
	Background * nd interior mixing of tracers coefficient, (schema and value in m2/s - may by none)
	m2/s
6.1.7 N	Momentum
Properti	es of interior mixing on momentum in the ocean
6.1.7.1	Type *
Type of in	nterior mixing for momentum in ocean
Selec	t SINGLE option:
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada

Ш	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
If constan	Constant at interior mixing of momentum, specific coefficient (m2/s) r INTEGER value:
6.1.7.3	Profile *
Is the bac	kground interior mixing using a vertical profile for momentum (i.e is NOT constant)?
Ente	r TEXT:
	Background * nd interior mixing of momentum coefficient, (schema and value in m2/s - may by none)
Ente	r TEXT:

7 Uplow BoundariesOcean upper / lower boundaries7.1.1 Top level properties

Ocean upper / lower boundaries

7.1.1.1 Name

Commonly used name for the uplow boundaries in ocean model.

Enter TEXT:

7.1.1.2 Overview

 $Overview\ of\ ocean\ upper\ /\ lower\ boundaries\ in\ ocean\ model.$

Enter TEXT:

7.2.1 Free Surface

Properties of free surface in ocean

7.2.1.1 Scheme *

Free surface scheme in ocean

Linear implicit

Linear filtered

Linear semi-explicit

Non-linear implicit

Non-linear filtered

Non-linear semi-explicit

Fully explicit

Other - please specify:

7.2.1.2 Embeded Seaice *

Is the sea-ice embeded in the ocean model (instead of levitating)?

Select either TRUE or FALSE:

_____ True _____ False

7.3.1 Bottom Boundary Layer

Properties of bottom boundary layer in ocean

7.3.1.1 Overview *
Overview of bottom boundary layer in ocean
Enter TEXT:
7.3.1.2 Type Of Bbl *
Type of bottom boundary layer in ocean
□ Diffusive
Acvective
Other - please specify:
7.3.1.3 Lateral Mixing Coef
If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)
10000
7.3.1.4 Sill Overflow *
Describe any specific treatment of sill overflows
Enter TEXT:

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

Enter TEXT:

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

Enter TEXT:

8.1.1.3 Surface Pressure *

Describe how surface pressure is transmitted to ocean (via sea-ice, nothing specific,...)

Enter TEXT:

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

Enter TEXT:

8.1.1.6 Wave Effects *

Describe if/how wave effects are modelled at ocean surface.

Enter TEXT:

8.1.1.7 River Runoff Budget *

Describe how river runoff from land surface is routed to ocean and any global adjustment done.

Enter TEXT:

8.1.1.8 Geothermal Heating *

Describe if/how geothermal heating is present at ocean bottom.

8.1.2 Bottom Friction

Properties of momentum bottom friction in ocean

8.1.2.1	Type *
Type of n	nomentum bottom friction in ocean
\boxtimes	Linear
	Non-linear
	Non-linear (drag function of speed of tides)
	Constant drag coefficient
	None
	Other - please specify:
	Lateral Friction ies of momentum lateral friction in ocean
8.1.3.1	Type *
Type of n	nomentum lateral friction in ocean
	None
	Free-slip
\boxtimes	No-slip
	Other - please specify:
8.1.4 \$	Sunlight Penetration
Properti	ies of sunlight penetration scheme in ocean
8.1.4.1	Scheme *
Type of s	unlight penetration scheme in ocean
	1 extinction depth
	2 extinction depth
\boxtimes	3 extinction depth
	Other - please specify:
	Ocean Colour * an sunlight penetration scheme ocean colour dependent ?
ine oce	True False

Enter TEXT: 8.1.4.4 Extinction Depths List extinctions depths for sunlight penetration scheme (if applicable). Enter COMMA SEPERATED list: 8.1.5 Fresh Water Forcing Properties of surface fresh water forcing in ocean 8.1.5.1 From Atmopshere * Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux Other - please specify:	8.1.4.3 Extinction Depth Description				
8.1.4.4 Extinction Depths List extinctions depths for sunlight penetration scheme (if applicable). Enter COMMA SEPERATED list: 8.1.5 Fresh Water Forcing Properties of surface fresh water forcing in ocean 8.1.5.1 From Atmopshere * Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux Real salt flux	Describe extinctions depths for sunlight penetration scheme (if applicable).				
List extinctions depths for sunlight penetration scheme (if applicable). Enter COMMA SEPERATED list: 8.1.5 Fresh Water Forcing Properties of surface fresh water forcing in ocean 8.1.5.1 From Atmopshere * Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	Enter TEXT:				
Enter COMMA SEPERATED list: 8.1.5 Fresh Water Forcing Properties of surface fresh water forcing in ocean 8.1.5.1 From Atmopshere * Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux Virtual salt flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Virtual salt flux Real salt flux	8.1.4.4 Extinction Depths				
8.1.5 Fresh Water Forcing Properties of surface fresh water forcing in ocean 8.1.5.1 From Atmopshere * Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	List extinctions depths for sunlight penetration scheme (if applicable).				
Real salt flux Properties of surface fresh water forcing in ocean **S.1.5.1 From Atmopshere ** Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux	Enter COMMA SEPERATED list:				
8.1.5.1 From Atmopshere * Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux Virtual salt flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	8.1.5 Fresh	Water Forcing			
Type of surface fresh water forcing from atmos in ocean Select SINGLE option: Freshwater flux Virtual salt flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	Properties of surface fresh water forcing in ocean				
Select SINGLE option: Freshwater flux Virtual salt flux Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	8.1.5.1 From	Atmopshere *			
☐ Freshwater flux ☐ Virtual salt flux ☐ Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: ☐ Freshwater flux ☐ Virtual salt flux ☐ Real salt flux	Type of surface j	fresh water forcing from atmos in ocean			
□ Virtual salt flux □ Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: □ Freshwater flux □ Virtual salt flux □ Real salt flux	Select SINGLE option:				
Other - please specify: 8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	Fresh	water flux			
8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	☐ Virtu	al salt flux			
Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	Other	: - please specify:			
Type of surface fresh water forcing from sea-ice in ocean Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux	9 1 5 2 From Con Igo *				
Select SINGLE option: Freshwater flux Virtual salt flux Real salt flux					
Freshwater flux Virtual salt flux Real salt flux					
☐ Virtual salt flux ☐ Real salt flux		•			
Other - please specify:	Real:	salt flux			
	Other	: - please specify:			
8.1.5.3 Forced Mode Restoring *	8.1.5.3 Force	ed Mode Restoring *			
Type of surface salinity restoring in forced mode (OMIP)					

Enter TEXT: