

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA - II: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e G. Industrial)

Regente: Luís Consolo Chea

Assistentes: Marcelino Macome; Bartolomeu Ubisse; Belarmino Matsinhe; Graça Massimbe & Valdemiro Sultane

2021 (Modo COVID) - AP # 3 - Potencial eléctrico e sua relação com o campo eléctrico

- 1. Como sabe, aa expressão $\int\limits_S \vec{E} \vec{n} dS$ chama-se fluxo do vector campo eléctrico \vec{E} . Qual é o significado da circulação do vector $\int\limits_I \vec{E} d\vec{l}$?
- 2. Duas cargas eléctricas $Q_1 = -5\mu C$ e $Q_2 = 2\mu C$, estão colocadas nos vértices opostos de um rectângulo de 15m de comprimento e 5m de largura. Determinar o potencial eléctrico nos outros dois vértices opostos. Qual será o trabalho realizado para mover uma carga $Q_3 = 3\mu C$ ao longo da diagonal definida pelo mesmo par de vértices ?
- 3. A fig.1 mostra um arranjo rectangular de partículas carregadas no lugar com a=39,0cm e as cargas indicadas como múltiplos inteiros de $q_1=3.4pC$ e $q_2=6pC$. Sendo o potencial $\phi=0$ no infinito, determine o potencial eléctrico no centro do rectângulo. (Sugestão: examine cuidadosamente o problema de modo a reduzir os cálculos.)

Figura 1:

- 4. Uma Esfera dieléctrica de raio R possui uma distribuição volumétrica de carga constante dada por ρ . Determine a distribuição do potencial eléctrico em função do raio r. Esboce o gráfico da variação do potencial eléctrico em função do raio r.
- 5. Um cilindro dieléctrico de raio *R* e comprimento infinito, possui uma densidade volumétrica de carga *ρ* constante. Determinar a diferença de potencial entre um ponto da superfície do cilíndro e um ponto situado a uma distância *d* da superfície e localizado (a) no exterior do cilíndro e (b) no interior do cilíndro.
- 6. Duas cascas esféricas concêntricas (metálicas) de raio $R_1 < R_2$, possuem uma densidade superficial de carga σ_1 e σ_2 respectivamente. Determine a distribuição do potencial em todo o espaço do sistema.
- 7. Uma esfera dieléctrica possui uma carga total Q. No interior da esfera existe uma distribuição de cargas com densidade volumétrica variável dada por ρ = Br, onde B é uma constante e r a distância variável de cada elemento de carga até ao centro da esfera. Determine: (a) a carga Q em função B e de R.(b) o potencial para os pontos r < R.(c) o potencial para os pontos r > R.
- 8. Determine as componentes do vector campo eléctrico \vec{E} , para os seguintes casos: (a) $\phi = x^2 cos\theta$; (b) $\phi = 3xy$.
- 9. O potencial eléctrico no plano xy é dado por $\phi = (2.0V/m^2)x^2 (3.0V/m^2)y^2$. Determine o campo eléctrico no ponto P(3.0m;2.0m).

Nota: Rever os exemplos da aula teórica, especialmente os exercícios sobre o potencial criado por anel e disco carregados, num ponto ao longo do eixo de simetria.