

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

First Week Least Square Method

1. Least Squares Approximation

1.1. Polynomial approximation

Data: $\{(x_i, y_i)|i=1, \dots, \underline{m}\}$

 y_m y_1

CMENOUN,

$$\begin{pmatrix}
P_{n}(x_{-}) \in Y_{-} \\
\hline
\eta \\
 1 = 1, 2, \dots m
\end{pmatrix}$$

Question: How to minimize $E = \sum_{i=1}^{m} (y_i - P_n(x_i))^2$? \rightarrow "Normal Equation"

1.1. Polynomial approximation unknown as

Question: How to minimize $E = \sum_{i=1}^{m} (y_i - \underline{P_n}(x_i))^2$? \rightarrow "Normal Equation" $-f(x_i, x_2)$

$$\begin{bmatrix}
\sum_{i=1}^{m} \underline{x_{i}^{0}} & \sum_{i=1}^{m} x_{i}^{1} & \cdots & \sum_{i=1}^{m} x_{i}^{0} \\
\sum_{i=1}^{m} x_{i}^{1} & \sum_{i=1}^{m} x_{i}^{2} & \cdots & \sum_{i=1}^{m} x_{i}^{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{m} x_{i}^{n} & \sum_{i=1}^{m} x_{i}^{n+1} & \cdots & \sum_{i=1}^{m} \underline{x_{i}^{2n}}
\end{bmatrix}
\begin{bmatrix}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{bmatrix}
\begin{bmatrix}
\sum_{i=1}^{m} y_{i} \\
\sum_{i=1}^{m} y_{i} x_{i}
\end{bmatrix}$$

$$(N+1)\times (N+1)$$

Let
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3/2 \end{pmatrix}$$
 $\times = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

$$\begin{cases} (2,1), (\frac{3}{2}, 2), (4, 2) \end{cases}$$

$$\begin{cases} (2,1), (\frac{3}{2}, 2), (\frac{3}{2}, 2), (\frac{3}{2}, 2) \end{cases}$$

$$\begin{cases} (2,1), (\frac{3}{2}, 2), (\frac{3}{2}, 2), (\frac{3}{2}, 2), (\frac{3}{2}, 2) \end{cases}$$

$$\begin{cases} (2,1), (\frac{3}{2}, 2), (\frac{3}{2}, 2), (\frac{3}{2}, 2), (\frac{3}{2}, 2) \end{cases}$$

$$\begin{cases} (2,1), (\frac{3}{2}, 2), (\frac{3}{2}, 2), (\frac{3}{2}, 2), (\frac{3}{2}, 2) \end{cases}$$

$$\end{cases}$$

$$\begin{cases} (2,1), (\frac{3}{2}, 2), (\frac{3}{2}, 2),$$

(A: rectangular)

5-9:

$$A^{\dagger}A \stackrel{?}{\wedge} : A^{\dagger} \uparrow \Rightarrow \stackrel{?}{\wedge} = (A^{\dagger}A)^{-1}(A^{\dagger} \uparrow)$$

$$\stackrel{?}{\wedge} : \stackrel{?}{\wedge} \times$$

Find a minimum of $\|AX-T\|_{1}^{2} \Rightarrow \hat{X}$ is a sol, where $\hat{X} = (A^{\dagger}A)^{\dagger}(A^{\dagger}Y)$

Let
$$f(x)= \|Ax - Y\|_{2}^{2} = \|Y - Ax\|_{2}^{2}$$

$$= (Y - Ax)^{\frac{1}{2}} (Y - Ax)$$

$$\Rightarrow (Y - Ax)^{\frac{1}{2}} = (Y - Ax)^{\frac{1}{2}} (Y - Ax)^{\frac{1}{2}}$$

$$\Rightarrow M_{1} + \frac{1}{2} + \frac$$

1.2. Exponential approximation

Question: How to minimize
$$E = \sum_{i=1}^{m} (y_i - P(x))^2$$
 for $P(x) = be^{ax}$?

$$y = be^{ax} \implies \ln y = \ln b + ax$$

Let $\ln y = \hat{y}$, $\ln b = a_0$, $a = a_1$ then,

$$\begin{bmatrix} \sum_{i=1}^{m} x_i^0 & \sum_{i=1}^{m} x_i^1 \\ \sum_{i=1}^{m} x_i^1 & \sum_{i=1}^{m} x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} \hat{y}_i \\ \sum_{i=1}^{m} \hat{y}_i x_i \end{bmatrix}$$

1.2. Exponential approximation

Example 1.2.1 ——

Consider the collection of data in the first three columns

i	x_i	y_i	$\ln y_i$	x_i^2	$x_i \ln y_i$
1	1.00	5.10	1.629	1.0000	1.629
2	1.25	5.79	1.756	1.5625	2.195
3	1.50	6.53	1.876	2.2500	2.814
4	1.75	7.45	2.008	3.0625	3.514
5	2.00	8.46	2.135	4.0000	4.270
	7.50		9.404	11.875	14.422