R자료 분석 및 시각화

Chapter 12

인공신경망 이용 주가예측

Sejong Oh

Bio Information technology Lab.

Content

- 인공지능 개요
- 인공 신경망 모형
- 인공신경망을 이용한 주가 예측

이 slide 는 **R 로 배우는 코딩, 장용식/강희구, 생능출판사** 를 참조하였음

1. 인공지능 개요

- 인공지능: 기계에 의해 나타나는 지능
 - 지식 체계를 규칙(if then else)으로 표현하는 전문가 시스템, 자연언어에서의 애매모호함을 정량적으로 표현하는 퍼지 이론, 컴퓨터에 인공적인 학습이 가 능한 지능을 부여하는 기계 학습, 자연의 진화 과정을 통해 특정한 문제의 적 절한 답을 찾는 유전 알고리즘 등의 기술로 가능

1. 인공지능 개요

- 인공 신경망: 기계 학습 분야에서 연구되는 학습 알고리즘의 하나
 - 시계열 자료의 예측, 분류, 패턴 인식, 제어 분야 등 다양하게 응용
 - 대부분 통계적으로 접근하여 확률을 계산하는 다른 기계 학습 기술과 달리, 인간의 뇌의 구조를 모방
 - 인공 신경망은 수상돌기를 입력으로, 신경세포체를 노드node로, 축색을 출력으로 흉내 내고, 시냅스는 노드 간 가중값을 갖는 연결로 네트워크 구성.
 - 입력 데이터에 대해 목표치를 출력하려는 학습 과정을 거치는 동안 각 연결 망의 가중치가 달라짐
 - 구글 딥마인드의 알파고

Biological Neuron

인공신경망

2. 인공 신경망 모형

$$a = x_1 w_1 + x_2 w_2 + x_3 w_3 \dots + x_n w_n$$

$$a = \sum_{i=0}^{i=n} w_i x_i$$

output =
$$\begin{cases} 0 \text{ if } a < \text{threshold} \\ 1 \text{ if } a \ge \text{threshold} \end{cases}$$

2. 인공 신경망 모형

- Idea
 - If we adjust W_i value, we can get output which we want

3. 인공 신경망을 이용한 분류

- nnet 함수 (in "nnet" package)
- Training

```
model = nnet(tr, target, size, rang, decay, maxit)
```

- tr : training data (matrix or vector)
- o target : output of NN (class 정보)
- o size : hidden node 수
- rang: Initial random weights on [-rang, rang].
- decay: parameter for weight decay (default: 0)
- maxit: maximum number of iterations (default: 100)
- Test

```
pred = predict(model, ts) # ts: test data
```

Neural net for iris

Practice

```
require (nnet)
data(iris)
train = iris[,-5]
                                                         #data
test = train
targets = class.ind(iris[,5])
                                                         #class
model = nnet(train, targets, size = 8,
     rang = 0.1, decay = 5e-4, maxit = 200)
# test with train data
pred <- predict(model, train)</pre>
                > pred
                         setosa versicolor
                                           virginica
                 [1,] 0.989901184 0.0099054336 9.622787e-05
                 [2,] 0.989423540 0.0105653736 9.621525e-05
                 [3,] 0.989727770 0.0101436494 9.622322e-05
                 [4,] 0.989156013 0.0109401681 9.620843e-05
                 [5,] 0.989928503 0.0098680504 9.622860e-05
                 [6,] 0.989830220 0.0100027224 9.622595e-05
                 [7.1 0.989659249 0.0102382112 9.622140e-05
```

Practice

```
# calculate accuracy
predClass = max.col(pred)
testClass = max.col(targets)
acc = mean(predClass == testClass)
# check accuracy
acc
table(predClass, testClass)
```

4. 인공 신경망을 이용한 주가 예측

한국 거래소에서 6개월간(2016, 1, 1~2016, 6, 30)의 일별 주가 데이터를 다운로드하고 인공 신경망 모형을 만들어 학습 과정을 거친후, 향후 5일 동안의 주가를 예측하는 방법을 살펴보자.

☞ 인공 신경망 모형

입력 노드 수	10 개
은닉층 수	1 개
은닉층 노드 수	20 개
출력 노드 수	5 개

4. 인공 신경망을 이용한 주가 예측

시계열 데이터 준비

 한국 거래소www.krx.co.kr의 통계 정보로 제공되는 코스피(KOSPI) 주식 지수의 종가 시계열 데이터 다운로드

www.krx.co.kr

80001 일자별지수

년/윌/일 💠	현재지수 💠		대비 ‡	등락률(%) 💠	시가지수 💠	고가지수 💠	저가지=
2017/06/30	2,391.79	•	3.87	-0.16	2,382.15	2,391.81	2,31
2017/06/29	2,395.66		13.10	0.55	2,396.81	2,402.80	2,39
2017/06/28	2,382.56	•	9.39	-0.39	2,382.91	2,390.89	2,31
2017/06/27	2,391.95		3.29	0.14	2,386.76	2,397.14	2,38
2017/06/26	2,388.66		10.06	0.42	2,381.09	2,390.70	2,3
2017/06/23	2,378.60		8.23	0.35	2,371.54	2,380.94	2,3(
2017/06/22	2,370.37		12.84	0.54	2,364.22	2,370.39	2,35
2017/06/21	2,357.53	•	11.70	-0.49	2,358.23	2,359.97	2,34
2017/06/20	2,369.23	•	1.67	-0.07	2,382.54	2,382.54	2,3(
2017/06/19	2,370.90	A	9.07	0.38	2,364.02	2,377.20	2,35

kospi.csv

4	Α	В	С	D	E	F	G	Н	1
1	년/월/일	현재지수	내비	등락률(%)	시가지수	고가지수	저가지수	거래량(천	거래량(천
2	2017-06-30	2,391.79	-3.87	-0.16	2,382.15	2,391.81	2,381.40	343,051	343,530
3	2017-06-29	2,395.66	13.1	0.55	2,396.81	2,402.80	2,393.57	445,044	445,132
4	2017-06-28	2,382.56	-9.39	-0.39	2,382.91	2,390.89	2,380.75	361,053	361,177
5	2017-06-27	2,391.95	3.29	0.14	2,386.76	2,397.14	2,383.47	357,934	358,034
6	2017-06-26	2,388.66	10.06	0.42	2,381.09	2,390.70	2,377.88	325,537	325,674
7	2017-06-23	2,378.60	8.23	0.35	2,371.54	2,380.94	2,369.17	256,067	256,259
8	2017-06-22	2,370.37	12.84	0.54	2,364.22	2,370.39	2,354.10	299,093	299,232
9	2017-06-21	2,357.53	-11.7	-0.49	2,358.23	2,359.97	2,346.19	360,030	360,345
10	2017-06-20	2,369.23	-1.67	-0.07	2,382.54	2,382.54	2,365.45	360,475	360,734
11	2017-06-19	2,370.90	9.07	0.38	2,364.02	2,377.20	2,356.84	290,383	290,945
12	2017-06-16	2,361.83	0.18	0.01	2,364.20	2,365.37	2,355.29	328,160	329,179
13	2017-06-15	2,361.65	-10.99	-0.46	2,373.36	2,378.04	2,350.37	334,199	334,886
14	2017-06-14	2,372.64	-2.06	-0.09	2,384.54	2,387.29	2,366.92	392,027	392,998
15	2017-06-13	2,374.70	16.83	0.71	2,358.92	2,375.81	2,358.92	321,589	322,082
16	2017-06-12	2,357.87	-23.82	-1	2,370.69	2,374.70	2,353.35	326,087	327,234
17	2017-06-09	2,381.69	18.12	0.77	2,371.22	2,385.15	2,367.81	519,732	520,558
18	2017-06-08	2,363.57	3.43	0.15	2,361.64	2,365.52	2,347.62	416,713	417,080
19	2017-06-07	2,360.14	-8.48	-0.36	2,364.96	2,369.43	2,356.71	375,909	376,208
20	2017 06 05	2 2 EO E2	21	0.12	2 276 66	2 276 02	2 262 61	226.260	226 /12

이 데이터를 이용함

학습과 예측 과정

1단계: 인공 신경망 구조 정의

인공 신경망 구조

```
INPUT_NODES<- 10
HIDDEN_NODES<- INPUT_NODES * 2
OUTPUT_NODES <- 5
ITERATION<- 500
```

1. 인공 신경망 모형의 구조 정의

- 입력 노드 수
- 은닉층의 노드 수
- 출력 노드 수
- 학습 반복 수

과거의 10일치 데이터로 미래의 5일치 데이터를 예측

2단계: 시계열 데이터 읽기

3단계: 테스트

- Training/test dataset 생성
- 인공신경망 학습
- 테스트 데이터로 주가예측
- 에러계산 : 실제 주가지수와 예측된 주가지수의 차이

3단계: 테스트 (1)

• 학습/테스트 데이터 생성

```
df <- df[order(df$ymd),] # sort date</pre>
# create traing data
train learning <- NULL
train result <- NULL
for (i in 1:108) {
  train learning <- rbind(train learning,</pre>
                        df$current[i:(i+9)])
  train result <- rbind(train result,</pre>
                        df$current[(i+10):(i+14)])
```

```
> dim(train_learning)
[1] 108  10
> dim(train_result)
[1] 108  5
```

• 학습/테스트 데이터 생성

```
> dim(test_learning)
[1] 50 10
> dim(test_result)
[1] 50 5
```

3단계: 테스트 (2)

• 학습 실시

```
> model <- nnet(train_learning, train_result,</p>
              size=HIDDEN.NODES,
              linout=TRUE, rang=0.1,
               skip=TRUE, maxit=ITERATION)
# weights: 375
initial value 2630438619.060554
iter 10 value 540729101.448966
iter 20 value 14478322.234670
iter 30 value 1314021.972509
                                        • liout : 신경망의 output 이 linear
iter 40 value 195314.379409
iter 50 value 193362,595098
                                        • rang : weight matrix 초기화 [-rang,rang]
final value 193341,205245
                                           skip: skip-layer connection
converged
```

3단계: 테스트 (3)

• 주가예측 테스트 실시

3단계: 테스트 (4)

• 예측 에러 계산

```
err <- abs(test_result - predicted)
MAPE <- mean(err/test_result)*100
mean(err)
MAPE</pre>
```

```
> mean(err)
[1] 17.8212   실제주가지수와 예측 주가지수의 차이 평균
[1] 0.7897159  실제주가지수 에서 에러가 차지하는 비율
```

MAPE: Mean Absolute Percentage Error

별로 좋은 모델은 아님

4단계: 최적모형 선정

인공 신경망의 입력 노드, 출력 노드, 은닉층의 노드 수에 따라 다양한 모형 구조가 가능하고, 같은 구조라 하더라도 반복학습 수에 따라 서로 다른 모형이 됨

 따라서, 여러 모형들을 비교하여 MAPE가 가장 작은 모형을 선택해서 원본 전체 1~127번 데이터에 대해 다시 학습하고 최종적으로 미래 기간을 예측함

Practice 1

학습기간: 2017.1.1 ~2017.9.30

예측기간: 2017.10.1~10.5

• 환율데이터 다운로드

하나은행(https://www.kebhana.com)-> 외환포탈 -> 고시환율 ->환율변동

▶ 엑셀로 예측치와 실제 값이 얼마나 차이나는지 비교해 보시오