Introduction to Machine Learning

Overview

First lecture, 05.01.2022

Phuc Loi Luu, PhD p.luu@garvan.org.au luu.p.loi@googlemail.com

Organization of the lecture

- Introduction to Machine Learning: 05.01.2022 to 06.04.2022 (12 weeks + 2 weeks)
- Prerequisites:
 - Basic programming skills with R and Python
 - Linear Algebra
 - Statistics
- Exercises:
 - weekly exercises, theoretical and practical work (roughly alternating),
 - practical exercises will be in R or Python,
 - 50% of the points in the exercises are needed to take part in the exams.
 - Final Exam:
 - presenting the course project (13.04.2022 at 3pm)
 - script
 - Grading: passed if you get at least 50% of the points.

Books, slides, exercises and solutions to exercises

https://www.statlearning.com/ https://web.stanford.edu/~hastie/ISLR2/ISLRv2_website.pdf https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/ https://blog.princehonest.com/stat-learning/ (solutions)

https://machinelearningcoban.com

Roadmap of the lecture

- · Introduction to machine learning
- Review of statistics
- · Review of linear algebra and information theory
- · Review of convex optimization
- Supervised learning
 - Bayesian decision theory
 - · Linear methods for regression and classification
 - · Support Vector Machine (SVM) and Kernel methods
 - · Evaluation/Comparison of classifiers, Model selection
 - · Boosting and decision trees, random forest, prototype methods
 - · Bayseian Naive
 - Neural networks
 - Fuzzy Logic
 - Feature selection (!Feature extraction)
- · Semi-supervised learning
- · Unsupervised learning
 - · Clustering (Kmean, hierarchical clustering, spetral clustering)
 - · Dimensionality Reduction (PCA, tSNE, UMAP, MDS)

No	Project	Students	Slide/Book	Video
1	(Simple and Multiple) Linear Regression	Thanh Giang	https://web.stanford.edu/~hastie/MOOC-Slides/linear_regression.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IBSSCPANhTgrw82ws7w_or 9
2.1	Classification: Logistic regression	Thien	https://web.stanford.edu/~hastie/MOOC-Slides/classification.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IC4vaDba5ClatUmFppXLAh E
2.2	Classification: Linear Discriminant Analysis (LDA)	Thien	https://web.stanford.edu/~hastie/MOOC-Slides/classification.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IC4vaDba5ClatUmFppXLAh E
2.3	Naive Bayes Classifier	Thien	https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/https://www.youtube.com/watch?v=vz_xuxYS2PMhttps://machinelearningcoban.com/2017/08/08/nbc/https://www.youtube.com/watch?v=xYqiIjaqydU&list=PLBv09BD7ez_7-4V3IJIzCHWQj9nd4rVWB	https://www.youtube.com/watch? v=XzSIEA4ck2I https://www.youtube.com/watch?v=os- NaA0ldGs&list=PLBv09BD7ez_6Cxku iFTbL3jsn2Qd1IU7B&index=1
2.4	ROC curve, AUC, RMSE	Giang	https://medium.datadriveninvestor.com/evaluation-metrics-101-7c8b4c3421c2 https://medium.com/@xaviergeerinck/artificial-intelligence-how-to-measure-performance-accuracy-precision-recall-f1-roc-rmse-611d10e4caac	https:// onionesquereality.wordpress.com/ 2010/11/07/auc-versus-rmse/
3.1	Resampling Methods: Cross validation	Hoang, Cuong	https://web.stanford.edu/~hastie/MOOC-Slides/cv_boot.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IA6E6ZNXu7dp89_uv8yocmf
3.2	Resampling Methods: Bootstrap	Hoang, Cuong	https://web.stanford.edu/~hastie/MOOC-Slides/cv_boot.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IA6E6ZNXu7dp89_uv8yocmf

No	Project	Students	Slide/Book	Video
4.1	Linear Model Selection and Best Subset Selection, Forward Stepwise Selection, Backward Stepwise Selection, Estimating Test Error Using Mallow's Cp, AIC, BIC, Adjusted R-squared, Estimating Test Error Using Cross-Validation	Tam	https://web.stanford.edu/~hastie/MOOC-Slides/model_selection.pdf	https://www.youtube.com/playlist? list=PL5-da3qGB5IB- Xdpj_uXJpLGiRfv9UVXI
4.2	Shrinkage Methods, Ridge Regression and The Lasso	Tam	https://web.stanford.edu/~hastie/MOOC-Slides/model_selection.pdf	https://www.youtube.com/playlist? list=PL5-da3qGB5IB- Xdpj_uXJpLGiRfv9UVXI
4.3	Tuning Parameter Selection for Ridge Regression and Lasso	Tam	https://web.stanford.edu/~hastie/MOOC-Slides/model_selection.pdf	https://www.youtube.com/playlist? list=PL5-da3qGB5IB- Xdpj_uXJpLGiRfv9UVXI
4.4	Principal Components Regression and Partial Least Squares	Thong	https://web.stanford.edu/~hastie/MOOC-Slides/model_selection.pdf	https://www.youtube.com/playlist? list=PL5-da3qGB5IB- Xdpj_uXJpLGiRfv9UVXI
5.1	Polynomial Regression and Step Functions	Thinh	https://web.stanford.edu/~hastie/MOOC-Slides/nonlinear.pdf	https://www.youtube.com/playlist? list=PL5-da3qGB5IBn84fvhh- u2MU80jvo8OoR
5.2	Piecewise Polynomials and Splines	Thinh	https://web.stanford.edu/~hastie/MOOC-Slides/nonlinear.pdf	https://www.youtube.com/playlist? list=PL5-da3qGB5IBn84fvhh- u2MU80jvo8OoR
5.3	Smoothing Splines	Thinh	https://web.stanford.edu/~hastie/MOOC-Slides/nonlinear.pdf	https://www.youtube.com/playlist? list=PL5-da3qGB5IBn84fvhh- u2MU80jvo8OoR

No	Project	Students	Slide/Book	Video
6.1	Decision Trees	Truong, Phu	https://web.stanford.edu/~hastie/MOOC-Slides/trees.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IB23TLuA8ZgVGC8hV8ZAd Gh
6.2	Pruning a Decision Tree	Truong, Phu	https://web.stanford.edu/~hastie/MOOC-Slides/trees.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IB23TLuA8ZgVGC8hV8ZAd Gh
6.3	Classification Trees and Comparison with Linear Models	Truong, Phu	https://web.stanford.edu/~hastie/MOOC-Slides/trees.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IB23TLuA8ZgVGC8hV8ZAd Gh
6.4	Bootstrap Aggregation (Bagging) and Random Forests	Truong, Phu	https://web.stanford.edu/~hastie/MOOC-Slides/trees.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IB23TLuA8ZgVGC8hV8ZAd Gh
6.5	Boosting	Truong, Phu	https://web.stanford.edu/~hastie/MOOC-Slides/trees.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IB23TLuA8ZgVGC8hV8ZAd Gh
6.6	Variable Importance	Truong, Phu	https://web.stanford.edu/~hastie/MOOC-Slides/trees.pdf	https://www.youtube.com/playlist? list=PL5- da3qGB5IB23TLuA8ZgVGC8hV8ZAd Gh

No	Project	Students	Slide/Book	Video
7.1	Maximal Margin Classifier	Bac, Giang	https://web.stanford.edu/~hastie/MOOC-Slides/svm.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o
7.2	Support Vector Classifier	Bac, Giang	https://web.stanford.edu/~hastie/MOOC-Slides/svm.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o
7.3	Support Vector Machines (*/MATH)	Bac, Giang	https://web.stanford.edu/~hastie/MOOC-Slides/svm.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o
7.4	Kernels (*/HEIN)	Bac, Giang	https://web.stanford.edu/~hastie/MOOC-Slides/svm.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o
7.5	Example and Comparison with Logistic Regression	Bac, Giang, Thien	https://web.stanford.edu/~hastie/MOOC-Slides/svm.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IDl6MkmovVdZwyYOhpCxo5o

No	Project	Students	Slide/Book	Video
8.1	Unsupervised Learning and Principal Components Analysis (*/Maths)	Hoang, Cuong	https://web.stanford.edu/~hastie/MOOC-Slides/unsupervised.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IBC-MneTc9oBZz0C6kNJ-f2 https://www.youtube.com/watch? v=IbE0tbjy6JQ&list=PLBv09BD7ez_5_yap Ag86Od6JeeypkS4YM
8.2	Exploring Principal Components Analysis and Proportion of Variance Explained	Hoang, Cuong	https://web.stanford.edu/~hastie/MOOC-Slides/unsupervised.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IBC-MneTc9oBZz0C6kNJ-f2
8.3	K-means Clustering	Minh, Xuan	https://web.stanford.edu/~hastie/MOOC-Slides/unsupervised.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IBC-MneTc9oBZz0C6kNJ-f2 https://www.youtube.com/watch?v=mHl5P-qlnCQ&list=PLBv09BD7ez_6cgkSUAqBXENXEhCkb_2wl
8.4	Hierarchical Clustering	Minh, Xuan	https://web.stanford.edu/~hastie/MOOC-Slides/unsupervised.pdf	https://www.youtube.com/playlist?list=PL5-da3qGB5IBC-MneTc9oBZz0C6kNJ-f2 https://www.youtube.com/watch? v=GVz6Y8r5AkY&list=PLBv09BD7ez_7qI bBhyQDr-LAKWUeycZtx
8.5	Spectral Clustering (*/Maths)	Minh, Xuan		https://www.youtube.com/watch? v=zLuVrqlYKyg&list=PLHXZdjnADb1Q6ol 2UEuPMnXpQY-KzCmBy
8.6	Expectation Maximization Algorithms (EM)	Minh, Xuan		https://www.youtube.com/watch? v=REypj2sy_5U&list=PLBv09BD7ez_4e9Lt mK626Evn1ion6ynrt
8.7	Hidden Markov Model Algorithms (HMM)	Minh	https://www.youtube.com/watch? v=i3AkTO9HLXo https://www.youtube.com/watch? v=c6OrSKsH_gg https://www.youtube.com/watch? v=3FIVNdck3NU	https://www.youtube.com/watch? v=kqSzLo9fenk&t=93s https://www.youtube.com/watch? v=WT6jI8UgROI

No	Project	Students	Slide/Book	Video
9	Fuzzy Logic	Giang		https://www.youtube.com/watch?v=a2i-IHS-c_I&list=PLIY8eNdw5tW9ZqgI9nfXxr6r-FHnLS90k
10	Neural Network (a bit introduction to DEEP LEARNING)	Thong		https://www.youtube.com/watch? v=lbE0tbjy6JQ&list=PLBv09BD7ez_5_yap Ag86Od6JeeypkS4YM

Roadmap for today

- What is machine learning?
- Inductive (qui nap) Inference and machine learning
- Types of learning
- Statistical learning
- Discriminative versus generative learning
- Challenges:
 - Curse of dimensionality and over- versus underfitting
- Is there a best learning algorithm?

What is machine learning?

Learning the terminology of machine learning with an example:

input pixel representation of the digits (image is in $R^{28\times28}$)

feature one specific property of the input (single dimension of the input) class output label (ten digits) in $\{0, 1, \ldots, 9\} = \Rightarrow$ multi-class problem classifier a function from input to output, that is $f: R^{784} \rightarrow \{0, 1, \ldots, 9\}$.

What is machine learning?

Learning the terminology of machine learning with an example:

training testing generalization model

construction of the classifier (usually optimization problem) count errors on unseen cases classifier predicts well on unseen cases parameterized function class in which the classifier is chosen

Inference I

In the natural sciences, we are doing inference.

We differentiate between two types:

- Inductive (quy nap) inference:Learning general principles from observations.
- Deductive (dien dich) inference: Deriving specific assertions from general principles.

Inference II

Inductive inference

Inductive inference is at the heart of all natural sciences.

General steps

- 1. Collecting observations/data.
- 2. Construction of a model.
- 3. Prediction.

Falsification

Inductive results can only be falsified but not verified!

Machine Learning tries to automate the process of inductive inference.

Applications of machine learning

Most important application areas:

- bioinformatics,
- computer vision/image processing/computer graphics/robotics,
- information retrieval/collaborative filtering,
- natural language processing
- economics,
- other: spam filter/intrusion detection,
- new:machine learning in computer games and software engineering.

More and more data is collected in different areas. No human can analyze it. =⇒ Increasing demand for machine learning.

Applications I - Computer Vision

Object categorization in computer vision:

- Face detection (now in digital cameras works well as long as you look straight into the camera)
- General Object Categorization (Competitions today with more than 20 classes).

Applications II - Robotics

Machine learning in robotics and autonomous driving:

- Stanford won the DARPA Grand Challenge 2005
- The Grand Urban challenge 2007 has been won by CMU

Applications III - Bioinformatics

Bioinformatics:

• prediction of diseases etc. using microarray data.

Image segmentation

User-guided image segmentation - Example of Semisupervised Learning:

Left: Input Image with user labels

Right: Image segmentation

Regression

Regression:

Learning of a general function $f: M \to N$. Examples

- · Prediction of temperature, wind direction in weather forecast,
- Prediction of whole voxel images,

How does the brain change when one gets older?

Types of learning

We distinguish between three main types of learning:

- supervised learning,
- semi-supervised learning,
- · unsupervised learning.

In the following:

X: is the input space, X_i are the training inputs,

Y: is the output space, Y_i are the training outputs.

Supervised Learning

Supervised Learning:

Given n observations $T = (X_i, Y_i)^n$ construct function $f_n : X \to Y$.

- output space Y discrete ⇒ classification
- output space Y = R or $Y = R^d \Rightarrow$ (multivariate) Regression
- general output space Y ⇒ Learning with structured output

Statistical learning I

Assumption: Data is generated by sampling from a probability measure P on $X \times Y$.

What does that mean?

- 1. Training data is a random sample from P,
- 2. The labels $y \in Y$ are non-deterministic, that means there exists not necessarily a function y = g(x). Instead for a given input x, there exists a distribution over the possible values in Y.
- 3. Since the training data underlies statistical fluctuations, the classifier should be relatively stable under small changes of the training data.

Statistical Learning II

Binary classification $(Y = \{-1, 1\})$

The joint density p(x, y) of the probability measure P on $X \times Y$ can be decomposed as follows

- The class-conditional density p(x|y). It models the occurrence of the inputs x of class y.
- The conditional probability p(y|x). The probability that we observe y given that the input is x. The most probable class y for the features x is then used for prediction.
- The marginal distribution p(x). It models the cumulated occurrence of features x over all classes.
- The class probabilities p(y). The total probability of a class y.

Statistical Learning III

Learning problem: Predict the sex of a person, $Y = \{\text{male, female}\}\$, using the measured height of the person as a feature (input space is X = R).

Height Distribution of men and women

Statistical Learning IV

Marginal distribution

p(x) = p(x|male)p(male) + p(x|female)p(female).

Using Bayes law we get the conditional distribution p(y|x),

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}.$$

Classification rule: classify x as female if $p(\text{female}|x) \ge 1/2$ and otherwise as male.

 \Rightarrow From the plot, female if x < 1.71 and otherwise male.

But!

Mattia Dessi and actress wife Brigitte Nielsen

Formula One tycoon Bernie Ecclestone and wife Slavica

Discriminative versus generative learning

Two main types of approaches to solve a (semi)-supervised statistical learning problem:

• Generative Learning: Estimation of the whole joint distribution

p(x, y) in particular the class conditional probabilities p(x|y)

 \Rightarrow Using Bayes rule compute the conditional probability p(y|x).

Advantage: One can create synthetically new data points.

Disadvantage: One has to solve a harder problem

=⇒ predictions often worse than in discriminative learning.

• Discriminative Learning: Just model the conditional distribution

Challenges in machine learning

Challenges in machine learning:

- choice of features
- integration of prior knowledge
- computational complexity
- curse of dimensionality
- over- and underfitting

Overfitting and underfitting I

Regression: input X = R, output Y = R, training data $(X_i, Y_i)^n$

blue curve: true function, blue circles:20 noisy samples of the true function, red curve: interpolation of the training points black solid line: fitted linear model, dotted black line: polynomial model.

Overfitting and underfitting II

- using interpolation techniques there always exists a function $f: X \to Y$ which fits the data perfectly ! (given that there are no contradictions, that is if $X_i = X_j$, i = /j, then $Y_i = Y_j$.)
 - ⇒ overfitting of the data.
 - ⇒ no generalization!
- using a very simple regression model e.g. a linear one will often lead to underfitting, which means that the learned function can hardly represent the functional relationship given by the data.
 - ⇒ generalization but poor performance!

Overfitting and underfitting II

Overfitting leads to poor generalization since:

- 1. The training data is usually noisy. A perfect fit implies that one has fitted the noise.
- 2. A regression model can represent functions from a function class F (e.g. polynomials of degree k).
 - (a) the risk $R(f_n)$ of the function chosen based on the training data,
 - (b) $R_F = \min_{f \in F} R(f)$ is the minimal risk over the class F,
 - $(c)R^*$ is the minimal risk over all functions, the Bayes risk, Decomposition into the deterministic approximation error and the random estimation error,

$$R(f_n) - R^* = R(f_n) - R_F + R_F - R^*$$

Estimation error Approximation error

Overfitting and underfitting III

Figure 1: Left: Regression model with large capacity (small approximation error, high estimation error), Right: Regression model with small capacity (high approximation error, small estimation error)

Purpose of different learning methods

One learning method for all purposes?

- Key result of statistical learning theory: there exists no universally best learning method. On 'average' (this has to be defined carefully!) they perform all the same.
- Nature is 'nice' to us most problems are not of pathological nature.

Purpose of different learning methods?

- Each learning method implicitly or explicitly models different prior assumptions about the input-output relationship. The art of machine learning is to choose the method which best fits the data generating process.
- · Data can never replace prior knowledge.