Symbol	Notation	Asymptotic Bound	Limit theorem	Definition with constants	Example
O (==) Theta	$f(n) = \Theta(g(n))$	Asymptotic tight bound (g(n) is an asymptotic	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \neq 0$ (non-zero constant)	There exist <u>positive</u> constants c_0 , c_1 and n_0 s.t.: $c_0 g(n) \le f(n) \le c_1 g(n)$ for all $n \ge n_0$	$25n^2 + 100n = \Theta(n^2)$ $f(n) \qquad g(n)$
		tight bound for f(n))	It implies that: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \frac{1}{c} \neq 0$		
O (≤) Big-Oh	f(n) = O(g(n))	Asymptotic upper bound (can be tight)	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \text{ or } c$	There exist <u>positive</u> constants c_1 and n_0 such that: $f(n) \le c_1 g(n)$ for all $n \ge n_0$	$n^{2} + 100n = O(n^{3})$ $25n^{2} + 100n = O(n^{2})$
Ω (≥) Omega	$f(n) = \Omega(g(n))$	Asymptotic lower bound (can be tight)	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \text{ or } c$	There exist <u>positive</u> constants c_0 and n_0 such that: $c_0 g(n) \le f(n)$ for all $n \ge n_0$	$n^{2} + 100n = \Omega(n\sqrt{n})$ $25n^{2} + 100n = \Omega(n^{2})$ $\frac{n^{2}}{1000} - 300n = \Omega(n^{2})$
o (<) Little-oh	f(n) = o(g(n))	Asymptotic upper bound but NOT tight	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$ Cannot be a constant	For any <u>positive</u> constant c_1 , there exists n_0 s.t.: $f(n) < c_1 g(n)$ for all $n \ge n_0$	$n^{2} + 100n = o(n^{3})$ $25n^{2} + 100n \neq o(n^{2})$
ω (>) Little-omega	$f(n) = \omega(g(n))$	Asymptotic lower bound but NOT tight	$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$ Cannot be a constant	For any <u>positive</u> constant c_0 , there exist n_0 s.t.: $c_0 g(n) < f(n)$ for all $n \ge n_0$	$n^2 + 100n = \omega(n\sqrt{n})$ $25n^2 + 100n \neq \omega(n^2)$

Properties

1.
$$f(n) = O(g(n)) => g(n) = \Omega(f(n))$$

2.
$$f(n) = \Omega(g(n)) \implies g(n) = O(f(n))$$

3.
$$f(n) = O(g(n)) \implies g(n) = O(f(n))$$

4. If
$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n)) \Rightarrow f(n) = \Theta(g(n))$

5. If
$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

Transitivity (proved in slides):

6. If
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$, then $f(n) = O(h(n))$.

7. If
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$.

$$1/n$$
, 1, lgn , n^{ε} , \sqrt{n} , n , $nlgn$, n^2 , n^3 , n^c , c^n , $n!$, n^n where $0 < \varepsilon < 0.5$

Substitution method: If $\lim_{x\to\infty} h(x) = \infty$, and h(x) is monotonically increasing then $f(x) = O(g(x)) \Rightarrow f(h(x)) = O(g(h(x)))$. (topic not required)

Notation abuse:

Instead of $f(n) \in \Theta(g(n))$

we use: $f(n) = \Theta(g(n))$

If $0 \le c < d$, then $n^c = o(n^d)$.

(Higher-order polynomials grow faster than lower-order ones.)

For any d, if c > 1, $n^d = o(c^n)$

(Exponential functions grow faster than polynomial ones.)

Typically, f(n) is the running time of an algorithm. (f(n) can be a complicated function.)

 $a^{\log_b(n)} = n^{\log_b(a)}$ but $(a^n \neq n^a)$

We try to find a g(n) that is **simple** (e.g. n^2), and bounds f(n). E.g. $f(n) = \Theta(g(n))$.

Last updated: 9/7/2020