Disciplina de Circuitos Lógicos

3ª Lista de Exercícios Curso de Engenharia Elétrica UEMG Ituiutaba

https://github.com/mauro-hemerly/UEMG-2019-1

Circuitos Lógicos Combinacionais: simplificação de circuitos

1. Observe a seguir o mapa de Karnaugh para quatro variáveis.

	ĈĎ	ĈD	CD	CD
ĀB	0	0	1	0
ĀΒ	1	1	L	1
AB	1	1	0	0
ΑB	n	n	n	۵

Encontre a equação lógica simplificada, através do mapa de Karnaugh apresentado ao lado,

(a)
$$AB + BC + ACD$$

(d)
$$AB + CD$$

e assinale a opção correta.

(a)
$$AB + BC + ACD$$

(b) $ABC + ACD + ABC + ACD$

(c) $ABCD + ACD + BD$

(c)
$$ABCD + ACD + BD$$

(e)
$$AB + CD$$

2. O mapa de Karnaugh mostrado abaixo representa a função lógica

CD				
AB	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	1	1	0	0
10	1	1	0	0

(a)
$$A.C + \overline{B}.\overline{D}$$

(a)
$$A.C + \overline{B}.\overline{D}$$
 (b) $A.C + \overline{A}.\overline{C}$ (c) $B.D + \overline{B}.\overline{D}$ (d) $A \oplus C$

(c)
$$B.D + \overline{B}.\overline{I}$$

(d)
$$A \oplus C$$

(e)
$$\overline{B \oplus D}$$

3. Todo circuito lógico executa uma expressão booleana e, por mais complexo que seja, é formado pela interligação das portas lógicas básicas. A expressão booleana CORRETA executada pelo circuito representando na figura abaixo é:

(a)
$$S = \overline{((A.\overline{B}).(\overline{B.C}).(B+D)}$$

(d)
$$S = ((\overline{A}.B).(\overline{B.C}).(\overline{B+D}))$$

(b)
$$S = \overline{((\overline{A}.B).(\overline{B.C}).(B+D))}$$

(c)
$$S = \overline{((\overline{A}.B).(\overline{B.C}).(\overline{B+D})}$$

1

(a)
$$S = \overline{((A.\overline{B}).(\overline{B.C}).(B+D))}$$
 (d) $S = ((\overline{A}.B).(\overline{B.C}).(\overline{B+D}))$
(b) $S = \overline{((\overline{A}.B).(\overline{B.C}).(B+D))}$ (e) $S = \overline{((\overline{A}+B)+(\overline{B+C})+(\overline{B.D}))}$

- 4. Dada a expressão $\overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C}$, qual a expressão simplificada correspondente?
 - (a) \overline{C}
- (b) \overline{A}
- (c) $\overline{A}.\overline{C}$
- (d) $\overline{B} + B$
- (e) $\overline{A} + \overline{C}$
- 5. Assinale a alternativa que apresenta a expressão resultante da tabela verdade apresentada abaixo.

Α	В	С	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- (a) $S = (A + \overline{B} + \overline{C}).(\overline{A} + B + C)$
- (d) $S = (\overline{A}.B.C) + (A.\overline{B}.\overline{C})$
- (b) $S = (A + \overline{B} + \overline{C}).(A.\overline{B}.\overline{C})$
- (c) $S = (\overline{A} + B + C) + (A.\overline{B}.\overline{C})$
- (e) $S = (\overline{A}.B.C) + (A + \overline{B} + \overline{C})$

6. Dada a expressão:

$$A.(\overline{\overline{A}.B}) + A.\overline{C} + A.(\overline{D+\overline{D}}) + (\overline{\overline{A}.B}) + \overline{C} + (\overline{D+\overline{D}})$$

- . Assinale a alternativa que representa CORRETAMENTE a simplificação da expressão booleana acima.
- (a) $A + \overline{B} + \overline{C} + D$
- (b) $\overline{AB} + \overline{C}$
- (c) $A(\overline{BC}) + D\overline{D}$
- (d) A + B + CD (e) $A + \overline{BC}$.

7. A figura abaixo representa um circuito lógico formado por portas lógicas.

Sabendo que esse circuito implementa uma função lógica entre as entradas A, B, C e D, cujo resultado é apresentado na saída S, é correto afirmar:

- (a) A) se, em um dado instante, tivermos A = 1, B = 0, C = 1 e D = 0, então S = 1.
- (b) quaisquer que sejam as entradas, S = 0.
- (c) quaisquer que sejam as entradas, S = 1.
- (d) se, em um dado instante, tivermos A = 1, B = 1, C = 1 e D = 1, então S = 0.
- 8. A soma de **mintermos** que representa uma função f(C, B, A) é dada por

$$f(C, B, A) = \overline{C} \overline{B} A + \overline{C} B \overline{A} + C \overline{B} \overline{A} + C \overline{B} A + C B \overline{A}.$$

O produto de **maxtermos** que representa essa mesma função é:

(a)
$$f(C, B, A) = (\overline{C} + \overline{B} + A)(\overline{C} + B + \overline{A})(C + \overline{B} + \overline{A})(C + \overline{B} + A)(C + B + \overline{A})$$

(b)
$$f(C, B, A) = (C \ B \ \overline{A})(C \ \overline{B} \ A)(\overline{C} \ B \ A)(\overline{C} \ B \ \overline{A})(\overline{C} \ \overline{B} \ A)$$

(c)
$$f(C, B, A) = (\overline{C} + \overline{B} + \overline{A})(C + \overline{B} + \overline{A})(C + B + A)$$

(d)
$$f(C, B, A) = (C + B + \overline{A})(C + \overline{B} + A)(\overline{C} + B + A)(\overline{C} + B + \overline{A})(\overline{C} + \overline{B} + A)$$

9. No **circuito combinacional** mostrado na figura abaixo, $x_2x_1x_0$ **X** (x_2 sendo o dígito mais significativo) e $y_2y_1y_0$ representa um outro número binário **Y** (y_2 sendo o dígito mais significativo).

Quando \mathbf{X} é igual a \mathbf{Y} , a saída z é igual a $\mathbf{1}$ (um) e, quando \mathbf{X} é diferente de \mathbf{Y} , a saída z é igual a $\mathbf{0}$ (zero). A expressão que representa a saída z, em função das variáveis de entrada, é:

- (a) $z = (x_2 \oplus y_2)(x_1 \oplus y_1)(x_0 \oplus y_0)$
- (b) $z = (x_2y_2 + \overline{x}_2\overline{y}_2)(x_1y_1 + \overline{x}_1\overline{y}_1)(x_0y_0 + \overline{x}_0\overline{y}_0)$
- (c) $z = (x_2 \oplus y_2)(\overline{x_1 \oplus y_1})(x_0 \oplus y_0)$
- (d) $z = (x_2y_2)(\overline{x}_2\overline{y}_2) + (x_1y_1)(\overline{x}_1\overline{y}_1) + (x_0y_0)(\overline{x}_0\overline{y}_0)$
- 10. Uma mesma função Booleana pode ser representada por diferentes fórmulas. Qual das equações Booleanas abaixo não corresponde à mesma função de todas as outras ?
 - (a) $\overline{y} z + \overline{x} \overline{y} + \overline{x} z$

- (c) $\overline{x} \overline{y} \overline{z} + \overline{y} z + \overline{x} y z$
- (e) $\overline{x} \overline{y} \overline{z} + x \overline{y} z + \overline{x} z$

- (b) $\overline{x} \overline{y} \overline{z} + x \overline{y} z + \overline{x} y z$
- (d) $\overline{x} \overline{y} + x \overline{y} z + \overline{x} y z$
- 11. Qual é a equação que corresponde à função Booleana descrita pelo mapa de Karnaugh abaixo?

yz wx	00	01	11	10
00	0	0	1	0
01	1	1	1	0
11	0	1	1	1
10	0	1	0	0

- (a) $x z + w x \overline{y} + w y z + \overline{w} x y$
- (b) $x z + w x \overline{y} + w y z + \overline{w} \overline{y} z$
- (c) $x z + w y z + \overline{w} x y + \overline{w} \overline{y} z$
- (d) $x z + w x \overline{y} + \overline{w} x y + \overline{w} \overline{y} z$
- (e) $w \ x \ \overline{y} + w \ y \ z + \overline{w} \ x \ y + \overline{w} \ \overline{y} \ z$

10		. 1 1		4	1 ~	1 •	1			. ^	., .
12	А	tabela a	seguir	apresenta	a relacao	de min	termos e	maxtermos	para.	tres	variaveis
		Carrier a	5000011	aprobotion	a reração	ac mini	COLILIOS	marteermos	Para	OI OD	varia var.

Linha	x_1	x_2	x_3	Mintermo	Maxtermo
0 1 2 3 4 5 6 7	0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 x_2 \overline{x}_3 \ m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3 \ M_1 = x_1 + x_2 + \overline{x}_3 \ M_2 = x_1 + \overline{x}_2 + x_3 \ M_3 = x_1 + \overline{x}_2 + \overline{x}_3 \ M_4 = \overline{x}_1 + x_2 + x_3 \ M_5 = \overline{x}_1 + x_2 + \overline{x}_3 \ M_6 = \overline{x}_1 + \overline{x}_2 + x_3 \ M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

Analise o circuito de quatro variáveis a seguir.

Considerando esse circuito, as funções ${\bf f}$ e ${\bf g}$ são, respectivamente,

- (a) $\Sigma m(0,1,2,3,6,7,8,9) \in \Sigma m(2,3,6,7,10,14)$.
- (b) $\Sigma m(4,5,10,11,12,13,14,15) \in \Sigma m(0,1,4,5,8,9,11,12,13,15)$.
- (c) $\Pi M(0,1,2,3,6,7,8,9) \in \Pi M(0,1,4,5,8,9,11,12,13,15)$.
- (d) $\Pi M(4,5,10,11,12,13,14,15) \in \Sigma m(2,3,6,7,10,14)$.
- (e) $\Pi M(4,5,10,11,12,13,14,15)$ e $\Pi M(2,3,6,7,10,14)$.