

MATH 381 BONUS CODING HOMEWORK REPORT

GROUP MEMBERS:

Ali Valiyev (2415461) – 15/07/2002 Orkhan Ashrafov (2418408) – 30/08/2002

QUESTION 1:

Codes to solve a system of n linear equations and n unknowns using:

a) Jacobi iterative method

```
- QUESTION 1
  [28] # JACOBI method
       import numpy as np
       def Jacobi(n, M, x):
         A = M[:, :-1] # Extracting coefficient matrix A from augmented matrix M
         b = M[:, -1] # Extracting right hand side vector from augmented matrix M
         D = np.diag(A) # extract diagonal elements of A
         R = A - np.diagflat(D) # R = A - D
         print("k\tx(k)\tRele") # print column headers
         rele=10000000 # We create dummy rele variable and set it practically high enough so that we're able to execute first iteration, then we update rele accordingly after first iteration
         while rele>=10**(-3): # Let's use tolerance=0.001 as given in QUESTION 2
           if k>=11:
           x_new = (b - np.dot(R, x)) / D # solution of Jacobi method
           rele = np.linalg.norm(x new - x, ord=np.inf) / np.linalg.norm(x new, ord=np.inf) # calculate relative error
           print("{}\t{}\t{:.6f}".format(k, x_new, rele)) # print iteration number, solution, and relative error
           k=k+1
```

b) Gauss-Seidel method

```
# GAUSS-SEIDEL method
    import numpy as np
    def Gauss_Seidel(n, M, x):
      A = M[:, :-1] # Extracting coefficient matrix A from augmented matrix M
      b = M[:, -1] # Extracting right hand side vector from augmented matrix M
      L = np.tril(A) # Extract lower triangular part elements of A
      U = A - L
      print("k\tx(k)\tRele") # print column headers
      k=1
      rele=1000000 # We create dummy rele variable and set it practically high enough so that we're able to execute first iteration, then we update rele accordingly after first iteratio
      while rele>=10**(-3): # Let's use tolerance=0.001 as given in QUESTION 2
        if k>=11:
        x neww = np.dot(np.linalg.inv(L), b - np.dot(U, x))
        rele = np.linalg.norm(x_neww - x, ord=np.inf) / np.linalg.norm(x_neww, ord=np.inf)
        print("{}\t{}\t{:.6f}".format(k, x_neww, rele)) # print iteration number, splution, and relative error
        x=x neww
                                                                                                                                                   Activate Windows
        k=k+1
      return x_neww
```

QUESTION 1:

Results of tests our codes:

a) Jacobi method

```
# TESTING OUR RESULTS with Jacobi for the linear system given in QUESTION 1
   M = np.array([[2., -1., 2., -1., -1],
             [2., 1., -2., -2., -2],
             [-1., 2., -4., 1., 1],
             [3.0, 0., 0., -3., -3]]) # Augmented matrix
   x0 = np.array([1., 1., 1., 1.]) #LET'S START WITH STARTING VECTOR [1, 1, 1, 1]^T
   x = Jacobi(4, M, x0);
   print(x)
[→ k
         x(k)
               Rele
                   0.25 2. ]
         [-0.5 0.
                               0.750000
         [0.25 3.5 0.375 0.5 ]
                               1.000000
         2.720000
        [ 1.84375 4.6875
                         1.421875 -0.8125 ]
                                            0.780000
        [-2.7421875 6.515625 -1.77734375 1.015625 ]
                                                  1.685851
         1.543765
         [-4.33789062 -7.67578125 -0.96582031 6.04296875]
                                                  1.255471
   10
         [-0.35058594 16.83007812 -1.49267578 -3.33789062]
                                                  1.456075
```

b) Gauss-Seidel method

```
[31] # TESTING OUR RESULTS with Gauss-Seidel for the linear system given in QUESTION 1
    M = np.array([[2., -1., 2., -1., -1],
                  [2., 1., -2., -2., -2],
                  [-1., 2., -4., 1., 1],
                  [3.0, 0., 0., -3., -3]]) # Augmented matrix
    x0 = np.array([1., 1., 1., 1.]) # LET'S START WITH STARTING VECTOR [1, 1, 1, 1]
    x = Gauss Seidel(4, M, x0);
    print(x)
            x(k) Rele
            [-0.5 3. 1.625 0.5 ] 0.666667
            [-0.375 3. 1.46875 0.625 ] 0.052083
[-0.15625 2.5 1.1953125 0.84375 ] 0.200000
            [-0.0234375 2.125 1.02929688 0.9765625] 0.176471
           [0.02148438 1.96875 0.97314453 1.02148438] 0.079365
          [0.02197266 1.9453125 0.97253418 1.02197266] 0.012048
           [0.0111084 1.96679688 0.9861145 1.0111084 ] 0.010924
           [0.00283813 1.98876953 0.99645233 1.00283813] 0.011048
    8
            [-6.48498535e-04 1.99987793e+00 1.00081062e+00 9.99351501e-01]
                                                                                0.005555
          [-1.19590759e-03 2.00271606e+00 1.00149488e+00 9.98804092e-01]
    10
                                                                             0.001417
```

QUESTION 2:

In this example, 10 iterations are not enough to see whether Jacobi method converges. So, we use exact same code as in QUESTION 1, but this time with 50 iterations.

a) Jacobi method

```
QUESTION 2
                                                                                                                                                        ↑↓⊝目‡ृ∏् [:
# Jacobi method
    import numpy as np
    def Jacobi(n, M, x):
      b = M[:, -1] # Extracting right hand side vector from augmented matrix M
      D = np.diag(A) # extract diagonal elements of A
      R = A - np.diagflat(D) # R = A - D
      print("k\tx(k)\tRele") # print column headers
      rele=10000000 # We create dummy rele variable and set it practically high enough so that we're able to execute first iteration, then we update rele accordingly after first iteration
      while rele>=10**(-3): # Let's use tolerance=0.001 as given in QUESTION 2
        if k>=51: # printing only 50 iterations
        x new = (b - np.dot(R, x)) / D
        rele = np.linalg.norm(x_new - x, ord=np.inf) / np.linalg.norm(x_new, ord=np.inf) # calculate relative error
        print("{}\t{\:.6f}".format(k, x_new, rele)) # print iteration number, solution, and relative error
        x = x new
        k=k+1
```

b) Gauss-Seidel method

```
[33] # GAUSS-SEIDEL method
    import numpy as np
    def Gauss Seidel(n, M, x):
      A = M[:, :-1] # Extracting coefficient matrix A from augmented matrix M
      b = M[:, -1] # Extracting right hand side vector from augmented matrix M
      L = np.tril(A) # Extract lower triangular part elements of A
       print("k\tx(k)\tRele") # print column headers
       rele=1000000 # We create dummy rele variable and set it practically high enough so that we're able to execute first iteration, then we update rele accordingly after first iteration
       while rele>=10**(-3): # Let's use tolerance=0.001 as given in QUESTION 2
        if k>=51:
        x_neww = np.dot(np.linalg.inv(L), b - np.dot(U, x))
        rele = np.linalg.norm(x_neww - x, ord=np.inf) / np.linalg.norm(x_neww, ord=np.inf)
        print("{}\t{\.6f}".format(k, x_neww, rele)) # print iteration number, splution, and relative error
        x=x new
        k=k+1
       return x_neww
```

QUESTION 2:

Testing results of codes for given linear system

a) Jacobi method

So, we see results below that Jacobi method **converges** to solution [1,1,1]^T, which is indeed solution of the given linear system of equations.

Y	O	k	x(k) Rele	2		
		1	[200.		90	
	₽	2	[2.	-	0.66666667]	1.000000
		3	[1.33333333	2.	2.]	0.666667
		4	[0.	1.33333333	1.77777778]	0.750000
		5	[0.2222222	2 -0.	0.8888889]	1.500000
		6	[1.11111111	0.2222222	0.07407407]	0.800000
		7	[1.92592593	1.11111111	0.51851852]	0.461538
		8	[1.48148148	1.92592593	1.38271605]	0.448718
		9	[0.61728395	1.48148148	1.77777778]	0.486111
		10	[0.2222222	0.61728395	1.19341564]	0.724138
		11	[0.80658436	0.2222222	0.48559671]	0.877551
		12	[1.51440329	0.80658436	0.4170096]	0.467391
		13	•		1.04252401]	0.447140
		14			1.53726566]	0.395147
		15			1.3744856]	0.455090
		16	-		0.79256211]	0.734231
		17			0.51699436]	0.481949
		18	-		0.8194889]	0.392395
		19			1.29929381]	0.323535
		20	•		1.38217413]	0.347138
		21	-		1.02057613]	0.470131
		22			0.67307942]	0.369195
		23			0.73835854]	0.272509
		24	-		1.09525611]	0.268967
		25			1.30516087]	0.273451
		26			1.14267561]	0.312335
		27			0.83477564]	0.359141
		28	•		0.74900088]	0.264241
		29			0.95995772]	0.246123
		30 31	-		1.19381595] 1.18068017]	0.186937 0.198071
		32				0.243073
		33			0.81056264]	0.210606
		34	-		0.89218337]	0.183776
		35	-		1.08841943]	0.164982
		36			1.16223045]	0.168844
		37			1.04240461]	0.188253
		38			0.8869769]	0.162310
		39			0.8777115]	0.139645
		40	-		1.00940463]	0.138492
		41			1.11611157]	0.117343
		42			1.07839079]	0.122120
		43			0.95502639]	0.129174
		44	-		0.89646202]	0.118055
		45			0.96273067]	0.111790
		46	-		1.06449506]	0.092216
		47	-		1.08144843]	0.094100
		48			1.00334786]	0.101425
		49			0.92985382]	0.078363
		50	[1.07014618	0.99665214	0.9445851]	0.072981

QUESTION 2:

Testing results of codes for given linear system

b) Gauss-Seidel method.

So, we can see from results below that Gauss-Seidel method **diverges** because solution at each iteration is either [2,2,2]^T or [0,0,0]^T. Hence, this clearly means that solution **does not converge**, or it **diverges**

] k	x(k)	Rele	
1	[2. 2.	2.]	1.000000
2	[0. 0.	0.]	inf
3	[2. 2.	2.]	1.000000
4	[0. 0.	0.]	inf
5	[2. 2.	2.]	1.000000
6	[0. 0.	0.]	inf
7	[2. 2.	2.]	1.000000
8	[0. 0.	0.]	inf
9	[2. 2.	2.]	1.000000
10	[0. 0.	0.]	inf
11	[2. 2.	2.]	1.000000
12	[0. 0.	ø.]	inf
13	[2. 2.	2.]	1.000000
14	[0. 0.		inf
15	[2. 2.	2.]	1.000000
16	[0. 0.	0.]	inf
17	[2. 2.	2.]	1.000000
18	[0. 0.	0.]	inf
19	[2. 2.	2.]	1.000000
20	[0. 0.	ø.]	inf
21	[2. 2.	2.]	1.000000
22	[0. 0.	0.]	inf
23	[2. 2.	2.]	1.000000
24	[0. 0.	0.]	inf
25	[2. 2.	2.]	1.000000
26	[0. 0.	0.]	inf
27	[2. 2.	2.]	1.000000
28	[0. 0.	0.]	inf
29	[2. 2.	2.]	1.000000
30	[0. 0.	0.]	inf
31	[2. 2.	2.]	1.000000
32	[0. 0.	ø.]	inf
33	[2. 2.	2.]	1.000000
34	[0. 0.	0.]	inf
35	[2. 2.	2.]	1.000000
36	[0. 0.	0.]	inf
37	[2. 2.	2.]	1.000000
38	[0. 0.	-	inf
39	[2. 2.	2.]	1.000000
40	[0. 0.	-	inf
41	[2. 2.	2.]	1.000000
42	[0. 0.	0.]	inf
43	[2. 2.	2.]	1.000000
44	[0. 0.	0.]	inf
45	[2. 2.		1.000000
46	[0. 0.		inf
47	[2. 2.	2.]	1.000000
48	[0. 0.		inf
49	[2. 2.		1.000000
50	[0. 0.	0. J	inf