Lecture Summary: Independence of Two Random Variables

Source: Lec2.1.pdf

Key Points

• Definition of Independence:

- Two random variables X and Y are independent if for all events A related to X and B related to Y:

$$P(A \cap B) = P(A) \cdot P(B)$$
.

- This definition extends the concept of independence from events to random variables by using their respective probability measures.

• Joint PMF and Independence:

- Two random variables X and Y are independent if and only if their joint PMF satisfies:

$$f_{XY}(t_1, t_2) = f_X(t_1) \cdot f_Y(t_2), \quad \forall t_1, t_2.$$

- When X and Y are independent, conditioning does not affect their distributions:

$$f_{X|Y}(t_1 \mid t_2) = f_X(t_1), \quad f_{Y|X}(t_2 \mid t_1) = f_Y(t_2).$$

• Examples of Independence:

- Example 1: Uniform Joint PMF:
 - * Joint PMF: $f_{XY}(t_1, t_2) = \frac{1}{4}$ for all $t_1, t_2 \in \{0, 1\}$.
 - * Marginal PMFs: $f_X(t_1) = f_Y(t_2) = \frac{1}{2}$.
 - * Check: $f_{XY}(t_1, t_2) = f_X(t_1) \cdot f_Y(t_2)$.
 - * Conclusion: X and Y are independent.

- Example 2: Dependent Case:

- * Joint PMF: Values deviate from the product of marginals (e.g., a zero in the joint PMF but non-zero marginals).
- * Example: $f_{XY}(1,1) = 0$ but $f_X(1) > 0$ and $f_Y(1) > 0$.
- * Conclusion: X and Y are dependent.

• Detecting Independence:

- To verify independence, compute the joint PMF and compare it to the product of marginals for all possible values of t_1 and t_2 .
- Independence holds if and only if this equality is true for all combinations.
- Dependency can be proven by finding a single violation of this condition.

• Practical Example: IPL Powerplay Overs:

- Random variables:

- * X: Total runs scored in an over.
- * Y: Number of wickets lost.
- Independence is unlikely because runs and wickets are typically correlated (e.g., higher wickets often result in lower runs).
- This needs empirical validation using data.

Simplified Explanation

Independence of Random Variables: X and Y are independent if knowing Y gives no information about X, and vice versa.

Key Formula: Independence means:

$$f_{XY}(t_1, t_2) = f_X(t_1) \cdot f_Y(t_2), \quad \forall t_1, t_2.$$

Example: For $f_{XY}(0,0) = \frac{1}{4}$ and $f_X(0) = \frac{1}{2}$, $f_Y(0) = \frac{1}{2}$:

$$f_{XY}(0,0) = f_X(0) \cdot f_Y(0) = \frac{1}{4}.$$

Thus, X and Y are independent.

Conclusion

In this lecture, we:

- Defined independence for random variables.
- Derived the joint PMF conditions for independence.
- Explored examples to distinguish independent and dependent cases.

Independence is a cornerstone of probabilistic analysis and is critical for simplifying computations and modeling real-world scenarios.