



# **PHY Architecture Design**

Sponsored by: Si-Vision

#### Contents

| PHY Block Diagram                                               | 3  |
|-----------------------------------------------------------------|----|
| 1- FREQUENCY RATIO                                              | 4  |
| 1. Block Diagram                                                | 4  |
| 2. Input and Output ports                                       | 5  |
| 3. Block Functionality                                          | 5  |
| 2- COMMAND ADDRESS                                              | 7  |
| 1. Block Diagram                                                | 7  |
| 2. Input and Output ports                                       | 8  |
| 3. Block Functionality                                          | 8  |
| 3- WRITE DATA                                                   | 9  |
| 1. Block Diagram                                                | 9  |
| 2. Input and Output Ports                                       | 10 |
| 3. Block Functionality                                          | 10 |
| 4- CRC                                                          | 13 |
| 1. Block Diagram                                                | 13 |
| 2. Input and Output Ports                                       | 13 |
| 3. Block Functionality                                          | 13 |
| 5- REGISTER FILE                                                | 14 |
| 1. Block Diagram                                                | 14 |
| 2. Input and Output Ports                                       | 14 |
| 3. Block Functionality                                          | 14 |
| 6- Timing Diagram (DRAM interface)                              | 15 |
| 1. Single write operation with write data mask                  | 15 |
| 2. Single write operation with CRC                              | 15 |
| 3. Back to back write with data mask                            | 16 |
| 4. Two independent writes with data mask and gap 2 clock cycles | 16 |
| 5. Back to back write with CRC                                  | 16 |
| 6. Back to back write with frequency ratio 2:1 with CRC         | 17 |
| Important timing parameters                                     | 17 |
| Questions                                                       | 18 |

# PHY Block Diagram



- ❖ PHY Block consists of 5 main blocks
  - FREQUENCY RATIO
  - COMMAND ADDRESS
  - REGISTER FILE
  - WRITE DATA
  - CRC

## 1- FREQUENCY RATIO

#### 1. Block Diagram



#### 2. Input and Output ports

| Port                 | Туре   | Size                   |
|----------------------|--------|------------------------|
| dfi_cs_n_pN          | Input  | NUM_RANK bits          |
| dfi_address_pN       | Input  | 14 bits                |
| dfi_wrdata_pN        | Input  | 2 * DEVICE_TYPE bits   |
| dfi_wrdata_mask_pN   | Input  | dfi_wrdata_pN / 8 bits |
| dfi_reset_n_pN       | Input  | NUM_RANK bits          |
| dfi_wrdata_enable_pN | Input  | 1 bit                  |
| dfi_freq_ratio       | Input  | 3 bits                 |
| dfi_address          | Output | 14 bits                |
| dfi_cs               | Output | NUM_RANK bits          |
| dfi_wrdata_enable    | Output | 1 bit                  |
| dfi_wrdata_mask      | Output | dfi_wrdata_pN / 8 bits |
| dfi_wrdata           | Output | 2 * DEVICE_TYPE bits   |

#### **Parameters Description:**

o **NUM\_RANK**: Number of DRAM Ranks.

o **DEVICE\_TYPE**: Either X4 or X8 or X16.

#### 3. Block Functionality

- ❖ FREQUENCY RATIO Block will be used to convert the signals from the Memory controller interface to the PHY interface according to the dfi\_freq\_ratio signal.
- The dfi\_freq\_ratio signal is determined during initialization and stored in the REGISTER FILE block.
- It will map the signals with multiple phases into one phase.
- This block works on the DFI PHY Clock.
- ❖ In case of the matched system, the DFI PHY clock will be the same speed as the MC clock. While, in frequency ratio system, the DFI PHY clock will be faster than the MC clock.

If dfi\_freq\_ratio is: 000 the ratio is 1:1

001 the ratio is 1:2

010 the ratio is 1:4

The following figure briefly describes the function of the block



## 2- COMMAND ADDRESS

#### 1. Block Diagram



#### 2. Input and Output ports

| Port         | Туре   | Size          |
|--------------|--------|---------------|
| dfi_address  | Input  | 14 bits       |
| dfi_cs       | Input  | NUM_RANK bits |
| CA           | Output | 14 bits       |
| CS_n         | Output | NUM_RANK bits |
| burst_length | Output | 2 bits        |
| preamble     | Output | 2 bits        |
| postamble    | Output | 1 bit         |
| DRAM_CRC_en  | Output | 1 bit         |

- ❖ COMMAND ADDRESS Block will receive the dfi\_address and dfi\_cs from the FREQUENCY RATIO Block then sends the dfi\_address on the CA bus and the dfi\_cs on CS signal.
- ❖ This block determines whether the command is 1-cycle command or 2-cycle command by checking the CA [1].
  - If CA [1] = 0  $\rightarrow$  the command is 2-cycle command.
  - If CA [1] = 1  $\rightarrow$  the command is 1-cycle command.
- ❖ In case of the command is Mode Register Write Command, this block will extract the burst length, preamble, postamble and DRAM\_CRC\_en information from the MRW command.





## 3- WRITE DATA

#### 1. Block Diagram



#### 2. Input and Output Ports

| Port            | Туре   | Size                       |
|-----------------|--------|----------------------------|
| burst_length    | Input  | 2 bits                     |
| preamble        | Input  | 2 bits                     |
| postamble       | Input  | 1 bit                      |
| DRAM_CRC_en     | Input  | 1 bit                      |
| dfi_wrdata_en   | Input  | 1 bit                      |
| dfi_wrdata      | Input  | 2 * DEVICE_TYPE bits       |
| dfi_wrdata_mask | Input  | (2 * DEVICE_TYPE) / 8 bits |
| phy_CRC_mode    | Input  | 1 bit                      |
| CRC_code        | Input  | 8* (DEVICE_TYPE/4) bits    |
| CRC_in_data     | Output | 8* (DEVICE_TYPE/4) bits    |
| CRC_en          | Output | 1 bit                      |
| DQ              | Output | DEVICE_TYPE bits           |
| DQ_valid        | Output | 1 bit                      |
| DQS             | Output | 1 bit                      |
| DQS_valid       | Output | 1 bit                      |
| DM_n            | Output | DEVICE_TYPE / 8 bits       |

- ❖ WRITE DATA is responsible for transmitting the data from the frequency ratio block to the DQ bus.
- Receive an inputs form command address block:
  - o Burst length
  - o Pre-amble
  - Postamble
  - o DRAM CRC enable
- It is responsible for transmitting the crc code with the data transmitted through 2 cases
  - Case (1) phy\_crc\_mode = 0: Sends the data with its CRC code to the DQ bus.
  - Case (2) phy\_crc\_mode = 1: Sends the data to the CRC Block to generate its CRC code then
    receive the CRC bits from the CRC Block and sends it at the end of the burst on the DQ bus to
    the DRAM interface.
- It should check the burst length value and according to this value it should send the data to the CRC Block as follows
  - If burst length = 8:
    - It should take the 8-bit data.
    - Complete the rest of burst with 1s.
    - Sends it to CRC Block to generate crc code.
    - Receive the crc code from the CRC Block
    - Sends the data and its crc code on DQ bus.

- If burst length = 16:
  - It should send the whole data to the CRC Block to generate the crc code.
  - Receive the crc bits from the CRC Block.
  - Sends the data and its crc code on DQ bus.
- o If burst length = 32:
  - It should divide the data into 2 halves, each is 16 bits
  - Sends the 1<sup>st</sup> half of data into the CRC Block.
  - Receives the crc bits for the 1<sup>st</sup> half.
  - Sends the 2<sup>nd</sup> half of data into the CRC Block.
  - Receives the crc bits for the 2<sup>nd</sup> half.
  - Sends the 1<sup>st</sup> half of data and their crc bits on the 17<sup>th</sup> and 18<sup>th</sup> UI then sends the 2<sup>nd</sup> half of data with their crc bits on the 35<sup>th</sup> and 36<sup>th</sup> UI.



- It should generate the DQS pattern.
  - The following block illustrates how WRITE DATA Block handles and generate the DQS pattern.



- WRITE DATA Block should check the write data enable gap between two consecutive write data and check the sum of preamble and postamble pattern bits.
  - If write data enable gap greater than 5 clock cycles, → then no back-to-back write and this block will be dis-abled (enable = 0).
  - If write data enable gap smaller than 5 clock cycles and the sum of pattern bits greater than double the enable gap clock cycles, → then it is back-to-back write and this block should be enabled.
- PATTERN REGISTER Block
  - Takes the post-amble pattern and save it in the register (from left to write).
  - Takes the preamble pattern and save it in the register (from right to left).
  - While saving the preamble pattern, if preamble pattern collides with the post amble pattern, we should give priority to preamble. (Preambles overwrite post amble if collided)
- The output of this block is the interamble Pattern.

## 4- CRC

#### 1. Block Diagram



#### 2. Input and Output Ports

| Port        | Туре   | Size                    |
|-------------|--------|-------------------------|
| CRC_in_data | Input  | 8* (DEVICE_TYPE/4) bits |
| CRC_en      | Input  | 1 bit                   |
| CRC_code    | Output | 8* (DEVICE_TYPE/4) bits |

- \* CRC Block receives an input (CRC\_en), this input decides either this block will work or not.
- It contains memory to store the data and send it bit by bit to the LFSR to generate the CRC code then send the CRC code to write data block.
- This block is duplicated according to the device type for:
  - o X4 device, one CRC block will be used.
  - o X8 device, two CRC blocks will be used.
  - o X16 device, four CRC blocks will be used.

## 5- REGISTER FILE

#### 1. Block Diagram



#### 2. Input and Output Ports

| Port    | Туре   | Size                   |
|---------|--------|------------------------|
| WR      | input  | 1 bit                  |
| address | input  | Log2 (reg_file length) |
| Wr_data | input  | Reg_file width         |
| Rd_data | output | Reg_file width         |

- REGISTER FILE is a block that will be used to store the programmable parameters (phy\_CRC\_mode, dfi\_freq\_ratio).
- During the initialization:
  - The Frequency ratio block will read the dfi\_freq\_ratio parameter.
  - o The Write data block will read the phy\_CRC\_mode parameter.

# 6- Timing Diagram (DRAM interface)

#### 1. Single write operation with CRC



#### 2. Single write operation with write data mask



#### 3. Back to back write with data mask



#### 4. Two independent writes with data mask and gap 2 clock cycles



#### 5. Back to back write with CRC





## Important timing parameters

| parameter   | Defined by            | Description                                                                                                                                                                                      |
|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tphy_wrdata | Frequency ratio Block | This parameter specifies the number of DFI PHY clock cycles between the dfi_wrdata_en signal is asserted and the associated write data is driven on the dfi_wrdata to write data Block interface |
| tphy_wrlat  | Frequency ratio Block | This parameter specifies the number of DFI PHY clock cycles between write commands is sent and the dfi_wrdata_en signal is asserted.                                                             |

## Questions

- 1. How the register file will be written with the desired values, and how the blocks will communicate with the register file?
- 2. When will the dfi\_reset\_n\_pN signal will be used, and will it be mapped to RESET\_n in JEDEC?
- 3. For the section 4.38.5 in JEDEC, how the CRC will be enabled and disabled?