AUA CS108, Statistics, Fall 2020 Lecture 26

Michael Poghosyan

26 Oct 2020

Contents

► Statistics v3, Estimators

Example: Assume we want to model the daily number of car accidents in some city.

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v.

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

 $X \sim$

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Now, if we will collect data for some n days, we will get the Random Sample

$$X_1,X_2,...,X_n \sim$$

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Now, if we will collect data for some n days, we will get the Random Sample

$$X_1, X_2, ..., X_n \sim Pois(\lambda).$$

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Now, if we will collect data for some n days, we will get the Random Sample

$$X_1, X_2, ..., X_n \sim Pois(\lambda)$$
.

After collecting that data, we will get the Dataset $x_1, x_2, ..., x_n$ of the daily number of car accidents for day 1, 2, ..., n.

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Now, if we will collect data for some n days, we will get the Random Sample

$$X_1, X_2, ..., X_n \sim Pois(\lambda)$$
.

After collecting that data, we will get the Dataset $x_1, x_2, ..., x_n$ of the daily number of car accidents for day 1, 2, ..., n.

▶ Here our Parameter is $\lambda = \theta$; it is 1D;

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Now, if we will collect data for some n days, we will get the Random Sample

$$X_1, X_2, ..., X_n \sim Pois(\lambda)$$
.

After collecting that data, we will get the Dataset $x_1, x_2, ..., x_n$ of the daily number of car accidents for day 1, 2, ..., n.

- ▶ Here our Parameter is $\lambda = \theta$; it is 1D;
- ▶ The set of Parameters is $(0, +\infty) = \Theta \subset \mathbb{R}$;

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Now, if we will collect data for some n days, we will get the Random Sample

$$X_1, X_2, ..., X_n \sim Pois(\lambda)$$
.

After collecting that data, we will get the Dataset $x_1, x_2, ..., x_n$ of the daily number of car accidents for day 1, 2, ..., n.

- ▶ Here our Parameter is $\lambda = \theta$; it is 1D;
- ▶ The set of Parameters is $(0, +\infty) = \Theta \subset \mathbb{R}$;
- ▶ The Parametric Family of Distributions is $Pois(\lambda)$.

Example: Assume we want to model the daily number of car accidents in some city. Let X be that daily number of car accidents. Of course, X is a r.v. An appropriate Distribution for X will be

$$X \sim Pois(\lambda),$$

for some λ to be estimated.

Now, if we will collect data for some n days, we will get the Random Sample

$$X_1, X_2, ..., X_n \sim Pois(\lambda)$$
.

After collecting that data, we will get the Dataset $x_1, x_2, ..., x_n$ of the daily number of car accidents for day 1, 2, ..., n.

- ▶ Here our Parameter is $\lambda = \theta$; it is 1D;
- ▶ The set of Parameters is $(0, +\infty) = \Theta \subset \mathbb{R}$;
- ▶ The Parametric Family of Distributions is $Pois(\lambda)$.

And our problem here will be to estimate our unknown λ , using the realizations x_1, x_2, \dots, x_n

Example: Assume we want to model the height of a 20 year old person, X.

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v.

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

 $X \sim$

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, for some $\mu \in \mathbb{R}, \sigma^2 \geq 0$.

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2),$$
 for some $\mu \in \mathbb{R}, \sigma^2 \geq 0.$

We will consider a Random Sample (heights of n persons of age 20, but before getting the actual data)

$$X_1, X_2, ..., X_n \sim$$

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2),$$
 for some $\mu \in \mathbb{R}, \sigma^2 \geq 0.$

We will consider a Random Sample (heights of n persons of age 20, but before getting the actual data)

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2), \qquad \mu \in \mathbb{R}, \sigma^2 \geq 0.$$

and do our analysis based on this Random Sample.

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2),$$
 for some $\mu \in \mathbb{R}, \sigma^2 \geq 0.$

We will consider a Random Sample (heights of n persons of age 20, but before getting the actual data)

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2), \qquad \mu \in \mathbb{R}, \sigma^2 \geq 0.$$

and do our analysis based on this Random Sample. Then, we will collect data, and obtain a Sample $x_1, x_2, ..., x_n$, a realization of $X_1, X_2, ..., X_n$.

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2),$$
 for some $\mu \in \mathbb{R}, \sigma^2 \ge 0.$

We will consider a Random Sample (heights of n persons of age 20, but before getting the actual data)

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2), \qquad \mu \in \mathbb{R}, \sigma^2 \geq 0.$$

and do our analysis based on this Random Sample. Then, we will collect data, and obtain a Sample $x_1, x_2, ..., x_n$, a realization of $X_1, X_2, ..., X_n$. Here

• Our Parameter is $(\mu, \sigma^2) = \theta$ (or $(\mu, \sigma) = \theta$), which is 2D;

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2),$$
 for some $\mu \in \mathbb{R}, \sigma^2 \geq 0.$

We will consider a Random Sample (heights of n persons of age 20, but before getting the actual data)

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2), \qquad \mu \in \mathbb{R}, \sigma^2 \geq 0.$$

and do our analysis based on this Random Sample. Then, we will collect data, and obtain a Sample $x_1, x_2, ..., x_n$, a realization of $X_1, X_2, ..., X_n$. Here

- Our Parameter is $(\mu, \sigma^2) = \theta$ (or $(\mu, \sigma) = \theta$), which is 2D;
- ▶ The Parameter Set is $\mathbb{R} \times [0, +\infty) = \Theta \subset \mathbb{R}^2$;

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2),$$
 for some $\mu \in \mathbb{R}, \sigma^2 \ge 0.$

We will consider a Random Sample (heights of n persons of age 20, but before getting the actual data)

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2), \qquad \mu \in \mathbb{R}, \sigma^2 \geq 0.$$

and do our analysis based on this Random Sample. Then, we will collect data, and obtain a Sample $x_1, x_2, ..., x_n$, a realization of $X_1, X_2, ..., X_n$. Here

- Our Parameter is $(\mu, \sigma^2) = \theta$ (or $(\mu, \sigma) = \theta$), which is 2D;
- ▶ The Parameter Set is $\mathbb{R} \times [0, +\infty) = \Theta \subset \mathbb{R}^2$;
- ▶ The Parametric Family of Distributions is $\mathcal{N}(\mu, \sigma^2)$.

Example: Assume we want to model the height of a 20 year old person, X. Of course, X is a r.v. An appropriate model for X is

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, for some $\mu \in \mathbb{R}, \sigma^2 \geq 0$.

We will consider a Random Sample (heights of n persons of age 20, but before getting the actual data)

$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2), \qquad \mu \in \mathbb{R}, \sigma^2 \geq 0.$$

and do our analysis based on this Random Sample. Then, we will collect data, and obtain a Sample $x_1, x_2, ..., x_n$, a realization of $X_1, X_2, ..., X_n$. Here

- Our Parameter is $(\mu, \sigma^2) = \theta$ (or $(\mu, \sigma) = \theta$), which is 2D;
- ▶ The Parameter Set is $\mathbb{R} \times [0, +\infty) = \Theta \subset \mathbb{R}^2$;
- ▶ The Parametric Family of Distributions is $\mathcal{N}(\mu, \sigma^2)$.

Our Problem here is, using the observation $x_1, x_2, ..., x_n$, to estimate μ and σ^2 .

Point Estimates

Motivating Example $\ddot{-}$

Motivating Example $\ddot{-}$

Example: I have generated the following Data from a Normal Distribution:

```
## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] -0.0733 -2.14 -0.366 -1.950 -10.4956 -7.266

## [2,] 0.0756 -3.56 -2.657 -1.824 0.4723 3.393

## [3,] -0.1541 -6.94 -3.666 -0.968 -5.9566 0.123

## [4,] -2.7044 -9.00 -4.847 -0.746 -1.3706 -1.196

## [5,] -6.6370 -6.10 -10.580 2.783 -0.0354 4.852
```

Motivating Example $\ddot{\ }$

Example: I have generated the following Data from a Normal Distribution:

```
## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] -0.0733 -2.14 -0.366 -1.950 -10.4956 -7.266

## [2,] 0.0756 -3.56 -2.657 -1.824 0.4723 3.393

## [3,] -0.1541 -6.94 -3.666 -0.968 -5.9566 0.123

## [4,] -2.7044 -9.00 -4.847 -0.746 -1.3706 -1.196

## [5,] -6.6370 -6.10 -10.580 2.783 -0.0354 4.852
```

Question: Find/Estimate the Parameter values I was using.

Motivating Example $\ddot{-}$

Example: I have generated the following Data from a Normal Distribution:

```
## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] -0.0733 -2.14 -0.366 -1.950 -10.4956 -7.266

## [2,] 0.0756 -3.56 -2.657 -1.824 0.4723 3.393

## [3,] -0.1541 -6.94 -3.666 -0.968 -5.9566 0.123

## [4,] -2.7044 -9.00 -4.847 -0.746 -1.3706 -1.196

## [5,] -6.6370 -6.10 -10.580 2.783 -0.0354 4.852
```

Question: Find/Estimate the Parameter values I was using.

Moral: Statistics is like a Detective Story: you need to find the Unknown (murderer?) using some (small?) amount of Observations, Data you have $\ddot{\ }$

Let us recall what is our Problem: assume we have a Dataset $x_1, ..., x_n$. We assume that this is a realization of a Random Sample $X_1, ..., X_n$, coming from one of the Distributions from some Parametric Family:

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

And our problem is to estimate the value of our unknown Parameter θ .

Let us recall what is our Problem: assume we have a Dataset $x_1, ..., x_n$. We assume that this is a realization of a Random Sample $X_1, ..., X_n$, coming from one of the Distributions from some Parametric Family:

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

And our problem is to estimate the value of our unknown Parameter θ .

To estimate θ , we will use only $X_1,...,X_n$ (or, $x_1,x_2,...,x_n$), since we do not have any other thing.

Let us recall what is our Problem: assume we have a Dataset $x_1,...,x_n$. We assume that this is a realization of a Random Sample $X_1,...,X_n$, coming from one of the Distributions from some Parametric Family:

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

And our problem is to estimate the value of our unknown Parameter θ .

To estimate θ , we will use only $X_1, ..., X_n$ (or, $x_1, x_2, ..., x_n$), since we do not have any other thing. Now,

Definition: Any (measurable) function of the Random Sample $X_1, X_2, ..., X_n$ is called a **Statistics**. So Statistics is a r.v. of the form

$$g(X_1, X_2, ..., X_n).$$

Let us recall what is our Problem: assume we have a Dataset $x_1, ..., x_n$. We assume that this is a realization of a Random Sample $X_1, ..., X_n$, coming from one of the Distributions from some Parametric Family:

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

And our problem is to estimate the value of our unknown Parameter θ .

To estimate θ , we will use only $X_1, ..., X_n$ (or, $x_1, x_2, ..., x_n$), since we do not have any other thing. Now,

Definition: Any (measurable) function of the Random Sample $X_1, X_2, ..., X_n$ is called a **Statistics**. So Statistics is a r.v. of the form

$$g(X_1, X_2, ..., X_n)$$
.

This is our third meaning of the term Statistics.

Example: For example, the followings are Statistics:

$$X_1, \frac{X_1 + X_n}{3}, \sin(X_1 \cdot X_2 + X_3 + ... + X_n).$$

Example: For example, the followings are Statistics:

$$X_1, \frac{X_1 + X_n}{3}, \sin(X_1 \cdot X_2 + X_3 + ... + X_n).$$

Definition: The Distribution of the Statistics $g(X_1, X_2, ..., X_n)$ is called a **Sampling Distribution**.

Example: For example, the followings are Statistics:

$$X_1, \frac{X_1 + X_n}{3}, \sin(X_1 \cdot X_2 + X_3 + ... + X_n).$$

Definition: The Distribution of the Statistics $g(X_1, X_2, ..., X_n)$ is called a **Sampling Distribution**.

Example: The Sampling Distribution of the Statistics

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

is

Example: For example, the followings are Statistics:

$$X_1, \frac{X_1 + X_n}{3}, \sin(X_1 \cdot X_2 + X_3 + ... + X_n).$$

Definition: The Distribution of the Statistics $g(X_1, X_2, ..., X_n)$ is called a **Sampling Distribution**.

Example: The Sampling Distribution of the Statistics

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

is almost Normal, for large n, by the CLT.

Assume we want to estimate the value of the parameter $\theta \in \Theta$, and we will use the Statistics $g(X_1,...,X_n)$ for that.

Assume we want to estimate the value of the parameter $\theta \in \Theta$, and we will use the Statistics $g(X_1,...,X_n)$ for that.

Definition: If

- $ightharpoonup g: \mathbb{R}^n \to \Theta;$
- \triangleright g doesn't depend on the unknown θ ;

then the Statistics $g(X_1, X_2, ..., X_n)$ is called an **Estimator** for θ , and it is usually denoted by

$$\hat{\theta} = \hat{\theta}_n = g(X_1, X_2, ..., X_n).$$