Introducción al Procesamiento de Señales Curso 2013

Clase 9

Javier G. García

3 de octubre de 2013

Transformada de Fourier

Definición:

Transformada de Fourier directa (o integral de Foorier o ecuación de análisis):

$$X(t) = \mathcal{F}\{x(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} x(t)e^{-j2\pi t}dt$$

Transformada de Fourier inversa (o ecuación de síntesis):

$$x(t) = \mathcal{F}^{-1}\{X(\cdot)\}(t) \triangleq \int_{-\infty}^{+\infty} X(t)e^{j2\pi t}dt$$

Transformada de Fourier - Algunos ejemplos 3

▶ Exponencial compleja: $x(t) = e^{j2\pi f_0 t}$ con $f_0 \in \Re$

$$e^{j2\pi f_0 t} \supset \delta(f-f_0)$$

► Coseno: $x(t) = \cos(2\pi f_0 t)$

$$\cos(2\pi f_0 t) \supset \frac{1}{2} \left(\delta(f+f_0) + \delta(f-f_0)\right)$$

▶ Seno: $x(t) = \text{sen}(2\pi f_0 t)$

$$\operatorname{sen}(2\pi f_0 t) \supset \frac{1}{2j} \left(-\delta(f + f_0) + \delta(f - f_0) \right)$$

▶ Pulso gaussiano: $x(t) = e^{\pi t^2}$

$$e^{\pi t^2} \supset e^{\pi f^2}$$

Transformada de Fourier - Modulación 1

Si $x\supset X$ y $f_0,t_o\in\Re$ entonces

$$x(t)\cos(2\pi f_0 t) \supset \frac{1}{2}(X(f+f_0)+X(f-f_0))$$

$$x(t) \mathrm{sen}(2\pi f_0 t) \supset \frac{j}{2} (X(f + f_0) - X(f - f_0))$$

De forma dual

$$\frac{1}{2}(x(t+t_0)+x(t-t_0))\supset X(f)\cos(2\pi ft_0)$$

Serie de Fourier

Definición:

Si x(t) es periódica de período T y cumple ciertas condiciones (CD), entonces se puede representar como:

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi kt/T}$$

 c_k son los coeficientes de la serie y se calculan como:

$$c_k = rac{1}{T} \int_0^T x(t) e^{-j2\pi kt/T} dt$$

Transformada de Fourier de señales periódicas

x(t) puede escribirse como:

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi kt/T}$$

Utilizando la linealidad de la TF y la propiedad de translación resulta

$$X(f) = \sum_{k=-\infty}^{+\infty} c_k \delta(f - k/T)$$

Las señales periódicas tienen espectro de líneas (aparecen deltas de dirac).

La separación de las deltas es inversamente proporcional al período.

Vinculación de la SF con la TF

¿Habrá alguna vinculación entre los c_k y la TF de un período de la señal? x(t) puede escribirse como:

$$x(t) = \{x_1 * p_T\}(t)$$

con

$$p_T(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT)$$

Entonces,

$$c_k = \frac{1}{T} X_1(f) \big|_{f=k/T}$$

Respuesta en Frecuencia de SLIT

Sea un SLIT con respuesta impulsional h(t). Sean x(t) e y(t) la entrada y la salida de dicho sistema respectivamente. Como

$$y(t) = \{x * h\}(t)$$

Utilizando propiedades de la TF llegamos a que

$$Y(f) = H(f)X(f)$$

donde H(f) es la respuesta en frecuencia del sistema (Recordar la motivación de la primera clase de TF). Ver ejemplo circuito RC.

Ver sistemas en cascada y en paralelo.

Respuesta de un SLIT a señales periódicas

Sea un SLIT con respuesta impulsional h(t). Sea x(t) una señal periódica de período T la entrada al sistema. ¿Cómo resulta la salida?

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j2\pi kt/T}$$

Utilizando superposición resulta

$$y(t) = \sum_{k=-\infty}^{+\infty} c_k H(k/T) e^{j2\pi kt/T}$$

¿Qué se puede decir de la señal de salida? ¿Es períodica? ¿Cuáles son los coeficientes de su SF?