

Vietnam National University of HCMC International University School of Computer Science and Engineering

Object – Oriented Analysis and Design Sequence Diagram

Instructor: Le Thi Ngoc Hanh, Ph.D

ltnhanh@hcmiu.edu.vn

Role of Interaction Diagram in UML

Interaction Diagrams

 An interaction diagram typically captures the behavior of a user goal use case.

 Sequence diagrams: emphasize the order or concurrency of the interactions

 Collaboration diagrams: emphasize the interacting objects

What do Sequence Diagram model?

- Capture the interaction between objects in a context of a collaboration.
- Show object instances that play the roles defined in a collaboration
- Show the order of the interaction visually by using the vertical axis of the diagram to represent time what message are sent and when.

Example: Online bookstore

- 1. The customer begins the interaction by searching for a book by title.
- 2. The system will return all books with that title.
- 3. The customer can look at the book description.
- 4. The customer can place a book in the shopping cart.
- 5. The customer can repeat the interaction as many times as desired.
- 6. The customer can purchase the items in the cart by checking out.

Slide 6

Participants in Sequence Diagram

- A sequence diagram is made up of a collection of participants.
- Participants the system parts that interact each other during the sequence
- Classes or Objects: each object (class) in the interaction is represented by its named icon along the top of the diagram.

Lifeline

- Sequence diagrams are organized according to time
- Each participant has a corresponding lifeline
- Lifelines: each vertical dotted line is a lifeline, representing the time that an object exists

Examples of Lifeline names

Syntax	Explanation
seoclecturer	An object named secolecturer
seoclecturer : Lecturer	An object names seoclecturer of class Lectuer.
:Lecturer	An anonymous object of class Lecturer
lecturer[i]	The object lecturer that is selected by the index value <i>i</i> .
s ref sd3	A subsystem s whose internal interaction is shown in sequence diagram sd3 (decomposition).
self	The connectable element that owns the interaction shown in the sequence diagram

Types of Lifelines

Message and Focus of Control

Messages

- Messages (or signals) on a sequence diagram are specified using an arrow from the participant (message caller) that wants to pass the message to the participant (message receiver) that is to receive the message.
- A message is represented as an arrow going from the sender to the top of the focus of control (i.e., execution occurrence) of the message on the receiver's lifeline.

Message type notations

	→	>	▶
Synchronous Or Call	Asynchronous	Creation	Reply (Return)

Message

Message

Focus of control

- Activation: thick box over object's lifeline.
- Nest activations to indicate an object calling itself.

Object creation/deletion

Example

Control Structure

Example

Sequence Fragment

- UML 2.0 introduces
 Sequence (or Interaction)
 Frames
- A sequence fragment is represented as a box, called a combined fragment, which encloses a portion of the interactions within a sequence diagram
- The fragment operator (in the top left cornet) indicates the type of fragment
- Fragment types: ref, assert, loop, break, alt, opt, neg

 Sequence fragments make it easier to create and maintain accurate sequence diagrams

Common fragment types

Operator	Meaning
alt	Alternative multiple fragments: only the one whose condition is true will
	execute.
opt	Optional: the fragment executes only if the supplied condition is true.
	Equivalent to an alt only with one trace.
par	Parallel: each fragment is run in parallel.
loop	Loop: the fragment may execute multiple times, and the guard indicates the
	basis of iteration.
region	Critical region: the fragment can have only one thread executing it at once.
neg	Negative: the fragment shows an invalid interaction.
ref	Reference: refers to an interaction defined on another diagram. The frame
	is drawn to cover the lifelines involved in the interaction. You can define
	parameters and a return value.
sd	Sequence diagram: used to surround an entire sequence diagram.

Examples of fragments

- Frame: a box around part of a sequence diagram
 - if → (opt) [condition]
 - if/else → (alt) [condition], separated by horizontal dashed line
 - loop → (loop) [condition or items to loop over]

Linking sequence diagrams

- If one sequence diagram is too large or refers to another diagram:
 - · An unfinished arrow and comment.
 - A ref frame that names the other diagram.

Forms of System Control

Distributed vs Centralized

How to produce sequence diagram?

- Decide on context: Identify behavior (or use case) to be specified
- Identify structural elements:
 - Model objects (classes)
 - Model lifelines
 - Model activations
 - Model message

How do interaction diagrams help?

- Check use cases
- Check class can provide an operation
 - Showing how a class realize some operation by interacting with other objects
- Describe design pattern
 - Parameterizing by class provides a scheme for a generic interaction
- Describe how to use a components
 - Capturing how components can interact

UML Sequence Diagram

