Examen - Matemática Discreta I

Lunes 20 de julio de 2015

Lames 20 de Jane de 2010								
Número de lista	APELLIDO, Nombre							Cédula de identidad
		MO1	M02	MO3	M04	M05		

Cada problema de desarrollo correcto vale 25 puntos.

Cada respuesta correcta de múltiple opción suma 10 puntos. Respuestas incorrectas restan 2.

Múltiple Opción 1

Hallar la cantidad de formas de distribuir 5 estudiantes en 15 asientos ubicados en fila, de modo que los estudiantes no se sienten en asientos consecutivos.

Opciones: A) 252; B) 126; C) 15120; D) 55440; E) 462.

Múltiple Opción 2

Hallar el coeficiente en x^2y^3 del multinomio $(x - y + 3xy + 2)^5$.

Opciones: A) 1450; B) -730; C) -100; D) 460; E) -10.

Múltiple Opción 3

Hallar la cantidad de relaciones de equivalencia en $A = \{1, \dots, 10\}$ tales que #[1] = 5 y #[2] = 4. Opciones: A) 410; B) 350; C) 280; D) 115; E) 125.

Múltiple Opción 4

Contar la cantidad de árboles recubridores de K_4 .

Opciones: A) 13; B) 14; C) 15; D) 16; E) 17.

Múltiple Opción 5

Sea M_2 el conjunto de matrices 2×2 binarias (cero-uno) con el orden \leq de precedencia (donde $A \leq B$ si y solo si $a_{ij} \leq b_{ij}$ para toda entrada (i,j)). Se recuerda que una cadena de M_2 es un subconjunto de M_2 totalmente ordenado para el orden \leq . Sea α el menor número de cadenas disjuntas en las que se puede descomponer (M_2, \leq) . Opciones:

- A) (M_2, \leq) es un retículo, y $\alpha = 3$;
- B) (M_2, \leq) es un retículo, y $\alpha = 4$;
- C) (M_2, \leq) es un retículo, y $\alpha = 5$;
- D) (M_2, \leq) es un retículo, y $\alpha = 6$;
- E) (M_2, \leq) no es un es retículo.

Sugerencia: considerar el diagrama de Hasse de (M_2, \leq) .

Problema 1

Hallar las dos sucesiones $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ que no son nulas y verifican las siguientes igualdades:

$$(a * b)_n = \sum_{i=0}^n b_i, \forall n \in \mathbb{N}$$
$$b_n = \sum_{i=0}^n a_i \, \forall n \in \mathbb{N}.$$

Problema 2

Un grafo es *cúbico* o 3-regular si todos sus vértices tienen grado 3.

- A) Demostrar que todo grafo cúbico tiene un número par de vértices.
- B) Demostrar que existen infinitos grafos cúbicos conexos.