Homework 3

Riccardo Cereghino - S4651066

April 4, 2020

- **4.2** Siano V la pallina verde, B la bianca e R la rossa, ed X la vincita (o perdita) basata sulla pescata, ovvero la variabile casuale.
- **a** Analizziamo la distribuzione delle vincite e delle perdite in base alle palline pescate:
 - per X = -3 abbiamo un solo caso, RRR;
 - X = -2 abbiamo il caso BRR;
 - X = -1 abbiamo i casi BBR e VRR;
 - X = 0 abbiamo i casi $BBB \in VBR$;
 - X = 1 abbiamo i casi $VBB \in VVR$;
 - X = 2 il caso VVB.

Possiamo quindi disegnare la funzione di probabilità di massa.

Figure 1: Funzione di massa

Mentre il valore atteso della vincita sarà dato dalla seguente formula, dove P(i) sarà dato dai casi favorevoli per X = i ed i casi possibili (9).

$$E[x] = \sum_{i=-3}^{2} a_i P(i) =$$

$$= \frac{-3}{9} - \frac{2}{9} - \frac{2}{9} + \frac{2}{9} + \frac{2}{9} =$$

$$= \frac{-2}{9} = -0.22 \in$$

b Analizziamo la distribuzione delle vincite e delle perdite in base alle palline pescate:

- X = -2 abbiamo il caso BRR;
- X = -1 abbiamo i casi BBR e VRR;
- X = 0 abbiamo i casi BBB e VBR;
- X = 1 abbiamo i casi $VBB \in VVR$;
- X = 2 il caso VVB.

Possiamo quindi disegnare la funzione di probabilità di massa.

Figure 2: Funzione di massa

Mentre il valore atteso della vincita sarà dato dalla seguente formula, dove P(i) sarà dato dai casi favorevoli per X=i ed i casi possibili (8).

$$E[x] = \sum_{i=-3}^{2} a_i P(i) =$$

$$= -\frac{2}{8} - \frac{2}{8} + \frac{2}{8} + \frac{2}{8} = 0 \in$$