- 1. **Describing Motion**: Describe the motion of the objects shown in the following graphs.
 - i. Divide the graph plot into distinct regions of motion. ii. Identify the type of graph shown. iii. Describe the motion.
- a) The graph below is a

 Position (m)
 [North]

Time (s)

graph showing the motion of a toy car.

Find the instantaneous velocity at:

	Interval 1	Interval 2	Interval 3
Direction of Motion	N	N	N
owards or away from A		A	A
Velocity magnitude (constant, increasing, decreasing, zero)	Ţ	6	- D

interval	1	2	3
Direction of of Motion	F	F	В
Moving towards or away from origin	A	A	1
Speed Description (constant, speeding up, slowing down)	Const	Stowing	Constan

Interval	1	2	3	4	5
Direction of	7	7	2		S
of Motion				105	
Speed Description	Specking	Speed	Show?	hrou.	Speedy
	rl	N _	1000		M

	Interval 1	Interval 2	Interval 3	Interval 4	Interval 5	Interval 6	Interval 7
Direction of motion	N	N	N	/	S	S	8
Moving towards or away from origin	A	A	A	MX	5	1	A
Velocity magnitude (constant, increasing, decreasing)	inc	usasy	De	1	inc	UNASY	Curst

	Interval 1	Interval 2	Interval 3	Interval 4
Direction of motion	W	W	N	15
Velocity magnitude (constant, increasing, decreasing)	MA	Const	Del	inc

2. Moving Between Graphs

Complete the following diagram to the right that relates position-time $(\vec{d}-t)$, velocity-time (P-t), and acceleration-time (2-t) graphs.

Remember that "After" " IS CUMULATIVE!

Draw the missing graph:

c)

2. Continued

Calculations:

Assume the object starts 10.0 m E of origin at time zero.

$$\Delta d_1 = \frac{1}{2}(5)(6) = 15.0 \text{ m}$$

$$\Delta d_2 = \frac{1}{2}(5)(4) = 20.0 \text{ m}$$

$$\frac{E(3)}{0} = \frac{1}{10.0} = \frac{10.0}{10.0} = \frac{10.0}{$$

3. Generate the d-t and a-t graphs for each of the given v-t graph below. For the position-time graph plot,

Calculations:

$$\frac{v + to a + t}{a_1^2} = \frac{4 - 0}{20 - 0} = 0.20$$

$$\frac{3}{4} = \frac{4 - 0}{20 - 20} = \frac{2}{80} = -0.1$$

Calculations:

$$\frac{v+\text{t to a-t:}}{a_1^2 + \frac{4-o}{2o-o}} = 0.20$$

$$\vec{a_1} = \frac{4-o}{2o-o} = 0.20$$

$$\vec{a_2} = \frac{4-o}{2o-o} = 0.20$$

$$\vec{a_2} = \frac{1}{2} (4)(40) = 800 \text{ m (N)}$$

$$\vec{a_3} = \frac{1}{2} (-4)(40) = -800 \text{ m (N)}$$

$$\vec{a_3} = \frac{1}{2} (-4)(40) = -800 \text{ m (N)}$$

$$\vec{a_3} = \frac{1}{2} (-4)(40) = -800 \text{ m (N)}$$

$$\vec{a_3} = \frac{1}{2} (-4)(40) = -800 \text{ m (N)}$$

$$\vec{a_3} = \frac{1}{2} (-4)(40) = -800 \text{ m (N)}$$

t(s)	dm(N)
20.	0 m
60.	120.0m
100	40.0m

Describe the motion of the object:

Interval 1:

Interval 2:

Interval 3: