

+280/1/34+

QCM THLR 4

Nom et prénom, lisibles :	Identifiant (de haut en bas):
S.tban	□0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
Samuel	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9
dimue'	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9
	□0 □1 □2 ■3 □4 □5 □6 □7 □8 □9
	□0 □1 □2 □3 □4 □5 □6 □7 □8 ■9
plutôt que cocher. Renseigner les champs d'ident sieurs réponses justes. Toutes les autres n'en ont or plus restrictive (par exemple s'il est demandé si 0 pas possible de corriger une erreur, mais vous poincorrectes pénalisent; les blanches et réponses m I j'ai lu les instructions et mon sujet est com Q.2 Le langage $\{0^n1^n \mid \forall n \in \mathbb{N}\}$ est U vide	aplet: les 2 entêtes sont +280/1/xx+···+280/2/xx+.
 Q.4 A propos du lemme de pompage ☑ Si un langage ne le vérifie pas, alors il n'est ☑ Si un langage ne le vérifie pas, alors il n'est ☑ Si un langage le vérifie, alors il est rationne Q.5 Un automate fini qui a des transitions spon 	pas forcement rationnel
\square n'accepte pas $arepsilon$ \square n'est pas détern	niniste \square est déterministe \square accepte $arepsilon$
Q.6 Combien d'états au moins a un automate dont la <i>n</i> -ième lettre avant la fin est un <i>a</i> (i.e., (<i>a</i> +	déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ + b)* $a(a+b)^{n-1}$):
☐ Il n'existe pas. 🌘	$n+1$ \boxtimes 2^n \square $\frac{n(n+1)}{2}$
Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:	
L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ L_1, L_2	\square L_1 est rationnel \square L_2 est rationnel L_2 sont rationnels
nelle? Thompson, déterminimisation, évaluation Thompson, déterminisation, élimination of Thompson, déterminisation, Brzozowski-l Thompson, élimination des transitions specifications a, b a,	des transitions spontanées, évaluation. McCluskey. ontanées, déterminisation, minimisation, évaluation. b a, b
Q.9 Déterminiser cet automate : \xrightarrow{a}	

2/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

-1/2

 \Box $T(Det(T(Det(T(\mathcal{A})))))$

 T(Det(T(Det(A))))

Fin de l'épreuve.