

Visual-Inertial Tracking using Pre-integrated Factors

Tarlan Bakirli, Yihao Wang

Advisor: Jason Chui

Computer Vision Group

TUM School of Computation, Information and Technology

Technical University of Munich

02.09.23 MI, 30. Januar 2023

ТШ

Contents

- Background
- Pipeline
 - Data Loading
 - o IMU Initialization
 - Preintegration
 - Optimization
 - Evaluation
- Experiments
- Limitations
- Future Work

Background

Visual Odometry:

- Camera frames only
- Unknown scale for monocular setup
- Limited output rate
- Cameras precise in slow motion
- Not accurate in high speed scenarios (e.g. highways)

Visual-Inertial Odometry:

- Camera frames + IMU measurements (Complement each other)
- Robust motion estimates
- High output rate
- IMU large uncertainty in slow motion
- Precise in high speed scenarios

Pipeline

- → Dataloading
- → Initialization
- → Preintegration
- → Optimization
- → Evaluation

Data Loading

- Implementation of IMU data loading
- Implementation of ground truth data loading
- Calibration:
 - Double Sphere camera model
 - basalt_calibrate & basalt_calibrate_imu
 - generated values adapted into existing calibration file

IMU Initialization

- Fixed Bias
 - For computation, we set bias_gyro and bias_accel as {0, 0, 0}
- Zero Scale
 - Computed by stereo frames. No need for initialization.
- Fixed Gravity
 - \circ Assign the gravity direction and world frame: $\hat{f g}_{ t I} = \{0,0,-1\}$
 - \circ Set g = {0, 0, -9.81}
- Pose estimation
 - Initial rotation from accel&unit vec.
 - Zero initial translation
 - Estimate T_w_i
- Velocity Estimation
 - The initial frames are still.
 - Set vel_w_i_init = {0, 0, 0}
 - Estimate vel_w_i

Preintegration

$$\mathbf{R}_{\mathsf{WB}}^{i+1} = \mathbf{R}_{\mathsf{WB}}^{i} \Delta \mathbf{R}_{i,i+1} \operatorname{Exp} \left(\left(\mathbf{J}_{\Delta R}^{g} \mathbf{b}_{g}^{i} \right) \right)$$

$$\mathbf{v}_{\mathsf{B}}^{i+1} = \mathbf{v}_{\mathsf{B}}^{i} + \mathbf{g}_{\mathsf{W}} \Delta t_{i,i+1}$$

$$+ \mathbf{R}_{\mathsf{WB}}^{i} \left(\Delta \mathbf{v}_{i,i+1} + \mathbf{J}_{\Delta v}^{g} \mathbf{b}_{g}^{i} + \mathbf{J}_{\Delta v}^{a} \mathbf{b}_{a}^{i} \right)$$

$$\mathbf{v}_{\mathsf{B}}^{i+1} = \mathbf{v}_{\mathsf{B}}^{i} + \mathbf{v}_{\mathsf{B}}^{i} \Delta t_{i,i+1} + \frac{1}{2} \mathbf{g}_{\mathsf{W}} \Delta t_{i,i+1}^{2}$$

$$+ \mathbf{R}_{\mathsf{WB}}^{i} \left(\Delta \mathbf{p}_{i,i+1} + \mathbf{J}_{\Delta p}^{g} \mathbf{b}_{g}^{i} + \mathbf{J}_{\Delta p}^{a} \mathbf{b}_{a}^{i} \right)$$

$$\mathbf{I}_{\mathsf{B}}^{i} = \mathbf{I}_{\mathsf{B}}^{i} + \mathbf{$$

Preintegration

- Integrating IMU measurements per frame
- Synchronized with camera, measurements at discrete times
- 10 imu measurements per frame
 - Frame rate: 2x20 Hz (Stereo Setup)
 - o IMU rate: 200 Hz
- Preintegration of Basalt library
 - propagates state at each imu timestamp
 - predicts next state based on propagated delta state

Images: Christian Forster et al. (2016)

Basalt: https://gitlab.com/VladyslavUsenko/basalt/-/tree/master

Optimization

• Bundle Adjustment: joint optimization of feature reprojection error and the IMU error

$$\theta = \left\{ \begin{aligned} \mathbf{R}_{\mathtt{WB}}^{j},_{\mathtt{W}} \mathbf{p}_{\mathtt{B}}^{j},_{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{j} \left(\mathbf{b}_{g}^{j}, \mathbf{b}_{\mathtt{q}}^{j} \right) \\ \theta^{*} = \operatorname*{argmin}_{\theta} \left(\sum_{k} \mathbf{E}_{\mathrm{proj}}(k,j) + \mathbf{E}_{\mathrm{IMU}}(i,j) \right) \end{aligned}$$

Feature reprojection error for each keyframe:

ho: the Huber robust cost function $\mathbf{E}_{\mathrm{proj}}(k,j) =
ho \left(\left(\mathbf{x}^k - \pi(\mathbf{X}_{\mathtt{C}}^k) \right)^T \mathbf{\Sigma}_{m{k}} \left(\mathbf{x}^k - \pi(\mathbf{X}_{\mathtt{C}}^k) \right) \right)$ $\mathbf{X}_{\mathtt{C}}^k = \mathbf{R}_{\mathtt{CB}} \mathbf{R}_{\mathtt{BW}}^j \left(\mathbf{X}_{\mathtt{W}}^k - {}_{\mathtt{W}} \mathbf{p}_{\mathtt{B}}^j \right) + {}_{\mathtt{C}} \mathbf{p}_{\mathtt{B}}$

Transform cameras to IMU (body) frame

IMU error between two frames i and j: $\mathbf{E}_{\mathrm{IMU}}(i,j) = \rho \left(\left[\mathbf{e}_R^T \, \mathbf{e}_v^T \, \mathbf{e}_p^T \right] \, \mathbf{\Sigma}_I \left[\mathbf{e}_R^T \, \mathbf{e}_v^T \, \mathbf{e}_p^T \right]^T \right) \\ + \rho \left(\mathbf{e}_b^T \, \mathbf{\Sigma}_R \mathbf{e}_b \right) \\ \mathbf{e}_R = \mathrm{Log} \left(\left(\Delta \mathbf{R}_{ij} \mathrm{Exp} \left(\mathbf{J}_{\Delta R}^g \mathbf{b}_g^j \right) \right)^T \mathbf{R}_{\mathrm{BW}}^i \mathbf{R}_{\mathrm{WB}}^j \right) \\ \mathbf{e}_v = \mathbf{R}_{\mathrm{BW}}^i \left(\mathbf{w} \mathbf{v}_{\mathrm{B}}^j - \mathbf{w} \mathbf{v}_{\mathrm{B}}^i - \mathbf{g}_{\mathrm{W}} \Delta t_{ij} \right) \\ - \left(\Delta \mathbf{v}_{ij} + \mathbf{J}_{\Delta v}^g \mathbf{b}_g^j + \mathbf{J}_{\Delta v}^a \mathbf{b}_a^j \right) \\ \mathbf{e}_p = \mathbf{R}_{\mathrm{BW}}^i \left(\mathbf{w} \mathbf{p}_{\mathrm{B}}^j - \mathbf{w} \mathbf{p}_{\mathrm{B}}^i - \mathbf{w} \mathbf{v}_{\mathrm{B}}^i \Delta t_{ij} - \frac{1}{2} \mathbf{g}_{\mathrm{W}} \Delta t_{ij}^2 \right) \\ - \left(\Delta \mathbf{p}_{ij} + \mathbf{J}_{\Delta p}^g \mathbf{b}_g^j + \mathbf{J}_{\Delta p}^a \mathbf{b}_a^j \right) \\ \mathbf{e}_b = \mathbf{b}^j - \mathbf{b}^i \right) \qquad \text{We don't optimize bias.}$

Optimization

- The increasing data amount for optimization
- The old frames provide weaker information
- => Sliding windows algorithm

Only consider current states, optimize the frames inside the local window and discard redundant keyframes

For local BA, we firstly choose

- 3 latest frames for IMU error and
- 7 latest keyframes for reprojection error.

Visual Odometry's Local BA

Visual Inertial Odometry's Local BA

Evaluation

- Absolute Trajectory Error (ATE): measures the difference between points of the true and the
 estimated trajectory. performance of SLAM
 - Timestamps Association: associate the estimated poses with GT
 - Trajectory Alignment: Align the GT and the estimated trajectory using SVD
 - Error Calculation: compute the difference between each pair of poses and GT
 - RMSE (Root Mean Square Error):

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (Y_i - f(x_i))^2}$$

- Relative Pose Error (RPE): measure the drift of a visual odometry system, for example the drift per second - performance of VO
 - Compute the error of relative motion between timestamp pairs
 - Consider rotation and translation (pose)

Datasets: EuRoC

- 11 sequences recorded from a micro aerial vehicle
- Classified to different level according to illumination, velocity and so on
- V1_01 V1_02: Vicon Room
- MH_01 MH_03: Machine Hall

The data contain:

- cam0
- cam1
- imu0
 - gyroscope data
 - acceleration
- leica0
- ground truth
 - translation
 - rotation matrix
 - velocity
 - bias of gyroscope
 - bias of accelerator

Vicon Room 1

Machine Hall

V1_01_easy

Without IMU:

ATE: 0.715

sudden drifts due to insufficient inliers

With IMU: ATE: 0.186

IMU data constrain the camera motion

stable and robust!

MH_01_Easy (with IMU):

RMSE ATE: 0.35

Mean translation RPE: 4.35

MH_02_Easy (with IMU):

RMSE ATE: 0.33

Mean translation RPE: 6.06

Failed case for MH_03_medium:

Values of ATE and RPE of the estimated trajectory in meters:

	VO		VIO	
	ATE (RMSE)	RPE (Translation Mean)	ATE (RMSE)	RPE (Translation Mean)
V1_01_easy	0.715	3.770	0.186	3.301
V1_02_medium	2.037	3.356	1.943	3.358
MH_01_easy	0.421	6.088	0.352	4.351
MH_02_easy	0.254	4.064	0.326	6.055
MH_03_medium	3.251	5.350	3.240	5.875

Limitations

Compared with visual-only system, our VIO ...

- is more computationally-costly, so the window of the BA should be smaller than VO Besides, for our model itself:
 - Initialization is simplified, which is not accurate enough.
 - The gravity, velocity and bias are restricted.

Future Work

- Initialization: consider more complex situation
 - Contains bias of accelerator and gyroscope
 - Contains initial velocity: MAV is not still at the beginning
- Run on loosely-coupled datasets
 - Find the nearest timestamps and do spline interpolation
- Expand to different datasets
 - o monocular: consider the initialization of scale
 - RGB-D: consider the fusion of different data
- Expand to different situations
 - Loop Closure

References

- 1. Basalt: https://gitlab.com/VladyslavUsenko/basalt/-/tree/master
- 2. Useful tools for the RGB-D benchmark: <u>Computer Vision Group Useful tools for the RGB-D benchmark (tum.de)</u>
- 3. Christian Forster et al., On-Manifold Preintegration for Real-Time Visual-Inertial Odometry, 2016
- 4. EuRoC: https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
- 5. Mur-Artal, Raúl, and Juan D. Tardós. "Visual-inertial monocular SLAM with map reuse." *IEEE Robotics and Automation Letters* 2.2 (2017): 796-803

Thanks! Q&A