Cognome		
Nome		Non scrivere qui
MATRICOLA		
LAUREA	CIV AMB GEST INF FLN TLC MEC	1 2 3 4 5

Università degli Studi di Parma

Dipartimento di Ingegneria e Architettura

Esame di Analisi Matematica 2 — Soluzioni

A.A. 2021-2022 — Parma, 2 Febbraio 2022

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di due ore e mezza. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. Sia $f(x,y)=x^2-2y,\,(x,y)\in\mathbb{R}^2$, e sia $\gamma\colon [-1,1]\to\mathbb{R}^2$ una curva parametrica liscia tale che

$$\gamma(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 e $\gamma'(0) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Posto $\varphi(t) = f(\gamma(t))$, dove $t \in [-1, 1]$, calcolate $\varphi'(0)$.

Soluzione. Essendo la curva γ liscia per ipotesi ed essendo la funzione f di classe C^{∞} in \mathbb{R}^2 , la funzione φ risulta essere di classe C^1 in [-1,1] e quindi per la formula della derivata della funzione composta si ha

$$\varphi'(t) = \langle \nabla f(\gamma(t)) | \gamma'(t) \rangle, \qquad t \in [-1, 1].$$

Per t=0 risulta

$$\nabla f(\gamma(0)) = \nabla f(1, -1) = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

da cui segue

$$\varphi'(0) = \langle \nabla f(\gamma(0)) | \gamma'(0) \rangle = \langle \begin{pmatrix} 2 \\ -2 \end{pmatrix} | \begin{pmatrix} 3 \\ 1 \end{pmatrix} \rangle = 6 - 2 = 4.$$

Esercizio 2. Determinate per quali $\alpha \in \mathbb{R}$ tutte le soluzioni x(t) dell'equazione differenziale

$$x''(t) - 2\alpha x'(t) + (\alpha^2 + 4)x(t) = 5$$

verificano $\lim_{t \to +\infty} x(t) = 1$.

Soluzione. Le soluzioni dell'equazione caratteristica sono i numeri complessi coniugati $\lambda_{\pm} = \alpha \pm 2i$ e una soluzione dell'equazione completa è evidentemente data dalla funzione costante

$$x_p(t) = \frac{5}{\alpha^2 + 4}, \quad t \in \mathbb{R}.$$

Pertanto tutte le soluzioni dell'equazione completa sono le funzioni

$$x(t) = C_1 e^{\alpha t} \cos(2t) + C_2 e^{\alpha t} \sin(2t) + \frac{5}{\alpha^2 + 4}, \qquad t \in \mathbb{R},$$

con $C_i \in \mathbb{R}$ (i = 1, 2) costanti arbitrarie. Affinché esista il limite di x(t) per $t \to +\infty$ per ogni scelta delle costanti arbitrarie C_1 e C_2 deve evidentemente essere $\alpha < 0$ nel qual caso risulta

$$\lim_{t \to +\infty} x(t) = \frac{5}{\alpha^2 + 4}$$

da cui segue $\alpha = -1$.

Esercizio 3. Sia Γ la curva ottenuta come intersezione tra l'ellissoide di equazione $x^2 + 2y^2 + z^2 = 1$ e il piano di equazione x + y + z = 0.

- (a) Verificate che Γ è una curva (1-superficie) regolare e compatta in \mathbb{R}^3 .
- (b) Calcolate il massimo ed il minimo globale su Γ della funzione

$$f(x,y,z) = 2x + y, \qquad (x,y,z) \in \mathbb{R}^3.$$

Soluzione. (a) Sia $\Phi \in C^{\infty}(\mathbb{R}^3, \mathbb{R}^2)$ la funzione di componenti $\Phi = (\Phi^1, \Phi^2)$ definite da

$$\Phi^{1}(x, y, z) = x^{2} + 2y^{2} + z^{2} - 1$$
 e $\Phi^{2}(x, y, z) = x + y + z$

per ogni $(x, y, z) \in \mathbb{R}^3$ cosicché risulta $\Gamma = \Phi^{-1}(0, 0)$. Si ha

$$D\Phi(x,y,z) = \begin{pmatrix} 2x & 4y & 2z \\ 1 & 1 & 1 \end{pmatrix}, \qquad (x,y,z) \in \mathbb{R}^3,$$

e risulta rk $D\Phi(x,y,z) \leq 1$ se e solo se tutti i minori di ordine due della matrice $D\Phi(x,y,z)$ sono nulli. Ciò accade nei punti di coordinate (2y,y,2y) al variare di $y \in \mathbb{R}$ e nessun punto siffatto giace sul piano di equazione x+y+z=0 a meno che sia y=0 cui corrisponde l'origine che non appartiene all'ellissoide di equazione $x^2+2y^2+2z^2=1$. Pertanto, Γ risulta essere una 1-superficie regolare di \mathbb{R}^3 . Inoltre, l'insieme Γ è evidentemente chiuso perché controimmagine di un punto mediante una funzione continua oltre che limitato.

(b) Essendo lineare, la funzione f è di classe C^{∞} in \mathbb{R}^2 e quindi ha minimo e massimo globale su Γ per il teorema di Weierstrass. Essendo Γ una curva regolare, gli estremi globali possono essere cercati con il metodo dei moltiplicatori di Lagrange. Le corrispondenti equazioni sono

$$\begin{cases} 2 - 2\lambda x - \mu = 0\\ 1 - 4\lambda y - \mu = 0\\ -2\lambda z - \mu = 0 \end{cases}$$

cui vanno aggiunte le equazioni $x^2 + 2y^2 + z^2 = 1$ e x + y + z = 0 che definiscono Γ . Queste tre equazioni non hanno soluzioni per $\lambda = 0$ e quindi da esse segue

$$x = \frac{2-\mu}{2\lambda};$$
 $y = \frac{1-\mu}{4\lambda};$ $z = -\frac{\mu}{2\lambda}.$

Sostituite queste espressioni di $x, y \in z$ nelle equazioni che definiscono Γ , si ottiene il sistema

$$\begin{cases} \frac{2-\mu}{2\lambda} + \frac{1-\mu}{4\lambda} - \frac{\mu}{2\lambda} = 0 \\ \frac{(2-\mu)^2}{4\lambda^2} + 2\frac{(1-\mu)^2}{16\lambda^2} + \frac{\mu^2}{4\lambda^2} = 1 \end{cases} \implies \begin{cases} \frac{5\frac{1-\mu}{4\lambda}}{4\lambda} = 0 \\ \frac{(2-\mu)^2}{4\lambda^2} + 2\frac{(1-\mu)^2}{16\lambda^2} + \frac{\mu^2}{4\lambda^2} = 1 \end{cases} \implies \begin{cases} \frac{\mu}{2\lambda^2} = 1 \end{cases}$$

che ha soluzione $\lambda = \pm 1/\sqrt{2}$ e $\mu = 1$ e da cui si ricavano i due punti di coordinate

$$P_{\pm} = \pm \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right).$$

Risulta infine

$$f(P_{\pm}) = \pm \frac{2}{\sqrt{2}} = \pm \sqrt{2}$$

e quindi P_+ e P_- risultano essere rispettivamente punto di magssimo e minimo globale di f su Γ .

Esercizio 4. Sia

$$K = \left\{ (x, y, z) : -\sqrt{4 - x^2 - y^2} \le z \le 0 \text{ e } x \ge 0 \right\}.$$

(a) Descrivete e disegnate l'insieme K.

(b) Calcolate
$$I = \int_K xz \, d(x, y, z)$$
.

Soluzione. L'insieme K è la porzione della palla con centro nell'origine e raggio R=2 contenuta nei semispazi $z \le 0$ e $x \ge 0$:

$$(x, y, z) \in K$$
 \iff
$$\begin{cases} x^2 + y^2 + z^2 \le 4 \\ x \ge 0 \text{ e } z \le 0. \end{cases}$$

L'insieme K è compatto perché è evidentemente limitato ed è intersezione di controimmagini di intervalli chiusi mediante funzioni continue e quindi è (Lebesgue) misurabile. La funzione f definita da

$$f(x, y, z) = xz,$$
 $(x, y, z) \in \mathbb{R}^3,$

è un polinomio e quindi è integrabile in K.

Calcoliamo I utilizzando le coordinate sferiche. Si ha

$$\widetilde{K} = \{ (r, \vartheta, \varphi) \in [0, +\infty) \times [-\pi, \pi] \times [0, \pi] : (r \cos \vartheta \sec \varphi, r \sec \vartheta \sec \varphi, r \cos \varphi) \in K \}$$
$$= [0, 2] \times [-\pi/2, \pi/2] \times [\pi/2, \pi]$$

e quindi risulta

$$I = \int_K xz \, d(x,y,z) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(r,\vartheta,\varphi) = \int_K xz \, d(x,y,z) \, d(x,y,z) \, d(x,y,z) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\vartheta,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\varphi,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\varphi,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \cos \vartheta \cos \varphi \sin^2 \varphi \, d(x,\varphi,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \cos \varphi \sin^2 \varphi \, d(x,\varphi,\varphi) = \int_{[0,2]\times[-\pi/2,\pi/2]\times[\pi/2,\pi]} r^4 \cos \varphi \sin^2 \varphi \, d(x,\varphi,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \cos \varphi \sin^2 \varphi \, d(x,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \sin \varphi \sin^2 \varphi \, d(x,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \sin \varphi \sin^2 \varphi \, d(x,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \sin \varphi \sin^2 \varphi \, d(x,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \sin \varphi \sin^2 \varphi \, d(x,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \sin \varphi \sin^2 \varphi \, d(x,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \sin \varphi \sin^2 \varphi \, d(x,\varphi) = \int_{[0,2]\times[-\pi/2,\pi]} r^4 \sin^2 \varphi$$

da cui, utilizzando la formula di riduzione per fili, segue

$$= \int_{0}^{2} r^{4} dr \int_{-\pi/2}^{\pi/2} \cos \vartheta \, d\varphi \int_{\pi/2}^{\pi} \cos \varphi \sin^{2} \varphi \, d\varphi =$$

$$= \frac{1}{5} r^{5} \Big|_{0}^{2} \sin \vartheta \Big|_{-\pi/2}^{\pi/2} \frac{1}{3} \sin^{3} \varphi \Big|_{\pi/2}^{\pi} = \frac{32}{5} \cdot 2 \cdot \left(-\frac{1}{3}\right) = -\frac{64}{15}.$$

Alternativamente si può integrare per fili. In tal caso, la proiezione di K sul piano xy è la porzione di cerchio

$$\pi_{xy}(K) = \{(x,y) : x^2 + y^2 \le 2 \text{ e } x \ge 0\}$$

e per ogni $(x,y) \in \pi_{xy}(K)$ la corrispondente sezione è l'intervallo

$$K_{(x,y)} = \left[-\sqrt{4 - (x^2 + y^2)}, 0 \right], \quad (x,y) \in \pi_{xy}(K).$$

Per la formula di riduzione si ha allora

$$I = \int_{K} xz \, d(x, y, z) = \int_{\pi_{xy}(K)} \left(\int_{-\sqrt{4 - (x^2 + y^2)}}^{0} xz \, dz \right) d(x, y) =$$

$$= \int_{\pi_{xy}(K)} -\frac{1}{2} x \left[4 - (x^2 + y^2) \right] d(x, y)$$

e, utilizzando coordinate polari nel piano abbinate nuovamente alla formula di riduzione, risulta

$$I = -\frac{1}{2} \int_{-\pi/2}^{\pi/2} \cos \vartheta \, d\vartheta \left(\int_{0}^{2} r^{2} \left(4 - r^{2} \right) \, dr \right) = -\frac{1}{2} \sin \vartheta \bigg|_{-\pi/2}^{\pi/2} \left(\frac{4}{3} r^{3} - \frac{1}{5} r^{5} \right) \bigg|_{0}^{2} = \dots = -\frac{64}{15}.$$

Esercizio 5. Determinate la soluzione del seguente problema di Cauchy:

$$\begin{cases} x'(t) = -tx(t) - \frac{1}{2}e^{t^2 - t}[x(t)]^3 \\ x(0) = \frac{1}{\sqrt{e - 1}}. \end{cases}$$

Soluzione. La funzione a secondo membro è

$$f(t,x) = -tx - \frac{1}{2}e^{t^2 - t}x^3, \qquad (t,x) \in \mathbb{R} \times \mathbb{R},$$

ed è di classe $f \in C^{\infty}(\mathbb{R} \times \mathbb{R})$. Conseguentemente, il problema di Cauchy considerato ha soluzione massimale $x \in C^{\infty}(\alpha, \beta)$ con $-\infty \le \alpha = \alpha(x_0) < 0 < \beta = \beta(x_0) \le +\infty$. Tale soluzione è prolungamento di ogni altra soluzione del medesimo problema di Cauchy.

Poiché la soluzione del medesimo problema di Cauchy con dato iniziale $x_0 = 0$ è la funzione identicamente nulla x(t) = 0 per ogni $t \in \mathbb{R}$, la soluzione massimale del problema di Cauchy considerato verifica la condizione x(t) > 0 per ogni $t \in (\alpha, \beta)$. La funzione

$$y(t) = [x(t)]^{\lambda}, \qquad t \in (\alpha, \beta),$$

con $\lambda \neq 0$ da determinare è di classe $C^{\infty}(\alpha, \beta)$ e, essendo x(t) soluzione del problema di Cauchy considerato con x(t) > 0 per ogni $t \in (\alpha, \beta)$, risulta

$$y'(t) = \lambda [x(t)]^{\lambda - 1} x'(t) = \lambda [x(t)]^{\lambda - 1} \left(-tx(t) - \frac{1}{2} e^{t^2 - t} [x(t)]^3 \right) = -\lambda t y(t) - \frac{\lambda}{2} e^{t^2 - t} \lambda [x(t)]^{\lambda + 2}$$

con y(t) > 0 per ogni $t \in (\alpha, \beta)$. Scegliendo $\lambda = -2$, la funzione y(t) per $t \in (\alpha, \beta)$ risulta essere soluzione positiva del problema di Cauchy

$$\begin{cases} z'(t) = 2tz(t) + e^{t^2 - t} \\ z(0) = e - 1. \end{cases}$$

La soluzione di tale problema è

$$z(t) = e^{t^2} \left\{ (e-1) + \int_0^t e^{s^2 - s} e^{-s^2} ds \right\} = e^{t^2 + 1} \left(1 - \frac{1}{e^{t+1}} \right), \quad t \in \mathbb{R},$$

e quindi y(t) coincide con z(t) sull'intervallo aperto (α, β) contenente l'origine in cui risulta z(t) > 0. Risolvendo tale disequazione si trova t > -1 e quindi la soluzione massimale del problema di Cauchy proposto è

$$x(t) = \frac{1}{\sqrt{e^{t^2+1} (1 - e^{-(t+1)})}}, \quad t > -1.$$