Convolutional Text Translation

Simon Untergasser, Henny Sluyter-Gäthje, Tim Patzelt, Dominik Pfütze

Why are we using a convolutional network?

CNN's are state-of-the-art for Machine Translations:

by 2016 most of the best MT systems were using CNN'se.g. Google, Microsoft or Yandex translation services

Corpus

Used Dataset

Hwang et al. (2015)

Match	Transformation	Sentence pair
Full	syntactic simplification; reorder-	"During the 13th century, gingerbread was brought to Swe-
	ing of sentence constituents	den by German immigrants." and "German immigrants
		brought it to Sweden during the 13th century."
Full	lexical paraphrasing	"During the 13th century, gingerbread was brought to Swe-
		den by German immigrants." and "German immigrants
		brought it to Sweden during the 13th century."
Partial	strong paraphrasing	"Gingerbread foods vary, ranging from a soft, moist loaf
		cake to something close to a ginger biscuit." and "Ginger-
		bread is a word which describes different sweet food prod-
		ucts from soft cakes to a ginger biscuit."
Partial	adding explanations	"Humidity is the amount of water vapor in the air." and
		"Humidity (adjective: humid) refers to water vapor in the
		air, but not to liquid droplets in fog, clouds, or rain."
Partial	sentence compression; dropping	"Falaj irrigation is an ancient system dating back thousands
	irrelevant information	of years and is used widely in Oman, the UAE, China, Iran
		and other countries." and "The ancient falaj system of irri-
		gation is still in use in some areas."

Why a Siamese Network?

· most prior work models each sentence separately

```
\mathbf{s_0} she struck a deal with RH to pen a book today \mathbf{s_1^+} she signed a contract with RH to write a book \mathbf{s_1^-} she denied today that she struck a deal with RH
```

 also contradicting to human behaviour:we usually focus on key parts of one sentence by extracting parts from the other sentence that are related by identity, synonymy, antonymy and other relations

Attention-Based Convolutional Neural

Given attention matrix A, we generate the *attention feature map* $\mathbf{F}_{i,a}$ for s_i as follows:

$$\mathbf{F}_{0,a} = \mathbf{W}_0 \cdot \mathbf{A}^{\mathsf{T}} \tag{3}$$

$$\mathbf{F}_{1,a} = \mathbf{W}_1 \cdot \mathbf{A} \tag{4}$$

The weight matrices $\mathbf{W}_0 \in \mathbf{R}^{d \times s}$, $\mathbf{W}_1 \in \mathbf{R}^{d \times s}$ are parameters of the model to be learned in training.

- computes attention weights on the representation
- <u>Motivation</u>: the attention feature map shall guide the convolution to learn "counterpart-biased"

Attention-based average pooling

Full Net Architecture

Encoder

1:4 ratio of the input sentence:1 simple sentence matched correctly to the complex sentence4 simple sentences matched wrongly to the complex sentence

Decoder

<u>Input:</u>vector representation of complex sentence (Encoders' Output)

Output: the correct vector representation for the simple sentence Evaluation: BLEU-score

Thank you