

WHAT IS CLAIMED IS:

1. A measuring method of internal information of
a scattering medium, comprising:

a light injecting step of injecting pulsed light
of two or more predetermined wavelengths into a
scattering medium at a light injection position;

5 a light detecting step of detecting the light of
said two or more predetermined wavelengths having
propagated inside said scattering medium, at a
photodetection position to acquire a photodetection
signal;

10 a signal processing step of acquiring waveform
data indicating a temporal change of intensity of the
detected light, based on said photodetection signal;

15 a mean pathlength and variance computing step of
performing an operation to compute a mean pathlength of
plural photons composing said detected light, and a
variance, based on said waveform data; and

20 an absorption coefficient difference calculating
step of calculating a difference between absorption
coefficients at said predetermined wavelengths, based
on a predetermined relation holding among said mean
pathlength, said variance, and the difference between
the absorption coefficients at said two or more
predetermined wavelengths.

25 2. A measuring method of internal information of

DRAFTS-050407

a scattering medium according to Claim 1, wherein said absorption coefficient difference calculating step comprises a step of further calculating a concentration of an absorber, based on said difference between the 5 absorption coefficients at said two or more predetermined wavelengths and a difference between extinction coefficients of the absorber thereat.

3. A measuring method of internal information of a scattering medium according to Claim 1, wherein said 10 operation carried out in said mean pathlength and variance computing step is an operation executed using a mean pathlength and a variance of said photodetection signal and a mean pathlength and a variance of an instrumental function.

4. A measuring method of internal information of a scattering medium according to Claim 1, wherein said 15 predetermined relation used in said absorption coefficient difference calculating step is a relation among said mean pathlength, said variance, and said difference between the absorption coefficients at said two or more predetermined wavelengths derived from the Microscopic Beer-Lambert law.

20
25 5. A measuring method of internal information of a scattering medium according to Claim 1, wherein said pulsed light used in said light injecting step is said pulsed light of said predetermined wavelengths of $n + 1$

kinds (where n is an integer not less than 1),
said photodetection signal detected in said light
detecting step is said photodetection signals of $n + 1$
kinds,

5 said waveform data acquired in said signal
processing step is said waveform data of $n + 1$ kinds,
said mean pathlength and said variance computed
in said mean pathlength and variance computing step are
said mean pathlengths and said variances of $n + 1$ kinds,
10 and

9 said difference between the absorption
coefficients calculated in said absorption coefficient
difference calculating step is said differences of n
kinds between the absorption coefficients at said
15 predetermined wavelengths of $n + 1$ kinds.

6. A measuring method of internal information of
a scattering medium according to Claim 5, wherein said
absorption coefficient difference calculating step
comprises a step of further calculating concentrations
20 of absorbers of n kinds, based on said differences of n
kinds between the absorption coefficients at said
predetermined wavelengths of $n + 1$ kinds and
differences between extinction coefficients of the
absorbers of n kinds thereat.

25 7. A measuring method of internal information of
a scattering medium, comprising:

a light injecting step of injecting modulated light of two or more predetermined wavelengths modulated at a predetermined frequency, into a scattering medium at a light injection position;

5 a light detecting step of detecting said light of said two or more predetermined wavelengths having propagated inside said scattering medium, at a photodetection position to acquire a photodetection signal;

10 a signal processing step of extracting a signal of said predetermined frequency component from said photodetection signal;

15 a group delay and second-partial-derivative-of-logarithm-of-amplitude computing step of computing a group delay of the signal of said predetermined frequency component and a second partial derivative of logarithm of amplitude with respect to the modulation frequency, based on said signal of the predetermined frequency component; and

20 an absorption coefficient difference calculating step of calculating a difference between absorption coefficients at said predetermined wavelengths, based on a predetermined relation holding among said group delay, said second partial derivative of logarithm of amplitude with respect to the modulation frequency, and
25 the difference between the absorption coefficients at

said two or more predetermined wavelengths.

8. A measuring method of internal information of
a scattering medium according to Claim 7, wherein said
absorption coefficient difference calculating step
comprises a step of further calculating a concentration
of an absorber, based on said difference between the
absorption coefficients at said two or more
predetermined wavelengths and a difference between
extinction coefficients of the absorber thereat.

9. A measuring method of internal information of
a scattering medium according to Claim 7, wherein said
predetermined relation used in said absorption
coefficient difference calculating step is a relation
among said group delay, said second partial derivative
of logarithm of amplitude with respect to the
modulation frequency, and the difference between the
absorption coefficients at said two or more
predetermined wavelengths derived from the Microscopic
Beer-Lambert law.

10. A measuring method of internal information
of a scattering medium according to Claim 7, wherein
said modulated light used in said light injecting step
is said modulated light of said predetermined
wavelengths of $n + 1$ kinds (where n is an integer not
less than 1),

25 said photodetection signal detected in said light

detecting step is said photodetection signals of $n + 1$ kinds,

said signal of the predetermined frequency component extracted in said signal processing step is
5 said signals of predetermined frequency components of $n + 1$ kinds,

10 said group delay and said second partial derivative of logarithm of amplitude with respect to the modulation frequency computed in said group delay and second-partial-derivative-of-logarithm-of-amplitude computing step are said group delays and said second partial derivatives of logarithm of amplitude with respect to the modulation frequency of $n + 1$ kinds, and

15 said difference between the absorption coefficients calculated in said absorption coefficient difference calculating step is said differences of n kinds between the absorption coefficients at said predetermined wavelengths of $n + 1$ kinds.

20 11. A measuring method of internal information of a scattering medium according to Claim 10, wherein said absorption coefficient difference calculating step comprises a step of further calculating concentrations of absorbers of n kinds, based on said differences of n kinds between the absorption coefficients at said predetermined wavelengths of $n + 1$ kinds and
25 differences between extinction coefficients of the

DEPARTMENT OF STATE

absorbers of n kinds thereat.

12. A measuring apparatus of internal information of a scattering medium, comprising:

light injecting means for injecting pulsed light
of two or more predetermined wavelengths into a
scattering medium at a light injection position;

light detecting means for detecting the light of
said two or more predetermined wavelengths having
propagated inside said scattering medium, at a
photodetection position to acquire a photodetection
signal;

signal processing means for acquiring waveform
data indicating a temporal change of intensity of the
detected light, based on said photodetection signal;

mean pathlength and variance computing means for
performing an operation to compute a mean pathlength of
plural photons composing said detected light, and a
variance, based on said waveform data; and

absorption coefficient difference calculating
means for calculating a difference between absorption
coefficients at said predetermined wavelengths, based
on a predetermined relation holding among said mean
pathlength, said variance, and the difference between
the absorption coefficients at said two or more
predetermined wavelengths.

13. A measuring apparatus of internal

information of a scattering medium according to Claim
12, wherein said absorption coefficient difference
calculating means further calculates a concentration of
an absorber, based on said difference between the
5 absorption coefficients at said two or more
predetermined wavelengths and a difference between
extinction coefficients of the absorber thereat.

14. A measuring apparatus of internal
information of a scattering medium according to Claim
10 12, wherein said operation carried out by said mean
pathlength and variance computing means is an operation
executed using a mean pathlength and a variance of said
photodetection signal and a mean pathlength and a
variance of an instrumental function.

15 15. A measuring apparatus of internal
information of a scattering medium according to Claim
12, wherein said predetermined relation used in said
absorption coefficient difference calculating means is
a relation among said mean pathlength, said variance,
20 and said difference between the absorption coefficients
at said two or more predetermined wavelengths derived
from the Microscopic Beer-Lambert law.

25 16. A measuring apparatus of internal
information of a scattering medium according to Claim
12, wherein said pulsed light used in said light
injecting means is said pulsed light of said

D E P A T E M E N T
O F P A T E N T S
U. S. PATENT AND TRADEMARK OFFICE

predetermined wavelengths of $n + 1$ kinds (where n is an integer not less than 1),

5 said photodetection signal detected by said light detecting means is said photodetection signals of $n + 1$ kinds,

10 said waveform data acquired by said signal processing means is said waveform data of $n + 1$ kinds,

15 said mean pathlength and said variance computed by said mean pathlength and variance computing means are said mean pathlengths and said variances of $n + 1$ kinds, and

20 said difference between the absorption coefficients calculated by said absorption coefficient difference calculating means is said differences of n kinds between the absorption coefficients at said predetermined wavelengths of $n + 1$ kinds.

25 17. A measuring apparatus of internal information of a scattering medium according to Claim 16, wherein said absorption coefficient difference calculating means further calculates concentrations of absorbers of n kinds, based on said differences of n kinds between the absorption coefficients at said predetermined wavelengths of $n + 1$ kinds and differences between extinction coefficients of the absorbers of n kinds thereat.

26 18. A measuring apparatus of internal

information of a scattering medium, comprising:

light injecting means for injecting modulated light of two or more predetermined wavelengths modulated at a predetermined frequency, into a scattering medium at a light injection position;

5 light detecting means for detecting said light of said two or more predetermined wavelengths having propagated inside said scattering medium, at a photodetection position to acquire a photodetection signal;

10 signal processing means for extracting a signal of said predetermined frequency component from said photodetection signal;

15 group delay and second-partial-derivative-of-logarithm-of-amplitude computing means for computing a group delay of the signal of said predetermined frequency component and a second partial derivative of logarithm of amplitude with respect to the modulation frequency, based on said signal of the predetermined frequency component; and

20 absorption coefficient difference calculating means for calculating a difference between absorption coefficients at said predetermined wavelengths, based on a predetermined relation holding among said group delay, said second partial derivative of logarithm of amplitude with respect to the modulation frequency, and

DETERMINATION OF ABSORPTION COEFFICIENTS

the difference between the absorption coefficients at said two or more predetermined wavelengths.

19. A measuring apparatus of internal information of a scattering medium according to Claim 5 18, wherein said absorption coefficient difference calculating means further calculates a concentration of an absorber, based on said difference between the absorption coefficients at said two or more predetermined wavelengths and a difference between 10 extinction coefficients of the absorber thereat.

20. A measuring apparatus of internal information of a scattering medium according to Claim 18, wherein said predetermined relation used in said absorption coefficient difference calculating means is 15 a relation among said group delay, said second partial derivative of logarithm of amplitude with respect to the modulation frequency, and the difference between the absorption coefficients at said two or more predetermined wavelengths derived from the Microscopic 20 Beer-Lambert law.

21. A measuring apparatus of internal information of a scattering medium according to Claim 18, wherein said modulated light used in said light injecting means is said modulated light of said 25 predetermined wavelengths of $n + 1$ kinds (where n is an integer not less than 1),

said photodetection signal detected by said light detecting means is said photodetection signals of $n + 1$ kinds,

5 said signal of the predetermined frequency component extracted by said signal processing means is said signals of predetermined frequency components of $n + 1$ kinds,

10 said group delay and said second partial derivative of logarithm of amplitude with respect to the modulation frequency computed by said group delay and second-partial-derivative-of-logarithm-of-amplitude computing means are said group delays and said second partial derivatives of logarithm of amplitude with respect to the modulation frequency of $n + 1$ kinds, and

15 said difference between the absorption coefficients calculated by said absorption coefficient difference calculating means is said differences of n kinds between the absorption coefficients at said predetermined wavelengths of $n + 1$ kinds.

20 22. A measuring apparatus of internal information of a scattering medium according to Claim 21, wherein said absorption coefficient difference calculating means further calculates concentrations of absorbers of n kinds, based on said differences of n kinds between the absorption coefficients at said predetermined wavelengths of $n + 1$ kinds and

differences between extinction coefficients of the absorbers of n kinds thereat.

D E F E E D E " D E D U P E