Examen: Integration et Probabilité 2

Durée: 1H30.

Documents et calculatrices interdits. Les réponses doivent être justifiées. La qualité de la rédaction sera prise en compte.

Exercice

Soit (X,Y) la variable aléatoire vectorielle gaussienne de moyenne (1,2) et de matrice de covariance $\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$. Soit Z = 2X + Y - 2.

- 1- Déterminer la fonction caractéristique de (X,Y).
- 2- Déterminer la loi de la variable aléatoire Z.
- 3- On pose $W = \alpha X + Y$, avec $\alpha \in \mathbb{R}$. Déterminer la fonction caractéristique de la variable aléatoire vectorielle (W, Z).
- 4- Déterminer α pour que W soit indépendante de Z.

Problème

Pour tout a, b > 0, on appelle loi $\gamma(a, b)$ la loi de densité

$$f(x) = \begin{cases} \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

Partie 1

Soit X une variable aléatoire de loi $\gamma(a,b)$.

- 1- Vérifier que $\Gamma(a+1) = a\Gamma(a)$. Déduire que $\Gamma(n+1) = n!$
- 2- Calculer $E(X^k)$, pour $k \in \mathbb{N}$.
- 3- Déduire que $E(X) = \frac{p}{\lambda}$ et $Var(X) = \frac{p}{\lambda^2}$. 4- Soit a > 0. Déterminer la loi de aX.

Partie 2

Soit Y une variable aléatoire indépendante de X et de loi $\gamma(a',b)$. On pose S=X+Y et

- 5- Déterminer la densité de la variable aléatoire vectorielle (S, R).
- 6- Vérifier que les variables aléatoires S et R sont indépendantes.
- 7- Déduire que S suit une loi Gamma de paramètres à préciser.

8- Déterminer la densité de la variable aléatoire réelle R.

9- Soit $X_1, ..., X_n$ n variables aléatoires indépendantes et de même loi que X. Déduire la loi de la moyenne empirique $\overline{X_n} = \frac{1}{n}(X_1 + ... + X_n)$.

Partie 3

Soit $U_1, ..., U_n$ n variables aléatoires indépendantes et de même loi normale N(0,1). On pose $V_k = U_k^2$, pour k = 1, ..., n.

10- Déterminer la densité de la variable aléatoire V_k .

11- On pose $Z_n = \sum_{k=1}^n V_k$. Déterminer la densité de la variable aléatoire réelle Z_n (La loi de Z_n s'appelle la loi de Khi-Deux (χ_n^2) avec n degré de liberté).

12- Déduire la loi de $\frac{1}{n}Z_n$.

Partie 4

Soit W_n le temps qui s'écoule entre les arrivées des (n-1) ième et n ième clients d'un magasin. On suppose que jamais deux clients arrivent simultanément et que les W_n $(n \ge 1)$ sont indépendantes et de même loi de probabilité de fonction de répartition F. Soit N_t la variable aléatoire représentant le nombre de clients du magasin pendant l'intervalle du temps [0, t], avec $t \in \mathbb{R}_+$. On pose $S_0 = 0$ et pour tout $n \ge 1$, $S_n = W_1 + W_2 + ...W_n$.

13- Vérifier que
$$N_t = Card\{n \geq 0 \mid S_n \leq t\} = \sum_{k=1}^{+\infty} \mathbf{1}_{[0,t]}(S_k)$$
.

14- Exprimer l'événement $(N_t = n)$ en fonction de S_n , S_{n+1} et t.

15- Déduire que:

$$P(N_t = n) = F_n(t) - F_{n+1}(t)$$
 et $E(N_t) = \sum_{n=1}^{+\infty} F_n(t)$,

16- On suppose que W_n suit une loi exponentielle de paramètre λ . Déterminer la loi de la variable aléatoire S_n et déduire la loi de la variable aléatoire N_t .