### Počítačové vidění

Hluboké neuronové sítě, klasifikace obrázků

### Úloha klasifikace obrázků

- Vstupem  $x_n$  je RGB obrázek
- Úkolem zařadit  $x_n$  do jedné ze tří předdefinovaných kategorií (tříd):
  - 1. "kočka"
  - 2. "pes"
  - 3. "alpaka"
- Počet tříd označíme jako K
- Výstupem bude jedno z následujících:
  - skóre jednotlivých tříd  $s_n$ ,
  - pravděpodobnost jednotlivých tříd  $p_n$ ,
  - nebo celé číslo  $\hat{y}_n \in \{1, ..., K\}$



#### Proč klasifikace?

#### Klasifikace je zajímavá a užitečná sama o sobě





Auricularia\_auricula-

judae22









Coprinopsis\_atramen taria35

Morchella\_esculenta

Amanita\_fulva11





ens13



Galerina sulciceps19





Amanita arocheae37 Clavulinaceae15

#### zároveň ale tvoří základ mnoha dalších aplikací





#### Návrh a trénování lineárního klasifkátoru

- 1. Navrhneme diskriminativní klasifikační funkci s upravitelnými parametry
- 2. Kvantifikujeme její úspěšnost klasifikace nějakým kritériem
- 3. Nastavíme parametry klasifikátoru tak, abychom optimalizovali zvolené kritérium

#### Návrh a trénování lineárního klasifkátoru

- 1. Navrhneme diskriminativní klasifikační funkci s upravitelnými parametry
- 2. Kvantifikujeme její úspěšnost klasifikace nějakým kritériem
- 3. Nastavíme parametry klasifikátoru tak, abychom optimalizovali zvolené kritérium

# Diskriminativní klasifikace

#### Diskriminativní klasifikátor



#### Diskriminativní klasifikátor



### Reprezentace RGB obrázku jako vektoru



Tensor tvaru (výška, šířka, hloubka) (HWC formát)

Vektor délky D = výška x šířka x hloubka

#### Lineární klasifikátor

• Lineární model předpokládá afinní\* vztah mezi skóre třídy  $s_n$  a vstupem  $x_n$ 

$$s_n = w \cdot x_n + b$$

#### kde

- $x_n$  je sloupcový vektor o rozměru D
- w je matice vah klasifikátoru s rozměry  $K \times D$
- b je sloupcový vektor biasů klasifikátoru s rozměrem K

parametry klasifikátoru

### Lineární predikce skóre: příklad



 $x_n$ : 4 × 1

příklad: <a href="https://cs231n.github.io/linear-classify/">https://cs231n.github.io/linear-classify/</a>
<a href="https://cs231n.github.io/">https://cs231n.github.io/cs231n.github.io/<a href="https://cs231n.github.io/">https://cs231n.github.io/<a href="https://cs231n.github.io/">https://cs231n.github.io/<a href="https://cs231n.github.io/">https://cs231n.github.io/<a href="https://cs231n.github.io/">https://cs231n.github.io/<a href="https://cs231n.github.io/">https://cs231

### Geometrická interpretace

$$\boldsymbol{w} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,D} \\ w_{2,1} & w_{2,2} & \dots & w_{2,D} \\ w_{3,1} & w_{3,2} & \dots & w_{3,D} \end{bmatrix} \text{ airplane classifier car classifier deer classifier}$$

Každý řádek matice w je binární klasifikátor diskriminující třídu *k* od ostatních



obrázek: <a href="https://cs231n.github.io/linear-classify/">https://cs231n.github.io/linear-classify/</a>

### Geometrická interpretace

$$\boldsymbol{w} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,D} \\ w_{2,1} & w_{2,2} & \dots & w_{2,D} \\ w_{3,1} & w_{3,2} & \dots & w_{3,D} \end{bmatrix} \text{ airplane classifier car classifier deer classifier}$$

Každý řádek matice w je binární klasifikátor diskriminující třídu kod ostatních



obrázek: <a href="https://cs231n.github.io/linear-classify/">https://cs231n.github.io/linear-classify/</a>

#### Návrh a trénování lineárního klasifkátoru

- 1. Navrhneme diskriminativní klasifikační funkci s upravitelnými parametry
- 2. Kvantifikujeme její úspěšnost klasifikace nějakým kritériem
- 3. Nastavíme parametry klasifikátoru tak, abychom optimalizovali zvolené kritérium

# Klasifikační kritérium

Softmax cross entropy

#### Klasifikační kritérium

• Klasifikátor predikuje  $\hat{y}_n \in \{1, ..., K\}$ 

$$\hat{y}_n = \underset{k}{\operatorname{argmax}} \mathbf{s}_n$$

- Pro každý obrázek  $x_n$  přitom známe správnou odpověď  $y_n \in \{1, ..., K\}$  (target)
- Porovnáním  $\hat{y}_n$  vs  $y_n$  (nebo vs  $s_n$ ) můžeme vyčíslit, jak dobrá/špatná predikce je
- Celkem máme **trénovací dataset** X s N obrázky a tedy i páry  $(x_n, y_n)$
- Nakonec tedy můžeme spočítat tzv. loss

$$L(\mathbf{X}) = \frac{1}{N} \sum_{n=1}^{N} L_n(\mathbf{s}_n, \mathbf{y}_n)$$

### Multiclass cross entropy

Logistická regrese definuje loss jako tzv. křížovou entropii

$$l_n = -\sum_{k=1}^K p_{n,k} \cdot \log(\hat{p}_{n,k})$$
 Pro jeden obrázek

kde

$$\boldsymbol{p}_n = \begin{bmatrix} p_{n,1}, \dots, p_{n,K} \end{bmatrix}^{\mathsf{T}}$$
 ... cílové rozdělení (ground truth / target)  $\widehat{\boldsymbol{p}}_n = \begin{bmatrix} \hat{p}_{n,1}, \dots, \hat{p}_{n,K} \end{bmatrix}^{\mathsf{T}}$  ... výstupní pravd. (predikce) klasifikátoru

jsou vektory, na které nahlížíme jako na diskrétní pravděpodobnostní rozdělení

rozdělení

rozděleními

### Multiclass cross entropy

$$l_n = -\sum_{k=1}^K p_{n,k} \cdot \log(\hat{p}_{n,k})$$

$$\mathbf{p}_n = \left[ p_{n,1}, \dots, p_{n,K} \right]^{\mathsf{T}}$$
 cílové rozdělení (ground truth / target)



$$\widehat{\boldsymbol{p}}_n = \left[ \hat{p}_{n,1}, \dots, \hat{p}_{n,K} \right]^\mathsf{T}$$
  
výstup (predikce) klasifikátoru



### Převod číselného označení třídy na rozdělení: one hot encoding

- Značka  $y_n$  pro každý obrázek je celé číslo, tj.  $y_n \in \{1, ..., K\}$
- Pokud počet tříd K=5  $\rightarrow$  požadované rozdělení je

$$y_n = 2$$
  $\Rightarrow$   $\boldsymbol{p}_n = [0,1,0,0,0]^{\mathsf{T}}$   
 $y_n = 5$   $\Rightarrow$   $\boldsymbol{p}_n = [0,0,0,0,1]^{\mathsf{T}}$ 

## Převod výstupních skóre modelu na rozdělení: **softmax**

- Normalizuje vektor skóre  $s_n$  tak, že výstup lze interpretovat jako pravděpodobnosti
- Pravděpodobnost, že na obrázku  $x_n$  je objekt třídy k definuje jako

$$\hat{p}_{n,k} = P(\text{třída } k | \mathbf{x}_n) = \frac{e^{S_{n,k}}}{\sum_{i=1}^{K} e^{S_{n,i}}}$$

• Výstupem K-dimezionální vektor  $\hat{p}_n$  pravděpodobností jednotlivých tříd

$$\hat{p}_n = [\hat{p}_{n,1}, \dots, \hat{p}_{n,K}]^{\mathsf{T}}, \qquad 0 \le \hat{p}_{n,k} \le 1, \qquad \sum_{k=1}^{K} \hat{p}_{n,k} = 1$$

• Chová se jako "měkké" maximum: exponenciováním se zvýrazní rozdíly (nejvyšší hodnota vynikne), až teprve pak se normalizuje (ostatní jsou staženy k nule)

# Softmax: příklad

$$\hat{p}_{n,k} = \frac{e^{S_{n,k}}}{\sum_{i=1}^{K} e^{S_{n,i}}}$$

| kočka skóre  | 3.83               | $\exp(s_n)$       | 46.1               | $\frac{u_n}{\sum_{k=1}^K u_{n,k}}$ | 0.94               | kočka pravděpodobnost  |
|--------------|--------------------|-------------------|--------------------|------------------------------------|--------------------|------------------------|
| pes skóre    | -0.21              | $\longrightarrow$ | 0.81               |                                    | 0.02               | pes pravděpodobnost    |
| alpaka skóre | 0.74               |                   | 2.                 |                                    | 0.04               | alpaka pravděpodobnost |
|              | $\boldsymbol{s}_n$ |                   | $\boldsymbol{u}_n$ |                                    | $\widehat{m{p}}_n$ |                        |

#### Lineární model a klasifikační loss



obrázek: <a href="http://cs231n.github.io/linear-classify/">http://cs231n.github.io/linear-classify/</a>

#### Návrh a trénování lineárního klasifkátoru

- 1. Navrhneme diskriminativní klasifikační funkci s upravitelnými parametry
- 2. Kvantifikujeme její úspěšnost klasifikace nějakým kritériem
- 3. Budeme upravovat parametry a poznamenávat si výsledek (hodnotu kritéria)

## Celkový loss

Chybovost klasifikátoru (loss)

$$L(\mathbf{X}) = \frac{1}{N} \sum_{n=1}^{N} L_n(\mathbf{s}_n, \mathbf{y}_n)$$

• Je funkce, která kromě dat závisí na parametrech kasifikátoru, protože

$$s_n = w \cdot x_n + b$$

• Celkově tedy vyhodnocujeme funkci  $L(X,\theta)$  závislou na datech X a parametrech  $\theta$ 

### Strojové učení je optimalizace



$$\theta^* = \underset{\theta}{\operatorname{argmin}} L(X, \theta)$$





#### Minimalizace funkce

Mějme jednorozměrnou funkci

$$f(x): \mathbb{R} \to \mathbb{R}$$

tj. vstup i výstup jsou reálná čísla (skaláry)

• Chceme najít bod  $x^*$ , kde funkce f nabývá minimální hodnoty, tj.

$$x^* = \underset{x}{\operatorname{argmin}} f(x)$$

## Metoda největšího spádu (Gradient Descent, GD)

- Metoda největšího spádu využívá derivaci pro zjištění, kterým směrem funkce roste
- 1. V aktuální pozici x spočítá derivaci  $\frac{df(x)}{dx}$  (exaktně nebo numericky)
- 2. Vylepší aktuální odhad x posunutím se ve směru opačném ke směru růstu, formálně

$$x' \coloneqq x - \left[ \gamma \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x} \right]$$

Výsledná velikost rozdílu mezi původním odhadem a novým odhadem je ovlivněna

- a) velikostí kroku  $\gamma$ , kterou se výsledek derivace škáluje
- b) absolutní hodnotou derivace  $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$ , tj. strmostí f(x) v aktuálním bodě x
- 3. S novým odhadem x' se uvedený postup opakuje
- Na začátku vyžaduje nějaký počáteční odhad x

Mějmě např. funkci

$$f(x) = x^4 + x + 2$$

• Hledáme pozici  $x^*$  jejího minima, tj.

$$x^* = \operatorname*{argmin}_{x} f(x)$$

Jako počáteční odhad minima zkusíme

$$x^{(0)} = 1$$

• Nastavíme  $\gamma = 0.2$  a h = 0.001



| t | $\boldsymbol{x}$ | f(x) | df/dx |
|---|------------------|------|-------|
|   |                  |      |       |
|   |                  |      |       |
|   |                  |      |       |
|   |                  |      |       |
|   |                  |      |       |
|   |                  |      |       |
|   |                  |      |       |



| t | x     | f(x)  | df/dx |
|---|-------|-------|-------|
| 0 | 1.000 | 4.000 | 5.006 |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |
|   |       |       |       |

$$x = 1.000$$

$$f(x) = 1.000^{4} + 1.000 + 2 = 4.000$$

$$\frac{df(x)}{dx} = \frac{f(1.000 + 0.001) - f(1.000)}{0.001}$$

$$= \frac{4.005 - 4.000}{0.001}$$

$$= 5.006$$

$$x' = 1.000 - 0.2 \cdot 5.006$$

$$= -0.001$$



| t | $\boldsymbol{x}$ | f(x)  | df/dx |
|---|------------------|-------|-------|
| 0 | 1.000            | 4.000 | 5.006 |
| 1 | -0.001           | 1.999 | 1.000 |
|   |                  |       |       |
|   |                  |       |       |
|   |                  |       |       |
|   |                  |       |       |
|   |                  |       |       |

$$x = -0.001$$

$$f(x) = (-0.001)^4 + (-0.001) + 2 = 1.999$$

$$\frac{df(x)}{dx} = \frac{f(-0.001 + 0.001) - f(-0.001)}{0.001}$$

$$= \frac{2.000 - 1.999}{0.001}$$

$$= 1.000$$

$$x' = -0.001 - 0.2 \cdot 1.000$$

$$= -0.201$$



| t | $\chi$ | f(x)  | df/dx |
|---|--------|-------|-------|
| 0 | 1.000  | 4.000 | 5.006 |
| 1 | -0.001 | 1.999 | 1.00  |
| 2 | -0.201 | 1.800 | 0.968 |
|   |        |       |       |
|   |        |       |       |
|   |        |       |       |
|   |        |       |       |

$$x = -0.201$$

$$f(x) = (-0.201)^4 + (-0.201) + 2 = 1.800$$

$$\frac{df(x)}{dx} = \frac{f(-0.201 + 0.001) - f(-0.201)}{0.001}$$

$$= \frac{1.801 - 1.800}{0.001}$$

$$= 0.968$$

$$x' = -0.201 - 0.2 \cdot 0.968$$

$$= -0.395$$



| t | x      | f(x)  | df/dx |
|---|--------|-------|-------|
| 0 | 1.000  | 4.000 | 5.006 |
| 1 | -0.001 | 1.999 | 1.00  |
| 2 | -0.201 | 1.800 | 0.968 |
| 3 | -0.395 | 1.630 | 0.755 |
|   |        |       |       |
|   |        |       |       |
|   |        |       |       |

$$x = -0.395$$

$$f(x) = (-0.395)^4 + (-0.395) + 2 = 1.630$$

$$\frac{df(x)}{dx} = \frac{f(-0.395 + 0.001) - f(-0.395)}{0.001}$$

$$= \frac{1.630 - 1.630}{0.001}$$

$$= 0.755$$

$$x' = -0.395 - 0.2 \cdot 0.755$$

$$= -0.546$$



| t | x      | f(x)  | <u>d<i>f</i> /dx</u> |
|---|--------|-------|----------------------|
| 0 | 1.000  | 4.000 | 5.006                |
| 1 | -0.001 | 1.999 | 1.00                 |
| 2 | -0.201 | 1.800 | 0.968                |
| 3 | -0.395 | 1.630 | 0.755                |
| 4 | -0.546 | 1.543 | 0.352                |
|   |        |       |                      |
|   |        |       |                      |

$$x = -0.546$$

$$f(x) = (-0.546)^4 + (-0.546) + 2 = 1.543$$

$$\frac{df(x)}{dx} = \frac{f(-0.546 + 0.001) - f(-0.546)}{0.001}$$

$$= \frac{1.543 - 1.543}{0.001}$$

$$= 0.352$$

$$x' = -0.546 - 0.2 \cdot 0.352$$

$$= -0.616$$



| t | x      | f(x)  | df/dx |
|---|--------|-------|-------|
| 0 | 1.000  | 4.000 | 5.006 |
| 1 | -0.001 | 1.999 | 1.00  |
| 2 | -0.201 | 1.800 | 0.968 |
| 3 | -0.395 | 1.630 | 0.755 |
| 4 | -0.546 | 1.543 | 0.352 |
| 5 | -0.616 | 1.528 | 0.067 |
|   |        |       |       |

$$x = -0.616$$

$$f(x) = (-0.616)^4 + (-0.616) + 2 = 1.528$$

$$\frac{df(x)}{dx} = \frac{f(-0.616 + 0.001) - f(-0.616)}{0.001}$$

$$= \frac{1.528 - 1.528}{0.001}$$

$$= 0.067$$

$$x' = -0.616 - 0.2 \cdot 0.067$$

$$= -0.629$$



# Příklad GD: funkce $f(x) = x^4 + x + 2$

| t | x      | f(x)  | d <i>f</i> /dx |
|---|--------|-------|----------------|
| 0 | 1.000  | 4.000 | 5.006          |
| 1 | -0.001 | 1.999 | 1.00           |
| 2 | -0.201 | 1.800 | 0.968          |
| 3 | -0.395 | 1.630 | 0.755          |
| 4 | -0.546 | 1.543 | 0.352          |
| 5 | -0.616 | 1.528 | 0.067          |
| 6 | -0.629 | 1.528 | 0.005          |

$$x = -0.629$$

$$f(x) = (-0.629)^4 + (-0.629) + 2 = 1.528$$

$$\frac{df(x)}{dx} = \frac{f(-0.629 + 0.001) - f(-0.629)}{0.001}$$

$$= \frac{1.528 - 1.528}{0.001}$$

$$= 0.005$$

$$x' = -0.629 - 0.2 \cdot 0.005$$

$$= -0.630$$



Optimální řešení dle <a href="https://www.wolframalpha.com/">https://www.wolframalpha.com/</a>

$$x^* = \frac{-1}{2^{2/3}} = 0.62996$$

# Příklad GD: funkce $f(x) = x^4 + x + 2$

| t | x      | f(x)  | df/dx |
|---|--------|-------|-------|
| 0 | 1.000  | 4.000 | 5.006 |
| 1 | -0.001 | 1.999 | 1.00  |
| 2 | -0.201 | 1.800 | 0.968 |
| 3 | -0.395 | 1.630 | 0.755 |
| 4 | -0.546 | 1.543 | 0.352 |
| 5 | -0.616 | 1.528 | 0.067 |
| 6 | -0.629 | 1.528 | 0.005 |

Vizualizace optimálního odhadu v čase



# Příklad GD: funkce $f(x) = x^4 + x + 2$

| t | x      | f(x)  | <u>d<i>f</i> /dx</u> |
|---|--------|-------|----------------------|
| 0 | 1.000  | 4.000 | 5.006                |
| 1 | -0.001 | 1.999 | 1.00                 |
| 2 | -0.201 | 1.800 | 0.968                |
| 3 | -0.395 | 1.630 | 0.755                |
| 4 | -0.546 | 1.543 | 0.352                |
| 5 | -0.616 | 1.528 | 0.067                |
| 6 | -0.629 | 1.528 | 0.005                |

Průběh lossu (optimalizované funkce) v čase



#### Funkce: nD vstup, 1D výstup

- Trénovaný model má obvykle více než jeden parametr
- Optimalizovaná loss funkce má tedy vstup x jako vektor obecně s rozměrem D
- Vrací přitom skalární hodnotu (chybovost modelu na datasetu jako jediné číslo)
- Potřebujeme tedy minimalizovat

$$x^* = \underset{x}{\operatorname{argmin}} f(x)$$

kde

$$f(\mathbf{x}): \mathbb{R}^D \to \mathbb{R}$$
$$\mathbf{x} \in \mathbb{R}^D$$



## Derivace funkce: nD vstup, 1D výstup

• U funkcí  $f(x): \mathbb{R}^D \to \mathbb{R}$ , tj.

$$f(\mathbf{x}) = f(x_1, \dots, x_D)$$

tedy funkcí s D vstupy a 1 výstupem můžeme derivovat vzhledem ke každému z jednotlivých  $x_d \rightarrow \operatorname{parciální derivace}$ 

 Uspořádání všech D paricálních derivací do vektoru se nazývá gradient:

$$\nabla f(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \left[ \frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_D} \right]^{\mathsf{T}}$$



## Metoda největšího spádu (Gradient Descent, GD)

- Metoda největšího spádu se pro vícerozměrné funkce principiálně nemění
- Jediný rozdíl je, že derivaci nahrazuje gradient a pravidlo je vektorové:

$$x' \coloneqq x - \gamma \cdot \nabla f(x)$$

kde

původní odhad  $x \in \mathbb{R}^D$  je vektor s rozměrem D nový odhad  $x' \in \mathbb{R}^D$  je vektor s rozměrem D gradient  $\nabla f(x) \in \mathbb{R}^D$  je vektor s rozměrem D krok učení (learning rate)  $\gamma \in \mathbb{R}$  je skalár

## Metoda největšího spádu (Gradient Descent, GD)

- Metoda největšího spádu se pro vícerozměrné funkce principiálně nemění
- Jediný rozdíl je, že derivaci nahrazuje gradient a pravidlo je vektorové:

$$\begin{bmatrix} x_1' \\ \vdots \\ x_D' \end{bmatrix} := \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix} - \gamma \cdot \begin{bmatrix} \frac{\partial f(x)}{x_1} \\ \vdots \\ \frac{\partial f(x)}{x_D} \end{bmatrix}$$

kde

původní odhad  $x \in \mathbb{R}^D$  je vektor s rozměrem D nový odhad  $x' \in \mathbb{R}^D$  je vektor s rozměrem D gradient  $\nabla f(x) \in \mathbb{R}^D$  je vektor s rozměrem D krok učení (learning rate)  $\gamma \in \mathbb{R}$  je skalár

## Příklad GD: lineární softmax cross entropy na CIFAR-10

Optimalizovaná funkce má pro lineární klasifikátor se softmaxem a křížovou entropií formu

$$L(w_{1,1}, \dots, w_{K,D}, b_1, \dots, b_K) = -\frac{1}{N} \sum_{n=1}^{N} \log \frac{\exp(\mathbf{w}_{y_n,:} \cdot \mathbf{x}_n + b_{y_n})}{\sum_{k=1}^{K} \exp(\mathbf{w}_{k,:} \cdot \mathbf{x}_n + b_k)}$$

• Chceme nalézt bod  $\theta^* = [w_{1,1}^*, \dots, w_{K,D}^*, b_1^*, \dots, b_K^*]^\top$  takový, ve kterém  $L(\theta)$  nabývá minimální hodnoty, tj.

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

- Data tedy považujeme za konstantu
- Jako počáteční odhad minima zkusíme

$$^{(0)} \sim \mathcal{N}(0,0.001)$$
 inicializujeme na normálního (gau

 $\boldsymbol{\theta}^{(0)} \sim \mathcal{N}(0,0.001)$  inicializujeme na náhodné hodnoty z normálního (gaussovského) rozdělení s nulovým průměrem a std. odch. 0.001

## Gradient lineárního softmaxu a křížové entropie analyticky

Optimalizovaná funkce (loss) je

$$L(\boldsymbol{w}, \boldsymbol{b}) = -\frac{1}{N} \sum_{n=1}^{N} \log \frac{\exp(\boldsymbol{w}_{y_n,:} \cdot \boldsymbol{x}_n + b_{y_n})}{\sum_{k=1}^{K} \exp(\boldsymbol{w}_{k,:} \cdot \boldsymbol{x}_n + b_k)}$$

Potřebujeme

$$\frac{\partial L(\mathbf{w}, \mathbf{b})}{\partial \mathbf{w}} = ?$$

$$\frac{\partial L(\mathbf{w}, \mathbf{b})}{\partial \mathbf{b}} = ?$$





$$K \times D$$

$$\frac{\partial L(\boldsymbol{w}, \boldsymbol{b})}{\partial \boldsymbol{w}} = \frac{1}{N} \sum_{n=1}^{N} (\widehat{\boldsymbol{p}}_{n} - \boldsymbol{p}_{n}) \cdot \boldsymbol{x}_{n}^{\mathsf{T}}$$

$$\frac{\partial L(\boldsymbol{w}, \boldsymbol{b})}{\partial \boldsymbol{b}} = \frac{1}{N} \sum_{n=1}^{N} (\widehat{\boldsymbol{p}}_{n} - \boldsymbol{p}_{n})$$

$$K \times 1$$

#### **Incializujeme:**

 $w_{kd} \sim \mathcal{N}(0,0.001)$  $b_k \sim \mathcal{N}(0,0.001)$ 

#### **Opakujeme:**

$$\widehat{p}_n \coloneqq \frac{\exp(\mathbf{w}_{y_n,:} \cdot \mathbf{x}_n + b_{y_n})}{\sum_{k=1}^K \exp(\mathbf{w}_{k,:} \cdot \mathbf{x}_n + b_k)}$$
$$L(\mathbf{w}, \mathbf{b}) \coloneqq -\frac{1}{N} \sum_{n=1}^N \log p_{n,y_n}$$

$$\frac{\partial L(\boldsymbol{w}, \boldsymbol{b})}{\partial \boldsymbol{w}} \coloneqq \frac{1}{N} \sum_{n=1}^{N} (\widehat{\boldsymbol{p}}_{n} - \boldsymbol{p}_{n}) \cdot \boldsymbol{x}_{n}^{\mathsf{T}}$$
$$\frac{\partial L(\boldsymbol{w}, \boldsymbol{b})}{\partial \boldsymbol{b}} \coloneqq \frac{1}{N} \sum_{n=1}^{N} (\widehat{\boldsymbol{p}}_{n} - \boldsymbol{p}_{n})$$

$$w \coloneqq w - \gamma \cdot \frac{\partial L(w, b)}{\partial w}$$
$$b \coloneqq b - \gamma \cdot \frac{\partial L(w, b)}{\partial b}$$

```
1. w = 1e-3 * np.random.randn(10, 3072)
2. b = 1e-3 * np.random.randn(10)
3.for t in range(200):
     1 = 0.
     dw = np.zeros like(w) # (K, D)
     db = np.zeros like(b) # (K,)
     ids = np.random.permutation(len(X))[:bs]
      for n, (xn, yn) in enumerate(zip(X[ids], Y[ids])):
         # Loss
          sn = np.dot(w, xn) + b # (K,)
          pn = np.exp(sn) / np.sum(np.exp(sn)) # (K,)
12.
          ln = -np.log(pn[yn])
13.
          # gradients
14.
15.
          dbn = pn.copy() # (K,)
16.
          dbn[yn] -= 1
17.
          dwn = np.dot(dbn.reshape(-1, 1), xn.reshape(1, -1)) # (K, D)
18.
         # accumulate
19.
         1 += 1n
          dw += dwn
          db += dbn
23.
     # average
    1 /= n + 1
     dw /= n + 1
     db /= n + 1
28.
     # update
      w -= 1r * dw
      b = 1r * db
```

#### **Incializujeme:**

•  $\theta = \{W, b\}$  na náhodné hodnoty

#### **Opakujeme:**

- 1. Pro každý vzorek  $oldsymbol{x}_n$  v trénovací sadě  $oldsymbol{x}_1$ , ... ,  $oldsymbol{x}_N$ 
  - a. predikujeme pravděpodobnosti  $\widehat{m{p}}_n$
  - b. vypočteme dílčí kritérium  $l_n$  a akumulujeme k celkovému l
  - c. vypočteme dílčí gradient  $\nabla L_n$  a akumulujeme k celkovému  $\nabla L$
- 2. updatujeme parametry  $\theta$  akumulovaným gradientem  $\nabla L$  s krokem  $\gamma$

#### Zastavíme:

- po fixním počtu iterací
- parametry  $oldsymbol{ heta}$  se ustálí
- hodnota kritéria  $I(\theta)$  již delší dobu neklesá

```
1. w = 1e-3 * np.random.randn(10, 3072)
2. b = 1e-3 * np.random.randn(10)
3.for t in range(200):
      1 = 0.
      dw = np.zeros like(w) # (K, D)
      db = np.zeros like(b) # (K,)
      ids = np.random.permutation(len(X))[:bs]
      for n, (xn, yn) in enumerate(zip(X[ids], Y[ids])):
          # Loss
10.
          sn = np.dot(w, xn) + b # (K,)
          pn = np.exp(sn) / np.sum(np.exp(sn)) # (K,)
11.
12.
          ln = -np.log(pn[yn])
13.
          # gradients
14.
15.
          dbn = pn.copy() # (K,)
16.
          dbn[yn] -= 1
17.
          dwn = np.dot(dbn.reshape(-1, 1), xn.reshape(1, -1)) # (K, D)
18.
          # accumulate
          1 += 1n
          dw += dwn
          db += dbn
23.
      # average
      1 /= n + 1
      dw /= n + 1
27.
      db /= n + 1
28.
      # update
30.
      w -= 1r * dw
31.
      b = 1r * db
```

#### **Incializujeme:**

•  $\theta = \{W, b\}$  na náhodné hodnoty

#### **Opakujeme:**

- 1. Pro každý vzorek  $x_n$  v trénovací sadě  $x_1, \dots, x_N$ 
  - a. predikujeme pravděpodobnosti  $\widehat{m{p}}_n$
  - b. vypočteme dílčí kritérium  $l_n$  a akumulujeme k celkovému l
  - c. vypočteme dílčí gradient  $\nabla L_n$  a akumulujeme k celkovému  $\nabla L$
- 2. updatujeme parametry  $m{ heta}$  akumulovaným gradientem abla L s krokem  $\gamma$

#### Zastavíme:

- po fixním počtu iterací
- parametry  $oldsymbol{ heta}$  se ustálí
- hodnota kritéria  $J(\theta)$  již delší dobu neklesá



#### **Incializujeme:**

•  $\theta = \{W, b\}$  na náhodné hodnoty

jak budeme inicializovat?

#### **Opakujeme:**

- 1. Pro každý vzorek  $oldsymbol{x}_n$  v trénovací sadě  $oldsymbol{x}_1, \dots, oldsymbol{x}_N$ 
  - a. predikujeme pravděpodobnosti  $\widehat{m{p}}_n$
  - b. vypočteme dílčí kritérium  $l_n$  a akumulujeme k celkovému l
  - c. vypočteme dílčí gradient  $\nabla L_n$  a akumulujeme k celkovému  $\nabla L$
- 2. updatujeme parametry  $\theta$  akumulovaným gradientem  $\nabla L$  s krokem  $\gamma$

hyperparametry

jaký krok učení?

#### Zastavíme:

- po fixním počtu iterací
- parametry  $\theta$  se ustálí
- hodnota kritéria  $I(\theta)$  již delší dobu neklesá

kolik iterací? jak dlouho?

# Vícevrstvý perceptron

## Vícevrstvý percpetron (<u>M</u>ulti-<u>L</u>ayer <u>Perceptron</u>, MLP)

- Označuje se také jako dopředná síť (Feed-Forward Network, FFN)
- Opakují se především dva+ typy vrstev: plně propojená a aktivace



## Manuální výpočet gradientu?

#### Optimalizovaná funkce (loss) je

$$L(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{n=1}^{N} \log \frac{\exp(f(\boldsymbol{x}_n, \boldsymbol{\theta})_{y_n})}{\sum_{k=1}^{K} \exp(f(\boldsymbol{x}_n, \boldsymbol{\theta})_k)}$$

Co když  $f(x_n, \theta)$  potažmo  $L(\theta)$  jsou složité funkce jako např. hluboké neuronové sítě?

#### Potřebujeme

$$\frac{\partial L(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = ?$$



## Automatický výpočet gradientu = zpětná propagace

#### Optimalizovaná funkce (loss) je

$$L(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{n=1}^{N} \log \frac{\exp(f(\boldsymbol{x}_n, \boldsymbol{\theta})_{y_n})}{\sum_{k=1}^{K} \exp(f(\boldsymbol{x}_n, \boldsymbol{\theta})_k)}$$

#### Potřebujeme



### Funkce jako uzel ve výpočetním grafu

```
class Sigmoid(Function):
    @staticmethod
    def forward(x: float): # zatim pouze skalary
        z = 1 / (1 - math.exp(-x))
        cache = z,
        return z, cache
    @staticmethod
    def backward(dz: float, cache: tuple):
                                                            zpětný průchod je řetízkové pravidlo
        z, = cache
        dx = dz * z * (1 - z) # retizkove pravidlo
        return dx
```

Každá funkce, kterou chceme použít jako stavební blok, musí mít definovaný

dopředný průchod zpětný průchod

### Dvouvrstvý perceptron v numpy na 11 řádků

http://iamtrask.github.io/2015/07/12/basic-python-network/

# Konvoluční sítě

## Konvoluční síť (Convolutional Neural Network, CNN)

zadefinováním konvoluce jako bloku v neurosíti nyní můžeme libovolně kombinovat s
ostatními vrstvami



obrázek: <a href="https://ch.mathworks.com/solutions/deep-learning/convolutional-neural-network.html">https://ch.mathworks.com/solutions/deep-learning/convolutional-neural-network.html</a>

## Rozpoznávání ImageNet: Alexnet (2012)





## Alexnet (2012)



- architektura: CONV-POOL-NORM-CONV-POOL-NORM-CONV-CONV-CONV-FC-FC-FC
- "naškálovaná" LeNet-5

obrázek: <a href="http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/">http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/</a>

### VGG (2014)

- Simonyan, Zisserman: "Very Deep Convolutional Networks for Large-Scale Image Recognition"
- Druhé místo ImageNet competition 2014
- Mnohem jednodušší architektura než vítěz (GoogLeNet)
- Velmi podobné AlexNet
- Místo 11x11 apod. konvolucí pouze 3x3
- Pouze 2x2 max-pooling
- Žádná lokální normalizace
- 16 a 19 vrstev
- VGG-16: 8.4 % top-5 error



|               | FC 1000       |
|---------------|---------------|
| Softmax       | FC 4096       |
| FC 1000       | FC 4096       |
| FC 4096       | Pool          |
| FC 4096       | 3x3 conv, 512 |
| Pool          | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | Pool          |
| Pool          | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| Pool          | Pool          |
| 3x3 conv, 256 | 3x3 conv, 256 |
| 3x3 conv, 256 | 3x3 conv, 256 |
| Pool          | Pool          |
| 3x3 conv, 128 | 3x3 conv, 128 |
| 3x3 conv, 128 | 3x3 conv, 128 |
| Pool          | Pool          |
| 3x3 conv, 64  | 3x3 conv, 64  |
| 3x3 conv, 64  | 3x3 conv, 64  |
| Input         | Input         |
| VGG16         | VGG19         |

Softmax

obrázek: <a href="http://cs231n.stanford.edu/slides/2017/cs231n">http://cs231n.stanford.edu/slides/2017/cs231n</a> 2017 lecture9.pdf

## ImageNet klasifikace



kombinace více modelů (ensemble)

#### ResNet (2015)

- He et al.: "Deep Residual Learning for Image Recognition"
- Cílem návrhu být co nejhlubší → 152 vrstev!
- Vítěz ImageNet 2015 ve všech kategoriích
- Vítěz MS COCO challenge
- 3.6 % top-5 error na ImageNet: lepší než člověk (cca 5 %)

#### Reziduální blok

- Podobně jako inception používá složitější bloky
- Výstup sestává ze součtu konvoluce a přímo mapovaného vstupu (identity)
- Síť se tedy učí pouze rezidua

$$\mathcal{F}(\mathbf{x}) = \mathcal{H}(\mathbf{x}) - \mathbf{x}$$

• "Naučit se nuly je jednodušší než identitu"



Figure 2. Residual learning: a building block.

#### EfficientNet (2019)

Tan, Le: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks



Figure 2. **Model Scaling.** (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

#### Srovnání nejpoužívanějších CNN architektur



obrázek: Canziani et al.: "An Analysis of Deep Neural Network Models for Practical Applications"

### Srovnání nejpoužívanějších CNN architektur



velikost znázorňuje celkový počet parametrů

obrázek: Canziani et al.: "An Analysis of Deep Neural Network Models for Practical Applications"

- Typicky několik kroků
- 1. Příprava dat
- 2. Inicializace modelu (sítě)
- 3. Definice metrik a optimizéru
- 4. Trénovací smyčka

- Typicky několik kroků
- 1. Příprava dat
- Inicializace modelu (sítě)
- 3. Definice metrik a optimizéru
- 4. Trénovací smyčka

```
training_set =
torchvision.datasets.FashionMNIST(
    './data',
    train = True,
    transform = transform,
    download = True
validation_set =
torchvision.datasets.FashionMNIST(
    './data',
    train = False,
    transform = transform,
    download = True
```

- Typicky několik kroků
- 1. Příprava dat
- Inicializace modelu (sítě)
- 3. Definice metrik a optimizéru
- 4. Trénovací smyčka

```
training_loader =
torch.utils.data.DataLoader(
    training_set,
    batch size = 4,
    shuffle = True
validation_loader =
torch.utils.data.DataLoader(
    validation_set,
    batch_size = 4,
    shuffle = False
```

- Typicky několik kroků
- 1. Příprava dat
- 2. <u>Inicializace modelu (sítě)</u>
- 3. Definice metrik a optimizéru
- 4. Trénovací smyčka

```
class GarmentClassifier(nn.Module):
    def init (self):
        super(GarmentClassifier, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
model = GarmentClassifier()
```

https://pytorch.org/tutorials/beginner/introyt/trainingyt.html

- Typicky několik kroků
- 1. Příprava dat
- 2. Inicializace modelu (sítě)
- 3. <u>Definice metrik a optimizéru</u>
- 4. Trénovací smyčka

```
loss_fn = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(
    model.parameters(),
    lr = 0.001,
    momentum = 0.9
)
```

- Typicky několik kroků
- 1. Příprava dat
- 2. Inicializace modelu (sítě)
- 3. Definice metrik a optimizéru
- 4. Trénovací smyčka

```
def train_one_epoch():
    running loss = 0.
    last loss = 0.
    for i, data in enumerate(training loader):
        # forward
        inputs, labels = data
        outputs = model(inputs)
        loss = loss fn(outputs, labels)
        # backprop
        optimizer.zero grad()
        loss.backward()
        optimizer.step()
        # Gather data and report
        running loss += loss.item()
        if i % 1000 == 999:
            last_loss = running_loss / 1000 # loss per batch
    return last_loss
```

https://pytorch.org/tutorials/beginner/introyt/trainingyt.html

- Typicky několik kroků
- 1. Příprava dat
- 2. Inicializace modelu (sítě)
- 3. Definice metrik a optimizéru
- 4. Trénovací smyčka

```
for epoch in range(EPOCHS):
   # training
   model.train(True)
    avg loss = train one epoch()
   # validation
   running_vloss = 0.0
   model.eval()
   with torch.no grad():
        for i, vdata in enumerate(validation loader):
            vinputs, vlabels = vdata
            voutputs = model(vinputs)
            vloss = loss fn(voutputs, vlabels)
            running_vloss += vloss
    avg vloss = running vloss / (i + 1)
    print('LOSS train {} valid {}'.format(avg_loss, avg_vloss))
   # Track best performance, and save the model's state
    if avg vloss < best vloss:</pre>
        best vloss = avg vloss
        torch.save(model.state dict(), model path)
```

#### Trénování



- Monitorovat hodnotu lossu a podle toho nastavit lr
- Nebo lze použít automatické hledání lr
- Pokud funguje, zkusit Ir decay



obrázky: <a href="https://cs231n.github.io/neural-networks-3/">https://cs231n.github.io/neural-networks-3/</a>

# Transfer learning

## Trénování konvolučních sítí při málo datech

- Popsané architektury mají obvykle miliony parametrů
- Malé datasety na jejich trénování nestačí -> výrazný overfit
- I pokud data máme: trénování VGG na ImageNet trvalo autorům 2-3 týdny, a to i s 4x NVIDIA Titan Black GPU
- Naštěstí lze obejít!
  - 1. Můžeme vzít existující již natrénovaný model (např. VGG-16)
  - 2. Odstraníme poslední klasifikační vrstvu
  - 3. Nahradíme vlastní

### Transfer learning



## Transfer learning v PyTorch

```
model conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
                                                          "zmrazení" vrstev, nebudou se trénovat a zůstávají
    param.requires_grad = False
                                                          konst. → síť pouze jako extractor příznaků
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
                                                          poslední vrstvu klasifikující do 1000 ImageNet tříd
model conv.fc = nn.Linear(num ftrs, 2)
                                                          nahradíme vlastní, která má pouze 2 třídy
model conv = model conv.to(device)
                                                          jako seznam parametrů pro optimalizaci předáváme
criterion = nn.CrossEntropyLoss()
                                                          pouze poslední lineární vrstvu (pouze pro urychlení)
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
```

• poté, co je poslední vrstva natrénovaná, je možné opět uvolnit ("rozmrazit") i konvoluční vrstvy a model dále zlepšit (fine tuning)

https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

## Předzpracování dat u konvolučních sítí

- U konvolučních sítí často používané konstantní hodnoty
- Odečtení průměrného pixelu
   out = rgb mean\_pixel
   kde mean pixel je trojice [r, g, b]



• Méně časté: odečtení průměrného obrázku

```
out = rgb - mean_image
kde mean image je 32x32x3
```

• Např. všechny předtrénované modely Pytorch:

```
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

odečtení průměru a normalizace standardní odchylky
```

## CNN příznaky

- Výstup z posledních lineárních vrstev lze použít např. jako příznaky (tzv. FC7) -> CNN jako "feature extractor"
- Např. VGG-16 předposlední vrstva má rozměr 4096
- Nad těmito příznaky je možné natrénovat libovolný klasifikátor, třeba i rozhodovací stromy/lesy, bayesovské klasifikátory, ...
- Lze take využít pro urychlení trénování: celý dataset projet sítí a pro každý obrázek uložit na disk FC7 příznaky
- Během trénování se pak nemusí znovu a znovu provádět dopředný průchod celou sítí, pouze těmi posledními



#### Transfer learning: shrnutí



|           | podobná data                                    | odlišná data                              |
|-----------|-------------------------------------------------|-------------------------------------------|
| málo dat  | trénovat spíše jen poslední<br>vrstvu           | problém ©                                 |
| hodně dat | fine tune několika vrstev (lze ale i celou síť) | fine tune více vrstev nebo i<br>celé sítě |

slide: <a href="http://cs231n.stanford.edu/">http://cs231n.stanford.edu/</a>