PERTEMUAN 13

Program Studi Informatika Universitas Indraprasta PGRI

INTEGRAL TEKNIK SUBTITUSI 2

Begitu banyak integral trigonometri yang penyelesaiannya dengan teknik substitusi II. Pada bab ini hanya dibahas yang mengena untuk trigonometri sin dan cos pangkat ganjil dan genap.

A. Strategi untuk menghitung: $\int \sin^{m}x\cos^{n}x\,dx$

1. Jika pangkat dari cosines adalah bilangan ganjil n=2k+1, maka simpan satu faktor cosinus dan gunakan formula $\cos^2 x = 1 - \sin^2 x$ untuk menyatakan faktor yang tersisa dalam sinus, yaitu:

$$\int [\sin^m x \cos^{2k+1} x] \, dx = \int \left[[\sin^m x (\cos^2 x)^k \cos x] \right] dx$$

$$= \int \left[[\sin^m x (1 - \sin^2 x)^k \cos x] \right] dx$$

Kemudian substitusikan $u = \sin x$

2. Jika pangkat dari sinus adalah bilangan ganjil m=2k+1, maka simpan satu faktor sinus dan gunakan formula $\sin^2 x=1-\cos^2 x$ untuk menyatakan faktor yang tersisa dalam cosinus, yaitu:

$$\int [\sin^{2k+1} x \cos^n x] dx = \int [(\sin^2 x)^k \sin x \cos^n x] dx$$

$$= \int [(1 - \cos^2 x)^k \sin x \cos^n x] dx$$

$$= \int [(1 - \cos^2 x)^k \cos^n x \sin x] dx$$

Kemudian substitusikan $u = \cos x$

- Jika pangkat dari sinus maupun cosinus adalah bilangan ganjil, maka salah satu dari a dan b dapat digunakan.
- Jika pangkat dari sinus maupun cosinus adalah bilangan genap, maka gunakan kesamaan sudut paruh berikut ini!

$$\cos 2x = 1 - 2\sin^2 x \Leftrightarrow \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos 2x = 2\cos^2 x - 1 \Leftrightarrow \cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2 \sin x \cos x \Leftrightarrow \sin x \cos x = \frac{1}{2} \sin 2x$$

$$\int \sin^5 x \, dx = \int \sin^4 x \sin x \, dx$$

$$= \int (\sin^2 x)^2 \sin x \, dx$$

$$= \int (1 - \cos^2 x)^2 \sin x \, dx$$

$$= \int (1 - 2\cos^2 x + \cos^4 x) \sin x \, dx$$

Misal $u = \cos x$

$$du = -\sin x \, dx$$

$$d(\cos x) = -\sin x \, dx$$

$$\sin x \, dx = -d(\cos x)$$

$$= \int (1 - 2\cos^2 x + \cos^4 x) - d(\cos x)$$

$$= -\int (1 - 2\cos^2 x + \cos^4 x)d(\cos x)$$

$$= -\int (1 - 2\cos^2 x + \cos^4 x) d(\cos x)$$
$$= -\left[\cos x - \frac{2}{3}\cos^3 x + \frac{1}{5}\cos^5 x\right] + C$$

 $= -\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + C$

Contoh 2

$$\int \cos^5 x \, dx = \int \cos^4 x \cos x \, dx$$

$$= \int (\cos^2 x)^2 \cos x \, dx$$

$$= \int (1 - \sin^2 x)^2 \cos x \, dx$$

$$= \int (1 - 2\sin^2 x + \sin^4 x) \cos x \, dx$$

Misal $u = \sin x$

$$du = \cos x \, dx$$

$$d(\sin x) = \cos x \, dx$$

$$= \int (1 - 2\sin^2 x + \sin^2 x) d(\sin x)$$

$$= \sin x - \frac{2}{3}\sin^3 x + \frac{1}{5}\sin^5 x + c$$

Contoh 3

$$\int \cos^4 x \cos x \, dx = \int (\cos^2 x)^2 dx$$

$$=\int \left(\frac{1+\cos 2x}{2}\right)^2 dx$$

$$= \int \left(\frac{1+2\cos 2x + \cos^2 2x}{4} \right) dx$$

$$= \frac{1}{4} \int \left(1 + 2\cos 2x + \left(\frac{1 + \cos 4x}{2} \right) \right) dx$$

$$= \int \left(\frac{1 + \cos 2x}{2}\right)^2 dx$$

$$= \int \left(\frac{1 + 2\cos 2x + \cos^2 2x}{4}\right) dx$$

$$= \frac{1}{4} \int \left(1 + 2\cos 2x + \left(\frac{1 + \cos 4x}{2}\right)\right) dx$$

$$= \frac{1}{4} \int \left(1 + 2\cos 2x + \left(\frac{1 + \cos 4x}{2}\right)\right) dx$$

$$= \frac{1}{4} \int \left(\frac{3}{2} + 2\cos 2x + \frac{1}{2} + \frac{\cos 4x}{2}\right) dx$$

$$= \frac{1}{4} \int \left(\frac{3}{2} + 2\cos 2x + \frac{\cos 4x}{2}\right) dx$$

$$= \frac{1}{4} \int \left(\frac{3}{2} + 2\cos 2x + \frac{\cos 4x}{2}\right) dx$$

$$= \frac{1}{4} \int \left(\frac{3}{2} + 2\cos 2x + \frac{1}{4}\sin 4x\right) + C$$

$$= \frac{3}{4} + \frac{1}{4} \sin 2x + \frac{1}{8} \sin 4x + C$$

$$= \frac{3}{8} + \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C$$

$$= \frac{1}{4} \left[\frac{3}{2} x + \sin 2x + \frac{1}{8} \sin 4x \right] + C$$

Contoh 4

$$\int \sin^{3} x \cos^{-4} x \, dx = \int \sin^{2} x \sin x \cos^{-4} x \, dx$$

$$= \int (1 - \cos^{2} x) \sin x \cos^{-4} x \, dx$$

$$= \int (\cos^{-4} x - \cos^{-2} x) \sin x \, dx$$

Misal $u = \cos x$

$$du = -\sin x \, dx$$

$$d(\cos x) = -\sin x \, dx$$

$$d(\cos x) = -\sin x \, dx$$

$$\sin x \, dx = -d(\cos x)$$

$$= \int (\cos^{-4} x - \cos^{-2} x) \left(-d(\cos x) \right)$$
$$= -\left(-\frac{1}{3} \cos^{-3} x + \cos^{-1} x + C \right)$$

$$\begin{cases} 1 & 3 \\ = \frac{1}{3}\cos^{-3}x - \cos^{-1}x - c \end{cases}$$

Contoh 5

$$\int \sin^2 x \cos^4 x \, dx = \int \sin^2 x (\cos^2 x)^2 \, dx$$

$$= \int \left(\frac{1 - \cos 2x}{2}\right) \left(\frac{1 + \cos 2x}{2}\right)^2 \, dx$$

$$= \frac{1}{8} \int (1 - \cos 2x) (1 + 2\cos 2x + \cos^2 2x) \, dx$$

$$= \frac{1}{8} \int (1 + \cos 2x + \cos^2 2x - \cos 2x - 2\cos^2 2x$$

$$- \cos^3 2x \, dx$$

$$= \frac{1}{8} \int (1 + \cos 2x - \cos^2 2x - \cos^3 2x \, dx$$

$$= \frac{1}{8} \int (1 + \cos 2x - \left(\frac{1 + \cos 4x}{2}\right) \right) dx$$

$$= \frac{1}{8} \int \left(1 + \cos 2x - \frac{1}{2} - \frac{\cos 4x}{2} - \cos 2x\right) dx$$

$$+ \sin^2 2x \cos 2x\right) dx$$

$$= \frac{1}{8} \int \left(\frac{1}{2} - \frac{\cos 4x}{2} + \sin^2 2x \cos 2x\right) dx$$

$$= \frac{1}{8} \left[\int \left(\frac{1}{2} - \frac{\cos 4x}{2} + \sin^2 2x \cos 2x\right) dx\right]$$

$$= \frac{1}{8} \left[\int \left(\frac{1}{2} - \frac{\cos 4x}{2} + \sin^2 2x \cos 2x\right) dx\right]$$

 $= \frac{1}{8} \left[\frac{1}{2} x - \frac{1}{2} \cdot \frac{1}{4} \sin 4x + \frac{1}{2} \int \sin^2 2x \cos 2x \, d(2x) \right]$

Misal:
$$u = \sin 2x$$

$$du = \cos 2x \, d(2x)$$

$$d(\sin 2x) = \cos 2x \, d(2x)$$

$$= \frac{1}{8} \left[\frac{1}{2} x - \frac{1}{8} \sin 4x + \frac{1}{2} \int \sin^2 2x \, d(\sin 2x) \right]$$

$$= \frac{1}{8} \left[\frac{1}{2} x - \frac{1}{8} \sin 4x + \frac{1}{2} \cdot \frac{1}{8} \sin^3 2x \right] + C$$

$$= \frac{1}{16} x - \frac{1}{64} \sin 4x + \frac{1}{48} \sin^3 2x + C$$

‡ B. Latihan Soal

$\int [\sin^5 x \cos^6 x] dx$	$\int [\sin^2 x \cos x] dx$	∫ sin² x cos⁴ x dx	$\int \sin^3 x \cos^5 x dx$	cos² x sim⁴ x dx	∫ cos² x sin x dx	cos 8x sin 4x dx			
ä	ď	133	1	12	99	15			
$\int [\sin^2 x \cos^5 x] dx$	$\int [\sin^4 x \cos^2 x] dx$	$\int \left[\cos^3 x \sin^2 x\right] dx$	$\int \left[\sin^3 x \sqrt{\cos x} \right] dx$	$\int [\sin^6 x \cos^4 x] dx$	$\int [\sin^5 x \cos^7 x] dx$	sin 5x sin 2x dx	$\int \sin 3x \cos 2x dx$	∫ cos 7x cos 4x dx	$\int \cos 5x \cos 12x dx$
<u> </u>	rá	eri	4	ļ vi	v i	r-:	60	oi	2