Лабораторная работа 2.1.4 Изучение явления взаимной индукции.

Жарков Андрей 495

13 ноября 2016 г.

Цель работы: изучение явлений взаимной индукции двух коаксиально расположенных катушек.

Приборы и оборудование: источник питания; электронный осциллограф; звуковой генератор; цифровой вольтметр, модуль ФПЭ–05 для изучения взаимоиндукции; две катушки индуктивности на одной оси; шток со шкалой, показывающий взаимное расположение катушек.

Общие сведения

Всякое переменное магнитное поле возбуждает в окружающем пространстве (вихревое) электрическое поле. Согласно закону электромагнитной индукции, циркуляция электрического поля по некоторому контуру равна¹ темпу изменения потока магнитного через поверхность, охватываемую данным контуром:

$$\oint_{\Gamma} \vec{E} \, d\vec{\ell} = -\frac{d\Phi}{dt}.$$

Здесь $\Phi = \int B_n dS$ — поток магнитного поля через поверхность, охватываемую замкнутым контуром Γ , B_n — нормальная компонента магнитного поля к данной поверхности.

Если в переменное магнитное поле помещён замкнутый проводник, то в нём благодаря наличию поля \vec{E} возникнет ток, называемый индукционным. Поскольку циркуляция электрического

¹В системе единиц СИ.

Рис. 1: Поток через контур 2 магнитного поля, созданного током в контуре 1

поля есть, как несложно видеть, работа по переносу единичного заряда по контуру, её наличие эквивалентно присутствию в цепи батареи с ЭДС, равной

$$\mathcal{E}_{\text{\tiny H}} = -\frac{d\Phi}{dt}.\tag{1}$$

которую называют ЭДС индукции 2 .

Ток I, текущий по некоторому замкнутому контуру, порождает магнитное поле, которое пронизывается этот же контур. Поток магнитного поля через данный контур пропорционален величине I — соответствующий коэффициент пропорциональности L называют коэффициентом самоиндукции или просто индуктивностью:

$$\Phi = LI. \tag{2}$$

Рассмотрим теперь два контура 1 и 2, расположенных на некотором расстоянии друг от друга (рис. 1). Если по контуру 1 пропустить ток I_1 , то он создаст некоторый поток Φ_{21} магнитного поля через контур 2, пропорциональный току I_1 :

$$\Phi_{21} = M_{21}I_1. \tag{3}$$

 $^{^2}$ Заметим, что равенство (1) применимо не только для переменного поля, но и в общем случае, когда магнитный поток Φ меняется в силу изменения формы проводника или если проводник вносится во внешнее магнитное поле.

Коэффициент пропорциональности M_{21} называется коэффициентом взаимной индукции контуров или взаимной индуктивностью контуров. Он зависит от формы и взаимного расположения контуров 1 и 2, а также от магнитных свойств окружающей среды.

Суммарный поток через контур 2 запишется как сумма самоиндукции и взаимной индукции:

$$\Phi_2 = L_2 I_2 + M_{21} I_1. \tag{4}$$

ЭДС индукции, наводимая в 2-м контуре, равна

$$\mathcal{E}_2 = -\frac{d\Phi_2}{dt} = -L_2 \frac{dI_2}{dt} - M_{21} \frac{dI_1}{dt}.$$
 (5)

И наоборот, меняя местами 1-й и 2-й контуры, получим в результате аналогичных рассуждений ЭДС индукции в 1-м контуре:

$$\mathcal{E}_1 = -L_1 \frac{dI_1}{dt} - M_{12} \frac{dI_2}{dt}.$$
 (6)

Отметим, что согласно теореме взаимности коэффициенты взаимной индукции равны между собой:

$$M_{12} = M_{21} = M. (7)$$

Методика измерения

В данной работе изучается коэффициент взаимной индукции между длинной катушкой 1 и короткой катушкой 2, которая надевается на катушку 1 и может перемещаться вдоль ее оси. Питание одной из катушек, например 1, осуществляется от генератора звуковой частоты PQ, напряжение с которого

$$U = U_0 \cos \omega t$$

подаётся на катушку последовательно через сопротивление R. Действующее значение напряжения генератора $U_4=U_0/\sqrt{2}$ измеряется с помощью вольтметра.

Значение сопротивления R выбирается таким образом, чтобы выполнялись неравенства

$$R \gg \sqrt{R_1^2 + L_1^2 \omega^2}$$
 (и $R \gg \sqrt{R_2^2 + L_2^2 \omega^2}$), (8)

Рис. 2: Измерительная схема ФПЭ-05

где $L_{1,2}$ — индуктивности катушек 1 и 2; $R_{1,2}$ — их активные сопротивления. В этом случае напряжение на подключённой к генератору катушке много меньше напряжения на резисторе R, и таким образом ток, протекающий через катушку 1, можно определить как

$$I = \frac{U}{R} = \frac{U_0}{R} \cos \omega t = I_{01} \cos \omega t.$$

Переменный ток в катушке 1 создает переменную ЭДС взаимной индукции в катушке 2 согласно формуле (5):

$$\mathcal{E}_2 = -M_{21} \frac{dI_1}{dt} = -M_{21} \omega \frac{U_0}{R} \sin \omega t = -\mathcal{E}_{02} \sin \omega t.$$

Измерив с помощью осциллографа амплитуду ЭДС взаимной индукции \mathcal{E}_{02} , можно получить значение коэффициента взаимной индукции M_{21} :

$$M_{21} = \frac{\mathcal{E}_{02}R}{2\pi f U_0} \tag{9}$$

где f — частота звукового генератора в герцах.

Если же подавать ток на 2-ю катушку, а снимать значение напряжения на 1-й, то можно измерить коэффициент M_{12} :

$$M_{12} = \frac{\mathcal{E}_{01}R}{2\pi f U_0}. (10)$$

Для «перестановки» катушек необходимо переключатели Π_1 и Π_2 перебросить в противоположное направление (рис. 2).

Рис. 3: Схема установки

Выполнение работы

Соберём схему (рис. 3). Задав напряжение генератора $U_4=3B$ Подключив к установне сначала первую, затем вторую катушку, проверим, что в рабочем диапазоне частот (5 - 25 к Γ ц) $\mathcal{E}_{0i}/f=const$, т. е. амплитуда напряжения на катушке линейно зависит от частоты.

ε_{01} , B/20	f, kHz	ε_{02} , B/20	f, kHz
50	5,0	50	5,0
100	10,1	100	10,0
200	20,0	202	20,1

Как видим, зависимость действительно линейная.

Для измерения коэффициента взаимной индукции M21 установим переключатель П1 в положение PQ, а переключатель П2 в положение PO. При этом напряжение звукового генератора подаётся на катушку 1, а ЭДС с катушки 2 подаётся на вход осциллографа. Теперь будем постепенно выдвигать катушку 1 и замерим зависимость $\mathcal{E}_{02}(z)$, где z - на сколько выдвинута катушка. При измерениях $U_4 = 3B$, f = 15kHz. $R = 10, 5 \pm 0, 5kOm$. M21 будем искать по формуле (9).

Аналагично измерим M12(z).

z, cm	ε ₀₂ , Β/20	M ₂₁ , мГн	σ_{M} , мГн	ε ₀₁ , Β/20	M ₁₂ , мГн	σ_{M} , мГн
0	2,3	2,9	0,2	2,2	2,8	0,2
1	3,5	4,4	0,3	3,5	4,4	0,3
2	4,2	5,3	0,3	4,2	5,3	0,3
3	4,5	5,6	0,3	4,6	5,8	0,3
4	4,7	5,9	0,3	4,8	6,0	0,3
5	4,8	6,0	0,3	4,9	6,1	0,3
6	4,7	5,9	0,3	4,8	6,0	0,3
7	4,6	5,8	0,3	4,6	5,8	0,3
8	4,3	5,4	0,3	4,4	5,5	0,3
9	3,8	4,8	0,3	3,9	4,9	0,3
10	2,6	3,3	0,2	2,6	3,3	0,2

Как видим, в пределах погрешности $M_{12}=M_{21}$. Т. е. выполняется теорема взаимности. Построим график M(z):

Теперь убедимся в том, что коэффициент взаимной индукции не зависит от напряжения на генераторе.

Для этого выдвинем катушку на z=5cm, установим f=15kHz. Измерим \mathcal{E}_{02} при нескольких значениях U_4 :

U ₄ , B	2,076	2,508	3,020	4,015	5,000
ϵ_{02} , B/20	3,3	4,0	4,7	6,1	7,6
M ₂₁ , мГн	6,0	6,0	5,9	5,7	5,7

Погрешность вычисленных M_{21} точно не меньше 5% (именно такая погрешность у сопротивления R), значит абсолютная погрешность не меньше 0,3м Γ н. Мы видим, что с учётом погрешности коэффициент взаимной индукции не зависит от входного напряжения.

Теперь определим эксперементально зависимость коэффициента взаимной индукции от частоты генератора.

Установим z=5cm, $U_4 = 3B$. Измерим \mathcal{E}_{02} при нескольких значениях f:

f, kHz	5	10	15	20	25
ϵ_{02} , B/20	2,2	3,6	4,8	6,0	6,8
М ₂₁ , мГн	8,3	6,8	6,0	5,6	5,1
1/f, kHz ⁻¹	0,200	0,100	0,067	0,050	0,040

Как видим, зависимость $M_{21}(\frac{1}{f})$ линейная.

Погрешность M(f) около 5%, ибо в формуле (9) наибольшая погрешность R как раз 5%.