Отчет по лабораторной работе №8

Модель конкуренции двух фирм

Швец Сергей

Содержание

1	Цел	работы	4												
2	Теор	етическая справка	5												
	2.1	Модель одной фирмы	5												
	2.2	Конкуренция 2-х фирм	8												
		2.2.1 Случай 1	8												
		2.2.2 Случай 2	10												
3	Выполнение лабораторной работы														
	3.1	Вывод графика для случая 1	16												
	3.2	Вывод графика для случая 2	16												
4	Выв	ОДЫ	18												

List of Figures

3.1	График №1															•	1	16
3.2	График №2																1	17

1 Цель работы

Ознакомиться с моделью конкуренции двух фирм и построить графики по этой модели.

2 Теоретическая справка

2.1 Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия
- au длительность производственного цикла
- p рыночная цена товара
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции
- δ доля оборотных средств, идущая на покрытие переменных издержек

- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q \left(1 - \frac{p}{p_{cr}} \right) \quad (1)$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения. Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa \quad (2)$$

Уравнение для рыночной цены p представим в виде

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}} \right) \right) \quad (3)$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньшевремени производственного цикла τ . При заданном M уравнение (3) описывает быстрое стремление цены к

равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}}+Nq\bigg(1-\frac{p}{p_{cr}}\bigg)=0\quad (4)$$

Из (4) следует, что равновесное значение цены p равно

$$p = p_{cr} \bigg(1 - \frac{M \delta}{\tau \tilde{p} N q} \bigg) \quad (5)$$

Уравнение (2) с учетом (5) приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} \bigg(\frac{p_{cr}}{\tilde{p}} - 1 \bigg) - M^2 \bigg(\frac{\delta}{\tau \tilde{p}} \bigg)^2 \frac{p_{cr}}{Nq} - \kappa \quad (6)$$

Уравнение (6) имеет два стационарных решения, соответствующих условию dM/dt=0:

$$\tilde{M}_{1,2} = \frac{1}{2} a \pm \sqrt{\frac{a^2}{4} - b} \quad (7)$$

где

$$a = Nq \left(1 - \frac{\tilde{p}}{p - cr}\right) \tilde{p} \frac{\delta}{\tau}, b = \kappa Nq \frac{(\tau \tilde{p})^2}{p_{cr} \delta^2} \quad (8)$$

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения M равны

$$\tilde{M}_{+} = Nq\frac{\tau}{\delta}\bigg(1 - \frac{\tilde{p}}{p_{cr}}\bigg)\tilde{p}, \tilde{M}_{-} = \kappa\tilde{p}\frac{\tau}{\delta(p_{cr} - \tilde{p})} \quad (9)$$

Первое состояние $ilde{M}_+$ устойчиво и соответствует стабильному функционированию

предприятия. Второе состояние \tilde{M}_- неустойчиво, так, что при $M<\tilde{M}_-$ оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству. По смыслу \tilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

2.2 Конкуренция 2-х фирм

2.2.1 Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.)

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1} + N_1 q \bigg(1 - \frac{p}{p_{cr}}\bigg)p - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2}{\tau_2} + N_2 q \left(1 - \frac{p}{p_{cr}}\right) p - \kappa_2 \tag{10} \label{eq:10}$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N1 и N2 – числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть произведенный каждой фирмой товар не накапливается, а реализуется по цене p.

Тогда

$$\begin{split} \frac{M_1}{\tau_1 \tilde{p}_1} &= N_1 q \bigg(1 - \frac{p}{p_{cr}} \bigg) \\ \frac{M_2}{\tau_2 \tilde{p}_2} &= N_2 q \bigg(1 - \frac{p}{p_{cr}} \bigg) \end{split} \tag{11}$$

где \tilde{p}_1 и \tilde{p}_2 – себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1} \left(1 - \frac{p}{\tilde{p}_1} \right) - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2}{\tau_2} \left(1 - \frac{p}{\tilde{p}_2} \right) - \kappa_1$$
(12)

Уравнение для цены, по аналогии с (3),

$$\frac{dp}{dt} = -\gamma \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq \left(1 - \frac{p}{p_{cr}} \right) \right) \quad (13)$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p=p_{cr}\bigg(1-\frac{1}{Nq}\bigg(\frac{M_1}{\tau_1\tilde{p}_1}+\frac{M_2}{\tau_2\tilde{p}_2}\bigg)\bigg) \quad (14)$$

Подставив (14) в (12) имеем:

$$\begin{split} \frac{dM_1}{dt} &= c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \\ \frac{dM_2}{dt} &= c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2 \end{split} \tag{15}$$

где
$$a_1=\frac{p_{cr}}{\tau_1^2\tilde{p_1}^2Nq}$$
, $a_2=\frac{p_{cr}}{\tau_2^2\tilde{p_2}^2Nq}$, $b=\frac{p_{cr}}{\tau_1^2\tilde{p_1}^2\tau_2^2\tilde{p_2}^2Nq}$, $c_1=\frac{p_{cr}-\tilde{p_1}}{\tau_1\tilde{p_1}}$, $c_2=\frac{p_{cr}-\tilde{p_2}}{\tau_2\tilde{p_2}}$ (16)

Исследуем систему (15) в случае, когда постоянные издержки (κ_1,κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \\ &\qquad \qquad (17) \end{split}$$

2.2.2 Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 M_2$ будет отличаться.

Например,

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - (\frac{b}{c_1} + 0.002) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

3 Выполнение лабораторной работы

Вариант 7

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. Динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

•
$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p_1}^2 N q}$$
,

•
$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p_2}^2 N q}$$
,

•
$$b = \frac{p_{cr}}{{\tau_1^2 \tilde{p_1}^2 \tau_2^2 \tilde{p_2}^2 Nq}}$$
,

•
$$c_1 = \frac{p_{cr} - \tilde{p_1}}{\tau_1 \tilde{p_1}}$$
,

•
$$c_2 = \frac{p_{cr} - \tilde{p_2}}{\tau_2 \tilde{p_2}}$$
.

также введена нормировка $t=c_1\theta$

Случай 2. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.0016)M_1M_2 - \frac{a_1}{c_1}M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев рассмотреть задачу со следующими начальными условиями и параметрами: $M_0^1=2.4, M_0^2=1.7, p_{cr}=19, N=22, q=1, au_1=15, au_2=18, ilde{p_1}=12, ilde{p_2}=10.$

Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случаев 1 и 2.

Код на Julia

using Plots
using DifferentialEquations

Зададим коэффиценты

```
# критическая стоимость продукта
p_{cr} = 19;
# длительность производственного цикла фирмы 1
tau1 = 15;
# себестоимость продукта у фирмы 1
p1 = 12;
# длительность производственного цикла фирмы 2
tau2 = 18;
# себестоимость продукта у фирмы 2
p2 = 10;
# число потребителей производимого продукта
N = 22;
# максимальная потребность одного человека в продукте в единицу времени
q = 1;
a1 = p_cr/(tau1*tau1*p1*p1*N*q);
a2 = p cr/(tau2*tau2*p2*p2*N*q);
b = p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
c1 = (p cr - p1)/(tau1*p1);
c2 = (p cr - p2)/(tau2*p2);
#Задаем СДУ для 1-ого случая
function syst(dx,x,p,t)
    dx[1] = x[1] - (a1/c1)*x[1]*x[1] - (b/c1)*x[1]*x[2]
    dx[2] = (c2/c1)*x[2] - (a2/c1)*x[2]*x[2] - (b/c1)*x[1]*x[2]
end
```

```
m1 = 2.4;
m2 = 1.7;
x_0 = [m1, m2];
 tspan = (0, 30);
 p = ODEProblem(syst, x_0, tspan);
 sol = solve(p, timeseries_steps = 0.01);
plot(sol)
#Задаем СДУ для 2-ого случая
function syst2(dx,x,p,t)
    dx[1] = x[1] - (a1/c1 + 0.0016)*x[1]*x[1] - (b/c1)*x[1]*x[2]
   dx[2] = (c2/c1)*x[2] - (a2/c1)*x[2]*x[2] - (b/c1)*x[1]*x[2]
end
m1 = 2.4;
m2 = 1.7;
x_0 = [m1, m2];
 tspan = (0, 100);
 p2 = ODEProblem(syst2, x_0, tspan);
```

```
sol2 = solve(p2, timeseries_steps = 0.01);
plot(sol2)
```

3.1 Вывод графика для случая 1

График изменения оборотных средств фирм 1 и 2 (рис. 3.1).

Figure 3.1: График №1

3.2 Вывод графика для случая 2

График изменения оборотных средств фирмы 1 и 2 (рис. 3.2).

Figure 3.2: График №2

4 Выводы

Я ознакомился с моделью конкуренции двух фирм и построила графики по этой модели.