Automotive door control system design Dynamic design Report

Name: Hossam El-Deen Medhat Husein Ebrahim

Email: hossam.medhat998@gmail.com

Dynamic Design:

- **> For ECU 1:**
- 1- State Machine diagram for ECU 1 component:

Notes: IDLE task exaction when the processor not exaction any task.

2- State Machine diagram for the ECU 1 operatin:

3-Sequence Diagram for the ECU 1:

4- Calculate CPU load for the ECU 1:

The system contains three tasks assuming worst case scenario that the execution time of task is $500 \, \mu s$.

Name Task	Periodicity	Execution Time
Door Sensor Task	10 ms	500 μs
Light sensor Task	20 ms	500 μs
Speed Sensor Task	5 ms	500 μs

H (Hyper Period) = LCM(Pi) = 20 ms
CPU Load =
$$\sum E / H = (0.5*2 + 0.5*4 + 0.5*1) / 20*100 = 17.5 \%$$

> For ECU 2:

1- State Machine diagram for ECU 2 component:

2-State Machine diagram for the ECU 2 operations:

3- Sequence Diagram for the ECU 2:

4- Calculate CPU load for the ECU 2:

The system contains one tasks assuming worst case scenario that the execution time of task is 1 ms.

Name Task	Periodicity	Execution Time
Periodic Task Receive Status	5 ms	1 ms

H (Hyper Period) = LCM(Pi) = 5 ms
CPU Load =
$$\sum E / H = (1*1) / 5 * 100 = 20\%$$

Calculate bus load in your system:

Note: With what percentage of system bus was busy per 1 second

CAN Bus Load in System: time the CAN bus loaded with data

1 CAN frame contains approximately 125 bits.

assume we are using a 500 Kbit/s bit rate.

bit time = $1 / \text{bit rate} = 1 / (500 * 1000) \text{ s} = 2 \, \mu\text{s}$

Approximate time to transfer 1 frame = $(2 \mu s/bit * 125 bit) = 250 \mu s$.

We have multiple sending intervals on the bus:

1 frame every 5 ms \rightarrow 200 frames every 1000 ms

1 frame every 10 ms \rightarrow 100 frames every 1000 ms

1 frame every 20 ms \rightarrow 50 frames every 1000 ms

This is in total = 350 frames every 1000 ms

Total time on bus = (total number of frames) * (time of 1 frame)

Total time on bus = $350 * 250 = 87500 \mu s$

Bus load = $\{((87500 \,\mu\text{s} *1000) \setminus 1000) * 100\%\} = 8.75\%$