Homework 3

Komal Niraula (N16417290)

kn2505@nyu.edu

Question 1

Answer:

Given, $k(x, \tilde{x}) = \phi(x)^{\mathsf{T}} \phi(\tilde{x})$ is a Mercer kernel, where $\phi(x)$ is a feature mapping that maps an input x from the input space to a higher-dimensional feature space.

 $S = \{x_1, x_2, \dots, x_n\}$ is a sample of n inputs.

The kernel matrix $K \in \mathbb{R}^{n \times n}$ is defined as:

$$K_{i,j} = k(x_i, x_i) = \phi(x_i)^{\mathsf{T}} \phi(x_i)$$

The quadratic form $c^{\mathsf{T}}Kc$ can be expanded as: $c^{\mathsf{T}K}c = \sum_{i,j=1}^n c_i c_j K_{i,j}$

$$= \sum_{i,j}^{n} c_i c_j \varphi(x_i)^{\mathsf{T}} \varphi(x_j)$$

$$c^{\mathsf{T}}Kc = \left(\sum_{i=1}^{n} c_i \phi(x_i)\right)^{\mathsf{T}} \left(\sum_{j=1}^{n} c_j \phi(x_j)\right)$$

$$\boldsymbol{c}^{\mathsf{T}}\boldsymbol{K}\boldsymbol{c} = |\sum_{i=1}^{n} c_{i} \phi(x_{i})|^{2}$$

Since this expression represents a squared norm, this is always non-negative.

$$|\sum_{i=1}^n c_i \phi(x_i)|^2 \ge 0$$

This shows that $c^{\top}Kc \ge 0$, proving K to be positive semi-definite.

 k_1 and k_2 are both Mercer Kernel, meaning their corresponding kernel matrices K_1 and K_2 are PSD. Since $k_1(x, \tilde{x})$ and $k_2(x, \tilde{x})$ are Mercer kernels, there exist feature maps $\phi_1(x)$ and $\phi_2(x)$ such that:

$$k_1(x,\tilde{x}) = \langle \phi_1(x), \phi_1(\tilde{x}) \rangle, \quad k_2(x,\tilde{x}) = \langle \phi_2(x), \phi_2(\tilde{x}) \rangle$$

We can express the new kernel $k(x, \tilde{x})$ as:

$$k(x, \tilde{x}) = \alpha \langle \phi_1(x), \phi_1(\tilde{x}) \rangle + \beta \langle \phi_2(x), \phi_2(\tilde{x}) \rangle$$

$$k(x,\tilde{x}) = \langle \sqrt{\alpha} \phi_1(x), \sqrt{\alpha} \phi_1(\tilde{x}) \rangle + \langle \sqrt{\beta} \phi_2(x), \sqrt{\beta} \phi_2(\tilde{x}) \rangle.$$

Let combined feature map be $\phi(x)$. Then: $\phi(x) = \left(\sqrt{\alpha}\phi_1(x), \sqrt{\beta}\phi_2(x)\right)$

Thus,
$$k(x, \tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle$$

 $k(x, \tilde{x})$ is now expressed as a dot product in a feature space and is a valid Mercer kernel. Furthermore, for non-negative scalers $\alpha \geq 0$ and $\beta \geq 0$, the kernel is positive semi-definite.

b.

As in question a, we express $k_1(x, \tilde{x})$ and $k_2(x, \tilde{x})$ in terms of their respective feature maps:

$$k_1(x,\tilde{x}) = \langle \varphi_1(x), \varphi_1(\tilde{x}) \rangle, k_2(x,\tilde{x}) = \langle \varphi_2(x), \varphi_2(\tilde{x}) \rangle$$

Their product:

$$k(x, \tilde{x}) = \langle \phi_1(x), \phi_1(\tilde{x}) \rangle \cdot \langle \phi_2(x), \phi_2(\tilde{x}) \rangle$$

Expressing as an inner product in a new feature space:

$$k(x,\,\tilde{x}) \,=\, \langle\, \varphi_1(x)\,\otimes\, \varphi_2(x),\, \varphi_1(\tilde{x})\,\otimes\, \varphi_2(\tilde{x})\,\rangle$$
 (\otimes denotes the tensor product)

since $k(x, \tilde{x})$ is now expressed as a dot product in a valid feature space, it is a valid Mercer kernel. Additionally, since both $k_1(x, \tilde{x})$ and $k_2(x, \tilde{x})$ are positive semi-definite, their product is also positive semi-definite.

There exists a feature map $\phi_1(x)$ such that: $k_1(x,\tilde{x}) = \langle \phi_1(x), \phi_1(\tilde{x}) \rangle$

Let f be a polynomial of degree d with positive coefficients:

$$f(k_1(x,\tilde{x})) = a_0 + a_1k_1(x,\tilde{x}) + a_2k_1(x,\tilde{x})^2 + \dots + a_dk_1(x,\tilde{x})^d$$
, where $a_i \ge 0$ for all i .

Each term $k_1(x, \tilde{x})^i$ is the inner product of feature maps corresponding to the tensor product of $\phi_1(x)$.

Specifically: $k_1(x,\tilde{x})^i = \langle \varphi_1(x)^{\otimes i}, \varphi_1(\tilde{x})^{\otimes i} \rangle$, where \otimes represents the tensor product. Thus, we can express $f(k_1(x,\tilde{x}))$ as a sum of inner products: $f(k_1(x,\tilde{x})) = \langle \psi(x), \psi(\tilde{x}) \rangle$, where $\psi(x)$ is the combined feature map obtained by concatenating all the tensor products of $\varphi_1(x)$.

Since this is an inner product in some feature space, $k(x, \tilde{x}) = f(k_1(x, \tilde{x}))$ is a Mercer kernel that is still positive semi-definite.

d.

 $k_1(x, \tilde{x})$ is a Mercer kernel, meaning there exists a feature map $\phi_1(x)$ such that:

$$k_1(x,\tilde{x}) = \langle \varphi_1(x), \varphi_1(\tilde{x}) \rangle$$

$$\exp(k_1(x,\tilde{x})) = 1 + k_1(x,\tilde{x}) + \frac{k_1(x,\tilde{x})^2}{2!} + \frac{k_1(x,\tilde{x})^3}{3!} + \cdots$$
 [Exponential function]

Here, each term $k_1(x, \tilde{x})^n$ is the inner product of higher-order tensor products of the feature maps $\phi_1(x)$.

$$k_1(x,\tilde{x})^n = \langle \phi_1(x)^{\otimes n}, \phi_1(\tilde{x})^{\otimes n} \rangle$$

Thus, we can express the exponential function as a sum of inner products:

$$\exp(k_1(x,\tilde{x})) = \sum_{n=0}^{\infty} \frac{1}{n!} \langle \phi_1(x)^{\otimes n}, \phi_1(\tilde{x})^{\otimes n} \rangle$$

Since this is an infinite sum of positive semi-definite kernels, the sum itself is a positive semi-definite kernel. So, the exponential function preserves the positive semi-definite of a matrix.

Therefore, $k(x, \tilde{x}) = \exp(k_1(x, \tilde{x}))$ is a Mercer kernel.

The given kernel is a Gaussian Kernel and $\varphi(x)$ represents a feature map. For the Gaussian kernel, the feature map $\varphi(x)$ does not have a simple closed-form representation. It maps x to an infinite-dimensional space that can be thought of as representing all polynomial combinations of features.

The exact formula for $\varphi(x)$ is implicit due to the infinite-dimensional nature of the Gaussian kernel. This is why the Gaussian kernel is useful in practice as it avoids explicitly mapping inputs into an infinite-dimensional space by computing only the inner product K(x,y) directly through the kernel function.

Question 2:

Answer:

The problem2 folder contains the coding part and images generated.

The solution is coded in problem2.m and figure of different kernels prediction are present in 'output_figure' folder.

The datasets are randomly split into half for the creation of test and training set. Moreover, the y value (output) 0 is converted to -1, so that the output of SVM with be +1 and -1.

Trying out different combinations

Linear kernel:

The linear kernel with C = 1 has the largest accuracy, i.e. 98%, while the C = 10 seems to have lowest accuracy of 94% in comparison here. So, we need to test both higher and lower values and identify the best C value for any given dataset.

Similarly, using polynomial kernel:

Based on the generated output, we can say that accuracy increases when the C value is increased. Also, in the experiment, the accuracy doesn't change when we change the order of polynomials (1 to 5). It only changes when the C value is changed. However, this is what's observed in the given dataset, need more experiments on different datasets to confirm.

Even in the RBF kernel, C value seems to play important role than other parameters. Like in polynomial kernel, here also the accuracy seems to increase with the increase in C value.

Overall, the highest accuracy was reached by linear kernel i.e. 98% when C value is 1.

Question 3:

Answer:

X₁, X₂,, X_n, are independent and identically distributed (i.i.d.) samples.

The likelihood function $L(\alpha)$ is the product of the individual PDFs evaluated at each sample x_i for i=1,2,....,n:

$$L(\alpha) = \prod_{i=1}^{n} f(x_i | \alpha) = \prod_{i=1}^{n} \alpha^{-2} x_i e^{-x_i/\alpha}$$
$$L(\alpha) = \alpha^{-2n} \prod_{i=1}^{n} x_i \cdot e^{-\sum_{i=1}^{n} x_i/\alpha}$$

To maximize the likelihood, we take the log-likelihood:

$$l(\alpha) = \ln(L(\alpha)) = \ln\left(\alpha^{-2n} \prod_{i=1}^{n} x_i e^{-\sum_{i=1}^{n} x_i / \alpha}\right)$$

$$= -2n \ln(\alpha) + \sum_{i=1}^{n} \ln(x_i) - \frac{1}{\alpha} \sum_{i=1}^{n} x_i$$

$$l(\alpha) = -2n \ln(\alpha) - \frac{1}{\alpha} \sum_{i=1}^{n} x_i$$

$$\frac{dl(\alpha)}{d\alpha} = -\frac{2n}{\alpha} + \frac{1}{\alpha^2} \sum_{i=1}^{n} x_i = 0$$

$$-2n\alpha + \sum_{i=1}^{n} x_i = 0$$

$$\widehat{\alpha} = \frac{1}{2n} \sum_{i=1}^{n} x_i$$

Given sample values $x_1 = 0.25$, $x_2 = 0.75$, $x_3 = 1.50$, $x_4 = 2.50$, $x_5 = 2.0$,

The sum:
$$\sum_{i=1}^{5} x_i = 0.25 + 0.75 + 1.50 + 2.50 + 2.0 = 7.0$$

The number of samples is 5, so the estimate for α is:

$$\widehat{\alpha} = \frac{1}{2 \times 5} \times 7 = \frac{7}{10} = 0.7$$

Thus, the maximum likelihood estimates for (α) is $\widehat{\alpha} = 0.7$