LP10: Induction électromagnétique

Alexandre Fafin

10/05/18

Références

[1]	M. Bertin, J.P. Faroux,	and J. Renault.	$Electromagn\'etisme~3$.	$: magn\'e$ -
	tostatique et induction.	Dunod, 1984.		

- [2] R. Duffait. Expériences de physique au CAPES de sciences physiques. Bréal, 1996.
- [3] C. Garing. Magnétisme: statique, induction et milieux. Ellipses, 1999.
- [4] H. Gié and J.-P. Sarmant. *Electromagnétisme*, *2e année*. Lavoisier, Tec et doc, 1996.
- [5] V. Renvoizé, E. Bellanger, R. Girardi, S. Paulin, B. Portelli, and E. Saudrais. *Physique PC-PC**, *Cap prépa*. Pearson, 2014.
- [6] M.-N. Sanz. Physique tout-en-un, PC, PC*. Dunod, 2014.

Niveau

L2

Prè-requis

- Equations de Maxwell, ARQS
- Force de Lorentz
- Mécanique

Objectifs

Table des matières

1	Phé	nomènes d'induction	2	
	1.1	Mise en évidence expérimentale	2	
	1.2	Cas de Neumann $[5]$	2	
	1.3	Cas de Lorentz $[5]$	2	
	1.4	Cas général[4]	2	
2	Applications			
	2.1	Freinage par courants de Foucault[3]	2	
	2.2	Transformateurs $[4]$	3	
	2.3	Conversion électromécanique : principe avec les rails de		
		$Laplace[5, 6] \dots $	3	

Introduction

Induction : apparition de courants, dits induits, dans un circuit électrique sous l'effet d'un champ magnétique

Phénomènes d'induction électromagnétique découverts par Faraday en Conséquences: induction mutuelle et autoinduction 1831.

Phénomènes d'induction

Mise en évidence expérimentale 1.1

- Manip Aimant + bobine :
- Apparition d'un courant induit dépendant du sens de variation de B
- Courant induit : proportionnel à la variation de flux mais aussi à la vitesse de cette variation.
- Loi de lenz : la f.e.m induite tend par ses conséquences à s'opposer à la cause qui lui a donné naissance

Cas de Neumann[5] 1.2

Circuit électrique, fixe et indéformable, plongé dans un champ magnétique extérieur variable dans le temps \rightarrow siège de courant induit. On parle d'induction de Neumann.

On se place dans le cas de l'ARQS magnétique, où le courant de déplacement est négligé. \vec{B} se calcul comme en régime stationnaire.

$$\overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{1}$$

Ainsi

$$\vec{E} = -\overrightarrow{\text{grad}} V - \frac{\partial \vec{A}}{\partial t} \tag{2}$$

La composante de \vec{E} à circulation non conservative est le champ électromoteur de Neumann:

$$\vec{E}_m = -\frac{\partial \vec{A}}{\partial t} \tag{3}$$

$$e = \oint \vec{E}_m \cdot d\vec{l} = -\frac{d\Phi}{dt} \tag{4}$$

Le signe – traduit la loi de Lenz. e s'exprime en V

Définir le flux propre et le coefficient d'auto-inductance L.

Manip: Circuit RL auquel on envoit un échellon de tension et on mesure le temps de réponse $\tau = \frac{R}{I}[1]$.

Cas de Lorentz[5]

Circuit en mouvement dans un référentiel où règne un champ magnétique permanent.

- Changement de référentiel pour les champs. Suivre Renvoizé
- Champ électromoteur de Lorentz

$$\vec{E}_m = \vec{v}_e(M, t) \wedge \vec{B}(M) \tag{5}$$

— La circulation le long du circuit est la force électromotrice de lorentz

$$e = \oint_{circuit} \vec{E}_m . \vec{dl} \tag{6}$$

Cas général[4]

- Somme des termes de Lorentz et de Neumann
- Les descriptions différentes proviennet d'un changement de référentiel. Principe de relativité: le phénomène observé ne dépend que du mouvement relatif

Applications

Freinage par courants de Foucault[3]

- Chute d'un aimant dans un tube
- Application : freinage des camions, chauffage par induction

Manip Faire la manip avec un aimant, un tube en plastique et un tube en aluminium

2.2 Transformateurs[4]

— Introduction du flux propre et du coefficient d'autoinductance Manip Réaliser un transformateur avec deux bobines. Tracer V_e en fonction de V_s pour trouver le rapport de transformation. [2]

2.3 Conversion électromécanique : principe avec les rails de Laplace[5, 6]

- Présentation du dispositif
- Deux modes de fonctionnement : générateur ou dynamo
- Equation électrique et équation mécanique

Conclusion

Ouvrir sur les moteurs (synchrones et à courant continu). Applications importantes de l'induction.