Segundo ejercicio de identificación de un modelo ARIMA

Datos

Cargue la serie de datos simulados 00c296-12.gdt

open IdentificaEstosARIMA/00c296-12.gdt

Tareas a realizar

- 1. Realice un primer análisis gráfico: haga un gráfico de la serie y un gráfico rango-media
- 2. Determine si es necesario transformar logarítmicamente los datos
- 3. Determine si es necesario tomar una diferencia estacional de la serie
- 4. Determine si es necesario tomar una o más diferencias regulares de la serie
- 5. Encuentre un modelo ARIMA para la serie que sea lo más parsimonioso posible, pero cuyos residuos se puedan considerar *ruido blanco*.
- 6. Ficheros https://github.com/mbujosab/EconometriaAplicada-SRC/tree/main/Ejercicios
 - Versión en pdf
 - Datos: 00c296-12.gdt
 - Guión de gretl: SegundoEjercicioIdentificacionARIMA.inp

Primer análisis gráfico

De estos gráficos se desprende que la serie tiene una acusada pauta estacional y que la volatilidad probablemente depende del nivel de la serie.

Estacionariedad en varianza

A la luz de los anteriores gráficos, donde se aprecia que la variabilidad de los datos aumenta con el nivel de la serie, parece necesaria la transformación logarítmica; pero esta serie toma valores negativos, por lo que no podemos transformar los datos logarítmicamente (para hacerlo deberíamos sumar previamente un valor constante suficientemente elevado como para que todos los valores fueran positivos). Por el momento, dejemos la serie sin transformarla logarítmicamente.

Diferencias estacionales

Observemos el gráfico de la serie y su correlograma.

corrgm x 36 --plot="x_ACF-PACF.png"

En el gráfico de la serie se aprecia una acusada pauta estacional. En la función de autocorrelación simple las correlaciones correspondientes a los retardos estacionales son muy significativas (y con bastantes "satélites"); en la función de autocorrelación parcial los 13 primeros retardos son muy significativos, en particular, el decimotercero (adyacente al 12) es muy importante.

Además, si tratamos de ajustar un AR(1) estacional:

ARIMA000X100 <- arima 0 0 0 ; 1 0 0 ; x

Evaluaciones de la función: 622 Evaluaciones del gradiente: 123

ARIMAOOOX100:

ARMA, usando las observaciones 1985:01-2001:08 (T = 200)

Estimado usando AS 197 (MV exacta)

Variable dependiente: x

Desviaciones típicas basadas en el Hessiano

co	eficiente	Desv.	típica	z	valor p		
	,59533 ,955320	1,286 0,014		2,794 64,15	0,0052 0,0000	***	
Media de la vbl Media de innova R-cuadrado Log-verosimilit Criterio de Sch	ciones 0, 0, ud -38	780099 358041 906552 4,1534 4,2019	D.T. i R-cuad Criter	le la vble nnovacion rado corr io de Aka de Hannan	es egido ike	4,838896 1,535258 0,906552 774,3069 778,3112	
Real Imaginaria Módulo Frecuencia							
AR (estaciona Raíz 1	1,046	8 0 	,0000	1,0468	0,000	00	

ARIMA000X100 guardado

constatamos que la estimación del parámetro Φ_1 está muy próxima a uno.

Estas evidencias apuntan a que es necesario tomar una diferencia estacional

Recuerde que los test ADF y KPSS no sirven para determinar si es necesario tomar diferencias estacionales (solo sirven para las diferencias regulares).

Por tanto, tomamos una diferencia estacional.

Repetición del análisis con la serie diferenciada estacionalmente

La serie resultante no muestra signos de estacionalidad. Veamos si se ve algo en el correlograma:

corrgm sd_x 36 --plot="sd_x_ACF-PACF.png"

No hay nada que sugiera la necesidad de tomar una segunda diferencia estacional.

Estacionariedad en media

El gráfico de la serie diferenciada estacionalmente no muestra tener una clara tendencia o evolución a largo plazo de su nivel.

En el correlograma, la ACF decae rápidamente, indicando que la serie parece ser la realización de un proceso estacionario.

Probemos a ajustar un modelo AR a los datos diferenciados estacionalmente

Evaluaciones de la función: 20 Evaluaciones del gradiente: 5

ARIMA110: ARIMA, usando las observaciones 1985:02-2001:08 (T = 199)

Estimado usando AS 197 (MV exacta)

Variable dependiente: (1-L) x

Desviaciones típicas basadas en el Hessiano

C	oeficiente	Desv. t	ípica	z	valor p	_
	0,0799826 0,405536	0,2555 0,0659		0,3130 6,146	0,7543 7,94e-10) ***
Media de la vo Media de innov R-cuadrado Log-verosimili Criterio de So	raciones 0, 0, tud -43	058438 000197 824333 4,7714 5,4227	D.T. in R-cuadr Criteri	e la vble inovacione rado corre o de Aka: le Hannan	es egido ike	2,351529 2,149835 0,824333 875,5428 879,5415
AR Raíz 1	Rea 2,465	1 Imagin	0000	Módulo 1	Frecuenci 0,000	

ARIMA110 guardado

El parámetro ϕ_1 está muy lejos de la unidad (consecuentemente, también lo está la raíz autorregresiva). Probemos con los tests formales de raíz unitaria y estacionariedad

Test ADF

```
Contraste aumentado de Dickey-Fuller (GLS) para sd_x
contrastar hacia abajo desde 14 retardos, con el criterio AIC modificado, Perron-Qu
tamaño muestral 187
la hipótesis nula de raíz unitaria es: [a = 1]

contraste con constante
incluyendo 0 retardos de (1-L)sd_x
modelo: (1-L)y = b0 + (a-1)*y(-1) + e
valor estimado de (a - 1): -0,225392
estadístico de contraste: tau = -4,85952
valor p aproximado 0,000
Coef. de autocorrelación de primer orden de e: 0,002

El p-valores es muy bajo, por lo que se rechaza la H<sub>0</sub> de que la serie es I(1)
```

Test KPSS

kpss -1 sd_x

Contraste KPSS para sd_x

T = 188

Parámetro de truncamiento de los retardos = 4 Estadístico de contraste = 0,22692

1% 10% 5% Valores críticos: 0,348 0,462 0,739 Valor p > .10

El p-valor es elevado, por los que NO se rechaza la H_0 de que la serie es I(0). Todas estas evidencias indican de manera muy clara que NO es necesario tomar ninguna diferencia ordinaria.

Primer intento de búsqueda de un modelo ARIMA

Observando al ACF y la PACF de aprecia que la ACF decae a una tasa exponencial, y la PACF se trunca tras el primer retardo, lo cual es compatible con un AR(1).

Por tanto, parece que la serie en logaritmos sigue un modelo ARIMA(1, 1, 0). Veamos si es así:

ARIMA110cte <- arima 1 1 0 ; x

Evaluaciones de la función: 20 Evaluaciones del gradiente: 5

ARIMA110cte:

ARIMA, usando las observaciones 1985:02-2001:08 (T = 199)

Estimado usando AS 197 (MV exacta)

Variable dependiente: (1-L) x

Media de innovaciones

Desviaciones típicas basadas en el Hessiano

	coeficiente	e Desv. típica	a z	valor p	
const phi_1	0,0799826 0,405536	0,255554 0,0659820	0,3130 6,146	0,7543 7,94e-10 ***	
	la vble. dep. innovaciones	•	. de la vble . innovacion	-	

R-cuadrado	0,824333	R-cuadrado corregido	0,824333
Log-verosimilitud	-434,7714	Criterio de Akaike	875,5428
Criterio de Schwarz	885,4227	Crit. de Hannan-Quinn	879,5415

		Real Imag	ginaria	Módulo Fre	cuencia
AR					
Raíz	1 :	2,4659 	0,0000	2,4659	0,0000

ARIMA110cte guardado

Los parámetros autorregresivos son significativos y el modulo de las raíces es claramente mayor que la unidad en ambos casos. No obstante, la constante no es significativa.

Reestimemos el modelo sin constante:

```
ARIMA110 <- arima 1 0 0; 0 1 0 ; x --nc
```

Evaluaciones de la función: 16 Evaluaciones del gradiente: 3

ARIMA110: ARIMA, usando las observaciones 1986:01-2001:08 (T = 188)

Estimado usando AS 197 (MV exacta) Variable dependiente: (1-Ls) x

Desviaciones típicas basadas en el Hessiano

	coeficient	e Desv.	típica	z	valor p	
phi_1	0,787833	0,044	10563	17,88	1,62e-71	***
Media de la Media de inno R-cuadrado Log-verosimio Criterio de S	ovaciones litud Schwarz	0,449786 0,095115 0,962771 -256,9190 524,3110 Real Imag	D.T. R-cua Crite Crit.	de la vbl innovacio drado cor rio de Ak de Hanna Módulo	nes regido aike	1,487227 0,946555 0,962771 517,8381 520,4606

AR.					
Raíz	1	1,2693	0,0000	1,2693	0,0000

ARIMA110 guardado

Análisis de los residuos

Todo parece OK, pero debemos ver el gráfico de los residuos y su correlograma, así como los estadísticos Q de Ljung-Box para constatar si podemos asumir que son la realización de un proceso de ruido blanco.

```
gnuplot residuos --time-series --with-lines --output="Residuos.png"
corrgm residuos 60 --plot="residuosACF-PACF.png"
```


corrgm residuos 15

Función de autocorrelación para residuos ***, ** y * indica significatividad a los niveles del 1%, 5% y 10% utilizando la desviación típica $1/T^0$,5

RETAR	DO FAC	!	FACP		Estad-Q.	[valor	p]
1	-0,0117		-0,0117		0,0260	[0,872]	
2	0,0043		0,0042		0,0296	[0,985]	
3	0,0141		0,0142		0,0677	[0,995]	
4	-0,0841		-0,0838		1,4398	[0,837]	
5	0,0410		0,0393		1,7673	[0,880]	
6	-0,0229		-0,0218		1,8703	[0,931]	
7	0,0091		0,0108		1,8867	[0,966]	
8	-0,0119		-0,0199		1,9146	[0,984]	
9	-0,0982		-0,0921		3,8399	[0,922]	
10	-0,0798		-0,0882		5,1169	[0,883]	
11	0,1237	*	0,1294	*	8,2065	[0,695]	
12	0,0056		0,0074		8,2128	[0,768]	
13	0,0892		0,0790		9,8375	[0,707]	
14	0,0536		0,0451	:	10,4283	[0,730]	
15	0,0221		0,0466	:	10,5290	[0,785]	

El gráfico de los residuos no presenta ninguna estructura reconocible y ninguna autocorrelación es significativa.

Más importante aún, los correlogramas no muestran ninguna pauta reconocible, se parecen mucho entre sí y los estadísticos Q muestran p-valores muy elevados, por lo que podemos asumir que estos residuos son "ruido blanco".

También conviene mirar si los residuos tienen distribución gaussiana:

modtest --normality

Distribución de frecuencias para uhat8, observaciones 13-200 número de cajas = 13, Media = 0,0951153, Desv.típ.=0,944279

interva	ılo pur	nto medio	frecuencia	ı rel	acum.	
<	-2,0695	-2,2803	1	0,53%	0,53%	
-2,0695 -	-1,6480	-1,8588	7	3,72%	4,26%	*
-1,6480 -	-1,2265	-1,4373	9	4,79%	9,04%	*
-1,2265 -	-0,80505	-1,0158	15	7,98%	17,02%	**
-0,80505 -	-0,38355	-0,59430	24	12,77%	29,79%	***
-0,38355 -	0,037942	-0,17281	30	15,96%	45,74%	****
0,037942 -	0,45944	0,24869	39	20,74%	66,49%	*****
0,45944 -	0,88094	0,67019	26	13,83%	80,32%	***
0,88094 -	1,3024	1,0917	19	10,11%	90,43%	***
1,3024 -	1,7239	1,5132	9	4,79%	95,21%	*
1,7239 -	2,1454	1,9347	6	3,19%	98,40%	*
2,1454 -	2,5669	2,3562	2	1,06%	99,47%	
>=	2,5669	2,7777	1	0,53%	100,00%	

Contraste de la hipótesis nula de distribución Normal: Chi-cuadrado(2) = 0,023 con valor p 0,98858

Claramente tienen distribución normal.

Si en la ventana del modelo estimado pincha en el menú desplegable Gráficos -->Espectro con respecto al periodograma espectral verá que el espectro teórico del modelo se ajusta perfectamente al periodograma de la serie.

Por tanto, podemos concluir que la serie 00c296-12.gdt, no requiere la transformación logarítmica (en cualquier caso no se podía tomar sin aumentar previamente su nivel para hacerla positiva), sigue un proceso $ARIMA(1,0,0) \times (0,1,0)_S$ con media cero.

Modelo efectivamente simulado

Veamos si ese es el modelo usado en su simulación. Si miramos la línea 150 del fichero 000-Etiquetas-12.txt que se encuentra en el directorio de donde hemos obtenido los datos encontramos lo siguiente:

```
00c296, , mu = 0.0, ar = '(1 - 0.8B)(1 + 0.8B)', ma = '(1 + 0.55B)', i = '(1 - B12)'
```

Efectivamente, NO requería la transformación logarítmica, la media era 0,0 y era necesaria una diferencia estacional, pero ninguna regular.

No obstante, el modelo simulado tenía un polinomio autorregresivo de de orden dos, AR(2), y un polinomio de media móvil de orden uno, MA(1). Veamos qué pasa si intentamos estimar el verdadero modelo simulado...

¡Hemos identificado un modelo distinto del simulado!

Pruebas con otro modelo ARIMA

Estimemos el verdadero modelo simulado: ARIMA $(2,0,0) \times (1,1,0)_S$:

ARIMAsimulado <- arima 2 0 0; 1 1 0 ; x --nc

Evaluaciones de la función: 27 Evaluaciones del gradiente: 7

ARIMAsimulado:

ARIMA, usando las observaciones 1986:01-2001:08 (T = 188)

Estimado usando AS 197 (MV exacta) Variable dependiente: (1-Ls) x

Desviaciones típicas basadas en el Hessiano

	coeficiente	e Desv.	típica	z	valor	p
phi_1 phi_2 Phi_1	0,777533 0,0107529 0,0187954	0,073	17739 38538 73800	10,40 0,1456 0,2429	2,52e- 0,884 0,808	
	imilitud -	0,449786 0,093115 0,962765 -256,8841 534,7139	D.T. R-cua Crite	de la vble innovacion adrado corr erio de Aka . de Hannar	nes regido nike	1,487227 0,946381 0,962363 521,7682 527,0133

		Real In	naginaria	Módulo Fr	recuencia
AR					
Raíz	1	1,2640	0,0000	1,2640	0,0000
Raíz	2	-73,5729	0,0000	73,5729	0,5000
AR (es	tacional)				
Raíz	1	53,2046	0,0000	53,2046	0,0000

ARIMAsimulado guardado

El ajuste es parecido (fíjese en los coeficientes de determinación) pero solo el parámetro ϕ_1 resulta ser significativo (y con un valor parecido al del modelo anterior). Por tanto...

La estimación del verdadero modelo empleado en la simulación de los datos ¡NO ES MEJOR QUE EL MODELO QUE HEMOS IDENTIFICADO!

La explicación es que el factor (1+0.8B) del polinomio AR casi se cancela con el polinomio MA (1+0.55B). Por eso hemos encontrado un modelo más parsimonioso que funciona OK.

Ahora escoja al azar nuevas series del directorio (dispone de centenares de series simuladas con distintos modelos) y practique la identificación hasta que adquiera seguridad.