$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$
absolute value bars

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$
absolute value bars

- $|x| \ge 0$ for every real number x, and
- |x| = 0 only if x = 0.

absolute value represents the distance between points

Properties of absolute values

$$(1.)|-a|=|a|.$$

Properties of absolute values

$$\boxed{1.} |-a| = |a|.$$

(2.)
$$|ab| = |a||b|$$
 and $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$.

Properties of absolute values

$$\boxed{1.} |-a| = |a|.$$

$$(2.)|ab| = |a||b| \text{ and } \left| \frac{a}{b} \right| = \frac{|a|}{|b|}.$$

 $(3.)|a \pm b| \le |a| + |b|$ (the triangle inequality).

$$|x - a| = D$$
 \iff either $x = a - D$ or $x = a + D$
 $|x - a| < D$ \iff $a - D < x < a + D$
 $|x - a| \le D$ \iff $a - D \le x \le a + D$
 $|x - a| > D$ \iff either $x < a - D$ or $x > a + D$

$$|x - a| = D$$
 \iff either $x = a - D$ or $x = a + D$
 $|x - a| < D$ \iff $a - D < x < a + D$
 $|x - a| \le D$ \iff $a - D \le x \le a + D$
 $|x - a| > D$ \iff either $x < a - D$ or $x > a + D$

CENTER = a RADIUS = D

EXAMPLE

What values of x satisfy the inequality $\left| 5 - \frac{2}{x} \right| < 3$?

Cartesian coordinate system (after René Descartes)

The four quadrants

Increments and Distances

The distance from P to Q is $D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Graphs

The **graph** of an equation (or inequality) involving the variables x and y is the set of all points P(x, y) whose coordinates satisfy the equation (or inequality).

If two nonvertical lines, L_1 and L_2 , are perpendicular, their slopes m_1 and m_2 satisfy $m_1m_2 = -1$, so each slope is the *negative reciprocal* of the other:

$$m_1 = -\frac{1}{m_2}$$
 and $m_2 = -\frac{1}{m_1}$.

Equations of Lines

Equations of Lines

The equation

$$y = m(x - x_1) + y_1$$

is the **point-slope equation** of the line that passes through the point (x_1, y_1) and has slope m.

EXAMPLE

Find an equation of the line through the points (1, -1) and (3, 5).

Equations of Lines

$$y = mx + b$$

the slope-y-intercept equation

$$y = m(x - a)$$

y = m(x - a)the **slope-**x**-intercept equation**

The equation Ax + By = C (where A and B are not both zero) is called the **general** linear equation in x and y.

Circles and Disks

Standard equation of a circle

The circle with centre (h, k) and radius a > 0 has equation

$$(x-h)^2 + (y-k)^2 = a^2$$
.

In particular, the circle with centre at the origin (0, 0) and radius a has equation

$$x^2 + y^2 = a^2.$$

Circles and Disks

Standard equation of a circle

The circle with centre (h, k) and radius a > 0 has equation

$$(x-h)^2 + (y-k)^2 = a^2.$$

In particular, the circle with centre at the origin (0, 0) and radius a has equation

$$x^2 + y^2 = a^2.$$

$$x^{2} + y^{2} + 2ax + 2by = c$$

$$\begin{cases}
\text{circle when } c + a^{2} + b^{2} > 0 \\
\text{single point when } c + a^{2} + b^{2} = 0 \\
\text{no points when } c + a^{2} + b^{2} < 0
\end{cases}$$

Circles and Disks

A disk of radius a with center (h,k)

$$(x - h)^2 + (y - k)^2 \le a^2$$

Equations of Parabolas

A **parabola** is a plane curve whose points are equidistant from a fixed point F and a fixed straight line L that does not pass through F.

Equations of Parabolas

A **parabola** is a plane curve whose points are equidistant from a fixed point F and a fixed straight line L that does not pass through F.

Equations of Parabolas

EXAMPLE

Find an equation of the parabola having the point F(0, p) as focus and the line L with equation y = -p as directrix.

Scaling a Graph

Shifting a Graph

SHIFTING A GRAPH HORIZONTALLY

c>0,	X ← X - C	shifting c units to the right
c<0,	X ← C	shifting c units to the left

SHIFTING A GRAPH VERTICALLY

c>0, y → y-C	shifting c units to downward
c<0, y → y-c	shifting c units to upward

EXAMPLE

Describe the graph of $y = x^2 - 4x + 3$.

Ellipses and Hyperbolas

If a and b are positive numbers, the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

represents a curve called an **ellipse** that lies wholly within the rectangle $-a \le x \le a$, $-b \le y \le b$.

General definition of an ellipse

$$|PF_1| + |PF_2| = constant$$

