The Valuation of Storage

Long Zhao
McCombs School of Business, University of Texas - Austin

Joint work with Kumar Muthuraman and Stathis Tompaidis

December 2, 2014

Examples of Storage

- Silos Agricultural Commodities
- Tanks Oil
- Caverns Natural Gas
- \bullet Lake Reservoirs and Dams Water \Rightarrow Electricity.

Motivation

Historical Prices

Future Prices

Future Prices

Price Dynamics

- Schwartz (1997)
- Schwartz and Smith (2000)
- Routledge, Seppi and Spatt(2000)
- Jaillet, Ronn and Tompaidis (2004)

Price Dynamics

Paper	Price Dynamics				
Hodges (2004)	Schwartz (1997) one factor model $+ \sin()$				
Boogert (2008)	Schwartz (1997) one factor model				
Chen (2008)	Schwartz (1997) one factor model + sin()				
Thompson (2009)	Schwartz (1997) one factor model with jump				
Secomandi (2010)	Jaillet (2004)				

Price Dynamics

Paper	Price Dynamics
Hodges (2004)	Schwartz (1997) one factor model $+ \sin()$
Boogert (2008)	Schwartz (1997) one factor model
Chen (2008)	Schwartz (1997) one factor $model + sin()$
Thompson (2009)	Schwartz (1997) one factor model with jump
Secomandi (2010)	Jaillet (2004)
Ours	Schwartz (1997) one factor model

Constraints of Storage

- Transaction costs.
- Depreciation rates.
- Delivery rate.
- Capacity.

Why Constraints?

Production and Consumption of Natural Gas

Storage Valuation

Paper	Trans	Depre	Delivery	Cap	Туре	Opt
Hodges (2004)	None	CP	U	В	С	0
Boogert (2008)	CP	None	В	В	D	S
Chen (2008)	CP	None	В	В	C	S
Thompson (2009)	CF	None	В	В	C	0
Secomandi (2010)	CP	None	В	В	D	0

CP: Constant Proportional CF: Constant Fixed

B: Bounded U: Unbounded C: Continuous D: Discrete O: Optimal S: Suboptimal

Storage Valuation

Paper	Trans	Depre	Delivery	Cap	Туре	Opt
Hodges (2004)	None	CP	U	В	С	0
Boogert (2008)	CP	None	В	В	D	S
Chen (2008)	CP	None	В	В	C	S
Thompson (2009)	CF	None	В	В	C	0
Secomandi (2010)	CP	None	В	В	D	0
Ours	B & C	None	U	В	С	0

CP: Constant Proportional CF: Constant Fixed

B: Bounded U: Unbounded C: Continuous D: Discrete O: Optimal S: Suboptimal

Method

- Continuous Time Singular Control ⇒ HJB equation.
- HJB equation (free boundary problem) is very hard to solve.
- Moving boundary method is used in 1 dimension.
 - Start with an initial guess and iteratively improve it until convergence.
 - \bullet A sequence of fixed boundary problems \to free boundary problem

1D Moving boundary Method

- Muthuraman and Kumar (2006)
- Chockalingam and Muthuraman (2007,2010)
- Muthuraman and Zha (2008)
- Feng and Muthuraman (2010)

1 Dimension VS 2 Dimensions

Overview of Results

- Fixed boundary problem is solved efficiently.
- Moving boundary method is generalized to 2 dimensions.
- Optimal value and strategy are obtained.

Model

One factor model

$$dS_t = \kappa(\mu - \ln S_t)S_t dt + \sigma S_t dW_t$$

• By Ito's formula, $X_t = \ln(S_t)$ is an Ornstein-Uhlenbeck process,

$$dX_t = \kappa(\alpha - X_t)dt + \sigma dW_t.$$

where $\alpha = \mu - \sigma^2/(2\kappa)$.

Model

• Storage level at time t is Q_t . L_t , U_t represent cumulative injections and withdrawals at time t.

$$dQ_t = dL_t - dU_t$$

- Admissible if $Q_t \in (Q_{min}, Q_{max}) \ \forall t \geq 0$.
- Costs of injection and withdrawal, $\lambda(X_t, Q_t)$ and $\mu(X_t, Q_t)$, are continuous and bounded.

Model

• Objective: to maximize discounted infinite-horizon cash flows.

$$V(x,q) = \max_{(L,U)\in\mathcal{U}} \mathbb{E}_{x,q} \left(\int_0^\infty e^{-\beta t} (e^{X_t} - \mu(Q_t^1)) dU_t - \int_0^\infty e^{-\beta t} (e^{X_t} + \lambda(Q_t^2)) dL_t \right)$$
(1)

where $X_0 = x$ and $Q_0 = q$.

The Hamilton-Jacobi-Bellman Equation

• Dynamic programming arguments and Ito's formula yield the Hamilton-Jacobi-Bellman (HJB) equation.

$$\max\left(\mathcal{L}V, \frac{\partial V}{\partial q} - (e^{x} + \lambda(q)), -\frac{\partial V}{\partial q} + (e^{x} - \mu(q))\right) = 0$$

with
$$\mathcal{L}V = \frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2} + \alpha(\kappa - x)\frac{\partial V}{\partial x} - \beta V$$
.

 A verification theorem assures us that a function that solves the HJB equation is the value function for the original control problem and a policy that achieves this value function is the optimal policy.

The Hamilton-Jacobi-Bellman Equation

Model

• Assume V is known and the change of policy at one point (x_0, q_0) won't affect it. Now at (x_0, q_0) , ϵ is bought at price e^{x_0} . The average buying profit is

$$\frac{[V(x_0, q_0 + \epsilon) - V(x_0, q_0)] - \epsilon(e^x + \lambda(q))}{\epsilon} \xrightarrow{\epsilon \to 0} \frac{\partial V}{\partial q} - (e^x + \lambda(q))$$

- $\mathcal{L}V(x,q)$: holding profit at (x,q).
- $\frac{\partial V}{\partial q}(x,q) (e^x + \lambda(q))$: selling profit at (x,q).
- $-\frac{\partial V}{\partial q}(x,q) + (e^x \mu(q))$: buying profit at (x,q).
- HJB equation.

$$\max\left(\mathcal{L}V, rac{\partial V}{\partial q} - (e^{x} + \lambda(q)), -rac{\partial V}{\partial q} + (e^{x} - \mu(q))
ight) = 0$$

Holding, Selling and Buying Regions

regions.

• The state space $(x,q) \in \mathbb{R}^2_+$ is divided into three kinds of

- ullet Holding region: holding profit = 0, selling & buying profit < 0
- ullet Selling region: selling profit =0, holding & buying profit <0
- ullet Buying region: buying profit =0, holding & selling profit <0

Motivation

Model

Solving the Fixed Boundary Problem

In the holding region

$$\frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2} + \alpha(\kappa - x) \frac{\partial V}{\partial x} - \beta V = 0$$

• Defining $y = \kappa(x - \alpha)^2/\sigma^2$, we have

$$y\frac{\partial^2 V}{\partial y^2} + (0.5 - y)\frac{\partial V}{\partial y} - \frac{\beta}{2\kappa}V = 0$$

which is the Kummer Equation. The solution is the sum of hypergeometric1F1 and the hypergeometricU functions.

$$V(x,q) = A(q)$$
HyperGeoU $\left(\frac{\beta}{2\kappa}, \frac{1}{2}, \frac{\kappa}{\sigma^2}(x-\alpha)^2\right)$
+ $B(q)$ HyperGeo1F1 $\left(\frac{\beta}{2\kappa}, \frac{1}{2}, \frac{\kappa}{\sigma^2}(x-\alpha)^2\right)$

Boundary conditions can determine A(q) and B(q)

The Structure of Optimal Boundary

Theorem

When the price is high enough, regardless of storage, selling is the optimal strategy.

The Structure of Optimal Boundary

Theorem

Under optimal policy, there won't exist x and $q_1 \neq q_2$ such that buying happens at (x, q_1) while selling happens at (x, q_2) .

The Moving Boundary Method

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

The Moving Boundary Method

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

Figure: Initial Guess

The Moving Boundary Method

- Challenges
 - Initial guess.
 - 2 dimensions.
 - Direction.
 - Distance.

Figure: Initial Guess

Algorithm

- **1** Begin with selling at very high price for all q > 0.
- Move selling and buying boundaries along price x alternatively until convergence.

Distance

Because there is *No Coming Back*, overshooting must be avoided. Sell

Figure : Current Policy

Distance

Because there is *No Coming Back*, overshooting must be avoided. Sell

Figure : Current Policy

Figure: Selling Profit

Distance

Because there is *No Coming Back*, overshooting must be avoided. Sell

Figure : Current Policy

Figure: After Movement

Buy

Figure: Current Policy

Buy

Figure : Current Policy

Figure: Buying Profit

Buy

Figure: Current Policy

Figure : After Movement

Proof of Convergence

Theorem

Each movement improves value function.

Figure : Initial Guess

Figure: Initial Guess

Proof of Convergence

Theorem

The boundaries can be kept moving.

Extensions

- Seasonality and Finite time.
- Depreciation.
- Random injection and withdrawal.