Initial Experiments with Learning to Rank

QUT ielab at CLEF eHealth 2017 Technology Assisted Reviews Track

Harrisen Scells, Guido Zuccon, Anthony Deacon, Bevan Koopman

TAR Task

Two tasks:

1. Produce an efficient ordering of studies retrieved by a boolean search strategy such that all of the relevant abstracts are retrieved as early as possible

Identify a subset of the ranked studies which contains all or as many of the relevant abstracts for the least effort

Our Approach

- We train learning to rank models using domain specific features
 - What effect do PICO features have with respect to learning to rank algorithms?
- Compare the PICO models to non-PICO models

What does this mean?

BM25 to rank

- Boolean "baseline" system simulating PubMed, others
- Replicate system that uses PICO

Learning to ranking

- Several L2R models trained on non-PICO
- Several L2R models not train on PICO

Interested in the effectiveness of the features and their effectiveness in L2R

PICO Annotating

- PICO features were annotated on both the document and query
 - Document features extracted automatically using RobotReviewer [1]
 - Query features extracted manually with the assistance from a medical professional

What were the features?

- IDFSum sum of the IDF scores
- IDFStd std.dev. of the IDF scores

- IDFMax max IDF score
- IDFAvg mean IDF score
- PopulationCount, InterventionCount, OutcomeCount
 - Number of P,I,O terms overlapping in query and doc

What were the models?

- Various L2R models trained:
 - MART
 - LambdaMART
 - AdaRank
 - Coordinate Ascent
 - Random Forests

- Each model evaluated on an existing collection [2]
 - Also contains annotated documents and queries using the same method previously described

Submitted Runs

Model Evaluation

	NCG@10		AP	
	Boolean	PICO	Boolean	PICO
Elasticsearch	0.397	0.409	0.104	0.102
MART	0.237	0.327	0.066	0.086
AdaRank	0.0875	0.2197	0.0255	0.0619
Coordinate Ascent*	0.305	0.378	0.076	0.114
LambdaMART	0.259	0.377	0.068	0.097
Random Forests*	0.247	0.275	0.061	0.088

*submitted runs

Did I get lucky/unlucky training these models?

How do I explain to medical researchers the reason they are seeing this ranking? Small set of features - hard to beat Elasticsearch BM25

Results Breakdown

Questions

