Quiz 1. True/False: The expression $P \to Q$ is logically equivalent to $\neg P \lor Q$.

Solution. The statement is *true*. One method of seeing is this is to compute the truth table for $P \to Q$ and $\neg P \lor Q$ and see that the outputs of $P \to Q$ and $\neg P \lor Q$ match, no matter the inputs for P,Q.

P	Q	$P \to Q$	$\neg P$	$\neg P \vee Q$
\overline{T}	T	${f T}$	F	${f T}$
T	F	${f F}$	F	${f F}$
F	T	${f T}$	T	${f T}$
F	F	${f T}$	T	${f T}$

As we can see, the third and fourth columns corresponding to $P \to Q$ and $\neg P \lor Q$, respectively, are the same, $P \to Q \equiv \neg P \lor Q$. Alternatively, $P \to Q$ will be logically equivalent to $\neg P \lor Q$ if they are always simultaneously true. We know for $P \to Q$ to be true, either P must be false or P,Q must both be true. Observe that if P is false, then $\neg P$ is true so that $\neg P \lor Q$ is true. If P,Q are true, then $\neg P \lor Q$ is true. Loosely, $P \to Q$ is true if either P does not occur or if Q occurs. But this is precisely $\neg P \lor Q$. In any case, it is true that $P \to Q \equiv \neg P \lor Q$.

Quiz 2. True/False: The logical expression corresponding to the circuit below is $\neg (P \land Q) \land (P \lor \neg Q)$

Solution. The statement is *true*. To see this, we can follow the circuit, labeling the wires as we go.

Quiz 3. *True/False*: Let \mathcal{U} be the set of integers. Consider the predicate P(n): $n^2 + 5 > 20$. Because P(5) is true, we know that both $\exists n \ P(n)$ and $\forall n \ P(n)$ are true.

Solution. The statement is *false*. Because P(5): $5^2+5=25+5=30>20$ is true, we know there exists an integer n—for example n=5—such that P(n) is true. Therefore, $\exists n\,P(n)$ is true. However, the statement $\forall n\,P(n)$ need not be true simply because there is an n such that P(n) is true. For example, P(1): $1^2+5=1+5=6\not>20$. But because P(n) is not true when n=1, the predicate P(n) is not true for all n. Therefore, $\forall n\,P(n)$ is false. But then the claim that both $\exists n\,P(n)$ and $\forall n\,P(n)$ are true is false.

Quiz 4. *True/False*: If P(x) is a predicate with nonempty universe \mathcal{U} , then there are values of x for which P(x) is true, and there are values for which P(x) is false.

Solution. The statement is *false*. If P(x) is a predicate with universe \mathcal{U} , then one of the following must be true: P(x) is true for all $x \in \mathcal{U}$, P(x) is false for all $x \in \mathcal{U}$, or there are values $x, y \in \mathcal{U}$ such that P(x) is true and P(y) is false. Each possibility occurs. For instance, let the universe \mathcal{U} be the set of real numbers. If P(x) is the predicate P(x): $x^2 \geq 0$, then P(x) is true for all $x \in \mathcal{U}$. If P(x) is the predicate P(x): $x^2 < 0$, then P(x) is false for all $x \in \mathcal{U}$. If P(x) is the predicate P(x): $x^2 > 1$, then P(x): $x^2 = 1 \neq 1$, i.e. P(x) is false, while P(x): $x^2 = 1 \neq 1$ is true, i.e. P(x) is true. But then it is not true that for a given predicate P(x) nonempty universe \mathcal{U} , there are values of x for which P(x) is true, and there are values for which P(x) is false.

Quiz 5. *True/False*: Let $S = \{x \in \mathbb{Z} : (2x - 1)(x + 6) = 0\}$. The set S has infinitely many elements; in particular, the set S is nonempty.

Solution. The statement is *false*. Suppose that $s \in S$. Then $s \in \mathbb{Z}$ and (2s-1)(s+6)=0. But this implies 2s-1=0 or s+6=0, which in turn implies $s=\frac{1}{2}$ or s=-6. Because $s \in \mathbb{Z}$, we know that $s \neq \frac{1}{2}$. It must then be that if $s \in S$, s=-6. We can verify that $s \in S$: $-6 \in \mathbb{Z}$ and $(2 \cdot -6 - 1)(-6 + 6) = -5 \cdot 0 = 0$. This shows that $S = \{-6\}$; therefore, S is nonempty. However, clearly S is not infinite. Therefore, the statement of the quiz is false.

Quiz 6. *True/False*: If $S = \emptyset$, then $\mathcal{P}(S) = \emptyset$.

Solution. The statement is *false*. We know that for any set S, $\mathcal{P}(S)$ is the set of subsets of S. For any set S, $\varnothing \subseteq S$ and $S \subseteq S$. Therefore, $\{\varnothing, S\} \subseteq \mathcal{P}(S)$ for all sets S. But then we cannot have $\mathcal{P}(S) = \varnothing$. So the statement of the quiz is false. In fact, $\mathcal{P}(S) = \{\varnothing\}$.

Quiz 7. True/False:
$$\left(\bigcup_{n\in\mathbb{N}}[0,n)\right)^c=(-\infty,0)$$

Solution. The statement is *true*. The union of a collection of sets is the set consisting of the elements in any of the sets in the collection. But then the union contains all of the elements of [0,n) for all $n\in\mathbb{N}$. But then given a nonnegative real x, choose $n\in\mathbb{N}$ so that x< n. This shows $x\in[0,n)\subseteq\bigcup_{n\in\mathbb{N}}[0,n)$. If x is a negative real, then $x\notin[0,n)\subseteq\bigcup_{n\in\mathbb{N}}[0,n)$ for all $n\in\mathbb{N}$. But this shows that $\left(\bigcup_{n\in\mathbb{N}}[0,n)\right)=[0,\infty)$. Therefore, we have...

$$\left(\bigcup_{n\in\mathbb{N}} [0,n)\right)^c = [0,\infty)^c = (-\infty,0)$$

Alternatively, we have...

$$\left(\bigcup_{n\in\mathbb{N}}[0,n)\right)^c=\bigcap_{n\in\mathbb{N}}[0,n)^c=\bigcap_{n\in\mathbb{N}}\left((-\infty,0)\cup[n,\infty)\right)=(-\infty,0)\cup\bigcap_{n\in\mathbb{N}}[n,\infty)$$

Clearly, if x is a negative real, $x \notin [n, \infty)$ for all $n \in \mathbb{N}$, so that $x \notin \bigcap_{n \in \mathbb{N}} [n, \infty)$. If x were a nonnegative real in $\bigcap_{n \in \mathbb{N}} [n, \infty)$, then $x \in [n, \infty)$ for all $n \in \mathbb{N}$. But again, choosing $n \in \mathbb{N}$ with x < n shows that $x \notin [n, \infty)$. But then $x \notin \bigcap_{n \in \mathbb{N}} [n, \infty)$. But this shows...

$$\left(\bigcup_{n\in\mathbb{N}}[0,n)\right)^c=(-\infty,0)\cup\bigcap_{n\in\mathbb{N}}[n,\infty)=(-\infty,0)\cup\varnothing=(-\infty,0)$$