Chapter 3: Convex Sets

- Affine and convex sets
- Important examples
- Operators that preserve convexity
- Generalized inequalities
- Separating and supporting hyperplanes
- Dual cones and generalized inequalities

Affine sets

Lines and line segments: $\mathbf{y} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2$

also defined for infinite-dim spaces

A set is called an *affine subspace* iff it contains all the lines passing through any two points.

If C is an affine subspace and $\mathbf{x}_0 \in C$, then the set

$$V = C - \mathbf{x}_0 = \{\mathbf{x} - \mathbf{x}_0 | \mathbf{x} \in C\}$$

is a linear subspace.

We define $\dim C = \dim V$.

Example: Solution set of linear equations.

Affine sets

The set of all affine combinations of points in some set C is called the *affine hull* of C, and denoted aff C:

affine combination

aff
$$C = \{\theta_1 \mathbf{x}_1 + ... + \theta_k \mathbf{x}_k | \mathbf{x}_1, ..., \mathbf{x}_k \in C, \theta_1 + ... + \theta_k = 1\}.$$

The affine hull is the smallest affine set that contains C.

We define the affine dimension of a set C as the dimension of its affine hull.

Example: unit circle in \mathbb{R}^2

If aff C is not the whole space, we define the relative interior of the set C, denoted riC, as its interior relative to aff C:

$$riC = \{ \mathbf{x} \in C | B(\mathbf{x}, r) \cap affC \subseteq C \text{ for some } r > 0 \},$$

We can then define the *relative boundary* of a set C as $\bar{C} \setminus riC$.

Example: unit square in \mathbb{R}^3

Convex sets

A set C is *convex* if the line segment between any two points in C lies in C, i.e., if for any $\mathbf{x}_1, \mathbf{x}_2 \in C$ and any θ with $0 \le \theta \le 1$, we have

$$\theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in C.$$

Every two points can see each other.

Convexity vs. closedness

Examples: \emptyset , $\{\mathbf{x}_0\}$, \mathbb{R}^n , and affine sets

Convex hull

The $convex\ hull$ of a set C, denoted convC, is the set of all convex combinations of points in C: $Convex\ combination$

conv
$$C = \{ \theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k | \mathbf{x}_i \in C, \theta_i \ge 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1 \}.$$

convC is always convex. It is the smallest convex set that contains C.

Example: $\text{conv}\{\mathbf{e}_{i}\mathbf{e}_{j}^{T}, i = 1, \dots, m, j = 1, \dots, n\}, \text{conv}\{\mathbf{u}\mathbf{v}^{T} | \|\mathbf{u}\| = 1, \|\mathbf{v}\| = 1\}$

General convex combination

Suppose $\theta_1, \theta_2, \dots$ satisfy

$$\theta_i \ge 0, \quad i = 1, 2, ..., \quad \sum_{i=1}^{\infty} \theta_i = 1,$$

and $\mathbf{x}_1, \mathbf{x}_2, \dots \in C$, where $C \subseteq \mathbb{R}^n$ is convex. Then

$$\sum_{i=1}^{\infty} \theta_i \mathbf{x}_i \in C,$$

if the series converges. More generally, suppose $p : \mathbb{R}^n \to \mathbb{R}$ satisfies $p(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in C$ and $\int_C p(\mathbf{x}) d\mathbf{x} = 1$, where $C \subseteq \mathbb{R}^n$ is convex. Then

$$\int_C p(\mathbf{x}) \mathbf{x} d\mathbf{x} \in C, \qquad \mathbb{E} \mathbf{x} \in C$$

if the integral exists.

Cones

A set C is called a *cone* if for every $\mathbf{x} \in C$ and $\theta \geq 0$ we have $\theta \mathbf{x} \in C$.

apex

A set C is a convex cone if it is convex and a cone, which means that for any $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\theta_1, \theta_2 \geq 0$, we have

Conic hull

The conic hull of a set C is the set of all conic combinations of points in C, i.e., $Conic\ combination$

$$\{\theta_1 \mathbf{x}_1 + ... + \theta_k \mathbf{x}_k | \mathbf{x}_i \in C, \theta_i \ge 0, i = 1, ..., k\}.$$

It is the smallest convex cone that contains C.

Important examples

- line, line segment, ray, subspace
- hyperplanes and halfspaces
- Euclidean balls and ellipsoids
- norm balls and norm cones
- polyhedra, nonnegative orthant
- simplexes
- positive semidefinite cone

Intersection

If S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\cap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.

Examples: 1.
$$\mathbb{S}_{+}^{n} = \bigcap_{\mathbf{z} \neq \mathbf{0}} \{ \mathbf{X} \in \mathbb{S}^{n} | \mathbf{z}^{T} \mathbf{X} \mathbf{z} \geq 0 \}.$$

2. Consider the set

$$S = \{ \mathbf{x} \in \mathbb{R}^m | | p(t) | \le 1 \text{ for } |t| \le \pi/3 \},$$

where $p(t) = \sum_{k=1}^{m} x_k \cos kt$. The set S can be expressed as the intersection of an infinite number of slabs: $S = \bigcap_{|t| < \pi/3} S_t$, where

$$S_t = {\mathbf{x} | -1 \le (\cos t, ..., \cos mt)^T \mathbf{x} \le 1},$$

and so is convex.

Intersection

3.
$$\{\mathbf{X} | \|\mathbf{X}\|_* \le 1\} = \bigcap_{\mathbf{U}^T \mathbf{U} = \mathbf{I}, \mathbf{V}^T \mathbf{V} = \mathbf{I}} \{\mathbf{X} | \langle \mathbf{U} \mathbf{V}^T, \mathbf{X} \rangle \le 1\}.$$

4. A closed convex set S is the intersection of all halfspaces that contain it:

$$S = \bigcap \{ \mathcal{H} | \mathcal{H} \text{ halfspace}, S \subseteq \mathcal{H} \}.$$

Affine functions

Suppose $S \subseteq \mathbb{R}^n$ is convex and $f : \mathbb{R}^n \to \mathbb{R}^m$ is an affine function: $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$. Then the image of S under f,

$$f(S) = \{ f(\mathbf{x}) | \mathbf{x} \in S \},\$$

is convex. Similarly, if $f: \mathbb{R}^k \to \mathbb{R}^n$ is an affine function, the *inverse image* of S under f,

$$f^{-1}(S) = \{ \mathbf{x} | f(\mathbf{x}) \in S \},$$

is convex.

The *projection* of a convex set onto some of its coordinates is convex: if $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ is convex, then

$$T = {\mathbf{x}_1 \in \mathbb{R}^m | (\mathbf{x}_1, \mathbf{x}_2) \in S \text{ for some } \mathbf{x}_2 \in \mathbb{R}^n}$$

is convex.

Sum and Cartesian product

If S_1 and S_2 are convex, then their sum $S_1 + S_2 = \{\mathbf{x} + \mathbf{y} | \mathbf{x} \in S_1, \ \mathbf{y} \in S_2\}$ is convex, so is their Cartesian product $S_1 \times S_2 = \{(\mathbf{x}_1, \mathbf{x}_2) | \ \mathbf{x}_1 \in S_1, \mathbf{x}_2 \in S_2\}$.

- Examples
- 1. The polyhedron $\{\mathbf{x} | \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}$ can be expressed as the inverse image of the Cartesian product of the nonnegative orthant and the origin under the affine function $f(\mathbf{x}) = (\mathbf{b} \mathbf{A}\mathbf{x}, \mathbf{d} \mathbf{C}\mathbf{x})$:

$$\{\mathbf{x}|\mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\} = \{\mathbf{x}|f(\mathbf{x}) \in \mathbb{R}_+^m \times \{0\}\}.$$

2. The condition

$$A(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \le \mathbf{B},$$

where $\mathbf{B}, \mathbf{A}_i \in \mathbb{S}^m$, is called a linear matrix inequality (LMI) in \mathbf{x} .

The solution set of a linear matrix inequality, $\{\mathbf{x}|A(\mathbf{x}) \leq \mathbf{B}\}$, is convex. Indeed, it is the inverse image of the positive semidefinite cone under the affine function $f: \mathbb{R}^n \to \mathbb{S}^m$ given by $f(\mathbf{x}) = \mathbf{B} - A(\mathbf{x})$.

- Examples
- 3. The set

$$\{\mathbf{x}|\mathbf{x}^T\mathbf{P}\mathbf{x} \le (\mathbf{c}^T\mathbf{x})^2, \ \mathbf{c}^T\mathbf{x} \ge 0\}$$

where $\mathbf{P} \in \mathbb{S}^n_+$ and $\mathbf{c} \in \mathbb{R}^n$, is convex, since it is the inverse image of the second-order cone,

$$\{(\mathbf{z},t)|\ \mathbf{z}^T\mathbf{z} \le t^2, t \ge 0\},$$

under the affine function $f(\mathbf{x}) = (\mathbf{P}^{1/2}\mathbf{x}, \ \mathbf{c}^T\mathbf{x}).$

4. The ellipsoid

$$\epsilon = \{\mathbf{x} | (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1\},$$

where $\mathbf{P} \in \mathbb{S}^n_{++}$, is the image of the unit Euclidean ball $\{\mathbf{u} | \|\mathbf{u}\|_2 \leq 1\}$ under the affine mapping $f(\mathbf{u}) = \mathbf{P}^{1/2}\mathbf{u} + \mathbf{x}_c$. (It is also the inverse image of the unit ball under the affine mapping $g(\mathbf{x}) = \mathbf{P}^{-1/2}(\mathbf{x} - \mathbf{x}_c)$.)

Perspective functions

We define the perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$, with domain **dom** $P = \mathbb{R}^n \times \mathbb{R}_{++}$, as $P(\mathbf{z}, t) = \mathbf{z}/t$.

The inverse image of a convex set under the perspective function is also convex: if $C \subseteq \mathbb{R}^n$ is convex, then

$$P^{-1}(C) = \{ (\mathbf{x}, t) \in \mathbb{R}^{n+1} | \mathbf{x}/t \in C, t > 0 \}$$

is convex.

Question: If function f preserves convexity: if C_1 is convex then $f(C_1)$ is also convex, does f^{-1} also perserve convexity?

Linear-fractional functions

A linear-fractional function is formed by composing the perspective function with an affine function. Suppose $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is affine, i.e.,

$$g(\mathbf{x}) = \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^T \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$, and $d \in \mathbb{R}$. The function $f : \mathbb{R}^n \to \mathbb{R}^m$ given by $f = P \circ g$, i.e.,

$$f(\mathbf{x}) = (\mathbf{A}\mathbf{x} + \mathbf{b})/(\mathbf{c}^T\mathbf{x} + d), \text{dom } f = {\mathbf{x} | \mathbf{c}^T\mathbf{x} + d > 0},$$

is called a *linear-fractional* (or projective) function.

Linear-fractional functions

$$f(\mathbf{x}) = \frac{1}{\mathbf{x}_1 + \mathbf{x}_2 + 1} \mathbf{x}, \text{ dom } f = \{(x_1, x_2) | x_1 + x_2 + 1 > 0\}.$$

Conditional probabilities: Let $p_{ij} = \mathbb{P}(u = i, v = j)$. Then the conditional probability

$$f_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}$$

is obtained by a linear-fractional mapping from **p**.

Proper cones and generalized inequalities

A cone $K \subseteq \mathbb{R}^n$ is called a *proper cone* if it satisfies the following:

- \bullet K is convex.
- K is closed.
- K is solid, which means it has nonempty interior.
- K is pointed, which means that it contains no line (or equivalently, $\mathbf{x} \in K, -\mathbf{x} \in K \Longrightarrow \mathbf{x} = 0$).

We associate the proper cone K with the partial ordering on \mathbb{R}^n defined by

$$\mathbf{x} \preceq_K \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in K$$
.

We also write $\mathbf{x} \succeq_K \mathbf{y}$ for $\mathbf{y} \preceq_K \mathbf{x}$. Similarly, we define an associated strict partial ordering by

$$\mathbf{x} \prec_K \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in K^{\circ},$$

and write $\mathbf{x} \succ_K \mathbf{y}$ for $\mathbf{y} \prec_K \mathbf{x}$.

Examples

- 1. When $K = \mathbb{R}_+$, the partial ordering \leq_K is the usual ordering \leq on \mathbb{R} , and the strict partial ordering \prec_K is the same as the usual strict ordering < on \mathbb{R} .
- 2. Nonnegative orthant and componentwise inequality: The nonnegative orthant $K = \mathbb{R}^n_+$ is a proper cone. The associated generalized inequality \preceq_K corresponds to componentwise inequality between vectors: $\mathbf{x} \preceq_K \mathbf{y}$ means that $\mathbf{x}_i \leq \mathbf{y}_i, i = 1, ..., n$. The associated strict inequality corresponds to componentwise strict inequality: $\mathbf{x} \prec_K \mathbf{y}$ means that $\mathbf{x}_i < \mathbf{y}_i, i = 1, ..., n$.

For simplicity, we write $\mathbf{x} \leq \mathbf{y}$ and $\mathbf{x} < \mathbf{y}$ instead of $\mathbf{x} \leq_{\mathbb{R}^n_+} \mathbf{y}$ and $\mathbf{x} \prec_{\mathbb{R}^n_{++}} \mathbf{y}$

3. Positive semidefinite cone and matrix inequality: The positive semidefinite cone S_+^n is a proper cone in S^n . The associated generalized inequality \preceq_K is the usual matrix inequality: $\mathbf{X} \preceq_K \mathbf{Y}$ means $\mathbf{Y} - \mathbf{X}$ is positive semidefinite. The interior of \mathbb{S}_+^n (in \mathbb{S}^n) consists of the positive definite matrices, so the strict generalized inequality also agrees with the usual strict inequality between symmetric matrices: $\mathbf{X} \prec_K \mathbf{Y}$ means $\mathbf{Y} - \mathbf{X}$ is positive definite.

For simplicity, we write $\mathbf{X} \leq \mathbf{Y}$ and $\mathbf{X} \prec \mathbf{Y}$ instead of $\mathbf{X} \leq_{\mathbb{S}^n_+} \mathbf{Y}$ and $\mathbf{X} \prec_{\mathbb{S}^n_+} \mathbf{Y}$

Examples

4. Cone of polynomials nonnegative on [0, 1]: Let K be defined as

$$K = \{ \mathbf{c} \in \mathbb{R}^n | c_1 + c_2 t + \dots + c_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \},$$

i.e., K is the cone of (coefficients of) polynomials of degree n-1 that are nonnegative on the interval [0, 1]. It can be shown that K is a proper cone, its interior is the set of coefficients of polynomials that are positive on the interval [0, 1].

Two vectors \mathbf{c} , $\mathbf{d} \in \mathbb{R}^n$ satisfy $\mathbf{c} \prec_K \mathbf{d}$ if and only if

$$c_1 + c_2t + \dots + c_nt^{n-1} \le d_1 + d_2t + \dots + d_nt^{n-1}$$

for all $t \in [0, 1]$.

- Properties of generalized inequalities
- \leq_K is preserved under addition: if $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{u} \leq_K \mathbf{v}$, then $\mathbf{x} + \mathbf{u} \leq_K \mathbf{y} + \mathbf{v}$.
- $\bullet \preceq_K$ is transitive: if $\mathbf{x} \preceq_K \mathbf{y}$ and $\mathbf{y} \preceq_K \mathbf{z}$ then $\mathbf{x} \preceq_K \mathbf{z}$.
- \leq_K is preserved under nonnegative scaling: if $\mathbf{x} \leq_K \mathbf{y}$ and $\alpha \geq 0$ then $\alpha \mathbf{x} \leq_K \alpha \mathbf{y}$.
- \leq_K is reflexive: $\mathbf{x} \leq_K \mathbf{x}$.
- \leq_K is antisymmetric: if $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{x}$, then $\mathbf{x} = \mathbf{y}$.
- \leq_K is preserved under limits: if $\mathbf{x}_i \leq_K \mathbf{y}_i$ for $i = 1, 2, ..., \mathbf{x}_i \to \mathbf{x}$ and $\mathbf{y}_i \to \mathbf{y}$ as $i \to \infty$, then $\mathbf{x} \leq_K \mathbf{y}$.

- Properties of generalized inequalities
- if $\mathbf{x} \prec_K \mathbf{y}$ then $\mathbf{x} \preceq_K \mathbf{y}$.
- if $\mathbf{x} \prec_K \mathbf{y}$ and $\mathbf{u} \preceq_K \mathbf{v}$ then $\mathbf{x} + \mathbf{u} \prec_K \mathbf{y} + \mathbf{v}$.
- if $\mathbf{x} \prec_K \mathbf{y}$ and $\alpha > 0$ then $\alpha \mathbf{x} \prec_K \alpha \mathbf{y}$.
- $\mathbf{x} \not\prec_K \mathbf{x}$.
- if $\mathbf{x} \prec_K \mathbf{y}$, then for \mathbf{u} and \mathbf{v} small enough, $\mathbf{x} + \mathbf{u} \prec_K \mathbf{y} + \mathbf{v}$.

- 1. Let $C \subseteq \mathbb{R}^n$ be a convex set, with $\mathbf{x}_1, ..., \mathbf{x}_k \in C$, and let $\theta_1, ..., \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0, \ \theta_1 + ... + \theta_k = 1$. Show that $\theta_1 \mathbf{x}_1 + ... + \theta_k \mathbf{x}_k \in C$.
- 2. A set C is midpoint convex if whenever two points \mathbf{a} , \mathbf{b} are in C, the average or midpoint $(\mathbf{a} + \mathbf{b})/2$ is in C. Prove that if C is closed and midpoint convex, then C is convex.
- 3. Which of the following sets S are polyhedra? If possible, express S in the form $S = \{\mathbf{x} | \mathbf{A}\mathbf{x} \leq \mathbf{b}, \ \mathbf{F}\mathbf{x} = \mathbf{g}\}.$
- (a) $S = \{y_1 \mathbf{a}_1 + y_2 \mathbf{a}_2 | -1 \le y_1 \le 1, -1 \le y_2 \le 1\}$, where $\mathbf{a}_1, \ \mathbf{a}_2 \in \mathbb{R}^n$.
- (b) $S = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} \geq \mathbf{0}, \ \mathbf{1}^T \mathbf{x} = 1, \sum_{i=1}^n x_i a_i = b_1, \sum_{i=1}^n x_i a_i^2 = b_2 \}$, where $a_1, ..., a_n \in \mathbb{R}$ and $b_1, b_2 \in \mathbb{R}$.
- (c) $S = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} \succeq \mathbf{0}, \mathbf{x}^T \mathbf{y} \leq 1 \text{ for all } \mathbf{y} \text{ with } ||\mathbf{y}||_2 = 1 \}.$
- (d) $S = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} \succeq \mathbf{0}, \mathbf{x}^T \mathbf{y} \leq 1 \text{ for all } \mathbf{y} \text{ with } \sum_{i=1}^n |y_i| = 1 \}.$

- 4. Which of the following sets are convex?
- (a) A slab, i.e., a set of the form $\{\mathbf{x} \in \mathbb{R}^n | \alpha \leq \mathbf{a}^T \mathbf{x} \leq \beta\}$.
- (b) A wedge, i.e., $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{a}_1^T \mathbf{x} \leq b_1, \mathbf{a}_2^T \mathbf{x} \leq b_2\}.$
- (c) The set of points closer to a given point than a given set, i.e., $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_0\|_2 \le \|\mathbf{x} \mathbf{y}\|_2$ for all $\mathbf{y} \in S\}$ where $S \subseteq \mathbb{R}^n$.
- (d) The set of points closer to one set than another, i.e., $\{\mathbf{x}|\mathbf{dist}(\mathbf{x},S) \leq \mathbf{dist}(\mathbf{x},T)\}$, where $S,T \subseteq \mathbb{R}^n$, and

$$\mathbf{dist}(\mathbf{x}, S) = \inf\{\|\mathbf{x} - \mathbf{z}\|_2 | \mathbf{z} \in S\}.$$

- (e) The set $\{\mathbf{x}|\mathbf{x}+S_2\subseteq S_1\}$, where $S_1,S_2\subseteq \mathbb{R}^n$ with S_1 convex.
- (f) The set of points whose distance to **a** does not exceed a fixed fraction θ of the distance to **b**, i.e., the set $\{\mathbf{x}|\|\mathbf{x}-\mathbf{a}\|_2 \leq \theta \|\mathbf{x}-\mathbf{b}\|_2\}$ ($\mathbf{a} \neq \mathbf{b}$ and $0 \leq \theta \leq 1$).

- 5. Find the convex hull of the set $\{\mathbf{u}\mathbf{u}^T | \|\mathbf{u}\| = 1\}$.
- 6. Consider the set of rank-k outer products, defined as $\{\mathbf{X}\mathbf{X}^T|\mathbf{X} \in \mathbb{R}^{n \times k}, \text{rank}\mathbf{X} = k\}$. Describe its conic hull in simple terms.
- 7. Give an expression $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ for the unit ball $\{\mathbf{X} | ||\mathbf{X}||_2 \leq 1\}$.

8. Give an explicit description of the positive semidefinite cone \mathbb{S}^n_+ , in terms of the matrix coefficients and ordinary inequalities, for n=1,2,3. To describe a general element of \mathbb{S}^n , for n=1,2,3, use the notation

$$x_1, \left[egin{array}{ccc} x_1 & x_2 \ x_2 & x_3 \end{array}
ight], \left[egin{array}{ccc} x_1 & x_2 & x_3 \ x_2 & x_4 & x_5 \ x_3 & x_5 & x_6 \end{array}
ight].$$

- 9. Suppose $K \subseteq \mathbb{R}^2$ is a closed convex cone.
- (a) Give a simple description of K in terms of the polar coordinates of its elements $(\mathbf{x} = r(\cos\phi, \sin\phi)^T \text{ with } r \geq 0)$.
- (b) When is K pointed?
- (c) When is K proper (hence, defines a generalized inequality)? Draw a plot illustrating what $\mathbf{x} \leq_K \mathbf{y}$ means when K is proper.