

Computer Vision

Convolutional Neural Networks

Technische Hochschule Rosenheim Winter 2024/25 Prof. Dr. Jochen Schmidt

Contents

- Reminder/Crash course: Multi-Layer Perceptron (MLP)
 - Details: see course "Deep Learning"
- Convolutional Neural Networks (CNN)

Classic MLP

Multi-Layer Perceptron (MLP)

- Neurons are arranged in layers
- Layer i is (fully) connected with layer i+1
 - no connections within layer
 - no connections to any other layers
 - no feedback
- Information flow from one layer to the next: feed-forward
- network has no internal state

- number of input/output units is problem dependent
- number of layers/hidden units determined by developer
- Training: Error feedback with iterative non-linear optimization (error backpropagation)

McCulloch-Pitts Unit (Perceptron)

- Simplified model of a real neuron
- Output: linear function of the input + (non-linear) threshold value

Activation Functions (Classic)

- (a) Step function / threshold function
- (b) Sigmoid function (also: logistic function)

$$g(x) = \frac{1}{1 + e^{-x}}$$

Calculating the derivative is easy:

$$g'(x) = g(x)(1 - g(x))$$

• Changing the bias w_0 moves the position of the threshold

Activation function - ReLU

- Ramp function $g(x) = \max(0, x)$
- ReLU = Rectified Linear Unit
- now the most widely used activation function in deep neural networks (for inner neurons)
- Variants
 - Leaky ReLU: 1st derivative non-zero in the negative range
 - Softplus: smooth approximation of ReLU

Activation function – Softmax

- a normalized exponential function $g(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$
- Smooth approximation of the MAX function
 - increases large values and suppresses small values
- used in the output layer
- behaves like a discrete probability density function
- Example
 - input 1 2 3 4 1 2 3
 - becomes 0,024 0,064 0,175 0,475 0,024 0,064 0,175

Target Functions for Classification

objective function, loss function

- cross entropy (also: log loss)
 - to compare two probability densities
 - Calculation (single sample): $-\sum_{i=0}^{m-1} y_i \operatorname{ld} p_i$ m: #classes, y_i : desired output (usually 0 or 1), p_i : actual output
 - Instead of Id, you can of course also use In for the optimization (why?)
- binary cross entropy
 - Cross entropy for two classes
 - Calculation simplified to: $-(y \operatorname{ld} p + (1-y) \operatorname{ld} (1-p))$

Activation/target function - Classification

Two classes

- use a single neuron in the output layer
- Activation of output layer: Sigmoid
- Activation of inner layers: ReLU
- Target function: binary cross entropy

Several disjoint classes

- use one neuron per class (1-out-of-n coding, one-hot) in the output layer
- Activation of output layer: Softmax
- Activation of inner layers: ReLU
- Target function: Cross entropy

Several non-disjoint classes

- use one neuron per class in the output layer
- Activation of output layer: Sigmoid
- Activation of inner layers: ReLU
- Target function: binary cross entropy

MLP in Image Classification

- Are all edges of the fully connected network really needed?
- Can neurons share edges?

CNN

Recognition of Image Parts

- many patterns are smaller than the complete image
- for small regions: less parameters required

Similar Patterns

- similar patterns can be found in different image locations
- Idea: Train many small detectors that
 - move over the image
 - share parameters

- hence: CNN Convolutional Neuronal Network
- consists of (linear) convolution filters
- the filter masks are learned during training
- first used with backpropagation in LeNet (1989-1998): LeCun, Bottou, Bengio, Haffner. Gradient-Based Learning Applied to Document Recognition. Proc. of the IEEE 86(11): 2278-2324, 1998.

Convolution = Feature Extraction

Filter bank with k filters

k Feature Maps

Convolution and activation are now repeated several times Idea: Combine low-level features, combine again etc.

Hyperparameter – Stride

the filter mask can be moved by more than one pixel (stride) this differs from the "normal" convolution operation

Example: 7x7 image with 3x3 filter

х	X	X	X	х	
x	X	X	X	х	
x	X	X	X	х	
x	X	X	X	х	
х	Х	X	Х	х	

Stride 1

Output: 5x5

X	X	X	
Х	X	X	
х	х	Х	

Stride 2

Output: 3x3

Х		Х	
х		X	

Stride 3 asymmetric border – stride does not match

Hyperparameter – Stride

1	٧

		1 V		
		F		
N	F			
,				

Stride *S*

Size of output:
$$\frac{N-F}{S}+1$$

If result is integer: Stride and filter size match

Example
$$N = 7, F = 3$$
:

$$S = 1: \frac{7-3}{1} + 1 = 5$$

$$S = 2: \frac{7^{-3}}{2} + 1 = 3$$

$$S = 2: \frac{7^{-3}}{2} + 1 = 3$$
$$S = 3: \frac{7^{-3}}{3} + 1 = 2,33$$

Hyperparameter – Pad

- Problem: Input size for a layer is getting smaller and smaller
- Solution: Padding of border
 - with zeros (Zero-Padding)
 - with copies of the border pixels

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

For filter size $F \times F$ $\frac{F-1}{2}$ values are lost at the border

Examples:

F = 3: Padding with 1

F = 5: Padding with 2

F = 7: Padding with 3

Number of parameters for this layer:

each filter has $5 \cdot 5 \cdot 3 + 1 = 76$ parameters (+1 because of bias)

10 filters, total: $76 \cdot 10 = 760$ parameters

Number of parameters for this layer: each filter has $5 \cdot 5 \cdot 10 + 1 = 251$ parameters (+1 because of bias) 16 filters, total: $251 \cdot 16 = 4016$ parameters

Hyperparameters – Convolution

- Number K and size F of filters
- Stride *S*
- Size of padding P
- typical values:
 - K = power of 2, e.g. 32, 64, 128, 512
 - F = 3, S = 1, P = 1
 - F = 5, S = 1, P = 2
 - F = 5, S = 2, P = matching
 - F = 1, S = 1, P = 0
- transforms a layer of size $W \times H \times D$ into a layer of size $W' \times H' \times D'$:

$$W' = \frac{W - F + 2P}{S} + 1$$
, $H' = \frac{H - F + 2P}{S} + 1$, $D' = K$

• Number of weights: $(F \cdot F \cdot D) \cdot K + K$

Pooling

- scaling does not change the object
- objective: smaller-sized layers

each activation map is processed separately

Pooling

MAX-Pooling: Use the largest element within a windows of size $F \times F$

Average-Pooling: Use the mean value of all elements within a windows of size

Example: MAX-Pooling using 2x2 windows and stride S=2

2	1	2	4			
7	3	1	5	Pool	7	5
6	7	1	8		9	8
9	3	4	2			

Hyperparameters – Pooling

- Size *F* of windows
- Stride *S*
- Typical values:

•
$$F = 2$$
, $S = 2$

•
$$F = 3$$
, $S = 2$

• transforms a layer of size $W \times H \times D$ into a layer of size $W' \times H' \times D'$: $W' = \frac{W-F}{S} + 1$, $H' = \frac{H-F}{S} + 1$, D' = D

• Number of weights: none

Fully Connected Layers / Flatten

- at the end: fully connected layers as before (MLP)
 - → Flattening

Typical Standard Architecture

- *n* ca. 3, up to ca. 5
- *m* large
- $0 \le k \le 2$
- General tendency:
 - use smaller filter sizes and deeper architecture
 - away from pooling/fully connected layers towards pure convolutional layers

Alexnet

ImageNet Classification Challenge 2012

- 1000 classes
- 1.2 million training images
- 50,000 validation images
- 150,000 test images

Network:

- 650,000 neurons
- 60 million parameters
- used CNN with ReLU on GPU for the first time

Pre-Processing:

- Scale/Crop images to 256 x 256 (training uses random crops of size 224x224 from these)
- Subtract mean RGB image

Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 60(6):84-90, 2017.

VGGNet

- 8 layers (AlexNet) \rightarrow 16-19 layers (VGG16/19)
- 3x3 convolution only, stride 1, pad 1; 2x2 max-pool stride 2
- a series of three 3x3 convolution layers has the same effective receptive field as a single 7x7 filter layer
 - but: three 3x3 is deeper, with more non-linearities
 - and has less parameters:
 - one 7x7 layer with depth d has $49d^2 + d$ weights
 - three 3x3 layers only $27d^2 + d$

VGG16: 138 million parameters

VGG19: 144 million parameters

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

Pool	3
3x3 conv, 512	3
3x3 conv, 512	(
3x3 conv, 512	
Pool	3
3x3 conv, 512	3
3x3 conv, 512	3
3x3 conv, 512	3
Pool	
3x3 conv, 256	3
3x3 conv, 256	3
Pool	
3x3 conv, 128	3
3x3 conv, 128	3
Pool	
3x3 conv, 64	
3x3 conv, 64	
Input	
VGG16	

	10 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
3x3 conv, 64	

K. Simonyan, A, Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". International Conference on Learning Representations, 2015. https://arxiv.org/abs/1409.1556

AlexNet

VGG16

VGG19

So, more and more Layers?

What happens when we use more layers and deeper networks?

The model with 56 layers is obviously worse – in training as well as test

- The deeper network is worse. But this is not caused by overfitting.
- Conjecture: the optimization problem is harder for deeper networks

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition, 2015. https://arxiv.org/abs/1512.03385

ResNet – Residual Neural Network

- Connections can be skipped
- No sequence of fully connected layers at the end
- Batch Normalization

Idea: A deeper network should be at least as good as a flat one.

Problem:

- when there is no change from one block to the next, we'd just need an identity mapping
- in a standard CNN this is cumbersome: has to be created by training weights

Solution in ResNet:

Copy trained layers from flat model, set additional layers to identity mapping.

Result:

- shortcuts without additional parameters
- when identity is required: just set weights to zero

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition, 2015. https://arxiv.org/abs/1512.03385

Motivation

ImageNet Classification Challenge 2012

- 1000 classes
- 1.2 million training images
- 50,000 validation images
- 150,000 test images

How do we train such a huge model if we do not have a million images?

- Many datasets are small
- Obtaining training samples is expensive

Network:

- 650,000 neurons
- 60 million parameters
- used CNN with ReLU on GPU for the first time

Pre-Processing:

- Scale/Crop images to 256 x 256 (training uses random crops of size 224x224 from these)
- Subtract mean RGB image

Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 60(6):84-90, 2017.

Transfer Learning

Transfer Learning

- Problem: We need a huge amount of labelled training data to train so many weights
- What if we have only a small data set?
- Reuse models trained on, e.g., ImageNet
 - for a different task on the same data
 - on different data for the same task
 - on different data for a different task

Models can be found, e.g.

https://huggingface.co/models

https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/tensorflow/models

• This is called **Transfer Learning** – it's the rule, not the exception

Weight Transfer

What should we transfer?

- Convolutional layers extract features
- Expectation: Less task-specific in earlier layers
- We cut the network at some depth in the feature extraction part
- The extracted parts can be
 - fixed by setting learning rate $\alpha = 0$ or
 - fine-tuned (using small learning rates)

Transfer-Learning — Small Data Set

instead of re-training the last layer we can also use the network as a pure feature extractor:

- delete output layer
- the output of the previous layer generates a feature vector (here 4096 dimensional)
- use these to train a separate classifier (e.g., SVM)
- Advantage: no overfitting with small data sets

Transfer-Learning — Larger Data Set

- the larger the data set the more layers can be re-trained
- choose learning rate considerably smaller than that of the original network (e.g., 1/10 of that)

Regularization

- Regularization
 - Makes the trained model more robust and increases the ability to generalize
 - by avoiding extreme values for weights
- Examples
 - Data augmentation
 - Dropout
 - Batch normalization

Data Augmentation

Artificially enlarge dataset

But how?

Any transformation that is invariant to the class label:

Probably the same class:

© Bruce, Bella the Saint-Hubert Bloodhound relaxes, CC BY 2.0

But you have to be careful!

Data Augmentation

- derive "new" data samples from existing ones
 - using a defined pattern
 - or using random parameters
- thus, the network will see new variations during training

Common transformations on images

- affine transformations (rotation, translation, mirroring, ...)
- elastic transformations
- lens distortions
- change resolution
- crop image parts
- random pixel noise
- random changes to color
 - contrast
 - intensity
 - RGB-values (e.g., using PCA by adding multiples of the principal axes)

Regularization – Dropout

- in each iteration, some neurons are randomly set to zero (i.e., they provide no output as if they were removed)
- typical value: 0.5 (= 50% probability of elimination)
- advantage:
 - forces the network to learn redundant representations of the classes
 - prevents different neurons from concentrating on the same features

• behaves like training with a large set of network models that share parameters (weights)

Batch Normalization

- Normalize neuron activation mean and variance
- used after
 - convolutional layer
 - fully connected layer
- is inserted between activation (filter/scalar product) and non-linearity (ReLU)
- Improves training
 - Higher learning rates possible
 - Reduces influence of initialization

Data extension

- "Data Augmentation"
- "New" data is derived from the existing data
 - according to a fixed pattern
 - or with random parameters
- This is how the net always sees variations during training
- Examples:
 - Mirror image
 - Select and scale random image sections
 - random changes in color
 - Contrast
 - Brightness
 - RGB values (e.g. with PCA by adding multiples of the main axes)
 - random combinations of changes in
 - Rotation
 - Translation
 - Lens distortion
 - ...

Sources

- Goodfellow, Bengio, Courville: Deep Learning, MIT Press, 2017. http://www.deeplearningbook.org/
- Li, Johnson, Yeung: CS231n: Convolutional Neural Networks for Visual Recognition. Lecture Stanford University, 2018. http://cs231n.stanford.edu/
- Li: Deep Learning and Its Applications. Lecture University of Waterloo, 2017. https://cs.uwaterloo.ca/~mli/cs898-2017.html
- Lazebnik: Spring 2019 CS 543/ECE 549: Computer Vision Course. University of Illinois Urbana-Champaign. http://slazebni.cs.illinois.edu/spring19/
- H. Ernst, J. Schmidt and G. Beneken. Basic course in computer science. Chapter 18, Springer Vieweg, 8th ed. 2023.
- Original articles, indicated on the respective slides