Mostafa Sabri

Lecture 6

2.1 Matrix Operations

Equality of Matrices

Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal when they have the same size $(m \times n)$ and $a_{ij} = b_{ij}$ for all $1 \le i \le m$ and $1 \le j \le n$.

e.g.
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & x \end{bmatrix}$$
 iff $x = 1$. Also, $\begin{bmatrix} 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Addition, subtraction, scalar multiplication

If $A = [a_{ij}]$ and $B = [b_{ij}]$ have the same size $m \times n$, we define their sum A + B to be the $m \times n$ matrix $[a_{ij} + b_{ij}]$.

The sum of matrices of different sizes is undefined.

$$\begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{bmatrix} + \begin{bmatrix} -2 & e & \pi \\ 1 & 1 & -5 \end{bmatrix} = \begin{bmatrix} -2 & 1+e & 2+\pi \\ 4 & 5 & 0 \end{bmatrix}$$

Subtraction is defined the same way, replacing + by - under the same assumptions.

Given a scalar $c \in \mathbb{R}$ and a matrix $A = [a_{ij}]$, we define the scalar multiplication $cA = [ca_{ij}]$.

e.g. if
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 5 \\ 3 & 9 \end{bmatrix}$ then
$$A - 2B = \begin{bmatrix} 5 & -8 \\ -3 & -14 \end{bmatrix}.$$

Matrix multiplication is more complicated. Viewing matrices as linear maps, when considering $AB\mathbf{x}$, we actually have a composition:

If A has size $m \times n$, B has size $n \times p$ and $\mathbf{x} \in \mathbb{R}^p$, then denoting the columns of B by $\{\mathbf{b}_j\}$, we have $A(B\mathbf{x}) = A(\sum_{i=1}^p x_i \mathbf{b}_i) = \sum_{i=1}^p x_i \mathbf{A} \mathbf{b}_i = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix} \mathbf{x}$. Hence,

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}.$$

Note that each column $A\mathbf{b}_j$ of AB is a linear combination $\sum_{k=1}^n b_{kj} \mathbf{a}_k$ by definition.

In particular, the ij-entry, $(AB)_{ij}$ is the ith entry of $A\mathbf{b}_j$, so $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.

If $A = [a_{ij}]$ is an $m \times n$ matrix and $B = [b_{ij}]$ is an $n \times p$ matrix, we define the product AB to be the $m \times p$ matrix $[c_{ij}]$ given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{in} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2p} \\ b_{31} & b_{32} & \dots & b_{3j} & \dots & b_{3p} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nj} & \dots & b_{np} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1j} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2j} & \dots & c_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ c_{i1} & c_{i2} & \dots & c_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mp} \end{bmatrix}$$

Just like
$$AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{bmatrix}$$
, also $AB = \begin{bmatrix} row_1(A)B \\ row_2(A)B \\ \vdots \\ row_m(A)B \end{bmatrix}$.

Find the product AB if

$$A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \\ 5 & -6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 5 & -2 \\ 1 & -4 & 6 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 and
$$B = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix}$$

Properties of Addition and Scalar Multiplication

If A, B, and C are $m \times n$ matrices, and c and d are scalars, then

1.
$$A + B = B + A$$
 Commutative addition

2.
$$A + (B + C) = (A + B) + C$$
 Associative addition

3.
$$(cd)A = c(dA)$$
 Associative multiplication

4.
$$1A = A$$
 Multiplicative identity

5.
$$c(A + B) = cA + cB$$
 Distributive property

6.
$$(c+d)A = cA + dA$$
 Distributive property

The proof is done by reducing these statements to the analogous properties of real numbers.

Some definitions

The diagonal entries of a matrix $A = [a_{ij}]$ are the entries a_{11}, a_{22}, \ldots on the diagonal.

A square matrix is a matrix of size $n \times n$, i.e. m = n.

A square matrix A is a *diagonal matrix* if all nondiagonal entries are zero.

We denote by 0 the $m \times n$ matrix will all entries equal to zero.

Note that if A is an $m \times n$ matrix, then A + 0 = A, A - A = 0, and cA = 0 implies either c = 0 or A = 0.

Identity matrix

The $n \times n$ identity matrix is the diagonal matrix

$$I_n = egin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & & & \\ 0 & 0 & \dots & & 1 \end{bmatrix}$$

For example
$$I_1 = [1]$$
, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

If A has size $m \times n$ then $AI_n = A$ and $I_m A = A$.

Properties of Matrix Multiplication

Proof. Indeed,
$$AI_n = \begin{bmatrix} A\mathbf{e}_1 & \cdots & A\mathbf{e}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} = A$$
 and $I_mA = \begin{bmatrix} I_m\mathbf{a}_1 & \cdots & I_m\mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} = A$.

If A, B, and C are matrices (with sizes such that the matrix products are defined), and c is a scalar, then

1.
$$A(BC) = (AB)C$$

Associative multiplication

$$2. \ A(B+C) = AB + AC$$

Distributive property

3.
$$(A + B)C = AC + BC$$

Distributive property

$$4. \ c(AB) = (cA)B = A(cB)$$

Properties of Matrix Multiplication

<u>Proof.</u> 1. Matrix multiplication corresponds to composition of functions, which is associative.

2. The *ij*-th entry of A(B+C) is $\sum_k a_{ik}(b_{kj}+c_{kj}) = \sum_k a_{ik}b_{kj} + \sum_k a_{ik}c_{kj}$, which is the *ij*-th entry of AB+AC.

3. and 4. are similar to 2.

Find the matrix product ABC if

$$A = \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 0 & -2 \\ 3 & -4 \end{bmatrix}.$$

Powers of a matrix

Compute AB and BA if
$$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix}$.

Compute AC and BC if
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}$,

$$C = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}.$$

If A is a square matrix, the matrix

$$A^k = A \cdots A$$

is well-defined.

Compute
$$A^3$$
 if $A = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix}$.

Transpose of a matrix

The transpose of a matrix is formed by writing its rows as columns.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

Size: $m \times n$

then the transpose, denoted by A^T , is the $n \times m$ matrix

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} & \dots & a_{m1} \\ a_{12} & a_{22} & a_{32} & \dots & a_{m2} \\ a_{13} & a_{23} & a_{33} & \dots & a_{m3} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \dots & a_{mn} \end{bmatrix}.$$

Size: $n \times m$

Properties of transposes

Find the transpose of
$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

If A and B are matrices (of sizes such that the matrix operations are defined) and c is a scalar, then

1.
$$(A^T)^T = A$$
 Tr

Transpose of a transpose

2.
$$(A + B)^T = A^T + B^T$$

Transpose of a sum

3.
$$(cA)^T = c(A^T)$$

Transpose of a scalar multiple

$$4. (AB)^T = B^T A^T$$

Transpose of a product

Transposes

<u>Proof.</u> 1,2,3 are immediate from the definition. For 4, note the ij-th entry of $(AB)^T$ is the ji-th entry of AB, which is $\sum_k a_{jk} b_{ki}$. Next, the ij-th entry of $B^T A^T$ is $\sum_k (B^T)_{ik} (A^T)_{kj} = \sum_k b_{ki} a_{jk}$, the same as $(AB)_{ij}^T$.

Compute
$$(AB)^T$$
 and B^TA^T if $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$.

We say that a square matrix is symmetric if $A = A^T$.

2. Show that the matrices AA^T and A^TA are symmetric.

3. Compute
$$AA^T$$
 if $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$.