Hyperledger Fabric을 활용한 배터리 이력 관리 플랫폼

팀명: CBDC

학번	이름	지도교수
201924528	이상명	
201924430	김병진	김호원
201924616	황인준	

목 차

1.	과제	배경 및	목표				
	1-1.	과제 배경	녕	•••••			3
				•••••			
	1-3.	과제 목표	포 및 기대	대 효과 …	••••••	• • • • • • • • • • • • • • • • • • • •	4
2.	세부	과제 내용	3				
	2-1.	과제 내용	3				5
	2-2.	시나리오		•••••	•••••		5
	2-3.	개발 환경	병 기술 <i>-</i>	스택	• • • • • • • • • • • • • • • • • • • •	•••••	6
	2-4.	현실적 현	한계 및 기	제약 사항			7
3.	과제	세부 요구	구사항 및	개발 내	<u>Q</u>		
3.				개발 내 권한 관리			8
3.	3-1.	참여자 (민증 및 급		•••••		
	3-1. 3-2.	참여자 (인증 및 ⁻ 이력 추적	권한 관리 및 관리	•••••		
	3-1. 3-2. 개발	참여자 연 배터리 연 일정 및	인증 및 ⁻ 이력 추적 역할 분 명	권한 관리 및 관리			9
	3-1. 3-2. 개발 4-1.	참여자 연배터리 연 일정 및 개발 일정	인증 및 ⁻ 이력 추적 역할 분 명	권한 관리 및 관리 남			9
	3-1. 3-2. 개발 4-1.	참여자 연배터리 연 일정 및 개발 일정	인증 및 ⁻ 이력 추적 역할 분 명	권한 관리 및 관리 감			9
	3-1. 3-2. 개발 4-1.	참여자 연배터리 연 일정 및 개발 일정	인증 및 ⁻ 이력 추적 역할 분 명	권한 관리 및 관리 감			9
	3-1. 3-2. 개발 4-1.	참여자 연배터리 연 일정 및 개발 일정	인증 및 ⁻ 이력 추적 역할 분 명	권한 관리 및 관리 감			9
	3-1. 3-2. 개발 4-1.	참여자 연배터리 연 일정 및 개발 일정	인증 및 ⁻ 이력 추적 역할 분 명	권한 관리 및 관리 감			9

과제 배경 및 목표

1. 과제 배경

- o 전기차 배터리 여권 도입
 - 전기차 시장의 지속적인 성장
 - 인공지능을 통한 자율주행차와 전기차 시장이 '22년부터 지속해서 성장 중이다.

<그림 1> 글로벌 전기차 시장 전망

- 전기차 시장의 성장과 함께 전기차 배터리에 대한 수요도 함께 증가하고 있다.
- 배터리 수요는 계속 증가하지만, 배터리의 핵심 워자재의 매장량은 유한하다.

<그림 2> 글로벌 폐차 및 폐 배터리 발생량 전망

- 폐배터리는 환경 유해 물질을 포함하고 있어, 폐배터리의 재활용은 친환경과 직 결되는 중요한 과제로 여겨지고 있다.
- 배터리 여권을 통한 순환 경제 구축
 - EU는 배터리의 지속가능성 향상을 통해 탄소중립과 순환 경제를 목표로 한 배터리 규정¹⁾을 발표했다.

- 위 배터리 규정에서 핵심 내용 중 하나로 디지털 배터리 여권 도입을 결정했다.
- 배터리 여권은 원자재의 채굴부터, 제조, 유통을 거쳐 사용 후 재사용과 폐기까지의 배터리의 모든 이력을 담은 전자식 기록이다.
- 자원 절약과 재활용을 통해 지속가능성을 추구하는 친환경 경제 모델을 구축하고 자 하는 다양한 연구와 개발이 진행되고 있다.

2. 시장 배경

- o 기존 공급망의 불투명성
 - 제조 및 유통 과정의 복잡성과 불투명성
 - 공급망의 각 과정에서의 다양한 공급자들이 존재하며, 각 과정은 복잡하고 공개되지 않아 가치사슬 내 이해관계자들은 해당 정보를 얻기 어려운 문제가 있다.
 - 다양한 산업에서 블록체인 기반의 공급망 추적을 통해 공급망에 투명성과 신뢰성을 제공하고 있다.

3. 과제 목표 및 기대 효과

본 과제는 Hyperledger Fabric을 활용한 배터리 이력 관리 플랫폼 개발을 목표로 한다.

- o 공급망 투명성 제고
 - 블록체인을 활용하여 투명하게 배터리 공급망 및 배터리의 이력 추적·관리
 - 참가자들에게 투명하게 데이터를 제공하는 블록체인의 특성을 이용하여 공급망에 투명성을 부여한다.
- o 데이터의 무결성·불변성 보장
 - 신뢰할 수 있는 배터리 여권을 위해서는 데이터의 무결성과 불변성 보장이 필요
 - 데이터의 무결성과 불변성을 보장하여 신뢰할 수 있는 배터리 여권 플랫폼을 개발한다.
- 0 스마트 컨트랙트를 통한 효율적인 이력 관리
 - 블록체인의 스마트 컨트랙트를 통해 효율성 향상
 - 중간 관리자의 개입 없이 자동화된 프로세스를 통한 신속하고 효율적인 처리가 가능하다.
 - 거래 처리 속도의 단축 및 수작업으로 인한 오류를 예방할 수 있다.
- o 순환 경제 구축
 - 지속가능성의 향상을 통한 순환 경제 구축 기대
 - 탄소발자국 등의 정보를 제공하여 환경 영향의 모니터링 효과가 있다.
 - 배터리 개활용률을 높여 지속가능성 향상과 함께 순환 경제 구축에 기여한다.

^{1) 2023}년 8월 17일 발효된 Regulation(EU) 2023/1542, 이하 'EU 배터리 규정'으로, 배터리의 소싱, 제조, 사용 및 재활용 등 제품의 전 수명주기를 다루는 단일 법률이다.

세부 과제 내용

1. 과제 내용

- o 하이퍼레저 패브릭 기반 배터리 여권 플랫폼 개발
 - 기술적 범위
 - 하이퍼레저 패브릭 기반의 블록체인 네트워크 설계 및 구축
 - 스마트 컨트랙트 개발을 통한 배터리 이력 정보 기록 및 관리
 - 웹 및 모바일 클라이언트 애플리케이션 개발
 - API 게이트웨이와 데이터베이스 설계 및 구현
 - 기능적 범위
 - 배터리 제조 정보 입력 및 추적
 - 유통 경로 추적 및 관리
 - 사용 정보 기록 및 조회
 - 폐기 및 재활용 정보 관리

2. 시나리오

- O 정보 조회 시나리오
 - QR 스캔 및 정보 수집
 - 사용자가 배터리의 QR 코드를 스캔한다.
 - QR 코드 스캔을 통해 배터리 정보를 조회한다.
 - API 요청 및 전달
 - 사용자는 스캔한 QR 코드 정보를 웹 클라이언트 혹은 모바일로 전송한다.
 - 웹 클라이언트는 API를 통해 배터리 정보를 조회하는 요청을 보낸다.
 - 정보 조회 요청
 - 배터리 정보를 조회하는 요청을 보내고, 해당 배터리 정보를 조회한다.
 - 응답 전달
 - 조회된 정보를 API로 전달한다.
 - API는 반환된 정보를 웹 클라이언트로 전달하고, 사용자에게 정보를 제공한다,
- O 정보 입력 시나리오
 - 데이터 입력
 - 배터리 ID, 제조일자, 제조사, 원자재 정보 등의 배터리 정보를 입력한다.
 - 입력된 데이터는 웹 클라이언트를 통해 수집된다.
 - API 요청 및 전달
 - 웹 클라이언트는 수집된 데이터를 API로 전송한다.

- API는 블록체인 네트워크에 데이터를 입력하는 요청을 처리한다.
- 트랜잭션 생성 및 처리
 - 전송받은 데이터를 바탕으로 트랜잭션을 생성한다.
 - 생성된 트랜잭션은 Orderer를 통해 블록체인 네트워크로 제출된다.
 - Orderer는 트랜잭션을 받아 검증한 후, 블록으로 묶어 피어 노드에 분배한다.
 - 피어 노드는 트랜잭션을 검증하고 체인코드를 실행하여 데이터를 블록체인에 기록한다.
- 응답 전달
 - 데이터 입력 완료 후, API를 통해 사용자에게 성공 메시지를 반환한다.

3. 개발 환경 기술 스택

<그림 3> 전체 시스템 아키텍처

- o 사용자 인증 및 데이터 입력
 - 각 조직은 CA를 통해 인증
 - 인증된 사용자는 웹 클라이언트 혹은 모바일 클라이언트를 통해 API 게이트웨이로 데이터를 전송한다.

- o 데이터 저장 및 조회
 - 모든 기록된 데이터는 분산 원장에 저장된다.
 - 각 조직은 필요에 따라 조직이 속한 채널의 데이터를 조회할 수 있다.
- o 모니터링 및 로깅
 - 네트워크 상태와 트랜잭션 로그를 모니터링하고 기록한다.
 - 이를 통해 시스템의 신뢰성과 투명성을 유지한다.

4. 현실적 한계 및 제약 사항

- o 데이터 수집
 - 실제 전기차 배터리 수집의 한계
 - 전기차 배터리의 모든 이력을 담은 실제 데이터를 수집하기에 어려움이 있다.
- o 데이터의 신뢰성
 - 공급망 각 단계의 검증 과정
 - 각 단계에서의 데이터의 신뢰성에 대한 검증 과정이 실제로는 필요하다.
 - 하지만, 본 과제에서는 데이터의 신뢰성 검증에 어려움이 있어 데이터에 대한 검증은 생략하고 진행한다.

과제 세부 요구사항 및 개발 내용

1. 참여자 인증 및 권한 관리

- o 허가형 블록체인(Permissioned Blockchain)
 - Hyperledger Fabric
 - Hyperledger Fabric은 허가형 블록체인이므로 공급자, 유통업자 등의 참여자들은 블록체인 네트워크에 참여하기 위해 인증을 받아야 한다.

<블록체인의 종류>

- Hyperledger Fabric의 CA를 이용하여 각 조직과 사용자의 디지털 인증서를 발급하고 관리한다.
- Hyperledger Fabric의 채널을 통해 참여자들을 구분하여 논리적으로 분리된 네 트워크를 구성한다.
- 각 조직은 피어 노드를 운영하며, 채널을 통해 관련된 데이터에 접근한다.

2. 배터리 이력 추적 및 관리

- o 스마트 컨트랙트
 - 배터리 이력 저장
 - 배터리 제조업체는 스마트 컨트랙트를 통해 배터리의 제조 정보를 블록체인에 기록한다.
 - 제조-유통-판매 등의 경로를 스마트 컨트랙트를 통해 추적하고 관리한다.
 - 리사이클링 조직은 배터리의 수명 종료 후 재활용 과정을 스마트 컨트랙트를 통해 기록한다.
 - 재활용된 배터리의 처리 방식 및 재사용 가능 여부를 기록한다.
- o API 개발 및 통합
 - 배터리 제조 및 유통 정보 입력
 - RESTful API를 개발하여 배터리 제조업체와 유통업체가 제조 및 유통 정보를 기록할 수 있도록 한다.
 - 데이터 조회
 - 인증된 사용자만 접근할 수 있도록 API에 권한 관리를 통합하여, 배터리의 생산 및 유통, 리사이클링 정보 등을 조회할 수 있도록 한다.

개발 일정 및 역할 분담

1. 개발 일정

нэ	1 II O	5 <u>-</u>	월	6월		7월			8월				9월				
분류	내용	3주	4주	3주	4주	1주	2주	3주	4주	1주	2주	3주	4주	1주	2주	3주	4주
	착수 보고서 작성																
	개발 환경 구축																
공통	중간 보고서 작성																
	테스트 및 디버깅 발표																
	준비 및 최종 보고서																
	<u>작성</u> UI 디자인																
프론트	웹 퍼블리싱 및 기능 구현																
블록	블록체인 네트워크 구축																
체 인	체인코드 개발																
백 전 니	DB 연동, 서버 개발																
	REST API 구축 및 연동																

2. 역할 분담

이상명 : 블록체인 네트워크 구축, 체인 코드 개발

김병진 : UI 디자인, 웹 퍼블리싱 및 기능 구현 등 프론트엔드 개발

황인준: DB 설계, 회원가입·로그인 구현, 서버 개발, REST API 연동

공통 : 보고서 작성, 발표 준비, 블록체인 스터디