This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

是是工工工程的 1200

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

BEST MOTERPLE CON

Helsinki 25.01.99

Dal soroxI PCT/F198 T0100-4 09/582321

ETUOIKEUSTODISTUS PRIORITY DOCUMENT

Hakija Applicant

BOREALIS A/S Lyngby, Denmark

974622

PRIORITY DOCUMENT

Tekemispäivä Filing date

23.12.97

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Kansainvälinen luokka International class

Care Care

CO 0

C 08F

Patenttihakemus nro

Patent application no

Keksinnön nimitys Title of invention

"Catalyst component comprising magnesium, titanium, a halogen and an electron donor, its preparation and use" (Katalysaattorikomponentti, joka käsittää magnesiumia, titaania halogeenia ja elektronidonoria, sen valmistus ja käyttö)

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja annetuista sellityksestä, patenttivaatimuksista, tiivistelmästä ja "piirūstukšista.

the annexed documents are the description, claims, abstract and drawings originally filed, with the Finnish Patent Office.

Tutkimussihteeri

OCAREGIS!

Maksu

390, -

Fee 390, -FIM

Osoite: Arkadiankatu 6 A Address: P.O.Box 1160

FIN-00101 Helsinki, FINLAND

Puhelin: 09 6939 500 Telephone: + 358 9 6939 500

Telefax: 09 6939 5204 Telefax: + 358 9 6939 5204 Catalyst component comprising magnesium, titanium, a halogen and an electron donor, its preparation and use

The invention relates to a process for the preparation of an olefin polymerization catalyst component containing magnesium, titanium, halogen and an electron donor. The invention also relates to such a catalyst component and its use for the polymerization of α-olefins such as propene.

10 Background of the invention

20

25

30

35

Generally, so called Ziegler-Natta catalyst components of the above kind have been prepared by reacting a magnesium halide-alcohol complex with a titanium tetrahalide and an electron donor which usually is a phthalic acid diester. The preparation involves the use of large amounts of reagents and washing liquids, which are difficult to handle. Additionally, byproducts are formed, which cannot easily be regenerated or destroyed, but form an environmental problem.

For example, the preparation of a conventional polypropene catalyst component involves the reaction of a magnesium dichloride-alcohol complex with titanium tetrachloride to give reactive β -magnesium dichloride as intermediate and hydrogen chloride and titanium alkoxy trichloride as byproducts. Then, the reactive β -magnesium dichloride intermediate is activated with further titanium tetrachloride to give said catalyst component (the treatment with a titanium halide such as titanium tetrachloride is henceforth called titanation).

The titanium alkoxy trichloride byproduct formed in the titanation is a catalyst poison and must be carefully removed by extensive washing using large amounts of titanium tetrachloride. Further, the titanium alkoxy trichloride must be carefully separated from the titanium tetrachloride washing liquid, if the latter is to be reused e.g. for activating the reactive β -magnesium dichloride. Finally, the titanium alkoxy trichloride is a problem waste, which is difficult to dispose of.

Thus, in a typical propene polymerization catalyst component preparation involving two titanations and three heptane washes, one mol of produced catalyst component (mol Mg) requires about 40 mol of titanium tetrachloride e.g. as washing liquid to be circulated (see Table 15 below), and produces as problem waste about three mol of titanium alkoxy trichloride as well as about three mol of hydrogen chloride.

Sumitomo, EP 0 748 820 A1 (hereinafter referred to as "Sumitomo"), has prepared dialkoxy magnesium, reacted it with titanium tetrachloride to form an intermediate and then reacted the intermediate with phthalic acid dichloride to form a catalytically active propene polymerization catalyst component. The activity was raised by repeated titanations, as well as repeated washes with toluene and hexane. See page 10, lines 14 to 37, of said publication.

Said process of Sumitomo has avoided the reaction between the magnesium dichloride-alcohol complex and titanium tetrachloride, and thereby eliminated the formation of catalytically poisonous titanium alkoxy trichloride byproduct. However, as much as four titanations and hydrocarbon treatments are still needed to give satisfactory catalytic activity.

Description of the invention

15

10

5

The purpose of the present invention is to provide a process which results in a catalyst component having satisfactory activity without producing harmful byproducts such as said titanium alkoxy trichloride or requiring the use of a large amounts of titanation reagent and/or washing liquid.

20

The problem described above has now been solved with a novel process for the preparation of a catalyst component of the above type, which is mainly characterized by the steps of:

25

30

35

- (i) reacting a titaniumless magnesium compound (a) containing an alkoxy moiety, which titaniumless magnesium compound is selected from the group consisting of a complex containing a magnesium dihalide and a magnesium dialkoxide, a complex containing a magnesium dihalide and an alcohol, and a non-complex magnesium dialkoxide, with a halogen compound (b) being capable of forming the electron donor by replacement of its halogen by said alkoxy moiety, to give an intermediate (ab), and
- (ii) reacting said intermediate (ab) with a titanium halide (c), or
- (i)' reacting a titaniumless magnesium compound (a) containing an alkoxy moiety, which titaniumless magnesium compound is selected from the group consisting of a complex containing a magnesium dihalide and a magnesium dialkoxide, and a complex containing a magnesium dihalide and an alcohol, with a titanium halide (c), to give an intermediate (ac), and
- (ii)' reacting said intermediate (ac) with a halogen compound (b) being capable of forming the electron donor by replacement of its halogen by said alkoxy moiety.

It was found by the applicant, that the activity of a stoichiometric catalyst component, comprising a magnesium dihalide, a titanium tetrahalide and an electron donor, is the higher, the more magnesium dihalide it contains. Thus it is believed, that the purpose of the repeated toluene washes of e.g. Sumitomo has partly been to remove titanium tetrachloride and electron donor from the catalyst component precursor in order to raise the magnesium dichloride content and thus the catalytic activity, of the final catalyst component. The present invention solves the problem in another way. In the claimed process, magnesium dihalide is included or synthesized as part of the reacting material before any titanation takes place, and thus, the need for repeated cycles of titanation and washing is significantly reduced.

5

10

15

20

25

30

35

According to one embodiment of the present invention, said compounds (a), (b) and (c) are in the claimed process contacted in essentially stoichiometric amounts. According to another embodiment, a stoichiometric excess, preferably a 5-20 fold excess, of said titanium halide (c) with respect to said magnesium compound (a), gives even better results.

Said halogen compound (b) used in the claimed process is an electron donor precursor, i.e. itself capable of forming the electron donor of the catalyst component by replacement of its halogen by an alkoxy group. By electron donor is in this connection meant an electron donor which forms a part of the titanous catalyst component produced by the claimed process and is in the art also called an internal electron donor. Such halogen compounds (b) are, e.g., C1-C20 alkyl halides, C2-

C₂₇ aralkyl halides and C₂-C₂₂ acyl halides, which react with alkoxy compounds to replace their halogen with the alkoxy group of the alkoxy compound and form e.g. the corresponding ethers and esters acting as internal electron donors.

Preferably, said halogen compound (b) is an organic acid halide having the formula R"(COX')_n, wherein R" is an n-valent organic group having 1-20 carbon atoms, preferably an n-valent benzene ring, X' is a halogen, preferably chlorine, and n is the valence of R" and is an integer 1 to 6, preferably 1, 2, 3 or 4, more preferably 2. Most preferably, said halogen compound is phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene. Correspondingly, the electron donor formed therefrom is preferably an organic acid ester having the formula R"(COOR)_n, wherein R is an n-valent C₁-C₂₀ aliphatic group or an n-valent C₇-C₂₇ araliphatic group and R" and n are the same as above, and more preferably a phthalic acid diester Ph(COOR)₂, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, more preferably a C₁-C₁₆ alkyl. Most preferably said electron donor is dioctyl phthalate.

The titanium halide (c) used in the claimed process is preferably a titanium halide of the formula $(OR')_k TiX_{4-k}$, wherein R' is an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 16 carbon atoms, X is a halogen and k is 0 to 3. More preferably, said titanium halide (c) is a titanium tetrahalide TiX_4 , wherein X is the same as above, most preferably titanium tetrachloride $TiCl_4$.

5

10

15

20

30

It is preferable, if said titaniumless magnesium compound (a) is not a part of a solid magnesium halide, e.g. in the form of complex molecules on the surface of a solid magnesium halide carrier, but form a separate compound with an essentially stoichiometric composition. Often, said titaniumless magnesium compound is a complex. A complex is, according to Römpps Chemie-Lexicon, 7. Edition, Franckh'sche Verlagshandlung, W. Keller & Co., Stuttgart, 1973, page 1831, "a derived name of compounds of higher order, which originate from the combination of molecules, - unlike compounds of first order, in the creation of which atoms participate".

According to one embodiment of the invention, the titaniumless magnesium compound (a) used in the claimed process is a titaniumless complex of the formula $[MgX_2]_X \cdot [K(OR)_m]_y$, wherein X is a halogen, K is hydrogen, a metal of group 1, 2 or 13 of the Periodic Table, R is an alkyl having 1 to 20 carbon atoms, an aralkyl having 7 to 27 carbon atoms or an acyl having 2 to 22 carbon atoms, x is 0 to 20, m is the valence of K and is an integer from 1 to 6, and y is 1 to 20.

The magnesium dihalide MgX₂ of said titaniumless complex (a) can be selected from magnesium chloride, magnesium bromide and magnesium iodide. Preferably, it is magnesium dichloride.

The alkoxy compound K(OR)_m is in its most general form defined as a component of said titaniumless complex (a), which complex (a) is reacted further with said halogen compound (b) and said titanium halide (c) or said titanium halide (c) and said halogen compound (b). The alkoxy compound is, however, more closely defined in the following description of three main embodiments of the claimed process.

The gist of the invention is to choose the reactants and their order of reaction so that the magnesium dihalide is present when the titanium halide (c) is reacted.

First main embodiment

5

According to a first main embodiment of the invention, said titaniumless magnesium compound (a) is a complex of said magnesium dihalide and said magnesium dialkoxide.

In that case, the claimed process takes place as follows:

- (i) said complex of said magnesium dihalide and said magnesium dialkoxide as said titaniumless magnesium compound (a) is reacted with said halogen compound (b) to give an intermediate (ab) and then
 - (ii) said intermediate (ab) is reacted with said titanium halide (c), i.e. [(a) + (b)] + (c), or:
- (i)' said complex of said magnesium dihalide and said magnesium dialkoxide as said titaniumless magnesium compound (a) is reacted with said titanium halide (c) to give an intermediate (ac) and then
 - (ii) said intermediate (ac) is reacted with said halogen compound (b), i.e. [(a) + (c)] + (b).
- In both contact sequences a titaniumless compound containing a magnesium halide is, contrary to Sumitomo, reacted with a titanium halide. When repeating Sumitomo, it gave poorer results than the invention.
- In said first main embodiment, said complex of said magnesium dihalide and said magnesium dialkoxide as said magnesium compound (a) is preferably a magnesium dichloride-magnesium alkoxide complex having the formula MgCl₂·[Mg(OR)₂]t, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, and t is 1-6, preferably about 2. It is e.g. prepared by reacting magnesium dichloride MgCl₂ with an alcohol ROH into an intermediate which is a magnesium dichloride-alcohol complex MgCl₂·(ROH)_{2t} and reacting the magnesium dichloride-alcohol complex with t mol of a magnesium dialkyl MgR"₂, wherein R" is a hydrocarbyl group having 1 to 20 carbon atoms.
- Most preferably, the complex of said magnesium dihalide and a magnesium dialkoxide as said alkoxy compound is a magnesium dichloride-dimagnesium dialkoxide complex having the formula MgCl₂·[Mg(OR)₂]₂, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl. The complex may e.g. be

prepared by reacting magnesium dichloride with an alcohol ROH and the obtained intermediate with a dialkyl magnesium R"'2Mg essentially as follows:

5

10

20

$$MgCl_2 \cdot 4ROH + 2MgR'''_2 \rightarrow MgCl_2[Mg(OR)_2]_2 + 4R'''H$$

In the reaction between the magnesium dihalide, the alcohol and the dialkyl-magnesium, the molar ratio MgCl₂:ROH is preferably 1:1 to 1:8, most preferably 1:2 to 1:5. The molar ratio MgCl₂·4ROH:MgR"₂ is preferably 1:1 to 1:4, most preferably about 1:2. The temperature is preferably 100 °C to 200 °C and the reaction time preferably about 2 h to about 8 h. A hydrocarbon solvent such as toluene may be present in the reaction.

- 15 According to the most preferable variant of said first main embodiment:
 - (i) said magnesium dichloride-dimagnesium dialkoxide complex MgCl₂· [Mg(OR)₂]₂ (a) wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, is reacted with said titanium halide (c), which is said titanium tetrachloride TiCl₄, to give an intermediate (ac) and then
 - (ii)' said intermediate (ac) is reacted with said halogen compound (b), which is said phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene.
- The reactions of this variant can, without limiting the scope of protection, e.g. be described by means of the following equations:

Step (1'):

$$\mathsf{MgCl}_2 \cdot [\mathsf{Mg}(\mathsf{OR})_2]_2 + 4/q\mathsf{TiCl}_4 \to (\mathsf{MgCl}_2)_3 \cdot [\mathsf{Cl}_{4-q}\mathsf{Ti}(\mathsf{OR})_q]_{4/q}$$

30

Step (2'):

$$(\mathsf{MgCl}_2)_3[\mathsf{Cl}_{4-q}\mathsf{Ti}(\mathsf{OR})_q]_{4/q} + 2\mathsf{Ph}(\mathsf{COCl})_2 \to (\mathsf{MgCl}_2)_3 \cdot (\mathsf{TiCl}_4)_{4/q} \cdot [\mathsf{Ph}(\mathsf{COOR})_2]_2$$

Usually, q is 1 or 2. It can e.g. be seen, that the harmful Cl₃TiOR (when q = 1) after it is formed remains complexed and is finally converted to catalytically active TiCl₄. No purification or waste problems relating to the formation Cl₃TiOR arise.

In step (ii) of said first main embodiment, said intermediate (ab) and/or said complex of said magnesium dihalide and a magnesium alkoxide as said magnesium compound (a), respectively, are preferably added to the titanium halide (c), and not vice versa. Even more preferably, they are added drop by drop, to said titanium halide (c). The titanium halide (c) is preferably in liquid form and most preferably hot, such as at 70-140 °C.

In said first main embodiment, the molar ratio between the reactants (a), (b) and (c) is preferably approximatively stoichiometric with the exception of the titanium halide (c) in step (ii) which preferably is used in a 5 to 20 fold excess with respect to the magnesium halide. Elevated temperatures are preferably used, whereby said halogen compound (b) preferably is reacted at 50 °C to 75 °C and said titanium halide (c) in step (ii) preferably is reacted at 70 °C to 110 °C.

Although the first main embodiment reduces the need for repeated titanations and washes, a still more active and pure product is obtained if the titanation and hydrocarbon wash are repeated 1 to 3 times.

An example of the first main embodiment is presented in an enclosed scheme, see Figure 1.

Second main embodiment

According to a second main embodiment of the invention, said titaniumless magnesium compound (a) is a complex of said magnesium dihalide and an alcohol carrying said alkoxy moiety, or, alternatively, a non-complex magnesium dialkoxide.

The claimed process then takes place as follows:

30

35

5

10

- (i) said titaniumless magnesium compound (a) which is selected from said complex of said magnesium dihalide and said alcohol, and said non-complex magnesium dialkoxide, is reacted with said halogen compound (b) to give an intermediate (ab) which is a complex of said magnesium dihalide and said electron donor and
- (ii) said intermediate (ab) which is a complex of said magnesium dihalide and said electron donor is reacted with said titanium halide (c).

In a first variant of said second main embodiment, a non-complex magnesium dialkoxide is used as the starting material (a) of step (i). It is preferably a magnesium dialkoxide Mg(OR)₂, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl. It can be prepared by any suitable process such as the process described by Sumitomo, see column 9, line 56, to column 10, line 13. In the present invention, however, it is preferably prepared by reacting a magnesium dialkyl and an alcohol ROH. The reaction can e.g. be described by means of the following equation:

10 $MgR'''_2 + 2ROH \rightarrow Mg(OR)_2 + 2R'''H\uparrow$

wherein R and R" are as defined above.

In the first variant of said second main embodiment, the most preferable process comprises the steps wherein:

- (i) said titaniumless magnesium compound (a), which is said magnesium dialkoxide Mg(OR)2, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, is reacted with said halogen compound (b), which is said phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene, to give an intermediate (ab) which is a complex of said magnesium dichloride and said phthalic acid diester Ph(COOR)₂, and
- (ii) said intermediate (ab), which is said complex of said magnesium dichloride and said phthalic acid diester Ph(COOR)₂, is reacted with said titanium halide (c), which is said titanium tetrachloride TiCl₄.

The reactions can, without limiting the scope of protection, e.g. be described by means of the following equations:

30 Step (i):

35

5

20

 $Mg(OR)_2 + Ph(COCl)_2 \rightarrow MgCl_2 \cdot Ph(COOR)_2$, and

Step (ii):

 $MgCl_2 \cdot Ph(COOR)_2 + m'TiCl_4 \rightarrow MgCl_2 \cdot (TiCl_4)_m' \cdot Ph(COOR)_2$

wherein m' is about 1 to about 2.

In a second variant of said second main embodiment, a complex of said magnesium dihalide and an alcohol is used as said titaniumless magnesium compound (a) of step (i). It is preferably a magnesium dichloride alcohol complex MgCl₂·(ROH)_m, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, and m is 1-6. The complex is preferably prepared by reacting magnesium dichloride and an alcohol, e.g. as illustrated by the following equation:

 $MgCl_2 + mROH \rightarrow MgCl_2 \cdot (ROH)_m$

- In the second variant of said second main embodiment, the most preferable process then comprises the steps wherein:
- (i) said titaniumless magnesium compound (a), which is said magnesium dichloride-alcohol complex MgCl₂·(ROH)_m, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, and m is 1-6, is reacted with said halogen compound (b), which is said phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene, to give an intermediate (ab), which is a complex of said magnesium dichloride and said phthalic acid diester Ph(COOR)₂, wherein R is the same as above, and
- 20 (ii) said intermediate (ab) which is said complex of said magnesium dichloride and said phthalic acid diester Ph(COOR)₂, is reacted with said titanium halide (c), which is said titanium tetrachloride TiCl₄.
- The reactions can, without limiting the scope of protection, be described by means of the following equations:

Step (i):

5

 $MgCl_2\cdot(ROH)_m + m/2\cdot Ph(COCl)_2 \rightarrow MgCl_2\cdot[Ph(COOR)_2]_{m/2} + mHCl\uparrow$

Step (ii):

30

 $MgCl_2 \cdot [Ph(COOR)_2]_{m/2} + m'TiCl_4 \rightarrow MgCl_2 \cdot (TiCl_4)_m' \cdot [Ph(COOR)_2]_{m/2}$

wherein m is 1-6 and m' is from 0.5 to m.

In step (ii) of said second main embodiment, said complex of said magnesium dihalide and said electron donor is preferably added to the titanium halide (c), and

not vice versa. Even more preferably, it is added drop by drop, to said titanium halide (c). The titanium halide (c) is preferably in liquid form and most preferably hot, such as at 70-140 °C.

In said second main embodiment, the molar ratio between the reactants (a), (b) and (c) is approximatively stoichiometric, preferably with the exception of the titanium halide (c) which more preferably is used in a 5 to 20 fold excess with respect to the magnesium halide. Elevated temperatures are preferably used, whereby said halogen compound (b) preferably is reacted at 50 °C to 75 °C and said titanium halide (c) preferably is reacted at 70 °C to 110 °C.

Although said second embodiment reduces the need for repeated titanations and washes, a still more active and pure product is obtained if the titanation and hydrocarbon wash are repeated 1 to 3 times.

An example of the second main embodiment is presented in an enclosed scheme, see Figure 2.

Third main embodiment

According to a third main embodiment of the invention, said titaniumless magnesium compound (a) is a complex of said magnesium dihalide and an alcohol carrying said alkoyy group

25 In that case:

15

20

35

- (i)' said titaniumless magnesium compound (a) which is said complex of said magnesium dihalide and an alcohol, is reacted with said titanium halide (c), to give an intermediate (ac), and
- 30 (ii)' said intermediate (ac) is reacted with said halogen compound (b).

In the third main embodiment, the complex of said magnesium dihalide and an alcohol is preferably a magnesium dichloride-alcohol complex $MgCl_2 \cdot (ROH)_m$, wherein R is a C_1 - C_{20} alkyl or a C_7 - C_{27} aralkyl and m is 1-6. It can be prepared as described above.

According to the most preferable variant of said third embodiment, the process comprises the following steps:

- (i)' titaniumless magnesium compound (a), which is said magnesium dichloridealcohol complex MgCl₂·(ROH)_m, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl and m is 1-6, is reacted with said titanium dihalide (c), which is said titanium tetrachloride TiCl₄, to give an intermediate (ac) and
- 5 (ii)' said intermediate (ac) is reacted with said halogen compound (b), which is said phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene.

This reaction can, without limiting the scope of protection, e.g. be described by means of the following equation:

10

Step (i)':

 $MgCl_2 \cdot (ROH)_m + m/q \cdot TiCl_4 \rightarrow MgCl_2 \cdot [Cl_{4-q}Ti(OR)_q]_{m/q}$

15 Step (ii)':

 $\begin{array}{l} \text{MgCl}_2 \cdot [\text{Cl}_{4-q} \text{Ti}(\text{OR})_q]_{m/q} + \text{m/2} \cdot \text{Ph}(\text{COOH})_2 \rightarrow \\ \text{MgCl}_2 \cdot (\text{TiCl}_4)_{m/q} \cdot [\text{Ph}(\text{COOR})_2]_{m/2} \end{array}$

wherein m is from about 1 to about 6, preferably about 2, q is 1-4, preferably about 2, and R is as said above.

In step (i)' of said third main embodiment, said titanium halide (c) is preferably added to said complex of said magnesium dihalide and an alcohol as said titanium-less magnesium compound (a), and not vice versa. Even more preferably, it is added drop by drop, to said titaniumless magnesium compound (a). The titanium halide (c) is preferably in liquid form.

In said third main embodiment, the molar ratio between the reactants (a), (b) and (c) is preferably approximatively stoichiometric.

Although said third embodiment reduces the need for repeated titanations and washes, a still more active and pure product is preferably obtained if the final titanation and hydrocarbon (e.g. toluene) wash are repeated 1 to 3 times.

35

30

An example of the third main embodiment is presented in an enclosed scheme, see Figure 3.

As was stated above, common to the first and second main embodiments is, that in step (ii) said intermediate (ab) is preferably added, more preferably drop by drop, to said titanium halide (c), which is in liquid form and preferably hot, more preferably at 75-150 °C. Further, all embodiments may further comprise a step wherein:

5

(iii) the obtained product of step (ii) or (ii)' is further treated with said titanium halide (c) and/or washed, preferably repeatedly washed with an aromatic hydrocarbon, such as toluene, or an organic liquid having the same solubility parameter as said aromatic hydrocarbon.

10

The washing can, without limiting the scope of protection, be illustrated by the following equation:

$$x[MgCl_2 \cdot TiCl_4 \cdot Ph(COOR)_2] + toluene \rightarrow (MgCl_2)_x \cdot TiCl_4 \cdot Ph(COOR)_2 + (x-1)TiCl_4 \cdot Ph(COOR)_2 + toluene$$
 (product)

x is a number larger than 1.

It is seen that the MgCl₂ is concentrated in the catalyst component, which leads to higher activity.

Product and use

30

35

25

In addition to the above described process, the invention also relates to a catalyst component comprising magnesium, titanium, a halogen and an electron donor. The catalyst component is characterized in that it has been prepared by the process described in any of claims 1 to 15 or in the preceding text. Preferably, the claimed catalyst component is an isolated complex of a magnesium dihalide, preferably magnesium dichloride, an electron donor obtained by replacing the halogen of a halogen compound by an alkoxy group, preferably a phthalic acid diester, and a titanium halide, preferably titanium tetrachloride. Preferably, said complex is prepared by contacting stoichiometric amounts of said components (a), (b) and (c). Preferably, said complex has an X-ray pattern comprising a peak between 5° and 10° 2θ (Siemens D500 instrument, CuKα radiation wavelength 1.541 Å, effect 40 kV and 35 mA). Most preferably, said complex has an X-ray pattern comprising a crystal height indicating peak between 16° and 18° 2Θ.

The invention also relates to the use of said catalyst component for the polymerization of α -olefins, preferably propene. In such a polymerization, said catalyst component is preferably used together with another catalyst component comprising an organometal compound of a metal belonging to Group 1, 2 or 13 (IUPAC 1990) of the Periodic Table, preferably an alkyl aluminium compound, is used. The organometal compound is in the art called a cocatalyst. Further, another electron donor may be used together with said catalyst component and the cocatalyst. Such a donor is in the art called an external electron donor.

10 Examples 1 to 4 (first main embodiment)

5

Preparation of the catalyst component complex

- 1,685 g (17.70 mmol) of anhydrous MgCl₂ was introduced in inert conditions into a 100 ml septum bottle. 11.12 ml (9.267 g, 70.80 mmol) of 2-ethyl-hexanol (EHA) was introduced on to the MgCl₂ and after this the temperature was increased to 125-128 °C to allow the reaction components to react with each other. After this, 8.81 ml (7.665 g, 83.19 mmol) of toluene was added after the reaction solution had cooled down to 110 °C. After the addition of the toluene the reaction solution was cooled down to 21 °C. Then 40 ml (29.160 g, 35.4 mmol) of a 20 w-% heptane solution of butyl-octyl-magnesium (BOMAG) was added. After this 5.10 ml (7.187 g, 35.4 mmol) of phthaloyl dichlorid (PDC) was added to produce a MgCl₂
- The MgCl₂ donor complex was now, drop by drop, added into 38.91 ml (67.159 g, 354 mmol) of TiCl₄ and allowed to react with this reagent at a temperature of 95 °C. The reactants were allowed to react with each other for 30 min.
- After the TiCl₄ treatment, the complex was allowed to settle and the liquid was siphoned off. After this, 100 ml (86.6 g, 0.940 mol) of toluene was added on to the complex and the complex was washed in this solution at 90 °C for 20 min. Depending on which of the synthesis was under work, this washing step was done once (example 1), twice (example 2), three times (example 3) or four times (example 4). Finally, the catalyst complex was washed twice with 65 ml (44.44 g, 0.444 mol) portions of heptane for 20 min at 80 °C and thereafter, the complex was washed at room temperature with a 55 ml (34.44 g, 0.477 mol) portion of pentane for 20 min to improve the drying conditions. The catalysts were dried under a stream of nitrogen for one hour.

Chemical characterization of the complexes

The catalyst complexes were characterized with respect to their chemical composition by measuring their Ti and Cl content. The Ti analysis was started by dissolving the samples in a mixture of nitric and hydrofluoric acid. The metal was measured flame atomic absorption with a nitrous acetylene flame. Chloride was determined after dissolution in dilute sulphuric acid by potentiometric titration with a standard silver nitrate solution.

Determination of donors and phthalic anhydride

10

15

5

The determination of the phthalic esters and the phthalic anhydride were done by first dissolving the sample in acetone. The dissolving was improved by keeping the acetone slurry in an ultra-sound bath for 5 min. After this the samples were filtered and run by solution chromatography. As eluent a solution consisting of water and acetonitril in the proportion of 4/96 was used. Eluent flow rate was 1.5 ml/min. A photo diode array was used as detector. Each component was identified by comparing the respective retention time and UV spectra with standard components.

GC studies to measure alcohol content

20

25

To check the conversion rate of the ethanol (EtOH), 2-ethyl-hexanol (EHA), or other alcohol added in the synthesis, the alcohol content of the catalysts were measured by gas chromatography (GC). This was done by first dissolving a 100 mg sample of the catalyst in 1 ml of n-pentanol. Depending on the alcohol to be measured, an internal alcohol standard was chosen. If ethanol was to be measured the n-pentanol solution contained n-propenol as internal standard. To improve the solubility of the catalyst in the solution, the sample was kept in an ultra-sound bath. To remove the inorganics from the organic solution it was extracted with 1 ml of water and to ensure full dissolution, another ml of the n-pentanol solution was added. To ensure repeatable equilibrium conditions between the organic layer and the water layer the samples were allowed to stand overnight. The sample for the GC was taken from the alcohol layer. A Hewlett Packard 5890 GC with a 60 m DB-1 column was used for the GC analyses. The column had a diameter of 0.25 mm with a film thickness of 1 μm. An FID detector was used.

35

30

Bulk polymerisation

Propylene was polymerized in stirred tank reactor having a volume of 5 l. About 0.9 ml triethyl aluminium (TEA) as a cocatalyst, ca 0,12 ml of a 100-% solution of cyclohexyl methyl dimethoxy silane as an external donor and 30 ml of n-pentane were mixed and allowed to react for 5 minutes. Half of the mixture was added to the polymerization reactor and the other half was mixed with ca 20 mg of a catalyst complex. After additional 5 minutes the catalyst/TEA/donor/n-heptane mixture was introduced into the reactor. The Al/Ti mole ratio was 250 and the Al/external donor mol ratio was 10 mol/mol. 70 mmol hydrogen and 1400 g of propylene were introduced into the reactor and the temperature was raised within 15-30 minutes to 70 °C. The polymerization time was 60 minutes, after which the polymer formed was taken out from the reactor. The polymers were characterized with respect to their Melt Flow Rate (MFR₂), bulk density (BD) and fraction of total solubles in xylene (TS).

Results

5

10

15

25

Preparation of the complexes

The catalyst complexes achieved in this investigation are listed in Table 1.

Table 1

The catalyst complexes prepared in this test series.

Example	Number of toluene washes	Colour of catalyst	Morpology of catalyst
1	1	Dark wine-red	Freely flowing
2	2	Dark wine-red	Freely flowing
3	3	Dark wine-red	Freely flowing
4	4	Dark wine-red	Freely flowing

The chemical composition of the catalysts

30 The chemical composition of the catalysts were measured according to the description in the experimental section. In Table 2 the chemical composition of the

catalysts are listed in w-% units, in Table 3 the composition is listed in mol-% units and in Table 4 the molar proportions between Mg, Ti and DOP are compared.

The chemical compositions of the catalysts were as expected on the basis of the reaction equation. With three washes a composition of (MgCl₂)₆TiCl₄DOP was achieved. During the washes, there was a slightly higher wash out of TiCl4 compared to DOP in the last catalyst of the test series. The amount of free alcohol (EHA) was also in this test series very low playing no significant part in the chemical composition (now 0.004-0.006 mol-%), i.e. being about 5% of the mol amount of TiCl₄ or DOP. The amount of phthalic anhydride was about 50% of the DOP amount. To sum up the results from the chemical measurements it can be said that the chemical composition of the catalyst complex when using the MgCl₂ reagent in the catalyst synthesis enriched $Mg(OR')_2$ as a (MgCl₂)₃TiCl₄DOP(PA)_{0.5}

15

10

5

Table 2

The chemical composition of the catalysts in w-% units

Example	Mg w-%	Ti w-%	DOP w-%	EHA w-%	PA w-%
1	7.8	4.7	33.6	0.72	6.7
2	8.1	4.7	32.0	0.54	7.4
3	10.2	3.2	28.5	0.58	6.5
4	12.9	1.6	21.6	0.51	6.1

20 Table 3

The chemical composition of the catalysts in mol-% units

Example	Mg mol-%	Ti mol-%	DOP mol-%	EHA mol-%	PA mol-%
1	0.321	0.098	0.086	0.0055	0.045
2	0.333	0.098	0.082	0.0041	0.050
3	0.420	0.067	0.073	0.0045	0.044
4	0.531	0.033	0.056	0.0039	0.041

Table 4

The molar composition between Mg, Ti and DOP

Example	Mg	Ti	DOP
1	3.3	1	0.9
2	3.4	1	0.8
3	6.3	1	1.1
4	15.9	1	1.7

5 Calculated and found chlorine contents

10

: ; ;

Table 5

The chlorine content in the catalysts were calculated on the basis of the Mg and Ti content. The calculations were based on the assumption the Mg was present in the catalyst as MgCl₂ and Ti as TiCl₄. These calculated results were then compared to the measured results. The results are listed in Table 5. The results showed to be in good agreement, which indicates that both Mg and Ti are present in the catalyst complexes in the fully chlorinated form.

15 The calculated and the found chlorine content in the catalysts

_			
	Example	Calculated Cl w-%	Found Cl w-%
	1	36.7	36.9
	2	37.6	38.0
	3	39.3	39.7
	4	42.4	43.8

Wash out of TiCl4.DOP

All the chemical measurements supports the same conclusion: due to the toluene TiCl₄ and DOP are washed out from the catalyst in a molar proportion of 1:1. This shows up as a constant decrease of the Ti mol-% and the DOP mol-%, and as a constant increase of the Mg mol-% and the Cl mol-%.

Activity of the catalysts

All the catalyst complexes were test polymerized according to the descriptions in the experimental section. The results are listed in Table 5. The results showed that all the catalyst complexes had about the same activity, being between 1.0 and 1.5 kg PP/g cat.

Table 6

The test polymerization results

Example	Activity kg PP/g cat	Activity kg PP/g Ti
1	1.06	23
2	1.22	26
3	1.48	45
4	1.30	81

MFR of the polymers

10

20

In Table 7 the MFR values achieved from the test polymerization results are listed.

The results indicated a systematic increase in MFR with increasing number of toluene washes as MFR increases from 2.0 in the first polymer to 13.7 in the third.

Table 7

The MFR values of the polymers

Example	MFR
1	2.0
2	4.9
3	13.7
4	12.4

Examples 5 to 9 (second main embodiment)

10

15

20

35

: : : :

Preparation of the catalyst component complexes

5 All chemicals were handled in strict inert conditions and all the reactions took place also in strict inert conditions in nitrogen atmosphere.

8.85 mmol of butyl-octyl-magnesium was introduced into a 150 ml glass reactor. A 20% heptane solution (BOMAG-A) was used giving a feed volume of 10 ml (7.29 g). 17.7 mmol (2.78 ml, 2.317 g) of 2-ethyl-1-hexanol (EHA) was then added at room temperature. The temperature was increased to 60 °C and the reactants were allowed to react with each other at that temperature for 30 min. After this 8.85 mmol (1.28 ml, 1.797 g) of phthaloyl chloride (PDC) was added and the reactants were again allowed to react with each other for 30 min at 60 °C. The resulting solution was added dropvise into 88.5 mmol (9.73 ml, 16,790 g) of TiCl4 that had been preheated to 95 °C. The reactants were also in this case allowed to react with each other for 30 min at 95 °C. After this 60 ml of toluene was added. After the precipitate had settled the mother liquid was siphoned off. Five different examples were carried out according to this description. After this the catalyst complex was washed with 30 ml portions of toluene. In example 5, the complex was washed once with toluene, in example 6 twice, in example 7 three times, in example 8 four times and in example 9 six times with 30 ml portions of toluene. The toluene washes were carried out at 90 °C. Last the complex was washed three times with 30 ml portion of

pentane. The complexes were finally dried under a stream of nitrogen. The yield of the catalyst was about 2 g which corresponded to about 75% of the theoretical.

Characterization of the catalyst components

The catalyst component complexes were analyzed with respect to their Mg, Cl and Ti content. In addition to this, the amount of donor compound, the di-octyl-phthalate (DOP) formed in the synthesis, was measured from the catalysts. To indicate to what degree the formed donor compound (DOP) was decomposing in the synthesis, the amount of phthalic anhydride (PA) was also measured from the catalysts.

IR and X-ray of the unwashed Mg:Ti:DOP complex

A stoichiometric complex of MgCl₂·TiCl₄·DOP was prepared by reacting 6.365 mmol (7.19 ml, 5.243 g) of BOMAG with 12.729 mmol (2.00 ml, 1.666 g) of EHA

in a 50 ml glass reactor. After this 6.365 mmol (0.92 ml, 1.292 g) of phthaloyl chloride was introduced and last 6.365 mmol (0.70 ml, 1.207 g) of TiCl₄ was added. The solid product was washed with pentane and finally, the sample was dried in a stream of nitrogen. The sample was characterized by IR spectroscopy and by means of its X-ray diffraction pattern.

The IR studies

5

20

30

35

IR spectres were taken by means of a Nicolet 510 FTIR equipment with 2 cm⁻¹ resolution. The number of scans were 128. All the samples were investigated as capillary films between two KBr tablets. The pure EHA was not handled in inert conditions, while the MgCl₂ samples were handled in a glove box in an inert nitrogen environment in order to protect the samples from air and moisture.

15 X-ray diffraction patterns

The WAXS patterns were collected in a reflection mode between 2° and 70° 2Θ with a Siemens D500 instrument. The diffractometer was equipped with a Cu anode and a graphite monochromator in the reflected beam. The CuKα radiation wavelength was 1.541 Å. The effect used was 40 kV and 35 mA. The sample was loaded in a glovebox into a Mylar film covered sample holder. The Mylar film forms a half-cylindrical window, allowing X-rays to pass perpendicularly through.

Bulk polymerization

The bulk test polymerization was carried out according to the description on page 14.

Results

Preparation of the complexes

The reaction between the Mg-alkyl and the alcohol resulted in a clear solution with a little bit higher viscosity. The reaction was exothermic as the solution became warm when mixing the reactants, the temperature increase was from room temperature up to 50 °C. When the phthaloyl chloride was added a slight yellow colour appeared. Also this reaction was slightly exothermic. The reaction solution become again freely flowing with a low viscosity.

The TiCl₄ was introduced into a 150 ml glass reactor and heated to 95 °C. The Mg solution was then added to the hot TiCl₄ solution dropwise. A beige precipitate started to form right at the beginning of the addition. During addition the solution turned turbid. A partly freely floating precipitate was formed together with more tarlike precipitate that started to foal the reactor walls. To improve the settling conditions toluene was added to the reaction solution. A satisfactory settling of the product was then achieved so that the reaction solution could be siphoned off. Depending on the number of toluene washes the resulting product become more freely flowing. If only one toluene washes resulted in a freely flowing powder-like product.

In the case of the catalyst components of examples 5, 6 and 7, a joined MgCl₂-DOP complex and a joined addition to the TiCl₄ solution was carried out. After the first toluene wash, 1/3 of the solution slurry was separated. The separated part was then washed with the aliphatic hydrocarbon and dried to give the product of example 5. The remaining part of the slurry was washed a second time with toluene and half of this solution slurry was then taken out from the reactor and undertaken the same hydrocarbon treatment as in example 5, resulting in the product of example 6. The remaining part of the catalyst slurry in the reactor was washed twice with toluene and then washed with an aliphatic hydrocarbon in the same way as the first two examples. This sample was the product of example 7. The catalyst morphologies are listed in Table 8.

25 Table 8

5

10

15

20

The morphology of the catalysts

Example	Number of toluene washes	Morphology of catalyst
5	1	Black agglomerates
6	2	Dark powder
7	4	Dark powder

The Chemical composition of the catalysts

30

The Mg, Ti, Cl, DOP, EHA and the phthalic anhydride (PA) content of the catalysts were measured. The results are listed in w-% units in Table 9. In Table 10 the

chemical composition is given in mol-% units and in Table 11 the Mg and DOP amounts are compared to the Ti amount on a molar basis. Table 12 shows the Cl content of the catalysts.

5 Table 9

The chemical composition of the catalysts in w-% units

Example	Mg w-%	Ti w-%	DOP w-%	EHA w-%	PA w-%
5	5.7	6.8	47.7	0.26	3.4
6	11.3	3.1	32.2	0.18	2.5
7	13.4	1.4	21.3	0.25	1.7

Table 10

10 The chemical composition of the catalysts in mol-% units

Example	Mg mol-%	Ti mol-%	DOP mol-%	EHA mol-%	PA mol-%
5	0.235	0.142	0.122	0.002	0.023
6	0.465	0.065	0.083	0.001	0.017
7	0.551	0.029	0.055	0.002	0.012

Table 11

15 The molar proportions between Mg and Ti and between DOP and Ti

Example	Mg	Ti	DOP
5	1.7	1	0.86
6	7.2	1	1.28
7	18.9	1	1.87

Table 12

The calculated Cl content in the catalysts compared to the measured amounts

Example	Calculated Cl w-%	Found Cl w-%
5	36.8	36.4
6	42.2	45.0
7	43.3	44.5

5

. 10

15

Activity of the catalysts

All the catalysts were test polymerized according to the above instructions. The polymerization results are listed in Table 13 in both kg PP/g cat and kg PP/g Ti units. The activities are also shown in Figure 4 and Figure 5. Activities of almost 8 kg PP/g cat were reached. Catalysis of the examples 5, 6 and 7 gave good polymerization results, with the highest activity achieved for the catalyst that had been twice washed with toluene. The activities expressed in kg PP/g Ti units showed an linear increase related to the number of toluene washes for the catalysts of examples 5, 6 and 7 (Figure 5). Activities of over 500 kg PP/g Ti were reached.

Characterization of the polymers

20

All-the-polymers-were-characterized with respect to their melt flow rate (MFR) and bulk density (BD). All the polymers showed to have a MFR₂ between 11-12 g/10 min, indicating a quite good hydrogen response. Bulk densities were between 0.350-0.390 g/ml. The total solubles were between 2 and 3%, being better for the polymers achieved with the catalyst giving higher activity. The results listed in Table 14.

25

Table 13

The polymerization results

Example	Activity kg PP/g cat	Activity kg PP/g Ti
5	2.56	38
6	7.88	254
7	7.33	524

Table 14

The polymer properties

Example	MFR 2.16 kg, 10 min	TS %	BD g/ml
5	11.0	3.1	0.360
6	12.37	2.1	0.350
7	11.0	2.1	0.390

5

10

IR studies of the catalyst

IR spectra in the corresponding regions of 1500-1950 cm⁻¹ (Figure 6) and of 1000-1450 cm⁻¹ (Figure 7) were taken from the resulting catalyst of example 6 and compared to an IR spectrum of a typical active catalyst complex coming from a synthesis starting from a MgCl₂·(EtOH)₃ support material. The spectra are essentially different, and also different from the IR spectra of the isolated complexes of TiCl₄/DOP and MgCl₂/DOP.

15 X-ray studies of the catalysts

As described above, X-ray diffraction patterns were taken from the resulting catalysts and compared to a X-ray pattern from an inactive catalyst complex and a typical active catalyst complex prepared from a MgClo-3EtOH support material.

20

25

30

In Figure 8 are shown the X-ray patterns of Mg(OR)₂ (A) MgCl₂·TiCl₄·DOP (B) produced from MgCl₂·3EtOH, and of (MgCl₂)_{1.7}·TiCl₄·DOP (C) produced by adding one mol MgCl₂·DOP to 10 moles of TiCl₄. In all these cases there was a strong peak located somewhere between 5° and 9° 2Θ. In addition, there seems to be a halo formation between 17° and 23° 2Θ. The strong peak in the left corner of the pattern indicates that large organic groups are separating metal layers at a distance of between 9 and 17 Å, the distance depending on the size of the organic compound (DOP or di-undecyl phthalate DUP). It can thus be stated that the X-ray diffraction patterns for the catalyst complexes originating from the claimed process all show unique features originating from the starting compounds of Mg(OR)₂ and MgCl₂·DOP. These patterns show almost no sign of amorphous or crystalline MgCl₂.

Stoichiometric comparison

5

10

15

20

To get a fair picture about how much more stoichiometric the claimed process is compared to a conventional Ziegler-Natta PP catalyst component process, the waste amounts and the volumes of chemicals to be circulated are listed in Table 15. As reference is used a classical Z-N PP catalyst component synthesis with two titanations followed by three heptane washes (as in EP 0 491 566). Example 6 was chosen as the best representative for the present test series. Here two toluene washes has been used to purify the catalyst. As can be seen from the list, the most essential difference between these two synthesis routes is the lack of the titanium alkoxy trichloride waste material, the ORTiCl₃, in this new recipe. The lack of Ti waste material makes a great difference in easiness in circulating TiCl₄. The other significant change is the decrease in the overall use of TiCl₄, that has dropped to one fourth of what it has been in the classical recipe. The aliphatic hydrocarbon wash in the classical recipe have been changed to a toluene dito in the new recipe.

Table 15

Stoichiometric comparison between a classical Ziegler-Natta PP catalyst synthesis and the claimed (example 6) catalyst synthesis. The figures refer to mol/mol Mg.

Species	Classical Z-N PP cat synthesis	Example 6
Cl ₃ TiOR waste to be neutralized	3	00
TiCl ₄ to be circulated	40	10
Donor in excess	0.1	0.8
Hydrocarbon to be circulated	40	7
Toluene to be circulated	0	60

Examples 8, 9 (second main embodiment) and 10 (third main embodiment)

The following reagents are used; MgCl₂ or MgR₂, 2-ethyl-hexanol (EHA), phthaloyl dichloride (PDC) and TiCl₄ and they are added in the molecular proportion of 1:2:1:1. In the first synthesis (example 8), the Mg-alkyl is reacted with the alcohol, then the phthaloyl chloride (PDC) is added and finally the TiCl₄ is added. In the next two syntheses (examples 9 and 10), the Mg-alkyl is replaced by

MgCl₂. Either the TiCl₄ or the phthaloyl chloride is added in the next step, followed by the last reagent. The synthesis set-ups are is listed in Table 16.

5 Addition order of the reaction components in the catalyst synthesis

Reaction component/Example	8	9	10
MgR ₂	1		
MgCl ₂		1	l
R'OH	2	2	2
PDC	3	3	4
TiCl ₄	4	4	3

Preparation of the complexes

Table 16

The same volumes of reagents have been used in all the experiments regardless in which order they have been added. Thus 22.216 mmol (25.10 ml, 18.3 g) of a 20% heptane solution of butyl-octyl-Mg (BOMAG) was added in experiments (8) and (9) and 22.5972 mmol (2.152 g) of MgCl₂ was added in experiment (10). To this, 45.193 mmol (7.101 ml, 5.915 g) of 2-ethyl-1-hexanol EHA was added. The TiCl₄ mol amount added was equal to the mol amount of MgCl₂ being 22.5972 mmol (2.484 ml, 4.287 g) and also equal to the mol amount of PDC added, which was 22.5972 mmol (3.256 ml, 4.588 g). The addition orders of the reaction components in each catalyst synthesis are listed in Table 16. All the complexes were washed three times with a 100 ml portion of heptane at 90 °C for 15 min and last with a 100 ml portion of pentane at room temperature. Finally the catalysts were dried under a stream of nitrogen.

Characterization of the catalysts

All the catalysts were characterized with respect to their chemical composition by measuring their Mg, Ti, Cl and di-octyl-phthalate (DOP) content. The Ti and Mg containing catalyst samples were dissolved in a mixture of nitric and hydrofluoric acid and the metals were measured by flame atomic absorption with a nitrous oxide/acetylene flame. Chloride was determined after dissolution in dilute sulphuric acid by potentiometric titration with a standard silver nitrate solution.

The determination of the phthalic esters and the phthalic anhydride were done by first dissolving the sample in acetone. The dissolution was improved by keeping the acetone slurry in an ultra-sound bath for 5 min. After this the samples were filtered and run by solution chromatography. As eluent a solution consisting of water and acetonitrile in a proportion of 4/96 was used. The eluent flow rate was 1.5 ml/min. A photo diode array was used as detector. Each component was identified by comparing its retention time and UV spectra with those of standard components. To further characterize the complexes, IR spectra and X-ray diffraction patterns were taken of them.

10

15

20

5

Bulk polymerization

Propylene was polymerized in a stirred tank reactor having a volume of 5 l. About 0.9 ml triethyl aluminium (TEA) as a cocatalyst, about 0,12 ml of a 100-% solution of cyclohexyl methyl dimethoxy silane as an external donor and 30 ml of n-pentane were mixed and allowed to react for 5 minutes. Half of the mixture was added to the polymerization reactor and the other half was mixed with ca 20 mg of said catalyst component. After an additional 5 minutes the catalyst/TEA/donor/n-heptane mixture was introduced into the reactor. The Al/Ti mole ratio was 250 and the Al/external donor mol ratio was 10 mol/mol. 70 mmol of hydrogen and 1400 g of propylene were introduced into the reactor and the temperature was raised within 15-30 minutes to 70 °C. The polymerization time was 60 minutes, after which the polymer formed was taken out of the reactor. The polymers were characterized with respect to their Melt Flow Rate (MFR₂), bulk density (BD) and the fraction of total

25 solubles in xylene (TS).

Results

Chemical composition of the catalysts

As stated in the experimental section, the catalysts were characterized with respect to their chemical composition. In Table 17 the chemical composition of the catalysts with respect to the Mg, Ti, di(2-ethyl-1-hexyl)phthalate (DOP), 2-ethyl-1-hexyl alcohol (EHA) and phthalic anhydride PA contents are listed in w-% units and in Table 18 the same species are listed in mol-% units and last, in Table 19 the molar composition between Mg, Ti and DOP are listed. The examples 8 and 10 are represented by two catalysts, 8a and 8b, as well as 10a and 10b, respectively. The chlorine contents are listed in Table 20.

Table 17

The Mg, Ti, DOP, EHA and PA contents of the catalysts in w-% units

Example	Mg w-%	Ti w-%	DOP w-	EHA w-%	PA w-%
8a	3.6	5.6	35.6	6.8	4.16
8b	9.9	3.5	34.0	<u> </u>	<u>-</u>
9	3.9	7.0	35.7	5.3	1.27
10a	4.5	7.0	43.6	5.15	1.6
10b	11.1	3.7	33.0	1.00	0.3

Table 18

15

20

The Mg, Ti, DOP, EHA and PA contents of the catalysts in mol-% units

Example	Mg mol-%	Ti mol-%	DOP mol-%	EHA mol-%	PA mol-%
8a	0.148	0.117	0.091	0.052	0.028
8b	0.407	0.073	0.087	-	_
9	0.161	0.146	0.091	0.041	0.009
10a	0.185	0.146	0.112	0.040	0.011
10b	0.457	0.077	0.085	0.008	0.002

Table 19

Comparison between the molar amounts of Mg, Ti and DOP

Example	Mg/Ti	Ti	DOP/Ti
8a	1.3	1	0.8
8b	5.6	1	1.2
19	1.1	1	0.6
10a	1.3	1	0.8
10b	5.6	1	1.1

5 **Table 20**

The calculated amounts of Cl in the catalysts compared to the amounts found

Example	Calculated	Found w-%
	w-%	
8a	27.1	26.0
8b	39	
9	32.1	30.9
10a	33.5	32.4
10b	43.4	44.0

10

15

20

The IR results

In Figure 9 is shown the IR spectra of the catalyst components of examples 9 and 10a. There were clear indications of the presence of phthalic anhydride in the catalyst that has been prepared from MgR₂ (example 8a). The phtalic anhydride was almost totally missing from the samples that had been prepared out of MgCl₂ (examples 9 and 10a). These results confirm the results of the chemical analysis. The IR spectrum (not shown) for the toluene washed example 10b catalyst showed no traces of phthalic anhydride but to the left of the C=O---Ti peak a shoulder had appeared indicating the presens of some free carboxylic acid group (-COOH).

The X-ray diffraction patterns

In figures 10, 11 and 12, the X-ray diffraction patterns for the catalysts are shown. The results show that the addition of TiCl₄ before PDC gives a more crystalline material. This can be seen in figure 11. Example 9 is still showing the organic separation peak at 7° 2 Θ and the halo between 18° and 22° 2 Θ but only a slight remain thereof can be seen of the halo in the spectrum of example 10a. In all patterns there seems to be an additional peak at about 32°-33° 2 Θ . This peak is not connected to crystalline MgCl₂. Some unreacted MgCl₂ seems to be present in the catalyst component of example 10a which is starting to dominate when the catalyst is washed with toluene (figure 12).

Polymerization results

5

10

20

30

- All but one (example 8a) of the catalysts were test polymerized according to the descriptions in the experimental section. The polymerization results both in kg PP/g cat units and in kg PP/g Ti units are listed in Table 21. In Figure 13 the results are shown graphically. There was an almost logaritmic linear increase in the activities in this test series. As a whole it can be said that:
 - 1. Addition of TiCl₄ before PDC gives better activity (compare examples 9 and 10).
 - 2. Starting from MgCl₂ instead of from MgR₂ gives higher activity (compare example 8 with examples 9 and 10).
- 25 3. Toluene wash improves activity (compare examples 10a and 10b).

The polymerization results

Table 21

Example	Activity kg PP/g cat.	Activity kg PP/g Ti
8b	0.06	1.3
9	0.4	6.0
10a	1.2	18
10b	2.5	67

Claims

15

20

25

- 1. A process for the preparation of an olefin polymerization catalyst component containing magnesium, titanium, halogen and an electron donor, characterized by the steps of:
- 5 (i) reacting a titaniumless magnesium compound (a) containing an alkoxy moiety, which titaniumless magnesium compound is selected from the group consisting of a complex containing a magnesium dihalide and a magnesium dialkoxide, a complex containing a magnesium dihalide and an alcohol, and a non-complex magnesium dialkoxide, with a halogen compound (b) being capable of forming the electron donor by replacement of its halogen by said alkoxy moiety, to give an intermediate (ab), and
 - (ii) reacting said intermediate (ab) with a titanium halide (c), or
 - (i)' reacting a titaniumless magnesium compound (a) containing an alkoxy moiety, which titaniumless magnesium compound is selected from the group consisting of a complex containing a magnesium dihalide and a magnesium dialkoxide, and a complex containing a magnesium dihalide and an alcohol, with a titanium halide (c), to give an intermediate (ac), and
 - (ii)' reacting said intermediate (ac) with a halogen compound (b) being capable of forming the electron donor by replacement of its halogen by said alkoxy moiety.
 - 2. A process according to claim 1, characterized in that said compounds (a), (b) and (c) are contacted in essentially stoichiometric amounts, or alternatively, that a stoichiometric excess, preferably a 5-20 fold stoichiometric excess with respect to said titaniumless magnesium compound (a), of said titanium halide (c) is used.
 - 3. A process according to claim 1 or 2, characterized in that said magnesium dihalide is magnesium dichloride MgCl₂.
 - 4. A process according to claim 1, 2 or 3, characterized in that said halogen compound (b) is an organic acid halide and preferably phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene, whereby the electron donors formed therefrom are, correspondingly, an organic acid ester and preferably a phthalic acid diester Ph(COOR)₂, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, more preferably a di-C₆-C₁₆ alkyl phthalate, most preferably dioctyl phthalate.

- 5. A process according to any of claims 1-4, characterized in that said titanium halide (c) is a titanium tetrahalide, preferably titanium tetrachloride TiCl₄.
- 6. A process according to any of claims 1-5, characterized by the steps of:
- 5 (i) reacting said complex of said magnesium dihalide and said magnesium dialkoxide as said titaniumless magnesium compound (a) with said halogen compound (b) to give an intermediate (ab) and
 - (ii) reacting said intermediate (ab) with said titanium halide (c), or:
- (i)' reacting said complex of said magnesium dihalide and said magnesium dialkoxide as said titaniumless magnesium compound (a) with said titanium halide (c) to give an intermediate (ac) and
 - (ii)' reacting said intermediate (ac) with said halogen compound (b).
- 7. A process according to claim 6, characterized in that said complex of said magnesium dihalide and a magnesium dialkoxide as said titaniumless magnesium compound (a) is a magnesium dichloride-dimagnesium dialkoxide complex MgCl₂·[Mg(OR)₂]₂, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, which complex is preferably prepared by reacting magnesium dichloride MgCl₂ with an alcohol ROH to give an intermediate and reacting the obtained intermediate with a dialkyl magnesium MgR"₂, wherein R" is defined as for R.

8 A process according to claim 7. characterized by:

30

35

- (i)' reacting said magnesium dichloride-dimagnesium dialkoxide complex MgCl₂·
 [Mg(OR)₂]₂ (a) wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, with said titanium halide (c), which is said titanium tetrachloride TiCl₄, to give an intermediate (ac) and
 - (ii)' reacting said intermediate (ac) with said halogen compound (b), which is said phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene.

9. A process according to any of claims 1-5, characterized by the steps of:

- (i) reacting said titaniumless magnesium compound (a) which is selected from said complex of said magnesium dihalide and said alcohol, and said non-complex magnesium dialkoxide, with said halogen compound (b) to give an intermediate (ab) which is a complex of said magnesium dihalide and said electron donor and
- (ii) reacting said intermediate (ab) which is a complex of said magnesium dihalide and said electron donor with said titanium halide (c).

- 10. A process according to claim 9, characterized in that, independently, said complex of said magnesium dihalide and said alcohol is a magnesium dichloride-alcohol complex MgCl₂·(ROH)_m, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, and m is 1-6, and said non-complex magnesium alkoxide is a magnesium dialkoxide Mg(OR)₂, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, which is preferably prepared by reacting a magnesium dialkyl and an alcohol ROH.
- 11. A process according to any of claims 1-5, characterized by the steps of:
- 10 (i) reacting said titaniumless magnesium compound (a), which is said complex of said magnesium dihalide and said alcohol, with said titanium halide (c) to give an intermediate (ac) and
 - (ii)' reacting said intermediate with said halogen compound (b).
- 12. A process according to claim 11, characterized in that said complex of said magnesium dihalide and said alcohol compound is a magnesium dichloride-alcohol complex MgCl₂·(ROH)_m, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl, preferably a C₆-C₁₆ alkyl, and m is 1-6.
- 20 13. A process according to claim 12, characterized in by the steps of:

25

35

- (i)' reacting said titaniumless magnesium compound (a), which is said magnesium dichloride-alcohol complex MgCl₂·(ROH)_m, wherein R is a C₁-C₂₀ alkyl or a C₇-C₂₇ aralkyl preferably a C₆-C₁₆ alkyl, and m is 1-6, with said titanium dihalide (c), which is said titanium tetrachloride TiCl₄, to give an intermediate (ac) and
- (ii)' reacting said intermediate (ac) with said halogen compound (b), which is said phthalic acid dichloride Ph(COCl)₂, wherein Ph is o-phenylene.
- 14. A process according to any of claims 6-13, characterized in that in step (ii) said intermediate (ab) is added, preferably drop by drop, to said titanium halide (c), which is in liquid form and preferably hot, most preferably at 75-150 °C.
 - 15. A process according to any of claims 6-14, characterized in that:
 - (iii) the obtained product of step (ii) or (ii)' is further treated with said titanium halide (c) and/or washed, preferably repeatedly washed with an aromatic hydrocarbon, such as toluene, or an organic liquid having the same solubility parameter as said aromatic hydrocarbon.

- 16. A catalyst component comprising magnesium, titanium, a halogen and an electron donor, characterized in that it has been prepared by the process described in any of claims 1 to 15.
- 5 17. The catalyst component according to claim 16, characterized in that it is an isolated complex of a magnesium dihalide, preferably magnesium dichloride, an electron donor obtained by replacing the halogen of a halogen compound by an alkoxy group, preferably a phthalic acid diester, and a titanium halide, preferably titanium tetrachloride.

10

15

30

18. The catalyst component according to claim 17, characterized in that said complex has an X-ray pattern comprising a crystal height indicating peak between 16° and 18° 2Θ (Siemens D500 instrument, CuKα radiation wavelength 1.541 Å, effect 40 kV and 35 mA).

- 19. The catalyst component according to claim 16, 17 or 18, characterized in that said complex is prepared by contacting stoichiometric amounts of said components (a), (b) and (c).
- 20 20. The catalyst component according to any of claims 16-19, characterized in that said complex has an X-ray diffraction pattern comprising a peak between 5° and 10° 2θ (Siemens D500 instrument, CuKα radiation wavelength 1.541 Å, effect 40 kV and 35 mA)
- 25 21. The catalyst component according to any of claims 16-20, characterized in that no TiCl₃OR waste material is produced in the catalyst synthesis.
 - 22. Use of a catalyst component according to any of claims 16-21 for the polymerization of α -olefins, preferably propene.
 - 23. Use according to claim 22, wherein, additionally, a catalyst component comprising an organometal compound of a metal belonging to Group 1, 2 or 13 (IUPAC 1990) of the Periodic Table, preferably an alkyl aluminium compound, is used.

Abstract

The invention relates to a novel process for the preparation of an olefin polymerization catalyst component comprising magnesium, titanium, a halogen and an electron donor. The process comprises the steps of:

- (i) reacting a titaniumless magnesium compound (a) containing an alkoxy moiety, which titaniumless magnesium compound is selected from the group consisting of a complex containing a magnesium dihalide and a magnesium dialkoxide, a complex containing a magnesium dihalide and an alcohol, and a non-complex magnesium dialkoxide, with a halogen compound (b) being capable of forming the electron donor by replacement of its halogen by said alkoxy moiety, to give an intermediate (ab), and
- (ii) reacting said intermediate (ab) with a titanium halide (c), or
- (i)' reacting a titaniumless magnesium compound (a) containing an alkoxy moiety, which titaniumless magnesium compound is selected from the group consisting of a complex containing a magnesium dihalide and a magnesium dihalide, and a complex containing a magnesium dihalide and an alcohol, with a titanium halide
- (c), to give an intermediate (ac), and
- (ii) reacting said intermediate (ac) with a halogen compound (b) being capable of forming the electron donor by replacement of its halogen by said alkoxy moiety.

Figure 1 Example of the first main embodiment

Figure 2 Example of the second main embodiment

Figure 3 Example of the third main embodiment

Figure 4

Correlation between the activity (in kg PP/g cat) and the number of toluene washes used in the catalyst synthesis

Figure 5

Correlation between the activity (in kg PP/g Ti) and the number of toluene washes used in the catalyst synthesis

Figure 6

Details of IR spectra in the C=O---metal complex region of $TiCl_4 \cdot DUP$ (A), $(MgCl_2)_{1.5} \cdot DOP$ (B), $MgCl_2 \cdot TiCl_4 \cdot D_1$ (C) prepared from $MgCl_2 \cdot 3ROH$, and of $(MgCl_2)_7 \cdot TiCl_4 \cdot DOP$ (D = example 6) prepared from $MgCl_2 \cdot DOP$ in 10 mol $TiCl_4$

Figure 7

Details of IR spectra in the C-O---metal complex region of TiCl₄ · DUP (A), $(MgCl_2)_{1.5}$ · DOP (B), $MgCl_2$ · TiCl₄ · D₁ (C) prepared from $MgCl_2$ · 3ROH, and of $(MgCl_2)_7$ · TiCl₄ · DOP (D = example 6) prepared from $MgCl_2$ · DOP and 10 TiCl₄

Figure 8

X-ray patterns of Mg(OR)₂ (A), MgCl₂ · TiCl₄ · DOP (B) produced from MgCl₂ · 3EtOH, and (MgCl₂)_{1.7} · TiCl₄ · DOP (C) produced from MgCl₂ · DOP and 10 TiCl₄

Figure 9

IR spectra of examples 9 (A) and 10a (B)

X-ray pattern of the catalyst of example 8a

Figure 11
X-ray patterns of examples 9 (A) and 10a (B)

Figure 12 X-ray pattern of example 10b, i.e. the toluene washed example 10a

Figure 13

The activities of the catalysts coming from experiments 8b-10b, 1) example 8b, 2) example 9, 3) example 10a and 4) example 10b.

◆ as kg PP/g cat units and ■ as kg PP/g Ti units

THIS PAGE BLANK (USPTO)