

Exploiting problem symmetry for faster quantum machine learning

F. Mrcarica, M. Hanisch, P. Uriarte Vicani, V. Mohr

The team:

CQC

Filip M. Maurice H. Paul U. V. Vinícius M.

Agenda

- Introduction/Background
- Tic-Tac-Toe problem
- Results & Layering
- Practical application: Maze
- Conclusion

ı

Introduction/Background

Quantum machine learning summarized:

Source: Arthur Pesah, https://arthurpesah.me/assets/p df/gml-talk-vannes-2020.pdf

Introduction/Background

Symmetries:

-Usual in **physics**.

-For **ML**:

- 1) Reduce the number of parameters: **Expressivity** (less overfitting, still in right solution space)
 - 2) Fewer data to achieve better validation err.: Generalization

- 1

Introduction/Background

What we did:

- Analyzed paper that showed accuracy increase through use of symmetry

- Simulated Q. ML with our laptops

- Showed **symmetry advantage** for completely **new**, very **generalizable** problem

Tic-Tac-Toe: Classification Problem

1

Tic-Tac-Toe: Classification accuracy for simple optimization algorithm with one layer

	No draws	Draws
Symmetries	62 % Test / 58 % Train	43 % Test / 43 % Train
No Symmetries	67 % Test / 65 % Train	32 % Test / 29 % Train

Tic-Tac-Toe: Accuracy for additional layers

Potential Problems with layering: More Parameters to fit

- More calculations to execute
- Lose generalization
- More risk of overfitting
- More gates to execute
 - → Can lead to more noise

ı

|

Answer: Yes! But using symmetries even better!

1

Verity AG: ETH Spin-off

Why a maze?

- Great generalization

- With **same symmetry** group as TTT (Dihedral D4)

- Scalability (not like TTT)

Symmetry

How did we do it?

- Classical Generation:

All possible combinations

Check: Iterative steps

ı

How did we do it?

- Quantum **Simulation**:

Equivariant gateset

|

Results!!

(also consistent for more training data)

Further steps: Noise in 3x3

Further steps: 5x5 Maze

(only managed to train **5/100** iterative steps in **7h30** on EULER)

[mhanisc@eu-login-43 ~]\$ squeue JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 16197709 normal.24 script_u mhanisc R 7:30:52 1 eu-g5-001-2

Outlook

- Introduce further noise analysis
- Generalization to real-life problems
- Look at larger quantum systems with more qubits

→ Run the codes on an actual quantum computer

1

Conclusion: What we learned

- Basics of quantum machine learning
- Importance of symmetries
- Implementing quantum neural networks
- Application to real-world problems
- Open-end: Only limiting factor was our creativity...
 - ... and number of qubits