

UNIVERSIDADE FEDERAL DO AMAZONAS PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA ELÉTRICA

CONTROLE FUZZY ADAPTATIVO DE SISTEMAS NÃO LINEARES

Andevaldo da Encarnação Vitório

MANAUS-AM

Andevaldo da Encarnação Vitório

CONTROLE FUZZY ADAPTATIVO DE SISTEMAS NÃO LINEARES

Este trabalho foi preparado como parte dos requisitos da disciplina *Sistemas Inteligentes* oferecida pelo Programa de Pós-graduação em Engenharia Elétrica da Universidade Federal do Amazonas.

Prof. Dr. João Edgar Chaves Filho

MANAUS-AM

Capítulo 1

Resolução da Primeira Lista

Questão 1

Se $A \in \mathbb{R}^{n \times n}$ e α é um escalar, qual é $\det(\alpha A)$? Qual é $\det(-A)$?

Resolução:

Para resolver esta questão, é necessário usar duas propriedades fundamentais das matrizes: o produto de uma matriz $M \in \mathbb{R}^{n \times m}$ com um escalar $\alpha \in \mathbb{R}$,

$$(\alpha M)_{ij} = \alpha m_{ij}, \quad \textit{para todos } 1 \le i \le m, \ 1 \le j \le n,$$
 (1.1)

e o determinante de uma matriz $N \in \mathbb{R}^{p \times p}$,

$$\det(N) = \sum_{j=1}^{p} (-1)^{i+j} n_{ij} \det(N_{ij}), \tag{1.2}$$

onde N_{ij} é a matriz menor obtida removendo a i-ésima linha e a j-ésima coluna de N, com i sendo um valor fixo.

Dado isso, podemos escrever:

$$\det(\alpha A) = \sum_{j=1}^{n} (-1)^{i+j} \alpha a_{ij} \det(\alpha A_{ij}). \tag{1.3}$$

Esse processo pode ser aplicado recursivamente até chegarmos a uma matriz quadrada de ordem 2, onde:

$$\det \left(\alpha \begin{bmatrix} A_{ij_{11}} & A_{ij_{12}} \\ A_{ij_{21}} & A_{ij_{22}} \end{bmatrix} \right) = \alpha^2 \left(A_{ij_{11}} A_{ij_{22}} - A_{ij_{12}} A_{ij_{21}} \right) = \alpha^2 \det(A_{ij}). \tag{1.4}$$

Esse é o critério de parada. No processo de retorno, observando a equação anterior, nota-se o fator α multiplicando os determinantes das matrizes menores. Isso resulta em uma cadeia de multiplicações por α que ocorre em cada passo da recursão. Como são n-2 passos até a matriz de ordem 2, temos n-2 produtos de α , que ao serem combinados com α^2 , resultam em α^n . Assim, temos:

$$\det(\alpha A) = \alpha^n \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(A_{ij}) = \alpha^n \det(A). \tag{1.5}$$

No caso especial em que $\alpha = -1$ *, obtemos:*

$$\det(-A) = (-1)^n \det(A). \tag{1.6}$$

Ou seja, se a ordem da matriz A for par, o determinante da matriz oposta -A será igual ao de A; se for ímpar, o determinante de -A será o oposto do determinante de A.

Questão 2

Se A é orthogonal, qual é $\det A$? Se A é unitária, qual é $\det A$?

Resolução:

Uma matriz $A \in \mathbb{R}^{n \times n}$ é chamada de ortogonal se:

$$A^T A = I, (1.7)$$

onde A^T é a transposta de A e I é a matriz identidade de ordem n. Para Qualquer matriz A, temos:

$$\det(A^T) = \det(A). \tag{1.8}$$

Para duas matrizes A e B, a seguinte relação é válida:

$$\det(AB) = \det(A)\det(B). \tag{1.9}$$

Além disso, sabemos que:

$$\det(I) = 1. \tag{I.10}$$

Usando a definição de matriz ortogonal, temos:

$$A^T A = I. (1.11)$$

Aplicando o determinante em ambos os lados da equação, obtemos:

$$\det(A^T A) = \det(I). \tag{1.12}$$

Aplicando a propriedade do determinante do produto de matrizes, temos:

$$\det(A^T)\det(A) = \det(I). \tag{1.13}$$

Como o determinante da transposta é igual ao determinante da matriz original, $\det(A^T) = \det(A)$.

Portanto, a equação se simplifica para:

$$\det(A)\det(A) = 1, \tag{1.14}$$

ou seja:

$$\det(A)^2 = 1.$$
 (1.15)

A solução para essa equação é:

$$\det(A) = \pm 1. \tag{1.16}$$

Assim, o determinante de uma matriz ortogonal A é sempre ± 1 .

Uma matriz A é dita unitária se $A^{\dagger}A=I$, onde A^{\dagger} é a matriz adjunta (ou conjugada transposta) de A, e I é a matriz identidade. Considerando que $A^{\dagger}A=I$, aplique o determinante em ambos os lados da igualdade:

$$\det(A^{\dagger}A) = \det(I) \tag{1.17}$$

Usando a propriedade de que o determinante do produto de duas matrizes é o produto dos determinantes:

$$\det(A^{\dagger}A) = \det(A^{\dagger})\det(A) \tag{1.18}$$

 $E como \det(I) = 1$, temos:

$$\det(A^{\dagger})\det(A) = 1 \tag{1.19}$$

Note que $\det(A^{\dagger}) = \overline{\det(A)}$, onde $\overline{\det(A)}$ é o conjugado complexo de $\det(A)$. Assim:

$$\overline{\det(A)}\det(A) = 1 \tag{1.20}$$

O produto $\overline{\det(A)} \det(A)$ é, na verdade, o quadrado do módulo de $\det(A)$:

$$|\det(A)|^2 = 1 \tag{1.21}$$

Portanto, tomando a raiz quadrada em ambos os lados da equação, obtemos:

$$|\det(A)| = 1 \tag{1.22}$$

Assim, o módulo do determinante de uma matriz unitária é igual a 1.

Questão 3

Seja $x, y \in \mathbb{R}^n$. Mostre que $\det(I - xy^\top) = 1 - y^\top x$.

Resolução:

Seja $A = I - xy^{\top}$. A matriz A pode ser escrita como I menos o produto externo xy^{\top} . Usamos a fórmula de determinante para matrizes de rank I:

$$\det(I - xy^{\top}) = (1 - v^{\top}u). \tag{1.23}$$

Se u e v são vetores em \mathbb{R}^n , a matriz xy^{\top} é uma matriz de rank 1. O determinante de $I-xy^{\top}$ pode ser

encontrado através da fórmula de determinante para matrizes de rank 1. Em particular, se M é uma matriz $n \times n$ e w é um vetor coluna, a fórmula de determinante para matrizes $M + xy^{\top}$ é dada por:

$$\det(M + xy^{\top}) = \det(M) \left(1 + v^{\top} M^{-1} u \right). \tag{1.24}$$

Para M = I, temos:

$$\det(I + xy^{\mathsf{T}}) = 1 + y^{\mathsf{T}}x. \tag{1.25}$$

Assim, obtemos:

$$\det(I - xy^{\top}) = 1 - y^{\top}x. \tag{1.26}$$

Questão 4

Seja $U_1, U_2, ..., U_k \in \mathbb{R}^{n \times n}$ matrizes ortogonais. Mostre que o produto $U = U_1 U_2 ... U_k$ é uma matriz ortogonal.

Resolução:

Para demonstrar que o produto $U=U_1U_2\cdots U_k$ de matrizes ortogonais U_1,U_2,\ldots,U_k é também uma matriz ortogonal, é necessário provar que U satisfaz a condição de ortogonalidade. Especificamente, uma matriz $U\in\mathbb{R}^{n\times n}$ é considerada ortogonal se, e somente se, $U^TU=I$, onde U^T denota a transposta de U e I representa a matriz identidade.

Dado que cada matriz U_i para $i=1,2,\ldots,k$ é ortogonal, elas satisfazem a condição $U_i^TU_i=I$ e $U_iU_i^T=I$. O objetivo é demonstrar que o produto $U=U_1U_2\cdots U_k$ também atende a essa condição. Para verificar isso, calculamos o produto U^TU . A transposta de U é dada por:

$$U^{T} = (U_{1}U_{2}\cdots U_{k})^{T} = U_{k}^{T}\cdots U_{2}^{T}U_{1}^{T}$$
(1.27)

Consequentemente, o produto $U^T U$ é:

$$U^{T}U = (U_{k}^{T} \cdots U_{2}^{T} U_{1}^{T})(U_{1}U_{2} \cdots U_{k})$$
(1.28)

Agrupando os termos, obtemos:

$$U^{T}U = U_{k}^{T}(U_{k}^{T}U_{k})(U_{k-1}^{T}U_{k-1})\cdots(U_{2}^{T}U_{2})(U_{1}^{T}U_{1})$$
(I.29)

Como $U_i^T U_i = I$ para cada i, o produto acima simplifica para:

$$U^{T}U = U_{k}^{T} I U_{k-1}^{T} I \cdots U_{2}^{T} I U_{1}^{T} I = I$$
(1.30)

Portanto, $U^TU=I$, o que confirma que a matriz U é ortogonal. Dessa forma, o produto de matrizes ortogonais é, de fato, ortogonal.

Questão 5

Seja $A \in \mathbb{R}^{n \times n}$. O traço de A, denotado por $\operatorname{trace}(A)$, é definido como a soma de seus elementos diagonais, ou seja, $\operatorname{trace}(A) = \sum_{i=1}^{n} a_{ii}$.

- (a) Mostre que o traço é uma função linear; isto é, se $A, B \in \mathbb{R}^{n \times n}$ e $\alpha, \beta \in \mathbb{R}$, então $\operatorname{trace}(\alpha A + \beta B) = \alpha \operatorname{trace}(A) + \beta \operatorname{trace}(B)$.
- (b) Mostre que $\operatorname{trace}(AB) = \operatorname{trace}(BA)$, mesmo que em geral $AB \neq BA$.
- (c) Seja $S \in \mathbb{R}^{n \times n}$ antissimétrico, ou seja, $S^{\top} = -S$. Mostre que $\operatorname{trace}(S) = 0$. Então prove a afirmação contrária ou forneça um contraexemplo.

Resolução:

(a) Prova de que o traço é uma função linear

Para mostrar que o traço é uma função linear, devemos verificar que, para quaisquer matrizes $A, B \in \mathbb{R}^{n \times n}$ e escalares $\alpha, \beta \in \mathbb{R}$, a seguinte igualdade é verdadeira:

$$\operatorname{trace}(\alpha A + \beta B) = \alpha \operatorname{trace}(A) + \beta \operatorname{trace}(B)$$
(1.31)

O traço de uma matriz $C \in \mathbb{R}^{n \times n}$ é definido como a soma dos elementos da diagonal principal de C:

$$\operatorname{trace}(C) = \sum_{i=1}^{n} c_{ii} \tag{1.32}$$

Para a matriz $\alpha A + \beta B$, onde $(\alpha A + \beta B)_{ij} = \alpha a_{ij} + \beta b_{ij}$, temos:

$$\operatorname{trace}(\alpha A + \beta B) = \sum_{i=1}^{n} (\alpha a_{ii} + \beta b_{ii})$$
(1.33)

Distribuindo a soma:

$$\operatorname{trace}(\alpha A + \beta B) = \sum_{i=1}^{n} \alpha a_{ii} + \sum_{i=1}^{n} \beta b_{ii}$$
 (1.34)

$$\operatorname{trace}(\alpha A + \beta B) = \alpha \sum_{i=1}^{n} a_{ii} + \beta \sum_{i=1}^{n} b_{ii}$$
(1.35)

$$\operatorname{trace}(\alpha A + \beta B) = \alpha \operatorname{trace}(A) + \beta \operatorname{trace}(B)$$
 (1.36)

Portanto, o traço é uma função linear.

(b) Prova de que trace(AB) = trace(BA)

Para provar que $\operatorname{trace}(AB) = \operatorname{trace}(BA)$ para matrizes $A, B \in \mathbb{R}^{n \times n}$, seguimos os seguintes passos: O traço de AB é:

$$\operatorname{trace}(AB) = \sum_{i=1}^{n} (AB)_{ii}$$
(1.37)

O elemento $(AB)_{ii}$ é dado por:

$$(AB)_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki}$$
 (1.38)

Portanto:

$$trace(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$
 (1.39)

Reorganizando a soma:

trace(AB) =
$$\sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik}$$
 (1.40)

O traço de BA é:

$$\operatorname{trace}(BA) = \sum_{i=1}^{n} (BA)_{ii}$$
(1.41)

$$(BA)_{ii} = \sum_{k=1}^{n} b_{ik} a_{ki}$$
 (1.42)

Portanto:

$$trace(BA) = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki}$$
 (1.43)

Comparando as somas:

trace(BA) =
$$\sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} b_{ki}$$
, (1.44)

trace(AB) =
$$\sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} b_{ki}$$
. (1.45)

Logo, trace(AB) = trace(BA).

(c) Uma matriz $S \in \mathbb{R}^{n \times n}$ é anti-simétrica se $S^T = -S$. Vamos mostrar que $\operatorname{trace}(S) = 0$. O traço de S é:

$$\operatorname{trace}(S) = \sum_{i=1}^{n} s_{ii}.$$
 (1.46)

Como $S^T = -S$, os elementos da diagonal de S satisfazem:

$$s_{ii} = -s_{ii}. (1.47)$$

Portanto:

$$2s_{ii} = 0 \implies s_{ii} = 0. \tag{1.48}$$

Assim, o traço de S é:

$$\operatorname{trace}(S) = \sum_{i=1}^{n} s_{ii} = \sum_{i=1}^{n} 0 = 0.$$
 (1.49)

Portanto, o traço de uma matriz anti-simétrica é zero.

Nota sobre o Converse

Se uma matriz S tem traço zero, isso não implica necessariamente que S seja anti-simétrica. Por exemplo, a matriz nula S=0 é anti-simétrica e tem traço zero, mas uma matriz com traço zero não precisa ser anti-simétrica.

Contraexemplo

Considere a matriz:

$$S = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}. \tag{1.50}$$

O traço de S é 1+4=5, que não é zero. Portanto, uma matriz com traço zero não precisa ser antisimétrica, e anti-simetria não é uma condição necessária para que o traço seja zero.

Questão 6

Uma matriz $A \in \mathbb{R}^{n \times n}$ é dita ser idempotente se $A^2 = A$.

- (a) Mostre que $A=rac{1}{2}egin{bmatrix} 2\cos^2\theta & \sin 2\theta \\ \sin 2\theta & 2\sin^2\theta \end{pmatrix}$ é idempotente para todo θ .
- (b) Suponha que $A \in \mathbb{R}^{n \times n}$ é idempotente e $A \neq I$. Mostre que A deve ser singular.

Resolução:

(a) Primeiro, calculamos A^2 . Se denotarmos A como $\frac{1}{2}B$, onde

$$B = \begin{bmatrix} 2\cos^2\theta & \sin 2\theta \\ \sin 2\theta & 2\sin^2\theta \end{bmatrix},\tag{I.5I}$$

então

$$A = \frac{1}{2}B,\tag{1.52}$$

e precisamos calcular

$$A^2 = \left(\frac{1}{2}B\right)^2 = \frac{1}{4}B^2. \tag{1.53}$$

Assim, precisamos encontrar B^2 :

$$B^{2} = \begin{bmatrix} 2\cos^{2}\theta & \sin 2\theta \\ \sin 2\theta & 2\sin^{2}\theta \end{bmatrix} \begin{bmatrix} 2\cos^{2}\theta & \sin 2\theta \\ \sin 2\theta & 2\sin^{2}\theta \end{bmatrix}. \tag{I.54}$$

Calculando o produto, obtemos:

$$B^{2} = \begin{bmatrix} (2\cos^{2}\theta)^{2} + (\sin 2\theta)^{2} & 2\cos^{2}\theta \cdot \sin 2\theta + \sin 2\theta \cdot 2\sin^{2}\theta \\ \sin 2\theta \cdot 2\cos^{2}\theta + 2\sin^{2}\theta \cdot \sin 2\theta & (\sin 2\theta)^{2} + (2\sin^{2}\theta)^{2} \end{bmatrix}.$$
 (1.55)

Utilizando as identidades trigonométricas $\sin^2 \theta + \cos^2 \theta = 1$ e $\sin 2\theta = 2 \sin \theta \cos \theta$:

$$(2\cos^2\theta)^2 + (\sin 2\theta)^2 = 4\cos^4\theta + 4\cos^2\theta\sin^2\theta = 4\cos^2\theta,$$
 (1.56)

$$\sin 2\theta \cdot 2\cos^2\theta + 2\sin^2\theta \cdot \sin 2\theta = 2\sin 2\theta(\cos^2\theta + \sin^2\theta) = 2\sin 2\theta, \tag{1.57}$$

$$(\sin 2\theta)^2 + (2\sin^2 \theta)^2 = 4\sin^2 \theta. \tag{1.58}$$

Logo,

$$B^{2} = \begin{bmatrix} 2\cos^{2}\theta & \sin 2\theta \\ \sin 2\theta & 2\sin^{2}\theta \end{bmatrix} = 2 \cdot \begin{bmatrix} \cos^{2}\theta & \sin^{2}\theta \\ \sin^{2}\theta & \sin^{2}\theta \end{bmatrix}. \tag{1.59}$$

Então,

$$A^{2} = \frac{1}{4}B^{2} = \frac{1}{4} \cdot 2 \cdot B = \frac{1}{2}B = A.$$
 (1.60)

Portanto, $A^2=A$, confirmando que A é idempotente para todo θ .

(b) Se A é idempotente, então:

$$A^2 = A. (1.61)$$

Suponha que λ é um autovalor de A. Então, para um vetor próprio v associado a λ , temos:

$$Av = \lambda v. \tag{1.62}$$

Aplicando a condição idempotente:

$$A^2v = Av \implies \lambda^2 v = \lambda v \tag{1.63}$$

$$\lambda^2 = \lambda \implies \lambda(\lambda - 1) = 0 \tag{1.64}$$

Assim, os autovalores de A devem ser 0 ou 1. Se $A \neq I$, então A não pode ser uma matriz onde todos os autovalores são 1. Assim, deve existir pelo menos um autovalor igual a 0. Logo, a matriz A tem pelo menos um autovalor igual a 0, o que implica que a matriz é singular (ou seja, seu determinante é zero). Portanto, qualquer matriz idempotente que não seja a matriz identidade deve ser singular.