

Data Mining

Lab - 2

Name: Vyas Bhagyesh Y.

Div:5-B

Batch: 2

Roll-No: 423

Enrollment No: 23010101662

Step 1. Import the necessary libraries

```
In [1]:
```

import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called users and use the 'user_id' as index

```
In [23]:
```

users=pd.read_csv('https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user'
, sep='|',index_col='user_id')

In [24]:

users

Out[24]:

age	gender	occupation	zip_code

user_id					
1	24	М	technician	85711	
2	53	F	other	94043	
3	23	М	writer	32067	
4	24	М	technician	42527	

-	47	. 171	teominoian	. 70001
5	age 33	gender F	occupation other	zip_code 15213
user_id				
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	M	student	77841

943 rows × 4 columns

Step 4. See the first 25 entries

In [25]:

users.head(25)

Out[25]:

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
6	42	М	executive	98101
7	57	М	administrator	91344
8	36	М	administrator	05201
9	29	М	student	01002
10	53	М	lawyer	90703
11	39	F	other	30329
12	28	F	other	06405
13	47	М	educator	29206
14	45	М	scientist	55106
15	49	F	educator	97301
16	21	М	entertainment	10309
17	30	М	programmer	06355
18	35	F	other	37212
19	40	М	librarian	02138
20	42	F	homemaker	95660
21	26	M	writer	30068
22	25	М	writer	40206
23	30	F	artist	48197
24	21	F	artist	94533
25	39	М	engineer	55107

Step 5. See the last 10 entries

```
users.tail(10)
Out[26]:
        age gender
                      occupation zip_code
user_id
                                     22902
    934
         61
                  М
                         engineer
    935
         42
                  М
                                     66221
                          doctor
                                     32789
    936
         24
                  М
                            other
    937
         48
                         educator
                                    98072
                  М
    938
         38
                  F
                       technician
                                     55038
    939
         26
                  F
                          student
                                    33319
    940
                  M administrator
                                    02215
    941
         20
                  М
                          student
                                    97229
    942
        48
                  F
                         librarian
                                    78209
    943
        22
                          student
                                    77841
                  М
```

In [26]:

Step 6. What is the number of observations in the dataset?

```
In [37]:
    users.shape[0]
Out[37]:
943
```

Step 7. What is the number of columns in the dataset?

```
In [38]:
    users.shape[1]
Out[38]:
4
```

Step 8. Print the name of all the columns.

```
In [30]:
    users.columns
Out[30]:
Index(['age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

```
In [39]:
# "the index" (aka "the labels")
users.index
Out[39]:
                                  7,
Index([ 1, 2, 3, 4, 5,
                             6,
                                       8,
                                            9, 10,
          935 936
                    937
                        030
                             939
                                 911
                                           012 0121
      021
```

```
dtype='int64', name='user_id', length=943)
```

```
Step 10. What is the data type of each column?
In [31]:
users.dtypes
Out[31]:
              int64
age
             object
gender
occupation object zip_code object
dtype: object
Step 11. Print only the occupation column
In [33]:
users.occupation
Out[33]:
user id
         technician
              other
3
             writer
4
         technician
5
               other
939
            student
940 administrator
941
            student
942
           librarian
943
            student
Name: occupation, Length: 943, dtype: object
Step 12. How many different occupations are in this dataset?
In [43]:
users.occupation.unique()
Out[43]:
array(['technician', 'other', 'writer', 'executive', 'administrator',
       'student', 'lawyer', 'educator', 'scientist', 'entertainment',
       'programmer', 'librarian', 'homemaker', 'artist', 'engineer',
       'marketing', 'none', 'healthcare', 'retired', 'salesman', 'doctor'],
```

```
79
administrator
                  67
engineer
programmer
                  66
librarian
                  51
writer
                  45
executive
                  32
scientist
                  31
                  28
artist
technician
                  27
marketing
                  26
entertainment
                 18
                 16
healthcare
retired
                  14
lawyer
                 12
salesman
                 12
none
                  7
homemaker
                  7
doctor
Name: count, dtype: int64
In [47]:
users.occupation.value counts().count()
Out[47]:
21
Step 13. What is the most frequent occupation?
In [55]:
users.occupation.value counts().idxmax()
Out[55]:
'student'
Step 14. Summarize the DataFrame.
In [56]:
users.describe()
Out[56]:
          age
count 943.000000
     34.051962
 mean
     12.192740
  std
      7.000000
  min
      25.000000
 25%
      31.000000
 50%
```

Step 15. Summarize all the columns

43.000000

max 73.000000

75%

95

educator

```
In [62]:
users.describe(include='all')
```

Out[62]:				
	age	gender	occupation	zip_code
count	943.000000	943	943	943
unique	NaN	2	21	795
top	NaN	М	student	55414
freq	NaN	670	196	9
mean	34 051962	NaN	NaN	NaN

NaN

NaN

NaN

NaN

NaN

NaN

Step 16. Summarize only the occupation column

NaN

```
users.occupation.describe()
Out[65]:
```

count 943 unique 21 top student freq 196

12.192740

7.000000

25.000000

31.000000

43.000000

73.000000

std min

25%

50%

75%

max

In [65]:

Name: occupation, dtype: object

Step 17. What is the mean age of users?

```
In [68]:
int(users.age.mean())
Out[68]:
34
In [69]:
round(users.age.mean())
Out[69]:
```

Step 18. What is the age with least occurrence?

```
In [72]:
users.age.value_counts()
Out[72]:
age
```

34

.

```
7
66
11
     1
10
73
      1
Name: count, Length: 61, dtype: int64
In [74]:
users.age.value_counts()[users.age.value_counts() == users.age.value_counts().min()]
Out[74]:
age
     1
66
     1
11
     1
10
     1
73
     1
Name: count, dtype: int64
```