Which point below best represents $4e^{i3\pi/4}$ on the complex plane?

ANNOUNCEMENTS

- Quiz 3 (next Friday 2/22) RLC circuits
 - Solve a circuit problem using the phasor method
 - Discuss limits on the response and how it might act as a filter

What is the total impedance of this circuit, Z_{total} ?

A.
$$R+i\left(\omega L+\frac{1}{\omega C}\right)$$

B. $R+i\left(\omega L-\frac{1}{\omega C}\right)$
C. $\frac{1}{R}+\frac{1}{i\omega L}+i\omega C$

B.
$$R + i \left(\omega L - \frac{1}{\omega C}\right)$$

C.
$$\frac{1}{R} + \frac{1}{i\omega L} + i\omega C$$

D.
$$\frac{1}{\frac{1}{R} + \frac{1}{i\omega L} + i\omega C}$$

E. None of these

What is
$$Re\left[\frac{e^{i\omega t}}{1+i}\right]$$
?

A.
$$\frac{1}{\sqrt{2}}\cos(\omega t + \pi/4)$$

A.
$$\frac{1}{\sqrt{2}}\cos(\omega t + \pi/4)$$

B. $\frac{1}{\sqrt{2}}\cos(\omega t - \pi/4)$
C. $\frac{1}{2}\cos(\omega t + \pi/4)$
D. $\frac{1}{2}\cos(\omega t - \pi/4)$

C.
$$\frac{1}{2}\cos(\omega t + \pi/4)$$

D.
$$\frac{1}{2}\cos(\omega t - \pi/4)$$

E. Something else

AC voltage V and current I vs time t are as shown:

The graph shows that..

- A. I leads V (I peaks before V peaks)
- B. I lags V (I peaks after V peaks)
- C. Neither

Suppose you have a circuit driven by a voltage:

$$V(t) = V_0 \cos(\omega t)$$

You observe the resulting current is:

$$I(t) = I_0 \cos(\omega t - \pi/4)$$

Would you say the current is

A. leading

B. lagging

the voltage by 45 degrees?

Consider an RC circuit attached to a sinusoidally driven voltage source. If at t=0 we turn on the source, $I(t=0)=\frac{V_0}{R}$. Then the current follows this solution,

$$I(t) = \frac{V_0}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} \cos(\omega t + \phi) - \left(\frac{V_0}{R} - \frac{V_0 \cos \phi}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}\right)$$

What happens to the long term current as $\omega \to 0$?

A. goes to zero

B. goes to
$$\frac{V_0}{R}$$

C. goes to infinity

D. Something else

Consider an RC circuit attached to a sinusoidally driven voltage source. If at t=0 we turn on the source, $I(t=0)=\frac{V_0}{R}$. Then the current follows this solution,

$$I(t) = \frac{V_0}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} \cos(\omega t + \phi) - \left(\frac{V_0}{R} - \frac{V_0 \cos \phi}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}\right)$$

What happens to the long term current as $\omega \to \infty$?

A. goes to zero

B. goes to
$$\frac{V_0}{R}$$

C. goes to infinity

D. Something else

Two LR circuits driven by an AC power supply are shown below.

Which circuit is a low pass filter?

- A. The left circuit
- B. The right circuit
- C. Both circuits
- D. Neither circuit

Two RC circuits driven by an AC power supply are shown below.

Which circuit is a high pass filter?

- A. The left circuit
- B. The right circuit
- C. Both circuits
- D. Neither circuit