Introdução à Computação Visual - DCC - UFMG

Introdução à Computação Visual - Relatório de Entrega - Trabalho Prático 2

Gustavo Chaves Ferreira - 2022043329 Júlio Guerra Domingues - 2022431280

Introdução

O seguinte relatório descreve a implementação de duas abordagens para o reconhecimento de caracteres presentes em CAPTCHAs, sistemas amplamente adotados para se diferenciar interações humanas de acessos automatizados em aplicações Web. A primeira delas combina descritores obtidos pelo método HOG (Histogram of Oriented Gradients) com o classificador SVC (Support Vector Classification). Já a segunda é elaborada em torno de uma CNN (Convolutional Neural Network), cuja arquitetura tem sido utilizada amplamente ao longo da última década para o reconhecimento bem sucedido de imagens. Serão discutidos os principais métodos implementados no código fonte, assim como os resultados de testes para o reconhecimento de CAPTCHAs compostos por 6 caracteres cada.

O código fonte da implementação de ambos os classificadores pode ser encontrado no repositório GitHub: https://github.com/julioqdominques/icv-ufmq.qit

Pré-processamento

Após uma análise inicial dos dados disponibilizados, foram encontrados alguns labels de tamanho diferente de 6 ou contendo o símbolo '?'. Como todos os CAPTCHAs são de comprimento 6 e possuem somente caracteres alfanuméricos, tais instâncias foram filtradas e não aparecem no desenvolvimento dos modelos. Ademais, todas as imagens foram convertidas para possuírem um único canal (ou seja, todos os pixels são descritos apenas por um tom de cinza).

Implementação do classificador baseado em HOG + SVC

No arquivo intitulado 'hog_svc_main.py', pode-se encontrar as funções responsáveis pelo extrator HOG. Aqui, cada uma das imagens fornecidas contendo um CAPTCHA de 6 caracteres é dividida em 6 partes arbitrárias no eixo horizontal pelo método 'split_images', que as armazena em diretórios separados dos originais. Essas imagens serão usadas para treino, validação e teste, visto que representam os caracteres de forma (quase) individual. Pode-se empregar tal divisão porque a disposição dos caracteres em toda a base de dados é praticamente uniforme. Ademais, 'read_and_strip_chars_from_files' lê cada uma das labels ground-truth e as divide em 6 caracteres, concatenando-os em um vetor final (para que as labels estejam coerentes com as novas imagens cortadas).

A função 'compute_gradients_magnitude_and_orientation' itera por todos os pixel de uma imagem recebida como parâmetro, calculando os gradientes nas direções x e y de cada um deles, e por fim obtendo a magnitude e o ângulo de cada um deles através das fórmulas vistas no slides de aula. O método 'compute_gradients_histograms' recebe duas matrizes contendo as magnitudes e os ângulos calculados anteriormente, e fica responsável por gerar todos os 7*15*4 histogramas de 9 bins de uma imagem 64x128 (representada pelas duas matrizes citadas). Somamos nos bins correspondentes aos ângulos do gradiente de cada pixel valores proporcionais às magnitudes correspondentes. Já a função 'compute_image_feature_vector' é a encarregada de gerar o vetor de características final da imagem. Para cada um dos 7*15 blocos de 2x2 células (cada célula contendo dimensões de 8x8 pixels), ela concatena os 4 histogramas desse bloco na resposta final. Como deslizamos os blocos com sobreposição de 2 células 2x2 tanto na horizontal quanto na vertical, ao fim temos um vetor de dimensão 7*15*4*9 = 3780. A chamada 'compute_hog_features' apenas agrega em sequência as três funções anteriores para gerar o feature vector de cada uma das imagens.

Gerados os vetores de características para cada uma das imagens 6*10000 imagens fornecidas, utilizamos o conjunto imagens + labels de treino para criar um classificador do tipo Support Vector Classification, utilizando os dados de validação para se determinar o melhor conjunto de hiperparâmetros 'C' e 'kernel' para o modelo. Por fim, salvamos o melhor modelo encontrado em um arquivo '.pkl' para fácil reuso posteriormente.

Implementação do classificador baseado em CNN

A primeira abordagem com uma CNN foi projetada para predizer diretamente o texto completo de cada CAPTCHA a partir da imagem bruta. O modelo recebe como entrada imagens em escala de cinza de tamanho 128x64 pixels e as processa por meio de uma série de camadas convolucionais compartilhadas. Essas camadas extraem características da imagem usando filtros 3x3, ativação ReLU e

jan/2025 1

Relatório TP2 - ICV 2024-2

max-pooling para redução progressiva de dimensionalidade, culminando em uma camada *flatten*. Cada caractere do CAPTCHA é então predito por um dos seis branches independentes conectados à camada compartilhada. Cada branch consiste em uma camada totalmente conectada (Dense) com 128 neurônios e ativação ReLU, seguida de uma camada de saída com 36 neurônios e ativação softmax, correspondente às classes alfanuméricas (A-Z, 0-9). Essa abordagem, embora conceitualmente elegante, enfrenta o desafio de lidar com um espaço de saída altamente complexo, resultando em uma taxa de acurácia mais limitada para predições completas.

A segunda abordagem foi desenvolvida para superar as limitações do modelo inicial, propondo uma arquitetura de CNN focada na predição de caracteres individualmente. Nesse caso, cada CAPTCHA é segmentado em 6 partes, correspondendo a caracteres isolados, e o modelo recebe imagens de tamanho 32x32 pixels como entrada. A rede é composta por três camadas convolucionais sequenciais com 32, 64 e 128 filtros, respectivamente, todas utilizando filtros 3x3, ativação ReLU e max-pooling para extração e compressão das características. A saída da última camada convolucional é achatada e conectada a uma camada totalmente conectada de 128 neurônios com ativação ReLU, seguida de uma camada de saída com 36 neurônios e ativação softmax para a classificação do caractere. Essa abordagem simplifica o problema, reduzindo significativamente o espaço de saída e possibilitando uma maior acurácia, tanto para caracteres individuais guanto para CAPTCHAs completos.

Resultados e discussão

No código disponibilizado, é possível gerar, para ambos os modelos, outputs contendo os dados de teste na seguinte forma: a imagem do CAPTCHA de teste original seguido do texto correto em comparação com o texto predito pela abordagem em questão (HOG ou CNN), como visto a seguir:

Previsto: JW4CZF | Verdadeiro: JW4CZF

Previsto: H27LCM | Verdadeiro: H27LCM

HOG + SVC:

Entre as vantagens do uso dessa abordagem, pode-se destacar o fato de que o vetor de características para uma dada imagem é sempre fixo, ao contrário das CNN que estão atreladas à aleatoriedade na etapa de treinamento e otimização. Ademais, tais vetores são mais explicáveis e interpretáveis do que os resultados de redes neurais, visto que capturam padrões nas orientações das bordas da imagem de entrada. Porém, o HOG não possui tanto potencial por si só de extrair padrões muito complexos em datasets, e fica limitado à utilização em aplicações onde existe baixa variância intraclasse ou onde existe uma fase de pré-processamentos dos dados para padronização dos mesmos. Os resultados de desempenho no conjunto de testes disponibilizado é o abaixo. Nota-se que em quase todos os casos, o classificador acerta ao menos quatro dos caracteres. A performance apresenta uma queda para o desempenho em cinco e principalmente seis caracteres.

Relatório TP2 - ICV 2024-2

Rede neural convolucional:

Com o emprego das CNN's, é possível obter vantagens como a melhor detecção de padrões complexos (resultando em uma melhor acurácia geral). Entretanto, o modelo resultante é menos interpretável e a chance de se obter overfitting cresce em comparação com o método anterior. Os resultados da avaliação das duas redes descritas anteriormente podem ser visualizados nos gráficos abaixo. Percebe-se a superioridade de tal abordagem na maioria dos casos, com o desempenho sendo próximo dos 80% de acerto para os 6 caracteres em um dos modelos. A rede treinada apenas com as imagens brutas e sem nenhum tratamento apresenta um desempenho um pouco inferior, ainda que apresente uma estrutura interna mais complexa (o que é esperado, visto que o número de combinações possíveis de 6 caracteres é muito maior do que de dígitos individuais, logo, o aprendizado é dificultado consideravelmente).

Conclusão

Os resultados obtidos demonstram as vantagens e limitações de cada abordagem. O método baseado em HOG + SVC se destacou pela explicabilidade e estabilidade, uma vez que utiliza vetores de características fixos e interpretáveis. Contudo, essa abordagem é limitada pela simplicidade dos padrões que o HOG consegue capturar, resultando em uma performance inferior para problemas mais complexos. Por outro lado, as redes neurais convolucionais mostraram-se mais eficazes no reconhecimento de CAPTCHAs, aproveitando-se de sua capacidade de aprender padrões complexos diretamente das imagens. A abordagem segmentada, que utiliza uma CNN para predizer cada caractere individualmente, apresentou o melhor desempenho geral, atingindo uma acurácia superior tanto para caracteres isolados quanto para CAPTCHAs completos.

Um aspecto essencial para o sucesso das abordagens foi o uso do conhecimento de domínio. No caso dos CAPTCHAs, saber que as letras são dispostas uniformemente e que a segmentação prévia era possível permitiu simplificar o problema e obter ganhos significativos de desempenho. Essa simplificação viabilizou um aprendizado mais eficiente pelas redes neurais, reduzindo a complexidade do espaço de saída e explorando características específicas de cada caractere. Assim, concluímos que a integração entre técnicas avançadas de aprendizado de máquina e uma análise criteriosa do problema é fundamental para alcançar soluções mais robustas e eficientes em tarefas de reconhecimento visual.