Approximate Near Neighbors for General Symmetric Norms

Alexandr Andoni (Columbia University)

Huy Nguyen (Northeastern)

Aleksandar Nikolov (University of Toronto)

Ilya Razenshteyn (MIT CSAIL)

Erik Waingarten (Columbia University)

Motivation

An example

Approximate Near Neighbors (ANN)

- Dataset: n points in a metric space X
 (denoted by P)
- Approximation c > 1, distance threshold r > 0
- Query: $q \in X$ such that there is $p^* \in P$ with $d_X(q, p^*) \le r$
- Output: $\tilde{p} \in P$ such that $d_X(q, \tilde{p}) \leq cr$
- Parameters: space, query time

FAQ

• Q: why approximation?

Focus of this talk

- A: the exact case is hard for the high-dimensional problem.
- Q: what does "high-dimensional" mean?
- A: dimension $d = \omega(\log n)$.
- Q: how is the dimension defined?
- A: a metric is typically defined on \mathbb{R}^d ; alternatively, doubling dimension, etc.

This talk: a metric on R^d , where $\omega(\log n) \le d \le n^{o(1)}$

Should depend on d as $d^{O(1)}$

Which distance function to use?

- A distance function
 - Must capture semantic similarity well
 - Must be algorithmically tractable
- E.g.: Hamming, Euclidean, Earth-mover distance...

For theory: what's the relevant **property** of the metric

For practice: universal algorithm for ANN

- Non-solution: ANN for small doubling dimension
 - [Clarkson'99, Krauthgamer-Lee'04, Beygelzimer-Kakade-Langford'06]
 - $\sim 2^k$ for doubling dimension k

Metric class: High-dimensional norms

- Important case: X is a normed space
 - $d_X(x_1, x_2) = ||x_1 x_2||$, where $||\cdot||: R^d \to R_+$ is such that
 - ||x|| = 0 iff x = 0
 - $\|\alpha x\| = |\alpha| \|x\|$
 - $||x_1 + x_2|| \le ||x_1|| + ||x_2||$
- Lots of tools (functional analysis)
 - E.g., can characterizate norms that allow efficient **sketching** (succinct summarization), which **implies** efficient ANN [A, Krauthgamer, Razenshteyn 2015]
- ANN with approximation $O(\sqrt{d})$ is easy

Unit balls of norms

- A norm given by its unit ball $B_X = \{x \in \mathbb{R}^d | ||x|| \le 1\}$
- Claim: B_X is a symmetric convex body
- Claim: any such body can be a unit ball

•
$$||x||_K = \inf\left\{t > 0 \middle| \frac{x}{t} \in K\right\}$$

What property of a convex body makes ANN wrt it tractable?

• John's theorem: any symmetric convex body is close to an ellipsoid (gives approximation \sqrt{d})

 $||x|| \approx 2$

 B_X

Our result

Invariant under permutation of coordinates and changing signs

- If X is a **symmetric** normed space, and $d=n^{o(1)}$, can solve ANN with:
 - Approximation $O(1) (\log \log n)^{O(1)}$
 - Space $n^{1+o(1)}$
 - Query time $n^{o(1)}$

Examples

- Usual ℓ_p norms $||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$
- Top-k norm: sum of k largest absolute values of coordinates
 - Interpolates between ℓ_1 and ℓ_∞
- Orlicz norms: a unit ball is

$$\{x \in R^d \mid \sum_i G(|x_i|) \le 1\},\$$

Where $G(\cdot)$ is convex and non-negative, and G(0) = 0.

- Gives ℓ_p norms for $G(t) = t^p$
- k-support norm, box- Θ norm, K-functional (arise in probability and machine learning)

Related work: symmetric norms

- [Blasiok, Braverman, Chestnut, Krauthgamer, Yang 2017]: classification of symmetric norms according to their streaming complexity
 - Depends on how well the norm concentrates on the Euclidean ball
 - Unlike streaming, ANN is always tractable

Prior work: ANN

- Classically, focus on ℓ_1 (Manhattan) and ℓ_2 (Euclidean) norms captures many applications!
- Allow efficient algorithms based on hashing
 - Locality-Sensitive Hashing [Indyk, Motwani 1998] [Andoni, Indyk 2006]
 - Data-dependent LSH
 [A, Indyk, Nguyen, Razenshteyn 2014] [A, Razenshteyn 2015]
 - tight trade-off between space and query time [A, Laarhoven, Razensheyn, Waingarten 2017]
- Other norms: few results for ℓ_{∞} , general ℓ_{p} (will see later)

ANN for ℓ_{∞}

- ANN for d-dimensional ℓ_{∞} [Indyk 1998]:
 - Space $d \cdot n^{1+\varepsilon}$
 - Query time $O(d \log n)$
 - Approximation $O_{\epsilon}(\log \log d)$

• Idea: recursively build a decision tree

O(log log d) approximation is tight for decision trees!
 [A, Croitoru, Patrascu 2008] [Kapralov, Panigrahy 2012]

Metric embeddings

- A map $f: X \to Y$ is an **embedding with distortion** C, if for $a, b \in X$: $d_Y(f(a), f(b))/C \le d_X(a, b) \le d_Y(f(a), f(b))$
- Reductions for geometric problems

Embedding norms into ℓ_{∞}

- For a normed space X and $\varepsilon > 0$ there exists $f: X \to \ell_{\infty}^{d'}$ with $||f(x)||_{\infty} \in (1 \pm \varepsilon) \cdot ||x||_{X}$
- Idea: $||x||_X \approx \max_{y \in N} |\langle x, y \rangle|$
 - Approximate the unit ball with a polytope

Can we use this embedding + ANN for ℓ_{∞} to get ANN for any norm? No, since $d'=2^{\Omega(d)}$, even for ℓ_{2} .

The refined strategy

What	Where	Dimension

Bypass non-embeddability into low-dimensional ℓ_{∞} by allowing a more complicated host space, which is still tractable

ℓ_p -direct product of metric spaces

- For metrics $M_1, M_2, ..., M_t$, define $\bigoplus_{l_p} M_i$ as follows:
 - The ground set is $M_1 \times M_2 \times \cdots \times M_t$
 - The distance is:

$$d((x_1, x_2, ..., x_t), (y_1, y_2, ..., y_t)) = ||(d(x_1, y_1), d(x_2, y_2), ..., d(x_t, y_t)||_p$$

- Example: $\bigoplus_{\ell_n} \ell_q$ (cascaded norms)
- Our host space: $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_1} X_{ij}$, where X_{ij} is top- k_{ij} norm on R^d
 - Outer dimension is of size $d^{O(1)}$
 - Inner dimension is of size d

Our algorithm

- 1) Embed any symmetric norm into $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_{1}} X_{ij}$
- 2) Solve ANN for $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_1} X_{ij}$

- Prior work on ANN via product spaces:
 - Frechet distance [Indyk 2002]
 - Edit distance [Indyk 2004]
 - Ulam distance [A, Indyk, Krauthgamer 2009]

ANN for $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_1} X_{ij}$

• [Indyk 2002], [A 2009]:

Metrics M_1 , M_2 , ..., M_t admit data structures for c-ANN

Direct-product $\bigoplus_{\ell_p} M_i$ admits $O(c \cdot \log \log n)$ -ANN with almost the same time and space

- A powerful generalization of ANN for l_{∞} [Indyk 1998]
- Eg, implies ANN for general l_p
- Enough to solve ANN for X_{ij} (top-k norms)!

ANN for top-k norms

- ullet As hard as both ℓ_1 and ℓ_∞
- Idea: embed a top-k norm into $\ell_{\infty}^{d'}$ and use [Indyk 1998]
 - approximation: distortion $\times O(\log \log d')$
- Hurdle: ℓ_1 requires $2^{\Omega(d)}$ -dimensional ℓ_{∞}
- Solution: use randomized embeddings

Embedding top-k norm into ℓ_{∞}

- First case: k = d (that is, ℓ_1)
- Embedding (uses min-stability of exponential distribution):
 - Sample i.i.d. $u_1, u_2, ..., u_d \sim \text{Exp}(1)$
 - Embed $f: (x_1, x_2, \dots, x_d) \mapsto \left(\frac{x_1}{u_1}, \frac{x_2}{u_2}, \dots, \frac{x_d}{u_d}\right)$
- $\Pr[\|f(x)\|_{\infty} \le t]$
- Constant distortion
- General k: sample $u_i \sim \max\left(\frac{1}{k}, \operatorname{Exp}(1)\right)$
- Similarly, Orlicz norms: $u_i \sim \mathcal{D}$

Where are we?

1) Embed any symmetric norm into $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_{1}} X_{ij}$ of polynomial dimension where X_{ij} is R^{d} equipped with a top- k_{ij} norm

 \checkmark 2) Solve ANN for $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_{1}} X_{ij}$

Embedding any norm into ℓ_{∞}

- Thm: for a normed space X and $\varepsilon>0$ there exists $f: X \to \ell_{\infty}^{d'}$ with $||f(x)||_{\infty} \in (1 \pm \varepsilon) \cdot ||x||_{X}$
- Idea: $||x||_X \approx \max_{y \in N} |\langle x, y \rangle|$
- N is an ε -net of the unit ball B_{X^*} of the dual norm
 - $\|y\|_{X^*} = \sup_{\|x\|_X \le 1} \langle x, y \rangle$ Can set $d' = (1/\varepsilon)^{O(d)}$
- Then: $||x||_X = \sup_{y \in R_{xx}} \langle x, y \rangle \approx \max_{y \in N} \langle x, y \rangle$ $y \in B_{X^*}$

Better embedding for symmetric norm

- Idea: find a small net up to a symmetry
- Notation: $y_{\pi,\sigma}$ is y with permuted and flipped coordinates (acc to π and σ)
- Suppose that N is such that $\{y_{\pi,\sigma} | y \in \overline{N}, \pi, \sigma\}$ is an ε -net of B_{X^*}
 - \overline{N} is an ε -net of $B_{X^*} \cap \{y_1 \ge y_2 \ge \cdots \ge y_d \ge 0\}$
- Then, $\|x\|_X \approx \sup_{y \in \overline{N}, \pi, \sigma} \langle x, y_{\pi, \sigma} \rangle = \sup_{y \in \overline{N}} \sup_{\pi, \sigma} \langle x, y_{\pi, \sigma} \rangle$
- Claim: $\sup_{\pi,\sigma} \langle x, y_{\pi,\sigma} \rangle$ is a weighted sum of top-k norms of x
 - Hence, an embedding into $\bigoplus_{\ell_\infty} \bigoplus_{\ell_1} \mathrm{top} k_{ij}$

New goal: find a small ε -net of $B_{X^*} \cap \{y_1 \geq y_2 \geq \cdots \geq y_d \geq 0\}$

Illustration

Small nets

New goal: find a small ε -net of $B_{X^*} \cap \{y_1 \geq y_2 \geq \cdots \geq y_d \geq 0\}$

- Lemma: can get of size $d^{O_{\mathcal{E}}(1)}$
- Will see a weaker bound of $d^{O_{\mathcal{E}}(\log d)}$, still non-trivial
 - Volume bound fails
 - Instead, a simple explicit construction

Small nets: continued

- Approximate $y \in B_{X^*}$ with $y_1 \ge y_2 \ge \cdots \ge y_d \ge 0$
- Zero small y_i 's
- Round coordinates to a power of $(1 + \varepsilon)$
- $O_{\varepsilon}(\log d)$ scales
- Only cardinality of each scale matters
- $d^{O_{\varepsilon}(\log d)}$ vectors total
- Can be improved to $d^{O_{\mathcal{E}}(1)}$ by two more tricks

Summary

1) Embed any symmetric norm into $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_{1}} X_{ij}$, ($d^{O(1)}$ -dimensional product space of top-k norms)

- 2) Solve ANN for $\bigoplus_{\ell_{\infty}} \bigoplus_{\ell_1} X_{ij}$
 - reduce the ANN problem on the product space to ANN for the top-k norm
 - use truncated exponential random variables to embed the top-k norm into ℓ_∞ and use a known ANN data structure there

An open question

- Improve approximation from $(\log \log n)^{O(1)}$ to $O(\log \log d)$
 - Beyond $\log \log d$ is hard due to ℓ_{∞}
 - Need to bypass ANN for product spaces
 - Randomized embedding into low-dimensional ℓ_{∞} for any symmetric norm?

General norms?

- Approximation $O(\sqrt{d})$ via embedding into ℓ_2
- Symmetric norms: by embedding into a universal $d^{\mathcal{O}(1)}$ -dimensional space

Is there an efficient ANN algorithm for general high-dimensional norms with approximation $d^{o(1)}$?

- Stronger hardness results?
- Implied by: there is a family of spectral expanders that embed with distortion O(1) into **some** $\log^{O(1)} n$ -dimensional norm, where n is the number of nodes

[Naor 2017]