

UNIVERSITY OF GHANA

(All rights reserved)

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits)
CHAPTER 3: Logarithmic and Exponential Functions

At the end of the chapter, learners are expected to be able to determine:

- 1. Define the natural logarithmic and exponential functions.
- 2. Define the general logarithmic and exponential functions.
- 3. Apply the properties of logarithmic and exponential functions in solving problems.
- 4. Find derivatives and anti-derivatives of logarithmic and exponential functions.
- 5. Perform logarithmic differentiation.
- 6. Compare the order of magnitude of two functions.

LESSON HIGHLIGHTS

Definition

The natural logarithmic function, denoted by ln is defined by

$$\ln x = \int_{1}^{x} \frac{1}{t} dt \qquad \forall x > 0$$

Derivative of $\ln x$

- $\frac{d}{dx}[\ln x] = \frac{1}{x}$ for x > 0
- $\frac{d}{dx}[\ln u] = \frac{1}{u}\frac{du}{dx}$, where u is a differentiable function of x.

Laws of Logarithms

Let x and y be positive numbers and let r be a rational number. Then we have the following properties

- 1. $\ln 1 = 0$
- $2. \ln xy = \ln x + \ln y$
- $3. \ln\left(\frac{x}{y}\right) = \ln x \ln y$

LFK Page 1 of 5

4.
$$\ln x^r = r \ln x$$

The Graph of the Natural Logarithmic Function

Let $f(x) = \ln x$, then we have the following;

- 1. Domain is $(0, \infty)$ by definition
- 2. f is continuous on $(0, \infty)$ since f if differentiable on $(0, \infty)$
- 3. f is increasing on $(0, \infty)$ since $f'(x) = \frac{1}{x} > 0, \forall x > 0$
- 4. The graph of f is concave down on $(0,\infty)$ since $f''(x) = \frac{1}{x^2} < 0, \forall x > 0$
- 5. As $x \to \infty$, $\ln x \to \infty$
- 6. As $x \to 0^+$, $\ln x \to -\infty$

Proceedure for Logarithmic Differentiation

Suppose we have to find $\frac{dy}{dx}$, given y = f(x),

- 1. Take the logarithm of both sides of the equation and simplify using the laws of logarithms.
- 2. Differentiate implicitly with respect to x.
- 3. Solve the equation for $\frac{dy}{dx}$.
- 4. Substitute for y.

Definition

The number e is the number such that

$$\ln e = \int_1^e \frac{1}{t} dt = 1$$

Definition

If x is any real number, then $e^x = y \Leftrightarrow \ln y = x$.

Note

- $\ln e^x = x$ $\forall x \in (-\infty, \infty)$
- $e^{\ln x} = x$ $\forall x \in (0, \infty)$

Graph of the Natural Exponential Function

Let $f(x) = e^x$.

- 1. The doman of f is $(-\infty, \infty)$.
- 2. The range of f if $(0, \infty)$.
- 3. f is continuous amd increasing on $(-\infty, \infty)$.

4. The graph of f is concave upward on $(-\infty, \infty)$.

5.
$$\lim_{x \to -\infty} e^x = 0$$

6.
$$\lim_{x\to\infty} e^x = \infty$$

Differentiation and Integration of the Natural Exponential Function

Let u be a differentiable function of x. then

•
$$\frac{d}{dx}[e^x] = e^x$$

$$\bullet \ \frac{d}{dx}[e^u] = e^u \frac{du}{dx}$$

•
$$\int e^x dx = e^x + c$$
, where c is a constant

The General Exponential Function

Let a be a positive real number with $a \neq 1$. The exponential function with base a is the function f defined by $f(x) = a^x$, $\forall x \in \mathbb{R}$. Note that $a^x = e^{x \ln a}$.

Laws of Exponents

Let a and b be positive numbers. If x and y are real numbers, then

$$\bullet \ a^x a^y = a^{x+y}$$

$$\bullet \ (a^x)^y = a^{xy}$$

$$\bullet (ab)^x = a^x b^x$$

$$\bullet \ \frac{a^x}{a^y} = a^{x-y}$$

$$\bullet \ \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

Derivatives of a^x and a^u

Let a be a positive number with $a \neq 1$. If u is a differentiable function of x,

•
$$\frac{d}{dx}[a^x] = (\ln a)a^x$$

•
$$\frac{d}{dx}[a^u] = (\ln a)a^u \frac{du}{dx}$$

Graph of $y = a^x$

• If
$$a > 1$$
, $y = a^x$ is an increasing function $\forall x \in (-\infty, \infty)$.

• If
$$0 < a < 1$$
, $y = a^x$ is a decreasing function $\forall x \in (-\infty, \infty)$.

Integrating a^x

$$\int a^x dx = \frac{a^x}{\ln a} + c, \qquad \text{where } a > 0, a \neq 1 \text{ and } c \text{ is a constant}$$

Logarithmic functions with base a

- If a > 0 and $a \ne 1$, then $\forall x \in (0, \infty)$, the logarithmic function with base a is defined by $y = \log_a x \Leftrightarrow x = a^y$
- $\log_a x = \frac{\ln x}{\ln a}$, for a > 0 and $a \neq 1$
- $\frac{d}{dx}\log_a|x| = \frac{1}{x\ln a}$ where $x \neq 0$
- $\frac{d}{dx}\log_a|u| = \frac{1}{u\ln a}\frac{du}{dx}$, where u is a differentiable function of x and $u \neq 0$

Logarithms and Exponents as Limits

- $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)$
- $\ln a = \lim_{x \to 0} \frac{a^x 1}{x}$
- $e^x = \lim_{h \to 0} (1 + xh)^{\frac{1}{h}}$

Order of Magnitude

If f(x) is a function of the k-th order of magnitude, then $\lim_{x\to\infty}\frac{f(x)}{x^k}=L$, where $L\neq 0$ and L is a constant.

Relative rates of Growth and Relative rates of Decay

Let $f, g : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$ and $\lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = \infty$

- 1. If $\lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = \infty$, then f appproaches ∞ on a higher order of magnitude than g.
- 2. If $\lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = 0$, then f appproaches ∞ on a lower order of magnitude than g.
- 3. If $\lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = c$, $c \in \mathbb{R}$, with $c \neq 0$, then f and g appproach ∞ on the same order of magnitude.

Let $f, g : \mathbb{R} \to \mathbb{R}$, $a \in \mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$ and $\lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = 0$

- 1. If $\lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = 0$, then f appproaches 0 on a higher order of magnitude than g.
- 2. If $\lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = \infty$, then f appproaches 0 on a lower order of magnitude than g.
- 3. If $\lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| = c$, $c \in \mathbb{R}$, with $c \neq 0$, then f and g appproach 0 on the same order of magnitude.

Theorem

As x approaches ∞ , exponential, power and logarithmic functions approach ∞ . The following is the order of magnitude with which they approach ∞ ;

- 1. Exponential functions
- 2. Power functions

LFK Page 4 of 5

3. Logarithmic functions

Added on, we have the following:

- 1. If a, b > 0, $a \neq 1$, $b \neq 1$ and a > b, then a^x approaches ∞ faster that b^x as $x \to \infty$
- 2. If $n, m \in \mathbb{N}$ and n > m, then $x^n \to \infty$ faster than x^m as $x \to \infty$
- 3. If a, b > 0, $a \neq 1$, $b \neq 1$, a > b, then $\log_a x$ approaches ∞ at the same rate as $\log_b x$.

Definition

Suppose f can be written as a linear combination of functions $\{f_1, f_2, \dots, f_n\}$ and $\lim_{x\to a} |f(x)| = \infty$ where $a \in \mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$, the dominant term of f is the function f_i which approaches ∞ on the highest order of magnitude. This is denoted by \hat{f} .

Theorem

Let f(x) and g(x) be functions such that $\lim_{x\to a} |f(x)| = \lim_{x\to a} |g(x)| = \infty$, where $a \in \mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$. If \hat{f} and \hat{g} are the dominant terms of f and g respectively, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\hat{f}(x)}{\hat{g}(x)}$$

Remark

If f grow faster than g, then the reciprocal of f would decay faster than the reciprocal of g.

IMPORTANT THINGS TO NOTE

- Spend time trying the exercises on your own. This would give you an idea of what you truly understand and what you need to work on.
- Revise your notes before class and make an effort to read ahead of each class.
- Seek help before it is too late.

LFK Page 5 of 5