$\operatorname{scRNA-Seq}$ RTM WT vs KO - Signature scoring

Domien Vanneste

$2024 \hbox{-} 12 \hbox{-} 16 \ 20 \hbox{:} 51 \hbox{:} 15 \ + 0100$

Contents

Introduction	2
Load packages	2
Load Seurat object	2
Signature scoring	3
Macrophage signature score	3
RTM subset specific signature score	11
Monocyte signature score	22
Embrionically dervived mac and Monocyte dervived mac signature score	30
MafB target gene signature score	37
Csf1r expression	45

Introduction

To objectively examine the effects of MafB deficiency on global and subset-specific mac identity, we used the global mac signature score generated above and created RTM subset-specific scores based on the DEGs of each RTM subset compared to other RTM in our scRNA-seq data. Interestingly, global mac signature scores were all significantly lower in Mafb-deficient RTMs as compared to their wild-type counterparts, except for MHC-II+ CM. Moreover, we found that each RTM subsets from Lyz2CreMafbfl/fl mice, except for SPM and IM, exhibited a significantly lower score for RTM-subset specific signatures as compared to their wild-type controls. Fourth, we mapped the monocyte signature and found that all Mafb-deficient RTM, except Ly6C+ CM, exhibited a significantly higher monocyte score as compared to wild-type RTM. These findings collectively support a profound disruption in global mac and RTM subset-specific identities in the absence of MafB in vivo, as well as a monocyte signature suggestive of immaturity and incomplete differentiation.

We identified MafB target genes by CUT&RUN on BMDM and found that the expression of MafB target genes was reduced in all RTM subsets from Lyz2CreMafbfl/fl mice. One binding site of MafB was situated in the Csf1r FIRE enhancer. Csf1r expression was reduced in SPM, KC and IM from Lyz2CreMafbfl/fl mice.

Load packages

```
suppressMessages({
    library(Seurat)
    library(SeuratObject)
    library(limma)
    library(ggplot2)
    library(RColorBrewer)
    library(dplyr)
    library(readx1)
})
```

Load Seurat object

Signature scoring

Macrophage signature score

```
MacvscMo <- read.csv("Mac_sign.csv", header = T)

Mac.genes <- list(MacvscMo$Gene_Symbol)

sc <- AddModuleScore(sc, features = Mac.genes, name = "Scoring_Macro")

## Warning: The following features are not present in the object: Gm10134, Rny3,
## Snord49b, Pvt1, Rny1, Snord61, A930039A15Rik, Vaultrc5, Rnu3b1, Snord22,
## 9830001H06Rik, Rnu12, Snord47, F630111L10Rik, Epb4111, Snora16a, Snord15b,
## Snord16a, AW112010, B930036N10Rik, L0C100504914, Entpd4, Lphn2, Firre,
## Snord32a, G530011006Rik, Mir29c, Snord118, Snord35b, Snord35a, Gm6762, Snord3a,
## 39692, Snord116, Snord55, Snord73b, 3222401L13Rik, Vstm2a, Snord104, Gas5,
## Lipo1, Atosa, Stxbp3a, Gm10790, Malat1, Gm12191, C1rb, Snora7a, Ccr111, Phxr4,
## Snord49a, Lipf, Mir99ahg, Gm9909, Gm2897, Ppp4r3c1, C4a, not searching for
## symbol synonyms</pre>
VlnPlot(sc, features = "Scoring_Macro1", cols = pal, pt.size = 0)
```


\mathbf{SPM}

```
pal_SPM <- c("#6A3D9A", "#CAB2D6")

VlnPlot(sc, features = "Scoring_Macro1", cols = pal_SPM, pt.size = 0,
   idents = c("SPM WT", "SPM KO")) + ggtitle("SPM") + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.2 -0.1 -0.0 -

```
metadata <- sc@meta.data
SPM_WT <- metadata[metadata$Condition == "SPM WT", ]
SPM_KO <- metadata[metadata$Condition == "SPM KO", ]

wilcox.test(SPM_WT$Scoring_Macro1, SPM_KO$Scoring_Macro1) #2.154e-07

##
## Wilcoxon rank sum test with continuity correction
##
## data: SPM_WT$Scoring_Macro1 and SPM_KO$Scoring_Macro1
## W = 18790, p-value = 2.154e-07
## alternative hypothesis: true location shift is not equal to 0</pre>
```

LPM

```
pal_LPM <- c("#e31a1c", "#fb9a99")

VlnPlot(sc, features = "Scoring_Macro1", cols = pal_LPM, pt.size = 0,
    idents = c("LPM WT", "LPM KO")) + ggtitle("LPM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.2 -0.1 -0.0 -

```
LPM_WT <- metadata[metadata$Condition == "LPM WT", ]
LPM_KO <- metadata[metadata$Condition == "LPM KO", ]
wilcox.test(LPM_WT$Scoring_Macro1, LPM_KO$Scoring_Macro1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: LPM_WT$Scoring_Macro1 and LPM_KO$Scoring_Macro1
## W = 2813333, p-value < 2.2e-16</pre>
```

alternative hypothesis: true location shift is not equal to 0

KC

```
pal_KC <- c("#33a02c", "#b2df8a")

VlnPlot(sc, features = "Scoring_Macro1", cols = pal_KC, pt.size = 0,
   idents = c("KC WT", "KC KO")) + ggtitle("KC") + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.3 -0.2 -0.1 -

```
KC_WT <- metadata[metadata$Condition == "KC WT", ]
KC_KO <- metadata[metadata$Condition == "KC KO", ]

wilcox.test(KC_WT$Scoring_Macro1, KC_KO$Scoring_Macro1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: KC_WT$Scoring_Macro1 and KC_KO$Scoring_Macro1
## W = 422529, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

IM

```
pal_IM <- c("#1f78b4", "#a6cee3")

VlnPlot(sc, features = "Scoring_Macro1", cols = pal_IM, pt.size = 0,
    idents = c("IM WT", "IM KO")) + ggtitle("IM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.2 -0.1 -0.0 -

```
IM_WT <- metadata[metadata$Condition == "IM WT", ]
IM_KO <- metadata[metadata$Condition == "IM KO", ]
wilcox.test(IM_WT$Scoring_Macro1, IM_KO$Scoring_Macro1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: IM_WT$Scoring_Macro1 and IM_KO$Scoring_Macro1
## W = 314330, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Ly6C+CM

```
pal_Ly6C <- c("#FF7F00", "#FDBF6F")

VlnPlot(sc, features = "Scoring_Macro1", cols = pal_Ly6C, pt.size = 0,
    idents = c("Ly6C+ CM WT", "Ly6C+ CM KO")) + ggtitle("Ly6C+ CM") +
    theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank())</pre>
```

Ly6C+ CM

MHC-II+ CM


```
MHC2_WT <- metadata[metadata$Condition == "MHC2+ CM WT", ]
MHC2_KO <- metadata[metadata$Condition == "MHC2+ CM KO", ]
wilcox.test(MHC2_WT$Scoring_Macro1, MHC2_KO$Scoring_Macro1) #0.1286
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: MHC2_WT$Scoring_Macro1 and MHC2_KO$Scoring_Macro1
## W = 155320, p-value = 0.1286
## alternative hypothesis: true location shift is not equal to 0
```

MG

```
pal_MG <- c("#87421F", "#CDAA7D")

VlnPlot(sc, features = "Scoring_Macro1", cols = pal_MG, pt.size = 0,
   idents = c("MG WT", "MG KO")) + ggtitle("MG") + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.3 -0.2 -0.1 -

```
MG_WT <- metadata[metadata$Condition == "MG WT", ]
MG_KO <- metadata[metadata$Condition == "MG KO", ]
wilcox.test(MG_WT$Scoring_Macro1, MG_KO$Scoring_Macro1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: MG_WT$Scoring_Macro1 and MG_KO$Scoring_Macro1
## W = 2359869, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

RTM subset specific signature score

Calculating cluster KC WT

```
## Calculating cluster Ly6C+ CM WT

## Calculating cluster MHC2+ CM WT

## Calculating cluster MG WT

write.csv(markers, file = "markers.csv")

markers <- read.csv("markers.csv", header = T, row.names = 1)</pre>
```

SPM

```
VlnPlot(sc, features = "SPM_sign1", cols = pal, pt.size = 0) +
   theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank()) + ggtitle("")
```



```
VlnPlot(sc, features = "SPM_sign1", cols = pal_SPM, pt.size = 0,
   idents = c("SPM WT", "SPM KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("SPM")
```

1.6 - 1.2 - 0.8 - 0.4 - 1.9 -

```
metadata <- sc@meta.data
SPM_WT <- metadata[metadata$Condition == "SPM WT", ]
SPM_KO <- metadata[metadata$Condition == "SPM KO", ]

wilcox.test(SPM_WT$SPM_sign1, SPM_KO$SPM_sign1) #0.03641

##
## Wilcoxon rank sum test with continuity correction
##
## data: SPM_WT$SPM_sign1 and SPM_KO$SPM_sign1
## W = 12281, p-value = 0.03641
## alternative hypothesis: true location shift is not equal to 0</pre>
```

LPM

```
sc <- AddModuleScore(sc, features = LPM.markers.top100, name = "LPM_sign")</pre>
```

```
VlnPlot(sc, features = "LPM_sign1", cols = pal, pt.size = 0) +
    theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank()) + ggtitle("")
```



```
VlnPlot(sc, features = "LPM_sign1", cols = pal_LPM, pt.size = 0,
   idents = c("LPM WT", "LPM KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("LPM")
```



```
metadata <- sc@meta.data
LPM_WT <- metadata[metadata$Condition == "LPM WT", ]</pre>
```

```
LPM_KO <- metadata[metadata$Condition == "LPM KO", ]
wilcox.test(LPM_WT$LPM_sign1, LPM_KO$LPM_sign1) #< 2.2e-16</pre>
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: LPM_WT$LPM_sign1 and LPM_KO$LPM_sign1
## W = 2301210, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

KC

```
VlnPlot(sc, features = "KC_sign1", cols = pal, pt.size = 0) +
   theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank()) + ggtitle("")
```



```
VlnPlot(sc, features = "KC_sign1", cols = pal_KC, pt.size = 0,
   idents = c("KC WT", "KC KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("KC")
```



```
metadata <- sc@meta.data
KC_WT <- metadata[metadata$Condition == "KC WT", ]
KC_KO <- metadata[metadata$Condition == "KC KO", ]

wilcox.test(KC_WT$KC_sign1, KC_KO$KC_sign1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: KC_WT$KC_sign1 and KC_KO$KC_sign1
## W = 451181, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

IM

```
sc <- AddModuleScore(sc, features = IM.markers.top100, name = "IM_sign")</pre>
```

```
VlnPlot(sc, features = "IM_sign1", cols = pal, pt.size = 0) +
    theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank()) + ggtitle("")
```



```
VlnPlot(sc, features = "IM_sign1", cols = pal_IM, pt.size = 0,
   idents = c("IM WT", "IM KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("IM")
```



```
metadata <- sc@meta.data
IM_WT <- metadata[metadata$Condition == "IM WT", ]</pre>
```

```
IM_KO <- metadata[metadata$Condition == "IM KO", ]
wilcox.test(IM_WT$IM_sign1, IM_KO$IM_sign1) #0.1182</pre>
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: IM_WT$IM_sign1 and IM_KO$IM_sign1
## W = 208587, p-value = 0.1182
## alternative hypothesis: true location shift is not equal to 0
```

Ly6C+CM

```
Ly6C.markers <- filter(markers, cluster == "Ly6C+ CM WT")
Ly6C.markers <- Ly6C.markers[Ly6C.markers$p_val_adj < 0.05 &
    abs(Ly6C.markers$avg_log2FC) > 0.25, ]
Ly6C.markers <- Ly6C.markers[order(Ly6C.markers$avg_log2FC, decreasing = TRUE),
    ]
Ly6C.markers.top100 <- head(Ly6C.markers$gene, 100)
write.table(Ly6C.markers.top100, file = "Ly6C_sign.txt")
Ly6C.markers.top100 <- list(Ly6C.markers.top100)
sc <- AddModuleScore(sc, features = Ly6C.markers.top100, name = "Ly6C_sign")</pre>
```

```
VlnPlot(sc, features = "Ly6C_sign1", cols = pal, pt.size = 0) +
    theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank()) + ggtitle("")
```



```
VlnPlot(sc, features = "Ly6C_sign1", cols = pal_Ly6C, pt.size = 0,
   idents = c("Ly6C+ CM WT", "Ly6C+ CM KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("Ly6C+ CM")
```

1.5 -0.5 -0.0 -

```
metadata <- sc@meta.data
Ly6C_CM_WT <- metadata[metadata$Condition == "Ly6C+ CM WT", ]
Ly6C_CM_KO <- metadata[metadata$Condition == "Ly6C+ CM KO", ]

wilcox.test(Ly6C_CM_WT$Ly6C_sign1, Ly6C_CM_KO$Ly6C_sign1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: Ly6C_CM_WT$Ly6C_sign1 and Ly6C_CM_KO$Ly6C_sign1
## W = 1556987, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

MHC-II+ CM

```
MHC2.markers <- filter(markers, cluster == "MHC2+ CM WT")
MHC2.markers <- MHC2.markers[MHC2.markers$p_val_adj < 0.05 &
    abs(MHC2.markers$avg_log2FC) > 0.25, ]
MHC2.markers <- MHC2.markers[order(MHC2.markers$avg_log2FC, decreasing = TRUE),
    ]
MHC2.markers.top100 <- head(MHC2.markers$gene, 100)
write.table(MHC2.markers.top100, file = "MHC2_sign.txt")
MHC2.markers.top100 <- list(MHC2.markers.top100)</pre>
```

```
sc <- AddModuleScore(sc, features = MHC2.markers.top100, name = "MHC2_sign")</pre>
```

```
VlnPlot(sc, features = "MHC2_sign1", cols = pal, pt.size = 0) +
    theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank()) + ggtitle("")
```



```
VlnPlot(sc, features = "MHC2_sign1", cols = pal_MHC2, pt.size = 0,
   idents = c("MHC2+ CM WT", "MHC2+ CM KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("MHC-II+ CM")
```

MHC-II+ CM


```
metadata <- sc@meta.data
MHC2_CM_WT <- metadata[metadata$Condition == "MHC2+ CM WT", ]</pre>
```

```
MHC2_CM_KO <- metadata[metadata$Condition == "MHC2+ CM KO", ]
wilcox.test(MHC2_CM_WT$MHC2_sign1, MHC2_CM_K0$MHC2_sign1) #2.388e-09</pre>
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: MHC2_CM_WT$MHC2_sign1 and MHC2_CM_KO$MHC2_sign1
## W = 183967, p-value = 2.388e-09
## alternative hypothesis: true location shift is not equal to 0
```

MG

```
VlnPlot(sc, features = "MG_sign1", cols = pal, pt.size = 0) +
   theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank()) + ggtitle("")
```



```
VlnPlot(sc, features = "MG_sign1", cols = pal_MG, pt.size = 0,
   idents = c("MG WT", "MG KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("MG")
```

1.5 -1.0 -0.5 -

```
metadata <- sc@meta.data
MG_WT <- metadata[metadata$Condition == "MG WT", ]
MG_KO <- metadata[metadata$Condition == "MG KO", ]

wilcox.test(MG_WT$MG_sign1, MG_KO$MG_sign1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: MG_WT$MG_sign1 and MG_KO$MG_sign1
## W = 2688279, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Monocyte signature score

```
cMovsMac <- read.csv("Mo_sign.csv", header = T)

cMo.genes <- list(cMovsMac$Gene_Symbol)

sc <- AddModuleScore(sc, features = cMo.genes, name = "Scoring_Mono")

## Warning: The following features are not present in the object: Ly6a2,
## Serpinb10, E430024C06Rik, L0C625360, Hbb-b2, Hbb-b1, Mx1, Pira1, Morrbid, Mx2,
## Dleu2, Pira11, Mirt1, Mir223hg, Gm12250, 9330175E14Rik, Aim1, Oas1b, G6pd2,
## AI607873, 38961, Ugt1a9, 4930562F07Rik, Trex1, Prss34, Phospho1, Gm10759,
## 9430025C20Rik, Gvin3, 4930518I15Rik, Gm10099, Gas5, Mir15a, H2-T10,</pre>
```

2610524H06Rik, 4930426L09Rik, Mir17hg, Pgam2, Phf11, Gm10551, not searching for ## symbol synonyms

```
VlnPlot(sc, features = "Scoring_Mono1", cols = pal, pt.size = 0)
```


SPM

```
pal_SPM <- c("#6A3D9A", "#CAB2D6")

VlnPlot(sc, features = "Scoring_Mono1", cols = pal_SPM, pt.size = 0,
    idents = c("SPM WT", "SPM KO")) + ggtitle("SPM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.25 - 0.20 - 0.15 - 0.10 -

```
metadata <- sc@meta.data
SPM_WT <- metadata[metadata$Condition == "SPM WT", ]
SPM_KO <- metadata[metadata$Condition == "SPM KO", ]

wilcox.test(SPM_WT$Scoring_Mono1, SPM_KO$Scoring_Mono1) #1.307e-14

##
## Wilcoxon rank sum test with continuity correction
##
## data: SPM_WT$Scoring_Mono1 and SPM_KO$Scoring_Mono1
## W = 7262, p-value = 1.307e-14
## alternative hypothesis: true location shift is not equal to 0</pre>
```

LPM

```
pal_LPM <- c("#e31a1c", "#fb9a99")

VlnPlot(sc, features = "Scoring_Mono1", cols = pal_LPM, pt.size = 0,
    idents = c("LPM WT", "LPM KO")) + ggtitle("LPM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.25 - 0.15 - 0.10 - 0.05 - 0.

```
LPM_WT <- metadata[metadata$Condition == "LPM WT", ]
LPM_KO <- metadata[metadata$Condition == "LPM KO", ]
wilcox.test(LPM_WT$Scoring_Mono1, LPM_KO$Scoring_Mono1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: LPM_WT$Scoring_Mono1 and LPM_KO$Scoring_Mono1
## W = 292555, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

KC

```
pal_KC <- c("#33a02c", "#b2df8a")

VlnPlot(sc, features = "Scoring_Mono1", cols = pal_KC, pt.size = 0,
   idents = c("KC WT", "KC KO")) + ggtitle("KC") + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```



```
KC_WT <- metadata[metadata$Condition == "KC WT", ]
KC_KO <- metadata[metadata$Condition == "KC KO", ]

wilcox.test(KC_WT$Scoring_Mono1, KC_KO$Scoring_Mono1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: KC_WT$Scoring_Mono1 and KC_KO$Scoring_Mono1
## W = 213858, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

IM

```
pal_IM <- c("#1f78b4", "#a6cee3")

VlnPlot(sc, features = "Scoring_Mono1", cols = pal_IM, pt.size = 0,
    idents = c("IM WT", "IM KO")) + ggtitle("IM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.2 -0.1 -0.0 -

```
IM_WT <- metadata[metadata$Condition == "IM WT", ]
IM_KO <- metadata[metadata$Condition == "IM KO", ]
wilcox.test(IM_WT$Scoring_Mono1, IM_KO$Scoring_Mono1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: IM_WT$Scoring_Mono1 and IM_KO$Scoring_Mono1
## W = 98864, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Ly6C+CM

```
pal_Ly6C <- c("#FF7F00", "#FDBF6F")

VlnPlot(sc, features = "Scoring_Mono1", cols = pal_Ly6C, pt.size = 0,
   idents = c("Ly6C+ CM WT", "Ly6C+ CM KO")) + ggtitle("Ly6C+ CM") +
   theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank())</pre>
```

0.4 - 0.3 - 0.1 - 0.0 -

```
Ly6C_WT <- metadata[metadata$Condition == "Ly6C+ CM WT", ]
Ly6C_KO <- metadata[metadata$Condition == "Ly6C+ CM KO", ]

wilcox.test(Ly6C_WT$Scoring_Mono1, Ly6C_KO$Scoring_Mono1) #1.205e-14

##
## Wilcoxon rank sum test with continuity correction
##
## data: Ly6C_WT$Scoring_Mono1 and Ly6C_KO$Scoring_Mono1
## W = 1464721, p-value = 1.205e-14
## alternative hypothesis: true location shift is not equal to 0
```

MHC-II+ CM

```
pal_MHC2 <- c("#FF00FA", "#FFA1FD")

VlnPlot(sc, features = "Scoring_Mono1", cols = pal_MHC2, pt.size = 0,
   idents = c("MHC2+ CM WT", "MHC2+ CM KO")) + ggtitle("MHC-II+ CM") +
   theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank())</pre>
```

0.20 -0.15 -0.05 -0.00 -

```
MHC2_WT <- metadata[metadata$Condition == "MHC2+ CM WT", ]
MHC2_KO <- metadata[metadata$Condition == "MHC2+ CM KO", ]

wilcox.test(MHC2_WT$Scoring_Mono1, MHC2_KO$Scoring_Mono1) #0.0005466

##
## Wilcoxon rank sum test with continuity correction
##
## data: MHC2_WT$Scoring_Mono1 and MHC2_KO$Scoring_Mono1
## W = 123279, p-value = 0.0005466</pre>
```

alternative hypothesis: true location shift is not equal to 0

MG

```
pal_MG <- c("#87421F", "#CDAA7D")

VlnPlot(sc, features = "Scoring_Mono1", cols = pal_MG, pt.size = 0,
   idents = c("MG WT", "MG KO")) + ggtitle("MG") + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```



```
MG_WT <- metadata[metadata$Condition == "MG WT", ]
MG_KO <- metadata[metadata$Condition == "MG KO", ]
wilcox.test(MG_WT$Scoring_Mono1, MG_KO$Scoring_Mono1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: MG_WT$Scoring_Mono1 and MG_KO$Scoring_Mono1
## W = 1634349, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Embrionically dervived mac and Monocyte dervived mac signature score KC


```
metadata <- sc@meta.data
KC_WT <- metadata[metadata$Condition == "KC WT", ]
KC_KO <- metadata[metadata$Condition == "KC KO", ]

wilcox.test(KC_WT$EM_KC_sign1, KC_KO$EM_KC_sign1) #< 2.2e-16</pre>
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: KC_WT$EM_KC_sign1 and KC_KO$EM_KC_sign1
## W = 427683, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

VlnPlot(sc, features = "Mo_KC_sign1", cols = pal_KC, pt.size = 0,
    idents = c("KC WT", "KC KO")) + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank()) +
    ggtitle("KC")</pre>
```



```
wilcox.test(KC_WT$Mo_KC_sign1, KC_KO$Mo_KC_sign1) #P= 1.116e-10
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: KC_WT$Mo_KC_sign1 and KC_KO$Mo_KC_sign1
## W = 259572, p-value = 1.116e-10
## alternative hypothesis: true location shift is not equal to 0
```

IM

```
Bulk_RNAseq_IM_EMvsMo <- read_excel("Bulk_RNAseq_IM_EMvsMo.xlsx")
Bulk_RNAseq_IM_EMvsMo <- Bulk_RNAseq_IM_EMvsMo[Bulk_RNAseq_IM_EMvsMo$padj.y <</pre>
```

```
VlnPlot(sc, features = "EM_IM_sign1", cols = pal_IM, pt.size = 0,
   idents = c("IM WT", "IM KO")) + theme(legend.position = "none",
   axis.title.x = element_blank(), axis.text.x = element_blank()) +
   ggtitle("IM")
```

sc <- AddModuleScore(sc, features = Mo_IM_sign, name = "Mo_IM_sign")</pre>


```
metadata <- sc@meta.data
IM_WT <- metadata[metadata$Condition == "IM WT", ]
IM_KO <- metadata[metadata$Condition == "IM KO", ]

wilcox.test(IM_WT$EM_IM_sign1, IM_KO$EM_IM_sign1) #< 2.2e-16

##

## Wilcoxon rank sum test with continuity correction

##

## data: IM_WT$EM_IM_sign1 and IM_KO$EM_IM_sign1

## W = 284975, p-value < 2.2e-16

## alternative hypothesis: true location shift is not equal to 0

VlnPlot(sc, features = "Mo_IM_sign1", cols = pal_IM, pt.size = 0,
    idents = c("IM WT", "IM KO")) + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank()) +
    ggtitle("IM")</pre>
```



```
wilcox.test(IM_WT$Mo_IM_sign1, IM_KO$Mo_IM_sign1) #< 2.2e-16
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: IM_WT$Mo_IM_sign1 and IM_KO$Mo_IM_sign1
## W = 138648, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

```
Bulk_RNAseq_MG_EMvsMo <- read_excel("Bulk_RNAseq_MG_EMvsMo.xlsx",</pre>
    na = "NA")
Bulk_RNAseq_MG_EMvsMo <- Bulk_RNAseq_MG_EMvsMo[Bulk_RNAseq_MG_EMvsMo$p.value.45.1.45.2.nt <
    0.05 & abs(Bulk_RNAseq_MG_EMvsMo$FC.45.1.45.2.nt) > 1, ]
Bulk_RNAseq_MG_EMvsMo$diff <- Bulk_RNAseq_MG_EMvsMo$average.45.1.nt -</pre>
    Bulk_RNAseq_MG_EMvsMo$average.45.2.nt
EM_MG_sign <- Bulk_RNAseq_MG_EMvsMo[Bulk_RNAseq_MG_EMvsMo$diff <
    O, ]$Gene.Name
EM_MG_sign <- intersect(rownames(sc), EM_MG_sign)</pre>
EM_MG_sign <- head(EM_MG_sign, 100)</pre>
write.table(EM_MG_sign, file = "EM_MG_sign.txt")
EM_MG_sign <- list(EM_MG_sign)</pre>
sc <- AddModuleScore(sc, features = EM_MG_sign, name = "EM_MG_sign")</pre>
Mo_MG_sign <- Bulk_RNAseq_MG_EMvsMo[Bulk_RNAseq_MG_EMvsMo$diff >
    0, ]$Gene.Name
Mo MG sign <- intersect(rownames(sc), Mo MG sign)
Mo_MG_sign <- head(Mo_MG_sign, 100)</pre>
write.table(Mo_MG_sign, file = "Mo_MG_sign.txt")
Mo_MG_sign <- list(Mo_MG_sign)</pre>
sc <- AddModuleScore(sc, features = Mo_MG_sign, name = "Mo_MG_sign")</pre>
VlnPlot(sc, features = "EM_MG_sign1", cols = pal_MG, pt.size = 0,
    idents = c("MG WT", "MG KO")) + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank()) +
    ggtitle("MG")
```

0.4 -0.2 -0.0 -

```
metadata <- sc@meta.data
MG_WT <- metadata[metadata$Condition == "MG WT", ]</pre>
MG_KO <- metadata[metadata$Condition == "MG KO", ]</pre>
mean(MG_WT$EM_MG_sign1)
## [1] 0.1635021
mean(MG_KO$EM_MG_sign1)
## [1] 0.1522682
wilcox.test(MG_WT$EM_MG_sign1, MG_KO$EM_MG_sign1) \#p-value = 4.694e-07
##
## Wilcoxon rank sum test with continuity correction
## data: MG_WT$EM_MG_sign1 and MG_KO$EM_MG_sign1
## W = 2230982, p-value = 4.694e-07
\#\# alternative hypothesis: true location shift is not equal to 0
VlnPlot(sc, features = "Mo_MG_sign1", cols = pal_MG, pt.size = 0,
    idents = c("MG WT", "MG KO")) + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank()) +
    ggtitle("MG")
```



```
metadata <- sc@meta.data
MG_WT <- metadata[metadata$Condition == "MG WT", ]
MG_KO <- metadata[metadata$Condition == "MG KO", ]

mean(MG_WT$Mo_MG_sign1)

## [1] -0.1756634

mean(MG_KO$Mo_MG_sign1)

## [1] -0.1750868

wilcox.test(MG_WT$Mo_MG_sign1, MG_KO$Mo_MG_sign1) #p-value = 0.02041

## ## Wilcoxon rank sum test with continuity correction
## ## data: MG_WT$Mo_MG_sign1 and MG_KO$Mo_MG_sign1
## W = 2129965, p-value = 0.02041</pre>
```

MafB target gene signature score

MafB peaks were identified by CUT&RUN on BMDM

alternative hypothesis: true location shift is not equal to 0

 \mathbf{SPM}

```
pal_SPM <- c("#6A3D9A", "#CAB2D6")

VlnPlot(sc, features = "Mafb_sign1", cols = pal_SPM, pt.size = 0,
    idents = c("SPM WT", "SPM KO")) + ggtitle("SPM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.3 -0.2 -0.1 -

```
metadata <- sc@meta.data
SPM_WT <- metadata[metadata$Condition == "SPM WT", ]
SPM_KO <- metadata[metadata$Condition == "SPM KO", ]

wilcox.test(SPM_WT$Mafb_sign1, SPM_KO$Mafb_sign1) #3.08e-11

##
## Wilcoxon rank sum test with continuity correction
##
## data: SPM_WT$Mafb_sign1 and SPM_KO$Mafb_sign1
## W = 20093, p-value = 3.08e-11
## alternative hypothesis: true location shift is not equal to 0</pre>
```

LPM

```
pal_LPM <- c("#e31a1c", "#fb9a99")

VlnPlot(sc, features = "Mafb_sign1", cols = pal_LPM, pt.size = 0,
    idents = c("LPM WT", "LPM KO")) + ggtitle("LPM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.3 -0.2 -0.1 -

```
LPM_WT <- metadata[metadata$Condition == "LPM WT", ]
LPM_KO <- metadata[metadata$Condition == "LPM KO", ]
wilcox.test(LPM_WT$Mafb_sign1, LPM_KO$Mafb_sign1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: LPM_WT$Mafb_sign1 and LPM_KO$Mafb_sign1
## W = 2266533, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

KC

```
pal_KC <- c("#33a02c", "#b2df8a")

VlnPlot(sc, features = "Mafb_sign1", cols = pal_KC, pt.size = 0,
    idents = c("KC WT", "KC KO")) + ggtitle("KC") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```



```
KC_WT <- metadata[metadata$Condition == "KC WT", ]
KC_KO <- metadata[metadata$Condition == "KC KO", ]

wilcox.test(KC_WT$Mafb_sign1, KC_KO$Mafb_sign1) #3.096e-09

##
## Wilcoxon rank sum test with continuity correction
##
## data: KC_WT$Mafb_sign1 and KC_KO$Mafb_sign1
## W = 373739, p-value = 3.096e-09
## alternative hypothesis: true location shift is not equal to 0</pre>
```

IM

```
pal_IM <- c("#1f78b4", "#a6cee3")

VlnPlot(sc, features = "Mafb_sign1", cols = pal_IM, pt.size = 0,
    idents = c("IM WT", "IM KO")) + ggtitle("IM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.2 -0.1 -0.0 -

```
IM_WT <- metadata[metadata$Condition == "IM WT", ]
IM_KO <- metadata[metadata$Condition == "IM KO", ]
wilcox.test(IM_WT$Mafb_sign1, IM_KO$Mafb_sign1) #< 2.2e-16

##
## Wilcoxon rank sum test with continuity correction
##
## data: IM_WT$Mafb_sign1 and IM_KO$Mafb_sign1
## W = 328255, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Ly6C+CM

```
pal_Ly6C <- c("#FF7F00", "#FDBF6F")

VlnPlot(sc, features = "Mafb_sign1", cols = pal_Ly6C, pt.size = 0,
    idents = c("Ly6C+ CM WT", "Ly6C+ CM KO")) + ggtitle("Ly6C+ CM") +
    theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank())</pre>
```

0.4 - 0.2 - 0.1 - 0.1 - 0.4 - 0.4 - 0.4 - 0.5 -

```
Ly6C_WT <- metadata[metadata$Condition == "Ly6C+ CM WT", ]
Ly6C_KO <- metadata[metadata$Condition == "Ly6C+ CM KO", ]

wilcox.test(Ly6C_WT$Mafb_sign1, Ly6C_KO$Mafb_sign1) #2.816e-06

##
## Wilcoxon rank sum test with continuity correction
##
## data: Ly6C_WT$Mafb_sign1 and Ly6C_KO$Mafb_sign1
## W = 1385982, p-value = 2.816e-06
## alternative hypothesis: true location shift is not equal to 0
```

MHC-II+ CM

```
pal_MHC2 <- c("#FF00FA", "#FFA1FD")

VlnPlot(sc, features = "Mafb_sign1", cols = pal_MHC2, pt.size = 0,
    idents = c("MHC2+ CM WT", "MHC2+ CM KO")) + ggtitle("MHC-II+ CM") +
    theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank())</pre>
```

MHC-II+ CM


```
MHC2_WT <- metadata[metadata$Condition == "MHC2+ CM WT", ]
MHC2_KO <- metadata[metadata$Condition == "MHC2+ CM KO", ]
wilcox.test(MHC2_WT$Mafb_sign1, MHC2_KO$Mafb_sign1) #0.006117</pre>
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: MHC2_WT$Mafb_sign1 and MHC2_KO$Mafb_sign1
## W = 163187, p-value = 0.006117
## alternative hypothesis: true location shift is not equal to 0
```

MG

```
pal_MG <- c("#87421F", "#CDAA7D")

VlnPlot(sc, features = "Mafb_sign1", cols = pal_MG, pt.size = 0,
    idents = c("MG WT", "MG KO")) + ggtitle("MG") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```

0.4 - 0.3 - 0.1 - 0.0 -

```
MG_WT <- metadata[metadata$Condition == "MG WT", ]
MG_KO <- metadata[metadata$Condition == "MG KO", ]

wilcox.test(MG_WT$Mafb_sign1, MG_KO$Mafb_sign1) #0.0001445

##
## Wilcoxon rank sum test with continuity correction
##
## data: MG_WT$Mafb_sign1 and MG_KO$Mafb_sign1
## W = 2184993, p-value = 0.0001445
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Csf1r expression

```
VlnPlot(sc, features = "Csf1r", cols = pal, pt.size = 0) + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank()) +
    ggtitle("")
```


SPM

```
pal_SPM <- c("#6A3D9A", "#CAB2D6")

VlnPlot(sc, features = "Csf1r", cols = pal_SPM, pt.size = 0,
    idents = c("SPM WT", "SPM KO")) + ggtitle("SPM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```


\mathbf{LPM}

```
pal_LPM <- c("#e31a1c", "#fb9a99")

VlnPlot(sc, features = "Csf1r", cols = pal_LPM, pt.size = 0,
    idents = c("LPM WT", "LPM KO")) + ggtitle("LPM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```


KC

IM

```
pal_IM <- c("#1f78b4", "#a6cee3")

VlnPlot(sc, features = "Csf1r", cols = pal_IM, pt.size = 0, idents = c("IM WT",
    "IM KO")) + ggtitle("IM") + theme(legend.position = "none",
    axis.title.x = element_blank(), axis.text.x = element_blank())</pre>
```


Ly6C+CM

```
pal_Ly6C <- c("#FF7F00", "#FDBF6F")

VlnPlot(sc, features = "Csf1r", cols = pal_Ly6C, pt.size = 0,
   idents = c("Ly6C+ CM WT", "Ly6C+ CM KO")) + ggtitle("Ly6C+ CM") +
   theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank())</pre>
```


$\mathbf{MHC\text{-}II} + \mathbf{CM}$

```
pal_MHC2 <- c("#FF00FA", "#FFA1FD")

VlnPlot(sc, features = "Csf1r", cols = pal_MHC2, pt.size = 0,
   idents = c("MHC2+ CM WT", "MHC2+ CM KO")) + ggtitle("MHC-II+ CM") +
   theme(legend.position = "none", axis.title.x = element_blank(),
        axis.text.x = element_blank())</pre>
```


\mathbf{MG}

sessionInfo()

```
## R version 4.2.3 (2023-03-15 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Dutch_Netherlands.utf8 LC_CTYPE=Dutch_Netherlands.utf8
## [3] LC_MONETARY=Dutch_Netherlands.utf8 LC_NUMERIC=C
## [5] LC_TIME=Dutch_Netherlands.utf8
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
##
## other attached packages:
## [1] readxl_1.4.3
                                             RColorBrewer_1.1-3 ggplot2_3.4.4
                          dplyr_1.1.4
## [5] limma_3.54.2
                          SeuratObject_4.1.3 Seurat_4.3.0
##
## loaded via a namespace (and not attached):
##
     [1] Rtsne_0.17
                                colorspace_2.1-0
                                                        deldir_2.0-2
##
     [4] ellipsis_0.3.2
                                ggridges_0.5.5
                                                        rstudioapi_0.15.0
     [7] spatstat.data_3.0-3
                                farver_2.1.1
                                                        leiden_0.4.3.1
   [10] listenv_0.9.0
                                ggrepel_0.9.4
                                                        fansi_1.0.6
##
##
   [13] codetools_0.2-19
                                splines_4.2.3
                                                        knitr_1.45
##
  [16] polyclip_1.10-6
                                spam_2.10-0
                                                        jsonlite_1.8.8
   [19] ica_1.0-3
                                cluster_2.1.4
                                                        png_0.1-8
##
   [22] uwot_0.1.16
                                shiny_1.8.0
                                                        sctransform_0.4.1
```

```
[25] spatstat.sparse_3.0-3
                                compiler 4.2.3
                                                         httr_1.4.7
##
    [28] Matrix_1.6-4
                                 fastmap_1.1.1
                                                         lazyeval_0.2.2
##
    [31] cli 3.6.2
                                 later 1.3.2
                                                         formatR 1.14
    [34] htmltools_0.5.7
                                 tools_4.2.3
                                                         dotCall64_1.1-1
##
    [37] igraph_1.6.0
                                 gtable_0.3.5
                                                         glue_1.6.2
##
    [40] RANN 2.6.1
                                 reshape2 1.4.4
                                                         Rcpp_1.0.11
    [43] scattermore 1.2
                                 cellranger 1.1.0
                                                         vctrs 0.6.5
    [46] spatstat.explore_3.2-5 nlme_3.1-162
                                                         progressr_0.14.0
##
                                 spatstat.random_3.2-2
##
    [49] lmtest 0.9-40
                                                        xfun_0.39
    [52] stringr_1.5.1
                                 globals_0.16.2
                                                         mime_0.12
##
    [55] miniUI_0.1.1.1
                                 lifecycle_1.0.4
                                                         irlba_2.3.5.1
    [58] goftest_1.2-3
                                 future_1.33.1
                                                         MASS_7.3-58.2
##
    [61] zoo_1.8-12
                                 scales_1.3.0
##
                                                         promises_1.2.1
    [64] spatstat.utils_3.0-4
                                 parallel_4.2.3
                                                         yaml_2.3.7
##
##
    [67] reticulate_1.34.0
                                 pbapply_1.7-2
                                                         gridExtra_2.3
##
    [70] stringi_1.8.3
                                 highr_0.10
                                                         rlang_1.1.2
##
    [73] pkgconfig_2.0.3
                                 matrixStats_1.2.0
                                                         evaluate_0.23
    [76] lattice 0.20-45
                                 ROCR 1.0-11
                                                         purrr 1.0.2
   [79] tensor_1.5
                                 labeling_0.4.3
                                                         patchwork_1.1.3
##
##
    [82] htmlwidgets 1.6.4
                                 cowplot 1.1.2
                                                         tidyselect_1.2.1
##
    [85] parallelly_1.36.0
                                 RcppAnnoy_0.0.21
                                                         plyr_1.8.9
##
    [88] magrittr_2.0.3
                                 R6 2.5.1
                                                         generics 0.1.3
                                 pillar_1.9.0
    [91] withr_3.0.1
                                                         fitdistrplus_1.1-11
##
    [94] survival 3.5-3
                                 abind 1.4-5
                                                         sp 2.1-2
##
                                                        KernSmooth_2.23-20
  [97] tibble 3.2.1
                                 future.apply_1.11.1
##
                                 spatstat.geom_3.2-7
## [100] utf8 1.2.4
                                                         plotly_4.10.3
## [103] rmarkdown_2.25
                                 grid_4.2.3
                                                         data.table_1.14.10
## [106] digest_0.6.31
                                 xtable_1.8-4
                                                         tidyr_1.3.0
## [109] httpuv_1.6.13
                                 munsell_0.5.1
                                                         viridisLite_0.4.2
```