

Subreddit Classification

BILL FU AUGUST 28 2020

Overview

Objective:

Using natural language processing (NLP) to train binary classifiers to determine whether a reddit post came from "StarWars" or "marvelstudios".

- Outlines
 - Data preparation
 - Text Vectorizers comparison
 - Classifiers comparison
 - The optimized classifier evaluation
 - Conclusions

Data preparation

- Data was collected from <u>reddit.com</u> using the "pushshift" application programming interface (API)
- 20,000 posts were collected from each of the two subreddits:
 - "StarWars"
 - "marvelstudios"
- Only the titles of the posts were used, and duplicated titles were discarded
- Final datasets:
 - 19,044 posts from "StarWars"
 - 19,184 posts from "marvelstudios"

How many posts are needed?

Using the Multinomial Naïve Bayes (MNB) classifier, evaluations were carried out for the following cases*:

- 400 posts
- 1,000 posts
- 4,000 posts
- 10,000 posts
- 20,000 posts
- 38,228 posts (all the collected posts)

^{*} The number of posts from each subreddit are the same – Baseline model accuracy is 0.5

Most common words in the posts

- Texts were converted by count-vectorizer with stop_words = 'english'
- The top 30 most common words are consistent in the training and testing datasets

Count vs Term Frequency-Inverse Document Frequency (TF-IDF) Vectorizers

- Count and TF-IDF Vectorizers had different optimized parameters:
 - Count: English stop words single terms and bigrams
 - TF-IDF: No stop words single terms

PREDICTION SCORES*

	Count	TF-IDF
Training	0.928	0.937
Testing	0.902	0.900

* Predicted from MNB classifiers

Count and TF-IDF Vectorizers gave similar prediction results

Classifiers Comparison

PREDICTION SCORES

	MNB	KNN	Logistic Regression	Random Forest	svc
Train	0.928	0.873	0.957	0.937	0.970
Test	0.902	0.792	0.903	0.888	0.875

- Logistic Regression (LGR) and MNB classifiers gave good predictions on both training and testing datasets
- Random forest (RF) and support vector machine (SVC) classifiers gave good predictions on training datasets, but not so good predictions on testing datasets.
- KNN classifiers performed not as good as other classifiers
- Receiver operating characteristic (ROC) analysis on different classifiers was consistent with the prediction scores

ROC CURVES

Optimization of Logistic Regression Classifiers

Best parameters

CountVectorizer: max_feature=8000,

ngram = (1, 2),

stop_words = 'english'

LogisticRegression: C=1.2

Prediction scores

Training: 0.961

Testing: 0.903

Sensitivity: 0.944

Specificity: 0.861

Confusion matrix on testing datasets

Top driving words for Logistical Regression Classifiers

Conclusions and future work

- Binary classifiers were successfully trained to determine whether a reddit post came from "StarWars" or "marvelstudios".
- Different text vectorizers and classifiers were compared and the optimized classifier could gave decent predicting results.
- There are still rooms to reduce the overfitting of the classifiers.
 - Bagging the classifiers
 - Reducing the number of features
 - Reducing the model complexity