Gearless Transmission via Elbow Rod Mechanism

- ME21BTECH11001 Abhishek Ghosh
- ME21BTECH11002 Aditya Verma
- ME21BTECH11012 C Bharath
- ME21BTECH11019 Harshit Shambharkar
- ME21BTECH11028 Loukik Kalbande

Table of Content

What is Gearless Transmission?

Need of Gearless Transmission.

Geared Vs Gearless Transmission

Components and its Dimensions

Design and Analysis

CAD Model

FEM Analysis

Scalability and Safety Measure

What is Gearless Transmission?

A gearless transmission is mechanism for transmitting rotational velocity from an input connected to the bent links in-turn to the output. Rotation of the input shaft results in a processional motion of the axis of the bent link. The rotary and reciprocating motion of bent link transmits the rotation to 90 degress without any gear system to an output shaft.

Need of Gearless Transmission?

Reduces complexity and cost compared to gearbased systems.

Requires minimal maintenance due to fewer moving parts.

Enables smooth power transmission at angles (e.g., 90°).

Lightweight and space-efficient, ideal for compact systems.

Efficient for low-torque applications.

Noise reduction due by eliminating gear meshing.

Differences between Geared and Gearless?

Aspect	Geared Transmission	Gearless Transmission	
Manufacturing Complexity	High; involves forming, machining, heat treatment, finishing	Low; simpler fabrication using basic machining and welding	
Precision Requirements	Very high; essential for tooth profile accuracy	Moderate; precise positioning of rods is critical	
Common Causes of Failure	Wear, misalignment, overloading, lubrication issues	Rod wear, misalignment, fatigue failures	
Maintenance Needs	High; requires regular lubrication and inspection	Low; fewer moving parts reduce maintenance	
Torque Transmission	Used in high torque transmission , different speed at any angle is not possible	Used in low torques transmission, Different speed at any angle is possible.	

Components

Design and Analysis

Shaft

Power (P):

$$P = 3 \times 1hp = \frac{3}{4} \times 746 = 559.5W \tag{1}$$

Given:

$$N = 300 \text{ rpm}, \quad \rho = 786 \times 10^{-8} \text{ kg/mm}^3 \text{ (mild steel)}$$
 (2)

Torque:

$$T_{max} = \frac{P \times 60,000 \times 1.25}{2\pi N} \approx 22261.797 \text{ N-mm}$$
 (3)

Maximum Shear Stress:

$$\tau_{s,max} = 40 \text{ N/mm}^2 \tag{4}$$

Shaft Diameter:

$$D_{shaft} = \left(\frac{16T_s}{\pi \tau_s}\right)^{\frac{1}{3}} \times 1.4 = 20 \text{ mm}$$

Shear Stress in Shaft:

$$\tau_{shaft} = \frac{16T}{\pi D^3} = 14.17 \text{ N/mm}^2$$
(6)

Moment Due to Self-weight:

$$M_{shaft,self-wt} = \frac{W_{shaft}L_{shaft}^2}{8} = 3027.96 \text{ N-mm}$$
 (7)

Moment Due to Hub:

$$M_{shaft,hub} = \frac{F_{hub}L_{shaft}}{4} = 172.59 \text{ N-mm}$$
 (8)

Bending Stress in Shaft:

$$\sigma_{b,shaft} = \frac{32(M_{shaft,self-wt} + M_{shaft,hub})}{\pi (D_{shaft})^3} = 4.075 \text{ N/mm}^2$$
 (9)

Von Mises Stress:

(5)

$$\sigma_{eq} = \sqrt{\sigma_b^2 + 3\tau^2} = 24.66 \text{ N/mm}^2 < 60 \text{ N/mm}^2 \text{ (tensile permissible)}$$
 (10)

Hub

Given:

$$D_o = 80 \text{ mm}, \quad D_i = 20 \text{ mm}$$
 (11)

Shear Stress at Hub:

$$\tau_{Hub} = \frac{16T_{max}D_o}{\pi(D_o^4 - D_i^4)} = 0.22 \text{ N/mm}^2$$
 (12)

Elbow Rod

Torque in Rod:

$$T_{rod} = \frac{T_{max}}{3} = 7420.5 \text{ N-mm}$$

Diameter of Rod:

$$D_{elbow} = \frac{16T_{rod}}{\pi \tau_{s,max}} = 10mm$$

Shear Stress in Rod:

$$au_{rod} = \frac{16T_{rod}}{\pi D_{elbow}^3} = 37.492 \text{ N/mm}^2$$

Moment at Elbow:

$$M_{elbow} = W_{rod} \times \frac{L_{rod}}{2} = 17.032 \text{ N-mm}$$

Bending Stress at Elbow:

$$\sigma_{b,elbow,self-wt} = \frac{32M_{elbow}}{\pi D_{elbow}^3} = 0.1735 \text{ N/mm}^2$$

Force in Rod:

(13)
$$F_{rod} = \frac{T_{rod}}{r} = 296.82 \text{ N}$$
 (18)

Moment Due to Rod Force:

(14)
$$M_{hub,txn} = F_{rod}L_{rod} = 2226.79 \text{ N-mm}$$
 (19)

Bending Stress at Hub:

$$\sigma_{b,Hub-txn} = \frac{32M_{hub,txn}}{\pi D_{elbow}^3} = 226.75 \text{ N/mm}^2$$
 (20)

(16) Total Bending Stress:

(15)

(17)

$$\sigma_{b,total} = \sigma_{b,elbow,self-wt} + \sigma_{b,Hub-txn} = 226.93 \text{ N/mm}^2$$
 (21)

Von Mises Stress at Hub:

$$\sigma_{eq} = \sqrt{\sigma_{b,total}^2 + 3\tau_{rod}^2} = 236.18 \text{ N/mm}^2 < 380 \text{ N/mm}^2$$
 (22)

Dimensions

Part	Dimension
Cylindrical Hub	D=80mm, t=20mm, three holes radially at 25 mm distance of d=10 mm, center 20mm hole
Elbow link	D = 10mm, I = 150mm on each side
Shaft	D=20mm, l=100mm
Bearing	D = 20mm inner, outer 30mm, t = 30mm
Base rectangular section	L = 80mm, b=80mm
Pole on the base	D =20mm, h=80mm

CAD and **FEM** Analysis

Dimensions

Dimensions

Production Drawing

Item Number	File Name Ino extension)	Material	Quantity
1	HUB	Mild Steel	2
2	ELBOW_LINK	Mild Steel	3
3	TAHAZ	Mild Steel	2
4	BEARING	Mild Steel	2

OLID EDGE ACADEMIC COPY

		NAME	DATE	Γ.	9	
	DRAWN	Harshit	5/3/2025	1	ආරම්යා එරේම්ම වතුර රරල් චුප්රපත්රි weekly shakfood visuos විදුපත්ද	
	CHECKED				Indian Institute of Technology Hyders	bad
	ENG APPR			TITLE	IIT HYDERABAD	
	MGR APPR			1		
\vdash	UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN MILLIMETERS		SIZE A2	DWG NO IITH/MINI_PROJECT/GROUP-1	REV	

ANGLES ±0.1" 2 PL±XXX 3 PL±XXXX ILE NAME: TRANSMISSION_ASSEMBLY_3.dft

CAD Model

FEM Analysis

Equivalent Stress (von - Mises)

Deformation

Equivalent Elastic Strain

Strain Energy

Scalability and Safety Measure

Scalability Considerations:

- Use high-strength materials for durability.
- Enhance load capacity with stronger joints.
- Customize for various transmission angles.
- Integrate with automation for industrial use.
- Optimize for both large-scale and miniaturized applications.

Safety Measures:

- Reinforce joints to prevent failure.
- Lubricate pivot points for smooth movement.
- Ensure even load distribution to avoid breakage.
- Use protective enclosures to prevent accidents.
- Implement emergency stop mechanisms in automation.
- Perform regular maintenance to ensure reliability.

Thank You